

https://www.space.com/perseverance-rover-mars-2020-mission

Google Maps Getting Users' Locations All Wrong, Showing Them in Another Country

Home > News > Technology

11 Oct 2020, 7:42 UTC · by Bogdan Popa

When it works, Google Maps is a super-advanced tool, especially when it comes to navigation, both on the head unit in a car and on the phone.

Autonomous Driving Software Engineering

Prof. Dr.-Ing. Markus Lienkamp

Phillip Karle, M. Sc.

Lecture Overview

Lecture – 90min	Practice – 45min
1 Introduction: Autonomous Driving Karle	1 Practice Karle
2 Perception I: Localization & Mapping I Sauerbeck	2 Practice Sauerbeck
3 Perception II: Localization & Mapping II Sauerbeck	3 Practice Sauerbeck
4 Perception III: Detection Huch	4 Practice Huch
5 Prediction Karle	5 Practice Karle
6 Planning I: Global Planning Trauth	6 Practice Trauth
7 Planning II: Local Planning Ögretmen	7 Practice Ögretmen
8 Control 15.06.2021 – Wischnewski	8 Practice Wischnewski
9 Safety Assessment Stahl	9 Practice Stahl
10 Teleoperated Driving Feiler	10 Practice Feiler
11 End-to-End Betz	11 Practice Betz
12 From Driver to Passenger Fank	12 Practice Karle

Objectives for Lecture 3: Mapping & Localization II

After the lecture you are able to...

- ... know why which sensors are used for localization, analyze upsides and downsides and how to combine them
- ... remember different approaches of SLAM on mathematical level
- ... remember the different approaches of SLAM on sensor level (LiDAR/camera/radar)
- ... utilize existing SLAM tools and know how to set them up
- ... understand the basic SLAM problem and analyze an exemplary
- ... remember the different solutions to SLAM problem and how they are approached
- ... understand the need and concepts of sensor fusion for SLAM

Depth of understanding

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. SLAM Paradigms
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

Previously ...

Previously ...

Mapping and localization are crucial for autonomous driving

Sensor measurements must be handled and combined as gaussian distributions

Bayesian filters give us tools to do this

Different map representations for different algorithms and applications

... Today

... Today

How can we use environmental information for localization and mapping?

What was there first: The pose or the map?

How do different algorithms tackle the localization and mapping problem?

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. SLAM Paradigms
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

SLAM is a chicken-or-egg-problem

- → The position is needed for map generation
- → A map is needed for estimating the position

Simultaneous Localization And Mapping

The SLAM problem – From GNSS to SLAM

Definition:

Feature

A clear-cut attribute in the data (camera or LiDAR) that can be extracted by algorithms

Landmark

Points from the environment that are recognized in different frames

Feature

VS

Landmark

Given:

Ego controls $U_T = \{u_1, u_2, u_3, \dots, u_T\}$

accelerator pedal position, steering wheel angle, etc.

Measurements $Z_T = \{z_1, z_2, z_3, ..., z_T\}$

IMU, GNSS, Camera, LiDAR, etc.

Wanted:

Path $X_T = \{x_1, x_2, x_3, ..., x_T\}$

Map $M_T = \{m_1, m_2, m_3, ..., m_T\}$

Given:

Ego controls $U_T = \{u_1, u_2, u_3, \dots, u_T\}$

Measurements $Z_T = \{z_1, z_2, z_3, ..., z_T\}$

Wanted:

Path $X_T = \{x_1, x_2, x_3, ..., x_T\}$

Bayesian Filter

Map $M_T = \{m_1, m_2, m_3, ..., m_T\}$

Ego

Environment

Motion control inputs

Sensor inputs

Environment

$$p(x_{1:t}, m \mid z_{1:t}, u_{1:t})$$

Two versions of the SLAM problem

Online SLAM:

Seeking the current pose of the robot

Offline SLAM:

Seeking the whole path of the robot

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. SLAM Paradigms
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

SLAM problem can be seen as two separate problems:

How to get the relation between ego and environment?

→ Front-End

How to combine all those relations to a single path and map?

