

Lattice-based cryptanalysis

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

EiPSI seminar (February 11th, 2019)

Lattices

What is a lattice?

Lattices

What is a lattice?

TU/e Lattices What is a lattice?

Lattices

Shortest Vector Problem (SVP)

Lattices

Shortest Vector Problem (SVP)

TU/e Lattices Closest Vector Problem (CVP)

TU/e.

Lattices

Closest Vector Problem (CVP)

Lattices

Lattice basis reduction

Lattices

Hard lattice problems [LvdPdW12]

Lattices

Lattice-based cryptanalysis

Problem: Security of lattice-based cryptographic primitives

- Lattice-based crypto relies on hardness of lattice problems
- Most lattice problems reducible to (approximate) SVP
- State-of-the-art: BKZ basis reduction [Sch87, SE94, ...]
 - ▶ BKZ uses exact SVP algorithm as subroutine
 - Complexity of BKZ dominated by exact SVP calls

SVP costs \implies BKZ costs \implies Security estimates \implies Parameters

Problem: How hard is SVP in high dimensions?

Outline

Lattices

SVP algorithms

Enumeration Sieving

SVP hardness

Theory
Practice
NIST submissions

Conclusion

Outline

Lattices

SVP algorithms

Enumeration Sieving

SVP hardness

Theory Practice NIST submissions

Conclusion

Enumeration

1. Determine possible coefficients of \boldsymbol{b}_2

Enumeration

1. Determine possible coefficients of \boldsymbol{b}_2

Enumeration Overview

Theorem (Fincke–Pohst, Math. of Comp. '85)

Lattice enumeration solves SVP in time $2^{O(n^2)}$ and space poly(n).

Enumeration Overview

Theorem (Fincke-Pohst, Math. of Comp. '85)

Lattice enumeration solves SVP in time $2^{O(n^2)}$ and space poly(n).

Essentially reduces SVP_n (CVP_n) to $2^{O(n)}$ instances of CVP_{n-1} .

TU/e Enumeration Better bases

TU/e

Enumeration

Better bases

TU/e

Enumeration

Better bases

Enumeration

Better bases

Theorem (Kannan, STOC'83)

Combining enumeration with stronger basis reduction, one can solve SVP in time $2^{O(n \log n)}$ and space poly(n).

Enumeration

Better bases

Theorem (Kannan, STOC'83)

Combining enumeration with stronger basis reduction, one can solve SVP in time $2^{O(n \log n)}$ and space poly(n).

"Our algorithm reduces an n-dimensional problem to polynomially many (instead of $2^{O(n)}$) (n-1)-dimensional problems. [...] The algorithm we propose, first finds a more orthogonal basis for a lattice in time $2^{O(n\log n)}$."

- Kannan, STOC'83

TU/e

Enumeration

Pruning the enumeration tree

Outline

Lattices

SVP algorithms

Enumeration Sieving

SVP hardness

Theory Practice NIST submissions

Conclusion

TU/e Sieving

1. Sample a list L of random lattice vectors

Sieving Overview

Heuristic (Nguyen-Vidick, J. Math. Crypt. '08)

Sieving solves SVP in time $(4/3)^{n+o(n)}$ and space $(4/3)^{n/2+o(n)}$.

Heuristic (Nguyen-Vidick, J. Math. Crypt. '08)

Sieving solves SVP in time $(4/3)^{n+o(n)}$ and space $(4/3)^{n/2+o(n)}$.

The list size comes from heuristic packing/saturation arguments, the time complexity is quadratic in the list size.

Sieving Near neighbor techniques

Outline

Lattices

SVP algorithms Enumeration Sieving

SVP hardness

Theory
Practice
NIST submissions

Conclusion

TU/e

SVP hardness

Theory (January 2019)

