TRAIN THE MODEL

TEAM ID:	PNT2022TMID32788
TEAM MEMBERS:	ROSHANA V S
	SNEKA M S
	SRAVANI SOWMYA SHRI J
	SNEHA K
PROJECT:	EFFICIENT WATER QUALITY ANALYSIS AND PREDICTION USING MACHINE
	LEARNING

Importing libraries

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import warnings

!pip install ibm watson machine learning

```
Requirement already satisfied: ibm watson machine learning in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (1.0.257)
Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (1.26.7)
Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (0.8.9)
Requirement already satisfied: lomond in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (0.3.3)
Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (21.3)
Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (2.26.0)
Requirement already satisfied: ibm-cos-sdk==2.11.* in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (2.11.
Requirement already satisfied: importlib-metadata in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (4.8.2)
Requirement already satisfied: pandas<1.5.0,>=0.24.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (1.3.
Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm watson machine learning) (2022.9.24)
Requirement already satisfied: ibm-cos-sdk-s3transfer==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm
watson machine learning) (2.11.0)
Requirement already satisfied: ibm-cos-sdk-core==2.11.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm watson
machine learning) (2.11.0)
Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk==2.11.*->ibm watson m
achine learning) (0.10.0)
Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk-core==2.11.0->ib
m-cos-sdk==2.11.*->ibm watson machine learning) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24.2->ibm watson machine l
earning) (2021.3)
Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24.2->ibm watson machine
learning) (1.20.3)
Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.1->ibm-cos-sdk-core==
2.11.0->ibm-cos-sdk==2.11.*->ibm_watson_machine_learning) (1.15.0)
Requirement already satisfied: idna<4,>=2.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests->ibm_watson_machine_learning) (3.
3)
Requirement already satisfied: charset-normalizer~=2.0.0 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from requests->ibm watson machine 1
earning) (2.0.4)
Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from importlib-metadata->ibm watson machine learnin
g) (3.6.0)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from packaging->ibm watson machine l
earning) (3.0.4)
```

Reading Dataset

```
In [3]:
         import os, types
         import pandas as pd
         from botocore.client import Config
         import ibm_boto3
         def __iter__(self): return 0
         # @hidden cell
         # The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
         # You might want to remove those credentials before you share the notebook.
         cos_client = ibm_boto3.client(service_name='s3',
             ibm_api_key_id='g1IDqsEFOzpgPkIIAaKTQN61e3iSsW6bmIlqLruc1oE4',
             ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
             config=Config(signature version='oauth'),
             endpoint_url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
         bucket = 'customermodeldeployment-donotdelete-pr-95uwaji0d4dfmd'
         object key = 'water data1.txt'
         streaming_body_1 = cos_client.get_object(Bucket=bucket, Key=object_key)['Body']
         data = pd.read_csv(streaming_body_1)
         # Your data file was loaded into a botocore.response.StreamingBody object.
         # Please read the documentation of ibm_boto3 and pandas to learn more about the possibilities to load the data.
         # ibm boto3 documentation: https://ibm.github.io/ibm-cos-sdk-python/
         # pandas documentation: http://pandas.pydata.org/
```

Analyse the data

data.head()

Out[4]

4]:		ATION CODE	LOCATIONS	STATE	Temp	D.O. (mg/l)	РН	CONDUCTIVITY (µmhos/cm)	B.O.D. (mg/l)	NITRATENAN N+ NITRITENANN (mg/l)	FECAL COLIFORM (MPN/100ml)	TOTAL COLIFORM (MPN/100ml)Mean	year
	0	1393	DAMANGANGA AT D/S OF MADHUBAN, DAMAN	DAMAN & DIU	30.6	6.7	7.5	203	NAN	0.1	11	27	2014
	1	1399	ZUARI AT D/S OF PT. WHERE KUMBARJRIA CANAL JOI	GOA	29.8	5.7	7.2	189	2	0.2	4953	8391	2014
	2	1475	ZUARI AT PANCHAWADI	GOA	29.5	6.3	6.9	179	1.7	0.1	3243	5330	2014
	3	3181	RIVER ZUARI AT BORIM BRIDGE	GOA	29.7	5.8	6.9	64	3.8	0.5	5382	8443	2014
	4	3182	RIVER ZUARI AT MARCAIM JETTY	GOA	29.5	5.8	7.3	83	1.9	0.4	3428	5500	2014

