# Floating-Point IP Cores User Guide





# **Contents**

| About Floating-Point IP Cores                                                 | 1-1       |
|-------------------------------------------------------------------------------|-----------|
| List of Floating-Point IP Cores                                               |           |
| Installing and Licensing IP Cores                                             |           |
| Design Flow                                                                   |           |
| IP Catalog and Parameter Editor                                               |           |
| Specifying IP Core Parameters and Options                                     |           |
| Specifying IP Core Parameters and Options (Legacy Parameter Editors)          | 1-9       |
| Upgrading IP Cores                                                            |           |
| Migrating IP Cores to a Different Device                                      | 1-13      |
| Floating-Point IP Cores General Features                                      | 1-14      |
| IEEE-754 Standard for Floating-Point Arithmetic                               | 1-15      |
| Floating-Point Formats                                                        | 1-15      |
| Special Case Numbers                                                          | 1-16      |
| Rounding                                                                      |           |
| Non-IEEE-754 Standard Format                                                  | 1-17      |
| Floating-Points IP Cores Output Latency                                       |           |
| Floating-Point IP Cores Design Example Files                                  | 1-18      |
| VHDL Component Declaration                                                    |           |
| VHDL LIBRARY-USE Declaration                                                  | 1-20      |
|                                                                               |           |
| ALTERA_FP_MATRIX_INV IP Core                                                  | 2-1       |
| ALTERA_FP_MATRIX_INV Features                                                 | 2-1       |
| ALTERA_FP_MATRIX_INV Output Latency                                           | 2-1       |
| ALTERA_FP_MATRIX_INV Resource Utilization and Performance                     | 2-1       |
| ALTERA_FP_MATRIX_INV Functional Description                                   | 2-2       |
| Cholesky Decomposition Function                                               |           |
| Triangular Matrix Inversion                                                   | 2-5       |
| Matrix Multiplication                                                         |           |
| Matrix Inversion Operation                                                    | 2-5       |
| ALTERA_FP_MATRIX_INV Design Example: Matrix Inverse of Single-Precision Forma | at        |
| Numbers                                                                       |           |
| ALTERA_FP_MATRIX_INV Design Example: Understanding the Simulation Res         | sults 2-7 |
| Sample Matrix Data                                                            |           |
| ALTERA_FP_MATRIX_INV Signals                                                  |           |
| ALTERA_FP_MATRIX_INV Parameters                                               | 2-11      |
| ALTERNA ED MATERIA MANTEUR C                                                  |           |
| ALTERA_FP_MATRIX_MULT IP Core                                                 |           |
| ALTERA_FP_MATRIX_MULT Features                                                |           |
| ALTERA_FP_MATRIX_MULT Output Latency                                          |           |
| ALTERA_FP_MATRIX_MULT Resource Utilization and Performance                    |           |
| ALTERA_FP_MATRIX_MULT Functional Description                                  | 3-2       |

| ALTERA_FP_MATRIX_MULT Signals                                                | 3-3 |
|------------------------------------------------------------------------------|-----|
| ALTERA_FP_MATRIX_MULT Parameters                                             |     |
|                                                                              |     |
| ALTERA_FP_ACC_CUSTOM IP Core                                                 | 4-1 |
| ALTERA_FP_ACC_CUSTOM Features                                                | 4-1 |
| ALTERA_FP_ACC_CUSTOM Output Latency                                          |     |
| ALTERA_FP_ACC_CUSTOM Resource Utilization and Performance                    |     |
| ALTERA_FP_ACC_CUSTOM Signals                                                 |     |
| ALTERA_FP_ACC_CUSTOM Parameters                                              | 4-4 |
| ALTFP_ADD_SUB IP Core                                                        | 5-1 |
| ALTFP_ADD_SUB Features                                                       |     |
| ALTFP_ADD_SUB Output Latency                                                 |     |
| ALTFP_ADD_SUB Truth Table                                                    |     |
| ALTFP ADD SUB Resource Utilization and Performance                           |     |
| ALTFP_ADD_SUB Design Example: Addition of Double-Precision Format Numbers    |     |
| ALTFP_ADD_SUM Design Example: Understanding the Simulation Results           |     |
| ALTFP_ADD_SUB Signals                                                        |     |
| ALTFP_ADD_SUB Parameters                                                     |     |
|                                                                              |     |
| ALTFP_DIV IP Core                                                            |     |
| ALTFP_DIV Features                                                           |     |
| ALTFP_DIV Output Latency                                                     |     |
| ALTFP_DIV Truth Table                                                        |     |
| ALTFP_DIV Resource Utilization and Performance                               |     |
| ALTFP_DIV Design Example: Division of Single-Precision                       |     |
| ALTFP_DIV Design Example: Understanding the Simulation Results               |     |
| ALTFP_DIV Signals                                                            |     |
| ALTFP_DIV Parameters                                                         | 6-7 |
| ALTFP_MULT IP Core                                                           | 7-1 |
| ALTFP_MULT IP Core Features                                                  | 7-1 |
| ALTFP_MULT Output Latency                                                    | 7-1 |
| ALTFP_MULT Truth Table                                                       |     |
| ALTFP_MULT Resource Utilization and Performance                              |     |
| ALTFP_MULT Design Example: Multiplication of Double-Precision Format Numbers |     |
| ALTFP_MULT Design Example: Understanding the Simulation Waveform             |     |
| Parameters                                                                   |     |
| ALTFP_MULT Signals                                                           |     |
| AITED CODT                                                                   | 0 1 |
| ALTFP_SQRT                                                                   |     |
| ALTFP_SQRT Features                                                          |     |
| Output Latency                                                               |     |
| ALTED CORT D                                                                 |     |
| ALTFP_SQRT Resource Utilization and Performance                              | 8-3 |

| ALTFP_SQRT Design Example: Square Root of Single-Precision Format Numbers      | 8-3  |
|--------------------------------------------------------------------------------|------|
| ALTFP_SQRT Design Example: Understanding the Simulation Results                | 8-3  |
| ALTFP_SQRT Signals                                                             | 8-4  |
| ALTFP_SQRT Parameters                                                          | 8-6  |
| ALTFP_EXP IP Core                                                              | 9-1  |
| ALTFP_EXP Features                                                             |      |
| Output Latency                                                                 |      |
| ALTFP_EXP Truth Table                                                          |      |
| ALTFP EXP Resource Utilization and Performance                                 |      |
| ALTFP_EXP Design Example: Exponential of Single-Precision Format Numbers       |      |
| ALTFP_EXP Design Example: Understanding the Simulation Results                 |      |
| ALTFP_EXP Signals                                                              |      |
| ALTFP_EXP Parameters                                                           |      |
| ALTFP_INV IP Core                                                              | 10 1 |
| ALTFP INV Features                                                             |      |
| <del>-</del>                                                                   |      |
| Output Latency                                                                 |      |
| ALTFP_INV Truth Table                                                          |      |
| ALTFP_INV Resource Offization and Performance                                  |      |
| ALTFP_INV Design Example: Inverse of Single-Frecision Format Numbers           |      |
| Ports                                                                          |      |
| Parameters.                                                                    |      |
|                                                                                |      |
| ALTFP_INV_SQRT IP Core                                                         |      |
| ALTFP_INV_SQRT Features                                                        |      |
| Output Latency                                                                 |      |
| ALTFP_INV_SQRT Truth Table                                                     |      |
| ALTFP_INV_SQRT Resource Utilization and Performance                            | 11-2 |
| ALTFP_INV_SQRT Design Example: Inverse Square Root of Single-Precision Format  |      |
| Numbers                                                                        |      |
| ALTFP_INV_SQRT Design Example: Understanding the Simulation Results            |      |
| Ports                                                                          |      |
| Parameters                                                                     | 11-5 |
| ALTFP_LOG                                                                      | 12-1 |
| ALTFP_LOG Features                                                             | 12-1 |
| Output Latency                                                                 |      |
| ALTFP_LOG Truth Table                                                          |      |
| ALTFP_LOG Resource Utilization and Performance                                 | 12-2 |
| ALTFP_LOG Design Example: Natural Logarithm of Single-Precision Format Numbers | 12-2 |
| ALTFP_LOG Design Example: Understanding the Simulation Results                 |      |
| Signals                                                                        |      |
| Parameters                                                                     | 12-6 |

| ALTFP_ATAN IP Core                                                           | 13-1 |
|------------------------------------------------------------------------------|------|
| Output Latency                                                               | 13-1 |
| ALTFP_ATAN Features                                                          |      |
| ALTFP_ATAN Resource Utilization and Performance                              |      |
| Ports                                                                        | 13-2 |
| ALTFP_ATAN Parameters                                                        | 13-2 |
| ALTER CINICOC ID Com-                                                        | 141  |
| ALTFP_SINCOS IP Core                                                         |      |
| ALTFP_SINCOS Features                                                        |      |
| Output Latency                                                               |      |
| ALTFP_SINCOS Resource Utilization and Performance                            |      |
| ALTEP_CINCOS R                                                               |      |
| ALTFP_SINCOS Parameters                                                      | 14-3 |
| ALTFP ABS IP Core                                                            | 15-1 |
| ALTFP_ABS Features                                                           |      |
| ALTFP_ABS Output Latency                                                     |      |
| ALTFP_ABS Resource Utilization and Performance                               |      |
| ALTFP_ABS Design Example: Absolute Value of Multiplication Results           |      |
| ALTFP_ABS Design Example: Understanding the Simulation Results               |      |
| ALTFP_ABS Signals                                                            |      |
| ALTFP_ABS Parameters                                                         |      |
| ALTED COMPARE IN Com-                                                        | 16.1 |
| ALTFP_COMPARE IP Core                                                        |      |
| ALTFP_COMPARE Features                                                       |      |
| ALTFP_COMPARE Output Latency                                                 |      |
| ALTFP_COMPARE Resource Utilization and Performance                           |      |
| ALTFP_COMPARE Design Example: Comparison of Single-Precision Format Numbers  |      |
| ALTFP_COMPARE Design Example: Understanding the Simulation Results           |      |
| ALTFP_COMPARE Signals                                                        |      |
| ALTFP_COMPARE Parameters                                                     | 16-4 |
| ALTFP_CONVERT IP Core                                                        | 17-1 |
| ALTFP_CONVERT Features                                                       |      |
| ALTFP_CONVERT Conversion Operations                                          |      |
| ALTFP_CONVERT Output Latency                                                 |      |
| ALTFP_CONVERT Resource Utilization and Performance                           |      |
| ALTFP_CONVERT Design Example: Convert Double-Precision Floating-Point Format | 17 0 |
| Numbers                                                                      | 17-6 |
| ALTFP_CONVERT Design Example: Understanding the Simulation Results           |      |
| ALTFP_CONVERT Signals                                                        |      |
| ALTFP_CONVERT Parameters                                                     |      |

| ALTERA_FP_FUNCTIONS IP Core                              | 18-1  |
|----------------------------------------------------------|-------|
| ALTERA_FP_FUNCTIONS Features                             | 18-1  |
| ALTERA_FP_FUNCTIONS Output Latency                       | 18-2  |
| ALTERA_FP_FUNCTIONS Target Frequency                     | 18-2  |
| ALTERA_FP_FUNCTIONS Combined Target                      |       |
| ALTERA_FP_FUNCTIONS Resource Utilization and Performance | 18-3  |
| ALTERA_FP_FUNCTIONS Signals                              | 18-24 |
| ALTERA_FP_FUNCTIONS Parameters                           | 18-25 |
| Document Revision History                                | A-1   |
| Document Revision History                                | A-1   |

# **About Floating-Point IP Cores**

1

2014.12.19

UG-01058





The Altera® floating-point megafunction IP cores enable you to perform floating-point arithmetic in FPGAs through optimized parameterizable functions for Altera device architectures.

You can customize the IP cores by configuring various parameters to accommodate your needs.

# **List of Floating-Point IP Cores**

This table lists the Floating-Point IP cores.

Table 1-1: List of IP Cores

| IP Core Name                          | Function Overview         |
|---------------------------------------|---------------------------|
| Operator Functions                    |                           |
| ALTFP_ADD_SUB                         | Adder/Subtractor          |
| ALTFP_DIV                             | Divider                   |
| ALTFP_MULT                            | Multiplier                |
| ALTFP_SQRT                            | Square Root               |
| Algebraic and Trancendental Functions |                           |
| ALTFP_EXP                             | Exponential               |
| ALTFP_INV                             | Inverse                   |
| ALTFP_INV_SQRT                        | Inverse Square Root       |
| ALTFP_LOG                             | Natural Logarithm         |
| Trigonometric Functions               |                           |
| ALTFP_ATAN                            | Arctangent                |
| ALTFP_SINCOS                          | Trigonometric Sine/Cosine |
| Other Functions                       |                           |
| ALTFP_ABS                             | Absolute value            |
| ALTFP_COMPARE                         | Comparator                |
| ALTFP_CONVERT                         | Converter                 |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| IP Core Name         | Function Overview                        |
|----------------------|------------------------------------------|
| ALTERA_FP_ACC_CUSTOM | An Application Specific Accumulator      |
| ALTERA_FP_FUNCTIONS  | A Collection of Floating-Point Functions |
| Complex Functions    |                                          |
| ALTFP_MATRIX_INV     | Matrix Inverse                           |
| ALTFP_MATRIX_MULT    | Matrix Multiplier                        |

#### **Related Information**

**Introduction to Altera IP Cores** 

Provides general information about Altera IP cores

# **Installing and Licensing IP Cores**

The Altera IP Library provides many useful IP core functions for your production use without purchasing an additional license. Some Altera MegaCore<sup>®</sup> IP functions require that you purchase a separate license for production use. However, the OpenCore<sup>®</sup> feature allows evaluation of any Altera<sup>®</sup> IP core in simulation and compilation in the software. After you are satisfied with functionality and perfformance, visit the Self Service Licensing Center to obtain a license number for any Altera product.

Figure 1-1: IP Core Installation Path



**Note:** The default IP installation directory on Windows is *drive*:\altera\<*version number*>; on Linux it is <*home directory*>/altera/<*version number*>.

#### **Related Information**

- Altera Licensing Site
- Altera Software Installation and Licensing Manual

# **Design Flow**

Use the IP Catalog and parameter editor to define and instantiate complex IP cores. Using the GUI ensures that you set all IP core ports and parameters properly.

If you are an expert user, and choose to configure the IP core directly through parameterized instantiation in your design, refer to the port and parameter details. The details of these ports and parameters are hidden in the parameter editor.

Altera Corporation About Floating-Point IP Cores



### **IP Catalog and Parameter Editor**

The IP Catalog (**Tools** > **IP Catalog**) and parameter editor help you easily customize and integrate IP cores into your project. You can use the IP Catalog and parameter editor to select, customize, and generate files representing your custom IP variation.

**Note:** The IP Catalog (**Tools** > **IP Catalog**) and parameter editor replace the MegaWizard<sup>™</sup> Plug-In Manager for IP selection and parameterization, beginning in software version 14.0. Use the IP Catalog and parameter editor to locate and parameterize Altera IP cores.

The IP Catalog lists installed IP cores available for your design. Double-click any IP core to launch the parameter editor and generate files representing your IP variation. The parameter editor prompts you to specify an IP variation name, optional ports, and output file generation options. The parameter editor generates a top-level Qsys system file (.qsys) or IP file (.qip) representing the IP core in your project. You can also parameterize an IP variation without an open project.

Use the following features to help you quickly locate and select an IP core:

- Filter IP Catalog to **Show IP for active device family** or **Show IP for all device families**. If you have no project open, select the **Device Family** in IP Catalog.
- Type in the Search field to locate any full or partial IP core name in IP Catalog.
- Right-click an IP core name in IP Catalog to display details about supported devices, open the IP core's installation folder, and view links to documentation.
- Click **Search for Partner IP**, to access partner IP information on the Altera website.

#### Figure 1-2: IP Catalog



**Note:** The IP Catalog is also available in Qsys (**View** > **IP Catalog**). The Qsys IP Catalog includes exclusive system interconnect, video and image processing, and other system-level IP that are not available in the IP Catalog. For more information about using the Qsys IP Catalog, refer to *Creating a System with Qsys* in the *Handbook*.

#### **Using the Parameter Editor**

The parameter editor helps you to configure IP core ports, parameters, and output file generation options.

- Use preset settings in the parameter editor (where provided) to instantly apply preset parameter values for specific applications.
- View port and parameter descriptions, and links to documentation.
- Generate testbench systems or example designs (where provided).

About Floating-Point IP Cores



**Figure 1-3: IP Parameter Editors** 



### **Specifying IP Core Parameters and Options**

You can quickly configure a custom IP variation in the parameter editor. Use the following steps to specify IP core options and parameters in the parameter editor. Refer to *Specifying IP Core Parameters and Options (Legacy Parameter Editors)* for configuration of IP cores using the legacy parameter editor.

- 1. In the IP Catalog (**Tools** > **IP Catalog**), locate and double-click the name of the IP core to customize. The parameter editor appears.
- **2.** Specify a top-level name for your custom IP variation. The parameter editor saves the IP variation settings in a file named <*your\_ip*>.**qsys**. Click **OK**.
- **3.** Specify the parameters and options for your IP variation in the parameter editor, including one or more of the following. Refer to your IP core user guide for information about specific IP core parameters.
  - Optionally select preset parameter values if provided for your IP core. Presets specify initial parameter values for specific applications.
  - Specify parameters defining the IP core functionality, port configurations, and device-specific features.
  - Specify options for processing the IP core files in other EDA tools.
- **4.** Click **Generate HDL**, the **Generation** dialog box appears.
- **5.** Specify output file generation options, and then click **Generate**. The IP variation files generate according to your specifications.
- **6.** To generate a simulation testbench, click **Generate** > **Generate Testbench System**.

**About Floating-Point IP Cores** 

- 7. To generate an HDL instantiation template that you can copy and paste into your text editor, click **Generate** > **HDL Example**.
- **8.** Click **Finish**. The parameter editor adds the top-level **.qsys** file to the current project automatically. If you are prompted to manually add the **.qsys** file to the project, click **Project** > **Add/Remove Files in Project** to add the file.
- **9.** After generating and instantiating your IP variation, make appropriate pin assignments to connect ports.

Figure 1-4: IP Parameter Editor



### Files Generated for Altera IP Cores and Qsys Systems

The Quartus Prime software generates the following output file structure for IP cores and Qsys systems.

Altera Corporation About Floating-Point IP Cores



Figure 1-5: Files generated for IP cores and Qsys Systems



Table 1-2: IP Core and Qsys Simulation Generated Files

| File Name                  | Description                                                                                                                                                                                                                                                                                                                              |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <my_ip>.qsys</my_ip>       | The Qsys system or top-level IP variation file. < <i>my_ip</i> > is the name that you give your IP variation. You must add the <b>.qsys</b> file to your Quartus project to enable NativeLink for Arria 10 and Stratix 10 device families.                                                                                               |
| <system>.sopcinfo</system> | Describes the connections and IP component parameterizations in your Qsys system. You can parse its contents to get requirements when you develop software drivers for IP components.                                                                                                                                                    |
|                            | Downstream tools such as the Nios II tool chain use this file.  The .sopcinfo file and the system.h file generated for the Nios II tool chain include address map information for each slave relative to each master that accesses the slave. Different masters may have a different address map to access a particular slave component. |

About Floating-Point IP Cores

Altera Corporation



| File Name                           | Description                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| < <i>my_ip</i> >.cmp                | The VHDL Component Declaration (.cmp) file is a text file that contains local generic and port definitions that you can use in VHDL design files.                                                                                                                                                                                                               |
| < <i>my_ip</i> >.html               | A report that contains connection information, a memory map showing the address of each slave with respect to each master to which it is connected, and parameter assignments.                                                                                                                                                                                  |
| <my_ip>_generation.rpt</my_ip>      | IP or Qsys generation log file. A summary of the messages during IP generation.                                                                                                                                                                                                                                                                                 |
| <my_ip>.debuginfo</my_ip>           | Contains post-generation information. Used to pass System Console and Bus Analyzer Toolkit information about the Qsys interconnect. The Bus Analysis Toolkit uses this file to identify debug components in the Qsys interconnect.                                                                                                                              |
| < <i>my_ip</i> >.qip                | Contains all the required information about the IP component to integrate and compile the IP component in the software.                                                                                                                                                                                                                                         |
| <my_ip>.csv</my_ip>                 | Contains information about the upgrade status of the IP component.                                                                                                                                                                                                                                                                                              |
| <my_ip>.bsf</my_ip>                 | A Block Symbol File (. <b>bsf</b> ) representation of the IP variation for use in Block Diagram Files (. <b>bdf</b> ).                                                                                                                                                                                                                                          |
| <my_ip>.spd</my_ip>                 | Required input file for ip-make-simscript to generate simulation scripts for supported simulators. The <b>.spd</b> file contains a list of files generated for simulation, along with information about memories that you can initialize.                                                                                                                       |
| <my_ip>.ppf</my_ip>                 | The Pin Planner File (.ppf) stores the port and node assignments for IP components created for use with the Pin Planner.                                                                                                                                                                                                                                        |
| <my_ip>_bb.v</my_ip>                | You can use the Verilog black-box (_bb.v) file as an empty module declaration for use as a black box.                                                                                                                                                                                                                                                           |
| <my_ip>.sip</my_ip>                 | Contains information required for NativeLink simulation of IP components. You must add the <b>.sip</b> file to your Quartus project to enable NativeLink for Arria II, Arria V, Cyclone IV, Cyclone V, MAX 10, MAX II, MAX V, Stratix IV, and Stratix V devices.                                                                                                |
| <my_ip>_inst.v or _inst.vhd</my_ip> | HDL example instantiation template. You can copy and paste the contents of this file into your HDL file to instantiate the IP variation.                                                                                                                                                                                                                        |
| <my_ip>.regmap</my_ip>              | If the IP contains register information, the .regmap file generates. The .regmap file describes the register map information of master and slave interfaces. This file complements the .sopcinfo file by providing more detailed register information about the system. This enables register display views and user customizable statistics in System Console. |

Altera Corporation About Floating-Point IP Cores



| File Name                                  | Description                                                                                                                                                                                                                                                                               |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <my_ip>.svd</my_ip>                        | Allows HPS System Debug tools to view the register maps of peripherals connected to HPS within a Qsys system.                                                                                                                                                                             |
|                                            | During synthesis, the .svd files for slave interfaces visible to System Console masters are stored in the .sof file in the debug section. System Console reads this section, which Qsys can query for register map information. For system slaves, Qsys can access the registers by name. |
| <my_ip>.v  or  <my_ip>.vhd</my_ip></my_ip> | HDL files that instantiate each submodule or child IP core for synthesis or simulation.                                                                                                                                                                                                   |
| mentor/                                    | Contains a ModelSim <sup>®</sup> script <b>msim_setup.tcl</b> to set up and run a simulation.                                                                                                                                                                                             |
| aldec/                                     | Contains a Riviera-PRO script rivierapro_setup.tcl to setup and run a simulation.                                                                                                                                                                                                         |
| /synopsys/vcs<br>/synopsys/vcsmx           | Contains a shell script <b>vcs_setup.sh</b> to set up and run a VCS <sup>®</sup> simulation.  Contains a shell script <b>vcsmx_setup.sh</b> and <b>synopsys_sim.setup</b> file to set up and run a VCS MX <sup>®</sup> simulation.                                                        |
| /cadence                                   | Contains a shell script <b>ncsim_setup.sh</b> and other setup files to set up and run an NCSIM simulation.                                                                                                                                                                                |
| /submodules                                | Contains HDL files for the IP core submodule.                                                                                                                                                                                                                                             |
| <child cores="" ip="">/</child>            | For each generated child IP core directory, Qsys generates /synth and / sim sub-directories.                                                                                                                                                                                              |

**Note:** For information about output file structures for lecacy IP cores, refer to *Introduction to IP Altera Cores*.

#### **Related Information**

• Introduction to Altera IP Cores

### **Specifying IP Core Parameters and Options (Legacy Parameter Editors)**

Some IP cores use a legacy version of the parameter editor for configuration and generation. Use the following steps to configure and generate an IP variation using a legacy parameter editor.

**Note:** The legacy parameter editor generates a different output file structure than the latest parameter editor. Refer to *Specifying IP Core Parameters and Options* for configuration of IP cores that use the latest parameter editor.

UG-01058 2014.12.19

**Figure 1-6: Legacy Parameter Editors** 



- **1.** In the IP Catalog (**Tools** > **IP Catalog**), locate and double-click the name of the IP core to customize. The parameter editor appears.
- **2.** Specify a top-level name and output HDL file type for your IP variation. This name identifies the IP core variation files in your project. Click **OK**.
- **3.** Specify the parameters and options for your IP variation in the parameter editor. Refer to your IP core user guide for information about specific IP core parameters.
- **4.** Click **Finish** or **Generate** (depending on the parameter editor version). The parameter editor generates the files for your IP variation according to your specifications. Click **Exit** if prompted when generation is complete. The parameter editor adds the top-level **.qip** file to the current project automatically.

**Note:** To manually add an IP variation generated with legacy parameter editor to a project, click **Project > Add/Remove Files in Project** and add the IP variation **.qip** file.

# **Upgrading IP Cores**

IP core variants generated with a previous version of the software may require upgrading before use in the current version of the software. Click **Project** > **Upgrade IP Components** to identify and upgrade outdated IP core variants.

Icons in the **Upgrade IP Components** dialog box indicate when IP upgrade is required, optional, or unsupported for IP cores in your design. This dialog box may open automatically when you open a project containing upgradeable IP variations. You must upgrade IP cores that require upgrade before you can compile the IP variation in the current version of the software.

Altera Corporation About Floating-Point IP Cores



The upgrade process preserves the original IP variation file in the project directory as <my\_variant>\_ BAK.qsys for IP targeting Arria 10 and later devices, and as <my\_variant>\_BAK.v, .sv, or .vhd for legacy IP targeting 28nm devices and greater.

**Note:** Upgrading IP cores for Arria 10 and later devices may append a unique identifier to the original IP core entity name(s), without similarly modifying the IP instance name. There is no requirement to update these entity references in any supporting file; such as the Settings File (.qsf), Synopsys Design Constraints File (.sdc), or SignalTap File (.stp), if these files contain instance names. The software reads only the instance name and ignores the entity name in paths that specify both names. Use only instance names in assignments.

**Table 1-3: IP Core Upgrade Status** 

| IP Core Status                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IP Upgraded                    | Your IP variation uses the lastest version of the IP core.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IP Upgrade Optional            | Upgrade is optional for this IP variation in the current version of the software. You can upgrade this IP variation to take advantage of the latest development of this IP core. Alternatively you can retain previous IP core characteristics by declining to upgrade. Refer to the Description for details about IP core version differences. If you do not upgrade the IP, the IP variation synthesis and simulation files are unchanged and you cannot modify parameters until upgrading. |
| IP Upgrade Mismatch<br>Warning | Warning of non-critical IP core differences in migrating IP to another device family.                                                                                                                                                                                                                                                                                                                                                                                                         |
| IP Upgrade Required            | You must upgrade the IP variation before compiling in the current version of the software. Refer to the Description for details about IP core version differences.                                                                                                                                                                                                                                                                                                                            |
| IP Upgrade Unspported          | Upgrade of the IP variation is not supported in the current version of the software due to incompatibility with the current version of the software. You are prompted to replace the unsupported IP core with a supported equivalent IP core from the IP Catalog. Refer to the Description for details about IP core version differences and links to Release Notes.                                                                                                                          |
| IP End of Life                 | Altera designates the IP core as end-of-life status. You may or may not be able to edit the IP core in the parameter editor. Support for this IP core discontinues in future releases of the software.                                                                                                                                                                                                                                                                                        |

**About Floating-Point IP Cores** 

**Altera Corporation** 



| IP Core Status    | Description                    |
|-------------------|--------------------------------|
| Encrypted IP Core | The IP variation is encrypted. |
| <b>E</b>          |                                |

Follow these steps to upgrade IP cores:

- In the latest version of the software, open the project containing an outdated IP core variation. The
  Upgrade IP Components dialog automatically displays the status of IP cores in your project, along
  with instructions for upgrading each core. Click Project > Upgrade IP Components to access this
  dialog box manually.
- 2. To upgrade one or more IP cores that support automatic upgrade, ensure that the **Auto Upgrade** option is turned on for the IP core(s), and then click **Perform Automatic Upgrade**. The **Status** and **Version** columns update when upgrade is complete. Example designs provided with any Altera IP core regenerate automatically whenever you upgrade an IP core.
- **3.** To manually upgrade an individual IP core, select the IP core and then click **Upgrade in Editor** (or simply double-click the IP core name. The parameter editor opens, allowing you to adjust parameters and regenerate the latest version of the IP core.

Figure 1-7: Upgrading IP Cores



**Note:** IP cores older than software version 12.0 do not support upgrade. Altera verifies that the current version of the software compiles the previous version of each IP core. The *Altera IP Release Notes* reports any verification exceptions for Altera IP cores. Altera does not verify compilation for IP cores older than the previous two releases.

Send Feedback

#### **Related Information**

**Altera IP Release Notes** 

### Migrating IP Cores to a Different Device

IP migration allows you to target the latest device families with IP originally generated for a different device. Some Altera IP cores migrate automatically, some IP cores require manual IP regeneration, and some do not support device migration and must be replaced in your design.

The text and icons in the **Upgrade IP Components** dialog box identifies the migration support for each IP core in the design.

**Note:** Migration of some IP cores requires installed support for the original and migration device families. For example, migration from a Stratix V device to an Arria 10 device requires installation of Stratix V and Arria 10 device families with the software.

Figure 1-8: Upgrading IP Cores



- 1. Click **File** > **Open Project** and open the project containing IP for migration to another device in the original version of the software.
- To specify a different target device for migration, click Assignments > Device and select the target device family.
- **3.** To display IP cores requiring migration, click **Project** > **Upgrade IP Components**. The **Description** field prompts you to run auto update or double-click IP cores for migration.
- **4.** To migrate one or more IP cores that support automatic upgrade, ensure that the **Auto Upgrade** option is turned on for the IP core(s), and then click **Perform Automatic Upgrade**. The **Status** and **Version** columns update when upgrade is complete.

About Floating-Point IP Cores

**Altera Corporation** 



- **5.** To migrate an IP core that does not support automatic upgrade, double-click the IP core name, and then click **OK**. The parameter editor appears.
  - **a.** If the parameter editor specifies a **Currently selected device family**, turn off **Match project/default**, and then select the new target device family.
  - **b.** Click **Finish** to migrate the IP variation using best-effort mapping to new parameters and settings. A new parameter editor opens displaying best-effort mapped parameters.
  - c. Click Generate HDL, and then confirm the Synthesis and Simulation file options. Verilog HDL is the defauilt output file format specified. If your original IP core was generated for VHDL, select VHDL to retain the original output format.
- **6.** To regenerate the new IP variation for the new target device, click **Generate**. When generation is complete, click **Close**.
- 7. Click **Finish** to complete migration of the IP core. Click **OK** if you are prompted to overwrite IP core files. The **Device Family** column displays the new target device name when migration is complete. The migration process replaces <*my\_ip*>.**qip** with the <*my\_ip*>.**qsys** top-level IP file in your project.

**Note:** If migration does not replace  $< my\_ip >$ .qip with  $< my\_ip >$ .qsys, click **Project > Add/Remove** Files in **Project** to replace the file in your project.

**8.** Review the latest parameters in the parameter editor or generated HDL for correctness. IP migration may change ports, parameters, or functionality of the IP core. During migration, the IP core's HDL generates into a library that is different from the original output location of the IP core. Update any assignments that reference outdated locations. If your upgraded IP core is represented by a symbol in a supporting Block Design File schematic, replace the symbol with the newly generated < my\_ip>.bsf after migration.

Note: The migration process may change the IP variation interface, parameters, and functionality. This may require you to change your design or to re-parameterize your variant after the **Upgrade IP Components** dialog box indicates that migration is complete. The **Description** field identifies IP cores that require design or parameter changes.

**Related Information** 

**Altera IP Release Notes** 

# Floating-Point IP Cores General Features

All Altera floating-point IP cores offer the following features:

- Support for floating-point formats.
- Input support for not-a-number (NaN), infinity, zero, and normal numbers.
- Optional asynchronous input ports including asynchronous clear (aclr) and clock enable (clk\_en).
- Support for round-to-nearest-even rounding mode.
- Compute results of any mathematical operations according to the IEEE-754 standard compliance with a maximum of 1 unit in the last place (u.l.p.) error. This assumption is applied to all floating-point IP cores excluding complex matrix multiplication and inverse operations (for example, ALTFP\_MATRIX\_MULTI and ALFP\_MATRIX\_INV), where a slight increase in errors is observed due to the accumulation of errors during the mathematical operation.

Altera floating-point IP cores do not support denormal number inputs. If the input is a denormal value, the IP core forces the value to zero and treats the value as a zero before going through any operation.

Altera Corporation About Floating-Point IP Cores



#### **Related Information**

#### FFT MegaCore Function User Guide

Altera also offers the single-precision floating-point option in the FFT MegaCore.

## **IEEE-754 Standard for Floating-Point Arithmetic**

The floating-point IP cores implement the following representations in the IEEE-754 standard:

- Floating-point numbers
- Special values (zero, infinity, denormal numbers, and NaN bit combinations)
- Single-precision, double-precision, and single-extended precision formats for floating-point numbers

### **Floating-Point Formats**

All floating-point formats have binary patterns. In Figure 1–1, S represents a sign bit, E represents an exponent field, and M is the mantissa (part of a logarithm, or fraction) field.

