

CD105PCT.ST25.txt

SEQUENCE LISTING

<110> CropDesign N.V.

<120> Plants having modified growth characteristics and method for making the same

<130> CD-105-PCT

<150> US 60/528,113

<151> 2003-12-09

<150> EP 03104280.7

<151> 2003-11-19

<160> 18

<170> PatentIn version 3.3

<210> 1

<211> 1428

<212> DNA

<213> Nicotiana tabacum

<220>

<221> misc_feature

<223> seed\y1 coding sequence (CDS0689)

<400> 1

atgagtgtgt	tacaatacc	agaaggatt	gacc	cagcag	atgttcagat	atggaacaat	60
gcagcattt	ataatggaga	ttctgaagat	ttgtt	ttcg	tgaaacgttc	tttgtctcct	120
ctgaaacccc	tttcggttag	gccatcagat	tcctt	gaat	ctgatttg	aagtaaggaa	180
aatcaaactc	ctttat	ttga	catct	gttaat	catctccgtt	accataaaag	240
ccacttaacc	cta	atgggc	tctgg	aaaat	tcaagactca	agccgaacaa	300
aaacagagtc	ttgat	gagat	gccc	gtcg	tttccgttat	tttccgttat	360
gagaagaaaa	tagac	gagga	tttcc	gtcg	tttccgttat	tttccgttat	420
agatttaggg	ctttg	gagaat	tttcc	gtcg	tttccgttat	tttccgttat	480
cgaggaaggg	ttgtgg	cagc	aaagt	tttgc	tttccgttat	tttccgttat	540
gagcgtatat	caat	gagtgc	aaag	tttgc	tttccgttat	tttccgttat	600
ccatctgaga	tttt	tactgg	aac	cgcc	tttccgttat	tttccgttat	660
ctagcaggga	caaca	aaggc	acgg	caattt	tttccgttat	tttccgttat	720
cagccaatac	aaa	acaggc	aaag	tctgt	tttccgttat	tttccgttat	780
gaaaaaagtt	caag	cctt	tc	ctt	tttccgttat	tttccgttat	840
acaaggcagg	cagt	tactac	aatt	gc	tttccgttat	tttccgttat	900
ttgagttcag	ttc	agccaa	gaag	tttgc	tttccgttat	tttccgttat	960
aagaagcccc	agg	ggcc	gg	tttgc	tttccgttat	tttccgttat	1020
tcatcagtag	tgagaa	agag	tttgc	tttgc	tttccgttat	tttccgttat	1080
gataagaaaac	gg	tcgtt	atc	tttgc	tttccgttat	tttccgttat	1140
ttgggtactg	aa	atcg	gggt	tttgc	tttccgttat	tttccgttat	1200
ggaaacacag	ag	atct	ccacta	tttgc	tttccgttat	tttccgttat	1260
cgaatttagga	tt	gtc	tcgtt	tttgc	tttccgttat	tttccgttat	1320
atgatagagt	tgat	aggca	aaat	cg	tttccgttat	tttccgttat	1380
gtctgtcaag	ttt	taag	ttt	tg	tttccgttat	tttccgttat	1428

<210> 2

<211> 475

<212> PRT

<213> Nicotiana tabacum

CD105PCT.ST25.txt

<220>
<221> MISC_FEATURE
<223> seedyl protein (CDS0689)

<400> 2
Met Ser Val Leu Gln Tyr Pro Glu Gly Ile Asp Pro Ala Asp Val Gln
1 5 10 15

