Ex 1 Produit d'espaces vectoriels : soient E et F deux \mathbb{K} -espaces vectoriels. On pose

$$\forall \left(\left(x,y \right), \left(x',y' \right) \right) \in \left(E \times F \right)^2, \ \forall \lambda \in \mathbb{K}, \quad \left\{ \begin{array}{l} \left(x,y \right) + \left(x',y' \right) = \left(x+x',y+y' \right) \\ \lambda \left(x,y \right) = \left(\lambda x,\lambda y \right) \end{array} \right.$$

Montrons que ces lois définissent une structure de \mathbb{K} -espace vectoriel sur $E \times F$ (dite structure produit) :

- La loi d'addition est bien interne, et la loi de multiplication est bien externe.
- Vérifions les axiomes de définition :
 - * La loi + est commutative : si $((x, y), (x', y')) \in (E \times F)^2$,

$$(x,y) + (x',y') = (x+x',y+y')$$

= $(x'+x,y'+y)$
= $(x'y') + (x,y)$

* La loi + est associative : si $((x, y), (x', y'), (x'', y'')) \in (E \times F)^3$,

$$((x,y) + (x',y')) + (x'',y'') = (x+x',y+y') + (x'',y'')$$

$$= (x+x'+x'',y+y'+y'')$$

$$= (x,y) + (x'+x'',y'+y'')$$

$$= (x,y) + ((x',y') + (x'',y''))$$

* L'élément $0_{E\times F}=(0_E,0_F)$ est neutre pour l'addition : si $(x,y)\in E\times F$,

$$(x,y) + (0_E, 0_F) = (x + 0_E, y + 0_F) = (x,y)$$

* Tout élément $(x,y) \in E \times F$ admet un symétrique -(x,y) = (-x-y) pour l'addition, vérifiant :

$$(x,y) + (-(x,y)) = (x,y) + (-x-y) = (x-x,y-y) = (0_E,0_F) = 0_{E\times F}$$

- * Si $(x, y) \in E \times F$, on a bien 1 (x, y) = (1x, 1y) = (x, y).
- * Si $(x,y) \in E \times F$ et $(\lambda,\mu) \in \mathbb{K}^2$, alors

$$\lambda\left(\mu\left(x,y\right)\right) = \lambda\left(\mu x,\mu y\right) = \left(\lambda\left(\mu x\right),\lambda\left(\mu y\right)\right) = \left(\left(\lambda\mu\right)x,\left(\lambda\mu\right)y\right) = \left(\lambda\mu\right)\left(x,y\right)$$

* Si $(x, y) \in E \times F$ et $(\lambda, \mu) \in \mathbb{K}^2$, alors

$$(\lambda + \mu) (x, y) = ((\lambda + \mu) x, (\lambda + \mu) y)$$

$$= (\lambda x + \mu x, \lambda y + \mu y)$$

$$= (\lambda x, \lambda y) + (\mu x, \mu y)$$

$$= \lambda (x, y) + \mu (x, y)$$

* Si $((x,y),(x',y')) \in (E \times F)^2$ et $\lambda \in \mathbb{K}$, alors

$$\begin{array}{lll} \lambda \left((x,y) + (x',y') \right) & = & \lambda \left(x + x', y + y' \right) \\ & = & \left(\lambda \left(x + x' \right), \lambda \left(y + y' \right) \right) \\ & = & \left(\lambda x + \lambda x', \lambda y + \lambda y' \right) \\ & = & \left(\lambda x, \lambda y \right) + \left(\lambda x', \lambda y' \right) \\ & = & \lambda \left(x, y \right) + \lambda \left(x', y' \right) \end{array}$$

PCSI 1 Thiers 2019/2020

Ex 2 Soient F et G des sous-espaces vectoriels d'un \mathbb{K} -espace E.

Montrons que $F \cup G$ est un sous-espace vectoriel que si et seulement si $F \subset G$ ou $G \subset F$.

- On suppose que $F \subset G$ ou $G \subset F$: alors dans le premier cas $F \cup G = G$ et dans le second $F \cup G = F$. Dans les deux cas, $F \cup G$ est un sous espace vectoriel de E.
- On suppose que $F \cup G$ est un sous-espace vectoriel de E.

Par l'absurde, si $F \not\subset G$ et $G \not\subset F$, alors on dispose d'un vecteur $x \in F \setminus G$ et d'un vecteur $y \in G \setminus F$.

Alors par hypothèse $z = x + y \in F \cup G$. Mais :

- * Si $z \in F$ alors $y = z x \in F$ contradiction
- * Si $z \in G$ alors $x = z y \in G$ contradiction

On est dans une impasse dans chaque cas, ce qui prouve que $F \subset G$ ou $G \subset F$, CQFD.

Ex 3 Les ensembles suivants sont-ils des espaces vectoriels?

- a) * L'ensemble E_1 des fonctions bornées sur $\mathbb R$ est un sous espace vectoriel de $\mathbb R^{\mathbb R}$:
 - · La fonction nulle sur \mathbb{R} est bornée sur \mathbb{R} .
 - · Soient $(f,g) \in E_1$ et $\lambda \in \mathbb{R}$. Alors

$$\left\{ \begin{array}{l} \exists M \in \mathbb{R}_{+} \ / \ \forall x \in \mathbb{R}, \ |f\left(x\right)| \leqslant M \\ \exists M' \in \mathbb{R}_{+} \ / \ \forall x \in \mathbb{R}, \ |g\left(x\right)| \leqslant M' \end{array} \right.$$

Donc

$$\forall x \in \mathbb{R}, \ \left|\lambda f\left(x\right) + g\left(x\right)\right| \overset{\text{I.T.}}{\leqslant} \left|\lambda\right| \left|f\left(x\right)\right| + \left|g\left(x\right)\right| \leqslant \left|\lambda\right| M + M'$$

Ainsi $\lambda f + g \in E_1$, CQFD.

- * L'ensemble E_2 des fonctions vérifiant : $\forall x \in \mathbb{R}, \ f(x+1) = f(x) + 1$ ne contient pas la fonction nulle, donc n'est pas un sous espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.
- b) * L'ensemble E_3 des polynômes unitaires n'est pas stable par somme (X + X = 2X!!) donc n'est pas un espace vectoriel.
 - * L'ensemble E_4 des polynômes divisibles par $X^2 + 1$ est un sous espace vectoriel de $\mathbb{K}[X]$:
 - · Le polynôme nul est divisible par $X^2 + 1$.
 - · Soient $(P_1, P_2) \in E_4$ et $\lambda \in \mathbb{K}$ Alors

$$\left\{ \begin{array}{l} \exists Q_1 \in \mathbb{K}\left[X\right] \ / \ P_1 = \left(X^2+1\right)Q_1 \\ \exists Q_2 \in \mathbb{K}\left[X\right] \ / \ P_2 = \left(X^2+1\right)Q_2 \end{array} \right. \Rightarrow \lambda P_1 + P_2 = \left(X^2+1\right)(\lambda Q_1 + Q_2) \in E_4, \text{CQFD}.$$

- c) * L'ensemble E_5 des suites complexes convergentes et un sous espace vectoriel de $\mathbb{C}^{\mathbb{N}}$:
 - · La suite nulle est convergente
 - · Toute combinaison linéaire de suites convergentes converge.
 - * L'ensemble E_6 des suites géométriques réelles n'est pas stable par somme : en effet, la suite u de terme général $u_n = 2^n + 3^n$ n'est pas géométrique, sinon la suite v de terme général $\frac{2^{n+1} + 3^n}{2^n + 3^n}$ serait constante. Or

$$v_0 = \frac{5}{2} \neq \frac{13}{5} = v_1$$
 contradiction

* Soit E_7 l'ensemble des suites géométriques de raison 2. Les suites de E_7 ont un terme général du type $\lambda 2^n$ où λ est un réel. Si on pose $v=(2^n)_{n\in\mathbb{N}}$, alors les suites u de E_4 sont toutes multiples de v, soit

$$E_7 = {\lambda v, \lambda \in \mathbb{R}} = \text{Vect}(v)$$

A ce titre (droite vectorielle), E_7 est un sous espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

d) L'ensemble E_8 des suites réelles $u=(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+2} = 5u_{n+1} - 2u_n \quad (*)$$

est un sous espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. En effet :

- La suite nulle vérifie évidemment la relation de récurrence (*)
- * Soient u et v deux suites de E_8 et λ un réel. Alors pour tout entier $n \in \mathbb{N}$:

$$\begin{cases} u_{n+2} = 5u_{n+1} - 2u_n \\ v_{n+2} = 5v_{n+1} - 2v_n \end{cases}$$

En combinant:

$$\lambda u_{n+2} + v_{n+2} = 5(\lambda u_{n+1} + v_{n+1}) - 2(\lambda u_n + v_n)$$

Autrement dit la suite $\lambda u + v$ vérifie (*), i.e. $\lambda u + v \in E_8$, CQFD.

