

IN THE CLAIMS

Please amend the claims as follows:

Claims 1-26 (Canceled).

Claim 27 (New): A method of screening the operating conditions of a coupling reaction of at least two functional groups, which comprises the following steps:

i) reacting together at least two compounds:

- a first compound of formula $E_1-X_1-G_1$ in which G_1 represents a first of said at least two functional groups, X_1 represents a covalent bond or a first spacer group, while E_1 represents the residue of a first molecule M_1 for which a first specific antibody AC_1 is available, and

- a second compound of formula $E_2-X_2-G_2$ in which G_2 represents a second of said at least two functional groups, X_2 represents a covalent bond or a second spacer group, which may be identical to or different from X_1 , while E_2 represents either the residue of a second molecule M_2 that is different from M_1 and for which a second specific antibody AC_2 is available, or a group capable of forming at least one covalent bond with the antibody AC_1 in the presence of a coupling agent;

said at least two compounds being reacted in solution in a solvent and under predetermined operating conditions, at least one of which is a candidate operating condition, in order to obtain a reaction medium and the formation, in this medium, of a compound Z comprising the chain $E_1-X_1-G_1-G_2-X_2-E_2$ in which X_1 , X_2 , E_1 and E_2 have the same meaning as above, while G_1-G_2 represents the group of atoms resulting from the coupling of said at least two functional groups;

- ii) determining the concentration of compound Z in the reaction medium at a predetermined reaction time t , by means of at least one immunoassay using at least the antibody AC₁; and
- iii) evaluating the effects of the candidate operating condition(s) on said coupling reaction using the concentration of compound Z thus determined.

Claim 28 (New): The method according to Claim 27, in which the coupling reaction is chosen from the group consisting of esterification reactions, amidation reactions, aldolization and nitroaldolization reactions, the Heck reaction, the Baylis-Hillman reaction, the Michael reaction, metathesis reactions, the Diels-Alder reaction, the Sonogashira reaction, the Suzuki reaction, the Kumada reaction, the Stille reaction, the Hiyama reaction, the Liebeskind-Srogl reaction, the Mannich reaction, the Hantzsch reaction, the reaction of Bossio et al., the Ugi reaction, and variants thereof.

Claim 29 (New): The method according to Claim 27, in which E₁ or E₂ represents the histamine residue.

Claim 30 (New): The method according to Claim 27, in which E₁ or E₂ represents the homovanillic acid residue.

Claim 31 (New): The method according to Claim 29, in which E₁ or E₂ corresponds to formula (III) below:

in which R₁ represents a hydrogen atom or a protective group.

Claim 32 (New): The method according to Claim 31, in which E₁ or E₂ corresponds to formula (IV) below:

in which R₂ represents a hydrogen atom or a protective group.

Claim 33 (New): The method according to Claim 27, in which E₂ represents a group chosen from amine, carboxylic acid, aldehyde, thiol, phenol, alkenyl and azide groups, and photoactivatable groups.

Claim 34 (New): The method according to Claim 33, in which E₂ represents an amine or thiol group.

Claim 35 (New): The method according to Claim 27, in which said at least one immunoassay for the compound Z is a solid-phase assay.

Claim 36 (New): The method according to Claim 27, in which, since E₂ corresponds to the residue of a molecule M₂, step ii) comprises the following steps:

a₁) bringing the reaction medium obtained at reaction time t into contact with a solid phase on which the first antibody AC₁ is immobilized, so as to obtain the attachment of the compound Z on this solid phase by immunobinding between this antibody and the residue E₁ of this compound;

b₁) bringing the solid phase into contact with a conjugate comprising the second antibody AC₂ coupled to a label, so as to obtain the attachment of this conjugate to this solid phase by immunobinding between the second antibody AC₂ and the residue E₂ of the compound Z attached to said solid phase;

c₁) measuring the amount of conjugate attached to the solid phase by means of the label coupled to the antibody AC₂; and

d₁) determining, on a standard range, the concentration of the compound Z in the reaction medium at said time t, from the amount of conjugate thus measured;

said step ii) also comprising one or more operations consisting in washing the solid phase, between steps a₁) and b₁), and between steps b₁) and c₁).

