UNIVERSITY OF GHANA MATH 223-CALCULUS II SEQUENCES AND SERIES

1- a) For each of the following sequences, determine if it is increasing or decreasing and find the limit.

$$u_n = 2 - \frac{5}{n^2 + 1}$$
; $v_k = \frac{e^{-k}}{k}$; $w_m = \frac{2m + 3}{m + 1}$

- b) Let $(u_n)_{n\geq 0}$ be an arithmetic sequence such that $u_5=125$ and $u_{16}=48$.
 - (i) Find the common difference and the first term. Deduce the expression of u_n as a function of n.
 - (ii) Find n such that $u_n = -127$.
 - iii) From which value of n do we have $u_n \leq -250$?
- c) Let $(v_k)_{k\geq 1}$ be an arithmetic sequence such that $v_1=-3$. Find the integer n and the common difference d so that $v_n=6$ and $S_n=v_1+v_2+\ldots+v_n=28.5$.
- d) Let $(v_k)_{k\geq 1}$ be an arithmetic sequence. Find v_1 and v_n given that n=54, $S_n=v_1+v_2+\ldots+v_n=270$, and the common difference d=4.
- **2-** a) Let $(u_n)_{n\geq 0}$ be a geometric sequence such that $u_3=162,\ u_5=32.$ Find its common ratio and the term u_0
 - b) Let $(u_n)_{n\geq 0}$ be a geometric sequence such that $u_0=\frac{1}{2}$ and $u_5\times u_7=1024$. What is its common ratio?
 - c) Let $(a_k)_{k\geq 1}$ be a geometric sequence. Find the integer k and the common ratio r so that $v_1=48$, $v_k=243$ and $S_k=v_1+v_2+\ldots+v_k=633$.
 - d) Consider the sequence $(u_n)_{n\geq 0}$ defined by $u_0=1$ and for any $n\geq 0$, $u_{n+1}=\frac{1}{2}u_n+2n-1$. Put $v_n=u_n-4n+10$.
 - i) Prove that (v_n) is a geometric sequence and give its common ratio. Hence write v_n as a function of n.
 - ii) Deduce u_n in terms of n. What is the limit of (u_n) ?
 - iii) Put $S_n = u_0 + u_1 + \ldots + u_n$. Find S_n in terms of n and determine its limit.
- **3-** a- Consider the sequence (u_n) defined by $u_0 = 1$ and $u_{n+1} = \frac{2}{3}u_n \frac{1}{3}$.

- i) Give the 6 first terms of the above sequence and make a conjecture on the behavior of the sequence.
- ii) Put $v_n = u_n + 1$. Prove that (v_n) is a geometric sequence.
- iii) find v_n and hence u_n as a function of n. Deduce the limit of u_n .
- iv) Consider $s_n = v_0 + v_1 + \ldots + v_n$ and $S_n = u_0 + u_1 + \ldots + u_n$. Find s_n and S_n in terms of n and give their limit when $n \to \infty$.
- b- Let $(u_n)_{n\geq 0}$ be a sequence defined by $u_{n+1} = \frac{2u_n+1}{u_n-1}$.
 - 1) For which values of u_0 the sequence (u_n) is constant?
 - 2 Put $u_0 = 2$.
 - i) Find the first five terms of the sequence.
 - ii) Consider the function $f(x) = \frac{2x+1}{x-1}$. Sketch the graph of f together with the line y=x.
 - iii) Represent graphically some first terms of the sequence and make a conjecture of the behavior of the sequence and its limit.