[19]中华人民共和国国家知识产权局

[51] Int. Cl⁷

H04J 14/02 G02B 5/20

[12] 发明专利申请公开说明书

[21] 申请号 00120967.1

[43]公开日 2001年2月28日

[11]公开号 CN 1285667A

[22]申请日 2000.8.2 [21]申请号 00120967.1

[30]优先权

[32]1999.8.2 [33]US[31]60/146,355

[71]申请人 保谷株式会社

、地址 日本东京都

共同申请人 美国保谷公司

[72] **发明人** 罗伯特・W・约翰逊 柳田裕昭 桥本和明 [74]专利代理机构 中科专利商标代理有限责任公司 代理人 严 舫

权利要求书3页 说明书19页 附图页数4页

[54] 发明名称 波长分离多路组合滤光器及用于该滤光器的玻璃基质

[57]摘要

一种玻璃基质用作 WDM 滤光器,滤光器是在玻璃基质上有一种光学多层膜,玻璃的成分与光学多层膜有关,需保证滤光器能稳定地进行光波长多路组合/多路分离操作。该玻璃含有 SiO_2 作为玻璃网络形成物并在 -30°C至 +70°C 的温度范围内具有平均线性热膨胀系数为 100×10^{-7} /K 至 130×10^{-7} /K。除 SiO_2 之外,该玻璃还包含有 TiO_2 、 Al_2O_3 和 R_2O (R=碱金属元素)并且有硬度适用于光学多层膜。

权利要求书

1. 一种用于 WDM 滤光器的玻璃基质, 其特征在于它具有涂布在玻璃基质表面上的光学多层膜;

所述的玻璃基质是由一种玻璃形成的,该玻璃含有 SiO_2 并在-30 ℃ 至+70 ℃的温度范围内具有平均线性热膨胀系数为 100×10^{-7} /K— 130×10^{-7} /K。

- 2. 一种用于 WDM 滤光器的玻璃基质, 其特征在于它具有一种涂布在玻璃表面上的光学多层膜, 该玻璃基质是由这样的玻璃形成的, 该玻璃含有作为必要成份的 SiO_2 、 R_2O (R: 碱金属元素) 和 TiO_2 , 必要成份的总量不少于 60 摩尔%。
- 3. 一种用于 WMD 滤光器的玻璃基质, 其特征在于它具有在玻璃表面上涂布的光学多层膜, 玻璃基质是由这样的玻璃形成的, 该玻璃含有作为必要成份的 SiO_2 、 R_2O (R: 碱金属元素)及 TiO_2 , 这些必要成份的每个的用量是大于非必要成份的其余各成份的每个的用量。
- 4. 如权利要求 2 或 3 要求保护的玻璃基质,其特征在于其中玻璃含有以摩尔%计算的

SiO₂ 38-58%,
TiO₂ 7-30%,
Al₂O₃ 0-12%,以及
R₂O 的总量 15-40%。

5. 如权利要求 4 要求保护的玻璃基质, 其特征在于其中玻璃含有以摩尔%计算的作为 R₂O 的

Na₂O 10-25%, 和 K_2 O 4-15%。

6. 如权利要求 2 或 3 要求保护的玻璃基质,其特征在于其中玻璃含有以摩尔%计算

 SiO_2 38-55%,

Na ₂ O	13-25%,
K ₂ O	2-15%,
TiO ₂	10-25%,
Al_2O_3	0.5-8%。

- 7. 如权利要求 2 至 6 中任何一项所述的玻璃基质, 其特征在于其中玻璃包括至少一种选自碱土金属氧化物的氧化物 R'O 和氧化锌。
- 8. 如权利要求 7 所述的玻璃基质, 其特征在于其中玻璃含有, 以摩尔%计算, R'O 的总量为 2%至 15%。
 - 9. 如权利要求 8 所述的玻璃基质,其中玻璃包含有作为 R'0 的

MgO	0-13%,
CaO	0-10%,
SrO	0-8%,
BaO	0-6%, 及
ZnO	0-10%.

10. 如权利要求7至9中任何一项所述的玻璃基质,其特征在于其中玻璃含有以摩尔%计算的

MgO	1-13%,
ZnO	0.5-10%,及
Sb ₂ O ₃	0.1%.

11. 如权利要求 2 至 10 中任何一项所述的玻璃基质,其特征在于其中玻璃含有以摩尔%计算的

ZrO ₂	0-2%,
HfO ₂	0-2%,
La ₂ O ₃	0-2%, 以及
Y_2O_3	0-2%.

- 12. 如权利要求 2 至 10 中任何一项所述的玻璃基质, 其特征在于其中当温度范围为一30℃至十70℃时, 平均线性热膨胀系数落入 100×10⁻⁷/K 至 130×10⁻⁷/K 范围内。
- 13. 如权利要求 12 所述的玻璃基质, 其特征在于其中当温度范围为-30℃至+70℃时, 平均线性热膨胀系数落入 100×10⁻⁷/K 至 120×

10-7/K 范围。

- 14. 如权利要求 1 至 13 中任何一项所述的玻璃基质,其特征在于其中 Knoop 硬度不小于 455MPa。
- 15. 一种用作光信号多路组合器 / 多路分离器的设备中的滤光器, 其特征在于包括权利要求 1 至 14 任何一项所述的玻璃基质和在玻璃基 质上的光学多层膜。
- 16. 如权利要求 15 所述的滤光器,其特征在于其中传输频带的中心波长的温度漂移落入-0.0025nm/K 至+0.0025nm/K 范围内。
- 17. 一种光信号多路组合器 / 多路分离器的设备, 其特征在于包括 权利要求 15 或 16 所述的滤光器。
- 18. 一种生产玻璃的方法,该玻璃是用作波长分离多路组合(WDM)滤光器的玻璃基质,滤光器是通过将一种光学多层膜沉积在玻璃基质表面上而形成并具有频带传输过滤功能,其特征在于该方法包括如下步骤:

调节作为玻璃成分的碱金属氧化物 TiO_2 的用量,使平均线性热膨胀系数在-30°C至+70°C的温度范围内处于 100×10^{-7} /K 与 130×10^{-7} /K 的系数范围。

19. 一种如权利要求 18 所述的方法,其特征在于参照滤光器所使用的温度范围调节 R_2O 和 TiO_2 的用量,使在上述温度范围的光学多层膜的传输频带的中心波长的温度漂移减少到最小限度。

波长分离多路组合滤光器及用于该滤光器的玻璃基质

5

10

15

20

25

30

本发明涉及一种滤光器,用于光通信领域中来从多波长光成份中选择某一特定波长的光束。本发明还涉及一种用于上述滤光器的玻璃基质。具体地说,本发明涉及一种 WDM (波长分离多路组合)滤光器。本发明还涉及一种用于滤光器的玻璃基质。

在这样的 WDM(波长分离多路组合)的通信中,是通过组合多光束进行通信,所述的组合光束是指彼此稍许不同的一些波长的光束。或相反通过将组合光束分割开或分离成多路来进行通信,即选择性地从该组合光束中衍生一种特定波长的光束进行通信。这里应注意,用于光组合和分离的滤光器,已经被称为 WDM(波长分离多路组合)滤光器。作为这样的一种 WDM 滤光器,已知一种 WDM 滤光器已描述在 JP-AH 10-339825 和 JP-4 H10-512975 中。

描述于这些专利公开文件中的每种滤光器都包括一个玻璃基质并有一种 SiO₂、TiO₂、Ta₂O₅等的多层介电薄膜形成于其上。这种多层介电薄膜作为频带传输滤光器(BPF)是可操作的,它可提供一种功能即传输某一特定波长的光束或反射这一特定波长的光束。按照常规,其上沉积有多层介电薄膜的基质或基片是由玻璃材料如二氧化硅形成的。

