

CS 412 Intro. to Data Mining

Chapter 10. Cluster Analysis: Basic Concepts and Methods

The K-Means Clustering Method to are cluster nistatosmá

- K-Means (MacQueen'67, Lloyd'57/'82)
 - Each cluster is represented by the center of the cluster
- k-nearest 926.12002074 K- item set + voon 30 woonne 3 Ont (k=3)
- Given K, the number of clusters, the K-Means clustering algorithm is outlined as follows กานผลค่า k (จะเอากักคุม) k=3
 - Select K points as initial centroids สุมคุด 3 คุด (ตัวแทนผงอง แต่ กะุกคุม)
 - Repeat พิชาใช เชื่อย ๆ ๆ แหง่าจะพบ
 - epeat พิชีโปป เรื่อง บุจนหว่าจะพบ พาปปฏิที่จะพัง ชาวแมโทคัดุภ centroid ขกหังด
 - Re-compute the centroids (i.e., mean point) of each cluster
 - Until convergence criterion is satisfied
- Different kinds of measures can be used
 - Manhattan distance (L₁ norm), Euclidean distance (L₂ norm), Cosine similarity

Example: K-Means Clustering

Repeat

- Form K clusters by assigning each point to its closest centroid
- Re-compute the centroids (i.e., mean point) of each cluster **Until** convergence criterion is satisfied

Discussion on the K-Means Method

- **Efficiency**: O(tKn) where n: # of objects, K: # of clusters, and t: # of iterations
 - □ Normally, *K*, *t* << *n*; thus, an efficient method
- K-means clustering often terminates at a local optimal
 - Initialization can be important to find high-quality clusters
- **Need to specify** *K*, the *number* of clusters, in advance
 - ☐ There are ways to automatically determine the "best" K
 - □ In practice, one often runs a range of values and selected the "best" K value
- Sensitive to noisy data and outliers
 - □ Variations: Using K-medians, K-medoids, etc.
- K-means is applicable only to objects in a continuous n-dimensional space
 - Using the K-modes for categorical data
- Not suitable to discover clusters with non-convex shapes
 - Using density-based clustering, kernel K-means, etc.

Variations of *K-Means*

- ☐ There are many variants of the *K-Means* method, varying in different aspects
 - Choosing better initial centroid estimates
 - □ K-means++, Intelligent K-Means, Genetic K-Means

To be discussed in this lecture

- Choosing different representative prototypes for the clusters
 - ☐ K-Medoids, K-Medians, K-Modes

To be discussed in this lecture

- Applying feature transformation techniques
 - ☐ Weighted K-Means, Kernel K-Means

To be discussed in this lecture

Poor Initialization in K-Means May Lead to Poor Clustering

000

☐ This run of K-Means generates a poor quality clustering

Initialization of K-Means: Problem and Solution

Different initializations may generate rather different clustering results (some could be far from optimal)

- Original proposal (MacQueen'67): Select K seeds randomly
 - Need to run the algorithm multiple times using different seeds
- \Box There are many methods proposed for better initialization of k seeds
 - K-Means++ (Arthur & Vassilvitskii'07):
 - ☐ The first centroid is selected at random
 - □ The next centroid selected is the one that is farthest from the currently selected (selection is based on a weighted probability score)
 - ☐ The selection continues until K centroids are obtained

Dendrogram: Shows How Clusters are Merged

- Dendrogram: Decompose a set of data objects into a tree of clusters by multi-level nested partitioning
- A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster

Agglomerative Clustering Algorithm

- AGNES (AGglomerative NESting) (Kaufmann and Rousseeuw, 1990)
 - Use the single-link method and the dissimilarity matrix
 - Continuously merge nodes that have the least dissimilarity
 - Eventually all nodes belong to the same cluster

- □ Agglomerative clustering varies on different similarity measures among clusters
 - Single link (nearest neighbor)

■ Average link (group average)

Complete link (diameter)

Centroid link (centroid similarity)

