Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ПРАКТИЧЕСКАЯ РАБОТА №7

«Модифицированный симплекс-метод» по дисциплине «Теория принятия решений»

Студент Осипов А.А.

Группа АИ-18

Руководитель Лаврухина Т.В.

Доцент

Ход работы

Вариант 8

Целевая функция имеет вид: $f(x) = 2x_1 + 2x_2 -> max$.

А область ограничений задачи в стандартной форме имеет вид:

$$X = \begin{cases} 0.5x1 + x2 <= 8 \\ x1 + x2 <= 9 \\ \frac{4}{3}x1 + x2 \le \frac{31}{3} \\ 2x1 + x2 <= 14 \\ x1, x2 >= 0 \end{cases}$$

Найденное оптимальное решение в предыдущих практических работах:

$$f^* = f_{max} = 18$$

Дополнительное ограничение: $a_1x_1 + a_2x_2 \ge b$, где a1=2, a2 = 1, b = 7.

В каноническом виде

$$\begin{cases} 0.5x1 + x2 + x3 = 8\\ x1 + x2 + x4 = 9\\ \frac{4}{3}x1 + x2 + x5 = 31/3\\ 2x1 + x2 + x6 = 14\\ -2x1 - x2 + x7 = -7 \end{cases}$$

1) Используем обычный симплекс-метод для решения задачи:

Базис	В	x_1	x_2	χ_3	χ_4	x_5	<i>x</i> ₆
x_7	1	-1.5	0	1	0	0	0
x_4	1	0.5	0	-1	1	0	0
x_5	7/3	0.83	0	-1	0	1	0
x_6	6	1.5	0	-1	0	0	1
x_7	8	0.5	1	1	0	0	0
f(x)	2	-1	0	2	0	0	0

В симплекс-таблице есть отрицательные коэффициенты строки значит данное базисное решение не оптимально.

Базис	В	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
<i>x</i> ₇	4	0	0	-2	3	0	0
x_1	2	1	0	-2	2	0	0

x_5	2/3	0	0	0.67	-1.67	1	0
χ_6	3	0	0	2	-3	0	1
x_2	7	0	1	2	-1	0	0
f(x)	18	0	0	0	2	0	0

В симплекс-таблице все коэффициенты строки f(x) неотрицательные, значит данное ДБР оптимально.

Таким образом, $f^* = f_{\text{max}} = f(2;7) = 18$.

2) Используем двойственный симплекс-метод для решения задачи:

Базис	В	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
X3	6.25	0	1.25	1	0	0	0
X4	11/2	0	3/2	0	1	0	0
X5	17/3	0	5/3	0	0	1	0
X ₆	7	0	2	0	0	0	1
X ₁	7/2	1	⁻¹ / ₂	0	0	0	0
F(X0)	7	0	-3	0	0	0	0

В симплекс-таблице в столбце базисных переменных есть отрицательные элементы, значит, используем алгоритм двойственного симплекс-метода

Базис	В	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆
Х3	2	0	0	1	0	-0.75	0
X ₄	2/5	0	0	0	1	⁻⁹ / ₁₀	0
X ₂	¹⁷ / ₅	2	1	0	0	3/5	0
X ₆	1/5	0	0	0	0	⁻⁶ / ₅	1
X ₁	²⁶ / ₅	4	0	0	0	3/10	0
F(X2)	18	0	0	0	0	9/5	0

3) Используем искусственную переменную для решения задачи:

Введем в левую часть ограничения $\,$ неотрицательную искусственную переменную x_8 , тогда имеем:

$$\begin{cases}
0,5x1 + x2 + x3 = 8 \\
x1 + x2 + x4 = 9 \\
4/3 x1 + x2 + x5 = 31/3 \\
2x1 + x2 + x6 = 14 \\
-2x1 - x2 - x7 + x8 = -7
\end{cases}$$

Для обращения в ноль искусственной переменной x_8 минимизируем симплекс-методом искусственную целевую функцию $\omega(x) = x_8$. Используем соотношение: $\min \omega(x) = \max(-\omega(x))$.

Выразим $\omega(x)$ через небазисные переменные и получим: $\omega(x) = x_8 = 7 - (2x_1 + 1x_2 + x_7)$

Базис	В	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_3	8	0,5	1	1	0	0	0	0	0
x_4	9	1	1	0	1	0	0	0	0
x_5	31/3	4/3	1	0	0	1	0	0	0
x_6	14	2	1	0	0	0	1	0	0
x_8	7	2	1	0	0	0	0	1	1
$-\omega(x)$	-7	-2	-1	0	0	0	0	1	0
f(x)	0	-2	-2	0	0	0	0	0	0

Базис	В	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_3	6,25	0	0,75	1	0	0	0	-0,75	-0,75
\mathcal{X}_4	5,5	0	0,5	0	1	0	0	-0,5	-0,5
x_5	5,66	0	0,33	0	0	1	0	-0,66	-0,66
x_6	7	0	1	0	0	0	1	-1	-1
x_1	3,5	1	0,5	0	0	0	0	0,5	0,5
$-\omega(x)$	0	0	0	0	0	0	0	0	1
f(x)	7	0	-1	0	0	0	0	1	1

Так как $\omega(x) = 0$, следовательно, можно исключить x_8 из симплекс-таблицы.

Проверим правильность расчета функции f(x): $f(x_1, x_2) = 2x_1 + 2x_2$.

Так как x_1 является базисной переменной, необходимо исключить ее из значения функции, выразив через другие переменные.

$$x_1 = 3.5 - x_2 + 0.5x_7 + 0.5x_8$$

$$f(x) = 7 - x_2 + x_7 + x_8$$

Базис	В	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_3	6,25	0	0,75	1	0	0	0	-0,75	-0,75
x_4	5,5	0	0,5	0	1	0	0	-0,5	-0,5
x_5	5,66	0	0,33	0	0	1	0	-0,66	-0,66
x_6	7	0	1	0	0	0	1	-1	-1
x_1	3,5	1	0,5	0	0	0	0	0,5	0,5
f(x)	7	0	-1	0	0	0	0	1	1

Базис	В	x_1	x_2	x_3	x_4	x_5	x_6	x_7	<i>x</i> ₈
x_3	1	1.5	0	1	0	0	0	-1.5	-1.5
x_4	2	-1	0	0	1	0	0	-1	-1
x_5	3.35	-0.66	0	0	0	1	-0.33	0	0
x_6	0	-2	0	0	0	0	1	-2	-2
x_1	7	2	1	0	0	0	0	1	1
f(x)	14	0	0	0	0	0	0	2	2