Размещения, перестановки и сочетания

Содержание

1	Размещения
2	Перестановки
3	Сочетания
4	Перестановки с повторениями
5	Сочетания с повторениями
6	Маршруты
7	Бином Ньютона
8	Три задачи о функциях
9	Задачи

Некоторые комбинации объектов встречаются наиболее часто и имеют определённые названия: размещения, перестановки и сочетания. В этом разделе мы научимся подсчитывать количества таких комбинаций.

1 Размещения

В предыдущем листке «Правила суммы и произведения» нам встретились размещения с повторениями. Однако повторения возможны не всегда. В некоторых ситуациях бывает, что выбор, сделанный на данном этапе, ограничивает число вариантов выбора на следующем этапе.

ЗАДАЧА. В футбольной команде 11 человек. Сколькими способами можно выбрать: а) капитана и его ассистента; б) капитана, первого ассистента и второго ассистента?

Решение. а) Капитаном можно выбрать любого из 11 футболистов. Ассистентом — любого из 10 оставшихся. Поэтому капитана и ассистента можно выбрать $11 \cdot 10 = 110$ способами.

б) Капитана и первого ассистента мы уже выбрали $11 \cdot 10$ способами. Для выбора второго ассистента остаётся 9 способов. Поэтому капитана, первого ассистента и второго ассистента можно выбрать $11 \cdot 10 \cdot 9 = 990$ способами.

В этой задаче мы фактически нашли число упорядоченных пар и упорядоченных троек, которые можно выбрать из 11-элементного множества. Теперь рассмотрим данный вопрос в общем виде.

Определение. Пусть имеется множество, содержащее n элементов. Произвольный упорядоченный набор, составленный из k различных элементов данного множества, называется разме-

Число размещений из n элементов по k элементов обозначается A_n^k (читается «а из эн по ка»). \Im то число упорядоченных наборов из k элементов (или число цепочек длины k), выбранных из п-элементного множества. Найдём, чему равно это число.

Рассуждаем так же, как и в задаче про футболистов. Для выбора первого элемента цепочки имеется n способов, для выбора второго элемента имеется n-1 способов, для выбора третьего элемента имеется n-2 способов и т. д. Для выбора последнего, k-го элемента цепочки имеется n - k + 1 способов. Следовательно,

$$A_n^k = n(n-1)(n-2)\dots(n-k+1).$$
(1)

Данную формулу можно записать в более компактном виде, если правую часть умножить и разделить на (n-k)!:

$$A_n^k = \frac{n(n-1)(n-2)\dots(n-k+1)(n-k)!}{(n-k)!},$$

то есть

$$A_n^k = \frac{n!}{(n-k)!} \,. \tag{2}$$

(напомним, что $n! = 1 \cdot 2 \cdot \ldots \cdot n$, и по определению 0! = 1).

2 Перестановки

Перестановка есть простой частный случай размещения, однако настолько важный, что заслуживает отдельного рассмотрения.

ЗАДАЧА. Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что цифры не должны повторяться?

РЕШЕНИЕ. Для выбора первой цифры имеется пять способов, для выбора второй — четыре, для выбора третьей — три, для выбора второй — два, и для выбора последней цифры остаётся один способ. Всего чисел получается $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! = 120$.

Задача. Имеется n разноцветных шаров. Сколькими способами их можно выложить в ряд?

РЕШЕНИЕ. Первый шар можно выбрать n способами, второй шар можно выбрать n-1 способами и т. д. Для выбора последнего, n-го шара остаётся один способ. Всего получается

$$n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 = n!$$

способов выложить наши n шаров в ряд.

Определение. Пусть имеется множество, содержащее n элементов. Произвольная цепочка длины n, составленная из всех элементов данного множества, называется nepecmanoskoŭ этого множества (или перестановкой n элементов).

Иными словами, перестановка n элементов — это размещение из n по n. Число перестановок n-элементного множества обозначается P_n ; мы нашли это число в последней задаче (про разноцветные шары):

$$P_n = n!$$

Данная формула легко получается также из формул (1) и (2) при k=n.

3 Сочетания

Переходим к рассмотрению *сочетаний*. Вернёмся к нашей футбольной команде, в которой мы выбирали капитана и ассистента.

ЗАДАЧА. В футбольной команде 11 человек. Сколькими способами можно выбрать из них двух игроков для прохождения допинг-контроля?

РЕШЕНИЕ. На первый взгляд кажется, что ситуация аналогична выбору капитана и ассистента: первого человека выбираем 11 способами, второго — 10 способами, так что всего имеется $11 \cdot 10$ способов. Однако в данном случае это не так.

В самом деле, пара «капитан и ассистент» является *упорядоченной*: выбрать Петю капитаном, а Васю ассистентом — это не то же самое, что выбрать Васю капитаном, а Петю ассистентом. С другой стороны, пара человек, отправленных на допинг-тест, является *неупорядоченной*:

отправить Петю и Васю на тест — это ровно то же самое, что отправить Васю и Петю на тест. Соответственно, в данной задаче нас интересует именно число неупорядоченных пар футболистов, выбираемых из 11 человек.

Давайте представим себе, что неупорядоченная пара {Петя, Вася} как бы склеивается из двух упорядоченных пар (Петя, Вася) и (Вася, Петя). Иными словами, любые две упорядоченные пары, отличающиеся лишь порядком следования объектов, дают одну и ту же неупорядоченную пару. Следовательно, число неупорядоченных пар будет в два раза меньше числа упорядоченных пар и окажется равным

$$\frac{11 \cdot 10}{2} = 55.$$

Таким образом, двух футболистов можно выбрать для допинг-контроля 55 способами.

Задача. Сколькими способами можно выбрать троих футболистов из 11 для прохождения допинг-контроля?

РЕШЕНИЕ. Произведение $11 \cdot 10 \cdot 9$ (число способов выбора капитана, первого ассистента и второго ассистента) есть число *упорядоченных* троек футболистов. В данном же случае, как и в предыдущей задаче, порядок не важен, поэтому нам нужно найти число *неупорядоченных* троек фуболистов, выбираемых из 11 человек.

В одну неупорядоченную тройку склеиваются те и только те упорядоченные тройки, которые отличаются лишь порядком следования элементов. Число таких троек равно числу перестановок трёх элементов, то есть 3! = 6. Например, в одну неупорядоченную тройку

склеиваются ровно шесть упорядоченных троек

(Вася, Коля, Петя), (Вася, Петя, Коля), (Коля, Вася, Петя), (Коля, Петя, Вася), (Петя, Вася, Коля), (Петя, Коля, Вася).

Следовательно, число неупорядоченных троек в 3! раз меньше числа упорядоченных троек. Соответственно, имеется

$$\frac{11 \cdot 10 \cdot 9}{3!} = 165$$

способов выбрать троих человек для допинг-контроля.

В последних двух задачах о футболистах, выбираемых на допинг-контроль, мы нашли число неупорядоченных пар и неупорядоченных троек, которые можно выбрать из 11-элементного множества. Теперь мы можем рассмотреть данный вопрос в общем виде.

