

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

D-A 191 214 - PEPOPT DOCL	JMENTATION	PAGE -	MILE		ם מח
UNCLASSIFIED	16 RESTRICTIVE	MARKINGS	7116	TIL	- 661
2a. SECURITY CLASSIFICATION AUT DE	3 DISTRIBUTION	. AVAILABILITY	OF REPORT		
26 DECLASSIFICATION DOWNGRADIN TCHEDULE	CNLIMIT	ED			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)	5. MONITORING	ORGANIZATION	REPORT NU	MBER(S)	
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORG	ANIZATION	·	
Department of Oceanography Texas A&M University (If applicable)	Texas A&N	l Research	Foundati	ion	
ic. ADDRESS (City, State, and ZIP Code)	76 ADDRESS (Cit	y, State, and Zli	P Code)		
College Station, Texas 77843	Box 3578 College S	Station, Te	xas 778	343	
Ba. NAME OF FUNDING SPONSORING ORGANIZATION (If applicable)	9 PROCUREMENT		DENTIFICAT	ON NUMB	ER
Naval Ocean R&D Activity (NORDA		38-J-6002	-00	 :	
Sc. ADDRESS (City, State, and ZIP Code) Code 334	10. SOURCE OF F	PROJECT	TASK	- Iv	ORK UNIT
NSTL, Mississippi 39529	ELEMENT NO	NO.	NO		CCESSION
FIELD GROUP SUB-GROUP Chemical Oc	Continue on reverse	if necessary ar	nd identify		iumber)
Sea; (ceanic Fronts	; Chemical	Variabi	lity is	Tranean Tupper (
Sea; 19. ABSTRACT (Continue on reverse if necessary and identify by block Two Marine Technicians from the Techni	echnical Suppo as A&M Univers nitrite, pho	; Chemical rt Services ity provides sphate, and	Variabi s group ed on bo	of the ard	Tranean Typper (
Sea; 19. ABSTRACT (Continue on reverse if necessary and identify by block Two Marine Technicians from the Technicans from	echnical Suppo echnical Suppo as A&M Univers nitrite, pho Operation DEJ ecember 1987).	rt Services ity provide sphate, and A VU, cruis	Variabi s group ed on bo d silica se 702-8	of the ard te on 8 of chnicor	i Upper C
Sea; 19. ABSTRACT (Continue on reverse if necessary and identify by block Two Marine Technicians from the Technicians from the Technicans from the Technicians from the Technicans from the Technicians from the Technicians from th	echnical Suppo echnical Suppo as A&M Univers nitrite, pho Operation DEJ ecember 1987).	rt Services ity provide sphate, and A VU, cruis	S group ed on bo d silica se 702-8 ith a Te	of the ard te on 8 of chnicor	i Upper C
9. ABSTRACT (Continue on reverse if necessary and identify by block Department of Oceanography at Texa autoanalyzer analyses for nitrate, seawater samples collected during the USNS LYNCH (14 November - 2 De 838 samples from 33 CTD stations would have all four-channel autoanaly	echnical Suppo echnical Suppo as A&M Univers nitrite, pho Operation DEJ ecember 1987).	rt Services ity provide sphate, and A VU, cruis on board wi by Texas A8	S group ed on bo d silica se 702-8 ith a Te	of the ard te on 8 of chnicorrsity	i Upper C
9. ABSTRACT (Continue on reverse if necessary and identify by block Two Marine Technicians from the Technicians from the Technicans from the Technicians from the Technicians from the Technicians from the Technicians from	echnical Suppo echnical Suppo as A&M Univers nitrite, pho Operation DEJ ecember 1987).	rt Services ity provide sphate, and A VU, cruis on board wi by Texas A8	s group ed on bo d silica se 702-8 ith a Te	of the ard te on 8 of chnicorrsity.	i Upper C

All other editions are obsolete

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SUMMARY OF TECHNICAL SUPPORT SERVICES PROVIDED

Marine Technicians Mark Spears and Glenn Casey of the Department of Oceanography at Texas A&M University flew from Houston, Texas, to Rota, Spain, on 7 November 1987 to provide autoanalyzer support for USNS LYNCH cruise 702-88. Organized by scientists from the Oceanography division of NORDA at Bay St. Louis, Mississippi, this cruise investigated ocean frontal processes in the western Mediterranean Sea, with emphasis on the Almeria and Oran fronts.

