

Estadistica con Python

Regresión Lineal Simple

Ana Delia Olvera Cervantes

Maestría en Ciencia de Datos. Melchor Nolasco Cosijoeza Grupo: Propedeutico

17 de septiembre de 2024

RegresionLinealSimple

September 16, 2024

Cosijoeza Melchor Nolasco

1 REGRESION LINEAL SIMPLE

Suponga que un analista de deportes quiere saber si exste una relacion entre el numero de veces que batean los jugadores de un equipo de beisbol y el numero de runs que consigue. En caso de existir y de establecer el modelo, podría predecir el resultado del partido.

1.1 Librerias para tratamiento de datos

```
[]: import pandas as pd import numpy as np
```

1.2 Librerias para los graficos

```
[]: import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns
```

1.3 Librerias para el procesado y el modelado

```
[]: from scipy.stats import pearsonr
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
import statsmodels.api as sm
import statsmodels.formula.api as smf
```

1.4 Configuración de Matplotlib

```
[]: plt.rcParams['image.cmap'] = 'bwr'
plt.rcParams['savefig.bbox'] = 'tight'
style.use('ggplot') or plt.style.use('ggplot')
```

1.5 Configuaración de Warnings

```
[]: import warnings warnings.filterwarnings('ignore')
```

1.6 Datos

```
[]: equipos =[
         "Texas", "Boston", "Detroit", "Kansas", "St.", "New_S.", "New_Y.

¬","Milwaukee","Colorado",
         "Houston", "Baltimore", "Los An.", "Chicago", "Cincinnati", "Los P.

→", "Philadelphia",

      → "Chicago", "Cleveland", "Arizona", "Toronto", "Minnesota", "Florida", "Pittsburgh",
         "Oakland", "Tampa", "Atlanta", "Washington", "San.F", "San.I", "Seattle"
     bateos = [
         5659,5710,5563,5672,5532,5600,5518,5447,5544,5598,
         5585,5436,5549,5612,5513,5579,5502,5509,5421,5559,
         5487,5508,5421,5452,5436,5528,5441,5486,5417,5421]
     runs = [
         855,875,787,730,762,718,867,721,735,615,708,644,654,735,
         667,713,654,704,731,743,619,625,610,645,707,641,624,570,593,556
     ]
     datos = pd.DataFrame({
         "equipos":equipos,
         "bateos":bateos,
         "runs":runs
     })
     datos.head()
```

```
[]:
        equipos bateos runs
          Texas
                    5659
                           855
     \cap
        Boston
                    5710
     1
                           875
     2 Detroit
                    5563
                           787
     3
         Kansas
                    5672
                           730
                    5532
     4
            St.
                           762
```

2 Representación Gráfica

Representar los datos para poder intuir si existe una realación y cuantificar la relación mediante un coeficiente de correlación.

```
[]: fig, ax = plt.subplots(figsize=(6,3.84))
datos.plot(
    x = "bateos",
```

```
y = "runs",
c = "firebrick",
kind = "scatter",
ax = ax,
)

ax.set_title("Distribución de Bateos y Runs")
```

[]: Text(0.5, 1.0, 'Distribución de Bateos y Runs')

2.1 Correlacion lineal entre las dos variables

```
[]: corr_test = pearsonr(x = datos["bateos"],y=datos["runs"])
    print("Coeficiente de correlación de Pearson: ",corr_test[0])
    print("P-value: ",corr_test[1])
    print(corr_test)
```

Coeficiente de correlación de Pearson: 0.6106270467206688

P-value: 0.0003388351359791978

PearsonRResult(statistic=0.6106270467206688, pvalue=0.0003388351359791978)

3 Ajuste del modelo

Se ajusta el modelo empleando como variable respuesta **runs** y como predictor **bateos**. Como en todo estudio predictivo, no solo es importante ajustar el modelo , sino tambien cuantificar su capacidad para predecir nuevas observaciones. Para poder hacer esta evaluacion, se dividen los datos en dos grupos, uno de entrenamiento y otro de test.

3.1 División de los datos en train y test.

3.1.1 Creación del modelo

```
[ ]: modelo = LinearRegression()
modelo.fit(X = x_train.reshape(-1,1),y = y_train)
```

[]: LinearRegression()

3.2 Informacion del Modelo

```
[]: print("Intercept:",modelo.intercept_)
   print("Coeficiente:",list(zip(x.columns,modelo.coef_.flatten(),)))
   print("Coeficiente de determinación R^2",modelo.score(x,y))
```

Intercept: [-2367.7028413]
Coeficiente: [('bateos', 0.5528713534479736)]
Coeficiente de determinación R^2 0.3586119899498744

Evaluar la capacidad predictiva empleando el conjunto test.

