Simulation of the Design Lab Project

Importing the Different Libraries

In [2]:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import sklearn
import numpy as np
import pandas as pd
import plotly as plot
import plotly.express as px
import plotly.graph_objs as go
#import cufflinks as cf
import matplotlib.pyplot as plt
#import seaborn as sns
import os
from sklearn.metrics import accuracy_score
import plotly.offline as pyo
from plotly.offline import init_notebook_mode, plot, iplot
```

Acess the data of different people and storing it in 'heart' data frame

```
In [3]:
```

```
heart = pd.read_csv(r'C:\Users\abhishek\DesignLab\Project_Design_Lab\heart.csv')
```

Let's see how our data look like in Tabular form

In [4]:

heart

Out[4]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2
10	54	1	0	140	239	0	1	160	0	1.2	2	0	2
11	48	0	2	130	275	0	1	139	0	0.2	2	0	2
12	49	1	1	130	266	0	1	171	0	0.6	2	0	2
13	64	1	3	110	211	0	0	144	1	1.8	1	0	2
14	58	0	3	150	283	1	0	162	0	1.0	2	0	2
15	50	0	2	120	219	0	1	158	0	1.6	1	0	2
16	58	0	2	120	340	0	1	172	0	0.0	2	0	2
17	66	0	3	150	226	0	1	114	0	2.6	0	0	2
18	43	1	0	150	247	0	1	171	0	1.5	2	0	2
19	69	0	3	140	239	0	1	151	0	1.8	2	2	2
20	59	1	0	135	234	0	1	161	0	0.5	1	0	3
21	44	1	2	130	233	0	1	179	1	0.4	2	0	2
22	42	1	0	140	226	0	1	178	0	0.0	2	0	2
23	61	1	2	150	243	1	1	137	1	1.0	1	0	2
24	40	1	3	140	199	0	1	178	1	1.4	2	0	3
25	71	0	1	160	302	0	1	162	0	0.4	2	2	2
26	59	1	2	150	212	1	1	157	0	1.6	2	0	2
27	51	1	2	110	175	0	1	123	0	0.6	2	0	2
28	65	0	2	140	417	1	0	157	0	0.8	2	1	2
29	53	1	2	130	197	1	0	152	0	1.2	0	0	2

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
273	58	1	0	100	234	0	1	156	0	0.1	2	1	3
274	47	1	0	110	275	0	0	118	1	1.0	1	1	2
275	52	1	0	125	212	0	1	168	0	1.0	2	2	3
276	58	1	0	146	218	0	1	105	0	2.0	1	1	3
277	57	1	1	124	261	0	1	141	0	0.3	2	0	3
278	58	0	1	136	319	1	0	152	0	0.0	2	2	2
279	61	1	0	138	166	0	0	125	1	3.6	1	1	2
280	42	1	0	136	315	0	1	125	1	1.8	1	0	1
281	52	1	0	128	204	1	1	156	1	1.0	1	0	0
282	59	1	2	126	218	1	1	134	0	2.2	1	1	1
283	40	1	0	152	223	0	1	181	0	0.0	2	0	3
284	61	1	0	140	207	0	0	138	1	1.9	2	1	3
285	46	1	0	140	311	0	1	120	1	1.8	1	2	3
286	59	1	3	134	204	0	1	162	0	8.0	2	2	2
287	57	1	1	154	232	0	0	164	0	0.0	2	1	2
288	57	1	0	110	335	0	1	143	1	3.0	1	1	3
289	55	0	0	128	205	0	2	130	1	2.0	1	1	3
290	61	1	0	148	203	0	1	161	0	0.0	2	1	3
291	58	1	0	114	318	0	2	140	0	4.4	0	3	1
292	58	0	0	170	225	1	0	146	1	2.8	1	2	1
293	67	1	2	152	212	0	0	150	0	8.0	1	0	3
294	44	1	0	120	169	0	1	144	1	2.8	0	0	1
295	63	1	0	140	187	0	0	144	1	4.0	2	2	3
296	63	0	0	124	197	0	1	136	1	0.0	1	0	2
297	59	1	0	164	176	1	0	90	0	1.0	1	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2

303 rows × 14 columns

