Experimental studies of the $\Lambda(1405)$

physics654 – Seminar on exotic multi-quark states

JAKOB KRAUSE

▼ krause@hiskp.uni-bonn.de | **೧** krausejm

Tutor: Georg Scheluchin

■ scheluchin@physik.uni-bonn.de

18.06.2021

Motivation

What is special about the $\Lambda(1405)$?

- ▶ mass does not fit well into constituent quark models
- ▶ invariant mass distribution (line shape) differs significantly from usual BREIT-WIGNER shape
- \blacktriangleright candidate for an exotic multiquark state (bound system of $\overline{K}N$) since its mass lies just below production threshold

there are many different theoretical approaches to explain this behavior \rightarrow need for more experimental data!

Table of contents

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4. Conclusion

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4. Conclusion

Continuous Electron Beam Accelerator Facility (CEBAF)

CEBAF layout at Jefferson Lab, [Mecking et al. 2003]

Continuous Electron Beam Accelerator Facility (CEBAF)

Figure 1: Overview of the CLAS detector setup, including the tagger, [Mecking et al. 2003]

CEBAF Large Acceptance Spectrometer (CLAS)

CLAS layout at Jefferson Lab, [Mecking et al. 2003]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4 Conclusion

Reaction kinematics

Reaction	Strong Final State		Particles X
		K ' p π (X)	$K^{+}\pi^{+}\pi^{-}(X)$
$\gamma + p \to K^+ +$	{Λ(1405) {Λ(1520)		>
	\sim 33% Σ^+ π^-	π^0 (52%) π^0 γ (64%)	n (48%) $\Sigma^{+} \rightarrow p\pi^{0}$ $\Sigma^{+} \rightarrow n\pi^{+}$
	$\sim 33\%$ $\Sigma^0 \pi^0$	$\pi^0 \gamma$ (64%)	$\Sigma^+ \to n\pi^+$
	$\sim 33\%$ $\Sigma^- \pi^+$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	6%		
$\gamma + p \rightarrow K^{+} + \Sigma^{0}(1385) \xrightarrow{87\%} K^{+} \Lambda \pi^{0}$		π^0 (64%)	$\Lambda \to p\pi^-$
$\gamma + p \to K^{*+} + \Sigma^0$		π ⁰ γ (64%)	
$\gamma + p \rightarrow K^{*0} + \Sigma^{+}$		π^{0} (52%)	n (48%)

Possible and studied reactions in the analysis of the lineshapes of $\Lambda(1405)$, [Moriya, Schumacher, Adhikari et al. 2013]

two sets of reactions that the detector sees

- 1. $K^+p\pi^-(X)$
- 2. $K^+\pi^+\pi^-(X)$

there are many cuts that can be made that apply to both

Initial selection of particles

- ▶ particle identification using TOF counters and momentum measurements
- ▶ kinematic cuts from Monte Carlo

Event selection – Particle identification

 ΔTOF for π^+ @ 2.35 < W < 2.45 GeV, applied cuts are shown in magenta. [Moriya, Schumacher, Adhikari et al. 2013]

Binning of data

the data was divided:

- ▶ 10 bins in $W = \sqrt{s}$ dividing 2 GeV to 3 GeV in steps of 100 MeV
- ▶ 20 bins in $\cos \theta_{\text{CMS}}^{K^+}$ dividing -1 to 1 in steps of 0.1

 \rightarrow the following analysis was performed independently in every bin of energy and angle!

extracting $\Lambda \pi^0$ and $\Sigma^+ \pi^-$

- reminder: $\Lambda \to p\pi^-, \Sigma^+ \to p\pi^0$
- final state particles: $K^+p\pi^-(\pi^0)$
- determine p_{π} via missing mass fit
- apply cuts based on fits to the invariant masses $M_{n\pi^-}$ and $M_{n\pi^0}$

extracting $\Sigma^+\pi^-$ and $\Sigma^-\pi^+$

- reminder: $\Sigma^{\pm} \to n\pi^{\pm}$
- final state particles: $K^+\pi^+\pi^-(n)$
- determine p_n via missing mass fit
- apply cuts based on fits to the invariant masses $M_{n\pi^\pm}$

Dalitz-like plots of the above mentioned invariant masses, [Moriya, Schumacher, Adhikari et al. 2013]

extracting $\Sigma^0 \pi^0$

- reminder: $\Sigma^0 \to \gamma \Lambda \to \gamma p \pi^-$
- final state particles: $K^+p\pi^-(\gamma\pi^0)$ missing mass fit is not applicable here: demand the missing mass is sufficiently greater than m_π
- make cuts based on the invariant mass $M_{p\pi^-}$
- now the missing mass $(\gamma p \to K^+ X)$ gives the $\Sigma^0 \pi^0$ lineshape

