# CIS580 Problem Set 3

Sheil Sarda <sheils@seas.upenn.edu> CIS580 Spring 2021

## Contents

| 1 | Transformation to map facade to rectangle                                     |   |  |  |
|---|-------------------------------------------------------------------------------|---|--|--|
| 2 | Compute distances of patrol car and bridge                                    |   |  |  |
| 3 | Compute distances from the image                                              |   |  |  |
| 4 | Different perspectives in a tennis match  .1 Why is the perspective different |   |  |  |
|   | 4.2 Find vanishing points using cross-ratios                                  | 1 |  |  |
|   | 4.3 Find vanishing points for court baselines                                 | 2 |  |  |
|   | 4.4 Compute the focal length of each image                                    | 2 |  |  |
|   | 4.5 Compute the vanishing points using intersection of parallel lines         | 2 |  |  |

- 1 Transformation to map facade to rectangle
- 2 Compute distances of patrol car and bridge
- 3 Compute distances from the image

### 4 Different perspectives in a tennis match

- You should get the coordinates of the points in the image. To do so you can use any unit you want. Using pixels is the most convenient.
- The cross ratio should be applied in one of the baselines, and you can use the net in the middle of the court as an extra point.
- Since you have measured coordinates of A and B, you can use the similar triangle to obtain the coordinate of V.
- I had taken average of the vanishing points obtained by using cross ratio on AB and CD due to the minor differences between them.
- For each pair of sidelines you should find 1 vanishing point (so 2 in total for the two images). In the same image using the cross ratio in the two sidelines, you should get the same vanishing points (they will not be exactly the same but they will be close enough, you can just use one of them)
- For the intersection of baselines you can use intersection of lines.
- You cannot define a coordinate system where (0,0,1) is one corner and (1,1,1) is the other because you will mess the distances. In the tennis case we don't have a square. You should modify the method so that it uses [27,78,1] instead of [1,1,1]
- Oh, I see. We should use two images of the same plane, tennis court, to construct two vanishing lines and find the principle point.

#### 4.1 Why is the perspective different

#### 4.2 Find vanishing points using cross-ratios

Known quantities:

| Units | Segment    | Value                                    |
|-------|------------|------------------------------------------|
| Image | AD         | $\sqrt{1092^2 + 16^2} = 1092 \text{ px}$ |
| Image | BC         | $\sqrt{364^2 + 6^2} = 364 \text{ px}$    |
| Image | AB         | $\sqrt{730^2 + 384^2} = 825 \text{ px}$  |
| Image | CD         | $\sqrt{344^2 + 740^2} = 816 \text{ px}$  |
| Image | $M_1M_2$   | $\sqrt{540^2 + 14^2} = 540 \text{ px}$   |
| Image | A'D'       | $\sqrt{1260^2 + 6^2} = 1260 \text{ px}$  |
| Image | B'C'       | $\sqrt{600^2 + 0^2} = 600 \text{ px}$    |
| Image | A'B'       | $\sqrt{324^2 + 754^2} = 821 \text{ px}$  |
| Image | C'D'       | $\sqrt{336^2 + 748^2} = 820 \text{ px}$  |
| Image | $M_1'M_2'$ | $\sqrt{804^2 + 0^2} = 804 \text{ px}$    |
| World | AD, A'D'   | 27 ft                                    |
| World | BC, B'C    | 27 ft                                    |
| World | AB, A'B'   | 78 ft                                    |
| World | CD, C'D'   | 78 ft                                    |

$$\frac{CD/DV}{M_1C/M_1V} = \frac{C_w D_w/D_w V_w}{M_{1w} C_w/M_{1w} V_w}$$
$$\frac{816/DV}{195/M_1V} = 2 \cdot M_{1w} V_w/D_w V_w$$

- 4.3 Find vanishing points for court baselines
- 4.4 Compute the focal length of each image
- 4.5 Compute the vanishing points using intersection of parallel lines