$$\hat{\beta}_{\tau} \text{ is again a linear combination of } Y, \text{ let's loy } \hat{\beta}_{\tau} = A \cdot Y$$
where $A = (X^{T}X + \tau 11)^{T} X^{T}$
So, since $Y \times t^{T} = (X^{T}X + \tau 11)^{T} X^{T}$

$$So, \text{ since } Y \times t^{T} = (X^{T}X + \tau 11)^{T} X^{T} X^{T} X^{$$

, cov (Bz) = St S St 02

1. E(Br) = St SB

 $\beta_{\tau} = \operatorname{argmin}_{R} (Y - X\beta)^{T} (Y - X\beta) + \tau \beta^{T} \beta$

Now, by hypothesis $Y = X\beta + E$, where $E \sim N(0, 116^2)$ so Y is just a shifted normal vector $Y \sim N(X\beta, 11 \cdot 6^2)$

The solution is $\hat{\beta}_{\tau} = (x^{T}X + \tau 1)^{-1} x^{T}y$

proof:

2.
$$H_{p}$$
: $\frac{2}{\partial \beta} \sum_{i=1}^{N} (y_{i}^{\dagger} - \chi_{i} \beta)^{2} = 0$

$$u_{1} = \frac{1}{N_{1}} \sum_{i:y_{i}^{\dagger}=1} \chi_{i} \qquad u_{-1} = \frac{1}{N_{-1}} \sum_{i:y_{i}^{\dagger}=-1} \chi_{i}$$

•
$$N_1 = N_{-1} = N/2$$
, $\sum_{i=1}^{N} x_i = 0$, $\mu_1 + \mu_2 = 0$. Jealanced class

Th:
$$ZB + \frac{1}{4} (\mu_{1} - \mu_{-1})^{T} (\mu_{1} - \mu_{-1})^{B} = \frac{1}{2} (\mu_{1} - \mu_{-1})^{T}$$

proof:

let's call $X_{1} := \{X_{i} : y_{i}^{*} = 1\} X_{-1} := \{X_{i} : y_{i}^{*} = -1\}$
 $Y_{1} := \{y_{i}^{*} = 1\} Y_{-1} = \{y_{i}^{*} = -1\}$
 $ZB = \frac{1}{2} (y_{i}^{*} - X_{i}^{*}B)^{2} = 0$

proof:

let's call
$$X_{1} := \{X_{i} : y_{i}^{*} = 1 \}$$
 $X_{-1} := \{X_{i} : y_{i}^{*} = -1 \}$
 $Y_{1} := \{Y_{i}^{*} = 1 \}$ $Y_{-1} = \{Y_{i}^{*} = -1 \}$
 $\frac{1}{2} \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} = 0$
 $\frac{1}{2} \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} + \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} = 0$
 $\frac{1}{2} \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} + \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} = 0$
 $\frac{1}{2} \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} + \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} = 0$
 $\frac{1}{2} \sum_{j=1}^{N} (y_{i}^{*} - X_{i}\beta)^{2} + (y_{i}^{*} - X_{i}\beta)^{2} = 0$

the X_1 and X_-1 need to be on the other side of the brackets
$$-2(Y_1 - X_1\beta)X_1^T - 2(Y_{-1} - X_{-1}\beta)X_{-1}^T = 0$$

$$X_1^T Y_1 - X_1^T X_1\beta + X_{-1}^T Y_{-1} - X_{-1}^T X_{-1}\beta = 0$$

$$(X_1^T X_1 + X_1^T X_1\beta + X_1^T Y_1 + X_1^T Y_1$$

same for y =-1.

$$\rightarrow NZ\beta + N(\mu_1 \mu_1 + \mu_1 \mu_2)\beta = N(\mu_1 - \mu_2)^T$$

Now
$$\mu_1^T \mu_1 + \mu_2^T \mu_2 = \frac{1}{2} \left(\mu_1^T \mu_1 + \mu_2^T \mu_2 \right) + \frac{1}{2} \left(\mu_1^T \mu_1 + \mu_2^T \mu_2 \right) =$$

$$= \left\{ \mu_1 = -\mu_2 \right\} = \frac{1}{2} \left\{ \mu_1^T \mu_1 + \mu_2^T \mu_2 \right\} + \frac{1}{2} \left\{ -\mu_1^T \mu_2 - \mu_2^T \mu_2 \right\} =$$

$$= \left\{ \mu_{1} = -\mu_{-1} \right\} = \frac{1}{2} \left\{ \mu_{1} + \mu_{-1} + \mu_{-1} + \mu_{-1} \right\} + \frac{1}{2} \left\{ -\mu_{1} + \mu_{-1} - \mu_{1} + \mu_{-1} \right\} =$$

$$= \frac{1}{2} \left\{ \mu_{1} + \mu_{-1} + \mu_{-1}$$