In [5]: data.describe()

Out[5]:

year

count 1991.000000 mean 2010.038172 std 3.057333 min 2003.000000 **25%** 2008.000000 **50**% 2011.000000 **75%** 2013.000000 **max** 2014.000000

```
In [6]:
        data.info()
        RangeIndex: 1991 entries, 0 to 1990
        Data columns (total 12 columns):
            Column
                                            Non-Null Count Dtype
            STATION CODE
                                            1991 non-null object
         1 LOCATIONS
                                            1991 non-null object
            STATE
                                            1991 non-null object
                                            1991 non-null object
            Temp
            D.O. (mg/1)
                                            1991 non-null object
            PH
                                                           object
                                            1991 non-null
            CONDUCTIVITY (µmhos/cm)
                                            1991 non-null object
            B.O.D. (mg/1)
                                            1991 non-null
                                                           object
         8 NITRATENAN N+ NITRITENANN (mg/l) 1991 non-null
                                                           object
         9 FECAL COLIFORM (MPN/100ml)
                                            1991 non-null
                                                           object
        10 TOTAL COLIFORM (MPN/100ml)Mean
                                            1991 non-null object
                                            1991 non-null int64
        11 year
        dtypes: int64(1), object(11)
        memory usage: 186.8+ KB
In [7]:
        data.shape
```

Out[7]: (1991, 12)

