Principles of Analytics Graphics

Thursday, August 4, 2016 3:38 PM

- Show comparisons
 - o Evidence for hypothesis is always relative to another
 - o At times merely a control comparison
- Show causality, mechanism, explanation, systematic structure
 - o Think about what causes explain hypothesis
 - Make plots to narrow onto those causes and how they relate to hypothesis
- Show multi variate data
 - o Real world is inherently multi variate
 - Simpson's Paradox: Relationship between 2 variables may be confounding the relationship of one of the two and other unrelated variable
- Integration of evidence
 - o Integrate all data to make data clear and trends clear
 - o Don't let tool drive analysis
- Describe and document evidence with labels, scales, and sources
- Content is king

Exploratory Graphs

Thursday, August 4, 2016 3:49 PM

- To understand data properties
- To find patterns in data
- To suggest modeling strategies
- To "debug" analyses
- To communicate results

Characteristics:

- Made quickly
- Large number of them
- Personal understanding
- Axes/legends are generally cleaned up
- Color/size primarily used for information

One Dimensional Data:

Simple summaries of data:

- Five number summary
 - o Given field (column) of data
 - o Get minimum, 1st quartile, median, mean, 3rd quartile, max
 - summary()
- Box plot
 - boxplot(data, col ="color")
- Histogram
 - hist(data, col="color", breaks="number of bars")
 - rug(data) -> gives outliers under hist plot
- Overlaying features
 - o abline(h="height") -> location of line
- Barplot (categorical data)
 - barplot(table, graph info)

Two Dimensional Data:

- Multiple/overplayed 1D plots
 - o Multiple Boxplots
- Scatter and smooth scatter plots
 - with(table, plot data)
 - o Can add color to add a new variable
 - o To add more variables, can also mix scatter plots

More than 2 Dimensions

- Overlayed/multiple 2-D plots
- Use color, size, shape to add dimensions
- Spinning plots
- Actual 3D plots

Plotting Systems in R

Thursday, August 4, 2016 4:17 PM

- "Artist's palette model" (Base Model)- graphics package
 - Build up blank canvas
 - Start with plot function
 - Use annotation functions to add/modify
 - 0 (
- Text,
- Lines,
- Points,
- Axis)
- Convenient, mirrors how we think of building plots and analyzing data
- Can't go back once plot has started
- o Difficult to translate to others
- Must control each part of it
- Lattice System- lattice package
 - Single function constructs entire plot at once
 - o Must specify in call to function
 - o Best for "conditioning" types of plots- how y changes with x across levels of z
 - o Cannot add to plot after created, must know everything at first call
- Ggplot2
 - o Splits difference of base and lattice
 - Auto spacing, text, etc.
 - Has function to add to a plot and work with
 - o More intuitive version of lattice system

Base Plotting System

Thursday, August 4, 2016 4:47 PM

- Where is plot located?
- How will plot be used?

Process:

- What graphics system to use? (Base, lattice, ggplot2)
- Base:
 - o 2D Graphics
 - o 2 Phases
 - Initializing
 - Annotating
 - Call plot (x, y) or hist(x)
 - Key base parameters:
 - Pch: plotting symbol (default is circle)
 - Lty: Line type (dashed, dotted, etc)
 - Lwd: line width
 - Col: color
 - Xlab: x-axis label
 - Ylab: y-axis label
 - Global base graph parameters:
 - Las: orientation of axis labels on plot
 - Bg: background color
 - Mar: margin size
 - For more look at documentation
- Base Plotting Functions:
 - o plot: make scatterplot
 - o lines: add lines to a plot
 - o points: add points to a plot
 - o text: add text labels to a plot
 - o title: add annotations to x,y axis labels, title, subtitle, outer margin
 - o mtext: add arbitrary text to margins of plot
 - o axis: adding axis ticks and labels

Graphics Devices in R

Thursday, August 4, 2016 9:05 PM

- Graphics Device is something that can make a plot appear (ie sent to:)
 - o Screen
 - o PDF file
 - o PNG or JPEG
 - o SVG
- Most common place is screen via windows() (or other)
- How does a plot get created?
 - Method 1
 - Plotting function, like plot, xyplot, or aplot
 - Plot appears on screen device
 - Annotate plot if necessary
 - Enjoy!
 - Method 2
 - Explicitly launch graphics device
 - Call plotting function to make plot
 - Annotate if necessary
 - Explicitly close graphics device with dev.off()
 - Like opening sockets and connections to dbs in Java connectors
- Vector formats
 - o pdf: very portable
 - o svg: xml based scalable vector graphics, popular web based plots
 - o win.metafile: only on Windows
 - o postscript: older format
- Bitmap formats:
 - o png
 - o jpeg
 - o tiff
 - o bmp
- Multiple open graphic devices
 - o Plotting can only occur on one at a time
 - o dev.cur() = current device
 - dev.set(int) to choose device
 - dev.copy(format, filename) = copy plots to other graphics devices
 - o dev.copy2pdf() = copy plot to pdf