Ile Trp Asn Asn Ala Ala Phe Asp Asn Gly Asp Ser Glu Asp Leu Ser
20 25 30

Ser Leu Lys Arg Ser Trp Ser Pro Leu Lys Pro Leu Ser Val Arg Pro
35 40 45

Ser Asp Ser Phe Glu Ser Asp Leu Ser Ser Lys Glu Asn Gln Thr Pro
50 55 60

Leu Phe Glu Asn Ser Ser Val Asn Leu Ser Ser Pro Leu Pro Ile Lys
65 70 75 80

Pro Leu Asn Pro Asn Gly Ala Leu Glu Asn Ser Arg Leu Lys Pro Asn
85 90 95

Lys Pro Asn Ser Lys Gln Ser Leu Asp Glu Met Ala Ala Arg Lys Ser
100 105 110

Gly Lys Gly Asn Asp Phe Arg Asp Glu Lys Lys Ile Asp Glu Glu Ile
115 120 125

Glu Glu Ile Gln Met Glu Ile Ser Arg Leu Ser Ser Arg Leu Glu Ala
130 135 140

Leu Arg Ile Glu Lys Ala Glu Lys Thr Val Ala Lys Thr Val Glu Lys
145 150 155 160

Arg Gly Arg Val Val Ala Ala Lys Phe Met Glu Pro Lys Gln Ser Val
165 170 175

Ile Lys Ile Glu Glu Arg Ile Ser Met Ser Ala Arg Thr Lys Val Glu
180 185 190

Gln Arg Arg Gly Leu Ser Leu Gly Pro Ser Glu Ile Phe Thr Gly Thr
195 200 205

Arg Arg Arg Gly Leu Ser Met Gly Pro Ser Asp Ile Leu Ala Gly Thr
210 215 220

Thr Lys Ala Arg Gln Leu Gly Lys Gln Glu Met Ile Ile Thr Pro Ile
225 230 235 240

Gln Pro Ile Gln Asn Arg Arg Lys Ser Cys Phe Trp Lys Leu Gln Glu
245 250 255

Ile Glu Glu Glu Gly Lys Ser Ser Ser Leu Ser Pro Lys Ser Arg Lys
260 265 270

Thr Ala Ala Arg Thr Met Val Thr Thr Arg Gln Ala Val Thr Thr Ile
275 280 285

CD105PCT.ST25.txt

Ala Ser Lys Lys Asn Leu Lys Lys Asp Asp Gly Leu Leu Ser Ser Val
 290 295 300

Gln Pro Lys Lys Leu Phe Lys Asp Leu Glu Lys Ser Ala Ala Ala Asn
 305 310 315 320

Lys Lys Pro Gln Arg Pro Gly Arg Val Val Ala Ser Arg Tyr Asn Gln
 325 330 335

Ser Thr Ile Gln Ser Ser Val Val Arg Lys Arg Ser Leu Pro Glu Asn
 340 345 350

Asp Lys Asp Glu Ser Lys Arg Asn Asp Lys Lys Arg Ser Leu Ser Val
 355 360 365

Gly Lys Thr Arg Val Ser Gln Thr Glu Ser Lys Asn Leu Gly Thr Glu
 370 375 380

Ser Arg Val Lys Lys Arg Trp Glu Ile Pro Ser Glu Ile Val Val His
 385 390 395 400

Gly Asn Thr Glu Ser Glu Lys Ser Pro Leu Ser Ile Ile Val Lys Pro
 405 410 415

Asp Leu Leu Pro Arg Ile Arg Ile Ala Arg Cys Val Asn Glu Thr Leu
 420 425 430

Arg Asp Ser Gly Pro Ala Lys Arg Met Ile Glu Leu Ile Gly Lys Lys
 435 440 445

Ser Phe Phe Ser Ser Asp Glu Asp Lys Glu Pro Pro Val Cys Gln Val
 450 455 460

Leu Ser Phe Ala Glu Glu Asp Ala Glu Glu Glu
 465 470 475

<210> 3
 <211> 1336
 <212> DNA
 <213> Oryza sativa

<220>
 <221> misc_feature
 <223> seedyl coding sequence

<400> 3
 atggaggagg acccgctcat cccgctggtc cacgtctggaa acaacgccgc cttcgacgac 60
 tcctcgttgt ccagatcgcc ttggctcccc caaagccccg ccgtcgccgccc cgtccgcaag 120
 ggcgacaagg agaatcacccg ccccgagggtt gttgtatgtcg ccgccccggcta cgacgtcgag 180
 gccgagatcg gccacatcgaa ggcggagatc ctgcgcctct cgtcccggtt ccaccatctc 240
 cgcgtctcca agcagccgga gcccaaccgc gacgaaegctc cgatggggga gatgtcgcg 300
 aagtgtggc cccggccgag ggcctcagc ctcggggccc tggatgtgtat ctccatcgtc 360
 aatcgtgaga agcatccgct ggcaccaag cagccctccgg cgacgcgggg cagggggctc 420
 agctcgggc ccatggagat cggccgcggcg aacccttaggg tgccccggc ggcgcagcat 480
 cagcaacagc aacgcgttgg cacggcgccg atcctgaagc caatcaagga gcctccggtg 540
 cagcgtcgca ggggcgtcag cctcgccggcc ttggagatcc accacggcgat cggcagcaag 600
 gcaccagcgcc cggcgccgagc caagccgttc accaccaagc tcaacgcat tcgagaagaa 660
 acccgaccct ccaagcaatt cggccgtcccc gccaagccat ggcggcgtcag caatacaagg 720
 cagacactgg actcgaggca aggaacagca gcaagtcgag cgaaggcgag gagcccgagc 780

CD105PCT.ST25.txt

cccaggccca	ggaggcaatc	caatggcaag	gctactgaca	caaggggagg	caacaagg	tggtgatgagc	tcaagcccaa	aggtgcgtcg	tcaagtca	gcggcagcgc	cggccgcgc	840			
gccactgcca	agaggatggc	ggggagctcc	aagatgaggg	tcatcccag	ccgctacagc	ctcactcccg	gcgcttccct	ttgaagcagt	ggagcacagg	agaggcagc	caagcagtct	900			
ctccccaggat	catcagggga	tgcgaaccag	aatgaggaaa	tcagagcga	ggatcgag	ccttccaatg	atccactctc	tcctcaa	atcctaagg	ttgctgaaat	gctcccaaag	960			
atcaggacca	tgccgcctcc	tgacgagagc	cctcgcgatt	ccggatgcgc	caagcggg	gccaattgg	tcggaagcg	ctcg	acgctgcag	ccgaggacgg	gccccgcctc	1020			
gacgtcgaag	cacccgagc	ggtgcgagaa	gcttgagatg	aaccaccatg	gtttgatccg	ttccat	cagctc					1080			
												1140			
<210>	4														
<211>	431														
<212>	PRT														
<213>	Oryza sativa														
<220>															
<221>	MISC_FEATURE														
<223>	seedyl protein														
<400>	4														
Met	Glu	Glu	Asp	Pro	Leu	Ile	Pro	Leu	Val	His	Val	Trp	Asn	Asn	Ala
1															15
Ala	Phe	Asp	Asp	Ser	Ser	Cys	Ser	Arg	Ser	Ala	Trp	Leu	Pro	Gln	Ser
20															30
Pro	Ala	Val	Ala	Ala	Val	Arg	Lys	Gly	Asp	Lys	Glu	Asn	His	Arg	Pro
35															45
Glu	Val	Val	Asp	Val	Ala	Ala	Gly	Tyr	Asp	Val	Glu	Ala	Glu	Ile	Gly
50															60
His	Ile	Glu	Ala	Glu	Ile	Leu	Arg	Leu	Ser	Ser	Arg	Leu	His	His	Leu
65															80
Arg	Val	Ser	Lys	Gln	Pro	Glu	Pro	Asn	Arg	Asp	Asp	Ala	Pro	Met	Gly
85															95
Glu	Met	Val	Ala	Lys	Val	Arg	Pro	Arg	Pro	Arg	Gly	Leu	Ser	Leu	Gly
100															110
Pro	Leu	Asp	Val	Ile	Ser	Ile	Val	Asn	Arg	Glu	Lys	His	Pro	Leu	Arg
115															125
Thr	Lys	Gln	Pro	Pro	Ala	Thr	Arg	Gly	Arg	Gly	Leu	Ser	Leu	Gly	Pro
130															140
Met	Glu	Ile	Ala	Ala	Asn	Pro	Arg	Val	Pro	Ala	Ala	Gln	His		
145															160
Gln	Gln	Gln	Arg	Ala	Gly	Thr	Ala	Arg	Ile	Leu	Lys	Pro	Ile	Lys	
165															175
Glu	Pro	Pro	Val	Gln	Arg	Arg	Gly	Val	Ser	Leu	Gly	Pro	Leu	Glu	
180															190
Ile	His	His	Gly	Val	Gly	Ser	Lys	Ala	Pro	Ala	Ala	Arg	Ala	Lys	
195															205

