\Rightarrow Existen particiones $P', P'' \in P[a,b]$ \Rightarrow $U(P',f) < \int_{a}^{b} f - \frac{e}{2}$ $L(P'',f) > \int_{a}^{b} f - \frac{e}{2}$ Sea $P_{e} = P' \cup P''$ y conside $P \leq P_{e}$. Entrues, $A - \frac{e}{2} < L(P'',f) \leq L(P_{e},f) \leq L(P,f) \leq L(P,f) \leq L(P,f) \leq U(P,f) \leq U(P,f) \leq U(P,f) \leq U(P,f) < A + \frac{e}{2}$ Entonom: $A - \frac{e}{2} < L(P,f) < L(P,f)$, \forall $U(P,f) < A + \frac{e}{2}$

de E, re treve que: $\int_{0}^{b} f \leq \int_{0}^{c} f$, Por tearema anterior, roberos que: $\int_{0}^{c} f \leq \int_{0}^{b} f$ =) $\int_{0}^{c} f = \int_{0}^{c} f \Rightarrow f \in D[a,b]$.

Teorema: Sea $f \in D[a,b]$. Entoncer, $f \in D[a,d]$, para cualquier $[c,d] \subset [a,b]$.

de E, re treve que:
$$\int_{0}^{b} f \leq \int_{0}^{c} f$$
, Por teorema anterior, roberos que:

 $\int_{0}^{c} f \leq \int_{0}^{c} f$
 $\int_{0}^{c} f = \int_{0}^{c} f \Rightarrow f \in D[a,b]$.

Teorema: Sea $f \in D[a,b]$. Entoncer, $f \in D[a,b]$, Para cualquier [c,d] c [a,b].

Def: Sea $P \in P[a,b]$ y ma tre [xe., xe] c P , $P \in D[a,b]$ y ma tre [xe., xe] c P , $P \in D[a,b]$ y ma tre $P \in$

$$S(P, f, ltx) = \sum_{k=1}^{n} f(tk) \Delta x_k$$

partición Py con la muestra transtra.

Teopeura: Los enunciados siguientes son equi-

- a) fella,b]
- b) Existe un número con la siguiente propiedal: VEZO J PEE P[a,b] > P & PE

tre [xx-1, xx] c [a,b], x=1,...,n, ne comple: |S(P,t, 7 tx3) - A | 26

$$A = \lim_{\substack{N \to \infty \\ N \to \infty}} \sum_{k=1}^{N} f(t_k) \Delta X_k$$

Dem. $a \Rightarrow b$: Sabemos que $f \in \mathbb{Q}[a,b]$ y suponese que $A = \int_{a}^{b} f = \int_{a}^{b} f = \int_{a}^{b} f$. Sea $\in 70$ y considere particiones P', $P'' \in P[a,b]$, tales que!

$$U(P,f) < \int_{0}^{\infty} f + \epsilon, \quad P \leq P'$$

$$L(P,f) > \int_{0}^{\infty} f - \epsilon, \quad P \leq P''$$
See $P_{\epsilon} = P' \cup P'' \quad y \quad \text{nea} \quad P \leq P_{\epsilon}. \quad \text{Enhouse},$

$$\int_{0}^{\infty} f - \epsilon < L(P,\epsilon) \leq S(P,f,1+\epsilon_{k}) \leq U(P,\epsilon)$$

$$< \int_{0}^{\infty} f - \epsilon < S(P,f,1+\epsilon_{k}) < \int_{0}^{\infty} f + \epsilon$$

$$\Rightarrow - \epsilon < S(P,f,1+\epsilon_{k}) - A < \epsilon$$

$$\Rightarrow |S(P,f,1+\epsilon_{k}) - A| < \epsilon.$$

$$\Rightarrow |S(P,f,1+\epsilon_{k}) - A| < \epsilon.$$