Security Topics

Arquitetura de Redes

Mestrado Integrado Engenharia de Computadores e Telemática DETI-UA

IP Secure Communications (IPsec Protocol)

IPSec

- Framework of security protocols and algorithms used to secure data at the network layer
- Authentication Header (AH)
 - Ensures data integrity
 - Does not provide confidentiality
 - Provides origin authentication
 - Uses Keyed-hash mechanisms
- Encapsulating Security Payload (ESP)
 - Provides data confidentiality (encryption)
 - Data Integrity
 - Does not protect IP header
- AH and ESP use symmetric secret key algorithms, although public key algorithms are feasible

IPSec Modes

Tunnel

- IPSec gateways provide IPSec services to other hosts in peer-to-peer tunnels
- End-hosts are not aware of IPSec being used to protect their traffic
- IPSec gateways provide transparent protection over untrusted networks

Transport

- Each end host does IPSec encapsulation of its own data, host-to-host.
- IPSec has to be implemented on end-hosts
- The application endpoint must also be the IPSec endpoint

IPSec - AH header placement

Transport mode

Tunnel mode

IPSec - ESP header placement

Transport mode

Tunnel mode

IPSec - Security Associations

- SAs represent a policy contract between two peers or hosts
- Describe how the peers will use IPSec security services to protect network traffic
- An SA contains the following security parameters:
 - Authentication/encryption algorithm, key length and other encryption parameters (e.g. key lifetime, ...)
 - Session keys for authentication, or HMACs, and encryption, which can be entered manually or negotiated automatically
 - A specification of network traffic to which the SA will be applied (e.g. IP traffic or only TELNET sessions)
 - IPSec AH or ESP encapsulation protocol and tunnel or transport mode

Establishing SA and Cryptographic Keys

- ISAKMP Internet Security Association and Key Management Protocol
 - Used to establishing Security Associations (SA) and cryptographic keys
 - Separate the details of security association management (and key management) from the details of key exchange
 - Provides a framework for authentication and key exchange but does not define them
- Oakley Key Determination Protocol
 - Key-agreement protocol
 - Allows authenticated peers to exchange keying material across an insecure connection
 - Uses Diffie-Hellman
- SKEME
 - Key exchange protocol
- IKE Internet Key Exchange
 - Is a hybrid protocol
 - Uses part of Oakley and part of SKEME in conjunction with ISAKMP

IKE/ISAKMP and IPsec

- Enhances IPSec by providing additional features and flexibility
- Provides authentication of the IPSec peers, negotiates IPSec keys, and negotiates IPSec security associations
- The IKE tunnel protects the SA negotiations. After the SAs are in place, IPSec protects data transference
- Advantages
 - Eliminates the need to manually specify IPSec security parameters at both peers
 - Allows administrators to specify a lifetime for the IPSec security association
 - Allows encryption keys to change during IPSec sessions
 - Allows IPSec to provide anti-replay services
 - Permits certification authority (CA) support for a manageable, scalable IPSec implementation
 - Allows dynamic authentication of peers
- IKE/ISAKMP provides three methods for two-way authentication:
 - Pre-shared key (PSK),
 - Digital signatures (RSA-SIG),
 - Public key encryption (RSA-ENC).

ISAKMP and IPsec - Phases/Modes

- ISAKMP modes control an efficiency versus security tradeoff during initial key exchange
- Phase 1
 - Peer agree on a set of parameters to be used to authenticate peers and to encrypt a portion of the phase 1 exchanges and all of phase 2 exchanges, authenticate peers, and generate keys to be used as generating keying material.
 - Main mode
 - Requires six packets back and forth
 - Provides complete security during the establishment of an IPsec connection
 - Aggressive mode is an alternative to main mode
 - Uses half the exchanges, but provides less security because some information is transmitted in cleartext
- Phase 2 Quick mode
 - Peers negotiate and agree on parameters required to establish a fully functional IPsec communication service.

