

Threshold Implementations with Non-Uniform Inputs

Siemen Dhooghe & Artemii Ovchinnikov SAC 2023

Hardware vs side-channel attacks: How much security do we need?

What if we will not EVALUATE, but ESTIMATE security...

Hardware vs side-channel attacks: How much security do we need?

What if we will not EVALUATE, but ESTIMATE security...

In our work we consider 1st order TIs

Definition 1 (Threshold implementations). Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ be a function and $\bar{F}: \mathbb{F}_2^{ns_x} \to \mathbb{F}_2^{ms_y}$ be a masking of F. The masking \bar{F} is said to be

- 1. correct if $\forall x^0, \dots, x^{s_x-1} \in \mathbb{F}_2^n$, $\sum_{i=0}^{s_y-1} F^i(x^0, \dots, x^{s_x-1}) = F(\sum_{i=0}^{s_x-1} x_i)$,
- 2. non-complete if any function share F^i depends on at most s_x-1 input shares,
- 3. uniform if \bar{F} maps a uniform random masking of any $x \in \mathbb{F}_2^n$ to a uniform random masking of $F(x) \in \mathbb{F}_2^m$.

Glitch-extended bounded-query probing model

Figure 1: The privacy model for the glitch-extended t-threshold-probing security consisting of a challenger C, an adversary A, a left-right oracle O^b , two inputs k_0, k_1 , a set of probes P, and a noisy leakage function $\mathbf{f}(v^b)$ of the probed wire values v^b in the circuit $C(k_b)$.

Adversary advantage

Theorem 1. Let A be a noisy threshold-probing adversary for a circuit C. Take $\lambda \geq 1$, and $\varepsilon \leq 1$ as non-negative real numbers. Assume that for every query made by A on the oracle \mathcal{O}^b with result \mathbf{z} , there exists a partitioning (depending only on the probe positions) of the probed wire values into two random variables \mathbf{x} ('good') and \mathbf{y} ('bad') such that

- 1. The noisy leakage function f such that z = f(x, y) is λ -noisy.
- 2. The conditional probability distribution $p_{\mathbf{y}|\mathbf{x}}$ satisfies $\mathbb{E}_{\mathbf{x}} \|\widehat{p}_{\mathbf{y}|\mathbf{x}}\|_2^2 \leq \varepsilon$.
- 3. Any t-threshold-probing adversary for the same circuit C and making the same oracle queries as A, but which only receives the 'good' wire values (i.e. corresponding to x) for each query, has advantage zero.

The advantage of A can be upper bounded as

$$\mathrm{Adv}_{\mathsf{noisy}}(\mathcal{A}) \leq \sqrt{2q\,arepsilon/\lambda}\,,$$

where q is the number of queries to the oracle \mathcal{O}^b .

$$\varepsilon := \|\widehat{p}_{\mathbf{z}} - \delta_0\|_2^2 \le |\operatorname{supp}\widehat{p}_{\mathbf{z}}| \|\widehat{p}_{\mathbf{z}} - \delta_0\|_{\infty}^2 \le 2^{(\#wires)^{\#probes}} |C_{u,v}^{\bar{S}}|^{(active_cells)^2}$$

The previous model

Two probes => find correlation

Our adaptation

Two probes => find correlation

One probe => find correlation (via input patterns)

Linear cryptanalysis of masked ciphers

- Linear mask tuple of bits used for linear approximations of functions. If the tuple is all 0s, then the mask is not applied;
- Active bits all bits with value "1" in the linear mask. Ex: [0,1,0,0] or [1,0,0,1];

Let's imagine we have <u>a single active bit</u> represented by <u>wire</u> with value "1". There are two main types of operations with bits for linear/affine functions:

Branching:

node works as XOR-gate for any 2 inputs;

XOR-ing:

XOR-gate works as if it is a node in hardware.

