

A GRID AND CLOUD-BASED DATABASE OF PRE-COMPUTED SCENARIOS OF TSUNAMIS IN MANILA TRENCH

VAST Project: 2012-2013

Pham Thanh Giang
Institute of Information Technology
Vietnam Academy of Science Technology

ptgiang@ioit.ac.vn

CONTENTS

- ☐ Problem
- Project members
- Proposed solution
- Challenges

PROBLEM

- ☐ We have long seaborder (3000km)
 - Vietnam East Sea has the MANILA TRENCH SOURCE ZONE
 - ☐ History is said that tsunami existed.

PROBLEM

- We have long sea border (3444km)
- □ Vietnam East Sea has the MANILA TRENCH SOURCE ZONE
- ☐ History is said that tsunami existed.

PRE-CALCULATED TSUNAMI SCENARIOS

5

PROBLEMS OF CACULATION CAPACITY AND DATA STORAGE

Calculating time (PC dual core 2.6GHz):

- ~2hours/1hourscenario
- ~10hours/10hour scenario

Required Storage

- 3GB/1hour-scenario
- 15GB/10hour scenario

PROJECT MEMBERS

VIETNAMESE ACADEMY OF SCIENCE AND TECHNOLOGY

INSTITUTE OF INFORMATION TECHNOLOGY

Director:
Dr. Thai Quang
Vinh

Department of Administration

NetNam ISP

Key-lab for Networking
Technology &
Multimedia

MIC Vietnam

Departments (16)

- 1. Integrated Software Systems
- 2. Data Management Systems
- 3. Software Engineering in Management
- 4. Databases and Programming
- **5. Geographical Information Systems**

8. Computer Networking and IT Infrastructure •CLOUD:

9. Telematics

•GRID

- •GRID Portal: AMD Opteron Processor (2.4 GHz, dual core)
- •Globus Head Node: AMD Opteron Processor (2.2 GHz, dual core)
- •Linux Cluster (5nodes): AMD Opteron Processor (2.2 GHz, dual core)
- Storage Server
- •4xIBM Server 12 Core, 12G RAM
- •NETWORK:
 - •2x40Mbps Commerce Internet & VinaREN

VIỆN VẬT LÝ ĐỊA CẦU

INSTITUTE OF GEOPHYSICS

Trụ sở: Nhà A8, 18 Hoàng Quốc Việt, Cấu Giấy, Hà Nội - Tel: 84.4.37564380 - Fax:84.4.38364696

Centre for Earthquake Information and Tsunami Warning

Innovation

Francophonie

Imagination

Institut de la Francophonie pour l'Informatique

- As a role coordinator between IOIT, IGP and EU GRID/CLOUD
- ☐ Have a grid node
- ☐ Educate students in Grid and Cloud technology

EARLY WARNING SYSTEM

Earthquake Information and Tsunami Warning
Center

Rapid Determination of Hypocenter and Magnitude

Evaluation of Tsunami based on the Determined Hypocenter and Magnitude

1st Warning

Re-evaluation of Warning

Subsequent Warning

PROPOSED SOLUTION

IDEA PROPOSED SOLUTION

- Evaluate performances of Tsunami modeling in the Grid
 - COMCOT Cornell Multi-grid Coupled Tsunami Model
 - TUNAMI-Tohoku University's Numerical Analysis Model for Investigation of Near field tsunamis
 - MOST-Method Of Splitting Tsunami
- Build Database system and private cloud
 - Stratus lab, MySQL
- Build tsunami scenarios
- Build Web portal for display and find tsunami information

COMCOT Cornell Multi-grid Coupled Tsunami Model

- Evaluate performances of Tsunami modeling in the Grid
 - COMCOT Cornell Multi-grid Coupled Tsunami Model
- Deploy to GRID through DIRAC (Distributed Infrastructure with Remote Agent Control)
- Implement & Process Input/Output Data

- ☐ Input parameters
 - General Parameters fo Simulation
 - Parameters for Fault Model
 - Parameters for Wave Maker
 - Parameters for Submarine LS/Transient Motion
 - Configurations for all grids
- ☐ Terrain data: (East Vietnam Sea.xyz, DaNang.xyz,...):
 - ❖ X: latitude
 - ❖ Y: longitude
 - ❖ Z: height

98.00000025.000000225598.03333325.000000195498.06666725.0000001624

Data size: tens to hundreds MBs.

East Vietnam Sea.xyz

16

☐ Results:

- z_xx_yyyyyy.dat: Wave height of region xx at time yyyyyy.
- zmax_xx_yyyyyyhrs.dat: Wave height max (zmax) of region xx at yyyyyy hrs.
- zmin_layerxx_yyyyyyhrs.dat Wave height min (zmix) of region xx at yyyyyy hrs hrs.
- zmax_layerxx.dat: Wave height max (zmax) of region xx for the whole simulation time
- Size of file depends on size of Terrain data
- Number of file depends on Total and interval time
- ☐ Total output data ~10sGB.

☐ Results:

- z_xx_yyyyyy.dat: Wave height of region xx at time yyyyyy.
- zmax_xx_yyyyyyhrs.dat: Wave height max (zmax) of region xx at yyyyyy hrs.
- zmin_layerxx_yyyyyyhrs.dat Wave height min (zmix) of region xx at yyyyyy hrs hrs.
- zmax_layerxx.dat: Wave height max (zmax) of region xx for the whole simulation time
- Size of file depends on size of Terrain data
- Number of file depends on Total and interval time
- ☐ Total output data ~10sGB.

