## Lecture Notes 7: DFA Minimization

Raghunath Tewari IIT Kanpur

Given a DFA  $D=(Q,\Sigma,\delta,q_0,F)$  we define a equivalence relation on the states of the DFA. For any two states  $p,q\in Q$ , we say that  $p\approx p$  if for all string  $x\in\Sigma^*$ ,  $(\delta(p,x)\in F\iff\delta(q,x)\in F)$ .

**Exercise 1.** Verify that  $\approx$  is an equivalence relation.

Let  $[p] = \{q \mid q \approx p\}$  be the equivalence class of all states equivalent to p. We define a quotient DFA  $D_{\approx}$  based on the DFA D as  $D_{\approx} = (Q', \Sigma, \delta', q'_0, F')$ , where,

$$Q' = \{[p] \mid p \in Q\}$$
 (i.e. the set of equivalence classes) 
$$\delta'([p],a) = [\delta(p,a)]$$
 
$$q'_0 = [q_0]$$
 
$$F' = \{[f] \mid f \in F\}$$

**Exercise 2.** Show that the definition of  $\delta'$  is well defined. In other words, if [p] = [q], then  $[\delta(p,a)] = [\delta(q,a)]$  for all  $a \in \Sigma$ .

We will now show that  $D_{\approx}$  and D accept the same language.

**Lemma 1.** For all  $x \in \Sigma^*$ ,  $\delta'([p], x) = [\delta(p, x)]$ .

*Proof.* We will use induction on |x|.

Base Case If  $x = \epsilon$ , then

$$\delta'([p], \epsilon) = [p]$$
  
=  $[\delta(p, \epsilon)].$ 

**Induction Step** Let x = ya and assume that  $\delta'([p], y) = [\delta(p, y)]$ . Now

$$\delta'([p], ya) = \delta'(\delta'([p], y), a)$$

$$= \delta'([\delta(p, y)], a)$$

$$= [\delta(\delta(p, y), a)]$$

$$= [\delta(p, ya)].$$

Theorem 2.  $L(D_{\approx}) = L(D)$ .

*Proof.* For all  $x \in \Sigma^*$ ,

$$\delta'(q'_0, x) \in F' \iff \delta'([q_0], x) \in F'$$
 $\iff [\delta(q_0, x)] \in F' \qquad \text{(by Lemma 1)}$ 
 $\iff \delta(q_0, x) \in F.$ 

Exercise 3. Can you collapse the quotient DFA any further? What happens if you try to do so?

## 1 DFA Minimization Algorithm

Remark. A state is said to be unreachable if on no input the DFA ever traverses that state. Let  $D = (Q, \Sigma, \delta, q_0, F)$  be a DFA that does not have any unreachable states. The algorithm to minimize the DFA is as follows:

- 1. Create a table of pairs  $\{p,q\}$ , where  $p,q\in Q$ . All entries of the table are initially unmarked.
- 2. Mark the pair  $\{p,q\}$  if  $p\in F$  and  $q\notin F,$  or vice versa.
- 3. Repeat the following until you make an entire pass of the table and no new pair gets marked:
  - If  $\{p,q\}$  is unmarked and there exists a symbol  $a \in \Sigma$  such that  $\{\delta(p,a), \delta(q,a)\}$  is marked, then mark pair  $\{p,q\}$ .
- 4. After completion,  $p \approx q$  if and only if  $\{p, q\}$  is not marked.

## 1.1 An Example

Consider the following DFA



We want to minimize the above DFA. We first create a table of pairs.



No more pairs can get marked any further. Hence the algorithm terminates. From the final table we have that  $2 \approx 3$  and  $4 \approx 5$ . Hence the minimized DFA will have the following form.



**Exercise 4.** Minimize the following DFA.

