B.Sc. (Hons.) Computer Science

Data Analysis and Visualization Project

Name : Khushal Rastogi

Roll No. : 19013570016 (2k19/CS/60)

Year & Sem: 3rd Year & 5th Sem

>>Problem Statement:

Project is based on the problem of "Predicting prices of used cars?".

Real Life Scenario:

- Assume you have a friend Sam, who wants to sell his car.
- But the problem is, he doesn't know how much he should sell his car for?
- He wants to sell it for as much as he can; but he also wants to set the price reasonably so someone would buy it.
- The Big Question is "How can we help him determine the best price for his car?"
- Let us try to clearly define some of his problems.
 - Is there any data on the prices of some cars & their characteristics?
 - What features of cars affect their prices? Color? Brand? Horsepower? Something Else...?
 - How much can a particular feature affect the price relative to others?
- These are some of the Questions we can start thinking about at the start!

>>Understanding the Data:

• The Dataset used is an open dataset, by Jeffrey C. Schlemmer.

- This dataset is in CSV (Comma Separated Values) format, where each of the values are separated by commas.
- There are a total of **201 different entries** (rows) in the dataset.
- There are 26 different features (columns) in the dataset.
 - Some of them are numerical variables like wheel-base, length, engine-size, horsepower, price, etc.
 - While some are categorical variables like fuel-type, body-style, brand, engine location, etc.
- **Description of Attributes** is given in the table below:

No.	Attribute name	attribute range		Attribute name	attribute range	
1	symboling	-3, -2, -1, 0, 1, 2, 3.	14	curb-weight	continuous from 1488 to 4066.	
2	normalized-losses	continuous from 65 to 256.	15	engine-type	dohc, dohcv, I, ohc, ohcf, ohcv, rotor.	
3	make	audi, bmw, etc.	16	num-of-cylinders	eight, five, four, six, three, twelve, two.	
4	4 fuel-type diesel, gas. 17 engine-size con		continuous from 61 to 326.			
5	aspiration	std, turbo.	18	fuel-system	1bbl, 2bbl, 4bbl, idi, mfi, mpfi, spdi, spfi.	
6	num-of-doors	four, two.	19	bore	continuous from 2.54 to 3.94.	
7	body-style	hardtop, wagon, etc.	20	stroke	continuous from 2.07 to 4.17.	
8	drive-wheels	4wd, fwd, rwd.	21	compression-ratio	continuous from 7 to 23.	
9	engine-location	front, rear.	22	horsepower	continuous from 48 to 288.	
10	wheel-base	continuous from 86.6 120.9.	23	peak-rpm	continuous from 4150 to 6600.	
11	length	continuous from 141.1 to 208.1.	24	city-mpg	continuous from 13 to 49.	
12	width	continuous from 60.3 to 72.3.	25	highway-mpg	continuous from 16 to 54.	
13	height	continuous from 47.8 to 59.8.	26	price	continuous from 5118 to 45400.	

