Experimental Methods: Lecture 4

Mediation

Raymond Duch

May 17, 2022

University of Oxford

Road Map

• Mediation'

Mediation

Classic approaches to mediation

Total Effect :
$$Y_i = \alpha_1 + \beta Z_i + e_{1i}$$
 (1)

Direct Effect :
$$Y_i = \alpha_2 + \gamma Z_i + \omega M_i + e_{2i}$$
 (2)

Indirect Effect :
$$(\beta - \gamma)$$
 (3)

Mediation and Potential Outcomes

- Define $M_i(z)$ as the potential value of M_i when $Z_i = z$
- Define $Y_i(m, z)$ as potential outcome when $M_i = m$ and $Z_i = z$
- $Y_i(M_i(1),1)$ thus expresses potential outcome when $Z_i=1$ and M_i takes on potential outcome that occurs when $Z_i=1$
- Total effect of Z_i on Y_i is $Y_i(M_i(1), 1) Y_i(M_i(0), 0)$
- What is the direct effect of Z_i on Y_i controlling for M_i ?
 - There is more than one definition
 - Y_i(M_i(0), 1) Y_i(M_i(0), 0) is direct effect of Z_i on Y_i holding m constant at M_i(0)
 - Y_i(M_i(1), 1) Y_i(M_i(1), 0) is direct effect of Z_i on Y_i holding m constant at M_i(1)
 - Y_i(M_i(0), 1) and Y_i(M_i(1), 0) are complex potential outcomes, so named because they are purely imaginary and never occur empirically

Mediation and Potential Outcomes

- What is the direct effect of Z_i on Y_i through M_i ?
 - This is the effect on Y_i of changing from M_i(0) to M_i(1) while holding Z_i constant
 - So again, depending on Z_i , we get two definitions of the indirect effect
 - $Y_i(M_i(1), 1) Y_i(M_i(0), 1)|Z_i = 1$ and $Y_i(M_i(1), 0) Y_i(M_i(0), 0)|Z_i = 0$
 - Again Y_i(M_i(0), 1) and Y_i(M_i(1), 0) are the earlier complex potential outcomes
- Each of these four equations involve a term that is fundamentally unobservable
- True even if we assume that both indirect effects are equal
- There is thus a fundamental limitation on what we can learn from an experiment while manipulating only Z_i without making further assumptions

Example: New Drug and Blood Pressure

- FDA Evidence
 - 1. New Drug (Z)
 - 2. Blood Pressure (Y)
 - 3. Aspirin (M)
- Total effect of drug on blood pressure
 - Y(1) Y(0)
- Total effect of drug on asprin use
 - M(Z = 1) M(Z = 0)
- Total effect of asprin use on blood pressure
 - Y(M = 1) Y(M = 0)
- Joint effect of drug + asprin use on blood pressure
 - Y(11) Y(00)

Example: New Drug and Blood Pressure

- Effect of drug when individual forced to refrain from asprin
 - Y(10) Y(00)
- Effect of drug when individual forced to take asprin
 - Y(11) Y(01)

Summary

$$Y(1) - Y(0) = Y(1M(1)) - Y(0M(0))$$

$$= \underbrace{Y(1M(1)) - Y(1M(0))}_{indirect} + \underbrace{Y(1M(0)) - Y(0M(0))}_{direct}$$

$$= \underbrace{Y(1M(1)) - Y(0M(1))}_{direct} + \underbrace{Y(0M(1)) - Y(0M(0))}_{indirect}$$

Ruling Out Mediators

- What if the sharp null hypothesis $M_i(0) = M_i(1)$ is true?
- $Y_i(M_i(1), 1) Y_i(M_i(0), 1)|Z_i = 1$ and $Y_i(M_i(1), 0) Y_i(M_i(0), 0)|Z_i = 0$
- Then both indirect effects equal 0. Experiments may indicate when mediation does not occur, but sometimes difficult to do in practice:
 - Need tight estimate around 0
 - ullet Need sharp null to be true, not just ATE=0
- Although sharp null cannot be proven, we can cite evidence suggesting whether this conjecture is a reasonable approximation
- We thus learn something useful about mediation when discovering a lack of causal relationship between Z_i and proposed mediator
- ullet Conversely, if Z_i and M_i have a strong relationship, we cannot rule out M_i as a possible mediator

Manipulating the Mediators

- A fundamental problem is that M_i is not independently manipulated via random intervention
- Could we manipulate M_i as well to build the case for mediation? → In principle, yes, but difficult in practical situations
- Example Y_i is scurvy, Z_i is lemon, M_i is vitamin C
 - We want indirect effect $Y_i(M_i(1), 0) Y_i(M_i(0), 0)$
 - $M_i(1)$ is vitamin C level of lemon, we feed pills without lemons
 - Still not perfect: Vitamin C in lemons consumed differently from pills, pills might have other effects on Y_i
- Manipulations of M_i are therefore instructive, but ability to provide empirical estimates inevitably requires additional assumptions
- In the Bhavnani example, possible M_i are number of female incumbents, voters' sense of whether it is appropriate or desirable to have women representatives, and turnout rate in local elections