```
In [5]:
```

```
info = ["age", "1: male, 0: female", "chest pain type, 1: typical angina, 2: atypical angin
"resting electrocardiographic results (values 0,1,2)", " maximum heart rate achieve
```

Dataset Description

In [6]:

```
for i in range(len(info)):
    print(heart.columns[i]+":\t\t"+info[i])
```

age: age

sex: 1: male, 0: female

cp: chest pain type, 1: typical angina, 2: atypical angi

na, 3: non-anginal pain, 4: asymptomatic

trestbps: resting blood pressure chol: serum cholestoral in mg/dl fbs: fasting blood sugar > 120 mg/dl

restecg: resting electrocardiographic results (values

0,1,2)

thalach: maximum heart rate achieved

exang: exercise induced angina

oldpeak: oldpeak = ST depression induced by exercise

relative to rest

slope: the slope of the peak exercise ST segment

ca: number of major vessels (0-3) colored by flourosopy thal: 3 = normal; 6 = fixed defect; 7 = reversable d

efect

In [7]:

heart['target']

```
296
       0
297
       0
298
299
       0
300
301
       0
302
Name: target, dtype: int64
In [8]:
heart.groupby('target').size()
Out[8]:
target
     138
     165
dtype: int64
In [9]:
heart.groupby('target').sum()
```

Out[9]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са
target												
0	7811	114	66	18547	34650	22	62	19196	76	218.8	161	16′
1	8662	93	227	21335	39968	23	98	26147	23	96.2	263	60

```
In [10]:
```

```
heart.shape

Out[10]:
(303, 14)
In [11]:
```

Out[11]:

heart.size

4242

Statistical Info of the data set

In [12]:

heart.describe()

Out[12]:

	age	sex	ср	trestbps	chol	fbs	restecç
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.5280
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.52586
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.00000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.00000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.00000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.00000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.00000

In [13]:

```
heart.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
age
           303 non-null int64
           303 non-null int64
sex
            303 non-null int64
ср
trestbps
           303 non-null int64
chol
           303 non-null int64
            303 non-null int64
fbs
            303 non-null int64
restecg
thalach
            303 non-null int64
            303 non-null int64
exang
            303 non-null float64
oldpeak
slope
            303 non-null int64
ca
            303 non-null int64
            303 non-null int64
thal
target
            303 non-null int64
dtypes: float64(1), int64(13)
memory usage: 33.2 KB
```

In [14]:

```
heart['target'].unique()
```

```
Out[14]:
```

```
array([1, 0], dtype=int64)
```

In [15]:

heart.hist(figsize=(14, 14)) plt.show()


```
In [17]:
```

```
numeric_columns = ['trestbps', 'chol', 'thalach', 'age', 'oldpeak']
heart['target']
```

```
Out[17]:
0
        1
1
        1
2
        1
3
        1
4
        1
5
        1
6
        1
7
        1
8
        1
9
        1
10
        1
        1
11
12
        1
        1
13
14
        1
15
        1
16
        1
17
        1
        1
18
19
        1
20
        1
21
        1
22
        1
23
        1
24
        1
25
        1
26
        1
27
        1
28
        1
29
        1
       . .
273
        0
274
        0
275
        0
276
        0
277
        0
278
        0
279
        0
280
        0
281
        0
        0
282
283
        0
284
        0
285
        0
        0
286
287
        0
288
        0
289
        0
290
        0
291
        0
292
        0
293
        0
294
        0
```

```
296
       0
297
       0
298
       0
299
       0
300
       0
301
       0
302
Name: target, dtype: int64
In [18]:
target_temp = heart.target.value_counts()
print(target_temp)
1
     165
     138
0
Name: target, dtype: int64
In [19]:
fig = plt.gcf()
fig.set_size_inches(8, 6)
plt.show()
```

<matplotlib.figure.Figure at 0x20640317f28>

Data Pre-Processing

```
In [20]:
```

```
heart['target'].value_counts()
```

Out[20]:

165 1 138

Name: target, dtype: int64

In [21]:

heart['target'].isnull()

