```
1ss07solmod.log
```

```
names city, sex, un4gy, distcat, agxcat, agecat, dcat, time, subjects,
       upyr, pyr, gdist, agex, age, year, solid, oralca, lip, tongue,
       saliv, mouth, pharynx, digestca, esoph, stomach, smallint, colon,
       rectum, liver, gallbldr, pancr, othdig, respca, nasal, larynx, lung, othres, thymus, skinbone, bone, connect, nmskin, skbasal,
       sksquam, bowens, breast, femgenca, uterus, utrnos, cervix, corpus,
       ovary, othfem, malgenca, prost, testis, othmale, urinca, bladder, kidney, renal, othurin, cnsca, thyroid, othsol, msother,
       adeno, squam, othepi, sarcoma, othnonepi, histnos,
       cola02w10, cola02g, cola02n, mara02w10, mara02g, mara02n,
      braa02w10, brea02w10, liva02w10, liva02g, liva02n, luna02w10, ovaa02w10, pana02w10, skea02w10, skia02w10, stoa02w10, tesa02w10, thya02w10, blaa02w10, utea02w10, trunc02, adjust02
! Remove unknown dose records
tran if cola02w10 < 0 then delete endif @
SKIP 1 @
INPUT lssinc07.csv @
Input from lssinc07.csv
        26807 records read
                                     25570 records used
                                      1237 records rejected
97 variables defined At least 500 additional variables can be created.
! set up categorical variables
leve city sex un4gy distcat agxcat agecat dcat time @
! define dose and age at exposure categories for case summary tables
city has 2 levels from 1 to 2
sex has 2 levels from 1 to 2
un4gy has 2 levels from 0 to 1
distcat has 3 levels from 1 to 3 agxcat has 15 levels from 1 to 15
agecat has 16 levels from 3 to 18
dcat has 22 levels from 2 to 23
time has 10 levels from 1 to 10
categ cola02w10 < 0.005 0.1 0.2 0.5 1 2 > as tbdcat @
tbdcat has 7 levels from 1 to 7
categ cola02w10 < 0.005 0.5 1 > as d4cat @
d4cat has 4 levels from 1 to 4
categ agex < 10 20 30 40 50 > as agxdec @
agxdec has 6 levels from 1 to 6
! define variables used in fitting models
tran msex = 2*sex - 3
      lage70 = log(age/70) ; lage70sq = lage70^2 ;
      lage70qsp = lage70sq*(age > 70)
      lage50sp = log(age/50)*(age >= 50)
     e30 = (agex - 30)/10; e30sq = e30^2;
     py10k = pyr/10000;
      hidose = cola02w10 > 2;
      lodose = 1 - hidose;
! Expected dose squared if 35% random dose errors
tran
     cola02wsq = 1.12*cola02w10^2;
! Define additional variables of interest
1ページ
```

```
1ss07solmod.log
tran
      distal = distcat == 2 ;
      nic = distcat == 3;
hiro = city == 1; naga = city == 2;
tsx25 = (age - agex - 25);
@
! Solid cancer ERR model
cases solid @
pyr py10k @
excess @
 *** WARNING: Fit model again to compute statistics
line 1 cola02w10=0 cola02wsq=0 @
log1 1 e30=0 lage70=0 @
pline 1 %con=1 msex=0 @
fit sex:4 naga nic*hiro nic*naga
      \begin{array}{l} sex*lage70:4 \ sex*lage70sq \ sex*lage70qsp \\ sex*e30 \ sex*e30sq - \%con \ @ \end{array} 
            Iter Step
                                 Deviance
                              25630.834
                0
                        0
                1
                        1
                              18706.711
                2
                              15702. 194
                        0
                3
                              15167.087
                4
                        0
                              15161.500
                5
                        0
                              15161.499
                6
                        0
                              15161.499
Piece-wise exponential regression Product additive excess model { T0 * ( 1 + T1 + T2 + ...) }
     solid is used for cases
     py10k is used for person years
```

