

- (5 Points) Print your name and lab time in legible, block lettering above.
- This quiz should take up to 20 minutes to complete. You will be given at least 20 minutes, up to a maximum of 30 minutes, to work on the quiz.
- This quiz is closed book. Collaboration is not permitted. You may not use or access, or cause to be used or accessed, any reference in print or electronic form at any time during the quiz. Computing, communication, and other electronic devices (except dedicated timekeepers) must be turned off. Noncompliance with these or other instructions from the teaching staff—including, for example, commencing work prematurely or continuing beyond the announced stop time—is a serious violation of the Code of Student Conduct.
- We will provide you with scratch paper. Do not use your own.
- The quiz printout consists of pages numbered 1 through 3. When you are prompted by the teaching staff to begin work, verify that your copy of the quiz is free of printing anomalies and contains all of the three numbered pages. If you find a defect in your copy, notify the staff immediately.
- Please write neatly and legibly, because if we can't read it, we can't grade it.
- For each problem, limit your work to the space provided specifically for that problem. No other work will be considered in grading your quiz. No exceptions.
- Unless explicitly waived by the specific wording of a problem, you must explain your responses (and reasoning) succinctly, but clearly and convincingly.

Problem Points Your Score

• We hope you do a fantastic job on this quiz.

1 TODIETTI	I Ollits	Tour Score	
Name	5	5	
1(a)	15	15	
1(b)(i)	10	10	sport
1(b)(ii)	10	Jer	8 Regrade! O Struter
1(b)(iii)	15	15	the "
Total	55	50	(2) hor vec)
	-1		53 (5 not perfect)

(a) (15 Points) Determine a reasonably simple expression for, and provide a welllabeled plot of, the system's impulse response q.

Consider a causal, BIBO stable system I whose frequency response is $F(\omega) = \frac{1}{1-\alpha e^{-i\omega}}$. The corresponding impulse response is $f(h) = \alpha u(h)$. Rewriting $G(\omega) = \frac{1}{1-\alpha e^{-i\omega}}$ we note that g(n) = f(n) - f(n-1) $\frac{g(n) = \alpha^{n-1} [\alpha u(n) - u(n-1)]}{(1) - \alpha^{n-1} [\alpha u(n) - u(n-1)]}$

(b) (35 Points) Define another discrete-time LTI system H whose impulse response \mathcal{R} h is related to g according to $h(n) = \cos(\omega_0 n) g(n)$ for all integer n. Assume ω_0 is positive and not in a small neighborhood of the zero frequency.

(i) (10 Points) Show that the frequency response of the system H is given by

$$h(n) = \cos((\omega_{o}n)) f(n) = \frac{1}{2} e^{i\omega_{o}n} f(n) + \frac{1}{2} e^{-i\omega_{o}n} f(n)$$

$$H(\omega) = \frac{1}{2} \sum_{n} f(n) e^{-i(\omega_{o}-\omega_{o})n} + \frac{1}{2} \sum_{n} f(n) e^{-i(\omega_{o}+\omega_{o})n}$$

$$H(\omega) = \frac{1}{2} \sum_{n} f(n) e^{-i(\omega_{o}-\omega_{o})n} + \frac{1}{2} \sum_{n} f(n) e^{-i(\omega_{o}+\omega_{o})n}$$

$$H(\omega) = \frac{1}{2} \sum_{n} f(n) e^{-i(\omega_{o}-\omega_{o})n}$$

$$H(\omega) = \frac{1}{2} \sum_{n} f(n) e^{-i(\omega_{o}-\omega_{o})n}$$

