Algebra I – Prof. Christian Urech

Mitschrift: Franz Nowak

Herbstsemester 2025

Vorlesung 1

Definition 1. Eine **Gruppe** ist eine Menge G zusammen mit einer Verknüpfung $*: G \to G, (g,h) \to g * h, sodass:$

- (1) (Assoziativität) $\forall g, h, k \in G : (g * h) * k = g * (h * k)$
- (2) (Neutrales Element) $\exists e \in G : g * e = e * g = g \quad \forall g \in G$
- (3) (Inverses Element) $\forall g \in G \exists g^{-1} \in G \text{ s.d. } g * g^{-1} = g^{-1} * g = e$

Eine Gruppe ist **abelsch** (kommutativ), wenn $\forall g, h \in G, g * h = h * g$.

Wir schreiben oft 1 oder 1_G für e und gg' für g*g' mit $g,g' \in G$. Wenn G kommutativ ist, dann schreiben wir e=0 und a+b für a*b. Des Weiteren sind $a^n:=\overbrace{a\cdots a}^{\text{n-mal}}$ und $a^0:=1$.

Bemerkung 1. Wenn G assoziativ ist, dann ist $g_1g_2 \cdots g_n$ eindeutig definiert $(f\ddot{u}r \ g_1, g_2, \dots, g_n \in G)$.

Satz 1. (a) Das neutrale Element ist eindeutig.

(b) Das Inverse von jedem Element ist eindeutig.

Beweis: (a) Seien $e, e' \in G$ neutrale Elemente. Dann ist e = ee' = e'.

(b) Seien \overline{g}, g^{-1} Inverse von $g \in G$. Dann ist $\overline{g} = \overline{g}g = \overline{g}gg^{-1} = eg^{-1} = g^{-1}$.

Satz 2. Seien G eine Gruppe und $a, b, c \in G$, sodass ab = ac. Dann ist b = c.

Beweis:

$$ab = ac \implies \underbrace{a^{-1}a}_{e}b = \underbrace{a^{-1}a}_{e}c \implies b = c$$

Beispiele

- Ganze Zahlen mit Addition, $(\mathbb{Z}, +)$ oder \mathbb{Z}^+
- Reelle Zahlen mit Addition, $(\mathbb{R}, +)$ oder \mathbb{R}^+
- Körper K mit Addition, (K, +) oder K^+ . (Bemerkung: Keine Gruppe mit Multiplikation, wenn 0 enthalten ist.)
- Vektorraum V mit Addition, (V, +) oder V^+ .
- Allgemeine lineare Gruppe, $GL_n(K)$
- Spezielle lineare Gruppe, $SL_n(K) := \{A \in GL_n(K) \mid \det A = 1\}$
- Orthogonale Gruppe, O_n
- Unitäre Gruppe, U_n

Permutationsgruppen

Sei $\operatorname{Sym}(M)$ die Menge der Bijektionen von einer Menge M zu sich selbst, zusammen mit der Verknüpfung von Abbildungen. Die **symmetrische Gruppe** $S_n := \operatorname{Sym}(\{1, 2, \dots, n\})$ ist eine Gruppe mit n! Elementen.

Bemerkung 2. Jedes Element in S_n ist ein Produkt von Transpositionen.

Erinnerung: Eine **Transposition** ist eine Permutation, die genau zwei Elemente vertauscht und die übrigen gleich lässt.

Beispiel 1. S_3 , die Gruppe der Permutationen von $\{1, 2, 3\}$. Seien $\sigma, \tau \in S_3$,

$$\sigma \colon \begin{cases} 1 \to 2 \\ 2 \to 1 \\ 3 \to 3 \end{cases} \qquad \tau \colon \begin{cases} 1 \to 2 \\ 2 \to 3 \\ 3 \to 1 \end{cases}$$

Dann sind $\sigma^2 = id$ und $\tau^3 = id$.

$$\left. \begin{array}{l}
 \sigma\tau(1) = 1 \\
 \tau\sigma(1) = 3
 \end{array} \right\} \to \sigma\tau \neq \tau\sigma$$

D.h. S_3 ist nicht abelsch.

Untergruppen

Definition 2. Sei G eine Gruppe. Eine Untergruppe $H \leq G$ ist eine Teilmenge $H \subseteq G$ sodass

- (a) $\forall a, b \in H, ab \in H$
- (b) $1_G \in H$
- (c) $\forall a \in H, a^{-1} \in H$

Bemerkung 3. Jede Untergruppe ist eine Gruppe $(H, *_H)$. $*_G$ induziert $*_H$.

Bemerkung 4. $H \subseteq G$ mit $H \neq \{\emptyset\}$ ist eine Untergruppe von G genau wenn $\forall a, b \in H, ab^{-1} \in H$.

Beweis: " \Rightarrow ": klar.

"\(= \)": Bedingung: Seien $a, b \in H$.

- (a) $\Longrightarrow b^{-1} \in H$ $\Longrightarrow ab = a(b^{-1})^{-1} \in H$
- (b) $\implies aa^{-1} \in H, d.h.1_G \in H$
- (c) $\implies 1_G a^{-1} \in H \text{ d.h. } a^{-1} \in H$

Bemerkung 5. Jede Gruppe G hat als Untergruppen immer $\{1\}$ (die triviale Untergruppe) und G selbst. Andere Untergruppen heissen **echte** Untergruppen.

Beispiele

- $SL_n(K) \leq GL_n(K)$
- $n\mathbb{Z} \leq \mathbb{Z} \quad \forall n \in \mathbb{Z}$
- Sei $S^1 := \{c \in \mathbb{C}^* \mid |C| = 1\}.$ $S^1 \leq \mathbb{C}^*.$ $(\mathbb{C}^* := (\mathbb{C} \setminus \{0\}, \cdot)$
- $B_n(K) := \{A \in GL_n(K) \mid A \text{ obere Dreiecksmatrix} \}.$ $B_n \leq GL_n(K).$
- $O_n \leq GL_n(\mathbb{R})$
- Die alternierende Gruppe $A_n \leq S_n$ ist die Untergruppe aller Permutationen, die das Produkt einer geraden Anzahl von Transpositionen sind.

Bemerkung 6. Seien G eine Gruppe und $a \in G$. Dann ist

$$\langle a \rangle := \{\dots, a^{-2}, a^{-1}, a^0, a, a^2, \dots\}$$

eine Untergruppe von G, genannt die von a erzeugte zyklische Gruppe.

Bemerkung 7. $\langle a \rangle$ ist abelsch: $a^m a^n = a^{m+n} = a^{n+m} = a^n a^m$

Lemma 1. Sei $X \subseteq \mathbb{Z}$ die Menge der Zahlen n, sodass $a^n = 1$. Dann ist $X = m\mathbb{Z}$ für ein $m \in \mathbb{Z}$.

Beweis: X ist eine Untergruppe von \mathbb{Z} :

- (a) Seien $m, n \in X$, dann ist $a^{m+n} = a^m a^n = 1_G \implies m+n \in X$
- (b) $a^0 = 1_G \implies 0 \in X$
- (c) $n \in X \implies a^{-n} = a^n a^{-n} = 1_G \implies -n \in X$

Gemäss Übung ist X von der Form $m\mathbb{Z}$ für ein $m \in \mathbb{Z}$.

Falls $m \neq 0$:

Für $n \in \mathbb{Z}$ schreibe n = km + r für ein $k \in \mathbb{Z}$ s.d. $0 \le r < m$. Dann ist $a^n = a^{km+r} = a^{km}a^r = a^r$. $\Longrightarrow \langle a \rangle = \{1, a, \ldots, a^{m-1}\}$ und all diese Elemente sind verschieden. (Falls $a^r = a^{r'} \implies a^{r-r'} = 1 \implies r - r' \in m\mathbb{Z} \implies r = r' \quad 0 \le r, r' < m$)

Falls m = 0:

Dann ist $\langle a \rangle = \{\dots, a^{-2}, a^{-1}, 1, a, a^2, \dots\}$ und alle Partitionen sind verschieden.

Vorlesung 2

Definition 3. Die **Ordnung** |G| einer Gruppe G ist die Anzahl der Elemente in G (kann ∞ sein). Die **Ordnung des Elements** $a \in G$ ist $|\langle a \rangle|$, wobei $\langle a \rangle = \{1, a, \ldots, a^{m-1}\}$ mit m > 0 die kleinste Zahl s.d. $a^m = 1$.

Beispiele

- $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$ hat Ordnung 6.
- $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$ hat Ordnung ∞ .

Homomorphismen

Definition 4. Seien G, G' zwei Gruppen. Ein **Homomorphismus** ist eine Abbildung $\phi: G \to G'$ s.d. $\phi(ab) = \phi(a)\phi(b) \quad \forall a, b \in G$.

Definition 5. Ein Isomorphismus ist ein bijektiver Homomorphismus.

Beispiele

- det: $GL_n(K) \to K^*$
- signum sign: $S_n \to \mathbb{Z}/2\mathbb{Z}$, $\operatorname{sign}(x) = \begin{cases} 0: & \text{gerade Anzahl von Transpositionen} \\ 1: & \text{ungerade Anzahl von Transpositionen} \end{cases}$
- Fixiere $a \in G$. $\phi \colon \mathbb{Z} \to G$, $\phi(n) = a^n$. ϕ ist injektiv $\Leftrightarrow \operatorname{Ord}(a) = \infty$.
- $H \leq G$, die Inklusion $\iota : H \to G$, $\iota(x) = x$.

Satz 3.

(1) Falls $\phi: G \to G'$ und $\psi: G' \to G''$ Homomorphismen sind, so auch $\psi \circ \phi: G \to G''$

(2) Falls $\phi: G \to G'$ ein Isomorphismus ist, so auch $\phi^{-1}: G' \to G$.

Beweis: (1) $\psi \circ \phi(ab) = \psi(\phi(a)\phi(b)) = \psi \circ \phi(a)\psi \circ \phi(b)$

(2) zu zeigen: ϕ^{-1} ist ein Homomorphismus.

Seien
$$a', b' \in G'$$
. Dann gibt es $a, b \in G$ s.d. $\phi(a) = a', \phi(b) = b'$

Es gilt
$$\phi(ab) = \phi(a)\phi(b) = a'b' \implies \phi^{-1}(a'b') = \phi^{-1}(a')\phi^{-1}(b')$$

Bemerkung 8. Zwei zuklische Gruppen gleicher Ordnung sind immer isomorph.

Beweis: Seien $G = \langle a \rangle, G' = \langle b \rangle$ und $\phi \colon G \to G', \quad \phi(a^n) \mapsto b^n$.

Falls |G| = |G'| endlich ist, so ist $G = \{1, a, \dots, a^{m-1}\}$, $G' = \{1, b, \dots, b^{m-1}\}$. Somit ist ϕ wohldefiniert, bijektiv und ein Homomorphismus.

Falls $|G|=|G'|=\infty,$ so ist ϕ wohldefiniert, bijektiv und ein Homomorphismus. \Box

Wir schreiben C_n für die zyklische Gruppe der Ordnung n.

Satz 4. Sei ϕ : $G \to G'$ ein Homomorphismus. Dann sind $\phi(1_G) = 1_{G'}$ und $\phi(a^{-1}) = \phi(a)^{-1} \ \forall a \in G$

Beweis:

$$\begin{aligned} \mathbf{1}_G &= \mathbf{1}_G \mathbf{1}_G \\ &\implies \phi(\mathbf{1}_G) = \phi(\mathbf{1}_G \mathbf{1}_G) = \phi(\mathbf{1}_G) \phi(\mathbf{1}_G) \\ &\underset{\text{kürzen}}{\Longrightarrow} \mathbf{1}_{G'} = \phi(\mathbf{1}_G) \end{aligned}$$

Ausserdem:

$$\phi(a^{-1}\phi(a) = \phi(a^{-1}a) = \phi(1_G) = 1_{G'}$$

$$\implies \phi(a^{-1} = \phi(a)^{-1}$$

Definition 6. Ein **Automorphismus** ist ein Isomorphismus $\phi: G \to G$ von einer Gruppe G zu sich selbst.

Beispiel 2. Für $f \in G$ definiere $\phi \colon G \to G$, $\phi(g) := fgf^{-1}$ (fgf^{-1} ist das Konjugierte von g unter f). ϕ ist ein Automorphismus.

Beweis: Homomorphismus:
$$\phi(gh)=fghf^{-1}=fg(f^{-1}f)hf^{-1}=\phi(g)\phi(h)$$
. Bijektiv: $\phi^{-1}(g)=f^{-1}gf$

Definition 7. Für einen Homomorphismus $\phi: G \to G'$ definiere:

$$\operatorname{Bild} \phi := \{ x \in G' \mid x = \phi(a) \text{ für ein } a \in G \}$$

$$\operatorname{Kern} \phi := \{ a \in G \mid \phi(a) = 1 \}$$

Übung: Zeige, dass beides Untergruppen von G' bzw. G sind.

