

A Subexponential Time Algorithm for Makespan Scheduling of Unit Jobs with Precedence Constraints

Jesper Nederlof

UU

Céline Swennenhuis

TU/e

Karol Węgrzycki

MPI

$$P3|prec,p_j=1|C_{\max}$$

 $P3|prec,p_j=1|C_{
m max}$ 3 identical parallel machines

$$P3|prec, p_j = 1|C_{\max}|$$

Given:

n jobs of length 1

$P3|prec, p_j = 1|C_{\max}|$

Given:

- n jobs of length 1
- A precedence graph G

$P3|prec, p_j = 1|C_{\max}|$

Given:

- *n* jobs of length 1
- A precedence graph G
- $T \in \mathbb{N}$

Q: Is there a schedule of makespan *T*?

$P3|prec, p_j = 1|C_{\max}|$

Given:

- *n* jobs of length 1
- A precedence graph G
- $T \in \mathbb{N}$

Q: Is there a schedule of makespan *T*?

	time				
	1	2	3	4	
1	а	С	f	i	
2	b	d	g	j	
3		e	h		

$P3|prec, p_j = 1|C_{\max}$

Given:

- n jobs of length 1
- A precedence graph G

G defines the problem

• $T \in \mathbb{N}$

Q: Is there a schedule of makespan *T*?

Observation:

Jobs of length one ⇒ 'timeslots'

		• • • • • • • • • • • • • • • • • • • •			
	1	2	3	4	
1	а	С	f	i	
2	b	d	g	j	
3		e	h		

time

- 1. Graph Isomorphism
- 2. Subgraph Homeomorphism
- 3. Graph genus
- 4. Chordal graph completion
- 5. Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

- Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation

- 1. Graph Isomorphism
- 2. Subgraph Homeomorphism
- 3. Graph genus
- 4. Chordal graph completion
- 5. Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

- 8. Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation

- 1. Graph Isomorphism
- 2. Subgraph Homeomorphism
- 3. Graph genus
- 4. Chordal graph completion
- 5. Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

- 8. Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation

- 1. Graph Isomorphism
- 2. Subgraph Homeon hism
- 3. Graph genus
 - . Chordal graph [Babai 2017]

 $2^{O((\log n)^3)}$

- 5. Chromatic index
- 6. Spanning tree parity problem
- 7. Partial order dimension

- 8. Precedence constrained 3-processor scheduling
- 9. Linear Programming
- 10. Total unimodularity
- 11. Composite number
- 12. Minimum length triangulation

- **Graph Isomorphism**
- Subgraph Homeon
- Graph genus
- $2^{O((\log n)^3)}$ time [Babai 2017] Chordal graph
- Chromatic index
- Spanning tree parity problem
- Partial order dimension

Precedence constrained 3-processor scheduling

 $2^{O(\sqrt{n} \cdot \log n)}$ time

This talk

- 9. Linear Program
- 10. Total unimodu
- 11. Composite nur
- 12. Minimum length triangulation

Literature overview $Pm|prec, p_j = 1|C_{\text{max}}|$

Literature overview $Pm|prec, p_j = 1|C_{\max}|$

• NP-complete¹ m = # machines given as input

¹Jeffrey D. Ullman. *NP-complete scheduling problems*. Journal of Computer and System sciences, 10(3):384–393, 1975.

Literature overview $Pm|prec, p_j = 1|C_{\text{max}}|$

• NP-complete¹ m =#machines given as input

¹Jeffrey D. Ullman. *NP-complete scheduling problems*. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable² for m = 2

²M. Fujii, T. Kasami, and K. Ninomiya. *Optimal sequencing of two equivalent processors*. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969.

Literature overview $Pm|prec, p_j = 1|C_{\text{max}}$

• NP-complete¹ m =#machines given as input

¹Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable² for m = 2

²M. Fujii, T. Kasami, and K. Ninomiya. *Optimal sequencing of two equivalent processors*. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969.

• ???? for $m \ge 3$ constant OPEN³

³Michael R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, 1979.

