

Matteo Bianchetti

February 22, 2025

Contents

1	Introduction				
2	Mathematical background				
	2.1	Induction and recursion on the natural numbers			
	2.2	Complete induction			
	2.3	Generalized induction and recursion			
	2.4	Invariants			
	2.5	Exercises			
\mathbf{A}	Erra	ata .]		

Preface

I solve some exercises and prove some statements from Avigad et al., Logic and mechanized reasoning (v 0.1). In the appendix, I list the errata that I have found.

Notation

Chapter 1

Introduction

The authors lists three ideas that, it seems, are jointly found for the first time in the work of Ramon Llull (1232?-1316):¹

- 1. Symbols can stand for ideas.
- 2. One can generate complex ideas by combining simpler ones.
- 3. Mechanical devices can serve as aids to reasoning.

 $^{^{1}\}mathrm{The}$ author spells the monk's last name as "Lull".

Chapter 2

Mathematical background

Key concepts:

- 1. proof by induction (p. 3)
- 2. definition by recursion (p. 4)
- 3. proof by complete induction (p. 5)
- 4. definition by course-of-values recursion (p. 5)
- 5. inductive definition (p. 6)
- 6. invariant (p. 9)

2.1 Induction and recursion on the natural numbers

Theorem 2.1. The solution to the Towers-of-Hanoi (ToH) problem given on page 4 (of Avigad's book) requires $2^n - 1$ moves.

Proof. I call the three towers, from left to right, A, B, C. At the beginning, all the disks are on peg A. Let T(n) be the number of moves that it takes to solve ToH with the given algorithm. The base case is n = 0 and the statement holds in this case: the solution requires 0 moves and $T(0) = 2^0 - 1 = 1 - 1 = 0$. For the induction hypothesis, suppose that the statement holds for n. For the inductive step, observes the following:

- 1. by induction hypothesis, it takes exactly T(n) steps to move all the disks except the largest one to peg C using euxiliary peg B;
- 2. then, it takes 1 move to move the largest disk from peg A to peg B;
- 3. then, by induction hypothesis, it takes exactly T(n) steps to move the disks from peg C to peg B using auxiliary peg A.

Therefore,

$$T(n+1) = T(n) + 1 + T(n)$$

= $2T(n) + 1$
= $2(2^{n} - 1) + 1$ [by induct. hyp.]
= $2^{n+1} - 2 + 1$
= $2^{n+1} - 1$

2.2 Complete induction

On p. 5, the authors define the following function recursively:

$$f(n, k) = \begin{cases} 1 & \text{if } k = 0 \text{ or } k = n \\ f(n-1, k) + f(n-1, k-1) & \text{otherwise} \end{cases}$$

where n and k are natural numbers and $k \leq n$. One more usually write the above function as

$$\binom{n}{k} = \begin{cases} 1 & \text{if } k = 0 \text{ or } k = n \\ \binom{n-1}{k} + \binom{n-1}{k-1} & \text{otherwise.} \end{cases}$$

Here $\binom{n}{k}$ indicates the number of ways of choosing k objects out of n without repetition. The equation in the second case, i.e.

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

is called Pascal's identity. Its intuitive justification is as a follows. Let x be an object among the n-many objects that are given. Then, if you do not choose x, you have to choose k objects from the now n-1-many given objects. If you do choose x, then you have to continue by selecting k-1 objects from the now n-1-many objects. Since every selection of k objects from the given n objects either include or does not include x, then the total number of ways of choosing k objects out of n without repetition is the sum of the ways of selecting k objects from n-1 objects (when you do not choose x) and the number of ways of selecting k-1 objects from n-1 objects (when you choose x).

Theorem 2.2.
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Proof. I reason by induction. The statement is true for n=0. Now, suppose that it holds for n-1.

