

UNCLASSIFIED

AD NUMBER

**AD817122**

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution  
unlimited**

FROM

**Distribution authorized to U.S. Gov't.  
agencies and their contractors;  
Administrative/Operational Use; JUL 1967.  
Other requests shall be referred to U.S.  
Army Corps of Engineers, Waterways  
Experimental Station, Vicksburg, MS.**

AUTHORITY

**USAEWES ltr, 27 Jul 1971**

THIS PAGE IS UNCLASSIFIED

AD812122

TECHNICAL REPORT NO. 3-666

## PERFORMANCE OF SOILS UNDER TIRE LOADS

Report 5

### DEVELOPMENT AND EVALUATION OF MOBILITY NUMBERS FOR COARSE-GRAINED SOILS

by

A. J. Green



July 1967

Sponsored by

U. S. Army Materiel Command

Conducted by

U. S. Army Engineer Waterways Experiment Station  
CORPS OF ENGINEERS

Vicksburg, Mississippi

This document is subject to special export controls and such transmission to foreign governments or foreign nationals may be made only with prior approval of U. S. Army Engineer Waterways Experiment Station.

Destroy this report when no longer needed. Do not return  
it to the originator.

The findings in this report are not to be construed as an official  
Department of the Army position unless so designated  
by other authorized documents.

**Best  
Available  
Copy**

TECHNICAL REPORT NO. 3-666

## PERFORMANCE OF SOILS UNDER TIRE LOADS

Report 5

### DEVELOPMENT AND EVALUATION OF MOBILITY NUMBERS FOR COARSE-GRAINED SOILS

by

A. J. Green



July 1967

Sponsored by

U. S. Army Materiel Command  
Project No. I-V-0-21701-A-046  
Task 05

Conducted by

U. S. Army Engineer Waterways Experiment Station  
CORPS OF ENGINEERS  
Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of U. S. Army Engineer Waterways Experiment Station.

#### FOREWORD

These tests were conducted at the U. S. Army Engineer Waterways Experiment Station (WES) as a part of the vehicle mobility research program under DA Project 1-V-0-21701-A-046, "Trafficability and Mobility Research," Task 1-V-0-21701-A-046-03, "Mobility Fundamentals and Model Studies," under the sponsorship and guidance of the Directorate of Research and Development, U. S. Army Materiel Command.

The tests were performed by personnel of the Mobility Research Branch, Mobility and Environmental Division, WES, during the period November 1963 to March 1965 under the general supervision of Messrs. W. G. Shockley and S. J. Knight, and under the direct supervision of Dr. D. R. Freitag. Actively engaged in the study were Messrs. A. J. Green, J. C. Chang, N. R. Murphy, Jr., M. D. Beasley, and H. B. Boyd. The data were analyzed by Messrs. Green and Murphy. This report was prepared by Mr. Green.

COL Alex G. Sutton, Jr., CE, and COL John R. Oswalt, Jr., CE, were Directors of WES during this study and preparation of this report. Mr. J. B. Tiffany was Technical Director.

## CONTENTS

|                                                                      | <u>Page</u> |
|----------------------------------------------------------------------|-------------|
| FOREWORD . . . . .                                                   | iii         |
| CONVERSION FACTORS, METRIC TO BRITISH UNITS OF MEASUREMENT . . . . . | vii         |
| SUMMARY . . . . .                                                    | ix          |
| PART I: INTRODUCTION. . . . .                                        | 1           |
| Background . . . . .                                                 | 1           |
| Purpose of This Study. . . . .                                       | 1           |
| Scope. . . . .                                                       | 1           |
| Special Definitions. . . . .                                         | 2           |
| PART II: SOIL PREPARATION AND TEST EQUIPMENT. . . . .                | 4           |
| Soil Preparation . . . . .                                           | 4           |
| Test Equipment . . . . .                                             | 6           |
| PART III: DIMENSIONAL FRAMEWORK . . . . .                            | 10          |
| Independent Parameters . . . . .                                     | 10          |
| Dependent Parameters . . . . .                                       | 11          |
| Pi Terms (General Functional Equations). . . . .                     | 11          |
| General Functional Equations . . . . .                               | 12          |
| Simplification of Functional Equations . . . . .                     | 13          |
| Pi Terms (Simplified Functional Equations) . . . . .                 | 16          |
| PART IV: TEST RESULTS . . . . .                                      | 18          |
| Analysis . . . . .                                                   | 18          |
| Evaluation of the Sand Mobility Number . . . . .                     | 24          |
| Performance Prediction . . . . .                                     | 28          |
| PART V: CONCLUSIONS AND RECOMMENDATIONS . . . . .                    | 36          |
| Conclusions . . . . .                                                | 36          |
| Recommendations. . . . .                                             | 36          |
| LITERATURE CITED . . . . .                                           | 38          |
| TABLES 1-12                                                          |             |
| PLATES 1-26                                                          |             |

### CONVERSION FACTORS, METRIC TO BRITISH UNITS OF MEASUREMENT

Metric units of measurement used in this report can be converted to British units as follows:

| <u>Multiply</u>               | <u>By</u> | <u>To Obtain</u>       |
|-------------------------------|-----------|------------------------|
| meters                        | 3.2808    | feet                   |
| centimeters                   | 0.3937    | inches                 |
| millimeters                   | 0.03937   | inches                 |
| kilonewtons                   | 225.0     | tons                   |
| newtons                       | 0.2250    | pounds                 |
| newtons per square centimeter | 1.4503    | pounds per square inch |
| grams per cubic centimeter    | 62.4300   | pounds per cubic foot  |
| kilograms                     | 2.2045    | pounds                 |
| meter-newtons                 | 3.7382    | foot-pounds            |

## SUMMARY

This study examined the effects of tire deflection, tire geometry, wheel load, and soil strength on the performance of coarse-grained soils subjected to moving tire loads. Mathematical expressions were developed that combine the independent tire-soil and system parameters and relate them to the performance coefficients.

A combination of independent parameters,  $\frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h}$ , was developed from single-wheel laboratory tests. This expression, referred to as the sand mobility number, is shown to account for the combined effects of soil strength (G), tire section width and diameter (b and d, respectively), wheel load (W), and tire deflection ( $\delta/h$ ) on wheel performance as measured by the performance coefficients.

A multiple-pass analysis was conducted to illustrate that performance on the second and third passes also could be related to the sand mobility number, although the relation was not the same as that for the first pass. It was shown in a similar fashion that the performance of vehicles on coarse-grained soils could be predicted using a relation based on the sand mobility number.

PERFORMANCE OF SOILS UNDER TIRE LOADS

DEVELOPMENT AND EVALUATION OF MOBILITY  
NUMBERS FOR COARSE-GRAINED SOILS

PART I: INTRODUCTION

Background

1. The mission of the Mobility and Environmental Division of the U. S. Army Engineer Waterways Experiment Station (WES) is to conduct research that will lead to an improvement in the overall mobility of ground-contact military vehicles. Before marked improvement in mobility can be effected, an understanding of the fundamental relations of terrain-vehicle systems must be developed. One phase of the research is the development of mathematical expressions that (a) include all pertinent independent tire and soil parameters and (b) can be used to predict the performance of soils under moving tire loads.

2. The details of the test program "Performance of Soils Under Tire Loads" and the essential test equipment and techniques thereof are described in Report 1 of this series, and subsequent reports in the series contain first-order analysis of various portions of the test data.<sup>1</sup> Basic data from previous tests of this program and data from other WES field tests<sup>2</sup> are the principal sources of the data presented herein.

Purpose of This Study

3. The purpose of this study was to develop relations between the performance coefficients and independent tire-soil and system parameters that would (a) be useful to the designer in selection of the number and size of tires required to achieve a desired degree of mobility and (b) permit prediction of the soft-soil performance of pneumatic-tired vehicles.

Scope

4. This study was limited to tests with single wheels and a

four-wheel-drive test vehicle on one air-dry sand in the laboratory, and a review of selected data from tests with nine different pneumatic-tired vehicles on dry-to-moist undisturbed beach and dune sands. Each single-wheel test usually consisted of a series of five consecutive passes of a test tire in the same path. During these laboratory tests, soil strength, wheel load, tire geometry, and tire deflection were varied. The tires selected for the tests, designated basic test tires in this report, provided a systematic variation in tire diameter and section width, and permitted an evaluation of (a) model-prototype relations and (b) the effects of tire width and diameter on performance. Tire loads and inflation pressures were varied to produce hard-surface deflections of 15, 25, and 35 percent. During the tests with the basic test tires, sand consistency varied from 0.7 to 8.3 N/cm<sup>2</sup>/cm\* penetration resistance gradient (density approximately 1.44 to 1.65 g/cm<sup>3</sup>; 0- to 15-cm cone index approximately 7 to 90 psi). In the field data selected for this analysis, tire load, tire geometry, tire deflection, and soil strength were variable quantities.

#### Special Definitions

5. Certain terms that facilitate analysis of data and communication of test results are rigorously defined in Report 1 of this series. Only those additional terms that are considered essential to this report are defined below.

Depth of influence: The depth range (e.g. 0 to 15 cm) for which changes in density of the soil noticeably affect the performance of pneumatic tires. In this text, the depth of influence is assumed to be equal to the section width of the tire.

Dynamic load transfer: The transfer of load from one axle to another resulting from differential rutting, slope of surface, or application of torque to the wheels.

Dynamic radius ( $r_d$ ): The undeflected radius minus the dynamic in-soil deflection measured directly beneath the axle.

---

\* A table of factors for converting metric units of measurement to British units is presented on page vii.

Internal rolling resistance: The force required to tow a given vehicle in neutral gear on an unyielding surface.

Penetration-resistance gradient (G): The slope of the curve of penetration resistance versus depth averaged, in this analysis, for a depth equal to the width of the tire.

Spissitude ( $\beta$ ): Change in a soil's resistance to penetration as a result of the rate of deformation. The meaning of this word is somewhat similar to that of viscosity, but it is utilized to avoid misuse of the rather specific technical meaning of viscosity.

Towing force (maximum drawbar pull): The maximum sustained towing force a self-propelled vehicle can produce at its drawbar under given test conditions. (Note: Towing force-load ratio approximates maximum slope negotiable.)

## PART II: SOIL PREPARATION AND TEST EQUIPMENT

### Soil Preparation

6. The sand used in the laboratory tests was taken from an active dune near Yuma, Arizona. Fig. 1 shows the gradation and classification of

this soil, which was classified as SP-SM in accordance with the Unified Soil Classification System. The field tests were conducted on undisturbed sands in the desert near Yuma, Arizona, and on various beaches in the United States and abroad.

### Laboratory tests

7. In the laboratory tests the sand was placed in the soil bins shown in fig. 2. Five bins were joined end to end to provide a test course long enough for the test carriage to be accelerated to the desired speed, a programmed-slip test to be conducted, and the carriage to be decelerated.

The actual test lane was two bins, or 16.5 m, long. The soil in these two bins was harrowed to a depth of 43 cm, and the surface was compacted with a pneumatic-tired roller and leveled before each test. The objective of the soil processing was to prepare

Fig. 1. Gradation and classification of Yuma sand

uniform test sections in which the increase in strength with depth was approximately linear to a depth at least as great as the width of the test tire. This objective was achieved generally, but there were exceptions. Typical profiles, representing two different strength levels, are shown in fig. 3.





Fig. 2. Soil bins



Fig. 3. Typical profiles of Yuma sand

Field tests

8. Surface slope and soil strength were measured on the unprepared (natural) test areas, otherwise the areas were not disturbed prior to tests.

Test Equipment

Test tires

9. Basic test tires. For the test program, a basic set of test tires was selected to provide a systematic variation in the principal tire dimensions--diameter and section width. These tires are shown in fig. 4,



Fig. 4. Basic test tires

and their dimensions are as follows.

| <u>Nominal Size</u> | <u>Diameter cm</u> | <u>Section Width, cm</u> | <u>Section Height, cm</u> |
|---------------------|--------------------|--------------------------|---------------------------|
| 4.00-7              | 35.8               | 10.7                     | 7.9                       |
| 4.00-20             | 71.2               | 10.7                     | 8.1                       |
| 6.00-16             | 72.2               | 16.8                     | 13.5                      |
| 9.00-14             | 72.2               | 21.1                     | 16.3                      |

The dimensions listed are average values, as the actual size varied slightly with inflation pressure (table 1). The exterior dimensions of the 9.00-14 tire are approximately twice those of the 4.00-7. The diameter of the 4.00-20 tire is almost the same as that of the 9.00-14, but is twice that of the 4.00-7. The section width of the 4.00-20 tire is about half that of the 9.00-14 tire and the same as that of the 4.00-7 tire. The diameter of the 6.00-16 tire is the same as that of the 9.00-14 and approximately the same as that of the 4.00-20, but the section width is of intermediate dimension.

10. These tires were of flexible, two-ply construction with nearly circular cross sections and were buffed free of tread. They were mounted on steel rims with standard flanges and tested without tubes. Detailed tire data are listed in table 1.

11. Validation test tires. Four tires, of dimensions different from those of the basic test tires, were used to validate the performance relations developed from tests with the basic test tires. The validation test tires were selected because they represented a wider range of sizes and shapes than did the basic tires. Furthermore, in some of the tests conducted with these tires, the penetration resistance-depth curves were different from those associated with tests of the basic tires in that the strength usually increased uniformly with depth to a depth of only 15 cm. At greater depth, the rate of increase varied, but was generally less than that of the first 15 cm. The validation test tires are shown in fig. 5, and their dimensions are as follows.

| Nominal Size           | Diameter<br>cm | Section<br>Width<br>cm | Section<br>Height<br>cm |
|------------------------|----------------|------------------------|-------------------------|
| 16x15-6R (Terra tire)  | 43.2           | 38.6                   | 13.2                    |
| 11.00-20               | 104.8          | 29.0                   | 22.8                    |
| 1.75-26 (bicycle tire) | 71.6           | 4.3                    | 3.6                     |
| 9.00-14                | 69.1           | 21.8                   | 14.7                    |

The 11.00-20, 12-PR standard military tire has essentially conventional proportions, and was tested with a tube.\*

\* This tire was tested on a large, single-wheel dynamometer carriage considered to be mechanically equivalent to the one described in paragraph 12.



Fig. 5. Validation test tires

The 1.75-26 tire is a common commercial bicycle tire and also requires a tube. Its diameter is about 16 times its width. The 16x15-6R Terra tire is tubeless and its width almost equals its diameter. The 9.00-14, 2-PR tire was of the same general size and shape as the basic test tire of the same size. Validation test tire data are given in detail in table 2.

Test carriage

12. The single-wheel dynamometer test carriage (fig. 5) is instrumented to provide a continuous record of pull, torque, wheel sinkage, wheel load, velocity, and slip. A detailed description of the carriage is given in Report 1 of this series.

Test vehicles

13. The vehicle performance data selected include data from tests with conventional pneumatic-tired vehicles used in the field and a modified four-wheel-drive vehicle used in the laboratory. Pertinent vehicle and tire data for the field tests have been extracted from Supplement 17 of Technical Memorandum No. 3-240.<sup>2</sup> Tire dimensions of the field test vehicles are as follows:



Fig. 6. Test carriage in position on soil cars

| Vehicle                                       | Nominal<br>Tire<br>Size | Section<br>Diam, d<br>cm | Section<br>Width, b<br>cm | Section<br>Height, h<br>cm |
|-----------------------------------------------|-------------------------|--------------------------|---------------------------|----------------------------|
| M38A1, 4x4 Jeep, 1/4-ton*                     | 7.00-16                 | 76.2                     | 18.42                     | 15.88                      |
| M37, 4x4 truck, 3/4-ton                       | 9.00-16                 | 86.4                     | 23.37                     | 21.21                      |
| M34 and M135, 6x6 truck, 2-1/2-ton            | 11.00-20                | 104.9                    | 28.70                     | 24.13                      |
| M1, 6x6 truck, 5-ton                          | 14.00-20                | 124.5                    | 36.83                     | 30.48                      |
| DUKW 353, 6x6 truck, 2-1/2-ton<br>(Amphibian) | 14.00-20                | 124.5                    | 36.83                     | 30.48                      |
| Bucket loader, 4x4 tractor                    | 14.00-24                | 134.6                    | 36.07                     | 30.48                      |
| Tournaodozer, 4x4 tractor                     | 21.00-25                | 166.4                    | 55.63                     | 45.72                      |
| XM520 GOER, 4x4 cargo carrier, 5-ton          | 18.00-26                | 160.0                    | 46.99                     | 40.13                      |
| XM520 GOER, 4x4 cargo carrier, 5-ton          | 15.00-34                | 165.6                    | 45.97                     | 36.83                      |

\* Multiply by 0.907185 to get metric tons.

### PART III: DIMENSIONAL FRAMEWORK

14. In a brief analysis of the bearing capacity of soft soils under tracked vehicles, Markwick<sup>3</sup> introduced dimensional analysis as a means of studying soil-vehicle systems. Other experimenters have used similar techniques as an aid to vehicle mobility research. Their work is described in references 4-15. Several of the references contain a development of the Pi terms related to the soil-vehicle system. Therefore, this report only contains tabulations of the pertinent tire-soil parameters and the Pi terms used to develop functional equations.

#### Independent Parameters

15. The independent parameters of a soil-vehicle system were divided into three groups: soil parameters, tire parameters, and system parameters.

| Parameter      | Symbol   | Mass, Length, Time<br>(MLT) Units |
|----------------|----------|-----------------------------------|
| <b>Soil:</b>   |          |                                   |
| Friction angle | $\phi$   | --                                |
| Cohesion       | $c$      | $ML^{-1}T^{-2}$                   |
| Density        | $\gamma$ | $ML^{-2}T^{-2}$                   |
| Spissitude     | $\beta$  | $ML^{-1}T^{-1}$                   |
| <b>Tire:</b>   |          |                                   |
| Diameter       | $d$      | L                                 |
| Section width  | $b$      | L                                 |
| Section height | $h$      | L                                 |
| Deflection     | $s$      | L                                 |
| <b>System:</b> |          |                                   |
| Load           | $W$      | $MLT^{-2}$                        |

(Continued)

| Parameter               | Symbol | Mass, Length, Time<br>(MLT) Units |
|-------------------------|--------|-----------------------------------|
| System (Cont'd):        |        |                                   |
| Translational velocity  | v      | $LT^{-1}$                         |
| Slip                    | s      | --                                |
| Tire-soil friction      | f      | --                                |
| Acceleration of gravity | g      | $LT^{-2}$                         |

#### Dependent Parameters

16. The dependent parameters of the system in this study were the major performance characteristics:

| Parameter   | Symbol | MLT Units    |
|-------------|--------|--------------|
| Pull        | P      | $MLT^{-2}$   |
| Towed force | $P_T$  | $MLT^{-2}$   |
| Torque      | Q      | $ML^2T^{-2}$ |
| Sinkage     | z      | L            |

#### Pi Terms (General Functional Equations)

17. The independent and dependent parameters listed in paragraphs 15 and 16 were combined, using the diameter  $d$  as a characteristic tire dimension, to generate the following Pi terms:

| Term            | Descriptive Title   |
|-----------------|---------------------|
| $\frac{P}{W}$   | Pull coefficient    |
| $\frac{z}{d}$   | Sinkage coefficient |
| $\frac{Q}{dW}$  | Torque coefficient  |
| $\frac{P_T}{W}$ | Towed coefficient   |
| (Continued)     |                     |

| <u>Term</u>            | <u>Descriptive Title</u>   |
|------------------------|----------------------------|
| $\frac{cd^2}{W}$       | Clay loading number        |
| $\frac{\gamma d^3}{W}$ | Sand loading number        |
| $\frac{b}{d}$          | Shape number               |
| $\frac{\delta}{h}$     | Deflection number          |
| $\frac{h}{d}$          | Height-diameter ratio      |
| $\frac{v^2}{gd}$       | Froude number              |
| $\frac{W}{BdV}$        | Velocity number            |
| $\phi$                 | Angle of internal friction |
| $s$                    | Wheel slip                 |
| $r$                    | Tire-soil friction         |

General Functional Equations

18. The Pi terms enumerated in the preceding paragraph can be combined to produce the following general equations, which are similar in form to those presented by other authors.<sup>8,15</sup>

For the pull coefficient:

$$\frac{P}{W} = f' \left( \frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \phi, \frac{cd^2}{W}, \frac{\gamma d^3}{W}, \frac{v^2}{gd}, \frac{W}{BdV}, s, f \right)$$

For the sinkage coefficient:

$$\frac{z}{d} = f'' \left( \frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \phi, \frac{cd^2}{W}, \frac{\gamma d^3}{W}, \frac{v^2}{gd}, \frac{W}{BdV}, s, f \right)$$

For the torque coefficient:

$$\frac{Q}{W} = f''' \left( \frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \phi, \frac{cd^2}{W}, \frac{\gamma d^3}{W}, \frac{v^2}{gd}, \frac{W}{BdV}, s, f \right)$$

For the towed coefficient:

$$\frac{P_T}{W} = f''' \left( \frac{\delta}{h}, \frac{b}{d}, \frac{h}{d}, \phi, \frac{cd^2}{W}, \frac{\gamma d^3}{W}, \frac{V^2}{gd}, \frac{W}{\beta dV}, s, f \right)$$

#### Simplification of Functional Equations

19. By control of the test conditions and the use of certain substitutions in the basic Pi terms, the preceding equations can be simplified to manageable proportions, and the more important relations between the variables of the tire-soil system can be evaluated systematically.

##### Soil parameters

20. A soil that is almost purely frictional was selected; thereby the clay loading number  $\frac{cd^2}{W}$  was eliminated. Penetration-resistance studies conducted prior to this test program indicated that the effect of velocity on the penetration resistance of this air-dry sand was negligible; therefore, the velocity number  $\frac{W}{\beta dV}$  was omitted in the simplified analysis.

21. Several experimenters have shown that the friction angle  $\phi$  of a cohesionless, dry sand is proportional to the density  $\gamma$ .<sup>16,17</sup> Therefore,  $\phi$  was not included as a separate parameter. It has been determined also that the penetration-resistance gradient  $G$  is related to the density of a frictional soil. Since the penetration resistance is a very sensitive indicator of density change and since in-situ density measurements are difficult to obtain in loose air-dry sand, the penetration-resistance gradient  $G$  was substituted for  $\gamma$ . Both terms are expressed in similar units,  $ML^{-2}T^{-2}$ . It should be noted that in dry, cohesionless sand, the penetration resistance at the surface will be small and will not greatly affect the value of the gradient.

##### Tire parameters

22. Four tire geometry parameters-- $b$ ,  $d$ ,  $\delta$ , and  $h$ --were considered in this analysis. The three Pi terms chosen to represent these parameters were  $\frac{b}{d}$ ,  $\frac{h}{d}$ , and  $\frac{\delta}{h}$ . The basic test tires are roughly toroidal in shape; hence, the ratio of section height to section width is very

nearly constant for the group. This permitted the number of Pi terms to be reduced to two,  $\frac{b}{d}$  and  $\frac{S}{h}$ . The tire diameter  $d$  was chosen as the characteristic tire dimension in the first phases of the analysis. Later, detailed examination of the data allowed the other tire dimensions to be incorporated in the loading numeric.

#### System parameters

23. The four performance coefficients, the tire-to-soil friction coefficient, the Froude number, and the slip value are considered system parameters. Since it was not considered practical to study the effect of slip as an independent variable, the pull, torque, and sinkage coefficients were evaluated at a constant slip value. The slip value chosen was 20 percent. There are several reasons for this choice. The maximum pull developed during laboratory tests generally occurred near 20 percent slip. Also, it was observed that soil-to-soil failures, as evidenced by the formation of visible shear planes (fig. 7), occurred during the tests as the slip value approached 20 percent; similar observations were made during the field tests. The fact that soil-to-soil failures were observed justifies the deletion of the tire-soil friction term  $f$ . The effect of speed on performance was assumed to be negligible; therefore, the Froude number  $\frac{V^2}{gd}$  was deleted from the general functional equations.

24. The range of slip values associated with the towed coefficient was quite large, but the slip in this case can be considered a dependent variable and was not included in the simplified functional equation for the towed coefficient.

#### Refinements

25. Torque coefficient. The torque coefficient  $\frac{Q}{dW}$  can be made more explicit by replacing the diameter  $d$  with the dynamic radius  $r_e$  to obtain the form  $\frac{Q}{r_e W}$ . Since the dynamic radius more closely



Fig. 7. Shear displacements in tire path

approximates the moment arm of the soil forces that provide the resistance to the applied torque  $Q$ , the magnitude of the torque coefficient in this form is more nearly equal to the sum of the pull and towed coefficients. (If the tire is on a plane surface that is parallel to the travel direction, and if the towed force  $P_T$  is equal to the motion resistance at

$$20 \text{ percent slip, then } \frac{Q}{r_e W} = \frac{P_{20}}{W} + \frac{P_T}{W} .$$

26. Tire deflection (laboratory data). In these tests, the wheel was loaded pneumatically,<sup>1</sup> and the applied load was continuously recorded. In some instances, the pneumatic loading system was unable to provide a constant load during a specific test. Since the inflation pressure remained relatively constant, the deflection of the tire was affected by these changes in load. This suggested that the data used in the dimensionless numbers should be those corresponding to the conditions actually imposed on the wheel at the time the performance was measured. To effect the needed adjustments, a series of plots similar to the one shown in fig. 8 were utilized. For example, if the planned load  $W$  and deflection number  $\frac{\delta}{h}$  were 1000 N and 15 percent, but the load dropped to 955 N during the test, the corresponding deflection would be 14.5 percent (fig. 8). The values of the sand loading number  $\frac{Gd^3}{W}$ , the sand number

$\frac{G(bd)^{3/2}}{W}$ , and the sand mobil-

ity number  $\frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h}$  sub-

sequently discussed in this report all employ the load actually measured at the data station and the hard-surface deflection that corresponds to that load and inflation pressure. This adjustment reduced scatter in plots of performance data so that relations between the independent and dependent



Fig. 8. Deflection number versus wheel load

parameters could be delineated with greater assurance.

