Probability: Multiplication Rules and Conditional Probability

1 Independent vs. Dependent Events

• Independent Events: Occurrence of one event does not affect the probability of the other

$$P(A \cap B) = P(A) \times P(B)$$

• Dependent Events: Occurrence of one event affects the probability of the other

$$P(A \cap B) = P(A) \times P(B|A)$$

2 Independent Events: Examples

Coin Toss

Probability of Head then Tail:

$$P(\mathbf{H} \cap \mathbf{T}) = P(\mathbf{H}) \times P(\mathbf{T}) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

Dice Roll

Probability of 1 then 2:

$$P(X = 1 \cap X = 2) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

Independent Events: Coin Toss Probabilities

3 Dependent Events: Card Example

Scenario

- \bullet Draw King then Queen from 52-card deck
- ullet Without replacement

Probability Calculation

$$P(K \cap Q) = P(K) \times P(Q|K) = \frac{4}{52} \times \frac{4}{51} = \frac{16}{2652} = \frac{4}{663}$$

Conditional Probability

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \quad \text{(Probability of B given A has occurred)}$$

First
$$\operatorname{Draw} P(K) = \underbrace{\frac{C}{52}}_{52}$$
 second $\operatorname{Draw} P(Q|K) = \frac{4}{51}$

52 cards

51 cards

4 Probability Tree: Dependent Events

5 Connection to Machine Learning

• Conditional probability forms the foundation for Bayes' Theorem

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- Used in Naive Bayes classifiers for:
 - Spam detection
 - Text classification
 - Recommendation systems
- Key assumption: Features are conditionally independent

Summary Table

Property	Independent Events	Dependent Events
Affect on probability	None	Significant
Formula	$P(A) \times P(B)$	$P(A) \times P(B A)$
Example	Coin tosses	Card draws without replacement
Machine learning use	Feature independence	Naive Bayes classifiers