CORRIGE DES EXERCICES: Exercices de révision

Exercice 8.1

 \mathcal{P} ={filles de 10 ans}, X= nombre de bonnes réponses au test des signes arithmétiques, variable quantitative normale de moyenne μ et d'écart-type σ , inconnus dans \mathcal{P} . On dispose d'un échantillon de X issu de la population \mathcal{P} de taille n=24 sur lequel on estime μ par \bar{x} =10 et σ par s*=2,1 (estimation sans biais).

Test de comparaison d'une moyenne à une valeur théorique μ_0 =11:

test bilatéral de l'hypothèse nulle H_0 : $\mu=\mu_0=11$ contre l'hypothèse alternative H_1 : $\mu\neq\mu_0=11$ au risque $\alpha=5\%$. Puisque X est une variable normale, σ est inconnu et n=24<30, ce test est basé sur la statistique de test $T=\frac{\left(\overline{X}_n-\mu_0\right)\sqrt{n}}{S_n^*}$ qui suit une loi de Student $T_{n-1}=T_{23}$ sous H_0 .

règle de décision :

on conserve H_0 (on rejette H_1) au seuil $\alpha=5\%$ si la valeur observée de T, t appartient à la région d'acceptation du test bilatéral au seuil $\alpha=5\%$: $IA_{5\%}=[-t_{(1-\alpha)/2}\,;\,t_{(1-\alpha)/2}\,]=[-t_{97,5\%}\,;\,t_{97,5\%}\,[\,=\,[-2,069\,;\,2,069\,]\,$ où $t_{97,5\%}=2,069\,$ est le quantile d'ordre $1-\frac{\alpha}{2}=0,975\,$ de la loi $T_{23}\,$ ($v=23\,$ et P=0,05) et ou

on rejette H_0 en faveur de H_1 (on accepte ou on valide H_1) au risque maximum α =5% sinon, c'est-à-dire si t n'appartient pas à $IA_{5\%}$.

La valeur observée de T :
$$t = \frac{(\overline{x} - \mu_0)\sqrt{n}}{s^*} = \frac{(10 - 11)\sqrt{24}}{2,1} = -2,333.$$

 $\underline{\text{décision}}$: puisque t n'appartient pas à la région d'acceptation de H_0 on rejette donc H_0 en faveur de H_1 au risque $\alpha=5\%$.

→ On peut accepter l'hypothèse que le nombre moyen de bonnes réponses chez les filles de 10 ans est différent de 11, au risque α =5%.

Exercice 8.2

 \mathcal{P} ={garçons de 12 à 15 ans}, X= temps pour loger 50 rondelles (en mn), variable quantitative de moyenne μ et d'écart-type σ , inconnus dans \mathcal{P} . On dispose d'un échantillon de X issu de la population \mathcal{P} de taille n=37 sur lequel on estime μ par \overline{x} =1,42 mn et σ par s=0,24 mn (estimation biaisée).

Test de comparaison d'une moyenne à une valeur théorique μ_0 =1,5 mn :

test unilatéral gauche de l'hypothèse nulle H_0 : $\mu=\mu_0=1,5$ contre l'hypothèse alternative H_1 : $\mu<\mu_0=1,5$ au risque $\alpha=1\%$. Puisque X est une variable quelconque, σ est inconnu et n=37>30, ce test est basé sur :

① la statistique de test
$$Z = \frac{\left(\overline{X}_n - \mu_0\right)\sqrt{n}}{S_{-}^*}$$
 qui suit approximativement une loi $\mathcal{N}(0,1)$ sous H_0 .

L'hypothèse alternative étant unilatérale gauche, on rejettera l'hypothèse nulle H_0 pour les "petites" valeurs de Z, donc la région de rejet est à gauche du domaine de variation de la statistique de test Z.

règle de décision :

on rejette H_0 en faveur de H_1 (on accepte H_1 ou on valide H_1) au risque maximum $\alpha=1\%$ si la valeur observée de Z, z appartient à la région de rejet du test unilatéral gauche au risque $\alpha=1\%$: $RC_{1\%}=]-\infty$; $-z_{0.99}=0$; on conserve $z_{0.99}=0$; au seuil $z_{0.99}=0$; $-z_{0.99}=0$; $-z_{0.99}=0$; $-z_{0.99}=0$; $-z_{0.99}=0$; $-z_{0.99}=0$; and $-z_{0.99}=0$; $-z_{0.99}=0$

La valeur observée de la statistique de test
$$Z$$
 : $z = \frac{(\overline{x} - \mu_0)\sqrt{n}}{s^*} = \frac{(1,42-1,5)\sqrt{37}}{0,2433} = -2$ car l'estimation

ponctuelle sans biais de
$$\sigma$$
 : $s^* = \sqrt{\frac{37}{36}} 0,24 = 0,2433$ mn

<u>décision</u>: puisque z n'appartient pas à la région de rejet de H_0 on ne rejette donc pas H_0 (on conserve H_0 ou on rejette H_1) au seuil α =1% et au risque β inconnu.

règle de décision :

on rejette H_0 en faveur de H_1 (on accepte H_1 ou on valide H_1) au risque maximum $\alpha=1\%$ si la valeur observée de \overline{X}_n , \overline{x} appartient à la région de rejet du test unilatéral gauche au risque $\alpha=1\%$:

$$s^* = \sqrt{\frac{37}{36}}0,24 = 0,2433$$
 mn et $z_{1-\alpha} = z_{0,99} = 2,325$ est le quantile d'ordre $1-\alpha = 0,99$ de la loi $\mathcal{N}(0,1)$ ou

on conserve H_0 (on rejette H_1) au seuil $\alpha=1\%$ sinon, c'est-à-dire si z n'appartient pas à $RC_{1\%}$.

