Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 2 am 23.6.2020

Name	x:	Matrike	Inummer:	Punkte: /9
rechn				e dürfen Extrapapier für Zwischen- Punkt, falsche, keine oder mehrere
1.	Welches der folgenden E/A-Sy	steme ist nicht BIBO stabil? T	ist eine positive Konstante.	
	(a) $\ddot{y} + 4\dot{y} + 5y = u$	$(b) \qquad \dot{y} + 3y = \dot{u} + u$	$(c) T^2 \ddot{y} + y = u$	$(\mathbf{d}) \qquad \ddot{y} + 5\dot{y} + y = \ddot{u} + u$
2.	Welches der folgenden vier Sy	steme beschreibt NICHT das g	leiche Eingangs- Ausgangsverha	alten wie $\ddot{y} - 2y = 4\dot{u}$?
	(a)	$u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$	(b)	$\begin{bmatrix} 0 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix} x$
		$\begin{bmatrix} -4\\0 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$		
3.	Welches der folgenden System Lyapunov?	e mit $\dot{x} = Ax + Bu$, $y = Cx$	$x+Du$ ist in der Ruhelage $x_{ m ss}=$	$=u_{ m ss}=0$ asymptotisch stabil nach
	(a) $A = \begin{bmatrix} 2 & -3 \\ 2 & -2 \end{bmatrix}, B =$	$= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$	(b) $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, B =$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$
		$= \begin{bmatrix} 0 \\ 2 \end{bmatrix}, C = [1\ 0], D = [0]$		$C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = [0 \ 1], D = [0]$
4.	Welche Impulsantwort hat das	System $0.5\dot{y} + ky - u = 0$? k	ist eine Konstante.	
	(a)	(b) $2e^{-2kt}$		
5.	Welche Sprungantwort $h(t)$ mi	t $t > 0$ hat das System $2\dot{y} = v$	\sqrt{u} ?	
	(a) $\frac{1}{2}t^2$	(b) 2t	(c) $t^{\frac{1}{2}}$	$(d) \qquad \frac{1}{2}t$
6.	Ein LTI-System wird durch die Polynom $p_A(\lambda)$?	E/A-Differentialgleichung $5\ddot{y}$	$+15\dot{y}+10y = 10\dot{u}+5u$ beschrieb	en. Wie lautet das charakteristische
	(a) $\lambda^2 + 3\lambda + 2$	(b)	(c) $5\lambda^2 + 15\lambda - 5$	(d) $\boxed{5\lambda^3 + 15\lambda^2 + 10\lambda}$
7.		$p_A(\lambda)$ hat das LTI-System $p_A(\lambda)$ und $D = \begin{bmatrix} 0 \end{bmatrix}$?	$\mathbf{n} \ \dot{x} = Ax + Bu, y = Cx + Du$	mit den Matrizen
	(a) $\lambda^2 - 16\lambda - 43$	(b) $\lambda^2 + 16\lambda + 43$	(c) $\lambda^2 - 16\lambda + 43$	$(d) \qquad \lambda^2 + 16\lambda - 43$
8.	Bestimmen Sie die Polstellen d	es Systems, das durch folgende	E/A-Differentialgleichung besch	hrieben wird: $8\ddot{y} - 32y = 16\ddot{u} - 4u$
	(a) $ [-1/2, 1/2] $	(b) [{0,2}	(c) [-2,0}	(d) [-2,2}
9.	Welches der folgenden vier Sy eine positive Konstante.	steme ist nicht BIBO stabil? J	edes System ist durch seine Spr	ungantwort $h(t)$ beschrieben. T is
	(a) $e^{-t}(\cos t + \sin t)$	(b) $e^t - 5$		(d)

Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 2 am 23.6.2020

Name	e:	Matrikel	nummer:	Punkte: / 9	
rechn			•	e dürfen Extrapapier für Zwischen Punkt, falsche, keine oder mehren	
1.	Welche Impulsantwort hat das	System $0.5\dot{y} + ky - u = 0$? k	ist eine Konstante.		
	(a) $2e^{-2kt}$	(b)	(c) $1 - 2e^{2kt}$	$(d) \qquad \frac{1}{2} e^{-\frac{1}{2}kt}$	
2.	Ein LTI-System wird durch die Polynom $p_A(\lambda)$?	E/A-Differentialgleichung $5\ddot{y}$ +	$-15\dot{y}+10y = 10\dot{u}+5u$ beschrieb	en. Wie lautet das charakteristisch	
	(a)	(b) $\lambda^2 + 3\lambda + 2$		$(\mathbf{d}) \boxed{5\lambda^2 + 15\lambda - 5}$	
3.	Welches der folgenden System Lyapunov?	e mit $\dot{x} = Ax + Bu$, $y = Cx$	$+$ Du ist in der Ruhelage $x_{\rm ss}$ =	$=u_{\rm ss}=0$ asymptotisch stabil nach	
	(a) $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = [0\ 1], D = [0]$		$=\begin{bmatrix} 1\\0 \end{bmatrix}, C = [1\ 0], D = [0]$	
	$ (c) A = \begin{bmatrix} -2 & 2 \\ 0 & -1 \end{bmatrix}, B $	$= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = [0\ 1], D = [0]$		$= \begin{bmatrix} 0 \\ 2 \end{bmatrix}, C = [1\ 0], D = [0]$	
4. Welches charakteristische Polynom $p_A(\lambda)$ hat das LTI-System $\dot{x} = Ax + Bu, y = Cx$ $A = \begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 7 & 1 \end{bmatrix}$ und $D = \begin{bmatrix} 0 \end{bmatrix}$?				mit den Matrizen	
	(a) $\lambda^2 + 16\lambda + 43$	(b) $\lambda^2 - 16\lambda - 43$	(c) $\lambda^2 + 16\lambda - 43$	(d) $\lambda^2 - 16\lambda + 43$	
5.	Welche Sprungantwort $h(t)$ mit $t > 0$ hat das System $2\dot{y} = \sqrt{u}$?				
	(a) <u>2t</u>	(b) $\frac{1}{2}t^2$	(c) $\frac{1}{2}t$	(d) $t^{\frac{1}{2}}$	
6.	Welches der folgenden vier Systeme ist nicht BIBO stabil? Jedes System ist durch seine Sprungantwort $h(t)$ beschrieben. T is eine positive Konstante.				
	(a) $e^t - 5$	(b) $e^{-t}(\cos t + \sin t)$	(c)		
7.	Welches der folgenden vier Systeme beschreibt NICHT das gleiche Eingangs- Ausgangsverhalten wie $\ddot{y}-2y=4\dot{u}$?				
	(a)	$\begin{bmatrix} 2 \end{bmatrix} u, y = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix} x$			
				$\begin{bmatrix} -4\\0 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$	
8.	Bestimmen Sie die Polstellen d	es Systems, das durch folgende	E/A-Differentialgleichung besch	hrieben wird: $8\ddot{y} - 32y = 16\ddot{u} - 4u$	
	(a) $ [0,2] $	(b)	(c) $ [-2, 2] $	(d)	
9.	Welches der folgenden E/A-Sy	steme ist nicht BIBO stabil? T	ist eine positive Konstante.		
	(a) $\dot{y} + 3y = \dot{u} + u$	(b)	$(c) \qquad \ddot{y} + 5\dot{y} + y = \ddot{u} + u$	$(\mathbf{d}) \square T^2 \ddot{y} + y = u$	

Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 2 am 23.6.2020

Name	:	Matrikelı	nummer:	Punkte:	/9
rechn	n Sie bitte Ihre Daten ein und ma ungen nutzen, aber bitte geben de 0 Punkte.				
1.	Welches der folgenden vier Sy eine positive Konstante.	steme ist nicht BIBO stabil? Je	des System ist durch seine Spr	rungantwort $h(t)$ beschrieben	. T ist
	(a) $1 - \frac{T}{t}$	(b) $e^t - 5$	(c) $ \cos te^{-t} $		
2.	Welche Impulsantwort hat das	System $0.5\dot{y} + ky - u = 0$? k i	st eine Konstante.		
	(a) $\frac{1}{2}e^{-\frac{1}{2}kt}$	(b)	(c) $1 - 2e^{2kt}$		
3.	Welches der folgenden vier Sys	steme beschreibt NICHT das gl	eiche Eingangs- Ausgangsverha	alten wie $\ddot{y} - 2y = 4\dot{u}$?	
	(a)	$\begin{bmatrix} -4\\0 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$		$\begin{bmatrix} 0 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix} x$	
				$\begin{bmatrix} u, & y = \begin{bmatrix} 1 & 0 \end{bmatrix} x \end{bmatrix}$	
	Welches charakteristische Poly $A = \begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$		$\dot{x} = Ax + Bu, y = Cx + Du$	mit den Matrizen	
	(a)	(b) $\lambda^2 + 16\lambda + 43$	(c) $\lambda^2 + 16\lambda - 43$		
5.	Welches der folgenden E/A-Sy	steme ist nicht BIBO stabil? T	ist eine positive Konstante.		
	(a) $T^2\ddot{y} + y = u$	$\begin{array}{c c} (b) & \dot{y} + 3y = \dot{u} + u \end{array}$	$(c) \qquad \ddot{y} + 5\dot{y} + y = \ddot{u} + u$		
6.	Welches der folgenden System Lyapunov?	e mit $\dot{x} = Ax + Bu$, $y = Cx$	$+$ Du ist in der Ruhelage $x_{\rm ss}$ =	$=u_{\rm ss}=0$ asymptotisch stabi	1 nach
	(a) $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, B =$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 0 \ 1 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$	
		$= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = [0\ 1], D = [0]$		$=\begin{bmatrix} 1\\0 \end{bmatrix}, C = [1\ 0], D = [0]$	
7.	Ein LTI-System wird durch die Polynom $p_A(\lambda)$?	E/A-Differentialgleichung $5\ddot{y}+$	$15\dot{y} + 10y = 10\dot{u} + 5u$ beschriet	oen. Wie lautet das charakteris	stische
	(a)	(b)	(c)		
8.	Bestimmen Sie die Polstellen d	es Systems, das durch folgende	E/A-Differentialgleichung besc	hrieben wird: $8\ddot{y} - 32y = 16i$	$\overline{i-4u}$
	(a) $ [-2,0] $	(b) [{0,2}	(c) $ [-2,2] $	(d) $ [-1/2, 1/2] $	
9.	Welche Sprungantwort $h(t)$ mi	t $t > 0$ hat das System $2\dot{y} = \sqrt{2}$	\overline{u} ?		
	(a) $t^{\frac{1}{2}}$	(b) 2t	(c) $\frac{1}{2}t$		
	-				

Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 2 am 23.6.2020

Name	:	Matrikeln	ummer:	Punkte: /9
rechn				e dürfen Extrapapier für Zwischen- Punkt, falsche, keine oder mehrere
1. Ein LTI-System wird durch die E/A-Differentialgleichung $5\ddot{y}+15\dot{y}+10y=10\dot{u}+5u$ beschrieben. Wie lautet das charakteri Polynom $p_A(\lambda)$?				
	(a)	(b) $\boxed{5\lambda^2 + 15\lambda - 5}$	(c) $\lambda^2 + 3\lambda + 2$	(d)
	Welches charakteristische Polyn $A = \begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$		$\dot{x} = Ax + Bu, y = Cx + Du$	mit den Matrizen
	(a) $\lambda^2 + 16\lambda - 43$	(b) $\lambda^2 - 16\lambda + 43$	(c) $\lambda^2 - 16\lambda - 43$	(d) $\lambda^2 + 16\lambda + 43$
3.	Welche Sprungantwort $h(t)$ mix	$t > 0$ hat das System $2\dot{y} = \sqrt{v}$		
	(a) $\frac{1}{2}t$	(b) $t^{\frac{1}{2}}$	(c) $\frac{1}{2}t^2$	(d) 2t
4.	Welche Impulsantwort hat das S			
	(a) $1 - 2e^{2kt}$	$(b) \qquad \frac{1}{2}e^{-\frac{1}{2}kt}$	(c) $2e^{2kt}$	(d)
5.	Welches der folgenden vier Syeine positive Konstante.	steme ist nicht BIBO stabil? Jed	des System ist durch seine Spru	ingantwort $h(t)$ beschrieben. T ist
	(a) $ \cos t e^{-t} $	(b) $1 - \frac{T}{t}$	(c) $e^{-t}(\cos t + \sin t)$	(d) $e^t - 5$
6.	Welches der folgenden vier Sys	teme beschreibt NICHT das gle	ciche Eingangs- Ausgangsverha	Iten wie $\ddot{y} - 2y = 4\dot{u}$?
	$(a) \qquad -10y = 20\dot{u} - 5\ddot{y}$		(b)	$\begin{bmatrix} -4\\0 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$
	(c) $\dot{x} = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix} x + \begin{bmatrix} 4 \\ 0 \end{bmatrix}$	$u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$		$\begin{bmatrix} 2 \end{bmatrix} u, y = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix} x$
7.	Welches der folgenden E/A-Sys	steme ist nicht BIBO stabil? T i	st eine positive Konstante.	
	(a) $\ddot{y} + 5\dot{y} + y = \ddot{u} + u$	(b) $T^2\ddot{y} + y = u$	$(c) \ddot{y} + 4\dot{y} + 5y = u$	$(\mathbf{d}) \qquad \dot{y} + 3y = \dot{u} + u$
8.	Welches der folgenden Systeme Lyapunov?	$e \operatorname{mit} \dot{x} = Ax + Bu , y = Cx - Ax + Bu $	$+ Du$ ist in der Ruhelage $x_{\rm ss} =$	$u_{\rm ss}=0$ asymptotisch stabil nach
	(a) $A = \begin{bmatrix} -2 & 2 \\ 0 & -1 \end{bmatrix}, B$	$= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$	(b) $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, B =$	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$
	(c) $A = \begin{bmatrix} 2 & -3 \\ 2 & -2 \end{bmatrix}, B =$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \end{bmatrix}, D = \begin{bmatrix} 0 \end{bmatrix}$	$ (\mathbf{d}) \square A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = [0 \ 1], D = [0]$
9.	Bestimmen Sie die Polstellen de	es Systems, das durch folgende I	E/A-Differentialgleichung besch	prieben wird: $8\ddot{y} - 32y = 16\ddot{u} - 4u$.
	(a) $ [-2,2] $	(b)	(c)	(d) [{0,2}

