





INFORMAL REPORT

**ENVIRONMENTAL DATA REPORT** SUBIC BAY, REPUBLIC OF THE PHILIPPINES, JANUARY AND FEBRUARY 1965



**APRIL 1970** 

IN THUM I AND ON THE Approved for public release; distribution unlimited



NAVAL OCEANOGRAPHIC OFFICE WASHINGTON, D.C. 20390

> 10 7 050

REGULATION TO SERVICE STATE OF THE PARTY OF

## INFORMAL REPORT

The Informal Report (IR) as produced at the Naval Oceanographic Office is a means for personnel to issue timely scientific and technical preliminary reports of their investigations. These are primarily informal documents used to report preliminary findings or useful byproducts of investigations and work to members of the scientific and industrial communities.

Informal Reports are assigned sequential numbers for each calendar year; the digits preceding the dash indicate the year.

The distribution made of this report is determined primarily by the author. Information concerning obtaining additional copies or being placed on a distribution list for all future informal Reports in a given area of interest or specialty field, should be obtained from:

Field Management and
Dissemination Department
Code 4420
Naval Oceanographic Office
Washington, D. C. 20390



# **DISCLAIMER NOTICE**

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

#### **ABSTRACT**

The U.S. Naval Oceanographic Office (NAVOCEANO) conducted a limited environmental survey in Subic Bay, Republic of the Philippines, in January and February 1965. The purpose of the survey was to measure oceanographic environmental parameters in support of NAVOCEANO's mine warfare program. Temperature and salinity measurements and bottom sediment samples were obtained at 10 stations. Two of these stations were time-series anchor stations with current measurements and ambient noise recordings.

The influence of tidal currents are thought to be responsible for the fluctuation of higher density waters through the entrance channel to Subic Bay on either slope of predicted high water.

Maximum current speed was 0.4 knot. Characteristically, flow direction at intermediate levels often differed from the flow of the surface and near-bottom depths.

DALE E. KENNEY
Nearshore Surveys Division
Oceanographic Surveys Department

This report has been reviewed and is approved for release as an UNCLASSIFIED Informal Report.

L. B. BERTHOLF

Director, Nearshore Surveys Divison

2

|      | TABLE OF CONTENTS                           | Page     |
|------|---------------------------------------------|----------|
| ı.   | INTRODUCTION                                | 1        |
| II.  | METHODS OF COLLECTION AND ANALYSIS          | 1        |
|      | A. Temperature                              | 1        |
|      | B. Salinity                                 | 1        |
|      | C. Bottom Sediments                         | 1        |
|      | D. Current Measurements                     | 2        |
|      | E. Ambient Noise                            | 2        |
|      | F. Meteorological and Tide Observations     | 2        |
| III. | DISPOSITION OF DATA                         | 3        |
| IV.  | PRELIMINARY ANALYSES                        | 3        |
|      | A. Temperature                              | 3        |
|      | B. Salinity                                 | 3        |
|      | C. Bottom Sediments                         | 3        |
|      | D. Current Measurements                     | 4        |
|      | E. Ambient Noise                            | 4        |
|      | FIGURES                                     |          |
| 1.   | Station Locations                           | 5        |
| 2.   | Temperature Cross Section - Stations 1 to 7 | 6        |
| 3.   | Density-Time-Depth Composite at Station 10  | 6        |
| 4.   | Salinity Cross Section - Stations 1 to 7    | 7        |
| 5.   | Sound Pressure Spectrum Level               | 7        |
|      | TABLE                                       |          |
| I.   | Station Data Summary                        | 8        |
|      |                                             |          |
|      | APPENDIXES                                  |          |
| A.   | Oceanographic Station Data                  | 9        |
| В.   | Core Analysis Summary Sheets                | 29       |
|      | 1. Engineering Properties                   | 30<br>36 |

.:

...



#### I. INTRODUCTION

The U.S. Naval Oceanographic Office (NAVOCEANO) conducted a limited environmental survey in Subic Bay, Republic of the Philippines, in January and February 1965 from USS ENERGY (MSO 436) and USS ABNAKI (ATF 96). The purpose of the survey was to measure oceanographic environmental parameters in support of NAVOCEANO's mine warfare program.

Ten Nansen cast stations were occupied: seven stations along a track in the approaches to Subic Bay on 22 January and three stations, two of which were time-series anchor stations with current measurements and ambient noise recordings, in the entrance channel between Grande Island and Macmany Point from 17 to 19 Februar. (Fig. 1). A station data summary is presented in Table I.

Subic Bay is a deep, semi-enclosed basin with steep sides and a generally mud bottom. The bay gradually shallows from the entrance channel near Grande Island northward to the shoreline. The climatology is largely influenced by the monsoons and the trade winds. Current flow seaward of Subic Bay generally sets northward throughout the year with the stronger currents associated with the summer months. The northeast monsoon, November to March, brings weaker currents and drier weather.

#### II. METHODS OF COLLECTION AND ANALYSIS

#### A. Temperature.

Six to 12 Nansen bottles were used per cast, and with the exception of station 1, only paired, protected reversing thermometers were utilized. By alternating individual thermometers and forming new pairs, a reliable temperature relationship among the thermometers was established. Consequently, a correction factor could be applied to certain thermometers that had consistent errors. This factor, along with the standard thermometer corrections, was applied to the temperature values, and temperatures are considered accurate to +0.02°C.

#### B. Salinity.

Water samples were drawn from Nansen bottles, and salinity determinations were made in the field with an Industrial Instruments RS-7A induction salinometer. With this instrument, salinity can be measured with a precision of ±0.003 o/oo. In consideration of the probable sources of error, instrumental and observational, an accuracy of ±0.01 o/oo is realistic for this survey.

### C. Bottom Sediments.

Kullenberg cores were obtained at stations 8, 9, and 10. The samples were analyzed in the field for engineering properties and



sediment size and composition. Some distortion in the cores resulted before analysis, and the values obtained for the engineering properties are questionable.

#### D. Current Measurements.

Five Roberts current meters were used to obtain currents at the time-series stations. Because of the proximity of stations 9 and 10, the data are presented as one continual station covering a 36-hour period (24 and 16 hours each, respectively). The time gap occurred in the record when ship relocation and equipment malfunction halted operations. Current observation depths ranged from the surface to near bottom.

The calibration limitations of the Roberts current meter is 0.2 to 5.0 knots. Many values obtained were near 0.1 knot, which is the approximate threshold level for the meter. If a discernable record was attained near the threshold level, the measurement was included in the analysis. Of the 128 current observations attempted, approximately 35 percent were unusable and an additional 16 percent of the observations showed current speeds below the threshold level of the meters. The current directional values are considered accurate to +10 degrees.

#### E. Ambient Noise.

Ambient noise was measured with an AN/PQM-1A Noise Level Meter. The meter has a frequency range of 20 to 40,000 Hz and a pressure level range of 30 to 145 decibels referred to a reference level of 0.0002 dynes/cm<sup>2</sup>.

The hydrophone was mounted on a tripod located 180 meters east of station 10 at a depth of 24 meters. Recordings were obtained for 3-minute intervals 30 minutes before sunrise and 30 minutes after sunset. The calibration and the recording of ambient noise followed the technique outlined in the AN/PQM-1A instruction manual. The data obtained were analyzed on an 8-channel Sanborn recorder using a B&K 3rd octave spectrometer. The values used in this report are the average sound pressure level of the central frequency of each 1/3 octave corrected for attenuation, cable, and equipment loss. The resulting sound pressure levels then were reduced to sound pressure spectrum levels for analysis.

#### F. Meteorological and Tide Observations.

NAVOCEANO personnel obtained meteorological observations either visually or by hand-held equipment. Tide values used in this report are predicted values from USC&GS tide tables with Manila as the reference station.



#### III. DISPOSITION OF DATA

The serial-depth temperature and salinity values were computer processed at NAVOCEANO. Machine listings provided electrical conductivity, density (sigma-t), and sound velocity determinations for each depth. The computer-processed station data sheets are presented in Appendix A.

The core analysis summary sheets are presented in Appendix B. Original current data and ambient noise recordings are retained at NAVOCEANO.

#### IV. PRELIMINARY ANALYSES

#### A. Temperature.

A temperature cross section of stations 1 through 7 is shown in Figure 2. A density-time-depth composite for Station 10, indirectly depicting the hourly thermohaline variations occurring for each recorded depth, is presented in Figure 3.

Temperature measurements taken hourly during the time-series stations showed that the maximum horizontal fluctuation did not exceed 1.1°C for any measured depth over the 36-hour period of observations. Measurements of the vertical temperature range revealed a maximum variation of 1.6°C within the water column. Relatively little fluctuation in horizontal temperature was evident while occupying Station 9. With the advent of the following flood tide, subsequent changes in the temperature and salinity structure resulted in density fluctuations for all observed subsurface depths (Fig. 3). The increases in density appeared on either slope of predicted High Water.

#### B. Salinity.

Salinity values ranged from 33.49 to 34.47 o/oo. Figure 4 is a salinity cross section for stations 1 through 7. Observations taken during the time-series stations showed a maximum hourly range in vertical salinity of 0.34 o/oo. For any one observed depth, maximum horizontal fluctuation in salinity was 0.25 o/oo. The stability of the water column for the first 24 hours (Station 9) was attested to by a maximum horizontal fluctuation of 0.11 o/oo. Subsequent measurements revealed slight increases in salinity accompanying the temperature decreases, resulting in the density fluctuations depicted in Figure 3.

#### C. Bottom Sediments.

The core samples showed a generally greenish-colored sand with high contents of clays and silts. Calcium carbonate comprised, by weight, 18 to 37 percent of the samples' mineral composition. Quartz and calcite were the dominant and secondary minerals, respectively. The high standard deviations evident in the sediment size analyses attest to the poorly sorted nature of the sediments.



#### D. Current Measurements.

Current measurements also are depicted in Figure 3. Maximum recorded current speed was 0.4 knot. Current speed and direction varied throughout the water column. Characteristically, flow direction at intermediate levels often differed from the flow at the surface and near-bottom depths. Observed near-bottom flow was an inflowing current for the full 36-hour period regardless of the tidal cycle. Surface currents appeared to be in harmony with the tidal cycle more so than subsurface flows: The termination of a tidal period generated a reversal in surface flow direction. The increases in density at Station 10 indicated a fluctuation of higher density water through the entrance channel as a result of tidal currents.

#### E. Ambient Noise.

Recognizable sound sources evident to the observers were snapping shrimp and a channel buoy. Therefore, the recording times were chosen to correspond to the periods of maximum activity of snapping shrimp, which were thought to be the dominant noise source. The rise in the sound pressure level between 2kHz and 20kHz (Fig. 5) is compatible with prior research' on the role of snapping shrimp in the production of underwater noise. Observed sea state levels did not exceed "two" during the recordings, and Knudsen's curves for ambient noise levels are presented in Figure 5.

Transient noise anomalies were present in the lower frequencies, especially during the morning recordings. The occurrence of the transient noise anomalies decreased from a maximum in the 40 to 125Hz band widths to an insignificant amount over 2.5kHz. Besides the sound from the channel buoy and random noises from the listening ship, the low frequency transient noise sources were not identifiable.

<sup>&#</sup>x27;M.W. Johnson, F.A. Everest, and R.W. Young. 1947. The Role of Snapping Shrimp (Crangon and Synalpheus) in the Production of Underwater Noise in the Sea. Biol. Bull. Woods Hole, 93(2): 122-138.

<sup>&</sup>lt;sup>2</sup> V.M. Albers. 1965. Underwater Acoustic Handbook II. Pennsylvania State University Press.



Figure 1. Station Locations



Figure 2. Temperature Cross Section - Stations 1 to 7



Figure 3. Density-Time-Depth Composite at Station 10

The William Co.



Figure 4. Salinity Cross Section - Stations 1 to 7



Figure 5. Sound Prassure Spectrum Level

TABLE I. STATION DATA SUMMARY

| Sta.<br>No. | Latitude (°N)       | Longitude (°E)      | Depth<br>(meters) | Nansen<br>Casts | Current<br>Meter<br>Lowerings | Cores | Ambient<br>Noise<br>Recordings |
|-------------|---------------------|---------------------|-------------------|-----------------|-------------------------------|-------|--------------------------------|
| 1           | 14°36.30'           | 120°08.60'          | ·713              | 1               |                               |       |                                |
| 2           | 14°37.25'           | 120°08. <i>7</i> 0' | 205               | 1               |                               |       |                                |
| 3           | 14°39.60'           | 120°09.30'          | 91                | 1               | •                             |       |                                |
| 4           | 14°40.20'           | 120°09.70'          | <b>7</b> 3        | 1               |                               |       |                                |
| 5           | 14°41.05'           | 120°10.20'          | <i>7</i> 3        | 1               |                               |       |                                |
| 6           | 14°42.00'           | 120°10.50'          | 64                | 1               |                               |       |                                |
| 7           | 14°43.00'           | 120°11.25'          | 58                | 1               |                               |       |                                |
| 8           | 14 <b>°46.60'</b>   | 120°12.30'          | 60                | 1               | 1                             | 1     |                                |
| 9           | 14 <b>°46.60'</b>   | 120°12.60'          | 55                | 24              | 17                            | 1     |                                |
| 10          | 14° <b>46 .6</b> 0' | 120°12.90'          | 43                | 17              | 15                            | 1     | 2                              |

APPENDIX A
Oceanographic Station Data

# EXPLANATION OF COMPUTER DATA SHEET OCEANOGRAPHIC STATION DATA

- 1. CRUISE. A number assigned to each cruise for identification purposes. The first two digits are the mine division number, the next three digits are the ship's hull number, and the last digit is the end digit of the year.
- 2. STATION. The station identification consists of an area abbreviation (SEA = Southeast Asia), a region number, and a consecutive station number for the cruise.
- 3. LATITUDE. Expressed in degrees, minutes, and tenths of minutes.
- 4. LONGITUDE. Expressed in degrees, minutes, and tenths of minutes.
- MARSDEN SQUARE. A 10-degree geographical square used for cataloging data.
- 6. DATE. Day, month, and year when data were taken.
- 7. TIME. Time of day when data were taken in local time.
- 8. ZONE. Time zone for converting local time to GMT.
- 9. DEPTH. Depth of water in meters where station was taken.
- 10. AIR TEMP. Temperature of the air in \*F when station was taken.
- 11. TEMP INSTR. Type of temperature recording instrument used for collecting the water temperatures (RTH= reversing oceanographic thermometer, MBT= mechanical bathythermograph).
- 12. SAL INSTR. Type of instrument used to obtain salinity samples of water (NAN= Nansen bottle).
- 13. DEPTH. Depth in meters at which each temperature and salinity sampling was made.
- 14. DEV. The + range of depth over which actual sampling depth may deviate from given sampling depth.
- 15. TEMP. Water temperature in °C at each sampling depth.
- 16. DEV. The + range of temperature over which actual temperature may deviate from given temperature value.
- 17. SALINITY. Water salinity in parts per thousand at each sampling depth.