Pre-cruise staging and other preparation began in Rota 8 November, and LYNCH embarked Rota on 14 November. From 15 November - 1 December, 41 CTD stations were occupied and four-channel autoanalyzer nutrient analyses were run at 33 of these. Duplicate water samples for analysis of silicate, phosphate, nitrate, and nitrite were drawn at a series of depths from the sample stream from a submersible pump attached to the CTD. Autoanalyzer sampling generally began around 120m and proceeded at roughly 10m intervals to the surface. In all, 419 pairs of water samples were analyzed for nutrients on board LYNCH during cruise 702-88.

SUMMARY OF ANALYTICAL TECHNIQUES

The autoanalyzer used to support LYNCH cruise 702-88 was a 4-channel Technicon AA-II, which was standardized by running 2-3 working standards of all four nutrients prior to and after each station. All samples were analyzed within two hours of collection; analysis rate was 20 samples per hour. Peak heights picked off the strip chart recorder output of each autoanalyzer channel were converted to nutrient concentration in ug-at/liter by linear interpolation from absorbance relative to the working standards, using a shipboard computer.

Silicate was determined by ammonium molybdate + tartaric acid + stannous chloride method; phosphate by ammonium molybdate + hydrazine method; and nitrate by sulfanilamide + NEDA method, after reduction to nitrite with a cadmium reduction column. All analyses except phosphate, which was heated in a 70 C bath, were carried out at room temperature. Colorimeter interference filters utilized were 660 nm (silicate), 880 nm (phosphate) and 550 nm (nitrate + nitrite).

To evaluate precision and accuracy of the analytical methods, 15 replicate analyses of each of the highest working standards were run after completing the last station of the cruise. The standard deviation in ug-at/liter for a 6.0 ug-at/liter silicate standard was 0.05 (cv=1%); 0.005 for a 0.50 ug-at/liter phosphate standard (cv= 1%); 0.05 for a 6.5 ug-at/liter nitrate standard (cv=1%); and 0.005 for a 0.50 ug-at/liter nitrite standard (cv=1%).

CRUISE 87L88 STATION B87L86*01*1

WIRE LENGTH	P04	Si(OH)4	N03	SUN
METERS	<u>um/1.</u>	UM/1	Um/ 1.	- गलर रे
110	.21	5.80	8.91	100.
100	2 ‡	4-5.30	-6-74 -	-4007
80	.18	3,60	6.60	.02
	 6	3.00	. — — — — —	
60	.12	2.40	5,70	. 12
<u></u>		1.50	-4-+3-	19
45	. 10	2.20	3.43	, 19
~~~~×\+\+\+	<del>95</del>		- <del>, 53</del>	<del>03</del>
30	100.	.30	.26	. 02
<del>20</del>	0 :	.20	<del></del>	<del> 0</del> 2
10	.02	. 10	, 65	. 01
<del></del>	100-	0.00	- <del></del>	<del>-100,</del>

## CRUISE 87L88 STATION B87L88*02*1

JIRE LENGTH	P 04	Si(OH)4	M02	N02
meters	—##7/1.=	um/l.		- vm/1
100	, 22	5.10	8.69	.00
<del></del>	<del>ـــ ي يـــــ</del>	4.90	830-	() A
80	. 19	4,10	7.24	. 05
<del></del>	<del>- , i 9</del> -	3.80	- <del>7-19-</del>	<del>0</del> #
60	17	2.90	5.64	. 14
<del></del>	<del></del>		<del>-+-0</del> 1-	$\cdot 0$ ?
