

INVENTOR SEARCH

=> d his 167

(FILE 'HCAPLUS' ENTERED AT 15:07:34 ON 09 NOV 2010)

L67 10 S L64 AND L66

=> d que 167

L2 776 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON ("MIKAMI,
KOICHI"/AU OR "SAKAMOTO, HIROTOSHI"/AU OR "YOSHIKATA,
KUNIAKIKI"/AU)

L3 QUE SPE=ON ABB=ON PLU=ON MIKAMI K?/AU

L4 QUE SPE=ON ABB=ON PLU=ON SAKAMOTO H?/AU

L5 QUE SPE=ON ABB=ON PLU=ON YOSHIKATA K?/AU

L6 QUE SPE=ON ABB=ON PLU=ON L3 AND L4 AND L5

L7 4 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L3 AND L4 AND
L5

L8 16396 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON FUEL?(6A)CELL?
(6A)SOLID?(6A)OXID?

L9 16030 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON (FUEL?(3A)CELL
?)(L)(SOLID?(2A)OXID?)

L10 16595 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L8 OR L9

L12 QUE SPE=ON ABB=ON PLU=ON SUBSTRAT? OR SURFACE? OR B
ASE# OR SUBSTRUCT? OR UNDERSTRUCTUR? OR UNDERLAY? OR FO
UNDATION? OR PANE? OR DISK? OR DISC# OR WAFER? OR PLATE
OR PLATES

L14 QUE SPE=ON ABB=ON PLU=ON ELECTROLYT?

L15 8851 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L10 AND L12

L16 4809 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L15 AND L14

L17 QUE SPE=ON ABB=ON PLU=ON ELECTROD? OR CATHOD? OR AN
OD? OR ELECTROD?(2A)(POSITIVE OR NEGATIVE)

L18 3633 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L16 AND L17

L19 1528 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L18 AND
(CATHOD? OR ELECTROD?(2A)POSITIVE) AND (ANOD? OR
ELECTROD?(2A)NEGATIVE)

L22 3633 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L18 OR L19

L23 QUE SPE=ON ABB=ON PLU=ON (SAME OR OPPOSITE)(3A)(SID
E OR SURFACE)

L24 77 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L22 AND L23

L25 QUE SPE=ON ABB=ON PLU=ON (SPACE OR DISTAN? OR LENGTH
H OR SEPARAT?)(3A)(MEASUR? OR PREDETERMIN? OR DETERMIN?
OR SPECIF? OR EQUAL? OR EQUI? OR UNIFORM?)

L26 QUE SPE=ON ABB=ON PLU=ON EQUIDIS? OR EQUI?(A)DISTAN
? OR EQUIDISTAN?

L27 9 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L22 AND (L25
OR L26)

L29 86 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L24 OR L27

L30 QUE SPE=ON ABB=ON PLU=ON SPACE? OR SPACING? OR DIST
AN? OR LENGTH? OR SEPARAT? OR MEASUR? OR PREDETERMIN? O
R DETERMIN? OR SPECIF? OR EQUAL? OR EQUI? OR UNIFORM? O
R EQUI?(A)DISTAN? OR EQUIDISTAN?

L31 1579 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L22 AND L30

L32 48 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L29 AND L31

L33 86 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L29 OR L32

L35 QUE SPE=ON ABB=ON PLU=ON ELEMENT? OR BODY? OR UNIT?
OR ASSEMBL?

L36 370 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L31 AND L35

L37 21 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L36 AND L33

L39 86 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L33 OR L37

L40 QUE SPE=ON ABB=ON PLU=ON INSULAT?

L41 4 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L39 AND L40

L42 52 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L31 AND L40

L43 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L37 OR L39 OR
L41 OR L42

L44 QUE SPE=ON ABB=ON PLU=ON PLURAL? OR MULTI? OR SEVER
AL? OR MANY

10/561,789-347144-EIC SEARCH

L45 39 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L43 AND L44
L46 105 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L39 OR L41 OR
 L45
L47 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L46 OR L43
L48 QUE SPE=ON ABB=ON PLU=ON PRINT?
L49 8 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 AND L48
L50 QUE SPE=ON ABB=ON PLU=ON ADHESI? OR ADHERE? OR STIC
 K? OR CLING? OR BOND? OR CEMENT? OR CONGLUTIN? OR AGGLU
 TIN? OR MUCILAG? OR TACK? OR GLUE? OR GLUING OR PASTE?
 OR PASTING OR GUM? OR HOLD? OR GRIP? OR GRASP? OR BIND?
 OR SEAL?
L51 34 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 AND L50
L52 QUE SPE=ON ABB=ON PLU=ON GROOVE? OR FURROW? OR CLEF
 T##### OR GRID? OR MESH### OR SCORE## OR INDENT? OR INCI
 S? OR STRIAT? OR GOUGE? OR TRENCH? OR TROUGH? OR RUT###
 # OR RIBBED?
L53 QUE SPE=ON ABB=ON PLU=ON CHANNEL? OR CONDUIT? OR DU
 CT? OR PASSAGE? OR TROUGH? OR TUNNEL?
L54 38 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 AND (L52
 OR L53)
L55 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 OR L49 OR
 L51 OR L54
L56 QUE SPE=ON ABB=ON PLU=ON DISPOS? OR ATTACH? OR ADHE
 R? OR ADSOR? OR ABSOR? OR PART? OR ADJ? OR SINGL?
L57 66 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L55 AND L56
L58 QUE SPE=ON ABB=ON PLU=ON CONNECT? OR INTERCONNECT?
 OR INTER?(A)CONNECT?
L59 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L55 OR L57
L60 49 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L59 AND L58
L61 112 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L60 OR L39
L63 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L59 OR L60 OR
 L61
L64 10 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L63 AND ((L2
 OR L3 OR L4 OR L5 OR L6 OR L7))
L65 QUE SPE=ON ABB=ON PLU=ON FUELCELL? OR (FUEL?(2A)CEL
 L?) OR FC OR SOFC OR DFC OR PEMFC
L66 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L63 AND L65
L67 10 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L64 AND L66

INVENTOR SEARCH RESULTS

=> d 167 1-10 ibib ed abs hitind

L67 ANSWER 1 OF 10 HCPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2009:1296298 HCPLUS Full-text
 DOCUMENT NUMBER: 151:474568
 TITLE: Solid oxide fuel
 cell with current collector having
 irregularities on surface,
 disposed on electrode having
 irregular surface, and manufacture
 of same cell
 INVENTOR(S): Kotani, Kazushi; Yoshikata, Kuniaki;
 Watanabe, Junko
 PATENT ASSIGNEE(S): Dai Nippon Printing Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 10pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2009245897	A	20091022	JP 2008-94131	2008 0331
PRIORITY APPLN. INFO.:			JP 2008-94131	2008 0331

ED Entered STN: 23 Oct 2009

AB The title cell provided with a current collector having irregularities on the surface comprises an electrolyte held between an anode and cathode, wherein at least one of the electrodes is structured to allow the current collector to be attached thereto, and has irregularities which can be engaged with those on the collector, at least on part of the surface to which the collector is attached. The title method for manufacture of the title cell comprises steps (1) for preparing the electrolyte; and (2-1) for forming the anode on one side of the electrolyte and (2-2) for forming the cathode on the other side of the electrolyte, wherein at least one of the steps (2-1) and (2-2) comprises steps for disposing the electrode material on the electrolyte by printing; for drying the material; providing irregularities on the material; and for sintering the material. The cell has reduced contact resistance between the electrode and current collector, thereby improving power generation efficiency.

IPCI H01M0004-86 [I,A]; H01M0008-02 [I,A]; H01M0008-12 [N,A]

IPCR H01M0004-86 [I,C]; H01M0004-86 [I,A]; H01M0008-02 [I,C];
 H01M0008-02 [I,A]; H01M0008-12 [N,C]; H01M0008-12 [N,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell

current collector electrode surface roughness

IT Surface roughness

(current collector and electrode; solid
 oxide fuel cell with
 surface roughness on current collector and
 electrode)

IT Electric conductors

(current collectors; solid oxide
 fuel cell with surface roughness on
 current collector and electrode)

IT Embossing

(on current collector and electrode; solid
 oxide fuel cell with
 surface roughness on current collector and
 electrode)

IT Fuel cell electrodes
 (solid oxide fuel cell
 with surface roughness on current collector and
 electrode)

IT Fuel cells
 (solid oxide; solid oxide
 fuel cell with surface roughness on
 current collector and electrode)

IT 1313-99-1, Nickel oxide (NiO), uses 681441-22-5,
 Cerium gadolinium oxide (Ce0.9Gd0.1O1.9)
 RL: PEP (Physical, engineering or chemical process); TEM
 (Technical or engineered material use); PROC (Process); USES
 (Uses)
 (anode containing; solid oxide
 fuel cell with surface roughness on
 current collector and electrode)

IT 148595-66-8, Cobalt iron lanthanum strontium oxide
 (Co0.2Fe0.8La0.6Sr0.4O3)
 RL: PEP (Physical, engineering or chemical process); TEM
 (Technical or engineered material use); PROC (Process); USES
 (Uses)
 (cathode; solid oxide
 fuel cell with surface roughness on
 current collector and electrode)

IT 7440-06-4, Platinum, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (current collectors; solid oxide
 fuel cell with surface roughness on
 current collector and electrode)

L67 ANSWER 2 OF 10 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2008:1250520 HCAPLUS Full-text
 DOCUMENT NUMBER: 149:451890
 TITLE: Solid oxide fuel
 cells (SOFC) with mechanical
 strength
 INVENTOR(S): Yoshikata, Kuniaki; Kotani, Kazushi
 PATENT ASSIGNEE(S): Dai Nippon Printing Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 7pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2008251383	A	20081016	JP 2007-92299	2007 0330
PRIORITY APPLN. INFO.:			JP 2007-92299	2007 0330

ED Entered STN: 17 Oct 2008

AB The title SOFC comprises a support substrate equipped with ≥1 hole(s), a fuel electrode covering the hole(s), an electrolyte, and an oxide electrode formed in the order and a porous current collector thicker than the substrate is formed under filling the hole(s) in the substrate. Low-cost elec. insulating materials can be used as the substrate .

IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]

IPCR H01M0008-02 [I,C]; H01M0008-02 [I,A]; H01M0008-12 [I,C];
 H01M0008-12 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell low
 cost high strength; porous current collector SOFC

10/561,789-347144-EIC SEARCH

structure; low cost insulating substrate
SOFC structure
IT Electric conductors
(porous; low-cost SOFC formed on mech. strong elec.
insulating substrates having through holes
filled with and covered with porous current collector layer)
IT Fuel cells
(solid oxide; low-cost SOFC
formed on mech. strong elec. insulating
substrates having through holes filled with and covered
with porous current collector layer)
IT Electric insulators
(substrates; low-cost SOFC formed on mech.
strong elec. insulating substrates having
through holes filled with and covered with porous current
collector layer)

L67 ANSWER 3 OF 10 HCAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 2007:1420977 HCAPLUS Full-text
DOCUMENT NUMBER: 148:36556
TITLE: Thin solid oxide
fuel cell (SOFC)
with thin-film electrolyte membrane
and manufacture thereof
INVENTOR(S): Yoshikata, Kuniaki; Sakamoto,
Hirotoshi; Kotani, Kazushi
PATENT ASSIGNEE(S): Dainippon Printing Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 11pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2007323957	A	20071213	JP 2006-152907	2006 0531
PRIORITY APPLN. INFO.:			JP 2006-152907	2006 0531

ED Entered STN: 13 Dec 2007

AB The title SOFC comprises a substrate supporting a thin-film anode (or cathode), a thin-film electrolyte membrane, and a thin-film cathode (or anode) in the order and the substrate is provided with a gas passage running through the opposite side of the substrate and the anode (or cathode). Method for manufacture of the SOFC is also claimed. The passage may be prepared by etching and the thin layers may be formed by printing.

IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]
IPC R H01M0008-02 [I,C]; H01M0008-02 [I,A]; H01M0008-12 [I,C];
H01M0008-12 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST thin film solid oxide fuel
cell; SOFC thin film electrode
electrolyte printing

IT Fuel cells
(solid oxide; structure of thin-film
SOFC and its manufacture)

IT Etching
Screen printing
(structure of thin-film SOFC and its manufacture)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
THIS RECORD (1 CITINGS)

L67 ANSWER 4 OF 10 HCAPLUS COPYRIGHT 2010 ACS on STN

10/561,789-347144-EIC SEARCH

ACCESSION NUMBER: 2007:1178611 HCAPLUS Full-text
 DOCUMENT NUMBER: 147:472145
 TITLE: The solid oxide
 electrolyte fuel
 cell and its manufacturing method
 INVENTOR(S): Sakamoto, Hirotoshi; Yoshikata,
 Kuniaki; Kotani, Kazushi
 PATENT ASSIGNEE(S): Dainippon Printing Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 11pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2007273429	A	20071018	JP 2006-101179	2006 0331
PRIORITY APPLN. INFO.:			JP 2006-101179	2006 0331

ED Entered STN: 19 Oct 2007

AB The disclosed fuel cell comprises a oxide solid oxide electrolyte film, air and fuel electrodes formed on opposite surfaces of the electrolyte, and porous elec. conductive supports formed on the electrodes. The curling of the fuel cell unit during manufacturing is effectively prevented by the supports. IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]

IPCR H01M0008-02 [I,C]; H01M0008-02 [I,A]; H01M0008-12 [I,C];
 H01M0008-12 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid electrolyte fuel cell manuf
 curling prevention

IT Fuel cells
 (solid electrolyte; curling preventive supports for)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
 THIS RECORD (1 CITINGS)

L67 ANSWER 5 OF 10 HCAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2006:11643 HCAPLUS Full-text
 DOCUMENT NUMBER: 144:72335
 TITLE: Solid oxide fuel
 cell and its base material
 INVENTOR(S): Yoshikata, Kuniaki; Sakamoto,
 Hirotoshi
 PATENT ASSIGNEE(S): Dainippon Printing Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2006004672	A	20060105	JP 2004-177283	2004 0615
PRIORITY APPLN. INFO.:			JP 2004-177283	2004 0615

ED Entered STN: 06 Jan 2006

10/561,789-347144-EIC SEARCH

AB The base material has (1) an electrolyte, anodes set on one side of the electrolyte, and cathodes set on the same side to have fixed intervals between the anodes and the cathodes or (2) a substrate, electrolytes on the substrate, anodes and cathodes on the electrolytes, wherein the electrodes have approx. equilaterally polygonal or round shape. The fuel cell has the base material and interconnectors for connecting electrodes on the base material. Electron conduction loss in current collection is decreased in the cell to improve power generation efficiency. IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell
polygonal round electrode interconnector

IT Interconnections, electric
(cell with; solid oxide
fuel cell having polygonal or round
electrodes on the same side of
electrolyte)

IT Fuel cell electrodes
(solid oxide fuel cell
having polygonal or round electrodes on the
same side of electrolyte)

IT Fuel cells
(solid oxide; solid oxide
fuel cell having polygonal or round
electrodes on the same side of
electrolyte)

IT 1313-99-1, Nickel oxide (NiO), uses 116875-84-4,
Cerium samarium oxide (Ce0.8Sm0.2O1.9)
RL: DEV (Device component use); USES (Uses)
(anode containing; solid oxide
fuel cell having polygonal or round
electrodes on the same side of
electrolyte)

IT 59989-70-7, Cobalt samarium strontium oxide
(CoSm0.5Sr0.5O3)
RL: DEV (Device component use); USES (Uses)
(cathode; solid oxide
fuel cell having polygonal or round
electrodes on the same side of
electrolyte)

IT 681441-22-5, Cerium gadolinium oxide (Ce0.9Gd0.1O1.9)
RL: DEV (Device component use); USES (Uses)
(electrolyte; solid oxide
fuel cell having polygonal or round
electrodes on the same side of
electrolyte)

IT 7440-57-5, Gold, uses
RL: DEV (Device component use); USES (Uses)
(interconnector; solid oxide
fuel cell having polygonal or round
electrodes on the same side of
electrolyte)

IT 1344-28-1, Alumina, uses
RL: DEV (Device component use); USES (Uses)
(substrate; solid oxide
fuel cell having polygonal or round
electrodes on the same side of
electrolyte)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
THIS RECORD (1 CITINGS)

L67 ANSWER 6 OF 10 HCPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 2005:1074821 HCPLUS Full-text
DOCUMENT NUMBER: 143:329209
TITLE: Solid oxide fuel
cell with high output and its
manufacture
INVENTOR(S): Yoshikata, Kuniaki; Sakamoto,

10/561,789-347144-EIC SEARCH

Hirotoshi

PATENT ASSIGNEE(S): Dainippon Printing Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005276535	A	20051006	JP 2004-85790	2004 0323
PRIORITY APPLN. INFO.:			JP 2004-85790	2004 0323

ED Entered STN: 07 Oct 2005

AB The fuel cell is manufactured by the following steps: (1) forming a fuel electrode paste containing Ni oxide, Ce-based oxide, and binder, (2) forming an air electrode paste containing perovskite-type oxide and binder, (3) applying the fuel electrode paste on one of the surfaces of an electrolyte and sintering at 1200-1600°, and (4) applying the air electrode paste on the same surface and sintering at 1000-1300°. The obtained fuel cell is also claimed.

