

Learning For Self-Driving Cars and Intelligent Systems

26 April 2021

Qadeer Khan

https://vision.in.tum.de/teaching/ss2021/intellisys_ss2021

Announcements

- As requested, deadline for the task introduced this week(Task 3 on GNN's) has now been extended to 16 May.
- Deadline for Task 2 (Carla) will remain the same i.e. 2 May.
- There will be an "Office hour" session this Thursday at 12:30pm to discuss any questions or confusions you may have. (Same online meeting room as the lecture)
- Please make sure to anonymize your coding task reports if feedback is desired.
- Also make sure to push your report as pdf files
- As requested, I will also put the anonymized reports in the shared folder after the task deadlines.
- If you have any objection to having your anonymized report placed on the shared folder,
 then please let me know latest by this Thursday(29 April, 2021)

Graphical Networks

Comprise of Nodes/Vertices(V) connected by Edges(E)

Edges can be directed or undirected

Directed Graph:

(Each node is represented by a 2-dimensional feature vector)

Examples

Some basic example

- Social Networks. Vertices(individuals), Edges(connections). Undirected (Xing),
 Directed(Twitter)
- Molecules. Vertex(Atoms) Edges(bonds)
- Power System. Vertex(Voltage at nodes), Edge(Resistance/current flow)
- Recommender System Vertex(individuals/products), Edges(ratings)

Permutation invariance are they the same graph?

- Features of a each node can be converted using a Fully connected layers of variable size
- In this case it is 2 x 4

Weights are shared between the nodes

Representation

Adjacency matrix of n x n

n = # of nodes

Entries in the adjacency matrix correspond to edges

$$Adjacency = egin{pmatrix} 0 & 1 & 1 & 0 \ 1 & 0 & 0 & 1 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \end{pmatrix}$$

- Each node receives information from its neighbours
- Edges indicate which are the neighbouring nodes
- Perform order invariant operations on the received information:
 - o Sum
 - mean
 - o max
- We take sum in the following example

[1., 0., 0., 0.]]

But we want to add information from the transformed neighbouring features Let Weights of the fully connected layer be the following 2 x 4 matrix:

$$W = [[0.4, -2,0.6,1.2],$$

$$[0.3, -2,0.7,-1.3]]$$

For every node the new features do not contain information from itself.

Information is **only** passed from the neighbours

Add self-loops in the adjacency matrix

A = A + Identity(n)

Degree normalization

Degree = # of neighbours of a node where information is sent

Some nodes have more neighbours than others

Therefore, nodes with higher number of nodes will have a higher sum.

We should therefore normalize such that the weighted average of the information sent to all

neighbours adds up to 1

```
[[3. 0. 0. 0.]
D =
        [0. 2. 0. 0.]
        [0. 0. 2. 0.]
        [0. 0. 0. 3.]]
New Adjacency =
                         [[1. 1. 1. 0.]
                          [1. 1. 0. 1.]
                          [0. 0. 1. 1.]
                          [1. 0. 0. 1.]]
inv(D) * A =
                [[0.33
                         0.33
                                 0.33 0. ]
                [0.5
                          0.5
                                  0. 0.5]
                                 0.5 0.5 ]
                [0.33]
                                 0.
                                       0.33]]
```


Final solution for new feature =

inv(D) * new adjacency * Features * Weights

```
[[ 2.2000, -13.3333, 4.4667, -3.6667],
[ 4.5500, -28.0000, 9.4500, -9.4500],
[ 5.1500, -32.0000, 10.8500, -12.0500],
[ 2.3667, -14.6667, 4.9667, -5.3667]]
```


Pytorch Geometric

Writing out an adjacency matrix infeasible for large graphs

Sparse matrix, few non-zero entries

Rather than matrix, represent as edges

[[0, 0, 1, 2,3,3],

[1, 3, 0, 0,2,1]]

Multi-Layer Graph Convolutions

Ref: https://tkipf.github.io/graph-convolutional-networks/

Task 5

- Classify the point cloud contained obtained from images contained in /storage/group/intellisys/datasets/carla/episode_000/CameraDepthXX
- See tutorial_week3.ipynb on how to create a point cloud from a depth image.
 - Similar to week1 tutorial
- Semantic labels for each pixel is given in:
 /storage/group/intellisys/datasets/carla/episode 000/CameraSegXX
- The R channel of images contained in /storage/group/intellisys/datasets/carla/episode_000/CameraSegXX contain the semantic labels
- Labels are from 0-13.
- Some labels may be missing (for car, pedestrian etc.)

Some Hints

- Many nodes downsample image to a smaller size
- Or downsample the point cloud (using for e.g. Farthest point sampling)
- Features could be x,y,z values, r,g,b values, nx,ny,nz normals for each point or their combination
 - If using normals, see this for estimation of point normals:
 http://www.open3d.org/docs/release/tutorial/geometry/pointcloud.html#Vertex-normal-estimation
- Try different conv. layers for e.g. EdgeConv, GraphConv, PPFConv etc. For more see:
 https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#convolutional-layers
- Also look into GraphUnet
 (https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.
 models.GraphUNet)

Guidelines

Steps:

- 1. 2D depth Image is first projected into 3D
- 2. A graph is formed using K nearest neighbours

 https://pytorch-geometric.readthedocs.io/en/1.3.0/ modules/torch_cluster/knn.html
- 3. A GNN model is trained that inputs this graph and outputs the semantic label of each point in the graph
- 4. Each point with the predicted semantic label can then be back-projected into a 2D image
- 5. Report the accuracy of correct predictions

Submission

- Submit an inference.py script which takes in any image path given by /storage/group/intellisys/datasets/carla/episode_000/CameraDepthXX/image_00yyy.png and outputs the semantic class map and also prints the accuracy
- If you could train for only one image specify it in the report

Bonus when training for a single image:

- We know that even without training the embeddings for similar and closely related features are similar to each other
- o Therefore, not all semantic labels may be necessary
- So make a plot to check the accuracy of the model when using for e.g. 100 labels,
 200 labels, 300 labels etc.
- As more labels are added the accuracy improves
- Accuracy may already saturate without exhausting all labels

References

<u>al-networks-7d2250723780</u>

- Method used in the slides:
 https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolution
- Introductory Tutorial:
 https://pytorch-geometric.readthedocs.io/en/1.3.0/notes/introduction.html
- Notebooks: https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
- Implementing your own dataloader:
 https://pytorch-geometric.readthedocs.io/en/latest/notes/create_dataset.html

QUESTIONS