Handling Missing Values_1

```
In [8]:
         data.isnull().any()
Out[8]: STATION CODE
                                            False
                                           False
        LOCATIONS
        STATE
                                           False
                                           False
        Temp
        D.O. (mg/1)
                                            False
        PH
                                           False
        CONDUCTIVITY (µmhos/cm)
                                           False
        B.O.D. (mg/1)
                                           False
        NITRATENAN N+ NITRITENANN (mg/l)
                                           False
        FECAL COLIFORM (MPN/100ml)
                                            False
        TOTAL COLIFORM (MPN/100ml)Mean
                                           False
                                           False
        year
        dtype: bool
In [9]:
         data.isnull().sum()
Out[9]: STATION CODE
                                            0
        LOCATIONS
        STATE
        Temp
        D.O. (mg/1)
        CONDUCTIVITY (µmhos/cm)
        B.O.D. (mg/1)
        NITRATENAN N+ NITRITENANN (mg/l)
        FECAL COLIFORM (MPN/100ml)
        TOTAL COLIFORM (MPN/100ml)Mean
        year
        dtype: int64
```

```
In [10]:
          data.dtypes
Out[10]: STATION CODE
                                              object
         LOCATIONS
                                              object
         STATE
                                              object
         Temp
                                              object
         D.O. (mg/1)
                                              object
                                              object
         CONDUCTIVITY (µmhos/cm)
                                              object
         B.O.D. (mg/1)
                                              object
         NITRATENAN N+ NITRITENANN (mg/l)
                                              object
         FECAL COLIFORM (MPN/100ml)
                                              object
         TOTAL COLIFORM (MPN/100ml)Mean
                                              object
         year
                                              int64
         dtype: object
In [11]:
          data['Temp']=pd.to numeric(data['Temp'],errors='coerce')
          data['D.O. (mg/l)']=pd.to_numeric(data['D.O. (mg/l)'],errors='coerce')
          data['PH']=pd.to_numeric(data['PH'],errors='coerce')
          data['B.O.D. (mg/l)']=pd.to_numeric(data['B.O.D. (mg/l)'],errors='coerce')
          data['CONDUCTIVITY (\u03c4mhos/cm)']=pd.to_numeric(data['CONDUCTIVITY (\u03c4mhos/cm)'],errors='coerce')
          data['NITRATENAN N+ NITRITENANN (mg/l)']=pd.to_numeric(data['NITRATENAN N+ NITRITENANN (mg/l)'],errors='coerce')
          data['TOTAL COLIFORM (MPN/100ml)Mean']=pd.to numeric(data['TOTAL COLIFORM (MPN/100ml)Mean'],errors='coerce')
          data.dtypes
                                              object
Out[11]: STATION CODE
         LOCATIONS
                                              object
         STATE
                                              object
         Temp
                                              float64
                                              float64
         D.O. (mg/1)
                                              float64
         PH
         CONDUCTIVITY (µmhos/cm)
                                              float64
         B.O.D. (mg/1)
                                              float64
         NITRATENAN N+ NITRITENANN (mg/l)
                                              float64
         FECAL COLIFORM (MPN/100ml)
                                              object
         TOTAL COLIFORM (MPN/100ml)Mean
                                              float64
                                               int64
         year
         dtype: object
```

```
In [12]:
          data.isnull().sum()
Out[12]: STATION CODE
                                               0
         LOCATIONS
         STATE
                                               0
         Temp
                                              92
         D.O. (mg/1)
                                              31
                                               8
         CONDUCTIVITY (µmhos/cm)
                                              25
         B.O.D. (mg/1)
                                              43
         NITRATENAN N+ NITRITENANN (mg/l)
                                             225
         FECAL COLIFORM (MPN/100ml)
                                               0
         TOTAL COLIFORM (MPN/100ml)Mean
                                             132
                                               0
         vear
         dtype: int64
In [13]:
          data['Temp'].fillna(data['Temp'].mean(),inplace=True)
          data['D.O. (mg/l)'].fillna(data['D.O. (mg/l)'].mean(),inplace=True)
          data['PH'].fillna(data['PH'].mean(),inplace=True)
          data['CONDUCTIVITY (µmhos/cm)'].fillna(data['CONDUCTIVITY (µmhos/cm)'].mean(),inplace=True)
          data['B.O.D. (mg/l)'].fillna(data['B.O.D. (mg/l)'].mean(),inplace=True)
          data['NITRATENAN N+ NITRITENANN (mg/l)'].fillna(data['NITRATENAN N+ NITRITENANN (mg/l)'].mean(),inplace=True)
          data['TOTAL COLIFORM (MPN/100ml)Mean'].fillna(data['TOTAL COLIFORM (MPN/100ml)Mean'].mean(),inplace=True)
 In [14]:
           data.drop(["FECAL COLIFORM (MPN/100ml)"],axis=1,inplace=True)
 In [15]:
            data=data.rename(columns = {'D.O. (mg/l)': 'do'})
            data=data.rename(columns = {'CONDUCTIVITY (μmhos/cm)': 'co'})
            data=data.rename(columns = {'B.O.D. (mg/l)': 'bod'})
            data=data.rename(columns = {'NITRATENAN N+ NITRITENANN (mg/l)': 'na'})
            data=data.rename(columns = {'TOTAL COLIFORM (MPN/100ml)Mean': 'tc'})
            data=data.rename(columns = {'STATION CODE': 'station'})
            data=data.rename(columns = {'LOCATIONS': 'location'})
            data=data.rename(columns = {'STATE': 'state'})
            data=data.rename(columns = {'PH': 'ph'})
```