Определение. Пусть имеется множество, содержащее n элементов. Произвольный неупорядоченный набор, состоящий из k различных элементов данного множества, называется covemanuem из n элементов по k элементов (или просто сочетанием из n по k).

Иными словами, сочетание из n элементов по k элементов — это просто k-элементное подмножество n-элементного множества.

Число сочетаний из n элементов по k элементов обозначается C_n^k (читается «це из эн по ка»). Это число неупорядоченных наборов из k элементов, выбранных из n-элементного множества (то есть число k-элементных подмножеств n-элементного множества). Найдём, чему равно это число.

Число упорядоченных наборов из k элементов (то есть число цепочек длины k) есть число размещений A_n^k . Те и только те цепочки, которые отличаются лишь порядком следования

элементов, склеиваются в один неупорядоченный набор. Число таких цепочек равно числу перестановок k элементов, то есть k!. Следовательно, искомое число неупорядоченных наборов из k элементов будет в k! раз меньше числа цепочек длины k:

$$C_n^k = \frac{A_n^k}{k!} \, .$$

Согласно формулам (1) или (2) имеем:

$$C_n^k = \frac{n(n-1)(n-2)\dots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}.$$
 (3)

Теперь, зная, что такое число сочетаний, мы можем сразу сказать, что двух футболистов из одиннадцати для допинг-теста можно выбрать $C_{11}^2 = (11 \cdot 10)/2!$ способами; аналогично, трёх футболистов из одиннадцати можно выбрать $C_{11}^3 = (11 \cdot 10 \cdot 9)/3!$ способами.

Задача. Монету подбрасывают 8 раз. При этом получается некоторая последовательность «орлов» и «решек» (длины 8). Сколько всего существует таких последовательностей, в которых «орёл» выпал ровно три раза?

РЕШЕНИЕ. Пусть О означает «выпал орёл», а Р — «выпала решка». Тогда в результате восьми подбрасываний мы получим восьмибуквенное слово, состоящее из букв О и Р. Например, слово POPPOOPP означает, что орёл выпал при втором, пятом и шестом подбрасываниях, а в остальных случаях выпала решка.

Теперь ясно, что вопрос ставится так: сколько восьмибуквенных слов можно составить из трёх букв О и пяти букв Р? Заметим, что слово однозначно определяется выбором позиций для трёх букв О (остальные позиции автоматически заполняются буквами Р). Поэтому число наших слов есть число способов выбрать три позиции из восьми, то есть $C_8^3 = (8 \cdot 7 \cdot 6)/3! = 56$. Это и есть ответ.

Заметим также, что позиции можно было бы выбирать не для букв O, а для букв P. А именно, слово однозначно определяется выбором позиций для пяти букв P, что можно сделать $C_8^5=56$ способами. Как видите, $C_8^3=C_8^5$, и это частный случай общего свойства числа сочетаний (см. следующую задачу).

Задача. Докажите, что $C_n^k = C_n^{n-k}$.

РЕШЕНИЕ. Каждому k-элементному подмножеству A n-элементного множества M однозначно соответствует его дополнение, то есть (n-k)-элементное множество, состоящее из все тех элементов, которые не входят в A. Поэтому число k-элементных подмножеств множества M равно числу его (n-k)-элементных подмножеств; но первое число есть C_n^k , а второе равно C_n^{n-k} .

(Попросту говоря, выбрать k элементов — это всё равно, что выбрать n-k дополнительных элементов; поэтому число способов выбора первых равно числу способов выбора вторых.)

Данное равенство можно доказать и алгебраически с помощью формулы (3):

$$C_n^{n-k} = \frac{n!}{(n-k)!(n-(n-k))!} = \frac{n!}{(n-k)!k!} = C_n^k.$$

Задача. Докажите, что $C_{n+1}^k = C_n^k + C_n^{k-1}$.

РЕШЕНИЕ. Алгебраическое доказательство с помощью формулы (3) оставляется читателю в качестве самостоятельного упражнения. Приведём комбинаторное доказательство данного равенства.

Рассмотрим множество A, состоящее из n+1 элементов. Тогда C^k_{n+1} — это число k-элементных подмножеств множества A.

Выделим в множестве A некоторый элемент и назовём его x. Всякое подмножество множества A либо содержит элемент x, либо не содержит его.

Сколько k-элементных подмножеств множества A не содержит x? Чтобы сформировать такое подмножество, нам нужно из оставшихся n элементов множества A выбрать k элементов. Это можно сделать C_n^k способами. Значит, имеется C_n^k подмножеств множества A, состоящих из k элементов и не содержащих x.

Теперь найдём число k-элементных подмножеств множества A, содержащих элемент x. Что-бы сформировать такое подмножество, надо из оставшихся n элементов множества A выбрать k-1 элементов (ведь x уже включён в подмножество). Это можно сделать C_n^{k-1} способами. Значит, число подмножеств множества A, состоящих из k элементов и содержащих элемент x, равно C_n^{k-1} .

Для завершения доказательства остаётся воспользоваться правилом суммы.

Доказанное равенство объясняет, почему числа C_n^k можно расположить по строкам mpe-угольника Паскаля. Этот треугольник изображён ниже на рисунке. По боковым сторонам треугольника стоят единицы, числа внутри треугольника расположены в шахматном порядке, и каждое внутреннее число равно сумме двух чисел, стоящих непосредственно над ним.

Строки треугольника нумеруются сверху начиная с нуля. Числа в строках нумеруются слева также с нуля. Число C_n^k стоит в n-й строке k-м по счёту (например, $6=C_4^2$).

В следующих задачах нужно не просто находить числа сочетаний, но и одновременно использовать правила произведения и суммы.

Задача. Сколькими способами можно из семи человек выбрать комиссию из трёх человек во главе с председателем?

РЕШЕНИЕ. Председателя можно выбрать семью способами. Остальных двоих мы выбираем из шести человек $C_6^2=15$ способами. Поэтому число способов выбора комиссии равно $7\cdot 15=105$.

ЗАДАЧА. («Покори Воробъёвы горы!», 2014, 10-11) Сколькими способами можно собрать бригаду из 3 маляров и 4 штукатуров, если имеется 6 маляров и 8 штукатуров?

РЕШЕНИЕ. Маляров можно выбрать C_6^3 способами. Штукатуров можно выбрать C_8^4 способами. Значит, для формирования бригады имеется $C_6^3C_8^4=20\cdot 70=1400$ способов.

Задача. (*«Высшая проба»*, 2014, 7–8) Сколько среди целых чисел от 100 до 10000 таких, в записи которых встречаются ровно три одинаковых цифры?

РЕШЕНИЕ. Описанные в условии числа будем называть *хорошими*. Трёхзначных хороших числа, очевидно, девять: 111, 222, . . . , 999.

Ищем количество четырёхзначных хороших чисел. Ровно двух нулей в записи хорошего числа быть не может. Остаются следующие варианты: три нуля, один нуль, нет нулей.

Хороших четырёхзначных чисел с тремя нулями девять: 1000, 2000, ..., 9000.

