PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-003990

(43)Date of publication of application: 06.01.1998

(51)Int.CI.

H05B 33/14 C09K 11/06

(21)Application number: 08-174286

(71)Applicant: IDEMITSU KOSAN CO LTD

(22)Date of filing:

13.06.1996 (72)Inver

(72)Inventor: NAKAMURA HIROAKI

MATSUURA MASAHIDE

(54) ORGANIC ELECTROLUMINESCENT DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an organic electroluminescent device in which white light emission at high brightness and high efficiency is possible. SOLUTION: In this device, plural pixels, each composed of a substrate electrode 20, an organic substance layer 30 having a light emitting layer, and a counter electrode 40 laminated on a substrate 10 in order, are disposed to be separate from each other. In this case, the light emitting layer has a blue light emitting layer 31, a green light emitting layer 32, and a red light emitting layer 33 provided in this order, the blue light emitting layer 31 includes a zone in which blue-color phosphor is included in blue light emitter, the green light emitting layer 32 includes a zone in which green-color phosphor is included in the blue light emitter or green light emitter, and the red light emitting layer 33 includes a zone in which red-color phosphor is included in blue light emitter.

LEGAL STATUS

[Date of request for examination]

21.05.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-3990

(43)公開日 平成10年(1998) 1月6日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

H05B 33/14

C09K 11/06

H05B 33/14

C09K 11/06

Z

審査請求 未請求 請求項の数7 FD (全 35 頁)

(21)出願番号

(22) 出顧日

特顯平8-174286

平成8年(1996)6月13日

(71)出題人 000183646

出光興産株式会社

東京都千代田区丸の内3丁目1番1号

(72)発明者 中村 浩昭

千葉県袖ヶ浦市上泉1280番地 出光興産株

式会社内

(72) 発明者 松浦 正英

千葉県袖ヶ浦市上泉1280番地 出光興産株

式会社内

(74)代理人 弁理士 渡辺 喜平 (外1名)

(54) 【発明の名称】 有機EL発光装置

(57)【要約】

【課題】 高輝度、高効率の白色発光が可能な有機EL 発光装置を提供する。

【解決手段】 基板10上に、基板電極20、発光層を 有する有機物層30、および対向電極40を順次積層し て形成された複数の発光画素が、それぞれ分離して配置 された有機EL発光装置において、発光層が、青色発光 層31、緑色発光層32、および赤色発光層33をこの 順に有するものであり、また青色発光層31が、青色発 光体に青色蛍光体を含有させた領域を有し、緑色発光層 32が、背色発光体または緑色発光体に緑色蛍光体を含 有させた領域を有し、かつ赤色発光層33が、青色発光 体に赤色蛍光体を含有させた領域を有することを特徴と する有機EL発光装置。

【特許請求の範囲】

【請求項1】 基板上に、基板電極、発光層を有する有機物層、および対向電極を順次積層して形成された複数の発光画素が、それぞれ分離して配置された有機EL発光装置において、

発光層が、青色発光層、緑色発光層、および赤色発光層 をこの順に有するものであり、また青色発光層が、青色 発光体に青色蛍光体を含有させた領域を有し、緑色発光 層が、青色発光体または緑色発光体に緑色蛍光体を含有 させた領域を有し、かつ赤色発光層が、青色発光体に赤 色蛍光体を含有させた領域を有することを特徴とする有機EL発光装置。

【請求項2】 前記それぞれの発光層における、蛍光体の発光体に対する含有割合が、0.1~10モル%であることを特徴とする請求項1記載の有機EL発光装置。

【請求項3】 前記青色発光体が、下記式(I)で示されるジスチリルアリーレン系化合物であることを特徴とする請求項1または2記載の有機EL発光装置。

【化1】

$$\frac{R^{1}}{R^{2}}C = CH - Ar - CH = C < \frac{R^{3}}{R^{4}} + \cdots + (1)$$

「式中、R1~R1は、それぞれ水素原子、炭素数1~ 6のアルキル基、炭素数1~6のアルコキシ基、炭素数 7~18のアラルキル基、置換もしくは無置換の炭素数 6~18のアリール基、置換もしくは無置換の芳香族複 素環式基、置換もしくは無置換のシクロヘキシル基、置 換もしくは無置換の炭素数6~18のアリールオキシ 基、置換もしくは無置換のピリジル基を示す。ここで、 置換基は炭素数1~6のアルキル基,炭素数1~6のア ルコキシ基,炭素数7~18のアラルキル基,炭素数6 ~18のアリールオキシ基,炭素数1~6のアシル基。 炭素数1~6のアシルオキシ基, カルボキシル基, スチ リル基、炭素数6~20のアリールカルボニル基、炭素 数6~20のアリールオキシカルボニル基, 炭素数1~ 6のアルコキシカルボニル基, ビニル基, アニリノカル ボニル基、カルバモイル基、フェニル基、ニトロ基、水 酸基あるいはハロゲン原子を示す。これらの置換基は単 ーでも複数でもよい。また、R1 ~R4 は同一でも、ま た互いに異なっていてもよく、R1 とR2 及びR3 とR 4 は互いに置換している基と結合して、置換もしくは無 置換の飽和又は不飽和の五員環あるいは置換もしくは無 置換の飽和又は不飽和の六員環を形成してもよい。 Ar は置換もしくは無置換の炭素数6~20のアリーレン基 を表し、単一置換されていても、複数置換されていても よく、また結合部位は、オルト、パラ、メタいずれでも よい。なお、置換基は前記と同じである。また、アリー レン基の置換基同士が結合して、置換もしくは無置換の 飽和又は不飽和の五員環あるいは置換もしくは無置換の 飽和又は不飽和の六員環を形成してもよい。但し、Ar が無置換フェニレンの場合、R1 ~R1 は、それぞれ炭 素数1~6のアルコキシ基、炭素数7~18のアラルキ ル基、置換もしくは無置換のナフチル基、ピフェニル 基、シクロヘキシル基、アリールオキシ基より選ばれた ものである。]

【請求項4】 前記基板電極または対向電極の少なくとも一方が、光透過性であり、その光透過性電極の、発光層を含む有機物層が形成されていない側の面に、カラーフィルタ層を配設してなることを特徴とする請求項1~

3のいずれか1項記載の有機EL発光装置。

【請求項5】 前記発光体と蛍光体とを含有する三つの 領域のうちの各二つが形成する界面において、対向する 二つの領域のそれぞれが、共通の有機化合物を含有する 部分を含むことを特徴とする請求項1~4のいずれか1 項記載の有機EL発光装置。

【請求項6】 前記発光体と蛍光体とを含有する三つの 領域のそれぞれの厚さが、0.1~50nmであること を特徴とする請求項1~5のいずれか1項記載の有機E L発光装置。

【請求項7】 前記発光層が、青色発光層,緑色発光層 および赤色発光層をこの順に有する積層を、さらに一回 以上繰り返し積層したものであることを特徴とする請求 項1~6のいずれか1項記載の有機EL発光装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は有機EL発光装置に 関する。さらに詳しくは、高輝度、高効率の白色発光が 可能な有機EL発光装置に関する。

[0002]

【従来の技術】エレクトロルミネッセンス素子(EL素子)は、自己発光のため視認性が高く、かつ完全固体素子であるため、耐衝撃性に優れるという特徴を有している。そのため、現在、無機または有機化合物を用いた様々なEL素子が提案され、かつ、実用化が試みられている。これらの素子のうち、有機EL素子は印加電圧を大幅に低下させることができるので、各種材料・素子の開発が進められている。さらに、現在用いられているバックライトやディスプレイなどの表示素子の軽量化にも有効である。白色発光する有機EL素子については、従来、次のような技術の開示がなされている。すなわち、

- (1) 有機EL積層構造体の各層のエネルギー準位を規定し、トンネル注入を利用して発光させるもの(ヨーロッパ公開特許第0390551号公報)
- (2) (1) と同じくトンネル注入を利用する素子で実施例として白色発光素子が記載されているもの(特開平3-230584号公報)

- (3) 二層構造の発光層が記載されているもの(特開平 2-220390号公報および特開平2-216790 号公報)
- (4) 発光層を複数に分割してそれぞれ発光波長の異なる材料で構成されたもの(特開平4-51491号公報)
- (5) 育色発光体(蛍光ピーク380nm~480nm) と緑色発光体(480nm~580nm) とを積層させ、さらに赤色蛍光体を含有させた構成のもの(特開平6-207170号公報)
- (6) 青色発光層が青色蛍光色素を含有し、緑色発光層が赤色蛍光色素を含有した領域を有し、さらに緑色蛍光体を含有する構成のもの(特開平7-142169号公報)

[0003]

【発明が解決しようとする課題】しかし、上記技術には それぞれ次のような問題があった。すなわち、

- (1) ヨーロッパ公開特許第0390551号公報では、キャリアをキャリア界面の蓄積によるトンネリング注入によって取り込むため白色発光するための域値電圧が存在し、その域値以下においては白色ではないため階調表示ができない。
- (2) 特開平3-230584号公報では、二色の蛍光 物の混合発光であるため良好な白色にはならない。
- (3) 特開平2-216790号公報では、白色発光を 呈するが、印加電圧30Vで輝度110cd/m²であ り、駆動電圧が高いわりには発光効率が低い。
- (4)特開平4-51491号公報では、端面発光構造であり面全体としての用途には不適である。
- (5)特開平6-207170号公報では、発光層が二 層構成であり、発光効率が小さい。さらに白色の色純度 が悪い。
- (6)特開平7-142169号公報では、発光層が二層であり、これも発光効率が小さい。

