## Subneteo en IPV4 e IPV6

Divide y vencerás...



## Segmentación de Redes

## Razones para el subneteo

Las grandes redes necesitan ser segmentadas en pequeñas subredes, creando grupos más pequeños de dispositivos y servicios para:

- Controlar el tráfico conteniendo los broadcast dentro de subredes
- Reduce el tráfico de la red y mejora su rendimiento

**Subnetting** - proceso de segmentación de una red en múltiples redes más pequeñas llamadas subredes (subnetworks) o **Subnets.** 

## Comunicación entre subredes

- Un router es necesario para que dispositivos en diferentes redes y subredes se comuniquen.
- Cada interfaz de router debe tener una dirección de host IPv4 que pertenezca a la red o subred a la que la interfaz del router está conectada.
- Los dispositivos en una red y subred usan la interfaz del router anexada a su LAN como su default gateway.

## El Subnetting IP es Fundamental









Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

## Subnetting Básico

- Prestando de Bits para crear subredes
- Prestando 1 bit 2¹ = 2 subredes



Prestando 1 Bit desde la porción de host crea 2 subredes con la misma máscara de subred

Subred 0

Network 192.168.1.0-127/25

Mask: 255.255.255.128

Subred 1

Network 192.168.1.128-255/25

Mask: 255.255.255.128

## Subredes en uso

Subred 0

Red 192.168.1.0-127/25

192.168.1.0/25
PC1 G0/0
R1

192.168.1.128/25

Subred 1

Red 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

#### Network Address 192. 168. 1. 0 000 0000 = 192.168.1.0 First Host Address = 192.168.1.1 192. 168. 1. 0 000 0001 Last Host Address 192. 168. 1. 0 111 1110 = 192.168.1.126 Broadcast Address 192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

| Network   | Address   |    |   |     |      |                 |
|-----------|-----------|----|---|-----|------|-----------------|
| 192.      | 168.      | 1. | 1 | 000 | 0000 | = 192.168.1.128 |
| First Hos | t Address |    |   |     |      |                 |
| 192.      | 168.      | 1. | 1 | 000 | 0001 | = 192.168.1.129 |
| Last Host | Address   |    |   |     |      |                 |
| 192.      | 168.      | 1. | 1 | 111 | 1110 | = 192.168.1.254 |
| Broadcas  | t Address |    |   |     |      |                 |
| 192.      | 168.      | 1. | 1 | 111 | 1111 | = 192.168.1.255 |
|           |           |    |   |     |      |                 |

