福建师范大学 数学与统计 学院

<u>2022</u>—<u>2023</u>学年第<u>一</u>学期考试<u>A</u>卷

W

李

羰

一、单选题(每小题 3 分, 共 15 分)

1. 当
$$x \rightarrow 0$$
时,函数 $\frac{1}{x^2}\sin\frac{1}{x}$ 是(D)

A. 无穷小

B. 无穷大

C. 有界, 但不是无穷小

D. 无界, 但不是无穷大

2. 设函数
$$f(x) = (x+1)|x|$$
, 则 $f(x)$ 在 $x = 0$ 处 (C)

- A. 可导
- B. 极限不存在 C. 连续但不可导 D. 不连续

3. 若函数
$$f(x)$$
 在 $x = 0$ 处连续且 $\lim_{x \to 0} \frac{f(x)}{\ln(1+x^2)} = 2$,则 $f(x)$ 在 $x = 0$ 处(B).

- A. 有极小值 f(0) = 2 B. 有极小值 f(0) = 0
- C. 有极大值 f(0) = 0 D. 无极值

4. 设
$$f(x)$$
 的导函数为 $\sin x$,则下列函数中为 $f(x)$ 的原函数的是 (B).

- A. $1 + \sin x$
- B. $x \sin x$ C. $1 + \cos x$
- D. $1-\cos x$

5.
$$f(x)$$
 在[a , b]上连续是 $\int_a^b f(x)dx$ 存在的(A).

- A. 充分条件 B. 必要条件 C. 充要条件 D. 无关条件

二、判断题(每小题 3 分, 共 15 分)

6.
$$\lim_{n\to\infty} \left(\frac{1}{n^2+1} + \frac{2}{n^2+2} + \dots + \frac{n}{n^2+n}\right) = \frac{1}{2}$$
. -----($\forall j$).

7. 设
$$y = \sin(x + \frac{\pi}{2})$$
, 则 $f^{(100)}(0) = -1$. -----(错).

8.
$$\lim_{x\to 0} \left(\frac{1+2x}{1+x}\right)^{\frac{1}{x}} = e^2.$$
 (##).

9. 若
$$f(x)$$
 为可导的奇函数,则 $f'(x)$ 必为偶函数. -----(对).

10.
$$\int_{-1}^{1} |x| \sin x + x^2 dx = \frac{2}{3}.$$
 ($\forall x \in \mathbb{R}$).

三、简答题(每题 10 分, 共 70 分)

$$= \lim_{x \to 0} \frac{x^2}{2x^2(1+x^2)} = \frac{1}{2}.$$

12. 求函数 $y = xe^{-x}$ 的一阶导数、二阶导数以及函数曲线的拐点.

$$\mathfrak{M}: \quad y' = e^{-x} - xe^{-x} = (1-x)e^{-x},$$

$$y'' = [(1-x)e^{-x}]' = e^{-x} - (1-x)e^{-x} = (x-2)e^{-x}$$
.

x	(-∞,2)	2	(2,+∞)
y"	-	0	+
У	凸	(2,2e ⁻²) 拐点	凹

由于 $(-\infty,2)$ 和 $(2,+\infty)$ 分别是曲线的凸区间和凹区间,从而曲线的拐点是 $(2,2e^{-2})$. ----10分

13. 求不定积分
$$\int \frac{\ln x}{r^2} dx$$
.

解:
$$\int \frac{\ln x}{x^2} dx = -\int \ln x dx \frac{1}{x} = -\frac{\ln x}{x} + \int \frac{1}{x} d\ln x - \frac{1}{x} dx$$
$$= -\frac{\ln x}{x} + \int \frac{1}{x} dx \frac{1}{x} dx$$

14. 求定积分
$$\int_0^2 \frac{1}{\sqrt{1+x} + \sqrt{(1+x)^3}} dx$$
.

解: 令
$$\sqrt{1+x} = t$$
,则 $x = t^2 - 1$, $dx = 2tdt$,且当 $x = 2$ 时, $t = \sqrt{3}$; 当 $x = 0$ 时, $t = 1$.

15. 已知函数 y = f(x) 由方程 $y - 2x = e^{xy}$ 所确定.