ć	rwd 20000 15000 - 10000	
To	Body-Style The main question we want to answer is, "What are the main characteristics which have the most impact on the car price?" To get a better measure of the important characteristics, we look at the correlation of these variables with the car price. In other words: how is the car price dependent on this variable?	
Co Po Th	Correlation Correlation: a measure of the extent of interdependence between variables. Pearson Correlation The Pearson Correlation measures the linear dependence between two variables X and Y. The resulting coefficient is a value between -1 and 1 inclusive, where:	
Pe or	 1: Perfect positive linear correlation. 0: No linear correlation, the two variables most likely do not affect each other. -1: Perfect negative linear correlation. Pearson Correlation is the default method of the function "corr". Like before, we can calculate the Pearson Correlation of the of or 'float64' variables. df.corr() symboling normalized-losses wheel-base length width height curb-weight size bore stroke constructions. symboling 1.000000 0.466264 -0.535987 -0.365404 -0.242423 -0.550160 -0.233118 -0.110581 -0.140019 -0.008153 	he 'in
	normalized-losses 0.466264 1.000000 -0.056661 0.019424 0.086802 -0.373737 0.099404 0.112360 -0.029862 0.055045 wheel-base -0.535987 -0.056661 1.000000 0.876024 0.814507 0.590742 0.782097 0.572027 0.493244 0.158018 length -0.365404 0.019424 0.876024 1.000000 0.857170 0.492063 0.880665 0.685025 0.608971 0.123952 width -0.242423 0.086802 0.814507 0.857170 1.000000 0.306002 0.866201 0.729436 0.544885 0.188822 height -0.550160 -0.373737 0.590742 0.492063 0.306002 1.000000 0.307581 0.074694 0.180449 -0.060663 curb-weight -0.233118 0.099404 0.782097 0.685025 0.729436 0.074694 0.849072 1.000000 0.572609 0.205928 bore -0.140019 -0.029862 0.493244 0.608971 0.544885 0.180449	-0.114 0.25 0.15 0.18 0.25 0.15 0.02 0.00
c	stroke -0.008153 0.055045 0.158018 0.123952 0.188822 -0.060663 0.167438 0.205928 -0.055390 1.000000 compression-ratio -0.182196 -0.114713 0.250313 0.159733 0.189867 0.259737 0.156433 0.028889 0.001263 0.187871 horsepower 0.075810 0.217300 0.371178 0.579795 0.615056 -0.087001 0.757981 0.822668 0.566903 0.098128 peak-rpm 0.279740 0.239543 -0.360305 -0.285970 -0.245800 -0.309974 -0.279361 -0.256733 -0.267392 -0.063561 city-mpg -0.035527 -0.225016 -0.470606 -0.665192 -0.633531 -0.049800 -0.749543 -0.650546 -0.582027 -0.033956 highway-mpg 0.036233 -0.181877 -0.543304 -0.698142 -0.680635 -0.104812 -0.794889 -0.679571 -0.591309 -0.034636 price -0.082391 0.133999 0.584642 0.690628 0.751265	0.18 1.000 -0.21 -0.43 0.33 0.266 0.07
Sc P- Th N	fuel-type-diesel -0.196735 -0.101546 0.307237 0.211187 0.244356 0.281578 0.221046 0.070779 0.054458 0.241064 fuel-type-gas 0.196735 0.101546 -0.307237 -0.211187 -0.244356 -0.281578 -0.221046 -0.070779 -0.054458 -0.241064 Sometimes we would like to know the significant of the correlation estimate. P-value The P-value is the probability value that the correlation between these two variables is statistically significant. Normally, we choose significance level of 0.05, which means we're 95% confident that correlation between the variables is significant. By convention, when the	0.98
AI W	 p-value is < 0.001: we say there is strong evidence that the correlation is significant. the p-value is < 0.05: there is moderate evidence that the correlation is significant. the p-value is < 0.1: there is weak evidence that the correlation is significant. the p-value is > 0.1: there is no evidence that the correlation is significant. Also, Value of e is 2.71828182846. We can obtain this information using "stats" module in the "scipy" library. from scipy import stats 	
Le T	Wheel-Base vs. Price Let's calculate the Pearson Correlation Coefficient and P-value of 'wheel-base' and 'price'. pearson_coef, p_value = stats.pearsonr(df['wheel-base'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value) The Pearson Correlation Coefficient is 0.5846418222655081 with a P-value of P = 8.076488270732989e- Conclusion: Since the p-value is < 0.001, the correlation between wheel-base and price is statistically significant, although the linear relation extremely strong (~0.585).	
H Lee T CG Si	Horsepower vs. Price et's calculate the Pearson Correlation Coefficient and P-value of 'horsepower' and 'price'. pearson_coef, p_value = stats.pearsonr(df['horsepower'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value) The Pearson Correlation Coefficient is 0.8096068016571054 with a P-value of P = 6.273536270650504e Conclusion: Since the p-value is < 0.001, the correlation between horsepower and price is statistically significant, and the linear relationship	
Le Le	Length vs. Price Let's calculate the Pearson Correlation Coefficient and P-value of 'length' and 'price'. pearson_coef, p_value = stats.pearsonr(df['length'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value) The Pearson Correlation Coefficient is 0.6906283804483642 with a P-value of P = 8.016477466158759e Conclusion: Since the p-value is < 0.001, the correlation between length and price is statistically significant, and the linear relationship is more	
V Le	Width vs. Price Let's calculate the Pearson Correlation Coefficient and P-value of 'width' and 'price': pearson_coef, p_value = stats.pearsonr(df['width'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_value) The Pearson Correlation Coefficient is 0.7512653440522673 with a P-value of P = 9.200335510481646e- Conclusion: Since the p-value is < 0.001, the correlation between width and price is statistically significant, and the linear relationship is quite	
Le	Curb-Weight vs. Price Let's calculate the Pearson Correlation Coefficient and P-value of 'curb-weight' and 'price': pearson_coef, p_value = stats.pearsonr(df['curb-weight'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value) The Pearson Correlation Coefficient is 0.8344145257702846 with a P-value of P = 2.1895772388936914 Conclusion: Since the p-value is < 0.001, the correlation between curb-weight and price is statistically significant, and the linear relationship	
E Le	Engine-Size vs. Price et's calculate the Pearson Correlation Coefficient and P-value of 'engine-size' and 'price': pearson_coef, p_value = stats.pearsonr(df['engine-size'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p_value) The Pearson Correlation Coefficient is 0.8723351674455185 with a P-value of P = 9.265491622198389e- Conclusion: Since the p-value is < 0.001, the correlation between engine-size and price is statistically significant, and the linear relationship	
St B Lee	Bore vs. Price et's calculate the Pearson Correlation Coefficient and P-value of 'bore' and 'price': pearson_coef, p_value = stats.pearsonr(df['bore'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value) The Pearson Correlation Coefficient is 0.5431553832626602 with a P-value of P = 8.049189483935489 Conclusion:	∍−17
(~ W	Since the p-value is < 0.001, the correlation between bore and price is statistically significant, but the linear relationship is only (~0.521). We can relate the process for each 'city-mpg' and 'highway-mpg': City-mpg vs. Price pearson_coef, p_value = stats.pearsonr(df['city-mpg'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value) The Pearson Correlation Coefficient is -0.6865710067844677 with a P-value of P = 2.321132065567674 Conclusion:	
