

Introdução à Engenharia Química e Bioquímica

Aula 11
MIEQB
ano lectivo de 2020/2021

Sumário da aula

Balanços materiais a processos com reacção

- Estequiometria de uma reacção
- > Reagente limitante e reagente em excesso; percentagem de excesso
- Conversão de uma reacção
- Rendimento e selectividade de uma reacção

4.4

Queima-se metano com ar atmosférico num reactor de combustão contínuo, resultando à saída do reactor uma mistura gasosa de monóxido de carbono, dióxido de carbono e água. As reacções que se desenrolam são:

$$CH_4 + \frac{3}{2}O_2 \to CO + 2H_2O$$

 $CH_4 + 2O_2 \to CO_2 + 2H_2O$

A alimentação ao reactor contém 7.8% molar CH_4 , 19.4% molar O_2 e 72.8% molar de N_2 . A conversão de metano é de 90% e a mistura gasosa que sai do reactor contém 8 moles de CO_2 por mole de CO. Calcule a composição molar da corrente de saída.

$$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$$
 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

1

% conversão de metano = 90%

$$\frac{n_{CO_{2-}^2}}{n_{CO_{-2}}} = 8$$

BC-100 moles

 $0.078mol_CH_4/mol$

 $0.194mol_{-}O_{2}/mol$

 $0.728mol_N_2/mol$

Reactor

2

 $CH_4; O_2; N_2$

 $CO;CO_2;H_2O$

moles	1	2
CH4	7.8	
02	19.4	
СО	0	
CO2	0	
H2O	0	
N2	72.8	
Total	100	

$$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$$
 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

% conversão de metano = 90%

$$\frac{n_{CO_{2-}^2}}{n_{CO_{-2}^2}} = 8$$

Sabe-se que conversão de metano é 90%, logo 10% não reage e passa para corrente 2

$$n_{CH_42} = 0.1 \times n_{CH_41}$$

 $n_{CH_42} = 0.1 \times 0.078 \times 100 = 0.78 \text{ moles}$

moles	1	2
CH4	7.8	0.78
02	19.4	
СО	0	
CO2	0	
H2O	0	
N2	72.8	
Total	100	

$$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

% conversão de metano = 90%

$$\frac{n_{CO_{2-}2}}{n_{CO_{-}2}} = 8$$

BC-100 moles

 $0.078mol_CH_4/mol$ $0.194mol_O_2/mol$ $0.728mol_N_2/mol$ Reactor

2

 $CH_4; O_2; N_2$ $CO; CO_2; H_2O$

Sabe-se que conversão de metano é 90%, logo 10% não reage e passa para corrente 2

$$n_{CH_42} = 0.1 \times n_{CH_41}$$

 $n_{CH_42} = 0.1 \times 0.078 \times 100 = 0.78 \text{ moles}$

Fazendo um balanço à espécie não reactiva (inerte):

$$n_{N_2 1} = n_{N_2 2} = 72.8 \ mol$$

moles	1	2
CH4	7.8	0.78
02	19.4	
СО	0	
CO2	0	
H2O	0	
N2	72.8	→ 72.8
Total	100	

$$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$$
 BC-100 moles
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
0.194mol_O2/moles

 $0.078mol\ CH_{4}/mol$ $0.194mol_{-}O_{2}/mol$

 $0.728mol\ N_2/mol$

Reactor

Total

 $CH_{\Lambda};O_{2};N_{2}$

 $CO;CO_2;H_2O$

Fazendo agora um balanço ao CH4 (carbono):

$$n_{CH_4convertidas} = n_{CH_4 1} - n_{CH_4 2} = 7.8 - 0.78 = 7.02 \text{ moles}$$

E também sabemos que:

$$n_{CH_4convertidas} = n_{CO_{-2}} + n_{CO_{-2}} = n_{CO_{-2}} + 8 \times n_{CO_{-2}} = 7.02 \ moles$$

