Notes about Algebraic Complexity

Xinhao Nie

Aarhus University

August 22, 2025

1 SQRTSUM

Definition 1.1. Given positive integers $a_1, \ldots a_n$ and an integer t, we want to decide whether $\sum_{i=1}^{n} \sqrt{a_i} \leq t$.

Lemma 1. We can test whether $\sum_{i=1}^{n} \sqrt{a_i} = t$ in polynomial time.

Proof. The paper 'Decreasing the Nesting Depth of Expressions Involving Square Roots' implicitly implies this result in its section 5.

First denest any individual radical that denests, which means for all a_i is not perfect square number. Then we choose pair of remaining radicals $\sqrt{a_i}$ and $\sqrt{a_j}$ if their product denests in \mathbb{Q} . If $\sqrt{a_i}\sqrt{a_j}$ denests as $k \in \mathbb{Q}$, then replace $\sqrt{a_i} + \sqrt{a_j}$ by

$$(1+\frac{k}{a_i})\sqrt{a_i} \in \mathbb{Q}(\sqrt{a_i}),$$

and iterate the process of looking for a pair of radicals that desnests. Its correctness can be easily checked.

If at some point no product of a pair of radicals denests, then we claim that the entire linear combination could not denest. Next we should prove this claim. The rough idea is that we show $\forall \sqrt{a_i} = \lambda \mathbf{e}_j$ where $\lambda \in \mathbb{Q}$ and $\langle \mathbf{e}_1, \dots, \mathbf{e}_{2^m} \rangle$ span the vector space $\mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_m})$ over \mathbb{Q} if $[\mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_n}) : \mathbb{Q}] = 2^m$. Concretely, all basis \mathbf{e} are the subproducts of m square roots. Then, we can concluded that if $\sum_{i=1}^n \sqrt{a_i} = t$, each square root must be eliminated because they are distinct basis. In other words, if there is no product of a pair of radicals denests, then it cannot equal to a rational number.

Together with some fact about basis of extension \mathbb{Q} over \mathbb{Q} , above statement is directly showed by Lemma 1 in the original paper. But it's more general, here we beriefly prove what we use. Suppose that $[\mathbb{Q}(\sqrt{a_1},\ldots,\sqrt{a_m}):\mathbb{Q}]=2^m$ and prove by induction if $\sqrt{a_{m+1}}\in\mathbb{Q}(\sqrt{a_1},\ldots,\sqrt{a_m})$ then $\sqrt{a_{m+1}}=\lambda\sqrt{a_1...a_m}$.

Basis(0): $\lambda = \sqrt{a_1}$. Hypothesis(m-1) and Induction(m): Write $\sqrt{a_{m+1}} = b\sqrt{a_m} + c$, where $b, c \in \mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_{m-1}})$. By squaring,

$$a_{m+1} = b^2 a_m + c^2 + 2bc\sqrt{a_m},$$

which indicates c=0, since $a_{m+1}\in\mathbb{Q}$. Then, we have

$$\sqrt{a_{m+1}a_m} = ba_m \in \mathbb{Q}(\sqrt{a_1}, \dots, \sqrt{a_{m-1}}).$$

By hypothesis, $\sqrt{a_{m+1}a_m} = \lambda \sqrt{a_1...a_{m-1}}$, which implies $\sqrt{a_{m+1}} = \lambda a_m^{-1} \sqrt{a_1...a_{m-1}a_m}$. Thus, we can write each $\sqrt{a_i} = \lambda \sqrt{a_1...a_m}$. Moreover, the 2^m subproducts of $\sqrt{a_1}, \ldots, \sqrt{a_m}$ are the basis of $\mathbb{Q}(\sqrt{a_1}, \ldots, \sqrt{a_n})$ over \mathbb{Q} . The proof is here.