27. Tire deflection (field data). Because of the conditions prevailing in the field, deflection data were not obtained for every combination of load and inflation pressure tested. Therefore, it was necessary to estimate the test tire deflection from a plot such as that shown in fig. 8 using the load and inflation pressure recorded for each test.

Pi Terms (Simplified Functional Equations)

28. From consideration of the restrictions and simplifications discussed in the preceding paragraphs, Pi terms used in the analysis are as follows:

| <u>Term</u>        | <u>Descriptive Title</u> |
|--------------------|--------------------------|
| $\frac{P}{W}$      | Pull coefficient         |
| $\frac{z}{d}$      | Sinkage coefficient      |
| $\frac{Q}{r_e W}$  | Torque coefficient       |
| $\frac{P_T}{W}$    | Towed coefficient        |
| $\frac{Gd^3}{W}$   | Sand loading number      |
| $\frac{b}{d}$      | Shape number             |
| $\frac{\delta}{h}$ | Deflection number        |

29. The simplified functional equations become:

$$\frac{P}{W} = f' \left( \frac{Gd^3}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

$$\frac{z}{d} = f'' \left( \frac{Gd^3}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

$$\frac{Q}{r_e W} = f''' \left( \frac{Gd^3}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

$$\frac{P_T}{W} = f''' \left( \frac{Gd^3}{W}, \frac{b}{d}, \frac{\delta}{h} \right)$$

PART IV: TEST RESULTS

Analysis

30. The purpose of this analysis was to determine systematically the effect that changes in soil strength, wheel load, and tire geometry, including deflection, have on performance.

Effect of soil strength

31. The simplified functional equations contain only one term,  $\frac{Gd^3}{W}$ , that includes soil strength. As stated in paragraph 7, the test sections were constructed so that the slope of the penetration resistance versus depth relation was relatively constant. However, for the evaluation of the laboratory and field tests with abnormal profiles, it was necessary to devise a method to account for the effect of the deviations from a linear strength-depth relation. Existing soil mechanics theories indicate that the depth range for which changes in density or soil strength affect the bearing capacity of sand is proportional to the width of the footing--in this case, the tire. On the other hand, the resistance to the torque of a powered wheel is developed by displacements perpendicular to the width direction. Thus, the theories provide only general guidance. Examination of some of the early test data suggested that the results of tests on markedly dissimilar strength-depth profiles could be grouped by simply averaging the penetration-resistance data for a depth range equal to the width of the tire.

32. As a check, tests were conducted in specially prepared test sections in which abrupt changes in soil strength occurred at various depths. Plate 1 shows penetration-resistance curves for a series of such test sections. The rate of increase in strength with depth in both the upper and lower soil layers was nearly constant for this series of tests. Performance data for an 11.00-20 tire in these test sections are tabulated on the following page.

33. These data indicate that changes in the strength of the soil below a depth of approximately 24 cm, which equals 0.83b in this case, did not noticeably affect the level of performance (plate 2). It is recognized

| Test No. | Deflec-<br>tion<br>% | Depth to<br>Disconti-<br>nuity, cm | Wheel<br>Sinkage<br>cm | Torque<br>m-N | Pull<br>N | Wheel<br>Load, N | Pull<br>Coefficient<br>F/W |
|----------|----------------------|------------------------------------|------------------------|---------------|-----------|------------------|----------------------------|
| 79       | 15                   | 9.50                               | 3.66                   | 2463          | 2088      | 13,622           | 0.153                      |
| 83       | 15                   | 16.00                              | 4.80                   | 2293          | 1155      | 13,524           | 0.085                      |
| 85       | 15                   | 17.80                              | 6.58                   | 2399          | 911       | 13,622           | 0.067                      |
| 87       | 15                   | 20.60                              | 6.98                   | 2541          | 822       | 13,755           | 0.060                      |
| 89       | 15                   | 23.60                              | 8.48                   | 2660          | 711       | 13,724           | 0.052                      |
| 91       | 15                   | 27.20                              | 8.84                   | 2788          | 720       | 13,710           | 0.052                      |
| 81       | 15                   | 29.85                              | 8.38                   | 2717          | 711       | 13,773           | 0.052                      |
| 93       | 15                   | 34.30                              | 9.07                   | 2893          | 729       | 13,555           | 0.054                      |
| 80       | 35                   | 9.50                               | 2.34                   | 3247          | 5644      | 14,502           | 0.389                      |
| 84       | 35                   | 16.00                              | 2.41                   | 2908          | 4489      | 13,755           | 0.327                      |
| 86       | 35                   | 17.80                              | 2.69                   | 2755          | 4000      | 13,853           | 0.289                      |
| 88       | 35                   | 20.60                              | 2.64                   | 2788          | 3733      | 13,856           | 0.269                      |
| 90       | 35                   | 23.60                              | 3.17                   | 2752          | 3644      | 13,778           | 0.264                      |
| 92       | 35                   | 27.20                              | 3.48                   | 2752          | 3555      | 13,600           | 0.262                      |
| 82       | 35                   | 29.85                              | 3.63                   | 2766          | 3422      | 13,355           | 0.256                      |
| 94       | 35                   | 34.30                              | 3.91                   | 2823          | 3511      | 13,600           | 0.258                      |

that the depth of influence also will be affected by the relative soil strength of the layers. Since the slopes of the penetration-resistance curves in the upper layer for the specially prepared test sections (plate 1) were approximately equal to the median slope for the tests conducted with the basic test tires, it was assumed that the proposed procedure would yield a reasonable median for the basic tests. The test data also suggest that tire deflection was not a major influence on the depth over which the soil strength affects test results. For analysis of subsequent tests, then, the penetration-resistance gradient  $G$  was averaged for a depth range equal to the tire width.

34. The reliability of  $G$  as a measure of the relative consistency of the soil is demonstrated by data obtained from tests in which tire geometry remained constant. Plates 3, 4, and 5 contain plots of the

dependent performance coefficients  $\frac{P}{W}$ ,  $\frac{z}{d}$ ,  $\frac{Q}{r_e W}$ , and  $\frac{P_T}{W}$  versus the sand loading number  $\frac{Gd^3}{W}$ . These data were obtained from a series of tests with the 9.00-14, 2-PR tire operating at deflections of 15, 25, and 35 percent. The maximum planned wheel load was 3950 N and the minimum, 1000 N. The soil gradient  $G$  ranged from 0.7 to 6.6 N/cm<sup>2</sup>/cm. Some data scatter is evident, but there is no tendency for the data to separate by load. On each plot, a single smooth curve was used to delineate the relation between the independent variables and the sand loading number  $\frac{Gd^3}{W}$ . It was concluded from these data that the soil parameter  $G$  was a satisfactory indication of the relative strength or density of this soil.

35. The curves that describe the relations of pull, sinkage, and towed coefficient to the sand loading number are generally hyperbolic in shape. The largest values of the pull coefficient are associated with the largest values of the sand loading number. Conversely, the largest values of sinkage and towed coefficients are associated with relatively small values of the sand loading number. The torque coefficient increases slightly as the sand loading number increases.

#### Effect of load

36. In the preceding paragraphs, the effect of load variations on performance was not discussed. The effect of changes in load can be examined by comparing groups of tests using a single tire size at a constant deflection number. Plate 6a presents data obtained from tests with a 9.00-14, 2-PR tire at 15 percent deflection and is a plot of the pull coefficient versus the soil strength parameter  $G$ . A separate curve is required to represent the test data for each load. When the same pull coefficient data are plotted versus  $G/W$  (plate 6b), a single curve can be used to represent all loads ( $d$  is constant). This indicates that the effect of load was adequately considered in the sand loading number.

#### Effect of tire geometry

37. Evaluation of model-prototype relations. Results of tests conducted with the 4.00-7 (model) and the 9.00-14 (prototype) tires were used to determine whether the tire performance data followed a true model-prototype relation. The pull, sinkage, towed, and torque coefficients were used to compare the similarity in the geometry of the two systems. Plate 7

contains the data for tests conducted at 35 percent deflection. Tests at 15 and 25 percent deflection showed similar results. The data are intermingled on each plot, indicating geometric and dynamic similarity between model and prototype. This comparison also corroborates the assumption that velocity effects were negligible for the speed range represented since both size tires were operated at the same forward (linear) velocity during these tests, rather than at scaled velocities. In addition, these data also support the use of the soil strength parameter  $G$ . The slopes of the penetration-resistance curves were averaged over a depth approximately equal to the width of the test tire used. Since the slopes of the penetration-resistance curves were not constant in each case, the intermingling of test data seems to indicate that the effect of the soil properties was adequately reflected in the soil strength parameter.

38. Effect of tire width. To determine the effect of tire width on performance, tests were conducted with three tires of nearly equal diameter but of different widths. These were the 9.00-14, 6.00-16, and 4.00-20 tires; their shape numbers ( $b/d$ ) were 0.291, 0.233, and 0.150, respectively. The first step in analyzing the effect of width was to determine the relation of the four performance coefficients to the sand loading number. Data for tests conducted at 15, 25, and 35 percent deflection are given in tables 3 and 4. Similar relations were found at all three deflections. Results of tests at 35 percent deflection shown in plate 8 are typical. Families of curves delineate the relations of the four performance coefficients to the loading number, with a separate curve on the plot representing the data for tests with each tire.

39. The second step was to construct cross plots to relate the shape number to the loading numbers at several levels of performance for each deflection number. Plate 9 shows cross plots of data from the relations of pull coefficient and sinkage coefficient to the sand loading number for the three deflections. From these logarithmic plots, the relation of the reciprocal of the shape number to the sand loading number can be expressed as follows:

$$\frac{d}{b} = K \left( \frac{Gd^3}{W} \right)^{2/3} = \frac{KG^{2/3}d^2}{W^{2/3}}$$

where  $K$  is a constant of proportionality. Raising both sides to the  $3/2$  power:

$$\frac{d^{3/2}}{b^{3/2}} = K^{3/2} \frac{G}{W} d^2$$

$$\frac{G}{W} (bd)^{3/2} = \frac{1}{K^{3/2}} = \text{constant}$$

40. This leads to the conclusion that for each constant value of a performance coefficient for a given deflection number, there is a corresponding value composed of the pertinent independent variables, including

the shape number. This combination,  $\frac{G(bd)^{3/2}}{W}$ , is designated the sand number. To illustrate the data collapse achieved with this number, the performance coefficients were plotted versus the loading number from tests at 15, 25, and 35 percent deflection. Results of the tests at 15 percent deflection shown in plate 10 are representative. Note that the data do not separate on the basis of tire size. The relation of each of the four performance coefficients to the loading number is well defined. However, in an earlier analysis of these data,<sup>15</sup> the relation of the torque coefficient to the sand number was not well defined. The improved definition is believed to be due to the increased range of data available for analysis and the correction of the deflection number to account for changes in load during the tests (see paragraph 26).

41. Effect of tire diameter. The sand number should adequately account for the effect of tire diameter on the magnitude of the performance coefficients. Data obtained from tests with the 4.00-20 (71.2-cm diameter) and 4.00-7 (35.8-cm diameter) tires were used to evaluate this hypothesis. Plate 11 contains data from tests conducted at 25 percent deflection. Similar results were obtained from tests conducted at 15 and 35 percent deflection. Some scatter is evident (this appears to be large

because of the scale used for the sand number), but the intermingling of the plotted points representing the two tires demonstrates that the sand number adequately accounts for the effects of tire diameter.

42. Effect of tire deflection. In the analysis of the effects of soil strength, tire width, and tire diameter on the wheel's performance, it was readily apparent that tire deflection significantly affected the level of performance. Plates 12 and 13 present the relation of the pull and sinkage coefficients, respectively, to the sand number. Smooth curves, representing constant values of the deflection ratio, are used in both plates to delineate the relations of the performance coefficients to the sand number. Note that the curves are of similar shape, but the values of the performance coefficients are obviously a function of tire deflection as well as of the factors included in the sand number.

43. The effects of deflection were determined from cross plots of the coordinates of points on the faired curves in plates 12 and 13. The reciprocal of the deflection number was plotted versus the values of the sand number for several constant values of the pull and sinkage coefficients. The relations that appear in plate 14 can be described adequately by a family of straight lines through the origin. The general mathematical expression for this family of straight lines is

$$\frac{h}{\delta} = K \times \frac{G(bd)^{3/2}}{W}$$

or

$$\frac{1}{K} = \frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h}$$

where  $K$  is the constant associated with a given value of a performance coefficient. This expression, which combines all of the independent  $\Pi$  terms in the simplified functional equations (see paragraph 22), is termed the sand mobility number. Plate 15 shows the relation of the pull, sinkage, torque, and towed coefficients to the sand mobility number. The data points are shown to indicate the range of scatter. Symbols show the different deflections corresponding to each test. Some scatter is evident but no separation by deflection numbers is noticeable. Thus, the validity

of the sand mobility number has been established for a range of the deflection number (roughly 0.1 to 0.4). The form of the relation is such that as the deflection number approaches zero, the sand mobility number approaches zero also, which, in turn, implies very poor performance. A low deflection alone does not necessarily result in poor performance. Therefore, the quality of the relation must diminish at the very low values of the deflection number.

#### Evaluation of the Sand Mobility Number

44. Laboratory data obtained prior to this study offered an opportunity to evaluate the adequacy of the sand mobility number when tires having shapes different from those in the basic group were considered and when the rate of increase in the strength of the soil with depth was decidedly nonuniform. The laboratory data also permitted an evaluation of the relation of the sand mobility number to the performance coefficients for multiple passes in the same tire path. The available field data, although not directly comparable in many cases, illustrated the applicability of the sand mobility number to analysis of the performance of actual vehicles in natural soil.

#### Validation of single-wheel tests

45. Selected single-wheel performance data from tests previously conducted (table 5) were compared with the performance predicted from the relations developed in this analysis. Plate 16 compares the data obtained from tests with an 11.00-20, a 9.00-14, a 16x15-6R (Terra), and a 1.75-26 (bicycle) tire with the idealized performance curves. The bicycle and Terra tire data were included to illustrate that the performance coefficients of these tires with extremely different shape numbers conform to the same relation developed for the more conventional tires. The 11.00-20 data were included to increase the range of tire diameters studied. The 9.00-14 data were considered because the soil strength profiles associated with these tests were quite different from those for the basic group of tests with that tire. Representative soil strength profiles for tests

with the 9.00-14 basic and validation test tires and the 11.00-20 and Terra tires are shown in plate 17.

46. Although considerable scatter is apparent in plate 16, the idealized curves form a reasonable average of the validation data group. On the whole, these data support the performance relations developed. The scatter in the sinkage data (plate 16b) can be attributed in part to difficulties experienced in obtaining reliable sinkage measurements.

#### Relation to vehicle performance

47. Multiple-pass performance of single wheel. On most pneumatic-tired vehicles, two or more wheels travel in the same path. The performance of each wheel is influenced by the soil condition created by the preceding wheel or wheels. The result is considered to be similar to the performance of a single wheel on each of multiple passes in a single path. Plate 18 and tables 6 and 7 contain performance data for the single wheel for the second and third passes in the same path. The pull and torque coefficients developed during the second and third passes are lower than first pass values when compared at equal values of the mobility number. In plate 19, average curves representing the pull data for the first three passes of the wheel are summarized to emphasize the effects of repetitive traffic. The soil strength measured before traffic (tables 3, 4, 6, and 7) was used in computing the values of the sand mobility number, and this could contribute significantly to the scatter of the data points in plate 18 because the soil strength may increase or decrease under the action of the traffic, depending on the initial soil strength, the wheel load, tire size, etc.

48. Plate 20 shows the relation of the pull coefficient to the sand mobility number for the second and third pass performance when the soil strength values measured just prior to each pass were used to compute the mobility number (tables 8 and 9). The use of the "during traffic" soil strength values reduced the scatter somewhat for each pass, but the curves used to delineate the relations are not substantially different from those based on the "before traffic" strength data (plate 18). First, second, and third pass pull coefficient curves are compared in plate 21, and it can be seen that performance generally decreases with traffic. Soil strength

values measured before each pass were used to compute the sand mobility number. The second and third pass torque coefficient curves were also generally lower than those developed on the first pass (tables 3, 6, and 7). The reason for separation of the pull coefficient first- and third-pass curves at the higher values of the mobility number is not known; however, the associated torque coefficient curves also separated.

49. Vehicle tests (laboratory). The next step in establishing the utility of the sand mobility number was to evaluate the performance of an actual vehicle operating under controlled conditions in the laboratory. The test sections were prepared in the same manner as those for the single-wheel tests. The four-wheel-drive (4x4) test vehicle was modified so that all wheels would rotate at the same speed, and the spring suspension system was replaced with rigid connections. These revisions, while not practical in everyday use, ensured that all wheels would operate at the same slip and that the wheel loads would not be influenced by dynamic oscillations. If the single-wheel apparatus and the test vehicle operate at the same degree of efficiency, the pull versus sand mobility number relation coefficient developed by the four-wheel-drive vehicle (table 10) should be the same as the average of the pull coefficient relations for the first and second passes of a single wheel. In plate 22, the results of the vehicle tests are shown as discrete data points, while the smooth curve represents the average of the first and second pass curves for the single wheel. The average curve was obtained from plate 19 simply by averaging the pull coefficients from each curve at common values of the sand mobility number. This curve adequately represents the relation formed by the performance data for the vehicle.

50. Vehicle tests (field). Field tests have been conducted on coarse-grained soils in various parts of the world with a variety of military vehicles.<sup>2</sup> These test results (table 11) are not fully comparable to the laboratory tests because the sand at the test sites usually was moist or even wet, and the drawbar-pull tests usually were not run at a controlled slip. Instead, tests were run at several levels of pull, and only the data relevant to the maximum drawbar attained were recorded for each test in the reference. Therefore, certain assumptions were necessary

to effect a first-order evaluation of the mobility number. These are as follows:

- a. The cohesive forces were negligible; i.e., the surface cone index readings were small in relation to subsequent readings.
- b. An equivalent  $G$  can be computed from the 0- to 15-cm penetration-resistance data recorded in the reference. This implies the approximation that the rate of increase in strength with depth ( $G$ ) was constant for a given field test to a depth equal to the width of the test tires used.
- c. The vehicles were loaded so that each tire carried an equal share of the load.

51. Results of tests with 4x4 and 6x6 vehicles listed in table 3 of reference 2b are recorded in table 11 and plotted in plate 23. The intermingling of data points for tests with a variety of vehicles and with different tire sizes, tread patterns, and inflation pressures demonstrates that the sand mobility number and the assumptions listed in the preceding paragraph provide a valid basis for grouping vehicle performance data. A single curve has been drawn in plate 23 to delineate the average relation of the pull coefficient to the sand mobility number for all the vehicles.

Comparison of vehicle and single-wheel performance relations

52. In plate 24, the field performance data for the test vehicles are compared to the average of the first, second, and third pass performance curves obtained for single wheels in the laboratory. The single-wheel data were evaluated in terms of the soil strength data measured before traffic, since only the before-traffic strength data were available for the field tests. Both curves have the same general shape, but the ordinate values of the two curves differ by a nearly constant amount; i.e., the single-wheel data indicate a greater pull for a particular sand mobility number than was achieved during the vehicle tests. There are several factors that could contribute to the differences observed. These include differential wheel slip (front to rear and/or side to side), uneven wheel loading due to dynamic load transfer, and increased rolling resistance caused by imperfectly tracking rear wheels.

53. In plate 25, the relation of the towed coefficient to the sand

mobility number is compared to a similar relation developed for single wheels in the laboratory. These data for the field tests are listed in table 12. The difference in the ordinate values of the two curves at any value of the sand mobility number is equal to 2.5 percent of the wheel load or vehicle weight. Again, there are several factors that could contribute to these differences. These are internal friction and increased motion resistance due to imperfectly tracking rear wheels.

#### Performance Prediction

54. The relation of the single-wheel pull coefficient and the pull coefficient determined from vehicle tests to the sand mobility number (plate 25) offers the basis for a tentative performance prediction system and for design criteria for vehicles operating in dry-to-moist sands. Plate 26 contains curves representing the relations of the pull and towed coefficients for wheeled vehicles to the sand mobility number. These curves can be used to forecast the mobility of existing vehicles or to select tires that will provide the desired degree of sand mobility for existing or proposed vehicles. At the present time, it is suggested that the curves be used with caution because the research effort must be broadened to effect refinements of the strength parameters and the deflection parameters. It also must be extended to include larger tires and tires of unusual shape. The following examples are given to illustrate the possible practical use of the curves in predicting performance of specific vehicles. In each example, it has been assumed that each tire carries an equal share of the load. In addition, the assumption has been made that the tangent of a slope climbed is practically equivalent numerically to a pull coefficient. The basis for this assumption is given in reference 18. Field tests conducted since that time have generally verified this assumption.<sup>2b</sup> Usually for a given set of test conditions, the maximum pull coefficient is approximately 0.02 greater than the maximum slope negotiated. However, for this analysis, this slight difference has been ignored.

Example 1

55. Soil strength and wheel load are given; slope-climbing ability or maximum drawbar pull can be computed as in the calculations that follow.

Given: M135, 6x6 truck, 2-1/2-ton

Gross vehicle weight ( $nW$ ) = 80kN

Number of wheels ( $n$ ) = 6

Wheel load ( $W$ ) = 13.3 kN

Soil strength ( $G$ ) = 5.4 N/cm<sup>2</sup>/cm

11.00-20 single tires:  $b = 28.7$  cm;  $d = 104.9$  cm;  
 $(bd)^{3/2} = 165,000$  cm<sup>3</sup>;  $\delta/h = 0.35$

Find: Maximum drawbar-pull coefficient and slope negotiable.

Solution:

$$\Omega = \frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h} = \frac{5.4(165,000)(0.35)}{13.3 \times 1000}$$

$$\Omega = 23.5$$

Reading from plate 26,  $P/W$  = between 0.21 and 0.22; or from the equation for powered wheels in plate 26:

$$\frac{P}{W} = \frac{\Omega - 5.50}{2.12 \Omega + 33.31}$$

$$\frac{P}{W} = \frac{23.5 - 5.5}{2.12(23.5) + 33.31}$$

$$\frac{P}{W} = 0.216$$

Conclusion:

This vehicle, under the conditions specified, can climb a 21 percent slope; or on level ground, it can tow an object whose resistance does not exceed 21 percent of the weight of the prime mover.

Finally, slope and maximum drawbar pull may be considered together; e.g., on a 10 percent slope, the vehicle can pull a trailer whose rolling resistance does not exceed 11.6 percent of the vehicle's weight.

Example 2

56. For design purposes, the equation can be manipulated to solve for tire size when the allowable deflection, the minimum soil strength, the design wheel load, and the required slope-climbing ability or drawbar pull are known. This is illustrated in the following calculations.

Given: Configuration = 6x6 vehicle, single-tandem tires

Gross vehicle weight (W) = 125 kN

Number of wheels (n) = 6

Wheel load (W) = 21 kN

Soil strength (G) (minimum) = 5.4 N/cm<sup>2</sup>/cm

Slope = 20 percent

Maximum allowable deflection (δ/h) = 0.35

Find: Tire sizes compatible with given conditions.

Solution:  $\Omega = \frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h}$

Solving for  $(bd)^{3/2}$  yields:

$$(bd)^{3/2} = \Omega \times \frac{Wh}{G\delta}$$

and from the equation shown, the relation of the pull coefficient (equivalent to slope climbed) to the sand mobility number (plate 26),

$$\Omega = \frac{33.31 P/W + 5.5}{1 - 2.12 P/W}$$

Substituting the above for  $\Omega$ :

$$(bd)^{3/2} = \frac{33.31 P/W + 5.5}{1 - 2.12 P/W} \times \frac{Wh}{G\delta}$$

$$(bd)^{3/2} = \frac{(33.31)(0.2) + 5.5}{1 - 2.12(0.2)} \times \frac{21 \times 1000}{(5.4)(0.35)}$$

$$(bd)^{3/2} = 234,600$$

$$bd = (234,600)^{2/3}$$

$$bd = 3804 \text{ cm}^2$$

Tire selection: Try 11.00-20, 12-PR nondirectional cross country;  $b = 28.7 \text{ cm}$ ;  $d = 104.9 \text{ cm}$ ;  $b \times d = 3011 < 3804$  (inadequate)

Try 14.00-20, 12-PR nondirectional cross country;  $b = 36.8 \text{ cm}$ ;  $d = 124.5 \text{ cm}$ ;  $b \times d = 4585 > 3804$  (adequate)

Try 46x18-20R, 8-PR Terra tire;  $b = 50 \text{ cm}$ ;  $d = 115 \text{ cm}$ ;  $b \times d = 5750 > 3804$  (adequate)

Conclusion: The 14.00-20 and the 46x18-20R tires are adequate.

In the foregoing example, only two tires were demonstrated to be adequate. Obviously, there are many tires that fulfill the requirements from a mobility standpoint. The designer must select the tire that represents the best combination of stability, ground clearance, height of truck cargo bed, cost, etc.

#### Example 3

57. The mobility of a vehicle-trailer combination also may be estimated using the curves shown in plate 26. In this example, a minimum soil strength, a maximum slope, and the required vehicle and trailer data are known quantities. The necessary steps are given below.

