全国计算机等级考试 笔试模拟考场

二级 C

全国计算机等级考试命题研究中心 未来教育教学与研究中心 电多科技大学出版社

目 录

全国计算机等级考试无纸化真考题库试卷——二级 [

无纸化真考题库试卷(1)(共9页	į)
无纸化真考题库试卷(2)(共9页	į)
无纸化真考题库试卷(3) (共10页	į)
无纸化真考题库试卷(4) (共10页	į)
无纸化真考题库试卷(5)(共10页	į)
无纸化真考题库试卷(6)(共8页	į)
无纸化真考题库试卷(7)(共9页	į)
无纸化真考题库试卷(8)(共8页	į)
参考答案及解析	
参考答案及解析(共20页	į)
+77 (+- 15%) > 4	
超 11	
选择题高频考点随身学 (共60页,另分册	})
无纸化真考题库上机操作题(共105套)	ţ)
速学版二级公共基础知识教程(见光盘	<u>‡</u>)
无纸化考试超级模拟软件(见光盘	<u>‡</u>)
	无纸化真考题库试卷(2) (共9页 无纸化真考题库试卷(3) (共10页 无纸化真考题库试卷(4) (共10页 无纸化真考题库试卷(5) (共10页 无纸化真考题库试卷(6) (共8页 无纸化真考题库试卷(7) (共9页 无纸化真考题库试卷(8) (共8页 参考答案及解析 (共8页 参考答案及解析 (共20页 超值赠送 (共60页,另分册 无纸化真考题库上机操作题(共105套) (见光盘 速学版二级公共基础知识教程 (见光盘

图书在版编目(CIP)数据

全国计算机等级考试笔试模拟考场. 二级 C / 詹可军主编. 一成都: 电子科技大学出版社, 2008. 10(2012.10 重印) ISBN 978-7-81114-827-5

I. 全… II. 詹… III. ①电子计算机 - 水平考试 - 习题②C 语言 - 程序设计 - 水平考试 - 习题 Ⅳ. TP3-44

中国版本图书馆 CIP 数据核字(2008)第 144978 号

全国计算机等级考试笔试模拟考场 二级 C

詹可军 主编

出 版: 电子科技大学出版社(成都市一环路东一段 159 号电子信息产业大厦 邮编: 610051)

策划编辑: 陈松明 **责任编辑**: 张蓉莉

主 页: www. uestcp. com. cn

电子邮箱: uestcp@ uestcp. com. cn

发 行: 新华书店经销

印 刷:北京佳艺丰印刷有限公司

成品尺寸: 260mm×370mm 印张: 7.25

版 次: 2012 年 10 月第一版第五次印刷

书 号: ISBN 978-7-81114-827-5

定 价: 16.80元(含光盘1张)

■ 版权所有 侵权必究 ■

字数: 268 千字

- ◆ 本社发行部电话: 028 -83202463; 本社邮购电话: 028 -83208003。
- ◆ 本书如有缺页、破损、装订错误,请寄回印刷厂调换。
- ◆ 课件下载在我社主页"下载专区"。

丛书编委会

丛书主编: 詹可军

编 委: (排名不分先后)

丁海艳	万克星	马立娟	朱爱彬
王 伟	王 宇	王强国	王 磊
卢文毅	卢继军	任海艳	乔 影
刘之夫	刘金丽	刘春波	孙小稚
焉 迪	张仪凡	张广顺	李 静
范二朋	李志红	杨力	杨闯
杨生喜	花 英	陈秋彤	冯 冲
孟祥勇	欧海升	武 杰	范海双
戴君	姜涛	姜文宾	胡杨
胡天星	赵亮	赵东红	赵苡萱
王 丹	倪海宇	高志军	高雪轩
董国明	谢公义	韩峻余	樊 钰

全国计算机等级考试无纸化真考题库试卷(1) 二级 C

!	1				C C					
		(考试	时间 1	20 分	钟,满分	100 分	>)			
a¦C) ¦ 一、选择题(每小题 1 分,共 40 分)								
	: : (1)程序流程图中带有箭头的线影	没表示的	是()。						
-	1	据流	, (, 0	C)控制》			Ι))调用关系	
!	(2)结构化程序设计的基本原则	下包括()。		,				,	
封	A) 多态性 B) 自	顶向下			C)模块(七		Ι))逐步求精	
!	(3)软件设计中模块划分应遵循的	内准则是	:()) 。						
į	A)低内聚低耦合 B)高	内聚低精	隅合		C) 低内显	聚高耦合	合	Ι))高内聚高耦合	
iC	(4)在软件开发中,需求分析阶段	产生的	主要文档	当是()。					
/E	A)可行性分析报告				B) 软件需	需求规 标	各说明	书		
汉; 	C)概要设计说明书				D)集成》	则试计划	划			
i	(5)算法的有穷性是指()。									
-	A)算法程序的运行时间是有	限的								
	B)算法程序所处理的数据量;	是有限的	J							
内	C)算法程序的长度是有限的									
-	D)算法只能被有限的用户使									
-	(6)对长度为 n 的线性表排序,在									
į	1				C)直接抗	插入排序	亨	Ι))堆排序	
不	(7)下列关于栈的叙述正确的是(
1	A)栈按"先进先出"组织数据									
į	B) 栈按"先进后出"组织数据									
i	C) 只能在栈底插入数据									
	D)不能删除数据	++++ +> ¥	5.7.44.H	3 445 TO A	4 나세 달 T	- /	`			
要()	(8)在数据库设计中,将E-R图:							г	、) 4分 rtil 2月 2月 1月 F 月	
	A)需求分析阶段 B)概 (9)有三个关系 R、S 和 T 如下:	念以订图	丌权		U) 逻辑[又订例相	又	L))物理设计阶段	
!	[(9)有三个大於 11、5 和 1 如下:		S							
!	R				1					
容	B C D	В	С	D	-		T		٦	
-	a 0 k1	f	3	h2	_	В	С	D	_	
	b 1 n1	a	0	k1		a	0	k1		
	, <u>, , , , , , , , , , , , , , , , , , </u>	n	2	x1						
题	由关系 R 和 S 通过运算得到	关系 T,贝	則所使月	用的运算	算为()。				
	A)并 B)自	然连接			C)笛卡尔	 不积		Ι	0)交	
!	(10)设有表示学生选课的三张表	,学生 S	(学号,	姓名,性	生别,年龄	,身份i	正号),	课程 C	(课号,课名),选	课 SC
!	(学号,课号,成绩),则表 SC			战码)为						
-	A)课号,成绩 B)学	号,成绩			C)学号,	课号		Ι))学号,姓名,成	责
!	(11)以下叙述中错误的是()	0								

A)C语言中的每条可执行语句和非执行语句最终都将被转换成二进制的机器指令 B) C 程序经过编译、连接步骤之后才能形成一个真正可执行的二进制机器指令文件 C)用C语言编写的程序称为源程序,它以ASCII代码形式存放在一个文本文件中 D)C 语言源程序经编译后生成后缀为. obj 的目标程序 (12)以下选项中,合法的一组 C 语言数值常量是()。 A) 12. 0Xa23 4.5e0 B) $028 \cdot 5e - 3 - 0xf$ C) .177 4e1.5 0abc D) 0x8A 10.000 3.e5 (13)以下选项中不合法的标识符是()。 A)&a C) print (14) 若有代数式 $\sqrt{|n^* + e^*|}$ (其中 e 仅代表自然对数的底数,不是变量),则以下能够正确表示该代数式的 C 语言表达式是()。 A) $\operatorname{sqrt}(\operatorname{fabs}(\operatorname{pow}(\operatorname{n}, x) + \operatorname{exp}(x)))$ $B) \operatorname{sqrt}(\operatorname{fabs}(\operatorname{pow}(\operatorname{n}, x) + \operatorname{pow}(x, e)))$ C) $sqrt(abs(n^x + e^x))$ D) $\operatorname{sqrt}(\operatorname{fabs}(\operatorname{pow}(x,n) + \exp(x)))$ (15) 若有定义: double a = 22; int i = 0, k = 18; ,则不符合 C 语言规定的赋值语句是()。 A) $i = (a + k) \le (i + k)$: B) i = a% 11: C) a = a + + .i + + :D)i = !a:(16) 有以下程序: #include < stdio. h > main() int s,t, A = 10; double B = 6; s = sizeof(A); t = sizeof(B); printf("%d,%d\n",s,t); 在 VC 6.0 平台上编译运行,程序运行后的输出结果是()。 A)10,6 B)4.4 C)2,4D)4,8 (17) 有以下程序: #include < stdio. h > main() char a,b,c,d; scanf("% c% c",&a, &b); c = getchar(); d = getchar(); printf("% c% c% c% c\n",a,b,c,d); 当执行程序时,按下列方式输入数据(从第1列开始, < CR > 代表回车,注意:回车也是一个字符) 12 < CR > 34 < CR > 则输出结果是()。 A) 12 B) 12 C) 1234 D)12 34 (18)以下关于逻辑运算符两侧运算对象的叙述中正确的是()。 A)可以是任意合法的表达式 B) 只能是整数 0 或非 0 整数 C)可以是结构体类型的数据

```
D) 只能是整数 0 或 1
(19) 有以下程序:
    #include < stdio. h >
    main()
    int a = 0, b = 0, c = 0, d = 0;
        if (a = 1) b = 1; c = 2;
        else d = 3:
        printf("%d,%d,%d,%d\n",a,b,c,d);
    程序输出()。
                        B)0.0.0.3
                                                C) 编译有错
                                                                         D)0,1,2,0
    A)1,1,2,0
(20)有以下程序:
    #include < stdio. h >
    main()
    int x = 1, y = 0, a = 0, b = 0:
         switch (x)
         case 1:
            switch(y)
            \{ case 0: a + +; break; \}
               case 1: b + +; break;
             case 2: a + +: b + +: break:
             case 3: a + + : b + + :
        printf(" a = \% d, b = \% d n", a, b);
    程序的运行结果是()。
    A) a = 2 \cdot b = 2
                        B) a = 2 \cdot b = 1
                                                C) a = 1 . b = 1
                                                                         D) a = 1.b = 0
(21)以下程序段中的变量已正确定义:
            for (i = 0; i < 4; i + +, i + +)
                for (k = 1; k < 3; k + +); printf(" * ");
    程序段的输出结果是()。
                        B) * * * *
                                                C) *
    A) * *
                                                                         D) * * * * * * * *
(22)有以下程序段:
    #include < stdio. h >
    int i, n:
    for(i = 0; i < 8; i + +)
    n = rand() \% 5;
        switch (n)
        case 1.
             case 3: printf("%d \n", n); break;
             case 2:
             case 4: printf("%d \n", n); continue;
             case 0: exit(0);
```

无纸化真考题库试卷(1) 第3页(共9页)

```
以下关于程序段执行情况的叙述,正确的是(
   A) for 循环语句固定执行 8 次
   B) 当产生的随机数 n 为 4 时结束循环操作
   C) 当产生的随机数 n 为 1 和 2 时不做任何操作
   D) 当产生的随机数 n 为 0 时结束程序运行
(23)有以下程序:
    #include < stdio. h >
   int f(int x):
    main()
   int n = 1, m;
     m = f(f(f(n))); printf("% d \in m, m);
   int f(int x)
   \{ \text{ return } x * 2 : \}
   程序运行后的输出结果是()。
                                                                 D)1
   A)8
                     B)2
                                           C)4
(24)以下叙述中错误的是()。
   A)可以给指针变量赋一个整数作为地址值
   B) 函数可以返回地址值
   C) 改变函数形参的值, 不会改变对应实参的值
   D) 当在程序的开头包含头文件 stdio. h 时,可以给指针变量赋 NULL
(25)设已有定义:float x;,则以下对指针变量 p 进行定义且赋初值的语句中正确的是(
   A) int *p = (float)x;
                                           B) float *p = &x;
   C) float p = &x;
                                           D) float * p = 1024;
(26)以下数组定义中错误的是()。
   A) int x[2][3] = \{1,2,3,4,5,6\};
   B) int x[][3] = \{0\};
   C) int x[][3] = \{\{1,2,3\}, \{4,5,6\}\};
   D) int x[2][3] = \{\{1,2\}, \{3,4\}, \{5,6\}\}\};
(27)有以下程序:
    #include < stdio. h >
   void fun( int a[], int n)
   int i, t;
       for (i = 0; i < n/2; i + +) { t = a[i]; a[i] = a[n-1-i]; a[n-1-i] = t; }
    main()
   int k[10] = \{1,2,3,4,5,6,7,8,9,10\}, i;
       fun(k,5);
       for (i = 2; i < 8; i + +) printf ("\% d", k[i]);
       printf("\n");
    程序的运行结果是(
   A)321678
                     B)876543
                                           C)1098765
                                                                 D)345678
```

printf("%d \n",n);

```
#include < stdio. h >
                                                                                                      (33) 有以下程序:
    #define N 4
                                                                                                          #include < stdio. h >
    void fun(int a \lceil \rceil \lceil N \rceil, int b \lceil \rceil)
                                                                                                          fun(int x, int y)
    int i:
                                                                                                          \begin{cases} \text{ static int } m = 0, i = 2; \end{cases}
       for (i=0; i < N; i++) b[i] = a[i][i] - a[i][N-1-i];
                                                                                                            i + = m + 1; m = i + x + y; return m;
    main()
                                                                                                          main()
    \{\inf x[N][N] = \{\{1, 2, 3, 4\}, \{5, 6, 7, 8\}, \{9, 10, 11, 12\}, \{13, 14, 15, 16\}\}, y[N], i\}
                                                                                                          \{ \text{ int } j = 1, m = 1, k \}
                                                                                                            k = fun(j,m); printf("%d,",k);
      fun (x, y):
       for (i = 0; i < N; i + +) printf("%d,", y[i]); printf("\n");
                                                                                                            k = fun(j,m); printf("% d \setminus n", k);
    程序运行后的输出结果是()。
                                                                                                          执行后的输出结果是( )。
    A) -3, -1, 1, 3,
                                                 B) -12, -3, 0, 0,
                                                                                                          A)5, 11
                                                                                                                              B)5, 5
                                                                                                                                                       C)11, 11
                                                                                                                                                                                D)11.5
    C)0.1.2.3.
                                                 D) -3, -3, -3, -3,
                                                                                                      (34)在 C语言中,只有在使用时才占用内存单元的变量,其存储类型是(
(29)设有定义; char s[81]; int i = 0;,以下不能将一行(不超过80个字符)带有空格的字符串正确读入的语
                                                                                                          A) auto 和 static
                                                                                                                                                       B) extern 和 register
    句或语句组是( )。
                                                                                                          C) auto 和 register
                                                                                                                                                       D) static 和 register
    A) gets(s);
                                                                                                      (35)下面结构体的定义语句中,错误的是()。
                                                                                                          A) struct ord { int x; int y; int z; } struct ord a;
    B) while (s[i + +] = getchar())! = '\n'; s[i] = '\0';
    C) scanf("%s",s);
                                                                                                          B) struct ord { int x; int y; int z; }; struct ord a;
    D) do { scanf("% c", &s[i]); } while(s[i++]! = '\n'); s[i] = '\0';
                                                                                                          C) struct ord { int x; int y; int z; } a;
(30) 设有定义: char p[] = {'1', '2', '3'}, * q = p;,以下不能计算出一个 char 型数据所占字节数的表达式是
                                                                                                          D) struct { int x; int y; int z; } a;
                                                                                                      (36)有以下程序:
   ( )
    A) sizeof(p)
                                                 B) sizeof(char)
                                                                                                          # include < stdio. h >
    C) sizeof(*q)
                                                 D) sizeof(p[0])
                                                                                                          typedef struct { int b, p; } A;
(31) 有以下程序:
                                                                                                          void f(A c) / * 注意:c 是结构变量名 */
    #include < stdio. h >
                                                                                                          int j;
    #include < string. h >
                                                                                                            c. b + = 1; c. p + = 2;
    main()
    \{ char str[][20] = \{ "One * World", "One * Dream!" \}, * p = str[1]; \}
                                                                                                          main()
       printf("%d,",strlen(p)); printf("%s\n",p);
                                                                                                          int i;
                                                                                                            A a = \{1, 2\};
    程序运行后的输出结果是(
                                                                                                            f(a);
    A)10,One * Dream!
                                                 B)9.One * Dream!
                                                                                                            printf("%d,%d\n", a.b, a.p);
    C)9.One * World
                                                 D)10.One * World
(32) 有以下程序:
                                                                                                          程序运行后的输出结果是()。
    #include < stdio. h >
                                                                                                          A)2,4
                                                                                                                               B)1,2
                                                                                                                                                       C)1.4
                                                                                                                                                                                D)2.3
    main()
                                                                                                      (37)以下叙述中正确的是(
    \frac{1}{2} = 012xy \times 34f4w2'';
                                                                                                          A)在 C语言中,预处理命令行都以"#"开头
        int i. n = 0:
                                                                                                          B) 预处理命令行必须位于 C 源程序的起始位置
        for (i = 0; s[i]! = 0; i + +)
                                                                                                          C)#include < stdio. h > 必须放在 C 程序的开头
            if (s[i] > = '0' & s[i] < = '9') n + +;
                                                                                                          D)C 语言的预处理不能实现宏定义和条件编译的功能
        printf("\% d\n",n);
                                                                                                      (38)有以下程序:
                                                                                                          #include < stdio. h >
    程序运行后的输出结果是(
                                                                                                          #include < stdlib. h >
```

