Segmentação Topical Automática de Atas de Reunião

Ovídio José Francisco UFSCar – Sorocaba Email: ovidiojf@gmail.com

Resumo-The abstract goes here.

I. INTRODUÇÃO

Frequentemente atas de reunião tem a característica de apresentar um texto com poucas quebras de parágrafo e sem marcações de estrutura, como capítulos, seções ou quaisquer indicações sobre o tema do texto.

A tarefa de segmentação textual consiste dividir um texto em partes que contenham um significado relativamente independente. Em outras palavras, é identificar as posições onde há uma mudança significativa de tópicos.

É útil em aplicações que trabalham com textos sem quebras de assunto, ou seja, não apresentam parágrafos, seções ou capítulos, como transcrições automáticas de áudio e grandes documentos que contêm assuntos não idênticos como atas de reunião e noticias.

O interesse por segmentação textual tem crescido em em aplicações voltadas a recuperação de informação e sumarização de textos. Essa técnica pode ser usada para aprimorar o acesso a informação quando essa é solicitada por um usuário por meio de uma consulta, onde é possível oferecer porções menores de texto mais relevante ao invés de exibir um documento maior que pode conter informações menos pertinente. A sumarização de texto também pode ser aprimorada ao processar segmentos separados por tópicos ao invés de documentos inteiros.

Assim, esse trabalho trata da adaptação e avaliação de algoritmos tradicionais ao contexto de documentos em português do Brasil, com ênfase especial nas atas de reuniões.

II. TRABALHOS RELACIONADOS

Os principais algoritmos de segmentação textual baseiamse na ideia de coesão léxica entre assuntos. Isto é, a mudança de tópicos é acompanhada de uma proporcional mudança de vocabulário. A partir disso, vários algoritmos foram propostos sob o pressuposto de que um segmento pode ser identificado e delimitado pela análise das palavras que o compõe.

Uma vez que a coesão léxica é pressuposto básico da maioria dos algoritmos, o cálculo da similaridade entre textos e fundamental. Uma medida de similidade frequentemente utilizada é a cosine, a qual pode ser vista na equação 1, sendo $f_{x,j}$ a frequência da palavra j na sentença x e $f_{y,j}$ sendo a frequência da palavra j na sentença y.

$$Sim(x,y) = \frac{\sum_{j} f_{x,j} \times f_{y,j}}{\sqrt{\sum_{j} f_{x,j}^{2} \times \sum_{j} f_{x,j}^{2}}}$$
(1)

Entre os trabalhos mais influentes podemos citar o *Text-Tiling* [?] proposto por Hearst. Ela propõe um algoritmo baseado em janelas deslizantes, onde para cada candidato a limite, analisa-se o texto circundante. Um limite ou quebra se segmento é identificado quando a similaridade entres os blocos apresenta uma queda considerável.

Ela propõe um algoritmo baseado em janelas deslizante, para analisar blocos de texto adjacentes e identificar os limites com base nas similaridades dos blocos.

O algoritmo recebe uma lista de candidatos a limite, usualmente finais de parágrafo ou finais de sentenças. Para cada posição candidata são construídos 2 blocos, um contendo sentenças que a precedem e outro com as que a sucedem. O tamanho desses blocos é um parâmetro a ser fornecido ao algoritmo e determina o tamanho mínimo de um segmento. Em seguida, os blocos de texto são representados por vetores que contém as frequências de suas palavras. Então, usa-se *cosini* (equação 1) para calcular a similaridade entre os blocos.

Finalmente, os limites são identificados sempre que a similaridade entre blocos adjacentes entre cada candidato ultrapassa um determinado *threshold*

Apresenta baixa complexidade computacional, devido a simplicidade do algoritmo e baixa eficiência quando comparado a outros métodos mais sofisticados como mostrando em [?], [?].

