Chaos Theory (Math 145)

Teaching Assitant

Joseph Immel <jhimmel@ucsc.edu>

Office hours:

Mondays 11am-12pm - ARC 116 Thursdays 2:30-3:30pm - ARC 116

Website: jhi3.github.io

Problem 1

Go over the details of HW1 Q1 with different maps.

Exercise

- (a) Draw f^2 and f^3 .
- (b) Describe the orbit $\mathcal{O}^+(x)$ for each $x \in S$.
- (c) Describe $Per_k(f)$ for k = 1, 2, 3, 4.
- (d) Identify any cycles and their periods.
- (e) Which points are eventually periodic?

Problem 1 (

Go over the details of HW1 Q1 with different maps.

Draw f^2 and f^3 .

Problem 1 (b), (c)

Go over the details of HW1 Q1 with different maps.

Describe the orbit $\mathcal{O}^+(x)$ for each $x \in S$.

e.g.
$$\mathcal{O}^{+}(A) = A, B, C, F, B, C, F, ...$$

Describe $Per_k(f)$ for k = 1, 2, 3, 4.

e.g.
$$Per_3(f) = \{B, C, F\}.$$

Problem 1 (d), (e)

Go over the details of HW1 Q1 with different maps.

Identify any cycles and their periods.

e.g. the cycle E, G, I, H has period four.

Which points are eventually periodic?

e.g. $\it A$ is eventually periodic; we exclude periodic points from our definition of "eventually periodic."

Problem 2

Go over cobwebbing. Remind yourself why, as long as you are iterating a *function*, forward cobwebbing is always well-defined.

Exercise

Consider the function $x^2 - 1$. Identify, by cobwebbing, any fixed points and cycles.

Problem 2

Go over cobwebbing. Remind yourself why, as long as you are iterating a *function*, forward cobwebbing is always well-defined.

Exercise

Consider the function $x^2 - 1$. Identify, by cobwebbing, any fixed points and cycles.

Fixing $\mu > 0$, consider the map $F_{\mu}(x) = \mu x(1-x)$:

- (a) Show that for $0 < \mu \le 4$, we have that $F_{\mu}([0,1]) \subset [0,1]$, so that we can study the dynamics of the box.
- (b) For $\mu=1/2$, discuss the fixed points of f and their stable set. Can you predict all orbit behaviors from the initial conditions in [0,1] by cobwebbing?
- (c) Repeat the previous question with $\mu = 2$.

Problem 3 (a)

Fixing $\mu > 0$, consider the map $F_{\mu}(x) = \mu x(1-x)$:

(a) Show that for $0 < \mu \le 4$, we have that $F_{\mu}([0,1]) \subset [0,1]$, so that we can study the dynamics of the box.

Problem 3 (b

Fixing $\mu > 0$, consider the map $F_{\mu}(x) = \mu x(1-x)$:

(b) For $\mu = 1/2$, discuss the fixed points of f and their stable set. Can you predict all orbit behaviors from the initial conditions in [0,1] by cobwebbing?

Problem 3 (b

Fixing $\mu > 0$, consider the map $F_{\mu}(x) = \mu x(1-x)$:

(b) For $\mu = 1/2$, discuss the fixed points of f and their stable set. Can you predict all orbit behaviors from the initial conditions in [0,1] by cobwebbing?

Problem 3 (c

Fixing $\mu > 0$, consider the map $F_{\mu}(x) = \mu x(1-x)$:

(c) Repeat the previous question with $\mu = 2$.

Problem 3 (c

Fixing $\mu > 0$, consider the map $F_{\mu}(x) = \mu x(1-x)$:

(c) Repeat the previous question with $\mu = 2$.

Recall that the map $f(x)=x^2-1$ has two repelling fixed points $x_\pm=\frac{1}{2}\pm\frac{\sqrt{5}}{2}$, and a 2-cycle (0,-1) to which many points of the interval $(-x_+,x_+)$ are asymptotic. Some which are not occur for those points that eventually land into x_- (namely, the stable set of x_- , denoted $W^s(x_-)$). In this context, this set is constructed running dynamics backwards on x_- , specifically

$$W^{s}(x_{-}) = \bigcup_{n \ge 0} f^{-n}(x_{-}), \text{ where } f^{-n}(x_{-}) := \{ y : f^{n}(y) = x_{-} \}.$$

Note that since f is not one-to-one (often 2-to-1 here), or invertible, $f^{-n}(x_-)$ is a set which contains potentially in the order of 2^n points! *luckily, it does not grow that fast!)

Discuss how to construct this set by "reverse"-cobwebbing, describing some qualitative features of it and thinking about an algorithmic way to construct it, as this will help you with a Matlab problem.

Attendance

