

Predictive Modeling Business Report

V1.0

Prepared by: Lavanya Sreeram

Prepared for: GL Batch Nov 22

May 14, 2023

Business Report

Document Information

Author:	Lavanya Sreeram
Document Title	Lavanya_Sreeram_14_05_2023
Issue Date:	14-05-2023
Version:	V 1.0
Subject:	Predictive Modeling Business Report by Lavanya Sreeram

Revision History

Version	Date	Revised By	Reason
1.0	14-05-2023	Lavanya Sreeram	First Issue

Business Report

Contents

	Docum	nent Information	1
	Revisio	on History	1
		nts	
1		m 1: Linear regression	
		scription	
		ploratory Data Analysis	
	1.1.1	Data Exploration	
	1.1.2	Univariate Analysis:	
	1.1.3	Bivariate Analysis	
		ata Preparationata Preparation	
	1.2.1	Null Values	
	1.2.2	Encode Data	
	1.2.3	Outliers	. 23
	1.2.4	Co-relation	. 24
	1.2.5	Scaling	. 29
	1.3 Cı	reate Models	. 30
	1.3.1	Split Data	.30
	1.3.1	1.1 VIF (Variance Inflation Factor)	.31
	1.3.2	Model 1 - OLS Initial	. 32
	1.3.3	Model 2 - OLS Dropped p>.05	. 33
	1.3.4	Model 3 - OLS Scaled Data	.34
	1.3.5	Model 4 – OLS Scaled and refined	. 35
	1.3.6	Model 5 - OLS Data - dropping variables	.36
	1.3.7	Model 6 - Simple Linear Regression	.38
	13	7.1 Actual v predicted scatter plot	30

	1.3.7	7.2 Residual plot	39
	1.3.8	Model 7 - Linear Regression on Scaled Data	40
	1.3.9	Model 8 – Linear Regresion on Scaled data- dropping features over VIF 5	41
	1.3.10	Scikit learn Linear Models Discussion & Equation	41
	1.3.11	Compare Scikit learn and OLS model - Model 5, Model 6	42
	1.4 In	ference	42
2	Proble	m 2: Logistic Regression, LDA, CART	43
	Data Des	scription	43
	2.1 Ex	xploratory Data Analysis	43
	2.1.1	Sample Data	44
	2.1.2	Data Statistical Description	44
	2.1.3	Missing Values	45
	2.1.4	Univariate Analysis	47
	2.1.5	Bivariate Analysis	60
	2.1.6	Encode data	63
	2.1.7	Outliers	66
	2.2 Pr	repare Data & Create Models	67
	2.2.1	Encode data	67
	2.2.2	Co-relation	67
	2.2.3	Split Data	69
	2.2.4	Model 1 - Decision Tree	70
	2.2.5	Model 2 - Apply Logistic, LDA, Cart	71
	2.2.6	Model 3 - Apply Logistic, LDA, CART on binned data	72
	2.3 Pe	erformance Metrics	78
	2.3.1	ROC Curve, Classification Report, Confusion Matrix	78
	2.3.2	Accuracy & ROC	84

2	2.4	Inf	erence	84
	2.4.	.1	Model Discussion	84
	2.4.	.2	Business Recommendations:	84
3	Refl	lecti	ion Report:	86

Figures:		
Figure No	Description	Pg No
1.1.1	Firm Data top 5 observations – as given	10
1.1.2	Firm Data bottom 5 observations – as given	11
1.1.3	Firm Data description - initial	11
1.1.4	Firm data after dropping 'Unnamed:0' feature	11
1.1.5	Firm data statistical description -initial	12
1.1.6	Histogram and countplot of the firm data	20
1.1.7	Firm data - Pairplot	21
1.2.1	tobing' boxplot	22
1.2.2	Firm Data Info after null values are treated	23
1.2.2.1	Firm Data after encoding	23
1.2.2.2	Firm Data after converting datatype	23
1.2.3.1	Firm Data boxplot showing outliers	24
1.2.3.2	Firm Data Boxplot after treating outliers	25
1.2.4.1	Heatmap – of all variables - before outliers	26
1.2.4.2	Heatmap – of independent variables - before outliers	27
1.2.4.3	Heatmap – of all variables - after treating outliers	28
1.2.4.4	Heatmap – of independent variables - after treating outliers	29
1.2.5.1	Firm Data after scaling	30
1.3.1.1.1	Variance Inflation Factor on ols train dataset	32
1.3.1.1.2	Variance Inflation Factor on scaled ols train dataset	33
1.3.2	Model 1 – OLS Initial Model	34
1.3.3	Model 2 - OLS Model dropped p>.05	35
1.3.4	Model 3 – OLS Initial Model on scaled data	36
1.3.5	Model 4 – OLS Model on scaled data dropped p>.05	37
1.3.6	Model 5 - OLS Improved model	38
1.3.7.1	Scatter plot -Actual v Predicted Sales for OLS Stats model	40
1.3.7.2	Residual Plot OLS Stats Model	41
2.1.1.1	Sample Crash Data top 5	45
2.1.1.2	Sample Crash Data bottom 5	45
2.1.1.3	Sample Crash Data top 5 -(Dropped unnamed, caseid)	45
2.1.2.1	Crash Data Description 1	46
2.1.2.2	Crash Data Description 2	46
2.1.3.1	Crash Data info-Missing values treated	47
2.1.3.2	Boxplot showing 'injSeverity' skewedness	47

2.1.4	histograms & Countplots of Crash data			
2.1.5.1	Year Of Accident v Survival	62		
2.1.5.2	Year of Vehicle on barplot with Survived as hue			
2.1.5.3	Pairplot of Crash data	64		
2.1.6.1	Crash data info after Encoding.	65		
2.1.6.2	Crash data sample observation after Encoding	65		
2.1.6.3	Crash data statistical description after Encoding	66		
2.1.7.1	Boxplot showing Crash Data outliers	67		
2.1.7.2	Boxplot showing Crash Data after treating outliers	68		
2.2.1.1	Crash data info after Encoding.	68		
2.2.2.1	HeatMap showing Crash data correlation	69		
2.2.3.1	Crash data- Train Data sample	70		
2.2.3.2	Crash data- Test Data sample	70		
2.2.3.3	Crash data- Train Data sample after binning	71		
2.2.3.4	Crash data- Test Data sample after binning	71		
2.2.4.1	Model -1 Decision Tree basic	71		
2.2.4.2	Importance of Features	72		
2.3.2	Crash Data Regression Performance Metrics - Accuracy & ROC	85		

Business Report

Tables:

Table1 VIF Range Page-33

1 PROBLEM 1: LINEAR REGRESSION

<u>Predict the sales of these firms on the bases of the details given in the dataset so as to help your company in investing consciously.</u> Also, provide them with 5 attributes that are most important.

DATA DESCRIPTION

Firm_level_data.csv data set is provided. Data Dictionary for Firm_level_data is as below:

- 1. sales: Sales (in millions of dollars).
- 2. capital: Net stock of property, plant, and equipment.
- 3. patents: Granted patents.
- 4. randd: R&D stock (in millions of dollars).
- 5. employment: Employment (in 1000s).
- 6. sp500: Membership of firms in the S&P 500 index. S&P is a stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United States
- 7. tobinq: Tobin's q (also known as q ratio and Kaldor's v) is the ratio between a physical asset's market value and its replacement value.
- 8. value: Stock market value.
- 9. institutions: Proportion of stock owned by institutions.

1.1 FXPI ORATORY DATA ANALYSIS

Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, data types, shape, EDA). Perform Univariate and Bivariate Analysis. (8 marks)

Answer:

1.1.1 Data Exploration

The Dataset has 759 rows, 10 columns. 'sales' is the Target Variable. The below snap shows the dataset first 5 observations.

Fig1.1.1 Firm Data top 5 observations - as given

The below snap shows the bottom 5 observations.

