Assignment #3— Due Friday, 12 Nov.

*This homework covers Chapter 5 (*Problem* 1-3) and Chapter 6 (*Problem* 3-4). Submit your homework on Canvas or send it to our TA, Mr. LYU Zhongyuan (zlyuab@connect.ust.hk).

*No late homework will be accepted for credit.

*Append the R codes you used to your submission. If the problem does not need R or is not explicitly stated to complete in R, then you should just do it by hand with a calculator.

*In case of rounding error, keep 3 figures after the decimal point.

Problem 1 The following table shows a regression output obtained from fitting the model $Y = \beta_0 + \beta_1 X + \varepsilon$ to a set of data consisting of n workers in a given company, where Y is the weekly wages in \$100 and X is the gender. The Gender variable is coded as 1 for Males and 0 for Females.

Regression Output from the Regression of the Weekly Wages, Y, on X (Gender: 1 = Male, 0 = Female)

ANOVA Table							
Source	Sum of Squares	df	Mean Square	F-Test			
Regression	98.8313	1	98.8313	14			
Residual	1 338.449		7.05101				
	Coef	ficients Table					
Variable	Coefficient	s.e.	t-Test	<i>p</i> -value			
Constant	15.58	0.54	28.8	< 0.0001			
X	-2.81	-2.81 0.75		0.0005			

- (a) How many workers are there in this data set?
- (b) Compute the sample variance of Y?
- (c) Given that $\bar{X} = 0.52$, what is \bar{Y} ?
- (d) Given that $\bar{X} = 0.52$, how many women are there in this data set?
- (e) What percentage of the variability in Y can be accounted for by X?
- (f) Compute the correlation coefficient between Y and X?
- (g) What is your interpretation of the estimated coefficient $\hat{\beta}_1$?
- (h) What is the estimated weekly wages of a man chosen at random from the workers in the company?
- (i) What is the estimated weekly wages of a woman chosen at random from the workers in the company?
- (j) Construct a 95% confidence interval for β_1 .
- (k) Test the hypothesis that the average weekly wages of men is equal to that of the women. [Specify (a) the null and alternative hypotheses, (b) the test statistic, (c) the critical value, and (d) your conclusion.]

Problem 2 (Use R) Presidential Election Data (1916-1996): The data in the following table, stored in the file *Presidential_Eelection_Data.txt*, were kindly provided by Professor Ray Fair of Yale University, who has found that the proportion of votes obtained by a presidential candidate in a U.S.A. presidential election can be predicted accurately by three macroeconomic variables, incumbency, and a variable which indicated whether the election was held during or just after a war. The variables considered are given in Table 5.20. All growth rates are annual rates in percentage points. Consider fitting the following initial model to the data:

$$V = \beta_0 + \beta_1 I + \beta_2 D + \beta_3 W + \beta_4 (G \cdot I) + \beta_5 P + \beta_6 N + \varepsilon$$

		Presidential Election Data (1916–1996)						
Year	V	I	D	W	G	P	Λ	
1916	0.5168	1	1	0	2.229	4.252	3	
1920	0.3612	1	0	1	-11.463	16.535	5	
1924	0.4176	-1	-1	0	-3.872	5.161	10	
1928	0.4118	-1	0	0	4.623	0.183	7	
1932	0.5916	-1	-1	0	-14.901	7.069	4	
1936	0.6246	1	1	0	11.921	2.362	9	
1940	0.5500	1	1	0	3.708	0.028		
1944	0.5377	1	1	1	4.119	5.678	14	
1948	0.5237	1	1	1	1.849	8.722	:	
1952	0.4460	1	0	0	0.627	2.288	(
1956	0.4224	-1	-1	0	-1.527	1.936	:	
1960	0.5009	-1	0	0	0.114	1.932	:	
1964	0.6134	1	1	0	5.054	1.247	10	
1968	0.4960	1	0	0	4.836	3.215	7	
1972	0.3821	-1	-1	0	6.278	4.766	4	
1976	0.5105	-1	0	0	3.663	7.657	4	
1980	0.4470	1	1	0	-3.789	8.093		
1984	0.4083	-1	-1	0	5.387	5.403	7	
1988	0.4610	-1	0	0	2.068	3.272	(
1992	0.5345	-1	-1	0	2.293	3.692		
1996	0.5474	1	1	0	2.918	2.268		