40	, 0.1	.30	.20	, 03
			<del></del>	
20	100.	. 10	.10	. 02
		<del></del>		
Ü	, 03	.20	.77	.03

The same of the last of the la
Accesion For
NTIS CRA&I
DTC 1AB E
-
Just Cotton
1 de
2 th attend
According to Jour
13.33.010
30004

A-1 23

## CRUISE 87L88 STATION B87L88*03*1

WIRE LENGT	H P04	Si(OH)4	NO3	ИО2
METERS	UM/1	UM/	一切两才是一	TMIT
90	. 24	2.50	5.12	. 05
<del></del>	<del>,21-</del>	1.70	<del>- 4 - 4 9</del>	<del>, 05</del>
70	.19	1.60	3.93	. 07
<del>- 60</del>		.90	<del>- 2.60</del>	<del> 0 3</del>
55	. 10	. 90	2.08	. 05
	07	711	<del>!</del> ;	<del></del>
45	.06	.80	1.63	.03
<del></del>	06		- 4-56-	0 3
32	. 0.4	.70	1.58	.02
	<del></del>	7.30	<del>- 1.45</del>	<del></del> !!
10	.02	.30	1.37	.01
<del></del>		.10	-1-24-	1-90-

CRUISE 87L88 S	STATION	B87L86*04*1
----------------	---------	-------------

WIRE LENGTH	P 04	Si(OH)4	N03	N02
- HETERS	<del>-um/l-</del>	Um/1	- # M X - #	-1 AMA
100	.29	3.80	7.24	100.
<del>9</del> 0	<del>, 3</del> 7-	5.00	' <del>-8,66-</del>	<del>- 100-</del>
80	. 35	4.80	8.42	100.
70	- , 32	4.10	- <del>7.5</del> 5-	<del>-100</del>
60	. 25	2.70	5.53	100.
50		2.00		02-
45	.16	3.30	3.41	, 16
	<del> , 13</del>	-1.20	<del>2 6 :</del>	19
30	.01	. 10	. 1/2	. 14
		<del></del>	<del></del>	+00
****		, 10	•	
10	. 92	, 20	. 33	100.
	n <u>-</u> -		<del> </del>	
	1 17 %	20	* va v	* · W •

## CRUISE 87108 STATION B87186*05*1

WIRE LENGTH	P 04	Si(OH)4	EOM	M05
METERS	UMIL	11 14 2 ]	UMIL	9671
100	.30	6.00	0.61	100.
ä 0	, ZZ	4:20	7.01	100.
70	. 29	4,40	6.40	.12
စပ်	. 24	<u> </u>	5.53	7, 24
55	. 1 0	2.80	4.33	, 44
. 50	, 19	2.60	3.80	743
45	. 0.5	1.10	. 48	.17
40	. 0 1	.80	. 09	. 04
30	.08	.70	. 18	.06
20	. 02	, 80	. 27	.07
10	.01	.70_	.09	.08
0	.03	.80	,04	. 18

## CRUISE 87L88 STATION BG7L88*06*1

WIRE LENGTH	P () 4	Si(DH)4	N03	1402
METERS	UMZI	UM/I	I/MU	UMZI
100	.35	3.20	8.70	100.
ยับ	. 33	2.50	7.68	.01
70	. 46	2.20	6.92	.02
€0	. 32	2.00	6.44	.02
50	26	1.50	5.68	.09
40	. 20	1.20	4.49	. 25
35	.20	1.30	4.64	. 09
30	. 09	.50	1.96	.30
25	100.	99.99	. 05	.02
20	100.	99.99	99.79	100.
10	100.	. 10	.24	100.
0	.02	. 10	.23	.01

CRUISE 67L8	08 ST	ATION BE	37L88*0	7#1
WIRE LENGTH	PO4	Si(OH)4	50и	N02
METERS	um/1	UM/1	Um/l	UM/1
95	, 33	3.90	8.36	. 01
ਰ0	. 31	5.10	7.39	. 02
70	.26	2.10	5.98	. 11
60	.24	2.30	5.47	. 15
50	.10	1.10	1.98	. 21
40	. 06	. 80	1.14	.17
35	.03	.60	.72	. 12
30	.04	, 50	.69	. 11
25	.02	.50	.52	.08
20	100.	.40	.21	, 03
10	100.	99.99	99.99	100.
0	100.	99.99	99.99	100.