<u>décision</u>: puisque \overline{x} =1,42 n'appartient pas à RC_{1%} on ne rejette pas H₀ (on conserve H₀ ou on rejette H₁) au seuil α =1% et au risque β inconnu.

→ On ne peut accepter l'hypothèse que le temps moyen des garçons de 12 à 15 ans est inférieur à 1,5 au seuil α =1% et au risque β inconnu.

Le risque minimum pour accepter H_1 (ou pour rejeter H_0) est le degré de signification α_{obs} : pour un test unilatéral gauche, c'est la probabilité d'obtenir sous H_0 une valeur de Z au moins aussi faible que celle observée z: $\alpha_{obs} = P(Z \le z) = P(Z \le -2) = F_Z(-2) = 1 - F_Z(2) = 1 - 0,9772 = 0,0228$. On pourra rejeter H_0 (accepter H_1) pour un risque $\alpha \ge \alpha_{obs} \approx 2,3\%$.

Exercice 8.3

 \mathcal{P} ={lancés d'un dé}

X= face obtenue définie sur E={ 1, 2, 3, 4, 5, 6} variable qualitative à 6 modalités.

On note:

 p_1 = proportion de 1, p_2 = proportion de 2, p_3 = proportion de 3, p_4 = proportion de 4, p_5 = proportion de 5 et p_6 = proportion de 6, p_1 , p_2 , ... p_6 étant inconnues dans \mathcal{P} .

L'hypothèse selon laquelle le dé est bien équilibré se traduit par le fait que les 6 proportions précédentes sont égales et s'écrit H_0 : $p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = 1/6$ (loi uniforme sur les 6 faces).

L'hypothèse selon laquelle le dé n'est pas équilibré (est pipé) se traduit par le fait qu'au moins une des proportions précédentes n'est pas égale à 1/6, il s'agit donc de l'hypothèse alternative H_1 .

Test du khi-deux d'adéquation à une loi théorique au risque α=0,05 :

$$\begin{cases} H_0: X \text{ suit la loi th\'eorique : loi uniforme} \\ H_1: X \text{ ne suit pas la loi th\'eorique} \end{cases} \text{ ou } \begin{cases} H_0: p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = \frac{1}{6} \\ H_1: \text{ il existe i tel que } p_i \neq \frac{1}{6} \end{cases}$$

Sur un échantillon de n=450 lancés, les effectifs observés n_i et les effectifs théoriques (attendus) sous H_0 $e_i = n \times \frac{1}{6} = 75$ sont donnés par :

X face	1	2	3	4	5	6	total n
effectif observé n _i	62	50	76	68	111	83	450
effectif attendu e _i	75	75	75	75	75	75	450

Sous H_0 , la statistique de test Q^2 suit approximativement une loi du khi-deux à 5 ddl car $n=60 \ge 30$ et tous les e_i sont supérieurs à 5. La région de rejet du test au risque $\alpha=0.05$ est $RC_{0.05}=] \ q_{0.95}^2$; $+\infty[=]11.07$; $+\infty[$ et la région d'acceptation $IA_{5\%}=[0\ ;\ q_{0.95}^2]=[0\ ;\ 11.07]$ car $q_{0.95}^2=11.070$ est le quantile d'ordre 0.95 de la loi χ_5^2 .

La valeur observée de Q²:

$$q^{2} = \frac{1}{75} \left[(-13)^{2} + (-15)^{2} + 1^{2} + (-7)^{2} + 36^{2} + 8^{2} \right] = \frac{1804}{75} = 24,05$$

 $q^2 \in RC_{0.05}$ donc on rejette H_0 au risque $\alpha = 0.05$.

⇒ Il n'y a pas adéquation entre la loi de X et la loi théorique uniforme sur les 6 faces du dé au risque α =5%; on ne peut pas conclure que le dé est équilibré au risque α =5%.

Exercice 8.4

 \mathcal{P} ={sujets privés de rêves}, X= score au test d'anxiété, variable quantitative de moyenne μ et d'écart-type σ , inconnus dans \mathcal{P} . On dispose d'un échantillon de X dans la population \mathcal{P} de taille n=40 sur lequel on estime μ par \overline{x} =28,25 et σ par s=8,81 (estimation biaisée).

 \mathcal{P}_0 ={sujets non privés de rêves} le score moyen au test d'anxiété est connu et vaut μ_0 =26,5 dans \mathcal{P}_0 .

Test de comparaison d'une moyenne à une valeur théorique μ_0 =26,5 :

test unilatéral droit de l'hypothèse nulle H_0 : $\mu=\mu_0=26,5$ contre l'hypothèse alternative H_1 : $\mu>\mu_0=25$ au risque $\alpha=5\%$. Puisque X est une variable quelconque, σ est inconnu et $n=40 \geq 30$, ce test est basé sur la statistique de test

① la statistique de test $Z = \frac{\left(\overline{X}_n - \mu_0\right)\sqrt{n}}{S_n^*}$ qui suit approximativement une loi $\mathcal{N}(0,1)$ sous H_0 .

La région de rejet du test unilatéral droit au risque $\alpha=5\%$: $RC_{5\%}=[z_{1-\alpha};+\infty[=]z_{0.95};+\infty[=]1,645;+\infty[$ car la valeur critique $z_{1-\alpha}=z_{0.95}=1,645$ est le quantile d'ordre $1-\alpha=0.95$ de la loi $\mathcal{N}(0,1)$.

