Problema de Secuenciación de Tareas

Matricula:
Matricula:

Instrucciones: Resuelve completa y correctamente cada uno de los siguientes puntos.

Se evalúa el procedimiento. Resultado sin procedimiento no tiene puntaje alguno.

Dado un conjunto $M = \{1, 2, \cdots, m\}$ de tareas que se van a secuenciar en una sola máquina, cada tarea $i \in M$ tiene un tiempo de procesamiento t_i y una fecha límite d_i para ser realizada. Si la tarea i se completa antes de la fecha límite, incurre en un costo de retención h_i por unidad de tiempo. Una tarea retardada i da como resultado un costo de penalización c_i por unidad de tiempo.

Tarea i	t_i	d_i	h_i	c_i
1	10	15	3	10
2	8	20	2	22
3	6	10	5	10
4	7	30	4	8
5	4	12	6	15

- 1. Modele y resuelve a optimalidad, usando un solver, considerando los datos de la tabla.
- 2. Diseña un algoritmo genético para determinar la mejor secuencia de tareas S tal que los costos por retención y penalización sean minimizados.
 - (a) Tipo de cromosoma:
 - (b) Longitud:
 - (c) Criterio de inicialización:
 - (d) Criterio de infactibilidad:
 - (e) Criterio de Paro:
 - (f) Función fitnes:
 - (g) Criterio de selección:
 - (h) Tamaño de la población:
 - (i) Probabilidad de cruce:
 - (j) Puntos de cruce:
 - (k) Lugar de cruce:
 - (l) Probabilidad de mutación:
 - (m) Criterio de reemplazo:
- 3. Implementa tu algoritmo considerando los datos y compara con la solución óptima.
- 4. Explique los resultados obtenidos