دورة سنة ٢٠٠٨ الاكمالية الاستثنائية	امتحانات الشهادة الثانوية العامة الفرع: علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة أربع ساعات	عدد المسائل: ست

إرشادات عامة :- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qui lui correspond.

N	Questions	Réponses		
11	Questions	a	b	c
1	Soit $f(x) = \arctan\left(\frac{2x}{1-x^2}\right) \text{ pour}$ $x \in]-\infty; -1[, \text{ on a :}$	$f(x) = \pi + 2\arctan(x)$	$f(x) = -2\arctan(x)$	$f(x) = \pi - 2\arctan(x)$
2	$f(x) = \ln(x)$ définie sur $]0;+\infty[$; la dérivée d'ordre n de f est donnée par :	$f^{(n)}(x) = \frac{(-1)^n n!}{x^n}$	$f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$	$f^{(n)}(x) = \frac{1}{x^n}$
3	Le nombre de rectangles dans cette figure est :	60	12	20
4	L'équation $e^{2x} + 2x - 1 = 0$, admet dans l'ensemble <i>IR</i> :	2 racines distinctes	aucune racine	une seule racine
5	Si $z = e^{i\frac{\pi}{2}} + e^{-i\frac{\pi}{6}}$ alors:	$\arg(z) = \frac{\pi}{2} - \frac{\pi}{6}$	$\arg(z) = \frac{\pi}{2} + \frac{\pi}{6}$	$\arg(z) = \frac{\pi}{6}.$

II- (2 points)

L'espace est rapporté à un repère orthonormé direct $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère le point A(2; -3; 5) et les plans (P) et (Q) d'équations:

(P):
$$2x - 2y - z + 4 = 0$$

(Q):
$$2x + y + 2z + 1 = 0$$

- A-1) Démontrer que les deux plans (P) et (Q) sont perpendiculaires.
 - 2) Montrer que la droite (D) définie par $\begin{cases} x=t\\ y=2t+3\\ z=-2t-2 \end{cases}$ (t est un paramètre réel),

est l'intersection de (P) et (Q).

- 3) Calculer les coordonnées du point H projeté orthogonal du point A sur la droite (D).
- **B-** On désigne par (R) le plan passant par le point W(1; 4; 1) et parallèle au plan (Q). On considère dans (R) le cercle (C) de centre W et de rayon 3.
 - 1) Trouver une équation de (R).
 - 2) Prouver que B (3; 2; 0) est un point de (C).
 - 3) Ecrire un système d'équations paramétriques de la tangente (T) en B à (C).

III- (3 points)

Le plan complexe est rapporté à un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Soit f la transformation qui, à tout point M d'affixe z, associe le point M ' d'affixe z' telle que $z' = (\overline{z} - 2)(\overline{z} + 1)$ où \overline{z} est le conjugué de z.

On désigne par (x ; y) les coordonnées de M et par (x ' ; y ') celles de M ' .

- 1) Calculer x ' et y 'en fonction de x et y et montrer que lorsque M ' varie sur l'axe des ordonnées, M varie sur la courbe (C) d'équation: $x^2 y^2 x 2 = 0$.
- 2) a- Prouver que (C) est une hyperbole dont on déterminera le centre, les sommets et les foyers. b- Tracer (C).
- 3) Soit E le point de (C) d'abscisse 3 et d'ordonnée positive.
 - a- Ecrire une équation de la tangente (t) en E à (C).
 - b- La droite (t) coupe les asymptotes de (C) en P et Q. Prouver que E est le milieu de [PQ].

2

4) On désigne par (D) le domaine limité par (C) et la droite d'équation x = 3. Calculer le volume engendré par la rotation de (D) autour de l'axe des abscisses.

IV- (3 points)

Une urne contient n + 10 boules ($n \ge 2$): n boules blanches, 6 boules rouges et 4 boules noires. **A-** On tire simultanément et au hasard 2 boules de l'urne.

