Types of Digital Logic Circuits:

- * Combinational (or Combinatorial)
- * Sequential

Combinational Circuit:

- * Consists of *logic gates* whose outputs at any time are determined by the *present* combination of inputs
- * Performs an operation specified *logically* by a set of *Boolean functions*
- * Has input variables, logic gates, and output variables
- * Logic gates accept signals from inputs and generate signals to outputs

* Transforms binary information from given input data to required output data

- * For ni/p variables, 2^n possible binary i/p combinations
- * For each possible i/p combination, there is one possible o/p value
 - ⇒ Can be represented by a *Truth Table*
 - ⇒ Can also be described by m *Boolean functions*, one for each o/p variable
 - ⇒ Each o/p function is expressed in terms of n i/p variables

* Examples:

- Adders
- Subtractors
- Multipliers
- Comparators
- Decoders
- Encoders
- Multiplexers (MUX)
- De-Multiplexers (*De-MUX*)

Sequential Circuit:

- * Employ *storage elements* in addition to *logic* gates
- * O/ps function of i/ps and *state* of these storage elements
- * State of storage elements function of *previous i/ps*
- * O/ps depend not only on present values of i/ps, but also on past i/ps
- * Circuit behavior must be specified by a *time* sequence of *i/ps* and *internal states*

How to identify a Combinational Circuit?

- * Would have only logic gates with no feedback paths or memory elements
- * Feedback paths immediately denote sequential circuits

Adder:

- * 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10
- * First three cases have *sums* of 0 or 1, but no *carry* (or *0 carry*)
- * Fourth case has a *carry* of 1, which should be *added* to the next 2 significant bits
- * Simple addition of 2 bits \rightarrow Half Adder (HA)
- * Addition of 3 bits (2 significant bits and 1 carry)
 - \rightarrow Full Adder (FA)
- * Note: 2 HAs can be used to implement a FA

Half Adder (HA):

- * 2 binary i/ps and 2 binary o/ps [Sum (S) and Carry (C)]
- * Thus, 0 + 0 = 0 (S) and 0 (C), 0 + 1 = 1 (S) and 0 (C), 1 + 0 = 1 (S) and 0 (C), 1 + 1 = 0 (S) and 1 (C)
- * Thus, it can be clearly seen that for i/ps X and Y:

$$S = X \oplus Y = X'Y + XY'$$
, and $C = XY$

Full Adder (FA):

* Arithmetic sum of 3 bits: 3 i/ps (X, $X Y C_{in} S C_{out}$ Y, and C_{in}) and 2 o/ps (S and C_{out}) 00 01 K-Map for S 0 $S = X'Y'C_{in} + X'YC'_{in}$ + XY'C'_{in} + XYC_{in} 0 1 0 01 10 00 K-Map for C_{out} 0 $C_{out} = XC_{in} + XY$ $+ YC_{in}$

Optimization:

* Note:
$$S = XYC_{in} + X'Y'C_{in} + XY'C'_{in} + X'YC'_{in}$$

$$= C_{in}(XY + X'Y') + C'_{in}(XY' + X'Y)$$

$$= C_{in}(X \oplus Y)' + C'_{in}(X \oplus Y)$$

$$= C_{in} \oplus (X \oplus Y)$$

* Alternate K-map for C_{out} yields:

$$C_{out} = XY'C_{in} + X'YC_{in} + XY$$
$$= C_{in}(XY' + X'Y) + XY$$
$$= C_{in}(X \oplus Y) + XY$$

Implementation:

*
$$S = C_{in} \oplus (X \oplus Y)$$
 and $C_{out} = C_{in}(X \oplus Y) + XY$

* Note: A Full Adder can be constructed using two Half Adders and an OR gate

Binary Adder:

* Performs *arithmetic sum* of two binary numbers $(B_3B_2B_1B_0 \text{ and } A_3A_2A_1A_0)$ and provides *Sum* $(S_3S_2S_1S_0)$ and *Carry Out* (C_4)

4-Bit Adder

- * FAs *connected in cascade*, with the o/p carry from each FA connected to the i/p carry of the next FA
- * Also known as **Ripple Carry Adder**
- * Limitation: Gate Delay:
 - S_0 and C_1 generated first, then S_1 and C_2 , then S_2 and C_3 , and finally S_3 and C_4
 - ⇒ Thus, all o/ps will be **valid** only after 4

 gate delays
 - ⇒ This is known as the Carry PropagationProblem

Binary Subtractor:

