

RANCANG BANGUN SISTEM DETEKSI API PADA SISTEM TERTANAM MENGGUNAKAN ALGORITMA YOLOV4 BERBASIS IOT

SKIRIPSI

ANNASTYA BAGAS DEWANTARA 1910314024

UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAKARTA FAKULTAS TEKNIK PROGRAM STUDI S1 TEKNIK ELEKTRO 2022

RANCANG BANGUN SISTEM DETEKSI API PADA SISTEM TERTANAM MENGGUNAKAN ALGORITMA YOLOV4 BERBASIS IOT

SKRIPSI

Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Teknik

ANNASTYA BAGAS DEWANTARA 1910314024

UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAKARTA FAKULTAS TEKNIK PROGRAM STUDI S1 TEKNIK ELEKTRO 2022

HALAMAN PERNYATAAN ORISINALITAS

Proposal skripsi ini merupakan hasil karya sendiri. dan semua sumber yang dikutip maupun dirujuk telah saya nyatakan benar.

Nama

: Annastya Bagas Dewantara

NIM

: 1910314024

Program Studi : Teknik Elektro

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan saya ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku.

> Jakarta, 18 Januari 2023 Yang menyatakan,

Annastya Bagas Dewantara

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI SKRIPSI UNTUK KEPENTINGAN AKADEMIS

Sebagai civitas akademik Universitas Pembangunan Nasional Veteran Jakarta. Saya yang bertanda tangan di bawah ini:

Nama

: Annastya Bagas Dewantara

NIM

: 1910314024

Fakultas

: Teknik

Program Studi: Teknik Elektro

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Pembangunan Nasional Veteran Jakarta Hak Bebas Royalti Non-Eksklusif (Non-Exclusive Royalty Free Rights) atas karya ilmiah saya yang berjudul:

RANCANG BANGUN SISTEM DETEKSI API PADA SISTEM TERTANAM MENGGUNAKAN ALGORITMA YOLOV4 BERBASIS IOT

Beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti ini, Universitas Pembangunan Nasional Veteran Jakarta berhak menyimpan, mengalih media/formatkan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan Skripsi saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik hak cipta.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di

: Jakarta

Pada tanggal

: 18 Januari 2023

Yang menyatakan,

Annastya Bagas Dewantara

HALAMAN PENGESAHAN PENGUJI

Skripsi diajukan oleh :

Nama

Annastya Bagas Dewantara

NIM

1910314024

Program Studi

Teknik Elektro

Judul Skripsi

: RANCANG BANGUN SISTEM DETEKSI API

PADA SISTEM TERTANAM MENGGUNAKAN

ALGORITMA YOLOV4 BERBASIS IOT

Telah berhasil dipertahankan di hadapan Tim Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Elektro, Fakultas Teknik, Universitas Pembangunan Nasional Veteran Jakarta.

<u>Dr. Henry Binsar Hamonangan Sitorus, S.T., M.T.</u> Penguji Utama

Fajar Rahayu, S.T., M.T.

Penguji Lembaga

Achmad Zuchriadi P., S.T., M.T., CEC.

Penguji I (Pembimbing)

Dr. Ir. Reda Rizal, B.Sc., M.Si., IPU., ASEAN Eng.

Dekan Fakultas Teknik

Achmad Zuchriadi P., S.T., M.T., CEC. Kepala Program Studi Teknik Elektro

Ditetapkan di

: Jakarta

Tanggal Ujian

: 20 Januari 2023

HALAMAN PENGESAHAN PEMBIMBING

RANCANG BANGUN SISTEM DETEKSI API PADA SISTEM TERTANAM MENGGUNAKAN ALGORITMA YOLOV4 BERBASIS IOT

Disusun Oleh:

Annastya Bagas Dewantara

NIM 1910314024

Disetujui Oleh

Pembimbing I

Pembimbing II

Achmad Zuchriadi P., S.T., M,T

Fajar Rahayu S.T., M.T.

