

Numerical Computing 2023

Lecture 8: Introduction to the conjugate-gradient method

Lisa Gaedke-Merzhäuser, Dr. Dimosthenis Pasadakis, Dr. Edoardo Vecchi

- \blacksquare Motivation Ax = b
- Gradient-based Methods
 - lacksquare Solve equivalent minimization problem to $\mathbf{A}\mathbf{x}=\mathbf{b}$
 - Method of Steepest Descent
 - Conjugate-Gradient Method
- Outlook: Preconditioning

Direct Methods

Let us consider the solution of a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$, with **nonsingular** coefficient matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, constant vector $\mathbf{b} \in \mathbb{R}^n$ and (unknown) solution vector $\mathbf{x} \in \mathbb{R}^n$.

Direct methods compute the exact solution in n steps (in absence of roundoff error):

- Cost for classical Gaussian Elimination: $\mathcal{O}(n^3)$
- Cost for sparse matrices: $\mathcal{O}(n^{1.5})$ or $\mathcal{O}(n^2)$
- High memory consumption due to additional fill-in elements

Problem: Complexity of Gaussian Elimination ("direct method") for LARGE (sparse) linear systems of equations is too high.

Iterative Methods

Potential solution: Use iterative methods.

Iterative methods use an (arbitrary) initial guess ("starting point") to compute an approximate solution:

- Cost for conjugate-gradient algorithms: between $\mathcal{O}(n)$ and $\mathcal{O}(n^{3/2})$ (for an approximation using a fixed accuracy, e.g., 10^{-6})
- No need for additional memory
- \blacksquare Convergence after a few iterations (this depends, of course, also on A).

However, iterative methods are very often less robust and not as general as direct methods.

Sketch of an iterative method

Structure of the algorithm:

Start: $m=0, \quad \mathbf{x}^{(m)} = \text{Initial value}$ Iterate until error estimate $<\epsilon$:
Find a new solution $\mathbf{x}^{(m+1)}$ Compute new error estimate

- Is the new iterate always better?
- How can we get an error estimate?

Computing Comput

The *error* in step m is the deviation of $\mathbf{x}^{(m)}$ from the exact solution \mathbf{x} :

$$\mathbf{e}^{(m)} = \mathbf{x} - \mathbf{x}^{(m)} = A^{-1}\mathbf{b} - \mathbf{x}^{(m)}$$

Unfortunately we do not know the error during the iterations (otherwise we would know also the exact solution, thus defying the purpose of using iterative solvers)

The *residual* provides us a measure for the real error. It is relatively easy to compute:

$$\mathbf{r}^{(m)} = \mathbf{b} - A\mathbf{x}^{(m)} = A\mathbf{e}^{(m)}$$

The fact that the residual is equivalent the A-transformed error $(Ae^{(m)})$ will be used later. Its residual norm is defined as $\|\mathbf{r}^{(m)}\|$, whereas the relative residual norm is $\frac{\|\mathbf{r}^{(m)}\|}{\|\mathbf{b}\|}$.

Notation

- $\blacksquare \langle \cdot, \cdot \rangle$ is the scalar product: $\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{a}^T \mathbf{b} = \sum_{i=1}^n a_i b_i$
- $\mathbf{x} := A^{-1}\mathbf{b}$ denotes the exact solution
- lacktriangledown $\mathbf{x}^{(m)}$ is the approximation in the m-th iteration

Gradient-based methods

www.myswissalps.com

A class of first order methods utilized for finding the nearest local minimum of a function, by following the direction of its negative gradient at the current point (Cauchy 1847).

Minimization problem - 1D Case

Basic idea: Instead of $a \cdot x = b$ solve an equivalent minimization problem

$$f(x) := \frac{1}{2}a \cdot x^2 - b \cdot x \tag{1}$$

Precondition: Let a be symmetric positive definite (spd), i.e. in this case a > 0. If we take the derivative of (1), it will lead to:

$$f'(x) = 2 \cdot \frac{1}{2}x - b$$

$$= ax - b$$
(2)

Setting the equation to zero will lead to the original problem $a \cdot x = b$.

della Sivizzera Italiana Computing C

Basic idea: Instead of Ax = b solve an equivalent minimization problem

$$f(\mathbf{x}) := \frac{1}{2} \langle A\mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle \tag{3}$$

