CLASS ACTIVITY

The codes demonstrate the performance of GPU and CPU in Single Instruction Multiple Data (SIMD) with parallelization in distributing System Development with python 3.7. Write your observations of the output?

```
In [1]: # introduce a library by writing 1 line of code
        #CODE START HERE
        #CODE END HERE
In [2]: a =np.array([1,2,3,4])
        print(a)
        [1 2 3 4]
In [3]: # introduce a library by writing 1 line of code
        #CODE START HERE
        #CODE END HERE
In [4]: A =np.random.rand(1000000)
        B =np.random.rand(1000000)
        tic = time.time()
        c = np.dot(A, B)
        toc = time.time()
        print(c)
In [5]: print("vectorized version:" +str(1000*(toc-tic)) +"ms")
            # initialize the value of D to zeros vector
In [6]:
            # D =
            #CODE START HERE
            D =
            #CODE END HERE
            tac = time.time()
            for i in range(1000000):
                D +=A[i]*B[i]
            toc =time.time()
            print(c)
            print("For loop:" +str(1000*(toc - tac)) +"ms")
```