DOCUMENT RESUME

ED 038 988 LI 001 914

AUTHOP Pei Possi, J. A.; And Others

TITLE A Cost Analysis of Minimum Distance TV Networking

for Broadcasting Medical Information.

INSTITUTION Pand Corp., Santa Monica, Calif.

SPONS AGENCY Mational Library of Medicine, Bethesda, Md.

PEPOPT NO PM-6204-NLM

PUB DATE Feb 70 NOTE 84p.

FDRS PPICE EDRS Price MF-\$0.50 HC-\$4.30

DESCRIPTORS *Closed Circuit Television, *Cost Effectiveness,

*Educational Television, *Evaluation Methods, *Medical Education, Medical Schools, Medical

Students, Physicians

ABSTRACT

Two specific applications for networks might be used to serve the biomedical community: (1) networking of the nation's educational television (ETV) stations for occasional or one-time broadcasting and (2) networking of the nation's medical schools for continuous broadcasting. These two applications are analyzed in detail. A second contribution of this analysis is the provision of data and methodology for examining costs and effectiveness (in terms of physicians and students within broadcasting range) of configurations of subsets of points in the full network. The data and methodology could also be used for determining the minimum cost for networks using media other than broadband television broadcasting, such as audio only broadcasting in conjunction with slides or still pictures. The cost attractiveness of networked, simultaneous broadcasting can also be compared with, for example, sequential broadcasting using mailed video tapes. (NH)

ED038988

MEMORANDUM RM-6204-NLM

FEBRUARY 1970

U.S. DEPARTMENT UF HEALTH. EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION GRIGINATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY

A COST ANALYSIS OF MINIMUM DISTANCE TV NETWORKING FOR BROADCASTING MEDICAL INFORMATION

J. A. Dei Rossi, R. S. Heiser and N. S. King

The research upon which this publication is based was performed pursuant to Contract No. 69-10 with the National Institutes of Health, Department of Health, Education, and Welfare. Views or conclusions contained in this Memorandum should not be interpreted as representing the official opinion or policy of Rand or of the National Library of Medicine.

I 001914

///-iii-

PREFACE

The Lister Hill National Center for Biomedical Communications of the National Library of Medicine (NLM) has been appointed by the Board of Regents of the NLM to assume the responsibility for the development of, and the coordinated planning for, Biomedical Communications. At the request of the Center, Rand has undertaken the examination of broadband telecommunication systems in biomedical communications. This Memorandum documents the initial analysis of one application of this mode of communication utilizing common carrier land lines for networking. It is part of Rand's effort for the Center in the analysis of various applications of technology to the needs of biomedical information dissemination.

/v/ -v-

SUMMARY

This Memorandum deals with the problem of estimating the cost of networking the TV broadcasting of biomedical information, using common carrier land lines. Such networking costs are made up of three components: interexchange channel costs based on the intercity distances between broadcast points and the number of hours of broadcasting; a station connection charge for a switching connection between the broadcast point and the local common carrier facility, which includes both a fixed charge and a charge based on the number of hours of use; and local channel charges for connecting the broadcast point and the local facility.

To estimate the costs efficiently, using these charge rates, it was necessary to calculate minimum distance networks for connecting the points in each network. Such a network is generally known as a "minimal weighted spanning tree." In this case, the weights are the distances between broadcast points. The algorithm for these calculations was programmed for computers and provides the basic framework for the cost estimates.

Two major networking applications were considered: the networking on a national basis of existing educational television (ETV) stations and the networking, also on a national basis, of accredited medical schools. The first provides the cost of one-time (occasional) broadcasts aimed primarily at the biomedical community. The second provides the networking cost of a national closed circuit TV network for the nation's medical schools.

The ETV network was defined to include only ETV stations with at least one Standard Metropolitan Statistical Area (SMSA) within broadcast range to assure a sufficiently large audience. Also, data on physician population by SMSA are available, which makes it possible to calculate some measure of potential audience size.

With the data available, it was found that approximately 96.7 percent of the SMSA physician population could be reached by 106 ETV stations. Further, it was found that because there was a very uneven distribution of physicians among these SMSAs, about 90 percent of

this population could be reached by about 49 percent, or 52, of the largest stations.

The networking of the full 106 ETV stations, using the minimum distance network, requires about 12,000 miles of intercity line. The cost per hour is approximately \$80,000 for a 1-hour broadcast and \$27,000 per hour for a 5-hour broadcast. Using an active physician population within range of this network of 260,160 (1970 estimate), the network cost per potential viewer-hour then ranges from 30 cents for the 1-hour broadcast to 11 cents for the 5-hour broadcast.

The second application, the full medical school network, contains 97 schools and requires about 10,000 miles of intercity line at a cost of approximately \$600,000 per month. This network, however, buys about 160 hours of networking time per month and reaches about 85,000 biomedical students. Thus, the networking cost per month per school is approximately \$6000, the networking cost per month per student is \$7, and the networking cost per potential viewer-hour is 5 cents.

These cost figures are predicated on the assumption of a 15-mile average local channel distance and physician population projections described in the text. The sensitivity of the costs to the local channel distance was tested and found not to be very great. The physician population projections are considered reasonably accurate, and since the annual increments in the total population are small relative to the total population, errors in this estimate should have minor impacts.

The cost estimates for the specific configurations described in this study have not been verified with the telephone company, since the purpose of this study is not to determine the precise cost of an in-place system. The purpose is to provide a reasonably accurate assessment of the cost and potential benefit of TV networking as a mode of disseminating information to the biomedical community. These data can also be used for purposes of comparison and planning involving alternative modes of information dissemination.

ACKNOWLE DGMENTS

The authors wish to express their gratitude to D. R. Fulkerson of The Rand Corporation for first suggesting the use of the "minimal weighted spanning tree" algorithm used to calculate the minimal distance networks used in this Memorandum.

viii/ -ix-

CONTENTS

Prefa	ice	iii
Summa	ıry	. v
Ackno	wledgments	vii
Secti	ion	
I.		1
II.	Minimum Distance Network Configurations	3
III.	ETV Networking	6
IV.	ETV Networking Cost	16
V.	Networking Medical Schools	21
VI.	Medical School Networking Cost	28
Appen	ıdix	
A. B.	JOSS Program for Calculating Minimal Weighted Spanning Tree Distribution of Non-Federal Physicians in Standard Metropolitan Statistical Areas (SMSAs) Served	33
C.	by ETV	3! 4!
D.	JOSS Program and Printouts of Cost for Various ETV Network Sizes	50
Ε.	Distribution of Medical School Population in 72 Program Operating Centers (POCs)	58
F.	JOSS Printouts for Minimum Tree Medical School Networks	6.
G.	JOSS Program and Printouts of Costs for Various Size Medical School Networks	7(
Bib1i	iography	79

I. INTRODUCTION

This Memorandum deals with the problem of land-line, or telephone circuit, networking for the broadcasting of biomedical information. In more specific terms, the Memorandum addresses the problem of finding minimum distance networks for n given points in which a particular point in the network broadcasts to the remaining n-1 points. Such a minimum distance network, utilizing telephone company circuits, will, in turn, be a minimum cost network.

In addition to describing the algorithm for finding the minimum distance network for any n points, two specific applications for networks that might be used to serve the biomedical community are analyzed in detail. The first is networking of the nation's educational television (ETV) stations for occasional, or one-time, broadcasting. The second is the networking of the nation's medical schools for continuous broadcasting.

The first application is intended to indicate both the potential for coverage of the physician population and the networking cost of one-time broadcasts to the medical community using ETV. The second application shows the networking cost of closed circuit TV networks for the nation's medical schools. A second contribution of this analysis is the provision of data and methodology for examining costs and effectiveness (measured in terms of physicians and students within broadcast range) of configurations of subsets of points in the full network.

It is important to emphasize that the data and methodology could also be used for determining the minimum cost for networks using media other than broadband television broadcasting. For example, one might use such networks for broadcasting audio only, in conjunction with slides or still pictures. Finally, the cost attractiveness of networked, simultaneous broadcasting can be compared with, for example, sequential broadcasting using mailed video tapes.

In what follows, there is first a brief description of the methodology used to determine the minimum distance network for each set of points considered. Then the specific cities for the ETV networks

are described. This is followed by a description of the AT&T rates for networking, cost estimates for the networks, and a brief discussion of the cost. The procedure is then repeated for the medical school networks.

II. MINIMUM DISTANCE NETWORK CONFIGURATIONS

Most communication-system-design problems are more difficult to solve than the broadcast network problem addressed here. For example, in a message-switching communication system, line loads must be balanced and response times through queues calculated. In the broadcast network problem, it is possible to take advantage of the homogeneity of the network traffic and to define it as a problem capable of strict optimization. The broadcast network is an inherently efficient way to "use" lines; the broadcast message utilizes all the capacity of all lines without overloading any line and there are no illegal concentrations or unbalancings. Thus, the optimizing problem is simply one of minimizing the total line miles. This minimum distance network is, in turn, a minimum cost network.

A minimum distance network over n points is a "tree." A tree is a connected graph that has no circuits. This means that there are no multiple edges and that there is only one path connecting any pair of points. A tree over n points has n-1 edges. If we were to draw a network with more than n-1 edges, then multiple paths must exist between some points and the network would not be optimal.

Now, there is not just one tree over n points. There are, in fact, n^{n-2} different trees. This is unwieldy for large n. For example, the number of trees for 100 points is 10^{196} [= $(10^2)^{98}$]. Thus, bruteforce enumeration and trial of these trees would be out of the question. Fortunately, there is a theorem that guarantees that it is possible to find a minimum distance tree in fewer tries. This theorem provides us with a simple "economy rule": We begin with the least expensive link, forming a tree over two of the points. Thereafter, we add the least expensive link between a point in the tree and a point outside the tree. After repeating this process until n-1 links have been drawn we are assured that we have drawn a minimum distance tree. During this process, (k)(n-k) comparisons must be made when k points

^{*0.} Ore, Graphs and Their Uses, Random House, New York, 1963, pp. 38-40.

are already connected, so a total of

$$\sum_{k=1}^{n-1} k(n-k) \int_{1}^{n-1} k(n-k) dk = \left(\frac{n^{3}}{6} - n\right)$$

trials are needed to solve the problem using this technique. This is approximately 166,000 (1.66 \times 10^5) trials for 100 points, considerably fewer than a comparison of all possible trees.

The general name given to the type of tree we are using in this paper for the network configurations is a "minimal weighted spanning tree." In this application the weights used are the distances in airline miles between the points included in the tree. The JOSS † program used for the calculations is shown in Appendix A. This program calculates the distances between any two cities i and j from the vertical (V) and horizontal (H) coordinates of each city using the following formula:

$$\sqrt{\frac{(v_i - v_j)^2 + (H_i - H_j)^2}{10}}$$

The coordinates used in this formula (see Tables 1 and 2) are not the standard geographical coordinates of the cities but, rather, the coordinates of points in a plane onto which the points on the earth's spherical surface have been transformed. For this reason, the above formula, which disregards the curvature of the earth's surface, can be used. The number 10 in the denominator is simply an arbitrary scaling factor used in the transformation. With these V and H coordinates and

JOSS is the trademark and service mark of The Rand Corporation for its computer programs and services using that program.

Note that this is different from the "traveling salesman problem" of forming the minimal path (line series) through n points. Although there are fewer paths than trees, namely (n-1) factorial, no completely satisfactory computational method has been developed to find the optimal path. For example, for 100 points there are 9×10^{153} paths and a very substantial number of these must be inspected to approach optimality.

the above formula, the official airline distance between cities approved by the FCC for applying telephone company rates can be obtained with the JOSS Program in Appendix A for any given set of cities.

III. ETV NETWORKING

As of December 31, 1966, there were 272,891 non-Federal (those not employed by the Federal Government) physicians in the United States (including Hawaii and Alaska) and its possessions. Of these, 230,518, or 84.5 percent, were located in the 300 Standard Metropolitan Statistical Areas (SMSAs) in the U.S. Since data on the distribution of physicians at the city level are available only for physicians in SMSAs and since such a large percentage of the total physician population appears to reside in these areas, the ETV network described here is restricted to only those stations that reach at least one SMSA.

By the end of 1969, there were 183 ETV stations in the U.S., excluding Alaska and Hawaii. Of these, 45 stations in five separate states are included in statewide ETV networks. Each statewide network can be included in the larger network by a single connection.

Thus, all 183 stations can be reached by connecting 143 of the stations. Further, 17 of the stations are in eight cities with more than one ETV station to that the total area that could be reached by ETV can be reached by connecting only 134 stations. Of the 134 distinct stations that would be candidates for inclusion in a full nationwide ETV network, 106, or 79 percent, of the stations are in or around SMSAs.

These 106 ETV stations reach 96.7 percent of all non-Federal physicians listed as being in SMSAs.

^{**}New York City has 3 stations; Miami, Chicago, Boston, Minn-eapolis-St. Paul, Pittsburgh, Richmond, and Milwaukee have 2 each.

Distribution of Physicians, Hospitals and Hospital Beds in the U.S., Vol. 2, Metropolitan Areas, American Medical Association, Chicago, 1966.

Tbid. The list of 300 also includes what are called "potential" SMSAs. This definition of the SMSAs is that of Sales Management, Inc., rather than the U.S. Office of Statistical Standards.

^{*1969} Directory and Yearhook of Educational Broadcasting, National Association of Educational Broadcasters, Washington, D.C., 1969.

The state networks are Alabama, 8 stations; Georgia, 10 stations; Kentucky, 13 stations; South Carolina, 5 stations; and Nebraska, 9 stations.

Two steps were taken to determine the number of SMSAs reached by each TV station and the potential physician audience at each of these stations. First, a complete list of SMSAs, by state, with the number of non-Federal physicians in each SMSA was compiled. Next, the location of all ETV stations in the U.S. was determined and the following rule applied: All SMSAs within 50 miles of a UHF ETV station, or within 75 miles of a VHF station, were counted as being in the broadcast range of that station.

This rule is somewhat arbitrary since the radius of range is not generally constant for any given station or the same among stations. However, the rule is adequate for the purposes of this study since total cost is not affected by these figures and accurate data for the distribution of the potential physician audience are available only for SMSAs. This latter fact limits the usefulness of a more accurate analysis of the actual radius of each station. The rule of 50 and 75 miles is, perhaps, a bit generous, but this should offset the fact that there are undoubtedly some physicians within the broadcast range of some of the ETV stations who do not reside in SMSAs and, thus, have not been counted in the SMSAs' population total.

