REGRESSION

INTRODUCTION TO DATA SCIENCE

TIM KRASKA

Recap

Data Management

- Relational Model
- SQL
- Star Schema
- •

Data Clearning

- Schema Matching
- Entity Resolution
- Data Fusion
- Jaccard Similarity
- IDF Weight
- •

Information Retrieval

- Text Search
- Tokenization/Stemming
- Inverted Index
- Ranking
- Precision/Recall
- ...

Probabilities and Statistics

- Law of Large Numbers
- Central Limit Theorem
- Testing
- ...

Visualization

- Types
- Senses
- Design goals
- ...

Map/Reduce

- Abstraction
- Implementation
- Spark
- **–** ...

Machine Learning

- Naïve Bayes
- Kmeans
- Page Rank
- Testing/Cross-Validation
- .

MATRIX

Supervised Learning Unsupervised Learning Discrete classification or clustering categorization Continuous dimensionality regression reduction

RECOMMENDED READING

Chapter 3 (math heavy, but complete)

A bit easier to digest:

http://cs229.stanford.edu/notes/cs229-notes1.pdf

LINEAR REGRESSION

SCATTER PLOT EXAMPLES

Curvilinear relationships

SCATTER PLOT EXAMPLES

(continued)

SCATTER PLOT EXAMPLES

(continued)

How do we represent the problem:

$$Q = \begin{pmatrix} q_0 \\ q_1 \end{pmatrix}$$

$$x = \begin{pmatrix} 1 \\ x_1 \end{pmatrix} = \begin{pmatrix} 1 \\ Seniors \end{pmatrix}$$

intercept term $(x_0=1)$

Hypothesis:
$$h=a+b~x$$

$$h_{\Theta}=\Theta_0x_0~+\Theta_1x_1$$

$$h_{\Theta}=\Theta^Tx$$

Idea: Chose θ so that $h_{\theta}(x)$ is close to h (muffins) for training examples (Seniors, Muffins)

Hypothesis:

$$h_{\Theta}(x) = \Theta^{T} x$$

$$h_{\Theta}(x) = \Theta_{0} x_{0} + \Theta_{1} x_{1}$$

Notation:

$$x^i = \begin{pmatrix} 1 \\ x_1^i \\ \vdots \\ x_n^i \end{pmatrix}$$

Example

$$x^{i} = \begin{pmatrix} 1 \\ x_{1}^{i} \\ \vdots \\ x^{i} \end{pmatrix} \qquad x^{2o} = \begin{pmatrix} 1 \\ 1200 \end{pmatrix}$$
$$y^{20} = 9$$

Minimize: Squared Error (there are others)

Observed

Minimize: Squared Error (there are others)

#Data Points Prediction
$$\min_{q} J(q) = \frac{1}{m} \mathop{a}_{i=1}^{m} \left(h_q(x^{(i)}) - y^{(i)} \right)^2$$
Cost-Function

Alternative Versions of Squared Error Cost-Functions

$$J(q) = \frac{1}{2m} \mathop{a}_{i=1}^{m} \left(h_q(x^{(i)}) - y^{(i)} \right)^2$$

$$J(q) = \frac{1}{2} \mathop{a}_{i=1}^{m} \left(h_q(x^{(i)}) - y^{(i)} \right)^2$$

The Shape of the Cost Function

Lets assume θ_0 =0: $h_{q_1} = q_1 x_1$

$$J(q) = \frac{1}{2m} \sum_{i=1}^{m} (h_q(x^{(i)}) - y^{(i)})^2$$

Clicker Question

Suppose our hypothesis is $h_{q_1} = Q_1 x_1$ and we have the following training set (m=3):

Our cost function is:

$$J(q_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_q(x^{(i)}) - y^{(i)} \right)^2$$

What is the cost of θ_1 =0

- a) 0
- b) 1/6
- c) 1
- d) 14/6

Works also in Higher Dimensions

$$h_{\mathcal{Q}}(x) = \mathcal{Q}^T x$$

$$J(q_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_q(x^{(i)}) - y^{(i)})^2$$

How Can We Find The Minimum?