Parameter Summary Table

# Name	Estimate	Std.Err.	Test Stat.	P value
Log-linear term 0 1 sex_1	5. 391 4. 613 -0. 05558 -0. 1409 -0. 1007 5. 820 3. 580 0. 1485 0. 2979 -13. 39	0. 01932 0. 01701 0. 01938 0. 02047 0. 0384 0. 1726 0. 126 0. 2825 0. 1707 1. 419	279 271. 2 -2. 868 -6. 884 -2. 621 33. 72 28. 42 0. 5258 1. 746 -9. 436	 < 0.001 < 0.001 0.00413 < 0.001 0.00876 < 0.001 < 0.001 > 0.5 0.0808 < 0.001
11 sex_2 * lage70qsp 12 sex_1 * e30 13 sex_2 * e30 14 sex_1 * e30sq 15 sex_2 * e30sq	-3. 681 -0. 1775 -0. 08537 0. 006535 0. 005558	1. 038 0. 01031 0. 009995 0. 00461 0. 004265	-3. 547 -17. 22 -8. 542 1. 418 1. 303	< 0.001 < 0.001 < 0.001 0.156 0.193
Linear term 1 16 cola02w10	0. 000 0. 000	Fixed Fixed	20. 02 18. 48	< 0.001 < 0.001
Log-linear term 1 18 e30	0. 000 0. 000	Aliased Aliased		

Linear product term 1

```
1ss07solmod.log
```

 20 %CON.
 1.000
 Aliased

 21 msex.
 0.000
 Aliased

Records used 25570

Deviance 15161.499

Pearson Chi2 100989.75 Degrees of freedom 25555

null @ para 16 free @ fit @ _

 Iter
 Step
 Deviance

 0
 0
 15161.499

 1
 0
 14839.581

 2
 0
 14839.021

 3
 0
 14839.021

Piece-wise exponential regression Product additive excess model { T0 * (1 + T1 + T2 + ...) }

solid is used for cases py10k is used for person years

Parameter Summary Table

# Name	Estim	ate Std.Err.	Test Stat.	P value
Log-linear term 0 1 sex_1 2 sex_2. 3 naga 4 nic * hiro. 5 nic * naga 6 sex_1 * lage70 7 sex_2 * lage70 8 sex_1 * lage70sq 9 sex_2 * lage70sq 10 sex_1 * lage70qsp 11 sex_2 * lage70qsp 12 sex_1 * e30 13 sex_2 * e30 14 sex_1 * e30sq 15 sex_2 * e30sq	4. -0. 04 -0. 06 -0. 03 5. 3. 0. 1 0. 3 -13 -3. -0. 1 -0. 08	981 0. 02103 998 0. 03861 839 0. 1725 599 0. 126 671 0. 2824 130 0. 1706 . 36 1. 418 655 1. 037 788 0. 01031 444 0. 01 200 0. 004609	265. 2 257. 4 -2. 256 -3. 32 -1. 035 33. 84 28. 57 0. 5916 1. 834 -9. 417 -3. 523 -17. 34 -8. 443 1. 779 1. 495	 0.001 0.0241 0.001 0.3 0.001 0.5 0.0666 0.001 0.001 0.001 1.001 0.001
Linear term 1 16 cola02w10	0. 6 0.	0.04301 000 Fixed	14. 3 1. 092	< 0.001 0.275
Log-linear term 1 18 e30		000 Fixed 000 Fixed	-7. 065 -9. 323	< 0.001 < 0.001
Linear product term 1 20 %CON		000 Aliased 000 Fixed	4. 69	< 0.001
Records used	25570			
Deviance Pearson Chi2	14839. 021 58724. 417	Degrees of fr	eedom 25554	Į.
lrt				
LR statistic P value	322.5 < 0.001	Degrees of fr	eedom 1	

para 18-19 free 21 free @ fit @

Step	Deviance
0	14839. 021
0	14791.672
0	14739.459
0	14735.982
0	14735.954
0	14735.954
	0 0 0 0

Piece-wise exponential regression Product additive excess model { T0 * (1 + T1 + T2 + ...) }

