FFT analysis

Brüel & Kjær Headquarter, Nærum **Denmark**

21 August 2007 WebEx

9:00 CET

14:00 CET

Brüel & Kjær 🆛 **Svend Gade**

To hear the sound:

Use headphones or loudspeakers connected to PC (sound via Voice over Internet Phone -VoIP). Listening only.

To join Internet Phone:

You will be prompted when the host has started the conference. Just click yes

To ask questions or make comments

Note: I have limited time for online answers. use the Chat window.

Copy of the slides will be available after a few days

Svend Gade

- M.Sc. In Acoustics, DTU 1973
- Brüel & Kjær since 1980
- Author of many articles & papers
- Application Specialist and Associate Professor at

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

Frequency Analysis Concept

Train time table

06:10 06:30 06:50 07:10 07:30 07:50

(How often?) **Frequency**

Three times per hour starting 10 minutes past the hour

Numeric Description of Amplitude Why Make a Frequency Analysis Amplitude /ibration **Physical World** മ .

Individual effects are mixed in time domain, while they are sound and vibration often separated in the frequency domain

Frequency

Sound

The Fourier Transform

$$G(f) = \int_{-\infty}^{+\infty} g(t) e^{-j2\pi ft} dt$$

$$\mathbf{g}(t) = \int_{-\infty}^{+\infty} \mathbf{G}(\mathbf{f}) \, \mathbf{e}^{\mathrm{j} 2 \pi f t} \mathrm{d} \mathbf{f}$$

FFT Time Limitation

Input signal

Analyzed signal

Rectangular or Uniform weighting

Hanning weighting

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- **Triggering**
- FFT Summary

Uncertainty Principle

For FFT analysis $T \cdot \Delta f = 1$

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

Discrete Fourier Transform

Discrete and periodic in both time and frequency domain

f_s is the sampling frequency T is record length and

N time samples convert into N frequency samples

Pitfalls in DFT

Frequency Time

Aliasing gives Sampling

Leakage gives Time limitation

gives Picket Fence Effect Freq. sampling

Leakage

"Picket Fence" Effect

Brüel & Kjær 🌬

FFT analysis WebEx, 14

How to Avoid the Pitfalls of DFT

1. Aliasing:

Solution:

- Use anti-aliasing filter (f_c) and Caused by sampling in time sampling rate ${
 m f_s}{
 m >}2~{
 m f_c}$
- Caused by time limitation 2. Leakage:
- Use correct weighting (signals) Solutions:
- Increase the frequency resolution (systems
- Caused by sampling in frequency 3. Picket fence effect:
- Use correct weighting (signals) Solutions:
- Increase the frequency resolution (systems

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

What is the Fast Fourier Transform

- An algorithm for increasing the speed of the computer calculation of the Discrete Fourier Transform.
- Reduces the number of multiplications from N² to (N/2)log₂N
- a factor of 372 for an 800 line FFT Computation speed increased by
- Block analysis of time data samples to provide equivalent frequency domain description
- Analysis with constant bandwidth filters
- "Rediscovered" in 1962 by Bell Lab scientists Cooley and Tukey

FFT Analyzer

Parameter Relations

 $\Delta f \times T = 1$ $T = N \times \Delta t$ $f_s = N \times \Delta f$

N = Number of samples
T = Record time
Δt = Sampling interval
f_s = Sampling frequency
Δf = Frequency resolution Frequency resolution

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

Real-time Analysis with FFT

Recording time:

Calculation time:

requirement $T \ge T_{calc.}$ Real-time

Recording time T ≥ Calculation time T_{calc.}

Memory 2 Memory 1

No data loss = processing real-time

Recording time T < Calculation time T_{calc.}

N N Data loss **FFT analysis** Memory 1 Memory 2

out of real-time Data loss = processing

Use of Real-time Analysis

Real-time Analysis is not necessary for:

