الحساب المثلثي – الجزء1 القدرات المنتظرة

الدورة الأولى 15 ساعة

استعمال المحسبة العلمية لتحديد قيمة مقربة ازاوية محددة بأحد نسبها المثلثية والعكس.

*- التمكن من النسب المثلثية للزوايا الاعتيادية وتطبيق مختلف العلاقات

<u>I- تذكير و اضافات</u>

<u>1- أنشطة للتذكير</u>

H و AB=3 و OA=4 و نعتبر الشـكَل التالي حيث (OB) على المسقط العمودي لـ A

2- أ/ أحسب
$$\cos\left(\widehat{AOB}\right)$$
 ثم استنتج قيمة مقربة

$$\left\lceil \widehat{AOB}
ight
ceil$$
لقياس الزاوية

$$\sin\left(\widehat{AOB}\right)$$
 غم استنتج $\tan\left(\widehat{AOB}\right)$ -3

$$EF = 4$$
 و $AB = 5$ نعتبر الشكل التالي بحيث

 $\sin\left(\widehat{AOE}\right)$ ثم استنتج $\cos\left(\widehat{AOE}\right)$ أحسب

<u>1- وجدات قياس الزوايا و الاقواس الهندسية – زاوية مركزية </u>

C و B و A نعتبر. R و شعاعها O دائرة مركزها و 'A و 'B و M نقط من B بحيث lpha قياس للزاوية الهندسية بالدرجة $\left\lceil \widehat{AOM} \right
ceil$

الزاوية المركزية	$\left[\widehat{AOA'}\right]$	$\left[\widehat{AOB}\right]$	$\left[\widehat{AOC}\right]$	$\left[\stackrel{\vee}{AOB'} \right]$	$\left[\widehat{AOM}\right]$
قياس الزاوية المركزية بالدرجة					α°
طول القوس الهندسية المرتبطة بها					l

ين أن 90° و 90° و 90° و 90° متناسبة 138° و 130° و 180° على التوالي -2

R و π و π -3

R هو AM'] هو القوس الهندسية M' هو -4

حدد eta قياس الزاوية المركزية $\lceil \widehat{AOM}' \rceil$ بالدرجة.

2- وحدات قياس الزوايا

لقياس الزوايا هناك ثلاث وحدات هي الدرجة و الغراد و الراديان.

ا/ <u>تعريف الراديان</u>

الراديان هو قياس زاوية مركزية، في دائرة شعاعها R ، تحصر قوسا دائرية طولها R . نرمز لها بـ rad او rad

(یرمز للغراد : gr)
$$\pi rd = 200gr = 180^{\circ}$$

ب/ <u>نتىحة</u>

$$\frac{x}{\pi} = \frac{y}{180} = \frac{z}{200}$$
 فياس زاوية بالراديان و y قياسها بالدرجة و z قياس زاوية بالراديان و

ج/ قباس قوس هندسية وياس قوس هندسية هو قياس الزاوية المركزية التي تحصره.

د/ <u>طول قوس</u> هندسیة

lpha R إذا كان lpha قياس قوس هندسية بالراديان، في دائرة شعاعها R أفان طول هذه القوس هو

طول قوس هندسية، في دائرة شعاعها 1 هو قياس الزاوية المركزية التي تحصرها.

تمارين تطبيقيه

تمرین1

اتمم الحدول التالي

0°	30°	45°		90°	قياس زاوية بالدرجة
			$\frac{\pi}{3}$		قياسـها بالراديان

ليكن ABC مثلثا متساوي الاضلاع حيث AB = 5cm و نعتبر (C) الدائرة التي مركزه ABC و تمر

 $\lceil \widehat{\mathit{BAC}} \rceil$ أحسب الوكرية المحصورة بالزاوية المركزية أ

II<u>- الدائرة المثلثية</u>

1- توجيه دائرة - توجيه مستوى

(C) التكن (C) دائرة مركزها O و شعاعها R و I نقطة من (C) دائرة مركزها I و شعاعها I و أردنا أن ننطلق من I لندور حول I ، لوجدنا أنفسنا أمام منحيين .

توجيه الدائرة (C) هو اختيار أحد المنحيين منحى موجبا (C)

و الآخر منحي سالبا (أو غير مباشر).

عَادة نأخذ المنحى المُوجَب المنحيّ المعاكس لحركة عقارب الساعة .

(C)النقطة I تسمى أصل الدائرة

عندما توجه جميع دوائر المستوى توجيها موحدا فإننا نقول إن المستوى موجه.

<u>2- الدائرة ا</u>لمثلثية

تعریف الدائرة المثلثیة هی دائرة شعاعها1 مزودة بنقطة أصل و موجهة توجیها موجیا.

III– الأفاصيل المنحنية.

<u>1- الأفصول المنحني الرئيسي لنقط</u>ة على الدائرة المثلثية

لتكن (C) دائرة مثلثية أصلها I. نعتبر المجال $[-\pi;\pi]$ حيث $[\pi]$ أفصول $[\pi]$ في المحور العمودي على (OI). حدد محيط الدائرة وشعاع الدائرة.

إذا لففنا القطعة الممثلة للمجال $[-\pi;\pi]$ على الدائرة (C) نلاحظ أن كل عدد lpha من $[-\pi;\pi]$ ينطبق $-\pi;\pi$ مع نقطة وحيدة M من (C) و كل نقطة M من (C) تمثل عدد وحيد α من

خاصية و تعريف

I لتكن (C) دائرة مثلثية أصلها

کل نقطة M من C تمثل عدد وحید α من $-\pi;\pi$ و کل عدد α من $-\pi;\pi$ من $-\pi;\pi$ من α عدد α من $-\pi;\pi$

M العدد lpha يسمى الافصول المنحني الرئيسي لـ

ملاحظة قياس الزاوية الهندسية $\left| \widehat{a} \right|$ هو مالحظة ملاحظة

تمرین1

على دائرة مثلثية C أصلها B أصلها B أنشئ النقط B و B و على دائرة مثلثية B و

و
$$\frac{3\pi}{4}$$
 و $\frac{\pi}{6}$ و $\frac{\pi}{6}$ و $\frac{\pi}{6}$ و $\frac{\pi}{6}$ على التوالي

تمرين2

دائرة مثلثية أصلها I . حدد الأفاصيل المنحنية الرئيسية C للنقط I B; A';A; J'; I; I; I