在此期间,最近在这种类型滤光器方面有报道说,由于温度变化发生了传输频带中心波长的位移。还有报道称,这种温度位移是决定于玻璃基质和多层介电薄膜每个的热膨胀系数(Haruo Takahashi,应用光学 Vol.34(4),)。

在上述参考文章中,描述到这样的情况,即在传输频带中的中心波 长向正的方向(即较长波长的方向)漂移或位移,是当玻璃基质的热膨 胀系数小于对多层介电膜的热学性能如膨胀系数所测得的范围时发生 的。另一方面,当玻璃基质的热膨胀系数过大时,滤光器的中心波长的

漂移会发生在负的方向上(较短波长方向)。

15

25

30

如果漂移是不希望的过大,则滤光器的特性,亦即传输的波长会随着操作温度的变化而发生不利地变化。特别是,如果频带传输滤光器用作一个窄频带滤光器,例如用在光通信的波长多路组合传输技术中所使用的多路光组合器/多路光分离器的情况下,这种影响就变得严重了,因为这种窄频带的强制性不可避免地会限制传输密度。随着增加波长多路组合的程度,就增加了对滤光器的要求,要求滤光器具有更加稳定的特性于整个温度变化范围内,以及使用滤光器作为光信号多路组合器/多路分离器。为了增加热稳定性,建议采用一种技术来控制滤光器的温度。然而,这种技术需要一种复杂的结构。因而增加了保证长期可靠性的困难并且装置和设备变得更加昂贵。

如上所述, 频带传输峰波长的温度漂移构成了阻碍高密度光通信的 因素之一。

此外, 普通滤光器的缺点是,由于温度变化,从玻璃上剥离掉多层 膜是容易的。

根据上述背景进行考虑,已经完成本发明,目的是为了减少在传输频带的中心波长处的温度漂移,从而避免多层介电质膜的脱落。更具体地说,本发明的一个目的是提供一种新型的具有所需要的热膨胀系数和所需组份的玻璃基质。本发明的另一目的是提供一种滤光器和一种光信号多路组合器/多路分离器,它们都有高度可靠性并能减少在传输频带内中心波长的温度漂移。

本发明还有另一目的是提供一种生产玻璃的方法,这种玻璃具有一种热膨胀系数正好适合于波长多路组合/多路分离滤光器的基质材料。这种玻璃通过控制特殊玻璃成分的用量而制得。

根据本发明的第一个方面,一种玻璃基质是用作波长多路组合 / 多路分离的滤光器。是由含有 SiO_2 的玻璃形成,它在-30°C -+70°C 的温度范围内具有热膨胀系数在 100×10^{-7} / K 与 130×10^{-7} / K 之间。

根据本发明的第二方面,玻璃基质被用作波长多路组合 / 多路分离的滤光器并由含有 SiO_2 , R_2O (其中 R 代表一碱金属元素),及 TiO_2 为主要成份并且主要成份的总量不小于 60 摩尔%的玻璃制成。

根据本发明的第三个方面,用于波长多路组合的 / 多路分离的滤光器,是用一种玻璃制成,该玻璃包括 SiO_2 , R_2O (其中 R 代表一碱金属元素),及 TiO_2 作为主要成份,其总量大于其余各成份每个的量。

根据本发明的第四个方面,上述第一到第三方面中提到的玻璃包含 5 有如下成份,以占总量的摩尔%计算:

S iO ₂	38-58%
TiO ₂	7-30%
Al ₂ O ₃	0.12%
P O	15-40%

10 根据本发明的第五个方面,与第四个方面有关的玻璃包含有如下成份作为 R₂O,以摩尔%计算,

Na₂O 10-25%以及 K₂O 4-15%

根据本发明的第五个方面,其第二和第三方面每个所提到的玻璃, 15 包含有以摩尔%计算的下列成份:

	SiO ₂	38-55%
	Na₂O	13-25%
	K_2O	2-15%
	TiO ₂	10-25%
20	Al_2O_3	0.5-8%

根据本发明的第七个方面,其第二到第六个方面每个所提到的玻璃包含有至少一种选自由碱土金属氧化物和氧化锌的氧化物 R'O。

根据本发明的第八个方面,在第七个方面中所提及的玻璃包含有,以摩尔%计算,R'O的总量为2-15%。

25 根据本发明的第九个方面,其第七和第八方面每个所提到的玻璃含有作为 R'O 的如下成份,以摩尔%计算:

	MgO	0-13%,
	CaO	0-10%,
	SrO	0-8%,
30	BaO	0-6%,以及

 Z_{nO} 0-10%.

根据本发明的第十个方面,第七到第九个方面的每个所提到的玻璃 含有,以摩尔%计算的如下成份

MgO 0-13%

ZnO 0.5-10%,以及

 Sb_2O_3 0-1%

根据本发明的第十一个方面,第二到第十个方面的每个所提到的玻璃含有,以摩尔%计算的如下成份

 ZrO_2 0-2%,

 $_{10}$ HfO₂ 0-2%,

5

20

25

30

La₂O₃ 0-2%,以及

 Y_2O_3 0-2%

根据本发明的第十二方面,第二到第十一个方面的每个所提到的玻璃具有平均热膨胀系数在-30℃-+70℃温度范围内为 100×10⁻⁷-130× 10⁻⁷。

根据本发明的第十三个方面,第十二个方面所提及的玻璃在-30-+70℃温度范围内具有平均热膨胀系数为 105×10⁻⁷-120×10⁻⁷。

根据本发明的第十四个方面,第一到第十三个方面的每个所提到的玻璃具有 Knoop (努氏) 硬度不小于 455Mpa。

根据本发明的第十五个方面,一种波长多路组合的 / 多路分离的滤 光器具有第一到第十四个方面每个所提到的玻璃基质和沉积在该基质上 的光学多层薄膜。

根据本发明的第十六个方面,其中滤光器在传输频带的中心波长处 具有温度漂移范围在-0.0025nm/k至+0.0025nm/k之间。

根据本发明的第十七个方面,一种波长多路组合的 / 多路分离的光学单元具有第十五和第十六个方面每个所提到的滤光器。

根据本发明的第十八个方面,一种方法是用来生产在滤光器的玻璃基质中所使用的玻璃。该滤光器具有一种光学多层薄膜,它被固定地沉积在玻璃基质上并且具有频带传输过滤功能。该方法包括制取玻璃的步骤,这种玻璃在-30℃-+70℃的温度范围内具有平均热膨胀系数在 100

 $\times 10^{-7}$ 与 130×10^{-7} 之间,是通过控制作为玻璃成份的 TiO_2 和碱金属氧化物 RO 的用量达到的。

根据本发明的第十九个方面,在第十八个方面中所提到的方法是按照滤光器的可使用的温度范围来调节 TiO₂和 RO 的用量,从而使光学多层薄膜的传输频带的中心波长处的温度漂移,在可使用的温度范围内变得最小。

下面将对本发明作更详细的描述

10

20

25

30

一种玻璃基质用来生产滤光器,是连续在玻璃基质表面上层叠一种 离折光指数的介电薄膜和一种低折光指数的介电薄膜,并形成一种光学 多层膜,后者具有频带传输功能,通过使用光的干涉能通过入射光束中 特定波长的光。