		Algorithm	$\log_2(\text{Time})$	log ₂ (Space)
	Proven SVP	Enumeration [Poh81, Kan83,, MW15, AN17] AKS-sieve [AKS01, NV08, MV10, HPS11] ListSieve [MV10, MDB14] Birthday sieves [PS09, HPS11] Enumeration/DGS hybrid [CCL17] Voronoi cell algorithm [AEVZ02, MV10b] Quantum sieve [LMP13, LMP15] Quantum enum/DGS [CCL17] Discrete Gaussian sampling [ADRS15, ADS15, AS18]	O(n log n) 3.398n 3.199n 2.465n 2.004n 1.799n 1.256n 1.000n	O(log n) 1.985n 1.327n 1.233n 0.500n 1.000n 1.286n 0.500n 1.000n
	Sieving	The Nguyen–Vidick sieve [NV08] GaussSieve [MV10,, IKMT14, BNvdP16, YKYC17] Triple sieve [BLS16, HK17] Leveled sieving [WLTB11, ZPH13] Overlattice sieve [BGJ14] Quantum sieve [LMP13]	0.415n 0.415n 0.396n 0.3778n 0.3774n 0.312n	0.208n 0.208n 0.189n 0.283n 0.293n 0.208n
٠	Sieving + NNS	Triple sieve with NNS [HK17, HKL18] Single filters [DL17, ADH+19] Hyperplane LSH [Cha02, FBB+14, Laa15,, LM18] Graph-based NNS [EPY99, DCL11, MPLK14, Laa18] Hypercube LSH [TT07, Laa17] May-Ozerov NNS [M015, BGJ15] Spherical LSH [AINR14, LdW15] Cross-polytope LSH [TT07, AILRS15, BL16, KW17] Spherical LSF [BDGL16, MLB17, ALRW17, Chr17] Quantum NNS sieve [LMP15, Laa16]	0.359n 0.349n 0.337n 0.327n 0.322n 0.311n 0.297n 0.297n 0.292n 0.265n	0.189n 0.246n 0.337n 0.282n 0.322n 0.311n 0.297n 0.297n 0.292n 0.265n

TU/e

SVP hardness

Theory (January 2019)

		Algorithm	log ₂ (Time)	log ₂ (Space)
0	Proven SVP	Enumeration [Poh81, Kan83,, MW15, AN17] AKS-sieve [AKS01, NV08, MV10, HPS11] ListSieve [MV10, MDB14] Birthday sieves [PS09, HPS11] Enumeration/DGS hybrid [CCL17] Voronoi cell algorithm [AEVZ02, MV10b] Quantum sieve [LMP13, LMP15] Quantum enum/DGS [CCL17] Discrete Gaussian sampling [ADRS15, ADS15, AS18]	O(n log n) 3.398n 3.199n 2.465n 2.048n 2.000n 1.799n 1.256n 1.000n	O(log n) 1.985n 1.327n 1.233n 0.500n 1.000n 1.286n 0.500n 1.000n
•	Sieving	The Nguyen–Vidick sieve [NV08] GaussSieve [MV10,, IKMT14, BNvdP16, YKYC17] Triple sieve [BLS16, HK17] Leveled sieving [WLTB11, ZPH13] Overlattice sieve [BGJ14] Quantum sieve [LMP13]	0.415n 0.415n 0.396n 0.3778n 0.3774n 0.312n	0.208n 0.208n 0.189n 0.283n 0.293n 0.208n
•	Sieving + NNS	Triple sieve with NNS [HK17, HKL18] Single filters [DL17, ADH+19] Hyperplane LSH [Cha02, FBB+14, Laa15,, LM18] Graph-based NNS [FPY99, DCL11, MPLK14, Laa18] Hypercube LSH [TT07, Laa17] May-Ozerov NNS [M015, BGJ15] Spherical LSH [AINR14, LdW15] Cross-polytope LSH [TT07, AILRS15, BL16, KW17] Spherical LSF [BDGL16, MLB17, ALRW17, Chr17] Quantum NNS sieve [LMP15, Laa16]	0.359n 0.349n 0.337n 0.327n 0.322n 0.311n 0.297n 0.297n 0.292n 0.265n	0.189n 0.246n 0.337n 0.282n 0.322n 0.311n 0.297n 0.297n 0.292n 0.265n

SVP hardness

Practice (July 2017)

The General Sieve Kernel and New Records in Lattice Reduction

Martin R. Albrecht¹, Léo Ducas², Gottfried Herold³, Elena Kirshanova³, Eamonn W. Postlethwaite¹, Marc Stevens²*

¹ Information Security Group, Royal Holloway, University of London ² Cryptology Group, CWI, Amsterdam, The Netherlands ³ ENS Lyon