CD105PCT.ST25.txt

Pro Phe Thr Thr Lys Leu Asn Ala Ile Arg Glu Glu Thr Arg Pro Ser
 210 215 220

Lys Gln Phe Ala Val Pro Ala Lys Pro Trp Pro Ser Ser Asn Thr Arg
 225 230 235 240

Gln Thr Leu Asp Ser Arg Gln Gly Thr Ala Ala Ser Arg Ala Lys Ala
 245 250 255

Arg Ser Pro Ser Pro Arg Pro Arg Arg Gln Ser Asn Gly Lys Ala Thr
 260 265 270

Asp Thr Arg Gly Gly Asn Lys Val Val Asp Glu Leu Lys Pro Lys Gly
 275 280 285

Ala Ser Ser Ser Gln Ser Gly Ser Ala Ala Ala Ala Ala Thr Ala Lys
 290 295 300

Arg Met Ala Gly Ser Ser Lys Met Arg Val Ile Pro Ser Arg Tyr Ser
 305 310 315 320

Leu Thr Pro Gly Ala Ser Leu Gly Ser Ser Gly Ala Gln Glu Arg Arg
 325 330 335

Arg Lys Gln Ser Leu Pro Gly Ser Ser Gly Asp Ala Asn Gln Asn Glu
 340 345 350

Glu Ile Arg Ala Lys Val Ile Glu Pro Ser Asn Asp Pro Leu Ser Pro
 355 360 365

Gln Thr Ile Ser Lys Val Ala Glu Met Leu Pro Lys Ile Arg Thr Met
 370 375 380

Pro Pro Pro Asp Glu Ser Pro Arg Asp Ser Gly Cys Ala Lys Arg Val
 385 390 395 400

Ala Glu Leu Val Gly Lys Arg Ser Phe Phe Thr Ala Ala Ala Glu Asp
 405 410 415

Gly Arg Ala Leu Asp Val Glu Ala Pro Glu Ala Val Ala Glu Ala
 420 425 430

<210> 5
 <211> 1860
 <212> DNA
 <213> *Medicago trunculata*

<220>
 <221> misc_feature
 <223> seedyl coding sequence

<400> 5
 aaaaacgtta aggactaaaa atataataaa atttaagtag ggattcataa tggaaggcacc 60
 cctatttaca gggatcttaa atataattaa ccctaatttat tatgacagaaa accctttga 120
 aatcacatcg gagcgtgtat gagtagccgt ttcacatcca acggccagta agagcgtaac 180
 tttatttctt ccctcttcaa tctccaacgg tcacataatc tcttccaaat acaaataatt 240
 ccctcttca acctcactct tcatttcttc aacccaaacc caaaaaacta atcagattct 300
 tcttaaatct tggaaacctt ctccccaaaag cacttaaataa aaaaagcact taaccatgaa 360

CD105PCT.ST25.txt

taacacaaaac aacaacaaca ttcttctca ttccacacag gttcaagtgt ggaacaacgc	420
agcattcgat ggtaaagatt tcgccccatcaa ttcatcttct gattccatca aagagaatct	480
aaaccatcc gcattcaaca ttgttccttc ttcaaacaaa agaactattg atgatgaaat	540
tgcggaaatt gaaagtaaaa ttaagcgatt aacttcgaag ctggatttc ttcgtgttga	600
aaaagctgaa agaaaaatcg cttctgaaaa gcgtgttagt ggaattggta ctggaaagaat	660
agtagcagcg aagtttatgg aaccgaagaa aaacgttaca ccgaaacgaa acgggtgtcg	720
tttcaaggag gagacaccga aacgaaacgg tgcgtttcg gatacggcga aatctagggt	780
taattggaga agaggatga gtttaggtcc gatggagatt gcccggaaag tgatggcacc	840
gccggcgtg acgattactc cggcgtacgt gaatcgagg aagtcttgaa tctggaaacc	900
gcaggaaagt tgtgaagtaa tgccgtcgaa gattactccg ggcacggta ataggaggaa	960
atcttggttt ttgaaacctc aagaaaggta tgaagaaaat cgaagaaaaa cgatttgc当地	1020
accgaattt aatttgaatt caaattcagt taattctcg gttggatcga ttaagcgtgt	1080
gaagaagaaa gatgaagaaa ttgctcaggt tcaaccgaag aagctttt aaggtgaaaa	1140
atcagtgaag aaatcgttga aacaaggtag aatttttgcg agccggata attccgggt	1200
tgggtgtgt gatgcgagga aaagatcgat ttccggaaat aataagggtt tagggagtga	1260
aatcagggtc aagaagagat gggagatacc aatttgaagaa gtggatgtga gtggtttgc	1320
tatgttaccg aagatttgcg caatggatgt ttttgcgttgc aagtttgcg attctgggt	1380
tgttaaaaga gttgtgttgc tgaatggaaa aagatcttac ttttgcgttgc aagatggagga	1440
ggagagagtg atgggtgggg aagaaggtagg ttctgtttgt cagggttttgcg attttgc当地	1500
agatgtatgat gatgtatgttgc attatggta acaagggtaa ttgtggaaat tggaaatttgc当地	1560
ttgtttttgtt ggggttgcg ggaactggct atgttgcgt tgatttttgcg atttttgc当地	1620
gtgaaactaa agatggatgttgc aaaagtttat gcttgcgaaat ttggatttgcg ttatatttgc当地	1680
tgaaataata acaacaagca ttttgcgttgc ttaataatttgc tatatttgcg ttgttgc当地	1740
ataatgtatgat ggttttgcgaaat ttttgcgttgc ttaataatata gtttttgcg agagattttgc当地	1800
tcgttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc ttttgcgttgc当地	1860

