AMENDMENTS TO THE CLAIMS

Claim 1. (Currently amended) A compound which conforms to the general formula I:

Wherein

W represents a 5 to 7 atoms cycloalkyl or heterocycloalkyl ring;

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C₁-C₆-alkoxy or R₁ and R₂ together can form a C₃-C₇-cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO $_2$ R $_9$, NR $_8$ SO $_2$ R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)R $_8$, -S(=O)R $_8$, -S(=O)R $_8$, -C(=O)R $_8$, -C(=O)R $_8$, -C(=O)NR $_8$ R $_9$, -C(=O)NR $_8$ R $_9$, -C(=O)NR $_8$ R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, aryl or

heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C_1 - C_3 -alkylaryl), -O(C_1 - C_3 -alkylaryl) or -N(C_0 - C_6 -alkyl)(C_0 - C_3 -alkylaryl) or -N(C_0 - C_6 -alkyl)(C_0 - C_3 -alkylaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

A is azo –N=N-, ethyl, ethenyl, ethynyl, -NR₈C(=O)-, NR₈S(=O)₂-, -C(=O)NR₈-, -S-, -S(=O)-, -S(=O)₂-, -S(=O)₂NR₈-, -C(=O)-O-, -O-C(=O)-, -C(=NR₈)NR₉-, C(=NOR₈)NR₉-, -NR₈C(=NOR₉)-, =N-O-, -O-N=CH- or a group aryl or heteroaryl of formula

R₃, R₄, R₅ and R₆ independently are as defined above;

В

D, E, F, G and H independently represent a carbon group, oxygen, nitrogen, sulphur or a double bond;

represents a single bond, $-C(=O)-C_0-C_2$ -alkyl-, $-C(=O)-C_2-C_6$ -alkenyl-, $-C(=O)-C_2-C_6$ -alkynyl-, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2$ -alkyl-, $-C(=NR_8)NR_9-S(=O)-C_0-C_2$ -

alkyl-, $-S(=O)_2-C_0-C_2$ -alkyl-, $-S(=O)_2NR_8-C_0-C_2$ -alkyl-, $C(=NR_8)-C_0-C_2$ -alkyl-, $-C(=NOR_8)-C_0-C_2$ -alkyl- or $-C(=NOR_8)NR_9-C_0-C_2$ -alkyl-; $-R_8$ and $-R_9$, independently are as defined above;

any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds

but excluding the following compounds

4-(3-phenyl-oxadiazol-5-yl)-N-(4-bromophenyl)aminocarbonylpiperidine
N-benzoyl-3-(3,4-dimethoxyphenylaminocarbonyl)-piperidin-4-one
N-(3-cyanophenytlmethylcarbonyl)-4-(3-(2,3-dichlorophenyl)-pyrazo-5-yl)piperidine.

Claim 2. (Currently amended) A compound according to claim 1 having the formula I-A

$$\begin{array}{c|c}
P & A & N & B \\
\hline
R_1 & R_2 & R_2
\end{array}$$

Wherein

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C₁-C₆-alkoxy or R₁ and R₂ together can form a C₃-C₇-cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2 $_2$ R $_9$, NR $_8$ SO2 $_2$ R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2R $_8$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C6-alkyl, -O(C0-C6-alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1-C3-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

A is azo –N=N-, ethyl, ethenyl, ethynyl, -NR $_8$ C(=O)-, NR $_8$ S(=O) $_2$ -, -C(=O)NR $_8$ -, -S-, -S(=O)-, -S(=O) $_2$ -, -S(=O) $_2$ NR $_8$ -, -C(=O)-O-, -O-C(=O)-, -C(=NR $_8$)NR $_9$ -, C(=NOR $_8$)NR $_9$ -, -NR $_8$ C(=NOR $_9$)-, =N-O-, -O-N=CH- or a group aryl or heteroaryl of formula

 R_3 , R_4 , R_5 and R_6 independently are as defined above; D, E, F, G and H independently represent a carbon group, oxygen, nitrogen, sulphur or a double bond;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 3. (Currently amended) A compound according to claim 1 or 2 having the formula I-B

$$\begin{array}{c|c}
D & E \\
\hline
 & G \\
\hline
 & I-B \\
\hline
 & R_1 \\
\hline
 & R_2
\end{array}$$

Wherein

 R_1 and R_2 represent independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C_1 - C_6 -alkoxy

or R₁ and R₂ together can form a C₃-C₇-cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2 $_2$ R $_9$, NR $_8$ SO2 $_2$ R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, - C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C $_6$ -alkyl, -O(C0-C $_6$ -alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1-C3-alkylheteroaryl) groups;