```
Out[21]:
0
       False
1
       False
2
       False
3
       False
4
       False
5
       False
6
       False
7
       False
8
       False
9
       False
10
       False
11
       False
12
       False
13
       False
14
       False
15
       False
16
       False
17
       False
18
       False
19
       False
20
       False
21
       False
22
       False
23
       False
24
       False
25
       False
26
       False
27
       False
28
       False
29
       False
       . . .
273
       False
274
       False
275
       False
276
       False
277
       False
278
       False
279
       False
280
       False
281
       False
282
       False
283
       False
284
       False
285
       False
286
       False
287
       False
288
       False
289
       False
290
       False
291
       False
292
       False
293
       False
294
       False
295
       False
```

296

False

```
297
       False
298
       False
299
       False
300
       False
       False
301
302
       False
Name: target, dtype: bool
In [22]:
heart['target'].sum()
Out[22]:
165
In [23]:
heart['target'].unique()
Out[23]:
array([1, 0], dtype=int64)
In [24]:
heart.isnull().sum()
Out[24]:
age
            0
sex
            0
ср
            0
trestbps
chol
            0
            0
fbs
            0
restecg
            0
thalach
            0
exang
oldpeak
            0
            0
slope
ca
            0
thal
target
dtype: int64
```

Storing the data in X and y

```
In [25]:

X, y = heart.loc[:, :'thal'], heart.loc[:, 'target']
```

Χ

Out[26]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2
10	54	1	0	140	239	0	1	160	0	1.2	2	0	2
11	48	0	2	130	275	0	1	139	0	0.2	2	0	2
12	49	1	1	130	266	0	1	171	0	0.6	2	0	2
13	64	1	3	110	211	0	0	144	1	1.8	1	0	2
14	58	0	3	150	283	1	0	162	0	1.0	2	0	2
15	50	0	2	120	219	0	1	158	0	1.6	1	0	2
16	58	0	2	120	340	0	1	172	0	0.0	2	0	2
17	66	0	3	150	226	0	1	114	0	2.6	0	0	2
18	43	1	0	150	247	0	1	171	0	1.5	2	0	2
19	69	0	3	140	239	0	1	151	0	1.8	2	2	2
20	59	1	0	135	234	0	1	161	0	0.5	1	0	3
21	44	1	2	130	233	0	1	179	1	0.4	2	0	2
22	42	1	0	140	226	0	1	178	0	0.0	2	0	2
23	61	1	2	150	243	1	1	137	1	1.0	1	0	2
24	40	1	3	140	199	0	1	178	1	1.4	2	0	3
25	71	0	1	160	302	0	1	162	0	0.4	2	2	2
26	59	1	2	150	212	1	1	157	0	1.6	2	0	2
27	51	1	2	110	175	0	1	123	0	0.6	2	0	2
28	65	0	2	140	417	1	0	157	0	0.8	2	1	2
29	53	1	2	130	197	1	0	152	0	1.2	0	0	2

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
273	58	1	0	100	234	0	1	156	0	0.1	2	1	3
274	47	1	0	110	275	0	0	118	1	1.0	1	1	2
275	52	1	0	125	212	0	1	168	0	1.0	2	2	3
276	58	1	0	146	218	0	1	105	0	2.0	1	1	3
277	57	1	1	124	261	0	1	141	0	0.3	2	0	3
278	58	0	1	136	319	1	0	152	0	0.0	2	2	2
279	61	1	0	138	166	0	0	125	1	3.6	1	1	2
280	42	1	0	136	315	0	1	125	1	1.8	1	0	1
281	52	1	0	128	204	1	1	156	1	1.0	1	0	0
282	59	1	2	126	218	1	1	134	0	2.2	1	1	1
283	40	1	0	152	223	0	1	181	0	0.0	2	0	3
284	61	1	0	140	207	0	0	138	1	1.9	2	1	3
285	46	1	0	140	311	0	1	120	1	1.8	1	2	3
286	59	1	3	134	204	0	1	162	0	0.8	2	2	2
287	57	1	1	154	232	0	0	164	0	0.0	2	1	2
288	57	1	0	110	335	0	1	143	1	3.0	1	1	3
289	55	0	0	128	205	0	2	130	1	2.0	1	1	3
290	61	1	0	148	203	0	1	161	0	0.0	2	1	3
291	58	1	0	114	318	0	2	140	0	4.4	0	3	1
292	58	0	0	170	225	1	0	146	1	2.8	1	2	1
293	67	1	2	152	212	0	0	150	0	0.8	1	0	3
294	44	1	0	120	169	0	1	144	1	2.8	0	0	1
295	63	1	0	140	187	0	0	144	1	4.0	2	2	3
296	63	0	0	124	197	0	1	136	1	0.0	1	0	2
297	59	1	0	164	176	1	0	90	0	1.0	1	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2

303 rows × 13 columns

