```
In [1]: # Import standard packages
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
    from statsmodels.formula.api import ols
    from scipy import stats
    from sklearn.linear_model import LinearRegression
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.model_selection import KFold
    from sklearn.metrics import mean_squared_error, r2_score
    import re
```

```
In [2]: #Importing data
    anime = pd.read_csv("data/anime_cleaned.csv")
    anime
```

Out [2]: anime_id title_title_english_title_japanese_title_synonyms imag

		anime_iu	uue	utie_english	title_japanese	title_synonyms	imag
	0	11013	Inu x Boku SS	Inu X Boku Secret Service	妖狐×僕SS	Youko x Boku SS	https://myanimelist dena.com/images/ani
	1	2104	Seto no Hanayome	My Bride is a Mermaid	瀬戸の花嫁	The Inland Sea Bride	https://myanimelist dena.com/images/ani
	2	5262	Shugo Chara!! Doki	Shugo Chara!! Doki	しゅごキャ ラ!! どきっ	Shugo Chara Ninenme, Shugo Chara! Second Year	https://myanimelist dena.com/images/ani
	3	721	Princess Tutu	Princess Tutu	プリンセスチュ チュ	NaN	https://myanimelist dena.com/images/ani
	4	12365	Bakuman. 3rd Season	Bakuman.	バクマン。	Bakuman Season 3	https://myanimelist dena.com/images/ani
	•••						
	6663	37405	Dokidoki Little Ooyasan	NaN	dokidokiりとる 大家さん	NaN	https://myanimelist dena.com/images/ani
	6664	37886	Wo Shi Jiang Xiaobai (2018)	I'm Joybo OVA	我是江小白 小 剧场	Wo Shi Jiang Xiao Bai: Xiao Ju Chang	https://myanimelist dena.com/images/ani
	6665	37255	Genki Genki Non-tan: Obake Mura Meiro	NaN	げんきげんきノ ンタン おばけ むらめいろ	NaN	https://myanimelist dena.com/images/ani
	6666	35229	Mr. Men Little Miss	Mr. Men Little Miss	Mr. Men Little Miss / ミスター メン リトルミ ス	NaN	https://myanimelist dena.com/images/ani
	6667	36315	Mushi Mushi Mura no Nakama- tachi: Minna Ii Tok	NaN	むしむし村の仲 間たち みんな いいとこあるん だよ	NaN	https://myanimelist dena.com/images/ani

6668 rows × 33 columns

```
In [3]: #Checking for nulls
    print(anime.isna().sum())
```

```
0
anime id
                      0
title
title english
                   3230
title japanese
                      5
title_synonyms
                   2187
image url
                      2
                      0
type
                      0
source
episodes
                      0
status
                      0
                      0
airing
aired string
                      0
aired
                      0
duration
                      0
rating
score
                      0
                      0
scored by
rank
                    356
                      0
popularity
members
                      0
favorites
                      0
                   5855
background
premiered
                   3702
broadcast
                   3688
related
                      0
producer
                   2266
licensor
                   3881
studio
                      0
genre
                      4
                      0
opening theme
                      0
ending theme
duration min
                      0
aired_from_year
                      0
dtype: int64
```

```
In [4]: #Data Cleaning

#Dropping nulls from genre
anime = anime.dropna(subset=['genre'])

#duplicates banished
anime = anime.drop_duplicates()

#dropping irrelevant or incomplete data
anime = anime.drop(['title_english', 'title_japanese', 'title_synonyms', 'im
anime = anime[-anime['genre'].str.contains('hentai|yaoi|yuri', case=False)]

# drop all rows that contain a cell with the value of zero
anime = anime[(anime != 0).all(1)]

# create a new column named "watch_length" by multiplying "duration_min" and
anime['watch_length'] = anime['duration_min'] * anime['episodes']
anime
```