 $R_8,\ R_9,\ R_{10}$ each independently is hydrogen, $C_1\text{-}C_6\text{-alkyl},\ C_3\text{-}C_6\text{-cycloalkyl},\ C_3\text{-}C_7\text{-cycloalkyl},\ C_2\text{-}C_6\text{-alkenyl},\ C_2\text{-}C_6\text{-alkynyl},\ halo-C_1\text{-}C_6\text{-alkyl},\ heterocycloalkyl},\ heterocycloalkyl,\ arylalkyl or aryl;\ any of which is optionally substituted with 1-5 independent halogen, -CN, <math display="inline">C_1\text{-}C_6\text{-alkyl},\ -O(C_0\text{-}C_6\text{-alkyl}),\ -O(C_3\text{-}C_7\text{-cycloalkyl}),\ -O(\text{aryl}),\ -O(\text{heterocyl}),\ -N(C_0\text{-}C_6\text{-alkyl})(C_0\text{-}C_6\text{-alkyl}),-N(C_0\text{-}C_6\text{-alkyl}),\ -N(C_0\text{-}C_6\text{-alkyl}),\ -N(C_0\text{-}C_6\text{$

D, E, F, G and H in P & Q represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

D. E and G in A independently are as defined for A in claim 1;

 $\label{eq:control_c$

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 4. (Currently amended) A compound according to claim 1 or 2 having the formula I-C

Wherein

 R_1 and R_2 represent independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, arylalkyl, heteroarylalkyl, hydroxy, hydroxyalkyl, C_1 - C_8 -alkoxy or R_1 and R_2 together can form a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$,

 $N(=NR_{10})NR_8R_9, \ -NR_8COR_9, \ NR_8CO_2R_9, \ NR_8SO_2R_9, \ -NR_{10}CO \ NR_8R_9, \ -SR_8, \ -S(=O)R_8, \ -S(=O)_2R_8, \ -S(=O)_2NR_8R_9, \ -C(=O)R_8, \ -C(=O)_2R_8, \ -C(=O)NR_8R_9, \$

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

B represents a single bond, $-C(=O)-C_0-C_2-alkyl-$, $-C(=O)-C_2-C_6-alkenyl-$, $-C(=O)-C_2-C_6-alkynyl-$, -C(=O)-O-, $-C(=O)NR_8-C_0-C_2-alkyl-$, $-C(=NR_8)NR_9-S(=O)-C_0-C_2-alkyl-$, $-S(=O)_2-C_0-C_2-alkyl-$, $-S(=O)_2NR_8-C_0-C_2-alkyl-$, $-C(=NR_8)-C_0-C_2-alkyl-$, $-C(=NOR_8)-C_0-C_2-alkyl-$ or $-C(=NOR_8)NR_9-C_0-C_2-alkyl-$; $-C(=NOR_8)NR_9-C_0-C_2-Alkyl-$

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 5. (Currently amended) A compound according to claim 1 or 2 having the formula I-D

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2 $_8$, NR $_8$ SO2 $_8$, -NR $_{10}$ CO NR $_8$ R $_9$, -S(=O)2R $_8$, -S(=O)2NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=NR $_8$)R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C6-alkyl, -O(C0-C6-alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1-C3-alkylheteroaryl) groups;

 $R_8,\ R_9,\ R_{10}$ each independently is hydrogen, $C_1\text{-}C_6\text{-alkyl},\ C_3\text{-}C_6\text{-cycloalkyl},\ C_3\text{-}C_7\text{-cycloalkyl},\ C_2\text{-}C_6\text{-alkenyl},\ C_2\text{-}C_6\text{-alkynyl},\ halo\text{-}C_1\text{-}C_6\text{-alkyl},\ heterocycloalkyl},\ heterocycloalkyl,\ arylalkyl or aryl;\ any of which is optionally substituted with 1-5 independent halogen, -CN, <math display="inline">C_1\text{-}C_6\text{-alkyl},\ -O(C_0\text{-}C_6\text{-alkyl}),\ -O(C_3\text{-}C_7\text{-cycloalkyl}),\ -O(aryl),\ -O(heterocyl),\ -N(C_0\text{-}C_6\text{-alkyl})(C_0\text{-}C_6\text{-alkyl}),-N(C_0\text{-}C_6\text{-alkyl}),\ -N(C_0\text{-}C_6\text{-alkyl}),\ -N(C_0\text{-}C_6\text{-al$

D, E, F, G and H represent independently
$$-C(R_3)=$$
, $-C(R_3)=C(R_4)-$, $-C(=O)-$, $-C(=S)-$, $-O-$, $-N=$, $-N(R_3)-$ or $-S-$;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 6. (Currently amended) A compound according to claim 1 or 2 having the formula I-E

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2R $_9$, NR $_8$ SO2R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=O)NR $_8$ R $_9$, -C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl),

-O(aryl), -O(heteroaryl), -O(C_1 - C_3 -alkylaryl), -O(C_1 - C_3 -alkylheteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_3 -alkylaryl) or -N(C_0 - C_6 -alkyl)(C_0 - C_3 -alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 7. (Currently amended) A compound according to claim 1 or 2 having the formula I-F

Wherein

P and Q are each independently selected and denote a cyclolkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2R $_9$, NR $_8$ SO2R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2R $_8$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=NR $_8$)R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic heterocycloalkyl, aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C $_8$ -alkyl, -O(C $_9$ -C $_8$ -alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1-C3-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heterocycloalkyl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

Any N may be an N-oxide.