如上所述,在波长多路组合/多路分离情况下,需要减少在传输频带内中心波长处的温度漂移。此处,应指出,上述频带传输功能,可通过使用多层膜中的光干涉来达成。这意味着温度漂移的减少,需要减少多层膜中由于温度变化引起的各光程间的波动。要考虑到,各光程间的波动是由于多层膜内每个膜的折光率的变化和各膜厚度不同所致。

此外,还应考虑到这样的事实,当滤光器暴露于变化的温度下时,玻璃基质也是与多层光学薄膜一起热膨胀或收缩的。从上述可容易地理解到,由于光学多层薄膜是固定地沉积在玻璃基质的表面上,所以一种热应力便施加于光学多层膜,这是由于玻璃基质和多层膜彼此的热膨胀系数不同而引起玻璃基质的热膨胀或收缩所致。这种热应力引起了光学多层膜的厚度和折光指数的稍许变化。

这里,可以设想,由热应力引起的光学多层膜的厚度和折光指数的变化,可以通过厚度的变化来消除,这种厚度会由于光学多层膜的热膨胀和收缩产生。在这种情况下,有可能减少光学多层膜中光程的变化。

正如下文中的详细描述,按照本发明,一种实用的光学多层薄膜有可能消除上述变化,结果又可减少光学多层膜中光程的变化。特别是本发明人的实验研究已经发现,通过将-30℃至+70℃之间温度范围内的玻璃基质的平均线性膨胀系数变为 100×10⁻⁷ – 130×10⁻⁷ / k(优选 105×10⁻⁷

-120×10⁻⁷/k,则温度漂移能够减少。)

如上所述,可以设想应力必然会引起并发生在玻璃基质与光学多层 膜的接触表面之间,这样便能减少由于温度变化引起的光程的变化。然 而,玻璃基质比用作介电薄膜的光学多层膜更软。因此,光学多层膜会 从玻璃基质上剥离下来。结果,当使用玻璃基质时,难于得到高度可靠 性。

在此情况下,本发明的第一个观点是立足于玻璃基质,该玻璃基质含有 SiO_2 并在-30 \mathbb{C} 至+70 \mathbb{C} 的温度范围内具有平均线性热膨胀系数为 $100 \times 10^{-7} - 130 \times 10^{-7}$ / k (优选为 $105 \times 10^{-7} - 120 \times 10^{-7}$ / k。将平均线性热膨胀系设定在上述范围内,就有可能减少传输频带的中心波长的热漂移。此外,基质含有 SiO_2 是用来增加玻璃的硬度并提供一种能防止光学 多层膜脱离玻璃基质的改进型玻璃基质。

根据上述第一个观点, SiO_2 优选变成一种玻璃网络形成物。其评价是看,是否 SiO_2 按照以下方式形成了玻璃网络一形成物。首先,当玻璃中不含有用作玻璃网络一形成物的任何其它成份如 B_2O_3 和 P_2O_5 时, SiO_2 可以评价为玻璃网络形成物。另一方面,当玻璃含有任何其它玻璃网络一形成物如 B_2O_3 和 P_2O_5 时,只有当 SiO_2 的量足够大于其它玻璃网络一形成物的量时,才能将 SiO_2 评价为玻璃网络一形成物。

因此,含有作为玻璃网络一形成物的 SiO₂,有助于进一步增加玻璃基质的硬度并防止由于温度变化而使光学多层膜脱离玻璃基质。因而脱离的问题可以解决。优选,玻璃基质具有,根据 Knoop 硬度,一种硬度不小于 455MPa,较佳为大于 460MPa,更佳为大于 500MPa。

本发明第二个观点是立足于玻璃基质,该玻璃基质具有平均线性热膨胀系数为 $100\times10^{-7}-130\times10^{-7}$ / K,优选为 $105\times10^{-7}-120\times10^{-7}$ / K,以及一种组成适用于制得需要的硬度。

这样的玻璃基质是能够实现的,所采用的玻璃需含有作为主要成分的 SiO_2 , R_2O (R: 碱金属元素),及 TiO_2 ,并且这些主要成分的总量需超过 60 摩尔%。另一方面,玻璃可含有作为主要成分的 SiO_2 , R_2O (R: 碱金属元素),及 TiO_2 ,并且主要成分的总量可以超过其余各成分而不是主要成分的每个的量。 R_2O 的量是碱金属氧化物总量的指标。

25

30

下文中,上述玻璃将称为 SiO,一R,O一TiO,体系玻璃。该玻璃基质

可具有 Kuoop 硬度不小于 455MPa, 优选 460MPa, 更优选 500MPa, 如与第一观点结合所述。

在 SiO₂-R₂O-TiO₂ 体系玻璃中, SiO₂ 是用来增硬玻璃本身,并且来改进玻璃的耐气候特性。R₂O 是用来控制平均线性热膨胀系数。具体地说,R₂O 是用来将玻璃中所含有的 SiO₂ 的平均线性热膨胀系数调节到所希望的平均线性热膨胀系数,使处于上述预定范围内。TiO₂ 是用来得到所希望的平均线性热膨胀系数,使处于预定范围,并进一步增强其耐气候特性。

利用上述 SiO₂-R₂O-TiO₂ 体系的玻璃,有可能准确地匹配平均线 性热膨胀系数处于预定范围内于-30℃至+70℃的温度下,这是指光学多层膜沉积在玻璃基质上。这种匹配可通过控制 R₂O 与 TiO₂ 之间的替换程度来实现。例如调节 R₂O 与 TiO₂ 之间的替换程度,可使在所用温度范围(例如室温)内的温度漂移变为最小限度(亦即减少至零)。结果,玻璃的平均线性热膨胀系数可调节至所需值。此处, R₂O 与 TiO₂ 彼此 的替换程度可通过测量各原料每个的量和通过熔化玻璃来进行控制。

这里应指出 SiO₂-R₂O-TiO₂ 体系的玻璃对光束是透明的,它具有光通信所使用的 1.3 米 1.6 米之间的波长频带。这意味着上述体系的玻璃作为光学玻璃具有高的质量。

下面,将描述含于 SiO₂-R₂O-TiO₂体系玻璃中各玻璃成分的用量。 关于 SiO₂, SiO₂少于 38 摩尔%会恶化玻璃的耐气候特性并减少其 硬度。因而,光学多层膜容易从玻璃基质上剥离掉。另一方面,SiO₂多 于 58 摩尔%,会使平均线性热膨胀系数低于上述预定范围,结果,与 愿望相反,增加了温度漂移。考虑到上述情况,SiO₂的用量应处于 38-58 摩尔%范围内,优选为 38-50 摩尔%,更优选为 38-48 摩尔%。SiO₂ 的最优选或最佳范围为 42-48 摩尔%。

20

25

30

关于碱金属氧化物 R_2O , 当其总量少于 15 摩尔%时,难于得到上述结果。另一方面, R_2O 多于 40 摩尔%容易降低玻璃的耐气候特性。因此 R_2O 的总量可限制于 15—40 摩尔%的范围,优选为 22—32 摩尔%。优选的碱金属氧化物 R_2O ,可以是 Na_2O 和 / 或 K_2O 。更可取的是,玻璃中含有 Na_2O 和 K_2O 并且碱金属氧化物最好仅由 Na_2O 和 K_2O 组成。

 Na_2O 的用量优选范围为 10-25 摩尔%,更优选为 13-25 摩尔%,最优选为 15-22 摩尔%。另一方面, K_2O 的用量范围为 2-15,更优选为 4-15 摩尔%,进一步优选为 6-15 摩尔%,最优选为 6-10%。

