Structure and Projection Theorems: Complete Exercise Guide with ALL Exam Examples

Core Theoretical Foundation

Structure Theorem (CRITICAL THEOREM)

Definition: Let $P(\vec{x}) \subseteq \mathbb{N}^k$ be a predicate. Then $P(\vec{x})$ is semi-decidable if and only if there exists a decidable predicate $Q(t,\vec{x}) \subseteq \mathbb{N}^{k+1}$ such that $P(\vec{x}) = \exists t. Q(t,\vec{x})$.

Complete Proof: (\Rightarrow) If $P(\vec{x})$ is semi-decidable:

- sc_P is computable, so $\exists e \in \mathbb{N}$ such that sc_P = $\varphi_e^{(k)}$
- $P(\vec{x})$ iff $sc_P(\vec{x}) = 1$ iff $sc_P(\vec{x}) \downarrow$ iff $\phi_e^{(k)}(\vec{x}) \downarrow$ iff $\exists t.H^{(k)}(e,\vec{x,t})$
- Set $Q(t,\vec{x}) = H^{(k)}(e,\vec{x},t)$ (decidable since H is decidable)

(⇐) If $P(\vec{x}) = \exists t.Q(t,\vec{x})$ with Q decidable:

- $sc_P(\vec{x}) = 1(\mu t.|\chi_Q(t,\vec{x}) 1|)$ is computable
- Therefore P is semi-decidable

Projection Theorem (CRITICAL THEOREM)

Definition: Let $P(x,y) \subseteq \mathbb{N}^{k+1}$ be semi-decidable. Then $R(y) \equiv \exists x. P(x,y)$ is semi-decidable.

Complete Proof:

- 1. P semi-decidable \implies by Structure Theorem: $P(x,y) \equiv \exists t.Q(t,x,y)$ with Q decidable
- $2. \ \mathsf{R}(\vec{y)} \equiv \exists x. \mathsf{P}(x, \vec{y}) \equiv \exists x. \exists t. \mathsf{Q}(t, x, \vec{y}) \equiv \exists w. \mathsf{Q}(\langle w \rangle_1, \langle w \rangle_2, \vec{y})$
- 3. Since Q decidable and existential quantification preserves semi-decidability ⇒ R semi-decidable

Complete Closure Properties Analysis

Closure Under Logical Operations (MEMORIZE THIS TABLE)

Operation	Decidable	Semi-Decidable	Proof Method
Negation ¬	✓ CLOSED	X NOT CLOSED	K ∈ K vs Ř ∉ K
Conjunction ∧	✓ CLOSED	√ CLOSED	Structure + encoding
Disjunction ∨	✓ CLOSED	√ CLOSED	Structure + encoding
Existential 3	X NOT CLOSED	√ CLOSED	Projection Theorem
Universal ∀	X NOT CLOSED	X NOT CLOSED	Can make r.e. → non-r.e.

Detailed Closure Proofs

Conjunction Closure: If $P(\vec{x})$, $Q(\vec{x})$ semi-decidable, then $P(\vec{x}) \land Q(\vec{x})$ semi-decidable.

Proof:

- $P(\vec{x}) \equiv \exists t.P'(t,\vec{x}), Q(\vec{x}) \equiv \exists t.Q'(t,\vec{x})$ (Structure Theorem)
- P \wedge Q = $\exists w.(P'(\langle w \rangle_1, \vec{x}) \wedge Q'(\langle w \rangle_2, \vec{x}))$
- Since conjunction of decidable predicates is decidable, apply Structure Theorem

Negation Non-Closure: Semi-decidable predicates NOT closed under negation.

Counterexample:

- Q(x) ≡ "x ∈ K" ≡ " ϕ_x (x) ↓" (semi-decidable)
- $\neg Q(x) \equiv "x \notin K" \equiv "\phi_x(x) \uparrow" (NOT semi-decidable)$

ALL EXAM EXERCISES WITH COMPLETE SOLUTIONS

Type 1: Direct Structure/Projection Application

Exam 2023-02-01 (without assuming theorems) *Exercise*: Show that if $Q(\vec{x,y})$ is semi-decidable then $P(\vec{x}) = \exists y. Q(\vec{x,y})$ is semi-decidable. Does the converse hold?

Complete Solution:

- 1. Forward Direction:
 - Q semi-decidable ⇒ sc_Q computable with index e
 - $Q(\vec{x,y})$ iff $\phi_e^{(k+1)}(\vec{x,y}) \downarrow$ iff $\exists t.H^{(k+1)}(e,\langle \vec{x,y}\rangle,t)$
 - $P(\vec{x}) = \exists y. \exists t. H^{(k+1)}(e, \langle \vec{x,y} \rangle, t) = \exists w. H^{(k+1)}(e, \langle \vec{x,y} \rangle_1), \langle w \rangle_2)$
 - Therefore $sc_P(\vec{x}) = 1(\mu w.|\chi_H^{(k+1)}(e,\langle \vec{x},\langle w \rangle_1),\langle w \rangle_2) 1|)$ computable
- 2. **Converse FALSE**: $Q(x,y) \equiv "\phi_{\nu}(x) \uparrow"$ (not semi-decidable), but $P(x) \equiv \exists y. "\phi_{\nu}(x) \uparrow"$ (always true, hence decidable with e_0)

Exam 2022-06-17 (Structure Theorem Bidirectional) *Exercise*: Show $P(\vec{x})$ is semi-decidable iff \exists decidable $Q(\vec{x}, y)$ such that $P(\vec{x}) = \exists y. Q(\vec{x}, y)$.