I show that it holds for n too. The following equalities hold:

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$
 [by definition]
$$= \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-1-(k-1))!}$$
 [by induction]
$$= \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-1-k+1)!}$$
 [by induction]
$$= \frac{(n-1)!}{k!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-k)!}$$

$$= \frac{(n-1)!}{k(k-1)!(n-1-k)!} + \frac{(n-1)!}{(k-1)!(n-k)(n-1-k)!}$$

$$= \frac{(n-1)!}{(k-1)!(n-1-k)!} \left[\frac{1}{k} + \frac{1}{(n-k)} \right]$$

$$= \frac{(n-1)!}{(k-1)!(n-1-k)!} \left[\frac{n-k+k}{k(n-k)} \right]$$

$$= \frac{(n-1)!}{(k-1)!(n-1-k)!} \left[\frac{n}{k(n-k)} \right]$$

$$= \frac{n(n-1)!}{k(k-1)!(n-k)(n-1-k)!}$$

$$= \frac{n!}{k!(n-k)!}$$

2.3 Generalized induction and recursion

Given two lists ℓ and m, I write

$$\ell + m$$

as a shortcut for

 $append(\ell, m).$

Theorem 2.3. The operation append is associative.¹

Proof. Given two lists, l_1 and l_2 , I will write $l_1 + l_2$ to indicate $append(l_1, l_2)$. I prove that, for every list l_1 , l_2 , l_3 ,

$$(l_1 + l_2) + l_3 = l_1 + (l_2 + l_3).$$

I reason by induction. For the base step, let $l_1 = []$. Therefore,

$$[] + (l_2 + l_3) = l_2 + l_3 = ([] + l_2) + l_3]$$

Now, suppose that associativity holds for $l_1 = l$. I prove that it holds for (a :: l), l_2 , l_3 . I will use the following property from the definition of :::²

$$(a :: m) + n = a :: (m + n)$$

¹ The authors define append on page 6.

² The authors define :: on page 6.

where a is an element and m and n are lists. The the proof continues as follow:

$$(a::l) + (l_2 + l_3) = a:: (l + (l_2 + l_3))$$
 [by defin. of ::]
 $= a:: ((l + l_2) + l_3)$ [by induct. hyp.]
 $= (a:: (l + l_2)) + l_3$ [by defin. of ::]
 $= ((a::l) + l_2) + l_3$ [by defin. of ::]

Theorem 2.4. For every element a and list ℓ ,

$$a :: \ell = [a] + \ell.$$

Proof. For the base case, observe

$$a :: [] = [a] = [a] + [].$$

For the inductive hypothesis, assume

$$a:: \ell = [a] + \ell.$$

For the inductive step, let b be an element:

$$a :: (b :: \ell) = a :: ([b + \ell])$$
 [by induct. hyp.]
= $(a :: [b]) + \ell$ [by defin. of +]
= $([a] + [b]) + \ell$ [by induct. hyp.]
= $[a] + ([b] + \ell)$ [by assoc. of +]

Theorem 2.5. For every list ℓ , $\ell + \lceil \rceil = \ell$.

Proof. For the base step, observe

$$[]+[][].$$

For the induction hypothesis, assume $\ell + [] = \ell$. For the inductive step, observe

$$(a :: \ell) + [] = ([a] + \ell) + []$$
 [by theorem 2.4]
= $[a] + (\ell + [])$ [by assoc. of +]
= $[a] + \ell$ [by induct. hyp.]
= $a :: \ell$ [by theorem 2.4]

Theorem 2.6. For every list ℓ and element a, appendit $(\ell, a) = \ell + [a]$.

