

RD-A184 887

COMPUTER MODELING OF COMPLETE IC FABRICATION PROCESS
(U) STANFORD UNIV CA R W DUTTON 28 MAY 87
ARO-20569 8-EL DAAG29-83-K-0125

1/1

UNCLASSIFIED

F/G 13/8

NL

F/N1
28 MAY 87
DAAG29

MICROSCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 43

AD-A184 807

2

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER Unclassified		16 RESTRICTIVE MARKINGS	
2a SECURITY CLASSIFICATION AUTHORITY DTIC SELECTED S D		3 DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution unlimited.	
2b DECLASSIFICATION/DOWNGRADING REF ID: AAF 1 0 1987		4 PERFORMING ORGANIZATION REPORT NUMBER ARO 20 569.8-EL	
5a NAME OF PERFORMING ORGANIZATION Stanford University		5b OFFICE SYMBOL (If applicable)	
6a ADDRESS (City, State, and ZIP Code) AEL 201 Stanford, CA 94305		7a NAME OF MONITORING ORGANIZATION U. S. Army Research Office	
6b NAME OF FUNDING/SPONSORING ORGANIZATION U. S. Army Research Office		7b ADDRESS (City, State, and ZIP Code) P. O. Box 12211 Research Triangle Park, NC 27709-2211	
8a ADDRESS (City, State and ZIP Code) P. O. Box 12211 Research Triangle Park, NC 27709-2211		9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DAAG29-83-K-0125	
10 SOURCE OF FUNDING NUMBERS			
PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
11 TITLE (Include Security Classification) Computer Modeling of Complete IC Fabrication Process			
12 PERSONAL AUTHOR(S) Professor Robert W. Dutton			
13a TYPE OF REPORT Final Report	13b TIME COVERED FROM 10-1-83 TO 2-1-87	14 DATE OF REPORT (Year, Month, Day) May 28, 1987	15 PAGE COUNT 32
16 SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, unless so designated by other documentation.			
17 COSATI CODES		18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Process simulation, SUPREM, Device Analysis, SEDAN, PISCES, Hot carriers, parallel processing, Monte Carlo, Transient analysis, SPICE models, Latchup CMOS, BiCMOS, GaAs, HgCdTe, photoconducting switches.	
19 ABSTRACT (Continue on reverse if necessary and identify by block number) The focus of this research effort is the development of fundamental algorithms for process and device modeling as well as novel integration of the tools for advanced IC technology design. The development of the first complete 2D process simulator, SUPREM 4, is reported. The algorithms are discussed as well as application to local oxidation and extrinsic diffusion conditions occur in CMOS and BiCMOS technologies. The evolution of 1D (SEDAN) and 2D (PISCES) device analysis is discussed. The application of SEDAN to a variety of non silicon technologies (GaAs and HgCdTe) are considered. A new multi-window analysis capability for PISCES which exploits Monte Carlo analysis of hot carriers has been demonstrated and used to characterize a variety of silicon MOSFET and GaAs MESFET effects. A parallel computer implementation of PISCES has been achieved using a Hypercube architecture. The PISCES program has been used for a range of important device studies including: latchup, analog switch analysis, MOSFET capacitance studies and bipolar transient device design for ECL gates. The program is broadly applicable to RAM and BiCMOS technology analysis and design. In the analog switch technology area this research effort has produced a variety of important modeling and technological advances. A novel two-lump representation for both silicon and GaAs FET devices has been developed and confirmed experimentally. Three generations of photo-conducting circuit element (PCE) switches have been developed--two in pure silicon technologies and the third using GaAs on Si. The best results show 2-5 ps FWHM pulses for polysilicon.			
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT <input type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21 ABSTRACT SECURITY CLASSIFICATION NOT ASSISTED	
22a NAME OF RESPONSIBLE INDIVIDUAL		22b TELEPHONE (Include Area Code)	
22c OFFICE SYMBOL			

**COMPUTER MODELING OF COMPLETE
IC FABRICATION PROCESS**

Final Report

by

**Robert W. Dutton
Stanford University
Stanford, CA 94305**

October 1, 1983--February 1, 1987

Prepared for

U. S. Army Research Office
Research Triangle Park, NC

Contract No. DAAG29-83-K-0125

Accession For	
NTIS	CRA&I
DTIC	TAB
Unannounced	
Justification	
By _____	
Distribution /	
Availability Codes	
Dist	Avail and/or Special

A-1

QUAL
INSPECTED
2

Approved for public release; distribution unlimited

87 9 9 272

COMPUTER MODELING OF COMPLETE IC FABRICATION PROCESS

Abstract

The focus of this research effort is the development of fundamental algorithms for process and device modeling as well as novel integration of the tools for advanced IC technology design. The development of the first complete 2D process simulator, SUPREM 4, is reported. The algorithms are discussed as well as application to local oxidation and extrinsic diffusion conditions occur in CMOS and BiCMOS technologies. The evolution of 1D (SEDAN) and 2D (PISCES) device analysis is discussed. The application of SEDAN to a variety of non-silicon technologies (GaAs and HgCdTe) are considered. A new multi-window analysis capability for PISCES which exploits Monte Carlo analysis of hot carriers has been demonstrated and used to characterize a variety of silicon MOSFET and GaAs MESFET effects. A parallel computer implementation of PISCES has been achieved using a Hypercube architecture. The PISCES program has been used for a range of important device studies including: latchup, analog switch analysis, MOSFET capacitance studies and bipolar transient device design for ECL gates. The program is broadly applicable to RAM and BiCMOS technology analysis and design. In the analog switch technology area this research effort has produced a variety of important modeling and technological advances. A novel two-lump representation for both silicon and GaAs FET devices has been developed and confirmed experimentally. Three generations of photo-conducting circuit element (PCE) switches have been developed--two in pure silicon technologies and the third using GaAs on Si. The best results show 2-5 ps FWHM pulses for polysilicon.

Introduction

The area of Technology CAD has evolved rapidly over the last decade. Beginning with the SUPREM program funded in large part Army Research Office grants, three generations of 1D TCAD tools and two generations 2D tools have been developed. During the present grant period the second generation 2D efforts have been aggressively pursued. Over the period of nearly ten years a total of 13 PhD's have been graduated as well as more than a dozen Masters degrees have been awarded with support from this research program. In the following sections the specific accomplishments of this grant period are discussed. Four major areas are considered. The 2D modeling efforts are certainly the most broadly visible and are discussed first. Next the more mature area of 1D TCAD tools are presented. Based on both the 1D and 2D TCAD efforts, a variety of applications have developed and a representative sample of these is given. Finally, the area of analog switch technology is discussed--both as a TCAD application and in terms of its fundamental importance for both analog and digital circuit design.

Two-Dimensional TCAD Tools:

It is useful to begin this discussion by considering state-of-the-art 2D simulators used at the beginning of this grant period. Beginning early in the 1980's, a limited range of 2D TCAD tools emerged. The Stanford tools included: SUPRA (2D process), SOAP (2D oxidation), and GEMINI (2D Poisson). Other codes of this era developed elsewhere include: ICECREAM (2D process) [1], BICEPS (2D process) [2], and MINIMOS (2D device) [3], to mention only a few. Yet all these tools were rather narrow in scope--topographies and technologies were not general. A major goal of this research was directed at overcoming these limitations. Moreover, a set of technologically relevant examples were considered as test vehicles--these will be discussed in a later section.

During the period 1984-1985 the second generation of the PISCES program emerged as Stanford's most robust and versatile 2D device simulation [4] [5]. The program, initially developed as a Poisson and single carrier solver, was generalized to include two carrier analysis for dc, ac, and transient conditions. The topography input capabilities were generalized to handle a wide variety of nonplanar structures. Hence structures including oxidation and even trench isolation could be analyzed. In addition to the broad technology relevance demonstrated with PISCES, the program served as a vehicle for basic investigation of numerical methods. As a result of this work, a comprehensive comparison of iterative techniques including choice of analysis variables was made [6]. More recently, based on consideration of the growing computational bottlenecks involved with TCAD [7], PISCES is now being used as a vehicle for consideration of parallel computation algorithms [8]. The further exploration of parallel algorithms is one of the most exciting areas for follow-on research.

Another aspect of the device analysis programs is the growing importance for hot carrier device physics. The limitations of conventional carrier drift/diffusion analysis are serious, yet simple methods to extend the model accuracy pose both physical and computational difficulties [7]. During the last year of this contract we have demonstrated a novel multi-window version of PISCES where a Monte Carlo analysis is performed within a more extensive drift/diffusion analysis domain [9]. This multi-window version, called PISCES-MC, provides an important tool for better understanding the carrier transport problems in small dimension devices. In the follow-on research program to be partially supported by the Army Research Office, this multi-window technique will be developed and extended further.

The key points to be emphasized concerning 2D device analysis are the following:

1. The development of a robust, technology-oriented device simulator, PISCES 2.
2. A depth of understanding of associated analysis methods and new breakthroughs in terms of parallel processing.
3. Demonstration of a novel multi-window Monte Carlo analysis method (PISCES-MC) with application to a broad range of hot carrier effects.

In parallel with the development of the PISCES 2 device simulator, the development of an integrated 2D process simulator, was initiated. Previous efforts with the SUPRA and SOAP programs had major limitations. In the case of SUPRA, the oxidation kinetic models were totally lacking. For SOAP, the program was a stand-alone oxidation model with no coupling to diffusion. Hence, there was a need for a totally integrated simulator. Progress over this three year contract period has been rapid and productive. A novel time-step approach was first developed to solve the numerically stiff multi-particle diffusion problem [10]. Next, a robust set of gridding techniques were developed to handle the 2D oxide growth and moving interface which affects dopant redistribution [11]. Finally, the coupled dopant diffusion and point-defect kinetic effects have been modeled accurately [12] and applied to specific dopant redistribution problems [13]. Beginning in early 1986 the SUPREM 4 simulator was released. Based on the most recent technical developments and code revisions, the program can handle a majority of intrinsic device and isolation structure process analysis for MOS technologies.

Highlight accomplishments in the area of 2D process simulation include:

1. Advanced gridding techniques and modeling for local oxidation including trench-

- etched surfaces.
2. Accurate characterization and modeling of point defect kinetics and coupled dopant diffusion effects.
 3. Demonstrated application to CMOS well-diffusion technology.

One-Dimensional TCAD Tools:

The above discussion has highlighted accomplishments in the area of 2D TCAD tools. Commensurate with the need for more powerful 2D tools to magnify and illuminate the detailed technology problems, there is a growing need for more versatile 1D TCAD tools. Specifically, the use of 1D tools is both efficient in looking at the multifaceted problems of technology development and in exploring detailed device physics. During this contract period both of these aspects of 1D TCAD have been developed.

During the first part of this contract period the emphasis in 1D TCAD centered on the development of SEDAN algorithms and models for poly-emitter bipolar devices. The results involved both improved process models in SUPREM [14] and a generalized interface model for SEDAN [15]. The net result was both improved physical models and the ability to link SUPREM 3 with SEDAN 3 to analyze both MOS and bipolar devices. The recent advent of the so-called BiCMOS technology has been an ideal application for this coupled 1D TCAD environment. Indeed, there has already been active industrial use of this tool set to optimize BiCMOS [16].

