Esercitazioni su circuiti combinatori

Salvatore Orlando & Marta Simeoni

Algebra Booleana: funzioni logiche di base

NOT (complemento): l'uscita è il complemento dell'ingresso

NAND
 A
 B

$$\sim$$
(A · B)

 0
 0
 1

 0
 1
 1

 1
 0
 1

 1
 1
 0

 1
 1
 0

\sim (A + B)		0	0	0	
В	0	$\overline{}$	0	_	
A	0	0	$\overline{}$	$\overline{}$	
NOR					

Algebra Booleana: funzioni logiche di base

OR (somma): l'uscita è 1 se almeno uno degli ingressi è 1

AND (prodotto): l'uscita è 1 se tutti gli ingressi sono 1

	A — A and B	B		
$(A \cdot B)$	0	0	0	1
A B	0 0	0 1	1 0	1 1

Algebra booleana: equazioni

Come si dimostra che due funzioni logiche sono uguali?

Ci sono due metodi:

- Costruire la tabella di verità delle due funzioni e verificare che, per gli stessi valori dei segnali di ingresso, siano prodotti gli stessi valori dei segnali di uscita
- Sfruttare le proprietà dell'algebra booleana per ricavare una funzione dall'altra (tramite sequenze di equazioni)

Algebra booleana: equazioni

Come si dimostra che due funzioni logiche sono uguali?

Esempio: considerare le leggi di De Morgan

$$\sim (A \bullet B) = (\sim A) + (\sim B)$$

(~A)+(~B)		1	1	0
~B		0	$\overline{}$	0
~A	1	1	0	0
~(A·B)	1	1	1	0
(A·B)	0	0	0	П
A B	0 0	0 1	1 0	1 1

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

de vera se tutti e tre gli input sono veri

Intuitivamente le equazioni sono:
$$D = A + B + C$$

$$F = ABC$$

$$E = (AB + BC + AC) \cdot \sim (ABC)$$

Algebra booleana: equazioni

Come si dimostra che due funzioni logiche sono uguali?

Esempio: considerare le leggi di De Morgan

$$\neg (A+B) = (\neg A) \cdot (\neg B)$$

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

D è vera se almeno uno degli ingressi è vero

E è vera se esattamente due input sono veri

F è vera se tutti e tre gli input sono veri

Ц	0	0	0	0	0	0	0	1
田	0	0	0		0	$\overline{}$		0
Ω	0		1					
C	0	1	0	1	0	1	0	_
B	0	0	_	_	0	0	_	\vdash
_		$\overline{}$	$\overline{}$	$\overline{}$				_

Tabella di verità

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

- D è vera se almeno uno degli ingressi è vero
- E è vera se esattamente due input sono veri
 - F è vera se tutti e tre gli input sono veri

F		0					0	0	
E		0	0	0		0			0
D		0							
C	ſ	0		$\overline{}$	_	$\overline{}$	_	$\overline{}$	_
)		_				_	
В		0	0	_	_			$\overline{}$	$\overline{}$
A		0	0	0	0	$\overline{}$	$\overline{}$	$\overline{}$	1

Prodotti di somme (PS):

$$\mathbf{D} = \mathbf{A} + \mathbf{B} + \mathbf{C}$$

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

- D è vera se almeno uno degli ingressi è vero
- E è vera se esattamente due input sono veri
- F è vera se tutti e tre gli input sono veri
- ABCDEF 0000 0001 0100 1000 1100 1100 1100 1100

Prodotti di somme (PS):

$$\mathbf{D} = \mathbf{A} + \mathbf{B} + \mathbf{C}$$

$$E = (A+B+C) (A+B+C) (A+C+C)$$

($A+B+C$) ($A+C+C$)

$$F = (A+B+C) (A+B+\sim C) (A+\sim B+C)$$

 $(A+\sim B+\sim C)(\sim A+B+C)$
 $(\sim A+B+\sim C)(\sim A+\sim B+C)$

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

- D è vera se almeno uno degli ingressi è vero
- E è vera se esattamente due input sono veri
 - F è vera se tutti e tre gli input sono veri

