The art of making money: portfolios and the stock market

$$X = \frac{127.08}{126.46} = 1.0049$$

Price relative $X := \frac{\text{price at close}}{\text{price at previous close}}$

$$X = \frac{127.08}{126.46} = 1.0049$$

Investment at previous close

Value at close

$$X = \frac{127.08}{126.46} = 1.0049$$

Investment at previous close	Value at close		
1	X		

$$X = \frac{127.08}{126.46} = 1.0049$$

Investment at previous close	Value at close		
1	X		
a	aX		

A vector of stock price relatives: $\mathbf{X} = (X_1, \dots, X_m)$

 $X_j := price relative of stock j$

```
A vector of stock price relatives: \mathbf{X} = (X_1, \dots, X_m)
X_j := \text{price relative of stock } j
A portfolio \mathbf{a} = (a_1, \dots, a_m): an allocation of wealth across stocks
a_j := \text{fraction of wealth invested in stock } j
a_1, \dots, a_m \ge 0, \quad a_1 + \dots + a_m = 1
```

A vector of stock price relatives: $\mathbf{X} = (X_1, \dots, X_m)$ $X_j := \text{price relative of stock } j$

A portfolio $\alpha = (\alpha_1, ..., \alpha_m)$: an allocation of wealth across stocks

 a_j := fraction of wealth invested in stock j

$$a_1, \ldots, a_m \ge 0, \quad a_1 + \cdots + a_m = 1$$

Investment at previous close

Value at close

A vector of stock price relatives: $\mathbf{X} = (X_1, \dots, X_m)$ $X_j := \text{price relative of stock } j$

A portfolio $\alpha = (\alpha_1, ..., \alpha_m)$: an allocation of wealth across stocks

 $a_j :=$ fraction of wealth invested in stock j

$$a_1, \ldots, a_m \ge 0, \quad a_1 + \cdots + a_m = 1$$

Investment at previous close	Value at close	
	$S(\mathbf{X}) := a_1 X_1 + \dots + a_m X_m$	

A vector of stock price relatives: $\mathbf{X} = (X_1, \dots, X_m)$ $X_j := \text{price relative of stock } j$

A portfolio $\alpha = (\alpha_1, ..., \alpha_m)$: an allocation of wealth across stocks

 $a_j :=$ fraction of wealth invested in stock j

$$a_1, \ldots, a_m \ge 0, \quad a_1 + \cdots + a_m = 1$$

Investment at previous close	Value at close		
	$S(\mathbf{X}) := a_1 X_1 + \dots + a_m X_m$		
W	WS(X)		

A vector of stock price relatives: $\mathbf{X} = (X_1, \dots, X_m)$ $X_j := \text{price relative of stock } j$

A portfolio $\alpha = (\alpha_1, ..., \alpha_m)$: an allocation of wealth across stocks

 $a_j :=$ fraction of wealth invested in stock j

$$a_1, \ldots, a_m \ge 0, \quad a_1 + \cdots + a_m = 1$$

Investment at previous close	Value at close		
	$S(\mathbf{X}) := a_1 X_1 + \dots + a_m X_m$		— wealth relative
W	WS(X)		