Beyond the multi-device analysis and optimization applications for 1D TCAD there is a growing set of needs related to analysis of compound materials. The SEDAN environment has been extended and adapted to several classes of compound materials--specifically HgCdTe (HCT) and GaAlAs/GaAs. Although only limited research publications have resulted in these areas to date, the industrial and government interest and use in these areas is tremendous. For example, in the HCT area, companies such as Ford Aerospace (FACC) and Santa Barbara Research (SBRC) are both active and enthusiastic users of SEDAN. In the GaAs and related areas there is encouragement and support from both government (DARPA) and industrial (SRC) agencies to continue the work. There is a range of advanced physical models that have been implemented in SEDAN. For example a tunneling model for HCT and an EL2 trapping model for GaAs are both being tested in SEDAN. Also, the Monte Carlo analysis capability based on SEDAN initial solutions has been used to understand several Schottky contact effects in GaAs and to in turn improve the boundary conditions used in SEDAN. Based on partial DARPA support, a complete 1D TCAD for GaAs based on SUPREM 3.5 and SEDAN 3 is a reasonable goal. However, lack of sufficient funding in the device analysis area is a major limitation.

TCAD Applications

In the initial proposal for this contract period, the coupling of technology, device and even circuit design activities was considered to be an important target. For example, understanding the physical basis for parameters and developing compact engineering representations was desired. Moreover, the extraction of process sensitivities and even application to optimization was suggested as a suitable end goal. In this section a variety of applications are briefly discussed.

During the first half of the contract period, the problems of CMOS latchup and its simulation were pursued. The PISCES program was used extensively to investigate latchup [7] [17] and

technology choices to reduce latchup susceptibility [18]. In fact, many of the basic features for PISCES in terms of geometry and general bias conditions for bipolar device effects came out of the needs for latchup simulation. Industrial interest in this application has been very high and there are literally dozens of papers published by other research groups using PISCES as the basic tool for analysis. Included in the latchup analysis work is the development of mixed-mode capabilities for coupled device and small circuit analysis. For example, a variety of circuit-type (resistive and capacitive) boundary conditions are easily implemented with PISCES.

The second half of this contract period has focused the research efforts in the area of process simulation (SUPREM 4). In this area of activities the modeling of process sensitivities has become the major focus. The simulation of n-well choices for a CMOS technology have been one significant application [13]. The problem of lateral dopant diffusion is important for design-rule spacings and in regards to latch-up. The controlling mechanisms related to point defect kinetics are of major concern [12] and on-going experimental efforts are essential to the useful application of SUPREM 4. Further applications related to silicon technology are conceived yet funding limitations preclude aggressive research efforts. Specifically, drain doping profiles (LDD) and isolation structures (LOCOS and trench) can now be modeled and characterized. One technology vehicle of special interest is the BiCMOS process which is becoming the industry standard MOS technology. The demands on all aspects of this technology are severe and future application of process/device simulation tools deserves a more serious research effort.

In addition to the above mentioned major efforts related to TCAD applications and the investigation of process sensitivities, a variety of specific device applications have been demonstrated. The detailed understanding of velocity saturation on short-channel capacitance effects in MOS devices has been achieved [19] and confirmed with novel measurement techniques [20]. The details of analog switch operation in MOS circuits has been experimentally characterized [21] and modeled based on both analytical and PISCES models [22] [23]. Finally, a new methodology for SPICE model development and support has been demonstrated using PISCES as a tool to extract unique electrostatic boundary conditions [24]. In total, these three applications demonstrate both the power and versatility of TCAD-based modeling work. Each effort has facilitated the extraction of detailed model parameters based on physically meaningful process and device information. In the same spirit as mentioned for further SUPREM 4 efforts, BiCMOS will be used as a vehicle in the device modeling area as well. Preliminary results already indicate extremely promising information concerning new ECL circuitry being investigated for BiCMOS application [25]. However, as stated in regard to other applications cited above, the growing deficit of research funding in this area is a critical limitation.

Analog Switch Technology

The above activities have focused primarily on TCAD and its application. During the course of this contract, starting from activities in device characterization, a variety of analog switch technologies have been investigated and modeled. In the previous section the efforts related to silicon "pass transistors" were described. Novel structures were fabricated [21] and extensive modeling was done to characterize fundamental limits [22, 23]. This work has major impact on the ultimate speed/accuracy trade offs in analog digital systems and memory circuits as well. Noise injected by the MOS analog switches is a fundamental limit in scaled circuit technologies. In the following, two other analog switch efforts are now discussed.

From the inception of this research program the need to calibrate TCAD by means of

experimental device characterization was recognized. In the area of capacitance modeling discussed in the previous section, new modeling insight as well as characterization methods were developed. For high speed transient device characterization, previous work with s-parameters had yielded very promising results [26]. However, the need for parasitic free time-domain modeling was a major unachieved goal. At the beginning of this contract period we demonstrated our first photo conducting circuit element (PCE) in bulk silicon with sub-50 ps time resolution (full-width-half max) pulses [27]. Over the duration of the contract, two follow-on generations of PCE technology have been developed. First, starting from the bulk silicon PCE technology, and polysilicon implementation was realized with sub-50ps FWHM pulse resolution [28]. Moreover, a new CAD tool was developed to model and characterize the PCE performance. Within the past year, a third generation PCE has been demonstrated using MBE GaAs on silicon technology [29]. This technology shows pulse speeds comparable to our best silicon results and pulse amplitudes as much as an order-of-magnitude larger. From another point of view, the GaAs PCE's have impedances in the range of 100's of ohms compared to 1000's of ohms for the silicon technology. We plan to continue these efforts vigorously although to date we have not found a suitable funding source. The applications we foresee for GaAs PCE technology are centered on optical interconnect and clock distribution systems.

A final topic reported for completeness is the development of a SPICE model for a GaAs HFET [30]. Although the model was developed under industrial (SRC) sponsorship, the implication for analog (i.e. MMIC) applications is substantial. The basic model is similar to the two-lump MOSFET model discussed above. For both the MOSFET and HFET, the use of two-lumps to represent the channel charge is a key concept. This partitioning allows the consideration of channel transit times and even non-reciprocal effects of gate capacitance, similar to results presented in an earlier contract [31]. The implications are indeed important in understanding the physical effect and also providing an easy-to-implement technique for SPICE modeling. We consider the development of the approach generic to FET structures and a significant conceptual break-through.

Summary and Conclusions

In this report we have outlined broadly the research accomplishments in the area of Technology CAD. Stanford has developed an exceptional TCAD tool set with broad application to not only silicon but also GaAs and HCT technologies. The SUPREM program now has three specific lines of applicability:

1. SUPREM 4 for 2D silicon simulation
2. SUPREM 3 for 1D silicon and multiple cross-section technology optimization
3. SUPREM 3.5 for 1D GaAs simulation

The ongoing development of physical models for these simulators is now supported by SRC (silicon) and DARPA (GaAs). The device simulation area has been driven to support two major activities:

1. SEDAN 3 as a general materials simulator including:
 - a. GaAs and HCT
 - b. Multi cross-section silicon process optimization
2. PISCES development in the areas of:

3.

- a. General geometry simulator of dc, ac, and transient conditions in silicon
- b. Hot carrier analysis using a new windowed Monte Carlo analysis
- c. Preliminary results in parallel algorithms

Especially in the device analysis area, there is a critical lack of further support for both basic algorithm work and ongoing applications. Appendix 1 summarizes the activities related to SEDAN and PISCES and indicates both future trends and the magnitude of the looming funding crisis in this area.

Turning to Applications of TCAD, the research efforts have provided a variety of demonstrations. The previous sections have considered the following collection of specific applications:

- 1. CMOS latchup analysis and modeling
- 2. Capacitance measurement and simulation
- 3. Analog (Pass Transistor) switch measurement and modeling
- 4. Methodology based on PISCES and specific model implementations to support SPICE.
- 5. BiCMOS device technology development and circuit modeling.

Finally in the analog switch technology, the following major accomplishments have been realized:

- 1. Demonstration of novel PCE structures with the following measured performances:
 - a. bulk silicon - 20 psec FWHM pulses
 - b. poly silicon - 3 psec FWHM pulses
 - c. GaAs on silicon - < 50 psec FWHM pulses
- 2. Unique two-lump model for mobile channel charge in FETs with demonstrated application to:
 - a. Silicon MOSFETs for analog (pass transistor) switches
 - b. GaAs HFETs

In addition to the specific thesis research efforts, there has been a concentrated effort to have a dialog with government, universities, and industry. Each year Stanford holds a research review in the TCAD area with broad industrial attendance. Appendix 2 gives sample programs and attendance information. Finally, Professor Dutton is in the final stages of preparing a book for publication on Process and Device CAD. This text is targeted for a broad audience of users of TCAD and is expected to help fill the educational gap in this area. In the area of applications it is anticipated that the next stage will involve a strong development and evolution toward manufacturing science. The need to apply the tools aggressively to the building of real technologies is critical to the long term survival of all high technologies in the United States. As

a final point a theme presented throughout the report should be again emphasized. The area of device simulation is critical to advanced technology research and manufacturing science. However, the present situation in federal funding in this area leaves a huge gap between unmet modeling needs and present level of research funding.

References

- [1] H. Ryssel, K. Heberger, K. Hoffmann, G. Prinke, R. Dumcke, A. Sachs, "Simulation of Doping Processes," *IEEE Trans. Elect. Dev.* Vol. ED-27, No. 8, August 1980.
- [2] B. R. Penumalli, "Lateral Oxidation and Redistribution of Dopants, NASECODE II, Boole Press, Dublin, Ireland, June 1981.
- [3] A. F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer, P. Markowich, "Finite Boxes - A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation," *IEEE Trans. Elect. Dev.*, ED-30, pp. 1070-1082, Sept. 1983.
- [4] M. R. Pinto, C. S. Rafferty, R. W. Dutton, "PISCES II: Poisson and Continuity Equation Solver," Stanford Electronics Laboratories, September 1984.
- [5] M. R. Pinto, C. S. Rafferty, H. R. Yeager, R. W. Dutton, "PISCES II-B Supplementary Report", Stanford Electronics Laboratories, December 1985.
- [6] C. Rafferty, M. R. Pinto, R. W. Dutton "Iterative Methods in Semiconductor Device Simulation," *Joint Special Issue IEEE Trans. CAD/ICAS and IEEE Trans. Elec. Dev.* Vol. CAD-4, No. 4, and Vol. ED-32, No. 10, Oct. 1985.
- [7] R. W. Dutton, and M. R. Pinto, "The Use of Computer Aids in IC Technology Evolution," *Proc. IEEE*, Vol. 74, No. 12, Dec. 1986.
- [8] R. Lucas, T. Blank, J. Tiemann, "A Parallel Solution Method for Large Sparse Systems of Equations, *IEEE International Conference on Computer-Aided Design*, Santa Clara, CA Nov. 1986.
- [9] C. G. Hwang, D. Y. Cheng, H. R. Yeager, and R. W. Dutton, "Multi- Window Device Analysis of Hot Carrier Transport," *IEDM Technical Digest*, Dec. 1986.
- [10] H. R. Yeager, and R. W. Dutton, "An Approach to Solving Multi-particle Diffusion Exhibiting Nonlinear Stiff Coupling," *Joint Special Issue IEEE Trans. CAD/ICAS and IEEE Trans. Elec. Dev.* Vol. CAD-4, No. 4, and Vol. ED-32, No. 10, Oct. 1985.
- [11] C. S. Rafferty, M. E. Law, R. W. Dutton, "Two-Dimensional Process Modeling and SUPREM-IV," Presented at the Second International Conference on Simulation of Semiconductor Devices and Processes, Swansea, July 1986.