- 1) Calculer la probabilité q(n) de tirer deux boules blanches.
- 2) On note p(n) la probabilité de tirer deux boules de même couleur.

a- Montrer que
$$p(n) = \frac{n^2 - n + 42}{(n+10)(n+9)}$$
.

b- Vérifier que
$$\lim_{n\to +\infty} p(n) = \lim_{n\to +\infty} q(n).$$
 Interpréter ce résultat.

c- Existe-t-il un cas où
$$p(n) = \frac{31}{105}$$
?

B- On suppose dans cette partie que n = 3.

Un jeu consiste à tirer simultanément et au hasard 2 boules de l'urne.

Si les 2 boules tirées sont de même couleur, le joueur marque + 4 points ; sinon, il marque -1 point. Le joueur répète le jeu deux fois en remettant, après le premier jeu, les boules tirées dans l'urne. Soit X la variable aléatoire égale à la somme des points marqués par le joueur.

- 1) Justifier que les valeurs de X sont : -2; 3 et 8.
- 2) Déterminer la loi de probabilité de X.
- 3) Calculer l'espérance mathématique E(X).

V- (3 points)

Dans un plan orienté on donne un hexagone régulier direct

ABCDEF de centre O, tel que (OA;OB) =
$$\frac{\pi}{3}$$
 (2 π).

(C) est le cercle circonscrit à cet hexagone.

I et J sont les milieux respectifs de [OA] et [OB].

Soit S la similitude qui transforme A en B et B en J.

b- Démontrer que
$$S(D) = A$$
. Trouver $S(O)$ et vérifier que $S(C) = I$.

- 2) Le cercle (C') est l'image de (C) par S. Déterminer le centre et le rapport de chacune des deux homothéties qui transforme (C) en (C').
- 3) G est le milieu de l'arc BC sur le cercle (C).

Le plan est rapporté au repère orthonormé (O; OA, OG).

- a-Trouver l'affixe de chacun des points B, C, E et F.
- b- Écrire la forme complexe de S et déduire l'affixe de son centre W.
- c- H est le point de rencontre de [AJ] et [BI]. Déterminer le point H' image de H par S.

3

VI- (7 points)

Soit f la fonction définie sur $I =]0; +\infty[$ par $f(x) = x^2 + \ln x$ et (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- **A-** 1) Calculer f '(x) et déterminer le sens de variations de f sur $]0;+\infty[$.
 - 2) a- Calculer $\lim_{x\to 0} f(x)$ et déduire une asymptote à (C).
 - b- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c- Dresser le tableau de variations de f.
 - d- Déduire que l'équation $x^2 + \ln x = 0$, admet une solution unique α et que $0, 6 < \alpha < 0, 7$. Etudier le signe de f(x) suivant les valeurs de x.
 - 3) a- Démontrer que (C) admet un point d'inflexion dont on déterminera l'abscisse.
 - b- Tracer (C).
 - 4) a- Démontrer que f admet sur I, une fonction réciproque f -1 dont on déterminera le domaine de définition.
 - b- Soit (C') la courbe représentative de f^{-1} . Prouver que le point A(1;1) est commun à (C) et (C') et tracer (C') dans le repère $\left(O; \vec{i}, \vec{j}\right)$.
 - c- Ecrire une équation de la tangente en A à (C').
 - d- Soit $S(\alpha)$ l'aire du domaine limité par (C), (C'), l'axe des abscisses et l'axe des ordonnées. Calculer $S(\alpha)$.
- **B-** Soit (T) la courbe représentative de la fonction h définie sur $I = [0; +\infty)$ par $h(x) = \ln x$.
 - 1) Etudier la position relative de (C) et (T) et tracer (T) dans le même repère que (C).
 - 2) Soit g la fonction définie sur I par $g(x) = x^2 + (\ln x)^2$.
 - a- Calculer g'(x) et vérifier que $g'(x) = \frac{2}{x}f(x)$.
 - b- En déduire le sens de variations de g sur I.
 - 3) Soit M_0 le point de (T) d'abscisse α et M un point quelconque de (T) d'abscisse x.