A)0

B)3

C)7

D)8

(28) 有以下程序:

```
int fun(int n)
  int *p:
     p = (int *) malloc(sizeof(int));
      *p = n; return *p;
  main()
  int a:
     a = fun(10); printf("% d \cdot n", a + fun(10));
  程序的运行结果是(
                ) 。
  A)0
                 B)10
                                  C)20
                                                    D)出错
(39) 有以下程序:
  # include < stdio. h >
  main()
     unsigned char a = 8, c;
     c = a > 3:
     printf("%d\n", c):
  程序运行后的输出结果是(
                                  C)32
  A)16
                 B)1
                                                    D)0
(40) 读取二进制文件的函数调用形式为: fread(buffer, size, count, fp); 其中 buffer 代表的是(
  A)一个内存块的字节数
  B)一个整型变量,代表待读取的数据的字节数
  C)一个文件指针,指向待读取的文件
  D)一个内存块的首地址,代表读入数据存放的地址
二、程序填空题(共18分)
  下列给定程序中,函数 fun 的功能是:将形参 n 中个位上为偶数的数取出,并按原来从高位到低位相反
的顺序组成一个新数,作为函数值返回。
  例如,输入一个整数 27638496, 函数返回值为 64862。
  请在下划线处填入正确的内容并将下划线删除,使程序得出正确的结果。
  注意:部分源程序在文件 BLANK1. C 中。
  不得增行或删行,也不得更改程序的结构!
  #include < stdio. h >
  unsigned long fun(unsigned long n)
  unsigned long x = 0; int t;
     while(n)
    t = n\% 10;
  /********* found * * * * * * * * * * * * /
      if (t\% 2 = 1)
  x = 2 + t;
  n = 3 	 ;
   return x;
```

```
main()
   unsigned long n = -1;
      while (n > 99999999 | | n < 0)
     \{ printf("Please input(0 < n < 100000000); "); scanf("% ld",&n); \}
      printf("\nThe result is: \% \operatorname{ld} \setminus n", fun(n));
三、程序修改题(共18分)
   下列给定程序中函数 fun 的功能是:将长整型数中各位上为奇数的数依次取出,构成一个新数放在 t 中。
高位仍在高位,低位仍在低位。
   例如, 当 s 中的数为 87653142 时, t 中的数为 7531。
   请改正程序中的错误,使它能得出正确的结果。
   注意:部分源程序在文件 MODII. C 中,不得增行或删行,也不得更改程序的结构!
   #include < stdio. h >
   void fun(long s, long *t)
   int d:
    long sl = 1:
   t = 0:
    while (s > 0)
   d = s\% 10:
   /***********found***********/
         if(d\%2 = = 0)
        * t = d * sl + *t;
           sl * = 10:
         s / = 10;
   main()
   long s, t:
      printf("\nPlease enter s:"); scanf("%ld", &s);
     fun(s, &t):
      printf("The result is: % ld\n", t):
四、程序设计题(共24分)
   编写函数 fun, 其功能是:实现两个字符串的连接(不要使用库函数 strcat), 即把 p2 所指的字符串连接到
p1 所指的字符串的后面。
   例如,分别输入下面两个字符串:
   FirstString - -
   SecondString
   程序输出:
   FirstString - - SecondString
   注意:部分源程序在文件 PROG1. C中。
                     无纸化真考题库试卷(1) 第8页(共9页)
```

```
请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 的花括号中填入你编写的若干语
#include < stdio. h >
void fun( char p1[], char p2[])
main()
{ char s1[80], s2[40]; void NONO();
  printf("Enter s1 and s2:\n");
   scanf("%s%s", s1, s2);
  printf("s1 = \% s \ n", s1);
   printf("s2 = \% s n", s2);
   printf("Invoke fun(s1,s2):\n");
   fun(s1, s2);
  printf("After invoking:\n");
  printf("% s\n", s1);
  NONO();
void NONO()
//* 本函数用于打开文件,输入测试数据,调用 fun 函数,输出数据,关闭文件。*/
 int i;
FILE * rf, * wf;
char s1[80], s2[40];
rf = fopen("in. dat", "r");
 wf = fopen("out. dat","w");
 for(i = 0; i < 10; i + +)
  fscanf(rf, "%s", s1);
  fscanf(rf, "%s", s2);
  fun(s1, s2);
  fprintf(wf, "%s\n", s1);
 fclose(rf);
fclose(wf);
```

无纸化真考题库试卷(1) 第9页(共9页)

句。			

全国计算机等级考试无纸化真考题库试卷(2) 二级 C

	(考试时间 120 分钟,满分 100 分)					
一、选择题(每小题 1 分,共 4	10 分)				
(1)一个栈的	的初始状态为空。	现将元素	₹1,2,3,4,5,A	B,C,D,E	依次入栈,然后再	依次出栈,则元素出栈的
顺序是(72.07				
A) 12345	ABCDE			B) EDCB.	A54321	
C) ABCD	E12345			D)54321	EDCBA	
(2)下列叙述	心中正确的是()。				
A)循环图	从列有队头和队	尾两个指领	計,因此,循环队	列是非线性	结构	
B)在循环	不队列中,只需要	医队头指针	就能反映队列	中元素的动态	态变化情况	
C)在循环	不队列中,只需要	医队尾指针	就能反映队列	中元素的动态	态变化情况	
D)循环[从列中元素的个	数是由队务	头指针和队尾指	針共同决定	的	
(3)在长度为	n 的有序线性表	表中进行二	二分查找,最坏气	青况下需要比	比较的次数是() 。
A)O(n)		$B)O(n^2)$		C) O(log ₂	$_{2}n)$	$\mathrm{D})O(n\mathrm{log}_2n)$
(4)下列叙述	的中正确的是()。				
A)顺序和	存储结构的存储	一定是连续	卖的,链式存储	结构的存储组	空间不一定是连续	的
B) 顺序存	存储结构只针对:	线性结构,	链式存储结构	只针对非线性	生结构	
C)顺序存	存储结构能存储	有序表,链	式存储结构不	能存储有序表	表	
D)链式7	存储结构比顺序	存储结构	节省存储空间			
(5)数据流图	中带有箭头的绿	线段表示的	的是()。			
A)控制》	杭	B)事件驱	动	C)模块调	周用	D)数据流
(6)在软件开	F发中,需求分析	阶段可以	使用的工具是()。		
A) N – S	图	B) DFD 图		C) PAD 🛭	₹	D)程序流程图
(7)在面向对	才象方法中 ,不属	于"对象"	基本特点的是	()。		
A)一致怕	生	B)分类性		C) 多态性	ŧ	D) 标识唯一性
(8)一间宿舍	;可住多个学生,	则实体宿	舍和学生之间的	的联系是()。	
A) — 对-	-	B)一对多		C) 多对-	_	D) 多对多
(9)在数据管	理技术发展的	三个阶段中	中,数据共享最好	子的是()。	
A)人工管				B) 文件系	系统阶段	
,	车系统阶段			D)三个图	介段相同	
	关系 R、S 和 T 如					
R	l	S		Т		
A	В	В	c			
m	1	1	3	A B	С	
111				m 1	3	
n	2	3	5			
由关系	R和S通过运算	[得到关系	T,则所使用的	运算为()。	
A)笛卡		B)交		C)并		D) 自然连接
(11)下列叙述	述中错误的是()。				

```
A)C程序可以由多个程序文件组成
   B)一个 C 语言程序只能实现一种算法
   C)C程序可以由一个或多个函数组成
   D)一个 C 函数可以单独作为一个 C 程序文件存在
(12)以下选项中,能用作数据常量的是( )。
   A)115L
                   B)0118
                                       C)1.5e1.5
                                                           D) o115
(13)按照 C 语言规定的用户标识符命名规则,不能出现在标识符中的是( )。
   A)大写字母
                   B)下划线
                                       C)数字字符
                                                           D)连接符
(14)设变量已正确定义并赋值,以下正确的表达式是()。
   A) x = y + z + 5, + + y B) int(15.8%5)
                                       C) x = v * 5 = x + z
                                                          D) x = 25\% 5.0
(15) 设有定义: int x = 2;,以下表达式中,值不为6的是()。
   A)2 * x, x += 2 B)x ++ ,2 * x
                                       C)x *= (1 + x)
                                                          D) x *= x + 1
(16)有以下程序:
   #include < stdio. h >
   main()
   \{ int x, y, z;
    x = y = 1;
     z = x + + , y + + , + + y;
     printf("% d,% d,% d\n",x,y,z);
   程序运行后的输出结果是()。
                                       C)2.3.1
                                                           D)2,2,1
   A)2.3.3
                   B)2.3.2
(17) 有以下程序:
   #include < stdio. h >
   main()
   char c1,c2;
      c1 = 'A' + '8' - '4';
      c2 = 'A' + '8' - '5':
      printf( "% c,% d\n",c1,c2);
   已知字母 A 的 ASCII 码为 65,程序运行后的输出结果是( )。
                   B)D,69
                                       C)E,D
                                                          D)输出无定值
   A)E,68
(18) 若有定义 int x,y; 并已正确给变量赋值,则以下选项中与表达式(x-y)?(x++):(y++)中的条件表
   达式(x-y)等价的是( )。
   A) (x-y<0 | |x-y>0) B) (x-y<0)
                                       C) (x - y > 0)
                                                          D) (x - y = = 0)
(19)有以下程序:
   #include < stdio. h >
   main()
   \{ int x = 1, y = 0; 
      if (! x) y + +;
      else if (x = = 0)
             if (x) y + = 2;
             else y + = 3;
      printf("\% d\n", y);
                     无纸化真考题库试卷(2) 第2页(共9页)
```

```
程序运行后的输出结果是()。
   A)3
                       B)2
                                              C)1
                                                                      D)0
(20) 若有定义: float x = 1.5; int a = 1, b = 3, c = 2; 则正确的 switch 语句是( )。
   A) switch (a + b)
     case 1: printf(" * \n");
       case 2 + 1; printf(" * * \n");
   B) switch ((int)x);
     case 1: printf(" * \n");
       case 2: printf(" * * \n");
   C) switch(x)
     case 1.0: printf("*\n");
       case 2.0: printf(" * * \n");
   D) switch (a + b)
     case 1: printf(" * \n");
        case c: printf(" * * \n"); }
(21)有以下程序:
   #include < stdio. h >
   main()
   int y = 9;
       for ( ; y > 0 ; y - - )
            if (y\% 3 = 0) print ("\% d", -y);
   程序的运行结果是(
                      )。
   A)852
                       B)963
                                              C)741
                                                                      D)875421
(22)有以下程序:
   #include < stdio. h >
   main()
    int i, j, m = 1;
       for (i = 1; i < 3; i + +)
       \{ for(j=3;j>0;j--) \}
           if(i*i>3) break;
             m * = i * j;
       printf("m = \% d \setminus n",m);
   程序运行后的输出结果是()。
                       B)m = 2
                                              C)m=6
                                                                      D)m = 5
   A)m = 4
(23) 有以下程序:
   #include < stdio. h >
   int fun (int x, int y)
   { if (x! = y) return ((x + y) / 2);
       else return (x):
    main()
                             无纸化真考题库试卷(2) 第3页(共9页)
```

```
printf("% d \in (2 * a, fun(b, c)));
    程序运行后的输出结果是()。
                                                                      D)12
    A)6
                                               C)8
                       B)3
(24) 有以下程序:
    #include < stdio. h >
    int add( int a, int b) { return (a+b); }
    main()
    \{ \text{ int } k, (*f)(), a = 5, b = 10 \}
     f = add:
    则以下函数调用语句错误的是( )。
    A)k = f(a,b);
                       B) k = add(a,b);
                                               C) k = (*f)(a,b);
                                                                      D) k = * f(a,b);
(25) 有以下程序:
    #include < stdio. h >
    main()
    \{ \text{ int } n, *p = \text{NULL}; 
     * p = &n;
     printf("Input n:"); scanf("%d",&p); printf("output n:"); printf("%d\n",p);
    该程序试图通过指针 p 为变量 n 读入数据并输出,但程序有多处错误,以下语句正确的是( )。
    A) int n, *p = NULL;
                                               B) * p = &n;
    C) scanf("%d",&p)
                                               D) printf("% d \in (p, p);
(26)下列定义数组的语句中,正确的是()。
    A)#define N 10
                                               B) int N = 10;
                                                 int x[N];
      int x[N];
                                               D) int x \lceil \rceil;
    C) int x[0...10];
(27)有以下程序:
    #include < stdio. h >
    main()
    \{ \text{ int a} = \{2,3,5,4\}, i; 
        for (i = 0; i < 4; i + +)
           switch(i%2)
            { case 0 : switch(a[i]%2)
                { case 0:a[i] + +;break;
                     case 1:a[i] - -;
                 break;
              case 1:a[i] = 0;
        for(i = 0; i < 4; i + +) printf("%d",a[i]); printf("\n");
    程序运行后的输出结果是()。
    A)0304
                       B)2050
                                               C)3344
                                                                       D)3040
```

int a = 4, b = 5, c = 6:

```
(28) 有以下程序:
    #include < stdio. h >
    main()
    { int b[3][3] = \{0,1,2,0,1,2,0,1,2\}, i,j,t=1;
        for (i = 0; i < 3; i + +)
            for (j = i; j < = i; j + +) t + = b[i][b[j][i]];
        printf("% d \mid n",t);
    程序运行后的输出结果是(
    A)3
                        B)4
                                                 C)1
                                                                          D)9
(29)以下语句中存在语法错误的是( )。
    A) char ss\lceil 6 \rceil \lceil 20 \rceil; ss\lceil 1 \rceil = "right?";
                                                 B) char ss() \lceil 20 \rceil = \{ \text{"right?"} \};
    C) char * ss[6]; ss[1] = "right?";
                                                  D) char * ss() = { "right?" };
(30)以下不能将 s 所指字符串正确复制到 t 所指存储空间的是( )。
    A) do{ *t + + = *s + +; } while( *s );
                                                 B) for (i = 0; t \lceil i \rceil = s \lceil i \rceil; i + +);
    C) while (*t = *s) \{t + + : s + + : \}
                                                 D) for (i = 0, j = 0; t[i + +] = s[j + +];);
(31) 有以下程序:
    #include < stdio. h >
    void swap(char *x, char *y)
    { char t;
     t = *x; *x = *y; *y = t;
    main()
    \frac{1}{1} char * s1 = "abc", * s2 = "123";
      swap(s1, s2); printf("% s, \% s \n", s1, s2);
    程序执行后的输出结果是( )。
                        B) abc, 123
                                                  C) 123, abc
                                                                           D)1bc,a23
    A)321.cba
(32)有以下函数:
    int fun(char *x, char *y)
    int n = 0:
        while ((*x = = *y) \&\& *x! = '\0') \{x + +; y + +; n + +; \}
        return n;
    函数的功能是()。
    A)将 y 所指字符串赋给 x 所指存储空间
    B) 查找 x 和 y 所指字符串中是否有'\0'
    C) 统计 x 和 y 所指字符串中最前面连续相同的字符个数
    D) 统计 x 和 y 所指字符串中相同的字符个数
(33) 有以下程序:
    #include < stdio. h >
    int fun()
    static int x = 1;
        x * = 2;
        return x;
```

```
main()
   int i, s = 1;
      for (i = 1; i < = 3; i + +) s * = fun();
       printf("%d\n", s):
   程序运行后的输出结果是(
   A)10
                    B)30
                                         C)0
                                                             D)64
(34)在一个 C 源程序文件中所定义的全局变量,其作用域为( )。
   A)由具体定义位置和 extern 说明来决定范围
                                         B) 所在程序的全部范围
   C) 所在函数的全部范围
                                         D) 所在文件的全部范围
(35)以下叙述中错误的是( )。
   A) 可以通过 typedef 增加新的类型
   B) 可以用 typedef 将已存在的类型用一个新的名字来代表
   C)用 typedef 定义新的类型名后,原有类型名仍有效
   D)用 typedef 可以为各种类型起别名,但不能为变量起别名
(36) 有以下程序:
   #include < stdio. h >
   struct S
   \{ \text{ int a, b; } \} \text{ data}[2] = \{10,100,20,200\};
   main()
   f struct S p = data [1]:
      printf("% d \mid n", + + (p. a));
   程序运行后的输出结果是()。
   A)10
                    B)11
                                         C)20
                                                             D)21
(37)有以下程序:
   #include < stdio. h >
   #define PT 3.5:
   #define S(x) PT * x * x;
   main()
   int a = 1, b = 2; printf("%4.1f\n", S(a+b));
   程序运行后的输出结果是()。
                                         B)31.5
   A)7.5
                                         D)14.0
   C)程序有错无输出结果
(38) 有以下程序:
   # include < stdio. h >
   main()
   unsigned char a = 2, b = 4, c = 5, d;
    d = a \mid b; d & = c; printf("%d\n", d);
   程序运行后的输出结果是()。
   A)3
                    B)4
                                         C)5
                                                             D)6
(39)有以下程序:
   #include < stdio. h >
   \#include < stdlib. h >
```

```
main()
   int *a, *b, *c:
    a = b = c = (int *) malloc(size of(int));
     *a = 1; *b = 2, *c = 3;
    a = b:
    printf("%d,%d,%d\n".*a.*b.*c):
   程序运行后的输出结果是()。
   A)1.1.3
                 B)2.2.3
                                   C)1.2.3
                                                     D)3.3.3
(40)以下叙述中正确的是()。
   A) 当对文件的读(写) 操作完成之后,必须将它关闭,否则可能导致数据丢失
   B) 打开一个已存在的文件并进行了写操作后,原有文件中的全部数据必定被覆盖
   C) 在一个程序中当对文件进行了写操作后,必须先关闭该文件然后再打开,才能读到第1个数据
   D) C 语言中的文件是流式文件,因此只能顺序存取数据
二、程序填空题(共18分)
   下列给定程序中,函数 fun 的功能是:把形参 a 所指数组中的最小值放在元素 a [0]中,接着把 a 所指数
组中的最大值放在 a[1]元素中;再把 a 所指数组元素中的次小值放在 a[2]中,把 a 所指数组元素中的次大
值放在 a[3],以此类推。
   例如, 若 a 所指数组中的数据最初排列为: 9、1、4、2、3、6、5、8、7;则按规则移动后,数据排列为: 1、9、2、8、
3、7、4、6、5。形参 n 中存放 a 所指数组中数据的个数。
   规定 fun 函数中的 max 存放当前所找的最大值,px 存放当前所找最大值的下标。
   请在下划线处填入正确的内容并将下划线删除,使程序得出正确的结果。
   注意:部分源程序在文件 BLANK1. C 中。
   不得增行或删行,也不得更改程序的结构!
   # include < stdio. h >
   #define N 9
   void fun(int a[], int n)
   int i, j, max, min, px, pn, t;
     for (i = 0; i < n - 1; i + = 2)
   /************************/
        \max = \min = 1;
        px = pn = i;
        for (j = i + 1; j < n; j + +)
   /*********found********/
          if(max < 2)
          \{ \max = a[j]; px = j; \}
   /*********found********/
           if(min > 3)
           \{ \min = a[j]; pn = j; \}
        if(pn! = i)
        \{t = a[i]; a[i] = min; a[pn] = t;
          if (px = = i)px = pn;
```

```
if(px!=i+1)
{ t = a[i+1]; a[i+1] = max; a[px] = t; }

main()
{ int b[N] = {9,1,4,2,3,6,5,8,7}, i;
    printf("\nThe original data:\n");
    for(i=0; i<N; i++) printf("%4d", b[i]);
    printf("\n");
    fun(b, N);
    printf("\nThe data after moving:\n");
    for(i=0; i<N; i++) printf("%4d", b[i]);
    printf("\nThe data after moving:\n");
    for(i=0; i<N; i++) printf("%4d", b[i]);
    printf("\n");
}

= 、程序修改题(共18分)
```