2- الأفاصيل المنحنية لنقطة على الدائرة المثلثية

 $(\Delta) = D(I,E)$ نعتبر المحور (C) دائرة مثلثية أصلها I. نعتبر المحور $(OI) \perp (\Delta)$ حيث $(OI) \perp (\Delta)$

lpha لتكن نقطة M من (C) أفصولها المنحني الرئيسي

لنحدد كل الأعداد التي تنطبق مع M اذا لففنا المستقيم العددي على $(C\,)$

M النقطة (C) على \mathbb{R} على النقطة المستقيم العددي الممثل لـ \mathbb{R} على الأعداد

...... $\alpha - 4\pi$; $\alpha - 2\pi$; α ; $\alpha + 2\pi$; $\alpha + 4\pi$

M كل هذه الأعداد تسمى الأفاصيل المنحنية لنقطة

 $k\in\mathbb{Z}$ نلاحظ أن هذه الأعداد تكتب بشكل عام عل شكل lpha+2k حيث

تعديف

lpha لتكن M نقطة من دائرة مثلثية (C) أصلها (C)

أفصولها المنحني الرئيسي

 $\mathbb Z$ كل عدد يكتب على الشكل $\alpha+2k\,\pi$ بحيث k عنصر من α بحيث النقطة M.

 $-\frac{2\pi}{3}$ و $\frac{\pi}{5}$ و المنحنيين المنحنيين الرئيسيين $\frac{\pi}{5}$ و المنحنيين المنحنيين الرئيسيين $\frac{\pi}{5}$ و على التوالي

. I تمرین (C دائرة مثلثیة أصلها

M نعتبر $\frac{34\pi}{3}$ أفصول منحني لنقطة

<u>ں- خاصیات</u>

لتكن M نقطة من دائرة مثلثية (C) أصلها I. و ليكن α أفصولها المنحني الرئيسي $x-y=2\lambda\pi$ بين اذا كان α من α بين اذا كان

 $x-y=2\lambda\pi$ فصولین منحنیین للنقطة M فانه یوجد عنصر x من z بحیث x=y و نقرأ x=y و نقرأ x=y يساوي x=y و نقرأ x=y

منحني للنقطة M فان جميع الأفاصيل المنحنية للنقطة M فان على شكل - إذا كان x أفصول منحني للنقطة x فان جميع الأفاصيل x - إذا كان x جيث x - x

 $\alpha = \frac{-227\pi}{6}$ تمرين حدد الأفصول المنحني الرئيسي للنقطة التي إحدى أفاصيلها المنحنية

يمرين مثل على الدائرة المثلثية النقط C;B;A التي أفاصيلها المنحنية على التوالي هي $\frac{-108\pi}{12}$; $\frac{37\pi}{3}$; 7π

. $k\in\mathbb{Z}$ حيث $-\frac{\pi}{4}+\frac{k\,\pi}{3}$ التي أفاصيلها المنحنية على الدائرة المثلثية النقط M_k التي أفاصيلها المنحنية على الدائرة المثلثية النقط

<u>IV – الزوايا الموجهة</u>

4- الزاوية الموجهة لنصفي مستقيم

<u>أ- تعريف</u>

في المستوى الموجه نعتبر O; x[و O; x[نصفي مستقيم لهما نفس الأصل $\widehat{Ox;Oy}$) يحدد زاوية موجهة لنصفي مستقيم و يرمز لها بالرمز

<u>ں- قیاسات زاویة موجهة لنصفي مستقیم</u>

تعريف وخاصية

(C) زاویة موجهة لنصفي مستقیم ، و $(\widehat{Ox};\widehat{Oy})$ زاویة موجهة لنصفي مستقیم ، و (C) و نصفي دائرة مثلثیة مرکزها (C) و (C) علی التوالي (C) و (C) علی التوالي

. ليكن α و β أفصولين منحنيين للنقطتين α و B على التوالي . العدد $(\widehat{Ox};\widehat{Oy})$ يسمى قياسا للزاوية الموجهة $\beta-\alpha$

 $k\in\mathbb{Z}$ كل عدد حقيقي يكتب على الشكل $eta-lpha+2k\pi$ حيث يسمى قياسا للزاوية الموجهة $\widehat{O(\alpha;Oy)}$.

 $(\overline{Ox\:;Oy\:})=eta-lpha+2k\:\pi$ $k\in\mathbb{Z}$ نكتب $k\in\mathbb{Z}$ نكتب $(\overline{Ox\:;Oy\:})$ بالرمز $(\overline{Ox\:;Oy\:})$ بالرمز $(\overline{Ox\:;Oy\:})\equiveta-lpha$ $[2\pi]$ و نكتب أيضا

حاصية و تعريف

لكل زاوية موجهة لنصفي مستقيم قياس وحيد ينتمي إلى المجال $-\pi;\pi$ يسمى القياس الرئيسي لهذه الزاوية الموجهة.

<u>خاصىة</u>

 $(\widehat{Ox};\widehat{Oy})$ فياس للزاوية الموجهة $(\widehat{Ox};\widehat{Oy})$ فان $(\widehat{Ox};\widehat{Oy})$ فياس للزاوية الموجهة $(\widehat{Ox};\widehat{Oy})$ فان $(\widehat{Ox};\widehat{Oy})$

<u>ملاحظات</u>

- * إذا كانت M نقطة من دائرة مثلثية أصلها I و مركزها O فان الأفاصيل المنحنية للنقطة M هي قياسـات الزاوية الموجهة $\left(\widehat{OI;OM}\right)$ و أن الافصول المنحني الرئيسـي لـ M هو القياس الرئيسـي للزاوية الموجهة $\left(\widehat{OI;OM}\right)$
- . (\widehat{xOy}) هي قياس الزاوية الموجهة الموجهة $(\widehat{Ox},\widehat{Oy})$ هي قياس الزاوية الهندسية *

<u>بعض الزوايا الخاصة</u>

$$\frac{\overline{Ox;Ox}}{0} \equiv 0 \quad [2\pi] \qquad \underline{\tilde{Ox;Ox}} \equiv 0 \quad [2\pi] \qquad \underline{\tilde{Ox;Oy}} \equiv \pi \quad [2\pi] \qquad \underline{\tilde{Ox;Ox}} \equiv \pi$$