			. <u>.</u>	

CRUISE 87L	.88 S	TATION B	87L88×1	5×1
WIRE LENGTH	P 04	Si(OH)4	кои	N02
METERS	Um/l	UMZI	9M/1	UMZI
100	.23	1.50	4,94	. 63
90	.21	1.50	4.50	.05
80	.14	1.00	2.74	.05
70	.11	.80	2.10	.07
60	.07	.60	1.00	.37
50	.01	.30	.05	.20
40	. 01	. 10	99,99	. 0 1
30	100.	.10	79,99	100.
20	100.	.10	99,99	100.
0.1	700.	. 10	.17	100.
0	100.	99.99	.31	100.

## CRUISE 87L88 STATION 887L88*16*1

WIRE	LENGTH	P04	Sa (OH) 4	E0 <i>N</i>	N02
MET	ERS	I vmu	UM/IL	UM/ 1.	Um/I
	97	.30	3.40	7.16	.03
	90	.24	2.60	4.81	.07
	80	.27	2.90	5.54	. 10
	70	.04	. 80	.22	.19
	60	.01	. 60	.01	.06
	50	.01	.40	, 06	.05
	40	. 01	, 40	.06	.05
	30	.02	. 50	.06	. U &
i	20	.01	. 30	.01	.05
	1 0	100.	99,99	.09	100.
	0	0 1	.30	.44	100.

## CRUISE 87L88 STATION B87L88*17*1

STATES OF THE PRODUCT OF THE PRODUCT

WIRE LENGT	H PO4	Si(OH)4	K03	N02
METERS	UM/I	0671	UM/I	UMZ
100	.09	2.50	2.90	. 04
90	. 13	1,50	3.70	.14
85	. 14	1.40	3.55	.20
80	.20	2.00	4.74	. 26
70	.07	1.20	1.39	. 27
60	.05	.90	.78	.50
50	.02	.50	.24	.52
40	.01	. 10	. सन	.03
30	.01	.10	.04	.02
20	. 0.22	.10	.12	.02
10	. 0 1	.10	. 04	. 0 1
0	7.07	01.	.05	. 0 i

#### CRUISE 87L88 STATION B87L88*18*1 WIRE LENGTH PO4 Si(OH)4 NO3 um/l UM/ 1 UM/I um/l . 14 1.70 $1\,0\,0$ 4.34 .05 96 .13 1.60 5.72 . មម 80 .16 1.60 3.99 .16 2.75 70 , 13 1.80 .12 60 .08 1.40 1.32 .28 50 .08 1.20 1.39 . 40 .04 40 .80 .51 .60 30 .02 .40 . 14 . 09 .02 20 .20 .17 .03 15 .01 .14 . 30 .04 10 .04 .30 .46 .11

.01

Ű

CRUISE	87L88	STATION	E87L88*19	× 1
<u>_</u>				

99.99

.09

.03

WIRE LENGTH	P 04	Si(DM)4	И03	N02
METERS	UM/ L	UM/1	UMI	Um/1
108	.27	3.50	7.22	.03
$\overline{90}$	.27	3,00	7.0E	.04
80	.24	2.80	6.53	.06
75	.25	2.80	8.50	.06
70	. 25	2.60	6.32	.09
50	,13	1.80	4.77	.25
50	.03	.90	.83	. 25
40	. 0 5	. 74	, तज्ञ	.20
35	.02	1.00	, O o	.05
30	.02	.60	, 114	.02
20	100.	. 20	. I .	.01
10	.05	.20	722	70.2
6	. 01	30	.07	.02

CRUISE 87L88 STATION B87L88*21*1

WIRE LENGTH	P04	Si(OH)4	E04	NO2
METERS	<del>-0 m/ 1-</del>	<del>21m/ 1.</del>	UM/II-	-tmz-1-
108	. 27	3.30	7.49	. 02
<del>90</del>	27	<del>- 2.59 -</del>	7.09	
80	.23	2.30	6.61	. 05
··		<del></del> • ··· ··		
75	, <del>! 5</del>	: : <del>5</del> 0	<del>-3785-</del>	<del>05-</del>
70	.09	1.10	2.38	.06
<del></del>	<del> 08</del>	<del>- i.a0</del>	<del>-2.06-</del>	<del></del>
50	.08	1.80	1.81	.06
40	<del>37</del>	<del>:-79</del>	-1-51-	07-
35	. 0.7	1.20	1.55	. 29
	<del></del> 0 44-	<del></del>	- : : : : : : : : : : : : : : : : : : :	22
		. ,		
20	. 01	99.99	. 10	. 01
19	32	<del></del>	<del></del> 08-	
0	.03	. 10	.26	. 03

SASSANT ASSESSE PROGRAM ASSESSES ASSESSES AND ASSESSES.

