ECE 8 Robotics Notes 10-13-22

prof. = professor

- professor recants that the previous lecture was just a "look into the future" not required material
- recall
 - o Discrete Time models the topic of today
- Prof. notes:
 - o one week ago we had notes on discrete time models
 - \circ see equations of position, velocity, delta Δ
- Question given:
 - o why is it discrete time? or what makes it discrete?
 - because it is expressed in k
 - and k is countable 1,2,3,4, and so on
 - o In contrast : continuous time *t*
 - we can express t as 1, 1.01, 1.02, etc. (it can be in decimals)
- professor referenced a graph from last week
 - the graph shows an example of discrete time steps (i.e., dots along the line)
 - see last weeks notes

Today: Trajectories to discrete time model

- Our first discrete time model
 - \circ is given by the evolution of position p_x at discrete times that is associated to the brick on the ground

$$\frac{dp_x}{dt} = v_x \to p_{\{x,k+1\}} = p_{\{x,k\}} + \Delta v_{\{x,k\}}$$

- where:

position at k+1 "new position" = position at discrete time k+1 step size * velocity at discrete time k+1

- Q: what is needed to calculate the rest of our positions i.e. the ones we generate $(p_{\{x,k+1\}})$?
 - o we need the starting position, where is it located?
 - o we need the starting velocity, how fast is it moving and in what direction?
 - o the step size, or in general the full model "equation"
 - how does current position given the previous position evolve, what equation shows the relationship?
 - A: It is given by some physics law i.e. model/equation
- summary of previous question:
 - o We Need:
 - Initial conditions/parameters (temperature, position, etc.)
 - e.g.:
 - the brick starts at the origin (x, y) = (0,0)
 - and it is not moving so $(v_x, v_y) = (0,0)$ these are the initial conditions of the brick
 - velocity (the input from some force)
 - sometimes the force only happens at the beginning but sometimes the force can be constant and affect the speed of the object.
 - o e.g.: Falling objects experience the constant force of gravity
 - model of the system
 - equations
 - e.g.: The spring force equation, the equation for a moving pendulum, (Equations of motion)
 - this solves the evolution of the key variable as it moves forward in time

Prof noted:

- Today we practice 1D motion but we will eventually move up to 2D, 3D motion

Hand written notes

- for this discrete-time model we can compute the values of p_{x1} , p_{x2} , ... and so on, but only if we know
 - o p_{x0} what we call "the initial position"
 - \circ v_{x_0}, v_{x_1}, \dots and so on (the velocity input from a force)
 - o the <u>relationship</u> between key variables p_x and input v_x (in this case), and this is what we call the <u>model</u>.
- General robotic systems (not just position)
 - o we can treat a robotics system (robot) as a system with inputs and outputs
 - o Prof. draws:
 - a square (could be any shape but square is convention)
 - the square has arrows pointing in and out with the box, such that the box is representing the model
 - The box:
 - contains an initial condition
 - for the case of p_{γ} :
 - o inputs are v_{x0} , v_{x1} , ...
 - the model is $p_{\{x,k+1\}} = p_{\{x,k\}} + \Delta v_{\{x,k\}}$
 - the output is $p_{\{x,k+1\}}$
 - o given the initial condition p_{x0} can get $p_{x1}, p_{x2},...$ and so on
 - o see MATLAB code from lect. 5 for formal example of this
 - we also use it in the following examples in class
- How does this relate to Quadrotor (quadcopter)
 - o the model for quadrotor depends on thrust, the user, the computer board that generates the voltages
 - basically a bunch of little things are in the inputs
 - Overall: we create the input and the motion of the quadrotor is the output

Prof. Returns to MATI AB

- professor hints at using loops to generate many repetitive steps
 - Code: for loops, while loops
 - If cannot recall how to use loops consider using the help command:
 - command: help for
 - examples can be found here
 - Example of for loop:
 - for loop: is a program structure that allows you to repeat a desired code a finite amount of times
 - o for k = 1:10

disp(k)

end

this will display 1,2,3,4,5,6,7,8,9,10

Errors

- professor emphasized when you run a code if you get a red error in the terminal
 - o read it:
 - it gives the file with the issue and the line where the code is giving a problem

Code: file: PositionDiscreteTime2.m

- We spent time attempting to create a for loop and generate a graph
 - o the professor adds the code to the file and states he will keep the convention of the notes
 - We spent the remainder of the class just trouble shooting MATLAB loops
 - o see professors files for better examples and completed code
 - to better understand any loops see the lab that was posted with tutorials
 - or google:
 - MATLAB for loop
 - MATLAB while loop
 - these should give better examples if ever stuck

TUESDAY

- Today we did 1D (1 dimension) p_x next week we will go up to 2D and then 3D
 - o this means we will consider p_v , p_z
- Professors Question:
 - o Can we plot all of them?
 - we will try this next week it's not required but it's suggested to attempt it over the weekend
 - Recall: we can see everything up to 3 dimensions, so we should be able to graph the new variables next week
- Next Week:
 - We will learn how to design our velocity and position vectors so that we can create the control algorithm "the algorithm that tells the robot to go to a desired location, or do a desired action"
- Quiz on Tuesday
 - o see announcement for more information