Ex 4 Soit $E = \mathbb{R}^4$. On confond \mathbb{R}^4 et $\mathcal{M}_{41}(\mathbb{R})$.

a) Soit $F=\left\{X=(x,y,z,t)\in\mathbb{R}^4\;/\;2x-y+t-3z=0\right\}$. On a

$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \Longleftrightarrow y = 2x + t - 3z \Longleftrightarrow X = \begin{pmatrix} x \\ 2x + t - 3z \\ z \\ t \end{pmatrix} = x \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ -3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

Donc F est l'espace engendré par les vecteurs $e_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ -3 \\ 1 \\ 0 \end{pmatrix}$ et $e_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

De plus la famille $\mathcal{B}=(e_1,e_2,e_3)$ est libre. En effet si $ae_1+be_2+ce_3=0_E$ avec $(a,b,c)\in\mathbb{R}^3$, alors

$$x \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ -3 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad i.e. \quad \begin{cases} a = 0 \\ 2a - 3b + c = 0 \\ b = 0 \\ c = 0 \end{cases}$$

On en déduit que \mathcal{B} est une base de F et donc

$$\dim F = 3$$

b) Soit $G=\left\{X=(x,y,z,t)\in\mathbb{R}^4\;/\;\left\{egin{array}{c} x+y-t=0\\ 2x-y+z-t=0 \end{array}
ight\}$. Pareillement

$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \Longleftrightarrow \left\{ \begin{array}{l} t = x + y \\ z = -x + 2y \end{array} \right. \Longleftrightarrow X = \left(\begin{array}{l} x \\ y \\ -x + 2y \\ x + y \end{array} \right) = x \left(\begin{array}{l} 1 \\ 0 \\ -1 \\ 1 \end{array} \right) + y \left(\begin{array}{l} 0 \\ 1 \\ 2 \\ 1 \end{array} \right)$$

Donc G est l'espace engendré par les vecteurs $e_1'=\begin{pmatrix}1\\0\\-1\\1\end{pmatrix},\ e_2'=\begin{pmatrix}0\\1\\2\\1\end{pmatrix}.$

A ce titre, G est un sous espace vectoriel de E. Comme e'_1 et e'_2 ne sont pas colinéaires, la famille $\mathcal{B}' = (e'_1, e'_2)$ est libre, et

$$\dim G = 2$$

Ex 5 Soit
$$E = \mathcal{M}_3(\mathbb{R})$$
 et $F = \left\{ \begin{pmatrix} a+b & -b+c & 3b-c \\ 2b & a+2b-c & b+2c \\ -3b & -2b & a-b+2c \end{pmatrix}, \ (a,b,c) \in \mathbb{R}^3 \right\}$. On pose :

$$\forall (a,b,c) \in \mathbb{R}^3, \ M(a,b,c) = \begin{pmatrix} a+b & -b+c & 3b-c \\ 2b & a+2b-c & b+2c \\ -3b & -2b & a-b+2c \end{pmatrix} = aI + bJ + cK$$

avec

$$I = I_3, \quad J = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 2 & 1 \\ -3 & -2 & -1 \end{pmatrix} \quad \text{et} \quad K = \begin{pmatrix} 0 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Ainsi

$$F = \{aI + bJ + cK, (a, b, c) \in \mathbb{R}^3\} = \text{Vect}(I, J, K)$$

Espace engendré par I, J, K, F est un sous espace vectoriel de E.

De plus, la famille $\mathcal{B}=(I,J,K)$ qui engendre F, est aussi libre. En effet, si (a,b,c) sont tels que

$$aI + bJ + cK = 0_E$$
 alors $\begin{pmatrix} a+b & -b+c & 3b-c \\ 2b & a+2b-c & b+2c \\ -3b & -2b & a-b+2c \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

On en déduit que b=0 (coefficient (2,1)), puis que a=0 (coefficient (1,1)) et c=0 (coefficient (1,2)). Ainsi $\mathcal B$ est une base de F et $\overline{\dim F=3}$

Ex 6 Soient $E = \mathbb{C}^4$, et $a \in \mathbb{C}$. On pose

$$X_{1} = \begin{pmatrix} 1 \\ a \\ a^{2} \\ a^{3} \end{pmatrix} \; ; \; X_{2} = \begin{pmatrix} a \\ a^{2} \\ a^{3} \\ 1 \end{pmatrix} \; ; \; X_{3} = \begin{pmatrix} a^{2} \\ a^{3} \\ 1 \\ a \end{pmatrix} \; ; \; X_{4} = \begin{pmatrix} a^{3} \\ 1 \\ a \\ a^{2} \end{pmatrix}$$

a) On suppose $a^4 \neq 1$ soit $a \notin \mathbb{U}_4 = \{1, i, -1, -i\}$.

Montrons que $Vect(X_1, X_2, X_3, X_4) = E$, i.e. tout vecteur X de E peut s'écrire

$$X = \lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 + \lambda_4 X_4$$
 (*) avec $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{C}^4$

Avec
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$
, $(*) \iff \begin{cases} \lambda_1 + a\lambda_2 + a^2\lambda_3 + a^3\lambda_4 = x \\ a\lambda_1 + a^2\lambda_2 + a^3\lambda_3 + \lambda_4 = y \\ a^2\lambda_1 + a^3\lambda_2 + \lambda_3 + a\lambda_4 = z \\ a^3\lambda_1 + \lambda_2 + a\lambda_3 + a^2\lambda_4 = t \end{cases}$

Les opérations $L_2 \leftarrow L_2 - aL_1$, $L_3 \leftarrow L_3 - a^2L_1$ et $L_4 \leftarrow L_4 - a^3L_1$ donnent, en utilisant la matrice augmentée

$$\begin{pmatrix} 1 & a & a^2 & a^3 & x \\ a & a^2 & a^3 & 1 & y \\ a^2 & a^3 & 1 & a & z \\ a^3 & 1 & a & a^2 & t \end{pmatrix} \sim \begin{pmatrix} 1 & a & a^2 & a^3 & x \\ 0 & 0 & 0 & 1 - a^4 & y - ax \\ 0 & 0 & 1 - a^4 & a(1 - a^4) & z - a^2x \\ 0 & 1 - a^4 & a(1 - a^4) & a^2(1 - a^4) & t - a^3x \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & a & a^2 & a^3 & x \\ 0 & 1 - a^4 & a(1 - a^4) & a^2(1 - a^4) & t - a^3x \\ 0 & 0 & 1 - a^4 & a(1 - a^4) & z - a^2x \\ 0 & 0 & 0 & 1 - a^4 & y - ax \end{pmatrix}$$

Le système est échelonné et de rang 4, donc de Cramer, et admet une unique solution. On paut affirmer que

$$\mathcal{B} = (X_1, X_2, X_3, X_4)$$
 est une base de \mathbb{C}^4

b) Lorsque $a^4 = 1$, i.e. $a \in \{1, i, -1, -i\}$, alors la matrice augmentée du système se réduit à :

$$\left(\begin{array}{ccccccc}
1 & a & a^2 & a^3 & x \\
0 & 0 & 0 & 0 & t - a^3 x \\
0 & 0 & 0 & 0 & z - a^2 x \\
0 & 0 & 0 & 0 & y - ax
\end{array}\right)$$

Le système est de rang 1 et n'est compatible que si $y - ax = z - a^2x = t - a^3x = 0$

Par exemple X=(1,0,0,0) ne peut pas se décomposer sur (X_1,X_2,X_3,X_4) , qui n'est donc pas génératrice.