For a normal floating-point number, a leading 1 is always implied, for example, binary 1.0011 or decimal 1.1875 is stored as 0011 in the mantissa field. This format saves the mantissa field from using an extra bit to represent the leading 1. However, the leading bit for a denormal number can be either 0 or 1. For zero, infinity, and NaN, the mantissa field does not have an implied leading 1 nor any explicit leading bit.

#### Figure 1-9: IEEE-754 Floating-Point Format

This figure shows a floating-point format.



### **Single-Precision Format**

The single-precision format contains the following binary patterns:

- The MSB holds the sign bit.
- The next 8 bits hold the exponent bits.
- 23 LSBs hold the mantissa.

The total width of a floating-point number in the single-precision format is 32 bits. The bias for the single-precision format is 127.

#### Figure 1-10: Single-Precision Representation

This figure shows a single-precision representation.

| 3 <u>1</u> | 30 | 23 | 22 0 |
|------------|----|----|------|
| 5          |    | E  | М    |

#### **Double-Precision Format**

The double-precision format contains the following binary patterns:

About Floating-Point IP Cores

**Altera Corporation** 



#### **Single-Extended Precision Format**

- The MSB holds the sign bit.
- The next 11 bits hold the exponent bits.
- 52 LSBs hold the mantissa.

The total width of a floating-point number in the double-precision format is 64 bits. The bias for the double-precision format is 1023.

#### Figure 1-11: Double-Precision Representation

This figure shows a double-precision representation.



### **Single-Extended Precision Format**

The single-extended precision format contains the following binary patterns:

- The MSB holds the sign bit.
- The exponent and mantissa fields do not have fixed widths.
- The minimum exponent field width is 11 bits and must be less than the width of the mantissa field.
- The width of the mantissa field must be a minimum of 31 bits.

The sum of the widths of the sign bit, exponent field, and mantissa field must be a minimum of 43 bits and a maximum of 64 bits. The bias for the single-extended precision format is unspecified in the IEEE-754 standard. In these IP cores, a bias of  $2^{\text{(WIDTH\_EXP-1)}}-1$  is assumed for the single-extended precision format.

# **Special Case Numbers**

The following table lists the special case numbers defined by the IEEE-754 standard and the data bit representations.

Table 1-4: Special Case Numbers in IEEE-754 Representation

| Meaning               | Sign Field | Exponent Field | Mantissa Field |  |
|-----------------------|------------|----------------|----------------|--|
| Zero                  | Don't care | All 0's        | All 0's        |  |
| Positive Denormalized | 0          | All 0's        | Non-zero       |  |
| Negative Denormalized | 1          | All 0's        | Non-zero       |  |
| Positive Infinity     | 0          | All 1's        | All 0's        |  |
| Negative Infinity     | 1          | All 1's        | All 0's        |  |
| Not-a-Number (NaN)    | Don't care | All 1's        | Non-zero       |  |

### Rounding

The IEEE-754 standard defines four types of rounding modes, which are:

Send Feedback

- round-to-nearest-even
- round-toward-zero
- round-toward-positive-infinity
- round-toward-negative-infinity

Altera floating-point IP cores support only the most commonly used rounding mode, which is the round-to-nearest-even mode (TO\_NEAREST). With round-to-nearest-even, the IP core rounds the result to the nearest floating-point number. If the result is exactly halfway between two floating-point numbers, the IP core rounds the result so that the LSB becomes a zero, which is even.

### Non-IEEE-754 Standard Format

Only the ALTFP\_CONVERT and ALTERA\_FP\_FUNCTIONS (when the convert function is selected) support the fixed point format.

The fixed-point data type is similar to the conventional integer data type, except that the fixed-point data carries a predetermined number of fractional bits. If the width of the fraction is 0, the data becomes a normal signed integer.

The notation for fixed-point format numbers in this user guide is Qm.f, where Q designates that the number is in Q format notation, m is the number of bits used to indicate the integer portion of the number, and f is the number of bits used to indicate the fractional portion of the number.

For example, Q4.12 describes a number with 4 integer bits and 12 fractional bits in a 16-bit word.

The following figures show the difference between the signed-integer format and the fixed-point format for a 32-bit number.

Figure 1-12: Signed-Integer Format



Figure 1-13: Fixed-Point Format



# Floating-Points IP Cores Output Latency

The IP cores measure the output latency in clock cycles and is different for each IP core. In some IP cores, the precision modes determine the number of clock cycles between the input and output result. When you select a mode, the options for latency are fixed for that mode.



For specific details about latency options, refer to the Output *Latency* section of your selected IP core in this user guide.

# Floating-Point IP Cores Design Example Files

The design examples for each IP core in this user guide use the IP Catalog and parameter editor to define custom IP variations.

Simulate the designs in the ModelSim<sup>®</sup>-Altera software to generate a waveform display of the device behavior. You must be familiar with the ModelSim-Altera software before trying out the design examples.

Table 1-5: Design Files for Floating-Point IP Cores

| Floating-Point IP Cores | Design Files                                                                                                                               |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| ALTFP_ADD_SUB           | <ul> <li>altfp_add_sub_DesignExample.zip (Quartus II design files)</li> <li>altfp_add_sub_ex_msim.zip (ModelSim-Altera files)</li> </ul>   |
| ALTFP_DIV               | <ul> <li>altfp_div_DesignExample.zip (Quartus II design files)</li> <li>altfp_div_ex_msim.zip (ModelSim-Altera files)</li> </ul>           |
| ALTFP_MULT              | <ul> <li>altfp_mult_DesignExample.zip (Quartus II design files)</li> <li>altfp_mult_ex_msim.zip (ModelSim-Altera files)</li> </ul>         |
| ALTFP_SQRT              | <ul> <li>altfp_sqrt_DesignExample.zip (Quartus II design files)</li> <li>altfp_sqrt_ex_msim.zip (ModelSim-Altera files)</li> </ul>         |
| ALTFP_EXP               | <ul> <li>altfp_exp_DesignExample.zip (Quartus II design files)</li> <li>altfp_exp_ex_msim.zip (ModelSim-Altera files)</li> </ul>           |
| ALTFP_INV               | <ul> <li>altfp_inv_DesignExample.zip (Quartus II design files)</li> <li>altfp_inv_ex_msim.zip (ModelSim-Altera files)</li> </ul>           |
| ALTFP_INV_SQRT          | <ul> <li>altfp_inv_sqrt_DesignExample.zip (Quartus II design files)</li> <li>altfp_inv_sqrt_ex_msim.zip (ModelSim-Altera files)</li> </ul> |
| ALTFP_LOG               | <ul> <li>altfp_log_DesignExample.zip (Quartus II design files)</li> <li>altfp_log_ex_msim.zip (ModelSim-Altera files)</li> </ul>           |
| ALTFP_ATAN              | Not Available                                                                                                                              |
| ALTFP_SINCOS            | Not Available                                                                                                                              |
| ALTFP_ABS               | <ul> <li>altfp_mult_abs_DesignExample.zip (Quartus II design files)</li> <li>altfp_mult_abs_ex_msim.zip (ModelSim-Altera files)</li> </ul> |
| ALTFP_COMPARE           | <ul> <li>altfp_compare_DesignExample.zip (Quartus II design files)</li> <li>altfp_compare_ex_msim.zip (ModelSim-Altera files)</li> </ul>   |

About Floating-Point IP Cores



| Floating-Point IP Cores   | Design Files                                                                                                                                    |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ALTFP_CONVERT             | <ul> <li>altfp_convert_DesignExample.zip (Quartus II design files)</li> <li>altfp_convert_float2int_msim.zip (ModelSim-Altera files)</li> </ul> |
| ALTERA_FP_ACC_CUSTOM      | Not Available                                                                                                                                   |
| ALTERA_FP_FUNCTIONS       | Not Available                                                                                                                                   |
| ALTERA_FP_MATRIX_INV      | <ul> <li>altfp_matrix_inv_DesignExample.zip (Quartus II design files)</li> <li>altfp_matrix_inv_ex_msim.zip (ModelSim-Altera files)</li> </ul>  |
| ALTERA_FP_MATRIX_<br>MULT | Not Available                                                                                                                                   |

#### **Related Information**

- ALTERA\_FP\_MATRIX\_INV Design Example: Matrix Inverse of Single-Precision Format Numbers on page 2-6
- ALTFP\_ADD\_SUB Design Example: Addition of Double-Precision Format Numbers on page 5 3
- ALTFP\_DIV Design Example: Division of Single-Precision on page 6-4
- ALTFP\_MULT Design Example: Multiplication of Double-Precision Format Numbers on page 7 3
- ALTFP\_SQRT Design Example: Square Root of Single-Precision Format Numbers on page 8-3
- ALTFP\_EXP Design Example: Exponential of Single-Precision Format Numbers on page 9-2
- ALTFP\_INV Design Example: Inverse of Single-Precision Format Numbers on page 10-2 This design example uses the ALTFP\_INV IP core to compute the inverse of single-precision format numbers. This example uses the parameter editor in the Quartus II software.
- ALTFP\_INV\_SQRT Design Example: Inverse Square Root of Single-Precision Format Numbers on page 11-2
- ALTFP\_LOG Design Example: Natural Logarithm of Single-Precision Format Numbers on page 12-2
- ALTFP\_ABS Design Example: Absolute Value of Multiplication Results on page 15-2
- ALTFP\_COMPARE Design Example: Comparison of Single-Precision Format Numbers on page 16-2
- ALTFP\_CONVERT Design Example: Convert Double-Precision Floating-Point Format Numbers on page 17-6
- Floating-Point IP Cores Design Examples
   Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

### **VHDL Component Declaration**

The VHDL component declaration is located in the <Quartus II installation directory>\libraries\vhdl\altera\_mf\ altera\_mf\_components.vhd

About Floating-Point IP Cores

Send Feedback

**Altera Corporation** 

# **VHDL LIBRARY-USE Declaration**

The VHDL LIBRARY-USE declaration is not required if you use the VHDL Component Declaration.

LIBRARY altera\_mf;

USE altera\_mf\_altera\_mf\_components.all;

Altera Corporation About Floating-Point IP Cores



# ALTERA\_FP\_MATRIX\_INV IP Core

2

2014.12.19

UG-01058





### **ALTERA FP MATRIX INV Features**

The ALTERA\_FP\_MATRIX\_INV IP core offers the following features:

- Inversion of a matrix.
- Support for floating-point format in single precision.
- Support for VHDL and Verilog HDL languages.
- Support for matrix sizes up to are  $4 \times 4$ ,  $6 \times 6$ ,  $8 \times 8$ ,  $16 \times 16$ ,  $32 \times 32$ , and  $64 \times 64$ .
- Use of control signal, load.
- Use of handshaking signals: busy, outvalid, and done.

# ALTERA\_FP\_MATRIX\_INV Output Latency

The ALTERA\_FP\_MATRIX\_INV IP core does not have a fixed output latency. Instead, it uses handshaking signals to interface with external circuitry.

# **ALTERA\_FP\_MATRIX\_INV** Resource Utilization and Performance

This table lists the resource utilization and performance information for the ALTERA\_FP\_MATRIX\_INV IP core. The information was derived using the Quartus II software version 10.0

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



Table 2-1: ALTERA\_FP\_MATRIX\_INV Resource Utilization and Performance for the Stratix IV Device Family

|           |                |        |                                                | L                                    | ogic usag | je    |                   |             |                          | Giga                                                                          |                        |
|-----------|----------------|--------|------------------------------------------------|--------------------------------------|-----------|-------|-------------------|-------------|--------------------------|-------------------------------------------------------------------------------|------------------------|
| Precision | Matrix<br>Size | Blocks | Adapti<br>ve<br>Logic<br>Modul<br>es<br>(ALMs) | DSP<br>Usage<br>(18 x<br>18<br>DSPs) | М9К       | M144K | Memor<br>y (Bits) | Latenc<br>y | Throug<br>hput<br>(kb/s) | Floatin<br>g-<br>Point<br>Operat<br>ions<br>per<br>Secon<br>d<br>(GFLO<br>PS) | f <sub>MAX</sub> (MHz) |
|           | 4× 4           | 2      | 21159                                          | 222                                  | 139       | _     | 19919             | Pendin<br>g | Pendin<br>g              | Pendin<br>g                                                                   | 221                    |
|           | 6 × 6          | 2      | 59827                                          | 574                                  | 90        | _     | 15759             | Pendin<br>g | Pendin<br>g              | Pendin<br>g                                                                   | 170                    |
|           | 8 × 8          | 2      | 5,538                                          | 63                                   | 49        | _     | 53,736            | 2,501       | 3,987                    | 15.26                                                                         | 332                    |
| Single    | 16 × 16        | 4      | 8,865                                          | 95                                   | 80        | _     | 138,05            | 11,057      | 855                      | 30.93                                                                         | 329                    |
|           | 32 × 32        | 8      | 15,655                                         | 159                                  | 193       | _     | 699,16<br>4       | 52,625      | 165                      | 55.12                                                                         | 290                    |
|           | 64 ×<br>64     | 16     | 29,940                                         | 287                                  | 386       | 22    | 4,770,3<br>69     | 281,50<br>5 | 25                       | 83.16                                                                         | 218                    |

# **ALTERA\_FP\_MATRIX\_INV Functional Description**

A matrix inversion function is composed of the following components:

• Cholesky decomposition function.

The Cholesky decomposition function generates a lower triangular matrix.

• Triangular matrix inversion function.

The triangular matrix inversion process then generates the inverse of the lower triangular using backward substitution.

• Matrix multiplication function.

The matrix multiplier multiplies the transpose of the inverse triangular matrix with the inverse triangular matrix.

In linear algebra, the Cholesky decomposition states that every positive definite matrix A is decomposed as  $A = L \times LT$ 

where, L is a lower triangular matrix, and LT denotes the transpose of L.

The property of invertible matrices states that  $(X \times Y)-1 = X-1 \times Y-1$  and the property of transpose states that (XT)-1 = (X-1)T. Combining these two properties, the following equation represents a derivation of a matrix inversion using the Cholesky decomposition method:

 $A-1 = (L \times LT)-1$ 

Altera Corporation ALTERA\_FP\_MATRIX\_INV IP Core



$$= (LT)-1 \times L-1$$

$$= (L-1)T \times L-1$$

where a Cholesky decomposition function is needed to obtain L, a triangular matrix inversion is needed to obtain L-1, and a matrix multiplication is needed for  $(L-1)T \times L-1$ .

Figure 2-1: Matrix Inversion Flow Diagram



### **Cholesky Decomposition Function**

The functions consists of two memory and two processing blocks. One of the memory blocks is the input matrix memory block and is loaded with the input matrix in a row order, one element at a time. However, during processing, this block is read in a column order, one element at a time when required.

The other memory block is the processing matrix block which consists of multiple column memories to enable an entire row to be read at once. During the loading of the input memory, the FPC datapath preprocesses the input elements to generate the first column of the resulting triangular matrix. The top element of the first column, l00, is the square root of the input matrix value a00. The rest of the first column, li0 is the input value ai0 divided by l00. This preprocessing step introduces latency into the load, during which the INIT\_BUSY signal is asserted. The CALCULATE signal initiates and starts processing after the INIT\_BUSY signal is deasserted.

This figure shows the top-level architecture of the Cholesky decomposition function, where the monolithic input memory and the column-wise processing memory, also known as the vector matrix, are shown. The gray block is the FPC datapath section.

Figure 2-2: Cholesky Decomposition Function Top-level Diagram



Although the Cholesky decomposition algorithm only operates on the lower triangular matrix, the core requires the entire matrix to be loaded, during which the processing or vector memory is initialized.

The FPC datapath is split into two sections. The first section, also known as the vector section, takes the inner product of two vectors and subtracts it from the input matrix element,  $a_{ij}$ . The second section, also known as the root section, calculates square roots and performs division by the square root. The first element is loaded into both inputs of the root section and the outcome is its own square root. The first element continues to stay latched in the left input field of the root section while all the other elements of the first column are loaded into the right input field. The resulting output is the value of the respective column element divided by the value of the first element of the Cholesky decomposition matrix.

During processing, two rows from the processing matrix are loaded. For the first element in each new column, both rows have the same index; hence contain the same values. The first row is latched into the input register of the vector section. For the rest of the column, the row index is increased, and a new  $a_{ij}$  element and triangular matrix vector,  $L_j$  is loaded. The first result out of the vector section is latched onto the left register of the root section. All results from the column, including the first result, are loaded into the right register of the root section. The root section generates the square root of the first vector result, while for the other results coming from the vector section, the number is divided by the square root of the first result.

All calculated values are written to another memory block for further processing. The first column values are output singly during preprocessing, while the values of other columns are burst out during processing.

There are only minor differences between the architectures for real and complex matrices. For the complex matrix, both the input and processing memory blocks contain complex values. Similarly, all values going into the vector section are complex numbers. The complex conjugate of the latched register is obtained by simply inverting the sign bit. As for the root section, the structure is simplified by the nature of the positive definite matrix. The diagonal value, which is the first value at the top of each column in the decomposition, is always a real number so that the result from the inverse square root calculation is always a real number. The complex multiplier in the root section is therefore a real scalar, so only two real multipliers are required.

Altera Corporation ALTERA\_FP\_MATRIX\_INV IP Core



### **Triangular Matrix Inversion**

The triangular matrix, L, obtained from the Cholesky decomposition function is computed using the triangular matrix inversion algorithm to get its inversion. The following MatLab pseudo code shows how the inversion is carried out:

```
for j = n:-1:1,
X(j,j) = 1/L(j, j);
for k = j+1:n
for i = j+1:n
X(k, j) = X(k, j) + X(k, i)*L(i, j);
end;
end;
for k = j+1:n
X(k, j) = -X(j, j)*X(k, j);
end;
```

The pseudo code is converted into an RTL file. The result, L-1 is stored in the input matrix storage in the Cholesky decomposition function.

### **Matrix Multiplication**

The final stage of the matrix inversion process involves multiplying the transpose of the inverse triangular matrix with the inverse triangular matrix using the Altera Floating-Point Matrix Multiplier. The original version of the matrix multiplier is modified for this purpose. As there are memory blocks already available for the storage of the input matrices in the Cholesky decomposition function, the memory blocks in the matrix multiplier are redundant and can be removed. Data is instead fed directly from the results stored at the end stage of the triangular matrix inversion algorithm.

### **Matrix Inversion Operation**

Figure 2-3: Matrix Inversion Timing Diagram



The following sequence describes the matrix inversion operation:

- 1. The operation begins when the enable signal is asserted and the reset signal is deasserted.
- 2. The load signal is asserted to load data from the loaddata[] port for the input matrix. As long as the load signal is high, data is loaded continuously for the input matrix.
- 3. The busy signal is asserted and the done signal is deasserted for a few clock cycles after the datain[] signal is asserted.
- 4. The outvalid signal is asserted multiple times to signify the availability of valid data on the dataout[] port. The number of times this signal is asserted equals the number of rows found in the output matrix.
- 5. The busy and done signals are asserted when the last row of the output matrix has been burst out. This assertion signifies the end of the matrix inversion operation on the first set of data.

# ALTERA\_FP\_MATRIX\_INV Design Example: Matrix Inverse of Single-**Precision Format Numbers**

This design example uses the ALTERA\_FP\_MATRIX\_INV IP core to show the matrix inversion operation. The input matrix applied is an  $8 \times 8$  matrix with a block size of 2. This example uses the parameter editor GUI to define the core.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples Provides the design example files for the Floating-Point IP cores
- **ModelSim-Altera Software Support** Provides information about installation, usage, and troubleshooting

ALTERA FP MATRIX INVIPCore **Altera Corporation** 



# ALTERA\_FP\_MATRIX\_INV Design Example: Understanding the Simulation Results

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

### Figure 2-4: ALTERA\_FP\_MATRIX\_INV ModelSim Simulation Waveform (Input Data)

This figure shows the expected simulation results in the ModelSim-Altera software.



This design example implements a floating-point matrix inversion to calculate the inverse value of matrices in single-precision formats. The optional input ports (enable and reset) are enabled.

### Table 2-2: Summary of Input Values and Corresponding Outputs

This table lists the inputs and corresponding outputs obtained from the simulation waveform. The number of clock cycles obtained for each stage is based on the particular matrix size and parameter settings used in this design example.

| Time              | Event                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns – 10 ns      | Start sequence:                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | <ul><li>The reset signal deasserts.</li><li>The enable signal asserts.</li></ul>                                                                                                                                                                                                                                                                                                                         |
| 19.86 ns – 340 ns | Matrix input data load:                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | <ul> <li>The load signal asserts and remains high for 80 clock cycles.</li> <li>As long as the load signal is high, data for the input matrix is loaded row by row.</li> <li>Input data is burst in regularly, one at every clock cycle.</li> <li>The load signal deasserts at 340 ns. The deassertion of the load signal signifies the completion of the data load operation for the matrix.</li> </ul> |
| 27.5 ns           | <ul> <li>Processing stage:</li> <li>The busy signal asserts while the done signal deasserts.</li> <li>The assertion of the busy signal and the deassertion of the done signal indicate that the matrix inversion core is processing the input data.</li> <li>There are about 2500 clock cycles between the beginning of the processing stage and the first available output value.</li> </ul>            |

| Time                    | Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12527.5 –<br>12922.5 ns | <ul> <li>Output stage:</li> <li>The outvalid signal asserts in intervals of 8 clock cycles. These series of assertions signify the availability of valid data for the output matrix on the outdata[] port.</li> <li>The output is an 8 x 8 matrix. Data is burst out regularly, row by row.</li> <li>At 12922.5 ns, the busy signal is asserted and the done signal is deasserted.</li> <li>The assertion of the busy signal and the deassertion of the done signal indicate that the final output is written and a new matrix can be processed.</li> </ul> |

# Sample Matrix Data

This section shows the random test data assigned to the input matrices and the results obtained from the matrix inversion operation.

The following two sets of results are computed:

- PC-based results—these are results obtained from running the simulation in Matlab.
- FPGA-based results—these are results obtained from running the simulation in ModelSim.

This table lists the input and output data values presented in IEEE-754 Floating-point format.

**Table 2-3: Input and Output Data** 

| Matrix | Data                                                                    |
|--------|-------------------------------------------------------------------------|
| Input  | 40c89c6c 40b16187 40e21dfb 40847306 40c00d1d 40bbf0c4 40be4fc1 40953a30 |
| Matrix | 40b16187 41244acb 410e61b9 40defe3a 40f8e982 40eff916 410e0ff4 41121d78 |
|        | 40e21dfb 410e61b9 41217d87 40d7f5f4 40fd78fa 410618c0 41060327 40ff4517 |
|        | 40847306 40defe3a 40d7f5f4 40b10427 40b6be88 40bbff4a 40d12685 40ca69f9 |
|        | 40c00d1d 40f8e982 40fd78fa 40b6be88 41146829 40ee188a 40fa2d80 40cf065c |
|        | 40bbf0c4 40eff916 410618c0 40bbff4a 40ee188a 40ecbddf 40e3aa3a 40d60773 |
|        | 40be4fc1 410e0ff4 41060327 40d12685 40fa2d80 40e3aa3a 4111ed09 40ecd83c |
|        | 40953a30 41121d78 40ff4517 40ca69f9 40cf065c 40d60773 40ecd83c 410847da |

Altera Corporation ALTERA\_FP\_MATRIX\_INV IP Core



| Matrix           | Data                                                                    |
|------------------|-------------------------------------------------------------------------|
| PC-based         | 42148e03 42f5794f 421b33f4 430e0587 41ff0d66 c2f579a3 c2df1c28 c2f945bc |
| Output<br>Matrix | 42f5794f 43d60be5 430944db 43f2dd63 42da2dd0 c3d1dd59 c3bff960 c3d98c47 |
|                  | 421b33f4 430944db 424b067c 43204d17 421907da c3107054 c2fc035b c30d24b3 |
|                  | 430e0587 43f2dd63 43204d17 440cc66b 43002bbb c3f4e779 c3dcd667 c3f7e3f3 |
|                  | 41ff0d66 42da2dd0 421907da 43002bbb 41f5048b c2e44480 c2c91e6d c2df60c9 |
|                  | c2f579a3 c3d1dd59 c3107054 c3f4e779 c2e44480 43d89b61 43c003b9 43d685d3 |
|                  | c2df1c28 c3bff960 c2fc035b c3dcd667 c2c91e6d 43c003b9 43ae19b0 43c37f99 |
|                  | c2f945bc c3d98c47 c30d24b3 c3f7e3f3 c2df60c9 43d685d3 43c37f99 43ddb1bc |
| 11 011 04004     | 42148d06 42f5773e 421b32c4 430e0484 41ff0bb7 c2f577f4 c2df1a71 c2f943b1 |
| Output<br>Matrix | 42f5773e 43d609cf 430943a0 43f2db4a 42da2c09 c3d1db95 c3bff79e c3d98a34 |
|                  | 421b32c4 430943a0 424b0515 43204be2 421906da c3106f53 c2fc014f c30d237c |
|                  | 430e0484 43f2db4a 43204be2 440cc563 43002adf c3f4e5c0 c3dcd4a7 c3f7e1df |
|                  | 41ff0bb7 42da2c09 421906da 43002adf 41f50322 c2e44314 c2c91cf5 c2df5f08 |
|                  | c2f577f4 c3d1db95 c3106f53 c3f4e5c0 c2e44314 43d899f3 43c00242 43d68414 |
|                  | c2df1a71 c3bff79e c2fc014f c3dcd4a7 c2c91cf5 43c00242 43ae1837 43c37dda |
|                  | c2f943b1 c3d98a34 c30d237c c3f7e1df c2df5f08 43d68414 43c37dda 43ddafad |

The difference between each result element of the PC-based and FPGA-based output matrices are as shown:

Result differences (in decimal)

253 529 304 259 431 431 439 523

529 534 315 537 455 452 450 531

304 315 359 309 256 257 524 311

259 537 309 264 220 441 448 532

431 455 256 220 361 364 376 449

431 452 257 441 364 366 375 447

439 450 524 448 376 375 377 447

523 531 311 532 449 447 447 527

The difference between the two output matrices are due to the following reasons:

- Method of processing—Matlab uses sequential processing while Modelsim uses parallel processing.
- Method of conversion—Matlab first computes in double-precision format, and then only converts the result into single-precision format. During this conversion, some units in the last place (ulp) are expected to be lost.



ALTERA\_FP\_MATRIX\_INV IP Core

# **ALTERA\_FP\_MATRIX\_INV Signals**

Figure 2-5: ALTERA\_FP\_MATRIX\_INV Signals



Table 2-4: ALTERA\_FP\_MATRIX\_INV Input Signals

| Port Name | Required | Description                                                                                                                                |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|
| sysclk    | Yes      | The clock input to the ALTERA_FP_MATRIX_INV IP core. This is the main system clock. All operations occur on the rising edge.               |
| enable    | No       | Optional port. Allow calculation to take place when asserted. When deasserted, no operation will take place and the outputs are unchanged. |
| reset     | No       | Optional port. The core resets asynchronously when the reset signal is asserted.                                                           |
| load      | Yes      | When asserted, loads the LOADDATA bus into the memory.                                                                                     |
| loaddata  | Yes      | Single-precision 32-bit matrix input value. Matrices load row by row.                                                                      |

Table 2-5: ALTERA\_FP\_MATRIX\_INV Output Signals

| Port Name | Required | Description                                                                                                                                                                             |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ready     | Yes      | When asserted, the core preprocesses the input data. The calculate signal cannot be asserted until the ready signal is low.                                                             |
| outdata   | Yes      | Single-precision 32-bit matrix result value. The matrix result value is written out row by row.                                                                                         |
| outvalid  | Yes      | When asserted, a valid output data is available. An entire row of the result matrix is written out as a burst. There is a gap between row outputs, which will depend on the parameters. |

Altera Corporation ALTERA\_FP\_MATRIX\_INV IP Core



| Port Name | Required | Description                                                                                                                                                                     |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| done      | Yes      | When asserted, the last output has been written. A new matrix multiply can be started with calculate. done will follow ready by some fixed amount, depending on the parameters. |

# **ALTERA\_FP\_MATRIX\_INV** Parameters

Table 2-6: ALTERA\_FP\_MATRIX\_INV Parameters

| Port Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                            |
|-----------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLOCKS    | Integer | No       | The number of memory blocks for the double-buffered storage of matrix multiplication. The allowable range is from 2 to 16.                                                                                                                                                                                                                             |
| DIMENSION | Integer | Yes      | The number of rows in the matrix. As the matrix is square, this is also the number of columns in the matrix. The supported dimensions are 4 x 4, 6 x 6, 8 x 8, 16 x 16, 32 x 32, and 64 x 64. The maximum supported input dimension is 64 × 64.  This parameter also acts as the VECTORSIZE when calling the ALTERA_FP_MATRIX_MULT IP core internally. |
| WIDTH_EXP | Integer | Yes      | Specifies the precision of the exponent. The bias of the exponent is always set to 2(WIDTH_EXP-1) -1 (that is, 127 for single-precision format). WIDTH_EXP must be 8 for single-precision format and must be less than WIDTH_MAN. The available value for WIDTH_EXP is 8.                                                                              |
| WIDTH_MAN | Integer | Yes      | Specifies the precision of the mantissa. width_man must be 23 when width_exp is 8. Otherwise, width_man must be a minimum of 31. width_man must be greater than width_exp. The sum of width_exp and width_man must be less than 64. Current available value for width_man is only 23 for single precision.                                             |



### ALTERA\_FP\_MATRIX\_MULT IP Core

3

2014.12.19

UG-01058





### **ALTERA\_FP\_MATRIX\_MULT Features**

The ALTERA\_FP\_MATRIX\_MULT IP core offers the following features:

- Multiplication of two matrices.
- Support for floating-point formats in single and double precisions.
- Support for configurable performance and resource usage.
- Avalon streaming interfaces and full QSys compliance.

### ALTERA\_FP\_MATRIX\_MULT Output Latency

The ALTERA\_FP\_MATRIX\_MULT IP core does not have a fixed output latency. Instead, the IP core uses Avalon streaming interfaces and the c\_valid signal on the output interface to indicate when output data is available.

### ALTERA\_FP\_MATRIX\_MULT Resource Utilization and Performance

These tables list the resource utilization and performance information for the ALTERA\_FP\_MATRIX\_MULT IP core. The information was derived using the Quartus II software version 14.1.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



Table 3-1: ALTERA\_FP\_MATRIX\_MULT Resource Utilization and Performance for the Arria 10 and Stratix V Devices

| Family                            | Data<br>Format | Matrix<br>A Size | Matrix<br>B Size | Vector<br>Size | Memory<br>Blocks | ALMs  | M20ks | DSP<br>Blocks | FMax<br>(MHz) | Latency<br>(cycles) <sup>(1)</sup> |
|-----------------------------------|----------------|------------------|------------------|----------------|------------------|-------|-------|---------------|---------------|------------------------------------|
|                                   |                | 8x8              | 8x8              | 8              | 4                | 979   | 12    | 8             | 409           | 131                                |
| Arria 10<br>(10AX066H2F34         | Single         | 16x16            | 16x16            | 8              | 4                | 1052  | 12    | 8             | 408           | 595                                |
| (10AA006H2F34<br>I2LP)            | Single         | 32x32            | 32x32            | 16             | 8                | 1579  | 25    | 16            | 373           | 2155                               |
|                                   |                | 64x64            | 64x64            | 32             | 16               | 2677  | 49    | 32            | 379           | 8339                               |
|                                   | Single         | 8x8              | 8x8              | 8              | 4                | 2637  | 14    | 8             | 404           | 125                                |
| Stratix V<br>(5SGXEA7K2F40<br>C2) |                | 16x16            | 16x16            | 8              | 4                | 2868  | 15    | 8             | 367           | 588                                |
|                                   |                | 32x32            | 32x32            | 16             | 8                | 5427  | 27    | 16            | 356           | 2146                               |
|                                   |                | 64x64            | 64x64            | 32             | 16               | 10311 | 51    | 32            | 348           | 8328                               |

### ALTERA\_FP\_MATRIX\_MULT Functional Description

The matrix multiplier in the ALTERA\_FP\_MATRIX\_MULT IP core multiplies matrix A and matrix B to generate the output matrix C.

The following figure shows the equation:

Figure 3-1: ALTERA\_FP\_MATRIX\_MULT Equation

 $C = A \cdot B$ 

The matrix A and B can be loaded when the ready signal on their respective interfaces are asserted. When the input matrices are loaded, the core will start computing the output. Valid signal on the output interface will be asserted to indicate valid output data. The input data may be loaded at any time the ready signal is asserted even when the previously loaded data is still being computed.

#### Figure 3-2: Matrix Serialization Format

An input matrix with M rows and N columns must be input as shown in this figure, where the Row 0 and Column 0 element is first and Row M-1 and Column N-1 element is last. The result matrix will be output in the same format.



Send Feedback

<sup>(1)</sup> Latency is the time take to compute a dot product and does not include the time taken to load the input matrices

The ALTERA\_FP\_MATRIX\_MULT IP core consists of the following components:

- Memory blocks for the matrix A storage
- Memory blocks for the matrix B storage
- Dot product
- Accumulator

Figure 3-3: Top-Level View of the ALTERA\_FP\_MATRIX\_MULT IP Core

This figure shows the top-level view of the ALTERA\_FP\_MATRIX\_MULT IP core.