4

- a- Calculer OM_0^2 en fonction de α et OM^2 en fonction de x.
- b- Prouver que $OM_0 \le OM$ pour tout x de I.
- c- Démontrer que la tangente en M_0 à (T) est perpendiculaire à (OM_0) .

QI	Corrigé	Note
1	$f(x) = \arctan\left(\frac{2x}{1-x^2}\right) \text{Pour } x = -\sqrt{3} , f(x) = \pi + 2\arctan(x) $ (a)	1
2	La dérivée d'ordre n de f est $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{x^n}$ car la dérivée d'ordre 2 est $-1/x^2$ (b)	1
3	Le nombre de rectangles dans cette figure est $C_5^2 \times C_4^2 = 60$ (a)	0.5
4	La fonction $f(x) = e^{2x} + 2x - 1$ est continue et strictement croissante sur IR de $-\infty$ à $+\infty$, donc l'équation $e^{2x} + 2x - 1 = 0$, admet dans <i>IR</i> une seule racine (c)	1
5	$z = e^{i\frac{\pi}{2}} + e^{-i\frac{\pi}{6}} = \frac{\sqrt{3}}{2} + \frac{1}{2}i = e^{i\frac{\pi}{6}} . $ (c)	0.5

QII	Corrigé	Note
A1	$\overrightarrow{N}_P(2;-2;-1)$ et $\overrightarrow{N}_Q(2;1;2)$ avec \overrightarrow{N}_P . $\overrightarrow{N}_Q=0$,donc (P) est perpendiculaire à (Q)	0.5
A2	Pour tout t: $\begin{cases} 2t - 2(2t+3) - (-2t-2) + 4 = 0 \\ 2t + (2t+3) + 2(-2t-2) + 1 = 0 \end{cases}$ alors (D) est 1'intersection de (P) et (Q).	0.5
A3	H = proj(A/(D)); $f(t) = AH^2 = (t-2)^2 + (2t+6)^2 + (2t+7)^2$ avec $f'(t) = 0$ d'où $t = -8/3$ et $H(-8/3; -7/3; 10/3)$	1
B1	(R) // (Q); (R) : $2x + y + 2z + r = 0$ avec (R) passe par W(1; 4; 1). 2(1) + 4 + 2(1) + r = 0; $r = -8$; (R) : $2x + y + 2z - 8 = 0$	0.5
B2	B est un point de (R) car $2(3) + 2 + 2(0) - 8 = 0$ avec WB = 3, donc B \in (C).	1
В3	Pour tout point M(x; y; z) de (T) on a: \overrightarrow{BM} et $(\overrightarrow{BW} \wedge \overrightarrow{N_R})$ sont colinéaires; $\overrightarrow{BW} \wedge \overrightarrow{N_R}$ (3; 6; -6) (T): $x = k + 3$; $y = 2k + 2$, $z = -2k$ (k: paramètre réel)	0.5

QIII	Corrigé	Note
1	$z' = (\overline{z} - 2)(\overline{z} + 1) = \overline{z}^2 - \overline{z} - 2 = x^2 - y^2 - x - 2 + (y - 2xy)i.$ $D'où x' = x^2 - y^2 - x - 2 \text{ et } y' = y - 2xy \text{ . M } ' \in y'y \Leftrightarrow x' = 0 \Leftrightarrow x^2 - y^2 - x - 2 = 0.$	1
	$x^{2} - y^{2} - x - 2 = 0 \Leftrightarrow \left(x^{2} - x + \frac{1}{4}\right) - y^{2} - 2 - \frac{1}{4} = 0 \Leftrightarrow \left(x - \frac{1}{2}\right)^{2} - y^{2} = \frac{9}{4}.$ Donc (C) est une hyperbole équilatère de centre $I\left(\frac{1}{2};0\right)$ et d'axe focal $x'x$ avec	
2a	$a^{2} = b^{2} = \frac{9}{4} \text{ et } c = a\sqrt{2} = \frac{3\sqrt{2}}{2}.$ Sommets: $A\left(\frac{1}{2} + \frac{3}{2}; 0\right) \text{ et } B\left(\frac{1}{2} - \frac{3}{2}; 0\right) \text{; soit } A(2; 0) \text{ et } B(-1; 0).$	1.5
	Foyers: $F\left(\frac{1}{2} + \frac{3\sqrt{2}}{2}; 0\right)$ et $F'\left(\frac{1}{2} - \frac{3\sqrt{2}}{2}; 0\right)$.	