- [12] P. B. Griffin, J. D. Plummer, "Process Physics Determining 2-D Impurity Profiles in VLSI Devices," IEDM Technical Digest, Dec. 1986.
- [13] M. E. Law, C. S. Rafferty, R. W. Dutton, New N-well Fabrication Techniques Based on 2D Process Simulation," IEDM Technical Digest, Dec. 1986.
- [14] G. Barbuscia, G. Chin, R. W. Dutton, T. Alvarez, L. Arledge, "Modeling of Polysilicon Dopant Diffusion for Shallow-Junction Bipolar Technology," IEDM Technical Digest, December 1984.
- [15] Z. Yu, B. Ricco, R. W. Dutton, "A Comprehensive Analytical and Numerical Model of Polysilicon Emitter Contacts in Bipolar Transistors," *IEEE Trans. Electron Devices*, vol. ED-31, No.6, June 1984.
- [16] A. R. Alvarez, P. Meller, B. Tien, "2 Micron Merged Bipolar-CMOS Technology," IEDM Technical Digest, December 1984.
- [17] M. R. Pinto, and R. W. Dutton, "Accurate Trigger Condition Analysis for CMOS Latchup," *IEEE Electron Device Letters*, Vol. ED-6, No. 2, pp. 100-102, Feb. 1985.
- [18] E. Sangiorgi, M. R. Pinto, S. E. Swirhun, R. W. Dutton, "Two- Dimensional Numerical Analysis of Latchup in a VLSI CMOS Technology," *Joint Special Issue IEEE Trans. CAD/ICAS and IEEE Trans. Elec. Dev.* Vol. CAD-4, No. 4, and Vol. ED-32, No. 10, Oct. 1985.
- [19] H. Iwai, M. R. Pinto, C. S. Rafferty, J. E. Oristian, "Velocity Saturation Effect on Short-Channel MOS Transistor Capacitance, *IEEE Elect. Dev. Lett.*, Vol. EDL-6, No. 3, pp. 120-122, March 1985.
- [20] H. Iwai, M. R. Pinto, C. S. Rafferty, J. E. Oristian, and R. W. Dutton, "Analysis of Velocity Saturation and other Effects on Short Channel MOS Transistor Capacitances," *IEEE Transactions CAD/ICAS*, Vol. CAD-6, No. 2, pp. 173-184, March 1987.
- [21] J. B. Kuo, C. C. Fu, D. H. Dameron, R. W. Dutton, and B. A. Wooley, "VLSI Modeling and Packaging," Presented at the IEEE International Solid-State Circuits Conference, Feb. 1986.
- [22] J. B. Kuo, R. W. Dutton, and B. A. Wooley, "Turn-Off Transients in Circular Geometry MOS Pass Transistors," *IEEE JSSC*, Vol. SC-21, No. 5, pp. 837-844, Oct. 1986.
- [23] J. B. Kuo, R. W. Dutton, and B. A. Wooley, "MOS Pass Transistor Turn-Off Transient Analysis," *IEEE Trans. Elect. Dev.*, Vol. ED-33, no. 10, pp. 1545- 1555, Oct. 1986.

- [24] V. Marash, R. W. Dutton, "Submicron 2D Analytical MOS Modeling," Presented ICCAD, Santa Clara, CA, Nov. 1986.
- [25] J. B. Kuo, R. W. Dutton, "Two-Dimensional Transient Analysis of a Very Fast ECL Inverter, To be presented Bipolar Circuits and Technology Meeting, Sept. 1987
- [26] Y. Ikawa, W. R. Eisenstadt, R. W. Dutton, "Modeling of High-Speed, Large-Signal Transistor Switching Transients from S-Parameter Measurements, IEDM Technical Digest, Dec. 1981.
- [27] W. R. Eisenstadt, R. B. Hammond, and R. W. Dutton, "On-Chip Picosecond Time-Domain Measurements for VLSI and Interconnect Testing Using Photoconductors" *IEEE Trans. Elect. Dev.*, Vol. ED-6, No. 2, pp. 364-369, Feb. 1985.
- [28] D. R. Bowman, R. B. Hammond, and R. W. Dutton, "Polycrystalline- Silicon Integrated Photoconductors for Picosecond Pulsing and Gating," *IEEE Elect. Dev. Lett.* Vol. EDL-6, No. 10, pp. 502-503, Oct. 1985.
- [29] G. D. Anderson, R. W. Dutton, J. D. Morse, "MBE GaAs-on-Silicon for Picosecond Photoconductivity, To be Submitted Elect. Dev. Lett.
- [30] H. R. Yeager, and R. W. Dutton, "Circuit Simulation Models for the High Electron Mobility Transistor," *IEEE Trans. Elec. Dev.*, Vol. ED-33, No. 5, May 1986.
- [31] D. E. Ward, R. W. Dutton, "A Charge-Oriented Model for MOS Transistor Capacitances," *IEEE J. Solid-State Circuits*, Vol. SC-13, no. 5, pp. 703-708, Oct. 1978.

Stanford Research Accomplishments in Device Analysis--- A Short History of SEDAN and PISCES

Robert W. Dutton
Stanford University

Over the period of nearly a decade, the Stanford research group under the direction of Professor Dutton has developed a set of 1D and 2D device modeling tools (SEDAN and PISCES) which provide a unique platform for technology oriented device design. In particular, the SEDAN program provides comprehensive 1D analysis of both dc and transient current flow for silicon, GaAs and HgCdTe (HCT) technologies. The PISCES program solves for dc, transient and ac conditions in nonplanar 2D structures. In the following discussion, each of these two codes and their capabilities are discussed in detail. The emphasis of discussion is focused on capabilities and internal models compared to the numerical aspects of the simulators.

The SEDAN program has evolved from a simple stand-alone 1D solver for Poisson and two carrier continuity equations (version 1) into a technology-oriented tool (version 2). Specifically, the second version was modified to couple with SUPREM, the 1D process modeling program, and provide an integrated process-device analysis environment. However, the physical models were rather basic. In addition to concentration-dependent mobility and lifetime (used in SHR recombination) the effects of Auger recombination and bandgap narrowing were included. With the evolution of SUPREM 3 to include multilayer systems such as polysilicon-silicon, SEDAN was also changed to couple to the technology base. In particular, the modeling of polysilicon emitters was a driving force to expand the physical models. The added multilayer capabilities of SEDAN lead to the generalized materials modeling capabilities to be discussed shortly. The specific concerns related to polysilicon emitter bipolar devices is the interfacial oxide tunneling and grain boundary effects on transport current. The consideration of tunneling effects in fact opened the way for HCT effects to be discussed.

In parallel with the polyemitter developments, SEDAN 3 was generalized to include first GaAs and then HgCdTe material systems. Initially this involved a generalization of the energy band representation and new sets of relationship for mobility, lifetime and recombination--in both cases the composition variations were included as well. Beyond this first step, a variety of more difficult transport problems have unfolded. In the case of HCT, the problem of band-to-band tunneling current is crucial and has been implemented. For GaAs, the trapping of carriers--both the dc and transient effects--is essential and is now included in SEDAN.

The above discussion has briefly outlined the evolution of SEDAN. While the present array of physical models have substantially extended the capabilities, there is a number of further

enhancements needed to continue to meet the objectives of technology relevance for generalized semiconductor materials. Most obvious is the need to obtain realistic dopant, defect and stoichiometry profiles for compound materials. In the case of GaAs, the first generation of SUPREM 3.5 is nearing completion. However, complex effects such as disordering of super lattices, which can dramatically affect transport, are but one example of new models that are needed. Also, the modeling of quantum-well confinement is an important challenge. Similar problems remain to be solved for HCT. Finally, the needs for improvement in the silicon domain are by no means exhausted. Heteroepitaxy in silicon is now every bit as important as for the compound materials. Moreover, the consolidated use for process optimization of several cross-sections--for example in a BiCMOS technology--still provides technical challenges such as new emitter and source/drain materials (i.e. silicides). However, one aspect of SEDAN stands out more than any other. In the context of new models for device analysis, it is an excellent test-bed for both the physics and as a "spring-board" into 2D or even 3D codes. With this background, let us turn specifically to the evolution of PISCES.

The PISCES code (version 1) began as a Poisson and single carrier solver based on a finite element formulation. The initial objective was to explore attractive methods for parallel computation. The evolution of PISCES 2 was driven by a two-fold objective--to model GaAs MESFETs and the latchup problem in CMOS. These divergent needs resulted in a rather general simulator which can handle complex boundary conditions as well as physical models for materials properties. For example, the code treats ohmic, distributed resistive and Schottky boundary conditions as well as dielectric interfaces with surface recombination. The physical models include lifetime, generation and bandgap narrowing expressions very similar to those used in SEDAN. The mobility expressions include doping field effects and the differences due to either silicon or GaAs substrates. Because of the element-oriented method for assembling the data, model changes to account for better physical approximations are easily included. Both Boltzmann and Fermi-Dirac statistics are available.

From a technology perspective, the critical feature of PISCES which separates it from most other 2D simulators is its generality and versatility for analysis of complex geometry structures. For example, Figure 1 shows several geometries and device structures for silicon technologies that have been analyzed with PISCES. Figure 1a shows a twin-tub CMOS process where latch-up properties between the n^+ and p^+ contacts are modeled. Figure 1b shows a different CMOS technology with a trench used to electrically isolate the n^+ and p^+ regions. Finally, Figure 1c shows a dielectrically isolated emitter coupled bipolar pair which is analyzed in a mixed mode (device and circuit analysis) to understand gate transient effects. This range of cross sections shows effects of local oxides, trenches, FET and bipolar devices. Other examples illustrate MESFET, SOI, and a variety of both passive and active distributed device effects. The program accepts 1D process simulation profiles from SUPREM 3 and will soon be extended to interface to SUPREM 4 (2D). Analytic functions can be used independently or in conjunction with SUPREM to generate 2D profiles. Especially the nonplanar analysis aspects of PISCES make it extremely powerful for technology assessment.

The range of analysis capabilities of PISCES includes dc, transient and ac analysis. The dc solution can include Poisson only, couple one-carrier or full two-carriers and Poisson solutions. A variety of numerical approaches including direct LU factorization or several iterative techniques are also available for the user to select. In some sense the use of the code as a research vehicle for algorithms work has been left in place for the users convenience. To accommodate efficient transient analysis, advanced time step methods have been implemented. Recently, several new algorithms for bias projection have been developed and are expected to be implemented in PISCES as well.

The extension of PISCES in terms of physical models and materials analysis capabilities is the major area of recent research activities. In order to analyze GaAs as well as silicon hot carrier effects, a coupled solution method involving a Monte Carlo (MC) carrier analysis has been developed. Specifically, a MC window is opened within a larger drift-diffusion window. This allows hot carrier transport and even avalanche effects to be simulated. A number of improved materials models have been developed at user sites other than Stanford and are being evaluated for incorporation in a release version. These models include optical and alpha-trace generation terms and a simple multilayer semiconductor model to approximate planar heterojunction interfaces. A trap model implemented in SEDAN is also planned to be implemented in PISCES. This should be especially important for consideration of effects related to dc backgating and slow-tail transient effects in GaAs MESFETs. This trapping model could also prove useful in analysis of HCT structures.

The computation environment suitable for SEDAN and PISCES is diverse and depends on application. SEDAN has been implemented on everything from IBM/AT and Intel Hypercube "personal" computers to MicroVax workstations and Convex C-1 mini-super computers. It uses Fortran 77 and requires only modest (1 Mbytes). Run times for SEDAN are typically of tens-of-seconds per bias point on a workstation. The PISCES program is also written in Fortran 77 and requires somewhat larger amounts of storage (8 Mbytes). The machine environment suitable for PISCES ranges from MicroVAX or SUN workstations up to Convex C-1 mini-super and Cray supercomputers. Several minutes per bias point are typical for PISCES running on workstations. The operating system environment at Stanford is almost exclusively UNIX-based. However, ports of these codes to other system environments are available commercially. Both direct distribution of the Stanford versions and information regarding commercial versions are available through Stanford's Office of Technology Licensing.

