

Indira Gandhi Delhi Technical University For Women

(Formerly Indira Gandhi Institute of Technology)

Kashmere Gate, Delhi-110006

Applied Mathematics (BAS-101)

Tutorial Sheet -8

(Vector Calculus)

- Q1. Find grad f, where f is given by $f = x^3 y^3 + xz^2$, at the point (1, -1, 2).
- Q2. Find the gradient and the unit normal to the level surface $x^2 + y z = 4$ at the point (2,0,0).
- Q3. Find the directional derivative of $f(x, y, z) = x^2yz + 4xz^2$ at the point (1, -2, -1) in the direction of the vector $2\hat{\imath} \hat{\jmath} 2\hat{k}$.
- Q4. Find the equations of tangent plane and normal to the surface $z=x^2+y^2$ at the point (2, -1, 5).
- Q5 Find the divergence and curl of the vector $\vec{f} = (x^2 y^2)\hat{\imath} + 2xy \hat{\jmath} + (y^2 xy)\hat{k}$.
- Q6. Find the constants a, b, c so that the vector $\vec{F} = (x + 2y + az)\hat{\imath} + (bx 3y z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational.
- Q7. Determine the constant a' so that the vector $\vec{V} = (x+3y)\hat{\imath} + (y-2z)\hat{\jmath} + (x+az)\hat{k}$ is solenoidal.
- Q8. Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (x^2 y^2)\hat{\imath} + xy\,\hat{\jmath}$ and curve C is the arc of the curve $y = x^3$ from (0, 0) to (2, 8).
- Q9. Find the work done when a force $\vec{F} = (x^2 y^2 + x)\hat{\imath} (2xy + y)\hat{\jmath}$ moves a particle in xy-plane from (0, 0) to (1, 1) along the parabola $y^2 = x$.
- Q10. If $\vec{F} = y\hat{\imath} (x 2xz)\hat{\jmath} xy\hat{k}$, evaluate $\iint_S (\nabla \times \vec{F}) \cdot \hat{n} \, ds$ where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy-plane.
- Q11. If $\vec{F} = (2x^2 3z)\hat{\imath} 2xy\,\hat{\jmath} 4x\,\hat{k}$, then evaluate $\iiint_V \nabla \cdot \vec{F} \,dV$ where V is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4. Also evaluate $\iiint_V \nabla \times \vec{F} \,dV$.
- Q12. Verify Green's theorem in the plane for $\oint_C \left[(3x^2 8y^2)dx + (4y 6xy)dy \right]$ where C is the boundary of the region defined by x = 0, y = 0, x + y = 1.

Q13. Use Gauss Divergence theorem to show that $\iint_S \left[(x^3 - yz)\hat{\imath} - 2x^2y\,\hat{\jmath} + 2\,\hat{k} \right].\hat{n}\,ds = a^5/3$ where S denotes the surface of the cube bounded by the planes $x=0,\ x=a,\ y=0,\ y=a,$ $z=0,\ z=a.$

Q14. Verify Stoke's theorem for $\vec{F} = (x^2 + y - 4)\hat{\imath} + 3xy\,\hat{\jmath} + (2xz + z^2)\hat{k}$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 16$ and C is its boundary.

Q15. A fluid motion is given by $\vec{V} = (y \sin z - \sin x)\hat{\imath} + (x \sin z + 2yz)\hat{\jmath} + (xy \cos z + y^2)\hat{k}$. Is the motion irrotational ? If so, find the velocity potential.

Answer Key

Ans 1.
$$7\hat{i}-3\hat{j}+4\hat{k}$$

Ans 2.
$$4\hat{i} + \hat{j} - \hat{k}$$
, $\frac{4\hat{i} + \hat{j} - \hat{k}}{3\sqrt{2}}$

Ans 3.
$$\frac{37}{3}$$

Ans 4. Equation of tangent plane is 4x - 2y - z = 5Equation of normal to surface is $\frac{x-2}{4} = \frac{y+1}{-2} = \frac{z-5}{-1}$

Ans 5.
$$div. \vec{f} = 4x$$

 $Curl \vec{f} = (2y - x)\hat{i} + y\hat{j} + 4y\hat{k}$

Ans 6.
$$\alpha$$
 =4, b=2, c=-1

Ans 7.
$$a = -2$$

Ans 8.
$$\frac{824}{21}$$

Ans 9.
$$\frac{-2}{3}$$

Ans 10. 0

Ans 11.
$$\frac{8}{3}(\hat{j} - \hat{k})$$

Ans 15. Velocity Potential $u = xy \sin z + \cos x + y^2z + c$