

FCC PART 15C TEST REPORT No. I17Z60075-SRD16

for

HMD Global Oy

Smart Phone

TA-1025

with

FCC ID: 2AJOTTA-1025

Hardware Version: 3

Software Version: 000C 3 110

Issued Date: 2017-04-21

Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

Test Laboratory:

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No.52, HuayuanNorth Road, Haidian District, Beijing, P. R. China 100191.

Tel: +86(0)10-62304633-2512, Fax: +86(0)10-62304633-2504 Email: cttl terminals@catr.cn. www.chinattl.com

REPORT HISTORY

Report Number	Revision	Description	Issue Date	
I17Z60075-SRD16	Rev.0	1st edition	2017-04-15	
I17Z60075-SRD16	Rev.1	Update section A.5.1	2017-04-21	

CONTENTS

CONTE	ENTS	3
1.	TEST LATORATORY	7
1.1.	TESTING LOCATION	7
1.2.	TESTING ENVIRONMENT	7
1.3.	PROJECT DATA	7
1.4.	SIGNATURE	7
2.	CLIENT INFORMATION	8
2.1. 2.2.	APPLICANT INFORMATION	
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT(AE)	9
3.1. 3.2. 3.3. 3.4.	ABOUT EUT INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST INTERNAL IDENTIFICATION OF AE USED DURING THE TEST GENERAL DESCRIPTION	9 9
4.	REFERENCE DOCUMENTS	10
4.1. 4.2.	DOCUMENTS SUPPLIED BY APPLICANT REFERENCE DOCUMENTS FOR TESTING	
5.	LABORATORY ENVIRONMENT	10
6.	SUMMARY OF TEST RESULTS	11
6.1.6.2.6.3.	SUMMARY OF TEST RESULTS STATEMENTS TEST CONDITIONS	11 11
7.	TEST EQUIPMENTS UTILIZED	
8.	MEASUREMENT UNCERTAINTY	
8.1.	TRANSMITTER OUTPUT POWER	
8.2.	PEAK POWER SPECTRAL DENSITY	
8.3.	OCCUPIED 6DB BANDWIDTH	13
8.4.	BAND EDGES COMPLIANCE	13
8.5.	SPURIOUS EMISSIONS	13
8.6.	AC POWER-LINE CONDUCTED EMISSION	13
ANNEX	X A: MEASUREMENT RESULTS	14
	MEASUREMENT METHOD	

