EM Computation in Action

$$\text{E-step } p^{(n)}(z=0 \,|\, w) = \frac{p(\theta_d)p^{(n)}(w \,|\, \theta_d)}{p(\theta_d)p^{(n)}(w \,|\, \theta_d) + p(\theta_B)p(w \,|\, \theta_B)}$$

$$\text{M-step} \quad p^{(n+1)}(w \mid \theta_d) = \frac{c(w,d)p^{(n)}(z=0 \mid w)}{\sum_{w' \in V} c(w',d)p^{(n)}(z=0 \mid w')} \quad \begin{array}{l} \text{p(θ_d)=p(θ_B)= 0.5} \\ \text{and p(w | θ_B) is known} \end{array}$$

Assume

Word	#	$p(w \theta_B)$	Iteration 1		Iteration 2		Iteration 3	
			$P(w \theta)$	p(z=0 w)	$P(w \theta)$	P(z=0 w)	$P(w \theta)$	P(z=0 w)
The	4	0.5	0.25	0.33	0.20	0.29	0.18	0.26
Paper	2	0.3	0.25	0.45	0.14	0.32	0.10	0.25
Text	4	0.1	0.25	0.71	0.44	0.81	0.50	0.93
Mining	2	0.1	0.25	0.71	0.22	0.69	0.22	0.69
Log-Likelihood			-16.96		-16.13		-16.02	

Likelihood increasing

"By products": Are they also useful?