تمرين

- $\frac{25\pi}{6}$; $\frac{-143\pi}{6}$; $\frac{601\pi}{6}$ نين أن القياسات التالية تمثل قياسات نفس الزاوية $\frac{25\pi}{6}$; $\frac{52\pi}{5}$; $\frac{52\pi}{5}$; $\frac{52\pi}{5}$; $\frac{36\pi}{5}$; $\frac{47\pi}{5}$ اهو القياس الرئيسي لزاوية موجهة قياسها أحد القياسات $\frac{25\pi}{6}$
 - ہ۔ -234π انشیٔ زاویة موجهة $\widehat{(O\!x\,;\!O\!y\,)}$ قیاسها-3

 $(\overline{AB;AC}) = -\frac{\pi}{3}$ [2 π] أنشئ ABC مثلث متساوي الأضلاع حيث

<u>ج- علاقة شال ونتائحها</u> -------

<u>علاقة شال</u>

إذا كانت [O;z] و [O;y] و [O;z] و [O;x] ثلاثة أنصاف مستقيم لها نفس الأصل فان [O;z] و [O;x] الأصل فان [O;z]

نتائج

- $(\overline{Ox;Oy}) \equiv -(\overline{Oy;Ox})$ [2 π] اذا کان O;y و O;y و نصفي مستقيم فان O;y
- $\left(\overline{Ox\:;Oy}\:\right)$ = $\left(\overline{Ox\:;Oz}\:\right)$ و $\left[O\:;y\:\right]$ و $\left[O\:;y\:\right]$ و $\left[O\:;y\:\right]$ و $\left[O\:;y\:\right]$ و $\left[O\:;y\:\right]$ نصفي مستقيم منطبقان.

و هذا یعنی أنه اذا کان [Ox] نصف مستقیم و lpha عددا حقیقیا فانه یوجد نصف مستقیم وحید

$$.(\overline{Ox;Oy}) \equiv \alpha$$
 [2 π] بحيث [$O;y$ [

<u>د- زاویة زوج متحهتین غیر منعدمتین</u>

لتكن \vec{v} و \vec{v} متجهتين غير منعدمتين من المستوى الموجه و [O;y] و [O;x] نصفي مستقيم موجهين على $ec{v}$ و $ec{u}$ و التوالي بالمتجهتين

$$\widehat{(Ox;Oy)}$$
 أوية زوج المتجهتين $\widehat{(u;v)}$ هي الزاوية الموجهة $\widehat{(u;v)}$. $\widehat{(u;v)}$ و يرمز لها بالرمز

مجموعة قياسات الزاوية $(\widehat{ec{u}_{:}ec{v}})$ هي مجموعة قياسات

. $(\widehat{Ox}; \widehat{Oy})$ الزاوية

علاقة شال

إذا كانت \vec{v} و \vec{v} و \vec{v} ثلاثة متجهات غير منعدمة فان

$$\left(\overline{\vec{u};\vec{v}}\right) + \left(\overline{\vec{v};\vec{w}}\right) \equiv \left(\overline{\vec{u};\vec{w}}\right) \quad [2\pi]$$

نتائج

- $(\vec{u}; \vec{v}) \equiv -(\vec{u}; \vec{v})$ [2 π] اذا کان \vec{v} و \vec{v} متجهتین غیر منعدمتین فان *
- $(\overline{\vec{u};\vec{v}}) = (\overline{\vec{u};\vec{w}})$ [2π] اذا كانت \vec{u} و \vec{v} و \vec{v} ثلاثة متجهات غير منعدمة تحقق *

فان \vec{v} و \vec{w} مستقیمیتین ولهما نفس المنحی.

<u>تمرير</u>

لتكن (C) دائرة مثلثية مركزها O و أصلها I. نعتبر على (C) النقط التالية المعرفة بأفاصيلها

$$F\left(\frac{-17\pi}{3}\right)$$
 $E\left(\frac{23\pi}{4}\right)$ $B\left(\frac{3\pi}{2}\right)$ $A\left(\pi\right)$ المنحنية

أعط قياسا لكل من الزاويا التالية ، ثم حدد القياس الرئيسي لكل منهن

$$\left(\widehat{\overrightarrow{OE}};\widehat{\overrightarrow{OF}}\right)$$
 ; $\left(\widehat{\overrightarrow{OA}};\widehat{\overrightarrow{OE}}\right)$; $\left(\widehat{\overrightarrow{OB}};\widehat{\overrightarrow{OA}}\right)$; $\left(\widehat{\overrightarrow{OA}};\widehat{\overrightarrow{OA}}\right)$

<u>V - النسب المثلث</u>

<u>1- المعلم المتعامد الممنظم المرتبط بالدائرة المثلثية</u>

. I و أصلها O و أصلها الكن (C) دائرة مثلثية مركزها

ولتكن J من (C) بحيث $\widehat{OI;OJ}$ زاوية قائمة موجبة المعلم $\left(O;\overrightarrow{OI};\overrightarrow{OJ}
ight)$ يسمى المعلم المتعامد الممنظم (C) المباشر المرتبط بالدائرة المثلثية

لتكن J' من C بحيث $\widehat{OI;OJ'}$ زاوية قائمة سالبة . المعلم $\left(O;\overrightarrow{OI};\overrightarrow{OJ'}
ight)$ يسمى المعلم المتعامد الممنظم (C) الغير المباشر المرتبط بالدائرة المثلثية

<u>2- النسب المثلثية</u>

لتكن (C) دائرة مثلثية و $(O;\overrightarrow{OI};\overrightarrow{OJ})$ المعلم المتعامد (C)الممنظم المرتبط بها. لتكن M نقطة من

M فصولا منحنيا لها . نعتبر C المسقط العمودي لـ xM على (OI) و S المسقط العمودي لـ

(OJ) علی

 $(O; \overrightarrow{OI}; \overrightarrow{OJ})$ العدد الحقيقي أفصول النقطة M في المعلم *

 $\cos x$ يسمى جيب تمام العدد الحقيقي x نرمز له ب

 $(O;\overrightarrow{OI};\overrightarrow{OJ})$ العدد الحقيقي أرتوب النقطة M في المعلم *

