Algorithmic Game Theory: HW 2

1.

2. (a) Consider the utility maximizing game below starting with the the initial outcome (A_1, B_1) , from which best-response dynamics cycles forever, avoiding the pure Nash of (A_3, B_2) .

			P1	
		A_1	A_2	A_3
	B_1	4,1	1,2	0,0
P2	B_2	0,0	0,0	5,5
	B_3	3,3	3, 2	0,0

(b) Consider the game below

3.

4. Let $f_{\epsilon}(x) = (1 - \epsilon)^x$ and $g_{\epsilon}(x) = 1 + \epsilon x$, then

$$f_{\epsilon}(0) = 1 = g_{\epsilon}(0)$$

$$f_{\epsilon}(1) = 1 - \epsilon = g_{\epsilon}(1)$$

$$f'_{\epsilon}(x) = (1 - \epsilon)^{x} \ln(1 - \epsilon)$$

$$g'_{\epsilon}(x) = \epsilon$$

$$f'_{\epsilon}(0) = \ln(1 - \epsilon) < 0 = g'_{\epsilon}(0)$$

also f_{ϵ} is a convex function as $f''_{\epsilon}(x) = (1 - \epsilon)^x \left[\ln(1 - \epsilon)\right]^2 > 0$ for $\epsilon \in (0, 1/2]$. This this proves $f_{\epsilon}(x) \leq g_{\epsilon}(x)$ since the initial gradient of f_{ϵ} is smaller then g_{ϵ}