Ex 7 Soit $E = \mathbb{R}_3[X]$. On considère la famille $\mathcal{B} = (P_1, P_2, P_3, P_4)$ définie par

$$P_1 = (X-2)(X-3)(X-4)$$
 $P_2 = (X-1)(X-3)(X-4)$
 $P_3 = (X-1)(X-2)(X-4)$ $P_4 = (X-1)(X-2)(X-3)$

Montrons que \mathcal{B} est libre: si $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^4$ vérifient $\lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3 + \lambda_4 P_4 = 0_E$, alors en substituant successivemnt 1, 2, 3 et 4 à X, on obtient directement

$$-6\lambda_1 = 0$$
, $2\lambda_2 = 0$, $-2\lambda_3 = 0$, $6\lambda_4 = 0$ CQFD

Ex 8 Base de Lagrange. Soient $n \in \mathbb{N}$, a_0, \ldots, a_n des réels distincts, et $E = \mathbb{R}_n[X]$.

On pose pour $p \in [0, n]$:

$$L_p = \frac{\prod\limits_{k \neq p} (X - a_k)}{\prod\limits_{k \neq p} (a_p - a_k)}$$

On remarque que si $i \in [0, n] \setminus \{p\}$, alors $L_p(a_i) = 0$, et que $L_p(a_p) = 1$, c'est-à-dire :

$$\forall i \in [0, n], L_p(a_i) = \delta_{pi}$$

- Montrons que $\mathcal{B}=(L_0,\ldots,L_n)$ est une famille libre : si $(\lambda_0,\ldots\lambda_n)\in\mathbb{R}^{n+1}$ vérifie

$$\sum_{k=0}^{n} \lambda_k L_k = 0_E$$

Alors pour tout $j \in [0, n]$, en évaluant en a_i , on obtient

$$\sum_{k=0}^{n} \lambda_{k} L_{k}\left(a_{j}\right) = 0 \Longleftrightarrow \sum_{k=0}^{n} \lambda_{k} \delta_{kj} = 0 \Longleftrightarrow \lambda_{j} = 0 \quad \text{CQFD}.$$

- Montrons que \mathcal{B} est génératrice de $E = \mathbb{R}_n[X]$. Soit $P \in E$. On cherche $(\lambda_0, \dots \lambda_n) \in \mathbb{R}^{n+1}$ tel que :

$$P = \sum_{k=0}^{n} \lambda_k L_k$$

* **Analyse**: si $(\lambda_0, \dots \lambda_n)$ convient, alors

$$\forall j \in [[0, n]], \ P(a_j) = \sum_{k=0}^{n} \lambda_k \delta_{kj} = \lambda_j$$

* **Synthèse**: on pose $(\lambda_0, \ldots \lambda_n) = (P(a_0), \ldots P(a_n))$,

$$Q = \sum_{k=0}^{n} P(a_k) L_k \quad \text{et} \quad R = P - Q$$

Alors

$$\forall j \in [0, n], \ R(a_j) = P(a_j) - \sum_{k=0}^{n} P(a_k) \, \delta_{kj} = P(a_j) - P(a_j) = 0$$

 $R \in \mathbb{R}_n\left[X\right]$ admet donc n+1 racines distinctes. Il est donc nul, c'est-à-dire P=Q :

$$P = \sum_{k=0}^{n} P\left(a_{k}\right) L_{k} \quad \text{CQFD}.$$

- On peut conclure que $\mathcal{B}=(L_0,\ldots,L_n)$ est une base de $\mathbb{R}_n\left[X\right]$ dans laquelle

les coordonnées d'un polynôme P sont $(P(a_0), \dots P(a_n))$

Ex 9 On considère les vecteurs de $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$:

$$f_0: x \mapsto 1, \quad f_1: x \mapsto \cos\left(x\right), \quad f_2: x \mapsto \cos^2\left(x\right), \quad f_3: x \mapsto \cos^3\left(x\right), \quad g_2: x \mapsto \cos\left(2x\right), \quad g_3: x \mapsto \cos\left(3x\right).$$

Montrons que : Vect $(f_0, f_1, f_2, f_3) = \text{Vect}(f_0, f_1, g_2, g_3)$:

Notons $F = \mathrm{Vect}\,(f_0, f_1, f_2, f_3)$ et $G = \mathrm{Vect}\,(f_0, f_1, g_2, g_3)$. La linéarisation donne

$$\forall x \in \mathbb{R}, \begin{cases} \cos^2{(x)} = \frac{1}{2} \left(1 + \cos{(2x)} \right) \\ \cos^3{(x)} = \frac{1}{4} \left(3\cos{(x)} + \cos{(3x)} \right) \end{cases} \quad \text{soit} \quad \begin{cases} f_2 = \frac{1}{2} \left(f_0 + g_2 \right) \in G \\ f_3 = \frac{1}{4} \left(3f_1 + g_3 \right) \in G \end{cases}$$

Comme $(f_0, f_1) \in G^2$, on en déduit que $\operatorname{Vect}(f_0, f_1, f_2, f_3) \subset G$, i.e. $F \subset G$.

Mais inversement (cf. Tchebychev)

$$\forall x \in \mathbb{R}, \begin{cases} \cos{(2x)} = 2\cos^2{(x)} - 1\\ \cos{(3x)} = 4\cos^3{(x)} - 3\cos{(x)} \end{cases} \text{ soit } \begin{cases} g_2 = 2f_2 - f_0 \in F\\ g_3 = 4f_3 - 3f_1 \in F \end{cases}$$

Comme $(f_0, f_1) \in F^2$, on en déduit que $\text{Vect}(f_0, f_1, g_2, g_3) \subset F$, i.e. $G \subset F$.

La double inclusion donne le résultat escompté.

Ex 10 Soient $E = C^0(\mathbb{R})$, et $a_1 < \cdots < a_n$ des réels $(n \ge 2)$. Les familles suivantes sont elles libres dans E?

a) $\forall i \in [\![1,n]\!]$, on pose $f_i: x \mapsto e^{a_i x}$. Montrons que (f_1,\ldots,f_n) est libre.

Démonstration par l'absurde : supposons que $\sum_{i=1}^n \lambda_i f_i = 0_E$ avec $(\lambda_1, \dots, \lambda_n) \neq (0, \dots, 0)$.

Considérons le plus grand entier k tel que $\lambda_k \neq 0$. Alors $\sum_{i=1}^k \lambda_i f_i = 0_E$, soit

$$\forall x \in \mathbb{R}, \ \lambda_1 e^{a_1 x} + \dots + \lambda_k e^{a_k x} = 0$$

On divise par $e^{a_k x}$ qui est le terme dominant en $+\infty$:

$$\forall x \in \mathbb{R}, \ \lambda_1 e^{(a_1 - a_k)x} + \dots + \lambda_{k-1} e^{(a_{k-1} - a_k)x} + \lambda_k = 0$$

On passe à la limite quand $x \to +\infty$: compte tenu du fait que $a_1 - a_k < 0, \dots, a_{k-1} - a_k < 0$, on obtient

$$\lambda_k = 0$$
 contradiction

b) $\forall i \in [[1, n]]$, on pose $g_i : x \mapsto e^{x+a_i}$. Alors pour $i \neq j$:

$$\forall x \in \mathbb{R}, \ g_i\left(x\right) = e^{x + a_j - a_j + a_i} = e^{a_i - a_j} g_j\left(x\right), \quad \text{soit} \quad \boxed{g_i = e^{a_i - a_j} g_j}$$

Les vecteurs g_1, \ldots, g_n sont donc deux à deux colinéaires, et la famille (g_1, \ldots, g_n) est liée

Remarque: $\forall i \in [1, n]$, $g_i = e^{a_i} \exp$, d'où $\text{Vect}(g_1, \dots, g_n) = \text{Vect}(\exp)$ est une droite vectorielle.

c) $\forall i \in [[1, n]]$, on pose $\varphi_i : x \mapsto \cos(x + a_i)$. Alors

$$\forall x \in \mathbb{R}, \ \varphi_i(x) = \cos(a_i)\cos(x) - \sin(a_i)\sin(x)$$

On en déduit

$$\varphi_i = \cos(a_i)\cos-\sin(a_i)\sin\in \text{Vect}(\cos,\sin)$$

 $* \quad \underline{\mathrm{Si}\; n \geqslant 3}, \, \mathrm{alors\; Vect}\, (\varphi_1, \ldots, \varphi_n) \subset \mathrm{Vect}\, (\cos, \sin) \,, \, \mathrm{donc\; la\; famille}\, \left(\varphi_1, \ldots, \varphi_n\right) \, \mathrm{est\; li\acute{e}e}.$

En effet, si elle était libre, la dimension de $\mathrm{Vect}\,(\varphi_1,\ldots,\varphi_n)$ serait $n\geqslant 3$, ce qui contredit son inclusion dans le plan vectoriel $\mathrm{Vect}\,(\cos,\sin)$.

