

GCE

Edexcel GCE

Core Mathematics C4 (6666)

January 2006

advancing learning, changing lives

Mark Scheme (Results)

January 2006 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme					Marks		
1.	Differentiates	Differentiates				M1		
	to obtain: $6x + 8y \frac{dy}{dx} - 2,$ $\dots + (6x \frac{dy}{dx} + 6y) = 0$ $\left[\frac{dy}{dx} = \frac{2 - 6x - 6y}{6x + 8y}\right]$					A1, +(B1)		
	Substitutes <i>x</i> =	= 1, y = -2 int	to expression	involving $\frac{dy}{dx}$,	to give $\frac{dy}{dx}$ =	$=-\frac{8}{10}$	M1, A1	
	Uses line equation with numerical 'gradient' $y - (-2) = (\text{their gradient})(x - 1)$ or finds c and uses $y = (\text{their gradient}) x + "c"$ To give $5y + 4x + 6 = 0$ (or equivalent = 0)				t)(x-1)	M1		
						A1√	[7]	
2. (a)	x	0	$\frac{\pi}{16}$	$\frac{\pi}{8}$	$\frac{3\pi}{16}$	$\frac{\pi}{4}$		
	у	1	1.01959	1.08239	1.20269	1.41421	M1 A1	
	M1 for one correct, A1 for all correct						(2)	
(b)	b) Integral = $\frac{1}{2} \times \frac{\pi}{16} \times \{1 + 1.4142 + 2(1.01959 + + 1.20269)\}$				M1 A1√			
		$\left(=\frac{\pi}{32} \times 9.02355\right) = 0.8859$					A1 cao	(3)
(c)	Percentage e	$rror = \frac{approx}{0.8}$	$\frac{-0.88137}{88137} \times 10^{-1}$	00 = 0.51 %	6 (allow 0.5% t	to 0.54% for A1)	M1 A1	(2)
	M1 gained for (\pm) $\frac{approx - \ln(1 + \sqrt{2})}{\ln(1 + \sqrt{2})}$					[7]		

Question Number	Scheme	Marks
3.	Uses substitution to obtain $x = f(u) \left[\frac{u^2 + 1}{2} \right]$,	M1
	and to obtain $u \frac{du}{dx} = \text{const. or equiv.}$	M1
	Reaches $\int \frac{3(u^2+1)}{2u} u du$ or equivalent	A1
	Simplifies integrand to $\int \left(3u^2 + \frac{3}{2}\right) du$ or equiv.	M1
	Integrates to $\frac{1}{2}u^3 + \frac{3}{2}u$	M1 A1√
	A1√ dependent on all previous Ms	
	Uses new limits 3 and 1 substituting and subtracting (or returning to function of x with old limits)	M1
	To give 16 cso	A1 [8]
	"By Parts" Attempt at "right direction" by parts $\begin{bmatrix} 3x \left(2x-1\right)^{\frac{1}{2}} \right) - \{\int 3\left(2x-1\right)^{\frac{1}{2}} dx\} \end{bmatrix} M1\{M1A1\}$	

Question Number	Scheme	Marks
5. (a)	Considers $3x^2 + 16 = A(2+x)^2 + B(1-3x)(2+x) + C(1-3x)$	
	and substitutes $x = -2$, or $x = 1/3$,	M1
	or compares coefficients and solves simultaneous equations	
	To obtain $A = 3$, and $C = 4$	A1, A1
	Compares coefficients or uses simultaneous equation to show B = 0.	
(b)	Writes $3(1-3x)^{-1} + 4(2+x)^{-2}$	M1
	$=3(1+3x,+9x^2+27x^3+)+$	(M1, A1)
	$\frac{4}{4}\left(1 + \frac{(-2)}{1}\left(\frac{x}{2}\right) + \frac{(-2)(-3)}{1.2}\left(\frac{x}{2}\right)^2 + \frac{(-2)(-3)(-4)}{1.2.3}\left(\frac{x}{2}\right)^3 + \ldots\right)$	(M1 A1)
	$=4+8x, +27\frac{3}{4}x^2+80\frac{1}{2}x^3+\dots$	A1, A1 (7)
	Or uses $(3x^2+16)(1-3x)^{-1}(2+x)^{-2}$	M1
	$(3x^2+16)(1+3x,+9x^2+27x^3+) \times$	(M1A1)×
	$\frac{1}{4}\left(1+\frac{(-2)\left(\frac{x}{2}\right)+\frac{(-2)(-3)}{1.2}\left(\frac{x}{2}\right)^{2}+\frac{(-2)(-3)(-4)}{1.2.3}\left(\frac{x}{2}\right)^{3}\right)$	(M1A1)
	$=4+8x, +27\frac{3}{4}x^2+80\frac{1}{2}x^3+\dots$	A1, A1 (7)
		[11]

