Some proofs:

- 1. Prove: $f^{-1}[f(A_0)] \supset A_0$ pf: we need to proof if $x \in A_0$, then $x \in f^{-1}[f(A_0)]$ if $x \in A_0$, then by definition of $f(A_0)$, we have $f(x) \in f(A_0)$. And then by definition of $f^{-1}[B_0]$, we get $x \in f^{-1}[f(A_0)]$ after pluging in $f(A_0)$.
- 2. Lemma: let $f: A \to B$. If there exist functions: $g: B \to A$ and $h: B \to A$, s.t g(f(a))=a for all $a \in A$ and f(h(b))=b for every $b \in B$. Then f is bijective, and $g=h=f^{-1}$. pf: injective:

$$f(a)=f(a') \Rightarrow g(f(a))=g(f(a')) \Rightarrow a=a'$$
 (by)
because g is a function by $g(f(a))=a$
so $f(a)$ is injective.

surjective:

for every $b \in B$, we have f(h(b))=b. Now denoting h(b)=a, then $a \in A$. so for every $b \in B$, we have $a \in A$, s.t. f(a)=b, so f(a) is surjective.

Therefore f is bijective. And then there is a inverse function f^{-1} which is also bijective.

- \Rightarrow For any $a \in A$, there exists $a b \in B$ s.t. $a=f^{-1}(b)$.
- $\Rightarrow \begin{cases} g(f(f^{-1}(b)))=f^{-1}(b) & (by \ g(f(a))=a) \\ g(f(f^{-1}(b)))=g(b) & (by \ f(f^{-1}(b))=b) \end{cases}$ $\Rightarrow g=f^{-1}$ also $\Rightarrow \int f^{-1}(f(h(b)))=f^{-1}(b) \quad (by \ f(h(b))=b)$
- $\Rightarrow \begin{cases} f^{-1}(f(h(b))) = f^{-1}(b) & (by \ f(h(b)) = b) \\ f^{-1}(f(h(b))) = h(b) & (by \ f(f^{-1}(b)) = b) \end{cases}$ $\Rightarrow h = f^{-1}$
- 3. Prove: $C = \{ (x,y) \mid x=y+q \text{ for some } q \in Q \}$ is a equivalence relation in $\Re \times \Re$. pf. 1) reflexivity:

we know that for any x, x=x+0 and 0 is a rational number. so $(x,x) \in C$, i.e. xCx for any x in \Re .

2) symmetry:

xCy
$$\Rightarrow$$
 x=y+q for some q \in Q \Rightarrow y=x+(-q) , -q \in Q \Rightarrow y C x

3) transitivity:

$$xCy \Leftrightarrow x=y+q_1 \text{ for some } q_1 \in Q$$

 $yCz \Leftrightarrow y=z+q_2 \text{ for some } q_2 \in Q$

$$\Rightarrow$$
 x=z+(q₁+q₂), q₁+q₂ \in Q \Leftrightarrow x C z