计算机辅助手术讲座(2) Image-Guided Surgery (2)

灰度直方图和二值化操作

Gray-level Histogram and Threshold

顾力栩 上海交通大学 Med-X 研究院 2009.11

Image Processing Example

Image Processing Categories

- Low level: from image to image, often called image filtering
- Intermediate level: from image to symbolic representation, also called image segmentation
- High level: from symbolic to functional description, also called image understanding or pattern recognition

TYPICAL IMAGE PROCESSING SYSTEM FOR MEDICAL IMAGING

Image Acquisition

Output

-Low Level-

Pre-Processing (filtering)

Enhancement (sharpen, smooth, ...)

Interpolate, reduce noise, crop

-High Level-

Modeling

Volume Rendering, Deformable Models, Mathematical Models

-Intermediate Level-

Segmentation
Region (or Contour) Extraction,
Labeling, Grouping

плиди ш 2009 сору

-High Level-

Recognition

Region feature analysis (position, orientation, size...), Object Matching

• Segmentation (Extraction):

- 1. Thresholding
- 2. Differential Top-hat
- 3. Noise Reduction
- 4. Region Reconstruction

Volume View

1.vertebra, 2.rib, 3.pelvis, 4.left kidney, 5.spleen, 6.stomach,7.right kidney, 8.liver, 9.artery, 10.vein, 11.heart lixugu @ 2009 copyright reserved EXAMPLE

- Bone segmentation and reference point:
 - 1. Extract bones
 - 2. Separate spine from ribs
 - 3. Find the 12th rib
 - 4. Find the vertebra connected with the 12th rib
 - 5. Set the center of gravity of the vertebra as the reference point (origin of our specified coordinate system)

Pattern Spectrum -- size analysis

lixugu @ 2009 copyright reserved

Noise Reduction

lixugu @ 2009 copyright reserved

Subdivision into regions

Threshold segmentation

lixugu @ 2009 copyright reserved

- Segmentation using
 Recursive Erosion (RE) and
 Geodesic Influence(GI):
 - 1. RE: region shrinking to generate all the candidate seeds
 - 2. GI: region reconstruction to recover separated organs

ORGAN RECOGNITION

Organ recognition:

- 1. Feature analysis (size, position)
- 2. Match the data base or "dictionary"
- 3. Label the objects with an unique symbol (a number or an anatomic name)

Histogram and Threshold

Histogram

• Definition: Histogram is a pixel distribution function based on each gray level.

• Its x-coordinate represents each gray level when y showing the according total pixel numbers.

Gray level

Features of Histogram

- An image condensed into a histogram, all spatial information is discarded
 - Specify the number of pixels having each gray level
 - No hint as to where those pixels are located
 - Moving a object within an image have no effect on the histogram
- Histogram VS. area of an image

Histogram Application

- Histogram can help us to set up the digitizing parameters
- Help to find a optimal threshold level
 - A bimodal histogram.
 - The gray level corresponding to the minimum of two peaks is the optimal for defining the boundary

Binary Operation

- Thresholding is a simple, non-contextual, efficient segmentation technique
 - Usually refer to Intensity Thresholding
 - Classify pixels (voxels) into two categories
 - Create a binary image (binarisation)
- Thresholding can employ either a *fixed* or an *adaptive* threshold value
- A variety of techniques have been devised to automatically choose a threshold, but no one is robust

Binary VS. Histogram

- Thresholding usually involves analyzing the histogram
 - Different image features give rise to distinct features in a histogram (Bimodel)
 - In general the histogram peaks corresponding to two features will overlap
- An example of a threshold value is the mean intensity value

Fixed Threshold

- Fixed or Global threshold: the threshold value is held constant throughout the image
- Fixed Threshold is in the form of: (*T* is the threshold)

$$g(x,y) = \begin{cases} 0 & f(x,y) < T \\ 1 & f(x,y) \ge T \end{cases} \qquad g(x,y) = \begin{cases} 1 & f(x,y) \le T \\ 0 & f(x,y) > T \end{cases}$$

$$g(x,y) = \begin{cases} 1 & f(x,y) \le T \\ 0 & f(x,y) > T \end{cases}$$

Normal Threshold

Reverse Threshold

 A variation which uses two thresholds to define a range of intensity values:

$$g(x,y) = \begin{cases} 0 & f(x,y) < T_1 \\ 1 & T_1 \le f(x,y) \le T_2 \\ 0 & f(x,y) > T_2 \end{cases}$$