La valeur observée de la statistique de test Z : $z = \frac{(\overline{x} - \mu_0)\sqrt{n}}{s^*} = \frac{(28,5-26,5)\sqrt{40}}{8,92} = 1,24$ car

 $s^* = \sqrt{\frac{40}{39}} \ 8,81 = 8,92$. Puisque $z \notin RC_{5\%}$ on ne rejette pas H_0 (on conserve H_0) au seuil α =5% et au risque β inconnu.

 ${\Bbb Q}$ la statistique de test \overline{X}_n qui suit approximativement une loi ${\cal N}\left(\mu_0\,,\frac{\sigma}{\sqrt{n}}\right)$ sous $H_0.$

La région de rejet du test unilatéral droit au risque $\alpha=5\%$: $RC_{5\%}=$ $\mu_0+z_{1-\alpha}\frac{s^*}{\sqrt{n}}$; $+\infty$ [

 $RC_{5\%} = \frac{1}{26,5} + 1,645 \frac{8,92}{\sqrt{40}}$; $+\infty$ [= $\frac{1}{26,5} + 2,32$; $+\infty$ [= $\frac{1}{28,82}$; $+\infty$ [car $s^* = \sqrt{\frac{40}{39}}$ 8,81 = 8,92 et

 $z_{1-\alpha} \!\!= z_{0,95} \!\!= 1,\!645$ est le quantile d'ordre $1-\alpha \!\!= 0,\!95$ de la loi $\mathcal{N}(0,\!1)$

Puisque \overline{x} =28,25 n'appartient pas à RC_{5%} on ne rejette donc pas H₀ (on conserve H₀ ou on rejette H₁) au seuil α =% et au risque β inconnu.

► On ne peut accepter l'hypothèse que la privation de rêves augmente le niveau d'anxiété au seuil α=5% et au risque β inconnu.

Le risque minimum pour accepter H_1 (ou pour rejeter H_0) est le degré de signification α_{obs} : pour un test unilatéral droit, c'est la probabilité d'obtenir sous H_0 une valeur de Z au moins aussi élevée que celle observée z, c'est à dire que $\alpha_{obs} = P(Z \ge z) = P(Z \ge 1,24) = 1 - F_Z(1,24) = 1 - 0,5948 = 0,4052$ donc $\alpha_{obs} \approx 40,5\%$. On pourrait rejeter H_0 (accepter H_1) si le risque maximum $\alpha \ge \alpha_{obs} \approx 40,5\%$.

Exercice 8.5

 \mathcal{P} ={personnes atteintes de schizophrénie}, X= volume de l'hippocampe gauche (en cm³), variable quantitative normale de moyenne μ et d'écart-type σ , inconnus dans \mathcal{P} . On dispose d'un échantillon de X issu de la population \mathcal{P} de taille n=15 sur lequel on observe : $\Sigma x_i = 23,4$ et $\Sigma x_i^2 = 37,78$.

Test de comparaison d'une moyenne à une valeur théorique $\mu_0=1,7$:

test unilatéral gauche de l'hypothèse nulle H_0 : $\mu=\mu_0=1,7$ contre l'hypothèse alternative H_1 : $\mu<\mu_0=1,7$ au risque $\alpha=1\%$. Puisque X est une variable normale, σ est inconnu et n=15<30, ce test est basé sur la statistique de test $T=\frac{\left(\overline{X}_n-\mu_0\right)\sqrt{n}}{S_n^*}$ qui suit une loi de Student $T_{n-1}=T_{14}$ sous H_0 .

règle de décision :

on rejette H_0 en faveur de H_1 (on accepte ou on valide H_1) au risque maximum $\alpha=1\%$ si la valeur observée de T, t appartient à la région de rejet du test unilatéral gauche au seuil $\alpha=1\%$: $RC_{1\%}=J-\infty$; $-t_{1-\alpha}[=J-\infty;-t_{99\%}[RC_{1\%}=J-\infty;-2,624[$ où $t_{99\%}=2,624$ est le quantile d'ordre $1-\alpha=0,99$ de la loi T_{14} (v=14 et P=0,02) et ou on conserve H_0 (on rejette H_1) au seuil $\alpha=1\%$ sinon, c'est-à-dire si t n'appartient pas à $RC_{1\%}$.

La valeur observée de T :
$$t = \frac{(\overline{x} - \mu_0)\sqrt{n}}{s^*} = \frac{(1,56 - 1,7)\sqrt{15}}{0,3} = -1,796$$
 car $\overline{x} = \frac{23,4}{15} = 1,56$
$$s^2 * = \frac{37,78 - \left(15 \times 1,56^2\right)}{14} = 0,0911 \text{ et } s^* = 0,3$$
 (ou $s^2 = \frac{37,78}{15} - \left(1,56^2\right) = 0,085 \text{ s} = \sqrt{0,085} = 0,292 \text{ et } s^* = \sqrt{\frac{15}{14}} \times 0,292 \approx 0,3$)

 $\underline{\text{d\'ecision}}$: puisque t n'appartient pas à la région de rejet de H_0 on ne rejette pas H_0 (on conserve H_0 ou on rejette H_1) au seuil α =5% et au risque d'erreur de 2^d espèce β inconnu.

► On ne peut pas accepter l'hypothèse que le volume moyen de l'hippocampe gauche des sujets atteints de schizophrénie est inférieur à 1,7 cm³, au seuil α=5% et au risque d'erreur de 2^d espèce β inconnu.