下列给定程序中函数 fun 的功能是:用递归算法计算斐波拉契数列中第 n 项的值。从第 1 项起,斐波拉契数列为:1、1、2、3、5、8、13、21、……

例如, 若给 n 输入 7, 则该项的斐波拉契数值为 13。

请改正程序中的错误,使它能得出正确结果。

注意:部分源程序在文件 MODII. C 中,不得增行或删行,也不得更改程序的结构。

四、程序设计题(共24分)

某学生的记录由学号、8 门课程成绩和平均分组成,学号和 8 门课程的成绩已在主函数中给出,请编写函数 fun,其功能是:求出该学生的平均分,并放入记录的 ave 成员中。

例如,学生的成绩是:85.5,76,69.5,85,91,72,64.5,87.5,则他的平均分应为78.875。

注意:部分源程序在文件 PROG1. C 中。

请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 部位中填入你编写的若干语句。

#include < stdio. h >

#define N 8

```
typedef struct
{ char num[10];
  double s[N];
  double ave;
STREC;
void fun(STREC * a)
main()
STREC s = \{ \text{"GA005"}, 85.5, 76, 69.5, 85, 91, 72, 64.5, 87.5 \};
   int i;
   void NONO( );
   fun( &s );
   printf("The %s's student data: \n", s. num);
   for (i = 0; i < N; i + +)
    printf("%4.1f\n",s.s[i]);
   printf(" \nave = \% 7. 3f\n", s. ave);
   NONO();
void NONO()
//* 本函数用于打开文件,输入数据,调用函数,输出数据,关闭文件。*/
 FILE * out;
 int i,j; STREC s[10] = {
 {"GA005",85.5,76,69.5,85,91,72,64.5,87.5},
 {"GA001",82.5,66,76.5,76,89,76,46.5,78.5},
 {"GA002",72.5,56,66.5,66,79,68,46.5,58.5},
 {"GA003",92.5,76,86.5,86,99,86,56.5,88.5},
 "GA004",82,66.5,46.5,56,76,75,76.5,63.5
 {"GA006",75.5,74,71.5,85,81,79,64.5,71.5},
 {"GA007",92.5,61,72.5,84,79,75,66.5,72.5},
 {"GA008",72.5,86,73.5,80,69,63,76.5,53.5},
 "GA009",66. 5,71,74. 5,70,61,82,86. 5,58. 5
 {"GA010",76,66.5,75.5,60,76,71,96.5,93.5},
 };
   out = fopen("out.dat", "w");
   for(i = 0; i < 10; i + +)
    fun(&s[i]);
    fprintf(out, "%7.3f\n", s[i]. ave);
   fclose(out);
```

无纸化真考题库试卷(2) 第9页(共9页)

1	1 0000000000000000000000000000000000000
:	00000000000000000000000000000000000000
i	00000000000000000000000000000000000000
:	
i	
;	
i	
	000000000000000000000000000000000000000
1	000000000000000000000000000000000000000
;	00000000000000000000000000000000000000
i	
	000000000000000000000000000000000000000
i_	文(000000000000000000000000000000000000
:()
i	
:	00000000000000000000000000000000000000
I	00000000000000000000000000000000000000
:	00000000000000000000000000000000000000
1	
:	封
1	#\(\begin{array}{cccccccccccccccccccccccccccccccccccc
	00000000000000000000000000000000000000
I	00000000000000000000000000000000000000
	00000000000000000000000000000000000000
i	
۱,	
I(000000000000000000000000000000000000000
-	
;	00000000000000000000000000000000000000
!	
!	00000000000000000000000000000000000000
i	00000000000000000000000000000000000000
Į.	00000000000000000000000000000000000000
i	A CONTROL OF THE PARTY OF THE P
!	i 内
	00000000000000000000000000000000000000
! -	000000000000000000000000000000000000000
<u>:</u> C	00000000000000000000000000000000000000
10	
İ	000000000000000000000000000000000000000
	00000000000000000000000000000000000000
	!不
!	
ł	00000000000000000000000000000000000000
1	00000000000000000000000000000000000000
i	00000000000000000000000000000000000000
i	
1	
ا	要。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
i	
İ	000000000000000000000000000000000000000
i	UUUUUUUUUOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
;	
i	00000000000000000000000000000000000000
1	**************************************
ı	
;	
I	
- 1	
1	00000000000000000000000000000000000000
	000000000000000000000000000000000000000
1(
-	
!	赵
;	
!	00000000000000000000000000000000000000
l	00000000000000000000000000000000000000
	000000000000000000000000000000000000000
I I	000000000000000000000000000000000000000
	00000000000000000000000000000000000000
!	00000000000000000000000000000000000000
Į į	
I I	 (2) (2) (3) (4) (
)
•	•

全国计算机等级考试无纸化真考题库试卷(3) 二级 C

					级 C			
			(考试时	前 120 分	分钟,满分	100分)		
一、选择	题(每小题	题1分 ,	共 40 分)					
(1)下列	叙述中正	确的是	·() 。					
	是"先进							
B) [3]	列是"先	进后出	"的线性表					
C)循	「 环队列是	皇非线性	三结构					
D)有	i 序线性表	長既可じ	以采用顺序存储 结构	勾,也可以为	采用链式存储	诸结构		
(2)支持	子程序调	用的数	据结构是()。					
A)村	हें		B)树		C)队列		D) 二叉树	
3)某二	叉树有5	个度为	2的结点,则该二	叉树中的叶	十子结点数是	<u>[</u> () °		
A)10			B)8		C)6		D)4	
			不情况下比较次数量					
	泡排序		B)简单选择排		C)直接指		D)堆排序	
				代件和支撑			面属于应用软件的是()。
, .,	最译程序		B)操作系统		C)教务管	学 性系统	D)汇编程序	
	叙述中错			# *				
, .			是发现错误并改正针 持行"错误定位"是和		5.沙 丽 止 7.			
			[1] 审庆定位 定4 K为 Debug	生 一	小少安亚绿			
			八分Debug 八行测试计划,排除	测量的炼	音州			
			模块独立性度量的			中正确的是	()	
, ,			聚性有利于提高植			1 17 9/11/12/5	/ 0	
			聚性有利于提高模					
,			其 内部各个元素间					
,]互相连接的紧密和					
8)数据	库应用系	统中的	核心问题是()。				
A) 数	対据库设 计	+	B)数据库系统	设计	C)数据库	手维护	D)数据库管理员	培训
9)有两	个关系 R	、S如下	:					
	R			5	S			
A	В	С		A	В			
a	3	2		a	3			
b	0	1		b	0			
c	2	1		c	2			
由关	系 R 通过	· 上运算得	」 到关系 S ,则所使	用的运算为	J ().			
A) 发	连择		B)投影		C)插入		D)连接	
10)将	E – R 图车	传换为 关	长系模式时,实体和	联系都可!)。		
A)	属性		B)键		C) 关系		D)域	

```
(11)以下叙述中错误的是( )。
    A)使用三种基本结构构成的程序只能解决简单问题
   B)结构化程序由顺序、分支、循环三种基本结构组成
   C)C语言是一种结构化程序设计语言
   D)结构化程序设计提倡模块化的设计方法
(12)以下四个程序中,完全正确的是( )。
    A)#include < stdio. h >
                                         B)#include < stdio. h >
      main();
                                           main()
                                           {/* programming */
     /*/ programming /*/
       printf("programming! \n"); }
                                            printf("programming! \n"); }
   C)#include < stdio. h >
                                         D) include < stdio. h >
     main()
                                            main()
     /*/* programming */*/
                                            {/* programming */
      printf("programming! \n"); }
                                            printf("programming! \n"); }
(13)C 源程序中不能表示的数制是( )。
                                         C) 十进制
                                                              D) 二进制
   A)十六进制
                     B) 八进制
(14)以下选项中,能用作用户标识符的是()。
                                         C) void
                                                              D) unsigned
   A)_{0}
                    B)88
(15) 若有定义语句:int x = 10; ,则表达式 x - = x + x 的值为( )。
                                                              D)10
   A)0
                                         C) - 10
(16)有以下程序:
    #include < stdio. h >
   main()
   int a = 1, b = 0;
       printf("% d,",b = a + b);
       printf("% d = 2 * b);
    程序运行后的输出结果是()。
                                         C)3,2
   A)1,2
                    B)1,0
                                                              0,0(0)
(17)有以下程序:
    #include < stdio. h >
   main()
   int a1, a2; char c1, c2;
       scanf( "% d% c% d% c", &a1, &c1, &a2, &c2);
       printf("%d,%c,%d,%c",a1,c1,a2,c2);
   若想通过键盘输入,使得 al 的值为 12, a2 的值为 34, c1 的值为字符 a, c2 的值为字符 b, 程序输出结果
   是:12,a,34,b。则正确的输入格式是(以下__代表空格, < CR > 代表回车)( )。
   A) 12 _ a34 _ b < CR >
                                         B) 12 _ a _ 34 _ b < CR >
   C) 12, a, 34, b < CR >
                                         D)12a34b < CR >
(18) 若变量已正确定义,在 if (W) printf("% d\n",k); 中,以下不可替代 W 的是( )。
   A) a \Leftrightarrow b + c
                    B) ch = getchar()
                                         C) a == b + c
                                                              D)a++
(19)有以下程序段:
   #include < stdio. h >
   int a, b, c;
```

```
a = 10: b = 50: c = 30:
    if (a > b) a = b, b = c; c = a;
    printf(" a = \% d b = \% d c = \% d n", a, b, c);
    程序的输出结果是()。
    A) a = 10 b = 50 c = 30
    B) a = 10 b = 50 c = 10
    C) a = 10 b = 30 c = 10
    D) a = 50 b = 30 c = 50
(20)下列叙述中正确的是(
    A)在 switch 语句中,不一定使用 break 语句
    B)在 switch 语句中必须使用 default
    C) break 语句必须与 switch 语句中的 case 配对使用
    D) break 语句只能用于 switch 语句
(21)以下不构成无限循环的语句或语句组是( )。
    A) n = 0:
      do \{++n:\} while (n < = 0):
    B) n = 0:
      while (1) \{ n + + ; \}
    C) n = 10:
      while (n); \{n - - \}
    D) for (n = 0, i = 1; ; i + +) n + = i;
(22) 有以下程序:
    #include < stdio. h >
    main()
    int c = 0.k:
        for (k = 1: k < 3: k + +)
            switch (k)
            default: c + = k;
              case 2: c + + ; break;
              case 4: c + = 2; break;
        printf("\%d\n",c);
    程序运行后的输出结果是(
                                                 C)3
                                                                         D)9
    A)7
                        B)5
(23)有以下程序:
    #include < stdio. h >
    int f( int x, int y)
    \{ \operatorname{return}((y-x)*x); \}
    main()
    int a = 3, b = 4, c = 5, d;
     d = f(f(a,b), f(a,c));
      printf("% d \setminus n", d);
    程序运行后的输出结果是(
```

```
(24) 若有定义语句: double a, *p=&a;以下叙述中错误的是( )。
    A) 定义语句中的 * 号是一个间址运算符
    B) 定义语句中的 * 号是一个说明符
    C) 定义语句中的 p 只能存放 double 类型变量的地址
    D) 定义语句中, * p = &a 把变量 a 的地址作为初值赋给指针变量 p
(25) 若有定义语句: double x, y, * px, * py; 执行了 px = &x; py = &y; 之后, 正确的输入语句是(
    A) scanf("% lf % le", px, py);
                                             B) scanf("% f % f" &x, &y);
    C) scanf("%f%f", x, y);
                                             D) scanf("% lf % lf",x,y);
(26)以下定义数组的语句中错误的是( )。
    A) int num [\ ][\ 3\ ] = \{\ \{1,2\},3,4,5,6\};
    B) int num [2][4] = \{\{1,2\}, \{3,4\}, \{5,6\}\}\};
    C) int num [] = \{1,2,3,4,5,6\};
    D) int num \lceil \lceil 4 \rceil = \{1, 2, 3, 4, 5, 6\};
(27)有以下程序:
    #include < stdio. h >
    void fun( int a, int b)
    int t:
       t = a; a = b; b = t;
    main()
   int c[10] = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}, i;
       for (i = 0; i < 10; i + = 2) fun(c[i], c[i+1]);
       for (i = 0; i < 10; i + +) printf("%d,", c[i]);
       printf("\n");
    程序的运行结果是()。
    A)1,2,3,4,5,6,7,8,9,0,
                                             B)2,1,4,3,6,5,8,7,0,9,
    C)0.9.8.7.6.5.4.3.2.1
                                             D)0,1,2,3,4,5,6,7,8,9,
(28)有以下程序:
    #include < stdio. h >
    main()
    \{ \inf x[3][2] = \{0\}, i; 
     for (i = 0; i < 3; i + +) scanf ("\% d", x[i]);
     printf("\%3d\%3d\%3d\n",x[0][0],x[0][1],x[1][0]);
    若运行时输入:246<回车>,则输出结果为()。
    A)204
                      B)200
                                             C)240
                                                                    D)246
(29)有以下程序段:
    #include < stdio. h >
    int j; float y; char name [50];
    scanf("%2d%f%s", &j, &y, name);
    当执行上述程序段,从键盘上输入555667777abc后,y的值为()。
    A)566.0
                      B)55566.0
                                             C)7777.0
                                                                    D)566777.0
(30)下列语句组中,正确的是()。
```

C)8

D)9

A)7

B)10

```
A) char *s; s = "Olympic";
   B) char s[7]; s = "Olympic";
   C) char *s; s = { "Olympic" };
   D) char s[7]; s = { "Olympic" };
(31) 有以下函数:
   int fun(char * s)
   \frac{1}{2} char * t = s:
     while (*t++):
     return(t-s);
   该函数的功能是()。
   A) 计算 s 所指字符串的长度
   B) 比较两个字符串的大小
   C) 计算 s 所指字符串占用内存字节的个数
   D)将 s 所指字符串复制到字符串 t 中
(32) 有以下程序(注:字符 a 的 ASCII 码值为 97):
   #include < stdio. h >
   main()
    char * s = { "abc" };
       do
       \{ \text{ printf } ("\% d", *s\% 10); + +s; \}
       while (*s):
   程序运行后的输出结果是(
   A)789
                      B) abc
                                             C)7890
                                                                    D)979899
(33)设有如下函数定义:
   #include < stdio. h >
   int fun( int k)
   if (k < 1) return 0:
       else if (k = = 1) return 1;
       else return fun(k-1) +1;
   若执行调用语句"n = fun(3);",则函数 fun 总共被调用的次数是(
   A)2
                      B)3
                                             C)4
                                                                    D)5
(34)有以下程序:
   #include < stdio. h >
   int f(int n):
   main()
    int a = 3.s;
       s = f(a); s = s + f(a); printf("% d \in s);
   int f(int n)
    static int a = 1;
       n + = a + +;
       return n;
                           无纸化真考题库试卷(3) 第5页(共10页)
```

```
程序运行后的输出结果是(
                                                                             D)10
    A)9
                         B)8
                                                   C)7
(35)设有定义:
    struct complex
    int real, unreal; data1 = \{1,8\}, data2;
    则以下赋值语句中错误的是( )。
    A) data2 = (2,6);
                                                   B) data2 = data1;
    C) data2. real = data1. real;
                                                   D) data2. real = data1. unreal;
(36) 有以下程序:
    # include < stdio. h >
    struct S{int n; int a\lceil 20 \rceil; };
    void f(\text{struct } S * p)
    { int i, j, t;
      for (i = 0; i  n - 1; i + +)
         for (j = i + 1; j  n; j + +)
             if (p - > a[i] > p - > a[j])
             \{t = p - a[i]; p - a[i] = p - a[i]; p - a[i] = t; \}
    main()
    { int i; struct S s = \{10, \{2,3,1,6,8,7,5,4,10,9\}\};
      for (i = 0; i < s. n; i + +) printf("%d,", s. a[i]);
    程序运行后的输出结果是(
    A)2,3,1,6,8,7,5,4,10,9,
                                                   B)10,9,8,7,6,5,4,3,2,1,
    C)1,2,3,4,5,6,7,8,9,10,
                                                   D)10,9,8,7,6,1,2,3,4,5,
(37) 有以下程序:
    #include < stdio. h >
    #include < string. h >
    typedef struct { char name [9]; char sex; int score [2]; } STU;
    STU f (STU a)
    STU b = { "Zhao", 'm', 85, 90 };
        int i:
        strcpy( a. name, b. name);
        a. sex = b. sex:
        for (i=0; i<2; i++) a. score[i] = b. score[i];
        return a;
    main()
    STU c = \{ "Qian", 'f', 95, 92 \}, d;
        d = f(c);
        printf ("% s,% c,% d,% d, ", d. name, d. sex, d. score[0], d. score[1]);
        printf ("% s,% c,% d,% d\n", c. name, c. sex, c. score[0], c. score[1]);
```

```
程序运行后的输出结果是( )。
   A) Zhao, m, 85, 90, Qian, f, 95, 92
   B) Zhao, m, 85, 90, Zhao, m, 85, 90
   C) Qian, f, 95, 92, Qian, f, 95, 92
   D) Qian, f, 95, 92, Zhao, m, 85, 90
(38)以下关于宏的叙述中正确的是(
   A) 宏替换没有数据类型限制
   B) 宏定义必须位于源程序中所有语句之前
   C) 宏名必须用大写字母表示
   D) 宏调用比函数调用耗费时间
(39)设有以下语句:
   int a = 1, b = 2, c;
   c = a^(b < <2):
   执行后,c 的值为()。
                                                                 D)6
   A)7
                                           C)8
(40) 有以下程序:
   #include < stdio. h >
   main()
    FILE * fp; int a [10] = \{1,2,3\}, i, n;
       fp = fopen("d1.dat", "w");
       for (i = 0; i < 3; i + +) fprintf(fp, "%d", a[i]);
       fprintf(fp, "\n");
       fclose(fp);
       fp = fopen("d1.dat", "r");
       fscanf(fp, "%d", &n);
       fclose(fp);
       printf("%d\n", n);
    程序的运行结果是()。
                     B)12300
                                           C)1
   A)321
                                                                 D)123
```

二、程序填空题(共18分)

下列给定程序中,函数 fun 的功能是进行数字字符转换。若形参 ch 中是数字字符'0'~'9',则将'0'转换成'9','1'转换成'8','2'转换成'7',……,'9'转换成'0';若是其他字符则保持不变;并将转换后的结果作为函数值返回。

请在下划线处填入正确的内容并将下划线删除,使程序得出正确的结果。

注意:部分源程序在文件 BLANK1. C 中。

不得增行或删行,也不得更改程序的结构!

