

4.1

解: (1)由图知,中频增益约为41dB,上限频率 f_H =10⁶Hz,下限频率 f_L =10Hz,通频带 $BW=10^6-10\approx10^6$ Hz

(2)当 $u_i = 10 \sin(4\pi \cdot 10^6 t)(mV) + 20 \sin(2\pi \times 10^4 t)(mV)$ 时,其中 $f=10^4$ Hz 的频率在中频段,而 $f=2\times 10^6$ Hz 的频率在高频段,可见输出信号要产生失真,即高频失真。

当 $u_i = 10 \sin(2\pi \cdot 5t)(mV) + 20 \sin(2\pi \times 10^4 t)(mV)$ 时,产生低频失真。

4.3

解: β 的频率特性表达式为 $\dot{\beta}(j\omega) = \frac{\beta_0}{1+j\frac{\omega}{\omega_\beta}}$ 当 ω =0时, 20lg $|\dot{\beta}(j\omega)| = 20$ lg $|\beta_0|^{1+j\frac{\omega}{\omega_\beta}}$ $|\dot{\beta}| = \frac{\beta_0}{\sqrt{1+(\frac{\omega}{\omega_\beta})^2}}$ φ =-arctg(ω/ω_β) 由图知, $20\lg \mid \beta_0 \mid =40$, $\therefore \beta_0 = 100$ 由波特图的画法知, $\omega_{\beta}=4 M \text{rad/s}$

$$|\beta| = \frac{\beta_0}{\sqrt{1 + (\frac{\omega}{\omega_{\beta}})^2}}$$

$$\varphi = -\arctan(\omega/\omega_{\beta})$$

因为 $|\beta(j\omega)|$ 下降到1所对应的角频率定义为特征角频率 ω_{T}

∴由图知, $\omega_{\rm T}$ =400 Mrad/s 或根据 $\omega_{\rm T}$ ≈ $\beta_0 \omega_{\beta}$ =400 Mrad/s

相频特性的近似波特图如图

4.4 已知中频增益为 A_{ul} =40dB,上限频率为 f_{H} =2MHz,下限频率 f_{L} =100Hz,输出不失真的动态范围为 U_{opp} =10V。

解: : 中频增益20lg | A_{UI} | =40dB,: A_{UI}=100倍

 $u_i(t)=0.1\sin(2\pi\times10^4t)(V)$,输入信号为单一频 率 f=104Hz的正弦波,所以不存在频率失真。但由于输 入信号幅度(0.1V)较大,经100倍的放大后峰峰值为 0.1×2×100 = 20V,已大大超过输出不失真动态范围 $(U_{\text{OPP}}=10\text{V})$,故输出信号将产生严重的非线性失真(波 形出现限幅状态)。

- **4.4** 已知中频增益为 A_{uI} =40dB,上限频率为 f_{H} =2MHz,下限频率 f_{L} =100Hz,输出不失真的动态范围为 U_{opp} =10V。
 - ∵ 中频增益20lg | A_{UI} | =40dB,∴ A_{UI}=100倍
- (2) $u_i(t) = 10\sin(2\pi \times 3 \times 10^6 t) (\text{mV})$, 输入信号为单一频率 $f = 3 \times 10^6 \text{Hz}$ 的正弦波,虽然处于高频区,但也不存在频率 失真。又因为信号幅度(10mV)较小,故经放大后,峰峰 值为 $100 \times 2 \times 0.010 = 2\text{V} < U_{\text{opp}} = 10\text{V}$,故也不出现非线性失真。

- **4.4** 已知中频增益为 A_{ul} =40dB,上限频率为 f_{H} =2MHz,下限频率 f_{L} =100Hz,输出不失真的动态范围为 U_{opp} =10V。
 - ∵ 中频增益20lg | A_{UI} | =40dB, ∴ A_{UI}=100倍
 - (3) $u_i(t) = 10\sin(2\pi \times 400t) + 10\sin(2\pi \times 10^6 t) \text{ (mV)}$
 - 输入信号的两个频率分别为400Hz及1MHz,均处于放大器的中频区,不会产生频率失真,又因为信号幅度较小(10mV),故也不会出现非线性失真。
 - (4) $u_i(t) = 10\sin(2\pi \times 10t) + 10\sin(2\pi \times 5 \times 10^4 t) \text{ (mV)}$
 - 输入信号的两个频率分别为10Hz及50KHz,一个处于低频区,而另一个处于中频区,故经放大后会出现低频频率失真,又因为信号幅度小,所以不会有非线性失真。(5)同理可判断出,输入此信号会出现高频失真。

高频段: 耦合电容可认为交流短路,但极间电容构成低通电路。即极间电容的影响不能忽略A,降低。

其中 $r_{b'e}$ =(1+ β) r_e =1.01 $k\Omega$ g_m =a/ r_e ≈1/ r_e =100m