CONTRACTOR OF THE PROPERTY OF

CRUISE 87L88 STATION B87L88*22*1

WIRE LENGTH	P04	51(OH)4	И02	M05
METERS	UM/I	0.007.1	Um/l	UM/1
109	. 15	2.80	4.34	.02
70	.16	2.40	4,63	.03
75	.16	2.40	4.35	.03
60	.12	2.00	2.93	. 04
50	.18	2.40	4.04	.0é
45	.09	08.1	1.87	.10
40	. 0 3	1.80	1.04	. 15
ত্ত	. 05	0.40	173	.29
30	.02	.70	. 57	. 1 1
25	.02	.50	, 54	0.0
20	.01	. 40	, 54	, 0 ć
10	.01		.20	702
0	. 61	. 10	. 1 🖁	. 62

CRUISE 87L88 STATION B87L88*23*1 WIRE LENGTH PO4 Si(OH)4 NO3 N02 METERS um/1 um/l UMI UM/L 2.70 108 .22 6.17 .03 2.20 90 .20 6.02 .03 .20 70 2.30 5.06 .04 .05 60 .17 2.40 J.06 .07 55 .13 1.90 2.70 50 .21 7.20 4.43 .07 40 .18 2.00 3.55 .12 35 .15 1,80 2.88 . 26 .05 30 .80 .65 , 1 ö 25 ,10 99,99 100. . 0.5 .02

99,99

99,99

.03

دًا ،

.04

.01

. 01

. 0 1

100.

100.

100.

20

10

		• •		
CRUISE 87	'L88 S	MOITAT	B87L88*	24*1
WIRE LENGTH	a 204	Si(OH)4	EDN 4	N02
METERS	UM/I	Um/L	UM/ L	UMZI
105	, 20	2.70	6.30	, 04
75	. 18	2.20	3.26	.13
90	.08	1.20	2.35	. 35
85	.13	1.20	3.39	. 17
80	, 16	1.30	3.22	.20
70	.14	1,40	3.06	. 34
60	.15	1.60	2.96	. 54
50	,21	2.00	4.00	, 1.3
40	.19	1.70	3.86	.12
30		<del>, फ़</del> त	2.05	7,15
20	, 01	.10	.05	. n.z
I.0	-100-	7.10	.04	. 02
0	. 0 1	99 <b>,</b> 99	99,99	.03

## CRUISE 87L88 STATION 887L86*25*1

WIRE LENGTH	P04	Si(OH)4	K03	NO2
METERS	um/l	um/l	uni/1	Um/1
100	. 28	3.20	6.65	100.
100	.26	2.60	5.41	.01
90	.23	2.00	4.99	. 0 1
50	.20	1.00	4.04	. 02
70	.17	1.30	3.44	, Ü &
οÜ	.11	.70	-1.58	. 14
50	.02	99,99	.16	.13
45	. 072	- इष्ट्राइप्	. 1.5	. 12
40	.02	.20	.15	.12
30	.02	. 10	. 15	. 10
20	.01	. 10	.17	. 10
1 0	.01	. 10	.06	.10
	. 01	.10	14	. 11

CRUISE 87	7L88	STATION	F37L88	×26×1
WIRE LENGTH	₽04	Si(OH)4	N03	N02
- METERS	UM/ I	- UMXI	<del>um/la</del>	
104	.11	2.20	3.74	100.
