Laboratorio di Dioingegneria

Ing. Andrea Ravaschio Laboratorio di Bioingegneria U.O.O.R.F. Osp San Francesco

Laborationio di analisi del movimento

Strumentazione principale:

- Vicon 612
 - o 9 telecamere IR
 - o Scheda acquisizione A/D 64ch
- Pedane Kistler (2)
- EMG 8ch (Fmax 3000 Hz)

Tecnione dinemaiografiche

• Prime quantificazione 2D fine '800

Loss of depth and motion in projection to 2D images.

Marker-based tracking

EADWEARD MUYBRIDGE, 1884-5. Multiple cameras.

CHECOSA E' LA STEREOFOTOGRAMMETRIA?

 La capacità di percepire la natura tridimensionale degli oggetti che ci circondano è definita visione stereoscopica ed è dovuta all'impiego combinato dei due occhi

Il cervello riceve quindi una doppia immagine di ciascun oggetto, una da ogni occhio, ed ha la capacità di unirle in un'unica immagine tridimensionale fortemente differente dalle immagini originali.

PRINCIPI DELLA Siero (O) Cranala (C)

Ricostruzione 3D del punto

L'obiettivo della stereofotogrammetria è il seguente:

dato un punto che si muove nello spazio del laboratorio, ricostruisco la posizione che tale punto ha assunto nello spazio di laboratorio in ciascun istante di tempo campionato, ovvero fornisce le coordinate x, y, z in ciascun istante di tempo appartenente all'intervallo di osservazione, rispetto ad un sistema di riferimento del laboratorio.

PRINCIPIDE IA Sieroporograndaria.

Ricostruzione 3D del punto

- Piano principale
- Punto Nodale
- Asse Ottico

PRINCIPIDELLA Siereo como ceranala e ela

Aquisizione 3D del punto

• Almeno due punti di osservazione (1 e 2)

Il punto P attraverso N1 e N2 si proietta sui due piani 1 e 2

PRINCIPIDELLA Stereofogranantera

Ricostruzione 3D del punto

Traccio le rette che dal punto di proiezione passano attraverso il nodo focale N

Occorre dunque tracciare un'altra linea utilizzando la seconda camera in maniera che le due linee si intersechino nel punto che era occupato dal punto oggetto durante le riprese

PRINCIPIDELLA Siereofologranaliria

si associa ad ogni camera un sistema di riferimento cartesiano, ad esempio facendo in modo che gli assi x e y siano proprio gli assi di simmetria del piano principale e che l'asse z sia l'asse ottico

Un riferimento di laboratorio (X, Y, Z) è stato precedentemente definito

PRINCIPI DELLA Siereoforogranaliria

Le informazioni riguardo la posizione e l'orientamento delle due camere, ovvero dei loro piani principali e dei punti nodali rispetto a questi, possono essere considerate **tempo invarianti** cioè è presumibile che, mentre il punto si muove nello spazio di laboratorio, le due camere rimangano ferme rispetto allo stesso laboratorio e dunque la loro posizione, il loro orientamento e la posizione dei punti nodali rispetto ai piani principali non si modifichino: queste caratteristiche sono dette *parametri di calibrazione*

Le equazioni all'interno del blocco che rappresenta la stereofotogrammetria analitica contengono dei parametri che consentono la determinazione delle grandezze oggetto della misura dello strumento. Vengono calcolati tramite la calibrazione del sistema

PRINCIPIDA Sierorockanakara

Avendo assegnato il valore dei parametri che realizzano dal punto di vista numerico la ricostruzione geometrica, è necessario fornire alle equazioni, in ciascun istante di tempo, le variabili misurate ovvero le immagini del punto oggetto sui due piani principali delle due camere. La risoluzione delle equazioni rende possibile la determinazione delle coordinate del punto oggetto istante per istante.

Il procedimento è infatti reiterato per ciascun istante di tempo campionato al fine di avere una descrizione del movimento del punto oggetto.

