2018/03/27 STA414: Partial Problem Set Solutions. P5, Q4 $L_{x}(\theta) = \log f(x|\theta)$ a) $f(x,z|\theta) = f(x|\theta)f(z|x,\theta)$ => $f(x|\theta) = f(x,z|\theta)/f(z|x,\theta)$ (Buyes') $=) k(\theta) = \log f(x|\theta) = \log f(x_1 z|\theta) - \log f(z|x_1 \theta)$ b) $Q(\theta, \theta^t) = E_{z|x, \theta^t} \left[leg f(x, z|\theta) \right]$ as defined in class. Note: Ot, not o Profe: O, not et $H(\theta, \theta^{\dagger}) = E_{z|x,\theta^{\dagger}} \left(\text{ w log } f(z|x,\theta) \right)$ () i) The M-step maximizes $Q(\theta, \theta^t)$ w.r.t. θ . So $Q(\theta^t, \theta^t) > Q(\theta, \theta^t) \forall \theta$; in Particular, $Q(\theta^{t+1}, \theta^t) > Q(\theta^t, \theta^t)$ ii) $H(\theta^{t}, \theta^{t}) - H(\theta^{t}, \theta^{t})$ = $E_{z|x,\theta^{t}} \left(log f(z|x,\theta^{t}) - log f(z|x,\theta^{t}) \right)$ $= E_{z|x,\theta^{\dagger}} \left[log \frac{f(z|x,\theta^{\dagger\dagger})}{f(z|x,\theta^{\dagger})} \right]$ $\leq \log E_{z|x,\theta^t} \left(\frac{f(z|x,\theta^{t+1})}{f(z|x,\theta^t)} \right)$ $= \log \int \frac{f(z|x,\theta^{t+1})}{f(z|x,\theta^t)} f(z|x,\theta^t) dz$ (Jensen) = log \ f(z|x,0t+1)dz = log(1) = 0

3	P5,Q5.
=	The last back in the last in
3	The notation here is very confusing.
	{Xn}n=1 - SAMPLE. Each Xn is one datapoint
=	
	Xn = (Xn, XnD) Each Xn is composed of D rope -> (possibly dependent) Bernoulli tricals. (INDEPENDENT)
	Apre) (Dosible decentary) Bernoulli
3	ticals (many the)
=	TRUCKS. (INDEPENDENT)
=	- A
	-eg, I flip a coin D times, and get a binary vector.
-	-eg, I flip a coin D times, and get a binary vector. At The ith flip had P(Xni = 1) = Gi
3	The probability of getfing any particular Sequence of results - any particular binary sequence - is it flip is how it flip is
=	sequence of results - any auticular binary
=	sequence - 15 it flip is head it flip is
-9	K fouls.
=	P(Xn M, Mp) = Ti=1 Mi (1-Mi) P(it flip is P(it flip is heads) is tails) data.
	Ebserved parametes P(it flip is P(it flip)
=	data.
=	Now, we have K>1 component distributions, each with their own set of parameters {Kx}_x, with
=	with their own set of ourameters fly it with
3	Mx = (hx1, MxD)
=	Mr. (MK), MKB)
3	
_	Define, for each Xn, Zn = (0,, 1, 0) as the
3	length-K binary (latent) Vector indicating which group
	length-K binary (latent) Vector indicating which group Xn Came from. If P(Xn Came from group K) = The, then
	K Zne
-	$P(Z_{n} T) = \prod_{K=1}^{K} X_{K}$
3	
	ž s

distribution Finally denote the actual density for Xn coming from group K as P(x1/2n). P(x1/kx). So the distribution of Xn conditioned On Zn is P(Xn/Zn) = TIK=1 P(Xn/UK) which just equals P(Xn/Lnx) for the one and only K for which Znx = 1. a) P(Xn/Mt) = APOXAVan = ZP(Xn, Zn) = Duslibh Zn Vectors. $= \sum_{n} P(x_n|z_n)P(z_n)$ = } TK=1P(Xn/UK) X TK=1P)TK = = TK= ptkP(Xn/UK) $= T_{1}P(x_{1}|\mu_{1}) + T_{2}P(x_{1}|\mu_{2}) + \cdots + T_{1}P(x_{1}|\mu_{K})$ $= Z_{1}(1,0,\cdots,0) \quad Z_{2}(0,1,\cdots,0) \quad Z_{2}(0,0,\cdots,1)$ $= Z_{K=1}K_{1}P(x_{1}|\mu_{K}).$ $= Z_{K=1}K_{2}P(x_{1}|\mu_{K}).$ $= Z_{K=1}K_{2}P(x_{1}|\mu_{K}).$ $= Z_{K=1}K_{2}P(x_{1}|\mu_{K}).$ $= Z_{K=1}K_{2}P(x_{1}|\mu_{K}).$ $= Z_{K=1}K_{2}P(x_{1}|\mu_{K}).$ $= Z_{K=1}K_{2}P(x_{1}|\mu_{K}).$ b) P(X) = The P(Xn)

