Semantische Datenintegration Daten und ihre Modellierung

Jakob Voß

Hochschule Hannover

2017-04-01

Daten

Frage

"Was sind Daten?"

Daten und Informationen

- ▶ Mindestens bis in die 1960er keine fachliche Unterscheidung
- ▶ Informationstheorie (Shannon 1948) = Datentheorie

A mathematical theory of communication

Daten im Rahmen der Informationstheorie

- ▶ Daten bestehen aus **bits** (0 oder 1)
- Eindeutige Information (Syntax)
- ohne Bedeutung (Semantik)

Informationen und Daten

- Werden oft als praktisch gleich behandelt
- ► Hängen irgendwie zusammen
- Bauen aufeinander auf?

Wissenspyramide (Wikipedia)

Wissenspyramide (CC-BY-SA Longlivetheux)

Computerunterstützte Integration heterogenen Wissens

- Daten zusammenführen
- ► ⇒ Informationen zusammenführen
- ▶ ⇒ Wissen zusammenführen

Datenwissenschaft

- Gibt es nicht in dieser Form
 - Vorschlag "Datalogy" (Naur 1966)
- Stattdessen Trends
 - ► EDV (1970/80er)
 - ▶ Linked Data (2006)
 - ▶ Big Data (2012)
 - Data Science (2013)

Siehe Google Trends und ngram viewer

Daten-Trends

EDV (1970/80er)

▶ Daten können automatisch verarbeitet werden

Linked (Open) Data (ab 2006)

Publikation von Daten in RDF

Daten-Trends

Big Data (2012)

- ▶ Immer mehr Daten werden automatisch erzeugt
- ▶ Viele Daten können statistisch ausgewertet werden

Data (driven) Science (2013)

- (statistische) Datenanalyse
 - Data Mining
 - Künstliches Intelligenz
 - Visualisierung
 - ▶ . . .

Gemeinsamkeiten

- Daten können automatisch verarbeitet werden.
 - weil eindeutig
- ▶ Immer mehr Daten werden publiziert
 - Computersysteme erzeugen mehr Daten
- Viele Daten können statistisch ausgewertet werden
 - Ist das relevant?

Unterschiede

- ▶ Drei übliche Vorstellungen von Daten (Ballsun-Stanton 2012)
 - Daten als Fakten
 - Daten als Beobachtungen
 - Daten als binäre Nachrichten
- ► Welche können/wollen wir integrieren?

Daten als Fakten

- Reproduzierbare Ergebnisse von Messungen
- Beispiele
 - Masse der Erde
 - ► Einwohnerzahl einer Stadt
- Paradigma
 - Semantic Web / Linked Data
 - ▶ Metadaten?
- Problem
 - Post-Faktisches Zeitalter
 - Kontext

Daten als Beobachtungen

- Aufgezeichnete Wahrnehmungen
- Beispiele
 - Audio- und Videoaufzeichnungen
 - ► Historische Aufzeichnungen
- Paradigma
 - Big Data / Statistik
- Problem
 - Fokus auf quantitative Analyse

Daten als binäre Nachrichten

- Zeichen, die zur Kommunikation dienen
- Eindeutig, aber ohne direkten Bezug zur Realität
- Letztendlich eine Folge von Bits
- Paradigma
 - Forschungsdaten
 - digitale Dokumente
- Problem
 - Es kommt auf den Einzelfall an

Daten als binäre Nachrichten

- Kommunikativer Akt steht im Vordergrund (Was will uns ... mit diesen Daten sagen?)
- ► Daten sind digitale **Dokumente**
 - Haben Ursprung, Form und Zwecke
- Kernthema der Bibliotheks- und Informationswissenschaft

Zusammenfassung

- Daten als Fakten
 - ⇒ Einzelwissenschaften
- Daten als Beobachtungen
 - ⇒ Statistik & Maschinelles Lernen
- Daten als Dokumente
 - ⇒ Informationsmanagement

Datenmodellierung

mind model schema implementation $\longleftrightarrow \longleftrightarrow \longleftrightarrow 01101...$

Datenmodellierungsprozess

Ebenen der Datenmodellierung

- Vorstellungen
 - von der Realität
 - von dem was in Daten enthalten ist/sein soll
- Modelle
 - mentale Modelle (z.B. Mind-Maps)
 - konkrete Modelle (Modellierungsprachen)
- Schemas
 - Schemasprachen (SQL, XML Schema...)
 - Datenstrukturierungssprachen (XML, JSON, CSV...)
- Umsetzung in Daten

Beispiel/Übung

Welche Studiengänge und ProfessorInnen gibt es im Deutschen Bibliotheks- und Dokumentationswesen?

Beispiel

- Objekte, Eigenschaften, Beziehungen...
- Möglichkeiten und Beschränkungen
- Schreibweisen/Formate

Mögliche Datenquellen

- ▶ http://www.kleinefaecher.de/bibliothekswissenschaft/
- ▶ http://www.kleinefaecher.de/informationswissenschaft/
- ▶ https:

```
//studieren.de/bibliotheks-und-dokumentationswesen.fachbereiche.t-0.f-67.html
```

- Hochschulseiten
- Hochschullehrerverzeichnis
- **.**...