Water Quality Index (WQI) Calculation

```
In [16]:
          #calculation of pH
          data['npH']=data.ph.apply(lambda x: (100 if(8.5>=x>=7)
                                          else(80 if(8.6>=x>=8.5) or (6.9>=x>=6.8)
                                            else (60 if(8.8>=x>=8.6) or (6.8>=x>=6.7)
                                                else(40 if(9>=x>=8.8) or (6.7>=x>=6.5)
                                                    else 0)))))
In [17]:
          #calculation of dissolved oxygen
          data['ndo']=data.do.apply(lambda x: (100 if(x>=6)
                                          else(80 if(6>=x>=5.1)
                                            else (60 if(5>=x>=4.1)
                                                else(40 if(4>=x>=3)
                                                    else 0)))))
In [18]:
          #calculation of total coliform
          data['nco']=data.tc.apply(lambda x: (100 if(5>=x>=0)
                                          else(80 if(50>=x>=5)
                                            else (60 if(500>=x>=50)
                                                else(40 if(10000>=x>=500)
                                                    else 0)))))
In [19]:
          #calculation of B.D.O
          data['nbdo']=data.bod.apply(lambda x:(100 if(3>=x>=0))
                                          else(80 if(6>=x>=3)
                                            else (60 if(80>=x>=6)
                                                else(40 if(125>=x>=80)
                                                    else 0)))))
```

else 0)))))

In [22]: #Calculation of Water Quality Index WQI
 data['wph']=data.npH*0.165
 data['wdo']=data.ndo*0.281
 data['wbdo']=data.nbdo*0.234
 data['wec']=data.nec*0.009
 data['wna']=data.nna*0.028
 data['wco']=data.nco*0.281
 data['wqi']=data.wph+data.wdo+data.wbdo+data.wec+data.wna+data.wco
 data

Out[22]:	:	station	location	state	Temp	do	ph	со	bod	na	tc	 nbdo	nec	nna	wph	wdo	wbdo	wec	wna	wco	wqi
	0	1393	DAMANGANGA AT D/S OF MADHUBAN, DAMAN	DAMAN & DIU	30.600000	6.7	7.5	203.0	6.940049	0.100000	27.0	 60	60	100	16.5	28.10	14.04	0.54	2.8	22.48	84.46
	1	1399	ZUARI AT D/S OF PT. WHERE KUMBARJRIA CANAL JOI	GOA	29.800000	5.7	7.2	189.0	2.000000	0.200000	8391.0	 100	60	100	16.5	22.48	23.40	0.54	2.8	11.24	76.96
	2	1475	ZUARI AT PANCHAWADI	GOA	29.500000	6.3	6.9	179.0	1.700000	0.100000	5330.0	 100	60	100	13.2	28.10	23.40	0.54	2.8	11.24	79.28
	3	3181	RIVER ZUARI AT BORIM BRIDGE	GOA	29.700000	5.8	6.9	64.0	3.800000	0.500000	8443.0	 80	100	100	13.2	22.48	18.72	0.90	2.8	11.24	69.34
	4	3182	RIVER ZUARI AT MARCAIM JETTY	GOA	29.500000	5.8	7.3	83.0	1.900000	0.400000	5500.0	 100	80	100	16.5	22.48	23.40	0.72	2.8	11.24	77.14
	1986	1330	TAMBIRAPARANI AT ARUMUGANERI, TAMILNADU	NAN	26.209814	7.9	738.0	7.2	2.700000	0.518000	202.0	 100	100	100	0.0	28.10	23.40	0.90	2.8	16.86	72.06
	1987	1450	PALAR AT VANIYAMBADI WATER SUPPLY HEAD WORK, T	NAN	29.000000	7.5	585.0	6.3	2.600000	0.155000	315.0	 100	100	100	0.0	28.10	23.40	0.90	2.8	16.86	72.06
	1988	1403	GUMTI AT U/S SOUTH TRIPURA,TRIPURA	NAN	28.000000	7.6	98.0	6.2	1.200000	1.623079	570.0	 100	100	100	0.0	28.10	23.40	0.90	2.8	11.24	66.44
	1989	1404	GUMTI AT D/S SOUTH TRIPURA, TRIPURA	NAN	28.000000	7.7	91.0	6.5	1.300000	1.623079	562.0	 100	100	100	0.0	28.10	23.40	0.90	2.8	11.24	66.44
	1990	1726	CHANDRAPUR, AGARTALA D/S OF HAORA RIVER, TRIPURA	NAN	29.000000	7.6	110.0	5.7	1.100000	1.623079	546.0	 100	100	100	0.0	28.10	23.40	0.90	2.8	11.24	66.44

```
In [23]:
         #Calculation of overall WQI for each year
          average = data.groupby('year')['wqi'].mean()
          average.head()
Out[23]: year
         2003
                66.239545
                61.290000
         2004
                73.762689
         2005
                72.909714
         2006
                74.233000
         2007
        Name: wqi, dtype: float64
        Splitting Dependent and Independent Columns
In [24]:
         data.head()
         data.drop(['location','station','state'],axis =1,inplace=True)
In [25]:
          data.head()
                                             tc year npH ndo ... nbdo nec nna wph wdo wbdo wec wna wco
Out[25]: Temp do ph
                                 bod na
         0 30.6 6.7 7.5 203.0 6.940049 0.1 27.0 2014 100 100 ...
                                                                   60 60 100 16.5 28.10 14.04 0.54 2.8 22.48 84.46
        1 29.8 5.7 7.2 189.0 2.000000 0.2 8391.0 2014
                                                     100
                                                          80 ... 100 60 100 16.5 22.48 23.40 0.54 2.8 11.24 76.96
         2 29.5 6.3 6.9 179.0 1.700000 0.1 5330.0 2014
                                                      80 100 ... 100 60 100 13.2 28.10 23.40 0.54 2.8 11.24 79.28
         3 29.7 5.8 6.9 64.0 3.800000 0.5 8443.0 2014
                                                      80 80 ...
                                                                   80 100 100 13.2 22.48 18.72 0.90 2.8 11.24 69.34
        4 29.5 5.8 7.3 83.0 1.900000 0.4 5500.0 2014 100 80 ... 100 80 100 16.5 22.48 23.40 0.72 2.8 11.24 77.14
```