A.2.1 ANTE	nna Gain	15
A.2.2. MAX	IMUM PEAK OUTPUT POWER-CONDUCTED	15
A.2.3. MAX	IMUM AVERAGE OUTPUT POWER-CONDUCTED	17
A.3. PEAK F	POWER SPECTRAL DENSITY	18
A.4. OCCUP	PIED 6DB BANDWIDTH	18
Fig. 1	OCCUPIED 6DB BANDWIDTH (802.11A, CH 149)	19
Fig. 2	OCCUPIED 6DB BANDWIDTH (802.11A, CH 157)	19
FIG. 3	OCCUPIED 6DB BANDWIDTH (802.11A, CH 165)	20
FIG. 4	OCCUPIED 6DB BANDWIDTH (802.11N-HT20, CH 149)	20
FIG. 5	OCCUPIED 6DB BANDWIDTH (802.11N-HT20, CH 157)	21
FIG. 6	OCCUPIED 6DB BANDWIDTH (802.11N-HT20, CH 165)	21
Fig. 7	OCCUPIED 6DB BANDWIDTH (802.11N-HT40, CH 151)	22
FIG. 8	OCCUPIED 6DB BANDWIDTH (802.11N-HT40, CH 159)	22
A.5. TRANS	MITTER SPURIOUS EMISSION	23
A.5.1 Tran	SMITTER SPURIOUS EMISSION - CONDUCTED.	23
FIG. 9	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 30 MHz-1 GHz)	25
FIG. 10	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 1 GHz -12 GHz)	25
FIG. 11	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 12 GHz-25 GHz)	26
FIG. 12	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 25 GHz-40 GHz)	26
FIG. 13	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 30 MHz-1 GHz)	27
Fig. 14	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 1 GHz -12 GHz)	27
FIG. 15	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 12 GHz-25 GHz)	28
FIG. 16	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 25 GHz-40 GHz)	28
Fig. 17	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 30 MHz-1 GHz)	29
FIG. 18	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 1 GHz -12 GHz)	29
FIG. 19	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 12 GHz-25 GHz)	30
FIG. 20	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 25 GHz-40 GHz)	30
FIG. 21	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH149, 30 MHz-1 GHz)	31
FIG. 22	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH149, 1 GHz -12 GHz)	31
FIG. 23	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH149, 12 GHz-25 GHz)	32
FIG. 24	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH149, 25 GHz-40 GHz)	32
FIG. 25	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH157, 30 MHz-1 GHz)	33
FIG. 26	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH157, 1 GHz -12 GHz)	33
Fig. 27	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH157, 12 GHz-25 GHz)	34
FIG. 28	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH157, 25 GHz-40 GHz)	34
Fig. 29	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH165, 30 MHz-1 GHz)	35
FIG. 30	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH165, 1 GHz -12 GHz)	35
FIG. 31	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH165, 12 GHz-25 GHz)	36
FIG. 32	CONDUCTED SPURIOUS EMISSION (802.11N-HT20, CH165, 25 GHz-40 GHz)	36
FIG. 33	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH151, 30 MHz-1 GHz)	37
FIG. 34	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH151, 1 GHz -12 GHz)	37
FIG. 35	CONDUCTED SPURIOUS EMISSION (802.11N-HT40, CH151, 12 GHz-25 GHz)	38
FIG. 36	CONDUCTED SPURIOUS EMISSION (802.11N-HT40, CH151, 25 GHz-40 GHz)	39
Fig. 37	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH159, 30 MHz-1 GHz)	39

Fig. 38	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH159, 1 GHz -12 GHz)	39
FIG. 39	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH159, 12 GHz-25 GHz)	40
FIG. 40	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH159, 25 GHz-40 GHz)	40
A.5.2 TR	ANSMITTER SPURIOUS EMISSION - RADIATED	41
FIG. 41	RADIATED SPURIOUS EMISSION (802.11A, CH149, 1 GHz-3 GHz)	47
FIG. 42	RADIATED SPURIOUS EMISSION (802.11A, CH149, 3 GHz-6 GHz)	48
FIG. 43	RADIATED SPURIOUS EMISSION (802.11A, CH149, 6 GHz-18 GHz)	48
FIG. 44	RADIATED SPURIOUS EMISSION (802.11A, CH157, 30 MHz-1 GHz)	48
FIG. 45	RADIATED SPURIOUS EMISSION (802.11A, CH157, 1 GHz-3 GHz)	49
FIG. 46	RADIATED SPURIOUS EMISSION (802.11A, CH157, 3 GHz-6 GHz)	50
FIG. 47	RADIATED SPURIOUS EMISSION (802.11A, CH157, 6 GHz-18 GHz)	50
FIG. 48	RADIATED SPURIOUS EMISSION (802.11A, CH157, 18 GHz-26.5 GHz)	50
FIG. 49	Radiated emission: 802.11n, (802.11a, Ch157, 26.5 GHz - 40 GHz)	51
FIG. 50	RADIATED SPURIOUS EMISSION (802.11A, CH165, 1 GHz-3 GHz)	52
FIG. 51	RADIATED SPURIOUS EMISSION (802.11A, CH165, 3 GHz-6 GHz)	52
FIG. 52	RADIATED SPURIOUS EMISSION (802.11A, CH165, 6 GHz-18 GHz)	52
FIG. 53	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH149, 1 GHz-3 GHz)	53
FIG. 54	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH149, 3 GHz-6 GHz)	54
FIG. 55	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH149, 6 GHz-18 GHz)	54
FIG. 56	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH157, 30 MHz-1 GHz)	54
FIG. 57	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH157, 1 GHz-3 GHz)	55
FIG. 58	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH157, 3 GHz-6 GHz)	56
FIG. 59	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH157, 6 GHz-18 GHz)	56
FIG. 60	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH157, 18 GHz-26.5 GHz)	56
FIG. 61	Radiated emission: 802.11n, (802.11n-HT20, CH157, 26.5 GHz - 40 GHz)	57
FIG. 62	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH165, 1 GHz-3 GHz)	58
FIG. 63	RADIATED SPURIOUS EMISSION (802.11N-HT20, CH165, 3 GHz-6 GHz)	58
FIG. 64	RADIATED SPURIOUS EMISSION (802.11n-HT20, CH165, 6 GHz-18 GHz)	58
FIG. 65	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH151, 30 MHz-1 GHz)	59
FIG. 66	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH151, 1 GHz-3 GHz)	60
FIG. 67	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH151, 3 GHz-6 GHz)	60
FIG. 68	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH151, 6 GHz-18 GHz)	60
FIG. 69	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH151, 18 GHz-26.5 GHz)	61
FIG. 70	RADIATED EMISSION: 802.11N, (802.11N-HT40, CH151, 26.5 GHz - 40 GHz)	61
FIG. 71	RADIATED SPURIOUS EMISSION (802.11N-HT40, CH159 1 GHz-3 GHz)	62
FIG. 72	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH159 3 GHz-6 GHz)	63
FIG. 73	RADIATED SPURIOUS EMISSION (802.11n-HT40, CH159, 6 GHz-18 GHz)	63
A.6. BAN	D EDGES COMPLIANCE	64
A6.1 BAN	ND EDGES - CONDUCTED	64
Fig. 74	BAND EDGES (802.11A, 5745MHz)	64
Fig. 75	BAND EDGES (802.11A, 5825MHz)	65
Fig. 76	BAND EDGES (802.11N-HT20, 5745MHz)	65
FIG. 77	BAND EDGES (802.11n-HT20, 5825MHz)	66
Fig. 78	BAND EDGES (802.11n-HT40, 5755MHz)	66

