An Alternative Proof of the Recursive Formula for Calculating the Chromatic Polynomial of a Graph by Vertex Deletion

Alwyn G. Lopez alwyn333@hotmail.com

November 7, 2016

Abstract

This paper demonstrates a a double counting proof on the Recursive Formula for Calculating the Chromatic Polynomial of a Graph by Vertex Deletion.

1 Double Counting Proof

We will state Jin's main theorem in its original form, and then prove it by a double counting argument. For more details on the notation, see [1].

Theorem. Let G be simple graph with p vertices. Let $u \in V(G)$ be such that d(u) = p - k, where d(u) denotes the degree of u and $1 \le k \le p - 1$. Let $V_u^* = \{v_1, v_2, v_3, \dots, v_{k-1}\} \subset V(G)$ be the set of all vertices in V(G) such that each vertex in V_u^* is not adjacent to u. Then we have the vertex-deleting formula for the chromatic polynomial of the graph G,

$$P(G,\lambda) = \lambda P(G_u, \lambda - 1) + \lambda \sum_{H \subseteq V_u^*} P(G_{\{u\} \cup H}, \lambda - 1)$$
(1)

where the summation is extended over all independent sets $H \subseteq V_u^*$ with $1 \le |H| \le k-1$. Here G_J denotes the graph obtained from G by deleting all vertices in J.

Proof. The left hand side of equation (1) counts the number of proper colorings on the graph G with λ colors, so it suffices to show that the right hand side of equation (1) also counts the number of proper colorings on the graph G with λ colors. Let \bar{H} be an arbitrary independent set that contains the vertex u. Since there are λ colors, pick one color to color all vertices in \bar{H} , delete all vertices in \bar{H} including its associated edges, and finally use the remaining $\lambda - 1$ colors to properly color the graph $G_{\bar{H}}$. Then there are $\lambda P(G_{\bar{H}}, \lambda - 1)$ ways to do this. Since \bar{H} is an arbitrary independent set that contains u, then we deduce that

$$P(G,\lambda) = \lambda \sum_{\bar{H}} P(G_{\bar{H}},\lambda)$$

gives us the number of ways to properly color the graph G with λ colors. Observe that the above sum is summing over all independent sets that contain u. Additionally, we know that $\bar{H} = \{u\} \cup H$, where $H \subseteq V_u^*$, so the above sum can be simplified to equation (1).

References

[1] Xu Jin, Recursive Formula for Calculating The Chromatic Polynomial of a Graph via Vertex Deletion, Acta Mathematica Scientia, 577-582 (2004).