Given: M37, 4x4 truck, 3/4-ton

Gross vehicle weight ( $nW$ ) = 26.7 kN

Number of wheels ( $n$ ) = 4

Wheel load ( $W$ ) = 6.67 kN

Soil strength ( $G$ ) (minimum) =  $5.4 \text{ N/cm}^2/\text{cm}$

Slope (maximum) = 10 percent

9.00-16 tires:  $b = 23.4 \text{ cm}$ ;  $d = 86.4 \text{ cm}$ ;  
 $(bd)^{3/2} = 90,730 \text{ cm}^3$ ;  $\delta/h = 0.35$

ML01, 2-wheel trailer

Gross vehicle weight ( $nW$ ) = 8 kN

Number of wheels ( $n$ ) = 2

Wheel load ( $W$ ) = 4 kN

9.00-16 tires:  $b = 23.4 \text{ cm}$ ;  $d = 86.4 \text{ cm}$ ;  
 $(bd)^{3/2} = 90,730 \text{ cm}^3$ ;  $\delta/h = 0.35$

Find: Is the vehicle-trailer combination mobile under the conditions specified?

Solution: a. Vehicle pull:

$$\Omega = \frac{G(bd)^{3/2}}{W} \times \frac{\varepsilon}{h} = \frac{5.4(90,730)(0.35)}{6.67 \times 1000}$$

$$\Omega = 25.7$$

Reading from plate 26,  $P/W = 0.228$ ; or from the equation for powered wheels in plate 26:

$$\frac{P}{W} = \frac{\Omega - 5.5}{2.12 \Omega + 33.31}$$

$$\frac{P}{W} = \frac{25.7 - 5.5}{2.12(25.7) + 33.31}$$

$$\frac{P}{W} = 0.230$$

Maximum drawbar pull on level ground =  $\frac{P}{W} (nW) = (0.230)(26.7) = 6.14 \text{ kN}$

b. Maximum drawbar pull of vehicle on 10 percent slope: Maximum drawbar pull on a 10 percent slope =  $\frac{P}{W} (nW) - \text{slope} (nW)$

$$\begin{aligned} &= (0.230)(26.7) - (0.10)(26.7) \\ &= 6.14 - 2.67 \\ &= 3.47 \text{ kN, or } 3470 \text{ N} \end{aligned}$$

c. Trailer rolling resistance (level surface):

$$\Omega = \frac{G(td)^{3/2}}{W} \times \frac{\varepsilon}{h} = \frac{5.4(90,730)(0.35)}{4 \times 1000}$$

$$\Omega = 42.9$$

Reading from plate 26,  $P_T/W = 0.077$ ; or from the equation for towed wheels in plate 26:

$$\frac{P_T}{W} = \frac{0.00044 \Omega + 0.0055}{0.01144 \Omega - 0.0295} + 0.025$$

$$\frac{P_T}{W} = \frac{0.00044(42.9) + 0.0055}{0.01144(42.9) - 0.0295} + 0.025$$

$$\frac{P_T}{W} = 0.053 + 0.025 = 0.078$$

Rolling resistance on level ground (M101)

$$P_T = \frac{P_T}{W} (nW) = 0.078(8) = 0.624 \text{ kN, or } 624 \text{ N}$$

d. Rolling resistance on 10 percent slope:

Rolling resistance on a 10 percent slope

$$\begin{aligned} &= \frac{P_T}{W} (nW) + \text{slope (nW)} \\ &= 0.624 + (0.1)(8) = 1.42 \text{ kN} \end{aligned}$$

e. Is maximum drawbar pull of an M37 on a 10 percent slope greater than the rolling resistance of an M101 trailer on a 10 percent slope under the conditions specified? Maximum drawbar pull of an M37 on a 10 percent slope = 3.47 kN. Rolling resistance of M101 on a 10 percent slope = 1.42 kN.

The M37's drawbar pull is greater.

Conclusion: Vehicle's drawbar pull exceeds the trailer's rolling resistance, so the vehicle-trailer combination will be mobile under the conditions specified. Carrying the calculations further, it can be seen that the combination would be immobilized on a slope of 15 to 16 percent, i.e., let  
 $(\text{slope}) (\text{M37 weight}) + (\text{slope}) (\text{M101 weight}) + \text{rolling resistance (M101)} = \text{maximum drawbar pull}$   
 $(\text{M37}) (26.7) (\text{slope}) + (8) (\text{slope}) + 0.624 = 6.14$   
 $34.7 (\text{slope}) = 5.52$   
 $\text{slope} = 0.16$

#### Example 4

58. An all-wheel-drive vehicle has definite advantages over similar vehicles with nonpowered elements. The relations of pull and towed force to the sand mobility number can be used to show the advantages gained by

powering all the wheels. The M37, discussed in the previous example, can be used as a 4x4 or 4x2 vehicle, because the front axle can be engaged manually.

Given: M37, 4x4 truck, 3/4-ton

Gross vehicle weight (nw) = 26.7 kN

Number of wheels (n) = 4

Wheel load (W) = 6.67 kN

Soil strength (G) (minimum) =  $5.4 \text{ N/cm}^2/\text{cm}$

9.00-16 tires:  $b = 23.4 \text{ cm}$ ;  $d = 86.4 \text{ cm}$ ;

$(bd)^{3/2} = 90,730 \text{ cm}^3$ ;  $\delta/h = 0.35$

Find: Performance of M37: (a) as a 4x4 and (b) as a 4x2.

a. Pull coefficient and/or slope negotiable for 4x4 configuration:

From a of example 3:  $\Omega = 25.7$ ;  $P/W = 0.230$

b. Pull coefficient and/or slope negotiable for 4x2 configuration:

$P/W = \text{maximum drawbar pull of rear wheels minus rolling resistance of front wheels}$

(1) Maximum drawbar pull of rear wheels:

From a of example 3:  $P/W = 0.230$

Total weight of rear axle = 13.3 kN

Maximum drawbar pull ( $0.230)(13.3)$

= 3.06 kN

(2) Rolling resistance of front wheels:

From the calculation of the sand mobility number given in example 3:  $\Omega = 25.7$ ; and reading from plate 26,  $P_T/W = 0.085$ ; or from the equation for towed wheels in plate 26:

$$\frac{P_T}{W} = \frac{0.00044 \Omega + 0.0055}{0.01144 \Omega - 0.0295} + 0.025$$

$$\frac{P_T}{W} = \frac{0.00044(25.7) + 0.0055}{0.01144(25.7) - 0.0295} + 0.025$$

$$\frac{P_T}{W} = 0.065 + 0.025 = 0.089$$

Total weight on front axle = 13.3 kN

Total rolling resistance on front wheels  
(0.089)(13.3) = 1.18 kN

(3) Maximum drawbar pull (rear) (3.06 kN)  
- rolling resistance (1.18 kN) = 1.88 kN

$$\frac{P}{W} = \frac{1.88}{26.7} = 0.070$$

Conclusion: The 4x4 will outperform the 4x2. The latter would be immobilized on slopes of 7 percent or greater, while the 4x4 could negotiate slopes as steep as 23 percent.

## PART V: CONCLUSIONS AND RECOMMENDATIONS

### Conclusions

59. The foregoing analysis is considered adequate basis for the following conclusions:

- a. The soil parameter  $G$  adequately defines the strength of soil for the range of conditions encountered in the laboratory tests. (Paragraph 34.)
- b. The deflection parameter  $\delta/h$  is adequate for the range of deflections considered. (Paragraph 43.)
- c. The performance of pneumatic tires operating in sand, when speed and slip are constant, is dependent on the tire diameter, width, and deflection on load, and on soil strength. In dry sand, these factors can be combined into the dimensionless expression

$$\frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h} . \quad (\text{Paragraph 46.})$$

- d. The average of the pull coefficients for the first and second pass of a single wheel forms a reasonable average of the points representing performance data for an actual 4x4 vehicle under laboratory conditions. (Paragraph 49.)

- e. The expression  $\frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h}$  adequately collapses the field performance data; i.e., the relation between the vehicle's field performance and the sand mobility number is similar to the relation for the laboratory performance data and the mobility number. (Paragraph 51.)
- f. The relations found can be utilized for tentative design criteria or performance prediction. (Paragraphs 54-58.)

### Recommendations

60. It is recommended that:

- a. The study of effectiveness of the soil strength parameter be extended.
- b. The range of tire deflection conditions tested be broadened and the possibility be investigated of altering the form of the sand mobility number so that the performance of rigid wheels can be considered.

- c. Larger tires and tires of different basic shapes be included in this program.
- d. The program be extended to other soils, including those that have both cohesive and frictional strength.

#### LITERATURE CITED

1. U. S. Army Engineer Waterways Experiment Station, CE, Performance of Soils Under Tire Loads. Technical Report No. 3-666, Vicksburg, Miss.
  - a. Report 1, Test Facilities and Techniques, by J. L. McRae, C. J. Powell, and R. D. Wismer. January 1965.
  - b. Report 2, Analysis of Tests in Yuma Sand Through August 1962, by C. J. Powell and A. J. Green. August 1965.
  - c. Report 3, Tests in Clay Through November 1962, by R. D. Wismer. February 1966.
  - d. Report 4, Analysis of Tests in Sand from September 1962 Through November 1963, by G. W. Turnage and A. J. Green, Jr. February 1966.
2. Trafficability of Soils. Technical Memorandum No. 3-240, Vicksburg, Miss.
  - a. Fifteenth Supplement, Tests on Coarse-Grained Soils with Self-Propelled and Towed Vehicles, 1956 and 1957, by E. S. Rush. June 1959.
  - b. Seventeenth Supplement, Tests on Coarse-Grained Soils with Self-Propelled and Towed Vehicles, 1958-1961, by E. S. Rush. May 1963.
3. Markwick, A. H. D., Dimensional Analysis of the Bearing Capacity of Soils Under Tracked Vehicles and Its Application to Model Tests. Road Research Note RN/531, Road Research Laboratory, Department of Scientific and Industrial Research, England, October 1944.
4. Nuttall, C. J., Jr., Scale Model Vehicle Testing in Non-Plastic Soil. Experimental Towing Tank Report 394, Stevens Institute of Technology, Hoboken, N. J., December 1949.
5. The Rolling Resistance of Wheels in Soil. Experimental Towing Tank Report 418, Stevens Institute of Technology, Hoboken, N. J., July 1951.
6. Nuttall, C. J., Jr., and Raimond, V. M., Scaled Vehicle Mobility Factors. Report 18-2, Wilson, Nuttall, Raimond, Engineers, Inc., Chestertown, Md., July 1956.
7. Nuttall, C. J., Jr., and Wilson, C. W., Scale Model Vehicles in Snow. Report 29-3, Wilson, Nuttall, Raimond, Engineers, Inc., Chestertown, Md., January 1959.
8. Vincent, E. T., Hicks, H. H., Jr., and Kapur, D. K., Research Vehicle Mobility: Performance Coefficients for Free-Running Wheels in Sand. Report 2544-31-F, University of Michigan Research Institute, Ann Arbor, Mich., July 1960.
9. Harrison, W. L., Jr., "Analytical prediction of performance for full size and small scale model vehicles." Mechanics of Soil-Vehicle Systems: Proceedings of the 1st International Conference on the

Mechanics of Soil-Vehicle Systems, Turin, Italy (June 1961), pp 678-702.

10. Hicks, H. H., Jr., Kapur, D. K., and Vincent, E. T., A Similitude Study of the Drag and Sinkage of Wheels Using the Sinkage-Parameter System of Soil Values. Report 2860-27-1, University of Michigan Research Institute, Ann Arbor, Mich., April 1961.
11. Roma, C. J., and McGowan, R. P., Scaled Vehicle Mobility Factors (Tires in Sand). Technical Report 61-49, U. S. Army Transportation Research Command, Fort Eustis, Va., April 1961.
12. Wilson, Nuttall, Raimond, Engineers, Inc., Scaled Mobility Factors (Sand). Technical Report 61-67, U. S. Army Transportation Research Command, Fort Eustis, Va., April 1961.
13. Costello, G. A., and DeWhirst, D. L., "Effect of gravity on the mobility of a lunar vehicle." Journal of American Institute of Aeronautics and Astronauts, vol I, No. 6 (September 1963), pp 2157-2159.
14. Clark, J. M., Jr., Simon, H. P., and Roma, C. J., Correlation of Prototype and Scale Model Vehicle Performance in Clay Soils. Paper No. 782J, National Congress of the Society of Automotive Engineers, Detroit, Mich., January 1964.
15. U. S. Army Engineer Waterways Experiment Station, CE, A Dimensional Analysis of the Performance of Pneumatic Tires on Soft Soils, by D. R. Freitag. Technical Report No. 3-688, Vicksburg, Miss., August 1965. (Doctoral Dissertation, Auburn, Ala., available as Order No. 65-9633, University Microfilms, Inc., 300 N. Zeeb Road, Ann Arbor, Mich.)
16. Measuring Soil Properties in Vehicle Mobility Research; Strength-Density Relations of an Air-Dry Sand, by A. J. Green, J. L. Smith, and N. R. Murphy, Jr. Technical Report No. 3-652, Report No. 1, Vicksburg, Miss., August 1964.
17. Kerisel, J., "Deep foundations in sands, variation of ultimate bearing capacity with soil density, depth, diameter, and speed." Fifth International Conference on Soil Mechanics, vol 2, Paris (1961), pp 73-83.
18. U. S. Army Engineer Waterways Experiment Station, CE, Trafficability of Soils; Slope Studies. Technical Memorandum No. 3-240, Eighth Supplement, Vicksburg, Miss., May 1951.

Table 7  
Characteristics of Basic Test Tires

| Deflec-<br>tion<br>% | Load<br>N | Inflation<br>Pressure<br>N/cm <sup>2</sup> |        | Carcass<br>Section<br>Height, cm |        | Section<br>Width, cm |        | Tire<br>Diam<br>cm | Measured<br>Rolling<br>Circum-<br>ference<br>cm | Hard Surface Measurements          |                         |                        |                                          |
|----------------------|-----------|--------------------------------------------|--------|----------------------------------|--------|----------------------|--------|--------------------|-------------------------------------------------|------------------------------------|-------------------------|------------------------|------------------------------------------|
|                      |           | No<br>Load                                 | Loaded | No<br>Load                       | Loaded | No<br>Load           | Loaded |                    |                                                 | Contact<br>Area<br>cm <sup>2</sup> | Contact<br>Length<br>cm | Contact<br>Width<br>cm | Contact<br>Pressure<br>N/cm <sup>2</sup> |
| <u>4.00-7, 2-PR</u>  |           |                                            |        |                                  |        |                      |        |                    |                                                 |                                    |                         |                        |                                          |
| 15                   | 444       | 11.0                                       | 11.2   | 7.85                             | 6.68   | 10.59                | 11.18  | 35.81              | 109                                             | 31.55                              | 9.42                    | 4.52                   | 14.10                                    |
| 15                   | 999       | 22.8                                       | 22.9   | 7.90                             | 6.71   | 10.72                | 11.23  | 35.92              | 109                                             | 15.71                              | 10.67                   | 5.00                   | 24.59                                    |
| 25                   | 444       | 4.1                                        | 4.3    | 7.82                             | 5.87   | 10.59                | 11.43  | 35.76              | 105                                             | 70.13                              | 13.49                   | 6.73                   | 6.34                                     |
| 25                   | 999       | 11.6                                       | 11.7   | 7.85                             | 5.89   | 10.62                | 11.43  | 35.81              | 105                                             | 74.39                              | 13.23                   | 6.76                   | 13.45                                    |
| 25                   | 1511      | 17.8                                       | 17.9   | 7.90                             | 5.92   | 10.67                | 11.61  | 35.92              | 105                                             | 74.71                              | 13.45                   | 6.93                   | 20.24                                    |
| 35                   | 444       | 1.7                                        | 1.9    | 7.87                             | 5.11   | 10.49                | 11.71  | 35.86              | 102                                             | 101.68                             | 15.75                   | 6.0                    | 4.38                                     |
| 35                   | 999       | 7.0                                        | 7.2    | 7.85                             | 5.11   | 10.59                | 11.89  | 35.81              | 102                                             | 100.32                             | 15.37                   | 8.28                   | 9.97                                     |
| 35                   | 2022      | 14.9                                       | 15.1   | 7.87                             | 5.11   | 10.67                | 12.09  | 35.86              | 102                                             | 112.52                             | 16.23                   | 8.71                   | 17.99                                    |
| <u>4.00-20, 2-PR</u> |           |                                            |        |                                  |        |                      |        |                    |                                                 |                                    |                         |                        |                                          |
| 15                   | 999       | 16.9                                       | 17.0   | 8.03                             | 6.83   | 10.62                | 11.51  | 71.09              | 217                                             | 59.42                              | 15.24                   | 5.08                   | 16.71                                    |
| 15                   | 2022      | 33.1                                       | 33.2   | 6.18                             | 6.96   | 10.72                | 11.28  | 71.40              | 218                                             | 63.10                              | 16.10                   | 5.08                   | 32.08                                    |
| 25                   | 999       | 7.7                                        | 7.8    | 7.92                             | 5.94   | 10.44                | 11.51  | 70.89              | 213                                             | 105.22                             | 18.69                   | 6.99                   | 9.52                                     |
| 25                   | 1511      | 12.4                                       | 12.5   | 7.98                             | 5.94   | 10.54                | 11.58  | 70.99              | 213                                             | 115.29                             | 19.23                   | 6.99                   | 14.36                                    |
| 25                   | 2022      | 16.8                                       | 17.0   | 8.03                             | 6.02   | 10.52                | 11.58  | 71.09              | 213                                             | 106.25                             | 19.17                   | 6.91                   | 19.05                                    |
| 25                   | 2977      | 25.6                                       | 25.9   | 8.13                             | 6.10   | 10.67                | 11.71  | 71.30              | 214                                             | 105.35                             | 19.69                   | 6.68                   | 28.29                                    |
| 35                   | 999       | 4.3                                        | 4.6    | 7.90                             | 5.13   | 10.29                | 12.07  | 70.84              | 209                                             | 146.39                             | 21.97                   | 8.48                   | 6.85                                     |
| 35                   | 1511      | 7.6                                        | 7.6    | 7.92                             | 5.16   | 10.44                | 12.24  | 70.89              | 210                                             | 158.71                             | 22.86                   | 8.69                   | 9.53                                     |
| 35                   | 2022      | 10.1                                       | 10.3   | 7.95                             | 5.16   | 10.52                | 12.24  | 70.94              | 210                                             | 160.64                             | 23.01                   | 8.59                   | 12.60                                    |
| 35                   | 2977      | 25.6                                       | 25.9   | 8.03                             | 5.18   | 10.59                | 12.27  | 71.09              | 210                                             | 164.67                             | 23.22                   | 8.59                   | 18.10                                    |
| <u>6.00-16, 2-PR</u> |           |                                            |        |                                  |        |                      |        |                    |                                                 |                                    |                         |                        |                                          |
| 15                   | 999       | 5.7                                        | 5.9    | 13.39                            | 11.38  | 16.76                | 17.53  | 71.78              | 215                                             | 131.74                             | 18.29                   | 8.38                   | 7.59                                     |
| 15                   | 2022      | 11.7                                       | 11.9   | 13.46                            | 11.43  | 16.79                | 17.65  | 71.93              | 215                                             | 144.74                             | 19.63                   | 8.48                   | 14.07                                    |
| 15                   | 2977      | 19.9                                       | 20.0   | 13.51                            | 11.48  | 16.81                | 17.78  | 72.03              | 216                                             | 132.39                             | 19.23                   | 8.20                   | 22.55                                    |
| 25                   | 3955      | 26.0                                       | 26.2   | 13.54                            | 11.51  | 16.84                | 17.78  | 72.09              | 216                                             | 137.68                             | 19.43                   | 8.38                   | 28.96                                    |
| 25                   | 999       | 2.6                                        | 3.1    | 13.33                            | 10.01  | 16.76                | 18.49  | 71.68              | 210                                             | 203.91                             | 22.61                   | 10.92                  | 4.91                                     |
| 25                   | 2022      | 6.9                                        | 7.1    | 13.39                            | 10.03  | 16.76                | 18.34  | 71.78              | 210                                             | 219.03                             | 23.88                   | 10.80                  | 9.24                                     |
| 25                   | 3955      | 14.3                                       | 14.5   | 13.46                            | 10.11  | 16.81                | 18.49  | 71.73              | 211                                             | 232.84                             | 24.69                   | 11.18                  | 17.03                                    |
| 35                   | 999       | 1.4                                        | 1.7    | 13.28                            | 8.64   | 16.76                | 19.61  | 71.58              | 206                                             | 363.55                             | 28.19                   | 15.49                  | 2.76                                     |
| 35                   | 2022      | 4.5                                        | 4.8    | 13.39                            | 8.71   | 16.76                | 19.56  | 71.78              | 206                                             | 384.19                             | 28.45                   | 13.02                  | 6.24                                     |
| 35                   | 2977      | 6.9                                        | 7.1    | 13.39                            | 8.71   | 16.76                | 19.61  | 71.78              | 207                                             | 339.93                             | 29.21                   | 14.15                  | 9.45                                     |
| 35                   | 3955      | 8.6                                        | 9.0    | 13.44                            | 8.74   | 16.76                | 19.61  | 71.88              | 207                                             | 366.19                             | 30.18                   | 14.55                  | 11.03                                    |
| <u>9.00-14, 2-PR</u> |           |                                            |        |                                  |        |                      |        |                    |                                                 |                                    |                         |                        |                                          |
| 15                   | 999       | 5.0                                        | 5.2    | 16.05                            | 13.61  | 20.96                | 21.59  | 71.63              | 213                                             | 171.61                             | 20.32                   | 10.54                  | 5.83                                     |
| 15                   | 2022      | 11.2                                       | 11.3   | 16.18                            | 13.77  | 21.03                | 21.64  | 71.93              | 215                                             | 172.90                             | 20.83                   | 10.16                  | 11.71                                    |
| 15                   | 3955      | 25.3                                       | 25.5   | 16.01                            | 14.12  | 21.13                | 21.87  | 72.80              | 221                                             | 154.19                             | 20.24                   | 9.53                   | 25.68                                    |
| 25                   | 999       | 2.1                                        | 2.2    | 16.00                            | 11.99  | 20.68                | 22.25  | 71.56              | --                                              | 344.52                             | 27.84                   | 15.39                  | 2.90                                     |
| 25                   | 2022      | 5.0                                        | 5.2    | 16.03                            | 12.01  | 20.95                | 22.35  | 71.63              | 207                                             | 338.06                             | 27.33                   | 14.73                  | 5.98                                     |
| 25                   | 2977      | 8.0                                        | 8.1    | 16.15                            | 12.12  | 20.98                | 22.40  | 71.58              | --                                              | 327.10                             | 27.03                   | 14.61                  | 9.11                                     |
| 25                   | 3955      | 11.2                                       | 11.3   | 16.18                            | 12.14  | 21.03                | 22.53  | 71.93              | 208                                             | 323.87                             | 27.00                   | 14.61                  | 12.22                                    |
| 35                   | 999       | 1.0                                        | 1.4    | 15.98                            | 10.39  | 20.43                | 23.42  | 71.53              | 213                                             | 507.74                             | 33.02                   | 19.00                  | 1.97                                     |
| 35                   | 2977      | 5.0                                        | 5.2    | 16.03                            | 10.41  | 20.96                | 23.30  | 71.63              | 203                                             | 488.39                             | 32.46                   | 18.14                  | 6.10                                     |
| 35                   | 3955      | 7.0                                        | 7.3    | 16.15                            | 10.49  | 20.96                | 23.77  | 71.88              | 204                                             | 452.26                             | 32.00                   | 17.96                  | 8.76                                     |