Choi [?] apresenta um trabalho que usa *cosine*, a qual é exibida na equação 1, como medida similaridade e apresenta um esquema de ranking em seu algoritmo, o *C99*. Embora muitos dos melhores trabalho utilizarem matrizes de similaridades, o autor traz obervações. Ele aponta que para pequenos segmentos, o cálculo de suas similaridades não é confiável. Pois uma ocorrência adicional de uma palavra causa um impacto desproporcional no cálculo. Além disso, o estilo da escrita pode não ser constante em todo o texto. Choi sugere que, por exemplo, textos iniciais dedicados a introdução costumam apresentar menor coesão do que trechos dedicados a um tópico específico.

Portanto comparar a similaridade entre trechos de diferentes regiões, não é apropriado. Devido a isso, as similaridades não podem ser comparadas em valores absolutos, então, o autor apresenta um esquema de ranking para contornar esse problema.

Cada valor na matriz de similaridade é substituído por seu ranking local. Onde ranking é o número de elementos vizinhos com similaridade menor, o qual e calculado com a equação 2. Um exemplo é mostrado na Figura 1 abaixo, onde utiliza-se uma máscara de largura igual a 3.

Figura 1: Exemplo de construção de uma matriz de rank

$$r(x,y) = \frac{Numero\ de\ elementos\ com\ similaridade\ menor}{Numero\ de\ elementos\ examinados}$$

Finalmente, na etapa de *clustering*, Choi utiliza um método baseado no algoritmo de maximização de Reynar [?] para identificar os limites entre os segmentos.

Semelhante a esse trabalho, outras abordagens foram propostas como ...

[?] faz uma adaptação do *TextTiling* ao contexto das conversas em reuniões com múltiplos participantes.

III. ADAPTAÇÃO ÀS ATAS DE REUNIÃO

Os algoritmos *TextTiling* e *C99* foram propostos para o inglês, independente de domínio, ou seja, a proposta inicial é trabalhar em qualquer texto nessa língua. A proposta desse trabalho é adaptá-los ao contexto das atas de reunião em português do Brasil. As subseções seguintes tratam das adaptações para esse nicho mais específico. A seção IV mostra a análise dos algoritmos adaptados.

O vocabulário das reuniões, ainda que em tópicos diferentes, compartilham certo vocabulário pertencente ao ambiente onde as se deram as reuniões. Isso é um fator que diminui a o princípio da coesão léxica entre os segmentos. As atas de reunião costumam ter um estilo de escrita que deve ser levando em conta na adaptação do algoritmos, como a identificação de finais de sentença na ausência de quebras de parágrafo, inserção de linhas que não separam assuntos, utilização de pontuação para transição de tópicos e cabeçalhos e numerais ruidosos.

Nas subseções a seguir serão expostas simples alterações para aumentar a eficiência dos algoritmos e encontra o melhor modelo para a tarefa de segmentar o texto das atas em tópicos.

A. Préprocessamento

O texto a ser segmentado frequentemente é extraído de documentos em formatos como *pdf* ou de processadores de texto. Após a extração, esse pode passar por processos de transformação os quais serão apresentados a seguir.

A etapa de pre-processamento, em um documento contendo texto puro, acontece em dois passos principais. Primeiro elimina-se as palavras consideradas menos informativas, as quais são chamadas de *stop words*, para isso, utiliza-se uma lista contendo 438 palavras. Em seguida, remove-se os sufixos das palavras restantes, mantendo apenas o radical da palavra. A Figura 2 mostra a etapa de pré-processamento em uma sentença em português.

Figura 2: Exemplo de pré-processamento

Há ainda outros passos presentes nessa etapa como remoção de acentos, transformações de caixa, remoção de pontuação, os quais são relativamente simples e não requerem maiores detalhes.

1) Remoção de ruídos: As atas frequentemente contém trechos que podem ser considerados pouco informativos e descartados durante o pré-processamento. Após a extração, cabeçalhos e roda-pés se misturam aos tópicos tratados na reunião, podendo ser inseridos no meio de um tópico e criando uma quebra que prejudica tanto o algoritmo de extração, quanto a leitura do texto pelo usuário.

Também é comum o uso de numerais para marcação de páginas e linhas, da mesma forma, são pouco informativos e podem ser removidos.