Beispiele

- det: $GL_n(K) \to K^*$, Kern det = $SL_n(K)$
- $\operatorname{sign} S_N \to C_2$, Kern $\operatorname{sign} = A_n$

Bemerkung 9. Seien $\phi: G \to G'$ ein Homomorphismus und $a \in \operatorname{Kern} \phi$ und $b \in G$. Dann ist

$$\phi(bab^{-1}) = \phi(b)\phi(a)\phi(b)^{-1} = 1$$
$$\implies bab^{-1} \in \operatorname{Kern} \phi$$

Definition 8. Eine Untergruppe $N \leq G$ heisst **Normalteiler**, falls $a \in N$ und $\forall b \in G \ bab^{-1} \in N$.

 $\stackrel{\text{Bem. 9}}{\Longrightarrow}$ Kern ϕ ist immer ein Normalteiler.

Vorlesung 3

Erinnerung: Eine Untergruppe $N \leq G$ ist ein Normalteiler, falls:

$$\forall a \in N, \forall b \in G : bab^{-1} \in N$$

- . Clicker Frage zu Normalteilern $\unlhd :$
 - 1. $B_n(K) \leq GL_n(K)$ ist kein Normalteiler.
 - 2. $Z^+ \subseteq R^+$ ist Normalteiler (weil R^+ abelsch)
 - 3. $SL_n(K) \leq GL_n(K)$, weil $\det(ABA^{-1}) = \det(A)\det(B)\det(A)^{-1} = \det(B)$, oder bemerke, dass $SL_n(K) = \text{Kern det}$
 - 4. $A_n \leq S_n$ weil $A_n = \text{Kern sign.}$

Partitionen

Sei $\phi \colon G \to G'$ ein Homomorphismus. Für jedes Element $h \in H$ betrachte die Faser $\phi^{-1}(h) = \{g \in G \mid \phi(g) = h\}$ (Urbild von G in H). Die Fasern bilden eine Partition von G.

Beispiel 3. Sei $\phi \colon \mathbb{C}^* \to \mathbb{R}^*_{>0}$, $\phi(z) \mapsto |z|$. Allgemein: $\phi^{-1} = \operatorname{Kern} \phi$.

Satz 5. Sei $U: G \to G'$ ein Homomorphismus mit Kern N. Für $a, b \in G$ gilt $\phi(a) = \phi(b) \Leftrightarrow \exists n' \in N \text{ s.d. } b = an, \text{ d.h. } a^{-1}b \in N$.

Beweis: " \Rightarrow ": Falls $\phi(a) = \phi(b)$, dann it $U(a)^{-1}\phi(b) = \phi(a^{-1}b) = 1$, d.h. $\exists n \in \mathbb{N}$, s.d. $a^{-1}b = n \implies b = an$.

"\(= \)" Falls
$$b = an$$
 f\(\text{fir} \ n \in N, \text{ dann ist } \(\phi(b) = \phi(a) \phi(n) = \phi(a). \end{aligned} \)

Aus dem Satz folgt, dass die Fasern von ϕ alle von der folgenden Form sind:

$$aN = \{g \in G \mid g = an \text{ für ein } n \in N\}$$

Korollar 1. Ein Homomorphismus $\phi: G \to G'$ ist injektiv $\Leftrightarrow \operatorname{Kern} \phi = \{1\}.$

Beweis: " \Rightarrow " klar.

"\(\infty\)" Man nehme an, dass der Kern
$$\phi = \{1\}$$
. $\phi(a) = \phi(b) \Leftrightarrow a^{-1}b \in \operatorname{Kern} \phi$, d.h. $a^{-1} + b = 1 \implies a = b$.

Nebenklassen

Erinnerung: Sei X eine Menge. Eine Äquivalenzrelation auf X ist eine binäre Relation \sim so dass:

- i) (Transitivität) Falls $a \sim b$ und $b \sim c$, dann ist $a \sim c$.
- ii) (Symmetrie) Falls $a \sim b$, so ist $b \sim a$.
- iii) (Reflexivität) $a \sim a$ für alle $a \in X$.

Gesehen: Jede Äquivalenzrelation definiert eine Partition von X. Diese besteht aus den Äquivalenzklassen, d.h. Teilmengen von der Form $[a] := \{b \in X \mid b \sim a\}$.

Sei \overline{X} die Menge der Äquivalenzklassen. Dann erhalten wir eine surjektive Abbildung $\pi \colon X \to \overline{X}, \qquad \pi(a) := [a]$. Dann ist $\pi^{-1}([a]) = \{b \in X \mid b \sim a\}$.

Gesehen: "Rechnen modulo m". \mathbb{Z} mit Äquivalenzrelation \equiv , wobei $a \equiv b$ falls $a - b \in m\mathbb{Z}$.

Menge der Äquivalenzklassen: $\mathbb{Z}/m\mathbb{Z}$. $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \dots, [m-1]\}.$

Ausserdem können wir die Klassen in $\mathbb{Z}/m\mathbb{Z}$ miteinander addieren, so dass [a+b]=[a]+[b].

 $\mathbb{Z}/m\mathbb{Z}$ mit Addition ist somit eine Gruppe, und die Quotientenabbildung $\pi \colon \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}, \quad \pi(n) := [n]$ ist ein Homomorphismus.

Definition 9. Sei $H \leq G$ eine Untergruppe. Eine **Linksnebenklasse** von H ist eine Teilmenge von der Form $aH = \{ah \mid h \in H\}$ für ein $a \in G$.

Beispiel 4. $m\mathbb{Z}^+ \leq \mathbb{Z}^+$. Dann sind die Linksnebenklassen $m\mathbb{Z}$ die Teilmengen von der Form $0 + m\mathbb{Z}, 1 + m\mathbb{Z}, \dots, (m-1) + m\mathbb{Z}$.

Wir schreiben $a \equiv b$, falls ein $h \in H$ existiert, so dass b = ah, d.h. falls $b \in aH$.

Satz 6. Die Relation "\equivalent ist eine Äquivalenzrelation."

Beweis: 1. Falls $a \equiv b$ und $b \equiv a \implies \exists h, h' \in H$, so dass b = ah und $c = bh' \implies c = a\underbrace{hh'}_{\in H} \implies c \equiv a$.

2. falls
$$a \equiv b$$
, so $\exists h \in H$ s.d. $b = ah \implies a = b\underbrace{h^{-1}}_{\in H} \implies b \equiv a$.

3. $a = a \cdot 1$ und $1 \in H \implies a \equiv a$.

$$\phi \colon X \to Y$$
 Abbildung $\phi^{-1}(y) = \{x \in X \mid \phi(x) = y\}$ für $y \in Y$.

Korollar 2. Die Linksnebenklassen bilden eine Partition von G.

Beweis:
$$aH = bH \Leftrightarrow a \equiv b$$
.

Definition 10. Die Anzahl der Linksnebenklassen von H in G ist der sogenannte **Index von** H **in** G. Wir schreiben [G:H] für den Index. ([G in H] kann ∞ sein.)

Beispiel 5. $m \ge 1$, $[\mathbb{Z} : m\mathbb{Z}] = m$.

Satz 7. Sei G eine endliche Gruppe und $H \leq G$. Dann ist |G| = |H|[G:H].

Beweis: Die Abbildung $\phi: H \to aH$, $\phi(h) = ah$.

 ϕ ist eine Bijektion. $\Longrightarrow |H| = |aH|$.

Die Linksnebenklassen bilden eine Partition von $G. \implies |G| = |H|[G:H]$

Daraus folgt direkt:

Korollar 3 (Satz von Lagrange). Seien G eine Gruppe und $H \leq G$ eine Untergruppe. Dann ist |H| ein Teiler von |G|.

Bemerkung 10. Falls $a \in G$, dann folgt mit Lagrange, dass $|\langle a \rangle| \mid |G|$, d.h. Ord(a) teilt die Ordnung von G.

Korollar 4. Sei G eine Gruppe, s.d. |G| prim ist. Sei $a \in G, a \neq 1$, dann ist $G = \langle a \rangle$.

Beweis: ord $a \mid p$, da ord a > 1 ist, ord a = p, d.h. $|\langle a \rangle| = p \implies \langle a \rangle = G$. \square

Korollar 5. Seien G, G' endliche Gruppen und $\phi: G \to G'$ ein Homomorphismus. Dann gilt:

$$|G| = |\operatorname{Kern} \phi| \cdot |\operatorname{Bild} \phi|$$

Beweis: Gesehen: Die Linksnebenklassen von Kern ϕ sind die Fasern von ϕ .

$$\implies |\operatorname{Bild} \phi| = [G : \operatorname{Kern} \phi]$$

$$\implies |G| = |\operatorname{Kern} \phi| \cdot [G : \operatorname{Kern} \phi]$$

$$= |\operatorname{Kern} \phi| \cdot |\operatorname{Bild} \phi|$$

Definition 11. Sei G eine Gruppe und $H \leq G$. Die **Rechtsnebenklassen** von H in G sind die Mengen $Ha := \{ha \mid h \in H\}$.

Definiere $a \equiv_R b$, falls es ein $h \in H$ gibt, so dass b = ha.

Dies definiert eine Äquivalenzrelation auf G und die Rechtsnebenklassen sind die Äquivalenzklassen bezüglich dieser Relation. \leadsto Partition von G.

Satz 8. Eine Untergruppe $H \leq G$ ist ein Normalteiler \Leftrightarrow jede Linksnebenklasse ist auch eine Rechtsnebenklasse. In diesem Fall ist aH = Ha.

Beweis: " \Rightarrow " H Normalteiler. Sei $h \in H$ und $a \in G$.

$$\implies ah = \underbrace{(aha^{-1})}_{=:k \in H} a = ka$$

$$\implies aH \subseteq Ha$$

Analog zeigt man $Ha \subseteq aH$. $\Longrightarrow aH = Ha$.

" \Leftarrow " Man nehme an, H ist kein Normalteiler.

- $\implies \exists h \in H, g \in G \text{ s.d. } aha^{-1} \notin H, \text{ d.h. es gibt kein } h' \in H \text{ s.d. } ah = h'a.$
- $\implies ah \in aH$, aber $ah \notin Ha$, d.h. $aH \neq Ha$.

Gleichzeitig ist $a \in aH \cap Ha \neq \emptyset$

 $\implies aH$ ist in keiner anderen Rechtsnebenklasse enthalten. D.h. Rechts- und Linksnebenklassen definieren zwei verschiedene Partitionen.

Vorlesung 4

Clicker Frage zu Homomorphismen $\phi: G \to G'$:

- Gesehen in Übung: Bild $\phi \leq G'$.
- Dann folgt mit Kor. 3: $|\operatorname{Bild} \phi| ||G'||$
- Und mit Kor. 5: $|\operatorname{Bild} \phi| ||G|$.

Seien G eine Gruppe und $H \leq G \rightsquigarrow G/H$ Linksnebenklassen von H in G. Können wir auf G/H eine Gruppenstruktur definieren, so dass die Abbildung $\pi \colon G \to G/H, \pi(g) = gH$ ein Gruppenhomomorphismus ist?

Ja, wenn $H \subseteq G$ (siehe Übung).

Faktorgruppen

Lemma 2. Seien G eine Gruppe und X eine Menge mit einer Verknüpfung. Sei $\phi: G \to X$ eine surjektive Abbildung, so dass $\phi(ab) = \phi(a)\phi(b) \quad \forall a,b \in G$. Dann ist X eine Gruppe.

Beweis: (i) Seien $u, v, w \in X$. $\exists a, b, c \in G$ s.d. $\phi(a) = u, \phi(b) = v, \phi(c) = w$. Dann ist

$$u(vw) = \phi(a)(\phi(b)\phi(c)) = \phi(a)\phi(bc)$$
$$= \phi(abc) = \phi(ab)\phi(c)$$
$$= (\phi(a)\phi(b))\phi(c) = (uv)w$$

→ Assoziativität der Verknüpfung auf X.

(ii) Sei $e := \phi(1)$ und $u \in X$. Dann

$$\exists u \in G$$
, s.d. $u = \phi(a) \implies eu = \phi(1)\phi(a) = \phi(1a) = \phi(a) = u$.

Analog: $u=u. \rightarrow e$ ist ein neutrales Element.

(iii) Sei $u \in X \implies \exists a \in G \text{ s.d. } u = \phi(a)$. Sei $u' := \phi(a^{-1})$. Dann ist

$$u'u = \phi(a^{-1}\phi(a)) = \phi(a^{-1}a) = \phi(1) = e.$$

Analog: uu' = e. \leadsto es existieren Inverse.