The following lists the key features of the architecture:

- Matrix A and B storage are double buffered to allow processing to happen in parallel with data loading.
- Where the number of columns of A (A\_COLUMNS) and rows of B (same as A\_COLUMNS) are greater than the size of the dot product (VECTOR\_SIZE), the rows of A and columns of B are divided into sub rows and sub columns respectively, each containing VECTOR\_SIZE elements. In this case, A\_COLUMNS/ VECTOR\_SIZE iterations are needed to compute a full dot product corresponding to a single output element.
- Matrix B memory has sufficient bandwidth so that all the data needed for the dot product can be loaded at once.
- Matrix A memory is allocated with less bandwidth. The bandwidth of the matrix A is a parameter
   (NUM\_BLOCKS) that you can control. A sub row of matrix A is loaded into local registers over a number
   of cycles before an iteration of the dot product. Once a sub row of Matrix A has been loaded into local
   registers, all partial dot products involving that sub row are computed before another sub row is
   loaded.
- For Arria 10 devices, where hardened single precision floating-point DSP blocks exist, those will be used for single precision floating point arithmetic.

The matrix multiply architecture is not optimized for sparse matrices and constant matrices.

### **ALTERA\_FP\_MATRIX\_MULT Signals**



#### Figure 3-4: ALTERA\_FP\_MATRIX\_MULT Signals

This figure shows the signals for the ALTERA\_FP\_MATRIX\_MULT IP core.



These tables list the signals for the ALTERA\_FP\_MATRIX\_MULT IP core.

Table 3-2: ALTERA\_FP\_MATRIX\_MULT Input Signals

| Port Name | Required | Description                                                                                    |
|-----------|----------|------------------------------------------------------------------------------------------------|
| clk       | Yes      | The clock input port for the IP core.                                                          |
| reset_n   | No       | Asynchronous active low reset port.                                                            |
| a_data    | Yes      | Matrix A input data.                                                                           |
| a_valid   | Yes      | Matrix A Avalon streaming valid signal. When this signal is asserted, data on a_data is valid. |
| b_data    | Yes      | Matrix B input data.                                                                           |
| b_valid   | Yes      | Matrix B Avalon streaming valid signal. When this signal is asserted, data on b_data is valid. |
| c_ready   | Yes      | Matrix C Avalon streaming ready signal. Ready latency is 0.                                    |

Table 3-3: ALTERA\_FP\_MATRIX\_MULT Output Signals

| Port Name | Required | Description                                                                                    |
|-----------|----------|------------------------------------------------------------------------------------------------|
| a_ready   | Yes      | Matrix A Avalon streaming ready signal. Ready latency is 0.                                    |
| b_ready   | Yes      | Matrix B Avalon streaming ready signal. Ready latency is 0.                                    |
| c_data    | Yes      | Matrix C input data.                                                                           |
| c_valid   | Yes      | Matrix C Avalon streaming valid signal. When this signal is asserted, data on c_data is valid. |

Send Feedback

## **ALTERA\_FP\_MATRIX\_MULT Parameters**

This table lists the parameters for the ALTERA\_FP\_MATRIX\_MULT IP core.

Table 3-4: ALTERA\_FP\_MATRIX\_MULT IP Core Parameters

| Parameter           | Value                                                                                                                                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Format              | Single (32 bit) or Double (64 bit)                                                                                                                                                                                                                                    | The format of the input data.                                                                                                                                                                                                                                                                                                                                                                        |
| Rows in Matrix A    | 2-256                                                                                                                                                                                                                                                                 | Number of rows in matrix A.                                                                                                                                                                                                                                                                                                                                                                          |
| Columns in Matrix A | 8-256 Integer multiples of<br>vector size. (Integer<br>multiples of Memory<br>Blocks.)                                                                                                                                                                                | Number of columns in matrix A. This is also the number of rows in matrix B.                                                                                                                                                                                                                                                                                                                          |
| Rows in Matrix B    | 8-256                                                                                                                                                                                                                                                                 | Number of rows in matrix B.                                                                                                                                                                                                                                                                                                                                                                          |
| Columns of matrix B | 2-256                                                                                                                                                                                                                                                                 | Number of columns in matrix B.                                                                                                                                                                                                                                                                                                                                                                       |
| Vector Size         | Allowed values are 8,16, 32, 64, 96, and 128.                                                                                                                                                                                                                         | The size of the dot product which can be computed in parallel. Where the number of columns of matrix A and rows of matrix B are greater than Vector Size a number of iterations are required to compute a full dot product.  Vector Size also controls the matrix B memory configuration. Increasing the "Vector Size" increases the matrix B memory bandwidth and the number of memory blocks used. |
| Memory Blocks       | The Vector Size must be an integer multiple of Memory Blocks. The number of memory blocks must be smaller than the vector size.  The number of memory blocks must be greater than or equals to the ratio of vector size divided by the number of columns of matrix B. | Controls the memory configuration of the matrix A storage. Increasing this number increases the memory bandwidth and the number of memory blocks used.                                                                                                                                                                                                                                               |

ALTERA\_FP\_MATRIX\_MULT IP Core

### ALTERA\_FP\_ACC\_CUSTOM IP Core

4

2014.12.19

UG-01058





### **ALTERA FP ACC CUSTOM Features**

The ALTERA\_FP\_ACC\_CUSTOM IP core offers the following features:

- Supports frequency driven cores.
- Supports VHDL RTL generation.
- Supports customization of the required range of the input and output values.

### ALTERA\_FP\_ACC\_CUSTOM Output Latency

The amount of latency is driven by the target frequency and the selected device family. You must set the desired frequency and the target device before generating the IP core. The IP core reports the latency when you set the parameters and when you generate the IP core. Then, use the reported latency to incorporate the IP core into your design.

ALTERA\_FP\_ACC\_CUSTOM Resource Utilization and Performance

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



#### Table 4-1: ALTERA\_FP\_ACC\_CUSTOM Resource Utilization and Performance

This table lists the resource utilization and performance information for the ALTERA\_FP\_ACC\_CUSTOM IP core. The information was derived using the Quartus II software version 13.1.

| core. The ir                                  |                                     |             |      |              | ne Quai                     | rtus 11 se  | onware | version           |             |               |      |      |                  |
|-----------------------------------------------|-------------------------------------|-------------|------|--------------|-----------------------------|-------------|--------|-------------------|-------------|---------------|------|------|------------------|
|                                               |                                     | : Data      |      | ulator<br>ze | Targe                       |             |        |                   | Regi        | gic<br>sters  |      |      |                  |
| Device<br>Family                              | Floati<br>ng<br>Point<br>Form<br>at | MaxM<br>SBX | MSBA | LSBA         | t<br>Frequ<br>ency<br>(MHz) | Laten<br>cy | ALMs   | DSP<br>Block<br>s | Prima<br>ry | Secon<br>dary | M10K | M20K | f <sub>MAX</sub> |
| Arria<br>V<br>(5AG<br>XFB3<br>H4F4<br>0C5)    | Doub<br>le                          | 24          | 40   | -52          | 270                         | 15          | 866    | 0                 | 1,166       | 106           | 0    |      | 265              |
| Cyclo<br>ne V<br>(5CG<br>XFC7<br>D6F3<br>1C7) | Doub<br>le                          | 24          | 40   | -52          | 230                         | 15          | 830    | 0                 | 1,102       | 32            | 0    | -    | 198              |
| Stratix<br>V<br>(5SG<br>XEA7<br>K2F40<br>C2)  | Doub<br>le                          | 24          | 40   | -52          | 400                         | 15          | 968    | 0                 | 1,655       | 27            |      | 0    | 426              |
| Arria<br>V<br>(5AG<br>XFB3<br>H4F4<br>0C5)    | Single                              | 12          | 20   | -26          | 270                         | 12          | 337    | 0                 | 588         | 52            | 0    | 1    | 309              |
| Cyclo<br>ne V<br>(5CG<br>XFC7<br>D6F3<br>1C7) | Single                              | 12          | 20   | -26          | 230                         | 12          | 383    | 0                 | 494         | 28            | 0    |      | 225              |
| Stratix<br>V<br>(5SG<br>XEA7<br>K2F40<br>C2)  | Single                              | 12          | 20   | -26          | 400                         | 13          | 475    | 0                 | 903         | 20            |      | 0    | 450              |

Send Feedback

#### **Related Information**

**Fitter Resources Reports** 

Provides information about Quartus II resource utilization

### **ALTERA\_FP\_ACC\_CUSTOM Signals**

Figure 4-1: ALTERA\_FP\_ACC\_CUSTOM



Table 4-2: ALTERA\_FP\_ACC\_CUSTOM Input Ports

| Port Name | Required | Description                                                                                                                                                                                                                                                                                                                                                       |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clk       | Yes      | All input signals, otherwise explicitly stated, must be synchronous to this clock                                                                                                                                                                                                                                                                                 |
| areset    | Yes      | Asynchronous active-high reset. Deassert this signal synchronously to the input clock to avoid metastability issues.                                                                                                                                                                                                                                              |
| en        | No       | Global enable signal. This port is optional.                                                                                                                                                                                                                                                                                                                      |
| x         | Yes      | Data input port.                                                                                                                                                                                                                                                                                                                                                  |
| n         | Yes      | Boolean port which signals the beginning of a new data set to be accumulated. This should go high together with the first element in the new data set and should go low the next cycle. The data sets may be of variable length and a new data set may be started at any time. The accumulation result for an input will be available after the reported latency. |

Table 4-3: ALTERA\_FP\_ACC\_CUSTOM Output Ports

| Port Name | Required | Description                            |
|-----------|----------|----------------------------------------|
| r         | Yes      | The running value of the accumulation. |

ALTERA\_FP\_ACC\_CUSTOM IP Core

**Altera Corporation** 



| Port Name | Required | Description                                                                                                                                                                                                                                                                          |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| хо        | Yes      | The overflow flag for port $x$ . The signal goes high when the exponent of the input $x$ is larger than maxMSBX. The signal remains high for the entire data set. This flag invalidates port $x$ . You should consider increasing maxMSBX. This flag also indicate infinity and NaN. |
| xu        | Yes      | The underflow flag for port x. The signal goes high when the exponent of the input x is smaller than LSBA. The signal remains high for the entire data set. This flag does not invalidate port r. You should consider lowering LSBA.                                                 |
| ao        | Yes      | The overflow flag for Accumulator. The signal goes high when the exponent of the accumulated value is larger than MSBA. The signal remains high for the entire data set. This flag invalidates port r. You should consider increasing MSBA.                                          |

## **ALTERA\_FP\_ACC\_CUSTOM Parameters**

Table 4-4: ALTERA\_FP\_ACC\_CUSTOM Parameters

| Category   | Parameter                | Values            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|--------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Floating point<br>format | single,<br>double | Choose the floating point format of the input data values. The output data values of the accumulator is in the same format.  The default is <b>single</b> .                                                                                                                                                                                                                                                                                                                                   |
| Input Data | maxMSBX                  | _                 | The maximum weight of the MSB of an input. For example, when adding probabilities in the 0 to 1 range set this weight to ceil(log <sub>2</sub> (1))=0. The xo output signal goes high when the MSB of an input value has a weight larger than maxMSBX. The result of the accumulation is then invalid. If you are unsure about the range of the inputs, then set the <b>maxMSBX</b> parameter to MSBA, at the possible expense of increased resource usage.  The default value is <b>12</b> . |

ALTERA\_FP\_ACC\_CUSTOM IP Core

**Altera Corporation** 



| Category                     | Parameter               | Values                      | Description                                                                                                                                                                                                                                                                                        |
|------------------------------|-------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | MSBA                    | _                           | The weight of the MSB of the accumulator. For example, in a financial simulation, if the value of a stock cannot exceed 100,000 dollars, use a value of ceil(log <sub>2</sub> (100000))=17.                                                                                                        |
|                              |                         |                             | In a circuit simulation where the circuit adds numbers in the 0 to 1 range, for one year, at 400 MHz, use a value of $ceil(log_2(365 \times 60 \times 60 \times 24 \times 400 \times 10^6))=54$ .                                                                                                  |
|                              |                         |                             | The ao output signal goes high when the MSB of the accumulated value has a weight larger than MSBA. The result of the accumulation is then invalid. Altera recommends adding a few guard bits to avoid possible accumulator overflow. A few guard bits have little impact on the accumulator size. |
| Accumulat                    |                         |                             | The default value is <b>20</b> .                                                                                                                                                                                                                                                                   |
| or Size                      | LSBA                    | _                           | The weight of the LSB of the accumulator and the accuracy of the accumulator. Because an N term accumulation can invalidate the log <sub>2</sub> (N) LSBs of the accumulator, you must consider the length of the accumulation and the range of the inputs when setting this parameter.            |
|                              |                         |                             | For example, if a 2 <sup>-30</sup> accuracy is required over an accumulation of 1024 numbers, then set the LSBA to:                                                                                                                                                                                |
|                              |                         |                             | $(-30 - \log_2(1024)) = -40.$                                                                                                                                                                                                                                                                      |
|                              |                         |                             | Any input 2 <sup>e</sup> ×1.F, where F is the mantissa and e is less than the LSBA will be shifted out of the accumulator. The au output signal goes high to indicate this situation.                                                                                                              |
|                              |                         |                             | The default value is -26.                                                                                                                                                                                                                                                                          |
| Required<br>Perform-<br>ance | Target frequency        | Any positive integer value. | Choose the frequency in MHz at which this core is expected to run. This together with the target device family will determine the amount of pipelining in the core.                                                                                                                                |
|                              |                         |                             | The default value is <b>200</b> MHz.                                                                                                                                                                                                                                                               |
| Optional                     | Generate an enable port | _                           | Choose if the accumulator should have an enable signal.                                                                                                                                                                                                                                            |
|                              |                         |                             | This parameter is disabled by default.                                                                                                                                                                                                                                                             |



#### ALTERA\_FP\_ACC\_CUSTOM Parameters

| Category | Parameter | Values | Description                                                                                                                                        |
|----------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Report   | _         | _      | Reports the latency of the device, which is the number of cycles it takes for an accumulation to propagate through the block from input to output. |

Altera Corporation ALTERA\_FP\_ACC\_CUSTOM IP Core



2014.12.19

UG-01058





### **ALTFP ADD SUB Features**

The ALTFP\_ADD\_SUB IP core offers the following features:

- Dynamically configurable adder and subtracter functions.
- Optional exception handling output ports such as zero, overflow, underflow, and nan.
- Optimization of speed and area.

### **ALTFP\_ADD\_SUB Output Latency**

The output latency options for the ALTFP\_ADD\_SUB IP core are the same for all three precision formats—single, double, and single-extended. The options available are 7, 8, 9, 10, 11, 12, 13, and 14 clock cycles.

### **ALTFP\_ADD\_SUB Truth Table**

Table 5-1: Truth Table for Addition/Subtraction Operations

| DATAA[]  | DATAB[]  | SIGN BIT | RESULT[] | Overflow | Underflow | Zero | NaN |
|----------|----------|----------|----------|----------|-----------|------|-----|
| Normal   | Normal   | 0        | Zero     | 0        | 0         | 1    | 0   |
| Normal   | Normal   | 0/1      | Normal   | 0        | 0         | 0    | 0   |
| Normal   | Normal   | 0/1      | Denormal | 0        | 1         | 1    | 0   |
| Normal   | Normal   | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Normal   | Denormal | 0/1      | Normal   | 0        | 0         | 0    | 0   |
| Normal   | Zero     | 0/1      | Normal   | 0        | 0         | 0    | 0   |
| Normal   | Infinity | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Normal   | NaN      | X        | NaN      | 0        | 0         | 0    | 1   |
| Denormal | Normal   | 0/1      | Normal   | 0        | 0         | 0    | 0   |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| DATAA[]  | DATAB[]  | SIGN BIT | RESULT[] | Overflow | Underflow | Zero | NaN |
|----------|----------|----------|----------|----------|-----------|------|-----|
| Denormal | Denormal | 0/1      | Normal   | 0        | 0         | 0    | 0   |
| Denormal | Zero     | 0/1      | Zero     | 0        | 0         | 1    | 0   |
| Denormal | Infinity | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Denormal | NaN      | X        | NaN      | 0        | 0         | 0    | 1   |
| Zero     | Normal   | 0/1      | Normal   | 0        | 0         | 0    | 0   |
| Zero     | Denormal | 0/1      | Zero     | 0        | 0         | 1    | 0   |
| Zero     | Zero     | 0/1      | Zero     | 0        | 0         | 1    | 0   |
| Zero     | Infinity | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Zero     | NaN      | X        | NaN      | 0        | 0         | 0    | 1   |
| Infinity | Normal   | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Infinity | Denormal | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Infinity | Zero     | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Infinity | Infinity | 0/1      | Infinity | 1        | 0         | 0    | 0   |
| Infinity | NaN      | X        | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Normal   | X        | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Denormal | X        | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Zero     | X        | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Infinity | X        | NaN      | 0        | 0         | 0    | 1   |
| NaN      | NaN      | X        | NaN      | 0        | 0         | 0    | 1   |

### **ALTFP\_ADD\_SUB Resource Utilization and Performance**

The following lists the resource utilization and performance information for the ALTFP\_ADD\_SUB IP core. The information was derived using the Quartus II software version 10.0.

Altera Corporation ALTFP\_ADD\_SUB IP Core



Table 5-2: ALTFP\_ADD\_SUB Resource Utilization and Performance for the Stratix Series of Devices

| Device Family | Precision | Optimiza-<br>tion | Output<br>latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | f <sub>MAX</sub> (MHz) |
|---------------|-----------|-------------------|-------------------|------------------------------------------|-------------------------------------------|----------------------------------------|------------------------|
|               |           | speed             | 7                 | 594                                      | 376                                       | 385                                    | 228                    |
|               | single    | speed             | 14                | 674                                      | 686                                       | 498                                    | 495                    |
|               | single    | area              | 7                 | 576                                      | 345                                       | 375                                    | 227                    |
| Stratix IV    |           |                   | 14                | 596                                      | 603                                       | 421                                    | 484                    |
| Stratix IV    |           | speed             | 7                 | 1,198                                    | 687                                       | 824                                    | 187                    |
|               | double    | speed             | 14                | 997                                      | 1,607                                     | 1,080                                  | 398                    |
|               | double    | area              | 7                 | 1,106                                    | 630                                       | 762                                    | 189                    |
|               |           |                   | 14                | 904                                      | 1,518                                     | 1,013                                  | 265                    |

# ALTFP\_ADD\_SUB Design Example: Addition of Double-Precision Format Numbers

This design example uses the ALTFP\_ADD\_SUB IP core to perform the addition of double-precision format numbers using the parameter editor in the Quartus II software.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
  Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

### **ALTFP\_ADD\_SUM Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

Figure 5-1: ALTFP\_ADD\_SUB Simulation Waveform



ALTFP\_ADD\_SUB IP Core Altera Corporation



This design example implements a floating-point adder for the addition of double-precision format numbers. All the optional input ports (clk\_en and aclr) and optional output ports (overflow, underflow, zero, and nan) are enabled.

In this example, the output latency of the multiplier is set to 7 clock cycles. Every addition result appears at the result[] port 7 clock cycles after the input values are captured on the dataa[] and datab[] ports.

The following lists the inputs and corresponding outputs obtained from the simulation waveform.

Table 5-3: Summary of Input Values and Corresponding Outputs

| Time           | Event                                                                                                                                                                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | dataa[] value: 0000 0000 0000 0000h                                                                                                                                      |
|                | datab[] value: 7FF0 0000 0000 0000h                                                                                                                                      |
|                | Output value: All values seen on the output port before<br>the 7th clock cycle are merely due to the behavior of<br>the system during startup and should be disregarded. |
| 4250 ns        | Output value: 7FF0 0000 0000 0000h                                                                                                                                       |
|                | Exception handling ports: overflow asserts                                                                                                                               |
|                | The addition of zero at the input port dataa[], and infinity value at the input port datab[] results in infinity value.                                                  |
| 40,511 ns      | dataa[] value: 0000 0000 0000 0000h                                                                                                                                      |
|                | datab[] value: 0000 0000 1000 0123h                                                                                                                                      |
|                | The is the addition of a zero and a denormal value.                                                                                                                      |
| 43,750 ns      | Output value: 0000 0000 0000 0000h                                                                                                                                       |
|                | Exception handling ports: zero remains asserted.                                                                                                                         |
|                | Denormal inputs are not supported and are forced to zero before addition takes place. This results in a zero.                                                            |

### **ALTFP\_ADD\_SUB Signals**

Altera Corporation ALTFP\_ADD\_SUB IP Core



Figure 5-2: ALTFP\_ADD\_SUB



Table 5-4: ALTFP\_ADD\_SUB Input Ports

| Port Name | Required | Description                                                                                                                                                                                                                                                                      |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear input for floating-point adder or subtractor. The source is asynchronously reset when the aclr signal is asserted high.                                                                                                                                       |
| add_sub   | No       | Optional input port to enable dynamic switching between the adder and subtractor functions. The add_sub port must be used when the DIRECTION parameter is set to VARIABLE. When the add_sub port is high, result[] = dataa[] + datab[], otherwise, result[] = dataa[] - datab[]. |
| clk_en    | No       | Clock enable to the floating-point adder or subtractor. This port allows addition or subtraction to occur when asserted high. When asserted low, no operations occur and the outputs are unchanged.                                                                              |
| clock     | Yes      | Clock input to the IP core.                                                                                                                                                                                                                                                      |
| dataa[]   | Yes      | Data input to the floating-point adder or subtractor. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa bits. The size of this port is the total width of the sign bit, the exponent bits, and the mantissa bits.                           |
| datab[]   | Yes      | Data input to the floating-point adder or subtractor. This port is configured in the same way as dataa[].                                                                                                                                                                        |

Table 5-5: ALTFP\_ADD\_SUB Output Ports

| Port Name | Required | Description                                                                                                                                                                                                                                                                           |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nan       | Yes      | NaN exception output. Asserted when an illegal addition or subtraction occurs, such as infinity minus infinity. When an invalid addition or subtraction occurs, a NaN value is output to the result[] port. Any adding or subtracting involving NaN values also produces a NaN value. |

ALTFP\_ADD\_SUB IP Core

Altera Corporation



| Port Name | Required | Description                                                                                                                                                                                                                                        |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| overflow  | Yes      | Overflow exception port. Asserted when the result of the addition or subtraction, after rounding, exceeds or reaches infinity. Infinity is defined as a number in which the exponent exceeds 2 WIDTH_EXP -1.                                       |
| result[]  | Yes      | Floating-point output result. Like the input values, the MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits, and mantissa bits.               |
| underflow | Yes      | Underflow port for the adder or subtractor. Asserted when the result of the addition or subtraction, after rounding, the value is zero and the inputs are not equal. The underflow port is also asserted when the result is a denormalized number. |
| zero      | No       | Zero port for the adder or subtractor. Asserted when the result[] port is zero.                                                                                                                                                                    |

# **ALTFP\_ADD\_SUB Parameters**

Table 5-6: ALTFP\_ADD\_SUB Parameters

| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DIRECTION      | String  | Yes      | Specifies addition or subtraction operations. Values are ADD, SUB, or VARIABLE. If this parameter is not specified, the default is ADD. When the value is VARIABLE, the add_sub port determines whether the operation is addition or subtraction. The add_sub port must be connected if the DIRECTION parameter is set to VARIABLE. If the value is ADD or SUB, the add_sub port is ignored. |
| PIPELINE       | Integer | No       | Specifies the latency in clock cycles used in the ALTFP_ADD_SUB IP core. The pipeline parameter supports values of 7 through 14. If this parameter is not specified, the default value is 11. In general, a higher pipeline value produces better f <sub>MAX</sub> performance.                                                                                                              |
| ROUNDING       | String  | Yes      | Specifies the rounding mode. The default value is TO_NEAREST. Other rounding modes are currently not supported.                                                                                                                                                                                                                                                                              |
| OPTIMIZE       | String  | No       | Defines the design preference, whether the design is optimized for speed (faster $f_{MAX}$ ), or optimized for area (lower resource count). Values are Speed and Area. If this parameter is not specified, the default is Speed.                                                                                                                                                             |

Altera Corporation ALTFP\_ADD\_SUB IP Core



| Parameter Name | Type    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | No       | Specifies the precision of the exponent. The bias of the exponent is always set to 2 (WIDTH_EXP-1) -1 (that is, 127 for single-precision format and 1023 for double-precision format). The WIDTH_EXP parameter must be 8 for the single-precision mode and 11 for the double-precision mode, or a minimum of 11 for the single-extended precision mode. The WIDTH_EXP parameter must be less than the WIDTH_MAN parameter. The sum of WIDTH_EXP and the WIDTH_MAN parameters must be less than 64. If this parameter is not specified, the default is 8. |
| WIDTH_MAN      | Integer | No       | Specifies the precision of the mantissa. The width_ MAN parameter must be 23 (to comply with the IEEE- 754 standard for the single-precision mode) when the width_exp parameter is 8. Otherwise, the width_ MAN parameter must have a value that is greater than or equal to 31. The width_man parameter must be greater than the width_exp parameter. The sum of the width_exp and width_man parameters must be less than 64. If this parameter is not specified, the default is 23.                                                                    |

ALTFP\_ADD\_SUB IP Core

Altera Corporation



### **ALTFP\_DIV IP Core**

6

2014.12.19

UG-01058





### **ALTFP DIV Features**

The ALTFP\_DIV IP core offers the following features:

- Division functions.
- Optional exception handling output ports such as zero, division\_by\_zero, overflow, underflow, and nan.
- Optimization of speed and area.
- Low latency option.

### **ALTFP\_DIV Output Latency**

The output latency options for the ALTFP\_DIV IP core differs depending on the precision selected, the width of the mantissa, or both. You have the choice of selecting the smaller figures of clock cycles delay in your design if the low latency option is desired.

Table 6-1: Latency Options for Each Operation

| Precision | Mantissa Width | Latency (in clock cycles) |
|-----------|----------------|---------------------------|
| Single    | 23             | 6, 14, 33                 |
| Double    | 52             | 10, 24, 61                |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| Precision       | Mantissa Width | Latency (in clock cycles) |  |
|-----------------|----------------|---------------------------|--|
|                 | 31 – 32        | 8, 18, 41                 |  |
|                 | 33 – 34        | 8, 18, 43                 |  |
|                 | 35 – 36        | 8, 18, 45                 |  |
|                 | 37 – 38        | 8, 18, 47                 |  |
|                 | 39 – 40        | 8, 18, 49                 |  |
| Single Extended | 41             | 10, 24, 41                |  |
| Single Extended | 42             | 10, 24, 51                |  |
|                 | 43 – 44        | 10, 24, 53                |  |
|                 | 45 – 46        | 10, 24, 55                |  |
|                 | 47 – 48        | 10, 24, 57                |  |
|                 | 49 – 50        | 10, 24, 59                |  |
|                 | 51 – 52        | 10, 24, 61                |  |

# **ALTFP\_DIV Truth Table**

**Table 6-2: Truth Table for Division Operations** 

| DATAA[]  | DATAB[]      | SIGN BIT | RESULT[]     | Overflow | Underflo<br>w | Zero | Division-<br>by-zero | NaN |
|----------|--------------|----------|--------------|----------|---------------|------|----------------------|-----|
| Normal   | Normal       | 0/1      | Normal       | 0        | 0             | 0    | 0                    | 0   |
| Normal   | Normal       | 0/1      | Denorma<br>1 | 0        | 0             | 1    | 0                    | 0   |
| Normal   | Normal       | 0/1      | Infinity     | 1        | 0             | 0    | 0                    | 0   |
| Normal   | Normal       | 0/1      | Zero         | 0        | 1             | 1    | 0                    | 0   |
| Normal   | Denorma<br>1 | 0/1      | Infinity     | 0        | 0             | 0    | 1                    | 0   |
| Normal   | Zero         | 0/1      | Infinity     | 0        | 0             | 0    | 1                    | 0   |
| Normal   | Infinity     | 0/1      | Zero         | 0        | 0             | 1    | 0                    | 0   |
| Normal   | NaN          | X        | NaN          | 0        | 0             | 0    | 0                    | 1   |
| Denormal | Normal       | 0/1      | Zero         | 0        | 0             | 1    | 0                    | 0   |
| Denormal | Denorma<br>1 | 0/1      | NaN          | 0        | 0             | 0    | 0                    | 1   |
| Denormal | Zero         | 0/1      | NaN          | 0        | 0             | 0    | 0                    | 1   |
| Denormal | Infinity     | 0/1      | Zero         | 0        | 0             | 1    | 0                    | 0   |

Altera Corporation ALTFP\_DIV IP Core



| DATAA[]  | DATAB[]      | SIGN BIT | RESULT[] | Overflow | Underflo<br>w | Zero | Division-<br>by-zero | NaN |
|----------|--------------|----------|----------|----------|---------------|------|----------------------|-----|
| Denormal | NaN          | X        | NaN      | 0        | 0             | 0    | 0                    | 1   |
| Zero     | Normal       | 0/1      | Zero     | 0        | 0             | 1    | 0                    | 0   |
| Zero     | Denorma<br>1 | 0/1      | NaN      | 0        | 0             | 0    | 0                    | 1   |
| Zero     | Zero         | 0/1      | NaN      | 0        | 0             | 0    | 0                    | 1   |
| Zero     | Infinity     | 0/1      | Zero     | 0        | 0             | 1    | 0                    | 0   |
| Zero     | NaN          | X        | NaN      | 0        | 0             | 0    | 0                    | 1   |
| Infinity | Normal       | 0/1      | Infinity | 0        | 0             | 0    | 0                    | 0   |
| Infinity | Denorma<br>1 | 0/1      | Infinity | 0        | 0             | 0    | 0                    | 0   |
| Infinity | Zero         | 0/1      | Infinity | 0        | 0             | 0    | 0                    | 0   |
| Infinity | Infinity     | 0/1      | NaN      | 0        | 0             | 0    | 0                    | 1   |
| Infinity | NaN          | X        | NaN      | 0        | 0             | 0    | 0                    | 1   |
| NaN      | Normal       | X        | NaN      | 0        | 0             | 0    | 0                    | 1   |
| NaN      | Denorma<br>1 | X        | NaN      | 0        | 0             | 0    | 1                    | 1   |
| NaN      | Zero         | X        | NaN      | 0        | 0             | 0    | 1                    | 1   |
| NaN      | Infinity     | X        | NaN      | 0        | 0             | 0    | 0                    | 1   |
| NaN      | NaN          | X        | NaN      | 0        | 0             | 0    | 0                    | 1   |

### **ALTFP\_DIV Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_DIV IP core. The information was derived using the Quartus II software version 10.0.

Table 6-3: ALTFP\_DIV Resource Utilization and Performance for Stratix IV Devices

|               | / Precision |                   | Output<br>latency |                                          |                                            |                                        |               |                        |
|---------------|-------------|-------------------|-------------------|------------------------------------------|--------------------------------------------|----------------------------------------|---------------|------------------------|
| Device family |             | Optimiza-<br>tion |                   | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicate<br>d Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-bit<br>DSP | f <sub>MAX</sub> (MHz) |
| Stratix IV    | Single      | Speed             | 33                | 3,593                                    | 3,351                                      | 2,500                                  | _             | 313                    |
|               |             | Area              | 33                | 1,646                                    | 2,074                                      | 1,441                                  | _             | 308                    |
|               | Double      | Speed             | 61                | 13,867                                   | 13,143                                     | 10,196                                 | _             | 292                    |
|               |             | Area              | 61                | 5,125                                    | 7,360                                      | 4,842                                  | _             | 267                    |

ALTFP\_DIV IP Core Altera Corporation



|               |                    | Optimiza-<br>tion |                   |                                          |                                            |                                        |               |                        |  |
|---------------|--------------------|-------------------|-------------------|------------------------------------------|--------------------------------------------|----------------------------------------|---------------|------------------------|--|
| Device family | Precision          |                   | Output<br>latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicate<br>d Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-bit<br>DSP | f <sub>MAX</sub> (MHz) |  |
| Low Latency   | Low Latency Option |                   |                   |                                          |                                            |                                        |               |                        |  |
|               | Single             | _                 | 6                 | 207                                      | 304                                        | 212                                    | 16            | 154                    |  |
| Stratix IV    |                    | _                 | 14                | 253                                      | 638                                        | 385                                    | 16            | 358                    |  |
| Stratix IV    | Double             | _                 | 10                | 714                                      | 1,077                                      | 779                                    | 44            | 151                    |  |
|               | Double             | _                 | 24                | 765                                      | 2,488                                      | 1,397                                  | 44            | 238                    |  |

### **ALTFP\_DIV Design Example: Division of Single-Precision**

This design example uses the ALTFP\_DIV IP core to implement a floating-point divider for the division of single-precision format numbers with low latency. This example uses the parameter editor to define the core.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
  Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

### **ALTFP\_DIV Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

#### Figure 6-1: ALTFP\_DIV Simulation Waveform

This figure shows the expected simulation results in the ModelSim-Altera software.



This design example implements a floating-point divider for the division of single-precision numbers with a low latency option. The output latency is 6, hence every division generates the output result 6 clock cycles later.