Abstract. We propose the General Sieve Kernel (G6K, pronounced /ge.si.ka/), an abstract stateful machine supporting a wide variety of lattice reduction strategies based on sieving algorithms. Using the basic instruction set of this abstract stateful machine, we first give concise formulations of previous sieving strategies from the literature and then propose new ones. We then also give a light variant of BKZ exploiting the features of our abstract stateful machine. This encapsulates several recent suggestions (Ducas at Eurocrypt 2018; Laarhoven and Mariano at PQCrypto 2018) to move beyond treating sieving as a blackbox SVP oracle and to utilise strong lattice reduction as preprocessing for sieving. Furthermore, we propose new tricks to minimise the sieving computation required for a given reduction quality with mechanisms such as recycling vectors between sieves, on-the-fly lifting and flexible insertions akin to Deep LLL and recent variants of Random Sampling Reduction.

Moreover, we provide a highly optimised, multi-threaded and tweakable implementation of this machine which we make open-source. We then illustrate the performance of this implementation of our sieving strategies by applying G6K to various lattice challenges. In particular, our approach allows us to solve previously unsolved instances of the Darmstadt SVP (151, 153, 155) and LWE (e.g. (75, 0.005)) challenges. Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record. For exact SVP, we observe a performance crossover between G6K and FPLLL's state of the art implementation of enumeration at dimension 70.

The General Sieve Kernel and New Records in Lattice Reduction

Martin R. Albrecht¹, Léo Ducas², Gottfried Herold³, Elena Kirshanova³, Eamonn W. Postlethwaite¹, Marc Stevens^{2*}

¹ Information Security Group, Royal Holloway, University of London ² Cryptology Group, CWI, Amsterdam, The Netherlands ³ ENS Lyon

Abstract. We propose the General Sieve Kernel (G6K, pronounced /ge.si.ka/), an abstract stateful machine supporting a wide variety of lattice reduction strategies based on sieving algorithms. Using the basic instruction set of this abstract stateful machine, we first give concise formulations of previous sieving strategies from the literature and then propose new ones. We then also give a light variant of BKZ exploiting the features of our abstract stateful machine. This encapsulates several recent suggestions (Ducas at Eurocrypt 2018; Laarhoven and Mariano at PQCrypto 2018) to move beyond treating sieving as a blackbox SVP oracle and to utilise strong lattice reduction as preprocessing for sieving. Furthermore, we propose new tricks to minimise the sieving computation required for a given reduction quality with mechanisms such as recycling vectors between sieves, on-the-fly lifting and flexible insertions akin to Deep LLI and recent variants of Random Sampling Reduction.

Moreover, we provide a highly optimised, multi-threaded and tweakable implementation of this machine which we make open-source. We then illustrate the performance of this implementation of our sieving strategies

(151, 153, 155) and LWE (e.g. (75, 0.005)) challenges. Our solution for the SVP-151 challenge was found 400 times faster than the time reported for the SVP-150 challenge, the previous record. For exact SVP, we observe a performance crossover between G6K and FPLLL's state of the art implementation of enumeration at dimension 70.

Practice (February 2019)

NIST submissions - Round 1 (December 2017)