```
In [27]:
```

у

Out[27]:

```
296
       0
297
       0
298
299
       0
300
301
       0
302
Name: target, dtype: int64
In [28]:
X.shape
Out[28]:
(303, 13)
In [29]:
y.shape
Out[29]:
(303,)
In [30]:
X = heart.drop(['target'], axis=1)
```

Χ

Out[31]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2
10	54	1	0	140	239	0	1	160	0	1.2	2	0	2
11	48	0	2	130	275	0	1	139	0	0.2	2	0	2
12	49	1	1	130	266	0	1	171	0	0.6	2	0	2
13	64	1	3	110	211	0	0	144	1	1.8	1	0	2
14	58	0	3	150	283	1	0	162	0	1.0	2	0	2
15	50	0	2	120	219	0	1	158	0	1.6	1	0	2
16	58	0	2	120	340	0	1	172	0	0.0	2	0	2
17	66	0	3	150	226	0	1	114	0	2.6	0	0	2
18	43	1	0	150	247	0	1	171	0	1.5	2	0	2
19	69	0	3	140	239	0	1	151	0	1.8	2	2	2
20	59	1	0	135	234	0	1	161	0	0.5	1	0	3
21	44	1	2	130	233	0	1	179	1	0.4	2	0	2
22	42	1	0	140	226	0	1	178	0	0.0	2	0	2
23	61	1	2	150	243	1	1	137	1	1.0	1	0	2
24	40	1	3	140	199	0	1	178	1	1.4	2	0	3
25	71	0	1	160	302	0	1	162	0	0.4	2	2	2
26	59	1	2	150	212	1	1	157	0	1.6	2	0	2
27	51	1	2	110	175	0	1	123	0	0.6	2	0	2
28	65	0	2	140	417	1	0	157	0	0.8	2	1	2
29	53	1	2	130	197	1	0	152	0	1.2	0	0	2

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
273	58	1	0	100	234	0	1	156	0	0.1	2	1	3
274	47	1	0	110	275	0	0	118	1	1.0	1	1	2
275	52	1	0	125	212	0	1	168	0	1.0	2	2	3
276	58	1	0	146	218	0	1	105	0	2.0	1	1	3
277	57	1	1	124	261	0	1	141	0	0.3	2	0	3
278	58	0	1	136	319	1	0	152	0	0.0	2	2	2
279	61	1	0	138	166	0	0	125	1	3.6	1	1	2
280	42	1	0	136	315	0	1	125	1	1.8	1	0	1
281	52	1	0	128	204	1	1	156	1	1.0	1	0	0
282	59	1	2	126	218	1	1	134	0	2.2	1	1	1
283	40	1	0	152	223	0	1	181	0	0.0	2	0	3
284	61	1	0	140	207	0	0	138	1	1.9	2	1	3
285	46	1	0	140	311	0	1	120	1	1.8	1	2	3
286	59	1	3	134	204	0	1	162	0	0.8	2	2	2
287	57	1	1	154	232	0	0	164	0	0.0	2	1	2
288	57	1	0	110	335	0	1	143	1	3.0	1	1	3
289	55	0	0	128	205	0	2	130	1	2.0	1	1	3
290	61	1	0	148	203	0	1	161	0	0.0	2	1	3
291	58	1	0	114	318	0	2	140	0	4.4	0	3	1
292	58	0	0	170	225	1	0	146	1	2.8	1	2	1
293	67	1	2	152	212	0	0	150	0	0.8	1	0	3
294	44	1	0	120	169	0	1	144	1	2.8	0	0	1
295	63	1	0	140	187	0	0	144	1	4.0	2	2	3
296	63	0	0	124	197	0	1	136	1	0.0	1	0	2
297	59	1	0	164	176	1	0	90	0	1.0	1	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2

303 rows × 13 columns

testing

In [77]:

