

General Description

The AP2114 is CMOS process low dropout linear regulator with enable function, the regulator delivers a guaranteed 1A (Min.) continuous load current.

The AP2114 features low power consumption.

The AP2114 is available in 1.2V, 1.8V, 2.5V and 3.3V regulator output, and available in excellent output accuracy 1.5%, it is also available in an excellent load regulation and line regulation performance.

The AP2114 is available in standard packages of SOT-223, TO-252-2 (1), TO-252-2 (3), TO-263-3, SOIC-8 and PSOP-8.

Features

- Output Voltage Accuracy: ±1.5%
- Output Current: 1A (Min.)
- Fold-back Short Current Protection: 50mA
- Low Dropout Voltage (3.3V): 450mV (Typ.) @I_{OUT}=1A
- Stable with 4.7µF Flexible Cap: Ceramic, Tantalum and Aluminum Electrolytic
- Excellent Line Regulation: 0.02%/V (Typ.), 0.1%/V (Max.) @ I_{OUT}=30mA
- Excellent Load Regulation: 0.2% @I_{OUT}=0A to 1A
- Low Quiescent Current: 60μA (1.2V/1.8V/2.5V)
- Low Output Noise: 30μVRMS
- PSRR: 68dB @ Freq=1KHz (1.2V/1.8V)
- OTSD Protection
- Operating Temperature Range: -40°C to 85°C
- ESD: MM 400V, HBM 4000V

Applications

- LCD Monitor
- LCD TV
- STB

Figure 1. Package Types of AP2114

Pin Configuration

Figure 2. Pin Configuration of AP2114 (Top View)

Pin Descriptions

Pin Nu	mber	Pin	
SOT-223, TO-263-3, TO-252-2 (1) / (3)	SOIC-8/PSOP-8	Name	Function
1	1, 3, 5, 6, 7,	GND	Ground
2	2	VOUT	Regulated Output
3	4	VIN	Input Voltage Pin
	8	EN	Chip Enable, H – normal work, L – shutdown output

Functional Block Diagram

A (B)

A: SOT-223, TO-263-3, TO-252-2 (1)/(3)

B: SOIC-8, PSOP-8

Figure 3. Functional Block Diagram of AP2114

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
		AP2114H-1.2TRG1	GH12C	Tape & Reel
SOT-223	-40 to 85°C	AP2114H-1.8TRG1	GH12D	Tape & Reel
301-223	-40 to 83 C	AP2114H-2.5TRG1	GH14C	Tape & Reel
		AP2114H-3.3TRG1	GH12E	Tape & Reel
		AP2114D-1.2TRG1	AP2114D-1.2G1	Tape & Reel
TO-252-2 (1)/	-40 to 85°C	AP2114D-1.8TRG1	AP2114D-1.8G1	Tape & Reel
TO-252-2 (3)	-40 to 85°C	AP2114D-2.5TRG1	AP2114D-2.5G1	Tape & Reel
		AP2114D-3.3TRG1	AP2114D-3.3G1	Tape & Reel
	-40 to 85°C	AP2114S-1.2TRG1	AP2114S-1.2G1	Tape & Reel
TO-263-3		AP2114S-1.8TRG1	AP2114S-1.8G1	Tape & Reel
10-203-3		AP2114S-2.5TRG1	AP2114S-2.5G1	Tape & Reel
		AP2114S-3.3TRG1	AP2114S-3.3G1	Tape & Reel
		AP2114M-1.2TRG1	2114M-1.2G1	Tape & Reel
SOIC-8	40 to 050C	AP2114M-1.8TRG1	2114M-1.8G1	Tape & Reel
SOIC-8	-40 to 85°C	AP2114M-2.5TRG1	2114M-2.5G1	Tape & Reel
		AP2114M-3.3TRG1	2114M-3.3G1	Tape & Reel
		AP2114MP-1.2TRG1	2114MP-1.2G1	Tape & Reel
PSOP-8	40 to 959C	AP2114MP-1.8TRG1	2114MP-1.8G1	Tape & Reel
15UF-8	-40 to 85°C	AP2114MP-2.5TRG1	2114MP-2.5G1	Tape & Reel
		AP2114MP-3.3TRG1	2114MP-3.3G1	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage	V_{IN}	6.5	V
Operating Junction Temperature Range	T_{J}	150	°C
Storage Temperature Range	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C
ESD (Machine Model)		400	V
ESD (Human Body Model)		4000	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{IN}	2.5	6.0	V
Operating Ambient Temperature Range	T_{A}	-40	85	°C

