

Jerome Jouffray, Professor jerome@sdu.dk

Today's lecture

- Transfer functions in the Laplace domain
- Stability and TFs
- Reminder on the basics of PID control

Transfer Functions

Short brush-up on the Laplace transform:

$$\ddot{y}(t)$$
 $s^2Y(s)$

Hence, for the ODE
$$\ddot{y}(t)+a_1\dot{y}(t)+a_0y(t)=b_1\dot{u}(t)+b_0u(t)$$

we have
$$s^2Y(s) + a_1sY(s) + a_0Y(s) = b_1sU(s) + b_0U(s)$$

or
$$(s^2 + a_1s + a_0)Y(s) = (b_1s + b_0)U(s)$$

so that we get
$$Y(s)=rac{b_1s+b_0}{s^2+a_1s+a_0}U(s)=P(s)U(s)$$
 with P(s) Transfer Function

General case

$$Y(s) = \frac{b_m s^m + \dots + b_1 s + b_0}{s^n + \dots + a_1 s + a_0} = P(s) = \frac{n_p(s)}{d_p(s)}$$

with
$$n_p(s) = b_m s^m + \ldots + b_1 s + b_0$$

Roots of $n_n(s)$: "zeros"

Roots of $d_n(s)$: "poles"

SDU
$$d_p(s) = s^n + \ldots + a_1 s + a_0$$

Stability of systems described by transfer functions

Question: What is the interest of the Laplace transform?

solving an algebraic equation is easier than solving an ODE...

What about stability?

Stability criterion: A system described by Transfer Function P(s) is said to be stable if and only if the real part of each pole (i.e. each root of denominator $d_p(s)$) is strictly negative².

Combining Transfer Functions: cascade

Basic result: combining 2 (or more) TFs gives another TF.

Consider 2 systems in cascade:

TF of first system: V(s) = F(s)U(s)

TF of second system: Y(s) = P(s)V(s)

Cascade of the 2 systems together:

$$Y(s) = P(s)F(s)U(s)$$

$$Y(s) = P(s)F(s)U(s)$$
 with $H(s) = P(s)F(s)$

Remark: it can easily be checked that H(s) is stable as long as each (sub)system is itself stable.

Combining TFs: feedback controller with unitary gain (1/2)

Consider a feedback connection with unitary gain:

Transfer between y and r?

$$e(t) := r(t) - y(t)$$

start with
$$Y(s) = P(s)C(s)E(s)$$

and use
$$E(s) = R(s) - Y(s)$$

to get
$$Y(s) = P(s)C(s)\left[R(s) - Y(s)\right]$$

and isolate Y(s):
$$\ \left[1+P(s)C(s)\right]Y(s)=P(s)C(s)R(s)$$
 ...

Combining TFs: feedback controller with unitary gain (2/2)

$$[1 + P(s)C(s)] Y(s) = P(s)C(s)R(s)$$

to get the TF
$$H(s)=rac{Y(s)}{R(s)}=rac{P(s)C(s)}{1+P(s)C(s)}$$

Let's detail that:

$$H(s) = \frac{Y(s)}{R(s)} = \frac{\frac{n_p(s)n_c(s)}{d_p(s)d_c(s)}}{1 + \frac{n_p(s)n_c(s)}{d_p(s)d_c(s)}} = \frac{\frac{n_p(s)n_c(s)}{d_p(s)d_c(s)}}{\frac{d_p(s)d_c(s) + n_p(s)n_c(s)}{d_p(s)d_c(s)}}$$

so that we have

$$H(s) = \frac{n_p(s)n_c(s)}{d_p(s)d_c(s) + n_p(s)n_c(s)}$$

H(s) is stable if the roots of

$$d_p(s)d_c(s) + n_p(s)n_c(s)$$

SDU are all in the left half-plane

having both P(s) and C(s)stable does not necessarily imply stability of H(s).