Mögliche Umsetzungen

- ▶ Tabelle
- Strukturiertes Dokument
- ► Eigene Datenbank
- Vorhandene Datenbank (Wikidata)

- Abtippen
- Wrapper
- APIs

Datensprachen

Arten von Datensprachen

- ► Modellierungs-Sprachen (UML, ERM...)
- ► Schema-Sprachen (RDF Schema, XML Schema, RegExp...)
 - ▶ Abfragesprachen (SQL, XPath...)
- ▶ Datenstrukturierungssprachen (CSV, XML, JSON...)
 - Auszeichnungssprachen (HTML, TEI, Markdown...)
- Kodierungen (Unicode, ASCII, Binärcode...)

Modellierungssprachen: ERM

Modellierungssprachen

- Entity-Relationship Model (ERM)
- Unified Modeling Language (UML)
- Object Role Modeling (ORM2)
- **.** . . .

Modellierungssprachen: ORM2

Modellierungssprachen

the impact of the very substantial amount of work on modeling languages appears to be minimal, with modelers apparently preferring to work with the DBMS language

(Simsion 2007, 345)

Schemasprachen

- Auch bekannt als
 - Datendefinition
 - Datenbeschreibung
 - ► Formatbeschreibung

Beispiele für Schemasprachen

- Backus-Naur-Form und Reguläre Ausdrücke
- XML Schema
- ▶ RDF Schema
- ► SQL
- ► JSON Schema
- **.**..

Beispiel: SQL

```
CREATE TABLE Authorships (
workID int NOT NULL,
authorID int NOT NULL,
FOREIGN KEY (workID) REFERENCES Works(id),
FOREIGN KEY (authorID) REFERENCES Authors(id),
UNIQUE (workID, authorID)
)
```

Beispiel: Syntaxdiagramm für JSON

```
object
  "autor": [
     "...",
     { "vorname": "...", "nachname": "..." },
  ],
  "titel": "..."
```

Schemasprachen

- Eigene Syntax (mit Varianten!)
- Automatisierbar
- Anwendung für konkrete Datenstruktur

Abfragesprachen

- XPath
- XQuery
- ► SQL
- **.** . . .
- Programmiersprachen
- APIs
- ▶ Feldnamen

Abfragesprachen

Auswahl von Teilen aus bestehenden Daten. Wichtig für jede Nutzung und Integration

Strukturierungssprachen

"Data structuring languages (DSL)" oder "data serialization languages" bilden einen sehr groben Rahmen zur Formulierung von Daten.

- CSV
- ► XML
- ► INI
- JSON
- YAML
- ▶ RDF ohne Semantik
- **.** . .

Eigenschaften von Strukturierungssprachen

- Allgemeines Datenmodell
- Datentypen
 - ► Zahlen, Zeichenketten, Boolean...
 - Listen
 - Komplexere Typen (= eigene Formate)
- Syntax (mit Varianten)

Allgemeine Datenmodelle

- Hierarchie (XML)
- ► Tabelle (CSV)
- Netzwerk (RDF)

Mischformen möglich durch Datentypen

Auszeichnungssprachen

Kodierungen

- Zeichen (ASCII, Unicode)
- Zahlen
- ► Identifier-Systeme

Kodierungen

encoding	hexadecimal	binary
US-ASCII	_	_
ISO 646 DK/NO/SE	5D	1011101
EBCDIC CP37 etc.	67	01100111
Mac OS Roman	81	10000001
Allegro-DOS/IBM437	8F	10001111
NeXTSTEP	86	10000110
ISO 8859-1	C5	11000101
ANSEL (MARC-8) combining ° + A	EA 41	11101010 01000001

Kodierungen

encoding	symbols
named HTML entity	Å
XML character entity	Å,Å,Å,Å
Swedish 6 dot Braille	pattern P16 (Unicode U+2821)
Eurobraille 8 dot	pattern P34567 (Unicode U+287C)
Transcription	Aa
Morse code ($\mathring{a} = \grave{a}$, no case)	

Zusammenfassung

Zusammenfassung Datensprachen

- ► Modellierungs-Sprachen (UML, ERM...)
- ► Schema-Sprachen (RDF Schema, XML Schema, RegExp...)
 - ► Abfragesprachen (SQL, XPath...)
- Datenstrukturierungssprachen (CSV, XML, JSON...)
 - Auszeichnungssprachen (HTML, TEI, Markdown...)
- Kodierungen (Unicode, ASCII, Binärcode...)

Frage: Wo sind die meisten Probleme bei der Integration?

Zusammenfassung Daten

- ► Meist eher implizit behandelt
- Verschiedene Auffassungen
 - Daten als Fakten
 - ► Daten als Beobachtungen
 - ► Daten als Dokumente

Weiterer Art der Gruppierung

Daten / Metadaten / Content

▶ Hängt mit Datensprachen und Auffassungen zusammmen!

Literatur

Ballsun-Stanton, Brian. 2012. "Asking About Data: Exploring Different Realities of Data via the Social Data Flow Network Methodology". Dissertation, University of New South Wales.

Floridi, Luciano. 2005. "Is Information Meaningful Data¿' *Philosophy and Phenomenological Research* 70 (2): 351–70.

http://philsci-archive.pitt.edu/archive/00002536/.

Naur, Peter. 1966. "The science of datalogy". Communications of the ACM 9 (7): 485.

Shannon, Claude Elwood. 1948. "A mathematical theory of communication". *Bell Systems Technical Journal* 27: 379–423, 623–56. Simsion, Graeme. 2007. *Data Modeling Theory and Practise*. Technics Publications.

Voß, Jakob. 2013. "Was sind eigentlich Daten; 'LIBREAS. Library Ideas, Nr. 23. http://libreas.eu/ausgabe23/02voss/.