【0004】本発明は、上述の問題に鑑みなされたものであり、高輝度、高効率の白色発光が可能な有機EL発光装置を提供することを目的とする。

[0005]

【課題を解決するための手段】上記目的を達成するため、本発明によれば、基板上に、基板電極、発光層を有する有機物層、および対向電極を順次積層して形成された複数の発光画素が、それぞれ分離して配置された有機 E L 発光装置において、発光層が、青色発光層、緑色発光層、および赤色発光層をこの順に有するものであり、また青色発光層が、青色発光体に青色蛍光体を含有させた領域を有し、緑色発光層が、青色発光体または緑色発光体に緑色蛍光体を含有させた領域を有することを特徴とする有機E L 発光装置が提供される。

【0006】また、その好ましい態様として、前記それ

ぞれの発光層における、蛍光体の発光体に対する含有割合が、0.1~10モル%であることを特徴とする有機 EL発光装置が提供される。

【0007】また、その好ましい態様として、前記宵色 発光体が下記式 (I) で示されるジスチリルアリーレン 系化合物であることを特徴とする有機EL発光装置が提供される。

[0008]

【化1】

【0009】 [式中、R1~R1 は、それぞれ水素原 子、炭素数1~6のアルキル基、炭素数1~6のアルコ キシ基, 炭素数7~18のアラルキル基, 置換もしくは 無置換の炭素数6~18のアリール基,置換もしくは無 置換の芳香族複素環式基,置換もしくは無置換のシクロ ヘキシル基、置換もしくは無置換の炭素数6~18のア リールオキシ基、置換もしくは無置換のピリジル基を示 す。ここで、置換基は炭素数1~6のアルキル基,炭素 数1~6のアルコキシ基、炭素数7~18のアラルキル 基, 炭素数6~18のアリールオキシ基, 炭素数1~6 のアシル基, 炭素数1~6のアシルオキシ基, カルボキ シル基,スチリル基,炭素数6~20のアリールカルボ ニル基、炭素数6~20のアリールオキシカルボニル 基、炭素数1~6のアルコキシカルボニル基、ビニル 基、アニリノカルボニル基、カルバモイル基、フェニル 基, ニトロ基, 水酸基あるいはハロゲン原子を示す。こ れらの置換基は単一でも複数でもよい。また、R1~R 4 は同一でも、また互いに異なっていてもよく、 R¹ と R² 及びR³ と R⁴ は互いに置換している基と結合し て、置換もしくは無置換の飽和又は不飽和の五員環ある いは置換もしくは無置換の飽和又は不飽和の六員環を形 成してもよい。Arは置換もしくは無置換の炭素数6~ 20のアリーレン基を表し、単一置換されていても、複 数置換されていてもよく、また結合部位は、オルト、パ ラ,メタいずれでもよい。なお、置換基は前記と同じで ある。また、アリーレン基の置換基同士が結合して、置 換もしくは無置換の飽和又は不飽和の五員環あるいは置 換もしくは無置換の飽和又は不飽和の六員環を形成して もよい。但し、Arが無置換フェニレンの場合、R1~ R1 は、それぞれ炭素数1~6のアルコキシ基、炭素数 7~18のアラルキル基,置換もしくは無置換のナフチ ル基、ビフェニル基、シクロヘキシル基、アリールオキ シ基より選ばれたものである。〕

【0010】また、その好ましい態様として、前記基板 電極または対向電極の少なくとも一方が、光透過性であ り、その光透過性電極の、発光層を含む有機物層が形成 されていない側の面に、カラーフィルタ層を配設してな ることを特徴とする有機EL発光装置が提供される。また、その好ましい態様として、前記発光体と蛍光体とを 含有する三つの領域のうち各二つが形成する界面において、対向する二つの領域のそれぞれが、共通の有機化合

物を含有する部分を含むことを特徴とする有機EL発光 装置が提供される。また、その好ましい態様として、前 記発光体と蛍光体とを含有する三つの領域のそれぞれの 厚さが、0.1 n m~50 n mであることを特徴とする 有機EL発光装置が提供される。

【0011】さらにその好ましい態様として、前記発光層が、青色発光層,緑色発光層および赤色発光層をこの順に有する積層を、さらに一回以上繰り返し積層したものであることを特徴とする有機EL発光装置が提供される。

[0012]

【発明の実施の形態】以下、本発明の有機EL発光装置の実施の形態を、図面を参照しつつ具体的に説明する。図1は、本発明の一の実施形態を模式的に示す断面図である。図1に示すように本発明の有機EL発光装置は、基板10上に、基板電極20、発光層を含む有機物層30、および対向電極40が順次積層して形成された複数の発光画素がそれぞれ分離して配置されている。ここで、発光画素とは、一の基板電極20と、一の対向電極40と、これらに挟持された発光層を含む有機物層30とを含み、これに所望の色を実現するため、必要に応じてカラーフィルタを備えたものであって、独立に応度、非点盤の制御が可能な箇所のことを意味する。図1に示す発光画素をX-Yマトリクス上に配置し、所望の画素を点盤させることによりパターンや文字を表示することができる。

【0013】また、発光層が、青色発光層31、緑色発光層32、および赤色発光層33をこの順に有するものであり、また青色発光層31が、青色発光体に青色蛍光体を含有させた領域を有し、緑色発光層32が、青色発光体に緑色発光体に緑色蛍光体を含有させた領域を有し、かつ赤色発光層33が、青色発光体に赤色蛍光体を含有させた領域を有するものとしている。

【0014】ここで、青色発光体とは、固体状態で380~480nmの蛍光ピークを有する有機化合物を意味する。また、緑色発光体とは、固体状態で480~580nmの蛍光ピークを有する有機化合物を意味する。また、青色蛍光体とは、溶液状態での蛍光ピーク波長が、380~480nmである有機化合物を意味する。また、緑色蛍光体とは、溶液状態での蛍光ピーク波長が、480~580nmである有機化合物を意味する。また、赤色蛍光体とは、溶液状態での蛍光ピーク波長が、580~650nmである有機化合物を意味する。

【0015】また、蛍光体の発光体に対する含有割合は、0.1~10モル%が好ましく、さらに好ましくは、0.3~5モル%である。0.1モル%未満であると、蛍光体の発光強度が十分得られず、10モル%を超えると、蛍光の濃度消光が起り発光強度の低下や発光波長のずれが起る。

【0016】また、発光体と蛍光体とを含有する三つの

領域のそれぞれの厚さは、 $0.1\sim50$ n mであることが好ましく、 $5\sim40$ n mであることがさらに好ましい。0.1 n m未満であると、薄膜が層を成さず、50 n mを超えると、駆動電圧が上昇する。

【0017】さらに、前記発光体と蛍光体とを含有する 三つの領域のうち各二つが形成する界面において、対向 する二つの領域のそれぞれが、共通の有機化合物を含有 する部分を含むことが好ましい。すなわち、緑色発光層 が青色発光体に緑色蛍光体を含む構成であると、発光体 として共通の材料が選べ案子作製上手間が軽減されるこ とからさらに好ましい。

【0018】この実施形態においては、通常の有機EL素子におけるように、有機物層30、として、発光層31,32,33に加えて、正孔注入層34および電子注入層35を配設している。この層34,35はそれぞれ二層以上であってもよい。また、この実施形態においては、発光層31,32,33をB/G/Rの積層としているが、その一回以上の繰り返し(たとえば、B/G/R/B/G/R等)を積層したものであってもよい。B,G,Rの積層順は、光を取り出す側からB/G/Rの順にすることが光の再吸収が小さいことから好ましい。

【0019】以下、本発明の有機EL発光装置に用いられる各構成要素について具体的に説明する。

【0020】1. 基板

本発明で用いられる基板としては、透明性を問わず、多色発光装置を支えるに十分な剛直な材料が好ましい。特に、高精細な表示をする場合には、有機EL素子と蛍光体層とのギャップが大きいと有機EL素子の発光が隣接する蛍光体層に吸収され所望の発光色が得られず、視野角を小さくしてしまう場合がある。そのため、透明な絶縁層の厚さを小さくする必要があるが、厚さを小さくすると、多色発光装置の耐衝撃性等の機械的強度を弱めることになる。本発明では、基板を配置することにより多色発光装置を補強して耐衝撃性等の機械的強度を高めている。

【0021】具体的な材料としては、例えば、ガラス板、セラミック板、プラスチック板(ポリカーボネート、アクリル、塩化ビニル、ポリエチレンテレフタレート、ポリイミド、ポリエステル樹脂等)、金属板、おこび後述する絶縁層と同じ材料からなる板等を挙げることができるが、もろくなく、耐衝撃性等の機械的強度にをれた金属が好ましい。金属を用いることにより透明な相縁層の厚さが小さく、基板の金属の厚さが小さい場合でも相当の補強効果がある。具体的には、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム、タンタルからなる群から選ばれる一種以上の金属または合金からなる材料が好ましい。このような材料は、エッチング処理等により、空隙形成の加工性に優

れ、しかも基板として剛直な材料であって、コスト的に安価な材料であるので好ましい。また、先述のように、空隙を形成した際に、空隙の側面に金属光沢を出すこともできるので、蛍光体層からの発光を反射または散乱して、効率よく光を取出し視認性に優れた多色発光装置を得ることができる。基板の板厚は、特に制限はないが、高精細表示を行う多色発光装置については空隙の形成を高精細にしなければならないので、多色発光装置を支える剛直さがあって可能な限り薄くすることが必要である。通常は 5μ m~5mmの範囲であり、好ましくは、 7μ m~ 700μ mさらに好ましくは、 10μ m~ 300μ mである。