Exercice 8.6

P={patients d'un hôpital psychiatrique}, X=saison définie sur E={printemps, été, automne, hiver} variable qualitative à 4 modalités, Y= réaction à un certain médicament définie sur F={oui, non} variable qualitative à 2 modalités.

$$\textbf{Test du khi-deux d'indépendance}: \begin{cases} H_0 \colon X \text{ et } Y \text{ indépendantes} \\ H_1 \colon X \text{ et } Y \text{ liées} \end{cases} \text{ au risque } \alpha = 5\%.$$

Sur deux échantillons appariés de X et de Y de taille n=490, les effectifs observés n_{ii} et les effectifs théoriques (attendus) sous H_0 e_{ij} notés entre parenthèses :

X saison	(oui	r	total	
printemps	55 (54,9)		64	(64,1)	119
été	59	(54,9)	60	(64,1)	119
automne	52	(53)	63	(62)	115
hiver	60	(63,2)	77	(73,8)	137
Total	226		2	n=490	

Sous H_0 , la statistique de test Q^2 suit approximativement une loi du khi-deux à 3 ddl, car n=490 \geq 30 et tous les e_{ij} sont supérieurs à 5. La région de rejet du test au risque 5% est $RC_{5\%} =]q_{95\%}^2$; $+\infty[=]7,815$; $+\infty[$ et la région d'acceptation $IA_{5\%} = [0; q_{95\%}^2] = [0; 7,815]$ car $q_{95\%}^2 = 7,815$ est le quantile d'ordre 0,95 de la loi χ_3^2 .

La valeur observée de Q² vaut :

$$q^{2} = \frac{(55 - 54,9)^{2}}{54,9} + \frac{(64 - 64,1)^{2}}{64,1} + \frac{(59 - 54,9)^{2}}{54,9} + \frac{(60 - 64,1)^{2}}{64,1} + \frac{(52 - 53)^{2}}{53} + \frac{(63 - 62)^{2}}{62} + \frac{(60 - 63,2)^{2}}{63,2} + \frac{(77 - 73,8)^{2}}{73,8}$$

$$= \frac{0,1^{2}}{54,9} + \frac{(-0,1)^{2}}{64,1} + \frac{4,1^{2}}{54,9} + \frac{(-4,1)^{2}}{64,1} + \frac{(-1)^{2}}{53} + \frac{1^{2}}{62} + \frac{(-3,2)^{2}}{63,2} + \frac{3,2^{2}}{73,8}$$

$$= 0,1^{2} \left[\frac{1}{54,9} + \frac{1}{64,1} \right] + 4,1^{2} \left[\frac{1}{54,9} + \frac{1}{64,1} \right] + 1^{2} \left[\frac{1}{53} + \frac{1}{62} \right] + 3,2^{2} \left[\frac{1}{63,2} + \frac{1}{73,8} \right] = 0,90455$$

 $q^2 = 0.905 \notin RC_{5\%}$ donc on ne rejette pas H₀ au seuil $\alpha = 5\%$.

➡ Il n'existe pas de lien entre la saison et la réaction au seuil α =5% et au risque de 2ème espèce β inconnu.

Exercice 8.7

P={ouvriers travaillant en usine}, X= nombre d'accidents subis dans l'année définie sur E={0, 1, 2, 3 ou plus} variable qualitative à 4 modalités.

On note p_1 = proportion d'ouvriers n'ayant subi aucun accident, p_2 = proportion d'ouvriers ayant subi 1 accident, p_3 = proportion d'ouvriers ayant subi 2 accidents, p_4 = proportion d'ouvriers ayant subi 3 accidents ou plus, $p_1, p_2, \dots p_4$ étant inconnues dans \mathcal{P} .

L'hypothèse émise selon laquelle le nombre d'accidents subis dans l'année suit la loi théorique s'écrit H_0 : p_1 =0,57, p_2 =0,32 p_3 = 0,08 et p_4 = 0,03

Test du khi-deux d'adéquation à une loi théorique au risque α =5% :

$$\begin{cases} H_0: X \text{ suit la loi th\'eorique} \\ H_1: X \text{ ne suit pas la loi th\'eorique} \end{cases} \text{ ou } \begin{cases} H_0: p_1 = 0.57 & p_2 = 0.32 & p_3 = 0.08 & p_4 = 0.03 \\ H_1: \text{il existe i tel que } p_i \text{ diff\'erent de la loi th\'eorique} \end{cases}$$

Sur un échantillon de n=220 ouvriers, les effectifs observés n_i et les effectifs théoriques (attendus) e_i sous H_0 sont donnés par :

X nombre d'accidents subis	0	1	2	3 ou plus	total n
effectif observé n _i	154	50	15	1	220
effectif attendu e _i	220×0,57=125,4	220×0,57=70,4	220×0,57=17,6	220×0,57=6,6	220

Sous H_0 , la statistique de test Q^2 suit approximativement une loi du khi-deux à 3 ddl car n=220 \geq 30 et tous les e_i sont supérieurs à 5. La région de rejet du test au risque α =5% est $RC_{5\%} =]~q_{95\%}^2$; $+\infty[=]7,815$; $+\infty[$ et la région d'acceptation $IA_{5\%} = [0~;~q_{95\%}^2] = [0~;~7,815]$ car $q_{95\%}^2 = 7,815$ est le quantile d'ordre 0,95 de la loi χ_2^2 .

