13 mai 2023 MP2I

Devoir Surveillé 9, corrigé

PROBLÈME MATRICES DE TRACE NULLE

Question préliminaire : Soit $M \in \mathcal{M}_n(\mathbb{R})$ de la forme (S). On a alors M = XY - YX avec $X, Y \in \mathcal{M}_n(\mathbb{R})$. On a donc par linéarité de la trace :

$$Tr(M) = Tr(XY) - Tr(YX).$$

Puisque $\operatorname{Tr}(XY) = \operatorname{Tr}(YX)$, on a donc bien $\operatorname{Tr}(M) = 0$ et $M \in \mathcal{T}_n^0(\mathbb{R})$.

Partie I. Les matrices de diagonale nulle sont de la forme (S).

- 1) Une somme directe.
 - a) On a dim $(\mathcal{D}_n(\mathbb{R})) = n$ (voir cours).
 - b) Soit $A \in \mathcal{E}_n(\mathbb{R})$. Puisque tous les coefficients diagonaux de M sont nuls, on a $A = \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} a_{i,j} E_{i,j}$

où on note $E_{i,j} \in \mathcal{M}_n(\mathbb{R})$ la matrice élémentaire ayant un 1 en position (i,j) et des 0 ailleurs. On a donc $\mathcal{E}_n(\mathbb{R}) \subset \text{Vect}((E_{i,j})_{\substack{1 \leq i,j \leq n \\ i \neq j}}$. Réciproquement, il est clair que toutes les matrices $E_{i,j}$ pour $i \neq j$ sont à diagonale nulle et que si on effectue une combinaison linéaire de matrices à diagonale nulle, alors on obtient une matrice dont la diagonale est nulle. On a donc :

$$\mathcal{E}_n(\mathbb{R}) = \operatorname{Vect}((E_{i,j})_{\substack{1 \leq i,j \leq n \\ i \neq j}}.$$

On a donc bien $\mathcal{E}_n(\mathbb{R})$ qui est un espace vectoriel (et c'est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ car il est inclus dans $\mathcal{M}_n(\mathbb{R})$). Puisque la famille $((E_{i,j}))_{\substack{1 \leq i,j \leq n \\ i \neq j}}$ est une sous-famille d'une famille libre, elle est libre. C'est donc une base de $\mathcal{E}_n(\mathbb{R})$. On en déduit que :

$$\dim(\mathcal{E}_n(\mathbb{R})) = \sum_{\substack{1 \le i,j \le n \\ i \ne j}} 1 = \sum_{i=1}^n (n-1) = n(n-1).$$

c) Soit
$$A \in \mathcal{M}_n(\mathbb{R})$$
. Alors, si on note $D = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_{n,n} \end{pmatrix}$, on a $A = D + (A - D)$ avec

$$D \in \mathcal{D}_n(\mathbb{R})$$
 et $A - D \in \mathcal{E}_n(\mathbb{R})$.

De plus, il est clair que $\mathcal{D}_n(\mathbb{R}) \cap \mathcal{E}_n(\mathbb{R}) = \{0_{\mathcal{M}_n(\mathbb{R})}\}$ (puisque la seule matrice diagonale qui a tous ses coefficients diagonaux nuls est la matrice nulle). On a donc bien $\mathcal{M}_n(\mathbb{R}) = \mathcal{D}_n(\mathbb{R}) \oplus \mathcal{E}_n(\mathbb{R})$. On retrouve bien avec les calculs de dimension précédents que $n^2 = n + n(n-1)$.

2) a) Soient $B, C \in \mathcal{M}_n(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$. Alors:

$$\begin{array}{rcl} \varphi(\lambda B + \mu C) & = & A(\lambda B + \mu C) - (\lambda B + \mu C)A \\ & = & \lambda AB + \mu AC - \lambda BA - \mu CA \\ & = & \lambda \varphi(B) + \mu \varphi(C). \end{array}$$

 φ est donc bien une application linéaire.