→ Back-End

The SLAM algorithm

Exact definitions of front- and back-end depend on algorithm

The SLAM algorithm

Distinctions of SLAM

Online – Offline

Volumetric - Feature-Based

Topological – Metric

Static - Dynamic

Active - Passive

Single-Robot – Multi-Robot

Any-Time – Any-Space

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. **SLAM Paradigms**
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

The SLAM algorithm

Three Main SLAM Paradigms

EKF

Particle

Graphbased

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. **SLAM Paradigms**
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

Introduced in the 80s

Widespread use until today

Limited computational resources

Remember Extended Kalman Filter from previous lecture

Assumption: Known correspondence between environmental perception and ego-vehicle (features)

Robot estimate represented by a multivariate Gaussian:

$$p(x_t, m | z_t, u_t) = N(\mu_t, \Sigma_t)$$
 mean covariance

EKF Filter Cycle:

 Σ is the covariance matrix.

On the main diagonal are the variances (uncertainty of the state and uncertainty of the map).

The rest of the matrix represents the covariances.

Motion function and measurement function are Taylor-linearized

Motion function and measurement function are Taylor-linearized

Uncertainties of landmark- and ego-positions are growing over time

When already used landmarks are re-perceived all uncertainties collapse → Loop closure

If data association is unknown (as usual) a probability-based data association has to be applied

Example

Assumptions:

- Moving robot through virtual environment
- Known data association
- All landmarks are fully perceivable (distance + angle)

Landmark covariance

Landmark covariance

Landmark covariance

If the map, represented by the sum of all landmarks, is known and we want to use the EKF for localization, the uncertainties won't grow over time as long as we still perceive landmarks.

This is because we always have detected landmarks as global reference. When we have to estimate both, path and map, the uncertainties grow as we are missing this reference.

Problem

Uncertainties keep increasing

Pose estimate drifts away

Solution

"Global" reference is needed

Maps
GNSS
Loop closure

https://towardsdatascience.com/how-tracking-apps-analyse-your-gps-data-a-hands-on-tutorial-in-python-756d4db6715d

If we want to drive autonomously and have a high level navigation, we don't care too much about the global drift and uncertainty.

More important is the local localization within the perceivable environment. Relative uncertainties to the direct surroundings don't grow as we are steadily detecting the environment with the same sensors and thus uncertainties.

Landmark covariance

Landmark covariance

Pros and Cons

- + Easy applicable
- + Well known method
- + Computationally cheap for small maps

- Only applicable for small non-linearities
- Highly dependent on parametrization
- Computationally unworkable for big maps (Covariance scales quadratic)

Other methods of applying Kalman Filters for nonlinear problems:

- Unscented (UKF)
- Extended Information (EIF)

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. **SLAM Paradigms**
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

Motivation

Motivation

What if sensors can't be assumed Gaussian?

Each posterior represented by a set of particles

Each particle can be seen as a single guess of the robot state

Many particles needed, scale exponentially with dimensions

→ only applicable for **low dimensions**

Making it applicable: Rao-Blackwellization

→ fastSLAM

For any point in time, fastSLAM has K particles with path $x_t^{[k]}$ and N Gaussians with mean $\mu_t^{[n]}$ and variance $\Sigma_t^{[n]}$ (one for each landmark)

Each posterior represented by a set of particles

Each particle can be seen as a single guess of the robot state

Many particles needed, scale exponentially with dimensions

→ only applicable for **low dimensions**

For any point in time, Particle filter SLAM has K particles with path $x_t^{[k]}$ and N Gaussians with mean $\mu_t^{[n]}$ and variance $\Sigma_t^{[n]}$ (one for each landmark)

In theory, we could also model the uncertainty distribution of the landmarks as particles.

In practice this won't be possible as we would have to model K state particles and for each of this particle N landmark particles.