Authentication Protocols

Remote authentication

- Authentication is the security process that validates the claimed identity of an entity
 - Relying on one or more characteristics specific to that entity
- The authentication process involves at least two entities:
 - The one to be authenticated
 - The one requiring authentication (Network access server)

PPP - Point to Point Protocol

- The Point-to-Point Protocol (PPP) emerged as an encapsulation protocol for transporting IP traffic over point-to-point links
- Defines a virtual point-to-point connection
- In conjunction with the Link Control Protocol (LCP) and a family of Network Control Protocols (NCPs) supports
 - Link configuration, quality testing and error detection
 - Assignment and management of IP addresses
 - Network layer address negotiation
 - Network protocol multiplexing
 - Data-compression negotiation
 - Authentication configuration
- PPP Frame

Flag 011111	Address 10 11111111	Control 00000011	Protocol		Information	FCS
----------------	------------------------	---------------------	----------	--	-------------	-----

PPP - Authentication Configuration

 Confirmation is made using a response with the code "Configure-Ack"

PAP - Password Authentication Protocol

- Is a Link Control Protocol in the PPP suite
- Provides a basic method for peer authentication using a 2-way handshake
- PAP is not a strong authentication method passwords are transmitted "in the clear"
- After the link establishment phase is complete, the login and password are sent repeatedly by the peer to the authenticator until authentication is acknowledged or the connection is terminated

- 1	,	1	1						1	4
				Protocol	Auth-Req					
	Flag	Address	Control	PAP	Auth-Ack	ID	Length	Data	FCS	
				0xC023	Auth-Nack					iro
					ī					

CHAP – Challenge-Handshake Authentication Protocol

- Used to periodically verify the identity of a peer using a 3-way handshake
- After the Link Establishment phase is complete
 - The server sends a "challenge" message to the peer
 - The peer responds with an hash value (MD5)
 - The server checks the response against its own calculation of the expected hash value
- At random intervals, the server sends a new challenge to the peer

MS-CHAP version 1

- Microsoft version of the CHAP
- Differences from CHAP
 - Designed for compatibility with Microsoft's Windows NT 3.5, 3.51 and 4.0, and
 - Microsoft networking products (e.g LAN Manager)
 - Provides a password change mechanism
 - Provides an authentication retry mechanism
 - Defines a set of failure codes returned in the Failure packet Message field

- response_{LM} = DESkey_{LM} (challenge), key_{LM} = DES_{hash}(password)
- response_{NT} = DESkey_{NT} (challenge), key_{NT} = MD4(password)

MS-CHAP version 1 - Issues

- LAN Manager encoding of the response used for backward compatibility is cryptographically weak
- Only one-way authentication is possible
- The key is based on the password. Each time the user connects with the same password, the same cryptographic key is generated

MS-CHAP version 2

- Diferences from MS-CHAPv1
 - MS-CHAPv2 no longer allows LAN Manager encoded responses or password changes
 - Provides two-way authentication (mutual authentication)

TLS - Transport Layer Security Protocol

- Standardization of the SSL protocol proposed by Netscape
 - Added HMAC
- Provide privacy and data integrity between two communicating applications
- The protocol is composed of two layers
 - TLS Handshake Protocol
 - TLS Record Protocol
- TLS Handshake Protocol
 - Allows the server and client to authenticate each other and to negotiate an encryption algorithm and cryptographic keys
- TLS Record Protocol properties
 - The connection is private
 - The connection is reliable

EAP - Extensible Authentication Protocol

- Was designed to supplement PPP
- Provides a generalized framework for several different authentication methods
- More common methods:
 - EAP-PSK Mutual authentication and session key derivation using a Pre-Shared Key (PSK)
 - EAP-TLS Uses PKI to secure communication to authentication server
 - PEAP Protected EAP (PEAP) allows hybrid authentication. PEAP employs server-side PKI authentication. For client-side authentication, PEAP can use any other EAP authentication type.
 - EAP-TTLS -Client does not need be authenticated via a PKI certificate to the server, but only the server to the client
 - LEAP Cisco's proprietary EAP method. Uses a modified version of MS-CHAP
- EAP over LAN (EAPoL) used in 802.1x

802.1x

- IEEE 802.1X is an IEEE Standard for Network Access Control (NAC)
- It provides an authentication mechanism to devices wishing to attach to a LAN
- It's based on the Extensible Authentication Protocol (EAP)

Supplicant Authenticator Authentication server Operates on client Operates on devices	Public/Semi-Public Network	Enterprise Edge	Enterprise Network
at network edge like APs and switches	Supplicant Operates on client	Operates on devices at network edge like	Authentication server

