Exam 19 January

Due Jan 19 at 5pm **Points** 30 **Questions** 30

Available Jan 19 at 4pm - Jan 19 at 5pm about 1 hour Time Limit 50 Minutes

Instructions

Notation: _ denotes the blank symbol in questions on configurations

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	50 minutes	20 out of 30

(!) Correct answers are hidden.

Score for this quiz: **20** out of 30 Submitted Jan 19 at 4:49pm This attempt took 50 minutes.

Question 1	1 / 1 pts
Suppose, that p is a predicate symbol and f is a function symbol in logic, both of arity 2.	า first order
Which one of the following is a string representation of a first orde (x and y are variables)	r formula?
1. ∀xp(x,p(y,y))	
2. $p(x,y) \lor p(f(y,y),x)$	
Only the 1st one	
only the 2nd one	
oboth of them	
O none of them	

2022/1/19 下午11:50

Incorrect

Question 2

0 / 1 pts

 $f(n)=10n^4$, $g(n)=n^4+2log_2n$.

Which one of the following statements holds?

1st statement: $f(n)=\Omega(g(n))$.

2nd statement: $g(n)=\Omega(f(n))$.

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Question 3

1 / 1 pts

Suppose that f(n)/g(n) > 5/3 as n tends to infinity holds for non-negative valued functions f(n) and g(n). Then

Claim 1: $f(n)=\Omega(g(n))$.

Claim 2: $g(n)=\Omega(f(n))$.

Which one of the 2 claims holds?

- Claim 1 only
- Claim 2 only
- both claims hold
- one of the two claims holds

Question 4

1 / 1 pts

Which one of the following two words can be a configuration of one-tape Turing machine $M=(\{q_0,q_1,q_2\},\{a,b\},\Gamma,\delta,q_0,q_a,q_r)$?	
q ₁ aab or aabq ₁ ?	
• q ₁ aab only	
○ aabq ₁ only	
O both of the two words	
onone of the two words	

Is it true, that b∈L(M)? Is it true, that c∈L(M)?	
b∈L(M) only	
\circ c \in L(M) only	
○ both b∈L(M) and c∈L(M) holds	
○ none of b∈L(M) and c∈L(M) holds	

Question 7 1/1 pts Which one of the following statments hold? 1st statement: If L∈NTIME(f(n)) then L∈TIME(2^{O(f(n))}). 2nd statement: If L∈TIME(f(n)) then L∈NTIME(f(n)). Only the 1st statement holds. Only the 2nd statement holds. Both statements hold. None of the two statements holds.

Suppose, that L can be decided by an f(n)=2n+3log₂n time bounded deterministic Turing machine. Which one of the following statments follows from this assumption? 1st statement: L is in P. 2nd statement: L is in NP.

Only the 2nd statement follows.	
Both statements follow.	
None of the two statements follows.	

Incorrect Question 9

0 / 1 pts

Let L be a language and M be a nondeterministic Turing machine, such that L(M)=L holds.

Which one of the following statements follows from this assumption?

1st statement: $L \in R$

2nd statement: L ∈ RE

- Only the 1st statement holds.
- Only the 2nd statement holds.
- Both statements hold.
- None of the two statements holds.

Incorrect

Question 10

0 / 1 pts

Let M = (Q, Σ , Γ , δ , q_0 , q_a , q_r) be a NONDETERMINISTIC Turing machine and $u \in \Sigma^*$.

1st statement: If there exist a sequence of transitions from the starting configuration of u to an accepting configuration then u is in L(M).

2nd statement: If there exist a sequence of transitions from the starting configuration of u to a rejecting configuration then u is not in L(M).

Which one of the above statements hold?

- Only the 1st statement holds.
- Only the 2nd statement holds.

Both statements hold.	
O None of the 2 statements holds.	

Incorrect Question 11 0 / 1 pts

Which one of the following statements holds?

1st statement: The cardinality of the family of undecidable languages is countably infinite.

2nd statement: The cardinality of $\{L \mid L\subseteq \{0,1\}^*\}\$ is countably infinite.

- Only the 1st statement.
- Only the 2nd statement.
- Both statements.
- None of the two statements.

Question 12	1 / 1 pts
Which one of the following statements holds?	
1st statement: L _h can be reduced to a decidable language.	
2nd statement: The complement language of L _h is in RE.	
Only the 1st statement holds.	
Only the 2nd statement holds.	
Both statements hold.	
None of the two statements holds.	

Question 13	1 / 1 pts
Which one of the following statements holds? 1st statement: VALIDITYPRED can be reduced to a decidable lan 2nd statement: The complement language of VALIDITYPRED is in	
Only the 1st statement holds.	
Only the 2nd statement holds.	
O Both statements hold.	
None of the two statements holds.	

Question 14 1 / 1 pts

Let $D=\{(u,v),(w,x),(y,z)\}\ (u,v,w,x,y,z\in\Sigma^+)$ be an instance of the Post Correspondence Problem. (There are 3 dominos, the first one has u at the top and v at the bottom, the second one has w at the top and x at the bottom, the third one has y at the top and z at the bottom.)

Which one of the following statements holds?