Basic Algorithm

- 1. Sample particle set based on proposal distribution
- 2. Compute the importance weight of single particles
- 3. Resample particles based on calculated weights

Short insight into Rao-Blackwellization

Path is assumed known by predictions

Factorization to exploit dependencies between variables:

$$p(a,b) = p(b|a)p(a)$$

poses map observations movements
$$p(x_{0:t}, l_{1:M} \mid z_{1:t}, u_{1:t}) = p(x_{0:t} \mid z_{1:t}, u_{1:t}) \ p(l_{1:M} \mid x_{0:t}, z_{1:t})$$
 path posterior map posterior

If you are interested in the details of the Rao-Blackwellization the Uni Freiburg Courses give you a good starting point:

motion

landmark in map

ego

sensed landmark

fastSLAM algorithm

	weight 0.8	
	weight 0.4	**
motion prediction	weight 0.2	map update 3- 63
•	motion prediction	weight 0.4 weight 0.2

fastSLAM algorithm

sensed landmark

Motion prediction

Ego motion predicted through controls and motion model

Different particles have different predictions

fastSLAM algorithm

sensed landmark

Landmark prediction

Based on updated position, measurements are predicted

motion prediction

fastSLAM algorithm

sensed landmark

Sensor update

New sensor measurements

motion prediction

fastSLAM algorithm

sensed landmark

Sensor update

Comparison of predicted and actual measurements

→ Weighting particles

motion prediction

fastSLAM algorithm

ego

motion

sensed landmark

motion prediction

sensor update

map update

Data Association

Which observation senses which landmark in the map?

Per-particle approach:

- Association for each particle and landmark
- Based on probability
- Same observations can be differently associated for different particles

Robot

Equally distributed

Odometry

Particle Filter SLAM - Pros and Cons

- + Non-Gaussian distributions can be modelled
- + Well scaling (1 million+ features)
- + Robust
- + Handling of nonlinearities

- Determination of optimal particle size
- Particle deprivation
- Only applicable for low dimensional spaces

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. **SLAM Paradigms**
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

What is a graph?

A model to represent objects (nodes) and relationships between them (edges)

Social graph

https://www.linkedin.com/pulse/build-social-network-javascript-graphs-fabian-hinsenkamp/

Google knowledge graph

https://searchengineland.com/leveraging-wikidata-gain-google-knowledge-graph-result-219706

3-82

Exemplary Graph

Nodes can be landmarks or ego poses

Exemplary Graph

Nodes can be landmarks or ego poses

Nodes can be landmarks or ego poses

Nodes can be landmarks or ego poses

Algorithm

Poses over time connected through constraints

Constraints are inherently uncertain

Observations of previous areas also generate constraints

Node: pose of the ego and sensed landmarks during mapping

Edge: spatial constraint between nodes

Graph-Based SLAM: Build graph that minimizes errors by constraints

Algorithm

front-end

back-end

Exemplary Graph

Problem:

Graph might become huge

Calculation times

Compute resources

→ Hierarchical approach!

https://www.researchgate.net/publication/221216146_Independent_Local_Mapping_for_Large-Scale_SLAM/figures?lo=1

Hierarchical approach

To limit computation time for optimization and loop-closure search submaps are used

Submaps combine to one global map

Optimization takes place on two levels:

- Optimization within submap
- Optimization of submaps to one global map

Toolboxes

Open source toolboxes for graph optimization can be used to build a SLAM system on.

C++

g2o: https://github.com/RainerKuemmerle/g2o

Ceres Solver: http://ceres-solver.org/

Python

g2opy: https://github.com/uoip/g2opy (Python binding of g2o)

Matlab

OptimizePoseGraph:

https://de.mathworks.com/help/nav/ref/optimizeposegraph.html

Pros and Cons

- + Scale to much higher dimensions than EKF and PF
- + Update time stays constant
- + Possibilities to change optimization algorithm

- Optimization can be computationally expensive
- High development effort

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. SLAM Paradigms
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

How to construct constraints from raw sensor data?

SLAM usually applied on LiDAR or camera data

LiDAR: one Layer (only 2D SLAM) or more layers (2D or 3D SLAM)

Camera: Mono-camera, stereo-camera, RGBD → No direct depth information

What is a frame?

As frame we describe one single recording of a LiDAR (point cloud) or camera (image).

The data stream consists of frames coming at a specific recording frequency.

LiDAR: Scan Matching

Incrementally align scans to a map or to previous scans

Different ways to realize: ICP, scan-to-scan, scan-to-map, feature-based, ...

