Logarithmes, exponentielles, puissances

A l'origine, les logarithmes ont été conçus pour remplacer les multiplications par des additions, de façon à faciliter les calculs. On doit à J. Neper, dans les années 1600, la réalisation d'une première table de logarithmes, d'où le nom de logarithme népérien qui lui est aujourd'hui associé. Jusqu'à une époque récente -les années 1960-, les règles à calcul étaient basées sur des graduations logarithmiques, avant d'être définitivement supplantées par les calculettes.

La fonction logarithme, $\ln x$ ou $\log(x)$, intervient dans de nombreux domaines. Elle caractérise notamment toutes sortes de phénomènes évolutifs à croissance lente. On utilise aussi un logarithme pour définir un niveau sonore, ou encore pour l'échelle de Richter à propos des séismes. La fonction logarithme comble aussi un vide : on sait que la dérivée de x^n (avec n entier relatif) est nx^{n-1} , mais on n'obtient jamais ainsi $x^{-1} = 1/x$ (pour n = 0, la dérivée est 0), ou encore une primitive de x^n est $x^{n+1}/(n+1)$ sauf si $x^n = 1$. Maintenant c'est la fonction x^n qui aura comme dérivée x^n qui encore une primitive de x^n est x^n e

1. La fonction logarithme népérien

1.1. Définition du logarithme népérien par une intégrale (ou une aire)

Plaçons-nous sur l'intervalle \mathbf{R}^*+ . La fonction y=1/x est continue sur cet intervalle. Elle admet des primitives sur \mathbf{R}^*+ , et la primitive qui s'annule pour x=1 est $\int_1^x \frac{1}{t} dt$. Par définition, on appelle logarithme népérien (noté ln) cette intégrale, soit :

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$

Si l'on veut, ln x est représentée par une aire algébrique (ici égale à l'aire géométrique) :

On a déjà plusieurs propriétés du logarithme qui découlent de sa définition :

- la fonction ln est définie sur $\mathbb{R}^* + = [0, \infty[$
- Elle est dérivable sur \mathbb{R}^*+ , et sa dérivée est $(\ln x)'=1/x$.
- Comme la dérivée est positive, la fonction ln est croissante sur R^*+ .
- $\ln 1 = 0$.
- Comme la fonction ln est croissante, on en déduit le signe de ln x: ln x > 0 pour x > 1, et ln x < 0 sur]0, 1[.

1.2. Propriété fondamentale

Le logarithme transforme un produit en somme, et une puissance en multiplication, soit, avec a et b > 0 et n entier :

$$ln(a b) = ln a + ln b$$
 $ln(a^n) = n ln a$
Notamment, $ln(1/a) = -ln a$. On a aussi $ln(a/b) = ln a - ln b$.

1.3. Limites

- $* \lim_{x \to +\infty} \ln x = +\infty^{3}$
- $* \lim_{x \to 0+} \ln x = -\infty^{4}$

1.4. Courbe représentative

Les résultats précédents donnent le tableau de variations de la fonction ln, et la courbe en découle.

La courbe présente deux branches infinies. D'une part, lorsque x tend vers 0, $\ln x$ tend vers $-\infty$. La courbe admet l'axe des y comme asymptote. D'autre part, lorsque x tend vers $+\infty$, y tend vers $+\infty$. En formant le rapport $\ln x / x$, on verra qu'il tend vers 0. La courbe admet une branche parabolique de direction Ox.

¹ Pour le démontrer, prenons la fonction $y = \ln ax$ sur R*+. Sa dérivée est a / ax = 1/x. De même que $\ln x$, c'est une primitive de 1/x sur \mathbb{R}^* +. D'où $\ln ax = \ln x + K$. En faisant x = 1, on en déduit K = a. D'où $\ln ax = \ln x + \ln a$.

² Pour *n* entier, cette propriété est une conséquence de la précédente.

³ Prenons *x* sous la forme 2^n , d'où ln $2^n = n$ ln 2. Lorsque *n* tend vers +∞, cela revient à faire tendre *x* vers +∞, et *n* ln 2 tend vers +∞.

⁴ Posons X = 1/x. Lorsque x tend vers 0+, X tend vers +∞, $\ln x = \ln (1/X) = -\ln X$ qui tend vers -∞ lorsque X tend vers +∞.