No. I17Z60075-SRD16 Page6 of 73

Fig. 79	BAND EDGES (802.11n-HT40, 5795MHz)	67
A6.2 BAN	ND EDGES - RADIATED	67
FIG. 80	BAND EDGES (802.11A, 5745MHz)	68
Fig. 81	BAND EDGES (802.11A, 5825MHz)	68
Fig. 82	BAND EDGES (802.11n-HT20, 5745MHz)	69
FIG. 83	BAND EDGES (802.11n-HT20, 5825MHz)	69
Fig. 84	BAND EDGES (802.11n-HT40, 5755MHz)	70
Fig. 85	BAND EDGES (802.11n-HT40, 5795MHz)	70
A.7. AC I	POWERLINE CONDUCTED EMISSION	71
Fig. 86	AC POWERLINE CONDUCTED EMISSION-802.11A	72
Fig. 87	AC POWERLINE CONDUCTED EMISSION-IDLE	73

1. TEST LATORATORY

1.1. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(BDA)

Address: No. 18 Jia Kangding Street, BDA District, Beijing, P. R.

China 100191

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-10/+55^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Testing Start Date: 2017-02-20
Testing End Date: 2017-04-14

1.4. Signature

Jiang Xue

(Prepared this test report)

Zheng Wei

(Reviewed this test report)

Lv Songdong

(Approved this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name: HMD Global Oy

Address: Karaportti 2, 02610 Espoo, Finland

City: Espoo
Postal Code: 201203
Country: Finland

Contact Mikko Kahlos
Telephone: +358-408036126

Fax:

2.2. Manufacturer Information

Company Name: HMD Global Oy

Address: Karaportti 2, 02610 Espoo, Finland

City: Espoo Postal Code: 201203 Country: Finland

Contact Mikko Kahlos
Telephone: +358-408036126

Fax:

3. <u>EQUIPMENT UNDER TEST (EUT) AND ANCILLARY</u> EQUIPMENT(AE)

3.1. About EUT

Description Smart Phone Model name TA-1025

FCC ID 2AJOTTA-1025

WLAN Frequency Range ISM Band: 5725MHz~5850MHz

Type of modulation OFDM

Voltage 3.84V DC by Battery

Note: Photographs of EUT are shown in ANNEX C of this test report. Components list, please refer to documents of the manufacturer; it is also included in the original test record of Telecommunication Metrology Center of MIIT of People's Republic of China.