Proof. I reason by induction. For the base case,

$$appendl([], a) = [a] = [] + [a].$$

Now, as the induction hypothesis, suppose that $appendl(\ell, a) = \ell + [a]$. Then, let b to be an element and consider the following equalities:

$$appendl((b :: \ell), a) = b :: appendl(\ell, a)$$
 [by defin. of $appendl$]
= $b :: (\ell + [a])$ [by induct. hyp.]
= $(b :: \ell) + [a]$ [by defin. of +]

Theorem 2.7. For every list ℓ and m,

$$reverse(\ell + m) = reverse(m) + reverse(\ell).$$

Proof. I reason by induction. Let $\ell = []$. Therefore

$$reverse([]+m) = reverse(m) = reverse(m) + reverse(\ell).$$

Now, as the inductive step, suppose that, for l and m,

$$reverse(\ell + m) = reverse(m) + reverse(\ell).$$

Let a be an element. The following equalities hold:

```
reverse((a::l) + m)) = reverse(a::(l + m))  [by defin. of +]
= appendl(reverse(l + m), a)  [by defin. of reverse]
= append(reverse(m) + reverse(l), a)  [by induct. hyp.]
= (reverse(m) + reverse(l)) + [a]  [by theorem 2.6]
= reverse(m) + (reverse(l) + [a])  [by assoc. of +]
= reverse(m) + appendl(a, reverse(l))  [by theorem 2.6]
= reverse(m) + reverse(a::l)  [by defin. of reverse]
```

Theorem 2.8. For every list ℓ , $reverse(reverse(\ell)) = \ell$.

Proof. I reason by induction. For the base step, obverse:

$$reverse(reverse([])) = reverse([]) = [].$$

For the induction hypothesis, assume that $reverse(reverse(\ell))$. For the inductive step, observe:

```
reverse(reverse(a::\ell)) = reverse(appendl(reverse(\ell), a)) \qquad [by defin. of reverse] \\ = reverse(reverse(\ell) + [a]) \qquad [by theorem 2.6] \\ = reverse([a]) + reverse(reverse(\ell)) \qquad [by theorem 2.7] \\ = reverse([a]) + \ell \qquad [by induct. hyp.] \\ = [a] + \ell \qquad [by property of reverse] \\ = a :: \ell \qquad [by defin. of ::]
```

Theorem 2.9. For every list ℓ , $reverse(\ell) = reverse'(\ell)$.

Proof. For the base case, observe

$$reverse([]) = [] = reverseAux([], []) = reverse'([]).$$

For the inductive hypothesis, assume

$$reverse(\ell) = reverse'(\ell)/$$

2.4. INVARIANTS 8

For the inductive step, observer

```
reverse(a :: \ell) = reverse(\ell) + reverse([a]) [by theorem 2.7]

= reverse(\ell) + [a] [by property of reverse]

= reverseAux(\ell, a :: []) [by defin. of reverseAux]

= reverseAux(a :: \ell, []) [by defin. of reverseAux]

= reverse'(a :: \ell) [by defin. of reverse']
```

2.4 Invariants

From p. 9:

"The following puzzle, called the MU puzzle, comes from the book $G\ddot{o}del$, Escher, Bach by Douglas Hofstadter. It concerns strings consisting of the letters M, I, and U. Starting with the string MI, we are allowed to apply any of the following rules:

- 1. Replace sI by sIU, that is, add a U to the end of any string that ends with I.
- 2. Replace Ms by Mss, that is, double the string after the initial M.
- 3. Replace sIIIt by sUt, that is, replace any three consecutive Is with a U.
- 4. Replace sUUt by st, that is, delete any consecutive pair of Us."

Theorem 2.10. A string is derivable in Hofstadter'system if and only it consists of an M followed by any number of Is and Us as long as the number of Is is not divisible by 3.

Proof. (\Rightarrow) First, I prove that if a string is derivable, then it consists of an M followed by any number of Is and Us as long as the number of Is is not divisible by 3. I reason by induction. The base case is MI and the statement is true for this case. Now, suppose that the statement is true after n applications of the rules. I show that the statement remains true after we apply any of the rules above.