Electrical Characteristics

AP2114-1.2 Electrical Characteristics (Note 2)

 $(V_{IN}=2.5V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25^{\circ}C, \textbf{Bold} \text{ typeface applies over } -40^{\circ}C \le T_A \le 85^{\circ}C \text{ ranges, unless otherwise specified (Note 3))}$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage	V_{OUT}	$V_{IN} = 2.5V$, $1mA \le I_{OUT} \le 30mA$	V _{OUT} ×98.5%	1.2	V _{OUT} ×101.5%	V
Input Voltage	V_{IN}				6.0	V
Maximum Output Current	$I_{OUT(MAX)} \\$	V_{IN} =2.5V, V_{OUT} =1.182V to 1.218V	1			A
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	V_{IN} =2.5V, 1mA \le I _{OUT} \le 1A		0.2	1	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	2.5V\(\leq V_{IN}\)\(\leq 6V\), I_{OUT}\(=30mA\)		0.02	±0.1	%/V
Dropout Voltage	V_{DROP}	I _{OUT} =1.0A		1200	1300	mV
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =0mA		60	75	μΑ
Power Supply Rejection	PSRR	Ripple 1Vp-p f=100Hz V _{IN} =2.5V,		68		dB
Ratio	Torus	$I_{OUT}=100 \text{mA}$ f=1KHz		68		uD
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I _{OUT} =30mA, T _A =-40°C to 85°C		±30		ppm/°C
Short Current Limit	I_{SHORT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	10Hz ≤ f ≤100kHz (No Load)		30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic high, regulator on	1.5			17
V _{EN} Low Voltage	$V_{\rm IL}$	Enable logic low, regulator off			0.4	V
Standby Current	I_{STD}	V _{IN} =3.5V, V _{EN} in OFF mode		0.01	1.0	μА
Start-up Time	T_{S}	No Load		20		μs
EN Pull Down Resistor	RPD			3.0		mΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Low		60		Ω
Thermal Shutdown Temperature	T_{OTSD}			160		°C
Thermal Shutdown Hysteresis	T_{HYOTSD}			25		
Thermal Resistance		SOIC-8		74.6		
	0	PSOP-8		43.7		°C /W
(Junction to Case)	$ heta_{ m JC}$	SOT-223 TO-252-2 (1) / TO-252-2 (3)		50.9 35		
		TO-263-3		22		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-1.8 Electrical Characteristics (Note 2)

 $(V_{IN}=2.8V, C_{IN}=4.7\mu F (Ceramic), C_{OUT}=4.7\mu F (Ceramic), Typical T_A = 25°C, Bold typeface applies over -40°C ≤ T_A ≤ 85°C ranges, unless otherwise specified (Note 3))$

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Output Voltage	$V_{ m OUT}$	$V_{IN} = 2.8V, 1 \text{mA} \le I_{OUT} \le 30 \text{mA}$		V _{OUT} ×98.5%	1.8	V _{OUT} ×101.5%	V
Maximum Output Current	$I_{OUT(MAX)}$	V _{IN} =2.8V, V _{OUT} =	=1.773V to 1.827V	1.0			A
Load Regulation	$\Delta V_{OUT}/V_{OUT}$ ΔI_{OUT}	V _{IN} =2.8V, 1mA	$\leq I_{OUT} \leq 1A$		0.2	1.0	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	2.8V≤V _{IN} ≤6V, I ₀	_{OUT} =30mA		0.02	±0.1	%/V
Dropout Voltage	V_{DROP}	I _{OUT} =1.0A			500	700	mV
Quiescent Current	I_Q	V _{IN} =2.8V, I _{OUT} =	0mA		60	75	μΑ
Power Supply Rejection		Ripple 1Vp-p	f=100Hz		68		
Ratio	PSRR	V _{IN} =2.8V, I _{OUT} =100mA	f=1KHz		68		dB
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/V_{OUT}$ ΔT	I _{OUT} =30mA, T _A	=-40°C to 85°C		±30		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	$V_{ m NOISE}$	10 Hz \leq f \leq 100kHz (No load)			30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic high, regulator on		1.5			***
V _{EN} Low Voltage	$V_{\rm IL}$	Enable logic low, regulator off				0.4	V
Standby Current	I_{STD}	V _{IN} =3.5V, V _{EN} in OFF mode			0.01	1.0	μΑ
Start-up Time	T_{S}	No Load			20		μs
EN Pull Down Resistor	RPD				3.0		mΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo)W		60		Ω
Thermal Shutdown Temperature	T _{OTSD}				160		
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C
Thermal Resistance (Junction to Case)		SOIC-8			74.6		
		PSOP-8 SOT-223			43.7		
	θ_{JC}				50.9		°C/W
(TO-252-2 (1) / T	TO-252-2 (1) / TO-252-2 (3)		35		
		TO-263-3			22		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-2.5 Electrical Characteristics (Note 2)

