机器学习与数据挖掘-HW3

—Linear Regression and Logistic Regression—

19335253 葉珺明

1 Ex1: Linear Regression

1.a Gradient Descent

• The Linear Model:

$$\hat{y}= heta_0+ heta_1x_1+ heta_2x_2$$

• Loss Function:

$$Loss = \sum_{i=1}^{M} (\hat{y_i} - y_i)^2$$

• Want to compute:

$$\hat{ heta}_{MLE} = arg \, \min_{ heta \in R^p} \sum_{i=1}^M (\hat{y_i} - y_i)^2$$

• update θ :

$$heta = heta - lpha * rac{\partial J(heta)}{\partial heta}$$

参数初始 $\theta = [0,0,0]$, iters = 1500000, $\alpha = 0.00015$

所得实验结果:

Training Data:

iters(^e05)	1	2	3	4	5	6	7	8
Loss	3350.33	752.955	290.803	208.573	193.941	191.338	190.875	190.792
iters(^e05)	9	10	11	12	13	14	15	
Loss	190.778	190.775	190.775	190.774	190.774	190.774	190.774	

Test Data:

iters(^e05)	1	2	3	4	5	6	7	8
Loss	1244.63	1194.55	1258.72	1300.96	1321.48	1330.62	1334.56	1336.24
iters(^e05)	9	10	11	12	13	14	15	
Loss	1336.95	1337.25	1337.37	1337.43	1337.45	1337.46	1337.46	

图示:

由图示,

- 训练集的损失函数随着迭代次数的增加而减小, 趋于数值190.774
- 测试集的损失函数在迭代次数为200000时达到最小值1194.55
- 迭代次数小于200000时, 欠拟合; 迭代次数大于200000时, 过拟合

当迭代次数为200000时,即测试集损失函数值最小时, θ 取值为:[65.4873, 6.9001, -72.5408]即最后Linear Module:

$$\hat{y} = 65.4873 + 6.9001x_1 - 72.5408x_2$$

1.b 改变学习率为0.0002

改变学习率为0.0002后,迭代过程中发现 θ 的输出为nan,即无法收敛。取学习率为0.000175,

实验结果:

Training Data:

iters(^e05)	1	2	3	4	5	6	7	8
Loss	2560.32	506.970	232.968	196.405	191.526	190.875	190.788	190.776
iters(^e05)	9	10	11	12	13	14	15	
Loss	190.775	190.774	190.774	190.774	190.774	190.774	190.774	

Test Data:

iters(^e05)	1	2	3	4	5	6	7	8
Loss	1207.71	1216.09	1283.26	1316.35	1329.57	1334.56	1336.40	1337.08
iters(^e05)	9	10	11	12	13	14	15	

图示:

总结,

- 学习率增大, 损失函数的下降速度会变快
- 学习率小时,减少震荡,更容易达到局部最优
- 学习率过大时有可能导致不收敛

1.c 随机梯度下降法

设置实验迭代次数为15*e06,每1e*06记录数据,实验结果如下图:

与1.a中的实验比较得出,

- 随机梯度下降法的损失函数值初始很大, 下降速度比梯度下降更快
- 就本实验而言,随机梯度下降的损失函数值最终结果比梯度下降的最终结果要好
- 从全过程来看, 随机梯度在训练集和测试集上的表现都比梯度下降好
- 需要适当调节学习率, 如果学习率过大, 容易使得损失函数波动过大。

随机梯度下降法在测试集表现最优时的 θ 取值: [53.5271, 6.9958, -72.6382]

即最后Linear Module:

$$\hat{y} = 53.5271 + 6.9958x_1 - 72.6382x_2$$

2 Ex2: Logistic Regression

2.a Formula:

$$\mathbf{w} = arg \max_{\mathbf{w}} \sum_{l} \ln P(y^l | \mathbf{x}^l, \mathbf{w})$$

It can be written as:

$$egin{aligned} l(\mathbf{w}) &= \sum_{l} y^l \ln P(y^l = 1 | \mathbf{x}^l, \mathbf{w}) + (1 - y^l) \ln P(y^l = 0 | \mathbf{x}^l, \mathbf{w}) \ &= \sum_{l} y^l \ln rac{P(y^l = 1 | \mathbf{x}^l, \mathbf{w})}{P(y^l = 0 | \mathbf{x}^l, \mathbf{w})} + \ln P(y^l = 0 | \mathbf{x}^l, \mathbf{w}) \ &= \sum_{l} y^l (w_0 + \sum_{i=1}^n w_i x_i^l) - \ln \left(1 + \exp \left(w_0 + \sum_{i=1}^n w_i x_i^l
ight)
ight) \end{aligned}$$

2.b Computing

$$rac{\partial}{\partial w_0}l(\mathbf{w}) = \sum_l x_i^l(y^l - \hat{P}(y^l = 1|\mathbf{x}^l,\mathbf{w}))$$

2.c

• 阈值为0.5:

$$egin{aligned} \hat{y} &= 1, if \ P(y^l = 1 | \mathbf{x}^l) > 0.5 \ \hat{y} &= 0, if \ P(y^l = 1 | \mathbf{x}^l) < 0.5 \end{aligned}$$

• 使用随机梯度下降法优化:

$$w_i \leftarrow w_i + \eta * x_i^l(y^l - \hat{P}(y^l = 1|\mathbf{x}^l, \mathbf{w}))$$

• 实验结果:

optimal estimated parameters:

$$egin{aligned} heta_0 &= 1.27272928 \ heta_1 &= -6.78728572 \ heta_2 &= 9.89956747 \ heta_3 &= -7.02519041 \ heta_4 &= 8.80175859 \ heta_5 &= -4.98863402 \ heta_6 &= 0.11196229 \end{aligned}$$

2.d Misclassified examples in the testing dataset

错误预测的个数是0

2.e Plot

实验结果:

测试集预测错误数与迭代次数的关系:在迭代1200次左右完成该收敛

2.f Misclassified on both with K

由图示,

• 随着训练集的增加, 训练集错误率和测试集错误率呈下降趋势

- 在训练集50至100时, 错误率到局部最小; 而后错误率增大, 在训练集270至400错误率又降到最低
- 训练集错误率曲线和测试集错误率曲线分布相似, 但训练错率大部分情况下低于测试错误率
- 训练集上表现好的模型, 在测试集上不一定表现好

综合,训练样本的质量和训练集大小都会对模型预测影响。