IPCI H01M0004-88 [ICM, 7]; H01M0008-02 [ICS, 7]; H01M0008-12 [ICS, 7]

IPCR H01M0004-88 [I,A]; H01M0004-88 [I,C*]; H01M0008-02 [I,A];
H01M0008-02 [I,C*]; H01M0008-12 [I,A]; H01M0008-12 [I,C*]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST electrode paste sintering solid
oxide fuel cell manuf; solid
oxide fuel cell high output

IT Fuel cell anodes

Fuel cell cathodes

Sintering

(manufacture of solid oxide fuel
cell with high output by sintering of electrode
pastes on electrolyte)

IT Fuel cells

(solid oxide; manufacture of solid
oxide fuel cell with high output by
sintering of electrode pastes on
electrolyte)

IT 59989-70-7, Cobalt samarium strontium oxide (CoSm0.5Sr0.5O3)

RL: DEV (Device component use); USES (Uses)
(air electrode; manufacture of solid
oxide fuel cell with high output by
sintering of electrode pastes on
electrolyte)

IT 1313-99-1, Nickel oxide (NiO), uses

RL: CAT (Catalyst use); DEV (Device component use); USES (Uses)
(fuel electrode; manufacture of solid
oxide fuel cell with high output by
sintering of electrode pastes on
electrolyte)

IT 116875-84-4, Cerium samarium oxide (Ce0.8Sm0.2O1.9)

RL: DEV (Device component use); USES (Uses)
(fuel electrode; manufacture of solid
oxide fuel cell with high output by
sintering of electrode pastes on
electrolyte)

L67 ANSWER 7 OF 10 HCPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2005:546312 HCPLUS Full-text

DOCUMENT NUMBER: 143:81082

TITLE: Solid oxide fuel

10/561,789-347144-EIC SEARCH

cell with improved wiring
configuration and manufacture thereof
INVENTOR(S): Sakamoto, Hirotoshi; Yoshikata,
Kuniaki; Mikami, Koichi
PATENT ASSIGNEE(S): Dainippon Printing Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005166561	A	20050623	JP 2003-406600	2003 1204
JP 4379584	B2	20091209	JP 2003-406600	2003 1204
PRIORITY APPLN. INFO.:				

ED Entered STN: 24 Jun 2005

AB A fuel cell comprises an electrolyte, a plurality of electrodes disposed on 1 surface of the electrolyte and composed of fuel electrodes and air electrodes, and interconnectors for connecting the electrodes. The interconnectors have a crossing section where they cross, this section being at a distance from some of the electrodes. The crossing section is formed from a conductive wire, and an insulating layer can be formed between the crossing section and the electrodes. When the fuel cell is manufactured, a burn-out material can be used to install the interconnectors, and this material is then burned out to form a space between the interconnectors and the electrodes. The degree of freedom of wiring design is increased, while preventing short circuiting. IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]; IPCR H01M0008-02 [I,A]; H01M0008-02 [I,C*]; H01M0008-12 [I,A]; H01M0008-12 [I,C*]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell

interconnection

IT Interconnections, electric
(solid oxide fuel cell
with improved wiring configuration and manufacture thereof)

IT Fuel cells
(solid oxide; solid oxide
fuel cell with improved wiring configuration
and manufacture thereof)

L67 ANSWER 8 OF 10 HCAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2005:492978 HCAPLUS Full-text

DOCUMENT NUMBER: 143:10642

TITLE: Membrane-free solid oxide
fuel cell

INVENTOR(S): Yoshikata, Kuniaki; Mikami,
Koichi

PATENT ASSIGNEE(S): Dainippon Printing Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2005149815	A	20050609	JP 2003-383069	2003 1112

PRIORITY APPLN. INFO.:

JP 2003-383069

2003
1112

ED Entered STN: 10 Jun 2005

AB The claimed fuel cell is equipped with ≥1 pair of an anode and a cathode formed on the same flat surface of a solid electrolyte, where the solid electrolyte surface is roughened at areas contacting with the anode and the cathode. The fuel cell provides high power output by the increased contact areas.

IPCI H01M0008-02 [ICM,7]; H01M0008-12 [ICS,7]

IPCR H01M0008-02 [I,A]; H01M0008-02 [I,C*]; H01M0008-12 [I,A];
H01M0008-12 [I,C*]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell

electrolyte surface roughening

IT Fuel cells

(solid oxide; surface roughening
of solid electrolyte in membrane-free
solid oxide fuel cell)

IT Fuel cell electrolytes

(surface roughening of solid
electrolyte in membrane-free solid
oxide fuel cell)IT 55575-06-9, Cerium samarium oxide 192575-28-3, Cerium
gallium oxideRL: DEV (Device component use); USES (Uses)
(electrolytes; surface roughening of
solid electrolyte in membrane-free
solid oxide fuel cell)

L67 ANSWER 9 OF 10 HCPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2005:16053 HCPLUS Full-text

DOCUMENT NUMBER: 142:97505

TITLE: Solid oxide fuel
cellINVENTOR(S): Yoshikata, Kuniaki; Mikami,
Koichi; Sakamoto, Hirotoshi

PATENT ASSIGNEE(S): Dai Nippon Printing Co., Ltd., Japan

SOURCE: PCT Int. Appl., 44 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

WO 2005001970	A1	20050106	WO 2004-JP9347	2004 0625

W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG,
MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT,
TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH,
CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU,
MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI,
CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG

JP 2005259604	A	20050922	JP 2004-71596	2004 0312
---------------	---	----------	---------------	--------------

10/561,789-347144-EIC SEARCH

CA 2533564	A1	20050106	CA 2004-2533564	
				2004 0625
JP 2005038848	A	20050210	JP 2004-188485	
				2004 0625
DE 112004001144	T5	20060524	DE 2004-112004001144	
				2004 0625
CN 1813366	A	20060802	CN 2004-80017949	
				2004 0625
CN 100438168	C	20081126		
CN 101299466	A	20081105	CN 2008-10092363	
				2004 0625
JP 2005044792	A	20050217	JP 2004-197015	
				2004 0702
JP 2005056839	A	20050303	JP 2004-216151	
				2004 0723
US 20070248864	A1	20071025	US 2007-561789	
				2007 0315
PRIORITY APPLN. INFO.:			JP 2003-182618	A
				2003 0626
		JP 2003-271191		A
				2003 0704
		JP 2003-278485		A
				2003 0723
		JP 2004-71596		A
				2004 0312
		CN 2004-80017949		A3
				2004 0625
		WO 2004-JP9347		W
				2004 0625

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 07 Jan 2005

AB A solid oxide fuel cell is disclosed which has improved problems such as vulnerability and high cost conventional planar/tubular solid oxide fuel cells

involved. The solid oxide fuel cell is a membrane-free solid oxide fuel cell to which a mixture gas of a fuel gas and an oxidant gas is supplied for generation of electricity, and comprises a substrate, an electrolyte which is arranged on one surface of the substrate, and at least one electrode body (E) which is composed of a fuel electrode and an air electrode arranged on the same surface of the electrolyte at a certain distance from each other.

IPCI H01M0008-02 [ICM,7]; H01M0008-12 [ICS,7]; H01M0008-24 [ICS,7]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [I,C*]; H01M0008-12 [I,A]; H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 72, 76

ST solid oxide fuel cell
electrode interconnector

IT fuel cell electrodes

Fuel cell separators
 Interconnections, electric
 (solid oxide fuel cell
 electrode interconnector)
 IT Fuel cells
 (solid oxide; solid oxide
 fuel cell electrode
 interconnector)

REFERENCE COUNT: 7 THERE ARE 7 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L67 ANSWER 10 OF 10 HCAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2004:588641 HCAPLUS Full-text

DOCUMENT NUMBER: 141:126364

TITLE: Fuel cell

INVENTOR(S): Yoshikata, Kuniaki; Mikami, Takekazu

PATENT ASSIGNEE(S): Dainippon Printing Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

JP 2004207233	A	20040722	JP 2003-411076	2003 1209
JP 4431862	B2	20100317	JP 2002-356782	A 2002 1209
PRIORITY APPLN. INFO.:				

ED Entered STN: 23 Jul 2004

AB The fuel cell has ≥1 unit cell containing an electrolyte, a cathode, and an anode, and a substrate supporting the unit cell; where the electrolyte is located on 1 side of the substrate, and the cathode and anode are on that same side of the substrate to hold the electrolyte.

IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]; H01M0004-86 [I,A]

IPCR H01M0008-02 [I,A]; H01M0008-02 [I,C*]; H01M0008-12 [I,A];
 H01M0008-12 [I,C*]; H01M0008-24 [I,A]; H01M0008-24 [I,C*];
 H01M0004-86 [I,C]; H01M0004-86 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST structure fuel cell electrolyte
 substrate support

IT Fuel cells
 (structure of solid oxide fuel
 cells containing supporting substrates for
 electrolyte and electrodes)

TEXT SEARCH

=> d his 187

(FILE 'HCAPLUS' ENTERED AT 15:07:34 ON 09 NOV 2010)

L87 30 S L86 AND L10
 SAV TEMP L87 WEI789HCP/A

=> d que 187

L2 776 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON ("MIKAMI,
 KOICHI"/AU OR "SAKAMOTO, HIROTOSHI"/AU OR "YOSHIKATA,
 KUNIAKII"/AU)
 QUE SPE=ON ABB=ON PLU=ON MIKAMI K?/AU
 QUE SPE=ON ABB=ON PLU=ON SAKAMOTO H?/AU
 QUE SPE=ON ABB=ON PLU=ON YOSHIKATA K?/AU
 QUE SPE=ON ABB=ON PLU=ON L3 AND L4 AND L5
 4 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L3 AND L4 AND
 L5
 L8 16396 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON FUEL?(6A)CELL?
 (6A)SOLID?(6A)OXID?
 L9 16030 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON (FUEL?(3A)CELL
 ?)(L)(SOLID?(2A)OXID?)
 L10 16595 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L8 OR L9
 L12 QUE SPE=ON ABB=ON PLU=ON SUBSTRAT? OR SURFACE? OR B
 ASE# OR SUBSTRUCT? OR UNDERSTRUCTUR? OR UNDERLAY? OR FO
 UNDATION? OR PANE? OR DISK? OR DISC# OR WAFER? OR PLATE
 OR PLATES
 L14 QUE SPE=ON ABB=ON PLU=ON ELECTROLYT?
 L15 8851 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L10 AND L12
 L16 4809 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L15 AND L14
 L17 QUE SPE=ON ABB=ON PLU=ON ELECTROD? OR CATHOD? OR AN
 OD? OR ELECTROD?(2A)(POSITIVE OR NEGATIVE)
 L18 3633 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L16 AND L17
 L19 1528 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L18 AND
 (CATHOD? OR ELECTROD?(2A)POSITIVE) AND (ANOD? OR
 ELECTROD?(2A)NEGATIVE)
 L22 3633 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L18 OR L19
 L23 QUE SPE=ON ABB=ON PLU=ON (SAME OR OPPOSITE)(3A)(SID
 E OR SURFACE)
 L24 77 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L22 AND L23
 L25 QUE SPE=ON ABB=ON PLU=ON (SPACE OR DISTAN? OR LENGTH
 H OR SEPARAT?)(3A)(MEASUR? OR PREDETERMIN? OR DETERMIN?
 OR SPECIF? OR EQUAL? OR EQUI? OR UNIFORM?)
 L26 QUE SPE=ON ABB=ON PLU=ON EQUIDIS? OR EQUI?(A)DISTAN
 ? OR EQUIDISTAN?
 L27 9 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L22 AND (L25
 OR L26)
 L29 86 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L24 OR L27
 L30 QUE SPE=ON ABB=ON PLU=ON SPACE? OR SPACING? OR DIST
 AN? OR LENGTH? OR SEPARAT? OR MEASUR? OR PREDETERMIN? O
 R DETERMIN? OR SPECIF? OR EQUAL? OR EQUI? OR UNIFORM? O
 R EQUI?(A)DISTAN? OR EQUIDISTAN?
 L31 1579 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L22 AND L30
 L32 48 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L29 AND L31
 L33 86 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L29 OR L32
 L35 QUE SPE=ON ABB=ON PLU=ON ELEMENT? OR BODY? OR UNIT?
 OR ASSEMBL?
 L36 370 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L31 AND L35
 L37 21 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L36 AND L33
 L39 86 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L33 OR L37
 L40 QUE SPE=ON ABB=ON PLU=ON INSULAT?
 L41 4 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L39 AND L40
 L42 52 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L31 AND L40
 L43 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L37 OR L39 OR
 L41 OR L42
 L44 QUE SPE=ON ABB=ON PLU=ON PLURAL? OR MULTI? OR SEVER

AL? OR MANY
L45 39 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L43 AND L44
L46 105 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L39 OR L41 OR
L45
L47 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L46 OR L43
L48 QUE SPE=ON ABB=ON PLU=ON PRINT?
L49 8 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 AND L48
L50 QUE SPE=ON ABB=ON PLU=ON ADHESI? OR ADHERE? OR STIC
K? OR CLING? OR BOND? OR CEMENT? OR CONGLUTIN? OR AGGLU
TIN? OR MUCILAG? OR TACK? OR GLUE? OR GLUING OR PASTE?
OR PASTING OR GUM? OR HOLD? OR GRIP? OR GRASP? OR BIND?
OR SEAL?
L51 34 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 AND L50
L52 QUE SPE=ON ABB=ON PLU=ON GROOVE? OR FURROW? OR CLEF
T#### OR GRID? OR MESH## OR SCORE## OR INDENT? OR INCI
S? OR STRIAT? OR GOUGE? OR TRENCH? OR TROUGH? OR RUT##
OR RIBBED?
L53 QUE SPE=ON ABB=ON PLU=ON CHANNEL? OR CONDUIT? OR DU
CT? OR PASSAGE? OR TROUGH? OR TUNNEL?
L54 38 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 AND (L52
OR L53)
L55 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L47 OR L49 OR
L51 OR L54
L56 QUE SPE=ON ABB=ON PLU=ON DISPOS? OR ATTACH? OR ADHE
R? OR ADSOR? OR ABSOR? OR PART? OR ADJ? OR SINGL?
L57 66 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L55 AND L56
L58 QUE SPE=ON ABB=ON PLU=ON CONNECT? OR INTERCONNECT?
OR INTER?(A)CONNECT?
L59 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L55 OR L57
L60 49 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L59 AND L58
L61 112 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L60 OR L39
L63 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L59 OR L60 OR
L61
L64 10 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L63 AND ((L2
OR L3 OR L4 OR L5 OR L6 OR L7))
L65 QUE SPE=ON ABB=ON PLU=ON FUELCELL? OR (FUEL?(2A)CEL
L?) OR FC OR SOFC OR DFC OR PEMFC
L66 135 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L63 AND L65
L67 10 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L64 AND L66
L68 125 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L66 NOT L67
L69 QUE SPE=ON ABB=ON PLU=ON PY=<2005 NOT P/DT
L70 QUE SPE=ON ABB=ON PLU=ON (PY=<2005 OR PRY=<2005 OR
AY=<2005 OR MY=<2005 OR REVIEW/DT) AND P/DT
L71 79 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L68 AND (L69
OR L70)
L72 30 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L71 AND L58
L73 55 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L71 AND L33
L75 18 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L72 AND L73
L76 55 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L73 AND (L23
OR L25 OR L26 OR L48 OR L50)
L80 55 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L76 AND L12
L81 51 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L80 AND L23
L82 51 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L80 AND (SAME
OR OPPOS?)
L83 51 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L81 OR L82
L84 52 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L83 OR L75
L85 18 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L84 AND (L72
OR L75)
L86 30 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L85 OR L72 OR
L75
L87 30 SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L86 AND L10

TEXT SEARCH

=> d 187 1-30 ibib ed abs hitind

L87 ANSWER 1 OF 30 HCPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2008:490294 HCPLUS Full-text
 DOCUMENT NUMBER: 148:475888
 TITLE: Solid polymer MEMS-based
 fuel cells
 INVENTOR(S): Jankowski, Alan F.; Morse, Jeffrey D.
 PATENT ASSIGNEE(S): The Regents of the University of California,
 USA
 SOURCE: U.S., 15pp., Cont.-in-part of U.S. Ser.
 No.241,159.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 3
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 7361424	B2	20080422	US 2003-637915	2003 0808
US 20040048128	A1	20040311		<--
US 20030138685	A1	20030724	US 1999-241159	1999 0201
US 6638654	B2	20031028		<--
US 20040043273	A1	20040304	US 2003-637914	2003 0808
US 7189471	B2	20070313		<--
PRIORITY APPLN. INFO.:			US 1999-241159	A2 1999 0201

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 23 Apr 2008

AB Disclosed is a micro-electro-mech. systems (MEMS) based thin-film fuel cells for elec. power applications. The MEMS-based fuel cell may be of a solid oxide type, a solid polymer type, or a proton exchange membrane type, and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Addnl. catalyst layers can also sep. the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The elec. current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technol. with thin-film deposition technol., thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature and will yield an order of magnitude greater power d. than the currently known fuel cells.