802.1x

Authentication, Authorization and Accounting

AAA Architecture

- Enables systematic access security
 - Authentication identies a user
 - Authorization determines what that user can do
 - Accounting monitors the network usage time for billing purposes
- Work with the network access server (NAS)
- AAA information is typically stored in an external database or remote server
- Traditional AAA Implementation

TACACS+

- Terminal Access Controller Access Control System Plus
- Forwards username and password information to a centralized security server
- Centralized server can be either a TACACS database or a database like the UNIX password le with TACACS support
- Features
 - Separates all AAA functionalities
 - Uses TCP
 - Bidirectional authentication
 - All packet is encrypted
 - Limited accounting customization

RADIUS

- Remote Authentication Dial-In User Service
- Network access server (NAS) operates as a client of RADIUS
- RADIUS servers are responsible for
 - Receiving user connection requests
 - Authenticating the user
 - Return all configuration information necessary for the client to deliver service to the user
- Transactions between the client and RADIUS server are authenticated using a shared secret
- Supports a variety of methods to authenticate a user
 - PAP, CHAP, or MS-CHAP, UNIX login, and other authentication mechanisms
- Combines Authentication and Authorization. Separates Accounting (less flexible than TACACS+)
- Uses UDP (less robust)
- Unidirectional authentication
- Only encrypts the password (less secure)
- RADIUS accounting can hold more information

RADIUS Packet

Code (1 byte)

Identifier (1 byte)

Authenticator (16 bytes)

Attributes

- Code Identifies the type of RADIUS packet
 - (1) Access-Request, (2) Access-Accept, (3) Access-Reject, (4) Accounting-Request, (5) Accounting-Response and (11) Access-Challenge
- Identifier Allows the RADIUS client to match a RADIUS response with the correct pending request (usually is implemented as a counter)
- Authenticator
 - In client Requests Random value
 - In server Responses MD5 Hash function of (Code,ID,Length,Request Auth,Attributes,Shared Secret)
- Attributes Section where an arbitrary number of attribute fields can be sent (e.g. User-Name and User-Password attributes)

RADIUS Protocol (1)

Example - RADIUS exchange involving just a username and user password:

- Only password is encrypted
 - The shared secret followed by the Request Authenticator is put through an MD5 hash to create a 16 octet value which is XORed with the password entered by the user
 - If the user password is greater than 16 octets, the password is broken into 16-octet blocks and additional MD5 calculations are performed

RADIUS Protocol (2)

- The RADIUS protocol has a set of vulnerabilities
 - The Access-Request packet is not authenticated at all.
 - Many client implementations do not create Request Authenticators that are sufficiently random.
 - Many administrators choose RADIUS shared secrets with insufficient information entropy and many implementations limit the shared secret key space.

DIAMETER

- DIAMETER is a newest framework in IETF for the nextgeneration AAA server
- Provides an AAA framework for Mobile-IP
- Does not use the same RADIUS protocol data unit, but is backward compatible with RADIUS to ease migration
- Bidirectional authentication
- It uses UDP but has a scheme that regulates the flow of packets
- Challenge/response attributes can be secured using end-to-end encryption and authentication
- Supports end-to-end security

Virtual Private Networks (VPN)

VPN - Virtual Private Networks

 Is an encrypted connection between private networks over a public network

Remote Access VPN

Site-to-Site VPN

VPN types

- Remote Access VPN
 - PPTP
 - L2TP/IPsec
 - SSL/TLS VPN
 - → Web VPN (client-less SSL VPN) VPN client can be a standard browser
 - SSH VPN
 - Open VPN
- Site-to-Site VPN
 - IPsec VPN
 - With static or dynamic configuration
 - IPsec + GRE VPN
 - Dynamic Multipoint VPN

Remote Access VPN - PPTP VPN

- Based on PPTP
 - PPTP packages data within PPP packets
 - Encapsulates the PPP packets within IP packets
- Uses a form of General Routing Encapsulation (GRE) to get data to and from its final destination
- Supports authentication based on protocols PAP, EAP, CHAP, MS-CHAPv1 and MS-CHAPv2
- Uses MPPE as cipher
 - Has two different keys (one for each direction)
 - Requires MS-CHAPv2 authentication
 - Keys derived from the MS-CHAPv2's password hash and challenges
- PPTP creates a TCP control connection between the VPN client and VPN server to establish a tunnel
 - Uses TCP port 1723 for these connections
- PPTP can support only one tunnel at a time for each user

