Математический анализ

26 сентября 2022

Определение интеграла Римана через интегральные суммы

$$\begin{split} \Pi \subset \mathbb{R}^n, \ f: \Pi \to \mathbb{R} \ \text{огр.} \\ p &-\text{разбиение } \Pi, = \{\pi_i, \ i=1,\dots,N\} \\ \Xi &= \{\xi_i \in \pi_i, \ | \ i=1,\dots,N\} \\ \sum (f,p,\Xi) := \sum_{i=1}^N f(\xi) v(\pi_i) - \text{интегральная сумма Римана} \end{split}$$

Определение. $Ecnu\ \exists I\in\mathbb{R}: \forall \{p_k\}_{k=1}^\infty: d(p_k) \xrightarrow[k\to]{} 0\ \forall \{\Xi\}_{k=1}^\infty$

$$\sum (f,p_k,\Xi_k) \xrightarrow[k o \infty]{} I$$
, то f интегрируема по Риману и $I=\int_{\Pi} f$

Теорема 1.

$$\exists I \ \forall \{p_k\} : d(p_k) \xrightarrow[k \to \infty]{} 0 \ \forall \{\Xi\} \ \sum (f, p_k, \Xi_k) \xrightarrow[k \to \infty]{} I \Leftrightarrow \underbrace{\int}_{\Pi} f = \underbrace{\int}_{\Pi} f$$

Доказательство.

$$\implies \varepsilon, p_k : d()p_k \xrightarrow[k \to \infty]{} 0 \ \forall \pi \in p_k \ \exists \xi \in \pi :$$

$$f(\xi) - \inf_{\pi} f < \varepsilon$$

Получим
$$\Xi_k \sum (f, p_K, \Xi_k) - L(f, p_k) = \sum_{\pi \in p_k} (f(\xi(\pi)) - \inf_{\pi} f) \cdot v(\pi) \le$$

 $\le \varepsilon \cdot \sum_{\pi \in p} v(\pi) = \varepsilon \cdot v(\pi)$

Πο
$$\mathcal{I}$$
. 3 $L(f, p_k) \xrightarrow[k \to 0]{} \int_{\Pi} f \Rightarrow 0 \leq I - \int_{\Pi} f \leq \varepsilon \cdot v(\pi)$

$$\forall \varepsilon \Rightarrow \int_{\overline{\Pi}} f = I$$
 Аналогично $\int_{\overline{\Pi}} f = I$ $\Rightarrow \exists \int_{\overline{\Pi}} f = i$

$$\{p_k\},\ d(p_k)\to 0,\ \{\Xi_k\}$$
 (*):

$$L(f, p_k) \le \sum_{\pi \in p_k} \underbrace{f(\xi(\pi))}_{(*)} v(\pi) \le U(f, p_k)$$

$$\inf_{\pi} \le \dots \le \sup_{\pi} f$$

$$L(f, p_k) \xrightarrow[\Pi]{\text{II. } 3, k \to \infty} \int_{\overline{\Pi}} f = \int_{\overline{\Pi}} f \xleftarrow[\Pi \text{ } 3, k \to \infty]{\text{II. } 3, k \to \infty} U(f, p_k)$$

$$\Rightarrow \sum (f, p_k, \Xi_k) \xrightarrow[k \to \infty]{} I$$

Множество меры ноль

Определение. $E \subset \mathbb{R}^n$ имеет меру ноль, если $\forall \varepsilon > 0 \; \exists \; no\kappa pumue \; E \subset \bigcup_{k=1}^{\infty} C_k$, где C_k – открытые кубы

$$\sum_{k=1}^{\infty} v(C_k) \le \varepsilon \qquad \mu(E) = 0 \quad - \text{Mepa}$$

Замечание. Открытые кубы ⇔ замкнутые

Замечание. $E_1 \subset E, \ \mu(E) = 0 \Rightarrow \mu(E_1) = 0$

Лемма 4. $\mu(E_k) = 0 \Rightarrow \forall k \in \mathbb{N} \Rightarrow \mu(\bigcup_{k=1}^{\infty} E_k) = 0$

 \mathcal{A} оказательство. $\forall k$ \exists покрытие кубами с \sum объемов $<\frac{\varepsilon}{2}^k$ Тогда $E=\bigcup_{k=1}^\infty E_k$ будут покрыты и \sum объемов $<\varepsilon\cdot\sum_{k=1}^\infty\frac{1}{2}^k=\varepsilon$ \square

Определение. $E \subset \mathbb{R}^n$ имеет объем ноль, если $\forall \varepsilon \exists$ конечное покрытие $E = \bigcup_{k=1}^{\infty} C_k$, где c_k – открытый куб

$$\sum_{k=1}^{N} v(C_k) < \varepsilon \qquad v(E) = 0$$

Замечание.

1. $открытые \Leftrightarrow замкнутые кубы$

2.
$$v(E) = 0 \Rightarrow \mu(E) = 0$$

Теорема 2. $[a,b]\subset\mathbb{R}$ не может иметь объем 0

 \mathcal{A} оказательство. докажем, что если $[a,b] \subset \bigcup_{k=1}^N C_k$,

$$C_k$$
 – отрезки, то $\sum_{k=1}^N v(C_k) \ge b-a$

база : N = 1

$$[a,b] \subset C_1 \Rightarrow v(C_1) \geq b-a$$

переход : N+1

 $a\in U_{k=1}^{N+1}C_k\Rightarrow \exists k:a\in C_k$ перенумеруем C_k так, чтобы $a\in C_1=[lpha,eta]$

$$\alpha \le a \le \beta \le b$$

Если $b \in [\alpha, \beta]$, то $[a, b] \subset [\alpha, \beta]$,

$$\sum_{k=1}^{N+1} v(C_k) > v(C_1) = \beta - \alpha \ge b - a$$

Если $b \not\in [\alpha, \beta], \ b > \beta$

$$(\beta,b] \subset \bigcup_{k=2}^{N+1} C_k$$

$$\Rightarrow [\beta,b] \subset \bigcup_{k=2}^{N+1} C_k \xrightarrow[\text{инд. п.}]{} \sum_{k=2}^{N+1} v(C_k) \ge b-\beta$$

$$v(C_1) \ge \beta-a$$

$$\Rightarrow \sum_{k=1}^{N+1} v(C_k) \ge b-a$$