

Overview

- What is a Graph
- Terminology
- Representing Graphs

Why do we study graph theory?

- Graph gives us the tool to formally study structures in graphical representations
 - Databases
 - Task planning
 - Pattern recognition
 - Tasks optimization
 - Scheduling
 - Data mining Clustering
 - Solve shortest path problems

What is a graph?

- A graph is a set of vertices connected by edges
- In other words, it's
 - Circles and lines
 - Dots and arcs
 - Boxes and arrows
 - Junctions and pipes
 - Cities and roads
 - Rooms and doors
 - ...etc.

Exercise 1:

How might you use a graph to solve the following problems? What are the nodes? What are the edges?

- 1. Creating levels for a video game
- 2. Planning a delivery route
- 3. Playing Tic-Tac-Toe
- 4. Machine translation

- Game level design patterns using cyclic graphs
 - Here each edge is marked either "short" or "long"
- Used in *Unexplored 2* by Ludomotion

- Game AI with MINIMAX search
- Construct a game state tree
 - Terminal states have +/- utility
 - You take moves to maximise utility
 - Assume oponent takes moves to minimise utility

Game tree for Tic-Tac-Toe

Courtesy: Artificial Intelligence and Soft Computing, Behavioural and Cognitive Modelling of the Human Brain

Connected

- If a graph is connected there is a path from every point to every other point
- Nodes are immediately connected if they share an edge

Connected

Exercise 2:

Which of the following are connected graphs?

- 1. A graph of possible derivations in a formal system
- 2. The road network in the UK
- 3. A social network
- 4. The Internet

Directed Graph (Digraph)

- A graph is directed if the edges have a direction
 - Represented with arrow heads
- Otherwise it is undirected
- Directed graphs might represent
 - The flow of water through pipes
 - A one-way relationship such as derivation: A ⇒_R B

Exercise 3:

Which of the following are digraphs?

- 1. Sat-Nav directions
- 2. A graph of game states in a game of chess
- 3. A computer network
- 4. A snakes and ladders game board

Degree of a Node

- The **degree** of a node is the number of edge connections it has
 - The numbers of edges incident to it
 - Loops count for 2
- For example
 - deg(a) = 4
 - deg(b) = 2
 - deg(c) = 2

Indegree and Outdegree

- For a node in a directed graph
 - indegree is the number of edges pointing to a node
 - outdegree is the number of edges pointing away from it

degree = indegree + outdegree

Exercise 4:

What is the degree of the following nodes:

- 1. n1
- 2. n3
- 3. n4
- 4. n7

Exercise 5:

What is the in- and out-degree of the following nodes?

- 1. A
- 2. B
- 3. C
- 4. D

Some "types" of node for directed graph

- Source node is a node with indegree = 0.
- Sink node is a node with outdegree = 0.
- Transfer node is node with indegree ≠ 0 and outdegree ≠ 0.

Exercise 6:

Which of the nodes for the graph below are sources, sinks, and transfer nodes?

Hint:

- Source node is a node with indegree = 0.
- Sink node is a node with outdegree = 0.
- Transfer node is node with indegree ≠ 0 and outdegree ≠ 0.

Immediately Connected

- Two nodes are immediately connected if there is an edge between the two nodes.
- In the example:
 - a and b
 - b and c

Path

 A path is a sequence of immediately connected vertices:

 $N_i, ... N_j$

 N_i is immediately connected to N_{i+1}

 N_{i+1} is immediately connected to N_{i+2}

••

 N_{i-1} is immediately connected to N_i

• In the example there is a path

a, b, c

Representing Paths with Edges

- A path may also be defined as a sequence of edges, such that
 - for any pair of edges, e_i and e_{i+1}
 - e_i and e_{i+1} share a common node.
- In the example, there is a path (represented by edges):

 e_1, e_2

Exercise 6:

Identify a path in the graph shown. Express it as both a

- 1. sequence of vertices
- 2. sequence of edges

Example Paths

There are several paths in the example graph.

- Path 1: n2, p, n3, n5
- Path 2: p, n3, n4
- Or represented with edges:
 - Path 1: e1, e2, e3
 - Path 2: e2, e3

Cycle

- A cycle is a path whose first and last vertices are the same
- The path

a, b, c, a

is a cycle

- A graph that contains one or more cycles is called cyclic
 - Otherwise it's called **acyclic**

Simple Paths and Cycles

- A path (or cycle) is simple if it has no repeated vertices
 - Except for first and last in the case of a cycle
- A simple cycle:
 - a, b, c, a
- A cycle that is not simple:
 - a, b, c, a

Path Length

• The **length** of a path (or cycle) is the number of edges

Path Length

Exercise 7:

- 1. Identify a simple path of length 6
- 2. Identify a simple cycle
- 3. Is it possible to connect every node with one path?