Remote Access VPN - L2TP/IPSec VPN

- Authentication can be performed with Digital Certificates (RSA) or with the same PPP authentication mechanisms as PPTP
- Provides data integrity, authentication of origin and replay protection
- Encryption provided by IPSec (ESP protocol)
- Can support multiple, simultaneous tunnels for each user
- Slower performance than PPTP

Other Remote Access VPN types

SSL/TLS VPN

- SSL/TLS protocol handles the VPN tunnel creation
- SSL/TLS is much easier to implement than IPSec and provides a simple and well-tested platform
- RSA handshake (or DH) is used exactly as IKE in IPSec

SSH VPN

- VPN over a SSH connection
- SSH tunneling port forwarding

OpenVPN

- Implements a SSL/TLS VPN
- Allows PSK, certicate, and login/password based authentication
- Encryption provided by OpenSSL (can use all ciphers available)
- Compatible with dynamic and NAT addresses

Variants of Site-to-Site IPsec VPN

- IPsec tunnels with static configuration
 - Requires the knowledge of all peers (IP addresses and security parameters)
 - High configuration overhead
- IPsec tunnels with dynamic configuration (at the headend/hub)
 - Hub + spokes configuration
 - Generic configuration at the headend/hub
 - Easy to add new spokes
- → A basic IPsec tunnel can't protect multicast traffic.
- IPsec + GRE tunnels
 - Generic Routing Encapsulation (GRE) allows the protection of multicast traffic over IPsec

Dynamic Multipoint VPN (DMVPN)

Dynamic Multipoint VPN

- Provides full meshed connectivity with simple configuration of hub and spoke
- Supports dynamically addressed spokes
- Facilitates zero-touch configuration for addition of new spokes
- Features automatic IPsec triggering for building an IPsec tunnel

Network Security Systems

Network Security Systems

- Firewall
- Intrusion Prevention System (IPS)
 - Performs deep-packet inspection
- Intrusion Detection Systems (IDS)
 - Performs deep-packet inspection
- Security Appliance
 - Unified communications security
 - Firewall services
 - Real-time threat defense
 - Secure remote access
 - Secure communications services
 - Content security

Firewalls

- A firewall provides a single point of defence between networks and protects one network from the others-
- It is a system or group of systems that enforces a control policy between two or more networks (access control, flow control and content control).
- It is a network gateway that enforces the rules of network security.
- Minimizes local vulnerabilities.
- Evaluates each network packet against the policies of network security.
- Can monitor all the network traffic and alert to any attempts to bypass security or to any patterns of inappropriate use.
- Can be hardware or software based.

Firewalls Security/Network Services

- NAT (Network Address Translation).
- Authorization
 - Flows (packet filtering).
 - Users (application and circuit level).
- Redirecting.
 - To specif machines.
 - Proxing.
- Content analysis.
- Secure communication.
 - Site-to-site VPN.
 - IPsec.
 - Remote-access VPN.
- DoS and DDoS detection and defense.

Types of Firewalls

- Network-Level Firewalls (L2/L3)
 - Packet filtering
 - Inspecting packet headers and filtering traffic based on
 - → the IP address of the source and the destination, the port and the service (L3)
 - →source and the destination MAC addresses (L2)
- Circuit-Level Firewalls (L4)
 - Monitor TCP handshaking between packets to make sure a session is legitimate
 - Traffic is filtered based on specified session rules
- Application-Level Firewalls (L4+)
 - Application-level firewalls are sometimes called proxies
 - Looking more deeply into the application data
 - Consider the context of client requests and application responses
 - Attempt to enforce correct application behavior and block malicious activity
 - Application-level filtering may include protection against Spam and viruses as well, and block undesirable Web sites based on content rather than just their IP address
 - Slow and resources consuming tasks
- Stateful Multi-level Firewalls (L*)
 - Filter packets at the network level and they recognize and process application-level data
 - Since they don't employ proxies, they have reasonably good performance even performing deep packet analysis
- Host Level / Personal Firewalls
 - Act only within a specif host
 - Filter all communication layers
 - Control OS processes/applications

Firewall Technologies (1)

 Packet filtering systems - Route packets between internal and external hosts, but do it selectively. The type of router used in a packet filtering firewall is known as a screening router.

