Calculus for Engineers

Jeff Chak-Fu WONG¹

August 2015

 $^{^{1}\}mathrm{Copyright}$ © 2015 by Jeff Chak-Fu WONG

Contents

Curve s	sketching technique	1
16.1	Motivation	1
16.2	Worked Examples	2

CONTENTS

Curve sketching technique

16.1 Motivation

Graphing Strategy for y = f(x)

Step 1 Analyze f(x).

- 1. **Domain:** Find the domain of f.
 - The domain of f is the set of all real numbers x that produce real values for f(x)
 - This will be useful when finding vertical asymptotes and determining critical numbers.
- 2. **Intercepts:** Find the x-and y-intercepts of the function, if possible.
 - The y intercept of f(0), if it exists; the x intercepts are the solutions to f(x), if they exist.
- 3. **Symmetry:** Determine whether the function is an odd function, an even function or neither odd nor even.
 - If f(-x) = f(x) for all x in the domain, then f is even and symmetric about the y-axis.
 - If f(-x) = -f(x) for all x in the domain, then f is odd and symmetric about the origin.
- 4. **Asymptotes:** Find vertical, horizontal and slant asymptotes.
 - use Chapter 5, if they apply; otherwise, calculate limits at points of discontinuity and as x increases and decreases without bound.

Step 2 Analyze f'(x).

- 1. **Critical points:** Find any critical points for f(x) and any partition numbers for f'(x).
 - Remember, every critical point for f(x) is also a partition number for f'(x), but some partition numbers for f'(x) may not be critical points for f(x).
- 2. Intervals of Increase and Decrease: Construct a sign chart for f'(x), determine the intervals where f(x) is increasing and decreasing, and find local maxima and minima.

3. **Local Maximum/Minimum:** Find the critical numbers of the function. Remember that the number c in the domain is a critical number if f'(c) = 0 or f'(c) does not exist. Use the first derivative test to find the local maximums and minimums of the function.

Step 3 Analyze f''(x). Concavity and Points of Inflection:

- 1. Construct a sign chart for f''(x),
- 2. Determine where the graph of f is concave upward and concave downward, and
- 3. Find any inflection points.

Step 4 Sketch the graph of f.

- 1. Draw asymptotes and locates intercepts, local maxima and minima, and inflection points.
- 2. Sketch in what you know from Steps 1 to 3.
- 3. In regions of uncertainty, use point-by-point plotting to complete the graph.

16.2 Worked Examples

Example 1 Use the steps from the curve sketching technique to sketch the graph of

$$f(x) = \frac{x^2 + 5x + 4}{x^2}.$$

- 1. Find the domain.
- 2. Find the x- and y-intercept(s).
- 3. Determine if the function is symmetrical.
- 4. Find the vertical/horizontal asymptote(s), if any.
- 5. Find the slant asymptote(s), if any.
- 6. Find the intervals of increase and decrease.
- 7. Find the local maximum(s) and minimum(s).
- 8. Find the intervals of concavity.
- 9. Find the point(s) of inflection.
- 10. Sketch the curve.

Solution:

1. Take

$$f(x) = \frac{x^2 + 5x + 4}{x^2}.$$

The domain is given by

$$\{x | x^2 \neq 0\} = \{x | x \neq 0\} = (-\infty, 0) \cup (0, +\infty).$$

2. To find the x-intercept, we let y=0 and solve the equation for x:

$$0 = \frac{x^2 + 5x + 4}{x^2}$$
$$0 = x^2 + 5x + 4$$
$$0 = (x+1)(x+4)$$
$$x = -1, -4.$$

So, the function crosses the x-axis at (-1,0) and (-4,0). Since the function is not defined at x = 0, there is no y-intercept.

3. Take

$$f(x) = \frac{x^2 + 5x + 4}{x^2}.$$

To check for symmetry, we must find the equation for f(-x).

$$f(-x) = \frac{(-x)^2 + 5(-x) + 4}{(-x)^2} = \frac{x^2 - 5x + 4}{x^2} \neq -f(x) \neq f(x).$$

Since $f(-x) \neq -f(x)$ and $f(-x) \neq f(x)$, the function is neither odd nor even. Therefore, the function is not symmetrical.