The complete list of locations of the 106 ETV stations with their V and H coordinates, is shown in Table 1, together with the rank of that station measured in terms of the number of non-Federal physicians residing within broadcast range. A full listing of all the SMSAs in the range of each station, the physician population within SMSAs, and the total number of physicians per ETV station is shown in Appendix B. The cumulative frequency distribution of this population plotted against the ETV stations in descending order of rank is shown in Fig. 1. It is important to note that this is the cumulative distribution of the total physicians reached (230,518), not the total non-Federal physician population (272,891).

Using the V and H coordinates in Table 1 and the JOSS program in Appendix A, the minimum distance networks for all 106 stations and the largest (lowest rank) 5, 10, 15, 20, and 52 ETV stations were calculated. The results of these calculations provide the total miles for each set of stations, the total population reached, and the percentage of the total within reach as shown in Table 2.

Table 1

VERTICAL AND HORIZONTAL COORDINATES OF 106 ETV STATIONS REACHING AT LEAST ONE STANDARD METROPOLITAN STATISTICAL AREA (SMSA), RANKED BY SIZE

ETV Stations	Rank	${\it Coordinates}$		
EIV Stations	(largest to smallest)	Vertical	Horizontal	
New York, N.Y.	1	4997	1406	
Los Angeles, Calif.	2	9213	7878	
Chicago, Ill.	3	5986	3426	
Philadelphia, Pa.	4	5251	1458	
Boston, Mass.	5	4422	1249	
San Francisco, Calif.	6	8492	8719	
Detroit, Mich.	7	5536	2828	
Cleveland, Ohio	8	5574	2543	
Washington, D.C.	9	5622	1583	
Atlanta, Ga. ^a	10	7260	2083	
Pittsburgh, Pa.	11	5621	2185	
Baltimore, Md.	12	5510	1575	
St. Paul, Minn.	1.3	5777	4513	
Miami, Fla.	14	8351	0527	
St. Louis, Mo.	15	6807	3482	
Louisville, Ky. ^a	16	6529	2772	
Houston, Tex.	17	8938	3536	
Birmingham, Ala. ^a	18	7518	2446	
Dallas, Tex.	19	8436	4034	
Seattle, Wash.	20	6336	8896	
Milwaukee, Wis.	21	5788	3589	
Hartford, Conn.	22	4687	1373	
Denver, Colo.	23	7501	5899	
New Orleans, La.	24	8483	2638	
San Jo se, C alif.	25	8583	8619	
Buffalo, N.Y.	26	5075	2326	

Table 1--continued

	Rank (largest to	Coord	linates
ETV Stations	smallest)	Vertical	Horizontal
Cincinnati, Ohio	27	6263	2679
Charleston, S.C. ^a	28	7021	1281
East Lansing, Mich.	29	5584	3081
Chapel Hill, N.C.	30	6361	1511
Kansas City, Mo.	31	7027	4203
San Diego, Calif.	32	9468	7629
New Haven, Conn.	33	4792	1342
Bloomington, Ind.	34	6417	2984
Omaha, Nebr. ^a	35	6687	4595
Portland, Oreg.	36	6799	8914
Tampa, Fla.	37	8173	1147
Columbus, Ohio	38	59 72	2555
Rochester, N.Y.	39	4913	2195
Syracuse, N.Y.	40	4798	1990
Hershey, Pa.	41	5337	1704
Schenectady, N.Y.	42	4629	1675
San Bernardino, Calif.	43	9172	7710
Sacramento, Calif.	44	8304	8580
Bridgeport, Conn.	45	4841	1360
Austin, Tex.	46	9005	3996
Memphis, Tenn.	47	7471	3125
Providence, R.I.	48	4550	1219
Phoenix, Ariz.	49	9135	6748
Richmond, Va.	50	5906	1472
Oklahoma City, Okla.	51	7947	4373
Oxford, Ohio	52	6204	2759
Nashville, Tenn.	53	7010	2710
Madison, Wis.	54	5887	3796
Salt Lake City, Utah	55	7576	7065
Toledo, Ohio	56	5704	2820

Table 1--continued

	Rank	Coor	${\it Coordinates}$		
ETV Stations	(largest to smallest)	Vertical	Horizontal		
Sneedville, Tenn.	57	6632	2205		
Norfolk, Va.	58	5918	1223		
Orlando, Fla.	59	7954	1031		
Conway, Ark.	60	7668	3508		
Allentown, Pa.	61	5166	1585		
Wilmington, Del.	62	5326	1485		
Scranton, Pa.	63	5042	1715		
St. John, Ind.	64	6057	3358		
Jacksonville, Fla.	65	7649	1276		
Huntington, W. Va.	66	6212	2299		
Charlotte, N.C.	67	6657	1698		
Jackson, Miss.	68	8035	2880		
Tucson, Ariz.	69	9345	6485		
Binghamton, N.Y.	70	4943	1837		
Urbana, Ill.	71	6371	3336		
Tulsa, Okla.	72	7707	4173		
Corvallis, Oreg.	73	7016	8991		
Erie, Pa.	74	5321	2397		
Albuquerque, N. Mex.	75	8549	5887		
Roanoke, Va.	76	6196	1801		
Spokane, Wash.	77	6247	8180		
Pueblo, Colo.	78	7787	5742		
Augusta, Maine	79	3961	1370		
Tacoma, Wash.	80	6415	8906		
Gainesville, Fla.	81	7838	1310		
Des Moines, Iowa	82	6471	4275		
Burlington, Vt.	83	4270	1808		
Topeka, Kans.	84	7110	4369		
Duluth, Minn.	85	5352	4530		
Mt Pleasant, Mich.	86	5438	3206		
Norwich, Conn.	87	4668	1263		

Table 1--continued

	Rank (largest to	Coor	dinates
ETV Stations	smallest)	Vertical	Horizontal
Vincennes, Ind.	88	6588	3082
Fargo, N.D.	89	5615	5182
Durham, N.H.	90	4276	1341
Nashville, N.C.	91	6749	2001
Las Vegas, Nev.	92	8665	7411
Pensacola, Fla.	93	8147	2200
Lubbock, Tex.	94	8598	4962
Athens, Ohio	95	6011	2354
Ogden, Utah	96	7480	7100
Concord, N.C.	97	6601	1679
Bowling Green, Ohio	98	5764	2804
Yakima, Wash.	99	6553	8607
Vermillion, S.D.	100	6443	4869
Brookings, S.D.	101	6129	4972
Provo, Utah	102	7680	7006
Orono, Maine	103	3754	1323
Tallahassee, Fla.	T04	7877	1716
Newark, Ohio	105	5904	2480
Rapid City, S.C.	106	6518	5903
	į .	1	ī

SOUNCE: American Telephone and Telegraph Co., Long Lines Department, Administrative Rates and Tariffs, Tariff FCC No. 255, New York, 1966.

^aDenotes statewide ETV Network.

Fig. 1--Cumulative distribution of non-Federal physicians reached by the 106-ETV-station network

Table 2

COVERAGE OF VARIOUS SIZE ETV NETWORKS

Number of ETV Stations	Total Miles ^a	Physician Popu- lation Reached	Percent of Total Population
5	2,674	81,942	36.6
10	3,656	111,743	50.0
15	4,575	131,716	58. 9
20	5,981	146,232	65.4
52	8,397	200,620	89.7
106	12,031	223,583	100.0

^aIncludes only miles from program operating center o program operating center in each city.

The printouts of these runs showing the links in each network, the intermediate numbers of miles and physicians reached, and miles per physician reached are in Appendix D. A map of the full 106-city network is shown in Fig. 2.

The stations were stored in the computer in descending order of audience size. Thus, networks for the N largest population centers can be calculated by truncating the list after N. Any N solution obtained represents the least expensive way to network the full audience in that particular subset of cities. The subset selected, however, is not necessarily that which gives the absolute minimum cost for a given audience size. Finding such a subset poses an entirely different analytical problem. In addition, such a result might omit logically important cities or regions.

The map does not show networks in the following states: Alaska, Montana, Wyoming, New Jersey, Idaho, and Hawaii. The first three, Alaska, Montana, and Wyoming, have no ETV stations. New Jersey has no ETV station, but its cities are served by stations in New York City and Philadelphia. Idaho has an ETV station at Moscow, but there is no SMSA or medical school within the broadcast range. Hawaii has a

based on the 1966 non-Federal physician population in SMSAs.

ERIC Full fast Provided by ERIC

Fig. 2--Minimum distance ETV network of 106 stations

statewide ETV network; however, it can only be connected by satellite via San Francisco and falls outside the basic network problem. In addition, the rates to Hawaii are different from the Continental United States rates: The interexchange rates are \$550 for the first 10 minutes and \$16 per minute for each additional minute. This is equivalent to a rate of \$1350 for the first hour and \$960 for each additional hour. This link could be optionally included in any network serving San Francisco.

IV. ETV NETWORKING COST

Using the total intercity mileages shown on page 13, the networking costs for each of the network sizes can be estimated. * TV networking costs, utilizing the facilities and services of AT&T, have three separate components: (1) interexchange channel charges based on airline distances between cities; (2) station connecting charges for each TV station; and (3) local channel charges for connecting the TV station to the local AT&T program operating center.

Further, the rates for each of these components are given separately for the video (black and white) signal and the audio; and the audio comes in two grades of service: the 100- to 5000-cycle frequency, and the 200- to 3000-cycle frequency. Finally, the rates differ for occasional use and continuous use. For the ETV network, the following occasional-use rates will be used:

- One way, black and white video signal (occasional use):
 - 1. Interexchange channel rate: \$1 per mile per hour.
 - 2. Station connection charge (per station): \$200 for each occasion used plus \$10 per hour for each hour of use.
 - 3. Local channel rate (per station): \$175 per month plus

 15 percent of the rate for continuous service for the

 first 24 hours plus 10 percent of the same for each

 additional 24 hours in the same month.
- One way audio, 100- to 5000-cycle frequency service (occasional use):
 - 1. Interexchange channel rate: \$0.15 per mile per hour

for all audio cases the rates vary from location to location, but those given are representative.

These costs exclude the broadcasting cost and the cost of the production of the material to be broadcast.

All rates cited were obtained verbally by phone from Mr. D. Brinton in the Los Angeles office of AT&T on August 20, 1969.

^{*}No occasion may exceed 24 hours.

^{**}The continuous service rates are given on p. 28 for the medical school network.

plus \$0.0375 per mile for each consecutive 15-minute period. Minimum charge: \$2.00. Maximum charge: the continuous service rate.*

- 2. Station connection charge (per station): \$20 per month plus \$1.75 per hour.
- 3. Local channel rate (per station): \$15 per month plus \$3.45 per mile for the first week plus \$6.90 per mile per week after the first week.
- One way audio, 200- to 3000-cycle frequency service (occasional use):
 - 1. Interexchange channel rate: \$0.10 per mile for the first hour plus \$0.025 per mile for each additional 15 minutes on each occasion. Minimum charge: \$1.50 per mile. Maximum charge: \$4.50 per mile.
 - 2. Station connection charge (per station): \$6.25 per mile. Minimum charge: \$10. Maximum charge: \$20.
 - 3. Local channel (per station): \$2.95 per mile for the first week plus \$5.90 per mile per week for periods greater than one week.

In estimating the network costs, two major simplifying assumptions were made. First, it was assumed that the average local distance from the program operating center to the ETV station in each city was 15 miles and, second, that the 100- to 5000-cycle frequency audio service would be used throughout the network. This latter assumption is conservative since some of the shorter links in each network might be able to use the less expensive 200- to 3000-cycle service.

The total one-time networking cost for various network sizes for 1, 2, 3, 4, and 5 hours of one-way video and audio broadcasting is shown in Table 3. The costs for average local distances ranging from 5 to 25 miles are shown in Appendix D, together with the average costs per mile and the average cost per hour. The JOSS program used to calculate these costs is also included in this appendix.

^{*}The continuous service rates are given on p. 28 for the medical school network.

Table 3

TOTAL COST FOR ONE-TIME NETWORKING
(\$)

Number of	Broadcast Hours					
ETV Stations	Z	2	3	4	5	
5	6,106	9,240	12,374	15,508	18,642	
10	10,267	14,589	18,911	23,233	27,555	
15	14,355	19,793	25,230	30,668	36,105	
20	19,003	26,116	33,229	40,343	47,456	
52	41,182	51,449	61,717	71,984	82,252	
106	78,098	93,179	108,260	123,342	138,423	

Besides providing networking costs for the various size networks shown, these costs also point out the uneven distribution of the physician population indicated in Fig. 1. About 90 percent of the physicians within reach of the 106-ETV-station network can be reached by the 52 largest stations. This smaller network costs approximately half the 106-station network. Thus, this network, reaching a large subset of the physicians, is considerably more cost effective than total coverage, even though we have not solved for the absolute minimum way of reaching any subset of the total population.

A second interesting fact about the 106-ETV-station network illustrated in Fig. 2 is that there is no apparent significant cost saving method for regionalizing the minimum cost national network. Removal of the links between, say, Albuquerque and Lubbock, and Tulsa and Conway, would create three regions with virtually no east-west overlap. The savings, however, would amount to only \$600, approximately, in total cost for each hour of broadcast (i.e., interchannel charges per mile per hour times the distances between each pair of cities). The reason for the limited cost saving opportunities from regionalization stems from the fact that there are no "clusters" or groups of cities connected from one central city in the minimum cost network. Thus, this analysis of minimum cost networks for ETV stations gives no direct indication of how one might logically regionalize the nation for communication purposes. It does, however, highlight the fact that there are large cost savings to be derived from not attempting

to attain 100 percent coverage, given the uneven distribution of the physician population.

Looking next at the cost per hour per physician (i.e., cost per potential viewer-hour) within broadcast coverage area, based on the 1966 non-Federal physician population and the 106-station network, the cost is approximately 35 cents per potential viewer-hour for 1 hour of networking and approximately 12 cents for 5 hours.

Extrapolating total physician population in the Continental **
United States (including osteopaths) to 1970 ** and assuming that the percentage of this total reached is the same as the percentage of the total 1966 non-Federal physician population reached (81.7 percent), the potential viewer population, based on all active physicians, increases from 223,583 to 260,160. In this case, the networking cost per potential viewer-hour ranges from 30 to 11 cents.

