Теория Сибгатуллин Булат, Б01-007

Практика применения построения графиков и методов определения параметров теоретической зависимости (данные были взяты из работы 1.3.2).

Формулы используемые при выполнении работы:

$$M = \frac{\pi R^4 G}{2l} \varphi = f \varphi \tag{1}$$

$$f = \frac{\pi R^4 G}{2l} \tag{2}$$

1. Познакомимся с установкой, проверим, видно ли в зрительной трубе отражение шкалы в зеркальце. Измерим расстояние(l) от зеркальца до шкалы, определим диаметр стержня(D) и шкива($D_{\text{шк}}$).

l, cm	133,2	133,2	133,3	133,5	133,4	133,4	133,2	133,2	133,3	133,5
D, MM	5,95	5,93	5,95	5,95	5,94	5,95	5,94	5,95	5,95	5,94
R_{mk} , cm	10,1	10,11	10,1	10,11	10,11	10,1	10,1	10,1	10,1	10,1

Вычислим средние значения по формуле:

$$l = \frac{1}{N} \sum_{i=1}^{N} l_i \tag{3}$$

Здесь N - это количество измерений, тогда средние значения будут равны:

$$L = 133, 32 \ c$$
м $R = 2,973 \ м$ м $R_{\text{шк}} = 10,103 \ c$ м

Систематические погрешности узнаем из характеристик приборо, а случайные вычислим по формуле:

$$\sigma_l = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (l_i - l)^2} \tag{4}$$

$$\sigma_{l_{
m chct}} = 0, 1 \; c$$
м $\sigma_{l_{
m ch}} = 0, 37 \; c$ м

$$\sigma_{D_{ ext{chct}}} = \sigma_{R_{ ext{chct}}} = 0,01$$
 мм $\sigma_{D_{ ext{ch}}} = \sigma_{R_{ ext{ch}}} = 0,002$ мм

$$\sigma_{R_{
m mk\ chct}}=0,05$$
 мм $\sigma_{R_{
m mk\ cn}}=0,02$ мм

Зная случайные и систематические погрешности вычислим погрешности измерений по формуле:

$$\sigma_l = \sqrt{\sigma_{l_{\text{chct}}}^2 + \sigma_{l_{\text{ch}}}^2} \tag{5}$$

$$\sigma_l=0,38~c$$
м $\sigma_{R_{
m mk}}=0,054~$ мм $\sigma_R=0,01~$ мм

Увеличивая нагрузку на нитях снимем зависимость x=x(m), где x, смещение координат на шкале, отражающейся в зеркале, а m масса груза, подвешенного на нити:

m, г	198	396	594	792	594	396	198
x, cm	9,4	17,8	26,5	34,8	27,9	17,8	9,1
x, cm	9,1	17,8	26	36	28	17,7	9,4
x, cm	9,1	17	26	35	27,2	17,2	9,2
x, cm	9,2	17,6	25,7	34,9	28,3	17,9	9

Зная x и l можем посчитать угол φ по формуле:

$$\tan \varphi = \frac{x}{l}$$

По полученным данным построим зависимоть $\varphi=\varphi(M)$, где $M=mgR_{\text{mik}}$:

$M, H \cdot M$	0,1962	$0,\!3925$	0,5887	0,7850	0,5887	0,3925	0,1962
φ_1 , рад	0,0704	$0,\!1327$	0,1962	0,2553	0,2062	0,1327	0,0681
φ_1 , рад	0,0681	0,1327	0,1926	0,2637	0,2070	0,1320	0,0704
φ_1 , рад	0,0681	$0,\!1268$	0,1926	0,2567	0,2013	0,1283	0,0689
φ_1 , рад	0,0689	0,1312	0,1904	0,2560	0,2092	0,1335	0,0674

Вычислим средние значения φ_1 по формуле (3), для каждого момента сил, и построим таблицу:

$M, H \cdot M$	0,1962	0,3925	0,5887	0,7850	0,5887	0,3925	0,1962
φ_1 , рад	0,0688	0,1309	0,1930	0,2579	0,2059	$0,\!1316$	0,0687

Угол φ используемый в формуле (1) равен:

$$\varphi = \frac{\varphi_1}{2}$$

Тогда построим аналогичную таблицу для угла φ :

$M, H \cdot M$	0,1962	0,3925	0,5887	0,7850	0,5887	0,3925	0,1962
φ , рад	0,0344	0,0655	0,0965	0,1290	0,1030	0,659	0,0344

Погрешность момента сил определяется только погрешностью измерения $R_{
m m\kappa}$ и равна:

$$\sigma_M = M_{
m cp} \cdot rac{\sigma_{R_{
m mk}}}{R_{
m mk}} = 0,0017 \ {
m H} \cdot {
m M}$$

Погрешность измерения φ будет складываться из случаной и систематической погрешности. Случайную погрешность можем определить по формуле (4), а систематическую погрешность по формуле:

$$\frac{\sigma_{\varphi_{cucm}}}{\varphi} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2}$$

$M, H \cdot M$	0,1962	0,3925	0,5887	0,7850	0,5887	0,3925	0,1962
$\sigma_{\varphi_{cucm}}$, рад	$4,2\cdot 10^{-4}$	$5,3\cdot 10^{-4}$	$6.6 \cdot 10^{-4}$	$8,2\cdot 10^{-4}$	$6,9 \cdot 10^{-4}$	$5,3\cdot 10^{-4}$	$4,2\cdot 10^{-4}$
$\sigma_{\varphi_{cn}}$, рад	$9,4\cdot 10^{-4}$	$24,2\cdot 10^{-4}$	$20,8 \cdot 10^{-4}$	$33,7\cdot10^{-4}$	$28,9 \cdot 10^{-4}$	$19,9 \cdot 10^{-4}$	$11,2\cdot 10^{-4}$

Погрешность σ_{φ} найдем по формуле:

$$\sigma_{arphi} = \sqrt{\sigma_{arphi_{
m charg}} + \sigma_{arphi_{
m chct}}} = 0,0035~{
m pag}$$

При помощи метода наименьших квадратов построим график зависимости $\varphi = \varphi(M)$:

$$\varphi = kM$$

Где k найдем по формуле:

$$k = \frac{\langle M\varphi \rangle}{\langle M^2 \rangle} = \frac{0,081}{0,242} = 0,161$$

По формуле (1) определим значение f:

$$f = \frac{1}{k} = 6,253 \text{ H} \cdot \text{M}$$

Погрешность f будет находиться по формуле:

$$\sigma_f = f \sqrt{\left(rac{\sigma_{arphi}}{arphi_{
m cp}}
ight)^2 + \left(rac{\sigma_M}{M}
ight)^2} = 0,015 \ {
m H\cdot m}$$

Используя формулу (2) вычислим значение модуля сдвига G:

$$G = \frac{6,253 \cdot 2 \cdot 1,3332}{(2,973 \cdot 10^{-3})^4 \cdot 1,1415} = 6,791 \cdot 10^{10} \; \mathrm{H/m^2}$$

И погрешность модуля сдвига рассчитаем по формуле:

$$\sigma_G = G\sqrt{\left(\frac{\sigma_f}{f}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2 + \left(4\frac{\sigma_R}{R}\right)^2} = 2,87 \cdot 10^8 \,\mathrm{H/M^2}$$

Рис. 1. График зависимости $\varphi=\varphi(M)$