Предположим, что среди цифр хорошего четырёхзначного числа ровно один нуль. Остальные три (совпадающие) цифры можно выбрать 9 способами. При этом нуль может стоять на втором, третьем или четвёртом месте. Всего получается $9 \cdot 3 = 27$ хороших четырёхзначных чисел с одним нулём.

Предположим, что среди цифр хорошего четырёхзначного числа нуля нет. Тройку совпадающих цифр можно выбрать 9 способами; три позиции для этой тройки можно выбрать $C_4^3=4$

способами; четвёртую цифру можно выбрать 8 способами. Всего хороших четырёхзначных чисел без нуля получается $9 \cdot 4 \cdot 8 = 288$.

Искомое количество хороших чисел равно 9 + 9 + 27 + 288 = 333.

ЗАДАЧА. ($\langle \Phi usmex \rangle$, 2011, 9–11) На некоторой прямой произвольно отмечено 10 точек, а на параллельной ей прямой — 12 точек. Сколько существует треугольников и сколько четырёх-угольников с вершинами в этих точках?

РЕШЕНИЕ. Будем для краткости называть 10 точек на первой прямой $\kappa pacнымu$, а 12 точек на второй прямой — cuнumu.

У треугольника может быть: 1) одна красная вершина и две синих; 2) одна синяя вершина и две красных. В первом случае мы выбираем красную вершину 10 способами, а синюю — $C_{12}^2 = 12 \cdot 11/2 = 66$ способами. Во втором случае мы выбираем синюю вершину 12 способами, а красную — $C_{10}^2 = 45$ способами. Всего треугольников получается $10 \cdot 66 + 12 \cdot 45 = 1200$.

У четырёхугольника лишь одна возможность: две красные вершины и две синие. Число четырёхугольников получается равным $C_{10}^2 \cdot C_{12}^2 = 45 \cdot 66 = 2970$.

4 Перестановки с повторениями

Идея склеивания упорядоченных наборов (отличающихся лишь порядком следования элементов) в один неупорядоченный набор является весьма плодотворной и даёт не только формулу для числа сочетаний, но и гораздо больше.

ЗАДАЧА. Анаграмма — это слово (не обязательно осмысленное), полученное из данного слова перестановкой букв. Например, $6 \text{-sop} \partial$ является анаграммой слова $\partial po \delta b$. Сколько всего анаграмм у слова $\partial po \delta b$? У слова $\kappa nacc$? У слова $\kappa nacc$?

Решение. У слова $\partial pobb$ имеется 5! анаграмм — именно столько существует перестановок множества из пяти объектов.

В слове κ ласс две буквы одинаковы. Давайте временно считать их различными, приписав им индексы: κ лас₁с₂. У этого нового слова 5! анаграмм. А теперь во всех анаграммах нового слова сотрём индексы. Каждые две анаграммы слова κ лас₁с₂, которые отличались лишь перестановкой букв c_1 и c_2 , склеятся в одну анаграмму слова κ ласс. Поэтому анаграмм получится 5!/2=60.

Аналогично рассмотрим слово $\kappa_1 o_1 no_2 fo_3 \kappa_2$. У него 7! анаграмм. После стирания индексов у букв o_1 , o_2 , o_3 склеятся в одно слово каждые 3! анаграмм, отличающиеся лишь перестановкой этих трёх букв. Затем после стирания индексов у букв κ_1 и κ_2 склеятся в одно слово каждые 2! анаграмм, отличающиеся лишь перестановкой этих двух букв. Таким образом, после стирания всех индексов склеятся в одно слово $3! \cdot 2!$ анаграмм, и число анаграмм у слова $\kappa_0 no_0 fo_0 \kappa$ будет равно

$$\frac{7!}{3! \cdot 2!} = 420.$$

У слов κ ласс и κ олобо κ анаграмм получилось меньше, чем 5! и 7! соответственно, по той причине, что в этих словах присутствуют повторяющиеся буквы. Учитывая повторы и деля на соответствующий коэффициент, мы находим количество так называемых $nepecmanoso\kappa$ c nosmopehusmu.

Идея нахождения числа перестановок с повторениями иногда называется *методом кратного подсчёта*. Суть метода проста: чтобы посчитать нужное количество комбинаций, мы сначала находим количество других комбинаций, превосходящее количество исходных комбинаций в некоторое число раз, а потом делим на это число.

Формула для числа сочетаний немедленно получается с помощью метода кратного подсчёта. В самом деле, число способов выбора k объектов из n объектов равно числу анаграмм

п-буквенного слова

$$\underbrace{aa \dots a}_{k} \underbrace{bb \dots b}_{n-k},$$

состоящего из k букв a и n-k букв b (ведь каждая анаграмма — это определённый выбор k позиций из n для букв a). Из сказанного выше ясно, что у данного слова имеется

$$\frac{n!}{k!(n-k)!}$$

анаграмм; столько же получается и сочетаний из n по k.

Теперь сформулируем общую задачу о перестановках с повторениями.

ЗАДАЧА. Имеются m различных шаров и n различных ящиков. Сколькими способами можно разложить шары по ящикам так, чтобы m_1 шаров оказались в первом ящике, m_2 шаров — во втором, . . . , m_n шаров — в n-м ящике $(m_1 + m_2 + \ldots + m_n = m)$?

РЕШЕНИЕ. Искомое число способов обозначим $P(m_1, m_2, ..., m_n)$. Оно равно количеству анаграмм n-буквенного слова

$$\underbrace{a_1 a_1 \dots a_1}_{m_1} \underbrace{a_2 a_2 \dots a_2}_{m_2} \dots \underbrace{a_n a_n \dots a_n}_{m_n}. \tag{4}$$

В самом деле, выбрать m_1 шаров для первого ящика есть то же самое, что выбрать m_1 позиций для букв a_1 ; затем, выбрать m_2 шаров для второго ящика есть то же самое, что выбрать m_2 позиций для букв a_2 , и т. д.

Все буквы слова (4) можно переставить m! способами. Это число надо разделить на $m_1!$ (перестановок букв a_1 , которые ничего не меняют), на $m_2!$ (перестановок букв a_2 , которые ничего не меняют), . . . , на $m_n!$ (перестановок букв a_n , которые ничего не меняют). Итого получается

$$P(m_1, m_2, \dots, m_n) = \frac{m!}{m_1! m_2! \dots m_n!} = \frac{(m_1 + m_2 + \dots + m_n)!}{m_1! m_2! \dots m_n!}$$

способов.

Нетрудно видеть, что данная формула обобщает формулу для числа сочетаний. В самом деле, мы просто имеем $C_n^m = P(m, n-m)$.

5 Сочетания с повторениями

Как мы знаем, число способов разложить m различных шаров в n различных ящиков (без каких-либо дополнительных ограничений) есть число размещений с повторениями: $\bar{A}_n^m = n^m$. А сколько получится способов, если шары odunakosue?

ЗАДАЧА. Сколькими способами можно разложить пять одинаковых шаров по трём различным ящикам? На число шаров в ящике ограничений нет.