3.3 Error de test del Modelo

Evaluamos la capacidad predictiva empleando el conjunto de test.

```
[]: predicciones = modelo.predict(X = x_test)
print(predicciones[0:3,])
rmse = mean_squared_error(
    y_true = y_test,
    y_pred = predicciones,
    squared = False
```

```
)
print(f"El error (rmse) de test es: {rmse}")

[[643.78742093]
[720.0836677]
[690.78148597]]

El error (rmse) de test es: 59.336716083360486
```

4 Implementación con Statsmodels

4.1 Division de los datos en train y test

Intercept -2367.7028

0.5529

bateos

4.2 Creacion del modelo utilizando el modo formula (similar a R)

OLS Regression Results

old regression results							
Dep. Variable:	runs	R-squared:	0.271				
Model:	OLS	Adj. R-squared:	0.238				
Method:	Least Squares	F-statistic:	8.191				
Date:	Mon, 16 Sep 2024	Prob (F-statistic):	0.00906				
Time:	08:21:16	Log-Likelihood:	-134.71				
No. Observations:	24	AIC:	273.4				
Df Residuals:	22	BIC:	275.8				
Df Model:	1						
Covariance Type:	nonrobust						
=======================================	=======================================						
со	ef std err	t P> t	[0.025 0.975]				

-2.220

2.862

0.037

0.009

-4579.192

0.152

-156.214

0.953

1066.357

0.193

Omnibus:	5.033	Durbin-Watson:	1.902
Prob(Omnibus):	0.081	Jarque-Bera (JB):	3.170
Skew:	0.829	Prob(JB):	0.205
Kurtosis:	3.650	Cond. No.	4.17e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.17e+05. This might indicate that there are strong multicollinearity or other numerical problems.

4.3 Creacion del modelo utilizando matrices como en scikitLearn

A la matriz de predictores se le tiene que añadir una columna de 1s para el intercept del modelo

```
[]: x_train = sm.add_constant(x_train,prepend=True)
modelo = sm.OLS(endog = y_train,exog = x_train)
modelo = modelo.fit()
print(modelo.summary())
```

OLS Regression Results

======						=======
Dep. Var	iable:		y R-squ	uared:		0.271
Model:		OI	OLS Adj. R-squared:			0.238
Method:	l: Least Squares F-statistic:					8.191
Date:	te: Mon, 16 Sep 2024 Prob (F-statistic):				ic):	0.00906
Time:		08:21:1	.6 Log-I	Likelihood:		-134.71
No. Obse	rvations:	2	4 AIC:			273.4
Df Resid	luals:	2	BIC:			275.8
Df Model	.:		1			
Covarian	ce Type:	nonrobus	t			
======	coef	std err	t	P> t	[0.025	0.975]
const	-2367.7028	1066.357	-2.220	0.037	-4579.192	-156.214
x1	0.5529	0.193	2.862	0.009	0.152	0.953
Omnibus:		 5.03	======= 3 Durbi	in-Watson:	========	1.902
Prob(Omn	ibus):	0.08	31 Jarqu	ie-Bera (JB):	3.170

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.829 Prob(JB):

3.650 Cond. No.

0.205 4.17e+05 [2] The condition number is large, 4.17e+05. This might indicate that there are strong multicollinearity or other numerical problems.

4.4 Intervalos de confianza de los coeficientes

Intervalos de confianza para los coeficientes del modelo

4.5 Predicciones con intervalo de confianza del 95%

```
[]: predicciones = modelo.get_prediction(exog = x_train).summary_frame(alpha=0.05) predicciones.head(5)
```

```
[]:
                     mean_se mean_ci_lower mean_ci_upper obs_ci_lower
             mean
                                                835.912577
    0 768.183475 32.658268
                                 700.454374
                                                              609.456054
    1 646.551778 19.237651
                                 606.655332
                                                686.448224
                                                              497.558860
    2 680.276930 14.186441
                                 650.856053
                                                709.697807
                                                              533.741095
    3 735.011194 22.767596
                                 687.794091
                                                782.228298
                                                              583.893300
    4 629.412766 23.713237
                                 580.234522
                                                678.591009
                                                              477.670673
       obs_ci_upper
         926.910897
    0
    1
         795.544695
    2
         826.812765
    3
         886.129088
         781.154858
```

5 Representación grafica del modelo

5.1 Predicciones con intervalo de confianza del 95%

```
[]: predicciones = modelo.get_prediction(exog = x_train).summary_frame(alpha=0.05)
    predicciones["x"] = x_train[:,1]
    predicciones["y"] = y_train
    predicciones = predicciones.sort_values("x")
```

5.2 Grafico del modelo

```
[]: fig,ax = plt.subplots(figsize=(6,3.84))
ax.scatter(predicciones["x"],predicciones["y"],marker="o",color="gray")
ax.plot(predicciones["x"],predicciones["mean"],linestyle="-",label="OLS")
```

[]: <matplotlib.legend.Legend at 0x7887828e5540>

6 Error de test del modelo

```
[]: x_test = sm.add_constant(x_test,prepend=True)
predicciones = modelo.predict(exog = x_test)

rmse = mean_squared_error(
    y_true = y_test,
    y_pred = predicciones,
    squared = False
    )
print(f"El error (rmse) de test es: {rmse}")
```

El error (rmse) de test es: 59.33671608336119