TRABALHO 4

O TRANSÍSTOR

1. Introdução

O transístor é o componente mais utilizado em electrónica, sendo a base do fabrico de circuitos integrados. Podem ser de vários tipos de acordo com a tecnologia de fabrico:

- * Bipolares ou BJT (Bipolar Junction Transístor)
- * Efeito de campo ou JFET (Junction Field Effect Transístor)
- * MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor)

Neste trabalho vamos utilizar apenas transístores BJT. Este tipo de transístores podem ser vistos como sendo constituídos por 2 junções pn (ver diodos) com uma secção comum, designada por base. Se a base é de material semicondutor tipo p, o transístor diz-se npn, se é de tipo n diz-se pnp.

2. Configuração de circuitos com transístores

As configurações mais comuns dos circuitos com transístores são:

3. Características de um transístor montado em emissor comum

NA figura seguinte estão representadas as características típicas de entrada (I_B / V_{BE}) e de saída (I_C / V_{CE}) de um transístor em montado em configuração de emissor comum.

Na característica de saída podemos distinguir as 3 zonas em que o transístor pode funcionar:

* ACTIVA (Q1)

Nesta zona o transístor funciona como um dispositivo linear, verificando-se que $0 < V_{CE} < V_{CC}$ e que a corrente de saída (I_C) está relacionada com a corrente de entrada (I_B) pela relação $I_C = h_{FE} . I_B$, onde h_{FE} é o ganho do transístor em corrente continua. Nesta zona $V_{BE} \approx V\gamma$, com $V\gamma$ a tensão limiar (=0.6-0.7V para o sílicio), funcionando o transístor como amplificador de corrente.

*SATURAÇÃO (Q₂)

Nesta zona temos $V_{CE} \approx 0V$ (tipicamente 0.2 V para transistores de sílicio), e a corrente I_C é dada por $I_C \approx V_{CC}$ / R_C , onde V_{CC} é a tensão de alimentação do circuito. Nesta zona temos $I_C < h_{FE}$ I_B e $V_{BE} > V\gamma$, comportando-se o transístor como um interruptor fechado.

*CORTE (Q₃)

Nesta zona $I_C \approx 0$, logo $V_{CE} \approx V_{CC}$. Para fazer o transístor funcionar nesta zona impõe-se $I_B = 0$, o que pode ser obtido fazendo $V_{BE} < V\gamma$. O transístor funciona assim como um interruptor aberto.

4. Polarização do transístor

Polarizar o transístor consiste em escolher o seu ponto de funcionamento, ou seja, definir a região da característica de saída em que vai funcionar. Este ponto de funcionamento do transístor é caracterizado pelos pares de valores (V_{CE} , I_{C}) e (V_{BE} , I_{B}). Conhecendo V_{CC} , R_{C} , h_{FE} podemos colocar o transístor nas diferentes zonas de funcionamento controlando o valor da corrente I_{B} com o auxílio de resistências.

5. OBJECTIVOS DO TRABALHO

- Identificar as zonas de funcionamento do transístor.
- Polarizar o transístor nas várias zonas de funcionamento.
- Estudo do transístor como amplificador de tensão.

6. MATERIAL A UTILIZAR

- 1 Fonte de tensão
- 1 Gerador de sinal
- 1 Multímetro
- 1 Osciloscópio
- 1 Placa de montagem
- 1 Transístor 2N2222
- 1 Potenciómetro de 1MΩ
- 1 Resistência de 4.7KΩ
- 2 resistências de $1K\Omega$
- 2 Condensador 0.47μF.

7. PROCEDIMENTO EXPERIMENTAL

1 - Monte o circuito indicado na fig.1, alimentando-o a partir da fonte de alimentação ajustada para fornecer aproximadamente 10V. Utilizando o multímetro meça os valores de $V_{ce},\,V_{be},\,I_{c}$ e I_{b} nos 2 casos seguintes: resistência de 4.7K Ω ligada a 10V e a 0V.

	V_{ce}	V_{be}	I_{c}	I_b
Resistência ligada a 0V				
Resistência ligada a 10V				

Diga em que região funciona o transístor em cada um dos casos.

2 - Aplique à entrada do circuito uma onda quadrada com cerca de 8Vpp e 1 KHz de frequência (figura 2).

Figura 2

Utilizando o osciloscópio visualize as tensões de entrada e saída (vi e vo) e faça o seu registo. Interprete o comportamento da tensão v_o, relacionando-a com a tensão v_i (Sugestão: recorde o que registou no ponto 1).

3. a) O circuito da figura 3 destina-se a demonstrar o funcionamento do transístor quando polarizado na zona activa. Proceda à sua montagem e ajuste o potenciómetro até obter V_{ce} = 5V, utilizando o multímetro para medir V_{ce} .

Figura 3

Em seguida, meça os valores de:

$$V_{be} =$$
______ $I_c =$ _____ $I_b =$ _____

Determine aproximadamente o ganho em corrente $(I_{\text{c}}/\ I_{\text{b}})$ do transístor.

b) Usando o multímetro, meça previamente o valor da resistência do potenciómetro para posições extremas. Faça variar o potenciómetro (R_{bv}) entre essas 2 posições, registando com o multímetro a evolução do valor de V_{ce} . Diga qual a região de funcionamento do transístor para os seguintes valores de R_{bv} :

R _{bv} máximo:		 	
R _{bv} mínimo:		 	
Voloros intermédios de	D. •		

4 - Reponha o circuito na condição Vce = 5V e monte o circuito representado na figura 4. Ajuste o gerador de sinais (comutado para -30dB) de forma a gerar uma tensão (v_i) sinusoidal com cerca de 1 KHz de frequência e 10 m V_{pp} .

Figura 4

Utilizando o osciloscópio visualize simultaneamente v_i e v_o . Registe o que observa e meça o valor da componente contínua da tensão de saída.

- a) Determine o ganho em tensão da montagem $(v_{o}/v_{i}). \label{eq:controller}$
- b) Que lhe sugere o valor lido para a componente contínua de $v_{\rm o}$.

5 - Usando o mesmo circuito coloque em série com a saída um condensador de 0.47μF. Meça o valor da componente contínua da tensão de saída. Qual o efeito da introdução do condensador? Porquê?