		1
2b	Asymptotes: (Δ) : $y = x - \frac{1}{2}$ et (Δ') : $y = -x + \frac{1}{2}$.	1
3a	E(3;2); (t): $(x_E - \frac{1}{2})(x - \frac{1}{2}) - yy_E = \frac{9}{4}$; $y = \frac{5}{4}x - \frac{7}{4}$	0.5
3b	$(t) \cap (\Delta): \frac{5x-7}{4} = x - \frac{1}{2}. \text{ D'où } x_P = 5. (t) \cap (\Delta'): \frac{5x-7}{4} = -x + \frac{1}{2}. \text{ D'où } x_Q = 1.$ $\frac{x_P + x_Q}{2} = 3 = x_E \text{ et P , Q et E sont alignés donc E est le milieu de [PQ] .}$	1
4	$V = \pi \int_{2}^{3} y^{2} dx = \pi \int_{2}^{3} (x^{2} - x - 2) dx = \pi \left[\frac{x^{3}}{3} - \frac{x^{2}}{2} - 2x \right]_{2}^{3} = \frac{11}{6} \pi u^{3}$	1

QIV	Corrigé	Note
A1	$q(n) = \frac{C_n^2}{C_{n+10}^2} = \frac{n(n-1)}{(n+10)(n+9)}.$	0.5
A2a	$p(n) = \frac{C_n^2}{C_{n+10}^2} + \frac{C_6^2}{C_{n+10}^2} + \frac{C_4^2}{C_{n+10}^2} = \frac{n(n-1) + 30 + 12}{(n+10)(n+9)} = \frac{n^2 - n + 42}{(n+10)(n+9)}.$	1
A2b	$\lim_{n \to +\infty} p(n) = 1 = \lim_{n \to +\infty} q(n).$ Si le nombre de boules blanches est très grand, la probabilité d'avoir 2 boules blanches est égale à celle d'avoir 2 boules de la même couleur et cet événement est presque certain .	1
A2c	$\frac{n^2 - n + 42}{(n+10)(n+9)} = \frac{31}{105} ; 74n^2 - 694n + 1620 = 0 ; n = 5 \text{ ou } n = 4,378 .$ D'où n = 5 (n est un entier naturel supérieur à 2)	1
B1	Les valeurs prises par X sont : $-1-1=-2$, $4-1=3$ et $4+4=8$.	0.5
B2	p (les deux boules tirées sont de même couleur) = $p(3) = \frac{48}{13 \times 12} = \frac{4}{13}$. $p(X = -2) = (9/13)^2$; $p(X = 3) = 2 \times 4/13 \times 9/13$ et $p(X = 8) = (4/13)^2$.	1.5
В3	$E(X) = (-2)(9/13)^2 + 2 \times 3 \times 4/13 \times 9/13 + 8 \times (4/13)^2 = 1,0769.$	0.5

