MET CS662 - Assignment #5

Machida Hiroaki

1. Consider the following generalized transition graph

a. Find an equivalent generalized transition graph with only two states.

b. What is the language accepted by this graph?

2. Construct right and left grammars for the language $L = \{a^n b^m | n \ge 2, m \ge 3\}$.

Right	Left
S-aaA	S > B 666
A= aAlbbbB	B > Bb Aaa
B > 6B A	A+ Aala

3. Construct a right linear grammar for the language $L((aab^*ab)^*)$.

4. Find a regular grammar that generates the language on $\Sigma = \{a, b\}$ consisting of all strings with no more than three a's.

5. Find a regular grammar for the language $L = \{a^n b^m | n + m \text{ is even}\}$

6. The symmetric difference of two sets S_1 and S_2 is defined as

$$S_1 \ominus S_2 = \{x \mid x \in S_1 \text{ or } x \in S_2, \text{ but } x \text{ is not in both } S_1 \text{ and } S_2\}$$

Show that the family of regular languages is closed under symmetric difference.

7. Suppose we know that $L_1 \cup L_2$ is regular and that L_1 is finite. Can we conclude from this that L_2 is regular?

8. Which of the following are true for all regular languages and all homomorphisms?

a) $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$

Assume L1= £00, 113 and L2= £10,013 and h(0)=c, h(1)=cd h(L1)= h£(00,11)3= £h(00), h(11)3=£cc,cdcd? h(L2)= h£(10,01)3=£h(10), h(01)3=£cdc,ccd? h(L1)Uh(L3)=£cc,cdcd3U£cdc,ccd? = £cdc,cdcd,cc,ccd? h(L1,UL2)= h£(00,11)U(10,01)3 = h£10,11.00,013 = £h(10), h(11), h(00), h(01)? = £cdc,cdcd,cc,ccd? Hence, it is true

b) $h(L_1 \cap L_2) = h(L_1) \cap h(L_2)$

Assume $L_1 = \frac{200,113}{400,11}$ and $L_2 = \frac{200,013}{400,01}$ and h(0) = c, h(1) = cd $h(L_1) = h\frac{2}{5}(00,01)\frac{2}{5} = \frac{2}{5}cc$, $ccd\frac{2}{5}$ $h(L_1) \wedge h(L_2) = \frac{2}{5}cc\frac{2}{5}$ $h(L_1) \wedge h(L_2) = h\frac{2}{5}(00,11) \wedge (00,01)\frac{2}{5}$ $= \frac{2}{5}cc\frac{2}{5}$ Hence, H is true.

c) $h(L_1L_2) = h(L_1)h(L_2)$

Assume $L_1 = \{00, 11\}$ and $L_2 = \{00, 01\}$ and h(0) = c. h(1) = cd $h(L_1) = h\{\{00, 11\}\} = \{cc, cdcd\}\}$ $h(L_2) = h\{\{00, 01\}\} = \{cc, cdcd\}\}$ $h(L_1) = \{cc, cdcd\}\} = \{cc, cdcd\}\}$ $= \{cccc, cccdcd, ccdcc, ccdcdd\}$ $h(L_1L_2) = h\{\{00, 11\}\} = \{ccc, ccdcd, ccdcc, ccdcdd\}$ $= \{cccc, cccdcd, ccdcc, ccdcdd\}$ $= \{cccc, cccdcd, ccdcc, ccdcdd\}$ Hence, it is true.

9. If L is a regular language, prove that $L_1 = \{uv | u \in L, |v| = 2\}$ is also regular.

From the definition of L1, we have that $L_1 = LL'$, where L' = Ev: |v| = 23. L' is regular since we can construct a DFA that accepts strings with two symbols. Thus, $L_1 = LL'$ is regular since the family of regular language is closed under concatevation.