INCL 429019000; 429030000; 429032000; 429038000; 429039000; 427115000

IPCI H01M0008-06 [I,A]; H01M0008-04 [I,A]

IPCR H01M0008-06 [I,C]; H01M0008-06 [I,A]; H01M0008-04 [I,C];
 H01M0008-04 [I,A]; H01M0008-10 [I,C*]; H01M0008-10 [I,A];
 H01M0008-12 [I,C*]; H01M0008-12 [I,A]; H01M0008-24 [I,C*];
 H01M0008-24 [I,A]

NCL 429/425.000; 427/115.000; 429/465.000; 429/513.000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 76

ST solid polymer MEMS based fuel cell

IT Sol-gel processing
(coating; solid polymer MEMS-based fuel cells)

IT Catalysts
(electrocatalysts; solid polymer MEMS-based fuel cells)

IT Coating materials
(insulation; solid polymer MEMS-based fuel cells)

IT Control apparatus
(microcontroller; solid polymer MEMS-based fuel cells)

IT Pumps
(micropumps; solid polymer MEMS-based fuel cells)

IT Valves
(microvalves; solid polymer MEMS-based fuel cells)

IT Sulfonic acids
RL: TEM (Technical or engineered material use); USES (Uses)
(perfluorosulfonic acid polymers; solid polymer MEMS-based fuel cells)

IT Vapor deposition process
(phys.; solid polymer MEMS-based fuel cells)

IT Fuel cells
(proton exchange membrane; solid polymer MEMS-based fuel cells)

IT Micromachines
(pumps; solid polymer MEMS-based fuel cells)

IT Fuel gas manufacturing
(reforming; solid polymer MEMS-based fuel cells)

IT Heaters
(resistive; solid polymer MEMS-based fuel cells)

IT Coating process
(sol-gel; solid polymer MEMS-based fuel cells)

IT Fuel cells
(solid oxide; solid polymer MEMS-based fuel cells)

IT Chemical vapor deposition
Microelectromechanical systems
(solid polymer MEMS-based fuel cells)

IT Hydrocarbons
RL: RCT (Reactant); TEM (Technical or engineered material use);
RACT (Reactant or reagent); USES (Uses)
(solid polymer MEMS-based fuel cells)

IT Coating process
(spin-cast; solid polymer MEMS-based fuel cells)

IT Fluoropolymers
RL: TEM (Technical or engineered material use); USES (Uses)
(sulfo-containing, perfluoro; solid polymer MEMS-based fuel cells)

IT 1333-74-0P, Hydrogen, uses
RL: SPN (Synthetic preparation); TEM (Technical or engineered material use); PREP (Preparation); USES (Uses)
(solid polymer MEMS-based fuel cells)

IT 1344-28-1, Alumina, uses 7440-21-3, Silicon, uses

10/561,789-347144-EIC SEARCH

RL: TEM (Technical or engineered material use); USES (Uses)
 (solid polymer MEMS-based fuel
 cells)

OS.CITING REF COUNT: 22 THERE ARE 22 CAPLUS RECORDS THAT CITE
 THIS RECORD (34 CITINGS)

REFERENCE COUNT: 19 THERE ARE 19 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L87 ANSWER 2 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2007:702516 HCAPLUS Full-text
 DOCUMENT NUMBER: 147:98708
 TITLE: Construction of a solid
 oxide fuel cell
 stack with gas distribution structures
 INVENTOR(S): Kuhn, Bernd
 PATENT ASSIGNEE(S): Bayerische Motoren Werke A.-G., Germany
 SOURCE: Ger. Offen., 10pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 102005061585	A1	20070628	DE 2005-102005061585	2005 1222
US 20070148516	A1	20070628	US 2006-640996	2006 1219
<--				
PRIORITY APPLN. INFO.: DE 2005-102005061585A 2005 1222				
<--				

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT
 ED Entered STN: 29 Jun 2007

AB The invention concerns a solid fuel cell stack, which is provided with single cells, which are optionally arranged with contact layers between a top shell and a gastight-connected lower shell in the boundary region. Furthermore gas distributor structures are provided in each case between the top panel of a 1st single cell and the lower shell of this neighboring single cell, so that breakthroughs are located over these gas distributor structures and in the top panel as well as the lower shell in the range within the edges. In such a manner a gas passage to the turned side of the single cell is possible, whereby each single cell consists of a substrate with on that applied anode layer, solid electrolyte layer and cathode layer and whereby a tension compensation layer provided with breaking through is applied in the operating temperature range of the fuel cell on the electrode layers and the electrolyte layer opposite side of the substrate. Preferably the top shell and the lower shell are similar and twisted arranged in the stack. IPCI H01M0008-02 [I,A]

IPCR H01M0008-02 [I,C]; H01M0008-02 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell

stack construction gas distribution structure

IT Fuel cells

(solid oxide; construction with gas
 distribution structures)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L87 ANSWER 3 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2007:671057 HCAPLUS Full-text
 DOCUMENT NUMBER: 147:75904

TITLE: Solid oxide fuel
cell having multiple unit
cells separated via
thermoconductive dielectric partitions
for uniform temperature distribution

INVENTOR(S): Murota, Tomoya; Tokoi, Hiromi; Takahashi,
Kokoro; Gunji, Akira

PATENT ASSIGNEE(S): Hitachi Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 11pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----

JP 2007157424	A	20070621	JP 2005-349078	2005 1202

PRIORITY APPLN. INFO.: <--
JP 2005-349078
2005
1202

<--

ED Entered STN: 21 Jun 2007

AB The title cell comprises a plurality of unit cells, wherein the adjacent cells are separated from each other by an elec. insulating partition. The partition is composed of an elec. insulating member (M1) and a thermoconductive member (M2) having a higher thermal conductivity than the M1. In another embodiment, the title cell comprises a plurality of cell assemblies held in a gas-tight container, each assembly having a solid oxide electrolyte held between an anode and cathode. These assemblies are connected to each other via a partition of the above structure coated with a current collector plate on each side. The above cell may have an assembly-supporting member (M3) disposed between at least one of the unit cells and the partitions, wherein the partitions comprise thermoconductive members sandwiched by metal felts and elec. insulating members sandwiching the felts for portions contacting to M3 and the thermoconductive members for the other portions. Fuel cells with no temperature variation in the longitudinal direction are provided with this invention. IPCI H01M0008-24 [I,A]; H01M0008-12 [I,A]

IPCR H01M0008-24 [I,C]; H01M0008-24 [I,A]; H01M0008-12 [I,C];
H01M0008-12 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell unit
thermal conductor partition; uniform temp
distribution fuel cell dielec thermoconductive
partition

IT Metals
RL: TEM (Technical or engineered material use); USES (Uses)
(felts, partition containing; solid
oxide fuel cells having
multiple unit cells separated via
thermoconductive dielec. partitions for
uniform temperature distribution)

IT Felts
(metals, partition containing; solid
oxide fuel cells having
multiple unit cells separated via
thermoconductive dielec. partitions for
uniform temperature distribution)

IT Electric insulators
Thermal conductors
(solid oxide fuel cells
having multiple unit cells separated
via thermoconductive dielec. partitions for
uniform temperature distribution)

IT Fuel cells

(solid oxide; solid oxide
fuel cells having multiple unit
cells separated via thermoconductive dielec.
partitions for uniform temperature distribution)

L87 ANSWER 4 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2007:88288 HCAPLUS Full-text
 DOCUMENT NUMBER: 146:146037
 TITLE: Honeycomb solid oxide
fuel cell
 INVENTOR(S): Kashiwabara, Takenori
 PATENT ASSIGNEE(S): Kikusui Chemical Industries Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 9pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2007018865	A	20070125	JP 2005-198888	
				2005
				0707
<--				
PRIORITY APPLN. INFO.:			JP 2005-198888	
				2005
				0707
<--				

ED Entered STN: 26 Jan 2007

AB The fuel cell is equipped with honeycomb solid electrolyte structure showing air tightness to give a plurality of first gas passages, a plurality of second gas passages, an electrode facing to the first gas passages, and an electrode facing to the second gas passages. The fuel cell has a plurality of electrochem. unit cells arranged on the same flat surface, where the cell unit consists of a first gas passage, a second gas passage, a first electrode, a second electrode, a first electrode terminal connected to end of the first electrode, and a second electrode terminal opposing to the first electrode terminal. Neighboring 2 unit cells are series connected at the first electrode terminal or the second electrode terminal. The fuel cell provides high power output per unit area.

IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]
 IPCR H01M0008-02 [I,C]; H01M0008-02 [I,A]; H01M0008-12 [I,C];
 H01M0008-12 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST honeycomb solid oxide fuel
cell

IT Fuel cells

(solid oxide; honeycomb solid
oxide fuel cell)

L87 ANSWER 5 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2006:1311136 HCAPLUS Full-text
 DOCUMENT NUMBER: 146:47863
 TITLE: Flat-shape solid oxide
fuel cell equipped
with two mechanisms for separately
compressing unit cells and manifolds
 INVENTOR(S): Sugita, Satoshi; Arai, Hajime; Arakawa,
Masahiro
 PATENT ASSIGNEE(S): Nippon Telegraph and Telephone Corp., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 13pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

10/561,789-347144-EIC SEARCH

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2006339035	A	20061214	JP 2005-162490	
				2005 0602
JP 4291299	B2	20090708	JP 2005-162490	
PRIORITY APPLN. INFO.:				2005 0602
				<--

ED Entered STN: 15 Dec 2006

AB The title cell comprises alternately stacked flat-shape unit fuel cells and interconnectors, each unit cell comprising a flat electrolyte membrane sandwiched in between a cathode and anode, and manifolds for supplying or discharging a fuel or oxidant gas. It is equipped with a 1st means, for compression of the cell stack, and a 2nd means, for compression of the manifolds. Preferably, the manifolds are made of alternate laminates of metal members and an elec. insulating manifold connectors, under optional insertion of glass having m.p. lower than the cell stack heat-resisting temperature, etc. The first mechanism improves adhesion between the unit cells and reduces power transmission loss at the connections, and the second mechanism improves gas sealing capability of the manifolds to prevent gas leakage.

IPCI H01M0008-24 [I,A]; H01M0008-02 [I,A]; H01M0008-12 [I,A];
H01M0008-24 [I,A]; H01M0008-02 [I,A]; H01M0008-12 [I,A]

IPCR H01M0008-24 [I,C]; H01M0008-24 [I,A]; H01M0008-02 [I,C];
H01M0008-02 [I,A]; H01M0008-12 [I,C]; H01M0008-12 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST SOFC manifold cell stack sep compression
mechanism; manifold sealing flat solid
oxide fuel cell

IT Compression
(flat SOFC with sep. compression mechanisms
for secure sealing of manifolds and
connection of unit cells)

IT Ceramics
(manifold connector; flat SOFC with
sep. compression mechanisms for secure sealing
of manifolds and connection of unit cells)

IT Mica-group minerals
RL: TEM (Technical or engineered material use); USES (Uses)
(manifold connector; flat SOFC with
sep. compression mechanisms for secure sealing
of manifolds and connection of unit cells)

IT Solders
(sealing of manifolds with their connectors
with; flat SOFC with sep. compression
mechanisms for secure sealing of manifolds and
connection of unit cells)

IT Glass
RL: TEM (Technical or engineered material use); USES (Uses)
(sealing of manifolds with their connectors
with; flat SOFC with sep. compression
mechanisms for secure sealing of manifolds and
connection of unit cells)

IT Fuel cells
(solid oxide; flat SOFC with
sep. compression mechanisms for secure sealing
of manifolds and connection of unit cells)

IT 12033-89-5, Silicon nitride, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(compression spring; flat SOFC with sep.
compression mechanisms for secure sealing of
manifolds and connection of unit cells)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
THIS RECORD (1 CITINGS)

10/561,789-347144-EIC SEARCH

L87 ANSWER 6 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2006:49538 HCAPLUS Full-text
 DOCUMENT NUMBER: 144:111338
 TITLE: Solid oxide fuel
 cells with high current collection,
 units therefor, and cell stacks therefrom
 INVENTOR(S): Yamashita, Shoji; Nishihara, Masato;
 Matsuzaki, Yoshio; Fujita, Kenjiro
 PATENT ASSIGNEE(S): Kyocera Corp., Japan; Tokyo Gas Co., Ltd.
 SOURCE: Jpn. Kokai Tokkyo Koho, 14 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 2006019059	A	20060119	JP 2004-193134	2004 0630
			<--	
PRIORITY APPLN. INFO.:			JP 2004-193134	2004 0630
			<--	

ED Entered STN: 19 Jan 2006

AB In the units, plural elec. generation units (A) consisting of laminates of anodes, solid electrolytes, and cathodes are arranged on surfaces of fuel gas path-equipped columnar insulator supports and tandemly interconnected via interconnectors, which in nearest to (farthest from) fuel gas manifolds have thickness larger than that of other ones. Also claimed are cell stacks, wherein plural number of the units are elec. interconnected, and fuel cells containing the stacks in cases. IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell
 current collection efficiency; tandem interconnection
 thickness solid oxide fuel
 cell

IT Interconnections, electric
 (elec. interconnector-equipped tandem units
 for solid oxide fuel
 cells with high current collection)

IT Fuel cells
 (solid oxide; elec. interconnector
 -equipped tandem units for solid
 oxide fuel cells with high current
 collection)

L87 ANSWER 7 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2005:1152738 HCAPLUS Full-text
 DOCUMENT NUMBER: 143:408213
 TITLE: Solid oxide fuel
 cell stack with a bipolar conductor
 structure instead of bipolar plates
 INVENTOR(S): Leithner, Reinhard
 PATENT ASSIGNEE(S): Technische Universitaet Braunschweig, Germany
 SOURCE: Ger. Offen., 12 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----