Nesse trabalho, esses elementos são removidos por meio de heurísticas simples, uma vez que, o descarte não causa perca de informação e pode facilitar a identificação dos segmentos, pois melhora a coesão do texto. Outro benefício é manter os segmentos livres de textos que fogem do assunto.

B. Identificação de candidatos

É preciso fornecer aos algoritmos os candidatos iniciais a limites de segmento. Aproveitando do estilo de escrita e baseando-se na pontuação do texto é possível indicar quebras de parágrafo, finais de sentenças ou mesmo palavras.

Ocorre que em atas de reunião é uma prática comum redigilas de forma que o conteúdo discutido fica em parágrafo único, além disso, quebras de parágrafo são usados para formatação de outros elementos como espaço para assinaturas. Indicar todo *token* como ponto candidato obriga a ajustar posteriormente os segmentos de maneira a não quebrar uma ideia ou frase. Assim, nesse trabalho, os finais de sentença são considerado candidatos passíveis a limite entre segmentos.

Devido ao estilo de pontuação desses documentos, como encerrar sentenças usando um ";" e inserção de linhas extras, usa-se as regras abaixo para identificar os finais de sentenças.

Algorithm 1: Identificação de finais de sentença

```
Entrada: Texto
  Saída : Texto com identificações de finais de sentença
1 para todo token, marcá-lo como final de sentença se:
     Terminar com um!
     Terminar com um . e não for uma abreviação
3
     Terminar em .?; e:
4
         For seguido de uma quebra de parágrafo ou
5
          tabulação
         O próximo token iniciar com ({ [ "'
6
         O próximo token iniciar com letra maiúscula
7
         O penúltimo caracter for ) }] "'
8
9 fim
```

IV. AVALIAÇÃO

Para que se possa avaliar um segmentador automático de textos, é preciso uma referência, isto é, um texto com os limites entre os segmento conhecidos. Essa referência, deve ser confiável, sendo uma segmentação legítima que é capaz de dividir o texto em porções relativamente independentes, mantendo um conteúdo legível, ou seja, uma segmentação ideal.

Entre as abordagens mais comuns para se conseguir essas referências, encontramos: A concatenação aleatória de documentos distintos, onde o ponto entre o final de um texto e o inicio do seguinte é um limite entre eles. A segmentação manual dos documentos, nesse caso, pessoas capacitadas, também chamadas de juízes, ou mesmo o autor do texto, são consultadas e indicam manualmente onde há uma quebra de segmento. Em transcrição de conversas faladas em reuniões com múltiplos participantes, um mediador é responsável por encerrar um assunto e iniciar um novo, nesse caso o mediador anota manualmente o tempo onde há uma transição de tópico. Em aplicações onde a segmentação é tarefa secundária, analisar seu impacto na aplicação final.

De acordo com [?] há duas principais dificuldades na avaliação de segmentadores automáticos. A primeira é conseguir um referência, já que juízes humanos costumam não concordar entre si, sobre onde os limites estão e outras abordagens podem não se aplicar ao contexto. A segunda é que tipos diferentes de erros devem ter pesos diferentes de acordo com a aplicação. Há casos onde certa imprecisão é tolerável e outras, como a segmentação de notícias, onde a precisão é mais importante.

Para fins de avaliação desse trabalho, um bom método de segmentação é aquele cujo resultado melhor se aproxima do ideal, sem a obrigatoriedade de estar perfeitamente alinhado com tal. Ou seja, visto o contexto das atas de reunião, e a

subjetividade da tarefa, não é necessário que os limites entre os segmentos (real e hipótese) sejam idênticos, mas que se assemelhem em localização e quantidade.

Para quantificar a eficiência dos algoritmos, segue uma revisão das principais métricas aplicáveis.

A. Medidas de Avaliação

As medidas de avaliação tradicionalmente utilizadas em *information retrieval* como precisão e revocação trazem alguns problemas na avalização de segmentadores automáticos. Conforme o algoritmo aponta mais segmentos no texto, tende a melhorar a revocação e ao mesmo tempo, reduzir a precisão, um problema que pode ser contornado usando F1 que faz uma combinação da duas levando em conta seus pesos, o que por outro lado é mais difícil de interpretar. Essas medidas falham ao não serem sensíveis a *near misses*, ou seja, quando um limite não coincide exatamente com o esperado, mas fica próximo [?].