sh H	Since the p-value is < 0.001, the correlation between city-mpg and price is statistically significant, and the coefficient of about shows that the relationship is negative and moderately strong. Highway-mpg vs. Price pearson_coef, p_value = stats.pearsonr(df['highway-mpg'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P = ", p_value) The Pearson Correlation Coefficient is -0.7046922650589529 with a P-value of P = 1.749547114447735 Conclusion: Since the p-value is < 0.001, the correlation between highway-mpg and price is statistically significant, and the coefficient of about	2e-31
sh Si Al	ANOVA Since ANOVA analyzes the difference between different groups of the same variable, the groupby function will come in handy. EANOVA algorithm averages the data automatically, we do not need to take the average before hand. ANOVA: Analysis of Variance The (ANOVA) is a statistical method used to test whether there are significant differences between the means of two or more groups.	ecaus
F-sc P-	ANOVA returns two parameters: F-test score: It calculates the ratio of variation between the group's means over the vaiation within each of the sample group. A score means there is a larger difference between the means. P-value: P-value tells how statistically significant our calculated score value is. If our price variable is strongly correlated with the variable we are analyzing, we expect ANOVA to return a sizeable F-test score p-value. Drive Wheels	
	drive-wheels body-style price rwd convertible 13495.0 rwd convertible 16500.0 rwd hatchback 16500.0 fwd sedan 13950.0 4 4wd sedan 17450.0	
1 1 2 20	196 rwd sedan 16845.0 197 rwd sedan 2945.0 198 rwd sedan 22470.0 200 rwd sedan 22625.0 201 rows × 3 columns To see if different types of 'drive-wheels' impact 'price', we group the data.	
	<pre>grouped_test2=df_gptest[['drive-wheels', 'price']].groupby(['drive-wheels']) grouped_test2.head(2) drive-wheels price 0 rwd 13495.0 1 rwd 16500.0 3 fwd 13950.0 4 4wd 17450.0</pre>	
4 1 1 1	5 fwd 15250.0 136 4wd 7603.0 We can obtain the values of the method group using the method "get_group". grouped_test2.get_group('4wd')['price'] 4 17450.0 136 7603.0 140 9233.0 141 11259.0 144 8013.0	
1 1 1 1 N W	144 8013.0 145 11694.0 150 7898.0 151 8778.0 Name: price, dtype: float64 We can use the function 'f_oneway' in the module 'stats' to obtain the F-test score and P-value. # ANOVA f_val, p_val = stats.f_oneway(grouped_test2.get_group('fwd')['price'], grouped_test2.get_group('rwd print("ANOVA results: F=", f_val, ", P =", p_val) ANOVA results: F= 67.95406500780399 , P = 3.3945443577151245e-23	
sig Le	This is a great result with a large F-test score showing a strong correlation and a P-value < 0.001 implying almost certain statistic ignificance. But does this mean all three tested groups are all this highly correlated? Let's examine them separately. Let's examine them separately	
The control of the co	Conclusion: They are highly correlated meaning, prices between "fwd" and "rwd" is significantly different as the F-score is large (130) and the co.001. Awd and rwd f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'], grouped_test2.get_group('rwd print("ANOVA results: F=", f_val, ", P =", p_val) ANOVA results: F= 8.580681368924756 , P = 0.004411492211225333	
Th 0.4	Conclusion: They are moderately correlated meaning, prices between "4wd" and "rwd" is moderately different as the F-score is 8 and the p-valued and fwd f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'], grouped_test2.get_group('fwd print("ANOVA results: F=", f_val, ", P =", p_val) ANOVA results: F= 0.665465750252303 , P = 0.41620116697845666	
aff N	As we now move into building machine learning models to automate our analysis, feeding the model with variables that meaning iffect our target variable will improve our model's prediction performance. Model Development Table of Contents 1. Linear Regression and Multiple Linear Regression 2. Model Evaluation Using Visualization 3. Polynomial Regression 4. Pipelines 5. Measures for Evaluation 6. Conclusion	
As aff N T Ni gi Sc In A L C Si Th	Model Development Table of Contents 1. Linear Regression and Multiple Linear Regression 2. Model Evaluation Using Visualization 3. Polynomial Regression 4. Pipelines 5. Measures for Evaluation 6. Conclusion Now, We will develop several models that will predict the price of the car using the variables or features. This is just an estimate give us an objective idea of how much the car should cost. Some questions we want to ask now are: Do I know if the dealer is offering fair value for my trade-in? Do I know if I put a fair value on my car? In data analytics, we use Model Development to help us predict future observations from the data we have. A model will help us understand the exact relationship between different variables and how these variables are used to predict the Linear Regression Dinear Regression Dinear Regression is a method to help us understand the relationship between two variables: The predictor/independent variable (X) The response/dependent variable (X) The result of Linear Regression is a linear function that predicts the response (dependent) variable as a function of the predictor for the predictor of the predict	out sh
As af N T N gi Sc In A L L O Si Si In (ir II)	Model Development Table of Contents 1. Linear Regression and Multiple Linear Regression 2. Model Evaluation Using Visualization 3. Polynomial Regression 4. Pipelines 5. Measures for Evaluation 6. Conclusion Now, We will develop several models that will predict the price of the car using the variables or features. This is just an estimate give us an objective idea of how much the car should cost. Some questions we want to ask now are: Do I know if the dealer is offering fair value for my trade-in? Do I know if I put a fair value on my car? In data analytics, we use Model Development to help us predict future observations from the data we have. A model will help us understand the exact relationship between different variables and how these variables are used to predict to the car Regression and Multiple Linear Regression Linear Regression One example of a Data Model that we will be using is: Simple Linear Regression is a method to help us understand the relationship between two variables: The predictor/independent variable (X) The response/dependent variable (X)	out sh
As af N T N gi So In A L L O Si in Li	### Independent of Contents 1. Linear Regression and Multiple Linear Regression 2. Model Evaluation Using Visualization 3. Polynomial Regression 4. Pipelines 5. Measures for Evaluation 6. Conclusion Now, We will develop several models that will predict the price of the car using the variables or features. This is just an estimate give us an objective idea of how much the car should cost. Some questions we want to ask now are: • Do I know if the dealer is offering fair value for my trade-in? • Do I know if I put a fair value on my car? In data analytics, we use Model Development to help us predict future observations from the data we have. A model will help us understand the exact relationship between different variables and how these variables are used to predict to the predict of a Data Model that we will be using is: **Imple Linear Regression** Die example of a Data Model that we will be using is: **Imple Linear Regression is a method to help us understand the relationship between two variables: • The predictor/independent variable (X) • The response/dependent variable (that we want to predict)(Y) The result of Linear Regression is a linear function that predicts the response (dependent) variable as a function of the predictor independent) variable. **Y: Response Variable** **X: Predictor Variable** **Y: Response Variable** **X: Predictor Variable** **What = a + bX *** "a" refers to the intercept of the regression line, in other words: the value of Y when X is 0 ***B" refers to the slope of the regression line, in other words: the value with which Y changes when X increases by 1 unit	out sh