Implicit Mediation

- Consider a treatment Z_i that contains multiple elements in it
- Rather than manipulating M_i , change the treatment to isolate particular elements of Z_i (i.e. Z^1 , Z^2 , Z^3) whose attributes affect M_i along the way
- Focus is not on demonstrating how a Z_i-induced change in M_i changes Y_i, but on the effect of different isolated treatments on Y_i
- In particular, no attempt to estimate the effects of observed changes in M_i at all

Example: Conditional Cash Transfers

- Interest in conditional cash transfers on poor to keep children in school and attend health clinics
- Field experiments find improved educational outcomes for children in developing countries from these transfers (Baird, McIntosh, and Ozler 2009)
- What could the causal mechanism be?
 - 1. Cash subsidies allow greater investment in children's welfare
 - 2. Imposed conditions improve children's welfare
- Baird, McIntosh and Ozler (2009) designed experiment with three groups
 - Control group with no subsidy, instructions, or conditions
 - One treatment group gets cash without conditions
 - Another treatment group gets cash with conditions
 - Finding: Null hypothesis of no difference between treatment groups cannot be rejected

Benefits of Implicit Mediation

- 1. Simple: Never strays from the unbiased statistical framework of comparing randomly assigned groups
- 2. By adding and subtracting elements from treatment, this approach lends itself to exploration and discovery of new treatments
 - Facilitates the process of testing basic propositions about what works by providing clues about the active elements that cause a treatment to work particularly well
- 3. Can gauge treatment effects on a wide array of outcome variables
 - Allows manipulation checks for establishing the empirical relationship between intended and actual treatments
 - Example: Does discussion in the classroom improve performance? Check if treatment increases discussion

Voter Turnout Example

- Gerber, Green, and Larimer (2008) interested in the effect of communication on turnout
- U.S. has voters files, anyone know what they are?
- 180,000 Michigan households in experiment
- 100,000 in control group (no postcards), other groups 20,000 each
- Civic duty: "It's your civic duty to vote"
- Hawthorne: "It's your civic duty to vote, we're doing a study and will check public records"
- **Self**: "You should vote, here's your recent voting record"
- Neighbors: "You should vote, here's your neighbors' voting records and your own"

Results

	Control	Civic	Hawthorne	Self	Neighbors
Pct Voting	29.7%	31.5%	32.2%	34.5%	37.8%
N	191,243	38,218	38,204	38,218	38,201

Anyone here know how Gerber followed up on this study?

Summary

- We are often curious about the mechanisms by which an experimental treatment transmits its influence
- Adding mediators as right-hand variables to determine this is a flawed strategy that generally provides bias in favor of mediation
- Main issue here is that the mediator is not experimentally manipulated
- In theory we could manipulate mediators experimentally, but this is difficult for two reasons
 - 1. We never observe complex potential outcomes
 - 2. Manipulation of mediators directly is often impractical
- However, two lines of inquiry seem promising:
 - 1. We can rule out mediators easier than we can find them
 - 2. We can implicitly manipulate mediators

Causal Mechanisms

Potential Outcomes

Total unit effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

Indirect effect:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

Direct effect:

$$\tau_i \equiv Y_i(1, M_i(0)) - Y_i(0, M_i(0))$$

Chain Fallacy

Population							
Proportion	$M_i(1)$	$M_i(0)$	$Y_i(t,1)$	$Y_i(t,0)$	Treatment Effect		
on Mediator							
$M_i(1)-M_i(0)$	Mediator Effect						
on Outcome							
$Y_i(t,1) - Y_i(t,0)$	Causal Mediation						
Effect							
$Y_i(t,M_i(1))-Y_i(t,M_i(0))$							
0.3	1	0	0	1	1	-1	-1
0.3	0	0	1	0	0	1	0
0.1	0	1	0	1	-1	-1	1
0.3	1	1	1	0	0	1	0
Average	0.6	0.4	0.6	0.4	0.2	0.2	-0.2

General Estimator Algorithm

- Model outcome and mediator
 - Outcome model: $p(Y_i|T_i, M_i, X_i)$
 - Mediator model: $p(M_i|T_i,X_i)$
- These models can be of any form (linear or nonlinear, semi- or nonparametric, with or without interactions)
- Predict mediator for both treatment values $M_i(1), M_i(0)$
- Predict outcome by first setting $T_i = 1$ and $M_i = M_i(0)$ and then $T_i = 1$ and $M_i = M_i(1)$
- Compute the average difference between two outcomes to obtain a consistent estimate of ACME
- Monte-Carlo or bootstrapping to estimate uncertainty