4. Since the function is undefined when x = 0, we must check the limit as x approaches 0, to see if there is a vertical asymptote.

If there is a vertical asymptote, we want to check if the function approaches positive or negative infinity on either side of the asymptote:

$$\lim_{x \to 0^{-}} \frac{x^2 + 5x + 4}{x^2}$$

$$= \frac{(-0.000 \cdots 01)^2 + 5(-0.000 \cdots 01) + 4}{(-0.000 \cdots 01)^2}$$

$$= \frac{[\text{very small positive number}] + 5[\text{very small negative number}] + 4}{[\text{very small positive number}]}$$

$$= \frac{[\text{positive number}]}{[\text{very small positive number}]}$$

$$= +\infty.$$

and

$$\lim_{x \to 0^+} \frac{x^2 + 5x + 4}{x^2}$$

$$= \frac{(0.000 \cdots 01)^2 + 5(0.000 \cdots 01) + 4}{(0.000 \cdots 01)^2}$$

$$= \frac{[\text{very small positive number}] + 5[\text{very small positive number}] + 4}{[\text{very small positive number}]}$$

$$= \frac{[\text{positive number}]}{[\text{very small positive number}]}$$

$$= +\infty.$$

Since $\lim_{x\to 0^-} f(x) = +\infty$, the line x=0 is a vertical asymptote. The function approaches infinity on either side of the asymptote.

To find the horizontal asymptotes of the function, we must find the limit as x approaches positive and negative infinity.

$$\lim_{x \to -\infty} \frac{x^2 + 5x + 4}{x^2} = \lim_{x \to -\infty} \frac{x^2 + 5x + 4\left(\frac{1}{x^2}\right)}{x^2 \left(\frac{1}{x^2}\right)}$$

$$= \lim_{x \to -\infty} \frac{\frac{x^2}{x^2} + \frac{5x}{x^2} + \frac{4}{x^2}}{\frac{x^2}{x^2}}$$

$$= \lim_{x \to -\infty} \frac{1 + \frac{5}{x} + \frac{4}{x^2}}{1}$$

$$= \frac{1 + 0 + 0}{1}$$

$$= 1.$$

Similarly,

$$\lim_{x \to +\infty} \frac{x^2 + 5x + 4}{x^2} = \lim_{x \to +\infty} \frac{x^2 + 5x + 4\left(\frac{1}{x^2}\right)}{x^2 \left(\frac{1}{x^2}\right)}$$

$$= \lim_{x \to +\infty} \frac{\frac{x^2}{x^2} + \frac{5x}{x^2} + \frac{4}{x^2}}{\frac{x^2}{x^2}}$$

$$= \lim_{x \to +\infty} \frac{1 + \frac{5}{x} + \frac{4}{x^2}}{1}$$

$$= \frac{1 + 0 + 0}{1}$$

$$= 1.$$

Therefore, the function has a horizontal asymptotes of y = 1. The function approaches the asymptote as x approaches positive and negative infinity.

5. To find the intervals of increase and decrease, we must take the first derivative of the function:

$$f(x) = \frac{x^2 + 5x + 4}{x^2}.$$

$$f'(x) = \frac{(x^2)\frac{d}{dx}(x^2 + 5x + 4) - (x^2 + 5x + 4)\frac{d}{dx}(x^2)}{x^4}$$

$$= \frac{-(5x + 8)}{x^3}.$$

We must solve the equation f'(x) = 0 to find the endpoints of the interval

$$0 = \frac{-(5x+8)}{x^3}$$
$$0 = -5x - 8$$
$$x = -\frac{8}{5}$$

The derivative f'(x) = 0 when $x = -\frac{8}{5}$. The derivative is undefined when x = 0. These two values give us the intervals in which the function will be constantly increasing or constantly decreasing. The intervals are calculated in the chart below:

Interval	-(5x + 8)	x^3	f'(x)	f
$(-\infty, -8/5)$	+	_	_	decreasing \(
(-8/5,0)	_	_	+	increasing \nearrow
$(0,+\infty)$	_	+	_	decreasing \searrow

So, the function is increasing on $(-\infty, -8/5)$ and decreasing (-8/5, 0) and $(0, +\infty)$.