	Unnamed: 0	sales	capital	patents	randd	employment	sp500	tobinq	value	institutions
754	754	1253.900196	708.299935	32	412.936157	22.100002	yes	0.697454	267.119487	33.50
755	755	171.821025	73.666008	1	0.037735	1.684000	no	NaN	228.475701	46.41
756	756	202.726967	123.926991	13	74.861099	1.460000	no	5.229723	580.430741	42.25
757	757	785.687944	138.780992	6	0.621750	2.900000	yes	1.625398	309.938651	61.39
758	758	22.701999	14.244999	5	18.574360	0.197000	no	2.213070	18.940140	7.50

Fig1.1.2 Firm Data bottom 5 observations - as given

On first look, it can be inferred that the feature 'Unnamed: 0' must be dropped. Additionally, it can be noted that the data is not scaled.

The below snap shows the datatypes of all features of the dataset.

Data	columns (tota	l 10 columns):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	759 non-null	int64
1	sales	759 non-null	float64
2	capital	759 non-null	float64
3	patents	759 non-null	int64
4	randd	759 non-null	float64
5	employment	759 non-null	float64
6	sp500	759 non-null	object
7	tobinq	738 non-null	float64
8	value	759 non-null	float64
9	institutions	759 non-null	float64
dtype	es: float64(7)	, int64(2), obje	ct(1)

(Fig1.1.3): Firm Data description - initial

Except 'sp500', all the features in the data are numeric in nature ('int64' or 'float64' type). 'sp500' is object type, and as per data dictionary the feature is binary. 'sp500' shall be encoded.

Drop 'Unnamed:0' feature. Now, the dataset top 5 observations are as shown below:

	sales	capital	patents	randd	employment	sp500	tobinq	value	institutions
0	826.995050	161.603986	10	382.078247	2.306000	no	11.049511	1625.453755	80.27
1	407.753973	122.101012	2	0.000000	1.860000	no	0.844187	243.117082	59.02
2	8407.845588	6221.144614	138	3296.700439	49.659005	yes	5.205257	25865.233800	47.70
3	451.000010	266.899987	1	83.540161	3.071000	no	0.305221	63.024630	26.88
4	174.927981	140.124004	2	14.233637	1.947000	no	1.063300	67.406408	49.46

(Fig 1.1.4): Firm data after dropping 'Unnamed:0' feature

The statistical data descriptions is as shown in below snap.

	count	mean	std	min	25%	50%	75%	max
sales	759.0	2689.705158	8722.060124	0.138000	122.920000	448.577082	1822.547366	135696.788200
capital	759.0	1977.747498	6466.704896	0.057000	52.650501	202.179023	1075.790020	93625.200560
patents	759.0	25.831357	97.259577	0.000000	1.000000	3.000000	11.500000	1220.000000
randd	759.0	439.938074	2007.397588	0.000000	4.628262	36.864136	143.253403	30425.255860
employment	759.0	14.164519	43.321443	0.006000	0.927500	2.924000	10.050001	710.799925
tobinq	738.0	2.794910	3.366591	0.119001	1.018783	1.680303	3.139309	20.000000
value	759.0	2732.734750	7071.072362	1.971053	103.593946	410.793529	2054.160386	95191.591160
institutions	759.0	43.020540	21.685586	0.000000	25.395000	44.110000	60.510000	90.150000

(Fig1.1.5): Firm data statistical description -initial

1.1.2 Univariate Analysis:

Univariate analysis on the dataset is as shown below using histograms:

All the above histograms show that the data is right skewed or positively skewed meaning that the mean is greater than the median. This is because the presence of a few large values on the right pulls the mean towards higher values. The tail of the distribution extends towards larger values, indicating the presence of outliers or extreme values on the right side. This can happen as few observations in 'sales' or 'value' are significantly higher in weight/value compared to the majority. This is generally the case with economic observations like stock prices.

From the above histogram, it can be noted that the 'institutions' is not as skewed as rest of the features. In fact, the feature is more uniform and has left skewedness in data.

Count plot is used for the binary variable 'sp500' as shown below:

Fig1.1.6 Histogram and countplot of the firm data

The plot shows that the observations with S&P 500 index companies are less in number compared to opposite.

1.1.3 Bivariate Analysis

Bivariate analysis is performed on the data and the pair plot is shown below: Fix- highlight co-relation features.

There is lot of positive high correlation & linear relationship for 'capital' variable with multiple variables. Similar insights are drawn from the heatmap.

1.2 DATA PREPARATION

<u>Impute null values if present? Do you think scaling is necessary in this case? (8 marks):</u>

Answer:

1.2.1 Null Values

There are no duplicates in the data. There are 21 null/missing values in 'tobinq' column. Boxplots are generated to visualize the skewness in data as shown below.

Fig1.2.1 'tobinq' boxplot

The data is right skewed. The missing values in 'tobinq' are treated by median imputation. Median imputation is preferred when the distribution is skewed, as the median is less sensitive to outliers than the mean.

After treating the null values in the data, the data info can be seen as below with no null values.

Business Report

#	Column	Non-Null Count	Dtype			
0	sales	759 non-null	float64			
1	capital	759 non-null	float64			
2	patents	759 non-null	int64			
3	randd	759 non-null	float64			
4	employment	759 non-null	float64			
5	sp500	759 non-null	object			
6	tobinq	759 non-null	float64			
7	value	759 non-null	float64			
8	institutions	759 non-null	float64			
<pre>dtypes: float64(7), int64(1), object(1)</pre>						

Fig1.2.2 Firm Data Info after null values are treated

1.2.2 Encode Data

The 'sp500' feature is the only categorical feature and contains binary values. After one-hot encoding, the dataset looks like below.

	sales	capital	patents	randd	employment	sp500	tobinq	value	institutions
0	826.995050	161.603986	10	382.078247	2.306000	0	11.049511	1625.453755	80.27
1	407.753973	122.101012	2	0.000000	1.860000	0	0.844187	243.117082	59.02
2	8407.845588	6221.144614	138	3296.700439	49.659005	1	5.205257	25865.233800	47.70
3	451.000010	266.899987	1	83.540161	3.071000	0	0.305221	63.024630	26.88
4	174.927981	140.124004	2	14.233637	1.947000	0	1.063300	67.406408	49.46

Fig1.2.2.1 Firm Data after encoding

The dataset types are as below after the encoding:

#	Column	Non-Null Count	Dtype
0	sales	759 non-null	float64
1	capital	759 non-null	float64
2	patents	759 non-null	int64
3	randd	759 non-null	float64
4	employment	759 non-null	float64
5	sp500	759 non-null	int64
6	tobing	759 non-null	float64
7	value	759 non-null	float64
8	institutions	759 non-null	float64
dtyp	es: float64(7)	, int64(2)	

Fig1.2.2.2 Firm Data after converting datatype

Business Report

1.2.3 Outliers

The boxplot is plotted to visualize the outliers in all numerical features i.e. except 'sp500' which is essentially binary/categorical feature.

Fig1.2.3.1 Firm Data Boxplot showing outliers

There are multiple outliers in many columns as shown in above plot.

The black dots in the boxplots show that there are multiple outliers in multiple columns. Except 'institutions' remaining features have outliers. Majority of the variables are highly skewed as well and this can be seen in the boxplots as significantly larger tails with large magnitude (Y value).

Treat outliers:

All the outliers are treated by adjusting them to the lower and upper bound values calculated by the IQR value.

Business Report

Fig1.2.3.2 Firm Data Boxplot after treating outliers

The above boxplot is after treating the outliers showing no outliers.

1.2.4 Co-relation

4 co-relation heat maps are shown in this section. These are heatmaps of independent features , heatmaps of all features before and after treating outliers.

Business Report

Before treating outliers:

The below plot shows the correlation between all variables before outliers are treated:

Business Report

The below plot shows the correlation between independent variables before outliers are treated.