solid is used for cases py10k is used for person years

Parameter Summary Table

# Name	Estimate	Std.Err.	Test Stat.	P value
Log-linear term 0				
1 sex_1	5. 338	0.02008	265.8	< 0.001
2 sex_2	4. 547	0.01802	252.3	< 0.001
3 naga	-0.04657	0.0194	-2.401	0.0163
4 nic * hiro	-0.07414	0.02099	-3.532	< 0.001
5 nic * naga	-0.03794	0.03863	-0.9821	0.326
6 sex_1 * lage70	5. 875	0. 1728	33. 99	< 0.001
7 sex_2 * lage70	3. 652	0. 1265	28.86	< 0.001
8 sex_1 * lage70sq	0.04283	0. 2847	0. 1504	> 0.5
9 sex_2 * lage70sq	0. 1152	0. 181	0.6364	> 0.5
10 sex_1 * lage70qsp	-13.34	1. 419	-9. 406	< 0.001
11 sex_2 * lage70qsp	-3. 551	1.041	-3. 412	< 0.001
12 sex_1 * e30	-0. 1721	0. 01059	-16.26	< 0.001
13 sex_2 * e30	-0.07426	0.01071	-6. 936	< 0.001
14 sex_1 * e30sq	0.007165	0.004633	1. 546	0. 122
15 sex_2 * e30sq	0. 004649	0.004356	1. 067	0. 286
Linear term 1				
16 cola02w10	0.4666	0.04413	10.57	< 0.001
17 cola02wsq	0.000	Fixed	0.866	0.386
Log-linear term 1				
18 e30	-0.1849	0.0636	-2.908	0.00364
19 lage70	-1.621	0.3058	-5.3	< 0.001
Linear product term 1	4 000	.1. 1		
20 %CON	1.000	Aliased	0 646	/ 0 001
21 msex	0. 2465	0.06762	3.646	< 0.001

Records used 25570

Deviance 14735.954

Pearson Chi2 43595.007 Degrees of freedom 25551

sum subjects pyr solid %bk %ex@

Summary for subjects

Sum Count Minimum Maximum 105427 25570 763

Summary for pyr

	Sum 2.76473e+06		Count 25570	Minimum 0.00054000	Maximum 3636.6
	Summary for	soli	d		
	Sum 17448		Count 25570	Minimum O	Maximum 46
	Summary for	%BK			
	Sum 16596.1		Count 25570	Minimum 2.3323e-07	Maximum 30.467
	Summary for	%EX			
	Sum 851.890		Count 25570	Minimum O	Maximum 1.0815
sum sub	jects pyr solid	%bk	%ex; by	tbdcat @	
	Summary for	subj	jects		
tbdcat 1 2 3 4 5 6 7	Sum 60792 27789 5527 5935 3173 1647 564		Count 3853 5973 4208 3390 2227 3454 2465	Minimum 0 0 0 0 0 0 0	Maximum 763 394 82 90 62 29 26
	Summary for	pyr			
tbdcat	Sum 1. 59894e+06 729604. 145925. 153886. 81250. 9 41412. 9 13711. 9		Count 3853 5973 4208 3390 2227 3454 2465	Minimum 0.0025900 0.0019900 0.0025900 0.00054000 0.0068900 0.00066000 0.00059000	Maximum 3636.6 2008.7 314.26 472.96 301.48 89.033 100.37
	Summary for	soli	ld		
tbdcat 1 2 3 4 5 6 7	Sum 9597 4406 968 1144 688 460 185		Count 3853 5973 4208 3390 2227 3454 2465	Minimum 0 0 0 0 0 0	Maximum 46 19 7 6 6 5 3
	Summary for	%BK			
tbdcat 1 2 3 4 5 6 7	Sum 9537. 09 4373. 95 909. 889 963. 022 493. 194 247. 766 71. 1912		Count 3853 5973 4208 3390 2227 3454 2465	Minimum 4. 9002e-05 1. 5220e-06 4. 1428e-06 2. 3323e-07 6. 6962e-07 9. 2927e-07 5. 0235e-07	Maximum 30. 467 12. 920 3. 2908 3. 4247 2. 1807 1. 0681 0. 78133
	Summary for	%EX			
tbdcat 1 2 3	Sum 3. 11937 80. 4778 75. 2558		Count 3853 5973 4208	Minimum 0 3.4804e-07 1.4490e-06	Maximum 0.014974 0.28504 0.21231
5 ペーシ	<i>'</i>				

4	179. 340	3390	6.7798e-08	0.90440
5	206. 085	2227	1.0455e-06	0.99164
6	196. 263	3454	4.5505e-06	0.55676
7	111. 349	2465	6.3376e-06	1.0815

bound 16 leve 90@

Profile likelihood bounds for parameter 16 (cola02w10)

MLE 0.4666

95% lower bound 0.3958 95% upper bound 0.5413

bound 18 @

Profile likelihood bounds for parameter 18 (e30)

MLE -0.1849 exp(MLE) 0.8312 95% lower bound -0.2956 exp(bound) 0.7441 95% upper bound -0.07888 exp(bound) 0.9242

bound 19 @

Profile likelihood bounds for parameter 19 (lage70)

MLE	-1.621	exp(MLE)	0. 1977
95% upj	wer bound exp(bound) per bound exp(bound)	-2. 109 0. 1213 -1. 123 0. 3254	

bound 21 @

Profile likelihood bounds for parameter 21 (msex)