Title	S	E	О	Submitters
CRYSTALS-Dilithium	•			Lyubashevsky, Ducas, Kiltz, Lepoint, Schwabe, Seiler, Stehlé
CRYSTALS-Kyber	•			Schwabe, Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Ding Key Exchange	•			Ding, Takagi, Gao, Wang
DRS			•	Plantard, Sipasseuth, Dumondelle, Susilo
(R.)EMBLEM	•			Seo, Park, Lee, Kim, Lee
FALCON	•			Prest, Fouque, Hoffstein, Kirchner, Lyubashevsky, Pornin, Ricosset,
FrodoKEM	•			Naehrig, Alkim, Bos, Ducas, Easterbrook, LaMacchia, Longa, Mironov,
Giophantus	•			Akiyama, Goto, Okumura, Takagi, Nuida, Hanaoka, Shimizu, Ikematsu Saarinen
HILA5 KCL	•			
KINDI	•			Zhao, Jin, Gong, Sui El Bansarkhani
LAC	•			Lu, Liu, Jia, Xue, He, Zhang
LIMA				Smart, Albrecht, Lindell, Orsini, Osheter, Paterson, Peer
Lizard				Cheon, Park, Lee, Kim, Song, Hong, Kim, Kim, Hong, Yun, Kim, Park,
LOTUS				Phong, Hayashi, Aono, Moriai
NewHope		•		Pöppelmann, Alkim, Avanzi, Bos, Ducas, De La Piedra, Schwabe, Stebila
NTRUEncrypt	0	0		Zhang, Chen, Hoffstein, Whyte
NTRU-HRSS-KEM	•			Schanck, Hülsing, Rijneveld, Schwabe
NTRU Prime		•		Bernstein, Chuengsatiansup, Lange, Van Vredendaal
Odd Manhattan			•	Plantard
pqNTRUSign	0	0		Zhang, Chen, Hoffstein, Whyte
qTESLA	•			Bindel, Akleylek, Alkim, Barreto, Buchmann, Eaton, Gutoski, Krämer,
Round2	•			Garcia-Morchon, Zhang, Bhattacharya, Rietman, Tolhuizen, Torre-Arce
SABER	•			D'Anvers, Karmakar, Roy, Vercauteren
Three Bears	•			Hamburg
Titanium	•			Steinfeld, Sakzad, Zhao
Totals:	24	4	2	Total: 26 proposals with SVP hardness estimates

^{*}Not included in the overview: Compact LWE, Mersenne, Ramstake, ...

NIST submissions - Round 1 (merges)

Title	S	E	0	Submitters
CRYSTALS-Dilithium	•			Lyubashevsky, Ducas, Kiltz, Lepoint, Schwabe, Seiler, Stehlé
CRYSTALS-Kyber	•			Schwabe, Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Ding Key Exchange	•			Ding, Takagi, Gao, Wang
DRS			•	Plantard, Sipasseuth, Dumondelle, Susilo
(R.)EMBLEM	•			Seo, Park, Lee, Kim, Lee
FALCON	•			Prest, Fouque, Hoffstein, Kirchner, Lyubashevsky, Pornin, Ricosset,
FrodoKEM	•			Naehrig, Alkim, Bos, Ducas, Easterbrook, LaMacchia, Longa, Mironov,
Giophantus HILA5	•			Akiyama, Goto, Okumura, Takagi, Nuida, Hanaoka, Shimizu, Ikematsu Saarinen
KCL				Zhao, Jin, Gong, Sui
KINDI				El Bansarkhani
LAC				Lu, Liu, Jia, Xue, He, Zhang
LIMA	•			Smart, Albrecht, Lindell, Orsini, Osheter, Paterson, Peer
Lizard	•			Cheon, Park, Lee, Kim, Song, Hong, Kim, Kim, Hong, Yun, Kim, Park,
LOTUS		•		Phong, Hayashi, Aono, Moriai
NewHope	•			Pöppelmann, Alkim, Avanzi, Bos, Ducas, De La Piedra, Schwabe, Stebila
NTRUEncrypt	0	0		Zhang, Chen, Hoffstein, Whyte
NTRU-HRSS-KEM	•			Schanck, Hülsing, Rijneveld, Schwabe
NTRU Prime		•		Bernstein, Chuengsatiansup, Lange, Van Vredendaal
Odd Manhattan			•	Plantard
pqNTRUSign	0	0		Zhang, Chen, Hoffstein, Whyte
qTESLA	•			Bindel, Akleylek, Alkim, Barreto, Buchmann, Eaton, Gutoski, Krämer,
Round2	•			Garcia-Morchon, Zhang, Bhattacharya, Rietman, Tolhuizen, Torre-Arce
SABER	•			D'Anvers, Karmakar, Roy, Vercauteren
Three Bears	•			Hamburg
Titanium	•			Steinfeld, Sakzad, Zhao
Totals:	24	4	2	Total: 26 proposals with SVP hardness estimates

*Not included in the overview: Compact LWE, Mersenne, Ramstake, ...