Notation: Seien G eine Gruppe, $A, B \subseteq G$. Dann definieren wir

$$AB := \{ab \mid a \in A, b \in B\} \subseteq G.$$

Lemma 3. Seien G eine Gruppe, $N \subseteq G$ ein Normalteiler und $a, b \in G$. Dann ist (aN)(bN) = abN. Das Produkt von zwei Nebenklassen ist also wieder eine Nebenklasse.

Beweis: In Vorlesung 3 gesehen:

$$Nb = bN \quad \forall b \in G$$

Da N eine Untergruppe ist, ist NN = N (Übung).

$$\implies (aN)(bN) = a(Nb)N = a(bN)N = abNN = abN.$$

Wir erhalten also eine Verknüpfung auf die Nebenklassen. Falls $K_1, K_2 \in G/N$: Sei $a \in K_1, b \in K_2$. $\Longrightarrow K_1 = aN, K_2 = bN$. Dann ist $K_1K_2 = abN$ (gemäss Lemma), d.h. K_1K_2 ist die Nebenklasse, die das Element ab enthält.

Satz 9. Seien G eine Gruppe und $N \subseteq G$. Mit dieser Verknüpfung bildet $G/N =: \overline{G}$ eine Gruppe und die Abbildung $\pi : G \to G/N = \overline{G}$ $a \mapsto aN =: \overline{a}$ ist ein Homomorphismus.

Beweis: Bereits beobachtet: $\pi(a)\pi(b) = (aN)(bN) = abN = \pi(ab)$.

Aus Lem. 2 folgt, dass $\overline{G}=G/N$ eine Gruppe ist und daher π ein Homomorphismus ist. \Box

Korollar 6. Jeder Normalteiler $N \leq G$ ist Kern von einem Homomorphismus. Nämlich vom Homomorphismus $\pi: G \to G/N$.

Beweis: Das neutrale Element von G/N ist $N. \rightsquigarrow \operatorname{Kern} \pi = N$

Satz 10 (erster Isomorphiesatz). Sei $\phi \colon G \to G'$ ein surjektiver Homomorphismus und $N := \operatorname{Kern} \phi$. Dann ist die Gruppe G/N isomorph zur Gruppe G' unter dem Homomorphismus $\overline{\phi} \colon G/N \to G'$ $\overline{a} = aN \mapsto \phi(a)$

Beweis: 1. $\overline{\phi}$ ist wohldefiniert: $\phi(an) = \phi(a)\phi(n) = \phi(a)$, d.h. $\overline{\phi}(aN)$ hängt nicht von der Wahl des Repräsentanten ab.

2. $\overline{\phi}$ ist ein Homomorphismus:

$$\overline{\phi}((aN)(bN)) = \overline{\phi}(abN)$$

$$= \phi(ab) = \phi(a)\phi(b)$$

$$= \overline{\phi}(aN)\overline{\phi}(bN)$$

3. $\overline{\phi}$ ist bijektiv: $\overline{\phi}$ ist surjektiv, da ϕ surjektiv ist. $\overline{\phi}$ ist injektiv, da Kern $\overline{\phi} = \{N\}$ und N ist das neutrale Element in G/N. $\Longrightarrow \overline{\phi}$ ist injektiv.

Definition 12. Seien G, G' Gruppen, dann ist $G \times G'$ eine Gruppe mit der

Verknüpfung (a, a')(b, b') = (ab, a'b'). Neutrales Element: $(1_G, 1_{G'})$. Inverses Element: $(a, a')^{-1} = (a^{-1}, a'^{-1})$. Es heisst das **direkte Produkt** von G und G'.

Vorlesung 5

Clicker Frage: Sei $S^1 \leq \mathbb{C}^*$ die Untergruppe der komplexen Zahlen bestehnd aus den Elementen mit Betrag 1. Dann ist der Quotient \mathbb{C}^*/S^1 isomorph zu $\mathbb{R}^*_{>0}$. (Wahr)

Begründung: Die Abbildung $\phi \colon \mathbb{C}^* \to R_{>0}^*$, $z \mapsto |z|$ ist ein surjektiver Homomorphismus. Kern $\phi = S^1 \stackrel{\text{1.}}{\Longrightarrow} \stackrel{\text{Isosatz}}{\Longrightarrow} C^*/S^1 \simeq \mathbb{R}_{>0}^*$

Clicker Frage: Sei G eine Gruppe und $H_1, H_2 \leq G$ Untergruppen. Dann ist $H_1 \cap H_2$ eine Untergruppe von G. (Wahr)

Begründung:

$$1 \in H_1 \cap H_2$$

$$a, b \in H_1 \cap H_2 \implies ab \in H_1 \cap H_2$$

$$a^{-1} \in H_1 \cap H_2$$

Allgemein L
 Falls $H_i \leq G, i \in I$ eine Familie von Untergruppen ist, so ist $\bigcap_{i \in I} H_i \leq G$ eine Untergruppe (selber Beweis).

Definition 13. Sei $S \subseteq G$ eine Teilmenge. Dann ist $\langle s \rangle := \bigcap_{\substack{H \leq G \\ s.d.S \subseteq H}} H$ die

 $von\ S\ erzeugte\ Untergruppe.$

Erinnerung: G, G' Gruppen $\leadsto G \times G'$ ist Gruppe mit Verknüpfung (a, a')(b, b') = (ab, a'b').

Bsp: Kleinsche Vierergruppe (die "Matratzengruppe").

$$C_2 \times C_2 = \{(1,1), (1,-1), (-1,1), (-1,-1)\}$$

Bsp: m, n > 0 s.d. ggT(m, n) = 1 dann ist $C_{mn} \simeq C_m \times C_n$

Wir haben vier Homomorphismen:

$$i(x) = (x, 1)$$

$$i'(x) = (1, x')$$

$$p(x, x') = x$$

$$p'(x, x') = x'$$

Bemerkung 11. i, i' sind injektiv, d.h.

$$G \times 1 = \text{Bild } i \simeq G$$

 $1 \times G' = \text{Bild } i' \simeq G'$

p und p' sind surjektiv

$$\operatorname{Kern} p = 1 \times G', \operatorname{Kern} p' = G \times 1$$

Sei H eine Gruppe und $\phi \colon H \to G, \phi' \colon H \to G'$ Homomorphismen. Dann ist $\Phi \colon H \to G \times G' \quad \Phi(h) = (\phi(h), \phi'(h))$ ein Homomorphismus.

Umgekehrt ist jeder Homomorphismus $\Phi \colon H \to G \times G'$ von dieser Form mit $\phi = \Phi \circ p$ und $\phi' = \Phi \circ p'$.

Bemerkung 12. $\Phi(h) - (1,1) \Leftrightarrow \phi(h) = 1 \ und \ \phi'(h) = 1 \ d.h. \ \operatorname{Kern} \Phi = \operatorname{Kern} \phi \cap \operatorname{Kern} \phi'.$

Seien $H, K \leq G$. Betrachte $HK = \{hk \mid h \in H, k \in K\}$. Wann ist HK eine Untergruppe? Wann ist $\pi \colon H \times K \to G \quad \pi(h, k) = hk$ ein Homomorphismus?

Satz 11. (a) Ist $H \cap K = \{1\}$, so ist π injektiv.

- (b) Ist H oder K ein Normalteiler, so ist HK = KH und HK ist eine Untergruppe von G.
- (c) Sind H und K Normalteiler und gilt $H \cap K = \{1\}$ und HK = G so ist $\pi \colon H \times K \to G$ ein Isomorphismus.

Beweis: (a) Seien $(h_1, k_1), (h_2, k_2) \in H \times K$ s.d. $h_1k_1 = h_2k_2$.

$$\implies \underbrace{k_1 k_2^{-1}}_{\in K} = \underbrace{h_1^{-1} h_2}_{\in H} \stackrel{H \cap K = \{1\}}{=} 1$$

$$\implies k_1 = k_2 \text{ und } h_1 = h_2$$

$$\implies \pi \text{ ist injektiv.}$$

(b) oBdA. H ist Normalteiler. Seien $h \in H, k \in K$.

$$\implies kh = \underbrace{(khk^{-1})}_{\in H} k \in HK$$

$$\implies KH \subseteq HK$$

Analog: $HK \subseteq KH$. $\Longrightarrow KH = HK$. Z.z: HK ist Untergruppe.

(i) Seien $hk, h'k' \in HK$.

$$\implies (hk)(h'k') = h \underbrace{(kh')}_{\in KH = HK} k'$$

$$= h(h''k'')k'$$

$$= (hh'')(k''k') \in HK$$

(ii) $1 \in HK$

(iii)
$$hk \in HK \implies (hk) = k^{-1}h^{-1} \in kh = HK$$

(c) Seien $h \in H, k \in K$

$$\Longrightarrow \underbrace{(hkh^{-1})}_{\in k} k^{-1} = h\underbrace{(kh^{-1}k^{-1})}_{\in H}$$

$$\Longrightarrow hkh^{-1}k^{-1} = 1$$

$$\Longrightarrow hk = kh$$

$$\Longrightarrow \pi(h_1, k_1)\pi(h_2, k_2) = h_1k_1h_2k_2 = h)1h_2k_1k_2 = \pi((h_1, k_1)(h_2, k_2))$$

 $\implies \pi$ ist Homomorphismus. Gemäss (a) ist π injetiv. Da HK=G ist π surjektiv $\implies \pi$ ist Isomorphismus.

Beispiele

• Gruppen von der Ordnung 1: nur {1}

• Gruppen von der Ordnung 2: nur C_2

• Gruppen von der Ordnung 3: nur C_3

• Gruppen von der Ordnung 4: $C_4, C_2 \times C_2$ (s. Übung).

• Gruppen von der Ordnung 5: C_5

Behauptung 1. Die einzigen Gruppen von Ordnung 6 sind C_6 und S_3 (bis auf Isomorphie).

Beweis: Sei G eine Gruppe mit |G|=G. Falls G ein Element der Ordnung 6 enthält, so ist $G\simeq C_6$. Ansonsten 3 mögliche Fälle:

(a) Alle $g \in G, g \neq 1$ haben Ordnung 2

(b) Alle $g \in G, g \neq 1$ haben Ordnung 3

(c) Es gibt $g \in G$ von Ordnung 2 und $h \in G$ von Ordnung 3.

Falls (a), so ist G abelsch. Sei $g \in G$

$$\implies \langle g \rangle == \{1, g\} \le G$$

$$\implies |G/\langle g \rangle| = 3$$

$$\implies G/\langle g \rangle \simeq C_3$$

 $\pi\colon G\to G/{<\!g\!>}$ Quotient

 $\forall g \in G \text{ ist } \pi(g)^2 = \pi(g^2) = 1.$ Widerspruch zu $|G/{<}g{>}| = 3.$

Falls (b), so gilt $g = g^{-1}$ nur wenn g = 1.. $\Longrightarrow G = \{1, g, g^{-1}, h, h^{-1}, \ldots\}$. Nicht möglich, da G eine gerade Ordnung hat.

D.h. wir sind im Fall (c). G enthält $1, g, h, h^2, gh, gh^2$. (kleine Übung: Diese Elemente sind alle verschieden). $\implies G = \{1, g, h, h^2, gh, gh^2\}$.

Wir haben hg = gh oder $hg = gh^2$. Falls hg = gh, so hate (gh) Ordnung 6. Das haben wir aber ausgeschlossen. Also ist $hg = gh^2$.

Die Relation $gh = h^2g$ definiert die Verknüpfung aug G eindeutig. Jedes Produkt in g und h lässt sich mit dieser Regel in die Form g^ih^j bringen, wobei $0 \le i \le 1, 0 \le j \le 2$.

Im Fall (c) gibt es also höchstens eine Gruppe. Diese muss S_3 sein.

Bemerkung 13. Seien $g, h \in S_3$, mit

$$g: \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 1 \\ 3 \mapsto 3 \end{cases} \qquad h: \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{cases}$$

Dann ist $S_3 = \{1, g, h, h^2, gh, gh^2\}.$

Bemerkung 14. Jede echte Untergruppe von S_3 ist zyklisch (da von Ordnung 2 oder 3).

Bemerkung 15. $A_3 = \langle h \rangle$

Symmetrie

Isometrien von \mathbb{R}^n

Definition 14. Eine **Isometrie** von \mathbb{R}^n ist eine Abbildung $f: \mathbb{R}^n \to R^n$ von der Form f(X) = BX + a wobei $B \in O(n), b \in R^n$. Wir bezeichnen mit $Isom(\mathbb{R}^n)$ die Gruppe der Isometrien von \mathbb{R}^n .