【0022】2. 基板電極

基板電極としては、仕事関数の大きい(4 e V以上)金属、合金、電気伝導性化合物またはこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、A u 等の金属、C u I , I T O , S n O 2 , Z n O 等の導電性透明材料が挙げられる。基板電極は、これらの電極物質を蒸着法やスパッタリング法等の方法で、薄膜を形成させることにより作製することができる。このように発光層からの発光を基板から取り出す場合、基板電極の発光に対する透過率が10%より大きくすることが好ましい。また、基板電極のシート抵抗は、数百Ω/□以下が好ましい。基板電極のシート抵抗は、数百Ω/□以下が好ましい。基板電極の原厚は材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲である。

【0023】3. 対向電極

対向電極としては、仕事関数の小さい(4 e V以下) 金 属,合金,電気伝導性化合物およびこれらの混合物を電 極物質とするものが用いられる、このような電極物質の 具体例としては、ナトリウム、ナトリウムーカリウム合 金、マグネシウム、リチウム、マグネシウム・銀合金、 アルミニウム/酸化アルミニウム (A 1₂ O₃)、アル ミニウム・リチウム合金、インジウム、希土類金属など が挙げられる。この対向電極は、これらの電極物質を蒸 着やスパッタリングなどの方法により、薄膜を形成させ ることにより、作製することができる。また、対向電極 としてのシート抵抗は数百Ω/□以下が好ましく、膜厚 は通常10nm~1μm、50~200nmの範囲が好 ましい。なお、本発明に用いられるEL素子において は、該基板電極または対向電極のいずれか一方が透明ま たは半透明であることが、発光を透過するため、発光の 取り出し効率がよいので好ましい。

【0024】本発明においては、基板電極または対向電極の少なくとも一方は、光透過性であることが、発光を取り出すことから好ましく、またその光透過性電極の、発光層を含む有機物層が形成されていない側の面にカラーフィルタやブラックマトリックスを配設することが色純度を向上させること等から好ましい。

【0025】本発明に用いられるカラーフィルタとして

は、たとえば、下記の色素のみまたは、色素をバインダー樹脂中に溶解または分散させた固体状態のものを挙げることができる。

【0026】赤色(R)色素:ペリレン系顔料、レーキ顔料、アゾ系顔料、キナクリドン系顔料、アントラキノン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料等の単品および少なくとも二種類以上の混合物

【0027】緑色(G)色素:ハロゲン多置換フタロシアニン系顔料、ハロゲン多置換銅フタロシアニン系顔料、トリフェルメタン系塩基性染料、イソインドリン系顔料、イソインドリノン系顔料等の単品および少なくとも二種類以上の混合物

【0028】 青色(B)色素: 銅フタロシアニン系顔料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料等の単品および少なくとも二種類以上の混合物

【0029】一方、バインダー樹脂は、透明な(可視光50%以上)材料が好ましい。たとえば、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース、カルボキシメチルセルロース等の透明樹脂(高分子)が挙げられる。

【0030】なお、カラーフィルタを平面的に分離配置するために、フォトリソグラフィー法が適用できる感光性樹脂も選ばれる。たとえば、アクリル酸系、メタクリル酸系、ポリケイ皮酸ビニル系、環ゴム系等の反応性ビニル基を有する光硬化型レジスト材料が挙げられる。また、印刷法を用いる場合には、透明な樹脂を用いた印刷インキ(メジウム)が選ばれる。たとえば、ポリ塩化ビニル樹脂、メラミン樹脂、フェノール樹脂、アルキド樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、マレイン酸樹脂、ポリアミド樹脂のモノマー、オリゴマー、ポリマーまた、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース、カルボキシメチルセルロース等の透明樹脂を用いることができる。

【0031】カラーフィルタが主に色素からなる場合は、所望のカラーフィルタパターンのマスクを介して真空蒸着またはスパッタリング法で成膜され、一方、色素とバインダー樹脂からなる場合は、蛍光色素と上記樹脂およびレジストを混合、分散または可溶化させ、スピンコート、ロールコート、キャスト法等の方法で製膜し、フォトリソグラフィー法で所望のカラーフィルタパターンでパターニングしたり、印刷等の方法で所望のカラーフィルタのパターンでパターニングするのが一般的である。

【0032】それぞれのカラーフィルタの膜厚と透過率は、下記とすることが好ましい。

R:膜厚0.5~5.0μm (透過率50%以上/610nm), G:膜厚0.5~5.0μm (透過率50%以上/545nm), B:膜厚0.2~5.0μm (透過率50%以上/460nm)

【0033】また、特にカラーフィルタが色素とバインダー樹脂からなるものは、色素の濃度が、カラーフィルタが問題なくパターニングできて、かつ、有機EL素子の発光を十分透過できる範囲であればよい。色素の種類にもよるが、使用するバインダー樹脂を含めたカラーフィルタ膜中に色素が5~50重量%含まれる。

【0034】本発明に用いられるブラックマトリックスとしては、たとえば、下記の金属および金属酸化物薄膜、並びに黒色色素を挙げることができる。金属および金属酸化物薄膜の具体例としては、クロム(Cr)、ニッケル(Ni)、銅(Cu)等の金属およびその酸化物の薄膜を挙げることができる。上記金属および金属酸化物の混合物としては、光学濃度3.0以上(膜厚100~3000オングストローム)のものが好ましい。

【0035】黒色色素の具体例としては、カーボンブラック、チタンブラック、アニリンブラックまたはカラーフィルタの色素を混合して、黒色化したもの、またはカラーフィルタと同じように上記色素をバインダー樹脂中に溶解または分散させた固体状態のものを挙げることができる。

【0036】金属および金属酸化物薄膜は、スパッタリング法、蒸着法、CVD法等により絶縁性基板全面か、マスキングの手法により少なくとも表示部全面に成膜後、フォトリングラフィー法によりパターニングを行って、ブラックマトリックスのパターンを形成することができる。

【0037】 黒色色素を用いた場合は、カラーフィルタの場合と同様にパターニングして、ブラックマトリックスを形成することができる。

【0038】4. 発光層を含む有機物層

(1) 発光層

青色発光体に用いる有機化合物は、特に限定されず、例えば特開平3-231970号公報あるいは国際公開特許WO92/05131号公報、特願平5-170354号明細書、特願平5-129438号明細書に記載されている有機化合物の中で、上記青色発光体の蛍光条件を満足するものが挙げられる。好ましいものとしては、特開平3-231970号公報、国際公開特許WO92/05131号公報、特願平5-170345号明細書に記載されている上記青色発光体の蛍光条件を満たすものと、特願平5-129438号明細書に記載されている適当な化合物との組合せ、さらには後述する正孔注入輸送層に用いる化合物のなかで、上記青色発光体の蛍光条件を満足するものを挙げることができる。次に、特開

平3-231970号公報、国際公開特許WO92/0 5131号公報に記載されている上記青色発光体の蛍光 条件を満たす化合物としては、前記一般式 (I)

[0039]

【化1】

【0040】 [式中、R¹~R¹は、それぞれ水素原 子, 炭素数1~6のアルキル基, 炭素数1~6のアルコ キシ基,炭素数7~18のアラルキル基,置換もしくは 無置換の炭素数6~18のアリール基、置換もしくは無 置換の芳香族複素環式基、置換もしくは無置換のシクロ ヘキシル基、置換もしくは無置換の炭素数6~18のア リールオキシ基、置換もしくは無置換のピリジル基を示 す。ここで、置換基は炭素数1~6のアルキル基、炭素 数1~6のアルコキシ基、炭素数7~18のアラルキル 基、炭素数6~18のアリールオキシ基、炭素数1~6 のアシル基、炭素数1~6のアシルオキシ基、カルボキ シル基、スチリル基、炭素数6~20のアリールカルボ ニル基、炭素数6~20のアリールオキシカルボニル 基、炭素数1~6のアルコキシカルポニル基、ビニル 基、アニリノカルボニル基、カルバモイル基、フェニル 基、ニトロ基、水酸基あるいはハロゲン原子を示す。こ れらの置換基は単一でも複数でもよい。また、R1~R 4 は同一でも、また互いに異なっていてもよく、R¹と R² 及びR³ とR⁴ は互いに置換している基と結合し て、置換もしくは無置換の飽和又は不飽和の五員環ある いは置換もしくは無置換の飽和又は不飽和の六員環を形 成してもよい。Arは置換もしくは無置換の炭素数6~ 20のアリーレン基を表し、単一置換されていても、複 数置換されていてもよく、また結合部位は、オルト、パ ラ、メタいずれでもよい。なお、置換基は前記と同じで ある。また、アリーレン基の置換基同士が結合して、置 換もしくは無置換の飽和又は不飽和の五員環あるいは置 換もしくは無置換の飽和又は不飽和の六員環を形成して もよい。但し、Arが無置換フェニレンの場合、R゚~ R1は、それぞれ炭素数1~6のアルコキシ基、炭素数 7~18のアラルキル基、置換もしくは無置換のナフチ ル基、ピフェニル基、シクロヘキシル基、アリールオキ シ基より選ばれたものである。] で表されるジスチリル アリレーン系化合物、一般式(II)

 $A-Q-B \qquad \cdots \qquad (II)$

[式中、A及びBは、それぞれ上記一般式(I)で表される化合物から1つの水素原子を除いた一価基を示し、同一であっても異なってもよい。また、Qは共役系を切る二価基を示す。]で表される芳香族メチリディン化合物及び一般式(II)

[0041]

