Contrôle de cours - ECUE FCT (1 heure)

17

Nom: Le eras

Prénom : Brience

Classe: PAA

The

N.B.: Le barème est sur 20.

1 Cours 1 : fonctions trigonométriques (8 points)

(a) Sur le dessin de gauche ci-dessus, indiquer graphiquement le cosinus et le sinus de x (faire apparaître les traits de construction).

(b) Placer les angles $\pi - x$, $\frac{\pi}{2} + x$ et $\frac{\pi}{2} - x$ sur le dessin de droite. Donner $\cos(\pi - x)$, $\cos\left(\frac{\pi}{2} + x\right)$ et $\sin\left(\frac{\pi}{2} - x\right)$ en fonction de $\cos(x)$ et $\sin(x)$.

 $(\omega_{1}(T-\alpha) = -(\omega_{1}(\alpha))$ $(\omega_{1}(T-\alpha) = -(\omega_{1}(\alpha))$

(c) Remplir le tableau de valeurs suivant :

(d) Calculer $\cos\left(\frac{7\pi}{6}\right)$, $\sin\left(\frac{5\pi}{4}\right)$, $\sin(7\pi)$ et $\cos\left(\frac{17\pi}{3}\right)$.

2	La I	fonct	ion	tangent	0:
A41. 1	LICK	OHCE	TOTT	nankem	MGC N.

(a) Rappeler le domaine de définition I de $f: x \mapsto \tan(x)$ ainsi que son expression en fonction de $\cos(x)$ et de $\sin(x)$.

fix \rightarrow tan (x) ext. π - jeriodique et tan (x) = $\frac{\sin(x)}{\cos(x)}$.

Elle est donc définit un $\mathbb{R} \setminus \{\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2},$

(b) Calculer la dérivée de f sur I. En trouver deux écritures distinctes. Vous détaillerez vos calculs en mettant en évidence les dérivées des fonctions mises en jeu.

Con culcule la dérivé de tan: ton (20) = con (20) $tan' = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{\sqrt$

.... cos (22) X. cos (23. - (sin (sc) is (m. nin (2)))... D'ana Brythagone: con (n) + mor (n) = 1 done ton (n) = cont (n) tom(s) = con+(x) + con+(ou) = 1 + tom2 (ou)

Cours 2 : dérivées de fonctions composées (2 points)

Sans se soucier du domaine de définition, trouver la dérivée de :

1. $f(x) = e^{\sqrt{x^2+1}}$

W/ (...(a) = United X.C.

2. $g(x) = \tan(x^2) + 1$

 $g'(\alpha) = 2 \times \times \cot^2(\alpha^2)$ g'(oc) = cont(ot)

Cours 3: la fonction $x \mapsto \ln(x)$ (10 points)

Donner l'allure de sa courbe représentative.

La fonction la est strictement croissante. Elle conge l'acce the cut le symétrique de la fonction enjouentielle jou report à l'ance y = 20 pour la fonction la diverge en t os quand x tend vers t es et diverge en and mend of tend of the facet desprise

 Soient a et b deux réels strictement positifs et n ∈ N. Remplacer les pointillés par une formule correcte quand cela est possible (évidemment une réponse du type « y = y » est interdite!) :

a) $\forall x \in \mathcal{A}_{e}$ to e = 0. b) $\forall x \in \mathcal{R}_{e}$, e = 0. c) e = 0. e) e = 0. e) e = 0.

f) $\ln(a+b) = -1$ for the formula..... g) $\ln(a \times b) = \ln(a) + \ln(b)$ i) $\ln\left(\frac{1}{a}\right) = -\ln(a)$

j) $\ln\left(\frac{a}{h}\right) = ... \ln\left(a\right) = ... \ln\left(a\right) ... \ln\left(a\right) ... \ln\left(a\right) = ... \ln\left(a\right) ... \ln\left(a\right) = ... \ln\left(a\right) ... \ln\left(a\right)$

3. (a) Exprimer en fonction de $\ln(3)$, $A = e^{-2\ln(2)} + \ln(9e^2) - 4\ln(27)$.

 $A = e^{-2 \ln (2)} + \ln (3 e^{2}) - 4 \ln (27)$ = en(th) + 2 lm 3+lm (e²) - 4 lm (3) - 8 lm (3) g + + 2 lm3 + 2 = 9 lm (3) - 8 lm (3) = = - 10 lm (3)

(b) Résoudre l'inéquation ln(1-x) < 1.

Va. € 31; + 10 t. lon (1-x) € 1 con ex ≥ a O < 1-x te al fact o assurer es

t-a-c + 0.....ed. de pins 1-e = x 5 =] 1-e, +x1

Donner la réponse aux limites suivantes (à la place des pointillés) :

a) $\lim_{x \to +\infty} \frac{\ln(x)}{x} = \cdots$ b) $\lim_{x \to +\infty} \ln(x) = \cdots$ c) $\lim_{x \to 0^+} \ln(x) = \cdots$ d) $\lim_{x \to 0^+} x \ln(x) = \cdots$ O.

Soient f: x → ln(x) et g: x → √x.

(a) Trouver l'expression de f o g ainsi que son domaine de définition D₁ et sa dérivée.

Df i Jo; toot Dg i Lo; toot love Da i Jo; toot De i Jo; toot f.(g.(a)) = ln(Vx) f.(g.(a))=2.va.x. Vx = 2.va.x.

(b) Trouver l'expression de g ∘ f ainsi que son domaine de définition D₂ et sa dérivée.

Dy : To tol Df: Joston done Dz: Joston Dz: Joston

g(f(n)) = Ven(n) V g'(f(n)) = 2VA + 20 = 2 = Val