Bemerkung 16. Man kann zeigen, dass Isometrien genau die Abbildungen $\mathbb{R}^n \to R^n$ sind, welche die Distanzen erhalten.

Zwei wichtige Untergruppen:

- (1) $\mathcal{T}_n \leq \text{Isom}(\mathbb{R}^n)$: Die Untergruppe der **Translationen**, d.h. Abbildung on der Form $t_a \colon X \mapsto X + a$ für $a \in \mathbb{R}^n$. Es gilt $t_a t_{a'} = t_{a+a'}$.
- (2) $O \leq \text{Isom}(\mathbb{R}^n)$: Die Untergruppe der Isometrien von der Form $d_B \colon X \mapsto BX$ für $B \in O(n)$. Es gilt $d_B d_{B'} = d_{BB'}$.

Jedes $f \in \text{Isom}(\mathbb{R}^n)$ lässt sich eindeutig schreiben als $t_a d_B$ für $B \in O(n), a \in \mathbb{R}^n$. Falls f(X) = BX + a, g(X) = B'X + a', dann ist

$$f \circ g(X) = B(B'X + a') + a$$
$$= BB'X + Ba' + a$$

D.h. falls $F = t_a d_B$, $g = t_{a'} + d_{B'}$, so ist

$$f \circ g = t_a d_B t_{a'} d_{B'}$$
$$= t_{Ba'+a} d_{BB'}.$$

Wir haben also insbesondere Homomorphismus ψ : Isom $(R^n) \to O, \psi(t_a d_B) = d_B$.

 $\operatorname{Kern} \psi = \mathcal{T}_n.$

Bemerkung 17. Die Abbildung Isom $(R^n) \to \mathcal{T}_n, t_a d_B \mapsto t_a$ ist kein Homomorphismus.

Vorlesung 6

Gestern: Isom(\mathbb{R}^n) Abbildung $\mathbb{R}^n \to \mathbb{R}^n$ von der Form $f(x) = t_a d_B(x) = BX + a \ B \in O(n), a \in \mathbb{R}^n$.

 $O \leq \mathrm{Isom}(\mathbb{R}^n)$: Isometrien, die den Ursprung fixieren, d.h. von der Form $f(X) = d_B(X) = BX.$

 $\mathcal{T}_n \leq \mathrm{Isom}(\mathbb{R}^n)$ Translationen

Orientierung

Falls n=2:

Erinnerung:
$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mid 0 \le \theta \le 2\pi \right\}$$

$$O(2)/SO(2) = \{\pm 1\} \simeq C_2$$

$$\implies SO(2)$$
 hat zwei Nebenklassen: $O(2) = SO(2) \cup \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} SO(2).$

Definition 15. Sei $f \in Isom(\mathbb{R}^2)$, $f = t_a d_B$.

Falls $B \in SO(2)$ ist, heisst f orientierungserhaltend.

Falls
$$B \in \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} SO(2)$$
, so heisst f orientierungsumkehrend.

Bemerkung 18. Falls $B \in SO(2)$, so ist d_B eine Drehung um O um den Winkel θ .

Bemerkung 19. Falls $B \in \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, so definiert d_B eine Spiegelung an der Geraden mit Winkel $\theta/2$ zur x-Achse.

Satz 12. Die Untergruppe von $Isom(\mathbb{R}^n)$ der Elemente, die einen Punkt $p \in \mathbb{R}^n$ fixieren, ist die Konjugierte Untergruppte $O' = t_pOt_p^{-1} \leq Isom(\mathbb{R}^n)$

Beweis:

$$\begin{split} f(p) &= p \Leftrightarrow t_p^{-1} f(p) = t_p^{-1}(p) = 0 \\ &\Leftrightarrow t_p^{-1} f(t_p(0)) = 0 \\ &\Leftrightarrow t_p^{-1} f t_p \in O \\ &\Leftarrow f \in t_p O t_p^{-1} \end{split}$$

Satz 13. Sei $G \leq Isom(\mathbb{R}^n)$ eine endliche Untergrupe. So hat G einen Fixpunkt.

Beweis: Sei m=|G|, sei $G=\{f_1,\ldots,f_m\}$. Sei $q\in\mathbb{R}^n$ beliebig. Betrachte die Bilder $q_i:=f_i(q)$ für $i\in 1,\ldots,m$. Sei $p:=\frac{1}{m}(q_1+\cdots+q_m)$.

Behauptung: $f_j(p) = p \quad \forall f_j \in G$.

Beweis: Schreibe $f_j(X) = B_j X + a_j$.

$$\Rightarrow f_{j}(p) = B_{j}(\frac{1}{m}(q_{1} + \dots + q_{m})) + a_{j}$$

$$= \frac{1}{m}(B_{j}q_{1} + \dots + B_{j}q_{m} + ma_{j})$$

$$= \frac{1}{m}((B_{j}q_{1} + a_{j}) + \dots + (B_{j}q_{m} + a_{j}))$$

$$= \frac{1}{m}(f_{j}(q_{1}) + \dots + f_{j}(q_{m}))$$

$$= \frac{1}{m}(f_{j}f_{1}(q) + \dots + f_{j}f_{m}(q))$$

$$\stackrel{(*)}{=} \frac{1}{m}(q_{1} + \dots + q_{m}) = p$$

$$(*): \{f_1, \dots, f_m\} = \{f_i f_1, \dots, f_i f_m\}$$

Korollar 7. Sei $G \leq Isom(\mathbb{R}^n)$. eine endliche Untergruppe. So gibt es ein $a \in \mathbb{R}^n$ so dass $t_a^{-1}Gt_a \leq O$.

Beweis: Sei $a \in \mathbb{R}^n$ der Fixpunkt von G. Dann ist $G \leq t_a O t_a^{-1}$

$$\implies t_a^{-1}Gt_a \le O.$$

Satz 14. Sei n=2 und sei $G \leq O$ eine endliche Untergruppe. So ist G eine der folgenden Gruppen:

(a) Die zyklische Gruppe der Ordnung n erzeugt von der Drehung um den Winkel $\theta = 2\pi/n$.

(b) Die **Diedergruppe** D_n von Ordnung 2n erzeugt von zwei Elementen: der Drehung um den Winkel $\theta = 2\pi/n$ und einer Spiegelung S an einer geraden durch den Nullpunkt.

Beweis: 1. Fall: Alle Elemente in G sind in SO(2), d.h. Drehungen.

Behauptung: G ist zyklisch.

Beweis: Falls $G=\{1\}$, klar. Sonst: Sei θ der kleinste positive Drehwinkel der Elemente in G. Sei $d_{\theta} \in G$ diese Drehung.

$$Z.Z: \langle d_{\theta} \rangle = G.$$

Sei $d_{\alpha} \in G$ eine Drehung um den Winkel $\alpha > 0$. Schreibe $\alpha = n\theta + \beta$ mit $0 \le \beta < \theta$ und $n \in \mathbb{Z}$.

$$d + B = d_{\alpha}d_{-n\theta} = d_{\alpha}(d_{\theta}^{-1})^n \in G$$

$$\implies \beta = 0$$

$$\implies d_{\alpha}(d_{\theta}^{-1})^n = 1$$

$$\implies d_{\alpha} = (d_{\theta})^n \in \langle d_{\theta} \rangle$$

Sei $n \in \mathcal{N}$ minimal, s.d. $n\theta \geq 2\pi$.

D.h. $2\pi \le n\theta < 2\pi + \theta$. Da θ der kleinste Drehwinkel in G ist, folgt daraus: $\Rightarrow 2\pi = n\theta \implies \theta = 2\pi/n$.

2. Fall: G enthält Spiegelung. Betrachte $\phi \colon G \to \{\pm 1\}$ gegeben durch Det. $\stackrel{1.Fall}{\Longrightarrow}$ Kern ϕ ist zyklisch erzeugt von Drehung $\Longrightarrow G = \operatorname{Kern} \phi + S \operatorname{Kern} \phi$ mit S Spiegelung.

Vorlesung 7

 $|D_3| = 6$ und D_3 ist nicht zyklisch $\implies D_3 \simeq S_3$

Die Diedergruppe D_n von Ordnung 2n enthält die Symmetrien vom n-gon.

 $D_n \subseteq \text{Isom}(\mathbb{R}^2)$ bestehend aus allen $g \in \text{Isom}(\mathbb{R}^2)$ s.d. gP = P.

Bemerkung 20. Sei x eine Drehung um den Winkel $2\pi/n \implies ord x = n$

Sei y eine Spiegelung \implies ord y=2. Dann ist xy wieder eine Spiegelung.

$$\implies 1 = (xy)^2 = xyxy$$
$$\implies xy = yx^{-1} = yx^{n-1}$$

Dies definiert alle Relationen in D_n .

Satz 15. D_n ist erzeugt von zwei Elementen x, y, die die Relationen $x^n = 1, y^2 = 1, xy = yx^{-1}$ erfüllen, d.h.

$$D_n = \{1, x, \dots, x^{n-1}, y, xy, \dots, x^{n-1}y\}$$

Wir überspringen die unendlichen diskreten Untergruppen der **Gitter** (siehe Artin).

Gruppenoperationen

Gruppe der Gruppenautomorphismen.

Definition 16. Sei G eine Gruppe und X eine Menge. Eine (Links-)Operation oder Aktion oder Wirkung von G auf X ist eine Abbildung

$$G \times X \to X \quad (g, x) \mapsto gx$$

so dass

(a)
$$1x = x \quad \forall x \in X$$

(b)
$$(gg')x = g(g(g'x) \quad \forall g \in G, x \in X$$

X heisst G-Menge. Wir schreiben $G \curvearrowright X$ für "G operiert auf X.

Für jedes $g \in G$ erhalten wir eine Abbildung

$$m_q \colon X \to X \quad m_q(x) = gx$$

 m_g heisst **Linksmultiplikation** mit g.

Bemerkung 21. m_g ist bijektiv und $(m_g)^{-1} = m_{g^{-1}}$.

Beweis:

$$m_{g^{-1}}(m_g(x)) = g^{-1}(gx)$$

= $g^{-1}qx = 1x = x$

П

Analog: $m_g(m_{g^{-1}}(x)) = x$

Definition 17. Für zwei $x \in X$ ist die **Bahn** oder das **Orbit** von x:

$$B_x := \{ y \in X \mid y = gx \text{ für ein } g \in G \} = Gx$$

Bemerkung 22. Für $x, y \in X$ definieren wir $x \sim y$ falls y = gx für ein $g \in G$. Dann ist \sim eine Äquivalenzrelation (kleine Übung) und die Bahnen sind genau die Äquivalenzklassen von \sim .

Beispiel 6. • $Isom(\mathbb{R}^2)$ operiert auf \mathbb{R}^2 . (Hat nur einen Orbit)

- Sei $D = \{Dreiecke \ in \ \mathbb{R}^2\} \ Isom(\mathbb{R}^2) \ operiert \ auf \ D.$
- Zwei Dreiecke Δ, Δ' sind **kongruent**, falls es ein $g \in Isom(\mathbb{R}^2)$ gibt, so dass $g\Delta = \Delta'$. Die Bahn B_{Δ} ist die Menge aller zu Δ kongruenten Dreiecke.

Definition 18. Eine Operation $G \cap X$ heisst **transitiv**, falls es nur eine Bahn gibt. D.h.

$$\forall x, x' \in X \ \exists g \in G \ s.d. \ gx = x'$$

Definition 19. Der Stabilisator von $x \in X$ ist $G_x := \{g \in G \mid gx = x\}$

Bemerkung 23. $G_x \leq G$ ist eine Untergruppe.

Bemerkung 24. Für $g, h \in G$ gilt:

$$gx = hx \Leftrightarrow h^{-1}gx = x$$
$$\Leftrightarrow h^{-1}g \in G_x$$

Beispiel 7. • $Isom(\mathbb{R}^2) \curvearrowright \mathbb{R}^2$ Der Stabilisator von O ist die Untergruppe $O \leq Isom(\mathbb{R}^2)$. $O \simeq O(2)$.

• $Isom(R^2) \curvearrowright D$. Sei Δ ein gleichseitiges Dreieck. Dann ist der Stabilisator von Δ isomorph zu der Diedergruppe D_3 von Ordnung 6.

Operation auf Nebenklassen

Beobachtung: $H \leq G \rightsquigarrow G$ operiert auf G/H.

Für $K \in G/H$ definieren wir

$$qK := \{qk \mid k \in K\}$$

Das heisst, falls K = aH, so ist gK = gaH.

Bemerkung 25. • Diese Operation ist transitiv, denn $B_H = G/H$.

• Sei $g \in G$, dann gilt $gH = H \Leftrightarrow g \in H$. D.h., der Stabilisator von H ist $H: D_H = H$.