- 18. DEV. The + range of salinity over which actual salinity may deviate from the given value.
- 19. ELEC. COND. The electrical conductivity of the water in mhos/cm<sup>2</sup> calculated from the values of temperature and salinity with the empirical equation of Ribe and Howe, "An Empirical Equation Relating Sea Water Salinity, Temperature, Pressure, and Electrical Conductivity."
- 20. DEV. The + range of electrical conductivity over which the actual conductivity may deviate from the given value, computed from the deviations of temperature and salinity.
- 21.  $\frac{\text{SIGMA-T}}{1000 + 1}$  and abbreviated expression for density (density= Sigma-t/  $\frac{1000 + 1}{1000 + 1}$ ) g/cm<sup>3</sup> calculated with the equation of Knudsen using the given temperature and salinity values.
- 22. DEV. The + range of Sigma-t over which the actual Sigma-t may deviate from the given value, computed from the deviations of temperature and salinity.
- 23. SOUND VEL. The velocity of sound in sea water at each depth, in meters per second, calculated from the given values of depth, temperature, and salinity using Wilson's equations of 1960, NAVOCEANO Special Publication 58, "Tables of Sound Speed in Sea Water."
- 24. DEV. The + range of sound velocity over which the actual sound velocity may deviate from the given value, computed from the deviations of depth, temperature, and salinity.

| 0                  |                              |
|--------------------|------------------------------|
| MARSCEN SOUARE 0   | SAL TASTR NAN                |
| CAGITUDE 120 H.6 F | TERS TASTR RTH SAL TASTR NAN |
| ٠                  | 713 AIR TEMP C.C             |
| LATITUSE 14 36.3 A |                              |
| ~4                 | 1050 20NE -8 DEPTH           |
| STATIC: SEA 4      | 7 TIME 1050                  |
| CRUISE 924365      | 041E 22 JAN 65               |

| SOUARE      | MASSEN SOUASE | 8.7 €        | LO:51 TUDE 120 8.7 E |                        | A 5.76 24 301114 | TITAL                                   | 2 4      | STATION SEA 4 2 | 4365          | CAULSE 924365                           |
|-------------|---------------|--------------|----------------------|------------------------|------------------|-----------------------------------------|----------|-----------------|---------------|-----------------------------------------|
| )<br>1<br>2 | 1452.4        | 00.0         | 42.44                | 0.0.0°                 | C. G363          | •                                       | 34.47    | 7 0.02          | ٠, ,          | 35.4                                    |
| 0           | 1500.5        | 000          |                      | 0000                   | 0.0371           | 10°                                     | 24.47    | 5 3.32          |               | (7.:                                    |
| 0           | 1505.0        | 00           |                      | 000000                 | 207010           |                                         | 34.5     | 2 0.00          | 1.00 13.      |                                         |
| 60.0        | 1510.0        | 00.0         | 1                    | 00.000                 | 0.5424           | #4<br>* :                               | 14.54    | 0 0.02          | 15.0          | 233. 1.                                 |
| 0.09        | 1519.0        | 00.0         |                      | 0.0000                 | 6.0455           | • • • • • • • • • • • • • • • • • • • • | 34.55    | 2 3+32          | .61 .55       | •                                       |
| 80<br>C)    | 1526.2        | 0.00         | 24.03                | 3500.5                 | 0.0464           |                                         | 34.42    | 20.0 2          |               |                                         |
| 80.0        | 1531.0        | 3.00         | . 33                 | 20000                  | C. 3503          | 17:00                                   | 34.27    | 30.02           |               | 75.                                     |
| 65          | 1533.9        | 00.0         |                      | 00000                  | 0.0514           | به<br>ن<br>د                            | 34.04    |                 | 1.00          | _                                       |
| 0.0         | 1536.0        | 00.0         |                      | 00.000                 | 0.6526           |                                         | 33.51    |                 | زر <b>26.</b> | 3 1                                     |
| 10.0        | 1535.8        | ၁၃<br>၁၃ - ၁ |                      | ນ<br>ວັນ<br>ວັນ<br>ວັນ | 0.0520           | 10.0                                    | 33.50    | 3 3.02          | . 45.         | • • • • • • • • • • • • • • • • • • • • |
| )<br>()     | 1535.7        | 00.0         |                      | 00000                  | 0.0541           | 10.                                     | 33.51    | . 20.0 0        | 76.           | :<br>;                                  |
| 200         | 1535.7        | 00.0         | 71.90                | 0.000                  | 0.0521           | 1.                                      | 33.51    | 1 3.32          | . 26.         |                                         |
| UEV.        | SCUND VEL     | DEV.         | 144015               |                        | ELEC. COND.      |                                         | SALINITY | DEV.            | V. 71. P.D    | VEV HTV-10                              |

| DEV.        | 0.07   | 0.07   | 0.07         | 2000    | 0.07           | 0.08                                  | 80°0       | 60.0       | 0.03   |
|-------------|--------|--------|--------------|---------|----------------|---------------------------------------|------------|------------|--------|
| SOUND VEL.  | 1536.5 | 1535.9 | 1536.0       | 1535.9  | 1535.5         | 1532.9                                | 1529.5     | 15:0.5     | 1452.0 |
| DEV.        | 0)     | 00.0   | <b>00</b> °0 | 0).()   | 00.0           | 0000                                  | 00.0       | 00.0       | C.01   |
| SICHA-T     | 21.78  | 71.88  | 21.91        | > 36.12 | 22.15          |                                       | 23.61      | 16.92      | 27.79  |
| CEV.        | 0000   | 00.00  | 0000*3       | 000000  | 0,000          | 00,000                                | 3363.3     | 0.00       | 0,000  |
| ELEC. COND. | 0.0524 | 0.0521 | 0.0521       | 0.050   | . C. C518      | 0.0506                                | 95430      | 0.0457     | 0.0247 |
| . 7.2       | 10.7   |        | 10.0         |         | : . 4<br>: ( ) |                                       | - 4<br>( ) |            | 70     |
| SALIVITY    | 33.49  | 13.49  | 33.51        | 13,52   | 33.64          | 14.21                                 | 44. 35     | 34.54      | 34.58  |
| 360         | 5.05   | 5.55   | ( C) C)      | 20.0    | 20.0           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 20.0       | 1000       |        |
| Crit        | 26.4   | 26.1   | 26.1         | 2.6     | 20.00          | 7.56                                  | 77.5       | 4          | · (.)  |
| DEV.        |        | ) (    | )<br>) (     |         | , i            | 1                                     |            | ) (<br>) ( | 33     |
| 714         |        | • •    |              |         | ,              | 75                                    |            |            | 25.).  |

SAL INSTR NAN

TEMP INSTR RTH

AIR TEND O.C

30

TIME 1240 ZCNE -8

D110 20 J44 65

| DATE 2 | 22 JAN 65 | =    | 11ME 1350 | Sche -4  | 1<br>1<br>1<br>1<br>1 |             | 1EMP 0.0 | T T T T T T T T T T T T T T T T T T T | INSTR RTE   | 84 IN  | MAN MEN |
|--------|-----------|------|-----------|----------|-----------------------|-------------|----------|---------------------------------------|-------------|--------|---------|
|        |           | 2    |           | SALTHITY | 2                     | FLEZ. COMO. | 7.14     | Ĺ                                     |             | ١.     | DEV.    |
|        | 05.4      |      |           | 13.61    |                       | 0.0421      |          |                                       |             |        | 0.07    |
| ;      | 20.1      | 1.07 |           |          |                       |             |          |                                       |             |        |         |
| 0      |           | 22.4 |           | 70.00    |                       | ***         | 0.0      |                                       |             |        |         |
| 7.7    | 1.00      | 25.3 |           | 33.5     |                       | 0.0519      | 00,00    |                                       |             |        | 0.0     |
|        | 1.00      | 25.4 |           | 33.50    | 5.                    | 0.0519      | 26,0.3   |                                       |             |        | 0.07    |
| ,      | 0         | 74.7 | (3.5      | 57°C1    | <b>-</b>              | 140.0       | 20.00.0  | 7≥.68                                 | ر.<br>د. 00 | 1534.0 | 0.0     |
|        |           | 23.7 |           | 34.16    |                       | 6, 65.A     | ູ້ວ່າ    |                                       | 1           | ı      | 0.0     |

FARSLEN SQUARE

LONGITUDE 120 9.3 E

LATITUDE 14 39.6 N

STATION SEA 4

CAUTSE 924365

| ,             |                                       |          |            |             |          |               |          |            |           |
|---------------|---------------------------------------|----------|------------|-------------|----------|---------------|----------|------------|-----------|
|               |                                       | 1        | :          |             |          |               | 1        |            |           |
| THT: DEV      | DEV                                   | SALTNITY | DEV.       | COND.       | CEV.     | STCMA-T       | DEV.     | VEL        | DEV.      |
| . 1.0         | 0                                     | ~        | 10.0       | 521         | 0.000    | 21.89         | 00.0     | 535.7      | 0.01      |
| ·             | Ċ                                     | •        | 10.0       | . 619       | 00.0.0   | 71.95         | 00.0     | 535.5      | 0.07      |
| 0             | 0.0                                   | ~        | 10.0       | 519         | 0.000    | 21.97         | 00.0     | 535.6      | 0.07      |
| 0.1           | 0                                     | •        | 10.3       | . 619       | 30.0.0   | 21.98         | 00.0     | 535.8      | C.07      |
| 9             | 25.4 3.02                             | 33.73    | 7.0°C      |             | 00-0-0   | 22.29         | 0.00     | ~          | 0.07      |
|               | 9                                     | - 31:7E  |            | 115         | 0.000    | 22.89         | 00°C     | 533.3      | 90.0      |
| CRUISE 424365 | STATION SEA                           | A 4 S    | LATITUDE   | E 14 41.0 N | רכעפ     | CONGLIUDE 120 | 10.2 E   | MARSCEN    | SQUARE    |
| 1 TE 22 JAY 6 | 65 TIME 1500                          | ZCNE -8  | - 106РТН   | 73 AIR      | 1EM 0.0  | TEVP          | INSTR R  | TH SAL IN  | INSTR NAN |
|               |                                       |          |            |             |          |               |          |            |           |
| EPTH 054.     | C C C C                               | 2 4      | • [<br>• ] | ELEC. COND. |          | <b>-</b>      | 0 e v    | SCUND VEL. | 0 C       |
| ) ( ·         |                                       | , ,      | 1          | ? <         | 2000     | n (           | 25       | 1535.5     | 0.07      |
| <br>          | 5.9                                   | 3.5      | .0.0       | , 0         | 00000    | ) an          | 00.0     | 1535.6     | 0.07      |
| 1.0           | ٠,                                    | 33.56    | .:1        | 0.0518      | 0.000    | ,<br>         | 02.5     | 1535.6     | 0.07      |
| 5. 1.0        | 5.5 5.0                               | 3.5      | 10.0       | 9           | 000000   | •             | 00.0     | 1535.7     | 2.07      |
| [             | ٠٠٠ ا                                 | 3.0      | 10.        | 0           | 20.0.2   |               | 3.00     | 1534.4     | 80°0      |
| 235456 331r-  | STATICY SEA                           | 4 4      | LATITUDE   | E 14 42.0 N | LONG     | LONGITUDE 120 | 10.5 E   | MARSCEN    | SOUARE    |
| 4TE 22 JA1 6  | HIL                                   | SCNE = 8 | прертн     | 64 AIR      | TEMP 0.0 | TEWP          | INSTR RT | H SAL      | INSTR NAN |
|               |                                       |          | 1 1        |             |          |               |          |            |           |
| TH DEV        | C C C C C C C C C C C C C C C C C C C | <u>-</u> | LEJ.       | ELEC. CUNU. | . EV.    | NICHALL<br>AV | 0 EV     | SOUND VEL. | 0EV.      |
| 0.1.          | 0.0                                   | ر ۱      | •          | 0750.0      | 0.0.00   |               | 00.00    | •          | 20.0      |
| J. 1.3        | 5.8 0.0                               | ٠.       | •          | 0.0519      | 30.50.3  |               | 00.0     | •          | 0.07      |
| 0.7           | 5.8 0.0                               | ٠,٠      | •          | 0.0518      | 0.000    |               | 00.0     | ٠          | 0.07      |
|               | 25.6 0.02                             | 33.58    | 10°.       | 0.0517      | 20,000   |               | 00.0     |            | 2.07      |
|               |                                       |          |            |             |          |               | C C      |            | •         |

| Caul Co. 926365 | STATION SEA  | .4       | LATITU               | LATITUDE 14 43.0 N | רכאפ      | CCNGI TUDE 120 | 11.2 €       | MARSCEN      | SQUARE 0                                 |
|-----------------|--------------|----------|----------------------|--------------------|-----------|----------------|--------------|--------------|------------------------------------------|
| DATE 22 JAM 63  | 291          | 8- 3427  | 06РТН                | SB AIR             | TEMP 0.0  | TEWP           | INSTR RT     | H SAL I      | NSTR NAN                                 |
|                 |              |          | !                    |                    |           |                |              |              |                                          |
| )<br>L          | 7.30         | VALUE IN | V E V                | FLEC. COND.        | CEV.      | SICWA-T        | DEV.         | SOUND VEL.   | DEV.                                     |
|                 |              |          |                      | 52                 | 0.000     | 21.99          | 00.0         | 1535.3       | 0.07                                     |
| ) (             | 2            | 33.54    | 0.01                 | 0.0519             | 0.0000    | 22.00          | 00.0         | 1535.4       | 0.07                                     |
| -               | 0.0          | 33.55    | ,<br>() •<br>()      | 0.0519             | 000000    | 2.0            | 00.0         | 1535.3       | 0.07                                     |
|                 | 0.0          | 33,54    | , -1<br>, -1<br>, -1 | C.0517             | 00000     | 2.0            | 00.0         | 1535.2       | 0.07                                     |
|                 | 5            | 33.61    | (°,C)                | 0.0517             | 0000.0    | 2.1            | 00.0         | 1535.2       | 0.07                                     |
|                 | 25.5 3.02    | 33.66    |                      | 0.0517             | 0.0000    | 22.21          | 00.0         | 1535.3       | 0.07                                     |
| 3               |              |          | 0.111.0              | N 9 44 41 50       | 3 N       | ONGITUDE 120   | 12.3 E       | MARSCEN      | SQUARE 0                                 |
| C4015E - 765    | 20 (2)       | •        |                      | 2                  |           |                | 1            |              |                                          |
| 0ATE 19 FEE 65  | TIME 1340    | 8- 3VOZ  | DEPTH                | 60 AIR             | TEM® 80.0 | TEMP           | THSTR RY     | TH SAL INSTR | VSTR NAN                                 |
|                 |              |          |                      |                    |           |                |              |              |                                          |
| DEPTH DEV       | DEV          | SALINITY | DEV.                 | ELEC. COND.        | CEV.      | SIGMA-1        | DEV.         | SOUND VEL.   | DEV.                                     |
| 1.0             | 6.9          | 33.52    | C.01                 | 0.0528             | 000000    | 21.70          | 00.0         | 1537.3       | 10.0                                     |
| 15. 1.05        | 25.5 0.02    | 33.52    | 0.01                 | 0.0525             | 2000-2    | 21.80          | 00.0         | 1536.8       | 20.0                                     |
| 5. 1.C          | 0.6 4.3      | 33.52    | 0.01                 | 0.0524             | 0.000     | 21.82          | 00.0         | 1536.8       | 200                                      |
|                 | 0.2 2.0      | 33.57    |                      | 0.0523             | 00000     | 21.93          |              | 1536.3       | 200                                      |
| 5. 1.3          | 5.5 0.0      | 33.74    | c.01                 | 0.0518             | 0.0000    | 97.77          | 0000         | 1233.5       |                                          |
| 2.              | ر.<br>د      | 33.86    | 0.01                 | 0.0515             | 0000.0    | 22.50          | <b>2</b> 3.0 | 1534.5       |                                          |
|                 |              |          |                      |                    |           |                |              |              |                                          |
| CAUISE - 965    | STATIC'S SEA | 6 +      | LATITUDE             | N 9.95 51 34       | 19537     | LCNGITUDE 120  | 120 12.6 E   | PARSCEN S    | SQUARE                                   |
| DATE 17 FE4 6.  | TIME 1140    | CAE -3   | 1FP TH               | SS AIR             | 1£MP 86.0 | TE NO          | INSTR RT     | H SAL INSTR  | NAN<br>NAN                               |
| 2               | 790          | CALTAITY | )<br>24<br>-         | FIEL TOND          | FEV       | S   CHA-1      | DEV.         | SOUND VEL.   | DEV.                                     |
| - C             |              |          |                      | 0.0524             | 0000      | 21.88          | 00.0         | 1536.2       | 0.07                                     |
| )               | 26.7 3.02    | 33.55    |                      | 0.0523             | 00000     | 21.89          | 00.0         | 1536.2       | 0.01                                     |
|                 | 0.0          | 33.55    | 1.00                 |                    | 0.000     | 21.92          | 00.0         | 1536.1       | 0.07                                     |
|                 | 5.0 0.0      | 33.60    | (•01                 |                    | 20000     | 22.00          | 0.00         | 1536.0       | 0.07                                     |
| 0.1             | 3.6 3.6      | 33.69    |                      |                    | 0.00      | 75.20          | 00.0         | 1535.3       | - C- |
|                 | 0.0 6.4      | 33.49    |                      |                    | 0.000     | 22.60          | 0.00         | 1333.8       | BO . O                                   |
|                 |              |          |                      |                    |           |                |              |              |                                          |

