Sistema de partículas

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

17 de outubro de 2025

Prof. Flaviano W. Fernandes

Sumário

- Centro de massa
- Momento linear
- 3 Conservação do momento linear
- 4 Colisões
- Apêndice

Centro de massa

O centro de massa de um sistema de partículas ou objeto rígido é o ponto que se move como se toda a massa do sistema estivesse concentrada nesse ponto e todas as forças externas estivessem aplicadas nesse ponto.

Corollary

Á partir do centro de massa podemos determinar com mais facilidade o movimento do sistema.

Representação do centro de massa de um bastão [1].

Sistema de duas partículas

Considere um sitema binário (contendo duas partículas) ao longo do eixo x, podemos substituir o conjunto por outro equivalente onde toda a massa está concentrada no seu centro de massa.

$$(m_1 + m_2)x_{cm} = m_1x_1 + m_2x_2,$$

$$x_{cm} = \frac{m_1x_1 + m_2x_2}{m_1 + m_2},$$

onde x_{cm} é a localização da massa total do sistema.

Centro de massa das partículas de massa m_1 e m_2 .

Para um sistema contendo N partículas, podemos generalizar a idéia anterior na forma

$$(m_1 + m_2 + m_3 + \dots + m_N)x_{cm} = m_1x_1 + m_2x_2 + m_3x_3 + \dots + m_Nx_N,$$
 $x_{cm} = \frac{m_1x_1 + m_2x_2 + m_3x_3 + \dots + m_Nx_N}{m_1 + m_2 + m_3 + \dots + m_N},$
 $x_{cm} = \frac{1}{M} \sum_{i=1}^{N} m_i x_i,$

onde $M = m_1 + m_2 + m_3 + \cdots + m_N$, é a massa total do sistema.

Prof. Flaviano W. Fernandes IFPR-Irati

00000000

Sistema de partículas em duas ou três dimensões

No caso de um sistema de N partículas distribuídas no espaço, podemos determinar o centro de massa de cada coordenada separadamente.

$$x_{cm} = \frac{1}{M} \sum_{i=1}^{N} m_i x_i,$$

$$y_{cm} = \frac{1}{M} \sum_{i=1}^{N} m_i y_i,$$

$$z_{cm} = \frac{1}{M} \sum_{i=1}^{N} m_i z_i.$$

Vetor posição \vec{r}_{cm} do centro de massa (CM) de um conjunto de três partículas.

Prof. Flaviano W. Fernandes IFPR-Irati

000000000

Sistema de partículas em duas ou três dimensões (continuação)

Usando a linguagem vetorial, podemos definir as coordenadas do centro de massa na forma abaixo

$$\vec{r}_{cm} = x_{cm}\hat{i} + y_{cm}\hat{j} + z_{cm}\hat{k},$$

ou de maneira equivalente

$$\vec{r}_{cm} = \frac{1}{M} \sum_{i=1}^{N} m_i \vec{r}_i.$$

Sistema de partículas.

Objetos maciços

No caso de um objeto rígido com uma distribuição contínua de massa, a somatória se transforma em uma integral, resultando em

$$x_{cm} = rac{1}{M} \int x dm, \quad y_{cm} = rac{1}{M} \int y dm, \quad z_{cm} = rac{1}{M} \int z dm.$$

No caso de objetos homogêneos, onde a densidade ρ é constante, temos $\rho = \frac{M}{V}$, onde V é o volume do objeto. Substituindo na equação acima temos

$$x_{cm} = \frac{1}{\varrho V} \int x \varrho dV, \quad y_{cm} = \frac{1}{\varrho V} \int y \varrho dV, \quad z_{cm} = \frac{1}{\varrho V} \int z \varrho dV,$$
$$x_{cm} = \frac{1}{V} \int x(V) dV, \quad y_{cm} = \frac{1}{V} \int y(V) dV, \quad z_{cm} = \frac{1}{V} \int z(V) dV.$$

Outras considerações importantes a respeito do centro de massa

- ✓ O centro de massa de um objeto não precisa estar necessariamente no interior desse objeto;
- ✓ Em um objeto heterogêneo, o centro de massa possui a tendência de estar mais próximo da região que possui maior distribuição de massa;
- ✓ Em objetos que possuem simetria, o centro de massa se torna mais simples, pois nesse caso ele se encontra no ponto, na linha ou plano de simetria. Exemplo: Em uma esfera homogênea, o centro de massa se encontra no centro da esfera, em um cilindro homogêneo, o centro de massa se encontra no eixo do cilindro;
- ✓ Em um objeto homogêneo, o centro de massa se encontra no centro geométrico desse objeto.

