

Density functional theory in solid state physics

Lecture 4

Organisation

- HPC-accounts have been applied for and (apparently) been already created
- An e-mail asking to set a password should come soon (if it has not already)
- I will prepare a tutorial document about how to login to the HPC from windows over the course of the week

Summary

- Hohenberg-Kohn theorems: ground-state electron density uniquely defines Hamiltonian and ground-state energy. Theoretical basis to an exact density functional theory
- Kohn-Sham approach: mapping of system of interacting electrons onto to ficticious system of non-interacting electrons moving in an auxiliary effective potential v_{KS}

$$\left(-\frac{1}{2}\nabla^2 + \underbrace{v_{KS}(\vec{r})}\right)\varphi_i(\vec{r}) = \varepsilon_i\varphi_i(\vec{r})$$

$$v(\vec{r}) + \underbrace{v_{H}(\vec{r}) + v_{xc}(\vec{r})}$$

• Central approximation in DFT: Exchange-correlation potential v_{xc} , contains all electronelectron interaction missing in the other terms.

$$E_{xc}[n] = \int n(\vec{r}) \varepsilon_{xc} [n(\vec{r})] dr$$

$$v_{xc}(\vec{r}) = \frac{dE_{xc}}{dn(\vec{r})} = \varepsilon_{xc} + n(\vec{r}) \frac{d\varepsilon_{xc}}{dn(\vec{r})}$$

Summary

- Known properties of exact exchange-correlation functional:
 - Asymptotic decay of v_{XC} in finite systems, $v_{XC} \sim \frac{1}{r}$ for $r \to \infty$
 - Derivative discontinuity of v_{XC} with respect to particle numbers. For $\eta \to 0$:

$$v_{xc}^{N-\eta}(\vec{r}) = v_{xc}^{N}(\vec{r})$$
$$v_{xc}^{N+\eta}(\vec{r}) = v_{xc}^{N}(\vec{r}) + C$$

• Write $E_{XC}[n]$ in terms of exchange-correlation hole $n_{XC} = n_X + n_C$

$$E_{XC} = \iint n(\vec{r}) \frac{n_{XC}(\vec{r}, \vec{r}')}{|\vec{r} - \vec{r}'|} dr dr'$$

Sum rules:
$$\int n_X(\vec{r},\vec{r}')dr' = -1 \qquad \int n_C(\vec{r},\vec{r}')dr' = 0$$

Also:
$$n_X(\vec{r}, \vec{r}') \leq 0$$

Simple XC functional

- In principle simple to come up with new exchange-correlation functionals:
 - Model exchange-correlation hole, for example with a simple shape
 - Scale the model XC hole such that it contains exactly one electronic charge
 - Derive the corresponding exchange-correlation energy

Taken from https://www.cond-mat.de/events/correl11/manuscripts/bloechl.pdf

Jabob's ladder of XC approximations

- A variety of exchange-correlation approximations with different degrees of accuracy and simplicity have been proposed
- "Jacob's ladder" of exchange-correlation functionals:

The uniform electron gas

• The simplest model system to derive an expression for the exchange-correlation functional is the uniform (homogeneous) electron gas with density *n*.

"Zero rung approximation"

- All properties only depend on the electron density of the system
- Useful concept: Wigner radius r_s with $\frac{4}{3}\pi r_s^3 = \frac{1}{n}$
- Hartree-Fock approach: describe electrons as independent particles. Can be described by plane waves $\phi_{j,s_j}(\vec{r}) = \frac{1}{\sqrt{V}} e^{i\vec{k}_j \cdot \vec{r}}$

• The positive potential from the nuclei is approximated as a homogeneous positive background charge density $p(\vec{R})$ =const:

$$v^{e-n}(\vec{r}) = \iint \frac{p(\vec{R})}{|\vec{r} - \vec{R}|} dR = -v_H(\vec{r})$$