5 rows x 21 columns

```
In [26]:
          x=data.iloc[:,1:7].values
In [27]:
          x.shape
Out[27]: (1991, 6)
In [28]:
          y=data.iloc[:,-1:].values
          y.shape
Out[28]: (1991, 1)
In [29]:
          print(x)
         [[6.70000000e+00 7.50000000e+00 2.03000000e+02 6.94004877e+00
           1.00000000e-01 2.70000000e+01]
          [5.70000000e+00 7.20000000e+00 1.89000000e+02 2.00000000e+00
           2.00000000e-01 8.39100000e+03]
          [6.30000000e+00 6.90000000e+00 1.79000000e+02 1.70000000e+00
           1.00000000e-01 5.33000000e+03]
          [7.60000000e+00 9.80000000e+01 6.20000000e+00 1.20000000e+00
           1.62307871e+00 5.70000000e+02]
          [7.70000000e+00 9.10000000e+01 6.50000000e+00 1.30000000e+00
           1.62307871e+00 5.62000000e+02]
          [7.60000000e+00 1.10000000e+02 5.70000000e+00 1.10000000e+00
           1.62307871e+00 5.46000000e+02]]
```

```
In [30]: print(y)

[[84.46]
[76.96]
[79.28]
...
[66.44]
[66.44]
[66.44]]
```

Splitting the Data Into Train and Test

```
In [31]:
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state=10)
```

Random_Forest_Regression

```
In [32]: #Feature Scaling
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    x_train = sc.fit_transform(x_train)
    x_test = sc.transform(x_test)

In [33]: from sklearn.ensemble import RandomForestRegressor
    regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)
    regressor.fit(x_train, y_train)
    y_pred = regressor.predict(x_test)

/tmp/wsuser/ipykernel_224/1531495111.py:3: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of
    y to (n_samples,), for example using ravel().
    regressor.fit(x_train, y_train)
```