 $(V_{IN}=3.5V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25^{\circ}C, \textbf{Bold} \text{ typeface applies over } -40^{\circ}C \le T_A \le 85^{\circ}C \text{ ranges, unless otherwise specified (Note 3))}$

Parameter	Symbol	Test Con	nditions	Min	Тур	Max	Unit
Output Voltage	$V_{ m OUT}$	$V_{IN} = 3.5V, 1mA \le I_{OUT} \le 30mA$		V _{OUT} ×98.5%	2.5	V _{OUT} ×101.5%	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =3.5V, V _{OUT} =2	2.463V to 2.537V	1.0			A
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	Vout=2.5V, $V_{IN}=V_{IM}$ $1 \text{mA} \le I_{OUT} \le 1 \text{A}$	Vout+1V		0.2	1.0	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	3.5V≤V _{IN} ≤6V, I _{OU}	_{UT} =30mA		0.02	±0.1	%/V
Dropout Voltage	V_{DROP}	I _{OUT} =1A			450	750	mV
Quiescent Current	I_Q	V _{IN} =3.5V, I _{OUT} =01	mA		60	80	μΑ
Power Supply Rejection	DCDD	Ripple 1Vp-p	f=100Hz		65		
Ratio	PSRR	V _{IN} =3.5V, I _{OUT} =100mA	f=1KHz		65		dB
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I _{OUT} =30mA			±30		ppm/°C
Short Current Limit	I_{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	V_{NOISE}	10Hz ≤ f ≤100kHz			30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic high, regulator on		1.5			17
V _{EN} Low Voltage	V_{IL}	Enable logic low, regulator off				0.4	V
Standby Current	I_{STD}	V_{IN} =3.5V, V_{EN} in	OFF mode		0.01	1.0	μΑ
Start-up Time	T_{S}	No Load			20		μs
EN Pull Down Resistor	RPD				3.0		mΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Low			60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		0.0
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		°C
Thermal Resistance (Junction to Case)		SOIC-8			74.6		
		PSOP-8 SOT-223			43.7		
	$ heta_{ m JC}$				50.9		°C /W
(TO-252-2 (1) / TO-252-2 (3)			35		
		TO-263-3			22		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Electrical Characteristics (Continued)

AP2114-3.3 Electrical Characteristics (Note 2)

 $(V_{IN}=4.3V, C_{IN}=4.7\mu F \text{ (Ceramic)}, C_{OUT}=4.7\mu F \text{ (Ceramic)}, Typical T_A=25°C, Bold typeface applies over -40°C≤T_A≤85°C ranges, unless otherwise specified (Note 3))}$

Parameter	Symbol	Test C	Conditions	Min	Тур	Max	Unit
Output Voltage	$V_{ m OUT}$	V_{IN} =4.3V, 1mA \le I _{OUT} \le 30mA		V _{OUT} ×98.5%	3.3	V _{OUT} ×101.5%	V
Maximum Output Current	I _{OUT(MAX)}	V _{IN} =4.3V, V _{OU}	=3.25V to 3.35V	1.0			A
Load Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle I_{OUT}}$	V _{IN} =4.3V, 1mA	$\leq I_{OUT} \leq 1A$		0.2	1.0	%/A
Line Regulation	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle V_{IN}}$	4.3V≤V _{IN} ≤6V, I	OUT=30mA		0.02	±0.1	%/V
Dropout Voltage	V_{DROP}	I _{OUT} =1A			450	750	mV
Quiescent Current	I_Q	V _{IN} =4.3V, I _{OUT} =	=0mA		65	90	μΑ
Power Supply Rejection Ratio	PSRR	Ripple 1Vp-p V _{IN} =4.3V,	f=100Hz		65		dB
	A 3.7 /3.7	I _{OUT} =100mA	f=1KHz		65		
Output Voltage Temperature Coefficient	$\frac{\triangle V_{OUT}/V_{OUT}}{\triangle T}$	I _{OUT} =30mA			±30		ppm/°C
Short Current Limit	I _{SHORT}	V _{OUT} =0V			50		mA
RMS Output Noise	$V_{ m NOISE}$	$10\text{Hz} \le f \le 100\text{k}$	Hz (No load)		30		μV_{RMS}
V _{EN} High Voltage	V_{IH}	Enable logic high, regulator on		1.5			V
V _{EN} Low Voltage	V_{IL}	Enable logic low, regulator off				0.4	V
Standby Current	I_{STD}	V_{IN} =3.5V, V_{EN} i	n OFF mode		0.01	1.0	μΑ
Start-up Time	T_{S}	No Load			20		μs
EN Pull Down Resistor	RPD				3.0		mΩ
V _{OUT} Discharge Resistor	R_{DCHG}	Set EN pin at Lo	ow		60		Ω
Thermal Shutdown Temperature	T_{OTSD}				160		°C
Thermal Shutdown Hysteresis	T_{HYOTSD}				25		
		SOIC-8			74.6		
Thermal Resistance (Junction to Case)		PSOP-8			43.7		°C /W
	θ_{JC}	SOT-223 TO-252-2 (1) / TO-252-2 (3)			50.9		
·					35		
		TO-263-3			22		