至于 TiO₂,TiO₂少于 7 摩尔%会降低玻璃的耐气候特性,并难于使平均线性热膨胀系数处于预定范围内。高于 30 摩尔%的 TiO₂ 难于得到处于预定范围内的平均线性热膨胀系数。因而 TiO₂ 的用量应处于 7-30 摩尔%范围,更优选为 10-25 摩尔%,进一步优选为 10-22 摩尔%或者 12-22 摩尔%,最优选为 12-20 摩尔%。

虽然 Al_2O_3 作为选择成分加入到 $SiO_2-R_2O-TiO_2$ 体系的玻璃中,它是用来改进耐气候性和增加玻璃的硬度。然而, Al_2O_3 高于 12 摩尔%,难于得到预定范围内的平均线性热膨胀系数。在此情况下, Al_2O_3 的用量是限于 0-12 摩尔%,优选为 0.5-25 摩尔%,更优选 0.5-8 摩尔%,进一步优选为 1-8 摩尔%或者 2-8 摩尔%,最优选为 2-6 摩尔%。

如上所述, Al_2O_3 是作为任选成分加入到 $SiO_2-R_2O-TiO_2$ 体系的玻璃中,但它可用来改进耐气候特性,正如 SiO_2 那样,并可增加玻璃的硬度。因而, Al_2O_3 可作为必需成分加入到玻璃中。在此情况下,玻璃优选含有,以摩尔%计算的如下成分,

	SiO ₂	38-58%
	Na ₂ O	13-25%
20	K_2O	2-15%
	TiO_2	10-25%
	Al_2O_3	0.5-8%

10

15

25

30

在上述玻璃成分中,没有必要限定 R_2O 的用量。然而, R_2O 的总量可限制于 15-40 摩尔%范围内,优选为 22-32 摩尔%,正如在上述组分中那样。

按照第二种观点,玻璃希望包括,除上面列举的成分外,至少一种氧化物选自碱土金属氧化物和氧化锌。其中,优选玻璃包括 MgO 和 ZnO。这样的一些碱土金属和氧化锌可改进玻璃透明性的消失和熔合性能。因而,加入二价成分可降低液相的温度并有利于生产和形成玻璃。此外,ZnO 可以有效地增硬玻璃和防止光学多层膜从玻璃基质上剥离。当玻璃

中含有碱土金属氧化物或氧化锌时,优选二价成分的总量不低于 2 摩尔%,以便实现上述作用,和不高 15 摩尔%,以便不致降低耐气候特性。

为了实现优良的耐脱玻(玻璃透明度消失)性能和避免耐气候性能的下降,玻璃可含有以摩尔%计算的下列成分:

5 ZnO 0—10%,
MgO 0—13%,
CaO 0—10%,
SrO 0—8%,以及
BaO 0—6%。

10

15

25

30

更加优选,玻璃可含有,以摩尔%计算,1-13%的 MgO 和 0.5-10%的 ZnO。

上述的 $SiO_2-R_2O-TiO_2$ 体系玻璃可包含一种精炼剂 (refining agent),例如 Sb_2O_3 ,其量最好限于 0-0.1 摩尔%范围内。

为了改善耐气候性, $SiO_2-R_2O-TiO_2$ 可包含有至少一种氧化物,选自 ZrO_2 、 HfO_2 、 La_2O_3 ,及 Y_2O_3 。诸如 ZrO_2 、 HfO_2 、 La_2O_3 ,及 Y_2O_3 的每一成分的用量最好限于 0-1.2 摩尔%范围内,以便使平均线性膨胀系数不小于预定范围。当上述各成份大于 0.2 摩尔%时,其耐气候特征可得到很好的改善。

只要本发明不脱离其目的,氧化物,例如 Li、La 系元素,Nb、Ta、20 W、B、Ga、Zn、Ge、Sn、Pb、P、Sb、Bi、Te 等的氧化物可加入,其量为几个摩尔%。这种氧化物的加入有助于调节玻璃的折光指数、玻璃转变点、及可加工性。直至本发明的目的达成,百分之几的氧化物成分可用氟化物来替代,取代玻璃中所含的氧化物成分。

然而,根据本发明人的实验研究,已经发现,最优选的玻璃组合物是特定的,以 SiO_2 、 Na_2O 、 K_2O 、 TiO_2 、 Al_2O_3 、MgO、ZnO 的组分为特征,或由上述组分组合的,并且 Sb_2O_3 加入到组合物中作为精炼剂。

根据第一和第二观点,玻璃基质具有比一般所使用的典型玻璃更大的热膨胀系数。因而,即使一种金属材料,例如碳钢(热膨胀系数为约 120×10⁻⁷/K)和不锈钢(热膨胀系数为约 110×10⁻⁷/K),广泛用于工业,但它们是作为固定构件使用的,玻璃基质与固定构件之间的热膨胀

差别是小的。相应地,由于温度变化在玻璃基质与固定构件之间产生的应力造成的光畸变是较小的。至于塑料材料,可得到同样的优点,因为,通过选择聚合度和交联剂,制造的材料如聚乙烯及聚甲基丙烯酸甲酯都是广泛用于工业的,和具有热膨胀系数为约 90×10⁻⁷/K。

让我们构制一种光学设备,利用光学单元器件,光学单元具有由 SiO₂ -R₂O-TiO₂ 体系玻璃形成的光学元件并且固定于一固定的构件上,固定构件是碳钢、不锈钢(型号 410)、聚乙烯、聚苯乙烯、及聚甲苯丙烯甲酯等制成的。如上所述。这种光传输设备抗热变化引起光畸变是很小的,因而稳定性优良。此外,耐气候性能优良,因此可广泛地使用于各种工作环境下。

下面接着, 描述本发明的滤光器。

10

15

25

30

本发明的滤光器是用作光信号多路组合器 / 多路分离器设备,用于波长多路组合 / 多路信号分离。该滤光器包括上述的玻璃基质和形成在玻璃基质上的光学多层膜,光学多层膜是通过连续沉积和层叠高折光率的介电薄膜和低折光率的介电薄膜于玻璃基质上。该光学多层膜具有光干涉产生的频带传输功能,并能通过改变其结构与折光系数来改变传输频带内的中心波长。

作为用作高折光指数介电薄膜的材料是 TiO_2 、 Ta_2O_5 、 HfO_2 、 ZrO_2 、 CeO_2 、 Al_2O_3 、 Y_2O_3 、ZnS、MgO、 La_2O_3 、CdS、Si 等制成。作为低折光指数介电薄膜材料,可使用 SiO_2 、 MgF_2 、 ThF_4 。高折光指数的介电薄膜的优选材料可以是 Ta_2O_5 、 TiO_2 ,而用作低折光指数的介电薄膜的优选材料可以是 SiO_2 。

滤光器中中心波长的温度漂移,可通过适当调节所用基质材料的平均线性热膨胀系数来减少。在传输频带中的中心波长的温度漂移可以抑制在-0.0025nm/K—+0.0025nm/K 范围内,这是通过使用具有适当平均线性热膨胀系数 100×10⁻⁷—130×10⁻⁷ 范围内的基质达到的,虽然它决定于要沉积的薄膜的一些特性和沉积的条件。因而,该滤光器可用于广泛的温度范围。此外,玻璃基质的材料耐气候特性是优良的,因而还有优点是在抛光处理过程中不会产生表面性能退变问题。结果,这种滤光器可用于各种工作环境下。