Model Evaluation

Out[35]: 0.96971918125809

```
In [34]:

from sklearn import metrics

print('MAE:',metrics.mean_absolute_error(y_test,y_pred))

print('MSE:',metrics.mean_squared_error(y_test,y_pred)))

MAE: 0.9872080200501312

MSE: 5.555095879699248

RMSE: 2.3569250899634566

In [35]: #accuracy of the model

metrics.r2_score(y_test, y_pred)
```

Save The Model

```
In [36]:
          import pickle
          pickle.dump(regressor,open('wqi.pkl', 'wb'))
          model = pickle.load(open('wqi.pkl','rb'))
In [37]:
          from ibm_watson_machine_learning import APIClient
          wml_credentials={
              "url": "https://us-south.ml.cloud.ibm.com",
              "apikey":"yXIqwSJMW8 msu96HBxRumGLj14Q7YF7HqpUsusCqrCI"
          client = APIClient(wml_credentials)
In [38]:
          def guid_from_space_name(client,space_name):
              space = client.spaces.get_details()
                    print(space)
              return(next(item for item in space['resources'] if item['entity']['name']==space_name)['metadata']['id'])
In [39]:
          space_uid = guid_from_space_name(client, 'Models')
          print("Spcae UID = "+ space_uid)
         Spcae UID = dc1f4882-c69d-4ed0-893b-d28c4033e082
In [40]:
          client.set.default_space(space_uid)
Out[40]: 'SUCCESS'
```

In [41]: client.software_specifications.list()