 $\sin x$ يسمى جيب العدد الحقيقي x نرمز له ب P(1;1) عند I و النقطة (C) عند Δ

 Δ لتكن T نقطة تقاطع (OM) و

$$k \in \mathbb{Z}$$
 $x \neq \frac{\pi}{2} + k \pi$

العدد الحقيقي أفصول T في المعلم (I;P)يسمى $\tan x$ نرمز له بـ x

<u>ملاحظة و اصطلاحات</u>

 $M\left(\cos x\,;\sin x\,
ight)$ فان $M\left(\sin x\,\right)$ أفصول منحني لنقطة أ

$$\mathbb{R} o \mathbb{R}$$
 - الدالة

$$x \to \cos x$$

$$\mathbb{R}
ightarrow \mathbb{R}$$
 - الدالة

$$x \to \sin x$$

$$\mathbb{R} \to \mathbb{R}$$

الدالة
$$\rightarrow \mathbb{R}$$
 - $x \rightarrow \tan x$

 \sin یرمز لھا بے \mathbb{R} تسمی دالة الجیب حیز تعریفها

 \cos یرمز لها بے \mathbb{R} تسمی دالة جیب التمام حیز تعریفها

tan يرمز لها بـ الظل حيز تعريفها $\mathbb{R}-\left\{rac{\pi}{2}+k\,\pi/k\in\mathbb{Z}
ight\}$ تسمى دالة الظل حيز تعريفها

<u>2-2- خاصىات</u>

[II'] أفصولها منحي X النقطة C تنتمي الى القطعة (C) أفصولها منحي X

$$I(1;0)$$
 ; $I'(-1;0)$; $J'(0;-1)$; $J(0;1)$ حيث $[JJ']$ حيث S

$$-1 \le \cos x \le 1$$
 $-1 \le \sin x \le 1$ $x \in \mathbb{R}$ لكل

$$\cos^2 x + \sin^2 x = 1$$
 $x \in \mathbb{R}$ لکل -*

$$\tan x = \frac{\sin x}{\cos x}$$
 $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$ حکل -*

نعلم أن جميع الأعداد الحقيقية التي تكتب $x+2k\,\pi$ حيث $k\in\mathbb{Z}$ ، أفاصيل منحنية لنفس *-M النقطة

$$\cos(x+2k\pi) = \cos x$$
 ; $\sin(x+2k\pi) = \sin x$ $x \in \mathbb{R}$ لكل

 $\tan x$ هو ما كانت $M(x+k\pi)$ لدينا أفصول -

$$an(x+k\pi) = an x$$
 $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$ لکل

$$an(x+\pi) = an x$$
 $x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \right\}$ حالة خاصة

*- بتوظيف الدائرة المثلثية نحصل على

$$x \in \mathbb{R}$$
 لکل $\cos(-x) = \cos x$; $\sin(-x) = -\sin x$

نعبرعن هذا بقولنا ان الدالة cos زوجية و أن الدالة sin فردية.

$$x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$
 کل $\tan(-x) = -\tan x$

نعبر عن هذا بقولنا ان الدالة tan فردية.

$$x \in \mathbb{R}$$
 لکل $\sin(\pi - x) = \sin x$; $\cos(\pi - x) = -\cos x$

$$x \in \mathbb{R}$$
 لکل $\sin(\pi + x) = -\sin x$; $\cos(\pi + x) = -\cos x$

$$x \in \mathbb{R}$$
 لکل $\sin\left(\frac{\pi}{2} - x\right) = \cos x$; $\cos\left(\frac{\pi}{2} - x\right) = \sin x$

$$x \in \mathbb{R}$$
 لکل $\sin\left(\frac{\pi}{2} + x\right) = \cos x$; $\cos\left(\frac{\pi}{2} + x\right) = -\sin x$

3-2- نسب مثلثية اعتبادية

х	0	$\frac{\pi}{\epsilon}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	-
		6	4	3	2	3	4	6	π
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tanx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	غیر معرف	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0

تمارين

$$\cos\frac{34\pi}{3}$$
 ; $\cos\frac{-37\pi}{4}$; $\sin\frac{53\pi}{6}$; $\sin\frac{-7\pi}{2}$ نمرین $\cos\frac{1}{3}$ أحدد $\cos\frac{\pi}{6} + \cos\frac{2\pi}{6} + + \cos\frac{11\pi}{6}$ أ- حدد $\sin\left(\frac{7\pi}{2} + x\right) + \cos\left(\frac{27\pi}{2} - x\right) + \sin\left(3\pi + x\right) - \cos\left(7\pi - x\right)$ ب- بسط بالم

الحساب المثلثي – الجزء 2-

الدورة الثانية

الدرس الأول

عدد الساعات: 15

القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على الملك ترار ملم ت

 $\begin{array}{c|c}
 & \Delta \\
 & M \left(\frac{\pi}{3}\right) \\
\hline
 & 0 & \frac{1}{2}
\end{array}$

I- <u>المعادلات المثلثية</u>

 $\cos x = a$ المعادلة -1

$$x \in \mathbb{R}$$
 $\cos x = \frac{1}{2}$ حل $\frac{\mathbf{1}}{2}$

لدينا المستقيم $\Delta: \quad x=rac{1}{2}$ يقطع الدائرة المثلثية في نقطتين M و M أفصوليهما المنحنيين الرئيسيين على التوالي هما $\frac{\pi}{2}$ و $\frac{\pi}{2}$.

M بما أن $2k\pi$ بحيث $2k\pi$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث $k\in\mathbb{Z}$ بحيث بحيث $k\in\mathbb{Z}$ بحيث بحيث بعد الأفاصيل المنحنية للنقطة

$$k\in\mathbb{Z}$$
 فإننا نستنتج أن $x=rac{\pi}{3}+2k\pi$ تكافئ $\cos x=rac{1}{2}$ حيث $\cos x=rac{1}{2}$ فإننا نستنتج أن $S=\left\{rac{\pi}{3}+2k\,\pi\,/\,k\in\mathbb{Z}
ight\}\cup\left\{-rac{\pi}{3}+2k\,\pi\,/\,k\in\mathbb{Z}
ight\}$ إذن

$$x \in \left[-2\pi; 2\pi\right]$$
 $\cos x = \frac{1}{2}$ حل $\frac{2}{2}$

نتبع نفس الخطوات السابقة فنحصل على

$$k \in \mathbb{Z}$$
 تكافئ $x = -\frac{\pi}{3} + 2k\pi$ أو $x = \frac{\pi}{3} + 2k\pi$ تكافئ $\cos x = \frac{1}{2}$