Precondition: Let A be a symmetric positive definite (spd) matrix:

$$\langle A\mathbf{x}, \mathbf{x} \rangle > 0$$
, if $\mathbf{x} \neq \text{zero vector}$ (4)

If we take the derivative of (3), it will lead to:

$$f'(\mathbf{x}) = \frac{1}{2}A^T\mathbf{x} + \frac{1}{2}A\mathbf{x} - \mathbf{b}$$

$$= A\mathbf{x} - \mathbf{b} \qquad \text{Condition: } A^T = A$$
(5)

Setting the equation to zero will lead to the original problem Ax = b.

Minimization problem, Example

Figure: Linear equations with solution at the intersection of both lines.

Minimization problem, Example

Figure: Quadratic Form f(x) and gradients f'(x)

della Sivizzere Italiana Computing Method of steepest descent

Basic idea: Take one step in the direction of the negative gradients at the point $\mathbf{x}^{(m)}$, i.e. in the direction of $-f'(\mathbf{x}^{(m)})$.

- lacktriangle Use a step length, until f is minimal along the search direction
- From equation (5) it follows, that $-f'(\mathbf{x}^{(m)}) = \mathbf{r}^{(m)}$

Start:
$$\mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$$

until $\|\mathbf{r}^{(m)}\| < \epsilon$:
Find α , such that $f(\mathbf{x}^{(m)} + \alpha \mathbf{r}^{(m)})$ minimal $\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \alpha \mathbf{r}^{(m)}$
 $\mathbf{r}^{(m+1)} = \mathbf{b} - A\mathbf{x}^{(m+1)}$

■ The residual is a measure for both the error and the search direction!

Method of steepest descent

della sur della

Minimize f along the search vector $\mathbf{p}^{(m)}$:

Approach:

$$f(\mathbf{x}^{(m+1)}) = f(\mathbf{x}^{(m)} + \alpha \mathbf{p}^{(m)}) \stackrel{!}{=} \min \quad \Longleftrightarrow \quad \frac{d}{d\alpha} f(\mathbf{x}^{(m+1)}) = 0$$
 (6)

with the chain rule

$$\frac{d}{d\boldsymbol{\alpha}}f(\mathbf{x}^{(m+1)}) = \langle f'(\mathbf{x}^{(m+1)}), \frac{d}{d\boldsymbol{\alpha}}(\mathbf{x}^{(m)} + \boldsymbol{\alpha}\mathbf{p}^{(m)}) \rangle
= \langle f'(\mathbf{x}^{(m+1)}), \mathbf{p}^{(m)} \rangle
= \langle \mathbf{r}^{(m+1)}, \mathbf{p}^{(m)} \rangle$$

for steepest descent we will use $\mathbf{p}^{(m)} = \mathbf{r}^{(m)}$. The more general (and interesting) case with $\mathbf{p}^{(m)} \neq \mathbf{r}^{(m)}$ will be discussed later.

Method of steepest descent

We search for an α , such that $\mathbf{r}^{(m+1)} \perp \mathbf{p}^{(m)}$.

delia delia

We search for an α , such that $\mathbf{r}^{(m+1)} \perp \mathbf{p}^{(m)}$.

Rearranging for α :

$$\langle \mathbf{r}^{(m+1)}, \mathbf{p}^{(m)} \rangle = 0$$

$$\langle b - A\mathbf{x}^{(m+1)}, \mathbf{p}^{(m)} \rangle = 0$$

$$\langle b - A(\mathbf{x}^{(m)} + \alpha \mathbf{p}^{(m)}), \mathbf{p}^{(m)} \rangle = 0$$

$$\langle b - A\mathbf{x}^{(m)}, \mathbf{p}^{(m)} \rangle - \alpha \langle A\mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle = 0$$

$$\langle b - A\mathbf{x}^{(m)}, \mathbf{p}^{(m)} \rangle = \alpha \langle A\mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle$$

$$\langle \mathbf{r}^{(m)}, \mathbf{p}^{(m)} \rangle = \alpha \langle A\mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle$$

$$\alpha = \frac{\langle \mathbf{r}^{(m)}, \mathbf{p}^{(m)} \rangle}{\langle A\mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle}$$

della Sivizzere Italiana Computing Method of steepest descent

■ The final algorithm will be:

Start:
$$\mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$$
until $\|\mathbf{r}^{(m)}\| < \epsilon$:
$$\alpha^{(m)} = \frac{\langle \mathbf{r}^{(m)}, \mathbf{r}^{(m)} \rangle}{\langle A\mathbf{r}^{(m)}, \mathbf{r}^{(m)} \rangle}$$

$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \alpha^{(m)}\mathbf{r}^{(m)}$$

$$\mathbf{r}^{(m+1)} = \mathbf{r}^{(m)} - \alpha^{(m)}A\mathbf{r}^{(m)}$$

■ We avoid the matrix-vector product $A\mathbf{x}^{(m)}$ for the computation of $\mathbf{r}^{(m+1)}$ since $\mathbf{r}^{(m+1)} = \mathbf{r}^{(m)} - \alpha^{(m)} A\mathbf{r}^{(m)}$

Method of steepest descent

Figure: Method of steepest descent with $\mathbf{x}^{(0)} = (-2 \ -2)^T$

General Convergence of steepest descent

Consider the functional $f(x) = \frac{1}{2} < Ax, x > - < b, x >$, which we would like to minimize to compute the solution of Ax = b.

Example: n=2

A has 2 orthonormal eigenvectors \mathbf{v}_1 and \mathbf{v}_2 with associated eigenvalues λ_1 and λ_2 . We can write each vector \mathbf{x} as a linear combination of eigenvectors $\mathbf{x} = a_1 \cdot \mathbf{v}_1 + a_2 \cdot \mathbf{v}_2, \quad a_1, a_2 \in \mathbb{R}$.

The following equation holds ($\mathbf{b} = 0$):

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} = \frac{1}{2}(a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2)^T (a_1 \lambda_1 \mathbf{v}_1 + a_2 \lambda_2 \mathbf{v}_2)$$
(7)

$$= \frac{1}{2}(a_1^2\lambda_1 + a_2^2\lambda_2) \tag{8}$$

Convergence of steepest descent

Contour lines of the functional:

Impact on the convergence

lacktriangledown (a) Large condition number, good starting point \longrightarrow by accident fast convergence using steepest descent

Impact on the convergence

■ (a) Large condition number, good starting point → by accident fast convergence using steepest descent (b) Large condition number, bad starting point → very slow convergence

Impact on the convergence

■ (a) Large condition number, good starting point → by accident fast convergence using steepest descent (b) Large condition number, bad starting point → very slow convergence (c-d) Small condition number → good convergence independent of the starting vector → Preconditioning

«Conjugate Gradient Method»

Conjugate Gradient Search Directions

Basic idea: In each iteration we take one optimal search step.

- *Approach:* We define n orthogonal search directions $\mathbf{p}^{(0)}$ until $\mathbf{p}^{(n-1)}$. Use maximally n steps.
- The minimization criteria is the orthogonality of $e^{(m+1)}$, with: $p^{(m)} \perp e^{(m+1)}$

- Using this step we eliminate the error component of this particular search direction
- If $\mathbf{p}^{(m)} \perp \mathbf{e}^{(m+1)}$, then the scalar-product must be = 0:

$$\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m+1)} \rangle = 0 \tag{9}$$

$$\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m+1)} \rangle = 0$$

$$\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m)} + \alpha^{(m)} \mathbf{p}^{(m)} \rangle = 0$$
(9)
(10)

$$\alpha^{(m)} = -\frac{\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m)} \rangle}{\langle \mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle}$$
(11)

- Using this step we eliminate the error component of this particular search direction
- If $\mathbf{p}^{(m)} \perp \mathbf{e}^{(m+1)}$, then the scalar-product must be = 0:

$$\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m+1)} \rangle = 0$$

$$\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m)} + \alpha^{(m)} \mathbf{p}^{(m)} \rangle = 0$$
(12)

$$\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m)} + \alpha^{(m)} \mathbf{p}^{(m)} \rangle = 0$$
 (13)

$$\alpha^{(m)} = -\frac{\langle \mathbf{p}^{(m)}, \mathbf{e}^{(m)} \rangle}{\langle \mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle}$$
(14)

■ This is not really helpful since we do not know $e^{(m)}$!