DE 102004015660 A1 20051027 DE 2004-102004015660

2004
0331

PRIORITY APPLN. INFO.: DE 2004-102004015660

2004
0331

<--

ED Entered STN: 28 Oct 2005

AB The invention concerns a solid oxide fuel cell (SOFC) stack, which is provided with a conductor structure instead of bipolar plates and whereby the elec.-insulated anode layer of a section on the top side of a solid electrolyte plate is elec.-conductive connected with an elec.-insulated cathode layer of the adjacent section on the lower surface of the same solid electrolyte plate. The stacked sections are switched elec. parallel according to the strength of current, and adjacent sections are switched in series, whereby a tension multiplication is obtained. A section is provided with at least a channel, generally several channels, which are passed by the fuel gas, air/O₂ or cooling fluid or a reforming gas/steam mixture IPCI H01M0008-10 [ICM,7]; H01M0008-02 [ICS,7]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-10 [I,C*];
H01M0008-10 [I,A]; H01M0008-12 [N,C*]; H01M0008-12 [N,A];
H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell
stack bipolar conductor structure

IT Crystal structure types
(C1 (fluorite); of solid oxide
electrolyte for fuel cell stack
with a bipolar conduction structure instead of bipolar
plates)

IT Vapor deposition process
(chemical; solid oxide fuel
cell stack with a bipolar conductor structure instead
of bipolar plates)

IT Perovskite-type crystals
(of solid oxide electrolyte for
fuel cell stack with a bipolar conduction
structure instead of bipolar plates)

IT Coating process
(plating; solid oxide fuel
cell stack with a bipolar conductor structure instead
of bipolar plates)

IT Sputtering
(solid oxide fuel cell
stack with a bipolar conductor structure instead of bipolar
plates)

IT Fuel cells
(solid oxide; stack with a bipolar
conductor structure)

IT 1313-99-1, Nickel oxide, uses
RL: PEP (Physical, engineering or chemical process); PYP (Physical
process); TEM (Technical or engineered material use); PROC
(Process); USES (Uses)
(anode layer for solid oxide
fuel cell stack with a bipolar conductor
structure)

IT 7440-24-6, Strontium, uses
RL: MOA (Modifier or additive use); USES (Uses)
(in cathode layer for solid oxide
fuel cell stack with a bipolar conductor
structure)

IT 7440-65-5, Yttrium, uses
RL: MOA (Modifier or additive use); USES (Uses)
(solid oxide electrolyte
plate for fuel cell stack with a
bipolar conductor structure)

IT 58438-69-0

10/561,789-347144-EIC SEARCH

RL: MOA (Modifier or additive use); USES (Uses)
 (strontium-doped; cathode layer for solid
 oxide fuel cell stack with a
 bipolar conductor structure)

IT 1314-23-4, Zirconia, uses
 RL: PEP (Physical, engineering or chemical process); PYP (Physical
 process); TEM (Technical or engineered material use); PROC
 (Process); USES (Uses)
 (yttrium-doped; solid oxide
 electrolyte plate for fuel
 cell stack with a bipolar conductor structure)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
 THIS RECORD (1 CITINGS)

REFERENCE COUNT: 4 THERE ARE 4 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L87 ANSWER 8 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2005:155488 HCAPLUS Full-text
 DOCUMENT NUMBER: 142:243604
 TITLE: Solid electrolyte fuel-
 cell device
 INVENTOR(S): Horiuchi, Michio; Watanabe, Misa; Suganuma,
 Shigeaki
 PATENT ASSIGNEE(S): Shinko Electric Co. Ltd., Japan
 SOURCE: Eur. Pat. Appl., 15 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 1508932	A2	20050223	EP 2004-254973	2004 0818
<--				
EP 1508932	A3	20051228		
EP 1508932	B1	20081126		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, PL, SK, HR				
JP 2005071628	A	20050317	JP 2003-208426	2003 0822
<--				
JP 4405196	B2	20100127		
CA 2478005	A1	20050222	CA 2004-2478005	2004 0818
<--				
US 20050042491	A1	20050224	US 2004-921313	2004 0819
<--				
PRIORITY APPLN. INFO.:			JP 2003-208426	A
				2003 0822
<--				

ED Entered STN: 24 Feb 2005
 AB The present invention relates to a solid electrolyte fuel-cell device wherein a plurality of fuel cells are formed on a single plate. A plurality of cathode layers are formed on one surface of the flat plate -like solid electrolyte substrate, and a plurality of anode layers on the opposite surface thereof, and each fuel cell is formed from a cathode layer and anode layer. An electromotive force extracting lead wire is

10/561,789-347144-EIC SEARCH

attached to the cathode layer, and a lead wire is attached to the anode layer. The plurality of fuel cells are connected in series by elec. connecting the cathode layer of one fuel cell to the anode layer of an adjacent fuel cell. Flames formed by combustion of a fuel such as a methane gas are supplied to the entire surface of each anode layer, and air is supplied to each cathode layer.

IPCI H01M0008-12 [I,C]; H01M0008-12 [I,A]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [I,C];

H01M0008-12 [I,A]; H01M0008-10 [I,C*]; H01M0008-10 [I,A];

H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST fuel cell device solid electrolyte

IT Fuel cell electrolytes

(solid electrolyte fuel-cell
device)

IT Fuel cells

(solid electrolyte; solid electrolyte
fuel-cell device)

IT 12035-36-8, Nickel oxide (NiO₂)

RL: DEV (Device component use); USES (Uses)
(Li-doped; solid electrolyte fuel-
cell device)

IT 7439-93-2, Lithium, uses

RL: MOA (Modifier or additive use); USES (Uses)
(NiO₂ doped with; solid electrolyte fuel-
cell device)

IT 59989-70-7, Cobalt samarium strontium oxide

cosm0.5sr0.5o3 116875-84-4, Cerium samarium oxide
(Ce0.8Sm0.2O1.9)

RL: DEV (Device component use); USES (Uses)
(solid electrolyte fuel-
cell device)

IT 12036-35-0, Rhodium oxide (Rh₂O₃)

RL: MOA (Modifier or additive use); USES (Uses)
(solid electrolyte fuel-
cell device)

IT 74-82-8, Methane, uses 106-97-8, Butane, uses

RL: TEM (Technical or engineered material use); USES (Uses)
(solid electrolyte fuel-cell
device)

OS.CITING REF COUNT: 2 THERE ARE 2 CAPLUS RECORDS THAT CITE

THIS RECORD (2 CITINGS)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L87 ANSWER 9 OF 30 HCPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2005:57688 HCPLUS Full-text

DOCUMENT NUMBER: 142:159521

TITLE: Stacked structure for solid-
oxide fuel cells

INVENTOR(S): Sugita, Satoshi; Orui, Himeko; Watabe,
Masataka; Arakawa, Masahiro

PATENT ASSIGNEE(S): Nippon Telegraph and Telephone Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
JP 2005019268	A	20050120	JP 2003-183948	2003 0627

PRIORITY APPLN. INFO.:

<--
JP 2003-1839482003
0627

<--

ED Entered STN: 21 Jan 2005

AB The title fuel cells comprise (1) a pl. number of planar fuel cell units comprising an electrolyte, a fuel electrode, and an air electrode and (2) an interconnector elec.- connecting between cell units, (3) gas flowing channels feeding the fuel and the air into each cell, and (4) elec.-insulative cell holders which have a thermal expansion coefficient similar to that of the cells, sep. fed fuel and oxidant gas, and provide leveled surface to make holder- interconnector interface thermal-stress-caused sliding between adjacent cells. The arrangement makes possible stable formation of the stacks.

IPCI H01M0008-24 [ICM,7]; H01M0008-02 [ICS,7]; H01M0008-12 [ICS,7]

IPCR H01M0008-02 [I,A]; H01M0008-02 [I,C*]; H01M0008-12 [I,A];
H01M0008-12 [I,C*]; H01M0008-24 [I,A]; H01M0008-24 [I,C*]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell
stack holder interconnector sliding interfaceIT Ceramics
(cell holders; stacked structure for
solid-oxide fuel cells)IT Holders
(cell; stacked structure for solid-
oxide fuel cells)IT Electrodes
(fuel/oxidant; stacked structure for solid-
oxide fuel cells)IT Fuel cells
(solid oxide stacked; stacked structure for
solid-oxide fuel cells)IT Electrolytes
Thermal expansion
(stacked structure for solid-oxide
fuel cells)IT Stress, mechanical
(thermal; stacked structure for solid-oxide
fuel cells)IT 1314-23-4, Zirconia, uses 1344-28-1, Alumina, uses 12060-08-1,
Scandium oxide (Sc2O3)
RL: MOA (Modifier or additive use); PRP (Properties); USES (Uses)
(electrolyte composition; stacked structure for
solid-oxide fuel cells)

L87 ANSWER 10 OF 30 HCPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2004:741988 HCPLUS Full-text

DOCUMENT NUMBER: 141:246108

TITLE: Unit cell for fuel
cell and the fuel
cell

INVENTOR(S): Marutani, Kazumasa; Hamada, Noriaki

PATENT ASSIGNEE(S): Kyocera Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 12 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

JP 2004253279 A 20040909 JP 2003-431692003
0220

<--

JP 4028809 B2 20071226

10/561,789-347144-EIC SEARCH

PRIORITY APPLN. INFO.:

JP 2003-43169

2003
0220

<--

ED Entered STN: 10 Sep 2004

AB The unit cell has an inner electrode, a solid electrolyte, and an outer electrode on a 1st side of a conductive support plate an interconnector on the opposite side of the plate, with the electrolyte layer extends from the 1st side to cover the edge of the opposite side; where the sum of the thickness of the edge of the support plate, the inner electrode, and the electrolyte is greater than the sum of the thickness of the support plate, the inner electrode, and the electrolyte layer. The fuel cell has several unit cells in a container.

IPCI H01M0008-02 [I,A]; H01M0008-12 [I,A]

IPCR H01M0008-02 [I,A]; H01M0008-02 [I,C*]; H01M0008-12 [I,A];
H01M0008-12 [I,C*]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST planar solid electrolyte fuel cell
structure

IT Fuel cells

(solid oxide; structure of planar unit
cells for solid oxide fuel
cells)

L87 ANSWER 11 OF 30 HCPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2004:720388 HCPLUS Full-text

DOCUMENT NUMBER: 141:246061

TITLE: Solid oxide fuel
cellINVENTOR(S): Funabashi, Yoshihiro; Ishikawa, Hiroya;
Hattori, Masaaki

PATENT ASSIGNEE(S): NGK Spark Plug Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 15 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	
JP 2004247174	A	20040902	JP 2003-35718	2003 0213

<--

PRIORITY APPLN. INFO.: JP 2003-35718

2003
0213

<--

ED Entered STN: 03 Sep 2004

AB The fuel cell has unit cells stacked alternately with metal separators, where each unit cell has a cathode and an anode on opposite sides of an electrolyte and a collector installed between its cathode and a separator, and the collector is connected to the separator by a solder. The solder is preferably a Ag based solder.

IPCI H01M0008-02 [ICM,7]; H01M0008-12 [ICS,7]

IPCR H01M0008-02 [I,A]; H01M0008-02 [I,C*]; H01M0008-12 [I,A];
H01M0008-12 [I,C*]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid oxide fuel cell
cathode metal separator silver solder

IT Fuel cells

(solid oxide; solid oxide
fuel cells containing cathodes
connected to metal separators by silver
solders)IT 7440-06-4, Platinum, uses 11109-52-7, Sus 430 12606-04-1,
Inconel 610 59707-46-9, Lanthanum strontium manganate
110620-52-5, Cobalt lanthanum strontium oxide

10/561,789-347144-EIC SEARCH

(CoLa0.6Sr0.4O₃) 148595-66-8, Cobalt iron lanthanum strontium oxide (Co0.2Fe0.8La0.6Sr0.4O₃)
 RL: DEV (Device component use); USES (Uses)
 (solid oxide fuel cells
 containing cathodes connected to metal
 separators by silver solders)
 IT 126102-72-5
 RL: NUU (Other use, unclassified); USES (Uses)
 (solid oxide fuel cells
 containing cathodes connected to metal
 separators by silver solders)

L87 ANSWER 12 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2004:352021 HCAPLUS Full-text
 DOCUMENT NUMBER: 140:360302
 TITLE: Solid polymer-electrolyte
 fuel cell stacks designed
 capable of easily discharging water
 INVENTOR(S): Sato, Shuji; Yoshida, Hiromichi
 PATENT ASSIGNEE(S): Honda Motor Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004134130	A	20040430	JP 2002-295198	2002 1008
JP 3673252	B2	20050720	JP 2002-295198	2002 1008
<--				
PRIORITY APPLN. INFO.:				

ED Entered STN: 30 Apr 2004

AB The stack, comprising horizontally and alternately laminated electrode-electrolyte layers and separators, is equipped with an oxidizer-gas- discharging manifold as an outlet, and a downward-sloped discharge pipe connected with the manifold, wherein a bypass pipe is so formed as to connect the manifold and the discharge pipe in such a way that the position of opening is higher at the manifold side. The fuel cell stacks show durable power generating efficiency.

IPCI H01M0008-24 [ICM,7]; H01M0008-10 [ICS,7]
 IPCR H01M0008-10 [I,A]; H01M0008-10 [I,C*]; H01M0008-24 [I,A];
 H01M0008-24 [I,C*]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST solid polymer electrolyte fuel cell
 water discharge

IT Fuel cells
 (solid electrolyte, polymer electrolyte;
 solid polymer-electrolyte fuel cell
 stacks designed capable of easily discharging water)

IT Waters
 (solid polymer-electrolyte fuel
 cell stacks designed capable of easily
 discharging water)

IT 7782-44-7, Oxygen, miscellaneous
 RL: MSC (Miscellaneous)
 (oxidizer, discharge of; solid
 polymer-electrolyte fuel cell
 stacks designed capable of easily discharging water)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
 THIS RECORD (1 CITINGS)

L87 ANSWER 13 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2004:219408 HCAPLUS Full-text
 DOCUMENT NUMBER: 140:256295
 TITLE: Solid oxide fuel
 cell
 INVENTOR(S): Hiwata, Kenichi
 PATENT ASSIGNEE(S): Toto Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 21 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004087490	A	20040318	JP 2003-288038	2003 0806
JP 4524791	B2	20100818	JP 2002-228344	A 2002 0806

ED Entered STN: 19 Mar 2004
 AB The fuel cell has an electrolyte membrane, a cathode and an anode on opposite sides of the electrolyte membrane, and interconnectors; where the electrolyte membrane has at least a Sc and Y solid solution containing ZrO₂ layer, and particles on the membrane surface has diams. ≥3 and ≥50 µm at 3 and 97% at its size distribution pattern. IPCI H01M0008-02 [I,A]; C04B0035-48 [I,A]; H01M0008-12 [I,A]
 IPCR C04B0035-48 [I,A]; C04B0035-48 [I,C*]; H01M0004-86 [I,A]; H01M0004-86 [I,C*]; H01M0008-02 [I,A]; H01M0008-02 [I,C*]; H01M0008-12 [I,A]; H01M0008-12 [I,C*]
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST scandium yttrium zirconium oxide fuel cell
 electrolyte particle size
 IT fuel cell electrolytes
 (scandium oxide and yttria stabilized zirconia
 electrolytes with controlled particle size
 distribution for solid oxide fuel
 cells)
 IT 122219-13-0, Scandium yttrium zirconium oxide
 (Sc0.08Y0.08Zr0.92O₂.08) 656820-29-0, Scandium yttrium zirconium
 oxide (Sc0.04Y0.16Zr0.902.1) 671180-90-8, Scandium yttrium
 zirconium oxide (Sc0.1Y0.1Zr0.902.1) 671180-91-9, Scandium
 yttrium zirconium oxide (Sc0.03Y0.03Zr0.97O₂.03) 671180-92-0,
 Scandium yttrium zirconium oxide (Sc0.06Y0.06Zr0.94O₂.06)
 671180-93-1, Scandium yttrium zirconium oxide
 (Sc0.12Y0.12Zr0.88O₂.12) 671180-94-2, Scandium yttrium zirconium
 oxide (Sc0.02Y0.02Zr0.98O₂.02) 671180-95-3, Scandium yttrium
 zirconium oxide (Sc0.15Y0.15Zr0.85O₂.15) 671180-96-4, Scandium
 yttrium zirconium oxide (Sc0.14Y0.06Zr0.902.1) 671180-97-5,
 Scandium yttrium zirconium oxide (Sc0.18Y0.02Zr0.902.1)
 671180-98-6, Scandium yttrium zirconium oxide
 (Sc0.03Y0.17Zr0.902.1) 671180-99-7, Scandium yttrium zirconium
 oxide (Sc0.19Y0.01Zr0.902.1) 671181-00-3, Cerium scandium
 yttrium zirconium oxide (Ce0.01Sc0.1Y0.1Zr0.89O₂.1) 671181-01-4,
 Cerium scandium yttrium zirconium oxide
 (Ce0.05Sc0.1Y0.1Zr0.85O₂.1) 671181-02-5, Cerium scandium yttrium
 zirconium oxide (Ce0.06Sc0.1Y0.1Zr0.84O₂.1) 671181-03-6, Bismuth
 scandium yttrium zirconium oxide (Bi0.02Sc0.1Y0.1Zr0.89O₂.11)
 671181-04-7, Bismuth scandium yttrium zirconium oxide
 (Bi0.1Sc0.1Y0.1Zr0.85O₂.15) 671181-05-8, Bismuth scandium

10/561,789-347144-EIC SEARCH

yttrium zirconium oxide (Bi0.06Sc0.1Y0.1Zr0.84O2.16)
 671181-06-9, Bismuth scandium yttrium zirconium oxide
 (Bi0.01Sc0.1Y0.1Zr0.89O2.1) 671181-07-0
 RL: DEV (Device component use); PRP (Properties); USES (Uses)
 (scandium oxide and yttria stabilized zirconia
 electrolytes with controlled particle size
 distribution for solid oxide fuel
 cells)

L87 ANSWER 14 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2003:912674 HCAPLUS Full-text

DOCUMENT NUMBER: 139:367592

TITLE: Solid oxide fuel
cell with a metal foam seal

INVENTOR(S): Keegan, Kevin R.