- b) Calcul de $rg(\varphi)$.
 - i) Soit $B \in \mathcal{M}_n(\mathbb{R})$. On a :

$$B \in \ker(\varphi) \Leftrightarrow AB = BA$$
.

Pour $i, j \in [1, n]$, on a puisque A est diagonale :

$$(AB)_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j} = i \times b_{i,j}.$$

De la même façon, $(BA)_{i,j} = \sum_{k=1}^{n} b_{i,k} a_{k,j} = b_{i,j} \times j$. On a donc $(AB)_{i,j} = (BA)_{i,j} \Leftrightarrow ib_{i,j} = jb_{i,j}$. On en déduit que :

$$AB = BA \Leftrightarrow \forall i, j \in [1, n], (i - j)b_{i,j} = 0$$

$$\Leftrightarrow \forall i \neq j, b_{i,j} = 0$$

$$\Leftrightarrow B \in \mathcal{D}_n(\mathbb{R}).$$

On a procédé par équivalence, ce qui entraine que $\ker(\varphi) = \mathcal{D}_n(\mathbb{R})$.

ii) On va utiliser le théorème du rang (possible car $\mathcal{M}_n(\mathbb{R})$ est de dimension finie n^2). On a donc :

$$n^2 = \operatorname{rg}(\varphi) + \dim(\ker(\varphi)) = \operatorname{rg}(\varphi) + n$$

puisque dim $(\mathcal{D}_n(\mathbb{R})) = n$. On en déduit que $\operatorname{rg}(\varphi) = n^2 - n = n(n-1)$.

c) Soit $B \in \text{Im}(\varphi)$. Il existe alors $C \in \mathcal{M}_n(\mathbb{R})$ telle que $B = \varphi(C) = AC - CA$. On a alors pour $i \in [1, n]$:

$$b_{i,i} = (AC)_{i,i} - (CA)_{i,i}$$

$$= \sum_{k=1}^{n} a_{i,k}c_{k,i} - \sum_{k=1}^{n} c_{i,k}a_{i,k}$$

$$= i \times c_{i,i} - c_{i,i} \times i \quad \text{(puisque la matrice A est diagonale)}$$

$$= 0.$$

On a donc bien tous les coefficients diagonaux de B nuls, d'où $\operatorname{Im}(\varphi) \subset \mathcal{E}_n(\mathbb{R})$.

d) On a montré une inclusion et d'après les questions 1.b et 2.b.ii, on a l'égalité des dimensions. On a donc $\operatorname{Im}(\varphi) = \mathcal{E}_n(\mathbb{R})$. On en déduit que :

$$\forall B \in \mathcal{E}_n(\mathbb{R}), \ \exists M \in \mathcal{M}_n(\mathbb{R}) \ /B = \varphi(M) = AM - MA.$$

e) Fixons $B \in \mathcal{E}_n(\mathbb{R})$. D'après la question précédente, il existe $M \in \mathcal{M}_n(\mathbb{R})$ telle que B = AM - MA. Or, d'après la question 1.c, on peut écrire M = D + N avec $D \in \mathcal{D}_n(\mathbb{R})$ et $N \in \mathcal{E}_n(\mathbb{R})$. On a donc :

$$M = \varphi(D+N) = \varphi(D) + \varphi(N) = \varphi(N)$$

puisque $D \in \ker(\varphi)$. On a donc l'antécédent voulu. Supposons que l'on ait $N_1, N_2 \in \mathcal{E}_n(\mathbb{R})$ tels que $M = \varphi(N_1) = \varphi(N_2)$. On a alors :

$$\varphi(N_1) - \varphi(N_2) = 0_{\mathcal{M}_n(\mathbb{R})} \Leftrightarrow \varphi(N_1 - N_2) = 0_{\mathcal{M}_n(\mathbb{R})}$$

par linéarité de φ . On a donc $N_1 - N_2 \in \ker(\varphi) = \mathcal{D}_n(\mathbb{R})$. Or, puisque $N_1 - N_2 \in \mathcal{E}_n(\mathbb{R})$ (car on a un espace vectoriel) et que la somme entre $\mathcal{E}_n(\mathbb{R})$ et $\mathcal{D}_n(\mathbb{R})$ est directe d'après la question 2, on a $N_1 - N_2 = 0_{\mathcal{M}_n(\mathbb{R})}$, ce qui entraine $N_1 = N_2$. On a donc bien l'unicité de l'antécédent dans $\mathcal{E}_n(\mathbb{R})$.

