RNA SEQUENCING DATA ANALYSIS OF Naumovozyma castellii

PRINCIPLES OF GENOME BIOINFORMATICS (UPF)

Xavier Soler

Sergio Suárez

Marina Vallejo

01/12/2021

RAW DATA

Transcriptomics data of 11 species of yeast identically grown in rich media and oxidative stress conditions

William R. Blevins [™], Lucas B. Carey & M. Mar Albà

FILES

illumina_truseq_adapters.fa

n_castellii.fa

n_castellii.gff

n_castellii _read1.fastq.gz

n_castellii _read2.fastq.gz

ANALYSIS

BASIC:

- Read filtering
- RNA-Seq alignment
- Transcript assembly
- FASTA and ORF obtention

EXTENDED:

- Codon usage
- GC content
- BLASTp
- Sequence length extended
- Coding Score (CIPHER)
- TPM extended

READ FILTERING

BEFORE TRIMMOMATIC

Per base sequence quality READ 1, 26769999 sequences

AFTER TRIMMOMATIC

Drop 7,548,312 sequences

RNA-SEQ ALIGNMENT

hisat2, samtools, IGV

TRANSCRIPT ASSEMBLY

stringtie + awk

TRANSCRIPT

815 Novel (12%) 5969 Known (88%) 6511 Total

Known = annotated

FASTA AND ORF OBTENTION

FASTA

getfasta (bedtools)

Input: global FASTA+ known/novel gff

Output: known/novel FASTA

>NC_016491.1:350-1271(-)

ATGGCGTCCGCTTTTCTGGGACAAACGAAGAAAAACAGAATATATAACTG

>NC 016491.1:3019-3643(-)

ATGTCAGATACAAATCTTCAAAAAAGCCAGGAGATTGATAAAAGCGCAAA

>NC 016491.1:6066-6759(+)

ATGACAAACCAGCGTGCTATCCTTTACACCCACGCTGAATTTACAAGACC

Number of sequences:

```
ubunti@u6unti:~/Desktop$ grep '>' known.fasta | wc -l
5696
ubunti@ubunti:~/Desktop$ grep '>' novel.fasta | wc -l
815
```

ORF

Perl script

Input: known/novel FASTA

Output: longest ORF FASTA +

randomized ORF FASTA +

lengths

MAX ORF LENGTH (nt)

Known: 14805

Known random: 564

Novel: 5367

Novel random: 666

CODON USAGE

cusp (EMBOSS)

GC CONTENT

infoseq (EMBOSS)

Descriptive statistics:

	TRANSCRIPT	
	KNOWN	NOVEL
Min.	28.21	25.15
1st Qu.	35.99	34.19
Median	37.74	36.43
Mean	38.59	37.01
3rd Qu.	40.04	39.30
Max.	66.67	56.82

Kolmogorov-Smirnov test:

	TRANSCRIPT
P value	<0.0001
P value summary	***
Significantly different (P < 0.05)?	Yes
Kolmogorov-Smirnov D	0.2043

GC content lower in Novel transcript

Higher GC content related with mRNA stabilization

New gens evolution positive to increase GC content

BLASTp

BLASTp - Compare our transcript with proteins of other organisms

N. castellii

- 5867 gens
- 95.3% coding

K. lactis

- 5335 gens
- 95.3% coding

S. Cerevisae

- 6464 gens
- 93.1% coding

S. pombe

- 6974 gens
- 73.6% coding

	Transcript	Matches	e-value > 0.1
S. cerevisiae	Known	573	3 – 0.5%
	Novel	84	0 – 0%
	Database	541	5 – 0.9%
K. lactis	Known	644	2 – 0.3%
	Novel	117	1-0.9%
	Database	591	2 – 0.3%
S. pombe	Known	628	4 – 0.6%
	Novel	134	0 – 0%
	Database	607	4 – 0.7%

SEQUENCE LENGTH

CODING SCORE (CIPHER)

$$CS_{hexamer(i)} = log \begin{cases} freq_{coding} (hexamer(i)) \\ freq_{non-coding} (hexamer(i)) \end{cases}$$

$$CS_{ORF} = \frac{\sum_{i=1}^{i=n} CS_{hexamer(i)}}{n}$$

https://github.com/jorruior/CIPHER 13

CODING SCORE (CIPHER)

Novel transcripts with high coding capacity are specie-specific

ORFS PER TRANSCRIPT

TRANSCRIPT PER MILION (TPM)

We cannot be sure of the coding capacity of the short transcripts

CONCLUSIONS

Novel genes seem to be developed in novel transcript

- Lower GC content
- Low homology in BLAST
- Higher ORF number

Uncertainty about the coding capacity of the short transcripts

- Low homology in BLAST
- High variability in TPM and CS

MACHINES AND TOOLS

MACHINE 1	MACHINE 2	MACHINE 3
macOS 11.6 - Darwin 20.6.0	MacOS Monterey – 12.0.1	20.04.2-Ubuntu
Intel Core i5 CPU 2.3 GHz	Intel Core i5 CPU 2.3 GHz	Intel Core i7 CPU 2.7 GHz
8 GB RAM	8 GB RAM	12 GB RAM
2 Cores	2 Cores	2 Cores

TOOLS BASIC ANALYSIS	TOOLS EXTENDED ANALYSIS
fastQC 0.11.5	EMBOSS 6.6.0
SRA 2.4.1	blastp 2.12.0+
stringtie 1.3.4d	CIPHER 1.0.0
Trimmomatic 0.36	Python 2.7
PERL v5.30.0	R 4.0.2
hisat2-2.2.0	MATLAB_R2021a
bedtools-2.28.0	