If one further assumes an average broadcast cost of \$175 per hour per station, total network broadcasting cost, excluding content preparation and production, for the 106-station network becomes \$96,648 for 1 hour and \$231,173 for 5 hours. This results in a cost per potential viewer-hour of 37 cents for 1 hour and 18 cents for 5 hours. Moving to the 52-station network, the unit cost per potential viewer-hour, including both networking and broadcasting, reduces to 22 cents for 1 hour and 11 cents for 5 hours.

The above costs are predicated on an assumed 15-mile average local distance. A comparison of cost per potential viewer-hour for other average distances is shown in Table 4 for both the 106- and the 52-station networks. These results demonstrate that the cost per potential viewer-hour changes only 10 percent at most for a 10-mile change in average local distance.

The fact that this assumption does not significantly alter the results is important, since it indicates that minor variations in telephone company practice with respect to local channel connections would not drastically alter the results. The importance of this stems

J. A. Dei Rossi, et al, A Telephone Access Biomedical Information Center, The Rand Corporation, RM-6205-NLM, forthcoming, Winter 1970.

Table 4

NETWORK AND BROADCAST COST PER POTENTIAL VIEWER-HOUR
(\$)

		our of adcasting	5 Hours of Broadcasting	
Local Channel Distance (mi)	106 Stations	52 Stations	106 Stations	52 Stations
5	.33	.19	.17	.10
10	.35	.21	.18	.11
15	.37	: 22	.18	.11
20	.39	.23	.18	.11
25	.41	.23	.18	.11

from the fact that these results have been calculated without verification by the telephone company of any of the specific configurations. Such verification was not sought because the purpose of this study is not to determine the precise cost of an in-place system, but rather to provide a reasonable assessment of the economic cost and potential benefit of ETV networking for the biomedical community. This provides a basis for planning and comparison with other means of information dissemination.

V. NETWORKING MEDICAL SCHOOLS

There are currently 97 accredited medical schools operating in the United States (excluding Hawaii and Puerto Rico).* However, some of the medical schools are located in the same cities and could be served by the same program operating centers; the 97 schools can be served by 72 program operating centers (POCs). A list of these POCs, ranked from largest to smallest potential population, together with the V and H coordinates for each is shown in Table 5. A full listing of the schools served by each of these centers and the total potential population reached by each is included in Appendix E. The cumulative frequency distribution of this population is plotted against the POCs in descending order of rank in Fig. 3.

Using the V and H coordinates for the POCs and the JOSS program in Appendix A, the minimum distance networks for all 72 POCs and for the largest (lowest rank) 5, 10, 15, 20 and 48 centers were calculated. The results of these calculations showing the total miles for each of the networks, the total population reached, and the percentage of the total are as follows:

Number of POCs	Number of Schools	Total Miles	Student Popu- lation Reached	Percent of Total Population
5	23	2,674	23,274	27.4
10	31	3,751	3. √ ,146	40.2
15	38	4,823	43,333	51.1
20	43	5,608	50,470	59.5
48	73	7,965	76,609	90.3
72	97	9,966	84,857	100.0

The printouts of these runs showing the links in each network, the intermediate numbers of miles, and student population reached is shown in Appendix F. A full map of the 72 program operating center

The Journal of the American Medical Association, Vol. 206, No. 9, List 92, Nov. 25, 1968. Five new schools have been added: the University of California at Davis, the University of California at San Diego, the University of Connecticut, Mt. Sinai in New York, and the University of Texas at San Antonio.

Table 5

VERTICAL AND HORIZONTAL COORDINATES FOR PROGRAM OPERATING CENTERS (POCs) SERVING ALL MEDICAL SCHOOLS, RANKED BY SIZE

	Rank	a	7:t.a.a
Program Operating Center	(largest to smallest)		dinates
	smalles!)	Vertical	Horizontal
New York City, N.Y.	1	4997	1406
Chicago, Ill.	2	5986	3426
Philadelphia, Pa.	3	5251	1458
Boston, Mass.	4	4422	12 59
Los Angeles, Calif.	5	9213	7878
Washington, D.C.	6	5622	1583
Minneapolis, Minn.	7	5777	4513
Ann Arbor, Mich.	8	5602	2918
Columbus, Ohio	2	5972	2555
New Orleans, La.	10	8483	2638
Seattle, Wash.	11	6336	8896
Baltimore, Md.	12	5510	1575
Indianapolis, Ind.	13	6272	2992
St. Louis, Mo.	14	6807	3482
San Francisco, Calif.	15	8492	8719
Augusta, Ga.	16	70 89	1674
Iowa City, Iowa	17	6313	39 72
Buffalo, N.Y.	18	5075	2326
Memphis, Tenn.	19	7471	3125
Madison, Wis.	20	5887	3796
Cleveland, Ohio	21	5574	2543
Dallas, Tex.	22	8436	4034
Detroit, Mich.	23	5536	2828
New Haven, Conn.	24	4792	1342
Kansas City, Kans.	25	7028	4212
Richmond, Va.	26	5906	1472
Albany, N.Y.	27	46 39	1629
Durham, N.C.	28	6331	1499
Omalia, Nebr.	29	6687	4595

Table 5--continued

Program Operating	Rank (largest to	Coordinates		
Center Center	smallest)	Vertical	Horizontal	
Denver, Colo.	30	7501	5899	
Atlanta, Ga.	31	7260	2083	
Milwaukee, Wis.	32	5788	3589	
Nashville, Tenn.	33	7010	2710	
Palo Alto, Calif.	34	8562	8668	
Miami, Fla.	35	8351	0527	
Galveston, Tex.	36	8985	3397	
Pittsburgh, Pa.	37	5621	2185	
Columbia, Mo.	38	6901	3841	
Chapel Hill, N.C.	39	6361	1511	
Oklahoma City, Okla.	40	7947	4373	
Cincinnati, Ohio	41	6263	2679	
E. Lansing, Mich.	42	5584	3081	
Birmingham, Ala.	43	7518	2446	
Houston, Tex.	44	8938	3536	
Portland, Oreg.	45	6799	8914	
Rochester, N.Y.	46	4913	2195	
Louisville, Ky.	47	6529	2772	
Charlottesville, Va.	48	5919	1683	
Syracuse, N.Y.	49	4798	1990	
Salt Lake City, Utah	50	7576	7065	
Lexington, Ky.	51	6459	2562	
Little Rock, Ark.	52	7721	3451	
Morgantown, W. Va.	53	5764	2083	
Jackson, Miss.	54	8035	2880	
Gainesville, Fla.	55	7838	1310	
Charleston, S.C.	56	7021	1281	
Loma Linda, Calif.	57	9181	7682	
Winston-Salem, N.C.	58	6440	1710	
Burlington, Vt.	59	4270	1808	

Table 5--continued

(largest to	Coordinates		
smallest)	Vertical	Horizontal	
60	5006	1409	
61	5420	5300	
62	9225	4062	
63	4315	1589	
64	4550	1219	
65	8549	5887	
66	9445	7657	
67	6443	4869	
68	8316	8623	
69	4687	1373	
70	5085	1434	
71	5337	1704	
72	9345	6485	
	60 61 62 63 64 65 66 67 68 69 70 71	60 5006 61 5420 62 9225 63 4315 64 4550 65 8549 66 9445 67 6443 68 8316 69 4687 70 5085 71 5337	

SOURCE: American Telephone and Telegraph Co., Long Lines Department, Administrative Rates and Tariffs, Tariff FCC No. 255, New York, 1966.

Fig. 3--Cumulative distribution of medical school population reached by 72 program operating centers

network is shown in Fig. 4. As with the ETV case, the subset of cities selected will not necessarily give the absolute minimum cost for a given audience size.

VI. MEDICAL SCHOOL NETWORKING COST

The same components of cost that applied to the costs of the ETV network apply to the medical school network. However, for the medical schools, the telephone company contract service (continuous-use) rates will be used. The contract service rates are monthly rates for everyday use for the stipulated number of hours per day. These rates are as follows:

- One way, black and white video signal (continuous use):
 - 1. Interexchange channel rate (per month): \$35 per mile for an 8-hour block of time plus \$2 per mile for each additional continuous hour up to 2 hours plus \$.25 per hour for each additional continuous hour on each occasion when more than 10 hours are used.
 - 2. Station connection charge (per station per month): \$500 plus \$35 per hour for the first 10 hours plus \$5 an hour for each additional consecutive hour on each occasion when more than 10 hours are used.
 - 3. Local channel rates (per station per month): \$175 plus \$20 per quarter mile for the first 8 miles plus \$35 per mile for miles in excess of 8.
- One way audio, 100- to 5000-cycle frequency service (continuous use):
 - 1. Interexchange channel rates (per month): \$4.50 per mile for an 8-hour block of time plus \$.25 per mile for the next continuous 3 hours plus \$.15 per mile for the next 5 continuous hours.
 - 2. Station connection charge (per station per month): \$55 for the first 8-hour block of time plus \$3 for the next 3 continuous hours plus \$2 for each additional hour.
 - 3. Local channel rate (per station per month): \$15 plus \$6.90 per mile.

As with the ETV case, these costs exclude the station broadcasting cost and the cost of production. In addition, for this case, the costs of constructing facilities for receiving and transmitting at each of the medical schools is also omitted.

- One way audio, 200- to 3000-cycle frequency service (continuous use):
 - 1. Interexchange channel rate (per month): \$1.50 per mile for the first hour plus \$.25 for each additional consecutive hour. Maximum charge: \$4 per mile.
 - 2. Station connection charge (per station per month): \$15 for the first hour plus \$1.50 for each additional hour.

 Maximum charge: \$20.
 - 3. Local channel rate (per month): \$5.90 per mile.

In estimating the medical school network cost, the same two major assumptions used for the ETV network were made: 1) that the average local channel distance was 15 miles, and 2) that the 100- to 5000-cycle frequency audio service would be used throughout the network.

There are a number of fixed costs (i.e., costs not sensitive to the number of broadcast hours) and the interexchange channel rates buy 8-hour blocks of time, so that the total monthly networking cost difference between utilizing the network 1 hour per day and 8 hours per day is quite minimal, averaging less than 4 percent. Further, given the fact that this network would require extensive investment cost in broadcasting and receiving equipment, one would expect it to be used extensively, if at all. Therefore, only the cost of 8 hours per day of continuous broadcast networking will be described.

The following figures show the total monthly networking cost for 8 hours per day for the various size networks discussed in the preceding section, assuming an average local distance of 15 miles: The costs for average local distances ranging from 5 to 25 miles, the average monthly cost per school, and the average monthly cost per student are

Number of	${\it Cost}$
Schools	(\$)
23	151,934
31	210,583
38	267,022
43	308,097
73	461,603
97	588,967

given in Appendix G. The JOSS program used to calculate these costs is also in this appendix.

As with ETV networking, these costs highlight the uneven distribution of the population shown in Fig. 3. However, in this case, the total cost saving in reaching 90 percent of the population, as opposed to 100 percent, is not as great. Approximately 90 percent of the population at the 73 largest schools (48 POCs) can be reached at a cost saving of 22 percent.

Another interesting feature of these results relates to unit costs: Total monthly cost per school and cost per student are highly insensitive to network size. The following are the average monthly continuous-networking costs per school for each size network for 8 hours per day:

Number of	${\it Cost}$
Schools	(\$)
23	6606
31	6793
38	7027
43	7165
73	6323
97	6072

From these figures, it can be seen that the average cost per school varies only by approximately 15 percent from the largest to the smallest network.

The following are the average monthly continuous-networking costs per student for 8 hours per day:

Number of Schools	Cost (\$)
23,274	6.53
34,146	6.17
43,333	
50,470	
76,609	
84,857	

These costs show essentially the same insensitivity of cost per student to network size.

If one assumes that there are an average of 20 school days per month, 8 hours per day of continuous networking provides 160 hours

per month of broadcast networking. Using this figure, the network cost per potential viewer-hour is less than 5 cents for every size network and varies at most, by 10 percent for a 10-mile change in local channel distance. These cost figures, like those for the ETV network, have not been verified with the telephone company for any of the specific configurations. They are intended for planning and comparison purposes only.

Appendix A

JOSS PROGRAM FOR CALCULATING MINIMAL WEIGHTED SPANNING TREE

```
1.100 Page.
1.200 Type part 2.
1.300 Stop.
1.400 To part 5.
2.200
           MINIMAL WEIGHTED SPANNING TREE
2,210
2.220 This routine selects a minimal tree connecting N points.
        The N points are given by x and y coordinates.
        Weights are the straight-line distances between points.
2.240
2.250
2.260 Three rules are followed in constructing the tree:
2.262
          NO CIRCUITS are allowed (circuit = both endpoints already in tree)
2.264
          TREE CONNECTED (unconnectivity = neither endpoint already in tree)
2.266
          SHORTEST REMAINING ROUTE (minimum hyponenuse-distance)
2.269
2.270
          FCC TARIFF 255 MODELED IN THIS VERSION (V AND H COORDINATES)
2.299
2.300 LIST OF VARIABLES:
2.310
2.320 n(1) = the number of points in the whole list.
2.324 n(3) = the number of points in the list to be connected this iteration.
2.326 n(4) = the number of arcs to be drawn in this tree = n(3) - 1.
2.328 n(5) = points as sources = entries in list t = current arc number.
2.330 n(6) = points as targets = entries in list u.
2.339 m(i) = number of doctors located at the ith point.
2.340 x(i) = x-coordinate of the ith point.
2.34? y(i) = y-coordinate of the ith point.
2.400 t(i) = list of sources (points already in the tree).
2.404 u(i) = list of targets (points not yet in the tree).
2.520 c(1) = current tree sum,
                                total distance (total cost).
2.530 c(2) = current minimal arc, distance (cost).
2.540 c(3) = current minimal arc, square of distance.
2.542 c(4) = trial arc.
                                  square of distance.
2.550 P(1) = source of current minimal arc.
2.552 P(2) = target of current minimal arc.
2.554 Q(2) = marker one past position of P(2) in list u = condensation point.
2.560 X(i) = x-coordinate of P(i).
2.562 Y(i) = y-coordinate of P(i).
5.100 Type "SET VALUE OF n(1)".
5.200 Type "SET VALUES OF x(i), y(i), and m(i) for i=1 to n(1)".
5.300 Stop.
5.400 To part 6.
6.100 Demand n(3) as "POINTS IN THIS SUB-TREE".
6.200 Do part 7.
6.300 To step 6.100.
7.200 **** (FIND A TREE FOR n(3) POINTS).
7.201 Page.
7.202 Type form 10.
```



```
7.203 Line.
7.204 Do part 26.
7.206 Set c(1) = 0.
7.207 Set M(1) = m(1).
7.208 Set n(4) = n(3) - 1.
7.210 Do part 8 for n(5) = 1(1)n(4).
8.100 *** (DRAW AN ARC).
8.200 Set c(3) = 9 \cdot 10 * 10.
8.330 Set n(6) = n(3) - n(5).
8.338
8.339 *** (EXAMINE ALL SOURCE POINTS).
8.340 Do part 9 for q(1) = 1(1)n(5).
8.349
8.440 *** (OUTPUT MINIMAL ARC AND UPDATE LISTS t AND u).
8.450 Set c(2) = sqrt(c(3)/10).
8.460 Set c(1) = c(1) + c(2).
8.470 Set M(2) = m(P(2)).
8.480 Set M(1) = M(1) + M(2).
8.840 Type n(5),P(1),P(2),c(2),c(1),M(2),M(1) in form 11.
8.910 Set t(n(5)+1) = P(2).
8.920 Do part 37 for i = Q(2)(1)n(6) if n(6) \ge Q(2).
8.930 \text{ Set u}(n(6)) = 0.
9.300 *** (EXAMINE ALL TARGET POINTS).
9.340 Do part 10 for q(2) = 1(1)n(6).
10.500 **** (TEST AND SET LOW VALUE).
10.540 Set c(4) = [x(t(q(1)))-x(u(q(2)))]*2 + [y(t(q(1)))-y(u(q(2)))]*2.
10.580 Done if c(4) \ge c(3).
10.599
10.610 Set c(3) = c(4).
10.620 Set P(1) = t(q(1)).
10.630 Set P(2) = u(q(2)).
10.670 Set Q(2) = q(2)+1.
26.100 *** (INITIALIZE LISTS).
26.120 \text{ Set } t(1) = 1.
26.140 \text{ Set } u(n(1)) = 0.
26.200 Do part 36 for i = 2(1)n(1).
36.100 \text{ Set u(i-1)} = i.
36.200 \text{ Set t(i)} = 0.
37.020 *** (CONDENSE LIST u).
37.100 \text{ Set } u(i-1) = u(i).
Form 10:
                                                           MD'S
                                             TOT MILES
                                  MILES
                                                                  TOT MD'S
                       TO
    LINE
              FROM
Form 11:
```