Literature overview $Pm|prec, p_j = 1|C_{\text{max}}$

• NP-complete¹ m = # machines given as input

¹Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Computer and System sciences, 10(3):384–393, 1975.

• Poly-time solvable² for m = 2

²M. Fujii, T. Kasami, and K. Ninomiya. *Optimal sequencing of two equivalent processors*. SIAM Journal on Applied Mathematics, 17(4):784–789, 1969.

• ???? for $m \ge 3$ constant **OPEN**³

³Michael R. Garey and David S. Johnson. *Computers and Intractability: A Guide to the Theory of NP-Completeness*. W. H. Freeman, 1979.

Before:

 $Pm|prec, p_j = 1|C_{\max}$ can be solved in $O\left(2^n \cdot \binom{n}{m}\right)$ time.

Our Result

Our result:

$$Pm|prec, p_j = 1|C_{\max}$$
 can be solved in $\left(1 + \frac{n}{m}\right)^{O(\sqrt{nm})}$ time.

Our Result

Our result:

$$Pm | prec, p_j = 1 | C_{\max}$$
 can be solved in $\left(1 + \frac{n}{m}\right)^{O(\sqrt{nm})}$ time.

Corollary:

$$P3|prec, p_j = 1|C_{\max}$$
 can be solved in $2^{O(\sqrt{n} \cdot \log n)}$ time.

Our Result

Our result:

$$Pm|prec, p_j = 1|C_{\max}$$
 can be solved in $\left(1 + \frac{n}{m}\right)^{O(\sqrt{nm})}$ time.

Corollary:

$$P3|prec, p_j = 1|C_{\max}$$
 can be solved in $2^{O(\sqrt{n} \cdot \log n)}$ time.

Two ways to explain, but main insights:

- 1. Use of look-up table
- 2. Keeping track of number of isolated vertices
- 3. Finding win-win strategy

Precedence Constraints Graph G

$$G \Rightarrow$$
 partial order:

•
$$i < j$$
 if $(i,j) \in G$

Precedence Constraints Graph G

Precedence Constraints Graph G

$$G \Rightarrow$$
 partial order:

•
$$i \prec j$$
 if $(i,j) \in G$

<u>Definitions:</u> Let A be a set of jobs.

$$pred[A] =$$

$$succ[A] =$$

Precedence Constraints Graph G

 $G \Rightarrow$ partial order:

•
$$i \prec j$$
 if $(i,j) \in G$

<u>Definitions:</u> Let *A* be a set of jobs.

$$pred[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \le a\}$$

$$succ[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \geqslant a\}$$

Precedence Constraints Graph G

 $G \Rightarrow$ partial order: • i < j if $(i, j) \in G$

Definitions: Let A be a set of jobs. pred $[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \le a\}$ sinks $(A) = \max\{A\}$ succ $[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \ge a\}$ sources $(A) = \min\{A\}$

Precedence Constraints Graph G

 $G \Rightarrow$ partial order:

•
$$i < j$$
 if $(i,j) \in G$

Definitions: Let A be a set of jobs. pred $[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \le a\}$ sinks $(A) = \max\{A\}$ succ $[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \ge a\}$ sources $(A) = \min\{A\}$

Precedence Constraints Graph G

 $G \Rightarrow$ partial order:

• i < j if $(i,j) \in G$

Definitions: Let *A* be a set of jobs.

 $pred[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \le a\}$ $sinks(A) = max\{A\}$ $succ[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \ge a\}$ $sources(A) = min\{A\}$

Ex. $\{c, d\}$, then:

• $pred[\{c,d\}] = \{a,c,d\}$

Precedence Constraints Graph G

 $G \Rightarrow$ partial order:

• i < j if $(i,j) \in G$

<u>Definitions:</u> Let *A* be a set of jobs.

$$pred[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \le a\}$$

$$sinks(A) = max\{A\}$$

$$succ[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \ge a\}$$

$$sources(A) = min\{A\}$$

- $pred[\{c,d\}] = \{a,c,d\}$
- $sinks({a, c, d}) = {c, d}$

Precedence Constraints Graph G

$G \Rightarrow$ partial order:

• i < j if $(i,j) \in G$

<u>Definitions:</u> Let *A* be a set of jobs.

$$pred[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \le a\}$$

$$sinks(A) = max\{A\}$$

$$succ[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \ge a\}$$

$$sources(A) = min\{A\}$$

- $pred[\{c,d\}] = \{a,c,d\}$
- $sinks({a, c, d}) = {c, d}$
- $succ[\{c,d\}] = \{c,d,e,f\}$

Precedence Constraints Graph G

 $G \Rightarrow$ partial order:

• i < j if $(i,j) \in G$

Definitions: Let *A* be a set of jobs.

$$pred[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \leq a\}$$

$$sinks(A) = max\{A\}$$

$$succ[A] = \{x \mid \exists \ a \in A \ s. \ t. \ x \geq a\}$$

$$sources(A) = min\{A\}$$

- $pred[\{c,d\}] = \{a,c,d\}$
- $sinks({a, c, d}) = {c, d}$
- $succ[\{c,d\}] = \{c,d,e,f\}$
- sources($\{c, d, e, f\}$) = $\{c, d\}$

Precedence Constraints Graph G

Def: A *chain* is a set A whose elements are pairwise **comparable**.

Precedence Constraints Graph G

Def: A *chain* is a set *A* whose elements are pairwise **comparable**.

Def: The *height* h(G) is the size of the longest chain (in #arcs).

In the example h(G) = 2

Precedence Constraints Graph G

Def: A *chain* is a set *A* whose elements are pairwise **comparable**.

Def: The *height* h(G) is the size of the longest chain (in #arcs).

In the example h(G) = 2

Def: An *antichain* is a set A whose elements are pairwise **incomparable**.

Examples of antichains in *G*

- $\checkmark \{b,c,d\}$
- $\checkmark \{b,c\}$
- $\checkmark \{d,f\}$

Jobs in one timeslot always form an antichain

Zero-Adjusted Schedule (D&W)

No sinks

Assumption: $n = 3 \cdot T$

Let $z \in [1, T]$ be the first moment with a sink.

D&W: W.m.a. Each job x after z is a sink or a successor of a job at time z.

machines

Dolev and Warmuth

Schedule(*J*):

- 1. if $h(G[J]) \le 0$ (i.e. sinks(J) = J) return $\left| \frac{|J|}{3} \right|$
- 2. **else return** $\min_{H \in \text{Sep}(J)} \{ \text{Schedule}(\text{left}(J, H)) + \text{Schedule}(\text{right}(J, H)) + 1 \}$

```
Sep(J) := { H \subseteq J s.t.

(1) |H| \le 3,

(2) H is antichain,

(3) |H \setminus \text{sinks}(J)| < 3}
```

$$left(J, H) := J \setminus (succ[H] \cup sinks(J))$$

right(J, H) := J \cap ((succ(H) \cup sinks(J)) \cap H

Each subproblem: height decreases by $\geq 1!$

D&W

Schedule(*J*):

- 1. if $h(G[J]) \leq 0$ return $\left\lceil \frac{|J|}{3} \right\rceil$
- 2. **for each** $H \in \text{Sep}(J)$ **do:**
- 3. OPT[left(J, H)] := Schedule(left(J, H))
- 4. OPT[right(J, H)] := Schedule(right(J, H))
- 5. $OPT[J] := \min_{H \in Sep(J)} \{OPT[left(J, H)] + OPT[right(J, H)] + 1\}$
- 6. Return OPT[*J*]

Sep
$$(J) \coloneqq \{ H \subseteq J \text{ s.t.}$$

 $(1) |H| \le 3,$
 $(2) H \text{ is antichain,}$
 $(3) |H \setminus \text{sinks}(J)| < 3 \}$

```
left(J, H) := J \setminus (succ[H] \cup sinks(J))
right(J, H) := J \cap ((succ(H) \cup sinks(J)) \cap H
```


D&W + LookUp Table

Schedule(*J*):