<210> 6
<211> 394
<212> PRT
<213> *Medicago trunculata*

<220>

<221> MISC_FEATURE
<223> seedyl protein

<400> 6

Met Asn Asn Thr Asn Asn Asn Ile Leu Leu His Ser Thr Gln Val			
1	5	10	15

Gln Val Trp Asn Asn Ala Ala Phe Asp Gly Glu Asp Phe Ala Met Asn		
20	25	30

Ser Ser Ser Asp Ser Ile Lys Glu Asn Leu Asn Pro Ser Ala Phe Asn		
35	40	45

Ile Val Pro Ser Ser Asn Lys Arg Thr Ile Asp Asp Glu Ile Ala Glu		
50	55	60

Ile Glu Ser Glu Ile Lys Arg Leu Thr Ser Lys Leu Glu Leu Leu Arg			
65	70	75	80

Val Glu Lys Ala Glu Arg Lys Ile Ala Ser Glu Lys Arg Val Ser Gly		
85	90	95

Ile Gly Thr Gly Arg Ile Val Ala Ala Lys Phe Met Glu Pro Lys Lys		
100	105	110

Asn Val Thr Pro Lys Arg Asn Gly Val Val Phe Lys Glu Glu Thr Pro		
115	120	125

CD105PCT.ST25.txt

Lys Arg Asn Gly Val Val Ser Asp Thr Pro Lys Ser Arg Val Asn Trp
 130 135 140
 Arg Arg Gly Met Ser Leu Gly Pro Met Glu Ile Ala Gly Lys Val Met
 145 150 155 160
 Ala Pro Pro Ala Met Thr Ile Thr Pro Ala Thr Val Asn Arg Arg Lys
 165 170 175
 Ser Cys Phe Trp Lys Pro Gln Glu Ser Cys Glu Val Met Pro Ser Gly
 180 185 190
 Ile Thr Pro Ala Thr Val Asn Arg Arg Lys Ser Cys Phe Leu Lys Pro
 195 200 205
 Gln Glu Ser Cys Glu Glu Asn Arg Arg Lys Thr Ile Cys Lys Pro Asn
 210 215 220
 Leu Asn Leu Asn Ser Asn Ser Val Asn Ser Ala Val Gly Ser Ile Lys
 225 230 235 240
 Arg Val Lys Lys Lys Asp Glu Glu Ile Ala Gln Val Gln Pro Lys Lys
 245 250 255
 Leu Phe Glu Gly Glu Lys Ser Val Lys Lys Ser Leu Lys Gln Gly Arg
 260 265 270
 Ile Val Ala Ser Arg Tyr Asn Ser Gly Gly Gly Gly Asp Ala Arg
 275 280 285
 Lys Arg Ser Phe Ser Glu Asn Asn Lys Gly Leu Gly Ser Glu Ile Arg
 290 295 300
 Ala Lys Lys Arg Trp Glu Ile Pro Ile Glu Glu Val Asp Val Ser Gly
 305 310 315 320
 Phe Val Met Leu Pro Lys Ile Ser Thr Met Arg Phe Val Asp Glu Ser
 325 330 335
 Pro Arg Asp Ser Gly Ala Val Lys Arg Val Ala Glu Leu Asn Gly Lys
 340 345 350
 Arg Ser Tyr Phe Cys Asp Glu Asp Glu Glu Arg Val Met Val Glu
 355 360 365
 Glu Glu Gly Gly Ser Val Cys Gln Val Leu Asn Phe Ala Glu Asp Asp
 370 375 380
 Asp Asp Asp Asp Asp Tyr Gly Glu Gln Gly
 385 390
 <210> 7
 <211> 674
 <212> DNA
 <213> Saccharum sp.
 <220>
 <221> misc_feature

CD105PCT.ST25.txt

```

<223> seedy1 coding sequence (partial 5' end)

<220>
<221> misc_feature
<222> (362)..(362)
<223> n can be a, c, g or t

<220>
<221> misc_feature
<222> (372)..(372)
<223> n can be a, c, g or t

<220>
<221> misc_feature
<222> (674)..(674)
<223> n can be a, c, g or t

<400> 7
cgcacccgca gtttcgaaaa accaacctat cgccgcctcag atcacgcgag gacgcgagggg      60
gaaggcaggaa tccctccgct cccagccgcc tcctccgctc accccatcgat cgatcgccg      120
tccgggtccag ggggctctcc ggcggcgggtg gcgatggagg aggaccggct catcccgtg      180
gtgcacgtct ggaacaacgc cgccctcgac cacgcctcct cctccgcgtg gcacgcggccac      240
tccccctgtgc cccgcgagcgc acgtcgccag gcggagggggg acaaggagaa ccaccgcggcc      300
gaccccgacc cccgacgtcga ggcggagatc ggcacatcg aggccggagat cctgcgcgtg      360
tnctcccgcc tnccaccaccc tcgcacccatcc aagcagtccgg agccgtccaa gcgcggagaa      420
gtcgcgcggcc cgcccgccgc gaaggcggaaa gcggcggcgg cggcgcggct gcggacgcgg      480
gggctcagcc tggggcccgct cgacgtcgcc getgcccgtta accccaaccc gtcaccacc      540
gacaaccaggc agcagcagcc gcgtgcggcg cagggtctga agccgatcaa gcaggccacg      600
gcggcggccgg gcaaggggct aagacttggg ccccttcgac atggtcggcg cgaacccttag      660
gtccccctccg cccn                                         674

<210> 8
<211> 166
<212> PRT
<213> Saccharum sp.

<220>
<221> MISC_FEATURE
<223> seedy1 protein

<220>
<221> MISC_FEATURE
<223> seedy1 protein (partial N term)

<220>
<221> MISC_FEATURE
<222> (70)..(70)
<223> Xaa can be any amino acid

<400> 8
Met Glu Glu Asp Pro Leu Ile Pro Leu Val His Val Trp Asn Asn Ala
1          5           10          15

Ala Phe Asp His Ala Ser Ser Ala Trp His Ala His Ser Pro Val
20         25           30

Pro Ala Ser Ala Arg Arg Glu Ala Glu Gly Asp Lys Glu Asn His Arg
35         40           45

