Image Classification

AI/ML Teaching

Goals

Basic concept of Neural Network

• Dataset – training set, test set

• Training & inference

Small neural network

•
$$\sigma(\theta^T x) = \frac{1}{1 + \exp(-\theta^T x)}$$

• $ReLU(\theta^T x) = max(\theta^T x, 0)$

Activation functions

$$\sigma(z) = \frac{1}{1 + e^{-z}} \quad \text{(sigmoid)}$$

$$\sigma(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \quad \text{(tanh)}$$

$$\sigma(z) = \max\{z, \gamma z\}, \gamma \in (0, 1) \quad \text{(leaky ReLU)}$$

$$\sigma(z) = \frac{z}{2} \left[1 + \text{erf}(\frac{z}{\sqrt{2}}) \right] \quad \text{(GELU)}$$

Deep neural network

- Feed forward network (FFN)
- Multi-layer perceptron (MLP)
- Fully-connected (FC) layer

$$W^{[1]} = \begin{bmatrix} - & w_1^{[1]^\top} - \\ - & w_2^{[1]^\top} - \\ \vdots \\ - & w_m^{[1]^\top} - \end{bmatrix} \in \mathbb{R}^{m \times d}$$

$$\begin{split} a^{[1]} &= \mathrm{ReLU}(W^{[1]}x + b^{[1]}) \\ a^{[2]} &= \mathrm{ReLU}(W^{[2]}a^{[1]} + b^{[2]}) \\ & \cdots \\ a^{[r-1]} &= \mathrm{ReLU}(W^{[r-1]}a^{[r-2]} + b^{[r-1]}) \\ \bar{h}_{\theta}(x) &= W^{[r]}a^{[r-1]} + b^{[r]} \end{split}$$

Dataset

- MNIST: 10 classes of 60000 samples
- Fashion MNIST
- CIFAR10/CIFAR100
- ImageNet-1K: 1.2M samples of 1000 classes

Training set

Test set

CNN

- Convolutional neural network
 - Kernel/filter
 - Pooling

7	5	0	3		
10	4	21	2	 10	
6	1	7	0		
5	0	8	4		

7	5	0	3			
10	4	21	2		10	21
6	1	7	0		6	
5	0	8	4]		

7	5	0	3		
10	4	21	2	10	21
6	1	7	0		
5	0	8	4		

7	5	0	3		
10	4	21	2	10	21
6	1	7	0	6	8
5	0	8	4		

Convolution Neural Network (CNN)

Reference

Andrew Ng, CS229 Lecture Notes