

Netzwerke und Schaltungen II, D-ITET $\ddot{\mathbf{U}}$ bung 1

Effektiv/Gleichrichtwert/Zeigerdiagramm

Aufgabe 1 Dimmschaltung

In Abbildung 1 ist der prinzipielle Aufbau einer Dimmschaltung mit Phasenanschnittssteuerung gezeigt. Die Glühlampe R_L ist über eine Antiparallelschaltung von Thyristor-Halbleiterschaltelementen (dargestellt durch den Schalter S) mit der 50 Hz-Netzwechselspannung $u(t)=\hat{u}\sin(\omega t)=230\sqrt{2}\mathrm{V}\sin(\omega t)$ verbunden. Der Schalter wird so angesteuert, dass er in jeder Netzhalbwelle während der Zeit $0\leq t\leq \frac{\alpha T}{2}$ mit $0\leq \alpha\leq 1$ geöffnet bleibt. In der übrigen Zeit ist S geschlossen. Zur Vereinfachung soll davon ausgegangen werden, dass der Lampenwiderstand R_L unabhängig von der Lampenleistung, d.h. von der Temperatur den konstanten Wert $R_L=529\,\Omega$ aufweist.

- 1.1) Berechnen Sie die maximal mögliche mittlere Leistung $\overline{P}_{\text{max}}$ an der Lampe R_L .
- 1.2) Bestimmen Sie für den in Abbildung 1(b) dargestellten Lampenstrom die folgenden Grössen: den Mittelwert \bar{i} , den Gleichrichtwert $|\bar{i}|$ den Effektivwert I, den Spitze-Spitze-Wert i_{ss} und die mittlere Leistung \overline{P} in Abhängigkeit des Parameters α .
- 1.3) **Zusatzaufgabe:** Stellen Sie die Grössen aus Teilaufgabe 1.2) als Funktion des Parameters α graphisch dar.

Abbildung 1: (a) Dimmschaltung und (b) Eingangsstromform

Version: 19. Februar 2020

Aufgabe 2 Rechnen mit Zeigern

Gegeben seien zwei Kosinusspannungen mit Amplituden $\hat{u}_1 = 12.5V$ und $\hat{u}_2 = 8.2V$ und Nullphasenwinkel $\varphi_{u1} = 20^{\circ}$ und $\varphi_{u2} = 60^{\circ}$.

- 2.1) Geben Sie die Zeiger der Spannungen in algebraischer Form und in Exponentialform an.
- 2.2) Berechnen Sie mit der algebraischer Form die Summe $\hat{\underline{u}}_{12} = \hat{\underline{u}}_1 + \hat{\underline{u}}_2$, die Differenz $\hat{\underline{u}}_1 \hat{\underline{u}}_2$, das Produkt $\hat{\underline{u}}_1\hat{\underline{u}}_2$ und den Quotient $\hat{\underline{u}}_1/\hat{\underline{u}}_2$ aus. In welchen Fällen macht es (mehr) Sinn mit der Exponentialform zu rechnen? Geben Sie sie für diese an.
- 2.3) Zeichnen Sie die Zeiger $\hat{\underline{u}}_1$ und $\hat{\underline{u}}_2$, sowie die Summe $\hat{\underline{u}}_1 + \hat{\underline{u}}_2$ und die Differenz $\hat{\underline{u}}_1 \hat{\underline{u}}_2$ in die komplexe Zahlenebene.
- 2.4) Wie lautet die Zeitfunktion $u_{12}(t)$ der Summe \hat{u}_{12} ? Welchen Wert hat $u_{12}(t)$ bei t=0s? Wie erhält man diesen Wert aus dem Zeigerdiagramm? Welchen Wert hat $u_{12}(t)$ nach einer achtel Periode? Wie kann man diesen aus dem Zeigerdiagramm erhalten?

Aufgabe 3 Grafisches Lösen einer Parallelschaltung

Abbildung 2: RL-Parallelschaltung

Gegeben ist die Schaltung in Bild 2 mit einer Wechselspannungsquelle mit $u(t)=\hat{u}\cos\omega t$ mit Amplitude $\hat{u}=1V$ und Kreisfrequenz $\omega=1000\mathrm{rad/s}$. Gegeben ist weiterhin $R=1\Omega$ und $L=2\mathrm{mH}$.

- 3.1) Berechnen Sie im Zeitbereich $i_R(t)$ und $i_L(t)$
- 3.2) Zeichnen Sie das Zeigerdiagramm mit $\hat{\underline{i}}_R,\,\hat{\underline{i}}_L$ und $\hat{\underline{u}}.$
- 3.3) Ermitteln Sie grafisch den Zeiger des Gesamtstromes i(t)
- 3.4) Welche Spannung und welchen Strom liefert die Quelle zum Zeitpunkt t = 0s?
- 3.5) Welche Spannung und welchen Strom liefert die Quelle eine Achtelperiode später?

2

Aufgabe 4 Komplexe Zeigerdarstellung und Zeitsignale

Abbildung 3 zeigt eine Schaltung mit zwei reaktiven Elementen, welche durch eine Wechselspannungsquelle angeregt wird. In dieser Aufgabe soll der Zusammenhang zwischen Zeitsignal und Zeigerdarstellung vertieft werden.

Folgende Werte sind gegeben: $\omega=1{\rm Mrad/s},~\varphi=-10^\circ,~R=50\Omega,~L=50\mu{\rm H},~C=0.1\mu{\rm F},~\hat{u}_m=0.5{\rm V}.$

- 4.1) Ermitteln Sie grafisch die Amplitude und Phase der Zeiger \hat{i} und \hat{u}_C . Hinweis: Gehen Sie in den folgenden Schritten vor:
 - Berechnen Sie im Zeitbereich und analytisch die Amplitude und den Winkel von $u_R(t), u_L(t)$ und $u_C(t)$ in Abhängigkeit von \hat{i} und φ_i .
 - Zeichnen Sie die Signale mit geeigneter Skalierung (z.B. $10\Omega \cdot \hat{i}/cm$). Da φ_i unbekannt ist, können Sie \hat{i} einfach horizontal (wie $\varphi_i = 0^\circ$) zeichnen. Beachten Sie jedoch, dass die Lage der Koordinatenachsen dann unbekannt ist und später bestimmt werden muss.
 - \bullet Zeichnen Sie den resultierenden Zeiger $\underline{\hat{u}}_m$ ein.
 - Mit der bekannten Amplitude von $\hat{\underline{u}}_m$ können Sie die Skalierung bestimmen und mit der bekannten Phasenverschiebung von $\hat{\underline{u}}_m$ können Sie die Lage der Koordinatenachsen bestimmen/einzeichnen.
 - Damit lässt sich $\hat{\underline{i}}$ und $\hat{\underline{u}}_C$ bestimmen.
- 4.2) Geben Sie die Zeitsignale von $\hat{\underline{i}}$ und $\hat{\underline{u}}_C$ an. Hinweis: Nutzen Sie hierfür die Amplitude und Winkel der Signale.
- 4.3) **Zusatzaufgabe:** Geben Sie einen analytischen Ausdruck für die Zeiger \hat{i} und \hat{u}_C an.

Abbildung 3: Schwingkreis mit Wechselspannunganregung