Interval	-(5x + 8)	x^3	f'(x)	f
$(-\infty, -8/5)$	+	_	_	decreasing
(-8/5,0)	_	_	+	increasing \nearrow
$(0, +\infty)$	_	+	_	decreasing \searrow

6. Since f'(x) = 0 when $x = -\frac{8}{5}$, it is a critical value of the function. Since x = 0 is not in the domain of the function, it is not a critical value.

The chart above shows that at $x = -\frac{8}{5}$, the derivative changes from negative to positive. By the first-derivative test, there is a local minimum at $x = -\frac{8}{5}$.

$$f\left(-\frac{8}{5}\right) = \frac{\left(-\frac{8}{5}\right)^2 + 5\left(-\frac{8}{5}\right) + 4}{\left(-\frac{8}{5}\right)^2} = -\frac{9}{16}.$$

So the function has a local minimum at the point $\left(-\frac{8}{5}, -\frac{9}{16}\right)$.

7. To find the intervals of concavity, we must take the second derivative of the function. By the quotient rule, we have

$$f''(x) = \frac{10x + 24}{x^4}.$$

We must find the values of x for which f''(x) = 0 or f''(x) is undefined, in order to find the endpoints of the interval of concavity. By inspection, f''(x) is undefined when x = 0. We must determine when f''(x) = 0.

$$0 = \frac{10x + 24}{r^4}$$

$$0 = 10x + 24$$

$$x = -\frac{12}{5}$$

These two values of x give us three intervals in which the function will have a constant concavity. The intervals are calculated in the chart below:

Interval
$$10x + 24$$
 x^4 $f''(x)$ f $(-\infty, -12/5)$ $+$ $-$ Concave downward $(-12/5, 0)$ $+$ $+$ $+$ Concave upward $(0, +\infty)$ $+$ $+$ Concave upward

Thus, the function is concave downward on $(-\infty, -12/5)$ and concave upward on (-12/5, 0) and $(0, +\infty)$. Since the function changes concavity when $x = -\frac{12}{5}$, there is a point of inflection at that value of x.

Substituting $x = -\frac{12}{5}$ into f(x), we have

$$f\left(-\frac{12}{5}\right) = \frac{\left(-\frac{12}{5}\right)^2 + 5\left(-\frac{12}{5}\right) + 4}{\left(-\frac{12}{5}\right)^2} = -\frac{7}{18}.$$

So the function has a point of inflection at $\left(-\frac{12}{5}, -\frac{7}{18}\right)$.

A sketch of the curve is shown below:

Figure 16.1: What do the dots mean?

Example 2 Sketch a graph of the following functions:

1.
$$f(x) = \frac{x^2 + 12}{2x + 1}$$
;

2.
$$f(x) = 2 - x^{2/3} + x^{4/3}$$
.

If an interval is not specified, graph the function on its domain. Use a graphing utility to check your work. Answer the following questions, if any:

- 1. Identify the domain or interval of interest.
- 2. Exploit symmetry.
- 3. Find the first and second derivatives.

9

- 4. Find critical points and possible inflection points.
- 5. Find intervals on which the function is increasing/descreasing and concave up/down.
- 6. Identify extreme values and inflection points.
- 7. Locate vertical/horizontal/slant asymptotes and determine end behaviour.
- 8. Find the intercepts.
- 9. Choose an appropriate graphing window and make a graph.