Because of growing computational costs of multidimensional device and process analysis, Stanford is now actively investigating multiprocessor implementations of codes such as PISCES and SUPREM. To date the primary research vehicle is the hypercube architecture. Very promising results have been obtained with 16 nodes, achieving as high as 60% utilization, for a nested-dissection LU factorization method. The algorithm research is targeted to be generic and broadly applicable to other parallel architectures. For example, the next generation Cray YMP should be a suitable supercomputer environment and next generations of Convex and Alliant

mini-super computers should also be appropriate target machines.

In summary, the Stanford effort's in developing one- and multi-dimension device analysis tools to support a variety of device technology bases--silicon, GaAs and HCT--has been highly successful and productive. Limited funding resources is the major obstacle which now slows progress. The total industrial and government support at this time is less than three full-time equivalent staff members for both the silicon and compound materials efforts. To sustain the past level of productivity the total funding level need to be roughly tripled. It is strongly recommended that interested industrial concerns and major government programs, MMIC, and SEMATECH for example, consider the importance of this research area and specifically the leverage provided by the continued Stanford research efforts.

Current flow prior to triggering for the vertically triggered (n^+) case. Current is primarily electrons flowing in a manner similar to that in an isolated vertical n-p-n transistor.

Current flow prior to triggering for the laterally triggered (p^+) case. Note the large majority carrier (hole) current in the p-tub.

Trigger current (log) plotted as a function of anode-cathode spacing (L) for current injected into the n^+ - and p^+ -emitters. Solid lines are measured data, and points are simulated.

Figure 1a Twin-Tub CMOS Latch-up Modeling with PISCES,
 i) vertical current in n^+
 ii) lateral current in p^+
 iii) trigger current versus contact spacing

Geometry

Working grid

Figure 1b Trench Isolation Structure
i) physical structure
ii) grid structure used by PISCES

Figure 1C Collector-UP Bipolar ECL Structure

- circuit schematic
- physical cross-section used for PISCES analysis

Stanford University Announces a Three-Day Program

Computer-Aided Design and Manufacturing of Integrated Circuits

August 20-22, 1984

Monday, August 20

Tuesday, August 21

Wednesday, August 22

Processing Technology

Simulation and Applications

Manufacturing Science

Computer-Aided Design and Manufacturing of Integrated Circuits

A three-day program:
August 20-22, 1984, Stanford, California

Over the past decade Stanford University has pioneered a fundamental research effort to understand and model integrated circuit (IC) technology.¹ Once each year the Integrated Circuits Laboratory at Stanford presents a summary of recent findings, in the context of a short-course style discussion. Last year we expanded the program to cover not only modeling and CAD tools but also manufacturing science. This year, topics related specifically to laboratory and equipment automation are discussed. Also, for the first time we will include selected topics on compound semiconductors as well as silicon technology.

The discussion of processing technology at this year's meeting shows both evolutionary and revolutionary changes. Major advances in both analytic tools and models for diffusion kinetics are reported. The introduction of compound semiconductor material topics reflects the growing industrial interest as well as Stanford research effort in the field. Stanford has developed a variety of process and device simulation programs which embody the results of fundamental research efforts and are of substantial value for process development and device design. In the area of process simulation the SUPREM program is widely used for both design and in understanding process sensitivities. Advances in SUPREM models will be discussed. The one-dimensional device simulator SEDAN and the two-dimensional PISCES program have both advanced substantially since last year's meeting. The documentation and release of PISCES are a highlight of this year's meeting.

Stanford has established a manufacturing capability to fabricate IC's for systems design such as the MIPS processor project on a fast-turn-around basis. In this manufacturing spirit we have an ongoing need to develop expertise in IC manufacturing science. We are developing a computer-aided system, FABLE, to assist in line management, documentation, and training for IC manufacturing. A key component of the FABLE system is models for equipment. The emphasis of the third day will be on both the system context and details of equipment automation. This will include consideration of standards to facilitate system integration.

The meeting format will consist of a series of lectures as outlined in the program. Copies of material presented by the speakers are included in the course materials. In addition, there will be a distribution of technical reports which give an extended discussion of background information and details of the experiments, models, and computer programs. The first day will involve primarily lectures and discussions of the materials aspects of technology modeling with substantial emphasis on specific experimental and model results applicable to SUPREM. The second day will focus on more general aspects of process and device simulation as well as Stanford-developed tools. The third day emphasizes automation and equipment models.

A "forum" atmosphere will be encouraged to obtain user feedback. A number of specific applications and results (case studies) will be presented. The registration fee provides for all course materials, as well as lunches and dinner (August 20 and 21, 1984).

Location: Terman Auditorium, Stanford University, Stanford, California

This work has been supported through government as well as industrial funding. The Defense Advanced Projects Research Agency, Army Research Office, and Semiconductor Research Corporation are specifically responsible for major sources of research funding.

Fee: The fee for each day is \$225 (including lecture notes, luncheon, and dinner (August 20, 21, 1984) or \$575 for attending three days. Enrollment is limited, and advance enrollment is required.

Instructional Staff

GIUSEPPE BARBUSCIA, Researcher, SGS, Italy
 JOHN C. BRAVMAN, Research Assistant, Stanford University
 GARY B. BRONNER, Research Assistant, Stanford University
 ROBERT BURNHAM, Research Fellow, Xerox, Palo Alto
 NELSON CHAN, Member Technical Staff, Intel Corporation
 PETER CHRISTIE, Senior Engineering Manager, Digital Equipment Corp.
 CHRIS CLARE, Staff Engineer, Hewlett-Packard Laboratories
 MICHAEL CURRENT, Process Engineer, Trilogy Systems Corp.
 ROBERT W. DUTTON, Professor, Stanford University
 WILLIAM E. EISENSTADT, Assistant Professor, University of Florida
 PAUL M. FAHEY, Research Affiliate, Stanford University
 CHONG-CHENG FU, Research Associate, Stanford University
 MARTIN D. GILES, Research Assistant, Stanford University
 JOHN GOLOVIN, President, Consilium, Palo Alto
 CHIEN-JIH HAN, Research Assistant, Stanford University
 STEPHEN E. HANSEN, Senior Scientific Programmer, Stanford University
 JAMES S. HARRIS, Professor, Stanford University
 HERBERT KROEMER, Professor, University of California, Santa Barbara
 ANDREW LANE, Manager, Particulate Controlled Engineering, Applied Materials
 DAVID MILLER, Member Technical Staff, Rockwell International
 JAMES P. MCVITIE, Senior Research Associate, Stanford University
 MEHRDAD M. MOSLEHI, Research Assistant, Stanford University
 WAYNE MURAKAMI, Chairman of the Board, CTX International
 JOHN ORISTIAN, Research Assistant, Stanford University
 GARY PATTON, Research Assistant, Stanford University
 MARK R. PINTO, Research Assistant, Stanford University
 JAMES D. PLUMMER, Professor, Stanford University
 CONOR RAFFERTY, Research Assistant, Stanford University
 MICHAEL REED, Research Assistant, Stanford University
 BRIAN K. REID, Assistant Professor, Stanford University
 ENRICO SANGIORGI, Research Associate, University of Bologna, Italy
 THOMAS SIGMON, Professor, Stanford University
 ANDRZEJ J. STROJWAS, Assistant Professor, Carnegie-Mellon University
 JAMES STURM, Research Assistant, Stanford University
 STANLEY SWIRHUN, Research Assistant, Stanford University
 WILLIAM TILLER, Professor, Stanford University
 DONALD E. WARD, Research Associate, Stanford University
 JASON WOO, Research Assistant, Stanford University
 HAL YEAGER, Research Assistant, Stanford University
 ZHIPING YU, Research Assistant, Stanford University

PROCESSING TECHNOLOGY

Monday, August 20, 1984

8.00 a.m.	Registration	
8.30	Overview of Silicon Technology	Plummer
9.15	Overview of Compound Semiconductor Technology	Harris
9.50	Break	
10.15	Tools for Process Modeling	Dutton

10:50	Oxidation and Surface Kinetics	Tiller	INTEGRATED CIRCUITS MANUFACTURING SCIENCE		
11:10	Micro Analysis Studies of the Growth of Thin Gate Dielectrics	Han	Wednesday, August 22, 1984		
11:30	Interface Microscopy	Bravman	8:30 a.m.	A Framework for Equipment Automation	Golovin
11:50	Lunch		9:10	The Users Viewpoint of Computerized IC Fabrication	Christie
1:15 p.m.*	Thermal Nitridation of Silicon and Oxidized Silicon	Moslehi	9:50	Break	
1:35*	Diffusion Modeling	Fahey	10:15	The FABLE Language	Reid
2:05*	Transient Effects in Rapid Thermal Annealing	Reed	11:00	Process Diagnostics and Adaptive Control of IC Fabrication	Strojwas
2:25*	Gettering Kinetics	Bronner	11:30	Diagnostics and Equipment Control	Murakami
2:45	Break		12:00	Lunch	
3:10	Implantation Modeling in One and Two Dimensions	Giles	1:15 p.m.	Equipment Interface Standards	Clare
3:35	Interconnections & Contacts	Swirhan	1:50	Equipment Reliability and Particle Contamination in Manufacturing	Lane
3:55	Phase Changes During Silicide Oxidation and Metal Diffusion in SiO ₂	Sigmon	2:20	Break	
4:15	Applications—Industrial Feedback Compound Materials Session		2:40	Control of Plasma Etching for VLSI	McVittie
1:15 p.m.**	Metal Organic Chemical Vapor Deposition	Burnham	3:10	Process Control of Ion Implantation in Production	Current
2:00**	Molecular Beam Epitaxy	Miller	3:40	Interfacing and Data Collection for Stepper Lithography	Fu
Discussion					

Parallel Sessions (*)(**)

SIMULATORS, DEVICES, AND CHARACTERIZATION

Tuesday, August 21, 1984

8:30 a.m.	Implementation and Applications of SUPREM	Hansen	How to enroll: Enrollment is limited and advance enrollment is required. Enrollment may be made by individuals or companies. Deadline for submission of enrollment forms, August 10, 1984.		
9:00	Diffusion Coefficients in SUPREM	Barbuscia	To enroll: Please complete and return the form provided.		
9:25	SEDA Models for Polysilicon Emitters	Yu	Refunds: If you enroll and then cannot attend, a refund will be granted if requested in writing prior to August 10, 1984.		
9:50	Characterization of Polyemitter Devices	Patton	Housing is available on the Stanford campus in student residences without private baths at reasonable rates. Campus recreational facilities are available for your use. For further information contact the Conference Office at 123 Encina Commons, Stanford, California 94305; telephone (415) 497-3126.		
10:15	Break		For further information: Write or call Stanford University Integrated Circuits Laboratory, c/o Robert W. Dutton, AEL Bldg., Stanford, California 94305; telephones (415) 497-1349 and 497-4138.		
10:40	Two-Carrier 2D Device Simulation—PISCES II	Rafferty	(Enrollment is limited. Advance enrollment is required.)		
11:10	Low Temperature CMOS—Physics and Simulation	Woo	I enclose a check in the amount of \$ _____ to cover _____ enrollment(s) in (check one)		
11:35	An Impact Ionization Model for 2D Device Simulation	Chan	<input type="checkbox"/> Processing Technology August 20, 1984 (\$225)*		
12:00	Lunch		<input type="checkbox"/> Simulation and Applications August 21, 1984 (\$225)*		
1:15 p.m.	Latchup Modeling and Simulation	Pinto	<input type="checkbox"/> Manufacturing Science August 22, 1984 (\$225)*		
1:45	Schottky Contact Modeling and Latchup Prevention	Sangiorgi	<input type="checkbox"/> Entire Program August 20-22, 1984 (\$575)*		
2:10	Three-Dimensional Device Structures	Sturm	Name	last	first
2:35	Break		Employed by		
3:00	New Compound Semiconductor Devices	Kroemer	Company address		
3:30	Characterization and Modeling of GaAs/MODFETs	Yeager	city	state	zip
3:50	Picosecond Time Domain Device Characterization	Eisenstadt	Daytime telephone and extension _____		
4:10	On-Chip Capacitance Characterization with Femtofarad Resolution	Oristian	Make check payable to Stanford University, and send to Robert W. Dutton, 204 AEL Building, Stanford University, Stanford, CA 94305.		
4:30	Parameter Extraction and the Development of SPICE Models	Ward	*Preferred-rate registrations for government employees will be accepted based on written sponsor approval. Contact Sven Roosild (Defense Advanced Research Projects Agency) or Bill Sander (U.S. Army Research Office).		

