EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_{VV}}$.

Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

1. Relația de legătură dintre temperatura exprimată în $\,^{0}$ C este:

a.
$$T(K) = t({}^{0}C)$$
: 273,15 K

b.
$$T(K) = t({}^{0}C) - 273,15 K$$

c.
$$T(K) = t({}^{0}C) + 273,15 K$$

d.
$$T(K) = t({}^{0}C) \cdot 273,15 K$$
 (2p)

- 2. Un alpinist aflat inițial la baza unui munte aspiră o dată o masă $m_1 = 1$ g de aer aflat la presiunea $p_0 = 10^5 \, \mathrm{Pa}$ şi temperatura $t_1 = 27^{\circ} \mathrm{C}$. El ajunge în vârful muntelui, unde presiunea aerului este $0.7 \cdot 10^5 \, \mathrm{Pa}$ și temperatura $t_2 = 7^{\circ}\text{C}$. Masa de aer aspirată o dată de alpinist când se află în vârful muntelui este egală
- **a.** 0,25 g
- **b.** 0,75g
- **c.** 0,85 g
- **d.** 0,125 g
- (2p)

(5p)

- 3. Două butelii identice conțin aceeași masă de gaz. Prima butelie conține hidrogen $(\mu_{H_0} = 2g/\text{mol})$ la temperatura $T_1 = 500\,\mathrm{K}$, iar a doua butelie conține oxigen $\mu_{O_2} = 32\,\mathrm{g/mol}$ la temperatura $T_2 = 320\,\mathrm{K}$. În condițiile date raportul presiunilor celor două gaze p_{H_2} / p_{O_2} are valoarea:
- **a.** 5

c.15

4. În figura alăturată este redat graficul dependenței temperaturii finale la care ajunge un corp cu masa m = 1 kg de căldura primită de acel corp. Căldura

a. 100 J/(kgK)

specifică a corpului are valoarea:

- **b.** 200 J/(kgK)
- **c.** 400 J/(kgK)
- **d**. 800 J/(kgK)
- 5. Un balon cu pereți rigizi care are volumul $V=60\,\ell$ a fost umplut cu heliu $\left(C_V=\frac{3}{2}R\right)$, considerat gaz

ideal. Prin robinetul defect al balonului se scurge heliu, presiunea heliului devenind p = 1 MPa. Energia internă a heliului rămas în butelie este:

- **a**. 90 kJ
- **b**. 120kJ
- c. 200kJ
- d. 800kJ

(3p)

(3p)