$\underline{\textbf{UE18CS302:OPERATING SYSTEM}} \hspace{0.1cm} \textbf{(4:0:0:0:4)}$

of Hours: 56

Class #	Unit descripti on	Topic to be covered	Percentage of portions covered	
			% of Syllabu s	Cumula tive %
1		Introduction: What Operating Systems Do, Computer-System Organization		
2		Computer-System Architecture, Operating-System Structure & Operations		
3		Kernel Data Structures, Computing Environments		
4		Operating-System Services, Operating-System Design and Implementation		
5	Unit 1	Process concept: Process in memory, Process State, PCB, Context Switch, Process Creation and Termination		
6	T1 (Chap 1- 3,5)	CPU Scheduling & Scheduling Algorithms, Preemptive and Non-Preemptive, Scheduling criteria,	21.40%	21.40%
7		Scheduling Algorithms: FIFO, SJF		
8		Round Robin, Priority Scheduling		
9		Multi-Level Queue, Multi-Level Feedback Queue		
10		Case Study: Linux/ Windows Scheduling Policies.		
11		Inter Process Communication – Shared Memory, Messages		
12		Named and unnamed pipes		
13		Introduction to Threads, types of threads, Multicore Programming, Multithreading Models,		
14		Thread creation, Thread Scheduling		
15		Pthreads and Windows Threads		
16	Unit 2 T1(Chap 4-7)	Mutual Exclusion and Synchronization, software approaches,		
17		principles of concurrency, hardware support		
18		Mutex Locks, Semaphores	21.40%	42.80%
19		Classic problems of Synchronization:		
		Bounded-Buffer Problem, Readers-Writers problem		
20		Dining-Philosophers Problem		
21		Synchronization Examples: Synchronisation mechanisms provided by		
		Linux/Windows/Pthreads.		
22		Deadlocks: principles of deadlock, Deadlock Characterization		
23		Deadlock Prevention, Deadlock example		
24		Deadlock Detection, Algorithm		
25		Main Memory: Hardware and control structures, OS support, Address translation	21.40%	
26		Dynamic linking, Swapping		

27		Memory Allocation (Partitioning, relocation), Fragmentation		
28		Segmentation		
29		Paging: OS Support, TLBs, Address Translation		
30	Unit 3	Structure of the Page Table		64.20%
31	T1 (Chap 8- 9)	Design Alternatives – Inverted Page Tables, Bigger Pages		
32		Virtual Memory: Demand Paging, Copy-OnWrite		
33		Page replacement policy – LRU		
34		FIFO & Optimal		
35		Thrashing		
36		Case Study: Linux/ Windows Memory Management		
37		Mass-Storage Structure: Mass-Storage overview		
38		Disk Scheduling – FCFS, SSTF, SCAN, C-SCAN, LOOK	,	
39		Swap-Space Management, RAID Structure		
40		File Concept, File Structure, Access Methods		
41	Unit 4	Directory and Disk Structure	17.80%	82.10%
42	T1 (Chap 10- 14,16)	File-System Mounting, File Sharing, Protecting		
43		Implementing File-Systems: File control Block (inode), partitions & mounting		
44		Disk Space Allocation methods: Contiguous, Linked, Indexed		
45		Case Study: Unix/Linux File systems		
46		NFS		
47		I/O Hardware, polling and interrupts		
48		DMA		
49		Transforming I/O Requests to Hardware Operations, Device interaction, device driver, buffering.		
50	Unit 5	Goals, Principles and Domain of Protection		
	T1	, 1		
51	(Chap 14- 15,21)	Access Matrix	17.80%	100%
52	,1)	Access control, Access rights		
53		The Security Problem		
54		Program Threats		
55		System Threats and Network Threats		
56		Case Study : Linux & Windows		

Pre-requisite Courses: Data Structures, Microprocessor and Computer Architecture.

Text

Book:

Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 9th Edition, John_Wiley_&_Sons, 2013.

Referen

ces:

1. Operating Systems, Internals and Design Principles, William Stallings, 9th Edition, Pearson, 2018

- 2. Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau and Andrea Arpaci Dusseau, http://pages.cs.wisc.edu/~remzi/OSTEP/
- 3. Advanced Programming in the Unix Environment", Richard Stevens and Stephen A Rago, Pearson, 3rd edition, 2017
 - 4. Operating Systems, Harvey Deitel, Paul Deitel, David Choffnes, 3rd Edition, Prentice Hall
 - 5. Modern Operating Systems, Andrew S Tannenbaum, 3rd edition, Pearson