Morfología Matemática (MM)-MLIP2020

2 de noviembre de 2020

Morfología Matemática sobre imágenes binarias

Operaciones Básicas: Dilatación-Erosión. Utilizan un elemento estructurante.

Elemento Estructurante

$$\mathsf{Dados}\ z, SE \subseteq \mathbb{Z}^{2\times 2}\ (SE)_z = \{w: w = s+z\ \forall s \in SE\}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Morfología Matemática sobre imágenes binarias

Operaciones Básicas: Dilatación-Erosión. Utilizan un elemento estructurante.

Elemento Estructurante

$$\mathsf{Dados}\ z, SE \subseteq \mathbb{Z}^{2\times 2}\ (SE)_z = \{w: w = s+z\ \forall s \in SE\}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Morfología Matemática sobre imágenes binarias

Operaciones Básicas: Dilatación-Erosión. Utilizan un elemento estructurante.

Elemento Estructurante

$$\mathsf{Dados}\ z, SE \subseteq \mathbb{Z}^{2\times 2}\ (SE)_z = \{w: w = s+z\ \forall s \in SE\}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Dilatación de I por SE

$$I \oplus SE = \{z \in \mathbb{Z}^{2 \times 2} : I \cap (SE)_z \neq \emptyset\}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Dilatación de I por SE

$$I \oplus SE = \{z \in \mathbb{Z}^{2 \times 2} : I \cap (SE)_z \neq \emptyset\}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Dilatación de I por SE

$$I \oplus SE = \{z \in \mathbb{Z}^{2 \times 2} : I \cap (SE)_z \neq \emptyset\}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Erosión de I por SE

$$I \ominus SE = \{ z \in \mathbb{Z}^{2 \times 2} : (SE)_z \subseteq I \}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Erosión de I por SE

$$I \ominus SE = \{ z \in \mathbb{Z}^{2 \times 2} : (SE)_z \subseteq I \}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Erosión de I por SE

$$I \ominus SE = \{ z \in \mathbb{Z}^{2 \times 2} : (SE)_z \subseteq I \}$$

Imágenes tomadas de la tesis de grado de Matías Molina

Estos operadores no conmutan, es más dan lugar a nuevos operadores

Apertura y Cierre

 $\mathsf{Apertura} \colon I \circ (SE) = (I \ominus SE) \oplus SE$

Cierre: $I \bullet (SE) = (I \oplus SE) \ominus SE$

Figura: Arriba: Imagen y SE. Izquierda: apertura, Derecha: cierre.

Imágenes tomadas de la tesis de grado de Matías Molina

Imágenes tomadas de la tesis de grado de Matías Molina

Imágenes tomadas de la tesis de grado de Matías Molina

a) Imagen b) SE c) Dilatación d) Erosión e) Cierre f) Apertura Imágenes tomadas de la tesis de grado de Matías Molina

a) Imagen b) SE c) Dilatación d) Erosión e) Cierre f) Apertura Imágenes tomadas de la tesis de grado de Matías Molina

a) Imagen b) SE c) Dilatación d) Erosión e) Cierre f) Apertura Imágenes tomadas de la tesis de grado de Matías Molina

Figura: help MATLAB

Morfología Matemática en escala de grises

Dilatación y Erosión de I por SE en escala de grises

$$(I \oplus SE)(z) = max\{I(z+s) \ s \in (SE)_z\}$$

$$(I \ominus SE)(z) = min\{I(z+s) \ s \in (SE)_z\}$$

help MATLAB

Morfología Matemática en escala de grises

Dilatación y Erosión de I por SE en escala de grises

$$(I \oplus SE)(z) = max\{I(z+s) \ s \in (SE)_z\}$$

$$(I \ominus SE)(z) = min\{I(z+s) \ s \in (SE)_z\}$$

help MATLAB