Transformers are RNNs

Vanilla Transformer

Vanilla Transformer

$$O(N^2D) + O(N^2M) = O(N^2 \max(D, M))$$

Построчная запись

$$V_i' = \frac{\sum_{j=1}^{N} \operatorname{sim}(Q_i, K_j) V_j}{\sum_{j=1}^{N} \operatorname{sim}(Q_i, K_j)}.$$
$$\operatorname{sim}(q, k) = \exp\left(\frac{q^T k}{\sqrt{D}}\right)$$

 V_i, V_i', Q_i, K_i - соответствующие строки

оказывается, можем взять

 $K(x, y): \mathbb{R}^{2 \times F} \to \mathbb{R}_+$

 $sim(x, y) = K(x, y) = \langle \phi(x), \phi(y) \rangle = \phi(x)^T \phi(y),$

(Применение спрямляющего отображения - построчное)

$$V_{i}' = \frac{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j}) V_{j}}{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j})} = \frac{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j})}$$

(Применение спрямляющего отображения - построчное)

$$V_{i}' = \frac{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j}) V_{j}}{\sum_{j=1}^{N} \phi(Q_{i})^{T} \phi(K_{j})} = \frac{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{N} \phi(K_{j})}$$

числитель:

$$\left(\phi\left(Q\right)\phi\left(K\right)^{T}\right)V = \phi\left(Q\right)\left(\phi\left(K\right)^{T}V\right)$$

"знаменатель" - диагональная матрица, на обратную к которой домножаем числитель:

$$diag((\phi(Q)\phi(K)^T)^{\overrightarrow{1}}) = diag(\phi(Q)(\phi(K)^T)^{\overrightarrow{1}})$$

Что нам это даёт?

$$\left(\phi\left(Q\right)\phi\left(K\right)^{T}\right)V = \phi\left(Q\right)\left(\phi\left(K\right)^{T}V\right)$$
 (N,C) (C,N) (N,M) (C,M)

Сложность: O(NCM) + O(NCM) = O(NCM)

где C - размерность спрямляющего пространства

Что это означает?

 Не имеет смысла использовать экспоненциальное (гауссово) ядро - его спрямляющее пространство - бесконечномерное:

$$K(x,z) = \exp\left(-\frac{\|x - z\|^2}{2\sigma^2}\right) =$$

$$= \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right) \exp\left(-\frac{\|z\|^2}{2\sigma^2}\right) \sum_{k=0}^{\infty} \frac{\langle x, z \rangle^k}{k! \sigma^{2k}}$$

Что это означает?

• Квадратичное ядро имеет спрямляющее пространство размерности D^2

$$K(x,y) = \left(\sum_{i=1}^n x_i y_i + c
ight)^2$$

$$arphi(x) = \langle x_n^2, \dots, x_1^2, \sqrt{2}x_n x_{n-1}, \dots, \sqrt{2}x_n x_1, \sqrt{2}x_{n-1} x_{n-2}, \ \dots, \sqrt{2}x_{n-1} x_1, \dots, \sqrt{2}x_2 x_1, \sqrt{2c}x_n, \dots, \sqrt{2c}x_1, c
angle$$

Что это означает?

Квадратичное ядро имеет спрямляющее пространство размерности D^2

$$K(x,y) = \left(\sum_{i=1}^n x_i y_i + c
ight)^2$$
 $\mathcal{O}\left(ND^2M
ight)$ хорошо, когда $N > D^2$

$$arphi(x) = \langle x_n^2, \dots, x_1^2, \sqrt{2}x_n x_{n-1}, \dots, \sqrt{2}x_n x_1, \sqrt{2}x_{n-1} x_{n-2}, \dots, \sqrt{2}x_{n-1} x_1, \dots, \sqrt{2}x_2 x_1, \sqrt{2c}x_n, \dots, \sqrt{2c}x_1, c \rangle$$

Что было использовано:

$$\phi(x) = ELU(x) + 1$$

$$\mathrm{ELU}(x) = egin{cases} x, & ext{if } x > 0 \ lpha * (\exp(x) - 1), & ext{if } x \leq 0 \end{cases}$$

$$C = D$$
, сложность: $O(NDM)$

Causal Masking

$$V_{i}' = \frac{\phi(Q_{i})^{T} \sum_{j=1}^{i} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{i} \phi(K_{j})}$$