```

CD105PCT.ST25.txt

Pro Asp Pro Asp Pro Asp Val Glu Ala Glu Ile Gly His Ile Glu Ala
 50 55 60

Glu Ile Leu Arg Leu Xaa Ser Arg Leu His His Leu Arg Thr Ser Lys
 65 70 75 80

Gln Ser Glu Pro Ser Lys Arg Gly Glu Val Ala Pro Ala Pro Ala Ala
 85 90 95

Lys Ala Lys Ala Ala Ala Ala Arg Leu Arg Thr Arg Gly Leu Ser
 100 105 110

Leu Gly Pro Leu Asp Val Ala Ala Gly Asn Pro Asn Pro Leu Thr
 115 120 125

Thr Asp Asn Gln Gln Gln Pro Arg Ala Ala Gln Gly Leu Lys Pro
 130 135 140

Ile Lys Gln Ala Thr Ala Ala Ala Gly Lys Gly Val Arg Leu Gly Pro
 145 150 155 160

Leu Arg His Gly Arg Arg
 165

<210> 9
 <211> 876
 <212> DNA
 <213> Zea mays

<220>
 <221> misc_feature
 <223> seedy1 coding sequence (partial 3' end)

<220>
 <221> misc_feature
 <222> (869)..(869)
 <223> n = a, c, g or t

<400> 9
 ccacgcgtcc ggccgttcga gaggaggaag gccagcgttc caaggagcac gccgtccccg 60
 ccagaccgtg gccatccagc aatgccagc acccaactgga tgccaggcaa ggcaccgcag 120
 caagcagagc caaggcgagg agcgggagca taagcccccag caggttcaagg aggcatgtcca 180
 ctcccaaggc tgccgagaca agagcgggaa atgccaagcc tacagaggcg acgaggggag 240
 ggagcgaagc ggtcaatcac accagcaatg tagccacgac gaagaggccg gcggggagct 300
 ccaaggtcag ggttgcggc agccgctaca gcatccacc tggctccctcc cttagcagctg 360
 tgacacaagg caaccgatgc aagcagtctc tcccaggatc ggctactgg accagagtaa 420
 atctcaatgc gccgcggaaac gacgagttgt ctcttgaaga acttgccaaag gtggcagagc 480
 tgctcccaag gattaggacc atgcccgcctt ctgtatggagag cccgcgtgc tcggatgtg 540
 ccaagcgtgt tgctgatgg tgcgggaaagc gatccctt cactgctgca gggacgtg 600
 gcaatctcgat tacgcctac caggcacggg tggttgaact tgaatcaccc gaggcagcag 660
 cagaagaagc agaagcttga gaagtttgc tttgatcaat tccgaagttgg cttgcattgt 720
 ggcgtggcct cttttgcag tgtgtgtac tacatagtct actgttatcat tcataatcata 780
 tcacatttcc tatttttcc cccttgagac attgcttagt acttttgtgt tgccttgc 840
 aaagagagtgc gaaggttcat ctgctgatnc cttgtt 876

<210> 10
 <211> 224
 <212> PRT
 <213> Zea mays

CD105PCT.ST25.txt

<220>
 <221> MISC_FEATURE
 <223> seedyl protein (partial C term)