- * *Recall*: Subtraction is *equivalent* to adding two numbers, with the number to be subtracted expressed in *2's complement notation*
- * 2's complement: Invert all bits and add 1 to LSB

4-Bit Subtractor (Subtracting $B_3B_2B_1B_0$ from $A_3A_2A_1A_0$)

Binary Adder/Subtractor:

* Uses a Control Signal M (= 0 for Adder and = 1 for Subtractor) (Note: $1 \oplus B = B'$, $0 \oplus B = B$)

4-Bit Adder/Subtractor (M = 0: Adder, M = 1: Subtractor)

Binary Multiplier:

- * *Note*: Multiplication is an *AND* operation, i.e., the product will be 1 only if both the bits are 1
- * *Example*: B₁B₀ multiplied by A₁A₀

$$B_{1} \quad B_{0} \quad *S_{0} = (A_{0} \text{ AND } B_{0})$$

$$A_{1} \quad A_{0} \quad *S_{1} = (A_{0} \text{ AND } B_{1}) \text{ ADD}$$

$$A_{0}B_{1} \quad A_{0}B_{0} \quad (A_{1} \text{ AND } B_{0}) \rightarrow \text{ can be}$$

$$A_{1}B_{1} \quad A_{1}B_{0} \quad \text{implemented using an}$$

$$S_{3} \quad S_{2} \quad S_{1} \quad S_{0} \quad \textit{Half Adder (HA)}$$

- * $S_2 = (A_1 \text{ AND } B_1) \text{ ADD } (Any Carry of S_1)$
- * S_3 = Carry of $S_2 \rightarrow S_2$ and S_3 can be implemented by using *another HA*

Implementation:

Magnitude Comparator:

- * Compares 2 bits A and B, and produces 3 outputs $(f_1, f_2, and f_3)$ respectively) depending on whether:
 - i) A < B, ii) A = B, or iii) A > B

Decoder:

- * *Note*: Binary code of *n bits* is capable of representing 2^n coded information
- * Decoder is a combinational circuit that converts binary information from n i/p lines to 2ⁿ o/p lines
- * May have *fewer than* 2^n o/ps, if some of the combinations are *unused*
- * Called **n-to-m Line Decoder**, where $m \leq 2^n$

- * Example: 3-to-8 Line Decoder, where for inputs XYZ (X = MSB, Z = LSB), one of the output lines D_0 - D_7 will go high in sequence
 - XYZ = 000, $D_0 = 1$, $D_1 D_7 = 0$
 - XYZ = 001, $D_1 = 1$, D_0 and D_2 - $D_7 = 0$
 - XYZ = 111, $D_7 = 1$, $D_0 D_6 = 0$
- * Sometimes, uses Enable (E) signal: For E = 0, all o/ps are disabled (0), while for E = 1, the decoder circuit is enabled

Positive Logic:

E = 0 (Disable): all D lines 0

E = 1 (Enable): depending on X, Y, and Z, only one of the D lines will go high

2-to-4 Line Decoder Using NAND Gates:

- * Uses negative logic (E = 0 enables the decoder, while E = 1 disables it)
- * The selected D line goes low under this case
- * Recall: NAND gate o/p is 0 if and only if all the inputs are 1: If any of the i/ps is 0, o/p is 1
- * Since E = 0 enables the circuit, it is also known as **Active-Low Enable Circuit**

Truth Table:

E	A	В	\mathbf{D}_0	\mathbf{D}_{1}	\mathbf{D}_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0

* The first row corresponds to disabled decoder with all output lines high (i/ps DON'T CARE)

Constructing Large Decoders:

Example: Construction of a **4-to-16 Line Decoder** using two **3-to-8 Line Decoders**:

Uses positive logic: When W = 0, top decoder enabled and bottom decoder disabled: Outputs D_0 to D_7 correspond to XYZ = 000 to 111; and when W = 1, top decoder disabled and bottom decoder enabled: Outputs D_8 to D_{15} correspond to WXYZ = 1000 to 1111 (One of the o/p lines D_0 - D_{15} goes high depending on WXYZ)

Combinational Logic Implementation Using Decoders:

Example: Full Adder:

A	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A BC _i	ⁿ 00	01	11	10
0	0	¹ 1	³ O	² 1
1	4 1	⁵ 0	⁷ 1	⁶ O

$$S = \Sigma_{m}(1,2,4,7)$$

$$C_{out} = \Sigma_{m}(3,5,6,7)$$

Full Adder Using 3-to-8 Line Decoder (May or may not have Enable signal)

Encoder:

