Data Warehousing Overview CS245 Notes 12

Hector Garcia-Molina Stanford University

Warehousing

- Growing industry: \$8 billion in 1998
- Range from desktop to huge:
 - ◆Walmart: 900-CPU, 2,700 disk, 23TB Teradata system
- Lots of buzzwords, hype
 - ♦slice & dice, rollup, MOLAP, pivot, ...

CS 245 Notes12

Outline

- What is a data warehouse?
- Why a warehouse?
- Models & operations
- Implementing a warehouse
- Future directions

CS 245 Notes 12

What is a Warehouse?

- Collection of diverse data
 - ◆subject oriented
 - ♦aimed at executive, decision maker
 - ♦often a copy of operational data
 - ♦ with value-added data (e.g., summaries, history)
 - ♦ integrated
 - ◆time-varying
 - ♦non-volatile

CS 245 Notes12

What is a Warehouse?

- Collection of tools
 - ◆gathering data
 - ◆cleansing, integrating, ...
 - ◆querying, reporting, analysis
 - ◆data mining
 - ◆monitoring, administering warehouse

CS 245 Notes12

Advantages of Warehousing High query performance Queries not visible outside warehouse Local processing at sources unaffected Can operate when sources unavailable Can query data not stored in a DBMS Extra information at warehouse Modify, summarize (store aggregates) Add historical information

Advantages of Query-Driven • No need to copy data • less storage • no need to purchase data • More up-to-date data • Query needs can be unknown • Only query interface needed at sources • May be less draining on sources

OLTP vs. OLAP • OLTP: On Line Transaction Processing • Describes processing at operational sites • OLAP: On Line Analytical Processing • Describes processing at warehouse

OLTP vs. OLAP **OLTP OLAP** Mostly updates Mostly reads Many small transactions • Queries long, complex Gb-Tb of data • Mb-Tb of data Raw data • Summarized, consolidated data Clerical users • Decision-makers, • Up-to-date data analysts as users Consistency, recoverability critical

Query & Analysis Tools

- Query Building
- Report Writers (comparisons, growth, graphs,...)
- Spreadsheet Systems
- Web Interfaces
- Data Mining

CS 245 Notes12 32

Other Operations

- Time functions
 - ◆e.g., time average
- Computed Attributes
 - ♦e.g., commission = sales * rate
- Text Queries
 - ◆e.g., find documents with words X AND B
 - ◆e.g., rank documents by frequency of words X, Y, Z

CS 245 Notes12 33

Data Mining

- Decision Trees
- Clustering
- Association Rules

CS 245 Notes12 34

Decision Trees Example: · Conducted survey to see what customers were interested in new model car • Want to select customers for advertising campaign taurus c2 c3 c4 c5 van van yes yes 35 40 22 50 25 training set yes no taurus CS 245 Notes12

Association Rule

- Rule: {p₁, p₃, p₈}
- <u>Support</u>: number of baskets where these products appear
- <u>High-support set</u>: support ≥ threshold *s*
- Problem: find all high support sets

CS 245 Notes12 43

Finding High-Support Pairs

- Baskets(basket, item)
- SELECT I.item, J.item, COUNT(I.basket)
 FROM Baskets I, Baskets J
 WHERE I.basket = J.basket AND
 I.item < J.item

GROUP BY I.item, J.item
HAVING COUNT(I.basket) >= s;

CS 245 Notes12 44

Implementing a Warehouse

- Monitoring: Sending data from sources
- Integrating: Loading, cleansing,...
- Processing: Query processing, indexing, ...
- Managing: Metadata, Design, ...

CS 245 Notes12

Monitoring

- Source Types: relational, flat file, IMS, VSAM, IDMS, WWW, news-wire, ...
- Incremental vs. Refresh

CS 245

customer	id	name	address	city	
	53	joe	10 main	sfo	
	81	fred	12 main	sfo	1
	111	sally	80 willow	la	√new
					· ····
					,

Notes12

Monitoring Issues

- Frequency
 - ◆periodic: daily, weekly, ...
 - ◆triggered: on "big" change, lots of changes, ...
- Data transformation
 - ◆convert data to uniform format
 - ◆remove & add fields (e.g., add date to get history)
- Standards (e.g., ODBC)
- Gateways

CS 245

Data Cleaning Migration (e.g., yen ⇒ dollars) • Scrubbing: use domain-specific knowledge (e.g., social security numbers) • Fusion (e.g., mail list, customer merging) billing DB → customer1(Joe) merged_customer(Joe) → customer2(Joe) • Auditing: discover rules & relationships (like data mining)