How Can We Find The Minimum?

How Can We Find The Minimum?

Steps are automatically smaller the closer they get to the minimum

$$q_1 = q_1 - a \frac{\P}{\P q_1} J(q_1)$$

Step Size / Learning Rate

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

Step Size /
Learning Rate

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} x$$

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

Lets assume single data point (m=1)

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} x$$

$$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x)$$

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} x$$

$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} x$$

Lets assume single data point (m=1)

$$\begin{split} \frac{\partial}{\partial \theta_j} J(\theta) &= \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2 \\ &= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} (h_{\theta}(x) - y) \end{split}$$
 Chain Rule
$$\frac{\frac{d}{dx} [f(g(x))] = f'(g(x))g'(x)}{\frac{d}{dx} [f(g(x))] = f'(g(x))g'(x)}$$

$$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x)$$

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} x$$

$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T}$$

Lets assume single data point (m=1)

$$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x)$$

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} x$$

$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i} = \theta^{T} \lambda$$

Lets assume single data point (m=1)

$$\begin{split} \frac{\partial}{\partial \theta_{j}} J(\theta) &= \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2} \\ &= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y) \end{split}$$
 Chain Rule
$$\begin{aligned} &= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y) \end{aligned}$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

LMS Update Rule

(Widrow-Hoff Learning)

$$\theta_j := \theta_j + \alpha \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Batch Gradient Descent

Repeat until convergence {

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)} \qquad \text{(for every j)}$$

Clicker:

Can we get "stuck" in a local minima?

- a) Yes
- b) No

Clicker Question

Batch Gradient Descent

Repeat until convergence {

Data (x,y)

(1,1)

(2,2)

(3,3)

(for every j)

Our hypothesis
$$h_q(x) = Q_0 + Q_1 x_1$$

Current values:
$$\partial = 0.01$$
 $Q_0 = 0$ $Q_1 = 2$

$$Q_0 = 0$$

$$Q_1 = 2$$

What is the next θ_1

- b) 1.54
- c) 1.86

Batch Gradient Descent

Repeat until convergence {

Data (x,y)

(1,1)

(2,2)

(3,3)

Our hypothesis

$$h_{\mathcal{Q}}(x) = \mathcal{Q}_0 + \mathcal{Q}_1 x_1$$

Current values:

$$a = 0.01$$

$$Q_0 = 0$$

$$Q_1 = 2$$

$$q_1 = q_1 + \partial \sum_{i=1}^{m} (y^{(i)} - h_q(x^{(i)})) x_j^{(i)}$$

 $\theta_{i} := \theta_{i} + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_{i}^{(1)}$

$$Q_{1} = Q_{1} + \partial \left(y^{(1)} - \left(Q_{0} + Q_{1} x^{(1)} \right) \right) x^{(1)} + \left(y^{(2)} - \left(Q_{0} + Q_{1} x^{(2)} \right) \right) x^{(2)} + \left(y^{(3)} - \left(Q_{0} + Q_{1} x^{(3)} \right) \right) x^{(3)} \right)$$

$$q_1 = 2 + 0.01 \begin{pmatrix} (1-2)1 + \\ (2-4)2 + \\ (3-6)3 \end{pmatrix}$$

$$Q_1 = 2 + 0.01(-1 - 4 - 9) = 2 - 0.14 = 1.86$$

(for every i)

How To Implement It

Repeat Until Convergence {

```
Temp_0 = q_0 + \partial \overset{m}{\circ} (y^{(i)} - h_q(x^{(i)})) x_0^{(i)}
Temp_1 = q_1 + \partial \overset{i=0}{\overset{m}{\circ}} (y^{(i)} - h_q(x^{(i)})) x_1^{(i)}
Temp_n = q_n + \partial \stackrel{m}{\circ} (y^{(i)} - h_q(x^{(i)})) x_n^{(i)}
 \theta_0 = Temp_0
 \theta_1 = Temp_1
 \theta_n = Temp_n
```

What is the problem with Batch Gradient Descent for Big Data?

