Subgrafos e Operações em Grafos Teoria dos Grafos — QXD0152

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2021

Tópicos desta aula

- Remoção e adição de vértices e arestas
- Subgrafos
- União e Interseção de grafos
- Complemento de um grafo
- Subdivisão de arestas
- Identificação de vértices
- Contração de arestas

- Geralmente, quando estamos tentando provar uma propriedade para um grafo, sentimos a necessidade de olhar apenas para uma parte do grafo.
 - Muitos objetos matemáticos contém sub-objetos: conjuntos contém subconjuntos, espaços vetoriais contém subespaços, e grafos contém subgrafos.

- Geralmente, quando estamos tentando provar uma propriedade para um grafo, sentimos a necessidade de olhar apenas para uma parte do grafo.
 - Muitos objetos matemáticos contém sub-objetos: conjuntos contém subconjuntos, espaços vetoriais contém subespaços, e grafos contém subgrafos.
- Outras vezes, desejamos realizar uma operação no grafo a fim de momentaneamente tranformá-lo em outro grafo.

- Geralmente, quando estamos tentando provar uma propriedade para um grafo, sentimos a necessidade de olhar apenas para uma parte do grafo.
 - Muitos objetos matemáticos contém sub-objetos: conjuntos contém subconjuntos, espaços vetoriais contém subespaços, e grafos contém subgrafos.
- Outras vezes, desejamos realizar uma operação no grafo a fim de momentaneamente tranformá-lo em outro grafo.
- A seguir, apresentamos algumas das operações que podem ser realizadas em grafos.

Remoção e adição de vértices e arestas

Remoção e adição de uma aresta

Dado um grafo G com m arestas:

- remover uma aresta e de G consiste em remover e do conjunto E(G). O grafo resultante é denotado por G - e.
- adicionar uma nova aresta e a G consiste em adicionar e ao conjunto E(G) e ajustar a função ψ_G adequadamente. O grafo resultante é denotado por G+e.

Remoção e adição de várias arestas

- Similarmente, o grafo obtido a partir de G pela adição de um conjunto de arestas E' ⊈ E(G) é denotado por G + E'.
- Já o grafo obtido pela remoção de um conjunto de arestas $E' \subseteq E(G)$ é denotado por G E'.

Remoção e adição de um vértice

Dado um grafo G com n vértices:

- remover um vértice v ∈ V(G) consiste em remover v de V(G) e remover de E(G) todas as arestas incidente em v.
 O grafo resultante é denotado por G − v.
- adicionar um novo vértice v em G consiste em adicionar v ao conjunto V(G). O grafo resultante é denotado por G+v.

Remoção e adição de vários vértices

- Similarmente, o grafo obtido a partir de G pela adição de um conjunto de vértices V' ⊆ V(G) é denotado por G + V'.
- Já o grafo obtido pela remoção de um conjunto de vértices $V' \subseteq V(G)$ é denotado por G V'.

Subgrafo

Subgrafo

- Um grafo *H* é um subgrafo de um grafo *G* se:
 - \circ $V(H) \subseteq V(G)$,
 - \circ $E(H) \subseteq E(G)$ e
 - o ψ_H é uma restrição de ψ_G a E(H).

Subgrafo

- Um grafo H é um subgrafo de um grafo G se:
 - \circ $V(H) \subseteq V(G)$,
 - \circ $E(H) \subseteq E(G)$ e
 - o ψ_H é uma restrição de ψ_G a E(H).
- Se H é subgrafo de G, então representamos isso por $H \subseteq G$. Dizemos também que G contém H como subgrafo.

Grafo G

Subgrafo H

Subgrafo próprio e Subgrafo gerador

- Quando H ⊆ G mas H ≠ G, nós escrevemos H ⊂ G e dizemos que H é um subgrafo próprio de G.
- Se H é um subgrafo de G, então G é um supergrafo de H.
- Um subgrafo gerador de G é um subgrafo $H \subseteq G$ com V(H) = V(G).

Grafo G

Subgrafo próprio

Subgrafo gerador

Exemplo

- O grafo H_1 é um subgrafo de G?
- H_2 e H_3 são subgrafos de G?
- Quais são subgrafos geradores de G?

Grafo subjacente

• Dado um grafo *G*, seu grafo subjacente é o grafo simples obtido a partir de *G* pela remoção de todos os laços e arestas múltiplas.

Grafo subjacente

• Dado um grafo *G*, seu grafo subjacente é o grafo simples obtido a partir de *G* pela remoção de todos os laços e arestas múltiplas.

 Obs.: Note que o grafo subjacente de um grafo G é um subgrafo gerador de G e é simples.

Subgrafo induzido

- Seja G um grafo e $V' \subset V(G)$ tal que $V' \neq \emptyset$.
- O subgrafo de G induzido por V' é o subgrafo de G que tem V' como conjunto de vértices e cujo conjunto de arestas é o conjunto das arestas de G que têm ambos os extremos em V'.
- Esse subgrafo é denotado por G[V'].
- Dizemos também que G[V'] é um subgrafo induzido de G.

Grafo induzido por $V' = \{w, x, y\}$ Denotado por H[V']

Exemplo

• Quais dos subgrafos abaixo são subgrafos induzidos do grafo G?

Subgrafo aresta-induzido

- Seja G um grafo e $E' \subseteq E(G)$, com $E' \neq \emptyset$.
- O subgrafo induzido por E' é o subgrafo cujo conjunto de vértices é o conjunto dos extremos das arestas em E' e cujo conjunto de arestas é o próprio E'.
- Esse subgrafo é denotado por G[E'] e é chamado subgrafo aresta-induzido.