Directed Paths

- A sequence of vertices connected by directed edges is a directed path
 - A directed path:

abc

A path that is not directed

cba

Exercise 8:

List all the directed simple paths in this graph

Identify which ones are cycles.

Connectedness

- Node n_i is **connected** to node n_j if there is a path from n_i to n_j
 - An undirected graph is connected if there is a path from every node to every other node
- Node n_i is strongly connected to node n_j if there is a directed path from n_i to n_j
 - A digraph is strongly connected if there is a directed path from every node to every other node

Component

- A component of a graph is defined as the maximal set of connected nodes.
 - In the example graph:
 - {p, n2, n3, n4, n5, n6} form a component
 - {n7} also forms a component

Strongly Connected Component

- In a digraph, a strongly connected component is maximal set of strongly connected nodes.
 - In the example graph:
 - {p, n2, n3, n7} form a strongly connected component
 - {n4, n5, n6} forms a strongly connected component

Condensation graph

- A condensation graph is formed by replacing each component in the original graph by a "condensed" single node. There are no edges.
 - Condensation graph of a graph gives us a view of the "complexity" through the number of components.
- We can consense a digraph as well, to see the relationships between its strongly connected components

Exercise 9:

Look at the graph shown

- 1. Identify the strongly connected components
- 2. Draw its condensation graph

Terminology

- There is a lots more terminology about graphs
 - And some different ways these terms can be defined
- For this course, use the terminology and definitions given

- For example
 - Walks
 - Trails
 - Paths
 - Circuits
 - Multigraph
 - Pseudograph
 - Bouquet
 - -••

Definitions – Graph Type

Type	Edges	Multiple Edges Allowed ?	Loops Allowed ?
Simple Graph	undirected	No	No
Multigraph	undirected	Yes	No
Pseudograph	undirected	Yes	Yes
Directed Graph	directed	No	Yes
Directed Multigraph	directed	Yes	Yes

Representing a Graph

- When working with a graph mathematically, we want a formal representation
 - Allows us to express properties about our graph using the tools of Set Theory,
 Logic, etc.
 - Allows generalisation over possible graphs
 - Allows us to describe algorithms on graphs
- Different representations can express different sorts of graph

Set-theoretic representation

- A simple graph can be represented as an ordered pair G = (V, E) composed of:
 - a set of vertices, V, and
 - a set of edges, E, which connects the nodes.
- For the example
 - V = { p, n2, n3, n4, n5, n6, n7 }
 - E = {e1, e2, e3, e4, e5 }

Representing Vertices

- Vertices are usually represented as labels if their content doesn't matter
 - $V = \{a, b, c\}$
- We could also represent the data of each node, for example with numbers:
 - V = {2, 54, 25}
 - Or define the labels above, e.g. a = 2

Question:

The following set of vertices is not allowed, why? How could we fix it?

$$-$$
 V = { 12, 42, 42 }

Representing Edges

- There are different ways of representing edges
- Edges are commonly represented as sets or tuples
 - E1 = {n2, p}
 - E1 = (n2, p)

Question:

What difference does this make?

Exercise 10:

1. Draw the undirected graph $G_1 = (V_1, E_1)$ where

$$V_1 = \{ a, b, c, d \}$$

$$E_1 = \{\{a, b\}, \{a, c\}, \{a, d\}\}$$

2. Draw the **directed graph** $G_2 = (V_2, E_2)$ where

$$V_2 = \{ a, b, c, d \}$$

$$E_2$$
= {(a, b), (a, c), (a, d) }

Defining Edges

- So far we've seen an extensional definition of the set of edges
 - We can also describe it as follows

$$E \subseteq \{\{x,y\} \mid x,y \in V \land x \neq y\}$$

Or if you prefer, we could express the set comprehension with a term

$$\mathsf{E} \subseteq \{ \, \mathsf{x} \colon \mathsf{V}; \, \mathsf{y} \colon \mathsf{V} \mid \, \mathsf{x} \neq \mathsf{y} \bullet \{\mathsf{x}, \mathsf{y}\} \, \}$$

And if we want directed edges, we just change the term to a tuple

$$\mathsf{E} \subseteq \{ \mathsf{x} : \mathsf{V}; \mathsf{y} : \mathsf{V} \mid \mathsf{x} \neq \mathsf{y} \bullet (\mathsf{x}, \mathsf{y}) \}$$

Exercise 11:

Try to give an extensional definition for the graph shown. What problem do you encounter?

