Diszkrét matematika 2.C szakirány

7. előadás

Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/~nagy

Komputeralgebra Tanszék

2016. ősz

Definíció

Legyen R egységelemes integritási tartomány.

Ha a $0 \neq f \in R[x]$ polinom nem egység, akkor felbonthatatlannak (irreducibilisnek) nevezzük, ha $\forall a, b \in R[x]$ -re

$$f = a \cdot b \Longrightarrow (a \text{ egység} \lor b \text{ egység}).$$

Ha a $0 \neq f \in R[x]$ polinom nem egység, és nem felbonthatatlan, akkor felbonthatónak (reducibilisnek) nevezzük.

Megjegyzés

Utóbbi azt jelenti, hogy f-nek van nemtriviális szorzat-előállítása (olyan, amiben egyik tényező sem egység).

Állítás

Legyen $(R; *, \circ)$ gyűrű $0 \in R$ nullelemmel. Ekkor $\forall r \in R$ esetén $0 \circ r = r \circ 0 = 0$.

Bizonyítás

$$0 \circ r = (0 * 0) \circ r = (0 \circ r) * (0 \circ r) \Longrightarrow 0 = 0 \circ r.$$

A másik állítás bizonyítása ugyanígy.

Állítás

Test nullosztómentes.

Bizonyítás

Legyen $(F; *, \circ)$ test $0 \in F$ nullelemmel, és $1 \in F$ egységelemmel. Indirekt tfh. léteznek $a, b \in F$ nem-nulla elemek, amikre $a \circ b = 0$. Ekkor $b = 1 \circ b = a^{-1} \circ a \circ b = a^{-1} \circ 0 = 0$. ami ellentmondás.

Állítás

Legyen $(F;+,\cdot)$ test. Ekkor $f\in F[x]$ pontosan akkor egység, ha deg(f)=0.

Bizonyítás

 \leftarrow

Ha deg(f)=0, akkor f nem-nulla konstans polinom: $f(x)=f_0$. Mivel F test, ezért létezik $f_0^{-1} \in F$, amire $f_0 \cdot f_0^{-1}=1$, így f tényleg egység.

 \Longrightarrow

Ha f egység, akkor létezik $g \in F[x]$, amire $f \cdot g = 1$, és így deg(f) + deg(g) = deg(1) = 0 (Miért?), ami csak deg(f) = deg(g) = 0 esetén lehetséges.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha deg(f) = 1, akkor f-nek van gyöke.

Bizonyítás

Ha deg(f)=1, akkor felírható $f(x)=f_1x+f_0$ alakban, ahol $f_1\neq 0$. Azt szeretnénk, hogy létezzen $c\in F$, amire f(c)=0, vagyis $f_1c+f_0=0$. Ekkor $f_1c=-f_0$ (Miért?), és mivel létezik $f_1^{-1}\in F$, amire $f_1\cdot f_1^{-1}=1$ (Miért?), ezért $c=-f_0\cdot f_1^{-1}\left(=-\frac{f_0}{f_1}\right)$ gyök lesz.

Megjegyzés

Ha $(R; +, \cdot)$ nem test, akkor egy R fölötti elsőfokú polinomnak nem feltétlenül van gyöke, pl. $2x - 1 \in \mathbb{Z}[x]$.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha deg(f) = 1, akkor f felbonthatatlan.

Bizonyítás

Legyen $f=g\cdot h$. Ekkor deg(g)+deg(h)=deg(f)=1 (Miért?) miatt $deg(g)=0 \wedge deg(h)=1$ vagy $deg(g)=1 \wedge deg(h)=0$. Előbbi esetben g, utóbbiban h egység a korábbi állítás értelmében.

Megjegyzés

Tehát nem igaz, hogy egy felbonthatatlan polinomnak nem lehet gyöke.

Állítás

Legyen $(F; +, \cdot)$ test, és $f \in F[x]$. Ha $2 \le deg(f) \le 3$, akkor f pontosan akkor felbontható, ha van gyöke.

Bizonyítás

Ha c gyöke f-nek, akkor az f(x) = (x - c)g(x) egy nemtriviális felbontás (Miért?).

