# **STAC67:** Regression Analysis

Lecture 5

Sohee Kang

Jan. 27, 2021

## **2.4 Interval Estimation of** $E(Y|X=x_0)$

Suppose that  $x_0$  is a new value of x for which we want to do prediction.

- **1** Estimation of  $\mu_0 = E[Y|X = x_0]$
- 2 Prediction of Y value for an individual with  $X = x_0$
- We use fitted regression model to do both of these
- Estimation of  $\mu_0$

$$\mu_{0} = \beta_{0} + \beta_{1} X_{0}$$

$$\hat{\lambda}_{0} = \hat{\beta}_{0} + \hat{\beta}_{1} X_{0} = \hat{\gamma}_{0}$$

$$E(\hat{\gamma}_{0}) = E(\hat{\beta}_{0} + \hat{\beta}_{1} X_{0}) = \text{Bot } B_{1} X_{0}$$

$$V(x)(\hat{\gamma}_{0}) = V(x)(\hat{\beta}_{0} + \hat{\beta}_{1} X_{0}) = V(x)(\hat{\beta}_{0}) + \hat{\chi}_{1} V(x)(\hat{\beta}_{1}) + 2 + \hat{\chi}_{0} V(x)(\hat{\beta}_{1}) + 2 +$$

Let's derive the variance formula:

**Derivation of**  $Var(\hat{Y}_0)$ 

Thus 
$$V_{or}(\hat{Y}_{0}) = \left(\frac{1}{N} + \frac{\hat{X}^{2}}{Sxx}\right) 6^{2} + \frac{\hat{Y}_{0}^{2}}{6} - \frac{2\hat{Y}_{0}x}{Sxx}$$

$$= \left(\frac{1}{N} + \frac{1}{Sxx}\left(x_{0} - \hat{X}\right)^{2}\right) 6^{2}$$

$$= \left(\frac{1}{N} + \frac{1}{Sxx}\left(x_{0} - \hat{X}\right)^{2}\right) 6^{$$

# Confidence Interval for $\mu_0 = E(Y|X = x_0)$

• A  $(1-\alpha)$ % confidence interval for  $\mu_0$ :

$$\hat{Y}_0 \pm t(1-\alpha/2; n-2)SE(\hat{Y}_0)$$

• Exercise: Obtain 95% confidence interval for the mean crime rate for states of high school graduate rate of 80%.



## 1 6871.585 6347.116 7396.054

#### 2.5 Prediction of new observation

The value of Y for an individual with  $X = x_0$  is:

$$Y_0 = \beta_0 + \beta_1 X + \epsilon_0$$

- Estimate of  $Y_0$ :  $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0 = \hat{\mu}_0$
- Prediction error:  $e_0 = Y_0 \hat{Y}_0$
- $Var(e_0) = Var(Y_0 \hat{Y}_0) \sim Var(Y_0) + Var(\hat{Y}_0) + Var(\hat{Y}_0)$
- $100 \times (1 \alpha)\%$  Prediction Interval for a new observation  $Y_{0(new)}$  with  $X = x_0$  is:

$$\hat{Y}_0 \pm t(1-\alpha/2; n-2)s_{\{pred\}}$$

#### **Exercise**

Exercise: Obtain 95% prediction interval for the crime rate for states of

high school graduate rate of 80%.

$$\hat{V}_{b} = 6871.2 \quad \text{Speed} = 6 \quad \text{IIII + } + \frac{(x_{b} - \overline{x})^{2}}{5x_{x}}$$

$$= 2370.7$$

```
new.data = data.frame(X=80)
predict(fit, new.data, interval="prediction")
```

```
##
          fit
                   lwr
                             upr
   1 6871.585 2154.92 11588.25
```

# **Graph Prediction Intervals (using ggplot)**

```
Crime.Pred <- predict(fit, interval="prediction")</pre>
```

```
## Warning in predict.lm(fit, interval = "prediction"): predictions on current data refer to _future_ responses
```

```
new.df = cbind(Crime,Crime.Pred)
library(ggplot2)
ggplot(data=new.df, aes(X, Y)) +
geom_point()+
geom_line(aes(y=lwr), color="red", linetype="dashed")+
geom_line(aes(y=upr), color="red", linetype="dashed")+
geom_smooth(method=lm, se=TRUE) + theme(plot.margin=unit(c(-1, 8, 7, 4), "cm"))
```



# 2.7 Analysis of Variance Approach to Regression Analysis

• How well does the least squres fit explain variation in Y?

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i + \hat{Y}_i - \bar{Y})^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

- Total Sum of Squares (SST)
- Model Sum of Squares (SSR): Variation in Y explained by the regression.
- Error Sum of Squares (SSE): Variation in Y that is left explained.

### How does that breakdown look on a scatterplot?



## **Analysis of Variance Table**

| Source of Variation | Sum of Squares | df | Mean Squares |
|---------------------|----------------|----|--------------|
| Regression          | SSR            |    |              |
| Error               | SSE            |    |              |
| Total               | SST            |    |              |
|                     |                |    |              |

- The total degrees of freedom is always n-1.
- In the simple regression, the degrees of freedom used by the model is:
- *F* test for  $H_0: \beta_1 = 0$

$$F^* = \frac{MSR}{MSE} = \frac{SSR/1}{SSE/n - 2}$$

• Under  $H_0$ ,  $F \sim F(1, n-2)$ 

#### **F** distribution

• The F-distribution with  $k_1$  and  $k_2$  degrees of freedom can be defined as the distribution of the random variable F

$$F=\frac{V_1/k_1}{V_2/k_2},$$

where,

- This is denoted as  $F \sim F(k_1, k_2)$
- we can show that under  $H_0$ :  $\beta_1 = 0$ ,

$$\frac{MSR}{MSE} \sim F(1, n-2)$$

## Relationship b/w F-test and t-test

• We can rewrite SSR using the regression estimator:

$$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

$$F^* = \frac{SSR/1}{SSE/(n-2)} =$$

• In the simple regression, this is equivalent to the test of

$$H_0: \beta_1 = 0$$
 vs  $H_a: \beta_1 \neq 0$ 

# 2.9 Descriptive Measure of Linear Association b/w X and Y

$$SST = SSR + SSE$$

$$1 = \frac{SSR}{SST} + \frac{SSE}{SST}$$

SSR SST

- A "good" model should have a large  $R^2 = \frac{SSR}{SST} = 1 \frac{SSE}{SST}$
- R<sup>2</sup>: Coefficient of determination

#### **Coefficient of Determination**

- **1**  $0 \le R^2 \le 1$
- 2 In simple regression,  $R^2 = r^2$ 
  - Show that why  $\frac{MSR}{MSE} \sim F(1, n-2)$ .



# **Example (Crime Rate)**

```
anova(fit)
```

1 Test whether or not there is a linear association between crime rate and percentage of high school graduates using F test. Show the numerical equivalence of two test statistics and decision rules.

② Compute  $R^2$  and r.