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 8. (Currently amended) A compound according to claim 1 having the formula I-G

$$\begin{array}{c|c}
P & A & B \\
\hline
P & A & R_2
\end{array}$$

$$\begin{array}{c|c}
R_1 & R_2
\end{array}$$

Wherein

R₁ and R₂ represent independently hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C₁-C₆-alkoxy or R₁ and R₂ together can form a C₃-C₇-cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_1 - C_6 -alkenyl, C_1 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, -heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2 $_8$, NR $_8$ SO2 $_8$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=O)NR $_8$ R $_9$, -C(=NR $_8$)R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C6-alkyl -O(C0-C6-alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1-C3-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently
$$-C(R_3)=$$
, $-C(R_3)=C(R_4)-$, $-C(=O)-$, $-C(=S)-$, $-O-$, $-N=$, $-N(R_3)-$ or $-S-$;

A is azo –N=N-, ethyl, ethenyl, ethynyl, -NR₈C(=O)-, NR₈S(=O)₂-, -C(=O)NR₈-, -S-, -S(=O)-, -S(=O)₂-, -S(=O)₂NR₈-, -C(=O)-O-, -O-C(=O)-, -C(=NR₈)NR₉-, C(=NOR₈)NR₉-, -NR₈C(=NOR₉)-, =N-O-, -O-N=CH- or a group aryl or heteroaryl of formula

 R_3 , R_4 , R_5 and R_6 independently are as defined above; D, E, F, G and H independently represent a carbon group, oxygen, nitrogen,

 $\label{eq:bond} B \qquad \text{represents a single bond, -C(=O)-C$_0-C$_2-alkyl-, -C(=O)-C$_2-C$_6-alkenyl-, -C(=O)-C$_2-C$_6-alkynyl-, -C(=O)-O-, -C(=O)NR$_8-C$_0-C$_2-alkyl-, -C(=NR$_8)NR$_9-S(=O)-C$_0-C$_2-alkyl-, -S(=O)$_2NR$_8-C$_0-C$_2-alkyl-, -C(=NR$_8)-C$_0-C$_2-alkyl-, -C(=NOR$_8)-C$_0-C$_2-alkyl- or -C(=NOR$_8)NR$_9-C$_0-C$_2-alkyl-;$

R₈ and R₉, independently are as defined above;

J represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R₁₁, R₁₂ independently are hydrogen, C₁-C₆-alk

sulphur or a double bond;

 R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 9. (Currently amended) A compound according to claim 1 or 8 having the formula I-H

Wherein

 R_1 and R_2 represent independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, arylalkyl, heteroarylalkyl, hydroxy, amino, aminoalkyl, hydroxyalkyl, C_1 - C_6 -alkoxy or R_1 and R_2 together can form a C_3 - C_7 -cycloalkyl ring, a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO $_2$ R $_9$, NR $_8$ SO $_2$ R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O) $_2$ R $_8$, -S(=O) $_2$ NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O) $_2$ R $_8$, -C(=O)NR $_8$ R $_9$, -C(=O)NR $_8$ R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen,

-CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C_1 - C_3 -alkylaryl), -O(C_1 - C_3 -alkylaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_3 -alkylaryl) or -N(C_0 - C_6 -alkyl)(C_0 - C_3 -alkylheteroaryl) groups;

 $R_8,\ R_9,\ R_{10}\ each\ independently\ is\ hydrogen,\ C_1\text{-}C_6\text{-}alkyl,\ C_3\text{-}C_6\text{-}cycloalkyl,\ C_3\text{-}C_7\text{-}cycloalkyl,\ C_2\text{-}C_6\text{-}alkenyl,\ }C_2\text{-}C_6\text{-}alkynyl,\ halo-}C_1\text{-}C_6\text{-}alkyl,\ heteroaryl,\ heteroarylalkyl,\ arylalkyl\ or\ aryl;\ any\ of\ which\ is\ optionally\ substituted\ with\ 1-5\ independent\ halogen,\ -CN,\ C_1\text{-}C_6\text{-}alkyl,\ -O(C_0\text{-}C_6\text{-}alkyl),\ -O(C_3\text{-}C_7\text{-}cycloalkylalkyl),\ -O(aryl),\ -O(heteroaryl),\ -N(C_0\text{-}C_6\text{-}alkyl)(C_0\text{-}C_6\text{-}alkyl),-N(C_0\text{-}C_6\text{-}alkyl)(C_3\text{-}C_7\text{-}cycloalkyl))$

D, E, F, G and H in P & Q represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

D,E and G in A are independently as defined for A in claim 1;

represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl) or $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 10. (Currently amended) A compound according to claim 1 or 8 having the formula I-I

Wherein

 R_1 and R_2 represent independently hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, arylalkyl, heteroarylalkyl, hydroxy, hydroxyalkyl, C_1 - C_6 -alkoxy or R_1 and R_2 together can form a carbonyl bond C=O or a carbon double bond;

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2 $_8$, NR $_8$ SO2 $_8$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2R $_8$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=NR $_8$)R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C6-alkyl, -O(C0-C6-alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1-C3-alkylheteroaryl), -N(C0-C6-alkyl)(C0-C3-alkylaryl) or -N(C0-C6-alkyl)(C0-C3-alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

 $\label{eq:control_bound} \begin{array}{lll} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & \\ &$

represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 11. (Currently amended) A compound according to claim 1 or 8 having the formula I-J

