Chapitre

Formation des images

3. Système optiques, stigmatisme

Définition 1.1: Système optique

Un système optique transformer un objet pour en faire une image.

Définition 1.2: Stigmatisme

Système qui associe L'image d'un point à un point. Un système optique fait une image de chaque points. Si il n'y a pas de stigmatisme, on observe des tâches avec un diamètre plus ou moins grand.

À part le mirroir plan, aucun instrument d'optique n'est stigmatique ^Q .

3.1.\$ystème optique

On a une phase d'entrée S et une phase de sortie S'.

Le système optique est centré si il a un axe de révolution (axe de symétrie axiale), appelé axe optique commun à tous les dioptres, surfaces rélféchissantes.

Définition 1.3 : Système dioptrique/catadioptrique

Un système dioptrique est composé uniquement de dioptre alors qu'un système catadioptrique est composé de surfaces réfractantes mais aussi réfléchissantes.

Astuce

On parle de stigmatisme rigoureux. Si l'image d'un point est une tache assez petite par rapport à notre utilisation de l'image, on parle de stigmatisme approché.

Définition 1.4: Points conjugués

2 points sont conjugués si l'image d'un point est celui d'un objet. Ces deux points sont reliés par le système optique et soumis à une relation de conjugaison.

Définition 1.5 : Vergence et dioptrie

Elle s'exprime en dioptrie $\delta=m^{-1}$ et traduit la capacité du système à dévier les rayons. Si elle est positive, le système est convergent, dans le cas contraire, le système est divergent.

Définition 1.6 : Aplanétisme

L'image d'un segment perpendiulaire à l'axe optique est un segment perpendiculaire à l'axe optique, sur le même plan.

Pour modéliser un objet, on prend souvent un point sur l'axe optique A_0 et un point perpendiculaire B_0 à l'axe et dont le segment passe par A_0 .

3. Stigmatisme approché et conditions de Gauss

Si le système n'est pas stigmatique, on souhaite que l'image de point soit la plus petite possible. Plus les conditions de Gauss $^{\mathbb{Q}}$ sont respectées, plus l'image est petite. $^{\mathbf{i}}$

Définition 2.1 : Conditions de Gauss

On considère des rayons faiblement inclinés et proches de l'axe optique pour approcher des conditions de stigmatisme.

Dans ces conditions, on utilise les lois de Kepler ^Q

Théorème 2.1 : Lois de Kepler

i Info

On parle d'image inversée si A_0B_0 est dans le sens inverse de l'image A_iB_i . On remarque aussi qu'un système non aplanétique permet d'obtenir une image nette quelque soit la profondeur.

Astuce

Aussi appellées approximation paraxiale

i Info

Mais plus on supprime les rayons incepptables, plus l'image formée sera sombre.

Astuce

En effet, dans les conditions de Gauss, le sinus de l'angle sera équivalent à l'angle. $n_1 i_1 = n_2 i_2$

3. Formation des images

3.3. Définitions

Définition 3.1 : Image réelle

C'est une image formée par des rayons convergents à la sortie du sytsème optique. La sortie n'est pas forcément après le système. C'est une image que l'on peut projeter sur un écran.

Définition 3.2 : Image virtuelle

C'est une image formée par des rayons divergents à la sortie du sytsème optique. L'image est formée dans ou avant le système optique.

π Définition 3.3 : Objet réel

Objet dont les rayons arrivent de manière divergent sur le système optique. Il peut ou pas avoir une existence physique. Il est avant le système

Définition 3.4 : Objet virtuel

Objet dont les rayons arrivent de manière convergente sur le système optique. Il est placé après la phase d'entrée du système. Il est formé par un autre système.