Chapitre X

Limites de Fonctions

I. LIMITES D'UNE FONCTION EN L'INFINI

A. Limite en $+\infty$

1. Définitions

Soit une fonction f définie au moins sur $[a; +\infty[$, où a est un réel.

— On dit que f a pour limite $+\infty$ en $+\infty$ si pour tout réel M positif, il existe un réel A, tel que x > A implique $f(x) \ge M$.

Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) peut être aussi grand que l'on veut.

On note:

FIGURE 10.1. – Représentation Graphique d'une Fonction qui Semble Tendre vers $+\infty$ en $+\infty$

— On dit que f a pour limite $-\infty$ en $+\infty$ si pout tout réel m négatif, il existe un réel A, tel que x > A, $f(x) \le m$.

Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) est négatif et peut être aussi grand que l'on veut en valeur absolue.

On note:

FIGURE 10.2. – Représentation Graphique d'une Fonction qui Semble Tendre vers $-\infty$ en $+\infty$

— On dit que f a pour limite ℓ en $+\infty$ où ℓ est un réel si pour tout intervalle ouvert I contenant ℓ , il existe un réel A tel que x > A implique $f(x) \in$ I Autrement dit, lorsque x prend des valeurs de plus en plus grandes, f(x) peut être aussi près de ℓ que l'on veut.

On note:

Figure 10.3. – Représentation Graphique d'une Fonction qui Semble Tendre vers ℓ en $+\infty$

$$\begin{aligned} \text{H.P.}: \forall \epsilon > 0, \; \exists \mathbf{A} \in \mathbb{R}, \; \forall x \in \mathcal{D}_f \\ \left(x > \mathbf{A} \implies \left| f(x) - l \right| < \epsilon \right) \text{ou} \left(x > \mathbf{A} \implies f(x) \in \left] l - \epsilon \; ; l + \epsilon \right[\right) \end{aligned}$$

2. Définition

Soit f une fonction définie au moins sur $[A; +\infty[$, où A est un réel, et $\mathscr C$ sa courbe représentative dans un repère.

Si $\lim_{x \to +\infty} f(x) = \ell$ alors $\mathscr C$ admet une *asymptote horizontale* en $+\infty$ d'équation $y = \ell$.

3. Remarque

Une fonction n'admet pas forcément de limite en $+\infty$, par exemple, les fonctions sinus et cosinus sont bornées et n'admettent pas de limites en l'infini.

B. Limite en $-\infty$

1. Définitions

Soit f une fonction définie au moins sur $]-\infty$; a[, où a est un réel.

— On dit que f a pour limite $+\infty$ en $-\infty$ si pour tout réel M, positif, il existe un réel A tel que x < A implique f(x) ≥ M Autrement dit, lorsque x prend des valeurs négatives de plus en plus grandes en valeur absolue, f(x) peut être aussi grand que l'on veut.

On note:

Figure 10.4. – Représentation Graphique d'une Fonction qui Semble Tendre vers $+\infty$ en $-\infty$

— On dit que f a pour limite $-\infty$ en $-\infty$ si pour tout réel m négatif, il existe un réel A tel que x < A implique $f(x) \le m$ On note :

 $\lim_{x \to -\infty} f(x) = -\infty$

FIGURE 10.5. – Représentation Graphique d'une Fonction qui Semble Tendre vers $-\infty$ en $-\infty$

— On dit que f a pour limite ℓ en $-\infty$ où ℓ est un réel, si pour tout intervalle ouvert I contenant ℓ , on peut trouver un réel A tel que si $x \le A$, f(x) appartient à I.

Autrement dit, lorsque x prend des valeurs négatives, de plus en plus grandes en valeur absolue, f(x) peut être aussi près de ℓ que l'on veut.

On note:

Figure 10.6. – Représentation Graphique d'une Fonction qui Semble Tendre vers 2 en $-\infty$

$$\begin{aligned} \text{H.P.} : \forall \epsilon > 0, \ \exists \mathbf{A} \in \mathbb{R}, \ \forall x \in \mathcal{D}_f \\ \left(x < \mathbf{A} \implies \left| f(x) - \ell \right| < \epsilon \right) \text{ou} \left(x < \mathbf{A} \implies f(x) \in \left] \ell - \epsilon \right. ; \ell + \epsilon \left[\right) \end{aligned}$$

2. Définition

Si $\mathscr C$ est la courbe représentative de f dans un repère. $\lim_{x\to -\infty} f(x) = \ell$ alors $\mathscr C$ admet une *asymptote horizontale* en $-\infty$ d'équation $y=\ell$.

II. LIMITE D'UNE FONCTION EN UN RÉEL

A. DÉFINITIONS

Soit a un réel et f une fonction définie sur un intervalle I contenant a ou tel que a est une borne de I.

Si, lorsque x prend des valeurs de plus en plus proches de a:

— f(x) est aussi grand que l'on veut, on dit que f a pour limite $+\infty$ en a. On note :

FIGURE 10.7. – Représentation Graphique d'une Fonction qui Semble Tendre $\operatorname{vers} + \infty \text{ en 2}$

— f(x) est négatif et aussi grand que l'on veut en valeur absolue, on dit que f a pour limite $-\infty$ en a.

On note:

$$\lim_{x \to a} f(x) = -\infty$$

— f(x) est aussi proche que l'on veut d'un réel ℓ , on dit que f a pour limite ℓ en a. On note :

$$\lim_{x \to a} f(x) = \ell$$

1. Remarque

Si f est *continue* en a, $\ell = f(a)$.

B. Limite à Droite ou à Gauche d'une Fonction en un Réel

1. Exemple

La fonction $f: x \mapsto \frac{1}{x}$ n'a pas de limite en 0 car lorsque x tend vers 0 par des valeurs positives, $\frac{1}{x}$ tend vers $+\infty$ et lorsque x tend vers 0 par valeurs négatives, $\frac{1}{x}$ tend vers $-\infty$.

Cependant, on peut parler de limite à gauche et limite à droite.

On note:

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty \qquad \lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

2. Remarque

Une fonction admet une limite en un réel a si la limite à droite et à gauche de f en a existent et sont égales.

C. ASYMPTOTE VERTICALE

1. Définition

Soit $\mathscr C$ la courbe représentative de la fonction f. Dire que $\mathscr C$ admet une asymptote verticale d'équation x=a, c'est dire que :

$$\lim_{x \to a} f(x) = \pm \infty \quad \text{ou} \quad \lim_{\substack{x \to a \\ x > a}} f(x) = \pm \infty \quad \text{ou} \quad \lim_{\substack{x \to a \\ x < a}} f(x) = \pm \infty$$

III. FONCTIONS USUELLES

A. Théorème

1. FONCTION RACINE CARRÉE

 $\lim_{x\to +\infty} \sqrt{x} = +\infty$ et $\lim_{x\to 0} \sqrt{x} = 0$ (la fonction racine carrée est continue en 0)

2. FONCTION INVERSE

$$\lim_{x \to +\infty} \frac{1}{x} = 0, \quad \lim_{x \to 0} \frac{1}{x} = +\infty, \quad \lim_{x \to 0} \frac{1}{x} = -\infty, \quad \lim_{x \to -\infty} \frac{1}{x} = 0$$

3. FONCTIONS PUISSANCES

Quel que soit $p \in \mathbb{N}^*$, $\lim_{x \to +\infty} x^p = +\infty$.

Si p est pair, $\lim_{x \to -\infty} x^p = +\infty$ et si p est impair, $\lim_{x \to -\infty} x^p = -\infty$.

Quel que soit $p \in \mathbb{N}^*$, $\lim_{x \to +\infty} \frac{1}{x^p} = 0$, et $\lim_{x \to -\infty} \frac{1}{x^p} = 0$.

Si p est pair, $\lim_{x\to 0} \frac{1}{x^p} = +\infty$ et si p est impair, $\lim_{\substack{x\to 0\\x>0}} \frac{1}{x^p} = +\infty$ et $\lim_{\substack{x\to 0\\x<0}} \frac{1}{x^p} = -\infty$.

4. FONCTION EXPONENTIELLE

$$\lim_{x \to +\infty} e^x = +\infty, \quad \lim_{x \to -\infty} e^x = 0$$

5. FONTION LOGARITHME NÉPÉRIEN

$$\lim_{x \to +\infty} \ln(x) = +\infty, \quad \lim_{\substack{x \to 0 \\ x > 0}} \ln(x) = -\infty$$

B. Théorèmes de Croissance Comparée

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \qquad \lim_{x \to -\infty} x e^x = 0$$

1. DÉMONSTRATION

— On montre que $e^x > \frac{x^2}{2}$, pour tout x > 0 en étudiant la différence. Soit f définie sur]0; $+\infty[$ par $f(x) = e^x - \frac{x^2}{2}$. Étudions les variations de f. $f'(x) = e^x - x$ on ne conclut pas directement sur le signe. Dérivons encore : $f''(x) = e^x - 1$ et $e^x - 1 > 0 \iff e^x > 1 \iff x > 0$ Donc, f''(x) est strictement positive pour x > 0.

Ainsi on a f'(x) strictement croissante sur]0; $+\infty[$ et comme f'(0) = 1 > 0, f' est strictement positive sur]0; $+\infty[$:

x	0 +∞
f''(x)	0 +
f'(x)	1
f(x)	1

FIGURE 10.8. – Tableau de Variation de f et f'

Donc, pour tout $x \in]0$; $+\infty[$, $e^x - \frac{x^2}{2} > 0$ et donc $e^x > \frac{x^2}{2}$

Comme x > 0 on peut diviser par x:

Donc, $\frac{e^x}{x} > \frac{x}{2}$ et comme $\lim_{x \to +\infty} \frac{x}{2} = +\infty$, par comparaison :

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty \quad \Box$$

— On pose X = -x et alors, $\lim_{x \to -\infty} X = +\infty$ et $xe^x = -Xe^x = -\frac{X}{e^X}$ Donc, par passage à l'inverse de la limite précédente :

$$\lim_{x \to -\infty} x e^x = \lim_{X \to +\infty} -\frac{X}{e^X} = 0 \quad \Box$$

C. THÉORÈME

Quel que soit l'entier n > 0:

$$\lim_{x \to \infty} \frac{e^x}{x^n} = +\infty \quad \text{et} \quad \lim_{x \to -\infty} x^n e^x = 0$$

D. THÉORÈMES DE CROISSANCE COMPARÉE (BIS)

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0 \quad \text{et} \quad \lim_{\substack{x \to 0 \\ x > 0}} x \ln(x) = 0$$

1. DÉMONSTRATION

On pose le changement de variable $X = \ln(x)$ et donc $x = e^X$. On a alors $\lim_{\substack{x \to +\infty \\ x > 0}} X = +\infty$ et $\lim_{\substack{x \to 0 \\ x > 0}} X = -\infty$.

IV. OPÉRATIONS SUR LES LIMITES

A. Limites de Somme, Produit et Quotient

Dans cette sous-partie, les limites des fonctions f et g sont prises soit en $-\infty$, soit en $+\infty$ soit en un réel a. ℓ et ℓ' sont des nombres réels.

Lorsqu'il n'y a pas de conclusion en général, on dit alors qu'il y a un cas de forme indéterminée. (F.I.)

N.B.: $\pm \infty$ désigne $+\infty$ ou $-\infty$.

1. LIMITE DE SOMME

TABLEAU 10.1. – Tableau des Limites de Sommes de Fonctions

	$\lim f$					
limg	ℓ	+∞	-∞			
ℓ'	$\ell + \ell'$	$+\infty$	$-\infty$			
$+\infty$	+∞	$+\infty$	F.I.			
$-\infty$	$-\infty$	F.I.	$-\infty$			

2. LIMITE D'UN PRODUIT

TABLEAU 10.2. – Tableau des Limites des Produits de Fonctions

			$\lim f$			
lim g	ℓ	$\ell > 0$	$\ell < 0$	+∞	$-\infty$	0
ℓ'	$\ell\ell'$	$\ell\ell'$	$\ell\ell'$	$+\infty$	$-\infty$	0
$\ell' > 0$	$\ell\ell'$	$\ell\ell'$	$\ell\ell'$	$+\infty$	$-\infty$	0
$\ell' < 0$	$\ell\ell'$	$\ell\ell'$	$\ell\ell'$	$-\infty$	$+\infty$	0
$+\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.
$-\infty$	$-\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	F.I.
0	0	0	0	F.I.	F.I.	0