The uniform electron gas: Exchange

Energy of an electron with wavenumber k:

$$\varepsilon_k^{HEG} = \varepsilon_{kin,k}^{HEG} + \varepsilon_k^x + \varepsilon_k^c$$

$$= \frac{1}{2}k^2 + \varepsilon_k^x + \varepsilon_k^c$$
(again in atomic units)

• Exchange part is simple, see Xα method. The Hartree-Fock approximation yields for the exchange energy of an electron in state *i* with wavevector *k*:

$$\varepsilon_i^{\chi} = -\int \varphi_{i,s_i}^*(\vec{r}) \int \sum_j^N \delta_{s_i,s_j} \frac{\varphi_{j,s_j}^*(\vec{r}')\varphi_{i,s_i}(\vec{r}')\varphi_{j,s_j}(\vec{r})}{|\vec{r} - \vec{r}'|} dr' dr$$

algebra

$$\varepsilon_{k,s_i}^x = -\frac{2k_F}{\pi} F(x) \qquad \text{with } F(x) = \frac{1}{2} + \frac{1-x^2}{4x} \ln\left|\frac{1+x}{1-x}\right| \text{ and } x = \frac{k}{k_F}$$

• Averaged over all occupied states, $\overline{F} = 0.75$

The uniform electron gas, extra slide I

- Derivation of the Hartree-Fock exchange energy per electron shown on the previous slide
- Hartree-Fock approach:

$$\left(-\sum_{i}^{N} \nabla_{i}^{2} + v(\vec{r}) + v_{H}(\vec{r})\right) \varphi_{i,s_{i}}(\vec{r}) - \underbrace{\sum_{j} \delta_{s_{i},s_{j}} \int \frac{\varphi_{j,s_{j}}^{*}(\vec{r}')\varphi_{i,s_{i}}(\vec{r}')\varphi_{j,s_{j}}(\vec{r})}{|\vec{r}-\vec{r}'|} dr'}_{\varepsilon_{i}^{X,HF} \varphi_{i,s_{i}}(\vec{r})} = \varepsilon_{i,s_{i}} \varphi_{i,s_{i}}(\vec{r})$$

$$\to \varepsilon_{i}^{x,HF} = -\int \varphi_{i,s_{i}}^{*}(\vec{r}) \int \sum_{j}^{N} \delta_{s_{i},s_{j}} \frac{\varphi_{j,s_{j}}^{*}(\vec{r}')\varphi_{i,s_{i}}(\vec{r}')\varphi_{j,s_{j}}(\vec{r})}{|\vec{r} - \vec{r}'|} dr' dr$$

$$= -\frac{1}{V^2} \int e^{-i\vec{k}\cdot\vec{r}} \int \sum_{i}^{N} \delta_{S_i,S_j} \frac{e^{-i\vec{k}\cdot\vec{r}\prime}e^{i\vec{k}\cdot\vec{r}\prime}e^{i\vec{k}\cdot\vec{r}\prime}e^{i\vec{k}\cdot\vec{r}\prime}}{|\vec{r}-\vec{r}\prime|} dr' dr \qquad \text{with } \vec{k} = \vec{k}_i, \vec{k}\prime = \vec{k}_j$$

$$=-\frac{1}{V(2\pi)^3}\int_0^{k_F}\Biggl(\iint\frac{e^{i(\vec{k}'-\vec{k}\,)\cdot(\vec{r}'-\vec{r}\,)}}{|\vec{r}\,-\vec{r}'|}dr'dr\Biggr)d\Omega_{k'}\qquad \text{with } \Sigma_j^N\,\delta_{s_i,s_j}\to \frac{V}{(2\pi)^3}\int_0^{k_F}d\Omega_{k'}$$

Integral over sphere surface with radius k'

