

REVISION

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
Bernhard

b.kainz@imperial.ac.uk

Boolean Algebra – Truth Tables

 All possible outcomes of the operators can be written as truth tables

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Boolean Algebra – Rules

Note: A and B can be any Boolean Expression

Boolean Algebra – Rules

```
Single variables (Idempotent law):
```

```
Assignment Project Exam Help
```

https://eduassistpro.github.io/

AAddbWeChat edu_assist_pro

$$A \cdot 1 = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

Boolean Algebra – de Morgan's Rule

```
(A + B)' = A' • B'

(A • B)' Asignment Project Exam Help

as before, A

https://eduassistpro.github.io/

Can generalise the Welchat edu_assist_pro

(A + B + C + D + ...)' = A' • B' •

(A • B • C • D • ... • X)' = A' + B' + C' + D' + ... + X'
```

Half Adder

Recall

	0	0	1	1
Ass	signment	Project	Exam He	elp 1
				10

https://eduassistpro.github.io/

Truth Table

А	Add W	eChat ec	lu_assist	_ <mark>Pro</mark> Carry
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	2	0	1

Full Adder

```
Assignment Project Exam Help

https://eduassistpro.github.io/
Add WeChat edu_assist_pro
```

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = (A \cdot B) + C_{in} \cdot (A \oplus B)$$

Full Adder

Conceptually

Latches

• SR-Latch: Truth table

Ass i gnn	nen t Pro	ject Exa	m Help	
0		_		
₀ http	s://edu	assistpro	.github.	io/
1 A de	1 WeCh	at edu_a	eeiet n	ro
1	1		οσίσι_μ	

Memory

- Useful variation on the SR latch circuit is the Data latch, or D latch
- · Constructed to ingether inverted Sampulles the R input signal
 - Allows for a singlhttps://eduassistpro.giabแหน่อเดร inverted

Add WeChat edu_assist_pro

Memory

- Memories hold binary values
 - · Data (e.g. Integers neelst Phorecter Exam Help
 - CPU Instructionshttps://eduassistpro.github.io/
 - Memory Addresses de We Chat edu_assistionso
- Contents remain unchanged unless overwritten with a new binary value
 - Some of them *lose* the content when power is turned off (volatile memory)

Computer Architecture

Summary

Byte Addressing (Big Endian)

Byte Addressing (Little Endian)

1GB (256M x 32-bit) Memory

1GB (256M x 32-bit) Memory

Four 256MB memory modules

Memory Interleaving

- Example:
 - Memory = 4M words, each word = 32-bits
 - · Built with 4 Alyiga heim Project Leam Help
 - For 4M words w

S

22 bits = 2 bits (thttps://eduassistpro.githuelegitor/ow within Module)

Add WeChat edu_assist_pro

Module Row within Module

High-Order Interleave

20 2

Row within Module

Module

Low-Order Interleave

MSI Chips – Multiplexer

- A multiple-input, single-output switch
- Also called MUX for short ©

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- **sel** selects which of I₀ or I₁ is mapped to the output
- For example, sel = 0 selects I₀ and sel = 1 selects I₁
- Example is called a 2-to-1 MUX
- With n selects/control lines, we can have 2ⁿ input lines

MSI Chips – Decoder

Only one output is 1 – the Assignment Project Feetber by the n-bit put number – the https://eduassistpro.github.io/

Add WeChat edu_assist_pro

ransmitting line selection with fewer wires (e.g. selecting a memory chip)

MSI Chips – Decoder

Truth Table

Α	BA	ssig	nPae	rR ₆ F	reie	cP4E	ixan	n H e	18	D_0
0	0	0			7			0	0	1
0	0	1h	ttps	://ec	luas	sist	pro.	gith	ub.id	0/0
0	1	0	0	0	0	ا م		-:-4	0	0
0	1	1 A	agi	We(_nai	eat	ı_as	sist	-Bro	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

MSI Chips – Calculations – Comparator

Assignment Project Exam Help

https://eduassistpro.github.io/ parator r Add WeChat edu_assistbip roputs A and I, 0 otherwise

MSI Chips – Calculations – Bit-shifter

- Faster calculations for powers of 2
- Shift left and right (multiply and divide)
 Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- $c = 0 \rightarrow \text{shift left}$
- $c = 1 \rightarrow shift right$

The Arithmetic Logic Unit (ALU)

Assignment Project Exam Attelp able to perform iple functions https://eduassistpro.github.io/

Add WeChat edu_assisted Property, property one of four functions is selected — A and B, A or B, not B,

arithmetic A+B

Data representation

Bit Pattern	0000	0001	I .	0011			0110	0111	1000		1010		1100	1101	1110	1111
Unsigned	0	1	2	3138	4	ent :	6	eçt	8	9	Hel	11	12	13	14	15
Sign & Magnitude	+0	+1	+2	+h	ttps	:://e	dua	ssis	tpr	o.gi	thul	o.io	/ -4	-5	-6	-7
1s Complement	+0	+1	+2	+3	_			ıt ec	-	ass	<u>.</u> -5	-4 Dro	-3	-2	-1	-0
2s Complement	+0	+1	+2	+3	+4	+5	+6	+7	-8	-7	-6	-5	-4	-3	-2	-1
Excess-8	-8	-7	-6	-5	-4	-3	-2	1	0	1	2	3	4	5	6	7
BCD	0	1	2	3	4	5	6	7	8	9	-	-	-	-	-	-