【化2】

$$R^{6} R^{5}$$
 $A^{2} - C = C - A^{1} - Q^{1} - A^{1} - C = C - A^{2}$
 $...(111)$

【OO42】「式中、AIは置換もしくは無置換の炭素 数6~20のアリーレン基又は二価の芳香族複素環式基 を示す。結合位置はオルト、メタ、パラのいずれでもよ い。A2 は置換もしくは無置換の炭素数6~20のアリ ール基又は一価の芳香族複素環式基を示す。R5 及びR 6 は、それぞれ水素原子、置換もしくは無置換の炭素数 6~20のアリール基、シクロヘキシル基、一価の芳香 族複素環式基, 炭素数1~10のアルキル基, 炭素数7 ~20のアラルキル基又は炭素数1~10のアルコキシ 基を示す。なお、R⁵ , R⁶ は同一でも異なってもよ い。ここで、置換基とは、アルキル基、アリールオキシ 基、アミノ基又はこれらの基を有するもしくは有しない フェニル基であり、該置換基は単一でも複数でもよい。 R⁵ の各置換基はA¹ と結合して、飽和もしくは不飽和 の五員環又は六員環を形成してもよく、同様にR6 の各 置換基はA² と結合して、飽和もしくは不飽和の五員環 又は六員環を形成してもよい。また、Q1 は前記と同じ である。〕で表される芳香族メチリディン化合物が挙げ られる。

【0043】ここで、一般式(I)中のR¹ ~R⁴ は前述の如く同一でも異なってもよく、それぞれ水素原子,炭素数1~6のアルキル基(メチル基、エチル基、nープロピル基、イソプロピル基、nープチル基、イソブチル基、secーブチル基、tertーブチル基、イソベンチル基、tーベンチル基、ネオペンチル基、イソペシル基),炭素数1~6のアルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等),炭素数1~8のアラルキル基(ベンジル基、フェネチル基等,炭素数6~18のアリール基(フェニル基、ピフェニル基、ナフチル基等)、シクロヘキシル基、芳香族複素環式基(ピリジル基、キノリル基),炭素数6~8のアリールオキシ基(フェノキシ基、ピフェニルオキシ基、ナフチルオキシ基等)を示す。

【0044】また、R¹~R⁴は、これらに置換基の結合したものでもよい。即ち、R¹~R⁴はそれぞれ置換基含有フェニル基、置換基含有アラルキル基、置換基含有シクロヘキシル基、置換基含有ピフェニル基、置換基含有ナフチル基を示す。ここで、置換基は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数7~18のアラルキル基、炭素数6~18のアリールオキシ基、炭素数1~6のアシル基、炭素数1~6のアシルオキシ基、カルボキシル基、スチリル基、炭素数6~20のアリールオキシカルボニル基、炭素数1~6のアルコキシカルボニル基、炭素数1~6のアルコキシカルボニル基、炭素数1~6のアルコキシカルボニル基、ビニル基、アニリノカルボニル基、カルバモイル基、フェニル基、ニトロ基、水酸基あるいはハロゲン原子であり、複数置換されていてもよい。したがって、

例えば、置換基含有アラルキル基は、アルキル基置換ア ラルキル基(メチルベンジル基、メチルフェネチル基 等),アルコキシ基置換アラルキル基(メトキシベンジ ル基, エトキシフェネチル基等), アリールオキシ基置 換アラルキル基(フェノキシベンジル基、ナフチルオキ シフェネチル基等),フェニル基置換アラルキル基(フ ェニルフェネチル基等)、上記置換基含有フェニル基 は、アルキル基置換フェニル基(トリル基、ジメチルフ ェニル基, エチルフェニル基など)、アルコキシ基置換 フェニル基(メトキシフェニル基、エトキシフェニル基 など) アリールオキシ基置換フェニル基 (フェノキシフ ェニル基, ナフチルオキシフェニル基等) あるいはフェ ニル基置換フェニル基(つまり、ビフェニリル基)であ る。また、置換基含有シクロヘキシル基は、アルキル基 置換シクロヘキシル基(メチルシクロヘキシル基、ジメ チルシクロヘキシル基, エチルシクロヘキシル基等), アルコキシ基置換シクロヘキシル基(メトキシシクロヘ キシル基、エトキシシクロヘキシル基等) あるいはアリ ールオキシ基置換シクロヘキシル基(フェノキシシクロ ヘキシル基, ナフチルオキシシクロヘキシル基), フェ ニル基置換シクロヘキシル基 (フェニルシクロヘキシル 基)である。置換基含有ナフチル基は、アルキル基置換 ナフチル基(メチルナフチル基、ジメチルナフチル基 等),アルコキシ基置換ナフチル基 (メトキシナフチル 基,エトキシナフチル基等)あるいはアリールオキシ基 置換ナフチル基(フェノキシナフチル基,ナフチルオキ シナフチル基), フェニル基置換ナフチル基 (フェニル ナフチル基)である。

【0045】上記 $R^1 \sim R^4$ としては、上述したもののうち、それぞれ炭素数 $1 \sim 6$ のアルキル基,アリールオキシ基,フェニル基,ナフチル基,ビフェニル基,シクロヘキシル基が好ましい。これらは置換あるいは無置換のいずれでもよい。また、 $R^1 \sim R^4$ は同一でも、また互いに異なっていてもよく、 R^1 と R^2 及び R^3 と R^4 は互いに置換している基と結合して、置換もしくは無置換の飽和又は不飽和の五員環あるいは置換もしくは無置換の飽和又は不飽和の六員環を形成してもよい。

【0046】一方、一般式(I)中のArは置換もしくは無置換の炭素数6~20のアリーレン基を表し、置換もしくは無置換のフェニレン基、ピフェニレン基、pーテルフェニレン基、ナフチレン基、ターフェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、フェナレンジイル基等のアリーレン基であり、無置換でも置換されていてもよい。又、メチリディン(=C=CHー)の結合位置はオルト、メタ、パラ等どこでもよい。但し、Arが無置換フェニレンの場合、R¹~R⁴ は炭素数1~6のアルコキシ基、炭素数

7~18のアラルキル基、置換あるいは無置換のナフチ ル基、ビフェニル基、シクロヘキシル基、アリールオキ シ基より選ばれたものである。置換基はアルキル基(メ チル基、エチル基、n-プロピル基、イソプロピル基、 n-ブチル基, イソブチル基, sec-ブチル基, t-プチル基、イソペンチル基、 t-ペンチル基、ネオペン チル基、イソヘキシル基等),アルコキシ基(メトキシ 基、エトキシ基、プロポキシ基、イソプロポキシ基、ブ チルオキシ基、イソブチルオキシ基、sec ープチル オキシ基、tープチルオキシ基、イソペンチルオキシ 基, t-ペンチルオキシ基), アリールオキシ基, (フ ェノキシ基、ナフチルオキシ基等), アシル基 (ホルミ ル基、アセチル基、プロピオニル基、ブチリル基等)、 アシルオキシ基、アラルキル基(ベンジル基、フェネチ ル基等),フェニル基,水酸基,カルボキシル基,アニ リノカルボニル基、カルバモイル基、アリールオキシカ ルボニル基、メトキシカルボニル基、エトキシカルボニ ル基、ブトキシカルボニル基、ニトロ基、ハロゲン原子 であり、単一置換でも複数置換されていてもよい。

【0047】前記一般式(I)で表されるメチリディン 芳香族化合物は、1分子中に2つのメチリディン(=C=CH-)基を有し、このメチリディン基の幾何異性によって、4通りの組合せ、すなわち、シスーシス,トランスートランス及びトランスートランスの組合せがある。本発明に用いられるEL素子における青色発光体は、それらのいずれのものであってもよいし、幾何異性体の混合したものでもよい。特に好ましくは、全てトランス体のものである。また、上記置換基は、置換基の間で結合し、置換、無置換の飽和もしくは不飽和の五員環又は六員環を形成してもよい。

【0048】一般式 (II) におけるA及びBは、それぞれ上記一般式 (I) で表される化合物から1つの水素原子を除いた一価基を示し、同一であっても異なってもよいものである。ここで、一般式 (II) におけるQは共役系を切る二価基を示す。ここで、共役とは、π電子の非極在性によるもので、共役二重結合あるいは不対電子又は孤立電子対によるものも含む。Qの具体例としては、【0049】

【化3】

【0050】が挙げられる。このように共役系を切る二 価の基を用いる理由は、上記で示されるAあるはB(即 ち、一般式(I)の化合物)を、単独で本発明の有機E L素子として用いた場合に得られるEL発光色と、一般 式(II)で表される化合物を本発明の有機EL素子とし て用いた場合に得られるEL発光色とが変わらぬように するためである。つまり、一般式(I)又は一般式(I I) で表される骨色発光体が、短波長化あるいは長波長 化したりすることはないようにするためである。また、 共役系を切り二価基で接続するとガラス転移温度(T g)は、上昇することが確認でき、均一なピンホールフ リーの微結晶あるいはアモルファス性薄膜が得られるこ とができ、発光均一性を向上させている。更に、共役系 を切る二価基で結合していることにより、EL発光が長 波長化することなく、また、合成あるいは精製が容易に できる長所を備えている。

【0051】また、一般式(III)中の A^1 は置換もしくは無置換の炭素数6~20のアリーレン基又は二価の芳香族複素環式基, A^2 は置換もしくは無置換の炭素数6~20のアリール基(フェニル基,ピフェニル基,ナフチル基等)又は一価の芳香族複素環式基を示す。 R^5 及び R^6 は、それぞれ水素原子,置換もしくは無置換の炭素数6~20のアリール基,シクロヘキシル基,一価の芳香族複素環式基,炭素数1~10のアルキル基(メチル基,エチル基,n-プロピル基,イソプロピル基,n-プチル基,イソプチル基,n-プチル基,イソプチル基,n-プチル基,イソプチル基,n-プチル基,n-プチル基,n-プチル基,n-プチル基,n-プチル基,n-プチル基,n-