3. Limite d'un Quotient f/g

TABLEAU 10.3. – Tableau des Limites des Quotients de Fonctions

		$\lim f$					
lim g	ℓ	$\ell > 0$	$\ell < 0$	+∞	$-\infty$	0	
$\ell' \neq 0$	$\frac{\ell}{\ell'}$	$\frac{\ell}{\ell'}$	$\frac{\ell}{\ell'}$	+∞	$-\infty$	0	
$\ell' > 0$	$rac{\ell}{\ell'}$	$rac{\ell}{\ell'}$	$rac{\ell}{\ell'}$	$+\infty$	$-\infty$	0	
$\ell' < 0$	$rac{\ell}{\ell'}$	$rac{\ell}{\ell'}$	$rac{\ell}{\ell'}$	$-\infty$	$+\infty$	0	
$+\infty$	0	0	0	F.I.	F.I.	0	
$-\infty$	0	0	0	F.I.	F.I.	0	
0+	_	$+\infty$	$-\infty$	$+\infty$	$-\infty$	F.I.	
0-	_	$-\infty$	$+\infty$	$-\infty$	$+\infty$	F.I.	

4. EXEMPLES

A. SOMME

 $\lim_{x \to +\infty} x + \frac{1}{x^2} - 1 = +\infty \quad \text{(remarquons qu'on a la même limite quand } x \to 0\text{)}$

B. PRODUIT

$$\lim_{x \to 0} (-3+x) \left(1 + \frac{1}{x^2}\right) = -\infty \qquad \text{En effet, } \lim_{x \to 0} -3 + x = -3 \text{ et } \lim_{x \to 0} 1 + \frac{1}{x^2} = +\infty$$
Par contre, remarquons que
$$\lim_{x \to +\infty} (-3+x) \left(1 + \frac{1}{x^2}\right) = +\infty.$$

C. QUOTIENT

$$\lim_{x \to 0} \frac{1+x}{\sqrt{x}} = +\infty$$

B. LIMITE D'UNE COMPOSÉE DE DEUX FONCTIONS

1. Rappel

On note $g \circ f$ la composée de la fonction f suivie de g.

$$\forall x \in \mathcal{D}_f \text{ tel que } f(x) \in \mathcal{D}_g, (g \circ f)(x) = g(f(x)).$$

2. THÉORÈME

Soient a, b et c trois réels ou $+\infty$ ou $-\infty$. Soient f et g deux fonctions, définies au bon endroit.

Alors, si
$$\lim_{x \to a} f(x) = \mathbf{b}$$
 et $\lim_{x \to \mathbf{b}} g(x) = c$, on a :

$$\lim_{x \to a} (g \circ f)(x) = c$$

Attention aux limites!

3. EXEMPLE

$$\lim_{x \to +\infty} e^{-x^2 - 3} = 0 \quad \text{car} \quad \lim_{x \to +\infty} -x^2 - 3 = -\infty \quad \text{et} \quad \lim_{X \to -\infty} e^X = 0.$$

C. COMPARAISON

a désigne un réel ou $+\infty$ ou $-\infty$.

1. Théorème

Si f et g sont deux fonctions telles que pour tout x voisin de a, $f(x) \le g(x)$

- Si
$$\lim_{x \to a} f(x) = +\infty$$
 alors $\lim_{x \to a} g(x) = +\infty$.
- Si $\lim_{x \to a} g(x) = -\infty$ alors $\lim_{x \to a} f(x) = -\infty$.

— Si
$$\lim_{x \to a} g(x) = -\infty$$
 alors $\lim_{x \to a} f(x) = -\infty$

2. Théorème dit « des Gendarmes »

Soient f, g et h trois fonctions telles que pour tout x voisin de a, $g(x) \le f(x) \le h(x)$.

Si
$$\lim_{x \to a} g(x) = \ell$$
 et $\lim_{x \to a} h(x) = \ell$ où ℓ est un réel, alors $\lim_{x \to a} f(x) = \ell$.