As af N T I I I I I I I I I I I I I I I I I I	### Applied to Contents 1. Linear Regression and Multiple Linear Regression 2. Model Evaluation Using Visualization 3. Polynomial Regression 4. Mpelines 5. Measures for Evaluation 6. Conclusion 6. Conclusion 6. Conclusion 6. Conclusion 7. Model Evaluation 8. Conclusion 8. Model Well develop several models that will predict the price of the car using the variables or features. This is just an estimate price us an objective idea of how much the car should cost. 8. Model Well develop several models that will predict the price of the car using the variables or features. This is just an estimate price us an objective idea of how much the car should cost. 8. Model Well develop several models that will predict for my trade in? 9. Do I know if put a fair value on my car? 9. Do I know if put a fair value on my car? 9. The data analytics, we use Model Development to help us predict future observations from the data we have. 9. A model will help us understand the exact relationship between different variables and how these variables are used to predict to Linear Regression and Multiple Linear Regression 9. Expensive Evaluation State of the Evaluation of the predict Confidence of the Regression is a method to help us understand the relationship between two variables: 9. The predictor/independent variable (N) 9. The result of Linear Regression is a linear function that predicts the response (dependent) variable as a function of the predict independent) variable. 1. **Predictor Variables** 1. **Predictor Variables** 1. ***Predictor Variables** 1. ***Predict	out sh
As af N T I I I I I I I I I I I I I I I I I I	Model Development Table of Contents 1. Linear Regression and Multiple Linear Regression 2. Rolymental Regression 3. Rolymental Regression 6. Conclusion 6. Conclusion 6. Conclusion 7. Measures for Evaluation 6. Conclusion 7. Do I know it the dealer is offering fair value for my trade-in? 7. Do I know it the dealer is offering fair value for my trade-in? 7. Do I know it put a titi value on my car? 8. Measures for valuation and Multiple Linear Regression 8. Measures for valuation and the car should cost. 8. More questions we want to ask now are: 8. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car? 9. Do I know it put a titi value on my car. 9. The predictor/dodgenedent variable (b) 9. The reponse/dependent variable (b) 9. The result of linear Regression is a method to help us understand the relationship between two variables: 9. The predictor/dodgenedent variable (b) 9. The result of linear Regression is a method to help us understand the response (dependent) variable as a function of the predictor/dodgenedent variable (b) 9. The result of linear Regression is a linear function that predicts the response (dependent) variable as a function of the predictor/dodgenedent variable (b) 9. The refers to the intercept of the regression line, in other words: the value of Y when X is 0 9. The refers to the intercept of the regression line,	out sh
As af N T I I I I I I I I I I I I I I I I I I	Model Development Table of Contents 1. Linear Regression and Multiple Linear Regression 2. Mode Features. The Present of the Contents 1. Linear Regression and Multiple Linear Regression 3. Polynomial Regression 4. Piperines 5. Measures for Evaluation 6. Conduction	out sh
As af N T N gi So In A L LO Si In	Model Development Table of Contents 1. These Regression and Multiple Linear Regression 2. Model Development for the second of the process of the contents of the process	out sh
As af N T I Le N gi School In A L LO Si	Model Development Table of Contents Union Regression and Multiple Linear Regression	out sh
As af N T I I I I I I I I I I I I I I I I I I	Model Development Table of Contents Librar Registrate and Mary to the efficiency and an experiency and a second a second a second a second a second and a second and a second and a second a se	out sh
As af N T I I I I I I I I I I I I I I I I I I	Model Development Fable of Contents Liters recessored by high allower consume Model provided by the provided provided provided by the contents of the conten	n one
As af N T I I I I I I I I I I I I I I I I I I	Model Development State of Contents I ame agreement by State or agreement by State or an active content or agreement by State or active content or agreement by State or active content or act	n one
As a N A S I S I S I S I S I S I S I S I S I S	Model Development Model Develop	n one
As a N gi School Line Line Line Line Line Line Line Line	Model Development Table of Contents ***Contents ***C	n one
As a Notice of the Single of t	Model Development About of Contents Content	n one
As a N gi So in A L LO Si Si in Time La Value a N As Pro C La Value a N As Pro C La Value a N As Pro C La La Value a N As Pro C La La Value a N As Pro C	Mode I Development Sable of Contents ***Content Special And	n one
As a N gi So In A L LO Si Si In In A L LO Si Si In In A L LO Si Si In	Model Development stole of Contents	n one
As a N gi Si In A L LO Si	Mode Development with a control of the control of t	ne reserved ables:
As a N gi So In A L LO Si Si	Make of Exemptions in the Contents in the Cont	ne reserved ables:
A af N in A L LO SI SI SI IN A L LO SI	Model Development Model Develop	ne reserved ables:
A SINGLE OF SING	Model Development Table of Contents Table of Cont	hut shough has the shough had had been shought had been shough his shough has the shough had been shough had been shough his shough had had been shough his
A SINGLE OF SING	Model Development Table of Contents Leading Segment of Contents Leading	hut shough has the shough had had been shought had been shough his shough has the shough had been shough had been shough his shough had had been shough his
A SING SING SING SING SING SING SING SING	Model Development Table of Contents Table of Conte	hut shough has the shough had had been shought had been shough his shough has the shough had been shough had been shough his shough had had been shough his
A STATE OF THE STA	Model Development of the control of	n one one of the rest of the r
A STAN SINGLE OF STAN	The content of the co	n one one of the rest of the r
A STAN SA WAS A WA	Mode of Development and an anticology of the content of the conten	n one reserved as the reserved
The second of th	Model Development State of Contents Facility of Contents Facilit	n one reserved as the reserved
The second of th	Mode of Development State of Controls The C	n one reserved as the reserved
A SA WAS A W	And and the content of the content o	regree dat where is a strict of the content of the