ルキル基 (ベンジル基,フェネチル基等) 又は炭素数 1 ~10のアルコキシ基 (メトキシ基,エトキシ基,プロポキシ基,ブトキシ基等)を示す。なお、R⁵, R⁶ は同一でも異なってもよい。ここで、置換基とは、アルキル基,アリールオキシ基,アミノ基又はこれらの基を有するもしくは有しないフェニル基であり、該置換基は単一でも複数でもよい。R⁵ の各置換基はA¹ と結合して、飽和もしくは不飽和の五員環又は六員環を形成してもよく、同様にR⁶ の各置換基はA² と結合して、飽和もしくは不飽和の五員環又は六員環を形成してもよい。

また、Qは、上記と同様に共役を切る二価基を表す。さらに、該A¹ の結合はオルト,メタ,パラのいずれでもよい。さらに、本発明において、上記の一般式(I),一般式(II) 又は一般式(III) で表される有機化合物は、CIE色度座標における背紫,紫青,青,緑青もしくは背緑の発光を呈する化合物であることが必要である。具体的には、

[0052]

[0053]

【化5】

i-pr:イソプロピル基,以下同様

[0054]

【0055】 【化7】

[0056] [化8]

【化9】

[0058]

[0059]

【化11】

【0061】 【化13】

【0062】などである。他の有機化合物としては、 [0063]

【化14】

【0064】なども挙げられる。また、特願平5-17 0354号明細書に記載されている上記背色発光体の蛍 光条件を満たす化合物としては、一般式(XI)

[0065]

【化15】

【0066】 [式中、R37~R48は、それぞれ独立に水 素原子又は炭素数1~6のアルキル基を示す。但し、R 37~R48のうち少なくとも1つは炭素数1~6のアルキ ル基である。また、R³⁸とR³⁹, R⁴⁰とR⁴¹, R⁴⁴とR 45, R46とR47は、互いに結合して飽和もしくは不飽和 の五員環又は六員環を形成してもよい。X及びYはそれ ぞれ独立に置換又は無置換の炭素数6~20のアリール 基を示す。XとYは置換基と結合して置換もしくは無置 換の飽和又は不飽和の五員環あるいは六員環を形成して もよい。ここで、置換基としては炭素数1~6のアルキ ル基,炭素数1~6のアルコキシ基,炭素数6~18の アリールオキシ基、フェニル基、アミノ基、シアノ基、

ニトロ基,水酸基あるいはハロゲン原子を示す。これら の置換基は単一でも複数置換されていてもよい。] で表 されるターフェニレン誘導体のスチリル化合物を挙げる ことができる。

【0067】ここで、一般式 (XI) において、R³⁷~R 48は、それぞれ独立に水素原子あるいはメチル基,エチ ル基、nープロピル基、イソプロピル基、nープチル 基、イソブチル基、sec-ブチル基、t-ブチル基、 イソペンチル基, t -ペンチル基,ネオペンチル基, n ーヘキシル基、イソヘキシル基などの炭素数1~6のア ルキル基を示す。但し、R³⁷~R⁴⁸のうち少なくとも1 つは炭素数 1~6のアルキル基であり、特にメチル基又 はエチル基が好ましい。また、R³⁸とR³⁹, R⁴⁰と R⁴¹, R⁴⁴とR⁴⁵, R⁴⁶とR⁴⁷は、互いに結合して飽和 もしくは不飽和の五員環又は飽和もしくは不飽和の六員 環を形成してもよい。飽和もしくは不飽和の五員環又は 六員環を有するスチリル化合物の例としては、 R³⁸と R ³⁹,及び R⁴⁶と R⁴⁷が飽和五員環を形成する場合は、

[0068]

【化16】

$$X > C = CH - CH^{2} - CH = C < X$$

【0069】などが挙げられ、R⁴⁶とR⁴⁷で飽和六員環を形成する場合は、

[0070]

【化17】

$$X > C = CH - O - OHO - CH = C < X$$

【0071】などが挙げられる。X及びYは、それぞれ独立に置換または無置換のフェニル基,ナフチル基,ビフェニル基,ターフェニル基,アントラリル基,フェナントリル基,ピレニル基,ペリレニル基など炭素数6~20のアリール基を示す。ここで、置換基としては、例えばメチル基,エチル基,nープロビル基,イソプロピル基、nーブチル基、イソプチル基,secーブチル基,tープチル基,イソペンチル基,オオペンチル基、nーヘキシル基、イソヘキシル基など

の炭素数1~6のアルキル基、メトキシ基、エトキシ基、nープロポキシ基、イソプロポキシ基、nープチルオキシ基、イソプチルオキシ基、secープチルオキシ基、イソペンチルオキシ基、tーペンチルオキシ基、nーペキシルオキシ基などの炭素数1~6のアルコキシ基、フェノキシ基、フェノキシ基、アミノ基、アミノ基、シアノ基、ニトロ基、水酸基あるいはハロゲン原子が挙げられる。これらの置換基は単一でも複数置換されていてもよい。また、XとYは置換基と結合して置換もしくは無置換の飽和又は不飽和の五員環あるいは飽和又は不飽和の六員環を形成してもよい。飽和もしくは不飽和の五員環又は六員環を有するスチリル化合物の例としては、XとYが飽和五員環を形成する場合は、

[0072]

【化18】

【0073】などが挙げられ、XとYが飽和六員環形成 する場合は、

[0074]

【化19】

【0075】などが挙げられる。

【0076】上記一般式 (XI) で表されるスチリル化合物は、種々の公知の方法によって製造することができる。具体的には、次の2つの方法が挙げられる。

方法1

一般式(a)

[0077]

【化20】

【0078】 [式中、Rは炭素数1~4のアルキル基又はフェニル基を示し、R³⁷~R⁴⁸は前記と同じである。] で表されるホスホン酸エステルと、一般式(b) 【0079】

【化21】

$$X > C = 0 \cdots (p)$$

【0080】 [式中、X, Yは前記と同じである。] で

表されるカルボニル化合物を塩基存在下で縮合する方法 (Witting 反応又はWitting-Horner反応) により合成す ることができる。

方法2

一般式(c)

[0081]

【化22】

【0082】 [式中、R³⁷~R⁴⁸は前記と同じである。] で表されるジアルデヒド化合物と一般式(d) 【0083】 【化23】

【0084】 [式中、R, X, Yは前記と同じである。] で表されるホスホン酸エステルを塩基存在下で縮合する方法 (Witting 反応又はWitting-Horner反応) により合成することができる。

【0085】この合成で用いる反応溶媒としては、炭化水素、アルコール類、エーテル類が好ましい。具体的には、メタノール;エタノール;イソプロパノール;ブタノール;2-メトキシエタノール;1,2-ジメトキシ

エタン; ビス (2-メトキシエチル) エーテル; ジオキサン; テトラヒドロフラン; トルエン; キシレン; ジメチルスルホキシド; N, N-ジメチルホルムアミド; N-メチルピロリドン; 1, 3-ジメチル-2-イミダソリジノンなどが挙げられる。特に、テトラヒドロフラン, ジメチルスルホキシドが好適である。また、縮合剤としては、水酸化ナトリウム, 水酸化カリウム, ナトリウムメチラート, カリウムー tープトキシドなどが好ましく、特にn-ブチルリチウム, カリウムー tープトキシドが好ましい。反応温度は、用いる反応に対しているが、通常などにより異なり、一義的に定めることはできないが、通常は0℃~約100℃までの広範囲を指定できる。特に好ましくは0℃~室温の範囲である。

【0086】以下に、本発明で用いられる上記スチリル 化合物の具体例(1)~(26)を挙げるが、本発明は それらに限定されるものではない。

[0087] [化24]

[0089]

【化26】

(23)
$$\bigcirc -0 -\bigcirc \bigcirc$$

$$C = CH$$

$$Et$$

$$CH = C$$

$$CH = C$$

(24)
$$O_2N - O_2$$
 $C = CH$ $i-Pr$ $CH = C$ $O-NO_2$

$$C = CH - O - CH = C - CH = C$$

【0092】その他、下記構造式に示すようなアルミニウム錯体も青色発光体として好ましい。

$$\begin{bmatrix} R^{21} & R^{22} \\ R^{20} & & & \\ R^{19} & & & \\ R^{18} & & & \\ R^{17} & & \\ \end{bmatrix}_{2}^{L^{1}} \quad \begin{bmatrix} L^{2} \\ L^{3} \\ L^{5} \end{bmatrix}$$

【0094】 [式中、 $R^{17}\sim R^{19}$ は、各々独立に、水素原子,メチル基等のアルキル基, $R^{20}\sim R^{22}$ は各々独立に水素原子,ハロゲン原子, α ーハロアルキル基, α ーハロアルコキシ基,アミド基,カルボニル基,スルフォニル基,カルボニルオキシ基,オキシカルボニル基,アリル基等を示す。また、 $L^1\sim L^5$ は、各々独立に、水素原子,炭素数 $1\sim 1$ 2 の炭化水素基を示し、 L^1 と L^2 と L^3 は互いに結合して芳香環を形成していてもよい。] 等が挙げられる。有機発光層 31 ,32 ,3 3 の膜厚は、通常、0 . $1\sim 2$ 0 0 n m、好ましくは

【0093】 【化29】

0. $1\sim50\,\mathrm{nm}$ 、さらに好ましくは $1\sim40\,\mathrm{nm}$ である。

【0095】一方、緑色発光体に用いられる、固体状態の蛍光ピーク波長が480nm以上580nm未満である有機化合物については、特に制限はなく、例えばヨーロッパ公開特許第0281381号公報に記載されているレーザー色素として用いられるクマリン誘導体が挙げられる。具体的には、

