AI無線通訊系統實驗

Lab 3 GAN

Author: 蕭安紘 助教

實驗目的

建立一個生成對抗網路,利用雜訊生成之資料來提升負責判斷之網路的效能, 這次實驗將由 Lab2 所衍生,我們將判斷測試資料是否為同一人在同一個位置上

實驗介紹

How to Build a GAN Model

GAN 中會包含 Generator 與 Discriminator

Generator

利用隨機(可以給定分布)生成之雜訊資料,經過 Generator 產生類似於真實資料 (Real data)的假資料(Fake data),此資料會交由 discriminator 進行判斷,並根據由 discriminator 的 feedback 來優化模型

Discriminator

判斷當下的資料為真實資料或假資料,並根據判斷的結果來優化自身的模型,並給予 generator 優化模型所需的 feedback

Loss Function

Generator loss

在 generator 中,將由 discriminator 判斷出來的機率

fake = model.discriminator(fake data, training=False)

作為 loss 的值

且因為要我們的 optimizier 將會設計為尋找 loss function 的最小值,而我們想要讓判斷 fake 的值趨近於 1,代表我們生產的資料越接近真實資料,因此在設計 loss function 時可以藉由加上負號,使其在做 gradient descent 時可以往期望的方向走

我們將利用 tf.reduce mean ()來將 output 機率進行平均,方便 loss 的計算

tf.reduce mean (fake)

Discriminator loss

在 discriminator 中,將由 discriminator 判斷 real data 與 fake data 出來的機率作為 loss

fake = model.discriminator(fake_data, training=True)
real = model.discriminator(real_data, training=True)
discriminator的目標為使 fake 的值越低越好,而 real的值越高越好,所以 loss
的設計思路可以想成 real-fake。同時,如 generator loss 一樣,因為我們的
optimizier 在會去尋找最小值,因此 loss function也需要加上負號,也將利用
tf.reduce mean()來將 output 機率進行平均,方便 loss 的計算

Train Step

在每次迭代中,通常會先進行 discriminator 的訓練,再進行 generator 的訓練有時候會利用一些技巧來幫助 GAN 的訓練,避免無法收斂的狀況發生,如:

- 先預先訓練好一個 discriminator,再開始 GAN 的訓練
- 在每次迭代中,進行多次 discriminator 的訓練後再進行 generator 的訓練

實驗步驟

- 1. 讀取資料
- 2. 產生雜訊資料
- 3. 建立 GAN 網路

Generator:

Certeratori		
Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 56, 4)]	0
flatten (Flatten)	(None, 224)	0
dense (Dense)	(None, 16384)	3686400
reshape (Reshape)	(None, 4, 4096)	0
conv1d_transpose (Conv1DTran	(None, 8, 4)	81924
flatten_1 (Flatten)	(None, 32)	0
dense_1 (Dense)	(None, 224)	7392
reshape_1 (Reshape)	(None, 56, 4)	0
Total params: 3,775,716 Trainable params: 3,775,716 Non-trainable params: 0		

Discriminator

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 56, 4)]	0
conv1d (Conv1D)	(None, 56, 32)	672
conv1d_1 (Conv1D)	(None, 56, 64)	10304
conv1d_2 (Conv1D)	(None, 56, 128)	41088
conv1d_3 (Conv1D)	(None, 56, 128)	82048
flatten_2 (Flatten)	(None, 7168)	0
dense_2 (Dense)	(None, 256)	1835264
dense_3 (Dense)	(None, 128)	32896
dense_4 (Dense)	(None, 64)	8256
dense_5 (Dense)	(None, 32)	2080
dense_6 (Dense)	(None, 4)	132
dense_7 (Dense)	(None, 1)	5
Total params: 2,012,745 Trainable params: 2,012,745 Non-trainable params: 0		

我們在 discriminator 中加入 constraints,避免其過度擬合。 範例:

- 4. 設定好 loss function 與訓練策略
- 5. 進行神經網路模型的訓練
 - 這裡與前幾次的訓練方式不一樣,不再使用 fit 涵式,而改用 gradients descent 的方式手動進行優化
- 6. 印出最後一個 epoch 所產生之模型的 loss

epochs: 20 dis_loss: -0.9996980428695679 gen_loss: -0.0002622601459734142

7. 畫出 confusion matrix

```
Confusion Matrix:
[[200 0]
[ 0 600]]
```

基礎題

完成以上實驗步驟並找助教 Demo

加分題(先完成基礎題才可以 demo)

1. 比較不同分布產生之雜訊資料,對於訓練之影響 例如: uniform, exponential, 高斯