ASCII Character Set

								Bit positions
Bit positions 654								
000	001	010	011	100	101	110	111	
NUL	DLE	SP	0	@	Р	6	р	0000
SOH	DC1	!	1	А	Q	а	q	0001
STX	DC2		ımçnt	Drogiac	t Elean	LIPID	r	0010
ETX	DC3	Lysaigi	mignt		Legan	Treip	S	0011
EOT	DC4	\$	4	D	Т	d	t	0100
ENQ	NAK	%		_		е	u	0101
ACK	SYN	& nt	tps://e	duass	storo	aithub	iO/v	0110
BEL	ETB	í	tpoi//o	444		g	W	0111
BS	CAN	(8	Н		h	Х	1000
HT	EM) ^	119 PM	Chat e	שלו של	sist_p	ro y	1001
LF	SUB	*	aa iv c	Cliat	du_as	olo _j t_p	Z z	1010
VT	ESC	+	• •	K		k	{	1011
FF	FS	,	<	L	\			1100
CR	GS	-	=	M]	m	}	1101
SO	RS		>	N	٨	n	~	1110
SI	US	/	?	0	_	0	DEL	1111

Strings are represented as sequence of characters. E.g. **Fred** is encoded as follows:

English	F	r	е	d		
ASCII (Binary)	0100 0110	0111 0010	0110 0101	0110 0100		
ASCII (Hex)	46	72	65	64		

Two's Complement – BNA Summary

- Addition
 - Add the values, discarding any carry-out bit

Assignment Project Exam Help

- Subtraction
 - Negate the subtrhttps://eduassistpro.gith@brivo/ut bit

Overflow Add WeChat edu_assist_pro

- Adding two positive numbers produces a negative result
- Adding two negative numbers produces a positive result
- Adding operands of unlike signs never produces an overflow
- Note discarding the carry out of the most significant bit during Two's Complement addition is a normal occurrence, and does not by itself indicate overflow

Floating point zones of expressibility

 Example: assume numbers are formed with a signed 3digit coefficient and a signed 2-digit exponent

Assignment Project Exam Help

Zones of expre

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Normalised forms (base 10)

Number	Normalised form
23.24xs1gn4ment Pro	ject Exam. Bely 10 ⁵
$-4.01 \times \frac{\text{https://edua}}{\text{https://edua}}$	01×10^{-3}
-4.01 × https://edua 343 000 × 10 Add WeCha	3×10^5
0.000 000 098 9 × 10	at edu_assist_pro × 10 ⁻⁸

Binary fraction to decimal fraction

What is the binary value 0.01101 in decimal?

•
$$\frac{1}{4} + \frac{1}{8} + \frac{1}{32} = \frac{13}{32} = \frac{13} = \frac{13}{32} = \frac{13}{32} = \frac{13}{32} = \frac{13}{32} = \frac{13}{32} =$$

$$\bullet \frac{8+4+1}{2^5} = \frac{13}{32}$$

What about 0.000 110 011?

• Answer:
$$\frac{32+16+2+1}{2^9} = \frac{51}{512} = 0.099609375$$

Floating point multiplication

$$N_{1} \times N_{2} = \left(M_{1} \times 10^{E_{1}}\right) \times \left(M_{2} \times 10^{E_{2}}\right)$$

$$= \left(M_{1} \times M_{2}\right) \times \left(10^{E_{1}} \times 10^{E_{2}}\right)$$
Assignment Project Exam+Lelp

- That is, we mul https://eduassistpro.glthad.co/he exponents
- Example:

Add WeChat edu_assist_pro

$$(2.6 \times 10^6) \times (5.4 \times 10^{-3}) = (2.6 \times 5.4) \times (10^3)$$

= 14.04×10^3

• We must also **normalise the result**, so final answer is 1.404×10^4

Floating point addition

• A floating point addition such as $4.5 \times 10^3 + 6.7 \times 10^2$ is not a simple coefficient addition, unless the exponents are the same. Otherwise, we need to align them first

Assignment Project Exam Help

$$N_1$$
 + https://eduassistpro.githubrio/

Add WeChat edu_assist_pro

To align, choose the number wit
 shift its coefficient the corresponding number of digits to the right

$$4.5 \times 10^{3} + 6.7 \times 10^{2} = 4.5 \times 10^{3} + 0.67 \times 10^{3}$$

= $5.17 \times 10^{3} = 5.2 \times 10^{3}$
(rounded)

IEEE Single precision format (32-bit)

Exponent Significand Sign

1 Assignment Project Exan? Help

- Coefficient is cahttps://eduassistpro.glthubfid/standard
- Value represented is ±1. E × 2
 The normal bit (the 1.) is omit e significand
- field → a hidden bit
- Single precision yields 24 bits (approx. 7 decimal digits) of precision)
- Normalised ranges in decimal are approximately:

$$-10^{38}$$
 to -10^{-38} , 0, 10^{38} to 10^{-38}

Special values

• IEEE formats can encode five kinds of values: **zero**, **normalised numbers**, **denormalised numbers**, **infinity** and **not-a-numbers**(NaNe) roject Exam Help

Single precision

https://eduassistpro.github.io/ **IEEE** value Sign Value Add WeChat edu assist proprot $+0.0 \times 2^{0}$ 0 or 1 0 (all zeros) +00 + denormalised no. 0 Any non-zero bit -126 $+0. F \times 2^{-126}$ 0 or 1 pattern +normalised no. 1 ... 254 Any bit pattern $-126 \dots 127$ $+1. F \times 2^{E-127}$ 0 or 1 0 (all zeros) $+\infty$ 0 or 1 255 $+1.0 \times 2^{128}$ $+1. F \times 2^{128}$ Not-a-number 0 or 1 255 Any non-zero bit pattern

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro