Graph Traversals I

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 10

OUTLINE

- Graph Traversal Algorithm
- Facts about Traversal Trees
- Complexity Analysis
- Illustrative Example

Motivation: Graph Traversals

- Want to visit each node of a digraph in a systematic and efficient way (e.g. to search a graph).
- We can walk only on arcs following their direction

General Graph Traversal: Colour Scheme

- All graph traversal algorithm follow the same structure which is called the The general graph traversal algorithm. This algorithm uses three types of nodes:
 - White nodes: have not yet been visited.
 - Grey (frontier) nodes: have been visited but may have adjacent nodes that are white.
 - Black nodes: have been visited and all their (out-)neighbors have been visited as well.

Graph Traversal Algorithm

- All nodes are white to begin with.
- A starting white node is chosen and turned grey.
- A grey node is chosen and its out-neighbours explored.
- If any out-neighbour is white, it is visited and turned **grey**. If no out-neighbours are white, the grey node is turned **black**.
- The process of choosing grey nodes and exploring neighbours is continued until all nodes reachable from the initial node are black.
- If any white nodes remain in the digraph, a new starting node is chosen and the process continues until all nodes are **black**.

- 1. s is coloured grey and pred[s]=null.
- 2. choose a grey node u.
- 3. if u has a white (out)-neighbour v then colour v grey and pred[v]=u else colour u black.
- 4. if we have grey nodes go to 2).

^{*} pred - predecessor

- 1. s is coloured grey and pred[s]=null.
- 2. choose a grey node u.
- 3. if u has a white (out)-neighbour v then colour v grey and pred[v]=u else colour u black.
- 4. if we have grey nodes go to 2).

Pred[s] = null

^{*} pred - predecessor

- 1. s is coloured grey and pred[s]=null.
- 2. choose a grey node u.
- 3. if u has a white (out)-neighbour v then colour v grey and pred[v]=u else colour u black.
- 4. if we have grey nodes go to 2).

$$Pred[1] = s$$

^{*} pred - predecessor

- 1. s is coloured grey and pred[s]=null.
- 2. choose a grey node u.
- 3. if u has a white (out)-neighbour v then colour v grey and pred[v]=u else colour u black.
- 4. if we have grey nodes go to 2).

$$Pred[2] = 1$$

^{*} pred - predecessor

- 1. s is coloured grey and pred[s]=null.
- 2. choose a grey node u.
- 3. if u has a white (out)-neighbour v then colour v grey and pred[v]=u else colour u black.
- 4. if we have grey nodes go to 2).

^{*} pred - predecessor

- 1. s is coloured grey and pred[s]=null.
- 2. choose a grey node u.
- 3. if u has a white (out)-neighbour v then colour v grey and pred[v]=u else colour u black.
- 4. if we have grey nodes go to 2).

^{*} pred - predecessor

- 1. s is coloured grey and pred[s]=null.
- 2. choose a grey node u.
- 3. if u has a white (out)-neighbour v then colour v grey and pred[v]=u else colour u black.
- 4. if we have grey nodes go to 2).
- * pred predecessor
- *Visit*(*s*) visits all nodes reachable from *s*.
- After the run of visit(s) all reachable nodes are coloured black.

Algorithm 1 Visit.

```
1: function VISIT(node s of digraph G)
2:
          color[s] \leftarrow Grey
          pred[s] \leftarrow Null
3:
          while there is a Grey node do
4:
5:
                choose a Grey node u
6:
                if u has a WHITE (out-)neighbour then
7:
                     choose such a white (out-)neighbour v
8:
                     color[v] \leftarrow Grey
9:
                     pred[v] \leftarrow u
10:
                else
                     color[u] \leftarrow Black
11:
```


General Graph Traversal Algorithm: Main

Algorithm 2 Traverse. 1: **function** TRAVERSE(digraph *G*) array color[0..n-1]2: 3: array pred[0..n-1]for $u \in V(G)$ do 4: $color[u] \leftarrow WHITE$ 5: end for 6: for $s \in V(G)$ do 7: 8: if color[s] = WHITE then VISIT(s) 9: 10: return pred

• VISIT(a)
e is the white neighbour of a

e is the white neighbour of a choose grey a; no white neighbour; colour black

• VISIT(a)

e is the white neighbour of a choose grey a; no white neighbour; colour black choose grey e; no white neighbour; colour black

- VISIT(a)
 - e is the white neighbour of a choose grey a; no white neighbour; colour black choose grey e; no white neighbour; colour black
- VISIT(b)c is the white neighbour of b

• VISIT(a)

e is the white neighbour of a choose grey a; no white neighbour; colour black choose grey e; no white neighbour; colour black

• VISIT(b)

c is the white neighbour of b choose grey c; d is white neighbour

• VISIT(a)

e is the white neighbour of a choose grey a; no white neighbour; colour black choose grey e; no white neighbour; colour black

• VISIT(b)

c is the white neighbour of b choose grey c; d is white neighbour no more white nodes; all nodes turn black

A search forest

A search forest is a collection of node-disjoint trees that span the digraph and contain, for each node u with $pred[u] \neq NULL$, the arc (pred[u], u).