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2R $_9$, NR $_8$ SO2R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -S(=O)2R $_8$, -S(=O)2NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=NR $_8$)R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C $_1$ -C $_6$ -alkyl, -O(C $_9$ -C $_6$ -alkyl), -O(C $_3$ -C $_7$ -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C $_1$ -C $_3$ -alkylaryl), -O(C $_1$ -C $_3$ -alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently
$$-C(R_3)=$$
, $-C(R_3)=C(R_4)-$, $-C(=O)-$, $-C(=S)-$, $-O-$, $-N=$, $-N(R_3)-$ or $-S-$;

J represents $-C(R_{11}, R_{12}), -O_{-}, -N(R_{11})$ - or -S-;

 R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 12. (Currently amended) A compound according to claim 1 or 8 having the formula I-K

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -

alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, $-OR_8$, $-NR_8R_9$, $-C(=NR_{10})NR_8R_9$, $N(=NR_{10})NR_8R_9$, $-NR_8COR_9$, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, $-S(=O)_2R_8$, $-S(=O)_2NR_8R_9$, $-C(=O)R_8$, $-C(=O)_2R_8$, $-C(=O)NR_8R_9$, $-C(=O)NR_8R_9$, $-C(=O)NR_8R_9$, $-C(=O)NR_8R_9$, $-C(=O)NR_8R_9$, or $C(=NOR_8)R_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, $-C_1-C_6$ -alkyl, $-O(C_0-C_6$ -alkyl), $-O(C_3-C_7$ -cycloalkylalkyl), -O(aryl), -O(aryl), -O(beteroaryl), $-O(C_1-C_3$ -alkylaryl), $-O(C_1-C_3$ -alkylheteroaryl) groups;

 $R_8,\,R_9,\,R_{10}$ each independently is hydrogen, $C_1\text{-}C_6\text{-}alkyl,\,C_3\text{-}C_6\text{-}cycloalkyl,\,} C_3\text{-}C_7\text{-}cycloalkylalkyl,\,} C_2\text{-}C_6\text{-}alkenyl,\,} C_2\text{-}C_6\text{-}alkynyl,\,} halo-C_1\text{-}C_6\text{-}alkyl,\,} heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, <math display="inline">C_1\text{-}C_6\text{-}alkyl,\,} -O(C_0\text{-}C_6\text{-}alkyl),\,} -O(C_3\text{-}C_7\text{-}cycloalkylalkyl),\,} -O(aryl),\,} -O(heteroaryl),\,} -N(C_0\text{-}C_6\text{-}alkyl)(C_0\text{-}C_6\text{-}alkyl),\,} -N(C_0\text{-}C_6\text{-}alkyl)(C_3\text{-}C_7\text{-}cycloalkyl))$ substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

J represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl)

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 13. (Currently amended) A compound according to claim 1 or 8 having the formula I-L

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, NR $_8$ COR $_9$, NR $_8$ CO2 $_8$, NR $_8$ SO2 $_8$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2R $_8$, -S(=O)2NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O)R $_8$, -C(=O)NR $_8$ R $_9$, -C(=O)NR $_8$ R $_9$, -C(=NR $_8$)R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C1-C6-alkyl, -O(C0-C6-alkyl), -O(C3-C7-cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C1-C3-alkylaryl), -O(C1-C3-alkylheteroaryl) groups;

 $R_8,\ R_9,\ R_{10}$ each independently is hydrogen, $C_1\text{-}C_6\text{-alkyl},\ C_3\text{-}C_6\text{-cycloalkyl},\ C_3\text{-}C_7\text{-cycloalkylalkyl},\ C_2\text{-}C_6\text{-alkenyl},\ C_2\text{-}C_6\text{-alkynyl},\ halo\text{-}C_1\text{-}C_6\text{-alkyl},\ heteroaryl,\ heteroarylalkyl,\ arylalkyl\ or\ aryl;\ any\ of\ which\ is\ optionally\ substituted\ with\ 1-5\ independent\ halogen,\ -CN,\ C_1\text{-}C_6\text{-alkyl},\ -O(C_0\text{-}C_6\text{-alkyl}),\ -O(C_3\text{-}C_7\text{-cycloalkylalkyl}),\ -O(aryl),\ -O(heteroaryl),\ -N(C_0\text{-}C_6\text{-alkyl})(C_0\text{-}C_6\text{-alkyl}),-N(C_0\text{-}C_6\text{-alkyl})(C_3\text{-}C_7\text{-cycloalkyl})\ or\ -N(C_0\text{-}C_6\text{-alkyl})(aryl)\ substituents;$

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

J represents $-C(R_{11}, R_{12}), -O_{-}, -N(R_{11})$ - or -S-;

 R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 14. (Currently amended) A compound according to claim 1 or 8 having the formula I-M

$$\begin{array}{c|c}
 & N & O \\
\hline
 & N & O \\
\hline
 & 1-M & O
\end{array}$$