Table 2  
Characteristics of Validation Test Tires

| Deflection<br>%                  | Load<br>N | Inflation<br>Pressure<br>N/cm <sup>2</sup> | Cross Section |        |                      |                    | Measured<br>Rolling<br>Circum-<br>ference<br>cm | Contact<br>Area<br>cm <sup>2</sup> | Hard Surface Measurements |                        |                                          |  |  |
|----------------------------------|-----------|--------------------------------------------|---------------|--------|----------------------|--------------------|-------------------------------------------------|------------------------------------|---------------------------|------------------------|------------------------------------------|--|--|
|                                  |           |                                            | Height, cm    |        | Section<br>Width, cm | Tire<br>Diam<br>cm |                                                 |                                    | Contact<br>Length<br>cm   | Contact<br>Width<br>cm | Contact<br>Pressure<br>N/cm <sup>2</sup> |  |  |
|                                  |           |                                            | No<br>Load    | Loaded |                      |                    |                                                 |                                    |                           |                        |                                          |  |  |
| <u>1.75-26, Bicycle Tire</u>     |           |                                            |               |        |                      |                    |                                                 |                                    |                           |                        |                                          |  |  |
| 15                               | 444       | 27.8                                       | 29.0          | 3.56   | 3.02                 | 4.37               | 4.67                                            | 71.55                              | 199                       | 14.19                  | 9.91                                     |  |  |
| 15                               | 999       | 62.7                                       | 44.3          | 3.56   | 3.02                 | 4.50               | 4.80                                            | 71.55                              | 199                       | 15.48                  | 10.41                                    |  |  |
| 35                               | 444       | 8.5                                        | 9.2           | 3.56   | 2.31                 | 4.29               | 5.13                                            | 71.55                              | 196                       | 30.35                  | 15.49                                    |  |  |
| 35                               | 999       | 22.8                                       | 24.0          | 3.56   | 2.31                 | 4.37               | 5.11                                            | 71.55                              | 196                       | 33.66                  | 14.99                                    |  |  |
| <u>16x15-6R, 2-PR Terra Tire</u> |           |                                            |               |        |                      |                    |                                                 |                                    |                           |                        |                                          |  |  |
| 15                               | 999       | 4.7                                        | 4.8           | 12.70  | 10.30                | 38.61              | 38.61                                           | 43.18                              | 131                       | 161.29                 | 21.34                                    |  |  |
| 15                               | 2,022     | 12.1                                       | 12.2          | 13.11  | 11.40                | 38.61              | 38.61                                           | 44.60                              | 136                       | 233.55                 | 20.83                                    |  |  |
| 15                               | 3,199     | 21.3                                       | 21.4          | 13.97  | 11.89                | 38.61              | 38.61                                           | 45.72                              | 140                       | 145.81                 | 20.07                                    |  |  |
| 25                               | 999       | 2.0                                        | 2.1           | 12.29  | 9.22                 | 38.61              | 38.61                                           | 42.37                              | 129                       | 328.39                 | 27.69                                    |  |  |
| 25                               | 2,022     | 4.8                                        | 5.0           | 12.70  | 9.53                 | 38.61              | 38.61                                           | 43.18                              | 131                       | 339.35                 | 27.94                                    |  |  |
| 25                               | 3,199     | 8.9                                        | 9.0           | 13.18  | 9.88                 | 38.61              | 38.61                                           | 44.15                              | 133                       | 325.16                 | 27.43                                    |  |  |
| <u>9.00-14, 2-PR</u>             |           |                                            |               |        |                      |                    |                                                 |                                    |                           |                        |                                          |  |  |
| 25                               | 1,289     | 3.9                                        | 4.1           | 14.40  | 10.80                | 21.64              | 22.40                                           | 68.10                              | 205                       | 278.06                 | 22.61                                    |  |  |
| 25                               | 2,022     | 6.2                                        | 6.5           | 14.63  | 10.95                | 21.54              | 22.48                                           | 68.90                              | 206                       | 307.81                 | 23.37                                    |  |  |
| 25                               | 2,977     | 9.4                                        | 9.7           | 14.76  | 11.07                | 21.59              | 22.30                                           | 69.31                              | 208                       | 370.52                 | 24.38                                    |  |  |
| 25                               | 3,955     | --                                         | 12.1          | 14.83  | 11.13                | 21.95              | 22.85                                           | 68.96                              | 209                       | 312.26                 | 24.64                                    |  |  |
| 25                               | 5,911     | 20.5                                       | 20.8          | 15.38  | 11.51                | 22.50              | 23.11                                           | 69.98                              | 213                       | 295.48                 | 24.64                                    |  |  |
| <u>11.00-20, 12-PR</u>           |           |                                            |               |        |                      |                    |                                                 |                                    |                           |                        |                                          |  |  |
| 15                               | 13,333    | --                                         | --            | 31.2   | 22.91                | 19.51              | 28.98                                           | 30.40                              | 104.95                    | 3807                   | 381.29                                   |  |  |
| 15                               | 19,999    | --                                         | --            | 43.4   | 22.91                | 19.51              | 29.36                                           | 30.76                              | 104.95                    | 3796                   | 409.35                                   |  |  |
| 23                               | 23,333    | --                                         | --            | 13.1   | 22.91                | 17.20              | 28.73                                           | 31.75                              | 104.95                    | 3652                   | 674.32                                   |  |  |
| 35                               | 13,333    | --                                         | --            | 7.8    | 22.91                | 14.91              | 28.42                                           | 33.10                              | 104.95                    | 3557                   | 877.48                                   |  |  |
| 35                               | 19,999    | --                                         | --            | 14.5   | 22.91                | 14.91              | 28.98                                           | 33.10                              | 104.95                    | 3557                   | 912.58                                   |  |  |

Table 3  
Single-Whelk Tuna in Home Raid: 20 Percent Kill, First Run, Basic Test Trials

Table 3 (Continued)

Table 4  
Single-Wheel Tests in Yuma Sand, Towed Point, First Pass, Basic Test Times

| Test No.             | Penetration-Resistance Gradient, G<br>N/cm <sup>2</sup> /cm | Deflection<br>δ/b |       | Wheel Load<br>W, lb |      | Roll<br>P, lb | Slip<br>S<br>% | Sinkage<br>S, cm | Pull<br>Coef.<br>ficient<br>P<br>W | Sinkage<br>Coef.<br>ficient<br>S<br>d | Strength-Load<br>Ratio<br>G/W<br>cm <sup>-2</sup> | Sand<br>Loading<br>Number<br>Gd <sup>3</sup><br>W | Sand<br>Number<br>d <sup>1/2</sup><br>W | Sand<br>Mobility<br>Number<br>X(bg) <sup>1/2</sup><br>W |
|----------------------|-------------------------------------------------------------|-------------------|-------|---------------------|------|---------------|----------------|------------------|------------------------------------|---------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------------------------------------|
|                      |                                                             | Design            | Test  | Design              | Test |               |                |                  |                                    |                                       |                                                   |                                                   |                                         |                                                         |
| <u>4.00-7, 2-PE</u>  |                                                             |                   |       |                     |      |               |                |                  |                                    |                                       |                                                   |                                                   |                                         |                                                         |
| 164 702A             | 5.3                                                         | 0.15              | 0.131 | 444                 | 377  | -57           | -7.5           | 0.96             | -0.299                             | 0.067                                 | 0.014                                             | 643.00                                            | 193.43                                  | 13.55                                                   |
| 164 802A             | 5.4                                                         | 0.15              | 0.146 | 444                 | 471  | -53           | -1.1           | 1.32             | -0.113                             | 0.037                                 | 0.012                                             | 526.92                                            | 85.97                                   | 13.27                                                   |
| 164 802A             | 5.1                                                         | 0.16              | 0.175 | 444                 | 546  | -53           | -7.0           | 2.7              | -0.171                             | 0.066                                 | 0.006                                             | 262.09                                            | 42.15                                   | 7.38                                                    |
| 164 800A             | 4.2                                                         | 0.15              | 0.142 | 499                 | 923  | -284          | -12.4          | 1.87             | -0.305                             | 0.092                                 | 0.005                                             | 206.67                                            | 35.00                                   | 4.83                                                    |
| 164 807A             | 6.0                                                         | 0.25              | 0.301 | 444                 | 537  | -15           | -2.5           | 0.70             | -0.075                             | 0.005                                 | 0.011                                             | 507.51                                            | 81.86                                   | 24.62                                                   |
| 165 502A             | 6.5                                                         | 0.25              | 0.304 | 444                 | 562  | -17           | -1.2           | 1.32             | -0.033                             | 0.037                                 | 0.012                                             | 540.11                                            | 88.50                                   | 24.1                                                    |
| 164 811A             | 5.3                                                         | 0.15              | 0.110 | 883                 | 826  | -10           | -7             | 0.46             | -0.130                             | 0.027                                 | 0.010                                             | 462.15                                            | 76.60                                   | 15.67                                                   |
| 164 822A             | 4.3                                                         | 0.25              | 0.261 | 994                 | 994  | -233          | -2.2           | 0.86             | -0.139                             | 0.023                                 | 0.005                                             | 207.65                                            | 33.52                                   | 8.08                                                    |
| 164 809A             | 6.6                                                         | 0.25              | 0.259 | 499                 | 1039 | -223          | -2.0           | 0.50             | -0.107                             | 0.014                                 | 0.006                                             | 247.36                                            | 47.37                                   | 12.27                                                   |
| 164 802A             | 5.9                                                         | 0.25              | 0.256 | 1511                | 1246 | -326          | -7.0           | 2.55             | -0.210                             | 0.082                                 | 0.003                                             | 117.90                                            | 19.07                                   | 4.88                                                    |
| 164 823A             | 6.2                                                         | 0.35              | 0.363 | 444                 | 488  | -57           | -1             | 0.20             | -0.110                             | 0.004                                 | 0.013                                             | 544.03                                            | 72.07                                   | 24.12                                                   |
| 164 804A             | 5.7                                                         | 0.35              | 0.354 | 666                 | 675  | -57           | -2.8           | 0.10             | -0.084                             | 0.003                                 | 0.008                                             | 538.94                                            | 61.97                                   | 21.94                                                   |
| 165 2A               | 7.5                                                         | 0.35              | 0.350 | 666                 | 684  | -57           | -3.0           | 0.75             | -0.103                             | 0.021                                 | 0.012                                             | 533.31                                            | 86.61                                   | 30.32                                                   |
| 164 800A             | 6.4                                                         | 0.35              | 0.350 | 999                 | 995  | -75           | -3.8           | 0.15             | -0.076                             | 0.004                                 | 0.006                                             | 294.01                                            | 47.30                                   | 16.55                                                   |
| 164 832A             | 6.8                                                         | 0.35              | 0.342 | 2022                | 1995 | -241          | -1.0           | 1.23             | -0.174                             | 0.034                                 | 0.003                                             | 155.75                                            | 27.10                                   | 8.87                                                    |
| <u>4.00-20, 2-PP</u> |                                                             |                   |       |                     |      |               |                |                  |                                    |                                       |                                                   |                                                   |                                         |                                                         |
| 164 701A             | 2.6                                                         | 0.15              | 0.147 | 900                 | 965  | -204          | -11            | 3.8              | -0.211                             | 0.047                                 | 0.003                                             | 461.60                                            | 55.15                                   | 8.11                                                    |
| 164 702A             | 5.8                                                         | 0.15              | 0.148 | 999                 | 989  | -124          | -1.4           | 1.1              | -0.118                             | 0.021                                 | 0.006                                             | 2024.03                                           | 127.39                                  | 17.37                                                   |
| 164 703A             | 4.2                                                         | 0.15              | 0.143 | 2022                | 1992 | -166          | -10.7          | 4.2              | -0.244                             | 0.054                                 | 0.002                                             | 808.17                                            | 47.01                                   | 6.72                                                    |
| 164 704A             | 4.2                                                         | 0.15              | 0.147 | 2022                | 1977 | -244          | -10.2          | 3.0              | -0.227                             | 0.043                                 | 0.002                                             | 777.12                                            | 44.05                                   | 6.47                                                    |
| 164 705A             | 5.2                                                         | 0.15              | 0.145 | 2022                | 1992 | -386          | -7.6           | 3.42             | -0.195                             | 0.042                                 | 0.002                                             | 941.11                                            | 51.04                                   | 9.15                                                    |
| 165 14A              | 7.6                                                         | 0.25              | 0.251 | 999                 | 1008 | -79           | -2.5           | 0.00             | -0.074                             | 0.000                                 | 0.008                                             | 2681.71                                           | 151.54                                  | 36.04                                                   |
| 165 15A              | 4.7                                                         | 0.25              | 0.263 | 999                 | 1057 | -48           | -4.0           | 2.7              | -0.246                             | 0.011                                 | 0.004                                             | 1592.60                                           | 96.38                                   | 23.76                                                   |
| 165 19A              | 4.3                                                         | 0.25              | 0.249 | 1511                | 1502 | -93           | -1.0           | 0.65             | -0.062                             | 0.006                                 | 0.003                                             | 2195.00                                           | 68.58                                   | 27.02                                                   |
| 165 26A              | 4.1                                                         | 0.25              | 0.247 | 2022                | 1999 | -341          | -2.0           | 1.06             | -0.146                             | 0.026                                 | 0.002                                             | 730.95                                            | 42.10                                   | 10.42                                                   |
| 165 21A              | 8.0                                                         | 0.35              | 0.358 | 999                 | 1035 | -66           | -2.7           | 0.09             | -0.064                             | 0.014                                 | 0.008                                             | 3746.75                                           | 171.00                                  | 54.43                                                   |
| 165 22A              | 8.0                                                         | 0.35              | 0.360 | 1511                | 1555 | -14           | -1.2           | 0.60             | -0.059                             | 0.009                                 | 0.007                                             | 1532.44                                           | 127.55                                  | 37.29                                                   |
| 165 20A              | 5.3                                                         | 0.35              | 0.343 | 2022                | 1964 | -93           | -0.9           | 0.65             | -0.045                             | 0.006                                 | 0.003                                             | 963.23                                            | 54.06                                   | 18.82                                                   |
| <u>4.00-16, 2-PR</u> |                                                             |                   |       |                     |      |               |                |                  |                                    |                                       |                                                   |                                                   |                                         |                                                         |
| 164 802A             | 1.7                                                         | 0.15              | 0.144 | 999                 | 946  | -245          | -8.8           | 2.90             | -0.155                             | 0.036                                 | 0.002                                             | 657.54                                            | 75.38                                   | 10.87                                                   |
| 164 803A             | 3.0                                                         | 0.15              | 0.145 | 999                 | 975  | -66           | -2.9           | 0.00             | -0.070                             | 0.000                                 | 0.004                                             | 1469.62                                           | 165.57                                  | 24.05                                                   |
| 164 804A             | 4.8                                                         | 0.15              | 0.149 | 999                 | 985  | -57           | -2.6           | 0.50             | -0.050                             | 0.007                                 | 0.005                                             | 1799.44                                           | 203.09                                  | 30.26                                                   |
| 164 805A             | 5.9                                                         | 0.15              | 0.147 | 1333                | 1299 | -58           | -2.6           | 0.50             | -0.06                              | 0.007                                 | 0.003                                             | 1206.18                                           | 124.58                                  | 18.31                                                   |
| 164 807A             | 3.1                                                         | 0.15              | 0.150 | 2022                | 2035 | -266          | -3.3           | 2.43             | -0.131                             | 0.034                                 | 0.002                                             | 65.75                                             | 63.75                                   | 9.55                                                    |
| 164 33A              | 1.2                                                         | 0.15              | 0.147 | 2977                | 2888 | -127          | -37.6          | 0.96             | -0.149                             | 0.124                                 | 0.000                                             | 161.42                                            | 18.21                                   | 2.08                                                    |
| 164 816A             | 4.1                                                         | 0.25              | 0.264 | 999                 | 1066 | -44           | -1.3           | 0.70             | -0.042                             | 0.010                                 | 0.004                                             | 1413.96                                           | 159.93                                  | 42.22                                                   |
| 165 37A              | 4.6                                                         | 0.25              | 0.248 | 999                 | 991  | -62           | -1.3           | 0.10             | -0.263                             | 0.021                                 | 0.005                                             | 1723.31                                           | 104.91                                  | 48.36                                                   |
| 164 815A             | 5.0                                                         | 0.25              | 0.250 | 2022                | 2022 | -79           | -3.3           | 0.75             | -0.040                             | 0.011                                 | 0.002                                             | 907.73                                            | 102.45                                  | 25.61                                                   |
| 165 33A              | 0.7                                                         | 0.25              | 0.238 | 2022                | 1906 | -208          | -39.3          | 9.05             | -0.434                             | 0.126                                 | 0.000                                             | 136.76                                            | 15.44                                   | 3.67                                                    |
| 164 812A             | 4.3                                                         | 0.25              | 0.241 | 3955                | 3984 | -337          | -5.2           | 1.75             | -0.088                             | 0.025                                 | 0.002                                             | 412.25                                            | 46.59                                   | 11.42                                                   |
| 164 817A             | 2.9                                                         | 0.25              | 0.245 | 3955                | 3835 | -788          | -8.1           | 3.92             | -0.200                             | 0.054                                 | 0.001                                             | 278.96                                            | 11.53                                   | 7.72                                                    |
| 164 803A             | 1.7                                                         | 0.35              | 0.330 | 999                 | 999  | -115          | -4.5           | 1.30             | -0.116                             | 0.019                                 | 0.002                                             | 626.99                                            | 71.02                                   | 24.86                                                   |
| 164 813A             | 5.3                                                         | 0.35              | 0.369 | 999                 | 1062 | -48           | -1.1           | 0.41             | -0.046                             | 0.006                                 | 0.005                                             | 1816.46                                           | 205.59                                  | 73.97                                                   |
| 165 21A              | 5.2                                                         | 0.35              | 0.344 | 2022                | 1989 | -39           | -1.3           | 0.10             | -0.018                             | 0.021                                 | 0.003                                             | 931.71                                            | 110.80                                  | 35.12                                                   |
| 165 7A               | 1.0                                                         | 0.35              | 0.352 | 2977                | 2995 | -1093         | -30.0          | 1.14             | -0.367                             | 0.127                                 | 0.000                                             | 223.90                                            | 13.98                                   | 4.90                                                    |
| 164 811A             | 4.3                                                         | 0.35              | 0.343 | 3955                | 3866 | -213          | -2.3           | 0.82             | -0.045                             | 0.012                                 | 0.001                                             | 416.83                                            | 46.95                                   | 16.10                                                   |
| <u>9.00-15, 2-PR</u> |                                                             |                   |       |                     |      |               |                |                  |                                    |                                       |                                                   |                                                   |                                         |                                                         |
| 164 705A             | 2.4                                                         | 0.15              | 0.152 | 999                 | 1029 | -53           | -4.7           | 0.60             | -0.052                             | 0.008                                 | 0.002                                             | 577.53                                            | 136.86                                  | 21.11                                                   |
| 164 706A             | 1.8                                                         | 0.15              | 0.150 | 999                 | 999  | -93           | -1.7           | 1.40             | -0.098                             | 0.021                                 | 0.002                                             | 647.86                                            | 102.71                                  | 15.38                                                   |
| 164 708A             | 4.1                                                         | 0.15              | 0.142 | 999                 | 1087 | -75           | -1.2           | 1.05             | -0.074                             | 0.015                                 | 0.004                                             | 1462.55                                           | 231.43                                  | 35.18                                                   |
| 164 706A             | 5.3                                                         | 0.15              | 0.153 | 999                 | 1042 | -26           | -2.2           | 1.06             | -0.026                             | 0.075                                 | 0.005                                             | 1858.92                                           | 296.26                                  | 45.63                                                   |
| 164 777A             | 2.6                                                         | 0.15              | 0.152 | 2022                | 2044 | -231          | -1.7           | 2.02             | -0.113                             | 0.036                                 | 0.001                                             | 469.08                                            | 76.16                                   | 11.27                                                   |
| 164 709A             | 3.5                                                         | 0.15              | 0.151 | 2022                | 2035 | -237          | -2.5           | 1.83             | -0.068                             | 0.075                                 | 0.002                                             | 646.70                                            | 161.98                                  | 15.39                                                   |
| 164 703A             | 1.5                                                         | 0.15              | 0.145 | 2022                | 2037 | -243          | -11.9          | 4.02             | -0.216                             | 0.029                                 | 0.001                                             | 266.52                                            | 45.39                                   | 6.57                                                    |
| 164 705A             | 5.4                                                         | 0.15              | 0.152 | 2022                | 2044 | -53           | -2.6           | 1.17             | -0.046                             | 0.016                                 | 0.003                                             | 987.53                                            | 155.27                                  | 21.60                                                   |
| 164 704A             | 3.5                                                         | 0.15              | 0.143 | 3955                | 3872 | -88           | -2.2           | 1.95             | -0.177                             | 0.036                                 | 0.002                                             | 745.96                                            | 54.11                                   | 8.01                                                    |
| 164 706A             | 5.2                                                         | 0.15              | 0.147 | 3945                | 3839 | -35           | -0.9           | 2.02             | -0.045                             | 0.031                                 | 0.001                                             | 523.14                                            | 81.85                                   | 12.03                                                   |
| 165 5A               | 3.2                                                         | 0.25              | 0.241 | 665                 | 639  | -34           | -0.5           | 0.00             | -0.049                             | 0.000                                 | 0.005                                             | 1794.99                                           | 28.76                                   | 68.63                                                   |
| 165 4A               | 3.5                                                         | 0.25              | 0.250 | 999                 | 999  | -26           | -2.0           | 0.46             | -0.233                             | 0.006                                 | 0.003                                             | 1273.06                                           | 200.56                                  | 50.14                                                   |
| 165 7A               | 6.6                                                         | 0.25              | 0.241 | 999                 | 999  | -26           | -0.8           | 0.46             | -0.028                             | 0.006                                 | 0.007                                             | 2528.26                                           | 399.88                                  | 96.27                                                   |
| 165 6A               | 3.9                                                         | 0.25              | 0.246 | 2022                | 1988 | -126          | -2.4           | 1.10             | -0.063                             | 0.015                                 | 0.003                                             | 789.09                                            | 125.37                                  | 28.38                                                   |
| 165 27A              | 3.7                                                         | 0.25              | 0.245 | 2022                | 2066 | -66           | -3.4           | 1.00             | -0.032                             | 0.014                                 | 0.002                                             | 665.94                                            | 105.31                                  | 26.73                                                   |
| 165 26A              | 0.9                                                         | 0.25              | 0.245 | 2977                | 2935 | -124          | -29.7          | 7.75             | -0.365                             | 0.106                                 | 0.000                                             | 120.93                                            | 1.07                                    | 4.67                                                    |
| 165 3A               | 3.2                                                         | 0.25              | 0.242 | 3955                | 3777 | -33           | -2.7           | 0.05             | -0.025                             | 0.003                                 | 0.001                                             | 614.15                                            | 65.48                                   | 15.05                                                   |
| 165 26A              | 4.8                                                         | 0.25              | 0.244 | 3955                | 3831 | -35           | -2.9           | 0.06             | -0.041                             | 0.006                                 | 0.001                                             | 469.28                                            | 74.15                                   | 18.09                                                   |
| 165 9A               | 6.1                                                         | 0.35              | 0.273 | 999                 | 1079 | -79           | 0.3            | 0.36             | -0.070                             | 0.006                                 | 0.006                                             | 2067.64                                           | 34.90                                   | 121.19                                                  |
| 165                  |                                                             |                   |       |                     |      |               |                |                  |                                    |                                       |                                                   |                                                   |                                         |                                                         |

Table 5

Single-Wheel Tests in Yuma Sand, 20 Percent Slip,  
First Pass, Validation Test Tires

| Test No.                         | Penetration-Resistance Gradient, G<br>$N/cm^2/cm$ | Wheel Load<br>$F$ | Design Deflection<br>$\frac{z}{h}$ | Pull Coefficient<br>$\frac{P}{W}$ | Sinkage Coefficient<br>$\frac{z}{d}$ | Sand Mobility Number<br>$\frac{G(bd)^{3/2}}{W} \times \frac{z}{h}$ |
|----------------------------------|---------------------------------------------------|-------------------|------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------------------------------|
| <u>1.75-26, Bicycle Tire</u>     |                                                   |                   |                                    |                                   |                                      |                                                                    |
| 161 499A                         | 5.4                                               | 444               | 0.15                               | 0.152                             | 0.044                                | 9.0                                                                |
| 161 504A                         | 2.7                                               | 444               | 0.15                               | 0.148                             | 0.071                                | 6.0                                                                |
| 161 510A                         | 6.5                                               | 444               | 0.15                               | 0.231                             | 0.025                                | 13.0                                                               |
| 161 497A                         | 4.3                                               | 999               | 0.15                               | 0.053                             | 0.088                                | 4.0                                                                |
| 161 503A                         | 3.5                                               | 999               | 0.15                               | -0.030                            | 0.160                                | 3.0                                                                |
| 161 508A                         | 2.7                                               | 999               | 0.15                               | -0.005                            | 0.154                                | 2.0                                                                |
| 161 511A                         | 7.3                                               | 999               | 0.15                               | 0.119                             | 0.056                                | 6.0                                                                |
| 161 500A                         | 5.4                                               | 444               | 0.35                               | 0.250                             | 0.034                                | 22.0                                                               |
| 161 502A                         | 2.2                                               | 444               | 0.35                               | 0.110                             | 0.083                                | 10.0                                                               |
| 161 505A                         | 2.7                                               | 444               | 0.35                               | 0.131                             | 0.072                                | 12.0                                                               |
| 161 498A                         | 4.6                                               | 999               | 0.35                               | 0.080                             | 0.075                                | 9.0                                                                |
| 161 501A                         | 1.9                                               | 999               | 0.35                               | 0.000                             | 0.162                                | 4.0                                                                |
| 161 506A                         | 2.4                                               | 999               | 0.35                               | 0.020                             | 0.162                                | 5.0                                                                |
| 161 507A                         | 3.8                                               | 999               | 0.45                               | 0.051                             | 0.080                                | 7.0                                                                |
| 161 509A                         | 2.7                                               | 999               | 0.35                               | 0.000                             | 0.142                                | 5.0                                                                |
| <u>9.00-14, 2-PR</u>             |                                                   |                   |                                    |                                   |                                      |                                                                    |
| 160 243A                         | 1.9                                               | 1,289             | 0.25                               | 0.348                             | 0.028                                | 22.3                                                               |
| 161 345A                         | 2.7                                               | 1,289             | 0.25                               | 0.409                             | 0.021                                | 30.5                                                               |
| 161 253A                         | 4.0                                               | 1,289             | 0.25                               | 0.466                             | 0.011                                | 44.0                                                               |
| 161 261A                         | 5.4                                               | 1,289             | 0.25                               | 0.433                             | 0.007                                | 58.8                                                               |
| 161 344A                         | 2.6                                               | 2,022             | 0.25                               | 0.362                             | 0.021                                | 19.1                                                               |
| 161 252A                         | 3.5                                               | 2,022             | 0.25                               | 0.393                             | 0.017                                | 25.6                                                               |
| 161 331A                         | 4.4                                               | 2,022             | 0.25                               | 0.432                             | 0.004                                | 31.2                                                               |
| 161 245A                         | 2.1                                               | 2,022             | 0.25                               | 0.261                             | 0.052                                | 15.4                                                               |
| 161 335A                         | 2.1                                               | 2,022             | 0.25                               | 0.290                             | 0.042                                | 14.9                                                               |
| 161 348A                         | 5.7                                               | 2,022             | 0.25                               | 0.423                             | 0.010                                | 40.8                                                               |
| 161 267A                         | 5.8                                               | 2,022             | 0.25                               | 0.409                             | 0.008                                | 40.8                                                               |
| 161 250A                         | 3.8                                               | 2,978             | 0.25                               | 0.323                             | 0.021                                | 19.1                                                               |
| 161 341A                         | 2.8                                               | 2,978             | 0.25                               | 0.286                             | 0.047                                | 14.2                                                               |
| 161 262A                         | 5.8                                               | 2,978             | 0.25                               | 0.382                             | 0.021                                | 29.1                                                               |
| 161 332A                         | 4.7                                               | 2,978             | 0.25                               | 0.388                             | 0.014                                | 23.3                                                               |
| 160 238A                         | 1.6                                               | 2,978             | 0.25                               | 0.126                             | 0.075                                | 7.8                                                                |
| 161 248A                         | 1.9                                               | 3,956             | 0.25                               | 0.158                             | 0.079                                | 7.1                                                                |
| 161 343A                         | 2.6                                               | 3,956             | 0.25                               | 0.201                             | 0.056                                | 9.9                                                                |
| 160 234A                         | 3.9                                               | 3,956             | 0.25                               | 0.277                             | 0.029                                | 14.5                                                               |
| 160 242A                         | 2.2                                               | 3,956             | 0.25                               | 0.093                             | 0.097                                | 7.9                                                                |
| 161 268A                         | 5.9                                               | 3,956             | 0.25                               | 0.355                             | 0.024                                | 21.3                                                               |
| 160 260A                         | 1.6                                               | 5,911             | 0.25                               | -0.069                            | 0.157                                | 4.3                                                                |
| 161 244A                         | 2.1                                               | 5,911             | 0.25                               | -0.024                            | 0.324                                | 5.0                                                                |
| 161 260A                         | 5.5                                               | 5,911             | 0.25                               | 0.257                             | 0.041                                | 13.3                                                               |
| 161 349A                         | 2.9                                               | 5,911             | 0.25                               | 0.112                             | 0.074                                | 7.0                                                                |
| 161 350A                         | 3.2                                               | 5,911             | 0.25                               | 0.145                             | 0.075                                | 7.7                                                                |
| 160 236A                         | 4.2                                               | 5,911             | 0.25                               | 0.179                             | 0.043                                | 11.1                                                               |
| <u>16x15-6R, 2-PR Terra Tire</u> |                                                   |                   |                                    |                                   |                                      |                                                                    |
| 162 645A                         | 1.0                                               | 999               | 0.15                               | 0.234                             | 0.082                                | 10.0                                                               |