|                |              |          |          |                    |            |               |            |            | -         |
|----------------|--------------|----------|----------|--------------------|------------|---------------|------------|------------|-----------|
|                |              |          |          |                    |            |               |            |            |           |
| 0. PTH 0EV.    | ENP DEV      | SALINITY | nev.     | 6                  | CEV.       | SICHA-T       | DEV.       | SCUND VEL. | DEV.      |
| 1.0            | 6.4 3.0      | 33.55    | 0.01     |                    | 00000      |               | 00.0       | 1536.6     | 20.0      |
| 5              | 6.1 0.0      | 33.56    | 0.01     |                    | 0.000      |               | 00.0       | 1536.1     | 0.07      |
| ٠, ١, ١        | 0.1 0.0      | 33.57    | 10.0     |                    | 2000.0     |               | 0.00       | 1536.1     | 0.07      |
| 3. 1.0         | 0.0 6.9      | 33.59    | 01       | 0.0522             | 0000       | 21.99         | 00.0       | 1536.1     | 0.07      |
| 5. 1.0         | 5.5 3.0      | 23.67    | 15.      |                    | 0000.0     | i             | 00.0       | 1535.3     | 0.07      |
|                | 3            | 33.85    | C.01     | !<br>!             | 2000.0     | 1             | 00.0       | 1534.0     | 0.08      |
| CAUISE 965     | STATION SEA  | 4 4<br>9 | LATITUD  | LATITUDE 14 46.6 N | LONGI TUDE | TUDE 120      | 12.6 E     | PARSDEN S  | SOUARE    |
| 041E 17 FEB 65 | S TIME 1460  | SCNE -8  | DEPTH    | 55 AIR             | TEMP 85.0  | TEMP          | INSTR ATH  | SAL IN     | INSTR NAN |
|                | !            |          |          |                    |            |               |            |            |           |
| DEPTH DEV.     | 100          | SALINITY | CEV.     | ELEC. COND.        | CEV.       | L             |            | SOUND VEL. | OEV.      |
| ٠,             | 26.5 0.02    | 33.56    | 0.01     | 9250               | 000000     |               | 00-0       | 1536.8     | 0.07      |
| 1.0            | o            | 33.55    | 0:01     |                    | 0000.0     | }             | 00.0       | 1536.1     | 0.07      |
| ~              | 0            | 33.57    | C.01     | 0.0522             | 2000.0     |               | 00.0       | 1536.2     | 0.07      |
|                | 0            | 33.59    | 0.01     | 0.0522             | 0.0000     |               | . 00.0     | 1536.2     | 0.0       |
|                | ò            | 33.68    | 0.01     | 0.0519             | 0.000      | 22.18         | 0.0        | 1535.4     | 0.0       |
|                | 0.0 0.0      | 33.87    | 10.7     | C.0282             | 0000.0     | 27.22         | 0.01       | 1448.6     | 0.03      |
| CRUISE - 365   | STATION      | SEA 4 9  | LATITUDE | DE 14 46.6 N       | PICNG      | LCNGÍTUBE 120 | 120 12.6 E | MARSCEN    | SQUARE    |
| DATE 17 FEB (  | 65 TIME 1500 | SCNE 8   | DEPTH    | SS AIR             | TEMP 84.0  | TEMP          | INSTR RTH  | SAL        | INSTR NAN |
| •              |              |          |          |                    |            |               |            | : J        |           |
| TH DEV         | 10 0.3       | E.       | DEV.     | ELEC. COND.        | CEV.       | STCPA-T       | DEV.       | SCUND VEL. | DEV.      |
| 0.1            | 6.4          | 3.5      | 10.0     | 0.0525             | 0.000      | 21.83         | 00.0       | 1536.6     | 20.0      |
| 1.0            | 6.2 0.       | 3.5      |          | 0.0522             | 0.00.0     | 21.92         | 00.00      | 1536.1     | 0.07      |
| 1.0            | 6.1 0.       | •        | 0.01     | 0.0522             | 000000     | 21.94         | 00.0       | 1536.2     | 0.07      |
| 30. 1.00       | 26.1 0.02    | w.       | 10.0     | 0.0522             | 0.000      | 21.97         | 00.0       | 1536.2     | 0.0       |
| · ·            | 2.0          | ٠        | -        |                    |            |               |            |            |           |

| CAUISE - 365                                              | STATTON SEA                                                                    | •                                                      | LATITUUL                     | 1 14 46.6 N                                                   | LONG                                                     | LONGITUCE 120                                        | 12.6 E                                 | PARSCEN                                                      | SQUARE 0                   |
|-----------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|----------------------------|
| DATE 17 FER 62                                            | TIME 1600                                                                      | 10ve - 9                                               | 06.0 1+                      | SS AIR                                                        | TEMP 82.0                                                | 1689                                                 | INSTA RTH                              | SAL .                                                        | INSTR NAN                  |
| 0.4TH 0EV. 0.1 1.00 15. 1.00 25. 1.00 36. 1.00 35. 1.00   | 76 P DEV. 26.2 0.02 26.2 0.02 26.1 0.02 25.1 25.2 25.2 25.2 25.2 25.2 25.2 25. | SAL INTTY<br>33.52<br>33.52<br>33.53<br>33.53<br>33.63 | )<br>>6000000<br>200000      | ELEC. COMO.<br>0.0522<br>0.0522<br>0.0522<br>0.0519<br>0.0519 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | SIGHA-T<br>21.89<br>21.90<br>21.93<br>22.12<br>22.12 | 00000000000000000000000000000000000000 | SQUND VEL.<br>1535.9<br>1536.3<br>1536.3<br>1535.5<br>1535.5 | 000000<br>000000<br>000000 |
| CRUISE - 965                                              | STATION SEA                                                                    | 0 4                                                    | LATITUDE                     | DE 14 46.6 N                                                  |                                                          | LCNG1TUDE 120                                        | 120 12.6 E                             | MARSCEN                                                      | SQUARE                     |
| DATE 17 FEB 65                                            | 11ME 1700                                                                      | ZCNE 8                                                 | CEPTH                        | SS ATR                                                        | TEMP 82.0                                                |                                                      | TEMP INSTR RTH                         | SAL                                                          | INSTR NAN                  |
| 7. FF                                                     | DEV                                                                            | SALINITY                                               | DEV.                         | ELEC. COND.                                                   |                                                          | SIGMA-T                                              | DEV.                                   | SCUND VEL.                                                   | - 1                        |
|                                                           | 000                                                                            | 33.52                                                  | 100                          | 0.0522                                                        | 0000                                                     | 21.89                                                | 600                                    | 1536.1                                                       | 20.07                      |
| •                                                         | 20.0 1.92                                                                      | 33.53                                                  |                              | 0.0522                                                        | 0000                                                     | 21.91                                                | 200                                    | 1536.3                                                       |                            |
|                                                           |                                                                                | 33.79                                                  | 10.5                         | 0.0515                                                        | 2000.2                                                   | 22.43                                                | 00.0                                   | 1534.4                                                       | 80.0                       |
| C4UISF - 965<br>D4TE 17 FEB 65                            | STATICN SEA                                                                    | 2CNE -8                                                | LATITUDE                     | DE 14 46.6 N<br>55 AFR                                        | TEMP                                                     | I TUDE                                               | 120 12.6 E<br>Temp instr rth           | PARSCEN<br>SAL IN                                            | N SQUARE O                 |
| DEPTH DEV.<br>3. 1.03<br>15. 1.03<br>25. 1.03<br>55. 1.03 | 76 pp DEV. 20.3 0.02 26.1 0.02 25.3 0.02 25.3 25.3 0.03                        | SAL INITY<br>33.51<br>33.52<br>33.55<br>33.61          | >0000<br>W • • • •<br>E 0000 | ELEC. COND.<br>0.0523<br>0.0522<br>0.0521                     | 0.0000<br>0.0000<br>0.0000                               | 516#A-1<br>21.84<br>21.88<br>21.92                   | .0000.000.0000000000000000000000000000 | SOUND VEL.<br>1536.2<br>1536.2<br>1536.3                     | 0.07<br>0.07<br>0.07       |
| ) ()<br>                                                  | 000                                                                            | 33.64                                                  | 5 <b>5</b>                   | 0.0518                                                        | 0.0000                                                   |                                                      | 0.00                                   | 1535.3                                                       | 0.07                       |

|   | S I n Y S    | 996-         | STA           | STATION SEA | 6                     | LATIT  | 9.9,              |             | ITUDE         | ш ;           | MARSCE     | JAR.      | 0 ; |
|---|--------------|--------------|---------------|-------------|-----------------------|--------|-------------------|-------------|---------------|---------------|------------|-----------|-----|
| _ | OATE 17      | 7 FEG 65     | TIME          | /E 2000     | 1 - 3 - 2 - 8 - 2 - 8 | DEPTH  | 55 AIR            | TEMP 81.0   |               | TEMP INSTR RT | H SAL      | INSIK NAN | _ } |
|   | _            |              |               |             |                       |        |                   |             | 10 x 4 a      | 7.0           | COUNT VEL  | ) EV      | - } |
|   | DEPTH        | DEV.         | <u>ا</u><br>م | מנע.        | Ζ,                    | DEV.   | ELEC, COND.       | CEV.        | 21 CAP 1 C    | 00.00         | ٠ س        | 0.07      |     |
|   | . <b>.</b> . | 1.<br>0.1    | ~ r           | 200         | • •                   | 1000   | 0.0573            | 0000        | 21.88         | 00.0          | 1536.3     | 0.07      | •   |
|   | •<br>•       | • ;          | <b>V</b> 1    | 20.0        | 13.56                 | , 0    | 0.0523            | 00000       | 21.92         | 00.0          | 1536.4     | 20.0      |     |
|   |              | ) (<br>• • • | u a           |             | , ,                   |        | 0.0520            | 0.0000      | 22.06         | 00.0          | .1535.6    | 0.07      |     |
|   | , c          | ) (<br>) (   | <b>.</b>      | 70.0        | 33.66                 | 0.0    | 0.0518            | 0.000       | 22.18         | 00.0          | 1535.3     | 0.07      |     |
| ! | 50.          | 1.60         | 24.9          | 0.02        | M                     | 10.0   | 0.0514            | 000000      | 22.50         | 00.0          | 1534.1     | 0.08      |     |
|   |              | 370          |               | STATION SEA | 0                     | LATITU | ATITUDE 14 46.6 N |             | LCNGITUDE 120 | 12.6 E        | MARSCEN    | SQUARE    | O   |
| • | CAULSE 11    | ן "          | 1 ×           | 210         | ZCNE                  | DEPTH  | -                 | R_TEMP_81.0 | TEVP          | EMP INSTR RTH | SAL        | INSTR NAN | 1_  |
| • | i            |              | 1             | :           |                       |        |                   |             |               |               |            |           | 1   |
|   |              |              |               |             |                       |        |                   | FEV         | CICNA-I       | DEV.          | SOUND VEL- | DEV.      | 1   |
| , | DEPTH        | >            | 2.<br>W.      | <b>~</b> (  | SALINITY              | ) r.   | 0.0525            | 0000        | 21.79         | 00.0          | ٥.         | 0.07      |     |
|   | ٠.           | ٠,           | 9             |             | 22.51                 | 1000   | 0.0522            | 0.000       | 21.88         | 00.0          | 1536.2     | 0.07      |     |
|   | 15.          | 3.0          | 26.0          | 0.02        | 33.55                 | 0.0    | 0.0521            | 000000      | 21.96         | 0.00          | 1536.0     | 10.0      | -   |
|   | 10           |              | 8             | 0           | _ 33.59 _             | 0.01   | 0.0519            | 00000       | 22.07         | 00.0          | 1535       | 200       |     |
|   | 35.          | 9            | 5.5           | $\circ$     | 33.65                 | 0.01   | 0.0518            | 0.0000      | 01.77         | 000           | 1536.2     | 0.08      | 1   |
| ĺ | · • •        | (-)          | 6.4           | ()          | 33.83                 | 10.0   | 0.0514            | 0000.0      | 06.22         |               | 777.       |           |     |
| • | Courte       | 346          | 15            | STATION SEA | 4                     | LATIT  | LATITUDE 14 46.6  | א           | LCNGITUDE 120 | 12.6 E        | MARSCEN    | SQUARE    |     |
|   | 1000         | •            |               |             |                       |        |                   |             |               | THETOTAL      | TNCTR.     | NAM NAM   | ٠,  |
|   | 0ATE 17      | 7 FEB 65     |               | TIME 2200   | ZCNE =8               | DEPTH  | 55 AI             | R TEMP 80.0 | LEFF          | X SXI         |            | - 1       | . : |
|   | . ~          |              | :             |             |                       |        |                   |             |               |               | 1          | 7         | i   |
| ٠ | - 0.2 C      | 1150         | dria          | DEV.        | SALTNITY              | DEV.   | ELEC. COND        | · CEV.      | SIGMA-I       | OEV.          | SUUNU VEL. | • • •     |     |
|   | י ל          |              | 26.5          | 0.02        | 5                     | 0.01   | 0.0525            | 0000.0      | 21.78         | 20.00         | 1230.0     | 50        | 1   |
|   |              |              | 26.1          | 0.02        | ഹ                     | 0.01   | 0.0521            | 0.00.0      | 21.94         | 00.0          | 1555.4     | 200       |     |
|   | 25.          | 00           | 26.0          | Č.02        | ഹ                     | 0.01   | 0.0521            | 0.000       | 21.97         | 000           | 1535.9     | 70.0      |     |
|   |              | 1.00         | 25.9          | 3.02        | 33.57                 | 10.0   | 0.0520            | 0000        | 22.22         |               | 1534.9     | 0.07      |     |
|   | 35.          | 1.03         | 25.4          | 0.02        | m :                   |        | 10000             | מבטנ        | 22.44         | 0.50          | 1534.4     | 0.08      | 1   |
|   | 52           | 1.00         | 25.0          | 20.0        | 43.13                 | 3      | 11000             |             |               |               |            |           |     |

| CHU1SF965            | STATION SEA                                                        | •        | LATITUDE                        | 14 46.0 N          | LCNGI                                  | LCNGI TUDE 120 12.6 | 12.6 E     | PARSCEN SOUARE | QUARE 0  |
|----------------------|--------------------------------------------------------------------|----------|---------------------------------|--------------------|----------------------------------------|---------------------|------------|----------------|----------|
| DATE 17 FEH 65       | 11wE 2300                                                          | 2CNE -8  | DEPTH                           | 55 AIR             | 1EMP 79.0                              | TENP                | INSTR RTH  | SAL INSTR      | A NA N   |
| Ξ.                   | <b>**</b> • •                                                      | 1M1      | NEV. E                          | e                  | CEV.                                   |                     | DEV.       | نا             | DEV.     |
|                      | 0.0                                                                | w.v.     |                                 |                    | 00000000000000000000000000000000000000 |                     | 000        |                | 0.07     |
| 30. 1.00<br>35. 1.00 | 25.9 0.02                                                          | 33.58    | <b>5</b> 5                      | 0.0519             | 0.000                                  | 22.04               | 000        | 1535.7         | 0.07     |
|                      | 5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5 |          | ;<br>;;                         |                    | 0.0000                                 |                     | 00.0       |                | 80.0     |
| C2UISE 965           | STATICK SEA                                                        | 6 7      | LATITUD                         | LATITUDE 14746.6 N |                                        | LENGITUEE 120       | 120 12.6 E | MARSCEN SQUARE | SQUARE 0 |
| DATE 18 FEB 65       | TIME 0000                                                          | 20NE -8  | оертн                           | 55 AIR             | TEWP 78.0                              | TEVP                | INSTR RTH  | H SAL INSTR    | STR NAN  |
| 4 DEV                | 5 DEV                                                              | SALINITY | rev.                            | ELEC. COND.        | CEV.                                   | STGWA-T             | DEV.       | SCUND VEL.     | DEV.     |
| 1.0                  | 0.0                                                                | Ę,       | 0.01                            |                    | 0.000                                  | 21.81               | 00.0       | 1536.4         | 0.07     |
|                      | 0                                                                  | m,       | 5                               | 0.0521             | 0000.0                                 | 21.95               | 00.0       | 1535.9         | 0.07     |
| ن<br>ا               | ) i                                                                | ή,       | 0.0                             | 1750-0             | 00.00                                  | 21.96               | 00.0       | 5              | 20.0     |
| 35. 1.00             | 25.5 0.02                                                          | 33.65    | 4 d<br>0 0<br>• •<br>• •<br>• • | 0.0518             | 0.0000                                 | 22.17               | 20.0       | 1535.2         | 000      |
|                      | 0.0                                                                | m        |                                 | 0.0514             | 2000.0                                 | 22.48               | 00.0       | 1534.3         | 0.08     |
| CRUISE 965           | STATION SEA                                                        | 4 4      | LATITUG                         | LATITUDE 14 46.6 N |                                        | LOWGI TUDE 120      | 12.6 E     | MARSCEN SQUARE | SQUARE 0 |
| DATE 18 FES 65       | TIME 0110                                                          | - 20NEB  | CEPTH                           | 55                 | R TEMP 78.0                            | TEMP                | INSTR      | TH SAL I       | NSTR NAN |
|                      |                                                                    |          |                                 |                    |                                        |                     |            |                |          |
| TH DEV               | ł                                                                  | SALTNITY |                                 | ю                  | . CEV.                                 | STGMA-T             | DEV.       | SOUND VEL.     | DEV.     |
| 0. 1.60              | 26.3 0.02                                                          | ų.       | 0.01                            | 0.0524             | 00000                                  | 21.86               | 00.0       | 1536.2         | 0.07     |
| 0.1                  | 6.1                                                                | ~        |                                 | 0.0522             | 000000                                 | 21.95               | 00.0       | 1536.0         | 0.07     |
| Ç• ₹                 | 5.0                                                                | 23.58    |                                 | 0.0521             | 0.000                                  | 21.99               | 00.0       | 1536.0         | 0.07     |
|                      | 8.                                                                 | å        |                                 | 0.0519             | 0.000                                  | 22.08               | 0.00       | 1535.6         | 0.07     |
| 1.0                  | 5.7                                                                | 3.       |                                 | 0.0519             | 2000-0                                 | 22.14               | 00.00      | 1535.4         | 0.07     |
| 55. 1.5              | 5.0                                                                | 33.82    |                                 | 0.0514             | 0000.0                                 | 22.48               | 00.0       | 1534.3         | 0.08     |
|                      |                                                                    |          |                                 |                    |                                        |                     |            |                |          |

