Attention becomes transformer

8 May, 2020

Alexey Zaytsev, head of Laboratory LARSS, PhD

Foundations of Data Science

New state of the art: attention is all we need

English German Translation quality

BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to German translation

English French Translation Quality

BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translation

Machine translation

Translate a sentence from one language to another

source language

target language

 $\boldsymbol{\chi}$

y

A la guerre comme a la guerre

На войне как на войне

New world of seq2seq models

Summarization: long text – text summary

Dialogue: one phrase – another phrase

Parsing: input – output parse as a sequence

Code generation: task description – python code

Attention

- Solution to the bottleneck problem
- Direction connection between parts of input and output sequence

Sequence 2 sequence with attention

Decoder

Sequence 2 sequence with attention

Attention: formulas

- First RNN produces encoder hidden states $m{h}_1$, ..., $m{h}_{T_{\mathcal{X}}} \in \mathbb{R}^h$
- Decoder hidden state $s_t \in \mathbb{R}^h$ at time step t
- Attention scores for step t:

$$oldsymbol{e^t} = [oldsymbol{s_t^T} oldsymbol{h}_1, \dots, oldsymbol{s_t^T} oldsymbol{h}_{T_x}] \in \mathbb{R}^{T_x}$$

 Softmax to get attention distribution: all values are positive, sum of all values is 1:

$$\boldsymbol{\alpha^t} = \operatorname{softmax}(\boldsymbol{e^t}) \in \mathbb{R}^{T_x}$$

• Attention output a_t is the weighted sum of hidden states:

$$a_t = \sum_{i=1}^{T_x} \alpha_i^t h_i \in \mathbb{R}^h$$

• We concatenate the attention output $m{a}_t$ with the decoder hidden state $m{s}_t$ and proceed to the non-attention part of our seq2seq model

$$[\boldsymbol{a}_t, \boldsymbol{s}_t] \in \mathbb{R}^{2h}$$

Attention: blocks

Simple decoder

Decoder with attention

Attention is just great

Similar to RNN seq2seq, but greater!

- Significantly improves performance of NMT
- Solves the bottleneck problem
 - All encoder tokens are connected to all decoder tokens
- No more vanishing gradients
 - All to All connection
- Provides some interpretability
 - see alignment figure

BLEU scores (higher is better) of single models on the standard WMT newstest2014 English to French translatio benchmark.

Attention is a general deep learning idea

We can use attention in many architectures and many tasks

- Other NLP problems
- Graph Neural networks

Key value interpretation:

 S_i - query to a database Hidden state of the decoder

 k_i - keys in the database Hidden state of the encoder

 h_i - values in the database Hidden state of the encoder

We calculate correspondences $e(s_i, k_i)$

Then we extract the attention as weighted sum of values $\mathbf{a}_{\mathrm{i}} = \sum_{j=1}^{T_{x}} \alpha_{j} \mathbf{h}_{j}$

Transformer is based on the same idea

Now we completely drop RNN part

Also we repeat self-attention many times

Further we consider a separate block:

- Multihead attention
- Feed Forward

Self-attention block

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

 d_k is the dimension of query and key, we scale to take control of large values of dot-product in high dimensions

A possible option is to replace dot-product used here with a single-hidden layer neural network.

Scaled Dot-Product Attention

Multi-Head attention

 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ $where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Scaled Dot-Product Attention

Full block

LayerNorm(x + Sublayer(x))Two linear transformation with ReLU activation in between Add & Norm Feed $FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$ Forward $N \times$ Add & Norr $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ Multi-Head where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V) Attention

Position encoding

In addition to usual embeddings of inputs we use position encoding to capture position

They are not one-hot vectors, as we want to handle various-length sequences

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Decoder is similar

It has additional sublayer to take into account attentions from encoder

We generate one token and proceed to the next token generation

Attention visualizations

Attention visualizations

Sources

"Attention is all you need" paper