Altera Corporation ALTFP\_DIV IP Core



#### Table 6-4: Summary of Input Values and Corresponding Outputs

This table lists the inputs and corresponding outputs obtained from the simulation in the waveform.

| Time           | Event                                                                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | dataa[] value: 0000 0000h                                                                                                                                                                                                               |
|                | datab[] value: 0000 0000h                                                                                                                                                                                                               |
|                | Output value: The undefined value is seen on the result[] port, which is ignored. All values seen on the output port before the 6th clock cycle are merely due to the behavior of the system during start-up and should be disregarded. |
| 17600 ns       | Output value: 7FC0 0000h                                                                                                                                                                                                                |
|                | Exception handling ports: nan asserts                                                                                                                                                                                                   |
|                | The division of zeros result in a NaN.                                                                                                                                                                                                  |
| 2000 ns        | dataa[] value: 2D0B 496Ah                                                                                                                                                                                                               |
|                | datab[] value: 3A5A FC26h                                                                                                                                                                                                               |
|                | Both inputs hold normal values.                                                                                                                                                                                                         |
| 20800 ns       | Output result: 321F 6EC6h                                                                                                                                                                                                               |
|                | Exception output ports: nan deasserts                                                                                                                                                                                                   |
|                | The division of two normal value results in a normal value.                                                                                                                                                                             |
| 11000 ns       | dataa[] value: 046E 78BCh                                                                                                                                                                                                               |
|                | datab[] value: 6798 698Bh                                                                                                                                                                                                               |
|                | Both inputs hold normal values.                                                                                                                                                                                                         |
| 27200 ns       | Output value: 0h                                                                                                                                                                                                                        |
|                | Exception handling ports: underflow and zero asserts                                                                                                                                                                                    |
|                | The division of the two normal values results in a denormal value. As denormal values are not supported, the result is zero and the underflow port asserts. The zero port is also asserted to indicate that the result is zero.         |
| 2600 ns        | dataa[] value: 0D72 54A8h                                                                                                                                                                                                               |
|                | datab[] value: 0070 0000h                                                                                                                                                                                                               |
|                | The input port dataa[] holds a normal value while the input port datab[] holds a denormal value.                                                                                                                                        |
| 36800 ns       | Output value: 7F80 0000h                                                                                                                                                                                                                |
|                | Exception handling ports: division_by_zero asserts                                                                                                                                                                                      |
|                | Denormal numbers are forced-zero values, therefore, attempts to divide a normal value with a zero result in an infinity value.                                                                                                          |

ALTFP\_DIV IP Core Altera Corporation



## **ALTFP\_DIV Signals**

Figure 6-2: ALTFP\_DIV Signals



Table 6-5: ALTFP\_DIV Input Signals

| Port Name | Required | Description                                                                                                                                                                                                |
|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear input for the floating-point divider. The source is asynchronously reset when the aclr signal is asserted high.                                                                         |
| clock     | Yes      | Clock input to the IP core.                                                                                                                                                                                |
| clk_en    | No       | Clock enable to the floating-point divider. This port enables division. This signal is active high. When this signal is low, no division takes place and the outputs remain the same.                      |
| dataa[]   | Yes      | Numerator data input. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits and mantissa bits.   |
| datab[]   | Yes      | Denominator data input. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits and mantissa bits. |

Table 6-6: ALTFP\_DIV Output Signals

| Port Name | Required | Description                                                                                                                                                                                                                                                          |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  |          | Divider output port. The division result (after rounding). As with the input values, the MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits, and mantissa bits. |

Altera Corporation ALTFP\_DIV IP Core



| Port Name            | Required | Description                                                                                                                                                                                                                              |
|----------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| overflow             | No       | Overflow port for the divider. Asserted when the result of the division (after rounding) exceeds or reaches infinity. Infinity is defined as a number in which the exponent exceeds 2WIDTH_EXP-1.                                        |
| underflow            | No       | Underflow port for the divider. Asserted when the result of the division (after rounding) is zero even though neither of the inputs to the divider is zero, or when the result is a denormalized number.                                 |
| zero                 | No       | Zero port for the divider. Asserted when the value of result[] is zero.                                                                                                                                                                  |
| division_by_<br>zero | No       | Division-by-zero output port for the divider. Asserted when the value of datab[] is a zero.                                                                                                                                              |
| nan                  | No       | NaN port. Asserted when an invalid division occurs, such as infinity dividing infinity or zero dividing zero. A NaN value appears as output at the result[] port. Any division of a NaN value causes the nan output port to be asserted. |

# **ALTFP\_DIV Parameters**

Table 6-7: ALTFP\_DIV Parameters

| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to (2 ^ (WIDTH_EXP - 1)) - 1, that is, 127 for single precision and 1023 for double precision. The value of WIDTH_EXP must be 8 for single precision, 11 for double precision, and a minimum of 11 for single extended precision.  The value of WIDTH_EXP must be less than the value of WIDTH_MAN, and the sum of WIDTH_EXP and WIDTH_MAN must be less than 64. |
| WIDTH_MAN      | Integer | Yes      | Specifies the precision of the mantissa. If this parameter is not specified, the default is 23. When width_exp is 8 and the floating-point format is the single-precision format, the width_man value must be 23. Otherwise, the value of width_man must be a minimum of 31.  The value of width_man must be greater than the value of width_exp, and the sum of width_exp and width_man must be less than 64.                                                                                         |
| ROUNDING       | String  | Yes      | Specifies the rounding mode. The default value is TO_NEAREST. The floating-point divider does not support other rounding modes.                                                                                                                                                                                                                                                                                                                                                                        |

ALTFP\_DIV IP Core Altera Corporation



| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                     |
|----------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OPTIMIZE       | String  | No       | Specifies whether to optimize for area or for speed.  Values are AREA and SPEED. A value of AREA optimizes the design using less total logic utilization or resources.  A value of SPEED optimizes the design for better performance. If this parameter is not specified, the default value is SPEED.           |
| PIPELINE       | Integer | No       | Specifies the number of clock cycles needed to produce the result. For the single-precision format, the latency options are 33, 14 or 6. For the double-precision format, the latency options are 61, 24 or 10.                                                                                                 |
|                |         |          | For the single-extended precision format, the value ranges from a minimum of 41 to a maximum of 61. For the low-latency option, the latency is determined from the mantissa width. For a mantissa width of 31 to 40 bits, the value is 8 or 18. For a mantissa width of 41 bits or more, the value is 10 or 24. |

Altera Corporation ALTFP\_DIV IP Core



2014.12.19

UG-01058





### **ALTFP\_MULT IP Core Features**

The ALTFP\_MULT IP core offers the following features:

- Multiplication functions.
- Optional exception handling output ports such as zero, overflow, underflow, and nan.
- Optional dedicated multiplier circuitries in Cyclone and Stratix series.

### **ALTFP\_MULT Output Latency**

The output latency options for the ALTFP\_MULT IP core are similar for all precisions.

Table 7-1: Latency Options for Each Precision Format

| Precision       | Mantissa Width | Latency (in clock cycles) |
|-----------------|----------------|---------------------------|
| Single          | 23             | 5, 6, 10,11               |
| Double          | 52             | 5, 6, 10,11               |
| Single-Extended | 31–52          | 5, 6, 10,11               |

### **ALTFP\_MULT Truth Table**

**Table 7-2: Truth Table for Multiplier Operations** 

| DATAA[] | DATAB[] | RESULT[] | Overflow | Underflow | Zero | NaN |
|---------|---------|----------|----------|-----------|------|-----|
| Normal  | Normal  | Normal   | 0        | 0         | 0    | 0   |
| Normal  | Normal  | Denormal | 0        | 1         | 1    | 0   |
| Normal  | Normal  | Infinity | 1        | 0         | 0    | 0   |
| Normal  | Normal  | Zero     | 0        | 1         | 1    | 0   |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| DATAA[]  | DATAB[]  | RESULT[] | Overflow | Underflow | Zero | NaN |
|----------|----------|----------|----------|-----------|------|-----|
| Normal   | Denormal | Zero     | 0        | 0         | 1    | 0   |
| Normal   | Zero     | Zero     | 0        | 0         | 1    | 0   |
| Normal   | Infinity | Infinity | 1        | 0         | 0    | 0   |
| Normal   | NaN      | NaN      | 0        | 0         | 0    | 1   |
| Denormal | Normal   | Zero     | 0        | 0         | 1    | 0   |
| Denormal | Denormal | Zero     | 0        | 0         | 1    | 0   |
| Denormal | Zero     | Zero     | 0        | 0         | 1    | 0   |
| Denormal | Infinity | NaN      | 0        | 0         | 0    | 1   |
| Denormal | NaN      | NaN      | 0        | 0         | 0    | 1   |
| Zero     | Normal   | Zero     | 0        | 0         | 1    | 0   |
| Zero     | Denormal | Zero     | 0        | 0         | 1    | 0   |
| Zero     | Zero     | Zero     | 0        | 0         | 1    | 0   |
| Zero     | Infinity | NaN      | 0        | 0         | 0    | 1   |
| Zero     | NaN      | NaN      | 0        | 0         | 0    | 1   |
| Infinity | Normal   | Infinity | 1        | 0         | 0    | 0   |
| Infinity | Denormal | NaN      | 0        | 0         | 0    | 1   |
| Infinity | Zero     | NaN      | 0        | 0         | 0    | 1   |
| Infinity | Infinity | Infinity | 1        | 0         | 0    | 0   |
| Infinity | NaN      | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Normal   | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Denormal | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Zero     | NaN      | 0        | 0         | 0    | 1   |
| NaN      | Infinity | NaN      | 0        | 0         | 0    | 1   |
| NaN      | NaN      | NaN      | 0        | 0         | 0    | 1   |

# **ALTFP\_MULT Resource Utilization and Performance**

The following tables list the resource utilization and performance information for the ALTFP\_MULT IP core. The information was derived using the Quartus II software version 10.0.

Altera Corporation ALTFP\_MULT IP Core



Table 7-3: ALTFP\_MULT Resource Utilization and Performance for Stratix IV Devices with Dedicated Multiplier Circuitry

| Device Family | Precision | Output<br>latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-bit DSP | f <sub>MAX</sub> (MHz) |
|---------------|-----------|-------------------|------------------------------------------|-------------------------------------------|----------------------------------------|------------|------------------------|
| Stratix IV    | Single -  | 5                 | 138                                      | 148                                       | 100                                    | 4          | 274                    |
|               |           | 11                | 185                                      | 301                                       | 190                                    | 4          | 445                    |
|               |           | 5                 | 306                                      | 367                                       | 272                                    | 10         | 255                    |
|               |           | 11                | 419                                      | 523                                       | 348                                    | 10         | 395                    |

# ALTFP\_MULT Design Example: Multiplication of Double-Precision Format Numbers

This design example uses the ALTFP\_MULT IP core to compute the multiplication results of two double-precision format numbers. This example uses the parameter editor GUI to define the core.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
  Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

### **ALTFP\_MULT Design Example: Understanding the Simulation Waveform**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

Figure 7-1: ALTFP\_MULT Simulation Waveform

This figure shows the expected simulation results in the ModelSim-Altera software.



ALTFP\_MULT IP Core Altera Corporation





This design example implements a floating-point multiplier for the multiplication of double-precision format numbers. All the optional input ports (clk\_en and aclr) and output ports (overflow, underflow, zero, and nan) are enabled.

In this example, the latency is set to 6 clock cycles. Therefore, every multiplication result appears at the result port 6 clock cycles later.

Table 7-4: Summary of Input Values and Corresponding Outputs

This table lists the inputs and corresponding outputs obtained from the simulation in the waveform.

| Time           | Event                                                                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | dataa[] value: 0000 0000 0000 0000h                                                                                                                                                            |
|                | datab[] value: 4037 742C 3C9E ECC0h                                                                                                                                                            |
|                | Output value: All values seen on the output port before the 6th clock cycle are merely due to the behavior of the system during start-up and should be disregarded.                            |
| 110 ns         | Output value: 0000 0000 0000 0000h                                                                                                                                                             |
|                | Exception handling ports: zero asserts                                                                                                                                                         |
|                | The multiplication of zero at the input port dataa[], and a non-zero value at the input port datab[] results in a zero.                                                                        |
| 600 ns         | dataa[] value: 7FF0 0000 0000 0000h                                                                                                                                                            |
|                | datab[] value: 4037 742C 3C9E ECC0h                                                                                                                                                            |
|                | This is the multiplication of an infinity value and a normal value.                                                                                                                            |
| 710 ns         | Output value: 7FF0 0000 0000 0000h                                                                                                                                                             |
|                | Exception handling ports: overflow asserts                                                                                                                                                     |
|                | The multiplication of an infinity value and a normal value results in infinity. All multiplications with an infinity value results in infinity except when infinity is multiplied with a zero. |

### **Parameters**

Altera Corporation ALTFP\_MULT IP Core



Table 7-5: ALTFP\_MULT Megafunction Parameters

| Parameter Name                  | Type    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP                       | Integer | No       | Specifies the value of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always 2(WIDTH_EXP - 1)-1 (that is, 127 for the single-precision format and 1023 for the double-precision format). WIDTH_EXP must be 8 for the single-precision format or a minimum of 11 for the double-precision format and the single-extended precision format. WIDTH_EXP must less than WIDTH_MAN. The sum of WIDTH_EXP and WIDTH_MAN must be less than 64. |
| WIDTH_MAN                       | Integer | No       | Specifies the value of the mantissa. If this parameter is not specified, the default is 23. When width_exp is 8 and the floating-point format is single-precision, the width_man value must be 23; otherwise, the value of width_man must be a minimum of 31. The width_man value must always be greater than the width_exp value. The sum of width_exp and width_man must be less than 64.                                                                                             |
| DEDICATED_MULTIPLIER_ CIRCUITRY | String  | No       | Specifies whether to use dedicated multiplier circuitry. Values are AUTO, YES, or NO. If this parameter is not specified, the default is AUTO. If a device does not have dedicated multiplier circuitry, the DEDICATED_MULTIPLIER_CIRCUITRY parameter has no effect and defaults to NO.                                                                                                                                                                                                 |
| PIPELINE                        | Integer | No       | Specifies the number of clock cycles needed to produce the multiplied result. Values are 5, 6, 10, and 11. If this parameter is not specified, the default is 5.                                                                                                                                                                                                                                                                                                                        |

# **ALTFP\_MULT Signals**

Table 7-6: ALTFP\_MULT IP Core Input Signals

| Port Name | Required | Description                                                                                                                                                   |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clock     | Yes      | Clock input to the IP core.                                                                                                                                   |
| clk_en    | No       | Clock enable. Allows multiplication to take place when asserted high. When signal is asserted low, no multiplication occurs and the outputs remain unchanged. |

ALTFP\_MULT IP Core Altera Corporation



| Port Name | Required | Description                                                                                                                                                                                                                   |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Synchronous clear. Source is asynchronously reset when asserted high.                                                                                                                                                         |
| dataa[]   | Yes      | Floating-point input data input to the multiplier. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of sign bit, exponent bits, and mantissa bits. |
| datab[]   | Yes      | Floating-point input data to the multiplier. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of sign bit, exponent bits, and mantissa bits.       |

Table 7-7: ALTFP\_MULT IP Core Output Signals

| Port Name | Required | Description                                                                                                                                                                                                                                                              |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  | Yes      | Output port for the multiplier. The floating-point result after rounding. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa.                                                                                                            |
| overflow  | No       | Overflow port for the multiplier. Asserted when the result of the multiplication, after rounding, exceeds or reaches infinity. Infinity is defined as a number in which the exponent exceeds 2 WIDTH_EXP_1.                                                              |
| underflow | No       | Underflow port for the multiplier. Asserted when the result of the multiplication (after rounding) is 0 while none of the inputs to the multiplication is 0, or asserted when the result is a denormalized number.                                                       |
| zero      | No       | Zero port for the multiplier. Asserted when the value of result[] is 0.                                                                                                                                                                                                  |
| nan       | No       | NaN port for the multiplier. This port is asserted when an invalid multiplication occurs, such as the multiplication of infinity and zero. In this case, a NaN value is the output generated at the result[] port. The multiplication of any value and NaN produces NaN. |

Altera Corporation ALTFP\_MULT IP Core



### **ALTFP\_SQRT**

8

2014.12.19

UG-01058





You can use the ports and parameters available to customize the ALTFP\_SQRT IP core according to your application.

### **ALTFP SQRT Features**

The ALTFP\_SQRT IP core offers the following features:

- Square root functions.
- Optional exception handling output ports such as zero, overflow, and nan.

### **Output Latency**

The output latency options for the ALTFP\_SQRT megafunction differs depending on the precision selected, the width of the mantissa, or both.

**Table 8-1: Latency Options for Each Precision Format** 

| Precision | Mantissa Width | Latency (in clock cycles) |
|-----------|----------------|---------------------------|
| Single    | 23             | 16, 28                    |
| Double    | 52             | 30, 57                    |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| Precision       | Mantissa Width | Latency (in clock cycles) |
|-----------------|----------------|---------------------------|
|                 | 31             | 20, 36                    |
|                 | 32             | 20, 37                    |
|                 | 33             | 21, 38                    |
|                 | 34             | 21, 39                    |
|                 | 35             | 22, 40                    |
|                 | 36             | 22, 41                    |
|                 | 37             | 23, 42                    |
|                 | 38             | 23, 43                    |
|                 | 39             | 24, 44                    |
|                 | 40             | 24, 45                    |
| Single-extended | 41             | 25, 46                    |
|                 | 42             | 25, 47                    |
|                 | 43             | 26, 48                    |
|                 | 44             | 26, 49                    |
|                 | 45             | 27, 50                    |
|                 | 46             | 27, 51                    |
|                 | 47             | 28, 52                    |
|                 | 48             | 28, 53                    |
|                 | 49             | 29, 54                    |
|                 | 50             | 29, 55                    |
|                 | 51             | 30, 56                    |

## **ALTFP\_SQRT Truth Table**

Truth Table for Square Root Operations

| DATA[]            | SIGN BIT | RESULT[] | NaN | Overflow | Zero |
|-------------------|----------|----------|-----|----------|------|
| Normal            | 0        | Normal   | 0   | 0        | 0    |
| Denormal          | 0/1      | Zero     | 0   | 0        | 1    |
| Positive Infinity | 0        | Infinity | 0   | 1        | 0    |
| Negative Infinity | 1        | All 1's  | 1   | 0        | 0    |
| Positive NaN      | 0        | All 1's  | 1   | 0        | 0    |
| Negative NaN      | 1        | All 1's  | 1   | 0        | 0    |
| Zero              | 0/1      | Zero     | 0   | 0        | 1    |
| Normal            | 1        | All 1's  | 1   | 0        | 0    |

Altera Corporation ALTFP\_SQRT



### **ALTFP\_SQRT Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_SQRT IP core. The information was derived using the Quartus II software version 10.0.

Table 8-2: ALTFP\_SQRT Resource Utilization and Performance for Stratix IV Devices

| Device Family |           |                   |                                          | Logic usage                               |                                        |                        |
|---------------|-----------|-------------------|------------------------------------------|-------------------------------------------|----------------------------------------|------------------------|
|               | Precision | Output<br>latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Login<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | f <sub>MAX</sub> (MHz) |
| Strativ IV    | Single    | 28                | 502                                      | 932                                       | 528                                    | 472                    |
| Stratix IV    | Double    | 57                | 2,177                                    | 3,725                                     | 2,202                                  | 366                    |

# ALTFP\_SQRT Design Example: Square Root of Single-Precision Format Numbers

This design example uses the ALTFP\_SQRT IP core to compute the square root of single-precision format numbers. This example uses the MegaWizard Plug-In Manager in the Quartus II software.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
   Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

### **ALTFP\_SQRT Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

These figures show the expected simulation results in the ModelSim-Altera software.

Figure 8-1: ALTFP\_SQRT ModelSim Simulation Waveform (Input Data)



ALTFP\_SQRT Altera Corporation



Figure 8-2: ALTFP\_SQRT ModelSim Simulation Waveform (Output Data)



This design example implements a floating-point square root function for single-precision format numbers with all the exception output ports instantiated. The output ports include overflow, zero, and nan.

The output latency is 28 clock cycles. Every square root computation generates the output result 28 clock cycles later.

**Table 8-3: Summary of Input Values and Corresponding Outputs** 

This table lists the inputs and corresponding outputs obtained from the simulation in the waveforms.

| Time           | Event                                                                                                                                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | Output value: All values seen on the output port before the 28th clock cycle are merely due to the behavior of the system during start-up and should be disregarded. |
| 2 000 ns       | data[] value: 2D0B 496Ah                                                                                                                                             |
|                | The data input is a normal number.                                                                                                                                   |
| 84 000 ns      | Output value: 363C D4EBh                                                                                                                                             |
|                | The square root computation of a normal input results in a normal output.                                                                                            |
| 14 000 ns      | data[] value: 0000 0000h                                                                                                                                             |
| 96 000 ns      | Output value: 0000 0000h                                                                                                                                             |
|                | Exception handling ports: zero asserts                                                                                                                               |
|                | The square root computation of zero results in a zero.                                                                                                               |
| 23 000 ns      | data[] value: 7F80 0000h                                                                                                                                             |
|                | The input is infinity.                                                                                                                                               |
| 105 000 ns     | Output value: 7F80 0000h                                                                                                                                             |
|                | Exception handling ports: overflow asserts                                                                                                                           |

## **ALTFP\_SQRT Signals**

Altera Corporation ALTFP\_SQRT



Figure 8-3: ALTFP\_SQRT Signals



Table 8-4: ALTFP\_SQRT IP Core Input Signals

| Port Name | Required | Description                                                                                                                                                                                           |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clock     | Yes      | Clock input to the IP core.                                                                                                                                                                           |
| clk_en    | No       | Clock enable that allows square root operations when the port is asserted high. When the port is asserted low, no operation occurs and the outputs remain unchanged.                                  |
| aclr      | No       | Asynchronous clear. When the aclr port is asserted high, the function is asynchronously reset.                                                                                                        |
|           | Yes      | Floating-point input data. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of sign bit, exponent bits, and mantissa bits. |

Table 8-5: ALTFP\_SQRT IP Core Output Signals

| Port Name | Required | Description                                                                                                                                                                                                                            |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  | Yes      | Square root output port for the floating-point result. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits, and mantissa bits. |
| overflow  | Yes      | Overflow port. Asserted when the result of the square root (after rounding) exceeds or reaches infinity. Infinity is defined as a number in which the exponent exceeds 2 <sup>WIDTH_EXP</sup> -1.                                      |
| zero      | Yes      | Zero port. Asserted when the value of the result[] port is 0.                                                                                                                                                                          |
| nan       | Yes      | NaN port. Asserted when an invalid square root occurs, such as negative numbers or NaN inputs.                                                                                                                                         |

ALTFP\_SQRT Altera Corporation



## **ALTFP\_SQRT Parameters**

Table 8-6: ALTFP\_SQRT Parameters

| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP -1) -1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of the WIDTH_EXP parameter must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of the WIDTH_EXP parameter must be less than the value of the WIDTH_MAN parameter, and the sum of the WIDTH_EXP and WIDTH_MAN parameters must be less than 64. |
| WIDTH_MAN      | Integer | Yes      | Specifies the value of the mantissa. If this parameter is not specified, the default is 23. When the WIDTH_EXP parameter is 8 and the floating-point format is single-precision, the WIDTH_MAN parameter value must be 23. Otherwise, the value of the WIDTH_MAN parameter must be a minimum of 31. The value of the WIDTH_MAN parameter must be greater than the value of the WIDTH_EXP parameter. The sum of the WIDTH_EXP and WIDTH_MAN parameters must be less than 64.                                                                                                                                     |
| ROUNDING       | String  | Yes      | Specifies the rounding mode. The default value is TO_NEAREST. Other rounding modes are not supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PIPELINE       | Integer | Yes      | Specifies the number of clock cycles for the square root results of the result[] port. Values are width_MAN + 5 and ((width_MAN + 5/2)+2) as specified by truncating the radix point.                                                                                                                                                                                                                                                                                                                                                                                                                           |

Altera Corporation ALTFP\_SQRT



## **ALTFP\_EXP IP Core**

9

2014.12.19

UG-01058

Subscribe



You can use the ports and parameters available to customize the ALTFP\_EXP IP core according to your application.

## **ALTFP\_EXP Features**

The ALTFP\_EXP IP core offers the following features:

- Exponential value of a given input.
- Optional exception handling output ports such as zero, overflow, underflow, and nan.

## **Output Latency**

The output latency options for the ALTFP\_EXP megafunction differs depending on the precision selected, the width of the mantissa, or both.

| Precision       | Mantissa Width | Latency (in clock cycles) |
|-----------------|----------------|---------------------------|
| Single          | 23             | 17                        |
| Double          | 52             | 25                        |
| Single aytended | 31 – 38        | 22                        |
| Single-extended | 39 – 52        | 25                        |

## **ALTFP EXP Truth Table**

**Table 9-1: Truth Table for Exponential Operations** 

| DATAA[] | Calculation | RESULT[] | NaN | Overflow | Underflow | Zero |
|---------|-------------|----------|-----|----------|-----------|------|
| Normal  | edata       | Normal   | 0   | 0        | 0         | 0    |
| Normal  | edata       | Infinity | 0   | 1        | 0         | 0    |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| DATAA[]                                            | Calculation | RESULT[] | NaN | Overflow | Underflow | Zero |
|----------------------------------------------------|-------------|----------|-----|----------|-----------|------|
| Normal (numbers of small magnitude)                | edata       | 1        | 0   | 0        | 1         | 0    |
| Normal (negative<br>numbers of large<br>magnitude) | edata       | 0        | 0   | 0        | 1         | 0    |
| Denormal                                           | e0          | 1        | 0   | 0        | 0         | 0    |
| Zero                                               | e0          | 1        | 0   | 0        | 0         | 0    |
| Infinity (+)                                       | e+          | Infinity | 0   | 0        | 0         | 0    |
| Infinity (-)                                       | e-          | 0        | 0   | 0        | 0         | 1    |
| NaN                                                | _           | NaN      | 1   | 0        | 0         | 0    |

## **ALTFP\_EXP Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_EXP IP core. The information was derived using the Quartus II software version 10.0.

Table 9-2: ALTFP\_EXP Resource Utilization and Performance for Stratix IV Devices

|               |           |                   | Logic usage                              |                                           |                                        |            |                        |
|---------------|-----------|-------------------|------------------------------------------|-------------------------------------------|----------------------------------------|------------|------------------------|
| Device Family | Precision | Output<br>Latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-bit DSP | f <sub>MAX</sub> (MHz) |
| Stratix IV    | Single    | 17                | 631                                      | 521                                       | 448                                    | 19         | 284                    |
| Stratix IV    | Double    | 25                | 4,104                                    | 2,007                                     | 2,939                                  | 46         | 279                    |

## ALTFP\_EXP Design Example: Exponential of Single-Precision Format Numbers

This design example uses the ALTFP\_EXP IP core to compute the exponential value of single-precision format numbers. This example uses the MegaWizard Plug-In Manager in the Quartus II software.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
  Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
  Provides information about installation, usage, and troubleshooting

Altera Corporation ALTFP\_EXP IP Core



<sup>(2)</sup> Any denormal input is treated as a zero before going through the exponential process.

#### **ALTFP\_EXP Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

These figures show the expected simulation results in the ModelSim-Altera software.

Figure 9-1: ALTFP\_EXP ModelSim Simulation Waveform (Input Data)



Figure 9-2: ALTFP\_EXP ModelSim Simulation Waveform (Output Data)



This design example implements a floating-point exponential for the single-precision format numbers. The optional input ports (clk\_en and aclr) and all four exception handling output ports (nan, overflow, underflow, and zero) are enabled.

For single-precision format numbers, the latency is fixed at 17 clock cycles. Therefore, every exponential operation outputs the results 17 clock cycles later.

**Table 9-3: Summary of Input Values and Corresponding Outputs** 

This table lists the inputs and corresponding outputs obtained from the simulation in the waveforms.

| Time           | Event                                                                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | data[] value: 1A03 568Ch                                                                                                                                                                                                                |
|                | Output value: An undefined value is seen on the result[] port, which is ignored. All values seen on the output port before the 17th clock cycle are merely due to the behavior of the system during start-up and should be disregarded. |

ALTFP\_EXP IP Core Altera Corporation



| Time     | Event                                                                                                                                                                                                                                                                                       |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 82.5 ns  | Output value: 3F80 0000h                                                                                                                                                                                                                                                                    |
|          | As the input value of 1A03568Ch is a very small number, it is seen as a value that is approaching zero, and the result approaches 1 (which is represented by 3F800000). Exponential operations carried out on numbers of very small magnitudes result in a 1 and assert the underflow flag. |
|          | Exception handling ports: underflow asserts                                                                                                                                                                                                                                                 |
| 30 ns    | data[] value: F3FC DEFFh                                                                                                                                                                                                                                                                    |
|          | This is a normal negative value of a very large magnitude.                                                                                                                                                                                                                                  |
| 112.5 ns | Output value: 0000 0000h                                                                                                                                                                                                                                                                    |
|          | The outcome of exponential operations on negative numbers of very large magnitudes approaches zero.                                                                                                                                                                                         |
|          | Exception handling ports: underflow remains asserted                                                                                                                                                                                                                                        |
| 60 ns    | data[] value: 7F80 0000h                                                                                                                                                                                                                                                                    |
|          | This is a positive infinite value.                                                                                                                                                                                                                                                          |
| 142.5 ns | Output value: 7F80 0000h                                                                                                                                                                                                                                                                    |
|          | The operation on positive infinite values results in infinity.                                                                                                                                                                                                                              |
|          | Exception handling ports: underflow deasserts, overflow asserts                                                                                                                                                                                                                             |
| 90 ns    | data[] value: 7FC0 0000h                                                                                                                                                                                                                                                                    |
|          | This is a NaN.                                                                                                                                                                                                                                                                              |
| 172.5 ns | Output value: 7FC0 0000h                                                                                                                                                                                                                                                                    |
|          | The exponential of a NaN results in a NaN.                                                                                                                                                                                                                                                  |
|          | Exception handling ports: nan asserts                                                                                                                                                                                                                                                       |
| 120 ns   | data[] value: C1D4 49BAh                                                                                                                                                                                                                                                                    |
|          | This is a normal value.                                                                                                                                                                                                                                                                     |
| 202.5 ns | Output value: 2C52 5981h                                                                                                                                                                                                                                                                    |
|          | The result is a normal value.                                                                                                                                                                                                                                                               |
|          | Exception handling ports: nan deasserts                                                                                                                                                                                                                                                     |

## **ALTFP\_EXP Signals**

Altera Corporation ALTFP\_EXP IP Core



Figure 9-3: ALTFP\_EXP Signals



Table 9-4: ALTFP\_EXP IP Core Input Signals

| Port Name | Required | Description                                                                                                                                                                                               |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear. When the aclr port is asserted high the function is asynchronously reset.                                                                                                             |
| clk_en    | No       | Clock enable. When the clk_en port is asserted high, an exponential value operation takes place. When this signal is asserted low, no operation occurs and the outputs remain unchanged.                  |
| clock     | Yes      | Clock input to the IP core.                                                                                                                                                                               |
| data[]    | Yes      | Floating-point input data. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of the sign bit, exponent bits, and mantissa bits. |

Table 9-5: ALTFP\_EXP IP Core Output Signals

| Port Name | Required | Description                                                                                                                                                                                                                                   |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  | Yes      | The floating-point exponential result of the value at data[]. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits, and mantissa bits. |
| overflow  | No       | Overflow exception output. Asserted when the result of the operation (after rounding) is infinite.                                                                                                                                            |
| underflow | No       | Underflow exception output. Asserted when the result of the exponential approaches 1 (from numbers of very small magnitude), or when the result approaches 0 (from negative numbers of very large magnitudes).                                |
| zero      | No       | Zero exception output. Asserted when the value in the result[] port is zero.                                                                                                                                                                  |

ALTFP\_EXP IP Core

Altera Corporation



| Port Name | Required | Description                                                                                                             |
|-----------|----------|-------------------------------------------------------------------------------------------------------------------------|
| nan       | No       | NaN exception output. Asserted when an invalid operation occurs. Any operation involving NaN also asserts the nan port. |

## **ALTFP\_EXP Parameters**

Table 9-6: ALTFP\_EXP IP Core Parameters

| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP -1) -1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of the WIDTH_EXP parameter must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of the WIDTH_EXP parameter must be less than the value of the WIDTH_MAN parameter, and the sum of the WIDTH_EXP and WIDTH_MAN parameters must be less than 64. |
| WIDTH_MAN      | Integer | Yes      | Specifies the value of the mantissa. If this parameter is not specified, the default is 23. When the width_ EXP parameter is 8 and the floating-point format is single-precision, the width_man parameter value must be 23. Otherwise, the value of the width_man parameter must be a minimum of 31. The value of the width_man parameter must be greater than the value of the width_exp parameter. The sum of the width_exp and width_man parameters must be less than 64.                                                                                                                                    |
| PIPELINE       | Integer | Yes      | Specifies the amount of latency, expressed in clock cycles, used in the ALTFP_EXP IP core. Acceptable pipeline values are 17, 22, and 25 cycles of latency. Create the ALTFP_EXP IP core with the MegaWizard Plug-In Manager to calculate the value for this parameter.                                                                                                                                                                                                                                                                                                                                         |
| ROUNDING       | String  | Yes      | Specifies the rounding mode. The default value is TO_NEAREST. Other rounding modes are not supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Altera Corporation ALTFP\_EXP IP Core



# ALTFP\_INV IP Core 10

2014.12.19

UG-01058

Subscribe



Send Feedback

You can use the ports and parameters available to customize the ALTFP\_INV IP core according to your application.

### **ALTFP INV Features**

The ALTFP\_INV IP core offers the following features:

- Inverse value of a given input.
- Optional exception handling output ports such as zero, division\_by\_zero, underflow, and nan.