Out[4]

				projecto					
stu	members	scored_by	score	episodes	source	type	title	anime_id	:
Da Product	283882	139250	7.63	12	Manga	TV	Inu x Boku SS	11013	0
Gor	204003	91206	7.89	26	Manga	TV	Seto no Hanayome	2104	1
Sateli	70127	37129	7.55	51	Manga	TV	Shugo Chara!! Doki	5262	2
Hal F Ma	93312	36501	8.21	38	Original	TV	Princess Tutu	721	3
J.C.S1	182765	107767	8.67	25	Manga	TV	Bakuman. 3rd Season	12365	4
			•••		•••				•••
Haolin Animat Leaç	1013	181	6.04	1	Manga	Special	Hitori no Shita: The Outcast Recap	37090	6657
0	560	128	5.87	4	Original	Special	Inazuma Eleven x Kaitou Gru no Tsuki Dorobou	36913	6658
Haolin Animat Leaç	126	17	7.53	12	Novel	ONA	Ling Yu 4th Season	37894	6662
Polyç Pictu	37	5	4.20	1	Original	OVA	Genki Genki Non-tan: Obake Mura Meiro	37255	6665
T Animat	40	4	7.00	1	Original	OVA	Mushi Mushi Mura no Nakama- tachi: Minna li Tok	36315	6667

6151 rows × 13 columns

```
In [5]: #Importing data
    #users = pd.read_csv("data/animelists_cleaned.csv")
    #users
```

```
In [6]: #Checking for correlation/multicolinearity
        # Selecting columns with numerical values
        numerical columns = anime.select dtypes(include=[np.number]).columns.tolist(
        # Selecting the score column and calculating correlations with other columns
        features = []
        correlations = []
        corr = anime[numerical columns].corr()
        for idx, correlation in corr['score'].iteritems():
            if correlation >= 0.3 and idx != 'score':
                features.append(idx)
                correlations.append(correlation)
        corr score df = pd.DataFrame({'Features': features, 'Correlations': correlat
        # Checking for multicollinearity among the selected features
        multicollinear features = []
        multicollinear corr = []
        def check multicollinearity(feature):
             for idx, correlation in corr[feature].iteritems():
                 if correlation >= 0.8 and idx != feature:
                    multicollinear features.append([feature, idx])
                    multicollinear corr.append(correlation)
        for feature in numerical columns:
            check multicollinearity(feature)
        mc_df = pd.DataFrame({'Features': [f[0] for f in multicollinear_features],
                               'Multicollinear Features': [f[1] for f in multicolline
                               'Correlations': multicollinear corr})
        # Displaying the results
        print('Features with Correlations to score')
        display(corr_score_df)
        print('Multicollinear Features')
        display(mc df)
```

Features with Correlations to score

Features Correlations

0	scored_by	0.394409
1	members	0.428485

Multicollinear Features

Features Multicollinear_Features Correlations

0	episodes	watch_length	0.834427
1	scored_by	members	0.987091
2	members	scored_by	0.987091
3	watch_length	episodes	0.834427

```
In [8]: #Dropping multicolinear faetures
anime = anime.drop('scored_by', axis=1)

#Dropping non-correlated variables
anime = anime.drop(['episodes', 'aired_from_year', 'duration_min', 'watch_le)

In [9]: #Creating a list with the columns I'm using
num_cols = list(anime.drop(['anime_id', 'score'], axis=1).select_dtypes(incl
```

```
predictors = pd.DataFrame({'Features': num_cols})
predictors
```