I parametri di calibrazione contengono informazioni sulla posizione e sull'orientamento delle camere fotografiche, ciascuna delle quali può essere considerata come un corpo rigido

PRINCIPIDELLA Sierologoranala

Avendo associato un riferimento alla camera è possibile descrivere posizione e orientamento di tale sistema di riferimento i parametri che descrivono completamente la camera nel laboratorio sono:

- · il vettore posizione p_c (tre scalari)
- · la matrice orientamento gR_c (nove scalari, di cui tre indipendenti)
- la distanza focale d (uno scalare)
 occorrono sette numeri per ciascuna camera.

Complessivamente i parametri necessari per descrivere il sistema stereofotogrammetrico, se costituito da una coppia di camere, sono 17 per ciascuna camera e 3 per il sistema di riferimento di laboratorio).

PRINCIPI DELLA Siereofoiograma etra

In ingresso si hanno: il vettore posizione, la matrice orientamento e la distanza focale per ciascuna camera, complessivamente 14 parametri, e le variabili, ovvero le 4 coordinate immagine relative alle due camere.

In uscita le coordinate (X,Y,Z) del punto P rispetto al sistema di riferimento del laboratorio.

(PALERYAYA (PALE

Abbiamo bisogno dei parametri di calibrazione (7 per ogni camera)

La determinazione di questi parametri avviene attraverso la calibrazione dello strumento, operazione che si attua utilizzando le stesse equazioni che si utilizzano nell'uso corrente del sistema dove però le coordinate immagine saranno supposte note così come le coordinate oggetto e quindi costituiranno l'ingresso

CALBRAZIONE Vicon

<u>Calibrazione Statica:</u> La posizione dell'oggetto di calibrazione statica identifica la posizione del sistema di riferimento assoluto del laboratorio

CALBRAZIONEVicon

<u>Calibrazione Dinamica:</u> Calcolo di tutti i parametri interni delle telecamere e viene effettata la linearizzazione delle ottiche

CALBRAZIONE Vicon

Note:

Coordinate immagine P1,P2,P3,P4 dei punti dell'oggetto di calibrazione Coordinate reali dei punti dell'oggetto

Stima:

-Parametri caratteristici del sistema

Dalla Teoria alla Pratica

PC

Telecamere

tvc=1...24

Centroidi (u,v)_{mk,tvc} mk=1...M

(x,y,z,"Polso")_{mk} mk=1...M

PC

Wisions of the singola is cannars

Modellizzazione

I Modelli biomeccanici servono per passare dai marcatori tecnici a quelli anatomici

Esistono diversi tipi di "markerizzazioni", i più comuni:

- Davis Gage, Usa 1989 (Storicamente il più utilizzato)
- Plug In Gait (versione moderna del Davis)
- SAFLo Frigo, Milano 1992
- CAST Cappozzo, Roma Bologna 1995
- LAMB Crenna, Rabuffetti Milano 2004
- Total3D Gait Leardini et al. Bologna 2007

Protocollo di Gait Analysis Davis - Gage 1989

- Primo protocollo di analisi del cammino sviluppato
- Protocollo maggiormente diffuso
- Modello biomeccanico relativamente semplice (attulamente in revisione)

- Marcatori Esterni
- Marcatori Ricostruiti

Protocollo SAFLo - Frigo, 1992

- 9-15-17 marcatori nelle diverse versioni
- Posizione postero-laterale per miglior visibilità

Protocollo CAST Cappozzo, 1995

- Marcatori montati su placche durante il movimento
- Punti anatomici calibrati in condizioni statiche
- Uso di placche critico in certe condizioni (es. Bambini)

Protocollo TOTAL 3D GAIT - Leardini 2007

- Nato per migliorare rappresentazione del piede
- Semplificazione procedure sperimentali (no sticks, no placche)
- Marker anatomici
- •Numero ridotto di calibrazioni anatomiche (no misure antropometriche)

Confronto tra i diversi protocolli (analisi cinematica)

Total 3D Gait Plug In Gait SAFLo

- CAST - LAMB

Confronto tra i diversi protocolli (analisi cinematica)

Confronto tra i diversi protocolli (analisi cinematica)

E' necessario conoscere pro e contro di ciascun protocollo prima di interpretare i risultati ottenuti con ciascuno di essi

identificazione centri articolari

3 criteri:

