

Project Objective

- Aims to explore a wide variety of NBA statistics
- Discover which statistics are the best predictors of an NBA players' salary
- Predict professional basketball player salaries based on statistics
- Determine which players have been overvalued and undervalued based on the model

NBA Player Statistics

- Kaggle_[2], CSV file 1950 2017 Seasons
- 3 Factor Predictors

Year, Position, Team

46 Numeric Predictors

Age, Games, Games Started...

Primary Data Set

Secondary Data Set

NBA 2K Player Ratings

- $MTDB_{[3]}$, Scraped 2016 2020 Seasons
- 2 Factor Predictors

Year, Position,

7 Numeric Predictors

Overall, Outside, Inside, Playmaking, Athleticism, Defense, Rebounding

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

- Traded player \rightarrow keep aggregated stats
 - o 'TOT' team
- Multiple versions of a player \rightarrow keep highest overall rating
- Used levenshtein distance
- `luke babbit` -> 'luke babbitt',
- patrick beverly`-> 'patrick beverley'

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

3P% has the most missing values.

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

```
year name_p salary
                       Pos
                                                                           TS%
                                                                                 3PAr
                              Age
                                                                   PER
                                                                                          FTr
                                               0
                                                                            24
                                                                                   30
                                                                                           30
              TRB%
                      AST%
                             STL%
                                     BLK%
                                            TOV%
                                                   USG%
                                                                   DWS
                                                                                WS/48
                                                                                        OBPM
       DRB%
                                                            OWS
                                              19
                                     FG%
                                              3P
                                                    3PA
                                                            3P%
                                                                           2PA
                                                                                  2P%
        BPM
              VORP
                              FGA
                                                                                         eFG%
                                                           1562
        FTA
               FT%
                       ORB
                              DRB
                                      TRB
                                             AST
                                                    STL
                                                            BLK
                                                                   TOV
                                                                                  PTS
               233
```

- Total of 1998 values were missing.
- Missing values were replaced by the mean of their columns.

```
df_primary$`3P%`[is.na(df_primary$`3P%`)] <- mean(df_primary$`3P%` , na.rm = T)
df_primary$`FT%`[is.na(df_primary$`FT%`)] <- mean(df_primary$`FT%` , na.rm = T)
df_primary$`TOV%`[is.na(df_primary$`TOV%`)] <- mean(df_primary$`TOV%` , na.rm = T)
df_primary$`FG%`[is.na(df_primary$`FG%`)] <- mean(df_primary$`FG%` , na.rm = T)
df_primary$`eFG%`[is.na(df_primary$`eFG%`)] <- mean(df_primary$`eFG%` , na.rm = T)
df_primary$`TS%`[is.na(df_primary$`TS%`)] <- mean(df_primary$`TS%` , na.rm = T)
df_primary$`3PAr`[is.na(df_primary$`3PAr`)] <- mean(df_primary$`3PAr` , na.rm = T)
df_primary$`FTr`[is.na(df_primary$`FTr`)] <- mean(df_primary$`FTr` , na.rm = T)</pre>
```

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

- Mean = \$7,837,816
- Median = \$5,200,000
- Mode = \$1,312,611
- Outliers in salary variable.

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

- Data cleaning
- Missing values
- Exploratory data analysis
- **Correlations**
- Outliers
- Variable selection
- Train/test split

- Removed variables that were highly correlated with each other and variables that were explaining the same thing like 3P and 3PA
- Reduced number of variable from 51 to 38

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

- Multivariate approach using cook's distance.
- It computes the influence exerted by each data point on the predicted outcome.

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

	name	year	salary		Age	Tm	GS	MP	AS	WS	FG%	3P%	2P%	FT%	PF	PTS
	<chr></chr>	<fctr></fctr>	<dbl></dbl>	<fctr></fctr>	<dbl></dbl>	<fctr></fctr>	<dbl></dbl>	<dpl></dpl>	<dbl></dbl>							
260	isaiah thomas	2017	6261395	PG	27	BOS	76	2569	32.6	12.6	0.463	0.3790000	0.528	0.909	167	2199
294	jarrett jack	2017	2328652	PG	33	NOP	0	33	20.3	0.0	0.667	0.0000000	1.000	1.000	4	6
384	karl anthony towns	2017	6216840	C	21	MIN	82	3030	13.2	12.7	0.542	0.3670000	0.582	0.832	241	2061
530	nikola mirotic	2016	5782450	PF	24	CHI	38	1646	9.4	3.9	0.407	0.3900000	0.430	0.807	151	777
616	sam dekker	2017	1794600	SF	22	HOU	2	1419	7.7	3.1	0.473	0.3210000	0.591	0.559	83	504
641	stephen curry	2017	34682550	PG	28	GSW	79	2638	31.1	12.6	0.468	0.4110000	0.537	0.898	183	1999
642	stephen zimmerman	2017	1312611	C	20	ORL	0	108	5.3	0.0	0.323	0.2711419	0.323	0.600	17	23

• On closer inspection, outliers are players who have really good stats or bad stats for that year.