Fig1.2.4.2 Heatmap - of independent variables - before outliers

Business Report

Below chart shows there is lots of multi-collinearity and co-relation between variables after treating the outliers.

Fig1.2.4.3 Heatmap – of all variables - after treating outliers

The below heatmap shows the co-relation matrix of independent variables:

Fig1.2.4.4 Heatmap - of independent variables - after treating outliers

Based on the above correlation matrix plot:

There are several strong and moderate positive correlations, indicating that certain variables tend to move together in a positive direction. For example, 'capital' shows strong positive correlations with 'patents', 'randd', and 'employment'.

Business Report

'tobinq', 'institutions' are weakly co-related. 'patents', 'randd', 'sp500' are moderately co-realted with values around .6/.7. 'capital', 'employment', 'value' are highly co-related with correlation values over .91.

'value' shows moderate positive correlations with multiple variables, indicating potential associations with those variables. The variable 'institutions' generally has weak positive correlations with other variables.

The variable 'tobinq' has weak negative correlations with several other variables, suggesting a weak inverse relationship.

There is high co-relation between the independent variables. This needs to be addressed. It's important to note that correlation alone does not imply causation. Further analysis and domain knowledge are needed to determine the underlying relationships and causality between variables.

1.2.5 Scaling

The below snap shows the data description after the data is prepared.

	count	mean	std	min	25%	50%	75%	max
sales	759.0	1236.090089	1528.690552	0.138000	122.920000	448.577082	1822.547366	4371.988416
capital	759.0	728.715785	959.394531	0.057000	52.650501	202.179023	1075.790020	2610.499299
patents	759.0	7.800395	9.952684	0.000000	1.000000	3.000000	11.500000	27.250000
randd	759.0	99.512662	127.195056	0.000000	4.628262	36.864136	143.253403	351.191114
employment	759.0	6.925381	8.184188	0.006000	0.927500	2.924000	10.050001	23.733752
sp500	759.0	0.285903	0.452141	0.000000	0.000000	0.000000	1.000000	1.000000
tobinq	759.0	2.300408	1.723035	0.119001	1.036000	1.680303	3.082979	6.153448
value	759.0	1375.431494	1754.489690	1.971053	103.593946	410.793529	2054.160386	4980.010044
institutions	759.0	43.020540	21.685586	0.000000	25.395000	44.110000	60.510000	90.150000

Fig1.2.5.1 Firm Data after scaling

Scaling - Magnitude Differences:

The variables in the dataset have significantly different scales. For example, 'sales' and 'value', 'capital' have much larger magnitudes compared to 'patents', 'employment', and 'institutions'. Scaling can help to ensure that all features contribute equally to the model.

That being said, it is not necessary to perform scaling on the data. In the later sections, ols regression model and linear regression model are fit on the original and scaled data. The models show no major difference in terms of performance metrics.

Business Report

1.3 CREATE MODELS

Encode the data (having string values) for Modelling. Data Split: Split the data into test and train (30:70). Apply Linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using R-square, RMSE. (8 marks)

Answer:

1.3.1 Split Data

The 'sales' feature is the target variable, y. Rest of the data is X. Using sklearn train_test_split feature, the data X and y is split into train and test sets in a 70:30 ratio.

Train Test Data for the Stats Model:

The Train dataset top 5 rows are shown below.

	const	capital	patents	randd	employment	sp500	tobinq	value	institutions
626	1.0	1315.696256	15.0	73.275818	16.472000	0	1.657513	2231.870118	31.47
333	1.0	15.258002	2.0	9.252643	0.566000	0	0.381755	9.877838	21.69
257	1.0	538.188036	20.0	87.388641	6.627000	0	2.126738	1019.443780	69.64
173	1.0	807.215091	0.0	68.900185	7.607001	1	3.151469	2221.768944	69.69
242	1.0	402.508010	2.0	0.000000	1.550000	0	2.154388	358.040202	85.42

The test dataset top 5 rows are shown below.

	const	capital	patents	randd	employment	sp500	tobinq	value	institutions
480	1.0	50.688001	1.0	47.173386	1.147000	0	1.006168	34.516077	34.92
622	1.0	80.960002	3.0	50.251263	3.400000	0	1.259892	164.840772	18.88
638	1.0	1119.000008	19.0	78.623947	18.988003	1	1.900413	2114.826950	47.94
389	1.0	68.742010	3.0	44.827785	1.204000	0	2.262480	82.287341	24.65
748	1.0	308.770949	2.0	79.026939	3.264000	0	1.741800	533.056000	16.05

The training and test dataset sample for stats model **after scaling** is shown below:

Business Report

	const	capital	patents	randd	employment	sp500	tobinq	value	institutions
626	1.0	0.612227	0.723860	-0.206409	1.167240	0	-0.373364	0.488463	-0.532988
333	1.0	-0.744145	-0.583181	-0.710087	-0.777545	0	-1.114266	-0.778833	-0.984276
257	1.0	-0.198723	1.226569	-0.095381	-0.036482	0	-0.100860	-0.203035	1.228328
173	1.0	0.081876	-0.784265	-0.240832	0.083340	1	0.494257	0.482702	1.230635
242	1.0	-0.340238	-0.583181	-0.782879	-0.657234	0	-0.084802	-0.580261	1.956480

	const	capital	patents	randd	employment	sp500	tobinq	value	institutions
480	1.0	-0.707191	-0.683723	-0.411760	-0.706508	0	-0.751635	-0.764781	-0.373791
622	1.0	-0.675617	-0.482640	-0.387546	-0.431039	0	-0.604284	-0.690451	-1.113941
638	1.0	0.407071	1.126027	-0.164334	1.474865	1	-0.232299	0.421708	0.227003
389	1.0	-0.688360	-0.482640	-0.430213	-0.699538	0	-0.022027	-0.737535	-0.847690
748	1.0	-0.438007	-0.583181	-0.161164	-0.447668	0	-0.324414	-0.480442	-1.244528

1.3.1.1 VIF (Variance Inflation Factor)

The below snap the sorted features by Importance of the sm ols original train dataset.

Fig1.3.1.1.1 Variance Inflation Factor on ols train dataset

Below snap shows the sorted features by VIF importance of the sms ols scaled train dataset.

Business Report

Fig1.3.1.1.2 Variance Inflation Factor on scaled ols train dataset

In both cases, 'employment', 'capital', 'value' have high multicollinearity with VIF value > 5. However, dropping variables blindly based on VIF value may not always result in better models.

Using VIF, features with high co-linearity can be identified. For reference, the range of VIF:

VIF	Starts at 1
VIF = 1	no correlation between this independent variable and the other variables
1 < VIF < 5	Indicates moderate collinearity
	exceeding 5 or 10 indicates high multicollinearity between this independent
VIF > 5	variable and the other.

Table1 VIF Range

1.3.2 Model 1 - OLS Initial

OLS Stats Model is fit on the train data. The performance metrics on the initial model are shown as below.