LiDAR: Scan Matching

https://www.researchgate.net/profile/Riadh-

Dhaoui/post/How_to_use_Normal_Distribution_Transformation_based_scan_matching_to_calculate_Pose_err or_of_robot/attachment/5ed63f3298366a0001aa836b/AS%3A897949219434497%401591099185983/image/s can-matching.PNG

2D LIDAR SLAM

2D LiDAR sensors mainly used for mobile robotics on smaller scale

Not sufficient for autonomous vehicles in public areas

SLAM usually based on free / occupied space

Metric occupancy grid maps

Front-Ends: 2D-LiDAR SLAM (Cartographer)

3D LIDAR SLAM

LiDAR sensors output direct depth information

Currently very expensive and mechanically susceptible

Limited frequencies <= 20 Hz

Low resolution compared to cameras

Detection of edges / faces

Struggling in low-feature-environments

Distortion through scan pattern

3D LIDAR SLAM

LiDAR SLAM – Open Challenges

Visual SLAM

Cameras are way cheaper than LiDAR sensors

Depth information has to be calculated / estimated

Direct: Matching of raw camera frames to estimate ego motion

→ Photometric error optimized

Indirect: Extraction of features to apply SLAM

→ **Geometric** error optimized

Stereo cameras

Stereo cameras are cameras with two lenses in fixed positions.

When both record the same scene (big overlap of the images), the depth can be calculated via triangulation.

If you are interested in the working principle, check out these slides to get an overvies:

http://www.cs.toronto.edu/~fidler/slides/2015/CSC420/lecture12_hres.pdf

Visual SLAM: Feature extraction

State of the art: corner detection, SIFT, SURF, BRIEF, ORB

New approaches: Machine learning based

https://github.com/magicleap/SuperGluePretrainedNetwork

Visual SLAM: Feature extraction

SIFT, SURF, BRIEF, ORB are techniqes for keypoint extraction and matching.

Keypoints are striking features in camera images. Those can be matched between frames. This gives us information about how the camera position and angle changes.

This is the basic idea of the direct visual SLAM.

Indirect Visual SLAM

Indirect Visual SLAM

Indirect Visual SLAM

Indirect Visual SLAM

Keyframes

When the features to be matched are too close to each other, uncertainties become quite big.

To avoid this, frames are skipped until the uncertainty drops blow a certain threshold. Those selected frames are called **keyframes**.

The rules, when keyframes are added can be used for parametrization of the algorithm.

Bundle Adjustmen

Bundle adjustment is the problem of simultaneously estimating the 3D coordinates of detected features, the ego motion and the optical characteristics of the camera.

Visual SLAM – Indirect SLAM

Indirect Method: Pros and Cons

- + Wide baseline matching
- + Better illumination invariance
- + Transition from image data to geometry

- Sparse map created
- Depending on edges
- Needs high resolution

Direct Visual SLAM

No use of geometric features

Camera model to determine photometric error

Minimization of photometric error

Large-Scale Direct SLAM with Stereo Cameras (J. Engel, J. Stueckler and D. Cremers), *In International Conference on Intelligent Robots and Systems (IROS)*, 2015

Visual SLAM – Direct SLAM

Direct Method: Pros and Cons

- + Denser maps
- + Applicable for lower resolution
- + Distortion resistant
- + Includes all available data

- Heavily dependent on illumination
- High frequency camera
- Precise camera model necessary

Visual SLAM – Open challenges

https://www.youtube.com/watch?v=yi5sVTewmXc

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. SLAM Paradigms
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

LIDAR SLAM

Name	Year	2D / 3D	ROS interface	Language	Link
Hector	2011	2D	ROS1	C++	http://wiki.ros.or g/hector_slam
Gmapping	2017	2D	ROS1	C++	http://wiki.ros.or g/gmapping
Cartographer	2016	2D / 3D	ROS1 (ROS2 under development)	C++	https://google- cartographer- ros.readthedocs.i o/en/latest/
Hdl_graph_slam	2019	3D	ROS1	C++	https://github.co m/koide3/hdl_gra ph_slam
PyICP-SLAM	2018	3D	/	Python	https://github.co m/gisbi- kim/PyICP-SLAM
LeGO-LOAM	2018	3D	ROS1	C++	https://github.co m/RobustFieldAu tonomyLab/LeG O-LOAM
Lidarslam_ros2	2020	3D	ROS2	C++	https://github.co m/rsasaki0109/li darslam_ros2