La valeur observée de Q² :

$$q^2 = \frac{\left(154 - 125,4\right)^2}{125,4} + \frac{\left(50 - 70,4\right)^2}{70,4} + \frac{\left(15 - 17,6\right)^2}{17,6} + \frac{\left(1 - 6,6\right)^2}{6,6} = \frac{\left(28,6\right)^2}{125,4} + \frac{\left(-20,4\right)^2}{70,4} + \frac{\left(-2,6\right)^2}{17,6} + \frac{\left(-5,6\right)^2}{6,6} = \frac{\left(28,6\right)^2}{125,4} + \frac{\left(-20,4\right)^2}{125,4} + \frac{\left(-20,4\right)^2}{125,6} + \frac{\left(-20,4\right)^2}{125$$

 $q^2 = 17,570 \in RC_{1\%}$ donc on rejette H_0 en faveur de H_1 au risque $\alpha = 5\%$.

→ On ne peut pas accepter l'hypothèse émise : il n'y a pas adéquation entre la loi de X et la loi théorique sur les nombres d'accidents subis par an par les ouvriers travaillant en usine au risque α=5%.

Exercice 8.8

 \mathcal{P}_1 ={enfant de 7 ans de mère alcoolique chronique durant la grossesse}

 \mathcal{P}_2 ={enfant de 7 ans de mère n'ayant eu aucune tendance à l'alcoolisme durant la grossesse}

X = score de QI de l'enfant, variable quantitative

 X_1 = score de QI de l'enfant dans \mathcal{P}_1 de moyenne μ_1 et d'écart-type σ_1 inconnus dans \mathcal{P}_1

 X_2 = score de QI de l'enfant dans \mathcal{P}_2 de moyenne μ_2 et d'écart-type σ_2 inconnus dans \mathcal{P}_2

On observe

un échantillon de X_1 issu de \mathcal{P}_1 de taille $n_1 = 6$ pour lequel

le score moyen μ_1 est estimé par \overline{x}_1 = 78 et l'écart-type du score σ_1 est estimé par s_1 =8,18 (estimation biaisée) un échantillon de X_2 issu de \mathcal{P}_2 de taille n_2 =12 pour lequel

le score moyen μ_2 est estimé par $\overline{x}_2 = 99$ et l'écart-type du score σ_2 est estimé par $s_2=10,13$ (estimation biaisée)

L'hypothèse que l'alcool contrarie le développement cérébral prénatal se traduit par le fait que le score de QI moyen des enfants de mère alcoolique chronique durant la grossesse μ_1 est inférieur à celui des enfants de mère n'ayant eu aucune tendance à l'alcoolisme durant la grossesse μ_2 : $\mu_1 < \mu_2$. Tester l'hypothèse émise revient donc à comparer les deux moyennes μ_1 et μ_2 à partir de deux échantillons indépendants en utilisant le test unilatéral de l'hypothèse nulle H_0 : $\mu_1 = \mu_2$ contre l'hypothèse alternative H_1 : $\mu_1 < \mu_2$ au risque $\alpha = 5\%$.

Test de comparaison de deux moyennes μ_1 et μ_2 à partir de deux échantillons indépendants :

test de l'hypothèse nulle H_0 : $\mu_1 = \mu_2$ contre l'hypothèse alternative H_1 : $\mu_1 < \mu_2$ au risque unilatéral $\alpha = 5\%$.

Les variables X_1 et X_2 étant normales dans \mathcal{P}_1 et \mathcal{P}_2 et de variances inconnues égales (n_1 =6 < 30 et n_2 =12 < 30) ce test est basé sur :

① la statistique de test de Student
$$T = \frac{\overline{X}_1 - \overline{X}_2}{S^* \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 qui suit une loi de Student $T_{n_1 + n_2 - 2} = T_{16}$ sous H_0 .

Sous l'hypothèse alternative unilatérale $H_1: \mu_1 < \mu_2$ les valeurs de \overline{X}_1 ont tendance à être inférieures à celles de \overline{X}_2 donc les valeurs de T ont tendance à être négatives, c'est-à-dire que la région de rejet du test est à gauche du domaine de variation de T.

La région de rejet du test unilatéral au risque $\alpha=5\%$: $RC_{5\%}=]-\infty$; $-t_{0.95}[=]-\infty$; -1.746[où $t_{0.95}=1.746$ est le quantile d'ordre $1-\alpha=0.95$ de la loi T_{16} (v=16 et P=0.10).

L'écart-type observé biaisé de X_1 dans \mathcal{P}_1 : s_1 =8,18 et l'écart-type observé biaisé de X_2 dans \mathcal{P}_2 : s_2 =10,13

La variance commune σ^2 de X_1 dans \mathcal{P}_1 et de X_2 dans \mathcal{P}_2 est estimée par la variance observée sans biais :

$$s^{*2} = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} = \frac{6 \times 8,18^2 + 12 \times 10,13^2}{6 + 12 - 2} = 102,05 \text{ d'où } s^* \approx 10,1$$

La valeur observée de la statistique de test T :
$$t = \frac{\overline{x}_1 - \overline{x}_2}{s^* \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{78 - 99}{10,1\sqrt{\frac{1}{6} + \frac{1}{12}}} = \frac{-21}{5,05} = -4,158$$

règle de décision

- on rejette H_0 en faveur de H_1 au risque $\alpha=5\%$ si la valeur observée de T, t appartient à $RC_{5\%}=]-\infty$; -1,746[la région de rejet du test unilatéral au risque $\alpha=5\%$ et
- on conserve H_0 (on rejette H_1) au seuil $\alpha =\! 5\%$ sinon, c'est-à-dire si t n'appartient pas à $RC_{5\%}$

décision

La valeur observée t appartient à la région de rejet de H_0 : on rejette donc H_0 en faveur de H_1 au risque $\alpha=5\%$.

② la statistique de test de Student
$$T = \frac{\overline{X}_2 - \overline{X}_1}{S * \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 qui suit une loi de Student $T_{n_1 + n_2 - 2} = T_{16}$ sous H_0 .