CAD and Manufacturing of IC

August 20-22, 1984

Ahmad T. Abawi	Hughes Aircraft	William Cochran	AT&T Bell Lab.
Hidegori Akiyama	Burns Research Corp.	Brian Coffey	Philips Labs
Martin Alter	Micrel, Inc.	Mike Coffey	Digital Equipment Corp.
Vince Alwin	RCA/SSTC	Roy A. Colclaser	Signetics
Kostas G. Ambergiadis	RCA Labs	Tom Collins	Tandem Computers Inc
Sheldon Aronowitz	Fairchild	Bart Connolly	Monolithic Memories
Narain Arora	Digital Equipment Corp.	Andrew Coulson	TRW
Jose Arreola	Cypress Semiconductor Corp.	Neil Crain	Data General Corp.
Butch Asakawa	Intel	Peter Cuevas	Xicor
Keshav K. Ayare	Synertek	Wayne K. Current	Univ. of California
Greg Bakker	Fairchild	John M. Curry	IBM
Joseph Balch	Lawrence Livermore	Donald C. D'Avanzo	Hewlett-Packard
Nabi Bayazit	Hewlett-Packard	James Davidson	Lawrence Livermore
Charles A. Becker	GE, CRD	Diane M. Detig	Intel
Ian Bell	National Semiconductor	Ven Y. Doo	Data General Corp.
Peter Bendix	VLSI Technology Inc.	Vladimir Drobny	Tektronix Inc.
Melvin Benedict	IBM	Gregor Dougal	Control Data Corp.
James A. Benjamin	Eaton Corp.	James Dunkley	Silicon Systems Inc.
Inderjit S. Bhatti	National Semi.	Art Edwards	Microelectronics Div.
Cynthia P. Bloom	TMA	Mostafa Elahy	Texas Instruments
Steven Bolger	Siliconix	Alicja I. Ellis	Honeywell Inc.
Nick Bonuta	Synertek	Donald B. Estreich	Hewlett-Packard
Brenda Boucher-Puputti	GTE Lab.	John Faricelli	Digital Equipment Corp.
Karen Brannon	IBM East Fishkill	Don J. Ferris	Texas Instruments
John Breseke	Monolithic Memories	Chris William Figura	Honeywell
Joe E. Brewer	Westinghouse Elec.	Jim E. Flowers	Texas Instruments
Elisa Bucan	Data General Corp.	Scott Frake	National Semiconductor
Nguyen D. Bui	Advanced Micro Devices	Julia S. Fu	Sandia National Labs
Felix Buot	Naval Research Lab	Kuni Fukumuro	Xilinx
Mark L. Burgener	Naval Ocean Sys. Ctr.	James Garcia	Monolithic Memories
Bruce C. Burkey	Eastman Kodak Co.	Shyam G. Garg	Texas Instruments
Greg Burton	Fairchild	Norman J. Golden	Hyundai Elect. America
Thomas P. Bushey	Motorola Semi.	Franklin Gonzales	Telmos
Matthew Buynoski	National Semiconductor	Scott Graham	Monolithic Memories
Michael F. Calaway	Motorola	James A. Greenfield	TMA
William N. Carr	GTE	Thomas Grudkowski	United Technologies
Thomas Casselman	Sta. Barbara Res. Ctr.	Michael Grubisich	National Semiconductor
Kit Cham	Hewlett-Packard	Richard Gurtler	Motorola
Joseph Chapley	GTE Microcircuits	Peter A. Habitz	IBM
King-Shan Chan	Commodore	Sameer Haddad	Advanced Micro Devic
Raymond Chan	Fairchild	Domokos Hadnagy	United Tech. Microele
Kuang-Yeh Chang	AMD	Twila Hamilton	Motorola
Shiao-Hoo Chang	Advanced Micro Devices	Howard Hansen	IBM Corp.
Devereaux C. Chen	Hewlett-Packard	Neil Hanuvusa	Monolithic Memories
Jun-Wei Chen	National Semiconductor	David H. Harper	Burroughs Corp.
Lish Chen	IDT	Alan D. Hart	Hewlett-Packard
Yu-Tai Chia	Intersil	Marc Hartranft	Cypress Semi. Corp.
Steve Chiang	Intel	Harriet Harvey	Data General Corp.
Francis Choi	Xerox Corp.	Philip Haswell	Univ. of Alberta
Heikyung Chun-Min	National Semi.	Jim Heard	Fairchild
Shine C. Chung	AMD	Kim G. Hellwell	Analog Design Tools
John F. Clark	IBM	Steven Hillenius	AT&T Bell Lab.
Carl Clawson	Tektronix	Chris Honcik	Micron Technology, Inc.
		Michael Hong	Exar Integrated Syst
		Derry Hornbuckle	Hewlett-Packard
		Ching-Jen Hu	Wafer Scale Integrati
		Sing Chung Hu	Signetics Philips Lab

Stanley Huang	American Microsystems, Inc.	Leighton E. McKeen	National Semi.
John J. Hudak	Department of Defense	Dave McLaughlin	Motorola Bipolar IC
Howard R. Huff	Monsanto Elec. Mtrls. Co.	Jack E. Mee	Rockwell International
Bor-Yuan Hwang	Motorola	Deepak Mehrotra	Raytheon Semi. Div.
D. J. Hyun	Inmos	Len Mei	Data General Corp.
Weldon H. Jackson	Hewlett-Packard	Mike Menetto	Intersil
David Jacy	Data General Corp.	Dave Michelson	Monolithic Memories
David Jaffe	IBM Research	Robert Moore	Harris Semiconductor
David Jensen	National Semi.	Claire Morgan	Motorola, Inc.
Roy Jewell	Texas Instruments	Stephen Motzny	Synertek
Ron Jih	Data General Corp.	Sam Naik	Signetics
Marty Johnson	National Semiconductor	Nobu Nakamoto	Hewlett-Packard
Harold Jordan	Data General Corp.	Andre Nasr	Digital Equipment Corp.
Debra Kalor	Motorola	Donald E. Nelsen	DEC
Robert Kent	National Semiconductor	Ed Nowak	VISIC Inc.
Ron Kielkowski	Naval Avionics	A. Ochoa	Sandia National Labs
Kevin Kiely	Logic Devices Inc.	Soo Young Oh	Hewlett Packard
Jan King	Siliconix, Inc.	Hisashi Ohshima	Burns Research Corp.
Michael King	Department of Defense	Jay Olund	Lattice Semi. Corp.
Gus Kinoshita	Precision Monolithics	David Palmer	Sandia
Malcolm L. Kinter	MK Associates, Inc.	Olgierd A. Palusinski	Univ. of AZ
Erez Kleinman	National Semiconductor	Dan Peters	Hewlett-Packard
Steve K. Knauber	Grass Valley Group	Donald F. Pettengill	AMD
Wei-Yi Ku	Signetics	James M. Pickett	Bipolar Integ. Tech.
Victor Kwong	LSI Logic Corp.	Jeff Pinter	Ford Aerospace
Robert W. Lade	Eaton Corporation	Richard C. Pinto	Thermco Prod. Corp.
Glenn Laguna	Sandia National Lab	Harry Pon	American Microsystem
Chung Lam	Intel	Raymond Pong	Signetics
Duane G. Laurent	UTC/Mostek	John Price	TRW
Mark Law	Hewlett-Packard	Nader Radjy	Advanced Micro Devic
Chia-Hao Lee	Xerox Corporation	Amolak Ramde	Advanced Micro Devic
Steve Lee	Siliconix, Inc.	Suresh Rathnam	Lattice Semi. Corp.
Neal Levine	Advanced Micro Devices	Nirmal Ratnakumar	Precision Monolithics
George Lewicki	USC Info. Sciences Inst.	Thomas A. Reilly	Lafayette College
Tong-Kang Li	Digital Equipment Corp.	James Reynolds	Naval Avionics
Liang Lie	Gould AMI Semiconductors	Paul Reynolds	Burroughs Corporatio
Miin-Ron Lin	AT&T Bell Labs	Llanda Richardson	DEC
Yung-Tao Lin	Monolithic Memory, Inc.	Stephen P. Robb	Motorola Semi.
Bill Liu	Advanced Micro Devices	Bernie Rogers	Monolithic Memories
Ken Liu	Trilogy Systems	Brian Sadler	Trilogy Systems
Albert Lo	Comdial Technology	Maah Sango	Monolithic Memories
Chung-Wei Lo	IDT	K. G. Schlotzhauer	Bipolar Integ. Tech
Michael J. Lo	Xerox Corp.	Mark Schoenberg	Motorola, Inc.
Stanley A. Louie	Rockwell Int.	Steve Schwake	Telmos
John K. Lowell	United Technologies	Jerold A. Seitchik	Texas Inst.
Todd Lukanc	Monolithic Memories	Nagib Sharif	Synertek
Phil Lunsford	IBM	Steven Shatas	AG Associates
Robert Lutze	Honeywell	Bok Shin	Siemens/Opto
Dov Malonek	National Semiconductor	James Shipley	National Semi.
Peter N. Manos	AMD	Ritu Shrivastava	Cypress Semi. Corp.
Deborah D. Maracas	Motorola, Inc.	Paramjit Singh	Rockwell Intl.
Sidney Marshall	Solid State Technology	Barry S. Signoretti	Memorex Corp.
Barry Mason	GTE Microcircuits	Byron Siu	Intel
Tom McFarlane	National Semiconductor	Cezary Slaby	Northern Telecom Ele
Nathaniel McClure	Delco Elect.	Peter Smith	Fairchild
David McGovern	Alternative Technologies	R. Kent Smith	AT&T Lab
Mike McIntyre	Data General Corp.	Skip Smith	National Semi.

