Elliptic CY 3-folds

We focus on elliptic fibrations

$$T: X \longrightarrow \Theta_{/}$$

Such that 0 is Plibration over Pl.

 $\pi: L \longrightarrow \mathbb{P}^1$ consider line bundle

with
$$c_1(L) = -M$$

$$\rightarrow F_n := P(L)$$

$$\Rightarrow C_o \cdot C_o = \int_C C_1(L) = -1$$

Define C1= C+nf => C.·C1=+n

elliptic fibration over Fn:

Let $[t_{01}t_{1}]$ be homogeneous coordinates an W \Rightarrow affine coordinate $t=t_{1}/t_{0}$ $[S_{01},S_{1}]$ homogeneous coordinates of \mathbb{P}^{1} fiber \Rightarrow affine coordinate $S=\frac{S_{1}}{S_{0}}$ $T^{2}: y^{2}=x^{3}+a(S_{1}t)x+b(S_{1}t)$ $\Rightarrow \Delta=4a^{3}+27b$ $\Rightarrow \Delta(S_{1}t)=0$ gives locus of singular fibers consider small disc $D \subset F_{1}$ with

each line corresponds to a P' I mall numbers denote multiplicity Weierstrass form:

$$a(z) = 2^{L}a_{o}(z)$$

$$\nabla(5) = 5^{\prime\prime} \nabla^{\circ}(5)$$

and a, bo, Do #0 at z=0. Then we have

$oldsymbol{ol}}}}}}}}}}}}}}$	K	N	Fiber	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
≥ 0	≥ 0	O	<u>T</u> _o	
≥ 0	O	>0	In	A_{N-l}
\geq \		2	I	
1	≥χ	3	 V T*	Aı
≥ 2	2	4	IV	A_{λ}
\geq 2	≥1 2 ≥3	6	T*	A ₂ D ₄
2	3	≥7	「 「 「 「 「 「 「 「 」 「 」 「 」 「 ・ ・ ・ ・ ・ ・	\mathcal{D}_{N-1}
} ≥3 3	4 25	8 9	<u>1</u> ▼ 3	Fa
3	25	9	<u> </u>	E ₆
≥4	5	10	11*	Eg

homogeneous coordinates.

(*)
$$x_2^2 = x_1^3 + ax_0^2 x_1 + bx_0^3$$
 — seubic in \mathbb{P}^2
 \mathbb{P}^2 is $\mathbb{P}(L_1 \oplus L_2 \oplus L_3)$

sum of line bundles over \mathbb{F}_n

 $\rightarrow L_1 \simeq 0$, $L_2 \simeq L^2$, $L_3 \simeq L^3$ a is section of Z4, b is section of Z6 [x, x, x] = [0,0,1] always solves (+) -> section of elliptic fibration J: F. -> T2 affine coordinates { = x/x, }= x/x, -> (>, >) = (0,0) defines o I, is section of Z-1, Iz is section of Z-3 $\frac{\chi_0}{\chi_1} = \left(\frac{\chi_1}{\chi_2}\right)^5 + \alpha \left(\frac{\chi_0}{\chi_2}\right)^2 \frac{\chi_1}{\chi} + b \left(\frac{\chi_0}{\chi_2}\right)^5$ 3 = 3 + 9 327, +635 $= \frac{3}{5} + O(\frac{5}{2})$ -> }, is a good coordinate as normal bundle of o No = 2 $K_{x} = \Pi^{*} \left(K_{\Theta} + \mathcal{L} \right)$ as $K_{x} = 0$ -> Z=-Km

-> at 2=0 fiber degenerates according to simply laced Lie algebra lattice 1 -> D7-branes located at 2=0 with gauge group Gri on world volume! Question: Gauge group for 0 = Fn, N=1,2,3,...? curve CE Fn -> adjunction formula gives: (1) $X(C) = -C \cdot (C + K_{\Theta})$ Take C = Co => (1) gives 2 = - (o-(Co+ KB) = - Co. (Co+ aCo+ bf) = n + an -b = -n -b => b=-n-2 (=f and (1) give $2 = -f \cdot (f + a co + bf)$ = 0 - 9 = -2 => KF = -2Co- (2+11) f Divisors in Fa: · A: a=0, · B: b=0, △: △=0

From
$$K_{\chi} = \pi^*(K_{\Theta} + \chi)$$
 we get $\chi = 2C_0 + (2+4)f$

• $M_A \simeq \chi^G$
 $\Rightarrow A = 8C_0 + (8+44)f$

• $M_C \simeq \chi^G$
 $\Rightarrow T_C = 12C_0 + (12+64)f$

• $M_C \simeq \chi^{12}$
 $\Rightarrow \Delta = 24C_0 + (24+124)f$

Split off C_0 from Δ :

 $\Delta = NC_0 + \Delta'$

not containing C_0

and $\Delta' \cdot C_0 \geq 0$
 $\Rightarrow (24-N)C_0 \cdot C_0 + (24+124)f \cdot C_0 \Rightarrow G$
 $= -n24+nN + 24+12n$
 $= -n24+nN + n24+12n$
 $= -n24+nN +$

N=1,2: no singularity since N,L,K & O

-> no gauge group n>2: singular fibers an Co → gange group choose N=12-24 -> 0'.C=0 N23: $L \ge 4 - \frac{8}{3} = 1\frac{1}{3} = 5$ L = 2,3,- $k \ge 6 - \frac{12}{3} = 2$ N-4 -> Fiber IV -> 84(3) gange group N=4: N=4: N=6 -> I,* Fiber -> 50(8) gauge group N= 8: E7 N= 12: Eg N=6: E