Out [9]: Features

0 members

```
In [10]:
         #Normality and homoscedacity check
          # Fit simple linear regression model
         model = smf.ols('score ~ ' + ' + '.join(predictors['Features']), data=anime)
          #Residual plot
          resid = model.resid
          fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 4))
          sns.histplot(resid, ax=ax1)
          ax1.set title('Residual Plot')
          #Scatter Plot
          sns.scatterplot(x=model.predict(), y=resid, ax=ax2)
          ax2.axhline(0, color='k', linestyle='--')
          ax2.set title('Residuals vs. Fitted')
          plt.show()
          #QQ plot
          fig, ax = plt.subplots(figsize=(6,4))
          sm.qqplot(resid, line='s', ax=ax)
          plt.show()
                                                                 Residuals vs. Fitted
                           Residual Plot
           400
           350
```



```
In [11]: #Normal check of relevant features

x_cols = list(predictors['Features']) + ['score']
 pd.plotting.scatter_matrix(anime[x_cols], figsize=(10, 12))
 plt.show()
```



```
In [12]: #Taking the log of scored_by and rechecking
    anime['members'] = np.log(anime['members'])

#Normality and homoscedacity check
# Fit simple linear regression model
model = smf.ols('score ~ ' + ' + '.join(predictors['Features']), data=anime)

#Residual plot
resid = model.resid
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12, 4))
sns.histplot(resid, ax=ax1)
ax1.set_title('Residual Plot')
#Scatter Plot
sns.scatterplot(x=model.predict(), y=resid, ax=ax2)
```

```
ax2.axhline(0, color='k', linestyle='--')
ax2.set_title('Residuals vs. Fitted')
plt.show()
#QQ plot
fig, ax = plt.subplots(figsize=(6,4))
sm.qqplot(resid, line='s', ax=ax)
plt.show()
```



```
In [13]: #running multiple regression on relevant features
#"relevant features" ended up being only scored_by but that's fine

outcome = 'score'
pred_sum = '+'.join(predictors["Features"])
formula = outcome + '~' + pred_sum

model = ols(formula=formula, data=anime).fit()
model.summary()
```

Out[13]:

OLS Regression Results

Dep. Variable:	score		R-squared:	0.482
Model:	OLS	Adj. I	R-squared:	0.482
Method:	Least Squares		F-statistic:	5730.
Date:	Wed, 01 Mar 2023	Prob (F	-statistic):	0.00
Time:	20:28:15	Log-	Likelihood:	-5993.2
No. Observations:	6151		AIC:	1.199e+04
Df Residuals:	6149		BIC:	1.200e+04
Df Model:	1			
Covariance Type:	nonrobust			
coef	std err t	P> t [0.025 0.9	751
Intercept 4.2073	0.036 115.478			279
members 0.2923	0.004 75.698	0.000	0.285 0.	300
Omnibus: 7	68.373 Durbin	-Watson:	1.991	
Prob(Omnibus):	0.000 Jarque-B	era (JB):	1714.301	
Skew:	-0.750 F	rob(JB):	0.00	

Notes:

Kurtosis:

5.107

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

42.5

Cond. No.

```
In [14]: #Running linear regression analysis on scored by and making a graph
         # Extract the "scored_by" and "score" columns as X and y
         X = anime["members"].values.reshape(-1, 1)
         y = anime["score"].values.reshape(-1, 1)
         # Initialize the linear regression model
         model = LinearRegression()
         # Set up the KFold cross-validation
         kf = KFold(n splits=5, shuffle=True, random state=42)
         mse scores = []
         # Loop over the folds
         for train index, test index in kf.split(X):
             # Split the data into training and test sets
             X_train, X_test = X[train_index], X[test_index]
             y train, y test = y[train index], y[test index]
             # Fit the model on the training data
             model.fit(X train, y train)
             # Predict on the test data and calculate mean squared error
             y pred = model.predict(X test)
             mse = mean_squared_error(y_test, y_pred)
             mse scores.append(mse)
         # Print the mean and standard deviation of the mean squared error
```

```
print("Mean MSE:", round(sum(mse_scores)/len(mse_scores), 4))
print("Std. Dev. of MSE:", round(np.std(mse_scores), 4))

# Print the model coefficients
print("Intercept:", model.intercept_)
print("Slope:", model.coef_[0])

# Plot the data points and regression line
plt.scatter(X, y, s=5)
plt.plot(X, model.predict(X), color="red")
plt.title('Average Score vs Number of Viewers')
plt.xlabel("Number of Viewers (Log Scale)")
plt.ylabel("Average Score")
plt.show()
```

Mean MSE: 0.4113 Std. Dev. of MSE: 0.0249 Intercept: [4.20890272] Slope: [0.29235258]

Average Score vs Number of Viewers


```
#First converting the categorical values

#First converting the categorical columns into lists

# Define a pattern to extract words from each category
pattern = re.compile(r'[a-zA-Z0-9\- ]+')

# Modify the 'studio', 'genre', 'type', and 'source' columns using regular e
anime['studio'] = anime['studio'].apply(lambda x: [word.strip().title() for
anime['genre'] = anime['genre'].apply(lambda x: [word.strip().title() for word
anime['type'] = anime['type'].apply(lambda x: [word.strip().title() for word
anime['source'] = anime['source'].apply(lambda x: [word.strip().title() for

# Create dummy variables for the modified columns
anime_studio_dummies = anime['studio'].apply(lambda x: '|'.join(x)).str.get_
anime_genre_dummies = anime['genre'].apply(lambda x: '|'.join(x)).str.get_du
```

```
anime_type_dummies = anime['type'].apply(lambda x: '|'.join(x)).str.get_dumm
anime_source_dummies = anime['source'].apply(lambda x: '|'.join(x)).str.get_
# Replace spaces with underscores in column names
anime_studio_dummies.columns = anime_studio_dummies.columns.str.replace(' ',
anime_genre_dummies.columns = anime_genre_dummies.columns.str.replace(' ',
anime_type_dummies.columns = anime_type_dummies.columns.str.replace(' ',
anime_source_dummies.columns = anime_source_dummies.columns.str.replace(' ',
```

```
In [16]: #Running multiple regression analysis on genres

# Set the dependent variable 'score' and drop the first column of the datafr
y = anime['score']
X = anime_genre_dummies.iloc[:, 1:]

# Add a constant column to the predictor variables
#X = sm.add_constant(X)

# Fit the multiple regression model
model = sm.OLS(y, X).fit()

# Print the model summary
print(model.summary())
```

OLS Regression Results

OLS Regression Results							
=======							
Dep. Variable:	score		R-squared (uncentered):				
0.874				,			
Model:	OLS		Adj. R-squared (uncentered):				
0.873	_						
Method:	Lea	ast Squares	F-statist	ic:			
1085.	Wod	01 Mar 2023	Drob (E a	+>+;a+;a).			
Date: 0.00	wea,	01 Mar 2023	PIOD (F-S	tatistic):			
Time:		20:28:16	Log-Likel	ihood:			
-14288.			Log-Likelihood:				
No. Observations:	6151 AIC:						
2.865e+04							
Df Residuals:		6112	BIC:				
2.892e+04							
Df Model:		39					
Covariance Type:		nonrobust			===========		
=====							
	coef	std err	t	P> t	[0.025		
0.975]					•		
7 dramt	1 2416	0 005	15 760	0.000	1 175		
	1.3416	0.085	15./69	0.000	1.175		
1.508 Cars	1.9947	0.402	4.957	0.000	1.206		
2.783	1.3341	0.402	4.937	0.000	1.200		
Comedy	2.6514	0.063	41.985	0.000	2.528		
2.775							
Dementia	1.4078	0.380	3.706	0.000	0.663		
2.153							
Demons	0.6186	0.187	3.314	0.001	0.253		
0.984	1 6005	0.000	10 000	0.000	1 460		
Drama	1.6237	0.082	19.822	0.000	1.463		
1.784 Ecchi	0.9517	0.128	7.450	0.000	0.701		
1.202	0.7517	0.120	7.450	0.000	0.701		
Fantasy	1.9708	0.084	23.497	0.000	1.806		
2.135							
Game	2.7405	0.197	13.929	0.000	2.355		
3.126							
Harem	0.2110	0.175	1.206	0.228	-0.132		
0.554	2 1105	0 120	15 206	0.000	1 040		
Historical 2.381	2.1105	0.138	15.286	0.000	1.840		
Horror	1.0890	0.185	5.882	0.000	0.726		
1.452	1.0000	0.103	3.002	0.000	01,20		
Josei	1.1203	0.319	3.509	0.000	0.494		
1.746							
Kids	2.0523	0.136	15.063	0.000	1.785		
2.319	1 0540	0 11-	11 00-	0.000	1 040		
Magic	1.2743	0.115	11.037	0.000	1.048		
1.501 Martial Arts	1.3606	0.193	7.048	0.000	0.982		
1.739	1.3000	0.173	, • U - U	0.000	0.702		
Mecha	1.5174	0.130	11.668	0.000	1.262		
1.772							
Military	1.7676	0.160	11.032	0.000	1.453		
2.082							
Music	3.3446	0.142	23.474	0.000	3.065		
3.624	2 0072	0 122	15 720	0.000	1 007		
Mystery	2.0872	0.133	15.728	0.000	1.827		

