Inhaltsverzeichnis

1	Nor 1.1	rm und Skalarprodukt	4		
	1.1	Norm	4 4 4		
2	Symmetrische, positiv definite Matrix				
	2.1	Cholesky-Zerlegung	5		
	2.2	[?] diagonaldominant und alle Diagonalelemente größer gleich 0	5		
	2.3	Eigenwerte	5		
	2.4	Eigenvektor	5		
3	Matrixnormen				
	3.1	Natürliche Matrixnorm	6		
	3.2	Verträglichkeit	6		
	3.3	Zeilensummennorm	6		
	3.4	Spaltensummennorm	6		
	3.5	Spektralnorm	6		
4	Spektralradius, Konditionszahl einer Matrix				
	4.1	Spektralradius [phi]	7		
	4.2	Konditionszahl einer Matrix A	7		
	4.3	Sonderfall symmetrisch, positiv definite Matrix	7		
5	Ähnlichkeitstransformation, Invarianz der Eigenwerte				
•	5.1	Reduktionsmethoden	8		
6	Gle	itkommazahlen,	9		
	6.1	Gleitkommazahl (normalisiert)	S		
	6.2	Gleitkommagitter	Ö		
	6.3	Maschienengenauigkeit eps	Ĝ		
	6.4	Rundungsfehler	Ĝ		
7	Darstellung des Interpolationsfehlers				
	7.1	Fehler I	10		
	7.2	Fehler II	10		
8	Konditionierung einer numerischen Aufgabe, Konditionszah-				
	len		11		
	8 1	numarischa Aufraha	11		

	8.2	Konditionszahl (relativ)	11
9		oilität eines Algorithmus stabiler Algorithmus	12 12
10	Aus	löschung	13
11	Hor	ner-Schema*	14
	11.1	Code	14
	11.2	Auswertung	14
12	Inte	rpolation und Approximation	15
	12.1	$Grundproblem \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	15
		Aufgabenstellung	15
	12.3	Interpolation	15
		Approximation	15
13	Lag	ransche Interpolationsaufgabe	16
	13.1	Aufgabe	16
	13.2	Eindeutigkeit + Existenz	16
	13.3	Lagransche Basispolynome	16
		Eigenschaften	16
	13.5	Lagransche Darstellung	16
14	New	rtonsche Basispolynome	17
		Newton-Polynome	17
		14.1.1 Auswertung	17
		14.1.2 Vorteil	17
	14.2	Newtonsche Darstellung	17
		Dividierte Differenzen*	17
15	Nev	illsche Darstellung	18
	15.1	Schema	18
		$\operatorname{Code} \ \ldots \ $	18
16	Her	mite-Interpolation	19
		Aufgabe	19
		Existenz + Eindeutig	19
		Fehler	19

17	Extrapolation	20
	17.1 Richardson-Extrapolation	20
	17.2 Lagrange	20
	17.3 Neville	
	17.4 Extrapolationsfehler	20
18	Spline-Interpolation	21
	18.1 Interpolationsnachteil	21
	18.2 Abhilfe	21
	18.3 Lineare Spline	21
	18.4 Kubischer Spline	21
	18.5 Existenz	
	18.6 Approximationsfehler	21
19	Gauß-Approximation	22
20	Gram-Schmidt-Algorithmus	23
	20.1 Code	23
21	Interpolatorische Quadraturformeln	24

1 Norm und Skalarprodukt

1.1 Norm

Definitheit: $||x|| = 0 \Rightarrow x = 0$ absolute Homogenität: $||\alpha x|| = |\alpha| * ||x||$ Dreiecksungleichung: $||x + y|| \le ||x|| + ||y||$

