Polynômes orthogonaux

Dans tout le problème, n désigne un entier naturel supérieur ou égal à 2

Partie I

On note I l'endomorphisme identité de $\mathbb{R}_n[X]$.

Soit φ l'application qui à $P \in \mathbb{R}_n[X]$ associe le polynôme

$$\varphi(P) = ((X^2 - 1)P)'' = (X^2 - 1)P'' + 4XP' + 2P$$
.

- 1.a Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.
- 1.b Former la matrice représentative de φ dans la base canonique $\mathcal{B} = (1, X, ..., X^n)$ de $\mathbb{R}_n[X]$.
- 2.a Soit $\lambda \in \mathbb{R}$.

Montrer l'équivalence entre les assertions suivantes :

- (i) l'équation $\varphi(P) = \lambda . P$ possède un polynôme unitaire solution,
- (ii) $\ker(\varphi \lambda I) \neq \{0\}$
- (iii) $\det(\varphi \lambda I) = 0$.
- 2.b Soit $k \in \{0,1,...,n\}$. Justifier que l'équation $\varphi(P) = (k+1)(k+2)P$ possède un polynôme unitaire solution, que celui-ci est unique et qu'il est de degré k. Ce polynôme sera noté P_k .
- 2.c Justifier que la famille $(P_0, P_1, ..., P_n)$ est une base de $\mathbb{R}_n[X]$.
- 3.a Déterminer P_0 et P_1 .
- 3.b Déterminer les coefficients de X^{k-1} et de X^{k-2} dans P_k lorsque $k \in \{2, \dots, n\}$.

Partie II

On note E l'ensemble des fonctions réelles définies et continues sur le segment [-1,1].

Pour $f, g \in E$, on pose:

$$\psi(f,g) = \int_{-1}^{1} f(t)g(t)(1-t^2)dt.$$

On identifiera le polynôme P avec la fonction polynomiale $t \mapsto P(t)$ définie sur [-1,1].

- 1.a Montrer que ψ est un produit scalaire sur E.

 On munit E de ce produit scalaire et on note désormais (f | g) le produit scalaire des éléments f et g.
- 1.b Observer que $\forall P, Q \in \mathbb{R}[X]$ on a $(XP \mid Q) = (P \mid XQ)$.
- 2. Pour $f \in E$ de classe C^2 , on pose $\phi(f) = ((x^2 1)f(x))'' = (x^2 1)f''(x) + 4xf'(x) + 2f(x)$.
- 2.a Montrer que si $f,g \in E$ sont de classe C^2 alors $(\phi(f) | g) = (f | \phi(g))$.
- 2.b Montrer que pour la suite de polynômes $P_0, P_1, ..., P_n$ définis dans la partie I, on a la propriété : $\forall (k,\ell) \in \{0,1,...,n\}$, $k \neq \ell \Rightarrow (P_k \mid P_\ell) = 0$.
- 2.c Soit $k \in \{0,1,...,n\}$ et $Q \in \mathbb{R}[X]$. Etablir l'implication $\deg Q < k \Rightarrow (P_k \mid Q) = 0$.
- 3. Soit $k \in \{2,...,n\}$.
- 3.a Montrer que le polynôme $P_k XP_{k-1}$ est de degré au plus k-1 et qu'il est orthogonal a tout polynôme de degré inférieur ou égal à k-3.
- 3.b En déduire que $P_k XP_{k-1}$ peut s'écrire comme combinaison linéaire de P_{k-1} et de P_{k-2} .

- 3.c En utilisant I.3.b, établir $P_k = XP_{k-1} \frac{(k-1)(k+1)}{(2k-1)(2k+1)}P_{k-2}$.
- 3.d Calculer P_2 et P_3 .
- 4. Soit $k \in \{0,...,n\}$
- 4.a Montrer que $(P_k | P_k) = (P_k | X^k)$.
- 4.b En calculant de deux manières $(\varphi(P_\ell) \mid X^{\ell+2})$ exprimer $(P_\ell \mid X^{\ell+2})$ en fonction de $(P_\ell \mid P_\ell)$.
- $\text{4.c} \qquad \text{Former une relation permettant, pour } k \geq 2 \text{ , de calculer } (P_{\scriptscriptstyle k} \mid P_{\scriptscriptstyle k}) \text{ à partir de } (P_{\scriptscriptstyle k-1} \mid P_{\scriptscriptstyle k-1}) \text{ et } (P_{\scriptscriptstyle k-2} \mid P_{\scriptscriptstyle k-2}) \text{ .}$