Appendix B

DISTRIBUTION OF NON-FEDERAL PHYSICIANS IN STANDARD METROPOLITAN

STATISTICAL AREAS (SMSAs) SERVED BY ETV

	Cities Served by an ETV Station ^a	Physicians in SMSA	Physicians Served per ETV Station
1.	New York City, New York New York City, N.Y. Newburgh, N.Y. Poughkeepsie, N.Y. Jersey City, N.J. Newark, N.J. New Brunswick, N.J. Paterson, N.J. Total	29,388 268 390 790 3,214 690 1,779	36,519
2.	Los Angeles, California Los Angeles, Calif. Anaheim, Calif. Ventura, Calif. Total	13,068 1,706 399	15,173
3.	Chicago, Illinois Chicago, Ill. Kankakee, Ill. Total	11,043 117	11,160
4.	Philadelphia, Pennsylvania Philadelphia, Pa. Trenton, N.J. Vineland, N.J. Total	8,856 610 104	9,570
5.	Boston, Massachusetts Boston, Mass. Brockton, Mass. New Bedford, Mass. Worcester, Mass. Total	8,041 264 427 788	9,520
6.	San Francisco, California San Francisco, Calif. Santa Rosa, Calif. Vallejo, Calif. Total	7,127 295 369	7,791
7.	Detroit, Michigan Detroit, Mich. Ann Arbor, Mich. Port Huron, Mich. Total	5,538 1,078 89	6,705

	Cities Served by an ETV Station ^a	Physicians in SMSA	Physicians Served per ETV Station
8.	Cleveland, Ohio Cleveland, Ohio Akron, Ohio Canton, Ohio Lorain, Ohio Sandusky, Ohio Total	3,958 841 377 217 72	5,465
9.	Washington, D.C. Washington, D.C. Total	4,977	4,977
10.	Atlanta, Georgia Georgia: statewide ETV Chattanooga, Tenn. Total	4,478 385	4,863
11.	Pittsburgh, Pennsylvania Pittsburgh, Pa. Johnstown, Pa. New Castle, Pa. Sharon, Pa. Steubenville, Ohio Youngstown, Ohio Wheeling, W. Va. Total	3,352 252 81 113 121 626 225	4,770
12.	Baltimore, Maryland Baltimore, Md. Total	4,147	4,147
13.	St. Paul, Minnesota Minneapolis-St. Paul, Minn. Rochester, Minn. St. Cloud, Minn. Eau Claire, Wis. Total	2,748 1,091 77 102	4,018
14.	Miami, Florida Miami, Fla. Fort Lauderdale, Fla. W. Palm Beach, Fla. Total	2,501 702 461	3,664
15.	St. Louis, Missouri St. Louis, Mo. Total	3,374	3,374
16.	Louisville, Kentucky Kentucky: statewide ETV Portsmouth, Ohio Total	3,129 71	3,200

	Cities Served by an ETV Station ^a	Physicians in SMSA	Physicians Served per ETV Station
17.	Houston, Texas Houston, Tex. Galveston, Tex. Total	2,611 454	3,065
18.	Birmingham, Alabama Alabama: statewide ETV Biloxi, Miss. Total	2,867 119	2,986
19.	Dallas, Texas Dallas, Tex. Fort Worth, Tex. Total	2,054 652	2,706
20.	Seattle, Washington Seattle, Wash. Bremerton, Wash. Total	2,473 86	2,559
21.	Milwaukee, Wisconsin Milwaukee, Wis. Fond Du Lac, Wis. Kenosha, Wis. Manitowoc, Wis. Oshkosh, Wis. Racine, Wis. Sheboygan, Wis.	1,956 84 78 60 106 134 80	2,498
22.	Hartford, Connecticut Hartford, Conn. Middletown, Conn. Springfield, Mass. Total	'1,524 165 713	2,402
23.	Denver, Colorado Denver, Colo. Total	2,388	2,388
24.	New Orleans, Louisiana New Orleans, La. Baton Rouge, La. Total	2,056 320	2,376
25.	San Jose, California San Jose, Calif. Modesto, Calif. Total	2,147 228	2,375
26.	Buffalo, New York Buffalo, N.T. Total	2,254	2,254

Cities Served by an ETV Stationa	Physicians in SMSA	Physicians Serve per ETV Station
Cincinnati, Ohio Cincinnati, Ohio Total	2,143	2,143
Charleston, South Carolina So. Carolina: statewide ETV Total	2,105	2,105
East Lansing, Michigan Battle Creek, Mich. Flint, Mich. Grand Rapids, Mich. Jackson, Mich. Kalamazoo, Mich. Lansing, Mich.	134 496 614 120 299 351	
Total Chapel Hill, North Carolina Burlington, N.C. Durham, N.C. Fayetteville, N.C. Greensboro, N.C. Raleigh, N.C. Rocky Mount, N.C. Winston-Salem, N.C.	81 705 76 294 254 78 430	1,918
Kansas City, Missouri Kansas City, Mo. St. Joseph, Mo. Total	1,758 97	1,855
San Diego, California San Diego, Calif. Total	1,835	1,835
New Haven, Connecticut New Haven, Conn. Total	1,708	1,708
Bloomington, Indiana Indianapolis, Ind. Terre Haute, Ind. Total	1,550 152	1,702
Owaha, Nebraska Nebraska: statewide ETV Total	1,670	1,670
Portland, Oregon Portland, Oreg. Total	1,668	1,668

	Cities Served by an ETV Station ^a	Physicians in SMSA	Physicians Served per ETV Station
	Tampa, Florida Tampa, Fla. Lakeland, Fla. Sarasota, Fla. Total	1,184 249 230	1,663
•	Columbus, Ohio Columbus, Ohio Springfield, Ohio Total	1,503 119	1,622
]	Rochester, New York Rochester, N.Y. Total	1,617	1,617
-	Syracuse, New York Syracuse, N.Y. Auburn, N.Y. Utica, N.Y. Total	1,086 81 421	1,588
]	Hershey, Pennsylvania Harrisburg, Pa. Lancaster, Pa. Lebanon, Pa. Reading, Pa. York, Pa. Total	530 303 84 355 280	1,552
	Schenectady, New York Albany, N.Y. Pittsfield, Mass. Total	1,296 227	1,523
	San Bernardino, California San Bernardino, Calif. Total	1,422	1,422
-	Sacramento, California Sacramento, Calif. Stockton, Calif. Total	1,043 362	1,405
]	Bridgeport, Connecticut Bridgeport, Conn. Total	1,321	1,321
4	Austin, Texas Austin-San Antonio, Tex. Total	1,307	1,307
1	Memphis, Tennessee Memphis, Tenn. Total	1,268	1,268

Cities Served by an ETV Stationa	Physicians in SMSA	Physicians Serve per ETV Station
Providence, Rhode Island Providence, R.I. Total	1,266	1,266
Phoenix, Arizona Phoenix, Ariz. Total	1,232	1,232
Richmond, Virginia Richmond, Va. Petersburg, Va. Total	1,099 115	1,214
Oklahoma City, Oklahoma Oklahoma City, Okla. Lawton, Okla. Total	1,061 48	1,109
Oxford, Ohio Dayton, Ohio Hamilton, Ohio Richmond, Ind. Total	781 199 83	1,063
Nashville, Tennessee Nashville, Tenn. Total	1,024	1,024
Madison, Wisconsin Madison, Wis. Beloit, Wis. Total	834 124	958
Salt Lake City, Utah Salt Lake City, Utah Total	897	897
Toledo, Ohio Toledo, Ohio Total	853	853
Sneedville, Tennessee Knoxville, Tenn. Bristol, Va. Total	533 284	817
Norfolk, Virginia Norfolk, Va. Newport News, Va. Total	581 228	809
Orlando, Florida Orlando, Fla. Daytona Beach, Fla. Total	510 213	723

Cities Served by an ETV Station a	Physicians in SMSA	Physicians Served per ETV Station
Conway, Arkansas Little Rock, Ark. Pine Bluff, Ark. Total	598 5 9	657
Allentown, Pennsylvania Allentown, Pa. Total	646	646
Wilmington, Delaware Wilmington, Del. Total	622	622
Scranton, Pennsylvania Scranton-Wilkes-Barre, Pa. Total	617	617
St. John, Indiana Gary, Ind. Michigan City, Ind. Total	470 108	578
Jacksonville, Florida Jacksonville, Fla. Total	576	576
Huntington, W. Virginia Huntington, W. Va. Charleston, W. Va. Total	251 322	573
Charlotte, North Carolina Charlotte, N.C. Gastonia, N.C. Total	449 87	536
Jackson, Mississippi Jackson, Miss. Total	508	508
Tucson, Arizona Tucson, Ariz. Total	5 02	502
Binghamton, New York Binghamton, N.Y. Elmira, N.Y. Total	387 114	501
Urbana, Illinois Bloomington, Ill. Champaign, Ill. Danville, Ill.	86 192 82	
Decscur, Ill. Tocal		499

Cities Served by an ETV Stationa	Physicians in SMSA	Physicians Served per ETV Station
Tulsa, Oklahoma Tulsa, Okla. Total	477	477
Corvallis, Oregon Eugene, Oreg. Salem, Oreg. Total	2 2 7 2 3 7	464
Erie, Pennsylvania Erie, Pa. Ashtabula, Ohio Jamestown, N.Y. Total	264 61 134	459
Albuquerque, New Mexico Albuquerque, N. Mex. Total	443	443
Roanoke, Virginia Roanoke, Va. Lynchburg, Va. Total	274 155	429
Spokane, Washington Spokane, Wash. Total	416	416
Pueblo, Colorado Pueblo, Colo. Colorado Springs, Colo. Total	167 233	400
Augusta, Maine Lewiston, Maine Portland, Maine Total	106 293	399
Tacoma, Washington Tacoma, Wash. Total	393	393
Gainesville, Florida Gainesville, Fla. Total	387	387
Des Moines, Iowa Des Moines, Iowa Total	375	375
Burlington, Vermont Burlington, Vt. Total	336	336

	Cities Served by an ETV Station ^a	Physicians in SMSA	Physicians Served per ETV Station
84.	Topeka, Kansas Topeka, Kans. Total	325	325
85.	Duluth, Minnesota Duluth, Minn. Total	308	308
86.	Mt. Pleasant, Michigan Bay City, Mich. Saginaw, Mich. Total	90 205	295
87.	Norwich, Connecticut New London, Conn. Total	280	280
88.	Vincennes, Indiana Evansville, Ind. Total	269	269
89.	Fargo, North Dakota Fargo, N.D. Grand Forks, N.D. Total	135 99	234
90.	Durham, New Hampshire Manchester, N.H. Total	220	220
91.	Asheville, North Carolina Asheville, N.C. Total	207	207
92.	Las Vegas, Nevada Las Vegas, Nev. Total	189	189
93.	Pensacola, Florida Pensacola, Fla. Total	182	182
94.	Lubbock, Texas Lubbock, Tex. Total	180	180
95.	Athens, Ohio Zanesville, Ohio Parkersburg, W. Va. Total	80 70	150
96.	Ogden, Utah Ogden, Utah Total	144	144

Cities Served by an ETV Station ^{aa}	Physicians in SMSA	Physicians Served per ETV Station
Concord, North Carolina Kannapolis, N.C. Total	136	136
Bowling Green, Ohio Lima, Ohio Total	129	129
Yakima, Washington Yakima, Wash. Total	128	128
Vermillion, South Dakota Sioux City, Iowa Total	127	127
Brookings, South Dakota Sioux Falls, S.D. Total	120	120
Provo, Utah Provo, Utah Total	118	118
Orono, Maine Bangor, Maine Total	115	115
Tallahassee, Florida Tallahassee, Fla. Total	99	99
Newark, Ohio Newark, Ohio Total	73	73
Rapid City, South Dakota Rapid City, S.D. Total	63	63

^aThe ETV station is located in the first city listed in each group; other cities are those within range of the ETV station.

