Database Management System – 21 (Additional Relational Operations)

Ajay James Asst. Prof in CSE Government Engineering College Thrissur

Outline

- Aggregate Functions
- Recursive Closure operation
- Outer Join
- Outer Union
- Exercise 4

Aggregate Functions and Grouping

- To specify mathematical aggregate functions on collections of values from the database
- Examples
 - Retrieve the average or total salary of all employees
 - Total number of employee tuples
- SUM, AVERAGE, MAXIMUM, and MINIMUM
- COUNT function is used for counting tuples or values

Aggregate Functions and Grouping

<grouping attributes> 3 <function list> (R)

 To retrieve each department number, the number of employees in the department, and their average salary

Dno 3 COUNT San, AVERAGE Salary (EMPLOYEE)

Dno	Count_ssn	Average_salary
5	4	33250
4	3	31000
1	1	55000

Example

 $\rho_{R(\mathsf{Dno},\,\mathsf{No_of_employees},\,\mathsf{Average_sal})}$ ($\mathsf{Dno}\,\mathfrak{I}\,\mathsf{COUNT}\,\mathsf{Ssn},\,\mathsf{AVERAGE}\,\mathsf{Salary}$ (EMPLOYEE))

R

Dno	No_of_employees	Average_sal				
5	4	33250				
4	3	31000				
1	1	55000				

3 COUNT San, AVERAGE Salary (EMPLOYEE)

Count_ssn	Average_salary
8	35125

Examples

- $\mathcal{F}_{\mathsf{MAX}\,\mathsf{Salary}}$ (Employee)
 - retrieves the maximum salary value from the Employee relation
- $\mathcal{F}_{\text{MIN Salary}}$ (Employee)
 - retrieves the minimum Salary value from the Employee relation
- $\mathcal{F}_{\text{SUM Salary}}$ (Employee)
 - retrieves the sum of the Salary from the Employee relation

Recursive Closure Operations

- Operation that cannot be specified in the basic original relational algebra is recursive closure
- Example
 - To retrieve all SUPERVISEES of an EMPLOYEE e at all levels—that is, all EMPLOYEE e' directly supervised by e; all employees e'' directly supervised by each employee e'; all employees e''' directly supervised by each employee e''; and so on
- It is possible to retrieve employees at each level and then take their union
- We cannot, in general, specify a query such as "retrieve the supervisees of 'James Borg' at all levels" without utilizing a looping mechanism
- SQL3 standard includes syntax for recursive closure

Example

SUPERVISION

(Borg's Ssn is 888665555) (Ssn) (Super_ssn)

(Ssn)	(Super_ssn)
Ssn1	Ssn2
123456789	333445555
333445555	888665555
999887777	987654321
987654321	888665555
666884444	333445555
453453453	333445555
987987987	987654321
888665555	null

RESULT1

MANAGER AND STREET	_
Ssn	1
333445555	1
987654321	1

(Supervised by Borg)

RESULT

Ssn
123456789
999887777
666884444
453453453
987987987
333445555
987654321

(RESULT1 ∪ RESULT2)

RESULT2

Ssn	
1234567	89
9998877	77
6668844	44
4534534	53
9879879	87

(Supervised by Borg's subordinates)

OUTER JOIN Operations

- In NATURAL JOIN tuples without a matching (or related) tuple are eliminated from the join result
 - Tuples with null in the join attributes are also eliminated
 - Loss of information
- Outer joins, can be used when we want to keep all the tuples in R, or all those in S, or all those in both relations in the result of the join, regardless of whether or not they have matching tuples in the other relation
- Left outer join operation keeps every tuple in the first or left relation R in R S
 - if no matching tuple is found in S, then the attributes of S in the join result are filled or "padded" with null values
- Right outer join, keeps every tuple in the second or right relation S in the result of R \ S
- *Full outer join*, denoted by keeps all tuples in both the left and the right relations when no matching tuples are found, padding them with null values as needed