Missing mass of the reaction $\gamma p \to K^+ p \pi^-(X)$, selection range in magenta. [Moriya, Schumacher, Adhikari et al. 2013]

Measurements and analysis

- ▶ now the signal regions have been established
- ▶ the true lineshape of the $\Lambda(1405)$ has to be extracted from the vast of reactions \rightarrow any other contributions have to be substracted
- ▶ strategy: use of Monte-Carlo fits to the data, simulating the contribution of other resonances using the PDG widths and masses

Measurements and analysis

some fit results:

Sample fit results of invariant mass spectra for a single bin in energy and angle, [Moriya, Schumacher, Adhikari et al. 2013]

Interpretation of the results

having substracted all unwanted reactions, one can obtain the true $\Lambda(1405)$ lineshapes:

Lineshapes of the $\Lambda(1405)$ for the 3 different decay channels and the PDG Breit-Wigner. The data were summed over all angles for better statistics. [Moriya, Schumacher, Adhikari et al. 2013]

Interpretation of the results

there are in fact predictions of the lineshapes differing by decay channel [Nacher et al. 1999].

 \rightarrow main idea: not one amplitude, but two due to isospin decomposition.

Lineshapes of the $\Lambda(1405)$ for the 3 different decay channels and the prediction of [Nacher et al. 1999], [Moriya, Schumacher, Adhikari et al. 2013]

Interpretation of the results

MORIYA ET AL. saw two main reasons for the lineshapes differing from a simple Breit-Wigner:

- 1. isospin decomposition
- 2. channel coupling between the detected $\Sigma \pi$ and $N\overline{K}$ final states

Isospin decomposition

let

$$|t_I|^2 = |\langle I, 0|T^{(I)}|\gamma p\rangle|^2,$$

then we can write (neglecting I=2 using CGK)

$$|T_{\pi^{-}\Sigma^{+}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} - \frac{2}{\sqrt{6}}t_{0}t_{1}\cos\phi_{01}$$

$$|T_{\pi^{0}\Sigma^{0}}|^{2} = \frac{1}{3}|t_{0}|^{2}$$

$$|T_{\pi^{+}\Sigma^{-}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} + \frac{2}{\sqrt{6}}t_{0}t_{1}\cos\phi_{01}$$

Channel coupling

the t_I are described by one or two Breit-Wigner amplitudes with mass dependent widths Γ

 \rightarrow modify the amplitude preserving analyticity [Flatté 1976] including the $N\overline{K}$ decay channel available at threshold

$$m_K + m_p \approx 1434 \, \text{MeV}$$

Interpretation of results

fits with two I=1 and one I=0 amplitudes lead to best agreement with measured data

Data and fits for $\Sigma^a \pi^b$, $\{a,b\} \in \{+-,00-+\}$ for different bins in W. I=0 (solid black), narrow I=1 (dotted black) and wide I=1 (dashed black). Background dashed. [Moriya, Schumacher, Adhikari et al. 2013]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4 Conclusion

Theoretical basics I

The $\Lambda(1405)$ is so far (mostly) assumed to have $J^P = \frac{1}{2}^-$, but this has not been determined experimentally

Measuring spin

- \blacktriangleright consider the strong decay $Y^* \to Y\pi$, with J^P the spin and parity of Y^*
- \blacktriangleright the $Y\pi$ angular distribution will only depend on J

$$I(\theta_Y) = \text{const.}$$
 $J = 1/2$
 $I(\theta_Y) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^2 \theta_Y$ $J = 3/2$,

where θ_Y is the polar angle of the decay direction of Y in the Y* rest frame, p describes the fraction of spin projections along the z axis

 \blacktriangleright uniform decay pattern is best evidence for spin J=1/2

[Moriya, Schumacher, Aghasyan et al. 2014]

Measurements and analysis I

Analysis procedure

- \blacktriangleright plot the angular distribution of the projections $\cos \theta_{\Sigma}$ for each bin
- ▶ test each spin hypothesis using Monte-Carlo maximum likelihood fits, which employ angular decay probability distributions according to each hypothesis for $\Sigma \pi$
- \blacktriangleright compare each hypothesis by calculating a χ^2 probability

Meausrements and analysis I

Figure 2: Distribution of decay angle of the σ^+ with Monte-Carlo fit using flat templates [Moriya, Schumacher, Aghasyan et al. 2014]

Theoretical basics II

Measuring parity

- \blacktriangleright the key to accessing the parity lies in determining the Polarization transfer to the decay product Y which we will denote \mathbf{Q}
- ► the angular distribution of **Q** will only depend on **P**

$$\mathbf{Q}(\theta_Y) = \text{const.} \qquad J^P = 1/2^-$$

$$\mathbf{Q}(\theta_Y) = -\mathbf{P} + 2(\mathbf{P} \cdot \mathbf{q})\mathbf{q} \quad J^P = 1/2^+$$