这里,可以设想,波长的多路组合/多路分离是在 1.5μm 的波长频带内进行的,以及多路信号分离的各波长成分间的间隔变得等于 100GHz (相当于 0.8nm 的波长间隔)。此外,还可设想,该滤光器具有 0.2nm 的一种高透射频带宽度。在此情况下,当温度漂移超过 2.5pm (0.0025nm)/K 和在整个温度范围为 100 度 (例如一30℃至+70℃) 发生温度变化时,则信号光波长便从高透射频带宽度移至不透明区域并且不能进行多路信号分离。因而,在滤光器中产生了不方便的问题。

此外,让进行多路组合和多路分离的波长各成份的间隔等于 50GHz (相当于波长间隔为 0.4nm)。由于滤光器具有约为 0.1nm 的高透射频带宽度,故信号光波长可能落入不透明区域,这是当温度漂移超过 0.5pm 和在滤光器中产生了约 100℃ (例如-30℃至+70℃)的温度变化时,结果,在此情况下也发生了不方便的问题。

10

15

20

25

30

如前面所述,本发明的滤光器具有一温度漂移范围为-0.0025nm/K至+0.0025nm/K(优选为-0.0005nm/K至+0.0005nm/K)。因而,有可能防止信号光波长在通常温度变化范围内位处于高透射频带宽度之外,并实现高的可靠性。

由于用在滤光器中的玻璃基质具有 Knoop (努氏) 硬度不小于 455GPa, 所以有可能防止光学多层膜脱离玻璃基质,由于光学多层膜与 玻璃基质之间存在线性热膨胀系数的差别会造成二者脱离,在本发明中 不会发生,甚至当温度变化超过 100℃亦如此。

根据本发明,已经得到了一种光信号多路分离的设备,它包括一个滤光器,一个光学纤维,它将进行多路信号分离的光束波长通过光纤的出口端引导到滤光器上,以及一些光学纤维,它们具有一些入射末端,各光波长成分通过滤光器的光学多层膜送到这些末端上。

根据本发明,已制得了一种光信号多路组合器设备,它包括一个具有光学多层膜的滤光器;多个光纤,它们位对滤光器,导送由光学多层膜发射的或反射的波长各成分;以及一个定位的光纤,用来导送发射的和反射的波长各成分,并通过滤光器的一个入射端来导输多路组合的光束。

考虑到有许多多路组合波长,可使用多个滤光器,它们在传输频带

的中心波长方面彼此不同,并且它们每个都单独进行多路组合/多路分离操作。

光信号多路组合器设备和光信号多路分离器设备(它们两个通常共同叫做光信号多路组合器/多路分离器设备)具有高度可靠性,即使在环境温度强烈变化的情况下,这是由于使用了具有高度可靠性的滤光器的原因。

附图简述:

图 1 是说明本发明的滤光器处于工作状态下的示意图,

图 2 是说明应用本发明的光信号多路组合器 / 多路分离器的示意 10 图,

图 3 是表示玻璃畸变测量的视图,

图 4 是说明在温度与第 24 实施方案中滤光器中心波长的温度漂移之间的关系的图示,

图 5 是说明第 24 实施方案的滤光器结构的示意图,以及

15 图 6 是说明在上述滤光器中心波长的温度漂移与平均线性热膨胀系数之间的关系,其中使用第 1 至第 22 实施例的玻璃基质(描述见实施例 1 到实施例 22)。

一些优选实施方案的描述:

现在结合一些实施例来详细描述本发明。

20 实施例 1-22

Nay		· · · · · · · · · · · · · · · · · · ·												- 1		- 1					- 1	- 1		
Na ₂ O K ₂ O TiO ₂ BaO CaO StO MgO ZaO ZaO ₂ La ₂ O ₃ O HfO ₂ TiO ₂ TiO ₂ TiO ₂ TiO ₂ TiO ₃ TiO	***************************************	Knoop (Mpa)	650	630	650	570	460	470	69	460	460	490	460	455	009	200	019	470	460	466	470	470	470	510
Na ₃ O K ₂ O TiO ₂ BaO CaO SiO MgO ZaO ZaO La ₂ O ₃ HfO ₂ Y ₂ O ₃ Ba (RO)		温度漂移 (nm/K)	0.0013	9000.0	0.0015	-0.0008	-0.0003	-0.0001	0.0002	0.0005	0.0004	0.0002	0.0011	0.0014	0.0017	0.0020	0.0015	0.0008	0.0013	0.0012	0.0002	-0.0001	0.0002	0.0007
Na ₂ O K ₂ O TiO ₂ BaO CaO StO MgO ZnO ZrO ₂ La ₂ O ₃ HfO ₂ Y ₂ O ₃ & R R R R R R R R R	月七名亦有	第8条数 (10 /K)	105.0	106.6	106.6	118.1	114.8	114.0	114.8	111.5	109.9	111.5	109.9	106.6	100.9	102.5	100.9	106.5	105.2	108.3	113.8	112.4	111.2	111.8
Na ₂ O K ₂ O TiO ₂ BaO CaO SrO MgO ZnO ZrO ₂ La ₂ O ₃ HfO ₂ Y ₂ O ₃ BaO La ₂ O La ₂ O ₃ HfO ₂ Y ₂ O ₃ BaO La ₂ O La ₂ O La ₂ O ₃ HfO ₂ Y ₂ O ₃ BaO La ₂ O La		8.8.1 (R'O)	0:0	0.0	0.0	0.0	4.3	0.0	0.0	8.7	12.5	9.3	0.0	8.6	0.0	12.4	0.0	12.0	12.0	9.6	0.0	0.0	7.0	7.1
N820 K20 T102 Be0 Ca0 Sr0 Mg0 Zn0 Zr02 La203 Hf02 L16 L138 L181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		故事	901	100	8	8	8	2	8	8	100	100	100	001	001	100	100	001	901	81	92	18	100	8
Na ₂ O K ₂ O TTO ₂ BaO CaO SrO MgO ZnO ZrO ₂ La ₂ O ₃ Hff 18.5 7.0 17.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Y ₂ O ₃	0	0	0	6	, c	, c	, c	0	0	0	0	0	0	0	0	0	0	٥	0	2	0	0
Na ₂ O K ₂ O TTO ₂ BaO CaO SrO MgO ZnO ZrO ₂ 18.5 7.0 17.2 0 0 0 0 0 0 0 11.6 13.8 18.1 0 0 0 0 0 0 0 22.7 7.2 18.1 0 0 0 0 0 0 0 23.0 7.3 18.4 0 0 0 0 0 0 1.7 23.1 7.3 18.4 0 0 0 0 0 0 1.7 23.1 7.3 18.4 0 0 0 0 0 0 0 1.7 23.1 7.3 18.4 0 0 0 0 0 0 0 0 1.7 23.1 7.3 18.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		HfO ₂	0	0	-		, c	, c	, c	, 0	0	0	0	0	0	0	0	0	0	0	1.8	0	0	0
Na ₂ O K ₂ O TiO ₂ BaO CaO SrO MgO ZnO 18.5 7.0 17.2 0 0 0 0 0 11.6 13.8 18.1 0 0 0 0 0 19.0 7.1 17.7 0 0 0 0 0 22.7 7.2 18.1 0 0 0 0 0 23.1 7.3 18.4 0 0 0 0 0 23.1 7.3 18.4 0 0 0 0 0 23.1 7.3 18.4 0 0 0 0 0 0 23.1 7.3 18.4 0 0 0 0 0 0 0 0 23.1 7.3 18.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0		La ₂ 0 ₃	0	0	6		9 6		0	, 0	0	0	8:1	0	0	0	0	0	0	0	0	0	0	0
Na ₂ O K ₂ O TiO ₂ BaO CaO SrO MgO Z 18.5 7.0 17.2 0 <t< th=""><th></th><th>ZrO₂</th><td>0</td><td>0</td><td></td><td>, .</td><td>9</td><td>5 ;</td><td><u>:</u></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>		ZrO ₂	0	0		, .	9	5 ;	<u>:</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N82O K2O TTO2 B&O C&O SrO N 185 7.0 172 0 0 0 0 11.6 13.8 18.1 0 0 0 0 19.0 7.1 17.7 0 0 0 0 23.7 7.2 18.1 0 0 0 0 23.1 7.3 18.4 0 0 0 0 23.5 7.5 18.8 0 0 0 0 20.1 7.5 16.2 0 0 0 0 19.5 7.2 16.5 0 0 0 0 20.6 7.5 16.1 0 0 0 0 20.7 7.5 16.1 0 0 0 20.8 8.0 18.2 0 0 0 0 20.9 7.5 16.1 0 0 0 20.0 7.5 16.1 0 0 0 20.4 4.9 17.5 0 0 0 0 20.4 6.9 12.2 0 0 0 0 18.2 6.2 23.2 0 0 0 7.5 18.8 7.3 16.5 0 0 7.5 18.8 7.3 16.5 0 0 0 7.5 18.8 7.3 16.5 0 0 0 7.5 18.8 7.3 16.5 0 0 0 0	-	ZnO	0	6			> ;	. ·	> 0	8.7	0	0	0	8.6	0	0	0	0	0	9.6	0	0	<u>~</u>	1.9
Na ₂ O K ₂ O TiO ₂ BaO CaO S 18.5 7.0 172 0 0 0 11.6 13.8 18.1 0 0 0 19.0 7.1 17.7 0 0 0 23.7 7.2 18.1 0 0 0 23.1 7.3 18.4 0 0 0 23.5 7.5 18.8 0 0 0 20.1 7.5 16.5 0 0 0 19.5 7.2 16.5 0 0 0 20.4 4.9 17.5 0 0 0 20.4 6.9 12.2 0 0 0 18.2 6.2 23.2 0 0 0 18.2 6.2 23.2 0 0 0 18.3 6.15.5 6 0 18.6 6.15.5 6 0 18.8 7.3 16.5 0 0 20.4 6.9 17.5 0 0 0		MgO	0	- c	, ,		> 0	> 9	> <	o c	12.5	0	0	0	0	12.4	0	9	4.5	0	0	0	5.2	5.2
Na ₂ O K ₂ O TTO ₂ BaO C 18.5 7.0 17.2 0 11.6 13.8 18.1 0 19.0 7.1 17.7 0 22.7 7.2 18.1 0 23.0 7.3 18.4 0 23.1 7.3 18.4 0 23.1 7.3 18.4 0 23.1 7.3 18.4 0 20.1 7.5 16.2 0 19.5 7.2 16.5 0 19.5 7.2 16.5 0 20.4 4.9 17.5 0 20.4 6.9 17.5 0 18.2 6.2 23.2 0 18.2 6.2 23.2 0 18.2 6.2 23.2 0 18.3 6.15.5 6 18.8 7.3 16.5 0 18.8 7.3 16.5 0	l	S.O	0	6	,	, (5	٥	> 0	3 c	, 0	0	0	0	0	0	0	0	7.5	0	0	0	0	0
Na ₂ O K ₂ O TiO ₂ Bar 18.5 7.0 17.2 0 11.6 13.8 18.1 0 19.0 7.1 17.7 0 22.7 7.2 18.1 0 23.0 7.3 18.4 0 23.1 7.3 18.4 0 23.1 7.3 18.4 0 23.5 7.5 16.2 0 19.5 7.5 16.2 0 20.1 7.5 16.5 0 20.4 4.9 17.5 0 20.4 6.9 12.2 0 18.2 6.2 23.2 1 18.2 6.2 23.2 1 18.3 6 15.5 1 18.6 6 15.5 1 18.8 7.3 16.5 1 18.8 6 15.5 1 18.8 7.3 16.5 1		CaO	٥			۰ اد	ه اد	، اد	9 6	9 9	0	9.3	0	0	0	0	0	0	0	0	0	0	0	0
Na ₂ O K ₂ O T 18.5 7.0 1 11.6 13.8 1 11.6 13.8 1 19.0 7.1 1 23.7 7.2 1 23.1 7.3 1 23.1 7.3 1 20.1 7.3 1 19.5 7.5 1 19.5 7.5 1 19.5 7.5 1 19.5 7.5 1 19.5 7.6 1 18.8 7.0 1 18.8 6 18.9 6 18.0 6 18.1 6 18.2 6.2 1 18.3 7.3 1 20.4 4.9 6.9 1 18.4 6.9 1 18.5 6.2 1 18.6 6 18.8 7.3 1 20.4 6.9 7.3 1 20.4 6.9 7.3 1 20.4 6.9 7.3 1 20.4 7.9 1 20.4 6.9 7.3 1 20.4 7.9 1 20.4 6.9 7.3 1 20.4 6.9 7.3 1 20.4 6.9 7.3 1 20.4 7.3 1 20.4 7.3 1 20.4 7.3 1 20.4 7.3 1 20.5 7.3 1 20.7 7.3 1 20.8 7.3 1 20.8 7.3 1 20.8 7.3 1 20.9 7.3 1 20.1 7.3 1		BaO	6	,	9	9	0	0	0 (0	0	0	0	0	6	0	0	9	6	0	0	6	0	0
Na ₂ O K 18.5 7 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11		TiO2	17.2	: :	1.0.1	///	18.1	18.4	18.4	18.8	15.9	16.5	18.2	191	17.5	12.2	23.2	15.5	15.5	16.5	18.5	18	15.5	15.5
		K20	10	3 3	6.5.	7.	7.2	7.3	7.3	7.5	7.0	7.2	0 %	3,5	40	9	62	9	ی اد	, 5	1 5	7,3	13.8	8.6
		Na2O	18 5		0.1	0.61	22.7	23.0	23.1	23.5	1.02	10.5	21.5	200	20.6	20.4	28,	<u>~</u>	2 2	2 %	3 2	3 1	13 8	17.8
A ₂ O ₃ A ₂ O ₃ O ₁ O O ₁ O O ₂ O O ₂ O O ₂ O O ₂ O O ₃ O O ₄ O O ₅ O		Al ₂ O ₃	6	33	0.0	2.0	4.7	%. %.	8.4	10.5	1.7	7.4	200	7.0	2 2	7.1	2 6	2 2	3,5	28	2, 8	2	2,4	2.0
SiO ₂ 557.2 56.5 54.2 47.3 47.3 44.2 40.9 40.		SiO ₂	1	77/0	26.5	24.2	47.3	42.3	44.7	39.7	39.9	30.0	24.5	7 0 0	£ 5	23.3	2.15	43.	7 5	3	3 77	24.5	67.5	47.8
秋福室 I 2 6 4 5 6 7 8 6 01 II 2 E1 41 51 51 61 65 61 65 61 61 61 61 61 61 61 61 61 61 61 61 61		採福度	<u>.</u>	1	7	m	4	2	9	7		N S	2 =	= =	2 5	2 3	* *	3 3	2 2	= =	2	3	3 5	22

表 1 表示在实施例 1-22 中玻璃组成与温度范围为-30℃至+70℃的 平均线性热膨胀系数,实施例 1-22 是具有本发明的玻璃基质用于 WDM 滤光器。该表中每个成分的含量以摩尔%表示。线性热膨胀系数是用单位 10⁻⁷ / K 来表示。R'O 代表二价金属氧化物成分的总含量。