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

 R_3 , R_4 , R_5 , R_6 , and R_7 independently are hydrogen, halogen, -CN, nitro, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR $_8$, -NR $_8$ R $_9$, -C(=NR $_{10}$)NR $_8$ R $_9$, N(=NR $_{10}$)NR $_8$ R $_9$, -NR $_8$ COR $_9$, NR $_8$ CO2R $_9$, NR $_8$ SO2R $_9$, -NR $_{10}$ CO NR $_8$ R $_9$, -SR $_8$, -S(=O)2R $_8$, -S(=O)2NR $_8$ R $_9$, -C(=O)R $_8$, -C(=O)2R $_8$, -C(=O)NR $_8$ R $_9$, -C(=NR $_8$)R $_9$, or C(=NOR $_8$)R $_9$ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -CN, C $_1$ -C $_8$ -alkyl, -O(C $_9$ -C $_8$ -alkyl), -O(C $_3$ -C $_7$ -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -O(C $_1$ -C $_3$ -alkylaryl), -O(C $_1$ -C $_3$ -alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), -N(C_0 - C_6 -alkyl)(C_0 - C_6 -alkyl),-N(C_0 - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or -N(C_0 - C_6 -alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

J represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-;

 $R_{11},\ R_{12}$ independently are hydrogen, $C_1\text{-}C_6\text{-}alkyl,\ C_3\text{-}C_6\text{-}cycloalkyl,\ C_3\text{-}C_7\text{-}cycloalkylalkyl,\ }C_2\text{-}C_6\text{-}alkenyl,\ }C_2\text{-}C_6\text{-}alkynyl,\ }halo\text{-}C_1\text{-}C_6\text{-}alkyl,\ }heteroaryl,\ }heteroarylalkyl,\ arylalkyl\ or\ aryl;\ any\ of\ which\ is\ optionally\ substituted\ with\ 1-5\ independent\ halogen,\ -CN,\ C_1\text{-}C_6\text{-}alkyl,\ -O(C_0\text{-}C_6\text{-}alkyl),\ -O(C_3\text{-}C_7\text{-}cycloalkylalkyl),\ }-O(aryl),\ -O(heteroaryl),\ -N(C_0\text{-}C_6\text{-}alkyl)(C_0\text{-}C_6\text{-}alkyl),-N(C_0\text{-}C_6\text{-}alkyl)(C_3\text{-}C_7\text{-}cycloalkyl))$ substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 15. (Currently amended) A compound according to claim 1 or 8 having the formula I-N

Wherein

P and Q are each independently selected and denote a cycloalkyl, an aryl or heteroaryl group of formula

independently are hydrogen, halogen, -CN, nitro, C₁-C₆-alkyl, C₃- R_3 , R_4 , R_5 , R_6 , and R_7 C₆-cycloalkyl, C₃-C₇-cycloalkylalkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, halo-C₁-C₆alkyl, heteroaryl, heteroarylalkyl, arylalkyl, aryl, -OR₈, -NR₈R₉, -C(=NR₁₀)NR₈R₉, $N(=NR_{10})NR_8R_9$, $-NR_8COR_9$, $NR_8CO_2R_9$, $NR_8SO_2R_9$, $-NR_{10}CO$ NR_8R_9 , $-SR_8$, - $S(=O)R_8, \ -S(=O)_2R_8, \ -S(=O)_2NR_8R_9, \ -C(=O)R_8, \ -\frac{C(=O)_2R_8, -C(=O)NR_8R_9, -C(=O)NR_8R_9, -C(=O)R_8, -\frac{C(=O)_2R_8, -C(=O)NR_8R_9, -C(=O)R_8, -\frac{C(=O)_2R_8, -C(=O)R_8, -\frac{C(=O)_2R_8, -C(=O)R_8, -\frac{C(=O)_2R_8, -C(=O)R_8, -\frac{C(=O)_2R_8, -C(=O)R_8, -\frac{C(=O)_2R_8, -C(=O)R_8, -\frac{C(=O)R_8, -\frac{C(=O)_2R_8, -C(=O)R_8, -\frac{C(=O)R_8, -\frac{C(O)R_8, -\frac{C($ C(=NR₈)R₉, or C(=NOR₈)R₉ substituents; wherein optionally two substituents are combined to the intervening atoms to form a bicyclic aryl or heteroaryl ring; wherein each ring is optionally further substituted with 1-5 independent halogen, -O(C₀-C₆-alkyl), -O(C₃-C₇-cycloalkylalkyl), -CN, C₁-C₆-alkyl -O(aryl), O(heteroaryl), $-O(C_1-C_3-alkylaryl)$, $-O(C_1-C_3-alkylheteroaryl)$, $-N(C_0-C_6-alkyl)(C_0-C_6-alkyl)$ C_3 -alkylaryl) or $-N(C_0-C_6$ -alkyl)(C_0-C_3 -alkylheteroaryl) groups;

 R_8 , R_9 , R_{10} each independently is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, -O(C_0 - C_6 -alkyl), -O(C_3 - C_7 -cycloalkylalkyl),

-O(aryl), -O(heteroaryl), -N(C_0 -C₆-alkyl)(C_0 -C₆-alkyl),-N(C_0 -C₆-alkyl)(C_3 -C₇-cycloalkyl) or -N(C_0 -C₆-alkyl)(aryl) substituents;