Note 2: To prevent the Short Circuit Current protection feature from being prematurely activated, the input voltage must be applied before a current source load is applied.

Typical Performance Characteristics

Figure 4. Ground Current vs. Output Current

Figure 5. Ground Current vs. Output Current

Figure 6. Ground Current vs. Output Current

Figure 7. Ground Current vs. Output Current

Figure 8. Quiescent Current vs. Temperature

Figure 9. Quiescent Current vs. Temperature

Figure 10. Quiescent Current vs. Temperature

Figure 11. Quiescent Current vs. Temperature

Figure 12. Quiescent Current vs. Input Voltage

Figure 13. Quiescent Current vs. Input Voltage

Figure 15. Quiescent Current vs. Input Voltage

Figure 16. Output Voltage vs. Temperature

Figure 17. Output Voltage vs. Temperature

Figure 18. Output Voltage vs. Temperature

Figure 19. Output Voltage vs. Temperature

2.0 1.8 1.6 1.4 Output Voltage (V) 1.2 1.0 0.8 T_A=85°C 0.6 0.4 C_{OUT} =4.7 μ F I_{OUT}=10mA 1.0 1.5 2.0 3.0 3.5 4.0 4.5 5.0 5.5 Input Voltage (V)

Figure 20. Output Voltage vs. Input Voltage

Figure 21. Output Voltage vs. Input Voltage

Figure 22. Output Voltage vs. Input Voltage

Figure 23. Output Voltage vs. Input Voltage

Figure 24. Output Voltage vs. Output Current

Figure 25. Output Voltage vs. Output Current

Figure 26. Output Voltage vs. Output Current

Figure 27. Output Voltage vs. Output Current

Figure 28. Output Voltage vs. Output Current

Figure 29. Output Voltage vs. Output Current

Figure 30. Dropout Voltage vs. Output Current

Figure 31. Dropout Voltage vs. Output Current

Figure 32. Dropout Voltage vs. Output Current

Figure 33. Max. Output Current vs. Input Voltage

Figure 34. Max. Output Current vs. Input Voltage

Figure 35. Max. Output Current vs. Input Voltage

Figure 36. Max. Output Current vs. Input Voltage

Figure 37. Output Short Current vs. Temperature

Figure 38. Output Short Current vs. Temperature

Figure 39. Output Short Current vs. Temperature

Figure 40. Output Short Current vs. Temperature

Figure 41. PSRR vs. Frequency

Figure 42. PSRR vs. Frequency

Figure 43. PSRR vs. Frequency

Figure 44. PSRR vs. Frequency

Figure 45. Load Transient

Typical Application

Figure 46. Typical Application of AP2114

Mechanical Dimensions

SOT-223 Unit: mm(inch)

Mechanical Dimensions (Continued)

TO-252-2 (1) Unit: mm(inch)

Unit: mm(inch)

1A LOW NOISE CMOS LDO REGULATOR WITH ENABLE AP2114

Mechanical Dimensions (Continued)

TO-252-2 (3)

Mechanical Dimensions (Continued)

TO-263-3 Unit: mm(inch)

Mechanical Dimensions (Continued)

SOIC-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

Mechanical Dimensions (Continued)

PSOP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788