Initial OLS Model Training Set Metrics:

RMSE: 394.33716619028996 R-squared: 0.9359702538559448

Initial OLS Model Test Set Metrics: RMSE: 400.0021149372728 R-squared: 0.9240311293641787

The summary of the results is as shown below:

Business Report

		OLS Regres	sion Resul	lts			
Dep. Variable:		sales	R-square	 ed:		0.936	
Model:		0LS	Adj. R-s	squared:		0.935	
Method:	L	east Squares	F-statis	stic:		953.8	
Date:	Sun,	14 May 2023	Prob (F-	-statistic):	7	.27e-306	
Time:		04:39:53	Log-Like	elihood:		-3927.4	
No. Observatio	ns:	531	AIC:			7873.	
Df Residuals:		522	BIC:			7911.	
Df Model:		8					
Covariance Typ	e:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	73.7353	48.629	1.516	0.130	-21.798	169.269	
capital	0.4051	0.042	9.650	0.000	0.323	0.488	
patents	-4.6622	2.786	-1.674	0.095	-10.134	0.810	
randd	0.6385	0.232	2.749	0.006	0.182	1.095	
employment	78.5650	4.756	16.518	0.000	69.221	87.909	
sp500	167.8727	66.445	2.527	0.012	37.341	298.404	
tobing	-40.9833	12.057	-3.399	0.001	-64.670	-17.296	
value	0.2455	0.025	9.649	0.000	0.196	0.296	
institutions	0.2129	0.901	0.236	0.813	-1.558	1.984	
Omnibus:	=======================================	========= 184.867	====== Durbin-V	 Natson:	========	1.964	
Prob(Omnibus):		0.000	Jarque-E	Bera (JB):		1273.725	
Skew:		1.347	Prob(JB)):	2	.59e-277	
Kurtosis:		10.093	Cond. No) .		9.83e+03	
	=======	=======	========		=======	======	
Notes:							
[1] Standard E	rrors assum	e that the co	variance m	matrix of the	errors is	correctly	speci
[2] The condit							
strong multico							
	,	OLS Regres					

Fig1.3.2 Model 1 - OLS Initial Model

1.3.3 Model 2 - OLS Dropped p>.05

All features with p values above .05 are dropped and the new model regression performance met rics are:

Training Set Metrics:

RMSE: 395.3975671797366 R-squared: 0.9356254296687838

Test Set Metrics:

RMSE: 398.4877494359508 R-squared: 0.9246052606459508

And the summary of result is as shown below.

Dep. Variab	le:	sal	.es	R-squa	ared:		0.936
Model:		C	LS	Adj. F	R-squared:		0.935
Method:		Least Squar	es	F-stat	istic:		1269.
Date:	S	un, 14 May 20	23	Prob ([F-statistic]):	2.32e-308
Time:		04:39:	53	Log-Li	kelihood:		-3928.8
No. Observat	tions:	5	31	AIC:			7872.
Of Residuals	s:	5	24	BIC:			7901.
of Model:			6				
Covariance 1	Гуре:	nonrobu	ıst				
	coef	std err		t	P> t	[0.025	0 . 975]
onst	80.1957	37.396	2	.144	0.032	6.731	153.660
apital	0.4091	0.042	9	.777	0.000	0.327	0.491
andd	0.4002	0.183	2	.192	0.029	0.042	0.759
mployment	77.7994	4.713	16	.509	0.000	68.541	87.057
p500	161.0654	65.150	2	.472	0.014	33.078	289.053
obinq	-43.3778	11.967	-3	.625	0.000	-66.888	-19.868
alue	0.2449	0.025	9	.623	0.000	0.195	0.295
nibus:		 183. 3	==== 70	Durbir	 n-Watson:		 1.969
rob(Omnibus	s):	0.0	000	Jarque	e-Bera (JB):		1228.445
cew:		1.3	44	Prob(3	IB):		1.76e-267
ırtosis:		9.9	50	Cond.	No.		9.51e+03

Fig1.3.3 Model 2 - OLS Model dropped p>.05

The model assumptions, such as normality and absence of autocorrelation, should be carefully evaluated.

1.3.4 Model 3 - OLS Scaled Data

The performance metrics on the OLS Scaled data are as below:

Scaled Model Training Set Metrics: RMSE: 394.33716619028996 R-squared: 0.9359702538559448

Scaled Model Test Set Metrics: RMSE: 400.002114937273

R-squared: 0.9240311293641786

Business Report

ep. Variable	2:		sales	R-square	ed:	0.936	
Model:			OLS		Adj. R-squared:		0.935
Method:		L	east Squares	F-statis	stic:		953.8
Date:			14 May 2023		-statistic):		7.27e-306
「ime:			04:43:20	Log-Like	elihood:		-3927.4
lo. Observati	ions:		531	AIC:			7873.
of Residuals:			522	BIC:			7911.
of Model:			8				
Covariance Ty	/pe:		nonrobust				
		coef	std err	t	P> t	[0.025	0.975
onst	1192.	7832	25.570	46.648	0.000	1142.551	1243.016
apital	388.	3593	40.246	9.650	0.000	309.294	467.424
atents	-46.	3704	27.705	-1.674	0.095	-100.798	8.057
randd	81.	1654	29.520	2.749	0.006	23.172	139.158
employment	642.	5668	38.901	16.518	0.000	566.146	718.988
sp500	167.	8727	66.445	2.527	0.012	37.341	298.404
obinq		5691	20.762	-3.399	0.001	-111.356	-29.782
/alue		5140	44.615	9.649	0.000	342.866	518.161
nstitutions	4.	6133	19.536 	0.236	0.81 3	-33 . 765 	42.991
 Omnibus:			184 . 867	Durbin-V	Watson:		1.964
Prob(Omnibus)):		0.000	Jarque-E	Bera (JB):		1273.725
kew:			1.347	Prob(JB)):		2.59e-277
urtosis:			10.093	Cond. No) .		8.47

Fig1.3.4 Model 3 - OLS Initial Model on scaled data

1.3.5 Model 4 - OLS Scaled and refined

The scaled and new model after dropping all features with p>0.05 has below metrics: Scaled Improved Model Training Set Metrics:

RMSE: 395.3975671797366 R-squared: 0.9356254296687838

Scaled Improved Model Test Set Metrics:

RMSE: 398.48774943595146 R-squared: 0.9246052606459505

The complete summary is as shown below:

Business Report

=======================================	=====	======	====	=======			=======
Dep. Variable:		sa	les	R-squa			0.936
Model:			0LS	Adj. F	0.935		
Method:		Least Squa	res	F-stat	istic:		1269.
Date:	9	Sun, 14 May 2		F-statisti	c):	2.32e-308	
Time:		04:43	:20	Log-Li	kelihood:		-3928.8
No. Observations			7872.				
Of Residuals:			524	BIC:			7901.
Of Model:			6				
Covariance Type:		nonrob	ust				
	coef	std err	====	t	P> t	[0.025	0.975]
onst 1194	.0317	25.405	46	5.999	0.000	1144.123	1243.940
apital 392	.2491	40.119	9	9.777	0.000	313.435	471.063
andd 50	.8673	23.203	2	2.192	0.029	5.285	96.449
employment 636	.3050	38.544	16	5.509	0.000	560.586	712.024
p500 161	.0654	65.150	2	2.472	0.014	33.078	289.053
tobinq -74	.6922	20.607	-3	3.625	0.000	-115.174	-34.210
alue 429	.4345	44.626	٥	9.623	0.000	341.767	517.102
======== mnibus:	=====	 183.	===== 370	 Durbir	======== n-Watson:	=======	1.969
rob(Omnibus):		0.	000	Jarque	e-Bera (JB)	:	1228.445
skew:		1.	344	Prob(1.76e-267
urtosis:		9.	950	Cond.			7.59

Fig1.3.4 Model 4 - OLS Model on scaled data dropped p>.05

1.3.6 Model 5 - OLS Data - dropping variables

Blindly dropping all features above p>0.05 is not always correct as the dropped features may have multi-coliinearity but still carry important information about the target variable. So instead, drop each variable based on p-value, lower rmse, higher r-squared, Higher F-Statistic. This is iterative process and in the final improved model 'sales', 'patents', 'institutions', 'randd' are dropped.

The OLS Stats improved regression model equation can be given as below:

```
y = (81.7013 * const) + (0.4118 * capital) + (80.6845 * employment) + (176.4655 * sp500) - (39.6549 * tobing) + (0.2466 * value)
```

- 1. When all other predictors are zero, the const is 81.703 which is not bad.
- 2. for a one-unit increase in the "sp500" variable, holding all other variables constant, the sales price increases by 176.4655
- 3. For one-unit increase in 'tobinq' the sales decreases by -39.6549 as the '-' sign indicates an inverse relationship.