2.347

2.34/					
Parody	1.4971	0.165	9.091	0.000	1.174
1.820					
Police	1.3963	0.213	6.559	0.000	0.979
1.814					
Psychological	1.1946	0.195	6.116	0.000	0.812
1.578					
Romance	1.0733	0.092	11.644	0.000	0.893
1.254					
Samurai	1.3291	0.272	4.883	0.000	0.796
1.863					
School	1.4319	0.094	15.284	0.000	1.248
1.616					
Sci-Fi	2.1998	0.090	24.558	0.000	2.024
2.375					
Seinen	1.6910	0.124	13.664	0.000	1.448
1.934					
Shoujo	1.5685	0.132	11.911	0.000	1.310
1.827					
Shoujo Ai	1.5640	0.342	4.571	0.000	0.893
2.235					
Shounen	1.1208	0.090	12.505	0.000	0.945
1.297					
Shounen Ai	1.4869	0.343	4.338	0.000	0.815
2.159					
Slice_Of_Life	2.4245	0.094	25.919	0.000	2.241
2.608					
Space	0.9606	0.183	5.260	0.000	0.603
1.319					
Sports	3.0324	0.151	20.109	0.000	2.737
3.328					
Super_Power	1.6392	0.140	11.686	0.000	1.364
1.914	10001	00110			11001
Supernatural	1.7249	0.103	16.795	0.000	1.524
1.926	10,219	0.100	10.733	0.000	1.321
Thriller	2.1912	0.294	7.449	0.000	1.615
2.768	2.1712	0.274	7.447	0.000	1.015
	1.0463	0 264	3.965	0.000	0.529
Vampire 1.564	1.0403	0.204	3.903	0.000	0.329
1.304					
==					
Omnibus:		396.194	Durbin-Wa	a+gon•	1.7
		390.194	Dulbii-wa	acson:	1.7
02		0 000	T	(TD) :	F07 F
Prob(Omnibus):		0.000	Jarque-Be	era (JB):	587.5
29		0 542	Deak (TD)	_	0 (0- 1
Skew:		-0.543	Prob(JB)		2.63e-1
28					_
Kurtosis:		4.056	Cond. No	•	1
1.4					
=======================================					

==

Notos.

- [1] \mathbb{R}^2 is computed without centering (uncentered) since the model does not c ontain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [17]: #Making a bar chart of the average score vs genres, coloured by average numb # Explode the genres column to create a new row for each genre in the list anime_exploded = anime.explode('genre') # Group the data by genre and calculate the mean score and scored by for each

```
mean scores by genre = anime exploded.groupby('genre')['score', 'members'].m
# Sort the mean scores in ascending order
mean scores by genre = mean scores by genre.sort values('score')
# Define a colormap
cmap = plt.cm.get cmap('coolwarm')
# Create a bar plot of the mean scores
ax = mean_scores_by_genre['score'].plot(kind='bar', figsize=(10, 6), color=
# Add labels and a title to the plot
plt.xlabel('Genres')
plt.ylabel('Mean Score')
plt.title('Average Score by Genre')
# Add a colorbar to the plot
smplot = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=mean_score
smplot.set array([]) # Remove colorbar's axes
cbar = plt.colorbar(smplot, ticks=np.linspace(mean scores by genre['members'
cbar.ax.set ylabel('Average Number of Viewers')
plt.show()
```