PATENT ASSIGNEE(S): USA

SOURCE: U.S. Pat. Appl. Publ., 10 pp.
CODEN: USXXCO

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
US 20030215689	A1	20031120	US 2002-147406	2002 0516
WO 2003098729	A1	20031127	WO 2003-US14310	2003 0507
			<--	<--
RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR				
PRIORITY APPLN. INFO.:			US 2002-147406	A
				2002 0516
			<--	<--

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 21 Nov 2003

AB Disclosed herein are a solid oxide fuel cell and a method for making the same. In one embodiment, the solid oxide fuel cell comprises: a solid oxide fuel cell, comprising: an electrolyte disposed between and in ionic communication with a first electrode and a second electrode, forming an electrochem. cell; a flow plate disposed adjacent to and in elec. communication with at least a portion of the electrochem. cell; and a seal member sealably engaging the flow plate, wherein the seal member comprises a foam selected from the group consisting of a metal, a metal alloy, and combinations comprising at least one of the foregoing foams. In one embodiment, the method of manufacturing the solid oxide fuel cell, comprises: disposing a first electrode and a second electrode on opposite sides of a solid electrolyte; disposing a flow plate adjacent to and in elec. communication with at least a portion of the electrochem. cell; and disposing the seal member in sealable engagement with the flow plate.

INCL 429035000; 429030000; 029623200

IPCI H01M0008-02 [ICM,7]; H01M0002-08 [ICS,7]

IPCR H01M0002-00 [I,C*]; H01M0002-00 [I,A]; H01M0002-02 [I,C*];
 H01M0002-02 [I,A]; H01M0002-08 [I,C*]; H01M0002-08 [I,A];
 H01M0002-14 [I,C*]; H01M0002-14 [I,A]; H01M0008-00 [I,C*];
 H01M0008-00 [I,A]; H01M0008-02 [I,C*]; H01M0008-02 [I,A];
 H01M0008-10 [I,C*]; H01M0008-10 [I,A]; H01M0008-12 [N,C*];
 H01M0008-12 [N,A]

NCL 429/495.000; 029/623.200; 429/509.000; 429/514.000; 429/535.000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 56

ST seal metal foam solid oxide
fuel cell

IT Group VIII elements
RL: TEM (Technical or engineered material use); USES (Uses)
(Group 8; solid oxide fuel
cell with metal foam seal)

IT Interconnections, electric
(flow plate; solid oxide
fuel cell with metal foam seal)

IT Foams
(metal; solid oxide fuel
cell with metal foam seal)

IT Cermets
Composites
Gaskets
Seals (parts)
(solid oxide fuel cell
with metal foam seal)

IT Alloys, uses
Hydrides
Oxides (inorganic), uses
Salts, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(solid oxide fuel cell
with metal foam seal)

IT Fuel cells
(solid oxide; solid oxide
fuel cell with metal foam seal)

IT 7429-90-5, Aluminum, uses 7439-91-0, Lanthanum, uses
7440-02-0, Nickel, uses 7440-05-3, Palladium, uses 7440-06-4,
Platinum, uses 7440-22-4, Silver, uses 7440-24-6, Strontium,
uses 7440-32-6, Titanium, uses 7440-47-3, Chromium, uses
7440-50-8, Copper, uses 7440-57-5, Gold, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(solid oxide fuel cell
with metal foam seal)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
THIS RECORD (1 CITINGS)

L87 ANSWER 15 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2003:677266 HCAPLUS Full-text
 DOCUMENT NUMBER: 140:62194
 TITLE: Patterned series-connected
SOFC
 AUTHOR(S): Lai, Tammy; Liu, Jiang; Barnett, Scott A.
 CORPORATE SOURCE: Materials Science and Engineering Department,
Northwestern University, Evanston, IL, 60208,
USA
 SOURCE: Proceedings - Electrochemical Society (2003), 2003-7(Solid Oxide Fuel Cells
VIII (SOFC VIII)), 1068-1076
CODEN: PESODO; ISSN: 0161-6374
 PUBLISHER: Electrochemical Society
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 ED Entered STN: 29 Aug 2003
 AB Integrated solid oxide fuel
cells (ISOFC) are small, thin-electrolyte cells connected in series on a porous
insulating support. Statistically designed expts. have shown that supports made from
partially stabilized zirconia using 15 wt% filler have a good combination of porosity
and flexural strength. Conductivity measurements of thin-layer Ni-YSZ anode material
show excellent conductivity. Similar tests on La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O₃ (LSCF)-based
cathode materials show that applying layers of pure LSCF over the base of LSCF-
Ce_{0.9}Gd_{0.1}O₂ greatly improves conductivity. An initial 4-cell ISOFC stack was shown to
have a power d. of ≈ 60 mW/cm² at 700°C, which can be improved in the future by using a

10/561,789-347144-EIC SEARCH

more conductive cathode. A simple elec. model is used to explain the exptl. observed stack performance.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 Section cross-reference(s): 72, 76

ST patterned series connected SOFC stack

IT Electric current-potential relationship
 Open circuit potential
 (patterned series-connected SOFC stacks)

IT Fuel cells
 (solid oxide; patterned series-connected SOFC stacks)

IT 1313-99-1, Nickel oxide (NiO), uses 7440-22-4, Silver, uses 108916-22-9, Lanthanum manganese strontium oxide (La_{0.8}MnSr_{0.2}O₃) 148595-66-8, Cobalt iron lanthanum strontium oxide (Co_{0.2}Fe_{0.8}La_{0.6}Sr_{0.4}O₃) 183546-68-1, Cerium gadolinium oxide (Ce_{0.9}Gd_{0.1}O₂) 403694-09-7, 8YSZ 639506-73-3
 RL: DEV (Device component use); TEM (Technical or engineered material use); USES (Uses)
 (patterned series-connected SOFC stacks)

IT 64-17-5, Ethanol, uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (patterned series-connected SOFC stacks)

REFERENCE COUNT: 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L87 ANSWER 16 OF 30 HCPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 2002:867304 HCPLUS Full-text
 DOCUMENT NUMBER: 137:372548
 TITLE: Small-sized solid electrolyte fuel cells and their manufacture
 INVENTOR(S): Shibata, Itaru; Hara, Naoki; Hatano, Shoji;
 Yamanaka, Mitsugu; Uchiyama, Makoto
 PATENT ASSIGNEE(S): Nissan Motor Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 11 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

JP 2002329508	A	20021115	JP 2001-134695	2001 0501
<--				
PRIORITY APPLN. INFO.:		JP 2001-134695		
		2001 0501		
<--				

ED Entered STN: 15 Nov 2002

AB The fuel cell unit comprises a laminate of an air electrode, solid electrolyte, and a fuel electrode which its side is covered with an elec. insulating and gas-impermeable material and which is sandwiched in between a pair of porous metal collectors which permeates fuel gas and oxidized gas. Fuel cells (A) comprising the said unit having an elec. conductive gas-impermeable layer laminated on either one of the collectors, (B) comprising the said unit stacked in a manner that the air or the fuel electrodes of the neighboring unit cell is connected via a porous metal collector, or (C) comprising multiple nos. of cylinder-shaped electrode/ electrolyte laminate inserted in holes formed in a porous metal collector matrix, with the cylinder inside equipped with the opposing collector, are also claimed. The fuel cells have small internal resistance. IPCI H01M0008-02 [ICM,7]; H01M0008-02 [ICS,7]; H01M0004-86 [ICS,7];

H01M0004-88 [ICS,7]; H01M0008-12 [ICS,7]; H01M0008-24 [ICS,7]
 IPCR H01M0004-86 [I,C*]; H01M0004-86 [I,A]; H01M0004-88 [I,C*];

10/561,789-347144-EIC SEARCH

H01M0004-88 [I,A]; H01M0008-02 [I,C*]; H01M0008-02 [I,A];
H01M0008-12 [I,C*]; H01M0008-12 [I,A]; H01M0008-24 [I,C*];
H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid electrolyte fuel cell small
size manuf

IT Ceramics
(gas-impermeable insulator; manufacture of small-sized
solid electrolyte fuel cells with
low internal resistance)

IT Glass, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(gas-impermeable insulator; manufacture of small-sized
solid electrolyte fuel cells with
low internal resistance)

IT Electric insulators
(gas-permeable; manufacture of small-sized solid electrolyte
fuel cells with low internal resistance)

IT Porous materials
(metals, electrode collectors; manufacture of small-sized
solid electrolyte fuel cells with
low internal resistance)

IT Fuel cells
(solid electrolyte; manufacture of small-sized solid
electrolyte fuel cells with low
internal resistance)

IT 1314-36-9, Yttria, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(-stabilized zirconia, solid electrolyte; manufacture of
small-sized solid electrolyte fuel
cells with low internal resistance)

IT 7440-22-4, Silver, uses 11102-90-2, Copper, nickel base
12619-49-7 12667-63-9 39325-34-3 42611-06-3 68394-17-2
70409-48-2
RL: TEM (Technical or engineered material use); USES (Uses)
(electrode collector; manufacture of small-sized solid
electrolyte fuel cells with low
internal resistance)

IT 39377-48-5, Cobalt lanthanum strontium oxide
114168-16-0, Yttrium zirconium oxide (Y0.16Zr0.92O2.08)
RL: TEM (Technical or engineered material use); USES (Uses)
(electrode; manufacture of small-sized solid
electrolyte fuel cells with low
internal resistance)

IT 7440-02-0, Nickel, uses 12649-91-1 12756-52-4 55782-25-7
RL: TEM (Technical or engineered material use); USES (Uses)
(porous electrode collector; manufacture of small-sized
solid electrolyte fuel cells with
low internal resistance)

IT 1314-23-4, Zirconia, uses
RL: TEM (Technical or engineered material use); USES (Uses)
(yttria-stabilized, solid electrolyte; manufacture of
small-sized solid electrolyte fuel
cells with low internal resistance)

OS.CITING REF COUNT: 4 THERE ARE 4 CAPLUS RECORDS THAT CITE
THIS RECORD (4 CITINGS)

L87 ANSWER 17 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 2002:353785 HCAPLUS Full-text
DOCUMENT NUMBER: 136:343381
TITLE: Improved solid oxide
fuel cells
INVENTOR(S): Thomas, George J.; Meacham, G. B. Kirby
PATENT ASSIGNEE(S): Michael A. Cobb & Company, USA
SOURCE: PCT Int. Appl., 41 pp.
CODEN: PIXXD2
DOCUMENT TYPE: Patent

10/561,789-347144-EIC SEARCH

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2002037589	A2	20020510	WO 2001-US48417	2001 1030
<--				
WO 2002037589	A3	20030313		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, AP, EA, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, EP, OA				
CA 2427501	A1	20020510	CA 2001-2427501	2001 1030
<--				
AU 2002030865	A	20020515	AU 2002-30865	2001 1030
<--				
EP 1342279	A2	20030910	EP 2001-991117	2001 1030
<--				
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
PRIORITY APPLN. INFO.: US 2000-244332P P 2000 1030				
<--				
WO 2001-US48417 W 2001 1030				
<--				

ED Entered STN: 12 May 2002

AB The present invention is a solid state electrochem. device incorporating planar sheets of cathode flow passages, in varying configurations and geometries, with thin coatings of electrolyte, anode and interconnect materials, which when assembled and bonded together form a monolithic honeycomb structure defining tubular passages for the air and gas to pass through. Air will flow through cathode flow passages inside the cell plates, while fuel will flow through passages formed between adjacent cells. Elec. insulating manifolds, designed to keep the fuel and air sep., are bonded at each end of the honeycomb monolith to feed air and fuel to the appropriate passages in the honeycomb. The fuel cell stack and manifolds are encased in a metal housing or cover to provide the outer walls of the manifold, complete the package, and define a discrete fuel cell module for use singly or in groups in fuel cell power generation systems. IPCI H01M0008-00 [ICM,7]; H11M0008-24 [ICS,7]

IPCR H01M0008-12 [I,C*]; H01M0008-12 [I,A]; H01M0008-24 [I,C*];
H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST fuel cell module solid oxide

IT Fuel cells

(power plants; improved solid oxide
fuel cells)

IT Fuel cells

(solid electrolyte; improved solid

10/561,789-347144-EIC SEARCH

oxide fuel cells)
OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
THIS RECORD (1 CITINGS)
REFERENCE COUNT: 6 THERE ARE 6 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L87 ANSWER 18 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 2000:589913 HCAPLUS Full-text
DOCUMENT NUMBER: 133:166288
TITLE: Planar solid oxide
fuel cell stack with
metallic foil interconnect
INVENTOR(S): Virkar, Anil V.; Kim, Jai-woh; Fung, Kuan-zong
PATENT ASSIGNEE(S): Gas Research Institute, USA
SOURCE: U.S., 6 pp.
CODEN: USXXAM
DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
US 6106967	A	20000822	US 1999-332237	1999 0614
CA 2391487	A1	20001221	CA 2000-2391487	2000 0614
CA 2391487	C	20090929		<--
WO 2000077872	A1	20001221	WO 2000-US16387	2000 0614
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG			<--	
AU 2000057386	A	20010102	AU 2000-57386	2000 0614
EP 1105929	A1	20010613	EP 2000-942816	2000 0614
EP 1105929	B1	20050406		<--
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
AT 292846	T	20050415	AT 2000-942816	2000 0614
PRIORITY APPLN. INFO.:			US 1999-332237	A 1999 0614

10/561,789-347144-EIC SEARCH

WO 2000-US16387

W

2000
0614

<--

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 24 Aug 2000

AB A solid oxide fuel cell

stack has a plurality of integral component fuel cell units, each integral component fuel cell unit having a porous anode layer, a porous cathode layer, and a dense electrolyte layer disposed between the porous anode layer and the porous cathode layer. The porous anode layer forms a plurality of substantially parallel fuel gas channels on its surface facing away from the dense electrolyte layer and extending from one side to the opposite side of the anode layer, and the porous cathode layer forms a plurality of substantially parallel oxidant gas channels on its surface facing away from the dense electrolyte layer and extending from one side to the opposite side of the cathode. A flexible metallic foil interconnect is provided between the porous anode and porous cathode of adjacent integral component fuel cell units.