<u></u>	13-	<del>1-70</del> -	<del>- 3-86</del> -	
9.0	.31	3.70	7.44	. 01
	33-	<del></del>	<del>-7,13</del>	-+00-
75	.27		5.46	.04
<del></del>	-58-,	<del>-3.</del> 20-	<del></del>	
6 Ü	.27		5.21	.01
<del></del> 50	25-			
40	. 1.4	1.10	2.35	.14
<del></del>			<del></del>	— aa-
20	0.1	ဝဝ ဝပ	.12	.00
			ــــــــــــــــــــــــــــــــــــــ	05
0		1 0	0.6	. O o

CRUISE 87L	.88 s	MOITAT	B87L88×2	27×1
WIRE LENGTH	PO4	Si(OH)	4 NO3	N02
METERS	UM/1	um/1	Um/l	UM/1
104	13	2.20	3.87	100.
90	. 11	2.30	2.81	.04
80	. 0.2	2.30	2.54	.05
65	. 29	3.70	6.62	. 07
60	.32	3.50	6.16	.11
50	. 29	2.90	5.39	. 09
40	. 25	2.60	4.54	.12
35	.20	1,50	3.42	.23
3.0	. 08	.80	.82	. 25
20	. 54	, 40	. 1.3	.17
1.0	.03	.20	99.99	.13
0	.01	. 30	59.99	.12

CRUISE	87L88	STATION	B87L85	(28%)
WIRE LEN	GTH PO4	Si(OH)	4 NO3	N02
METERS	<del>um/1</del>	- गुल्म हो	umr-l-	
109	. 27	3,60	6.79	.01
<del></del>	<del></del>	3,20		t 0
8.0	. 28	2.30	6.53	.02
70-	27	2.60	<del></del>	
60	, 25	2,40	5.32	.02
	- 1 1	1.20	2.38	
40	.24	2.30	4.94	. 12
			<del>376</del> 0-	12
30	1 c		1.97	0.9
25			مم وجــ	02
20	100.		ဝတ္ ဝဝ	
10-	<del></del>		0	00 :
. U	100.		မှမ မှ	100.

FORUTSE 8	7U88 5	TATION B	87L88*8	19×1
WIRE LENG	TH POA	SI(QH)4	NO3 ~	NO2
METERS	Um/I	Um/1	Um/I	Um71
105	.28	2.80	6.67	.03
95	. 28	2.78	6.45	.04
90	. 29	2,90	ი.59	. 03
80	.29	2.80	3.54	.04
70	.28	2.70	6.33	.05
60	.23	2.30	5.63	. 05
55	. 1 1	1.80	3.60	.07
56	.04	1.00	. 44	.12
45	. 0 3	.30	.02	. G 1
40	, U .5	. 10	16.	10.
35	.02	.20	.02	100.
30	.02	.20	. 04	.01
20	.02	. 20	. 04	. 0 1
10	. 0 3	. 20	. 04	.01
0	. 0 1	.20	. 04	. 01

CRUISE 87	L88 รา	TATION E	87L88*	30×1
WIRE LENGTH	PO4 :	Si(OH)4	N03	NO2
METERS	Um/I	Um/3.	UMIL	LIMU
109	.18	1.80	3.35	.01
100	, 35	2.70	5.13	100.