 $ightharpoonup \mathbf{Q}$ can be measured from weak decay angular distribution of Y

Polarization transfer in the strong decay $Y^* \to Y\pi$, [Moriya, Schumacher, Aghasyan et al. 2014]

[Moriya, Schumacher, Aghasyan et al. 2014 and Ref. therein]

Measurements and analysis II

Analysis procedure

- \blacktriangleright plot the angular distribution of the projections $\cos \theta_p$ for each bin
- ▶ determine the polarization using Monte-Carlo fits
- ▶ determine $Q_z(\cos\theta_{\Sigma^+})$ to get the parity (const. for P=- quadratic for P=+)

Result: data is consistent with $J^P = 1/2^-$ but does in principle not rule out $J^P = 3/2^+$. $1/2^+$ and $3/2^-$ hypotheses can be discarded.

Measurements and analysis II

Distributions of the projections of (a)cos θ_{Σ} and (b) cos θ_p @ 2.65 < W < 2.75 GeV and 0.70 < cos $\theta <$ 0.80, [Moriya, Schumacher, Aghasyan et al. 2014]

Measurements and analysis II

Angular distribution of the polarization Q_z @ $2.65 < W < 2.75 \,\text{GeV}$ and $0.70 < \cos\theta < 0.80$. Red: average, blue: expectation for P-wave decay. [Moriya, Schumacher, Aghasyan et al. 2014]

1. Experimental setup

2. Line-shape measurement

3. Spin-parity measurement

4. Conclusion

Conclusion

Lineshape measurement

- ▶ the CLAS detector was used to study $\gamma p \to K^+ \Lambda(1405)$
- ► after selecting the correct events the true lineshape was extracted using MONTE-CARLO sim. of the yield of other resonances
- ► the lineshapes in different decay channels differ from each other and from a simple BREIT-WIGNER
- ► a phenomenological isospin decomposition model was able to describe the data

Spin parity measurement

- ▶ the angular distribution of the decay $\Lambda(1405) \rightarrow \Sigma^{+}\pi^{-}$ was studied
- ▶ the angular distributions were tested against various J^P hypotheses
- ▶ the data is consistent with $J^P = 1/2^-$ but does not exclude $J^P = 3/2^+$

References

- Flatté, S.M. (1976). 'Coupled-channel analysis of the $\pi\eta$ and $K\overline{K}$ systems near $K\overline{K}$ threshold'. In: Physics Letters B 63.2, pp. 224–227. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(76)90654-7. URL: https://www.sciencedirect.com/science/article/pii/0370269376906547.
- Mecking, B.A. et al. (2003). 'The CEBAF large acceptance spectrometer (CLAS)'. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 503.3, pp. 513–553. ISSN: 0168-9002. DOI: https://doi.org/10.1016/S0168-9002(03)01001-5. URL: https:
 - //www.sciencedirect.com/science/article/pii/S0168900203010015.
- Moriya, K., R. A. Schumacher, K. P. Adhikari et al. (Mar. 2013). 'Measurement of the $\Sigma \pi$ photoproduction line shapes near the $\Lambda(1405)$ '. In: Phys. Rev. C 87 (3), p. 035206. DOI: 10.1103/PhysRevC.87.035206. URL: https://link.aps.org/doi/10.1103/PhysRevC.87.035206.
- Moriya, K., R. A. Schumacher, M. Aghasyan et al. (Feb. 2014). 'Spin and parity measurement of the $\Lambda(1405)$ baryon'. In: Phys. Rev. Lett. 112 (8), p. 082004. DOI: 10.1103/PhysRevLett.112.082004. URL:

Back-up: Continuous Electron Beam Accelerator Facility (CEBAF)

How can we access $\Lambda(1405)$ with this setup?

- ▶ employ radiator target for the electrons
- ▶ generate high energy photons using the *bremsstrahlung* process
- ▶ shoot high energy photons on proton target (LH2)
- ▶ then we can observe $\gamma p \to K^+\Lambda(1405)$ while knowing p_{γ}, p_p

Back-up: Spin-Parity – Measurements and analysis

Event selection

- ► select kinematic region where the $\Sigma \pi$ invariant mass is dominated by the $\Lambda(1405) \to M_{\Sigma \pi} \in$ $1.30 \,\text{GeV}$ to $1.45 \,\text{GeV}$
- ▶ inspect nine bins in energy and angle, namely with CM energy at 2.6, 2.7 and 2.8 GeV and the three forwardmost kaon angle bins each

 $\Sigma\pi$ and $K\pi$ invariant mass in the vicinity of the $\Lambda(1405)$, [Moriya, Schumacher, Aghasyan et al. 2014]