The uniform electron gas, extra slide II

$$= -\frac{1}{V(2\pi)^3} \int_0^{k_F} \int dr \left(\iint \frac{e^{i(\vec{k}' - \vec{k}) \cdot \vec{u}}}{u} du \right) dk'$$

$$=-\frac{1}{(2\pi)^3}\int_0^{k_F}\frac{4\pi}{\left|\vec{k}'-\vec{k}\;\right|^2}dk'=-\frac{2}{(2\pi)^2}\int_0^{k_F}\frac{1}{k^2-2kk'+k'^2}d\Omega_{k'}=-\frac{1}{(2\pi)^3}\int_0^{k_F}\frac{4\pi}{\left|\vec{k}'-\vec{k}\;\right|^2}d\Omega_{k'}$$

$$= -\frac{2}{(2\pi)^2} \int_0^{2\pi} d\varphi \int_0^{k_F} \int_0^{\pi} \frac{k'^2 \sin(\Theta)}{k^2 - 2kk' \cos(\Theta) + k'^2} d\Theta dk' \qquad \text{with } \sin(\Theta) d\Theta = -d(\underbrace{\cos(\Theta)}_{\mathcal{Y}})$$

$$= -\frac{1}{\pi} \int_0^{k_F} \left(\int_{-1}^1 \frac{k'^2}{k^2 - 2kk'y + k'^2} \, dy \right) dk' = -\frac{1}{\pi} \int_0^{k_F} \frac{k'}{k} \ln \left| \frac{k + k'}{k - k'} \right| dk'$$

: Somewhat lengthy Integration by parts,

$$\varepsilon_{k,s_i}^x = -\frac{k_F}{\pi} \left[1 + \frac{1 - x^2}{2x} ln \left| \frac{1 + x}{1 - x} \right| \right] \qquad \text{with } x = \frac{k}{k_F}$$

The uniform electron gas: Exchange

 Together with a factor ½ to remove double counting, this leads to the exchange energy density

$$\varepsilon_{\chi}^{HEG}(n) = \frac{E_{\chi}^{HEG}(n)}{N} = -\frac{3}{4\pi}k_{F}$$

• For a spin-polarized system: $n = n^{\uparrow} + n^{\downarrow}$

Density of electrons with spin
$$\sigma$$

$$\varepsilon_{\chi}^{HEG,\sigma}(n^{\sigma}) = -\frac{3}{4\pi} (6\pi^2 n^{\sigma})^{\frac{1}{3}} = -\frac{3}{4\pi} \left(\frac{9}{4}\pi\right)^2 / r_{s}^{\sigma}$$

• For spin-unpolarized system: $n^{\uparrow} = n^{\downarrow} = \frac{1}{2}n$

$$\varepsilon_{\chi}^{HEG,\uparrow}(n^{\uparrow}) = \varepsilon_{\chi}^{HEG,\downarrow}(n^{\downarrow}) = -\frac{3}{4\pi} \left(6\pi^2 \frac{1}{2}n\right)^{\frac{1}{3}}$$
$$= -\frac{3}{4\pi} (3\pi^2 n)^{\frac{1}{3}} = \varepsilon_{\chi}^{HEG}(n)$$

The uniform electron gas: Correlation

- The correlation energy can only be determined analytically for the limiting cases of low- and high electron density. The relevant range for realistic materials is $1 < r_s < 6$.
- Several propositions:
 - Low density-limit $(r_s \gg 1)$:

$$\varepsilon_c^{HEG}(r_s) = -\frac{0.438}{r_s} + \frac{1.33}{r_s^{3/2}} + \frac{1.47}{r_s^2} + \cdots$$

 Wigner proposed an interpolation formula between a Wigner crystal in the lowdensity limit and a constant high-density limit

$$\varepsilon_c^{HEG} \approx \frac{0.44}{r_s + 7.8}$$
 (in units of Hartree) Phys. Rev 46, 1002 (1934)

• Gell-Mann&Brueckner summed over an infinite series of Feynman diagrams, exact expression for high-density $(r_s \rightarrow 0)$ limit:

$$\varepsilon_c^{HEG}(r_s) = 0.0311 \ln(r_s) - 0.047 + r_s(A \ln(r_s) + C) + \cdots$$

