

Übung 5 - Numerisches Programmieren

Michael Obersteiner

Technische Universität München

Fakultät für Informatik

Lehrstuhl für Wissenschaftliches Rechnen

BigBlueButton, 9. Dezember 2020

Recap - Interpolation

• Gegeben: Stützpunkte (x_i, y_i) als Samples von f(x)

• Gesucht: f(x)

• Vorgehen: Konstruiere g(x) mit $g(x_i) = f(x_i)$ und idealerweise $g(x) \approx f(x)$

- Imaginäre Zahl: z = x + iy
- Konjugiert Komplexes: $\overline{z} = x iy$
- Betrag: $|z| = \sqrt{x^2 + y^2} = r$
- Eulersche Formel: $e^{i\alpha} = cos(\alpha) + isin(\alpha)$
- Periodizität: $e^{i(\alpha+2\pi\cdot k)}=e^{i\alpha}; k\in\mathbb{Z}$
- Umrechnung in Polarform: $z = |z|e^{iarctan(y/x)}$
- Multiplikation:

$$z_1 \cdot z_2 = r_1 e^{i\alpha_1} \cdot r_2 e^{i\alpha_2} = (r_1 \cdot r_2) e^{i(\alpha_1 + \alpha_2)}$$

a)
$$w^3 = 1$$
 ; $w \in \mathbb{R}$

b)
$$w^3 = 1$$
 ; $w \in \mathbb{C}$

Frequenzanalyse

Signal wird repräsentiert als Summe von Schwingungen unterschiedlicher Frequenzen:

Bei komplexen Zahlen Spiralen da $\,e^{it}=cos(t)+isin(t)\,$

Frequenzanalyse

Signal wird repräsentiert als Summe von Schwingungen unterschiedlicher Frequenzen:

z.B.:
$$s(t) = c_1 sin(f_1 t) + c_2 sin(f_2 t) + ...$$
 Amplitude Frequenz Frequenzspektrum
$$sin(x) + \boxed{0.5} sin(3x)$$

Bei komplexen Zahlen Spiralen da $\,e^{it}=cos(t)+isin(t)\,$

Bearbeitung Aufgabe 2

Zuordnung Graphen zu Frequenzspektrum

- Gegeben: Samples eines Signals $v=(v_0,v_1,...,v_{n-1})^T; s(x_j)=v_j; x_j=2\pi j/n$
- Gesucht: s(x)
- Vorgehen: Rekonstruktion des Signals mittels Schwingungen

$$g(x) = c_0 g_0(x) + c_1 g_1(x) + \dots + c_{n-1} g_{n-1}(x); \quad g_k(x) = e^{ixk}$$

• Lösung (wie bisher): Ac=v $A_{j,k}=g_k(x_j)$ $\omega=e^{i2\pi/n}$

$$\begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{n-1} \end{pmatrix} = v = M \cdot c = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^1 & \omega^2 & \dots & \omega^{(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{pmatrix}$$

• Inverse Matrix bekannt ${\scriptscriptstyle
ightarrow}$ DFT ist Matrixmultiplikation mit Inversen ${\scriptstyle
ightarrow}$ $O(n^2)$

$$\begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{pmatrix} = c = M_{DFT,n} \cdot v = \frac{1}{n} \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \overline{\omega}^1 & \overline{\omega}^2 & \dots & \overline{\omega}^{(n-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \overline{\omega}^{n-1} & \overline{\omega}^{2(n-1)} & \dots & \overline{\omega}^{(n-1)(n-1)} \end{pmatrix} \cdot \begin{pmatrix} v_0 \\ v_1 \\ \vdots \\ v_{n-1} \end{pmatrix}$$

- a) Beispiel mit v = (1, 0, -1)
- b) $w^n = 1$?

c)
$$DFT(v) = \frac{1}{n}\overline{IDFT(\overline{v})}$$
 ?

d)
$$DFT(v+u) = DFT(v) + DFT(u)$$
?

Kombinationsphase O(NlogN)Sortierphase O(NlogN) Z_0 c_0 v_0 **Butterfly Operator** $a_j + \omega^j b_j$ Z_1 v_1 c_1 c_2 z_2 Z_2 z_1 v_2 c_2 c_1 c_3 v_3

Bearbeitung Aufgabe 4

a) IDFT(c)

b) IFFT(c)

