VIJAY SHAHWAL MIT2021075

		1		
81.	Y (Rev)	X (year)	· x ²	XY
	100	2007	4028049	200700
	95		4036081	190855
		2009	4040100	170850
	85	2010	40401	180990
234	90	2011	4044 121	185104
	92	2012	4048144	161040
	80	2013	4052169	179246
	89	2014	4056196	169260
	84	20151	4060225	187488
	93	2016	4064256	18+10
	0/96	2017	4068289	193632
())	97	2018	4072324	19574-6

Since Know

$$Y = h_w(x) = w_0 + w_1 x - 0$$

$$Wo = \frac{BC - AD}{mC - A^2}$$

$$W_{l} = \frac{AB - mD}{A^{2} - mC}$$

wehere
$$A = \sum_{i=1}^{m} x_i^2$$
, $B = \sum_{i=1}^{m} y_i^2$, $C = \sum_{i=1}^{m} x_i^2$,

$$D = \sum_{i=1}^{m} X_i Y_i$$

$$A = \begin{array}{r} 3 = 1 \\ 2007 + 2009 + 2010 + 2011 + 2012 + 2013 \\ + 2014 + 2015 + 2016 + 2017 + 2018 \\ = 22,142 \\ = 23,142 \\ \end{array}$$

$$B = \frac{22}{100} + \frac{95}{85} + \frac{90}{92} + \frac{90}{92} + \frac{90}{93} +$$

$$C = \frac{2007^{2} + 2009^{2} + 2010^{2} + 2011^{2} + 2012^{2} + 2016^{2} + 2016^{2} + 2017^{2} + 2013^{2} + 2014^{2} + 2015^{2} + 2016^{2} + 2017^{2} + 2019^{2} = 44,569,954$$

$$D = \frac{2018^2}{161040 + 170850 + 180990 + 185104 + 187488 + 169260 + 187488 + 169260 + 187488 + 1693632 + 195746 = 201493}$$

$$W0 = \frac{1001 * 44569954 - 22142 * 2014911}{11 * 44569954 - 490268164}$$

$$= \frac{44614523954 - 44614159362}{490269494 - 490268164}$$

$$= \frac{36.4592}{1330} = 274.129$$

W1 = 22142 X1001 - 11 X 2014911 490268164 -490269494 22164142 - 22164021 - 1330 $=\frac{121}{1330}$ =-0.0909Putting Wo, Wi in eg'n O Y = hw(x) = 274.129.- 0.09 x9 x Down line fittig poits 274.12 Revenue in billiary) >y=274.129-0109092 > 95 80. 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 X (Year)

(a) Experted Remember and 2002

$$Y = h_{W}(2002) = 374.129 - 0.098 \times 2022$$

$$= 274.129 - 163.7998$$

$$= 90.33$$

$$= 90.64 \text{ line}$$
(c) Coorder = $J = \frac{1}{2m} \sum (h_{W}(x) - y)^{2}$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_{0} + w_{1} \times - y)^{2}$$

$$= \frac{1}{2m} \sum (\dot{w}_$$

(ML)	(HUR)			(x-x)2	(45)	(. x)(y-9
X	4	$X - \overline{X}$	4-4			
42 45 93	80 88 96	0 3 11 - 17	-4.7 3.3 11.3 -12.7	0 9 121 289 25	27.69 10:89 127.69 161.29 39.69	9.9 124.3 215.9 31.5
65 87 798 68 84 87	89	5 -11 16 14 2 57	6·3 -4.7 10·3 -(2·7 4·3 -0.7	23 121 256 196 4 25	22.09	51.7 164.8 -173.6 9.6
1.7			Z &' =	1046	670.1	429.6

$$Q Y = w_0 + w_1 X$$

$$w_0 = \overline{Y}, -w_1 \overline{X}$$

$$w_1 = \underline{\Sigma(x-\overline{x})(Y-\overline{Y})} = \underline{\Sigma(x-\overline{x})^2}$$

$$w_{1} = \frac{429.6}{1046} = 0.41$$

$$w_{0} = 84.7 - 0.41 \times 82 = 51.08$$

$$y = 51.08 + 0.41 \times 82 = 51.08$$

$$x = w_{0} + w_{1}y$$

$$x = w_{0} + w_{1}y$$

$$w_{1} = \frac{x}{2} - w_{1}y = \frac{429.6}{670.1}$$

$$w_{1} = \frac{x}{2} - \frac{x}{2} \cdot \frac{y}{2} = 0.641$$

$$w_{0} = 82 - 0.641 \times 84.7$$

$$(C) \frac{1}{1} = \frac{51.08 + 0.41 * 96}{90.44}$$

$$(C) \frac{1}{1} = \frac{90.44}{1}$$

Marks in HUR is 90.44

Cover:
$$J = \frac{1}{gm} \sum (h_{10}(x) - y)^2$$

$$= \frac{1}{g*_{10}} \left[(51.08 + 0.41 * 82 - 80)^2 + \frac{1}{g*_{10}} \left[(51.08 + 0.41 * 93 - 96)^3 + (51.08 + 0.41 * 93 - 96)^3 + (51.08 + 0.41 * 65 - 72)^2 + (51.08 + 0.41 * 65 - 72)^2 + (51.08 + 0.41 * 71 - 80)^2 + 50 + (51.08 + 0.41 * 94 - 91)^2 + (51.08 + 0.41 * 66 - 72)^2 + (51.08 + 0.41 * 94 - 95)^2 + (51.08 + 0.41 * 64 - 84)^2 \right]$$

$$= (51.08 + 0.41 * 94 - 89)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41 * 64 - 84)^2 \int (51.08 + 0.41 * 64 - 84)^2 + (51.08 + 0.41$$

