No	Условие задачи по
п/п	Д. А. ЗАИКИН, В.А.ОВЧИНКИН, Э. В. ПРУТ Сборник задач по общему курсу физики: / В трех частях. Ч.1. Механика. Термодинамика и молекулярная физика/Под ред В А. Овчинкина. (3-е изд., испр. и доп.) — М.: Физматкнига, 2013.
1	5.1. Исходя из второго начала термодинамики, показать, что внут-
	ренняя энергия данной массы идеального газа не зависит от его объ-
	ема, а является функцией только температуры (закон Джоуля).
2	5.2. Исходя из второго начала термодинамики, показать, что эн-
	тальпия данной массы идеального газа не зависит от его давления,
	а является функцией только температуры.
3	5.3. Найти общий вид уравнения состояния вещества, теплоем-
	кость C_V которого не зависит от объема, а зависит только от темпе-
	ратуры.
4	5.4. Найти общий вид уравнения состояния вещества, теплоем-
	кость C_P которого не зависит от давления, а зависит только от тем-
	пературы. 5.5. При 25° С объем одного моля воды (в см 3) для давлений от 0
5	до 1000 атм определяется уравнением
	· · · · · · · · · · · · · · · · · · ·
	$V = a + bP + cP^2,$
	причем в этом интервале давлений
	$\left(\frac{\partial V}{\partial T}\right)_P = \alpha + \beta P,$
	где коэффициенты $a=18{,}066,\;b=-7{,}15\cdot 10^{-4},\;c=4{,}6\cdot 10^{-8},\;\pmb{\alpha}=$
	$=4.5\cdot 10^{-3}$, $\beta=1.4\cdot 10^{-6}$. Определить работу A , необходимую для
	сжатия моля воды от 0 до 1000 атм при $25^\circ\mathrm{C}$, и найти приращение
	ее внутренней энергии ΔU .
6	5.11. Известно уравнение состояния физически однородного и изо-
	тропного вещества. Найти разность теплоемкостей C_P-C_V для это-
	го вещества.
7	5.14 * Физически однородное и изотропное вещество расширяется
	(или сжимается) адиабатически и квазистатически от давления P_{I}
	до давления P_2 . Найти изменение его температуры T_2-T_1 в этом
8	процессе.
0	5.17. Железная проволока радиусом $r=1$ мм квазистатически и адиабатически нагружается при температуре $T=273~{ m K}$. Началь-
	ное значение растягивающей силы равно нулю, конечное $F = 10 \text{ H}$.
	Определить изменение температуры проволоки ΔT . Коэффициент
	линейного расширения железа $\alpha_{\scriptscriptstyle \Lambda}=1,2\cdot 10^{-5}{}^{\circ}\!{\rm C}^{-1}$, удельная тепло-
	емкость железа $c=0.44~\mathrm{Дж/(r\cdot °C)},$ плотность $\rho=7.9~\mathrm{r/cm^3}.$
0	
9	5.25. Из опыта известно, что резиновый жгут удлиняется при
	охлаждении (если его натяжение остается постоянным). Пользуясь этим, доказать, что жгут нагреется, если его адиабатически рас-
	тянуть.
L	1/111 ¥ 1 D.

- **5.39.** Найти изменение энтропии равновесного теплового излучения абсолютно черного тела при расширении объема, занятого излучением, от V_1 до V_2 , при постоянной температуре T. Давление излучения $P = \rho/3$, где ρ [эрг/см 3] плотность энергии излучения. **5.40.** Найти работу, которую совершает в цикле Карно равновес-
 - **5.40.** Найти работу, которую совершает в цикле Карно равновесное тепловое излучение абсолютно черного тела. Давление излучения P=
 ho/3, где $ho=aT^4$ плотность энергии излучения, а a известная константа.
- 12 **5.42.** Уравнение состояния теплового излучения, находящегося в замкнутой полости тела, нагретого до температуры T (фотонный газ), может быть записано в виде $\Psi = -AVT^4$, где Ψ свободная энергия такого «газа», занимающего полость объема V, A известная константа, равная $\pi^2 k^2/(45\hbar^3 c^3) = 2.52 \cdot 10^{-15} \ r/(\text{см} \cdot \text{c}^2 \cdot \text{K}^4)$, k константа Больцмана. Найти теплоемкость C_V фотонного газа с давлением P=1 атм, занимающего полость объемом V=1 л, и сравнить ее с теплоемкостью $C_V^{\text{ид}}$ идеального одноатомного газа с теми же значениями P, V и T.
- **5.43.** В условиях предыдущей задачи найти теплоемкость C_P и уравнение адиабаты фотонного газа.
- **5.46*** Согласно теории теплоемкостей Дебая, свободная энергия твердого тела при низких температурах выражается формулой

$$\Psi = U_0 - AT^4,$$

где U_0 — внутренняя энергия тела при абсолютном нуле (нулевая энергия), а A — положительный коэффициент, зависящий только от объема V. Пользуясь этой формулой, показать, что при низких температурах отношение коэффициента объемного расширения тела α к теплоемкости C_V не зависит от температуры (закон Грюнейзена).