Travaux dirigés de MACHINE LEARNING

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

Joon Kwon

vendredi 22 mai 2020

HG.

EXERCICE 1. — Soit $K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ l'application définie par :

$$\forall x, x' \in \mathbb{R}^2$$
, $K(x, x') = \langle x, x' \rangle^2$.

Montrer qu'il existe une application de redescription $\psi:\mathbb{R}^2\to\mathbb{R}^3$ dont K est le noyau.

EXERCICE 2. — Noyau polynomial. — Soit $d, m \geqslant 1$ des entiers et $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ définie par :

$$\forall x, x' \in \mathbb{R}^d$$
, $K(x, x') = \langle x, x' \rangle^m$.

Montrer que K est un noyau.

EXERCICE 3. — *Noyau gaussien.* — On considère $K : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ définie par :

$$\forall x, x' \in \mathbb{R}, \quad K(x, x') = e^{-\frac{1}{2}(x - x')^2}.$$

Le but de l'exercice est de montrer que K est un noyau.

1) Pour $u\in\mathbb{R}^{\mathbb{N}}$, on notera $(u_m)_{m\geqslant 0}$ ses composantes. Soit $\tilde{\mathcal{Z}}$ l'ensemble défini par :

$$ilde{\mathscr{Z}} = \left\{ u \in \mathbb{R}^{\mathbb{N}} \, \middle| \, ext{la s\'erie} \, \sum u_m^2 \, ext{converge} \,
ight\}.$$

Soit $u,v\in \tilde{\mathcal{Z}}$. Montrer que la série $\sum u_m v_m$ converge.

- 2) Montrer que $\tilde{\mathcal{Z}}$ est un espace vectoriel.
- 3) Pour $u, v \in \tilde{\mathcal{Z}}$, on définit

$$\langle u,v\rangle_{\widetilde{\mathscr{Z}}}=\sum_{m=0}^{+\infty}u_{m}v_{m}.$$

Montrer que $\langle \,\cdot\,,\,\cdot\,\rangle_{\tilde{\mathscr{Z}}}$ est un produit scalaire sur $\tilde{\mathscr{Z}}$.

4) Trouver une application $\psi:\mathbb{R}\to \tilde{\mathscr{Z}}$ telle que :

$$\forall x, x' \in \mathbb{R}, \quad \mathrm{K}(x, x') = \langle \psi(x), \psi(x') \rangle_{\widetilde{x}}.$$