Assignment 1 Analog Electronics (EC-261)

Max. Marks: 10

Note: All questions are compulsory.

- 1. An input voltage of 2V rms (measured from base to ground) is applied to the circuit of Fig.
- 1. Assuming that the emitter voltage follows the base voltage exactly and that V_{be} (rms) = 0.1 V, calculate the circuit voltage amplification ($A_v = Vo/V_i$) and emitter current for $R_E = 1$ k.

Fig. 1

- 2. For the pn junction for which N_A =10¹⁸/cm³, N_D =10¹⁶/cm³, A=10⁻⁴cm², and n_i = 1.5 × 10¹⁰/cm³, let L_p = 5 µm, L_n = 10 µm, D_p (in the n region) = 10 cm²/V·s, and D_n (in the p region) = 18 cm²/V·s. The pn junction is forward biased and conducting a current I = 0.1 mA. Calculate: (a) I_S ; (b) the forward-bias voltage V; and (c) the component of the current I due to hole injection and that due to electron injection across the junction.
- 3. For the common-emitter amplifier shown in Fig. 2, let $V_{CC} = 15$ V, $R_1 = 27$ k Ω , $R_2 = 15$ k Ω , $R_E = 2.4$ k Ω , and $R_C = 3.9$ k Ω . The transistor has $\beta = 100$. Calculate the dc bias current I_C . If the amplifier operates between a source for which $R_{sig} = 2$ k Ω and a load of 2 k Ω , replace the transistor with its hybrid- π model, and find the values of R_{in} , and the overall voltage gain v_0/v_{sig} .

Fig. 2

4. Design the emitter follower (common collector amplifier) of Fig. 3 to operate at a dc emitter current $I_E=1$ mA. Allow a dc voltage drop across R_B of 1 V. The available power supplies are ± 5 V, $\beta=100$, $V_{BE}=0.7$ V, and $V_A=100$ V. Specify the values required for R_B and R_E . Now if $R_{sig}=50$ k Ω and $R_L=1$ k Ω , find R_{in} , v_i/v_{sig} , v_o/v_i , G_v , and R_{out} . (Note: In performing the bias design, neglect the Early effect.)

Fig. 3