The performance metrics and the summary of this improved ols model are as below:

Training Set Metrics:

RMSE: 397.20671726067104

Business Report

R-squared: 0.935034987496708

Test Set Metrics:

RMSE: 394.38620894692014 R-squared: 0.9261493138182268

Performance metrics on test data-

- 1. An R-squared value of 0.926 suggests that the model explains approximately 92.6% of the variance in the sales data.
- 2. The RMSE for the test set indicates the average deviation of the predicted sales values from the actual sales values in the test set. A lower RMSE is desirable, indicating better predictive performance. The RMSE of 394.38 suggests an average deviation of approximately 398.488 which is pretty good considering the target variable range.
- 3. The target variable has a mean of 2689.705158 and a standard deviation of 8722.060124. In this context, an RMSE of 394 is relatively small compared to the magnitude of the target variable. It indicates that, on average, the model's predictions have an error of approximately 394 units, which is relatively low compared to the overall scale of the target variable. Hence, this is an acceptable value of RMSE.

Dep. Variab	le:	sa.	les	R-squ	ared:		0.935		
Model:		(DLS		R-squared:		0.934		
Method:		Least Squar	^es	F-sta	tistic:		1511.		
Date:		Sun, 14 May 20	323	Prob	(F-statistic):	6.21e-309		
Time:		07:38	21	Log-L	ikelihood:		-3931.2		
No. Observat	tions:	!	531	AIC:			7874.		
Df Residuals	s:	!	525	BIC:			7900.		
Df Model:			5						
Covariance 1	Гуре:	nonrobı	ıst						
	coef	std err		t	P> t	[0.025	ø . 975]		
onst	81.7013	37.525	2	2.177	0.030	7.983	155 . 419		
capital	0.4118	0.042	9	.811	0.000	0.329	0.494		
employment	80.6845	4.542	17	7.766	0.000	71.763	89.606		
sp500	176.4655	65.005	2	2.715	0.007	48.764	304.167		
tobinq	-39.6549	11.889	-	3.335	0.001	-63.011	-16.299		
/alue 	0.2466	0.026	<u> </u>	.659 	0.000	0.196	0.297 		
mnibus:		183.	570	Durbi	 n-Watson:		1.965		
Prob(Omnibus	s):	0.0	900		e-Bera (JB):		1224.353		
kew:		1.	347	Prob(JB):		1.36e-266		
urtosis:		9.9	934	Cond.	No.		9.45e+03		

Fig1.3.6 Model 5 - OLS Improved model

strong multicollinearity or other numerical problems.

Business Report

1.3.7 Model 6 - Simple Linear Regression

Below are the Lienar regression results:

Coefficients: [[0.40506319 -4.66215536 0.63853807 78.56497068 167.87266108

-40.98329451 0.24554026 0.21287606]]

Intercept: [73.73534908]

Training set performance:

RMSE: 394.337 R-squared: 0.936

MSE 155501.80063898838

Test set performance:

RMSE: 400.002 R-squared: 0.924

MSE 160001.69195429183

1.3.7.1 Actual v predicted scatter plot

Fig1.3.7.1 Scatter Plot- Actual v Predicted Sales for OLS Stats model.

The above scatter plot shows between actual and predicted values. Inferences are:

- 1. There are 3 areas, one where the sales are below '1000', between '1000-2000' & higher.
- 2. The model correctly predicts level 1, whereas the variance increases as the sales value increases.
- 3. The variance of the error is not constant across various levels of your dependent variable.

1.3.7.2 Residual plot

Fig1.3.7.2 Residual Plot OLS Stats Model

- 1. The residual points are symmetrically distributed, tending to cluster towards the middle of the plot.
- 2. They're clustered around the lower single digits of the y-axis.
- 3. In general, there aren't any clear patterns.
- 4. This is an ideal residual plot and is acceptable.

Note- Scatter plots and residual plots for all models have been plotted and all show similar result.

1.3.8 Model 7 - Linear Regression on Scaled Data

Model performance results are:

Coefficients: [[388.35931937 -46.37038134 81.16536349 642.56680013 167.87266108

-70.56912892 430.5139761 4.61330005]]

Intercept: [1192.78318419]

Training set performance:

RMSE: 394.337 R-squared: 0.936

MSE 155501.8006389884

Business Report

Test set performance: RMSE: 400.002 R-squared: 0.924

MSE 160001.69195429125

1.3.9 Model 8 - Linear Regresion on Scaled data- dropping features over VIF 5

Model performance results are:

Coefficients: [[21.6288429 429.0632531 2050.9331315 -246.32957 54.98948947]]

Intercept: [669.99885843]

Training set performance:

RMSE: 854.696

R-squared: 0.699

MSE 730504.8254082266

Test set performance:

RMSE: 948.881

R-squared: 0.573

MSE 900375.8143274568

1.3.10 Scikit learn Linear Models Discussion & Equation

Below is the discussion on Scikit learn's linear models:

- 1. As discussed above, and based on the Model 6,7,8 results, scaling does not necessary give drastic results in this dataset. The Model 6, 7 have similar or same performance result upto or above 5 decimal points.
- 2. The best linear model is Model 6 Simple Linear regression without scaling.
- 3. Linear regression can be given by below equation (Model 6 Simple Linear Regression):
 - y = 0.40506319 * capital 4.66215536 * patents + 0.63853807 * randd + 78.56497068 * employment + 167.87266108 * sp500 40.98329451 * tobinq + 0.24554026 * value + 0.21287606 * institutions + 73.73534908
- 4. Dropping features, blindly based on VIF value may not give better model. Infact, as seen in model 8, the model may show decrease in predicting performance.

Business Report

1.3.11 Compare Scikit learn and OLS model - Model 5, Model 6

- 1. Scikit learn gives Test set performance of RMSE: 400.002, R-squared: 0.924
- 2. Stats model gives test set performance of RMSE: 394.38620894692014, R-squared: 0.92 61493138182268
- 3. Both models are strong models for regression. However, Stats model is slightly a better m odel compared to scikitlearn.

1.4 INFERENCE

Based on these predictions, what are the business insights and recommendations. (6 marks)

- 1. There might still be multicollinearity which needs to be addressed with business team.
- 2. Stats model is used for model prediction given equation y = (81.7013 * const) + (0.4118 * capital) + (80.6845 * employment) + (176.4655 * sp500) (39.6549 * tobinq) + (0.2466 * value)
- 3. 'capital', 'employment', 'tobinq', 'value', 'sp500' are the best predictors of the target variable.
- 4. 'institutions', 'patents', 'raandd' do not show a significance value in predicting the target variable. However, this does not mean they are poor predictors.
- 5. Focus on Capital Investment as this variable has a high positive impact on 'sales'
- 6. Monitor S&P 500 Performance: The coefficient of the "sp500" variable is 176.4655. This indicates that the performance of the S&P 500 index has a positive impact on the response variable. It is recommended to closely monitor the trends and movements of the S&P 500 index as it can potentially influence the 'sales' outcome.
- 7. 'tobinq' has an inverse relationship and the company should evaluate this variable carefully as this has a negative effect on the 'sales'.

2 PROBLEM 2: LOGISTIC REGRESSION, LDA, CART

You are hired by the Government to do an analysis of car crashes. You are provided details of car crashes, among which some people survived and some didn't. You have to help the government in predicting whether a person will survive or not on the basis of the information given in the data set so as to provide insights that will help the government to make stronger laws for car manufacturers to ensure safety measures. Also, find out the important factors on the basis of which you made your predictions.