Mengetahui,

Ketua Program Studi Teknik Elektro

Fakultas Teknik Universitas Pembangunan Nasional Veteran Jakarta

Achmad Zuchriadi S.T., M,T Kepala Program Studi Teknik Elektro

DAFTAR ISI

HALA	MAN JUDUL	•••••	i
HALAI	MAN PENGESAHAN PENGUJI		ii
HALA	MAN PENGESAHAN PEMBIMBING	•••••	iii
HALAI	MAN PERNYATAAN ORISINALITAS	•••••	iv
HALA	MAN PERNYATAAN PERSETUJUAN F	PUBLIKASI	SKRIPSI
UNTUI	K KEPENTINGAN AKADEMIS	••••••	v
ABSTR	AK	••••••	vi
ABSTR	ACT	•••••	vii
KATA	PENGANTAR	•••••	viii
DAFTA	AR ISI		ix
DAFTA	AR GAMBAR		xi
DAFTA	AR TABEL		xiii
BAB 1	PENDAHULUAN		1
1.1	Latar Belakang		1
1.2	Tujuan Penelitian		2
1.3	Rumusan Masalah		2
1.4	Batasan Masalah		2
1.5	Sistematika Penulisan		3
BAB 2 1	LANDASAN TEORI	•••••	4
2.1	State of Art		4
2.2	Convolutional Neural Network (CNN)		6
2.3	YOLOv4		8
•••••			11
2.4	Raspberry Pi		15
	METODOLOGI PENELITIAN		17

3.1	Tahapan Penelitian	17
3.2	Implementasi	18
3.3	Implementasi	19
BAB 4	HASIL DAN PEMBAHASAN	20
4.1	Pengambilan Data	20
4.2	Training	21
4.3	Tampilan Web	25
4.4	Perangkat	27
BAB 5	KESIMPULAN DAN SARAN	28
5.1	Kesimpulan	28
5.2	Saran	28
DAFT	AR PUSTAKA	29
RIWA	YAT HIDUP	32
LAMPIRAN		33

DAFTAR GAMBAR

Gambar 2.1 Arsitektur Convolutional Neural Network	7
Gambar 2.2 Lapisan Konvolusi	7
Gambar 2.3 Lapisan Max Pooling	8
Gambar 2.4 Lapisan Fully Connected	8
Gambar 2.5 Visualisasi Intersection of Union (IoU)	9
Gambar 2.6 Non-max Suppression (NMS)	10
Gambar 2.7 Object Localization dan Classification	10
Gambar 2.8 Residual Block pada sampel gambar	11
Gambar 2.9 Tahapan deteksi menggunakan Algoritma YOLO	12
Gambar 2.10 Nilai interpolasi AP berdasarkan nilai maksimum antara	Recall
Precission	14
Gambar 2.11 mean Average-Precission (mAP)	15
Gambar 3.1 Diagram Alir Penelitian	17
Gambar 3.2 Diagram Alur Kerja Alat	18
Gambar 4.1 Pembagian Dataset Api and Asap	20
Gambar 4.2 Pembagian Dataset	21
Gambar 4.3 Grafik Loss dan mAP dari YOLOv4 dataset Api dan Asap	23
Gambar 4.4 Pengujian deteksi api di dalam ruangan	23
Gambar 4.5 Pengujian deteksi api di luar ruangan	24
Gambar 4.6 Pengujian deteksi dengan gambar api berukuran besar	24

Gambar 4.7 Pengujian deteksi dengan gambar api berukuran kecil	24
Gambar 4.8 Tampilan halaman <i>login</i> dari web	25
Gambar 4.9 Tampilan halaman utama dari web	26
Gambar 4.10 Tampilan halaman streaming dari web	26
Gambar 4.11 Tampilan <i>mobile site</i>	26
Gambar 4.12 Desain sistem dan alur kerja dari alat	27
Gambar 4.13 Tampilan purwarupa sistem deteksi api	27

DAFTAR TABEL

Tabel 2.1 State of Art Penelitian	4
Tabel 3.1 Spesifikasi Perangkat <i>Training</i>	18
Tabel 3.2 Spesifikasi Perangkat Interferensi	19
Tabel 3.3 Jadwal Penelitian	19
Tabel 4.1 Hasil Training	22