Repeat until convergence { $\theta_j := \theta_j + \alpha \sum_{i=1}^m \left(y^{(i)} - h_\theta(x^{(i)})\right) x_j^{(i)} \qquad \text{(for every j)}$ }

Stochastic Gradient Descent (Incremental Gradient Descent)

```
Loop { for \ i=1 \ to \ m, \ \{ \\ \theta_j := \theta_j + \alpha \left(y^{(i)} - h_\theta(x^{(i)})\right) x_j^{(i)} \qquad \text{(for every $j$)}. }
```

Clicker: Does this algorithm always converge?

- a) Yes
- b) No

Compromise

- Batch gradient descent:
 Use all m examples in each step
- Stochastic gradient descent: Use 1 example in each step
- Mini-batch gradient descent:
 Use b (e.g., 10) examples in each step
 - Easier to parallelize (e.g., SIMD)
 - Bit more robust against local minima (depending on b)

Important!

For linear regression there exists a closed form

Good for smaller data sizes

Practical Considerations: Features

$$X_1 = Age (e.g., 24; 32; 100)$$

 $X_2 = Salary (e.g., $120000; $200000; $210 000)$

Solution: Feature Scaling $-1 \le x \le 1$

Mean Normalization $-0.5 \le x \le 0.5$

$$x_{j} = \frac{x_{j} - m_{j}}{\max(x_{j}) - \min(x_{j})}$$

$$x_{j}^{i} = \frac{x_{j}^{i} - m_{j}}{S_{j}}$$

Practical Considerations: Learning Rate

Practical Considerations: Learning Rate

For sufficiently small α , $J(\theta)$ should decrease on every iteration Bug if α is too small, it will take a long time to converge Try 2x or 3x steps. For example: 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0 Observe J and pick the one which has a good convergence rate

Towards a Unified Architecture for in-RDBMS Analytics

Current In-RDBMS Analytics

Bismarck In-RDBMS Analytics

Towards a Unified Architecture for in-RDBMS Analytics

Analytics Task	Objective
Logistic Regression (LR)	$\sum_{i} \log(1 + exp(-y_{i}w^{T}x_{i})) + \mu \ \vec{w}\ _{1}$
Classification (SVM)	$\sum_{i} (1 - y_i w^T x_i)_{+} + \mu \ \vec{w}\ _{1}$
Recommendation (LMF)	$\sum_{(i,j)\in\Omega} (L_i^T R_j - M_{ij})^2 + \mu L, R _F^2$
Labeling (CRF) [48]	$\sum_{k} \left[\sum_{j} w_{j} F_{j}(y_{k}, x_{k}) - \log Z(x_{k}) \right]$
Kalman Filters	
Portfolio Optimization	$p^T w + w^T \Sigma w$ s.t. $w \in \Delta$

Polynomial Regression

How To Prevent Overfitting

- Adjust features
 - Reduce number of polynomials
 - Reduce number of features
- Regularization
 - Keep all the features, but reduce their impact
 - Works well when we have a lot of features, each of which contributes a little

Regularization: Intuition

$$\min_{q} J(q) = \frac{1}{2m} \mathop{a}_{i=1}^{m} \left(h_{q}(x^{(i)}) - y^{(i)} \right)^{2}
+1000q_{4} + 1000q_{5} + 1000q_{6} + 1000q_{7}
q_{4}, q_{5}, q_{6}, q_{7} \to 0$$

Regularization: Intuition

$$\min_{q} J(q) = \frac{1}{2m} \mathop{\tilde{a}}_{i=1}^{m} \left(h_{q}(x^{(i)}) - y^{(i)} \right)^{2} + / \mathop{\tilde{a}}_{j=1}^{n} q_{j}^{2}$$

Regularization term

Works ok for reducing the impact of polynomials (better to reduce nb of polynomials directly) Works great for a bag of equally important features.