```
X_train, X_test, y_train, y_test = train_test_split(
        X, y, random_state=10, test_size=0.2, shuffle=True)
```

X_test

Out[78]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	ti
246	56	0	0	134	409	0	0	150	1	1.9	1	2	3
183	58	1	2	112	230	0	0	165	0	2.5	1	1	3
229	64	1	2	125	309	0	1	131	1	1.8	1	0	3
126	47	1	0	112	204	0	1	143	0	0.1	2	0	2
184	50	1	0	150	243	0	0	128	0	2.6	1	0	3
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2
59	57	0	0	128	303	0	0	159	0	0.0	2	1	2
194	60	1	2	140	185	0	0	155	0	3.0	1	0	2
132	42	1	1	120	295	0	1	162	0	0.0	2	0	2
175	40	1	0	110	167	0	0	114	1	2.0	1	0	3
162	41	1	1	120	157	0	1	182	0	0.0	2	0	2
181	65	0	0	150	225	0	0	114	0	1.0	1	3	3
296	63	0	0	124	197	0	1	136	1	0.0	1	0	2
164	38	1	2	138	175	0	1	173	0	0.0	2	4	2
219	48	1	0	130	256	1	0	150	1	0.0	2	2	3
92	52	1	2	138	223	0	1	169	0	0.0	2	4	2
195	59	1	0	170	326	0	0	140	1	3.4	0	0	3
198	62	1	0	120	267	0	1	99	1	1.8	1	2	3
24	40	1	3	140	199	0	1	178	1	1.4	2	0	3
249	69	1	2	140	254	0	0	146	0	2.0	1	3	3
139	64	1	0	128	263	0	1	105	1	0.2	1	1	3
26	59	1	2	150	212	1	1	157	0	1.6	2	0	2
287	57	1	1	154	232	0	0	164	0	0.0	2	1	2
64	58	1	2	140	211	1	0	165	0	0.0	2	0	2
202	58	1	0	150	270	0	0	111	1	0.8	2	0	3
240	70	1	2	160	269	0	1	112	1	2.9	1	1	3
285	46	1	0	140	311	0	1	120	1	1.8	1	2	3
186	60	1	0	130	253	0	1	144	1	1.4	2	1	3
127	67	0	2	152	277	0	1	172	0	0.0	2	1	2
191	58	1	0	128	216	0	0	131	1	2.2	1	3	3

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	ti
52	62	1	2	130	231	0	1	146	0	1.8	1	3	3
279	61	1	0	138	166	0	0	125	1	3.6	1	1	2
138	57	1	0	110	201	0	1	126	1	1.5	1	0	1
193	60	1	0	145	282	0	0	142	1	2.8	1	2	3
207	60	0	0	150	258	0	0	157	0	2.6	1	2	3
25	71	0	1	160	302	0	1	162	0	0.4	2	2	2
270	46	1	0	120	249	0	0	144	0	0.8	2	0	3
105	68	0	2	120	211	0	0	115	0	1.5	1	0	2
264	54	1	0	110	206	0	0	108	1	0.0	1	1	2
289	55	0	0	128	205	0	2	130	1	2.0	1	1	3
169	53	1	0	140	203	1	0	155	1	3.1	0	0	3
43	53	0	0	130	264	0	0	143	0	0.4	1	0	2
188	50	1	2	140	233	0	1	163	0	0.6	1	1	3
80	41	1	2	112	250	0	1	179	0	0.0	2	0	2
273	58	1	0	100	234	0	1	156	0	0.1	2	1	3
259	38	1	3	120	231	0	1	182	1	3.8	1	0	3
56	48	1	0	122	222	0	0	186	0	0.0	2	0	2
98	43	1	2	130	315	0	1	162	0	1.9	2	1	2
106	69	1	3	160	234	1	0	131	0	0.1	1	1	2
173	58	1	2	132	224	0	0	173	0	3.2	2	2	3
87	46	1	1	101	197	1	1	156	0	0.0	2	0	3
244	56	1	0	132	184	0	0	105	1	2.1	1	1	1
213	61	0	0	145	307	0	0	146	1	1.0	1	0	3
36	54	0	2	135	304	1	1	170	0	0.0	2	0	2
10	54	1	0	140	239	0	1	160	0	1.2	2	0	2
277	57	1	1	124	261	0	1	141	0	0.3	2	0	3
121	59	1	0	138	271	0	0	182	0	0.0	2	0	2
187	54	1	0	124	266	0	0	109	1	2.2	1	1	3
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3
283	40	1	0	152	223	0	1	181	0	0.0	2	0	3

61 rows × 13 columns

