Anomaly detection for the Fink broker

Intern Pierre Cavalier

Supervisor

Julien Peloton

20th July 2023

Plan

- Introduction
 - What is Fink?
 - Dataset
- Goal and motivation
- Graphs
 - Definition
 - Creation and performance
- Anomalous and ambiguous data
- Perspectives

Introduction

What is Fink?

Interface between telescopes and users

Introduction

What is Fink?

- Interface between telescopes and users
- Community project since 2019

Introduction

What is Fink?

- Interface between telescopes and users
- Community project since 2019
- ullet \sim 50 members in 13 countries

A dataset element (called an alert)

Figure 1: Issuing an alert

A dataset element (called an alert):

• 110 characteristics specific to alert observation

(a) Issuing an alert

A dataset element (called an alert):

- 110 characteristics specific to alert observation
- 80 statistical values calculated from the light curve

(a) Issuing an alert

(b) Light curve of an object

A dataset element (called an alert):

- 110 characteristics specific to alert observation
- 80 statistical values calculated from the light curve
- 20 values added by Fink including a classification

(a) Issuing an alert

(b) Light curve of an object

A dataset element (called an alert):

- 110 characteristics specific to alert observation
- 80 statistical values calculated from the light curve
- 20 values added by Fink including a classification

(a) Issuing an alert

(b) Light curve of an object

Our dataset is composed of 6 distinct classes with 200 elements each

Current situation: traditional tabular representation of alert properties

- Current situation: traditional tabular representation of alert properties
- Explore graphs

- Current situation: traditional tabular representation of alert properties
- Explore graphs
- Highlight relationships between entities

- Current situation: traditional tabular representation of alert properties
- Explore graphs
- Highlight relationships between entities
- Identify anomalies among entities

 Hand sorting of features, those relevant to the observation or the position etc..

- Hand sorting of features, those relevant to the observation or the position etc..
- Principal analysis component after converting and normalizing features

- Hand sorting of features, those relevant to the observation or the position etc..
- Principal analysis component after converting and normalizing features

(a) Variance explained by principal component

- Hand sorting of features, those relevant to the observation or the position etc..
- Principal analysis component after converting and normalizing features

(a) Variance explained by principal component

(b) Alerts based on the first three components

Graphs

Definition 1

A graph G is defined as an ordered pair of vertex and edges G = (V, E)

Graphs

Definition 1

A graph G is defined as an ordered pair of vertex and edges G = (V, E)

Figure 3: Example of a graph

In our case, vertex are alerts but how to define edges?

For every alert in the sample of our dataset, we create a link for all the alert where the euclidian distance in \mathbb{R}^{20} is inferior to a certain limit r.

For every alert in the sample of our dataset, we create a link for all the alert where the euclidian distance in \mathbb{R}^{20} is inferior to a certain limit r.

For every alert in the sample of our dataset, we create a link for all the alert where the euclidian distance in \mathbb{R}^{20} is inferior to a certain limit r.

(c) Theorical number of edges

(b) $n \log n$

For every alert in the sample of our dataset, we create a link for all the alert where the euclidian distance in \mathbb{R}^{20} is inferior to a certain limit r.

(c) Theorical number of edges

(d) One connected component

Definition 2

A good edge is defined as an edge between two alerts of the same class.

Definition 2

A good edge is defined as an edge between two alerts of the same class.

Definition 3

The accuracy of a graph G is defined as the ratio of the number of good edges to the total number of edges.

Definition 2

A good edge is defined as an edge between two alerts of the same class.

Definition 3

The accuracy of a graph G is defined as the ratio of the number of good edges to the total number of edges.

Definition 4

We define the similarity density of a graph G as the ratio of the number of good edges to the total number of hypothetical good edges.

Definition 2

A good edge is defined as an edge between two alerts of the same class.

Definition 3

The accuracy of a graph G is defined as the ratio of the number of good edges to the total number of edges.

Definition 4

We define the similarity density of a graph G as the ratio of the number of good edges to the total number of hypothetical good edges.

Type of construction	$n\sqrt{n}$	nlog n	TNE	OCC
Accuracy	34%	40%	36%	16%
Similarity density	38%	23%	34%	79%

Neural Network

Technical details: learning rate: 0.001, 200 epochs, Loss function: Binary Cross Entropy, optimizer: Adam Framework used: Pytorch

Training set: 200 alerts, Test set: 200 alerts

Result

Figure 5: Neural network graph

Result

Figure 5: Neural network graph

Accuracy	Similarity density
64%	61%

Result

Figure 5: Neural network graph

Accuracy	Similarity density
64%	61%

78% of alerts are linked to a majority of alerts of the same type

What about anomalies?

Figure 6: Adding anomalies and ambiguous alerts

What about anomalies?

Figure 6: Adding anomalies and ambiguous alerts

Anomalous alerts are connected in a particular way

What about anomalies?

Figure 6: Adding anomalies and ambiguous alerts

- Anomalous alerts are connected in a particular way
- Ambiguous alerts are connected to an average of 90% of supernovas

Perspectives

Potential improvement

- Stabilize results: Impact of the training dataset
- Refine prediction: Graph neural network
- Scaling up: Hypergraphs
- Improving the interpretability of predictions: Modifying the loss function

Perspectives

Potential improvement

- Stabilize results: Impact of the training dataset
- Refine prediction: Graph neural network
- Scaling up: Hypergraphs
- Improving the interpretability of predictions: Modifying the loss function

Short term application

- Recommendation system
- Detection of potential anomalies
- Enhance Fink services for the scientific community

Thank you for your attention Any questions?