2

 $n_{CO_2} = 0.78$ moles

$$n_{CO_{2-2}} = 8 \times 0.78 = 6.24 \, moles$$

6.24 <i>moles</i>		

Para a água:

$$n_{H_2O_2} = 2 \times n_{CO_22} + 2 \times n_{CO_2} = 14.04 \text{ moles}$$

moies		2
CH4	7.8	0.78
02	19.4	
СО	0	0.78
CO2	0	6.24
H2O	0	14.04
N2	72.8	72.8

100

4.4

$$CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$$

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

$$0.078mol_CH_4/mol$$

 $0.194mol_O_2/mol$
 $0.728mol_N_2/mol$

2

$$CH_4; O_2; N_2$$

 $CO; CO_2; H_2O$

Para o oxigénio:

$$n_{\mathbf{0}_{2} \ convertidas} = \frac{3}{2} \times n_{\mathbf{co}_{2}} + 2 \times n_{\mathbf{co}_{2}} = 13.65 \ moles$$

$$n_{0_2 2} = n_{0_2 iniciais} - n_{0_2 convertidas} = 19.4 - 13.65 = 5.75$$
 moles

moles	1	2
CH4	7.8	0.78
02	19.4	5.75
СО	0	0.78
CO2	0	6.24
H2O	0	14.04
N2	72.8	72.8
Total	100	100.4

As seguintes reacções ocorrem num dado reactor:

$$2A + B \rightarrow C + D$$
 % Conversão_B = 19%
 $D + B \rightarrow E$ % Conversão_B = 16%
 $E + B \rightarrow A$ % Conversão_B = 13%

Suponha que são alimentados 30 mole de A e 50 mole de B ao reactor. Quantas moles saem do reactor e qual a composição molar do efluente reaccional?

$$2A + B \rightarrow C + D$$

 2×9.5 9.5 9.5 9.5

$$\%$$
 Conversão_B = 19%

$$0.19 \times 50 mol B = 9.5$$

moles	Entrada	Saída	
А	30		
В	50		
С	-		
D	-		
Е	-		
Total	80		

 $2A + B \rightarrow C + D$

 2×9.5 9.5 9.5 9.5

$$D + B \rightarrow E$$

8 8 8

$$E + B \rightarrow A$$

6.5 6.5 6.5

% Conversão_B = 19%

 $0.19 \times 50 mol B = 9.5$

% Conversão_B = 16%

 $0.16 \times 50 mol B = 8$

% Conversão_B = 13%

 $0.13 \times 50 mol B = 6.5$

moles	Entrada	Saída	
Α	30		
В	50		
С	-		
D	-		
Е	-		
Total	80		

$$2A + B \rightarrow C + D$$

$$2 \times 9.5$$
 9.5 9.5 9.5

$$D + B \rightarrow E$$

$$E + B \rightarrow A$$

A:
$$30 - 2 \times 9.5 + 6.5 = 17.5$$

$$B: 50 - 9.5 - 8 - 6.5 = 26$$

$$C: 0 + 9.5 = 9.5$$

$$D: 0 + 9.5 - 8 = 1.5$$

$$E: 0 + 8 - 6.5 = 1.5$$

$$\%$$
 Conversão_B = 19%

$$0.19 \times 50 mol B = 9.5$$

$$\%$$
 Conversão_R = 16%

$$0.16 \times 50 mol B = 8$$

$$\%$$
 Conversão_B = 13%

$$0.13 \times 50 mol B = 8$$

moles	Entrada	Saída	
Α	30	17.5	
В	50	26	
С	-	9.5	
D	-	1.5	
Е	-	1.5	
Total	80	56	

$$2A + B \rightarrow C + D$$

$$2 \times 9.5$$
 9.5 9.5 9.5

$$D + B \rightarrow E$$

8 8 8

$$E + B \rightarrow A$$

6.5 6.5 6.5

A:
$$30 - 2 \times 9.5 + 6.5 = 17.5$$

B: 50 - 9.5 - 8 - 6.5 = 26

C: 0 + 9.5 = 9.5

D: 0 + 9.5 - 8 = 1.5

E: 0 + 8 - 6.5 = 1.5

$$\%$$
 Conversão_B = 19%

 $0.19 \times 50 mol B = 9.5$

$$\%$$
 Conversão_B = 16%

 $0.16 \times 50 mol B = 8$

$$\%$$
 Conversão_B = 13%

 $0.13 \times 50 mol B = 8$

moles	Entrada	Saída	
А	30	17.5	31.25%
В	50	26	46.4%
С	-	9.5	16.96%
D	-	1.5	2.68%
Е	-	1.5	2.68%
Total	80	56	

Butano é queimado com um excesso de ar (21% de O_2 e 79% de N_2) segundo a reacção:

$$C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O$$

Sabendo que a composição molar do gás de saída do reactor é, numa base seca, de 10.63% de CO₂, 5.12% mol de O₂ e 84.25% mol de N₂, calcule:

