

Modelo para Classificação Fitopatológica em Vegetais Phaseolus Vulgaris

Igor Gonçalves de Souza Ítalo Augusto de Sousa Tacca

Problemática

- A agricultura brasileira movimentou mais de 60 bilhões de dólares em exportações no ano de 2022;
- Pragas e outras doenças podem causar reduções de até 30% na produtividade;
- A perda de produtividade gera inflação alimentar e outros impactos significativos;
- Baixa utilização de tecnologia no setor;
- Modelo de análise da saúde de plantas.

Trabalhos Relacionados

Autor	Descrição	Modelo	Acurácia
Chen et al. [5]	Classificação de doenças nas folhas de chá	CNN	90,16%
Liu et al. [6]	Classificação de doenças nas folhas da maçã	CNN	97,62%
Liang et al. [7]	Classificação de doenças nas folhas do arroz	CNN	95,83%
Zaki et al. [8]	Classificação de doenças no tomate	Transfer Learning MobileNet V2	90%
Vinutha et al. [9]	Classificação de doenças em múltiplas espécies (8)	Transfer Learning MobileNet V2	99%
E. Elfatimi et al. [10]	Classificação de doenças nas folhas do feijão	Transfer Learning MobileNet V2	92,97%

Metodologia: Dataset Beans

- Conjunto com 1.167 imagens de feijões;
- 3 classes: Saudável, Mancha Angular da Folha e Ferrugem do Feijão.

Mancha Angular

Ferrugem

Metodologia: Edge Impulse

- Plataforma de desenvolvimento para sistemas de aprendizado de máquina embarcado;
- Aquisição de dados em dispositivos como câmera, acelerômetro e microfone para treinamento;
- Interface para treinamento do modelo;
- Implementação em dispositivos de borda;
- Desempenho e classificação do modelos em tempo real;
- Algoritmo de otimização para encontrar o melhor modelo para a aplicação.

Metodologia: EON Tuner

- Otimização hiper paramétrica com EON *Tuner*;
- Transfer Learning: técnica que envolve o uso de modelos prétreinados e adaptados para novas tarefas relacionadas;
- Não se treina o modelo do zero;
- Aproveita-se o conhecimento adquirido por um modelo em uma tarefa anterior;
- Modelo mais eficiente e melhor desempenho em conjuntos de dados menores;
- Ajuste fino e extração de características.

Metodologia: Dropout

- Técnica de regularização para combater o sobre ajuste;
- Descarte aleatório de neurônios em uma camada durante o treinamento;
- Problema de classificação de imagens.

Metodologia: CNNs

- Processamento de dados em grade: reconhecimento de imagens e detecção de objetos;
- Camadas convolucionais e de pooling;
- Camadas densas;
- Funções de ativação: não linearidade na rede e relações mais complexas nos dados.

Metodologia: MobileNetV2

- Redes neurais convolucionais para aplicações de visão computacional;
- Imagens de tamanho 32x32;
- Oferecendo melhor desempenho com tamanhos maiores;
- Blocos residuais invertidos com características de gargalo e valor mais baixo para contagem de parâmetros.

Metodologia: MobileNetV2

- Camada intermediária usa convoluções para filtrar características;
- Arquitetura com camada inicial de convolução com 32 filtros seguida por 19 camadas de gargalo residual.

Dados de Treinamento

• Features:

Modelo de Rede Neural

- Obtido por Transfer Learning;
- Busca com o EON Tuner.

Modelo	Acurácia
RGB – MobileNetV2 - 686	87%
Grayscale – MobileNetV2 – 8a4	82%
RGB – MobileNetV2 – 9b9	76%

Modelo de Rede Neural

- Acrescentou-se ao modelo MobileNetV2 uma camada densa final com 64 neurônios;
- Definiu-se o *dropout* como 0,5.

Treinamento: Conjunto de Dados

 O Dataset Beans foi dividido em 80% para treinamento e 20% para testes.

Treinamento

- Treinamento por 10 épocas;
- Taxa de aprendizagem: 0,0005;
- Fator proporcional para o número de filtros: $\alpha = 0.35$;
- Tamanho de batch: 32;
- Data Augmentation (Plataforma).

Resultados: Acurácia e Perda

Resultados: Matriz de Confusão

Métrica	Treinamento	Teste (32 bits)	Teste (8 bits)
Acurácia	91,42%	88,8%	87,2%
Perda	0,24	0,36	0,40

MATRIZ DE CONFUSÃO DO MODELO QUANTIZADO.

	Manchadas	Ferrugem	Saudável
Manchadas	85,0%	11,7%	3,3%
Ferrugem	13,5%	85,1%	1,4%
Saudável	5,7%	1,9%	92,5%
F1 Score	0.82	0.87	0.93

$$\frac{85,0+85,1+92,5}{3} = 87,5\%$$

Resultados: Matriz de Confusão

Métrica	Treinamento	Teste (32 bits)	Teste (8 bits)
Acurácia	91,42%	88,8%	87,2%
Perda	0,24	0,36	0,40

MATRIZ DE CONFUSÃO DO MODELO NÃO QUANTIZADO.

	Manchadas	Ferrugem	Saudável
Manchadas	81,7%	15,0%	3,3%
Ferrugem	8,1%	90,5%	1,4%
Saudável	3,8%	1,9%	94,3%
F1 Score	0.84	0.89	0.94

$$\frac{81,7+90,5+94,3}{3} = 88,8\%$$

Resultados: Data Explorer

- 🕛 angular_leaf_spot correct 🛑 angula
 - angular_leaf_spot incorrect
- bean rust correct
- bean_rust incorrect

- healthy correct
- healthy incorrect

Aplicação Prática: Descrição

- Monitoramento de Saúde de Culturas Agrícolas via Drones;
- Câmeras em drones para filmar e avaliar as condições das folhas das plantas;
- Sobrevoo e cobertura da área cultivada;
- Identificação de doenças e tomada de ações preventivas.

Aplicação Prática: Processamento

- Processadas pelo modelo treinado;
- Reconhecimento de Ferrugem do Feijão e "Mancha Angular da Folha" nas folhas;
- Áreas específicas com sinais de doenças.

Aplicação Prática: Benefícios

- Detecção precoce de doenças;
- Intervenções rápidas;
- Reduz a propagação de doenças e perdas nas colheitas;
- Economia de recursos.

Conclusão

- Desafios de aumento da produtividade das safras;
- Aprendizagem de máquina é essencial para o desenvolvimento de ferramentas para combater esses problemas;
- Baixo uso de recursos computacionais;
- Acurácia satisfatória: demonstrando potencial para aplicações de classificação de doenças que auxiliem o aumento da produtividade das safras.

Inatel

Instituto Nacional de Telecomunicações