#include < stdio. h >

/* * * * * * * * * * * found * * * * * * * * * * * /

___1 ___ fun(char ch)

/* * * * * * * * * * found * * * * * * * * * * /

if(ch > = '0' && ___ 2 ___)

/* * * * * * * * * * found * * * * * * * * * * * /

return '9' - (ch - 3);

无纸化真考题库试卷(3) 第7页(共10页)

```
return ch:
    main()
    char c1, c2:
      printf("\nThe result :\n");
      c1 = '2': c2 = fun(c1):
      printf("c1 = \% c c2 = \% c n", c1, c2);
      c1 = '8'; c2 = fun(c1);
      printf("c1 = \% c c2 = \% c n", c1, c2);
      c1 = 'a' : c2 = fun(c1) :
      printf("c1 = \% c c2 = \% c n", c1, c2);
三、程序修改题(共18分)
    下列给定程序中函数 fun 的功能是:将 p 所指字符串中的所有字符复制到 b 中,要求每复制三个字符之
后插入一个空格。
    例如, 若给 a 输入字符串: ABCDEFGKHIJK, 调用函数后,字符数组 b 中的内容为: ABC DEF GHI JK。
    请改正程序中的错误,使它能得出正确结果。
    注意:部分源程序在文件 MODII. C中,不得增行或删行,也不得更改程序的结构。
    #include < stdio. h >
    void fun(char *p, char *b)
   int i, k = 0;
     while(*p)
    i = 1;
        while (i < 3 \&\& *p)
   /* * * * * * * * * found * * * * * * * * * * /
              b[k] = p;
              k + + ; p + + ; i + + ;
        if( * p)
    /******** found * * * * * * * * * * /
            b[k + +] = " ":
      b[k] = '\0';
    main()
   \{ char a [80], b [80]; 
      printf("Enter a string: "); gets(a);
      printf("The original string: "); puts(a);
      fun(a,b);
       printf("\nThe string after insert space: "); puts(b); printf("\n\n");
```

四、程序设计题(共24分)

N 名学生的成绩已在主函数中放入一个带头节点的链表结构中,h 指向链表的头节点。请编写函数

无纸化真考题库试卷(3) 第8页(共10页)

```
fun,其功能是:求出平均分,并由函数值返回。
    例如, 若学生的成绩是: 85 76 69 85 91 72 64 87, 则平均分应当是: 78.625。
    注意:部分源程序在文件 PROG1. C 中。
    请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 的花括号中填入你编写的若干语句。
    #include < stdio. h >
    #include < stdlib. h >
    #define N 8
    struct slist
    double s;
       struct slist * next;
    typedef struct slist STREC;
    double fun( STREC * h )
    STREC * creat( double *s)
    \{ STREC * h, * p, * q; int i = 0; \}
     h = p = (STREC *) malloc(sizeof(STREC)); p \rightarrow s = 0;
     while(i < N)
     q = (STREC * ) malloc(sizeof(STREC));
       q -> s = s[i]; i + +; p -> next = q; p = q;
     p \rightarrow next = 0;
      return h;
    outlist( STREC * h)
    \{ STREC * p; \}
     p = h \rightarrow next; printf("head");
      \{ printf(" -> \%4.1f", p -> s) ; p = p -> next; \}
      while (p! = 0);
      printf(" \n\n");
    main()
    double s[N] = \{85,76,69,85,91,72,64,87\}, ave;
       void NONO();
       STREC *h;
      h = creat(s); outlist(h);
       ave = fun(h);
       printf("ave = \%6.3 \text{f/n}", ave);
       NONO();
```

```
void NONO()

//* 本函数用于打开文件,输入数据,调用函数,输出数据,关闭文件。*/

FILE *in, *out;
int i,j; double s[N], ave;

STREC * h;
in = fopen("in. dat","r");
out = fopen("out. dat","w");
for(i = 0; i < 10; i++) {
    for(j=0; j < N; j++) fscanf(in, "%lf,", &s[j]);
    h = creat(s);
    ave = fun(h);
    fprintf(out, "%6.3lf\n", ave);
}
fclose(in);
fclose(out);
}
```

全国计算机等级考试无纸化真考题库试卷(4) 二级 C

(考试时间 120 分钟,满分 100 分)

一、选择题(每小题1分,共40)分)		
(1)下列数据结构中,属于非线			
	3)带链队列	C) 二叉树	D)带链栈
(2)下列数据结构中,能够按照	,		10) 市區化
. ,	3)栈	C)队列	D)二叉树
(3)对于循环队列,下列叙述。	/ F •	a) b() 1	D)
A) 队头指针是固定不变的			
B) 队头指针一定大于队属			
C) 队头指针一定小于队属			
D) 队头指针可以大于队尾			
(4)算法的空间复杂度是指(
A)算法在执行过程中所需	, •		
B)算法所处理的数据量	1女的打开业门阳王国		
C)算法程序中的语句或指	4. 公 久 粉		
D)算法在执行过程中所需			
(5)软件设计中划分模块的一			
	3)高内聚低耦合	C)低内聚高耦合	D)高内聚高耦合
(6)下列选项中不属于结构化	,	,	2/14/13/14/14
) 自顶向下	。 C)模块化	D)逐步求精
(7)软件详细设计生产的图如	,	5 / 庆久 L	5/延少八届
(7) 秋川川神灰川土) 明国外	begir	$\overline{}$	
	begii		
	Y x=0	N c=a	
法园目()	end		
该图是()。	DAD 囫	C) 和良达和圆	D/E D 図
	B) PAD 图	C)程序流程图	D) E – R 图
(6))。	B) 在操作系统支持下的系统	\$ tb IA
A) 採作系统的一部分 C) 一种编译系统		D) 一种操作系统又付下的系统	1. 铁件
(9)在E-R图中,用来表示到	2.休联至的图取目()	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	K体联系的图形是()。 B)矩形	C)菱形	D)三角形
(10)有三个关系 R,S 和 T 如	/ · — · ·	U/ 文/ 少	口/二用ル
(10/月二十天示れ,5/押1別	1:		

		00000000000000000000000000000000000000
b 2 1	b 2 1	00000000000000000000000000000000000000
c 3 1	c 3 1	00000000000000000000000000000000000000
	d 3 2	00000000000000000000000000000000000000
其中关系T由关系R和S通过某种操作得到,	亥操作为()。	
A)选择 B)投影	C)交 D)并	
(11)计算机高级语言程序的运行方法有编译执行和		00000000000000000000000000000000000000
A)C语言程序仅可以编译执行		00000000000000000000000000000000000000
B)C语言程序仅可以解释执行		######################################
C) C 语言程序既可以编译执行又可以解释执行		10000000000000000000000000000000000000
D)以上说法都不对		00000000000000000000000000000000000000
(12)以下叙述中错误的是()。		00000000000000000000000000000000000000
A)用户所定义的标识符允许使用关键字		
B)用户所定义的标识符应尽量做到"见名识意"	,	
C)用户所定义的标识符中,大、小写字母代表不	同标识	00000000000000000000000000000000000000
D)用户所定义的标识符必须以字母或下划线开	头	00000000000000000000000000000000000000
(13)若有说明语句:char c = '\72';则变量 c()。		00000000000000000000000000000000000000
A)包含1个字符	B)包含2个字符	00000000000000000000000000000000000000
C)包含3个字符	D)说明不合法,c 的值不确定	<u>Д</u>
(14)现有定义 int a;double b;float c;char k;,则表达	式 a/b + c - k 值的类型为()。	000000000000000000000000000000000000000
A) int	B) double	
C) float	D) char	00000000000000000000000000000000000000
(15)以下定义语句中正确的是()。		
A) int $a = b = 0$;		00000000000000000000000000000000000000
B) char $A = 65 + 1$, $b = 'b'$;		00000000000000000000000000000000000000
C) float $a = 1$, $*b = &a$, $*c = &b$;		00000000000000000000000000000000000000
D) double $a = 0.0$; $b = 1.1$		00000000000000000000000000000000000000
(16)若在定义语句 int a,b,c,*p=&c之后,接着执	行以下选项中的语句,则能正确执行的语句是()。	
A) $\operatorname{scanf}("\%d",a,b,c);$	B) scanf("% d% d% d", a, b, c);	
C) scanf("%d", &p);	D) scanf("%d", $p)$;	
(17)以下程序的运行结果是()。		00000000000000000000000000000000000000
int $k = 0$;		
void fun(int m)		00000000000000000000000000000000000000
m + = k; k + = m; printf("m = % d k = % d",	m, k + +);	00000000000000000000000000000000000000
main()		00000000000000000000000000000000000000
{ int i = 4;		
$fun(i + +); printf("i = % d k = % d\n", i, k)$);	
}		00000000000000000000000000000000000000
A) $m = 4$ $k = 5$ $i = 5$ $k = 5$	B) $m = 4$ $k = 4$ $i = 5$ $k = 5$	00000000000000000000000000000000000000
C) $m = 4$ $k = 4$ $i = 4$ $k = 5$	D) $m = 4$ $k = 5$ $i = 4$ $k = 5$	00000000000000000000000000000000000000
(18)在执行下述程序时,若从键盘输入6和8,则结身	是为() 。	00000000000000000000000000000000000000
main()		00000000000000000000000000000000000000
{ int a,b,s;		00000000000000000000000000000000000000
无纸化真考题库试卷(4) 第2页(共10页)	00000000000000000000000000000000000000

```
scanf("%d%d",&a,&b);
      s = a;
      if(a < b)
      s = b;
      s * = s:
      printf("%d",s):
                                           C)48
   A)36
                     B)64
                                                                 D)以上都不对
(19)有以下程序:
   main()
   int k = 5, n = 0;
      while (k > 0) { switch (k) }
            default : break;
            case 1 : n + = k;
            case 2:
             case 3 : n + = k;
      k - - :
      printf("\% d\n",n);
    程序运行后的输出结果是()。
                                                                 D)7
   A)0
                                           C)6
(20)有以下程序:
   #include < stdio. h >
   main () \{ int x:
       scanf("%d",&x);
       if (x < = 3); else
       if(x! = 10) printf("% d \in x;
   程序运行时,输入的值在哪个范围才会有输出结果()。
   A)不等于 10 的整数
                                           B)大于3且不等10的整数
   C)大于3或等于10的整数
                                           D)小于3的整数
(21)有以下程序:
   #include < stdio. h >
   main() \{ int a = 1, b = 0;
     printf("% d,",b = a + b);
     printf("% d \mid n", a = 2 * b)
    程序运行后的输出结果是()。
                                           C)3,2
   A)0,0
                     B)1,0
                                                                 D)1,2
(22)有以下程序:
   main() { int num[4][4] = { {1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16} }, i,j;
     for (i = 0; i < 4; i + +)
     \{ for(j=0;j<=i;j++) \}
     printf("%4c",'');
     for(j = ; j < 4; j + +)
                          无纸化真考题库试卷(4) 第3页(共10页)
```

```
printf("\n");
    若要按以下形式输出数组右上半三角
   1 2 3 4
      6 7 8
         11 12
            16
    则在程序下划线处应填入的语句是( )。
                      B)i+1
                                             C) i
                                                                   D)4 - i
    A)i-1
(23)以下程序段中,与语句:k=a>b?(b>c?1:0):0;功能相同的是()。
    A) if ((a > b) & (b > c)) k = 1;
                                             B) if ((a > b) | | (b > c)) k = 1;
      else k = 0;
                                               else k = 0;
   C) if (a < = b) k = 0;
                                             D) if (a > b) k = 1;
      else if (b < c)k = 1:
                                               else if (b > c) k = 1:
                                                   else k = 0:
(24)有以下程序:
    void ss(char * s, char t)
   while( * s)
   if(*s = = t) *s = t - 'a' + 'A';
      s ++: }
    main()
   char str1 \lceil 100 \rceil = "abcddfefdbd", c = 'd';
      ss(str1,c);
      printf("%s\n",str1);
    程序运行后的输出结果是()。
                                             B) abcDDfefDbD
    A) ABCDDEFEDBD
                                             D) Abcddfefdbd
    C) abcAAfefAbA
(25)现有如下程序段:
    #include "stdio.h"
    int k[30] = \{12,324,45,6,768,98,21,34,453,456\};
      int count = 0, i = 0;
      while(k[i])
      \inf (k[i]\%2 = 0) | k[i]\%5 = 0  count ++;
       i + + ; }
      printf("%d,%d\n",count,i);
    则程序段的输出结果为()。
                                             C)7,10
    A)7,8
                      B)8,8
                                                                   D)8,10
(26)以下程序运行后的输出结果是()。
    #include < string. h >
    void f(char * s, char * t)
```