本发明的玻璃是用以下方法制备的。作为成分的材料是使用相应于每种成分的氧化物、碳酸盐、硝酸盐等。为了制得表 1 中的组合物,将原材料秤重和充分混合来制备玻璃原料。将原料供入的铂金坩埚,用电热炉在 1200℃至 1450℃的温度熔化,搅拌、精练,均质化,浇注入一个适当预热了的模具中,固化,以及逐渐冷却。

现在以举例方式来描述实施例 1 中组成的玻璃。具体地说,是将各原材料秤重和充分混合后送入铂金坩埚,在初步加热至 1350℃的电热炉中熔化 2 小时,按照上述步骤。

10

15

20

25

30

在每一实施例中,分批供料能够容易地熔化和均质化,在制得的玻璃中没有观察到损失透明度的情况。

将用上述方法制得的玻璃,形成尺寸为 30mm Φ 和 1mm 厚的基质并对其两表面进行抛光处理,这种玻璃基质便可用作 WDM 滤光器。

每个实施例中的玻璃都具有平均线性热膨胀系数超过 100×10⁻⁷ / K。这里应指出,平均线性的热膨胀系数的测量是使用激光束和光干涉的激光相干测量型热膨胀计。

将每种玻璃粉碎,放入铂金炉内,并浸入烧瓶中的纯水中。在沸水浴中处理 1 小时后,测量其重量减少。结果,对每种玻璃来说,重量减少为 0.1%以下,因而,已证明其化学耐久性是优良的。

更具体地说,提供了一种已抛光的厚度为 1mm 的玻璃基质样品。在玻璃基质样品上涂布一种多层介电薄膜,多层介电膜是交替沉积 Ta₂O₅ 和 SiO₂ 膜来形成。这种沉积介电多层膜的方法可以是通常所使用的沉积光学薄膜的方法,可以是,例如,IAD(离子加速沉积)法等。

在上述实施例中,是将 Ta₂O₅ 薄膜沉积在玻璃基质表面上,厚度为 24μm, 结果,是处于与玻璃基质接触中。进行高温 / 高湿度测试,是将 有涂层表面的和无涂层表面的玻璃基质在 85℃的温度下在相对温度为 85%的大气中进行 600 小时。高温 / 高湿度测试可以使用本技术领域中常

用的方法。在测试之后,用肉眼和显微镜观察基质的两种表面,估价在这两种表面上发生的反应和退变情况。观察的结果,在无涂层的玻璃基质样品的表面上没有看到模糊不清晰的斑点。同样在涂布有光学多层膜的玻璃表面上也没有看到任何反应。此外,也未看到多层光学膜脱离玻璃基质试样的现象。

参比例:

10

15

20

25

30

制得氟代磷酸盐玻璃,它具有组分为 $20\%P_2O_5-20\%AlF_3-24\%CaF_2-20\%SrF_2-16\%BaO$ (摩尔%),和制得碱性硅酸盐玻璃,它具有组分为 $30\%Na_2O-70\%SiO_2$ (摩尔%),制法步骤类似于实施例 1-22。氟代磷酸盐玻璃和碱性硅酸盐玻璃的熔点分别为 1050 C 和 1250 C 。氟代磷酸盐玻璃和碱性硅酸盐玻璃的平均线性热膨胀系数分别为 125×10^{-7} / K 和 112×10^{-7} / K。

将每种玻璃粉碎,放入铂金炉,浸入在烧瓶中的纯水中。在沸水浴处理 1 小时后,测量重量减少情况。结果,前者和后者分别减少重量为0.25%和5%。因而,已经证明,与上述实施例中的玻璃相比,化学耐久性是不同的。

实验实施例 23

将具有实施 5 中组分的玻璃块成型为 1×1×1cm 的尺寸大小并在其两反面上进行抛光处理。此后,将玻璃块用固定夹具夹持,如图 3 所示。固定夹具是由 SUS410 制成 (热膨胀系数为 110×10⁻⁷ / K)。构件 1A、B 和构件 2A、B 是用穿入通孔的螺钉固定,来夹持玻璃。每个构件 1A、B 具有尺寸大小为 1×2×2.5cm,而每个元件 2A、B 具有尺寸大小为 1×1×1cm。

在玻璃被固定夹具固定之后,按照日本光学玻璃工业标准"JOGIS14—1975 测量光学玻璃应变的方法",证明在室温下(23℃)没有发生内部应变。此后,将玻璃和固定夹具冷却至-25℃。在玻璃中发生了应变并作了同样的评估,结果应变为 1nm。因而,已经证明由温度变化诱导的和由玻璃与固定夹具间热膨胀系数的差别所产生的应变是很小的。

对比例 1

将硼硅酸盐光学玻璃 BK7(SiO2、B2O3、Na2O 及 K2O 分别为 74 摩

尔%、9摩尔%、11摩尔%及6摩尔%)形成为尺寸大小为1×1×1cm,并在其两相反的表面上进行抛光。此后,以与实施例 23 同样的方法,将玻璃用固定夹具夹持起来,如图 3 所示。玻璃具有热膨胀系数为 75×10⁻⁷/K。以与实施例 22 同样的方法,将玻璃和固定夹具冷却。然后在玻璃中产生应变并进行了同样的评估。结果,得到的应变为 8nm。因而,已证明由于温度变化诱导了较大的应变。

实施例 24

20

25

30

在具有表 1 所示的组份中用作 WDM 滤光器的每个玻璃基质的表面上,分别用 Ta₂O₅ 和 SiO₂ 作为高折光指数的材料和低折光指数的材料形 成一种 Fabry-perot 型的 1.55μm 频带传输滤光器。通过玻璃基质 /(HL)⁷/H²L(HL)⁷H/ 空气的组合制得一种薄膜结构,其中 H 代表高折光指数的介电膜;L 为低折光指数的介电膜。由这种情况,可容易地了解到,通过连续沉积制得了上述结构,从玻璃基质一侧面,交替沉积的 H 和 L 薄膜各 7 层组合(总共 14 层膜),在上述各 7 层组合膜上再沉积 2 层 H 膜,在 2 层 H 膜上再沉积一层 L 膜,在一层 L 膜上再交替沉积 H 与 L 膜各 7 层组合,以及在各 7 层组合上再沉积一层 H 膜。这里,每一层低折光指数的介电膜都是由 SiO₂ 作为原料形成,而每一层高折光指数的介电膜都是由 Ta₂O₅ 作为原料形成,基质的工作温度为 350℃。

测定了滤光器的中心波长在温度-20℃至+40℃范围内的温度依赖关系。对于具有实施例 10 的组分的玻璃,得到了+0.000nm/K 的值。因而,已经证明,其热稳定性很优良,对其它组份的玻璃也作为类似的评价。如表 1 中最后一栏中所表示,得到了在一0.0008nm/K 与+0.0020nm/K 之间的一些数值。因而,已经证明其热稳定性是很优良的。

这里,应指出,有关于入射光束的透射和反射特性。可由薄膜结构中各膜层的折光指数和厚度计算而得,并且依赖于入射光的波长和偏振平面。在薄膜结构中的每层膜,亦即多层膜,具有光学厚度通常等于波长的四分之一(λ / 4)的整数倍。 高折光指数的材料可以是,例如, TiO_2 、 Ta_2O_3 、 HfO_2 、 ZrO_2 、 CeO_2 、 Al_2O_3 、 Y_2O_3 、ZnS、MgO、 La_2O_3 、CdS 及 Si,而低折光指数的材料可以是,例如, SiO_2 、 MgF_2 及 ThF_4 。