Решение. Представим себе, что ящики стоят вплотную друг к другу. Три таких ящика — это фактически две перегородки между ними. Обозначим шар нулём, а перегородку — единицей. Тогда любому способу раскладывания пяти шаров по трём ящикам однозначно соответствует последовательность из пяти нулей и двух единиц; и наоборот, каждая такая последовательность однозначно определяет некоторый способ раскладывания. Например, 0010010 означает, что в первом ящике лежат два шара, во втором — два шара, в третьем — один шар; последовательность 0000011 соответствует случаю, когда все пять шаров лежат в первом ящике.

Теперь ясно, что способов разложить пять шаров по трём ящикам существует ровно столько же, сколько имеется последовательностей из пяти нулей и двух единиц. А число таких последовательностей равно \mathbb{C}^2_7 .

Задача. Сколько решений в целых неотрицательных числах имеет уравнение x + y + z = 5?

РЕШЕНИЕ. Если вдуматься, то это — в точности предыдущая задача, только по-другому сформулированная. В самом деле, рассмотрим пять одинаковых шаров и три различных ящика. Тогда числа x, y и z есть просто количества шаров, положенных соответственно в первый, второй и третий ящик, причём любое из этих чисел может равняться нулю. Следовательно, данное уравнение имеет C_7^2 решений.

ЗАДАЧА. В магазине продаётся апельсиновый, виноградный, персиковый и яблочный сок. Нужно купить семь пакетов сока. Сколько различных наборов можно составить?

РЕШЕНИЕ. Четыре вида сока — это четыре различных ящика, в которые нужно положить семь шаров. Снова обозначаем шары нулём, а перегородки — единицей. Тогда, например, последовательность 0000110100 означает, что куплены четыре пакета апельсинового, один пакет персикового и два пакета яблочного сока (виноградный сок не покупали — второй ящик пуст).

Поэтому число способов покупки семи пакетов сока четырёх видов — это число способов разложить семь одинаковых шаров по четырём ящикам, то есть число последовательностей из семи нулей и трёх единиц. Число таких последовательностей равно C_{10}^3 .

В данной задаче мы могли купить *несколько* пакетов сока данного вида (хоть все семь). Поэтому в подобных ситуациях говорят о *сочетаниях с повторениями*. Сформулируем общую задачу о числе сочетаний с повторениями.

Задача. Сколькими способами можно выбрать m пакетов сока, если в продаже имеется n видов сока? Иными словами, сколькими способами можно разложить m одинаковых шаров по n различным ящикам (в ящике может быть любое количество шаров)?

РЕШЕНИЕ. Рассуждаем, как и выше: имеем m шаров и n-1 перегородок, то есть последовательность из m нулей и n-1 единиц. Всего таких последовательностей будет C^m_{m+n-1} .

Число способов, которыми можно разложить m одинаковых шаров по n различным ящикам, называется *числом сочетаний с повторениями из n по m и обозначется \bar{C}_n^m. Таким образом,*

$$\bar{C}_n^m = C_{m+n-1}^m.$$

Теперь немного изменим условие исходной задачи о раскладывании шаров по ящикам.

ЗАДАЧА. Сколькими способами можно разложить пять одинаковых шаров по трём различным ящикам так, чтобы ни один ящик не пустовал?

РЕШЕНИЕ. Положим вначале по одному шару в каждый ящик — тогда ни один ящик пустым не будет. У нас остались два шара, которые надо разложить по трём ящикам произвольным образом. Число таких раскладываний есть число последовательностей из двух нулей и двух единиц, то есть C_4^2 .

Можно рассуждать и по-другому. Положим в ряд пять шаров. Перегородки могут быть только в промежутках между шарами. Таким образом, нам нужно поместить две перегородки в какие-то два из четырёх промежутков, а выбрать две позиции из четырёх можно C_4^2 способами.

Задача. Сколько решений в натуральных числах имеет уравнение x + y + z = 5?

РЕШЕНИЕ. Это — в точности предыдущая задача, поскольку ни одна из переменных теперь не может равняться нулю. Уравнение имеет $C_4^2 = 6$ решений в натуральных числах. Нетрудно решить задачу и непосредственным перебором (сделайте это).

ЗАДАЧА. Сколькими способами можно разложить m одинаковых шаров по n различным ящикам так, чтобы ни один ящик не пустовал $(m \ge n)$?

РЕШЕНИЕ. Рассуждаем, как и выше. Сначала кладём по одному шару в каждый ящик, а остальные m-n шаров раскладываем произвольным образом. Получается $\bar{C}_n^{m-n}=C_{m-1}^{m-1}$ способов.

Знание сочетаний с повторениями (то есть схемы шаров и перегородок) поможет не «изобретать велосипед» на олимпиаде.

Задача. («Физтех», 2011, 9) 19 депутатов Городского Собрания выбирают Председателя из 5 кандидатов. Каждый голосует ровно за одного из них. После голосования составляется протокол заседания, в котором указывается лишь количество голосов за каждого кандидата (без указания, кто за кого проголосовал). Сколько различных протоколов может получиться?

РЕШЕНИЕ. Пусть за первого кандидата проголосовало x_1 депутатов, за второго — x_2 депутатов, . . . , за пятого — x_5 депутатов. Тогда

$$x_1 + x_2 + x_3 + x_4 + x_5 = 19, (5)$$

поскольку каждый депутат голосовал лишь за одного кандидата. Теперь ясно, что искомое количество протоколов равно количеству решений уравнения (5) в целых неотрицательных числах. А это количество, в свою очередь, есть число способов разложить 19 одинаковых шаров по пяти различным ящикам, то есть число последовательностей из 19 нулей (шаров) и 4 единиц (перегородок). Таких последовательностей имеется $C_{23}^4 = 8855$.

6 Маршруты

Маршрутом мы будем называть ломаную, у которой вершины имеют целочисленные координаты, а звенья направлены либо вправо, либо вверх.

Задача. Сколько маршрутов ведут из точки A(0,0) в точку B(10,6)? Сколько таких маршрутов проходит через точку M(6,4)?

РЕШЕНИЕ. Возможный маршрут из A в B показан на рисунке.

Каждый такой маршрут состит из 16 звеньев — 10 горизонтальных и 6 вертикальных. Поэтому любой маршрут можно закодировать словом из 16 букв Γ и B, в котором будет 10 букв Γ и 6 букв B. Так, изображённый выше маршрут обозначается словом $\Gamma B \Gamma \Gamma B \Gamma B \Gamma B \Gamma \Gamma \Gamma \Gamma B \Gamma \Gamma \Gamma$.

Следовательно, маршрутов будет столько же, сколько имеется 16-буквенных слов из 10 букв Γ и 6 букв B, то есть C_{16}^6 .

Ограничимся теперь маршрутами, проходящими через точку M(6,4).

Каждый такой маршрут состоит из двух частей: маршрута из A в M и маршрута из M в B. Рассуждая, как и выше, находим, что маршрутов из A в M будет C_{10}^4 , а маршрутов из M в B будет C_6^2 . Всего маршрутов из A в B, проходящих через M, будет $C_{10}^4C_6^2$.

7 Бином Ньютона

Вам известны формулы $(a+b)^2=a^2+2ab+b^2$ и $(a+b)^3=a^3+3a^2b+3ab^2+b^3$. Выведем общую формулу для $(a+b)^n$.