General Conjugate Search Direction

One solution is, instead of orthogonal direction, we will use A-orthogonal or conjugate vectors.

<u>Definition</u>: Two vectors **a**, **b** are *A-orthogonal* or *conjugate* if and only if:

$$\mathbf{a}^T A \mathbf{b} = \langle \mathbf{a}, A \mathbf{b} \rangle = 0 \iff \mathbf{a} \perp_A \mathbf{b}$$

Let $\mathbf{p}^{(m)} \perp_A \mathbf{e}^{(m+1)}$ and $\mathbf{r}^{(m)} = A\mathbf{e}^{(m)}$, then

$$\langle \mathbf{p}^{(m)}, A\mathbf{e}^{(m+1)} \rangle = 0 \tag{15}$$

$$\langle \mathbf{p}^{(m)}, A\mathbf{e}^{(m)} + \frac{\alpha^{(m)}}{\alpha^{(m)}} A\mathbf{p}^{(m)} \rangle = 0$$
 (16)

$$\alpha^{(m)} = -\frac{\langle \mathbf{p}^{(m)}, A\mathbf{e}^{(m)} \rangle}{\langle \mathbf{p}^{(m)}, A\mathbf{p}^{(m)} \rangle}$$
(17)

$$= \frac{\langle \mathbf{p}^{(m)}, \mathbf{r}^{(m)} \rangle}{\langle \mathbf{p}^{(m)}, A\mathbf{p}^{(m)} \rangle}$$
 (18)

Conjugate Search Direction

Elimination of A-orthogonal components

- (a) $\mathbf{x}^{(1)}$ is computed such that $\mathbf{e}^{(1)}$ is A-orthogonal to $\mathbf{p}^{(0)}$.
- (b) $e^{(m)}$ can be expressed as a sum of A-orthogonal components (gray arrows). Each iteration eliminates such a component.

della Svizzera Svizzera Conjugate Directions

Condition: We would like to minimize $f'(x^{(m)} + \alpha p^{(m)}) \stackrel{!}{=} min$ (see (16))

The algorithm must satisfy the following iteration:

Start:
$$\mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$$

For all $m=1,\ldots,n$:

Select search vector $\mathbf{p}^{(m)}$ which is conjugate to all previously computed $\mathbf{p}^{(l)}, l < m$

$$\alpha^{(m)} = \frac{\langle \mathbf{r}^{(m)}, \mathbf{p}^{(m)} \rangle}{\langle A\mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle}$$
$$\mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \alpha^{(m)} \mathbf{p}^{(m)}$$
$$\mathbf{r}^{(m+1)} = \mathbf{r}^{(m)} - \alpha^{(m)} A\mathbf{p}^{(m)}$$

Question: How to find n A-orthogonal search vectors?

della Conjugate Gradient Method

Basic idea: Use the residual to construct the next conjugate search direction, where

$$\mathbf{p}^{(m+1)} = \mathbf{r}^{(m+1)} + \underbrace{\beta^{(m+1)}}_{\text{search for}} \mathbf{p}^{(m)}$$
(19)

and $(\mathbf{p}^{(m+1)},A\mathbf{p}^{(m)})=0$ we obtain:

A-orthogonal

$$0 = \langle \mathbf{p}^{(m+1)}, A\mathbf{p}^{(m)} \rangle$$

$$= \langle \mathbf{r}^{(m+1)} + \beta^{(m+1)}\mathbf{p}^{(m)}, A\mathbf{p}^{(m)} \rangle$$

$$= \langle \mathbf{r}^{(m+1)}, A\mathbf{p}^{(m)} \rangle + \beta^{(m+1)} \langle \mathbf{p}^{(m)}, A\mathbf{p}^{(m)} \rangle$$

$$\beta^{(m+1)} = -\frac{\langle \mathbf{r}^{(m+1)}, A\mathbf{p}^{(m)} \rangle}{\langle \mathbf{p}^{(m)}, A\mathbf{p}^{(m)} \rangle}$$