1.2 Skalarprodukt

$$\begin{aligned} \mathbf{j}\mathbf{x} + \mathbf{y}, \, \mathbf{z}\dot{\boldsymbol{\xi}} &= \mathbf{j}\mathbf{x}, \, \mathbf{z}\boldsymbol{\xi} + \mathbf{j}\mathbf{y}, \, \mathbf{z}\boldsymbol{\xi} \\ \mathbf{j}\mathbf{x}, \, \mathbf{y} + \mathbf{z}\boldsymbol{\xi} &= \mathbf{j}\mathbf{x}, \, \mathbf{y}\boldsymbol{\xi} + \mathbf{j}\mathbf{x}, \, \mathbf{z}\boldsymbol{\xi} \\ \text{TODO: Klammer} \\ &< \lambda x, \, y > = \lambda \, \, \mathbf{j}\mathbf{x}, \, \mathbf{y}\boldsymbol{\xi} \\ &< x, \, \lambda y > = \lambda \, \, \mathbf{j}\mathbf{x}, \, \mathbf{y}\boldsymbol{\xi} \\ &\mathbf{j}\mathbf{x}, \, \mathbf{y}\boldsymbol{\xi} &= \mathbf{j}\mathbf{y}, \, \mathbf{x}\boldsymbol{\xi} \\ &\mathbf{j}\mathbf{x}, \, \mathbf{x}\boldsymbol{\xi} &\geq 0 \\ &\mathbf{j}\mathbf{x}, \, \mathbf{x}\boldsymbol{\xi} &= 0 \Rightarrow \mathbf{x} &= 0 \end{aligned}$$

1.2.1 Vom Skalarprodukt induzierte Norm

$$||x|| = \sqrt{\langle x, x \rangle}$$

1.2.2 Cauchy-Schwarzche Ungleichung

$$|< x, y > | \le ||x|| * ||y||$$

2 Symmetrische, positiv definite Matrix

TODO: Matrizen insbesonders: Diagonalmatrizen, Einheitsmatrizen positiv definit: $x^t A x > 0$ (beliebige Matrix) alle EW \downarrow 0 (symmetrische Matrix) alle Haupt[TODO: ?] \downarrow 0 (symetrische Matrix) TODO: Matrix \Rightarrow 3 Hauptminoren[?] = det(a), det(TODO: Matrix), det(TODO: Matrix)

2.1 Cholesky-Zerlegung

 $A = GG^t$ G unter der Matrix, invertierbar (symmetrische Matrix)

[?] diagonal dominant und alle Diagonal elemente größer gleich 0

(symmetrische Matrix)

2.3 Eigenwerte

$$det(\lambda En - A) = 0$$

2.4 Eigenvektor

$$f(v) = \lambda v$$

3 Matrixnormen

3.1 Natürliche Matrixnorm

$$\begin{split} ||A||_{\infty} &:= \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_{||x|| = 1} ||Ax||_{\infty} \\ ||A|| &= 0 \Rightarrow A = 0, ||\lambda A|| = |\lambda| * ||A||, ||A + B|| \leq ||A|| + ||B||, ||A * B|| \leq ||A|| * ||B|| \end{split}$$

3.2 Verträglichkeit

$$||Ax|| \le ||A|| * ||x||$$

3.3 Zeilensummennorm

= natürliche Matrixnorm $||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$ $A = TODO: Matrix||A||_{\infty}$ $= \max|1| + |-2| + |-3|, |2| + |3| + |-1|$ $= \max6, 6 = 6$

3.4 Spaltensummennorm

$$\begin{split} ||A||_1 := \max_{x \neq 0} &\frac{||Ax||_1}{||x||_1} = \max_{||x||_1 = 1} ||Ax||_1 = \max_{j = 1, \dots, n} \sum_{i = 1}^m |a_{ij}| \\ & \text{A} = \text{TODO: Matrix } ||A||_1 = \max -1 - + -2 -, -2 - + -3 -, -3 - + -1 - = \max 3, \ 5, \ 4 = 5 \\ & ||A^t||_1 = ||A||_\infty \end{split}$$

3.5 Spektralnorm

Die Spektralnorm wird definiert als

$$A|_{2} := \max_{||x||_{2}=1} ||Ax||_{2} // = \max_{x \neq 0} \frac{||Ax||_{2}}{||x||_{2}} // = \max_{||x||_{2}=1} \langle Ax, Ax \rangle // = \max_{||x||_{2}=1} \langle A^{t}Ax, x \rangle // = \max_{\sqrt{|\lambda|}} \sqrt{|\lambda|}, \lambda * EWvonA^{t}A$$

$$A = TODO : Matrix, A^{t}A = TODO : Matrixdet(\mu E_{n} - A^{t}A) = 0 \Leftrightarrow \mu_{1,2} = 16, 1$$

$$||A||_{2} = \sqrt{\max(\mu_{1}, \mu_{2})} = \sqrt{\mu_{1}} = \sqrt{16} = 4$$

4 Spektralradius, Konditionszahl einer Matrix

4.1 Spektralradius [phi]

 $\varphi(A) = \max: 1 \leq i \leq n |\lambda_i(A)| = spr(A)$ der betragsmäßig größte Eigenwert von A