## Formulas de Subneteo

## Calcular el Número de Subredes



## Calcular el Número de Hosts



## **Creando 4 Subredes**

Pidiendo 2 bits para crear 4 subredes. 2² = 4 subnets



## **Creando 8 Subredes**

# Pidiendo prestado 3 bits para Crear 8 Subredes 2³ = 8 subredes

|       | Network                                      | 192.                         | 168.                         | 1.             | 000                             | 0 0000                                         | 192.168.1.1                                                                  |
|-------|----------------------------------------------|------------------------------|------------------------------|----------------|---------------------------------|------------------------------------------------|------------------------------------------------------------------------------|
| Net 0 | Fist                                         | 192.                         | 168.                         | 1.             | 000                             | 0 0001                                         | 192.168.1.1                                                                  |
|       | Last                                         | 192.                         | 168.                         | 1.             | 000                             | 1 1110                                         | 192.168.1.30                                                                 |
|       | Broadcast                                    | 192.                         | 168.                         | 1.             | 000                             | 1 1111                                         | 192.168.1.31                                                                 |
|       | Network                                      | 192.                         | 168.                         | 1.             | 001                             | 0 0000                                         | 192.168.1.32                                                                 |
| Net 1 | Fist                                         | 192.                         | 168.                         | 1.             | 001                             | 0 0001                                         | 192.168.1.33                                                                 |
|       | Last                                         | 192.                         | 168.                         | 1.             | 001                             | 1 1110                                         | 192.168.1.62                                                                 |
|       | Broadcast                                    | 192.                         | 168.                         | 1.             | 001                             | 1 1111                                         | 192.168.1.63                                                                 |
|       |                                              |                              |                              |                |                                 |                                                |                                                                              |
|       | Network                                      | 192.                         | 168.                         | 1.             | 010                             | 0 0000                                         | 192.168.1.64                                                                 |
| Net 2 | Network<br>Fist                              | 192.<br>192.                 | 168.<br>168.                 | 1.             | 010<br>010                      | 0 0000<br>0 0001                               | 192.168.1.64<br>192.168.1.65                                                 |
| Net 2 |                                              |                              |                              |                |                                 |                                                |                                                                              |
| Net 2 | Fist                                         | 192.                         | 168.                         | 1.             | 010                             | 0 0001                                         | 192.168.1.65                                                                 |
| Net 2 | Fist<br>Last                                 | 192.                         | 168.<br>168.                 | 1.             | 010<br>010                      | 0 0001<br>1 1110                               | 192.168.1.65<br>192.168.1.94                                                 |
| Net 2 | Fist<br>Last<br>Broadcast                    | 192.<br>192.<br>192.         | 168.<br>168.<br>168.         | 1.<br>1.<br>1. | 010<br>010<br>010               | 0 0001<br>1 1110<br>1 1111                     | 192.168.1.65<br>192.168.1.94<br>192.168.1.95                                 |
|       | Fist<br>Last<br>Broadcast<br>Network         | 192.<br>192.<br>192.         | 168.<br>168.<br>168.         | 1.<br>1.<br>1. | 010<br>010<br>010               | 0 0001<br>1 1110<br>1 1111<br>0 0000           | 192.168.1.65<br>192.168.1.94<br>192.168.1.95<br>192.168.1.96                 |
|       | Fist<br>Last<br>Broadcast<br>Network<br>Fist | 192.<br>192.<br>192.<br>192. | 168.<br>168.<br>168.<br>168. | 1.<br>1.<br>1. | 010<br>010<br>010<br>010<br>010 | 0 0001<br>1 1110<br>1 1111<br>0 0000<br>0 0001 | 192.168.1.65<br>192.168.1.94<br>192.168.1.95<br>192.168.1.96<br>192.168.1.97 |

## Creando 8 Subredes (continuación)

|       | Network         | 192.         | 168. | 1. | 100        | 0 0000           | 192.168.1.128                  |
|-------|-----------------|--------------|------|----|------------|------------------|--------------------------------|
| Net 4 | Fist            | 192.         | 168. | 1. | 100        | 0 0001           | 192.168.1.129                  |
|       | Last            | 192.         | 168. | 1. | 100        | 1 1110           | 192.168.1.158                  |
|       | Broadcast       | 192.         | 168. | 1. | 100        | 1 1111           | 192.168.1.159                  |
|       | Network         | 192.         | 168. | 1. | 101        | 0 0000           | 192.168.1.160                  |
| Net 5 | Fist            | 192.         | 168. | 1. | 101        | 0 0001           | 192.168.1.161                  |
| 11010 | Last            | 192.         | 168. | 1. | 101        | 1 1110           | 192.168.1.190                  |
|       | Broadcast       | 192.         | 168. | 1. | 101        | 1 1111           | 192.168.1.191                  |
|       | Network         | 192.         | 168. | 1. | 110        | 0 0000           | 192.168.1.192                  |
| Net 6 | Fist            | 192.         | 168. | 1. | 110        | 0 0001           | 192.168.1.193                  |
|       | Last            | 192.         | 168. | 1. | 110        | 1 1110           | 192.168.1.222                  |
|       | Broadcast       | 192.         | 168. | 1. | 110        |                  | 400 400 4 000                  |
|       |                 | 132.         | 100. | μ. | 110        | 1 1111           | 192.168.1.223                  |
|       | Network         | 192.         | 168. | 1. | 111        | 0 0000           | 192.168.1.224                  |
| Net 7 | Network<br>Fist |              |      |    |            |                  |                                |
| Net 7 |                 | 192.         | 168. | 1. | 111        | 0 0000           | 192.168.1.224                  |
| Net 7 | Fist            | 192.<br>192. | 168. | 1. | 111<br>111 | 0 0000<br>0 0001 | 192.168.1.224<br>192.168.1.225 |

#### **Subnet Allocation**



## Determinando la máscara de subred

## Subneteo Basado en requerimientos de Host

## Hay dos consideraciones cuando se planifican subredes:

- Número de subredes requeridas
- Número de direcciones de Host requeridas
- Fórmula para determinar número de hosts usables