Richard Smolen
 Ralph J. Sokel
 Gianpaolo Spadini
 Edmund J. Sprogis
 Jake Steigerwalt
 Dale Sumida
 S. C. Sun
 Jeffrey P. Sung
 Won G. Sunu
 William A. Surber
 Harry E. Talley
 Tankaj Tandon
 Sing Pin Tay
 David Thornhill
 Tim J. Thurgate
 Rebecca Tang
 Farid M. Tranjan
 Huan-chung Tseng
 Stanley Tseng
 David Tsuei
 John R. Tuttle
 Lowrey Tyler
 Vance Tyree
 John T. Urbain
 Rimantas L. Vaitkus
 Joseph B. Valdez
 Ray Vasquez
 Robert H. Vogel
 George P. Walker
 Moe S. Wasserman
 Kenneth Weller
 Douglas J. Welter
 Moo Y. Wen
 Ralph Whitten
 Deborah Wittek
 Gerald L. Witt
 Richard C. Woodbury
 Richard Woodruff
 Tze-Kwai Wong
 E. Gordon Wright
 In-nan Wu
 Way-Chen Wu
 Howard Yamamoto
 Cheng Yang
 Jeff T. Yang
 Abe F. Yee
 Hamza Yilmaz
 Roger Yin
 Shinmei Yoshihiko
 Raymond Yu
 Sepuan Yu
 Michael Yung

National Semi.
 Inmos Corp.
 VTI
 IBM
 National Semi.
 Xerox Corp.
 Xicor
 AMD
 Gould Inc.
 Princeton Univ.
 Univ. of Kansas
 American Microsystems, Inc.
 Northern Telecom Electronics
 Science Applications
 TMA
 National Semi.
 Texas Instruments
 National Semi.
 Modern Electrosystems
 Intersil
 Unitrode Corp.
 Micron Technology
 USC Infor.Sciences Inst.
 Floating Point Systems
 Motorola
 Hughes Aircraft Co.
 Motorola
 Lehigh University
 Synertek
 GTE Labs
 Avantek
 Motorola Bipolar IC
 IBM
 Monolithic Memories
 Digital Equipment Corp.
 AFOSR
 Brigham Young Univ.
 UTMC
 Advanced Micro Devices
 Synertek
 Fairchild Research Center
 Signetics
 Matsushita Elect. Works
 Commodore
 Memorex
 LSI Logic
 General Electric Co.
 Siliconix, Inc.
 Matsushita Elect. Works
 Intel
 GE CR&D
 Commodore

GUESTS

Dimitri Antoniadis
 Zvonko Fazarinc
 Michael Harrison
 Mark Horowitz
 Ted Kamins
 Jim Kesperis
 Paul Losleben
 Jim Meindl
 Reda Razouk
 Dick Reynolds
 Sven Roosild
 Bruce Wooley

Students

Sung Tae Ahn
 Paul dela Houssaye
 Alex Harwit
 Eric Hellman
 Stephanie Koch
 Les Landsberger
 David Liu
 Phil Pither
 Ed Wollak
 Gideon Yoffe
 Kanji Yoh
 Ed Young

Stanford University Announces a Two-Day Program

COMPUTER-AIDED DESIGN OF IC FABRICATION PROCESSES

Technology Modeling
Thursday, August 1, 1985

Process and Device Simulation
Friday, August 2, 1985

COMPUTER-AIDED DESIGN OF IC FABRICATION PROCESSES

**A two-day program:
August 1-2, 1985 Stanford, California**

The evolution of Integrated Circuit technology has resulted in three decades of explosive growth in microelectronics.¹ For two decades Stanford has been a leader in the field of research and teaching of microelectronics. This year marks the tenth anniversary of Stanford's efforts in process modeling. The highlight of this year's program is the discussion of new 2D process kinetic models and the launching of our first fully 2D version of the SUPREM program. In addition to the 2D work in silicon technology, this year marks the formal beginning of our efforts to model compound materials and devices. This two day meeting is intended to provide the participants with in-depth discussions of process and device modeling topics—both for silicon and GaAs technologies. The evolution towards larger wafers for silicon technology has introduced new requirements for process and equipment technologies. In addition to the concerns with two-dimensional implantation, diffusion and oxidation, new efforts in transient processing and plasma etching kinetics are introduced at this meeting. The maturing of the GaAs technology is now reflected in our growing efforts to build quantitative process models for compound materials. In the first day of the conference the emphasis is given to technology, kinetic models and data needed to support the evolution of SUPREM.

The second day of the conference shifts the emphasis to Computer Aided Design (CAD) tools and their applications. As stated earlier, the next generation of process modeling, a full 2D simulator—SUPREM IV—is introduced and discussed. The continued refinement of the 1D tool, version III, is considered. As in the past, we encourage discussion and participation on these topics. The device modeling efforts will reflect three theme areas—MOSFET, Bipolar, and Compound Materials. The PISCES program continues to show stellar performance in a multitude of applications in all three areas. In the discussion of bipolar devices both poly emitter silicon and heterojunction GaAs technologies are considered. The SEDAN III program will be released for the first time with new capabilities to model silicon, III-V and II-VI device structures. Finally, the discussion of MESFET and HFET structures in GaAs will show the state-of-the-art in technology and device modeling.

The meeting format will consist of a series of lectures as outlined in the program. Copies of material presented by the speakers are included in the course materials. In addition, there will be a distribution of technical reports which give an extended discussion of background information and details of the experiments, models, and computer programs. The first day will involve primarily lectures and discussions of the materials aspects of technology modeling with substantial emphasis on specific experimental and model results applicable to SUPREM. The second day will focus on more general aspects of process and device simulation as well as Stanford-developed tools.

A "forum" atmosphere will be encouraged to obtain user feedback. A number of specific applications and results (case studies) will be presented. The registration fee provides for all course materials, as well as lunches and dinner.

Location: Terman Auditorium, Stanford University, Stanford, California.

Fee: The fee for each day is \$250 (including lecture notes, luncheon, and dinner (August 1-2, 1985) or \$475 for attending both days. Enrollment is limited, and advance enrollment is required.

¹This work has been supported through government as well as industrial funding. The Defense Advanced Projects Research Agency, Army Research Office, and Semiconductor Research Corporation are specifically responsible for major sources of research funding.

INSTRUCTIONAL STAFF

JOHN C. BRAVMAN, Professor, Stanford University
 GARY B. BRONNER, Research Assistant, Stanford University
 PAUL G. CAREY, Research Assistant, Stanford University
 EMMANUEL F. CRABBE, Research Assistant, Stanford University
 ROBERT W. DUTTON, Professor, Stanford University
 MARTIN GILES, Member Technical Staff, Bell Laboratories
 PETER B. GRIFFIN, Research Assistant, Stanford University
 STEPHEN E. HANSEN, Senior Scientific Programmer, Stanford University
 JAMES S. HARRIS, Professor, Stanford University
 C. ROBERT HELMS, Professor, Stanford University
 ALBERT K. HENNING, Research Assistant, Stanford University
 DAH-BIN KAO, Research Assistant, Stanford University
 MARK E. LAW, Research Assistant, Stanford University
 JAMES P. MCVITTIE, Senior Research Associate, Stanford University
 JOHN E. ORISTIAN, Research Assistant, Stanford University
 GARY L. PATTON, Research Assistant, Stanford University
 MARK R. PINTO, Research Assistant, Stanford University
 PHILIP M. PITNER, Research Assistant, Stanford University
 JAMES D. PLUMMER, Professor, Stanford University
 CONOR S. RAFFERTY, Research Assistant, Stanford University
 MICHAEL L. REED, Research Assistant, Stanford University
 KRISHNA SARASWAT, Professor, Stanford University
 KRISHNA SHENAI, Research Assistant, Stanford University
 FUCHIA SHONE, Research Assistant, Stanford University
 THOMAS SIGMON, Professor, Stanford University
 HAL R. YEAGER, Research Assistant, Stanford University
 ZHIPING YU, Research Assistant, Stanford University

PROCESSING TECHNOLOGY

Thursday, August 1, 1985

8:00 a.m.	Registration	Plummer
8:30	Silicon Overview	
Silicon Bulk Phenomena		
9:15	2D Diffusion	Griffin
9:45	Getting Modeling Bronner	Reed
10:10	Rapid Thermal Annealing	
10:35	Break	
10:55	2D Implantation	Giles
11:20	Laser Doping for Shallow Junctions	Carey
Interfaces and Thin Films		
11:40	TEM Studies of Interfaces	Bravman
12:00	Lunch	
GaAs Process Modeling		
1:15 p.m.	Selective CVD, Contacts and Interconnects	Saraswat
1:40	Silicide/Silicon Structures	Shone
2:00	Plasma Etching	McVittie
2:25	2D Oxidation	Kao
2:50	Break	
3:10	GaAs Technology, Doping and Diffusion	Sigmon
3:40	GaAs Schottky Diodes and Contacts	Helms
4:05	GaAs MBE	Harris
4:30	Discussion	Plummer/Dutton

PROCESS AND DEVICE SIMULATION

Friday, August 2, 1985

Silicon Process and Device Simulation

8:00 a.m.	Overview of Process and Device CAD	Dutton
8:40	SUPREM III—Status Report	Hansen
9:10	Simulating Dynamic Process Geometry	Rafferty
9:40	Applications of SUPREM IV for Diffusion	Law
10:10	Break	
	MOSFET Technology and Scaling	
10:30	PISCES for Transient Device Simulation, Including CMOS Latchup	Pinto
11:20	Capacitance Measurements and Modeling	Oristian
11:40	Hot Carrier Effects—Models and Measurements	Henning
12:00	Lunch	
	Technology and Modeling Tools for High Frequencies— Silicon vs. Compound Materials	
1:00 p.m.	GaAs MESFET Charge and Mobility Models	Shenai
1:30	GaAs (heterojunction) HFET—Device and Circuit Models	Yeager
2:05	GaAs (heterojunction) HBJT—Technology and Device Design	Pitner
2:40	Break	
3:00	Technology and Modeling of Polysilicon Emitter Bipolar Devices	Patton
3:30	2D Scaling of Silicon Bipolar Devices	Crabbé
4:00	SEDAN III—A Simulator for Arbitrary Multilayer Bipolar Structures	Yu
4:30	Discussion and Conclusion	

General Information

How to enroll: Enrollment is limited and advance enrollment is required. Enrollment may be made by individuals or companies. Deadline for submission of enrollment forms July 26, 1985.

To enroll: Please complete and return the form provided.

Refunds: If you enroll and then cannot attend, a refund will be granted if requested in writing prior to July 26, 1985.

Housing is available on the Stanford campus in student residences without private baths at reasonable rates. Campus recreational facilities are available for your use. For further information contact the Conference Office at 123 Encina Commons, Stanford, California 94305; telephone (415) 497-3126.

For further information: Write or call Stanford University Integrated Circuits Laboratory, c/o Robert W. Dutton, AEL Bldg., Stanford, California 94305, telephones (415) 497-1349 and 497-4138.

(Enrollment is limited. Advance enrollment is required.)

I enclose a check in the amount of \$ _____ to cover _____ enrollment(s) in (check one)

- Processing Technology August 1, 1985 (\$250)*
 Simulation and Applications August 2, 1985 (\$250)*
 Both (\$475)*

Name _____ last _____ first _____ middle _____

Employed by _____

Company address _____

city _____ state _____ zip _____

Daytime telephone and extension _____

Make check payable to Stanford University, and send to Robert W. Dutton, 204 AEL Building, Stanford University, Stanford, CA 94305.

*Preferred-rate registrations for government employees will be accepted based on sponsor approval. Contact Robert W. Dutton, Stanford University.