Mivel 2 = 0 + 2 = 1 + 1, illetve 3 = 0 + 3 = 1 + 2, és más összegként nem állnak elő, ezért amennyiben f-nek van nemtriviális felbontása, akkor van elsőfokú osztója. A korábbi állítás alapján ennek van gyöke, és ez nyilván f gyöke is lesz.

Polinomok

Polinomok felbonthatósága

Tétel

 $f \in \mathbb{C}[x]$ pontosan akkor felbonthatatlan, ha deg(f) = 1.

Bizonvítás

 \leftarrow

Mivel $\mathbb C$ a szokásos műveletekkel test, ezért korábbi állítás alapján teljesül.

Indirekt tfh. $deg(f) \neq 1$. Ha deg(f) < 1, akkor f = 0 vagy f egység, tehát nem felbonthatatlan, ellentmondásra jutottunk. deg(f) > 1 esetén az algebra alaptétele értelmében van gyöke f-nek. A gyöktényezőt kiemelve az f(x) = (x - c)g(x) alakot kapjuk, ahol $deg(g) \ge 1$ (Miért?), vagyis egy nemtriviális szorzat-előállítást, így f nem felbonthatatlan, ellentmondásra jutottunk.

Tétel

 $f \in \mathbb{R}[x]$ pontosan akkor felbonthatatlan, ha

- deg(f) = 1, vagy
- deg(f) = 2, és f-nek nincs (valós) gyöke.

Bizonvítás

 \leftarrow

Ha deg(f) = 1, akkor korábbi állítás alapján f felbonthatatlan. Ha deg(f) = 2, és f-nek nincs gyöke, akkor f nem áll elő két elsőfokú polinom szorzataként (Miért?), vagyis csak olyan kéttényezős szorzat-előállítása lehet, melyben az egyik tényező foka 0, tehát egység.

Ha f felbonthatatlan, akkor nem lehet deg(f) < 1. (Miért?) Ha f felbonthatatlan, és deg(f) = 2, akkor tfh. van gyöke. Ekkor az ehhez tartozó gyöktényező kiemelésével egy nemtriviális felbontását kapjuk f-nek (Miért?), ami ellentmondás.

Bizonyítás folyt.

Tfh. $deg(f) \geq 3$. Az algebra alaptétele értelmében f-nek mint $\mathbb C$ fölötti polinomnak van $c \in \mathbb C$ gyöke. Ha $c \in \mathbb R$ is teljesül, akkor a gyöktényező kiemelésével f egy nemtriviális felbontását kapjuk (Miért?), ami ellentmondás.

Legyen most $c \in \mathbb{C} \setminus \mathbb{R}$ gyöke f-nek, és tekintsük a $g(x) = (x - c)(x - \overline{c}) = x^2 - 2\operatorname{Re}(c)x + |c|^2 \in \mathbb{R}[x]$ polinomot. f-et g-vel maradékosan osztva létezik $q, r \in \mathbb{R}[x]$, hogy f = qg + r. r = 0, mert deg(r) < 2, és r-nek gyöke $c \in \mathbb{C} \setminus \mathbb{R}$. Vagyis f = qg, ami egy nemtriviális felbontás, ez pedig ellentmondás.

Megjegyzés

Ha $f \in \mathbb{R}[x]$ -nek $c \in \mathbb{C}$ gyöke, akkor \overline{c} is gyöke, hiszen

$$f(\overline{c}) = \sum_{i=0}^{\deg(f)} f_j(\overline{c})^j = \sum_{i=0}^{\deg(f)} \overline{f_j} \cdot \overline{c^j} = \sum_{i=0}^{\deg(f)} \overline{f_j c^j} = \overline{\left(\sum_{i=0}^{\deg(f)} f_j c^j\right)} = \overline{f(c)} = \overline{0} = 0.$$

Definíció

 $f \in \mathbb{Z}[x]$ -et primitív polinomnak nevezzük, ha az együtthatóinak a legnagyobb közös osztója 1.

Lemma (Gauss)

Ha $f,g \in \mathbb{Z}[x]$ primitív polinomok, akkor fg is primitív polinom.