Appendix C

JOSS PRINTOUTS FOR MINIMUM TREE ETV NETWORKS

POINTS	TN	THIE	SUB-TREE	=	5
	114		71110-1 KINN	-	•

LINE	FROM	TO	MILES	TOT MILES	MD*S	TOT MD'S
1	1	4	81.99	81.99	9570	46089
2	1	5	188.49	270.47	9520	55609
3	4	3	664.32	934.80	11160	66769
4	3	2	1738.79	2673.59	15173	81942

POINTS IN THIS SUB-TREE = 10

LINE	FROM	то	MILES	TOT MILES	MD 'S	TOT MD'S
1	1	4	81.99	81.99	95 7 C	46089
2	4	9	123.80	205.79	4977	\$ 1066
3	1	5	188.49	394.28	9520	60586
4	9	8	303.96	698.23	5465	66051
5	8	7	90.92	789.16	6705	72756
6	7	3	236,67	1025.82	11160	83916
7	9	10	541.58	1567.40	4863	88779
8	3	2	1738.79	3306.18	15173	103952
9	2	6	350.30	3656.49	7791	111743

LINE	FROM	TO	MILES	TOT MILES	MD'S	TOT MD'S
1	1	4	81.99	81.99	9570	46089
2	4	12	89.87	171.86	4147	50236
3	12	9	35.51	207.37	4977	55213
4	1	5	188.49	395.85	9520	64733
5	9	11	190.37	586.22	4770	69503
6	11	8	114.18	700.41	5465	74968
7	8	7	90.92	791.33	6705	81673
8	7	3	236.67	1027.99	11160	92833
9	3	15	260.23	1288.22	3374	96207
10	3	13	350.04	1638.25	4018	100225
11	15	10	465.02	2103.27	4863	105088
12	10	14	600.95	2704.22	3664	108752
13	13	2	1520.83	4225.06	15173	123925
14	2	6	350.30	4575.36	7791	131716

LINE	FROM	TO	MILES	TOT MILES	MD *S	TOT MD'S
1	1	4	81.99	81.99	9570	46089
2	4	12	89.87	171.86	4147	50236
3	12	9	35.51	207.37	4977	55213
4	1	5	188.49	395.85	9520	64733
5	9	11	190.37	586 . 22	4770	69503
6	11	8	114.18	700.41	5465	74968
7	8	7	90.92	791.33	6705	81673
8	7	3	236.67	1027.99	11160	92833
9	3	15	260.23	1288.22	3374	96207
10	15	16	241.12	1529.34	3200	99407
11	16	10	317.66	1847.00	4863	10427 0
12	10	18	140.83	1987.83	2986	107256
13	3	13	350.04	2337.87	4018	111274
14	15	19	543.91	2881.77	2706	113980
15	19	17	223.61	3105.38	3065	117045
16	10	14	600.95	3706.33	3664	120709
17	19	2	1240.16	4946.49	15173	135882
18	2	6	350.30	5296.80	7791	143673
19	6	20	684.08	5980.88	2559	146232

1 1 44 51,43 51,43 1321 37840 2 44 33 16,51 67,94 1708 39548 3 33 22 34,52 102,56 2402 41950 4 22 47 65,18 167,74 1266 43216 5 47 5 41,57 209,31 9520 52736 6 1 4 81,99 291,36 9570 6236 7 4 40 82,41 373,71 1552 63858 8 40 12 68,24 441,95 4147 68005 9 12 9 35,51 477,46 4977 72982 10 22 41 97,25 574,71 1528 76093 11 41 39 113,04 687,75 1588 76093 12 39 38 74,33 762,08 1617 77710	LINE	FROM	то	MILES	TOT MILES	MD'S	TOT MD S
2 44 33 16,51 67,94 1708 39548 3 33 22 34,62 102,56 2402 441950 4 22 47 65,18 167,74 1266 42216 5 47 5 41,57 209,31 9520 52736 6 1 4 81,99 291,37 9570 62306 7 4 40 82,41 373,71 1552 63858 8 40 12 68,24 441,95 4147 68005 9 12 9 35,51 477,46 4977 72982 10 22 41 97.25 574,71 1523 74505 11 41 39 113,04 687,75 1588 76093 12 39 38 74,33 762,08 1617 77710 13 38 26 65,88 827,96 2254 79964	1	1	44	51.43	51.43	1 321	37840
3 33 22 34,62 102,56 2402 41950 4 22 47 65,18 167,74 1266 43216 5 47 5 41,57 209,31 9520 52736 6 1 4 81,99 291,30 9570 62306 7 4 40 82,41 373,71 1552 63858 8 40 12 68,24 441,95 4147 68005 9 12 9 35,51 477,46 4977 72982 10 22 41 97,25 574,71 1523 74505 11 41 39 113,04 687,75 1588 76093 12 39 38 74,33 762,08 1617 77710 13 38 26 65,88 827,96 2254 79964 14 26 8 172,07 1000,03 5465 85429 15 8 7 90,92 1090,96 6705 92134 16 7 29 81,43 1172,39 2014 94148 17 8 11 114,18 1286,57 4770 98918 18 29 3 167,52 1454,09 11160 110078 19 3 21 81,10 1535,19 2498 112576 20 3 34 195,22 1730,42 1702 114278 21 34 16 75,82 1806,24 3200 117478 22 16 27 89,11 1895,35 2143 119621 23 27 51 31,43 1926,78 1063 120684 24 16 52 153,36 2080,14 1024 121708 25 52 18 181,04 2261,19 2986 124694 26 18 10 140,83 2402,02 4863 129557 27 16 49 182,24 2584,25 1117 30674 28 52 46 196,15 2780,40 1268 131942 29 34 15 200,03 2980,43 3374 135316 30 9 30 234,80 3215,23 1918 137234 33 31 35 164,09 3838,74,62 1855 141194 33 31 35 164,09 3838,74,62 1855 141194 33 31 35 164,09 3838,74,62 1855 141194 34 35 13 238,38 3674,62 1855 141194 35 36 19 188,16 4611,67 2706 14268 36 43 73,94 7563,11 1405 19533	2						
4 22 47 65,18 167,74 1266 4216 5 47 5 41,57 209,31 9520 52736 6 1 4 81,99 291,30 9570 62306 7 4 40 82,41 373,71 1552 63858 8 40 12 68,24 441,95 4147 68005 9 12 9 35,51 477,46 4977 72982 10 22 41 97.25 574,71 1523 74505 11 41 39 113,04 587,75 1588 76093 12 39 38 74,33 762,08 61777710 13 38 26 65,88 827,96 2254 79964 14 26 8 172,07 1000,03 5465 85429 15 8 7 9,92 1090,96 6705 92134 17 8	3				-		
5 47 5 41.57 209.31 9520 52736 6 1 4 81.99 291.30 9570 62306 7 4 40 82.41 373.71 1552 63858 8 40 12 68.24 441.95 4147 68005 9 12 9 35.51 477.46 4977 72982 10 22 41 97.25 574.71 1523 74505 11 41 39 113.04 687.75 1588 76093 12 39 38 74.33 762.08 1617 77710 13 38 26 65.88 827.96 2254 79964 14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.99 2014 94148							
6 1 4 4 81.99 291.30 9570 62306 7 4 400 82.41 373.71 1552 63858 8 40 12 68.24 441.95 4147 68005 9 12 9 35.51 477.46 4977 72982 10 22 41 97.25 574.71 1523 74505 11 41 39 113.04 687.75 1588 76093 12 39 38 74.33 762.08 1617 77710 13 38 26 65.88 827.96 2254 79964 14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 15 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 14199 33 31 35 164.03 3838.72 1670 142864 34 35 13 288.93 4127.65 4018 14682 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 156697 37 19 45 180.33 4792.00 1307 152004 48 32 348 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 166227 45 32 42 597.83 7187.12 1835 166227 46 42 2 54.69 7338.85 15173 184822 47 48 52 5 6 42.76 7689.17 7791 194988 49 6 43 77.94 7763.11 1405 196393							
7				— -			
8 40 12 68.24 441.95 4147 68005 9 12 9 35.51 477.46 4977 72982 10 22 41 97.25 574.71 1523 74505 11 41 39 113.04 687.75 1588 76093 12 39 38 74.33 762.08 1617 777710 13 38 26 65.88 827.96 2254 79964 14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 18 12 114.18 1286.57 4770 98911 1278<							
9 12 9 35.51 477.46 4977 7292 10 22 41 97.25 574.71 1523 74505 11 41 39 113.04 687.75 1588 76093 12 39 38 74.33 762.08 1617 77710 13 38 26 65.88 827.96 2254 79964 14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 9891 18 29 3 167.52 1454.90 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 <td>8</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	8			-			
10		12					
11 41 39 113.04 687.75 1588 76093 12 39 38 74.33 762.08 1617 77710 13 38 26 65.88 827.96 2254 79964 14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 170278 114278 21 34 16 75.82 1806.24 200 117478 22 16 27 89.11 1895.35 2143 1	10						
12 39 38 74.33 762.08 1617 77710 13 38 26 65.88 827.96 2254 79964 14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1533.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 1	11		39		_		
13 38 26 65.88 827.96 2254 79964 14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>				-			
14 26 8 172.07 1000.03 5465 85429 15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 9148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 12708 25 52 18 181.04 2261.19 2986 <	13						
15 8 7 90.92 1090.96 6705 92134 16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986	14						
16 7 29 81.43 1172.39 2014 94148 17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863	15						
17 8 11 114.18 1286.57 4770 98918 18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2984.33 3374	16	7	29				
18 29 3 167.52 1454.09 11160 110078 19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 191		8			•		
19 3 21 81.10 1535.19 2498 112576 20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.03 3838.72 1670 142864 34 35 13 298.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 16277 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	18						
20 3 34 195.22 1730.42 1702 114278 21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1	19						
21 34 16 75.82 1806.24 3200 117478 22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855	20						
22 16 27 89.11 1895.35 2143 119621 23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.03 3838.72 1670 142864 34 35 13 298.93 4127.65 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
23 27 51 31.43 1926.78 1063 120684 24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.09 3838.72 1670 142864 34 35 13 298.93 4127.65 40							
24 16 52 153.36 2080.14 1024 121708 25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.09 3838.72 1670 142864 34 35 13 298.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1							
25 52 18 181.04 2261.19 2986 124694 26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.09 3838.72 1670 142864 34 35 13 298.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2							
26 18 10 140.83 2402.02 4863 129557 27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.09 3838.72 1670 142864 34 35 13 298.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 <	25						
27 16 49 182.24 2584.25 1117 130674 28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.03 3838.72 1670 142864 34 35 13 258.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 <							
28 52 46 196.15 2780.40 1268 131942 29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.03 3838.72 1670 142864 34 35 13 286.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.90 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 <	27	16					
29 34 15 200.03 2980.43 3374 135316 30 9 30 234.80 3215.23 1918 137234 31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.09 3838.72 1670 142864 34 35 13 298.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 <	28		46	196.15	2780.40		131942
31 30 28 221.02 3436.25 2105 139339 32 15 31 238.38 3674.62 1855 141194 33 31 35 164.03 3838.72 1670 142864 34 35 13 288.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28	29		15	200.03	2980.43		135316
32 15 31 238.38 3674.62 1855 141194 33 31 35 164.09 3838.72 1670 142864 34 35 13 288.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 45 32 42 97.04 7284.16 <	30	9	30	234.80	3215.23	1918	137234
33 31 35 164.09 3838.72 1670 142864 34 35 13 288.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 <	31	30	28	221.02	3436.25	2105	139339
34 35 13 238.93 4127.65 4018 146882 35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 <td< td=""><td>32</td><td>15</td><td>31</td><td>238.38</td><td>3674.62</td><td>1855</td><td>141194</td></td<>	32	15	31	238.38	3674.62	1855	141194
35 31 50 295.85 4423.51 1109 147991 36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 <td< td=""><td>33</td><td>31</td><td>35</td><td>164.03</td><td>3838.72</td><td>1670</td><td>142864</td></td<>	33	31	35	164.03	3838.72	1670	142864
36 50 19 188.16 4611.67 2706 150697 37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7	34	35	13	288.93	4127.65	4018	146882
37 19 45 180.33 4792.00 1307 152004 38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 140	35	31	50	295.85	4423.51	1109	147991
38 45 17 147.00 4939.00 3065 155069 39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	36	50	19	188.16	4611.67	2706	150697
39 18 24 311.14 5250.14 2376 157445 40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	37	19	45	180.33	4792.00	1307	152004
40 28 37 366.75 5616.89 1663 159108 41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	38	45	17	147.00	4939.00	3065	155069
41 37 14 203.98 5820.87 3664 162772 42 35 23 486.11 6306.98 2368 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	39	18	24	311.14	5250.14	2376	157445
42 35 23 486.11 6306.98 2388 165160 43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	40	28	37	366.75	5616.89	1663	159108
43 23 48 582.30 6889.28 1232 166392 44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	41	37	14	203.98	5820.87	3664	162772
44 48 32 297.83 7187.12 1835 168227 45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	42	35	23	486.11	6306.98	2388	165160
45 32 42 97.04 7284.16 1422 169649 46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	43	23	48	582.30	6889.28	1232	166392
46 42 2 54.69 7338.85 15173 184822 47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	44	48	32	297.83	7187.12	1835	168227
47 2 25 307.57 7646.42 2375 187197 48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	45	32	42	97.04	7284.16	1422	169649
48 25 6 42.76 7689.17 7791 194988 49 6 43 73.94 7763.11 1405 196393	46	42	2	54.69	7338.85	15173	184822
49 6 43 73.94 7763.11 1405 196393	47	2		307.57	7646.42	2375	187197
• • • • • • • • • • • • • • • • • • • •					7689.17	7791	194988
50 43 36 487.50 8250.61 1668 198061				73.94	7763.11		196393
	50	43	36	487.50	8250.61	1668	198061