Single Link vs. Complete Link in Hierarchical Clustering

- □ Single link (nearest neighbor)
 - The similarity between two clusters is the similarity between their most similar (nearest neighbor) members
 - Local similarity-based: Emphasizing more on close regions, ignoring the overall structure of the cluster
 - Capable of clustering non-elliptical shaped group of objects
 - Sensitive to noise and outliers
- Complete link (diameter)
 - The similarity between two clusters is the similarity between their most dissimilar members
 - Merge two clusters to form one with the smallest diameter
- Nonlocal in behavior, obtaining compact shaped clusters
- Sensitive to outliers

Agglomerative Clustering: Average vs. Centroid Links

- Agglomerative clustering with average link
 - Average link: The average distance between an element in one cluster and an element in the other (i.e., all pairs in two clusters)

- Expensive to compute
- Agglomerative clustering with centroid link
 - Centroid link: The distance between the centroids of two clusters

- Let two clusters C_a and C_b be merged into C_{aUb} . The new centroid is: $c_{a \cup b} = \frac{N_a c_a + N_b c_b}{N_a + N_b}$ N_a is the cardinality of cluster C_a, and c_a is the centroid of C_a
- The similarity measure for GAAC is the average of their distances
- ☐ Agglomerative clustering with Ward's criterion
 - □ Ward's criterion: The increase in the value of the SSE criterion for the clustering obtained by merging them into $C_a U C_b$: $W(C_{a \cup b}, C_{a \cup b}) - W(C, c) = \frac{N_a N_b}{N_a + N_b} d(c_a, c_b)$

Divisive Clustering

- □ DIANA (Divisive Analysis) (Kaufmann and Rousseeuw,1990)
 - Implemented in some statistical analysis packages, e.g., Splus
- ☐ Inverse order of AGNES: Eventually each node forms a cluster on its own

- ☐ Divisive clustering is a top-down approach
 - ☐ The process starts at the root with all the points as one cluster
 - ☐ It recursively splits the higher level clusters to build the dendrogram
 - Can be considered as a global approach
 - More efficient when compared with agglomerative clustering

Clustering Validation

- Clustering Validation: Basic Concepts
- Clustering Evaluation: Measuring Clustering Quality
- External Measures for Clustering Validation
 - I: Matching-Based Measures
 - ☐ II: Entropy-Based Measures
 - ☐ III: Pairwise Measures
- Internal Measures for Clustering Validation
- Relative Measures
- Cluster Stability
- Clustering Tendency

Clustering Validation and Assessment

- □ Major issues on clustering validation and assessment
 □ Clustering evaluation
 - - Evaluating the goodness of the clustering
 - **Clustering stability**

- ค.คอที่ เช่น ฟลียนพาธาลิเดาง โนิกนี้ย ผลลัพธ์ จะเปลี่ยน ลกกนับ ยุทล่ไกน
- ☐ To understand the sensitivity of the clustering result to various algorithm parameters, e.g., # of clusters
- Clustering tendency a business of mom clustering
 - □ Assess the suitability of clustering, i.e., whether the data has any inherent grouping structure

Measuring Clustering Quality

- □ Clustering Evaluation: Evaluating the goodness of clustering results
 - No commonly recognized best suitable measure in practice
- ☐ Three categorization of measures: External, internal, and relative
 - **External**: Supervised, employ criteria not inherent to the dataset
 - □ Compare a clustering against prior or expert-specified knowledge (i.e., the ground truth) using certain clustering quality measure
 - Internal: Unsupervised, criteria derived from data itself
 - Evaluate the goodness of a clustering by considering how well the clusters are separated and how compact the clusters are, e.g., silhouette coefficient
 - Relative: Directly compare different clusterings, usually those obtained via different parameter settings for the same algorithm

Measuring Clustering Quality: External Methods

en moun in vol

- \Box Given the **ground truth** T, Q(C, T) is the **quality measure** for a clustering C
- \square Q(C, T) is good if it satisfies the following **four** essential criteria
- Cluster homogeneity Tabonnowwow L= (AAAA) (BABA) X Talons

 The purer, the better
 - ☐ The purer, the better
- Cluster completeness กลุ่งเดียวกัน (AAAA) (BB) (AA)