D, E, F, G and H represent independently $-C(R_3)=$, $-C(R_3)=C(R_4)-$, -C(=O)-, -C(=S)-, -O-, -N=, $-N(R_3)-$ or -S-;

represents $-C(R_{11}, R_{12})$, -O-, $-N(R_{11})$ - or -S-; R_{11} , R_{12} independently are hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, C_3 - C_7 -cycloalkylalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, halo- C_1 - C_6 -alkyl, heteroaryl, heteroarylalkyl, arylalkyl or aryl; any of which is optionally substituted with 1-5 independent halogen, -CN, C_1 - C_6 -alkyl, $-O(C_0$ - C_6 -alkyl), $-O(C_3$ - C_7 -cycloalkylalkyl), -O(aryl), -O(heteroaryl), $-N(C_0$ - C_6 -alkyl)(C_0 - C_6 -alkyl), $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) or $-N(C_0$ - C_6 -alkyl)(C_3 - C_7 -cycloalkyl) substituents;

Any N may be an N-oxide;

or pharmaceutically acceptable salts, hydrates or solvates of such compounds.

Claim 16. (Currently amended) A compound according to <u>claim 1</u>-claims 1 to 15, which can exist as optical isomers, wherein said compound is either the racemic mixture or the individual optical isomers.

Claim 17. (Currently amended) A compound according to <u>claim 1</u> <u>claims 1 to 16</u>, wherein said compounds are selected from:

(4-Fluoro-phenyl)-[3-(4-fluoro-phenylethynyl)-piperidin-1-yl]-methanone (4-Fluoro-phenyl)-[5-(4-fluoro-phenyl)-4H-[1,2,4]triazol-3-yl]-piperidin-1-yl}-methanone (S)-(4-Fluoro-phenyl)-[3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (S)-(thiophen-2-yl)-[3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-methyl-2-pyrazin-2-yl-thiazol-5-yl)-methanone (2,4-Difluoro-phenyl)-[(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone

```
{(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(3,4,5-trifluoro-phenyl)-methanone
```

{(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(5-pyridin-2-yl-thiophen-2-yl)-methanone

Cyclopentyl-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (3,4-Difluoro-phenyl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone

Benzothiazol-6-yl-{(S)-3-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-methanone (3,5-Dimethyl-isoxazol-4-yl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone

(4-Fluoro-phenyl)-{(S)-3-[3-(2,4,6-trifluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone

(4-Fluoro-phenyl)-[(S)-3-(3-pyridin-3-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone (4-Fluoro-phenyl)-[(S)-3-(3-pyridin-4-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone ((S)-3-[3-(2,4-Difluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-fluoro-phenyl)-methanone

(4-Fluoro-phenyl)-[(S)-3-(3-p-tolyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone (4-Fluoro-phenyl)-{(S)-3-[3-(2-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (4-Fluoro-phenyl)-[(S)-3-(3-pyridin-2-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone (4-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,3,4]oxadiazol-2-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{(S)-3-[2-(3,4-difluoro-phenyl)-1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone

(4-Fluoro-phenyl)-{2-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-morpholin-4-yl}-methanone {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-thiophen-3-yl-methanone (4-Fluoro-phenyl)-[3-(5-phenyl-tetrazol-2-yl)-piperidin-1-yl]-methanone (4-Fluoro-phenyl)-[(S)-3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone (3,4-Difluoro-phenyl)-[(S)-3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone.

Claim 18. (Currently amended) A compound according to claim 1 claims 1 to 16, wherein said compounds are selected from:

{3-[3-(4-Methoxy-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-phenyl-methanone {3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-phenyl-methanone (4-Fluoro-phenyl)-[3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone

- (3-Fluoro-phenyl)-[3-(3-phenyl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone (4-Fluoro-phenyl)-[3-[3-(3-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (3-Fluoro-phenyl)-[3-[3-(3-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (4-Fluoro-phenyl)-[3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (3-Fluoro-phenyl)-[3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (R)-(4-Fluoro-phenyl)-[3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone (4-Fluoro-phenyl)-[3-[5-(4-fluoro-phenyl)-4-methyl-4H-[1,2,4]triazol-3-yl]-piperidin 1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-l}-(2-phenyl-thiazol-4-yl)-methanone
- {{(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-methanone
- $\label{eq:continuous} $$ {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-[1,2,3]thiadiazol-4-yl-methanone$
- Benzothiazol-2-yl-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(5-methyl-isoxazol-3-yl)-methanone
- (1,5-Dimethyl-1H-pyrazol-3-yl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-trifluoromethyl-phenyl)-methanone
- 4-{(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidine-1-carbonyl}-benzonitrile {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-isoxazol-5-yl-methanone (3-Chloro-4-fluoro-phenyl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(2-phenyl-2H-pyrazol-3-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(5-methyl-2-phenyl-2H-[1,2,3]triazol-4-yl)-methanone
- (4-Fluoro-3-methyl-phenyl)-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(3-methyl-thiophen-2-yl)-methanone

- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(1-methyl-1H-pyrrol-2-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-thiazol-2-yl-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(4-methyl-thiazol-5-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(6-morpholin-4-yl-pyridin-3-yl)-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-(1H-indol-5-yl)-methanone 2-(4-Fluoro-phenyl)-1-{(S)-3-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-ethanone
- 3-(4-Fluoro-phenyl)-1-{(S)-3-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-propan-1-one
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-isoquinolin-3-yl-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-quinoxalin-6-yl-methanone
- {(S)-3-[3-(4-Fluoro-phenyl)-1,2,4-oxadiazol-5-yl]-piperidin-1-yl}-benzoimidazol-6-yl-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-naphthalen-1-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone {(S)-3-[3-(2,6-Difluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-fluoro-phenyl)-methanone
- (4-Fluoro-phenyl)-{(S)-3-[3-(2-methoxy-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone
- (4-Fluoro-phenyl)-[(S)-3-(3-naphthalen-2-yl-[1,2,4]oxadiazol-5-yl)-piperidin-1-yl]-methanone (4-Fluoro-phenyl)-[3-[5-(4-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-piperidin-1-yl}-methanone (4-Fluoro-phenyl)-[3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-4-methyl-piperazin-1-yl}-methanone
- (S)-1-(4-Fluoro-benzoyl)-piperidine-3-carboxylic acid (4-fluoro-phenyl)-amide
- (S)-1-(4-Fluoro-benzoyl)-piperidine-3-carboxylic acid (4-fluoro-phenyl)-methyl-amide.
- (E)-3-(4-Fluoro-phenyl)-1-{(S)-3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-propenone
- 1-(4-{(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidine-1-carbonyl}-piperidin-1-yl)-ethanone
- {(S)-3-[3-(4-Fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-(4-imidazol-1-yl-phenyl)-methanone
- (4-Fluoro-phenyl)-{(S)-3-[3-(4-nitro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone

(3,4-Difluoro-phenyl)-{(S)-3-[3-(4-nitro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone.

(Currently amended) A compound according to claim 1 claims 1 to 16, Claim 19. wherein said compounds are selected from: (4-fluorophenyl)-{(S)-3-[5-(4-fluorophenyl)isoxazol-3-yl]piperidin-1-yl}methanone (4-fluorophenyl)-{(S)- 3-[5-(4-fluorophenyl)-1H-imidazol-2-yl]piperidin-1-yl)methanone (4-fluorophenyl)-{(S)- 3-[4-(4-fluorophenyl)-1H-imidazol-1-yl]piperidin-1-yl}methanone (4-fluorophenyl)-{(S)- 3-[4-(4-fluorophenyl)-1H-pyrazol-1-yl]piperidin-1-yl }methanone N-(1-(4-fluorobenzoyl)piperidin-3-yl)-4-fluorobenzamid (2-Fluoro-phenyl)-{3-[2-(4-fluoro-phenyl)-oxazol-5-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-oxazol-2-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-thiazol-2-yl}-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[2-(4-fluoro-phenyl)-thiazol-5-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,3,4]thiadiazol-2-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(4-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-piperidin-1-yl}-methanone (2-fluorophenyl)(3-(5-(4-fluorophenyl)isoxazol-3-yl)piperidin-1-yl)methanone (2-fluorophenyl)(3-(5-(4-fluorophenyl)-1H-imidazol-2-yl)piperidin-1-yl)methanone (2-fluorophenyl)(3-(4-(4-fluorophenyl)-1H-imidazol-1-yl)piperidin-1-yl)methanone (2-fluorophenyl)(3-(4-(4-fluorophenyl)-1H-pyrazol-1-yl)piperidin-1-yl)methanone N-(1-(4-fluorobenzoyl)piperidin-3-yl)-2-fluorobenzamid (2-Fluoro-phenyl)-{3-[2-(3,4-fluoro-phenyl)-oxazol-5-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-oxazol-2-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-thiazol-2-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[2-(3,4-fluoro-phenyl)-thiazol-5-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-[1,3,4]thiadiazol-2-yl]-piperidin-1-yl}-methanone (2-Fluoro-phenyl)-{3-[5-(3,4-fluoro-phenyl)-[1,2,4]oxadiazol-3-yl]-piperidin-1-yl}-methanone (2-fluorophenyl)(3-(5-(3,4-fluorophenyl)isoxazol-3-yl)piperidin-1-yl)methanone (2-fluorophenyl)(3-(5-(3,4-fluorophenyl)-1H-imidazol-2-yl)piperidin-1-yl)methanone (2-fluorophenyl)(3-(4-(3,4-fluorophenyl)-1H-imidazol-1-yl)piperidin-1-yl)methanone (2-fluorophenyl)(3-(4-(3,4-fluorophenyl)-1H-pyrazol-1-yl)piperidin-1-yl)methanone N-(1-(3,4-fluorobenzoyl)piperidin-3-yl)-2-fluorobenzamid.

- Claim 20. (Currently amended) A pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 1 claims 1 to 19 and pharmaceutically acceptable carriers and/or excipients.
- Claim 21. (Currently amended) A method of treating or preventing a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of mGluR5 allosteric modulators, comprising administering to a mammal in need of such treatment or prevention, an effective amount of a compound/composition according to claim 1 claims 1 to 20.
- Claim 22. (Currently amended) A method of treating or preventing a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of mGluR5 positive allosteric modulators (enhancer), comprising administering to a mammal in need of such treatment or prevention, an effective amount of a compound according to claim 1 claims 1 to 20.
- Claim 23. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of anxiety disorders: Agoraphobia, Generalized Anxiety Disorder (GAD), Obsessive-Compulsive Disorder (OCD), Panic Disorder, Posttraumatic Stress Disorder (PTSD), Social Phobia, Other Phobias, Substance-Induced Anxiety Disorder, comprising administering an effective amount of a compound according to claim 1-claims-1 to-20.
- Claim 24. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of childhood disorders: Attention-Deficit/Hyperactivity Disorder), comprising administering an effective amount of a compound according to claim 1 claims 1 to 20.
- Claim 25. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of eating Disorders (Anorexia Nervosa, Bulimia Nervosa), comprising administering an effective amount of a compound according to claim 1 claims 1 to 20.

