The Genre Factor

Project Presentation - ML Seminar 2023

Henry Krämerkämper Christopher Breitfeld 13.07.2023

Technische Universität Dortmund

Introduction to the Problem

Genre Classification

- Based on a variety of the tracks' features
- Dataset: Thousands of songs with diverse genres
- Challenge: Developing an accurate classification model

Feature	Value
Artist	Gorillaz
Url_spotify	https://open.spotify
Track	Feel Good Inc.
Album	Demon Days
Album_type	album
Uri	spotify:track:0d28khcov6AiegS
Danceability	0.818
Energy	0.705
Key	6.0
Loudness	-6.679
Speechiness	0.177
Acousticness	0.00836
Instrumentalness	0.00233
Liveness	0.613
Valence	0.772
Tempo	138.559
Duration_ms	222640.0
Url_youtube	https://www.youtube
Title	Gorillaz - Feel Good Inc. (Official
Channel	Gorillaz
Views	693555221.0
Likes	6220896.0
Comments	169907.0
Description	Official HD Video for Gorillaz'
Licensed	True
official_video	True
Stream	10402348540

Description of the Data Set

Dataset from Kaggle: Spotify and YouTube

- Contains statistics of 20.7 k songs on Spotify and YouTube
- · Does NOT include genre information.

Wikidata Query for the Top-Genre of the Artist

- · Query artist's Wikidata page for genres
- · Assign artists/album genre to song

Selection

- Group Subgenres into Supercategories
- Select sample of 6
 Genres
- Remaining Songs: 6446

Network Architecture

Model

- 4 Dense Layers with Dropout
- · Trainable parameters: 170 246
- Loss function: categorical crossentropy
- · Optimizer: adam

Training

- Transform data to a normal distribution with QuantileTransformer
- Scaling on [-1,1] with MinMaxScaler
- Early stopping: Stops training when the validation loss function no longer improves
- Reduce learning rate: Decreases learning rate if validation loss function stagnates → better convergence
- Train the model using the training data with the defined set of hyperparameters.

Hyperparameter Optimization

Method

• Grid Search: Train models with all combinations of hyperparameters

Validation

- k=3 Cross Validation
- Save train/validation Accuracy and Loss

Overtraining Checks

Methods to prevent Overtraining

- · Dropout
- · Early stopping
- Minimize (Training Acc. Validation Acc.) but maximize Validation Acc.

Try different values and decide after Hyperparameter Optimization

Results of our Neural Network

Accuracy and AUC-PR

- \cdot Results in an accuracy of $65.56\,\%$ on test data
- As well as an AUC-PR score of 0.738

Results of our Neural Network

Alternative Methods

K-nearest-neighbors

- Use k = 12 as it achieves the highest performance
- Results in an accuracy of $60.62\,\%$

Support vector machines

- Model that classifies data by finding the hyperplane that maximally separates different categories in a multidimensional space
- Use an One-vs-One approach to be able to do Multiclass-Classification:
 - A separate model is trained for each pair of classes, and a given data point is classified by majority voting among the classifiers
- The used kernel function is the radial basis function (RBF)
- Results in an accuracy of 63.88 %

Conclusions

- \cdot NN achieves an accuracy of $65.56\,\%$ on test data.
- $\boldsymbol{\cdot}$ Diminishing returns for more complex models, we are constrained by the dataset

Conclusions

Appendix: Accuracy and Loss

Appendix: Precision-Recall Curve

Appendix: Substructure of Hip Hop