DATA DESCRIPTION

Data Dictionary for Car_Crash

Dataset for Problem 2: Car Crash.csv™

- 1. dvcat: factor with levels (estimated impact speeds) 1-9km/h, 10-24, 25-39, 40-54, 55+
- 2. weight: Observation weights, albeit of uncertain accuracy, designed to account for varying sampling probabilities. (The inverse probability weighting estimator can be used to demonstrate causality when the researcher cannot conduct a controlled experiment but has observed data to model)
- 3. Survived: factor with levels Survived or not survived
- 4. airbag: a factor with levels none or airbag
- 5. seatbelt: a factor with levels none or belted
- 6. frontal: a numeric vector; 0 = non-frontal, 1=frontal impact
- 7. sex: a factor with levels f: Female or m: Male
- 8. ageOFocc: age of occupant in years
- 9. yearacc: year of accident
- 10. yearVeh: Year of model of vehicle; a numeric vector
- 11. abcat: Did one or more (driver or passenger) airbag(s) deploy? This factor has levels deploy, nodeploy and unavail
- 12. occRole: a factor with levels driver or pass: passenger
- 13. deploy: a numeric vector: 0 if an airbag was unavailable or did not deploy; 1 if one or more bags deployed.
- 14. injSeverity: a numeric vector; 0: none, 1: possible injury, 2: no incapacity, 3: incapacity, 4: killed; 5: unknown, 6: prior death
- 15. caseid: character, created by pasting together the populations sampling unit, the case number, and the vehicle number. Within each year, use this to uniquely identify the vehicle.

2.1 EXPLORATORY DATA ANALYSIS

<u>Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis. (8 marks)</u>

Business Report

Answer:

The data shows 11217 rows, 16 columns. 'Survived' is the target or feature of interest with 'survived' having higher value count and hence the positive class.

2.1.1 Sample Data

The Data provided has these top rows as shown below.

Fig2.1.1.1 Sample Crash Data top 5

The bottom five rows from the dataset are shown below.

Fig2.1.1.2 Sample Crash Data bottom 5

The data contains 'Unnamed: 0', 'caseid' features which are dropped. The dataset top 5 observations are as shown below:

Fig2.1.1.3 Sample Crash Data top 5-(dropped unnamed, caseid)

The data contains many numerical and categorical columns. Further exploratory data analysis is as below.

2.1.2 Data Statistical Description

The data description of categorical and numerical is shown below.

Business Report

	count	mean	std	min	25%	50%	75%	max
weight	11217.0	431.405309	1406.202941	0.0	28.292	82.195	324.056	31694.04
frontal	11217.0	0.644022	0.478830	0.0	0.000	1.000	1.000	1.00
ageOFocc	11217.0	37.427654	18.192429	16.0	22.000	33.000	48.000	97.00
yearacc	11217.0	2001.103236	1.056805	1997.0	2001.000	2001.000	2002.000	2002.00
yearVeh	11217.0	1994.177944	5.658704	1953.0	1991.000	1995.000	1999.000	2003.00
deploy	11217.0	0.389141	0.487577	0.0	0.000	0.000	1.000	1.00
injSeverity	11140.0	1.825583	1.378535	0.0	1.000	2.000	3.000	5.00

Fig2.1.2.1 Crash Data Description 1

Fig2.1.2.2 Crash Data Description 2

2.1.3 Missing Values

Missing values:

Below information shows the missing values in the data.

Business Report

Fig2.1.3.1 Crash Data info-Missing values treated

There are 77 missing values in 'injSeverity' column. Below is boxplot of 'injSeverity':

Fig2.1.3.2 Boxplot showing 'injSeverity' skewedness.

Business Report

the 'injSeverity' does not have outliers. Data is very lightly right skewed. Hence, the missing values can be imputed based on median. Note- Mean can also be used as there is no high skewedness in data.

2.1.4 Univariate Analysis

The univariate analysis is as shown below using histogram plots of each features:

The dvcat is highly right skewed indicating outliers presence.

The 'weight' is highly right skewed indicating outliers presence.

'Survived' i.e. the target variable has much higher counts for 'Survived' than the opposite and while splitting data stratify parameter shall be used.

The 'ageOfOcc' has a peak in '10-24' age group. The data is also highly right skewed indicating the presence of 'outliers'. Binning of age groups can help in this feature.

There seem to a lot more accidents in years after 2000. This can be due to many reasons that there are higher sales in cars/a boom in teenage car ownership/ records being maintained after these years. More analysis is needed to bring out more insights in this feature. Additionally, binning can help this feature as well.

'yearVeh' has highly left skewed data with most cars being from years after 1990. It can be due to increase of availability of these cars in the market from manufacturing point of view. More analysis is needed to bring out more insights in this feature. Additionally, binning can help this feature as well.

Fig2.1.4 histograms & Countplots of Crash data

The 'injSeverity' of 5 is very less and that can explain the high 'NotSurvived' count. More insights need to be drawn.

2.1.5 Bivariate Analysis

Using calculation, we can find that The vehicles from 1990-2000 are involved in 61% and vehicles after 2000 account for 18% of the crashes.

Fig2.1.5.1 Year Of Accident v Survival

The above plot shows a clear distinction that accidents before 2000s resulted only in 'NotSurvived'. Based on this information, the year of accident is encoded into binary variable i.e. before 2000s as 0, after 2000s as 1

Fig2.1.5.2 Year of Vehicle on barplot with Survived as hue

Above plot shows that Compared to older version cars, passengers/drivers using latest version cars have drastically higher chance of survival. This can be attributed to the airbag facilities in latest cars

Bivariate analysis using pairplot is shown below:

Fig 2.1.5.3 Pairplot of Crash data

It can be seen from the pairplot as well that accidents before 2000s resulted only in 'NotSurvived'. The classes are not well separated as peaks are engulfed by other class.

2.1.6 Encode data

The datatype of each feature is shown below:

Business Report

#	Column	Non-Null Count	Dtype
0	dvcat	11217 non-null	object
1	weight	11217 non-null	float64
2	Survived	11217 non-null	object
3	airbag	11217 non-null	object
4	seatbelt	11217 non-null	object
5	frontal	11217 non-null	int64
6	sex	11217 non-null	object
7	age0Focc	11217 non-null	int64
8	yearacc	11217 non-null	int64
9	year V eh	11217 non-null	float64
10	abcat	11217 non-null	object
11	occRole	11217 non-null	object
12	deploy	11217 non-null	int64
13	injSeverity	11140 non-null	float64
dtyp	es: float64(3), int64(4), obj	ect(7)

Fig 2.1.6.1 Crash data info after Encoding.

Inference: Out of 14 columns 7 are type object, rest are either of type float or integer. Most of the existing *numerical* columns are of type float64, int64 already.

'frontal', 'deploy' are already encoded into nominal. dvcat', 'Survived', 'airbag', 'seatbelt', 'sex', 'abcat', 'occRole', 'injSeverity' are the categorical columns which should be encoded to nominal and are encoded to nominal by using data dictionary for few variables and by assigning a value to each category.

'yearVeh', 'injSeverity' are converted to type 'int64'.

The top 5 observations after encoding are shown below.

	ď	vcat	weight	Survived	airbag	seatbelt	frontal	sex	ageOFocc	yearacc	yearVeh	abcat	occRole	deploy	injSeverity
	0	5	27.078	0	0	0	1	0	32	1997	1987	0	1	0	4
	1	3	89.627	0	1	1	0	1	54	1997	1994	0	1	0	4
:	2	5	27.078	0	0	1	1	0	67	1997	1992	0	1	0	4
	3	5	27.078	0	0	1	1	1	64	1997	1992	0	0	0	4
4	4	5	13.374	0	0	0	1	0	23	1997	1986	0	1	0	4

Fig2.1.6.2 Crash data sample observation after Encoding.

