Fila Duplamente Encadeada (FDE) de Prioridade contendo indicação de *Frente*, *Cauda* e um referencial móvel (*refMovel*)

A implementação mais eficiente para uma fila de prioridade consiste no modelo chamado *Heap Priority Queue*;

Heap Priority Queue utiliza uma árvore binária, tema que ainda será abordado;

Futuramente será possível abordar a Heap Priority Queue;

A presente proposta tem como objetivo exercitar uma implementação com alguma melhoria de eficiência utilizando os conceitos abordados na disciplina até o presente momento.

Fila Duplamente Encadeada (FDE) de Prioridade contendo indicação de *Frente*, *Cauda* e um referencial móvel (*refMovel*)

FDE de Prioridade contendo indicação de *Frente*, *Cauda* e um referencial móvel (*refMovel*)

Frente, Cauda apontam para as respectivas extremidades da fila;

Posicionamento do referencial móvel (*refMovel*):

- 1)É igual a Null para a fila vazia ou...
- 2)Aponta para o endereço do elemento mais recentemente inserido.

FDE estiver vazia: *cauda* == *frente*== *refMovel*==*NULL*;

Pela nossa implementação convencional de inserção por prioridade, o posicionamento do novo elemento é determinado ou por meio de comparativos a partir da *cauda* ou por comparativos a partir da *frente* da fila:

A ideia agora é **tirar proveito** do acréscimo do referencial móvel.

Vamos analisar os possíveis casos!

A ideia é **tirar proveito** do referencial móvel.

Discutiremos os casos possíveis para a inserção, considerando a idade de um indivíduo como campo chave de prioridade (quanto maior a prioridade mais à frente será a inserção).

A função idade() retorna a idade armazenada no nó da fila.

Atenção: aqui as implementações são realizadas por encadeamento, não por um arranjo do tipo vetor.

A ideia é tirar proveito do referencial móvel.

Caso #1

Se (idade(novo) ≤ idade(cauda)) Então o novo elemento será inserido convencionalmente como nova cauda

Caso #2

Se (idade(idade(frente) < idade(novo)) Então o novo elemento será inserido como novo item de frente

A ideia é tirar proveito do referencial móvel.

Caso #3

Se (idade(cauda) < idade(novo) ≤ idade(refMovel)) Então a posição do novo elemento estará entre *cauda* e *refMovel*

Caso #4

Se (idade(refMovel) < idade(novo) ≤ idade(frente)) Então a posição do novo elemento estará entre *refMovel* e *frente*

Aprimorando um pouco mais: o caminho de busca é determinado pela proximidade entre a chave de prioridade do *novo* e a chave de prioridade de algum dos referenciais (*cauda*, *refMov* ou *frente*).

Caso#3:

```
Se (idade(cauda) \leq idade(novo) \leq idade(refMovel))

\Delta_a = | idade(cauda) - idade(novo) |

\Delta_b = | idade(refMovel) - idade(novo) |
```

Se $\Delta_a \leq \Delta_b$: localize a posição do novo pela cauda

Senão:

Caso#4:

Se (idade(refMovel) \leq idade(novo) \leq idade(frente)) $\Delta_c = |$ idade(frente) - idade(novo) | $\Delta_d = |$ idade(refMovel) - idade(novo) |

Se $\Delta_c \leq \Delta_d$: localize a posição do novo pela frente

Senão:

A seguir serão feitas algumas simulações explorando a "RefMovel" na FDE de prioridade:

Nos desenhos, considere que a sequência de itens é duplamente encadeada, conforme a figura abaixo:

SIMULAÇÃO-1A:

Inserindo 30

Caso #1: idade(novo) ≤ idade(cauda)
novo elemento será inserido convencionalmente como nova cauda

Inserindo 37

Caso#3: idade(cauda) \leq idade(novo) \leq idade(refMovel)

 $\Delta_{\rm a}$ = | idade(cauda) – idade(novo) | $\Delta_{\rm b}$ = | idade(refMovel) – idade(novo) | Se $\Delta_{\rm a} \le \Delta_{\rm b}$ (de fato $\Delta_{\rm a}$ == $\Delta_{\rm b}$), então: localize a posição do novo nó pela cauda

 $\Delta_a \leq \Delta_b$ (de lato $\Delta_a = \Delta_b$), entao. localize a posição do novo no pela com um laço para a direita!