Beispiel 8. D_3 , erzeugt von x, y und $x^3 = y^2 = 1$ sowie $yx = x^2y$. Sei $H = \langle y \rangle = \{1, y\}$. Nebenklassen:

$$K_1 = \{1, y\}$$

$$K_2 = \{x, xy\}$$

$$K_3 = \{x^2, x^2y\}$$

$$G/H = \{K_1, K_2, K_3\}$$

Beobachtung: $m_x : G/H \to G/H$ $K_i \mapsto xK_i$, $i \in \{1, 2, 3\}$

$$m_x : \begin{cases} K_1 \mapsto K_2 \\ K_2 \mapsto K_3 \\ K_3 \mapsto K_1 \end{cases} \qquad m_y : \begin{cases} K_1 \mapsto K_1 \\ K_2 \mapsto K_3 \\ K_3 \mapsto K_2 \end{cases}$$

 \leadsto Wir erhalten einen Isomorphismus $G \xrightarrow{\sim} Sym(G/H)$ $g \mapsto m_q$

Satz 16. Sei X eine G-Menge und $x\in X$. Sei $H=G_x\leq G$. Dann ist die Abbildung

$$\phi \colon G/H \to B_x \quad aH \mapsto ax$$

eine Bijektion und $\forall K \in G/H$ und $\forall g \in G$ gilt $\phi(gK) = g\phi(K)$.

Beweis: ϕ ist wohldefiniert. Seien $a,b\in G$ s.d. $aH=bH\Leftrightarrow b=ah$ für ein $h\in H\implies bx=a\underbrace{bx}_x=ax$.

- ϕ ist surjektiv: klar, da B_x genau aus den Elementen der Form ax besteht, $a \in G$.
- ϕ ist inketiv: falls $ax = bx \implies x = a^{-1}bx \implies a^{-1}b \in H \implies aH = bH$.

• Die letzte Aussage folgt aus der Definition von ϕ .

Bemerkung 26. Sei $x \in X$ und y = ax für $a \in G$. Dann

(a)
$$\{g \in G \mid gx = y\} = aG_x$$

(b)
$$G_y = aG + xa^{-1}$$

Beweis: (a) $gx = y = ax \Leftrightarrow a^{-1}g \in G_x \Leftrightarrow g \in aG_x$

(b)

$$gy = y \Leftrightarrow gax = ax$$
$$\Leftrightarrow a^{-1}yax = x$$
$$\Leftrightarrow a^{-1}ya \in G_x$$
$$\Leftrightarrow g \in aG_xa^{-1}$$

Korollar 8 (Bahnformel). $|G| = |G_x| \cdot |B_x|$

 $(Ordnung\ G)=(Ordnung\ des\ Stabilisators)\cdot(Ordnung\ der\ Bahn)$

Beweis: Wir haben $|G| = |G_x| \cdot [G:G_x]$. Die Bahnformel folgt nun direkt aus Satz 16.

Bemerkung 27. • Es folgt direkt, dass $|Bx| = [G:G_x]$. Die Länge jeder Bahn muss die Gruppenordnung teilen.

• Falls X endlich ist: Seien B_1, \ldots, B_k die Bahnen. Dann ist

$$|X| = |B_1| + \dots + |B_k|$$

.

Beispiel: Dodekaeder

 $D \subseteq \mathbb{R}^3$ Dodekaeder. Sei $G \leq \operatorname{Isom} \mathbb{R}^3$ die orientierungserhaltenden Symmetrien g, so dass gD = D. D.h., die Elemente in G sind gegeben durch Matrizen in SO(3). Diese sind Drehungen um Achsen. Was ist $|G|^2$?

Goperiert auf den Seiten von D. SeiSeine Seite. G_S besteht aus den Drehungen um Vielfache von $2\pi/5.$

$$\implies |G_S| = 5.$$

G operiert transitiv auf den Seiten. Es gibt 12 Seiten.

$$\implies |G| = |G_S| \cdot 12 = 60.$$

 G_S fixiert zwei Seiten \leadsto zwei Bahnen von Länge 1 + zwei von Länge 5.

$$\rightsquigarrow 1 + 1 + 5 + 5 = 12$$

Definition 20. G heisst die Ikosaeder Gruppe.

Vorlesung 8

Satz 17. Sei G eine Gruppe, $H \leq G, K \leq G$ Untergruppen. Dann gilt $[H: H \cap K] \leq [G:K]$.

Beweis: Sei X = G/K und sei $x = K \in X$. D.h. |X| = [G : K] und $G \curvearrowright X$. Dann ist $G_x = K$. Betrachte die Operation $H \curvearrowright X$. Dann ist $H_x = H \cap K$. Sei B die Bahn von x unter H. Dann ist $|B| \le |X|$. Gemäss Bahnformel ist $|B| = [H : H \cap K] \implies [H : H \cap K] \le |X| = [G : K]$.

Sei X eine Menge und G eine Gruppe. Jede Operation $G \cap X$ liefert einen Homomorphismus $\phi \colon G \to \operatorname{Sym}(X) \quad \phi(g) := m_g$.

 ϕ ist tatsächlich ein Homomorphismus:

$$\phi(gh) = m_{gh}$$

$$\phi(g)\phi(h) = m_g m_h \text{ und } m_g h(x) = (gh)x = g(hx) = m_g(m_h(x)) \quad \forall x \in X.$$

d.h.
$$\phi(gh) = \phi(g)\phi(h)$$
.

Umgekehrt definiert jeder Homomorphismus $\phi \colon G \to \operatorname{Sym}(X)$ eine Operation $G \curvearrowright X$ durch $gx := \phi(g)(x)$.

Mit dieser Beobachtung zeigt man:

Satz 18. Es gibt eine Bijektion

$$\{Operationen\ G \curvearrowright X\} \leftrightarrow \{Homomorphismen\ G \to Sym(X)\}$$

$$G \curvearrowright X \mapsto \phi \colon G \to Sym(X) \quad g \mapsto m_g$$

Definition 21. Eine Operation $G \cap X$ heisst **treu**, falls der entsprechende Homomorphismus $\phi \colon G \to Sym(X)$ injektiv ist. D.h., falls für ein $g \in G$ gilt $gx = x \quad \forall x$, dann ist g = 1.

Satz 19. Sei \mathbb{F}_2 der Körper mit 2 Elementen. Dann ist $G = GL_2(\mathbb{F}_2)$ isomorph zu S_3 .

Beweis: Sei $V = \mathbb{F}_2^2$, $V = \{0, e_1, e_2, e_1 + e_2\}$.

 $G \curvearrowright V$ durch Linksmultiplikation. 0 ist Fixpunkt. $\{e_1, e_2, e_1 + e_2\}$ bildet eine weitere Bahn. Das gibt einen Homomorphismus $\phi \colon G \to S_3$. Für $P \in GL_2(\mathbb{F}_2)$ s.d. $Pe_1 = e_1$ und $Pe_2 = e_2 \Leftrightarrow P = 1$, d.h. Diese Operation ist treu und somit effektiv. G ist nicht abelsch $\Longrightarrow |G| \ge 6$. $\Longrightarrow \phi$ ist ein Isomorphismus. \square

Satz 20. Für $g \in S_3$ sei $k_g : S_3 \to S_3$ $k_g(a) = gag^{-1}$ ist ein Automorphismus von S_3 . Dann ist $f : S^3 \to Aut(S_3)$ $f(g) = k_g$ ein Isomorphismus.¹

Beweis: \bullet f ist Homomorphismus:

$$k_{gh}(x) = (gh)x(gh)^{-1}$$
$$= ghxh^{-1}g^{-1}$$
$$k_gk_h(x)$$

D.h. $k_{ah} - k_a k_h$. $\Longrightarrow f(gh) = f(g)f(h)$.

- f ist injektiv: Falls $gag^{-1} = a \quad \forall a \in S_3$ so ist g = 1 (kleine Übung).
- f ist surjektiv: Beobachtung: Aut (S_3) operiert auf die Menge der Elemente von Ordnung 2 $\{y, xy, x^2y\}$:

$$y \colon \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 1 \\ 3 \mapsto 3 \end{cases} \qquad x \colon \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{cases}$$

• Die Operation $\operatorname{Aut}(S_3) \curvearrowright \{y, xy, x^2y\}$ ist treu: Falls $\alpha \in \operatorname{Aut}(S_3)$ s.d. $\alpha(y) = y$ und $\alpha(xy) = xy$, so ist auch $\alpha(x) = \alpha(xyy0) = xyy = x$. Da x und $y S_3$ erzeugen, ist $\alpha = id$.

D.h., die Abbildung $\operatorname{Aut}(S_3) \to \operatorname{Sym}(\{y, xy, x^2y\})$ ist injektiv

$$\implies |\operatorname{Aut}(S_3)| \le 6$$

$$\implies |\operatorname{Aut}(S_3)| = 6$$

 $\implies S_3 \to \operatorname{Aut}(S_3)$ ist bikektiv, d.h. ein Isomorphismus.

 $^{^1\}mathrm{Gilt}$ für fast alle symmetrischen Gruppen .

Satz 21. Die endlichen Untergruppen von SO(3) sind die folgenden:

- C_k : Die zyklische Gruppe der Drehungen um Vielfache von $2\pi/k$ um eine Achse.
- D_k : Die Diedergruppe, also die Symmetrien eines regelmässigen k-Ecks in einer Ebene gegeben durch räumliche Drehungen.
- T: Die Tetraedergruppe, also die 12 Drehungen, die ein Tetraedron erhalten.
- W: Die Würfelgruppe, also die 24 Drehungen, die den Würfel erhalten.
- I: Ikosaedergruppe, also die 60 Drehungen, die ein Dodekaeder/Ikosaeder erhalten.

Beweis: Siehe Artin. \Box

Vorlesung 9

Mehr über Gruppen

Eine Gruppe operiert auf sich selbst durch Linksmultiplikation:

$$G \times G \to G$$
 $(g, x) \mapsto gx$

. Diese Operation ist transitiv. Sei $x \in G$, dann ist der Stabilisator $G_x = \{1\}$. Insbesondere ist der Homomorphismus injektiv:

$$G \to \operatorname{Sym}(G)$$
 $g \mapsto m_q$

 \implies die Operation ist treu.

Satz 22 (Cayley). Sei G eine endliche Gruppe. Dann ist G isomorph zu einer Untergruppe von S_n , wobei n = |G|.

Beweis: Der Homomorphismus

$$\phi \colon G \to \operatorname{Sym}(G) \simeq S_n \qquad g \mapsto m_g$$

ist injektiv. $\implies G$ ist isomorph zu $\operatorname{Bild} \phi \leq \operatorname{Sym}(G) \simeq S_n$.

G operiert auch auf sich selbst durch Konjugation:

$$G \times G \to G$$
 $(g, x) \mapsto gxg^{-1}$

Sei $x \in G$.

Definition 22. Der Stabilisator von x bezüglich Konjugation heisst **Zentralisator**. Wir schreiben Z(x) mit

$$Z(x) = \{g \in G \mid gxg^{-1} = x\}$$
$$= \{g \in G \mid gx = xg\}$$

Die Bahn von x unter Konjugation heisst Konjugiertenklasse oder Konjugationsklasse von x in G. Wir schreiben K(x) mit

$$K(x) = \{ x' \in G \mid x' = gxg^{-1} \text{ für ein } g \in G \}$$

Bemerkung 28.

- Aus der Bahnformel folgt |G| = |K(x)||Z(x)|.
- |K(1)| = 1.

Falls |G| endlich ist, so gilt die sog. Klassengleichung:

$$|G| = \sum_{K \text{ Konj. klasse}} |K| = |K_1| + \dots + |K_l|$$

Bemerkung 29. Die Zahlen auf der rechten Seite sind Teiler von |G| und mindestens eine davon ist 1.

Beispiel 9. Konjugationsklassen in D_3 . Erzugende: x (Drehung) und y (Spiegelung). $\{1\}, \{x, x^2\}, \{y, xy, x^y\}$. (Kleine Übung). $\xrightarrow{Klassengleichung} |G| = 1 + 2 + 3$.

Definition 23. Das **Zentrum** Z einer Gruppe G ist der Normalteiler

$$Z = \{x \in G \mid gx = xg \quad \forall g \in G\}$$

Bemerkung 30.

- $x \in Z \Leftrightarrow Z(x) = G$
- $x \in Z \Leftrightarrow |K(x)| = 1$

Definition 24. Sei p eine Primzahl. Eine p-Gruppe ist eine Gruppe G, sodass $|G| = p^e$ für ein $e \ge 1$.

Beispiel 10.