Problems:

- Undesirable packets can be fitted to a packet rule criteria and, therefore, pass through the filter.
- Packets can pass through the filter by being fragmented.
- Complex rule sets are difficult to implement and maintain correctly.

Secure Zones - Overview

 A network can be divided in multiple secure zones with different security levels.

 A Demilitarized Zone (DMZ) is a perimeter network outside the protected internal/private network

- Used to place public servers/services.
- The DMZ is a "semi-protected" Zone.
 - It must be assumed that any machine placed on the DMZ is at risk.

Deploying Firewalls

 Network must be protected at multiple levels and locations

Example DMZ Network Topology

Multiple Security Contexts (1)

- Multiple security contexts can exist in these situations:
 - An ISP want to sell security services to many customers.
 - With multiple security contexts it is possible to an implement a costeffective, space-saving solution that keeps all customer traffic separate and secure, and also eases configuration.
 - A large enterprise or a college campus want to keep departments completely separate.
 - An enterprise that wants to provide distinct security policies to different departments.
 - A network that requires more than one security appliance/firewall.

Multiple Security Contexts (2)

Routed Mode (with Shared Resources)

Transparent Mode

Firewall placement - In Single Context

Both solutions are acceptable!

Firewall placement - In Multiple Context

Firewall Load-Balancing Concept

- Load-balancing equipments can distribute traffic by multiple firewalls.
 - Decrease processing and memory requirments of each firewall.
 - Makes the network less vulnerable to DoS attacks.

IP Spoofing

- IP spoofing refers to the creation of IP packets with a forged source IP address.
 - To hide the identity of the sender or impersonate another network system.
 - Spoofing IP datagrams is a well-known problem.
 - Most spoofing is done for illegitimate purposes.

Preventing IP Spoofing

- Deny external traffic with
 - IP source equal to protected network IP ranges.
 - IP source equal to private addresses.
 - Multicast destinations.
- Reverse Path Verification
 - Deny traffic where the source IP network is not reachable using the interface where the packet arrived.

```
Interface interface-name
  ip access-group 101 in
  ip access-group 199 out
access-list 101 deny ip 209.165.201.0 0.0.0.31 any
access-list 101 deny icmp any any redirect
access-list 101 deny ip 224.0.0.0 31.255.255.255 any
access-list 101 deny ip 240.0.0.0 15.255.255.255 any
access-list 101 deny ip 127.0.0.0 0.255.255.255 any
access-list 101 deny ip host 0.0.0.0 any
access-list 101 deny ip 10.1.1.0 0.0.0.255 any
access-list 101 deny ip 172.16.0.0 0.15.255.255 any
access-list 101 deny ip 192.168.0.0 0.0.255.255 any
access-list 101 permit ip any any
access-list 199 permit ip 209.165.201.0 0.0.0.31 any
access-list 199 deny ip any any
```

Preventing IP Spoofing with IP Source Guard

- IP Source Guard is a Layer 2 security feature that prevents IP spoofing attacks by restricting IP traffic on untrusted Layer 2 ports to clients with an assigned IP address.
- Works by filtering IP traffic with a source IP address other than that assigned via Dynamic Host Configuration Protocol (DHCP) or static configuration on the untrusted Layer 2 ports.
- Works in combination with the DHCP and is enabled on untrusted Layer 2 ports.

Context-Based Access Control (CBAC)

- CBAC intelligently filters TCP and UDP packets based on application-layer protocol session information
- Permit TCP and UDP traffic through a firewall only when the connection is initiated from within the network
- Without CBAC, traffic filtering is limited to implementations that examine packets only at the network layer and transport layer

Half-Open TCP Connection Problem

- A DoS attack commonly uses half-open TCP connections.
 - Firewall keeps the state of the TCP session in memory.
 - Multiple half-open TCP connections can overrun firewalls.
 - Define timeout values for half-open TCP sessions:
 - Normal: small/medium values
 - Under attack (based on traffic thresholds): very small values.
 - May be necessary to use external means to "clean" firewall.
 - Reseting (half-open) connections from the internal servers.