Grafo induzido por $E' = \{xy, yz\}$ Denotado por H[E']

União e interseção de grafos

Grafos disjuntos

- Sejam G e H dois grafos simples.
- Dizemos que G e H são disjuntos se $V(G) \cap V(H) = \emptyset$.
- *G* e *H* são aresta-disjuntos se não possuem arestas em comum.

Grafos disjuntos

- Sejam G e H dois grafos simples.
- Dizemos que G e H são disjuntos se $V(G) \cap V(H) = \emptyset$.
- *G* e *H* são aresta-disjuntos se não possuem arestas em comum.

- G_1 e G_2 são disjuntos, mas G_2 e G_3 não são disjuntos
- G_1 e G_2 são aresta-disjuntos, assim como G_2 e G_3

União de grafos

- Sejam G_1 e G_2 dois grafos simples.
- A união de G₁ e G₂, denotada por G₁ ∪ G₂, é o grafo cujo conjunto de vértices é V(G₁) ∪ V(G₂) e cujo conjunto de arestas é E(G₁) ∪ E(G₂).

União disjunta de grafos

- Sejam G_1 e G_2 dois grafos simples.
- Quando G_1 e G_2 são disjuntos, também denotamos sua união por $G_1 + G_2$ e dizemos que é uma união disjunta.

União disjunta e conexidade

 Note que: um grafo é não-conexo se e somente se ele é a união disjunta de dois outros grafos.

Grafo não-conexo G

Prop.: Todo grafo G pode ser expresso unicamente como a união disjunta de grafos conexos. (Exercício: provar usando indução.)

- Esses subgrafos conexos são chamados de componentes conexas de G.
- O número de componentes conexas de G é denotado por c(G).

Interseção de grafos

- Sejam G_1 e G_2 dois grafos simples.
- A interseção de G₁ e G₂, denotada por G₁ ∩ G₂, é o grafo cujo conjunto de vértices é V(G₁) ∩ V(G₂) e cujo conjunto de arestas é E(G₁) ∩ E(G₂).
 - \circ mas, neste caso, G_1 e G_2 devem ter pelo menos um vértice em comum (não admitimos grafos sem vértices).

Subdivisão de arestas

Subdivisão de arestas

- Subdividir uma aresta uv de um grafo G é a operação que consiste em remover a aresta uv e adicionar um novo vértice w e duas novas arestas uw e wv em G.
- Um grafo G' é uma subdivisão de um grafo G se G' pode ser obtido a partir de G por meio de sucessivas operações de subdivisão de algumas arestas de G.

h a b

Subdivisão G' de G

Subdivisão de arestas - Atividade 1

• Prove que todo grafo roda W_n contém como subgrafo uma subdivisão do grafo completo K_4 .

Roda W₅

Subdivisão de arestas - Atividade 2

• Prove que o grafo de Petersen contém um subgrafo H que é uma subdivisão do grafo bipartido $K_{3,3}$

Identificação de vértices

Identificação de vértices

- Seja G um grafo e dois vértices **não adjacentes** $u, v \in V(G)$.
- Identificar os vértices u e v consiste em removê-los do grafo G e adicionar um novo vértice w em G tal que todas as arestas que antes eram incidentes nos vértices u e v agora são incidentes no vértice w.

Após identificar os vértices d e c

Contração de arestas

Contração de arestas

 A contração de uma aresta uv de um grafo G é a operação de remover a aresta uv e identificar os dois vértices u e v.

Após contrair a aresta *cd*

Complemento de um grafo

Complemento de um grafo simples

- O complemento de um grafo simples G é o grafo simples \overline{G} com conjunto de vértices $V(\overline{G}) = V(G)$ e tal que, para todo par de vértices $u, v \in V(G)$, $uv \in E(\overline{G})$ se e somente se $uv \notin E(G)$.
- Exemplo 1: O grafo vazio com n vértices, O_n , é o complemento do grafo completo K_n .
- Exemplo 2:

Junção de dois grafos

Junção de dois grafos

- A junção de dois grafos G e H é o grafo G + H obtido a partir da união disjunta G ∪ H adicionando as arestas {uv: u ∈ V(G), v ∈ V(H)}.
- Observe que uma roda W_n com $n \ge 4$ é a junção de um ciclo C_n com o grafo completo K_1 , ou seja, $W_n = C_n + K_1$.

Produto Cartesiano de dois grafos

Grades $P_r \square P_s$

• Uma grade $G_{r,s}$ é o produto cartesiano de dois caminhos P_r e P_s , $G_{r,s} = P_r \square P_s$.

Hipercubos

• Um hipercubo Q_k é definido recursivamente como: $Q_1 = K_2$ e $Q_k = Q_{k-1} \square K_2$.

Os três menores hipercubos

Exercícios

Exercícios

- (1) Mostre que o complemento de um caminho de comprimento 3 é um caminho de comprimento 3. Mostre que o complemento de um ciclo de comprimento 5 é um circuito de comprimento 5.
- (2) O grafo leque é o grafo $P_{n-1} + K_1$. Determine o tamanho de todos os grafos leques.
- (3) Prove que $\overline{G+H} = \overline{G} \cup \overline{H}$.
- (4) Determine m(G + H) em termos das ordens e tamanhos de G e H.
- (5) Mostre que $m(Q_k) = k \cdot 2^{k-1}$ usando indução.
- (6) Mostre que um grafo k-regular com cintura 4 tem pelo menos 2k vértices. Quais grafos k-regulares possuem exatamente 2k vértices?

Seis pessoas em uma festa

Atividade: Provar a seguinte afirmação:

Em qualquer festa com exatamante seis pessoas, ou existem três pessoas que se conhecem mutuamente ou existem três pessoas que não se conhecem mutuamente.

Fonte: https://pt.vecteezy.com

FIM