 $||A|| \geq |\lambda|$ (für jede Matrixnorm, die mit einer Vektornorm verträglich ist)

4.2 Konditionszahl einer Matrix A

$$cond(A) = ||A|| * ||A^{-1}||$$

4.3 Sonderfall symmetrisch, positiv definite Matrix

$$cond(A) = \frac{\lambda_{max}}{\lambda_{min}}$$

Ähnlichkeitstransformation, Invarianz der 5 Eigenwerte

$$y = Ax$$

$$\overline{x} = Cx, \overline{y} = Cy \qquad (detC \neq 0), C \in GL$$

$$y = Ax \Rightarrow C^{-1}\overline{y} = AC^{-1}\overline{x} \Rightarrow \overline{y} = CAC^{-1}\overline{x} \Rightarrow \overline{y}\overline{A}\overline{x}$$

$$\overline{A} = CAC^{-1} \Rightarrow \overline{A} \sim A$$

$$\lambda EW, vEVzuA$$

$$\Rightarrow Av = C^{-1}\overline{A}Cv = \lambda v$$

 $\Rightarrow \overline{A}undA$ haben dieselben Eigenwerte, algebraisch und geometrische Vielfalten stimmen überein (Invarianz der Eigenwerte)

5.1 Reduktionsmethoden

A duch Ähnlichkeitstransformationen

$$A = A^{(0)} = T_1^{-1}A^{-1}T_1 = Q... = T_i^{-1}A^{(i)}T_i = ...$$

 $A=A^{(0)}=T_1^{-1}A^{-1}T_1=Q...=T_i^{-1}A^{(i)}T_i=...$ auf Form bringen, für welche EW und EV leicht zu berechnen sind (z.B. Jordan-Normalform)

6 Gleitkommazahlen, ...

6.1 Gleitkommazahl (normalisiert)

 $b \in \mathbb{N}, b \geq 2, x \in \mathbb{R}$ $x = \pm m * b^{\pm e}$ Mantisse: $m = m_1 b^{-1} + m_2 b^{-2} + \dots \in \mathbb{R}$ Exponent: $e = e_{s-1} b^{s-1} + \dots + e_0 b^0 \in \mathbb{N}$ für $x \neq 0$ eindeutig

6.2 Gleitkommagitter

A = A(b,r,s) größte Darstellbare Zahl: $(1-b^{-r})*b^{b^s-1}$ mit b als Basis, r als Mantissenlänge, s als Exponentenlänge $(b=10):0,314*10^1=3,14$ $0,123*10^6=123.000$ Beispiel: konvertiere von Basis 8 zu Basis 10: $x=(0,5731*10^5)_8\in A(8,5,1)$ $x=(5*8^{-1}+7*8^{-2}+3*8^{-3}+1*8^{-4})*8^5$ $x=5*8^4+7*8^3+3*8^2+1*8^1=24.264*10^0$

6.3 Maschienengenauigkeit eps

$$eps = \frac{1}{2}b^{-r+1}, IEEE : eps = \frac{1}{2} * 2^{-52} \approx 10^{-16}$$

6.4 Rundungsfehler

 $\begin{array}{l} absolut: |x-rd(x)| \leq \frac{1}{2}b^{-r}b^e \\ relativ: |\frac{x-rd(x)}{x}| \leq \frac{1}{2}b^{-r+1} = eps \end{array}$

7 Darstellung des Interpolationsfehlers

7.1 Fehler I

 $f \in C^{n+1}[a, b], \forall x \in [a, b] \exists \xi_x \in (\overline{x_0, ..., x_n, x}),$ wobei das Intervall das kleinst mögliche Intervall, das alle x_i enthällt, s.d.