Chosen ciphers

Midori64 overview:

Prince (core):

	Midori64	Prince
#Shares	3	3
State size	64	64
Random. bits	128	128
Latency	32	36
Area (GE)	7324	8353
Absolute Correlation	2-2	2-1.41

Practical evaluation

PROLEAD

- G-test
- $\lambda = 1$ Adv_{noisy} $(A) \le \sqrt{2q \varepsilon}$

```
Cycle 34: @[\uut.main_part.midori_nonlinear_layer.
Sbox[3].Sbox_i.register.in[1](34)] ==> [
\uut.main_part.first_register_1.state_out[50](34),
\uut.main_part.first_register_2.state_out[50](34),
\uut.main_part.first_register_2.state_out[48](34),
\uut.main_part.first_register_2.state_out[49](34),
\uut.main_part.first_register_1.state_out[48](34),
\uut.main_part.first_register_1.state_out[49](34)]
-log10(p) = 2.08937 --> OKAY
```

https://github.com/ChairImpSec/PROLEAD

FPGA

- t-test
- $\lambda \approx 2^9$ Adv_{noisy} $(A) \leq \sqrt{2q \varepsilon/\lambda}$

Midori64

Midori64 round

$$c^{i-1} = z^{i} + x^{i}y^{i} + x^{i}y^{i+1} + x^{i+1}y^{i}$$
$$d^{i-1} = w^{i} + x^{i}z^{i} + x^{i}z^{i+1} + x^{i+1}z^{i},$$

$$A_1 = [1 + x + y + z; 1 + x + y + w; 1 + x + y + z + w; y + w]$$

$$c^{i-1} = z^{i} + x^{i}y^{i} + x^{i}y^{i+1} + x^{i+1}y^{i}$$
$$d^{i-1} = w^{i} + x^{i}z^{i} + x^{i}z^{i+1} + x^{i+1}z^{i},$$

$$A_1 = [1 + x + y + z; 1 + x + y + w; 1 + x + y + z + w; y + w]$$

$$c^{i-1} = z^{i} + x^{i}y^{i} + x^{i}y^{i+1} + x^{i+1}y^{i}$$
$$d^{i-1} = w^{i} + x^{i}z^{i} + x^{i}z^{i+1} + x^{i+1}z^{i},$$

$$A_1 = [1 + x + y + z; 1 + x + y + w; 1 + x + y + z + w; y + w]$$

One probe observes 8 bits

$$\begin{split} c^{i-1} &= z^i + (x^i y^i + x^i y^{i+1} + x^{i+1} y^i) + (x^i z^i + x^i z^{i+1} + x^{i+1} z^i) \\ &\quad + (x^i w^i + x^i w^{i+1} + x^{i+1} w^i) \qquad A_2 = [w; x; y; z] \\ &\quad A_3 = [1 + y + w; 1 + y + z + w; w; x + z + w] \end{split}$$

$$c^{i-1} = z^{i} + (x^{i}y^{i} + x^{i}y^{i+1} + x^{i+1}y^{i}) + (x^{i}z^{i} + x^{i}z^{i+1} + x^{i+1}z^{i})$$

$$+ (x^{i}w^{i} + x^{i}w^{i+1} + x^{i+1}w^{i}) \qquad A_{2} = [w; x; y; z]$$

$$A_{3} = [1 + y + w; 1 + y + z + w; w; x + z + w]$$

$$c^{i-1} = z^{i} + (x^{i}y^{i} + x^{i}y^{i+1} + x^{i+1}y^{i}) + (x^{i}z^{i} + x^{i}z^{i+1} + x^{i+1}z^{i})$$