Proportion of Cars 3 2 1 10000 20000 30000 40000 50000 Price (in dollars) We can see that the fitted values are reasonably close to the actual values since the two distributions overlap a bit. However, there is definitely some room for improvement. **Polynomial Regression Polynomial regression** is a particular case of the general linear regression model or multiple linear regression models. We get non-linear relationships by squaring or setting higher-order terms of the predictor variables. There are different orders of polynomial regression: **Quadratic - 2nd Order** $Yhat = a + b_1X + b_2X^2$ **Cubic - 3rd Order** $Yhat = a + b_1 X + b_2 X^2 + b_3 X^3$ **Higher-Order**: $Y = a + b_1 X + b_2 X^2 + b_3 X^3 \dots$ We saw earlier that a linear model did not provide the best fit while using "highway-mpg" as the predictor variable. Let's see if we can try fitting a polynomial model to the data instead. We will use the following function to plot the data: def PlotPolly(model, independent variable, dependent variable, Name): $x_{new} = np.linspace(15, 55, 100)$ y new = model(x new)plt.figure(figsize=(8,6)) plt.plot(independent variable, dependent variable, '.', x new, y new, '-') plt.title('Polynomial Fit for Price ~ '+Name, size=15) ax.set facecolor((0.898, 0.898, 0.898)) fig = plt.gcf() plt.ylim(0,) plt.xlabel(Name) plt.ylabel('Price of Cars') plt.show() plt.close() In [109... # Let's get the variables: x = df['highway-mpg']y = df['price'] Let's fit the polynomial using the function **polyfit**, then use the function **poly1d** to display the polynomial function. # Here we use a polynomial of the 3rd order (cubic). f = np.polyfit(x, y, 3)p = np.poly1d(f)print(p) $-1.557 \times + 204.8 \times - 8965 \times + 1.379e+05$ # Let's plot the function: PlotPolly(p, x, y, 'highway-mpg') Polynomial Fit for Price ~ highway-mpg 40000 30000 Price of Cars 20000 10000 25 15 45 50 20 30 35 40 55 highway-mpg We can already see from plotting that this polynomial model performs better than the linear model. This is because the generated polynomial function "hits" more of the data points. Let's try Creating 11 order polynomial model with the variables x and y from above. # Here we use a polynomial of the 11rd order. f1 = np.polyfit(x, y, 11)p1 = np.poly1d(f1) $print(p1, "\n")$ PlotPolly(p1,x,y,'Highway-MPG') 11 10 9 $-1.243e-08 \times + 4.722e-06 \times - 0.0008028 \times + 0.08056 \times - 5.297 \times$ + 239.5 x - 7588 x + 1.684e+05 x - 2.565e+06 x + 2.551e+07 x - 1.491e+08 x + 3.879e+08 Polynomial Fit for Price ~ Highway-MPG 50000 40000 Price of 20000 10000 0 15 20 25 45 50 55 Highway-MPG The analytical expression for Multivariate Polynomial function gets complicated. For example, the expression for a second-order (degree=2) polynomial with two variables is given by: $Yhat = a + b_1X_1 + b_2X_2 + b_3X_1X_2 + b_4X_1^2 + b_5X_2^2$ We can perform a polynomial transform on multiple features. First, we import the module: from sklearn.preprocessing import PolynomialFeatures We create a **PolynomialFeatures** object of degree 2: In [114.. pr=PolynomialFeatures (degree=2) Out[114... PolynomialFeatures() Z_pr=pr.fit_transform(Z) In the original data, there are 201 samples and 4 features. In [116. Z.shape (201, 4) Out[116... After the transformation, there are 201 samples and 15 features. Z pr.shape Out[117... (201, 15) **Pipeline** Data Pipelines simplify the steps of processing the data. We use the module **Pipeline** to create a pipeline. We also use **StandardScaler** as a step in our pipeline. In [118... from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler We create the pipeline by creating a list of tuples including the name of the model or estimator and its corresponding constructor. In [119... Input=[('scale',StandardScaler()), ('polynomial', PolynomialFeatures(degree=2,include bias=False)), ('model',Li We input the list as an argument to the pipeline constructor: pipe=Pipeline(Input) pipe Out[120... Pipeline(steps=[('scale', StandardScaler()), ('polynomial', PolynomialFeatures(include_bias=False)), ('model', LinearRegression())]) First, we convert the data type 'Z' to type 'float' to avoid conversion warnings that may appear as a result of StandardScaler taking float inputs. Then, we can normalize the data, perform a transform and fit the model simultaneously. Z = Z.astype(float)pipe.fit(Z,y) Out[121... Pipeline(steps=[('scale', StandardScaler()), ('polynomial', PolynomialFeatures(include_bias=False)), ('model', LinearRegression())]) Similarly, we can normalize the data, perform a transform and produce a prediction simultaneously. ypipe=pipe.predict(Z) ypipe[0:4] Out[122... array([13102.93329646, 13102.93329646, 18226.43450275, 10391.09183955]) **Measures for Evaluation** When evaluating our models, not only do we want to visualize the results, but we also want a quantitative measure to determine how accurate the model is. Two very important measures that are often used in Statistics to determine the accuracy of a model are: R^2 / R-squared Mean Squared Error (MSE) R-squared R squared, also known as the **coefficient of determination**, is a measure to indicate how close the data is to the fitted regression line. The value of the R-squared is the percentage of variation of the response variable (y) that is explained by a linear model. Mean Squared Error (MSE) The Mean Squared Error measures the average of the squares of errors. That is, the difference between actual value (y) and the estimated value (ŷ). # Creating a Dictionary for Storing R-Squared Values of Different Models. evalDict={} **Model 1: Simple Linear Regression** Let's calculate the R^2: In [124... # highway mpg fit lm.fit(X, Y) # Find the R^2 r2 = lm.score(X, Y)print('The R-square is: ', r2) evalDict['SLR'] = r2 * 100 The R-square is: 0.4965911884339175 So we can say that \~49.659% of the variation of the price is explained by this simple linear model "highway_mpg_fit". Let's calculate the MSE: We can predict the output i.e., "yhat" using the predict(), where X is the input variable: Yhat=lm.predict(X) print('The output of the first four predicted value is: ', Yhat[0:4]) The output of the first four predicted value is: [16236.50464347 16236.50464347 17058.23802179 13771.3045085] # import the function "mean squared error" from the module "metrics": from sklearn.metrics import mean squared error We can compare the predicted results with the actual results: mse = mean squared error(df['price'], Yhat) print('The mean square error of price and predicted value is: ', mse) The mean square error of price and predicted value is: 31635042.944639895 Model 2: Multiple Linear Regression Let's calculate the R^2: # fit the model lm.fit(Z, df['price']) # Find the R^2 r2 = lm.score(Z, df['price']) print('The R-square is: ', r2) evalDict['MLR'] = r2 * 100The R-square is: 0.8093732522175299 We can say that \~80.896% of the variation of price is explained by this multiple linear regression "multi_fit". Let's