 $\left[-2\pi; 2\pi\right]$ وحيث أننا نحل المعادلة في المجال

$$-2\pi \le -\frac{\pi}{3} + 2k \; \pi \le 2\pi$$
 فان $-2\pi \le \frac{\pi}{3} + 2k \; \pi \le 2\pi$

$$k=0$$
 لدينا $k=-1$ تكافئ $-\frac{7}{6} \leq k \leq \frac{5}{6}$ تكافئ $-2\pi \leq \frac{\pi}{3} + 2k\pi \leq 2\pi$

$$x = -\frac{5\pi}{3}$$
 ومنه $x = \frac{\pi}{3}$

$$k=0$$
 او $k=1$ أو $-\frac{5}{6} \le k \le \frac{7}{6}$ تكافئ $-2\pi \le -\frac{\pi}{3} + 2k\pi \le 2\pi$ لدينا

$$x = \frac{5\pi}{3}$$
 ومنه $x = -\frac{\pi}{3}$

$$S = \left\{ \frac{-5\pi}{3}; \frac{-\pi}{3}; \frac{\pi}{3}; \frac{5\pi}{3} \right\}$$
 إذن

$$a \prec -1 \lor a \succ 1$$
 لا تقبل حلا إذا كان * $\cos x = a$

$$k \in \mathbb{Z}$$
 / $x = 2k\pi$ إذا وفقط إذا كان $x \in \mathbb{R}$ $\cos x = 1$

$$k \in \mathbb{Z}$$
 / $x = \pi + 2k\pi$ إذا وفقط إذا كان $x \in \mathbb{R}$ $\cos x = -1$

$$\cos \alpha = a$$
 حیث]0; π [من α من $-1 \prec a \prec 1$ خان *

$$k\in\mathbb{Z}$$
 و بالتالي حلول المعادلة $x=-lpha+2k\pi$ في \mathbb{R} هي $\cos x=a$ أو $\cos x=a$ و بالتالي حلول المعادلة $S=\left\{lpha+2k\,\pi\,/\,k\in\mathbb{Z}\right\}\cup\left\{-lpha+2k\,\pi\,/\,k\in\mathbb{Z}\right\}$

$$x \in \mathbb{R} \qquad \cos\left(x + \frac{\pi}{3}\right) = \cos(2x) \qquad x \in \left]-\pi; 3\pi\right] \quad \cos\left(2x - \frac{3\pi}{4}\right) = -\frac{\sqrt{3}}{2}$$
$$x \in \left[\pi; 2\pi\right[\qquad 2\cos^2 x + 3\cos x + 1 = 0$$

$$x\in\mathbb{R}$$
 $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ نحل $*$ $k\in\mathbb{Z}$ نحل $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ آو $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $k\in\mathbb{Z}$ تكافئ $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $k\in\mathbb{Z}$ غيث $\sin\left(x+\frac{\pi}{3}\right)=\cos(2x)$ تكافئ $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $\sin\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos(2x)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos\left(x+\frac{\pi}{3}\right)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos\left(x+\frac{\pi}{3}\right)=\cos\left(x+\frac{\pi}{3}\right)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos\left(x+\frac{\pi}{3}\right)=\cos\left(x+\frac{\pi}{3}\right)=\cos\left(x+\frac{\pi}{3}\right)$ $\cos\left(x+\frac{\pi}{3}\right)=\cos\left(x+\frac{$

$$-1 \prec \frac{19}{24} + k \leq 3$$
 من أجل $x = \frac{19\pi}{24} + k\pi \leq 3\pi$ لدينا $x = \frac{19\pi}{24} + k\pi$ من أجل $x = \frac{19\pi}{24} + k\pi$ ومنه $x = \frac{43}{24} \prec k \leq \frac{53}{24}$ ومنه $x = \frac{43}{24} \prec k \leq \frac{53}{24}$ و حيث $x = \frac{19\pi}{24} + k\pi$ أو $x = 1$ أو $x = 1$ أو $x = 1$ أو $x = 1$

$$x=rac{19\pi}{24}+2\pi=rac{67\pi}{24}$$
 وأ $x=rac{19\pi}{24}+\pi=rac{43\pi}{24}$ وأ $x=rac{19\pi}{24}-\pi=-rac{5\pi}{24}$ ومن أجل $x=\frac{19\pi}{24}+\pi=rac{43\pi}{24}$ ومنه $x=\frac{19\pi}{24}+\pi=rac{43\pi}{24}$ أي $x=-rac{5\pi}{24}+\pi=rac{5\pi}{24}$ من أجل $x=-rac{\pi}{24}+\pi=-rac{\pi}{24}+\pi$

$$S = \left\{ -\frac{5\pi}{24}; -\frac{\pi}{24}; \frac{19\pi}{24}; \frac{23\pi}{24}; \frac{43\pi}{24}; \frac{47\pi}{24}; \frac{67\pi}{24}; \frac{71\pi}{24} \right\}$$
 إذن
$$x \in \left[\pi; 2\pi \right[2\cos^2 x + 3\cos x + 1 = 0 \right]$$

 $2X^2 + 3X + 1 = 0$ نضع $\cos x = X$ نضع نضع ليكن ∆ مميز المعادلة

$$\Delta = 3^2 - 4 \times 2 \times 1 = 1$$
 ومنه $X = \frac{-3 - 1}{4} = -1$ أو $X = \frac{-3 + 1}{4} = -\frac{1}{2}$ و بالتالي $\cos x = -1$ أو $\cos x = -\frac{1}{2}$

 $k \in \mathbb{Z}$ / $x = \pi + 2k\pi$ تكافئ $\cos x = -1$ لدينا

 $x=\pi$ ومنه $0 \leq k \prec \frac{1}{2}$ أي $\pi \leq \pi + 2k\pi \prec 2\pi$ فان $x \in \left[\pi; 2\pi\right[$

$$\cos x = \cos \frac{2\pi}{3}$$
 لدينا $\cos x = -\frac{1}{2}$

$$k \in \mathbb{Z}$$
 حيث $x = -\frac{2\pi}{3} + 2k\pi$ ومنه $x = \frac{2\pi}{3} + 2k\pi$

و حیث $x \in [\pi; 2\pi[$ فان

$$k=1$$
 من أجل $x=-rac{5}{6} \leq k \prec rac{4}{3}$ أي $\pi \leq -rac{2\pi}{3} + 2k\pi \prec 2\pi$ ومنه $x=-rac{2\pi}{3} + 2k\pi$

$$x = -\frac{2\pi}{3} + 2\pi = \frac{4\pi}{3}$$
 إذن

من أجل
$$x=rac{2}{6} \leq k \prec rac{2}{3}$$
 أي $\pi \leq rac{2\pi}{3} + 2k\pi \prec 2\pi$ لدينا $x=rac{2\pi}{3} + 2k\pi$ كن أجل