|               |              |          |               |                    |               |               |           |             | - :       |
|---------------|--------------|----------|---------------|--------------------|---------------|---------------|-----------|-------------|-----------|
| ABI HI        | o doi:       | SALTNITY | DEV           | ELEC. COND.        | CEV.          |               | DEV.      | SOUND VEL.  | DEV.      |
| , er          | 26.2 0.02    | 33.52    | 00.0          | 0.0523             | 00            |               | -0.01     | 1536.0      | 90.0      |
| 1.0           | 0 1.0        | 9        | 00.0          | 0.0522             | 1             | ł             | -0.01     | 1536-1      | 90.0      |
| 3. 1.0        | 0.0          | 33.56    | 00.0          | 0.0521             |               |               | 10.0-     | 1536.0      | 90.0      |
| 1.0           | 5.9          | ď.       | 0.01          | 0.0520             |               |               | 00.00     | 1535.7      | 0.07      |
| 5. 1.0        | 5.6 0        | ě        | 0.01          | 0.0518             |               |               | 00.0      | 1535.4      | 0.07      |
| ٠ <u>.</u> ر  | 5.3          |          | 10.7          | 0.0514             | 2000          | }             | 00.0      | 1534.2      | 80.0      |
| CAUISE 965    | STATION SEA  | 4 4 9    | LATITUDE      | JE 14 46.6 N       | LONGI TUBE    | TUDE 120      | 12.6 E    | MARSCEN     | SQUARE    |
| 04FE 13 FEB 6 | S TIME 0300  | SCNE -8  | DEPTH         | SS AIR             | AIR TEMP 75.0 | TEMP          | INSTR RTH | SAL         | INSTR NAN |
| _             |              |          |               |                    |               |               |           |             |           |
| 1H 06V        | C day        | SALINITY | \ <u>&gt;</u> | CLEC. COND.        | cev.          | SIGMA-T       | DEV.      | SOUND VEL.  | DEV.      |
| 00.1          | 26.2 0.02    | 33.52    | 0.0           | 0.0522             | 0.000         | 21.88         | 00.00     | 1536.0      | 0.0       |
|               | 7.0          | CC = C & | , c           | 0.0520             | 0000          | 22.03         |           | 1535.7      | 0.07      |
| -             |              | 33.61    | 2             | 0.0519             | 000000        | 22.09         | 00.0      | 1535.5      | 0.07      |
| 0             | 2.0          | 33.64    | 0.01          | 0.0518             | 00.000        | 22.15         | 00.00     | 535.        | 0.07      |
|               | 5.3          | 33.83    | 10.1          | 0.0514             | 2200.0        | 22.49         | 00.0      | 1534.3      | 8<br>0    |
| CAUI SE965    | STATION      | SEA 4 9  | LATITU        | LATITUDE 14 46.6 N |               | LONGITUDE 120 | 12.6 E    | MARSCEN     | SQUARE    |
| DATE 18 FER 6 | 55 TIME 0400 | ZCNE -8  | DEPTH         | SS AIR             | TEMP 75.0     | TENP          | INSTR RTH | H SAL INSTR | STR NAN   |
|               |              |          |               |                    |               |               |           |             |           |
| TH DEV        | END DEV      | SALINITY | DEV.          | ELEC. COND.        | CEV.          | SIGNA-T       | DEV.      | SCUND VEL.  | DEV.      |
| 1.0           | 6.2 0.0      | 33.52    | 0.0           | 0.0522             | 0.0000        | 21.88         | 00.0      | 0.0661      | 2000      |
| 1.3           | 6.1 5.0      | 33.56    | c.01          | 0.0522             | 2000.0        | 21.95         | 000       | 1536.0      | 0.0       |
| 0.1           | 25.8 0.02    | 33.61    | 0.01          | 0.0519             | 00:00         | 22-17         | 00.00     | 1535.4      |           |
| 30. 1.00      | 0.0          | 20.00    | TO* 0         | V-0014             | 2000          | 11.77         | ) (       | 1000        | · ·       |
|               |              | 004      |               | 0.0518             | 2000          | 22.17         | ဝ         | 1535.3      |           |

大衛達 生のかること

And the second case parameters of the

The state of the s

| DATE 1 - FE | <b>6</b>   | 1146 0530          | 6- 3VJZ                                  | DEPTH      | SS AIR             | TEMP 75.0  | TEMP           | INSTR RTH   | SAL INSTR      | STR NAN  |
|-------------|------------|--------------------|------------------------------------------|------------|--------------------|------------|----------------|-------------|----------------|----------|
|             |            | ,<br>u             | YT INT IN                                | ,<br>u     | 2                  |            | CTENA-T        |             | CHIED VET      | 7.30     |
| •           |            | ,                  |                                          | • -        |                    |            |                | •           | ,              |          |
| •           |            | •                  |                                          |            |                    | 2          |                |             |                |          |
| :           |            | ن<br>•<br>•        | 15.26                                    | 7          |                    | 0.000      |                |             | 1536.1         | 0.0      |
|             |            |                    | 33.67                                    | 7:         |                    | 0.0°0°     |                |             | 1535.7         | 20.0     |
| -           | ,          | 0.0                | 33.64                                    | <br>-      |                    | 00.0.0     |                |             | 1535.4         | 0.07     |
|             |            | 0                  | 33.56                                    | 7.         |                    | 0,000      |                |             | 1535.3         | 0.07     |
| 1           |            | 55.1 5.62          | 13.83                                    | [::        | 0.0516             | 2000.0     | 22.44          | 00.0        | 1534.4         | 0.07     |
| CRUISE -    | 965        | STATION SEA        | 4 4                                      | LAIIIU     | LAIIIUUE 14 46.6 N | LONGI      | LONGI TUDE 120 | 12.6 E      | MARSCEN SQUARE | SQUARE 0 |
| DATE 18 68  | ď          | TIME OACG          | A. PATA                                  | DEPTH      | 84 410             | 75.00 75.0 | TEND           | TTO STORY   | 2              | 247      |
|             |            | 2                  | >+ 10.1 T                                |            |                    |            | 1              |             | TEAL VIEW      | 2        |
| r           | • ;        | יים א<br>איים היים | 22 S.C.                                  | • • • •    | סני                | •          | _              |             |                |          |
| •<br>•      | <b>.</b> . |                    | 33.55                                    | 100        | 6630               |            | 7 7            |             | 1535.9         | 200      |
| •           | 3 :        | ) C                | ֓֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓    |            | 0.000              |            | ~              |             | 1525 4         |          |
| •           | ) ·        |                    | , 4                                      |            | 0.010              | 0000       | ·              | 00.0        | 1535.2         |          |
| •           | <b>,</b>   |                    |                                          | · -        | 0.0518             | 0.00.0     |                | 00.0        | 1525.5         |          |
| 30.1        | 18         | 24.9 0.02          | 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | <b>10.</b> | 0.0514             | 0.0400     | 25             | 2.00        | 1534.0         | 0.08     |
| RUISE       | - 965      | STATICN SE         | EA 4 9                                   | LATITUDE   | JDE 14 46.6 N      |            | LONGI TUDE 120 | 3 12.6 E    | MARSCEN        | SQUARE   |
| ATE 18 FE   | E6 65      | TIME 0750          | 35. 3N2.                                 | 0EPTH      | 55 AIR             | TEMP 76.0  | TEN            | P INSTR RT  | H SAL 1        | NSTR NAN |
| •           |            |                    |                                          | ,          |                    |            |                |             |                |          |
| )<br>H      |            | END DEV            | SALINITY                                 | DEV.       | ١.                 | - 1        | SIGMA-T        | <u>&gt;</u> | ND VEL         | . DEV.   |
|             | 3          | 6.2 6.0            | 33.55                                    | C•C1       | S                  | 0.000      | 21.92          | •           | 1535.9         | 0.07     |
| 5. 1        | 2,         | 6.2 0.0            | 33.56                                    | 0.01       | S                  | 00000      | 21.92          |             | 1536.2         | 10.0     |
| 25. 1.5     | 13         | 26.1 0.02          | 33.58                                    | 0.01       | 0.0522             | 000000     | 21.95          | 00.00       | 1536.2         | 0.07     |
|             | 00         | 5.7 0.0            | 33.64                                    | 0.01       | 5                  | 0000.5     | 22.12          |             | 1535.5         | 0.01     |
|             | ر<br>د د   | 6.0                | 33.69                                    |            | 3                  | 0000       | 10 00          |             | . 1525         | ,        |
|             |            |                    |                                          | 7          | `                  | 20.0       | 17.77          | •           | 7.6661         |          |

| ARSCEN SQUARE C              | EL. DEV                                                                                  | NSTR 00.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.6 E MARSO<br>INSTRATH SAU | DEV. SQUND VE<br>0.00 1535.9<br>0.00 1536.2<br>5.00 1535.3<br>0.00 1535.7<br>0.00 1535.3 | .6 E FARSCE STR RTH SAL V. SQUND VEL 1536.2 01 1536.3 01 1535.8 01 1535.8 01 1535.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LCAGITUDE 12C                | S1GRA-T<br>21.92<br>21.92<br>21.94<br>21.94<br>22.07<br>22.07                            | S2.0 TEMP 1 S1.0 TEMP 1 S1.00 TEMP 1 S1.90 -0 21.90 -0 21.91 -0 21.91 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22.05 -0 22 |
| 14 46.6 N<br>55 ATR TEMP     | ELEC. CGND. LEV. 0.0522 0.0700 0.0523 0.0000 0.0522 0.0000 0.0520 0.0000 0.0520 0.0000   | 14 46.6 N L LEC. CGND. CEV. 0.0523 0.0000 0.0523 0.0000 0.0520 0.0000 0.0519 0.0000 0.0519 0.0000 0.0514 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 LATITUDE<br>ER DEPTH       | 55 C.01<br>56 C.01<br>57 C.01<br>57 C.01<br>58 C.01<br>58 C.01                           | -8 DE-IN- 5 -30 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ICN SEA 4<br>093C ZCNE       | 0EV. SALTNI<br>0.02 33.9<br>0.02 33.5<br>0.02 33.5<br>0.02 33.6                          | 10% SEA 4 093C ZENE 69.09 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.00 93.0 |
| FER 65 TIVE                  | 26.2<br>26.2<br>26.2<br>26.2<br>26.1<br>20.2<br>25.3<br>25.3                             | FF. 65 HIPP OF 25.2 5.12 5.12 5.12 5.12 5.12 5.12 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10)                          |                                                                                          | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | \rangle 12 |                |            |                                         |            |          |               | 147           |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------------------------------------|------------|----------|---------------|---------------|---------|
| THE LET SEVEN DEV. SALVANIA FEV. ELEC. 2000. 21:93 -6.01 1556.1 0.006  21:92 -6.02 33.55 0.00 0.0523 0.0000 21:93 -6.01 1556.2 0.006  22:03 26:03 0.02 33.56 0.00 0.0523 0.0000 21:93 -6.01 1556.2 0.006  23:04 0.02 33.56 0.00 0.0523 0.0000 21:94 -0.01 1556.2 0.006  23:05 0.02 33.56 0.00 0.0523 0.0000 21:94 -0.01 1556.2 0.006  23:05 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.2 0.006  23:05 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.2 0.006  24:15 0.02 26:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.2 0.006  24:15 0.02 26:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.2 0.006  25:03 0.02 26:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.2 0.006  25:03 0.02 26:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.3 0.006  25:03 0.02 26:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.3 0.006  25:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.3 0.006  25:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.3 0.006  25:03 0.02 33.56 0.00 0.0523 0.0000 22:04 -0.01 1556.3 0.006  25:03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            | >1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |            |                                         | 1          | ,        | l             | >             | j,      |
| 26.7 2.02 2.0.7 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0 2. | プルコー オトゥライ・  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALINI          | > :<br>W   | EC. CCND.                               | א<br>טיל   | - C      |               | ,<br>,<br>, , | بر<br>د |
| 10.0   20.1   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0   10.0      |              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | .) (       | 6000                                    |            |          |               | 2 2           | , C     |
| 1.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   1.00   2.00   2.00   1.00   2.00   2.00   1.00   2.00   1.00   2.00   2.00   1.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00   2.00      | ) (<br>      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ^ .c           | ) C        |                                         | , (        | 7 6      | 1 5           | 7 7 7         | 9 9     |
| 100   26.75   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   10   | •            | ) (<br>) (<br>) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | י<br>י         | • (        | 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | ) (<br>) ( | 0.4      |               | 536.          | 9 0     |
| 1965   3717101 SEA 4 9   LATITUDE 14 46.6 N   LCNGITUDE 120 12.6 E   WARSDEN SOUBR   SEE 55   TIVE 1140   ZCNE -8   DEPTH   55   AIR TEMP 86.0   TEVP INSTR RTH   SAL INSTR    | • • •        | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | • ()       | 6150                                    |            | 7        |               | 535.          | 9       |
| - 965 STATION SEA 4 9 LATITUCE 14 46.6 N LENGITUCE 120 12.6 E MARSCEN SQUAR 1 FET 65 TIVE 1140 ZCNE -9 DEPTH 55 AIR TEMP 86.0 TEMP 1NSTR RTH SAL INSTR CO. SC. SC. SC. SC. SC. SC. SC. SC. SC. SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 6)<br>( 6)   | •          | .0514                                   | J C O      | 54       | 13.           | 534.          | 0       |
| ### 14 FEF 65 TIVE 1140 ZCNE -9 DEPTH 55 AIR TEMP 86.0 TEVP 1NSTR RTH SAL INSTRACT    1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 97           | ION SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4              | LAFITE     | 14 46.6                                 | 9437       | 120 1    | \$            | ARSCEN        |         |
| ### 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47E 14 FEE 6 | 1 0 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ्।<br> -<br> ध | C.         | 5 AIR                                   | .98 dw     | Id^3     | α<br>α        | SAL           | STR NAN |
| 15. 1.5. 24.2 3.0.2 33.54 0.0.0523 0.0.0.0 21.94 0.0.1 1536.1 0.0.0 20.0 20.0 20.0 20.0 20.0 20.0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | į          | ,                                       |            |          |               |               |         |
| 1.00 25.1 3.02 33.56 0.00 0.0523 0.000 0.0194 -0.01 1536.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 243 . KE 14  | 7 0 EV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALINI          | > :<br>w   | υ.<br>Ο                                 | ) (E       | - V      | • •<br>> •    | CUND          | > 0     |
| 25.7 2.0.2 33.59 0.00 0.0523 0.00 0.00 1.594 0.00 1.596.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) (<br>      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>^</b> .     | ٠<br>د     | 200                                     |            | ,<br>D ( | 3.0           | •             | 2       |
| 25.1 2.02 23.53 C.CC 0.0512 0.0700 21.96 -0.01 1536.3 0.006 1.00 25.7 0.02 23.53 C.CC 0.0519 0.0700 22.54 -0.01 1535.6 0.066 1.00 24.9 0.02 33.84 0.00 0.0514 0.0700 22.54 -0.01 1535.6 0.066 1.00 24.9 0.02 33.86 0.000 14.46.6 N LCNSITUDE 120 12.9 E MARSCEN SQUARE 2 FEb 65 TIME 1600 2CNE -8 DEPTH 43 AIR TEMP 82.0 TEMP INSTRATH SAL INSTRANA SQUARE 1.00 26.5 0.000 21.81 -0.01 1536.6 0.05 1.00 26.5 0.000 21.82 -0.01 1536.4 0.00 1536.4 0.006 21.00 -0.01 1536.4 0.006 1.00 25.2 0.00 2 23.54 0.00 0.0522 0.0000 21.91 -0.01 1536.4 0.006 1.00 25.2 0.00 2 23.54 0.00 0.0522 0.0000 21.91 -0.01 1536.4 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 25.2 0.000 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 1.00 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 0.006 21.91 -0.01 1536.5 |              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | . c        | 200.                                    |            | 7 6      | 7.5           | •             | Э С     |
| 1.05   25.7   0.02   33.84   0.0514   0.07   0.0515   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056   0.056    | ) (<br>• • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | <u>،</u> د | 7.50                                    | ) C        | 1 V C    |               | •             | ) C     |
| 1.00 24.9 5.02 33.96 0.00 0.0514 0.0°C0 22.54 -3.01 1534.1 0.00 0.05 0.0°C0 22.54 -3.01 1534.1 0.00 0.05 0.0°C0 22.54 -3.01 1534.1 0.00 0.05 0.0°C0 22.54 -3.01 1534.1 0.00 0.00 0.0°C0 21.81 -3.01 1536.4 0.00 0.00 0.0°C0 21.81 -3.01 1536.4 0.00 0.0°C0 21.81 -3.01 1536.4 0.00 0.0°C0 21.81 -3.01 1536.4 0.00 0.0°C0 21.89 -3.01 1536.4 0.0°C0 0.0°C0 21.89 -3.01 1536.5  | • • •        | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | ) (        | .051                                    | 000        | 2        |               |               | ပ       |
| 2 FED 65 TIME 16CO 2CNE -8 DEPTH 43 AIR TEMP 82.0 TEMP INSTRACT. SAL INSTRANDAL.  1.00 26.5 D.C. 33.54 G.C. 0.0526 0.0000 21.81 -0.01 1536.6 0.006 1.00 26.2 0.00 21.82 -0.01 1536.6 0.006 1.00 26.2 0.00 21.83 -0.01 1536.4 0.006 1.00 26.2 0.00 21.83 -0.01 1536.4 0.006 1.00 26.2 0.00 21.83 -0.01 1536.4 0.006 1.00 26.2 0.00 21.83 -0.01 1536.4 0.006 1.00 26.2 0.00 21.83 -0.01 1536.4 0.006 1.00 26.2 0.00 21.83 -0.01 1536.4 0.006 1.00 26.2 0.006 21.83 -0.01 1536.4 0.006 1.00 26.2 0.006 21.83 -0.01 1536.4 0.006 1.00 26.2 0.006 21.83 -0.01 1536.5 0.006 1.00 26.2 0.006 21.93 -0.01 1536.5 0.006 1.00 26.2 0.006 21.93 -0.01 1536.5 0.006 1.00 21.93 -0.01 1536.5 0.006 1.00 21.93 -0.01 1536.5 0.006 1.00 21.93 -0.01 1536.5 0.006 1.00 21.93 -0.01 1536.5 0.006 1.00 21.93 -0.01 1536.5 0.006 1.00 21.93 -0.01 1536.5 0.006 1.00 21.93 -0.01 1.00 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1          | 0.0_6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 0          | .051                                    | 0,0        | 3,7      | .61           | 34            | O       |
| 2 FED 65 TIME 16CO 2CNE -8 DEPTH 43 AIR TEMP 82.0 TEMP INSTRARH SAL INSTRANA 100 LEV. TEMP DEV. SALINITY DEV. ELEC. COND. DEV. SIGNA-T DEV. SGUND VEL. DEV. 1.00 26.5 0.00 21.81 -0.01 1536.6 0.06 1.00 26.5 0.00 21.82 -0.01 1536.6 0.06 1.00 26.5 0.00 21.82 -0.01 1536.4 0.06 1.00 26.5 0.00 21.81 -0.01 1536.4 0.06 1.00 26.5 0.00 21.81 -0.01 1536.4 0.06 1.00 26.5 0.00 21.81 -0.01 1536.4 0.06 1.00 26.5 0.00 21.81 -0.01 1536.4 0.06 1.00 26.5 0.00 21.81 -0.01 1536.4 0.06 1.00 26.5 0.00 21.81 -0.01 1536.4 0.06 1.00 26.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 0.00 27.5 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |            |                                         |            |          |               |               |         |
| JTE 18 FEB 65 TIME 1650 ZCNE -8 DEPTH 43 AIR TEMP 82.0 TEMP INSTRATH SAL INSTRANA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24-          | Z<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *              | LATIT      | 14.46.6                                 | LCNS       | 12C      | 6.            | MARSCEN       | SQUARE  |
| UEV.   TEMP DEV.   SALINITY DEV.   ELEC. GOND.   DEV.   SIGMA-T DEV.   SCUND VEL.   DEV.    | are 18 Feb 6 | 4E 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAE            | T SEPTH    | 43 AI                                   | EMP 82     | I dw31   | NSTR RT       | SAL           | !       |
| LATH DEV. TEMP DEV. SALINITY DEV. ELEC. GOND. DEV. SIGMA-T DEV. SCUND VEL. DE 0. 1.00 26.5 0.02 33.54 0.00 0.0526 0.0000 21.81 -0.01 1536.6 0. 0. 1.00 26.4 0.02 33.54 0.00 0.0525 0.0000 21.82 -0.01 1536.4 0. 2. 1.00 26.2 0.02 33.54 0.00 0.0523 0.0700 21.89 -0.01 1536.4 0. 3. 1.00 26.2 0.02 33.54 0.00 0.0522 0.0000 21.91 -0.01 1536.4 0. 3. 1.00 26.2 0.02 23.54 0.00 0.0522 0.0000 21.91 -0.01 1536.4 0. 3. 1.00 26.2 0.02 23.54 0.00 0.0522 0.0000 21.91 -0.01 1536.5 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | a a        |                                         | !          |          | <u>!</u><br>: |               |         |
| U.         1.00         26.5         3.02         33.54         6.00         0.0526         0.0000         21.81         -0.01         1536.6         0.           10.         1.60         26.4         0.02         33.54         0.00         0.0525         0.0000         21.82         -0.01         1536.7         0.           25.         1.00         26.2         0.00         33.54         0.00         0.052         0.000         21.91         -0.01         1536.4         0.           35.         1.00         26.2         0.00         21.91         -0.01         1536.4         0.           35.         1.00         26.2         0.00         21.91         -0.01         1536.4         0.           35.         1.00         26.2         0.000         21.91         -0.01         1536.5         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LATHT DEV    | NP DEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALI            | <b>S</b>   |                                         | 2          | Y-A-     | EV.           | V OND         | ıw      |
| 1.60     26.4     0.02     33.54     6.00     0.0523     0.0000     21.82     -0.01     1536.4     0.       3.     1.00     26.2     0.0523     0.0700     21.89     -0.01     1536.4     0.       3.     1.00     26.2     0.052     0.0000     21.91     -0.01     1536.4     0.       5.     1.00     26.2     33.54     0.00     0.052     0.000     21.91     -0.01     1536.5     0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1 .0       | .5 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ě              | ٠          | .052                                    | 6          | 81 -     | .01           | 536           | •       |
| 5. 1.C. 26.2 5.02 33.54 5.00 0.0523 5.0703 21.89 -5.01 1536.4 5.<br>5. 1.C. 26.2 5.02 33.54 5.00 0.0522 5.0005 21.91 -0.01 1536.4 0.<br>5. 1.C. 26.2 3.02 33.54 5.00 0.0522 0.0005 21.91 -0.01 1536.5 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 - 1 - 0    | 0.0 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | å              | ٠          | .052                                    | S          | - 28     | .01           | 36            | •       |
| 5. 1.00 25.2 3.02 33.54 0.00 0.0522 0.000 21.91 -0.01 1536.4 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'n.            | ر.<br>د    | .052                                    | င်း        | 600      | .01           | 36            | •       |
| 5. 1.02 25.2 3.32 3.54 0.00 0.0522 0.00 0.01 1.535.5 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'n.            | ٠,         | 052                                     | င်း        | 16.      | .01           | 36            | •       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠٠. ٠٢       | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,              | (          |                                         |            |          |               |               |         |