MLE 0. 2465

95% lower bound 0.1372 95% upper bound 0.3554

! Gender-specific dose response slopes line 1 sex*cola02w10 @ pline 1 @ fit @

Iter	Step	Deviance
0 1	0	15243. 982 14739. 813
2	0	14735. 972
3	0	14735. 954
4	0	14735. 954

Piece-wise exponential regression Product additive excess model { T0 * (1 + T1 + T2 + ...) }

solid is used for cases py10k is used for person years

Parameter Summary Table

# Name	Estimate	Std.Err.	Test Stat.	P value
Log-linear term 0				
1 sex_1	5. 338	0.02008	265.8	< 0.001
2 sex_2	4. 547	0.01802	252.3	< 0.001
3 naga	-0.04658	0.0194	-2.401	0.0163
4 nic * hiro	-0.07415	0.02099	-3.532	< 0.001
5 nic * naga	-0.03794	0. 03863	-0.9822	0.326
6 sex_1 * lage70	5. 875	0. 1728	33. 99	< 0.001
7 sex_2 * lage70	3. 652	0. 1265	28.86	< 0.001
8 sex_1 * lage70sq	0.04284	0. 2847	0. 1505	> 0.5
9 sex_2 * lage70sq	0. 1152	0. 181	0.6365	> 0.5
10 sex_1 * lage70qsp	-13.34	1. 419	-9. 406	< 0.001
11 sex_2 * lage70qsp	-3. 551	1.041	-3. 412	< 0.001
12 sex_1 * e30	-0.1721	0. 01059	-16. 26	< 0.001
13 sex_2 * e30	-0.07426	0. 01071	-6. 936	< 0.001
14 sex_1 * e30sq	0. 007165	0.004633	1. 546	0. 122
15 sex_2 * e30sq	0.004648	0.004356	1. 067	0. 286
Linear term 1				
16 sex 1 * cola02w10	0.3516	0.04704	7, 475	< 0.001
17 sex 2 * cola02w10	0.5817	0.06195	9. 389	< 0.001
11 Scx_2 . colad2w10	0.0011	0.00130	J. 00J	\ 0.001
Log-linear term 1				
18 e30	-0.1850	0.0636	-2.909	0.00363
19 lage70	-1.621	0.3058	-5.3	< 0.001
-				
Records used	25570			

Deviance 14735.954

Pearson Chi2 43595.872 Degrees of freedom 25551

bound 16 @

Profile likelihood bounds for parameter 16 (sex_1 * cola02w10)

MLE 0.3516

95% lower bound 0.2794 95% upper bound 0.4311

bound 17 @

Profile likelihood bounds for parameter 17 (sex_2 * cola02w10)

MLE 0.5817

95% lower bound 0.483 95% upper bound 0.6883

! L-Q dose response

line 1 cola
02w10 lodose*cola
02wsq=0 hidose*cola
02w10 @ pline 1 %con=1 msex @

fit @

Iter	Step	Deviance
0 1 2 3 4	0 0 0 0	15243. 978 14751. 755 14735. 989 14735. 861 14735. 861
5	ő	14735. 861

Piece-wise exponential regression

Product additive excess model { T0 * (1 + T1 + T2 + ...) }

solid is used for cases py10k is used for person years

Parameter Summary Table

# Name	Estimate	Std. Err.	Test Stat.	P value
Log-linear term 0				
1 sex_1	5. 338	0.02011	265.4	< 0.001
2 sex_2	4. 548	0. 01806	251.8	< 0.001
3 naga	-0. 04665	0.0194	-2. 405	0.0162
4 nic * hiro	-0.07454	0.02103	-3. 544	< 0.001
5 nic * naga	-0.03828	0. 03865	-0.9906	0.322
6 sex_1 * lage70	5. 874	0.1728	33. 99	< 0.001
7 sex_2 * lage70	3.652	0.1265	28.86	< 0.001
8 sex_1 * lage70sq	0.04366	0.2847	0. 1533	> 0.5
9 sex_2 * lage70sq	0.1157	0.181	0.6393	> 0.5
10 sex_1 * lage70qsp	-13.35	1.419	-9.407	< 0.001
11 sex_2 * lage70qsp	-3.552	1.041	-3.412	< 0.001
12 sex_1 * e30	-0.1722	0.01058	-16.27	< 0.001
13 sex_2 * e30	-0.07428	0.0107	-6.941	< 0.001
14 sex_1 * e30sq	0.007165	0.004633	1.547	0. 122
15 sex_2 * e30sq	0. 004641	0.004355	1.066	0. 287
Linear term 1				
16 cola02w10	0.4612	0.04722	9.768	< 0.001
17 lodose * cola02wsq	0.000	Fixed	1.598	0.11
18 hidose * cola02w10	0.01955	0.06451	0.3031	> 0.5
Log-linear term 1				
19 e30	-0. 1851	0.06368	-2.907	0.00365
20 lage70	-1. 620	0.306	-5. 293	< 0.001
_ 1480	1. 0. 0		o. _	
Linear product term 1				
21 %CON	1.000	Aliased		
22 msex	0. 2480	0.0678	3.658	< 0.001
Pagards used	25570			