90	.33	2.80	5.03	. 01
80	.31	2.20	4.57	ō r
70	. 29	1.90	3.95	.01
60	.25	1.50	3.22	.02
55	.22	1.30	3.01	.02
50	121	1.20	2.73	.03
45	.13	1.10	2.38	, 03
40	.12	.70	1.55	.12
35	.03	.30	.31	.09
20	.01		.07	
1.0	.01	.20	.07	.05
	. 0 (	.20	. 06	

CRUISE 87L88 STATION B87L88*31*1

WIRE LENGTH	P 04	Si(OH)4	NO3	ког
METERS	UM/I	um/l	UMI/I	UM/I
107	.24	2.10	4.77	.02
100	. 24	2.10	4.57	.02
90	.29	2.40	5.02	.02
80	.31	2.50	5.09	.02
70	.30	2.20	4.59	.02
60	.27	2.30	4.21	7.62
50	.18	1.40	2.74	.07
45	. 10	1.00	1.61	.08
40	.05	.30	.31	.06
35	.05	. 20	.10	.04
30	.02	. 10	.01	.02
20	.02	.10	.03	.01
10	.02	. 10	.02	. 0 1
0	.01	79.99	. 62	. 61

CRUISE 87L88 STATION B87L86*32*1

WIRE LENGTH	PO4	Si(OH)4	EON	N02
METERS	Um/l	UM/L	Um/ L	Um/1
107	. 10	2.60	5.31	.03
90	.14	2.50	4.55	-03
80	. 13	2.50	3.64	.03
70	.08	2.30	2.00	.04
63	. 0 ó	1.80	. 95	. 85
60	. 84	1.50	.32	.08
55	.07	1.40	1.37	. 15
54	- 89	1.40	1.82	. 15
50	.03	.80	.11	.10
45	.08	1.40	1.55	11.
40	.03	.70	. 15	.08
30	.02	7.20	.02	.01
20	.02	. 1 0	99.99	100.
10	. 01	. 10	<u> </u>	100.
0	100.	99,99	.02	. 0 1

CRUISE 87	L88 1	STATION	B87L88*	33×1
WIRE LENGTH	P04	Si(OH)4	EON	N02
METERS	um/l	Um/l	um/1	um/1
108	.26	2.70	6.68	.04
90	. 24	2.30	ဂ်. ဒင်	.05
80	.23	2.00	5.66	.06
70	.21	1.60	5.06	.08
60	. 23	2.20	5.25	.07
55	. 24	2.40	5.14	.06
50	.15	1.70	2.80	.07
45	. 13	1,40	2.11	.08
40	.16	1.70	2.58	.09
30	.01	10	99,99	. 01
20	.02	. 10	99.99	.01
10	.02	.10	99.99	.01
0	. 01	. 10	99.99	. 01

CRUISE 87	7L88	STATION	B87L88	×34×1
WIRE LENGTH	P04	Si(OH)4	коз	N02
METERS	UM/I	UM/ L	UM/ J	UM/1
105	.18	2,40	5.35	.03
70	. 18	2.10	4776	703
80	11	2.40	2.22	.03
70	.09	2.20	1.32	.04
60	.12	1.70	1.53	.08
55	.11	1.40	1.04	.10
50	.10	1.00	.37	. 10
45	.03	.10	.07	.03
35	.03	. 10	.06	.03
25	.04	.30	, 13	. 04
20	.05	.20	. 09	.03
	.04	<u> </u>	<u> </u>	.01
0	.02	99,99	99. <b>99</b>	.01

CRUISE 87L	88 5	TATION E	87L88*3	5×1
WIRE LENGTH	P04	Si(OH)4	K04	NOS
METERS	Um/1	UM/I	Um/I	um/l
109	.24	3.30	7.16	. 05
100	.26	3.30	7.12	. 05
90	.28	3.10	7.06	.05
80	. 28	2.90	6.91	.05
70	.26	2.70	6.43	.06
60	. 24	2.40	5.78	.07
50	.20	2.00	4,99	.12
40	. 14	1.40	3.06	. 23
35	.06	.60	. 33	. 23
30	.04	.20	99,99	.20
25	.05	.40	. 0 1	.10
20	. 0 1	. 10	, Ü &	. 6 1
10	.01	.10	οO	. 01
Ü	. 0 1	. 10	. 66	. Ü i

CRUISE 8	7L88   S1	TATION B	87L88*	36×1
WIRE LENGT	H P04	Si(OH)4	N03	NOS
METERS	I /MU	UM/I	UM/I	UM/I
107	.11	1.30	2.65	.10
100	.28	3,50	6.21	.09
