### Abschlussklausur

#### Betriebssysteme und Rechnernetze

1. August 2019

| Name:                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vorname:                                                                                                                                                                                                                                                  |
| Matrikelnummer:                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                           |
| Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig<br>bearbeite und dass ich mich gesund und prüfungsfähig fühle.<br>Mir ist bekannt, dass mit dem Erhalt der Aufgabenstellung die Klausur als<br>angetreten gilt und bewertet wird. |
| Unterschrift:                                                                                                                                                                                                                                             |

- Schreiben Sie Ihre Lösungen auf die vorbereiteten Blätter. Eigenes Papier darf nicht verwendet werden.
- Als Hilfsmittel ist ein selbständig vorbereitetes und handschriftlich einseitig beschriebenes DIN-A4-Blatt zugelassen (keine Kopien!).
- Als Hilfsmittel ist ein Taschenrechner zugelassen.
- Verwenden Sie keinen Rotstift.
- Die Bearbeitungszeit beträgt 60 Minuten.
- Schalten Sie Ihre Mobiltelefone aus.

### Bewertung:

| Aufgabe:          | 1 | 2 | 3  | 4 | 5 | 6 | 7 | 8 | $\Sigma$ | Note |
|-------------------|---|---|----|---|---|---|---|---|----------|------|
| Maximale Punkte:  | 6 | 4 | 10 | 8 | 8 | 8 | 9 | 7 | 60       |      |
| Erreichte Punkte: |   |   |    |   |   |   |   |   |          |      |

**1.0**: 60.0-57,0 **1.3**: 56,5-54.0, **1.7**: 53,5-51.0, **2.0**: 50,5-48.0, **2.3**: 47,5-45.0,

 $\textbf{2.7}:\ 44.5\text{-}42.0,\ \textbf{3.0}:\ 41.5\text{-}39.0,\ \textbf{3.3}:\ 38.5\text{-}36.0,\ \textbf{3.7}:\ 35.5\text{-}33.0,\ \textbf{4.0}:\ 32.5\text{-}30.0,\ \textbf{5.0}:\ <30.0,\ \textbf{3.7}:\ 35.5\text{-}33.0,\ \textbf{3.8}:\ 38.5\text{-}30.0,\ \textbf{3.8}:\ 38$ 

| Name | e:                                            | Vorname:                          | Matr.Nr.:                         |
|------|-----------------------------------------------|-----------------------------------|-----------------------------------|
|      | ufgabe 1)                                     |                                   | Punkte:                           |
| Maxi | male Punkte: 0.5+0.5                          | +1+1+1+1+1=6                      |                                   |
| a)   | Zu jedem Zeitpunkt l<br>den Fachbegriff für d |                                   | n laufen. Nennen Sie den passen-  |
| b)   | Nennen Sie den Fachl                          | pegriff der quasi-parallelen Prog | gramm- bzw. Prozessausführung.    |
| c)   | Welche zwei Grupper<br>Übertragungseinheit?   |                                   | n gibt es bezüglich der kleinsten |
| d)   | Nennen Sie für jede (                         | Gruppe aus Teilaufgabe c) zwei    | i Beispiele.                      |
| e)   | Beschreiben Sie, wie                          | die CPU auf den Primärspeich      | er zugreifen kann.                |
| f)   | Beschreiben Sie, wie                          | die CPU auf den Sekundärspei      | icher zugreifen kann.             |
| g)   | Beschreiben Sie, wie                          | die CPU auf den Tertiärspeich     | er zugreifen kann.                |