- 1. Rule 1 does not change the number of I in the string. So the statement remains true.
- 2. Rule 2 doubles the number of I in the string. Since the number of strings before the application of rule 2 was either 1 mod 3 or 2 mod 3. In the first case, the number of I becomes 2 mod 3 and in the second case it becomes 1 mod 3. In both cases the statement remains true.
- 3. Rule 3 reduces the number of I by 3. Since we start with the number of I being $k \not\equiv 0 \mod 3$, also $k-3 \not\equiv \mod 3$ and the statement remains true.
- 4. Rule 4 does not affect the number of I in the string. Therefore, the statement remains true.
- (\Leftarrow) Now, I prove that if a string
- (C1) consists of an M
- (C2) followed by any number of Is and Us
- (C3) as long as the number of Is is not divisible by 3,

then that string is derivable.

To be continued.

2.5. EXERCISES 9

2.5 Exercises

Exercise 1. For $n \geq 1$, prove that

$$\sum_{i < n} ar^i = \frac{a(r^n - 1)}{r - 1}.$$

Proof. I reason by induction. For n = 1,

$$\sum_{i<1} ar^0 = a = \frac{a(r^1 - 1)}{r - 1}.$$

By induction hypothesis, suppose that the statement holds for n. Now, consider the following

$$\sum_{i < n+1} ar^{i} = \left(\sum_{i < n} ar^{i}\right) + ar^{n}$$

$$= \frac{a(r^{n} - 1)}{r - 1} + ar^{n}$$
 [by induct. hyp.]
$$= \frac{a(r^{n} - 1) + ar^{n}(r - 1)}{r - 1}$$

$$= \frac{ar^{n} - a + ar^{n+1} - ar^{n}}{r - 1}$$

$$= \frac{a(r^{n+1} - 1)}{r - 1}$$

Exercise 2.

Proof. I reason by induction. The base case is n=5:

$$5! = 120 > 32 = 2^5$$
.

As the induction hypothesis, suppose that the statement is true for n. For the inductive step, consider

$$(n+1)!=(n+1)n!$$

$$>2(2^n) \qquad [\text{because } n+1>2 \text{ and, by induct. hyp., } n!>2^n]$$

$$=2^{n+1}$$

Exercise 3.

Proof. Using summation notation, the expression to prove is the following:

$$\sum_{i=1}^{n} \frac{1}{n(n+1)} = \frac{n}{n+1}$$

The base case is n = 1 and the statement holds:

$$\sum_{i=1}^{1} \frac{1}{1 \cdot 2} = \frac{1}{2}.$$

2.5. EXERCISES 10

For the inductive hypothesis, suppose that the statements holds for n. For the inductive step, consider

$$\sum_{i=1}^{n+1} \frac{1}{n(n+1)} = \sum_{i=1}^{n} \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)}$$

$$= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$$
 [by induct. hyp.]
$$= \frac{n(n+2)}{(n+1)(n+2)}$$

$$= \frac{n^2 + 2n + 1}{(n+1)(n+2)}$$

$$= \frac{(n+1)^2}{(n+1)(n+2)}$$

$$= \frac{n+1}{n+2}$$

Exercise 4.

Proof. See the proof of theorem 2.1 for the notation. The statement holds for the base case n = 0: $2^0 - 1 = 1 - 1 == 0$. For the inductive hypothesis, suppose that the statement holds for n. For the inductive step, I show that the statement holds for n + 1. I reason as follows:

- 1. to move n disks (i.e. all the disks except the largest one) from peg A to peg C requires at least $2^n 1$ steps (by induction hypothesis);
- 2. to move the largest disk from peg A to peg B requires 1 step;
- 3. to move the n disks on peg C to peg B requires at least $2^n 1$ steps (by induction hypothesis).

Therefore, the entire process requires

$$2^n - 1 + 1 + 2^n - 1$$

steps, which is equal to $2^{n+1}-1$, i.e. equal to T(n+1) (see proof of theorem 2.1). Therefore, the algorithm given in the book is optimal.

Exercise 5.

Proof.

Exercise 6.

Proof.

Exercise 7.

Proof.

Appendix A

Errata

page	errata	corrige
6	we principles	we apply the principles
7	there is part	there is a part

Table A.1: Errata