Prova-01

Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Sumário

1	Redução ao primeiro quadrante (++)	2
2	Info2 Sequências (++)	4
3	Número de dias (+++)	5

1 Redução ao primeiro quadrante (++)

(++)

Graças à simetria do círculo trigonométrico sempre é possível reduzir um ângulo qualquer para o seu correspondente no primeiro quadrante. Isso é útil quando queremos encontrar os valores de seno e cosseno de um ângulo quando decoramos somente alguns ângulos entre $0 e^{\frac{\pi}{2}}$. Por exemplo, os ângulos 150^o e 210^o têm como corresponde o ângulo 30^o no 1^o Quadrante, tendo valores de seno e cosseno idênticos, exceto pelo sinal. Dado um ângulo inteiro qualquer, escreva um programa em C que calcule o seno ou o cosseno de seu ângulo correspondete no primeiro quadrante e informe se houve alteração do sinal ou não.

Entrada

O programa deve ler um caracter e um número inteiro concatenados sem espaços entre eles. O caracter, 's' ou 'c', especifica o desejo de calcular o seno ou o cosseno, e o número inteiro corresponde ao ângulo de interesse.

Saída

A saída deve apresentar três linhas. A primeira com o ângulo correspondente, a segunda com o valor do seno ou do cosseno do ângulo correspondete com 3 casas decimais e a terceira a mensagem "SINAL INVERTIDO" ou "SINAL IGUAL".

Observações

Lembre-se que as funções seno e cosseno esperam valores double que representam ângulos em radianos. Use o valor aproximado de 3.14 para π .

Exemplo

Entrada	ı
c30	
Saída	
30	
0.866	
SINAL	IGUAL

Entrada	1
c150	
Saída	
30	
0.866	
SINAL	INVERTIDO

Entrada	1
s210	
Saída	
30	
0.500	
SINAL	INVERTIDO

Entrada	ì
c90	
Saída	
90	
0.001	
SINAL	TGUAL

2 Info2 Sequências (++)

(++) Escrever um programa que leia um conjunto de 5 números inteiros calcule e apresente o

menor e o maior deles, se eles estão desordenados ou em ordem crescente ou decrescente. Neste exercício a ocorrência de números iguais descaracteriza a ordenação crescente ou decrescente, fazendo com que a sequência seja classificada como desordenada.

Entrada

O programa deve ler uma linha com 5 números inteiros.

Saída

O programa deve imprimir duas linhas. A primeira contendo o menor e o maior valor com o texto: "MENOR: *x*, MAIOR: *X*", sendo *x* e *X* o menor e o maior valor da sequência, respectivamente. A segunda linha deve conter a informação de ordem, sendo "DESORDENADO", "ORDENADO CRESCENTE"ou "ORDENADO DECRESCENTE".

Exemplo

Entrada								
1	2	4	6	6				
Saída								
MENOR: 1, MAIOR: 6								
DESORDENADO								

Entrada									
9	8	7	2	1					
Sa	ıída	a							
ME	EN(DR :	: :	1,	MAIOR:	9			
OF	RDE	EN Z	AD() [DECRESC	ENTE			

Eı	Entrada								
1	2	3	4	5					
Sa	ıída	a							
MI	ΞNC	OR:	: 1	,	MA]	OR:	5		
OI	RDI	ENZ	ADO) (CRES	CEN	ΤE		

Eı	Entrada								
2	4	1	0	2					
Sa	Saída								
ME	EN(DR :	: (Ο,	MAIOR:	4			
DE	DESORDENADO								

3 Número de dias (+++)

Faça um programa que recebe uma data e retorne a quantidade de dias corridos a partir do início do ano correspondente. Considere que os meses tem quantidade diferente de dias e também o caso de anos bissextos. Um ano é considerado bissexto se ele é múltiplo de 4 e 100, simultaneamente, ou divisível por 400. A Tabela 3 mostra a quantidade de dias de cada mês.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Dias	31	28/29	31	30	31	30	31	31	30	31	30	31

Entrada

O programa deve ler três números inteiros, o dia, o mês e o ano, respectivamente e separados por uma barra, seguindo o formato DD/MM/AAA. Considere que as datas informadas são sempre válidas.

Saída

O programa deve imprimir a mensagem "NUMERO DE DIAS E X", onde X é a quantidade de dias da data.

Observações

Lembre-se que, para fazer a leitura de números separados por outros caracteres, você precisa prever esses caracteres na expressão de formato do scanf. Use a string "%d/%d/%d".

Exemplo

Entrada	Saída
15/03/2021	NUMERO DE DIAS E 74

Entrada	Saída
31/12/2020	NUMERO DE DIAS E 366