MAT 1375, Classwork21, Fall2024

ID:______ Name:____

1. Definition of a geometric vector:

A geometric vector \overrightarrow{PQ} is a directed line segment with a <u>direction</u> and a <u>magnitude</u>.

The magnitude of \overrightarrow{PQ} is its <u>length</u>, denoted by $|| \overrightarrow{PQ} ||$.

Given a vector $\vec{v} = \overrightarrow{PQ}$. We call P the

point and Q the terming point.

We find $\vec{v} = \overrightarrow{PQ}$ by $P(x_1, y_1)$ and $Q(x_2, y_2)$:

$$\vec{v} = (\chi_2 - \chi_1)\mathbf{i} + (\chi_2 - \chi_1)\mathbf{j} \text{ or } \langle \chi_2 - \chi_1, \chi_1 - \chi_1 \rangle,$$

where $\mathbf{i} = \langle \ / \ , \ \rangle$ and $\mathbf{j} = \langle \ / \ \rangle$.

Any vectors with the same direction and magnitude are equivalent.

> < a-0, b-0>

3. Direction angle:

Let $\vec{v} = \langle a, b \rangle = \overrightarrow{OR}$ be a vector with original point $(0, \overline{0})$ as the initial point of \vec{v} and

R(A, b) as the terminal point of \vec{v} .

The <u>direction and v</u> of \vec{v} is the angle θ determined by \overline{OR} :

 $c = \frac{||\vec{v}||}{|\vec{v}|}$ is the <u>ength</u> of \vec{v} and

we have $\sin(\theta) = \frac{b}{C}$, $\cos(\theta) = \frac{a}{C}$, and $\tan(\theta) = \frac{b}{a}$.

$$\vec{v} = \langle a, b \rangle = \langle C \cdot Cos(0) , C sin(0) \rangle$$

$$\left(\cos(\theta) = \frac{a}{c}, \sin(\theta) = \frac{b}{c}\right)$$

28 (asb)

 $c \cdot \sin(\theta)$

 $c \cdot \cos(\theta)$

the magnitude is r. 11211

$$r < 0$$
: the direction is the opposite 15 $\frac{1}{2}$

Unit vector of \vec{v} : $r\vec{v}$ where $r = \frac{1}{||\vec{D}||}$ and we have $\frac{\vec{D}}{||\vec{D}||}$.

Vector addition:
$$\vec{v} + \vec{w} = \langle a, b \rangle + \langle c, d \rangle = \langle a + c \rangle$$

(a+c, b+d)

$$< a+c - 0$$
, b+d > 0

6. Let $\vec{v} = \langle 3, 4 \rangle$ and $\vec{w} = 4\mathbf{i} - 9\mathbf{j}$. Find (a) the directional angle of \vec{v} , (b) the unit vector of \vec{v} , (c) $\vec{v} + \vec{w}$, (d) $2\vec{v} - 3\vec{w}$

$$\tan(0) = \frac{4}{3}$$

$$W = <4,-9>$$

$$\vec{W} = \langle 4, -9 \rangle$$

b) unit vector of $\vec{D} = \frac{\vec{D}}{\|\vec{D}\|} = \frac{\langle 3, 4 \rangle}{5} = \langle \frac{3}{5}, \frac{4}{5} \rangle$

extra

write vector of $\vec{w} = (\frac{4}{\sqrt{90}}, \frac{-4}{\sqrt{90}})$

$$\sqrt{4^2+9^2} = \sqrt{16+81} = \sqrt{99}$$

CC) D+W= <3,4> + <4,-9> = <3+4, 4-9> = <7,-5> $(d)2\vec{\nu}-3\vec{w}=2<3.4>(3)(4)(9)=<6.8>+<-12,29>$