```
In [79]:
```

y_test

```
Out[79]:
246
       0
183
       0
229
       0
126
       1
184
       0
1
       1
59
       1
194
       0
       1
132
175
       0
162
       1
181
       0
296
       0
164
       1
219
       0
92
       1
195
       0
198
       0
24
       1
249
       0
139
       1
26
       1
       0
287
64
       1
202
       0
240
       0
285
       0
186
       0
127
       1
191
       0
       . .
52
       1
279
       0
138
       1
193
       0
207
       0
25
       1
270
       0
105
       1
264
       0
289
       0
       0
169
43
       1
188
       0
       1
80
273
       0
259
       0
56
       1
98
       1
       1
106
173
       0
87
       1
244
       0
213
       0
```

```
10
      1
277
       1
121
187
      0
301
      0
283
      0
Name: target, dtype: int64
In [80]:
print("train_set_x shape: " + str(X_train.shape))
print("train_set_y shape: " + str(y_train.shape))
print("test_set_x shape: " + str(X_test.shape))
print("test_set_y shape: " + str(y_test.shape))
train_set_x shape: (242, 13)
train_set_y shape: (242,)
test_set_x shape: (61, 13)
test_set_y shape: (61,)
MODEL
```

1. Decision Tree Classifier

Finding the accuracy in Decision Tree Model

```
In [83]:
```

```
prediction = dt.predict(X_test)
accuracy_dt = accuracy_score(y_test, prediction)*100
```

In [84]:

accuracy_dt

Out[84]:

75.409836065573771

We got 75.40 % accuracy in Decision Tree model

In [85]:

```
print("Accuracy on training set: {:.3f}".format(dt.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(dt.score(X_test, y_test)))
```

Accuracy on training set: 1.000 Accuracy on test set: 0.754

```
In [86]:
```

y_test

```
Out[86]:
246
       0
183
       0
229
       0
126
       1
184
       0
1
       1
59
       1
194
       0
       1
132
175
       0
162
       1
181
       0
296
       0
164
       1
219
       0
92
       1
195
       0
198
       0
24
       1
249
       0
139
       1
26
       1
       0
287
64
       1
202
       0
240
       0
285
       0
186
       0
127
       1
191
       0
       . .
52
       1
279
       0
138
       1
193
       0
207
       0
25
       1
270
       0
105
       1
264
       0
289
       0
       0
169
43
       1
188
       0
       1
80
273
       0
259
       0
56
       1
98
       1
       1
106
173
       0
87
       1
244
       0
213
       0
36
       1
```

```
10
       1
277
       1
121
187
301
       0
283
       0
Name: target, dtype: int64
In [87]:
prediction
Out[87]:
array([1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1,
       1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,
       1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0], dtype=int64)
```

Testing with new data to verify result

```
In [88]:

X_DT = np.array([[35, 1, 0, 126, 282, 0, 0, 156, 1, 0, 2, 0, 3]])
X_DT_prediction = dt.predict(X_DT)
```

```
In [89]:
X_DT_prediction[0]
```

Out[89]:

0

Yeah, Get The Result of new feeded data Here !!!