A Figura 3 mostra um exemplo com duas segmentações hipotéticas e uma referência. Em ambos os casos não há nenhum verdadeiro positivo, o que implica em zero para os valores de precisão, acurácia, e revocação, embora a segunda hipótese possa ser considerada superior à primeira se levado em conta a proximidade dos limites.

Figura 3: Exmplos de segmentação

1) P_k : A fim de resolver o problema de *near misses*, Beeferman *at al.* [?] apresentam uma nova medida chama P_k que atribui valores parciais a *near misses*. Esse método move uma janela de tamanho k e a cada posição e verifica se o início e o final da janela estão ou não dentro do mesmo segmento e penaliza o algoritmo em caso de discrepância.

Ou seja, dado duas palavras de distancia k, uma discrepância é computada quando o algoritmo e a referência não concordam se as palavras estão ou não no mesmo segmento.

O valor de k é calculado como a metade da média dos comprimentos dos segmentos reais. Como resultado, é retornado a contagem de discrepâncias divido pelo quantidade de segmentações analisadas. Esse valor serve como medida de dissimilaridade entre as segmentações e pode ser interpretada como a probabilidade de duas sentenças extraídas aleatoriamente pertencerem ao mesmo segmento.

2) WindowDiff: Pevzner [?] aponta problemas na avaliação mais tradicional Pk [?]. Eles apontam que esse método penaliza demasiadamente os falsos negativos em relação aos falsos positivos e a *near misses*, além disso, desconsidera o tamanho e a quantidade de segmentos, entre outros problemas.

Como solução, propõem um novo método, o qual chamam de *WindowDiff* que traz duas diferenças principais: a dobra

a penalidade para os falsos positivos a fim de diminuir o problema da subestimação dessa medida e, diferente de P_k , ao mover a janela pelo texto, penaliza o algoritmo sempre que o número de limites proposto pelo algoritmo não coincidir com o número de limites esperados para aquela janela de texto.

Com isso, demonstram em seu trabalho que, em relação a P_k , consegue resolver seus principais problemas e mantém sua proposta inicial de sensibilidade a *near misses*, penalizando-os menos que os falsos positivos puros.

Figura 4: Exemplo de construção de uma matriz de rank

B. Avaliação dos segmentadores

As implementações dos algoritmos permitem ao usuário a configuração de seus parâmetros. O *TextTiling* permite ajustarmos dois parâmetros, sendo, o tamanho da janela (distância entre a primeira e a última sentença) para o qual atribuiuse os valores 20, 40 e 60. O segundo parâmetro, o passo (distância que a janela desliza), atribuiu-se os valores 3, 6, 9 e 12. Gerando ao final 18 modelos.

O C99 permite ajustarmos três parâmetros, sendo, a quantidade segmentos desejados, o qual é calculado como uma proporção dos candidatos a limite. Para isso atribuiu-se as proporções de 0,2 a 1,0 em intervalos de 0,2 O segundo parâmetro, o tamanho da máscara utilizada para gerar a matriz de ranking, atribuiu-se os valores 9 e 11. Permite ainda, definirmos se as sentenças serão representados por vetores contendo a frequência ou o peso de cada termo, onde ambas as representações foram utilizadas. Gerando ao final 20 modelos.

Pela comparação dos resultados com a segmentação fornecida pelos especialistas, calculou-se para cada modelo as medidas tradicionais acurácia, precisão, revocação, F-medida e as métricas mais aplicadas a segmentação textual P_k e WindowDiff

Em seguida aplicou-se o teste de Friedman a fim de saber se há diferenças significativas entre a eficácia dos modelos e pós-teste de Nemenyi para descobrir quais diferenças são significativas. Exite diferença quando seus *rankings* médios diferirem em um valor mínimo, chamado de diferença critica (CD). A Figura 5

V. Análise dos Resultados
VI. Conclusão
Acknowledgment

The authors would like to thank...

Figura 5: Diagramas de diferença crítica do pós-teste de Nemenyi