			_					
ഥ	0	0	0	0	0	0	0	
田	0	0	0	1	0	1		0
Q	0							
C	0	П	0	1	0	1	0	_
В	0	0		$\overline{}$	0	0		1
A	0	0	0	0		_	_	

Prodotti di somme (PS):

$$D = A+B+C$$

$$\mathbf{E} = (\mathbf{A} + \mathbf{B} + \mathbf{C}) (\mathbf{A} + \mathbf{B} + \sim \mathbf{C}) (\mathbf{A} + \sim \mathbf{B} + \mathbf{C})$$
$$(\sim \mathbf{A} + \mathbf{B} + \mathbf{C}) (\sim \mathbf{A} + \sim \mathbf{B} + \sim \mathbf{C})$$

Realizzazione di circuiti combinatori

Esercizio: Dati tre ingressi A, B, C realizzare un circuito che fornisca in uscita tre segnali

- D è vera se almeno uno degli ingressi è vero
- E è vera se esattamente due input sono veri
 - F è vera se tutti e tre gli input sono veri

E F	0	0	0	0	0	0	0	1
田	0	0	0		0			0
Q	0		1	1	1	1	1	
\Box	0		0	_	0	_	0	
В	_			_		0	_	
A	0	0	0	0	_	_	_	_

Somme di Prodotti (SP):

$$D = (\sim A \sim BC) + (\sim AB \sim C) + (\sim ABC) + (A\sim B\sim C) + (A\sim BC) + (A\sim BC) + (AB\sim C) + (AB\sim C) + (AB\sim C) + (A\sim BC) + (A\sim BC) + (A\sim B\sim C) + (A$$

$$\mathbf{E} = (\sim \mathbf{ABC}) + (\mathbf{A} \sim \mathbf{BC}) + (\mathbf{AB} \sim \mathbf{C})$$

$$F = ABC$$

Esercizio: Minimizzare la funzione D dell'esercizio precedente D = (-A - BC) + (-AB - C) + (-ABC) + (A - BC) + (AB - C) + (AB - C

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione D dell'esercizio precedente D = (-A - BC) + (-AB - C) + (-ABC) + (A - BC) + (A - BC) + (AB - C) + (ABC) + (ABC)

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione D dell'esercizio precedente

$$\mathbf{D} = (-\mathbf{A} - \mathbf{B}\mathbf{C}) + (-\mathbf{A}\mathbf{B} - \mathbf{C}) + (-\mathbf{A}\mathbf{B}\mathbf{C}) + (\mathbf{A} - \mathbf{B}\mathbf{C}) + (\mathbf{A}\mathbf{B} - \mathbf{C}) + (\mathbf{A}\mathbf{B}\mathbf{C}) +$$

Si può considerare un rettangolo più grande di quello a sinistra, che include anche quello selezionato

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione D dell'esercizio precedente

$$\mathbf{D} = (-\mathbf{A} - \mathbf{B}\mathbf{C}) + (-\mathbf{A}\mathbf{B} - \mathbf{C}) + (-\mathbf{A}\mathbf{B}\mathbf{C}) + (\mathbf{A} - \mathbf{B}\mathbf{C}) + (\mathbf{A}\mathbf{B} - \mathbf{C}) + (\mathbf{A}\mathbf{B}\mathbf{C}) + (\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{C}) + (\mathbf{A}\mathbf{B}\mathbf{C}) + (\mathbf{A}\mathbf{B}\mathbf{C$$

Esercizio: Minimizzare la funzione D dell'esercizio precedente D = (-A - BC) + (-AB - C) + (-ABC) + (ABC) + (ABC) + (ABC) + (ABC) + (ABC) + (ABC) + (ABC)

Realizzazione di circuiti combinatori

Esercizio: Realizzare il circuito precedente (riportato qui in figura) nei seguenti casi:

