Introduction to beamforming using MNE-Python

Britta Westner, Chris Bailey, Sarang Dalal

CFIN, December 11, 2017

Outline

- What is source localization?
- Source reconstruction techniques
- What is a beamformer?
- Beamformer vs MNE
- How does it work?
- What is a forward model?
- Beamforming pipeline
- Hands-on session
- Discussion, open questions, etc

What is source reconstruction?

We want to estimate the source activity underlying our sensor-level measurements.

This is an ill-posed problem. We need tricks.

Source reconstruction techniques (= tricks)

There are different algorithms that solve this ill-posed problem by making different assumptions:

- Dipole fitting (single and distributed dipole models)
- Minimum norm estimation
- Spatial filters = beamformers

What is a beamformer?

Beamformers are spatial filters.

The spatial filter (weights) describes the relationship between sensor- and source-space.

Different beamformer types:

- Linearly Constrained Minimum Variance beamformer LCMV time-domain
- Dynamical Imaging of Coherent Sources DICS frequency domain

Beamformer vs MNE

Minimum norm estimation

- assume activity everywhere
- estimate activity distribution across the brain (cortical sheet)

Beamforming

- assume that sources are uncorrelated
- estimate source activity at a given point

How does it work? – The beamfomer

Beamformer formulas:

$$W = \frac{L^T C^{-1}}{L^T C^{-1} L}$$

L = forward model

C = covariance matrix

What do we do with this "W"? W = weights / spatial filter

$$\hat{s} = Wm$$

 $\hat{s} = \text{estimated source activity}$ m = measured activity (sensor space)

How does it work? - Forward and inverse models

What is a forward model?

Synonyms: lead field, gain matrix

specifies the (mathematical) relations between given source points and the sensors.

This needs information about:

- the sources
- the anatomical properties of the conductor
- the sensor positions

Beamforming pipeline

Let's try that on real data!

Hands-on session

Source-reconstructing brain activity following full-field flashes.