- a) A percentagem de conversão do butano
- b) A percentagem de excesso de ar
- c) A composição molar do gás de combustão (incluindo a água)

$$C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O$$

 $x \frac{13}{2} x 4 x 5 x$

$$C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O$$

 $x \frac{13}{2} x 4 x 5 x$

moles	1	2	
C4H10			Base seca
O ₂		5.12	BC 100 mol
N ₂		84.25	← N2 é inerte!
CO ₂	-	10.63	$n_{CO_2 \ produzidas} = 10.63 \text{moles} = 4 \text{x}$
H ₂ O	-	13.29	4x = 10.63
			$x = 2.6575 = n_{\text{C}_4\text{H}_{10} \ convertido}$

$$C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O$$

 $x \frac{13}{2} x 4 x 5 x$

moles	1	2	
C4H10	2.6575		Base seca
O 2	22.394	5.12	BC 100 mol
N ₂	84.25 (=	84.25	N2 é inerte!
CO ₂	-	10.63	$n_{co_2 produzidas} = 10.63 \text{moles} = 4 \text{x}$
H ₂ O	-	13.29	4x = 10.63
			$x = 2.6575 = n_{C_4H_{10} \ convertido}$

$$n_{H_20}$$
 produzidas = $5x = 5 \times 2.6575 = 13.29$ moles

$$n_{o_2 \ convertidas} = \frac{13}{2} x = 17.274 \ moles$$

 $n_{o_2 \ 1} = n_{o_2 \ convertidas} + n_{o_2 \ 2} = 17.274 + 5.12 = 22.394 \ moles$

a) 100% de conversão de Butano Não há butano à saída!

b) %Excesso =
$$\left(\frac{N - N_s}{N_s}\right) \times 100$$

N- número de moles do reagente em excesso inicialmente presentes
 N_s - número de moles do reagente em excesso estequiometricamente necessário para converter todo o reagente limitante.

%Excesso
$$\mathbf{O}_2 = \left(\frac{22.394 - 17.274}{17.274}\right) \times 100 = 29.7\%$$

c) Composição molar do efluente

moles	1	2	% 2
C4H10	2.6575	-	
O ₂	22.394	5.12	4.5
N ₂	84.25	84.25	74.4
CO ₂	-	10.63	9.4
H ₂ O	-	13.29	11.7
		113.29	

$$\%i = \frac{n_i}{n_{Total}} \times 100$$

Dimensiona-se um reactor para converter 200 mol/min de propano em CO e H_2 com uma % de conversão de 65%, usando uma % de excesso de 50% de vapor de água. Determine as fracções molares do produto de saída do reactor.

$$C_3H_8 + 3 H_2O \rightarrow 3 CO + 7 H_2$$

$$C_3H_8 + 3 H_2O \rightarrow 3 CO + 7 H_2$$

130 3 × 130 3 × 130 7 × 130

Conversão=65% $0.65 \times 200 = 130 \, mol \, que \, reagem$

moles	In	Out	% Out
C3H8	200		
H ₂ O			
CO			
H2			
Total			

$$C_3H_8 + 3 H_2O \rightarrow 3 CO + 7 H_2$$

130 3 × 130 3 × 130 7 × 130

Conversão=65% $0.65 \times 200 = 130 \, mol \, que \, reagem$

%Excesso
$$H_2O = \left(\frac{n_{H2O\ inicial} - 3 \times 200}{3 \times 200}\right) \times 100 = 50\%$$

 $n_{H2O\ inicial} = 900\ moles$

moles	In	Out	% Out
C ₃ H ₈	200		
H ₂ O	900		
СО	-		
H2	-		
Total	1100		

$$C_3H_8 + 3 H_2O \rightarrow 3 CO + 7 H_2$$

130 3 × 130 3 × 130 7 × 130

Conversão=65% $0.65 \times 200 = 130 \, mol \, que \, reagem$

%Excesso
$$H_2O = \left(\frac{n_{H2O\ inicial} - 3 \times 200}{3 \times 200}\right) \times 100 = 50\%$$

 $n_{H2O\ inicial} = 900\ moles$

moles	In	Out	% Out
C3H8	200	70	3.7
H ₂ O	900	510	27.1
СО	-	390	20.7
H2	-	910	48.4
Total	1100	1880	

$$n_{\text{C3H8 out}} = 200\text{-}130 = 70 \text{ moles}$$
 $n_{\text{H20 que reagem}} = 3 \times 130 = 390 \text{ moles}$
 $n_{\text{H20 out}} = 900 - 390 = 510 \text{ moles}$
 $n_{\text{C0 obtidos}} = 3 \times 130 = 390 \text{ moles}$
 $n_{\text{H_2 obtidos}} = 7 \times 130 = 910 \text{ moles}$