Strizzera Computing Conjugate Gradient Method

- \blacksquare the *initial-search vector* is $\mathbf{r}^{(0)}$ (as in steepest descent)
- similar to the steepest descent we can eliminate the additional matrix-vector product (exercise):

$$\beta^{(m+1)} = -\frac{\langle \mathbf{r}^{(m+1)}, \mathbf{A}\mathbf{p}^{(m)} \rangle}{\langle \mathbf{p}^{(m)}, \mathbf{A}\mathbf{p}^{(m)} \rangle} = \frac{\langle \mathbf{r}^{(m+1)}, \mathbf{r}^{(m+1)} \rangle}{\langle \mathbf{r}^{(m)}, \mathbf{r}^{(m)} \rangle}$$

- \blacksquare The method how to construct the n conjugate vectors is the *Gram-Schmidt process*.
- The iterative construction of the search space is of the form

$$U_m := \operatorname{span}\{\mathbf{p}^{(0)}, A\mathbf{p}^{(0)}, A^2\mathbf{p}^{(0)}, \dots, A^n\mathbf{p}^{(0)}\}\$$

This space is called Krylov-Subspace.

Conjugate Gradient Method

$$\begin{split} & \underline{\mathbf{Start:}} \ \mathbf{r}^{(0)} := \mathbf{b} - A\mathbf{x}^{(0)} \ \text{with } \mathbf{x}^{(0)} \ \text{arbitrary} \\ & \mathbf{p}^{(0)} := \mathbf{r}^{(0)} \end{split}$$

$$& \mathbf{for \ all} \ m = 0, \dots, n-1: \\ & \mathbf{\alpha}^{(m)} = \frac{\langle \mathbf{r}^{(m)}, \mathbf{p}^{(m)} \rangle}{\langle A\mathbf{p}^{(m)}, \mathbf{p}^{(m)} \rangle} \\ & \mathbf{x}^{(m+1)} = \mathbf{x}^{(m)} + \mathbf{\alpha}^{(m)} \mathbf{p}^{(m)} \\ & \mathbf{r}^{(m+1)} = \mathbf{r}^{(m)} - \mathbf{\alpha}^{(m)} A\mathbf{p}^{(m)} \\ & \boldsymbol{\beta}^{(m+1)} = \frac{\langle \mathbf{r}^{(m+1)}, \mathbf{r}^{(m+1)} \rangle}{\langle \mathbf{r}^{(m)}, \mathbf{r}^{(m)} \rangle} \\ & \mathbf{p}^{(m+1)} = \mathbf{r}^{(m+1)} + \boldsymbol{\beta}^{(m+1)} \mathbf{p}^{(m)} \end{split}$$

Hestenes & Stiefel 1952.

Conjugate Gradient Method

Elements of the algorithm:

- $\mathbf{x}^{(m)}$: Exact solution.
- $ightharpoonup {f r}^{(m)}$: Residual of the exact solution.
- $\mathbf{p}^{(m)}$: Search direction.
- \bullet $\alpha^{(m)}$: Optimal step length (factor) in the search direction $\mathbf{p}^{(m)}$ for next iterate $\mathbf{x}^{(m+1)}$.
- $\beta^{(m+1)}$: Factor for $\mathbf{p}^{(m)}$ to compute from $\mathbf{p}^{(m)}$ and $\mathbf{r}^{(m+1)}$ a new search direction $\mathbf{p}^{(m+1)}$ which is A-orthogonal to $\mathbf{p}^{(m)}$.

CG - Theory and Praxis

- \blacksquare The exact solution will be computed after n iterations
- As a result CG is actually a direct method
- In praxis we usually need much less iterations since we only need to compute an approximate solution.

Test example

Convergence of steepest descent and conjugate gradients $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} = \mathtt{tridiag}(-1, 2, -1) \in \mathbb{R}^{20 \times 20}$ and \mathbf{b} is a random vector.

After n iterations, where n = dim(A) the CG-methods converges against the exact solution.

Other popular Krylov Subspace Methods

Book: «Templates for the Solution of Linear System»

http://www.netlib.org/linalg/html_templates/Templates.html

Some popular iterative Krylov Subspace methods:

Name		Condition
MinRES	Minimal Residual	$A = A^T$, A indef.
CG	Conjugate Gradient	$A=A^T$, A s.p.d
QMR	Quasi-Minimal Residual	unsymmetric
BICGSTAB	Biconjugate Gradient Stabilized	unsymmetric
CGS	Conjugate Gradient Square	unsymmetric
GMRES	Generalized Minimal Residual	unsymmetric

« Preconditioning »

Problem: The rate of convergence of CG heavily depends on the condition number $\kappa(A)$. More precisely we have

$$\|x^{(m)} - x^*\|_A \le 2 \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^m \|x_0 - x^*\|_A.$$

where

$$\kappa(A) = ||A||_2 ||A^{-1}||_2 = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}.$$

Thus, if $\kappa(A) \gg 1$, slow convergence.

