Лабораторная работа № 2

Тема: Численные методы одномерной минимизации с использованием производной.

Цель работы: Приобретение практических навыков для решения задач одномерной минимизации численными методами.

Постановка задачи

Требуется найти безусловный минимум функции одной переменной y=f(x) на отрезке [a,b], где функция является выпуклой. То есть найти такую точку $x^* \in [a,b]$, что $f(x^*) = \min_{x \in [a,b]} f(x)$.

Методы, рассмотренные в лабораторной работе 1, используются при минимальных требованиях к целевой функции y = f(x) — она должна быть унимодальной.

В данной работе предполагается, что целевая функция y = f(x) является выпуклой и дифференцируемой (один раз или дважды). Причём, производные могут быть вычислены в произвольно выбранных точках.

Численные методы одномерной минимизации с использованием производной

К основным численным методам одномерной минимизации с использованием производной относят:

- 1. метод средней точки;
- 2. метод хорд;
- 3. метод касательных.

Задание

- 1. Привести задачу на максимум к задаче минимизации функции (при необходимости).
- 2. Составить программы поиска минимума функции двумя методами, указанными в задании (язык программирования выбрать самостоятельно).
- 3. Найти координаты и значение функции в точке минимума заданными методами.
- 4. Проанализировать полученные результаты. Исследовать сходимость методов и провести сравнение по числу вычислений функции (или её производной) для достижения заданной точности. Результаты оформить в виде таблицы:

Название	Количество	вы-	Число итера-	Результат	Погрешность			
метода	числений функ-		ций	вычислений				
	ции/производной							
Метод 1					• • •			
Метод 2	• • •		•••	• • •	•••			

Содержание отчёта

- 1. Титульный лист, который должен включать:
 - название учреждения, где выполнена работа;
 - номер лабораторной работы;
 - название лабораторной работы;
 - номер варианта;
 - Ф.И.О. студента, выполнившего работу;
 - изображение подписи рядом с фамилией;
 - номер учебной группы;
 - Ф.И.О. преподавателя;
 - год и место выполнения.
- 2. Цель работы.
- 3. Формулировка задачи с указанием номера варианта.
- 4. Графическое представление функции на заданном интервале.
- 5. Листинги программ в виде текста (скриншоты программного кода вставлять не допускается).
- 6. Результаты вычислений.
- 7. Сравнительная характеристика методов.
- 8. Выводы.

Варианты заданий

$N_{\overline{0}}$	Функция	Тип экстремума	Интервал	Погрешность	Методы
1	$ctg(1.05x) - x^2$	max	[4; 9]	0.002	1,2
2	$x^2 + \sin(x)$	\min	[-1; 0]	0.0005	1,3
3	$x/10 + \cos(x)$	max	[4; 9]	0.002	1,2
4	$e^x + x^2$	\min	[-1; 0]	0.0005	1,3
5	$e^x + 1/x$	\min	[0.5; 1]	0.0001	1,2
6	$-x + (x+2)/x^2$	\min	[-2; 0]	0.001	1,3
7	$x + 1/\ln(x)$	\min	[-1.5; 3]	0.001	1,2
8	$x - \ln(\ln(x))$	\min	[1.3; 3.0]	0.001	1,3
9	$0.2x + \sin(2x)$	max	[0; 3]	0.002	1,2
10	$5x^2 + 1/x$	\min	[0; 2.5]	0.002	1,3
11	$5/(x^2 - 2x + 5)$	max	[0.8; 2.0]	0.0008	1,2
12	$e^{x-1} + 1/x$	\min	[0; 1.5]	0.001	1,3
13	$e^{1/x} + \ln(x)$	\min	[1; 3]	0.0012	1,2
14	$xe^{-x/2}$	\max	[0; 3]	0.002	1,3
15	$1/x - e^{-x}$	\max	[-1; 0.5]	0.0005	1,2
16	$2 - x + x^2$	\min	[0; 2]	0.001	1,3
17	$e^{-x} + 1/(1-x)$	\min	[0; 2]	0.001	1,2
18	$x^4 + 2x^2 + 4x$	\min	[-1; 0]	0.0002	1,3
19		\min	[0; 1]	0.0005	1,2
20	$e^x + 1/(x+2)$	\min	[-1; 1]	0.001	1,3
21	$5x^2e^{-x/2}$	\max	[2; 6]	0.002	1,2
22	$x \lg(x)$	\min	[0; 2]	0.001	1,3
23	$5/x + x^2$	\min	[0.5; 2]	0.001	1,2
24	$e^{-2x} + x^2/2$	\min	[0; 1.5]	0.001	1,3
25	$2\ln^2(x) + x/2$	\min	[0.5; 2]	0.0005	1,2
26	$x^2 + 1/\arctan(x)$	\min	[0; 2]	0.0005	1,3
27	$\sin(e^x) - e^{-x} + 1$	max	[0; 1]	0.0005	1,2
28	$(x-1)e^{-x^2/2}$	\min	[-2; 0]	0.0005	1,3
29	$x^4 - 1.5 \arctan(x)$	\min	[-1; 2]	0.0005	1,2
30	xe^{-2x}	\min	[-2; 6]	0.0001	1,3
31	$15e^{-x^2} + (x-2)^2$	\min	[1; 5]	0.0002	1,2
32	$(3+e^x)/x^2$	min	[1;3]	0.0005	1,3