⁵ Plaçons-nous au voisinage de 1. Le taux d'accroissement est $\ln x / (x - 1)$. En prenant comme infiniment petit h = x - 1, il vaut aussi $\ln (1+h) / h$. En passant à la limite, le taux d'accroissement devient la dérivée de $\ln x$ en 1, soit 1/x pour x = 1, c'est-à-dire 1.

Courbe du logarithme

1.5. Croissances comparées

Lorsque l'on cherche une limite dans le cadre d'une multiplication entre une puissance de x et une puissance de x, et que l'on tombe sur une forme indéterminée, la puissance de x l'emporte sur la puissance du logarithme.

Notamment, prenons $\frac{\ln x}{x}$ lorsque x tend vers $+\infty$. On obtient une forme indéterminée ∞/∞ . Dans ce cas, c'est x qui l'emporte (ou encore $\ln x$ est négligeable devant x au voisinage de $+\infty$): $\frac{\ln x}{x}$ tend vers 0.

Pour démontrer que $\frac{\ln x}{x}$ tend vers 0 pour x tendant vers $+\infty$, on procède ainsi :

- On commence par démontrer que $\ln x < x$ sur \mathbb{R}^*+ . Il suffit pour cela d'étudier la fonction auxiliaire $g(x) = x \ln x$, dont la dérivée est 1 1/x = (x 1)/x. La dérivée est négative ou nulle sur [0, 1] et positive ou nulle sur $[1, +\infty[$. La fonction g admet un minimum en x = 1 et son minimum vaut g(1) = 1. On en déduit que g(x) > 0, d'où $\ln x < x$.
 - L'inégalité précédente permet d'écrire : pour x > 0, $\ln \sqrt{x} < \sqrt{x}$, soit $\frac{1}{2} \ln x < \sqrt{x}$, ou $\frac{\ln x}{\sqrt{x}} < 2$.

Alors $\frac{\ln x}{x} = \frac{\ln x}{\sqrt{x}} \frac{\sqrt{x}}{x} < \frac{2}{\sqrt{x}}$. Plus précisément on a l'encadrement, dès que x est supérieur à 1:

 $0 < \frac{\ln x}{x} < \frac{2}{\sqrt{x}}$. Et quand x tend vers $+\infty$, $\frac{\ln x}{x}$ est pris en sandwich entre 0 et une quantité qui tend vers 0, et donc tend vers 0.

Les autres cas de limites se déduisent de celui-ci, en procédant à des changements de variables.

Par exemple, prenons $x \ln x$ lorsque x tend vers 0+. Posons X=1/x. Quand x tend vers 0+, X tend vers $+\infty$, et $x \ln x = \frac{1}{X} \ln \frac{1}{X} = -\frac{\ln X}{X}$, et l'on applique le résultat précédent. Finalement $x \ln x$ tend vers 0+. Remarquons que la propriété de croissance comparée s'applique bien : lorsque x tend vers 0+, $x \ln x$ est de la forme indéterminée $0.\infty$. Dans ce cas, c'est x qui l'emporte et l'on a bien : $\lim_{x\to 0+} x \ln x = 0^-$.

Passons maintenant au cas général : $\frac{(\ln x)^a}{x^b}$ avec a et b positifs. Lorsque x tend vers $+\infty$, on a une forme indéterminée ∞/∞ . Pour montrer que c'est x^b qui l'emporte, on fait :

$$\frac{(\ln x)^a}{x^b} = \left(\frac{\ln x}{x^{b/a}}\right)^a, \text{ et l'on pose } X = x^{b/a}, \text{ avec } X \text{ qui tend aussi vers } +\infty$$

$$= \left(\frac{\ln X^{a/b}}{X}\right)^a = \left(\frac{a \ln X}{b X}\right)^a.$$
 Sachant que $\ln X / X$ tend vers 0, il en est de même de $\frac{(\ln x)^a}{x^b}$.

Remarque : Le fait que le logarithme soit négligeable face à une puissance de x à l'infini indique que la fonction logarithme a une croissance très lente. On peut le constater en comparant les deux fonctions qui font l'objet de l'exercicce suivant :

Exercice: Position relative des courbes d'équation
$$y = \ln x$$
 et $y = x^{1/4} = \sqrt{\sqrt{x}}$.

