Problem Set Answer Template

Your Name

July 17, 2025

Question 1

(placehoder for analytical question)

Answer:

We need to prove the additive property of expectations: if X and Y are random variables, then $\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$.

By the definition of expectation, we have:

• The expectation of the sum X + Y is given by:

$$\mathbb{E}[X+Y] = \int_{-\infty}^{\infty} (x+y) f_{X,Y}(x,y) \, dx \, dy, \tag{1}$$

• Using the linearity of integration, we can separate the terms inside the integral in Equation 1:

$$\mathbb{E}[X+Y] = \int_{-\infty}^{\infty} x f_X(x) \, dx + \int_{-\infty}^{\infty} y f_Y(y) \, dy.$$

• Simplifying, we obtain:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]. \quad \blacksquare$$

Question 2

(placeholder for question involving data analyses in R)

Answer:

We use Angrist and Pischke (2009) in the answer. Table 1 describes the variables we will simulate.

Variable	Description
$\overline{X_1}$	Random variable drawn from a normal distribution with mean 5 and
	standard deviation 2

Variable	Description
X_2	Categorical variable with levels "A", "B", and "C", sampled randomly with replacement.
X_3 Y	Binary variable drawn from a Bernoulli distribution with probability 0.5. Dependent variable calculated as 3 + 2 * x1 + 1.5 * as.numeric(x2) + 0.8 * x3 plus some random noise.

Table 1: Variable description.

Code below simulates a dataset with 100 observations according to the description in Table 1 and adds some random missingness to variables X_2 and X_3 . Table 2 shows the top 6 rows of this dataset.

```
# Generate a sample dataset
   data <- dplyr::tibble(</pre>
      x1 = rnorm(100, mean = 5, sd = 2),
      x2 = factor(sample(c("A", "B", "C"), 100, replace = TRUE)),
      x3 = rbinom(100, 1, prob = 0.5),
       y = 3 + 2 * x1 + 1.5 * as.numeric(x2) + 0.8 * x3 + rnorm(100)
   # Introduce some NAs into x2 and x3
   data$x2[sample(1:100, 10)] <- NA
10
   data$x3[sample(1:100, 10)] <- NA
11
12
   dplyr::sample_n(data, size = 6) |>
13
      knitr::kable(
14
          format = "latex", digits = 3,
15
          align = "c", booktabs = TRUE, linesep = ""
16
17
```

x1	x2	x3	У
3.851	С	0	15.340
4.119	A	1	13.455
9.832	\mathbf{C}	0	26.608
9.141	A	NA	20.527
4.049	\mathbf{C}	1	15.979
3.553	A	1	14.349

Table 2: Simulated data.

Code below produces Table 3 that shows point and uncertainty estimates for the model $Y = \alpha_1 + \beta_1 X_1 + \varepsilon$ (column 1) and $Y = \alpha_2 + \beta_2 X_1 + \beta_3 X_2 + \beta_4 X_3 + \varepsilon$ (column 2).

```
modelsummary::modelsummary(
list(mod1, mod2), stars = TRUE,
gof_omit = "BIC|AIC|RMSE",
```

```
coef_omit = "(Intercept)", output = "latex")
```

	(1)	(2)			
x1	1.995***	1.950***			
	(0.093)	(0.057)			
x2B		1.201*			
		(0.493)			
x2C		2.967***			
		(0.391)			
x3		1.272**			
		(0.395)			
$x2B \times x3$		-0.330			
		(0.643)			
$x2C \times x3$		-1.058+			
		(0.558)			
Num.Obs.	100	82			
R2	0.878	0.949			
R2 Adj.	0.876	0.945			
+ p <0.1, * p <0.05, ** p <0.01, *** p <0.001					

Table 3: Regression output.

The code below produces Figure 1 with two panels. Figure 1a shows scatter plot of X_1 against Y with linear trend, while Figure 1b shows histogram of categorical variable X_2 .

```
ggplot(data, aes(x = x1, y = y)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
theme_minimal(base_size = 10)

ggplot(data, aes(x = x2)) +
geom_bar() +
theme_minimal(base_size = 10) +
labs(x = "x2 Categories", y = "Count", title = "")
```


Figure 1: Example figures.

References

Angrist, Joshua D, and Jörn-Steffen Pischke. 2009. Mostly Harmless Wconometrics: An Wmpiricist's Companion. Princeton University Press.