3.2. Internal Identification of EUT used during the test

EUT	IMEI	HW Version	SW Version
ID*			
EUT1	356020080007659/356020080007667	3	000C_3_110
EUT2	356021080001726	3	000C_3_050

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN
AE1	Battery	INBUILT
AE2	Battery	INBUILT
AE3	Travel charger	/
AE4	Travel charger	/
AE5	USB cable	/
AE6	Headset	/

AE1

Model HE316

Manufacturer SCUD(FUJIAN) ELECTRONICS CO LTD

Capacitance 3000mAh Nominal voltage 3.82V

AE2

Model HE317

Manufacturer SCUD(FUJIAN) ELECTRONICS CO LTD

Capacitance 3000mAh Nominal voltage 3.84V

AE3/AE4

Model FC0102 Manufacturer Salcomp

Length of cable /

AE5

Model CUBB01M-FA010-DH

Manufacturer FOXCONN

Length of cable 99cm

AE6

Model 5CAB5422B-N01-DG

Manufacturer FOXCONN

Length of cable /

3.4. General Description

Equipment Under Test (EUT) is a Smart Phone with integrated antenna. It consists of normal options: Battery and Charger.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the Client.

4. REFERENCE DOCUMENTS

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

FCC CFR 47, Part 15, Subpart C:

15.205 Restricted bands of operation;

FCC Part15 15.209 Radiated emission limits, general requirements; 2015

Subpart E—Unlicensed National Information Infrastructure

Devices

Methods of Measurement of Radio-Noise Emissions from

ANSI C63.10 Low-Voltage Electrical and Electronic Equipment in the 2013

Range of 9 kHz to 40 GHz

5. LABORATORY ENVIRONMENT

Conducted RF performance testing is performed in shielding room.

EMC performance testing is performed in Semi-anechoic chamber.

^{*}AE ID: is used to identify the test sample in the lab internally.

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.407 (a)	1	Р
Peak Power Spectral Density	15.407 (a)	1	Р
Occupied 6dB Bandwidth	15.407(e)	1	Р
Band Edges Compliance	15.407 (b)	1	Р
Transmitter Spurious Emission - Conducted	15.407,15.205	1	Р
Transmitter Spurious Emission - Radiated	15.407, 15.205, 15.209	/	Р
AC Powerline Conducted Emission	15.107, 15.207	1	Р
99% Occupied Bandwidth	/	/	Р
Transmitter Spurious Emission - Radiated < 30MHz	15.407, 15.209	/	Р

Please refer to **ANNEX A** for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.		
NM	Not measured, The test was not measured by CTTL		
NA	Not Applicable, The test was not applicable		
F	Fail, The EUT does not comply with the essential requirements in the		
	standard		

6.2. Statements

CTTL has evaluated the test cases requested by the client/manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.1.

This report only deals with the WLAN function among the features described in section 3.

6.3. Test Conditions

For this report, all the test cases are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature 26° C Voltage 3.84V Humidity 44%

7. TEST EQUIPMENTS UTILIZED

Conducted test system

No.	Equipm	nent	Model	Serial Number	Manufacturer	Calibration date	Calibration Due date
1	Vector	Signal	FSQ40	200089	Rohde &	2016-06-07	2017-06-06
'	Analyzer		1 3040	200089	Schwarz	2010-00-07	2017-00-00
2	Shielding F	Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

Itau	Radiated emission test system					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibratio n Due date
1	Test Receiver	ESU26	100376	Rohde & Schwarz	1 year	2017-11-30
2	BiLog Antenna	VULB9163	514	Schwarzbeck	3 years	2017-11-24
3	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	3 years	2017-06-17
4	Dual-Ridge Waveguide Horn Antenna	3115	6914	ETS-Lindgren	3 years	2017-09-21
5	Vector Signal Analyzer	FSV	101047	Rohde & Schwarz	1 year	2017-06-28
6	Test Receiver	ESCI7	100948	Rohde & Schwarz	1 year	2017-07-05
7	AMN	ESH3-Z5	825562/028	Rohde & Schwarz	1 year	2017-07-06