<400> 10
 Thr Arg Pro Ala Val Arg Glu Glu Gly Gln Arg Ser Lys Glu His
 1 5 10 15

Ala Val Pro Ala Arg Pro Trp Pro Ser Ser Asn Ala Arg His Pro Leu
 20 25 30

Asp Ala Arg Gln Gly Thr Ala Ala Ser Arg Ala Lys Ala Arg Ser Gly
 35 40 45

Ser Ile Ser Pro Ser Arg Phe Arg Arg Gln Ser Thr Ser Lys Ala Ala
 50 55 60

Glu Thr Arg Ala Gly Asn Ala Lys Pro Thr Glu Ala Thr Arg Gly Gly
 65 70 75 80

Ser Glu Ala Val Asn His Thr Ser Asn Val Ala Thr Thr Lys Arg Pro
 85 90 95

Ala Gly Ser Ser Lys Val Arg Val Val Pro Ser Arg Tyr Ser Ile Pro
 100 105 110

Pro Gly Ser Ser Leu Ala Ala Val Thr Gln Gly Asn Arg Cys Lys Gln
 115 120 125

Ser Leu Pro Gly Ser Ala Thr Glu Thr Arg Val Asn Leu Thr Glu Pro
 130 135 140

Pro Asn Asp Glu Leu Ser Pro Glu Glu Leu Ala Lys Val Ala Glu Leu
 145 150 155 160

Leu Pro Arg Ile Arg Thr Met Pro Pro Ser Asp Glu Ser Pro Arg Asp
 165 170 175

Ser Gly Cys Ala Lys Arg Val Ala Asp Leu Val Gly Lys Arg Ser Phe
 180 185 190

Phe Thr Ala Ala Gly Asp Asp Gly Asn Leu Val Thr Pro Tyr Gln Ala
 195 200 205

Arg Val Val Glu Leu Glu Ser Pro Glu Ala Ala Ala Glu Glu Ala Glu
 210 215 220

<210> 11
 <211> 1257
 <212> DNA
 <213> Arabidopsis thaliana

<220>
 <221> misc_feature
 <223> seedyl coding sequence

<400> 11
 atgacatcaa ttgaggcaac agaaacgctt aacgctcctc caaagcttca gatctggAAC 60

CD105PCT.ST25.txt

aacgctgcct	tcgacgatgg	agattctcaa	atcaacttccg	ccatcgaaagc	ttcttcttgg	120
tctcacctca	acgaatcatt	cgattccgat	tgttagcaagg	agaatcaagt	tccgatttcg	180
gtttcctctt	cgctccaatc	ctcagtctcg	atcacccgaag	ctccgtcagc	aaaatccaag	240
accgtgaaga	ccaaatccgc	cgcagatcg	agtaaaaagc	gagatatcga	tgcagagatc	300
gaagaagtag	agaaggagat	cggacgatta	tcgacgaaat	tggagtgcgt	ccgatttagag	360
aaggcggagc	aaaccgcaag	aagcattgt	atacgtggaa	gaatcggtcc	ggcgaagttc	420
atggaatcat	ctcagaaaca	agtgaaattc	gacgattcgt	gttttacagg	atcgaaatca	480
agagccactc	gtagaggcgt	tagtcttgg	ccagcggaga	tattcaattc	cgcgaagaaa	540
tctgaaactg	tgactcctct	tcaatcagct	cagaatcgac	gcaagtctt	tttctttaag	600
cttccctggaa	tcgaagaagg	tcaagtgacg	acacgaggta	aaggaagaac	gagtttgagt	660
ctgagtcgaa	gatctcgaa	agcgaaaatg	acggcagctc	agaagcaagc	agctacgacg	720
gtggggtcaa	agagagctgt	gaagaaagaa	gaaggagttc	tcttaacaat	ccagcctaag	780
aggctattca	aagaagatga	aaagaatgtt	tctttaagga	aaccattgaa	accaggaaga	840
gttgtggcta	gttagtacag	tcaaattgg	aaaacgcaga	ctggagagaa	agatgttagg	900
aaaaggtcgt	tgcctgagga	tgaagagaaa	gagaatcata	agaggtcgga	gaagagaaga	960
gtttctgt	aaagtaacaa	gagtgaaggg	agagtgaaga	agagatggga	gattccaagt	1020
gaaggttgc	tgtatagcag	tggtgagaac	ggtgacgagt	ctcctatagt	taaggagcta	1080
cctaagatca	gaaacgttcg	tcgtgtgg	gggagccctc	gtgattcagg	tgctgctaag	1140
agagttgcag	aattacaagc	caaggatcgt	aacttcactt	tttgcacgt	tctgaagttt	1200
gaagaatgaa	tgatccgctt	atcaatttga	gtaaaatcca	caactctt	tgtggtt	1257

<210> 12

<211> 402

<212> PRT

<213> Arabidopsis thaliana

<220>

<221> MISC_FEATURE

<223> seedyl protein

<400> 12

Met	Thr	Ser	Ile	Glu	Ala	Thr	Glu	Thr	Leu	Asn	Ala	Pro	Pro	Lys	Leu
1				5				10						15	

Gln	Ile	Trp	Asn	Asn	Ala	Ala	Phe	Asp	Asp	Gly	Asp	Ser	Gln	Ile	Thr
		20					25					30			

Ser	Ala	Ile	Glu	Ala	Ser	Ser	Trp	Ser	His	Leu	Asn	Glu	Ser	Phe	Asp
	35						40					45			

Ser	Asp	Cys	Ser	Lys	Glu	Asn	Gln	Phe	Pro	Ile	Ser	Val	Ser	Ser	Ser
	50				55					60					

Leu	Gln	Ser	Ser	Val	Ser	Ile	Thr	Glu	Ala	Pro	Ser	Ala	Lys	Ser	Lys
65				70				75					80		

Thr	Val	Lys	Thr	Lys	Ser	Ala	Ala	Asp	Arg	Ser	Lys	Lys	Arg	Asp	Ile
	85							90					95		

Asp	Ala	Glu	Ile	Glu	Glu	Val	Glu	Lys	Glu	Ile	Gly	Arg	Leu	Ser	Thr
	100						105					110			

Lys	Leu	Glu	Ser	Leu	Arg	Leu	Glu	Lys	Ala	Glu	Gln	Thr	Ala	Arg	Ser
	115					120					125				

Ile	Ala	Ile	Arg	Gly	Arg	Ile	Val	Pro	Ala	Lys	Phe	Met	Glu	Ser	Ser
	130					135					140				