[0096]

【0097】などである。さらに、特開平3-231970号公報あるいは特願平2-279304号明細書に記載されている有機化合物中で上記緑色発光体の蛍光条件を満足するものが挙げられる。さらに、好ましいものとして、8-ヒドロキシキノリン又はその誘導体の金属錯体を挙げることができる。具体的には、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)の

キレートを含む金属キレートオキシノイド化合物である。このような化合物は高水準の性能を示し、容易に薄膜形態に成形される。オキシノイド化合物の例は下記構造式を満たすものである。

【0098】 【化31】

$$\begin{bmatrix} \begin{matrix} z \\ \\ 0 - M \\ t + n \end{bmatrix}_{n} \longrightarrow \begin{bmatrix} \begin{matrix} z \\ \\ 0 - M \\ t + n \end{bmatrix}_{n}$$

【0099】 [式中、Mtは金属を表し、nは1~3の整数であり、且つ、Zはその各々の位置が独立であって、少なくとも2以上の縮合芳香族環を完成させるために必要な原子を示す。] ここで、Mtで表される金属は、一価、二価又は三価の金属とすることができるものであり、例えばリチウム、ナトリウム又はカリウム等のアルカリ金属、マグネシウム又はカルシウム等のアルカリ土類金属、ホウ素又はアルミニウム等の土類金属である。一般に有用なキレート化合物であると知られている一価、二価又は三価の金属はいずれも使用することができる。

【0100】また、Zは少なくとも2以上の縮合芳香族 環の一方がアゾール又はアジンからなる複素環を形成さ せる原子を示す。ここで、もし必要であれば、上記縮合 芳香族環に他の異なる環を付加することが可能である。 また、機能上の改善が無いまま嵩ばった分子を付加する ことを回避するため、Zで示される原子の数は18以下 に維持することが好ましい。

【0101】さらに、具体的にキレート化オキシノイド 化合物を例示すると、トリス (8-キノリノール) アル ミニウム, ビス (8-キノリノール) マグネシウム, ビ ス (8-キノリノール) 亜鉛, ビス (2-メチル-8キノリノール) 亜鉛, ビス (ベンゾー8ーキノリノール) 亜鉛, ビス (2ーメチルー8ーキノリラート) アルミニウムオキシド, トリス (8ーキノリノール) インジウム, トリス (5ーメチルー8ーキノリノール) アルミニウム, 8ーキノリノール) ガリウム, トリス (5ークロロー8ーキノリノール) ガリウム, ドリス (5ークロロー8ーキノリノール) ガリウム, ビス (5ークロロー8ーキノリノール) カルシウム, 5, 7ージグロルー8ーキノリノールアルミニウム, トリス (5, 7ージプロモー8ーヒドロキシキノリノール) アルミニウム, ドリス (7ープロビルー8ーキノリノール) ーキノリノール) アルミニウム, ビス (8ーキノリノール) ベリリウム, ビス (2ーメチルー8ベリリウムなどがある。

【0102】本発明に用いられる白色有機EL素子においては、青色蛍光体を含有させる。青色蛍光体は溶液状態での蛍光ピーク波長が380nm以上480nm未満である有機化合物であれば特に制限はない。特願平5-129438号明細書に記載されているスチルベン誘導体,ジスチリルアリーレン誘導体及びトリススチリルアリーレン誘導体の中から選ばれた少なくとも一種を含有させるのが好ましい。該スチルベン誘導体とは、少なくとも2つの芳香族環を有し、これら芳香族環をビニル基

又は置換されたビニル基により結合して構成され、かつ 上記芳香族環又はビニル基のいずれかに電子供与性基を 有する化合物である。ジスチリルアリーレン誘導体と は、1つのアリーレン基に2つの芳香族環がビニル基又 は置換ビニル基を介して結合し、かつ電子供与性基を有 する化合物である。トリススチリルアリーレン誘導体と は、1つの三価の芳香族環基に3つの芳香族環がビニル 基又は置換ビニル基を介して結合し、かつ電子供与性基 を有する化合物である。電子供与性基を分子骨格に有す る前記誘導体において該電子供与性基とは、好ましくは 炭素数1~10のアルコキシ基, 炭素数6~10のアリ ールオキシ基及び炭素数1~30の炭化水素基を有する アミノ基を示す。上記誘導体において、特に好ましいも のは下記一般式 (IV) ~ (X) で表される化合物であ り、 (IV) 及び (V) はスチルベン誘導体、 (VI) 及び (VII) はジスチリルアリーレン誘導体、(VIII) ~ (X) はトリススチリルアリーレン誘導体を表す。

[0103] [化32]

【0104】 [式中、 Ar^1 は炭素数 $6\sim 200$ アリール基を示す。 $R^7\sim R^{10}$ は、それぞれ独立に水素原子又は炭素数 $6\sim 20$ のアリール基を示す。 $D^1\sim D^3$ は、それぞれ独立に電子供与性基で置換された炭素数 $6\sim 20$ のアリール基又は炭素数 $10\sim 30$ の縮合多環族基を示す。ここで、 Ar^1 , $R^7\sim R^{10}$ は、それぞれ独立に無置換でもよいし、炭素数 $1\sim 100$ アルキル基,炭素数 $1\sim 100$ アルコキシ基,炭素数 $6\sim 100$ アリールオキシ基,炭素数 $6\sim 100$ アラルキル基又は炭素数 $1\sim 200$ 炭化水素基を有するアミノ基で置換されていてもよい。また、この置換基が互いに結合し、飽和もしくは不飽和の五員環ないし六員環を形成してもよい。]

【0105】 【化33】

$$D^{4} - C = C - A r^{2} - C = C - D^{5}$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ R & 1 & R & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ R & 1 & R \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ R$$

【0106】 [式中、 Ar^2 及び Ar^3 は、それぞれ独立に炭素数6~20のアリーレン基を示し、 Ar^4 は炭素数6~20のアリール基を示す。 $R^{11}\sim R^{18}$ は、それぞれ独立に水素原子又は炭素数6~20のアリール基を示す。ここで、 $Ar^2\sim Ar^4$, $R^{11}\sim R^{18}$ は、それぞれ独立に無置換でもよいし、炭素数1~10のアルキル基,炭素数1~10のアルコキシ基,炭素数6~10のアリールオキシ基,炭素数6~10のアラルキル基又は

炭素数1~20の炭化水素基を有するアミノ基で置換されていてもよい。また、これらの置換基が互いに結合して飽和もしくは不飽和の五員環ないし六員環を形成してもよい。D4~D6は、それぞれ独立に電子供与性基で置換された炭素数6~20のアリール基又は炭素数10~30の縮合多環族基を示す。]

【0107】 【化34】

$$D^{7} - C = C - A r^{5} - C = C - D^{8}$$

$$R^{19} R^{20} | R^{23} | R^{24}$$

$$C - R^{21}$$

$$D^{10} - C = C - A r^{6} - C = C - D^{11}$$

$$R^{25} R^{26} | R^{29} R^{30}$$

$$C - R^{27}$$

$$C - R^{28}$$

$$A r^{8}$$

$$D^{12} - C = C - A r^{7} - C = C - A r^{9}$$

$$R^{31} R^{32} | R^{35} R^{36}$$

$$C - R^{34}$$

$$A r^{10}$$

【0108】 [式中、Ar⁵ ~Ar⁷ は、それぞれ独立 に炭素数6~24の三価の芳香族環基を示し、Ar8~ Ar10は、それぞれ独立に炭素数6~20のアリール基 を示す。R19~R36は、それぞれ独立に水素原子又は炭 素数6~20のアリール基を示す。D1~D12は、それ ぞれ独立に電子供与性基で置換された炭素数6~20の アリール基又は炭素数10~30の縮合多環族基を示 す。ここで、Ar⁵ ~Ar⁷ , R¹⁹~R³⁶は、それぞれ 独立に無置換でもよいし、炭素数1~10のアルキル 基、炭素数1~10のアルコキシ基、炭素数6~10の アラルキル基、炭素数6~10のアリールアルキル基又 は炭素数1~20の炭化水素基を有するアミノ基で置換 されていてもよい。また、これらの置換基が互いに結合 し、飽和もしくは不飽和の五員環ないし六員環を形成し てもよい。] 上記一般式 (IV) ~ (X) におけるアリー ル基としては、好ましくはフェニル基、ピフェニルイル 基、ナフチル基、ピレニル基、ターフェニルイル基、ア ントラニル基、トリル基、キシリル基、スチルベニル 基、チェニル基、ビチエニル基、チオフェン基、ビチオ フェン基、ターチオフェン基などが挙げられる。アリー レン基としては、好ましくはフェニレン基、ピフェニレ ン基、ナフチレン基、アントラニレン基、ターフェニレ ン基、ピレニレン基、スチルベニレン基、チエニレン 基、ビチエニレン基などが挙げられる。三価の芳香族環 基としては、好ましくは、

[0109] [化35]