NIST submissions - Round 1 (merges)

Title	S	E	О	Submitters
CRYSTALS-Dilithium	•			Lyubashevsky, Ducas, Kiltz, Lepoint, Schwabe, Seiler, Stehlé
CRYSTALS-Kyber	•			Schwabe, Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Ding Key Exchange	•			Ding, Takagi, Gao, Wang
DRS			•	Plantard, Sipasseuth, Dumondelle, Susilo
(R.)EMBLEM	•			Seo, Park, Lee, Kim, Lee
FALCON	•			Prest, Fouque, Hoffstein, Kirchner, Lyubashevsky, Pornin, Ricosset,
FrodoKEM	•			Naehrig, Alkim, Bos, Ducas, Easterbrook, LaMacchia, Longa, Mironov,
Giophantus	•			Akiyama, Goto, Okumura, Takagi, Nuida, Hanaoka, Shimizu, Ikematsu
KCL	•			Zhao, Jin, Gong, Sui
KINDI	•			El Bansarkhani
LAC	•			Lu, Liu, Jia, Xue, He, Zhang
LIMA	•			Smart, Albrecht, Lindell, Orsini, Osheter, Paterson, Peer
Lizard	•			Cheon, Park, Lee, Kim, Song, Hong, Kim, Kim, Hong, Yun, Kim, Park,
LOTUS		•		Phong, Hayashi, Aono, Moriai
NewHope	•			Pöppelmann, Alkim, Avanzi, Bos, Ducas, De La Piedra, Schwabe, Stebila
NTRU	0	0		Zhang, Chen, Hoffstein, Hülsing, Rijneveld, Schanck, Schwabe, Whyte
NTRU Prime		•		Bernstein, Chuengsatiansup, Lange, Van Vredendaal
Odd Manhattan			•	Plantard
pqNTRUSign	0	0		Zhang, Chen, Hoffstein, Whyte
qTESLA	•			Bindel, Akleylek, Alkim, Barreto, Buchmann, Eaton, Gutoski, Krämer,
Round5	•			Garcia-Morchon, Saarinen, Zhang, Bhattacharya, Rietman, Tolhuizen,
SABER	•			D'Anvers, Karmakar, Roy, Vercauteren
Three Bears	•			Hamburg
Titanium	•			Steinfeld, Sakzad, Zhao
Totals:	20	4	2	Total: 24 proposals with SVP hardness estimates

*Not included in the overview: Compact LWE, Mersenne, Ramstake, ...

NIST submissions - Round 2 (February 2019)

Title	S	E	0	Submitters
CRYSTALS-Dilithium	•			Lyubashevsky, Ducas, Kiltz, Lepoint, Schwabe, Seiler, Stehlé
CRYSTALS-Kyber	•			Schwabe, Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck,
Ding Key Exchange	0			Ding, Takagi, Gao, Wang
DRS			0	Plantard, Sipasseuth, Dumondelle, Susilo
(R.)EMBLEM	0			Seo, Park, Lee, Kim, Lee
FALCON FrodoKEM	•			Prest, Fouque, Hoffstein, Kirchner, Lyubashevsky, Pornin, Ricosset, Naehrig, Alkim, Bos, Ducas, Easterbrook, LaMacchia, Longa, Mironov,
Giophantus				Akiyama, Goto, Okumura, Takagi, Nuida, Hanaoka, Shimizu, Ikematsu
KCL				Zhao, Jin, Gong, Sui
KINDI				El Bansarkhani
LAC	•			Lu, Liu, Jia, Xue, He, Zhang
LIMA	0			Smart, Albrecht, Lindell, Orsini, Osheter, Paterson, Peer
Lizard	0			Cheon, Park, Lee, Kim, Song, Hong, Kim, Kim, Hong, Yun, Kim, Park,
LOTUS		0		Phong, Hayashi, Aono, Moriai
NewHope	•			Pöppelmann, Alkim, Avanzi, Bos, Ducas, De La Piedra, Schwabe, Stebila
NTRU	0	0		Zhang, Chen, Hoffstein, Hülsing, Rijneveld, Schanck, Schwabe, Whyte
NTRU Prime		•		Bernstein, Chuengsatiansup, Lange, Van Vredendaal
Odd Manhattan				Plantard
pqNTRUSign	0	0		Zhang, Chen, Hoffstein, Whyte
qTESLA	•			Bindel, Akleylek, Alkim, Barreto, Buchmann, Eaton, Gutoski, Krämer,
Round5	•			Garcia-Morchon, Saarinen, Zhang, Bhattacharya, Rietman, Tolhuizen,
SABER	•			D'Anvers, Karmakar, Roy, Vercauteren
Three Bears	•			Hamburg
Titanium	•			Steinfeld, Sakzad, Zhao
Totals:	11	2	0	Total: 12 proposals with SVP hardness estimates

*Not included in the overview: Compact LWE, Mersenne, Ramstake, ...

