Lecture 4

Michael Brodskiy

Professor: G. Fiete

February 24, 2025

- Wave Equation for Unidimensional Particle
 - In classical mechanics, we have the energy problem, with E as the total energy, T as the kinetic energy, and V as the potential energy:

$$E = T + V = \frac{p^2}{2m} + V(x)$$

- In quantum mechanics, we may define the Hamiltonian as:

$$\hat{H} = \frac{\hat{p}}{2m} + V(\hat{x})$$

- * Where \hat{p} is the momentum operator and \hat{x} is the position
- From here, the time-independent Schrödinger equation may be written as:

$$\hat{H}\phi_E(x) = E\phi_E(x)$$

- * Where $\phi_E(x)$ represents the wave function/eigenfunction
- We may continue to get:

$$\hat{p} = -i\hbar \frac{d}{dx}, \quad \hat{x} = x$$

* This can be used to obtain:

$$\hat{p}\phi(x) = -i\hbar \frac{d}{dx}\phi(x), \quad \hat{x}\phi(x) = x\phi(x)$$

- From here, we get:

$$\hat{H}\psi(x) = -\frac{\hbar^2}{2m} \frac{d^2}{dx^s} \psi(x) + V(x)\psi(x) = E\psi(x)$$

- The above is the wave equation we need to solve. The wave function can generically be written as:

$$\psi(x) = \sum_{n=0}^{d} \psi_n \phi_{E_n}(x)$$

- * Note that ψ_n is a scalar coefficient (projections of ψ along the *n*-th direction) and $\phi_{E_n}(x)$ represents basis functions
- * Also, note that, from previous lessons, we may recall that the probability of finding the system in a particular eigenstate is:

$$P_{E_n} = |\psi_n|^2$$

- In Dirac notation:

$$|\psi\rangle = \begin{pmatrix} \langle E_1 | \psi \rangle \\ \langle E_2 | \psi \rangle \\ \vdots \\ \langle E_n | \psi \rangle \end{pmatrix}$$

* And also:

$$\langle \psi | = (\langle E_1 | \psi \rangle^* \quad \langle E_2 | \psi \rangle^* \quad \cdots \quad \langle E_n | \psi \rangle^*)$$

- Change of Basis
 - * Changing basis to a position representation allows us to obtain the probability of finding the particle at x as:

$$P_x = |\psi(x)|^2$$

* This means that $|\psi(x)|^2$ is now a probability density such that:

$$\int_{-\infty}^{\infty} P(x) dx = \int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$$

* Furthermore, we may find the probability that the particle is in a certain range as:

$$P[a \le x \le b] = \int_a^b P(x) dx = \int_a^b |\psi(x)|^2 dx$$

* In summary, we determine:

$$\langle x|\psi\rangle = \psi(x)$$

 $\langle \psi|x\rangle = \psi^*(x)$
 $\hat{A} = \hat{A}(x)$

- Quantized Energies and Spectroscopy
 - Spectroscopy is an experimental technique for measuring the energy fingerprint of a system
 - Historically, hydrogen played an important role in the development of this technique
 - Downward transitions give rise to emission spectra
 - Upward transitions give rise to absorption spectra
 - $E_i + E_j$, there is a possible spectral line with photon energy $E_i E_j$, with photon frequency f_{ij} and wavelength λ_{ij} :

$$f_{ij} = \frac{\omega_{ij}}{2\pi} = \frac{E_i - E_j}{h}$$
$$\lambda_{ij} = \frac{c}{f_{ij}} = \frac{hc}{E_i - E_j}$$

- * Assuming $E_i E_j > 0$
- Infinite Square Well
 - We want to solve:

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right)\phi_E(x) = E\phi_E(x)$$

- The solutions of the this depend critically on the functional dependence of V(x)
- We create a variable k^2 such that:

$$k^2 = \frac{-2mE}{\hbar^2}$$

- This gives us:

$$\frac{d^2}{dx^2}\phi_E(x) = k^2\phi_E(x)$$

- There are two possible forms of the solution:

$$\phi_E(x) = Ae^{ikx} + Be^{-ikx}$$
$$\phi_E(x) = A\sin(kx) + B\cos(kx)$$

- Applying boundary conditions, we obtain:

$$k_n = \frac{n\pi}{L}$$

- From this, we may determine:

$$E_n = \frac{n^2 \hbar^2}{2mL^2}, \quad n = 1, 2, 3 \cdots$$

- The general form of the wave function may be written:

$$\phi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

- We can compute expectation values as:

$$\langle \hat{x} \rangle = \langle E_n | \hat{x} | E_n \rangle = \int_{-\infty}^{\infty} \phi^*(x) x \phi_n(x) dx$$

This gives us:

$$\int_{-\infty}^{\infty} x |\phi_n(x)|^2 dx = \frac{L}{2}$$

- Finite Square Well
 - In a finite well, we have potential energy defined by:

$$V(x) = \begin{cases} V_o, & x < -a \\ 0, & -a < x < a \\ V_o, & x > a \end{cases}$$

- This gives us:

$$\left(-\frac{\hbar^2}{2m}d^2dx^2\right)\phi_E(x) = E\phi_E(x) \quad \text{(inside box)}$$

$$\left(-\frac{\hbar^2}{2m}d^2dx^2 + V_o\right)\phi_E(x) = E\phi_E(x) \quad \text{(outside box)}$$

- We know that:

$$k = \sqrt{\frac{2mE}{\hbar^2}} \quad \text{(inside)}$$

$$q = \sqrt{\frac{2m(V_o - E)}{\hbar^2}} \quad \text{(outside)}, 0 < E < V_o$$

- We may find the solutions inside and outside of the box (respectively) as:

$$\phi_E(x) = e^{-ikx} \text{ or } \phi_E(x) = e^{-kx} \text{ (inside)}$$

 $\phi_E(x) = Ae^{qx} + Be^{-qx} \text{ (outside)}$

- Thus, we may write:

$$\phi_E(x) = \begin{cases} Ae^{qx} + Be^{-qx}, & x < -a \\ C\sin(kx) + D\cos(kx), & -a < x < a \\ Fe^{qx} + Ge^{-qx}, & x > a \end{cases}$$

- Two boundary conditions:
 - 1. $\phi_E(x)$ is continuous
 - 2. $d\phi_E(x)/dx$ is continuous (unless the potential is infinite)
- Since our problem is symmetric about the origin, we have even and odd solutions:

$$\phi_{even}(x) = \begin{cases} Ae^{qx}, & x < -a \\ D\cos(kx), & -a < x < a \\ Ae^{-qx}, & x > a \end{cases}$$

$$\phi_{odd}(x) = \begin{cases} Ae^{qx}, & x < -a \\ C\sin(kx), & -a < x < a \\ -Ae^{-qx}, & x > a \end{cases}$$