Geometry Homework 1

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋 September 18, 2011

Problem 1 (P7: 4.). Let $\alpha:(0,\pi)\to\mathbf{R}^2$ be given by

$$lpha(t) = \left(\cos t, \cos t + \log an rac{t}{2}
ight)$$
 ,

where t is the angle that the y axis makes with the vector $\alpha(t)$. The trace of α is called the tractrix (Fig. 1-9). Show that

- (a) α is a differentiable parametrized curve, regular except at $t=\pi/2$.
- (b) The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.

Proof. this is another test \Box

Problem 2 (Curvature is a geometric object I). aX(s) = (x(s), y(s)), where s is the arc-length parameter.

$$M=\left[egin{array}{cc} a_{11} & a_{12}\ a_{21} & a_{22} \end{array}
ight]$$
 , $M^t=M^{-1}$, $\emph{i.e.}~M$ is orthogonal.

Let $ar{X}(s)=M\cdot\left[egin{array}{c} x(s) \\ y(s) \end{array}
ight]+\left[egin{array}{c} lpha \\ eta \end{array}
ight]$, $lpha,eta\in\mathbf{R}$. What is the relation between $\kappa_X(s)$ and $\kappa_{ar{X}}(s)$?

Proof. This is the test.