Preconditioning

Basic idea: Improve the conditioning number of A through a multiplication with a "preconditioner" $M\colon \kappa(M^{-1}A)\ll \kappa(A)$

- Solve equivalent problem: $M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$
- lacksquare M should be easy to invert
- In order to use the CG method, the resulting matrix $M^{-1}A$ must be symmetric positive definite
- We can split M in the following form $EE^T = M$, so that we can transform the problem $A\mathbf{x} = \mathbf{b}$ into

$$E^{-1}AE^{-T}\hat{\mathbf{x}} = E^{-1}\mathbf{b}, \quad \hat{\mathbf{x}} = E^{T}\mathbf{x}$$
 (20)

where the matrix $E^{-1}AE^{-T}$ is spd.

Preconditioning

Here are a few method

- Diagonal preconditioning. Choose: M = diag(A)
- Incomplete LU-Decomposition. Choose: M = LU = A R.
 - Important that the Fill-In and the time for the factorization will be small.
- → In Project 4 you will see CG and different preconditioners in practice!

Literature

- Jonathan R. Shewchuk, An Introduction to the Conjugate Gradient method without the Agonizing Pain, 1994. http://www-2.cs.cmu.edu/~jrs/jrspapers.html#cg
- Book: «Templates for the Solution of Linear System» http://www.netlib.org/linalg/html_templates/Templates.html
- James W. Demmel, Applied Numerical Linear Algebra, Siam 1997

QUESTIONS?

Jacobi Iteration Method

Basic idea: Solve the equation for every component x_j using the current approximation of x:

 \blacksquare For each individual elements of x we will use the following iterations method:

$$x_j^{(m+1)} = \frac{1}{a_{jj}} (b_j - \sum_{k \neq j} a_{jk} x_k^{(m)})$$
(21)

- We will only use elements from the previous iteration.
- Note that the order in which the equations are examined is irrelevant, since the Jacobi method treats them independently.

Grant Grant

$$\left(\begin{array}{cc} 1.5 & 0.5 \\ 0 & 1 \end{array}\right) \times \left(\begin{array}{c} x_1^{(m)} \\ 3 \end{array}\right) = \left(\begin{array}{c} 2 \\ 3 \end{array}\right)$$

$$x_1^{(m+1)} = \frac{1}{1.5}(2 - 0.5 * 3) = \frac{1}{3}$$

$$\left(\begin{array}{cc} 1.5 & 0.5 \\ 0 & 1 \end{array}\right) \times \left(\begin{array}{c} \frac{1}{3} \\ 3 \end{array}\right) = \left(\begin{array}{c} 2 \\ 3 \end{array}\right)$$

Jacobi Iteration Method

Matrix formulation: Split A in:

$$A = D + E$$

where D are all diagonal elements of A and E are the off-diagonal elements of A.

$$A\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = -E\mathbf{x} + \mathbf{b}$$

$$\mathbf{x} = \underbrace{-D^{-1}E}_{R_J}\mathbf{x} + \underbrace{D^{-1}\mathbf{b}}_{c_J}$$

$$\mathbf{x} = R_J\mathbf{x} + \mathbf{c}_J,$$
(22)

Renaming results in:

$$\mathbf{x}^{(m+1)} = R_J \mathbf{x}^{(m)} + \mathbf{c}_J. \tag{23}$$

Convergence of the Jacobi iteration

The fundamental convergence results can be proven by using an eigenvalue analyses of R.