- Stationary signals
- (if recording is in real-time) **Transients**

Real-time Analysis is necessary for:

- Non-stationary signals Examples:
- Fast run-up/coast-down tests
- Reverberation time measurements
- Vehicle by-pass noise
- Fly-over noise

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

FFT Lines and Use of Weighting Functions

Interpretation

- The FFT memory represents one period of a periodically repeated signal. A smooth weighting function eliminates discontinuities at the beginning and end of the record
- Frequency components in the signal are convolved by the filter characteristics of the weighting functions. The spectrum is sampled at multiples of Δf from 1 to N
- Each line represents the output of a filter/detector centred at the FFT lines. The Filter characteristics are given by the weighting function

Time Weightings

Rectangular Weighing

$$W(t) = 1 ; 0 \le t < T$$

Hanning Weighting

W(t) = 1-
$$\cos \frac{2\pi t}{T}$$
; $0 \le t \le T$
= $2\cos^2 \frac{\pi t}{T}$; $0 \le t \le T$

Rectangular Weighting in FFT

Use Rectangular weighting when analyzing transients

Hanning Weighting in FFT

Use Hanning weighting when analyzing continous signals

FFT Lines and Use of Weighting Functions

Interpretation

- The FFT memory represents one period of a periodically repeated signal. A smooth weighting function eliminates discontinuities at the beginning and end of the record
- Frequency components in the signal are convolved by the filter characteristics of the weighting functions. The spectrum is sampled at multiples of ∆f from 1 to N
- Each line represents the output of a filter/detector centred at the FFT lines. The Filter characteristics are given by the weighting function

Filter Characteristics

Four parameters:

- Centre frequency: f₀
- In band ripple
- Bandwidth: B₃ or B_{noise}
- Selectivity: Shape factor =

Weightings (1)

+ 10 △ + 10 ∆ + 5 ∆f + 5 ∆f f₀ 1.7/2 - 5 ∆f - 5 ∆f Kaiser-Bessel Weighting Flat Top Weighting - 80 \--- 10 ∆f - 80 - - - 10 ∆f ф ; - 20 -- 09 -. 09 -- 40 - 20 - 40 4.64 2.48 Weightings (2) 2 0 $\omega \alpha$

Weighting Function Summary

- Bandwidth, frequency accuracy
- Ripple, amplitude accuracy

Weighting	Noise Bandwidth	3 dB Bandwidth	First Zero	Ripple
Rectangular	1.0 Af	0.9 ∆f	1.0 Af	3.9 dB
Hanning	1.5 ∆f	1.4 ∆f	2.0 ∆f	1.4 dB
Kaiser-Bessel	1.8 ∆f	1.7 ∆f	3.1 ∆f	1.0 dB
Flat Top	3.8 ∆f	3.7 ∆f	5.0 ∆f	0.01 dB

Selectivity, two-tone separation

Weighting	Highest sidelobe	Sidelobe fall-off rate per decade	60 dB Bandwidth	Shape Factor
Rectangular	- 13 dB	20 dB	JV 599	750
Hanning	- 31 dB	60 dB	13.3 ∆f	9.2
Kaiser-Bessel	- 68 dB	20 dB	6.1 ∆f	3.6
Flat Top	- 93 dB	0 dB	9.1 ∆f	2.5

Weighting Functions for Transients

Transient weighting for short transients

Record length, T

shift length

Use of Weighting Functions in Signal Analysis

			Weighting	nting		
	Rect- angular	Hanning	Transient	Expo- nential	Kaiser- Bessel	Flat Top
Transients:						
 General purpose 	7					
Short transient			>			
 Long decaying transients 				>		
 Very long transients 		+ overlap				
Continuous signals:						
 General purpose, RTA 		>				
 Two-tone separation 					/	
Calibration						1
 Pseudo random 						

Use of Weighting Functions in System Analysis

		Weighting	
Excitation	Rectangular	Hanning	Transient and Exponential
Impact			>
Burst random			>
 Random impact 		>	
• Random		>	
Pseudo random	>		

