#### WEEK 2: LECTURE NOTES

### Non-deterministic finite Automata (NFA)

A 5-tuple (0, Σ, 8, 90, F)

A: a finite set of states

E: a finite input alphabet

8:  $Q \times Z \longrightarrow 2^{0}$ ; the transition function (power set of Q, i.e. set of all subsets of Q)

9. ∈ Q: the initial state

F = Q: the set of final laccepting states

Transition Table

| 8           | 0                 | 1       |
|-------------|-------------------|---------|
| <b>→</b> 9. | {90, 93}          | {90,9,} |
| 9,          | +                 | {92}    |
| *92         | {q <sub>2</sub> } | { 9, }  |
| 93          | {94}              | +       |
| × 94        | { 94}             | { 9., } |

Note: Difference between DFA and NFA

> transition function returns

→ a single state for DFA

→ a set of states for NFA

The extended transition function

S: & x Z -> 2 : transition function for NFA

 $\hat{S}: Q \times \Sigma^* \to 2^Q$ : extended transition function for NFA, formally defined as follows:

(ii) Let 
$$w = na$$
,  $n \in \Sigma^*$ ,  $a \in \Sigma$   
Let  $\hat{S}(q, n) = \{p_1, p_2, ..., p_k\}$   
 $k$   
Let  $U S(p_i, a) = \{r_1, r_2, ..., r_m\}$   
 $C = i$ 

Then

$$\hat{S}(q, w) = \hat{S}(\hat{S}(q, n), a)$$

$$= \hat{S}(\{p_1, p_2, ..., p_N\}, a)$$

$$= \hat{V}(\{p_i, p_2, ..., p_N\}, a)$$

$$= \{\gamma_1, \gamma_2, ..., \gamma_m\}$$

i.e. To compute  $\hat{s}(q, w)$  where  $w = \pi a$ , we first compute  $\hat{s}(q, x)$ 

### Example

- · The above NFA accepts all binary strings which has second last symbol as 1
- · 92 has no transition and hence it dies

$$\hat{\delta} (01010) = \hat{?}$$

$$\hat{\delta} (90, \epsilon) = \{90\}$$

$$\hat{\delta} (90, 0) = \hat{\delta} (\{90\}, 1) = \{90, 91\}$$

$$\hat{\delta} (90, 0) = \hat{\delta} (\{90\}, 1) = \{90, 91\}$$

$$\hat{\delta} (90, 0) = \hat{\delta} (\{90, 91\}, 0) = \{90\} \cup \{91\}$$

$$= \{90, 92\}$$

$$\hat{\delta} (90, 0) = \hat{\delta} (\{90, 92\}, 1) = \{90, 92\}$$

$$\hat{\delta} (90, 0) = \hat{\delta} (\{90, 92\}, 1) = \{90, 92\}$$

$$\hat{\delta} (90, 0) = \hat{\delta} (\{90, 92\}, 1) = \{90, 92\}$$

$$\hat{\delta} (90, 0) = \hat{\delta} (\{90, 92\}, 1) = \{90, 92\}$$

The language of an NFA

- · NFA : A= (0, E, 8, 9, F)
- L(A) = {w | ŝ | (90, w) ∩ f ≠ + }
  language accepted by NFA A.

Computation Tree

Consider the NFA accepting all binary strings which has 1 in its second last position

$$\xrightarrow{q_{0}} \xrightarrow{1,0} \xrightarrow{1,0} \xrightarrow{q_{1}}$$

W= 01010



- . Non-determinism: guess and verify
   make as many guess as it likes
  but it must chech them
- · w is accepted by NFA: computation tree has one accepting state
- · w is rejected by NFA: every branch of the computation tree must reject

Example: (Non determinism as a computation)

input: 01001 accepted or not?



Building NFA

· It is easier compared to building a DFA

Example: NFA accepting all binary strings that end with pattern 101

Example:

$$\frac{a}{q_{0}}$$
 $\frac{a}{q_{2}}$ 
 $\frac{a}{q_{2}}$ 
 $\frac{a}{q_{2}}$ 
 $\frac{a}{q_{3}}$ 
 $\frac{a}{q_{2}}$ 
 $\frac{a}{q_{3}}$ 
 $\frac{a}{q_{2}}$ 
 $\frac{a}{q_{3}}$ 
 $\frac{a}{q_{2}}$ 
 $\frac{a}{q_{3}}$ 
 $\frac{a}{q_{3}$ 

## The equivalence of DFA's and NFA's

- · DFA can be treated as NFA
- · language of an NFA is also a language of same

  -i.e. NFA accepts only regular languages

  DFA
  - i.e. for every NFA, we can construct an equivalent DFA (accepting the same language)

#### Subset Construction

Given NFA  $N=(D_N, \Sigma, S_N, 90, F_N)$ design a DFA  $D=(D_D, \Sigma, S_D, 903, F_D)$ such that L(N)=L(D)

- input alphabet of N, D are the same ( $\Sigma$ )
- start state of D is the singleton set consisting of start state of N
- · No = 2<sup>dN</sup> i.e. if N has <u>n states</u>, D has 2<sup>n</sup>

   We may throw an away states that are

  not accessible from the initial state [90]

  of D: OD = 2<sup>dN</sup>

# · Fo = { SE OD | SOFA + + }

one accepting state of N

$$\delta_{D}(s,a) = \bigcup_{p \in S} \delta_{N}(p,a)$$
 i.e.  $s \in \delta_{N}$   
 $s \in \delta_{D}$ 