CAD of IC FABRICATION PROCESSES

August 1-2, 1985

Altab Ahmad	Jeffrey L. Gray	Purdue University
Osman E. Alcasu	Jim Greenfield	Technology Modeling Assoc
Dick Allison	Thomas W. Grudkowski	United Tech Res Center
Kostas Arbenakis	Richard W. Gurtler	Motorola
David A. Angst	Peter Habits	IBM-East Fishkill
Sunnder Bahl	Shawn M. Harley	Meta-Software
William A. Bandy	Rodger W. Hardy	McDonnell Douglas
John M. Barden	Rod Harrell	Department of Defense
Nabi Bayazit	Kim G. Hellwell	Analog Design Tools
Ian Bell	Robert H. Hobbs	United Tech Res Center
Peter B. Bendix	Richard R. Hoffmeister	NCR Microelectronics
James A. Benjamin	Daniel Hou	Microwave Associates
Aloke S. Bhandia	C. Ming Hsieh	IBM Corp
Inderjit S. Bhatti	Daniel Hou	
Duane Boning	Arthur Hu	Hyundai Electronics Amer
Brad Boos	Fu-Lai Huang	Gould Research Center
William D. Brown	John Hudak	Department of Defense
Felix Buot	Weldon Jackson	Hewlett-Packard
Taoi N. Buti	Marek A. Jaczynski	Philips Research Lab
David Carr	Ted Kamins	Hewlett-Packard
D. Dean Casey	Joseph J. Karmiwcz	VTC
Kit M. Charn	Hong M. Kim	TRW RF Device
Jun-Wei Chen	Edwin Kinnen	University of Rochester
Kuang-Yu Chen	Kenneth Kosai	Santa Barbara Research C
Min-Liang Chen	Gordon J. Kuhlmann	Rockwell International
Sung-Ming Chen	Slu-Wah V. Kwong	LSI Logic
Michael Chen	Robert W. Lade	Eaton Corp
Yu-Tai Chia	Glenn A. Laguna	Sandia
Francis K. Choi	Hung Pham Le	Zoran Corp
Carl W. Clawson	Joseph Lebowitz	AT&T Bell Labs
William T. Cochran	Chia-Hao Lee	Xerox Corp
Roy A. Colclaser	Ik-Sung Lim	Arizona State University
Thomas W. Collins	Min-Ron Lin	AT&T Bell Labs
John L. D'Arcy	Richard G. Lipes	Axiom Computers
Marvin E. Daniel	Bill Liu	AMD
Jan L. De Jong	Nancy Lum	Hughes Aircraft
Bruce Deal	Clifford D. Maldonado	Rockwell
John A. Detrio	Peter Manos	AMD
Carl F. Dwyer	Deborah D. Maracas	Motorola
Anant Dixit	Hisham Z. Massoud	Duke University
Dimitri Dokos	David Matthews	Hughes Research Lab
Ray Donald	Timothy K. McGuire	AT&T Bell Labs
Robert Eckles	Wayne McKinley	Ford Microelectronics
John Fancelli	Duane McNeely	Intel Corp
Scott O. Frake	Arton H. Meissner	AT&T Technologies
Kuni Fukumuro	Robert C. Metin	AT&T Bell Labs
Clifford D. Fung	Tony G. Melissinos	Hughes Aircraft
Michael C. Garner	David H. Miller	Ford Aerospace
Zayne Gehring	Paul Miller	AT&T Teletype Corp
Donald S. Gerber	Wisk Min	Intel Corp
Daniel L. Gerlach	Anant Mokashi	Jet Propulsion Laboratory
Deepak Goel	Steve Motzny	Technology Modeling Ass
Nayne Grabowski	Brian Mukundan	MCC
	James S. Ni	Philips Res. Labs
	Toshi Nishida	University of Illinois
	Soo-Young Oh	Hewlett-Packard
	Edward O'Neill	VTC Inc

Andrzej Orlik
 Manns Orlowski
 John Owens
 Dave W Palmer
 Prasad Panim
 Putul Patel
 Stanley C Penno
 Dan W Peters
 Donald F Pettengill
 Donald G Pierce
 Jeff H Pinter
 Randall J Pflueger
 Michael D Pocha
 Amotak Ramde
 Ravi Ravindran
 Reda Razouk
 Linda Richardson
 Stephen P Robb
 Frederick C Rock
 J G Rollins
 Sven Roosild
 Leonard Rosenheck
 Bill Sander
 Matthew F Schmidt
 Adele E Schmitz
 Peter J Schubert
 Robert J Schuelke
 James D Seefeldt
 Fred Sexton
 Steven Shatas
 Alex Shaw
 Bing J Shieh
 Jack Shiao
 Yoshinako Shimmei
 Yun Sung Shin
 Howard Shoemaker
 Pratpal Singh
 Jim Sizemore
 Cezary Slaby
 Peter R Smith
 Thomas E Smith
 Tom Springer
 Jake Steigerwald
 Ravi Subrahmanyam
 Harry E Talley
 Ting-Wei Tang
 C S Teng
 Carol Thiesen
 Tim Thurgate
 Francis X Timmes
 Huan-Chung Tseng
 Gu-Fung Tswei
 Thye-Lai Tung
 Robert M Turner
 Paul J Vande Voorde
 Jan Vanderlinde
 Kody Varahramyan

Daisy Systems Corp
 Siemens
 Univ of Texas at Arlington
 Sandia
 Teledyne Semiconductor
 Xerox Corp
 Bipolar Integ Tech
 Hewlett-Packard
 AMD
 Sandia
 Ford Aerospace
 CS Draper Lab
 Lawrence Livermore Natl Lab
 Advanced Micro Devices
 GTE Labs
 Fairchild
 Digital Equipment Corp.
 Motorola Inc.
 GTE Labs
 Aerospace Corp.
 DARPA
 Microwave Associates
 U.S. Army Research Office
 VTC Inc.
 Hughes Research Lab
 Delco Electronics
 GigaBit Logic
 Sperry Corp.
 Sandia National Lab
 AG Associates
 Nikon Precision
 Univ of California, Berkeley
 Tandem Computer
 Matsushita Electric
 Tristar Semiconductor
 TRW, Inc.
 Villanova University
 Northern Telecom
 Northern Telecom
 Fairchild
 AT&T Bell Labs
 Intel Corp
 National Semiconductor
 Microelectronics Ctr of NC
 University of Kansas
 University of Massachusetts
 National Semiconductor
 VTC Inc
 Technology Modeling Associates
 Siliconix
 Signetics Corp
 Intersil
 MIT
 Mission Research Corp
 Hewlett-Packard
 Siliconix
 IBM

George P Walker
 Perry Wallia
 Ching-Yeu Wei
 Robert Wixted
 Neil Wylie
 Karl W. Wyatt
 Cary Y Yang

National Semiconduc
 Honeywell
 General Electric
 MIT Lincoln Labs
 Fairchild Semiconduc
 AT&T Bell Labs
 University of Santa C

Speakers:

John Bravman
 Gary Bronner
 Paul Carey
 Emmanuel F. Crabbe
 Bob Dutton
 Martin Giles
 Peter Griffin
 Stephen Hansen
 Jim Harris
 Bob Helms
 Al Henning
 Dah-Bin Kao
 Mark Law
 Jim McVittie
 John Orlitian
 Gary Patton
 Mark Pinto
 Phil Pitner
 Jim Plummer
 Conor Rafferty
 Mike Reed
 Krishna Saraswat
 Krishna Shenai
 Fu-chia Shone
 Tom Sigmon
 Andrzej Strojwas
 Hal Yeager
 Zhiping Yu

Students & Guests

Sung-Tae Ahn
 Cynthia Bloom
 Bruce Deal
 Reda Razouk
 Michael Kump
 Les Landsberger
 Bob Pack
 Reda Razouk
 Lester Roberts
 Andrew Steckl
 Jim Sturm
 Ed Young

Stanford
 TMA
 Fairchild
 Fairchild
 TMA
 Stanford
 TMA
 Fairchild
 Stanford
 RPI
 Stanford
 Stanford

Stanford University Announces a Two-Day Program

COMPUTER-AIDED DESIGN OF IC FABRICATION PROCESSES

**Technology Modeling
Wednesday, August 27, 1986**

**Process and Device Simulation
Thursday, August 28, 1986**

COMPUTER-AIDED DESIGN OF IC FABRICATION PROCESSES

A two-day program
August 27-28, 1986, Stanford, California

The past several decades have witnessed an explosive growth in microelectronics.¹ During that time, Stanford has contributed broadly to device and process technology—both in silicon and compound materials. During the last decade, Stanford's development of Technology Computer Aids for Design (TCAD) have been of major benefit to the electronics industry. Stanford developed programs such as SUPREM, SEDAN, PISCES, and SUXES have become mainstays of TCAD in universities, government, and industry. This year's program highlights major accomplishments in silicon and GaAs technologies—both in terms of physical processes/understanding and TCAD tools to leverage design applications.

The first day of the conference gives emphasis to technology, kinetic models, and the data needed to support the evolution of SUPREM. A major highlight this year is the release of SUPREM IV for 2D process modeling. During the first day the discussion gives particular attention to 2D kinetic models. The growing importance of GaAs is reflected in several talks on technology and modeling. In particular the roadmap for SUPREM 3.5 will indicate Stanford's long-term goals related to GaAs process modeling.

The second day will shift the emphasis to TCAD tools and their application. Details of the first release version of SUPREM IV will be given. The continuing efforts to upgrade the 1D tools, SUPREM III and SEDAN III, will be discussed. In the area of device modeling the topics CMOS technology and hot carrier effects are emphasized for silicon. In the GaAs area, the extension of both SEDAN and PISCES for non-equilibrium carrier transport are discussed. In addition, the topic of SPICE modeling for GaAs FET devices will be covered.

The meeting will consist of a series of lectures as outlined in the program, and copies of material presented by the speakers are included. In addition, there will be a distribution of technical reports which give an extended discussion of background information and details of the experiments, models, and computer programs. The first day will include lectures and discussions of the materials aspects of technology modeling with substantial emphasis on specific experimental and model results applicable to SUPREM. The second day will focus on more general aspects of process and device simulation as well as Stanford-developed tools.

A "forum" atmosphere will be encouraged to obtain user feedback. A number of specific applications and results (case studies) will be presented. The registration fee provides for all course materials, plus lunches and dinner.

Location: Terman Auditorium, Stanford University, Stanford, California.

Fee: The fee for each day is \$275 (including lecture notes, luncheon, and dinner (August 27, 1986) or \$500 for attending both days. Enrollment is limited, and advance reservations are required.

¹This work has been supported through government and industrial funding. The Defense Advanced Projects Research Agency, Department of Defense VHSIC Program, Army Research Office, and Semiconductor Research Corporation are specifically responsible for major sources of research funding.

INSTRUCTIONAL STAFF

SUNG TAE AHN, Research Assistant, Stanford University
 A.R. ALVAREZ, Member Technical Staff, Motorola, Arizona
 JOHN C. BRAVMAN, Professor, Stanford University
 MICHAEL D. DEAL, Research Associate, Stanford University
 ROBERT W. DUTTON, Professor, Stanford University
 PAUL M. FAHEY, Research Associate, Stanford University
 BRUCE J. FISHBEIN, Research Assistant, Stanford University
 JAMES F. GIBBONS, Professor, Stanford University
 PETER B. GRIFFIN, Research Assistant, Stanford University
 MOUSTAFA GHANNAM, Research Associate, Stanford University
 STEPHEN E. HANSEN, Scientific Programmer, Stanford University
 JAMES S. HARRIS, Professor, Stanford University
 C. ROBERT HELMS, Professor, Stanford University
 ALBERT K. HENNING, Research Assistant, Stanford University
 CHANG-GYU HWANG, Research Associate, Stanford University
 DAH-BIN KAO, Research Assistant, Stanford University
 MARK E. LAW, Research Assistant, Stanford University
 JAMES P. MCVITIE, Senior Research Associate, Stanford University
 GARY L. PATTON, Research Assistant, Stanford University
 MARK R. PINTO, Member Technical Staff, AT&T Bell Laboratories
 JAMES D. PLUMMER, Professor, Stanford University
 CONOR S. RAFFERTY, Research Assistant, Stanford University
 ENRICO SANGIORGIO, Research Associate, University of Bologna, Italy
 KRISHNA SARASWAT, Professor, Stanford University
 YOSHIHIKO SHIMMEI, Visiting Scholar, Matsushita Electric Works, Japan
 THOMAS SIGMON, Professor, Stanford University
 JEFFREY T. WATT, Research Assistant, Stanford University
 HAL R. YEAGER, Research Assistant, Stanford University
 ZHIPING YU, Associate Professor, Tsinghua University, China

