

Martin Mundt, Dr. Iuliia Pliushch, Prof. Dr. Visvanathan Ramesh

Pattern Analysis & Machine Intelligence Praktikum: MLPR-SS21

Week 6: Recurrent Neural Networks (RNNs)

Recurrent Neural Network: Cells

- Activations of previous time-step influence next time-step
- In addition now also weights operating between A_t
- Weights shared across t

Recurrent Neural Networks: Cells

- "h" is the hidden state after a tanh activation function. There can be multiple such cells stacked to a deep network.
- For the final network prediction another layer needs to be added. See next slide
- 2 sets of weights: input to hidden, hidden to hidden (& then hidden to next cell

Recurrent Neural Networks: Training

- Very similar to backpropagation in feedforward NNs (here a 1 hidden-layer MLP)
- Key difference: Sum gradients for W at each time step
- PyTorch is going to handle backprop for us: see reference below for full derivation

Image taken from "A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation" https://arxiv.org/pdf/1610.02583.pdf

Recurrent Neural Networks: Tasks

Image taken from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Examples:

- 1. One to one: image classification
- 2. One to many: image captioning
- 3. Many to one: sentiment analysis
- 4. Many to many: language translation
- 5. Many to many: video classification

Recurrent Neural Networks: Long Range Dependencies

"The cat just had plenty of delicious food and is now full".

"The cats just had plenty of delicious food and are now full."

Long Short Term Memory (LSTM)

- This part follows http://colah.github.io/posts/2015-08-Understanding-LSTMs/because the illustrations simply cannot be done any better
- Instead of one layer, have four with different responsibilities:
- Cell state and three gates to interact with: forget gate, input gate, output gate

LSTM: Cell state

- Lets information flow through the entire chain
- Only minor linear interactions
- Information will get controlled through additional gating

LSTMs: Forget gate

• The forget gate multiplies a Sigmoid output (0 to 1) with the current cell state to allow information to pass through fully or fully forget it in the two extremes

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTMs: Input gate

• The input gate multiplies a Sigmoid output (0-1) with the new information to decide what new infomation to add to the cell state & update it

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

LSTMs: Output gate

• The output gate takes the updated cell state and the input and decides what to give as output

LSTMs: Overview & Training

- Training like RNN, backpropagation through time, but with more parameters
- PyTorch has a convenient LSTM cell implementation "nn.LSTM()" that we will use

$$\mathbf{f}_{t} = \sigma(W_{xf}\mathbf{x}_{t} + W_{hf}\mathbf{h}_{t-1} + b_{f})$$

$$\mathbf{i}_{t} = \sigma(W_{xi}\mathbf{x}_{t} + W_{hi}\mathbf{h}_{t-1} + b_{i})$$

$$\mathbf{g}_{t} = tanh(W_{xc}\mathbf{x}_{t} + W_{hc}\mathbf{h}_{t-1} + b_{c})$$

$$\mathbf{c}_{t} = \mathbf{f}_{t} \circ \mathbf{c}_{t-1} + \mathbf{i}_{t} \circ \mathbf{g}_{t}$$

$$\mathbf{o}_{t} = \sigma(W_{xo}\mathbf{x}_{t} + W_{ho}\mathbf{h}_{t-1} + b_{o})$$

$$\mathbf{h}_{t} = \mathbf{o}_{t} \circ tanh(\mathbf{c}_{t}), \ z_{t} = softmax(W_{hz}\mathbf{h}_{t} + b_{z})$$

$$\mathbf{i}_{1}$$

Image taken from "A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation" https://arxiv.org/pdf/1610.02583.pdf

RNNs: Are long range dependencies all we need? Bidirectional RNNs

He said: "Teddy Roosevelt was a great president"

He said: "Teddy bears are on sale!"

Image taken from http://colah.github.io/posts/2015-09-NN-Types-FP/

Our practice: Shakespeare poetry generation. Character level RNN & LSTM

Image taken from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sequence Models: Tasks & Literature

- Andrew Ng's deep learning specialization course 5: https://www.coursera.org/learn/nlp-sequence-models
- Chris Olah's blog: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Andrej Karpathy's blog: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- Stanford's CS224d by Richard Socher, Deep Learning for Natural Language Processing: https://cs224d.stanford.edu/