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

Method

Automated F-test backward selection

Selected primary dataset predictors

year, Pos, Age, Tm, GS, TS%, AST%, WS, VORP, FG%, 3P, FT, PF

Selected complete dataset predictors

Age, GS, MP, USG%, WS, PF, out, ovr

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

TmMIN 2.573613 TmCLE 2.398189	`FG%` 9.299794 GS 2.863495 TMBOS 2.557200 TMIND 2.392428	TmPHO 2.858784 TmDET 2.547414 TmPHI 2.383919	TmDEN 2.327086	TmUTA 2.793899 TmPOR 2.526887 TmNOP 2.320728	TmMEM 2.720141 PF 2.499607 TmMIL	TmDAL	TmSAS 2.678805 TmORL	3P 3.456991 TmLAC 2.637327 TmCHO 2.472843 TmMIA 2.238935	PosSG 3.092757 TmOKC 2.577475 TmHOU 2.410641 TmLAL 2.203021
2.398189 TmBRK	MADE STREET			2.320728 year2017					NY KINDSON DESCRIPTION

```
MP PF GS WS ovr out `USG%` Age 7.984500 3.929993 3.197309 3.078852 2.832498 2.563631 1.613312 1.136827
```

Method

- Variance inflation factor(VIF) was used to check for multicollinearity in selected variables.
- All selected variables have low VIF values so there is little to no multicollinearity.

- Data cleaning
- Missing values
- Exploratory data analysis
- Correlations
- Outliers
- Variable selection
- Train/test split

Stratified Sampling

Caret package

Train / Test Split

- 80% / 20%
- 590 records / 144 records

Linear Regression Models

R-squared Test						
	Primary	Combined				
All Var	0.478	0.544				
Subset Var	0.440	0.472				
RMSE Test						
All Var	5.13M	4.82M				
Subset	5.32M	5.16M				

SLR : Complete Dataset, All Variables

- Significant Coefficients by 90% confidence
 - Primary Dataset
 - Intercept, Year, Position: 'PG', Position 'SG', Age, Games, Turnover %, Value Over Replacement Player, Steals, Personal Fouls,
 - NBA 2K Dataset
 - Outside, Overall, Rebounding
- Training Metrics
 - \circ R-squared = 0.66
 - Adj R-squared = 0.60
 - F-statistic = 11.69
 - $F^* \sim F(84, 503)$
 - P-value < 2.2e-16

Elastic Net Models

- Generalizes Ridge & Lasso Regression
- Penalty Function

$$\circ$$
 // y-XB // 2 + λ_{1} // B // 2 + λ_{2} // B //

- glmnet [5] Gaussian Objective Function
 - \circ // y-XB // 2 /(2n_{obs})+ λ [(1 α) // β // 2 /2 + α // β //
 - \circ $\alpha = 1 \rightarrow Lasso$
 - \circ $\alpha = 0 \rightarrow Ridge$
- Models Compared
 - \circ $\alpha = 0, 0.05, 0.10, 0.15, ..., 1.00$
 - Cross Validation (to optimize λ)
 - Primary & Combined datasets