(Continued)

Table 5 (Concluded)

| Test No.                                     | Penetration-Resistance Gradient, G<br>N/cm <sup>2</sup> /cm | Wheel Load N | Design Deflection<br>$\frac{b}{h}$ | Pull Coefficient<br>$\frac{P}{W}$ | Sinkage Coefficient<br>$\frac{z}{d}$ | Sand Mobility Number<br>$G(bd)^{3/2} \times \frac{b}{h}$ |
|----------------------------------------------|-------------------------------------------------------------|--------------|------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------------------|
| <u>16x15-6R, 2-PR Terra Tire (Continued)</u> |                                                             |              |                                    |                                   |                                      |                                                          |
| 162 646A                                     | 1.6                                                         | 999          | 0.15                               | 0.338                             | 0.041                                | 18.0                                                     |
| 162 650A                                     | 4.6                                                         | 999          | 0.15                               | 0.450                             | 0.029                                | 48.0                                                     |
| 162 647A                                     | 1.3                                                         | 2,022        | 0.15                               | 0.072                             | 0.096                                | 7.0                                                      |
| 162 648A                                     | 2.0                                                         | 2,022        | 0.15                               | 0.229                             | 0.052                                | 12.0                                                     |
| 162 649A                                     | 3.7                                                         | 2,022        | 0.15                               | 0.310                             | 0.046                                | 19.0                                                     |
| 162 651A                                     | 1.2                                                         | 3,199        | 0.15                               | --                                | --                                   | --                                                       |
| 162 652A                                     | 2.2                                                         | 3,199        | 0.15                               | 0.150                             | 0.066                                | 7.0                                                      |
| 162 653A                                     | 4.8                                                         | 3,199        | 0.15                               | 0.211                             | 0.053                                | 16.0                                                     |
| 162 654A                                     | 2.0                                                         | 3,199        | 0.15                               | 0.127                             | 0.079                                | 6.0                                                      |
| 162 658A                                     | 1.4                                                         | 999          | 0.25                               | 0.335                             | 0.050                                | 25.0                                                     |
| 162 659A                                     | 2.2                                                         | 999          | 0.25                               | 0.557                             | 0.038                                | 37.0                                                     |
| 162 662A                                     | 5.9                                                         | 999          | 0.25                               | 0.538                             | 0.021                                | 100.0                                                    |
| 162 657A                                     | 1.2                                                         | 2,022        | 0.25                               | 0.210                             | 0.081                                | 10.0                                                     |
| 162 660A                                     | 2.2                                                         | 2,022        | 0.25                               | 0.400                             | 0.040                                | 18.0                                                     |
| 162 661A                                     | 5.4                                                         | 2,022        | 0.25                               | 0.475                             | 0.021                                | 47.0                                                     |
| 162 655A                                     | 2.1                                                         | 3,199        | 0.25                               | 0.289                             | 0.054                                | 11.0                                                     |
| 162 656A                                     | 1.2                                                         | 3,199        | 0.25                               | -0.012                            | 0.148                                | 6.0                                                      |
| 162 663A                                     | 5.3                                                         | 3,199        | 0.25                               | 0.353                             | 0.039                                | 28.0                                                     |
| 263 25A                                      | 4.8                                                         | 13,333       | 0.15                               | 0.076                             | 0.076                                | 8.8                                                      |
| 263 26A                                      | 4.3                                                         | 13,333       | 0.15                               | 0.055                             | 0.082                                | 7.9                                                      |
| 263 27A                                      | 3.5                                                         | 13,333       | 0.15                               | 0.037                             | 0.103                                | 6.4                                                      |
| 263 28A                                      | 2.8                                                         | 13,333       | 0.15                               | 0.035                             | 0.111                                | 5.1                                                      |
| 263 29A                                      | 1.6                                                         | 13,333       | 0.15                               | 0.004                             | 0.124                                | 3.0                                                      |
| 263 41A                                      | 5.3                                                         | 13,333       | 0.15                               | 0.097                             | 0.081                                | 9.8                                                      |
| 263 42A                                      | 3.0                                                         | 13,333       | 0.15                               | 0.041                             | 0.097                                | 5.6                                                      |
| 263 43A                                      | 1.7                                                         | 13,333       | 0.15                               | 0.004                             | 0.131                                | 3.2                                                      |
| 263 44A                                      | 5.2                                                         | 19,999       | 0.15                               | 0.026                             | 0.120                                | 6.4                                                      |
| 263 45A                                      | 4.0                                                         | 19,999       | 0.15                               | 0.006                             | 0.122                                | 4.9                                                      |
| 263 46A                                      | 3.8                                                         | 19,999       | 0.15                               | -0.026                            | 0.123                                | 4.8                                                      |
| 263 47A                                      | 3.1                                                         | 19,999       | 0.15                               | -0.054                            | 0.146                                | 3.8                                                      |
| 263 48A                                      | 2.0                                                         | 19,999       | 0.15                               | -0.076                            | 0.153                                | 2.5                                                      |
| <u>11.00-20, 12-PR</u>                       |                                                             |              |                                    |                                   |                                      |                                                          |
| 263 30A                                      | 4.3                                                         | 13,333       | 0.23                               | 0.236                             | 0.057                                | 10.9                                                     |
| 263 31A                                      | 3.9                                                         | 13,333       | 0.23                               | 0.158                             | 0.064                                | 10.0                                                     |
| 263 29A                                      | 3.5                                                         | 13,333       | 0.23                               | 0.172                             | 0.076                                | 8.9                                                      |
| 263 32A                                      | 3.1                                                         | 13,333       | 0.23                               | 0.170                             | 0.081                                | 7.8                                                      |
| 263 34A                                      | 2.7                                                         | 13,333       | 0.23                               | 0.127                             | 0.088                                | 6.9                                                      |
| 263 35A                                      | 1.7                                                         | 13,333       | 0.23                               | 0.060                             | 0.097                                | 4.4                                                      |
| 263 36A                                      | 4.3                                                         | 13,333       | 0.35                               | 0.330                             | 0.050                                | 36.6                                                     |
| 263 37A                                      | 4.4                                                         | 13,333       | 0.35                               | 0.295                             | 0.044                                | 17.0                                                     |
| 263 38A                                      | 4.0                                                         | 13,333       | 0.35                               | 0.310                             | 0.055                                | 15.6                                                     |
| 263 39A                                      | 3.1                                                         | 13,333       | 0.35                               | 0.299                             | 0.050                                | 12.1                                                     |
| 263 40A                                      | 1.9                                                         | 13,333       | 0.35                               | 0.222                             | 0.093                                | 7.3                                                      |
| 263 49A                                      | 5.0                                                         | 19,999       | 0.35                               | 0.239                             | 0.054                                | 14.3                                                     |
| 263 50A                                      | 4.2                                                         | 19,999       | 0.35                               | 0.203                             | 0.067                                | 11.9                                                     |
| 263 51A                                      | 3.3                                                         | 19,999       | 0.35                               | 0.197                             | 0.087                                | 9.5                                                      |
| 263 52A                                      | 3.1                                                         | 19,999       | 0.35                               | 0.169                             | 0.103                                | 9.0                                                      |
| 263 53A                                      | 2.0                                                         | 19,999       | 0.35                               | 0.115                             | 0.133                                | 5.6                                                      |

Table 6  
Single-Wheel Tests in Three Hand, 20 Percent Slip, Second Hand, Hard Test Tires

| Penetration-<br>Resistance<br>Gradient, $\delta$<br>N/mm <sup>2</sup> /cm | Deflection<br>0.01 in. | Whe-<br>load<br>kg/mm <sup>2</sup> | Whe-<br>load<br>kg/mm <sup>2</sup> | Deflection<br>0.01 in. | Whe-<br>load<br>kg/mm <sup>2</sup> | Deflection<br>0.01 in. | Whe-<br>load<br>kg/mm <sup>2</sup> | 4.00-7, 2-16                       |                                    | 4.00-7, 2-16                       |                                    | 4.00-7, 2-16                       |                                    | 4.00-7, 2-16                       |                                    |
|---------------------------------------------------------------------------|------------------------|------------------------------------|------------------------------------|------------------------|------------------------------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
|                                                                           |                        |                                    |                                    |                        |                                    |                        |                                    | Full<br>load<br>kg/mm <sup>2</sup> | Half<br>load<br>kg/mm <sup>2</sup> |
| 160 700A                                                                  | 5.3                    | 0.15                               | 0.138                              | 4.44                   | 799                                | 62                     | 27                                 | 20.1                               | 1.61                               | 0.156                              | 0.322                              | 0.314                              | 0.013                              | 667 36                             | 97.68                              |
| 160 800A                                                                  | 5.4                    | 0.15                               | 0.132                              | 4.44                   | 605                                | 57                     | 21                                 | 20.0                               | 0.99                               | 0.155                              | 0.313                              | 0.011                              | 906 53                             | 75.93                              |                                    |
| 160 805A                                                                  | 3.1                    | 0.15                               | 0.166                              | 4.44                   | 605                                | 57                     | 31                                 | 19.8                               | 1.99                               | 0.118                              | 0.306                              | 0.006                              | 242 73                             | 45.48                              |                                    |
| 160 702A                                                                  | 5.4                    | 0.12                               | 0.134                              | 4.44                   | 999                                | 871                    | 22                                 | 54                                 | 19.9                               | 2.37                               | 0.066                              | 0.156                              | 0.006                              | 186 45                             | 7.52                               |
| 160 800A                                                                  | 4.4                    | 0.15                               | 0.138                              | 4.44                   | 999                                | 871                    | 22                                 | 50                                 | 19.8                               | 2.48                               | 0.125                              | 0.169                              | 0.005                              | 118 31                             | 5.74                               |
| 160 802A                                                                  | 4.4                    | 0.15                               | 0.137                              | 4.44                   | 879                                | 0                      | 52                                 | 19.9                               | 2.55                               | 0.000                              | 0.138                              | 0.071                              | 0.004                              | 170 46                             | 20.10                              |
| 160 827A                                                                  | 6.0                    | 0.25                               | 0.290                              | 4.44                   | 440                                | 132                    | 55                                 | 19.9                               | 0.55                               | 0.297                              | 0.411                              | 0.015                              | 468 01                             | 98.90                              |                                    |
| 160 828A                                                                  | 6.5                    | 0.25                               | 0.268                              | 4.44                   | 468                                | 162                    | 32                                 | 20.0                               | 0.40                               | 0.383                              | 0.417                              | 0.010                              | 645 01                             | 102.83                             |                                    |
| 160 831A                                                                  | 6.3                    | 0.25                               | 0.230                              | 4.44                   | 688                                | 709                    | 16                                 | 20.5                               | 1.42                               | 0.206                              | 0.342                              | 0.010                              | 170 79                             | 76.67                              |                                    |
| 160 820A                                                                  | 3.4                    | 0.25                               | 0.230                              | 4.44                   | 999                                | 806                    | 26                                 | 16                                 | 19.7                               | 1.12                               | 0.029                              | 0.389                              | 0.024                              | 175 64                             | 23.81                              |
| 160 825A                                                                  | 4.4                    | 0.25                               | 0.225                              | 4.44                   | 895                                | 66                     | 46                                 | 19.8                               | 2.45                               | 0.075                              | 0.297                              | 0.005                              | 214 26                             | 6.63                               |                                    |
| 160 850A                                                                  | 6.6                    | 0.25                               | 0.285                              | 4.44                   | 999                                | 921                    | 128                                | 56                                 | 20.6                               | 2.28                               | 0.130                              | 0.313                              | 0.007                              | 307 98                             | 45.71                              |
| 160 826A                                                                  | 3.9                    | 0.25                               | 0.234                              | 4.44                   | 1913                               | 1435                   | 17                                 | 74                                 | 19.8                               | 3.26                               | 0.012                              | 0.285                              | 0.020                              | 126 52                             | 20.45                              |
| 160 833A                                                                  | 6.2                    | 0.35                               | 0.315                              | 4.44                   | 599                                | 159                    | 26                                 | 19.7                               | 0.45                               | 0.400                              | 0.440                              | 0.011                              | 111 61                             | 36.12                              |                                    |
| 160 834A                                                                  | 5.7                    | 0.35                               | 0.344                              | 4.44                   | 666                                | 693                    | 182                                | 60                                 | 19.7                               | 1.45                               | 0.279                              | 0.401                              | 0.012                              | 604 17                             | 66.06                              |
| 160 835A                                                                  | 5.4                    | 0.35                               | 0.325                              | 4.44                   | 666                                | 639                    | 213                                | 61                                 | 19.7                               | 1.27                               | 0.333                              | 0.406                              | 0.015                              | 547 62                             | 87.32                              |
| 160 836A                                                                  | 6.4                    | 0.35                               | 0.337                              | 4.44                   | 999                                | 946                    | 222                                | 51                                 | 19.8                               | 1.40                               | 0.235                              | 0.315                              | 0.014                              | 109 26                             | 49.74                              |
| 160 824A                                                                  | 6.2                    | 0.35                               | 0.318                              | 4.44                   | 999                                | 884                    | 8                                  | 46                                 | 20.4                               | 2.36                               | 0.010                              | 0.292                              | 0.006                              | 177 46                             | 16.76                              |
| 160 832A                                                                  | 6.0                    | 0.35                               | 0.327                              | 4.44                   | 2022                               | 1879                   | 79                                 | 20.0                               | 3.12                               | 0.005                              | 0.262                              | 0.007                              | 163 46                             | 3.91                               |                                    |
| 160 703A                                                                  | 1.8                    | 0.15                               | 0.138                              | 4.44                   | 999                                | 898                    | 182                                | 117                                | 19.9                               | 1.61                               | 0.205                              | 0.375                              | 0.002                              | 712 68                             | 61.17                              |
| 160 704A                                                                  | 2.6                    | 0.25                               | 0.234                              | 4.44                   | 697                                | 697                    | 199                                | 109                                | 20.0                               | 2.36                               | 0.231                              | 0.353                              | 0.001                              | 1079 36                            | 62.29                              |
| 160 703A                                                                  | 5.6                    | 0.15                               | 0.140                              | 4.44                   | 911                                | 235                    | 117                                | 20.1                               | 2.05                               | 0.259                              | 0.367                              | 0.14                               | 112 55                             | 1.12                               |                                    |
| 160 704A                                                                  | 4.2                    | 0.15                               | 0.180                              | 4.44                   | 2022                               | 1879                   | 248                                | 230                                | 20.0                               | 3.25                               | 0.135                              | 0.311                              | 0.002                              | 1192 35                            | 48.37                              |
| 160 705A                                                                  | 2.0                    | 0.15                               | 0.135                              | 4.44                   | 1879                               | 1879                   | 182                                | 218                                | 20.6                               | 3.14                               | 0.105                              | 0.343                              | 0.001                              | 213 37                             | 3.27                               |
| 160 706A                                                                  | 3.3                    | 0.15                               | 0.140                              | 4.44                   | 2022                               | 1879                   | 226                                | 214                                | 19.9                               | 3.11                               | 0.123                              | 0.313                              | 0.002                              | 643 38                             | 37.45                              |
| 160 707A                                                                  | 4.1                    | 0.15                               | 0.136                              | 4.44                   | 1879                               | 1879                   | 264                                | 20.0                               | 2.90                               | 0.159                              | 0.164                              | 0.041                              | 0.002                              | 808 38                             | 58.21                              |
| 160 708A                                                                  | 5.2                    | 0.15                               | 0.142                              | 4.44                   | 2022                               | 1879                   | 288                                | 230                                | 20.3                               | 3.15                               | 0.124                              | 0.346                              | 0.003                              | 1000 35                            | 50.17                              |
| 160 709A                                                                  | 7.6                    | 0.25                               | 0.237                              | 4.44                   | 933                                | 297                    | 126                                | 19.7                               | 1.96                               | 0.319                              | 0.392                              | 0.022                              | 0.008                              | 298.60                             | 163.81                             |
| 160 710A                                                                  | 4.7                    | 0.25                               | 0.270                              | 4.44                   | 999                                | 897                    | 134                                | 19.4                               | 0.90                               | 0.248                              | 0.403                              | 0.007                              | 0.005                              | 1690.97                            | 95.36                              |
| 160 711A                                                                  | 5.0                    | 0.25                               | 0.230                              | 4.44                   | 1111                               | 1422                   | 165                                | 20.1                               | 2.25                               | 0.137                              | 0.317                              | 0.015                              | 0.004                              | 1252.31                            | 72.22                              |
| 160 712A                                                                  | 4.1                    | 0.25                               | 0.279                              | 4.44                   | 4022                               | 3843                   | 320                                | 210                                | 20.2                               | 3.38                               | 0.174                              | 0.350                              | 0.016                              | 604 02                             | 77.11                              |
| 160 713A                                                                  | 0.9                    | 0.25                               | 0.220                              | 4.44                   | 2977                               | 2659                   | 26                                 | 311                                | 19.7                               | 0.00                               | 0.010                              | 0.14                               | 0.003                              | 110 12                             | 7.54                               |
| 160 714A                                                                  | 8.0                    | 0.35                               | 0.340                              | 4.44                   | 999                                | 964                    | 182                                | 143                                | 20.0                               | 1.77                               | 0.296                              | 0.346                              | 0.018                              | 2449.22                            | 163.20                             |
| 160 715A                                                                  | 1.2                    | 0.35                               | 0.363                              | 4.44                   | 999                                | 1057                   | 134                                | 260                                | 1.01                               | 0.248                              | 0.377                              | 0.015                              | 410.19                             | 55.49                              |                                    |
| 160 716A                                                                  | 8.0                    | 0.35                               | 0.344                              | 4.44                   | 1511                               | 1477                   | 505                                | 199                                | 19.7                               | 1.40                               | 0.300                              | 0.404                              | 0.005                              | 1931.81                            | 8.24                               |
| 160 717A                                                                  | 5.3                    | 0.35                               | 0.329                              | 4.44                   | 1866                               | 1866                   | 497                                | 243                                | 20.7                               | 2.85                               | 0.267                              | 0.394                              | 0.017                              | 1020.45                            | 27.55                              |
| 160 718A                                                                  | 1.8                    | 0.35                               | 0.329                              | 4.44                   | 5777                               | 2693                   | 325                                | 182                                | 20.2                               | 0.00                               | 0.006                              | 0.347                              | 0.007                              | 277.73                             | 16.99                              |
| 160 800A                                                                  | 1.7                    | 0.15                               | 0.141                              | 4.44                   | 999                                | 919                    | 115                                | 20.1                               | 2.12                               | 0.211                              | 0.154                              | 0.030                              | 0.002                              | 686.80                             | 77.51                              |
| 160 805A                                                                  | 3.0                    | 0.25                               | 0.161                              | 4.44                   | 999                                | 915                    | 119                                | 20.3                               | 1.91                               | 0.46                               | 0.371                              | 0.021                              | 0.005                              | 1533.81                            | 173.12                             |
| 160 806A                                                                  | 4.6                    | 0.15                               | 0.141                              | 4.44                   | 999                                | 1231                   | 1313                               | 1211                               | 20.0                               | 1.97                               | 0.390                              | 0.011                              | 0.005                              | 1020.45                            | 216.76                             |
| 160 807A                                                                  | 3.9                    | 0.15                               | 0.137                              | 4.44                   | 1313                               | 1313                   | 153                                | 306                                | 19.5                               | 0.794                              | 0.356                              | 0.023                              | 0.003                              | 1170.60                            | 131.78                             |

(Continued)

Table 6 (continued)

| Test No. | Insertion-<br>Resistance-<br>Gradient, G<br>N/cm <sup>2</sup> /cm. | Deflection<br>Depth<br>mm. | Wheel Load<br>N.<br>kg. | Pull<br>N.<br>kg. | Torque<br>N.<br>kg. | Slip<br>% | Slippage<br>Coefficient<br>$\frac{d}{d}$ | Torque<br>Coefficient<br>$\frac{d}{d}$ | Slippage<br>Coefficient<br>$\frac{d}{d}$ | Band<br>Load<br>Ratio<br>0/N<br>cm <sup>-3</sup> | Band<br>Number<br>$\frac{d}{d}$ | Band<br>Number<br>$\frac{d}{d}$ | Band<br>Number<br>$\frac{d}{d}$ |       |
|----------|--------------------------------------------------------------------|----------------------------|-------------------------|-------------------|---------------------|-----------|------------------------------------------|----------------------------------------|------------------------------------------|--------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-------|
|          |                                                                    |                            |                         |                   |                     |           |                                          |                                        |                                          |                                                  |                                 |                                 |                                 |       |
| 16. 807A | 3.1                                                                | 0.15                       | 0.140                   | 8082              | 1019                | 239       | 20.0                                     | 3.13                                   | 0.164                                    | 0.064                                            | 0.004                           | 299.38                          | 67.59                           |       |
| 16. 807A | 3.1                                                                | 0.15                       | 0.138                   | 8077              | 2893                | 121       | 3.11                                     | 3.01                                   | 0.076                                    | 0.012                                            | 0.001                           | 259.71                          | 28.47                           |       |
| 16. 807A | 3.1                                                                | 0.15                       | 0.140                   | 8055              | 3665                | 177       | 1.98                                     | 20.2                                   | 0.03                                     | 0.056                                            | 0.001                           | 252.13                          | 1.99                            |       |
| 16. 816A | 4.1                                                                | 0.45                       | 0.249                   | 999               | 1053                | 822       | 165                                      | 19.8                                   | 0.75                                     | 0.401                                            | 0.011                           | 161.95                          | 9.46                            |       |
| 16. 816A | 4.1                                                                | 0.45                       | 0.249                   | 999               | 1053                | 296       | 189                                      | 19.5                                   | 0.80                                     | 0.403                                            | 0.011                           | 177.15                          | 4.04                            |       |
| 16. 816A | 4.1                                                                | 0.45                       | 0.249                   | 999               | 1053                | 1933      | 631                                      | 305                                    | 1.47                                     | 0.246                                            | 0.003                           | 949.45                          | 1.99                            |       |
| 16. 816A | 4.1                                                                | 0.45                       | 0.249                   | 999               | 1053                | 2862      | 1877                                     | 269                                    | 1.33                                     | 0.144                                            | 0.019                           | 187.98                          | 25.0                            |       |
| 16. 816A | 4.1                                                                | 0.45                       | 0.233                   | 999               | 1053                | 2862      | 1877                                     | 269                                    | 1.33                                     | 0.144                                            | 0.003                           | 188.60                          | 21.0                            |       |
| 16. 816A | 4.1                                                                | 0.45                       | 0.238                   | 999               | 1053                | 2867      | 513                                      | 430                                    | 20.3                                     | 0.144                                            | 0.053                           | 148.60                          | 11.53                           |       |
| 16. 817A | 2.9                                                                | 0.25                       | 0.242                   | 999               | 1053                | 3175      | 377                                      | 450                                    | 20.3                                     | 0.167                                            | 0.081                           | 284.98                          | 7.76                            |       |
| 16. 803A | 1.7                                                                | 0.25                       | 0.236                   | 999               | 921                 | 369       | 149                                      | 19.9                                   | 1.01                                     | 0.395                                            | 0.014                           | 658.79                          | 76.87                           |       |
| 16. 803A | 1.7                                                                | 0.25                       | 0.240                   | 999               | 1044                | 471       | 177                                      | 20.3                                   | 0.71                                     | 0.452                                            | 0.016                           | 1867.58                         | 209.80                          |       |
| 16. 803A | 1.7                                                                | 0.25                       | 0.240                   | 999               | 1044                | 729       | 262                                      | 20.3                                   | 1.30                                     | 0.387                                            | 0.018                           | 980.59                          | 111.86                          |       |
| 16. 803A | 1.7                                                                | 0.25                       | 0.241                   | 999               | 1022                | 1964      | 464                                      | 365                                    | 19.3                                     | 0.179                                            | 0.003                           | 139.79                          | 22.55                           |       |
| 16. 803A | 1.7                                                                | 0.25                       | 0.236                   | 999               | 1022                | 9711      | 493                                      | 453                                    | 20.1                                     | 3.70                                             | 0.213                           | 0.001                           | 47.99                           | 12.03 |
|          |                                                                    |                            |                         |                   |                     |           |                                          |                                        |                                          |                                                  |                                 |                                 |                                 |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.147                   | 999               | 973                 | 293       | 130                                      | 19.7                                   | 1.00                                     | 0.301                                            | 0.015                           | 921.61                          | 145.81                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.145                   | 999               | 973                 | 271       | 19.0                                     | 20.0                                   | 1.80                                     | 0.304                                            | 0.002                           | 671.99                          | 207.28                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 342       | 136                                      | 19.7                                   | 0.85                                     | 0.394                                            | 0.012                           | 190.13                          | 231.63                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 342       | 171                                      | 21.1                                   | 0.60                                     | 0.304                                            | 0.005                           | 1961.00                         | 310.30                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 342       | 206                                      | 21.1                                   | 0.60                                     | 0.306                                            | 0.001                           | 335.91                          | 50.97                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 1915      | 291                                      | 19.6                                   | 2.29                                     | 0.162                                            | 0.016                           | 50.97                           | 7.18                            |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.017                           | 70.15                           | 11.32                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 200.64                          | 159.06                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 658.86                          | 109.06                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 300.30                          | 46.23                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 1032.12                         | 162.13                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.003                           | 181.32                          | 23.70                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.004                           | 28.87                           | 3.99                            |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 287.63                          | 44.99                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 360.01                          | 56.31                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 355.53                          | 61.11                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 270.76                          | 42.06                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 42.74                           | 5.80                            |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 202.92                          | 28.81                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 807.00                          | 92.30                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.001                           | 759.35                          | 118.36                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 658.59                          | 110.34                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 130.88                          | 26.86                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 101.36                          | 17.70                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 121.95                          | 19.35                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 131.95                          | 15.92                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 143.05                          | 16.27                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 403.61                          | 422.20                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 2154.90                         | 34.26                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 1890.73                         | 283.67                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 961.61                          | 152.63                          |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 116.40                          | 22.29                           |       |
| 16. 777A | 2.4                                                                | 0.15                       | 0.149                   | 999               | 973                 | 261       | 20.6                                     | 20.6                                   | 1.25                                     | 0.379                                            | 0.002                           | 373.49                          | 58.82                           |       |