| DATE 18 | 8 FEB 65                         | TIPE 1700                             | 2CHE -8  | DEPTH    | 43 41K             | TEMP 82.0 | TEMP 1        | INSTR RTH | SAL INSTR  | TR NAN    |
|---------|----------------------------------|---------------------------------------|----------|----------|--------------------|-----------|---------------|-----------|------------|-----------|
|         |                                  | :                                     |          |          |                    | :         | :             |           |            |           |
| DE2TH   | CEV.                             | 75.4 DEV.                             | SACINITY | DEV.     | ELEC. COND.        | CEV.      | STCHA-T D     | DEV.      |            | DEV.      |
|         | 20.1                             | 6.4 0.0                               | 33.52    | 00.0     | i                  | 00000     |               | -0.01     | 1536.6     | 90.0      |
| ?;      | 00.1                             | 6.3                                   | 33.53    | 000      |                    | 0000      |               | .0.       |            | 90.0      |
|         | 000                              | 0.0                                   | 13.53    | 000      |                    | 0000      |               |           | 1536.5     | 000       |
| .5      | 26-1                             | 6.1 3.0                               | 33.54    | 00.0     |                    | 0.000     | Į.            | -0.01     |            | 90.0      |
|         |                                  |                                       |          |          |                    |           |               |           |            |           |
| 37.7    | - 165                            | STATION SEA                           | 4 10     | LATITUDE | DE 14 46.6 N       | LCNG      | LCNGITUDE 120 | 12.9 E    | MARSCEN    | SOUARE    |
|         | 49 rug                           | TIVE 1900                             | 2CNE -8  | DEPTH    | 43 AIR             | TEMP 83.0 | TEMP          | INSTR RTH | H SAL IN   | INSTR NAN |
| -       |                                  |                                       |          |          |                    |           |               |           |            |           |
|         | 30                               | 0EV                                   | SALINITY | DEV.     | ELEC. COND.        | CEV       | A-T           | UEV.      | SOUND VEL. | DEV.      |
| ,       | ; (                              | 0.0                                   | 20.05    | ) C      | - 1                |           | ο α<br>α      | 1000      | 1536.7     | 000       |
| 22.     | 1 - 1<br>1 - 1<br>1 - 1<br>1 - 1 | . 4.                                  | 33.52    |          |                    | 0000      | 21.82 -(      | 10.0      | 536        | 90.0      |
| O       |                                  | 6.2 0.3                               | 33.52    | J        | 1                  | 0.0000    | 68            | 5.01      | 1536.4     | 92.0      |
| 5       | Ç                                | 0.2 C.C                               | 33.52    | C        |                    | 2020.0    | 89            | 0.01      | 1536.5     | 90.0      |
| ')      | 3                                | 0.0                                   | 33,54    | ၁<br>()  | l                  | 00.00.0   | 21.93 -(      | 0.01      | 1536.4     | 90*0      |
| CKUTSE  | 965                              | STATION SEA 4                         | 14 10    | LATITE   | LATITUDE 14 46.6 N | רסאכ      | LONGITUDE 120 | 12.9 E    | MARSCEN    | SQUARE    |
| -       |                                  | TIME 1                                | N<br>E   | ОЕРТН    |                    | TEMP_     | ·-            | STR       | İ          | STR       |
|         | i<br>1<br>!                      | * * * * * * * * * * * * * * * * * * * |          |          |                    |           |               |           |            |           |
| :<br>   | D c                              | EMP DEV                               | INITY    | DEV.     | ELEC. COND.        | CEV.      | -             | DEV.      | SOUND VEL. | DEV.      |
| , ,     | ٠,                               |                                       | 2. 57    | 200      | 0.000              | 2000      |               | 10.0      | 1536 6     |           |
| 20°     | ).<br>)<br>)<br>()               | 26.2 0.02                             | , m      | 000      | 0.0523             | 0000      | ሳው            | 10.01     | 1536.4     | 90.0      |
| 113     | 0                                | 6.2 6.6                               | 3.53     | 20.0     | 0.0522             | 0.0000    |               | 0.01      | 1536.4     | 90.0      |
| 'n      | 7                                | 0.0 0.0                               | 3.55     | 00.0     | 0.0521             | 00000     | ~             | -0.01     | 1536.2     | 90.0      |
| 1       | í                                |                                       |          |          |                    |           |               |           |            |           |

ことの主義の関連を行っていますが、 日本のは関係の関係の対象を行う思いました。 あっぱななりに対している。

| CRUISE965<br>DATE 18 FEB 65                                                                                                                                                              | STATION SEA | A 10     | LATITUDE | 14 46.6 N    | LONGITUDE | TEMP INST     | INSTR RTH | SAL I          | INSTR NAN |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|----------|--------------|-----------|---------------|-----------|----------------|-----------|
| <b>.</b>                                                                                                                                                                                 | 3           | > 1 N    |          |              |           |               | JEW.      | <del>  -</del> | OEV.      |
| ()<br>                                                                                                                                                                                   | 20.4 0.02   | 3.5      | 00       |              | 0,000     |               | 10.0      | 5 5            | 90.0      |
|                                                                                                                                                                                          | 4.9         | 33,51    | !        |              | 00000     | i             | 10.0      | 1536.7         | 0.00      |
| 0.1                                                                                                                                                                                      | 5.9         | •        |          |              | 0.000     |               | 0.01      | 1536.3         | 90.0      |
| 0.1                                                                                                                                                                                      | 0.9         | ۳,       | į        |              | 0.0000    | 1             | 10.0      | 1536.0         | 90.0      |
|                                                                                                                                                                                          | 5.8         | Ä        |          |              | 0000.0    |               | 0.01      | 1535.8         | 90.0      |
| 3.1                                                                                                                                                                                      | 5.5         | Ť        |          |              | 0.0000    | i             | 0.01      | 1535.3         | 90.0      |
|                                                                                                                                                                                          |             |          |          |              |           |               |           |                |           |
| C <uise 965<="" td=""><td>STATION SEA</td><td>A 4 10</td><td>LATITUDE</td><td>DE 14 46.6 N</td><td>רטעטן</td><td>LCNGITUDE 120</td><td>12.9 E</td><td>MARSCEN</td><td>SQUARE</td></uise> | STATION SEA | A 4 10   | LATITUDE | DE 14 46.6 N | רטעטן     | LCNGITUDE 120 | 12.9 E    | MARSCEN        | SQUARE    |
| 4TE 13 FES 65                                                                                                                                                                            | 71ME 2100   | 2CNE -8  | DEPTH    | 43 AIR       | TEMP 80.0 | TEMP          | INSTR RT  | H SAL          | INSTR NAN |
| (L)                                                                                                                                                                                      | END         | SALINITY | DEV.     | ELEC. COND.  | CEV.      | 1             | DEV.      | SOUND VEL.     | DEV.      |
| 1.0                                                                                                                                                                                      | 4.9         | 33.51    | 00.0     | 0.0524       | 0000*0    |               | -0.01     | 1536.4         | 90.0      |
| 5.1                                                                                                                                                                                      | 4.9         | 33.51    | 03.3     | 0.0524       | 0.000     | 1             | -0.01     | 1536.6         | 90.0      |
| 3. 1.0                                                                                                                                                                                   | ر)          | 33.54    | 00.0     | 0.0521       | 0.000     | 7.4           | -0.01     | 1536.0         | 90.0      |
| . Tu                                                                                                                                                                                     | 25.9 0.02   | 33.59    | 00°0     | 0.0520       | 0000.0    | 22.03         | -0-01     | 1535.8         | 90.0      |
| 7.0                                                                                                                                                                                      |             | 33.01    | 00.00    | 0.0019       | 20.00     | 2             | 10.01     | 1232.0         | 95.0      |
| . <del>.</del>                                                                                                                                                                           | 5.5         | 33.66    | ၁၀•၁     | 0.0518       | 0000.0    | 22.19         | -0-01     | 1535.2         | 90.0      |
| CAUISE 965                                                                                                                                                                               | STATION SEA | A 4 10   | LATITUDE | JE 14 46.6 N | LONGI     | LCNSITUDE 120 | 12.9 E    | MARSCEN        | SOUARE    |
| DATE 18 FEB 65                                                                                                                                                                           | TIME 2200   | SCNE -8  | DEP TH   | 43 AIR       | 1EMP 79.0 | TEMP          | INSTR RTH | SAL            | INSTR NAN |
| _                                                                                                                                                                                        |             |          |          |              |           |               |           |                |           |
| 12                                                                                                                                                                                       | FPP         | SALINITY | DEV.     | ELEC. COND.  | CEV.      | L.            | DEV.      | SOUND VEL.     | DEV.      |
| 1:0                                                                                                                                                                                      | 4.9         | 33.51    | 00.0     | 0.0524       | 0.00.0    |               | -0.01     | 1536.4         | 90.0      |
| 1.0                                                                                                                                                                                      | 6.1         | 33.54    | 00.0     | 0.0522       | 0.000     | 1             | 0.01      | 1535.9         | 90.0      |
| . 1.C                                                                                                                                                                                    | 6.9         | 33.56    | 00.0     | 0.0520       | 0.000     |               | -0.01     | 1535.7         | 90.0      |
| 0.1                                                                                                                                                                                      | 2.4         | 33.68    | 00.1     | 0.0517       | 0.000     | 1             | -0.01     | 1534.8         | 90.0      |
|                                                                                                                                                                                          | 25.1 0.02   | 33.76    | 00.0     | 0.0515       | 000000    | 22.38         | -0.01     | 1534,4         | 0.06      |
|                                                                                                                                                                                          | 5.0         | 33.79    | 00.0     | 0.0514       | 0.00.0    | ì             | -0.01     | 1534.1         | 90.0      |
|                                                                                                                                                                                          |             |          |          |              |           |               |           |                |           |

