Homework Two

EMALCA 2025: High-dimensional Statistics

Due in class on July 3 (Submit in groups of 2 or 3)

1. Let $A_j \in \mathbb{R}^{d \times d}$ be given deterministic matrices, for $j = 1 \dots, N$, and let $z \sim N(0, I_d)$. Set

$$U = \max_{j=1,...,N} ||A_j z||_2.$$

- a) (2 points) For any fixed j show that $||A_jz||_2$ is sub-Gaussian and obtain a bound on its sub-Gaussian parameter (or norm).
- b) (2 points) Derive an upper bound on U that holds with high probability (for large N) and has logarithmic dependence on N.
- c) (2 points) Derive an upper bound on $\mathbb{E}(U)$.
- d) (2 points) Someone claims that U is sub-Gaussian. Prove or disprove
- 2. (2 points) Exercise 2.15 from HDS.

Exercise 2.15 (Concentration and kernel density estimation) Let $\{X_i\}_{i=1}^n$ be an i.i.d. sequence of random variables drawn from a density f on the real line. A standard estimate of f is the *kernel density estimate*

$$\widehat{f_n}(x) := \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right),$$

where $K:\mathbb{R} \to [0,\infty)$ is a kernel function satisfying $\int_{-\infty}^{\infty} K(t) dt = 1$, and h > 0 is a bandwidth parameter. Suppose that we assess the quality of $\widehat{f_n}$ using the L^1 -norm $\|\widehat{f_n} - f\|_1 := \int_{-\infty}^{\infty} |\widehat{f_n}(t) - f(t)| dt$. Prove that

$$\mathbb{P}[\|\widehat{f_n} - f\|_1 \ge \mathbb{E}[\|\widehat{f_n} - f\|_1] + \delta] \le e^{-\frac{n\delta^2}{8}}.$$