Задача. (Бином Ньютона) Доказать, что

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{6}a^{n-3}b^3 + \dots + b^n = \sum_{k=0}^n C_n^k a^{n-k}b^k.$$

Решение. Начнём со следующей записи, иллюстрирующей основную идею:

$$(a+b)^3 = (a+b)(a+b)(a+b) = aaa + aab + aba + abb + baa + bab + bba + bbb.$$

Точно так же раскроем скобки в произведении

$$(a+b)^n = \underbrace{(a+b)(a+b)\dots(a+b)}_n,$$

просто записывая получающиеся одночлены как слова длины n, состоящие из букв a и b (можно упорядочить их по алфавиту, как и выше, но это не обязательно). После приведения подобных членов слагаемое $a^{n-k}b^k$ дадут те и только те слова, которые составлены из k букв b и n-k букв a. Таких слов C_n^k ; это и будет коэффициент при $a^{n-k}b^k$ в получившейся сумме. Поэтому числа C_n^k называются ещё биномиальными коэффициентами.

Задача. (*«Высшая проба»*, 2014, 10) Сколько слагаемых получится после раскрытия скобок и приведения подобных слагаемых в выражении $(1+x^2)^{100}(1+x^5)^{100}$?

Решение. Бином Ньютона для нашего выражения даёт:

$$\left(1 + C_{100}^{1}x^{2} + C_{100}^{2}x^{4} + \dots + C_{100}^{99}x^{198} + x^{200}\right) \left(1 + C_{100}^{1}x^{5} + C_{100}^{2}x^{10} + \dots + C_{100}^{99}x^{495} + x^{500}\right) =
= \sum_{k=0}^{100} C_{100}^{k}x^{2k} \sum_{m=0}^{100} C_{100}^{m}x^{5m} = \sum_{k,m=0}^{100} a_{km}x^{2k+5m}, \quad (6)$$

где $a_{km} = C_{100}^k C_{100}^m$ (вид этих коэффициентов на самом деле не важен). Итак, после раскрытия скобок получается сумма одночленов со всевозможными показателями степени вида 2k + 5m, где k и m пробегают целые значения от 0 до 100.

Имеем очевидную оценку: $0 \le 2k + 5m \le 700$, и если бы каждое промежуточное значение достигалось, то после приведения подобных членов в сумме оказалось бы 701 слагаемое. Выясним, какие промежуточные значения достигаются на самом деле, а какие запрещены.

Мы расмотрим всевозможные остатки, которые может давать 2k + 5m при делении на 10. Имеем, соответственно, 10 случаев.

1. Пусть 2k+5m=10n. Тогда $k=5p,\ m=2q\ (p$ и q — целые неотрицательные числа), откуда p+q=n. Имеем:

$$\begin{aligned} 0 &\leqslant 5p \leqslant 100 \ \Rightarrow \ 0 \leqslant p \leqslant 20; \\ 0 &\leqslant 2q \leqslant 100 \ \Rightarrow \ 0 \leqslant q \leqslant 50. \end{aligned}$$

Следовательно, величина 2k + 5m = 10(p + q) может принимать любые целые значения от 0 до 700 = 10(20 + 50). В этом случае запрещённых промежуточных значений нет.

2. Пусть 2k+5m=10n+1. Перебор остатков от деления на 5 и на 2 показывает, что возможен лишь вариант k=5p+3, m=2q-1 (и тогда снова p+q=n). Имеем:

$$0 \le 5p + 3 \le 100 \implies 0 \le p \le 19;$$

 $0 \le 2q - 1 \le 100 \implies 1 \le q \le 50.$

Поэтому величина 2k + 5m = 10(p+q) + 1 может принимать любые целые значения от 11 до 691. Значение 1 оказывается запрещённым (что очевидно — уравнение 2k + 5m = 1 не имеет решений в натуральных числах).

Оставшиеся случаи разбираются по той же схеме и описываются менее подробно.

- 3. $2k + 5m = 10n + 2 \implies k = 5p + 1, m = 2q, p + q = n$. Получаем: $0 \leqslant p \leqslant 19, 0 \leqslant q \leqslant 50$, откуда $2 \leqslant 10(p+q) + 2 \leqslant 692$. Запрещённых значений нет.
- 4. $2k + 5m = 10n + 3 \implies k = 5p + 4, m = 2q 1, p + q = n$. Имеем: $0 \leqslant p \leqslant 19, 1 \leqslant q \leqslant 50$, откуда $13 \leqslant 10(p + q) + 3 \leqslant 693$. Значение 3 не достигается.
- 5. $2k+5m=10n+4 \Rightarrow k=5p+2, m=2q, p+q=n$. Имеем: $0 \leqslant p \leqslant 19, 0 \leqslant q \leqslant 50$, откуда $4 \leqslant 10(p+q)+4 \leqslant 694$. Запрещённых значений нет.
- 6. $2k+5m=10n+5 \Rightarrow k=5p, m=2q+1, p+q=n$. Имеем: $0 \leqslant p \leqslant 20, 0 \leqslant q \leqslant 49$, откуда $5 \leqslant 10(p+q)+5 \leqslant 695$. Запрещённых значений нет.
- 7. $2k+5m=10n+6 \Rightarrow k=5p+3, m=2q, p+q=n$. Имеем: $0\leqslant p\leqslant 19, 0\leqslant q\leqslant 50$, откуда $6\leqslant 10(p+q)+6\leqslant 696$. Запрещённых значений нет.
- 8. $2k + 5m = 10n + 7 \implies k = 5p + 1, m = 2q + 1, p + q = n$. Имеем: $0 \leqslant p \leqslant 19, 0 \leqslant q \leqslant 49$, откуда $7 \leqslant 10(p + q) + 7 \leqslant 687$. Значение 697 не достигается.
- 9. $2k+5m=10n+8 \Rightarrow k=5p+4, m=2q, p+q=n$. Имеем: $0 \leqslant p \leqslant 19, 0 \leqslant q \leqslant 50$, откуда $8 \leqslant 10(p+q)+8 \leqslant 698$. Запрещённых значений нет.
- 10. $2k + 5m = 10n + 9 \implies k = 5p + 2, m = 2q + 1, p + q = n$. Имеем: $0 \leqslant p \leqslant 19, 0 \leqslant q \leqslant 49$, откуда $9 \leqslant 10(p + q) + 9 \leqslant 689$. Значение 699 не достигается.

Итак, величина 2k + 5m при $0 \le k, m \le 100$ принимает все значения от 0 до 700, кроме 1, 3, 697 и 699. Значит, в сумме (6) окажется 701 - 4 = 697 слагаемых.

8 Три задачи о функциях

Мы уже видели выше, что задачи с внешне непохожими формулировками могут оказаться в сущности одной и той же задачей. Приведём ещё три примера такого рода.

Напомним, что функцией f из множества A в множество B (обозначается $f: A \to B$) называется правило, по которому каждому элементу x множества A сопоставляется единственный элемент f(x) множества B. При этом элемент f(x) называется образом элемента x, а сам элемент x называется прообразом элемента f(x).