Complete Solution: This IS the Structure Theorem. Use complete proof above.

Type 2: Function Equality Predicates

Exam 2024-02-16 Exercise: Given f: $\mathbb{N} \to \mathbb{N}$, define $Q_f(x,y) \equiv f(x) = y$. Show f computable iff $Q_f(x,y) = f(x) = y$.

Complete Solution:

- 1. (⇒) f computable:
 - If e is index for f, then $Q_f(x,y) \equiv \exists t.S(e,x,y,t)$
 - Since S decidable, Q_f semi-decidable by Structure Theorem
- 2. (←) Q_f semi-decidable:
 - To compute f(x), search y such that Q_f(x,y) holds
 - $f(x) = \langle \mu w.S(e, x, \langle w \rangle_1, \langle w \rangle_2) \rangle_1$ where e is index for sc_Q_f

Exam 2020-06-30 *Exercise*: Given f,g: $\mathbb{N} \to \mathbb{N}$ with f total, define Q_fg(x) = "f(x) = g(x)". Show that if f,g computable, then Q_fg semi-decidable.

Complete Solution:

- Let e_1 , e_2 be indices such that $f = \phi_{e1}$, $g = \phi_{e2}$
- $sc_Qfg(x) = 1(\mu w.|f(x) g(x)|)$ is computable
- Therefore Q_fq semi-decidable

Type 3: Projection with Counterexamples

Exam 2015-07-16 Exercise: Show that if P(x,y) semi-decidable, then $\exists x.P(x,y)$ semi-decidable. Does converse hold?

Complete Solution:

- 1. **Forward**: Direct application of Projection Theorem
- 2. Converse FALSE:
 - **Standard**: $P(x,y) = "x \notin W_x$ " (not semi-decidable), $Q(y) = \exists x. P(x,y)$ (always true, decidable)
 - Less degenerate: $P(x,y) = (y > x) \land (y \notin W_x)$, then $Q(y) = \exists x. P(x,y)$ decidable for $y > e_0$

Type 4: Closure Under Logical Operations

Universal vs Existential Quantification Analysis

- **Existential**: Decidable + \exists = Semi-decidable (Structure Theorem)
- Universal: Decidable + ∀ = Can become non-semi-decidable

Example:

- $R(t,x) \equiv \neg H(x,x,t)$ (decidable)
- ∀t.R(t,x) ≡ "x ∉ K" (not semi-decidable)

STANDARD COUNTEREXAMPLE PATTERNS (MEMORIZE THESE)

Pattern A: Always Undefined Function

```
Let e_0 be index for always undefined function For P(x,y) involving "\varphi_{\gamma}(x) 1": \exists y.P(x,y) becomes universally true by taking y=e_0
```

Pattern B: Halting Set K

```
K = \{x \mid x \in W_x\} = \{x \mid \varphi_x(x) \downarrow\} (semi-decidable, not decidable)

\bar{K} = \{x \mid x \notin W_x\} = \{x \mid \varphi_x(x) \uparrow\} (not semi-decidable)
```

Pattern C: Degenerate Dependency

```
P(x,y) = (y = constant) \land (property of x)
Makes \exists x.P(x,y) depend only on y, often decidable
But P inherits decidability/semi-decidability from property of x
```

Pattern D: Non-Semi-Decidable via Composition

```
If P(x,y) not semi-decidable, show:
- If some projection were semi-decidable
- Then composition would make non-semi-decidable predicate semi-decidable
- Contradiction
```

WORKED EXAMPLES FROM EXERCISES

Example 1: Projection Theorem Without Assuming It

Problem: Prove 3 quantification preserves semi-decidability without using theorems.

Solution Template:

Example 2: Bidirectional Structure Theorem

Problem: Show P semi-decidable $\iff \exists$ decidable Q such that $P(\vec{x}) = \exists y.Q(\vec{x},y)$.

Solution:

- (⇒): Use halting predicate H as witness
- (⇐): Use μ-operator to construct semi-characteristic function

Example 3: Function Computability via Predicates

Problem: Show function f computable iff its equality predicate is semi-decidable.

Key Insight: Semi-decidability allows "search" for correct output value.

STRATEGIC APPROACH FOR EXAMS

Step 1: Identify Exercise Type

1. **Direct application**: Apply Structure/Projection theorem

2. **Converse question**: Construct counterexample using patterns

3. Closure properties: Use table above

4. Function-predicate relationship: Use semi-decidability for search

Step 2: Apply Appropriate Template

- Semi-decidability proof: Find decidable Q, apply Structure Theorem
- Non-semi-decidability proof: Reduce from K or use closure contradiction
- Counterexample: Use Pattern A, B, C, or D from above

Step 3: Use Standard Notation

- $H^{(k)}(e,\vec{x,t})$ for halting predicate
- ⟨w⟩₁, ⟨w⟩₂ for pairing projections
- μ-operator for semi-characteristic functions
- $\varphi_e^{(k)}$ for k-ary partial recursive functions

Step 4: Critical Details

- Always specify indices e for computable functions
- Use correct encoding for multiple quantifiers
- State which functions/predicates are computable/decidable
- Apply Structure Theorem explicitly when using existential quantification

FORMULA FOR SUCCESS

Structure/Projection Exercise = Pattern Recognition + Template Application + Standard Counterexamples + Precise Encoding

These theorems appear in nearly every computability exam. Master the four patterns above, memorize the standard counterexamples, and you can solve any variation.