Linear Congruential Method

Random Number Generation:

- Random number = Uniform (0,1)
- Random Variate = other distribution

= Function (Random Number)

$$Z_n = (aZ_{n-1} + C) \mod m$$

$$U_n = Z_n / m$$

Where,

 Z_n = is the seed of elements.

a = is the multiplier

C = is the increment

m = is the modulo

Example-1: Using LCM, generate a sequence of random number with $Z_0=7$, a=5, c=3, m=16.

$$Z_1 = (a.Z_0 + C)\% m = (5*7+3)\% 16 = 38\% 16 = 6$$

$$U_1 = 6/16 = 0.375$$
.

$$Z_2 = (a.Z_1 + C)\% m = (5*6+3)\% 16 = 1$$

$$U_2 = 1/16 = 0.0625$$

$$Z_3=(a.Z_2+C)\%m=(5*1+3)\%16=8$$

$$U_3 = 8/16 = 0.5$$

$$Z_4 = (a.Z_3 + C)\% m = (5*8+3)\% 16 = 11$$

$$U4 = 11/16 = 0.6875$$

$$Z_5 = (a.Z_4 + C)\% m = (5*11+3) = 10$$

$$U5 = 10/16 = 0.625$$

•

•

•

$$Z_{16}=7$$

Generate a random sample size of 5 using LCM.

$$X_{i+1} = (2X_i+9) \% 6$$
 where $X_0=5$

i	Xi	$X_{i+1} = (3X_i + 6)\%10$	Random Number
0	1	$X_1 = (3+6)\%10$ = $9\%10 = 9$	9

			Which is 1 st random number
1	9	X ₁ = (3*9+6)%10 = (27+6)%10 3	3
2	3	X ₁ = (3*3+6)%10 =15%10=5	5
3	5	X ₁ = (3*5+6)%10 =21%10=1	1
4	1	X ₁ = (3+6)%10 =9%10=9	9

Therefore 5 random sequences are 9,3,5,1,9

So, random numbers are: 0.9, 0.3, 0.5, 0.1, 0.9