- Antropometrico (misure dirette)
- Statistico (approccio morfologico)
- Funzionale (vincoli cinematici)

APPROCCIO ANTROPOMETRICO

C = \$LegLength*0.115-15.3 InterASISDist=DIST(LASI,RASI) aa = InterASISDist/2 mm = \$MarkerDiameter/2 COSBETA = 0.951 SINBETA = 0.309 COSTHETA = 0.880 SINTHETA = 0.476 COSTHETASINBETA = COSTHETA*SINBETA COSTHETACOSBETA = COSTHETA*COSBETA

LHJC = {C*COSTHETASINBETA - (LATD + mm) * COSBETA, -C*SINTHETA + aa, -C*COSTHETACOSBETA - (LATD + mm) * SINBETA}*Pelvis

Approccio Funzionale cinematico

Minimizzazione della deviazione standard della distanza tra i centri articolari

SIEREOFOCRANANTEIRIA

Effetti di un cattivo posizionamento dei marker

Variazioni di 1 cm:

	Flex/Ext	Add/Abd	Rot. Int/Ext
Angoli ANCA [°]			
Max diff [°]	1.5	1.5	7.7
(% range)	4.1	8.9	56.6
Momenti ANCA [Nm]			
Max diff [Nm]	5.2	5.5	0.8
(% range)	8.5	10.2	4.0
Angoli Knee [°]			
Max diff [°]	1.5	1.5	10.9
(% range)	3.9	9.3	58.0
Momenti KNEE			
Max diff [Nm]	5.9	5.9	1.0
(% range)	15.0	19.7	11.6

Ariefairi de la pelle

Ariefaili de la pelle

Spostamenti relativi nel piano immagine tra 30° e 90° di flessione

Abbiamo la cinematica (angoli articolari)

Cinetica articolare
(Forze e Momenti articolari

Potenze prodotte o
assorbite)

Problema dinamico inverso

FORZED REAZIONESTERNE

Plate io me di forze o dina mometria

Esistono due tipi di pedane:

- -3 Componenti (Analisi Statica)
- -6 Componenti (Analisi Dinamica)

2 Pedane Kistler a 6 componenti

Force plate output signals

Channel Description

 $\begin{array}{ll} f_{x12} & 1 \ \text{Force in X-direction measured by sensor 1 + sensor 2} \\ f_{x34} & 2 \ \text{Force in X-direction measured by sensor 3 + sensor 4} \\ f_{y14} & 3 \ \text{Force in Y-direction measured by sensor 1 + sensor 4} \\ f_{y23} & 4 \ \text{Force in Y-direction measured by sensor 2 + sensor 3} \\ f_{z1}...f_{z4} \ 5 \ ... \ 8 \ \text{Force in Z direction measured by sensor 1 ... 4} \end{array}$

In La <mark>coratorio</mark>

Parameter	Calculation	Description	
Fx	= fx12 + fx34	Medio-lateral force 1)	
Fy	= fy14 + fy23	Anterior-posterior force	
Fz	= fz1 + fz2 + fz3 + fz4	Vertical force	
Mx	= b * (fz1 + fz2 - fz3 - fz4)	Plate moment about X-axis	
Му	= a * (-fz1 + fz2 + fz3 - fz4)	Plate moment about Y-axis	
Mz	= b * (-fx12 + fx34) + a * (fy14 - fy23)	Plate moment about Z-axis	
Mx'	= Mx + Fy*az0	Plate moment about top plate surface	
My'	= My - Fx*az0	Plate moment about top plate surface	
Ax	= -My' / Fz	X-Coordinate of force application point (COP)	
Ау	= Mx' / Fz	Y-Coordinate of force application point (COP)	
Tz	= Mz - Fy * ax + Fx * ay	Free moment, Vertical torque, "Frictional" torque	
COFx	= Fx/Fz	Coefficient of Friction x-component	
COFy	= Fy/Fz	Coefficient of Friction y-component	
COFxy	= sqrt (COFx^2 + COFy^2)	Coefficient of Friction absolute	

ANALISI FUNZIONALE

EMG Elettromiografia dinamica (di superficie)