8. Measurement Uncertainty

8.1. Transmitter Output Power

Measurement Uncertainty: 0.339dB,k=1.96

8.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dBm/MHz,k=1.96

8.3. Occupied 6dB Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

8.4. Band Edges Compliance

Measurement Uncertainty: 0.62dBm,k=1.96

8.5. Spurious Emissions

Conducted (k=1.96)

Frequency Range	Uncertainty(dBm)				
30MHz ≤ f ≤ 2GHz	1.22				
2GHz ≤ f ≤3.6GHz	1.22				
3.6GHz ≤ f ≤8GHz	1.22				
8GHz ≤ f ≤12.75GHz	1.51				
12.75GHz ≤ f ≤26GHz	1.51				
26GHz ≤ f ≤40GHz	1.59				

Radiated (k=2)

Frequency Range	Uncertainty(dBm)	
9kHz-30MHz		
30MHz ≤ f ≤ 1GHz	4.86	
1GHz ≤ f ≤18GHz	5.26	
18GHz ≤ f ≤40GHz	5.28	

8.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.38dBm,k=2

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the spectrum analyzer to start measurement.
- 5). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

The measurement is made according to ANSI C63.10.

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

A.2. Maximum Peak Output Power

Measurement Limit and Method:

Standard	Limit (dBm)
FCC CRF Part 15.407(a)	< 30

A.2.1 Antenna Gain

Antenna gain is -3.6 dBi and the value is supplied by the applicant or manufacturer.

A.2.2. Maximum Peak Output Power-conducted

Measurement Results:

802.11a mode

	Data Bata			
Mode	Data Rate	5745MHz	5785MHz	5825MHz
	(Mbps)	(Ch149)	(Ch157)	(Ch165)
	6	20.23	/	/
	9	20.02	/	/
12	20.03	/	/	
	18	20.06	/	/
802.11a	24	20.46	/	/
36 48	36	20.47	/	/
	48	20.55	20.06	19.29
	54	20.40	/	/

The data rate 48 Mbps is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate	Test Result (dBm)		
Mode	Mode (Index)	5745MHz	5785MHz	5825MHz
	(IIIGEX)	(Ch149)	(Ch157)	(Ch165)
	MCS0	19.06	/	/
	MCS1	18.89	/	/
	MCS2	18.88	/	/
802.11n	MCS3	19.36	19.07	18.25
(20MHz)	MCS4	19.23	/	/
	MCS5	19.26	/	/
	MCS6	19.30	/	/
	MCS7	19.25	1	/

The data rate MCS3 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

	Mode Data Rate	Test Resu	It (dBm)
Mode		5755MHz	5795MHz
	(Index)	(Ch151)	(Ch159)
	MCS0	19.27	/
	MCS1	19.16	/
	MCS2	18.97	/
802.11n	MCS3	19.55	19.08
(40MHz)	MCS4	19.34	/
	MCS5	19.24	/
	MCS6	19.25	/
	MCS7	19.17	/

The data rate MCS3 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: PASS

A.2.3. Maximum Average Output Power-Conducted

Method of Measurement: See ANSI C63.10-clause 12.3.2.2 Method SA-1

802.11a mode

Mode	Test Result (dBm)		
wiode	5745MHz (Ch149) 5785MHz (Ch157) 5825MHz (Ch165)		
802.11a	11.48	11.25	10.45

802.11n-HT20 mode

Mada	Test Result (dBm)		
Mode	5745MHz (Ch149) 5785MHz (Ch157) 5825MHz(Ch165)		
802.11n(20MHz)	10.39	9.93	9.33

802.11n-HT40 mode

Mode	Test Result (dBm)	
IVIOGE	5755MHz (Ch151) 5795MHz(Ch159)	
802.11n(40MHz)	10.11	9.73

Conclusion: PASS

A.3. Peak Power Spectral Density

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.407(a)	< 30 dBm/500 kHz

The measurement is made according to ANSI C63.10 and KDB789033 D02

Measurement Uncertainty:

Measurement Uncertainty	0.75dB
-------------------------	--------

Measurement Results:

Mode	Channel	Power Spectral Density (dBm/500kHz)	Conclusion
	149	6.33	Р
802.11a	157	5.74	Р
	165	5.07	Р
000 11n	149	5.67	Р
802.11n HT20	157	5.04	Р
HIZU	165	5.00	Р
802.11n	151	2.15	Р
HT40	159	2.76	Р

Conclusion: PASS

A.4. Occupied 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.407(e)	≥ 500

The measurement is made according to KDB789033 D02.