Prof. Flaviano W. Fernandes

Centro de massa de objetos opacos

Como exemplo, considere um disco circular homogêneo contendo um orifício também circular como mostra a figura ao lado. Do ponto de vista matemático. podemos dizer que a distribuição de massa é equivalente a soma da massa de um círculo macico com outro disco de massa negativa. Para calcular o centro de massa do conjunto, concentramos toda a massa em dois pontos de massa m_1 e m_2 ,

$$\vec{r}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{(m_1 + m_2)}.$$

Centro de massa de um disco circular vazado.

Centro de massa de objetos opacos (continuação)

Porém, pela simetria do conjunto, percebe-se que o centro de massa encontra-se no eixo x que representa a linha de simetria do problema, portanto

$$x_{cm}=\frac{m_1x_1+m_2x_2}{(m_1+m_2)}.$$

Como os discos são homogêneos, podemos dizer que $m = \rho \pi r^2$, onde ρ é a densidade e r o raio do disco.

$$x_{cm} = \frac{-\rho\pi R^2(-R) + \rho\pi(2R)^2(0)}{-\rho\pi R^2 + \rho\pi(2R)^2} = \boxed{\frac{R}{3}}.$$

Centro de massa de um disco circular vazado.

Segunda Lei de Newton para um sistema de partículas

Sabemos que

$$M\vec{r}_{CM} = m_1\vec{r}_1 + m_1\vec{r}_2 + \cdots + m_N\vec{r}_N$$

onde M é a massa total. Derivando duas vezes temos

$$M\vec{a}_{CM} = m_1\vec{a}_1 + m_1\vec{a}_2 + \cdots + m_N\vec{a}_N.$$

Identificando os termos do lado direito com a segunda Lei de Newton temos

$$M\vec{a}_{CM} = \vec{F}_1 + \vec{F}_2 + \cdots + \vec{F}_N.$$

Sabendo que a força resultante atuando no conjunto é soma vetorial das forças externas atuando em cada partícula e identificando o termo do lado esquerdo com a segunda Lei de Newton, podemos dizer que a força resultante é dado por

$$ec{F}_{res} = ec{F}_1 + ec{F}_2 + \cdots + ec{F}_N, \ ec{F}_{res} = M ec{a}_{CM}.$$

Prof. Flaviano W. Fernandes

Momento linear de um sistema de partícula

Sabemos que

$$M\vec{r}_{CM} = m_1\vec{r}_1 + m_1\vec{r}_2 + \cdots + m_N\vec{r}_N,$$

onde M é a massa total. Derivando temos

$$M\vec{v}_{CM} = m_1\vec{v}_1 + m_1\vec{v}_2 + \cdots + m_N\vec{v}_N,$$

Podemos definir quantitativamente a quantidade de movimento de uma partícula de massa m e velocidade \vec{v} como

$$\vec{p} = m\vec{v}$$
.

Temos assim

$$M\vec{v}_{CM} = \vec{p}_1 + \vec{p}_2 + \cdots + \vec{v}_N.$$

Dessa maneira, a quantidade de movimento \vec{P} do centro de massa pode ser definido como

$$\vec{P} = M\vec{v}_{CM}$$
.

Prof. Flaviano W. Fernandes

Impulso como variação da quantidade de movimento

Derivando a equação anterior temos

$$rac{dec{P}}{dt} = Mrac{dec{v}_{CM}}{dt}, \ rac{dec{P}}{dt} = Mec{a}_{CM}.$$

Sabendo que $\vec{F}_{res} = M\vec{a}_{CM}$ temos

$$ec{F}_{res} = rac{dec{P}}{dt}.$$

Aplicando a regra diferencial temos

$$d\vec{P} = \vec{F}_{res}dt$$
.