| O                    |                  |                                                                                        | 0                                                           |        |                    |                            | 1           |
|----------------------|------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|--------|--------------------|----------------------------|-------------|
| SQUARE               | SAL INSTR NAN    | 0.06<br>0.06<br>0.06<br>0.06<br>0.06                                                   | SQUARE<br>ISTR NAN                                          | 0.06   | 90.0<br>0.0        | 90.0                       | 92.0        |
| MARSDEN SQUARE       |                  | SGUND VEL-<br>1536.1<br>1536.1<br>1536.0<br>1535.7<br>1535.4                           | PARSCEN SQUARE SAL INSTR N SQUND VEL. DEV.                  | 1536.3 | 1536.5             | 1535.7                     | 1535.3      |
| LCNGITUDE 120 12.9 E | TEMP INSTR RTH   | 21.83 -0.01<br>21.91 -0.01<br>21.94 -0.01<br>22.04 -0.01<br>22.14 -0.01<br>22.21 -0.01 | LONGITUDE 120 12.9 E<br>77.0 TEMP INSTR RTH<br>SIGMA-T DEV. |        | 21.92 -0.01        | 22.06 -0.01<br>22.03 -0.01 | 22.18 -0.01 |
| LCNGI                | 43 AIR TEMP 78.0 | C. 0700<br>0.0700<br>0.0700<br>0.0700<br>0.0700                                        | 6 N LONGITAIR TEMP 77.0                                     | ,      |                    | 0.0000                     | 0.9566      |
| LATITUDE 14 46.6 N   | 43 ATR           | ELEC. COND.<br>0.0524<br>0.0521<br>0.0521<br>0.0520<br>0.0519                          | LATITUBE 14 46.6 N DEPTH 43 AIR                             | _      | 1                  | 0.0520                     | •           |
| LATITU               | ОЕРТН            | DEV.<br>C. CC.<br>C. CO.<br>C. CO.<br>C. CO.<br>C. CO.                                 | LATITUC<br>DEPTH<br>DEV                                     |        | 80.0               |                            | 20:0        |
| <b>4</b> 10          | 2CNE -A          | 5ALTNITY<br>33.54<br>33.55<br>33.55<br>33.56<br>33.64                                  | 4 10<br>2CNE -9                                             | 33.53  | 33.51              | 33.60                      | 33.68       |
| STATICH SEA          | TIME 23C0        | TEMP DEV. 26.4 0.02 26.2 0.02 26.1 0.02 25.4 0.02 25.7 0.02 25.5 0.02                  | STATION SEA<br>TIME 00C0                                    |        | 26.4 5.02          | 25.3 0.02                  | 29.6 9.52   |
| CAUISE 965           | DATE 18 FER 65   | - DEPTH DEV. 11. 1.00 20. 1.00 30. 1.00 35. 1.00                                       | CAUTSE 365  DATE 19 FEB 65                                  | 0.1.00 | 10.<br>20.<br>1.00 | •                          | 45. 1.55    |

|                      | Z             | 1           |        |        |         |           |        | ,            |
|----------------------|---------------|-------------|--------|--------|---------|-----------|--------|--------------|
| SOUARE               | INSTR         | DEV.        |        |        |         |           |        |              |
| PARSCEN              | SAL II        | SOUND VELL  | 1536.3 | 1536.4 | 1536.2  | 1535.8    | 1535.5 | 1535.4       |
|                      | <u>=</u>      |             |        |        |         |           |        |              |
| 12.9                 | INSTR         | DEV.        | -2.01  | -0.01  | -0.01   | -0.01     | -3.01  | 10.01        |
| LCNGTTUDE 120 12.9 E | 1649          | SICHA-T     |        |        |         |           |        |              |
| CNCI                 | 76.0          | ĺ           |        |        |         |           |        |              |
| ı <sup>—</sup>       | TEMP          | CEV.        | 0.00   | 0.0.0  | 0.00    | 0.000     | 0:0:0  | C. GC0       |
| 14 46.6 N            | 43 AIR        | COND.       | *2     | 24     | 22      | ည         | 61     | E1           |
| E 14 4               | \$            | FLEC. COND. | 0.05   | 0.05   | 0.05    | 0.05      | 0.05   | 0.05         |
| LATITUDE             | DEPTH         | , EV.       | 30.3   | );·:)  | 00.     | 00.       | ٠, ١   | 5.5C         |
| 9                    | Œ             | 117         | 53     | .53    | . 54    | 59        | 63     | \$9.         |
| 01 +                 | ZCNF          | SAL IN I TY | 33,    | 33     | 33      | 33,       | 33,    | 33           |
| STATION SEA          | TIME DICC     | UEV.        | 6.32   | 2.02   | 20.0    | 0.02      | 2.05   | 20.0         |
| ST                   | 11            | TEVP        | 26.3   | 26.3   | 26.2    | 25.9      | 12.5   | 55.6         |
| -365                 | ATE 19 FEB 65 | OEV.        | 1.35   | 1.20   | 1.30    | ì • · 3 C | 1.0.   | 1.30         |
| CRUISE               | DATE 19       | DEPTH       | ;      | 13.    | ,<br>0, | 35.       | 35.    | <b>,</b> ; , |
|                      |               |             |        |        |         |           |        |              |

er ye. Gey

| }   |              |          |                                         |              |              |                  |                                       |               |
|-----|--------------|----------|-----------------------------------------|--------------|--------------|------------------|---------------------------------------|---------------|
| 1   |              |          |                                         |              |              |                  |                                       |               |
|     | C_dai        | SALINITY | 2                                       | . conc.      | ш            | VA-T             | SCUND VEL.                            | DEV.          |
|     | 6.3 3        | 3.5      | 00.0                                    | 3524         | o            | .85 -0.0         | 1536.3                                | 92.0          |
|     | 6.3          | 3.5      | 9                                       | . 255        | O            | 3.0- 38.         | 1536.4                                | 93.0          |
|     | 0.20         | 3.5      | ر ۲                                     | 0522         | o            | 06.              | 1536.3                                | 90.0          |
|     | 6.1 0        | 3.5      | 3                                       | 2750         | $\mathbf{c}$ | 0 76.            | 1536.2                                | 90.0          |
|     | 25.9 0.02    | 33.59    | 000                                     | 520          | 0.000        |                  | 1535.9                                | 90.0          |
|     | 9.5          | 3.6      | ၁၀ •<br>ပ                               | C518         | 0            | 0- 91.           | 1535.4                                | 93.0          |
|     | -STATION-SEA | 01 7     | LATITUE                                 | N 9.05 18 30 | L CNG14JPE   | 3 6.21 001 3dur. | MARSCEN                               | SQUARE 0      |
| 65  | TIME 0300 -  | ZONE -3  | n1 e30                                  | AIR AIR      | 1EMP 75.0    | TEMP INSTRURTH   | SAL                                   | INSTR NAN     |
|     |              | ,        | ;                                       | :            |              |                  |                                       |               |
| 1   | ENP DEV      | SALINITY | CEV.                                    |              | CEV.         | DE T-KO          |                                       | SEV.          |
|     | 6.3 0.0      | 3.5      | 000                                     | 352          | 0.0000       | 85 -0            |                                       | 6.36          |
|     |              | י<br>נית |                                         | 752          | 0000         | 000              |                                       | () ()<br>() ( |
|     | 2.0          | , L.     | 0                                       | 7 6          | 0000         | 100              | 3.00                                  | <br>          |
|     | ò            |          | 000                                     | 0.0521       | 00000        | 00 -0.           | 1536.1                                | 7 <b>4</b> 0  |
| J   | 5.8 5.0      | 13.61    | 00.5                                    | רי           | 6.000        | 90.              |                                       | 90°0          |
|     | STATICS      | 4        | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 47 71        |              | A 0 1 001 3011   | S S S S S S S S S S S S S S S S S S S | 0 300100      |
|     | ,            | •        |                                         | 7            |              |                  | N N N N N N N N N N N N N N N N N N N | u             |
| 65  | TIME 0400    | 2CNE -B  | DEPTH                                   | 43 AIR       | TEMP 0.0     | TEMP INSTR R     | TH SAL I                              | NSTR NAN      |
| - 1 |              |          | - 1                                     |              |              |                  | ľ                                     |               |
|     | END DEV      | 2,       | ··                                      | COND         | CEV.         | 1 - V            | SOUND VEL.                            | DEV.          |
|     | 5.0          | ή.       | •                                       | 224          | 00.000       | 9                | 1536.2                                | 90.0          |
|     | 6.2 5.0      | ~· ,     | •                                       | 523          | 00000        | 6                | 1536.2                                | 90.0          |
|     | 0.0          | 'n,      | •                                       | 522          | 00000        | 66               | 1536.1                                | 90.0          |
|     | 25.7 0.02    | 33.62    | 00<br>00<br>00                          | 0.0519       | 00:00        | 22.11 -0.01      | 1535.4                                | 90.0          |
|     | 2            | ٠.       | •                                       | 218          | 0.0          | _                | 1535.2                                | 0.00          |

| Cauras                                                   | 59            | STATION                                 | SEA                        | 4 10     | LATITUDE    | UE 14 46.6 N     | LONGI TUDE  | 120           | 12.9 €        | MARSCEN    | SQUARE    |
|----------------------------------------------------------|---------------|-----------------------------------------|----------------------------|----------|-------------|------------------|-------------|---------------|---------------|------------|-----------|
| 10 12 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 |               | TIME 050                                | 200.                       | ZCNE -8  | DEPTH-      | 43 AIR           | TEMP 0.0    | TEVP          | EMP_INSTR'RTH | SAL        | INSTR NAN |
| :                                                        | 1             |                                         | 1                          |          | 1           |                  |             |               |               |            |           |
| 1                                                        |               | Azi Sa                                  |                            | 2        | TEV         | FLEC. COND.      | CEV         | SICHA-T       | DEV.          | SOUND VEL. | DEV.      |
| <br>L                                                    |               |                                         | ,                          | . 75     | 00          | ,                | 00.00       | 88            |               | 1536.1     | 90.0      |
| • • • • • • • • • • • • • • • • • • • •                  |               | ) F                                     | 1                          | . 75     | 00.0        | 0.0523           | 00000       |               | 10.0          | 1536.2     | 90.0      |
| * * * * * * * * * * * * * * * * * * * *                  |               | ) ()<br>) ()                            |                            | . 2.     | 00.0        | 0.0520           | 0.000       | 10.           | •             | 1535.7     | 90.0      |
|                                                          |               | ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( | 1                          | 4        | 00.0        | 0.0518           | 0.0000      | 20            | 0.01          | 1535.1     | 90.0      |
| •                                                        |               | , 6,                                    |                            |          | 00.0        | 0.0517           | 000000      |               | -0.01         | 1534.8     | 90.0      |
|                                                          |               | 25.1                                    |                            | 7.9      | 1.00        | 0.0515           | 00000       | 040           | 0.01          | 1534.5     | 90.0      |
| CAUISE 3                                                 | 965           | STATION                                 | SEA                        | 4 10     | LATITUDE    | JDE 14 46.6 N    |             | LONGITUDE 120 | 12.9 E        | MARSCEN    | SQUARE    |
| 9 FE                                                     | . <b>59</b> 8 | 11 ME 06                                | 2290                       | 2CNE -8  | OEP TH      | 43 AIR           | TEMP 0.0    | TEMP          | INSTR RTH     | SAL        | INSTR NAN |
| -                                                        |               |                                         |                            |          |             |                  |             |               |               |            |           |
| DEATH DEV                                                |               | DEV                                     |                            | SALINITY | DEV.        | ELEC. COND.      | CEV.        | 1:            | DEV.          | SOUND VEL. | 0EV.      |
| 0.1 .0                                                   | ٠.,           | 6.2 0.0                                 | •                          | 33.55    | 00.0        | 0.0523           | 0.000       | ١,            | 10.0          | 0.0661     | 00.0      |
| 0. 1.0                                                   | ·             | 6.2 3.0                                 | \<br>\<br>\<br>\<br>\<br>\ | 33.54    | 00.0        | 0.0523           | 2000°0      | 2 4           | 100           | 1536.0     | 0.0       |
| o. 1                                                     | <b>~</b> , (  | 6.1 3.0                                 |                            | 33.56    | 000         | 7760.0           | 0000        | 7 6           |               | 1535.4     | 92.0      |
| <b>.</b>                                                 | r) (          | 5.7 3.0                                 | ~ .                        | 33.65    | )<br>(      | 6100.0           |             | 22.26         |               | 1535.0     | 0.05      |
|                                                          |               |                                         | ļ                          | 12.5     | 00.0        | 0.0516           | 00000       | 35            | 0.01          | 1534.6     | 90.0      |
| •                                                        | ו כ           | 3.6                                     |                            |          | ;           |                  |             |               |               |            |           |
| CRUTSE 963                                               | :963          | STATTO                                  | TON SEA                    | 01 7     | LATIT       | EATITLDE 14 46.6 | LGNO        | LENGTUDE 120  | 12.9 E        | PARSCEN    | N SQUARE  |
| -                                                        |               |                                         |                            |          |             |                  |             | 1             |               |            | 242       |
| DATE 19 FE                                               | EB 65         | TIME 0                                  | 0046                       | SCNE -8  | DEPTH       | 43 AI            | R TEMP 75.0 | 167           | X CX          |            |           |
| i                                                        |               |                                         | :                          | 1        | i<br>1<br>1 |                  |             |               |               |            |           |
| MED HE PLANT                                             | 7             | P                                       |                            | SALTNITY | DEV.        | ELEC. COND       | . CEV.      | L             | . 050         | SCUND VEL. | DEV.      |
|                                                          | CO            | . ~                                     | 2                          | 23.55    | 00.0        | 0.0522           | 0000.0      | - 1           | -0.01         | 1535.9     | 90.0      |
|                                                          | 0 0           | 0                                       |                            | 33.56    | 00.3        | 0.0523           | 0.0000      |               | -0-01         | 1536-1     | 90.0      |
|                                                          |               |                                         | 75                         | 33.56    | 00.0        | 0.0522           | 0.000       |               | 10.01         | 1536.2     | 90.0      |
|                                                          | 33            | 25.7 3.0                                | • 02                       | 33.64    | 00.0        | 0.0519           | 0000        | 22.12         | 6.0           | 1535.5     | 9 0       |
| 5. 1                                                     | 00            | ٠<br>د                                  | 72                         | 33.67    | ر<br>د<br>د | 61400            | 0.000       | - 1           | 10.01         | 15.35      | 20.0      |
| •                                                        |               | 7                                       | 32                         | 33.72    | 00.0        | 1150.0           | 0.00        | 07.77         | 10.0          | •          |           |
|                                                          |               |                                         |                            |          |             |                  |             |               |               |            |           |

| 0                    |                                 | ! | ľ            |             |              |        |        |        |        |
|----------------------|---------------------------------|---|--------------|-------------|--------------|--------|--------|--------|--------|
| SQUARE               | SAL INSTR NAN                   |   | DEV.         | 90.0        | 90.0         | 90.0   | 90.0   | 90.0   | 92.0   |
| MARSCEN SQUARE       |                                 |   | SCUND VEL.   | 1535.8 0.06 | 1536.0       | 1535.8 | 1535.5 | 1535.3 | 1534.8 |
| 12.9 E               | INSTR RTH                       |   |              |             |              |        |        |        |        |
| LONGITUDE 120 12.9 E | TEMP                            |   | SIGMA-T DEV. | 21.90 -0.01 | 21.90        | 21.95  | 22.08  | 22.16  | 22.27  |
| L0NG.                | TEMP 80.0                       |   | CEV.         | 000000      | 00000        | 0000-0 | 000000 | 0000*0 | 0000-0 |
| LATITUDE 14 46.6 N   | 43 AIR TEMP 80.0 TEMP INSTR RTH |   |              | 0.0522      |              | 0.0521 | 0.0519 | 0.0518 | 0.0516 |
| LATITUD              | ПЕРТН                           | : |              | 00.0        | 0.00         | 00.0   |        | 00.0   | 3°00   |
| SEA 4 10             | 2CNE -8                         |   | SALINITY     | 33.52 0.00  | 33.52        | 33.54  | 33.65  | 33.64  | 33.6A  |
| STATION SEA          | TIME 08CC                       | ! |              |             |              |        |        |        |        |
| ST                   | 11                              | ı | TEMP DEV.    | 26.1        | 26.1         | 26.0   | 25.7   | 9.52   | 25.3   |
| 34U1SF 365           | CATE 34 FER 65                  |   | DEPTH DEV.   | 400         | 1.00<br>1.00 | 1.00   | 30.1   | 1.03   | 1.05   |
| CRUISE               | DATE 1                          | - | DE PAR       | .;          | 13.          | 23.    | 30.    | 35.    | ,      |

## APPENDIX B

Core Analysis Summary Sheets

- Engineering Properties
   Sediment Size and Composition

# 1. EXPLANATION OF DATA PAGES CORE ANALYSIS SUMMARY SHEET Engineering Properties

Results of engineering properties, core analysis performed by the U.S. Naval Oceanographic Office Geological Laboratory are recorded on Core Analysis Summary Sheet Engineering Properties.