Phys. Rev 106, 364 (1957)

The uniform electron gas: Correlation

- Accurate Monte Carlo calculations over a relevant range of $r_{\rm S}$ values and subsequent analytical fits to the QMC data Phys Rev Lett45, 566 (1980)
- Parametrizations
 - Perdew-Wang: Phys Rev B 45, 13244 (1992)
 - Perdew-Zunger: Phys. Rev. B 23, 5048 (1981)
 - Lee-Yang-Parr (LYP): Phys. Rev. B. 37, 785 (1988)
 - Vosko-Wild-Nusair (VWN): Can. J. Phys. 58, 1200 (1980)

 Chachiyo: Simple interpolation formula with very small errors compared to QMC over the whole range of relevant densities

J. Chem. Phys. 145, 021101 (2016)

- Local-density approximation (LDA): A simple approach for electronic systems with a non-uniform electron density. First rung of Jacob's Ladder
- Idea: Use homogeneous electron gas to estimate exchange interaction of electron at position \vec{r}
- · For a spin-unpolarized system;

$$E_{xc}^{LDA} = \int n(\vec{r}) \, \varepsilon_{xc}^{LDA}(n(\vec{r})) dr$$

$$\varepsilon_{xc}^{LDA}(n,\vec{r}) = \varepsilon_{xc}^{HEG}(n(\vec{r})) = -\frac{3}{4\pi} \left(3\pi^2 n(\vec{r})\right)^{\frac{1}{3}} + \varepsilon_c^{HEG}(n(\vec{r}))$$

$$v_{xc}^{LDA}(\vec{r}) = \frac{d}{dn} E_{xc}^{LDA} = -\frac{1}{\pi} (3\pi^2 n(\vec{r}))^{\frac{1}{3}} + v_c^{HEG}(n(\vec{r}))$$

 Exchange component is always fixed ("Dirac" or "Slater exchange"), but different flavours of LDA exist depending on the used parametrization of the correlation energy

- Local spin density approximation (LSDA): Generalization of LDA to (possibly) spin-polarized systems (*J. Phys. C: Solid State Phys. 5, 1629 (1972)*)
- Exchange-correlation energy: $E_{xc}^{LSDA} = \int n(\vec{r}) \, \epsilon_{xc}^{LSDA}(n(\vec{r}), \zeta(\vec{r})) dr$

with the fractional spin-polarization
$$\zeta(\vec{r}) = \frac{n^{\uparrow}(\vec{r}) - n^{\downarrow}(\vec{r})}{n(\vec{r})}$$

 $\zeta = 0$: paramagnetic, spin-unpolarized conditions

 $\zeta = \pm 1$: purely ferro- or antiferromagnetic conditions

• LSDA XC energy density:
$$\varepsilon_{\chi}^{LSDA}(n(\vec{r}), \zeta(\vec{r})) = \frac{1}{2} \Big(\Big(1 + \zeta(\vec{r}) \Big) \varepsilon_{\chi}^{HEG,\uparrow} + \Big(1 - \zeta(\vec{r}) \Big) \varepsilon_{\chi}^{HEG,\downarrow} \Big)$$

- LDA works surprisingly well for realistic systems, particularly solids
- Structural properties are quite good
 - Typical underestimation of bond lengths, lattice constants and covalent binding energies by a few percent ("overbinding")
 - Phonon frequencies are (typically) overestimated
 - Usually better than Hartree-Fock results
- LDA favours homogeneous electron densities
- LDA lacks a derivative discontinuity; electronic band gaps are underestimated or plainly wrong
- Not very good with magnetic systems

	ехр	LDA	Δ			
Si	5.43	5.4	-0.55%			
Ge	5.65	5.63	-0.3%			
GaAs	5.65	5.63	-0.3%			
La ₂ O ₃	3.95, 6.15	3.92, 6.04	-0.76%, -1.79%			
Al	4.03	3.98	-1.25%			
Cu	3.6	3.52	-2.17%			
W	3.16	3.13	-0.88%			