Data description is shown below:

			std	min	25%	50%	75%	max
dvcat 1	1217.0	2.731122	0.958810	1.0	2.000	2.000	3.000	5.00
weight 1	1217.0	431.405309	1406.202941	0.0	28.292	82.195	324.056	31694.04
Survived 1	1217.0	0.894803	0.306821	0.0	1.000	1.000	1.000	1.00
airbag 1	1217.0	0.629758	0.482891	0.0	0.000	1.000	1.000	1.00
seatbelt 1	1217.0	0.699741	0.458391	0.0	0.000	1.000	1.000	1.00
frontal 1	1217.0	0.644022	0.478830	0.0	0.000	1.000	1.000	1.00
sex 1	1217.0	0.460818	0.498485	0.0	0.000	0.000	1.000	1.00
ageOFocc 1	1217.0	37.427654	18.192429	16.0	22.000	33.000	48.000	97.00
yearacc 1	1217.0	2001.103236	1.056805	1997.0	2001.000	2001.000	2002.000	2002.00
yearVeh 1	1217.0	1994.177944	5.658704	1953.0	1991.000	1995.000	1999.000	2003.00
abcat 1	1217.0	0.389141	0.487577	0.0	0.000	0.000	1.000	1.00
deploy 1	1217.0	0.389141	0.487577	0.0	0.000	0.000	1.000	1.00
inj Severity 1	1217.0	1.826781	1.373871	0.0	1.000	2.000	3.000	5.00

Fig 2.1.6.3 Crash data statistical description after Encoding

At first look, Standard of living is high, Contraceptive used is Yes. Need to perform regression to understand more insights from the dataset.

2.1.7 Outliers

Fig2.1.7.1 Boxplot showing Crash Data outliers

Highest outliers are likely present in 'weight'. The outliers in 'ageOFocc', 'yearacc', 'yearVeh' shall be ignored for now as these are very small number of outliers and also outliers shown in 'Survived' column are not outliers.

Outliers in the 'dvcat', 'weight' features are treated by adjusting them to the lower and upper bound values calculated by the IQR value. Below plot shows the final outliers.

Business Report

Fig2.1.7.2 Boxplot showing Crash Data after treating outliers

2.2 PREPARE DATA & CREATE MODELS

Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis). (8 marks)

Answer:

2.2.1 Encode data

Encoding is performed in above section. The top 5 observations after encoding are shown below.

	dvcat	weight	Survived	airbag	seatbelt	frontal	sex	ageOFocc	yearacc	yearVeh	abcat	occRole	deploy	injSeverity
0	5	27.078	0	0	0	1	0	32	1997	1987	0	1	0	4
1	3	89.627	0	1	1	0	1	54	1997	1994	0	1	0	4
2	. 5	27.078	0	0	1	1	0	67	1997	1992	0	1	0	4
3	5	27.078	0	0	1	1	1	64	1997	1992	0	0	0	4
4	5	13.374	0	0	0	1	0	23	1997	1986	0	1	0	4

Fig 2.2.1.1 Crash data info after Encoding.

2.2.2 Co-relation

The heatmap is plotted to show the correlation between variables.

Fig2.2.2.1 HeatMap showing Crash data correlation.

- 1. 'Survived' shows a negative correlation with 'dvcat' (-0.398861), indicating that higher levels of impact speed category are associated with a lower likelihood of survival.
- 2. 'Survived' has a positive correlation with 'weight' (0.217553), suggesting that heavier vehicles are more likely to have passengers who survived.
- 3. 'Survived' also has a positive correlation with 'yearacc' (0.549885), indicating that accidents in more recent years are associated with a higher likelihood of survival.
- 4. 'Survived' shows a positive correlation with 'abcat' (0.054346) and 'deploy' (0.054346), suggesting that the presence of an airbag and its deployment are associated with a slightly higher likelihood of survival.
- 5. 'Survived' exhibits a negative correlation with 'injSeverity' (-0.520610), implying that higher injury severity is associated with a lower likelihood of survival.

Business Report

- 6. 'yearVeh' shows a relatively strong positive correlation with 'airbag' (0.766181) and 'deploy' (0.611983), indicating that newer vehicles are more likely to have airbags and their deployment.
- 7. 'weight' has a negative correlation with 'injSeverity' (-0.455644), implying that heavier vehicles are associated with lower injury severity.
- 8. 'injSeverity' shows a positive correlation with 'dvcat' (0.470624), indicating that higher levels of impact speed category are associated with higher injury severity.

These insights provide a glimpse into the relationships between different variables in the dataset. However, it's important to note that correlation does not imply causation, and further analysis and domain knowledge are necessary to draw meaningful conclusions.

2.2.3 Split Data

Using sklearn train test split method, the dataset is split into 70 30 for training and testing using random state 1 to replicate results, stratify on 'Survived' variable. This will ensure a balance in the data and will not cause biasness while Training or Testing the mode.

The sample train dataset is shown below:

	dvcat	weight	airbag	seatbelt	frontal	sex	ageOFocc	yearacc	yearVeh	abcat	occRole	deploy	injSeverity
7778	2.0	207.690	1	1	1	1	36	2002	1999	1	0	1	1
9606	3.0	155.956	1	0	1	1	20	2002	2001	1	1	1	1
1085	4.0	9.780	0	1	1	1	22	2000	1991	0	1	0	3
9197	2.0	65.896	1	1	0	0	18	2002	2000	0	1	0	0
5698	3.0	9.285	0	0	1	0	59	2001	1991	0	1	0	3

Fig2.2.3.1 Crash data-Train Data sample

The sample test dataset is shown below:

	dvcat	weight	airbag	seatbelt	frontal	sex	ageOFocc	yearacc	yearVeh	abcat	occRole	deploy	injSeverity
4985	2.0	49.959	0	1	1	1	75	2001	1994	0	0	0	3
2442	4.5	69.484	0	1	1	0	43	2001	1988	0	1	0	2
7358	2.0	19.866	1	0	1	1	55	2002	2001	0	1	0	3
8396	1.0	53.227	1	1	1	1	80	2002	1998	0	0	0	2
3601	2.0	31.469	1	1	0	0	31	2001	1995	1	1	1	3

Fig2.2.3.2 Crash data- Test Data sample

Business Report

	dvcat	weight	airbag	seatbelt	frontal	sex	abcat	occRole	deploy	injSeverity	yearAcc_Bin	yearVeh_bin	ageOFocc_bin
7778	2.0	207.690	1	1	1	1	1	0	1	1	1	3	3
9606	3.0	155.956	1	0	1	1	1	1	1	1	1	4	1
1085	4.0	9.780	0	1	1	1	0	1	0	3	1	3	1
9197	2.0	65.896	1	1	0	0	0	1	0	0	1	4	1
5698	3.0	9.285	0	0	1	0	0	1	0	3	1	3	4

Fig2.2.3.3 Crash data train sample after binning

	dvcat	weight	airbag	seatbelt	frontal	sex	abcat	occRole	deploy	injSeverity	yearAcc_Bin	yearVeh_bin	ageOFocc_bin
4985	2.0	49.959	0	1	1	1	0	0	0	3	1	3	4
2442	4.5	69.484	0	1	1	0	0	1	0	2	1	2	3
7358	2.0	19.866	1	0	1	1	0	1	0	3	1	4	4
8396	1.0	53.227	1	1	1	1	0	0	0	2	1	3	4
3601	2.0	31.469	1	1	0	0	1	1	1	3	1	3	2

Fig2.2.3.4 Crash data test sample after binning

However, note that the dataset has some degree of corelation & multi collinearity as shown in heatmaps in above section.

2.2.4 Model 1 - Decision Tree

Decision tree model is built using criterion='gini', max_depth=5, random_state=0 hyperparameters. Decision trees model is as below:

Fig2.2.4.1 Model -1 Decision Tree basic

Business Report

occRole	0.001082
abcat	0.001437
deploy	0.001581
seatbelt	0.001953
airbag	0.002816
ageOFocc_bin	0.003249
sex	0.003514
yearVeh_bin	0.003794
frontal	0.004831
dvcat	0.005695
weight	0.035250
yearAcc_Bin	0.041527
injSeverity	0.893271

Fig2.2.4.2 Importance of Features

The injSeverity, year of accident, weight, impact speed are the important features in determining the 'Survived' class.