- 1. utilizzando porte AND e OR a due ingressi
- 2. utilizzando porte NAND a tre ingressi

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione E dell'esercizio precedente $E = (\sim ABC) + (A \sim BC) + (AB \sim C)$

 $\mathbf{E} = (\sim \mathbf{ABC}) + (\mathbf{A} \sim \mathbf{BC}) + (\mathbf{AB} \sim \mathbf{C})$

Realizzazione di circuiti combinatori

Esercizio: (continua)

Realizzazione utilizzando porte AND e OR a due ingressi

Esercizio: (continua)

Realizzazione utilizzando porte NAND a tre ingressi

$$E = (\sim ABC) + (A\sim BC) + (AB\sim C) = [applico\ De\ Morgan]$$
$$\sim [\sim (\sim ABC) \bullet \sim (A\sim BC) \bullet \sim (AB\sim C)]$$

Realizzazione di circuiti combinatori

realizzare un circuito che fornisca in uscita il Esercizio: Dati quattro ingressi A, B, C, D segnale E definito come segue:

- il valore di E è indifferente se gli ingressi sono tutti 0 o tutti 1
 - E è 1 se gli ingressi contengono un numero dispari di 1
- E è 0 se gli ingressi contengono un numero pari di 1

Э	×	_		0		0	0	_		0	0	_	0		_	×
D	0	_	0	_	0	_	0	_	0	_	0	_	0	_	0	1
																1 1
В	0	0	0	0	\vdash	\vdash	\vdash	\vdash	0	0	0	0	\vdash	\vdash	_	_
A	0	0	0	0	0	0	0	0	\vdash	_	\vdash	\vdash	$\overline{}$	_	_	_

Tabella di verità

Realizzazione di circuiti combinatori

Esercizio: Minimizzare la funzione F dell'esercizio precedente espressa come prodotto di somme (PS)

$$F = (A+B+C) (A+B+C)$$

 $F = B \cdot A \cdot C$

invariate in ogni p-sottocubo. Le variabili sono negate sono quelle **p-sottocubi composti da zeri**. Per ottenere le varie somme (PS), in ogni somma devono apparire solo le variabili che rimangono valori uguali ad 1.

Realizzazione di circuiti combinatori

田	×	_	_	0	_	0	0	_	_	0	0	_	0	_	_	×
D	0	_	0		0		0		0	_	0		0		0	_
C	0	0	_	$\overline{}$	0	0	_	$\overline{}$	0	0	_	$\overline{}$	0	0	_	_
В	0	0	0	0	\vdash	$\overline{}$	\vdash	$\overline{}$	0	0	0	0	$\overline{}$	$\overline{}$	\vdash	_
A	0	0	0	0	0	0	0	0	\vdash	Η	\vdash	Η	\vdash	Η	_	_

X Ξ 5 8 10 11

Tabella di verità

Mappa di Karnaugh

Realizzare il circuito usando porte AND e OR a due soli ingressi

$E = \neg A \neg B \neg C + \neg A \neg C \neg D + \neg B \neg C \neg D + \neg A \neg B \neg D + B \neg C \rightarrow D + \neg A \neg B \neg D + B \cap D$ BCD + ABC + ABD + BCD

Sintesi di funzioni logiche: Algoritmo di Quine McCluskey

Considerare la funzione logica rappresentata dalla tabella di verità seguente:

0																	
								9 ^						> 12	> 13		
	田	0	0	0	0	0	_	_	1	_	_	0	0	.	_	<u>.</u>	0
	D	0		0	П	0	_	0	_	0		0	_	0	_	0	_
	C	0	0	$\overline{}$	_	0	0	_	_	0	0	$\overline{}$	$\overline{}$	0	0	_	_
	В	0	0	0	0	_	$\overline{}$	_	_	0	0	0	0	_	_	_	_
	A	0	0	0	0	0	0	0	0	T	_	T	\vdash	\vdash	$\overline{}$	$\overline{}$	_

Sintesi di funzioni logiche

Algoritmo di Quine McCluskey

- Le mappe di Karnaugh servono per la minimizzazione "a mano" delle funzioni (fini a 5 variabili)
- L'algoritmo di Quine McCluskey serve per sintetizzare funzioni logiche *minime* in maniera "automatica"

Sintesi di funzioni logiche: Algoritmo di Quine McCluskey

Prima fase: riportare le combinazioni che danno uscita "1" in tabella, suddividendole rispetto al PESO, cioè al numero di "1" presenti in ciascuna combinazione.