Задача. Найти число всех функций $f \colon \{1, \dots, m\} \to \{1, \dots, n\}.$

РЕШЕНИЕ. Каждую такую функцию можно описать следующим образом. Представим себе m клеток с номерами $1, 2, \ldots, m$. В клетку с номером i впишем число f(i) — образ числа i. Таким образом, любая наша функция f однозначно задаётся полоской из m клеток, заполненных числами от 1 до n. Очевидно, что число таких полосок (а значит, и искомое число функций) равно n^m .

Нетрудно видеть, что данная задача есть по сути задача о разложении m различных шаров в n различных ящиков (без ограничений на число шаров в ящике). Число наших функций — это число размещений с повторениями \bar{A}_n^m .

ЗАДАЧА. Пусть $m \leq n$. Найти число возрастающих функций $f: \{1, \ldots, m\} \to \{1, \ldots, n\}$ (удовлетворяющих условию $i < j \Rightarrow f(i) < f(j)$).

РЕШЕНИЕ. Возрастающая функция полностью задаётся множеством своих значений; то есть, любое m-элементное подмножество множества $\{1,\ldots,n\}$ определяет единственную возрастающую функцию $f\colon\{1,\ldots,m\}\to\{1,\ldots,n\}$. Поэтому таких функций столько же, сколько имеется m-элементных подмножеств у n-элементного множества, то есть число сочетаний C_n^m .

Задача. Найти число неубывающих функций $f \colon \{1,\ldots,m\} \to \{1,\ldots,n\}$ (удовлетворяющих условию $i < j \Rightarrow f(i) \leqslant f(j)$).

РЕШЕНИЕ. Чтобы проще было разобраться в общей ситуации, начнём с частного случая. Именно, найдём число неубывающих функций $f \colon \{1,2,3,4\} \to \{1,2,3\}$.

Каждая такая функция однозначно кодируется неубывающей последовательностью длины 4, составленной из чисел 1, 2 и 3. Например, последовательность 1123 задаёт функцию f, для которой f(1)=1, f(2)=1, f(3)=2, f(4)=3; аналогично, последовательность 1222 задаёт функцию f, для которой f(1)=1, f(2)=f(3)=f(4)=2.

А каждую такую последовательность можно описать в терминах шаров и ящиков. Представим себе три ящика (это числа 1, 2 и 3, из которых составляются последовательности) и четыре одинаковых шара. Число единиц в последовательности — это число одинаковых шаров в первом ящике; число двоек — это число одинаковых шаров во втором ящике; число троек — это число одинаковых шаров во третьем ящике. Так, последовательность 1123 означает, что в первом ящике лежат два шара, во втором — один и в третьем — один; аналогично, последовательность 1222 означает, что в первом ящике находится один шар, во втором — три шара, а третий ящик пуст.

Следовательно, искомое число функций равно числу способов разложить четыре одинаковых шара по трём ящикам, то есть числу сочетаний с повторениями $\bar{C}_3^4 = C_6^4$.

Теперь, разобравшись в этом примере, нетрудно перейти к общему случаю. Число неубывающих функций $f\colon\{1,\ldots,m\}\to\{1,\ldots,n\}$ равно числу неубывающих последовательностей длины m, составленных из чисел $1,\,2,\,\ldots,\,n$. Возьмём m одинаковых шаров и n различных ящиков. Число единиц в последовательности — это число шаров в первом ящике; число двоек в последовательности — это число шаров во втором ящике, и так далее. Следовательно, количество наших неубывающих последовательностей равно числу способов разложить m одинаковых шаров по m различным ящикам (без ограничений на число шаров в ящике), то есть числу сочетаний с повторениями $\bar{C}_n^m = C_{m+n-1}^m$.

9 Задачи

1. (*«Высшая проба»*, 2013, 11) В классе 12 учеников. Их нужно разбить на две группы (первую и вторую), состоящие из чётного числа учеников. Сколькими способами это можно сделать?

9707

2. («Покори Воробъёвы горы!», 2014, 10–11) Сколькими способами тренер может скомплектовать хоккейную команду, состоящую из одного вратаря, двух защитников и трёх нападающих, если в его распоряжении есть два вратаря, 5 защитников и 8 нападающих?

3. («Покори Воробъёвы горы!», 2014, 10–11) Из трёх математиков и десяти экономистов нужно составить комиссию, в состав которой войдёт семь человек. При этом в ней должен участвовать хотя бы один математик. Сколькими способами может быть составлена комиссия?

9691

4. ($*\Phi$ изmex*, 2023, 8) У Васи есть карточки с числами 2000, 2001, . . . , 2089, 2090 (на каждой карточке записано ровно одно число; есть ровно одна карточка с каждым из указанных чисел). Сколькими способами он может выбрать 3 карточки так, чтобы сумма чисел на выбранных карточках делилась на 4?

30360

5. ($*\Phi$ изmex*, 2023, 9) У Васи есть карточки с числами 2000, 2001, . . . , 2051, 2052 (на каждой карточке записано ровно одно число; есть ровно одна карточка с каждым из указанных чисел). Сколькими способами он может выбрать 4 карточки так, чтобы сумма чисел на выбранных делилась на 3?

₱1946

6. ($*\Phi usmex*$, 2018, 9) Даны 6000 карточек, на которых написаны натуральные числа от 1 до 6000 (на каждой карточке написано ровно одно число, притом числа не повторяются). Требуется выбрать две карточки, для которых сумма написанных на них чисел делится на 100. Сколькими способами это можно сделать?

0⊅6641

7. («Физтех», 2018, 10) Даны 2117 карточек, на которых написаны натуральные числа от 1 до 2117 (на каждой карточке написано ровно одно число, притом числа не повторяются). Требуется выбрать две карточки, для которых сумма написанных на них чисел делится на 100. Сколькими способами это можно сделать?

22386

8. (*«Физтех»*, 2016, 10) В сумме 32+33+34+.....+100 нужно вычеркнуть несколько слагаемых так, чтобы получившаяся сумма стала равна 4455. Сколькими способами это можно сделать?

50

9. («Физтех», 2016, 9–10) Рассматриваются всевозможные пятизначные числа, в которых цифры 9, 7, 3, 1, 0 используются ровно по одному разу. Найдите среднее арифметическое этих чисел.

24166,25

10. ($*\Phi usmex*$, 2014, 7–9) Сколько существует делящихся на 9 одиннадцатизначных натуральных чисел, в записи которых участвуют только цифры 0 и 8?

9₽

11. (*«Высшая проба»*, *2014*, *7–8*) Трамвайный билет состоит из шести цифр от 0 до 9. Сколько билетов содержат ровно 5 одинаковых цифр?

12. (*«Физтех»*, 2014, 7–8) Сколько существует способов составить комиссию из семи человек, выбирая её членов из восьми супружеских пар, но так, чтобы члены одной семьи не входили в комиссию одновременно?

102₫

13. ($*\Phi usmex*$, 2015, 9, 11) У Миши есть пять банок с красками разного цвета. Сколькими различными способами он может покрасить забор, состоящий из 7 досок, так, чтобы любые две соседние доски были разных цветов и при этом он использовал краски не менее чем трёх цветов?