TU/e

Estimate all the {LWE, NTRU} schemes!

Estimate all the {LWE,	NIRU) schemes: 🙌
Model	Schemes
	CRYSTALS [LDK+17,SAB+17]
	SABER [DKRV17]
	Falcon [PFH ⁺ 17]
	ThreeBears [Ham17]
	HILA5 [Saa17]
0.292β	Titanium [SSZ17]
0.265β	KINDI [Ban17]
	NTRU HRSS [SHRS17] LAC [LLJ ⁺ 17]
	NTRUEncrypt [ZCHW17a]
	New Hope [PAA+17]
	pqNTRUSign [ZCHW17b]
$0.292\beta + 16.4$	LIMA [SAL+17]
$0.265\beta + 16.4$	
0.368β	NTRU HRSS [SHRS17]
0.2975β	
	Frodo [NAB+17]
$0.292\beta + \log(\beta)$	KCL [ZjGS17]
$0.265\beta + \log(\beta)$	Lizard [CPL+17]
	Round2 [GMZB ⁺ 17]
$0.292\beta + 16.4 + \log(8d)$	Ding Key Exchange [DTGW17]
	EMBLEM [SPL ⁺ 17]
$0.265\beta + 16.4 + \log(8d)$	qTESLA [BAA ⁺ 17]
	NTRU HRSS [SHRS17]
$0.187\beta \log \beta - 1.019\beta + 16.1$	pqNTRUSign [ZCHW17b]
	NTRUEncrypt [ZCHW17a]
$\frac{1}{2}(0.187\beta \log \beta - 1.019\beta + 16.1)$	NTRU HRSS [SHRS17]
$0.000784\beta^2 + 0.366\beta - 0.9 + \log(8d)$	NTRU Prime [BCLvV17]
$0.125\beta \log \beta - 0.755\beta + 2.25$	LOTUS [PHAM17]

Estimate all the {LWE, NTRU} schemes!

Model Schemes CRYSTALS [LDK+17,SAB+17] SABER [DKRV17] Falcon [PFH⁺17] ThreeBears [Ham17] HILA5 [Saa17] 0.292B 0.265β NTRU HRSS [SHRS17] LAC [LLJ+17] NTRUEncrypt [ZCHW17a] New Hope [PAA+17] pqNTRUSign [ZCHW17b] $0.292\beta + 16.4$ $0.265\beta + 16.4$ NTRU HRSS [SHRS17] 0.368B 0.2975β Frodo [NAB+17] $0.292\beta + \log(\beta)$ $0.265\beta + \log(\beta)$ Round2 [GMZB⁺17] $0.292\beta + 16.4 + \log(8d)$ qTESLA [BAA+17] $0.265\beta + 16.4 + \log(8d)$ NTRU HRSS [SHRS17] $0.187\beta \log \beta - 1.019\beta + 16.1$ NTRUEncrypt [ZCHW17a] $\frac{1}{2}(0.187\beta \log \beta - 1.019\beta + 16.1)$ NTRU HRSS [SHRS17] $0.000784\beta^2 + 0.366\beta - 0.9 + \log(8d)$ NTRU Prime [BCLvV17]

 $0.125\beta \log \beta - 0.755\beta + 2.25$

NIST submissions

Most common hardness estimates:

- Complexity of BKZ(β) \geq Complexity of SVP(β)
- Ignore space complexity, ignore o(n) in time complexity
- Classical sieving: 2^{0.292n} time [BDGL16]
- Quantum sieving: 2^{0.265n} time [Laa16]
- "Paranoid bound": 2^{0.208n} time

Conclusion

Lattice-based cryptography

- Security relies on hardness of finding short vectors
- State-of-the-art approach: BKZ with fast SVP subroutine
- Cost of BKZ dominated by cost of exact SVP algorithm

SVP algorithms

- Lattice enumeration: Brute-force approach
- Lattice sieving: Memory-intensive approach

SVP hardness

- Theory: Sieving superior in high dimensions
- Practice: Sieving superior in moderate/high dimensions
- Hardness estimates: Commonly based on sieving

