Final Year Design Project- C Progress Presentation (Fall-2022)

Group: 8

Lazib Sharar Shaiok (19121141)

Mashiat Jamal (19121007)

Aanika Tabassum (19121145)

Soubir Datta Gupta (19121050)

ATC Panel-2

Chair- Prof. Dr. A. H. M. Abdur Rahman

Tasfin Mahmud

Md.Rakibul Hasan

Md.Mehedi Hasan Shawon

System With Parameter-Based Water Usage Suggestion

"River pollution in Bangladesh will be unbearable by 2050"

- The Daily Star

Objective

Analyze the parameters to determine toxicity of the water and suggest a usage accordingly.

Reduce reliance on ineffective manual sampling and lab testing.

Reduce water pollution in the long run.

Weighted Arithmetic Water Quality Index

The water quality index, $WQI = \sum Qi \times Wi / \sum Wi$

The quality rating scale (Qi) for each parameter is calculated by using this expression:

Wi=K/Vs

The quality rating scale (Qi) for each parameter is calculated by using this expression:

$$Qi=[(Va-Vi)/(Vs-Vi)]\times 100$$

Where, Wi is Unit weight of factor K is proportionality constant. Values of K were calculated as:

$$K=1/\sum(1/Vs)$$

No limitation on number of parameters.

WQI range, status and possible usage of the water sample

WQI	Water Quality Status(WQS)	Possible Uses
0-25	Excellent	Drinking, irrigation and industrial
26-50	Good	Drinking, irrigation and industrial
51-75	Poor	Irrigation and industrial
76-100	Very Poor	Irrigation
>100	Unsuitable for drinking and fish culture	Proper treatment required before use

➢ Prototype

Primary Circuit

Entire Prototype

Sensors In Contact With Water

1 — Calibration of sensors

pH Sensor Calibration Method

рН	Volt (V)
4.01	1.41
6.86	1.36

$$pH = -57V + 84.38$$

pH Sensor Calibration Verification

1		
рН:	2.67	
pH:	2.67	
pH:	2.67	
pH:	2.67	

pH of Coco-Cola is 2.6-2.7

Measuring Range: 0-1000

Accuracy = ± 0.01 NTU

Turbidity Sensor Calibration Method

	Turbidity (NTU)	Volt (V)
Tap-Water	0.8	3.01
Coco-cola	2.2	2.66
Milk	107.2	2.21

turbidity= 2308.065-1629.4V + 286.6667V^2

Turbidity Sensor Calibration Verification

Turbidity of 7up is 1.80 NTU

Usable temperature range: -55 to 125°C

±0.5°C Accuracy from -10°C to +85°C

Temperature Sensor Verification

Functional Verification

Mirpur DOHS Pond

Date: 13/12/2022

Time: 13:45 - 14:08

Diabari Lake

Date: 13/12/2022

Time: 14:40 - 14:51

Test Case-1: Mirpur DOHS Pond

video

Turbidity, Temperature, pH

Turbidity (NTU): 3.11

Temperature (C): 15

pH: 6.86

WQI, Status and Usage

Water Quality Index (WQI): 43.34

Status: Good - Usage: Irrigation and Industrial

Test Case-2: Diyabari Lake

video

Turbidity, Temperature, pH

Turbidity (NTU): 4.22

Temperature (C): 15

pH: 8.15

WQI, Status and Usage

Water Quality Index (WQI): 78.62

Status: Very Poor - Usage: Irrigation

 Data Transmission was unstable 1. Replaced ESP-8266 with Nodemcu ESP-32

- Data readings were fluctuating initially
- 3. Body was not floating

3. Changed to pipes of 3 inch

nodemcu

2. Recalibrated the circuit wrt to

- Install Solar Panel.Will Make Project "Greener".
- A Data-Set Could Be Prepared In The Long-Run. Useful for ML Applications.
- Install More Sensors. Will Give Better WQI Score.

Thank You! Any Questions?

Reference

- Weighted Arithmetic Water Quality Index Method (Brown et al. 1972)
- Md. Galad Uddin, S. Nash and A.I. Olbert, "A review of water quality index models and their use for assessing surface water quality," *Ecological Indicators*, vol.122, 2021, doi: https://doi.org/10.1016/j.ecolind.2020.107218.
- Dr.Eugene, "Calculation of Water Quality Index," *YouTube*, Date video uploaded: 16/7/2022, Available: <u>Calculation of Water Quality Index</u>. [Accessed: 27/7/2022]
- https://docs.google.com/document/d/1-p-6beyl-cauTWxQhIpG5eGi1rgviAWL/edit?usp=sharing&ouid=109972107783101339589 & https://document/d/1-p-6beyl-cauTWxQhIpG5eGi1rgviAWL/edit?usp=sharing&ouid=109972107783101339589 & https://document/d/1-p-6beyl-cauTWxQhIpG5eGi1rgviAWL/edit?usp=sharing&ouid=109972107783101339589 & <a href="https://document/d/1-p-6beyl-cauTWxQhIpG5eGi1rgviAWL/edit?usp=sharing&ouid=109972107783101399 & <a href="https://document/d/1-p-6beyl-cauTWxQhIpG5eGi1rgviAWL/e
- <u>https://www.youtube.com/watch?v=LtXfIYYb8F4&t=3s</u>
- http://stemsdl22.eduhk.hk/wp-content/uploads/2022/03/TurbidityTestOfDrinksManuel.pdf
- <u>https://store.roboticsbd.com/</u>
- https://edu.rsc.org/soundbite/coca-cola/2021233.article#:~:text=How%20acidic%20is%20Coke%3F,little%20contribution%20to%20the%20acidity.

Reference

Water Quality Parameters	Bangladesh Standards
pH	6.5-8.5
Total Dissolved Solids(TDS)	1000 mg/L
Temperature	20-30 ℃
Turbidity	1-5 NTU