POINTS	IN	THIS	SUB-TREE	=	106

LOINIS IN	THIS SUD-I	TOD T				
LINE	FROM	TO	MILES	TOT MILES	MD'S	TOT MD'S
1	1	45	51.43	51.43	1321	37840
2	45	33	16.51	67.94	1708	39548
3	33	22	34.62	102,56	2402	41950
4	22	87	35.30	137.86	280	42230
5	87	48	39.82	177.68	1266	43496
6	48	5	41.57	219.26	9520	53016
7	5	90	54.57	273.83	220	53236
8	1	61	77.85	351.68	646	53882
9	61	4	48.33	400.00	9570	63452
10	4	62	25.21	425.21	622	64074
11	61	63	56.81	482.02	617	64691
12	63	70	49.68	531.71	501	65192
13	62	12	64.77	596.48	4147	69339
14	12	9	35.51	631.99	4977	74316
15	61	41	65.88	697.87	1552	75868
	70	40	66.66	764.53	1588	77456
16 17	40	39	74.33	838.86	1617	79073
18	39	26	65.88	904.74	2254	81327
19	26	74	80.97	985.71	459	81786
20	74	8	92.37	1078.08	5465	87251
21	8	7	90.92	1169.00	6705	93956
22	?	5 7	53.19	1222.19	853	94809
23	57	98	19.64	1241.82	129	94938
24	7	29	81.43	1323.26	2014	96952
25	29	86	60.78	1384.04	295	97247
26	9	50	96.42	1480.46	1214	69 461
27	50	58	78.83	1559.29	809	99270
28	22	42	97.25	1656.54	1523	100793
29	90	79	100.03	1756.57	399	101192
30		103	67.13	1823.70	115	101307
31		38	102.60	1926.30	1622	102929
32		105	32.01	1958.31	73	103002
33		95	52.27	2010.58	150	103152
34		66	65.90	2076.48	573	103725
35		53	97.69	2174.17	1063	104788
36		27	31.43	2205.61	2143	106931
37		16	89.11	2294.72	3200	110131
38		34	75.82	2370.54	1702	111833
39		88	62.33	2432,86	269	112102
40		71	105.64	2538.51	499	112601
41		64	99.54	2638.05	578	113179
42		3	31.09	2669.14	11160	124339
43	-		81.10	2750.24	2498	126837
44			72.56	2822.80	958	127795
45			114.18	2936.98	4770	132565
46			121.07	3058.04	336	132901
9 47			136.10	3194.14	1117	134018
ERIC Full Text Provided by ERIC						
Pull ext Provided by ERIC						

48	51	91	74.37	3268.51	207	134225
49	91	67	100.14	3368.65	536	134761
50	67	97	18.70	3387.35	136	134897
51	97	30	92.64	3479.99	1918	136815
52	30	76	105.51	3585.50	429	137244
53	88	15	144.21	3729.71	3374	140518
54	16	54	153.36	3883.07	1024	141642
55	91	10	163.66	4046.73	4863	146505
56	10	18	140.83	4187.56	2986	149491
57	67	28	175.04	4362.60	2105	151596
5 <i>7</i>	54	47	196.15	4558.75	1268	152864
5 9	47	60	136.20	4694.95	657	153521
60	47	68	194.45	4889.40	508	154029
61	68	24	161.02	5050.42	2376	156405
62	24	93	174.57	5224.99	182	156587
63	93	104	175.26	5400.25	99	156686
		81	128.98	5529.23	387	157073
64 65	104 81	65	60.73	5589.95	576	157649
65 66					723	158372
66 67	81	59 27	95.55	5685.50		
67	59 50	37	78.37	5763 . 87	1663	160035
68	59 60	14	202.89	5966.76	3664	163699
69	60	72	210.65	6177.41	477	164176
70	72	52	98.79	6276.20	1109	165285
71	52	19	188.16	6464.36	2706	167991
72	19	46	180.33	6644.70	1307	169298
73	46	17	147.00	6791.70	3065	172363
74	72	84	198.70	6990.40	325	172688
75	84	31	58.69	7049.09	1855	174543
76	84	35	151.66	7200.75	1670	176213
77	35	100	116.02	7316.77	127	176340
78	100	101	104.50	7421.27	120	176460
79	35	82	122.09	7543.36	375	176835
80	101	89	175.58	7718.94	237	177072
81	101	13	182.92	7901.86	4018	181090
82	13	85	134.50	8036.36	308	181398
83	52	94	277.62	8313.98	180	181578
84	94	75	292.92	8606.90	443	182021
85	75	78	245.29	8852.19	400	182421
86	78	23	103.17	8955.37	2388	184809
87	23	106	310.85	9266.22	63	184872
88	75	69	314.84	9581.06	502	185374
89	69	49	106.43	9687.48	1232	186606
90	149	92	257.00	9944.48	189	186795
01	92	43	186.13	10130.61	1422	188217
92	43	2	54.69	10185.30	15173	203390
93	43	32	97.04	10282.34	1835	205225
94	2	25	307.57	10589.91	2375	207600
95	25	6	42.76	10632,67	7791	215391
96	5	44	73.94	10705.60	1405	216796
97	92	102	336.79	11043.39	118	216914
98	102	56	37.81	11081.20	897	217811
99	56	96	32,31	11113.51	144	217955
1.00	44	73	427.54	11541.05	464	218419
101	73	36	72.81	11613.86	1668	220087
10.2	36	80	121.46	11735.32	393	220480
103	80	20	25.18	11760.50	2559	223039
104	80	टब	104.14	11864.64	128	223167

Appendix D

JOSS PROGRAM AND PRINTOUTS OF COST FOR VARIOUS ETV NETWORK SIZES

This Appendix contains the JOSS program for estimating ETV networking cost and the printouts of the cost estimates for various network sizes. The program demands as inputs:

M as the miles of interchange channel.

N as number of ETV stations.

Using these inputs and the rates described in Section IV, the following variables are calculated for 1, 2, 3, 4, and 5 hours of broadcasting, and 5, 10, 15, 20, and 25 miles of local channel service.

B as video station connection cost.

G as audio station connection cost.

A as video interchange channel cost.

F as audio interchange channel cost.

D as video local channel cost.

E as audio local channel cost.

 $\mathtt{C}(i,j,1)$ as total cost for i hours and j local channel miles.

 $\mathtt{C}(i,j,2)$ as cost per mile for i hours and j local channel miles.

C(i,j,3) as cost per hour for i hours and j local channel miles.

JOSS PROGRAM FOR CALCULATING ETV NETWORKING COST

1.01 Page.

Form 6:

1

```
1.011 Type form 9,_,_.
1.02 Demand M as "Miles of Interchange Channel".
1.03 Demand N as "Number of ETV Stations".
1.05 Do part 2 for m=5(5)25.
1.06 Do part 4 for i=1(1)3.
1.07 To step 1.01.
2.01 Set j=m/5.
2.02 Set D=N \cdot (175+.15 \cdot (m \le 8:80 \cdot m; 640+35 \cdot (m-8))).
2.021 Set E=N \cdot (15.+3.45 \cdot m).
2.03 Do part 3 for h=1(1)5.
3.01 Set A=M•h.
3.011 Set F=.15.M.h.
3.02 Set B=N \cdot (200+10 \cdot h).
3.021 Set G=N·(20+1.75•h).
3.03 Set V(1,j,h)=A+B+D.
3.031 Set S(1,j,h)=E+F+G.
3.032 Set C(1,j,h)=V(1,j,h)+S(1,j,h).
3.04 Set C(2,j,h)=C(1,j,h)/M.
3.05 Set C(3,j,h)=C(1,j,h)/h.
4.01 Type _,_,_,form 1 if i=1.
4.011 Type __,_ if i>1.
4.02 Type form i+1,_.
4.03 Type form 5, form 6, .
4.04 Do part 5 for j=1(1)5 if i=1.
4.05 Do part 6 for j=1(1)5 if i=2.
4.06 Do part 7 for j=1(1)5 if i=3.
5.01 Type 5 \cdot j, C(i,j,1), C(i,j,2), C(i,j,3), C(i,j,4), C(i,j,5) in form 7.
6.01 Type 5.j,C(i,j,1),C(i,j,2),C(i,j,3),C(i,j,4),C(i,j,5) in form 8.
7.01 Type 5 \cdot j, C(i,j,1), C(i,j,2), C(i,j,3), C(i,j,4), C(i,j,5) in form 7.
Form 1:
   LOCAL
Form 2:
                                   TOTAL COST
   MILES
Form 3:
                                COST PER MILE
Form 4:
                                COST PER HOUR
Form 5:
                                     HOURS
```

2

3

5

Form 7:

Form 8:

Form 9:

ETV NETWORKING COST (DOLLARS)

Miles of Interchange Channel = 12031 Number of ETV Stations = 106

LOCAL					
MILES		TOTA	AL COST		
		но	OURS		
	1	2	3	4	5
5	66730	81811	96892	111973	127054
10	73487	88568	103649	118731	133812
15	78098	93179	108260	123342	138423
20	82709	97790	112871	127 9 5 3	143034
25	87320	102401	117482	132564	147645
		COST PE	ER MILE		
		но	OURS		
	1	2	3	4	5
5	5.546	6.800	8.054	9.307	10.561
10	6.108	7.362	8.615	9.869	11.122
15	6.491	7.745	8.998	10.252	11.506
20	6.875	8.128	9.382	10.635	11.889
25	7.258	8.511	9.765	11.019	12.272
		COST PE	ER HOUR		
		нс	OURS		
	1	2	3	4	5
5	66730	40905	32297	27993	25411
10	73487	44284	34550	29683	26762
15	78098	46590	36087	30835	27685
20	82709	48895	37624	31988	28607
25	87320	51201	39161	33141	29529

-53ETV NETWORKING COST (DOLLARS)

Miles of Interchange Channel = 8397 Number of ETV Stations = 52

LOCAL					
MILES		TOTA	L COST		
		uo	LIDC		
	1	2	URS 3	4	5
_	05005				
5	35605	45872	56140	66407	76675
10	38920	49187	59455	69722	79990
15	41182	51449	61717	71984	82252
20	43444	53711	63979	74246	84514
25	45706	55973	66241	76508	86776
		COST PE	R MILE		
		НО	URS		
	1	2	3	4	5
5	4.240	5.463	6.686	7.908	9.131
10	4.635	5.858	7.080	8.303	9.526
15	4.904	6.127	7.350	8.573	9.795
20	5.174	6.396	7.619	8.842	10.065
25	5.443	6.666	7.889	9.111	10.334
		COST PE	R HOUR		
		НО	URS		
	1	2	3	4	5
5	35605	22936	18713	16602	15335
10	38920	24594	19818	17431	15998
15	41182	25725	20572	17996	16450
20	43444	26856	21326	18562	16903
25	45706	27987	22080	19127	17355

-54-

ETV NETWORKING COST (DOLLARS)

Miles of Interchange Channel = 5981 Number of ETV Stations = 20

LOCAL MILES		TOTA	L COST		
		НО	URS		
	1	2	3	4	5
5	16858	23971	31084	38198	45311
10	18133	25246	32359	39473	46586
15	19003	26116	33229	40343	47456
20	19873	26986	34099	41213	48326
25	20743	27856	34969	42083	49196
		COST PE	R MILE		
			URS		
	1	2	3	4	5
5	2.819	4.008	5.197	6.386	7.576
10	3.032	4.221	5.410	6.600	7.789
15	3.177	4.367	5.556	6.745	7.934
20	3.323	4.512	5.701	6.891	8.080
25	3.468	4.657	5.847	7.036	8.225
		COST PE	R HOUR		
	1		URS	1.	E
	1	2	3	Ħ	5
5	16858	11986	10361	9549	9062
10	18133	12623	10786	9868	9317
15	19003	13058	11076	10086	9491
20	19873	13493	11366	10303	9665
25	20743	13928	11656	10521	9839

-55ETV NETWORKING COST (DOLLARS)

Miles of Interchange Channel = 4575 Number of ETV Stations = 15

LOCAL MILES		TOTA	L COST		
		НО	URS		
	1	2	3	4	5
5	12746	18184	23621	29059	34496
10	13703	19140	24578	30015	35453
15	14355	19793	25230	30668	36105
20	15008	20445	25883	31320	36758
25	15660	21098	26535	31973	37410
		COST PE	R MILE		
		_			
	1	2 2	URS 3	4	5
5	2.786	3.975	5.163	6.352	7.540
10	2.995	4.184	5.372	6.561	7.749
15	3.138	4.326	5.515	6.703	7.892
20	3.280	4.469	5.657	6.846	8.034
25	3.423	4.611	5.800	6.989	8.177
		COST PE	R HOUR		
			URS		
	1	2	3	4	5
5	12746	9092	7874	7265	6899
10	13703	9570	8193	7504	7091
15	14355	9896	8410	7667	7221
20	15008	10223	8628	7830	7352
25	15660	10549	8845	7993	7482

ETV NETWORKING COST (DOLLARS)

Miles of Interchange Channel = 3656 Number of ETV Stations = 10

LOCAL MILES		TOTA	L COST		
		НО	URS		
	1	2	3	4	5
5	9194	13516	17838	22160	26482
10	9832	14154	18476	22798	27120
15	10267	14589	18911	23233	27555
20	10702	15024	19346	2366 8	27990
25	11137	15459	19781	24103	28425
		COST PE	R MTLE		
		0001 12			
			URS		
	1	2	3	4	5
5	2.515	3.697	4.879	6.061	7.243
10	2.689	3.871	5.054	6.236	7.418
15	2.808	3.990	5.173	6.355	7.537
20	2.927	4.109	5.291	6.474	7.656
25	3.046	4.228	5.410	6.593	7.775
		COST PE	R HOUR		
		но	URS		
	1	2	3	4	5
5	9194	6758	5946	5540	5296
10	9832	7077	6159	5699	5424
15	10267	7294	6304	5808	5511
20	10702	7512	6449	5917	5598
25	11137	7729	6594	6026	5685

ETV NETWORKING COST (DOLLARS)

Miles of Interchange Channel = 2674 Number of ETV Stations = 5

LOCAL MILES		TOTA	L COST		
		НО	URS		
	1	2	3	4	5
5	5570	8704	11838	14972	18106
10	5889	9023	12157	15290	18424
15	6106	9240	12374	15508	18642
20	6324	9458	12592	15725	18859
25	6541	9675	12809	15943	19077
		COST PE	R MILE		
			URS		_
	1	2	3	4	5
5	2.083	3.255	4.427	5.599	6.771
10	2.202	3.374	4.546	5.71 8	6.890
15	2.284	3.456	4.628	5.800	6.971
20	2.365	3.537	4 .7 09	5.881	7.053
25	2.446	3.618	4.790	5.962	7.134
		COST PE	R HOUR		
		но	URS		
	1	2	3	4	5
5	557 0	4352	3946	3743	3621
10	5889	4511	4052	3823	3685
15	6106	4620	4125	3877	3728
20	6324	4729	4197	3931	3772
25	6541	4838	4270	3986	3815

Appendix E

DISTRIBUTION OF MEDICAL SCHOOL POPULATION IN 72

PROGRAM OPERATING CENTERS (POCs)