 Assign objects belonging to the same category in the ground truth to the same cluster
- (กรณีที่ชี 1,2 คารเพื่อการณี 2)
 - □ Putting a heterogeneous object into a pure cluster should be penalized more than putting it into a rag bag (i.e., "miscellaneous" or "other" category)
- Small cluster preservation เการ่องเป็นกลุ่ม เล็กกุลกาเก็นโป
 - Splitting a small category into pieces is more harmful than splitting a large category into pieces GCCAMES

Commonly Used External Measures

- Matching-based measures
- (To be covered)
- Purity, maximum matching, F-measure
- Entropy-Based Measures
 - Conditional entropy

(To be covered)

Normalized mutual information (NMI)

(To be covered)

- Variation of information
- Pairwise measures

(To be covered)

- Four possibilities: True positive (TP), FN, FP, TN
- ☐ Jaccard coefficient, Rand statistic, Fowlkes-Mallow measure
- Correlation measures
 - Discretized Huber static, normalized discretized Huber static

Internal Measures (I): BetaCV Measure

- metho pata ingenson mon annings-any □ A trade-off in maximizing intra-cluster compactness and inter-cluster separation
- \square Given a clustering $C = \{C_1, \ldots, C_k\}$ with k clusters, cluster C_i containing $n_i = |C_i|$ points
 - Let W(S, R) be sum of weights on all edges with one vertex in S and the other in R

 - The sum of all the intra-cluster weights over all clusters: $W_{in} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, C_i)$ The sum of all the inter-cluster weights: $W_{out} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, \overline{C_i}) = \sum_{i=1}^{k-1} \sum_{j>i} W(C_i, C_j)$
 - The number of distinct intra-cluster edges:
 - The number of distinct inter-cluster edges:
- Beta-CV measure: $BetaCV = \frac{W_{in} / N_{in}}{W_{out} / N_{out}}$
 - The ratio of the mean intra-cluster distance to the mean inter-cluster distance
 - The smaller, the better the clustering

Internal Measures (II): Normalized Cut and Modularity

- Normalized cut: $NC = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{vol(C_i)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, V)} = \sum_{i=1}^{k} \frac{W(C_i, \overline{C_i})}{W(C_i, C_i) + W(C_i, \overline{C_i})} = \sum_{i=1}^{k} \frac{1}{\frac{W(C_i, \overline{C_i})}{W(C_i, \overline{C_i})} + 1}$ where $vol(C_i) = W(C_i, V)$ is the volume of cluster C_i
 - ☐ The higher normalized cut value, the better the clustering

- **Modularity** (for graph clustering) $Q = \sum_{i=1}^{k} \left(\frac{W(C_i, C_i)}{W(V, V)} \left(\frac{W(C_i, V)}{W(V, V)} \right)^2 \right)$ Modularity Q is defined as
 - where $W(V,V) = \sum_{i=1}^{k} W(C_i,V) = \sum_{i=1}^{k} W(C_i,C_i) + \sum_{i=1}^{k} W(C_i,\overline{C_i}) = 2(W_{in} + W_{out})$
 - \square Modularity measures the difference between the observed and expected fraction of weights on edges within the clusters.
 - The smaller the value, the better the clustering—the intra-cluster distances are lower than expected

Relative Measure

- □ Relative measure: Directly compare different clusterings, usually those obtained via different parameter settings for the same algorithm
- □ Silhouette coefficient as an internal measure: Check cluster cohesion and separation
 - For each point \mathbf{x}_i , its silhouette coefficient s_i is: $s_i = \frac{\mu_{out}^{min}(\mathbf{x}_i) \mu_{in}(\mathbf{x}_i)}{\max\{\mu_{out}^{min}(\mathbf{x}_i), \mu_{in}(\mathbf{x}_i)\}}$ where $\mu_{in}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its own cluster $\mu_{out}^{min}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its closest cluster
 - Silhouette coefficient (SC) is the mean values of s_i across all the points: $SC = \frac{1}{n} \sum_{i=1}^{n} s_i$
 - □ *SC* close to +1 implies good clustering
 - □ Points are close to their own clusters but far from other clusters
- □ Silhouette coefficient as a relative measure: Estimate the # of clusters in the data

$$SC_i = \frac{1}{n_i} \sum_{x_i \in C_i} s_j$$
 Pick the k value that yields the best clustering, i.e., yielding high values for SC and SC_i ($1 \le i \le k$)