1) Tracer sur ordinateur ces deux courbes sur]0, 5]. Constater que la courbe du ln traverse celle de $y = x^{1/4}$. Que va-t-il se passer pour de plus grandes valeurs de x? Le vérifier en traçant les deux courbes sur]0, 6000]. Conclure sur la position relative des deux courbes.

Avec ce tracé des deux courbes, on a l'impression que la courbe du ln monte plus vite que celle de $y=x^{1/4}$, puisqu'elle la dépasse pour x de l'ordre de 4,2. Mais on sait que sa croissance finit par devenir beaucoup plus lente que celle de $y=x^{1/4}$. Il est donc sûr que la courbe de $y=x^{1/4}$ va à nouveau traverser celle de ln. On le constate sur le dessin suivant, pour x approximativement égal à 5500. Finalement la courbe de ln commence par être au-dessous, puis elle passe au-dessus, et enfin repasse définitivement en dessous.

2) Vérifier cela théoriquement.

Prenons la fonction auxiliaire $g(x) = x^{1/4} - \ln x \text{ sur } \mathbb{R}^* + .$ Sa dérivée est :

$$g'(x) = \frac{1}{4x^{3/4}} - \frac{1}{x} = \frac{x^{1/4} - 4}{4x}$$
. Elle s'annule pour $x^{1/4} = 4$, c'est-à-dire $x = 4^4 = 256$.

Comme la fonction $y = x^{1/4}$ est croissante, la dérivée est négative pour x < 256, et positive pour x > 256. D'où le tableau de variation :

Le minimum m, pour x = 256, est négatif. Sur]0, 256], la fonction est continue et décroissante. Elle réalise une bijection de]0, 256] sur $[+\infty, m]$. Le nombre 0, qui est dans l'ensemble d'arrivée, admet un antécédent unique x_1 de l'ordre de 4,2. Il en est de même sur l'intervalle $[256, +\infty[$, dont l'image est $[m, +\infty[$, avec x_2 de l'ordre de 5500 tel que $g(x_2) = 0$. On en conclut que la courbe du ln commence par être au-dessous de celle de $y = x^{1/4}$, puis au-dessus, en enfin au-dessous.

1.6. La fonction logarithme, comme bijection de R^* + dans R

Puisque la fonction ln est dérivable sur R^*+ , elle est aussi continue. Etant strictement croissante et continue sur R^*+ , elle réalise une bijection de $R^*+=[0,+\infty[$ sur $]\ln(0), \ln(+\infty)[=]-\infty, +\infty[=R]$. Ainsi, tout nombre réel (de l'ensemble d'arrivée) admet un antécédent unique dans R^*+ . Notamment 1 a pour antécédent un nombre appelé e, de l'ordre de 2,718, tel que ln e = 1.

Etant une bijection, la fonction ln admet une bijection réciproque, appelée exponentielle, et notée pour le moment exp(x). On l'écrira aussi e^x .

2. La fonction exponentielle

Par définition, la fonction exponentielle est l'inverse du logarithme, soit :

$$y = \exp(x)$$
 avec $x \in \mathbb{R}$ équivaut à $x = \ln y$ avec $y \in \mathbb{R}^* +$

D'où $\ln(\exp(x)) = x$, ce qu'on écrira aussi : $\ln e^x = x$ et aussi $\exp(\ln x) = x$, ou $e^{\ln x} = x$.

La courbe de l'exponentielle

Les propriétés de l'exponentielle découlent de celles du logarithme.

⁶ Comme $\ln e = 1$, on dit que $\ln e$ est le logarithme en base e. On définit plus largement un logarithme en base a par $\log_a x = \ln x / \ln a$, et l'on a aussi $\log_a a = 1$. Notamment en base 2, si l'on a $y = 2^n$, alors $\log_2 y = n \log_2 2 = n$.

La fonction exponentielle est définie, continue et dérivable sur R, avec cette particularité : la dérivée de l'exponentielle est égale à l'exponentielle :

$$\exp(x)$$
)' = $\exp(x)^{-7}$

Elle est croissante, et réalise une bijection de R sur R^*+ . L'exponentielle est partout positive.

On a notamment $\exp(0) = 1$ et $\exp(1) = e$, ce qui conduit à choisir la notation e^x au lieu de $\exp(x)$: $e^0 = 1$ et $e^1 = e$. Les règles des puissances s'appliquent à l'exponentielle :

$$e^{a+b} = e^a e^b$$
$$(e^a)^b = e^{ab}.$$

Limites:

$$\lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to -\infty} e^x = 0$$

La courbe admet une branche parabolique de direction verticale en $+\infty$, et une asymptote horizontale qui est l'axe des x en $-\infty$.