* Si n=2, alors si (φ_1, φ_2) est liée, φ_1 et φ_2 doivent s'annuler aux mêmes points, en particulier en $\frac{\pi}{2}-a_1$. Donc

$$\cos\left(\frac{\pi}{2} - a_1 + a_2\right) = 0$$
 d'où $a_2 - a_1 \equiv 0 \ [\pi]$

Inversement, si $a_2 \equiv a_1 \ [\pi]$, alors il existe $k \in \mathbb{Z}$ tel que

$$\forall x \in \mathbb{R}, \ \varphi_2(x) = \cos(x + a_2) = \cos(x + a_1 + k\pi) = (-1)^k \cos(x + a_1)$$

Donc $\varphi_2 = \left(-1\right)^k \varphi_1,$ et (φ_1, φ_2) est liée. Ainsi

$$(\varphi_1, \varphi_2)$$
 est liée si et seulement si $a_2 \equiv a_1 \ [\pi]$

d) $\forall i \in [\![1,n]\!]$; on pose $h_i: x \mapsto |x-a_i|$. Montrons que (h_1,\ldots,h_n) est libre.

Soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que $\sum_{i=1}^n \lambda_i h_i = 0_E$. Par l'absurde, s'il existe $p \in [[1, n]] / \lambda_p \neq 0$, alors

$$h_p = -\frac{1}{\lambda_p} \sum_{i \neq p} \lambda_i h_i$$

La fonction de gauche n'est pas dérivable en a_p , mais par combinaison linéaire, celle de droite l'est (h_i est dérivable en tout point sauf a_i). C'est une contradiction qui établit l'indépendance cherchée.

- **Ex 11** Soient $a_1 < \ldots < a_p$ des réels positifs. Pour $a \in \mathbb{R}_+$, on note u(a) la suite de terme général a^n Montrons que $(u(a_1), \ldots, u(a_p))$ est libre dans $\mathbb{R}^{\mathbb{N}}$.
 - **Démonstration par récurrence** : H(p) : $(u(a_1), \dots, u(a_p))$ est libre.
 - * $u(a_1)$ n'est pas la suite nulle, donc $(u(a_1))$ est libre et H(1) est vraie.
 - * Soit $p \ge 2$. Supposons H(p-1) et montrons H(p):

Si
$$(\lambda_1,\ldots,\lambda_p)\in\mathbb{R}^p$$
 vérifient $\sum\limits_{i=1}^p\lambda_iu\left(a_i\right)=0_{\mathbb{R}^{\mathbb{N}}},$ alors

$$\forall n \in \mathbb{N}, \ \lambda_1 a_1^n + \dots + \lambda_p a_p^n = 0$$

On divise par la suite prédominante $u(a_p)$:

$$\forall n \in \mathbb{N}, \ \lambda_1 \frac{a_1^n}{a_p^n} + \dots + \lambda_{p-1} \frac{a_{p-1}^n}{a_p^n} + \lambda_p = 0$$

On passe à la limite pour $n \to \infty$. Comme $\forall i \in [[1, p-1]], \ 0 \leqslant \frac{a_i}{a_p} < 1$, on obtient $\lambda_p = 0$.

Il reste donc l'égalité $\sum_{i=1}^{p-1} \lambda_i u\left(a_i\right) = 0_{\mathbb{R}^{\mathbb{N}}}$, qui par hypothèse de récurrence $\left(\left(u\left(a_1\right), \ldots, u\left(a_{p-1}\right)\right)\right)$ est libre) assure que

$$\lambda_1 = \dots = \lambda_{p-1} = 0$$

Au total, on a bien la nullité de $\lambda_1, \ldots, \lambda_p$, d'où H(p)

- **Démonstration par l'absurde** : supposons que $\sum\limits_{i=1}^p \lambda_i u\left(a_i\right) = 0_{\mathbb{R}^{\mathbb{N}}}$ avec $(\lambda_1,\ldots,\lambda_p) \neq (0,\ldots,0)$.

Considérons le plus grand entier k tel que $\lambda_k \neq 0$. Alors $\sum_{i=1}^k \lambda_i u\left(a_i\right) = 0_{\mathbb{R}^{\mathbb{N}}}$, soit

$$\forall n \in \mathbb{N}, \ \lambda_1 a_1^n + \dots + \lambda_k a_k^n = 0$$

La division par a_k^n non nul et le passage à la limite quand $n \to +\infty$ donnent alors $\lambda_k = 0$ contradiction.

Ex 12 a) T l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $\operatorname{tr} M = 0 = m_{11} + m_{22} + m_{33}$. (ensemble des matrices "de trace nulle"). D'après l'exercice 17, T admet la droite vectorielle

$$D = \text{Vect}(I_3)$$
 (ensemble des matrices scalaires)

pour supplémentaire. On peut en déduire que T est un hyperplan de $\mathcal{M}_3(\mathbb{R})$. On a alors

$$dim T = dim (\mathcal{M}_3(\mathbb{R})) - 1 = 8$$

 $\it Remarque$: on peut aussi trouver une base de $\it T$, mais c'est lourd: on écrit:

$$M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in T \Longleftrightarrow i = -a - e \Longleftrightarrow M = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & -a - e \end{pmatrix}$$

Autrement dit

$$M = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} + bE_{12} + cE_{13} + dE_{21} + e \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} + fE_{23} + gE_{31} + hE_{32}$$

b) Généralisation à $\mathcal{M}_n\left(\mathbb{R}\right)$: on montre de même que

$$D_n = \operatorname{Vect}(I_n)$$

droite vectorielle de $\mathcal{M}_n\left(\mathbb{R}\right)$ est supplémentaire de

$$T_n = \{ M \in \mathcal{M}_n (\mathbb{R}) / \operatorname{tr} M = 0 \}$$

Donc

$$T_n$$
 est un hyperplan de $\mathcal{M}_n\left(\mathbb{R}\right)$ et $\dim\left(T_n\right)=n^2-1$

Ex 13 a) Soient S_3 , A_3 les espaces des matrices carrées réelles d'ordre 3 symétriques et antisymétriques.

* Tout élément A de A_3 s'écrit sous la forme

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} = aA_1 + bA_2 + cA_3$$

avec

$$(a,b,c) \in \mathbb{R}^3, \quad A_1 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ A_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

Il est très facile de montrer que $\mathcal{B} = (A_1, A_2, A_3)$ est une famille libre : en effet

$$aA_1 + bA_2 + cA_3 = 0_{\mathcal{M}_3} \iff \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \iff a = b = c = 0$$

 \mathcal{B} est donc une base de \mathcal{A}_3 , et

$$\dim \mathcal{A}_3 = 3$$

* De même tout élément S de S_3 s'écrit sous la forme

$$S = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} = aS_1 + bS_2 + cS_3 + dS_4 + eS_5 + fS_6$$

avec $(a, b, c, d, e, f) \in \mathbb{R}^6$, et

$$S_1 = E_{11}, \ S_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ S_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \ S_4 = E_{22}, \ S_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ S_6 = E_{33}$$

Qui forme une base de S_3 . On a ainsi

$$\dim \mathcal{S}_3 = 6$$

* On a ainsi $\dim \mathcal{S}_3 + \dim \mathcal{A}_3 = 9 = \dim \mathcal{M}_3$ (\mathbb{R}). De plus, si $M \in \mathcal{S}_3 \cap \mathcal{A}_3$, alors

$$^tM = M = -M$$
, donc $M = 0_{\mathcal{M}_3}$

Il s'ensuit que $S_3 \cap A_3 = \{0_{\mathcal{M}_3}\}$, ce qui permet d'affirmer :

$$\mathcal{M}_3\left(\mathbb{R}\right) = \mathcal{S}_3 \oplus \mathcal{A}_3$$

Remarque: ce raisonnement ne donne en revanche pas la décomposition d'une matrice.

b) Généralisation : soit $n \ge 2$.