Example: Continuous Mediator and Binary Outcome

• Estimate the following models:

$$M_i = \alpha_2 + \beta_2 T_i + X_i + e_{2i}$$

 $Pr(Y_i = 1) = \Phi(\alpha_3 + b_3 T_i + \gamma M_i + X_i + e_{3i})$

- Predict M_i for $T_i=1$ and $T_i=0$. This gives you $\hat{M}_i(1)$ and $\hat{M}_i(0)$
- Predict Y_i with $T_i = 1$ and $\hat{M}_i(0)$ and vice versa
- Take average of these two predictions

Media Cues and Immigration Attitudes

Brader et al. experiment:

- Subjects read a mock news story about immigration
- Treatment: immigrant in story is a Hispanic, and the news story emphasized the economic costs of immigration
- They measured a range of different attitudinal and behavioral outcome variables:
 - Opinions about increasing or decrease immigration
 - Contact legislator about the issue
 - Send anti-immigration message to legislator
- They want to test whether the treatment increases anxiety, leading to greater opposition to immigration

Sensitivity: Interpreting ρ

 ACME > 0 as long as the error correlation is less than 0.39 (0.30 with 95% CI)

Sensitivity: R **Code**

 Fit models for the mediator and outcome variable and store these models.

```
> m <- lm(Mediator ~ Treat + X)
> y <- lm(Y ~ Treat + Mediator + X)</pre>
```

Mediation analysis: Feed model objects into the mediate() function. Call a summary of results.

Sensitivity analysis: Feed the output into the medsens () function. Summarize and plot.

```
> s.out <- medsens(m.out)
> summary(s.out)
> plot(s.out, "rho")
> plot(s.out, "R2")
```

Parallel Design

Randomly split sample

Experiment 1

- 1) Randomize treatment
- 2) Measure mediator
- 3) Measure outcome

Experiment 2

- 1) Randomize treatment
- 2) Randomize mediator
- 3) Measure outcome

Example from Behavioral Neuroscience

- Why study brain? Social scientists' search for causal mechanisms underlying human behavior → Psychologists, economists, and even political scientists
- Question: What mechanism links low offers in an ultimatum game with "irrational" rejections?
 - A brain region known to be related to fairness becomes more active when unfair offer received (single experiment design)
- Design solution: manipulate mechanisms with TMS
 - Knoch et al. use TMS to manipulate turn off one of these regions, and then observes choices (parallel design)legislator

Encouragement Design

- Randomly *encourage* subjects to take particular values of the mediator M_i
- Standard instrumental variable assumptions (Angrist et al.)
- Use a 2×3 factorial design:
 - Randomly assign T_i
 - Also randomly decide whether to positively encourage, negatively encourage, or do nothing
 - Measure mediator and outcome
- Informative inference about the "complier" ACME
- Reduces to the parallel design if encouragement is perfect
- Application to the immigration experiment: Use autobiographical writing tasks to encourage anxiety

Cross-over Design

- Recall ACME can be identified if we observe $Y_i(t_0; M_i(t))$
- Get $M_i(t)$, then switch T_i to t_0 while holding $M_i = M_i(t)$
- Crossover design:
 - Round 1: Conduct a standard experiment
 - Round 2: Change the treatment to the opposite status but fix the mediator to the value observed in the first round
- Very powerful identifies mediation effects for each subject
- Must assume no carryover effect: Round 1 must not affect Round 2
- Can be made plausible by design

Example from Labor Economics

Bertrand & Mullainathan (2004, AER)

- Treatment: Black vs. White names on CVs
- Mediator: Perceived qualifications of applicants
- Outcome: Callback from employers
- Quantity of interest: Direct effects of (perceived) race
- Would Jamal get a callback if his name were Greg but his qualifications stayed the same?
- Round 1: Send Jamal's actual CV and record the outcome
- Round 2: Send his CV as Greg and record the outcome
- Assumptions are plausible

Cross-over Encouragement Design

- Cross-over encouragement design:
 - Round 1: Conduct a standard experiment
 - Round 2: Same as crossover, except encourage subjects to take the mediator values
- Example: Hainmueller & Hiscox (2010, APSR)
 - Treatment: Framing immigrants as low- or high-skilled
 - Possible mechanism: Low income subjects may expect higher competition from low skill immigrants
 - Manipulate expectation using a news story
 - Round 1: Original experiment but measure expectation
 - Round 2: Flip treatment, but encourage expectation in the same direction as Round 1