(1)
$$\Re f(0)$$
; (2) $\Re \frac{dy}{dx}$; (3) $\Re \lim_{n \to \infty} n(f(\frac{2}{n}) - 1)$.

(2) $y-2x=e^{xy}$ 两边关于x求导得

$$\frac{dy}{dx} - 2 = e^{xy} \left(y + x \frac{dy}{dx} \right).$$

(3)
$$\lim_{n\to\infty} n(f(\frac{2}{n})-1) = 2\lim_{n\to\infty} \frac{f(\frac{2}{n})-f(0)}{\frac{2}{n}} = 2f'(0)$$

将
$$x = 0$$
, $y = 1$ 代入 $\frac{dy}{dx} = \frac{2 + ye^{xy}}{1 - xe^{xy}}$, 解得 $f'(0) = 3$.

16. 设函数
$$f(x)$$
 在 R 上连续,且满足 $f(\frac{\pi}{4} + x) = f(\frac{\pi}{4} - x)$.

(1) 证明:
$$\int_0^{\frac{\pi}{2}} f(x) \sin^2 x dx = \int_0^{\frac{\pi}{2}} f(x) \cos^2 x dx;$$

(2) 计算
$$\int_0^{\frac{\pi}{2}} (x - \frac{\pi}{4})^2 \sin^2 x dx$$
.

证明: (1) 设
$$x = \frac{\pi}{2} - t$$
, 则 $dx = -dt$, 且当 $x = 0$ 时, $t = \frac{\pi}{2}$; 当 $x = \frac{\pi}{2}$ 时, $t = 0$.

于是
$$\int_0^{\frac{\pi}{2}} f(x) \sin^2 x dx = -\int_{\frac{\pi}{2}}^0 f(\frac{\pi}{2} - t) \sin^2(\frac{\pi}{2} - t) dt$$

$$=\int_0^{\frac{\pi}{2}} f(\frac{\pi}{2} - t) \cos^2 t dt$$

注意到
$$f(\frac{\pi}{4} + x) = f(\frac{\pi}{4} - x)$$
,则 $f(\frac{\pi}{2} - t) = f(t)$. 从而

$$\int_0^{\frac{\pi}{2}} f(\frac{\pi}{2} - t) \cos^2 t dt = \int_0^{\frac{\pi}{2}} f(t) \cos^2 t dt = \int_0^{\frac{\pi}{2}} f(x) \cos^2 x dx.$$

所以
$$\int_0^{\frac{\pi}{2}} f(x) \sin^2 x dx = \int_0^{\frac{\pi}{2}} f(x) \cos^2 x dx; -----5 分$$

(2) 设
$$g(x) = (\frac{\pi}{4} - x)^2$$
, 则有 $g(\frac{\pi}{4} + x) = g(\frac{\pi}{4} - x) = x^2$.
由 (1) 的结论可知:

$$\int_0^{\frac{\pi}{2}} (x - \frac{\pi}{4})^2 \sin^2 x dx = \frac{\int_0^{\frac{\pi}{2}} (x - \frac{\pi}{4})^2 \sin^2 x dx + \int_0^{\frac{\pi}{2}} (x - \frac{\pi}{4})^2 \cos^2 x dx}{2}$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{2}} (x - \frac{\pi}{4})^2 dx$$

17. 设函数 f(x) 在[0,1] 上连续,在(0,1) 内可导,且 f(0) = 1, f(1) = 0.

证明: (1) 存在 $\xi \in (0,1)$, 使得 $f(\xi) = \xi$;

- (2) 存在 $\eta \in (0,1)$, 使得 $f'(\eta)\eta + f(\eta) = 0$.
- **证明:** (1) 设 F(x) = f(x) x,则 F(x) 在 [0,1] 上连续,且

F(0) = f(0) - 0 = 1 > 0, F(1) = f(1) - 1 = -1 < 0. 由连续函数的零点存在性定理可知:

(2) 设H(x) = xf(x),则H(x)在[0,1]上连续,在(0,1)内可导,且

H(0) = H(1) = 0. 由罗尔定理可知:存在 $\eta \in (0,1)$,使得