## **Output Latency**

The output latency options for the ALTFP\_INV megafunction differs depending on the precision selected, the width of the mantissa, or both.

| Precision       | Mantissa Width | Latency (in clock cycles) |  |
|-----------------|----------------|---------------------------|--|
| Single          | 23             | 20                        |  |
| Double          | 52             | 27                        |  |
| Single Extended | 31 – 39        | 20                        |  |
| Single Extended | 40 - 52        | 27                        |  |

## **ALTFP\_INV Truth Table**

**Table 10-1: Truth Table for Inverse Operations** 

| DATA[] | SIGN BIT | RESULT[] | Underflow | Zero | Division_by_<br>zero | NaN |
|--------|----------|----------|-----------|------|----------------------|-----|
| Normal | 0/1      | Normal   | 0         | 0    | 0                    | 0   |
| Normal | 0/1      | Denormal | 1         | 1    | 0                    | 0   |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| DATA[]   | SIGN BIT | RESULT[] | Underflow | Zero | Division_by_<br>zero | NaN |
|----------|----------|----------|-----------|------|----------------------|-----|
| Normal   | 0/1      | Infinity | 0         | 0    | 0                    | 0   |
| Normal   | 0/1      | Zero     | 1         | 1    | 0                    | 0   |
| Denormal | 0/1      | Infinity | 0         | 0    | 1                    | 0   |
| Zero     | 0/1      | Infinity | 0         | 0    | 1                    | 0   |
| Infinity | 0/1      | Zero     | 0         | 1    | 0                    | 0   |
| NaN      | X        | NaN      | 0         | 0    | 0                    | 1   |

## **ALTFP\_INV Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_INV IP core. The information was derived using the Quartus II software version 10.0.

Table 10-2: ALTFP\_INV Resource Utilization and Performance for Stratix IV Devices

| Device Family | nily Precision | Output<br>Latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-Bit DSP | f <sub>MAX</sub> (MHz) |
|---------------|----------------|-------------------|------------------------------------------|-------------------------------------------|----------------------------------------|------------|------------------------|
| Stratix IV    | Single         | 20                | 401                                      | 616                                       | 373                                    | 16         | 412                    |
| SHAHX IV      | Double         | 27                | 939                                      | 1,386                                     | 912                                    | 48         | 203                    |

## **ALTFP\_INV** Design Example: Inverse of Single-Precision Format Numbers

This design example uses the ALTFP\_INV IP core to compute the inverse of single-precision format numbers. This example uses the parameter editor in the Quartus II software.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
   Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

### **ALTFP\_INV Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

Altera Corporation ALTFP\_INV IP Core



<sup>(3)</sup> Any calculated or computed **denormal** output is replaced by a zero and asserts the zero and underflow flags.

<sup>(4)</sup> Any denormal input is treated as a zero before going through the inverse process.

These figures show the expected simulation results in the ModelSim-Altera software.

Figure 10-1: ALTFP\_INV ModelSim Simulation Waveform (Input Data)



Figure 10-2: ALTFP\_INV ModelSim Simulation Waveform (Output Data)



This design example implements a floating-point inverse for single-precision format numbers. The optional input ports (clk\_en and aclr) and all four exception handling output ports (division\_by\_zero, nan, zero, and underflow) are enabled.

The latency is fixed at 20 clock cycles; therefore, every inverse operation outputs results 20 clock cycles later.

This table lists the inputs and corresponding outputs obtained from the simulation in the waveforms.

Table 10-3: Summary of Input Values and Corresponding Outputs

| Time           | Event                                                                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | data[] value: 34A2 E42Fh                                                                                                                                                                                                                |
|                | Output value: An undefined value is seen on the result[] port, which is ignored. All values seen on the output port before the 20th clock cycle are merely due to the behavior of the system during start-up and should be disregarded. |
| 97.5 ns        | Output value: 4A49 2A2Fh                                                                                                                                                                                                                |
|                | Exception handling ports: division_by_zero deasserts                                                                                                                                                                                    |
|                | The inverse of a normal number results in a normal value.                                                                                                                                                                               |
| 10 ns          | data[] value: 7F80 0000h                                                                                                                                                                                                                |
|                | This is an infinity value.                                                                                                                                                                                                              |

ALTFP\_INV IP Core Altera Corporation



| Time     | Event                                                                                          |
|----------|------------------------------------------------------------------------------------------------|
| 107.5 ns | Output value: 0000 0000h                                                                       |
|          | Exception handling ports: zero asserts                                                         |
|          | The inverse of an infinity value produces a zero.                                              |
| 60 ns    | data[] value: 7FC0 0000h                                                                       |
|          | This is a NaN.                                                                                 |
| 157.5 ns | Output value: 7FC0 0000h                                                                       |
|          | Exception handling ports: nan asserts                                                          |
|          | The inverse of a NaN results in a NaN                                                          |
| 70 ns    | data[] value: 0000 1000h                                                                       |
|          | This is a denormal number.                                                                     |
| 167.5 ns | Output value: 7F80 0000h                                                                       |
|          | Exception handling ports: nan deasserts, division_by_zero asserts                              |
|          | Denormal numbers are forced-zero values, therefore, the inverse of a zero results in infinity. |

## **Ports**

Table 10-4: ALTFP\_INV Megafunction Input Ports

| Port Name | Required | Description                                                                                                                                                                                               |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear. When the aclr port is asserted high, the function is asynchronously cleared.                                                                                                          |
| clk_en    | No       | Clock enable. When the clk_en port is asserted high, an inversion value operation takes place. When signal is asserted low, no operation occurs and the outputs remain unchanged.                         |
| clock     | Yes      | Clock input to the megafunction.                                                                                                                                                                          |
| data[]    | Yes      | Floating-point input data. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of the sign bit, exponent bits, and mantissa bits. |

Altera Corporation ALTFP\_INV IP Core



#### Table 10-5: ALTFP\_INV Megafunction Output Ports

| Port Name        | Required | Description                                                                                                                                                                                                                                             |
|------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]         | Yes      | The floating-point inverse result of the value at the data[]input port. The MSB is the sign, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits, and mantissa bits. |
| underflow        | No       | Underflow exception output. Asserted when the result of the inversion (after rounding) is a denormalized number.                                                                                                                                        |
| zero             | No       | Zero exception output. Asserted when the value at the result[] port is a zero.                                                                                                                                                                          |
| division_by_zero | No       | Division-by-zero exception output. Asserted when the denominator input is a zero.                                                                                                                                                                       |
| nan              | No       | NaN exception output. Asserted when an invalid inversion occurs, such as the inversion of NaN. In this case, a NaN value is output to the result[] port. Any operation involving NaN also asserts the nan port.                                         |

## **Parameters**

Table 10-6: ALTFP\_INV Megafunction Parameters

| Parameter Name | Type    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP -1) -1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of the WIDTH_EXP parameter must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of the WIDTH_EXP parameter must be less than the value of the WIDTH_MAN parameter, and the sum of the WIDTH_EXP and WIDTH_MAN parameters must be less than 64. |

ALTFP\_INV IP Core

Altera Corporation



| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_MAN      | Integer | Yes      | Specifies the value of the mantissa. If this parameter is not specified, the default is 23. When the width_ EXP parameter is 8 and the floating-point format is single-precision, the width_man parameter value must be 23. Otherwise, the value of the width_man parameter must be a minimum of 31. The value of the width_man parameter must be greater than the value of the width_exp parameter. The sum of the width_exp and width_man parameters must be less than 64. |
| PIPELINE       | Integer | Yes      | Specifies the amount of latency in clock cycles used in the ALTFP_INV megafunction. Create the ALTFP_INV megafunction with the MegaWizard Plug-In Manager to calculate the value for this parameter.                                                                                                                                                                                                                                                                         |
| ROUNDING       | String  | No       | Specifies the rounding mode. The default value is TO_NEAREST. Other rounding modes are not supported.                                                                                                                                                                                                                                                                                                                                                                        |

Altera Corporation ALTFP\_INV IP Core



# ALTFP\_INV\_SQRT IP Core 1 1

2014.12.19

UG-01058

Subscribe



You can use the ports and parameters available to customize the ALTFP\_INV\_SQRT IP core according to your application.

### **ALTFP\_INV\_SQRT Features**

The ALTFP\_INV\_SQRT IP core offers the following features:

- Inverse square root value of a given input.
- Optional exception handling output ports such as zero, division\_by\_zero, and nan.

### **Output Latency**

The output latency options for the ALTFP\_INV\_SQRT megafunction differs depending on the precision selected, the width of the mantissa, or both.

Table 11-1: Latency Options for Each Precision Format

| Precision       | Mantissa Width | Latency (in clock cycles) |
|-----------------|----------------|---------------------------|
| Single          | 23             | 26                        |
| Double          | 52             | 36                        |
| Single-Extended | 31–39          | 26                        |
| Single-Extended | 40 - 52        | 36                        |

## **ALTFP\_INV\_SQRT Truth Table**

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



Table 11-2: Truth Table for Inverse Square Root Operations

| DATA[]   | SIGN BIT | RESULT[] | Zero | Division_by_<br>zero | NaN |
|----------|----------|----------|------|----------------------|-----|
| Normal   | 0        | Normal   | 0    | 0                    | 0   |
| Normal   | 1        | NaN      | 0    | 0                    | 1   |
| Denormal | 0/1      | Infinity | 0    | 1                    | 0   |
| Zero     | 0/1      | Infinity | 0    | 1                    | 0   |
| Infinity | 0/1      | Zero     | 1    | 0                    | 0   |
| NaN      | X        | NaN      | 0    | 0                    | 1   |

## **ALTFP\_INV\_SQRT Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_INV\_SQRT IP core. The information was derived using the Quartus II software version 10.0.

Table 11-3: ALTFP\_INV\_SQRT Resource Utilization and Performance for Stratix IV Devices

|               |           |                   | Logic usage                              |                                           |                                        |            |                        |
|---------------|-----------|-------------------|------------------------------------------|-------------------------------------------|----------------------------------------|------------|------------------------|
| Device Family | Precision | Output<br>Latency | Adaptive<br>Look-up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-Bit DSP | f <sub>MAX</sub> (MHz) |
| Stratix IV    | Single    | 26                | 502                                      | 658                                       | 430                                    | 22         | 413                    |
| Stratix IV    | Double    | 36                | 1,324                                    | 1,855                                     | 1,209                                  | 78         | 209                    |

## ALTFP\_INV\_SQRT Design Example: Inverse Square Root of Single-Precision Format Numbers

This design example uses the ALTFP\_INV\_SQRT IP core to compute the inverse square root of single-precision format numbers. This example uses the parameter editor GUI to define the core.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
   Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

Altera Corporation ALTFP\_INV\_SQRT IP Core



<sup>(5)</sup> Any denormal input is treated as a zero before going through the inverse process.

#### **ALTFP\_INV\_SQRT** Design Example: Understanding the Simulation Results

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

These figures show the expected simulation results in the ModelSim-Altera software.

Figure 11-1: ALTFP\_INV\_SQRT ModelSim Simulation Waveform (Input Data)



Figure 11-2: ALTFP\_INV\_SQRT ModelSim Simulation Waveform (Output Data)



This design example implements a floating-point inverse square root for single-precision format numbers. The optional input ports (clk\_en and aclr) and all three exception handling output ports (division\_by\_zero, nan, and zero) are enabled.

The latency is fixed at 26 clock cycles. Therefore, every inverse square root operation outputs the results 26 clock cycles later.

This table lists the inputs and corresponding outputs obtained from the simulation in the waveforms.

Table 11-4: Summary of Input Values and Corresponding Outputs

| Time           | Event                                                                                                                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | data[] value: 05AE 470Bh                                                                                                                                                                                                                    |
|                | Output value: An undefined value is seen on the result[] port, which can be ignored. All values seen on the output port before the 26th clock cycle are merely due to the behavior of the system during start-up and should be disregarded. |
| 127.5 ns       | Output value: 5C5B 64CEh                                                                                                                                                                                                                    |
|                | The inverse square root of a normal number results in a normal value.                                                                                                                                                                       |
| 10 ns          | data[] value: E8A7 E93Dh                                                                                                                                                                                                                    |
|                | This is a negative normal value.                                                                                                                                                                                                            |

ALTFP\_INV\_SQRT IP Core Altera Corporation



| Time     | Event                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------|
| 137.5 ns | Output value: FFC0 0000h                                                                                |
|          | Exception handling ports: nan asserts                                                                   |
|          | The inverse square root of a negative value produces a NaN.                                             |
| 20 ns    | data[] value: 0000 0004h                                                                                |
|          | The is a denormal value.                                                                                |
| 147.5 ns | Output value: 7F80 0000h                                                                                |
|          | Denormal numbers are forced-zero values, therefore the inverse square root of zero results in infinity. |
|          | Exception handling ports: nan deasserts, division_by_zero asserts                                       |
| 50 ns    | data[] value: 7F80 0000h                                                                                |
|          | This is an infinity value.                                                                              |
| 177.5 ns | Output value: 0000 0000h                                                                                |
|          | The inverse square root of an infinity value produces a zero.                                           |
|          | Exception handling ports: zero asserts                                                                  |

## **Ports**

Figure 11-3: ALTFP\_INV\_SQRT Signals



Altera Corporation ALTFP\_INV\_SQRT IP Core



#### Table 11-5: ALTFP\_INV\_SQRT IP Core Input Signals

| Port Name | Required | Description                                                                                                                                                                                                   |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear. When the aclr port is asserted high, the function is asynchronously cleared.                                                                                                              |
| clk_en    | No       | Clock enable. When the clk_en port is asserted high, an inversion value operation takes place. When signal is asserted low, no operation occurs and the outputs remain unchanged.                             |
| clock     | Yes      | Clock input to the IP core.                                                                                                                                                                                   |
| data[]    | Yes      | Floating-point input data. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of the sign bit, exponent bits, and mantissa bits. |

#### Table 11-6: ALTFP\_INV\_SQRT IP Core Output Signals

| Port Name        | Required | Description                                                                                                                                                                                                                                                  |
|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]         | Yes      | The floating-point inverse result of the value at the data[] input port. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. The size of this port is the total width of the sign bit, exponent bits, and mantissa bits. |
| zero             | No       | Zero exception output. Asserted when the value at the result[] port is a zero.                                                                                                                                                                               |
| division_by_zero | No       | Division-by-zero exception output. Asserted when the denominator input is a zero.                                                                                                                                                                            |
| nan              | No       | NaN exception output. Asserted when an invalid inversion of square root occurs, such as the square root of a negative number. In this case, a NaN value is output to the result[] output port. Any operation involving a NaN will also produce a NaN.        |

## **Parameters**

ALTFP\_INV\_SQRT IP Core

Altera Corporation



#### Table 11-7: ALTFP\_INV\_SQRT Megafunction Parameters

| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP -1) -1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of the WIDTH_EXP parameter must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of the WIDTH_EXP parameter must be less than the value of the WIDTH_MAN parameter, and the sum of the WIDTH_EXP and WIDTH_MAN parameters must be less than 64. |
| WIDTH_MAN      | Integer | Yes      | Specifies the value of the mantissa. If this parameter is not specified, the default is 23. When the width_exp parameter is 8 and the floating-point format is single-precision, the width_man parameter value must be 23. Otherwise, the value of the width_man parameter must be a minimum of 31. The value of the width_man parameter must be greater than the value of the width_exp parameter. The sum of the width_exp and width_man parameters must be less than 64.                                                                                                                                     |
| PIPELINE       | Integer | Yes      | Specifies the amount of latency, expressed in clock cycles, used in the ALTFP_INV_SQRT megafunction. Create the ALTFP_INV_SQRT megafunction with the MegaWizard Plug-In Manager to calculate the value for this parameter.                                                                                                                                                                                                                                                                                                                                                                                      |
| ROUNDING       | String  | No       | Specifies the rounding mode. The default value is TO_NEAREST. Other rounding modes are not supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Altera Corporation ALTFP\_INV\_SQRT IP Core



# ALTFP\_LOG 12

2014.12.19

UG-01058





You can use the ports and parameters available to customize the ALTFP\_LOG IP core according to your application.

### **ALTFP LOG Features**

The ALTFP\_LOG IP core offers the following features:

- Natural logarithm functions.
- Optional exception handling output ports such as zero and nan.

## **Output Latency**

The output latency options for the ALTFP\_LOG megafunction differs depending on the precision selected, the width of the mantissa, or both.

**Table 12-1: Latency Options for Each Precision Format** 

| Precision       | Mantissa Width | Latency (in clock cycles) |
|-----------------|----------------|---------------------------|
| Single          | 23             | 21                        |
| Double          | 52             | 34                        |
| Single Extended | 31–36          | 25                        |
|                 | 37-42          | 28                        |
|                 | 43-48          | 31                        |
|                 | 49-52          | 34                        |

## **ALTFP\_LOG Truth Table**

This table lists the truth table for the natural logarithm operation.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



**Table 12-2: Truth Table for Natural Logarithm Operations** 

| DATA[]       | SIGN BIT | RESULT[]           | Zero | NaN |
|--------------|----------|--------------------|------|-----|
| Normal       | 0        | Normal             | 0    | 0   |
| Normal       | 1        | NaN <sup>(6)</sup> | 0    | 1   |
| 1 (7)        | 0        | Zero               | 1    | 0   |
| Denormal (8) | 0        | Negative Infinity  | 0    | 0   |
| Zero (9)     | 0/1      | Negative Infinity  | 0    | 0   |
| Infinity     | 0        | Positive Infinity  | 1    | 0   |
| NaN          | X        | NaN                | 0    | 1   |

## **ALTFP\_LOG Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_LOG IP core. The information was derived using the Quartus II software version 10.0.

Table 12-3: ALTFP\_LOG Resource Utilization and Performance for Stratix IV Devices

|               |           |                          | Logic usage                              |                                           |                                        |            |                        |
|---------------|-----------|--------------------------|------------------------------------------|-------------------------------------------|----------------------------------------|------------|------------------------|
| Device Family | Precision | Precision Output Latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-Bit DSP | f <sub>MAX</sub> (MHz) |
| Stratix IV    | Single    | 21                       | 1,950                                    | 1,864                                     | 1,378                                  | 8          | 385                    |
| Stratix I v   | Double    | 34                       | 5,451                                    | 6,031                                     | 4,151                                  | 64         | 211                    |

## ALTFP\_LOG Design Example: Natural Logarithm of Single-Precision Format Numbers

This design example uses the ALTFP\_LOG IP core to compute the natural logarithm of single-precision format numbers. This example uses the parameter editor GUI to define the core.

Altera Corporation ALTFP\_LOG



<sup>(6)</sup> The natural logarithm of a negative value is invalid. Therefore, the output produced is a NaN.

 $<sup>^{(7)}</sup>$  The "1" in this case is equivalent to In 1.

<sup>(8)</sup> The value of positive denormalized numbers is a value that approximates zero, and the output produced is a negative infinity number.

<sup>(9)</sup> The zero in this case represents zero special case of the IEEE standard. It is not equivalent to In 0, but instead approximates to it.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
  Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

#### **ALTFP\_LOG Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

These figures show the expected simulation results in the ModelSim-Altera software.

Figure 12-1: ALTFP\_LOG ModelSim Simulation Waveform (Input Data)



Figure 12-2: ALTFP\_LOG ModelSim Simulation Waveform (Output Data)



This design example includes the input of special cases to show the exception handling of the IP core, such as the smallest valid input and the input value of "1".

In this example, the output delay is set to 21 clock cycles. Therefore, the result is only shown at the output port after the 21st clock cycle at 102.5 ns.

Table 12-4: Summary of Input Values and Corresponding Outputs

This table lists the inputs and corresponding outputs obtained from the simulation in the waveforms.

| Time           | Event                                                                                                                                                                                                                                   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | data[] value: 0000 0000h                                                                                                                                                                                                                |
|                | Output value: An undefined value is seen on the result[] port, which is ignored. All values seen on the output port before the 21st clock cycle are merely due to the behavior of the system during start-up and should be disregarded. |

ALTFP\_LOG Altera Corporation



| Time     | Event                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 102.5 ns | Output value: FF80 0000h                                                                                                                                            |
|          | The natural logarithm of zero is negative infinity.                                                                                                                 |
| 5 ns     | data[] value: 8000 0000h                                                                                                                                            |
|          | This is a negative number.                                                                                                                                          |
| 107.5 ns | Output value: FFC0 0000h                                                                                                                                            |
|          | Exception handling ports: nan asserts                                                                                                                               |
|          | The natural logarithm of a negative value is invalid. Therefore, the output produced is a NaN.                                                                      |
| 30 ns    | data[] value: 0040 0000h                                                                                                                                            |
|          | The is a denormal value.                                                                                                                                            |
| 132.5 ns | Output value: FF80 0000h                                                                                                                                            |
|          | As denormal numbers are not supported, the input is forced to zero before going through the logarithm function. The natural logarithm of zero is negative infinity. |
| 45 ns    | data[] value: 0080 0000h                                                                                                                                            |
|          | This is the smallest valid input. All the input bits are 0 except the LSB of the exponent field.                                                                    |
| 147.5 ns | Output value: C2AE AC50h                                                                                                                                            |
| 60 ns    | data[] value: 3F80 0000h                                                                                                                                            |
|          | The input value 3F80 0000h is equivalent to the actual value, $1.0 \times 20 = 1$ .                                                                                 |
| 152.5 ns | Output value: 0000 0000h                                                                                                                                            |
|          | Exception handling ports: zero asserts                                                                                                                              |
|          | Since In 1 results in zero, it produces an output of zero.                                                                                                          |

## Signals

Altera Corporation ALTFP\_LOG



Figure 12-3: ALTFP\_LOG Signals



Table 12-5: ALTFP\_LOG IP Core Input Signals

| Port Name | Required | Description                                                                                                                                                                                                                            |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear. When the aclr port is asserted high, the function is asynchronously cleared.                                                                                                                                       |
| clk_en    | No       | Clock enable. When the clk_en port is asserted high, a natural logarithm operation takes place. When signal is asserted low, no operation occurs and the outputs remain unchanged.                                                     |
|           |          | Deasserting clk_en halts operation until it is asserted again. Assert the clk_en signal for the number of clock cycles equivalent to the required output latency (PIPELINE parameter value) for the results to be shown at the output. |
| clock     | Yes      | Clock input to the IP core.                                                                                                                                                                                                            |
| data[]    | Yes      | Floating-point input data. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of the sign bit, exponent bits, and mantissa bits.                          |
|           |          | For single precision, the width is fixed to 32 bits. For double precision, the width is fixed to 64 bits. For single extended precision, you can choose a width in the range from 43 to 64 bits.                                       |

Table 12-6: ALTFP\_LOG IP Core Output Signals

| Port Name | Required | Description                                                                                                                                                                                                  |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  | Yes      | The natural logarithm of the value on input data. The natural logarithm of the data[] input port, shown in floating-point format. The widths of the result[] output port and data[] input port are the same. |

ALTFP\_LOG Altera Corporation



| Port Name | Required | Description                                                                                                                                                                      |  |  |  |  |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| zero      | No       | Zero exception output. Asserted when the exponent and mantissa of the output port are zero. This occurs when the actual input value is 1 because $ln 1 = 0$ .                    |  |  |  |  |
| nan       | No       | NaN exception output. Asserted when the exponent and mantissa of the output port are all 1's and non-zero, respectively. This occurs when the input is a negative number or NaN. |  |  |  |  |

## **Parameters**

**Table 12-7: ALTFP\_LOG Megafunction Parameters** 

| Parameter Name | Type    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP -1) -1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of the WIDTH_EXP parameter must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of the WIDTH_EXP parameter must be less than the value of the WIDTH_MAN parameter, and the sum of the WIDTH_EXP and WIDTH_MAN parameters must be less than 64. |
| WIDTH_MAN      | Integer | Yes      | Specifies the precision of the mantissa. If this parameter is not specified, the default is 23. The value of width_man must be 23 for the single-precision format, and 52 for the double-precision format. For the single-extended precision format, the valid value ranges from 31 to 52. The value of width_man must be greater than the value of width_exp, and the sum of width_exp and width_man must be less than 64.                                                                                                                                                                                     |
| PIPELINE       | Integer | Yes      | Specifies the amount of latency in clock cycles used in the ALTFP_LOG megafunction. Create the ALTFP_LOG megafunction with the MegaWizard Plug-In Manager to calculate the value for this parameter.                                                                                                                                                                                                                                                                                                                                                                                                            |

Altera Corporation ALTFP\_LOG



# ALTFP\_ATAN IP Core 13

2014.12.19

UG-01058

Subscribe



You can use the ports and parameters available to customize the ALTFP\_ATAN IP core according to your application.

## **Output Latency**

The output latency option for the ALTFP\_ATAN megafunction have a fixed latency level for single-precision format.

#### **Table 13-1: Latency Option**

| Trigonometric Function | Precision | Mantissa Width | Latency (in clock cycles) |
|------------------------|-----------|----------------|---------------------------|
| Arctangent             | Single    | 23             | 34                        |

## **ALTFP ATAN Features**

The ALTFP\_ATAN IP core offers the following features:

- Arctangent value of a given angle,  $\theta$  in unit radian.
- Support for single-precision floating point format.
- Support for optional input ports such as asynchronous clear (aclr) and clock enable (clk\_en) ports.

## **ALTFP\_ATAN Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_ATAN IP core. The information was derived using the Quartus II software version 11.0.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



#### Table 13-2: ALTFP\_ATAN Resource Utilization and Performance

|               |                |           |                   | Logic usage                              |                                            |                                        |               |                        |
|---------------|----------------|-----------|-------------------|------------------------------------------|--------------------------------------------|----------------------------------------|---------------|------------------------|
| Device Family | Function       | Precision | Output<br>Latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicate<br>d Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-Bit<br>DSP | f <sub>MAX</sub> (MHz) |
| Stratix V     | ArcTange<br>nt | Single    | 36                | 2,454                                    | 1,010                                      | 1,303                                  | 27            | 255.49                 |

## **Ports**

Table 13-3: ALTFP\_ATAN Megafunction Input Ports

| Port Name | Required | Description                                                                                                                                                                                                   |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear. When the aclr port is asserted high, the function is asynchronously cleared.                                                                                                              |
| clk_en    | No       | Clock enable. When the clk_en port is asserted high, division takes place. When the signal is deasserted, no operation occurs and the outputs remain unchanged.                                               |
| clock     | Yes      | Clock input to the megafunction.                                                                                                                                                                              |
| data[]    | Yes      | Floating-point input data. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of the sign bit, exponent bits, and mantissa bits. |

| Port Name | Required | Description                                                                                                                                   |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  | Yes      | The result of the trigonometric function in floating-point format. The widths of the result[] output port and data[] input port are the same. |

## **ALTFP\_ATAN Parameters**

Altera Corporation ALTFP\_ATAN IP Core



#### Table 13-4: ALTFP\_ATAN Parameters

| Parameter<br>Name | Туре    | Required | Description                                                                                                                                                                                                                                          |
|-------------------|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP         | Integer | Yes      | Specifies the precision of the exponent. The bias of the exponent is always set to 2(WIDTH_EXP-1) -1 (that is, 127 for single-precision format). The value of WIDTH_EXP must be 8 for single-precision format. The default value for WIDTH_EXP is 8. |
| WIDTH_MAN         | Integer | Yes      | Specifies the precision of the mantissa. The value of width MAN must be 23 when width exp is 8. The default value for width MAN is 23.                                                                                                               |
| PIPELINE          | Integer | Yes      | The number of pipeline is fixed for the mantissa width and some internal parameter. For the correct settings, refer to Table 12–1 on page 12–2.                                                                                                      |
| ROUNDING          | Integer | No       | Specifies the rounding mode. The default value is TO_NEAREST. Other rounding modes are not supported.                                                                                                                                                |

ALTFP\_ATAN IP Core

Altera Corporation



# ALTFP\_SINCOS IP Core 14

2014.12.19

UG-01058

Subscribe



You can use the ports and parameters available to customize the ALTFP\_SINCOS IP core according to your application.

### **ALTFP SINCOS Features**

The ALTFP\_SINCOS IP core offers the following features:

- Implements sine and cosine calculations.
- Support for single-precision floating point format.
- Support for optional input ports such as asynchronous clear (aclr) and clock enable (clk\_en) ports.

## **Output Latency**

The output latency options for the ALTFP\_SINCOS megafunction have a fixed latency level for sine and cosine functions.

| Trigonometric Function | Precision | Mantissa Width | Latency (in clock cycles) |
|------------------------|-----------|----------------|---------------------------|
| Sine                   | Single    | 23             | 36                        |
| Cosine                 | Single    | 23             | 36                        |

#### **Related Information**

**ALTFP\_SINCOS Parameters** on page 14-3

## **ALTFP\_SINCOS** Resource Utilization and Performance

This table lists the resource utilization and performance information for the ALTFP\_SINCOS IP core. The information was derived using the Quartus II software version 10.1.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



Table 14-1: ALTFP\_SINCOS Resource Utilization and Performance

|               |          |           |                   | Logic usage                              |                                            |                                        |               |                        |
|---------------|----------|-----------|-------------------|------------------------------------------|--------------------------------------------|----------------------------------------|---------------|------------------------|
| Device Family | Function | Precision | Output<br>Latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicate<br>d Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | 18-Bit<br>DSP | f <sub>MAX</sub> (MHz) |
| Stratix IV    | Sine     | Single    | 36                | 2,859                                    | 2,190                                      | 1,830                                  | 16            | 292.96                 |
| Stratix IV    | Cosine   | Single    | 35                | 2,753                                    | 2,041                                      | 1,745                                  | 16            | 258.26                 |

## **ALTFP\_SINCOS Signals**

Figure 14-1: ALTFP\_SINCOS Signals



Table 14-2: ALTFP\_SINCOS IP Core Input Signals

| Port Name | Required | Description                                                                                                                                                                                                   |
|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear. When the aclr port is asserted high, the function is asynchronously cleared.                                                                                                              |
| clk_en    | No       | Clock enable. When the clk_en port is asserted high, sine or cosine operation takes place. When the signal is asserted low, no operation occurs and the outputs remain unchanged.                             |
| clock     | Yes      | Clock input to the megafunction.                                                                                                                                                                              |
| data[]    | Yes      | Floating-point input data. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of the sign bit, exponent bits, and mantissa bits. |

Altera Corporation ALTFP\_SINCOS IP Core



Table 14-3: ALTFP\_SINCOS IP Core Output Signals

| Port Name | Required | Description                                                                                                                                      |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  | Yes      | The trigonemetric of the data[] input port in floating-point format.  The widths of the result[] output port and data[] input port are the same. |

## **ALTFP\_SINCOS Parameters**

Table 14-4: ALTFP\_SINCOS IP Core Parameters

| Parameter Name | Туре    | Required | Description                                                                                                                                                                                                                                                                            |
|----------------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP      | Integer | Yes      | Specifies the precision of the exponent. The bias of the exponent is always set to 2(WIDTH_EXP-1) -1 (that is, 127 for single-precision format). The value of WIDTH_EXP must be 8 for single-precision format and must be less than WIDTH_MAN. The available value for WIDTH_EXP is 8. |
| WIDTH_MAN      | Integer | Yes      | Specifies the precision of the mantissa. The value of width_man must be 23 when width_exp is 8.  Otherwise, width_man must be a minimum of 31.  The value of width_man must be greater than width_exp. The available value for width_man is 23.                                        |
| PIPELINE       | Integer | Yes      | The number of pipeline is fixed for the mantissa width and some internal parameter. For the correct settings, refer to Output Latency.                                                                                                                                                 |

**Related Information** 

Output Latency on page 14-1

ALTFP\_SINCOS IP Core

Altera Corporation



# ALTFP\_ABS IP Core 15

2014.12.19

UG-01058





Send Feedback

### **ALTFP ABS Features**

The ALTFP\_ABS IP core offers the following features:

- Absolute value of a given input.
- Optional exception handling output ports such as zero, division\_by\_zero, overflow, underflow, and nan.
- Carry-through exception ports from other floating-point modules that act as inputs to the ALTFP\_ABS IP core.

## **ALTFP\_ABS Output Latency**

The output latency options for the ALTFP\_ABS IP core are the same for all three precision formats—single, double, and single-extended. The options available are zero without pipeline, and 1 clock cycle.

### **ALTFP ABS Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_ABS IP core. The information was derived using the Quartus II software version 10.0.

Table 15-1: ALTFP\_ABS Resource Utilization and Performance for the Stratix III Device Family

| Precision |                   |                                          |                                           |            |        |                                                                                         |
|-----------|-------------------|------------------------------------------|-------------------------------------------|------------|--------|-----------------------------------------------------------------------------------------|
|           | Output<br>Latency | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | 18-Bit DSP | Memory | f <sub>MAX</sub> (MHz)                                                                  |
| Single    | 0                 | 0                                        | 0                                         | 0          | 0      | The <b>f</b> <sub>MAX</sub> of this IP core depends on the speed of the selected device |
|           | 1                 | 0                                        | 36                                        | 0          | 0      |                                                                                         |
| Double    | 0                 | 0                                        | 0                                         | 0          | 0      |                                                                                         |
|           | 1                 | 0                                        | 68                                        | 0          | 0      |                                                                                         |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



## **ALTFP\_ABS Design Example: Absolute Value of Multiplication Results**

This design example uses the ALTFP\_ABS IP core to compute the absolute value of the multiplication result of single-precision format numbers. This example incorporates the ALTFP\_MULT IP core and uses the parameter editor in the Quartus II software.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
   Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
  Provides information about installation, usage, and troubleshooting

#### **ALTFP\_ABS Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

Figure 15-1: ALTFP\_ABS Simulation Waveform



This design example produces a floating-point absolute value function for the multiplication results of single-precision format numbers. All the optional input ports (clk\_en and aclr) and optional output ports (overflow, underflow, zero, division\_by\_zero, and nan) are enabled.

In this example, the latency of the multiplier is set to five clock cycles, while none is being set for the absolute value function. Thus, the absolute value result only appears at the result[] port five cycles after the input values are captured on the input ports.

The dataa[] and datab[] values in the simulation waveform above portray the two input values that are being fed to the multiplier. The value in the result[] port depicts the multiplication result that has gone through the absolute value operation.