Lattice Plotting

Sunday, August 7, 2016 10:50 AM

- lattice package
- grid = different graphing system, lattice built on it
- Don't separate plotting + annotation
- xyplot- main one
 - xyplot (y ~ x | f * g, data)
 - f,g = conditioning variables
 - o data = data frames
- Lattice graphics return an object of class trellis
 - o base plots just print to screen
 - o Lattice must be printed
 - o Usually auto-printed for you, but can be worse
- Panel functions
 - o lattice- default panel functions, can supply your own
 - o panel receives x/y coordinates and other arguments (how to format the panel)
 - Literally 2 panels of graphs

Sunday, August 7, 2016 11:07 AM

- ggplot2
 - Grammar of Graphics- graphics = abstract concepts, like verbs, nouns, and adjectives
 - qplot()- plot() in base
 - Looks for data in data frame
 - plots made of
 - □ aesthetics(size, shape, and color)
 - □ geoms(line, points, etc.)
 - Factors must be properly labelled
 - qplot(x coord, y coord, data = dataframe)
 - Adding a geom
 - □ qplot(x coord, y coord, data = dataframe, geom = c(geoms))
 - □ histograms: qplot(x coord, data = dataframe, fill = y coord)- fill not necessary, but can allow for separation via factors/specifying y coord
 - Facets (like panels)
 - □ qplot(facets = .~separable factor var)- column panels
 - □ qplot(facets = separable factor var.~)- row panels
 - qplot = quick plot (maybe?), but essentially doesn't use all of ggplot2. Can use ggplot() function to harness full potential
- Components of ggplot2
 - data frame
 - o aesthetic mappings-color, size, etc
 - o geoms-points, lines, shapes
 - facets- conditional plots (like panels)
 - stats- statistical transformations
 - scales- scales and legends
 - o coordinate system
- Plot in layer
 - o Plot data
 - Overlay summary- smooth/regression line
 - Annotate- legends, categorizing, etc.
- Call summary on a ggplot object will get all metadata
- Can make a ggplot with defaults of aesthetics but no actual data; will not let you plot but will have defaults
- Adding layers
 - Smooth-geom smooth()
 - Will make a line smoother and fit a workable trend more easily
 - Has potential attributes
 - Facets- facet_grid() function (same syntax as in qplot)
 - Annotations
 - xlab(), ylab(), labs(), ggtitle()
 - Global stuff changed via theme()
 - Axis Limits (gets rid of outliers)
 - ylim(limits for outlier)

Hierarchical Clustering

Sunday, August 7, 2016 11:34 AM

- Clustering organizes things that are close into groups
 - How do we define close and apart?
 - How do we group?
 - O How do we visualize grouping?
 - How do we interpret grouping?
- "Agglomerative" approach
 - o Find closest 2 things
 - Put together
 - o Find next closest, put together
- Requires
 - Defined distance
 - Merging approach
- Produces
 - Tree of closeness of things to each other
- Distances or Similarity
 - Continuous
 - Euclidean or correlation measure
 - Binary (Manhattan)
 - o Potentially another?
- · Euclidean- straightforward
- Manhattan

- Green = Euclidean
- Manhattan = blue, yellow, or red
- Function: hclust()
 - Makes a cluster object
 - o Can be plotted as a dendogram (kinda a tree diagram)

- o myplclust() use for coloring and prettier dendograms
- How to merge points together?
 - Average linkage- new coordinate location = average of all coordinates in cluster
 - o Complete linkage- take distance from maximally farthest point in each cluster

heatmap()

- \circ $\;$ Rows of table and columns of table to visualize clusters across high dimensional data
- Need to cut somewhere along clustering algorithm to make sure doesn't become one huge cluster; unique decision

K-Means Clustering

Sunday, August 7, 2016 11:53 AM

- Partitioning approach
 - o Fix a number of clusters
 - o Get "centroids" of clusters
 - o Assign things to each centroid
 - o Recalculate centroid till even
- Requires
 - o Defined distance metric
 - Number of clusters
 - o Initial guess to centers
- Produces
 - o Final estimate of cluster centroids
 - Assignment of each point to clusters
- kmeans()
 - o kmeans(data frame, centers = #)
 - Produces kmeansObj
- Heatmaps
 - o Differentiate clusters in a table

Dimension Reduction

Sunday, August 7, 2016 12:44 PM

- Matrix data
- Cluster data
- Adding a pattern
 - Some numerical pattern in data
- Tens of thousands of variables, not all independent of each other, so varied correlation across data
- Need to find fewer variables to explain original data
- First: Statistical Analysis
- Second: Data Compression
- SVD
 - Separate into 3 matrices: X = UDV^T
 - o U is orthogonal as is V
- PCA
 - Simply scale down matrix
- Can't run dimensional reduction techniques if missing values
 - Many solutions
 - o One of which is **imputing**, use nearby rows to make and estimate