$$f(x) - p(x) = \frac{f^{(n+1)}(\xi x)}{(n+1)!} \prod_{j=0}^{n} (x - x_j)$$

7.2 Fehler II

$$\begin{split} &f \in C^{n+1}[a,b], \forall x \in [a,b] \ \backslash x_0, ..., x_n gilt: \\ &f(x) - p(x) = f[x_0, ..., x_n, x] \prod_{j=0}^n (x - x_j) \\ &\text{mit } f[x_i, ..., x_{i+k}] = y[x_i, ..., x_{i+k}] \\ &\text{und } f[x_0, ..., x_n, x] = \int_0^1 \int_0^{t_1} ... \int_0^{t_n} f^{n+1}(x_0 + t_1(x_1 - x_0) + ... + t_n(x_n - x_{n-1} + t(x - x_n)) dt dt_n ... dt_1 \\ &\text{für } x_0 = x_1 = ... = x_n: \\ &f[x_0, ..., x_n] = \frac{1}{n!} f^{(n)}(x_0) \\ &\frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{j=0}^n (x - x_j) = f(x) - p(x) = f[x_0, ..., x_n, x] \prod_{j=0}^n (x - x_j) \\ &\Rightarrow f[x_0, ..., x_n, x] = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \end{split}$$

8 Konditionierung einer numerischen Aufgabe, Konditionszahlen

8.1 numerische Aufgabe

 $x_j \in \mathbb{R}mitf(x_1,...,x_m) \Rightarrow y_i = f_i(x_j)$ fehlerhafte Eingangsgrößen $x_i + \Delta y_i$ $|\Delta y_i|$ ist der absolute Fehler, $|\frac{\Delta y_i}{y_i}|$ ist der relative Fehler

8.2 Konditionszahl (relativ)

$$k_{ij}(x) = \frac{\partial f_i}{\partial x_i}(x) \frac{\Delta x_j}{x_j}$$

$$\frac{\Delta y_i}{y_i} = \sum_{j=1}^m k_{ij}(x) \frac{\Delta x_j}{x_j}$$

$$|k_{ij}(x)| >> 1 \Rightarrow \text{schlecht konditioniert}$$

$$|k_{ij}(x)| << 1 \Rightarrow \text{gut konditioniert, ohne Fehlerverstärkung}$$

$$|k_{ij}(x)| > 1 \Rightarrow \text{Fehlerverstärkung}$$

$$|k_{ij}(x)| < 1 \Rightarrow \text{Fehlerdämpfung}$$

9 Stabilität eines Algorithmus

9.1 stabiler Algorithmus

akkumulierte Fehler der Rechnung (Rundungsfehler, Auswertungsfehler, etc.) übersteigen den unvermeidbaren Problemfehler der Konditionierung der Aufgabe nicht. Aka Trotz Ungenauigkeiten bei den Eingabe Variablen erhalten wir fast sehr genaue Ergebnisse.

10 Auslöschung

Verlust von Genauigkeit bei der Subtraktion von Zahlen mit gleichem Vorzeichen

TODO: bei bedarf ein Beispiel

11 Horner-Schema*

$$p(x) = a_0 + x(\dots + x(a_{n-1} + a_n x)\dots)$$

11.1 Code

```
\begin{array}{l} \operatorname{def\ horner}(Ac,\,Ax,\,n,\,x)\colon\\ y=0.0\\ \operatorname{for\ i\ in\ reversed\ range}(n)\colon\\ y=y*(x-Ax[i])+Ac[i]\\ \operatorname{return\ y}\\ \operatorname{Ac:\ Vektor\ mit\ Koeffizienten,\ ist\ ein\ np\ Array}\\ \operatorname{Ax:\ St\"{u}tzstellen,\ ist\ ein\ np\ Array}\\ \operatorname{n:\ Anzahl\ der\ St\"{u}tzstellen,\ ist\ ein\ int}\\ x\colon\operatorname{Auswertungspunkt,\ ist\ ein\ double}\\ \operatorname{Immer\ Horner-Schema\ zur\ Auswertung\ von\ Polynomen\ verwenden.} \end{array}
```

11.2 Auswertung

TODO: subsection

12 Interpolation und Approximation

12.1 Grundproblem

Darstellung und Auswertung von Funktionen

12.2 Aufgabenstellung

f(x) nur auf Diskreter Menge von Argumenten $x_0, ..., x_n$ bekannt und soll rekonstruiert werden

analytisch gegebene Funktion soll auf Reelwerte dargestellt werden, damit jederzeit Werte zu beliebigen x berechnet werden können.