This table lists the inputs and corresponding outputs obtained from the simulation.

Altera Corporation ALTFP\_ABS IP Core



Table 15-2: Summary of Input Values and Corresponding Outputs

| Time           | Event                                                                                                                                                                                                                                                                                                              |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0 ns, start-up | dataa[] value: C080 0000h                                                                                                                                                                                                                                                                                          |  |  |  |
|                | datab[] value: 4000 0000h                                                                                                                                                                                                                                                                                          |  |  |  |
|                | Output value: All values seen on the output port before the 5th clock cycle are merely due to the behavior of the system during start-up and should be disregarded.                                                                                                                                                |  |  |  |
| 22.5 ns        | Output value: 4100 0000h                                                                                                                                                                                                                                                                                           |  |  |  |
|                | The multiplication of a negative number with a positive number results in a negative number. The absolute value of the result is reflected on the result[] port.                                                                                                                                                   |  |  |  |
| 20 ns          | dataa[] value: 579D F479h                                                                                                                                                                                                                                                                                          |  |  |  |
|                | datab[] value: 7F80 0000h                                                                                                                                                                                                                                                                                          |  |  |  |
|                | The value of dataa[] is normal while the value of datab[] is infinity.                                                                                                                                                                                                                                             |  |  |  |
| 42.5 ns        | Output value: 7F80 0000h                                                                                                                                                                                                                                                                                           |  |  |  |
|                | Exception handling ports: overflow asserts                                                                                                                                                                                                                                                                         |  |  |  |
|                | The multiplication of a normal value with infinity results in infinity and sets the overflow port in the multiplier. The absolute value of the output is infinity and the overflow port is also set as this assertion of the port is being carried through from the corresponding overflow port in the multiplier. |  |  |  |

## **ALTFP\_ABS Signals**

ALTFP\_ABS IP Core

Altera Corporation



#### Figure 15-2: ALTFP\_ABS Signals



Table 15-3: ALTFP\_ABS Input Signals

| Port Name               | Required | Description                                                                                                                                                                                               |
|-------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr                    | No       | Asynchronous clear. When the aclr port is asserted high, the function is asynchronously cleared.                                                                                                          |
| clk_en                  | No       | Clock enable. When the clk_en port is asserted high, an absolute value operation takes place. When the signal is asserted low, no operation occurs and the outputs remain unchanged.                      |
| clock                   | Yes      | Clock input to the IP core.                                                                                                                                                                               |
| data[]                  | Yes      | Floating-point input data. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of sign bit, exponent bits, and mantissa bits. |
| zero_in                 | No       | Zero exception input. Carry-through exception input port from other floating-point modules.                                                                                                               |
| nan_in                  | No       | NaN exception input. Carry-through exception input port from other floating-point modules.                                                                                                                |
| overflow_in             | No       | Overflow exception input. Carry-through exception input port from other floating-point modules.                                                                                                           |
| underflow_in            | No       | Underflow exception input. Carry-through exception input port from other floating-point modules.                                                                                                          |
| division_by_zero_<br>in | No       | Division-by-zero exception input. Carry-through exception input port from other floating-point modules.                                                                                                   |

Altera Corporation ALTFP\_ABS IP Core



Table 15-4: ALTFP\_ABS Output Signals

| Port Name        | Required | Description                                                                                                                               |
|------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| result[]         | Yes      | The absolute value result of the input data. The size of this port corresponds to the size of the input data[] port.                      |
| zero             | No       | Zero exception output carried from the input. Asserted if the corresponding carry-through port from the input is asserted.                |
| nan              | No       | NaN output carried from the input. Asserted if the corresponding carry-through port from the input is asserted.                           |
| overflow         | No       | Overflow exception output carried from the input. Asserted if the corresponding carry-through port from the input is asserted.            |
| underflow        | No       | Underflow exception output carried from the input. Asserted if the corresponding carry-through port from the input is asserted.           |
| division_by_zero | No       | Division-by-zero exception output carried from the input.<br>Asserted if the corresponding carry-through port from the input is asserted. |

# **ALTFP\_ABS Parameters**

Table 15-5: ALTFP\_ABS Parameters

| Port Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP - 1) - 1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of width_exp must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of width_exp must be less than the value of width_man, and the sum of width_exp and width_man must be less than 64. |

ALTFP\_ABS IP Core

Altera Corporation



| Port Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_MAN | Integer | Yes      | Specifies the precision of the mantissa. If this parameter is not specified, the default is 23.  When width_exp is 8 and the floating-point format is single-precision, the width_man value must be 23. Otherwise, the value of width_man must be a minimum of 31. The value of width_man must be greater than the value of width_exp, and the sum of width_exp and width_man must be less than 64. |
| PIPELINE  | Integer | Yes      | Specifies the amount of latency, expressed in clock cycles, used in the ALTFP_ABS IP core. Create the ALTFP_ABS IP core with the parameter editor to calculate the value for this parameter.                                                                                                                                                                                                        |

Altera Corporation ALTFP\_ABS IP Core



# ALTFP\_COMPARE IP Core 16

2014.12.19

UG-01058





### **ALTFP COMPARE Features**

The ALTFP\_COMPARE IP core offers the following features:

- Comparison functions between two inputs.
- Seven status output ports:
  - aeb (input A is equal to input B).
  - aneb (input A is not equal to input B).
  - agb (input A is greater than input B).
  - ageb (input A is greater than or equal to input B).
  - alb (input A is less than input B).
  - aleb (input A is less than or equal to input B).
  - unordered (used as an output to flag if one or both input ports are NaN).

## **ALTFP\_COMPARE Output Latency**

The output latency options for the ALTFP\_COMPARE IP core are the same for all three precision formats—single, double, and single-extended. The options available are 1, 2, and 3 clock cycles.

## **ALTFP\_COMPARE Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_COMPARE IP core. The information was derived using the Quartus II software version 10.0.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



Table 16-1: ALTFP\_COMPARE Resource Utilization and Performance for Stratix IV Devices

|               | Device Family Precision | Output<br>Latency |                                          | Logic Usage                               |                                          |                        |
|---------------|-------------------------|-------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------|
| Device Family |                         |                   | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Look-Up<br>Modules<br>(ALMs) | f <sub>MAX</sub> (MHz) |
| Stratix IV    | single                  | 3                 | 68                                       | 33                                        | 47                                       | 794                    |
| Stratix IV    | double                  | 3                 | 121                                      | 47                                        | 87                                       | 680                    |

# ALTFP\_COMPARE Design Example: Comparison of Single-Precision Format Numbers

This design example uses the ALTFP\_COMPARE IP core to implement the comparison of single-precision format numbers using the parameter editor in the Quartus II software.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
   Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

### **ALTFP\_COMPARE Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

This figure shows the expected simulation results in the ModelSim-Altera software.

Figure 16-1: ALTFP\_COMPARE Simulation Waveform



This design example implements a floating-point comparator for single-precision numbers. Both optional input ports (clk\_en and aclr) and all seven output ports (ageb, aeb, agb, aneb, alb, aleb, and unordered) are enabled.

The chosen output latency is 3. Therefore, the comparison operation generates the output result 3 clock cycles later.

Altera Corporation ALTFP\_COMPARE IP Core



This table lists the inputs and corresponding outputs obtained from the simulation in the waveform.

Table 16-2: Summary of Input Values and Corresponding Outputs

| Time           | Event                                                                                                                                                                                                                                  |  |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0 ns, start-up | dataa[] value: 619B CE11h                                                                                                                                                                                                              |  |  |  |
|                | datab[] value: 9106 CA22h                                                                                                                                                                                                              |  |  |  |
|                | Output value: An undefined value is seen on the result[] port, which is ignored. All values seen on the output port before the 3rd clock cycle are merely due to the behavior of the system during start-up and should be disregarded. |  |  |  |
| 25 ns          | Output ports: ageb, aneb, and agb assert                                                                                                                                                                                               |  |  |  |
| 350 ns         | dataa[] value: 0060 0000h                                                                                                                                                                                                              |  |  |  |
|                | datab[] value: 0070 0000h                                                                                                                                                                                                              |  |  |  |
|                | Both input values are denormal numbers.                                                                                                                                                                                                |  |  |  |
| 375 ns         | Output ports: aeb, ageb, and aleb assert                                                                                                                                                                                               |  |  |  |
|                | Denormal inputs are not supported and are forced to zero before comparison takes place, which results in the dataa[] value being equal to datab[].                                                                                     |  |  |  |
| 460 ns         | The aclr signal is set for 1 clock cycle.                                                                                                                                                                                              |  |  |  |
| 495.5 ns       | The comparisons of subsequent data inputs are performed 3 clock cycles after the aclr signal deasserts.                                                                                                                                |  |  |  |

## **ALTFP\_COMPARE Signals**

Figure 16-2: ALTFP\_COMPARE Signals



ALTFP\_COMPARE IP Core

Altera Corporation



#### Table 16-3: ALTFP\_COMPARE Input Signals

| Port Name | Required | Description                                                                                                                                                                                |
|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aclr      | No       | Asynchronous clear. The source is asynchronously reset when asserted high.                                                                                                                 |
| clk_en    | No       | Clock enable. When this port is asserted high, a compare operation takes place. When signal is asserted low, no operation occurs and the outputs remain unchanged.                         |
| clock     | Yes      | Clock input to the IP core.                                                                                                                                                                |
| dataa[]   | Yes      | Data input. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of sign bit, exponent bits, and mantissa bits. |
| datab[]   | Yes      | Data input. The MSB is the sign bit, the next MSBs are the exponent, and the LSBs are the mantissa. This input port size is the total width of sign bit, exponent bits, and mantissa bits. |

#### Table 16-4: ALTFP\_COMPARE Output Signals

| Port Name | Required | Description                                                                                                                                                                |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aeb       | Yes      | Output port for the comparator. Asserted if the value of the dataa[] port equals the value of the datab[] port.                                                            |
| agb       | Yes      | Output port for the comparator. Asserted if the value of the dataa[] port is greater than the value of the datab[] port.                                                   |
| ageb      | Yes      | Output port for the comparator. Asserted if the value of the dataa[] port is greater than or equal to the value of the datab[] port.                                       |
| alb       | Yes      | Output port for the comparator. Asserted if the value of the dataa[] port is less than the value of the datab[] port.                                                      |
| aleb      | Yes      | Output port for the comparator. Asserted if the value of the dataa[] port is less than or equal to the value of the datab[] port.                                          |
| aneb      | Yes      | Output port for the comparator. Asserted if the value of the dataa[] port is not equal to the value of the datab[] port.                                                   |
| unordered | Yes      | Output port for the comparator. Asserted when either the dataa[] port and the datab[] port is set to NaN, or if both the dataa[] port and the datab[] port are set to NaN. |

# **ALTFP\_COMPARE Parameters**

Altera Corporation ALTFP\_COMPARE IP Core



Table 16-5: ALTFP\_COMPARE Parameters

| Port Name | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP - 1) - 1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of WIDTH_EXP must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of WIDTH_EXP must be less than the value of WIDTH_MAN, and the sum of WIDTH_EXP and WIDTH_MAN must be less than 64. |
| WIDTH_MAN | Integer | Yes      | Specifies the precision of the mantissa. If this parameter is not specified, the default is 23.  When width_exp is 8 and the floating-point format is single-precision, the width_man value must be 23. Otherwise, the value of width_man must be a minimum of 31. The value of width_man must be greater than the value of width_exp, and the sum of width_exp and width_man must be less than 64.                                                                                                                                                      |
| PIPELINE  | Integer | Yes      | Specifies the latency in clock cycles used in the ALTFP_COMPARE IP core. The pipeline values are 1, 2, and 3 latency in clock cycles.                                                                                                                                                                                                                                                                                                                                                                                                                    |

ALTFP\_COMPARE IP Core

Altera Corporation



# ALTFP\_CONVERT IP Core 17

2014.12.19

UG-01058





### **ALTFP CONVERT Features**

The ALTFP\_CONVERT IP core offers the following features:

- Conversion functions for the following formats:
  - Integer-to-Float
  - Float-to-Integer
  - Float-to-Float
  - · Fixed-to-Float
  - Float-to-Fixed
- Support for signed and unsigned integer
- Optional exception handling output ports such as overflow, underflow, and nan

#### **Table 17-1: Supported Operations and Exception Ports**

| Operation        | Supported Exception Ports    |  |  |
|------------------|------------------------------|--|--|
| Integer-to-Float | Not supported                |  |  |
| Float-to-Integer | overflow, underflow, and nan |  |  |
| Float-to-Float   | overflow, underflow, and nan |  |  |
| Fixed-to-Float   | Not supported                |  |  |
| Float-to-Fixed   | overflow, underflow, and nan |  |  |

## **ALTFP\_CONVERT Conversion Operations**

This table lists the features of each conversion operation.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



#### **Table 17-2: ALTFP\_CONVERT Conversion Operations**

| Operation                   | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Integer-to-Float Conversion | <ul> <li>Converts integers to the IEEE-754 standard floating-point representation.</li> <li>Supports conversions of signed integers to floating-point numbers in single, double, and single-extended precision formats.</li> </ul>                                                                                                                                                                                                                                                                                                                        |
| Float-to-Integer Conversion | <ul> <li>Converts IEEE-754 standard floating-point representations to the integer-bit format.</li> <li>Supports conversions of single, double, and single-extended precision formats to signed integers.</li> </ul>                                                                                                                                                                                                                                                                                                                                       |
| Float-to-Float Conversion   | <ul> <li>Converts between IEEE-754 standard floating-point representations.</li> <li>Supports conversions of between single double, and single-extended precision formats.</li> <li>This operation offers the following modes:         <ul> <li>Single-precision format to single-extended precision format or double-precision format.</li> <li>Double-precision format to single-precision format or single-extended precision format.</li> <li>Single-extended precision format to single-precision or double-precision format.</li> </ul> </li> </ul> |
| Fixed-to-Float Conversion   | <ul> <li>Converts fixed-point format data to the IEEE-754 standard floating-point representation.</li> <li>Supports conversions of fixed-point format data to floating-point numbers in single, double, and single-extended precision formats.</li> </ul>                                                                                                                                                                                                                                                                                                 |
| Float-to-Fixed Conversion   | <ul> <li>Converts IEEE-754 standard floating-point representations to the fixed-point format.</li> <li>Supports conversion of floating-point numbers in single, double, and single-extended precision formats.</li> </ul>                                                                                                                                                                                                                                                                                                                                 |

## **ALTFP\_CONVERT Output Latency**

The output latency options for the all the conversion operations in the ALTFP\_CONVERT IP core are fixed, except for the Float-to-Float operation.

Altera Corporation ALTFP\_CONVERT IP Core



**Table 17-3: Latency Options for Each Operation** 

| Operation        | Conversion From                  | Latency (in clock cycles) |
|------------------|----------------------------------|---------------------------|
| Integer-to-Float | N/A                              | 6                         |
| Float-to-Integer | N/A                              | 6                         |
|                  | Single-precision format          | 2                         |
| Float-to-Float   | Double-precision format          | 3                         |
|                  | Single-extended precision format | 3                         |
| Fixed-to-Float   | N/A                              | 6                         |
| Float-to-Fixed   | N/A                              | 6                         |

## **ALTFP\_CONVERT Resource Utilization and Performance**

This table lists the resource utilization and performance information for the ALTFP\_CONVERT IP core. The information was derived using the Quartus II software version 10.0.

Table 17-4: ALTFP\_CONVERT Resource Utilization and Performance for Stratix III Devices

|                  |                                              |          |                                          | Logic Usage                               |                                        |                        |
|------------------|----------------------------------------------|----------|------------------------------------------|-------------------------------------------|----------------------------------------|------------------------|
| Operation        | Format                                       | Pipeline | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | f <sub>MAX</sub> (MHz) |
| Integer to-Float | 32-bit<br>integer to<br>single-<br>precision | 6        | 182                                      | 238                                       | 157                                    | 515                    |
|                  | 32-bit<br>integer to<br>double-<br>precision | 6        | 150                                      | 139                                       | 123                                    | 510                    |
|                  | 64-bit<br>integer to<br>single-<br>precision | 6        | 385                                      | 371                                       | 296                                    | 336                    |
|                  | 64-bit<br>integer to<br>single-<br>precision | 6        | 393                                      | 461                                       | 344                                    | 336                    |



17-4

|                  |                                                 |          |                                          | Logic Usage                               |                                        |                        |
|------------------|-------------------------------------------------|----------|------------------------------------------|-------------------------------------------|----------------------------------------|------------------------|
| Operation        | Format                                          | Pipeline | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Dedicated<br>Logic<br>Registers<br>(DLRs) | Adaptive<br>Logic<br>Modules<br>(ALMs) | f <sub>MAX</sub> (MHz) |
|                  | Single-<br>precision to<br>32-bit<br>integer    | 6        | 256                                      | 255                                       | 176                                    | 455                    |
| Float-to-Integer | Single-<br>precision to<br>64-bit<br>integer    | 6        | 417                                      | 361                                       | 257                                    | 311                    |
| Float-to-Integer | Double-<br>precision to<br>32-bit<br>integer    | 6        | 406                                      | 387                                       | 273                                    | 409                    |
|                  | Double-<br>precision to<br>64-bit<br>integer    | 6        | 535                                      | 480                                       | 362                                    | 309                    |
| Float-to-Float   | Single-<br>precision to<br>double-<br>precision | 2        | 44                                       | 73                                        | 40                                     | 868                    |
|                  | Double-<br>precision to<br>single-<br>precision | 3        | 103                                      | 140                                       | 89                                     | 520                    |



| Operation      | Format                                           | Pipeline | Adaptive<br>Look-Up<br>Tables<br>(ALUTs) | Look-Up Logic<br>Tables Registers |     | f <sub>MAX</sub> (MHz) |
|----------------|--------------------------------------------------|----------|------------------------------------------|-----------------------------------|-----|------------------------|
|                | 16.16 fixed-<br>point to<br>double-<br>precision | 6        | 182                                      | 238                               | 155 | 519                    |
| Fixed-to-Float | 16.16 fixed-<br>point to<br>double-<br>precision | 6        | 150                                      | 139                               | 122 | 513                    |
| rixed-to-rioat | 32.32 fixed-<br>point to<br>single-<br>precision | 6        | 384                                      | 371                               | 296 | 334                    |
|                | 32.32 fixed-<br>point to<br>single-<br>precision | 6        | 393                                      | 461                               | 336 | 333                    |
| Float-to-Fixed | Single-<br>precision to<br>16.16 fixed-<br>point | 6        | 319                                      | 261                               | 210 | 438                    |
|                | Single-<br>precision to<br>32.32 fixed-<br>point | 6        | 469                                      | 367                               | 288 | 315                    |
|                | Double-<br>precision to<br>16.16 fixed-<br>point | 6        | 579                                      | 393                               | 402 | 365                    |
|                | Double-<br>precision to<br>32.32 fixed-<br>point | 6        | 695                                      | 486                               | 474 | 306                    |



# ALTFP\_CONVERT Design Example: Convert Double-Precision Floating-Point Format Numbers

This design example uses the ALTFP\_CONVERT IP core to convert double-precision floating-point format numbers to 64-bit integers. This design example uses the parameter editor in the Quartus II software.

#### **Related Information**

- Floating-Point IP Cores Design Example Files on page 1-18
- Floating-Point IP Cores Design Examples
   Provides the design example files for the Floating-Point IP cores
- ModelSim-Altera Software Support
   Provides information about installation, usage, and troubleshooting

#### **ALTFP\_CONVERT Design Example: Understanding the Simulation Results**

The simulation waveform in this design example is not shown in its entirety. Run the design example files in the ModelSim-Altera software to see the complete simulation waveforms.

This figure shows the expected simulation results in the ModelSim-Altera software.

Figure 17-1: ALTFP\_CONVERT Simulation Waveform



This design example implements a float-to-integer converter for converting double-precision floating-point format numbers to 64-bit integers. In this operation, the optional exception ports of overflow, underflow, and nan are available apart from the result[] port.

The latency for the float-to-integer operation is six clock cycles. Therefore, each conversion generates the output result six clock cycles after receiving the input value.

This table lists the inputs and corresponding outputs obtained from the simulation in the waveform.

Altera Corporation ALTFP\_CONVERT IP Core



**Table 17-5: Summary of Input Values and Corresponding Outputs** 

| Time           | Event                                                                                                                                                                                                                                  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 ns, start-up | dataa[] value: C394 AD22 761B 9EE5h                                                                                                                                                                                                    |
|                | Output value: The result[] port displays 0 regardless of what the input value is. This value seen on the output port before the 6th clock cycle is merely due to the behavior of the system during start-up and should be disregarded. |
| 55 ns          | Output value: FAD4 B762 7918 46C0h                                                                                                                                                                                                     |
| 150 ns         | dataa[] value: 000F 0000 5555 1111h                                                                                                                                                                                                    |
|                | This value is a denormal number.                                                                                                                                                                                                       |
| 205 ns         | Denormal inputs are not supported and are forced to zero before conversion takes place.                                                                                                                                                |
| 300 ns         | dataa[] value: 5706 40CF OEC6 1176h                                                                                                                                                                                                    |
| 355 ns         | Output value: 7FFF FFFF FFFFh                                                                                                                                                                                                          |
|                | Exception handling ports: overflow asserts.                                                                                                                                                                                            |
|                | The overflow flag is triggered because the width of the resulting integer is more than the maximum width allowed, and the value seen on the result[] port is the standard value used to represent a positive overflow number.          |
| 350 ns         | dataa[] value: C728 3147 8444 1F75h                                                                                                                                                                                                    |
| 405 ns         | Output value: 8000 0000 0000 0000h                                                                                                                                                                                                     |
|                | Exception handling ports: overflow remains asserted.                                                                                                                                                                                   |
|                | This is a standard value to represent a negative overflow number.                                                                                                                                                                      |
| 400 ns         | dataa[] value: 145A 257C 895A B309h                                                                                                                                                                                                    |
| 455 ns         | Output value: 0000 0000h                                                                                                                                                                                                               |
|                | Exception handling ports: underflow asserts.                                                                                                                                                                                           |
|                | The input value triggers the underflow port because the exponent of the input value is less than the exponent bias of 1023.                                                                                                            |
| 500 ns         | dataa[] value: FFFF 0000 DDDD 5555h                                                                                                                                                                                                    |
|                | This value is a NaN.                                                                                                                                                                                                                   |
| 555 ns         | Output value: 0000 0000h                                                                                                                                                                                                               |
|                | Exception handling ports: nan asserts.                                                                                                                                                                                                 |



# **ALTFP\_CONVERT Signals**

Figure 17-2: ALTFP\_CONVERT Signals



Table 17-6: ALTFP\_CONVERT Input Signals

| Port Name | Required | Description                                                                                                                                                                                                                                                                                                                 |
|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| clock     | Yes      | The clock input to the ALTFP_CONVERT IP core.                                                                                                                                                                                                                                                                               |
| clk_en    | No       | Clock enable that allows conversions to take place when asserted high. When asserted low, no operation occurs and the outputs are unchanged.                                                                                                                                                                                |
| aclr      | No       | Asynchronous clear. The source is asynchronously reset when the aclr signal is asserted high.                                                                                                                                                                                                                               |
| dataa[]   | Yes      | Data input. The size of this input port depends on the width_data parameter value.                                                                                                                                                                                                                                          |
|           |          | If the operation mode value is int2float or fixed2float, the data on the input bus is an integer.                                                                                                                                                                                                                           |
|           |          | If the operation mode value is FLOAT2INT OF FLOAT2FIXED, the input bus is the IEEE floating-point representation. In the single-precision format, the input bus width value is 32. In the double-precision format, the input bus width value is 64.                                                                         |
|           |          | In the single-extended precision format, the input bus range is from 43 to 64.                                                                                                                                                                                                                                              |
|           |          | If the operation mode value is FLOAT2FLOAT, the input bus value is the IEEE floating-point representation. In the single-precision format, the input bus width value is 32. In the double-precision format, the input bus width value is 64. In the single-extended precision format, the input bus range is from 43 to 64. |

Altera Corporation ALTFP\_CONVERT IP Core



Table 17-7: ALTFP\_CONVERT Output Signals

| Port Name | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| result[]  | Yes      | Output for the floating-point converter. The size of this output port depends on the WIDTH_RESULT parameter value.                                                                                                                                                                                                                                                                                                                                 |
|           |          | If the operation mode value is floatzint or floatzfixed, the output bus is an IEEE floating-point representation.                                                                                                                                                                                                                                                                                                                                  |
|           |          | If the operation mode is FLOAT2INT, the output bus is an integer representation. If the selected precision is the single-precision format, the output bus width value is 32. If the selected precision is the double-precision format, the output bus width value is 64. If the selected precision is the single-extended precision format, the input bus range is from 43 to 64.                                                                  |
|           |          | If the operation mode value is FLOAT2FLOAT, the output bus is an IEEE floating-point representation. If the selected precision is the single-precision format, the output bus is in the 64-bit double-precision format. If the selected precision is the double-precision format, the output bus is in the 32-bit single-precision format. If the selected precision is the single-extended precision format, the output bus ranges from 43 to 64. |
| overflow  | No       | Optional overflow exception output. This port is available only when the operation mode values are FLOAT2FIXED, FLOAT2INT, or FLOAT2FLOAT.                                                                                                                                                                                                                                                                                                         |
|           |          | Asserted when the result of the conversion (after rounding), exceeds the maximum width of the result[] port, or when the dataa[] input is infinity.                                                                                                                                                                                                                                                                                                |
| underflow | No       | Optional underflow exception output. This port is available only when the operation mode values are FLOAT2FIXED, FLOAT2INT, or FLOAT2FLOAT.                                                                                                                                                                                                                                                                                                        |
|           |          | Asserted when the result of the conversion, after rounding, is fractional.                                                                                                                                                                                                                                                                                                                                                                         |
|           |          | In FLOAT2INT operations, this port is asserted when the exponent value of the floating-point input is smaller than the exponent bias.                                                                                                                                                                                                                                                                                                              |
|           |          | In float2float operations, this port is asserted when the floating-point input has a value smaller than the lowest exponent limit of the target floating-point format.                                                                                                                                                                                                                                                                             |
| nan       | No       | Optional NaN exception output. This port is available only when the operation mode values are FLOAT2INT, FLOAT2FLOAT, or FLOAT2FIXED.                                                                                                                                                                                                                                                                                                              |
|           |          | Asserted when the input port is a NaN representation.                                                                                                                                                                                                                                                                                                                                                                                              |
|           |          | If the operation mode value is FLOAT2INT or FLOAT2FIXED, the result[] port is set to zero.                                                                                                                                                                                                                                                                                                                                                         |
|           |          | If the operation mode value is FLOAT2FLOAT, the result[] port is set to a NaN representation.                                                                                                                                                                                                                                                                                                                                                      |



# **ALTFP\_CONVERT Parameters**

Table 17-8: ALTFP\_CONVERT Parameters

| Port Name           | Type    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_EXP_<br>INPUT | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP - 1) - 1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of width_exp_input must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of width_exp_input must be less than the value of width_man_input, and the sum of width_exp_input and width_man_input must be less than 64. These settings apply only to the float2fixed, float2int, and float2float operation modes. |
| WIDTH_MAN_<br>INPUT | Integer | Yes      | Specifies the precision of the mantissa. If this parameter is not specified, the default is 23. When width_exp_ INPUT is 8 and the floating-point format is single- precision, the width_man_input value must be 23.  Otherwise, the value of width_man_input must be a minimum of 31. The value of width_man_input must be greater than the value of width_exp_input, and the sum of width_exp_input and width_man_input must be less than 64. These settings apply only to the float2fixed, float2int, and float2float operation modes.                                                                                                                                        |
| WIDTH_INT           | Integer | Yes      | Specifies the integer width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |         |          | If the operation is fixed2float or int2float, this parameter defines the integer width on the input side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     |         |          | If the operation is FLOAT2INT or FLOAT2FIXED, this parameter defines the result width on the output side.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     |         |          | The available settings are 32 bits, 64 bits or n bits. For n bits settings, the range is from 4 bits to 64 bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                     |         |          | If unspecified, the default setting for width_int is 32 bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Altera Corporation ALTFP\_CONVERT IP Core



| Port Name            | Туре    | Required | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WIDTH_DATA           | Integer | Yes      | Specifies the input data width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      |         |          | If the operation is INT2FLOAT, the WIDTH_DATA is also WIDTH_INT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |         |          | If the operation is fixed2float, the data width value is width_int + fractional width.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      |         |          | If the operation is FLOAT2FIXED, FLOAT2INT or FLOAT2FLOAT, the data width value is width_exp_input + width_man_input + 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      |         |          | The available settings are 32 bits, 64 bits or n bits. For n bits settings, the range is from 4 bits to 64 bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      |         |          | If unspecified, the default setting for width_data is 32 bits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WIDTH_EXP_<br>OUTPUT | Integer | Yes      | Specifies the precision of the exponent. If this parameter is not specified, the default is 8. The bias of the exponent is always set to 2 (WIDTH_EXP - 1) - 1, that is, 127 for the single-precision format and 1023 for the double-precision format. The value of width_exp_output must be 8 for the single-precision format, 11 for the double-precision format, and a minimum of 11 for the single-extended precision format. The value of width_exp_output must be less than the value of width_exp_output, and the sum of width_exp_output and width_man_output, and the sum of width_exp_output and width_man_output must be less than 64. These settings apply only to the Float2fixed, Float2int, and Float2float operation modes. |
| WIDTH_MAN_<br>OUTPUT | Integer | Yes      | Specifies the precision of the mantissa. If this parameter is not specified, the default is 23. When width_exp_output is 8 and the floating point format is single-precision, the width_man_output value must be 23. Otherwise, the value of width_man_output must be a minimum of 31. The value of width_man_output must be greater than the value of width_exp_output, and the sum of width_exp_output and width_man_output must be less than 64. These settings apply only to the float2fixed, float2int, and float2float operation modes.                                                                                                                                                                                               |
| WIDTH_RESULT         | Integer | Yes      | Specifies the width of the output result. In an INT2FLOAT, FLOAT2FLOAT, or FIXED2FLOAT operation, the result width is WIDTH_EXP_OUTPUT + WIDTH_MAN_OUTPUT + 1. In a FLOAT2INT operation, the result width is the value of the WIDTH_INT parameter.  In a FLOAT2FIXED operation, this parameter is the result width.  The available settings are 32 bits, 64 bits or n bits. For n bits settings, the range is from 4 bits to 64 bits.                                                                                                                                                                                                                                                                                                       |



| Port Name | Туре    | Required | Description                                                                                                                                                                   |
|-----------|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROUNDING  | Integer | Yes      | Specifies the rounding mode. The default value is TO_NEAREST. Other modes are not supported.                                                                                  |
| OPERATION | Integer | Yes      | Specifies the operating mode. Values are INT2FLOAT, FLOAT2INT, FLOAT2FLOAT, FLOAT2FIXED, and FIXED2FLOAT. If this parameter is not specified, the default value is INT2FLOAT. |
|           |         |          | When set to INT2FLOAT, the conversion of an integer input to an IEEE floating-point representation output takes place.                                                        |
|           |         |          | When set to FLOAT2INT, the conversion of an IEEE floating-point representation input to an integer output takes place.                                                        |
|           |         |          | When set to FLOAT2FLOAT, the conversion between IEEE floating-point representations input and output takes place.                                                             |
|           |         |          | When set to FIXED2FLOAT, the conversion of a fixed point input to an IEEE floating-point representation output takes place.                                                   |
|           |         |          | When set to FLOAT2FIXED, the IEEE floating-point input conversion to fixed point representation output takes place.                                                           |

Altera Corporation ALTFP\_CONVERT IP Core



# ALTERA\_FP\_FUNCTIONS IP Core 18

2014.12.19

UG-01058





### **ALTERA\_FP\_FUNCTIONS Features**

The ALTERA\_FP\_FUNCTIONS IP core offers the following features:

- Supports both latency and frequency driven cores.
- Supports VHDL code generation.

#### Table 18-1: ALTERA\_FP\_FUNCTIONS Support

This table lists the functions that the ALTERA\_FP\_FUNCTIONS IP core supports.

| Function    | Description             |
|-------------|-------------------------|
|             | Add                     |
|             | Sub                     |
|             | Add/Sub                 |
| Arithmetic  | Multiply                |
| Artuinette  | Divide                  |
|             | Reciprocal              |
|             | Absolute                |
|             | Scalar Product          |
|             | Square Root             |
| Roots       | Cube Root               |
|             | Inverse Square Root     |
|             | Fixed-to-Floating Point |
| Conversions | Floating Point-to-Fixed |
|             | Width Conversions       |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| Function     | Description                 |  |  |  |  |
|--------------|-----------------------------|--|--|--|--|
|              | Min                         |  |  |  |  |
|              | Max                         |  |  |  |  |
| Comparisons  | Less than (or equal)        |  |  |  |  |
|              | Greater than (or equal)     |  |  |  |  |
|              | (Not) Equal                 |  |  |  |  |
|              | Power                       |  |  |  |  |
|              | Exponential (Base 2, 10, e) |  |  |  |  |
| Exp/Log/Pow  | Log (Base 2, 10, e)         |  |  |  |  |
|              | Log (1+x)                   |  |  |  |  |
|              | LDExp                       |  |  |  |  |
|              | Sin                         |  |  |  |  |
|              | Cos                         |  |  |  |  |
| Trigonometry | Tan                         |  |  |  |  |
| Trigonometry | Arcsin                      |  |  |  |  |
|              | Arccos                      |  |  |  |  |
|              | Arctan                      |  |  |  |  |

### **ALTERA\_FP\_FUNCTIONS Output Latency**

If you require a specific latency, follow these steps:

- 1. In the ALTERA\_FP\_FUNCTIONS parameter editor, click the **Basic** tab.
- **2.** Under the Performance category, in the **Goal** option, select **latency**.
- 3. In the **Target** field, set your desired latency (cycles).
- 4. Then, click Check Performance.