Prüfung zur Systemtheorie und Regelungstechnik I, Universität Freiburg, SoSe 2020 (Prof. Dr. M. Diehl) Mikroklausur 2 am 23.6.2020

Name	:	Matrikel	nummer:	Punkte:	/9
rechn			euz bei der richtigen Antwort. S. b. Richtige Antworten zählen 1		
1. Welches charakteristische Polynom $p_A(\lambda)$ hat das LTI-System $\dot{x} = Ax + Bu, y = Cx + Du$ mit den Matrizen $A = \begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 7 & 1 \end{bmatrix}$ und $D = \begin{bmatrix} 0 \end{bmatrix}$?				mit den Matrizen	
	(a) $\lambda^2 - 16\lambda + 43$	(b) $\lambda^2 - 16\lambda - 43$			
2.	Welche Impulsantwort hat das	System $0.5\dot{y} + ky - u = 0$? k	ist eine Konstante.		
	(a) $\frac{1}{2}e^{-\frac{1}{2}kt}$	$ b) 2e^{2kt} $			
3.	Ein LTI-System wird durch die Polynom $p_A(\lambda)$?	E/A-Differentialgleichung $5\ddot{y}$ +	$-15\dot{y}+10y = 10\dot{u}+5u$ beschriel	ben. Wie lautet das charakter	ristische
	(a)	$ b) \lambda^2 + 3\lambda + 2 $)
4.	Welches der folgenden E/A-Sy	ysteme ist nicht BIBO stabil? T	ist eine positive Konstante.		
	(a) $T^2\ddot{y} + y = u$,
5.	Welches der folgenden vier Syeine positive Konstante.	ysteme ist nicht BIBO stabil? Jo	edes System ist durch seine Spr	rungantwort $h(t)$ beschriebe	n. <i>T</i> is
	(a) $1 - \frac{T}{t}$		(c) $\cos te^{-t}$		
6.	Welches der folgenden vier Systeme beschreibt NICHT das gleiche Eingangs- Ausgangsverhalten wie $\ddot{y}-2y=4\dot{u}$?				
	(a)	$\begin{bmatrix} -4\\0 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$		$\begin{bmatrix} 1 \\ 0 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$	
				$\begin{bmatrix} 0 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix} x$	
7.	Welches der folgenden Systen Lyapunov?	ne mit $\dot{x} = Ax + Bu$, $y = Cx$	$+Du$ ist in der Ruhelage $x_{\rm ss}$ =	$=u_{\rm ss}=0$ asymptotisch stab	oil nach
	(a) $A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}$	$= \begin{bmatrix} 0 \\ 2 \end{bmatrix}, C = [1 \ 0], D = [0]$	(b) $A = \begin{bmatrix} 2 & -3 \\ 2 & -2 \end{bmatrix}, B = \begin{bmatrix} -3 & -3 \\ 2 & -2 \end{bmatrix}$	$= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = [1\ 0], D = [0]$	
		$S = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, C = [0 \ 1], D = [0]$		$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = [0 \ 1], D = [0]$	
8.	Welche Sprungantwort $h(t)$ mit $t>0$ hat das System $2\dot{y}=\sqrt{u}$?				
	(a) $\int t^{\frac{1}{2}}$		(c) $\frac{1}{2}t$	(d) 2t	
9.	Bestimmen Sie die Polstellen o	les Systems, das durch folgende	E/A-Differentialgleichung besc	chrieben wird: $8\ddot{y} - 32y = 16$	$3\ddot{u} - 4u$
	(a) $ [-2,0] $	(b)	(c) $ [-2,2] $	(d) (0, 2)	