

Curso de Tecnologia em Sistemas de Computação 2ª Avaliação Presencial de Física para Computação – ___/__/__

Nome:	
Pólo:	

Questão	Valor	Nota
1ª Questão	2,0	
2ª Questão	2,0	
3ª Questão	2,0	
4ª Questão	2,0	
5ª Questão	2,0	
Total	10,0	

Observação: Em todas as questões, explique passo a passo todas as etapas do seu desenvolvimento. Não se limite à aplicação de fórmulas. Desse modo, resultados parciais e evidências de compreensão do conteúdo pertinente podem ser considerados e pontuados.

1º Questão: A uma profundidade de 1m, no interior de um líquido de índice de refração $\sqrt{2}$, encontra-se uma fonte luminosa pontual P, como mostra a figura. Determine o diâmetro mínimo que deve ter um disco opaco para que, convenientemente colocado na superfície que separa o líquido do ar, não permita a emergência de nenhuma luz para o ar. Adote o índice de refração do ar igual a 1,0 e o sen45°=0,7 e tg45°=1.

Solução:

Apenas um feixe cônico de abertura 2L (sendo L o ângulo limite) consegue emergir no ar. A luz, portanto, sai pela superfície através de uma região circular, em cujas bordas os raios incidem pelo ângulo limite. Os raios não pertencentes a esse feixe cônico incidem por ângulos maiores que o limite e sofrem reflexão total. Se na região circular pela qual a luz emerge for colocado um disco opaco de mesmo diâmetro, nenhuma luz poderá passar do líquido para o ar.

Figura 2

Na figura 3, no triângulo sombreado temos: $tg(L) = \frac{R}{H}$ (Eq. 1)

Sabemos que
$$sen(L)=\frac{\eta_1}{\eta_2}$$
, onde $\eta_1=1$ e $\eta_2=\sqrt{2}$ e logo
$$sen(L)=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}=>L=45^\circ$$

Da Eq.1 temos que:
$$tg(45^{\circ}) = \frac{R}{H} = 1 => R = H$$

Como H=1m segue que R=1m e, portanto o diâmetro será D = 2R = 2m

Figura 3

2ª Questão: Duas barras de ferro têm aparências exatamente iguais. Uma delas está imantada e a outra não. Como identificá-las? Não é permitido suspender nenhuma delas como se fosse agulha de bússola, nem usar qualquer outro aparelho.

Solução:

Segure com a mão esquerda uma das barras numa direção horizontal (por exemplo, apoiando-a sobre uma mesa). Com a outra mão, segure a outra barra numa posição ortogonal à primeira. Coloque uma das extremidades da segunda barra encostada sobre a barra fixa na direção horizontal. A seguir, percorra com a extremidade da segunda barra a periferia da primeira barra desde a extremidade até o meio desta primeira barra. Duas coisas podem ocorrer: (a) Se a barra fixa na mão esquerda for o imã, você sentirá uma atração forte na extremidade; porém, esta atração irá diminuir à medida que a barra da mão direita se aproximar do centro da barra da mão esquerda (que supostamente é o imã). Portanto você poderia identificar as duas barras neste caso. (b) Se a barra fixa na mão esquerda não for o imã, você sentirá sempre a mesma atração, pois, neste caso, a barra da mão direita será o imã e, como você sabe, a extremidade de um imã atrai sempre com a mesma intensidade a barra de ferro (em qualquer posição).

3º Questão: (a) Explique o que se pode fazer para mostrar que "um campo magnético variável produz um campo elétrico". (b) Explique como se pode mostrar que "um campo elétrico variável produz um campo magnético".

Solução:

(a) Imagine um imã e um anel:

Aproximando o anel do ímã, aparecerá uma corrente elétrica no anel.

Considere o imã perpendicular ao plano do anel. Movendo-se ou o imã ou o anel, aparecerá uma corrente no anel, causado por um campo elétrico criado devido à variação do fluxo magnético no anel.

(b) Agora imagine duas placas paralelas sendo carregadas progressivamente:

Ao crescerem as cargas das placas, o campo elétrico aumenta, produzindo um campo magnético (devido à variação do campo elétrico).

4ª Questão: Na experiência de fenda dupla, de Young, usando, em laboratório, uma fonte de luz monocromática, por que o anteparo A na figura abaixo é necessário? Se a fonte de luz é um feixe de laser, não necessitamos do equivalente da tela A da figura. Por quê?

Solução:

O anteparo A é necessário para provocar a difração do feixe de luz através da fenda S_0 . O feixe de laser converte luz comum em um feixe intenso e fino, além disso o

laser é altamente colimado, ou seja, o único desvio que o laser sofre ocorre através de difração quando ele sai pela fenda de seu emissor.

5º Questão: Uma partícula se encontra em uma região unidimensional, centrada em x=0 sob a influência de um potencial atrativo. Compare as funções de onda da partícula para os casos de o potencial ser um poço atrativo finito (profundidade -V_o) e infinito (caixa), entre -L/2 e L/2, com V=0 fora da região [-L/2,L/2]. Discuta a possibilidade de a partícula ser encontrada fora desta região, em ambos os casos. Ilustre graficamente sua explicação representando o estado fundamental e o primeiro estado de energia da partícula, que possui energia menor que zero.

Solução:

Para o caso finito temos:

Não há região onde a partícula não possa ser encontrada, pois a probabilidade (produto da densidade de probabilidade pelo intervalo) de onde encontrá-la é diferente de zero em todo o domínio. Há regiões onde a probabilidade é muito reduzida, como no caso, da vizinhança dos valores nulos da função de onda. A seguir, os gráficos para os dois primeiros estados de energia, observem que os gráficos se comportam como exponenciais negativas fora do poço:

Para o caso infinito temos:

A partícula não pode ser encontrada fora da região, pois a probabilidade (produto da densidade de probabilidade pelo intervalo) de onde encontrá-la é diferente de zero em somente entre –L/2 e L/2. A seguir, os gráficos para os dois primeiros estados de energia:

Nível 1:

Nível 2:

Formulário:

$$\Phi_m = N \vec{B} \hat{n} A; \quad \varepsilon = -\frac{d\Phi_m}{dt}$$
 $sen\theta_c = \frac{n_2}{n_1};$ $W = Pot = \frac{\varepsilon}{R};$ $Pot = I^2 R$ $Pot = W \Delta t$ $\theta = sen^{-1}(\frac{m\lambda}{d})$