USEFUL ELEMENTARY FORMULAS

Trigonometric Formulae

***** Table of Standard Values:

$m{ heta} ightarrow$	0	$\frac{\pi}{6}$ or 30^{o}	$\frac{\pi}{4}$ or 45°	$\frac{\pi}{3}$ or 60^{o}	$\frac{\pi}{2}$ or 90°	π or 180°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	8	0

❖ Fundamental Identities:

1)
$$\sin^2 \theta + \cos^2 \theta = 1$$

2)
$$1 + \tan^2 \theta = \sec^2 \theta$$

3)
$$1 + \cot^2 \theta = \csc^2 \theta$$

❖ Addition / Subtraction Formulae:

1)
$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

2)
$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

3)
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

� Functions of $(-\theta)$

1)
$$\sin(-\theta) = -\sin\theta$$
 and $\cos(-\theta) = \cos\theta$

2)
$$cosec(-\theta) = -cosec\theta$$
 and $sec(-\theta) = sec\theta$

3)
$$tan(-\theta) = -tan \theta$$
 and $cot(-\theta) = -cot \theta$

• Functions of (2θ)

1)
$$\sin 2\theta = 2 \sin \theta \cos \theta$$

= $\frac{2 \tan \theta}{1 + \tan^2 \theta}$

2)
$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= 1 - 2\sin^2 \theta$$

$$= 2\cos^2 \theta - 1$$

$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$$

3)
$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

4)
$$1 - \cos 2\theta = 2 \sin^2 \theta$$
 AND 5) $1 + \cos 2\theta = 2 \cos^2 \theta$

6)
$$1 - \sin 2\theta = (\cos \theta - \sin \theta)^2$$
 AND 7) $1 + \sin 2\theta = (\cos \theta + \sin \theta)^2$

\clubsuit Functions of (θ)

1)
$$\sin \theta = 2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)$$

$$= \frac{2 \tan \left(\frac{\theta}{2}\right)}{1 + \tan^2 \left(\frac{\theta}{2}\right)}$$

2)
$$\cos \theta = \cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)$$

$$= 1 - 2\sin^2 \left(\frac{\theta}{2}\right)$$

$$= 2\cos^2 \left(\frac{\theta}{2}\right) - 1$$

$$= \frac{1 - \tan^2 \left(\frac{\theta}{2}\right)}{1 + \tan^2 \left(\frac{\theta}{2}\right)}$$

3)
$$\tan \theta = \frac{2 \tan \left(\frac{\theta}{2}\right)}{1 - \tan^2 \left(\frac{\theta}{2}\right)}$$

$$4) 1 - \cos \theta = 2 \sin^2 \left(\frac{\theta}{2}\right)$$

AND 5)
$$1 + \cos \theta = 2 \cos^2 \left(\frac{\theta}{2}\right)$$

6)
$$1 - \sin \theta = \left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)^2$$

7)
$$1 + \sin \theta = \left(\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\right)^2$$

\clubsuit Functions of (3θ)

1)
$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

2)
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

3)
$$\tan 3\theta = \frac{3 \tan \theta - \tan^3 \theta}{1 - 3 \tan^2 \theta}$$

Factorisation Formulae:

1)
$$\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$$

2)
$$\sin C - \sin D = 2 \cos \left(\frac{C + D}{2}\right) \sin \left(\frac{C - D}{2}\right)$$

3)
$$\cos C + \cos D = 2\cos\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$$

4)
$$\cos C - \cos D = -2 \sin\left(\frac{C + D}{2}\right) \sin\left(\frac{C - D}{2}\right)$$
, If $C > D$
= $2 \sin\left(\frac{C + D}{2}\right) \sin\left(\frac{D - C}{2}\right)$, If $D > C$

De factorisation Formulae:

1)
$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

2)
$$2 \cos A \sin B = \sin(A+B) - \sin(A-B)$$

3)
$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

4)
$$2\sin A \sin B = \cos(A - B) - \cos(A + B)$$

The formula in a nutshell

1)
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
 and $\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$

2)
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$
 and $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$

3)
$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$
 and $\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$

4)
$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$
 and $\cot\left(\frac{\pi}{2} + \theta\right) = -\tan\theta$

5)
$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$
 and $\csc\left(\frac{\pi}{2} + \theta\right) = \sec\theta$

6)
$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$
 and $\sec\left(\frac{\pi}{2} + \theta\right) = -\csc\theta$

7)
$$\sin(\pi - \theta) = \sin \theta$$
 and $\sin(\pi + \theta) = -\sin \theta$

8)
$$cos(\pi - \theta) = -cos \theta$$
 and $cos(\pi + \theta) = -cos \theta$

Properties of Inverse trigonometric functions:

1) Identities

$$i) \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

ii)
$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$

iii)
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

2) Functions of (-x)

i)
$$\sin^{-1}(-x) = -\sin^{-1}(x)$$

ii)
$$tan^{-1}(-x) = -tan^{-1}(x)$$

iii)
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$

3) Reciprocal Function:

i)
$$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}(x)$$
 and

$$\sin^{-1}\left(\frac{1}{x}\right) = \csc^{-1}(x) \qquad \text{and} \qquad$$

$$ii)$$
 $\cos^{-1}\left(\frac{1}{x}\right) = \sec^{-1}(x)$ and

$$iii)$$
 $tan^{-1}\left(\frac{1}{x}\right) = cot^{-1}(x)$ and

$$\csc^{-1}\left(\frac{1}{x}\right) = \sin^{-1}(x)$$

$$\sec^{-1}\left(\frac{1}{x}\right) = \cos^{-1}(x)$$

$$\cot^{-1}\left(\frac{1}{x}\right) = \tan^{-1}(x)$$

4)
$$i$$
) $\tan^{-1} \left[\frac{A+B}{1-AB} \right] = \tan^{-1} A + \tan^{-1} B$

ii)
$$\tan^{-1} \left[\frac{A - B}{1 + AB} \right] = \tan^{-1} A - \tan^{-1} B$$

Factorization:

1)
$$A^2 - B^2 = (A - B)(A + B)$$

2)
$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

3)
$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

4)
$$(A + B)^2 = (A^2 + 2AB + B^2)$$

5)
$$(A - B)^2 = (A^2 - 2AB + B^2)$$

6)
$$(A + B)^3 = (A^3 + 3A^2B + 3AB^2 + B^3)$$

7)
$$(A - B)^3 = (A^3 - 3AB^2 + 3A^2B - B^3)$$