printf("%4d", num[i][j]);

```
char k:
       k = *s:
        *s = *t;
        *t = k;
       s + + : t - - :
       if (*s) f (s,t):
   main()
   \{ \text{ char str} [10] = \text{"welcome"}, *p; 
     p = str + strlen(str)/2 + 1;
     f(p,p-2);
     printf("%s\n",str);
   A) eelcomw
                      B) weoclme
                                              C) welcome
                                                                    D) emoclew
(27)设有如下程序段:
   int x = 2004, y = 2008;
   printf("% d \in (x,y));
   则以下叙述中正确的是
   A)输出值为2004
   B)输出值为2008
   C)运行时产生出错信息
   D)输出语句中格式说明符的个数少于输出项的个数,不能正确输出
(28) 有以下程序:
   #include < stdio. h >
   void fun(char * c, int d)
   * c = * c + 1; d = d + 1;
       printf("%c,%c,",*c,d);
   main()
   \{ \text{ char b = 'a', a = 'A'; } 
     fun(&b,a); printf("%c,%c\n",b,a);
   程序运行后的输出结果是(
   A)b,B,b,A
                                             B)b,B,B,A
   C)a,B,B,a
                                             D)a,B,a,B
(29) 有以下程序:
   #include < stdio. h >
   #include < string. h >
   main()
   { char a[10] = "abcd";
     printf("\%d,\%d\n",strlen(a),sizeof(a));
   程序运行后的输出结果是(
   A)7,4
                      B)4,10
                                             C)8.8
                                                                    D)10,10
(30)若有定义 int a[2][3];,则对 a 数组的第 i 行第 j 列(假设 i,j 已正确说明并赋值)元素值的正确引用
```

```
为()。
    A) * (* (a+i) + j)
                                               B)(a+i)[j]
    C) * (a + i + j)
                                               D) * (a + i) + j
(31) 有以下程序:
    #include < stdio. h >
    main()
    char c1, c2, c3, c4, c5, c6;
        scanf("%c%c%c%c",&c1,&c2,&c3,&c4);
        c5 = getchar(); c6 = getchar();
        putchar(c1); putchar(c2);
        printf("% c% c\n", c5, c6);
    程序运行后, 若从键盘输入(从第1列开始)
    123 < 回车 >
    45678 < 回车 >
    则输出结果是(
                     ) _
                                               C)1278
                                                                       D)1245
    A) 1267
                        B) 1256
(32)以下程序的运行结果是()。
    #include < stdio. h >
    int a = 1:
    int f(int c)
    \begin{cases} \text{static int } a = 2; \end{cases}
        c = c + 1;
        return(a + + ) + c;
    main()
    \{ int i, k = 0 \}
     for (i = 0; i < 2; i + +) \{ int a = 3; k + = f(a); \}
     k + = a;
      printf("% d \setminus n", k);
    A)17
                       B) 16
                                               C)15
                                                                       D)14
(33)设有定义:int n1 = 0,n2,*p=&n2,*q=&n1;,以下赋值语句中与 n2 = n1;语句等价的是(
    A) *p = *q;
                                               B)p = q;
    C) * p = &n1;
                                               D)p = *q;
(34)设有如下说明:
    typedef struct ST
    long a;
       int b;
       char c[2];
    NEW;
    以下说法正确的是(
    A) NEW 是一个结构体变量
                                               B) NEW 是一个结构体类型
    C)ST 是一个结构体类型
                                               D)以上说明形式非法
(35)有以下程序:
    #include < stdio. h >
```

```
#include < string. h >
    typedef struct { char name [9]; char sex; float score [2]; | STU;
    void f(STU a)
    STU b = { "Zhao", 'm', 85.0, 90.0 };
       int i:
       strcpy(a. name, b. name);
       a. sex = b. sex;
       for (i = 0; i < 2; i + +) a. score [i] = b. score [i];
    main()
    STU c = { "Oian", 'f', 95.0, 92.0 } :
       f(c);
       printf("%s,%c,%2.0f,%2.0f\n",c. name,c. sex,c. score[0],c. score[1]);
    程序的运行结果是()。
                                                   B) Oian, m, 85, 90
    A) Oian, f, 95, 92
    C) Zhao, f, 95, 92
                                                   D)Zhao,m,85,90
(36) 有以下程序:
    #include < stdio. h >
    #define N 4
    void fun(int a \lceil \lceil N \rceil, int b \lceil \rceil) int i;
      for (i = 0; i < N; i + +) b [i] = a[i][i];
    main() { int x[][N] = { \{1,2,3\}, \{4\}, \{5,6,7,8\}, \{9,10\}\}, y[N], i;
      fun(x,y);
      for (i = 0; i < N; i + +) print ("\% d, ", y[i]);
      printf(" \n");
    程序的运行结果是( )。
                                                   B)1.0.7.0.
    A)1,2,3,4,
    C)1,4,5,9,
                                                   D)3,4,8,10,
(37)有以下程序:
    #include < stdio. h >
    int fun(int x, int y) { if(x! = y) return((x + y)/2);
       else return(x):
    main() \{ int a = 4, b = 5, c = 6;
       printf("% d \in (2 * a, \text{fun}(b,c)));
    程序运行后的输出结果是(
    A)3
                         B)6
                                                   C)8
                                                                             D)12
(38) 若 x 是 int 型变量,且有下面的程序片段:
    for (x = 3; x < 6; x + +) printf ((x\%2)? ("**\%d"); ("##%d\n"), x);
    上面程序片段的输出结果是()。
    A) * * 3
                               无纸化真考题库试卷(4) 第7页(共10页)
```

```
##4
      * * 5
    B) ##3
      * *4
       ##5
    C) ##3
      * * 4##5
    D) * * 3##4
      * * 5
(39) 有以下程序:
    #include < stdio. h >
    #define N 5
    #define M N + 1
    #define f(x)(x * M)
    main()
   int i1, i2;
     i1 = f(2);
      i2 = f(1 + 1);
      printf("%d%d\n",i1,i2);
    程序的运行结果是( )。
                      B)117
                                             C)11 11
                                                                   D)127
    A) 12 12
(40) 有以下程序:
    #include < stdio. h >
    main() { unsigned char a = 8, c;
     c = a > 3;
      printf("\%d\n",c);
    程序运行后的输出结果是()。
                                             C)1
                                                                   D)0
    A)32
二、程序填空题(共18分)
```

下列给定程序中,函数 fun 的功能是:求 ss 所指字符串数组中长度最短的字符串所在的行下标,作为函数值返回,并把其串长放在形参 n 所指的变量中。ss 所指字符串数组中共有 M 个字符串,且串长小于 N。

请在下划线处填入正确的内容并将下划线删除,使程序得出正确的结果。

注意:部分源程序在文件 BLANK1. C 中。

不得增行或删行,也不得更改程序的结构!

无纸化真考题库试卷(4) 第8页(共10页)

```
if (i = 0) * n = len:
   if (len 2 * n)
         * n = len;
            k = i;
   /************************/
        return (3);
   main()
   char ss[M][N] = { "shanghai", "guangzhou", "beijing", "tianjin", "chongqing" };
      int n.k.i:
      printf("\nThe original strings are :\n");
      for (i = 0; i < M; i + +) puts (ss[i]);
     k = fun(ss, &n);
      printf("\nThe length of shortest string is: %d\n",n);
      printf("\nThe shortest string is: %s\n",ss[k]);
三、程序修改题(共18分)
   下列给定程序中函数 fun 的功能是:将 tt 所指字符串中的小写字母全部改为对应的大写字母,其他字符
不变。
   例如,若输入"Ab,cD",则输出"AB,CD"。
   请改正程序中的错误,使它能得出正确的结果。
   注意:部分源程序在文件 MODII. C 中,不得增行或删行,也不得更改程序的结构!
   #include < stdio. h >
   #include < string. h >
   char * fun( char tt[])
    int i:
    for (i = 0; tt[i]; i++)
   /***********************/
       if(( 'a' < = tt\lceil i \rceil ) | | ( tt\lceil i \rceil < = 'z' ))
   /*********found********/
         tt[i] + = 32;
       return( tt );
   main()
    char tt[81];
    printf( "\nPlease enter a string: " );
    gets(tt);
    printf( "\nThe result string is:\n%s", fun( tt ));
```

无纸化真考题库试卷(4) 第9页(共10页)

四、程序设计题(共24分)

```
编写函数 fun,其功能是:将所有大干1小干整数 m 的非素数存入 xx 所指数组中,非素数的个数通过 k
返回。
   例如,若输入17,则应输出:46891012141516。
   注意:部分源程序在文件 PROG1. C中。
   请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 的花括号中填入你编写的若干语句。
   #include < stdio. h >
   void fun( int m, int *k, int xx[])
   main()
      int m, n, zz[100]:
      void NONO():
      printf( "\nPlease enter an integer number between 10 and 100: ");
      scanf( "%d", &n);
      fun( n, &m, zz):
      printf( "\n\nThere are %d non - prime numbers less than %d:", m, n );
      for (n = 0; n < m; n++)
        printf( "\n \%4d", zz[n]);
      NONO():
   void NONO()
   /* 请在此函数内打开文件,输入测试数据,调用 fun 函数,
       输出数据,关闭文件。*/
      int m, n, zz[100];
      FILE * rf, * wf;
      rf = fopen("in. dat", "r");
       wf = fopen("out. dat", "w");
      fscanf( rf, "%d", &n);
      fun( n, &m, zz );
      fprintf(wf, "% d \ln d \ln, m, n);
      for (n = 0; n < m; n++)
        fprintf(wf, "% d n", zz[n]);
      fclose(rf);
       fclose(wf);
```

全国计算机等级考试无纸化真考题库试卷(5) 二级 C

	(考试时间 120)分钟,满分100分)	
密〇	一、选择题(每小题 1 分,共 40 分)		
	(1)下列叙述中正确的是()。		
	A)线性表的链式存储结构与顺序存储结构所需	ミ要的存储 容间是相同的	in the state of th
!!	B)线性表的链式存储结构所需要的存储空间—		
封	C)线性表的链式存储结构所需要的存储空间-		
	D)线性表的链式存储结构与顺序存储结构在存		
1 1	(2)下列叙述中正确的是()。		, vo 11.
$\left \cdot \right $	A) 栈是一种先进先出的线性表	B) 队列是一种后边	井先出的线性表
	C) 栈与队列都是非线性结构	D) 以上三种说法者	
线 :	(3)软件测试的目的是()。	/ « · ユニ / / • • • • • • • • • • • • • • • • •	
1 1	A)评估软件可靠性	B) 发现并改正程序	 字中的错误
! !	C)改正程序中的错误	D) 发现程序中的针	
! !	(4)在软件开发中,需求分析阶段产生的主要文档,	,	
	A) 软件集成测试计划	B) 软件详细设计;	兑明书
	C) 用户手册	D) 软件需求规格;	兑明书
Θ_{i}	(5)软件生命周期是指()。		
1 1	A) 软件产品从提出、实现、使用维护到停止使用	月退役的过程	
; ; ;	B)软件从需求分析、设计、实现到测试完成的运	过程	
	C)软件的开发过程		
	D) 软件的运行维护过程		
1 1	(6)面向对象方法中,继承是指()。		
! !	A)一组对象所具有的相似性质	B)一个对象具有是	另一个对象的性质
要〇	C)各对象之间的共同性质	D) 类之间共享属性	生和操作的机制
ļ į	(7)层次型、网状型和关系型数据库划分原则是() 。	
1 1	A)记录长度	B) 文件的大小	
	C) 联系的复杂程度	D) 数据之间的联系	
h/h:	(8)一个工作人员可以使用多台计算机,而一台计算	算机可被多个人使用,则	实体工作人员与实体计算机
谷 :	的联系是()。		
1 1	A)一对一 B)一对多	C) 多对多	D) 多对一
	(9)数据库设计中反映用户对数据要求的模式是(
\mathcal{L}	A)内模式 B)概念模式	C)外模式	D)设计模式
题 :	(10)有三个关系 R、S 和 T 如下:		

B) 文件的大小 D) 数据之间的联系方式 计算机,而一台计算机可被多个人使用,则实体工作人员与实体计算机之间 一对多 C) 多对多 D) 多对一 数据要求的模式是()。 概念模式 C) 外模式 D) 设计模式 :

R S T A B C a 1 2 b 2 1 c 3 1

无纸化真考题库试卷(5) 第1页(共10页)

```
则由关系 R 和 S 得到关系 T 的操作是( )。
                                                              D)并
   A) 自然连接
                     B)差
                                         C)交
(11)以下叙述中错误的是( )。
   A)C语言是一种结构化程序设计语言
   B) 使用三种基本结构构成的程序只能解决简单问题
   C)结构化程序设计提倡模块化的设计方法
   D)结构化程序由顺序、分支、循环三种基本结构组成
(12)下面四个选项中,均是不合法的用户标识符的选项是( )。
   A) c - b goto int
                                         B) A P_0 do
   C) float la0 A
                                         D)_123 temp goto
(13)以下选项中值为1的表达式是()。
   A)1-'0'
                    B)1-'\0'
                                         C)'1'-0
                                                              D)'\0'-'0'
(14)已知各变量的类型说明如下:
   int k,a,b;
   unsigned long w = 5;
   double x = 1.42:
   则以下不符合 C 语言语法的表达式是( )。
   A) x\% (-3)
                                         B) w + = -2
   C) k = (a = 2, b = 3, a + b)
                                         D)a + = a - = (b = 4) * (a = 3)
(15) 设变量 x 为 float 型且已赋值,则以下语句能将 x 中的数值保留到小数点后两位,并将第 3 位四舍五人的
   是( )。
   A) x = (x * 100 + 0.5)/100.0
   B) x = (int) (x * 100 + 0.5) / 100.0
   C) x = x * 100 + 0.5/100.0
   D) x = (x/100 + 0.5) * 100.0
(16)以下程序运行后的输出结果是()。
    main()
   \{ \text{ int } i = 1, j = 2, k = 3 ; \}
     if(i + + = = 1 \& \& ( + + j = = 3 | | k + + = = 3)) printf("% d % d % d \n", i, j, k)
   A)123
                    B)234
                                         C)223
                                                              D)233
(17) 当变量 c 的值不为 2、4、6 时,值也为"真"的表达式是( )。
   A) (c == 2) | | (c == 4) | | (c == 6)
   B) (c \ge 2 \& \& c \le 6) | | (c! = 3) | | (c! = 5)
   C) (c \ge 2\&\&c \le 6)\&\&! (c\%2)
   D) (c > = 2 \& \& c < = 6) \& \& (c\% 2! = 1)
(18) 设变量均已正确定义, 若要通过 scanf("% d% c% d% c", &a1, &c1, &a2, &c2); 语句为变量 a1 和 a2 赋数
    值 10 和 20, 为变量 c1 和 c2 赋字符 X 和 Y。以下所示的输入形式中正确的是(注:□代表空格字符)
   ( )
   A)10□X□20□Y < 回车 >
   B)10□X20□Y < 回车 >
   C)10□X < 回车 >
     20□Y < 回车 >
   D)10X < 回车 >
     20Y < 回车 >
(19) 设有定义:int k = 1, m = 2; float f = 7; 则以下选项中错误的表达式是(
```

```
A)k = k >= k
                                                 B) -k + +
    C) k% int(f)
                                                 D) k >= f >= m
(20)有以下程序:
    #include < stdio. h >
    main()
    int i, j, m = 55;
       for (i = 1; i < = 3; i + +)
       for (j = 3; j < = i; j + +) m = m% j;
       printf("\% d\n",m);
    程序的运行结果是(
                       ) _
    A)0
                        B)1
                                                 C)2
                                                                         D)3
(21)有定义语句:char s[10];,若要从终端给 s 输入 5 个字符,错误的输入语句是(
    A) gets(\&s[0]);
                                                 B) scanf("% s", s[1]);
    C) gets(s);
                                                 D) scanf("\%s", s + 1);
(22)下面函数调用语句含有实参的个数为(
    func((exp1,exp2)(exp3,exp4,exp5));
                        B)2
                                                 C)4
                                                                         D)5
    A)1
(23)有以下程序:
    void sort(int a[],int n) {
     int i, j, t;
     for (i = 0; i < n; i + +)
     for (j = i + 1; j < n; j + +)
     if(a[i] < a[j])
     \{ t = a[i]; a[i] = a[j]; a[j] = t; \}
    main()
    \{ \text{ int aa}[10] = \{1,2,3,4,5,6,7,8,9,10\}, i; 
       sort(aa +2, 5);
       for (i = 0; i < 10; i + +) printf ("\%d,",aa[i]);
       printf("\n");
    程序运行后的输出结果是(
    A)1,2,3,4,5,6,7,8,9,10,
    B)1,2,7,6,3,4,5,8,9,10,
    C)1,2,7,6,5,4,3,8,9,10,
    D)1,2,9,8,7,6,5,4,3,10,
(24)设变量已正确定义并赋值,以下正确的表达式是(
    A) x = y * 5 = x + z
                                                 B) int(15.8%5)
    C) x = y + z + 5, + + y
                                                 D) x = 25\% 5.0
(25)有以下程序:
    #include < stdio. h >
    void fun(int a, int b)
    int t;
        t = a; a = b; b = t;
```

```
main() { int c \lceil 10 \rceil = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}, i;
      for (i = 0; i < 10; i + = 2) fun (c[i], c[i + 1]);
      for (i = 0; i < 10; i + +) print ("\%d,",c[i]);
      printf(" \n"):
    程序的运行结果是( )。
    A)1,2,3,4,5,6,7,8,9,0,
    B)2,1,4,3,6,5,8,7,0,9,
    C)0.9.8.7.6.5.4.3.2.1.
    D)0,1,2,3,4,5,6,7,8,9,
(26)设有如下程序段:
    char s[20] = "beijing", *p;
    则执行 p = s;语句后,以下叙述中正确的是(
    A)可以用*p表示s[0]
    B)s 数组中元素的个数和 p 所指字符串长度相等
    C)s和p都是指针变量
    D)数组 s 中的内容和指针变量 p 中的内容相等
(27)有以下程序:
    #include < stdio. h >
    void fun(int p)
    \{ \text{ int d} = 2; 
        p = d + + ; printf("\% d", p);
    main()
        int a = 1:
        fun(a); printf("%d\n",a);
    程序运行后的输出结果是( )。
    A)32
                       B)12
                                               C)21
                                                                       D)22
(28)以下程序的输出结果是()。
    fun(char p[][10])
    \begin{cases} int n = 0, i \end{cases}
      for (i = 0; i < 7; i + +)
      if (p[i][0] = = T') n + +;
       return n;
    main()
    {char str[][10] = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
      printf("%d\n",fun(str));
    A)1
                       B)2
                                               C)3
                                                                      D)0
(29)下面程序由两个源程序文件 t4.h 和 t4.c 组成,程序编译运行的结果是(
```

```
t4.h的源程序为:
    #define N 10
    #define f2(x)(x*N)
    t4.c的源程序为:
    #include < stdio. h >
    #define M 8
    #define f(x)((x) * M)
    #include "t4.h"
    main()
    int i, j;
     i = f(1+1); j = f2(1+1);
     printf("% d% d \ln, i, j);
    A)920
                        B)1611
                                                  C)911
                                                                           D)1610
(30)下面的程序段运行后,输出结果是(
    int i, j, x = 0;
    static int a[8][8];
    for (i = 0; i < 3; i + +)
    for(j = 0; j < 3; j + +)
        a[i][j] = 2 * i + j;
    for(i = 0; i < 8; i + +)
        x + = a[i][j];
    printf("% d",x);
                                                  C) 不确定值
    A)9
                        B)0
                                                                           D)18
(31)有以下程序:
    #include < stdio. h >
    int f(int n);
    main() \{ int a = 3, s;
      s = f(a); s = s + f(a); printf("% d \in s, s);
    int f(int n) { static int a = 1;
     n + = a + +;
     return n;
    程序运行后的输出结果是(
                                                  C)9
                                                                           D)10
    A)7
                        B)8
(32)有以下程序:
    #include < stdio. h >
    main()
      int c = 0, k;
      for (k = 1; k < 3; k + +) switch (k) default: c + = k;
       case 2:c + +; break;
       case 4:c + = 2; break;
                              无纸化真考题库试卷(5) 第5页(共10页)
```

```
printf("% d \in (c, c);
    程序运行后的输出结果是(
                                               C)5
                                                                       D)3
    A)9
                       B)7
(33) 有以下程序:
    #include < stdio. h >
    struct ord
    \{ int x, y; dt[2] = \{11, 12, 13, 14\}; 
       main() {
       struct ord *p = dt:
       printf("%d,", + + (p - > x)); printf("%d\n", + + (p - > y));
    程序运行后的输出结果是()。
    A)11,12
                       B) 12, 13
                                               C) 13, 14
                                                                       D)14,11
(34)有以下程序:
    #define f(x)(x*x) main()
    int i1, i2;
       i1 = f(8)/f(4); i2 = f(4+4)/f(2+2);
       printf("%d,%d\n",i1,i2);
    程序运行后的输出结果是()。
    A)64, 28
                                               C)4.3
                                                                       D)64,64
                       B)4.4
(35)设有以下说明语句:
    struct ex
    { int x ; float y; char z ; } example;
    则下面的叙述中不正确的是(
    A) struct 结构体类型的关键字
    B) example 是结构体类型名
    C)x,y,z都是结构体成员名
    D) struct ex 是结构体类型名
(36)有以下程序:
    int fun1 (double a) { return (int) (a * = a); }
    int fun2(double x, double y)
    { double a = 0, b = 0;
     a = \text{fun1}(x); b = \text{fun1}(y); return(int)(a + b);
    main()
    \{ \text{double w; w = fun2}(1.1, 2.0); \cdots \}
    程序执行后变量 w 中的值是( )。
    A)5.21
                       B)5
                                               C)5.0
                                                                        D)0.0
(37)有以下程序:
    #include < stdio. h >
    #include < string. h >
    main() { char str[][20] = {"One * World", "one * Dream!"}, * p = str[1];
      printf("%d,",strlen(p));printf("%s\n",p);
```

```
程序运行后的输出结果是(
    A)9, One * World
                                                 B)9.One * Dream!
    C)10,One * Dream!
                                                 D)10,One * World
(38) 阅读下列程序, 当运行函数时, 输入 abc de fg z10, 则输出为( )。
    #include < stdio. h >
    #include < ctype. h >
    #include < string. h >
    int fun(char * str)
    int i, j = 0:
     for (i = 0; str[i]! = '\0'; i + +) if (str[i]! = '') str[i + +] = str[i];
     str[i] = '\0';
    main()
     char str[81]:
     int n:
     printf("Input a string : ");
     gets(str);
     puts(str);
     fun(str);
     printf("%s\n",str);
    A) abc
    B)z10
    C) abc de fg z10
      abcdefgz10
    D) abc de fg z10
(39)下面程序的运行结果是( )。
    #include < stdio. h >
    main()
    static char a = "Languagef", b = "programe";
       char * p1, * p2; int k;
       p1 = a; p2 = b;
       for (k = 0; k < = 7; k + +)
       if (*(p1+k)) = *(p2+k)) print ("\%c", *(p1+k));
                                                                          D)有语法错
    A)gae
                        B)ga
                                                 C) Language
(40) 有以下程序:
    #include < stdio. h >
    main()
    int a = 5, b = 1, t;
     t = (a < < 2) | b; printf("\% d\n",t);
    程序运行后的输出结果是(
```