Einfach konstruierte Funktionen in Klassen P:

```
Polynome: p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n rationale Funktion: r(x) = \frac{a_0 + a_1x + \dots + a_nx^n}{b_0 + b_1x + \dots + b_mx^m} trigonometrische Funktion: t(x) = \frac{1}{2}a_0 + \sum_{k=1}^n (a_k\cos(kx) + b_k\sin(kx)) Exponentialsummen: e(x) = \sum_{k=1}^n a_k exp(b_kx)
```

12.3 Interpolation

Zuordnung von $g \in P$ zu f durch Fixieren von Funktionswerten $g(x_i) = y_i = f(x_i), i = 0, ..., n$

12.4 Approximation

$$g \in P$$
 beste Darstellung, z.B.
$$\max_{a \leq x \leq b} |f(x) - g(x)| minimal \\ (\int_a^b |f(x) - g(x)|^2 dx)^{\frac{1}{2}} minimal$$

Lagransche Interpolationsaufgabe 13

Aufgabe 13.1

Finde zu n + 1 verschiedene Stützstellen/Knoten $x_0, ..., x_n \in \mathbb{R}$ und Werten $y_0, ..., y_n \in \mathbb{R}$ ein Polynom $p \in P_n mitp(x_i) = y_i$

13.2 Eindeutigkeit + Existenz

Die Lagransche Interpolationsaufgabe ist eindeutig lösbar TODO: bei bedarf Beweis rein kopieren den Ich nicht verstanden hab

13.3 Lagransche Basispolynome

$$L_i^{(n)}(x) = \prod_{j=0, j \neq i}^n \frac{x - x_j}{x_i - x_j} \in P_n, i = 0, ..., n$$

Eigenschaften 13.4

ortogonal: es gilt $L_i^{(n)}(x_k) = d_{ik} = \text{TODO}$: split over 2 lines 1, i = k 0, sonst bilden Basis von P_n haben Grad n

Lagransche Darstellung 13.5

 $p(x)=\sum_{i=0}^ny_iL_i^{(n)}(x)\in P_n$ mit $p(x_j)=y_j$ Nachteil: Bei Hinzunahme von (x_{n+1},y_{n+1}) ändert sich das Basispolynom

TODO: Beispiel

14 Newtonsche Basispolynome...

14.1 Newton-Polynome

$$N_0(x) = 1, N_i(x) = \prod_{j=0}^{i-1} (x - x_j) \text{ mit } p(x) = \sum_{i=0}^{n} a_i N_i(x)$$

14.1.1 Auswertung

$$y_0 = p(x_0) = a_0$$

$$y_1 = p(x_1) = a_0 + a_1 * (x_1 - x_0)$$

$$\vdots$$

$$y_n = p(x_n) = a_0 + a_1(x_1 - x_0) + \dots + a_n(x_n - x_0) * \dots * (x_n - x_{n-1})$$

14.1.2 Vorteil

Bei Hinzunahme von (x_{n+1}, y_{n+1}) muss nur eine neue Rechnung durchgeführt werden, und nicht das gesamte Polynom neu berechnet werden TODO: Beispiel

14.2 Newtonsche Darstellung(stabile Variante)

$$p(x) = \sum_{i=0}^{n} y[x_0, ..., x_i] N_i(x)$$

14.3 Dividierte Differenzen*

$$y[x_i,...,x_{k+1}] = \frac{y[x_{i+1},...,x_{k+1}] - y[x_i,...,x_{i+k-1}]}{x_{i+k} - x_i} \text{ mit } \mathbf{k} = 1, \, ..., \, \mathbf{j} \text{ und } \mathbf{i} = \mathbf{k} - \mathbf{j}$$
 für beliebige [?] $\sigma:0,...,n \to 0,...,n$ gilt $y[\tilde{x_0},...,\tilde{x_n}] = y[x_0,...,x_n]$

15 Nevillsche Darstellung

$$p_{jj}(x) = y_j j = 0, ..., n k = 1, ..., j i = k - j$$

$$p_{i,i+k}(x) = p_{i,i+k-1}(x) + (x - x_i) \frac{p_{i+1,i+k}(x) - p_{i,i+k-1}(x)}{x_{i+k} - x_i}$$

15.1 Schema

TODO: add the diagonal arrows

Hinzunahme von (x_{n+1}, y_{n+1}) ist problemlos

Auswertung von $p_{0,n}(x)$ in $\xi \neq x_i$ ohne vorherige Bestimmung der Koeffizienden der Newton-Darstellung ist einfach und Numerisch stabil möglich