/var/folders/31/csf1hx2d4x9306d48st_8n700000gn/T/ipykernel_50858/2730547821.
py:7: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.
 mean_scores_by_genre = anime_exploded.groupby('genre')['score', 'member s'].mean()


```
In [18]: #Repeating for anime sources

# Set the dependent variable 'score' and drop the first column of the datafr
y = anime['score']
X = anime_source_dummies.iloc[:, 1:]
```

```
# Add a constant column to the predictor variables
#X = sm.add_constant(X)

# Fit the multiple regression model
model = sm.OLS(y, X).fit()

# Print the model summary
print(model.summary())
```

OLS Regression Results

=======================================	=======		Regression R		=========		
========							
Dep. Variable:		score	R-squared	(uncentere	ed):		
0.955 Model:	OLS		Adj. R-squared (uncentered):				
0.955	.			• .			
Method:	Le	ast Squares	F-statistic:				
9376. Date:	Wed, 01 Mar 2023 Prob (F-statistic):						
0.00							
Time: -11095.	20:28:16 Log-Likelihood:						
No. Observations:		6151	AIC:				
2.222e+04		0101	11200				
Df Residuals:		6137	BIC:				
2.231e+04							
Df Model:		14					
Covariance Type:		nonrobust					
=====							
	coef	std err	t	P> t	[0.025		
0.975]							
Book	6.8389	0.222	30.839	0.000	6.404		
7.274							
-	6.7133	0.219	30.615	0.000	6.283		
7.143	F 6100	0.556	10 000	0.000	4 500		
Digital_Manga	5.6100	0.556	10.090	0.000	4.520		
6.700 Game	6 6121	0 073	01 424	0.000	6.500		
6.785	6.6424	0.073	91.434	0.000	6.500		
Light_Novel 7.382	7.2538	0.065	110.815	0.000	7.125		
Manga	7.1504	0.030	236.243	0.000	7.091		
7.210							
Music	6.0696	0.198	30.601	0.000	5.681		
6.458	7 0102	0.000	70 172	0.000	6 027		
Novel 7.184	7.0103	0.089	79.173	0.000	6.837		
Original	6.6155	0.036	184.663	0.000	6.545		
6.686	0.0133	0.030	101.005	0.000	0.313		
Other	6.2142	0.116	53.769	0.000	5.988		
6.441							
Picture_Book	5.8434	0.222	26.350	0.000	5.409		
6.278							
Radio	6.0800	0.658	9.242	0.000	4.790		
7.370	6 0054		5 4.404	0.000	6.656		
Visual_Novel	6.8354	0.092	74.494	0.000	6.656		
7.015	6.8731	0.144	47.878	0.000	6.592		
Web_Manga 7.155	0.8/31	0.144	4/.8/8	0.000	6.392		
=======================================	======	=======		=======	========		
== Omnibus:		3052 210	Durbin-Wa	+con•	1		
Omnibus:		3852.210	nurbru-wa	LSUII:	1.		
Prob(Omnibus):		0.000	Jarque-Be	ra (JR):	46998.		
52		0.000	ourdue-pe	-u (UD)•	40770•		
Skew:		2.851	Prob(JB):		0		
00		001	(02) •		· ·		
Kurtosis:		15.283	Cond. No.		2		
1.7							

==

Notes:

[1] ${\bf R}^2$ is computed without centering (uncentered) since the model does not c ontain a constant.