QV	Corrigé	Note
1a	$S(A) = B$ et $S(B) = J$; Par suite le rapport est : $\frac{BJ}{AB} = \frac{1}{2}$ (hexagone régulier) et l'angle : $(AB; BJ) = \frac{2p}{3}$ (2π)	0.5
1b	On a : $\frac{BA}{AD} = \frac{1}{2}$ et $(AD; BA) = \frac{2p}{3}$ (2 π) avec $S(A) = B$ alors $S(D) = A$ O est le milieu de [AD] et $S([AD]) = [BA]$ Donc $S(O) = O'$ milieu de [BA]. ABCO est un parallélogramme direct , donc son image par S est un parallélogramme direct qui ne peut être que BJIO', donc $S(C) = I$.	1
1c	Le transformé d'un hexagone régulier par une similitude est un hexagone régulier c'est l'hexagone BJIAE'F' * fig.*	0.5
2	Les homothéties qui transforment (C) en (C') sont : Une homothétie positive de rapport $\frac{1}{2}$ et de centre le point P tel que $\overrightarrow{PO'} = \frac{1}{2} \overrightarrow{PO}$ et une homothétie négative de rapport $-\frac{1}{2}$ et de centre le point K tel que $\overrightarrow{KO'} = -\frac{1}{2} \overrightarrow{KO}.$	1.5
3a	$B(\frac{1}{2} + i\frac{\sqrt{3}}{2}) ; C(-\frac{1}{2} + i\frac{\sqrt{3}}{2}) ; E(-\frac{1}{2} - i\frac{\sqrt{3}}{2}) \text{ et } F(\frac{1}{2} - i\frac{\sqrt{3}}{2})$	1
3b	La forme complexe est $Z = az + b$ avec $S(O) = O'$; $O'(\frac{3}{4} + i\frac{\sqrt{3}}{4})$ d'où $z_{O'} = b$ et $a = \frac{1}{2}e^{i\frac{2\pi}{3}} = -\frac{1}{4} + i\frac{\sqrt{3}}{4}$ et $b = \frac{3}{4} + i\frac{\sqrt{3}}{4}$ d'où $Z = (-\frac{1}{4} + i\frac{\sqrt{3}}{4})z + \frac{3}{4} + i\frac{\sqrt{3}}{4}$ $Z_W = \frac{b}{1-a} = \frac{3}{7} + 2i\frac{\sqrt{3}}{7}$	1
3c	H est l'orthocentre du triangle équilatéral OAB son image est l'orthocentre du triangle équilatéral O'BJ = S(OAB) ** Ou $H(\frac{1}{2} + i\frac{\sqrt{3}}{6})$ Son image H' a pour affixe $Z_{H'} = az_H + b = \frac{1}{2} + i\frac{\sqrt{3}}{3}$	0.5

QVI	Corrigé	Note
A1	$f'(x) = 2x + \frac{1}{x}$ or $x > 0$ donc $f'(x) > 0$ et pour tout x de I f est strictement croissante sur I.	0.5
A2a	$\lim_{x\to 0} \ell n \ x = -\infty donc \lim_{x\to 0} f(x) = -\infty d'où x = 0 (A.V).$	0.5
A2b	$\lim_{x \to +\infty} \ell n x = +\infty \text{ donc } \lim_{x \to +\infty} f(x) = +\infty$ $\frac{f(x)}{x} = x + \frac{\ell n x}{x} \text{ or } \lim_{x \to +\infty} \frac{\ell n x}{x} = 0 \text{ donc } \lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$	1
A2c	$ \begin{array}{c cccc} x & 0 & & +\infty \\ \hline f'(x) & & + & \\ \hline f(x) & & -\infty & & \end{array} $	0.5
A2d	f est continue et strictement croissante sur I et elle croît de $-\infty$ à $+\infty$, donc elle s'annule une fois en changeant de signe d'où l'équation $f(x) = 0 \text{ admet une solution unique } \alpha, \text{ en plus } f(0,6) \times f(0,7) < 0$ $(f(0,6)=-0,15 \text{ et } f(0,7)=0,133).$ Donc $0,6 < \alpha < 0,7 \text{ et } f(x) < 0 \text{ pour } 0 < x < \alpha \text{ ; } f(x) > 0 \text{ pour } x > \alpha.$	1
A3a	$f''(x) = 2 - \frac{1}{x^2} = \frac{2x^2 - 1}{x^2}; \ f''(x) = 0 \ \text{pour} \ 2x^2 = 1 \ \text{donc} \ x = \frac{1}{\sqrt{2}} \ \text{ou}$ $x = \frac{-1}{\sqrt{2}} \text{ or } x > 0 \ \text{donc} \ x = \frac{1}{\sqrt{2}} \ \text{en plus} \ f''(x) < 0 \ \text{pour} \ 0 < x < \frac{1}{\sqrt{2}} \ \text{et} \ f''(x) > 0 \ \text{pour}$ $x > \frac{1}{\sqrt{2}} \ \text{donc} \ (C) \ \text{admet un point d'inflexion W d'abscisse} \ \frac{1}{\sqrt{2}}$	1
A3b	Σ C Δ 3- 2- 1- 3- 2- 1- 3- 2- 1- 3- 3- 3- 4- 3- 3- 3- 4- 5- 6- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	0.5
A4a	f est continue et strictement croissante sur I, donc elle admet une fonction réciproque f $^{-1}$ qui est définie sur $f(I) =]-\infty; +\infty[$	0.5