```
In [90]:
print(Catagory[int(X_DT_prediction[0])])
```

No, You do not have Heart Disease...

Feature Importance in Decision Trees

```
In [91]:
print("Feature importances:\n{}".format(dt.feature_importances_))
```

```
In [92]:
```

```
def plot_feature_importances_diabetes(model):
    plt.figure(figsize=(8, 6))
    n_features = 13
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), X)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature")
    plt.ylim(-1, n_features)

plot_feature_importances_diabetes(dt)

plt.savefig('feature_importance')
```

2. KNN

Training with KNN

```
In [111]:
```

```
sc = StandardScaler().fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)
```

In [112]:

```
X_test_std
```

Out[112]:

```
array([[ 0.18733254, -1.37147817, -0.96052267, 0.15197298, 3.06663801,
       -0.43159531, -1.01054031, -0.01372906, 1.50674161, 0.7957577,
       -0.63678177, 1.30209953, 1.19898626],
       [ 0.40633967, 0.72914029, 0.97653138, -1.06472495, -0.33003859,
       -0.43159531, -1.01054031, 0.6507574, -0.6636838, 1.31881798,
       -0.63678177, 0.30492204, 1.19898626],
       [ 1.06336104, 0.72914029, 0.97653138, -0.34576709, 1.16905332,
       -0.43159531, 0.90001247, -0.85541191, 1.50674161, 0.70858098,
       -0.63678177, -0.69225545, 1.19898626],
      [-0.79819952, 0.72914029, -0.96052267, -1.06472495, -0.82341062,
       -0.43159531, 0.90001247, -0.32382274, -0.6636838, -0.77342317,
        0.96843894, -0.69225545, -0.43109618],
       [-0.46968884, 0.72914029, -0.96052267, 1.03684419, -0.08335258,
       -0.43159531, -1.01054031, -0.9883092 , -0.6636838 , 1.4059947 ,
       -0.63678177, -0.69225545,
                                 1.19898626],
       [-1.89323515, 0.72914029, 0.97653138, -0.06924483, 0.04947834,
       -0.43159531, 0.90001247, 1.62533754, -0.6636838, 2.19058513,
       -2.24200249. -0.69225545. -0.431096181.
```

```
In [113]:
```

```
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train_std, y_train)
```

Out[113]:

Calculating Accuracy in KNN Model

In [102]:

```
prediction_knn = knn.predict(X_test_std)
accuracy_knn = accuracy_score(y_test, prediction_knn)*100
```

In [103]:

```
accuracy_knn
```

Out[103]:

85.245901639344254

We got 85.2 % Accurcy in KNN Model

In [104]:

```
print("Accuracy on training set: {:.3f}".format(knn.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(knn.score(X_test, y_test)))
```

Accuracy on training set: 0.574 Accuracy on test set: 0.426

Let's See how Accuracy varies with the value of k in KNN Model

```
In [105]:
k_range = range(1, 26)
scores = {}
scores_list = []

for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(X_train_std, y_train)
    prediction_knn = knn.predict(X_test_std)
    scores[k] = accuracy_score(y_test, prediction_knn)
    scores_list.append(accuracy_score(y_test, prediction_knn))
scores
```

Out[105]:

```
{1: 0.77049180327868849,
2: 0.77049180327868849,
3: 0.80327868852459017,
4: 0.81967213114754101,
5: 0.85245901639344257,
6: 0.85245901639344257,
7: 0.80327868852459017,
8: 0.78688524590163933,
9: 0.78688524590163933,
10: 0.81967213114754101,
11: 0.80327868852459017,
12: 0.81967213114754101,
13: 0.81967213114754101,
14: 0.83606557377049184,
15: 0.78688524590163933,
16: 0.80327868852459017,
17: 0.80327868852459017,
18: 0.80327868852459017,
19: 0.80327868852459017,
20: 0.80327868852459017,
21: 0.80327868852459017,
22: 0.81967213114754101,
23: 0.80327868852459017,
24: 0.81967213114754101,
25: 0.80327868852459017}
```

[<matplotlib.lines.Line2D at 0x2064014c6a0>]

In the above output we can see that the accuracy is maximum at k=5

```
In [106]:
plt.plot(k_range, scores_list)
Out[106]:
```

Input the heart data below to get the result using KNN Model

Result of the user's input using KNN Model

```
In [110]:
```

1

```
print(Catagory[int(X_knn_prediction[0])])
```

Yes you have Heart Disease...

Type *Markdown* and LaTeX: α^2