As stated in the problem, the complete date dist" for each
$$x_n$$
 (ie its dist" if we know $2n$) is

$$P(x_n|x_k) = \prod_{k=1}^{\infty} \sum_{k=1}^{\infty} x_n^{k_{ni}} (1-x_n)^{n/2}$$

So $P(x_n|x_k) = P(x_n|x_n)P(x_n)$

$$= \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} (1-x_n)^{n/2} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} (1-x_n)^{n/2} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} (1-x_n)^{n/2} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} (1-x_n)^{n/2} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} \prod_{k=1}^{\infty} (1-x_n)^{n/2} \prod_{k=1}^{\infty} \prod_{k=1$$

Now because complete-data leg-likelihood is linear in Z_{NR} , $Q(\theta, \theta')$ is obtained by plugging in \hat{Z} for Z.

=

63

F

F

e) These are just the weighted MLE's for the Bernoulli dist - you may afternpt the calculus yourselves.

P6Q2

c) Recall that a covariance matrix for a vector-valued =

 $\Sigma_{ij} = Cov(X_i, X_j)$

 $\Sigma_{ii} = Var(X_i)$

Hence Sii is a sample estimate of Var(Xi). The sum of the variances of all the Xi then is

 $\sum_{i=1}^{n} S_{ii} = tr(S)$ (trace)

But it is known for any meetrix A with eigenvalus $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_D$ that

tr(A) = Zde, la.

It is also true that the Variance of the att principal component is Id, the corresponding eigenvalue of S. Putting it all together gives $\sum_{a=1}^{\infty} \lambda_a / tr(s)$

as the prop of total variance explained by the

P7 Q5 a) A saturated model has $\hat{P}_n = 1/2 m t_n$.
For a binomial distribution, the distribution function of this $P(t_n = x) = P_n(1-P_n)$ is Bern(p) So the likelihood for Pis $L(p) = \overline{II_{n=1}} P(t_{n}|P)$ $= \overline{II_{n=1}} P_{n}^{t_{n}} (1-P_{n})^{1-t_{n}}$ and the log-likelihood, l(p) = In=, Alleg P. + (1-tn)log(1-P.) For the saturated model, this gives lsat(P) = Zn=, tn legtn + (1-tn)leg(1-tn)But $tn \in \{0, 1\}$, so the cubove is not defined unless we fedge it and say Olog 0 = 0. In that case, every term in the log - like lihood is0/090 + 1/1091 = 0. b) Just Plug t into the above formula. (see below) c) D = 2(lsay(p) - lmader(p)) $= -2 \operatorname{Imodel}(P)$ $= -2 \operatorname{Enz}(tn \operatorname{log} \hat{P}_n + (1-tn) \operatorname{log}(1-\hat{P}_n)$

d) A/C = -2lmoder (P) + 2d, d= # parameters BIC = - 2 lmoder (p) + dlug N.

Forward Stepwise selection:

- n) Start with the null model, or the smallest model you would be willing to accept.
- - Add each cavailable feature separately into the model, and calculate the AIC/BIC for the resulting (more complex) model

=

=

=

=

=

- Choose the fewfure that yields the largest clerreuse in AIC/BIC, and add it to the model permenently

- repeat.

UNTIL:

- AIC/BIC Stops decreasing OR AIC/BIC " "too med" OR AII of the feetures have been
- added.

Let
$$y = g(x)$$
. Note that $G_{\overline{z}}(y) = P(V_{\overline{z}}(y))$
= $P(g(T_{\overline{z}}) < g(x))$
= $P(T_{\overline{z}}(x))$

although this isn't guite enough to prove the statement; it is suggestive though.

We can unite $F_i(x) - F_o(x) = \int_{-\infty}^{\infty} (f_i(s) - f_o(s)) ds$. Now,

 $G_{1}(x) - G_{0}(x) = \int_{-\infty}^{\infty} (g(s) - g_{0}(s)) ds$

 $= \int_{-\infty}^{g(x)} \left(f_1(g^{-1}(s)) - f_0(g^{-1}(s)) \right) g^{-1}(s) cls.$

= \int_{-\infty} (f_1(u) - f_2(u))du.

 $= F_1(u) - F_0(u)$

 \Rightarrow max $G_1(x) - G_0(x) = Max_u |F_1(u) - F_2(u)|$

so Ks = Ks+.