| Name:                       | Vorname:                                                       | Matr.Nr.:                                          |
|-----------------------------|----------------------------------------------------------------|----------------------------------------------------|
| Aufgab                      | e 2)                                                           | Punkte:                                            |
| Maximale Punkte             | : 4                                                            |                                                    |
| Kreuzen Sie bei je          | eder Aussage an, ob die Aussa                                  | ge wahr oder falsch ist.                           |
| a) Real Mode i              | ist für Multitasking-Systeme g                                 | geeignet.                                          |
| Wahr                        | □ Falsch                                                       |                                                    |
| ,                           | cted Mode läuft jeder Prozess<br>ten Kopie des physischen Adre | in seiner eigenen, von anderen Prozessen essraums. |
| $\square$ Wahr              | $\square$ Falsch                                               |                                                    |
| c) Bei statische            | er Partitionierung entsteht int                                | erne Fragmentierung.                               |
| $\square$ Wahr              | ☐ Falsch                                                       |                                                    |
| d) Bei dynamis<br>□ Wahr    | scher Partitionierung ist extern                               | ne Fragmentierung unmöglich.                       |
| e) Beim Paging              | g haben alle Seiten die gleiche                                | Länge.                                             |
| f) Ein Vorteil              | langer Seiten beim Paging ist                                  | geringe interne Fragmentierung.                    |
| $\square$ Wahr              | $\square$ Falsch                                               |                                                    |
| g) Ein Nachtei<br>kann.     | l kurzer Seiten beim Paging i                                  | st, das die Seitentabelle sehr groß werden         |
| $\square$ Wahr              | $\square$ Falsch                                               |                                                    |
| h) Die MMU ü<br>physische A | 9 9 9                                                          | Speicheradressen mit der Seitentabelle in          |

 $\square$  Falsch

 $\square$  Wahr

| Name:                                                                                           | Vorname:                                             | Matr.Nr.:                                      |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|
| Aufgabe                                                                                         | e <b>3</b> )                                         | Punkte:                                        |
| Maximale Punkte:                                                                                | 10                                                   |                                                |
| a) Geben Sie an                                                                                 | , welche Informationen ein                           | Inode speichert.                               |
| b) Nennen Sie <u>z</u> v                                                                        | <u>wei</u> Beispiele für Metadate                    | en im Dateisystem.                             |
| c) Beschreiben S                                                                                | Sie, was ein Cluster im Da                           | teisystem ist.                                 |
| ,                                                                                               | Sie, wie ein UNIX-Dateisys<br>12 Cluster adressiert. | etem (z.B. ext2/3), das keine Extents verwen-  |
| e) Beschreiben S                                                                                | Sie, wie Verzeichnisse bei L                         | zinux-Dateisystemen technisch realisiert sind. |
| f) Die meisten E                                                                                | Betriebssystemen arbeiten  Write-Through             |                                                |
| g) /home/ <benu< td=""><td>tzername&gt;/Mail/inbox/i</td><td>ist ein iver Pfadname</td></benu<> | tzername>/Mail/inbox/i                               | ist ein iver Pfadname                          |
| h) Nennen Sie d                                                                                 | ie Information, die der Bo                           | otsektor eines Dateisystems speichert.         |
| i) Nennen Sie d                                                                                 | ie Information, die der Suj                          | perblock eines Dateisystems speichert.         |
| j) Erklären Sie v                                                                               | varum manche Dateisyster                             | ne (z.B. ext2/3) die Cluster des Dateisystems  |

zu Blockgruppen zusammenfassen.

| Name:                         | Vorname:                                                     | Matr.Nr.:                                 |        |
|-------------------------------|--------------------------------------------------------------|-------------------------------------------|--------|
| Aufgab                        | e 4)                                                         | Punkte:                                   |        |
| Maximale Punkte               | 2: 2+1+1+3+1=8                                               |                                           |        |
| *                             | Sie, was die Dateizuordnung<br>che Informationen diese enthä | gstabelle bzw. File Allocation Table (lt. | FAT)   |
|                               |                                                              |                                           |        |
|                               |                                                              |                                           |        |
| b) Beschreiber                | Sie die Aufgabe des Journals                                 | s bei Journaling-Dateisystemen.           |        |
| c) Nennen Sie<br>ohne Journa  |                                                              | g-Dateisystemen gegenüber Dateisyst       | emen   |
| d) Nennen Sie                 | die drei Werte, die zum Spei                                 | chern eines Extents nötig sind.           |        |
| e) Beschreiber<br>rung der Cl |                                                              | s von Extents gegenüber direkter Adr      | essie- |