يحقق المتفاوتة الأخيرة

$$S = \left\{\pi; \frac{4\pi}{3}\right\}$$
 إذن

 $\sin x = a$ المعادلة -2

$$x \in \mathbb{R}$$
 $\sin x = \frac{\sqrt{3}}{2}$ حل $\frac{1}{2}$

لدينا المستقيم $\frac{7}{2}$ لدينا المستقيم لدينا المستقيم ك يقطع الدائرة المثلثية

في نقطتين M و M أفصوليهما المنحنيين الرئيسيين على التوالي هما $\frac{\pi}{3} = \frac{2\pi}{3}$ و $\frac{\pi}{3}$

بما أن $2k \pi + 2k$ بحيث $k \in \mathbb{Z}$ بحيث بما أن

للنقطة M و $2k\pi$ + $2k\pi$ بحيث $k\in\mathbb{Z}$ بحيث بحيث M

المنحنية للنقطة ' M فإننا نستنتج أن

$$k \in \mathbb{Z}$$
 تكافئ $x = \frac{2\pi}{3} + 2k\pi$ أو $x = \frac{\pi}{3} + 2k\pi$ تكافئ $\sin x = \frac{\sqrt{3}}{2}$

$$S = \left\{ \frac{\pi}{3} + 2k \, \pi / k \in \mathbb{Z} \right\} \cup \left\{ \frac{2\pi}{3} + 2k \, \pi / k \in \mathbb{Z} \right\}$$
 إذن

$$x \in [-2\pi; 3\pi]$$
 $\sin x = \frac{\sqrt{3}}{2}$ حل $\frac{2}{3}$

نتبع نفس الخطوات السابقة فنحصل على

$$k \in \mathbb{Z}$$
 تكافئ $x = \frac{2\pi}{3} + 2k\pi$ أو $x = \frac{\pi}{3} + 2k\pi$ تكافئ $\sin x = \frac{\sqrt{3}}{2}$

 $\left[-2\pi;3\pi\right]$ وحيث أننا نحل المعادلة في المجال

$$-2\pi \leq \frac{2\pi}{3} + 2k \ \pi \leq 3\pi \quad \text{أو} \quad -2\pi \leq \frac{\pi}{3} + 2k \ \pi \leq 3\pi \quad \text{odd}$$

$$-\frac{7}{6} \leq k \leq \frac{8}{6} \quad \text{ided} \quad -2\pi \leq \frac{\pi}{3} + 2k\pi \leq 3\pi \quad \text{legain} \quad k = 1 \quad \text{ded} \quad k = 0 \quad \text{ded} \quad k = -1 \quad \text{ded} \quad k = 1 \quad \text{ded} \quad k = -\frac{5\pi}{3} \quad \text{ded} \quad k = \frac{\pi}{3} \quad \text{ded} \quad k = \frac{7\pi}{3} \quad \text{ded} \quad k = 1 \quad \text{ded} \quad k = 1$$

 $a \prec -1 \quad \lor \quad a \succ 1$ لا تقبل حلا إذا كان x = a

$$k \in \mathbb{Z}/$$
 $x = \frac{\pi}{2} + 2k \pi \Leftrightarrow x \in \mathbb{R} \quad \sin x = 1$

$$k \in \mathbb{Z}/$$
 $x = -\frac{\pi}{2} + 2k \pi \Leftrightarrow x \in \mathbb{R} \quad \sin x = -1$

$$\sin \alpha = a$$
 حيث $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ من α عنصر عنصر اخان $-1 < a < 1$ خان

 $k\in\mathbb{Z}$ حيث $x=\pi-\alpha+2k\pi$ أو $x=\alpha+2k\pi$ حيث $\sin x=a$ حلول المعادلة $S=\left\{\alpha+2k\pi\,/\,k\in\mathbb{Z}\right\}\cup\left\{\pi-\alpha+2k\pi\,/\,k\in\mathbb{Z}\right\}$ مجموعة حلول المعادلة

$$x\in\mathbb{R}$$
 $\sin\left(2x+rac{\pi}{3}
ight)=\cos(3x)$ تمرين حل المعادلات $x\in\left]-\pi;2\pi
ight]$ $\sin\left(2x-rac{\pi}{4}
ight)=-rac{1}{2}$

لحا .----ا

$$x\in\mathbb{R}$$
 $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ نحل $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ تكافئ $\sin\left(2x+\frac{\pi}{3}\right)=\sin\left(\frac{\pi}{2}-3x\right)$ تكافئ $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ $\sin\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ $\cos\left(2x+\frac{\pi}{3}\right)=\cos(3x)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\sin\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left(3x\right)$ $\cos\left(2x+\frac{\pi}{6}\right)=\cos\left$

$$k\in\mathbb{Z}$$
 تكافئ $2x=rac{17\pi}{12}+2k\pi$ أو $2x=rac{\pi}{12}+2k\pi$ حيث $k\in\mathbb{Z}$ حيث $x=rac{17\pi}{24}+k\pi$ تكافئ $x=rac{\pi}{24}+k\pi$ أو

و حيث أن $x \in]-\pi; 2\pi$ فان

$$k=1$$
 أو $k=0$ أو $k=-1$ ومنه $k=-1$ ومنه $k=-1$ أو k

$$x = \frac{\pi}{24} + \pi = \frac{25\pi}{24}$$
 وأ $x = \frac{\pi}{24} - \pi = -\frac{23\pi}{24}$ إذن

$$k=1$$
 من أجل لدينا $k=0$ أو $k=-1$ ومنه $-\frac{41}{24} \prec k \leq \frac{31}{24}$ ومنه $-\pi \prec \frac{17\pi}{24} + k\pi \leq 2\pi$ أو

$$x = \frac{17\pi}{24} + \pi = \frac{41\pi}{24}$$
 او $x = \frac{17\pi}{24} + \pi = \frac{41\pi}{24}$ او $x = \frac{17\pi}{24} - \pi = -\frac{7\pi}{24}$

$$S = \left\{ -\frac{23\pi}{24}; -\frac{7\pi}{24}; \frac{\pi}{24}; \frac{17\pi}{24}; \frac{25\pi}{24}; \frac{41\pi}{24} \right\}$$
 ease