DDoS Mitigation at Source

- CAR Committed Access Rate
 - Limits (a class of traffic) traffic to a specific rate
 - Token bucket model
 - Avoids that a single source may generate/transmit traffic above a perdefined threshold

Firewalls and Remote-Access VPN

 Firewalls need work with VPN gateways

- To filter all traffic
- To filter decrypt VPN traffic
- Most firewalls integrate both Security and VPN gateway services

Application Layer Intelligence

- Application layer Intelligence provides advanced protocol inspection
- Any non-compliance operation in the payload is blocked

 Only packets with standard operation (RFC compliant) are allowed

Firewall Performance Evaluation

- Basic Firewall
 - IP Throughput
 - Raw capability of the firewall to pass traffic from interface to interface
 - Latency
 - Time traffic delay in the firewall
 - Should be measured and reported when the firewall is at its operating load
- Traditional Enterprise Firewall
 - Connection Establishment Rate
 - Speed at which firewalls can set up connections
 - Concurrent Connection Capability
 - → Total number of open connections through the firewall at any given moment
 - Connection Teardown Rate
 - Speed at which firewalls can teardown connections and free resources
- Next Generation Firewall
 - Application Transaction Rate
 - Capability of the firewall to secure discrete application-layer transactions contained in an open connection
 - → May include application-layer gateways, intrusion prevention, or deep-inspection technology
 - Application transaction rate are highly data dependent

Cisco's Access Control Lists (ACL)

- An access list is a sequential collection of permit and deny conditions.
- Software tests packets against the conditions in an access list one by one.
- The first match determines whether the software accepts or rejects the packet.
 - Because the software stops testing conditions after the first match, the order of the conditions is critical.
- If no conditions match, the software rejects the packet.
- Can be applied to inbound or outbound traffic.

ACL Types

Standard

- Control traffic by the analysis of the source address of the IP packets.
- Numbered from 1 to 99
 - → Example: access-list 1 permit 10.1.1.0 0.0.0.255

Extended

- Control traffic by the analysis of the source and destination addresses and protocol of the IP packets.
- Numbered from 100 to 199
 - → Example: access-list 101 permit ip any 10.1.1.0 0.0.0.255

Named

- Allow standard and extended ACLs to be given names instead of numbers Intuitively identify an ACL using an alphanumeric name.
- Eliminate the number limits that exist on standard and extended ACLs.
- Named ACLs provide the ability to modify ACLs without deleting and then reconfiguring them.
 - → Example: ip access-list {extended | standard} name

Reflexive

- Allow IP packets to be filtered based on upper-layer session information.
- Communication in one direction opens doors in the opposite direction.
- Generally used to allow outbound traffic and to limit inbound traffic in response to sessions that originate inside the network.
- Context-Based Access Control (CBAC)
 - Inspects traffic to discover and manage state information for TCP and UDP sessions
 - This state information is used to create temporary openings in the firewall access lists

Linux IPTables (1)

- Name of the user space tool by which administrators create rules for the packet filtering and NAT modules.
- Used to set up, maintain, and inspect the tables of IP packet filtering rules within the Linux kernel.
- Has 5 default chains:
 - ◆ INPUT, OUTPUT, FORWARD
 - PREROUTING
 - POSTROUTING
- Has 3 default tables,
 - Filter, nat and mangle
- Basic decisions
 - ACCEPT, DROP, QUEUE and RETURN
- Extended decisions
 - LOG, MARK, REJECT, TOS, SNAT, DNAT, MASQUERADE, REDIRECT, etc...
- Multiple state machines
 - For example: Conntrack (connection tracker).

universidade de aveiro

Linux IPTables (2)

- In addition to the built-in chains, the user can create any number of user-defined chains within each table, which allows them to group rules logically.
- Each chain contains a list of rules,
 - When a packet is sent to a chain, it is compared against each rule in the chain in order.
- The rule specifies what properties the packet must have for the rule to match (such as the port number or IP address).
- If the rule does not match, then processing continues with the next rule.
- If, however, the rule does match the packet, then the rule's target instructions are followed (and further processing of the chain is usually aborted).
- Some packet properties can only be examined in certain chains,
 - For example, the outgoing network interface is not valid in the INPUT chain.
- Some targets can only be used in certain chains, and/or certain tables,
 - For example, the SNAT target can only be used in the POSTROUTING chain of the NAT table.
- The target of a rule can be the name of a user-defined chain or one of the built-in targets (ACCEPT, DROP, RETURN, DNAT, SNAT and MASQUERADE).
- You can think of a target in the same way as a subroutine.