Table 7  
Slab-on-Ground Tests in New Sung, 20 Percent Silo, Third Phase, Basic Test Series

| Test No. | Penetration-Resistance Coefficient, $\sigma$<br>$\text{kg/cm}^2/\text{mm}$ | Deflection<br>$\delta/\text{mm}$ | Wheel Load<br>$W, \text{kg}$ | Pull<br>$P, \text{kg}$ | Torque<br>$M, \text{kg-cm}$ | Pull<br>$P, \text{kg}$ | Torque<br>$M, \text{kg-cm}$ | Slip<br>$\delta$<br>$\text{kg/mm}$ | Slip<br>$\delta$<br>$\text{kg/mm}$ | Strength-load<br>Coefficient<br>$\frac{Q}{P}$ |               | Strength-load<br>Coefficient<br>$\frac{Q}{P}$ |               | Band<br>Number<br>$(Q/P)^{1/2}$ | Band<br>Number<br>$(Q/P)^{1/2}$ | Band<br>Mobility<br>Number<br>$(Q/P)^{3/2} \times 10^3$ |       |
|----------|----------------------------------------------------------------------------|----------------------------------|------------------------------|------------------------|-----------------------------|------------------------|-----------------------------|------------------------------------|------------------------------------|-----------------------------------------------|---------------|-----------------------------------------------|---------------|---------------------------------|---------------------------------|---------------------------------------------------------|-------|
|          |                                                                            |                                  |                              |                        |                             |                        |                             |                                    |                                    | 4.00-7.0-2-PR                                 | 4.00-7.0-2-PR | 4.00-7.0-2-PR                                 | 4.00-7.0-2-PR |                                 |                                 |                                                         |       |
| 160 790A | 2.3                                                                        | 0.15                             | 0.201                        | 446                    | 400                         | 97                     | 27                          | 20.1                               | 1.04                               | 0.141                                         | 0.173         | 0.029                                         | 0.011         | 594.16                          | 52.26                           | 13.47                                                   |       |
| 160 804A | 2.4                                                                        | 0.15                             | 0.135                        | 444                    | 408                         | 79                     | 21                          | 20.9                               | 0.99                               | 0.179                                         | 0.290         | 0.028                                         | 0.013         | 590.15                          | 54.92                           | 12.81                                                   |       |
| 160 805A | 2.4                                                                        | 0.15                             | 0.161                        | 444                    | 408                         | 87.5                   | 0                           | 20.0                               | 1.01                               | 0.127                                         | 0.314         | 0.030                                         | 0.006         | 291.06                          | 47.13                           | 7.29                                                    |       |
| 160 821A | 1.5                                                                        | 0.15                             | 0.117                        | 444                    | 408                         | 99.9                   | 50                          | 0                                  | 0.00                               | 0.322                                         | 0.028         | 0.008                                         | 0.008         | 179.39                          | 29.25                           | 4.01                                                    |       |
| 160 827A | 2.0                                                                        | 0.25                             | 0.236                        | 444                    | 406                         | 123                    | 26                          | 19.9                               | 0.83                               | 0.301                                         | 0.349         | 0.021                                         | 0.014         | 640.31                          | 106.44                          | 25.12                                                   |       |
| 160 828A | 2.5                                                                        | 0.25                             | 0.236                        | 444                    | 408                         | 142                    | 29                          | 20.0                               | 0.97                               | 0.305                                         | 0.380         | 0.027                                         | 0.014         | 638.01                          | 102.83                          | 27.56                                                   |       |
| 160 831A | 0.3                                                                        | 0.25                             | 0.236                        | 444                    | 408                         | 76.6                   | 153                         | 4                                  | 19.9                               | 1.07                                          | 0.198         | 0.327                                         | 0.010         | 0.011                           | 463.08                          | 77.97                                                   | 17.18 |
| 160 820A | 1.5                                                                        | 0.25                             | 0.230                        | 444                    | 408                         | 99.2                   | 13                          | 20.1                               | 1.40                               | 0.115                                         | 0.273         | 0.034                                         | 0.004         | 179.42                          | 29.94                           | 6.66                                                    |       |
| 160 822A | 1.2                                                                        | 0.25                             | 0.215                        | 444                    | 408                         | 98.6                   | 44                          | 20.2                               | 1.32                               | 0.059                                         | 0.288         | 0.013                                         | 0.005         | 229.26                          | 36.20                           | 8.14                                                    |       |
| 160 829A | 6.6                                                                        | 0.25                             | 0.250                        | 444                    | 408                         | 99.9                   | 90                          | 20.4                               | 1.72                               | 0.107                                         | 0.306         | 0.048                                         | 0.004         | 197.28                          | 19.27                           | 12.32                                                   |       |
| 160 826A | 1.9                                                                        | 0.25                             | 0.233                        | 444                    | 408                         | 151.1                  | 13                          | 70                                 | 20.0                               | 1.93                                          | -0.009        | 0.281                                         | 0.007         | 0.007                           | 127.41                          | 20.11                                                   | 4.80  |
| 160 826A | 1.9                                                                        | 0.25                             | 0.233                        | 444                    | 408                         | 151.1                  | 13                          | 70                                 | 20.0                               | 1.93                                          | -0.009        | 0.281                                         | 0.007         | 0.007                           | 127.41                          | 20.11                                                   | 4.80  |
| 160 833A | 6.2                                                                        | 0.35                             | 0.329                        | 444                    | 408                         | 161                    | 11                          | 19.7                               | 0.90                               | 0.370                                         | 0.433         | 0.029                                         | 0.014         | 647.46                          | 137.46                          | 35.85                                                   |       |
| 160 834A | 5.7                                                                        | 0.35                             | 0.340                        | 444                    | 408                         | 164                    | 182                         | 10                                 | 19.7                               | 0.86                                          | 0.381         | 0.73                                          | 0.024         | 0.009                           | 107.71                          | 64.96                                                   | 22.89 |
| 160 835A | 6.4                                                                        | 0.35                             | 0.340                        | 444                    | 408                         | 164                    | 186                         | 10                                 | 19.7                               | 0.86                                          | 0.381         | 0.73                                          | 0.024         | 0.012                           | 153.94                          | 81.61                                                   | 29.45 |
| 160 836A | 6.4                                                                        | 0.35                             | 0.340                        | 444                    | 408                         | 164                    | 186                         | 10                                 | 19.7                               | 0.86                                          | 0.381         | 0.73                                          | 0.024         | 0.012                           | 153.94                          | 81.61                                                   | 29.45 |
| 160 837A | 6.8                                                                        | 0.35                             | 0.340                        | 444                    | 408                         | 164                    | 186                         | 10                                 | 19.7                               | 0.86                                          | 0.381         | 0.73                                          | 0.024         | 0.012                           | 153.94                          | 81.61                                                   | 29.45 |
| 160 838A | 6.8                                                                        | 0.35                             | 0.340                        | 444                    | 408                         | 164                    | 186                         | 10                                 | 19.7                               | 0.86                                          | 0.381         | 0.73                                          | 0.024         | 0.012                           | 153.94                          | 81.61                                                   | 29.45 |
| 160 790A | 1.8                                                                        | 0.15                             | 0.139                        | 999                    | 999                         | 199                    | 111                         | 20.1                               | 0.72                               | 0.222                                         | 0.348         | 0.010                                         | 0.002         | 702.14                          | 40.52                           | 5.63                                                    |       |
| 160 792A | 4.6                                                                        | 0.15                             | 0.137                        | 999                    | 999                         | 107                    | 20.2                        | 0.95                               | 0.231                              | 0.343                                         | 0.008         | 0.003                                         | 1046.84       | 60.41                           | 8.88                            |                                                         |       |
| 160 793A | 2.6                                                                        | 0.15                             | 0.137                        | 999                    | 999                         | 107                    | 20.1                        | 0.96                               | 0.258                              | 0.356                                         | 0.015         | 0.006                                         | 2270.37       | 131.03                          | 17.35                           |                                                         |       |
| 160 788A | 4.2                                                                        | 0.15                             | 0.137                        | 999                    | 999                         | 237                    | 19.7                        | 1.00                               | 0.141                              | 0.171                                         | 0.028         | 0.002                                         | 890.08        | 49.77                           | 6.77                            |                                                         |       |
| 160 792A | 1.3                                                                        | 0.15                             | 0.139                        | 999                    | 999                         | 263                    | 20.2                        | 1.62                               | 0.144                              | 0.176                                         | 0.014         | 0.002                                         | 651.69        | 37.91                           | 5.27                            |                                                         |       |
| 160 793A | 4.1                                                                        | 0.15                             | 0.134                        | 999                    | 999                         | 281                    | 20.1                        | 1.51                               | 0.161                              | 0.156                                         | 0.021         | 0.002                                         | 837.13        | 48.69                           | 6.32                            |                                                         |       |
| 160 794A | 5.2                                                                        | 0.15                             | 0.148                        | 999                    | 999                         | 207.5                  | 106                         | 20.6                               | 1.16                               | 0.164                                         | 0.155         | 0.022                                         | 0.003         | 1000.05                         | 53.17                           | 8.26                                                    |       |
| 160 795A | 7.6                                                                        | 0.25                             | 0.234                        | 999                    | 999                         | 741                    | 119                         | 20.1                               | 1.29                               | 0.307                                         | 0.380         | 0.018                                         | 0.006         | 7369.50                         | 167.81                          | 38.93                                                   |       |
| 160 796A | 7.6                                                                        | 0.25                             | 0.239                        | 999                    | 999                         | 266                    | 121                         | 19.7                               | 1.12                               | 0.285                                         | 0.371         | 0.016                                         | 0.005         | 1786.23                         | 100.94                          | 24.12                                                   |       |
| 160 797A | 5.0                                                                        | 0.25                             | 0.237                        | 999                    | 999                         | 113                    | 161                         | 20.0                               | 1.63                               | 0.225                                         | 0.323         | 0.023                                         | 0.004         | 1870.25                         | 72.68                           | 17.22                                                   |       |
| 160 798A | 4.1                                                                        | 0.25                             | 0.240                        | 999                    | 999                         | 292                    | 298                         | 19.9                               | 1.76                               | 0.173                                         | 0.149         | 0.025                                         | 0.002         | 768.52                          | 44.37                           | 10.68                                                   |       |
| 160 799A | 6.0                                                                        | 0.35                             | 0.340                        | 999                    | 999                         | 135                    | 135                         | 19.8                               | 1.37                               | 0.382                                         | 0.418         | 0.019                                         | 0.008         | 2049.20                         | 163.30                          | 55.49                                                   |       |
| 160 800A | 1.2                                                                        | 0.35                             | 0.369                        | 999                    | 999                         | 106                    | 135                         | 20.1                               | 0.68                               | 0.395                                         | 0.402         | 0.024                                         | 0.003         | 1971.41                         | 113.52                          | 37.88                                                   |       |
| 160 801A | 8.0                                                                        | 0.35                             | 0.359                        | 999                    | 999                         | 144                    | 195                         | 19.9                               | 1.67                               | 0.135                                         | 0.364         | 0.025                                         | 0.003         | 1018.05                         | 98.16                           | 19.01                                                   |       |
| 160 802A | 5.1                                                                        | 0.35                             | 0.347                        | 999                    | 999                         | 181                    | 235                         | 19.7                               | 0.00                               | 0.125                                         | 0.324         | 0.020                                         | 0.003         | 230.64                          | 13.26                           | 4.19                                                    |       |
| 160 803A | 1.8                                                                        | 0.35                             | 0.316                        | 999                    | 999                         | 271                    | 342                         | 19.7                               | 0.00                               | 0.125                                         | 0.324         | 0.020                                         | 0.003         | 250.61                          | 25.61                           | 5.99                                                    |       |
| 160 804A | 1.8                                                                        | 0.35                             | 0.316                        | 999                    | 999                         | 271                    | 342                         | 19.7                               | 0.00                               | 0.125                                         | 0.324         | 0.020                                         | 0.003         | 250.61                          | 25.61                           | 5.99                                                    |       |
| 160 805A | 1.7                                                                        | 0.15                             | 0.141                        | 999                    | 999                         | 915                    | 109                         | 20.0                               | 1.24                               | 0.213                                         | 0.149         | 0.017                                         | 0.002         | 199.22                          | 77.90                           | 10.93                                                   |       |
| 160 806A | 3.8                                                                        | 0.15                             | 0.140                        | 999                    | 999                         | 231                    | 111                         | 19.9                               | 0.96                               | 0.259                                         | 0.149         | 0.016                                         | 0.001         | 150.32                          | 17.42                           | 2.52                                                    |       |
| 160 807A | 4.8                                                                        | 0.15                             | 0.141                        | 999                    | 999                         | 271                    | 119                         | 20.2                               | 1.02                               | 0.202                                         | 0.144         | 0.014                                         | 0.002         | 191.36                          | 215.73                          | 30.42                                                   |       |
| 160 808A | 3.9                                                                        | 0.15                             | 0.136                        | 999                    | 999                         | 120                    | 289                         | 20.3                               | 1.29                               | 0.200                                         | 0.146         | 0.017                                         | 0.003         | 1195.99                         | 134.70                          | 18.30                                                   |       |
| 160 809A | 3.1                                                                        | 0.15                             | 0.119                        | 999                    | 999                         | 202                    | 191                         | 20.6                               | 1.76                               | 0.160                                         | 0.139         | 0.025                                         | 0.002         | 602.17                          | 67.90                           | 9.44                                                    |       |
| 160 810A | 1.9                                                                        | 0.15                             | 0.139                        | 999                    | 999                         | 271                    | 199                         | 20.9                               | 0.85                               | 0.073                                         | 0.316         | 0.006                                         | 0.001         | 254.67                          | 28.72                           | 3.99                                                    |       |
| 160 811A | 2.5                                                                        | 0.15                             | 0.141                        | 999                    | 999                         | 355                    | 321                         | 217                                | 1.34                               | 0.059                                         | 0.126         | 0.015                                         | 0.001         | 250.61                          | 28.10                           | 5.19                                                    |       |

(Continued)

Table 7 (Concluded)

Table 8

Penetration Resistance Gradient, First  
Pass, Basic Test Tires

| Test No.             | Design<br>Deflection<br>$\frac{\delta}{h}$ | Penetration-<br>Resistance<br>Gradient, G<br>N/cm <sup>2</sup> /cm | Test No.             | Design<br>Deflection<br>$\frac{\delta}{h}$ | Penetration-<br>Resistance<br>Gradient, G<br>N/cm <sup>2</sup> /cm |  |  |  |
|----------------------|--------------------------------------------|--------------------------------------------------------------------|----------------------|--------------------------------------------|--------------------------------------------------------------------|--|--|--|
| <u>4.00-7, 2-PR</u>  |                                            |                                                                    |                      |                                            |                                                                    |  |  |  |
| 164 798A             | 0.15                                       | 5.3                                                                | 165 35A              | 0.15                                       | 1.2                                                                |  |  |  |
| 164 824A             | 0.15                                       | 5.4                                                                | 164 810A             | 0.15                                       | 2.5                                                                |  |  |  |
| 164 825A             | 0.15                                       | 3.1                                                                |                      |                                            |                                                                    |  |  |  |
| 164 799A             | 0.15                                       | 5.4                                                                | 164 816A             | 0.25                                       | 4.1                                                                |  |  |  |
| 164 800A             | 0.15                                       | 4.2                                                                | 165 37A              | 0.25                                       | 4.6                                                                |  |  |  |
| 164 801A             | 0.15                                       | 4.9                                                                | 164 818A             | 0.25                                       | 5.0                                                                |  |  |  |
| 164 821A             | 0.15                                       | 3.4                                                                | 164 819A             | 0.25                                       | 0.8                                                                |  |  |  |
|                      |                                            |                                                                    | 165 32A              | 0.25                                       | 0.6                                                                |  |  |  |
| 164 827A             | 0.25                                       | 6.0                                                                | 165 33A              | 0.25                                       | 0.7                                                                |  |  |  |
| 164 828A             | 0.25                                       | 6.5                                                                | 164 812A             | 0.25                                       | 4.3                                                                |  |  |  |
| 164 829A             | 0.25                                       | 8.3                                                                | 164 817A             | 0.25                                       | 2.9                                                                |  |  |  |
| 164 820A             | 0.25                                       | 3.5                                                                | 165 31A              | 0.25                                       | 1.0                                                                |  |  |  |
| 164 822A             | 0.25                                       | 4.3                                                                |                      |                                            |                                                                    |  |  |  |
| 164 829A             | 0.25                                       | 6.6                                                                | 164 803A             | 0.35                                       | 1.7                                                                |  |  |  |
| 164 826A             | 0.25                                       | 3.9                                                                | 164 813A             | 0.35                                       | 5.3                                                                |  |  |  |
| 164 833A             | 0.35                                       | 6.2                                                                | 164 814A             | 0.35                                       | 5.3                                                                |  |  |  |
| 164 834A             | 0.35                                       | 5.7                                                                | 164 815A             | 0.35                                       | 1.5                                                                |  |  |  |
| 165 1A               | 0.35                                       | 7.5                                                                | 165 34A              | 0.35                                       | 1.0                                                                |  |  |  |
| 164 830A             | 0.35                                       | 6.4                                                                | 164 811A             | 0.35                                       | 4.3                                                                |  |  |  |
| 165 2A               | 0.35                                       | 1.5                                                                |                      |                                            |                                                                    |  |  |  |
| 164 832A             | 0.35                                       | 0.8                                                                | <u>9.00-14, 2-PR</u> |                                            |                                                                    |  |  |  |
|                      |                                            |                                                                    | 164 778A             | 0.15                                       | 2.4                                                                |  |  |  |
|                      |                                            |                                                                    | 164 779A             | 0.15                                       | 1.8                                                                |  |  |  |
|                      |                                            |                                                                    | 164 780A             | 0.15                                       | 4.1                                                                |  |  |  |
| 164 790A             | 0.15                                       | 1.8                                                                | 164 786A             | 0.15                                       | 5.3                                                                |  |  |  |
| 164 791A             | 0.15                                       | 2.6                                                                | 164 774A             | 0.15                                       | 1.6                                                                |  |  |  |
| 164 793A             | 0.15                                       | 5.6                                                                | 164 777A             | 0.15                                       | 2.6                                                                |  |  |  |
| 164 788A             | 0.15                                       | 4.2                                                                | 164 782A             | 0.15                                       | 3.5                                                                |  |  |  |
| 164 789A             | 0.15                                       | 2.0                                                                | 164 783A             | 0.15                                       | 1.5                                                                |  |  |  |
| 164 792A             | 0.15                                       | 3.3                                                                | 164 785A             | 0.15                                       | 5.4                                                                |  |  |  |
| 164 794A             | 0.15                                       | 4.1                                                                | 164 775A             | 0.15                                       | 1.7                                                                |  |  |  |
| 164 795A             | 0.15                                       | 5.2                                                                | 164 776A             | 0.15                                       | 2.8                                                                |  |  |  |
| 165 14A              | 0.25                                       | 7.6                                                                | 164 781A             | 0.15                                       | 3.5                                                                |  |  |  |
| 165 15A              | 0.25                                       | 4.7                                                                | 164 784A             | 0.15                                       | 5.2                                                                |  |  |  |
| 165 19A              | 0.25                                       | 5.0                                                                | 164 787A             | 0.15                                       | 2.5                                                                |  |  |  |
| 165 16A              | 0.25                                       | 4.1                                                                |                      |                                            |                                                                    |  |  |  |
| 165 17A              | 0.25                                       | 0.9                                                                | 165 5A               | 0.25                                       | 3.2                                                                |  |  |  |
| 165 21A              | 0.35                                       | 8.0                                                                | 165 4A               | 0.25                                       | 3.5                                                                |  |  |  |
| 165 23A              | 0.35                                       | 1.2                                                                | 165 7A               | 0.25                                       | 6.6                                                                |  |  |  |
| 165 22A              | 0.35                                       | 8.0                                                                | 165 6A               | 0.25                                       | 3.9                                                                |  |  |  |
| 165 20A              | 0.35                                       | 5.3                                                                | 165 27A              | 0.25                                       | 3.7                                                                |  |  |  |
| 165 18A              | 0.35                                       | 1.8                                                                | 165 8A               | 0.25                                       | 0.9                                                                |  |  |  |
|                      |                                            |                                                                    | 165 25A              | 0.25                                       | 0.8                                                                |  |  |  |
|                      |                                            |                                                                    | 165 26A              | 0.25                                       | 0.7                                                                |  |  |  |
|                      |                                            |                                                                    | 165 28A              | 0.25                                       | 0.9                                                                |  |  |  |
|                      |                                            |                                                                    | 165 3A               | 0.25                                       | 4.2                                                                |  |  |  |
|                      |                                            |                                                                    | 165 24A              | 0.25                                       | 4.8                                                                |  |  |  |
| <u>6.00-16, 2-PR</u> |                                            |                                                                    |                      |                                            |                                                                    |  |  |  |
| 164 802A             | 0.15                                       | 1.7                                                                | 165 9A               | 0.35                                       | 6.1                                                                |  |  |  |
| 164 805A             | 0.15                                       | 3.8                                                                | 165 11A              | 0.35                                       | 4.1                                                                |  |  |  |
| 164 809A             | 0.15                                       | 4.8                                                                | 165 12A              | 0.35                                       | 7.5                                                                |  |  |  |
| 164 808A             | 0.15                                       | 3.9                                                                | 165 13A              | 0.35                                       | 1.1                                                                |  |  |  |
| 164 807A             | 0.15                                       | 3.1                                                                | 165 10A              | 0.35                                       | 3.7                                                                |  |  |  |
| 164 804A             | 0.15                                       | 1.9                                                                |                      |                                            |                                                                    |  |  |  |

Table 9  
Mobility Number Calculated from Terrestrial and Telecommunications Data

Table 10

4x4 Vehicle Tests in Yuma Sand, Laboratory Tests,  
20 Percent Slip, First Pass

| Test No. | Penetration Resistance Gradient, G<br>N/cm <sup>2</sup> /cm | Design Deflection<br>$\frac{\delta}{h}$ | Design Load<br>W, N | Pull Coefficient<br>$\frac{P}{W}$ | Sand Mobility Number<br>$\frac{G(bd)^{3/2}}{W} \times \frac{\delta}{h}$ |
|----------|-------------------------------------------------------------|-----------------------------------------|---------------------|-----------------------------------|-------------------------------------------------------------------------|
|----------|-------------------------------------------------------------|-----------------------------------------|---------------------|-----------------------------------|-------------------------------------------------------------------------|