Visual SLAM

Name	Year	Direct/indirect	Camera	Loop Closure	IMU	Link	
LSD	2014	Direct	Mono	√		https://vision.in.tum.de/rese arch/vslam/lsdslam	
SVO	2014	Semi-direct	Mono			https://github.com/uzh- rpg/rpg_svo	
ORB SLAM 3	2020	Indirect	Mono, stereo, RGBD	√	√	https://github.com/UZ- SLAMLab/ORB_SLAM3	
DSO	2016	Direct	Mono			https://vision.in.tum.de/rese arch/vslam/dso	
LDSO	2018	Direct	Mono	√		https://vision.in.tum.de/rese arch/vslam/ldso	
OpenVSLAM	2019	Indirect	Mono, stereo, RGBD	√		https://github.com/xdspacel ab/openvslam	
Basalt	2020	Indirect	Stereo	✓	√	https://vision.in.tum.de/rese arch/vslam/basalt	

Visual SLAM

Name	Jahr	Open Source)	direkt/indirekt	Kameratyp	Multi-Kamera	IMU	Loop Closure	Relokalisierung
PTAM [9]	2007	\checkmark	indirekt	Mono			√	\checkmark
LSD-SLAM [5]	2014	\checkmark	direkt	Mono			\checkmark	
SVO [6]	2014	\checkmark	semi-direkt	Mono				
ORB-SLAM [12]	2015	\checkmark	indirekt	Mono			\checkmark	\checkmark
ORB-SLAM2 [13]	2016	\checkmark	indirekt	Mono, stereo, RGBD			\checkmark	\checkmark
DSO [4]	2016	\checkmark	direkt	Mono				
SVO 2.0 [7]	2017		semi-direkt	Mono, stereo, RGBD	\checkmark	\checkmark	\checkmark	\checkmark
LDSO [8]	2018	\checkmark	direkt	Mono			\checkmark	
VINS-Mono [15]	2018	\checkmark	direkt	Mono		\checkmark	\checkmark	\checkmark
OpenVSLAM [18]	2019	\checkmark	indirekt	Mono, stereo, RGBD			\checkmark	\checkmark
ORB-SLAM3 [2]	2020	\checkmark	indirekt	Mono, stereo, RGBD		\checkmark	\checkmark	\checkmark
Basalt [23]	2020	√	indirekt	stereo		\checkmark	√	

Current Research

Dynamic SLAM [Deeb2019], [Fan2018], [Henein2020], [Saputra2018], [Jian2019]

Semantic SLAM [Yang2019], [Bowman2017]

Multi-Robot-SLAM [Nam2017], [Dubé2017]

Combined Camera-LiDAR-SLAM [Shin2018], [Chen2017], [Jian2019]

Mapping & Localization II Prof. Dr. Markus Lienkamp

Florian Sauerbeck, M. Sc.

Agenda

- 1. Previously ...
- 2. The SLAM Problem
- 3. The SLAM Algorithm
- 4. SLAM Paradigms
 - 1. EKF SLAM
 - 2. Particle Filter SLAM
 - 3. Graph-Based SLAM
- 5. Front-Ends
- 6. Overview of existing solutions
- 7. Summary

EKF

Particle

Graphbased

front-end

back-end

SLAM: A chicken-and-egg-problem

Combination of information about ego vehicle and environmental perceptions

Three main paradigms: **EKF-SLAM**, **Particle-Filter SLAM** and **Graph-based SLAM**

EKF-SLAM: based on extended Kalman-Filter → Gaussian distribution

Particle-Filter SLAM:

- Estimation of path of each particle
- Probability based resampling of particles

Graph-based SLAM

- Nodes: Poses of ego vehicle and landmarks
- Edges: Constraints through odometry and perceptions

"The application defines the filter"

Different front-ends

LiDAR SLAM: 2D and 3D

Visual SLAM: direct and indirect

Research still going on in many fields