Amplificatore a transistor

Gruppo 1.BN Massimo Bilancioni, Alessandro Foligno, Giuseppe Zanichelli

31 ottobre 2018

1 montaggio del circuito e verifica del punto di lavoro

Le misure dei componenti tramite multimetro:

 $R_1 = (178.2 \pm 1.4) \text{k}\Omega, \ R_2 = (19.20 \pm 0.15) \text{k}\Omega, \ R_C = (9.99 \pm 0.08) \text{k}\Omega, \ R_E = (0.986 \pm 0.008) \text{k}\Omega, \ R_C = (0.986 \pm 0.008) \text{k}\Omega, \ R_C$ $C_{IN} = (216 \pm 9) \text{nF}, C_{OUT} = (105 \pm 4) \text{nF}$

Infine la tensione del generatore è $V_{CC} = (20.7 \pm 0.1) \text{V}$.

a) La tensione di lavoro risulta $V_{CE}^Q = (7.41 \pm 0.04) \text{V}$ e la corrente di collettore (misurata come caduta di d.d.p. ai capi di R_C) è $I_C^Q = (1.22 \pm 0.01) \text{mA}$. Teoricamente ci si aspetta $V_{CE}^Q + I_C^Q (R_C + R_E) = V_{CC}$ (si è assunto $I_C^Q \simeq I_E^Q$, l'errore derivante da questa approssimazione è dell' 1% se si considera un guadagno in continua attorno a 100) ; inserendo i valori, la parte a destra dell'equazione è uguale a (20.8 ± 0.2) V che è compatibile con il valore di V_{CC} .

Se è vero che $I_B \ll$ della corrente che scorre nel ramo di R_2 , allora vale $I_C^Q \simeq (V_{BB} - V_{BE})/R_E$ dove $V_{BB}=V_{CC}/(1+R_1/R_2)$, ma $(V_{BB}-V_{BE})/R_E=1.41$ mA ed essendo tutti gli errori intorno all' 1% è incompatibile con il valore misurato di I_C^Q ; questo significa che non è vera l'approssimazione sopra.

- b) Le tensioni misurate sono $V_B = (1.82 \pm 0.01) \text{V}, V_E = (1.21 \pm 0.01) \text{V}, V_{BE} = (0.61 \pm 0.01) \text{V},$ $V_C = (8.61 \pm 0.05) \text{V}.$
- c) Dal datasheet del transistor il valore di h_{FE} per il nostro punto di lavoro dovrebbe essere compreso tra

Segue che il valore della corrente di base dovrebbe essere compreso tra $0.009 \text{mA} < I_B < 0.015 \text{mA}$.

Le correnti che scorrono nei rami di R_1 , R_2 sono rispettivamente $I_{R_1} = (V_{CC} - V_B)/R_1 = (0.106 \pm 0.002) \text{mA}$, $I_{R_2} = V_B/R_2 = (0.095 \pm 0.001) \text{mA}$.

Dalla differenza si ottiene $I_B = (0.011 \pm 0.002) \text{mA}$ che è circa 10 volte inferiore alla corrente che scorre nel partitore.

Continuando la parte finale del punto a), questo si traduce nel fatto che nel calcolo di V_{BB} al posto di R_2 andrebbe messa la resistenza equivalente che è più piccola di circa il 10%. Questo comporta un errore del 10% sul calcolo di $V_{BB} \simeq 2 \text{V}$ che a questo punto diventa compatibile con V_B misurato.

$\mathbf{2}$ Risposta a segnali sinusoidali di frequenza fissa

Abbiamo scelto una frequenza di lavoro intorno ai 7.40 kHz.

a)

- i) Abbiamo verificato l'inversione di fase per VOUT, la figura sotto riporta quanto osservato.
- ii) Facendo una media dei guadagni per piccole ampiezze diverse di VIN, otteniamo:

$$A_v = (9.76 \pm 0.01)$$

(VIN e VOUT sono stati misurati sui due canali differenti dell'oscilloscopio, per questo abbiamo considerato gli errori scorrelati)

- Il valore atteso per il guadagno è $A_{v,att}\simeq \frac{R_C}{R_E}=10.1\pm0.1$ iii) Prima degli 1.3 Vpp come si vede dalla tabella l'amplificazione del segnale è entro i limiti lineare, per un segnale in ingresso di circa 1.60 Vpp si iniziano a vedere distorsioni per VOUT, in particolare si nota inizialmente clipping inferiore, mentre per tensioni ancora superiori si vede un clipping superiore.
- iv) Nella figura si vede il clipping inferiore; è dovuto al fatto che il transistor passa dal regime attivo al regime di saturazione, e questo accade perchè quando v_{in} è massimo e la sua ampiezza sufficientemente grande