Measurement Uncertainty:

Measurement Uncertainty	60.80Hz
-------------------------	---------

Measurement Result:

Mode	Channel	Occupied 6dB Bandwidth (kHz)		conclusion
	149	Fig.1	16.45	Р
802.11a	157	Fig.2	16.50	Р
	165	Fig.3	16.45	Р
902 11n	149	Fig.4	17.70	Р
802.11n HT20	157	Fig.5	17.65	Р
П120	165	Fig.6	17.70	Р
802.11n	151	Fig.7	36.00	Р
HT40	159	Fig.8	35.44	Р

Conclusion: PASS
Test graphs as below:

Fig. 1 Occupied 6dB Bandwidth (802.11a, Ch 149)

Fig. 2 Occupied 6dB Bandwidth (802.11a, Ch 157)

Fig. 3 Occupied 6dB Bandwidth (802.11a, Ch 165)

Fig. 4 Occupied 6dB Bandwidth (802.11n-HT20, Ch 149)

Fig. 5 Occupied 6dB Bandwidth (802.11n-HT20, Ch 157)

Fig. 6 Occupied 6dB Bandwidth (802.11n-HT20, Ch 165)

Fig. 7 Occupied 6dB Bandwidth (802.11n-HT40, Ch 151)

Fig. 8 Occupied 6dB Bandwidth (802.11n-HT40, Ch 159)

A.5. Transmitter Spurious Emission

Measurement Limit:

Standard	Frequency (MHz)	Limit (dBm/MHz)
FCC 47 CFR Part 15.407	5725MHz~5850MHz	< -27

The measurement is made according to ANSI C63.10.

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Measurement Uncertainty:

Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 2GHz	0.63
2GHz ≤ f ≤3.6GHz	0.82
3.6GHz ≤ f ≤8GHz	1.55
8GHz ≤ f ≤20GHz	1.86
20GHz ≤ f ≤22GHz	1.90
22GHz ≤ f ≤26GHz	2.20

A.5.1 Transmitter Spurious Emission - Conducted

Measurement Results:

802.11a mode

MODE	Channel	Frequency Range	Test Results	Conclusion
	149	30 MHz ~ 1 GHz	Fig.9	Р
		1 GHz ~ 12 GHz	Fig.10	Р
	149	12 GHz ~ 25 GHz	Fig.11	Р
		25 GHz ~ 40 GHz	Fig.12	Р
	157	30 MHz ~ 1 GHz	Fig.13	Р
902 115		1 GHz ~ 12 GHz	Fig.14	Р
802.11a _		12 GHz ~ 25 GHz	Fig.15	Р
		25 GHz ~ 40 GHz	Fig.16	Р
	165	30 MHz ~ 1 GHz	Fig.17	Р
		1 GHz ~ 12 GHz	Fig.18	Р
		12 GHz ~ 25 GHz	Fig.19	Р
		25 GHz ~ 40 GHz	Fig.20	Р

802.11n-HT20 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
	149	30 MHz ~ 1 GHz	Fig.21	Р
		1 GHz ~ 12 GHz	Fig.22	Р
		12 GHz ~ 25 GHz	Fig.23	Р
		25 GHz ~ 40 GHz	Fig.24	Р
	157	30 MHz ~ 1 GHz	Fig.25	Р
802.11n		1 GHz ~ 12 GHz	Fig.26	Р
HT20		12 GHz ~ 25 GHz	Fig.27	Р
		25 GHz ~ 40 GHz	Fig.28	Р
	165	30 MHz ~ 1 GHz	Fig.29	Р
		1 GHz ~ 12 GHz	Fig.30	Р
		12 GHz ~ 25 GHz	Fig.31	Р
		25 GHz ~ 40 GHz	Fig.32	Р

