ISyE403 Regression and Forecasting Practice Problems 1 Solutions Spring 2016

1.a. a = 2.7738/0.1846 = 15.02.

b.
$$b = 11392/25.5833 = 445.29$$
.

c.
$$s = \sqrt{25.5833} = 5.05$$
.

d.
$$R^2 = 22784/23091 = 0.987$$
.

2. a.
$$\hat{\beta}_1 = SS_{xy}/SS_{xx} => SS_{xx} = 16.22/3.4 = 4.77$$
.

b.
$$SSE = SS_{yy} - \hat{\beta}_1 S_{xy} = 4.062 \Rightarrow SS_{yy} = 4.062 + 3.4(16.22) = 59.21.$$

3. a. We test H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$ vs. H_a : at least one β is not 0. Since

 $F(\text{model}) = 35.51 > F_{.05,3,15} = 3.29$, we reject H_0 . Rejecting H_0 implies the linear regression model as a whole is useful. Corresponding p value = 0 < 0.05 (or any α) => reject H_0 . It confirms the conclusion.

b.
$$\hat{y} = -40.7 + 0.00362(1531) + 1.23(21.3) + 4.76(7.6) = 27.217$$

$$y - \hat{y} = 29 - 27.25 = 1.783$$
 (or 1.756).

- c. R-Sq = 87.7% of the total variability in homicide rate is explained by the regression.
- d. We test H_0 : $\beta_2 = 0$ vs. H_a : $\beta_2 \neq 0$. Test statistic, $t = 2.6 > t_{.025, 15} = 2.131$. So, we reject H_0 which implies X_2 is a significant predictor.
- e. When $\alpha = 0.01$, X_1 and X_3 are statistically significant, since their *p*-values < 0.01. The predictor X_2 is not significant, since its *p*-value > 0.01.
- 4. a. True
 - b. False
 - c. False
 - d. False
 - e. True
- 5. a. Proved.

$$\sum_{i=1}^{n} e_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = \sum_{i=1}^{n} (y_{i} - \overline{y} - \hat{\beta}_{1}(x_{i} - \overline{x})) = \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \overline{y} - \hat{\beta}_{1} \sum_{i=1}^{n} (x_{i} - \overline{x})$$
$$= n \overline{y} - n \overline{y} - \hat{\beta}_{1} (n\overline{x} - n\overline{x}) = 0.$$

b. Disproved.

$$\sum_{i=1}^{n} e_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = \sum_{i=1}^{n} (y_{i} - \overline{y} - \hat{\beta}_{1} x_{i}) = \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \overline{y} - \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}$$

$$= n \overline{y} - n \overline{y} - \hat{\beta}_{1} n \overline{x} \neq 0 \text{ (true only if } \overline{x} = 0).$$

- 6. Short-answer questions.
- a. iv. R^2 goes up.
- b. ii. The length of the estimated prediction interval would be decreased as the value of x_p gets closer to \bar{x} .
- c. True
- d. True
- e. True
- f. False
- g. False