无纸化真考题库试卷(5) 第7页(共10页)

A)21 B)11 C)6 D)1

二、程序填空题(共18分)

下列给定程序中,函数 fun 的功能是:将 s 所指字符串中的所有数字字符移到所有非数字字符之后,并保持数字字符串和非数字字符串原有的次序。

例如,s所指的字符串为"def35adh3kjsdf7",执行后结果为"defadhajsdf3537"。

请在程序的下划线处填入正确的内容把下划线删除,使程序得出正确的结果。

注意:部分源程序在文件 BLANK1. C 中。

不得增行或删行,也不得更改程序的结构!

三、程序修改题(共18分)

fun(s);

下列给定程序中函数 fun 的功能是:用冒泡法对 6 个字符串进行升序排列

请改正程序中的错误,使它能得出正确的结果。

printf("\nThe result is: %s\n",s);

 $\frac{1}{3} = \frac{1}{3} = \frac{1}$

printf("\nThe original string is: %s\n",s);

注意:部分源程序在文件 MODI1. C 中,不得增行或删行,也不得更改程序的结构!

#include < stdio. h >
#include < string. h >
#define MAXLINE 20

无纸化真考题库试卷(5) 第8页(共10页)

```
for (j = i + 1, j < 6, j + +)
               if (\text{strcmp}(*(\text{pstr} + i), *(\text{pstr} + j)) > 0)
                  p = *(pstr + i);
                  *(pstr + i) = pstr + i;
                  *(pstr + j) = p;
   main()
   int i:
      char * pstr[6], str[6][MAXLINE];
      for(i = 0; i < 6; i + +) pstr[i] = str[i];
      printf( "\nEnter 6 string(1 string at each line): \n" );
      for(i = 0; i < 6; i + +) scanf("%s", pstr[i]);
      fun(pstr);
      printf("The strings after sorting:\n");
      for(i = 0; i < 6; i + +) printf("% s n", pstr[i]);
四、程序设计题(共24分)
   编写函数 fun,其功能是:求 ss 所指字符串中指定字符的个数,并返回此值。
   例如,若输入字符串123412132,输入字符为1,则输出3。
   注意:部分源程序在文件 PROG1. C 中。
   请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 的花括号中填入你编写的若干语句。
   #include < stdio. h >
   #include < string. h >
   #define M 81
   int fun(char *ss, char c)
   main()
   char a [M], ch;
      void NONO();
      printf("\nPlease enter a string:"); gets(a);
```

无纸化真考题库试卷(5) 第9页(共10页)

```
printf("\nPlease enter a char:"); ch = getchar();
   printf("\nThe number of the char is: %d\n", fun(a, ch));
  NONO();
void NONO()
//* 本函数用于打开文件,输入测试数据,调用 fun 函数,输出数据,关闭文件。*/
int i:
FILE * rf. * wf:
char a[M], b[M], ch;
rf = fopen("in. dat", "r");
wf = fopen("out.dat", "w");
for(i = 0; i < 10; i + +)
  fscanf(rf, "%s", a);
  fscanf(rf, "%s", b):
  ch = *b:
  fprintf(wf, "% c = \% d n", ch, fun(a, ch));
fclose(rf):
fclose(wf):
```

全国计算机等级考试无纸化真考题库试卷(6) 二级 C

	(考试时间	120 分钟,满分 100 分)
一、选择题(每小题1分,	,共 40 分)		
1)下列叙述中正确的是	<u>!</u> () ₀		
A)算法就是程序		B)设计算法时只	需要考虑数据结构的设计
C)设计算法时只需要	要考虑结果的可靠性	D)以上三种说法	
2)下列叙述中正确的是		, , , , , , ,	
, , , , , , , , , , , , , , , , , , , ,	点的数据结构不一定是	非线性结构	
	的数据结构不一定是线		
C)循环链表是非线性		Harris H. I.A.	
D) 双向链表是非线性	****		
(3)下列关于二叉树的叙) 。	
A)叶子结点总是比原		, -	比度为2的结点多一个
C)叶子结点数是度为			(数是度为1的结点数的两倍
4)软件生命周期中的沿		/ 224	(MOCIONAL PARENTAL ALIE
A)市场调研	B)需求分析	C)软件测试	D) 软件维护
5)某系统总体结构图如	, • ,	-/ WIT 104 PV	- / ·// [· / / / / / / / / / / / / / / /
- / / / / / / / / / / / / / / / / / / /	. 1 = 1/2 7 - 1	XY系统	
	功能1	功能2 功能3	
	rtióta i	Théta a	
汝 亥纮 肖 林 牡 牞 囫 孙	功能2.1	功能2.2 功能2.3	
该系统总体结构图的		C) 2	D)2
A)7	B)6	C)3	D)2
6)程序调试的任务是() 。	D)必江和良品工	^ T/ts, k41-
A)设计测试用例	日	B)验证程序的正	
C) 发现程序中的错误		D) 诊断和改正程	E
7)下列关于数据库设计)。 D) 左短 公 乃] . W	(5D.井-) 粉.根.之.曲
A)在需求分析阶段到)段建立数据字典 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
C)在逻辑设计阶段系统的二级特		D) 任物埋以订例) 段建立数据字典
8)数据库系统的三级模		C) H #=+	D) 粉招供子
A)概念模式	B)内模式	C)外模式	D)数据模式
9)有三个关系 R、S 和 T			
	R	S	T
	A B C	A D A	B C D
	a 1 2	c 4 c	3 1 4
	b 2 1		
	c 3 1		
则由关系 R 和 S 得到	到关系 T 的操作是()。	
A) 自然连接	B)交	C)投影	D)并
, -	,	,	

(10)下列选项中属于面向对象设计方法主要特征的是()。 C)模块化 D)逐步求精 A)继承 B) 自顶向下 (11)以下叙述中正确的是()。 A)C语言程序将从源程序中第一个函数开始执行 B)可以在程序中由用户指定任意一个函数作为主函数,程序将从此开始执行 C) C 语言规定必须用 main 作为主函数名,程序从此开始执行,在此结束 D) main 作为用户标识符,用以命名任意一个函数作为主函数 (12)下列是用户自定义标识符的是()。 D) LINE -3 $A)_w1$ B)3_xy C) int (13)执行以下程序时输入 1234567 < CR > ,则输出结果是()。 #include < stdio. h > main() { int a = 1, b; scanf("%3d%2d",&a,&b); printf("% d% $d \ln$ ", a,b); A) 12367 B) 12346 C)12312 D)12345 (14)以下选项中,不能作为合法常量的是()。 C)1.234e0.5 D)1.234e0 A) 1. 234e05 B) 1.234e + 5(15)有以下程序,其中%u表示按无符号整数输出 main() { unsigned int x = 0xFFFF; /* x 的初值为十六进制数 */ printf("% $u \setminus n$ ",x); 程序运行后的输出结果是()。 D)0xFFFF A) -1B)65535 C)32767 (16) 当用户要求输入的字符串中含有空格时,应使用的输入函数是()。 A) scanf() B) getchar() C)gets() D) getc() (17) 若执行下面的程序时,从键盘输入6和2,则输出结果是()。 main() int a,b,k; scanf("%d,%d",&a,&b); k = a;if (a < b) k = a% b; else k = b% a; printf("%d\n",k); A)5 C)2 D)0 (18)有以下程序: fun(int x) int p; if (x = 0 | x = 1) return (3); p = x - fun(x-2); return p; printf("%d\n",fun(7));} 执行后的输出结果是()。 A)7 B)3 C)2 D)0 无纸化真考题库试卷(6) 第2页(共8页)

```
(19)已有定义:char c;,程序前面已在命令行中包含 ctype. h 文件,不能用于判断 c 中的字符是否为大写字母
                                                                                                      int x[3][3] = \{1,2,3,4,5,6,7,8,9\}:
                                                                                                      则下面语句的输出结果是()。
   的表达式是( )。
   A) isupper(c)
                                              B)'A' < = c < = 'Z'
                                                                                                      for (i = 0; i < 3; i + +)
                                              D) c < = ('z' - 32) & & ('a' - 32) < = c
   C)'A' < = c \& \& c < = 'Z'
                                                                                                      printf(" \% d", x [2-i] [i]);
(20)设有定义 int a; float b; ,执行 scanf("%2d%f",&a,&b); 语句时,若从键盘输入876<空格>854.0<回
                                                                                                      A)951
                                                                                                                         B)741
                                                                                                                                                 C)753
                                                                                                                                                                         D)963
   \mathbf{x} > \mathbf{x} 和 b 的值分别是( )。
                                                                                                  (26)在 C 语言中,只有在使用时才占用内存单元的变量,其存储类型是( )。
   A)876 和 543.000000 B)87 和 6.000000
                                               C)87 和 543.000000
                                                                      D)76 和 543.000000
                                                                                                      A) auto 和 register
                                                                                                                         B) extern 和 register
                                                                                                                                                 C) auto 和 static
                                                                                                                                                                         D) static 和 register
(21)有以下定义:int a;long b;double x,y;则以下选项中正确的表达式是()。
                                                                                                  (27) 有以下程序:
   A) a\% (int) (x - y) B) a = x! = y;
                                              C)(a*y)%b
                                                                      D)y = x + y = x
                                                                                                      #include < stdio. h >
(22)运行下面程序时,从键盘输入字母H,则输出结果是()。
                                                                                                      int fun(int a, int b)
   #include < stdio. h >
   main()
                                                                                                          if (b = 0) return a:
                                                                                                          else return(fun(-a, -b);
    char ch;
       ch = getchar();
       switch(ch)
                                                                                                      main() {
       case 'H': printf("Hello! \n");
                                                                                                       printf("% d \ln (4.2));
        case 'G':printf("Good morning! \n");
        default:printf("Bye_Bye! \n");
                                                                                                      程序的运行结果是()。
                                                                                                                         B)2
                                                                                                                                                 C)3
                                                                                                                                                                         D)4
                                                                                                      A)1
                                                                                                  (28) 有以下程序:
   A) Hello!
                       B) Hello!
                                               C) Hello!
                                                                      D) Hello!
                                                                                                      point(char * p) \{p + = 3;\}
                         Good Moring!
                                                 Good morning!
                                                                         Bye_Bye!
                                                                                                      main()
                                                 Bye_Bye!
                                                                                                      \{ \text{char a}[4] = \{ '1', '2', '3', '4' \}, * p = a; 
(23) 有以下程序:
                                                                                                        point(p);
   #include < stdio. h >
                                                                                                        printf("% c \setminus n", *p);
    main()
   \{ \text{ char s} \ ] = "012x4y \ 08s34f4w2"; 
                                                                                                      程序运行后的输出结果是()。
      int i, n = 0;
                                                                                                                                                 C)3
                                                                                                                                                                         D)4
                                                                                                      A)1
                                                                                                                         B)2
      for (i = 0; s[i]! = 0; i + +)
                                                                                                  (29)阅读下列程序段,程序的输出结果为(
      if(s[i] > = 0' \& \& s[i] < = 9') \quad n + +;
                                                                                                      #include "stdio.h"
      printf("\%d\n",n);
                                                                                                      #define M(X,Y)(X) * (Y)
                                                                                                      #define N(X,Y)(X)/(Y)
    程序运行后的输出结果是()。
                                                                                                      main()
   A)0
                       B)3
                                               C)4
                                                                      D)7
                                                                                                      int a = 5, b = 6, c = 8, k;
(24)有以下程序:
                                                                                                         k = N(M(a,b),c);
                                                                                                          printf("\%d\n",k);
   main()
   \begin{cases} \text{int } a = 0, b = 0, c = 0, d = 0; \end{cases}
                                                                                                      A)3
                                                                                                                         B)5
                                                                                                                                                 C)6
                                                                                                                                                                         D)8
      if (a = 1) b = 1; c = 2;
                                                                                                  (30)设有以下函数:
      else
                                                                                                      void fun(int n, char *s) { ··· }
      d = 3:
                                                                                                      则下面对函数指针的定义和赋值均正确的是(
      printf("%d,%d,%d,%d\n",a,b,c,d);
                                                                                                      A) void (*pf)(); pf = fun;
                                                                                                                                                 B) void * pf(); pf = fun;
                                                                                                      C) void * pf(); * pf = fun;
                                                                                                                                                 D) void( * pf) (int, char); pf = &fun;
    程序输出结果是()。
                                                                                                  (31) 有以下程序:
   A)0,1,2,0
                       B)0.0.0.3
                                              C)1,1,2,0
                                                                      D) 编译有错
                                                                                                      #include < stdio. h >
(25) 定义如下变量和数组:
                                                                                                      void fun(int *s,int n1,int n2)
   int i;
```

```
int i, j, t;
     i = n1 : j = n2 :
      while (i < j) \{t = s[i]; s[i] = s[j]; s[j] = t; i + + ; j - -; \}
    main()
     int a [10] = \{1,2,3,4,5,6,7,8,9,0\}, k;
     fun(a,0,3); fun(a,4,9); fun(a,0,9);
     for (k = 0; k < 10; k + +) printf("%d",a[k]); printf("\n");
    程序的运行结果是()。
    A)0987654321
                         B)4321098765
                                                  C)5678901234
                                                                           D)0987651234
(32)下面结构体的定义语句中,错误的是(
    A) struct ord { int x; int y; int z; }; struct ord a;
                                                  B) struct ord { int x; int y; int z; } struct ord a;
    C) struct ord { int x; int y; int z; } a;
                                                  D) struct { int x; int y; int z; } a;
(33)有以下程序:
    void f(int * q) int i = 0:
      for (i < 5; i + +)(*q) + +;
    main() { int a [5] = {1,2,3,4,5}, i;
      f(a):
      for (i = 0; i < 5; i + +) print ("\%d,",a[i]);
    程序运行后的输出结果是( )。
    A)2,2,3,4,5,
                        B)6,2,3,4,5,
                                                  C)1,2,3,4,5,
                                                                           D)2,3,4,5,6,
(34) 有以下程序:
    #include < stdio. h >
    void fun(char * a, char * b) { while( * a = = ' * ') a + + ;
     while (*b = *a) \{b + +; a + +; \}
    main()
      fun(s,t); puts(t);
    程序的运行结果是()。
    A) * * * * * a * b B) a * b
                                                  C) a * b * * * *
                                                                           D) ab
(35)有以下程序:
    #include < stdio. h >
    struct st
    \{ \text{ int } x, y; | \text{ data}[2] = \{1, 10, 2, 20\} ; 
    main() { struct st * p = data;
     printf("%d,",p->y); printf("%d\n",(++p)->x);
    程序的运行结果是(
                         ) 。
    A)10.1
                         B)20.1
                                                  C)10,2
                                                                           D)20,2
(36) 有以下程序:
    int fun(int x[], int n)
```

```
无纸化真考题库试卷(6) 第5页(共8页)
```

```
\{ static int sum = 0.i:
      for (i = 0; i < n; i + +) sum + = x[i];
      return sum:
    main()
    s = fun(a,5) + fun(b,4); printf("%d\n",s);
    程序执行后的输出结果是( )。
                                           C)60
                                                                 D)55
   A)45
                     B)50
(37) 有以下程序:
    int add(int a, int b) { return(a + b); }
    main()
   \{ \text{ int } k, (*f)(), a = 5, b = 10 \}
     f = add:
    则以下函数调用语句错误的是( )。
   A) k = (*f)(a,b): B) k = add(a,b):
                                                                 D) k = f(a,b):
                                           C) k = *f(a,b):
(38) 有以下程序段:
   struct st
   { int x; int * y; } * pt;
     int a[] = \{1,2\}, b[] = \{3,4\};
     struct st c[2] = \{10, a, 20, b\};
     pt = c:
   以下选项中表达式的值为11的是()。
   A) * pt -> y
                     B) pt \rightarrow x
                                           C) + + pt \rightarrow x
                                                                 D) (pt + +) -> x
(39)有以下程序(streat 函数用以连接两个字符串):
    #include < stdio. h >
    #include < string. h >
    main() \ char a \[ 20 \] = "ABCD\0EFG\0", b \[ \] = "IJK";
      strcat(a,b); printf("% s\n",a);
    程序运行后的输出结果是( )。
   A) ABCDE\0FG\0IJK B) ABCDIJK
                                           C)IJK
                                                                 D) EFGIJK
(40) 有以下程序:
    main() { unsigned char a = 2, b = 4, c = 5, d;
     d = a \mid b; d\& = c; printf("\% d \mid n", d);
    程序运行后的输出结果是()。
                                                                 D)6
   A)3
                     B)4
                                           C)5
二、程序填空题(共18分)
   下列给定程序中,函数 fun 的功能是:从形参 ss 所指字符串数组中,删除所有串长超过 k 的字符串,函数
返回剩余字符串的个数。ss 所指字符串数组中共有 N 个字符串,且串长小于 M。
   请在下划线处填入正确的内容并将下划线删除,使程序得出正确的结果。
   注意:部分源程序在文件 BLANK1. C 中。
```