- * Performs *inverse* operation of a Decoder
- * Has 2^n or fewer i/p lines, and n o/p lines
- * O/p lines generate binary code corresponding to i/p values
- * Only one i/p should be high, and corresponding to that i/p, only one particular o/p combination will be generated
- * Uses Active High logic
- * May or may not have Enable signal
- * Anomaly: When all o/ps are 0, it may be due to either the least significant i/p is 1, or all i/ps 0

Example: Octal-to-Binary Encoder:

* Has eight $i/ps(I_7-I_0)$ and three $o/ps(O_2-O_0)$

I_7	I_6	I_5	I_4	I_3	I_2	I_1	I_0	O_2	\mathbf{O}_1	O_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

* From the *Truth Table*: $O_0 = I_1 + I_3 + I_5 + I_7$, $O_1 = I_2 + I_3 + I_6 + I_7$, and $O_2 = I_4 + I_5 + I_6 + I_7$

* Implementation:

 I_0 : Not Used Note: O_2 - O_0 all are 0, either for I_0 = 1, or all i/ps 0 \Rightarrow Anomaly

Mutiplexer (MUX) and De-Multiplexer (De-MUX):

* MUX: Many-to-1, and De-MUX: 1-to-Many

Multiplexer (MUX):

- * Also known as **Data Selector**
- * Selects binary information from one of many i/p lines and directs it to a single o/p
- * Needs Selection Lines to select which i/p goes to o/p
- * 2ⁿ i/p lines and n Selection Lines
- * Example: 2-to-1 Line MUX:

Boolean Function Implementation Using MUX:

- * If proper i/ps can be routed to the o/p, then a *MUX* can implement *Boolean functions*
- * Individual minterms can be selected by data i/ps
- * A Boolean function having n variables can be implemented with a MUX having (n-1) Selection i/ps

- * The first (n-1) variables of the function are connected to the Selection i/ps of the MUX
- * The remaining single variable of the function is used for the data i/ps
- * If the single varible is denoted by \mathbf{Z} , then the data i/ps of the MUX would be \mathbf{Z} , \mathbf{Z}' , 1, or 0

Example: $F(X,Y,Z) = \sum_{m} (1,2,6,7)$:

			LSB		MSB
Z — 0		F	Z	Y	X
Z'——1 4-to-1 0——2 MUX 1——3 0		0	0	0	0
S_1 S_0	F = Z	1	1	0	0
XY		1	0	1	0
^ 1	F = Z'	0	1	1	0
Exercise: Implement		0	0	0	1
F(A,B,C,D) =	F = 0	0	1	0	1
$\pi_{M}(0,2,4,5,9,13,15)$		1	0	1	1
using an 8-to-1 MUX	F = 1	1	1	1	1

De-Multiplexer (De-MUX):

- * Also known as **Data Router**
- * Selects binary information from one i/p line and routes it to one of many o/p lines
- * Needs Selection lines to select the o/p line to which the i/p gets routed
- * 2^n o/p lines and n selection lines
- * (Decoder + Enable) \leftrightarrow De-MUX

Example: 1-to-4 De-MUX:

Higher-Order De-MUX:

* Construction of a

1-to-32 De-MUX

using 1-to-4 and

1-to-8 De-MUX

* Trunk and Branches
Architecture

* Control Signal: EDCBA

(E: MSB, A: LSB)

* 1-to-4 De-MUX controls the 2 most significant bits, 1-to-8 De-MUX control the 3 least significant bits

Decoder as De-MUX & Vice-Versa:

Select Lines

1-to-4 De-MUX as 2-to-4 Decoder

- * Use the i/p line (I) as the Enable (E) signal
- * Use the Select lines (S_1-S_0) as the i/p lines of the decoder
- * When I (or E) = 0, all o/ps 0
- * When I (or E) = 1:
 - $S_1S_0 = 00, O_0 = 1, all others 0$
 - $S_1S_0 = 01, O_1 = 1, all others 0$
 - $S_1S_0 = 10, O_2 = 1, all others 0$
 - $S_1S_0 = 11, O_3 = 1, all others 0$

2-to-4 Decoder as 1-to-4 De-MUX

- * Use Enable (E) line as the i/p line (I)
- * Use the i/ps (A and B)
 as Select lines (S_1-S_0)
- * When E (or I) = 0, all o/ps 0
- * When E (or I) = 1:
 - $AB = 00, O_0 = 1, all others 0$
 - $AB = 01, O_1 = 1, all others 0$
 - $AB = 10, O_2 = 1, all others 0$
 - $AB = 11, O_3 = 1, all others 0$