PROCESSING TECHNOLOGY

Wednesday, August 27, 1986

8:00 a.m.	Registration	
8:30	Silicon Technology	
9:15	Silicon Overview	Plummer
9:40	2D Diffusion	Griffin
10:05	Diffusion in SOI Structures	Fahey
	Thin Film Diffusion Studies	Ahn
10:30	Break	
10:50	Diffusion in Insulators	
11:15	2D Oxidation	Fishbein
11:35	Transmission Electron Microscopy	Kao
12:00	Luncheon	Bravman
	Generic (Silicon and GaAs)	
1:15 p.m.	Limited Reaction Processing	Gibbons
1:40	Silicides	Saraswat
2:05	Plasma Etching	McVittie
2:30	Break	
	GaAs Technology	
2:45	SUPREM 3.5 (for GaAs)	Deal
3:15	Ion Implantation/RTA in GaAs	Sigmon
3:40	Contact Technology	Helms
4:05	Molecular Beam Epitaxy	Harris
4:30	Discussion	Plummer/Dutton

PROCESS AND DEVICE SIMULATION

Thursday, August 28, 1986

Silicon Process and Device Simulation

8:30 a.m.	Introduction to CAD Tools	Dutton
9:15	SUPREM III Update	Hansen
9:40	SEDAN III Update	Yu
10:05	RSM Applied to Coupled Process and Device Simulation	Alvarez
10:30	Break	
10:50	SUPREM IV—Program Structure and 2D Diffusion	Law
11:15	SUPREM IV—Grid and 2D Oxidation	Rafferty
11:40	CMOS Latchup	Pinto
12:05	Luncheon	
1:00	Optimized CMOS at LN ₂	Watt
1:25	Hot Carriers in Silicon	Henning
1:50	Gate Current in Submicron NMOS	Sangiorgi
2:15	Break	
2:35	Heterojunction GaAs FET Modeling	Yeager
3:00	Monte Carlo Device Analysis	Hwang
3:25	Polysilicon Bipolar Emitters	Patton
3:50	Boron Diffusion in Polysilicon	Ghannam
4:10	Phosphorus Predeposition Model	Shimmei
4:30	Discussion and User Participation	Dutton

General Information

How to enroll: Enrollment is limited and advance reservations are required. Enrollment may be made by individuals or companies. Deadline for submission of enrollment forms: August 15, 1986.

To enroll: Please complete and return the form provided.

Refunds: If you enroll and then cannot attend, a refund will be granted if requested in writing prior to August 15, 1986.

Housing is available on the Stanford campus in student residences without private baths at reasonable rates. Campus recreational facilities are available for your use. For further information contact the Conference Office at 123 Encina Commons, Stanford, California 94305; telephone (415) 723-3126.

For further information: Write or call Stanford University Integrated Circuits Laboratory, c/o Robert W. Dutton, AE Bldg., Stanford, California 94305; telephones (415) 723-1349 and 723-1950.

(Enrollment is limited. Advance reservations are required.)

I enclose a check in the amount of \$_____ to cover _____ enrollment(s) in (check one)

- Processing Technology August 27, 1986 (\$275)*
 Process and Device Simulation August 28, 1986 (\$275)*
 Both (\$500)

Name _____ last _____ first _____ middle _____

Employed by _____

Company address _____

city _____ state _____ zip _____

Daytime telephone and extension _____

Make check payable to Stanford University, and send to Robert W. Dutton, 204 AEL Building, Stanford University, Stanford, CA 94305.

*Preferred rate registration will be given to a limited number of government employees and to representatives from sponsoring agencies. Contact Robert W. Dutton for further information.

CAD of IC Fabrication Processes

August 27-28 1986

Roshdy A. Abderrassoul	Southern University	Edson D. Gomersall	National Semiconductor
Dick Allison	TRW	Joel L. Goodrich	M/A-COM Semiconductor
David A. Angst	Consultant	Wayne Grabowski	Hughes Aircraft Co.
Narain Arora	DEC	James Greenfield	TMA
Robert A. Ashton	AT&T Bell Labs	Tom Grudkowski	United Technology
Dubravko Babic	Avantek	Richard W. Gurtler	Motorola
Henry Baltes	Alberta Microelectronic Centre	Chang L. Ha	RCA/SHARP
Nancy Bell	Hughes Aircraft Co.	Shawn Hailey	Meta-Software Inc.
James A. Benjamin	Eaton Corp.	Jim R. Hamrick	Northrop
Aloke S. Bhandia	Hewlett-Packard	William R. Harrell	Dept. of Defense
Anjan Bhattacharyya	Signetics Corp.	Thomas E. Harrington	Dallas Semiconductor
Inderjit Bhatti	National Semiconductor	Phil Haswell	Alberta Microelectronic Ce
Jack Birnbaum	ANADIGICS	Lawrence V. Hmurcik	Univ. of Bridgeport
Mark Blanchfield	Medtronic-Micro-Rel	Tzu-Hwa Hsu	ACRIAN
Cynthia Bloom	TMA	Sam Hu	Signetics Corp.
Stuart D. Boyd	Polaroid Corp.	John J. Hudak	Dept. of Defense
Michael P. Brassington	Fairchild	Beatrice M. Hwong	RCA Labs
Douglas Brisbim	General Dynamics	Ali B. Icel	Exar Corp.
Felix Buot	Naval Research Lab	Ahmed Iftikhar	Xerox Corp.
Bruce C. Burkey	Eastman Kodak	Scott J. Irving	Fairchild Semiconductor
Gonzalo Bustillos	GTE Microcircuits	Weldon Jackson	Hewlett-Packard
Matthew S. Buynoski	National Semiconductor	Marek A. Jaczynski	AT&T Bell Labs
Jack C. Carlson	Motorola	Sanjay Jain	AT&T Bell Labs
Andrew Chan	Fairchild Weston Systems	Werner Juengling	AT&T Bell Labs
Joseph P. Chapley	GTE	Ted Kamin2	Hewlett-Packard
Raymond Chau	Northern Telecom	Chihsin Kao	Signetics Corp.
Kuang-Yu Chen	Integrated Device Technolgy	David B. Kerwin	United Technologies
Sunny Cheng	Motorola	Jim Kesperis	U.S. Army Labcom
Goodwin Chin	GE Intersil	Ebrahim Khalily	Hewlett-Packard
Ma-Rong Chin	Hughes Aircraft Co.	Nung Soo Kim	Hughes Aircraft Co.
Chao-Min Chu	Xerox	Bruce King	Sperry Corp.
J. Frank Ciacchella	Fairchild	John Kondo	Olympus Corp.
William T. Cochran	AT&T Bell Labs	Michael Kump	TMA
Roy A. Colclaser	Signetics Corp.	Siu-Wah V. Kwong	LSI Logic
Robin Cole	TMA	Robert W. Lade	Eaton Corp.
John L. D'Arcy	AT&T Bell Labs	Glenn A. Laguna	Sandia National Labs
Bruce Deal	Fairchild	David Lau	Digital Equipment Corp.
Jack Deeter	Motorola	Yam Lau	Unitrode Corp.
J. L. deJong	Signetics Corp.	Duane Laurent	Thomson Components/M
Duane Delaney	Silicon Systems	Chia-Hao Lee	Xerox Corp.
Akis Doganis	Meta-Software Inc.	Tom Li	DEC
Raymond G. Donald	Signetics Corp.	C. D. Lien	Advanced Micro Devices
Michael Duane	Texas Instruments	Ik-Sung Lim	Motorola
Janet L. Eismann	AT&T Bell Labs	Thomas D. Linton	MCC
Marlin Evey	Westinghouse	Dennis Lo	Integrated Device Techno
JohnV. Faricelli	DEC	Chih-Yuan Lu	AT&T Bell Labs
I-Jaung Feng	Varian	C. C. Mai	Dallas Semiconductor
Duncan M. Fisher	Motorola	Clifford D. Maldonado	Rockwell International
David Forsythe	National Semiconductor	Nadim I. Maluf	Siliconix Inc.
Jorge Garcia-Colevatti	AT&T Bell Labs	Deborah D. Maracas	Motorola
Sidney C. Garrison	Motorola	Tom McFarlane	National Semiconductor
Lane A. Gehrig	Eaton Corp.	Leighton McKeen	Meta-Software Inc.
Martin D. Giles	AT&T Bell Labs	Peter Mikes	Lawrence Livermore Lab
		David H. Miller	Ford Aerospace
		Stephen Motzny	TMA
		Brian J. Mulvaney	MCC
		Khiem Nguyen	Fairchild Semiconductor

Shinji Nozaki	Intel	Warren P. Waters	Western Digital
Edward D. Nowak	VISIC Inc.	David Wen	Fairchild Weston Systems
Hisato Ogawa	C. Itoh Electronics Inc.	Andrea Wheeler	GTE Government Systems
Soo-Young Oh	Hewlett-Packard	Ross Williams	Rockwell International
Robert Pack	TMA	Joe Wodja	Hughes Aircraft Co.
David W. Palmer	Sandia National Labs	Arthur N. Woo	ACRIAN
Dhiman Patel	Data General Corp.	Mary Yamaoko	Intel Corp.
Viren C. Patel	Microwave Semiconductor	Alan Yan	ACRIAN
Yeng-Kaung Peng	Monolithic Memories	Bjorn Zetterlund	Digital Equipment Corp.
Joseph Pernyeszi	Hewlett-Packard	Joseph C. Zuercher	Eaton Corp.
James R. Pflester	Motorola		
Randall J. Ptueger	The CS Draper Lab		
Donald G. Pierce	Sandia National Labs		
Jeff H. Pinter	Ford Aerospace		
Ed Powell	Exar Corp.		
Arati Prabhakar	DARPA/DSO		
E. James Prendergast	AT&T Bell Labs		
Boris Prokes	Northern Telecom		
Wilford Raburn	Martin Marietta		
Eric R. Raman	Hewlett-Packard		
Dennis D. Rathman	Lincoln Lab		
Nirmal Ratnakumar	Exar Corp.		
Reda Razouk	Fairchild		
Bruce Reardon	M/A-COM Semiconductor		
Dick Reynolds	DARPA		
Rafael Rios	RCA Labs		
Bret S. Rockwell	IBM		
Sven Roosild	DARPA/DSO		
Khosro Rouzbehzadeh	Teledyne MMIC		
Jim Rutledge	SRC		
Bill Sander	U.S. Army Research Office		
Philippe Schoenborn	Alberta Microelectronic Centre		
Joseph H. Scott	Olin Corp.		
Pandu P. Sharma	Tandem Computers		
Howard D. Shoemaker	TRW		
Paul Shy	Fairchild		
James A. Slinkman	IBM		
Richard G. Smolen	National Semiconductor		
Daniel Smythe	Lincoln Lab		
Bill Snow	Pacific Western		
Gianpaolo Spadini	VLSI Technology		
Sal Spinella	General Instrument		
Ravi Subrahmanyam	Microelectronics Center of NC		
Barbara Sumner	VHSIC Program/Pentagon		
Saied N. Tehrani	Motorola		
Timothy Thurgate	TMA		
John H. Titizian	M/A COM PHI		
Alan M. Tomalino	Dept. of Defense		
Huan-Chung Tseng	Signetics Corp.		
Paul J. Vande Voorde	Hewlett-Packard		
Vince Vasquez	Cray Research		
Peter Vutz	Fairchild Weston Systems		
George P. Walker	National Semiconductor		
Reinhardt Wagner	Micro Power Systems		
John Walker	NCR Corp.		
Michael D. Walters	Hewlett-Packard		
Donald Ward	TMA		

END

10-87

DTIC