Sous l'hypothèse alternative unilatérale $H_1: \mu_2 > \mu_1$ les valeurs de \overline{X}_2 ont tendance à être supérieures à celles de \overline{X}_1 donc les valeurs de T ont tendance à être positives, c'est-à-dire que la région de rejet du test est à droite du domaine de variation de T.

La région de rejet du test unilatéral au risque $\alpha=5\%$: $RC_{5\%}=$] $t_{0.95}$; $+\infty[=]$ 1,746; $+\infty[$ où $t_{0.95}=$ 1,746 est le quantile d'ordre $1-\alpha=0.95$ de la loi T_{16} ($\nu=16$ et P=0.10).

La valeur observée de la statistique de test T :
$$t = \frac{\overline{x}_2 - \overline{x}_1}{s^* \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{99 - 78}{10,1\sqrt{\frac{1}{6} + \frac{1}{12}}} = \frac{21}{5,05} = 4,158 \text{ car } s^* \approx 10,1.$$

règle de décision

- on rejette H_0 en faveur de H_1 au risque α =5% si la valeur observée de T, t appartient à $RC_{5\%}$ =]1,746; +∞[la région de rejet du test unilatéral au risque α =5% et
- on conserve H_0 (on rejette H_1) au seuil α =5% sinon, c'est-à-dire si t n'appartient pas à RC_{5%}.

décision

La valeur observée t appartient à la région de rejet de H_0 : on rejette donc H_0 en faveur de H_1 au risque $\alpha=5\%$.

▶ Le score de QI moyen des enfants de mère alcoolique chronique durant la grossesse est inférieur à celui des enfants de mère n'ayant eu aucune tendance à l'alcoolisme durant la grossesse au risque α =5%, ce qui confirme l'hypothèse que l'alcool contrarie le développement cérébral prénatal, au risque α =5%.

Exercice 8.9

P={personnes}, X=opinion sur l'avortement définie sur E={pour, indifférent, contre} variable qualitative à 3 modalités, Y= nombre d'années de scolarité définie sur F={moins de 8 ans, entre 8 et 12 ans, plus de 12 ans} variable qualitative à 3 modalités.

1) **Test du khi-deux d'indépendance** :
$$\begin{cases} H_0 \colon X \text{ et } Y \text{ indépendantes} \\ H_1 \colon X \text{ et } Y \text{ liées} \end{cases} \text{ au risque } \alpha = 5\%.$$

Sur deux échantillons appariés de X et de Y de taille n=776, les effectifs observés n_{ij} et les effectifs théoriques (attendus) sous H_0 e_{ij} notés entre parenthèses :

X scolarité	p	our	indifférent		contre		total
moins de 8 ans	31	(45,1)	23	(21,4)	56	(43,5)	110
entre 8 et 12 ans	171	(179,1)	89	(85,0)	177	(172,9)	437
plus de 12 ans	116	(93,8)	39	(44,6)	74	(90,6)	229
total	318		151		307		n=776

Sous H_0 , la statistique de test Q^2 suit approximativement une loi du khi-deux à 4 ddl car n=776 \geq 30 et tous les e_{ij} sont supérieurs à 5. La région de rejet du test au risque α =0,05 est $RC_{5\%} =]q_{0.95}^2$; $+\infty[=]9,488$; $+\infty[$ et la région d'acceptation $IA_{5\%} = [0;9,488]$ car $q_{0.95}^2 = 9,488$ est le quantile d'ordre 0,95 de la loi χ_4^2 .

La valeur observée de Q² vaut :

$$q^{2} = \frac{(31-45,1)^{2}}{45,1} + \frac{(23-21,4)^{2}}{21,4} + \frac{(56-43,5)^{2}}{43,5} + \frac{(171-179,1)^{2}}{179,1} + \frac{(89-85)^{2}}{85} + \frac{(177-172,9)^{2}}{172,9} + \frac{(116-93,8)^{2}}{93,8} + \frac{(39-44,6)^{2}}{44,6} + \frac{(74-90,6)^{2}}{90,6} = 17,708$$

 $q^2 = 17,708 \in RC_{5\%}$ donc on rejette H_0 au risque $\alpha = 5\%$.

→ Il existe un lien entre l'opinion sur l'avortement et la durée de la scolarité au risque α =5%.

2) \mathcal{P} ={personnes dont la durée de scolarité est inférieure à 8 ans}

X= rejet de l'avortement (opinion contre) définie sur E={oui, non} variable qualitative à 2 modalités avec p= proportion de personnes qui rejettent l'avortement, inconnue dans \mathcal{P} .

On dispose d'un échantillon de X issu de la population \mathcal{P} , de taille n=31+23+56=110 sur lequel on estime p par $f = \frac{56}{110} = 0,509$.

L'hypothèse que le rejet est majoritaire pour ces individus correspond au fait que dans la population \mathcal{P} , la proportion de ceux qui rejettent l'avortement p est supérieure à $p_0=50\%$.

Test de comparaison d'une proportion à la proportion théorique p₀=50%=0,5 :

 H_0 : $p = p_0 = 0.5$ contre H_1 : $p > p_0 = 0.5$ alternative unilatérale droite, au risque $\alpha = 5\%$.

Sous H_0 , puisque $n=110 \ge 30$, $np_0=n(1-p_0)=110\times 0, 5=55 \ge 5$, ce test est basé sur la statistique de test :

Sous l'hypothèse alternative unilatérale H_1 : $p > p_0 = 0.5$ les valeurs de F_n ont tendance à être supérieures à $p_0 = 0.5$ donc les valeurs de Z ont tendance à être positives, c'est-à-dire que la région de rejet du test est à droite du domaine de variation de Z.