Gln	Lys	Gln	Val	Lys	Phe	Asp	Asp	Ser	Cys	Phe	Thr	Gly	Ser	Lys	Ser

CD105PCT.ST25.txt

145	150	155	160
Arg Ala Thr Arg Arg Gly Val Ser Leu Gly Pro Ala Glu Ile Phe Asn			
165	170	175	
Ser Ala Lys Lys Ser Glu Thr Val Thr Pro Leu Gln Ser Ala Gln Asn			
180	185	190	
Arg Arg Lys Ser Cys Phe Phe Lys Leu Pro Gly Ile Glu Glu Gly Gln			
195	200	205	
Val Thr Thr Arg Gly Lys Gly Arg Thr Ser Leu Ser Leu Ser Pro Arg			
210	215	220	
Ser Arg Lys Ala Lys Met Thr Ala Ala Gln Lys Gln Ala Ala Thr Thr			
225	230	235	240
Val Gly Ser Lys Arg Ala Val Lys Lys Glu Glu Gly Val Leu Leu Thr			
245	250	255	
Ile Gln Pro Lys Arg Leu Phe Lys Glu Asp Glu Lys Asn Val Ser Leu			
260	265	270	
Arg Lys Pro Leu Lys Pro Gly Arg Val Val Ala Ser Arg Tyr Ser Gln			
275	280	285	
Met Gly Lys Thr Gln Thr Gly Glu Lys Asp Val Arg Lys Arg Ser Leu			
290	295	300	
Pro Glu Asp Glu Glu Lys Glu Asn His Lys Arg Ser Glu Lys Arg Arg			
305	310	315	320
Ala Ser Asp Glu Ser Asn Lys Ser Glu Gly Arg Val Lys Lys Arg Trp			
325	330	335	
Glu Ile Pro Ser Glu Val Asp Leu Tyr Ser Ser Gly Glu Asn Gly Asp			
340	345	350	
Glu Ser Pro Ile Val Lys Glu Leu Pro Lys Ile Arg Thr Leu Arg Arg			
355	360	365	
Val Gly Gly Ser Pro Arg Asp Ser Gly Ala Ala Lys Arg Val Ala Glu			
370	375	380	
Leu Gln Ala Lys Asp Arg Asn Phe Thr Phe Cys Gln Leu Leu Lys Phe			
385	390	395	400
Glu Glu			

<210> 13
<211> 3074
<212> DNA
<213> Artificial sequence

<220>
<223> Sequence of the [PRO0090 - CDS0689 - terminator] expression cassette

CD105PCT.ST25.txt

<400> 13

cttctacatc	ggcttaggtg	tagcaacacg	actttattat	tattattatt	attattatta	60
ttatTTtaca	aaaatataaa	atagatcaGT	ccctcaccac	aagttagAGCA	agtgggtgag	120
ttattgtaaa	gttctacaaa	gctaatttaa	aaggTattgc	attaacttAT	ttcatattac	180
aaacaagagt	gtcaatggaa	caatgaaaAC	cataTGACAT	actataattt	tgtttttatt	240
attgaaatttA	tataattcaa	agagaataAA	tccacatAGC	cgtAAAGTTC	tacatgtggT	300
gcattaccaa	aatatatata	gcttacaaaa	catgacaAGC	ttagTTGAA	aaattgcaat	360
ccttatcaca	ttgacacata	aagtggatGA	tgagtctaa	tattatTTTC	tttgctacCC	420
atcatgtata	tatgatAGCC	acaaaAGTTAC	tttgatgatG	atATCAAAGA	acatTTTtag	480
gtgcacctaA	cagaatATCC	aaataatATG	actcaCTTAG	atcataatAG	agcatcaAGT	540
aaaactaaca	ctctaaAGCA	accgatGGGA	aagcatCTAT	aaatAGACAA	gcacaatGAA	600
aatcctcAtc	atccttcAcc	acaattcaAA	tattatAGTT	gaagcatAGT	agtaatttAA	660
atcaactagg	gatATCACAA	gtttgtacAA	aaaAGCAGGC	tggTaccGGT	ccggAAATTCC	720
cgggatATCG	tcgacCCACG	cgtccgCTGA	cgcgtgggt	ccactacATC	aagacatCTA	780
ctacactcat	ctttttGCA	cttattGGGT	gtAAATTTT	gaaACCCAGT	tgagaaaaAT	840
gagtgtgttA	caataccCAG	aaggGATTGA	cccAGCAGAT	ttcAGATAT	ggaacaatGC	900
agcatttGAT	aatggagatt	ctgaagattt	gtctcgCTG	aaacGTTCTT	ggtctcCTCT	960
gaaACCCCT	tcggTTAGGC	catcAGATC	cttGAAATCT	gatttGTCaa	gtaaggaaaa	1020
tcaaactcct	ttatttGAGA	attcatCTGT	taatCTCTCA	tctccGTTAC	ccataaAGCC	1080
acttaACCCt	aatggggGCTC	tggAAAATTC	aagactcaAG	ccgAACAAAGC	ccaattCCAA	1140
acagagtCT	gatgagatGG	cggCTAGAAA	gagcgggAAAG	ggaardATGATT	tccgtatGA	1200
gaagaaaATA	gacggggAAA	ttgaAGAAAT	tcagatGGAG	atttagtagt	tgagtTCAG	1260
attagaggCT	ttgagaATTG	aaaaggCTGA	gaaaACTGTT	gctaAGACTG	ttgaaaAGCG	1320
aggaaggGTT	gtggcAGCAA	agTTTATGGA	gccAAAACAA	agtGTTTATA	agattGAAGA	1380
gcgttatATCA	atgagtGCAA	gaACAAAGGT	ggAGCAGAGA	agggGTTCTT	gtttagGACC	1440
atctgagatt	tttactGGAA	cgcggcGGGG	agggTTGAGT	atggggCCAT	cagatATTCT	1500
agcaggGACA	acAAAGGAC	ggcaATTGGG	aaAGCAAGAG	atgatttATA	ctcCTATTCA	1560
gccaatacaa	aacaggcGAA	agtCGTGTt	ttGGAAGCTT	caagAGATTG	aagaAGAGGG	1620
aaaaAGTTCA	agcCTTAGTC	ctaaATCAAG	aaaaACTGCT	gcaAGAACAA	tggttacaAC	1680
aaggcaggCA	gttactacAA	ttGcatCAA	gaAGAAATTG	aaaaAGATG	atgactTTT	1740
gagttcAGT	cagccAAAGA	agTTGTTAA	agatCTCGAA	aagtCTGTC	ctGCTAATAA	1800
gaagccccAG	aggccGGGA	gggttGTC	tagtaggtat	aatcAGAGTA	caattcAGTC	1860
atcAGTAGT	agaaAGAGGT	ctttacTGA	aaatGATAAG	gatGAGAGTA	agagaATGA	1920
taagAAACGG	tcgttatCTG	tagggAAAAC	gcgtGtGtC	caaACTGAGA	gcaAGAAATT	1980
gggtactGAA	agtagggTGA	aaaAGAGATG	ggaAAATTCT	agtGAGATTG	tagttCATGG	2040
aaacacAGAG	agtGAGAAAT	ctccactaAG	cattattGtG	aagcctGATT	tgcttccGCG	2100
aattaggatt	gctcCGTGTG	tGAATGAGAC	tcttagggat	tctGGACCTG	ctaaaAGAAT	2160
gatAGAGTTG	atAGGAAGA	atcGTTTT	cagtGtGAT	gaAGATAAGG	agccACCTGT	2220
ctgtcaAGTT	ttaagTTT	cagAGGAAGA	tgctGAAGAG	gaATAATGTG	taataaAGGG	2280
agctgctaAC	tctttCATG	ctctttCAAT	tttcaATCCT	gcctttAAAT	tttGTTCT	2340
tcgtGCTTT	taattGAAATG	gGGAAGCATT	ctttGCTTC	ctAAACtGG	tattCTAGCT	2400
tctGAATTAC	attGtATGt	acaATATGAA	taaggTTT	tcttCCGCA	ggtGtCCAA	2460
gttagTTT	agcttAAAT	agatGCGGA	gcggccGTC	tagGtATCC	ctcgaggGGC	2520
ccaAGCTTAC	gcgtacCCAG	cttTCTGT	caaAGTGTG	atATCACAAG	cccgGGCGGT	2580
cttCTAGGGA	taacAGGGTA	attATATCCC	tctAGATC	aAGCCCGGGC	ggtcttCTAC	2640
gatGATTGAG	taataATGT	tcacGcAtCA	ccatGGGTG	cagtGtCAGT	gtgAGCAATG	2700
acctGAATGA	acaATTGAA	tGAAAAGAAA	aaaAGTACTC	catCTGTTCC	aaattAAAAT	2760
tcattttAAAC	cttttaATAG	gtttataCAA	taattGATAT	atGTTTCTG	tatATGTCTA	2820
attGTTTAC	atccGGGCGG	tcttCTAGGG	ataACAGGGT	aattATATCC	ctctAGACAA	2880
cacacaACAA	ataAGAGAAA	aaACAAATAA	tattaATTG	agaATGAACA	aaaggACCAT	2940
atcattcATT	aactCTTCTC	catCCATTTC	cattTCACAG	ttcGATAGCG	aaaACCGAAT	3000
aaaaAAACACA	gtAAATTACA	agcacaACAA	atGgtACAAG	aaaACAGTT	ttcccaATGC	3060
cataataACTC	gaAC					3074

