Отчёт по лабораторной работе №6

Окорочкова Мария, M32341 30 декабря 2022 г.

1. Детали реализации каждого алгоритма.

Алгоритм эксперимента № 1

```
1 #!/bin/bash
2
3 for (( i=0; i<1001; i++ )); do
4          for (( j=0; j<501; j++ )); do
5               result=$(($j+$i+$j*$i))
6          done
7 done</pre>
```

Алгоритм эксперимента № 2

```
1 #!/bin/bash
2
3 file=$1
4
5 for (( i=0; i<1000; i++ )); do
6     read num < $file
7     num=$num$((2 * $num))
8     echo $num > $file
9 done
```

Общий скрипт запуска

```
1 #!/bin/bash
 2
 3 experiment=$1
 4 mode=$2
 5 processors=$3
 6 num=$4
 8 path=logs/$experiment
 9 algo=$path/algo
10
11 case $experiment in
           "1experiment" )
12
13
                    case $mode in
14
                    "seq" )
15
                            for (( i=0; i<$num; i++ )); do
16
                                     bash $algo
17
                            done
18
                    "parallel" )
19
20
                            for (( i=0; i<$num; i++ )); do
21
                                     bash $algo &
22
                            done
23
24
                            ./pause
25
                            ;;
26
                    esac
27
           "2experiment" )
28
29
                    for (( i=0; i<$num; i++ )); do</pre>
                            path2=$path/$processors/$mode/files/file$i
30
31
                            : > $path2
32
33
                            theNumber=1
34
                            echo $theNumber$theNumber$theNumber >> $path2
35
                            case $mode in
36
                            "seq" )
37
38
                                     bash $algo "$path2"
39
                            "parallel" )
40
                                     bash $algo "$path2" &
41
42
                                     ;;
43
                            esac
44
                    done
                    if [ "$mode" == "parallel" ]; then
45
46
                            ./pause
47
                    fi
48
                    ;;
49 esac
50
```

Общий скрипт оценки времени алгоритма (получаем при вызове time -р **значение параметра** real)

```
1 #!/bin/bash
3 experiment=$1
4 mode=$2
5 processors=$3
7 pathTime=logs/$experiment/$processors/$mode/time.log
8 pathReal=logs/$experiment/$processors/$mode/real.log
10 for (( i=1; i<21; i++ )); do
          exec 2>$pathTime
12
          for (( j=0; j<5; j++ )); do
13
                   time -p ./launch $experiment $mode $processors $i
14
          done
15
          echo $(grep "real" $pathTime | awk '{print $2}') >> $pathReal
          echo "" > $pathTime
16
17 done
18
19 rm $pathTime
```

2. Параметры.

Хостовый компютер

Память	16 ГБ 2133 MHz LPDDR3
Имя процессора	4-ядерный процессор Intel Core i7
Скорость процессора	2,8 GHz
Количество процессоров	1
Общее количество ядер	4
Кэш 2-го уровня (в каждом ядре)	256 КБ
Кэш 3-го уровня	6 МБ

Виртуальная машина

Основная память	2048 MB
Порядок загрузки	Гибкий лиск -> Оптический диск -> Жёсткий диск
Чипсет	PIIX3 TPM
отсутствует Процессор	1 или 2 ЦП
Предел загрузки ЦПУ	100%

3. Дополненные планы экспериментов.

Запускаем скрипты и берём логи с помощью следующих команд

```
./range 1experiment seq 1
./range 1experiment parallel 1
./range 1experiment seq 2
./range 1experiment parallel 2
./range 2experiment seq 1
```

```
./range 2experiment parallel 1
./range 2experiment seq 2
./range 2experiment parallel 2,
```

где первый параметр – эксперимент, второй – способ запуска, третий – кол-во процессоров.

К сожалению, пришлось не соблюсти условие о количестве запусков скрипта (в цикле от 1 до 20) для подсчёта среднего арифметичееского выполнения алгоритма. Дело в том, что, если запускать, как предлагается, 10 раз, то придётся потратить на выполнение работы 13-14 часов, что затруднительно. Поэтому приняла решение запускать скрипт не 10 раз, а 5.

4. Графики + комментарии.

Искомое среднее время выполнения:

EXPERIMENTS									
1CPU 2C		PU	1CPU		2CPU				
seq	parallel	seq	parallel	seq	parallel	seq	parallel		
3.400	4.708	3.406	3.716	1.694	2.220	1.680	1.748		
6.704	7.784	6.390	4.390	2.846	4.410	3.218	2.166		
9.956	10.388	10.0380	7.258	4.992	5.106	4.880	3.340		
13.796	13.958	13.584	7.202	5.556	6.618	7.108	4.250		
16.514	18.106	15.524	9.174	6.740	9.628	6.948	3.930		
19.596	20.722	18.964	10.932	8.284	8.952	8.976	4.612		
22.288	23.972	21.376	12.190	10.800	12.102	9.326	6.464		
26.936	28.924	24.622	13.584	10.416	14.224	10.374	6.530		
28.682	31.216	27.966	15.074	12.338	13.486	12.708	7.378		
41.854	35.068	31.218	18.432	13.866	15.840	13.95	8.246		
37.086	37.58	33.948	28.950	14.054	15.978	15.634	9.122		
38.858	39.752	52.518	20.262	15.25	17.644	16.546	9.954		
44.204	41.656	39.928	21.900	28.154	20.656	18.746	10.790		
56.362	45.06	44.64	24.260	17.724	24.238	22.796	11.620		
51.786	46.598	45.946	25.454	19.014	24.128	22.794	12.864		
54.31	50.532	50.386	27.262	26.996	27.210	24.742	13.156		
56.152	54.46	54.46	28.704	25.824	28.856	26.932	13.838		
60.146	61.892	57.216	31.248	26.028	28.166	27.364	14.972		
62.532	69.29	62.776	31.048	27.810	30.952	29.596	14.238		
67.602	70.076	65.606	31.558	27.648	45.974	32.092	14.95		

Эксперимент №1

Эксперимент №2

12.5

15.0

10.0

17.5

2.5

0.0

5.0

7.5

Комментарии:

- Один процессор, сравнение последовательного и параллельного вызовов: значительной разницы по времени выполнения не наблюдается.
- Два процессора, сравнение последовательного и параллельного вызовов: выражается более быстрое выполнение при параллельном вызове.
- Сравнение последовательных вызовов при разном кол-ве процессоров: значительной разницы по времени выполнения не наблюдается.
- Сравнение параллельных вызовов при разном кол-ве процессоров: выражается более быстрое выполнение при двух процессорах.
- Больше всего времени тратится на параллельные вызовы скрипта при одном потоке, а меньше всего на параллельные вызовы скрипта при двух потоках.
- Характер поведения времени первого и второго экспериментов крайне схож.
- Пристуствует некоторая погрешность ("скачки"на графиках).

5. Выводы:

- Эффективнее, конечно, использовать два потока(процессора), ведь тогда нагрузка будет распределяться равномерно.
- Параллельный способ запусков следует использовать при выполнении скрипта на двух процессорах/потоках, так быстрее. Опять же, играет роль распредление нагрузки.

- Последовательный способ запусков следует использовать при выполнении скрипта на одном процессоре/потоке, так быстрее. Параллельность на одном процессоре будет только мешать.
- Эксперимент \mathbb{N} 1 с выполнением вычислительно сложных задач выполняется медленее эксперимента \mathbb{N} 2 с выполнением задач с большими объемами считываемых и сохраняемых данных, что ожидаемо.