НИУ ВШЭ СПБ

ПАДИИ, 2 курс

Отчёт об исследовательской работе: «Применение случайных графов для проверки гипотезы согласия»

Студенты: Пожидаев Филипп, Афоничев Артемий

Оглавление

1	Введение					
2	Описание кода					
	2.1	Построение КNN-графа и дистанционного графа, работа с их характери-				
		стиками	3			
		2.1.1 KNN-граф	3			
		2.1.2 Дистанционный граф	3			
		2.1.3 Характеристики	3			
	2.2	Распараллеливание метода Монте-Карло	3			
		2.2.1 monte_carlo_step()	4			
		2.2.2 monte_carlo_multiprocessing()	4			
	2.3	Параллельная генерация датасета	4			
		2.3.1 generate_row(idx, seed)	4			
		2.3.2 generate_dataset(num_samples, seed)	4			
3	Описание экспериментов 5					
	3.1	Исследование, как ведет себя числовая характеристика графа в зависи-				
		мости от параметров процедуры построения графа	5			
	3.2					
		мости от параметров распределения	5			
		3.2.1 $\operatorname{Exp}(\lambda)$, $\operatorname{LogNormal}(0, \sigma)$	5			
		$3.2.2$ Normal(0, σ), SkewNormal(α)	6			
	3.3	Исследование важности характеристик, как признака классификации	7			
		$3.3.1$ Exp(λ), LogNormal(0, σ)	7			
		3.3.2 Normal(0, σ), SkewNormal(α)	9			
		3.3.3 Общие наблюдения	10			
	3.4	Применение нескольких классификационных алгоритмов для фиксиро-				
		ванного n	10			
		3.4.1 $n = 25$	10			
		3.4.2 $n = 100$	10			
		3.4.3 $n = 500$	10			
4	Рез	ультаты	11			
5	Заключение					

Введение

Отчёт работы по исследованию свойств случайных графов (КNN и дистанционных), построенных на основе различных вероятностных распределений.

Цель работы: исследовать поведение числовых характеристик случайных графов в зависимости от параметров распределений и параметров построения графов. Задачи:

- 1. Изучить поведение числа треугольников, хроматического и кликового числа в зависимости от параметров распределений;
- 2. Исследовать влияние параметров процедуры построения графа и размера выборки;
- 3. Провести эксперименты с ML классификаторами.

Описание кода

В данной главе мы рассмотрим алгоритмы и реализованные функции для проведения экспериментов.

2.1 Построение KNN-графа и дистанционного графа, работа с их характеристиками

2.1.1 КММ-граф

Функция build_knn_graph(k, vertices) реализует алгоритм построения KNN-графа на основе заданного набора вершин vertices и параметра k, определяющего количество ближайших соседей для каждой вершины.

Используется алгоритм NearestNeighbors из библиотеки scikit-learn, который для каждой вершины находит k+1 ближайших соседей (включая саму вершину). Создаётся граф с помощью библиотеки networkx (nx.Graph()).

2.1.2 Дистанционный граф

Функция build_distance_graph(d, vertices) строит граф, в котором вершины соединяются рёбрами, если расстояние между ними не превышает заданного порога d. Для каждой пары вершин (i,j) проверяется условие $|\mathbf{v}[i] - \mathbf{v}[j]| \leq d$. Если условие выполняется, между вершинами добавляется ребро.

2.1.3 Характеристики

Функция compute_stats(arr) вычисляет основные статистики массива данных: среднее значение, дисперсию, стандартное отклонение и стандартную ошибку.

Функции, предназначенные для вычисления минимальной степени, количества треугольников, хроматического числа, кликового числа, размера максимального независимого множества, числа доминирования, минимального размера кликового покрытия являются обёрткой над существующими в networkx методами класса nx.Graph.

2.2 Распараллеливание метода Монте-Карло

В данном разделе описывается реализация метода Монте-Карло с использованием параллельных вычислений для эффективного статистического анализа графовых структур. Предложенный подход позволяет ускорить проведение множественных экспери-

ментов за счёт распределения вычислений между несколькими ядрами процессора. Алгоритм состоит из двух основных функций. Они принимают следующий набор аргументов — n, distr_param, graph_param, gen_func, graph_func, res_func (однако, второй в самом начале на вход ещё подаётся параметр M).

2.2.1 monte_carlo_step()

Выполняет отдельное испытание (одно повторение метода Монте-Карло). Является атомарной операцией для параллелизации.

Выполняет следующие шаги для одного испытания:

- 1. Генерирует набор вершин с помощью функции gen_func с заданными параметрами распределения distr_param;
- 2. Строит граф указанным методом (graph_func) с параметром graph_param;
- 3. Вычисляет и возвращает требуемую характеристику графа с помощью функции res_func.

2.2.2 monte_carlo_multiprocessing()

Организует параллельное выполнение множества испытаний. Использует библиотеку joblib для распараллеливания, задействует все доступные ядра процессора, а результат всех испытаний собирает в единый массив.

2.3 Параллельная генерация датасета

В данном разделе описывается алгоритм параллельной генерации датасета для исследования характеристик случайных графов. Реализация использует многопоточные вычисления для эффективного создания большого объема данных.

2.3.1 generate_row(idx, seed)

Генерирует дистанционный граф на n вершинах (n выбирается случайно из заданного набора N), считает ключевые характеристики.