- $C_p, C_{p^2}, C_{p^3}, \dots$ sind p-Gruppen
- $C_p \times C_p \times \cdots \times C_p$
- $U_3(\mathbb{F}_p) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{F}_p \right\} \leq GL_3(\mathbb{F}_p) \text{ ist eine p-Gruppe von }$ $Ordnung \ p^3.$

Satz 23. Das Zentrum von einer p-Gruppe ist strikt grösser als die triviale Gruppe {1}.

Beweis: Klassengleichung:

$$|G| = p^e = \sum_{KKonj.klassen} |K| = 1 + \sum_{KKonj.klassen} |K|$$

alle |K| sind Teiler von p^e .

⇒ es gibt weitere Konjugationsklassen mit nur einem Element.

$$\implies$$
 es gibt $x \in G \setminus \{1\}$ sodass $x \in Z$.

Beispiel 11. Das Zentrum von $U_3(\mathbb{F}_p)$ ist die Untergruppe

$$\left\{ \begin{pmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid c \in \mathbb{F}_p \right\} \simeq \mathbb{F}_p$$

Satz 24. Sei G eine p-Gruppe und X eine endliche Menge, sodass $p \nmid |X|$. Falls $G \curvearrowright X$, dann gibt es ein $x \in X$ sodass $gx = x \quad \forall g \in G$.

Beweis: Seien B_1, \ldots, B_k die Bahnen von G. Dann ist $|X| = |B_1| + \ldots + |B_k|$. Gemäss Bahnformel gilt $|B_i| ||G_i| \quad \forall i = 1, \ldots, k$. Da $p \nmid |X|$, ist $|B_i| = 1$ für mindestens ein i.

Satz 25. Jede Gruppe G der Ordnung p^2 ist abelsch.

Beweis: Nehmen wir an, dass G nicht abelsch ist. Dann gibt es ein $x \in G$, sodass $x \notin Z$ und somit $Z \subsetneq Z(x)$. Wir wissen, dass $|Z| \geq p$. Da |Z(x)| ||G|, d.h. $|Z(x)| = p^2 \implies Z(x) = G$, damit folgt aber, dass $x \in Z$ $\normalfont{\normalfont}{\normalfont{\normalfont}{\normalfont{\normal$

$$\implies G$$
 ist abelsch.

Bemerkung 31. Es gibt nichtabelsche Gruppen von Ordnung p^3 , z.B. $|U_3(\mathbb{F}_p)| = p^3$ und $|D_4| = 8 = 2^3$.

Korollar 9. Sei G eine Gruppe mit p^2 Elementen. Dann ist entweder $G \simeq C_{p^2}$ oder $G \simeq C_p \times C_p$.

Beweis: Jedes Element in G hat Ordnung 1, p oder p^2 .

1. Fall: G enthält ein Element von Ordnung p^2 . \Longrightarrow G ist zyklisch.

2. Fall: Alle Elemente in $G\setminus\{1\}$ haben Ordnung p. Sei $x\in G\setminus\{1\}$ und $H_1=\langle x\rangle$. Sei $y\in G\setminus H$, und $H_2=\langle y\rangle$ Dann ist $H_1\cap H_2 \subsetneq H_2$ und somit $H_1\cap H_2=\{1\}$.

G ist abelsch $\implies H_1$ und H_2 sind Normalteiler. $\implies H_1H_2 \leq G$.

Da $H_1 \leq H_1 H_2$ ist, ist $|H_1 H_2| = p^2 \implies H_1 H_2 = G$. Wir haben gesehen, dass daraus folgt:

$$G \simeq H_1 \times H_2$$

Ikosaedergruppe

Erinnerung: $I \leq SO(3)$ die Untergruppe der Drehungen, die das Dodekaeder $D \subseteq R^3$ erhalten.

Gesehen: |I| = 60

- Identität (Ord. 1)
- Drehungen, die Eckpunkte von D fixieren: Es gibt 20 Ecken, also 10
 Drehachsen ⇒ 2·10 = 20 solche Drehungen ≠ id. (Ord. 3) Sind alle
 konjugiert zueinander (s. unten).
- Drehungen um Mittelpunkte von Seiten. Es gibt 12 Flächen, also 6 mögliche Drehachsen. \implies 6·4 = 24 solche Drehungen \neq id. (Ord. 5)
- Drehungen um Mittelpunkte von Kanten. Es gibt 30 Kanten, also 15 mögliche Drehachsen. ⇒ 15 solche Drehungen. (Ord. 2)

 $60 = 1 + 20 + 24 + 15 \Rightarrow$ Das sind alle möglichen Elemente in I.

Was sind die Konjugationsklassen?

Bemerkung 32. Seien $q, x \in G$, so ist $ord(qxq^{-1}) = ord(x)$.

- Die Identität bildet eine Konjugationsklasse.
- Alle Rotationen um $2\pi/3$ (im Gegenuhrzeigersinn) um Achsen durch Ecken sind konjugiert.
- Alle Rotationen um $2\pi/5$ um Achsen durch Seiten sind konjugiert zueinander und zu den Rotationen um den Winkel $-2\pi/5 = 8\pi/5$.
- Alle Rotationen um Achsen durch Seiten um $4\pi/5$ und um $-4\pi/5=6\pi/5$. sind konjugiert.
- \bullet Alle Rotationen um Achsen durch Kanten um den Winkel π sind konjugiert.
- \implies 5 Konjugationsklassen. Klassengleichung: 60 = 1 + 20 + 12 + 12 + 15.

Vorlesung 10

Einfache Gruppen

Definition 25. Eine Gruppe G ist **einfach**, falls $\{1\}$ und G die einzigen Normalteiler von G sind.

Bemerkung 33. G ist einfach \Leftrightarrow für alle surjektiven Homomorphismen $\phi: G \to G'$ gilt G = G' oder $G' = \{1\}$.

Bemerkung 34. Einfache Gruppen sind die "Bausteine" von Gruppen.

Bemerkung 35. {1} ist nicht einfach.

Beispiel 12. C_p für p prim.

Satz 26. Die Ikosaedergruppe I ist einfach.

Beweis: Klassengleichung von I:

$$60 = 1 + 15 + 20 + 12 + 12$$

Sei
$$N \subseteq G \implies gNg^{-1} = N \quad \forall g \in G.$$

 \implies falls $x \in N$, so ist auch die Konjugationsklasse $K(x) \subseteq N$. Das heisst $N = \bigcup_{x_i \in N} K(x_i)$. |N| teilt 60.

Es folgt:

$$N = 1 + \text{ Terme aus } \{15, 20, 12, 12\}$$

 $\implies |N| = 1 \text{ oder } |N| = 60$
 $\implies N = \{1\} \text{ oder } |N| = I$
 $\implies I \text{ ist einfach.}$

Satz 27. I ist isomorph zu A_5 .

Beweis: Wir suchen eine Menge mit 5 Elementen, auf welche I operiert. Es gibt 5 Möglichkeiten, einen Würfel in ein Dodekaeder D einzubetten, sodass die Ecken auch Ecken von D sind und die Kanten in den Seiten von D sind. Jede Seite von D enthält genau eine Würfelkante. Die Wahl von einer solchen Kante definiert die Einbettung.

 \rightarrow 5 mögliche Einbettungen vom Würfel. I operiert darauf.

$$\leadsto \phi \colon I \to S_5.$$

 \implies Kern $\phi = I$ oder Kern $\phi = \{I\}$ einfach.

 $\operatorname{Kern} \phi = I$ ist nicht möglich, da die Operation nicht trivial ist.

 $\implies \operatorname{Kern} \phi = \{1\} \text{ und } \phi \text{ injektiv}.$

Betrachte $I \xrightarrow{\phi} S_5 \xrightarrow{\text{sign}} \{\pm 1\}.$

Dann ist Kern $sign \phi = I$ da I keine Normalteiler von Ordnung 30 enthält.

$$\implies \phi(I) \subseteq A_5.$$

Da
$$|I| = |A_5| = 60$$
, folgt: $\phi: I \to A_5$ ist ein Isomorphismus.

Korollar 10. A + 5 ist einfach.²

Operationen auf Teilmengen

Falls $G \cap X$, so operiert G auch auf die Menge der Teilmengen $\mathcal{P}(X)$ von X.

$$G \times \mathcal{P}(X) \to \mathcal{P}(X)$$
 für $U \subseteq X$, $gU = \{gu \mid u \in U\} \subseteq X$.

Dies definiert eine Gruppenoperation.

Bemerkung 36. |gU| = |U|, das heisst, wir können auch auf Teilmengen von gegebener Grösse beschränken.

Sei $U \subseteq X$. Der Stabilisator G_U von U besteht aus den $g \in G$ sodass gU = U, das heisst, $gu \in U \ \forall u \in U$.

Vorlesung 11

Gesehen: Wenn $G \curvearrowright X$, dann operiert G auch auf die Menge der Teilmengen von X. Für $U \subseteq X$ ist der Stabilisator $\operatorname{Stab}(U) = G_U = \{g \in G \mid gU = U\}$

Satz 28. $G \cap X$. Sei $U \subseteq X$ und $H \leq G$. Dann ist $H \leq Stab(U) \Leftrightarrow U$ ist die Vereinigung von allen H-Bahnen.

Beweis: H stabilisiert U

 \Leftrightarrow die *H*-Bahn B_x ist in *U* enthalten $\forall x \in U$

$$\Leftrightarrow U = \bigcup_{x \in U} B_x.$$

 $G \curvearrowright \{\text{Teilmengen von } G\}$ durch Linksmultiplikation.

Satz 29. Sei $U \subseteq G$. Dann ist |Stab(U)| ein Teiler von |U|.

Satz 30. Sei H = Stab(U). Dann operiert H auf U. \Longrightarrow U ist eine Vereinigung von H-Bahnen. Diese sind von der Form $H_g, g \in U \Longrightarrow U$ ist eine Vereinigung von Rechtsnebenklassen von $H \Longrightarrow |U|$ ist Vielfaches von H.

 $G \curvearrowright \{\text{Teilmengen von } G\}$ durch Konjugation.

 $^{^2}$ Tatsächlich sind alle alternierenden Gruppen ausser A_4 einfach.

Definition 26. Sei $H \leq G$. Dann ist die Bahn von H unter dieser Operation die Menge der zu H konjugierten Untergruppen. Das heisst

$$B_H = \{gHg^{-1} \mid g \in G\}$$

Der Stabilisator von H unter dieser Operation heisst Normalisator von H.

$$N(H) = \{ g \in G \mid gHg^{-1} = H \}$$

Bemerkung 37.

- $H \leq N(H)$
- $N(H) = G \Leftrightarrow H \leq G$ ist Normalteiler.

Bahnformel: $|G| = |N(H)| \cdot |\{\text{zu } H \text{ konjugierte Untergruppen}\}|$.

Die Sylow Sätze

Gesehen: Sei G Gruppe, $H \leq G \implies |H| ||G|$.

Clicker-Frage: Sei G eine Gruppe und d ein Teiler von G. Folgt daraus dass eine Untergruppe $H \leq G$ existiert, mit |H| = d? Nein.

Beispiel: |I|=60, aber I hat keine Untergruppe von Ordnung 30.

Behauptung 2. $H \leq G, [G:H] = 2$, dann ist H normal.

Beweis: Sei $g \in G \backslash H$.

 $G = H \cup qH$ und $G = H \cup Hq$ d.h.

$$gH = G \backslash H = Hg$$

 \implies Links- und Rechtsnebenklassen stimmen überein. \implies $H \leq G$.

Sei p prim und G eine endliche Gruppe, s.d. $|G| = n = p^e m$, wobei $e \ge 0, p \nmid m$.

Satz 31 (Sylow I). Es gibt eine Untergruppe $H \leq G$ sodass $H = p^e$.

Definition 27. Eine solche Untergruppe H heisst **p-Sylowuntergruppe** ("p-Sylow").

Korollar 11. Wenn $p \mid |G|$, dann existiert ein $x \in G$ von Ordnung p.

Beweis: Gemäss Sylow I: $\exists H \leq G$, s.d. $|H| = p^e$

Sei $y \in H \setminus \{1\}$.

Dann hat y Ordnung p^r für $1 \le r \le e$. $\Longrightarrow y^{p^{r-1}}$ hat Ordnung p.

Satz 32 (Sylow II). Sei G eine endliche Gruppe.

- (a) Alle p-Sylowuntergruppen in G sind konjugiert zueinander. D.h. falls $H, H' \leq G$ p-Sylow sind, so $\exists g \in G$, s.d. $gHg^{-1} = H'$.
- (b) Sei $K \leq G$ eine Untergruppe, sodass $|K| = p^d$, so ist K in einer p-Sylow von G enthalten.

Satz 33 (Sylow III). Sei s die Anzahl der p-Sylows in G. Dann gilt $s \mid m$ und $s \equiv 1 \mod p$. $(|G| = p^e m)$

Anwendungen von Sylowsätzen

Satz 34. Jede Gruppe der Ordnung 15 ist zyklisch.