Int J. Quant. Chem. 19, 497 (1986)

- LDA is exact treatment for a specific system: the homogeneous electron gas
- As such, it satisfies many constraints of the exact exchange-correlation functional
- LDA exchange-correlation hole is bad, but spherical average is a reasonable estimate

$$E_{xc} = \frac{1}{2} \iint n(\vec{r}) \frac{n_{xc}(\vec{r}, \vec{r}')}{|\vec{r} - \vec{r}'|} dr dr' = \frac{1}{2} \int n(\vec{r}) \left[\int 4\pi u^2 \frac{n_{xc}(\vec{r}, \vec{r} + \vec{u})}{u} \frac{d\Omega_u}{4\pi} \right] dr$$

Error cancellation between underestimated exchange energies and overestimated correlation energies

Phys Rev B 20, 3136 (1979)

Gradient expansion approximation (GEA)

- Natural next step (?) for systematically improving on LDA: Gradient expansion of exchange-correlation potential of slowly varying electron density
- For example: introduce a weak and slowly varying external potential and derive the resulting XC energy
- Measure of inhomogeneity: reduced density gradients

$$s(\vec{r}) = \frac{|\nabla n|}{2k_F n} \qquad t(\vec{r}) = \frac{|\nabla n|}{2k_S n} \qquad \text{with } k_S = \left(\frac{4k_F}{\pi}\right)^{1/2}$$

How fast and how much does the density vary on the scale of the local k_F ? Relevant range: $0 \le s \le 3$

Second-order gradient expansion ("Gradient expansion approximation"):

$$E_x[n,s]=A_x\int n^{4/3}\left[1+\mu s^2+\cdots
ight]$$
dr Known: $\mu=rac{10}{81}$
$$E_c[n,s]=\int n\left[\epsilon_c^{HEG}+\beta(n)t^2+\cdots
ight]$$
dr

Coefficients are tedious to obtain

Gradient expansion approximation (GEA)

- Paradox: LDA works rather well for atoms, molecules, solids. GEA usually does not
- GEA correlation energy is positive for atoms
- Electron densities in real materials are usually not slowly varying
- GEA exchange and correlation holes are more realistic around the electron than LDA holes, but bad at larger distances due to truncated expansion.
- "Sum rules" of exchange and correlation holes are not fulfilled:

$$\int n_{x}^{GEA}(\vec{r}, \vec{r}') dr' \neq -1 \qquad n_{x}^{GEA}(\vec{r}, \vec{r}') \leq 0$$

$$\int n_{c}^{GEA}(\vec{r}, \vec{r}') dr' \sim s^{2} \neq 0$$

LDA is the exchange-correlation for a possible physical system, while GEA is not.
 Hence, GEA violates several exact properties of the exact XC functional that LDA satisfies.

- A remedy: Generalized gradient approximation (GGA). Second rung of Jacob's Ladder
- Task: Include the density gradient in a way that the exact properties of LDA remain satisfied
- Generalized form: $E_{xc}^{GGA}[n^{\uparrow}, n^{\downarrow}, \nabla n^{\uparrow}, \nabla n^{\downarrow}] = \int n(\vec{r}) \varepsilon_{xc}^{GGA}(n^{\uparrow}, n^{\downarrow}, \nabla n^{\uparrow}, \nabla n^{\downarrow}) dr$
- ϵ^{GGA}_{xc} is chosen to satisfy desired properties of the exact XC functional in the s-range of interest
- Satisfaction of the exchange and correlation hole sum rules through real-space cutoffs, only include contributions of gradient expansion that are negative
- Ideal case: finding a ε_{xc} that is simple, accurate and transferable for system with different bonding characteristics