Partie II. Caractérisation des homothéties.

3) Supposons $u = \lambda \operatorname{Id}_{\mathbb{R}^n}$. Alors, on a pour tout $x \in \mathbb{R}^n$, $u(x) = \lambda x$ et la famille (x, u(x)) est donc liée.

4)

- a) Soit $x \in \mathbb{R}^n$. On a alors (x, u(x)) liée. Il existe donc une famille $(a, b) \in \mathbb{R}^2$ non nulle telle que $ax + bu(x) = 0_{\mathbb{R}^n}$. Si $b \neq 0$, on a alors $u(x) = -\frac{a}{b}x$ ce qui donne le λ_x voulu. Si b = 0, alors on a $a \neq 0$, ce qui donne $ax = 0_{\mathbb{R}^n}$. On a donc $x = 0_{\mathbb{R}^n}$ ce qui donne $u(x) = 0_{\mathbb{R}^n}$ par linéarité de u donc $\lambda_x = 0$ convient.
- b) Pour $i \in [2, n]$, on a d'après la question précédente $u(e_1 + e_i) = \lambda_{e_1 + e_i}(e_1 + e_i)$ et par linéarité de u, on a aussi :

$$u(e_1 + e_i) = u(e_1) + u(e_i) = \lambda_{e_1} e_1 + \lambda_{e_i} e_i$$
.

En identifiant ces deux expressions, on obtient $(\lambda_{e_1+e_i}-\lambda_{e_1})e_1+(\lambda_{e_1+e_i}-\lambda_{e_i})e_i=0_{\mathbb{R}^n}$. Par liberté de la famille (e_1,e_i) , on en déduit que $\lambda_{e_1+e_i}=\lambda_{e_1}$ et $\lambda_{e_1+e_i}=\lambda_{e_i}$ ce qui prouve l'égalité demandée.

c) On a donc que pour tout $i \in [1, n]$, $u(e_i) = \lambda_{e_1} e_i$. On a donc u et $\lambda_{e_1} \mathrm{Id}_{\mathbb{R}^n}$ qui sont des applications linéaires égales sur une base de \mathbb{R}^n . Elles sont donc égales.

Partie III. Les matrices de trace nulle sont semblables aux matrices de diagonale nulle.

5) Si $M \in \mathcal{T}_1^0(\mathbb{R})$, M est une matrice 1×1 de trace nulle. Elle est donc nulle et est donc en particulier à diagonale nulle. On a donc la propriété voulue avec $P = I_1$.

6)

- a) On a dans ce cas $\text{Tr}(M) = \lambda n$. Puisque M est de trace nulle, on a $\lambda = 0$ ce qui entraine $M = 0_{\mathcal{M}_n(\mathbb{R})}$. On a alors M qui est en particulier à diagonale nulle, donc la propriété est vraie pour $P = I_n$.
- b) Par l'absurde, si pour tous les vecteurs $x \in \mathbb{R}^n$, (x, u(x)) était liée, alors d'après la partie II, on aurait que u est une homothétie ce qui entrainerait $M = \lambda I_n$. Puisque l'on a exclu ce cas, on en déduit qu'il existe existe $x_1 \in \mathbb{R}^n$ tel que $(x_1, u(x_1))$ est libre. Si on pose $x_2 = u(x_1)$, on en déduit alors d'après le théorème de la base incomplète (puisque \mathbb{R}^n est de dimension finie) qu'il existe (x_3, \ldots, x_n) tels que (x_1, x_2, \ldots, x_n) est une base de \mathbb{R}^n .
- c) Puisque $u(x_1)=x_2$, la première colonne de M' est $\begin{pmatrix} 0\\1\\0\\\vdots\\0 \end{pmatrix}$. D'après la formule de changement de base, on a :