EMPLOYE	E								
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date		
Research	5	333445555	1988-05-22		
Administration	4	987654321	1995-01-01		
Headquarters	1	888665555	1981-06-19		

DEPT_LOCATIONS

Dnumber	Dlocation				
1	Houston				
4	Stafford				
5	Bellaire				
5	Sugarland				
5	Houston				

HODING ON

DDOLECT

EMPLOYEE * DEPARTMENT

Example

$$\begin{split} \text{TEMP} \leftarrow (\text{EMPLOYEE} \bowtie_{Ssn=Mgr_ssn} \text{DEPARTMENT}) \\ \text{RESULT} \leftarrow \pi_{Fname, \; Minit, \; Lname, \; Dname}(\text{TEMP}) \end{split}$$

RESULT

KLOOLI			
Fname	Minit	Lname	Dname
John	В	Smith	NULL
Franklin	Т	Wong	Research
Alicia	J	Zelaya	NULL
Jennifer	S	Wallace	Administration
Ramesh	K	Narayan	NULL
Joyce	Α	English	NULL
Ahmad	V	Jabbar	NULL
James	E	Borg	Headquarters

OUTER UNION Operation

- To take the union of tuples from two relations if the relations are *not union compatible*
- Union of tuples in two relations R(X, Y) and S(X, Z) that are partially compatible
 - Only some of their attributes, say X, are union compatible
- Attributes that are union compatible are represented only once in the result
- Those attributes that are not union compatible from either relation are also kept in the result relation T(X, Y, Z)
- Example:
- STUDENT(Name, SSN, Department, Advisor)
- INSTRUCTOR(Name, SSN, Department, Rank)
- STUDENT OR INSTRUCTOR will have the following attributes:

STUDENT_OR_INSTRUCTOR (Name, SSN, Department, Advisor, Rank)

Exercise – 4 (Relational algebra queries)

- 1. Retrieve the name and address of all employees who work for the 'Research' department and whose salary is greater than 25000
- 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name and salary
- 3. Find the names of employees who work on all the projects controlled by department number 5 and whose salary is greater than 25000.

Exercise – 4 (Relational algebra queries)

- 4. Make a list of project numbers for projects that involve an employee whose last name is 'Smith', either as a worker or as a manager of the department that controls the project
- 5. List the names of all employees with two or more dependents
- 6. List the names of managers who have at least one dependent.

Airline Reservation System							
AIRPORT							
Airport_code	Name City	State					
FLIGHT							
Flight_number	Airline Weekd	ays					
FLIGHT_LEG							
Flight_number	Leg_number	Depar	ture_airport_co	ode	Sched	uled_c	leparture_time
			Arrival_airpor	t_code	Sc	hedule	ed_arrival_time
LEG_INSTANCE	LEG_INSTANCE						
Flight_number	Leg_number	Date	Number_of_	available	_seats	Ai	rplane_id
Depa	rture_airport_code	Dep	parture_time	Arrival	_airport_co	de	Arrival_time

Airline Reservation System FARE Flight_number Fare_code Amount Restrictions AIRPLANE_TYPE Airplane_type_name Max_seats Company CAN LAND Airplane_type_name Airport_code AIRPLANE Airplane_id Total_number_of_seats Airplane_type SEAT RESERVATION Flight_number Leg_number Seat_number Customer_name Customer_phone

Exercise - 4

- 7. For each flight, list the flight number, the departure airport for the first leg of the flight, and the arrival airport for the last leg of the flight.
- List the flight numbers and weekdays of all flights or flight legs that depart from Houston Intercontinental Airport (airport code 'iah') and arrive in Los Angeles International Airport (airport code 'lax').
- List the flight number, departure airport code, scheduled departure time, arrival airport code, scheduled arrival time, and weekdays of all flights or flight legs that depart from some airport in the city of Houston and arrive at some airport in the city of Los Angeles.
- 10. List all fare information for flight number 'co197'.
- 11. Retrieve the number of available seats for flight number 'co197' on '2009-10-09'.

Reference

 Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education 6th edition and 7th edition

Thank you