

132. $\int_{\sqrt{5}}^4 \left(2t - \frac{1}{t}\right) dt =$

1. $\frac{1}{2} \ln 6 - 5$

3. $\frac{1}{2} \ln 3 - 2$

5. $\frac{1}{2} \ln 4 - 3$

2. $\frac{1}{2} \ln 2 - 3$

4. $\frac{1}{2} \ln 3 - 2$

(B-2006)

133. L'aire S de l'ensemble des points M du plan limité par les courbes d'équation $y = -x^2 - x + 2$ et l'axe des abscisses est égale à :

1. $\frac{21}{2}$

2. $\frac{17}{3}$

3. $\frac{9}{2}$

4. $\frac{32}{3}$

5. $\frac{19}{2}$

(B-2006)

134. $\int_1^a \sqrt{1+3x} dx = 26$. La valeur de a est égale à :

1. 7

2. 8

3. 6

4. 5

5. 9

(M-2006)

135. Des propriétés de l'intégrale suivantes, dire celle qui est fausse :

1. Soit f une fonction continue sur un intervalle I et a, b, c des éléments de I. Alors $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$

2. Soit f une fonction continue sur un intervalle I, a et b des éléments de I. Si $f \geq 0$ sur I et $a \leq b$, alors $\int_a^b f(t) dt \geq 0$.

3. Soit f et g des fonctions continues sur un intervalle I, a et b des éléments de I. Si $f \leq g$, alors $\int_a^b g(x) dx \leq \int_a^b f(x) dx$

4. Soit f une fonction continue et périodique sur \mathbb{R} , de période T, alors, quels que soient les nombres réels a et b : $\int_a^{a+T} f(x) dx = \int_0^T f(x) dx$.

5. Soit f une fonction continue et périodique sur \mathbb{R} , de période T. Alors quels que soient les réels a et b : $\int_{a+T}^{b+T} f(x) dx = \int_a^b f(x) dx$

(M-2006)

www.ecoles-rdc.net

136. $\int_{-1}^1 |e^x - 1| dx =$

1. $e + \frac{1}{e} - 2$

3. $e + \frac{1}{e} + 2$

5. $e + \frac{1}{e} - 1$

(M-2006)

2. $e + \frac{1}{e} - 3$

4. $e + \frac{1}{e} + 3$