NAME TYPF ASSET ID default py3.6 0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base kernel-spark3.2-scala2.12 020d69ce-7ac1-5e68-ac1a-31189867356a base pytorch-onnx 1.3-py3.7-edt 069ea134-3346-5748-b513-49120e15d288 base scikit-learn 0.20-py3.6 09c5a1d0-9c1e-4473-a344-eb7b665ff687 base spark-mllib 3.0-scala 2.12 09f4cff0-90a7-5899-b9ed-1ef348aebdee base pytorch-onnx rt22.1-py3.9 0b848dd4-e681-5599-be41-b5f6fccc6471 base ai-function 0.1-py3.6 Ocdb0f1e-5376-4f4d-92dd-da3b69aa9bda base shiny-r3.6 0e6e79df-875e-4f24-8ae9-62dcc2148306 base tensorflow 2.4-py3.7-horovod 1092590a-307d-563d-9b62-4eb7d64b3f22 base pytorch 1.1-py3.6 10ac12d6-6b30-4ccd-8392-3e922c096a92 base tensorflow 1.15-py3.6-ddl 111e41b3-de2d-5422-a4d6-bf776828c4b7 base autoai-kb rt22.2-py3.10 125b6d9a-5b1f-5e8d-972a-b251688ccf40 base runtime-22.1-py3.9 12b83a17-24d8-5082-900f-0ab31fbfd3cb base 154010fa-5b3b-4ac1-82af-4d5ee5abbc85 base scikit-learn 0.22-py3.6 default r3.6 1b70aec3-ab34-4b87-8aa0-a4a3c8296a36 base pytorch-onnx_1.3-py3.6 1bc6029a-cc97-56da-b8e0-39c3880dbbe7 base kernel-spark3.3-r3.6 1c9e5454-f216-59dd-a20e-474a5cdf5988 base pytorch-onnx rt22.1-py3.9-edt 1d362186-7ad5-5b59-8b6c-9d0880bde37f base tensorflow_2.1-py3.6 1eb25b84-d6ed-5dde-b6a5-3fbdf1665666 base 20047f72-0a98-58c7-9ff5-a77b012eb8f5 base spark-mllib 3.2 tensorflow_2.4-py3.8-horovod 217c16f6-178f-56bf-824a-b19f20564c49 base runtime-22.1-py3.9-cuda 26215f05-08c3-5a41-a1b0-da66306ce658 base 295addb5-9ef9-547e-9bf4-92ae3563e720 base do py3.8 autoai-ts 3.8-py3.8 2aa0c932-798f-5ae9-abd6-15e0c2402fb5 base tensorflow 1.15-py3.6 2b73a275-7cbf-420b-a912-eae7f436e0bc base kernel-spark3.3-py3.9 2b7961e2-e3b1-5a8c-a491-482c8368839a base pytorch 1.2-py3.6 2c8ef57d-2687-4b7d-acce-01f94976dac1 base spark-mllib 2.3 2e51f700-bca0-4b0d-88dc-5c6791338875 base pytorch-onnx 1.1-py3.6-edt 32983cea-3f32-4400-8965-dde874a8d67e base 36507ebe-8770-55ba-ab2a-eafe787600e9 base spark-mllib 3.0-py37 390d21f8-e58b-4fac-9c55-d7ceda621326 base spark-mllib 2.4 autoai-ts_rt22.2-py3.10 396b2e83-0953-5b86-9a55-7ce1628a406f xgboost 0.82-py3.6 39e31acd-5f30-41dc-ae44-60233c80306e base

```
pytorch-onnx_1.2-py3.6-edt
                                        40589d0e-7019-4e28-8daa-fb03b6f4fe12 base
          pytorch-onnx rt22.2-py3.10
                                        40e73f55-783a-5535-b3fa-0c8b94291431 base
          default r36py38
                                        41c247d3-45f8-5a71-b065-8580229facf0 base
                                        4269d26e-07ba-5d40-8f66-2d495b0c71f7 base
          autoai-ts rt22.1-py3.9
          autoai-obm 3.0
                                        42b92e18-d9ab-567f-988a-4240ba1ed5f7 base
          pmml-3.0 4.3
                                        493bcb95-16f1-5bc5-bee8-81b8af80e9c7 base
          spark-mllib 2.4-r 3.6
                                        49403dff-92e9-4c87-a3d7-a42d0021c095 base
          xgboost 0.90-py3.6
                                        4ff8d6c2-1343-4c18-85e1-689c965304d3 base
          pytorch-onnx_1.1-py3.6
                                        50f95b2a-bc16-43bb-bc94-b0bed208c60b base
          autoai-ts_3.9-py3.8
                                        52c57136-80fa-572e-8728-a5e7cbb42cde base
                                        55a70f99-7320-4be5-9fb9-9edb5a443af5 base
          spark-mllib 2.4-scala 2.11
          spark-mllib_3.0
                                        5c1b0ca2-4977-5c2e-9439-ffd44ea8ffe9 base
          autoai-obm 2.0
                                        5c2e37fa-80b8-5e77-840f-d912469614ee base
          spss-modeler 18.1
                                        5c3cad7e-507f-4b2a-a9a3-ab53a21dee8b base
          cuda-py3.8
                                        5d3232bf-c86b-5df4-a2cd-7bb870a1cd4e base
          autoai-kb_3.1-py3.7
                                        632d4b22-10aa-5180-88f0-f52dfb6444d7 base
          pytorch-onnx 1.7-py3.8
                                        634d3cdc-b562-5bf9-a2d4-ea90a478456b base
          Note: Only first 50 records were displayed. To display more use 'limit' parameter.
In [58]:
          software spec uid = client.software specifications.get uid by name("runtime-22.1-py3.9")
          #software_spec_uid = client.software_specifications.get_uid_by_name("default_py3.6")
          software spec uid
Out[58]: '12b83a17-24d8-5082-900f-0ab31fbfd3cb'
In [60]:
          model details = client.repository.store model(model=regressor,meta props={
              client.repository.ModelMetaNames.NAME: "water dataX",
              client.repository.ModelMetaNames.TYPE:"scikit-learn_1.0
              client.repository.ModelMetaNames.SOFTWARE SPEC UID:software spec uid}
          model id=client.repository.get model id(model details)
In [61]:
          model id
Out[61]: '7dd68f49-673c-498a-b799-68088f6c52a3'
```

Out[63]: array([67.06])