- 1. **return** LUT[*J*] if it was already set
- 2. if $h(G[J]) \le 0$ return $\left\lceil \frac{|J|}{3} \right\rceil$
- 3. **for each** $H \in \text{Sep}(J)$ **do:**
- 4. OPT[left(J, H)] := Schedule(left(J, H))
- 5. OPT[right(J, H)] := Schedule(right(J, H))
- 6. $OPT[J] := \min_{H \in Sep(J)} \{OPT[left(J, H)] + OPT[right(J, H)] + 1\}$
- 7. LUT[J] = OPT[J]

8. Return OPT[*J*]

Sep(J) := { $H \subseteq J$ s.t. (1) $|H| \le 3$, (2) H is antichain, (3) $|H \setminus \text{sinks}(J)| < 3$ }

```
left(J, H) := J \setminus (succ[H] \cup sinks(J))
right(J, H) := J \cap ((succ(H) \cup sinks(J)) \cap H
```

Too many different problems!

D&W + LookUp Table

Schedule(*J*):

- 1. **return** LUT[core(J), #iso(J)] if it was already set
- 2. if $J = \emptyset$ return 0
- 3. for each $H \in Sep(J)$ do:
- 4. OPT[left(J, H)] := Schedule(left(J, H))
- 5. OPT[right(J, H)] := Schedule(right(J, H))
- 6. $OPT[J] := \min_{H \in Sep(J)} \{OPT[left(J, H)] + OPT[right(J, H)] + 1\}$
- 7. LUT[core(J), #iso(J)] = OPT[J]
- 8. Return OPT[*J*]

```
Sep(J) := { H \subseteq J s.t.

(1) |H| \le 3,

(2) H is antichain,

(3) |H \setminus \text{sinks}(J)| < 3}
```

$$left(J,H) := J \setminus (succ[H] \cup sinks(J))$$

right(J,H) := J \cap ((succ(H) \cup sinks(J)) \cap H

How does this help?

Let *J* be a *feasible set of jobs*.

Let J be a feasible set of jobs.

Jobs / can be described as

$$J = \operatorname{succ}[L] \cap \operatorname{pred}[R]$$

where

L = minimal elements = sources of J

R = maximal elements = sinks of J


```
Let J be a feasible set of jobs.
```

Jobs J can be described as

$$J = \operatorname{succ}[L] \cap \operatorname{pred}[R]$$

where

L = minimal elements = sources of J

R = maximal elements = sinks of J


```
Let J be a feasible set of jobs.

Jobs J can be described as

\mathbf{core}(J)
J = \mathbf{succ}[L] \cap \mathbf{pred}[R]
where

L = \mathbf{minimal\ elements} = \mathbf{sources\ of\ } J
R = \mathbf{maximal\ elements} = \mathbf{sinks\ of\ } J
```



```
Let J be a feasible set of jobs.

Jobs J can be described as \mathbf{succ}(L)
J = \mathbf{succ}[L] \cap \mathbf{pred}[R]
where

L = \text{minimal elements} = \text{sources of } J
R = \text{maximal elements} = \text{sinks of } J
```


Assumption: $n = 3 \cdot T$

Assumption: $n = 3 \cdot T$

Assumption: $n = 3 \cdot T$

$$=R$$

 $|H_2| \le 3$

Assumption: $n = 3 \cdot T$

= R

 $core(J_3) = succ(H_3) \cap pred[R]$

Isolated vertex

w.r.t. J_3

 $|H_3| \leq 3$

Going to the left

Assumption: $n = 3 \cdot T$

Going to the left

Assumption: $n = 3 \cdot T$

 $core = \mathbf{succ}(\mathbf{L}) \cap \mathrm{pred}[R_{\mathrm{new}}]$

- **1.** Every left subproblem has $|L| \leq 3$
- **2.** Problem size decreases by |R|

Win-Win strategy

Case $ R \leq \sqrt{n}$	Case $ R > \sqrt{n}$
\Rightarrow only $\binom{n}{\sqrt{n}} = 2^{O(\sqrt{n} \cdot \log n)}$ different R' s	In next <u>left</u> step: make \sqrt{n} jobs progress!