- Large number of GGAs with different ε_{xc}^{GGA} available today, both derived from first principles and using empirical parameters
- Most widely used approximation today: Perdew-Burke-Ernzerhof (PBE)

Phys. Rev. Lett. 77, 3865 (1996)

 $\alpha = 0.0716, \beta = 0.066725$

$$E_{xc}^{PBE} = E_{x}^{PBE} + E_{c}^{PBE}$$

$$E_{xc}^{PBE} = \int n(\vec{r}) \varepsilon_{x}^{HEG}(n) F_{x}^{PBE}(s) dr$$

$$E_{c}^{PBE} = \int n(\vec{r}) [\varepsilon_{c}^{HEG}(n) + H(n,t)] dr$$

$$F_{x}^{PBE}(s) = 1 + \kappa - \frac{\kappa}{1 + \frac{\mu}{\kappa} s^{2}}$$

$$H(n,t) = \frac{\beta^{2}}{2\alpha} ln \left[1 + \frac{2\alpha}{\beta} \frac{t^{2} + At^{4}}{1 + At^{2} + A^{2}t^{4}} \right]$$
with $\kappa = 0.804, \mu = 0.22$
with $A = 2\alpha/(\beta exp[-2\alpha\varepsilon_{c}^{HEG}(n)/\beta^{2}] - 1)$

- General spin-scaling relation: $E_x[n^{\uparrow}, n^{\downarrow}] = \frac{1}{2} [E_x[2n^{\uparrow}] + E_x[2n^{\downarrow}]]$
- LDA is recovered for $|\nabla n| \to 0$

- Other important implementations:
 - B88: correct asymptotic behavior of the XC energy for atoms/molecules, single empirical parameter fitted to XC energies of six noble gas atoms
 Phys. Rev. A38, 3098 (1988)
 - PW91: analytical fit to a corrected GEA exchange-correlation hole
 Phys. Rev. B 43, 8911 (1991)
 - PBEsol: reparametrization of PBE to yield better results for solids and surfaces

Phys. Rev. B 79, 075126 (2009)

- $F_x \ge 1$ for all s and all GGAs
- It appears to be impossible to find a single implementation of the enhancement factor that works equally well for finite systems (atoms, molecules) and extended systems (solids)

- In general improvement over LDA
- Structural properties and energies often better than LDA, but "underbinding" tendency