The following is a description of the terms employed on the Core Analysis Summary Sheet:

- 1. <u>Cruise Number</u>. A number assigned to each cruise for identification purposes.
  - 2. Latitude. Expressed in degrees, minutes, and seconds.
  - 3. Longitude. Expressed in degrees, minutes, and seconds.
- 4. <u>Sample Number</u>. A consecutive number, commencing with 1, applied to each core taken successively throughout the cruise.
  - 5. Date Taken. Day (GMT), month, and year.
  - 6. Water Depth (m). The uncorrected sonic sounding recorded in meters.
  - 7. Type Corer. Identified by the name of device employed.
  - 8. Core Length(cm). Recorded in centimeters as observed in the laboratory.
  - 9. Core Penetration (cm). Recorded in centimeters as observed in the field.
- 10. Subsample Depth in Core (cm). Interval of subsample as measured in centimeters from the top of the core.
- 11. Wet Unit Weight  $(g/cm^3)$ . The weight (solids plus water) per unit volume of the sediment mass.
- 12. Specific Gravity of Solids. The ratio of weight in air of a given volume of a sediment at 20°C to the weight in air of an equal volume of distilled water at 20°C.
- 13. Water Content (% dry weight). The ratio, in percent, of the weight of water in a given mass of the sediment sample to the weight of the solid particles.

- 14. Void Ratio. The ratio of the volume of void spaces to the volume of solid particles in the sediment sample as computed from Wet Unit Weight, Specific Gravity of Solids, and Water Content.
- 15. Saturated Void Ratio. The Void Ratio at 100 percent saturation as computed from Water Content and Specific Gravity of Solids.

Saturated Void Ratio = Water Content X Specific Gravity of Solids

- 16. Porosity  $(\sigma_0)$ . The ratio, usually expressed as a percentage, of the volume of voids of a sediment mass to the total volume of the sediment mass.
- 17. <u>Liquid Limit</u>. Water Content, in percent, at which a pat of sediment cut by a groove of standard dimension will flow together for a distance of 1/2 inch under the impact of 25 blows in a standard liquid limit apparatus.
- 18. Plastic Limit. Water Content, in percent, at which a sediment will just begin to crumble when rolled into a thread approximately 1/8 inch in diameter.
- 19. Plasticity Index. The numerical difference between the Liquid Limit and Plastic Limit of the sediment mass.
- 20. Liquidity Index. The ratio, expressed in percentage, of (1) the natural water content of the sediment sample minus its Plastic Limit to (2) its Plasticity Index.
- 21. Compression Index. The slope of the linear portion of the Pressure-Void Ratio curve on a semi-log plot.
- 22. Compressive Strength. The load per unit area required to shear an unconfined, natural or remolded, sediment mass.
- 23. Cohesion. The shearing strength per unit area under zero externally applied load.
- 24. Sensitivity. The ratio of the natural to the remolded strength. It is a measure of the loss of strength due to remolding the sediment mass.
- 25. Angle of Internal Friction (°). The angle between the abscissa and the tangent of the curve representing the relationship of "shearing resistance" to "normal stress" acting within a sediment mass.
- 26. Activity. The ratio of the Plasticity Index to the clay fraction percentage (K.002 mm) of the sediment mass.

- 27. Modulus of Elasticity. The ratio of stress to strain of the sediment mass.
- 28. Slump  $(\frac{\sigma_0}{\epsilon})$ . The ratio, in percent, of the amount of height change immediately before the compressive strength test to the original height of a cylinder of sediment.

## CORE ANALYSIS SUMMARY SHEET

PRNC-NAVOCEANO-3167/18 B (4-63)

1

| ANALYSIS SUMMARY SHEET | NA-AN            |
|------------------------|------------------|
| NGINEERING PROPERTIES  | ANALYZED BY MALA |
|                        | DATE 9 APRIL 6   |

| the state of the s | -                      | SAMP! F MO.     | 9            | 1-6           | - S                     |           | 7. TYPE  | ORER A             | 7. TYPE CORER KULLENBEKS | SEKA   |        | ia .                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------|---------------|-------------------------|-----------|----------|--------------------|--------------------------|--------|--------|----------------------------------------------|
| , interior 14 · 46 · 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                      | DATE TAKEN      | (Day, month. | ,69           | IT Feb.                 | 65        | B. C(B)  | CORF LFLATH ICM 60 | . 4                      |        |        |                                              |
| . 20 0 021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ٠                      | WATER DEPTH (m) |              | 56.5          |                         |           |          | R PENETR           | CORER PENETRATION (cm)   |        |        |                                              |
| 10. SUBSAMPLE DEPTH IN CORE CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0                     | T1-01 01-0      |              | 9 29-3        | 15-05 84-92 72-62 62-11 | 150-57    | 57.69    | 51.69 69-16 16-87  | 16-87                    |        |        |                                              |
| 11. WET UNIT WEIGHT (g/cm²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 1.52            | 25           | 1.55          |                         | 1.58      |          |                    |                          |        | _      | •                                            |
| 12. SPECIFIC GRAVITY OF SOLIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                 |              |               |                         |           | •        |                    |                          |        |        |                                              |
| 13. WATER CONTENT (S dry meight!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 11.18           |              | 71.49         | -                       | 50.61     |          | 54.32              |                          |        |        |                                              |
| 14. VOID RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                 |              |               |                         |           |          |                    |                          |        |        |                                              |
| 15. SATURATED VOID RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                 |              |               |                         |           |          |                    |                          |        |        |                                              |
| 16. POROSITY (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                 |              |               |                         |           |          |                    |                          |        |        |                                              |
| 27, LIQUID LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | -               |              |               |                         |           |          |                    |                          |        |        |                                              |
| 18. PLASTIC LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | -               |              |               |                         |           |          |                    |                          |        |        | •                                            |
| 19. PLASTICITY INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | <br>            |              |               |                         |           |          |                    |                          |        |        |                                              |
| 20. LIQUIDITY INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                 |              |               |                         |           |          |                    |                          |        | `      |                                              |
| 21. COMPRESSION INDEX FROM LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                 |              |               | <del></del>             |           |          |                    |                          |        |        | ı                                            |
| ا_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19/cm21                |                 |              | 51.65         | 5                       |           |          |                    |                          |        |        |                                              |
| REMOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (9/cm2)                | +               | 1            | $\frac{1}{1}$ | \<br>-\                 |           |          |                    | 1                        | -      |        |                                              |
| 23. COMESION NATURAL REMOLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (g/cm²)                | 53.71           | 7.5          | 28.82         | 7                       | 61.73     |          |                    | +                        | -      | -      |                                              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 2.86            | 96           |               | -                       | 6.91      |          |                    |                          |        |        |                                              |
| 25. ANGLE OF INTERNAL FRICTION (#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                 |              |               |                         |           |          |                    |                          |        |        |                                              |
| 26. ACTIVITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                 |              |               |                         |           |          |                    |                          |        |        |                                              |
| 27. MODULUS OF ELASTICITY & CM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                 |              | 468           |                         |           |          |                    |                          |        |        |                                              |
| 28, SLUMP (\$)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                 |              | 1.63          | 25                      |           |          |                    |                          |        |        |                                              |
| 29. REMARKS: CAREENISM SANDY MUD. No ICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAN YEA                | I AKE           | RAGS.        | 2:5           | アンドドン                   | VATE TO B | , C c ii | 37.                | SAL                      | 1200 C | 16 570 | AKEN JUST ABOUT ENGINEET PAOP SAMPLE OXLANDO |
| 1,7 Cacae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | מ שייבשי               | 5-10            | X OF         | , ;           | ON SOHOM                |           |          |                    |                          |        |        |                                              |
| が - h 7 一型 だって<br>h 7 一型 だって                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24-56CM.<br>Cor @ 42CM | 1               | 7 0 1        | 3             | )<br>)                  |           |          |                    |                          |        |        |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                      |                 |              |               |                         |           |          |                    |                          |        |        |                                              |

| ::<br>₹  |
|----------|
| 60<br>60 |
| 3167.1   |
| ANO      |
| YOCE     |
| N.O      |
| N.O.K.   |

• •

## CORE ANALYSIS SUMMARY MEET ENGINEFRING PROPERTIES

| 田<br>マ<br>マ<br>マ<br>ス<br>の<br>の | ANALYZED BY MAMAN | DATE 13 APRIL 65 |
|---------------------------------|-------------------|------------------|
|                                 |                   |                  |

|                                                          | 13 20 20-33 55 40 10 6 3 42 6 5 5 4 42 6 5 5 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 | 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |                 | 7011012<br>2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 |
|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|-----------------|--------------------------------------------------|
| 2.4                                                      | 155 155 150 Local 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      | 44.03                                   |                 |                                                  |
|                                                          | 1.8c 1.8c 1.8c 1.8c 1.8c 1.8c 1.8c 1.8c                                      | 3 1.16                                  |                 |                                                  |
|                                                          | 42.95                                                                        | 1116                                    |                 | 0.00                                             |
| \$ 5 5 5 5 1 - 4 + 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1.80                                                                         | 44,03                                   |                 | 2 80 00 12 12 100 08 S                           |
|                                                          | 42.95                                                                        | £0.44                                   | _               | 84                                               |
|                                                          | 41 93                                                                        | 25.03                                   |                 |                                                  |
|                                                          |                                                                              |                                         | 921)            | 46 94                                            |
| P                                                        |                                                                              | (                                       |                 |                                                  |
| (3/cm·)                                                  |                                                                              |                                         |                 |                                                  |
| (3/cm-) (3/cm-) (3/cm-)                                  |                                                                              |                                         |                 |                                                  |
| (9/cm·)                                                  |                                                                              |                                         |                 |                                                  |
| 19/cm <sup>-1</sup>                                      |                                                                              | :                                       |                 |                                                  |
| (9/cm-)                                                  |                                                                              |                                         |                 |                                                  |
| (3/cm-)                                                  |                                                                              |                                         |                 |                                                  |
| 44704 (970m)                                             |                                                                              |                                         |                 |                                                  |
| 10/5421                                                  | 125.84                                                                       | <u>.</u>                                | 9 5<br>50<br>80 | 104,05                                           |
|                                                          |                                                                              |                                         |                 |                                                  |
| 23. COFESION NATURAL IGICALS MOLELL                      | 62.92                                                                        | 28.0                                    | 41.83           | 52.02                                            |
| (*E0.50)                                                 |                                                                              |                                         |                 |                                                  |
| 24. SENSITIVITY \$ .22                                   |                                                                              |                                         |                 |                                                  |
| 25. ANSLE OF INTERNAL FRICTION (                         |                                                                              |                                         |                 |                                                  |
| 26. ACTIVITY                                             | *                                                                            |                                         |                 |                                                  |
| 27. MODULUS OF ELASTICITY & CM.2                         | 4101                                                                         | 1083                                    | 219             | 1100                                             |
| 28. SLUMP (\$)                                           | - 63                                                                         | 1.63                                    | 90              | 2.17                                             |

28. REMARKS NO FREE WATER, KAUS IN CORE. NOHEROUS SHALLS COULD BE HEAD CHANNED AS SANDLING INTENDED INTO CORE DEDINANT IS DESIGNED EXCEPT NEW NEW RETION AT 10P. SEDIMENT IS BURCK IN CALIBET WITH CARE TRAPPEL. CORE CORE & 16 & 16 & 20 CM.

FRNC-NAVOCEANO-3167/18 B (4-63)

CORE ANALYSIS SUMMARY SHEET ENGINEERING PROPERTIES

ANALYZED BY MAGAN DATE 14 APRIL 65

| -0 kV                                    |             |             |                      | 71.00 |             | ٠ ٠٠٠٠    | CHE NOLLENDEKA    | 1           | 2                          |          |
|------------------------------------------|-------------|-------------|----------------------|-------|-------------|-----------|-------------------|-------------|----------------------------|----------|
| ) h                                      | CLASKER CAR | Than Booth. | South war IN FEB. 65 | FEB.  | 5.5         |           | The second second | 0           |                            |          |
|                                          |             | 9           |                      |       |             | 4. C. HER | PENETRATION COL   | 1( 1 ( 10 ) |                            |          |
|                                          | 0-13 13-20  | 10.         | 33.40                |       | 53-60 60-TS | 5-0       | 15-80 80          | 2-93        | 73-80 80-93 95-100 100-110 | 9        |
|                                          | 1.46        |             | 1.47                 |       | 48          |           | 1.67              | 1           | 1.56                       | +        |
| 12. SPECIFIC GRAVITY OF SOLIDS           |             |             |                      |       |             |           |                   | _           | -                          | -        |
| 13. WATER CONTENT (\$ dry weight)        | 94.22       |             | 165.64               |       | 42.74       |           | 85.13             | -           | 41.15                      | +        |
| 14. VOID RATIO                           |             |             |                      |       |             |           | -                 |             | -                          | +        |
| 15. SATURATED VOID RATIO                 |             |             |                      |       |             |           | -                 | 1           | +                          | +        |
| 16. POROSITY (\$)                        |             |             |                      |       |             |           |                   | _           | -                          | +        |
| 17. 1:30:0 L'#IT                         |             |             |                      |       |             |           |                   |             | +                          | -        |
| 16. PLASTIC LIMIT                        |             |             |                      |       |             |           |                   |             |                            | +        |
| 19. PLASTICITY INDEX                     |             |             |                      |       |             |           | +                 |             |                            | +        |
| 20. LIQUIDITY INDEX                      |             |             |                      |       |             |           |                   |             | -                          | -        |
| 21. COMPRESSION INDEX FROM LL            |             |             |                      |       |             |           |                   |             |                            | $\dashv$ |
| 22. COMPRESSIVE STRENGTH NATURAL (9/cm2) |             |             | 30.16                |       |             |           | 96.52             | $\dagger$   | +                          | +        |
| REMOLD                                   |             |             |                      |       | 1           |           | 1                 | †           |                            | +        |
| 23. COMESION NATURAL (g/cm2)             | 35.18       | 8           | 15.38                |       | 21.88       |           | 48.16             | 9           | 88.09                      | +        |
| REMOLD                                   | 8.92        | ~4          | . 1                  |       | 13.86       |           | +                 | 1           | 79.4                       | +        |
| 24. SENSITIVITY                          | 4.01        |             |                      |       | 2.90        |           | +                 | 1           | 4.16                       | +        |
| 25. ANGLE OF INTERNAL FRICTION (#)       |             |             |                      |       |             |           |                   | 1           | 1                          | +        |
| 26. ACTIVITY                             |             |             |                      |       |             |           |                   | 1           | _                          | +        |
| 27. MODULUS OF ELASTICITY & CH           |             |             | 437                  |       |             |           | 1296              | _           |                            | -        |
| 28. SLUMP (%)                            |             |             | 2.68                 |       |             |           | 2.17              |             |                            |          |

CAZERN SANDY MUD, NO FIRE WATER, ISUT NO TRAKS. TRASTIC SHEET IN BOHOM, CLZE CUT @ 46 & 86 CM.

## 2. EXPLANATION OF COMPUTER DATA SHEET SEDIMENT SIZE AND COMPOSITION

Results of sediment-size and -composition core analysis performed by the U.S. Naval Oceanographic Office Geological Laboratory are tabulated on Computer Data Sheet Sediment Size and Composition.

The following is an explanation of the terms employed on the Computer Data Sheet:

- 1. CRUISE. A number assigned to each cruise for identification purposes.
- 2. SAMPLE. A consecutive number applied to each core taken successively throughout the cruise.
- 3. LATITUDE. Expressed in degrees, minutes, and tenths of minutes.
- 4. LONGITUDE. Expressed in degrees, minutes, and tenths of minutes.
- 5. TAKEN. Date in month, day, and year that core was taken.
- 6. CORER TYPE. Number corresponding to sampling device code below.
  - 1. Hydroplastic piston
- 6. Orange Peel
- 2. Hydroplastic gravity
- 7. Ewing
- 3. Kullenberg piston
- 8. Vibrocorer
- 4. Kullenberg gravity
- 9. Dredge
- 5. Phleger gravity
- 0. Other
- 7. LENGTH. Length of core recorded in centimeters as observed in the laboratory.
- 8. PENETRATION. Penetration of coring device recorded in centimeters as observed in the field
- 9. DEPTH. The uncorrected sonic sounding recorded in meters.
- 10. ANALYZED. Date in month, day, and year that core was analyzed in the laboratory.
- 11. ID. NO. Three digit laboratory project number followed by consecutive number assigned to each subsample analyzed.
- 12. INTERVAL. Interval of subsample as measured in centimeters from the top of the core.

- 13. MM. Particle diameter size intervals based on Wentworth size grades in millimeters.
- 14. PER. Percent of total sample weight within the given size interval.
- 15. GRAVEL, SAND, SILT, CLAY. Percent of total sample weight within the four size classes.