90	. 44	4.60	7.81	.09
50	. 45	4.00	6.87	30,
70	.46	3.60	6.16	.08
<b>်</b> ပါ	, 33	2.40	3.64	.12
50	. 10	1.20	.30	.08
45	. បម	. 88	. 16	.06
40	.07	.40	.04	.03
<u> </u>	.08	.50	.03	
20	.05	.50	.02	.02
10	.06	.50	, 05	. 0.3
0	.06	.50	.04	. 0.3

CRUISE 87L88 STATION B87L88*37*1

WIRE LENGTH	P 04	51(0H)4	103	N02
METERS	Um/I	Um/l	UM/I	UM/
107	. 14	1.80	3.33	.05
90	.27	2.70	5.77	. 04
80	.29	2.90	6.02	.03
70	, 24	2.30	4.78	.03
60	.26	2.60	4.72	.04
50	.07	.70	. 19	.06
40	.04	. 40	.02	.03
30	.03	. 30	<u>-66,65</u>	. 02
20	. 02	.30	99,99	.02
10	.02	, 30	<u> </u>	7.07
0	.02	. 50	99,99	. 0 ≥

## CRUISE 87L88 STATION B87L88*36*1

WIRE LENGTH	P04	Si(0H)4	коз	N02
METERS	um/l	UMZI	UM/I	UM/ L
108	.23	2,80	6.87	.07
75	.21	2.90	4.59	. 06
85	.19	2.30	2.84	.09
80	. 15	1.90	1.58	11
70	.05	.70	99,99	.20
	T00.	. 10	99.55	. 04
50	100.	. 10	79.59	.04
नग	.01	. 10	<u> </u>	, () .i
35	.01	. 10	99.99	, Ü 🐴
30	.02	0	99,99	. 04
20	.02	.20	. 01	.05
	. 0.2	-20	.01	, 04
0	.01	.20	. 0 1	.03

CRUISE 87	L98	STATION	B87L89*	39×1
WIRE LENGTH	P04	Si(OH)4	E04	N02
METERS	Um/I	UM/ I.	UM/I	UM/1
109	.14	2.20	4.26	.06
95	-,17	2.40	2.01	. 05
85	.09	2.60	.74	.04
80	.19	2.40	3.60	.04
<b>7</b> 0	.12	2.30	. 65	. 04
60	,13	2.40	.72	707
55	,02	1.00	.01	.03
50	. U I	. 50	<del>- 99,99</del>	.03
40	100.	.30	99,99	.03
30	100.	. 50	99,99	.03
20	100.	.20	99.99	.02
10	100.	.10	99.99	02
0	100.	.30	99,99	.03

AND THE PROPERTY OF THE PROPER

# CRUISE 87L88 STATION B87L88*40*1

WIRE LENGTH	P04	Si(OH)4	E04	NO2
- HETERS-	1. m./ 3.			-um/1
110	, 24	3.00	7.31	.08
	<del></del>	<del>29</del> .)	<del>7-1</del> 3-	
90	. 24			4.
, <del>-</del>		2.70	6.50	. 08
	22	2.10-	<del>5-27-</del>	
70	. 23	2.30		
	120	2,30	4,45	.07
	<del>- , 1</del> 5-	<del>- 1-60-</del>	<del></del>	05-
60	. 14	1.70	.90	.08
			• • •	, C C
	<del>+0-</del>	<del></del>		<del></del>
50	.06	.80	. 1.8	. 0.8
40	94	<del></del>	<del></del>	
30	.06	.20	. 0.2	.03
20		20	, <b>42</b>	02
1.0	0.5	ပ္က ပ္	တက် ပြ	, 63
			44 44	
			~ ~ ~ ~	

## CRUISE 87L88 STATION B87L88*41*1

WIRE	LENGTH	P04	Si(OH)4	KD3	N02
MET	ERS	UM/I	UMZI	UMZI	UM/I
1	09	.06	2.60	1.03	.06
	95	- 08	2.50	1.37	. 06
	85	.06	2.00	. 47	.05
	80	. 06	1.90	. ភប	.06
	70	.04	.80	.33	.19
	60	100.	.10	99,99	.02
	50	.01	. 10	99,99	.02
	40	.02	.10	<del>99.99</del>	.01
	30	.02	. 10	99.99	.02
	20	. 01	.10	77.77	. 01
	10	. 01	. 10	99,99	.01
,	ij	100.	.10	99.99	. 01







-/LME