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [19]: # Explode the sources column to create a new row for each source in the list
         anime exploded = anime.explode('source')
         # Group the data by source and calculate the mean score and scored by for ea
         mean scores by source = anime exploded.groupby('source')['score', 'members']
         # Sort the mean scores in ascending order
         mean scores by source = mean scores by source.sort values('score')
         # Define a colormap
         cmap = plt.cm.get_cmap('coolwarm')
         # Create a bar plot of the mean scores
         ax = mean scores by source['score'].plot(kind='bar', figsize=(10, 6), color=
         # Add labels and a title to the plot
         plt.xlabel('Sources')
         plt.ylabel('Mean Score')
         plt.title('Average Score by Source')
         # Add a colorbar to the plot
         smplot = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=mean score
         smplot.set array([]) # Remove colorbar's axes
         cbar = plt.colorbar(smplot, ticks=np.linspace(mean scores by source['members
         cbar.ax.set ylabel('Average Number of Viewers')
         plt.show()
         /var/folders/31/csf1hx2d4x9306d48st 8n700000gn/T/ipykernel 50858/1681968551.
         py:5: FutureWarning: Indexing with multiple keys (implicitly converted to a
         tuple of keys) will be deprecated, use a list instead.
```

mean scores by source = anime exploded.groupby('source')['score', 'member

s'].mean()


```
In [20]: #Repeating for anime types

# Set the dependent variable 'score' and drop the first column of the datafr
y = anime['score']
X = anime_type_dummies.iloc[:, 1:]

# Add a constant column to the predictor variables
#X = sm.add_constant(X)

# Fit the multiple regression model
model = sm.OLS(y, X).fit()

# Print the model summary
print(model.summary())
```

OLS Regression Results

========= Dep. Variable: score R-squared (uncentered): 0.834 Model: OLS Adj. R-squared (uncentered): 0.834 Least Squares Method: F-statistic: 6162. Date: Wed, 01 Mar 2023 Prob (F-statistic): 0.00 Time: 20:28:16 Log-Likelihood: -15138. No. Observations: 6151 AIC: 3.029e+04 Df Residuals: 6146 BIC: 3.032e+04 Df Model: 5 Covariance Type: nonrobust ______ coef std err P>|t| [0.025 t 0.97 51 ______ 5.9858 0.288 20.785 0.000 Music 5.421 6.5 50 6.1242 0.148 41.420 0.000 5.834 6.4 Ona 14 0.090 74.824 0.000 Ova 6.7416 6.565 6.9 18 Special 6.7381 0.094 71.742 0.000 6.554 6.9 2.2 0.053 133.852 7.0475 0.000 7.1 6.944 Tv______ Omnibus: 1752.592 Durbin-Watson: 1.7 0.40.000 Jarque-Bera (JB): 3747.5 Prob(Omnibus): 1.708 Prob(JB): Skew: 0. 00 Kurtosis: 4.718 Cond. No. 5. ______

Notes:

- [1] ${\bf R}^2$ is computed without centering (uncentered) since the model does not c ontain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [21]: # Explode the types column to create a new row for each type in the list
    anime_exploded = anime.explode('type')

# Group the data by type and calculate the mean score and scored by for each
    mean_scores_by_type = anime_exploded.groupby('type')['score', 'members'].mea

# Sort the mean scores in ascending order
    mean_scores_by_type = mean_scores_by_type.sort_values('score')

# Define a colormap
```

```
cmap = plt.cm.get_cmap('coolwarm')

# Create a bar plot of the mean scores
ax = mean_scores_by_type['score'].plot(kind='bar', figsize=(10, 6), color=cm

# Add labels and a title to the plot
plt.xlabel('Types')
plt.ylabel('Mean Score')
plt.title('Average Score by Type')

# Add a colorbar to the plot
smplot = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin=mean_score smplot.set_array([]) # Remove colorbar's axes
cbar = plt.colorbar(smplot, ticks=np.linspace(mean_scores_by_type['members']
cbar.ax.set_ylabel('Average Number of Viewers')

plt.show()
```

/var/folders/31/csf1hx2d4x9306d48st_8n700000gn/T/ipykernel_50858/14216106.p
y:5: FutureWarning: Indexing with multiple keys (implicitly converted to a t
uple of keys) will be deprecated, use a list instead.
 mean_scores_by_type = anime_exploded.groupby('type')['score', 'members'].m
ean()

