Table 2–1 Sample receptor/ligand binding parameters

Receptor	Ligand	Cell type	$R_{\rm T}$ (#/cell)	$(M^{-1} \min^{-1})$	k _r (min - 1)	<i>K</i> _D (M)	$t_{95\%} (L_0 = K_D)$ (min)	Reference
Transferrin	Transferrin	HepG2	5 × 10 ⁴	3 × 10 ⁶	0.1	3.3×10^{-8}	15	Ciechanover et al. (1983)
Fc,	2.4G2 Fab	Mouse macrophage	7.1×10^{5}	3×10^{6}	0.0023	7.7×10^{-10}	650	Mellman and Unkeless (1980)
Chemotactic peptide	FNLLP	Rabbit neutrophil	5×10^{4}	2×10^{7}	0.4	2×10^{-8}	3.7	Zigmond et al. (1982)
Interferon	Human interferon-α2a	A549	900	2.2×10^{8}	0.072	3.3×10^{-10}	20	Bajzer et al. (1989)
TNF	TNF	A549	6.6×10^{3}	9.6×10^{8}	0.14	1.5×10^{-10}	11	Bajzer et al. (1989)
β-adrenergic	Hydroxybenzylpindolol	Turkey erythrocyte		8×10^{8}	0.08	1×10^{-10}	19	Rimon et al. (1980)
α ₁ -adrenergic	Prazosin	BC3H1	1.4×10^{4}	2.4×10^{8}	0.018	7.5×10^{-11}	83	Hughes et al. (1982)
Insulin	Insulin	Rat fat-cells	1×10^{5}	9.6×10^6	0.2	2.1×10^{-8}	7.5	Lipkin et al. (1986b)
EGF	EGF	Fetal rat lung	2.5×10^{4}	1.8×10^{8}	0.12	6.7×10^{-10}	12.5	Water et al. (1990)
Fibronectin	Fibronectin	Fibroblasts	5×10^{5}	7×10^{5}	0.6	8.6×10^{-7}	2.5	Akiyama and Yamada (1985)
Fc,	IgE	Human basophils	_	3.1×10^{6}	0.0015	4.8×10^{-10}	1000	Pruzansky and Patterson (1986)
IL-2 (heavy chain)	IL-2	T lymphocytes	2×10^{3}	2.3×10^{7}	0.015	6.5×10^{-10}	100	Smith (1988)
IL-2 (light chain)			1.1×10^{4}	8.4×10^{8}	24.	2.9×10^{-8}	0.06	,
IL-2 (heterodimer)			2×10^{3}	1.9×10^{9}	0.014	7.4×10^{-12}	110	

Shown are the measured number of receptors per cell R_T , the association rate constant k_f , the dissociation rate constant k_r , and the equilibrium dissociation constant $K_D = k_r/k_f$. The time required to reach 95% of equilibrium receptor binding when no bound receptors are initially present, $t_{95\%}$, is calculated from $t_{95\%} = -\ln(0.05)/(k_r(1 + L_0/K_D))$ for the case of $L_0 = K_D$. HepG2 = human hepatoma cell line; 2.4G2 Fab = Fab portion of 2.4G2 antibody against receptor; FNLLP = N-formylnorleucylphenylalanine; A549 = human lung alveolar carcinoma; TNF = tumor necrosis factor; hydroxybenzylpindolol is an antagonist to the receptor; EGF = epidermal growth factor; IgE = immunoglobulin E; IL-2 = interleukin 2; prazosin is an antagonist to the receptor; BC3H1 = smooth muscle-like cell line; RBL = rat basophilic leukemia cell line.