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

Overlap Analysis with Hanning Weighting (1)

No overlap

66²/₃% overlap

Time

Overlap Analysis with Hanning Weighting (2)

 $(1 - \cos x)^2 = 1 - 2\cos x + \cos^2 x$

No overlap

 $1/3 \left[(1 - \cos x)^2 + (1 - \cos(x - \frac{2\pi}{3}))^2 \right]$

66²/₃% overlap

+ $(1 - \cos(x - \frac{4\pi}{3}))^2] = 1.5$

V(t)

Time

Time

50% overlap

 $1/2 [(1 - \cos x)^2 = (1 + \cos x)^2] 1 = \cos^2 x$

+ $(1 -\cos(x + \sin x)^2] = 1.5$

1/4 [$(1 - \cos x)^2 + (1 - \sin x)^2 + \cos x)^2$

75% overlap

Time

Application of Overlap Analysis

- Overlap analysis is necessary in order to avoid loss of data when using other weightings than Rectangular
- Analysis with a certain accuracy of a random signal is faster with Hanning weighting and 50 % overlap than with Rectangular weighting
- Equal weighting of all time data is obtained with Hanning weighting and overlap of:
- $-2/3 (66^2/3 \%)$
- -3/4 (75 %)
- -4/5 (80 %)

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

Signal Types and Spectrum Units

Correct use of Units Periodic Signal Determistic,

Time

Time Adhaladhaladha

Power **PWR**

Frequency

≯Fre

Power Spectral Density

PSD

Random Signal

U²/Hz U²s/Hz 4 Time

Transient

* Fre

Energy Spectral Density

ESD

FFT analysis WebEx, 41

Fre

∞ <u>↓</u> <u>†</u>

Brüel & Kjær

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

Triggering — What is it used for?

to select the part of the signal to be analysed

Trigger point

- Types of triggers: Free Run
- Signal trigger
- Generator trigger
- External trigger
- Manual trigger

Signal Trigger

- No delay
- Negative delay, τ₁
- Positive delay, τ_2

For analysis of single events

Applications:

For positioning the signal with respect to the time record.

FFT Analysis

- Introduction
- Fourier Uncertainty Principle
- Discrete Fourier Transform, DFT
- Fast Fourier Transform, FFT
- Real-time Analysis
- Time Weighting
- Overlap Analysis
- Signal Types and Spectrum Units
- Triggering
- FFT Summary

FFT - Summary

The Discrete Fourier Transform:

- The DFT has properties very similar to the integral Fourier Transform
- The DFT has certain pitfalls: aliasing, leakage and picket fence effect
- Recording time, sampling interval, sampling frequency, frequency span and frequency resolution are all related

Weighting functions, leakage and picket fence effect:

- Many different weightings exist for different purposes
- Use of the proper weighting can reduce leakage and picket fence effect errors
- Weightings can be regarded as filters

Real-time Analysis, Overlap Analysis and Triggering:

- Condition for real-time analysis: T ≥ T_{calc.}
- Other weightings than rectangular may require overlap analysis to avoid loss of data or to get a flat overall weighting function
- Many different trigger functions exist for different purposes

Lecture material

A link to a copy of the presentation will be sent to all participants by email within a few days

Want to know more?

Brüel & Kjær Courses and Seminars

- Integrated Noise Model: 30 Oct. 1 Nov. 07 2 days
- **Objectives** To give an introduction to producing Noise Contours based on flight tracks for Airport Noise Monitoring
- Advanced Acoustics: 5 6 Nov. 07 2 days
- Objectives To give an in-depth description of sound intensity measurements, calibration and its applications
- Electroacoustic Measurements: 27 28 Nov. 07 2 days
- electroacoustic devices such as receivers, loudspeakers etc. Objectives This course gives an overview of how to test

http://www.bksv.com/courses

