Ensembling

Handout 4 of Introduction to Machine Learning

January 2020

We'll	assign eac	h team a	a number.	Your	team	number	${\rm determines}$	which	${\rm ten}$	observations	from	the	testing
set ye	ou'll predic	t (Round	1 1) and v	ote on	(Rour	nd 2).							

Team #:	
---------	--

Round 1: Predict

Use the get_boot_votes() function provided to:

- build a single classification tree,
- train it with one bootstrapped sample, and
- predict your 10 observations from the testing set.

Your output will look like this. Use it to fill in the table on the back of this page.

```
get_boot_votes(seed = 0, team = 2020)
```

```
## # A tibble: 10 x 3
##
        obs truth
                        estimate
##
      <int> <fct>
                        <fct>
##
         68 Remote
                        Not remote
    1
##
         69 Remote
                        Remote
##
    3
         70 Remote
                        Remote
##
    4
         71 Remote
                        Remote
         72 Remote
##
    5
                       Not remote
##
    6
         68 Not remote Not remote
##
   7
         69 Not remote Not remote
         70 Not remote Not remote
##
    9
         71 Not remote Not remote
## 10
         72 Not remote Not remote
```

What was your bootstrapped tree's overall accuracy?

(over)

			Round 1: Predict		Round 2: Vote!				
	Obs	Truth	Guess	Score	Votes Remote	Votes Not	Majority Vote		
1		Remote		0 / 1			Remote / Not		
2		Remote		0 / 1			Remote / Not		
3		Remote		0 / 1			Remote / Not		
4		Remote		0 / 1			Remote / Not		
5		Remote		0 / 1			Remote / Not		
6		Not Remote		0 / 1			Remote / Not		
7		Not Remote		0 / 1			Remote / Not		
8		Not Remote		0 / 1			Remote / Not		
9		Not Remote		0 / 1			Remote / Not		
10		Not Remote		0 / 1			Remote / Not		
			Total	/ 10					

Round 2: Vote!

Now, as a team, form a voting committee. You have your tree's votes for those 10 observations already filled in the table above. Your job now is to tally up the number of votes for Remote / Not Remote across all team members' trees. Fill in the second half of the table with your team.

What was your team's overall accuracy, across each members' bootstrapped trees?