【0110】が挙げられる。また、上記置換基であるア リールオキシ基としては、フェニルオキシ基,ピフェニ ルオキシ基、ナフチルオキシ基、アントラニルオキシ 基、ターフェニルオキシ基、ピレニルオキシ基などが挙 げられ、アルキル基としては、メチル基、エチル基、イ ソプロピル基、ターシャルプチル基、ペンチル基、ヘキ シル基などが挙げられる。アルコキシ基としては、メト キシ基、エトキシ基、イソプロポキシ基、ターシャルブ トキシ基、ペンチルオキシ基などが挙げられ、炭化水素 基を有するアミノ基としては、ジメチルアミノ基、ジエ チルアミノ基、ジフェニルアミノ基、フェニルエチルア ミノ基、フェニルメチルアミノ基、ジトリルアミノ基、 エチルフェニルアミノ基、フェニルナフチルアミノ基、 フェニルビフェニルアミノ基などが挙げられる。前記一 般式 (IV) ~ (X) におけるD¹~D¹²は、電子供与性 基で置換された炭素数1~20のアリール基、又は炭素 数 10~30の縮合多環族基である。ここで、電子供 与性基とは、好ましくは炭素数1~10のアルコキシ 基,炭素数6~20のアリールオキシ基,炭素数1~3 0の炭化水素基を有するアミノ基が挙げられ、特に好ま しくは炭素数1~30の炭化水素基を有するアミノ基が 挙げられる。このアミノ基としては、一般式 (XII)

[0111]

【化36】

$$-N < \frac{x_s}{x_1} \cdots (XII)$$

【0112】[式中、X¹及びX²は、それぞれ独立に 炭素数6~20のアリール基, 炭素数1~10のアルキル基又は炭素数6~20のアラルキル基を示し、互いに 結合して飽和又は不飽和の環状構造を形成してもよい。また、X¹, X²には、炭素数1~10のアルキル基, 炭素数7~10のアラルキル基, 炭素数6~10のアリールオキシ基又は炭素数6~10のアルコキシ基が置換してもよい。さらに、一般式(XII) で表されるアミノ基に置換するアリール基としてのX¹とX²が互いに結合した含窒素芳香族環基となってもよい。]で表されるものが挙げられる。上記電子供与性基としては、例えば

フェニルオキシ基, ビフェニルオキシ基, ナフチルオキシ基, アントラニルオキシ基, ターフェニルイルオキシ基などのアリールオキシ基, メトキシ基, エトキシ基, イソプロポキシ基, ターシャルブチルオキシ基, ペンチルオキシ基などのアルコキシ基, ジメチルアミノ基, ジェチルアミノ基, ジフェニルアミノ基, フェニルメチルアミノ基, フェニルエチルアミノ基, フェニルアミノ基, フェニルアミノスルアミノ基, ジトリルアミノ基, エチルフェニルアミノ基, フェニルナフチルアミノ基, フェニルビフェニルイルアミノ基などの炭化水素基を有するアミノ基などが挙げられる。また、D¹ ~D¹²の具体例としては、

【0113】 【化37】

12 42

[0114]

【化38】

【化40】

【0117】などが挙げられる。上記一般式 (IV) ~ (X) で表される化合物の具体例としては、 【0118】 【化41】

【化44】

[0121]

【0123】 【化46】

【化49】

[0126]

【0127】などが挙げられ、その他の青色蛍光体として好ましいものとして、アントラセン,ペリレン,コロネン等の多環芳香族やそのアルキル置換体がある。

【0128】緑色蛍光体としては溶液状態での蛍光ピー ク波長が480nm以上580nm未満である有機化合 物であれば特に制限はない。ドープする緑色蛍光体とし ては、3-(2'-ベンジミダゾリル)-7-N, N-ジエチルアミノクマリン(クマリン535)、3-(2 ーベンゾチアゾリル) - 7 - ジエチルアミノクマリン (クマリン540)、2, 3, 5, 6-1H, 4H-テ トラヒドロー8ートリフルオロメチルキノリジノー< 3- (5-クロロ-2-ベンゾチアゾリル) -7-ジエ チルアミノクマリン (クマリン34) 、4-トリフルオ ロメチルーピペリジノ[3,2-g]クマリン(クマリ ン340)、N-エチル-4-トリフルオロメチルーピ ペリジノ [3, 2-g] クマリン (クマリン355)、 N-メチル-4-トリフルオロメチル-ピペリジノ [2, 3-h] $\sqrt{9-9}$ -3H, 6H, 10H-テトラヒドロ-1-ベンゾピラ ノ [9, 9a1-gh] キノリジン-10-オン (クマ リン337) 等のクマリン化合物、2, 7-ジクロロフ ルオレセン等のキサンチン色素、テトラセン、キナクリ ドン化合物等が挙げられる。

【0129】赤色蛍光体として好ましい有機化合物としては、溶液状態でのピーク波長が580nm以上650nm以下であればよく、特に制限はないが、例えば、ヨーロッパ公開特許第0281381号公報に記載されている赤色発進レーザー色素として用いられるジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、フルオレセイン誘導体、ペリレン誘導体などが挙げられる。具体的には、

【0130】 【化50】

【0131】などが挙げられる。これらの有機化合物は、層を形成する有機化合物に対して、0.1~10モル%、好ましくは0.5~5モル%の割合で含有させることが必要である。この0.1~10モル%というのは、濃度消光を生じないための濃度範囲である。

(2) 正孔注入層

次に、正孔注入層は、必ずしも本発明に用いられる素子に必要なものではないが、発光性能の向上のために用いた方が好ましいものである。この正孔注入層は発光層への正孔注入を助ける層であって、正孔移動度が大きく、イオン化エネルギーが、通常 $5.5 \,\mathrm{eV}$ 以下と小さい。このような正孔注入層としては、より低い電界で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、たとえば $10^4 \sim 10^6 \,\mathrm{V/cm}$ の電界印加時に、少なくとも $10^6 \,\mathrm{cm}^2 \sim /\mathrm{V\cdot sec}$ であればなお好ましい。このような正孔注入材料については、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷輸送材として慣用されているものや、EL素子の正孔注入層に使用される公知のものの中から任意のものを選択して用いることができる。

【0132】具体例としては、例えばトリアゾール誘導体 (米国特許3, 112, 197号明細書等参照)、オ

キサジアゾール誘導体(米国特許3,189,447号 明細書等参照)、イミダゾール誘導体(特公昭37-1 6096号公報等参照)、ポリアリールアルカン誘導体 (米国特許3, 615, 402号明細書、同第3, 82 0,989号明細售、同第3,542,544号明細 售、特公昭45-555号公報、同51-10983号 公報、特開昭51-93224号公報、同55-171 05号公報、同56-4148号公報、同55-108 667号公報、同55-156953号公報、同56-36656号公報等参照)、ピラゾリン誘導体およびピ ラゾロン誘導体 (米国特許第3, 180, 729号明細 售、同第4,278,746号明細書、特開昭55-8 8064号公報、同55-88065号公報、同49-105537号公報、同55-51086号公報、同5 6-80051号公報、同56-88141号公報、同 57-45545号公報、同54-112637号公 報、同55-74546号公報等参照)、フェニレンジ アミン誘導体 (米国特許第3, 615, 404号明細 售、特公昭51-10105号公報、同46-3712 号公報、同47-25336号公報、特開昭54-53 435号公報、同54-110536号公報、同54-119925号公報等参照)、アリールアミン誘導体 (米国特許第3, 567, 450号明細書、同第3, 1 80,703号明細書、同第3,240,597号明細 售、同第3,658,520号明細書、同第4,23 2, 103号明細書、同第4, 175, 961号明細 售、同第4,012,376号明細書、特公昭49-3 5702号公報、同39-27577号公報、特開昭5 5-144250号公報、同56-119132号公 報、同56-22437号公報、西独特許第1,11 0,518号明細書等参照)、アミノ置換カルコン誘導 体 (米国特許第3, 526, 501号明細書等参照)、 オキサゾール誘導体 (米国特許第3, 257, 203号 明細書等に開示のもの)、スチリルアントラセン誘導体 (特開昭56-46234号公報等参照)、フルオレノ ン誘導体(特開昭54-110837号公報等参照)、 ヒドラゾン誘導体 (米国特許第3, 717, 462号明 細書、特開昭54-59143号公報、同55-520 63号公報、同55-52064号公報、同55-46 760号公報、同55-85495号公報、同57-1 1350号公報、同57-148749号公報、特開平 2-311591号公報等参照)、スチルベン誘導体 (特開昭61-210363号公報、同61-2284 51号公報、同61-14642号公報、同61-72 255号公報、同62-47646号公報、同62-3 6674号公報、同62-10652号公報、同62-30255号公報、同60-93445号公報、同60 -94462号公報、同60-174749号公報、同 60-175052号公報等参照)、シラザン誘導体 (米国特許第4, 950, 950号明細書)、ポリシラ