La région de rejet du test unilatéral droit au risque $\alpha=5\%$: $RC_{5\%}=]z_{1-\alpha}$; $+\infty[=]z_{0.95}$; $+\infty[=]1,645$; $+\infty[$ car la valeur critique $z_{1-\alpha}=z_{0.95}=1,645$ est le quantile d'ordre $1-\alpha=0.95$ de la loi $\mathcal{N}(0,1)$.

règle de décision

- on rejette H_0 en faveur de H_1 au risque $\alpha=5\%$ si la valeur observée de Z, z appartient à la région de rejet du test unilatéral droit au risque $\alpha=5\%$: $RC_{5\%}=]z_{1-\alpha}$; $+\infty[=]z_{0,95}$; $+\infty[=]1,645$; $+\infty[$ et
- on conserve H_0 (on rejette H_1) au seuil α =5% sinon, c'est-à-dire si z n'appartient pas à RC_{5%}.

décision

La valeur observée de la statistique de test Z :
$$z = \frac{(f - p_0)\sqrt{n}}{\sqrt{p_0(1 - p_0)}} = \frac{(0.509 - 0.5)\sqrt{110}}{\sqrt{0.5 \times 0.5}} = \frac{0.095}{0.5} = 0.191$$

Puisque z n'appartient pas à la région de rejet de H_0 on conserve donc H_0 (on rejette H_1) au seuil $\alpha=5\%$.

$$@ \ F_n \ qui \ suit \ approximativement \ une \ loi \ \mathcal{N}\bigg(p_0, \sqrt{\frac{p_0(l-p_0)}{n}}\bigg) \ sous \ H_0$$

Sous l'hypothèse alternative unilatérale H_1 : $p > p_0 = 0.5$ les valeurs de F_n ont tendance à être supérieures à $p_0 = 0.5$, c'est-à-dire que la région de rejet du test est à droite de $p_0 = 0.5$.

La région de rejet du test unilatéral droit au risque $\alpha=5\%$: $RC_{\alpha}=\left[p_{0}+z_{1-\alpha}\sqrt{\frac{p_{0}(1-p_{0})}{n}};+\infty\right]$ d'où

 $RC_{5\%} =]0.5 + z_{0.95} \times 0.0477$; $+\infty[$ = $]0.5 + 1.645 \times 0.0477$; $+\infty[$ =]0.5 + 0.0784; $+\infty[$ =]0.578; $+\infty[$ où $z_{1-\alpha} = z_{0.95} = 1.645$ est le quantile d'ordre $1-\alpha = 0.95$ de la loi $\mathcal{N}(0,1)$.

règle de décision

- on rejette H_0 (on accepte H_1 ou on valide H_1) au risque $\alpha = 5\%$ si la valeur observée de F_n , f appartient à la région de rejet du test unilatéral droit au risque $\alpha = 5\%$: $RC_{5\%} =]0,578$; $+\infty[$ et
- on conserve H_0 (on rejette H_1) au seuil α =5% sinon, c'est-à-dire si z n'appartient pas à RC_{5%}.

décision

La valeur observée de la statistique de test F_n : f = 0,509

Puisque f n'appartient pas à la région de rejet de H_0 on conserve donc H_0 (on rejette H_1) au seuil α =5%.

⇒ On ne peut pas accepter l'hypothèse que le rejet est majoritaire (plus de 50%) chez les personnes dont la scolarité est inférieure à 8 ans, au seuil α =5% et au risque de seconde espèce β inconnu.

Le risque minimum pour accepter H_1 (ou pour rejeter H_0) est le degré de signification α_{obs} :

c'est la probabilité d'obtenir sous H_0 une valeur de Z au moins aussi élevée que celle observée z, c'est à dire que $\alpha_{obs} = P(Z \ge z) = P(Z \ge 0.189) = 1 - F_Z(0.189) \approx 1 - F_Z(0.199) = 1 - 0.5753 = 0.4247$.

On accepterait H_1 (rejetterait H_0) pour un risque maximum $\alpha \ge \alpha_{obs} \approx 42,5\%$ risque minimum.

$$(\alpha_{obs} = P_{H_0}(F_n \ge f) = P_{H_0}(F_n \ge 0,509) = P(Z \ge z) = P(Z \ge 0,189) \approx 1 - F_Z(0,19) = 0,4247).$$

Exercice 8.10

 \mathcal{P}_1 ={patients ayant un médecin traitant choisi}, \mathcal{P}_2 ={patients ayant un médecin traitant imposé},

X=score au test mesurant le niveau de satisfaction, variable quantitative

notée X_1 dans \mathcal{P}_1 de moyenne μ_1 et d'écart-type σ_1 , inconnus dans \mathcal{P}_1 et notée X_2 dans \mathcal{P}_2 de moyenne μ_2 et d'écart-type σ_2 , inconnus dans \mathcal{P}_2 .

On dispose d'un échantillon de X_1 issu de \mathcal{P}_1 de taille n_1 =35 et d'un échantillon de X_2 issu de \mathcal{P}_2 de taille n_2 =35, indépendants sur lesquels on estime μ_1 par \overline{x}_1 =65,07 et μ_2 par \overline{x}_2 =56,47.

