

SRN

UE18EC254

PES University, Bangalore

(Established under Karnataka Act No. 16 of 2013)

DECEMBER 2020: END SEMESTER ASSESSMENT (ESA) B.TECH IV SEMESTER UE18EC254 – DIGITAL VLSI DESIGN

Ti	me: 3	Hrs All Questions are Compulsary Max Marks: 1	00							
1.	a)	Explain the impact of different VLSI design styles upon the design cycle time and the achievable circuit performance.	6							
	b)	Explain operation of a CMOS inverter with region of operation with a neat graph and specifying the condition	8							
	c)	Derive the expression for critical voltages VIL of depletion load NMOS Inverter	6							
2.	a)	Explain the Transistor Design Rules for NMOS,PMOS and CMOS with appropriate diagrams								
	c)	Realize the Circuit and draw the stick diagram for the following Boolean expression Y= (a+b).c using NMOS & CMOS logic.								
	d)	Realize the Boolean function Z=(D+E+A)(B+C) using CMOS logic and Using the Euler's graph find the Euler's path								
3.	a)	Calculate the Absolute value of C_{in} and C_{out} for the given Multilayer Layout structure given using orbit 2 μ m technologies								
		3um Vilusion Motal								
		u-Micro Polysilicon 80 um								
		$=$ C_{cut}	7							
		Capacitance Value in pF × $10^{-4}/\mu m^2$ (Relative values in brackets)								
		5 μm 2 μm 1.2 μm Gate to channel 4 (1.0) 8 (1.0) 16 (1.0) Diffusion (active) 1 (0.25) 1.75 (0.22) 3.75 (0.23) Polysilicon* to substrate 0.4 (0.1) 0.6 (0.075) 0.6 (0.038) Metal 1 to substrate 0.3 (0.075) 0.33 (0.04) 0.33 (0.02)								
		Notes: Relative value = specified value/gate to channel value for that technology.								
	b)	Derive the expression for Number of stages Inverter to be cascaded to drive large capacitive load with minimum delay.								
	c)	Derive the scaling factor in combined V and D scaling model for the following MOSFET device parameters. i. power-speed product(PT) ii. Maximum operating frequency(f0) iii. Current density(J)								

						SRN			
4.	a)	Explain how Full Adder is realized using TG							
	b)	What is dynamic logic and what is the drawback of cascading dynamic logic? Explain how it is overcome by domino logic							
	c)	Realize the fo	c) C2MOS logi	6					
5.	a)	Explain the design strategy to be used for designing 6T SRAM using Read '0' and Write'0' operation.							
	b)	The state of the s							
	c)	Suppose one cycle of logic is particularly critical and the next cycle is nearly empty. Determine the maximum amount of time the first cycle can borrow into the second for each of the following sequencing styles. Assume there is zero clock skew and that the cycle time is 500 ps. Use the data given in the table Q5c. a) Flip-flops b) Two-phase transparent latches with 50% duty cycle clocks c) Two-phase transparent latches with 60 ps of nonoverlap between phases d) Pulsed latches with 80 ps pulse width							
			Setup Time	clk-to-Q Delay	0-to-0 Delay	Contamination Delay	Hold Time	6	
		Flip-Flops	65 ps	50 ps	n/a	35 ps	30 ps		
		Latches	25 ps	50 ps	40 ps	35 ps	30 ps		
		Table Q5c							