Tyuber Hi

3 ha = 3 months x 3 hors 4/9 $(x) y_t = 0.5y_{t-1} - 0.06y_{t-2} + u_t$ $u_t \sim while noise$ a) lag polynomial, characteristic polynomial.

B) Are there any stationary sol-s of (6)

c) con stationary solution (if it exists) be written

as NA(w) wet (up)? One stol. solh MA(s) wat (u) $(1-0.5L + 0.06L^{2})y_{+} = u_{+} \qquad |_{1=az} l_{z=a3}$ P(l) = 1-0.5l+0.06l² log polynomial of Ak part charact, polynam.

yt-025 yer +0.06 yer = 0 (no ax)

let's find simple solutions y= 1 (court) $\lambda^{t} - 0.5\lambda^{t-1} + 0.06 \cdot \lambda^{t-2} = 0 \quad \text{costs}$ $\lambda_{i} = 0.2 \quad \lambda_{i} = 0.3$ of Al part Ut is a white noise. If lag polynomials of the and MA part have n common roots then there 3 cosses:

(1) No stationary solutions (there is a root of lag poly |ll=1)

there is a root of char poly |bl=1) 2) Unique stockionary solution of the form thet roots 16/21

The fit lift a lift + Cz Uzzt and -MA(w) with a the roots 12/21

3) Unique stockionary solution of -11

The permitted with the roots 12/21

The permitted with the porum the roots 12/21

The permitted roots 12/21

The permitted

yt = 5+ 0,3 gt + 4 m+ 4+1+? u+z+?U+zx Vor (y6) = 0,32 Vor (y41) + Vor (4) + 20,3 (av(y4),4) ; e $\gamma_0 = 0.09 \cdot \gamma_0 + 16$ $\gamma_0 = \frac{16}{0.31}$ (ou (y+1, y)) = (ou (y+1, 5+0,3 y+1+4+) $\gamma_1 = 0.3 \gamma_0 + 0$ (or (y+z, y+) = (or (y+z, 5+0,3 y+1 + U/) 1/5 = 013. 1/1 + 0 $y_3 = 0.3.72$ $p_1 = (ovc(y_t, y_{t-1}) = 0.3$ P2 = Cove (94,9+2) = 12 =0,32 $\beta k = 0.3 k$ Cor = 0.3 k y+ y++1 y++2 y++2 PRE = plour (ye, yere) yer, yer, yeren) P₁₁ = p love (y_{€1}, y_{←1}) = (ove (y_{€1}, y_{←1}) = 0,3 = p₁ Pez = p (vor (yt, ytz) yty)

decomposition y=5+0,3yer+ ut yt = d + Pr. ytu + Pr. ytz + Wt yt=5+039+++009+2+ (yu, w)=0 Con(you, up)=0) (ou (ytr, Wg) =0 (con(y+z, u)=0