Hint:

An extensional definition is listing all the elements of a set

$$G = (V, E)$$

Multiple Edges (Multigraph)

- With a graph (V, E) there is no way to represent multiple edges
 - We need to change our representation
- Let's invent a function, ϕ , that tells us, for each edge, what vertices it joins

$$-$$
 G = (V, E, ϕ)

- For example,
 - $\phi(e_1) = \{a, b\}$
 - $\phi(e_2) = \{a, b\}$

Multigraphs

- We can define the type of the function ϕ .
 - Functions map inputs in a domain (edges) to a range (2-sets of vertices)

$$\phi: \mathsf{E} \to \mathsf{P}$$

where
$$P = \{\{x, y\} \mid x, y \in V \land x \neq y\}$$

- Here P is the set of sets {x, y}, where x and y are
 - vertices in our graph (∈ V)
 - not equal to one another

Functions in Set Theory

- Function, like everything else in Set Theory, are sets
- A function is a set of pairs (A, B), such that
 - A is an element of the domain
 - B is an element of the range
- For example the successor function, $S : \mathbb{N} \to \mathbb{N}$, is the set of pairs
 - $S = \{(1, 2), (2, 3), (3, 4), ..., (n, n+1), ...\}$

Functions in Set Theory

Exercise 12:

Let f be a function of type $\mathbb{N}_4 \to \mathbb{N}_4$

$$f(x) = x^2 \mod 4$$

1. Give an extensional definition of *f*

Hint:

- $\mathbb{N}_4 = \{0, 1, 2, 3\}$
- Functions in set theory are sets of pairs
 - { (input₁, output₁), (input₂, output₂) ... }
- An extensional definition lists all the elements

Multigraph

We now have the tools to give an extensional definition of our multigraph

$$G = (V, E, \phi)$$

$$V = \{a, b, c\}$$

$$E = \{e_1, e_2, e_3, e_4\}$$

$$\phi = \{(e_1, \{a, b\}), (e_2, \{a, b\}), (e_3, \{a, c\}), (e_4, \{b, c\})$$

Exercise 13:

Try to give a formal representation for the graph shown. What problem do you encounter?

Hint:

• It's a simple graph (not a multigraph) so we don't need ϕ here

$$G = (V, E)$$

Loops

- Representing looping edges
 - Can't use a 2-set, as all elements in a set are unique
 - {a,a}
 - Don't want to use a tuple, as it's unordered
 - (a, a)
- We have to change our representations to allow edges to be singletons { a } representing a loop

Edges that Permit Loops

• To permit loops we need to drop the requirement that $x \neq y$

$$E \subseteq \{\{x,y\} \mid x,y \in V\}$$

Or using a term...

$$\mathsf{E} \subseteq \{\,\mathsf{x} \colon \mathsf{V};\,\mathsf{y} \colon \mathsf{V} \bullet \{\mathsf{x},\,\mathsf{y}\}\,\}$$

Exercise 14:

Allowing loops in a multigraph means we need to change our definition of ϕ . What does it need to become?

Hint:

An undirected multigraph has a function ϕ of type

$$\phi: E \to \{\{x,y\} \mid x,y \in V \land x \neq y\}$$

Directed Multigraph Permitting Loops

- If we want a directed graph that
 - allow loops
 - allows multiple edges between nodes
- We can adapt our previous definition to that shown on the right

```
G = (V, E, \phi)
V = \{ ... \}
E = \{ ... \}
\phi : E \rightarrow \{ (x, y) \mid x, y \in V \}
```

Exercise 15:

Give an extensional definition of the graph opposite

Hint:

G = (V, E,
$$\phi$$
)
V = { a, ... }
E = { e₁, ... }
 ϕ = { (e₁, (a, b)), ... }

Graphs and Set Comprehensions

Exercise 16:

- 1. Draw a graph of the relationships between users, orders, and items
- 2. Intensionally define the set of edges connecting Items to Items (which have a offer price associated with them)
- 3. Intensionally define the set of edges connecting Users to Orders

User ID	Name	Address	Orders
5	John	1 A St	{13}
6	Mary	2 B St	{14,15}

Order ID	User	Shipping Cost	Items Cost	Items
13	5	4.00	22.50	{3, 4}
14	6	4.00	22.50	{3, 4}
15	6	2.55	4.50	{4}

Item ID	Name	Price	Offer Items
3	Shoe	20.00	{ (4, 2.50) }
4	Laces	4.50	{}

Summary

- What is a Graph
- Terminology
 - Node/vertex, edge
 - (Strongly) Connected, Directed (digraph), (In/Out)degree,
 - (Simple) Path, Cycle,
 - Multigraph, Loops
- Representing Graphs
 - Set theoretic definitions