这样的一种光学多层膜组成了一种 Fabry perot 型干涉滤光器,并具有在窄波长范围内的高透光率和在接近窄波长范围的波长范围内的高反射特性以排除在近波长范围内的光束。结果,具有上述光学多层膜的滤光器便适用于作为 WDM 滤光器。

实施例 25

5

10

15

20

30

提供一种玻璃基质,它具有直径为 50mm 和厚度为 12mm,具有组分为 46.5 摩尔%SiO₂, 3.3 摩尔%Al₂O₃, 19.6 摩尔%Na₂O, 7.0 摩尔%K₂O,16.6 摩尔%TiO₂, 5.2 摩尔%MgO,和 1.8 摩尔%ZnO。将玻璃在其两个表面上进行抛光。此后,在其一个表面上沉积一种光学多层膜,它形成了 50GHz一型 Fabry-Perot 干涉滤光器,具有传输频带为 1544nm。在上述 50GHz WDM 透射系统中,在高透光率频带之间的间隔(亦即在透光频带的中心频率之间的间隔)等于 50GHz,或 0.4nm。具体地说,光学多层膜沉积至总厚度为 30μm—40μm,是通过交替层叠 Ta₂O₅与 SiO₂膜,多层膜的数目超过 100 层膜。在光学多层膜沉积完之后,将玻璃基质从未沉积复盖的表面一侧压薄至厚度为 1mm,将背面曝光进行了光学抛光处理。在通过光学抛光处理而曝光的背面上,涂布一层抗反射的涂层。此后,将以上方法处理过的玻璃基质切割成多个小块,每块在本技术领域内具有典型尺寸大小为 1.4mm×1.4mm,它可用作滤光器。评估了每个滤光器在透光频带的中心波长(叫做透射中心波长)处的温度稳定性。

参照图 4,说明在温度范围为 0℃至 60℃下透射中心波长的变化。可以看出,上述温度范围对评估滤光器的特性是很重要的。如图 4 中所示,在温度不高于 25℃下观察到一种负的温度漂移,而在温度高于 25℃,亦即不低于 30℃下,看到了正的温度漂移。然而,已经证明这种温度漂移是极小的,这很容易从图看出。考虑到这种情况,可得到结论,在上述温度范围平均温度漂移是很小的,并且在从负温度漂移变为正温度漂移的邻近温度范围中,温度漂移可看作为零。如果上述温度的测定作为主要可使用的温度(室温),则在通常的工作环境(不太高的温度环境)下可以确立一种极稳定的温度特性。

如前所述,可以指出,温度漂移可使变成基本为零于室温下,这是

通过调节玻璃基质中所含有的 R2O 和 TiO2 的每个的用量。

图 4 所示的温度漂移是在邻近于室温的相当窄的温度范围中所测得的数据。然而,已经证明,在温度范围为-20℃至+40℃时,平均温度漂移等于-0.0004nm/K,当以类似于实施例 24 的方法评估时。滤光器的玻璃,在温度范围为-30℃至+70℃下,具有平均线性热膨胀系数 112.5×10⁻⁷/K。

参考图 5,用作 WDM 的滤光器具有一种玻璃基质和一种层叠的 Ta_2O_5 和 SiO_2 膜交替沉积在玻璃基质上。在说明的实施例中, Ta_2O_5 膜与玻璃基质接触,如前所述,以及 Ta_2O_5 膜和 SiO_2 膜被部分地从该图省略。

参考图 6,一种平均线性热膨胀系数和在透射中心波长的温度漂移分别沿横座标和纵座标示出。此外,滤光器是用编号为实施例 1 至 22 的每种玻璃基础构成,并对每种滤光器说明了平均线性热膨胀系数与温度漂移之间的关系。

对比例2

10

15

20

25

30

制法类似于实施例 24,利用硼硅酸盐光学玻璃 BK7 作为基质玻璃 制成了频带传输滤光器。

也与实施例 24 同样的方法,测定了峰波长的温度依赖关系。结果得到了 0.005nm/K 的数值。因而证明,与本发明的滤光器相比,热稳定性是很差的。

实施例 26

下面,描述本发明的 WDM 滤光器的一实施例。图 1 表示一示意图,用来说明通过光信号多路组合器 / 多路分离器进行光信号多路组合 / 多路分离操作。

在由选自实施例 1 至 22 的玻璃制成的玻璃基质上,沉积一种多层介电质薄膜,来制造滤光器(4A、4B、4C),它们分别具有透射波长分别为 λ 1、 λ 2 及 λ 3,并反射其它的波长。由波长 λ 1、 λ 2 和 λ 3 组成的信号光送入这些滤光器。然后信号光被分劈开或分离成多个波长 λ 1、 λ 2 和 λ 3 于通过这些滤光器之后,因而,上述结构可用作将多个波长的光分割或分离成各个波长的装置。如果光传播方向相反于图中说明的方向,则这种结构便用作多路组合或结合波长 λ 1、 λ 2 和 λ 3 在一起的

装置。

10

15

20

25

下面图 2 表示一示意图,用来说明从含有 4 种波长成分的信号光束中分离或分割出每一波长成分的光信号多路组合器 / 多路分离器(结合器 / 分割器)。如图所述,通过制备滤光器(5A、5B、5C、5D)得到了一种光分离器或分割器,滤光器是用选自实施例 1 至 22 的玻璃制成并将每个滤光器固定在对信号光波长频带透明的基本构件 6 上。这些滤光器分别透射波长 \(\lambda\) 1、\(\lambda\) 2、\(\lambda\) 3 和 \(\lambda\) 4。从单模纤维(SMF)发射出的信号光(波长:\(\lambda\) 1、\(\lambda\) 2、\(\lambda\) 3 和 \(\lambda\) 4)通过透镜校准,入射到光分离器或分割器设备上,如该图所述。波长 \(\lambda\) 1 的光,通过滤光器 5A 被透射,通过透镜 7A 偶合于 SMF10A,并从频道 A 发射出来。波长 \(\lambda\) 2 的光、波长 \(\lambda\) 3 的光及波长 \(\lambda\) 4 的光被滤光器 5A 反射而入射至滤光器 5B,如该图所示。在滤光器 5B 处,波长 \(\lambda\) 2 的光被分割或分离,以与上述同样的方式从频道 B 中发射出来。同样,\(\lambda\) 3 的光和 \(\lambda\) 4 的光分别从频道 C和 D 中发射出来。

在波长多路组合透射中,让光信号多路组合器/多路分离器设备具有一个单模纤维(SMF)9,排到在透射一侧,和一些单模纤(SMFs)10A-D,排列在接收一侧。在此情况下,设备是用作光分离设备来将单光束分离成多个波长。如果光的传送方向相反于图中的所述的方向,则设备可用作光信号多路组合设备来将多个光束合并成单一光束而具有多个波长。在任何情况下,都有可能得到光合并器一光分离器设备,它具有温度漂移于-0.0025nm/K与+0.0025nm/K之间,因而这具有高的可靠性。特别是,所述的光合并器/光分离器设备,在波长组合通信中具有高的可靠性,其中波长各成分彼此十分接近并具有高密度。

根据本发明,已制得一种玻璃基质,它有足够的硬度,优良的耐气候性和希望的平均线性热膨胀系数,它适用于作波长分离多路组合(WDM)滤光器。此外,还制得了 WDM 滤光器和光组合器/光分离器设备,它在传输频带中心波长的温度漂移很小,并对温度变化具有高的可靠性。而且,有可能在用作滤光器的温度范围内使温度漂移减少到最小限度,通过调节用作玻璃材料的玻璃中所含的特定玻璃成分。

说明书附图

图 1

图 2

图 3

图 4

图 5

函