* Montrons que
$$dim A_n = \frac{n(n-1)}{2}$$

Si
$$A = (a_{ij}) \in \mathcal{A}_n$$
, alors $\forall i \in \llbracket 1, n \rrbracket$, $a_{ii} = 0$ et si $(i, j) \in \llbracket 1, n \rrbracket^2$, alors $a_{ji} = -a_{ij}$. Donc

$$A = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} E_{ij} = \sum_{1 \le i < j \le n} a_{ij} E_{ij} - \sum_{1 \le j < i \le n} a_{ij} E_{ji} = \sum_{1 \le i < j \le n} a_{ij} (E_{ij} - E_{ji})$$

La famille

$$\mathcal{B} = \{ E_{ij} - E_{ji}, \ 1 \leqslant i < j \leqslant n \}$$

est donc génératrice de \mathcal{A}_n . Elle est libre car si $\sum_{1 \le i \le j \le n} a_{ij} (E_{ij} - E_{ji}) = 0_{\mathcal{M}_n}$, alors

$$\sum_{1 \leqslant i < j \leqslant n} a_{ij} E_{ij} - \sum_{1 \leqslant j < i \leqslant n} a_{ij} E_{ji} = 0_{\mathcal{M}_n}$$

Par indépendance des matrices élémentaires E_{ij} , on a bien $1 \le i < j \le n \Rightarrow a_{ij} = 0$.

 \mathcal{B} est ainsi une base de \mathcal{A}_n , et son cardinal est $\frac{n(n-1)}{2}$ (cf. dénombrements), CQFD.

* Montrons que $\left| \dim \mathcal{S}_n = \frac{n(n+1)}{2} \right|$.

Si $S = (s_{ij}) \in \mathcal{A}_n$, alors si $(i, j) \in [1, n]^2$, alors $s_{ji} = s_{ij}$. Donc

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} s_{ij} E_{ij} = \sum_{i=1}^{n} s_{ii} E_{ii} + \sum_{1 \le i < j \le n} s_{ij} E_{ij} + \sum_{1 \le j < i \le n} s_{ij} E_{ji} = \sum_{i=1}^{n} s_{ii} E_{ii} + \sum_{1 \le i < j \le n} s_{ij} (E_{ij} + E_{ji})$$

La famille

$$\mathcal{B} = \{ E_{ii}, \ i \in [[1, n]] \} \cup \{ E_{ij} + E_{ji}, \ 1 \le i < j \le n \}$$

est donc génératrice de S_n . Elle est libre car si $\sum_{i=1}^n s_{ii} E_{ii} + \sum_{1 \le i < j \le n} s_{ij} (E_{ij} + E_{ji}) = 0$ alors

$$\sum_{i=1}^{n} s_{ii} E_{ii} + \sum_{1 \leqslant i < j \leqslant n} s_{ij} E_{ij} + \sum_{1 \leqslant i < j \leqslant n} s_{ij} E_{ji} = 0$$

Par indépendance des E_{ij} , on a bien $1 \le i < j \le n \Rightarrow s_{ij} = 0$ et $1 \le i \le n \Rightarrow s_{ii} = 0$.

 \mathcal{B} est ainsi une base de \mathcal{S}_n , et son cardinal est $\frac{n(n+1)}{2}$, CQFD.

Il est facile de voir, comme au a), que $\mathcal{S}_n\cap\mathcal{A}_n=\left\{0_{\mathcal{M}_n(\mathbb{R})}\right\}$. Comme

$$\dim \mathcal{S}_n + \dim \mathcal{A}_n = \frac{n(n+1)}{2} + \frac{n(n-1)}{2} = n^2 = \dim \mathcal{M}_n(\mathbb{R})$$

On en déduit

$$\mathcal{M}_n\left(\mathbb{R}\right) = \mathcal{S}_n \oplus \mathcal{A}_n$$

Ex 14 Soit F_T l'ensemble des fonctions T-périodiques sur \mathbb{R} .

- La fonction nulle est T-périodique. et toute combinaison linéaire de fonctions T-périodiques l'est aussi : en effet si f et g sont T-périodiques et $\lambda \in \mathbb{R}$, alors

$$\forall x \in \mathbb{R}, \ (\lambda f + g)(x + T) = \lambda f(x + T) + g(x + T) = \lambda f(x) + g(x) = (\lambda f + g)(x)$$

Donc $\lambda f + g$ st T-périodique. Ainsi F_T est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.

- $F_4 \cap F_6$ est l'ensemble des fonctions 4 et 6 périodiques. Une telle fonction f est alors 2-périodique : en effet

$$\forall x \in \mathbb{R}, \ f(x+2) = f(x+6-4) = f(x)$$

Inversement toute fonction 2-périodique est aussi 4 et 6 périodique, d'où

$$F_4 \cap F_6 = F_2$$

- Si $f \in F_4 + F_6$. alors $\exists (f_4, f_6) \in F_4 \times F_6 / f = f_4 + f_6$. Mais alors

$$\forall x \in \mathbb{R}, \ f(x+12) = f_4(x+12) + f_6(x+12) = f_4(x) + f_6(x)$$

Donc $f \in F_{12}$, et on a

$$F_4 + F_6 \subset F_{12}$$

Ex 15 Soient
$$E = \mathbb{R}^3$$
, $F = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \ / \ x + y + 2z = 0 \right\}$, $G = \operatorname{Vect}\left(X_0\right)$, avec $X_0 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.

F (noyau) et G (droite) sont des sous espaces vectoriels de E. Montrons qu'ils sont supplémentaires.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E$$
. On cherche $(X_F, Y_G) \in F \times G$ uniques tels que $X = X_F + X_G$.

- Analyse : supposons avoir (X_F,Y_G) . Posons $X_G=aX_0,$ où $a\in\mathbb{R}$: alors

$$X_G = \begin{pmatrix} a \\ -a \\ a \end{pmatrix}$$
 et $X_F = \begin{pmatrix} x-a \\ y+a \\ z-a \end{pmatrix}$

Mais alors

$$X_F \in F \Rightarrow (x-a) + (y+a) + 2(z-a) = 0 \Rightarrow a = \frac{1}{2}(x+y+2z)$$

Ainsi

$$X_G = \frac{1}{2} \begin{pmatrix} x + y + 2z \\ -x - y - 2z \\ x + y + 2z \end{pmatrix} \text{ et } X_F = \frac{1}{2} \begin{pmatrix} x - y - 2z \\ x + 3y + 2z \\ -x - y \end{pmatrix}$$

- Synthèse : soient X_F, Y_G ainsi définis.
 - * $X_F \in F$ car il en vérifie l'équation, $X_G \in G$ car il s'écrit $X_G = \frac{1}{2} \left(x + y + 2z \right) X_0$
 - * Il est clair que $X_F + X_G = X$.

Ainsi, le couple (X_F, Y_G) existe et il est unique, CQFD.

Ex 16 Soient $E = \mathbb{R}^4$,

$$F = \left\{ X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in E / \left\{ \begin{array}{c} x + y + z + t = 0 \\ x - y + 2z - 2t = 0 \end{array} \right\}$$

et

$$G = \operatorname{Vect}\left(X_{1}, X_{2}\right), \text{ avec } X_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \text{ et } X_{2} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$

- F est un sous espace vectoriel de E. En effet :
 - * F contient 0_E (qui vérifie les deux équations),

$$* \operatorname{Si} X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}, \ Y = \begin{pmatrix} x' \\ y' \\ z' \\ t' \end{pmatrix} \operatorname{sont} \operatorname{dans} E \operatorname{et} \lambda \in \mathbb{R}, \operatorname{alors} \lambda X + Y = \begin{pmatrix} \lambda x + x' \\ \lambda y + y' \\ \lambda z + z' \\ \lambda t + t' \end{pmatrix} \operatorname{v\'erifie} : \\ \begin{cases} (\lambda x + x') + (\lambda y + y') + (\lambda z + z') + (\lambda t + t') = \lambda \left(x + y + z + t \right) + \left(x' + y' + z' + t' \right) = 0 \\ (\lambda x + x') - (\lambda y + y') + 2 \left(\lambda z + z' \right) - 2 \left(\lambda t + t' \right) = \lambda \left(x - y + 2z - 2t \right) + \left(x' - y' + 2z' - 2t' \right) = 0 \end{cases}$$

- G est un sous espace vectoriel de E car c'est un espace engendré.