Branching Tree Either already in Lookup Table: - Base case

$$= |R| \le \sqrt{n}$$
$$= |R| > \sqrt{n}$$

Branching Tree

Either already in Lookup Table:

- Base case

Or not yet in Lookup Table:

$$= |R| \le \sqrt{n}$$

$$= |R| > \sqrt{n}$$

Branching Tree

Either already in Lookup Table:

- Base case

Or not yet in Lookup Table:

- View as its 'own tree'
- $\Rightarrow n^{\sqrt{n}}$ such trees

$$= |R| \le \sqrt{n}$$

$$=|R|>\sqrt{n}$$

 $\leq n^4$ right descendants

 $\leq n^4 \cdot n^3$ Simplify in the second secon

 $=|R| \le \sqrt{n}$ subp

 $= |R| > \sqrt{n}$

subproblem achieved by consecutively going into right subproblems, then **once left**

`first left descendant'

 $\geq \sqrt{n}$ jobs progress

$$= |R| \le \sqrt{n}$$
$$= |R| > \sqrt{n}$$

 $\geq \sqrt{n}$ jobs progress

Algorithm

Schedule(*J*):

- Sep $(J) \coloneqq \{ H \subseteq J \text{ s.t.}$ (1) $|H| \le 3$, (2) H is antichain,(3) $|H \setminus \text{sinks}(J)| < 3 \}$
- 1. **return** LUT[core(J), #iso(J)] if it was already set
- 2. if $J = \emptyset$ return 0
- 3. **for each** $H \in \text{Sep}(J)$ **do:**

- $left(J, H) := J \setminus (succ[H] \cup sinks(J))$ right(J, H) := J \cap ((succ(H) \cup sinks(J)) \cap H
- 4. OPT[left(J, H)] := Schedule(left(J, H))
- 5. OPT[right(J, H)] := Schedule(right(J, H))
- 6. $OPT[J] := \min_{H \in Sep(J)} \{OPT[left(J, H)] + OPT[right(J, H)] + 1\}$
- 7. LUT[core(J), #iso(J)] = OPT[J]
- 8. Return OPT[*J*]

Only $2^{O(\sqrt{n} \cdot \log n)}$ different problems encountered

Corollaries

Our result:

$$Pm | prec, p_j = 1 | C_{\max}$$
 can be solved in $\left(1 + \frac{n}{m}\right)^{O(\sqrt{nm})}$ time.

Corollary 1

 $Pm|prec, p_j = 1|C_{\max}$ can be solved in subexponential time whenever m = o(n).

Corollary 2

 $P|prec, p_j = 1|C_{max}$ can be solved in $1.997^n \cdot poly(n)$ time.

Main result:

$$P3|prec, p_j = 1|C_{\max} \text{ in } 2^{O(\sqrt{n} \cdot \log n)} \text{ time.}$$

Main result:

 $P3|prec, p_j = 1|C_{\max} \text{ in } 2^{O(\sqrt{n} \cdot \log n)} \text{ time.}$

Key idea's:

- 1. Use of look-up table
- 2. Keeping track of core + # isolated vertices
- 3. Finding win-win strategy using number of sinks

Main result:

$$P3|prec, p_j = 1|C_{\max} \text{ in } 2^{O(\sqrt{n} \cdot \log n)} \text{ time.}$$

Key idea's:

- 1. Use of look-up table
- 2. Keeping track of core + # isolated vertices
- 3. Finding win-win strategy using number of sinks

Future Research:

$$P3|prec, p_j = 1|C_{\text{max}}$$
 in quasi-polynomial time?

Main result:

 $P3|prec, p_j = 1|C_{\max} \text{ in } 2^{O(\sqrt{n} \cdot \log n)} \text{ time.}$

Key idea's:

- 1. Use of look-up table
- 2. Keeping track of core + # isolated vertices
- 3. Finding win-win strategy using number of sinks

Future Research:

 $P3|prec, p_j = 1|C_{\text{max}}$ in quasi-polynomial time?