- Claim 26. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of mood disorders: Bipolar Disorders (I & II), Cyclothymic Disorder, Depression, Dysthymic Disorder, Major Depressive Disorder, Substance-Induced Mood Disorder, comprising administering an effective amount of a compound according to <u>claim 1</u> <u>claims 1 to 20</u>.
- Claim 27. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of psychotic disorders: Schizophrenia, Delusional Disorder, Schizoaffective Disorder, Schizophreniform Disorder, Substance-Induced Psychotic Disorder, comprising administering an effective amount of a compound according to-claim 1 claims 1 to 20.
- Claim 28. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of cognitive disorders: Delirium, Substance-Induced Persisting Delirium, Dementia, Dementia Due to HIV Disease, Dementia Due to Huntington's Disease, Dementia Due to Parkinson's Disease, Dementia of the Alzheimer's Type, Substance-Induced Persisting Dementia, Mild Cognitive Impairment, comprising administering an effective amount of a compound according to claim 1—claims 1 to 20.
- Claim 29. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of personality disorders: Obsessive-Compulsive Personality Disorder, Schizoid, Schizotypal disorder, comprising administering an effective amount of a compound according to claim 1 claims 1 to 20.
- Claim 30. (Currently amended) A method useful for treating or preventing central nervous system disorders selected from the group consisting of substance-related disorders: Alcohol abuse, Alcohol dependence, Alcohol withdrawal, Alcohol withdrawal delirium, Alcohol-induced psychotic disorder, Amphetamine dependence, Amphetamine withdrawal, Cocaine dependence, Cocaine withdrawal, Nicotine dependence, Nicotine withdrawal, Opioid dependence, Opioid withdrawal, comprising administering an effective amount of a compound according to claim 1-claims 1 to 20.

- Claim 33. (new) A method for treating a mammal suffering from or susceptible to Agoraphobia, Generalized Anxiety Disorder (GAD), Obsessive-Compulsive Disorder (OCD), Panic Disorder, Posttraumatic Stress Disorder (PTSD), Social Phobia, Other Phobias, Substance-Induced Anxiety Disorder, the method comprising administering a compound of claim 1 to the mammal.
- Claim 34. (new) A method for treating a mammal suffering from or susceptible to Attention-Deficit/Hyperactivity Disorder, or an Eating disorder, the method comprising administering a compound of claim 1 to the mammal.
- Claim 35. (new) A method for treating a mammal suffering from or susceptible to an Eating disorder, the method comprising administering a compound of claim 1 to the mammal.
- Claim 36. (new) A method for treating a mammal suffering from or susceptible to Bipolar Disorders (I & II), Cyclothymic Disorder, Depression, Dysthymic Disorder, Major Depressive Disorder, or Substance-Induced Mood Disorder, the method comprising administering a compound of claim 1 to the mammal.
- Claim 37. (new) A method for treating a mammal suffering from or susceptible to Schizophrenia, Delusional Disorder, Schizoaffective Disorder, Schizophreniform Disorder, or Substance-Induced Psychotic Disorder, the method comprising administering a compound of claim 1 to the mammal.
- Claim 38. (new) A method for treating a mammal suffering from or susceptible to Delirium, Substance-Induced Persisting Delirium, Dementia, Dementia Due to HIV Disease, Dementia Due to Huntington's Disease, Dementia Due to Parkinson's Disease, Dementia of the Alzheimer's Type, Substance-Induced Persisting Dementia, or Mild Cognitive Impairment, the method comprising administering a compound of claim 1 to the mammal.
- Claim 39. (new) A method for treating a mammal suffering from or susceptible to Obsessive-Compulsive Personality Disorder, Schizoid, or Schizotypal disorder, the method comprising administering a compound of claim 1 to the mammal.

Claim 40. (new) A method for treating a mammal suffering from or susceptible to Alcohol abuse, Alcohol dependence, Alcohol withdrawal, Alcohol withdrawal delirium, Alcohol-induced psychotic disorder, Amphetamine dependence, Amphetamine withdrawal, Cocaine dependence, Cocaine withdrawal, Nicotine dependence, Nicotine withdrawal, Opioid dependence, or Opioid withdrawal, the method comprising administering a compound of claim 1 to the mammal.

- Claim 41. (new) A pharmaceutical composition comprising a compound of claim 1.
- Claim 42. (new) A pharmaceutical composition of claim 41 further comprising a pharmaceutically acceptable carrier.
- Claim 43. (new) A method to prepare a tracer to for imaging metabotropic glutamate receptors, comprising using a compound of claim 1.