Infor	matyka,	studia	nies	stacjonarne, mgr II st.
D		•	1	. 1/ . 1

semestr I

Przetwarzanie obrazu i dźwięku 2015/2016 Prowadzący: mgr inż. Piotr Ożdżyński Sobota, 14:15

	Data oddania	<i>:</i>	Ocena:
--	--------------	----------	--------

Jakub Antosik 206788 Andrzej Lisowski 206807

Zadanie 3: Analiza częstotliwości podstawowej dźwięku.

1. Cel

Celem zadania było zapoznanie się z metodami analizy dźwięku, a w szczególności znajdowania okresu i częstotliwości. Badane były dwie grupy metod: realizowane w dziedzinie czasu oraz w dziedzinie częstotliwości. W części implementacyjnej należało stworzyć program w wybranym przez siebie języku programowania, który będzie w stanie przeprowadzić po jednej, wybranej operacji operacji z z każdej z grup. Do tego celu wykorzystano szkielet apliakcji z zadań 1 i 2.

Szczegółowy opis zadania został przedstawiony w [1].

2. Wprowadzenie

Jedną z najważniejszych cech dźwięku jest jego częstotliwość. Człowiek potrafi usłyszeć częstotliwości zawarte są w paśmie pomiędzy wartościami granicznymi od ok. 16 Hz do ok. 20 kHz. Istnieje wiele sposobów na jej rozpoznanie. W poniższej pracy przeanalizowano dwa: przy pomocy autokorelacji i metody cepstralnej.

2.1. Autokorelacja

Autokorelacja jest korelacją sygnału z samym sobą, w kolejnych punktach w czasie. Innymi słowy, autokorelacja informuje o tym na ile dane wartości / obserwacje są istotnie związane z obserwacjami zaobserwowanymi wcześniej

(o stałym przesunięciu czasowym) [3].

Wzór na autokorelację sygnału dyskretnego jest następujący:

$$c(m) = \sum_{n=1}^{N-1} x(n) * x(n+m)$$

2.2. Analiza cepstralna

Analiza cepstralna jest metodą wykrywania częstotliwości dźwięku przy pomocy transformaty Fouriera. W celu usunięcia szumów, na próbkę należy nałożyć okno. Częstotliwość podstawowa jest wykrywana na podstawie rozkładu maximów w dziedzinie cepstrum.

3. Opis implementacji

Opis implementacji został przedstawiony w sprawozdaniu do zadania 1 [2]. Zadanie 3 zostało zrealizowane poprzez rozszerzenie funkcjonalności programu. Dodany został nowy interfejs graficzny, dedykowany dla przetwarzania dźwięku oraz analizowane metody tj. autokorelację oraz analizę cepstalną.

Wykrywanie częstotliwości sekwencji zostało przeprowadzone poprzez podział dźwięku na N równych części i analizę każdej próbki osobno.

4. Materiały i metody

Do aplikacji dodano szereg testowych dźwięków w celu dokładnej analizy badanych metod. Ich spis zamieszczono poniżej:

- Sztuczne
 - Łatwe: 100Hz, 150Hz, 225Hz, 337Hz, 506Hz, 759Hz, 1139Hz, 1708Hz
 - Średnie: 90Hz, 135Hz, 202Hz, 303Hz, 455Hz, 683Hz, 1025Hz, 1537Hz
 - Trudne: 80Hz, 120Hz, 180Hz, 270Hz, 405Hz, 607Hz, 911Hz, 1366Hz
- Naturalne
 - Flet: 276Hz, 443Hz, 591Hz, 887Hz, 1265Hz, 1779Hz
 - Altówka: 130Hz, 196Hz, 247Hz, 294Hz, 369Hz, 440Hz, 698Hz
- Sekwencje
 - DWK altówka
 - KDF pianino

5. Wyniki

Sekcja prezentuje wyniki przeprowadzanego badania metody autokorelacji i analizy widma Fouriera sygnału.

 ${\bf W}$ poniższej tabeli przedstawiono częstotliwości badanych dźwięków - faktyczną oraz znalezioną w wyniku autokorelacji oraz analizy cepstralnej.