Corror = $\frac{1}{20} \left[(97.70 + 0.641 \times 80 - 82)^2 + (97.7 + 0.641 \times 88 - 85)^2 + (97.7 + 0.641 \times 96 - 93)^2 \right]$

+ $(27.7 + 0.641 \times 77 - 65)^2 + (27.7 + 0.641 \times 91 - 87)^2 +$ $(27.7 + 0.641 \times 80 - 71)^2 + (27.7 + 0.641 \times 95 - 98)^2 +$ $(27.7 + 0.641 \times 72 - 68)^2 + (27.7 + 0.641 \times 89 - 84)^2 +$ $(27.7 + 0.641 \times 84 - 87)^2 = 16.0044$

June In 1st afgivre line gines more accurate result as the error corresponding to it is less.

(V(volume)	Porcherre (P)
54.3	61.2
61.8	49.5
72.4	37.5
88.7	28.4
118.6	19.2
194	10.1

(a)

pym = C

m = 6

Applying log both Ede logP+nlogV=logC wgp-nlg+=logc logp = n log + logc hypothesis: Y = Wo + W, X let Y = log P & X = log (t) $A = \sum_{i=1}^{m} x_i^2 = \sum_{i=1}^{m} log(t)$ $= log(5\frac{1}{4.3}) + log(\frac{1}{61.8}) + log(\frac{1}{72.4})$ + log (1 + log (18.6) + log (19+ - 26.92 $B = \sum_{i=1}^{m} Y_i^2 = 10961.2 + 10949.5 +$ Jog 37.5 + log 28.4 + log 19.2 + log 10.1 $C = \sum_{i=1}^{m} x_i^2 = (\log(54.3))^2 + (\log(\frac{1}{61.8}))^2$ + (log \frac{1}{72.4})^2 + (log (\frac{1}{687}))^2 + (log(18.6))2+ (log(194)2

$$C = 121.975$$

$$D = \sum_{i=1}^{m} log(t) log P = -\sum_{i=1}^{m} log v log P$$

Cymr

6,

$$=) - \left[109 (61.2) iog (54.3) + log (49.5) log (61.8) + log (88.7) +$$

+
$$\log(37.5) \log(72.4) + \log(28.4) \log(88.7) +$$

$$w_0 = \frac{BC - AD}{mC - A^2}, \quad w_1 = \frac{AB - mD}{A^2 - mC}$$

$$\omega_0 = 20.254 \times 121.975$$
 $\omega_0 = 4.6.92 \times 89.34$

$$= 2470.48 + 72405.275$$

$$W_{1} = \frac{20.754 * (-26.92) - 6 * (-89.849)}{725.198 - 731.85}$$

$$= \frac{9.343}{-6.656} = 1.4037$$

S

O

-

(a) giried mand C

$$wo = \log C = 0$$
 $C = e$ 0.675
 $C = e$ 0.675
 $C = 15914.72$

$$w_1 = 1.40 = 91$$

6) As we have calculate
$$n = 1.4$$

and $c = 15914.72$

$$p_{V}^{1,4} = 15914.72$$

$$p_{V}^{1,4} = 15914.72 = 25.2231$$

$$p_{V}^{1,4} = \frac{15914.72}{(100)!.4}$$

The abone hypothesis has three WO, W1, W2 80 me Unknow will have three eg's

$$\sum_{i=1}^{m} Y_{i}^{\circ} = W_{0} m + W_{1} \sum_{i=1}^{m} x_{i}^{\circ} + W_{2} \sum_{i=1}^{m} x_{i}^{\circ} +$$

256

6 35

1296

73

131.4

36.5×10=365

788.4

64

125

216

16

25

36

3

4

5

9.3

1416

21.9

 $z \times i$ $z \times i$ $z \times i^2$ $z \times i^3$ $z \times i^4$ $z \times i \times i$ $z \times i$

By eq'h O, O and O Substituting values of \(\times \times i', \times \times i^2, \times \times i^2, \times \times i^2, \times \times i^2 \times i^2 \times i \times i^2 \times i \

59.1 = WOX7 + 21W1 + 31W2 -0 21 wo + 91 w1 + 441 w2 = 266.9

91 Wo + 441 W1 + 2275 W2 = 1000 1367.5 -(3)

Solving these eq'h we get

wo = 2.5095 $w_1 = -1, 2$ $W_2 = 0.733$

Y = 2.5095-1.2 a + 0.733 x2