

Clustering (= Classification non-supervisée)

Fichiers sur

https://github.com/mkirschpin/CoursPython

http://kirschpm.fr/cours/PythonDataScience/

https://wordstream-files-prod.s3.amazonaws.com/s3fs-public/machine-learning.png

Types of Machine Learning

https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/

Apprentissage supervisé / non supervisé

supervised learning

unsupervised learning

Trois grands types de clustering

Clustering par partition

 Une division des données en sous-ensembles (clusters) disjoints

Clustering hiérarchique

 Un ensemble de clusters emboités les uns dans les autres, avec une structure hiérarchique

Clustering par densité

 Une division des données en clusters disjoints qui s'appuie sur la densité estimée des clusters

Clustering par Partition (le plus utilisé)

- Une bonne méthode de regroupement
- Permet de garantir :
 - Une grande similarité intra-groupe
 - Une faible similarité inter-groupe

Quelques limitations :

- N'est pas adapté à des "formes"complexes
- Peut produire des résultats différents à chaque exécution

Fonctionnement K-means

- Prendre K points (au hasard) comme centroïdes initiaux
- Répéter
 - Former K clusters en assignant les points à leur centroïde le plus proche
 - Mettre à jour le centroïde de chaque cluster jusqu'à ce que qu'aucun centroïde ne bouge

Notion de distance

- Chaque cluster contient les points les plus proches
 - avec la métrique MSE
- Aucune étiquette n'est nécessaire

K-means

from sklearn.cluster import KMeans

Création objet modèle

means = KMeans(n_clusters=3)

On construit le modèle (fit)

On doit indiquer le nombre de clusters K

means.fit(dataframe)

Dataframe donné en entrée (sans colonne 'target' car apprentissage non supervisé)

means.labels_

On affiche les labels (clusters) attribués à chaque valeur

Etude du dataset

- Créer le DataFrame avec les données Iris

5.0

```
On n'oublie pas les imports
from sklearn.datasets import load_iris
import pandas as pnd
                                                               Création du DataFrame
iris = load_iris()
iris_df = pnd.DataFrame(iris.data, columns=iris.feature_names)
                                                Cette colonne indiquant l'espèce ne
iris_df['target'] = iris.target
                                                sera utilisée que pour comparer les
                                                résultats aux labels après coup
iris_df.head()
                     sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
                  0
                                  5.1
                                                 3.5
                                                                  1.4
                                                                                  0.2
                                                                                          0
                                  4.9
                                                 3.0
                                                                  1.4
                                                                                  0.2
                                                                                          0
                  1
                                  4.7
                                                 3.2
                                                                  1.3
                                                                                  0.2
                  2
                                                                                          0
                                                                  1.5
                  3
                                  4.6
                                                 3.1
                                                                                  0.2
                                                                                          0
```

3.6

1.4

0.2

0

- Visualisation des données
 - On peut afficher les données sur un plan 2D
 - Problème : on a 12 combinaisons possibles (4 features x 3 classes d'Iris)

```
import matplotlib.pyplot as plt
%matplotlib inline
                              Création d'une
plt.figure(figsize=[10,10])
                             figure taille 10x10
plt.scatter ( iris_df['petal length (cm)'],
               iris_df['sepal width (cm)']
               c=iris_df['target'])
```


Hands on!

- Rose Harrison
- Visualisation des paires de features avec Seaborn
 - Affichage des combinaisons des différentes features 2 à 2

```
import seaborn as sns
grid = sns.pairplot(data=iris_df, vars=iris_df.columns[0:4], hue='target')
```


 lci on peut observer que certaines combinaisons de features sont plus propices à la séparation en clusters

Hands on!

Exemple clustering

- Créer le modèle K-Means
- Entraîner le modèle

On fait d'abord l'import

```
from sklearn.cluster import KMeans

Création du modèle

avec 3 classes (K = 3)

kmeans = KMeans ( n_clusters=3 , random_state=11 ) Random_state=11 pour obtenir toujours le même résultat

Entrainement du modèle

kmeans.fit( iris_df.drop(['target'], axis='columns') )
```

Important : modèle non supervisé, donc on ne fournit pas de target

On supprime la colonne target

Exemple clustering

- Afficher les labels créés lors du clustering :

– Comparaison avec les target « officiels » :

- Suite de l'Exercice : faire un clustering des espèces d'Iris
 - On peut afficher les points colorés selon les labels estimés

- Faisons le même, cette fois-ci montrant les **labels d'origine** (*iris.target*)

ÉCOLE DE MANAGEMENT DE LA SORBONNE

Hands On!

Labels estimés

Comment choisir le nombre de clusters?

- Parfois, on ne connait pas la « bonne » valeur de K
 - On peut déterminer de manière expérimentale en observant :
 - le SSE (somme des erreurs au carré) méthode "coude" (elbow)
 - ou le score "silhouette" mesure la cohésion des clusters

```
from sklearn import metrics
import numpy as np

#utilisation de la métrique "silhouette"
#faire varier le nombre de clusters de 2 à 10
res = np.arange(9,dtype="double")
for k in np.arange(9):
    km = KMeans(n_clusters=k+2)
    km.fit( iris_df.drop(['target'], axis='columns') )
    res[k] = metrics.silhouette_score(iris_df.drop(['target'],axis='columns'),km.labels_))
print(res)

import matplotlib.pyplot as plt
plt.title("Silhouette")
plt.xlabel("# of clusters")
plt.plot(np.arange(2,11,1),res)
plt.show()
```


Testez d'autres valeurs de K Testez d'autres algorithmes de clustering CAH

CAH Classification Ascendante Hiérarchique

- Méthode agglomérative
- Voir notebook kmeans-silhouette-cah-fromage.ipynb

Aide pour le projet

Voir notebook creation-colonne-calculee.ipynb