			Medical School Population ^a		
	Medical Schools Served	Per			
Rank	by Each POC	School	Per POC		
1	New York City, N.Y.				
	Columbia University College of				
	Physicians-Surgeons	1,588			
	Cornell University Medical College	776	į		
	Albert Einstein College of Medicine	1,229			
	New York Medical College	562			
	New York University School of Medicine	1,241			
	State University of New York Downstate				
	Medical Center	1,834 _b			
	Mount Sinai School of Medicine	147	7,377		
2	Chicago, I <u>ll</u> .				
	Chicago Modical School	288	ļ		
	Chicago Medical School University of Chicago School of Medicine	929			
	The University of Illinois	1,407			
	Northwestern University Medical College	1,467			
	Loyola University Stritch School of	1,407			
	Medicine	495	4,586		
3	Philadelphia, Pa.				
	Hahnemann Medical College	689			
	Jefferson Medical College	1,033			
	University of Pennsylvania School of	-,			
	Medicine	1,464	}		
	Temple University School of Medicine	841	1		
	Women's Medical College of Pennsylvania	321	4,348		
4	Boston, Mass.				
	Boston University School of Medicine	653	}		
	Harvard Medical School	1,999			
	Tufts University School of Medicine	890	3,542		
5	Los Angeles, Calif.				
	University of California (Irvine),				
	California College of Medicine	591			
	UCLA School of Medicine	1,693	2 / 2 -		
	University of Southern California	1,137	3,421		

		Pol	cal School pulation ^a
Rank	Medical Schools Served by Each POC	Pe r School	Per POC
6	Washington, D.C.		
	Georgetown University School of Medicine George Washington University School of Medicine Howard University College of Medicine	922 756 828	2,506
7	Minneapolis, Minn.		
	University of Minnesota Medical School	2,149	2,149
8	Ann Arbor, Mich. University of Michigan Medical School	2,135	2,135
9	Columbus, Ohio Ohio State Universit, College of Medicine	2,097	2,097
10	New Orleans, La.		
	Louisiana State University School of Medicine Tulane University School of Medicine	778 1,207	1,985
11	Seattle, Wash.		
	University of Washington	1,905	1,905
12	Baltimore, Md. Johns Hopkins University School of Medicine University of Maryland School of Medicine	1,001 880	1,881
13	Indianapolis, Ind.		
	Indiana University School of Medicine	1,832	1,832
14	St. Louis, Mo. Saint Louis University School of Medicine Washington University School of Medicine	795 1,008	1,803
15	San Francisco, Calif. University of California Medical Center	1,766	1,766

			Medical School Population ^a		
Rank	Medical Schools Served by Each POC	Per School	Per POC		
16	Augusta, Ga.				
	Medical College of Georgia	1,626	1,626		
17	Iowa City, Iowa				
	University of Iowa, College of Medicine	1,442	1,442		
18	Buffalo, N.Y.				
	State University of New York at Buffalo	1,431	1,431		
19	Memphis, Tenn.				
	University of Tennessee College of Medicine	1,357	1,357		
20	Madison, Wis.				
	University of Wisconsin	1,281	1,281		
21	Cleveland, Ohio				
	Case Western Reserve University School of Medicine	1,280	1,280		
22	Dallas, Tex.				
	University of Texas Southwest Medical School	1,082	1,082		
23	Detroit, Mich.				
	Wayne State University School of Medicine	1,061	1,061		
24	New Haven, Conn.				
	Yale University School of Medicine	1,048	1,048		
25	Kansas City, Kans.				
	University of Kansas School of Medicine	1,022	1,022		
26	Richmond, Va.				
	Medical College of Virginia	1,013	1,013		
27	Albany, N.Y.				
	Albany Medical College of Union University	1,012	1,012		

		l l	Medical School Population ^a		
Rank	Medical Schools Served by Each POC	Per School	Per POC		
28	Durham, N.C. Duke University School of Medicine	1,012	1,012		
29	Omaha, Nebr. Creighton University School of Medicine The University of Nebraska, College of Medicine	395 605	1 000		
30	Denver, Colo. University of Colorado	997	997		
31	Atlanta, Ga. Emory University School of Medicine	981	981		
32	Milwaukee, Wis. Marquette University School of Medicine	976	976		
33	Nashville, Tenn. Meharry Medical College Vanderbilt University School of Medicine	347 600	947		
34	Palo Alto, Calif. Stanford University School of Medicine	914	914		
35	Miami, Fla. University of Miami School of Medicine	911	911		
36	Galveston, Tex. University of Texas Medical Branch	911	911		
37	Pittsburgh, Pa. University of Pittsburgh School of Medicine	906	906		
38	Columbia, Mo. University of Missouri School of Medicine	904	904		
39	Chapel Hill, N.C. University of North Carolina	900	900		
40	Oklahoma City, Okla. University of Oklahoma School of Medicine	892	892		
41	Cincinnati, Ohio University of Cincinnati College of Medicine	87 5	875		
42	East Lansing, Mich. Michigan State University College of Human Medicine	868	868		

		Medical School Population ^a		
Rank	Medical Schools Served by Each POC	Per School	Per POC	
43	Birmingham, Ala. Medical College of Alabama	862	862	
44	Houston, Tex. Baylor University College of Medicine	792	792	
45	Portland, Oreg. University of Oregon Medical School	777	777	
46	Rochester, N.Y. University of Rochester	765	765	
47	Louisville, Ky. University of Louisville School of Medicine	716	716	
48	Charlottesville, Va. University of Virginia Medical School	715	715	
49	Syracuse, N.Y. State University of New York Upstate Medical Center	681	681	
50	Salt Lake City, Utah University of Utah	670	670	
51	Lexington, Ky. University of Kentucky, College of Medicine	612	612	
52	Little Rock, Ark. University of Arkansas	603	603	
.53	Morgantown, W. Va. West Virginia University School of Medicine	602	602	
54	Jackson, Miss. University of Mississippi, School of Medicine	576	576	
55	Gainesville, Fla. University of Florida College of Medicine	568	568	
56	Charleston, S.C. Medical College of South Carolina	531.	531	
57	Loma Linda, Calif. Loma Linda University School of Medicine	519	519	
58	Winston-Salem, N.C. Bowman Gray School of Medicine	429	429	

			al School ulation ^a
Rank	Medical Schools Served by Each POC	Per School	Per POC
59	Burlington, Vt. University of Vermont	399	399
60	Jersey City, N.J. New Jersey College of Medicine and Dentistry	349	349
61	Grand Forks, N.D. University of North Dakota	257	257
62	San Antonio, Tex. The University of Texas Medical School at San Antonio	245 ^b	245
63	Hanover, N.H. Dartmouth Medical School	218	218
64	Providence, R.I. Brown University	206	206
65	Albuquerque, N. Mex. The University of New Mexico School of Medicine	168	158
66	La Jolla, Calif. University of California, San Diego School	167 ^b	167
67	Vermillion, S.D. University of South Dakota School of Medicine	129	129
68	Davis, Calif. University of California, Davis School of Medicine	117 ^b	117
69	Hartford, Conn. University of Connecticut School of Medicine	73 ^b	73
70	New Brunswick, N.J. Rutgers Medical School	49	49
71	Hershey, Pa. The Pennsylvania College of Medicine	48	48

		Medical School Population ^a		
Rank	Medical Schools Served by Each POC	Per School	Per POC	
72	Tucson, Ariz. University of Arizona	32	32	

^aTotal Medical Population includes Medical Students; Interns; Residents; Masters, Basic Science; Doctoral, Basic Science; Postdoctoral, Basic Science; Clinical Fellows, Postdoctoral; and Medical Student equivalents in the areas of Dentistry, Pharmacy, Nursing, and other paramedicines.

brown these schools enrollment figures were available for medical students only and not for total population as defined above. In these cases, total population was derived by multiplying by the ratio of the average number of medical students to total population (medical) for the 92 schools for which both figures were available. That ratio was found to be 1:2.455.

Appendix F

JOSS PRINTOUTS FOR MINIMUM TREE MEDICAL SCHOOL NETWORKS

LINE	FROM	то	MILES	TOT MILES	MD'S	TOT MD'S
1 2 3 4	1 1 3 2	3 4 2 5	81.99 188.49 664.32 1738.79	81.99 270.47 934.80	4348 3542 4596	11725 15267 19853
	•	J	1/00./3	2673.59	3421	23274

POINTS IN THIS SUB-TREE = 10

LINE	FROM	TO	MILES	TCT MILES	MD'S	TOT MD'S
1 2 3 4 5 6 7 8	1 3 1 6 9 8 2	3 6 4 9 8 2 7	81.99 123.80 188.49 326.69 163.91 201.38 350.04 794.48	81.99 205.79 394.28 720.97 884.88 1086.26 1436.29 2230.77	4348 2506 3542 2097 2135 4586 2149 1985	11725 14231 17773 19870 22005 26591 28740 30725
9	7	5	1520.83	3751.61	3421	34146

LINE	FROM	то	MILES	TOT MILES	MD'S	TOT MD'S
1	1	3	81.59	81.99	4348	11725
2	3	12	89.87	171.86	1881	13606
3	12	6	35.51	207.37	2506	16112
4	1	4	188.49	395.85	3542	19654
5	6	9	326.69	722.55	2097	21751
6	9	8	163.91	886.46	2135	23886
7	9	13	167.62	1054.08	1832	25718
8	13	2	164.36	1218.44	4586	30304
9	13	14	229.42	1447.86	1803	32107
10	2	7	350.04	1797.90	2149	34256
11	14	10	593.41	2391.30	1985	36241
12	7	11	1397.25	3788.56	1905	
13	11	15	684.08	4472.64		38146
14	15	5	350.30	4472.04 4822.94	1766 3421	39912 43333

LINE	FROM	To	MILES	TOT MILES	MD S	TOT MD'S
1	1	3	81.99	81.99	4348	11725
2	3	12	89.87	171.86	1881	13606
3	12	6	35.51	207.37	2506	16112
4	1	4	188.49	395.85	3542	19654
5	12	18	274.45	670.30	1431	21085
6	18	8	250.64	920.94	2135	23220
7	8	9	163.91	1084.85	2097	25317
8	9	13	167.62	1252.47	1832	27149
9	13	2	164.36	1416.84	4586	31735
10	2	20	121.12	1537.96	1281	33016
11	20	17	145.76	1683.72	1442	34458
12	17	14	220.03	1903.75	1803	36261
13	20	7	229.39	2133.13	2149	38410
14	14	19	238.40	2371.53	1357	39767
15	19	10	355.15	2726.68	1985	41752
16	9	16	449.87	3176.56	1626	43378
17	7	11	1397.25	4573.81	1905	45283
18	11	1 5	684.08	5257.89	1766	47049
19	15	5	350.30	5608.19	3421	50470

POINTS IN THIS SUB-TREE = 48

LINE	FROM	то	MILES	TOT MILES	MD'S	TOT MD'S
1	1	24	67.91	67.91	1048	8425
1 2	1	3	81.99	149.90	4348	12773
3	3	12	89.87	239.77	1881	14654
4	12	6	35.51	275.28	2506	17160
5	6	26	96.42	371.70	1013	18173
6	26	48	66.85	438.56	715	18888
7	24	27	102.85	541.40	1012	19900
8	24	4	120.64	662.05	3542	23442
9	26	28	134.67	796.72	1012	24454
10	28	39	10.22	806.93	900	25354
11	48	37	184.61	991.54	906	26260
12	37	21	114.18	1105.72	1280	27540
13	21	23	90.92	1196.65	1061	28601
14	23	8	35.29	1231.94	2135	30736
15	8	42	51.86	1283.80	868	31604
16	21	9	125.92	1409.71	2097	33701
17	9	41	100.03	1509.74	875	34576
18	41	47	89.11	1598.85	71 6	35292
19	41	13	99.02	1697.87	1832	37124
20	47	33	153.36	1851.24	947	38071
21	13	2	164.36	2015.60	4586	42657
22	2	32	81.10	2096.70	976	43633
23	32	20	72.56	2169.26	1281	44914
24	20	17	145.76	2315.02	1442	46356
25	21	18	172.07	2487.09	1431	47787
26	18	46	65.88	2552.97	765	48552
27	33	43	181.04	2734.01	862	49414
28	43	31	140.83	2874.84	981	50395
29	31	16	140.19	3015.03	1626	52021
30	17	38	190.50	3205.53	904	52925
31	38	14	117.35	3322.88	1803	54728
32	38	25	124.00	3446.89	1022	55750
33	25	29	162.16	3609.05	1000	56750
34	33	19	196.15	3805.20	1357	58107
35	20	7	229.39	4034.59	2149	60256
36	25	40	295.04	4329.63	892	61148
37	40	22	188.16	4517.79	1082	62230
38	22	44	223.61	4741.40	792	63022
39	44	36	46.40	4787.80	911	63933
40	36	10	287.76	5075.56	1985	65918
41	29	30	486.11	5561.67	997	66915
42	16	35	539.28	٤ ـ 400 . 95	911	67826
43	30	5	827.49	6928.44	3421	71247
44	5	34	323.71	7252.15	914	72161
45	34	15	27.39	7279.54	1766	73927
46	15	45	538.91	7818.46	777	74704
47	45	11	146.52	7964.98	1905	76609
			_	-	_	- '

POINTS IN THIS SUB-TREE = 72

LINE	FROM	то	MILES	TOT MILES	MD'S	TOT MD'S
1	1	60	3.00	3.00	349	7726
2	60	70	26.20	29.20	49	7775
3	70	3	53.04	82.24	4348	12123
4	1	24	67.91	150.16	1048	13171
5	24	69	34.62	184.78	73	13244
6	69	64	65.18	249.96	206	13450
7	64	4	41.57	291.53	3542	16992
8	69	27	82.37	373.90	1012	18004
9	3	71	82.41	456.30	48	18052
10	71	12	68.24	524.55	1881	19933
11	12	6	35.51	560.05	2506	22439
12	6	26	96.42	656.48	1013	23452
13	26	48	66.85	723.33	715	24167
14	27	63	103.24	826.57	218	24385
15	63	59	70.70	897.27	399	24784
16	27	49	124.74	1022.01	681	25465
17	49	46	74.33	1096.34	765	26230
18	46	18	65.88	1162.22	1431	27661
19	26	28	134.67	1296.89	1012	28673
20	28	39	10.22	1307.10	900	29573
21	39	58	67.71	1374.81	429	30002
22	48	53	135.66	1510.47	602	30604
23	53	37	55.55	1566.01	906	31510
24	37	21	114.18	1680.19	1280	32790
25	21	23	90.92	1771.12	1061	33851
26	23	8	35.29	1806.41	2135	35986
27	8	42	51.86	1858.27	868	36854
28	21	9	125.92	1984.18	2097	38951
29	9	41	100.03	2084.21	875	39826
30	41	51	72.18	2156.40	612	40438
31	51	47	70.00	2226.40	716	41154
32	41	13	99.02	2325.42	1832	42986
33	47	33	153.36	2478.78	947	43933
34	13	2	164.36	2643.14	4586	48519
35	2	32	81.10	2724.24	976	49495
36	32	20	72.56	2796.80	1281	50776
37	20	17	145.76	2942.56	1442	52219
38	33	43	181.04	3123.60	862	53080
39	43	31	140.83	3264.43	981	54061
40	31	16	140.19	3404.62	1626	55687
41	16	56	126.12	3530.74	531	56218
42	17	38	190.50	3721.24	904	57122
43	38	14	117.35	3838.60	1803	58925
44	38	25	124.00	3962.60	1022	59947
45 5	25	29	162.16	4124.76	1000	60947
46 7	29	67	116.02	4240.79	129	61076
47	33	19	196.15	4435.94	1357	62433
48	19	52	129.91	4566.85	603	63036
49	19	54	194.45	4761.30	576	63612
50 54	54	10	161.02	4922.32	1985	65597
51 52	20	7	229.39	5151.71	2149	67746
52	56	55	258.52	5410.23	568	68314