calculate the MSE: We produce a prediction: Y predict multifit = lm.predict(Z) We compare the predicted results with the actual results: print('The mean square error of price and predicted value using multifit is:', mean_squared_error(df['price'], Y_predict_multifit)) The mean square error of price and predicted value using multifit is: 11979300.349818885 Model 3: Polynomial Fit Let's calculate the R^2: Let's import the function **r2_score** from the module **metrics** as we are using a different function. from sklearn.metrics import r2 score We apply the function to get the value of R^2 : $r2 = r2_score(y, p(x))$ print('The R-square value is: ', r2) evalDict['Polynomial Reg.'] = r2*100 The R-square value is: 0.6741946663906513 We can say that \~67.419% of the variation of price is explained by this polynomial fit. We can also calculate the MSE: print('The mean square error of price and predicted value is:', mean_squared_error(df['price'], p(x))) The mean square error of price and predicted value is: 20474146.42636125 **Prediction and Decision Making Decision Making: Determining a Good Model Fit** Now that we have visualized the different models, and generated the R-squared and MSE values for the fits, how do we determine a good model fit? What is a good R-squared value? When comparing models, the model with the higher R-squared value is a better fit for the data. What is a good MSE? When comparing models, the model with the smallest MSE value is a better fit for the data. Let's take a look at the values for the different models. Simple Linear Regression (SLR): Using Highway-mpg as a Predictor Variable of Price. R-squared: 0.49659118843391759 MSE: 3.16 x10^7 Multiple Linear Regression (MLR): Using Horsepower, Curb-weight, Engine-size, and Highway-mpg as Predictor Variables of Price. • R-squared: 0.80896354913783497 MSE: 1.2 x10^7 **Polynomial Fit**: Using Highway-mpg as a Predictor Variable of Price. R-squared: 0.6741946663906514 MSE: 2.05 x 10^7 (SLR) Model vs (MLR) Model Usually, the more variables you have, the better your model is at predicting, but this is not always true. Sometimes we may not have enough data, you may run into numerical problems, or many of the variables may not be useful and even act as noise. In order to compare the results of the MLR vs SLR models, we look at a combination of both the R-squared and MSE to make the best conclusion about the model. • MSE: The MSE of SLR is 3.16x10^7 while MLR has an MSE of 1.2 x10^7. The MSE of MLR is much smaller. • R-squared: In this case, we can also see that there is a big difference between the R-squared of the SLR and the R-squared of the MLR. The R-squared for the SLR (~0.497) is very small compared to the R-squared for the MLR (~0.809). This R-squared in combination with the MSE show that MLR seems like the better model fit in this case compared to SLR. (SLR) vs. Polynomial Fit • MSE: We can see that Polynomial Fit brought down the MSE, since it's MSE (2.05x10^7) is smaller than the one from the SLR (3.16x10⁷). • R-squared: The R-squared for the Polynomial Fit (~0.674) is larger than the R-squared for the SLR (~0.497), so the Polynomial Fit also brought up the R-squared quite a bit. Since the Polynomial Fit resulted in a lower MSE and a higher R-squared, we can conclude that this was a better fit model than the simple linear regression for predicting "price". Multiple Linear Regression (MLR) vs. Polynomial Fit • MSE: The MSE for the MLR is smaller than the MSE for the Polynomial Fit. **R-squared**: The R-squared for the MLR is also much larger than for the Polynomial Fit. Conclusion Comparing these three models, we conclude that the MLR model is the best model to be able to predict price from our dataset. This result makes sense since we have 26 variables in total and we know that more than one of those variables are potential predictors of the final car price. **Model Evaluation and Refinement** We have built models and made predictions of vehicle prices. Now we will determine how accurate these predictions are. **Table of Contents** Model Evaluation Over-fitting and Model Selection Ridge Regression Grid Search **Model Success Plot** In [134... # Library for interactive plotting. from ipywidgets import interact First lets only use numeric data. df=df._get_numeric_data() df.head() normalized- wheelpeak- city- hig curbenginecompressionsymboling length width height bore stroke horsepower losses base weight size ratio rpm mpg 0 3 122 88.6 0.811148 0.890278 0.816054 2548 3.47 2.68 9.0 5000.0 21 130 111 1 122 88.6 0.811148 0.890278 0.816054 2548 130 3.47 2.68 9.0 111 5000.0 21 2 1 94.5 0.822681 0.909722 0.876254 9.0 5000.0 19 122 2823 152 2.68 3.47 154 3 2 164 99.8 0.848630 0.919444 0.908027 2337 109 3.19 3.40 10.0 102 5500.0 24 2 99.4 0.848630 0.922222 0.908027 2824 8.0 115 5500.0 164 136 3.19 3.40 18 **User-Defined Functions for plotting** def DistributionPlot(RedFunction, BlueFunction, RedName, BlueName, Title=""): width = 9 height = 7plt.figure(figsize=(width, height)) ax1 = sns.kdeplot(x =RedFunction, color="r", label=RedName) ax2 = sns.kdeplot(x =BlueFunction, color="b", label=BlueName, ax=ax1) plt.title(Title, size =15) plt.xlabel('Price (in dollars)', size=13) plt.ylabel('Proportion of Cars', size=13) plt.legend() plt.show() plt.close() def PollyPlot(xtrain, xtest, y_train, y_test, lr,poly_transform,text=""): width = 8 height = 6plt.figure(figsize=(width, height)) #training data #testing data # lr: linear regression object #poly transform: polynomial transformation object xmax=max([xtrain.values.max(), xtest.values.max()]) xmin=min([xtrain.values.min(), xtest.values.min()]) x=np.arange(xmin, xmax, 0.1) plt.plot(xtrain, y train, 'ro', label='Training Data') plt.plot(xtest, y_test, 'go', label='Test Data') plt.plot(x, lr.predict(poly_transform.fit_transform(x.reshape(-1, 1))), label='Predicted Function') plt.ylim([0, 60000]) plt.ylabel('Price', size=15) plt.xlabel(text, size=15) plt.legend() plt.show() plt.close() **Training and Testing** An important step in testing the model is to split your data into training and testing data. We will place the target data **price** in a separate dataframe **y_data**: y data = df['price'] Drop price data in **x_data** In [139.. x data=df.drop('price',axis=1) Now we randomly split our data into training and testing data using the function train_test_split. In [140.. from sklearn.model selection import train test split x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.15, random_state=1) print("Number of test samples :", x_test.shape[0]) print("Number of training samples:",x_train.shape[0]) Number of test samples : 31 Number of training samples: 170 The **test_size** parameter sets the proportion of data that is split into the testing set. In the above, the testing set is set to 15% of the total dataset. Let's import **LinearRegression** from the module **linear_model**. In [141... from sklearn.linear model import LinearRegression We create a Linear Regression object: In [142... lre=LinearRegression() We fit the model using the feature horsepower In [143.. lre.fit(x train[['horsepower']], y train) Out[143... LinearRegression() Let's Calculate the R^2 on the test data: In [144... lre.score(x_test[['horsepower']], y_test) Out[144... 