Visualizing Multilevel Models

Andy Grogan-Kaylor

1 Mar 2023 12:15:47

Introduction

An evolving set of notes on visualizing results from multilevel models.

The examples below use the simulated_multilevel_data.dta file from *Multilevel Thinking*. Here is a direct link to download the data.

Setup

I am not terrifically fond of Stata's default s2color graph scheme. Therefore I make use of the michigan graph scheme available at: https://agrogan1.github.io/Stata/michigan-graph-scheme/

. set scheme michigan

Stata's s1color scheme would also would be an option as would be Asjad Naqvi's incredible schemepack: https://github.com/asjadnaqvi/stata-schemepack

Get Data

. use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-multi > level-data/simulated_multilevel_data.dta", clear

Scatterplots

- . twoway scatter outcome warmth
- . graph export myscatter.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatter.png saved as PNG format

Simple Linear Fit

- . twoway lfit outcome warmth
- . graph export mylinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylinear.png saved as PNG format.

Combine Scatterplot and Linear Fit

- . twoway (scatter outcome warmth) (lfit outcome warmth)
- . graph export myscatterlinear.png, width (1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatterlinear.png saved

Figure 1: Scatterplot

Figure 2: Scatterplot

as PNG format

Figure 3: Scatterplot and Linear Fit

Spaghetti Plots

spagplot

```
. spagplot outcome warmth, id(country)
```

```
. graph export myspaghetti.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti.png saved as PNG format
```

Spaghetti Plot With Predicted Values

Small Multiples

I use the aspect option to adjust the aspect ratio of the graph for better visual presentation. I also use the mcolor(%30) option to create some transparency in the dots of the scatterplot, which helps the presentation of these small multiples. The mcolor(%30) option could be useful in the other graphs in this tutorial as well.

Multivariate (Predicted) Relationships

Using Predicted Values

Estimate The Model

. mixed outcome warmth physical_punishment i.group || country: // estimate MLM

Figure 4: Spaghetti Plot

Figure 5: Small Multiples

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -9668.0859 $\log likelihood = -9668.0859$ Iteration 1:

Computing standard errors:

Mixed-effects ML regression Number of obs 3,000 Group variable: country Number of groups = 30 Obs per group: 100 100.0 avg = max = 100 Wald chi2(3) 401.00 0.0000 Prob > chi2

Log likelihood = -9668.0859

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
warmth physical_punishment 2.group	.961837 8457672 1.084409	.0581809 .0798128 .2200548	16.53 -10.60 4.93	0.000 0.000 0.000	.8478046 -1.002197 .6531099	1.075869 6893369 1.515709
_cons	51.64797	.4645466	111.18	0.000	50.73748	52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
country: Identity var(_cons)	3.403	.9717558	1.944438	5.955659
var(Residual)	36.01911	.9346952	34.23295	37.89847

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values

. predict outcome_hat // predict yhat (option xb assumed)

Graph With twoway Syntax

- . twoway (scatter outcome_hat warmth) (lfit outcome_hat warmth)
- . graph export mypredictedvalues.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues.png saved as PNG format

margins and marginsplot

Estimate The Model

. mixed outcome warmth physical_punishment i.group || country: // estimate MLM Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -9668.0859 Iteration 1: log likelihood = -9668.0859

Computing standard errors:

Mixed-effects ML regression Number of obs 3,000 Number of groups = 30 Group variable: country Obs per group: min = 100 100.0 avg = 100 max = Wald chi2(3) 401.00 Log likelihood = -9668.0859Prob > chi2 0.0000

> [95% conf. interval] Coefficient Std. err. P>|z| outcome

Figure 6: Predicted Values From predict

warmth	.961837	.0581809	16.53	0.000	.8478046	1.075869
physical_punishment	8457672	.0798128	-10.60	0.000	-1.002197	6893369
2.group	1.084409	.2200548	4.93	0.000	.6531099	1.515709
_cons	51.64797	.4645466	111.18	0.000	50.73748	52.55847

Random-effects parameters	Estimate	Std. err.	[95% conf.	interval]
country: Identity var(_cons)	3.403	.9717558	1.944438	5.955659
var(Residual)	36.01911	.9346952	34.23295	37.89847

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

Generate Predicted Values At Specified Values With margins

	I	Delta-method				
	Margin	std. err.	z	P> z	[95% conf.	interval]
_at#group						
1 1	50.4999	.3983539	126.77	0.000	49.71914	51.28066
1 2	51.58431	.3994365	129.14	0.000	50.80143	52.36719
2 1	51.46174	.3809288	135.10	0.000	50.71513	52.20834
2 2	52.54615	.38173	137.65	0.000	51.79797	53.29432
3 1	52.42357	.371884	140.97	0.000	51.6947	53.15245

3 2 4 1	53.50798 53.38541	.3723656 .3718315	143.70 143.57	0.000	52.77816 52.65664	54.23781 54.11419
4 2	54.46982	.3719738	146.43	0.000	53.74077	55.19888
5 1	54.34725	.3807751	142.73	0.000	53.60094	55.09355
5 2	55.43166	.3805823	145.65	0.000	54.68573	56.17759
6 1	55.30909	.398109	138.93	0.000	54.52881	56.08937
6 2	56.3935	.397607	141.83	0.000	55.6142	57.17279
7 1	56.27092	.4228024	133.09	0.000	55.44225	57.0996
7 2	57.35533	.4220306	135.90	0.000	56.52817	58.1825

Graph With marginsplot

- . marginsplot // plot of predicted values
 Variables that uniquely identify margins: warmth group
- . graph export mymarginsplot.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mymarginsplot.png saved as PNG format

Figure 7: Predicted Values From margins and marginsplot

Curvilinear and Linear Fits

Random Effects