Causal Masking

$$V_{i}' = \frac{\phi (Q_{i})^{T} \sum_{j=1}^{i} \phi (K_{j}) V_{j}^{T}}{\phi (Q_{i})^{T} \sum_{j=1}^{i} \phi (K_{j})}$$

$$S_i = \sum_{j=1}^i \phi(K_j) V_j^T, \ Z_i = \sum_{j=1}^i \phi(K_j) \implies V_i' = \frac{\phi(Q_i)^T S_i}{\phi(Q_i)^T Z_i}$$

Causal Masking

$$V_{i}' = \frac{\phi(Q_{i})^{T} \sum_{j=1}^{i} \phi(K_{j}) V_{j}^{T}}{\phi(Q_{i})^{T} \sum_{j=1}^{i} \phi(K_{j})}$$

$$S_{i} = \sum_{j=1}^{i} \phi(K_{j}) V_{j}^{T}, \ Z_{i} = \sum_{j=1}^{i} \phi(K_{j}) \implies V_{i}' = \frac{\phi(Q_{i})^{T} S_{i}}{\phi(Q_{i})^{T} Z_{i}}$$
=(D,M)

Наивное хранение частичных сумм увеличивает затраты по памяти в $\max\left(D,M
ight)$ раз

Рекуррентный подсчёт градиентов

$$\nabla_{\phi(Q_{i})}\mathcal{L} = \nabla_{\bar{V}_{i}}\mathcal{L}\left(\sum_{j=1}^{i}\phi\left(K_{j}\right)V_{j}^{T}\right)^{T},$$

$$\nabla_{\phi(K_{i})}\mathcal{L} = \left(\sum_{j=i}^{N}\phi\left(Q_{j}\right)\left(\nabla_{\bar{V}_{j}}\mathcal{L}\right)^{T}\right)V_{i},$$

$$\nabla_{V_{i}}\mathcal{L} = \left(\sum_{j=i}^{N}\phi\left(Q_{j}\right)\left(\nabla_{\bar{V}_{j}}\mathcal{L}\right)^{T}\right)^{T}\phi\left(K_{i}\right)$$

Рекуррентный подсчёт градиентов

```
function backward (\phi(Q), \phi(K), V, G):
      /\star~G is the gradient of the loss
             with respect to the output of
                                                                                           */
             forward
      S \leftarrow 0, \nabla_{\phi(Q)} \mathcal{L} \leftarrow 0
        for i = 1, \ldots, N do
           S \leftarrow S + \phi(K_i) V_i^T \\ \nabla_{\phi(Q_i)} \mathcal{L} \leftarrow G_i S^T
                                                                            equation 13
      end
      S \leftarrow 0, \nabla_{\phi(K)} \mathcal{L} \leftarrow 0, \nabla_V \mathcal{L} \leftarrow 0
        for i = N, \ldots, 1 do
         S \leftarrow S + \phi\left(Q_i\right) G_i^T
             \nabla_{V_i} \mathcal{L} \leftarrow S^T \phi(K_i)
                                                                            equation 15
            \nabla_{\phi(K_i)} \mathcal{L} \leftarrow SV_i
                                                                            equation 14
      end
      return \nabla_{\phi(Q)}\mathcal{L}, \nabla_{\phi(K)}\mathcal{L}, \nabla_{V}\mathcal{L}
end
```

Transformers are... RNNs

$$s_{0} = 0,$$

$$z_{0} = 0,$$

$$s_{i} = s_{i-1} + \phi (x_{i}W_{K}) (x_{i}W_{V})^{T},$$

$$z_{i} = z_{i-1} + \phi (x_{i}W_{K}),$$

$$y_{i} = f_{l} \left(\frac{\phi (x_{i}W_{Q})^{T} s_{i}}{\phi (x_{i}W_{Q})^{T} z_{i}} + x_{i} \right).$$

Quick Recap

- На стадии обучения линейный трансформер остаётся высокопараллелизуемым (?)
- На стадии тестирования бутылочное горлышко остаётся, но за счёт линейной асимптотики модель работает значительно быстрее

Насколько быстрее?