无纸化真考题库试卷(6) 第6页(共8页)

```
不得增行或删行,也不得更改程序的结构!
   #include < stdio. h >
   #include < string. h >
   #define N 5
   #define M 10
   int fun(char (*ss)[M], int k)
   int i, j = 0, len;
   /*********found********/
     for (i = 0: i < 1: i + +)
     len = strlen(ss[i]):
   /*********found*********/
         if(len \le 2)
   /***********************/
            strcpy(ss[i++],3_);
    return j;
   main()
   \{ char x [N] [M] = \{ "Beijing", "Shanghai", "Tianjin", "Nanjing", "Wuhan" \} 
     int i.f:
     printf("\nThe original string\n"):
     for (i = 0 : i < N : i + +)
     puts (x[i]);
     printf(" \n");
     f = fun(x,7):
     printf("The string witch length is less than or equal to 7:\n");
     for (i = 0; i < f; i + +) puts (x[i]);
     printf("\n"):
三、程序修改题(共18分)
   下列给定程序中函数 fun 的功能是:逐个比较 p,q 所指两个字符串对应位置上的字符,并把 ASCII 值大
或相等的字符依次存放到 c 所指的数组中,形成一个新的字符串。
   例如,若主函数中 a 字符串为"aBCDeFgH",b 字符串为"Abcd",则 c 中的字符串应为"aBcdeFgH"。
   请改正程序中的错误,使它能得出正确的结果。
   注意:部分源程序在文件 MODII. C 中,不得增行或删行,也不得更改程序的结构!
   #include < stdio. h >
   #include < string. h >
   void fun( char * p , char * q , char * c)
  /***********found**********/
  /***********found***********/
     while (*p! = *q)
     if( *p < *q ) c[k] = *q;
        else c[k] = *p;
        if (*p) p + +;
```

```
if (*q) q++:
         k + + :
   main()
   \{ char a [10] = "aBCDeFgH", b[10] = "ABcd", c[80] = {'\0'} \};
       fun(a,b,c):
       printf("The string a: "); puts(a);
       printf("The string b: "); puts(b);
       printf("The result : "); puts(c);
四、程序设计题(共24分)
中其他 * 号全部删除。在编写函数时,不得使用 C 语言提供的字符串函数。
```

规定输入的字符串中只包含字母和*号。请编写函数 fun,其功能是:除了字符串前导的*号之外,将串

例如,字符串中的内容为:"****A*BC*DEF*G******,删除后,字符串中的内容应当 是:"***ABCDEFG"。

注意:部分源程序在文件 PROG1. C 中。

请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 的花括号中填入你编写的若干语句。

#include < stdio. h >

```
void fun( char * a)
main()
{ char s[81]; void NONO();
 printf("Enter a string:\n");gets(s);
 fun(s);
 printf("The string after deleted: \n"); puts(s);
 NONO();
void NONO()
{/*本函数用于打开文件,输入数据,调用函数,输出数据,关闭文件。*/
    FILE * in, * out;
    int i; char s [81];
    in = fopen("in. dat", "r");
    out = fopen("out. dat", "w");
    for (i = 0; i < 10; i + +)
        fscanf(in, "%s",s);
        fun(s);
        fprintf(out, "%s\n",s);
    fclose(in):
    fclose(out):
```

全国计算机等级考试无纸化真考题库试卷(7) 二级 C

(考试时间 120 分名	钟,满分100分)
一、选择题(每小题 1 分,共 40 分)	
(1)下列叙述中正确的是()。 A)循环队列是队列的一种链式存储结构 C)循环队列是非线性结构 (2)下列关于线性链表的叙述中,正确的是()。 A)各数据结点的存储空间可以不连续,但它们的存	B)循环队列是队列的一种顺序存储结构 D)循环队列是一种逻辑结构 储顺序与逻辑顺序必须一致
B)各数据结点的存储顺序与逻辑顺序可以不一致, (C)进行插入与删除时,不需要移动表中的元素 D)以上说法均不正确	恒它们的存储空间必须连续
(3)—棵二叉树共有 25 个结点,其中 5 个是叶子结点,则 A)16 B)10	川度为 1 的 结点数为()。 C)6 D)4
(4)在下列模式中,能够给出数据库物理存储结构与物理 A)外模式 B)内模式 (5)在满足实体完整性约束的条件下()。 A)一个关系中应该有一个或多个候选关键字 B)一个关系中只能有一个候选关键字 C)一个关系中必须有多个候选关键字	理存取方法的是()。 C)概念模式 D)逻辑模式
D)一个关系中可以没有候选关键字 (6)有三个关系 R、S 和 T 如下:	
R A B C a 1 2 b 2 1 c 3 1	S T C C 1
则由关系 R 和 S 得到关系 T 的操作是()。 A)自然连接 B)交 (7)下面描述中,不属于软件危机表现的是()。 A)软件过程不规范 C)软件质量难以控制 (8)下面不属于需求分析阶段任务的是()。 A)确定软件系统的功能需求 C)需求规格说明书评审 (9)在黑盒测试方法中,设计测试用例的主要根据是(A)程序内部逻辑 C)程序数据结构 (10)在软件设计中不使用的工具是()。 A)系统结构图	C)除 D)并 B)软件开发生产率低 D)软件成本不断提高 B)确定软件系统的性能需求 D)制定软件集成测试计划)。 B)程序外部功能 D)程序流程图 B)PAD图
A/ 永扎特門图	D/I AD EI

```
C)数据流图(DFD图)
                                             D)程序流程图
(11)以下可用作 C 语言用户标识符的是( )。
    A) void, define, WORD
                                             B) a3_b3,_123,IF
    C) FOR, - - abc, Case
                                             D)2a, Do, Sizeof
(12)以下叙述中错误的是( )。
    A)C 语言的可执行程序是由一系列机器指令构成的
    B)用 C 语言编写的源程序不能直接在计算机上运行
    C) 通过编译得到的二进制目标程序需要连接才可以运行
    D) 在没有安装 C 语言集成开发环境的机器上不能运行 C 源程序生成的. exe 文件
(13)以下4个选项中,不能看作一条语句的是(
                                             B) a = 5, b = 2.5, c = 3.6;
    A);
    C) if (b! = 5) x = 2; y = 6;
                                             D) return j;
(14)以下不能正确计算代数式\frac{1}{3} \times \sin \frac{1}{2} \times \sin \frac{1}{2}值的 C 语言表达式是(
                                             B) \sin(0.5) * \sin(0.5)/3
    A) 1/3 * \sin(1/2) * \sin(1/2)
                                             D)1/3.0 * pow(sin(1.0/2), 2)
    C) pow(\sin(0.5),2)/3
(15) 若有说明: int * p, m = 5, n; ,以下正确的程序段是( )。
    A) p = &n; scanf("\% d", &p);
                                             B) p = &n; scanf("\% d", *p)
    C) scanf("% d",&n); * p = n;
                                             D) p = &n; *p = m;
(16)以下程序的输出结果是()。
    main()
       int a = 20:
       printf("%d,%o,%x\n",a,a,a);
    A)20, 024,0x14
                                             B)20, 24,14
    C)20, 0x14,024
                                             D)20, 20,20
(17)下面程序的运行结果是()。
    main()
     int y = 5, x = 14; y = ((x = 3 * y, x + 6), x - 1);
     printf(" x = \% d, y = \% d", x, y);
    A) x = 27, y = 27
                                             B) x = 12, y = 13
    C) x = 15, y = 14
                                             D) x = y = 27
(18) 设变量 x 和 y 均已正确定义并赋值。以下 if 语句中,在编译时将产生错误信息的是(
    A) if (x + +);
    B) if (x > y \&\& y! = 0);
    C) if (x > 0)x - -
     else y + + ;
    D) if (y < 0) \{ \}
      else x + + ;
(19)请阅读以下程序:
    #include < stdio. h >
    main()
    \{ \text{ int } x = 1, y = 0, a = 0, b = 0 \}
```

```
switch(x)
      case 1:
          switch(y)
       { case 0:a + + :break: }
         case 2:
          a + + ,b + + ;break; }
     printf( " a = \% d, b = \% d n ", a, b);
   上面程序的输出结果是()。
                                            B) a = 1, b = 1
   A) a = 2, b = 1
                                            D) a = 2, b = 2
   C) a = 1, b = 0
(20)以下叙述中正确的是()。
   A) 调用 printf 函数时,必须要有输出项
   B)使用 putchar 函数时,必须在之前包含头文件 stdio. h
   C)在 C 语言中,整数可以以十二进制、八进制或十六进制的形式输出
   D)调用 getchar 函数读入字符时,可以从键盘上输入字符所对应的 ASCII 码
(21)有以下语句:char b[8]; int c;,则正确的输入语句是( )。
   A) scanf("% s% d", &b, &c);
                                           B) scanf("% s% d",&b,c);
   C) scanf("% s%d",b,c);
                                           D) scanf("% s% d", b,&c);
(22)有以下程序:
   #include < stdio. h >
   main()
   { int a[] = \{1,2,3,4\}, y, *p = &a[3];
      --p; y = *p; printf("y = % d\n",y);
   程序的运行结果是()。
                     B)y = 1
                                                                 D)y = 3
   A)y = 0
                                           C)y = 2
(23) 若有以下说明和语句,请选出哪个是对 c 数组元素的正确引用( )。
   int c[4][5], (*cp)[5];
   cp = c;
                                           B) * (cp + 3)
   A) cp + 1
   C) *(cp +1) +3
                                            D) * ( * cp + 2)
(24) 有以下程序:
   #include < string. h >
   main()
   \{ \text{ char p}[20] = \{ 'a', 'b', 'c', 'd' \}, q[] = "abc", r[] = "abcde" \} 
       streat(p,r); strepy(p + strlen(q),q);
       printf("\%d\n", strlen(p));
   程序运行后的输出结果是()。
                                            C)11
                                                                 D)7
   A)9
                     B)6
(25)以下程序段中的变量已正确定义:
   for (i = 0; i < 4; i + +, i + +)
   for (k = 1; k < 3; k + +); print (" * ");
   程序段的输出结果是()。
```

无纸化真考题库试卷(7) 第3页(共9页)

```
A) * * * * * * * * B) * * * *
                                                 C) * *
                                                                          D) *
(26)以下程序运行后的输出结果是()。
    main()
    \{ char ch [ ] = "uvwxyz", *pc; 
      pc = ch:
      printf("% c \n", * (pc + 5));
    A)z
                        B)0
                                                 C)元素 ch[5]地址
                                                                         D)字符 v 的地址
(27)有以下程序:
    #include < stdio. h >
    void fun(char ** p)
    { ++p;
      printf("%s\n", *p);
    main()
    {char * a[] = { "Morning", "Afternoon", "Evening", "Night" };
      fun(a):
    运行后的输出结果是(
    A) Afternoon
                        B) fternoon
                                                 C) Morning
                                                                          D) orning
(28)以下程序运行后的输出结果是()。
    void f(int n,int *r)
    \int \int \int dt \, dt = 0:
        if (n\% 3 = 0)
        r1 = n/3:
        else if (n\%5 = =0)
           r1 = n/5:
           else f(-n.&r1):
         * r = r1:
    main()
    int m = 7, r;
     f(m,&r);
      printf("%d\n",r);
                        B)1
                                                 C)3
                                                                         D)0
    A)2
(29)有以下程序:
    main()
       int a[3][2] = \{0\}, (*ptr)[2], i, j;
       for (i = 0; i < 2; i + +)
       \{ ptr = a + i ; scanf("\% d", ptr) ; ptr + + ; \}
        for (i = 0; i < 3; i + +)
        for(j=0;j<2;j++)
         printf("%2d",a[i][j]);
```

```
printf("\n");
    若运行时输入:123<回车>,则输出结果是(
    A) 编译错误
      2.0
      0.0
    B)10
      20
      0.0
    C)12
      2 0
      3 0
    D)10
(30) 有以下程序:
    #include < stdio. h >
    void fun(char * s) { while(* s) } if(* s\%2 = = 0) printf("\%c", * s);
        s + +;
    main() \{ char a \rceil = \{ "good" \} ;
      fun(a); printf("\n");
    注意:字母 a 的 ASCII 码值为 97,程序运行后的输出结果是(
    A)d
                                                                      D) good
                       B)go
                                               C) god
(31)有以下程序:
    main()
    {int i, s = 0,t[] = {1,2,3,4,5,6,7,8,9};
    for (i = 0; i < 9; i + = 2)s + = *(t + i); printf("%d\n",s);
    程序执行后的输出结果是( )。
                                                                      D)36
    A)45
                       B)20
                                               C)25
(32) 当用"#define F 37.5f"定义后,下列叙述正确的是( )。
    A)F 是 float 型数
                                               B)F 是 char 型数
   C)F 无类型
                                              D)F 是字符串
(33)有以下程序(函数 fun 只对下标为偶数的元素进行操作)#include < stdio. h >
    void fun(int *a,int n) { int i,j,k,t;
      for (i = 0; i < n - 1; i + = 2) k = i;
         for(j = i; j < n; j + = 2) if(a[j] > a[k]) k = j;
         t = a[i]; a[i] = a[k]; a[k] = t;
    main() { int aa[10] = \{1,2,3,4,5,6,7\}, i;
      fun(aa,7);
      for (i = 0; i < 7; i + +) print ("\% d,",aa[i]);
      printf("\n");
```

```
无纸化真考题库试卷(7) 第5页(共9页)
```

```
程序运行后的输出结果是(
    A)7,2,5,4,3,6,1,
                                                 B)1,6,3,4,5,2,7,
    C)7,6,5,4,3,2,1,
                                                 D)1,7,3,5,6,2,1,
(34)阅读下列程序,则运行结果为()。
    #include "stdio, h"
    fun()
    \int \int \int dx \, dx = 3;
       x + +;
       return x:
    main()
    int i,x;
       for (i = 0; i < 3; i + +)
          x = fun();
       printf("% d \setminus n",x);
                                                 C)5
                                                                          D)6
                        B)4
    A)3
(35)下列程序的输出结果是()。
    #include "stdio.h"
    #define N 3
    #define M 3
    void fun(int a[M][N])
    \left\{ \text{ printf}("\%d\n", *(a[1]+2)); \right\}
    main()
    { int a[M][N];
       int i, j;
       for (i = 0; i < M; i + +)
        for(j = 0; j < N; j + +)
         a[i][j] = i + j - (i - j);
       fun(a);
    A)3
                        B)4
                                                 C)5
                                                                          D)6
(36)有以下程序段:
    typedef struct NODE
    {int num; struct NODE * next;
    OLD;
    以下叙述中正确的是()。
    A)以上的说明形式非法
                                                 B) NODE 是一个结构体类型
    C)OLD 是一个结构体类型
                                                 D)OLD 是一个结构体变量
(37) 有以下程序:
    struct S{int n; int a\lceil 20 \rceil;};
    void f(int *a, int n) { int i;
      for (i = 0; i < n - 1; i + +) a[i] + = i;
    main() { int i; struct S s = \{10, \{2,3,1,6,8,7,5,4,10,9\}\};
       f(s.a,s.n);
       for (i = 0; i < s. n; i + +) print ("\% d,",s. a[i]);
```

```
程序运行后的输出结果是(
    A)2,4,3,9,12,12,11,11,18,9,
    B)3,4,2,7,9,8,6,5,11,10,
    C)2,3,1,6,8,7,5,4,10,9,
    D)1.2.3.6.8.7.5.4.10.9.
(38)下列洗项中,能够满足"若字符串 s1 等干字符串 s2.则执行 ST"要求的是(
    A) if (\text{strcmp}(s2,s1) = = 0) ST;
    B) if (sl = s2) ST:
    C) if (\text{strcpy}(s1,s2) = = 1) ST;
    D) if (sl - s2 = 0) ST:
(39)有以下程序:
    struct STU
    char name[10]; int num; float TotalScore; \;
    void f(struct STU * p)
    \{ \text{ struct STU s}[2] = \{ \{ \text{"SunDan"}, 20044, 550 \}, \{ \text{"Penghua"}, 20045, 537 \} \}, *q = s; 
    ++p; ++q; *p = *q;
    main()
    \{ \text{ struct STU s}[3] = \{ \{ \text{"YangSan", 20041, 703} \}, \{ \text{"LiSiGuo", 20042, 580} \} \} 
      printf("% s % d % 3.0f\n", s[1]. name, s[1]. num, s[1]. TotalScore);
    程序运行后的输出结果是( )。
                                                B) Penghua 20045 537
    A) SunDan 20044 550
    C) LiSiGuo 20042 580
                                                D) SunDan 20041 703
(40)下面程序段的输出为()。
    #include "stdio.h"
    main()
    printf("\% d\n", 12 < < 2):
                                                C)48
    A)0
                       B)47
                                                                        D)24
二、程序填空题(共18分)
内容不同的字符串,且串长小于 M。
    请在下划线处填入正确的内容并将下划线删除,使程序得出正确的结果。
   注意:部分源程序在文件 BLANK1. C 中。
    不得增行或删行,也不得更改程序的结构!
    #include < stdio. h >
    #include < string. h >
    #define N 5
    #define M 8
    int fun(char (*ss)[M],char *t)
   int i;
```

```
for (i = 0; i < 1; i + +)
   /* * * * * * * * * found * * * * * * * * * /
           if (\operatorname{strcmp}(\operatorname{ss}[i],t) = 0) return 2;
      return -1:
   main()
   \{ \text{ char ch}[N][M] = \{ \text{"if"," while"," switch"," int"," for" } ,t[M] \}.
     int n.i:
     printf("\nThe original string\n"):
     for (i = 0; i < N; i + +) puts (ch[i]):
     printf("\n");
     printf("\nEnter a string for search: "); gets(t);
     n = fun(ch,t):
   /********* found *** *** ***/
      if (n = 3) printf ("\nDon't found! \n");
      else printf("\nThe position is %d.\n",n);
三、程序修改颢(共18分)
   下列给定程序中函数 fun 的功能是:从整数 10 到 55 之间, 查找能被 3 整除日有一位上的数值是 5 的数,
把这些数放在 b 所指的数组中,这些数的个数作为函数值返回。规定函数中 al 放个位数, a2 放十位数。
   请改正程序中的错误,使它能得出正确的结果。
   注意:部分源程序在文件 MODII. C中,不得增行或删行,也不得更改程序的结构!
   #include < stdio. h >
   int fun( int *b)
   int k, a1, a2, i = 0:
      for (k = 10: k < 55: k + +)
   /***********found**********/
           a2 = k/10:
           a1 = k - a2 * 10:
           if (k\%3 = 0 \&\& a2 = 5) | (k\%3 = 0 \&\& a1 = 5)
           \{b[i] = k; i + +; \}
```