### Example (Conversion from NFA to DFA)



Equivalent DFA

- consider states that are reachable from initial state i.e. subsets of 20N containing A

|    | state         | i.e. subsets of | Containing |  |
|----|---------------|-----------------|------------|--|
|    |               | 0               | 1          |  |
| -> | {A}           | {A, B}          | {A, c}     |  |
|    | {A, B}        | {A, B, D}       | {A, c}     |  |
|    | {A, c}        | { A. B}         | {A, C, D}  |  |
| *  | {A, B, b}     | {A,B, b}        | {A, C, D}  |  |
| ,  | * { A, c, D } | { A, B, D}      | { A. C. D} |  |
|    |               |                 |            |  |



# Example (NFA to DFA conversion)

NFA: N = (QN, E, SN, 90, FN= {923)

DFA: D = ( 0D = 200, E, 80, {90}, fo & 0b)

|              |                                    | CONTON 75     |
|--------------|------------------------------------|---------------|
| 8,           | 0                                  | J             |
| {9.3         | <b>{</b> 9.}                       | { q., q.}     |
| {q., q.}     | {q <sub>0</sub> , q <sub>2</sub> } | { 9., 9., 9.} |
| {q., q,}     | {9.}                               | { 9., 9, }    |
| {90, 91, 9,} | {q., q.}                           | { 90, 9, }    |
|              |                                    |               |



#### Theorem:

If  $b = (O_D, \Sigma, S_D, \{90\}, F_D)$  is the DFA constructed from the NFA  $N = (O_N, \Sigma, S_N, 90, F_N)$  by the subset construction, then L(D): L(N)

#### Proof:

We prove by induction on well that

claim: ŝ, ({9,3,w) = ŝ, (9,w) for w E 5\*

Note that subset construction gives

when 80 E 28N

Also  $\hat{\delta}$  returns a set of states from  $\delta_N$   $\hat{\delta}_D$ a single state a set of states of  $\delta_D$ of  $\delta_D$ from  $\delta_N$ 

• D accepts w iff  $\hat{s}_{0}(\{9,3,w\} \in F_{N})$  $\hat{s}_{N}(\{9,3,w\} \cap F_{N} \neq \Phi)$ 

· N accepts wiff ên (90, w) n fn + \$

Proof of claim (by induction on 
$$[w]$$
)
$$\hat{S}_{D}(\{9,3,w) = \hat{S}_{A}(9,w)$$

$$\hat{S}_{D}(\{9,3,w) = \hat{S}_{A}(9,w)$$

$$\hat{S}_{D}(\{9,3,z) = \{9,3\}$$

$$\hat{S}_{D}(\{9,3,z) = \{9,3\}$$

$$\hat{S}_{A}(9,z) = 9,$$
Induction:
$$w = na, \quad |w| = n+1, \quad |n| = n$$

$$w, n \in \Sigma^{\#}, \quad \alpha \in \Sigma$$

By induction hypothesis 
$$\hat{S}_{D}(\{q_{0}\}, \alpha) = \hat{S}_{N}(\{q_{0}, \alpha\}) = \{p_{1}, p_{2} \dots p_{K}\}(\{q_{0}\})$$

Then, 
$$\hat{S}_{N}(q_{0}, \omega)_{z} = \hat{S}_{N}(q_{0}, \eta_{0}) = \bigcup_{i=1}^{N} S_{N}(p_{i}, a)$$

Also, 
$$\hat{S}_{b}$$
 ( {9.3,  $\omega$ ):  $\hat{S}_{b}$  ( {9.3,  $\alpha$ )

=  $S_{b}$  ( $\hat{S}_{b}$  ({9.3,  $\alpha$ ),  $\alpha$ )

(by defition of  $\hat{S}_{b}$ )

=  $S_{b}$  ({ $p_{1}, p_{2} \dots p_{k}$ },  $p_{k}$ )

(by induction hypothesis)

(1) and (2) establishes that our claim is true for w where lw1= n+1 whenever it is true for 2 with 121= n It also holds for |w|= 0

Hence by induction, the claim follows.

Theorem:

A language L is accepted by DFA iff L 13 accepted by some NFA.

Proof:

Laccepted by NFA

=> L is accepted by a DFA using subset construction

(by using previous theorem)

L accepted by a DFA D=  $(8, \Sigma, 8_8, 9_0, F)$ can be interpreted as an NFA

N= (A, E, 8N, 90, F)

where SN is defined by

8~ (q, a) = { { p} if 80 (q, a) = 4}

This NFA accepts L.

Note:

NFA subset construction

DFA

2" states

throw away states that are not reachable from the initial state

≈ n states.

Enample:

1-n(1+0) 1\*(1+0) &i bas saft mort lodmy? At-n atien \*[1,0] 3 w | w } = (N) 1

The NEA realizing LLN) is:

estate Itn gairen.

has at least an states equivalent DFA using subset construction.

have Lan states · smallest DFA D realizing LLN) cannot

more than one pegion." there must be at least one pegion hole that has and each pegion flies into some pegion hole, then principle: " 24 you have more pegions than pigeon hole bin bin . This follows from the pigeon hole dufferent sequence of n. bits, say a,az.. an and Otherwise, D can be in state of after reading

Assumption: # of pegion hole is dinite.

· 0,002 ··· an + 10 los ·· bn = 0,14 bi for some i

0 = ; 0 , 1 = ; 0 331

rejected by A absurd irejecting state as bibs. bris Vienasmotiumis d ya belgeno if it it it then q - accepts state as a an is

T( ! #!

if i>1 then consider state p that Denters after reading i-1 0's

simultaneously

absurd! rejecting state as bi bin. bn 0... 0

is rejected by D

is rejected by D

### Dead State LDFA)

A non-accepting state that goes to itself on every possible input symbol

### Enample:



### Non determinism added to FA

- · does not expand the class of languages that can accepted by FA
- · easier to design than NFA
- · can always convert NFA to DFA

  (DFA may have exponentially more states than NFA, fortunately such cases are rare)