INCL 429034000

IPCI H01M0008-12 [ICM,7]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [N,C*];
H01M0008-12 [N,A]; H01M0008-24 [I,C*]; H01M0008-24 [I,A]

NCL 429/458.000; 429/454.000; 429/465.000; 429/468.000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
Section cross-reference(s): 55ST fuel cell stack metallic foil
interconnect

IT Interconnections (electric)

Solid state fuel cells
(planar solid oxide fuel
cell stack with metallic foil interconnect)

IT Superalloys

RL: DEV (Device component use); USES (Uses)
(planar solid oxide fuel
cell stack with metallic foil interconnect)

IT 1313-99-1, Nickel oxide nio, uses 108916-22-9D,
Lanthanum manganese strontium oxide La0.8MnSr0.2O3,
O-deficient 114168-16-0, Tz-8y 157349-18-3

RL: DEV (Device component use); USES (Uses)
(planar solid oxide fuel
cell stack with metallic foil interconnect)

IT 1314-23-4, Zirconia, uses

RL: DEV (Device component use); USES (Uses)
(yttria-stabilized; planar solid oxide
fuel cell stack with metallic foil
interconnect)

IT 1314-36-9, Yttria, uses

RL: DEV (Device component use); USES (Uses)
(zirconia stabilized with; planar solid oxide
fuel cell stack with metallic foil
interconnect)

OS.CITING REF COUNT: 15 THERE ARE 15 CAPLUS RECORDS THAT CITE
THIS RECORD (15 CITINGS)REFERENCE COUNT: 14 THERE ARE 14 CITED REFERENCES AVAILABLE
FOR THIS RECORD. ALL CITATIONS AVAILABLE
IN THE RE FORMAT

L87 ANSWER 19 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 2000:440405 HCAPLUS Full-text

DOCUMENT NUMBER: 133:46191

TITLE: Solid electrolyte fuel
cell modulesINVENTOR(S): Takeuchi, Shinji; Nishimura, Masayoshi;
Nagata, Masakatsu; Mochizuki, Masataka;
Iwasawa, IsamuPATENT ASSIGNEE(S): Kansai Electric Power Co., Japan; Fujikura
Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2000182645	A	20000630	JP 1998-356749	
				1998
				1215
<--				
PRIORITY APPLN. INFO.:		JP 1998-356749		
		1998		
		1215		
<--				

ED Entered STN: 30 Jun 2000

AB The fuel cell modules have a power generating chamber containing several fuel cell assemblies, fuel gas supplying and discharging chambers above the power generating chamber, and a thermal insulator enclosing the chambers. The fuel cell has an electrolyte layer inside a cathode tube, an anode inside the electrolyte layer, and a fuel supplying-anode collector pipe inside the anode and are connected to each other without interconnectors to form the assembly. The cathodes of neighboring cells in an assembly are elec. connected by corrugated cathode collectors inserted between the cells along their length direction, the cathode collectors are connected to a cathode collector plate, and the anodes are connected through the fuel supplying-anode collector pipes and a collector plate. The cathode collectors have a stainless steel, Ni-Cr or Cr-Fe alloy substrate coated with LaCrO_x or LaMnO_x, and may have a Pt paste layer contacting the cathode.

IPCI H01M0008-02 [ICM,7]; H01M0008-12 [ICS,7]; H01M0008-24 [ICS,7]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [I,C*];
 H01M0008-12 [I,A]; H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid electrolyte fuel cell module

IT Solid state fuel cells

(structure of interconnector-free solid
 electrolyte fuel cell modules)

IT 11105-45-6 11122-73-9 12597-68-1, Stainless steel, uses

RL: DEV (Device component use); USES (Uses)
 (corrugated cathode collectors for cell
 connection in interconnector-free solid
 electrolyte fuel cell modules)

IT 12777-94-5, Chromium lanthanum oxide

RL: DEV (Device component use); USES (Uses)
 (lanthanum chromite coated cathode collectors for
 cell connection in interconnector
 -free solid electrolyte fuel
 cell modules)

IT 61115-22-8, Lanthanum manganese oxide

RL: DEV (Device component use); USES (Uses)
 (lanthanum manganite coated cathode collectors for
 cell connection in interconnector
 -free solid electrolyte fuel
 cell modules)

L87 ANSWER 20 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 1999:161391 HCAPLUS Full-text

DOCUMENT NUMBER: 130:299332

TITLE: Investigations of the long-term behavior of
 high-temperature fuel cell
 (SOFC) metallic
 interconnector materials with respect
 to compatibility with cathode-side
 contact layers

AUTHOR(S): Malkow, Thomas; Quadakkers, Willem J.;

CORPORATE SOURCE: Singheiser, Lorenz; Nickel, Hubertus
 Inst. Werkstoffe Verfahren Energietechnik,

10/561,789-347144-EIC SEARCH

Forschungszentrum Juelich G.m.b.H., Juelich,

D-52425, Germany

SOURCE: Berichte des Forschungszentrums Juelich (1998), Juel-3589, 1-170 pp.
CODEN: FJBEE5; ISSN: 0366-0885

DOCUMENT TYPE: Report

LANGUAGE: German

ED Entered STN: 11 Mar 1999

AB In the present work the corrosion behavior of candidate metallic interconnector materials for SOFC applications in simulated service environments and their interaction with cathode-side contact layers were investigated. Two groups of metallic materials have been considered: Cr-ODS alloys based on the electrolyte foil concept and ferritic steels for anode supported SOFC applications. The investigations of the Cr-ODS alloys intended for operating temps. of about 950° have shown a, significant dependency of the oxidation behavior on the service environment. The oxidation behavior was not strongly affected by Y2O3 dispersion contents between 0.2 and 1%. Detns. of the oxidation behavior of the ferritic steels at temps. between 700 and 900° have shown that com. Cr steels containing up to 20% Cr, as X10CrAl 18, are not suitable for SOFC applications because of the formation of elec. insulating Al₂O₃ oxide scales. Of all com. steels tested, the best combination of required properties for SOFC applications was found in 22% Cr steel Crofer 22. The oxidation resistance of this steel could be improved with respect to the SOFC requirements by addns. of small amts. of reactive elements (0.1-0.5%) as Y or Ce. Investigations of the elec. contact resistance and the interactions of the interconnector materials with cathode-side contact layers have shown that the high elec. conductivity of the perovskite contact layer materials has not been reflected in very low elec. contact resistances, because of inadequate sintering of the contact layers and poor attachment of these contact layers to the interconnector materials. Using LaCoO₃ as contact material, secondary phase formation in the contact layer, reaction zone formation at the interface contact layer/alloy and crack initiation/propagation in the reaction zone caused in the different thermal expansion coeffs. were observed. Contact layers based on LaSrMnO₃ exhibited less interaction with the metallic component. Based on the present investigations LaMnO₃ type contact layers appear to be suitable for planar SOFC designs. Furthermore, addns. of sintering additives and application of a, functional layer based on LaCrO₃ can improve the sinterability and the attachment of contact layers to the interconnector material.

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST corrosion ferritic steel interconnection solid electrolyte fuel cell; chromium iron yttria interconnect corrosion thermal expansion fuel cell

IT Corrosion

(hot; thermal expansion and corrosion of ferritic steels and Cr-base ODS alloys in simulated anode and cathode gases as high-temperature fuel cell metallic interconnector materials)

IT Scale (deposits)

(oxide, formation of; thermal expansion and corrosion of ferritic steels and Cr-base ODS alloys in simulated anode and cathode gases as high-temperature fuel cell metallic interconnector materials)

IT Contact resistance

Crack initiation

Fuel cell anodes

Fuel cell cathodes

Interconnections (electric)

Solid state fuel cells

Thermal expansion

(thermal expansion and corrosion of ferritic steels and Cr-base ODS alloys in simulated anode and cathode gases as high-temperature fuel cell metallic interconnector materials)

IT Oxidation

(thermal; thermal expansion and corrosion of ferritic steels and Cr-base ODS alloys in simulated anode and cathode gases as high-temperature fuel cell metallic interconnector materials)

10/561,789-347144-EIC SEARCH

IT 1333-74-0, Hydrogen, uses 7440-37-1, Argon, uses 7732-18-5,
 Water, uses
 RL: NUU (Other use, unclassified); USES (Uses)
 (anode gas-containing; thermal expansion and corrosion of
 ferritic steels and Cr-base ODS alloys in simulated
 anode and cathode gases as high-temperature
 fuel cell metallic interconnector
 materials)
 IT 1302-67-6, Spinel 1308-38-9, Chromia, formation (nonpreparative)
 RL: FMU (Formation, unclassified); FORM (Formation,
 nonpreparative)
 (formation of; thermal expansion and corrosion of ferritic
 steels and Cr-base ODS alloys in simulated
 anode and cathode gases as high-temperature
 fuel cell metallic interconnector
 materials)
 IT 1309-37-1, Iron oxide (FE2O3), formation (nonpreparative)
 RL: FMU (Formation, unclassified); FORM (Formation,
 nonpreparative)
 (formation of; thermal expansion and corrosion of ferritic
 steels and Cr-base ODS alloys in simulated
 anode and cathode gases as high-temperature
 solid- oxide fuel cell
 metallic interconnector materials)
 IT 12611-79-9, Nirosta 4006 12743-96-3, X10CrAl18 12743-97-4,
 Ferrotherm 4762 12745-19-6, E-Brite 39366-96-6, Sandvik 4C54
 51569-64-3, Ferrotherm 4713 56712-91-5, Ferrotherm 4724
 82047-94-7, Al29-4C 186672-90-2, Cr5Fe1Y2O3 223394-54-5,
 Cr5Fe0.5Y2O3 223394-55-6, Cr5Fe0.2Y2O3 223394-56-7, Crofer 22
 223394-57-8, Crofer 18Hf 223394-58-9, Fe25CrMn
 RL: DEV (Device component use); PEP (Physical, engineering or
 chemical process); PRP (Properties); PROC (Process); USES (Uses)
 (thermal expansion and corrosion of ferritic steels and Cr-
 base ODS alloys in simulated anode and
 cathode gases as high-temperature fuel cell
 metallic interconnector materials)

REFERENCE COUNT: 259 THERE ARE 259 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L87 ANSWER 21 OF 30 HCPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 1999:74547 HCPLUS [Full-text](#)

DOCUMENT NUMBER: 130:112695

TITLE: Tubular solid electrolyte
 fuel cells

INVENTOR(S): Tateishi, Yuji

PATENT ASSIGNEE(S): Kyocera Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

JP 11026000	A	19990129	JP 1997-173845	1997 0630
				<--
JP 3405659	B2	20030512	JP 1997-173845	1997 0630
PRIORITY APPLN. INFO.:				<--

ED Entered STN: 04 Feb 1999

10/561,789-347144-EIC SEARCH

AB The fuel cells have a cathode and an anode on the opposite sides of a tubular solid electrolyte, an interconnector elec contacting the cathode or anode, and a 0.3-15 μm thick plated metal layer on the surface of the interconnector.

IPCI H01M0008-02 [ICM,6]; H01M0008-12 [ICS,6]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [I,C*];
H01M0008-12 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST tubular solid electrolyte fuel cell
interconnector; fuel cell metal plated
interconnector

IT Solid state fuel cells
(tubular solid electrolyte fuel
cells metal plated calcium lanthanum chromite
interconnectors)

IT 7440-02-0, Nickel, uses 219655-03-5, Calcium chromium lanthanum
oxide (Ca0.21Cr3La0.803)
RL: DEV (Device component use); PEP (Physical, engineering or
chemical process); PROC (Process); USES (Uses)
(tubular solid electrolyte fuel
cells metal plated calcium lanthanum chromite
interconnectors)

L87 ANSWER 22 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 1997:768961 HCAPLUS Full-text
DOCUMENT NUMBER: 128:50750
ORIGINAL REFERENCE NO.: 128:9913a,9916a
TITLE: Manufacture of solid electrolyte
fuel cells
INVENTOR(S): Hishinuma, Yuichi; Matsuzaki, Yoshio; Ogihara,
Takashi
PATENT ASSIGNEE(S): Tokyo Gas Co., Ltd., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	-----
JP 09306514	A	19971128	JP 1996-115052	1996 0509 --
PRIORITY APPLN. INFO.:			JP 1996-115052	1996 0509 --

ED Entered STN: 10 Dec 1997

AB Solid electrolyte fuel cells containing in serial connected planar unit cells, having a $(\text{La}_1-\text{pM}_\text{p})(\text{Mn}_1-\text{qM}_1\text{q})\text{O}_3$ ($\text{M} = \text{Sr}, \text{Ba}, \text{and/or Ca}; \text{M}_1 = \text{Cr}, \text{Ni}, \text{Mg}, \text{Co}, \text{Zr}, \text{Ce}, \text{Fe}, \text{and/or Al}; \text{p} \leq 0.50; \text{q} \leq 0.05$) cathode and an anode on the opposite sides of an electrolyte plate, stacked alternately with $(\text{La}_{1-x}\text{M}_2\text{x})(\text{Cr}_{1-y}\text{M}_3\text{y})\text{O}_3$ ($\text{M}_2 = \text{Sr}, \text{Ba}, \text{and/or Ca}; \text{M}_3 = \text{Cr}, \text{Ni}, \text{Mg}, \text{Co}, \text{Zr}, \text{Ce}, \text{Fe}, \text{and/or Al}; x \leq 0.50, y \leq 0.50$) separators are prepared by coating $(\text{La}_1-\text{pM}_\text{p})(\text{Mn}_1-\text{qM}_1\text{q})\text{O}_3$ on the separator, sintering, applying a $(\text{La}_1-\text{pM}_\text{p})(\text{Mn}_1-\text{qM}_1\text{q})\text{O}_3$ binder layer between the separator and the cathode, sintering at $1000-1500^\circ \text{C}$ to bond the cathode to the separator. These fuel cells have low internal resistance.