Variable	Definition				
YEAR	Election year				
V	Democratic share of the two-party presidential vote				
I	Indicator variable (1 if there is a Democratic incumbent at the time of the election and -1 if there is a Republican incumbent)				
D	Categorical variable (1 if a Democratic incumbent is running for election, -1 if a Republican incumbent is running for election, and 0 otherwise)				
W	Indicator variable (1 for the elections of 1920, 1944, and 1948, and 0 otherwise)				
G	Growth rate of real per capita GDP in the first three quarters of the election year				
P	Absolute value of the growth rate of the GDP deflator in the first 15 quarters of the administration				
N	Number of quarters in the first 15 quarters of the administration in which the growth rate of real per capita GDP is greater than 3.2%				

- (a) Write the regression model corresponding to each of three possible values of D and interpret the regression coefficient of D (β_2).
- (b) Do we need to keep the variable I in the above model?

- (c) Do we need to keep the interaction variable $(G \cdot I)$ in the above model?
- (d) Examine different models to produce the model or models that might be expected to perform best in predicting future presidential elections. Include interaction terms if needed.

Problem 3 (Use R) Refer to the *Presidential Election Data* in Problem 2, where the D is a categorical variable with three categories. Now, if we replace D by two indicator variables such as

 $D_1 = 1$ if D = 1 (Democratic incumbent is running) and 0 otherwise, and

 $D_2 = 1$ if D = -1 (Republican incumbent is running) and 0 otherwise

Then an alternative to the model in Problem 2 is

$$V = \beta_0 + \beta_1 I + \alpha_1 D_1 + \alpha_2 D_2 + \beta_3 W + \beta_4 (G \cdot I) + \beta_5 P + \beta_6 N + \varepsilon$$

- (a) Write the regression model corresponding to each of the three possible values of D in the above model and interpret the regression coefficient of D_1 and D_2 .
- (b) Show the model in Problem 2 can be obtained as a special case of the model in Problem 3 by assuming that $\alpha_1 = -\alpha_2$.
- (c) Do the Presidential_Election_Data.txt support the assumption that $\alpha_1 = -\alpha_2$?

Problem 4 Two variables, Y and X, are believed to be strongly nonlinearly related. A power transformation Y^{λ} was thought to make the relationship between Y^{λ} and X linear for some value of λ . The following table gives the value of the correlation coefficient between Y^{λ} and X for some values of λ .

Correlation Coefficient Between Y^{λ} and X for Some Values of λ							
λ	1	0.5	0.001	-0.001	-0.5	-1	-2
Correlation	-0.777	-0.852	-0.930	0.930	0.985	0.999	0.943

- (a) What is the correlation coefficient between Y and X? Explain.
- (b) Observing the trend in the above table, what is the best (and easy to explain for interpret) value of λ ? Explain.
- (c) Using your choice of λ in (b), write the equation that related Y to X.

Problem 5 (Use R) Refer to the *Presidential Election Data* in Problem 2, where the response variable V is the proportion of votes obtained by a presidential candidate in the United States. Since the response is in a proportion, it has a value between 0 and 1. The transformation $Y = \log[V/(1-V)]$ takes the variable V with values between 0 and 1 to a variable Y with values between $-\infty$ to $+\infty$. It is therefore more reasonable to expect that Y satisfies the normality assumption than does V. Consider then fitting the model in Problem 2 but replacing V by Y.

- (a) For each of the two models ($V \sim$. and $Y \sim$. using the model in Problem 2), examine the appropriate residual plots discussed in Chapter 4 to determine which model satisfies the standard assumptions more than the other, the original variable V or the transformed variable Y.
- (b) What does the fitted model above imply about the form of the model relating the original variables V in terms of the predictor variables? That is, find the form of the function

$$V = f(\beta_0 + \beta_1 I + \beta_2 D + \beta_3 W + \beta_4 (G \cdot I) + \beta_5 P + \beta_6 N + \varepsilon)$$

[Hint: This is a nonlinear function referred to as the logistic function, which is discussed in Chapter 9.]

Problem 6 (Use R) Repeat Problem 5 but fitting the model in *Problem 3* (rather than Problem 2) but replacing V by Y, and compare the result with that of Problem 5.