

Microsoft Cognitive Services Adding Al Smarts to your Software Solutions

CSE

Steve Bohlen Principal Software Engineer

Saturday, October 20, 2018

http://codecampnyc.org

Who am I?

- ...and why should you care?
- Steve Bohlen
- I Read Books + Write Software
 - vs. "Read Software + Write Books" ©
- Blog, Screencast, Speak, Share, Learn

Steve Bohlen

Microsoft

Over 25 years as a software developer

LISP, Delphi, C/C++, VB, VB.NET, Java, Ruby, C#, JavaScript

Principal Software Engineer & Technical Evangelist, Microsoft

Co-Founder, NYC Alt.Net User Group

Co-Organizer, NYC DDD User Group

Contributor: various OSS projects

NHibernate

Spring.NET http://www.springframework.net

Common.Logging http://github.com/net-commons/common-logging

blog: http://blog.unhandled-exceptions.com

e-mail: sbohlen@gmail.com

twitter: @sbohlen

Membership: ASP Insiders, C# Insiders, Telerik Insiders, INETA Board of Directors

Alumni

I am a

employee...

...but these thoughts are my own!

What is Machine Learning?

A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measure *P* if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.

Computational Learning using Algorithms to learn from and make predictions on Data.

So You Want to do Machine Learning?

Machine learning

Supervised learning

Unsupervised learning

Classification

Regression

Clustering

Dimension reduction

Logic regression

Linear regression

k-means clustering

Principal component analysis

Classification trees

Decision trees

Hierarchical clustering

Tensor decomposition

Support vector machines

Bayesian networks

Gaussian mixture models

Multidimensional statistics

Random forests

Fuzzy classification

Genetic algorithms

Random projection

Artificial neural networks

Artificial neural networks

Artificial neural networks

Artificial neural networks

Supervised Learning

Reinforcement Learning

Error = (target output - actual output)

Objective: Get as much reward as possible

Input is an instance, output is a *classification* of the instance

Input is some "goal", output is a sequence of *actions* to optimize the goal (reward)

Classification

Regression

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Optimization algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $\underline{x}^{(i)}$:

$$\longrightarrow \min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - \underline{y}^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, to learn $x^{(1)}, \ldots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

= 1+\(\frac{\infty}{k}\)\(\frac{\infty}{k}\)\(\frac{\infty}{k}\)\(\frac{\infty}{k}\) tg (-d)=-19V sin(±td)=cosd (tgd)= sing= 1/2 [cos(a-B)-cos(a+B)] tg(至士人=Fctgd) osp=== [cos(d-B)+cos(a+B)] tg== 1/1-cosa sind D1-cosd 05B===[sin(d=\$)+sin(d+B)] VT+cost 1+cost = H 1+cosx = sind 1+co h S.A.=21w+21h+2wh $\frac{1}{x} = 1 + x + x^{2} + \dots + x^{n} + \dots = \sum_{n=0}^{\infty} x^{n}, |x| < 1$ $= 1-x+x^2-...+(-x)^n+...= \le (-1)^n x^n, |x|<1$ 13; cos(x+3) = cosxcosp-sin/sin3; 1 = cos (2-3) = cos 2 cos 3 + 8 md sin \$ sinA = a sinB = b cosA=b f=9943L'-Zā) cosB= d tanA= d tanB= d tg21 UBEI cotA= b cotB= 5 secA= 6 dgd - dg = sin(2+B) sin(d=B) SecB= = cscA= = cscB= = A= ga(a+26)/2L 1/1/ SINT SINZB cos(Ttd) = - cosh sin(tital) = + Sind tg2-8in24=tg2/8in24 c/g(std)= ± c/gd tg (ttd) = ±tgd Agd-cosd=dgdcosd as (2th tx) = cosx 8in (2JTK+X)= 8ind 1生はみなか= ctg (21K+d)=ctgd tg (25/K+d) -tgo M1-z=+A/29; M=BB ctgd ctg \$ +1 = cos(d+B)

dden 1 higgen

You look like you're trying to build a machine learning algorithm.

Would you like some help?

Yes

No

Microsoft Al

Amplify human ingenuity

Services

Cognitive Services

Bot Framework

Cognitive Toolkit

Vision

From faces to feelings, allow your apps to understand images and video

Speech

Hear and speak to your users by filtering noise, identifying speakers, and understanding intent

Language

Process text and learn how to recognize what users want

Knowledge

Tap into rich knowledge amassed from the web, academia, or your own data

Search

Access billions of web pages, images, videos, and news with the power of Bing APIs

Labs

An early look at emerging Cognitive Services technologies: discover, try & give feedback on new technologies before general availability

Microsoft Cognitive Services

Give your apps a human side

N //	•	•	
V	IS	io	n

Computer Vision

Content Moderator

Emotion

Face

Video

Video Indexer

Custom Vision Service

Speech

Bing Speech

Speaker Recognition

Custom Speech Service

Language

Bing Spell Check

Language Understanding

Linguistic Analysis

Translator Text & Speech

Web Language Model

Text Analytics

Knowledge

Academic Knowledge

Entity Linking

Knowledge Exploration

Recommendations

QnA Maker

Custom Decision Service

Search

Bing Autosuggest

Bing Image Search

Bing News Search

Bing Video Search

Bing Web Search

Bing Custom Search

Labs

Project Prague (gesture)

Cuzco (events)

Johannesburg (routing)

Nanjing (Isochrones)

Abu Dhabi (distance matrix)

Wollongong (location)

Enduring Freedom (just kidding ☺)

Why Microsoft Cognitive Services?

Easy

Roll your own with REST APIs

Simple to add: just a few lines of code required

Flexible

Make the same API code call on iOS, Android, and Windows

Integrate into the language and platform of your choice

Bring your own data for your custom experience

Tested

Built by experts in their field from Microsoft Research, Bing, and Azure Machine Learning

Quality documentation, sample code, and community support

Typical Interaction Paradigm

Lifecycle of a Cognitive Service Offering

Labs

- Experimental
- No SLA Guarantee
- No Guarantee to evolve to a Cognitive Service Offering

Preview

- API (mostly) stable/fixed
- No SLA Guarantee
- Expected to move to GA, but not Guaranteed

GA

- API stable/fixed
- SLA Guarantee
- Formal Support available

Cognitive Toolkit

https://github.com/Microsoft/CNTK https://docs.microsoft.com/en-us/cognitive-toolkit/

Unlock deeper learning

A free, easy-to-use, open-source toolkit that trains deep learning algorithms to learn like the human brain.

Exploring Cognitive Services

http://azure.com/cognitive

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.