UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 04 Spring 2023

1. Drawing Batteries I

You have an endless box of used batteries. The number of hours remaining in a battery is i.i.d. Uniform([0,1]).

- a. Suppose you draw n batteries, and the ith battery you draw has X_i hours remaining. What is $\mathbb{P}(X_1 \leq X_2 \leq \cdots \leq X_n)$?
- b. Now suppose you draw batteries until you have enough batteries to last one hour in total. Let N be the number of batteries you draw. What is $\mathbb{P}(N > 2)$? $\mathbb{P}(N > 3)$?

2. Graphical Density

Figure 1 shows the joint density $f_{X,Y}$ of the random variables X and Y.

Figure 1: Joint density of X and Y.

- a. Find A and sketch f_X , f_Y , and $f_{X|X+Y\leq 3}$. b. Find $\mathbb{E}(X\mid Y=y)$ for $1\leq y\leq 3$ and $\mathbb{E}(Y\mid X=x)$ for $1\leq x\leq 4$.
- c. Find cov(X, Y).

3. Revisiting Proofs Using Transforms

- a. Calculate the MGF of $X \sim \text{Poisson}(\lambda)$.
- b. Let $X \sim \operatorname{Poisson}(\lambda)$ and $Y \sim \operatorname{Poisson}(\mu)$ be independent. Calculate the MGF of X + Y, and use this to show that $X + Y \sim \operatorname{Poisson}(\lambda + \mu)$.
- c. Repeat parts a and b above, this time for $X \sim \mathcal{N}(0, \sigma_X^2)$ and $Y \sim \mathcal{N}(0, \sigma_Y^2)$.