Traversal Arc Classifications

- Suppose we have performed a traversal of a digraph G, resulting in a search forest F. Let $(u, v) \in E(G)$ be an arc.
- The arc is called a tree arc if it belongs to one of the trees of *F*. If the arc is not a tree arc, there are three possibilities:
 - a forward arc if u is an ancestor of v in F,
 - a back arc if u is a descendant of v in F, and
 - a cross arc if neither u nor v is an ancestor of the other in F.

Traversal Arc Classifications

- The arc is called a tree arc if it belongs to one of the trees of *F*. If the arc is not a tree arc, there are three possibilities:
 - a forward arc if u is an ancestor of v in F,
 - a back arc if u is a descendant of v in F, and
 - a cross arc if neither u nor v is an ancestor of the other in F.

Facts about Traversal Trees

• **Theorem**: Suppose we run algorithm traverse on G, resulting in a search forest F. Let $v,w \in V(G)$.

Let T_1 and T_2 be different trees in F and suppose that T_1 was explored before T_2 . Then there are no arcs from T_1 to T_2 .

• Proof:

- Assume $(v, w) \in E(G)$, $v \in T_1, w \in T_2$
- VISIT(s)
 1. A single run of VISIT generates a tree
 2. All nodes reachable from s will be visited
- With 1 and 2, we have $w \in T_1 \Rightarrow$ contradiction

Facts about Traversal Trees (Contd.)

• **Theorem**: Suppose we run algorithm traverse on G, resulting in a search forest F. Let $v,w \in V(G)$.

Then there can be no edges joining different trees of F.

Facts about Traversal Trees (Contd.)

• **Theorem**: Suppose we run algorithm traverse on G, resulting in a search forest F. Let $v,w \in V(G)$.

Suppose that v is visited before w and w is reachable from v in G. Then v and w belong to the same tree of F.

• Proof.

- Let $v \in T$ and s be the root of T.
- Because w is reachable from v, v is reachable from s, then w is reachable from s
- Then, w should be in the same tree as v.

Facts about Traversal Trees (Contd.)

• **Theorem**: Suppose we run algorithm traverse on G, resulting in a search forest F. Let $v,w \in V(G)$.

Suppose that v and w belong to the same tree T in F. Then any path from v to w in G must have all nodes in T.

- **Proof.** For any node x in any path from v to w
- 1. $v, w \in T$
- 2. v is reachable from s the root of T, then x is reachable from s
- 3. By 2, $x \in T$

Complexity Analysis: General Graph Traversal

Algorithm 2 Traverse. 1: **function** TRAVERSE(digraph *G*) array color[0..n-1]2: array pred[0..n-1]3: for $u \in V(G)$ do 4: $color[u] \leftarrow WHITE$ 5: end for 6: for $s \in V(G)$ do 7: 8: if color[s] = WHITE then VISIT(s) 9: 10: return pred

Complexity Analysis: Visit(s)

Algorithm 1 Visit.

```
1: function VISIT(node s of digraph G)
          color[s] \leftarrow Grey
          pred[s] \leftarrow Null
3:
4:
          while there is a Grey node do
5:
                choose a Grey node u
                if u has a WHITE (out-)neighbour then
6:
                     choose such a white (out-)neighbour v
8:
                     color[v] \leftarrow Grey
9:
                     pred[v] \leftarrow u
10:
                else
11:
                     color[u] \leftarrow Black
```


Runtime Analysis of Traverse

- The initialization of the array colour takes time $\Theta(n)$ so traverse is in $\Theta(n+t)$, where t is the total time taken by all the calls to visit.
- We execute the while-loop of visit in total $\Theta(n)$ times since every node must eventually move from white through grey to black. In each loop:
 - The time taken in choosing grey nodes is $\Theta(1)$ each time.
 - The time taken to find a white neighbour involves examining each neighbour of u and checking whether it is white, then applying a selection rule.
 - If adjacency matrix is used, we need to scan the whole row, which takes $\Theta(n)$
 - If adjacency lists are used, we only need $\Theta(|L_i|)$ for finding white nodes in the adjacency list of node i.
- So the running time of traverse is $\Theta(n+(n+\sum_i |L_i|))=\Theta(n+m)$ if adjacency lists are used, and $\Theta(n+n^2)=\Theta(n^2)$ if the adjacency matrix format is used.

Runtime Analysis of Traverse (Contd.)

- So, for simple selection rules and assuming a sparse input digraph, the adjacency list format seems preferable.
- If more complex selection rules are used, for example, rules that choose a single grey node $\Theta(n)$ time by scanning the whole list of grey nodes, then the running time is asymptotically $\Theta(n^2)$ regardless of the data structure.

Graph Traversal

Algorithm 1 Visit. 1: **function** VISIT(node *s* of digraph *G*) $color[s] \leftarrow Grey$ 2: $pred[s] \leftarrow Null$ 3: while there is a Grey node do 4: how to choose? choose a Grey node *u* 5: if u has a WHITE (out-)neighbour then 6: choose such a (out-)neighbour v 7: $color[v] \leftarrow Grey$ 8: $pred[v] \leftarrow u$ 9: else 10: $color[u] \leftarrow Black$ 11:

General graph traversal: example

• Emmmm.....

General graph traversal: example

• Emmmm.....

General graph traversal: example

• Emmmm.....

SUMMARY

- Graph Traversal Algorithm
- Facts about Traversal Trees
- Complexity Analysis
- Illustrative Example