## **ALTERA\_FP\_FUNCTIONS Target Frequency**

If you require a specific frequency, follow these steps:

- 1. In the ALTERA\_FP\_FUNCTIONS parameter editor, click **Basic** tab.
- **2.** Under the Performance category, in the **Goal** option, select **frequency**.
- 3. In the **Target** field, set your desired frequency (MHz).
- **4.** The IP core reports the latency for the instance that it will generate in the Report category.

**Note:** You must verify the frequency by running the TimeQuest Timing Analyzer.

## **ALTERA\_FP\_FUNCTIONS Combined Target**

If you require a combined target of latency and frequency, follow these steps:



- 1. In the ALTERA\_FP\_FUNCTIONS parameter editor, click the **Basic** tab.
- 2. Under the Performance category, in the Goal option, select Combined.
- 3. In the **Target** field, set your desired frequency (MHz).
- **4.** In the **Target** field, set your desired latency (cycles).
- 5. Then, click Finish.

# **ALTERA\_FP\_FUNCTIONS Resource Utilization and Performance**

These tables list the resource utilization and performance information for the ALTERA\_FP\_FUNCTIONS IP core. The information was derived using the Quartus II software version 14.1. The frequency target was set to 200 MHz.

Table 18-2: Arithmetic

| Family               | Function  | Precision | Latency  | £                | ALMs   | M10K  | M20 | DSP<br>Blocks | Logic Registers                                          |           |
|----------------------|-----------|-----------|----------|------------------|--------|-------|-----|---------------|----------------------------------------------------------|-----------|
| ганну                | Function  | Precision | Latericy | f <sub>MAX</sub> | ALIVIS | MITOR | K   |               | Primary                                                  | Secondary |
|                      | Abs       | Single    | 0        | _                | 33     | 0     | _   | 0             | 0                                                        | 0         |
|                      | AUS       | Double    | 0        | _                | 65     | 0     | _   | 0             | 0                                                        | 0         |
|                      | Add       | Single    | 9        | 233.1            | 360    | 0     | _   | 0             | 507                                                      | 29        |
|                      | Add       | Double    | 12       | 251.95           | 886    | 0     | _   | 0             | Primary Se 0 0 0 507 1064 651 1713 132 1297 771 3035 675 | 61        |
|                      | AddSubtra | Single    | 9        | 249.31           | 477    | 0     | 0   | 0             | 651                                                      | 63        |
| Arria V<br>(5AGXFB3H | ct        | Double    | 12       | 252.46           | 1161   | 0     | 0   | 0             | 1713                                                     | 91        |
| 4F40C5)              | Cube Root | Single    | 9        | 275.18           | 132    | 6     | _   | 2             | 132                                                      | 20        |
|                      | Cube Root | Double    | 24       | 185.77           | 634    | 17    | _   | 10            | 1297                                                     | 58        |
|                      | Divide    | Single    | 18       | 249              | 456    | 5     | _   | 4             | 771                                                      | 100       |
|                      | Divide    | Double    | 35       | 185.29           | 1409   | 39    | _   | 15            | 3035                                                     | 138       |
|                      | Exp base  | Single    | 16       | 212.72           | 547    | 3     | _   | 2             | 675                                                      | 18        |
|                      | 10        | Double    | 31       | 185.77           | 2194   | 0     |     | 10            | 2626                                                     | 56        |

| Family               | Francisco      | Dua sisia u | Latanan | £                | 01.04- | MATOK | M20 | DSP    | Logic   | Registers |
|----------------------|----------------|-------------|---------|------------------|--------|-------|-----|--------|---------|-----------|
| Family               | Function       | Precision   | Latency | f <sub>MAX</sub> | ALMs   | M10K  | K   | Blocks | Primary | Secondary |
|                      | Exp base 2     | Single      | 7       | 236.41           | 345    | 0     | _   | 2      | 214     | 19        |
|                      | Exp base 2     | Double      | 21      | 185.84           | 932    | 0     | _   | 10     | 1324    | 51        |
|                      | Exp base e     | Single      | 14      | 217.96           | 718    | 0     | _   | 2      | 597     | 46        |
|                      | Exp base e     | Double      | 28      | 185.87           | 2134   | 0     | _   | 10     | 2398    | 46        |
| Arria V              | Reciprocal     | Single      | 12      | 253.16           | 210    | 4     | _   | 3      | 294     | 26        |
| (5AGXFB3H<br>4F40C5) | Recipiocai     | Double      | 30      | 185.29           | 877    | 9     | _   | 14     | 1764    | 105       |
| ,                    | Reciprocal     | Single      | 7       | 267.52           | 118    | 4     | _   | 2      | 141     | 14        |
|                      | Square<br>Root | Double      | 20      | 185.74           | 539    | 13    | _   | 9      | 1210    | 52        |
|                      | LDExp          | Single      | 2       | 367.92           | 69     | 0     | _   | 0      | 85      | 0         |
|                      | ГОЕХР          | Double      | 2       | 359.32           | 100    | 0     |     | 0      | 146     | 0         |
| Arria V              | Log base       | Single      | 16      | 250              | 379    | 4     |     | 3      | 622     | 65        |
| (5AGXFB3H<br>4F40C5) | 10             | Double      | 34      | 186.12           | 1,380  | 40    |     | 11     | 3,025   | 143       |
|                      | Log(1+x)       | Single      | 21      | 222.77           | 766    | 4     |     | 3      | 1,171   | 82        |
|                      |                | Double      | 43      | 185.94           | 2,361  | 40    |     | 14     | 4,702   | 183       |
|                      | Log base 2     | Single      | 16      | 232.29           | 350    | 4     |     | 3      | 584     | 64        |
| Arria V<br>(5AGXFB3H | Log base 2     | Double      | 37      | 185.32           | 1,342  | 13    |     | 17     | 3,156   | 121       |
| 4F40C5)              | Log base e     | Single      | 16      | 248.57           | 379    | 4     |     | 3      | 616     | 57        |
|                      | Log base e     | Double      | 35      | 185.84           | 1,422  | 40    |     | 13     | 3,066   | 147       |
|                      | Multiply       | Single      | 5       | 281.14           | 156    | 0     |     | 1      | 152     | 6         |
|                      | Within         | Double      | 7       | 186.01           | 339    | 0     |     | 4      | 549     | 13        |
|                      | Power          | Single      | 45      | 201.82           | 1,347  | 11    |     | 14     | 2,410   | 165       |
|                      | rowei          | Double      | 82      | 185.43           | 4,195  | 20    |     | 38     | 8,149   | 266       |
| Arria V<br>(5AGXFB3H | Square         | Single      | 8       | 261.92           | 119    | 3     |     | 2      | 174     | 13        |
| 4F40C5)              | Root           | Double      | 21      | 185.94           | 548    | 8     |     | 9      | 1,225   | 44        |
|                      | Subtract       | Single      | 9       | 232.67           | 363    | 0     |     | 0      | 505     | 32        |
|                      | Subtract       | Double      | 12      | 257.07           | 884    | 0     |     | 0      | 1,064   | 61        |



| Family               | Function       | Precision | Latency  | £                | ALMs   | M10K  | M20 | DSP    | Logic   | Registers |
|----------------------|----------------|-----------|----------|------------------|--------|-------|-----|--------|---------|-----------|
| raillily             | Function       | Frecision | Latericy | f <sub>MAX</sub> | ALIVIS | WITOK | K   | Blocks | Primary | Secondary |
|                      | Abs            | Single    | 0        |                  | 33     | 0     |     | 0      | 0       | 0         |
|                      | AUS            | Double    | 0        |                  | 65     | 0     |     | 0      | 0       | 0         |
|                      | Add            | Single    | 12       | 225.94           | 403    | 0     |     | 0      | 562     | 35        |
|                      | Aud            | Double    | 20       | 208.99           | 932    | 0     |     | 0      | 1,813   | 72        |
| Cyclone V (5CGXFC7D  | AddSubtra      | Single    | 12       | 224.67           | 509    | 0     |     | 0      | 805     | 65        |
| 6F31C7)              | ct             | Double    | 20       | 211.55           | 1,197  | 0     |     | 0      | 2,647   | 120       |
| 01010/)              | Cube Root      | Single    | 10       | 230.47           | 131    | 6     |     | 2      | 213     | 11        |
|                      | Cube Root      | Double    | 34       | 212.49           | 890    | 17    |     | 10     | 1,991   | 54        |
|                      | Divide         | Single    | 20       | 232.61           | 466    | 5     |     | 4      | 991     | 62        |
|                      | Divide         | Double    | 51       | 201.01           | 1,782  | 41    |     | 15     | 4,317   | 165       |
|                      | Exp base       | Single    | 20       | 217.58           | 552    | 3     |     | 2      | 905     | 32        |
|                      | 10             | Double    | 52       | 212.77           | 2,317  | 0     |     | 10     | 4,287   | 122       |
|                      | Exp base 2     | Single    | 9        | 211.33           | 352    | 0     |     | 2      | 314     | 13        |
|                      |                | Double    | 36       | 219.3            | 1,128  | 0     |     | 10     | 2,364   | 87        |
| Cyclone V            | Even hassa     | Single    | 17       | 207.68           | 698    | 0     |     | 2      | 860     | 31        |
| (5CGXFC7D<br>6F31C7) | Exp base e     | Double    | 50       | 198.85           | 2,309  | 0     |     | 10     | 4,300   | 126       |
| 01010,,              | Daginyagal     | Single    | 14       | 230.95           | 245    | 4     |     | 3      | 378     | 26        |
|                      | Reciprocal     | Double    | 44       | 207.43           | 1,201  | 9     |     | 14     | 2,694   | 94        |
|                      | Reciprocal     | Single    | 9        | 233.37           | 137    | 4     |     | 2      | 223     | 25        |
|                      | Square<br>Root | Double    | 30       | 250              | 782    | 13    |     | 9      | 1,932   | 46        |
|                      | LDExp          | Single    | 2        | 346.02           | 69     | 0     |     | 0      | 87      | 1         |
|                      | ГОЕХР          | Double    | 3        | 357.91           | 104    | 0     |     | 0      | 215     | 0         |
|                      | Log base       | Single    | 22       | 203.33           | 486    | 4     |     | 3      | 1,066   | 47        |
| Cyclone V (5CGXFC7D  | 10             | Double    | 49       | 196.97           | 1,888  | 40    |     | 11     | 4,483   | 153       |
| 6F31C7)              | Log(1+x)       | Single    | 29       | 191.5            | 944    | 4     |     | 3      | 1,844   | 105       |
|                      | Lug(1+x)       | Double    | 62       | 168.27           | 3,012  | 40    |     | 14     | 6,899   | 210       |
|                      | Log base 2     | Single    | 20       | 202.1            | 413    | 4     |     | 3      | 918     | 50        |
|                      | Log base 2     | Double    | 54       | 194.21           | 1,898  | 13    |     | 17     | 4,732   | 151       |



| Family                 | Function   | Dvocision | Latoney | £                | ALMs   | M10K  | M20 | DSP    | Logic   | Registers |
|------------------------|------------|-----------|---------|------------------|--------|-------|-----|--------|---------|-----------|
| Family                 | Function   | Precision | Latency | f <sub>MAX</sub> | ALIVIS | MITUR | K   | Blocks | Primary | Secondary |
|                        | Log base e | Single    | 22      | 181.42           | 482    | 4     |     | 3      | 1,058   | 45        |
|                        | Log base e | Double    | 50      | 196.27           | 1,941  | 40    |     | 13     | 4,611   | 197       |
|                        | Multiply   | Single    | 6       | 268.6            | 159    | 0     |     | 1      | 223     | 2         |
|                        | Multiply   | Double    | 11      | 205.17           | 431    | 0     |     | 4      | 970     | 18        |
| Cyclone V<br>(5CGXFC7D | Power      | Single    | 62      | 181.19           | 1,778  | 11    |     | 14     | 3,562   | 154       |
| 6F31C7)                | Power      | Double    | 127     | 186.53           | 5,411  | 22    |     | 38     | 12,361  | 325       |
|                        | Square     | Single    | 8       | 219.15           | 126    | 3     |     | 2      | 205     | 12        |
|                        | Root       | Double    | 31      | 250              | 822    | 8     |     | 9      | 2,056   | 55        |
|                        | Subtract   | Single    | 12      | 232.07           | 399    | 0     |     | 0      | 566     | 42        |
|                        | Subtract   | Double    | 20      | 204.25           | 918    | 0     |     | 0      | 1,839   | 60        |
|                        | Aba        | Single    | 0       |                  | 33     |       | 0   | 0      | 0       | 0         |
|                        | Abs        | Double    | 0       |                  | 65     |       | 0   | 0      | 0       | 0         |
|                        | Add        | Single    | 5       | 364.83           | 366    |       | 0   | 0      | 299     | 19        |
|                        | Auu        | Double    | 7       | 329.49           | 834    |       | 0   | 0      | 801     | 53        |
|                        | AddSubtra  | Single    | 5       | 354.74           | 489    |       | 0   | 0      | 411     | 29        |
| Stratix V<br>(5SGXEA7K | ct         | Double    | 7       | 338.41           | 1,106  |       | 0   | 0      | 1,039   | 134       |
| 2F40C2)                | Cube Root  | Single    | 8       | 420.17           | 114    |       | 5   | 2      | 124     | 11        |
|                        | Cube Root  | Double    | 20      | 277.7            | 520    |       | 11  | 10     | 997     | 17        |
|                        | Divide     | Single    | 13      | 363.5            | 377    |       | 3   | 4      | 591     | 71        |
|                        | Divide     | Double    | 23      | 270.86           | 1,091  |       | 20  | 15     | 2,274   | 120       |
|                        | Exp base   | Single    | 11      | 292.4            | 486    |       | 3   | 2      | 417     | 12        |
|                        | 10         | Double    | 22      | 271.74           | 2,033  |       | 0   | 10     | 1,761   | 48        |



| Family                 | Function       | Precision | Latency | £                | ALMs   | M10K  | M20 | DSP    | Logic   | Registers |
|------------------------|----------------|-----------|---------|------------------|--------|-------|-----|--------|---------|-----------|
| Family                 | Function       | Precision | Latency | f <sub>MAX</sub> | ALIVIS | WITOK | K   | Blocks | Primary | Secondary |
|                        | Exp base 2     | Single    | 5       | 387.3            | 351    |       | 0   | 2      | 160     | 1         |
|                        | Exp base 2     | Double    | 17      | 279.56           | 897    |       | 0   | 10     | 995     | 27        |
|                        | Exp base e     | Single    | 8       | 284.09           | 653    |       | 0   | 2      | 350     | 18        |
|                        | Exp base e     | Double    | 23      | 268.38           | 2,043  |       | 0   | 10     | 1,710   | 44        |
|                        | Reciprocal     | Single    | 9       | 279.33           | 199    |       | 3   | 3      | 211     | 13        |
| Stratix V              | Recipiocai     | Double    | 22      | 241.31           | 764    |       | 9   | 14     | 1,391   | 49        |
| (5SGXEA7K<br>2F40C2)   | Reciprocal     | Single    | 6       | 420.52           | 105    |       | 3   | 2      | 129     | 9         |
| 2F40C2)                | Square<br>Root | Double    | 17      | 271.37           | 449    |       | 8   | 9      | 1,009   | 47        |
|                        | LDExp          | Single    | 0       |                  | 67     |       | 0   | 0      | 0       | 0         |
|                        | LDLxp          | Double    | 0       | 717.36           | 99     |       | 0   | 0      | 66      | 0         |
|                        | Log base       | Single    | 11      | 359.58           | 358    |       | 3   | 3      | 443     | 29        |
|                        | 10             | Double    | 23      | 271.96           | 1,077  |       | 20  | 11     | 2,252   | 101       |
|                        | Log(1+x)       | Single    | 15      | 338.64           | 748    |       | 3   | 3      | 905     | 55        |
|                        |                | Double    | 27      | 280.98           | 1,911  |       | 20  | 13     | 3,301   | 122       |
|                        | Log base 2     | Single    | 11      | 340.37           | 304    |       | 3   | 3      | 392     | 15        |
|                        | Log base 2     | Double    | 27      | 258.33           | 1,053  |       | 8   | 16     | 2,241   | 110       |
|                        | Log base e     | Single    | 11      | 351.86           | 359    |       | 3   | 3      | 439     | 35        |
|                        | Log base e     | Double    | 23      | 270.49           | 1,071  |       | 20  | 13     | 2,210   | 94        |
| Stratix V<br>(5SGXEA7K | Multiply       | Single    | 3       | 399.52           | 136    |       | 0   | 1      | 72      | 1         |
| 2F40C2)                | Within         | Double    | 4       | 250.75           | 312    |       | 0   | 4      | 237     | 5         |
|                        | Power          | Single    | 31      | 261.23           | 1,171  |       | 8   | 12     | 1,492   | 83        |
|                        | rowei          | Double    | 60      | 267.81           | 3,555  |       | 13  | 37     | 5,347   | 244       |
|                        | Square         | Single    | 6       | 393.7            | 112    |       | 3   | 2      | 129     | 7         |
|                        | Root           | Double    | 17      | 274.12           | 458    |       | 8   | 9      | 1,019   | 41        |
|                        | Subtract       | Single    | 5       | 320.41           | 360    |       | 0   | 0      | 299     | 14        |
|                        | Subtract       | Double    | 7       | 338.52           | 835    |       | 0   | 0      | 801     | 51        |



| Family                 | Function       | Precision  | Latency  | f                | ALMs   | M10K  | M20 | DSP    | Logic   | Registers |
|------------------------|----------------|------------|----------|------------------|--------|-------|-----|--------|---------|-----------|
| Failily                | Function       | FIECISIOII | Latericy | f <sub>MAX</sub> | ALIVIS | WITOK | K   | Blocks | Primary | Secondary |
|                        | Abs            | Single     | 0        |                  | 33     |       | 0   | 0      | 0       | 0         |
|                        | 7103           | Double     | 0        |                  | 65     |       | 0   | 0      | 0       | 0         |
|                        | Add            | Single     | 4        | 296.4            | 49     |       | 0   | 1      | 0       | 0         |
|                        | Aud            | Double     | 7        | 296.3            | 840    |       | 0   | 0      | 779     | 67        |
|                        | AddSubtra      | Single     | 5        | 319.39           | 483    |       | 0   | 0      | 408     | 37        |
| Arria 10<br>(10AX115H4 | ct             | Double     | 7        | 289.77           | 1,106  |       | 0   | 0      | 1,006   | 156       |
| F34I3SP)               | Cube Root      | Single     | 10       | 432.9            | 126    |       | 5   | 2      | 121     | 0         |
|                        | Cube Root      | Double     | 24       | 282.09           | 594    |       | 11  | 10     | 1,155   | 29        |
|                        | Divide         | Single     | 16       | 347.34           | 394    |       | 3   | 4      | 561     | 66        |
|                        | Divide         | Double     | 30       | 258.26           | 1,208  |       | 20  | 15     | 2,175   | 136       |
|                        | Exp base       | Single     | 14       | 271.37           | 502    |       | 3   | 2      | 432     | 40        |
|                        | 10             | Double     | 29       | 242.42           | 2,185  |       | 0   | 10     | 1,683   | 90        |
|                        | Exp base 2     | Single     | 7        | 317.86           | 370    |       | 0   | 2      | 124     | 9         |
|                        | Exp base 2     | Double     | 22       | 251.45           | 906    |       | 0   | 10     | 1,172   | 47        |
|                        | Exp base e     | Single     | 26       | 365.36           | 298    |       | 3   | 6      | 137     | 11        |
|                        | Exp base e     | Double     | 28       | 260.42           | 2,156  |       | 0   | 10     | 1,724   | 93        |
|                        | Reciprocal     | Single     | 12       | 278.94           | 225    |       | 3   | 3      | 172     | 3         |
|                        | Recipiocai     | Double     | 27       | 260.89           | 824    |       | 9   | 14     | 1,448   | 100       |
| Arria 10               | Reciprocal     | Single     | 8        | 418.94           | 117    |       | 3   | 2      | 130     | 1         |
| (10AX115H4<br>F34I3SP) | Square<br>Root | Double     | 22       | 243.43           | 523    |       | 8   | 9      | 950     | 37        |
|                        | LDExp          | Single     | 0        |                  | 68     |       | 0   | 0      | 0       | 0         |
|                        | Грехр          | Double     | 0        |                  | 99     |       | 0   | 0      | 66      | 0         |
|                        | Log base       | Single     | 15       | 293.69           | 364    |       | 3   | 3      | 441     | 42        |
|                        | 10             | Double     | 28       | 272.03           | 1,158  |       | 20  | 11     | 2,095   | 214       |
|                        | I og(1 + v-)   | Single     | 18       | 301.3            | 747    |       | 3   | 3      | 882     | 79        |
|                        | Log(1+x)       | Double     | 32       | 251.95           | 2,018  |       | 20  | 13     | 3,019   | 248       |



| Family                 | Function   | Precision  | Latency  | f <sub>MAX</sub> | ALMs   | M10K  | M20 | DSP    | Logic   | Registers |
|------------------------|------------|------------|----------|------------------|--------|-------|-----|--------|---------|-----------|
| raillily               | Function   | FIECISIOII | Latericy | 'MAX             | ALIVIS | WITOK | K   | Blocks | Primary | Secondary |
|                        | Log base 2 | Single     | 14       | 275.79           | 316    |       | 3   | 3      | 402     | 3         |
|                        | Log base 2 | Double     | 32       | 271.96           | 1,173  |       | 8   | 16     | 2,372   | 132       |
| Lo                     | Laghasa    | Single     | 29       | 378.07           | 297    |       | 3   | 9      | 315     | 6         |
|                        | Log base e | Double     | 29       | 256.54           | 1,219  |       | 20  | 13     | 2,338   | 152       |
|                        | Multiply   | Single     | 3        | 288.4            | 49     |       | 0   | 1      | 0       | 0         |
| Arria 10<br>(10AX115H4 |            | Double     | 5        | 288.35           | 312    |       | 0   | 4      | 236     | 26        |
| F34I3SP)               | Dozuzan    | Single     | 40       | 262.12           | 1,335  |       | 8   | 14     | 1,523   | 127       |
|                        | Power      | Double     | 73       | 237.7            | 3,957  |       | 13  | 37     | 5,362   | 305       |
|                        | Square     | Single     | 8        | 432.9            | 124    |       | 3   | 2      | 118     | 8         |
| :                      | Root       | Double     | 22       | 249.25           | 539    |       | 8   | 9      | 1,000   | 34        |
|                        | C 1        | Single     | 4        | 296.9            | 49     |       | 0   | 1      | 0       | 0         |
|                        | Subtract   | Double     | 7        | 296.82           | 842    |       | 0   | 0      | 783     | 76        |



**Table 18-3: Trigonometry** 

| Family             | Function | Precision | Scale | Latenc | £                | ALM       | MIOK  | M20K | DSP    | Logi    | c Registers |
|--------------------|----------|-----------|-------|--------|------------------|-----------|-------|------|--------|---------|-------------|
| ганну              | Function | Precision | By Pi | У      | f <sub>MAX</sub> | S         | WITOK | MZUK | Blocks | Primary | Secondary   |
|                    |          | Single    | 0     | 35     | 217.7            | 768       | 9     |      | 8      | 1,289   | 94          |
|                    | Arccos   | Single    | 1     | 39     | 216.4<br>5       | 819       | 9     |      | 9      | 1,383   | 92          |
|                    | Arccos   | Double    | 0     | 76     | 185.7            | 2,91<br>7 | 27    |      | 37     | 6,489   | 230         |
|                    |          | Double    | 1     | 83     | 184.2            | 3,12      | 27    |      | 40     | 6,899   | 198         |
|                    |          | Single    | 0     | 29     | 215.8            | 652       | 9     |      | 8      | 1,069   | 93          |
| Arria V<br>(5AGXFB |          | Single    | 1     | 34     | 222.3            | 747       | 9     |      | 9      | 1,178   | 80          |
| 3H4F40C<br>5)      | Arcsin   | Double    | 0     | 66     | 185.3<br>2       | 2,76<br>2 | 29    |      | 41     | 6,365   | 171         |
|                    |          | Double    | 1     | 72     | 184.1<br>6       | 2,96<br>3 | 29    |      | 44     | 6,696   | 200         |
|                    |          | Single    | 0     | 27     | 232.2<br>9       | 603       | 7     |      | 6      | 937     | 77          |
|                    | Arctan   | Single    | 1     | 31     | 230.7            | 664       | 7     |      | 7      | 1,034   | 89          |
|                    | Mician   | Double    | 0     | 65     | 185.7            | 2,04<br>7 | 23    |      | 31     | 4,535   | 164         |
|                    |          | Double    | 1     | 71     | 185.6            | 2,22<br>9 | 23    |      | 34     | 4,854   | 174         |



| Family.                             | Function | Duasisian | Scale | Latenc | £                | ALM       | M10K   | M20K   | DSP    | Logi    | c Registers |
|-------------------------------------|----------|-----------|-------|--------|------------------|-----------|--------|--------|--------|---------|-------------|
| Family                              | Function | Precision | By Pi | У      | f <sub>MAX</sub> | S         | INITUR | IVIZUK | Blocks | Primary | Secondary   |
|                                     |          | Single    | 0     | 43     | 230.2            | 1,01      | 11     |        | 9      | 1,719   | 128         |
|                                     | Arctan2  | Single    | 1     | 43     | 230.2            | 1,01<br>3 | 11     |        | 9      | 1,719   | 128         |
|                                     | Arctanz  | Double    | 0     | 92     | 184.2            | 3,19<br>5 | 44     |        | 43     | 6,822   | 285         |
| Arria V<br>(5AGXFB<br>3H4F40C<br>5) |          | Double    | 1     | 92     | 184.2            | 3,19<br>5 | 44     |        | 43     | 6,822   | 285         |
|                                     |          | Single    | 0     | 25     | 205.3            | 768       | 5      |        | 6      | 1,563   | 120         |
| 5)                                  |          | Single    | 1     | 12     | 242.1            | 490       | 0      |        | 3      | 475     | 36          |
|                                     | Cos      | Double    | 0     | 45     | 184.2            | 2,87<br>9 | 34     |        | 33     | 5,973   | 244         |
|                                     |          | Double    | 1     | 29     | 185.8<br>7       | 1,71<br>9 | 0      |        | 13     | 2,499   | 92          |
|                                     |          | Single    | 0     | 26     | 223.5<br>1       | 964       | 5      |        | 6      | 1,439   | 110         |
|                                     | Sin      | Single    | 1     | 12     | 240.5<br>6       | 585       | 0      |        | 3      | 563     | 66          |
|                                     | SIII     | Double    | 0     | 46     | 184.1<br>6       | 3,01<br>9 | 36     |        | 33     | 6,308   | 249         |
| Arria V<br>(5AGXFB                  |          | Double    | 1     | 29     | 185.7<br>7       | 1,74<br>8 | 0      |        | 14     | 2,699   | 92          |
| 3H4F40C<br>5)                       |          | Single    | 0     | 38     | 221.7<br>8       | 1,36<br>8 | 12     |        | 12     | 2,625   | 163         |
|                                     | Т        | Single    | 1     | 25     | 231.4            | 1,29<br>7 | 4      |        | 10     | 1,512   | 140         |
|                                     | Tan      | Double    | 0     | 68     | 185.5<br>6       | 5,21<br>1 | 56     |        | 65     | 10,670  | 530         |
|                                     |          | Double    | 1     | 52     | 184.1<br>6       | 3,87<br>4 | 26     |        | 43     | 6,896   | 238         |



| Family               | Function  | Precision  | Scale | Latenc | c .              | ALM       | MIOK  | M20K  | DSP    | Logic   | : Registers |
|----------------------|-----------|------------|-------|--------|------------------|-----------|-------|-------|--------|---------|-------------|
| ганну                | FullCtion | FIECISIOII | By Pi | У      | f <sub>MAX</sub> | S         | WITOK | WIZUK | Blocks | Primary | Secondary   |
|                      |           | Single     | 0     | 42     | 217.2            | 857       | 9     |       | 8      | 1,701   | 107         |
|                      |           | Single     | 1     | 47     | 196.2<br>7       | 943       | 9     |       | 9      | 1,887   | 104         |
|                      | Arccos    | Double     | 0     | 113    | 196.5            | 3,95<br>7 | 31    |       | 37     | 9,739   | 343         |
|                      |           | Double     | 1     | 123    | 210.1<br>7       | 4,21<br>8 | 31    |       | 40     | 10,353  | 333         |
|                      | Arcsin    | Single     | 0     | 35     | 222.6<br>2       | 757       | 9     |       | 8      | 1,464   | 65          |
| Cyclone V<br>(5CGXFC |           | Single     | 1     | 40     | 215.1<br>9       | 844       | 9     |       | 9      | 1,627   | 111         |
| 7D6F31C<br>7)        | Arcsin    | Double     | 0     | 101    | 201.6            | 3,81<br>6 | 31    |       | 41     | 9,709   | 334         |
|                      |           | Double     | 1     | 112    | 197.7<br>1       | 4,04<br>6 | 31    |       | 44     | 10,383  | 260         |
|                      | _         | Single     | 0     | 33     | 227.5<br>8       | 706       | 7     |       | 6      | 1,266   | 92          |
|                      |           | Single     | 1     | 38     | 206.3            | 787       | 7     |       | 7      | 1,434   | 90          |
|                      | Arctan    | Double     | 0     | 98     | 188.7<br>9       | 2,92<br>0 | 24    |       | 31     | 7,154   | 297         |
|                      |           | Double     | 1     | 109    | 180.4            | 3,19<br>6 | 24    |       | 34     | 7,875   | 297         |



| Family               | Function | Precision | Scale | Latenc | £                | ALM       | M10K   | M20K   | DSP    | Logi    | c Registers |
|----------------------|----------|-----------|-------|--------|------------------|-----------|--------|--------|--------|---------|-------------|
| ганну                | Function | Precision | By Pi | У      | f <sub>MAX</sub> | S         | IVITOR | IVIZUR | Blocks | Primary | Secondary   |
|                      |          | Single    | 0     | 51     | 206.1<br>4       | 1,15<br>3 | 11     |        | 9      | 2,013   | 149         |
|                      | Arctan2  | Single    | 1     | 51     | 206.1            | 1,15      | 11     |        | 9      | 2,013   | 149         |
|                      | Mictail  | Double    | 0     | 144    | 191.1<br>7       | 4,58<br>9 | 46     |        | 43     | 10,740  | 417         |
|                      |          | Double    | 1     | 144    | 191.1<br>7       | 4,58<br>9 | 46     |        | 43     | 10,740  | 417         |
|                      |          | Single    | 0     | 32     | 174.6<br>7       | 959       | 5      |        | 6      | 2,258   | 110         |
|                      | Cos      | Single    | 1     | 15     | 212.9<br>9       | 517       | 0      |        | 3      | 702     | 25          |
|                      | Cos      | Double    | 0     | 75     | 182.7<br>5       | 3,75<br>1 | 34     |        | 33     | 9,177   | 352         |
| Cyclone V<br>(5CGXFC |          | Double    | 1     | 50     | 212.6<br>8       | 1,98<br>5 | 0      |        | 13     | 3,914   | 169         |
| 7D6F31C<br>7)        |          | Single    | 0     | 33     | 191.6<br>1       | 1,08<br>6 | 5      |        | 6      | 2,394   | 132         |
|                      | Sin      | Single    | 1     | 14     | 207.8            | 579       | 0      |        | 3      | 783     | 39          |
|                      | 5111     | Double    | 0     | 75     | 196.3<br>9       | 3,78<br>7 | 38     |        | 33     | 9,545   | 284         |
|                      |          | Double    | 1     | 49     | 206.5            | 2,16<br>5 | 0      |        | 14     | 4,336   | 177         |
|                      |          | Single    | 0     | 46     | 185.7<br>4       | 1,65<br>5 | 12     |        | 12     | 3,738   | 200         |
|                      | Tan      | Single    | 1     | 29     | 205.4<br>7       | 1,28<br>3 | 4      |        | 10     | 2,142   | 102         |
|                      | 1 all    | Double    | 0     | 112    | 194.7            | 7,05<br>2 | 58     |        | 65     | 16,793  | 607         |
|                      |          | Double    | 1     | 89     | 197.2<br>4       | 5,32<br>7 | 26     |        | 43     | 11,741  | 376         |