<210> 14
<211> 668
<212> DNA
<213> Oryza sativa

CD105PCT.ST25.txt

```

<220>
<221> misc_feature
<223> prolamin RP6 promter sequence

<400> 14
ccttctacat cggcttaggt gtagcaacac gactttatta ttatttattat tattattatt      60
attattttac aaaaatataa aatagatcg tcctcacca caagtagagc aagtgggtga      120
gttattgtaa agttctacaa agctaattt aaagttattt cattaactt ttcatatta      180
caaacaagag tgtcaatgga acaatgaaaa ccataatgaca tactataatt ttgttttat      240
tattgaaatt atataattca aagagaataa atccacatag ccgtaaagtt ctacatgtgg      300
tgcattacca aaatatata agtttacaaa acatgacaag cttagttga aaaattgcaa      360
tccttatacac attgacacat aaagttagtg atgagtata atattattt tcttgctacc      420
catcatgtat atatgatagc cacaaagttt ctttgatgtat gatataaag aacattttta      480
ggtgcaccta acagaatatac caaataatata gactcactt gatcataata gagcatcaag      540
taaaactaac actctaaagc aaccgatggg aaagcatcta taaatagaca agcacaatga      600
aaatcctcat catccttcac cacaatttca atattatagt tgaagcatag tagtagaaatc      660
caacaaca

<210> 15
<211> 7
<212> PRT
<213> Artificial sequence

<220>
<223> Motif 1 CORE SEQUENCE

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa can be any amino acid

<220>
<221> MISC_FEATURE
<222> (5)..(6)
<223> Xaa can be any amino acid

<400> 15
Trp Xaa Asn Ala Xaa Xaa Asp
1                      5

<210> 16
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Motif 2 CORE SEQUENCE

<220>
<221> MISC_FEATURE
<222> (4)..(5)
<223> Xaa can be any amino acid

<400> 16
Lys Glu Asn Xaa Xaa Pro
1                      5

<210> 17
<211> 15

```

CD105PCT.ST25.txt

<212> PRT
<213> Artificial sequence

<220>
<223> Motif 3 (coiled coil) CORE SEQUENCE

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa can be a stretch of 1 to 6 amino acids

<220>
<221> MISC_FEATURE
<222> (4)..(5)
<223> Xaa can be any amino acid

<220>
<221> MISC_FEATURE
<222> (8)..(10)
<223> Xaa can be any amino acid

<220>
<221> MISC_FEATURE
<222> (12)..(13)
<223> Xaa can be any amino acid

<400> 17
Glu Xaa Glu Xaa Xaa Arg Leu Xaa Xaa Xaa Leu Xaa Xaa Leu Arg
1 5 10 15

<210> 18
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Motif 4 CORE SEQUENCE

<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa can be any amino acid

<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa can be a stretch of 1 to 10 amino acids

<220>
<221> MISC_FEATURE
<222> (10)..(11)
<223> Xaa can be any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Xaa can be a stretch of 1 to 6 amino acids

<400> 18

CD105PCT.ST25.txt

Leu Pro Xaa Ile Xaa Arg Asp Ser Gly Xaa Xaa Lys Arg Xaa Lys
1 5 10 15