4.50-18, 4-PR

|      |     |      |      |      |        |      |
|------|-----|------|------|------|--------|------|
| 32 4 | 4.7 | 0.15 | 3956 | 489  | 0.031  | 4.3  |
| 33 4 | 3.8 | 0.15 | 3956 | -267 | -0.017 | 3.5  |
| 36 4 | 3.5 | 0.15 | 3956 | -400 | -0.025 | 3.2  |
| 38 4 | 5.9 | 0.15 | 3956 | 578  | 0.037  | 5.4  |
| 34 4 | 3.7 | 0.35 | 3956 | 2267 | 0.143  | 7.9  |
| 37 4 | 3.1 | 0.35 | 3956 | 1778 | 0.112  | 6.7  |
| 40 4 | 5.1 | 0.35 | 3956 | 3467 | 0.219  | 10.9 |
| 41 4 | 3.9 | 0.35 | 3956 | 2711 | 0.171  | 8.3  |

2.00-14, 2-PR

|      |     |      |      |      |       |      |
|------|-----|------|------|------|-------|------|
| 46 4 | 5.3 | 0.15 | 3956 | 3200 | 0.202 | 11.7 |
| 47 4 | 3.0 | 0.15 | 3956 | 1000 | 0.063 | 6.6  |
| 48 4 | 3.4 | 0.15 | 3956 | 2178 | 0.138 | 7.6  |
| 49 4 | 1.8 | 0.15 | 3956 | 289  | 0.018 | 4.0  |
| 43 4 | 3.4 | 0.35 | 3956 | 5200 | 0.329 | 17.7 |
| 44 4 | 2.6 | 0.35 | 3956 | 4000 | 0.253 | 13.5 |
| 45 4 | 5.2 | 0.35 | 3956 | 5733 | 0.362 | 26.4 |
| 51 4 | 1.7 | 0.35 | 3956 | 3222 | 0.204 | 8.7  |

Table 1  
Vehicle Tests in Coarse-Grained Soil, Filed C-200,  
Maximum Drawn Pull, First Pull

| Loc. No.                                             | Soil Index*<br>0-100 | Wt.<br>lb. | Wt.<br>(lb.) | Inf. on Pressure<br>lb. <sup>2</sup> | Def. in.<br>in. | Pct.<br>% | Drawn Pull<br>lb. <sup>2</sup> x in. |                 |
|------------------------------------------------------|----------------------|------------|--------------|--------------------------------------|-----------------|-----------|--------------------------------------|-----------------|
|                                                      |                      |            |              |                                      |                 |           | Wt.<br>lb.                           | Def. in.<br>in. |
| <u>W36, 4x4 (Jeep), Padre Island, Tex.</u>           |                      |            |              |                                      |                 |           |                                      |                 |
| 147                                                  | 367                  | 24         | 1,991        | 21                                   | 0.106           | 0.542     | 49.4                                 |                 |
| 148                                                  | 368                  | 24         | 1,991        | 21                                   | 0.113           | 0.320     | 51.5                                 |                 |
| 149                                                  | 369                  | 24         | 1,991        | 21                                   | 0.134           | 0.275     | 73.5                                 |                 |
| 150                                                  | 370                  | 24         | 1,991        | 21                                   | 0.173           | 0.416     | 81.0                                 |                 |
| 151                                                  | 371                  | 24         | 1,991        | 21                                   | 0.190           | 0.443     | 46.2                                 |                 |
| 152                                                  | 372                  | 24         | 1,991        | 21                                   | 0.190           | 0.295     | 51.8                                 |                 |
| 153                                                  | 373                  | 24         | 1,991        | 21                                   | 0.190           | 0.304     | 44.0                                 |                 |
| 154                                                  | 374                  | 24         | 1,991        | 21                                   | 0.190           | 0.344     | 30.8                                 |                 |
| 155                                                  | 375                  | 24         | 1,991        | 21                                   | 0.190           | 0.243     | 36.4                                 |                 |
| 156                                                  | 376                  | 24         | 1,991        | 21                                   | 0.190           | 0.242     | 36.3                                 |                 |
| 157                                                  | 377                  | 24         | 1,991        | 21                                   | 0.190           | 0.382     | 26.0                                 |                 |
| 158                                                  | 378                  | 24         | 1,991        | 21                                   | 0.190           | 0.387     | 32.8                                 |                 |
| 159                                                  | 379                  | 24         | 1,991        | 21                                   | 0.190           | 0.387     | 32.8                                 |                 |
| <u>W37, 4x4 Truck, 3 1/2-Ton, Padre Island, Tex.</u> |                      |            |              |                                      |                 |           |                                      |                 |
| 160                                                  | 387                  | 32         | 6,311        | 21                                   | 0.114           | 0.181     | 94.0                                 |                 |
| 161                                                  | 388                  | 32         | 6,311        | 21                                   | 0.114           | 0.255     | 10.0                                 |                 |
| 162                                                  | 389                  | 32         | 6,311        | 21                                   | 0.168           | 0.297     | 57.4                                 |                 |
| 163                                                  | 390                  | 32         | 6,311        | 21                                   | 0.198           | 0.369     | 24.5                                 |                 |
| 164                                                  | 391                  | 28         | 7,111        | 21                                   | 0.120           | 0.171     | 43.1                                 |                 |
| 165                                                  | 392                  | 28         | 7,111        | 21                                   | 0.120           | 0.227     | 60.1                                 |                 |
| 166                                                  | 393                  | 28         | 7,111        | 21                                   | 0.120           | 0.283     | 13.0                                 |                 |
| 167                                                  | 394                  | 28         | 7,111        | 21                                   | 0.120           | 0.386     | 151.9                                |                 |
| 168                                                  | 395                  | 28         | 7,111        | 21                                   | 0.120           | 0.171     | 57.0                                 |                 |
| 169                                                  | 396                  | 28         | 7,111        | 21                                   | 0.120           | 0.199     | 48.6                                 |                 |
| 170                                                  | 397                  | 28         | 7,111        | 21                                   | 0.120           | 0.187     | 48.6                                 |                 |
| 171                                                  | 398                  | 28         | 7,111        | 21                                   | 0.120           | 0.125     | 11.8                                 |                 |
| 172                                                  | 399                  | 28         | 7,111        | 21                                   | 0.120           | 0.113     | 13.0                                 |                 |
| 173                                                  | 400                  | 28         | 7,111        | 21                                   | 0.120           | 0.253     | 62.1                                 |                 |
| 174                                                  | 401                  | 28         | 7,111        | 21                                   | 0.120           | 0.145     | 11.6                                 |                 |
| 175                                                  | 402                  | 28         | 7,111        | 21                                   | 0.120           | 0.179     | 22.7                                 |                 |
| 176                                                  | 403                  | 28         | 7,111        | 21                                   | 0.120           | 0.291     | 56.5                                 |                 |
| 177                                                  | 404                  | 28         | 7,111        | 21                                   | 0.120           | 0.171     | 19.3                                 |                 |
| 178                                                  | 405                  | 28         | 7,111        | 21                                   | 0.120           | 0.240     | 24.6                                 |                 |
| 179                                                  | 406                  | 28         | 7,111        | 21                                   | 0.120           | 0.361     | 93.5                                 |                 |
| 180                                                  | 407                  | 28         | 7,111        | 21                                   | 0.120           | 0.359     | 28.1                                 |                 |
| 181                                                  | 408                  | 28         | 7,111        | 21                                   | 0.120           | 0.285     | 22.9                                 |                 |
| 182                                                  | 409                  | 28         | 7,111        | 21                                   | 0.120           | 0.299     | 23.6                                 |                 |
| <u>W37, 4x4 Truck, 3 1/2-Ton, Cape Cod, Mass.</u>    |                      |            |              |                                      |                 |           |                                      |                 |
| 183                                                  | 123                  | 12         | 6,311        | 21                                   | 0.114           | 0.161     | 17.2                                 |                 |
| 184                                                  | 126                  | 12         | 6,311        | 21                                   | 0.114           | 0.157     | 17.2                                 |                 |
| 185                                                  | 128                  | 12         | 6,311        | 14                                   | 0.144           | 0.177     | 17.7                                 |                 |
| 186                                                  | 136                  | 12         | 6,311        | 14                                   | 0.144           | 0.212     | 22.7                                 |                 |
| 187                                                  | 139                  | 12         | 6,311        | 14                                   | 0.144           | 0.300     | 23.2                                 |                 |
| 188                                                  | 138                  | 12         | 6,311        | 10                                   | 0.168           | 0.250     | 27.1                                 |                 |
| 189                                                  | 131                  | 12         | 6,311        | 10                                   | 0.168           | 0.239     | 14.9                                 |                 |
| 190                                                  | 131                  | 12         | 6,311        | 10                                   | 0.168           | 0.250     | 25.9                                 |                 |
| 191                                                  | 120                  | 11         | 6,311        | 7                                    | 0.198           | 0.306     | 27.5                                 |                 |
| 192                                                  | 125                  | 11         | 6,311        | 7                                    | 0.198           | 0.289     | 29.2                                 |                 |
| 193                                                  | 103                  | 9          | 6,311        | 7                                    | 0.198           | 0.299     | 23.6                                 |                 |
| <u>W35, 6x6 Truck, 2 1/2-Ton, Padre Island, Tex.</u> |                      |            |              |                                      |                 |           |                                      |                 |
| 147                                                  | 385                  | 29         | 12,933       | 21                                   | 0.135           | 0.284     | 46.8                                 |                 |
| 148                                                  | 105                  | 9          | 12,933       | 21                                   | 0.135           | 0.133     | 15.2                                 |                 |
| 149                                                  | 352                  | 32         | 12,933       | 14                                   | 0.195           | 0.342     | 78.4                                 |                 |
| 150                                                  | 352                  | 32         | 12,933       | 10                                   | 0.220           | 0.372     | 88.4                                 |                 |
| 151                                                  | 347                  | 29         | 12,933       | 7                                    | 0.273           | 0.419     | 98.4                                 |                 |
| 152                                                  | 144                  | 13         | 13,689       | 14                                   | 0.090           | 0.072     | 14.0                                 |                 |
| 153                                                  | 114                  | 10         | 13,689       | 41                                   | 0.090           | 0.061     | 11.1                                 |                 |
| 154                                                  | 143                  | 13         | 13,689       | 21                                   | 0.160           | 0.180     | 24.9                                 |                 |
| 155                                                  | 160                  | 14         | 13,689       | 21                                   | 0.160           | 0.200     | 27.5                                 |                 |
| 156                                                  | 156                  | 14         | 13,689       | 21                                   | 0.160           | 0.192     | 27.0                                 |                 |
| 157                                                  | 129                  | 12         | 13,689       | 21                                   | 0.160           | 0.147     | 22.3                                 |                 |
| 158                                                  | 139                  | 12         | 13,689       | 14                                   | 0.210           | 0.220     | 31.1                                 |                 |

(Continued)

\* Values taken directly from IR 3-240, 17th Supplement.

\*\*  $\frac{P}{W}$  represents the ratio of the total pull to vehicle weight.

(1 of 4 pg. sets)

Table II (Continued)

| Test No.                                                          | Cone Index 0-15 cm | Penetration Resistance |                     | Inflation Pressure N/cm <sup>2</sup> | Deflection 5/8 | Sand Mobility Number |                                            |
|-------------------------------------------------------------------|--------------------|------------------------|---------------------|--------------------------------------|----------------|----------------------|--------------------------------------------|
|                                                                   |                    | 2 N/cm <sup>2</sup>    | 3 N/cm <sup>2</sup> |                                      |                | P                    | Q (bd) <sup>3/2</sup> x 10 <sup>-6</sup> N |
| <u>MC35, 6x6 Truck, 2-1/2-Ton, Paire Island, Tex. (Continued)</u> |                    |                        |                     |                                      |                |                      |                                            |
| 168                                                               | 12                 | 14                     | 13,689              | 14                                   | 0.210          | 0.226                | 34.5                                       |
| 169                                                               | 12                 | 11                     | 13,689              | 14                                   | 0.210          | 0.257                | 26.6                                       |
| 170                                                               | 12                 | 13                     | 13,689              | 14                                   | 0.210          | 0.216                | 32.7                                       |
| 171                                                               | 12                 | 12                     | 13,689              | 10                                   | 0.265          | 0.255                | 38.7                                       |
| 172                                                               | 12                 | 14                     | 13,689              | 10                                   | 0.265          | 0.275                | 44.7                                       |
| 173                                                               | 12                 | 12                     | 13,689              | 10                                   | 0.265          | 0.261                | 37.0                                       |
| 174                                                               | 12                 | 12                     | 13,689              | 10                                   | 0.265          | 0.252                | 38.7                                       |
| 175                                                               | 12                 | 13                     | 13,689              | 10                                   | 0.265          | 0.256                | 40.6                                       |
| 176                                                               | 12                 | 12                     | 13,689              | 7                                    | 0.260          | 0.317                | 48.2                                       |
| 177                                                               | 12                 | 12                     | 13,689              | 7                                    | 0.260          | 0.318                | 47.1                                       |
| <u>MC4, 6x6 Truck, 2-1/2-Ton, Suscinio, France</u>                |                    |                        |                     |                                      |                |                      |                                            |
| 178                                                               | 78                 | 7                      | 8,533               | 14                                   | 0.130          | 0.159                | 17.5                                       |
| 179                                                               | 92                 | 8                      | 8,533               | 14                                   | 0.132          | 0.154                | 20.9                                       |
| 180                                                               | 51                 | 5                      | 8,533               | 10                                   | 0.147          | 0.157                | 12.9                                       |
| 181                                                               | 70                 | 6                      | 8,533               | 10                                   | 0.147          | 0.151                | 17.2                                       |
| 182                                                               | 92                 | 8                      | 8,533               | 10                                   | 0.147          | 0.144                | 23.3                                       |
| 183                                                               | 94                 | 8                      | 8,533               | 7                                    | 0.176          | 0.220                | 27.9                                       |
| 184                                                               | 54                 | 5                      | 8,533               | 7                                    | 0.176          | 0.219                | 18.9                                       |
| 185                                                               | 55                 | 5                      | 8,533               | 7                                    | 0.176          | 0.197                | 16.2                                       |
| <u>MC4, 6x6 Truck, 2-1/2-Ton, Turballe, France</u>                |                    |                        |                     |                                      |                |                      |                                            |
| 186                                                               | 66                 | 6                      | 12,444              | 7                                    | 0.250          | 0.255                | 19.6                                       |
| 187                                                               | 125                | 11                     | 12,444              | 7                                    | 0.250          | 0.283                | 37.5                                       |
| <u>BRW 353, 6x6 Truck, 2-1/2-Ton, La Turballe, France</u>         |                    |                        |                     |                                      |                |                      |                                            |
| 188                                                               | 103                | 9                      | 10,889              | 10                                   | 0.203          | 0.249                | 26.8                                       |
| 189                                                               | 141                | 11                     | 10,889              | 10                                   | 0.203          | 0.293                | 37.0                                       |
| 190                                                               | 86                 | 8                      | 10,889              | 7                                    | 0.252          | 0.316                | 26.3                                       |
| <u>BRW 353, 6x6 Truck, 2-1/2-Ton, Suscinio, France</u>            |                    |                        |                     |                                      |                |                      |                                            |
| 191                                                               | 143                | 13                     | 14,578              | 21                                   | 0.171          | 0.215                | 23.8                                       |
| 192                                                               | 133                | 12                     | 14,578              | 21                                   | 0.171          | 0.159                | 21.8                                       |
| 193                                                               | 105                | 9                      | 14,578              | 21                                   | 0.171          | 0.190                | 17.3                                       |
| 194                                                               | 106                | 9                      | 14,578              | 21                                   | 0.171          | 0.194                | 17.3                                       |
| 195                                                               | 133                | 12                     | 14,578              | 21                                   | 0.171          | 0.194                | 21.8                                       |
| 196                                                               | 140                | 13                     | 14,578              | 21                                   | 0.171          | 0.202                | 23.2                                       |
| 197                                                               | 107                | 10                     | 14,578              | 14                                   | 0.225          | 0.263                | 23.5                                       |
| 198                                                               | 67                 | 6                      | 14,578              | 14                                   | 0.225          | 0.193                | 14.3                                       |
| 199                                                               | 95                 | 9                      | 14,578              | 14                                   | 0.225          | 0.216                | 20.9                                       |
| 200                                                               | 67                 | 6                      | 14,578              | 14                                   | 0.225          | 0.238                | 14.3                                       |
| 201                                                               | 92                 | 8                      | 14,578              | 14                                   | 0.225          | 0.188                | 21.1                                       |
| 202                                                               | 104                | 10                     | 14,578              | 14                                   | 0.225          | 0.191                | 22.8                                       |
| <u>BRW 353, 6x6 Truck, 2-1/2-Ton, La Turballe, France</u>         |                    |                        |                     |                                      |                |                      |                                            |
| 203                                                               | 80                 | 7                      | 14,578              | 14                                   | 0.225          | 0.242                | 17.6                                       |
| 204                                                               | 143                | 13                     | 14,578              | 14                                   | 0.225          | 0.195                | 31.3                                       |
| <u>BRW 353, 6x6 Truck, 2-1/2-Ton, Suscinio, France</u>            |                    |                        |                     |                                      |                |                      |                                            |
| 205                                                               | 66                 | 6                      | 14,578              | 10                                   | 0.277          | 0.193                | 15.7                                       |
| 206                                                               | 61                 | 5                      | 14,578              | 10                                   | 0.277          | 0.200                | 16.0                                       |
| 207                                                               | 63                 | 6                      | 14,578              | 10                                   | 0.277          | 0.230                | 18.4                                       |
| 208                                                               | 69                 | 6                      | 14,578              | 10                                   | 0.277          | 0.234                | 18.4                                       |
| <u>BRW 353, 6x6 Truck, 2-1/2-Ton, La Turballe, France</u>         |                    |                        |                     |                                      |                |                      |                                            |
| 209                                                               | 95                 | 9                      | 14,578              | 10                                   | 0.277          | 0.269                | 25.7                                       |
| 210                                                               | 96                 | 9                      | 14,578              | 10                                   | 0.277          | 0.261                | 25.7                                       |
| 211                                                               | 86                 | 8                      | 14,578              | 10                                   | 0.277          | 0.262                | 23.2                                       |
| 212                                                               | 78                 | 7                      | 14,578              | 7                                    | 0.348          | 0.305                | 20.8                                       |
| 213                                                               | 117                | 11                     | 14,578              | 7                                    | 0.348          | 0.328                | 31.3                                       |
| 214                                                               | 86                 | 8                      | 14,578              | 7                                    | 0.348          | 0.322                | 23.2                                       |
| <u>BRW 353, 6x6 Truck, 2-1/2-Ton, Cape Cod, Mass.</u>             |                    |                        |                     |                                      |                |                      |                                            |
| 221                                                               | 185                | 17                     | 11,333              | 14                                   | 0.176          | 0.244                | 40.3                                       |
| 222                                                               | 159                | 18                     | 11,333              | 14                                   | 0.176          | 0.227                | 34.7                                       |
| 223                                                               | 172                | 15                     | 11,333              | 14                                   | 0.176          | 0.262                | 37.3                                       |
| 224                                                               | 90                 | 5                      | 11,333              | 14                                   | 0.176          | 0.176                | 12.1                                       |
| 225                                                               | 49                 | 5                      | 11,333              | 14                                   | 0.176          | 0.093                | 11.0                                       |
| 226                                                               | 60                 | 5                      | 11,333              | 14                                   | 0.176          | 0.050                | 13.4                                       |
| 227                                                               | 172                | 15                     | 11,333              | 10                                   | 0.216          | 0.317                | 45.0                                       |

(Continued)

(2 of 4 sheets)

Table 11 (Cont. part 1)

| Test No.                                                                                    | Cone Index<br>0-15 cm | Penetration-<br>Resistance<br>Gradient<br>N/cm <sup>2</sup> /cm | Wheel Load<br>N<br>(t) | Inflation Pressure<br>N/cm <sup>2</sup> | Deflection<br>mm/h | P<br>N | Sand Mobility<br>Number<br>$\frac{G'(bd)^{3/2}}{V} \times \frac{b}{h}$ |                                                                   |
|---------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|------------------------|-----------------------------------------|--------------------|--------|------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                                                             |                       |                                                                 |                        |                                         |                    |        | DUKW 353, 6x6 Truck, 2-1/2-ton, Cape Cod, Mass. (Continued)            | DUKW 353, 6x6 Truck, 5-Ton, Vicksburg, Miss., Miss. River Sandbar |
| 226                                                                                         | 132                   | 17                                                              | 11,333                 | 10                                      | 0.216              | 0.277  | 48.6                                                                   |                                                                   |
| 229                                                                                         | 142                   | 13                                                              | 11,333                 | 10                                      | 0.216              | 0.293  | 38.1                                                                   |                                                                   |
| 230                                                                                         | 46                    | -                                                               | 11,333                 | 10                                      | 0.216              | 0.118  | 12.1                                                                   |                                                                   |
| 231                                                                                         | 47                    | -                                                               | 11,333                 | 10                                      | 0.216              | 0.105  | 11.1                                                                   |                                                                   |
| 232                                                                                         | 40                    | 4                                                               | 11,333                 | 10                                      | 0.216              | 0.106  | 10.6                                                                   |                                                                   |
| 233                                                                                         | 162                   | 15                                                              | 11,333                 | 7                                       | 0.262              | 0.370  | 54.8                                                                   |                                                                   |
| 234                                                                                         | 160                   | 14                                                              | 11,333                 | 7                                       | 0.262              | 0.337  | 52.2                                                                   |                                                                   |
| 235                                                                                         | 129                   | 12                                                              | 11,333                 | 7                                       | 0.262              | 0.340  | 42.0                                                                   |                                                                   |
| 236                                                                                         | 150                   | 4                                                               | 11,333                 | 7                                       | 0.262              | 0.213  | 13.4                                                                   |                                                                   |
| 237                                                                                         | 39                    | 4                                                               | 11,333                 | 7                                       | 0.262              | 0.213  | 13.0                                                                   |                                                                   |
| 238                                                                                         | 44                    | 4                                                               | 11,333                 | 7                                       | 0.262              | 0.191  | 14.7                                                                   |                                                                   |
| <u>DUKW 353, 6x6 Truck, 5-Ton, Vicksburg, Miss., Miss. River Sandbar</u>                    |                       |                                                                 |                        |                                         |                    |        |                                                                        |                                                                   |
| 240                                                                                         | 97                    | 9                                                               | 17,155                 | 21                                      | 0.172              | 0.169  | 26.5                                                                   |                                                                   |
| 241                                                                                         | 76                    | 7                                                               | 17,155                 | 21                                      | 0.172              | 0.165  | 22.3                                                                   |                                                                   |
| 242                                                                                         | 30                    | 31                                                              | 17,155                 | 21                                      | 0.172              | 0.330  | 100.0                                                                  |                                                                   |
| 243                                                                                         | 305                   | 28                                                              | 17,155                 | 14                                      | 0.153              | 0.397  | 96.5                                                                   |                                                                   |
| 251                                                                                         | 99                    | 9                                                               | 17,155                 | 10                                      | 0.258              | 0.283  | 44.1                                                                   |                                                                   |
| 253                                                                                         | 360                   | 33                                                              | 17,155                 | 10                                      | 0.258              | 0.441  | 161.0                                                                  |                                                                   |
| 258                                                                                         | 360                   | 33                                                              | 17,155                 | 7                                       | 0.316              | 0.479  | 197.0                                                                  |                                                                   |
| <u>Dozer Loader, 4x4 Tractor, Vicksburg, Miss., Miss. River Sandbar</u>                     |                       |                                                                 |                        |                                         |                    |        |                                                                        |                                                                   |
| 263                                                                                         | 122                   | 11                                                              | 15,111                 | 21                                      | 0.104              | 0.201  | 25.8                                                                   |                                                                   |
| 266                                                                                         | 126                   | 12                                                              | 15,111                 | 21                                      | 0.104              | 0.203  | 27.1                                                                   |                                                                   |
| 267                                                                                         | 126                   | 11                                                              | 15,111                 | 21                                      | 0.104              | 0.202  | 26.6                                                                   |                                                                   |
| 268                                                                                         | 112                   | 10                                                              | 15,111                 | 21                                      | 0.104              | 0.192  | 23.7                                                                   |                                                                   |
| 269                                                                                         | 125                   | 11                                                              | 15,111                 | 14                                      | 0.161              | 0.252  | 36.0                                                                   |                                                                   |
| 270                                                                                         | 120                   | 11                                                              | 15,111                 | 14                                      | 0.161              | 0.238  | 34.3                                                                   |                                                                   |
| 281                                                                                         | 126                   | 11                                                              | 15,111                 | 10                                      | 0.173              | 0.300  | 42.3                                                                   |                                                                   |
| 292                                                                                         | 121                   | 11                                                              | 15,111                 | 10                                      | 0.173              | 0.303  | 41.9                                                                   |                                                                   |
| 293                                                                                         | 117                   | 11                                                              | 15,111                 | 13                                      | 0.173              | 0.269  | 41.0                                                                   |                                                                   |
| 294                                                                                         | 109                   | 10                                                              | 15,111                 | 7                                       | 0.233              | 0.340  | 51.0                                                                   |                                                                   |
| 295                                                                                         | 123                   | 11                                                              | 15,111                 | 7                                       | 0.233              | 0.355  | 58.2                                                                   |                                                                   |
| <u>Dozer, 4x4 Tractor, Vicksburg, Miss., Miss. River Sandbar</u>                            |                       |                                                                 |                        |                                         |                    |        |                                                                        |                                                                   |
| 296                                                                                         | 103                   | 9                                                               | 34,489                 | 21                                      | 0.178              | 0.216  | 42.3                                                                   |                                                                   |
| 297                                                                                         | 130                   | 12                                                              | 34,489                 | 21                                      | 0.178              | 0.213  | 53.4                                                                   |                                                                   |
| 298                                                                                         | 115                   | 10                                                              | 34,489                 | 21                                      | 0.178              | 0.215  | 47.6                                                                   |                                                                   |
| 299                                                                                         | 147                   | 13                                                              | 34,489                 | 21                                      | 0.178              | 0.235  | 60.7                                                                   |                                                                   |
| 300                                                                                         | 141                   | 13                                                              | 34,489                 | 21                                      | 0.178              | 0.215  | 58.0                                                                   |                                                                   |
| 301                                                                                         | 136                   | 12                                                              | 34,489                 | 14                                      | 0.208              | 0.283  | 66.0                                                                   |                                                                   |
| 302                                                                                         | 138                   | 12                                                              | 34,489                 | 14                                      | 0.208              | 0.272  | 66.7                                                                   |                                                                   |
| 303                                                                                         | 136                   | 12                                                              | 34,489                 | 14                                      | 0.208              | 0.302  | 66.0                                                                   |                                                                   |
| 304                                                                                         | 136                   | 12                                                              | 34,489                 | 14                                      | 0.208              | 0.261  | 66.0                                                                   |                                                                   |
| 305                                                                                         | 122                   | 11                                                              | 34,489                 | 14                                      | 0.208              | 0.267  | 58.4                                                                   |                                                                   |
| 306                                                                                         | 136                   | 12                                                              | 34,489                 | 14                                      | 0.208              | 0.261  | 66.0                                                                   |                                                                   |
| 307                                                                                         | 136                   | 12                                                              | 34,489                 | 14                                      | 0.208              | 0.272  | 66.7                                                                   |                                                                   |
| 308                                                                                         | 125                   | 11                                                              | 34,489                 | 10                                      | 0.250              | 0.325  | 73.9                                                                   |                                                                   |
| 309                                                                                         | 111                   | 11                                                              | 34,489                 | 10                                      | 0.250              | 0.327  | 73.0                                                                   |                                                                   |
| 310                                                                                         | 139                   | 12                                                              | 34,489                 | 10                                      | 0.250              | 0.339  | 81.5                                                                   |                                                                   |
| 311                                                                                         | 135                   | 12                                                              | 34,489                 | 10                                      | 0.250              | 0.327  | 73.3                                                                   |                                                                   |
| 312                                                                                         | 130                   | 12                                                              | 34,489                 | 10                                      | 0.250              | 0.316  | 72.7                                                                   |                                                                   |
| 313                                                                                         | 124                   | 11                                                              | 34,489                 | 10                                      | 0.250              | 0.338  | 73.1                                                                   |                                                                   |
| 314                                                                                         | 134                   | 12                                                              | 34,489                 | 10                                      | 0.250              | 0.338  | 73.0                                                                   |                                                                   |
| 315                                                                                         | 133                   | 12                                                              | 34,489                 | 10                                      | 0.250              | 0.338  | 73.0                                                                   |                                                                   |
| 316                                                                                         | 116                   | 11                                                              | 34,489                 | 7                                       | 0.272              | 0.397  | 74.5                                                                   |                                                                   |
| 317                                                                                         | 137                   | 12                                                              | 34,489                 | 7                                       | 0.272              | 0.402  | 77.4                                                                   |                                                                   |
| 318                                                                                         | 116                   | 11                                                              | 34,489                 | 7                                       | 0.272              | 0.389  | 71.5                                                                   |                                                                   |
| 319                                                                                         | 138                   | 12                                                              | 34,489                 | 7                                       | 0.272              | 0.412  | 78.5                                                                   |                                                                   |
| 320                                                                                         | 133                   | 12                                                              | 34,489                 | 7                                       | 0.272              | 0.399  | 77.9                                                                   |                                                                   |
| <u>DUKW 353, 6x6 Cargo Carrier, 5-Tons (12-26), Vicksburg, Miss., 10-ton, River Sandbar</u> |                       |                                                                 |                        |                                         |                    |        |                                                                        |                                                                   |
| 321                                                                                         | 143                   | 13                                                              | 29,644                 | 21                                      | 0.172              | 0.276  | 48.8                                                                   |                                                                   |
| 322                                                                                         | 113                   | 10                                                              | 29,644                 | 21                                      | 0.172              | 0.254  | 36.8                                                                   |                                                                   |
| 323                                                                                         | 119                   | 11                                                              | 29,644                 | 21                                      | 0.172              | 0.241  | 40.6                                                                   |                                                                   |
| 324                                                                                         | 132                   | 12                                                              | 29,644                 | 21                                      | 0.172              | 0.274  | 45.2                                                                   |                                                                   |
| 325                                                                                         | 140                   | 13                                                              | 29,644                 | 21                                      | 0.172              | 0.361  | 47.8                                                                   |                                                                   |
| 326                                                                                         | 143                   | 13                                                              | 29,644                 | 21                                      | 0.172              | 0.267  | 48.8                                                                   |                                                                   |
| 327                                                                                         | 126                   | 11                                                              | 29,644                 | 21                                      | 0.172              | 0.268  | 43.4                                                                   |                                                                   |
| 328                                                                                         | 51                    | 14                                                              | 29,644                 | 14                                      | 0.215              | 0.335  | 65.2                                                                   |                                                                   |
| 329                                                                                         | 151                   | 14                                                              | 29,644                 | 14                                      | 0.215              | 0.345  | 65.2                                                                   |                                                                   |
| 330                                                                                         | 136                   | 12                                                              | 29,644                 | 14                                      | 0.215              | 0.305  | 59.1                                                                   |                                                                   |
| 331                                                                                         | 126                   | 11                                                              | 29,644                 | 14                                      | 0.215              | 0.320  | 58.2                                                                   |                                                                   |
| 332                                                                                         | 134                   | 12                                                              | 29,644                 | 14                                      | 0.215              | 0.367  | 57.9                                                                   |                                                                   |
| 333                                                                                         | 135                   | 12                                                              | 29,644                 | 14                                      | 0.215              | 0.355  | 58.5                                                                   |                                                                   |