Beweis: Sei G eine Gruppe, sodass $|G| = 15 = 5 \cdot 3$.

 $\Longrightarrow_{\rm Sylow\;III}$ Die Anzahl der 5-Sylows ist Teiler von 3 und $\equiv 1 \mod 5.$

 \Longrightarrow Es gibt nur eine Untergruppe $H \leq G$ mit |H|=5. Insbesondere ist $gHg^{-1}=H \quad \forall g \in G.$ D.h. $H \trianglelefteq G.$

Die Anzahl von 3-Sylows ist Teiler von 5 und $\equiv 1 \mod 3$.

 \implies Es gibt eine eindeutige Untergruppe $K \leq G$ von Ordnung 3.

Insbesondere ist K normal.

$$H \cap K = \{1\}$$

 $HK \leq G$ ist eine Untergruppe. Da |HK| > 5, gilt HK = G.

 $\Longrightarrow_{Satz} G \simeq H \times K.$ Wir haben $H \simeq C_5, K \simeq C_3$ (Gruppen von Ordnung p sind zyklisch).

$$\implies G \simeq C_5 \times C_3 \simeq C_15.$$

Satz 35. Sei G eine Gruppe, sodass |G|=10. Dann ist $G \simeq C_5 \times C_2 \simeq C_10$ oder $G \simeq D_5$.

Beweis: Die Anzahl der 5-Sylows teilt 2 und ist 1 mod 5.

 \implies Es gibt nur eine 5-Sylow $K \leq G$ und diese ist somit normal.

 $K \simeq C_5$. Sei $x \in K$ sodass $K = \langle x \rangle$.

Sei H eine 2-Sylow. Sei $y \in H$, sodass $H = \langle y \rangle$. Da K normal ist, ist $yxy^{-1} = x^r$ für $1 \le r \le 4$ d.h. $yx = x^ry$.

Da $K \cap H = \{1\}$, folgt, dass die $x^i y^j$ alle verschieden sind

$$(x^{i}y^{j} = x^{i'}y^{j'})$$

$$\implies x^{i-i'} = y^{j-j'}$$

$$\implies i - i' = 0 = j - j')$$

Das heisst $G = \{x^i y^j \mid 0 \le i \le 4, 0 \le j \le 1\}$ und die Relationen $x^5 = 1, y^2 = 1, xy = x^r y$ definieren die Gruppenstruktur eindeutig.

Welche Werte kann r annehmen?

Falls $yx = x^r y$:

$$\implies x = yyx = yx^ry = x^{r^2}yy = x^{r^2}$$

$$\implies r^2 \equiv 1 \mod 5$$

 $\implies r = 2$ und r = 3 nicht möglich!

Falls r = 1, dann ist yx = xy, insbesondere ist $H \subseteq G$ normal.

Da HK = G und $H \cap K = \{1\}$

$$\implies G \simeq H \times K \simeq C_2 \times C_5 = C_10.$$

Falls
$$r = 4$$
, dann ist $yx = x^4y = x^{-1}y \implies G \simeq D_5$.

Satz 36. Sei G eine Gruppe, sodass |G| = pq für p, q prim. Sei p > q. Falls $p \not\equiv 1 \mod q$, so ist $G \simeq C_{pq}$.

Falls $p \equiv 1 \mod q$, so ist $G \simeq C_{pq}$ oder G ist nicht abelsch. (Selbe Beweisidee wie oben).

Lemma 4. Sei $n = p^e m, p \nmid m, p$ prim, $e \geq 0$. Dann teilt p nicht $N = \binom{n}{p^e}$.

Beweis:

$$N = \binom{n}{p^e} = \frac{n(n-1)\cdots(n-p^e+1)}{p^e(p^e-1)\cdots 1}$$

Sei $0 \le k \le n-1$. Schreibe $k = p^i l, p \nmid l$.

Dann gilt $p^i \mid (n-k)$ und $p^i \mid (p^e - k)$, aber $p^{i+1} \nmid (n-k)$ und $p^{i+1} \nmid (p^e - k)$.

Das heisst, Zähler und Nenner sind gleich oft durch p teilbar.

$$\implies p \nmid N.$$

Satz 37 (Wiederholung Sylow I). Sei G eine Gruppe, sodass $|G| = p^e m$, dann existiert $H \leq G$, $|H| = p^e$. Beweis von Sylow 1;

Beweis: Sei X die Menge aller Teilmengen von G mit p^e Elementen.

Betrachte $G \curvearrowright X$ durch Linksmultiplikation.

$$|X| = \binom{n}{p^e} =: N$$

Wir haben $N = |X| = \sum\limits_{B \text{ Bahnen}} |B|$

Da $p \nmid N$, gibt es ein $U \in X$, sodass $p \nmid |B_U|$.

Bahnformel: $|\operatorname{Stab}(U)| \cdot |B_U| = |G| = p^e m$

$$\implies p^e || \operatorname{Stab}(U)|.$$

Vorher gesehen: $|\operatorname{Stab}(U)|||U| = p^e$.

$$\implies |\operatorname{Stab}(U)| = p^e$$

$$\implies$$
 Stab $(U) \leq G$ ist eine p-Sylow.

Vorlesung 12

Satz 38 (Erinnerung: Sylow II).

- (a) Alle p-Sylows in G sind konjugiert zueinander
- (b) Sei $K \leq G$ eine Untergruppe, sodass $|K| = p^d$, so ist K in einer p-Sylow enthalten.

Beweis Sylow II. Sei $H \leq G$ eine p-Sylow. Betrachte $G \curvearrowright X = G/H$ durch Linksmultiplikation.

$$|X| = [G:H] = m$$

Sei $K \leq G, |K| = p^d, d \leq e$.

Behauptung: $\exists a \in G$, s.d. $a^{-1}Ka \subseteq H$. Die Behauptung impliziert (a) und (b): Falls d = e, so ist $a^{-1}Ka = H$. Falls $d \le e$, so ist K in der p-Sylow aHa^{-1} enthalten.

Beweis der Behauptung: Betrachte $K \curvearrowright X = G/H$, d.h. für $k \in K, a \in G$ ist k(aH) = kaH. Wir haben:

$$m = |X| = \sum_{\text{K-Bahnen } B} |B|$$

 $|B||K| = p^d$ für alle Bahnen B.

Da $p \nmid m$, folgt, dass eine Bahn B existiert, sodass |B| = 1.

Das heisst, es gibt eine Nebenklasse $aH \in G/H$, sodass kaH = aH, $\forall k \in K$.

$$\implies a^{-1}kaH = H$$

$$\implies a^{-1}ka \in H$$

und somit
$$a^{-1}Ka \leq H$$
.

Satz 39 (Erinnerung: Sylow III). Sei s die Anzahl der p-Sylows in G. Dann:

$$s \mid m \ und \ s \equiv 1 \mod p$$

Beweis Sylow III. Sei Y die Menge der p-Sylows in G. G operiert auf Y durch Konjugation:

$$H \mapsto qHq^{-1}$$

Gemäss Sylow II gibt es nur eine Bahn.

Bahnformel:

$$|G| = |Y||\operatorname{Stab}(H)|$$
$$= |Y||N(H)|$$

D.h., |Y| = [G : N(H)].

Da $H \leq N(H)$, ist $|H| = p^e$ ein Teiler von $|N(H)| = p^e c$.

$$|G| = p^e m = |Y| \cdot e^e c \implies |Y| m$$

Sei H eine p-Sylow. Betrachte $H \cap Y$ durch Konjugation. Sei $H' \in Y$ sodass H' von H stabilisiert wird. $\implies H \leq N(H')$.

Da |N(H')| |G|, ist p^e die höchste Potenz von p, die |N(H')| teilt.

 \implies H und H' sind p-Sylows in N(H').

$$\implies \exists g \in N(H'), \text{ sodass } H' = gH'g^{-1} = H.$$

Das heisst, H ist der einzige Fixpunkt der Operation $H \cap Y$. Die Längen der anderen Bahnen sind Vielfache von p (da sie $|H| = p^e$ teilen).

$$\implies |Y| \equiv 1 \mod p.$$

Satz 40. Sei G eine endliche abelsche Gruppe. Dann ist G isomorph zu dem Produkt $G_{p_1} \times \cdots \times G_{p_r}$, wobei die G_{p_i} p_i -Gruppen für Primzahlen p_1, \ldots, p_r sind.

Beweis: Schreibe $|G| = p_1^{r_1} \cdots p_n^{r_n}$ (Primfaktorisierung).

Sei H_i eine p_i -Sylow für $i=1,\ldots,n$. Alle H_i sind normal. H_1H_2 ist Untergruppe von G und H_1H_2 ist isomorph zu $H_1 \times H_2$, da $H_1 \cap H_2 = \{1\}$.

Per Induktion zeigt man ähnlich, dass $H_1H_2\cdots H_s$ eine Untergruppe ist und isomorph zu $H_1\times\cdots\times H_s$:

$$H_1 \cdots H_{s-1} \simeq H_1 \times \cdots \times H_{s-1}$$

 $(H_1 \cdots H_{s-1})H_s$ ist Untergruppe

$$H_1 \cdots H_{s-1} \cap H_s = \{1\}.$$

$$\implies H_1 \times \cdots \times H_n \simeq H_1 \cdots H_n$$
.

Da $H_1 \times \cdots \times H_n$ genau |G| Elemente enthält, folgt $G = H_1 \cdots H_n \simeq H_1 \times H_1 \times \cdots \times H_n$.

Definition 28. Eine Gruppe G heisst **endlich erzeugt**, wenn es eine endliche Teilmenge $\{x_1, \ldots, x_n\} \subseteq G$ gibt, sodass $G = \langle x_1, \ldots, x_n \rangle$

Satz 41. Sei G eine endlich erzeugte abelsche Gruppe. Dann ist G isomorph zu $\mathbb{Z}^n \times C_{p_1^{r_1}} \times \cdots \times C_{p_n^{r_n}}$, wobei p_1, \ldots, p_n Primzahlen sind (nicht unbedingt verschieden) und $r_i \geq 0$.

Beweis: Siehe Algebra II.

Vorlesung 13

Freie Gruppen

Sei X eine Menge von **Zeichen**.

Beispiel 13. $X = \{a, b, c\}$

Ein Wort ist eine endliche Folge von Zeichen.

Beispiel 14. $X = \{a, b\}$

a, b, aa, bababb sind Wörter in X.

Sei W die Menge aller Wörter in X. Wir können Wörter zusammenhängen.

Beispiel 15. $aa, ba \mapsto aaba$.

Dies definiert eine assoziative Verknüpfung, somit haben wir eine **Semigruppe** (Menge mit assoziativer Verknüpfung).

$$W\times W\to W\quad v,w\mapsto vw.$$

Das leere Wort ist das neutrale Element bezüglich dieser Verknüpfung. Wir bezeichnen es mit 1. Somit erhalten wir ein **Monoid** (Semigruppe mit neutralem Element).

Dieses oben definierte Monoid nennt sich das freie Monoid.

Um eine Gruppe zu definieren, brauchen wir auch noch Inverse.

Wir fügen zu jedem Zeichen $a \in X$ noch ein Zeichen a^{-1} hinzu. Diese neue Menge nennen wir X'.

Beispiel 16.
$$X = \{a, b\} \implies X' = \{a, a^{-1}, b, b^{-1}\}$$

Sei W' die Menge der Wörter mit Zeichen in X'.

Beispiel 17.
$$X' = \{a, a^{-1}, b, b^{-1}\}$$

$$aa^{-1}b \in W', b \in W', b^{-1}b \in W'$$

Falls in einem Wort $w \in W'$ für ein $x \in X$ der Abschnitt ... xx^{-1} ... oder ... $x^{-1}x$... vorkommt, so kürzen wir die zwei Symbole x, x^{-1} weg und erhalten ein kürzeres Wort.

Definition 29. Ein Wort ist **reduziert**, wenn man keine solche Kürzung mehr möglich ist.

Bemerkung 38. Ein gegebenes Wort $w \in W'$ lässt sich endlich oft kürzen, bis wir ein reduziertes Wort w_0 enthalten. Ein solches w_0 heisst **reduzierte Form** von w.

Beispiel 18. $babb^{-1}a^{-1}c^{-1}ca$

Mögliche Kürzungen:

- $babb^{-1}a^{-1}c^{-1}ca \to baa^{-1}c^{-1}ca \to bc^{-1}ca \to ba$
- $babb^{-1}a^{-1}c^{-1}ca \to babb^{-1}a^{-1}a \to babb^{-1} \to ba$

Satz 42. Jedes Wort $w \in W'$ hat genau eine reduzierte Form.