- 2^n (donde n es el número de bits restantes) es usado para calcular el número de hosts
- -2 La dirección de subred y broadcast no puede ser usada en cada subred

## Determinando la máscara de subred

## Subneteo basado en requerimientos de red

## Calcular el número de subredes

- Fórmula 2<sup>n</sup> (donde n es el número de bits prestados)
- Subred necesaria por cada departamento en el gráfico



# Subneteo para satisfacer los requerimientos de Red

- Es importante balancear el número de subredes necesarias y el número de hosts requeridos por la red más grande.
- Diseñar el esquema de direccionamiento para acomodar la cantidad máxima de hosts por cada subred.
- Permite el crecimiento en cada subred.



## Determinando la máscara de subred Subneteo para satisfacer los requerimientos de Red (cont)

#### Subnets and Addresses

```
10101100.00010000.000000000.10000000 172.16.0.128/26
  10101100.00010000.000000000.110000000 172.16.0.192/26
4 10101100.00010000.000000001.00000000 172.16.1.0/26
  10101100.00010000.000000001.010000000 172.16.1.64/26
6 10101100.00010000.000000<mark>01.10</mark>000000 172.16.1.128/26
               Nets 7 – 14 not shown
15 10101100.00010000.00000011.10000000 172.16.3.128/26
16 10101100.00010000.000000<mark>11.110000000</mark> 172.16.3.192/26
                    2^4 = 16 2^6 - 2 = 62
                    subnets Hosts per
                           subnet
```

#### Beneficios de VLSM

## Subneteo Tradicional desperdicia direcciones

- Subneteo tradicional igual número de direcciones asignadas para cada subred.
- •Subredes que requieren menos direcciones tienen direcciones no usadas (perdidas). Por ejemplo, enlaces WAN necesitan sólo 2 direcciones.
- Máscara de subred de longitud variable (VLSM) o subneteando una subred proporciona un uso más eficiente de direcciones.

Traditional Subnetting Creates Equal Sized Subnets





#### Beneficios de VLSM

# Máscara de subred de longitud variable (VLSM)

- VLSM permite un espacio de red ser dividido en partes desiguales.
- La Máscara de subred variará dependiendo en cuantos bits se han pedido para una subred en particular.
- •Una red es subneteada y entonces esas subredes son subneteadas de nuevo.
- Procesos repetitivos son necesarios para crear subredes de varios tamaños.

## Beneficios de VLSM Básico de VLSM

#### VLSM Subnetting Scheme

```
11000000.10101000.00010100.00000000 192.168.20.0/24
0 11000000.10101000.00010100 .000 00000 192.168.20.0/27
1 11000000.10101000.00010100.00100000 192.168.20.32/27
                                                                   LANs
2 11000000.10101000.00010100 .010 00000 192.168.20.64/27
                                                                   A, B, C, D
3 11000000.10101000.00010100 .011 00000 192.168.20.96/27
4 11000000.10101000.00010100 .100 00000 192.168.20.128/27
                                                                  Unused/
5 11000000.10101000.00010100 .101 00000 192.168.20.160/27
                                                                  Available
  11000000.10101000.00010100 .110 00000 192.168.20.192/27_
   11000000.10101000.00010100 .111 00000 192.168.20.224/27
  3 more bits borrowed from subnet 7:
7:0 11000000.10101000.00010100 .11100000 192.168.20.224/30
7:1 11000000.10101000.00010100 .111001 00 192.168.20.228/30
                                                                  WANs
7:2 11000000.10101000.00010100 .111010 00 192.168.20.232/30
7:3 11000000.10101000.00010100 .111011 00 192.168.20.236/30 10000000.1010101000.00010100 .111011 00 192.168.20.236/30
7:4 11000000.10101000.00010100 .111100 00 192.168.20.240/30
                                                                  Unused/
7:5 11000000.10101000.00010100 .111101 00 192.168.20.244/30
                                                                  Available
7:6 11000000.10101000.00010100 .111110 00 192.168.20.248/30
7:7 11000000.10101000.00010100 .111111 00 192.168.20.252/30_
```

## Beneficios de VLSM

## **VLSM en la Práctica**

- •Usando subredes VLSM, los segmentos LAN y WAN en el ejemplo de abajo pueden ser direccionados con un mínimo de pérdida.
- Cada LAN será asignada con una máscara de subred /27.
- Cada enlace WAN será asignado con una máscara de subred de /30.