091/07

14. (*«Физтех»*, 2014, 9) У Васи есть семь книг по математике, а у Вани — девять. Все 16 книг разные. Сколькими способами они смогут обменяться тремя книгами (то есть дать три книги в обмен на три книги)?

0767

15. (*«Физтех»*, 2014, 7–8) Лёша принес в класс 36 орехов и решил разделить их между собой, Максом и Борей. Сколько способов существует это сделать, если у каждого в итоге должен оказаться хотя бы один орех?

269

16. (*«Покори Воробъёвы горы!», 2014, 10–11*) Три пирата Джо, Билл и Том нашли клад, содержащий 80 одинаковых золотых монет, и хотят разделить их так, чтобы каждому из них досталось не менее 15 монет. Сколько существует способов это сделать?

999

17. (*«Ломоносов»*, *2015*, *10–11*) Сколько 9-значных чисел, делящихся на 5, можно составить путём перестановки цифр числа 377 353 752?

1120

18. (*«Ломоносов»*, 2015, 10–11) Старуха Шапокляк решила обзавестись коллекцией из 50 саквояжей. В магазине ей на выбор предложили оранжевые, зелёные, фиолетовые и голубые саквояжи. Сколькими способами она может сделать покупку? Саквояжи одного цвета считаются идентичными.

23426

19. ($*\Phi usmex*$, 2014, 11) Найдите количество семизначных чисел, в десятичной записи которых могут встречаться только цифры 4, 5, 6, 7 и таких, что каждая цифра не меньше предыдущей.

120

20. («Физmex», 2014, 10) Сколько существует 23-значных чисел, сумма цифр которых равна четырём?

21. ($*\Phi$ изmex*, 2019, 9) На столе лежат 100 различных карточек с числами 3, 6, 9, ..., 297, 300 (на каждой карточке ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы сумма чисел на выбранных карточках делилась на 5?

066

22. ($*\Phi$ изmex*, 2019, 9) Есть 306 различных карточек с числами 3, 19, 3^2 , 19^2 , ..., 3^{153} , 19^{153} (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы произведение чисел на выбранных карточках было квадратом целого числа?

17328

23. ($*\Phi$ изmex*, 2019, 10) На столе лежат 140 различных карточек с числами 3, 6, 9, ..., 417, 420 (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы сумма чисел на выбранных карточках делилась на 7?

1390

24. ($*\Phi usmex*$, 2019, 10) Есть 200 различных карточек с числами 2, 3, 2^2 , 3^2 , ..., 2^{100} , 3^{100} (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 2 карточки так, чтобы произведение чисел на выбранных карточках было кубом целого числа?

68£₺

25. (*«Физтех»*, 2019, 11) На столе лежат 130 различных карточек с числами 502, 504, 506, . . ., 758, 760 (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 3 карточки так, чтобы сумма чисел на выбранных карточках делилась на 3?

119282

26. («Физтех», 2019, 11) Есть 207 различных карточек с числами $1, 2, 3, 2^2, 3^2, \ldots, 2^{103}, 3^{103}$ (на каждой карточке написано ровно одно число, каждое число встречается ровно один раз). Сколькими способами можно выбрать 3 карточки так, чтобы произведение чисел на выбранных карточках было квадратом целого числа, делящегося на 6?

267903

27. ($*\Phi usmex*$, 2020, 9) Найдите количество восьмизначных чисел, произведение цифр которых равно 1400. Ответ необходимо представить в виде целого числа.

5880

28. («Физтех», 2020, 10) Найдите количество восьмизначных чисел, произведение цифр которых равно 700. Ответ необходимо представить в виде целого числа.

29. ($\sqrt[4]{\Phi}$ из $\sqrt[4]{\Phi}$

0891

30. (*«Ломоносов»*, 2018, 5–6.7; 7–9.6) Все натуральные числа, сумма цифр каждого из которых равна 5, упорядочили по возрастанию. Какое число стоит на 125-м месте?

41000

31. (*«Ломоносов»*, 2018, 7–9.7) В «Драконьем покере» в колоде четыре масти. Туз приносит 1 очко, валет — 2 очка, двойка — 2^2 , тройка — 2^3 , ..., десятка — $2^{10} = 1024$ очка. Короли и дамы отсутствуют. Можно выбирать из колоды любое количество карт. Сколькими способами можно набрать 2018 очков?

1373734330

32. («Покори Воробъёвы горы!», 2014, 9) У Игоря Горшкова есть все семь книг про Гарри Поттера. Сколькими способами Игорь может расставить эти семь томов на три различные книжные полки так, чтобы на каждой полке стояла хотя бы одна книга? (Расстановки, которые отличаются порядком книг на полке, считаются различными.)

00994

- **33.** («Покори Воробъёвы горы!», 2015, 7–9) а) В таблице 3 × 4 надо расставить числа от 1 до 12 так, чтобы разность любых двух чисел, стоящих в одной строке была кратна 3, а разность любых двух чисел в одном столбце кратна 4. Пример такой расстановки приведён на рисунке. Сколькими способами можно это сделать?
- 1
 4
 7
 10

 5
 8
 11
 2

 9
 12
 3
 6
- б) Можно ли расставить числа от 1 до 24 в таблице 6×4 так, чтобы разность любых двух чисел в одной строке была кратна 6, а разность любых двух чисел в одном столбце была кратна 4?

тэн (д ;44; б) нет

34. (*«Высшая проба»*, *2014*, *9–10*) В выражении

$$(1+x)(1+x^2)(1+x^3)\dots(1+x^{1000})$$

раскрыли все скобки и привели подобные слагаемые. Сколько слагаемых получилось?

200201

35. (*«Высшая проба»*, 2014, 11) В выражении

$$(1+x)(1+x^2)(1+x^3)\dots(1+x^{13})(1+x^{14})(1+x^{1000})^{18}$$

раскрыли все скобки и привели подобные слагаемые. Сколько слагаемых получилось?

₹107

36. (*«Высшая проба»*, 2014, 9) Сколько слагаемых получится после раскрытия скобок и приведения подобных слагаемых в выражении $(1+x^2)^{100}(1+x^3)^{100}$?

66₹

37. (*«Высшая проба»*, 2014, 11) Сколько слагаемых получится после раскрытия скобок и приведения подобных слагаемых в выражении $(1+x^3)^{100}(1+x^4)^{100}$?

969

38. (*«Ломоносов»*, *2017*, *10–11*) Сколько слагаемых получится, если в выражении

$$(4x^3 + x^{-3} + 2)^{2016}$$

раскрыть скобки и привести подобные члены?

4033

39. (*«Ломоносов»*, 2017, 10–11) В разложении функции $f(x) = (1 + x - x^2)^{20}$ по степеням x найдите коэффициент при x^{3n} , где n равно сумме всех коэффициентов разложения.