(Continued)

(3 of 4 sheets)

Table II (Continued)

| Test No.                                                                                         | Cone Index<br>0-15 cm | Penetration-<br>Resistance<br>Gradient<br>$\frac{N}{cm^2, cm}$ | Wheel Load<br>$N$<br>(kg) | Inflation Pressure<br>$\frac{psi}{cm^2}$ | Deflection<br>$\frac{in}{h}$ | S in Mobility<br>Number<br>$\frac{(b)}{V} \frac{b}{E}$ |                             |
|--------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------|---------------------------|------------------------------------------|------------------------------|--------------------------------------------------------|-----------------------------|
|                                                                                                  |                       |                                                                |                           |                                          |                              | P<br>V                                                 | $\frac{S}{(b)} \frac{1}{V}$ |
| <u>GOER, Aut Cargo Carrier, 5-Ton (18-35), Vicksburg, Miss., Miss. River Sandbar (Continued)</u> |                       |                                                                |                           |                                          |                              |                                                        |                             |
| 334                                                                                              | 157                   | 14                                                             | 29,644                    | 14                                       | 0.215                        | 0.380                                                  | 67.6                        |
| 335                                                                                              | 146                   | 13                                                             | 29,644                    | 10                                       | 0.247                        | 0.388                                                  | 71.9                        |
| 336                                                                                              | 136                   | 12                                                             | 29,644                    | 10                                       | 0.247                        | 0.400                                                  | 66.9                        |
| 337                                                                                              | 142                   | 13                                                             | 29,644                    | 10                                       | 0.247                        | 0.372                                                  | 59.7                        |
| 338                                                                                              | 147                   | 13                                                             | 29,644                    | 10                                       | 0.247                        | 0.366                                                  | 71.9                        |
| 339                                                                                              | 148                   | 13                                                             | 29,644                    | 10                                       | 0.247                        | 0.366                                                  | 70.7                        |
| 340                                                                                              | 135                   | 11                                                             | 29,644                    | 7                                        | 0.294                        | 0.431                                                  | 74.2                        |
| 341                                                                                              | 145                   | 13                                                             | 29,644                    | 7                                        | 0.294                        | 0.447                                                  | 85.7                        |
| 342                                                                                              | 141                   | 13                                                             | 29,644                    | 7                                        | 0.294                        | 0.444                                                  | 83.2                        |
| 343                                                                                              | 149                   | 14                                                             | 29,644                    | 7                                        | 0.294                        | 0.428                                                  | 87.4                        |
| <u>GOER, Aut Cargo Carrier, 5-Ton (15-34), Vicksburg, Miss., Miss. River Sandbar</u>             |                       |                                                                |                           |                                          |                              |                                                        |                             |
| 344                                                                                              | 135                   | 12                                                             | 29,644                    | 21                                       | 0.217                        | 0.260                                                  | 50.2                        |
| 345                                                                                              | 132                   | 12                                                             | 29,644                    | 21                                       | 0.217                        | 0.250                                                  | 59.0                        |
| 346                                                                                              | 144                   | 13                                                             | 29,644                    | 21                                       | 0.217                        | 0.261                                                  | 59.5                        |
| 347                                                                                              | 142                   | 13                                                             | 29,644                    | 21                                       | 0.217                        | 0.248                                                  | 63.6                        |
| 348                                                                                              | 144                   | 13                                                             | 29,644                    | 21                                       | 0.217                        | 0.235                                                  | 62.6                        |
| 349                                                                                              | 130                   | 12                                                             | 29,644                    | 14                                       | 0.217                        | 0.259                                                  | 53.8                        |
| 350                                                                                              | 136                   | 12                                                             | 29,644                    | 14                                       | 0.242                        | 0.312                                                  | 63.3                        |
| 351                                                                                              | 130                   | 12                                                             | 29,644                    | 14                                       | 0.242                        | 0.309                                                  | 55.3                        |
| 352                                                                                              | 130                   | 12                                                             | 29,644                    | 14                                       | 0.242                        | 0.311                                                  | 53.3                        |
| 353                                                                                              | 123                   | 11                                                             | 29,644                    | 14                                       | 0.242                        | 0.308                                                  | 50.1                        |
| 354                                                                                              | 130                   | 12                                                             | 29,644                    | 14                                       | 0.242                        | 0.308                                                  | 53.3                        |
| 355                                                                                              | 130                   | 12                                                             | 29,644                    | 14                                       | 0.242                        | 0.300                                                  | 53.3                        |
| 356                                                                                              | 129                   | 12                                                             | 29,644                    | 14                                       | 0.242                        | 0.303                                                  | 52.5                        |
| 357                                                                                              | 145                   | 13                                                             | 29,644                    | 14                                       | 0.242                        | 0.356                                                  | 70.9                        |
| 358                                                                                              | 143                   | 13                                                             | 29,644                    | 10                                       | 0.250                        | 0.356                                                  | 86.4                        |
| 359                                                                                              | 134                   | 12                                                             | 29,644                    | 10                                       | 0.296                        | 0.312                                                  | 51.2                        |
| 360                                                                                              | 146                   | 13                                                             | 29,644                    | 10                                       | 0.296                        | 0.359                                                  | 50.8                        |
| 361                                                                                              | 141                   | 12                                                             | 29,644                    | 10                                       | 0.296                        | 0.350                                                  | 55.7                        |
| 362                                                                                              | 141                   | 12                                                             | 29,644                    | 10                                       | 0.296                        | 0.312                                                  | 55.5                        |
| 363                                                                                              | 136                   | 12                                                             | 29,644                    | 10                                       | 0.296                        | 0.299                                                  | 52.1                        |
| 364                                                                                              | 139                   | 12                                                             | 29,644                    | 10                                       | 0.296                        | 0.348                                                  | 63.7                        |
| 365                                                                                              | 151                   | 14                                                             | 29,644                    | -                                        | 0.428                        | 0.427                                                  | 1.11.4                      |
| 366                                                                                              | 146                   | 13                                                             | 29,644                    | 7                                        | 0.428                        | 0.424                                                  | 127.3                       |
| 367                                                                                              | 139                   | 12                                                             | 29,644                    | 7                                        | 0.428                        | 0.409                                                  | 121.0                       |
| 368                                                                                              | 129                   | 12                                                             | 29,644                    | 7                                        | 0.428                        | 0.411                                                  | 122.5                       |
| 369                                                                                              | 126                   | 11                                                             | 29,644                    | 7                                        | 0.428                        | 0.390                                                  | 122.2                       |

Table I  
Initial Tests of Unasphalted Roads, Field Tests,  
Row 1, First Page

| Test No.                                                                             | Cook Index*<br>0-100 | Pore water<br>pressure<br>Kg/cm <sup>2</sup> | Wheel Load<br>Kg | Inflection<br>Pressure<br>Kg/cm <sup>2</sup> | Deflection<br>mm | P <sub>75</sub> **<br>% | Land Mobility<br>Number<br>3/2, % |          |
|--------------------------------------------------------------------------------------|----------------------|----------------------------------------------|------------------|----------------------------------------------|------------------|-------------------------|-----------------------------------|----------|
|                                                                                      |                      |                                              |                  |                                              |                  |                         | Test No.                          | Test No. |
| <u>K-37, 6x6 Truck, 3-1/2-Ton, Padre Island, Tex.</u>                                |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 10                                                                                   | 330                  | 30                                           | 7,955            | 21                                           | 0.13             | 0.020                   | 44.3                              |          |
| 109                                                                                  | 33                   | 7,955                                        | 14               | 0.13                                         | 0.014            | 56.9                    |                                   |          |
| 372                                                                                  | 34                   | 7,955                                        | 10               | 0.13                                         | 0.023            | 32.6                    |                                   |          |
| 309                                                                                  | 38                   | 7,955                                        | 10               | 0.13                                         | 0.025            | 26.3                    |                                   |          |
| 141                                                                                  | 45                   | 7,955                                        | 44               | 0.13                                         | 0.025            | 19.2                    |                                   |          |
| 170                                                                                  | 45                   | 7,955                                        | 14               | 0.13                                         | 0.076            | 34.6                    |                                   |          |
| 178                                                                                  | 45                   | 7,955                                        | 10               | 0.13                                         | 0.043            | 35.6                    |                                   |          |
| 154                                                                                  | 45                   | 7,955                                        | 10               | 0.13                                         | 0.051            | 46.7                    |                                   |          |
| <u>M-35, 6x6 Truck, 2-1/2-Ton, Padre Island, Tex.</u>                                |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 9                                                                                    | 82                   | 7                                            | 10,933           | 21                                           | 0.125            | 0.144                   | 13.2                              |          |
| 15                                                                                   | 128                  | 12                                           | 10,933           | 14                                           | 0.126            | 0.086                   | 59.0                              |          |
| 11                                                                                   | 129                  | 12                                           | 10,933           | 10                                           | 0.126            | 0.141                   | 38.0                              |          |
| 12                                                                                   | 128                  | 12                                           | 10,933           | 10                                           | 0.126            | 0.061                   | 26.4                              |          |
| 13                                                                                   | 124                  | 11                                           | 13,555           | 14                                           | 0.130            | 0.142                   | 17.1                              |          |
| 14                                                                                   | 82                   | 3                                            | 13,555           | 14                                           | 0.100            | 0.161                   | 7.1                               |          |
| 15                                                                                   | 33                   | 3                                            | 13,555           | 10                                           | 0.130            | 0.135                   | 9.5                               |          |
| 16                                                                                   | 32                   | 3                                            | 13,555           | 7                                            | 0.135            | 0.146                   | 17.9                              |          |
| <u>M-35, 6x6 Truck, 2-1/2-Ton, Vicksburg, Miss., Miss. River Sandbar</u>             |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 17                                                                                   | 12                   | 11                                           | 13,555           | 21                                           | 0.130            | 0.090                   | 17.3                              |          |
| 18                                                                                   | 128                  | 12                                           | 13,555           | 10                                           | 0.130            | 0.091                   | 56.1                              |          |
| <u>M-35, Tested as 4x4, 70% load, Vicksburg, Miss., Miss. River Sandbar</u>          |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 19                                                                                   | 127                  | 11                                           | 19,555           | 21                                           | 0.232            | 0.093                   | 22.1                              |          |
| 20                                                                                   | 120                  | 7                                            | 19,555           | 14                                           | 0.297            | 0.091                   | 21.1                              |          |
| 21                                                                                   | 113                  | 10                                           | 19,555           | 10                                           | 0.346            | 0.082                   | 29.2                              |          |
| 22                                                                                   | 95                   | 9                                            | 19,555           | 21                                           | 0.225            | 0.273                   | 14.8                              |          |
| 23                                                                                   | 103                  | 9                                            | 19,555           | 14                                           | 0.295            | 0.066                   | 22.7                              |          |
| 24                                                                                   | 102                  | 9                                            | 19,555           | 10                                           | 0.346            | 0.054                   | 26.6                              |          |
| <u>DOOR 353, 6x6 Truck, 2-1/2-Ton, Cape Cod, Mass.</u>                               |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 25                                                                                   | 137                  | 12                                           | 11,333           | 11                                           | 0.135            | 0.132                   | 21.4                              |          |
| 26                                                                                   | 112                  | 10                                           | 11,333           | 14                                           | 0.176            | 0.096                   | 24.2                              |          |
| 27                                                                                   | 114                  | 10                                           | 11,333           | 10                                           | 0.116            | 0.083                   | 30.5                              |          |
| 28                                                                                   | 98                   | 8                                            | 11,333           | 10                                           | 0.262            | 0.177                   | 28.5                              |          |
| <u>M-41, 6x6 Truck, 2-1/2-Ton, Padre Island, Tex.</u>                                |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 29                                                                                   | 41                   | 4                                            | 17,155           | 21                                           | 0.144            | 0.203                   | 8.4                               |          |
| 30                                                                                   | 27                   | 2                                            | 17,155           | 14                                           | 0.194            | 0.160                   | 8.3                               |          |
| 31                                                                                   | 23                   | 2                                            | 17,155           | 10                                           | 0.234            | 0.119                   | 9.3                               |          |
| 32                                                                                   | 39                   | 3                                            | 17,155           | 7                                            | 0.316            | 0.125                   | 16.4                              |          |
| 33                                                                                   | 73                   | 5                                            | 21,244           | 21                                           | 0.172            | 0.185                   | 15.0                              |          |
| 34                                                                                   | 73                   | 5                                            | 21,244           | 14                                           | 0.210            | 0.060                   | 54.3                              |          |
| 35                                                                                   | 26                   | 17                                           | 21,244           | 10                                           | 0.300            | 0.025                   | 126.0                             |          |
| 36                                                                                   | 22                   | 27                                           | 21,244           | 10                                           | 0.375            | 0.055                   | 79.3                              |          |
| <u>Pocket Loader, 4x4 Tractor, Vicksburg, Miss., Miss. River Sandbar</u>             |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 40                                                                                   | 135                  | 12                                           | 15,111           | 21                                           | 0.104            | 0.059                   | 28.3                              |          |
| 49                                                                                   | 117                  | 11                                           | 15,111           | 14                                           | 0.141            | 0.091                   | 24.7                              |          |
| 50                                                                                   | 117                  | 11                                           | 15,111           | 10                                           | 0.173            | 0.060                   | 30.3                              |          |
| 51                                                                                   | 111                  | 10                                           | 15,111           | 7                                            | 0.263            | 0.078                   | 52.2                              |          |
| <u>Front Loader, 4x4 Tractor, Vicksburg, Miss., Miss. River Sandbar</u>              |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 52                                                                                   | 26                   | 12                                           | 34,489           | 21                                           | 0.178            | 0.085                   | 53.4                              |          |
| 53                                                                                   | 29                   | 12                                           | 34,489           | 14                                           | 0.208            | 0.059                   | 62.4                              |          |
| 54                                                                                   | 34                   | 12                                           | 34,489           | 10                                           | 0.290            | 0.072                   | 78.4                              |          |
| 55                                                                                   | 128                  | 11                                           | 34,489           | 7                                            | 0.272            | 0.055                   | 79.6                              |          |
| <u>DOER, 4x4 Cargo Carrier, 5-Ton (10-25), Vicksburg, Miss., Miss. River Sandbar</u> |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 56                                                                                   | 126                  | 11                                           | 29,644           | 21                                           | 0.172            | 0.055                   | 43.1                              |          |
| 57                                                                                   | 125                  | 12                                           | 29,644           | 14                                           | 0.215            | 0.056                   | 57.7                              |          |
| 58                                                                                   | 144                  | 13                                           | 29,644           | 10                                           | 0.267            | 0.052                   | 70.7                              |          |
| 59                                                                                   | --                   | --                                           | --               | 7                                            | --               | --                      | --                                |          |
| <u>DOER, 4x4 Cargo Carrier, 5-Ton (15-34), Vicksburg, Miss., Miss. River Sandbar</u> |                      |                                              |                  |                                              |                  |                         |                                   |          |
| 60                                                                                   | 124                  | 13                                           | 29,644           | 21                                           | 0.217            | 0.056                   | 63.4                              |          |
| 61                                                                                   | 129                  | 12                                           | 29,644           | 14                                           | 0.262            | 0.059                   | 63.3                              |          |
| 62                                                                                   | 120                  | 12                                           | 29,644           | 10                                           | 0.296            | 0.05                    | 82.8                              |          |
| 63                                                                                   | --                   | --                                           | --               | 7                                            | --               | --                      | --                                |          |

\* Values taken directly from TM 3-240, 17th Supplement.

\*\*  $P_{75}$  represents the ratio of the total load to vehicle weight.

PENETRATION-RESISTANCE  
CURVES



PLATE I

EFFECT OF SOIL STRENGTH  
IN LAYERED SOIL



**EFFECT OF SOIL STRENGTH  
ON PERFORMANCE**

15% DEFLECTION  
9.00-14, 2-PR TIRE  
1000 TO 3950-N LOAD  
 $G = 1.5 \text{ TO } 5.4$



**EFFECT OF SOIL STRENGTH  
ON PERFORMANCE**

25% DEFLECTION  
9.00-14.2-HR TIRE  
1000-TD 3950-N LOAD  
 $G=0.7$  TO  $6.0$









#### LEGEND

○ 9.00-14, 2-PR (PROTOTYPE)  
 ▽ 4.00-7, 2-PR (MODEL)

#### MODEL-PROTOTYPE RELATIONS

9.00-14, 2-PR AND  
 4.00-7, 2-PR TIRES  
 35% DEFLECTION  
 444 - TO 3950 - N LOAD  
 $G = 1.1$  TO 6.3



PLATE 8



### LEGEND

- 15 % DEFLECTION
- ▲ 25 % DEFLECTION
- 35 % DEFLECTION

## EFFECT OF TIRE WIDTH ON PULL AND SINKAGE COEFFICIENTS





**LEGEND**  
 □ 4.00-20, 2-PR  
 ▼ 4.00-7, 2-PR

**EFFECT OF DIAMETER  
ON PERFORMANCE**  
 4.00-20, 2-PR AND  
 4.00-7, 2-PR TIRES  
 25% DEFLECTION  
 444-TO 3950-N LOAD  
 $G=0.9$  TO 8.3

PLATE II



PLATE 12

EFFECT OF TIRE DEFLECTION  
ON PERFORMANCE, SINKAGE  
COEFFICIENT VS SAND NUMBER  
FOUR TIRES, THREE DEFLECTIONS  
4.44- TO 3950-N LOAD  
C = 0.7 TO 6.3





SAND NUMBER VS  
RECIPROCAL OF  
DEFLECTION NUMBER  
PULL AND  
SINKAGE COEFFICIENTS

RELATION OF PERFORMANCE  
COEFFICIENTS TO  
SAND MOBILITY NUMBER  
FOUR TIRES THREE DEFLECTIONS  
4.44 - TO 3950-N LOAD  
0 = 0.7 TO 8.3

LEGEND

- $\frac{P}{W}$  vs  $\frac{G}{W}$   $\frac{1}{2}$   $\frac{1}{2}$
- $\frac{d}{W}$  vs  $\frac{G}{W}$   $\frac{1}{2}$   $\frac{1}{2}$
- $\frac{Q}{W}$  vs  $\frac{G}{W}$   $\frac{1}{2}$   $\frac{1}{2}$

PLATE 15





LEGEND

- 14.00-14, 2-PR
- △ 16 X 15-6R, 2-PR (TERRA TIRE)
- 1.75-20, 2-PR (BICYCLE TIRE)
- ▽ 1.00-20, 2-PR

VALIDATION TEST DATA  
FOUR TIRES, THREE DEFLECTIONS  
444-TO 19,999-N LOAD  
 $G = 1.0$  TO 7.3









a. SECOND PASS



b. THIRD PASS

LEGEND  
 O 8.00-14, 2-PR  
 A 8.00-16, 2-PR  
 D 4.00-20, 2-PR  
 V 4.00-7, 2-PR

**MULTIPLE-PASS ANALYSIS  
SECOND AND THIRD PASSES**

SOIL STRENGTH MEASURED  
BEFORE EACH PASS

FOUR TIRES, 3 DEFLECTIONS  
444-10 3950-N LOAD  
G=0.7 TO 7.2

MULTIPLE-PASS ANALYSIS  
SUMMARY OF  
FIRST THREE PASSES  
SOIL STRENGTH MEASURED  
BEFORE EACH PASS  
FOUR TIRES, THREE DEFLECTIONS  
444- TO 3950-N LOAD  
 $G=0.7$  TO  $8.3$





**WHEELED VEHICLE  
PERFORMANCE IN SAND  
FIELD TESTS**







LABORATORY SINGLE-WHEEL  
AND FIELD VEHICLE TOWED  
COEFFICIENTS  
DRY TO MOIST SAND  
FIELD

WHEEL LOAD (N) 444-3,950 7,955-34,489  
G 0.7-0.3 0.7-0.3  
DEFLECTION (%) 0.13-0.35 0.10-0.38

PERFORMANCE PREDICTION  
CURVES FOR WHEELED  
VEHICLES IN SAND

$$\text{NOTE: } \alpha = \frac{G(bd)^{3/2}}{W} \cdot \frac{b}{h}$$