	$f(1) = 1$ donc $A(1;1)$ est un point commun à (C) et (C') car $x_A = y_A$ et $A \in (C)$ et on trace	
A4b	(C') par symétrie de (C) par rapport à la droite (Δ) : $y = x$.	1
	La tangente en A à (C): $y - y_A = f'(1)(x - 1) d'où y - 1 = 3(x - 1)$ et $y = 3x - 2$ donc la	
A4c	tangente en A à (C') a pour équation: $x = 3y - 2$ d'où $y = \frac{1}{3}x + \frac{2}{3}$	1
	à cause de la symétrie par rapport à (Δ) on peut écrire	
	$S(\alpha) = A(\alpha) = 2\left[\int_{0}^{1} x dx - \int_{\alpha}^{1} f(x) dx\right] \text{ or } \int_{\alpha}^{1} \ell n x dx = \left[x \ell n x - x\right]_{\alpha}^{1} = -1 - \alpha \ell n\alpha + \alpha$	
	On pose $u' = 1$ $u = x$ $v = \ell n x \qquad v' = \frac{1}{x}$	
A4d	D'où S(α) = A(α) = 2[$\left[\frac{x^2}{2}\right]_0^1 - \frac{x^3}{3}\right]_\alpha^1 + 1 + \alpha \ell n\alpha - \alpha$] =	1.5
	$=2\left[\frac{1}{2}-\frac{1}{3}+\frac{\alpha^3}{3}+1+\alpha \ln \alpha-\alpha\right]$	
	$= \frac{7}{3} + \frac{2\alpha^3}{3} + 2\alpha \ln \alpha - 2\alpha$	
B1	$f(x) - \ln x = x^2 > 0$ pour $x > 0$ donc (C) est au – dessus de (T) et on trace (T).	1
B2a	$g'(x) = 2x + 2\ln x \times \frac{1}{x} = \frac{2}{x} \left(x^2 + \ln x\right) = \frac{2}{x} f(x) \text{ donc sur I, } g'(x) \text{ a le même signe que } f(x)$	1
B2b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5
B3a	$OM_0^2 = \alpha^2 + (\ln \alpha)^2 = g(\alpha) \text{ et } OM^2 = x^2 + (\ln x)^2 = g(x)$	0.5
Dat	$g(\alpha)$ est la valeur minimale de $g(x)$ donc $g(\alpha) \le g(x)$ pour tout $x > 0$ par suite	
B3b	$OM_0^2 \le OM^2$ c'est $-\grave{a}$ - dire $OM_0 \le OM$ pour tout point M de (T).	1
	Coefficient directeur de $OM_0 = \frac{\ln \alpha}{\alpha}$. Coefficient directeur de la tangente en M_0 à (T) est $\frac{1}{\alpha}$.	
B3c	Car la dérivée de $\ln x$ est $\frac{1}{x}$.	1
	Or $\alpha^2 + \ln \alpha = 0$ donc $\ln \alpha = -\alpha^2$ d'où : $\frac{\ln \alpha}{\alpha} \times \frac{1}{\alpha} = \frac{\ln \alpha}{\alpha^2} = -1$ donc la tangente en M_0 à (T)	
	est perpendiculaire à (OM_0) .	