، I المماس الدائرة المثلثية (C) في أصلها Δ نأخد النقطة T من Δ حيث -1 أفصول المحور T

$$(C)$$
 المستقيم OT يقطع الدائرة المثلثية
$$\tan(-\frac{\pi}{4}) = -1$$
 في النقطتين M و M نعلم أن

$$M$$
 و بالتالي $-rac{\pi}{4}$ أفصول منحني للنقطة

$$x \in \mathbb{R} - \left\{ \frac{\pi}{2} + k\pi / k \in \mathbb{Z} \right\}$$
ويما أن $\tan(x + k\pi) = \tan x$ ويما

$$x = \frac{-\pi}{4} + k\pi / k \in \mathbb{Z}$$
 فان حلول المعادلة هي

$$S = \left\{ \frac{-\pi}{4} + k \, \pi \, / \, k \, \in \mathbb{Z} \right\}$$
 اذن

$$\left|-\frac{\pi}{2};\frac{\pi}{2}\right|$$
 في $\tan x=a$ خيث α حل للمعادلة $\tan x=a\Leftrightarrow x=\alpha+k$ في $a\leftrightarrow x=\alpha+k$

تمرين حل المعادلتين

$$x \in [0; 3\pi] \quad \tan 2x = \sqrt{3}$$

$$x \in \mathbb{R}$$
 $\tan\left(2x - \frac{\pi}{3}\right) = -\tan x$

II<u>- المتراجحات المثلثية</u> <u>مثال1</u>

$$x \in]-\pi;\pi]$$
 $\cos x \ge \frac{1}{2}$

$$x \in \left] -\pi; \pi\right]$$
 $\cos x = \frac{1}{2}$ نحل أولا المعادلة

بإتباع خطوات حل المعادلات نحصل على

$$x=-rac{\pi}{3}$$
 أو $x=rac{\pi}{3}$ تكافئ $x\in \left]-\pi;\pi
ight]$ $\cos x=rac{1}{2}$ لتكن $M'\left(-rac{\pi}{3}
ight)$ و $M\left(rac{\pi}{3}
ight)$ نقطتين من الدائرة المثلثية مجموعة حلول المتراجحة هي مجموعة الأفاصيل $\left[-\pi;\pi
ight]$ في $\left[\widehat{M'IM}
ight]$ في $S=\left[rac{-\pi}{3};rac{\pi}{3}
ight]$ وهذه المجموعة هي $S=\left[rac{-\pi}{3};rac{\pi}{3}
ight]$

$$x\in \left[0;3\pi\right[$$
 حل $\frac{2}{2}$ حل $\frac{2}{2}$ حل $x\in \left[0;3\pi\right[$ حل $x\in \left[0;3\pi\right]$ حد أولا المعادلة $x=\frac{5\pi}{3}$ أو $x=\frac{7\pi}{3}$ أو $x=\frac{\pi}{3}$ أو $x=\frac{\pi}{3}$

،
$$M$$
 و $\frac{7\pi}{3}$ و $\frac{\pi}{3}$ أفصولين منحنيين لنفس النقطة $\frac{5\pi}{3}$ نعتبر $\frac{5\pi}{3}$ أفصول منحني للنقطة '

 $(C\,)$ مجموعة حلول المتراجحة هي مجموعة الأفاصيل المنحنية للنقط

$$[0;3\pi[$$
 التي تنتمي الى القوس M التي تنتمي الى القوس $S=\left[0;\frac{\pi}{3}\right]\cup\left[\frac{5\pi}{3};\frac{7\pi}{3}\right]$ وهذه المجموعة هي

مثال3

$$x\in \left[0;2\pi
ight]$$
 $an x\geq \sqrt{3}$ حل $x\in \left[0;2\pi
ight]$ $an x=\sqrt{3}$ نحل المعادلة $x=\frac{4\pi}{3}$ و $x=\frac{\pi}{3}$ تكافئ $x=\sqrt{3}$

A نعتبر $\frac{\pi}{3}$ أفصول منحني للنقطة

$$B$$
 و $\frac{4\pi}{3}$ أفصول منحني للنقطة

مجموعة حلول المتراجحة هي مجموعة الأفاصيل المنحنية $\left[\widehat{BJ'}\right]$ و $\left[\widehat{AJ}\right]$ و التي تنتمي إلى اتحاد القوسين (C) في $[0;2\pi]$

$$S = \left[\frac{\pi}{3}; \frac{\pi}{2}\right] \cup \left[\frac{4\pi}{3}; \frac{3\pi}{2}\right]$$
 وهذه المجموعة هي

$$x \in]-\pi;\pi]$$
 $\sin x \succ \frac{-1}{2}$ حل $x \in]0;4\pi]$ $\sin x \succ \frac{-1}{2}$ $x \in [0;2\pi]$ $\tan x \prec 1$

متراجحات تؤول في حلها إلى متراجحات أساسية

<u>نمرين</u>

حل

$$x \in [-\pi; \pi] \quad \sin\left(x - \frac{\pi}{3}\right) \le \frac{1}{2}$$

$$x \in [0; \pi] \quad \tan 3x > \sqrt{3}$$

$$x \in]-\pi; \pi] \quad 4\cos^2 x - 2\left(1 + \sqrt{2}\right)\cos x + \sqrt{2} \le 0$$

$$x \in]-\pi; \pi] \quad \frac{1 + \tan x}{\sin 2x} \ge 0$$

III- الزوايا المحيطية – الرباعيات الدائرية 1- تعريف

• <u>الزاوية المركزية</u> : هي زاوية رأسها مركز الدائرة

الزاوية المحيطية: هي زاوية ينتمي رأسها للدائرة وتحصر بين ضلعيها قوسا من هذه الدائرة

2-خاصيات

نشاط1

لتكن (C) دائرة مركزها O نعتبر A و B نقطتين مختلفتين من (C)غير متقابلتين قطريا و \widehat{AB} و \widehat{AMB} تحصران نفس القوس \widehat{AB}

في الحالات التالية $\widehat{AOB} = 2\widehat{AMB}$ في الحالات التالية -1

A و O و M مستقیمیة M

بM و O و A غير مستقيمية

یمکن اعتبار نقطهٔ N من (C) حیث N و O و M مستقیمیه

و باستعمال أ/ مرتين بين المطلوب

عتبر (AT) المماس للدائرة (C). الزاوية محيطية تحصر نفس القوس التي تحصره الالزاوية -2