$$+ (x^{i}w^{i} + x^{i}w^{i+1} + x^{i+1}w^{i}) \qquad A_{2} = [w; x; y; z]$$

$$A_{3} = [1 + y + w; 1 + y + z + w; w; x + z + w]$$

One probe observes 8*3 = 24 bits

S0	S 4	S8	S12
S 1	S 5	S9	S13
S2	S6	S10	S14
S 3	S 7	S11	S15

S0	S14	S 9	S7
S10	S4	S 3	S 13
S 5	S11	S12	S2
S 15	S 1	S6	S8

S0	S14	S 9	S7
S10	S4	S 3	S13
S 5	S11	S12	S2
S15	S 1	S6	S8

After S-box

S0	S4	S8	S12
S 1	S 5	S 9	S13
S2	S6	S10	S14
S 3	S7	S11	S15

S0	S14	S 9	S7
S10	S4	S 3	S13
S 5	S11	S12	S2
S15	S1	S6	S8

S0	S14	S 9	S 7
S10	S 4	S 3	S 13
S 5	S11	S12	S2
S15	S 1	S6	S8

After S-box

S0	S4	S8	S12
S1	S 5	S 9	S13
S2	S6	S10	S14
S 3	S 7	S11	S15

S0	S14	S 9	S7
S10	S4	S 3	S13
S 5	S11	S12	S2
S15	S1	S6	S8

S0	S14	S 9	S7
S10	S4	S 3	S 13
S 5	S11	S12	S 2
S15	S 1	S6	S8

After S-box

S0	S 4	S8	S12
S 1	S 5	S 9	S13
S2	S6	S10	S14
S 3	S7	S11	S15

S0	S14	S 9	S7
S10	S4	S 3	S13
S5	S11	S12	S2
S15	S 1	S6	S8

S0	S14	S 9	S7
S10	S 4	S 3	S13
S 5	S11	S12	S 2
S15	S1	S6	S8

After S-box

S0	S 4	S8	S12	
S 1	S 5	S 9	S 13	
S2	S6	S10	S14	
S 3	S7	S11	S15	

S0	S14	S9	S 7
S10	S4	S 3	S13
S5	S11	S12	S2
S15	S 1	S6	S8

S0	S14	S 9	S7
S10	S4	S 3	S13
S 5	S11	S12	S2
S15	S 1	S6	S8

$$\varepsilon := \|\widehat{p}_{\mathbf{z}} - \delta_0\|_2^2 \le |\operatorname{supp}\widehat{p}_{\mathbf{z}}| \|\widehat{p}_{\mathbf{z}} - \delta_0\|_{\infty}^2 \le 2^{(\#wires)^{\#probes}} |C_{u,v}^{\bar{S}}|^{(active_cells)^2} >> 1$$

S0	S 4	S8	S12
S 1	S 5	S 9	S13
S 2	S6	S10	S14
S 3	S7	S11	S15

After S-box

After ShuffleCell

After MixColumns

S0	S4	S 8	S12
S1	S 5	S 9	S13
S2	S6	S10	S14
S 3	S7	S11	S15

After S-box

After ShuffleCell

After MixColumns

S0	S 4	S8	S12	
S 1	S 5	S 9	S 13	
S2	S6	S10	S14	,
S 3	S 7	S11	S15	

After S-box

After ShuffleCell

After MixColumns

S9

S3

S12

S6

S7

S13

S2

S8

S0	S 4	S8	S12	
S 1	S5	S 9	S 13	
S2	S6	S10	S14	
S 3	S 7	S11	S15	

S0	S14	S 9	S 7
S10	S4	S 3	S13
S5	S11	S12	S2
S15	S 1	S6	S8

S0	S14	S 9	S7
S10	S4	S 3	S 13
S5	S11	S12	S2
S15	S1	S6	S8

$$\varepsilon := \|\widehat{p}_{\mathbf{z}} - \delta_0\|_2^2 \le |\operatorname{supp}\widehat{p}_{\mathbf{z}}| \|\widehat{p}_{\mathbf{z}} - \delta_0\|_{\infty}^2 \le 2^{24} 2^{-48} = 2^{-24}$$

Midori64: Bound

$$\mathrm{Adv}_{2 ext{-thr}}(\mathcal{A}) \leq \sqrt{rac{q}{\lambda 2^{23}}}$$

	λ	q (Adv=1)
No noise	1	≈ 8 million
FPGA noise	<29	≈ 4 billion

Midori64: Non-uniform inputs

Insecure

$$egin{pmatrix} r_1 & r_2 & r_3 & r_4 \ r_2 & r_1 & r_4 & r_3 \ r_3 & r_4 & r_1 & r_2 \ r_4 & r_3 & r_2 & r_1 \ \end{pmatrix}$$

Secure

$$egin{pmatrix} r_1 & r_1 & r_1 & r_1 \ r_2 & r_2 & r_2 & r_2 \ r_3 & r_3 & r_3 & r_3 \ r_4 & r_4 & r_4 & r_4 \end{pmatrix}$$

 $r_1...r_4$ – random bytes (two nibbles), meaning: $r_i = r_{i1} || r_{i2}$, where r_{i1} , r_{i2} – plaintext masks to make 3 shared version.