Claim 37 (New): The method according to Claim 27, in which, since E₂ corresponds to a group capable of forming at least one covalent bond with the first antibody AC₁, step ii) comprises the following steps:

a₂) bringing the reaction medium obtained at reaction time t into contact with a solid phase on which the first antibody AC₁ is immobilized, so as to obtain the attachment of the compound Z to this solid phase by immunobinding between this antibody and the residue E₁ of this compound;

b₂) reacting a coupling agent with the first antibody AC₁ immobilized on the solid phase and the group E₂ of the compound Z attached to this solid phase, so as to obtain the formation of one or more covalent bonds between this antibody and this group;

c₂) denaturing the immunobond which exists between the first antibody AC₁ immobilized on the solid phase and the residue E₂ of the compound Z attached to this solid phase, so as to release this residue from this solid phase;

d₂) bringing the solid phase into contact with a conjugate comprising the first antibody AC₁ coupled to a label, so as to obtain the attachment of this conjugate to this solid phase by immunobinding between said antibody and the residue E₁ of the compound E₁-X-G₁-G₂-Y-E₂ thus released;

e₂) measuring the amount of conjugate attached to the solid phase by means of the label coupled to the antibody AC₁; and

f₂) determining, on a standard range, the concentration of compound Z in the reaction medium at said time t, from the amount of conjugate thus measured;

said step ii) also comprising one or more operations consisting in washing the solid phase, between steps a₂) and b₂), b₂) and c₂), c₂) and d₂), and between steps d₂) and e₂).

Claim 38 (New): The method according to Claim 27, in which the first antibody AC₁ is a monoclonal antibody.

Claim 39 (New): The method according to Claim 27, in which the second antibody AC₂ is a monoclonal antibody.

Claim 40 (New): The method according to Claim 27, in which the solid phase is the wall of a well of a microtitration plate onto which the first antibody AC₁ is adsorbed.

Claim 41 (New): The method according to Claim 36, in which the label is an enzyme, preferably acetylcholine esterase.

Claim 42 (New): The method according to Claim 27, which comprises an operation consisting of dilution of the reaction medium between steps i) and ii).

Claim 43 (New): The method according to Claim 27, in which the yield of the coupling reaction is determined from the concentration of compound Z in the reaction medium.

Claim 44 (New): The method according to Claim 27, in which the coupling reaction consists in coupling 2, 3 or 4 functional groups.

Claim 45 (New): The method according to Claim 44, in which the coupling reaction consists in coupling two functional groups G_1 and G_2 , and in which:

- in step i), the compounds of formulae $E_1-X_1-G_1$ and $E_2-X_2-G_2$ are reacted together so as to obtain the formation, in the reaction medium, of a compound Z which corresponds to the formula $E_1-X_1-G_1-G_2-X_2-E_2$ in which X_1 , X_2 , E_1 and E_2 have the same meaning as above and G_1-G_2 represents the group of atoms resulting from the coupling between said functional groups G_1 and G_2 ; while
- in step ii), the concentration of compound Z in the reaction medium is determined by means of a single immunoassay.

Claim 46 (New): The method according to Claim 44, in which the coupling reaction consists in coupling three functional groups G_1 , G_2 and G_3 , and in which:

- in step i), the compounds of formulae $E_1-X_1-G_1$ and $E_2-X_2-G_2$ are reacted with a third compound of formula $E_3-X_3-G_3$ in which X_3 represents a covalent bond or a third spacer group, which may be identical to or different from X_1 and/or X_2 , while E_3 represents either the residue of a third molecule M_3 which is different from M_1 and from M_2 and for which a third specific antibody AC_3 is available, or a group capable of forming a covalent bond with the antibody AC_1 in the presence of a coupling agent on the condition, however, that E_2 does not already represent such a group, so as to obtain the formation, in the reaction medium, of a compound Z corresponding to one of the formulae below:

in which X_1 , X_2 , X_3 , E_1 , E_2 and E_3 have the same meaning as above, and

represents the group of atoms resulting from the coupling of said functional groups G_1 , G_2 and G_3 ; while

- in step ii), the concentration of compound Z in the reaction medium is determined by means of two different immunoassays.

