Abebra multilineal i geometria

& es un k-ex

1 Algebra lineal

1. Espacio dual

Sea E un K-ev.

rog: El espació dual es: Ex= { \q: E \rightarrow \kinosles \}

- Paro definir E* debemos usar bases: Si t es un

K-cu de dim n con bese B= { un..., un {, definimos.

ui millui) = Sii

L>B*= 341,..., unil es une bosse de E*

En particular, si $\omega \in E^+$, $\omega = \sum_{i=1}^N a_i u_i^*$, donde se comple que:

 $\omega(\mu_i) = \sum_{i=1}^n a_i u_i^*(\mu_i) = a_i = \omega = \sum_{i=1}^n \omega(\mu_i) u_i^*$

*CAMBIOS DE BASE

Scan Br. Bz bases de F (F es K-ev. de dim =n) y sean 8, 182 bases duales de B1,B2 de F*. Si Ba 58,182 es la matriz de cambio de base de Br a Bz, entonces:

58*, 82 = (581, B2) T = (582, 81) T

* APLICACIONES LINEALES

Seam Ey F R-ev. Sea D: F->F une aplicación lineal, entonces à induce le aplicación linoue significante:

更*: F* → E* WHI (W) = WOD

€ FF WK & composition de

5 EyF de dim finita, É admite expresión matricial (en coordinador).

En particular, B_{2} base de E (=) Φ viene dede per $M_{B_{1},B_{2}}(\Phi)$ y B_{2}^{**} base de E^{**} (\Rightarrow) Φ * viene dede per $M_{B_{2},B_{3}^{*}}(\Phi^{*}) = (M_{B_{n},B_{2}}(\Phi))^{T}$

ESPACIO BIOUAL

Dado E K-eis. pademos definir E*, E**, ... y tenemos que E** es camónicamente isomorfo a E mediante el isomorfomo:

 $\overline{\Phi}: \overline{E} \xrightarrow{\overline{\Phi}} \overline{F}^{**}$ $\omega \longmapsto (\overline{\Phi}(w))(w) = \omega(w) \in X$ $\omega \longmapsto (\overline{\Phi}(w))(w) = \omega(w) \in X$

(como este isomorfismo es camónico (no depende de las bases), ENE** y no distinguimos entre E y E**