Montrons que $E = F \oplus G$:

Soit
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in E$$
. On cherche $(X_F, Y_G) \in F \times G$ uniques tels que $X = X_F + X_G$.

- Analyse: supposons avoir (X_F, Y_G) . Posons $X_G = aX_1 + bX_2$, où $(a, b) \in \mathbb{R}^2$: alors

$$X_G = \begin{pmatrix} a+b \\ a+b \\ a+b \\ a-b \end{pmatrix} \text{ et } X_F = \begin{pmatrix} x-a-b \\ y-a-b \\ z-a-b \\ t-a+b \end{pmatrix}$$

Mais alors $X_F \in F$ donne

$$\begin{cases} (x-a-b) + (y-a-b) + (z-a-b) + (t-a+b) = 0 \\ (x-a-b) - (y-a-b) + 2(z-a-b) - 2(t-a+b) = 0 \end{cases} \iff \begin{cases} 2b + 4a = x + y + z + t \\ 4b = x - y + 2z - 2t \end{cases}$$

$$\iff \begin{cases} a = \frac{1}{8}(x + 3y + 4t) \\ b = \frac{1}{4}(x - y + 2z - 2t) \end{cases}$$

Ainsi

$$X_G = \frac{1}{8} \begin{pmatrix} 3x + y + 4z \\ 3x + y + 4z \\ 3x + y + 4z \\ -x + 5y - 4z + 8t \end{pmatrix} \text{ et } X_F = \frac{1}{8} \begin{pmatrix} 5x - y - 4z \\ -3x + 7y - 4z \\ -3x - y + 4z \\ x - 5y + 4z \end{pmatrix}$$

- Synthèse : soient X_F, Y_G ainsi définis.
 - * $X_F \in F$ car il en vérifie les équations :

$$\left\{ \begin{array}{l} (5x-y-4z)+(-3x+7y-4z)+(-3x-y+4z)+(x-5y+4z)=0 \\ (5x-y-4z)-(-3x+7y-4z)+2\left(-3x-y+4z\right)-2\left(x-5y+4z\right)=0 \end{array} \right.$$

* $X_G \in G$ car il s'écrit

$$X_G = \frac{1}{8} (x + 3y + 4t) X_1 + \frac{1}{4} (x - y + 2z - 2t) X_2$$

* Il est clair que $X_F + X_G = X$.

Ainsi, le couple (X_F, Y_G) existe et il est unique, CQFD.

Ex 17 Soit $E = \mathcal{M}_3(\mathbb{R})$, F l'ensemble des matrices scalaires ($\lambda I_3, \ \lambda \in \mathbb{R}$) et G l'ensemble des matrices de trace nulle.

- a) F est la droite vectorielle engendrée par I_3 ($F = \text{Vect}(I_3)$), donc un SEV de E. G est le noyau de l'application trace, qui est linéaire, c'est donc un SEV de E.
- b) Montrons que F et G sont supplémentaires, soit $E = F \oplus G$ On fixe $M \in E$, et on cherche un couple unique $(M_F, M_G) \in F \times G$ tel que $M = M_F + M_G$.
 - * Analyse: supposons avoir (M_F, M_G) . Alors $\exists \lambda \in \mathbb{R} \ / \ M = \lambda I_3$, donc

$$M = \lambda I_3 + M_G$$

On applique la trace, qui est linéaire. Comme M_G est de trace nulle :

$$\operatorname{tr}(M) = \lambda \operatorname{tr}(I_3) + \operatorname{tr}(M_G) = 3\lambda$$

Il vient $\lambda = \frac{1}{3} \operatorname{tr} M$, et donc

$$\boxed{M_F = \frac{1}{3} \left(\operatorname{tr} \left(M \right) \right) I_3} \quad \text{et} \quad \boxed{M_G = M - \frac{1}{3} \left(\operatorname{tr} \left(M \right) \right) I_3}$$

- * Synthèse : soit (M_F, M_G) ainsi défini. Alors :
 - · $M = M_F + M_G$ (évident).
 - · $M_F \in F$ (évident).
 - · $M_G \in G$: en effet par linéarité:

$$\operatorname{tr}(M_G) = \operatorname{tr}(M) - \frac{1}{3}(\operatorname{tr}M)\operatorname{tr}(I_3) = \operatorname{tr}(M) - (\operatorname{tr}M) = 0$$

* Conclusion : la décomposition existe, et elle est unique, CQFD.

Ex 18 Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}^*$ et $E = \mathbb{R}_n [X]$.

- a) Soit $F = \{ P \in E / P(a) = 0 \}$.
 - i. Montrons que F est un sous espace vectoriel de E:
 - · Le polynôme nul 0_E est bien dans F (il s'annule en a).
 - Si P et Q sont dans F et λ dans \mathbb{R} , alors $(\lambda P + Q)(a) = \lambda P(a) + Q(a) = 0$, d'où $\lambda P + Q \in F$, CQFD.
 - ii. Soit $\mathcal{B} = \left(\left(X a \right), \left(X a \right)^2, \dots \left(X a \right)^n \right)$. Si $P \in F$, d'après la formule de Taylor,

$$P = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}$$

Mais comme P(a) = 0, on a

$$P = \sum_{k=1}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k} = P'(a) (X - a) + \dots + \frac{P^{(n)}(a)}{n!} (X - a)^{n}$$

 \mathcal{B} est donc génératrice de F. Etagée en degrés, elle est aussi <u>libre</u>. Finalement \mathcal{B} est une base de F, et

$$\dim F = n$$

- iii. Considérons $F' = \mathbb{R}_0[X]$ (ensemble des polynômes constants).
 - · C'est un espace vectoriel de dimension 1 (engendré par le polynôme $X^0 = 1$).
 - · $F \cap F' = \{0_E\}$ puisque le seul polynôme constant qui s'annule en a est le polynôme nul.
 - · Comme dim $F + \dim F' = n + 1 = \dim E$, on peut conclure :

$$E = F \oplus F'$$

Remarque: "il manque une constante" à un polynôme de F pour faire un polynôme quelconque.

- b) Soit $G = \{ P \in E / P(a) = P'(a) = 0 \}$
 - i. Montrons que G est un sous espace vectoriel de E:
 - · Le polynôme nul 0_E est bien dans G (il s'annule en a ainsi que sa dérivée).
 - · Si P et Q sont dans F et λ dans \mathbb{R} , alors

$$\left\{ \begin{array}{l} \left(\lambda P+Q\right)\left(a\right)=\lambda P\left(a\right)+Q\left(a\right)=0\\ \left(\lambda P+Q\right)'\left(a\right)=\lambda P'\left(a\right)+Q'\left(a\right)=0 \end{array} \right. \quad \text{d'où } \lambda P+Q\in G, \text{ CQFD}. \right.$$

ii. Soit
$$\mathcal{B} = ((X - a)^2, (X - a)^3, \dots (X - a)^n)$$

Soit $P\in G.$ D'après la formule de Taylor, comme $P\left(a\right)=P'\left(a\right)=0,$ on a

$$P = \sum_{k=2}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^k = \frac{P''(a)}{2} (X - a)^2 + \dots + \frac{P^{(n)}(a)}{n!} (X - a)^n$$

 \mathcal{B} est donc génératrice de G, et comme elle est étagée en degrés, libre. Finalement \mathcal{B} est une base de G, et

$$\dim G = n - 1$$

- iii. Considérons $G' = \mathbb{R}_1[X]$ (ensemble des polynômes "affines").
 - · C'est un espace vectoriel de dimension 2.
 - · $G \cap G' = \{0_E\}$ puisque le seul polynôme affine qui admet a pour racine double est le polynôme nul.
 - · Comme dim $G + \dim G' = n + 1 = \dim E$, on peut conclure :

$$E = G \oplus G'$$

Ex 19 Soit $P \in \mathbb{K}[X]$ un polynôme de degré $n \ge 0$. et $F = \{PQ, Q \in \mathbb{K}[X]\}$.