0.7076967079117261 We can see the R² is smaller using the train data. In [145... lre.score(x train[['horsepower']], y_train) Out[145... 0.6450110239384648 Sometimes we don't have sufficient testing data; as a result, we may want to perform Cross-validation. Let's go over several methods that you can use for Cross-validation. **Cross-validation Score** Lets import model_selection from the module cross_val_score. In [146... from sklearn.model_selection import cross_val_score We input the object, the feature in this case **horsepower**, the target data (y_data). The parameter **cv** determines the number of folds; in this case 4. In [147... Rcross = cross_val_score(lre, x_data[['horsepower']], y_data, cv=4) The default scoring is R^2; each element in the array has the average R^2 value in the fold: In [148.. Rcross Out[148... array([0.77465419, 0.51718424, 0.74814454, 0.04825398]) We can calculate the average and standard deviation of our estimate: In [149... print("The mean of the folds is :", round(Rcross.mean(),3)) print("The standard deviation is :" , round(Rcross.std(),3)) The mean of the folds is : 0.522 The standard deviation is: 0.291 We can use mean_squared_error as a score by setting the parameter **scoring** metric to **neg_mean_squared_error**. -1 * cross_val_score(lre,x_data[['horsepower']], y_data,cv=4,scoring='neg_mean_squared_error') Out[150... array([20251357.7835463 , 43743920.05390439, 12525158.34507633, 17564549.699766531) We can also use the function **cross_val_predict** to predict the output. The function splits up the data into the specified number of folds, using one fold to get a prediction while the rest of the folds are used as training data. First import the function: from sklearn.model selection import cross val predict We input the model object, the feature in this case 'horsepower', the target data y_data. Then, We can produce an output: yhat = cross_val_predict(lre,x_data[['horsepower']], y_data,cv=4) yhat[0:5] Out[152... array([14142.23793549, 14142.23793549, 20815.3029844 , 12745.549902 , 14762.9881726]) **Overfitting and Model Selection** It turns out that the test data sometimes referred to as the out of sample data is a much better measure of how well your model performs in the real world. One reason for this is overfitting; let's go over some examples so we can explore overfitting. Let's create Multiple linear regression objects and train the model using 'horsepower', 'curb-weight', 'engine-size' and 'highway-mpg' as features. lr = LinearRegression() lr.fit(x train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']], y train) Out[153... LinearRegression() Prediction using training data: In [154... yhat train = lr.predict(x train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) yhat train[0:5] Out[154... array([11927.25153792, 11236.70125955, 6436.82274615, 21891.09897761, 16669.10119352]) Prediction using test data: yhat test = lr.predict(x test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) yhat test[0:5] Out[155... array([11349.48964574, 5914.6130239 , 11243.35261505, 6661.95904136, 15555.94734434]) Let's perform some **model evaluation** using our training and testing data separately. First we import the seaborn and matplotlib library for plotting. import matplotlib.pyplot as plt import seaborn as sns Let's examine the distribution of the predicted values of the training data. Title = 'Distribution Plot of Predicted vs Actual Values (Train Data)' DistributionPlot(y train, yhat train, "Actual Values (Train)", "Predicted Values (Train)", Title) _{le-5} Distribution Plot of Predicted vs Actual Values (Train Data) Actual Values (Train) 7 Predicted Values (Train) 6 Proportion of Cars 2 1 -1000010000 40000 50000 Price (in dollars) Figure 1: Plot of predicted values using the training data compared to the training data. So far the model seems to be doing well in learning from the training dataset. But what happens when the model encounters new data from the testing dataset? When the model generates new values from the test data, we see the distribution of the predicted values is much different from the actual target values. In [158... Title='Distribution Plot of Predicted vs Actual Values (Test Data)' DistributionPlot(y test, yhat test, "Actual Values (Test)", "Predicted Values (Test)", Title) Distribution Plot of Predicted vs Actual Values (Test Data) Actual Values (Test) 7 Predicted Values (Test) 6 Proportion of Cars 2 1 10000 20000 30000 40000 50000 Price (in dollars) Figure 2: Plot of predicted value using the test data compared to the test data. Comparing Figure 1 and Figure 2; it is evident that **distribution of the test data in Figure 1 is much better** at fitting the data. This difference in Figure 2 is apparent where the ranges are from 5000 to 15,000. This is where the distribution shape is exceptionally different. Let's see if polynomial regression also exhibits a drop in the prediction accuracy when analysing the test dataset. In [159.. from sklearn.preprocessing import PolynomialFeatures Overfitting Overfitting occurs when the model fits the noise, not the underlying process. Therefore when testing our model using the test-set, the model does not perform as well as it is modelling noise, not the underlying process that generated the relationship. Let's create a degree 5 polynomial model. Let's use 45% of the data for testing and the rest for training: x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.45, random_state=0) We will perform a degree 5 polynomial transformation on the feature 'horsepower'. pr = PolynomialFeatures(degree=5) x train pr = pr.fit transform(x train[['horsepower']]) x test pr = pr.fit transform(x test[['horsepower']]) pr Out[161... PolynomialFeatures(degree=5) Now let's create a linear regression model "poly" and train it poly = LinearRegression() poly.fit(x train pr, y train) Out[162... LinearRegression() We can see the output of our model using the method **predict**, then assign the values to "yhat". yhat = poly.predict(x_test_pr) yhat[0:5] Out[163... array([6727.5684937 , 7306.69841686, 12213.71328834, 18895.0377327 , Let's take the first four predicted values and compare it to the actual targets. In [164... print("Predicted values:\n\t", yhat[0:4]) print("True values:\n\t", y test[0:4].values) Predicted values: [6727.5684937 7306.69841686 12213.71328834 18895.0377327] True values: [6295. 10698. 13860. 13499.] We will use the function PollyPlot() that we defined at the beginning to display the training data, testing data, and the predicted function. PollyPlot(x_train[['horsepower']], x_test[['horsepower']], y_train, y_test, poly,pr,"Horsepower") 60000 Training Data