#### Network Topology: VLSM Subnets



```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ip address 192.168.20.1 255.255.255.224
R1(config-if) #exit
R1(config) #interface serial 0/0/0
R1(config-if) #ip address 192.168.20.225 255.255.255.252
R1(config-if) #end
R1#
```

# Beneficios de VLSM **Gráfico VLSM**

## VLSM Subnetting of 192.168.20.0 /24

|        | /27<br>Network | Hosts   |
|--------|----------------|---------|
| Bldg A | .0             | .130    |
| Bldg B | .32            | .3362   |
| Bldg C | .64            | .6594   |
| Bldg D | .96            | .97126  |
| Unused | .128           | .129158 |
| Unused | .160           | .161190 |
| Unused | .192           | .193222 |
|        | .224           | .225254 |

|           | /30<br>Network | Hosts   |
|-----------|----------------|---------|
| WAN R1-R2 | .224           | .225226 |
| WAN R2-R3 | .228           | .229230 |
| WAN R3-R4 | .232           | .233234 |
| Unused    | .236           | .237238 |
| Unused    | .240           | .241242 |
| Unused    | .244           | .245246 |
| Unused    | .248           | .249250 |
| Unused    | .252           | .253254 |

## Diseño estructurado

## Planificando para direccionar la Red

La asignación de direcciones de Red deben ser ser planificada y documentada para el propósito de:

- Prevención de direcciones duplicadas
- Proporcionando y controlando acceso
- Monitoreando seguridad y rendimiento

Direcciones para clientes - usualmente asignadas dinámicamante usando DHCP (Dynamic Host Configuration Protocol)

Muestra de plan de asignación de direccionamiento de Red

Network: 192.168.1.0/24

| Use                            | First | Last |
|--------------------------------|-------|------|
| Host Devices                   | .1    | .229 |
| Servers                        | .230  | .239 |
| Printers                       | .240  | .249 |
| Intermediary Devices           | .250  | .253 |
| Gateway (router LAN interface) | .254  |      |

## Subneteando usando el ID de Subred

Un espacio de Red IPv6 es subneteado para soportar un diseño jerárquico lógico de la red



#### Address Block: 2001:0DB8:ACAD::/48 2001:0DB8:ACAD:0000::/64 Increment 2001:0DB8:ACAD:0001::/64 subnet ID to 2001:0DB8:ACAD:0002::/64 create 65,536 2001:0DB8:ACAD:0003::/64 subnets 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0009::/64 2001:0DB8:ACAD:000A::/64 2001:0DB8:ACAD:000B::/64 2001:0DB8:ACAD:000C::/64 Subnets 13 - 65.534 not shown 2001:0DB8:ACAD:FFFF::/64

## Asignación de subred IPV6

#### IPv6 Subnetting

Address Block: 2001:0DB8:ACAD::/48

2001:0DB8:ACAD:0000::/64
2001:0DB8:ACAD:0001::/64
2001:0DB8:ACAD:0002::/64
2001:0DB8:ACAD:0003::/64
2001:0DB8:ACAD:0004::/64
2001:0DB8:ACAD:0005::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0008::/64
2001:0DB8:ACAD:0008::/64

#### IPv6 Subnet Allocation



## Subneteando dentro de la Interface ID

Bits IPv6 pueden ser pedidos de la interfaz ID para crar subredes IPv6 adicionales

#### Subnetting on a Nibble Boundary



## Resumen

- El proceso de segmentación de una red, dividiendo en múltiples redes más pequeñas, es llamado subneteo (subnetting).
- Subnetting de una subred, o Variable Length Subnet Mask (VLSM) fue diseñado para evitar la pérdida de direcciones.
- El espacio de direcciones IPv6 es un enorme espacio de direcciones que es subneteado para soportar el diseño lógico jerárquico de la red, no para conservar direcciones.
- Tamaño, localización, uso y requerimientos de acceso son todas consideraciones en el proceso de planificación de direcciones.
- Las redes IP necesitan ser probadas para verificar conectividad y rendimiento operacional.