ATTIVITA WUSCOLARE

Studio degli istanti di attivazione muscolare durante il movimento

ATTVITA' DI LABORATORIO

Attività orientata alla clinica (effetti della riabilitazione):

Gait Analysis (Neurologico ed Ortopedico)

Ricerca orientata alla metodologia riabilitativa:

Stretch Reflex (Soggetti Neurologici Ipertonici)

Sportivi:

- •Fioretto (Creazione di Librerie del movimento)
- Calcio (Cambi di Direzione)
- Ciclismo (Studio delle assimetrie nella pedalata)

Valutazione della soglia di comparsa dello Stretch Reflex in soggetti emiplegici post stroke con iperattività allo stiramento dei muscoli flessori del polso e delle dita

- Studio Pilota -

A. Ravaschio[±], M. Migionini[±], PLippi^{±±}, A.Guidi[±], L.Grimalei[±]

^{*} Laboratorio di Bioingegneria Osp. San Francesco, U.O.R.R.F. usl2 Lucca

^{**} UORF, usl3 Pistoia

Scala di Ashworth³ strumento valutativo classico

Iperattività allo stiramento definita come:

"disordine motorio caratterizzato da un'alterazione della soglia allo stiramento velocità dipendente" ¹

Correlazione tra iperattività e velocità di stiramento (sano vs patologico²) Sano>250°/s

- 1] Lance J.W., The control of muscle tone, reflexes and movement: Robert Waternberg Lecture, Neurology, 30 (1980) 1303-1313
- **2]** Levin M.F., Feldman A.G., The role of stretch reflex trheshold regulation in normal and impaired motor control: Brain Research 1994; 657:23-40
- **3]** Sloan R.L. et al, Inter-rater reliabylity of modified Ashworth Scale for spasticity in hemiplegic patients. In J Rehabil Res 1992; 15:158-61

Soggetti Recipitati

- 6 Soggetti (5 U, 1 D)
- Esiti da stroke (10 -50 mesi)
- Età media: 54.8 anni

Soggetto	Anno	Mesi dall'evento	Lato colpito
А	1950	21	SX
В	1957	27	SX
С	1944	10	SX
D	1944	31	SX
E	1970	50	DX
F	1954	50	DX

Materiale e meiodi

Valutazione della velocità soglia
 Imposizione di stiramenti ripetuti a velocità crescente da 0 a 180°/s

Individuazione della soglia

Individuazione delCalTarlgedtelaaflenzione di Fitting

 20 minuti di mobilizzazione passiva del polso alla velocità soglia rilevata nella acquisizione Pre.

(Soggetio A)

Soggetto A

- Maschio, 54 anni
- Cronico, 21 mesi dall'evento (ictus ischemico)
- Emiparesi Sinistra
- Stiffness elevata del polso e delle dita
- Punteggio Scala di A. 4

• Acquisizione pre - valutazione soglia

Aquisizione post

• Scala finale 2

- o < rigidità della mano
- acquisizione di un leggero movimento di grasping (mai avuto)

Pair (Turi i Soggarii)

Tutti i casi (barre) + scala di Ashworth (numero).

Attività orientata alla clinica (effetti della riabilitazione):

Gait Analysis (Neurologico ed Ortopedico)

Ricerca orientata alla metodologia riabilitativa:

Stretch Reflex (Soggetti Neurologici Ipertonici)

Sportivi:

- •Fioretto (Creazione di Librerie del movimento)
- •Calcio (Cambi di Direzione)
- •Ciclismo (Studio delle assimetrie nella pedalata)

Analisi del movimento ne lo sportivo

Cambio di direzione durante una partita

Studio delle forze in gioco durante un cambio di direzione

Migliorare la preparazione atletica mediante lo sviluppo di protocolli specifici

<mark>Proposta d</mark>i tesi

Analisi comparativa computerizzata del cammino:

•Realizzazione di un software in grado di analizzare più trial di Gait Analysis ed individuare le differenze più significative.

That's all folks !!

Ing. Andrea Ravaschio

Laboratorio di Analisi del Movimento Osp. San Francesco Via dei Frati 1, 55051 Barga (LU)

Tel. 0583-729.348

E-mail: a.ravaschio@yahoo.it