Records used 25570

Deviance 14735.861 Pearson Chi2 43453.591 Degrees of freedom 25550

null @ para 17 free @ fit @

0 0 14735. 861 1 0 14733. 232 2 0 14733. 197 3 0 14733. 196	Iter	Step	Deviance
4 0 14733 195	1 2	0 0 0	14733. 232 14733. 197

Piece-wise exponential regression Product additive excess model { T0 * (1 + T1 + T2 + ...) }

solid is used for cases py10k is used for person years

Parameter Summary Table

Name Estimate Std. Err. Test Stat. P value

Log-linear term 0

1 sex_1 2 sex_2 3 naga 4 nic * hiro 5 nic * naga 6 sex_1 * lage70 7 sex_2 * lage70 8 sex_1 * lage70sq 9 sex_2 * lage70sq 10 sex_1 * lage70qsp 11 sex_2 * lage70qsp 12 sex_1 * e30 13 sex_2 * e30 14 sex_1 * e30sq 15 sex_2 * e30sq	5. 343 4. 554 -0. 04960 -0. 08018 -0. 04110 5. 871 3. 646 0. 04851 0. 1225 -13. 35 -3. 559 -0. 1723 -0. 07446 0. 007167 0. 004623	0. 02019 0. 01826 0. 01947 0. 02123 0. 03867 0. 1728 0. 1265 0. 2846 0. 1804 1. 419 1. 041 0. 01055 0. 01062 0. 004632 0. 00435	264. 6 249. 5 -2. 548 -3. 776 -1. 063 33. 98 28. 82 0. 1704 0. 6792 -9. 411 -3. 419 -16. 32 -7. 01 1. 547 1. 063	$ \begin{array}{c} <0.001\\ <0.001\\ 0.0108\\ <0.001\\ 0.288\\ <0.001\\ <0.001\\ >0.5\\ 0.497\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.288\\ \end{array} $
Linear term 1 16 cola02w10 17 lodose * cola02wsq 18 hidose * cola02w10	0. 3436	0. 07885	4. 358	< 0.001
	0. 09758	0. 05838	1. 671	0.0946
	0. 1264	0. 08912	1. 418	0.156
Log-linear term 1	-0. 1977	0. 06434	-3. 072	0. 00213
19 e30	-1. 618	0. 3057	-5. 293	< 0. 001
Linear product term 1 21 %CON	1.000 0.2486	Aliased 0.06779	3. 668	< 0.001

Records used

25570

14733. 195 43173. 748 Deviance Pearson Chi2

Degrees of freedom 25549

lrt

LR statistic P value 2.665 Degrees of freedom 1 0.103

para 16=1 @ log1 1 +%con @ fit @

Iter	Step	Deviance
0	0	15155. 895
1	0	14765. 424
2	0	14733.704
3	0	14733. 201
4	0	14733. 196
5	0	14733, 195
6	0	14733, 195

Piece-wise exponential regression Product additive excess model { T0 * (1 + T1 + T2 + ...) }

solid is used for cases py10k is used for person years

Parameter Summary Table

# Name	Estimate	Std.Err.	Test Stat.	P value
Log-linear term 0				
1 sex_1	5. 343	0.02019	264.6	< 0.001
2 sex_2	4. 554	0.01826	249.5	< 0.001
3 naga	-0.04960	0.01947	-2.548	0.0108
4 nic * hiro	-0.08019	0.02123	-3.776	< 0.001

