

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, Zoubin Ghahramani

Identifying structure is crucial for extrapolation

- Traditionally, a statistician proposes an appropriate model for the type of structures present
- Automatic model selection techniques already exist, typically choosing between a finite or restricted set of models
- Instead, we automate statistical model construction

Gaussian processes model structure through kernels

- The kernel specifies which structures are likely under the GP prior, which in turn determines the generalization properties of the model.
- Below we list standard base kernels, and draws from the corresponding GP priors:

Kernels can be Composed

• Constructing appropriate composite kernels has previously been done by experts

... defining an open-ended set of structures

• We consider all algebraic expressions involving a small number of base kernels and the operations '+' and $'\times'$, including e.g.

> Lin Bayesian linear regression $Lin \times Lin \times \dots$ Bayesian polynomial regression Generalized Fourier decomposition $PER + PER + \dots$ $\sum_{d=1}^{D} \mathrm{SE}_d$ Generalized additive models Automatic relevance determination $\prod_{d=1}^{D} \operatorname{SE}_d$ Lin + SELinear trend with local deviations Linearly growing amplitude $Lin \times SE$

... by a greedy search

- We try all base kernels, selecting the one with the highest (approximate) marginal likelihood which balances data fit and model complexity
- The search continues by adding an extra term to the current best kernel, stopping when marginal likelihood no longer improves

Compound Kernels are Interpretable

2000

2005

2010

2000

2005

2010

2010

2005

Compound kernels decompose functions into additive components

2000

2000

2005

2010