On a aussi:

- $\lim_{x\to 0} \frac{e^x 1}{x} = 1$ (c'est la limite du taux d'accroissement en 0).
- En cas d'indétermination entre une puissance de x et une puissance d'exponentielle en multiplication, c'est toujours l'exponentielle qui l'emporte.

3. Exponentielles généralisées a^x

Il s'agit de la fonction a^x , où a est une constante. Par définition, puisque $a = e^{\ln a}$,

$$a^{x} = e^{x \ln a}$$

D'où la règle : quand on a à étudier une fonction du type a^x on doit aussitôt la remplacer par $e^{x \ln a}$.

Cette fonction n'a de sens que si a > 0. Lorsque a est supérieur à 1, $\ln a > 0$ et la courbe de $y = a^x$ est croissante, comme pour e^x . Mais si a est strictement compris entre 0 et 1, $\ln a$ est négatif, et la courbe est décroissante, comme pour e^{-x} . La dérivée (a^x) ' s'obtient en dérivant $e^{-x \ln a}$, d'où

$$(a^x)' = e^{x \ln a} \ln a$$
.

En rouge les courbes de $y = 4^x$, 3^x , 2^x , $\sqrt{2}^x$ en vert celles de $(1/4)^x$, $(1/3)^x$, $(1/2)^x$, $(1/\sqrt{2})^x$

⁷ Pour $y = \exp(x)$ ou $x = \ln y$, on a $\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{1/y} = y = \exp(x)$

4. Fonctions puissances

Il s'agit de x^a . On connaît déjà cette puissance lorsque a est un entier relatif, ou un nombre rationnel (une fraction d'entiers). Grâce à l'exponentielle et au logarithme, cette fonction puissance va maintenant avoir un sens pour a réel quelconque, puisque par définition :

$$x^a = e^{a \ln x}$$

Quand on a à étudier une fonction du type x^a on aura intérêt à la remplacer aussitôt par $e^{a \ln x}$.

Lorsque a est un nombre réel quelconque, cette fonction n'existe que pour x > 0.

Sa dérivée sur \mathbf{R}^*+ est $(x^a)'=(e^{a\ln x})'=e^{a\ln x}\frac{a}{x}=x^a\frac{a}{x}=a\,x^{a-1}$. On retrouve la formule classique de dérivation d'une puissance.

Selon les valeurs de a, la courbe représentative présente l'une des formes suivantes.

Cas ou l'exposant a est positif :

- * Lorsque a est supérieur à 1, on retrouve une demiparabole d'axe vertical pour $y=x^2$, et une forme analogue dans le cas général.
- * Lorsque a est entre 0 et 1, on retrouve la demi-parabole d'axe horizontal pour $y = \sqrt{x} = x^{\frac{1}{2}}$

Cas où l'exposant a est négatif, on retrouve notamment une branche d'hyperbole pour a=-1 (y=1/x)

5. Exercices

5.1. Etude de x^x

On considère la fonction telle que $f(x) = x^x$.

1) Donner son ensemble de définition, et étudier cette fonction. Tracer la courbe représentative.

Pour traiter cette fonction de x, le seul moyen est d'écrire $x^x = e^{x \ln x}$. Cette expression existe si et seulement si x > 0, à cause du logarithme. D'où l'ensemble de définition $D = \mathbf{R}^* + 1$. Comme mélange de fonctions classiques, la fonction est continue et dérivable sur D. La dérivée est :

 $f'(x) = e^{x \ln x} (\ln x + \frac{x}{x}) = f(x)(\ln x + 1)$. Comme f(x) est toujours positif, à cause de l'exponentielle, la dérivée est du signe de $\ln x + 1$. Elle s'annule pour $\ln x = -1$, soit $x = e^{-1} = 1/e \approx 0.37$. Comme $\ln x$ est une fonction croissante, $\ln x + 1$ l'est aussi, elle passe donc du signe moins au signe plus quand x augmente.

On en déduit le tableau de variations, la fonction admet un minimum en 1/e, et celui-ci vaut $(1/e)^{1/e} = (e^{-1})^{1/e} = e^{-1/e} \approx 0.69$.

