- 1. 一个有快表和慢表的页式虚拟存储器,最多有 64 个用户,每个用户最多需要 1024 个页面,每个页面 4K 字节,主存储器容量 8M 字节
 - (1) 写出多用户虚地址的格式,标出各个字段的长度。

|--|

(2) 写出主存地址的格式,并标出各字段的长度。

实页号 p (11 位)	页内偏移 d(12 位)

(3) 快表的字长为多少位?分几个字段?各个字段的长度是多少位?

快表字长 27 位,分为多用户虚页号(U、P 拼接)和实页号两个字段,其长度分别为 16 位和 11 位。

(4) 慢表的容量是多少个存储字?每个存储字的长度是多少位?

慢表容量为2¹⁶个存储字,每个存储字长度是 12 位(包含 11 位实页号和 1 位装入位)。

(5) 画出多用户虚地址经快表或慢表变换成主存实地址的逻辑示意图。

2. 假设在一个采用组相联影像方式的 Cache 中,主存由 B0-B7 共 8 块组成,Cache 有 2 组,每组 2 块,每块大小为 16 个字节,采用 LRU 块替换算法。在一个程序执行过程中依次访问这个 Cache 块地址流如下: B6, B2, B4, B1, B4, B6, B3, B0, B4, B5, B7, B3

(1) 写出主存地址格式,并标出个字段长度。

区号E	区内组号 G	组内块号 B	块内地址 W
(1 位)	(1 位)	(1号)	(4 位)

(2) 写出 Cache 地址格式,并标出个字段长度。

组号g	组内块号 b	块内地址w
(1位)	(1号)	(4 位)

(3) 画出主存和 Cache 之间各个块的映像关系

(4) 如果 Cache 的各个块号为 C0, C1, C2 和 C3, 列出程序执行过程中 Cache 的块地址流情况。

t	1	2	3	4	5	6	7	8	9	10	11	12
主存	В6	B2	B4	B1	B4	В6	В3	В0	B4	В5	В7	В3

Cache	C2	C3	C0	C1	C0	C2	C3	C1	C0	C1	C2	С3

(5) 如果采用 FIFO 替换算法,计算 Cache 的块命中率。

t	1	2	3	4	5	6	7	8	9	10	11	12
主存	В6	B2	B4	B1	B4	В6	В3	В0	B4	B5	В7	В3
C0			4	4	4	4	4	0	0	5	5	5
C1				1	1	1	1	1	4	4	4	4
C2	6	6	6	6	6	6	3	3	3	3	3	3
С3		2	2	2	2	2	2	2	2	2	7	7
	装	装	装	装	命	命	替	替	替	替	替	命
	入	入	入	入	中	中	换	换	换	换	换	中

命中率 = 3/12=0.25

(6) 采用 LRU 算法, 计算 Cache 的块命中率。

t	1	2	3	4	5	6	7	8	9	10	11	12
主存	В6	B2	B4	B1	B4	В6	В3	В0	B4	В5	В7	В3
C0			4	4	4	4	4	4	4	4	4	4
C1				1	1	1	1	0	0	5	5	5
C2	6	6	6	6	6	6	6	6	6	6	7	7
С3		2	2	2	2	2	3	3	3	3	3	3
	装	装	装	装	命	命	替	替	命	替	替	命
	入	入	入	入	中	中	换	换	中	换	换	中

命中率=4/12=0.33

(7) 如果改为全相联映像,再做(5)和(6),可以得出什么结论

FIFO 算法,命中率=4/12=0.33

t	1	2	3	4	5	6	7	8	9	10	11	12
主存	В6	B2	B4	B1	B4	В6	В3	В0	B4	В5	В7	В3
C0	6	6	6	6	6	6	3	3	3	3	3	3
C1		2	2	2	2	2	2	0	0	0	0	0
C2			4	4	4	4	4	4	4	5	5	5
СЗ				1	1	1	1	1	1	1	7	7
	装	装	装	装	命	命	替	替	命	替	替	命
	入	入	入	入	中	中	换	换	中	换	换	中

LRU 算法,命中率=3/12=0.25

t	1	2	3	4	5	6	7	8	9	10	11	12
主存	В6	B2	B4	B1	B4	В6	В3	В0	B4	В5	В7	В3
C0	6	6	6	6	6	6	6	6	6	5	5	5
C1		2	2	2	2	2	3	3	3	3	7	7
C2			4	4	4	4	4	4	4	4	4	4
С3				1	1	1	1	0	0	0	0	3
	装	装	装	装	命	命	替	替	命	替	替	替
	入	入	入	入	中	中	换	换	中	换	换	换

结论:对于不同的地址映像算法,全相联并不一定总能提高命中率。

(8) 如果在程序执行过程中,每从主存装入一块到 Cache,则平均要对这个块访问 16 次。计算这种情况下的 Cache 的块命中率。

命中率=15/16=0.9375 (<mark>该题目有点问题,可以不做要求)</mark>