TDS 1012C-EDU - 16:48:00 25/10/2018

VIN (V)	VOUT (V)	VOUT/VIN
0.228 ± 0.06	2.20 ± 0.06	9.65 ± 0.04
0.320 ± 0.08	3.12 ± 0.08	9.75 ± 0.04
0.528 ± 0.015	5.14 ± 0.15	9.73 ± 0.04
0.752 ± 0.021	7.32 ± 0.21	9.73 ± 0.04
1.02 ± 0.03	10.2 ± 0.3	10 ± 0.04
1.27 ± 0.04	12.3 ± 0.4	9.69 ± 0.04

 V_{CB} diventa negativo. In questo regime $|V_{CE}| \ll V_{CC}$, quindi $I_C \simeq V_{CC}/(R_E + R_C)$ e se chiamo $V_{out,min}$ il valore a cui viene tagliato il segnale vale

$$V_{out,min} - V_C = -I_C R_C = -V_{CC} \frac{R_C}{R_E + R_C}$$

da cui $V_{out,min} = -(6.74\pm0.14)$ V; questo valore non torna con il valore misurato, che è $V_{out,clip} = -(8.5\pm0.2)$ V. Ci si aspetta anche una distorsione per i picchi superiori di V_{out} (il clipping superiore osservato), infatti nel caso V_{in} abbia un'ampiezza grande, quando è minimo può far assumere a V_B valori negatvi e portare così il transistor in interdizione. Il segnale con clipping è asimmetrico, dato che il passaggio alla zona di interdizione per il clipping superiore avviene per segnali in ingresso più ampi rispetto al clipping inferiore, che quindi si manifesta prima.

3 Diagramma di Bode

Campionando in un intervallo di frequenze che spazia da 1Hz a 1kHz, abbiamo costruito un diagramma di Bode del guadagno. I punti sperimentali sono riportati in seguito. Visivamente l'andamento sembra quello tipico di un passabanda, eppure, oltre alla traslazione del guadagno massimo (che in questo caso è > 1, grazie al transistor), l'andamento asintotico ai due estremi non è di $\pm 20dB/Decade$, come nel caso di passa basso e alto in cascata, bensì di circa $-15\pm0.3dB/Decade$ per basse frequenze e $17.7\pm0.2dB/Decade$ per alte frequenze. Questi numeri sono ottenuti da fit lineari nelle tre regioni: Lo smorzamento per basse frequenze lo riteniamo dovuto sostanzialmente all'effetto di C_{IN} che si comporta come un passa alto. Trascuro l'effetto di C_{OUT} , dato che $|Z_{oscilloscopio}| \approx 1M\Omega$, la frequenza di taglio associata a questo passa-alto è $f_t = 1/(2\pi R_{oscill}C_{out}) \simeq 1.7$ Hz. La funzione di guadagno del passa-alto è del tipo:

$$A = \frac{1}{\sqrt{1 + (f_t/f)^2}}$$

con $f_t = 1/(2\pi R_{eq}C_{IN})$ e nell'approssimazione in cui l'impedenza dei rami del collettore ed emettitore sia molto più grande di R_2 , posso considerare il passa-alto e il transistor in cascata e quindi $R_{eq} \sim R_2$ per cui si ottiene $f_t \sim 40$ Hz (la frequenza di taglio sarà un po' più grande perchè R_{eq} è sicuramente minore di R_2 .

Tuttavia l'andamento che segue la curva non è esattamente, come preannunciato, quello atteso. La pendenza minore per basse frequenze è imputabile alla presenza del transistor. Viceversa supponiamo che, ad alte frequenze, l'andamento da passa basso sia dovuto agli effetti induttivi non trascurabili del circuito, ed in particolare

CH2 500mV M 50.0 us CH1 / 4/ 25-0tt.-18 18:41 6.68462H TDS 1012C-EDU - 16:48:55 25/10/2018

della basetta. Lo smorzamento, di nuovo non è esattamente di -20dB/Decade, supponiamo, di nuovo, a causa del comportamento non lineare del transistor.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.

Figura 1: fit del passa banda