2.3.2 generate_dataset(num_samples, seed)

Использует все ядра процессора, автоматически распределяет задачи, выводит прогресс бар с помощью модуля tqdm, собирает результат в единый pd.DataFrame.

Описание экспериментов

Теперь перейдем к самим экспериментам.

3.1 Исследование, как ведет себя числовая характеристика графа в зависимости от параметров процедуры построения графа

В случае с дистанционным графом было установлено, что при росте n и d числовая характеристика и метрики качества растут, но у d есть критический порог, после которого метрики растут незначительно или же вовсе не растут, этот порог для большинства n равен d=0.8. Это касается всех распределений (Exp, LogNormal, Normal, SkewNormal), но при анализе Normal и SkewNormal был замечен сдвиг порога ближе к единице.

Дальнейшее исследование проводилось с фиксированным d, равным:

- 0.8 для Exp, LogNormal;
- 0.9 для Normal, SkewNormal.

В КNN-графе было замечено, что метрики качества сильно зависят от n, а при больших n качество оказалось не хуже, чем в дистанционном графе, поэтому именно он будет участвовать в дальнейших экспериментах, начиная с исследования важности характеристик для классификации.

Стоит отметить, что изначальные попытки извлечения какой-то информации о KNN-графе из его минимальной степени вершины являются артефактом условия исследовательской работы, поэтому было принято решение рассмотреть количество треугольников для всех распределений.

3.2 Исследование, как ведет себя числовая характеристика графа в зависимости от параметров распределения

3.2.1 Exp(λ), LogNormal(0, σ)

КИИ-граф:

• λ особо не влияет на характеристику KNN-графа, при фиксированном σ и изменении λ метрики качества остаются примерно равными;

• σ довольно сильно влияет на результат, чем больше σ , тем «левее» значения $\text{Exp}(\lambda)$ и «правее» значения LogNormal(0, σ) \Rightarrow мы можем классифицировать их с большей точностью.

Дистанционный граф:

- Чем больше λ и σ , тем меньше мощность;
- λ влияет на характеристику дистанционного графа значительнее, чем σ ;
- При достаточно больших λ , то есть $\lambda > 1$ мощность нулевая.

3.2.2 Normal(0, σ), SkewNormal(α)

КИИ-граф:

• Мощность больше зависит от α , чем от σ . Ошибка первого рода почти везде одинаковая.

Дистанционный граф:

- Чем больше α и σ , тем больше мощность. Обе переменные вносят хороший вклад в рост характеристик;
- Можно заметить, как увеличение α сдвигает график для SkewNormal(α) «правее», а увеличение σ сдвигает график для Normal(0, σ) «левее». Этот факт может помочь в будущем с точностью классификации.

3.3 Исследование важности характеристик, как признака классификации

3.3.1 Exp(λ), LogNormal(0, σ)

Посмотрим на распределение таргета относительно признаков:

Выводы:

- Самые важные признаки для классификации: chromatic_number и clique_number (в нашем случае это одно и то же), они достаточно хорошо разделяют данную выборку на два класса при всех n;
- ullet При росте n важность характеристик не меняется, по-прежнему самый важный chromatic_number.

Между признаками прослеживаются зависимости:

- domination_number линейно зависит от chromatic_number;
- max_independent_set_size и min_clique_cover_size (в нашем случае это одно и то же) квадратично зависят от domination_number;

• max_independent_set_size квадратично зависит от chromatic_number.

Посмотрим на корреляции признаков:

Выводы:

- В целом, тут мы можем найти подтверждения нашим выводам по pair plot;
- Больше всего с таргетом distribution коррелируют chromatic_number и clique_number;
- domination_number имеет сильную корреляцию со всеми остальными признаками и очень слабую с таргетом;
- max_independent_set_size и min_clique_cover_size имеют слабую корреляцию с таргетом, но довольно сильно зависят от других характеристик.

${\bf 3.3.2}$ Normal(0, σ), SkewNormal(lpha)

Посмотрим на распределение таргета относительно признаков:

Аналогичные наблюдения.

Посмотрим на корреляции признаков:

Выводы:

- Получилось, что самая сильная корреляция с таргетом у max_independent_set_size и min_clique_cover_size;
- domination_number имеет сильную корреляцию со всеми остальными признаками и очень слабую с таргетом.

3.3.3 Общие наблюдения

Были предприняты попытки сгенерировать больше признаков путём нормирования, деления, возведения в квадрат и других операций, которые показались логичными в контексте конкретных признаков и их зависимости. В итоге особого прироста эффективности данная эвристика не дала, поэтому было принято решение обучать модели на изначальном датасете, взяв n в качестве гиперпараметра модели.

3.4 Применение нескольких классификационных алгоритмов для фиксированного n

3.4.1 n = 25

 $3.4.2 \quad n = 100$

3.4.3 n = 500

Результаты

В таблице 4.1 приведены измерения:

Таблица 4.1: Результаты измерений

Образец	Параметр 1	Параметр 2	Параметр 3
Образец А	23,5	12,1	5,6
Образец В	25,0	11,8	5,9

Заключение

В ходе работы было установлено... Основные выводы:

- Вывод 1.
- Вывод 2.

Перспективы дальнейших исследований: ...