Group 1

Concept of Operations for Composable Modeling and Simulation

Definition of "Component"

- (ref. Bertrand Meyers)
- 1. May be used by other software elements (clients).
- 2. May be used by clients without the intervention of component developers.
- 3. Includes a specification of all dependencies (hardware and software platform, versions, other components).
- 4. Includes a precise specification of the functionalities it offers.
- 5. Is usable on the sole basis of that specification.
- 6. Is easily composable with other components.
- 7. Can be integrated.
- Components are NOT objects in the OO sense. (ref. Szyperski)
- Not just software (data too), not just module level. (Group)
- Open source desirable but not required. (Group)

Acquisition of Components

- Standards may be needed
- How can acquisition be rationalized across agencies

Motivation

- Explain why we want composability
 - Problem
 - simulations hard to develop, hard to use
 - Hard = time, \$\$, expertise
 - Hypothesis
 - Composability will make it easier
 - Reuse
 - Assembling
 - Creating
 - Selecting
 - Recombining
 - Managing
- Distributed development (teams, organizations)
- Tools for development

Related Programs

- CMU SEI project
 - Predictable Assembly from Certifiable Components (PACC)
 - Predict properties fo compositions before acquiring
 - Not M&S specific
- BRLCAD
 - Methods for building portable & modular code
 - Applicable to building components with
- JVB federation
 - Existing components OTB, specialized "servers"
- JSB
 - Current emphasis fidelity
 - Vision implies composability; applications, resolution
 - Technical approach based on modules, no overall composability support

Related Programs

- **JBSE**
- **I** JSIMS
 - Architecture for model & module composition
- OneSAF
 - Model, module composability; various fidelity levels
 - Build different products from set of components/libraries
- **JDEP**
- JMASS
 - Environment, compose withy JMASS compatible
 - Collection of modules and architecture
- DARPA NICCI
 - Composability of C2 systems, real-time missions
 - Across service lines
 - Not M&S specific
- DARPA CHADS

- Composite model of combat vehicle
 - Composed from sub-models of vehicle subsystems,recompose for different apps,swap components of different fidelity
 - Training---maintenance, operator
 - Acquisition----designer
 - User—Driver(sets req) lists of components may be possible
- Integration of composable components/systems and legacy systems
 - Gateway into architecture

- Composition of scenario data into specific scenarios
 - Compose training environment suitable to train specific training tasks by use trainer e.g. clearing building
 - Composed by trainer/commander
- Inter-Service joint composition of scenario environment
 - Sim/fed composers-military leaders

- Composition of multiple levels of fidelity/resolution into flexible simulation environment e.g. JSB live virtual constructive
 - Operator—Commander
 - Domains training, acquisition, experimentation, analysis

- Automated decomposition
 - Dynamic decomposition of application or model
 - Redistribute execution load
 - Module levelautomatic,runtime,decomposition
 - Automatic recomposition
 - Fidelity swaps

Terms of Reference

a. What is Composability

- (1) Ability to put together a piece of software from several components? Yes, but too limited.
- (2) Ability to assemble software into modules into a structure that is semantically correct wrt the original design? *Yes*
- (3) Ability to assemble software modules into a structure that is functionally correct wrt original design? Yes
- (4) About methods and techniques that enhance the reusability of software? No too broad for M&S
- (5) A way to structure systems so they can be built from reusable components, evolved quickly, and analyzed reliably? Yes

a. What is Composability

- Composability applies to data, hardware, scenarios, systems and applications.
- Other characteristics of composability
 - portability
 - distributed
 - composability is facilitated by a framework.
 - composability requires a framework?
 - comes in levels (what is being composed)
 - different people perform composition

b. How does composability affect the modeling task?

(1) What price must be paid

- learning curve to build composable system
- more expensive to build composable
- initial cost higher life cycle may be lower
- general purpose more expensive
- standard may ameleriorate cost?
- configuration management cost lower?
- maintenance costs lower spread over more users
- requires developer to understand network ... things outside his/her component

b. How does composability affect the modeling task?

- What price must be paid
 - (a) Does composition make a modeler's job easier or harder?
 - Writing composable models is harder, debugging more difficult,
 - framework may make modeler's job easier.
 - (b) Does composition facilitate automation or confound it?
 - composition facilitates automation

- b. How does composability affect the modeling task?
- (2) When should component technology be used
 - -(Not answered -TBD)

c. What is the potential payback for adopting component technology?