Solutions:

- 1. Take $f(x) = \frac{x^2 + 12}{2x + 1}$.
- 1. Domain of $f = \{x \in \mathbb{R} | x \neq -0.5\} = (-\infty, -0.5) \cup (-0.5, +\infty).$
- 2. Note that $f(-x) = \frac{x^2 + 12}{-2x + 1}$, then $f(-x) \neq f(x)$ and $f(-x) \neq -f(x)$ for some x. Let us take x = 1, then f(-1) = -13 and $f(1) = \frac{13}{3}$, so $f(-1) \neq f(1)$ and $f(-1) \neq -f(1)$. Thus, f is neither odd nor even.
- 3. Compute the first and the second derivatives of f:

$$f' = \frac{2x(2x+1) - 2(x^2+12)}{(2x+1)^2} = 2\frac{(x+4)(x-3)}{(2x+1)^2}$$

and

$$f'' = 2\left(\frac{x^2 + x - 12}{(2x+1)^2}\right)' = 2\frac{(2x+1)(2x+1)^2 - 2\cdot 2(2x+1)(x^2 + x - 12)}{(2x+1)^4} = \frac{98}{(2x+1)^3}.$$

- 4. Solve f'(x) = 0, then we get x = -4 and x = 3 are the critical points of f; Since $f'' = \frac{98}{(2x+1)^3}$, then x = -0.5 is the only one point that can change concavity sign from plus to minus or from minus to plus. Thus, x = -0.5 is the only one possible inflection point of f, but it's not in the domain. Thus, there exists no inflection point of f.
- 5. Here are the results

$x \leq -4$	-4 < x < -0.5	-0.5	-0.5 < x < 3	$x \ge 3$	
Increasing	Decreasing	Not defined	Decreasing	Increasing	
Concave downward	Concave downward	Not defined	Concave upward	Concave upward	

6. Local maximum point: (-4, -4), since f''(-4) < 0;

Local minimum point: (3,3), since f''(3) > 0.

There exists no inflection point. (See (4)).

7. (a) Vertical asymptote: x = -0.5.

Furthermore, we also compute

$$\lim_{x \to -0.5^+} f(x) = \lim_{x \to -0.5^+} \frac{x^2 + 12}{2x + 1} = +\infty$$

and

$$\lim_{x \to -0.5^{-}} f(x) = \lim_{x \to -0.5^{-}} \frac{x^2 + 12}{2x + 1} = -\infty.$$

This leads to the following geometrical observation:

- As $x \to -0.5^+$, $f(x) \to +\infty$ which means that the graph shoots upward as it approaches its vertical asymptote x = -0.5 from the right.
- As $x \to -0.5^-$, $f(x) \to -\infty$ which means that the graph shoots downward as it approaches its vertical asymptote x = -0.5 from the left.
- (b) Slant asymptote: $y = \frac{1}{2}x \frac{1}{4}$.

We investigate whether the function stabilizes toward a linear function as $x \to \pm \infty$.

By the long division, we have

So we have

$$f(x) = \frac{1}{2}x - \frac{1}{4} + \frac{49}{4(2x+1)}.$$

Then

$$\lim_{x \to +\infty} f(x) - \frac{1}{2}x - \frac{1}{4} = \lim_{x \to +\infty} \frac{49}{4(2x+1)} = 0$$

and

$$\lim_{x \to -\infty} f(x) - \frac{1}{2}x - \frac{1}{4} = \lim_{x \to -\infty} \frac{49}{4(2x+1)} = 0.$$

That is, f(x) will behave like the line $y = \frac{1}{2}x - \frac{1}{4}$ as $x \to \pm \infty$.

Therefore, the slant asymptote is $y = \frac{1}{2}x - \frac{1}{4}$.

(c) Horizontal asymptote: There exists no horizontal asymptotes.

We investigate whether the function stabilizes toward a constant as $x \to \pm \infty$. That is,

$$\lim_{x \to \pm \infty} \frac{x^2 + 12}{2x + 1} = \lim_{x \to \pm \infty} \frac{x + \frac{12}{x}}{2 + \frac{1}{x}} = \pm \infty.$$

That is, f(x) goes to $+\infty$ as x goes to $+\infty$; f(x) goes to $-\infty$ as x goes to $-\infty$. We know that there is no horizontal asymptotes.