Bizonyítás

Indirekt tfh. fg nem primitív polinom. Ekkor van olyan $p \in \mathbb{Z}$ prím, ami osztja fg minden együtthatóját. Legyen i, illetve j a legkisebb olyan index, amire $p \not| f_i$, illetve $p \not| g_j$ (Miért vannak ilyenek?). Ekkor fg-nek az (i+j) indexű együtthatója $f_0g_{i+j}+\ldots+f_ig_j+\ldots+f_{i+j}g_0$, és ebben az összegben p nem osztója f_ig_j -nek, de osztója az összes többi tagnak (Miért?), de akkor nem osztója az összegnek, ami ellentmondás.

2016. ősz

Polinomok felbonthatósága

Állítás

Minden $0 \neq f \in \mathbb{Z}[x]$ polinom felírható $f = df^*$ alakban, ahol $0 \neq d \in \mathbb{Z}$, és $f^* \in \mathbb{Z}[x]$ egy primitív polinom.

Bizonvítás

Ha f-ből az együtthatók legnagyobb közös osztóját kiemeljük, és azt d-nek választjuk, akkor megkapjuk a megfelelő előállítást.

Megjegyzés

Az előállítás lényegében (előjelektől eltekintve) egyértelmű, így f^* főegyütthatóját pozitívnak választva egyértelmű.

Állítás

Minden $0 \neq f \in \mathbb{Q}[x]$ polinom felírható $f = af^*$ alakban, ahol $0 \neq a \in \mathbb{Q}$, és $f^* \in \mathbb{Z}[x]$ egy primitív polinom.

Bizonvítás

Íriuk fel f együtthatóit egész számok hányadosaiként. Ha végigszorozzuk f-et az együtthatói nevezőinek c szorzatával, majd kiemeljük a kapott $\mathbb{Z}[x]$ -beli polinom együtthatóinak d legnagyobb közös osztóját, akkor megkapjuk a megfelelő előállítást a = d/c-vel.

Megjegyzés

Az előállítás lényegében egyértelmű: ha f^* főegyütthatóját pozitívnak választjuk, akkor egyértelmű.

Tétel (Gauss tétele $\mathbb{Z}[x]$ -re)

Ha egy $f \in \mathbb{Z}[x]$ előállítható két nem konstans $g,h \in \mathbb{Q}[x]$ polinom szorzataként, akkor előállítható két nem konstans $g^*,h^* \in \mathbb{Z}[x]$ polinom szorzataként is.

Bizonyítás

Tfh. f=gh, ahol $g,h\in\mathbb{Q}[x]$ nem konstans polinomok. Legyen $f=df^*$, ahol $d\in\mathbb{Z}$, és $f^*\in\mathbb{Z}[x]$ primitív polinom, aminek a főegyütthatója pozitív. Ha felírjuk g-t ag^{**} , h-t pedig bh^{**} alakban, ahol g^{**} , $h^{**}\in\mathbb{Z}[x]$ primitív polinomok, amiknek a főegyütthatója pozitív, akkor azt kapjuk, hogy $df^*=f=gh=abg^{**}\cdot h^{**}$. Mivel Gauss lemmája szerint $g^{**}\cdot h^{**}$ is primitív polinom, továbbá f előállítása primitív polinom segítségével lényegében egyértelmű, ezért $f^*=g^{**}h^{**}$, és d=ab, vagyis $f=dg^{**}h^{**}$, és például $g^*=dg^{**}$, $h^*=h^{**}$ választással kapjuk f kívánt felbontását.

15.

Polinomok felbonthatósága

Következmény

 $f \in \mathbb{Z}[x]$ pontosan akkor felbontható \mathbb{Z} fölött, amikor felbontható \mathbb{Q} fölött.

Bizonyítás

A Z fölötti felbontás egyben Q fölötti felbontás is.

A Gauss-tételből következik az állítás.

Tétel (Schönemann-Eisenstein)

Legyen $f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0 \in \mathbb{Z}[x], f_n \neq 0$ legalább elsőfokú primitív polinom. Ha található olyan $p \in \mathbb{Z}$ prím, melyre

- $p \nmid f_n$,
- $p|f_j$, ha $0 \le j < n$,
- $p^2 \not| f_0$,

akkor f felbonthatatlan $\mathbb Z$ fölött.