Claim 47 (New): The method according to Claim 44, in which the coupling reaction consists in coupling four functional groups G_1 , G_2 , G_3 and G_4 , and in which:

- in step i), the compounds of formula $E_1-X_1-G_1$ and $E_2-X_2-G_2$ are reacted with a third compound of formula $E_3-X_3-G_3$ as defined above and a fourth compound of formula $E_4-X_4-G_4$ in which X_4 represents a covalent bond or a fourth spacer group, which may be identical to or different from X_1 , X_2 and/or X_3 , while E_4 represents either the residue of a third molecule M_4 which is different from M_1 , from M_2 and from M_3 and for which a fourth specific antibody AC_4 is available, or a group capable of forming a covalent bond with the antibody AC_1 in the presence of a coupling agent, on the condition, however, that E_2 and E_3 do not already represent such a group, so as to obtain the formation, in the reaction medium, of a compound Z corresponding to one of the formulae below:

in which X_1 , X_2 , X_3 , X_4 , E_1 , E_2 , E_3 and E_4 have the same meaning as above, and

represents the group of atoms resulting from the coupling of said functional groups

G_1 , G_2 , G_3 and G_4 ; while

- in step ii), the concentration of compound Z in the reaction medium is determined by means of three different immunoassays.

Claim 48 (New): The method according to Claim 27, in which the candidate operating condition(s) is(are) chosen from the group consisting of solvents, catalysts, temperature levels, pressure levels, the use of ultrasound, concentrations, stoichiometric ratios, reaction times and combinations thereof.

Claim 49 (New): The method according to Claim 27, in which the candidate operating condition(s) is(are) catalysts.

Claim 50 (New): A kit for carrying out a method of screening the operating conditions of a coupling reaction of at least two functional groups, which comprises suitable amounts:

- of at least two compounds intended to react together:
- a first compound of formula $E_1-X_1-G_1$ in which G_1 represents a first of said at least two functional groups, X_1 represents a covalent bond or a first spacer group and E_1 represents the residue of a first molecule M_1 ; and

- a second compound of formula $E_2-X_2-G_2$ in which G_2 represents a second of said at least two functional groups, X_2 represents a covalent bond or a second spacer group, which may be identical to or different from X_1 , and E_2 represents the residue of a second molecule M_2 which is different from M_1 ;
 - of at least two antibodies:
- a first antibody AC_1 specific for the first molecule M_1 , this antibody being optionally attached to a plurality of solid phases; and
- a second antibody AC_2 specific for the second molecule M_2 , this antibody being coupled to a label;
 - of a compound Z comprising the chain $E_1-X_1-G_1-G_2-X_2-E_2$ in which X_1 , X_2 , E_1 and E_2 have the same meaning as above, while G_1-G_2 represents the group of atoms resulting from the coupling of said at least two functional groups; and, optionally:
 - of a reagent for visualizing the label, for example a substrate if the label is an enzyme; and
 - of suitably chosen buffers.

- Claim 51 (New): A kit for carrying out a method of screening the operating conditions of a coupling reaction of at least two functional groups, which comprises suitable amounts:
- of at least two compounds intended to react together:
 - a first compound of formula $E_1-X_1-G_1$ in which G_1 represents a first of said at least two functional groups, X_1 represents a covalent bond or a first spacer group and E_1 represents the residue of a first molecule M_1 ; and
 - a second compound of formula $E_2-X_2-G_2$ in which G_2 represents a second of said at least two functional groups, X_2 represents a covalent bond or a second spacer group,

that may be identical to or different from X₁, and E₂ represents a group capable of forming one or more covalent bonds with an antibody specific for the molecule M₁ in the presence of a coupling agent;

- of at least one antibody, this antibody being said antibody specific for the molecule M₁;
- of a conjugate comprising said antibody specific for the molecule M₁ coupled to a label;
- of a compound Z comprising the chain E₁-X₁-G₁-G₂-X₂-E₂ in which X₁, X₂, E₁ and E₂ have the same meaning as above, while G₁-G₂ represents the group of atoms resulting from the coupling of said at least two functional groups; and, optionally:
 - of a reagent for visualizing the label,
 - of a coupling agent,
 - of a reagent capable of denaturing an immunobond, and
 - of suitably chosen buffers.

Claim 52 (New): A method for the screening of catalysts that are useful in a coupling reaction between two functional groups comprising utilizing the screening method according to Claim 27.

Claim 53 (New): A method for the screening of catalysts that are useful in a coupling reaction between two functional groups comprising utilizing the kit according to Claim 50.