We need to remember the following two definitions:

■ The *Spectral Radius* of matrix A is:

$$\rho(A) = \max\{|\lambda| : \lambda \text{ eigenvalue of } A\}.$$
 (24)

■ The *Spectral condition number* is given by:

$$\kappa = \lambda_{max}/\lambda_{min}.$$
 (25)

Excursus: Eigenvectors and eigenvalues

■ Let A a symmetric, real $n \times n$ matrix. The vector \mathbf{x} is called an eigenvector to the scalar eigenvalue λ , if the following equation is satisfied:

$$A\mathbf{x} = \lambda \mathbf{x} \tag{26}$$

■ Geometric interpretation of the matrix-vector multiplication: The multiplication of a matrix A with a vector \mathbf{x} is a linear operator, which consists of a scaling and a rotation of a vector \mathbf{x} , e.g.:

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad \mathbf{y} = A\mathbf{x} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

Eigenvalue analysis

- The eigenvector \mathbf{x} to the associated eigenvalue will be scaled with λ under the transformation $Ax = \lambda x$.
- The matrix A has the following eigenvalues and eigenvectors: $\mathbf{x}_1 = (1 \ 1)^T$ with eigenvalue $\lambda_1 = 3$ and $\mathbf{x}_2 = (1 \ -1)^T$ with eigenvalue $\lambda_2 = 1$.

Theorem: A symmetric, real matrix of dimension $n \times n$ has n eigenvalues λ_k with associated eigenvectors \mathbf{x}_k (k=1, ..., n). The eigenvectors $\{x_1, x_2, ..., x_n\}$ build a complete system of northonormal vectors, e.g.

$$\langle x_i, x_j \rangle = 1 \quad \text{if } i = j, \quad \text{and} \quad \langle x_i, x_j \rangle = 0 \quad \text{if } i \neq j$$
 (27)

 \blacksquare A simple—but practically irrelevant—alternative to compute the eigenvalues of matrix A is the characteristic polynomial:

$$p(\lambda) = \det(A - \lambda E). \tag{28}$$

Example:

$$\begin{vmatrix} 2-\lambda & 1\\ 1 & 2-\lambda \end{vmatrix} = (2-\lambda)^2 - 1 = 0 \implies \lambda_1 = 1, \ \lambda_2 = 3$$

Convergence of the Jacobi-Iteration

Theorem: The iteration $\mathbf{x}^{(m)} = R_J \mathbf{x}^{(m+1)} + \mathbf{c_J}$ converges for all starting vectors $\mathbf{x}^{(0)}$ against a solution \mathbf{x}^* if and only if $\rho(R_J) < 1$.

Explanation: Every vector from \mathbb{R}^n can be written as a linear combination of eigenvectors from R (if R is not singular). If one eigenvalue is larger than 1, then the Jacobi-Iteration will not converge.

General criteria for good convergence :

- lacksquare $\kappa pprox 1$, small ho
- lacksquare A "close" to the identity matrix I
- All these methods will convergence in one iteration of $A = \beta I$

Here we can see how the iteration will affect the error term $e^{(m)}$:

$$\mathbf{x}^{(m+1)} = R_{J}\mathbf{x}^{(m)} + \mathbf{c}_{J}$$

$$= R_{J}(\mathbf{x} + \mathbf{e}^{(m)}) + \mathbf{c}_{J}$$

$$= \underbrace{R_{J}\mathbf{x} + \mathbf{c}_{J} + R_{J}\mathbf{e}^{(m)}}_{\text{siehe (23)}}$$

$$= \mathbf{x} + R_{J}\mathbf{e}^{(m)}$$

$$\mathbf{e}^{(m+1)} = R_{J}\mathbf{e}^{(m)}.$$

$$\left| (\mathbf{x} - \mathbf{x}^{(m+1)} = \mathbf{e}^{(m+1)}) \right|$$
(29)

■ If $\rho(R) < 1$, then the error will converges 0 (with $m \to \infty$)

Gauss-Seidel Iteration

- A better, but still very easy method, is the Gauss-Seidel-Iteration.
- In principle, the idea is very similar to the Jacobi method, but is uses immediately new components of $x_i^{(m+1)}$

$$x_{j}^{(m+1)} = \frac{1}{a_{jj}} \left(b_{j} - \underbrace{\sum_{k=1}^{j-1} a_{jk} x_{k}^{(m+1)}}_{\text{new } x_{j}} - \underbrace{\sum_{k=j+1}^{n} a_{jk} x_{k}^{(m)}}_{\text{old } x_{j}} \right)$$
(30)