Midori64: PROLEAD tests

Cipher	Case	Mode	Passed	# Traces	# Cycle	#Round
	Uniform	compact	✓	100M	NA	NA
- N. 1	"Insecure" Non-Uniform	compact	×	1M	5,6,7	2,3
Midori	msecure Non-emiorm	normal	X	128k	$5,\!6,\!7$	2,3
	"Secure" Non-Uniform	compact	X	2M	7	3
	Secure Non-Onnorm	normal	×	6.4M	8	3

Midori64: PROLEAD tests

Cipher	Case	Mode	Passed	#Traces	#Cycle	#Round
Midori	Uniform	compact	/	100M	NA	NA
	"Insecure" Non-Uniform	compact	×	1M	5,6,7	2,3
		normal	Х	128k	5,6,7	2,3
	"Secure" Non-Uniform	compact	X	2M	7	3
		normal	Х	6.4M	8	3

PRINCE

Prince round

Legend: shared path single share path

Legend: shared path single share path

We tweak the scheme a bit...

PRINCE Trail – 1 Round

S0	S4	S8	S12	
S 1	S 5	S 9	S 13	
S2	S6	S10	S14	
S3	S7	S11	S15	

S0	S4	S8	S12
S 1	S 5	S 9	S 13
S2	S6	S10	S14
S 3	S7	S11	S15

S0	S4	S8	S12
S 5	S 9	S13	S1
S10	S14	S2	S 6
S15	S 3	S7	S11

After S-box

After MixColumns After ShiftRows

PRINCE Trail – 1 Round

S0	S 4	S8	S12	
S 1	S 5	S9	S13	
S2	S6	S10	S14	·
S 3	S 7	S11	S15	

S0	S4	S8	S12
S 1	S 5	S 9	S 13
S2	S6	S10	S14
S 3	S 7	S11	S15

S0	S 4	S8	S12
S 5	S 9	S13	S 1
S10	S14	S2	S6
S15	S3	S7	S11

$$\varepsilon := \|\widehat{p}_{\mathbf{z}} - \delta_0\|_2^2 \le |\operatorname{supp} \widehat{p}_{\mathbf{z}}| \|\widehat{p}_{\mathbf{z}} - \delta_0\|_{\infty}^2 \le 2^{(\#wires)^{\#probes}} |C_{u,v}^{\bar{S}}|^{(active_cells)^2} >> 1$$

PRINCE Trail – 2 Rounds

S0	S4	S8	S12	S0	S4	S8	S12	S0	S4	S8	S12
S 1	S5	S9	S13	S 1	S 5	S 9	S13	S 5	S 9	S 13	S1
S2	S6	S10	S14	S2	S6	S10	S14	S10	S14	S2	S6
S 3	S 7	S11	S15	S 3	S 7	S11	S15	S15	S 3	S 7	S11

After S-box

After MixColumns After ShiftRows

PRINCE Trail – 2 Rounds

S0	S 4	S8	S12	
S 1	S 5	S9	S 13	
S2	S6	S10	S14	
S 3	S 7	S11	S15	

S0	S4	S8	S12
S 1	S 5	S 9	S13
S2	S6	S10	S14
S 3	S7	S11	S15

S0	S4	S8	S12
S 5	S 9	S13	S 1
S10	S14	S2	S6
S15	S 3	S 7	S11

$$\varepsilon := \|\widehat{p}_{\mathbf{z}} - \delta_0\|_2^2 \le |\operatorname{supp}\widehat{p}_{\mathbf{z}}| \|\widehat{p}_{\mathbf{z}} - \delta_0\|_{\infty}^2 \le 2^{16} 2^{-33.84} = 2^{-17.84}$$