Integrando durante um intervalo de tempo Δt , onde $\Delta t = t_f - t_i$ temos

$$ec{J}=\Deltaec{\mathcal{P}}=\int_{t_{i}}^{t_{f}}ec{\mathcal{F}}_{ extit{res}} extit{d}t,$$

onde \vec{J} é chamado impulso e é igual a variação do momento $\Delta \vec{P}$.

Se $\vec{F}(t)$ é uma função contínua, o impulso sobre a partícula é igual a área abaixo da curva em um gráfico força versus tempo. Além do mais, à partir do teorema do valor médio, o impulso pode ser calculado sabendo o valor médio da força,

$$J = F_{\text{médio}} \Delta t$$

onde essa expressão é útil para determinar a força média causada pela colisão de N partículas idênticas em um alvo fixo, dado por

$$F_{\mathsf{m\'edio}} = N\Delta p/\Delta t.$$

Cálculo do módulo do impulso à partir do gráfico Força versus tempo.

Em um sistema isolado não há forças externas atuando sobre ele ($F_{res} = 0$), portanto

$$\frac{d\vec{P}}{dt} = \vec{0}$$

$$P = constante.$$

Em outras palavras, o momento linear total do sistema permanece invariante sob translação do seu centro de massa.

Lei da conservação do momento linear

Se um sistema de partículas não está submetido a forças externas (como no caso de um sistema isolado), o momento linear total desse sistema não pode mudar.

Demais considerações a respeito da Lei da conservação do momento linear

- ✓ Se uma das componentes da força externa aplicada a um sistema isolado é nula, a componente do momento linear do sistema em questão em relação ao mesmo eixo não pode variar.
- ✓ Se não houver forças externas atuando no sistema teremos

$$\vec{F}_{res} = M\vec{a}_{CM} = \vec{0},$$

ou seja, o momento linear do centro de massa permanece invariante sob translação no espaço,

$$P_{\text{CM}} = \text{constante}.$$

Momento e energia cinética em colisões

- ✓ Em um sistema isolado, na ausência de forças dissipativas a energia mecânica é conservada. Considerando que as interações ocorrem apenas por colisão, podemos dizer que a energia cinética é conservada. Esse tipo de colisão é chamado de elástica.
- ✓ Colisões onde parte da energia cinética é convertida em outras formas de energia, chama-se inelásticas (colisões que ocorrem no cotidiano).
- ✓ A perda máxima de energia cinética ocorre quando os corpos permanecem juntos após a colisão. Esse tipo de colisão é chamado perfeitamente inelástico.

Colisões em um sistema isolado de partículas.

Colisões inelásticas em uma dimensão

Sabemos que

Centro de massa

$$\left(rac{ ext{momento total } ec{\mathcal{P}}_i}{ ext{antes da colisão}}
ight) = \left(rac{ ext{momento total } ec{\mathcal{P}}_f}{ ext{depois da colisão}}
ight).$$

Considerando um sistema de duas partículas 1 e 2 temos

$$\begin{aligned} \vec{p}_{(1,i)} + \vec{p}_{(2,i)} &= \vec{p}_{(1,f)} + \vec{p}_{(2,f)}, \\ \hline m_1 \vec{v}_{1,i} + m_2 \vec{v}_{2,i} &= m_1 \vec{v}_{1,f} + m_2 \vec{v}_{2,f}. \end{aligned}$$

Representação de uma colisão inelástica entre dois obietos.

Energia cinética em um sistema de partículas

A energia cinética K de um sistema de N partículas vale

$$K = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + \cdots + \frac{1}{2}m_Nv_N^2.$$

Porém, podemos determinar o movimento do coniunto como a combinação do movimento do centro de massa $(M\vec{v}_{CM})$ com o movimento de cada partícula em relação ao seu centro de massa $(m\vec{v}')$.

$$K = \frac{1}{2} m_1 \left| \vec{v}_1' + \vec{v}_{CM} \right|^2 + \dots + \frac{1}{2} m_1 \left| \vec{v}_N' + \vec{v}_{CM} \right|^2.$$

onde
$$M = m_1 + m_2 + \cdots + m_N$$
.

