Chris Grossack (Advisor: Klaus Sutner)

Background

For our purposes, a **Mealy Automaton** is a tuple $\mathcal{A} = (S,\tau)$ where S is the **State Set**, and $\tau: S \times \mathbf{2} \to S \times \mathbf{2}$ is the **transition function**. Given a state $s \in S$, we can treat it as a length preserving function $\underline{s}: \mathbf{2}^* \to \mathbf{2}^*$ as follows:

$$\underline{s}(\varepsilon) = \varepsilon$$
 $\underline{s}(ax) = a'\underline{s'}(x) \quad \text{(where } (s', a') = \tau(s, a))$

For us, each $\tau(s,-): \mathbf{2} \to \mathbf{2}$ will be a permutation, as this will ensure inverses exist when we define $\mathcal{G}(\mathcal{A})$, the group of functions the automaton generates.

A state is called **Odd** if its permutation flips its input, and **Even** if it copies its input.

Groups

We define $\mathcal{G}(\mathcal{A})$ to be the group generated by $\{\underline{s}|s\in\mathcal{A}\}$. We will restrict ourselves to Abelian groups, and write our groups additively.

For $f \in \mathcal{G}(\mathcal{A})$, put $\partial_0 f$ as the unique function such that for all $w \in \mathbf{2}^*$, $f(0w) = (f(0))(\partial_0 f)(w)$. Define $\partial_1 f$ symmetrically.

In the abelian case, $\mathcal{G}(\mathcal{A})$ will always be \mathbb{Z}^m or $(\mathbb{Z}/2\mathbb{Z})^m$. We restrict our attention to the \mathbb{Z}^m case.

An Automaton: A_2^3

Taking
$$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ -\frac{1}{2} & 0 \end{pmatrix}$$
, and $\bar{e} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ gives the following machine, called \mathcal{A}_2^3 . Here $f = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $f_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and $f_1 = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$:

$$f(0110) = 1f_0(110) = 11f(10) = 110f_1(0) = 1100$$

$$\partial_0 f = f_0$$
 and $\partial_0 f_0 = \partial_1 f_0 = f$

Main Theorems

Theorem. Every nontrivial abelian automaton \mathcal{A} can be located at \overline{e}_1 in some $\mathfrak{C}(\mathbf{A}, \overline{e})$

Theorem. If rp = q in $\mathbb{Z}[x]$, then $\mathfrak{C}(\mathbf{A}, p \cdot \bar{e}_1) \hookrightarrow \mathfrak{C}(\mathbf{A}, q \cdot \bar{e}_1)$, with a canonical injection $\varphi_r : \bar{v} \mapsto r \cdot \bar{v}$. In particular, if r is a unit, then $p \cdot \mathcal{G} \cong q \cdot \mathcal{G}$. This map preserves both the group and residuation structure.

These allow us to completely understand the residuation vector \bar{e} .

- First find \bar{r} such that \mathcal{A} has a state at \bar{e}_1 .
- ullet ${\cal A}$ is a subautomaton of ${\mathfrak C}({f A}, \overline{e})$ if and only if $p_{\overline{r}}$ divides $p_{\overline{e}}$
- ullet Also, if ${\cal A}$ is a subautomaton, then $qp_{ar r}=p_{ar e}$, and ${\cal A}$ is located at $q\cdot ar e_1$

Example

So $p \cdot \bar{v} \in \mathfrak{C}(\mathbf{A}, p \cdot \bar{e}_1)$, computes exactly the same function as $\bar{v} \in \mathfrak{C}(\mathbf{A}, \bar{e})$. However, most vectors cannot be written as $p \cdot \bar{v}$. What do they do as functions? We call such vectors (and their corresponding functions) **Fractional**, due to the following observation and theorem: Let δ be the function computed by $\bar{e}_1 \in \mathfrak{C}(\mathbf{A}, \bar{e})$. Then $3\bar{e}_1 \in \mathfrak{C}(\mathbf{A}, 3 \cdot \bar{e}_1)$ should compute the same function. So we should expect the function $\bar{e}_1 \in \mathfrak{C}(\mathbf{A}, 3 \cdot \bar{e}_1)$ to behave like " $\frac{1}{3}\delta$ ", and in fact it does.

Initial Object: The Principal Automaton

So $\mathfrak{C}(\mathbf{A}, \overline{e}_1)$ is a subautomaton of every $\mathfrak{C}(\mathbf{A}, p \cdot \overline{e})$, and it is reasonable to ask if there is a corresponding finite automaton whose group embeds into the group generated by every other automaton with the same matrix.

Such a machine was found by Okano, and is called the **Principal Automaton** of a matrix. It is located at \bar{e}_1 in $\mathfrak{C}(\mathbf{A}, \bar{e}_1)$ for any matrix \mathbf{A} , and can be directly constructed by taking differences of the states in a given automaton \mathcal{A} .

Below is the result of this construction for A_2^3 :

Complete Automaton

Theorem (Nekrashevych and Sidki). If \mathcal{G} is an automaton group and $\varphi: \mathcal{G} \to \mathbb{Z}^m$ is a group isomorphism, then there is a matrix \mathbf{A} of \mathbb{Q} irreducible character and an odd vector \bar{e} such that if \mathbb{Z}^m is equipped
with the following residuation structure, then φ preserves residuation:
If \bar{v} is even:

$$\partial_0 \bar{v} = \partial_1 \bar{v} = \mathbf{A} \bar{v}$$

If \overline{v} is odd:

$$\partial_0 \bar{v} = \mathbf{A}(\bar{v} - \bar{e})$$

$$\partial_1 \bar{v} = \mathbf{A}(\bar{v} + \bar{e})$$

Further, **A** is unique up to conjugation, and can always be taken to be $\frac{1}{2} - integral$ ", meaning **A** is of the form

$$\begin{pmatrix} \frac{a_{11}}{2} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{n1}}{2} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

where each $a_{ij} \in \mathbb{Z}$.

These matrices all have characteristic polynomial $\chi = x^n + \frac{1}{2}g(x)$, where $g \in \mathbb{Z}[x]$ and has constant term ± 1 .

Definition. This construction is called $\mathfrak{C}(\mathbf{A}, \overline{e})$

Theorem. Every abelian automaton A can be embedded in $\mathfrak{C}(A, \overline{e})$ for some A and \overline{e} .

It is natural to wonder what vectors \overline{e} admit a given automaton \mathcal{A} as a subautomaton of $\mathfrak{C}(\mathbf{A}, \overline{e})$. We answer this question here.

$\mathbb{Z}[x]$ -modules

 $\mathcal{G}(\mathcal{A})$ naturally allows scalars in \mathbb{Z} by putting

$$n \cdot f = \underbrace{f + f + \ldots + f}_{n \text{ times}}$$

We allow scalars in $\mathbb{Z}[x]$, polynomials with integer coefficients, by embedding $\mathcal{G}(\mathcal{A})$ in $\mathfrak{C}(\mathbf{A}, \overline{e})$, and putting $p \cdot \overline{v} = p(\mathbf{A}^{-1})\overline{v}$.

Theorem. Because **A** has irreducible character, every vector \bar{v} is equal to $p_{\bar{v}} \cdot \bar{e}_1$ for some $p_{\bar{v}}$. Here \bar{e}_1 is the unit vector $(1,0,\ldots,0)$.

Acknowledgements

This research would not exist without the advice of my advisor Dr Klaus Sutner. There aren't enough thanks for the hours of conversation I enjoyed.