

Bioinformatical analysis of omics expression data Part 1

Dr. Michael Turewicz^{1,2}

¹Institut für Klinische Biochemie und Pathobiochemie,

Deutsches Diabetes-Zentrum, Leibniz-Zentrum für Diabetesforschung an der Heinrich-Heine-Universität, Düsseldorf, Deutschland
²Deutsches Zentrum für Diabetesforschung (DZD), München-Neuherberg, Deutschland

Course schedule

- Part 1 (25.10.23)
 - Introduction (omics, example data, programming)
 - Data preprocessing (data inspection, normalization, missing values)
 - Exercises: R programming tutorial (part 1)
- Part 2 (08.11.23)
 - Differential expression analysis (statistics, volcano plot)
 - Exercises: R programming tutorial (part 2)
- Part 3 (15.11.23)
 - Machine learning I: Clustering (clustering, PCA)
- Part 4 (22.11.23)
 - Overrepresentation analysis (GO, Reactome)
- Part 5 (29.11.23)
 - Network analysis (STRING, Cytoscape)
- Part 6 (06.12.23)
 - Machine learning II: Classification algorithms

Omics technologies

Central dogma of molecular biology: Information flow

Different omics technologies: investigation of information at different levels

Common features of omics data

High-throughput measurements

- Ideally, measurement of all genes / transcripts / proteins / etc. in sample
- → many thousands of molecules per sample

Multiple samples

- Ideally, multiple various samples needed to cope with biological variability
- Needed for robust statistics and algorithms
- Limitation: sample availability & costs

Main problems:

- "n << p" problem: too few samples for too many molecules
- Noisy data
- Missing molecules & missing values
- Data interpretation
- Large data → computational problems

Columns: p samples (p = sample number)

Example data

Third party data from a publication

ARTICLE

https://doi.org/10.1038/s41467-019-13114-4

OPEN

Global redox proteome and phosphoproteome analysis reveals redox switch in Akt

Zhiduan Su^{12,13}, James G. Burchfield 12,13, Pengyi Yang 13,13, Sean J. Humphrey 12, Guang Yang 12, Deanne Francis^{1,2}, Sabina Yasmin⁴, Sung-Young Shin^{5,6}, Dougall M. Norris^{1,2}, Alison L. Kearney^{1,2}, Miro A. Astore⁴, Jonathan Scavuzzo^{1,2}, Kelsey H. Fisher-Wellman^{7,8}, Qiao-Ping Wang^{1,2,9}, Benjamin L. Parker^{1,2}, G. Gregory Neely^{1,2,9}, Fatemeh Vafaee 13, Joyce Chiu^{1,0,1}, Reichelle Yeo^{10,11}, Philip J. Hogg 11, Daniel J. Fazakerlev 12, Lan K. Nguyen^{5,6}, Serdar Kuyucak⁴ & David E. James^{1,2,12}

- Samples: mouse cell line (3T3-L1 adipocytes)
- 4 samples before & 4 samples after insulin stimulation
- Omics technology: phosphoproteomics
- Downloaded from raw data repository (PRIDE) & reanalyzed in our lab
- · Details: see paper in GitHub repository

Phosphoproteomics

- Completeness: thousands of phosphopeptides (not all) can be identified & quantified in one sample
- Their phosphorylated sites can be localized
- Unbiased view of signaling pathways (at specific time point)

A complex study design

Example data: results

Example data: results

Example data: results

Data preprocessing: data inspection

DDZ

24.65%

 -3σ

50%

24.65% 1σ

Max.

Data contains technical and biological variation (but we are only interested in biological differences)

Reasons for technical bias:

- small variations in experimental conditions and sample handling (temperature, age of column, pipetting)
- often exact reasons for bias are unknown

Aims of normalization

- reduce/remove technical bias while keeping biological differences
- make samples more comparable
- make following statistical analysis more reliable

Assumptions:

- ► high-troughput data
- "true" intensity distribution is similar over all samples
- most proteins are not differentially expressed between groups

- most normalization methods were developed for genomics and later adapted to proteomics data
- often, data are log-transformed before normalization

Median normalization

shift or scale samples to have the same median

Quantile Normalization Original dataset

S1 S2 S3 Prot1 100 50 115 Prot2 85 140 45 150 70 80 Prot3 95 65 160 Prot4

1) Sort Values in each column

S1	S2	S3		
85	50	45		
95	65	80		
100	70	115		
150	140	160		

2) Replace values with row mean 3) Reconstruct original order

S1	S2	S3	
60	60	60	
80	80	80	
95	95	95	
150	150	150	

	S1	S2	S3		
Prot1	95	60	95		
Prot2	60	150	60		
Prot3	150	95	80		
Prot4	80	80	150		

Quantile normalization

normalize all samples to the same distribution

Data preprocessing: missing values

Missing values

- ▶ Different codings for missing values depending on software and output settings (NA, NaN, 0, Filtered, ?, empty cell)
- Number of missing values often very high
- Proteins with missing values might be interesting (on/off-proteins)

Handling of missing values

- remove proteins with missing values
- perform analysis only on valid values
- impute missing values

Data preprocessing: missing values

Imputation of missing values

Data Imputation = replace missing values with valid values Imputation methods

- mean or median of the protein
- random value based on distribution of non-missing values
- \triangleright small values (e.g. 0 or LOD/2, LOD = limit of detection)
- machine learning based

Disadvantages

- imputation can have a huge impact on result
- ▶ imputation of constant value can lead to underestimated variance → risk of false positives
- biomarker candidates with too many imputed values may be worthless

Data preprocessing: missing values

On/off-proteins

- proteins that are present in one group and absent in the other group
- ightharpoonup pprox proteins that have valid values in one group and missing values in the other group
- higher confidence for found on/off proteins with high sample size
- on/off proteins are often forgotten or filtered out by the software
- ▶ t-test not possible → not p-value
- ▶ fold change = ∞ ?
- ightharpoonup cannot be displayed in volcano plot ightharpoonup separate list

Hands on part!

Exercises

Exercise 0

- Install R
- Install RStudio Desktop
- Test RStudio
- Test Google Colab Notebook

Exercise 1

- https://drive.google.com/drive/folders/1vmewprs0gkpakU8idbgt exDlwmGVUJz3?usp=sharing
- Work through part 1 of the given R tutorial (video & slides)
- Solve tutorial exercises 1.1 2.1
- Please send me your solutions as an ".R"-file

Thank you!