5 nic * naga 6 sex_1 * lage70 7 sex_2 * lage70 8 sex_1 * lage70sq 9 sex_2 * lage70sq 10 sex_1 * lage70qsp 11 sex_2 * lage70qsp 12 sex_1 * e30 13 sex_2 * e30 14 sex_1 * e30sq 15 sex_2 * e30sq	-0. 04110 5. 871 3. 646 0. 04851 0. 1225 -13. 35 -3. 559 -0. 1723 -0. 07446 0. 007167 0. 004623	0. 03867 0. 1728 0. 1265 0. 2846 0. 1804 1. 419 1. 041 0. 01055 0. 01062 0. 004632 0. 00435	-1. 063 33. 98 28. 82 0. 1704 0. 6792 -9. 411 -3. 419 -16. 32 -7. 01 1. 547 1. 063	0. 288 < 0. 001 < 0. 001 > 0. 5 0. 497 < 0. 001 < 0. 001 < 0. 001 < 0. 001 0. 122 0. 288
Linear term 1 16 cola02w10	1. 000 0. 2841 0. 3679	Aliased 0.2257 0.325	1. 259 1. 132	0. 208 0. 258
Log-linear term 1 19 %CON	-1. 068 -0. 1977 -1. 618	0. 2295 0. 06434 0. 3057	-4. 655 -3. 073 -5. 293	< 0.001 0.00212 < 0.001
Linear product term 1 22 %CON	1. 000 0. 2486	Aliased 0.06779	3. 667	< 0.001
Records used	25570			

Deviance 14733. 195

Pearson Chi2 43173.779Degrees of freedom 25549

bound 17 @

Profile likelihood bounds for parameter 17 (lodose * cola02wsq)

MLE 0.2841

95% lower bound -0.00158 95% upper bound 0.8657

! Solid cancer EAR model

add @

line 1 cola02w10 cola02wsq=0 @ log1 1 e30 lage70 @ pline 1 %con=1 msex @

fit @

Iter	Step	Deviance
0 1 2 3 4	0 0 0 0	15232. 746 14868. 447 14757. 953 14741. 646 14739. 949
5 6	0	14739. 933 14739. 933
7	ŏ	14739. 933

Piece-wise exponential regression Additive model { $T0 + T1 + T2 + \dots$ }

solid is used for cases

10 ページ

Parameter Summary Table

# Name	Estimate	Std.Err.	Test Stat.	P value
Log-linear term 0 1 sex_1 2 sex_2. 3 naga. 4 nic * hiro. 5 nic * naga. 6 sex_1 * lage70. 7 sex_2 * lage70. 8 sex_1 * lage70sq. 9 sex_2 * lage70sq. 10 sex_1 * lage70qsp. 11 sex_2 * lage70qsp. 12 sex_1 * e30. 13 sex_2 * e30. 14 sex_1 * e30sq. 15 sex_2 * e30sq.	5. 346 4. 545 -0. 04565 -0. 07679 -0. 04255 5. 713 3. 671 -0. 4936 0. 2283 -12. 10 -3. 818 -0. 1735 -0. 07293 0. 007826 0. 003865	0. 02014 0. 01842 0. 02039 0. 02105 0. 03886 0. 1865 0. 1368 0. 3428 0. 1959 1. 511 1. 1 0. 01072 0. 01098 0. 004752 0. 004536	265. 5 246. 7 -2. 239 -3. 648 -1. 095 30. 64 26. 84 -1. 44 1. 165 -8. 008 -3. 472 -16. 18 -6. 643 1. 647 0. 852	 0. 001 0. 0252 0. 001 0. 274 0. 001 0. 15 0. 244 0. 001 0. 001 0. 001 0. 344 0. 001 0. 3494
Linear term 1 16 cola02w10	51. 63 0. 000 -0. 2805	4. 982 Fixed 0. 06215	10. 36 1. 164 -4. 514	< 0.001 0.244 < 0.001
19 lage70	2. 406 1. 000 0. 1622	0.2731 Aliased 0.06988	8. 809 2. 321	0.0203
	25570 14739. 933 39853. 774	Degrees of fre	eedom 25551	L

bound 16 leve 90@

Profile likelihood bounds for parameter 16 (cola02w10)

MLE 51.63

95% lower bound 43.37 95% upper bound 60.41

bound 18 @

Profile likelihood bounds for parameter 18 (e30)

MLE -0.2805 exp(MLE) 0.7554

95% lower bound -0.3906
exp(bound) 0.6767
95% upper bound -0.1742
exp(bound) 0.8401

bound 19 @

Profile likelihood bounds for parameter 19 (lage70)

MLE 2. 406 exp (MLE) 11. 09

95% lower bound 1.959

exp(bound) 7.092 95% upper bound 2.867 exp(bound) 17.58

bound 21 @

Profile likelihood bounds for parameter 21 (msex)

MLE 0.1622

95% lower bound 0.04631 95% upper bound 0.2837