Il n'est pas difficile de voir que F (ensemble des polynômes divisibles par P) est un sous espace vectoriel de $\mathbb{K}[X]$ (le polynôme nul est divisible par P et tout combinaison de polynômes divisibles par P l'est aussi).

Déterminons un supplémentaire de F dans $\mathbb{K}[X]$ on pense à la division euclidienne :

$$\forall A \in \mathbb{K}[X], \exists ! (Q,R) \in \mathbb{K}[X] \times \mathbb{K}_{n-1}[X] / A = PQ + R$$

En posant $G = \mathbb{K}_{n-1}[X]$, $A_F = PQ$ et $A_G = R$, cela s'écrit :

$$\forall A \in \mathbb{K}[X], \exists ! (A_F, A_G) \in F \times \mathbb{K}_{n-1}[X] / A = A_F + A_G$$

Autrement dit

$$\mathbb{K}[X] = F \oplus G$$
 ou $\mathbb{K}_{n-1}[X]$ est un supplémentaire de F dans $\mathbb{K}[X]$

Ex 20 Soient $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, \mathcal{P} l'ensemble des fonctions paires, \mathcal{I} l'ensemble des fonctions impaires.

- \mathcal{P} est un sous espace vectoriel de E. En effet
 - * La fonction nulle \mathbb{O} est paire $(\forall x \in \mathbb{R}, \ \mathbb{O}(-x) = 0 = \mathbb{O}(x))$
 - * Si f et g sont paires et $\lambda \in \mathbb{R}$, alors $\lambda f + g$ est paire $(\forall x \in \mathbb{R}, (\lambda f + g)(-x) = (\lambda f + g)(x))$
- $\mathcal I$ est un sous espace vectoriel de E : démonstration analogue.
- Montrons que $E=\mathcal{P}\oplus\mathcal{I}$, i.e. \mathcal{P} et \mathcal{I} sont supplémentaires dans E. Soit $f\in E$. on cherche un couple unique $(p,i)\in\mathcal{P}\times\mathcal{I}$ tel que f=p+i (*)
 - * **Analyse**: supposons avoir p et i. Alors

$$\forall x \in \mathbb{R}, \ f(x) = p(x) + i(x)$$

En substituant -x à x et en utilisant les parités de p et i, on obtient

$$\forall x \in \mathbb{R}, \ f(-x) = p(x) - i(x)$$

Il vient facilement

$$\forall x \in \mathbb{R}, \quad \begin{cases} p(x) = \frac{1}{2} \left(f(x) + f(-x) \right) \\ i(x) = \frac{1}{2} \left(f(x) - f(-x) \right) \end{cases}$$

- * **Synthèse** : soient p et i ainsi définies. Alors
 - p + i = f (immédiat)
 - · $\underline{p} \in \mathcal{P}$: en effet $\forall x \in \mathbb{R}, \ p\left(-x\right) = \frac{1}{2}\left(f\left(-x\right) + f\left(x\right)\right) = p\left(x\right)$
 - $\cdot \quad \underline{i \in \mathcal{I}}$: en effet $\forall x \in \mathbb{R}, \ i(-x) = \frac{1}{2} \left(f(-x) f(x) \right) = -i(x)$
- * La décomposition existe et elle est unique CQFD.

On a ainsi démontré que tout fonction est somme d'une fonction paire et d'une impaire, en donnant la formul permettant cette décomposition.

- Par exemple, pour $f = \exp$, cela donne

$$\forall x \in \mathbb{R}, \ \begin{cases} p(x) = \frac{1}{2} (e^x + e^{-x}) = \operatorname{ch} x \\ i(x) = \frac{1}{2} (e^x - e^{-x}) = \operatorname{sh} x \end{cases}$$

autrement dit la décomposition (unique) est

$$\exp = \cosh + \sinh$$

- Si $f: x \mapsto x^4 - 2x^3 - x - 3$, alors en posant

$$\forall x \in \mathbb{R}, \begin{cases} p(x) = x^4 - 3\\ i(x) = -2x^3 - x \end{cases}$$

On a bien p paire et i impaire, et la décomposition unique de f est f = p + i.

Ex 21 Soit $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, $F = \{ f \in E / f(1) = f(2) = 0 \}$, et G l'ensemble des fonctions affines.

- F est un sous espace vectoriel de E. En effet :
 - * La fonction nulle \mathbb{O} est dans F (elle s'annule en 1 et 2!!)
 - * Si f et g sont dans F et λ dans \mathbb{R} , alors $(\lambda f + g)(1) = (\lambda f + g)(2) = 0$, donc $\lambda f + g \in F$.
- G est un sous espace vectoriel de E. En effet $G = \text{Vect}(f_0, f_1)$, avec $\begin{cases} f_0 : x \mapsto 1 \\ f_1 : x \mapsto x \end{cases}$.
- Montrons que $E = F \oplus G$.

Soit $h \in E$, on cherche un couple unique $(f,g) \in F \times G$ tel que h = f + g (*)

* Analyse: supposons avoir f et g. Alors $\exists (a,b) \in \mathbb{R}^2 \ / \ \forall x \in \mathbb{R}, \ g(x) = ax + b$ et (*) devient

$$\forall x \in \mathbb{R}, \ h(x) = f(x) + ax + b$$

En substituant 1 et 2 à x, sachant que $f\left(1\right)=f\left(2\right)=0$:

$$\left\{ \begin{array}{l} h\left(1\right)=a+b \\ h\left(2\right)=2a+b \end{array} \right. \quad \text{d'où} \quad \left\{ \begin{array}{l} a=h\left(2\right)-h\left(1\right) \\ b=2h\left(1\right)-h\left(2\right) \end{array} \right.$$

Ainsi, pour tout réel x:

$$\begin{cases} g(x) = [h(2) - h(1)] x + [2h(1) - h(2)] \\ f(x) = h(x) - [h(2) - h(1)] x - [2h(1) - h(2)] \end{cases}$$

- * **Synthèse** : soient f et q ainsi définies. Alors
 - · f + g = h (immédiat)
 - $\cdot \quad g \in G$: immédiat, g est affine.

$$\cdot\quad\underline{f\in F}:\text{en effet}\left\{\begin{array}{l} f\left(1\right)=h\left(1\right)-\left[h\left(2\right)-h\left(1\right)\right]-\left[2h\left(1\right)-h\left(2\right)\right]=0\\ f\left(2\right)=h\left(2\right)-2\left[h\left(2\right)-h\left(1\right)\right]-\left[2h\left(1\right)-h\left(2\right)\right]=0 \end{array}\right.$$

* La décomposition existe et elle est unique CQFD.

Ex 22 Montrons que $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont deux sous-espaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbb{K})$:

- $S_n = \{M \in \mathcal{M}_n \ / \ ^tM = M\}$ contient la matrice nulle, et si $(M, M') \in \mathcal{S}_n$ et $\lambda \in \mathbb{R}$, ${}^t(\lambda M + M') = \lambda \ ^tM + \ ^tM' = \lambda M + M' \quad \text{donc} \quad \lambda M + M' \in \mathcal{S}_n$
- $A_n = \{M \in \mathcal{M}_n / {}^t M = -M\}$ se traite rigoureusemnt de la meme manière.
- Montrons que $\mathcal{M}_n\left(\mathbb{K}\right) = \mathcal{S}_n\left(\mathbb{K}\right) \oplus \mathcal{A}_n\left(\mathbb{K}\right)$.