6. (a)	$\lambda = -4 \rightarrow a = 18, \qquad \mu = 1 \rightarrow b = 9$	M1 A1,	A1 (3)
(b)	$\begin{pmatrix} 8+\lambda \\ 12+\lambda \\ 14-\lambda \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = 0$	M1	(3)
	$\therefore 8 + \lambda + 12 + \lambda - 14 + \lambda = 0$	A1	
	Solves to obtain λ ($\lambda = -2$)	dM1	
	Then substitutes value for λ to give P at the point (6, 10, 16) (any form)	M1, A1	(5)
(c)	$OP = \sqrt{36 + 100 + 256}$	M1	
	$(= \sqrt{392}) = 14\sqrt{2}$	A1 cao	(2) [10]
7. (a)	$\frac{dV}{dr} = 4\pi r^2$	B1	(1)
(b)	Uses $\frac{dr}{dt} = \frac{dV}{dt} \cdot \frac{dr}{dV}$ in any form, $=\frac{1000}{4\pi r^2 (2t+1)^2}$	M1,A1	(2)
(c)	$V = \int 1000(2t+1)^{-2} dt \text{ and integrate to } p(2t+1)^{-1}, = -500(2t+1)^{-1}(+c)$	M1, A1	
	Using V=0 when t=0 to find c , (c = 500 , or equivalent)	M1	
	$\therefore V = 500(1 - \frac{1}{2t+1}) \qquad \text{(any form)}$	A1	(4)
(d)	(i) Substitute $t = 5$ to give V,	M1,	
	then use $r = \sqrt[3]{\left(\frac{3V}{4\pi}\right)}$ to give r , = 4.77	M1, A1	(3)
	(ii) Substitutes t = 5 and r = 'their value' into 'their' part (b)	M1	
	$\frac{dr}{dt} = 0.0289 (\approx 2.90 x 10^{-2}) (\text{ cm/s}) * AG$	A1	(2) [12]

8. (a)	Solves $y = 0 \implies \cos t = \frac{1}{2}$ to obtain $t = \frac{\pi}{3}$ or $\frac{5\pi}{3}$ (need both for A1)	M1 A1	(2)
	Or substitutes both values of t and shows that $y = 0$		(2)
(b)	$\frac{dx}{dt} = 1 - 2\cos t$	M1 A1	
	Area= $\int y dx = \int_{\frac{\pi}{3}}^{5\pi/3} (1 - 2\cos t)(1 - 2\cos t)dt = \int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (1 - 2\cos t)^2 dt * AG$	B1	(3)
(c)	Area = $\int 1 - 4\cos t + 4\cos^2 t dt$ 3 terms	M1	
	= $\int 1 - 4\cos t + 2(\cos 2t + 1)dt$ (use of correct double angle formula)	M1	
	$= \int 3 - 4\cos t + 2\cos 2t dt$		
	$= \left[3t - 4\sin t + \sin 2t\right]$	M1 A1	
	Substitutes the two correct limits $t = \frac{5\pi}{3}$ and $\frac{\pi}{3}$ and subtracts.	M1	
	$=4\pi+3\sqrt{3}$	A1A1	(7)
			[12]