$$M = \operatorname{Mat}_{\mathcal{B}_{can}}(u) = P_{\mathcal{B}_{can}}^{\mathcal{B}} \operatorname{Mat}_{\mathcal{B}}(u) P_{\mathcal{B}}^{\mathcal{B}_{can}} = P_1 M' P_1^{-1} \quad \operatorname{car} P_{\mathcal{B}}^{\mathcal{B}_{can}} = (P_{\mathcal{B}_{can}}^{\mathcal{B}})^{-1}.$$

d)

i) Puisque M et M' sont semblables, on a Tr(M) = Tr(M'). On peut redétailler ce calcul :

$$\operatorname{Tr}(M) = \operatorname{Tr}(P_1 M' P_1^{-1})$$
$$= \operatorname{Tr}(P_1^{-1} P_1 M')$$
$$= \operatorname{Tr}(M').$$

On a alors $\operatorname{Tr}(N) = 0 + \operatorname{Tr}(M') = \operatorname{Tr}(M) = 0$ car M est de trace nulle. D'après $\mathcal{P}(n-1)$, on en déduit qu'il existe $Q \in GL_{n-1}(\mathbb{R})$ telle que $Q^{-1}NQ \in \mathcal{E}_{n-1}(\mathbb{R})$.

ii) On pose la matrice bloc $P_2' = \begin{pmatrix} & 1 & O_{1,n-1} \\ & & & O_{n-1,1} & Q^{-1} \end{pmatrix}$. Par produits blocs, on a alors $P_2P_2' = P_2'P_2 = I_n$. Ceci entraine que P_2 est inversible et que $P_2^{-1} = P_2'$.

iii) $P = P_1 P_2$ est inversible comme produit de matrices inversibles. On a $P^{-1} = P_2^{-1} P_1^{-1}$. On en déduit, en utilisant l'associativité du produit matriciel et les produits blocs, que :

$$P^{-1}MP = P_2^{-1}P_1^{-1}P_1M'P_1^{-1}P_1P_2$$

$$= P_2^{-1}M'P_2$$

$$= \left(\begin{array}{c|c} 0 & LQ \\ \hline Q^{-1}C & Q^{-1}NQ \end{array}\right).$$

Or, par hypothèse de récurrence, on a $Q^{-1}NQ$ qui est à diagonale nulle ce qui entraine que $P^{-1}MP$ est aussi à diagonale nulle. On a donc terminé l'hérédité de la récurrence en montrant que M est semblable à une matrice à diagonale nulle, ce qui achève la récurrence.

Partie IV. La conclusion.

7) Il existe $P \in GL_n(\mathbb{R})$ telle que $M = PM'P^{-1}$ et il existe également $X', Y' \in \mathcal{M}_n(\mathbb{R})$ telles que M' = X'Y' - Y'X'. On a alors :

$$\begin{array}{lcl} M = PM'P^{-1} & = & P(X'Y' - Y'X')P^{-1} \\ & = & PX'Y'P^{-1} - PY'X'P^{-1} \\ & = & (PX'P^{-1}) \times (PY'P^{-1}) - (PY'P^{-1}) \times (PX'P^{-1}). \end{array}$$

On a donc bien M de la forme (S) en posant $X = PX'P^{-1}$ et $Y = PX'P^{-1}$.

8) Soit $M \in \mathcal{T}_n^0(\mathbb{R})$. D'après la partie III, on sait alors que M est semblable à une matrice à diagonale nulle. Or, d'après la partie I, les matrices à diagonale nulle sont de la forme (S). Puisque d'après la question précédente, si une matrice est semblable à une matrice de la forme (S), c'est qu'elle est elle-même de la forme (S), alors on a bien M de la forme (S), ce qui termine le fait que les matrices de $\mathrm{T}_n^0(\mathbb{R})$ sont de la forme (S) (l'autre sens ayant été fait en question préliminaire).