On fixe $M \in \mathcal{M}_n$, et on cherche un couple unique $(S,A) \in \mathcal{S}_n \times \mathcal{A}_n$ tel que M = S + A (*)

* Analyse: supposons avoir (S, A). Alors en transposant (*), par linéarité de la transposition (*)

$${}^{t}M = {}^{t}S + {}^{t}A = S - A \ (\heartsuit)$$

(*) et (\heartsuit) donnent directement

$$\begin{cases} S = \frac{1}{2} \left(M + {}^t M \right) \\ A = \frac{1}{2} \left(M + {}^t M \right) \end{cases}$$

- * **Synthèse** : soit (S, A) ainsi défini. Alors :
 - · M = S + A (évident).
 - · $S \in \mathcal{S}_n(\mathbb{K}) : {}^tS = \frac{1}{2} ({}^tM + {}^t({}^tM)) = \frac{1}{2} ({}^tM + M) = S.$
 - $A \in \mathcal{A}_n(\mathbb{K}): {}^tA = \frac{1}{2}({}^tM {}^t({}^tM)) = \frac{1}{2}({}^tM M) = -A$
- * Conclusion : la décomposition existe, et elle est unique, CQFD.

Ex 23 Soient F, G, H trois sous-espaces vectoriels d'un \mathbb{K} -espace E vérifiant

$$F \cap H \subset G$$
, $H \subset F + G$ et $G \subset H$

Montrons que G = H: il suffit pour cela de montrer que $H \subset G$ puisqu'on a déjà $G \subset H$.

Soit $x \in H$. Alors comme $H \subset F + G$, $\exists (x_F, x_G) \in F \times G / x = x_F + x_G$.

Mais $x_G \in H$ par inclusion $G \subset H$, donc $x_F = x - x_G \in H$ par combinaison linéaire.

Ainsi $x_F \in F \cap H$, donc par hypothèse $x_F \in G$. Mais alors par somme $x = x_F + x_G \in G$ CQFD.

Ex 24 Soient F, G, H, K des sous-espaces vectoriels d'un \mathbb{K} -espace E vérifiant $E = F \oplus G = H \oplus K$.

On suppose que $F \subset H$ et $G \subset K$. Montrons que F = H et G = K.

Il suffit évidemment de montrer que $H \subset F$ et $K \subset G$. Soient donc $x_H \in H$ et $x_K \in K$.

Le vecteur $x = x_H + x_K \in E$ se décompose sur F et G de manière unique :

$$\exists ! (x_F, x_G) \in F \times G / x_H + x_K = x_F + x_G = x$$

Mais par hypothèse $x_F \in H$ puisque $F \subset H$ et $x_G \in K$ puisque $G \subset K$.

On a donc deux décompositions de x sur H et K. Comme $E=H\oplus K$, il y a unicité d'une telle décomposition, d'où

$$x_H = x_F \in F$$
 et $x_K = x_G \in G$ CQFD.

Ex 25 Soit F, G deux sous-espaces vectoriels d'un K-espace E vérifiant E = F + G

Soit G' est un supplémentaire de $F \cap G$ dans $G(G = (F \cap G) \oplus G')$. Montrons que $E = F \oplus G'$:

- On a
$$F \cap G' = F \cap (G \cap G') = (F \cap G) \cap G' = \{0_E\}$$
 puisque $G = (F \cap G) \oplus G'$

- Soit $x \in E$. Alors on peut décomposer x en $x = x_F + x_G$, où $(x_F, x_G) \in F \times G$. Comme $G = (F \cap G) \oplus G'$, on peut décomposer x_G en $x_G = x_{F \cap G} + x_{G'}$, où $(x_{F \cap G}, x_{G'}) \in (F \cap G) \times G'$. Mais alors

$$x=x_F+(x_{F\cap G}+x_{G'})=(x_F+x_{F\cap G})+x_{G'}$$
 avec $x_F+x_{F\cap G}\in F$ par somme et $x_{G'}\in G'$. Ainsi $\boxed{E=F+G'}$

Finalement F et G' sont supplémentaires.

Ex 26 Soit $E = \mathbb{R}^4$. Soient

$$a_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, a_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 3 \end{pmatrix}, a_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 1 \end{pmatrix}, a_4 = \begin{pmatrix} -1 \\ 0 \\ -1 \\ 2 \end{pmatrix}, a_5 = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 1 \end{pmatrix}$$

On pose $F = \text{Vect}(a_1, a_2, a_3)$ et $G = \text{Vect}(a_4, a_5)$. Calcul des dimensions de $F, G, F \cap G, F + G$.

- Montrons que (a_1, a_2, a_3, a_4) est libre : si $xa_1 + ya_2 + za_3 + ta_4 = 0_E$, alors par pivot :

$$\begin{cases} x + y + 2z - t = 0 \\ 2x + y + z &= 0 \\ 3x + y + z - t = 0 \\ 4x + 3y + z + 2t = 0 \end{cases} \Leftrightarrow \begin{cases} x + y + 2z - t = 0 \\ -y - 3z + 2t = 0 \\ -2y - 5z + 2t = 0 \\ -y - 7z + 6t = 0 \end{cases} \Leftrightarrow \begin{cases} x + y + 2z - t = 0 \\ y + 3z - 2t = 0 \\ z - 2t = 0 \\ -4z + 4t = 0 \end{cases} \Leftrightarrow \begin{cases} x + y + 2z - t = 0 \\ y + 3z - 2t = 0 \\ -4z + 4t = 0 \end{cases}$$

Il s'ensuit que x = y = z = t = 0, CQFD.

- Ainsi (a_1, a_2, a_3) est libre, donc $\dim F = 3$
- Manifestement (a_4, a_5) est libre, donc $\dim G = 2$
- $F + G = \text{Vect } (a_1, a_2, a_3, a_4, a_5) = E, \text{car } (a_1, a_2, a_3, a_4) \text{ est une base de } E, \text{donc l'engendre.} \quad \boxed{\dim(F + G) = 4}$
- La formule de Grassmann donne alors $\dim (F \cap G) = \dim F + \dim G \dim (F + G) = \boxed{1}$

Ex 27 Soient E un \mathbb{K} -espace vectoriel de dimension n, et F, G deux sous-espaces de E tels que : $\dim F + \dim G > n$.

Alors la formule de Grassmann donne

$$\dim (F \cap G) = \dim F + \dim G - \dim (F + G) > n - \dim (F + G)$$

Comme $F + G \subset E \Rightarrow \dim(F + G) \leqslant n$, il s'ensuit

$$\dim (F \cap G) > 0 \quad \text{et donc} \quad \boxed{F \cap G \neq \{0_E\}}$$

Ex 28 a) Soit E un K-espace vectoriel de dimension n et H, K deux hyperplans. Calculons la dimension de $H \cap K$.

- * $1^{\text{er}} \operatorname{cas}: H = K$, alors $H \cap K = H$ et $\dim(H \cap K) = n 1$
- * $2^{\text{ème}}$ cas : $H \neq K$, alors $H \subset H + K \subset E$, donc

$$n-1 \leqslant \dim(H+K) \leqslant n$$

Mais comme $H \neq H + K$ puisque H + F contient un vecteur qui n'est pas dans H, on en déduit que

$$n-1 < \dim (H+K)$$

d'où $\dim (H + K) = n$ et donc

$$H + K = E$$

La relation de Grassmann entraine alors :

$$\dim(H \cap K) = \dim H + \dim K - \dim(H + K) = 2n - 2 - n$$

$$\boxed{\dim\left(H\cap K\right)=n-2}$$

- b) Soit F est un sous-espace de dimension p. Calculons $\dim (H \cap F)$. Même méthode :
 - * $1^{\text{er}} \operatorname{cas} : F \subset H$, alors $H \cap F = F$ et $\dim(H \cap F) = p$
 - * $2^{\mathrm{ème}} \operatorname{cas} : \underline{F} \not\subset H$, alors $H \subset H + F \subset E$, donc $n-1 \leqslant \dim (H+F) \leqslant n$

Mais $H \neq H + F$ (car H + F contient un vecteur qui n'est pas dans H), donc $n - 1 < \dim(H + F)$, d'où $\dim(H + F) = n$ et donc H + F = E. La relation de Grassmann entraine alors :

$$\dim H \cap F = \dim H + \dim F - \dim (H + F) = n - 1 + p - n$$

$$\boxed{\dim\left(F\cap H\right)=p-1}$$