PRINCE: Bound

$$Adv_{2-\mathsf{thr}}(\mathcal{A}) \le \sqrt{\frac{q}{\lambda 2^{16.84}}}$$

	λ	q (Adv=1)
No noise	1	≈ 131k
FPGA noise	<29	≈ 67 million

PRINCE: Non-uniform inputs

Insecure

$$\begin{pmatrix} r_1 & r_2 & r_3 & r_4 \\ r_1 & r_2 & r_3 & r_4 \\ r_1 & r_2 & r_3 & r_4 \\ r_1 & r_2 & r_3 & r_4 \end{pmatrix}$$

Secure

$$\begin{pmatrix} r_1 & r_2 & r_3 & r_4 \\ r_1 & r_2 & r_3 & r_4 \\ r_1 & r_2 & r_3 & r_4 \\ r_1 & r_2 & r_3 & r_4 \end{pmatrix} \qquad \begin{pmatrix} r_1 & r_1 & r_1 & r_1 \\ r_2 & r_2 & r_2 & r_2 \\ r_3 & r_3 & r_3 & r_3 \\ r_4 & r_4 & r_4 & r_4 \end{pmatrix}$$

 $r_1...r_4$ – random bytes (two nibbles), meaning: $r_i = r_{i1} || r_{i2}$, where r_{i1} , r_{i2} – plaintext masks to make 3 shared version.

PRINCE: PROLEAD tests

Cipher	Case	Mode	Passed	#Traces	# Cycle	#Round
	Uniform	compact	✓	100M	NA	NA
Prince	"Insecure" Non-Uniform	compact normal		$\frac{1\mathrm{M}}{128\mathrm{k}}$	4,,10 $4,,10$	1,2,3 $1,2,3$
_	"Secure" Non-Uniform	compact normal	X X	$\frac{48\mathrm{M}}{3.8\mathrm{M}}$	10 10	3 3

PRINCE: PROLEAD tests

Cipher	Case	Mode	Passed	# Traces	# Cycle	#Round
Prince	Uniform	compact	✓	100M	NA	NA
	"Insecure" Non-Uniform	compact	×	1M	4,,10	1,2,3
		normal	X	128k	4,,10	$1,\!2,\!3$
	"Secure" Non-Uniform	compact	×	48M	10	3
		normal	Х	3.8M	10	3

 Possible to reduce the randomness providing reasonable security

	Midori64	Prince
#Shares	3	3
State size	64	64
Random. bits	32 (-75%)	32 (-75%)
Latency	32	48 (+33%*)
Area (GE)	7324	11050 (+32%*)

^{*} Applicable to PROLEAD tests only, FPGA test are passed without additional overhead

- Possible to reduce the randomness providing reasonable security
- Not only the randomness entropy is important, but also its placement

	Midori64	Prince
#Shares	3	3
State size	64	64
Random. bits	32 (-75%)	32 (-75%)
Latency	32	48 (+33%*)
Area (GE)	7324	11050 (+32%*)

^{*} Applicable to PROLEAD tests only, FPGA test are passed without additional overhead

- Possible to reduce the randomness providing reasonable security
- Not only the randomness entropy is important, but also its placement
- Depends on the algorithm structure and its hardware implementation

	Midori64	Prince
#Shares	3	3
State size	64	64
Random. bits	32 (-75%)	32 (-75%)
Latency	32	48 (+33%*)
Area (GE)	7324	11050 (+32%*)

^{*} Applicable to PROLEAD tests only, FPGA test are passed without additional overhead

Things to work on in the future:

- Cheaper PRNGs since the randomness may be non-uniform
- Other algorithms
- Higher-order security

	Midori64	Prince
#Shares	3	3
State size	64	64
Random. bits	32 (-75%)	32 (-75%)
Latency	32	48 (+33%*)
Area (GE)	7324	11050 (+32%*)

^{*} Applicable to PROLEAD tests only, FPGA test are passed without additional overhead

Thank you for your attention!

Siemen Dhooghe (COSIC, KU Leuven): siemen.dhooghe@esat.kuleuven.be

Artemii Ovchinnikov (COSIC, KU Leuven): artemii.ovchinnikov@esat.kuleuven.be