53	7	61				
	40	~ -	273.2 8	5683.51	257	68571
54	10	3 6	287.76	5971.28	911	69482
55	36	44	46.40	6017.68	792	70274
56	44	62	189.48	6207.16	245	70519
57	44	22	223.61	6430.77	1082	71601
58	22	40	188.16	6618.93	892	72493
59	55	35	296.02	6914.95	911	72493
60	67	30	466.93	7381.88	997	74401
61	30	65	331.43	7713.31	168	74401
62	65	72	314.84	8028.14	32	
63	30	50	369.48	8397.63	670	74601
64	72	66	371.97	8769.59	167	75271
65	66	57	83.86	8853.45		75438
66	57	5	62.80	8916.25	519	75957
67	5	34	323.71	9239.96	3421	79378
68	34	15	27.39	9267.35	914	80292
69	15	68	63.40	9330.75	1766	82058
70	68	45	488.46	-	117	82175
71	45	11	146.52	9819.21 9965.74	<i>777</i> 1905	82952 84857

Appendix G

JOSS PROGRAM AND PRINTOUTS OF COSTS FOR VARIOUS SIZE MEDICAL SCHOOL NETWORKS

This Appendix contains the JOSS program for estimating Medical School networking cost and the printouts of the cost estimates for various network sizes. The program demands:

- M as the miles of interchange channels.
- N as the number of medical schools.
- Z as the number of months.
- Y as the number of medical students.

Using these inputs and the rates described in Section VI, the following variables are calculated for 1, 2, 4, 6, and 8 hours of broadcasting, and 5, 10, 15, 20, and 25 miles of local channel

- B as video station connection cost.
- G as audio station connection cost.
- A as video interchange channel cost.
- E as audio interchange channel cost.
- D as video local channel cost.
- E as audio local channel cost.
- C(1,j,n) as total cost for n schools and
 - j local channel miles.
- C(2,j,n) as cost per school for n schools and
 - j local channel miles.
- $\mathcal{C}(3,j,n)$ as cost per student for n schools and
 - j local channel miles.

JOSS PROGRAM FOR CALCULATING MEDICAL SCHOOL

NETWORKING COST

```
1.01 Page.
1.02 Type form 9, form 10, form 11, ____.
1.03 Set h=8.
1.05 Do part 10 for m=5(5)25.
1.07 Do part 4 for i=1(1)3.
1.08 Do step 1.01.
2.02 Set D=N(n) \cdot (175+(m \le 8:80 \cdot m:640+35 \cdot (m-8))).
2.03 Set E=N(n) \cdot (15+6.9 \cdot m).
2.04 Do part 3.
3.01 Set A=M(n) \cdot (h \le 8:35).
3.011 Set F=M(n) \cdot (h \le 8:4.5).
3.02 Set B=N(n) \cdot (h \le 10:500+35 \cdot h).
3.021 Set G=N(n) \cdot (h \le 8:55).
3.03 Set V(1,j,n)=A+B+D.
3.031 Set S(1,j,n)=E+F+G.
3.032 Set C(1,j,n)=V(1,j,n)+S(1,j,n).
3.04 Set C(2,j,n)=C(1,j,n)/N(n).
3.05 Set C(3,j,n)=C(1,j,n)/Y(n).
4.01 Type _____, form 1 if i=1.
4.011 Type __, if i>1.
4.02 Type form i+1, .
4.03 Type form 5, form 6, .
4.04 Do part 5 for j=1(1)5 if i=1.
4.05 Do part 6 for j=1(1)5 if i=2.
4.06 Do part 7 for j=1(1)5 if i=3.
5.01 Type 5 \cdot j, C(i,j,1), C(i,j,2), C(i,j,3), C(i,j,4), C(i,j,5), C(i,j,6) in form 7.
6.01 Type 5 \cdot j, C(i,j,1), C(i,j,2), C(i,j,3), C(i,j,4), C(i,j,5), C(i,j,6) in form 8.
7.01 Type 5 \cdot j, C(i,j,1), C(i,j,2), C(i,j,3), C(i,j,4), C(i,j,5), C(i,j,6) in form 8.
10.1 Set j=m/5.
10.2 Do part 2 for n=1(1)6.
Form 1:
   LOCAL
Form 2:
                                 TOTAL COST
   MILES
Form 3:
                            COST PER SCHOOL
Form 4:
                            COST PER STUDENT
```


Form 5:

43 73 97 31 38 23 Form 7: Form 8: Form 9: MONTHLY NEDICAL SCHOOL NETWORKING COST Form 10: EIGHT HOURS PER DAY Form 11: (DOLLARS) M(n): $\Gamma_{n=1:2674;n=2:3751;n=3:4823;n=4:5608;n=5:7965;n=6:9966}$ N(n): $i_{n=1:23;n=2:31;n=3:38;n=4:43;n=5:73;n=6:97}$ Y(n): [n=1:23274; n=2:34146; n=3:43333; n=4:50470; n=5:76609; n=6:84857]

Form 6:

MONTHLY MEDICAL SCHOOL NETWORKING COST EIGHT HOURS PER DAY (DOLLARS)

LOCAL MILES		1	TOTAL COST			
	23	NUMBER 31	OF SCHOOLS 38	IN NETWORK	73	97
5 10 15 20 25	139192 147115 151934 156752 161571	193409 204089 210583 217078 223572	245970 259061 267022 274983 282944	284275 299088 30809° 317105 326114	421161 446310 461603 476897 492190	535229 568645 588967 609288 629610
		COST	PER SCHOOL			
	23	NUMBER 31	OF SCHOOLS	IN NETWORK	73	97
5 10 15 20 25	6051.80 6396.30 6605.80 6815.30 7024.80	6239.00 6583.50 6793.00 7002.50 7212.00	6472.88 6817.38 7026.88 7236.38 7445.88	6611.03 6955.53 7165.03 7374.53 7584.03	5769.33 6113.83 6323.33 6532.83 6742.33	5517.82 5862.32 6071.82 6281.32 6490.82
		COST	PER STUDENT	Γ		
	23	NUMBER 31	OF SCHOOLS	IN NETWORK	73	97
5 10 15 20 25	5.98 6.32 6.53 6.74 6.94	5.66 5.98 6.17 6.36 6.55	_	5.63 5.93 6.10 6.28 6.46	5.50 5.83 6.03 6.23 6.42	6,31 6.70 6.94 7.18 7.42

Miles of Interchange Channel = 7965 Number of Medical Schools = 73 Number of Months = 1

Number	of	Medical	Students	=	76609
--------	----	---------	----------	---	-------

LOCAL MILES		TOTAL CO	ST			
		HOURS				
	1	2	4	6	8	
_				4505454	0.051, 70.4	
5	403276	682051	1239601	1797151	2354701	
10	428425	707200	1264750	1822300	2379850 2395 1 43	
15	443718	722493	1280043	1837593 1852887	2410437	
20 25	459012 #7#205	737787 753080	1295337 1310630	1868180	2425730	
25	474305	753080	1310630	1909190	2423730	
		COST PER SCH	00L			
		HOURS				
	1	2	4	6	8	
_	5501. 00	0040 46	46000 00	00640 54	22256 10	
5	5524.33	9343.16	16980.84	24618.51 24963.01	32256.18 32600.68	
10	5868.83	9687.66	17325.34	25172.51	32810.18	
15	6078.33	9897.16	17534.84 17744.34	25382.01	33019.68	
20	6287.83	10106.66 10316.16	17953.34	25591.51	33229.18	
25	6497.33	10310*10	1/300600	23331.31	33223.10	
		COST PER STU	IDENT			
		HOURS		_		
		1 2	2	4	6	8
5	5.26	8.90	16.18	23.46	30.74	
10	5.59	9,23	16.51	23.79	31.06	
15	5.79	9.43	16.71	23.39	31.26	
20	5.99	9.63	16.91	24.19	31.46	
25	6.19	9.83	17.11	24.39	31.66	

Miles of Interchange Channel = 5608 Number of Medical Schools = 43

Number of Months = 1

Number of Medical Students = 50470

LOCAL		TOTAL CO	ST		
		HOURS			
	1	2	4	6	8
5	273740	470020	862580	1255140	1647700
10	288553	484833	877393	1269953	1662513
1 5	297562	493842	886402	1278962	1671522
20	3 065 7 0	502850	895410	1287970	1680530
25	315579	511859	904419	1296979	1689539
		COST PER SCH	IOOL		
		HOURS			
	1	2	4	6	8
5	6366.03	10930.69	20059.99	29189.29	38318.59
10	6710.53	11275.19	20404.49	29533 .7 9	38663.09
1 5	6920.03	11484.69	20613.99	29743.29	38872.59
20	7129.53	11694.19	20823.49	29952 .7 9	39082.09
25	7339.03	11903.69	21032.99	30162.29	39291.59
		COST PER ST	JDEN T		
		HOURS			
	1	2	4	6	8
5	5.42	9.31	17.09	24.87	32.65
10	5 .7 2	9.61	17.38	25.1 6	32.94
15	5.90	9.78	17. 56	25.34	33.12
20	6.07	9.96	17.74	25.52	33.30
25	6.25	10.14	17.92	25 .7 0	33.48

Miles of Interchange Channel = 4823 Number of Medical Schools = 38

Number of Months = 1

Number of Medical Students = 43333

LOCAL MILES		TOTAL CO	OST		
		HOURS			
	1	2	4	6	8
5	236660	405465	743075	1080685	1418295
10	249751	418556	756166	1093776	1431386
15	257712	426517	76412?	1101737	1439347
20	265673	434478	772088	1109698	1447308
25	273634	442439	780049	1117659	1455269
		COST PER SCH	100L		
		HOURS			
	1	2	4	6	8
5	6227.88	10670.12	19554.59	28439.07	37323.54
10	6572.38	11014.62	19899.09	28783.57	37668.04
1 5	6781.88	11224.12	20108.59	28993.07	37877.54
20	6991.38	11433.62	20318.09	29202.57	38087.04
25	7200.88	11643.12	20527.59	29412.07	38296.54
		COST PER ST	UDENT		
		HOURS			
	1	2	4	6	8
5	5.46	9.36	17.15	24.94	32.73
10	5.76	9.66	17.45	25.24	33.03
15	5.95	9.84	17.63	25.42	33.22
20	6.13	10.03	17.82	25.61	33.40
25	6.31	10.21	18.00	25 .7 9	33.58

Miles of Interchange Channel = 3751 Number of Medical Schools = 31 Number of Months = 1 Number of Medical Students = 34146

LOCAL MILES		TOTAL CO	OST					
Hours								
	1	2	4	6	8			
5	185814	317099	579669	842239	1104809			
10	196494	327779	590349	852919	1115489			
15	202988	334273	596843	859413	1121983			
20	209483	340768	603338	865908	1128478			
25	215977	347262	609832	872402	1134972			
		COST PER SCH	IOOL					
		HOURS						
	1	2	4	6	8			
5	5994.00	10229.00	18699.00	27169.00	35639.00			
10	6338.50	10573.50	19043.50	27513.50	35983.50			
15	6548.00	10783.00	19253.00	27723.00	36193.00			
20	6757.50	10992.50	19462.50	27932.50	36402.50			
25	6967.00	11202.00	19672.00	28142.00	36612.00			
		COST PER STU	IDENT					
		UOUDC						
	1	HOURS 2	J.c	•	•			
	1	2	4	6	8			
5	5.44	9.29	16.98	24.67	32.36			
10	5.75	9.60	17.29	24.98	32.67			
15	5.94	9.79	17.48	25.17	32.86			
20	6.13	9.98	17.67	25.3 6	33.05			
25	6.33	10.17	17.86	25.55	33.24			

Miles of Interchange Channel = 2674 Number of Medical Schools = 23 Number of Months = 1 Number of Medical Students = 23274

LOCAL MILES		TOTAL CO	ST		
		HOURS			
	1	2	4	6	8
5	133557	227147	414327	601507	788687
10	141480	235070	422250	609430	796610
15	146299	239889	427069	614249	801429
20	151117	244797	431887	619067	806247
25	155936	249526	436706	623886	811066
		COST PER SCH	IOOL		
		HOURS			
	1	2	4	6	8
5	5806.80	9875.93	18014.20	26152.46	34290.72
10	6151.30	10220.43	18358.70	26496.96	34635.22
15	6360.80	10429.93	18568.20	26706.46	34844.72
20	6570.30	10639.43	18777.70	26915.96	35054.22
25	6779.80	10848.93	18987.20	27125.46	35263.72
		COST PER ST	UDENT		
		Votina			
	_	HOURS	Ba .	e	8
	1	2	4	6	0
5	5.74	9.76	17.80	25.84	33.89
10	6.08	10.10	18.14	26.19	34.23
15	6.29	10.31	18.35	26.39	34.43
20	6.49	10.51	18.56	26.60	34.64
25	6.70	10.72	18.76	26.81	34.85

BIBLIOGRAPHY

- Gardner, Martin, "Combinatorial Problems Involving Tree Graphs and Forests of Trees," Scientific American, February 1968, pp. 118-123.
- List of Rate Centers and Central Offices, Tariff F.C.C. No. 255, American Telephone and Telegraph Company, New York, 1960.
- 1969 Directory and Yearbook of Educational Broadcasting, National Association of Educational Broadcasters, Washington, D.C., 1968.
- Ore, Oystein, Graphs and Their Uses, Random House, New York, 1963.
- Worldmaster Atlas, Rand McNally and Company, Chicago, New York, San Francisco, 1964.