IPCI H01M0008-02 [ICM,6]; H01M0004-86 [ICS,6]; H01M0004-88 [ICS,6];
H01M0004-90 [ICS,6]; H01M0008-12 [ICS,6]

IPCR H01M0004-86 [I,C*]; H01M0004-86 [I,A]; H01M0004-88 [I,C*];
H01M0004-88 [I,A]; H01M0004-90 [I,C*]; H01M0004-90 [I,A];
H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [I,C*];
H01M0008-12 [I,A]; H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ST solid electrolyte fuel cell manuf;

lanthanum manganate cathode fuel cell
manuf; lanthanum chromate separator fuel
cell manuf

IT Solid state fuel cells
(manufacture of solid electrolyte fuel
cells with composition transition binder layers
between cathode and electrolyte layers)

IT 108916-21-8, Lanthanum manganese strontium oxide
(La_{0.6}MnSr_{0.4}O₃) 120605-82-5, Lanthanum manganese strontium
oxide (La_{0.85}MnSr_{0.15}O₃) 200133-61-5
RL: DEV (Device component use); PEP (Physical, engineering or
chemical process); PROC (Process); USES (Uses)
(manufacture of solid electrolyte fuel
cells with composition transition binder layers
between cathode and electrolyte layers)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE
THIS RECORD (1 CITINGS)

L87 ANSWER 23 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
ACCESSION NUMBER: 1997:433453 HCAPLUS Full-text
DOCUMENT NUMBER: 127:68520
ORIGINAL REFERENCE NO.: 127:13043a,13046a
TITLE: Unit cells for solid electrolyte
fuel cells
INVENTOR(S): Nishihara, Masahito; Akiyama, Masahide
PATENT ASSIGNEE(S): Kyocera Corp., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.
CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09129245	A	19970516	JP 1995-283830	
				1995
				1031
<--				
PRIORITY APPLN. INFO.:		JP 1995-283830		
		1995		
		1031		
<--				

ED Entered STN: 12 Jul 1997
AB The unit cells have a cathode and an anode on the opposite sides of a solid
electrolyte and a collector connected to 1 of the electrodes, where the anode is
composed of ZrO₂ and/or CeO₂ and a metal selected from Ni, Co, Ti, and W with the oxide on
the anode surface having greater average particle size than those contacting the electrolyte.
These cells have long lifetime. IPCI H01M0004-86 [ICM,6]; H01M0008-02 [ICS,6]
IPCR H01M0004-86 [I,C*]; H01M0004-86 [I,A]; H01M0008-02 [I,C*];
H01M0008-02 [I,A]
CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
ST solid electrolyte fuel cell
anode; zirconia size distribution fuel
cell anode; ceria size distribution fuel
cell anode; particle size distribution
fuel cell anode
IT Fuel cell anodes
(size distribution of oxide particles in
oxide-metal anodes for solid
electrolyte fuel cells)
IT 7440-02-0, Nickel, uses 7440-32-6, Titanium, uses 7440-33-7,
Tungsten, uses 7440-48-4, Cobalt, uses 67338-79-8, Cerium
yttrium oxide (Ce₁₉Y₂₀O₄₁) 106830-29-9, Yttrium zirconium oxide
(Y_{0.2}Zr_{0.9}O₂.1)
RL: DEV (Device component use); PRP (Properties); USES (Uses)

(size distribution of oxide particles in
oxide-metal anodes for solid
electrolyte fuel cells)

L87 ANSWER 24 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 1997:405713 HCAPLUS Full-text
 DOCUMENT NUMBER: 127:37132
 ORIGINAL REFERENCE NO.: 127:7091a, 7094a
 TITLE: Solid electrolyte fuel
cells with mechanical seals
 INVENTOR(S): Hishinuma, Yuchi; Matsuzaki, Yoshio
 PATENT ASSIGNEE(S): Tokyo Gas Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 4 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09115530	A	19970502	JP 1995-269584	
				1995
				1018
<--				
JP 1995-269584				
1995				
1018				
<--				

ED Entered STN: 02 Jul 1997

AB The fuel cells have in series

connected unit cells, gas distributing separators stacked alternately with the cells, and metal mesh or felt between the anodes and the fuel gas passages on the separators; where the separators have recessed areas at their edges on the upper surface fit in the protruded areas at the edges on the bottom surface of a neighboring separator to form mech. seals. The seals may also contain heat resistant metal gasket between the separators and the electrolyte plates of the cells. The gasket may be Cr-Fe alloys containing $\geq 3\%$ Al and may be coated with Al₂O₃, ZrO₂, and CeO₂. The separators may have an insulator substrate, e.g., Al₂O₃ or MgO-Mg aluminate composite, laminated with a conductivity oxide. IPCI H01M0008-02 [ICM,6]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST solid electrolyte fuel cell mech
seal; chromium iron alloy gasket fuel
cell; alumina conductive oxide fuel cell
separator; magnesia magnesium aluminate fuel
cell separator

IT Oxides (inorganic), uses

RL: DEV (Device component use); USES (Uses)
(conductive; separators with alumina or
magnesia-magnesium aluminate substrates laminated
with conductive oxide for solid
electrolyte fuel cells)

IT Seals (parts)

(gas; structure of mech. seals for solid
electrolyte fuel cells)

IT Fuel cell separators

(separators with alumina or magnesia-magnesium
aluminate substrates laminated with conductive
oxide for solid electrolyte
fuel cells)

IT Fuel cells

(structure of mech. seals for solid
electrolyte fuel cells)

IT Gaskets

(structure of solid electrolyte fuel

10/561,789-347144-EIC SEARCH

cells containing aluminum containing chromium-iron alloy gaskets)

IT 1344-28-1, Alumina, uses
 RL: DEV (Device component use); USES (Uses)
 (aluminum containing chromium-iron alloy gaskets with alumina coatings for solid electrolyte fuel cells)

IT 1306-38-3, Ceria, uses
 RL: DEV (Device component use); USES (Uses)
 (aluminum containing chromium-iron alloy gaskets with ceria coatings for solid electrolyte fuel cells)

IT 1314-23-4, Zirconia, uses
 RL: DEV (Device component use); USES (Uses)
 (aluminum containing chromium-iron alloy gaskets with zirconia coatings for solid electrolyte fuel cells)

IT 1309-48-4, Magnesia, uses 11137-98-7, Magnesium aluminate
 RL: DEV (Device component use); USES (Uses)
 (separators with alumina or magnesia-magnesium aluminate substrates laminated with conductive oxide for solid electrolyte fuel cells)

IT 7429-90-5, Aluminum, uses 11133-82-7
 RL: DEV (Device component use); USES (Uses)
 (structure of solid electrolyte fuel cells containing aluminum containing chromium-iron alloy gaskets)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

L87 ANSWER 25 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 1993:521264 HCAPLUS Full-text
 DOCUMENT NUMBER: 119:121264
 ORIGINAL REFERENCE NO.: 119:21735a,21738a
 TITLE: Solid-oxide electrolyte fuel cells
 INVENTOR(S): Nishida, Kunio; Takagi, Hiroshi
 PATENT ASSIGNEE(S): Murata Manufacturing Co, Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 05094828	A	19930416	JP 1991-256799	1991 1003
				<--
JP 3151872	B2	20010403	JP 1991-256799	1991 1003
PRIORITY APPLN. INFO.:				<--

ED Entered STN: 18 Sep 1993

AB The fuel cells comprise a solid- oxide electrolyte plate, having an anode and a cathode on the opposite sides, stacked with distributors, and interconnectors; where the interconnector has an electrolyte-based perforated substrate , an nonionic conductive material on the surface of or inside the substrate, and a conductive material coated on the both sides and filled in the holes of the substrate . The electrolyte is preferably a ZrO₂-based material, and the nonionic conductive material is La₂Mn₂O₇. IPCI H01M0008-02 [ICM,5]; H01M0008-12 [ICS,5]

10/561,789-347144-EIC SEARCH

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [I,C*];
 H01M0008-12 [I,A]
 CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
 ST solid electrolyte fuel cell
 interconnector
 IT Fuel cells
 (solid-state, interconnectors for, structure of)
 IT 1314-23-4, Zirconia, uses
 RL: USES (Uses)
 (electrolytes, interconnectors containing,
 structure of, for fuel cell)
 IT 149661-80-3, Lanthanum manganese oxide (La₂Mn₂₀7)
 RL: USES (Uses)
 (interconnectors containing, structure of, for
 solid-electrolyte fuel
 cells)

L87 ANSWER 26 OF 30 HCPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 1993:499867 HCPLUS Full-text
 DOCUMENT NUMBER: 119:99867
 ORIGINAL REFERENCE NO.: 119:17929a,17932a
 TITLE: Cell units for
 solid-oxide fuel
 cells and powder generators using
 units
 INVENTOR(S): Soma, Takao; Kawasaki, Shinji; Yoshioka,
 Katsuki
 PATENT ASSIGNEE(S): NGK Insulators, Ltd., Japan
 SOURCE: Eur. Pat. Appl., 37 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 536925	A1	19930414	EP 1992-308752	1992 0925
EP 536925	B1	19970730		<--
R: DE, FR, GB				
JP 05089890	A	19930409	JP 1991-249619	1991 0927
JP 2758520	B2	19980528		<--
JP 05166518	A	19930702	JP 1991-328697	1991 1212
JP 2783926	B2	19980806		<--
JP 05166529	A	19930702	JP 1991-328698	1991 1212
US 5292599	A	19940308	US 1992-948011	1992 0902
EP 740358	A2	19961030	EP 1996-110285	1992 0925
EP 740358	B1	20030903		<--

10/561,789-347144-EIC SEARCH

R: DE, FR, GB
 PRIORITY APPLN. INFO.:

JP 1991-249619	A	
		1991
		0927
<--		
JP 1991-328697	A	
		1991
		1212
<--		
JP 1991-328698	A	
		1991
		1212
<--		
EP 1992-308752	A	
		1992
		0925

<--

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 04 Sep 1993

AB The units have a laminate structure including a cell element and a separator. The cell element includes a dense and planar solid electrolyte of a rectangular plane shape, and an air cathode film and a fuel anode film provided on the opposite surfaces of the electrolyte. The separator is made of a dense electron conductor. A plurality of oxidizing gas flow paths is defined between the separator and the cathode, and the ratio of the long side:the short side of the rectangular cell element is ≥ 2 . The power generators comprise a plurality of cell units arranged at a given interval and include a fuel-gas chamber, a power-generating chamber, a combustion chamber, and an oxidizing-gas chamber. The anodes and opening of a plurality of the cell units are arranged in substantially the same directions, the anode of each of the cell units is connected to the separator of the vertically adjacent cell unit in series by a heat-resistant conductor not interrupting flowing of a gas, and the separators of the laterally adjacent cell units are connected to each other in parallel through a similar conductor and in a similar way.

IPCI H01M0008-00 [ICM,5]; H01M0008-24 [ICS,5]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; H01M0008-12 [N,C*];
 H01M0008-12 [N,A]; H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST fuel cell power generator

IT Fuel cells

(power plants, design of)

OS.CITING REF COUNT: 5 THERE ARE 5 CAPLUS RECORDS THAT CITE
 THIS RECORD (5 CITINGS)

L87 ANSWER 27 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN

ACCESSION NUMBER: 1992:534462 HCAPLUS Full-text

DOCUMENT NUMBER: 117:134462

ORIGINAL REFERENCE NO.: 117:23291a,23294a

TITLE: Composite membranes and solid-oxide fuel cells containing them

INVENTOR(S): Kendall, Kevin

PATENT ASSIGNEE(S): Imperial Chemical Industries PLC, UK

SOURCE: Eur. Pat. Appl., 11 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	----	-----	-----	

EP 482783	A2	19920429	EP 1991-309159	1991
				1007
<--				
EP 482783	A3	19930414		

10/561,789-347144-EIC SEARCH

R: BE, DE, FR, GB, IT, NL
AU 9185816 A 19920430 AU 1991-85816

1991
1015

<--

AU 644905	B2	19931223		
CA 2053614	A1	19920425	CA 1991-2053614	
				1991 1017
<--				
US 5190834	A	19930302	US 1991-780204	
				1991 1022
<--				
JP 05182677	A	19930723	JP 1991-275278	
				1991 1023
<--				
PRIORITY APPLN. INFO.:		GB 1990-23091	A	
				1990 1024
<--				

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 04 Oct 1992

AB A corrugated, spiral-shape, or tubular membrane comprises ≥1 traverse domain of an electrolyte material and ≥1 traverse domain of an electronically conducting interconnect material, with both the electrolyte and the interconnector materials exposed on both major faces of the membrane. The fuel cells include ≥1 composite membrane with anode(s) and cathode(s) arranged on the opposite sides of the membrane. The membrane is prepared by sep. dispersing a particulate electrolyte material (stabilized ZrO₂) and a particulate interconnecting material (doped LaCrO₃) in a polymer-based binder to form pastes, forming the pastes into a cohesive precursor membrane, removing the binder, and sintering. IPCI H01M0008-12 [ICM,5]; H01M0008-24 [ICS,5]

IPCR H01M0008-02 [I,C*]; H01M0008-02 [I,A]; C04B0035-486 [I,C*]; C04B0035-486 [I,A]; G01N0027-407 [I,C*]; G01N0027-407 [I,A]; H01M0006-18 [I,C*]; H01M0006-18 [I,A]; H01M0008-12 [I,C*]; H01M0008-12 [I,A]; H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST fuel cell electrolyte
interconnect membrane; zirconia lanthanum chromite
membraneIT Fuel-cell electrolytes
(stabilized zirconia, membranes, containing electronically
conducting interconnecting materials)IT 12017-94-6, Chromium lanthanum oxide (CrLaO₃)RL: USES (Uses)
(calcium- or strontium-doped, interconnectors,
membranes containing zirconia electrolyte and, for
fuel cells)

IT 7440-24-6, Strontium, uses 7440-70-2, Calcium, uses

RL: USES (Uses)
(lanthanum chromite or lanthanum manganite doped with,
membranes containing zirconia electrolyte and, for
fuel cells)

IT 1314-23-4, Zirconia, uses

RL: USES (Uses)
(yttria-stabilized, electrolyte, membranes containing
electronically interconnect materials and, for
fuel cells)

IT 1314-36-9, Yttria, uses

RL: USES (Uses)
(zirconia stabilized with, electrolyte, membranes
containing electronically interconnect materials and, for
fuel cells)

OS.CITING REF COUNT: 24 THERE ARE 24 CAPLUS RECORDS THAT CITE

10/561,789-347144-EIC SEARCH

THIS RECORD (24 CITINGS)

L87 ANSWER 28 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 1989:636656 HCAPLUS Full-text
 DOCUMENT NUMBER: 111:236656
 ORIGINAL REFERENCE NO.: 111:39271a,39274a
 TITLE: Manufacture of monolithic solid-oxide fuel-cell stack
 INVENTOR(S): Maricle, Donald L.; Buswell, Richard F.
 PATENT ASSIGNEE(S): International Fuel Cells Corp., USA
 SOURCE: U.S., 8 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4857420	A	19890815	US 1987-107817	
				1987
				1013
<--				
PRIORITY APPLN. INFO.: US 1987-107817				
1987				
1013				
<--				

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 23 Dec 1989

AB The stack is prepared by forming a plurality of electrode subassemblies and a plurality of gas separator-reactor flow field subassemblies, stacking these subassemblies alternately with the cathode material layer abutting the cathode- and the anode material layer abutting the anode-flow field layers, heating the obtained preassembly to a subsintering temperature to soften and creep flatten the subassemblies and to form an intimate interfacial contact between them, and by applying a light compressive load axially of the preassembly during the heating step to fuse the subassemblies together. The electrode subassemblies are formed by providing appropriately sized green unsintered tapes of solid-oxide electrolyte material, sintering the tapes at .apprx.1400-1600° to form sintered plates of appropriate operational d., and by forming a finished layer of anode material on 1 and a finished layer of cathode material on the opposite surface of the sintered electrolyte plate. The other subassemblies are formed by providing appropriately sized green unsintered sheets of interconnect material; sintering the sheets at .apprx.1650-1750° to form laminae of appropriate operational d.; forming a finished anode-flow field layer, including a plurality of parallel ribs and intervening grooves extending across the laminae, on 1 surface of the laminae, in a 1st direction; and by forming similarly a finished cathode-flow field layer on the opposite surface of the laminae, extending in a direction perpendicular to the 1st direction.

INCL 429030000

IPCI H04M0008-10 [ICM]; B05D0005-12 [ICS]

IPCR H01M0008-24 [I,C*]; H01M0008-24 [I,A]

NCL 429/495.000; 029/623.500; 427/115.000; 429/514.000; 429/535.000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST fuel cell stack monolithic manuf; oxide

fuel cell stack monolithic

IT Fuel cells

(solid-oxide, stacks, manufacture of monolithic)

OS.CITING REF COUNT: 24 THERE ARE 24 CAPLUS RECORDS THAT CITE
 THIS RECORD (24 CITINGS)REFERENCE COUNT: 5 THERE ARE 5 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L87 ANSWER 29 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 1984:614083 HCAPLUS Full-text

10/561,789-347144-EIC SEARCH

DOCUMENT NUMBER: 101:214083
 ORIGINAL REFERENCE NO.: 101:32423a, 32426a
 TITLE: Integral manifolding structure for a
 fuel cell core having a
 parallel gas flow
 INVENTOR(S): Herceg, Joseph E.
 PATENT ASSIGNEE(S): United States Dept. of Energy, USA
 SOURCE: U.S., 14 pp.
 CODEN: USXXAM
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 4476197	A	19841009	US 1983-541178	1983 1012
US 541178	A0	19841109	US 1983-541178	1983 1012

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 29 Jun 2007

AB Manifolding means for directing the fuel and oxidant gases to parallel flow passageways in a fuel cell core are disclosed. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte ($ZrO_2 + Y_2O_3$) and interconnect wall ($LaCrO_3$) consists resp. of anode ($Co + ZrO_2 + Y_2O_3$) and cathode ($LaMnO_3$) materials layered on the opposite sides of electrolyte material, or on the opposite sides of interconnect material. A core wall projects beyond the open ends of the defined core passageways and is disposed approx. midway between and parallel to the adjacent overlaying and underlying interconnect walls to define manifold chambers between them on opposite sides of the wall. Each electrolyte wall defining the flow passageways is shaped to blend into and be connected to this wall to redirect the corresponding fuel and oxidant passageways to the resp. manifold chambers either above or below this intermediate wall. Inlet and outlet connections are made to these sep. manifold chambers resp., for carrying the fuel and oxidant gases to the core, and for carrying their reaction products away from the core.

