Minimum Spanning Tree - Prim Algorithm

האלגוריתם של פרים הוא אלגוריתם **חמדני** המשמש למציאת עץ פורש מינימלי בגרף משוקלל לא מכוון. האלגוריתם מתחיל את בניית העץ מקדקוד פתיחה שנבחר באקראי. בכל צעד האלגוריתם מוסיף לעץ את הצלע בעלת המשקל המינימלי מבין אלה היוצאות מקדקודי העץ ולא סוגרות מעגל,

יותר פורמאלי:

1. בוחרים בקראי קדקוד כלשהו s ומוסיפים אותו לעץ:

Initialization: $T = \{s\}$

2. כול עוד T מכיל פחות מ- n-1 קודקודים מוסיפים ל-T צלע בעלת משקל מינימאלי, כך שבדיוק קדקוד אחד נמצא ב-T וקדקוד אחר לא ב-T.

 $T = T \cup \{a,b\}$: (($a \in T$ and $b \notin T$) or ($a \notin T$ and $b \in T$)) and weight(a,b)->min

שלבים של האלגוריתם בהתאם לדוגמא:

סימונים:

.Q משבצת אפורה – קדקוד עזב את התור

אות אדומה – מצב הקדקוד השתנה בהשוואה לשלב הקודם.

שלב 1

key	P	Q	קדקודים
0	NIL		a
4	а	b	b
∞	NIL	С	c
∞	NIL	d	d
∞	NIL	e	e
∞	NIL	f	f
∞	NIL	g	g
8	а	h	h
∞	NIL	i	i

key	P	Q	קדקודים
0	NIL	a	a
8	NIL	b	b
8	NIL	С	c
8	NIL	d	d
~	NIL	e	e
8	NIL	f	f
~	NIL	g	g
~	NIL	h	h
∞	NIL	i	i

אתחול

שלב 3

key	P	Q	קדקודים
0	NIL		a
4	a		b
8	b		c
7	c	d	d
∞	NIL	e	e
4	c	f	f
∞	NIL	g	g
8	a	h	h
2	С	i	i

key	P	Q	קדקודים
0	NIL		a
4	a		b
8	b	c	c
8	NIL	d	d
8	NIL	e	e
8	NIL	f	f
8	NIL	g	g
8	a	h	h
8	NIL	i	I

5 שלב 4 שלב 5

key	P	Q	קדקודים
0	NIL		a
4	a		b
8	b		c
7	c	d	d
10	f	e	e
4	c		f
2	f	g	g
7	i	h	h
2	С		i

key	P	Q	קדקודים
0	NIL		a
4	a		b
8	b		c
7	c	d	d
8	NIL	e	e
4	c	f	f
6	i	g	g
7	i	h	h
2	c		I

7 שלב 6

key	P	Q	קדקודים
0	NIL		a
4	a		b
8	b		c

key	P	Q	קדקודים
0	NIL		a
4	a		b
8	b		c

7	c	d	d
10	f	e	e
4	С		f
2	f		g
1	g	h	h
2	С		i

7	c	d	d
10	f	e	e
4	С		f
2	f		g
1	g		h
2	С		i

9 שלב

שלב 8

key	P	Q	קדקודים
0	NIL		a
4	a		b
8	b		c
7	c		d
9	d		e
4	c		f
2	f		g
1	g		h
2	c		i

key	P	Q	קדקודים
0	NIL		A
4	a		В
8	b		C
7	c		D
9	d	e	Е
4	c		F
2	f		G
1	g		Н
2	c		i

<u>:התוצאה</u>

(key קבלנו עץ פורש מינימאלי שמשקלו 37 (ניתן לבדוק לפי האיור או לפי הסכום של שדות). לפי מערך P של קדקודי אבות (parent vertices) ניתן לבנות עץ:

Prim pseudo code

```
Prim(G, root)
      Edge T[n-1]<-empty tree (array of edges)</pre>
      numEdges = 0
      for each v in V(G, root) //O(n)
          visited[v] = false
          key[v] = infinity
          parent(v) = NIL
      end-for
      key[root] = 0
      Q \leftarrow V(G)//Q Min Heap, Q keyed by key[v] //O(n)
      while (Q != empty && numEdges<n-1)</pre>
          u = extractMin(Q) //O(log_2(n))
          for each v in Adj(u)
              if (visited[v]==false && key[v] > weight(u,v))
                   key[v] = weight (u,v)
                   parent [v] = u
                   decreaseKey(Q, v, weight(u,v)) //O(log_2(n))
              end-if
           end-for
           visited[u] = true
           x=Get-Min(Q)
           T[numEdges++]=(parent[x], x)
      end-while
end-Prim
```

סיבוכיות:

בעת מימוש האלגוריתם נעשה שימוש בערימה שמתוכה מוציאים בכל פעם את הצלע המינימלית. אם משתמשים בערימה בינארית (heap) סיבוכיות האלגוריתם תהיה המינימלית. אם משתמשים בערימה בינארית (V|| הוא מספר הקדקודים). (C(|E|*log₂|V|)

באופן כללי היעילות של האלגוריתם של פרים טובה מזו של האלגוריתם של קרוסקל. למרות זאת, אם הקלט כבר ממוין לפי משקלי הצלעות או כאשר ניתן למיין אותם בזמן לינארי, אזי האלגוריתם של קרוסקל יהיה מהיר יותר. הסיבוכיות של אלגוריתם של קרוסקל ללא מיון היא O(|V|*log₂|V|).

```
(הסיבוכיות של אלגוריתם של קרוסקל עם מיון היא מורכבת מסיבוכיות של מיון O(|V|^*log_2|V|) וסיבוכיות של אלגוריתם עצמו O(|V|^*log_2|V|) O(|V|) + O(|V|log_2(|V|)) + O(|E|log_2(|V|))
```

הוכחת נכונות של אלגוריתם של פרים.

נוכיח שבכל שלב שאנו מוסיפים צלע חדשה ל-T אנו מקבלים תת-עץ של עץ פורש מינימאלי כלשהו M.

<u>הוכחה באינדוקציה.</u>

- את (min heap) Q א) בסיס. בשלב ראשון של האלגוריתם אנו מוציאים מתור עדיפויות (root) שורש העץ (root), שהוא שייך לכל עץ פורש מינימאלי.
 - ב) נניח שבשלב כלשהו של פרים קבלנו T תת-עץ של M).
- ובזה T∪{e=(a,b)}⊆M אז גם $e \in M$ אז גם $e \in M$ ובזה $e \notin M$. ובזה פיימנו את ההוכחה. נניח ש- $e \notin M$. נוסיף $e \notin M$, נקבל מעגל. במעגל זה יש מסלול שמחבר $e \notin M$ את קדקוד $e \notin M$ וכוון שרק קדקוד אחד של $e \notin M$ שייך ל- $e \notin M$, (כי אלגוריתם של פרים מוסיף את קדקוד $e \notin M$ וכוון שרק קדקוד אחד של $e \notin M$ שייך ל- $e \notin M$. אלגוריתם של פרים מוסיף $e \notin M$ במעגל זה קיימת צלע $e \notin M$ במעגל $e \notin M$. אבל הוסיף $e \notin M$ שמשקלו קטן או שווה למשקל של $e \notin M$. אבל $e \notin M$ הוא בעל נבנה עץ חדש $e \notin M$ שמשקלו קטן או שווה למשקל של $e \notin M$. אבל $e \notin M$ הוא בעל $e \notin M$ שמינימאלי שמכיל $e \notin M$ מינימאלי שמינימאלי $e \notin M$ שפוקלו. $e \notin M$ וובזה $e \notin M$ מש"ל.