- 1. If uwuu=vxvv then D has a solution.
- 2. All solutions of D is a sequence of at most 3 dominos.
 - Only the 1st statement holds.
 - Only the 2nd statement holds.
 - Both statements hold.
 - None of the 2 statement holds.

Incorrect Question 15 0 / 1 pts

https://canvas.elte.hu/courses/22054/quizzes/72460

Which one of the following statements holds (using the concepts of Rice's theorem)?		
1st statement: $\{L \mid L \subseteq \{0,1\}^* \text{ and } L \text{ is finite } \}$ is a non-trivial property of the recursively enumerable languages.		
2nd statement: \emptyset is a non-trivial property of the recursively enumerable languages.		
Only the 1st statement holds.		
Only the 2nd statement holds.		
Both statements hold.		
None of the two statements holds.		

Which one of the following statements can be stated being TRUE? 1st statement: The language of unsatisfiable formulas of propositional logic is in NP. 2nd statement: The language of valid formulas of first order logic is in R. Only the 1st statement. Only the 2nd statement. Both statements.

Question 17 1 / 1 pts

1. REACHABILITY 2. GRAPH ISOMORPHISM 3. 5-COLORING 4. 3SAT

- 5. conjectured to be non-NP-complete
 6. its complement is in P
 7. it is decidable
 8. it is an NP-complete graph problem

 Find a good matching.

 1-7 2-8 3-5 4-6

 1-6 2-5 3-8 4-7

 1-6 2-7 3-8 4-5
- Which one of the following languages can be a language not in P?

 PERFECT MATCHING

 REACHABILITY

 GRAPH ISOMORPHISM

 2SAT

(x,	y,z,w are atomic variables)
	Only the 1st one
	Only the 2nd one
	both of them
	onone of them

Question 20	1 / 1 pts
Which one of the following languages is not in NP?	
UNSATPRED	
REACHABILITY	
O 2SAT	
O INDEPENDENT SET	

Incorrect	Question 21	0 / 1 pts
	Which one of the following statements holds? 1st statement: If SUBGRAPH ISOMORPHISM is in P, then P=NP. 2nd statement: If 2SAT is in P, then P=NP.	
	Only the 1st statement holds.	
	Only the 2nd statement holds.	
	Both statements hold.	
	None of the two statements holds.	

Question 22	1 / 1 pts
Complete the sentence to make it true. If then P=NP.	
O 2SAT is in P	
there are no NP-intermediete problems in NP	
every NP-complete problem is decidable	
every problem in NP is reducible to an NP-complete problem	

Question 23	1 / 1 pts		
Let G be a simple undirected graph of 20 vertices.			
Which one of the following statements holds?			
1st statement: If G ha a clique of size 7 then G has an independen size 13.	t set of		
2nd statement: If G has an independent set of size 13, then G has a vertex cover of size 7.			
Only the 1st statement holds.			
Only the 2nd statement holds.			
Both statements hold.			
None of the two statements holds.			

Question 24 1 / 1 pts

Let L and L' be languages and assume that L is in NP. Then the following proves NP-completeness of L.

○ L≤L' and L' is NP-complete
○ L≤ _p L' and L' is NP-complete
L'≤ _p L and L' is NP-complete
○ L'≤L and L' is NP-complete

Which one of the following statements holds? 1st statement: If GRAPH ISOMORPHISM is an NP-intermediate language, then P is a proper subset of NP. 2nd statement: If P=NP is FALSE, then there exists a non-NP-complete language in NP\P. Only the 1st statement holds. Only the 2nd statement holds. Both statements hold. None of the two statements holds.

Question 26	1 / 1 pts
Which one of the following statements holds? 1st statement: coNP ⊆ R. 2nd statement: Time complexity class coNP is the complement of complexity class NP.	time
Only the 1st statement holds.	
Only the 2nd statement holds.	

O Both statements hold.
None of the two statements holds.

Which one of the following statements holds? 1st statement: Size of the input is an asymptotic lower bound for the space complexity of nondeterministic offline Turing machines. 2nd statement: For every 3 tape deterministic offline Turing machine there exists an equivalent 2 tape deterministic Turing machine. Only the 1st statement holds. Only the 2nd statement holds. Both statements hold. None of the two statements holds.

Incorrect Question 28 0 / 1 pts

Which one of the following statements can be stated being TRUE?

1st statement: SUBGRAPH ISOMORPHISM is in PSPACE.

2nd statement: Every PSPACE-complete language is in NP.

- Only the 1st statement.
- Only the 2nd statement.
- Both statements.
- None of the two statements.

ncorrect	Question 29 0 / 1 pt	ts
	Which one of the following statements holds?	
	1st statement: Every type 2 language (according to Chomsky's hierarchy) can be recognized by a linear bounded automaton.	
	2nd statement: Every language which can be recognized by a linear bounded automaton is a type 2 language.	
	Only the 1st statement holds.	
	Only the 2nd statement holds.	
	Both statements hold.	
	None of the two statements holds.	

Which one of the following statements holds? 1st statement: Every decidable language is context sensitive. 2nd statement: Every context sensitive language is decidable. Only the 1st statement holds. Only the 2nd statement holds. Both statements hold. None of the two statements holds.

Quiz Score: 20 out of 30