 \widehat{AOB} المركزية

$$\widehat{AOB} = 2\widehat{TAB}$$
 بین أن

الحل----

أ/ M و O و A مستقيمية $^{-1}$

O متساوي الساقين في الرأس OBM

$$\widehat{BOM} = \pi - 2\widehat{BMO}$$
 ومنه

و حيث $\widehat{BOM} = \pi - \widehat{AOB}$ لأن M و O و A مستقيمية

$$\widehat{AOB} = 2\widehat{BMO}$$
 فات

$$\widehat{AOB} = 2\widehat{AMB}$$
 اذن

ب/ M و O و A غير مستقيمية

من(C) حيث N و O و N مستقيمية

$$\widehat{NOB} = 2\widehat{NMB}$$
 حسب أ/ لدينا

Oلدينا OAM مثلث متساوي الساقين في الرأس

$$\widehat{AOM} = \pi - 2\widehat{AMO}$$
 e ais

$$\widehat{AOB} = \pi - \left(\widehat{NOB} + \widehat{AOM}\right)$$
 لدينا

$$\widehat{AOB} = \pi - \left(2\widehat{NMB} + \pi - 2\widehat{AMO}\right)$$
 ومنه

$$\widehat{AOB} = 2\Big(\widehat{AMO} - \widehat{NMB}\Big)$$

$$\widehat{AOB} = 2\widehat{AMB}$$
 إذن

$$\widehat{AOB} = 2\widehat{TAB}$$
 إبين أن /2

$$\widehat{OAB} = \frac{\pi}{2} - \widehat{BAT}$$
 ومنه (C) ومنه للدائرة (AT) O متساوي الساقين في الرأس $\widehat{OAB} = \pi - 2\widehat{OAB}$ ومنه $\widehat{OAB} = \pi - 2\left(\frac{\pi}{2} - \widehat{BAT}\right)$ و بالتالي $\widehat{AOB} = 2\widehat{TAB}$ إذن

.. قياس زاوية مركزية في دائرة هو ضعف قياس زاوية محيطية تحصر نفس القوس التي تحصره هذه الزاوية المركزية

نشاط2

$$O$$
 لتكن A و B و C و D نقط مختلفة من دائرة $\widehat{ABC}=\widehat{ADC}=\widehat{ADC}$ بين أن $\widehat{ABC}=\widehat{ADC}=\widehat{ADC}$ أو

و B و C ثلاث نقط من دائرة C) و D نقط مختلفة من المستوى A $\widehat{ABC}=\widehat{ADC}$ أو $\widehat{ABC}+\widehat{ADC}=\pi$ تكون D من الدائرة

3- علاقات الحبب في مثلث

ABC مثلثا و R شعاع الدائرة المحيطة بالمثلث ABC

بين أن
$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 في الحالات التالية

A قائم الزاوية في ABC أ

ب/ جميع زوايا المثلث ABC حادة

ABC منفرجة إحدى زوايا المثلث

A قائم الزاوية في A

$$\frac{BC}{\sin \hat{A}} = BC = 2R$$
 ومنه $\sin \hat{A} = \sin \frac{\pi}{2} = 1$

$$\frac{AC}{\sin \hat{B}} = 2R$$
 ومنه $\sin \hat{B} = \frac{AC}{BC} = \frac{BC}{2R}$

$$\frac{AB}{\sin \hat{C}} = 2R$$
 ومنه $\sin \hat{C} = \frac{AB}{BC} = \frac{AB}{2R}$

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 إذن

ب/ جميع زوايا المثلث ABC حادة

C نقطة مقابلة قطريا مع D

B قائم الزاوية في DBC

لدينا
$$\widehat{D}\equiv\widehat{A}$$
 زاويتان محيطيتان تحصران نفس القوس $\frac{BC}{\sin\widehat{A}}=2R$ زاويتان محيطيتان تحصران نفس القوس $\widehat{D}\equiv\widehat{A}$ إذن $\widehat{D}\equiv\widehat{A}$

A قائم الزاوية في DAC لدينا

و
$$\widehat{CDA} \equiv \widehat{B}$$
 زاویتان محیطیتان تحصران نفس القوس $\widehat{CDA} = \widehat{B}$

و
$$\widehat{CDA} \equiv \widehat{B}$$
 زاویتان محیطیتان تحصران نفس القوس $\widehat{CDA} \equiv \widehat{B}$ و $\frac{AC}{\sin \widehat{B}} = 2R$ زادن $\sin \widehat{CDA} = \frac{AC}{DC} = \frac{AC}{2R}$ ومنه $\sin \widehat{CDA} = \frac{AC}{DC} = \frac{AC}{2R}$

$$\frac{AB}{\sin \hat{C}} = 2R$$
 بالمثل نعتبر نقطة مقابلة قطريا مع A و نبين

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 إذن

لنفترض أن \widehat{A} منفرجة C نقطة مقابلة قطريا مع D

$$\sin \widehat{D} = \sin \widehat{A}$$
 و \hat{D} متكاملتان ومن $\hat{D} = \sin \widehat{A}$ و $\hat{D} = \frac{BC}{\sin \widehat{A}} = 2R$ إذن $\sin \widehat{D} = \frac{BC}{DC} = \frac{BC}{2R}$

الزاوىتان \hat{C} و \hat{B} حادتان

$$\frac{AC}{\sin \hat{B}} = 2R$$
 و $\frac{AB}{\sin \hat{C}} = 2R$ حسب ب/ نحصل على

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
 إذن

خاصیة
$$ABC$$
 لیکن ABC مثلثا و R شعاع الدائرة المحیطة به BC مر BC مر BC مر BC

$$\frac{BC}{\sin \hat{A}} = \frac{AC}{\sin \hat{B}} = \frac{AB}{\sin \hat{C}} = 2R$$
4- علاقات في المثلث (المساحة - المحيط)

ليكن ABC مثلثا و H المسقط العمودي لـ A على ABC و A

$$S = \frac{1}{2} \Big(BC \times AC \times \sin \hat{C} \Big)$$
 بین أن -1

و O مركزها ABC و ABC و O مركزها الدائرة المحاطة بالمثلث AC و AC بدلالة AC الحسب مساحة AC

$$ABC$$
 برا بين أن $S = \frac{1}{2}p \times r$ حيث p حيث $S = \frac{1}{2}p \times r$

 $\frac{1}{2}$ اصیه S مثلثا و r شعاع الدائرة المحاطة به و S مساحته p محیطه لیکن

$$S = \frac{1}{2} \left(BC \times AC \times \sin \widehat{C} \right)$$

$$S = \frac{1}{2} p \times r$$