Logic and Computer Design Fundamentals Chapter 6 – Selected Design Topics

Part 1 – The Design Space

Yueming Wang (王跃明)

ymingwang@zju.edu.cn

2017

College of Computer Science, Zhejiang University

Qiushi Academy for Advanced Studies, Zhejiang University

Overview

- Part 1 The Design Space
 - Integrated Circuits
 - Levels of Integration
 - CMOS Circuit Technology
 - CMOS Transistor Models
 - Circuits of Switches
 - Fully Complementary CMOS Circuits
 - Technology Parameters
- Part 2 Propagation Delay and Timing
- Part 3 Asynchronous Interactions
- Part 4 Programmable Implementation Technologies

Integrated Circuits

- Integrated circuit (informally, a "chip") is a semiconductor crystal (most often silicon) containing the electronic components for the digital gates and storage elements which are interconnected on the chip.
- Terminology Levels of chip integration
 - SSI (small-scale integrated) fewer than 10 gates
 - MSI (medium-scale integrated) 10 to 100 gates
 - LSI (large-scale integrated) 100 to thousands of gates
 - VLSI (very large-scale integrated) thousands to 100s of millions of gates

MOS Transistor

MOS Transistor

Switch Models for MOS Transistors

n-Channel – Normally Open (NO) Switch Contact

p-Channel – Normally Closed (NC) Switch Contact

Circuits of Switch Models

Series

Parallel

Fully-Complementary CMOS Circuit

Circuit structure for fully-complementary

CMOS Circuit Design Example

• Find a CMOS gate with the following function: $F = \overline{X}Z + \overline{Y}Z = (\overline{X} + \overline{Y})Z$

• Beginning with F0, and using \overline{F}

F0 Circuit:
$$\overline{F} = XY + \overline{Z}$$

■ The switch model circuit in terms of NO switches:

CMOS Circuit Design Example

■ The switch model circuit for F1 in terms of NC contacts is the dual of the switch model circuit for F0:

The function for this circuit is:

F1 Circuit:
$$F = (\overline{X} + \overline{Y}) Z$$

which is the correct F.

CMOS Circuit Design Example

Replacing the switch models with CMOS transistors; note input Z must be used.

Technology Parameters

- Specific gate implementation technologies are characterized by the following parameters:
 - Fan-in the number of inputs available on a gate
 - Fan-out the number of standard loads driven by a gate output
 - Logic Levels the signal value ranges for 1 and 0 on the inputs and 1 and 0 on the outputs (see Figure 1-1)
 - Noise Margin the maximum external noise voltage superimposed on a normal input value that will not cause an undesirable change in the circuit output
 - Cost for a gate a measure of the contribution by the gate to the cost of the integrated circuit
 - Propagation Delay The time required for a change in the value of a signal to propagate from an input to an output
 - Power Dissipation the amount of power drawn from the power supply and consumed by the gate