Method	Bits/dim	s/dim Images/sec		Method	Bits/dim	Images/sec	
Softmax	0.621	0.45	(1×)	Softmax	3.47	0.004	(1×)
Stateful-softmax	0.621	7.56	$(16.8 \times)$	Stateful-softmax	3.47	0.32	$(80\times)$
LSH-1	0.745	0.68	$(1.5\times)$	LSH-1	3.39	0.015	$(3.75\times)$
LSH-4	0.676	0.27	$(0.6\times)$	LSH-4	3.51	0.005	$(1.25\times)$
Linear (ours)	0.644	142.8	(317×)	Linear (ours)	3.40	17.85	$(4,462 \times)$

(a) Image generation on MNIST

(b) Image generation on CIFAR-10

Table 4: Comparison of autoregressive image generation throughput of MNIST and CIFAR-10 images. The experiment can be found in § 4.2 in the main paper. For stateful-softmax we save the keys and values and reuse them for predicting the next element. A detailed description of this extra baseline can be found in § C.1.

Method	Secon	ds (CPU)) Seconds (GPU) Method Seconds (CPU)		ds (CPU)	Seconds (GPU)			
Softmax	72.6	$(13.2 \times)$	10.2	(1.4×)	Softmax	8651.4	(191.8×)	300.1	$(4.9\times)$
Stateful-softmax	7.4	$(1.3\times)$	10.4	$(1.42 \times)$	Stateful-softmax	71.9	$(1.6\times)$	70.4	$(1.14 \times)$
LSH-1	46.0	$(8.3\times)$	19.2	$(2.6\times)$	LSH-1	2318.9	$(51.4 \times)$	221.6	$(3.6\times)$
LSH-4	112.0	$(20\times)$	55.8	$(7.6\times)$	LSH-4	5263.7	$(116.7 \times)$	683.9	$(11.1\times)$
Linear (ours)	5.5	(1×)	7.3	(1×)	Linear (ours)	45.1	(1×)	61.3	(1×)

(a) Image generation on MNIST

(b) Image generation on CIFAR-10

Table 5: Comparison of the time required to generate a single image with autoregressive transformers on MNIST and CIFAR-10. We run all methods with a batch size of 1 both on CPU and GPU and report the total time in seconds. For all numbers in the table, lower is better.

Figure 9: CIFAR-10 image completions from all trained transformer models. See § 4.2.2 in the main paper.

Method	Validation PER	Time/epoch (s)
Bi-LSTM	10.94	1047
Softmax	5.12	2711
LSH-4	9.33	2250
Linear (ours)	8.08	824

(c) Speech Recognition

Как ещё ускорять?

- Сокращать область внимания до ширины окна = b. Внимание считается по N/b блокам, итоговая асимптотика O(b^2 * n/b) = O(nb)
- Считать внимание разреженно, в зависимости от индексов (Sparse Transformer)
- Считать внимание разреженно, используя локально-чувствительное хеширование (Reformer)

Sparse Transformer, память O(NlogN)

Figure 4: Illustration of patterns of the attention matrix for dense self-attention in Transformers and sparse fixed attention in Sparse Transformers.

$$\hat{A}_{ij} = \begin{cases} Q_i(K)_j^{\top}, & \text{if } \lfloor j/N \rfloor = \lfloor i/N \rfloor \\ 0 & \text{otherwise} \end{cases}$$

Или

$$\hat{A}_{ij} = \begin{cases} Q_i(K)_j^\top, & \text{if } (i-j) \mod N = 0\\ 0 & \text{otherwise} \end{cases}$$

Использованные материалы:

- Оригинальная статья: https://arxiv.org/abs/2006.16236
- Обзор эффективных трансформеров: https://arxiv.org/abs/2009.06732
- Иллюстрированный трансформер:

https://jalammar.github.io/illustrated-transformer/

Пояснение к нотации

Авторы в оригинальной статье применяют следующую нотацию:

за K_i обозначается j-я строка матрицы K, расположенная как <u>столбец.</u>

Соответственно, $\phi(K_i)^T$ - это образ ј-ой строки, расположенный как <u>строка.</u>