Beweis: Induktion über die Länge von w.

Base case ist klar für |w| = 0.

Falls w reduziert ist, sind wir fertig.

Falls w nicht reduziert ist:

$$w = \dots xx^{-1} \dots$$
 für ein $x \in X'$

Behauptung: Wir erreichen jede reduzierte Form von w, indem wir zuerst $\dots xx^{-1}$ \dots kürzen. Dies impliziert den Satz per Induktion.

Beweis der Behauptung: Sei w_0 eine reduzierte Form von w.

Fall 1: xx^{-1} wird irgendwann einmal weggekürzt. Dann können wir xx^{-1} auch direkt kürzen.

Fall 2: x^x-1 wird nicht gekürzt. Das Paar x^x-1 kommt nicht in w_0 vor, d.h. irgendwann ist entweder $\dots x^{-1}xx^{-1}\dots$ oder $\dots xx^{-1}x\dots$

Diese Vereinfachung hat jedoch denselben Effekt wie wenn man xx^{-1} kürzt \leadsto Fall 1.

Für zwei Wörter $w, w' \in W$ definiere $w \sim w'$, falls w und w' dieselbe reduzierte Form haben.

 \rightsquigarrow Äquivalenzrelation auf W'.

Satz 43. Seien $v, v', w, w' \in W'$. Aus $w \sim w'$ und $v \sim v'$ folgt $wv \sim w'v'$.

Beweis: $wv \underset{\text{vereinfachen}}{\leadsto} w_0v_0 \leadsto \text{weiter vereinfachen.}$

Ähnlich $w'v' \underset{\text{vereinfachen}}{\leadsto} w_0 v_0 \leadsto \text{weiter vereinfachen.}$

 $\implies wv$ und w'v' haben dieselbe reduzierte Form.

Satz 44. Die Menge F der Äquivalenzklassen von Wörtern in W' bildet mit der von W' induzierten Verknüpfung eine Gruppe.

Beweis: Die von W^\prime induzierte Verknüpfung ist wohldefiniert gemäss obigem Satz.

Assoziativität ist klar.

Neutrales Element: 1; folgt auch aus der Verknüpfung.

Inverse: Für die Klasse von $w=xy\dots z$ ist die Klasse von $z^{-1}\dots y^{-1}x^{-1}$ ein Inverses. \square

Definition 30. Diese Gruppe F ist die **freie Gruppe** auf der Menge X.

Bemerkung 39. Jedes Element in F entspricht genau einem reduzierten Element. Verknüpfung: hintereinander schreiben, dann reduzieren.

Beispiel 19. Sei F die freie Gruppe auf $\{a, b, c\}$.

$$(abc^{-1})(cb) = abc^{-1}cb = abb$$

Bemerkung 40. Wir verwenden Produktschreibweise:

$$aaab^{-1}b^{-1} = a^3b^{-2}$$

Beispiel 20. Sei F die freie Gruppe auf $X=\{a\}$. Dann ist $F=\{a^n\mid n\in\mathbb{Z}\}\simeq\mathbb{Z}$

Sobald $|X| \geq 2$, wird F sehr kompliziert.

Satz 45. Sei F die freie Gruppe auf X und G eine Gruppe.

Jede Abbildung $f\colon X\to G$ lässt sich in eindeutiger Weise zu einem Homomorphismus $\phi\colon F\to G$ fortsetzen.

Beweis: Sei $w = x_1 \cdots x_n$ ein Wort in W'. Wir definieren $\phi(w) = f(x_1) \cdots f(x_n)$, wobei $f(a^{-1}) = f(a)^{-1}$.

 ϕ ist wohldefiniert: Zwei äquivalente Wörter werden auf dasselbe Element in G abgebildet.

 ϕ ist offensichtlich ein Homomorphismus und eindeutig.

Bemerkung 41. Seien G eine Gruppe, $X \subseteq G$ und F die freie Gruppe auf X. Dann existiert ein Homomorphismus $\phi \colon F \to G$.

Falls $X \subseteq G$ Erzeugende von G sind, dann ist ϕ surjektiv.

$$\Longrightarrow_{1. \ Isosatz} G \simeq F/N, \ wobei \ N = \operatorname{Kern} \phi.$$

Die Elemente in N heissen **Relationen** zwischen den Erzeugenden.

D.h., $w \in F$ ist eine Relation $\Leftrightarrow \phi(w) = 1$, d.h. w = 1 in G.

Umgekehrt, falls F die freie Gruppe auf X ist und $N \subseteq F$, so ist G = F/N die Gruppe, in der die Relationen N = 1 gelten $\forall n \in N$.

Definition 31. Eine Teilmenge $R \subseteq N$ heisst Menge von **definierenden Relationen** für G, falls N der kleinste Normalteiler ist, der R enthält, d.h.

$$N = \bigcap_{\substack{H \leq G \\ R \subseteq H}} H$$

X und R definieren G. Wir schreiben $G = \langle X \mid R \rangle$.

 $\langle X \mid R \rangle$ heisst **Präsentation** von G.

Satz 46. Seien G eine Gruppe und $N \subseteq G$, und $\pi \colon G \to \overline{G} = G/N$ Quotient, $a \mapsto \overline{a} = aN$.

Sei $\phi: G \to G'$ ein Homomorphismus mit $N \subseteq \operatorname{Kern} \phi$. Dann existiert ein eindeutiger Homomorphismus $\overline{\phi}: \overline{G} \to G'$, sodass $\overline{\phi} \circ \pi = \phi$.

Beweis: Wir definieren $\overline{\phi}(\overline{a}) := \phi(a)$.

Da $\overline{\phi}(\pi(a)) = \phi(a)$ sein soll, gibt es keine andere Wahl.

 $\overline{\phi}$ ist wohldefiniert: Seien $a, a' \in G$ s.d. $\overline{(a)} = \overline{a'} \implies \exists n \in N s.d. a' = an.$ $\underset{N \in \operatorname{Kern} \phi}{\Longrightarrow} \phi(a') = \phi(a)\phi(a) = \phi(a).$

 $\overline{\phi}$ ist ein Homomorphismus: $\overline{\phi}(\overline{a})\overline{\phi}(\overline{b}) = \phi(a)\phi(b) = \phi(ab) = \overline{\phi}(\overline{ab}).$

Satz 47. Diedergruppe $D_n = \langle x, y \mid x^n, y^2, xyxy \rangle$.

Beweis: Wir haben gesehen, dass D_n von der Drehung x und der Spiegelung y erzeugt ist und dass gilt: $x^n = 1, y^n = 1, xyxy = 1$.

Sei F die freie Gruppe auf $\{x,y\} \implies \exists$ surjektiver Homomorphismus

$$\phi \colon F \to D_n \text{ s.d. } R = \{x^n, y^n, xyxy\} \subseteq \operatorname{Kern} \phi.$$

Sei N der kleinste Normalteiler, der R enthält.

$$\implies N \subseteq \operatorname{Kern} \phi$$
.

$$\Longrightarrow_{\text{satz}} \exists \text{ Homomorphismus } \overline{\phi} \colon F/N \to D_n, \text{ s.d. } \overline{\phi} \circ \pi = \phi,$$

wobei $\pi \colon F \to F/N$.

Zu zeigen: $\overline{\phi}$ ist ein Isomorphismus.

- $\overline{\phi}$ ist surjektiv, da ϕ surjektiv ist.
- in F/N gilt $\overline{x}^n = 1$, $\overline{y}^2 = 1$, $\overline{xyxy} = 1$

 \implies Wir können jedes Element in F/Nauf die Form $\overline{x}^i\overline{y}^j$ bringen, mit $0\le i\le n-1$ und $0\le j\le 1.$

 $\implies F/N$ enthält $\leq 2n$ Elemente.

Da $|D_n| = 2n$, folgt, dass $\overline{\phi}$ bijektiv sein muss.

Satz 48. Die Gruppe $G = \langle x, y | xyx^{-1}y^{-1} \rangle$ ist abelsch.

Beweisidee.

- x, y, x^{-1}, y^{-1} kommutieren alle miteinander.
- Alle Wörter kommutieren.

Vorlesung 14

Ringe (Kapitel 10 in Artin)

Definition 32. Ein **Ring** R ist eine Menge mit zwei Verknüpfungen + und \cdot , Addition und Multiplikation, sodass die folgenden Axiome erfüllt sind:

- (a) (R, +) ist eine abelsche Gruppe. Bezeichne das neutrale Element mit 0.
- (b) Die Multiplikation ist assoziativ und hat ein neutrales Element $1 \in R$.
- (c) Für alle $a,b,c \in R$ gilt: (a+b)c = ac + bc und c(a+b) = ca + cb (Distributivgesetz).

Beispiele

- $\bullet\,$ Die ganzen Zahlen $\mathbb Z$
- Der Nullring $R = \{0\}$
- $\mathbb{Z}\left[\frac{1}{2}\right] = \left\{\frac{a}{2^k} \mid a, k \in \mathbb{Z}\right\}$
- Die Gaussschen Zahlen: $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$
- $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}\$
- $\operatorname{Mat}_{n \times n}$, der Ring der $(n \times n)$ -Matrizen über einem Körper K. (Hier ist die Multiplikation nicht kommutativ.)

Bemerkung 42. Ein kommutativer Ring ist ein Ring, in dem die Multiplikation kommutativ ist. In dieser Vorlesung: Ring = kommutativer Ring.

Bemerkung 43. In manchen Quellen ist die Existenz eines neutralen Elements nicht Teil der Definition eines Rings.

Satz 49. Sei R ein Ring. Dann gilt $0 \cdot a = 0 \quad \forall a \in R$.

Beweis: Sei
$$x \in R$$
. Dann ist $xa = (0+x)a = 0a + xa \implies 0a = 0$.

Daraus folgt direkt:

Korollar 12. Sei R ein Ring. Falls 1 = 0, so ist R der Nullring.

Bemerkung 44. (-1)a = -a für alle $a \in R$.

Beweis:
$$a + (-1)a = (1-1)a = 0a = 0 \implies (-1)a = -a$$

Definition 33. Ein Ring R ist ein **Körper**, falls R nicht der Nullring ist und jedes Element in $R\setminus\{0\}$ ein multiplikatives Inverses hat.

Definition 34. Seien R, R' Ringe. Ein **Homomorphismus** $\phi: R \to R'$ ist eine Abbildung, s.d. $\forall a, b \in R$:

- (1) $\phi(a+b) = \phi(a) + \phi(b)$
- (2) $\phi(ab) = \phi(a)\phi(b)$
- (3) $\phi(1_R) = 1_{R'}$

Falls ϕ ausserdem bijektiv ist, so ist ϕ ein **Isomorphismus**.

Bemerkung 45. Ein Ringhomomorphismus ist immer auch ein Gruppenhomomorphismus bezüglich der additiven Gruppe. $\Longrightarrow \phi(0_R) = 0_{R'}$.

Beispiele

- $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ ist ein Ringhomomorphismus.
- Sei R der Nullring. Es gibt keinen Homomorphismus $\phi: R \to R'$, wenn R' nicht auch der Nullring ist.

Definition 35. Sei ϕ : $R \to R'$ ein Ringhomomorphismus. Der **Kern** von ϕ ist $\operatorname{Kern} \phi = \{a \in R \mid \phi(a) = 0\}$

Bemerkung 46. Ein Ringhomomorphismus $\phi: R \to R'$ ist injektiv \Leftrightarrow Kern $\phi = 0$, da ϕ ein Homomorphismus von den additiven Gruppen ist.

Definition 36. Sei R ein Ring. Ein Unterring $S \subseteq R$ ist eine Teilmenge, s.d.

- (1) S ist eine Untergruppe bezüglich Addition
- (2) S ist abgeschlossen bezüglich Multiplikation
- (3) $1 \in S$

Bemerkung 47.

- Falls $R \neq 0$, so ist Kern ϕ kein Unterring (da $1 \notin \text{Kern } \phi$).
- Falls $a \in \operatorname{Kern} \phi$ und $r \in R$, so ist auch $ra \in \operatorname{Kern} \phi$.

Definition 37. Ein **Ideal** $I \subseteq R$ ist eine Teilmenge s.d.

- (i) $I \subseteq R$ ist eine additive Untergruppe
- (ii) Ist $a \in I$, dann ist für alle $r \in R$ auch $ra \in I$.

Bemerkung 48.

- Kern $\phi \subseteq R$ ist ein Ideal
- $I \subseteq R$ ist ein Ideal genau dann, wenn $I \neq \emptyset$ und für alle $a_1, \ldots, a_n \in I$ und $r_1, \ldots, r_n \in R$ (und alle n) gilt, dass $r_1a_1 + \cdots + r_na_n \in I$.

Beweis: Kleine Übung. \Box