Test de comparaison de deux moyennes à partir de deux échantillons indépendants :

test unilatéral de l'hypothèse nulle H_0 : $\mu_1=\mu_2$ contre l'hypothèse alternative H_1 : $\mu_1>\mu_2$ au risque $\alpha=5\%$. Puisque les tailles des échantillons $n_1=35>30$ et $n_2=35>30$ le test est basé sur la statistique de test $Z=\frac{\overline{X}_1-\overline{X}_2}{\sqrt{\frac{S_1^*^2}{n_*}+\frac{S_2^{*2}}{n_*^2}}}$ qui suit

approximativement une loi $\mathcal{N}(0,1)$ sous H_0 . La région de rejet du test unilatéral au risque $\alpha=5\%$ est $RC_{5\%}$ =]1,645 ; + ∞] où la valeur critique $z_{1-\alpha}$ = $z_{0.95}$ = 1,645 est le quantile d'ordre α =0,95 de la loi $\mathcal{N}(0,1)$.

La variance observée sans biais dans \mathbf{P}_1 : $s_1^{*2} = \frac{n_1}{n_1 - 1} s_1^2 = \frac{35}{34} 15,22^2 = 238,46 (s_2 *= 15,44)$

la variance observée sans biais dans \mathbf{P}_2 : $s_2^{*2} = \frac{n_2}{n_2 - 1} s_2^2 = \frac{35}{34} 14,58^2 = 218,83 (s_1^* = 14,79)$

la valeur observée de la statistique de test Z : $z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^{*2}}{n_1} + \frac{s_2^{*2}}{n_2}}} = \frac{65,07 - 56,47}{\sqrt{\frac{218,83}{35} + \frac{238,46}{35}}} = 2,387$ appartient à la région

de rejet de H_0 : on rejette H_0 en faveur de H_1 au risque $\alpha=5\%$.

→ On peut accepter l'hypothèse que la possibilité de choisir son médecin a une influence bénéfique sur le niveau de satisfaction, au risque α =5%.

Exercice 8.13

 \mathcal{P}_1 ={ouvriers de l'entreprise}, X_1 = opinion des ouvriers vis à vis de la réforme

 \mathcal{P}_2 ={cadres moyens de l'entreprise}, X_2 = opinion des cadres moyens vis à vis de la réforme

 \mathcal{P}_3 ={cadres supérieurs de l'entreprise}, X_3 = opinion des cadres supérieurs vis à vis de la réforme

 X_1 , X_2 et X_3 variables qualitatives à 2 modalités définies sur $E=\{favorable, opposé\}$.

Test du khi-deux d'homogénéité sur 3 populations avec une variable à 2 modalités c'est à dire un test de comparaison de trois proportions sur 3 échantillons indépendants (procédure bilatérale) :

$$\begin{cases} H_0: p_1 = p_2 = p_3 \\ H_1: p_1 \neq p_2 \text{ ou } p_1 \neq p_3 \text{ ou } p_2 \neq p_3 \end{cases}$$
 où
$$\begin{bmatrix} p_1 = \text{proportion d' opinion favorable chez les ouvriers} \\ p_2 = \text{proportion d' opinion favorable chez les cadres moyens} \\ p_3 = \text{proportion d' opinion favorable chez les cadres supérieurs} \end{cases}$$

Sur trois échantillons indépendants de X_1 , X_2 et X_3 de tailles n_1 =285, n_2 =75 et n_3 =40, les effectifs observés n_{ij} et les effectifs théoriques (attendus) sous H₀ e_{ij} notés entre parenthèses :

X opinion	l	ouv	vriers	cadres	moyens	cadres s	upérieurs	total
	favorable	184	(188,1)	49	(49,5)	31	(26,4)	264
	opposé	101	(96,9)	26	(25,5)	9	(13,6)	136
total		n ₁ =285		n ₂ =75		n ₃	n=400	

Sous H_0 , la statistique de test Q^2 suit approximativement une loi du khi-deux à 2 ddl car $n=n_1+n_2+n_3=400 \ge 30$ et tous les e_{ij} sont supérieurs à 5. La région de rejet du test au risque $\alpha=1\%$ est $RC_{1\%}=]$ $q_{99\%}^2$; $+\infty[=]9,210$; $+\infty[$ car $q_{99\%}^2$ est le quantile d'ordre 0,99 de la loi χ_2^2 , et la valeur observée de Q^2 :

$$\begin{split} q^2 &= \frac{\left(184 - 188,1\right)^2}{188,1} + \frac{\left(49 - 49,5\right)^2}{49,5} + \frac{\left(31 - 26,4\right)^2}{26,4} + \frac{\left(101 - 96,9\right)^2}{96,9} + \frac{\left(26 - 25,5\right)^2}{25,5} + \frac{\left(9 - 13,6\right)^2}{13,6} \\ q^2 &= 4,1^2 \bigg[\frac{1}{188,1} + \frac{1}{96,9} \bigg] + 0,5^2 \bigg[\frac{1}{49,5} + \frac{1}{25,5} \bigg] + 4,6^2 \bigg[\frac{1}{26,4} + \frac{1}{13,6} \bigg] = 0,263 + 0,015 + 2,357 = 2,635 \\ q^2 &= 2,635 \not\in RC_{10\%} \text{ donc on ne rejette pas } H_0 \text{ au seuil } \alpha = 1\% \text{ et au risque de } 2^{\text{ème}} \text{ espèce } \beta \text{ inconnu.} \end{split}$$

ightharpoonup Dans l'entreprise, l'opinion vis à vis de la réforme ne diffère pas selon le type d'emploi, au seuil α =1% et au risque de 2^{ème} espèce β. Les proportions d'opinion favorable à la réforme ne sont pas différentes selon le type d'emploi, au seuil $\alpha=10\%$ et au risque de $2^{\text{ème}}$ espèce β .