Lorsque x tend vers 0+, $x \ln x$ prend la forme indéterminée 0. ∞ , mais dans ce cas c'est x qui l'emporte, et $x \ln x$ tend vers 0, d'où $y = e^{x \ln x}$ tend vers 1.

Lorsque x tend vers $+\infty$, $x \ln x$, de la forme $+\infty$. $+\infty$, tend vers $+\infty$, et l'exponentielle aussi. Pour étudier cette branche infinie, formons $\frac{y}{x} = \frac{x^x}{x} = x^{x-1} = e^{(x-1)\ln x}$, on constate que $(x-1)\ln x$ tend vers $+\infty$, donc y/x tend vers l'infini, ce qui indique que la courbe admet une branche parabolique de direction Oy.

2) Montrer qu'on peut la prolonger par continuité en 0. En appelant <u>f</u> la fonction prolongée, estelle dérivable en 0 ?

Prenons comme fonction prolongée \underline{f} telle que $\underline{f}(x) = f(x)$ sur \mathbf{R}^*+ , et $\underline{f}(0) = 1$. Cette fonction est maintenant définie sur $\mathbf{R}+$. Comme \underline{f} admet une limite 1 lorsque x tend vers 0 et qu'on a aussi $\underline{f}(0) = 1$, cette fonction est continue en 0.

Pour étudier la dérivabilité en 0, formons le taux d'accroissement au voisinage de 0, en utilisant le fait que $x \ln x$ tend vers 0: $\frac{e^{x \ln x} - 1}{x} = \frac{e^{x \ln x} - 1}{x \ln x} \ln x$. On sait que $\frac{e^X - 1}{X}$ tend vers 1 lorsque X tend vers 0, d'où $\frac{e^{x \ln x} - 1}{x \ln x}$ aussi. Comme $\ln x$ tend vers $-\infty$, le taux d'accroissement tend vers $-\infty$. La

fonction n'est pas dérivable en 0, mais la courbe admet une tangente verticale en ce point.

5.2. Etude d'une fonction paire

Etudier la fonction f telle que
$$f(x) = x \frac{e^x + 1}{e^x - 1}$$

La division est impossible si $e^x = 1$, soit x = 0. D'où l'ensemble de définition \mathbb{R}^* .

Formons $f(-x) = -x \frac{e^{-x} + 1}{e^{-x} - 1} = -x \frac{e^{-x}(1 + e^x)}{e^{-x}(1 - e^x)} = f(x)$. Même si cela ne se voyait pas, la fonction est paire. La courbe est symétrique par rapport à l'axe des y, et on peut réduire l'intervalle d'étude à R^*+ .

Limite en 0: f(x) est de la forme indéterminée 0 / 0, mais on a $f(x) = \frac{x}{e^x - 1} (e^x + 1)$ et l'on sait que $\frac{e^x - 1}{e^x}$ tend vers 1 lorsque x tend vers 0, f(x) tend donc vers 2 (on pourrait d'ailleurs prolonger f par

Limite en $+\infty$: Comme $\frac{e^x + 1}{e^x - 1} \approx \frac{e^x}{e^x} = 1$, $f(x) \approx x$ tend vers $+\infty$. Pour étudier la branche infinie, formons f(x) / x qui tend vers 1. Enfin :

continuité en 0).

 $f(x) - x = x(\frac{e^x + 1}{e^x - 1} - 1) = x\frac{2}{e^x - 1} \approx \frac{2x}{e^x}$, dans ce cas d'indétermination ∞/∞ , l'exponentielle l'emporte, et f(x) - x tend vers 0. La courbe admet une asymptote oblique qui est la première bissectrice du repère, d'équation y = x.

Dérivée : $f'(x) = \frac{e^{2x} - 2xe^x - 1}{(e^x - 1)^2}$. Pour connaître son signe, qui est celui du numérateur, prenons la

fonction auxiliaire $g(x) = e^{2x} - 2xe^x - 1$, dont la dérivée est $g'(x) = 2e^x (e^x - x - 1)$. La courbe de l'exponentielle est située au-dessus de sa tangente en O d'équation y = x + 1, d'où la dérivée g'(x) est toujours positive, et g est croissante sur R+ à partir de g(0) = 0. A son tour g est positive sur R*+, et f'(x) aussi, d'où f est croissante sur R*+.