| Family             | Function | Precision | Scale | Latenc | f                | ALM       | M10K  | M20K  | DSP    | Logi    | c Registers |
|--------------------|----------|-----------|-------|--------|------------------|-----------|-------|-------|--------|---------|-------------|
| 1 allilly          | runction | riecision | By Pi | У      | f <sub>MAX</sub> | S         | WITOK | WIZUK | Blocks | Primary | Secondary   |
|                    |          | Single    | 0     | 23     | 291.4            | 753       |       | 9     | 8      | 801     | 34          |
|                    | Arccos   | Single    | 1     | 27     | 288.4            | 823       |       | 9     | 9      | 891     | 27          |
|                    | Arccos   | Double    | 0     | 53     | 247.4<br>6       | 2,38<br>0 |       | 27    | 37     | 4,435   | 145         |
|                    |          | Double    | 1     | 58     | 233.1<br>5       | 2,57<br>0 |       | 27    | 40     | 4,717   | 121         |
|                    |          | Single    | 0     | 20     | 290.6<br>1       | 598       |       | 9     | 8      | 698     | 19          |
|                    | Arcsin   | Single    | 1     | 23     | 294.9<br>9       | 678       |       | 9     | 9      | 800     | 21          |
| Stratix V          |          | Double    | 0     | 47     | 237.2<br>5       | 2,23<br>5 |       | 27    | 40     | 4,407   | 89          |
| (5SGXEA<br>7K2F40C |          | Double    | 1     | 52     | 240.3            | 2,41<br>1 |       | 27    | 43     | 4,621   | 134         |
| 2)                 |          | Single    | 0     | 20     | 293.6            | 544       |       | 6     | 6      | 646     | 53          |
|                    |          | Single    | 1     | 23     | 290.7            | 620       |       | 6     | 7      | 715     | 50          |
|                    | Arctan   | Double    | 0     | 47     | 241.7            | 1,83<br>7 |       | 18    | 30     | 3,424   | 145         |
|                    |          | Double    | 1     | 52     | 247.3<br>4       | 2,00      |       | 18    | 33     | 3,654   | 126         |
|                    |          | Single    | 0     | 31     | 288.3<br>5       | 890       |       | 9     | 9      | 1,277   | 71          |
|                    | Anotoma  | Single    | 1     | 31     | 288.3<br>5       | 890       |       | 9     | 9      | 1,277   | 71          |
| A                  | Arctan2  | Double    | 0     | 69     | 239.2            | 2,98<br>3 |       | 29    | 42     | 5,530   | 212         |
|                    |          | Double    | 1     | 69     | 239.2            | 2,98<br>3 |       | 29    | 42     | 5,530   | 212         |



| Family               | Function | Precision  | Scale | Latenc | f                | ALM       | M10K  | M20K | DSP    | Logi    | c Registers |
|----------------------|----------|------------|-------|--------|------------------|-----------|-------|------|--------|---------|-------------|
| railily              | Function | FIECISIOII | By Pi | У      | f <sub>MAX</sub> | S         | WITOK | MZUK | Blocks | Primary | Secondary   |
|                      |          | Single     | 0     | 17     | 267.0            | 711       |       | 5    | 6      | 890     | 48          |
|                      | Cos      | Single     | 1     | 8      | 364.8            | 452       |       | 0    | 3      | 368     | 20          |
|                      | Cos      | Double     | 0     | 33     | 242.2<br>5       | 2,52<br>9 |       | 17   | 31     | 4,510   | 187         |
|                      |          | Double     | 1     | 21     | 275.4<br>8       | 1,60<br>8 |       | 0    | 13     | 1,799   | 54          |
|                      | Sin      | Single     | 0     | 18     | 309.6<br>9       | 856       |       | 5    | 6      | 917     | 74          |
| Stratix V<br>(5SGXEA |          | Single     | 1     | 8      | 317.4<br>6       | 538       |       | 0    | 3      | 382     | 10          |
| 7K2F40C<br>2)        | 5111     | Double     | 0     | 34     | 257.6<br>7       | 2,71<br>4 |       | 19   | 31     | 4,766   | 229         |
|                      |          | Double     | 1     | 22     | 260.8<br>9       | 1,86<br>4 |       | 0    | 14     | 1,898   | 104         |
|                      |          | Single     | 0     | 27     | 272.2<br>6       | 1,31<br>2 |       | 11   | 12     | 1,675   | 117         |
|                      | Tan      | Single     | 1     | 17     | 295.6<br>8       | 1,16<br>4 |       | 3    | 10     | 1,175   | 65          |
|                      | 1 411    | Double     | 0     | 52     | 268.3<br>8       | 4,61<br>2 |       | 30   | 60     | 8,152   | 264         |
|                      |          | Double     | 1     | 41     | 260.8<br>9       | 3,88<br>6 |       | 13   | 43     | 5,294   | 193         |



| Family                                 | Function  | Precision | Scale<br>By Pi | Latenc<br>y | f <sub>MAX</sub> | ALM<br>s  | M10K | M20K | DSP<br>Blocks | Logic Registers |           |
|----------------------------------------|-----------|-----------|----------------|-------------|------------------|-----------|------|------|---------------|-----------------|-----------|
| Taililly                               | diffetion |           |                |             |                  |           |      |      |               | Primary         | Secondary |
| Arria 10<br>(10AX115<br>H4F34I3S<br>P) | Arccos    | Single    | 0              | 28          | 270.4            | 703       |      | 9    | 8             | 656             | 29        |
|                                        |           | Single    | 1              | 31          | 261.2            | 705       |      | 9    | 9             | 624             | 19        |
|                                        |           | Double    | 0              | 63          | 257.8            | 2,62<br>6 |      | 27   | 37            | 4,917           | 241       |
|                                        |           | Double    | 1              | 69          | 255.6<br>2       | 2,81      |      | 27   | 40            | 5,127           | 268       |
|                                        | Arcsin    | Single    | 0              | 25          | 249.6<br>3       | 665       |      | 9    | 8             | 659             | 18        |
|                                        |           | Single    | 1              | 28          | 254.1<br>9       | 673       |      | 9    | 9             | 649             | 30        |
|                                        |           | Double    | 0              | 57          | 255.6<br>2       | 2,44<br>0 |      | 29   | 40            | 4,750           | 213       |
|                                        |           | Double    | 1              | 62          | 251.5<br>1       | 2,59<br>6 |      | 29   | 43            | 4,985           | 190       |
|                                        | Arctan    | Single    | 0              | 26          | 271.3            | 600       |      | 6    | 6             | 578             | 32        |
|                                        |           | Single    | 1              | 29          | 274.2            | 594       |      | 6    | 7             | 583             | 22        |
|                                        |           | Double    | 0              | 57          | 254.1<br>3       | 1,86<br>6 |      | 22   | 30            | 3,654           | 171       |
|                                        |           | Double    | 1              | 63          | 258.3<br>3       | 2,04      |      | 22   | 33            | 3,726           | 253       |
|                                        | Arctan2   | Single    | 0              | 40          | 248.1<br>4       | 1,00<br>2 |      | 9    | 9             | 1,258           | 85        |
|                                        |           | Single    | 1              | 40          | 248.1<br>4       | 1,00<br>2 |      | 9    | 9             | 1,258           | 85        |
|                                        |           | Double    | 0              | 84          | 255.1            | 3,02<br>5 |      | 33   | 42            | 5,675           | 328       |
|                                        |           | Double    | 1              | 84          | 255.1            | 3,02<br>5 |      | 33   | 42            | 5,675           | 328       |



| Family               | Function  | Precision  | Scale | Latenc | f <sub>MAX</sub> | ALM       | M10K  | M20K  | DSP    | Logi    | c Registers |
|----------------------|-----------|------------|-------|--------|------------------|-----------|-------|-------|--------|---------|-------------|
| railily              | FullCtion | FIECISIOII | By Pi | У      | 'MAX             | S         | WITOK | WIZUK | Blocks | Primary | Secondary   |
|                      |           | Single     | 0     | 21     | 336.9            | 786       |       | 5     | 6      | 979     | 154         |
|                      | Cos       | Single     | 1     | 11     | 310.3<br>7       | 512       |       | 0     | 3      | 297     | 22          |
|                      | C03       | Double     | 0     | 39     | 263.9            | 2,70<br>2 |       | 17    | 33     | 3,697   | 375         |
|                      |           | Double     | 1     | 29     | 242.1<br>9       | 1,69<br>8 |       | 0     | 13     | 2,030   | 62          |
|                      |           | Single     | 0     | 22     | 311.3            | 876       |       | 5     | 6      | 1,003   | 116         |
| Arria 10<br>(10AX115 | Sin       | Single     | 1     | 11     | 279.0            | 585       |       | 0     | 3      | 330     | 19          |
| H4F34I3S<br>P)       | Sili      | Double     | 0     | 41     | 265.2<br>5       | 2,79<br>1 |       | 19    | 33     | 3,902   | 334         |
|                      |           | Double     | 1     | 29     | 259.6<br>1       | 1,91<br>8 |       | 0     | 14     | 1,943   | 72          |
|                      |           | Single     | 0     | 34     | 265.6            | 1,35<br>9 |       | 11    | 12     | 1,756   | 155         |
|                      | Tan       | Single     | 1     | 23     | 265.8<br>9       | 1,26<br>8 |       | 3     | 10     | 1,065   | 94          |
|                      | 1 an      | Double     | 0     | 64     | 248.1<br>4       | 5,10<br>7 |       | 30    | 65     | 7,578   | 458         |
|                      |           | Double     | 1     | 53     | 251.7            | 4,00<br>2 |       | 17    | 43     | 5,619   | 343         |



Table 18-4: FPFXP

|                      | Input         | Output | Output       | Latenc |                  |      |      |      | DSP    | Logic       | Registers |
|----------------------|---------------|--------|--------------|--------|------------------|------|------|------|--------|-------------|-----------|
| Family               | Precisi<br>on | Width  | Fractio<br>n | y      | f <sub>MAX</sub> | ALMs | M10K | M20K | Blocks | Primar<br>y | Secondary |
|                      |               | 32     | 0            | 2      | 277.93           | 168  | 0    |      | 0      | 75          | 1         |
|                      |               | 32     | 16           | 2      | 266.1            | 169  | 0    |      | 0      | 75          | 0         |
|                      | Single        | 32     | 32           | 2      | 277.93           | 168  | 0    |      | 0      | 75          | 1         |
|                      | Siligie       | 64     | 0            | 3      | 226.4            | 291  | 0    |      | 0      | 172         | 0         |
|                      |               | 64     | 16           | 3      | 226.4            | 291  | 0    |      | 0      | 172         | 0         |
| Arria V<br>(5AGXFB3  |               | 64     | 32           | 3      | 226.4            | 291  | 0    |      | 0      | 172         | 0         |
| (3AGAFB3<br>H4F40C5) |               | 32     | 0            | 3      | 332.12           | 197  | 0    |      | 0      | 115         | 0         |
|                      |               | 32     | 16           | 3      | 344.12           | 197  | 0    |      | 0      | 115         | 0         |
|                      | Doubl         | 32     | 32           | 3      | 332.12           | 197  | 0    |      | 0      | 115         | 0         |
|                      | e             | 64     | 0            | 3      | 256.28           | 326  | 0    |      | 0      | 205         | 4         |
|                      |               | 64     | 16           | 3      | 256.28           | 326  | 0    |      | 0      | 205         | 4         |
|                      |               | 64     | 32           | 3      | 256.28           | 326  | 0    |      | 0      | 205         | 4         |
|                      |               | 32     | 0            | 3      | 245.04           | 171  | 0    |      | 0      | 110         | 0         |
|                      |               | 32     | 16           | 3      | 245.04           | 171  | 0    |      | 0      | 110         | 0         |
|                      | Single        | 32     | 32           | 3      | 245.04           | 171  | 0    |      | 0      | 110         | 0         |
|                      | Siligle       | 64     | 0            | 4      | 190.62           | 244  | 0    |      | 0      | 269         | 0         |
|                      |               | 64     | 16           | 4      | 190.62           | 244  | 0    |      | 0      | 269         | 0         |
| Cyclone V (5CGXFC7   |               | 64     | 32           | 4      | 190.62           | 244  | 0    |      | 0      | 269         | 0         |
| D6F31C7)             |               | 32     | 0            | 4      | 291.63           | 209  | 0    |      | 0      | 160         | 1         |
|                      |               | 32     | 16           | 4      | 302.94           | 209  | 0    |      | 0      | 160         | 1         |
|                      | Doubl         | 32     | 32           | 4      | 291.63           | 209  | 0    |      | 0      | 160         | 1         |
|                      | e             | 64     | 0            | 5      | 207.25           | 329  | 0    |      | 0      | 347         | 2         |
|                      |               | 64     | 16           | 5      | 207.25           | 329  | 0    |      | 0      | 347         | 2         |
|                      |               | 64     | 32           | 5      | 207.25           | 329  | 0    |      | 0      | 347         | 2         |



|                       | Input         | Output | Output       | Latenc |                  |      |      |      | DSP    | Logic       | Registers |
|-----------------------|---------------|--------|--------------|--------|------------------|------|------|------|--------|-------------|-----------|
| Family                | Precisi<br>on | Width  | Fractio<br>n | у      | f <sub>MAX</sub> | ALMs | M10K | M20K | Blocks | Primar<br>y | Secondary |
|                       |               | 32     | 0            | 0      | 717.36           | 168  |      | 0    | 0      | 38          | 0         |
|                       |               | 32     | 16           | 0      | 717.36           | 168  |      | 0    | 0      | 38          | 0         |
|                       | Single        | 32     | 32           | 0      | 717.36           | 168  |      | 0    | 0      | 38          | 0         |
|                       | Siligie       | 64     | 0            | 0      | 717.36           | 304  |      | 0    | 0      | 70          | 0         |
|                       |               | 64     | 16           | 0      | 717.36           | 304  |      | 0    | 0      | 70          | 0         |
| Stratix V<br>(5SGXEA7 |               | 64     | 32           | 0      | 717.36           | 304  |      | 0    | 0      | 70          | 0         |
| (33GXEA7<br>K2F40C2)  |               | 32     | 0            | 0      | 717.36           | 204  |      | 0    | 0      | 38          | 0         |
|                       |               | 32     | 16           | 0      | 717.36           | 204  |      | 0    | 0      | 38          | 0         |
|                       | Doubl         | 32     | 32           | 0      | 717.36           | 204  |      | 0    | 0      | 38          | 0         |
|                       | e             | 64     | 0            | 2      | 456              | 329  |      | 0    | 0      | 134         | 1         |
|                       |               | 64     | 16           | 2      | 456              | 329  |      | 0    | 0      | 134         | 1         |
|                       |               | 64     | 32           | 2      | 456              | 329  |      | 0    | 0      | 134         | 1         |
|                       |               | 32     | 0            | 0      |                  | 168  |      | 0    | 0      | 38          | 0         |
|                       |               | 32     | 16           | 0      |                  | 168  |      | 0    | 0      | 38          | 0         |
|                       | Single        | 32     | 32           | 0      |                  | 168  |      | 0    | 0      | 38          | 0         |
|                       | Siligie       | 64     | 0            | 0      |                  | 304  |      | 0    | 0      | 70          | 0         |
|                       |               | 64     | 16           | 0      |                  | 304  |      | 0    | 0      | 70          | 0         |
| Arria 10<br>(10AX115H |               | 64     | 32           | 0      |                  | 304  |      | 0    | 0      | 70          | 0         |
| 4F34I3SP)             |               | 32     | 0            | 0      |                  | 203  |      | 0    | 0      | 38          | 0         |
|                       |               | 32     | 16           | 0      |                  | 203  |      | 0    | 0      | 38          | 0         |
|                       | Doubl         | 32     | 32           | 0      |                  | 203  |      | 0    | 0      | 38          | 0         |
|                       | e             | 64     | 0            | 2      | 407.33           | 328  |      | 0    | 0      | 134         | 0         |
|                       |               | 64     | 16           | 2      | 407.33           | 328  |      | 0    | 0      | 134         | 0         |
|                       |               | 64     | 32           | 2      | 407.33           | 328  |      | 0    | 0      | 134         | 0         |



Table 18-5: FXPFP

|                  | Input | Input        | Output        | Latenc |                  |      |      |      | DSP    | Logic       | Registers |
|------------------|-------|--------------|---------------|--------|------------------|------|------|------|--------|-------------|-----------|
| Family           | Width | Fractio<br>n | Precisi<br>on | у      | f <sub>MAX</sub> | ALMs | M10K | M20K | Blocks | Primar<br>y | Secondary |
|                  | 32    | 0            | Single        | 6      | 283.61           | 154  | 0    |      | 0      | 195         | 14        |
|                  | 32    | 0            | Doubl<br>e    | 5      | 328.19           | 165  | 0    |      | 0      | 180         | 17        |
|                  | 32    | 16           | Single        | 6      | 283.61           | 154  | 0    |      | 0      | 195         | 14        |
|                  | 32    | 16           | Doubl<br>e    | 5      | 328.19           | 165  | 0    |      | 0      | 180         | 17        |
|                  | 32    | 32           | Single        | 6      | 293              | 152  | 0    |      | 0      | 193         | 13        |
| Arria V<br>(5AGX | 32    | 32           | Doubl<br>e    | 5      | 336.59           | 159  | 0    |      | 0      | 180         | 16        |
| FB3H4<br>F40C5)  | 64    | 0            | Single        | 7      | 282.01           | 217  | 0    |      | 0      | 297         | 16        |
| 14003)           | 64    | 0            | Doubl<br>e    | 7      | 256.48           | 330  | 0    |      | 0      | 451         | 18        |
|                  | 64    | 16           | Single        | 7      | 282.01           | 217  | 0    |      | 0      | 297         | 16        |
|                  | 64    | 16           | Doubl<br>e    | 7      | 256.48           | 330  | 0    |      | 0      | 451         | 18        |
|                  | 64    | 32           | Single        | 7      | 282.01           | 217  | 0    |      | 0      | 297         | 16        |
|                  | 64    | 32           | Doubl<br>e    | 7      | 256.48           | 330  | 0    |      | 0      | 451         | 18        |



|                       | Input | Input        | Output        | Latenc |                  |      |      |      | DSP    | Logic       | Registers |
|-----------------------|-------|--------------|---------------|--------|------------------|------|------|------|--------|-------------|-----------|
| Family                | Width | Fractio<br>n | Precisi<br>on | у      | f <sub>MAX</sub> | ALMs | M10K | M20K | Blocks | Primar<br>y | Secondary |
|                       | 32    | 0            | Single        | 8      | 230.04           | 168  | 0    |      | 0      | 264         | 21        |
|                       | 32    | 0            | Doubl<br>e    | 7      | 292.74           | 180  | 0    |      | 0      | 258         | 23        |
|                       | 32    | 16           | Single        | 8      | 230.04           | 168  | 0    |      | 0      | 264         | 21        |
|                       | 32    | 16           | Doubl<br>e    | 7      | 292.74           | 180  | 0    |      | 0      | 258         | 23        |
|                       | 32    | 32           | Single        | 8      | 237.14           | 166  | 0    |      | 0      | 262         | 20        |
| Cyclone<br>V<br>(5CGX | 32    | 32           | Doubl<br>e    | 7      | 268.6            | 179  | 0    |      | 0      | 258         | 29        |
| FC7D6                 | 64    | 0            | Single        | 9      | 248.51           | 219  | 0    |      | 0      | 391         | 18        |
| F31C7)                | 64    | 0            | Doubl<br>e    | 10     | 176.87           | 338  | 0    |      | 0      | 648         | 18        |
|                       | 64    | 16           | Single        | 9      | 248.51           | 219  | 0    |      | 0      | 391         | 18        |
|                       | 64    | 16           | Doubl<br>e    | 10     | 176.87           | 338  | 0    |      | 0      | 648         | 18        |
|                       | 64    | 32           | Single        | 9      | 248.51           | 219  | 0    |      | 0      | 391         | 18        |
|                       | 64    | 32           | Doubl<br>e    | 10     | 176.87           | 338  | 0    |      | 0      | 648         | 18        |



|                        | Input | Input        | Output        | Latenc |                  |      |      |      | DSP    | Logic       | Registers |
|------------------------|-------|--------------|---------------|--------|------------------|------|------|------|--------|-------------|-----------|
| Family                 | Width | Fractio<br>n | Precisi<br>on | у      | f <sub>MAX</sub> | ALMs | M10K | M20K | Blocks | Primar<br>y | Secondary |
|                        | 32    | 0            | Single        | 3      | 579.71           | 148  |      | 0    | 0      | 97          | 1         |
|                        | 32    | 0            | Doubl<br>e    | 2      | 547.95           | 161  |      | 0    | 0      | 72          | 1         |
|                        | 32    | 16           | Single        | 3      | 550.66           | 148  |      | 0    | 0      | 97          | 1         |
|                        | 32    | 16           | Doubl<br>e    | 2      | 536.19           | 160  |      | 0    | 0      | 72          | 0         |
|                        | 32    | 32           | Single        | 3      | 558.66           | 145  |      | 0    | 0      | 96          | 1         |
| Stratix<br>V<br>(5SGXE | 32    | 32           | Doubl<br>e    | 2      | 496.28           | 154  |      | 0    | 0      | 72          | 1         |
| A7K2F4                 | 64    | 0            | Single        | 3      | 454.55           | 194  |      | 0    | 0      | 125         | 0         |
| 0C2)                   | 64    | 0            | Doubl<br>e    | 3      | 434.22           | 304  |      | 0    | 0      | 194         | 3         |
|                        | 64    | 16           | Single        | 3      | 454.55           | 194  |      | 0    | 0      | 125         | 0         |
|                        | 64    | 16           | Doubl<br>e    | 3      | 434.22           | 304  |      | 0    | 0      | 194         | 3         |
|                        | 64    | 32           | Single        | 3      | 454.55           | 194  |      | 0    | 0      | 125         | 0         |
|                        | 64    | 32           | Doubl<br>e    | 3      | 434.22           | 304  |      | 0    | 0      | 194         | 3         |



|                    | Input | Input        | Output        | Latenc |                  |      |      |      | DSP    | Logic       | Registers |
|--------------------|-------|--------------|---------------|--------|------------------|------|------|------|--------|-------------|-----------|
| Family             | Width | Fractio<br>n | Precisi<br>on | y      | f <sub>MAX</sub> | ALMs | M10K | M20K | Blocks | Primar<br>y | Secondary |
|                    | 32    | 0            | Single        | 3      | 464.9            | 147  |      | 0    | 0      | 97          | 0         |
|                    | 32    | 0            | Doubl<br>e    | 2      | 458.93           | 161  |      | 0    | 0      | 72          | 0         |
|                    | 32    | 16           | Single        | 3      | 464.9            | 147  |      | 0    | 0      | 97          | 0         |
|                    | 32    | 16           | Doubl<br>e    | 2      | 432.15           | 160  |      | 0    | 0      | 72          | 0         |
|                    | 32    | 32           | Single        | 3      | 451.67           | 145  |      | 0    | 0      | 96          | 0         |
| Arria 10<br>(10AX1 | 32    | 32           | Doubl<br>e    | 2      | 419.99           | 154  |      | 0    | 0      | 72          | 0         |
| 15H4F3<br>4I3SP)   | 64    | 0            | Single        | 3      | 417.54           | 193  |      | 0    | 0      | 124         | 3         |
| 41331 )            | 64    | 0            | Doubl<br>e    | 3      | 407.33           | 305  |      | 0    | 0      | 193         | 3         |
|                    | 64    | 16           | Single        | 3      | 417.54           | 193  |      | 0    | 0      | 124         | 3         |
|                    | 64    | 16           | Doubl<br>e    | 3      | 407.33           | 305  |      | 0    | 0      | 193         | 3         |
|                    | 64    | 32           | Single        | 3      | 417.54           | 193  |      | 0    | 0      | 124         | 3         |
|                    | 64    | 32           | Doubl<br>e    | 3      | 407.33           | 305  |      | 0    | 0      | 193         | 3         |

|                                    | Input         | Output        |         |                  |      |      |      | DSP    | Logic   | Registers |
|------------------------------------|---------------|---------------|---------|------------------|------|------|------|--------|---------|-----------|
| Family                             | Precisio<br>n | Precisio<br>n | Latency | f <sub>MAX</sub> | ALMs | M10K | M20K | Blocks | Primary | Secondary |
| Arria V<br>(5AGXFB3H<br>4F40C5)    | Single        | Double        | 2       | 371.61           | 93   | 0    | _    | 0      | 71      | 0         |
|                                    | Double        | Single        | 2       | 370.64           | 127  | 0    | _    | 0      | 74      | 1         |
| Cyclone V                          | Single        | Double        | 2       | 346.14           | 93   | 0    | _    | 0      | 72      | 1         |
| (5CGXFC7D<br>6F31C7)               | Double        | Single        | 3       | 349.9            | 126  | 0    | _    | 0      | 111     | 2         |
| Stratix V                          | Single        | Double        | 0       | _                | 76   | _    | 0    | 0      | 0       | 0         |
| (5SGXEA7K<br>2F40C2)               | Double        | Single        | 0       | 717.36           | 126  | _    | 0    | 0      | 34      | 0         |
| Arria 10<br>(10AX115H4<br>F34I3SP) | Single        | Double        | 0       | _                | 75   | _    | 0    | 0      | 0       | 0         |
|                                    | Double        | Single        | 0       | _                | 126  | _    | 0    | 0      | 34      | 0         |

ALTERA\_FP\_FUNCTIONS IP Core

**Altera Corporation** 



## **ALTERA\_FP\_FUNCTIONS Signals**

Figure 18-1: ALTERA\_FP\_FUNCTIONS Signals



- 1) The floating point and fixed point data widths determine the port width of this port.
- 2) This port is not relevant for convert and square root functions.

Table 18-6: ALTERA\_FP\_FUNCTIONS Input Signals

| Port Name | Required | Description                                                                                                          |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------|
| clk       | Yes      | All input signals must be synchronous to this clock.                                                                 |
| areset    | Yes      | Asynchronous active-high reset. Deassert this signal synchronously to the input clock to avoid metastability issues. |
| en        | No       | Global enable signal. This signal is optional.                                                                       |
| a         | Yes      | Data input signal.                                                                                                   |
| b         | Yes      | Data input signal (where applicable).                                                                                |
| s         | Yes      | Select port for Add/Sub function.                                                                                    |
| С         | Yes      | Data port for integer exponent port for LDExp function.                                                              |

Table 18-7: ALTERA\_FP\_FUNCTIONS Output Signals

| Port Name | Required | Description         |
|-----------|----------|---------------------|
| đ         | Yes      | Data output signal. |



# **ALTERA\_FP\_FUNCTIONS Parameters**

These tables list the ALTERA\_FP\_FUNCTIONS parameters.

Table 18-8: ALTERA\_FP\_FUNCTIONS Parameters: Functionality Tab

| Category | Parameter | Values                                                                                                                                                                                                                                                                                       | Descriptions                                                                                                                             |
|----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Function | Family    | All, Arithmetic,<br>Comparisons,<br>Conversions, Exp/<br>Log/Pow, Roots,<br>Trigonometry                                                                                                                                                                                                     | Allows you to chose which functions will be displayed in the Function Name Parameter list                                                |
| Function | Name      | <ul> <li>Add</li> <li>Sub</li> <li>Add/Sub</li> <li>Multiply</li> <li>Divide</li> <li>Reciprocal</li> <li>Absolute</li> <li>Scalar Product</li> <li>Square Root</li> <li>Cube Root</li> <li>Inverse Square Root</li> <li>Fixed to Floating Point</li> <li>Floating Point to Fixed</li> </ul> | Allows you to choose your desired function. NB, this parameter will only display the options you have selected from the Family Parameter |



| Category            | Parameter      | Values                                                                                                                                                                                                                                                                                                                                                        | Descriptions                                                                                                                                           |
|---------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Function            | Name           | <ul> <li>Width Conversions</li> <li>Min</li> <li>Max</li> <li>Less than (or equal)</li> <li>Greater than (or equal)</li> <li>(Not) Equal</li> <li>Power</li> <li>Exponential (Base 2, 10, e)</li> <li>Log (Base 2, 10, e)</li> <li>Log (1+x)</li> <li>LDExp</li> <li>Sin</li> <li>Cos</li> <li>Tan</li> <li>Arcsin</li> <li>Arccos</li> <li>Arctan</li> </ul> | Allows you to choose your desired function. NB, this parameter will only display the options you have selected from the Family Parameter               |
|                     | Format         | Single, Double,<br>Custom                                                                                                                                                                                                                                                                                                                                     | Allows you to choose the floating point format of the data values. The default value is single.                                                        |
| Electing Daint Date | Exponent       | 5 to 8                                                                                                                                                                                                                                                                                                                                                        | Allows you to specify the width of the exponent. This parameter is only available when the Format parameter is set to custom. The default value is 8.  |
| Floating Point Data | Mantissa       | 10 to 52                                                                                                                                                                                                                                                                                                                                                      | Allows you to specify the width of the mantissa. This parameter is only available when the Format parameter is set to custom. The default value is 23. |
|                     | Exponent Width | 1 to Floating Point<br>Data Exponent<br>Width                                                                                                                                                                                                                                                                                                                 | Allows you to specify the width of the separate Exponent port for the LDExp function                                                                   |



| Category         | Parameter                                                            | Values                                                                                                                       | Descriptions                                                                                                                                                                              |
|------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fixed Point Data | Width                                                                | 16 to 128                                                                                                                    | The bit width of the fixed point data port. This parameter is only available when the Name parameter is set to Convert.                                                                   |
|                  | Fraction                                                             | 0 to Fixed Point Data<br>Width                                                                                               | The bit width of the fraction. This parameter is only available when the Name parameter is set to Convert.                                                                                |
|                  | Sign                                                                 | Signed, Unsigned                                                                                                             | Chose if the fixed point data is signed or unsigned. This parameter is only available when the Name parameter is set to Convert. The default value is signed.                             |
| Rounding         | Mode                                                                 | <ul> <li>nearest with tie breaking to even</li> <li>toward zero</li> <li>nearest with tie breaking away from zero</li> </ul> | The rounding mode. The nearest with tie breaking away from zero and toward zero values are only available when you use arithmetic functions                                               |
|                  | Relax rounding to<br>round up or down to<br>reduce resource<br>usage | Turn on, Turn Off                                                                                                            | Choose if the nearest rounding mode should be relaxed to faithful rounding, where the result may be rounded up or down, to reduce resource usage. Only available for arithmetic functions |
| Ports            | Generate Enable<br>Port                                              | Turn on, Turn Off                                                                                                            | Choose if the ALTERA_FP_<br>FUNCTION IP core should<br>have an enable signal.                                                                                                             |



#### Table 18-9: ALTERA\_FP\_FUNCTIONS Parameters: Performance Tab

| Category | Parameter                     | Values                                                       | Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target   | Goal                          | <ul><li>Frequency</li><li>Latency</li><li>Combined</li></ul> | If the Goal is the frequency, then the Target is the desired frequency in MHz. This, together with the target device family, will determine the amount of pipelining. If the Goal is latency, then the Target is the desired latency. If the Goal is Combined then two Targets are displayed, one is the desired frequency in MHz, one is the target latency in cycles. When you set the Goal parameter to frequency, the default value is 200 MHz When you set the Goal parameter to latency, the default value is 2. |
|          | Target                        | Any Positive<br>Integer                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | Enable Hard<br>Floating Point | Turn on, Turn Off                                            | Allows you to chose whether Hard Floating Point DSP Blocks will be used to implement the function on devices with those features                                                                                                                                                                                                                                                                                                                                                                                       |



## **Document Revision History**



2014.12.19







## **Document Revision History**

This table lists the document revision history for the Floating-Point IP Cores user guide.

| Date          | Document<br>Version | Changes Made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| July 2015     | 2015.07.30          | <ul> <li>Updated link to Floating-Point IP Cores Design Examples.</li> <li>Updated Memory Blocks numbers in ALTERA_FP_ MATRIX_MULT Resource Utilization and Performance for the Arria 10 and Stratix V Devices table.</li> <li>Added notes on default settings for WIDTH_INT and WIDTH_DATA.</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
| December 2014 | 2014.12.19          | <ul> <li>Remove all references to the complex mode in ALTFP_MATRIX_MULTIPLY.</li> <li>Updated ALTERA_FP_MATRIX_MULT and ALTERA_FP_FUNCTIONS sections.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| November 2013 | 7.0                 | <ul> <li>Added "ALTERA_FP_FUNCTIONS" on page 3-1.</li> <li>Added "ALTERA_FP_ACC_CUSTOM" on page 2-1.</li> <li>Updated Table 1-1 on page 1-1 to list ALTERA_FP_FUNCTIONS and ALTERA_FP_ACC_CUSTOM.</li> <li>Updated the "ALTFP_MATRIX_INV" on page 17-1 section to include 4 x 4 and 6 x 6 dimensions.</li> <li>Updated "Rounding" on page 1-4 to clarify that the code for round-to-nearest-even mode is TO_NEAREST.</li> <li>Removed Design Example section for "ALTFP_MATRIX_MULT" on page 18-1.</li> <li>Removed device family support for HardCopy III, HardCopy IV, Stratix II, and Stratix II GX devices from "Device Family Support" on page 1-2.</li> </ul> |
| November 2011 | 6.0                 | Updated "General Features" on page 1-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| May 2011      | 5.0                 | Added "ALTFP_ATAN" on page 12–1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at <a href="https://www.altera.com/common/legal.html">www.altera.com/common/legal.html</a>. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



| Date          | Document<br>Version | Changes Made                                                                                                                                                                                                                                                                                                                                  |
|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| January 2011  | 4.0                 | Added "ALTFP_SINCOS" on page 13-1.                                                                                                                                                                                                                                                                                                            |
| July 2010     | 3.0                 | <ul> <li>Updated architecture information for the following sections:         ALTFP_MATRIX_MULT         ALTFP_MATRIX_INV.     </li> <li>Added specification information in all sections.</li> </ul>                                                                                                                                           |
| November 2009 | 2.0                 | Updated resource utilization information for the following sections:  ALTFP_ADD_SUB  ALTFP_DIV  ALTFP_MULT  ALTFP_SQRT  ALTFP_EXP  ALTFP_INV  ALTFP_INV_SQRT  ALTFP_LOG  ALTFP_COMPARE  ALTFP_CONVERT  ALTFP_MATRIX_MULT  Added the ALTFP_MATRIX_INV section.  Updated the Ports and Parameters section for all floating-point megafunctions. |
| March 2009    | 1.0                 | Initial release.                                                                                                                                                                                                                                                                                                                              |

Altera Corporation Document Revision History

