

Grundlagen elektromagnetischer Energiewandlung

Übung 8: SOK der Induktionsmaschine

Cara Behrendt, Marius Schubert, Przemyslaw Lesniewski

Allgemeines zur Induktionsmaschine (IM) (10 min)

Berechnung von Parametern der IM (20 min)

Zeichnen der SOK und Herausstellen der Kenngrößen (50 min)

Synchrone Drehzahl (Lastfrei,
$$M=0$$
)
$$s=\frac{n_0-n}{n_0}=1-\frac{n}{n_0}=\frac{\frac{f_1}{p}-\frac{f_1-f_2}{p}}{\frac{f_1}{p}}=\frac{f_2}{f_2}$$

$$s = \frac{n_0 - n}{n_0} = 1 - \frac{n}{n_0}$$
$$= \frac{\frac{f_1}{p} - \frac{f_1 - f_2}{p}}{\frac{f_1}{p}} = \frac{f_2}{f_1}$$

Frequenz f_1

Drehzahl	Schlupf	Betrieb
$0 < n < n_0$	0 < <i>s</i> < 1	Untersynchronismus (Normalbetrieb)
$n = n_0$	s = 0	Synchronismus, Leerlauf
n = 0	s = 1	Stillstand
n < 0	<i>s</i> > 1	Lauf gegen das Drehfeld
$n > n_0$	<i>s</i> < 0	Übersynchronismus

Kurzschluss, Widerstand oder externe Spannungsquelle→ Schleifringläufer (externer Anschluss am Motor)

Aufgabe 1 Berechnen Sie,

- die Polpaarzahl p
- die Bemessungsleistung P_N
- das Kippmoment: M_{kipp}
- den Kippschlupf: skipp

Hinweis: Kloss'sche Formel verwenden (FS. Seite 16)

6 min.

Leibniz Lo 2 Universität Lo 0 4 Hannover

Aufgabe 1

- Polpaarzahl: $p = \frac{f_1}{n_0} = 2$
- Bemessungsleistung: Motor $\rightarrow P_{\rm N} = 2\pi \cdot M_{\rm N} \cdot n_{\rm N} = 254,00 \, {\rm kW}$
- Kippmoment: $\ddot{\mathbf{u}}_{\mathrm{M}} = \frac{M_{\mathrm{kipp}}}{M_{\mathrm{N}}} \rightarrow M_{\mathrm{kipp}} = M_{\mathrm{N}} \cdot \ddot{\mathbf{u}}_{\mathrm{M}} = 4290 \ \mathrm{Nm}$
- Kippschlupf: Kloss'sche Formel

$$\frac{M_{\rm i}}{M_{\rm i,kipp}} = \frac{2}{\frac{S_{\rm kipp}}{S} + \frac{S}{S_{\rm kipp}}}$$

Aufgabe 1

• Kippschlupf: Kloss'sche Formel (Annahme $R_1 = 0$)

$$\frac{M_{\rm i}}{M_{\rm i,kipp}} = \frac{2}{\frac{S_{\rm kipp}}{S} + \frac{S}{S_{\rm kipp}}} \rightarrow \frac{M_{\rm i}}{M_{\rm i,kipp}} \cdot \left(\frac{S_{\rm kipp}}{S} + \frac{S}{S_{\rm kipp}}\right) = 2 \qquad \Big| -2, \qquad S_{\rm kipp}$$

$$\frac{M_{\rm i}}{M_{\rm i,skipp}} \cdot \left(\frac{s_{\rm kipp}^2}{s} + s\right) - 2s_{\rm kipp} = 0 \quad \Rightarrow s_{\rm kipp}^2 - s_{\rm kipp} \cdot 2s \cdot \frac{M_{\rm i,kipp}}{M_{\rm i}} + s^2 = 0$$

mit
$$s = s_{\text{N}}$$
, $M_{\text{i}} = M_{\text{N}} \rightarrow \underbrace{s_{\text{kipp}_{1,2}}} = +s_{\text{N}} \cdot \underbrace{\frac{M_{\text{i,kipp}}}{M_{\text{N}}}} \pm \sqrt{\left(s_{\text{N}} \cdot \frac{M_{\text{i,kipp}}}{M_{\text{N}}}\right)^2 - s_{\text{N}}^2}$

pq-Formel

Leibniz Log 4 Universität Log 4 Hannover

Aufgabe 1

• Kippschlupf: Kloss'sche Formel (Annahme $R_1 = 0$)

mit
$$s = s_N$$
, $M_i = M_N \rightarrow s_{\text{kipp}_{1,2}} = +s_N \cdot \frac{M_{i,\text{kipp}}}{M_N} \pm \sqrt{\left(s_N \cdot \frac{M_{i,\text{kipp}}}{M_N}\right)^2 - s_N^2}$

$$s_{\mathrm{kipp}_1} = 0.1$$
 $> s_{\mathrm{N}} \rightarrow \mathsf{Kippschlupf}$

$$s_{\text{kipp}_2} = 0.004 < s_{\text{N}} \rightarrow \text{keine L\"osung}$$

Aufgabe 2 – Leistungsfaktor $\cos(\varphi_{\text{kipp}})$ berechnen

Aufgabe 2 – Leistungsfaktor $\cos(\varphi_{\text{kipp}})$

Aufgabe 2 – Phasenwinkel $\varphi_{1,\text{kipp}}$

- Berechnen Sie den Phasenwinkel $\varphi_{1,\text{kipp}}$
- Hinweis: $I_{1,\text{kipp}} = 192 \text{ A}$, $R_1 = 0$

Bisher berechnet:

$$p = 2$$

 $P_{\text{N}} = 254 \text{ kW}$
 $M_{\text{kipp}} = 4290 \text{ Nm}$
 $s_{\text{kipp}} = 0.1$

10 min.

Aufgabe 2 – Leistungsfaktor $\cos(\varphi_{\text{kipp}})$

•
$$P_{\text{Netz1,kipp}} = \sqrt{3} \cdot U_{\text{N}} \cdot I_{\text{1,kipp}} \cdot \cos(\varphi_{\text{kipp}}) = P_{\delta,\text{kipp}}$$

•
$$P_{\delta,\text{kipp}} = 2\pi \cdot M_{\text{kipp}} \cdot n_0 = 673,87 \text{ kW}$$

•
$$\cos(\varphi_{\text{kipp}}) = \frac{P_{\delta,\text{kipp}}}{\sqrt{3} \cdot U_{\text{N}} \cdot I_{1 \text{ kipp}}} = \frac{673,87 \text{ kW}}{\sqrt{3} \cdot 3000 \text{ V} \cdot 192 \text{ A}} = 0,675$$

- \rightarrow arccos(0,675) = 47,51° \rightarrow motorisch induktiv beachten!
- $\varphi_{\text{kipp}} = 47,51^{\circ}$

Aufgabe 3: Konstruktion der SOK des Statorstroms

Geometrischer Ort des Stroms für verschiedene Schlupfwerte

Vorgehen:

- Bekannten Stromzeiger zeichnen
- 2) Radius der SOK bestimmen
- Schlupfgerade zeichnen und m.H. bekannter Punkte parametrisieren

Eine Schlupfgerade kann an jedem beliebigen Ort konstruiert werden. Sie muss jeweils entsprechend parametrisiert werden.

Aufgabe 3: Konstruktion der SOK des Statorstroms

Vorgehen:

- 1) Bekannten Stromzeiger zeichnen
- 2) Radius der SOK bestimmen
- Schlupfgerade zeichnen und m.H. eines bekannten Punktes parametrisieren

Bekannt:

bekann.

$$I_{1,\text{kipp}} = 192 \text{ A}$$

 $s_{\text{kipp}} = 0.1$
 $\cos(\varphi_{\text{kipp}}) = 0.675$
 $\varphi_{\text{kipp}} = 47.51^{\circ}$
 $P_{\delta,\text{kipp}} = 673.87 \text{ kW}$

10 min.

Zu 3.) Konstruktion der SOK

Aufgabe 4: Bestimmung des Leerlaufstroms aus der SOK

Zu 4.) Bestimmung des Leerlaufstroms

 $I_{10} = 11,9 \text{ A}$

Aufgabe 5: Bemessungsstrom I_N und $\cos(\varphi_N)$ bestimmen

Aufgabe 5: Bemessungsstrom I_N und $\cos(\varphi_N)$ bestimmen

Aufgabe 6: Bestimmung des Anzugsstroms und Anzugmoments

Vorgehen:

- Anzugsstrom ablesen
- Drehmoment
 Maßstabfaktor
 berechnen
- 3) Anzugsmoment ablesen

6 min.

Zu 6.) Bestimmung des Anzugsstroms

Zu 6.) Bestimmung des Anzugsmoments

Aufgabe 7 – Stromwärmeverluste im Läufer im Kipppunkt

Aufgabe 7 Stromwärmeverluste im Läufer im Kipppunkt

- Möglichkeit 1: Rechnerisch über die Leistungsbilanz im Kipppunkt → $P_{\text{vw2,kipp}} = s_{\text{kipp}} \cdot P_{\delta,\text{kipp}} = P_{\delta,\text{kipp}} P_{\text{mech,kipp}}$
- Möglichkeit 2: Graphisch aus der SOK
 - Für $R_1 = 0$ gilt: $P_{\delta} \sim Re\{I\}$
 - Luftspaltleistung graphisch zerlegen $P_{\delta} = P_{i,mech} + P_{vw2}$
 - → Gerade zur Aufspaltung der Luftspaltleistung zeichnen

Zu 7.) Gerade zur Aufspaltung der Luftspaltleistung

- Anlauf $P_{\delta,A} = P_{vw2}$
- Leerlauf $P_{\delta,0}=0$

5 min.

Zu 7.) Gerade zur Aufspaltung der Luftspaltleistung

Zu 7.) Gerade zur Aufspaltung der Luftspaltleistung

Was war wichtig?

- Schlupf
- Lastpunktzugehörigkeit der Größen (s_N, s_{kipp})
- Leistungsflussdiagramm
- Konstruktion der SOK
- Bedeutung der SOK
- Weiterführende Übungen im Skript:
- Aufgaben 5.1.1, 5.2.1