Fixed Threshold

- The success of thresholding depends critically on the selection of an appropriate threshold
- An Example:

Single Threshold (Example)

Double Thresholds (Example)

 T_1 =8, T_2 =169 T_1 =169, T_2 =223

Isodata Algorithm

- This iterative threshold selection technique was developed by Ridler and Calvard
- The algorithm works as:
 - 1. Select an initial threshold T_o (e.g. the mean intensity)
 - 2. Partition the image into two groups (R_1 and R_2) using the T_0
 - 3. Calculate the mean intensity values μ_1 and μ_2 of the partitions R_1 and R_2 .
 - 4. Select a new threshold: $T_i = (\mu_1 + \mu_2)/2$
 - 5. Repeat steps 2-4 until: $T_i = T_{i-1}$

Optimal Threslding

- Histogram shape can be useful in locating the threshold. However it is not reliable for threshold selection when peaks are not clearly resolved
- Optimal thresholding: a criterion function is devised that yields some measure of separation between regions
- A criterion function is calculated for each intensity and that which maximizes/minimizes this function is chosen as the threshold

OTSU Algorithm

- Otsu's thresholding method is based on selecting the lowest point between two classes (peaks).
- Frequency and Mean value:
 - Frequency:

$$\omega = \sum_{i=0}^{T} P(i)$$

$$P(i) = n_i / N$$

 $\omega = \sum_{i=1}^{n} P(i)$ $P(i) = n_i / N$ N: total pixel number

• Mean:

$$\mu = \sum_{i=0}^{T} iP(i)/\omega$$

n_i: number of pixels in level i

- Analysis of variance (variance=standard deviation²)
 - Total variance:

$$\partial_t^2 = \sum_{i=0}^T (i - \mu)^2 P(i)$$

OTSU Algorithm

• between-classes variance (δ_b^2) : The variation of the mean values for each class from the overall intensity mean of all pixels:

$$\delta_{b}^{2} = \omega_{0} (\mu_{0} - \mu_{t})^{2} + \omega_{1} (\mu_{1} - \mu_{t})^{2},$$
Substituting $\mu_{t} = \omega_{0} \mu_{0} + \omega_{1} \mu_{1}$, we get:
$$\delta_{b}^{2} = \omega_{0} \omega_{1} (\mu_{1} - \mu_{0})^{2}$$

 $\omega_0, \omega_1, \mu_0, \mu_1$ stands for the frequencies and mean values of two classes, respectively.

OTSU Algorithm

• The criterion function involves *between-classes* variance to the total variance is defined as:

$$\eta = \delta_b^2 / \delta_t^2$$

• All possible thresholds are evaluated in this way, and the one that $\underbrace{maximizes}_{} \eta$ is chosen as the optimal threshold

Entropy Method

- Entropy is served as a measure of information content
- A threshold level *t* separates the whole information into two classes, and the entropy associated with them is:

$$H_b = -\sum_{i=0}^t p_i \log(p_i)$$

$$H_w = -\sum_{i=t+1}^{255} p_i \log(p_i)$$

Optimal threshold is the one maximize:

$$H = H_b + H_w$$

Comparing Threshold Value

Other Algorithms

- Triangle Algorithm:
 - Maximized distance d indicate the optimal threshold

Adaptive Thresholding

- Adaptive thresholding is also called *local* (or regional) thresholding
 - Employ more than one threshold value.
 - Works when the background intensity level is not constant and the object varies within the image.
 - Examines the relationships between intensities of neighboring pixels to adapt the threshod according to the intensity statistics of different regions.
- Difficulties of thresholding:
 - Poor image contrast, Spatial non-uniformities, Ambiguity...

Discussion

lixugu @ 2009 copyright reserved