Class ranges are: Gravel - coarser than 2 mm
Sand - 2 to 0.0625 mm
Silt - 0.0625 to 0.0039 mm
Clay - finer than 0.0039 mm

- 16. MEAN (MM). The geometric mean of the distribution expressed in millimeters.
- 17. MEAN (PHI). The logarithmic mean of the distribution expressed in phi units (-log2 of the diameter in millimeters).
- 18. STAN DEV. Standard deviation. A measure of the degree of spread or dispersion of the distribution about the mean expressed in phi units.

$$\sigma = \sqrt{\sum f(X_i - \overline{X})^2 / 100}$$

19. SKEWNESS. A measure of the asymmetry of the distribution. Positive values denote skewness of the distribution toward the fine particles, negative values denote skewness toward the coarse particles. A normal distribution has a skewness of 0.

$$\alpha_3 = \frac{1}{100} \sigma^{-3} \sum f(X_i - \overline{X})^3$$

20. KURTOSIS. A measure of the peakedness of the distribution. Positive values denote a "leptokurtic" distribution, or a distribution more "peaked" than normal. Negative values denote a "platykurtic" distribution, or a distribution more "flat" than normal. A normal curve has a kurtosis of 0.

$$\alpha_4 = \frac{1}{100} \sigma^{-4} \sum_i f(X_i - \overline{X})^4 - 3$$

- 21. CACO3. Percent calcium carbonate of the total sample weight as determined by the insoluble residue method.
- 22. ORG CARBON. Percent organic carbon of the total sample weight as determined by the Allison method.



- 23. COLOR. Wet sediment color, based on the Geological Society of America Rock-Color Chart, as determined in the laboratory.
- 24. DOM MINERAL. Dominant mineral (s) comprising the sample assemblage.
- 25. SEC MINERAL. Secondary mineral (s) comprising the sample assemblage.

FIRE VOLUTORARY OF THE INSTITUTE

, ,

| - (           | INDRUM              | ET.C PENETRE | TPATTON 90.2         | S S S S S S S S S S S S S S S S S S S |          | NWALY 223 9754765 |
|---------------|---------------------|--------------|----------------------|---------------------------------------|----------|-------------------|
| INTERVAL      | 270 9<br>10.0- 17.0 | 24.0- 36.0   | 270 11<br>50.0- 57.0 | 24 042<br>59.64 78.0                  |          |                   |
| 1             | ند<br><b>م</b>      | i<br>i       | <b>a</b><br>0.       | F C R                                 | ar<br>a. | or<br>tu:<br>d    |
| ξ.            |                     |              | 0                    | 9                                     |          |                   |
| 00            |                     | × 40 ×       | 100 m                | 4.323                                 |          |                   |
| 000           | C)                  | 3.393        | . 36                 | .51                                   |          |                   |
|               | .20                 | 30800        | 15.0                 | 5.61                                  |          |                   |
| 7             | 3.42                | 6.3          | 26.                  | . : 3                                 |          |                   |
| 0.1290        | 16.329              | 6%0°51       | 4.24                 | 5.85                                  |          |                   |
| 9             | 44                  | £50°\$       | .4.                  |                                       |          |                   |
| 0.0           | 0.000               | 3U0*3        | 00.                  | Ç.,                                   |          |                   |
| Ç             | 11.                 | 9.76         | 96.                  | - 4                                   |          |                   |
|               | ₹.                  | 000.         | C.                   | 00.3                                  |          |                   |
| ₹ <b>0</b> •0 | - Q                 | P. 1.84      | .36                  | 36.                                   |          |                   |
| 0.0020        | 00000               | 000°0        | 900                  | • 00                                  |          |                   |
| 00.0          | 00                  | 14.138       | 2.<br>D.             | • 23                                  |          |                   |
| 00.00         | 40                  | 3.299        | . 3.5                | . 83                                  |          |                   |
| 0.00          | -                   | 11.310       | ٠٦٥                  | 4.                                    |          |                   |
| CRAVEL        | 2.941               | 40.          | £.                   | . 32                                  |          |                   |
| )             | 4                   | \$           | 4.                   | 63.425                                |          |                   |
| 2171          | 0.17                | .89          | 3.92                 | .70                                   |          |                   |
| CLAV          | 10                  | 8.74         | 9                    | 4.54                                  |          |                   |
| MAN (MM)      | 4050-0              | -036         | 160                  | .063                                  |          |                   |
| : 2           | 5                   | 79           | 3.3499               | 3.9660                                |          |                   |
| 2             | 5                   | .028         | .423                 | . 568                                 |          |                   |
|               | 190                 | . 234        | 404.                 | .382                                  |          |                   |
| KURTOSIS      | -1-1650             | <b>T</b>     | . 355                | .532                                  |          |                   |
| (1000)        |                     | Ų            | 20                   | 8                                     |          |                   |
|               | 000.0               | 0000         | 00.0                 | 00-0                                  |          |                   |
|               | 57 2/1              | 1/2 AS       | 5v 2/1               | 87 2/1                                |          |                   |
| DOT MENERAL   | ART2                | AT2          | AT2                  | ~ ~                                   |          |                   |
| SEC MINERAL   | CALCIVE             | CALCITE      | 3                    | Ş                                     |          |                   |

SPRINGER SIZE AN COMPOSITION DATA

| CAUISE<br>COMPH TYPE A | SAMPLE               | 2 LATITION PENET | LATITUDE 14 46.6<br>PENETRATION 120.0   | LONGITUDE 120        | 12.9                                     | TAKEN 18702765<br>Analyzeg 13704765 |
|------------------------|----------------------|------------------|-----------------------------------------|----------------------|------------------------------------------|-------------------------------------|
| IO. NO.<br>Interal     | 270 26<br>13.0- 20.0 | 270 27           | 210 28<br>53.0-60.0                     | 270 29<br>73.0- 80.3 | 270 30<br>\$3.0~10C.0                    |                                     |
| <i>T.</i>              | <b>4</b>             | <b>a</b>         | e.<br>B.                                | <b>8</b> 3 0         | A                                        | or<br>ex                            |
| ر.<br>د                | ,                    | S.               | 0.000                                   | 00.                  | ٦                                        |                                     |
| <b>3-0</b> 000         | 3.554                | 4.261            | 1.924                                   | 2.687                | 5.521                                    |                                     |
| 9                      | •                    |                  | 4.418                                   | . 38                 | ъ.                                       |                                     |
| Š                      | 9                    | 2.5              |                                         | 3.93                 | 2.3                                      |                                     |
| ~                      | 5.2                  |                  | 21.739                                  | <b>5</b>             | •                                        |                                     |
| 7                      | ٠                    | 7.8              | Ç                                       | 8.24                 | ٠.<br>د                                  |                                     |
| 9                      | •                    | 4                | 8.768                                   | .22                  | -4                                       |                                     |
| 3                      | 9                    | 0                | ପ <b>୍ରପ•ପ୍</b>                         | 35.                  | `.                                       |                                     |
| 0                      | *                    | *                | ひのかしず                                   | -                    | 4                                        |                                     |
| 0                      | Ç                    | 0                | 0                                       | to:                  | .⊅                                       |                                     |
| 003                    | 4.                   | 7                | 10.641                                  | • ♦                  | •                                        |                                     |
| 0.000                  | <b>.</b>             | o.               | 300°0                                   | 00.                  | <u>ာ</u>                                 |                                     |
| 9                      |                      | 4                | 024.50                                  | . 62                 | *0                                       |                                     |
| 30.                    | •                    | ~                | enn-c                                   | . 76                 | **                                       |                                     |
| 000                    | ~                    | ٠,               | 9.266                                   | D<br>U               | <br>4                                    |                                     |
| GRAVEL                 | .53                  | 47               | 25.                                     | 8                    | PRV<br>M                                 |                                     |
|                        | 60.217               | 68.316           | œ                                       | 4                    | _,                                       |                                     |
| <b>1</b> 1.1           | .76                  | 7.               | ¥.                                      | .65                  | <b>₹</b>                                 |                                     |
| CLAY                   | 9.46                 | 2.71             | 3.54                                    | ٠<br>د د د           | 4                                        |                                     |
| _                      | 673                  | 60.              | 673                                     |                      | general<br>Sylvania<br>Series            |                                     |
| MEAN LPT.              | .720                 | . 37             | -669                                    | 4.0                  | •                                        |                                     |
|                        | 3,6047               | 3.6674           | 3.400                                   | \$ 0 C \$            | 20 Mg 1 Mg |                                     |
| Z                      | 449                  | . 20             | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 4                    | (%)<br>14. 1                             |                                     |
| 102                    | 400.                 | 60.              | 4.4<br>6.4<br>6.0                       | . 50                 |                                          |                                     |
| CACO3                  |                      | 0                | ()<br>()                                | , 50                 | ?                                        |                                     |
| CAREDA                 | 0.0                  | 0000             | (                                       | O                    |                                          |                                     |
|                        | <b>4 ∆</b> 6         | 7 7              | 97 4                                    | *                    | 4                                        |                                     |
| CON MINERAL            | QUART 2              | 4872             | P.T.2                                   | ~;                   | •                                        |                                     |
| K i K i                | ť                    |                  | CALCITE                                 | CALCIT               | 41C17                                    | w.                                  |

SECUMENT SIZE AND COMPOSITION CONTA

. .

| CRUISE<br>CORER TYPE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE                                         | 3 LATITUE    |                                          | LENGITUPE 12'       | 3 12.3             | TAKEN 19/02/45<br>Analyzer 14/04/65 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|------------------------------------------|---------------------|--------------------|-------------------------------------|
| 10. NO.<br>INTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270 34                                         | 340 40       | 270 41                                   | 27 42<br>73.6- 40.0 | 270 43<br>930-1000 | 270 44                              |
| j.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | es<br>Lu'<br>Co                                | r<br>6u<br>m | S. S | EX<br>No.           | α<br>3.            | e<br>L<br>L                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | •            | 000°0                                    |                     | •                  | - C                                 |
| 2,3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sim$                                         | * 1 / ·      | 0.4.0                                    |                     | 2 . 3 B s          | 220.0                               |
| 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.148                                          |              |                                          | ÷ 6.                |                    | #3 C * 5                            |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1.1.                                         |              | \$ € Z * €                               | · · ·               | •                  | 6.6.3                               |
| 09870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.187                                          | •            | 17.822                                   | 3.04                | •                  | 101.5                               |
| F . 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.25                                          |              | 12.373                                   | 7                   | •                  | C 4 10 0 C .                        |
| 0.0625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-177                                          |              | 411.                                     | . 54                | •                  | . 0 * ~                             |
| (W) (M) (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | © <b>0</b> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |              | 13 e 1 e 1 e 1                           | ₩.<br>0             | •                  | 100°0                               |
| i de la companya de l | 400000                                         |              | 201.6                                    |                     | •                  | ्र <b>ा ० ० ०</b> ०                 |
| ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                              |              | しつい。い                                    | C : : : )           | . •                | 1.30 • 3                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>J</b>                                       | 1 m K        | 10 1 0 1 m                               | 70.1                |                    | のほうもので                              |
| 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                              |              |                                          | S                   | •                  | 0.000                               |
| 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | 13.147       | 1.284                                    | 7.85                | 50000              | er at the                           |
| 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.746                                          |              | نب                                       | 2.97                | •                  | M(₽•~                               |
| -0000-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                              | 15.511       | 60<br>90<br>(7<br>6)                     | . 2 3               | •                  | 12.53                               |
| CBAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 700                                            | ţ.           | *                                        | . 4                 | <b>9</b> 2.        | , O.                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.62                                           | 5.6          | A 4 4                                    | 6.63                | 5.90               | 16.1                                |
| 2111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1                                            | 14.41        | 4                                        | 17.691              | 16.327             | 22.74                               |
| CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.92                                          | 3.71         | FM                                       | 1.47                | 7. 38              | 3.86                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0112                                         | 10           | S C                                      | 8.5.38              | 346                | .024                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                              |              | .746                                     | .743                | .364               | . 1 36                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                              | 0            | 3.7598                                   | 3.8235              | 3.6396             | 3.9338                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1112                                           | 0            | 2.109                                    | -123                | . 363              | .136                                |
| KURTOSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.14                                           | 15.          | .422                                     | .505                | . 802              | .303                                |
| 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                | 8            | 9                                        | 24.900              | 8 . 7 G            | 4                                   |
| DAG CARGON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000                                          | O            | O                                        | ت                   | 000                | C.000                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ◀                                              | <b>▼</b>     | * >                                      | 57 472              | \$ A               | 4 ≻5                                |
| DOM MINERAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                                              |              |                                          | CCAR 12             | 12                 | SUBAT 2                             |
| ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CALCITE                                        | U            | 7                                        | CALCITE             | 2772               |                                     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |              |                                          |                     |                    |                                     |

## DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

ORIGINATING ACTIVITY (Corporate author)

28. REPORT SECURITY CLASSIFICATION

Unclassified

U.S. NAVAL OCEANOGRAPHIC OFFICE

D-A090010

REPORT TITLE

ENVIRONMENTAL DATA REPORT, SUBIC BAY, REPUBLIC OF THE PHILIPPINES, JANUARY AND FEBRUARY 1965

DESCRIPILIVE-NOTES (Type of report and inclusive dates)

Informal Reports 22 Januar 22 January and 17 to 19 February 1965

DALE E. KENNEY

REPORT DATE Apr 1970

41

CONTRACT OR GRANT NO

98. ORIGINATOR'S REPORT NUMBER(\$)

14) NOO TR-19 IR No. 70-14

b. PROJECT NO 102-01

9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)

U.S. Naval Oceanographic Office

The U.S. Naval Oceanographic Office (NAVOCEANO) conducted a limited environmental survey in Subic Bay, Republic of the Philippines, in January and February 1965. The purpose of the survey was to measure oceanographic environmental parameters in support of NAVOCEANO's mine warfare program. Temperature and salinity measurements and bottom sediment samples were obtained at 10 stations. Two of these stations were time-series anchor stations with current measurements and ambient noise recordings.

The influence of tidal currents are thought to be responsible for the fluctuation of higher density waters through the entrance channel to Subic Bay on either slope of predicted high water.

Maximum current speed was 0.4 knot. Characteristically, flow direction at intermediate levels often differed from the flow of the surface and near-bottom depths.

10. Distribution Statement (con.)

"Approved for public release; distribution unlimited."

DD FORM .. 1473 (PAGE 1)

S/N 0101-807-6801

UNCLASSIFIED Security Classification



UNCLASSIFIED
Security Classification

| Security Classification |          |          |       | <del>,</del> |          | <del></del> |    |
|-------------------------|----------|----------|-------|--------------|----------|-------------|----|
| 14                      | EY WORDS | LIN      |       | <del></del>  | кв       | LIN         | кс |
|                         |          | ROLF     | * '   | POLE         | wit      | ROLE        | WT |
|                         |          |          | ļ     |              | j        | ]           | ļ  |
|                         |          | 1        |       |              | ]        |             |    |
| OCEANOGRAPHY            |          |          | j     |              | j        |             | ]  |
| SUBIC BAY, PHILIPPINES  |          | 1        |       | 1            | 1        |             | Ĭ  |
| CURRENT MEASUREMENTS    |          |          |       |              | ĺ        |             | }  |
| AMBIENT NOISE           |          |          | Í     |              | 1        | 1           |    |
|                         |          |          |       |              |          |             |    |
|                         |          | i        | 1     |              | ŀ        |             |    |
|                         |          |          | 1     |              |          |             |    |
|                         |          | 1        | ļ     | 1            | 1        |             | 1  |
|                         |          |          |       |              | 1        |             |    |
|                         |          | ]        |       |              |          |             |    |
|                         |          |          |       |              | 1        |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          |          | 1     |              | 1        |             | ĺ  |
|                         |          |          |       |              |          |             |    |
|                         |          | 1        | !<br> | 1            | l        |             | 1  |
|                         |          |          |       |              | 1        |             |    |
|                         |          | 1        | 1     | 1            |          | }           |    |
|                         |          | İ        |       |              |          |             |    |
|                         |          | }        |       | }            | }        |             |    |
|                         |          |          | İ     |              |          |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          | -        | 1     | ]            |          |             |    |
| •                       |          |          | 1     |              | İ        |             |    |
| ·                       |          |          | 1     | ĺ            |          | {           |    |
|                         |          |          | ŀ     |              | <u> </u> |             |    |
|                         |          | 1        | {     | 1            | }        |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          | ,        |       |              |          |             |    |
|                         |          | 1        |       |              |          |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          |          |       |              |          | J J         |    |
|                         | •        |          |       |              |          |             |    |
|                         |          | }        | }     | }            |          |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          | ]        |       |              |          |             |    |
|                         |          |          |       | ĺ            |          | [           |    |
|                         |          |          |       |              |          |             |    |
|                         |          |          | Ì     |              |          | ]           |    |
|                         |          |          |       |              |          | } }         |    |
|                         |          | <b>{</b> |       |              |          | 1           |    |
|                         |          |          |       |              |          |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          | ]        |       |              |          |             |    |
|                         |          | ]        |       |              |          |             |    |
|                         |          | ] [      |       |              |          | ĺ           | 1  |
|                         |          |          |       |              |          | 1           | i  |
|                         |          |          |       |              |          |             |    |
|                         |          | [        |       |              |          |             |    |
|                         |          |          |       |              |          |             |    |
|                         |          |          |       | I            |          |             |    |

DD FORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED

Security Classification