802.11n-HT40 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
802.11n	151	30 MHz ~ 1 GHz	Fig.33	Р
		1 GHz ~ 12 GHz	Fig.34	Р
		12 GHz ~ 25 GHz	Fig.35	Р
		25 GHz ~ 40 GHz	Fig.36	Р
HT40		30 MHz ~ 1 GHz	Fig.37	Р
	159	1 GHz ~ 12 GHz	Fig.38	Р
		12 GHz ~ 25 GHz	Fig.39	Р
		25 GHz ~ 40 GHz	Fig.40	Р

Conclusion: PASS
Test graphs as below:

Fig. 9 Conducted Spurious Emission (802.11a, Ch149, 30 MHz-1 GHz)

Fig. 10 Conducted Spurious Emission (802.11a, Ch149, 1 GHz -12 GHz)

Fig. 11 Conducted Spurious Emission (802.11a, Ch149, 12 GHz-25 GHz)

Fig. 12 Conducted Spurious Emission (802.11a, Ch149, 25 GHz-40 GHz)

Fig. 13 Conducted Spurious Emission (802.11a, Ch157, 30 MHz-1 GHz)

Fig. 14 Conducted Spurious Emission (802.11a, Ch157, 1 GHz -12 GHz)

Fig. 15 Conducted Spurious Emission (802.11a, Ch157, 12 GHz-25 GHz)

Fig. 16 Conducted Spurious Emission (802.11a, Ch157, 25 GHz-40 GHz)

Fig. 17 Conducted Spurious Emission (802.11a, Ch165, 30 MHz-1 GHz)

Fig. 18 Conducted Spurious Emission (802.11a, Ch165, 1 GHz -12 GHz)

Fig. 19 Conducted Spurious Emission (802.11a, Ch165, 12 GHz-25 GHz)

Fig. 20 Conducted Spurious Emission (802.11a, Ch165, 25 GHz-40 GHz)

Fig. 21 Conducted Spurious Emission (802.11n-HT20, Ch149, 30 MHz-1 GHz)

Fig. 22 Conducted Spurious Emission (802.11n-HT20, Ch149, 1 GHz -12 GHz)

Fig. 23 Conducted Spurious Emission (802.11n-HT20, Ch149, 12 GHz-25 GHz)

Fig. 24 Conducted Spurious Emission (802.11n-HT20, Ch149, 25 GHz-40 GHz)

Fig. 25 Conducted Spurious Emission (802.11n-HT20, Ch157, 30 MHz-1 GHz)

Fig. 26 Conducted Spurious Emission (802.11n-HT20, Ch157, 1 GHz -12 GHz)

Fig. 27 Conducted Spurious Emission (802.11n-HT20, Ch157, 12 GHz-25 GHz)

Fig. 28 Conducted Spurious Emission (802.11n-HT20, Ch157, 25 GHz-40 GHz)

Fig. 29 Conducted Spurious Emission (802.11n-HT20, Ch165, 30 MHz-1 GHz)

Fig. 30 Conducted Spurious Emission (802.11n-HT20, Ch165, 1 GHz -12 GHz)

Fig. 31 Conducted Spurious Emission (802.11n-HT20, Ch165, 12 GHz-25 GHz)

Fig. 32 Conducted Spurious Emission (802.11n-HT20, Ch165, 25 GHz-40 GHz)

Fig. 33 Conducted Spurious Emission (802.11n-HT40, Ch151, 30 MHz-1 GHz)

Fig. 34 Conducted Spurious Emission (802.11n-HT40, Ch151, 1 GHz -12 GHz)

Fig. 35 Conducted Spurious Emission (802.11n-HT40, Ch151, 12 GHz-25 GHz)

Fig. 37 Conducted Spurious Emission (802.11n-HT40, Ch159, 30 MHz-1 GHz)

Fig. 38 Conducted Spurious Emission (802.11n-HT40, Ch159, 1 GHz -12 GHz)

Fig. 39 Conducted Spurious Emission (802.11n-HT40, Ch159, 12 GHz-25 GHz)

Fig. 40 Conducted Spurious Emission (802.11n-HT40, Ch159, 25 GHz-40 GHz)