INCL 429032000

IPCI H01M0008-10 [ICM]

IPCR H01M0008-24 [I,C*]; H01M0008-24 [I,A]

NCL 429/456.000; 429/488.000; 429/513.000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST fuel cell integral manifolding structure

IT Fuel cells

(solid-oxide, with parallel gas flow,
 integral manifolding structure for)

IT 12031-12-8

RL: USES (Uses)
 (cathodes, fuel-cell)

IT 7440-48-4, uses and miscellaneous

RL: USES (Uses)
 (fuel-cell anodes from mixture of
 yttria-zirconia-)

IT 1314-23-4, uses and miscellaneous

RL: USES (Uses)
 (fuel-cell electrolyte from
 yttria-stabilized)

IT 1314-36-9, uses and miscellaneous

RL: USES (Uses)
 (fuel-cell electrolyte from
 zirconia stabilized with)

IT 12017-94-6

10/561,789-347144-EIC SEARCH

RL: USES (Uses)

(fuel-cell interconnect wall)

OS.CITING REF COUNT: 14 THERE ARE 14 CAPLUS RECORDS THAT CITE
 THIS RECORD (14 CITINGS)
 REFERENCE COUNT: 10 THERE ARE 10 CITED REFERENCES AVAILABLE
 FOR THIS RECORD. ALL CITATIONS AVAILABLE
 IN THE RE FORMAT

L87 ANSWER 30 OF 30 HCAPLUS COPYRIGHT 2010 ACS on STN
 ACCESSION NUMBER: 1983:615829 HCAPLUS Full-text
 DOCUMENT NUMBER: 99:215829
 ORIGINAL REFERENCE NO.: 99:33189a, 33192a
 TITLE: Electrical generators of the fuel
 cell type
 INVENTOR(S): Isenberg, Arnold Otto
 PATENT ASSIGNEE(S): Westinghouse Electric Corp., USA
 SOURCE: Eur. Pat. Appl., 13 pp.
 CODEN: EPXXDW
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 89852	A1	19830928	EP 1983-301602	
				1983 0322
<--				
EP 89852	B1	19860827		
R: DE, FR, GB, IT, NL				
US 4431715	A	19840214	US 1982-361286	
				1982 0324
<--				
JP 58175267	A	19831014	JP 1983-44030	
				1983 0315
<--				
JP 04043388	B	19920716	US 1982-361286	A
PRIORITY APPLN. INFO.:				1982 0324
<--				

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

ED Entered STN: 12 May 1984

AB A high-temperature solid oxide electrolyte -type fuel-cell generator with an elec. connection of the fuel cell

electrodes to the elec. output bus, which is brought through the generator housing to be connected to an elec. load line, maintains a highly uniform temperature distribution. The elec. connection includes an electrode bus which is spaced parallel to the output bus with a plurality of sym. spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high-temperature regions of the fuel-cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

IPCI H01M0008-12 [ICM]; H01M0008-24 [ICS]; H01M0002-20 [ICS]

IPCR H01M0008-12 [I,C*]; H01M0008-12 [I,A]; H01M0002-20 [I,C*];
 H01M0002-20 [I,A]; H01M0008-02 [I,C*]; H01M0008-02 [I,A];
 H01M0008-24 [I,C*]; H01M0008-24 [I,A]

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

ST Fuel cell elec generator

IT Fuel cells

(solid oxide electrolyte, of
 uniform temperature distribution)

10/561,789-347144-EIC SEARCH

OS.CITING REF COUNT:

9

THERE ARE 9 CAPLUS RECORDS THAT CITE
THIS RECORD (9 CITINGS)

FULL SEARCH HISTORY

=> d his nofile

(FILE 'HOME' ENTERED AT 15:01:27 ON 09 NOV 2010)

FILE 'HCAPLUS' ENTERED AT 15:01:33 ON 09 NOV 2010
E US20070248864/PN

L1 1 SEA SPE=ON ABB=ON PLU=ON US20070248864/PN
D ALL
D SCA

FILE 'STNGUIDE' ENTERED AT 15:03:28 ON 09 NOV 2010

FILE 'HCAPLUS' ENTERED AT 15:04:48 ON 09 NOV 2010
SEL L1 AU

L2 776 SEA SPE=ON ABB=ON PLU=ON ("MIKAMI, KOICHI"/AU OR
"SAKAMOTO, HIROTOSHI"/AU OR "YOSHIKATA, KUNIAKI"/AU)

FILE 'ZCAPLUS' ENTERED AT 15:05:29 ON 09 NOV 2010

L3 QUE SPE=ON ABB=ON PLU=ON MIKAMI K?/AU
L4 QUE SPE=ON ABB=ON PLU=ON SAKAMOTO H?/AU
L5 QUE SPE=ON ABB=ON PLU=ON YOSHIKATA K?/AU
L6 QUE SPE=ON ABB=ON PLU=ON L3 AND L4 AND L5

FILE 'HCAPLUS' ENTERED AT 15:07:34 ON 09 NOV 2010

L7 4 SEA SPE=ON ABB=ON PLU=ON L3 AND L4 AND L5
D SCA

E FUEL CELLS/CT 25

L8 16396 SEA SPE=ON ABB=ON PLU=ON FUEL?(6A) CELL?(6A) SOLID?(6A)
) OXID?

L9 16030 SEA SPE=ON ABB=ON PLU=ON (FUEL?(3A) CELL?) (L) (SOLID?(
2A) OXID?)

L10 16595 SEA SPE=ON ABB=ON PLU=ON L8 OR L9

L11 118100 SEA SPE=ON ABB=ON PLU=ON FUEL?(2A) CELL?

L12 QUE SPE=ON ABB=ON PLU=ON SUBSTRAT? OR SURFACE? OR
BASE# OR SUBSTRUCT? OR UNDERSTRUCTUR? OR UNDERLAY? OR
FOUNDATION? OR PANE? OR DISK? OR DISC# OR WAFER? OR
PLATE OR PLATES

L13 1 SEA SPE=ON ABB=ON PLU=ON L1 AND L10
D SCA

D KWIC

L14 QUE SPE=ON ABB=ON PLU=ON ELECTROLYT?

L15 8851 SEA SPE=ON ABB=ON PLU=ON L10 AND L12

L16 4809 SEA SPE=ON ABB=ON PLU=ON L15 AND L14

L17 QUE SPE=ON ABB=ON PLU=ON ELECTROD? OR CATHOD? OR
ANOD? OR ELECTROD?(2A)(POSITIVE OR NEGATIVE)

L18 3633 SEA SPE=ON ABB=ON PLU=ON L16 AND L17

L19 1528 SEA SPE=ON ABB=ON PLU=ON L18 AND (CATHOD? OR
ELECTROD?(2A)POSITIVE) AND (ANOD? OR ELECTROD?(2A)NEGAT
IVE)

L20 0 SEA SPE=ON ABB=ON PLU=ON L1 AND L19

L21 1 SEA SPE=ON ABB=ON PLU=ON L1 AND L18

D KWIC

L22 3633 SEA SPE=ON ABB=ON PLU=ON L18 OR L19

L23 QUE SPE=ON ABB=ON PLU=ON (SAME OR OPPOSITE)(3A)(SIDE
OR SURFACE)

L24 77 SEA SPE=ON ABB=ON PLU=ON L22 AND L23

L25 QUE SPE=ON ABB=ON PLU=ON (SPACE OR DISTAN? OR
LENGTH OR SEPARAT?)(3A)(MEASUR? OR PREDETERMIN? OR
DETERMIN? OR SPECIF? OR EQUAL? OR EQUI? OR UNIFORM?)

L26 QUE SPE=ON ABB=ON PLU=ON EQUIDIS? OR EQUI?(A)DISTAN?
OR EQUIDISTAN?

L27 9 SEA SPE=ON ABB=ON PLU=ON L22 AND (L25 OR L26)
D QUE

L28 0 SEA SPE=ON ABB=ON PLU=ON L24 AND L27

10/561,789-347144-EIC SEARCH

L29 86 SEA SPE=ON ABB=ON PLU=ON L24 OR L27
 L30 QUE SPE=ON ABB=ON PLU=ON SPACE? OR SPACING? OR
 DISTAN? OR LENGTH? OR SEPARAT? OR MEASUR? OR PREDETERMI
 N? OR DETERMIN? OR SPECIF? OR EQUAL? OR EQUI? OR
 UNIFORM? OR EQUI?(A)DISTAN? OR EQUIDISTAN?
 L31 1579 SEA SPE=ON ABB=ON PLU=ON L22 AND L30
 L32 48 SEA SPE=ON ABB=ON PLU=ON L29 AND L31
 L33 86 SEA SPE=ON ABB=ON PLU=ON L29 OR L32
 L34 1 SEA SPE=ON ABB=ON PLU=ON L1 AND L33
 D KWIC
 L35 QUE SPE=ON ABB=ON PLU=ON ELEMENT? OR BODY? OR UNIT?
 OR ASSEMBL?
 L36 370 SEA SPE=ON ABB=ON PLU=ON L31 AND L35
 L37 21 SEA SPE=ON ABB=ON PLU=ON L36 AND L33
 D KWIC
 L38 1 SEA SPE=ON ABB=ON PLU=ON L1 AND L37
 D KWIC
 L39 86 SEA SPE=ON ABB=ON PLU=ON L33 OR L37
 L40 QUE SPE=ON ABB=ON PLU=ON INSULAT?
 L41 4 SEA SPE=ON ABB=ON PLU=ON L39 AND L40
 L42 52 SEA SPE=ON ABB=ON PLU=ON L31 AND L40
 L43 135 SEA SPE=ON ABB=ON PLU=ON L37 OR L39 OR L41 OR L42
 L44 QUE SPE=ON ABB=ON PLU=ON PLURAL? OR MULTI? OR
 SEVERAL? OR MANY
 L45 39 SEA SPE=ON ABB=ON PLU=ON L43 AND L44
 L46 105 SEA SPE=ON ABB=ON PLU=ON L39 OR L41 OR L45
 L47 135 SEA SPE=ON ABB=ON PLU=ON L46 OR L43
 L48 QUE SPE=ON ABB=ON PLU=ON PRINT?
 L49 8 SEA SPE=ON ABB=ON PLU=ON L47 AND L48
 L50 QUE SPE=ON ABB=ON PLU=ON ADHESI? OR ADHERE? OR
 STICK? OR CLING? OR BOND? OR CEMENT? OR CONGLUTIN? OR
 AGGLUTIN? OR MUCILAG? OR TACK? OR GLUE? OR GLUING OR
 PASTE? OR PASTING OR GUM? OR HOLD? OR GRIP? OR GRASP?
 OR BIND? OR SEAL?
 L51 34 SEA SPE=ON ABB=ON PLU=ON L47 AND L50
 L52 QUE SPE=ON ABB=ON PLU=ON GROOVE? OR FURROW? OR
 CLEFT### OR GRID? OR MESH## OR SCORE## OR INDENT? OR
 INCIS? OR STRIAT? OR GOUGE? OR TRENCH? OR TROUGH? OR
 RUT## OR RIBBED?
 L53 QUE SPE=ON ABB=ON PLU=ON CHANNEL? OR CONDUIT? OR
 DUCT? OR PASSAGE? OR TROUGH? OR TUNNEL?
 L54 38 SEA SPE=ON ABB=ON PLU=ON L47 AND (L52 OR L53)
 L55 135 SEA SPE=ON ABB=ON PLU=ON L47 OR L49 OR L51 OR L54
 L56 QUE SPE=ON ABB=ON PLU=ON DISPOS? OR ATTACH? OR
 ADHER? OR ADSOR? OR ABSOR? OR PART? OR ADJ? OR SINGL?
 L57 66 SEA SPE=ON ABB=ON PLU=ON L55 AND L56
 L58 QUE SPE=ON ABB=ON PLU=ON CONNECT? OR INTERCONNECT?
 OR INTER?(A)CONNECT?
 L59 135 SEA SPE=ON ABB=ON PLU=ON L55 OR L57
 L60 49 SEA SPE=ON ABB=ON PLU=ON L59 AND L58
 L61 112 SEA SPE=ON ABB=ON PLU=ON L60 OR L39
 L62 1 SEA SPE=ON ABB=ON PLU=ON L1 AND L61
 D SCA
 D KWIC
 L63 135 SEA SPE=ON ABB=ON PLU=ON L59 OR L60 OR L61
 L64 10 SEA SPE=ON ABB=ON PLU=ON L63 AND ((L2 OR L3 OR L4
 OR L5 OR L6 OR L7))
 SAV TEMP L64 WEI789HCPIN/A
 D SCA
 L65 QUE SPE=ON ABB=ON PLU=ON FUELCELL? OR (FUEL?(2A)CELL
 ?) OR FC OR SOFC OR DFC OR PEMFC
 L66 135 SEA SPE=ON ABB=ON PLU=ON L63 AND L65
 L67 10 SEA SPE=ON ABB=ON PLU=ON L64 AND L66
 SAV TEMP L67 WEI789HCPIN/A
 L68 125 SEA SPE=ON ABB=ON PLU=ON L66 NOT L67
 D L1 PRAI
 L69 QUE SPE=ON ABB=ON PLU=ON PY=<2005 NOT P/DT

10/561,789-347144-EIC SEARCH

L70 QUE SPE=ON ABB=ON PLU=ON (PY=<2005 OR PRY=<2005 OR
AY=<2005 OR MY=<2005 OR REVIEW/DT) AND P/DT
L71 79 SEA SPE=ON ABB=ON PLU=ON L68 AND (L69 OR L70)
L72 30 SEA SPE=ON ABB=ON PLU=ON L71 AND L58
L73 55 SEA SPE=ON ABB=ON PLU=ON L71 AND L33
L74 67 SEA SPE=ON ABB=ON PLU=ON L72 OR L73
L75 18 SEA SPE=ON ABB=ON PLU=ON L72 AND L73
L76 55 SEA SPE=ON ABB=ON PLU=ON L73 AND (L23 OR L25 OR L26
OR L48 OR L50)
L77 55 SEA SPE=ON ABB=ON PLU=ON L76 AND L14 AND L17 AND
L12
L78 55 SEA SPE=ON ABB=ON PLU=ON L76 AND L14
L79 55 SEA SPE=ON ABB=ON PLU=ON L76 AND L17
L80 55 SEA SPE=ON ABB=ON PLU=ON L76 AND L12
L81 51 SEA SPE=ON ABB=ON PLU=ON L80 AND L23
L82 51 SEA SPE=ON ABB=ON PLU=ON L80 AND (SAME OR OPPOS?)
L83 51 SEA SPE=ON ABB=ON PLU=ON L81 OR L82
L84 52 SEA SPE=ON ABB=ON PLU=ON L83 OR L75
L85 18 SEA SPE=ON ABB=ON PLU=ON L84 AND (L72 OR L75)
L86 30 SEA SPE=ON ABB=ON PLU=ON L85 OR L72 OR L75
D SCA
L87 30 SEA SPE=ON ABB=ON PLU=ON L86 AND L10
SAV TEMP L87 WEI789HCP/A
D QUE L67
D L67 1-10 IBIB ED ABS HITIND
D QUE L87
D L87 1-30 IBIB ED ABS HITIND