| Name: |                                  | Vorname:                   | Matr.Nr.:                     |             |
|-------|----------------------------------|----------------------------|-------------------------------|-------------|
| Au    | ifgabe 5)                        |                            | Punkte:                       |             |
| Maxim | nale Punkte: 8                   |                            |                               |             |
| a) I  | Beschreiben Sie, was             | der Systemaufruf <b>ex</b> | ec() macht.                   |             |
| b) I  | Beschreiben Sie, was             | der Systemaufruf fo        | rk() macht.                   |             |
| c) I  | Erklären Sie, was ini            | t ist.                     |                               |             |
|       | Nennen Sie den Unt<br>Erzeugung. | erschied eines Kindj       | prozess vom Elternprozess ku  | rz nach dei |
|       | Beschreiben, Sie was<br>vird.    | passiert, wenn ein E       | lternprozess vor dem Kindproz | ess beendet |
| f) N  | Nennen Sie den Inhal             | t des Textsegments.        |                               |             |
| g) N  | Nennen Sie den Inhal             | t des Heap.                |                               |             |

h) Nennen Sie den Inhalt des Stack.

| Nam  | e:                                         | Vorname:               | Matr.Nr.:                                   |
|------|--------------------------------------------|------------------------|---------------------------------------------|
|      | ufgabe 6)                                  |                        | Punkte:                                     |
| Maxi | imale Punkte: 8                            |                        |                                             |
| a)   | Nennen Sie ein Proto                       | skoll der Sicherungssc | hicht.                                      |
| b)   | Nennen Sie den Nam<br>getauscht werden.    | en der Schicht im hy   | briden Referenzmodell, in der Pakete aus-   |
| c)   | Nennen Sie den Nam<br>getauscht werden.    | en der Schicht im hy   | briden Referenzmodell, in der Signale aus-  |
| d)   | Nennen Sie ein Proto                       | skoll der Bitübertragı | ${ m ings}$ schicht.                        |
| e)   | Nennen Sie den Nar<br>(Frames) ausgetausch |                        | hybriden Referenzmodell, in der Rahmen      |
| f)   | Nennen Sie den Fach<br>wenden.             | begriff der Adressen,  | , die Protokolle der Sicherungsschicht ver- |
| g)   | Nennen Sie ein Proto                       | skoll der Vermittlung  | sschicht.                                   |
| h)   | Nennen Sie den Fach<br>wenden.             | nbegriff der Adressen  | , die Protokolle der Transportschicht ver-  |

# Aufgabe 7)

Punkte: .....

Maximale Punkte: 2+7=9

- a) Kreuzen Sie vier Bedingungen an, die gleichzeitig erfüllt sein müssen, damit ein Deadlock entstehen kann?
  - ☐ Rekursive Funktionsaufrufe
  - ☐ Wechselseitiger Ausschluss ☐ Häufige Funktionsaufrufe
  - ☐ Geschachtelte for-Schleifen
  - Ununterbrechbarkeit
- ☐ Anforderung weiterer Betriebsmittel
- □ > 128 Prozesse im Zustand blockiert
- ☐ Iterative Programmierung
- ☐ Zyklische Wartebedingung
- ☐ Warteschlangen
- b) Kommt es zum Deadlock?

Führen Sie die Deadlock-Erkennung mit Matrizen durch.

Ressourcenvektor = 
$$\begin{pmatrix} 4 & 8 & 6 & 6 & 5 \end{pmatrix}$$

Belegungsmatrix = 
$$\begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 & 4 \\ 1 & 0 & 2 & 1 & 1 \end{bmatrix}$$

$$Belegungsmatrix = \begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 & 4 \\ 1 & 0 & 2 & 1 & 1 \end{bmatrix} \qquad An forderungsmatrix = \begin{bmatrix} 3 & 3 & 2 & 4 & 5 \\ 0 & 3 & 1 & 4 & 0 \\ 0 & 2 & 3 & 5 & 4 \end{bmatrix}$$

| Name: Vorname: | Matr.Nr.: |
|----------------|-----------|
|----------------|-----------|

## Aufgabe 8)

Punkte: .....

Maximale Punkte: 7

- Ein Erzeuger schreibt Daten in den Puffer und der Verbraucher entfernt diese.
- Gegenseitiger Ausschluss ist nötig, um Inkonsistenzen zu vermeiden.
- Ist der Puffer voll, muss der Erzeuger blockieren.
- Ist der Puffer leer, muss der Verbraucher blockieren.



Synchronisieren Sie die beiden Prozesse, indem Sie die nötigen Semaphoren erzeugen, diese mit Startwerten versehen und Semaphor-Operationen einfügen.