Algoritmo di Ouine McCluskey Sintesi di funzioni logiche:

Prima fase: Confrontare poi le configurazioni di una sezione con tutte le combinazioni della sezione successiva.

Nella nuova tabella, i bit differenti tra ogni coppia diventano DON'T CARE Individuiamo così eventuali coppie con distanza di Hamming uguale a 1

σ

U U 10

Algoritmo di Quine McCluskey Sintesi di funzioni logiche:

Applichiamo le mappe di Karnaugh.

Nell'equazione di sopra abbiamo quindi alcuni p-sottocubi ridondanti !!

Algoritmo di Ouine McCluskev Sintesi di funzioni logiche:

Prima fase: Iteriamo il procedimento sulle nuove tabelle, fino a quando non è più possibile individuare coppie di righe con distanza di Hamming uguale ad 1.

Algoritmo di Quine-McCluskey Sintesi di funzioni logiche:

Seconda fase: Costruzione della tabella di copertura

14					×	×
13 114	×		×			
12	X					×
<u>o</u>	(X					
ω	$\langle x \rangle$					
		×		X		
9				X	X	
5		×	×			
	A~C	~ABD	B~CD	~ABC	BC~D	AB~D

Le colonne 8 e 9 si possono "coprire" solo usando A~C, che quindi diventa un termine indispensabile

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

14						X	X
13		×		×			
9 12 13 14		×					×
<u>o</u>	9						
ω	4						
7			×		×		
2 9					×	×	
Ŋ			×	×			
	(J~Z	~ABD	B~CD	~ABC	BC~D	AB~D

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

		ı					
13 14						×	×
L3		U					
		P	_	^			
12	Ц	Ų					×
							-
<u>ი</u>		X					
ω •		Ų					
		Ц	×		×		
9					×	×	
2			×	×			
	(~ABD	B~CD	~ABC	BC~D	AB~D

14				×	×
_	X		X		
9			X	×	
Ŋ	×	×			
	~ABD	B~CD	~ABC	BC~D	AB~D

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

A~C copre le colonne 8 e 9, ma anche le colonne 12 e 13

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

					П	ı
14				×		
7	X		×			ſ
9			×	×		ſ
Ŋ	X	4				
	~ABD	תיי∽ק	~ABC	BC~D	ר ר	AB∼D

le righe relative a B \sim CD e AB \sim D sono dominate dalle righe relative a \sim ABD e BC \sim D, rispettivamente

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

13 14						×	×
m							
Н		×		X			
ΟI .	Ц						
12		×					×
<u>ი</u>	Ц						
<u></u>	Ц	\times					
_	Ц						
ω		×					
			X		X		
9					×	×	
Ŋ			X	×			
	(A~C)	~ABD	B~CD	~ABC	BC~D	AB~D

					. I
14				×	\bigcirc
	×		×		
9			×	×	
Ŋ	×	×			
	~ABD	B~CD	~ABC	BC~D	AB~D

14			×	
	×	×		
9		×	×	
Ŋ	×			
	~ABD	~ABC	BC~D	

Le colonne 5 e 14 si possono rispettivamente "coprire" solo usando "ABD" e BCD Quindi entrambi diventano termini indispensabili

Sintesi di funzioni logiche: Algoritmo di Quine-McCluskey

Seconda fase: costruzione della tabella di copertura

 $\mathbf{E} = \mathbf{A} \sim \mathbf{C} + \sim \mathbf{ABD} + \mathbf{BC} \sim \mathbf{D}$