15.2 Code

```
\begin{array}{l} \operatorname{def} \operatorname{divDiffs}(xi,\,yi,\,x) \colon \\ n = \operatorname{len}(xi) \\ p = n \ ^* [0] \\ \operatorname{for} \ k \ \operatorname{in} \ \operatorname{range}(n) \colon \\ \operatorname{for} \ i \ \operatorname{in} \ \operatorname{range}(n - k) \colon \\ \operatorname{if} \ k == 0 \colon \\ p[i] = yi[i] \\ \operatorname{else} \colon \\ p[i] = \left( (x - xi[i + k]) \ ^* p[i] + (xi[i] - x) \ ^* p[i + 1] \right) / \left( xi[i] - xi[i + k] \right) \\ \operatorname{return} \ p[0] \end{array}
```

16 Hermite-Interpolation

16.1 Aufgabe

Gegeben:
$$x_i$$
 i = 0, ..., m paarweise verschieden $y_i^{(k)}$ i = 0, ..., m k = 0, ..., $\mu_i(\mu_i \ge 0)$ Gesucht: $p \in P_n$, n = m + $\sum_{i=0}^m \mu_i$: $p^{(k)}(x_i) = y_i^{(k)}$ x_i sind $(\mu_i + 1)$ -fache Stützstellen $x_0 = -1$, $x_1 = 1$, $m = 1$, $y_0^{(0)} = 0$, $y_1^{(0)}$, $y_1^{([l?])} = 2$ $\Rightarrow \mu_0 = 0$, $\mu_1 = 1$ \Rightarrow n = 1 + 0 + 1 = 2 \Rightarrow p(x) = x^2

16.2 Existenz + Eindeutig

analog zur Lagrange-Interpolation

16.3 Fehler

$$\begin{array}{l} f \in C^{m+1}[a,b] : \forall x \in [a,b] \exists \xi_x \in (\overline{x_0,...,x_m,x}), \text{ s.d.} \\ f(x) - p(x) = f[x_0,...,x_0,...,x_m,...,x_m,x] \prod_{i=0}^m (x-x_i)^{\mu_i+1} \\ = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) \prod_{i=0}^m (x-x_i)^{\mu_i+1} \end{array}$$

Extrapolation zum Limes + Fehler 17

17.1Richardson-Extrapolation

nicht direkt berechenbare Größe

$$a(0) = \lim_{k \to 0} a(k), \qquad k \in \mathbb{R}_+$$

berechne $a(k_i)$ für gewisse k_i , i = 0, ..., n und [?] $p_n(0)$ des Interpolations Polynoms zu $(h_i, a(h_i))$ als Schätzung für a(0)

$$a(0) := \lim_{x \to 0^+} \frac{\cos(x) - 1}{\sin(x)}$$
 (= 0)

$$a(x) := \frac{(\cos(x) - 1)}{\sin(x)}$$

Interpolation a(x) an Stützstellen k_i nahe bei 0:

$$k_0 = \frac{1}{8}$$
 $a(k_0) = -6,258151 * 10^{-2}$

$$k_1 = \frac{1}{16}$$
 $a(k_1) = -3,126018 * 10^{-2}$

$$k_0 = \frac{1}{8}$$
 $a(k_0) = -6,258151 * 10^{-2}$ $k_1 = \frac{1}{16}$ $a(k_1) = -3,126018 * 10^{-2}$ $k_2 = \frac{1}{32}$ $a(k_2) = -1,562627 * 10^{-2}$

17.2 Lagrange

$$p_2(x) = a(k_0) \frac{(x - \frac{1}{16})(x - \frac{1}{32})}{(\frac{1}{8} - \frac{1}{16})(\frac{1}{8} - \frac{1}{32})} + a(k_1) \frac{(x - \frac{1}{8})(x - \frac{1}{32})}{(\frac{1}{16} - \frac{1}{8})(\frac{1}{16} - \frac{1}{32})} + a(k_2) \frac{(x - \frac{1}{8})(x - \frac{1}{16})}{(\frac{1}{32} - \frac{1}{8})(\frac{1}{32} - \frac{1}{16})}$$