SIMULAÇÃO-1B:

Inserindo 33

Caso#3: idade(cauda) \leq idade(novo) \leq idade(refMovel)

$$\Delta_a = |30-33| = 3$$
 $\Delta_b = |37-33| = 4$

Se $\Delta_a \leq \Delta_b$, então: localize a posição do novo pela cauda

Inserindo 32

32

Caso#3: idade(cauda) \leq idade(novo) \leq idade(refMovel)

$$\Delta_{a} = |30-32| = 2$$
 $\Delta_{b} = |33-32| = 1$

 $\Delta_a \leq \Delta_b$ é Falso, então: localize a posição do novo pelo RefMovel

SIMULAÇÃO-2:

Inserindo 60

Caso #2: idade(idade(frente) < idade(novo) Então o novo elemento será inserido como novo item de frente

Inserindo 47

Caso#4: idade(refMovel) \leq idade(novo) \leq idade(frente)

$$\Delta_{c} = |60-47| = 13$$
 $\Delta_{d} = |60-47| = 13$

 $\Delta_{c} \leq \Delta_{d}$ é verdadeiro, (de fato $\Delta_{a} == \Delta_{b}$), então: localize a posição do novo nó

pela frente com um laço para a esquerda!

SIMULAÇÃO-3A:

Inserindo 38

Caso #3: idade(cauda) \leq idade(novo) \leq idade(refMovel)

 $\Delta_a = |15-38| = 23$ $\Delta_b = |47-38| = 9$, $\Delta_a \le \Delta_b$ é Falso, então: localize a posição do novo nó pelo refMovel com um laço para a esquerda!

Inserindo 16

Caso #3: idade(cauda) \leq idade(novo) \leq idade(refMovel)

 $\Delta_a = |15-16| = 1$ $\Delta_b = |38-16| = 22$, $\Delta_a \le \Delta_b$ é verdadeiro, então: localize a posição do novo nó pela cauda com um laço para a direita!

SIMULAÇÃO-3B:

Inserindo 25

Caso #3: idade(cauda) \leq idade(novo) \leq idade(refMovel)

 $\Delta_a = |60-25| = 35$ $\Delta_b = |16-25| = 9$, $\Delta_c \le \Delta_d$ é Falso, então: localize a posição do novo nó pelo refMovel com um laço para a direita!

Quando o processo falha:

Inserindo 26

Caso #3: idade(cauda) \leq idade(novo) \leq idade(refMovel)

 $\Delta_a = |25-26| = 2$ $\Delta_d = |40-26| = 14$, $\Delta_a \le \Delta_b \acute{e}$ verdadeiro, então: localize a posição do novo nó pela cauda com um laço para a esquerda!

Note que a escolha do laço pela cauda (ao invés do refMovel) levará erroneamente a mais iterações!!

Caso similar ocorre em repetições de idades pela frente.

Quando o processo falha:

Inserindo 49

Caso #4: idade(refMovel) \leq idade(novo) \leq idade(frente)

 $\Delta_a = |30-49| = 19$ $\Delta_d = |49-59| = 10$, $\Delta_b \le \Delta_a \acute{e}$ verdadeiro, então: localize a posição do novo nó com um laço erroneamente pela frente para a esquerda!

Note que a escolha do laço pela frente (ao invés do refMovel) levará erroneamente a mais iterações!!

Estas e outras singularidades podem comprometer as distancias calculadas e não fornecem laço mais curto no caminho até a posição de inserção. Nesses casos, o desempenho desta implementação equivale à implementação convencional sem refMovel.

Exercício:

Utilize o código da FDE de prioridade discutido em sala e, junto com o seu colega de equipe, busque projetar as operações básicas sobre a FDE de prioridade com referencial móvel.

Considere que o referencial móvel (refMovel):

É igual a Null para a fila vazia ou...

Aponta para o endereço do elemento mais recentemente inserido.

A próxima tarefa versará sobre uma FDE de prioridade com referencial móvel.

O modelo (FDE de prioridade) foi tratado em sala e é descrito no pdf publicado no Moodle.