DIRAC (Distributed Infrastructure with Remote Agent Control)

- DIRAC developers has lots of experience with HEP applications but less with other domains
- ☐ Large user communities (Virtual Organizations)

DIRAC (Distributed Infrastructure with Remote Agent Control)

- Python is the main development language
 - from DIRAC.Interfaces.API.Dirac
 - import Diracfrom DIRAC.Interfaces.API.Job import Job
- Submitting job
 - jobID = dirac.submit(j)
- Job Monitoring
 - print dirac.status(jobid)
- Job Output
 - print dirac.getOutput(jobid)

Implementation Input Data

- Each simulation parameters in on folder
- A script generates each simulation to a DIRAC job
- Terrain data was pre-store in Grid to reduce upload time:
 - dirac-dms-add-file
 LFN:/esr/user/p/ptgiang/tsuna
 mi/EVSea.xyz EVSea.xyz DIRAC USER
 - **.**..

Submit job

```
InputDataPath = 'LFN:/esr/user/p/ptgiang/tsunami'
j = Job()
j.setExecutable('tsunami.sh', kichban)
j.setName('Tsunami ' + kichban)
j.setInputSandbox('tsunami.sh', 'comcot.ctl',
'fault multi.ctl', 'comcot',
   InputDataPath + '/EVSea.xyz', InputDataPath +
'/Middle.xyz', InputDataPath + '/DaNang.xyz')
j.setOutputData (['tsunami ' + kichban + '.tar',
'tsunami ' + kichban + '.tar.md5sum'])
dirac = Dirac()
jobID = dirac.submit(j)
```

Submit job

ools ▼											
Select All Select None											
	Jobid ▼		Status	MinorStatus	ApplicationStatus	Site	JobName	LastUpdate [UTC]	LastSignOfLife [SubmissionTime	Owner
	1307324		Done	Execution Compl	Executing RunS	LCG.BEUING.cn	Tsunami Kb1	2012-10-03 19:03	2012-10-03 19:03	2012-10-03 18:35	ptgiang
	1307323		Done	Execution Compl	Executing RunS	LCG.IN2P3.fr	Tsunami Kb2	2012-10-03 18:54	2012-10-03 18:54	2012-10-03 18:34	ptgiang
	1307322		Failed	Maximum of res	Failed Input San	LCG.KEK.jp	Tsunami Kb3	2012-10-03 19:02	2012-10-03 19:02	2012-10-03 18:33	ptgiang
	1307296		Done	Execution Compl	Executing RunS	LCG.UPM.my	Tsunami Kb1	2012-10-03 17:35	2012-10-03 17:35	2012-10-03 17:08	ptgiang
	1307294		Done	Execution Compl	Executing RunS	LCG.UPM.my	Tsunami Kb2	2012-10-03 17:29	2012-10-03 17:29	2012-10-03 17:07	ptgiang
	1307293		Done	Execution Compl	Executing RunS	LCG.UPM.my	Tsunami Kb3	2012-10-03 17:20	2012-10-03 17:20	2012-10-03 17:07	ptgiang
	1253434		Done	Execution Compl	Executing RunS	LCG.BEIJING.cn	Tsunami Kb1	2012-10-01 14:52	2012-10-01 14:52	2012-10-01 14:22	ptgiang
	1253428		Done	Execution Compl	Executing RunS	LCG.BEIJING.cn	Tsunami Kb2	2012-10-01 14:37	2012-10-01 14:37	2012-10-01 14:21	ptgiang
	1253427		Done	Execution Compl	Executing RunS	LCG.IN2P3.fr	Tsunami Kb3	2012-10-01 14:53	2012-10-01 14:53	2012-10-01 14:20	ptgiang
	1223776		Done	Execution Compl	Executing RunS	LCG.UPM.my	Tsunami Kb1	2012-09-28 03:30	2012-09-28 03:30	2012-09-28 02:57	ptgiang
	1223775		Done	Execution Compl	Executing RunS	LCG.UPM.my	Tsunami Kb2	2012-09-28 03:23	2012-09-28 03:23	2012-09-28 02:56	ptgiang

Get results

```
fJobIDname = "JobID.txt"

fJID = open(fJobIDname)

for jobid in fJID:
    print dirac.status(jobid)
    print dirac.getJobOutputData(jobid)

fJID.close()
```

Build Database system and private cloud

- Build Database system and private cloud
 - Stratus lab, MySQL
- 2xIBM Server
 - Processor: Intel xeon(R) CPU X5650 @ 2.67GHz x12
 - **❖** Disk: 500GB
 - ❖ Memory: 12GB

Build Database system and private cloud

Web portal

Web portal

Wave Transmistion time

CTTIMESPREAD

ID CONTOUR FID ctTimeSpread.695 695 8

Wave Height

Web portal

CHALLENGES

- Don't have a high-computing center for calculating enough tsunami scenarios
- A current cluster computing nodes/workers are not enough for both calculating and storing large tsunami scenarios
- Network infrastructure is limited for high-computing
- Only few faculties teach cluster, cloud and grid Computing. So only few master and understand them
- ☐ Don't have enough fund for:
 - Investment hardware (computers)
 - Permanent human resources that manage the Grid, Cloud