- (1) Is the ROI sufficient to justify the change in approach?
 - ROI is not the right question. Does composability help accomplish the mission?

d. What approach were you using previously?

Unanswered

provide the same components provide the same complexity, scope, level of functionality?

No, Clearly. Federate e.g. ModSAF – Model e.g. IR sensor

f. Skill sets the same to use components and the infrastructure? No, clearly. See e. above

g. Do they usually have pedigrees?

- pedigree is certification by authoritative source or
- pedigree is development and maintenance history
- Should components have pedigrees?

(h) Is CBSE only approach for "plug and play" capability

No, not the only approach. See discussion under (j)

(i) Is Maturity of CBSE ready to be a standard for Composability? What is needed?

- - Architectures and Architecture Guidelines
 - Language for Glue Code
 - Method for specifying component interfaces and contracts
 - Version change control and distribution
 - Ownership of Components
 - Identification of persistence and data storage
 - Approach dealing with inheritance; shallow vs. deep

(i) Is Maturity of CBSE ready to be a standard for Composability?(cont.)

- What is needed?
 - Component contract standards for M&S Composability
 - Levels of Granularity for
 - Abstraction
 - Accounting
 - Compilation
 - Delivery
 - Dispute
 - Extension
 - Fault Containment
 - Instantiation
 - Loading
 - Locality
 - Maintenance
 - System Management
- See list of projects for related work

(j) What other approaches are there?

- Composability at service level (e.g., LOS Server)
 - Sign up for service without regard to implementation
 - "Outsourcing" Applied to M&S
- Extreme programming
 - Disposable software
 - Is reuse really good
- UML, CORBA, MDA address different aspects
- Open Source, OO, Code Libraries, RMOOP

k. Who is the customer?

- Ultimately the warfighter as the beneficiary.
- Procurement agency pays the bill.
- Enterprise many people/agencies benefit

I. Who would the composability program transition to? diffuse "general good" hard to sell to

- diffuse "general good" hard to sell to specific person.
- DMSO should retain standard.
- No commercial examples of framework architecture.

- Component frameworks for composability
- User requirements for composability
- Processes and people
- Leverage/exploit current work

- Component frameworks for composability
 - Study component frameworks to answer:
 - ■What frameworks exist now (M&S and non-M&S)?
 - What standards are needed?
 - ■What M&S-specific features are needed?
 - Are product lines component frameworks?
 - Is a component framework required?
 - Are component frameworks and composability frameworks the same thing?

- Possible project tasks
 - Develop component framework prototype(s)
 - Seek advice from framework experts
 - Compare HLA to component framework
 - What does HLA have?
 - What is HLA missing?
 - Can HLA be extended to include the missing features?
 - Can composability be achieved with HLA?
 - Analyze relationship of tool sets and development methodologies to component frameworks

- User requirements for composability
 - Establish users needs w.r.t composability
 - ■What benefits do users seek?
 - What should be flexible and what standard?
 - ■How much ease of use is needed?
 - How can program-specific point solutions be reconciled with common requirements?
 - How much composability is needed?
 - At what level(s) is the greatest need? (software, scenarios, data)
 - What is the priority for composition? (speed, cost, validity)

- Possible project tasks
 - Broad, careful requirements analysis
 - Perform outreach, present at conferences

Processes and people

- Develop processes to support composability
 - What organizational processes are needed?
 - What development processes are needed?
 - How can the transition to a composabilityoriented M&S environment be accomplished?
 - How can legacy applications be supported?
 - How can M&S developers be trained to use composability?
 - What certifications will be needed?
 - Is CMM or something like it applicable?

- Leverage/exploit current work
 - Identify relevant current work and determine how to use it
 - What components/frameworks/architectures have been developed that would be useful?
 - Possible project tasks
 - Analyze existing projects
 - JSB, JVB, ModISE, DMIT, AMC RDEC
 - Extract reusable aspects
 - Components, frameworks, methods, tools
 - M&S environment be accomplished

Additional Thoughts

- Focus stresses module/CBSE/Component composability
 - Too narrow; data and scenarios are big issues
- It is assumed that CBSE component based simulation is the solution?
- End user interface, ease of use, must be considered for composition environment