Model: fit_alpha_0.00	Dataset: primary	R^2 Test: 0.471	MSE: 2.668e+13
Model: fit_alpha_0.05	Dataset: primary	R^2 Test: 0.470	MSE: 2.673e+13
Model: fit_alpha_0.10	Dataset: primary	R^2 Test: 0.471	MSE: 2.672e+13
Model: fit_alpha_0.15	Dataset: primary	R^2 Test: 0.470	MSE: 2.672e+13
Model: fit_alpha_0.20	Dataset: primary	R^2 Test: 0.470	MSE: 2.673e+13
Model: fit_alpha_0.25	Dataset: primary	R^2 Test: 0.470	MSE: 2.673e+13
Model: fit_alpha_0.30	Dataset: primary	R^2 Test: 0.470	MSE: 2.673e+13
Model: fit_alpha_0.35	Dataset: primary	R^2 Test: 0.470	MSE: 2.672e+13
Model: fit_alpha_0.40	Dataset: primary	R^2 Test: 0.470	MSE: 2.672e+13
Model: fit_alpha_0.45	Dataset: primary	R^2 Test: 0.469	MSE: 2.681e+13
Model: fit_alpha_0.50	Dataset: primary	R^2 Test: 0.468	MSE: 2.683e+13
Model: fit_alpha_0.55	Dataset: primary	R^2 Test: 0.468	MSE: 2.685e+13
Model: fit_alpha_0.60	Dataset: primary	R^2 Test: 0.468	MSE: 2.687e+13
Model: fit_alpha_0.65	Dataset: primary	R^2 Test: 0.467	MSE: 2.687e+13
Model: fit_alpha_0.70	Dataset: primary	R^2 Test: 0.467	MSE: 2.688e+13
Model: fit_alpha_0.75	Dataset: primary	R^2 Test: 0.468	MSE: 2.686e+13
Model: fit_alpha_0.80	Dataset: primary	R^2 Test: 0.468	MSE: 2.686e+13
Model: fit_alpha_0.85	Dataset: primary	R^2 Test: 0.467	MSE: 2.687e+13
Model: fit_alpha_0.90	Dataset: primary	R^2 Test: 0.467	MSE: 2.688e+13
Model: fit_alpha_0.95	Dataset: primary	R^2 Test: 0.467	MSE: 2.688e+13
Model: fit_alpha_1.00	Dataset: primary	R^2 Test: 0.467	MSE: 2.688e+13
Model: fit_alpha_0.00	Dataset: complete	R^2 Test: 0.619	MSE: 1.947e+13
Model: fit_alpha_0.05	Dataset: complete	R^2 Test: 0.613	MSE: 1.977e+13
Model: fit_alpha_0.10	Dataset: complete	R^2 Test: 0.614	MSE: 1.974e+13
Model: fit_alpha_0.15	Dataset: complete	R^2 Test: 0.615	MSE: 1.967e+13
Model: fit_alpha_0.20	Dataset: complete	R^2 Test: 0.609	MSE: 1.997e+13
Model: fit_alpha_0.25	Dataset: complete	R^2 Test: 0.606	MSE: 2.011e+13
Model: fit_alpha_0.30	Dataset: complete	R^2 Test: 0.602	MSE: 2.034e+13
Model: fit_alpha_0.35	Dataset: complete	R^2 Test: 0.603	MSE: 2.029e+13
Model: fit_alpha_0.40	Dataset: complete	R^2 Test: 0.601	MSE: 2.036e+13
Model: fit_alpha_0.45	Dataset: complete	R^2 Test: 0.600	MSE: 2.041e+13
Model: fit_alpha_0.50	Dataset: complete	R^2 Test: 0.600	MSE: 2.045e+13
Model: fit_alpha_0.55	Dataset: complete	R^2 Test: 0.599	MSE: 2.049e+13
Model: fit_alpha_0.60	Dataset: complete	R^2 Test: 0.599	MSE: 2.051e+13
Model: fit_alpha_0.65	Dataset: complete	R^2 Test: 0.598	MSE: 2.053e+13
Model: fit_alpha_0.70	Dataset: complete	R^2 Test: 0.597	MSE: 2.057e+13
Model: fit_alpha_0.75	Dataset: complete	R^2 Test: 0.599	MSE: 2.047e+13
Model: fit_alpha_0.80	Dataset: complete	R^2 Test: 0.599	MSE: 2.049e+13
Model: fit_alpha_0.85	Dataset: complete	R^2 Test: 0.598	MSE: 2.051e+13
Model: fit_alpha_0.90	Dataset: complete	R^2 Test: 0.598	MSE: 2.053e+13
Model: fit_alpha_0.95	Dataset: complete	R^2 Test: 0.598	MSE: 2.053e+13
Model: fit_alpha_1.00	Dataset: complete	R^2 Test: 0.598	MSE: 2.054e+13

Best Elastic Net Models

- Primary Dataset
 - \circ α (optimal) = 0
 - Ridge regression
 - o **λ**≈ 52k
 - \circ R²(test) = 0.471
 - MSE (test) = 2.67e13
 - RMSE ≈ 5.2M
- Combined Dataset
 - \circ α (optimal) = 0
 - Ridge regression

 - \circ R²(test) = 0.62
 - MSE (test) = 1.95e+13
 - RMSE ≈ 4.4M

Model Performance with Decision Trees

Decision tree visualization

Accuracy Metrics

Metric	Train Data	Test Data
R-squared	64.55%	37.86%
RMSE	4361.63 k	5599.45 k
MAE	3255.67 k	4293.70 k

Feature importance plot

Model Performance with Random Forests

Illustrative visualization

Accuracy metrics

Metric	Train Data	Test Data
R-squared	80.82%	49.41%
RMSE	3207.71 k	5052.41 k
MAE	2398.16 k	3877.85 k