Velocidades relativa \vec{v}_1' e \vec{v}_2' e do centro de massa \vec{v}_{CM} .

Prof. Flaviano W. Fernandes IFPR-Irati

Centro de massa

Colisões perfeitamente inelásticas unidimensionais

Para que a energia cinética seja mínima após a colisão, o movimento das partículas em relação ao centro de massa deve ser zero (nota-se que não necessariamente o movimento do centro de massa deve ser zero!!!!). Para isso, elas devem se mover juntos com a mesma velocidade \vec{V} . Se considerarmos que uma das partículas possui velocidade zero antes da colisão, teremos

$$m_1 \vec{v}_{(1,i)} = (m_1 + m_2) \vec{V},$$

 $\vec{V} = \frac{m_1}{m_1 + m_2} \vec{v}_{(1,i)}.$

Representação de uma colisão perfeitamente inelástica entre dois objetos [1].

Prof. Flaviano W. Fernandes IFPR-Irati

Centro de massa

Colisões elásticas em uma dimensão

Se durante a colisão a energia cinética total dos objetos envolvidos não é convertida em outra forma de energia, podemos dizer que

$$\left(\frac{\mathsf{Energia\ cinética\ total\ }\vec{P}_i}{\mathsf{antes\ da\ colisão}}\right) = \left(\frac{\mathsf{Energia\ cinética\ total\ }\vec{P}_f}{\mathsf{antes\ da\ colisão}}\right).$$

Portanto, nas colisões elásticas a energia cinética dos objetos envolvidos na colisão pode mudar, mas a energia cinética total permanece constante. Em suma, podemos dizer que

$$m_1 \vec{v}_{(1,i)} + m_2 \vec{v}_{(2,i)} = m_1 \vec{v}_{(1,f)} + m_2 \vec{v}_{(2,f)},$$

$$\frac{1}{2} m_1 v_{(1,i)}^2 + \frac{1}{2} m_2 v_{(2,i)}^2 = \frac{1}{2} m_1 v_{(1,f)}^2 + \frac{1}{2} m_2 v_{(2,f)}^2.$$

Colisões elásticas em uma dimensão (alvo estacionário)

Considerando a partícula 2 como um alvo estacionário teremos $v_{2,i}$, portanto

$$\begin{split} m_1 v_{1,i} &= m_1 v_{1,f} + m_2 v_{2,f}, \\ \frac{1}{2} m_1 v_{(1,i)}^2 &= \frac{1}{2} m_1 v_{(1,f)}^2 + \frac{1}{2} m_1 v_{(2,f)}^2. \end{split}$$

Substituindo $v_{1,i}$ da primeira equação teremos

$$v_{1,f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1,i},$$

 $v_{2,f} = \frac{2m_1}{m_1 + m_2} v_{1,i}.$

Representação de uma colisão inelástica entre dois obietos [1].

Centro de massa

Colisões em duas dimensões

Quando a colisão não é frontal, a Lei de conservação do momento linear ainda continua sendo válida, porém o momento linear é tratado no caso bidimensional. Através da equação

$$m_1 \vec{v}_{(1,i)} + m_2 \vec{v}_{(2,i)} = m_1 \vec{v}_{(1,f)} + m_2 \vec{v}_{(2,f)}$$

e utilizando propriedades trigonométricas temos

$$m_1 v_{(1,i)} = m_1 v_{(1,f)} \cos \theta_1 + m_2 v_{(2,f)} \cos \theta_2,$$

$$0 = m_1 v_{(1,f)} \sin \theta_1 + m_2 v_{(2,f)} \sin \theta_2.$$

Colisão lateral entre duas partículas.

Observações¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

Referências

D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.1, 10. ed., Rio de Janeiro, LTC (2016)