094

40. («Физтех», 2023, 8) Дана клетчатая прямоугольная доска размера 20×11 ; её длинная сторона расположена горизонтально, а короткая — вертикально. За один ход фишку можно передвинуть либо на одну клетку вправо, либо на одну клетку вверх. Сколькими способами можно переместить фишку из левого нижнего угла доски (клетка с координатами (1;1)) в правый верхний угол (клетка с координатами (20;11)), если нельзя перемещать фишку вверх два хода подряд?

184756

41. («Физтех», 2023, 9) Дана клетчатая прямоугольная доска размером 10×12 . За один ход фишку можно передвинуть либо на одну клетку вправо, либо на одну клетку вверх. Сколькими способами можно переместить фишку из левого нижнего угла доски (клетка с координатами (1;1)) в правый верхний угол (клетка с координатами (10;12)), если в процессе движения нельзя занимать клетку с координатами (3;9)?

162560

42. В треугольнике Паскаля заменим числа точками и соединим точки отрезками следующим образом:

 $\Pi y m \ddot{e}_M$ назовём ломаную с началом в вершине треугольника, звенья которой идут по линиям получившейся сетки только вниз. Докажите, что количество путей, ведущих в k-ю точку n-й строки, равно C_n^k (строки нумеруются сверху с нуля; точки в строке нумеруются слева с нуля).

43. (*«Высшая проба»*, 2014, 9, 11) Приведённая ниже диаграмма состоит из 24 единичных квадратов. Лягушка из каждой клетки может прыгнуть либо на одну клетку вниз, либо на одну клетку влево-вниз по диагонали (не выходя при этом за границы диаграммы). Сколько существует путей лягушки, ведущих из верхнего ряда квадратов в нижний? (На рисунке показан один из путей лягушки. Верхний и нижний ряды квадратов выделены серым фоном.)

128

44. (*«Высшая проба»*, 2013, 9) Сколькими способами можно заполнить цифрами $0, 1, \ldots, 9$ (можно с повторениями) таблицу 3×3 так, чтобы сумма цифр в каждой строке и каждом столбце равнялась 4?

150

45. (*«Высшая проба»*, 2013, 10) Сколькими способами можно заполнить цифрами $0, 1, \ldots, 9$ (можно с повторениями) таблицу 3×3 так, чтобы сумма цифр в каждой строке и каждом столбце равнялась 5?

152

46. (*«Высшая проба»*, 2013, 11) Сколькими способами можно заполнить цифрами $0, 1, \ldots, 9$ (можно с повторениями) таблицу 3×3 так, чтобы сумма цифр в каждой строке и каждом столбце равнялась 6?

907

47. ($*\Phi usmex*$, 2013, 10–11) Тест по английскому языку сдавали 10 школьников. Известно, что любые пять школьников ответили вместе на все вопросы, а любые четыре школьника ответили вместе не на все вопросы. При каком наименьшем количестве вопросов теста такое могло случиться?

210

48. («Физmex», 2013) Число 84605 написали семь раз подряд, при этом получилось 35-значное число

84605846058460584605846058460584605.

Из этого 35-значного числа требуется вычеркнуть две цифры так, чтобы полученное после вычёркивания 33-значное число делилось на 15. Сколькими способами это можно сделать?

49. (*«Ломоносов»*, 2016, 7–8) Круг разбили на 4 равных сектора по 90°. Сколькими способами можно его раскрасить, если есть 7 цветов и каждый сектор можно красить в любой цвет? Раскраски, которые совпадают при повороте круга, считать одинаковыми.

919

50. (*«Высшая проба»*, *2011*, *11*) Сколькими способами можно раскрасить грани куба в чёрный и белый цвета (каждую грань в один цвет, и оба цвета должны быть использованы)? Раскраски считаются одинаковыми, если одну можно получить из другой, повертев куб в руках.

8

51. ($*\Phi$ изmex*, 2014) Есть семь карточек с цифрами 0, 1, 2, 2, 3, 4, 5. Сколько существует различных шестизначных чисел, делящихся на 15, которые можно сложить из этих карточек?

947

52. ($\sqrt[4]{\Phi}$ из $\sqrt[4]{\Phi}$ из $\sqrt[4]{\Phi}$ 26 солдат выстроены в одну шеренгу. Сколько существует различных способов выбрать 11 из них так, что никакие двое из них не стоят рядом?

8987

53. (*«Физтех»*, 2011, 11) В Городском Собрании 24 депутата. Любые двое из них либо дружат, либо враждуют, причём известно, что каждый дружит ровно с 7 другими. Каждые три депутата образуют комиссию. Найдите общее число комиссий, в которых все три члена попарно дружат или все трое попарно враждуют.

089

54. (*«Высшая проба»*, *2011*, *9.6*) В классе 20 учеников, каждый из которых дружит ровно с шестью одноклассниками. Найдите число таких различных компаний из трёх учеников, что в них либо все школьники дружат друг с другом, либо каждый не дружит ни с одним из двух оставшихся.

360

55. (*«Высшая проба»*, 2011, 11.6) Класс из 20 учеников разделён на две половины так, что каждый школьник из первой половины дружит ровно с шестью одноклассниками, а каждый школьник из второй половины дружит ровно с четырьмя одноклассниками. Найдите число таких различных компаний из трёх учеников, что в них либо все школьники дружат друг с другом, либо каждый не дружит ни с одним из двух оставшихся.

420

56. ($*\Phi usmex*$, 2012, 9–11) Сколькими способами можно выложить в ряд три красных, четыре синих и пять зелёных шаров так, чтобы никакие два синих шара не лежали рядом?

9904

57. ($*\Phi usmex*$, 2012, 10) Сколько существует способов раскрасить вершины правильного пятиугольника в восемь цветов, если раскраски, которые можно совместить поворотом, считаются одинаковыми?

- **58.** (*«Курчатов»*, 2017, 9.5) В конкурсе по физике участвуют 17 школьников. Участникам конкурса было предложено 12 задач. В результате каждую задачу правильно решили больше половины участников. Докажите, что обязательно найдутся три школьника, в объединении решившие все задачи.
- **59.** (*«Курчатов»*, 2019, 11.5) Определите количество возможных значений произведения $a \cdot b$, где a, b целые числа, удовлетворяющие неравенствам

$$2019^2 \leqslant a \leqslant b \leqslant 2020^2$$
.

- **60.** (*«Высшая проба»*, 2019, 11.6) Последовательность чисел $\tau(1), \tau(2), \ldots, \tau(n)$ называется перестановкой длины n, если каждое из чисел $1, 2, \ldots, n$ встречается в этой последовательности ровно один раз. Например, $\tau(1) = 3, \tau(2) = 2, \tau(3) = 1$ перестановка длины 3. Найдите все n, для которых найдется перестановка $\tau(1), \tau(2), \ldots, \tau(n)$, удовлетворяющая четырем условиям:
 - Числа $\tau(i)-i$ для всех i от 1 до n включительно имеют попарно различные остатки от деления на n.
 - Числа $\tau(i) 2i$ для всех i от 1 до n включительно имеют попарно различные остатки от деления на n.
 - Числа $\tau(i)-3i$ для всех i от 1 до n включительно имеют попарно различные остатки от деления на n.
 - Числа $\tau(i)-4i$ для всех i от 1 до n включительно имеют попарно различные остатки от деления на n.