Feature importance plot

Hyper-parameter tuning for Random Forests

Grid search: number of trees

Grid search: Max Depth

Hyper-parameter tuning for Random Forests

Grid search: Min Samples leaf node

Best Hyperparameters

HYPERPARAMETER	VALUE
'max_depth'	6
'max_features'	46
'min_samples_leaf'	5
'n_estimators'	400

Model Performance with GBM

Illustrative visualization

Accuracy metrics

Metric	Train Data	Test Data		
R-squared	93.88%	48.30%		
RMSE	1811.82 k	5107.31 k		
MAE	1356.15 k	3861.93 k		

Feature importance plot

Hyper-parameter tuning for GBM

Grid search: number of trees

Grid search: Learning rate

Hyper-parameter tuning for GBM

Grid search: Minimum samples in the leaf node

Best Hyperparameters

HYPERPARAMETER	VALUE
'learning_rate'	0.01
'max_depth'	6
'min_samples_leaf'	5
'n_estimators'	400
'max_features'	10

Underrated and Overrated Players By Optimal Elastic Net Model

Underrated players

- Model predicts to make > 2x as much
- 92 players in 2016
 - 62% saw > 25% increase
 for 2017

Overrated players

- Model predicts to make < ½ as much
- 31 players in 2016
 - 29% saw decrease for 2017

Model tends to

- Overestimate players with lower salaries
- Underestimate players with higher salaries

Model Deployment

- Plumber [6]
 - Swagger API
- Access
 - Query from web
 - Query from terminal

LeBron James 2016 Query

curl -X POST

'http://localhost:8000/predict_salary?Age=31&G=76&GS=76&MP=2709&PER=27.5&TS.=.588&X3PAr=0.199&FTr=0.347&ORB.=4 .7&DRB.=18.8&TRB.=11.8&AST.=36.0&STL.=2.0&BLK.=1.5&TOV.=13.2&USG.=31.4&OWS=9.6&DWS=4&WS=13.6&WS.48=0.242&OBPM=6.9&DBPM=2.3&BPM=9.1&VORP=7.6&FG=737&FGA=1416&FG.=0.520&X3P=87&X3PA=282&X3P.=0.309&X2P=650&X2PA=1134&X2P.=0.573&eFG.=0.551&FT=359&FTA=491&FT.=0.731&ORB=111&DRB=454&TRB=565&AST=514&STL=104&BLK=49&TOV=249&PF=143&PTS=1920&out=94&ovr=99&ins=89&pla=91&ath=92&def=91&reb=91'

Future Work

- Primary Dataset
 - Web scrape ESPN
- Secondary Dataset
 - Contracts
 - Restricted vs unrestricted
 - Salary cap
 - Years in the league
 - Scaled min/max player salary

Max Player Salary [9]							
Years in league	0-6	7-9	10+				
Max Salary (as % of Salary Cap)	25	30	35				

References

[1] Wesolowski-Mantilla, A. (2017). A Breakdown of NBA Salaries. Northwestern Business Review. https://northwesternbusinessreview.org/a-breakdown-of-nba-salaries-d8c37c56a4ee
2] Blanco, F. (2018). NBA - Advanced & Basic Season Stats (1950-2017). Kaggle.

https://www.kaggle.com/whitefero/nba-players-advanced-season-stats-19782016

[3] My Team Database (MTDB). (2015).

http://mtdb.com/20

[4] Max Kuhn (2020). caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret

[5] Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22.

http://www.jstatsoft.org/v33/i01/

[6] Trestle Technology, LLC (2018). plumber: An API Generator for R. R package version 0.4.6. https://CRAN.R-project.org/package=plumber

[7] Ryan Prete. NBA Superstars Face Tax Bills in the Millions. (2018). Bloomberg Tax. https://news.bloombergtax.com/daily-tax-report-state/nba-superstars-face-tax-bills-in-the-millions

References

[8] csp471_fp GitHub repository. GitHub.

https://github.com/alegresor/csp571 fp

[9] Kerry Miller. How NBA Free Agency, Salary Cap Work. (2018). Bleacher Report.

https://bleacherreport.com/articles/2787871-how-nba-free-agency-salary-cap-work

[10] Josh Rosson. NBA Salary Predictions using Data Science and Linear Regression. (2019). Towards Data Science.

https://towardsdatascience.com/nba-salary-predictions-4cd09931eb55

[11] Ben Glover. NBA announced record salary cap for 2016-17 after historic climb. (2016). Sports Illustrated.

https://www.si.com/nba/2016/07/03/nba-salary-cap-record-numbers-2016-adam-silver

Thank You for Listening. Questions?

2018 Player Taxes [7]