2.2.5 Model 2 - Apply Logistic, LDA, Cart

Logistic Regression, LDA, CART are applied on the dataset using training and performance is checked using the test data.

Hyper parameters used for the models are max_iter=1000 in Logistic regression, n_components=1 in LDA, criterion='gini' in CART.

2.2.6 Model 3 - Apply Logistic, LDA, CART on binned data

Predicted label

Model: Logistic Regression Confusion Matrix for Train Data:

[[746 80] [48 6977]]

Classification Report for Train Data:

precision recall f1-score support

0 0.94 0.90 0.92 826 1 0.99 0.99 0.99 7025

accuracy 0.98 7851 macro avg 0.96 0.95 0.96 7851 weighted avg 0.98 0.98 0.98 7851

Model: Logistic Regression Confusion Matrix for Test Data:

[[320 34] [18 2994]]

Business Report

Classification Report for Test Data:

precision recall f1-score support

0 0.95 0.90 0.92 354 1 0.99 0.99 0.99 3012

accuracy 0.98 3366 macro avg 0.97 0.95 0.96 3366 weighted avg 0.98 0.98 0.98 3366

Model: LDA

Confusion Matrix for Train Data:

[[438 388]

[0 7025]]

Classification Report for Train Data:

precision recall f1-score support

0 1.00 0.53 0.69 826 1 0.95 1.00 0.97 7025

accuracy 0.95 7851 macro avg 0.97 0.77 0.83 7851 weighted avg 0.95 0.95 0.94 7851

Model: LDA

Confusion Matrix for Test Data:

[[184 170]

[0 3012]]

Classification Report for Test Data:

precision recall f1-score support

Business Report

0	1.00	0.52	0.68	354
1	0.95	1.00	0.97	3012

accuracy		0.95	336	6
macro avg	0.97	0.76	0.83	3366
weighted avg	0.95	0.95	0.94	3366

ROC Curve for DecisionTreeClassifier(max_depth=5, random_state=0) Model

Business Report

Confusion Matrix - Test Data for DecisionTreeClassifier(max_depth=5, random_state=0) Model

Model: CART

Confusion Matrix for Train Data:

[[788 38]

[9 7016]]

Classification Report for Train Data:

precision recall f1-score support

0 0.99 0.95 0.97 826 1 0.99 1.00 1.00 7025

accuracy 0.99 7851 macro avg 0.99 0.98 0.98 7851 weighted avg 0.99 0.99 0.99 7851

Model: CART

Confusion Matrix for Test Data:

[[344 10] [5 3007]]

Classification Report for Test Data:

precision recall f1-score support

0 0.99 0.97 0.98 354 1 1.00 1.00 1.00 3012

Business Report

accuracy		1.00	336	6
macro avg	0.99	0.99	0.99	3366
weighted avg	1.00	1.00	1.00	3366

2.3 PERFORMANCE METRICS

Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Compare both the models and write inferences, which model is best/optimized. (8 marks)

Answer:

2.3.1 ROC Curve, Classification Report, Confusion Matrix

When the model is run without any treatment of Feature Importances or multi -collinearity, below are the classification results.

Predicted label

Model: Logistic Regression Confusion Matrix for Train Data:

[[731 95] [60 6965]]

Classification Report for Train Data:

precision recall f1-score support

0 0.92 0.88 0.90 826 1 0.99 0.99 0.99 7025

accuracy 0.98 7851 macro avg 0.96 0.94 0.95 7851 weighted avg 0.98 0.98 0.98 7851

Model: Logistic Regression Confusion Matrix for Test Data:

[[315 39] [24 2988]]

Business Report

Classification Report for Test Data:

precision recall f1-score support

0 0.93 0.89 0.91 354 1 0.99 0.99 0.99 3012

accuracy 0.98 3366 macro avg 0.96 0.94 0.95 3366 weighted avg 0.98 0.98 0.98 3366

Model: LDA

Confusion Matrix for Train Data:

[[565 261] [50 6975]]

Classification Report for Train Data:

precision recall f1-score support

0 0.92 0.68 0.78 826 1 0.96 0.99 0.98 7025

accuracy 0.96 7851 macro avg 0.94 0.84 0.88 7851 weighted avg 0.96 0.96 0.96 7851

Model: LDA

Confusion Matrix for Test Data:

[[247 107] [28 2984]]

Classification Report for Test Data:

precision recall f1-score support

Business Report

0	0.90	0.70	0.79	354
1	0.97	0.99	0.98	3012

accuracy		0.96	336	6
macro avg	0.93	0.84	0.88	3366
weighted avg	0.96	0.96	0.96	3366

ROC Curve for DecisionTreeClassifier(max_depth=5, random_state=0) Model

Business Report

Confusion Matrix - Test Data for DecisionTreeClassifier(max_depth=5, random_state=0) Model

Model: CART

Confusion Matrix for Train Data:

[[791 35]

[9 7016]]

Classification Report for Train Data:

precision recall f1-score support

0 0.99 0.96 0.97 826 1 1.00 1.00 1.00 7025

accuracy 0.99 7851 macro avg 0.99 0.98 0.98 7851 weighted avg 0.99 0.99 0.99 7851

Model: CART

Confusion Matrix for Test Data:

[[337 17] [5 3007]]

Classification Report for Test Data:

precision recall f1-score support

0 0.99 0.95 0.97 354 1 0.99 1.00 1.00 3012

Business Report

accuracy		0.99 3366		6
macro avg	0.99	0.98	0.98	3366
weighted avg	0.99	0.99	0.99	3366

2.3.2 Accuracy & ROC

	Model	Accuracy (train)	Accuracy (test)	ROC AUC (train)	ROC AUC (test)
0	Logistic Regression	0.980257	0.981283	0.987644	0.987604
1	LDA	0.960387	0.959893	0.967579	0.966374
2	CART	0.994396	0.993464	0.993739	0.973294

Fig2.3.2 Crash Data Regression Performance Metrics - Accuracy & ROC

CART is the best model here when VIF is not treated.

2.4 INFERENCE

Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Compare both the models and write inferences, which model is best/optimized. (8 marks)

Answer:

2.4.1 Model Discussion

Considering the importance of this classification about 'survive', a model that has best recall and low FP is selected i.e. CART.

- 1. Both Logistic Regression and CART models perform well in terms of F1-score and accuracy across both iterations. They have F1-scores above 0.90 and high accuracies for both the train and test data.
- 2. LDA, on the other hand, shows lower F1-scores and accuracies compared to the other models
- 3. CART consistently give better results than the other models in terms of F1-score and accuracy.
- 4. Logistic Regression performs slightly better than LDA, achieving higher F1-scores and accuracies.
- 5. Considering the high performance of CART and Logistic Regression, they can be considered as strong models for predicting the classification task.
- 6. When multi-collinearity is treated, we shall get a even cleaner and simpler decision tree.

2.4.2 Business Recommendations:

1. The injSeverity, year of accident, weight, impact speed are the important features in determining the 'Survived' class. Conduct safety awareness programs and monitor 'airbags' or similar safety features.

Business Report

2. Age and car model did not actor is as much contrary to popular belief. We can suggest hence to keep collecting data to understand hotspots, trends. And keep updating the safety policies. As, regular evaluation and updates to road safety policies based on emerging research.

Business Report

3 REFLECTION REPORT:

Please reflect on all that you learnt and fill this reflection report. You have to copy the link and paste it on the URL bar of your respective browser. https://docs.google.com/forms/d/e/1FAIpQLScKuVyrmTTM7Pboh0IB4YIBUbJp2NrDZcsY4SCRn3ZUkwmLGg/viewform

<Completed>