Test Data

150

Horsepower

200

100

50000

40000

30000

20000

10000

0

model prediction.

R^2 of the training data:

poly.score(x train pr, y train)

points.

Out[166... 0.5568527854053474

R^2 of the test data:

50

Predicted Function

250

Figure 3: A polynomial regression model, red dots represent training data, green dots represent test data, and the blue line represents the

We can see that the estimated function appears to track the data but around 200 horsepower, the function begins to diverge from the data

Actual vs Fitted Values for Price

7

6

Actual Value Fitted Values

	-29.815481910638443 We see the R^2 for the training data is 0.5567 while the R^2 on the test data was -29.87. The lower the R^2, the worse the model; a Negative R^2 is a sign of Overfitting. Let's see how the R^2 changes on test data for different Order Polynomials and Plot the results:
In [168	<pre>Rsqu_test = [] order = [1, 2, 3, 4] for n in order: pr = PolynomialFeatures(degree=n) x_train_pr = pr.fit_transform(x_train[['horsepower']]) x_test_pr = pr.fit_transform(x_test[['horsepower']]) lr.fit(x_train_pr, y_train)</pre>
	<pre>Rsqu_test.append(lr.score(x_test_pr, y_test)) plt.plot(order, Rsqu_test, "ro") plt.plot(order, Rsqu_test) plt.xlabel('Order', size=12) plt.ylabel('R^2', size=12) plt.ylim(0.40,0.80) plt.title('R^2 Using Test Data', size=15) plt.text(3, 0.75, 'Maximum R^2', animated = True) plt.show()</pre>
	R^2 Using Test Data 0.80 0.75 0.70 0.65 2 0.60 0.55
	We see the R^2 gradually increases until an order three polynomial is used. Then the R^2 dramatically decreases at four. The following function will be used in the next section.
In [169	
	<pre>poly = LinearRegression() poly.fit(x_train_pr,y_train) #User defined function for plotting PollyPlot(x_train[['horsepower']], x_test[['horsepower']], y_train,y_test, poly, pr, "Horsepower") print(f"R^2 Value of Training Data : {round(poly.score(x_train_pr, y_train),3)}") print(f"R^2 Value of Testing Data : {round(poly.score(x_test_pr, y_test),3)}")</pre> The following interface allows us to experiment with different polynomial orders and different amounts of data.
In [170 In [171	<pre>interact(func, Order=(0, 6, 1), Test_Data=(0.10, 0.90, 0.05));</pre> We can Perform polynomial transformations with more than one feature. First, Create a "PolynomialFeatures" object "pr1" of degree two. And then, splitting the dataset into training and testing data.
In [172	Transforming the training and testing samples for the features 'horsepower', 'curb-weight', 'engine-size' and 'highway-mpg'. x_train_prl=pr.fit_transform(x_train[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) x_test_prl=pr.fit_transform(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]) Now, How many dimensions does the new feature have?
In [173 Out[173 In [174	<pre>(110, 70) Creating a linear regression model "poly1" and training the object. poly1 = LinearRegression().fit(x_train_pr1,y_train)</pre>
In [175	Title='Distribution Plot of Predicted vs Actual Values (Test Data)' DistributionPlot(y_test[(0<=y_test) & (y_test<=50000)], yhat_test1[(0<=yhat_test1) & (yhat_test1 <= 50000)], "I le-5 Distribution Plot of Predicted vs Actual Values (Test Data)
	Actual Values (Test) Predicted Values (Test) 6 - 5 - 6 - 5 - 6 - 7 - 6 - 8 -
	average of Caracteristics of C
	Conclusion: The predicted value is higher than actual value for cars where the price \$10,000 range, conversely the predicted price is lower than the price cost in the \$30,000 to \$40,000 range. As such the model is not as accurate in these ranges. Ridge regression Ridge Regression is usually used when there is a high correlation between independent variables. This is because, in the case of multi
In [176	collinear data, the least square estimates give unbiased values. This is a powerful regression method where the model is less susceptible to overfitting. Let's perform a degree two polynomial transformation on our data.
In [177 In [178	Let's create a Ridge regression object, setting the Regularization Parameter "alpha" to 0.1. RigeModel=Ridge (alpha=0.1)
In [193 In [180	Similarly, we can obtain a prediction:
In [181 In [182	<pre>print('Predicted :', ynat[0:4]) print('Test-set :', y_test[0:4].values) Predicted : [6569.10080596 9595.9695303 20834.19869602 19347.43557722] Test-set : [6295. 10698. 13860. 13499.] Now, We will select the value of Alpha that minimizes the test error. Rsqu_test = []</pre>
	<pre>Rsqu_train = [] ALPHA = 10 * np.array(range(0,1000)) for a in ALPHA: RigeModel = Ridge(alpha=a) RigeModel.fit(x_train_pr, y_train) Rsqu_test.append(RigeModel.score(x_test_pr, y_test)) Rsqu_train.append(RigeModel.score(x_train_pr, y_train))</pre> We can plot out the value of R^2 for different Alphas.
In [183	<pre>plt.ligure(ligs12e-(0, 0)) plt.plot(ALPHA, Rsqu_test, label='test data') plt.plot(ALPHA, Rsqu_train, 'r', label='training Data ') plt.title("R^2 for Different Alpha", size=15) plt.xlabel('Alpha', size=13) plt.ylabel('R^2', size=13) plt.ylim(0,)</pre>
	plt.legend() plt.show() R^2 for Different Alpha 0.8 0.7
	0.6 - 0.5 - 0.4 - 0.3 - 0.2 -
	The red line in figure represents the R^2 of the training data, as Alpha increases the R^2 decreases; therefore as Alpha increases the model performs worse on the training data. The blue line represents the R^2 on the test data, as the value for Alpha increases the R^2 increases.
In [184	Grid Search The term Alpha is a hyperparameter, sklearn has the class GridSearchCV to make the process of finding the best hyperparameter simpler. Let's import GridSearchCV from the module model_selection. from sklearn.model_selection import GridSearchCV We create a dictionary of parameter values:
In [185 In [186 Out[186	parameters1= [{'alpha': [0.001, 0.01, 0.1,1, 10, 100, 1000, 10000], 'normalize': [True, False]}] Creating a ridge regression object: RR=Ridge() RR
In [187 In [188	Creating a Ridge grid-search object. Grid1 = GridSearchCV(RR, parameters1, cv=4) Fit the model Grid1.fit(x_data[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg', 'normalized-losses', 'symboling']],
Out[188 In [189	GridSearchCV(cv=4, estimator=Ridge(),
In [190	<pre>Ridge(alpha=0.1, normalize=True) We now test our model on the test data # R^2 Value r2 = BestRR.score(x_test[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg','normalized-losses','symbol evalDict['Ridge Reg.'] = r2*100 r2</pre>
Out[190 In [191	<pre>Plotting a Model Success Plot def plotSuccess(): s = pd.Series(evalDict) s = s.sort_values(ascending=False) plt.figure(figsize=(8,6))</pre>
	<pre>ax = s.plot(kind='bar') for p in ax.patches: ax.annotate(str(round(p.get_height(),2)), (p.get_x() * 1.005, p.get_height() * 1.005)) plt.ylim([40.0, 90.0]) plt.xlabel('Models',size=15) plt.xticks(rotation=45) plt.ylabel('Percentage',size=15) plt.title('Success Rate of Models',size=20) plt.show() plotSuccess()</pre>
	Success Rate of Models 80 - 80.94
	67.42 50 -
	Ridde Red: Models Models
In [192	Conclusion: Ridge Regression Model has the Highest Success Rate. So, We can use it to predict the prices of Cars successfully. A Test Case is presented below. # Real Life Scenario # Variables can have any appropriate Value.
	<pre># Let's say your friend's car has the following features. horsepower = 110.0 curb_weight = 2550.0 engine_size = 120.0 highway_mpg = 25.0 normalized_losses = 110.0 symboling = 1.0 testCase = [[horsepower, curb_weight, engine_size, highway_mpg ,normalized_losses ,symboling]] TestDf = pd.DataFrame(testCase, columns = ['horsepower', 'curb-weight', 'engine-size', 'highway-mpg','normalized_losses', 'highway-mpg','normalized_losses',</pre>
	<pre>SellingPrice = BestRR.predict(TestDf) # In Indian Currency (1 Dollar = 74.19 Rupees). SellingPrice *= 74.19 print("Selling Price of Your Friend's Car is {:,.2f} Rupees.".format(SellingPrice[0])) Selling Price of Your Friend's Car is 979,056.43 Rupees.</pre>