	a_0				B_0				E_{coh}						
Functional	ME	MAE	MRE	MARE	MAXRE	ME	MAE	MRE	MARE	MAXRE	ME	MAE	MRE	MARE	MAXRE
LDA															
LDA ⁸⁰	-0.071	0.071	-1.5	1.5	-4.9 (Ba)	10.1	11.5	8.1	9.4	32.8 (Ni)	0.77	0.77	17.2	17.2	38.7 (Ni)
GGA															
SG4 ⁶⁰	0.005	0.026	0.0	0.6	-1.9(V)	1.7	7.9	-2.2	7.8	-25.9 (Rb)	0.19	0.28	3.5	7.0	19.5 (Ni)
WC^{81}	0.002	0.029	0.0	0.6	-2.5 (Ba)	-0.2	7.6	-2.6	7.4	-23.8 (Rb)	0.22	0.26	4.2	6.2	20.1 (Ni)
SOGGA ⁸²	-0.012	0.027	-0.3	0.6	-2.3 (Ba)	4.1	8.9	0.6	7.4	23.6 (Ni)	0.39	0.41	8.8	9.2	26.8 (Ni)
PBEsol ⁸³	-0.005	0.030	-0.1	0.6	-2.3 (Sr)	0.7	7.8	-1.4	7.0	19.5 (Ni)	0.29	0.31	6.1	6.9	22.8 (Ni)
$AM05^{84}$	0.014	0.037	0.2	0.8	2.1 (NaF)	-0.3	8.8	-4.0	9.2	-25.9 (Rb)	0.30	0.45	7.6	12.6	90.4 (LiH)
PBEint ⁸⁵	0.026	0.039	0.5	0.8	2.5 (NaF)	-3.0	8.4	-5.3	8.7	-25.5 (Rb)	0.10	0.20	1.5	4.7	16.4 (Ni)
PBEalpha ⁸⁶	0.021	0.042	0.4	0.9	2.0 (Sn)	-6.0	8.4	-5.0	7.6	-21.2 (Ge)	0.10	0.18	1.8	4.1	14.5 (Ni)
RGE2 ⁸⁷	0.043	0.051	0.8	1.0	3.6 (Cs)	-4.3	9.0	-7.3	10.2	-31.5 (Rb)	0.00	0.20	-1.2	5.0	-14.9 (Au)
PW91 ⁸⁸	0.053	0.059	1.1	1.2	2.6 (Sn)	-11.0	12.1	-9.8	10.9	-25.3 (Ge)	-0.12	0.18	-3.5	4.6	-20.1 (Au)
PBE ⁷³	0.056	0.061	1.1	1.2	2.8 (Sn)	-11.2	12.2	-9.8	11.0	-25.5 (Ge)	-0.13	0.19	-3.9	5.0	-21.0 (Au)
HTBS ⁸⁹	0.068	0.077	1.3	1.6	8.1 (Cs)	-4.0	9.9	-9.4	12.7	-47.7 (Rb)	-0.14	0.23	-4.5	6.2	-20.1 (Cs)
PBEfe ⁹⁰	0.002	0.082	0.1	1.7	-4.9 (Cs)	-10.0	12.6	-3.3	11.2	-27.1 (Ge)	0.15	0.22	3.4	5.0	13.5 (Sn)
revPBE ⁹¹	0.106	0.107	2.2	2.2	5.4 (Cs)	-17.1	17.5	-16.0	16.4	-34.3 (Rb)	-0.48	0.48	-12.6	12.6	-34.2 (Au)
RPBE ⁹²	0.119	0.119	2.4	2.4	6.1 (Cs)	-19.0	19.3	-17.2	17.5	-35.1 (Au)	-0.52	0.52	-13.2	13.2	-36.7 (Au)
BLYP ^{93,94}	0.118	0.120	2.5	2.5	5.2 (Sn)	-25.1	25.2	-19.9	20.3	-44.6 (Au)		0.69	-20.3	20.3	-52.8 (Cs)

J. Chem. Phys 144, 204120 (2016)

- Band gaps are similar to LDA, lack of derivative discontinuity
- Better treatment of magnetic systems, better magnetic momenta compared to LDA

metaGGA functionals

- Third rung: metaGGAs. More generalized form of GGAs with additional degrees-offreedom
- Observation: Taylor expansion of the exchange hole n_x for small $|\vec{r} \vec{r}'|$ depends on n^{σ} , ∇n^{σ} , $\nabla^2 n^{\sigma}$, but also on the *kinetic energy density*

$$\tau^{\sigma}(\vec{r}) = \frac{1}{2} \sum_{\alpha} f_{F-D}^{\alpha} |\nabla \varphi_{\alpha}^{\sigma}|^{2}$$

metaGGA functional form:

$$E_{xc}^{metaGGA} = \int n(\vec{r}) \varepsilon_{xc}^{metaGGA} (n^{\uparrow}, n^{\downarrow}, \nabla n^{\uparrow}, \nabla n^{\downarrow}, \nabla^{2} n^{\uparrow}, \nabla^{2} n^{\downarrow}, \tau^{\uparrow}, \tau^{\downarrow}) dr$$

- Additional degrees-of-freedom allows for the satisfaction of additional exact constraints that go beyond the capabilities of pure GGAs
- Example: One-electron regions can be recognized by the condition

$$\tau^{\sigma}(\vec{r}) = \frac{|\nabla n^{\sigma}|^2}{8n^{\sigma}}$$

and the correlation part of can be set to zero in these regions.