$$\Rightarrow a(0) \sim p_2(0) = -1, 02 * 10^{-5}$$

17.3 Neville

$$\begin{aligned} p_{i,i+k}(0) &= p_{i,i+k-1}(0) + \frac{p_{i,i+k-1}(0) - p_{i+1,i+k}(0)}{\frac{x_{i+k}}{x_i - 1}}, \text{ k} = 1, \ 2 \\ &\frac{\mathrm{i} \quad x_i \quad p_{i,i}(0) = a(k_i) \quad p_{i,i+1}(0) \quad p_{i,i+2}(0)}{0 \quad x_0 = \frac{1}{8} \quad -6, 258151 * 10^{-2} \quad 6, 115 * 10^{-5} \quad -1, 02 * 10^{-5}} \\ &1 \quad x_1 = \frac{1}{16} \quad -3, 126018 * 10^{-2} \quad 7, 64 * 10^{-6} \\ &2 \quad x_2 = \frac{1}{32} \quad -1, 562627 * 10^{-2} \end{aligned}$$

17.4 Extrapolationsfehler

a(n) habe die Entwickling:

where the Entwicking.
$$a(h) = a_0 + \sum_{j=1}^n a_j h^{jq} + a_{n+1}(h) h^{(n+1)q}$$
 mit q $\[\vdots \] 0$, Koeffizienten a_j und $a_{n+1}(h) = a_{n+1} + a(1[?????])$

 $(h_k)_{k\in\mathbb{N}}$ erfülle:

$$0 \le \frac{h_{k+1}}{h_k} \le p < 1 \ (\Rightarrow h_k \text{ positiv monoton fallend})$$

Dann gilt für
$$p_1^{(k)} \in P_n$$
 (in h^q) durch $(h_k^q, a(h_k)), ..., (h_{k+n}^q, a(h_{k+1}))$
 $a(0) - p_n^{(k)}(0) = O(h_k^{(n+1)q})$ $(k \to \infty)$

$$a(0) - p_n^{(k)}(0) = O(h_k^{(n+1)q}) \qquad (k \to \infty)$$

18 Spline-Interpolation

18.1 Interpolationsnachteil

Starke Oszillation von Polynomen höheren Grades

18.2 Abhilfe

Spline-Interpolation, d.h. stückweise polynomielle Interpolation mit (n-1)-mal stetig diff.baren Knoten

18.3 Lineare Spline

alle Abschnitt-Splines sind lineare Funktionen

18.4 Kubischer Spline

 $s_n: [a,b] \to \mathbb{R}$ kubischer Spline bezüglich $a = x_0 < x_1 < \ldots < x_n = b,$ wenn gillt

- 1. $s_n \in C^2[a, b]$
- 2. $S_n|_{I_i} \in P_3$, i = 1, ..., n

natürlicher Spline:

3.
$$s_n''(a) = s_n''(b) = 0$$

18.5 Existenz

Der interpolierende kubische Spline existiert und ist eindeutig bestimmt durch zusammen Vorgabe von $s_n''(a), s_n''(b)$

```
für natürlichen Spline s_n durch x_0, ..., x_n, y_0, ..., y_n gilt: \int_a^b |s'(x)|^2 dx \le \int_a^b |g''(x)|^2 dx bezüglich g \in C^2[a, b] mit g(x_i) = y_i, i = 1, ..., n
```

18.6 Approximationsfehler

$$f \in C^4[a, b], s_1''(a) = f''(a) \land s_n''(b) - f''(b):$$

 $\max_{x \in [a, b]} |f(x) - s : n(x)| \le \frac{1}{2} h^4 \max_{x \in [a, b]} |f^{(4)}(x)|$

19 Gauß-Approximation

20 Gram-Schmidt-Algorithmus

$$w_1 := \frac{v_1}{\|v_1\|} \ \tilde{w_k} := v_k - \sum_{i=1}^{k-1} \gamma < v_k, w_i > w_i, \ w_k := \frac{\tilde{w_k}}{\|\tilde{w_k}\|}$$

20.1 Code

```
\begin{split} n &= size(v, 1) \\ k &= size(v, 2) \\ u &= np.zeros(n, k) \\ u[:, 1] &= v[:, 1]/sqrt(v[:, 1] * v[:, 1]) \\ for i in \ range(2, k): \\ u[:, i] &= v[:, i] \\ for j \ in \ range(1, i - 1): \\ u[:, i] &= u[:, i] - (u[:, i] * u[:, j]) \ / \ (u[:, j] * u[:, j]) * u[:, j] \\ u[:, i] &= u[:, i] \ / \ sqrt(u[:, i] * u[:, i]) \end{split}
```

21 Interpolatorische Quadraturformeln