Dźwięk testowy	Autokorelacja	Analiza cepstralna
Sztuczne, łatwe, 100Hz	100	100
Sztuczne, łatwe, 150Hz	150	150
Sztuczne, łatwe, 225Hz	226	441
Sztuczne, łatwe, 337Hz	339	336
Sztuczne, łatwe, 506Hz	512	506
Sztuczne, łatwe, 759Hz	773	760
Sztuczne, łatwe, 1139Hz	1160	1160
Sztuczne, łatwe, 1708Hz	1764	1696
Sztuczne, średnie, 90Hz	90	94
Sztuczne, średnie, 135Hz	135	129
Sztuczne, średnie, 202Hz	203	368
Sztuczne, średnie, 303Hz	304	302
Sztuczne, średnie, 455Hz	459	454
Sztuczne, średnie, 683Hz	689	689
Sztuczne, średnie, 1025Hz	1050	1025
Sztuczne, średnie, 1537Hz	1575	1520
Sztuczne, trudne, 80Hz	80	32
Sztuczne, trudne, 120Hz	120	80
Sztuczne, trudne, 180Hz	180	90
Sztuczne, trudne, 270Hz	272	38
Sztuczne, trudne, 405Hz	408	270
Sztuczne, trudne, 607Hz	612	604
Sztuczne, trudne, 911Hz	938	364
Sztuczne, trudne, 1366Hz	1422	2756
Naturalne, flet, 276Hz	277	279
Naturalne, flet, 443Hz	445	445
Naturalne, flet, 591Hz	595	588
Naturalne, flet, 887Hz	900	900
Naturalne, flet, 1265Hz	1297	1260
Naturalne, flet, 1779Hz	1837	882
Naturalne, altówka, 130Hz	130	130
Naturalne, altówka, 196Hz	196	196
Naturalne, altówka, 247Hz	247	247
Naturalne, altówka, 294Hz	295	294
Naturalne, altówka, 369Hz	370	368
Naturalne, altówka, 440Hz	445	441
Naturalne, altówka, 698Hz	700	700
Rozpoznano	22/24 szt. 12/13 nat.	15/24 szt. 12/13 nat.

6. Dyskusja i wnioski

Poniższa sekcja prezentuje interpretację uzyskanych wyników oraz wnioski. Opisano również napotkane problemy oraz możliwe sposoby ich rozwiązania.

6.1. Autokorelacja - pojedyncze częstotliwości

Metoda autokorelacji rozpoznała częstotliwość dźwięków wygenerowanych sztucznie z bardzo dużą dokładnością. Można zauważyć, że im wyższe częstotliwości, tym większe były rozbieżoności. Analizowana metoda potrafiła rozpoznać również częstotliwości naturalne, we flecie i w altówce.

6.2. Autokorelacja - sekwencje

Autokorelacja poprawnie rozpoznała częstotliwości w sekwencji altówki i pianina. Najlepsze wyniki uzyskano dla wielkości próbki: 4000(altówka) i 10000(pianino). Odmienne wartości są spowodowane dłuższymi dźwiękami pianina. Niestety, zapis do pliku wynikowego dodaje szum pomiędzy kolejnymi częstotliwościami.

6.3. Metoda cepstralna

Analiza cepstralna również dobrze rozpoznała większość częstotliwości. Miała jednak duży problem z wykryciem częstotliwości trudnych dźwięków sztucznych - odniosła sukces tylko w jednym przypadku.

6.4. Metoda cepstralna - sekwencje

Analiza metodą cepstralną dała zadowalające wyniki wygenerowania sekwencji dźwięków altówki dla próbek o wielkości 8192. Słychać jednak wyraźnie fragmenty rozpoznane błędnie. Niestety, nie udało się wygenerować poprawnej sekwencji pianina.

Literatura

- $[1] \ http://ftims.edu.p.lodz.pl/pluginfile.php/20101/mod_resource/content/1/Third2012.pdf, 2015$
- [2] https://github.com/alisowsk/image and sound processing/blob/master/sprawozdanie/sprawozdanie.pdf, 2015
- [3] http://www.naukowiec.org/wiedza/statystyka/autokorelacja_410.html, 2015