

Project 3: Investigating Low-Rank Matrix Completion with Soft and Hard Imputation

Course: Statistics and Machine Learning in High Dimensions (EEN100)

Group members: Alireza Bordbar, Amandus Reimer, Kiarash Rezaei

A.Y. 25/26

Soft Impute – Simple setting

SoftImpute recovers the main structure from 5% missing pixels and SNR=20 dB

2025-10-21

SNR and Missingness Effect

 SoftImpute works best when data are not dominated by noise.

Performance degrades as missing rate increases.

3 2025-10-21

Effect of True Rank and structured missing

- We generated synthetic matrices with known rank r
- Confirms theory: low-rank assumption is crucial.

 when entire rows or columns vanish, there's no neighboring information to "borrow."

4 2025-10-21

Soft Impute test RMSE heatmaps

 This confirms the "world is lowrank" idea: recovery is feasible only when structure is simple and data are clean.

Soft vs Hard Imputation: Who Wins?

Soft vs Hard Imputation | Missing= 50% SNR=20 dB

Soft vs Hard Imputation

SoftImpute

 $\lambda = 0.41$

HardImpute

k = 30

- SoftImpute (λ-regularized) produces smoother denoising and slightly lower RMSE.
- HardImpute (top-k SVD) recovers crisper detail but can amplify small.

Softimpute Hardimpute 2025-10-21

CHALMERS UNIVERSITY OF TECHNOLOGY