#### THIRD GENERATION SEQUENCING

Overview of technologies, data properties and impact on genomic

- Introduction
- Main technologies
- TGS data properties
- Impact of TGS technologies

- Introduction
- Main technologies
- TGS data properties
- Impact of TGS technologies

#### INTRODUCTION

- NGS had a crucial impact of genomics
  - Its massive parallelism reduced the sequencing cost
  - Enabled the sequencing of thousand of new organisms
  - Enabled population-scale sequencing projects
  - Allowed the characterization of some diseases at the genetic level

#### INTRODUCTION 100,000 Cost of Moore's law for genome computing costs. 10,000 sequencing. Next generation Cost (thousands US\$) sequencers enter 1,000 the market. The price of sequencing a whole human 100 genome hovers around \$5,000 and is expected to drop even lower. 10 \_\_\_

2002

2003

2004

2005

2006 2007

2008 2009

2010

2011 2012 2013

#### INTRODUCTION



#### INTRODUCTION

- However, reads NGS technologies produce are short
  - In general, 50 to 500 base pairs long
- Such reads cause issues in computational analyses
  - Multiple alignments -> problems in the identification of the right location in the genome of the reads
  - Detecting InDels longer than approximately 50 base-pairs long
  - Assembling repetitive genome portions
  - Resolving structural variants longer than the average read length
- TGS technologies were designed for avoiding such limitations

- Introduction
- Main technologies
- TGS data properties
- Impact of TGS technologies

# MAIN TECHNOLOGIES

- TGS technologies start appearing in 2012
- Third Generation Sequencing technologies properties:
  - No wash-and-scan protocols, the sequencing reaction is not interrupted
  - Completely different kind of data generated
    - Multi kilobase-pairs reads
    - Error rate higher than 25%-30% in some cases

# MAIN TECHNOLOGIES

- Up to date, two main technologies on the market:
  - Single Molecule Real Time sequencing, by PacificBiosciences
  - Nanopore sequencing, by Oxford Nanopore Technologies
- Illumina uses proprietary long-read protocol, called Moleculo
  - Not a real TGS technology
  - $\sim$  10 kilobase-pairs reads are assembled from short NGS reads
  - Short reads coming from similar genomic regions are recognized by looking at a special tag attached during library preparation

#### MAIN TECHNOLOGIES — SMRT SEQUENCING

- Sequencing-by-synthesis technology
- Direct observation of DNA polymerase at work
  - Sequencing happens at the bottom of a particular nanophotonic visualization chamber called Zero Mode Waveguide (ZMW)
  - DNA polymerase is tightly attached at the bottom of ZMW
  - Each base incorporation releases a different colored fluorescent label
  - A sensor detects different light pulse and performs base-calling

# MAIN TECHNOLOGIES — SMRT SEQUENCING





YouTube video: <a href="https://www.youtube.com/watch?v=v8p4ph2MAvl">https://www.youtube.com/watch?v=v8p4ph2MAvl</a>

# MAIN TECHNOLOGIES — SMRT SEQUENCING

- The colored fluorescent label is incorporated to each base at the terminal phosphate rather than the base
- DNA-pol releases the fluorescent label as part of the incorporation process leaving behind a natural DNA strand



#### MAIN TECHNOLOGIES — NANOPORE SEQUENCING

- Relies on current measurements over a nanopore inserted in a polymer membrane with very high electrical resistence
  - A voltage bias is imposed across the membrane
  - Whenever ions in solution flow through a nanopore a current is measured
  - When a DNA strand flow through the pore, the ions flow is perturbed
  - The current varies differently depending on the nucleotide in the pore
- Observing the current evolution base-call is possible
- No imaging techniques required

# MAIN TECHNOLOGIES — NANOPORE SEQUENCING



YouTube video: <a href="https://www.youtube.com/watch?v=CGWZvHli3i0">https://www.youtube.com/watch?v=CGWZvHli3i0</a>
<a href="https://www.youtube.com/watch?v=GUb1TZvMWsw">https://www.youtube.com/watch?v=GUb1TZvMWsw</a>

- Introduction
- Main technologies
- TGS data properties
- Impact of TGS technologies

# TGS DATA PROPERTIES

- TGS data have radically different properties w.r.t. previous data
  - Much longer reads, usually longer than 5 kilo base-pairs in the average
  - Great variety of read lengths, from 500 to more than 100000 bases
  - High error rate, in general higher than 10%, sometime over 30%
- Such data request for new approaches in designing pipeline for genetic analyses

#### TGS DATA PROPERTIES



# TGS DATA PROPERTIES

|          |          | Error rates [%] |           |          |       |
|----------|----------|-----------------|-----------|----------|-------|
| Dataset  | Tool     | Substitution    | Insertion | Deletion | Total |
| SMRT     | BWA-MEM  | 1.9             | 7.2       | 2.6      | 11.7  |
|          | Minimap2 | 1.7             | 8.0       | 2.7      | 12.4  |
| Nanopore | BWA-MEM  | 7.4             | 2.7       | 7.7      | 17.8  |
|          | Minimap2 | 6.2             | 3.3       | 8.3      | 17.8  |

- Introduction
- Main technologies
- TGS data properties
- Impact of TGS technologies

# IMPACT OF TGS TECHNOLOGIES

- TGS long reads promise to increase quality of assemblies
  - Spanning repetitive regions in complex genomes
  - Detecting different structural variants
  - Increase size of contigues (created by overlapping reads)

#### IMPACT OF TGS DATA

- High error rate do not affect assembly per-base quality
  - TGS errors are randomly distributed and independent of genome content
- Explicit error-correction steps embedded in assembly pipeline
  - Self-correction algorithms
    - Long reads overlapped one against the other and polished running consensus algorithms
  - Hybrid correction algorithms
    - Accurate NGS reads aligned over long noisy reads which are then corrected resorting to consensus again