Bode plots

For any stable linear system, any sinusoidal input signal

$$u(t) = \sin(\omega t)$$
 , we have the output signal $y(t) = A\sin(\omega t + arphi)$

where A and φ depend on ω

40

Bode plots Mass-Spring-Damper system

Magnitude:

$$A = |P(s = j\omega)|, \ \omega \in \mathbb{R}^+$$

Phase:

$$\varphi = arg(P(s = j\omega)), \, \omega \in \mathbb{R}^+$$

Remark: log scale for ω and decibels

for gain plot: $20\log_{10}|P(s=j\omega)|$

MSD system example: (m=10, d=0.1, k=5)

20 Magnitude (dB) -40 -60 -90 -180 10⁻¹ Frequency (rad/s)

Zero-frequency gain

(also called DC gain)

Links steady-state output to steady-state input (related to notion of equilibrium)

MSD example again:

Start with
$$m\ddot{y}(t)+d\dot{y}(t)+ky(t)=u(t)$$

"Laplace transform" to
$$ms^2Y(s) + dsY(s) + kY(s) = U(s)$$

or
$$\left(ms^2 + ds + k\right)Y(s) = U(s)$$

so that we have the TF
$$\frac{Y(s)}{U(s)}=P(s)=\frac{1}{ms^2+ds+k}=\frac{1/m}{s^2+(d/m)s+k/m}$$

PID control in a nutshell

Transfer Function: $C(s) = k_p + k_i/s + k_d s$ (ideal version)

in the time domain:
$$u(t)=k_p e(t)+k_d \dot{e}(t)+k_i \int_0^t e(au)d au$$

with
$$e(t) := r(t) - y(t)$$

3 terms: P: \approx stabilize the system

I: make the output y eventually reach the reference r

(O steady-state error)

SDU D: adds damping in the system to "make the output smoother"

Tuning the PID controller: the Ziegler-Nichols rule

Question: how to tune a PID controller?

many guidelines exist

Zieglier-Nichols tuning "algorithm":

- set all gains to O
- change k_n until y(t) oscillates
- when it does, note as k_r the current value of k_n
- finally, let

$$k_p = 0.6k_c,$$

$$k_i = \frac{k_p}{0.5T_c},$$

Remarks:

- many variations of the ZN rule exist
- only guidelines: might continue manual tuning afterwards
- only works for stable systems
- not always possible to make a system oscillate

Tuning the PID controller: simple heuristics

... tuning a PID controller is not necessarily complicated

0.4

0.2

- change k_p until you have a reduced

steady-state error / stable syst.

- change **k**_d to reduce the oscillations of the output

- increase $\mathbf{k}_{\mathbf{i}}$ to bring the steady-state error to 0

Two implementation tricks: derivative term

<u>Derivative issue</u>: Remember what we said? <u>differentiator = BAD</u> integrator = GOOD

So what do we do about $k_d \dot{e}(t)$ (will amplify noise + jumps if change in r(t))

Remedy: replace $k_d s E(s)$

$$k_d s \frac{1/T_f}{s + 1/T_f} E(s)$$

(filtered derivative)

Two implementation tricks: "jumps" in the reference signal

Problem of using the error signal $\ e(t):=r(t)-y(t)$ in all terms:

P term: a jump/sudden change in r(t) leads to a jump in u(t) (u(t)= $k_pe(t)$)

not good for the actuator

Useful trick: using the error only in the integrator still allows to stabilize a system around the reference: r^t

$$u(t) = k_p(-y(t)) + k_d(-\dot{y}(t)) + k_i \int_0^t (r(\tau) - y(\tau)) d\tau$$

There is a lot more to PID control

Anti-windup

The windup issue: when what is asked from u(t) is beyond the actuator limits, e(t) cannot be 0, and this makes the integrator value grow bigger and bigger, way too large when r(t) comes back to something feasible...

Bumpless transfer

The switching bump issue: when a controller is set off, keeps integrating the error, and then put back on, thus creating a large overshoot due to integrator accumulation...