Loading Data

- Incremental vs. refresh
- Off-line vs. on-line
- Frequency of loading
 - ◆At night, 1x a week/month, continuously
- Parallel/Partitioned load

CS 245 Notes12

Derived Data

- Derived Warehouse Data
 - ♦indexes

service DB-

CS 245

- ◆aggregates
- ◆materialized views (next slide)
- When to update derived data?
- · Incremental vs. refresh

CS 245 Notes12

Materialization Factors Type/frequency of queries Query response time Storage cost Update cost

Example: Association Rules

- How do we perform rule mining efficiently?
- Observation: If set *X* has support *t*, then each *X* subset must have at least support *t*
- For 2-sets:
 - \bullet if we need support s for $\{i, j\}$
 - ♦then each i, j must appear in at least s baskets

CS 245 Notes12 73

Algorithm for 2-Sets

- (1) Find OK products
 - ♦those appearing in s or more baskets
- (2) Find high-support pairs using only OK products

CS 245 Notes12 74

Algorithm for 2-Sets

- INSERT INTO okBaskets(basket, item)
 SELECT basket, item
 FROM Baskets
 GROUP BY item
 HAVING COUNT(basket) >= s;
- · Perform mining on okBaskets

SELECT l.item, J.item, COUNT(l.basket)
FROM okBaskets I, okBaskets J
WHERE l.basket = J.basket AND
Litem < J.item
GROUP BY l.item, J.item
HAVING COUNT(l.basket) >= s;

CS 245 Notes12

Counting Efficiently threshold = 3• Another way: count I.item J.item scan & p3 p8 p8 p18 p18 p22 t1 t2 t2 t3 t3 p5 p5 p8 p2 p5 p5 p8 p8 p11 p3 p8 p8 p2 p5 p12 p21 p21 count remove count I.item J.item p5 p8 p12 p18 p23 keep ounter array in memor CS 245 Notes12 77

Discussion Hashing scheme: 2 (or 3) scans of data Sorting scheme: requires a sort! Hashing works well if few high-support pairs and many low-support ones iceberg queries threshold item-pairs ranked by frequency CS 245 Notes12 Page 19

Metadata

- Administrative
 - ♦ definition of sources, tools, ...
 - ◆schemas, dimension hierarchies, ...
 - ◆rules for extraction, cleaning, ...
 - ◆refresh, purging policies
 - ◆user profiles, access control, ...

CS 245 Notes12

Metadata

- Business
- ♦business terms & definition
- ◆data ownership, charging
- Operational
 - ◆data lineage
 - ♦ data currency (e.g., active, archived, purged)
 - ◆use stats, error reports, audit trails

CS 245 Notes12 82

Design

- What data is needed?
- Where does it come from?
- How to clean data?
- How to represent in warehouse (schema)?
- What to summarize?
- What to materialize?
- What to index?

CS 245 Notes12

Tools

- Development
 - design & edit: schemas, views, scripts, rules, queries, reports
- Planning & Analysis
 - ♦ what-if scenarios (schema changes, refresh rates), capacity planning
- Warehouse Management
 - $\ensuremath{\blacklozenge}$ performance monitoring, usage patterns, exception reporting
- System & Network Management
 - ◆ measure traffic (sources, warehouse, clients)
- Workflow Management

◆ "reliable scripts" for cleaning & analyzing data CS 245 Notes12

14

Current State of Industry

- Extraction and integration done off-line
 - ♦Usually in large, time-consuming, batches
- Everything copied at warehouse
 - ♦Not selective about what is stored
 - ◆Query benefit vs storage & update cost
- Query optimization aimed at OLTP
 - ♦ High throughput instead of fast response
 - ◆Process whole query before displaying anything

CS 245 Notes12

Future Directions

- Better performance
- Larger warehouses
- Easier to use
- What are companies & research labs working on?

CS 245 Notes12

Research (1)

- Incremental Maintenance
- Data Consistency
- Data Expiration
- Recovery
- Data Quality
- Error Handling (Back Flush)

CS 245 Notes 12 87

Research (2)

- Rapid Monitor Construction
- Temporal Warehouses
- Materialization & Index Selection
- Data Fusion
- Data Mining
- Integration of Text & Relational Data

CS 245 Notes12 88

Conclusions

- Massive amounts of data and complexity of queries will push limits of current warehouses
- Need better systems:
 - ♦ easier to use
 - ◆provide quality information

CS 245

Notes12