- 8. There exists no x-intercept, since there is no solution for f(x) = 0. And y-intercept is y = 12, since f(0) = 12.
- 9. See Figure 16.2.

Figure 16.2:

2. Take $f(x) = 2 - x^{2/3} + x^{4/3}$.

Solutions:

1. Domain of $f = \mathbb{R} = (-\infty, +\infty)$.

2. Even. Since
$$f(x) = 2 - x^{2/3} + x^{4/3} = 2 - (-x)^{2/3} + (-x)^{4/3} = f(-x)$$
.

3. Compute the first and the second derivatives of f:

$$f' = -\frac{2}{3}x^{-\frac{1}{3}} + \frac{4}{3}x^{\frac{1}{3}}$$

and

$$f'' = \frac{2}{9}x^{-\frac{4}{3}} + \frac{4}{9}x^{-\frac{2}{3}}.$$

4. Critical points: $\left(-\frac{\sqrt{2}}{4}, \frac{7}{4}\right)$ and $\left(\frac{\sqrt{2}}{4}, \frac{7}{4}\right)$. Because solve f'(x) = 0, we get $x = -\frac{\sqrt{2}}{4}$ and $x = \frac{\sqrt{2}}{4}$.

No inflection point. Because there is no solutions of f''(x) = 0.

5. Here are the results:

 $x_0 = 0.$

$x < -\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4}$	$-\frac{\sqrt{2}}{4} < x < 0$	0	$0 < x < \frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$x > \frac{\sqrt{2}}{4}$
Decreasing		Increasing		Decreasing		Increasing
Concave upward		Concave upward		Concave upward		Concave upward

6. Local minimum points: $\left(-\frac{\sqrt{2}}{4}, \frac{7}{4}\right)$ and $\left(\frac{\sqrt{2}}{4}, \frac{7}{4}\right)$, since $f''(-\frac{\sqrt{2}}{4})$ and $f''(\frac{\sqrt{2}}{4})$ are positive. Local maximum point: (0, 2). Because when $x_0 = 0$, f(0) > f(x), $\forall x$ very close to

No inflection point. (See (4)).

- 7. No any asymptotes. Do you know why?
 - (a) Vertical asymptote: There is no such a point x_0 that $\lim_{x \to x_0^{\pm}} f(x) = \pm \infty$.
 - (b) Slant asymptote: No.

We investigate whether the function stabilizes toward a linear function as $x \to \pm \infty$.

Thm: y = kx + b is the slant or horizontal asymptote (line) of f as $x \to +\infty$ if and only if the following two limits exist:

$$k = \lim_{x \to +\infty} \frac{f(x)}{x}$$

and

$$b = \lim_{x \to +\infty} (f(x) - kx).$$

We compute $\lim_{x\to -\infty} \frac{2-x^{2/3}+x^{4/3}}{x}$ and $\lim_{x\to +\infty} \frac{2-x^{2/3}+x^{4/3}}{x}$, we get $\frac{2-x^{2/3}+x^{4/3}}{x}\to +\infty$ as $x\to \pm\infty$. Thus, there is no slant asymptote or horizontal one.

(c) (More reason) Horizontal asymptote: There are no horizontal asymptotes. We investigate whether the function stabilizes toward a constant as $x \to \pm \infty$. That is,

$$\lim_{x \to \pm \infty} 2 - x^{2/3} + x^{4/3} = +\infty,$$

since the power of the positive term is bigger than the negative term's.

That is, f(x) goes to $+\infty$ as x goes to $+\infty$; f(x) goes to $+\infty$ as x goes to $-\infty$. We know that there is no horizontal asymptotes.

- 8. y = 2 is the y-intercept by computing f(0). No x-intercepts, since there is no solution of f(x) = 0.
- 9. See Figures 16.3 and 16.4.

Figure 16.3: Graph of f, where $x \in [-5, 5]$.

Figure 16.4: Graph of f, where $x \in [-1, 1]$.