

Mass determination from Constraint Effective Potential

A. Agodi

G. Andronico

Dipartimento di Fisica dell'Università di Catania
INFN Sezione di Catania

The Constraint Effective Potential (CEP) allows a determination of the mass and other quantities directly, without relying upon asymptotic correlator decays. We report and discuss the results of some mass calculations in $(\lambda\Phi^4)_4$, obtained from CEP and our improved version of CEP (ICEP).

1. Introduction

It has been shown that an Improved version (ICEP) of the Constraint Effective Potential (CEP)[1] reduces finite size effects in $(\phi^4)_4$ lattice calculations[2]. The Constraint Effective Potential $U(\Omega, \bar{\phi})$ (where Ω is the lattice 4-volume and $\bar{\phi}$ the VEV of the field) was defined as

$$\exp(-\Omega U(\Omega, \bar{\phi})) = \int D\phi \delta(M[\phi] - \bar{\phi}) \exp(-S[\phi]) \quad (1)$$

being $M[\phi] = \frac{1}{\Omega} \int d^d x \phi(x)$. With the function $W(\Omega, j)$ of the external source j , defined by

$$\exp(-\Omega W(\Omega, j)) = \int d\bar{\phi} \exp[\Omega(j\bar{\phi} - U(\Omega, \bar{\phi}))], \quad (2)$$

the effective potential Γ is the Legendre transform

$$\Gamma(\Omega, \bar{\phi}) = \sup_j (j\bar{\phi} - W(\Omega, j)).$$

It has been shown that

$$\lim_{\Omega \rightarrow \infty} U(\Omega, \bar{\phi}) = \lim_{\Omega \rightarrow \infty} \Gamma(\Omega, \bar{\phi}).$$

For big enough Ω

$$\Gamma(\Omega, \bar{\phi}) \approx U(\Omega, \bar{\phi}) \quad (3)$$

We have shown[2] that better results for the values of

$$J = \frac{\partial \Gamma(\Omega, \bar{\phi})}{\partial \bar{\phi}}$$

are obtained by evaluating (2) with the saddle point method. In this way we get

$$\Gamma(\Omega, \bar{\phi}) = U(\Omega, \bar{\phi}) + \frac{1}{2\Omega} \ln U''(\Omega, \bar{\phi}) + K(\Omega) \quad (4)$$

where $K(\Omega)$ is $\bar{\phi}$ -independent and

$$\lim_{\Omega \rightarrow \infty} K(\Omega) = 0.$$

This is what we call Improved CEP (ICEP).

In the present work we present some preliminary results, as obtained from the behavior of

$$\Gamma' = \frac{\partial \Gamma(\Omega, \bar{\phi})}{\partial \bar{\phi}}$$

and

$$\Gamma'' = \frac{\partial^2 \Gamma(\Omega, \bar{\phi})}{\partial \bar{\phi}^2}$$

on a 16^4 lattice.

2. CEP

From the assumption (3) whose reliability was checked in [2] it follows

$$\begin{aligned} \Gamma'' &= U''(\Omega, \varphi) = \\ &= \langle V'' \rangle_{\bar{\phi}} - \Omega \left\langle \left(V' - \langle V' \rangle_{\bar{\phi}} \right)^2 \right\rangle_{\bar{\phi}} \end{aligned}$$

where $V' = r_0\phi + \lambda_0\phi^3$, $V'' = r_0 + 3\lambda_0\phi^2$, $\langle \bullet \rangle_{\bar{\phi}}$ means averaging on the ensemble with $\bar{\phi} = \langle \phi \rangle$ fixed, r_0 and λ_0 are, respectively, the quadratic and quartic coupling.

Figure 1. Results for Γ' and Γ'' as obtained from CEP

3. ICEP

From eq. (4) it follows

$$\begin{aligned} \Gamma'' &= U''(\Omega, \varphi) \\ &+ \frac{1}{2\Omega} \left[\frac{U^{iv}(\Omega, \varphi)}{U''(\Omega, \varphi)} - \left(\frac{U'''(\Omega, \varphi)}{U''(\Omega, \varphi)} \right)^2 \right] \end{aligned}$$

The $U(\Omega, \varphi)$ derivatives involved above are obtained in a simpler way by suitably exploiting [2] eq (1).

4. Results

We have determined Γ' and Γ'' as functions of $\bar{\phi}$ for $\lambda_0 = 0.5$, $r_0 = -0.2279$ (near the critical value), $r_0 = -0.2179$ (symmetric domain) and $r_0 = -0.2379$ (broken symmetry domain).

With φ satisfying $\Gamma'(\varphi) = 0$ one has, by definition, $\Gamma''(\varphi) = m^2$. From our data it turns out that, for r_0 in the symmetric domain $m^2 = 0$. Near the critical value m^2 is consistent with a vanishing value. For r_0 in the broken symmetry domain, Fig. 1 shows the CEP results and Fig. 2 those from ICEP. From these data we get

Figure 2. Results for Γ' and Γ'' as obtained from ICEP

	φ	m^2
CEP	-0.1485 ± 0.0005	0.0177 ± 0.0002
	0.1542 ± 0.0015	0.0200 ± 0.0006
ICEP	-0.154 ± 0.001	0.0163 ± 0.0004
	0.155 ± 0.002	0.0173 ± 0.0008

The ICEP results are symmetric while the CEP are not. This might be due to ICEP reducing finite size effects.

REFERENCES

- [1] R. Fukuda and E. Kyryakopoulos, *Nucl. Phys.* **B85** 354 (1975); L. O’Raifeartaigh, A. Wipf and H. Yoneyama, *Nucl. Phys.* **B271** 653 (1986)
- [2] A. Agodi, G. Andronico, P. Cea, M. Consoli and L. Cosmai, *Mod. Phys. Lett.* **A12**, 1011 (1997); A. Agodi and G. Andronico, *Nucl. Phys. B(Proc. Suppl.)* **73** 730 (1999)