ン系 (特開平2-204996号公報)、アニリン系共 重合体(特開平2-282263号公報)、特開平1-211399号公報に開示されている導電性高分子オリ ゴマー (特にチオフェンオリゴマー) 等を挙げることが できる。正孔注入層の材料としては上記のものを使用す ることができるが、ポルフィリン化合物(特開昭63-2956965号公報等に開示のもの)、芳香族第三級 アミン化合物およびスチリルアミン化合物(米国特許第 4, 127, 412号明細書、特開昭53-27033 号公報、同54-58445号公報、同54-1496 34号公報、同54-64299号公報、同55-79 450号公報、同55-144250号公報、同56-119132号公報、同61-295558号公報、同 61-98353号公報、同63-295695号公報 等参照)、特に芳香族第三級アミン化合物を用いること が好ましい。上記ポルフィリン化合物の代表例として は、ポルフィン、1, 10, 15, 20-テトラフェニ ル-21H, 23H-ポルフィン銅 (II) 、1, 10, 15, 20-テトラフェニル-21H, 23H-ポルフ ィン亜鉛 (II) 、5, 10, 15, 20-テトラキス (ペンタフルオロフェニル) -21H, 23H-ポルフ ィン、シリコンフタロシアニンオキシド、アルミニウム フタロシアニンクロリド、フタロシアニン (無金属)、 ジリチウムフタロシアニン、銅テトラメチルフタロシア ニン、銅フタロシアニン、クロムフタロシアニン、亜鉛 フタロシアニン、鉛フタロシアニン、チタニウムフタロ シアニンオキシド、Mgフタロシアニン、銅オクタメチ ルフタロシアニン等を挙げることができる。また、前記 芳香族第三級アミン化合物およびスチリルアミン化合物 の代表例としては、N, N, N', N'-テトラフェニ ルー4, 4'ージアミノフェニル、N, N'ージフェニ ルーN, N'ーピスー (3-メチルフェニル) - [1, 1'-ピフェニル]-4,4'-ジアミン(以下TPD と略記する)、2,2-ピス(4-ジーp-トリルアミ ノフェニル) プロパン、1, 1 – ピス(4 – ジーp – ト リルアミノフェニル) シクロヘキサン、N, N, N', N'ーテトラーpートリルー4, 4'ージアミノフェニ ル、1, 1-ビス (4-ジ-p-トリルアミノフェニ ル) -4-フェニルシクロヘキサン、ピス (4-ジメチ ルアミノー2ーメチルフェニル)フェニルメタン、ビス (4-ジ-p-トリルアミノフェニル) フェニルメタ ン、N, N' -ジフェニル-N, N' -ジ (4-メトキ シフェニル) -4, 4' -ジアミノビフェニル、<math>N, N, N', N'ーテトラフェニルー4, 4'ージアミノ フェニルエーテル、4,4'ーピス(ジフェニルアミ ノ) クオードリフェニル、N,N,N-トリ(p -トリ ル) アミン、4 - (ジーp - トリルアミノ) - 4'-[4 (ジ-p-トリルアミノ) スチリル] スチルベン、 4-N, N-ジフェニルアミノ- (2-ジフェニルビニ ル) ベンゼン、3-メトキシ-4'-N, N-ジフェニ

ルアミノスチルベンゼン、N-フェニルカルバゾール、 米国特許第5,061,569号に記載されている2個 の縮合芳香族環を分子内に有する、例えば、4,4'-ピス「N-(1-ナフチル)-N-フェニルアミノ] ピ フェニル (以下NPDと略記する)、また、特開平4-308688号公報で記載されているトリフェニルアミ ンユニットが3つスターバースト型に連結された4, 4'、4''-トリス[N-(3-メチルフェニル)-N ーフェニルアミノ] トリフェニルアミン(以下MTDA TAと略記する)等を挙げることができる。また、発光 層の材料として示した前述の芳香族ジメチリディン系化 合物の他、p型-Si, p型SiC等の無機化合物も正 孔注入層の材料として使用することができる。正孔注入 層は、上述した化合物を、例えば真空蒸着法、スピンコ ート法、キャスト法、LB法等の公知の方法により薄膜 化することにより形成することができる。正孔注入層と しての膜厚は、特に制限はないが、通常は5 n m~5 μ mである。この正孔注入層は、上述した材料の一種また は二種以上からなる一層で構成されていてもよいし、ま たは、前記正孔注入層とは別種の化合物からなる正孔注 入層を積層したものであってもよい。また、有機半導体 層は、発光層への正孔注入または電子注入を助ける層で あって、10⁻¹⁰ S/c m以上の導電率を有するものが

好適である。このような有機半導体層の材料としては、 含チオフェンオリゴマーや含アリールアミンオリゴマー などの導電性オリゴマー、含アリールアミンデンドリマ ーなどの導電性デンドリマーなどを用いることができ る。

(3) 電子注入層

一方電子注入層は、発光層への電子の注入を助ける層であって、電子移動度が大きく、また付着改善層は、この電子注入層の中で、特に陰極との付着が良い材料からなる層である。電子注入層に用いられる材料としては、たとえば8ーヒドロキシキノリンまたはその誘導体の金属錯体、あるいはオキサジアゾール誘導体が好ましく挙げられる。また、付着改善層に用いられる材料としては、特に8ーヒドロキシキノリンまたはその誘導体の金属錯体が好適である。上記8ーヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、オキシン(一般に8ーキノリノールまたは8ーヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物が挙げられる。一方、オキサジアゾール誘導体としては、一般式(II), (III) および(IV)

【0133】 【化51】

【0134】[式中Ar¹⁰~Ar¹³はそれぞれ置換または無置換のアリール基を示し、Ar¹⁰とAr¹¹およびAr¹²とAr¹³はそれぞれにおいて互いに同一であっても異なっていてもよく、Ar¹⁴置換または無置換のアリレーン基を示す。]で表わされる電子伝達化合物が挙げられる。ここで、アリール基としてはフェニル基、ピフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられ、アリレーン基としてはフェニレン基、ナフチレン基、ピフェニレン基、アントラセニレン基、ペ

ニレニレン基、ピレニレン基などが挙げられる。また、 置換基としては炭素数1~10のアルキル基、炭素数1 ~10のアルコキシ基またはシアノ基などが挙げられ る。この電子伝達化合物は、薄膜形成性のものが好まし い。上記電子伝達化合物の具体例としては、下記のもの が挙げられる。

【0135】 【化52】

[0136]

【実施例】以下、本発明を実施例によってさらに具体的 に説明する。

[実施例1] 25mm×75mm×1. 1mmのサイズ のガラス基板上にITO電極を100nmの厚さで成膜 したものを透明支持基板とした。これをイソプロピルア ルコールで5分間超音波洗浄した後、純水で5分間洗浄 し最後に再びイソプロピルアルコールで5分間超音波洗 浄した。そしてこの透明支持基板を市販の真空蒸着装置 (日本真空技術社製) の基板ホルダーに固定し、モリブ デン製の抵抗加熱ボート7つを用意してそれぞれに [化 53] に示す4、4'4''ートリスー[N-(m-ト リル) - N-フェニルアミノ] - トリフェニルアミン (MTDATA) を500mg、N, N'ージフェニル $-N, N' - \forall X - (3 - \forall f) = 1,$ 1'-ピフェニル]-4, 4'-ジアミン (TPD) を 200mg入れ、4, 4'-ピス(2, 2-ジフェニル ピニル) ピフェニル (DPVBi) を200mg入れ、 4, 4'-ビス[2-{4-(N, N-ジフェニルアミ ノ) フェニル ピニル ピフェニル (DPAVBi) を 200mg入れ、[化53] に示すキナクリドン (Q N) を200mg入れ、[化53] に示すDCMを20 0mg入れ、最後にトリス (8-ヒドロキシキノリン)・ アルミニウム (Alq) を100mg入れた真空チャン バー内を1×10⁻¹Paまで減圧した。そして、まずM TDATA入りのボートを加熱してMTDATAを基板 上に堆積させ、膜厚60nmの正孔注入層を成膜した。 次に、TPD入りの前記ポートを加熱しTPDを蒸発さ せて、膜厚20nmの正孔輸送層を成膜した。続いて、 DPVBi入りのボートとDPAVBi入りのボートを 同時に加熱蒸発させ正孔輸送層の上に、青色発光層とし

て20nm積層蒸着した(混合比はDPVBi:DPA VBi=40:1 重量比)。次にDPVBi入りボー トとQN入りボートを同時に加熱蒸発させ、緑色発光層 として10nm積層蒸着した(混合比はDPVBi:Q N=40:1 重量比)。次に、DPVBi入りボート とDCM入りボートを同時に加熱蒸発させ、赤色発光層 として10 n m積層蒸着した(混合比はDPVBi:D CM=40:3 重量比)。最後にAlq (電子注入 層)を20mm堆積させた。そしてこれを真空槽から取 り出して、上記発光層の上にステンレススチール製のマ スクを設置し、再び基板ホルダーに固定した。さらに、 タングステン製バスケットにAgワイヤー0.5g入 れ、また別のモリブデン製ボートにMgリボン1gを入 れた。真空槽内を1×10⁴Paまで減圧して、その上 にMgを1.8nm/s、同時にAgを0.1nm/s の蒸着速度で蒸着して陰電極を作製した。素子は8 Vの 電圧をITOを陽極、Mg:Agを陰極として印加する と、白色の均一発光した (CIE色度座標 (0.36, 0.34))。素子は8Vで電流密度2.1mA/cm ²、輝度200cd/m² であった。効率3.74(1 m/W) であった。

【0137】[実施例2]緑色発光層をAlqと[化53]に示すクマリンの混合発光層(混合比はAlq:クマリン=40:1 重量比)としたこと以外は実施例1と全く同様に素子を作製した。素子は8Vで電流密度1.9mA/cm²、輝度196cd/m²で白色均一発光した(CIE色度座標(0.34,0.33))。効率3.96(lm/W)であった。

[0138]

【化53】

DCM

クマリン

【0139】[実施例3] 各発光層の厚さを5nmとし発光層作製において実施例1の操作を2度繰り返した以外は実施例1と同様に素子を作製した。すなわち素子構成は、ガラス基板/ITO/MTDATA/TPD/育色発光層/緑色発光層/赤色発光層/赤色発光層/青色発光層/緑色発光層/赤色発光層/電子注入層/Mg:Agである。素子は8Vで電流密度3.7mA/cm²、輝度250cd/m²で白色均一発光した(CIE色度座標(0.36,0.34))。効率2.56(1m/W)であった。

[0140]

【発明の効果】以上説明したように本発明によって、高輝度、高効率の白色発光が可能な有機EL発光装置を提供することができる。

【図面の簡単な説明】

【図1】本発明の有機EL発光装置の一実施形態を模式 的に示す断面図である。

【符号の説明】

- 10 基板
- 20 基板電極
- 30 発光層を含む有機物層
- 31 青色発光層
- 32 緑色発光層
- 33 赤色発光層
- 34 正孔注入層
- 35 電子注入層
- 40 対向電極

【図1】