/* * * * * * * * * * * * found * * * * * * * * * * * * * /

return k:

printf("The result is :\n");

for (k = 0; k < m; k + +)

printf("%4d",a[k]);

 $\int \int \int a \left[100 \right] k, m;$

m = fun(a);

printf("\n");

main()

下列给定程序中,函数 fun 的功能是:在形参 ss 所指字符串数组中查找与形参 t 所指字符串相同的串, 找到后返回该串在字符串数组中的位置(即下标值),若未找到则返回-1。ss 所指字符串数组中共有 N 个

```
/********* found * * * * * * * * * * * * /
```

无纸化真考题库试卷(7) 第7页(共9页)

四、程序设计题(共24分)

规定输入的字符串中只包含字母和*号。请编写函数 fun,其功能是:将字符串尾部的*号全部删除,前面和中间的*号不动。

例如,字符串中的内容为: "****A*BC*DEF*G*******,删除后,字符串中的内容应当是: "***A*BC*DEF*G"。在编写函数时,不得使用 C 语言提供的字符串函数。

注意:部分源程序在文件 PROG1. C中。

请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 的花括号中填入你编写的若干语句。#include < stdio. h >

```
void fun( char * a )
main()
char s[81]; void NONO();
  printf("Enter a string:\n");gets(s);
  fun( s );
  printf("The string after deleted:\n");puts(s);
  NONO();
void NONO()
//* 本函数用于打开文件,输入数据,调用函数,输出数据,关闭文件。*/
FILE * in, * out;
int i ; char s[81] ;
in = fopen("in. dat", "r");
out = fopen("out.dat", "w");
 for(i = 0; i < 10; i + +)
  fscanf(in, "%s", s);
  fun(s);
  fprintf(out, "%s\n", s);
 fclose(in);
 fclose(out);
```

无纸化真考题库试卷(7) 第9页(共9页)

全国计算机等级考试无纸化真考题库试卷(8) 一级 C

	_ 			
1 I	(考试时间 120 分钟,满分 100 分)			
密〇	一、选择题(每小题 1 分,共 40 分)			
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	一、远拝越(毎小越1分, 40分)(1)下列关于栈叙述正确的是()。A) 栈顶元素最先能被删除 B) 栈顶元素最后才能被删除			
村	C) 栈底元素永远不能被删除 D) 栈底元素最先被删除 (2)下列叙述中正确的是()。			
	A)在栈中,栈中元素随栈底指针与栈顶指针的变化而动态变化 B)在栈中,栈顶指针不变,栈中元素随栈底指针的变化而动态变化 C)在栈中,栈底指针不变,栈中元素随栈顶指针的变化而动态变化 D)以上说法都不正确			
线 !	(3)某二叉树共有7个结点,其中叶子结点只有1个,则该二叉树的深度为(假设根结点在第1层)(A)3 B)4 C)6 D)7)。		
	A)学生成绩管理系统 B)C语言编译程序 C)UNIX 操作系统 D)数据库管理系统	0		
内.	(5)结构化程序所要求的基本结构不包括()。 A)顺序结构 B)GOTO 跳转 C)选择(分支)结构 D)重复(循环)结构 (6)下面描述中错误的是()。			
	A) 系统总体结构图支持软件系统的详细设计 B) 软件设计是将软件需求转换为软件表示的过程 C) 数据结构与数据库设计是软件设计的任务之一 D) PAD 图是软件详细设计的表示工具 (7) 负责数据库中查询操作的数据库语言是()。			
要〇	(7) 页页数语序平值网探作的数语序语言定(7)。 A) 数据定义语言 B) 数据管理语言 C) 数据操纵语言 D) 数据控制语言 (8) 一个教师可讲授多门课程,一门课程可由多个教师讲授。则实体教师和课程间的联系是()。 A) 1: 1 联系 B) 1: m 联系 C) m: 1 联系 D) m: n 联系 (9) 有三个关系 R、S 和 T 如下:			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
题	回由关系 R 和 S 得到关系 T 的操作是()。 A) 自然连接 B) 并 C) 交 D) 差 (10) 定义无符号整数类为 UInt,下面可以作为类 UInt 实例化值的是()。 A) -369 B) 369			
	C)0.369 D)整数集合{1,2,3,4,5} (11)以下叙述中错误的是()。 A)C语言源程序经编译后生成后缀为.obj的目标程序 B)C程序经过编译、连接步骤之后才能形成一个真正可执行的二进制机器指令文件			

无纸化真考题库试卷(8) 第1页(共8页)

```
C)用C语言编写的程序称为源程序,它以ASCII代码形式存放在一个文本文件中
   D) C 语言中的每条可执行语句和非执行语句最终都将被转换成二进制的机器指令
(12)以下选项中合法的标识符是( )。
   A)1_2
                    B)_12
                                         C)2-1
                                                              D)12__
(13)设有定义:int x = 3;,以下表达式中,值不为 12 的是( )。
                                         C)x *= (1 + x)
   A) x *= x + 1
                    B) x + + .3 * x
                                                              D)2 * x, x += 6
(14)下列程序的输出结果是()。
   main()
   { double d = 3.2; int x,y;
    x = 1.2; y = (x + 3.8)/5.0;
     printf("% d \setminus n", d * y);
   A)3
                    B)3.2
                                         C)0
                                                              D)3.07
(15)有以下程序:
   #include < stdio. h >
   main()
   char a,b,c,d;
    a = getchar(); b = getchar();
     scanf("% c% c",&c,&d);
     printf("% c% c% c% c\n",a,b,c,d);
    当执行程序时,按下列方式输入数据(从第1列开始, < CR > 代表回车,注意,回车也是一个字符)1 < CR >
   234 < CR >
   则输出结果是( )。
   A) 1234
   B)12
     34
   C)1
     23
   D)1
     234
(16)下列程序的运行结果是()。
   #include "stdio.h"
   main()
   int x = -9, y = 5, z = 7;
      if(x < y)
      if (y < 0)z = 0;
      else z + = 1;
      printf("% d \ln z;
                                                              D)9
   A)6
                    B)7
                                         C)8
(17)以下选项中不属于 C 语言的类型的是( )。
   A) unsigned long int B) long short
                                         C) unsigned int
                                                              D) signed short int
(18)有以下定义语句,编译时会出现编译错误的是(
   A) char a = 'a';
                    B) char a = ' n';
                                         C) char a = 'aa';
                                                              D) char a = ' \times 2d';
(19)要求以下程序的功能是计算:s=1+1/2+1/3+···+1/100。
   main()
```

```
int n: float s:
      s = 1.0:
      for (n = 100 : n > 1 : n - -) s = s + 1/n:
      printf("\%6.4f\n",s);
    程序运行后输出结果错误,导致错误结果的程序行是(
    A) s = 1.0:
                                                B) for (n = 100: n > 1: n - -)
                                                D) printf("% 6.4f\n",s);
    C) s = s + 1/n;
(20)有如下嵌套的 if 语句:
    if (a < b) if (a < c)k = a;
     else k = c:
    else
    if (b < c) k = b;
    else k = c;
    以下选项中与上述 if 语句等价的语句是( )。
    A) k = (a < b)? a:b:k = (b < c)? b:c:
                                               B) k = (a < b)? ((b < c)? a:b):((b > c)? b:c);
    C) k = (a < b)? ((a < c)? a:c):((b < c)? b:c); D) k = (a < b)? a:b;k = (a < c)? a:c;
(21)在下列选项中,没有构成死循环的是()。
    A) int i = 100:
      while(1)
      i = i\% 100 + 1:
         if (i > 100) break:
    B) for(::):
    C) int k = 10000:
      do\{k + + :\} while(k > 10000):
    D) int s = 36:
      while (s) - -s:
(22)有以下程序段:
    int n, t = 1, s = 0:
    scanf("%d",&n);
    s = s + t; t = t - 2;
    \begin{cases} while(t! = n) \end{cases}
    为使程序段不陷入死循环,从键盘键入的数据应该是(
    A)任意正奇数
                       B)任意负偶数
                                                C)任意正偶数
                                                                       D)任意负奇数
(23) 若运行以下程序时, 从键盘输入 ADescriptor < CR > ( < CR > 表示回车), 则下面程序的运行结果
    是( )。
    #include < stdio. h >
    main()
   char c;
       int v0 = 1, v1 = 0, v2 = 0;
       do switch(c = getchar())
            case 'a': case 'A':
               case 'e': case 'E':
               case 'i': case 'I':
               case 'o' case 'O'
               case 'u': case 'U': v1 + =1;
```

```
default: v0 + = 1; v2 + = 1; while (c! = '\n');
        printf("v0 = \% d, v1 = \% d, v2 = \% d)", v0, v1, v2);
    A) v0 = 7 \cdot v1 = 4 \cdot v2 = 7
                                                       B) v0 = 8, v1 = 4, v2 = 8
    C) v0 = 11, v1 = 4, v2 = 11
                                                       D) v0 = 13, v1 = 4, v2 = 12
(24)数字字符0的 ASCII 值为48,若有以下程序:
     main() \{ char \ a = '1', b = '2' \}
      printf("% c,",b++);
      printf("% d \cdot n", b - a);
     程序运行后的输出结果是()。
    A)3.2
                           B)50.2
                                                       C)2.2
                                                                                   D)2.50
(25)有以下程序:
     #include < stdio. h >
    void f(int * p, int * q);
    main () \{ \text{ int } m = 1, n = 2, *r = \&m; \}
         f(r,&n); printf("\%d,\%d",m,n);
    void f(int * p, int * q) \{ p = p + 1; * q = * q + 1; \}
    程序运行后的输出结果是()。
                                                                                   D)1.2
                           B)2.3
                                                       C)1.4
    A)1.3
(26) 有以下程序:
     #include < stdio. h >
    void f(int *q) { int i = 0;
         for (i < 5; i + +) (*q) + +:
     main()
    \{ \text{ int a} [5] = \{5,4,3,2,1\}, i; 
      f(a):
       for (i = 0; i < 5; i + +) printf ("\%d,",a[i]);
     程序运行后的结果是( )。
    A)6,4,3,2,1
                           B)6.5.4.3.2
                                                       C)5,4,3,2,1
                                                                                   D)10,4,3,2,1
(27)有以下程序:
     #include < stdio. h >
    int f(int t\lceil \rceil, int n);
     main() { int a[4] = \{1,2,3,4\},s;
      s = f(a,4); printf("% d\n",s);
    int f(\text{ int } t \lceil \frac{1}{n}, \text{ int } n) \mid \text{ if } (n > 0) \text{ return } t \lceil n - 1 \rceil + f(t, n - 1);
     else return 0:
     程序运行后的输出结果是( )。
                                                       C)14
                                                                                   D)6
                           B)10
(28)阅读下面程序段,则执行后的结果为(
     #include "stdio.h"
     main()
    int m = 4, n = 2, k;
      k = fun(m,n);
```

```
printf("%d\n",k);}
                              fun(int m, int n)
                              \{ return(m*m*m-n*n*n); \}
                             A)64
                                                                             B)8
                                                                                                                                        C)56
                                                                                                                                                                                                  D)0
                   (29) 有以下程序:
                             #include < stdio. h >
                              main() { int s[12] = {1,2,3,4,5,6,7,8,9,10,11,12}, c[5] = {0}, i;
                                   for(i = 0; i < 12; i + +) c[s[i]] + +;
                                   for (i = 1; i < 5; i + +) print ("\%d", c[i]);
                                   printf("\n");
                              程序的运行结果是( )。
                              A)1234
                                                                             B)5678
                                                                                                                                        C)9 10 11 12
                                                                                                                                                                                                  D)1111
                   (30)以下程序的输出结果是()。
                             void change (int k \lceil \rceil) {k \lceil 0 \rceil = k \lceil 5 \rceil;}
                              main() { int x \lceil 10 \rceil = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, n = 0;
                                 while (n < = 4) change (&x[n]); n + +;
                                for (n = 0; n < 5; n + +) print ("\%d", x[n]);
                                 printf(" \n");
                             A)678910
                                                                             B)13579
                                                                                                                                        C) 12345
                                                                                                                                                                                                  D)62345
                   (31) 若有以下定义:
                                           int x \lceil 10 \rceil, * pt = x;
四.
                              则对 x 数组元素的正确引用是( )。
                             A) * &x[10]
                                                                         B) * (x + 3)
                                                                                                                                        C) * (pt + 10)
                                                                                                                                                                                                  D) pt +3
                   (32) 若有定义语句: char s[3][10],(*k)[3],*p;,则以下赋值语句正确的是(
                                                                                                                                                                                                  ) _
                                                                             B) p = k:
                                                                                                                                        C) p = s[0]:
                                                                                                                                                                                                  D)k = s:
                             A) p = s:
                   (33)以下程序运行后的输出结果是()。
                             #include < stdio. h >
                              void f( char p[][10], int n) { char t[10]; int i, j;
                                 for (i = 0; i < n - 1; i + +)
                                 for(j=i+1;j < n;j++) if(stremp(p[i],p[j]) > 0) \\ \{strepy(t,p[i]); strepy(p[i],p[j]); strepy(p[i],p[j])\} \\ \{strepy(t,p[i]); strepy(p[i],p[j]); strepy(p[i],p[j])\} \\ \{strepy(t,p[i]); strepy(p[i],p[j]); strepy(p[i],p[j])\} \\ \{strepy(t,p[i]); strepy(p[i],p[j]); strepy(p[i],p[j])\} \\ \{strepy(t,p[i]); strepy(p[i],p[i]); strepy(p[i],p[i])\} \\ \{strepy(t,p[i]); strepy(p[i],p[i]); strepy(p[i],p[i])\} \\ \{strepy(t,p[i]); strepy(p[i],p[i]); strepy(p[i],p[i])\} \\ \{strepy(t,p[i]); strepy(p[i],p[i]); strepy(p[i],p[i])\} \\ \{strepy(t,p[i],p[i]); strepy(p[i],p[i])\} \\ \{
                                        [j],t);}
                              main() { char p[5][10] = { "abc", "abbdg", "abbd", "dedbe", "cd" };
                                 f(p,5);
                                 printf("% d \in [0]);
                                                                             B)4
                                                                                                                                        C)6
                             A)2
                                                                                                                                                                                                  D)3
                    (34)设有定义: struct char mark [12]; int num1; double num2; ltl,t2;,若变量均已正确赋初值,则以下语句中
                             错误的是( )。
                             A) t1 = t2:
                                                                             B) t2. \text{ num1} = t1. \text{ num1}:
                                                                                                                                     C) t2. mark = t1. mark;
                                                                                                                                                                                                  D) t2. num2 = t1. num2:
                   (35)下面程序段的运行结果是()。
                             char * p = "abcdefgh";
                             p += 3;
                             printf("%d\n", strlen(strcpy(p, "ABCD")));
                                                                             B)12
                                                                                                                                       C)4
                                                                                                                                                                                                  D)7
                             A)8
                   (36)有以下程序:
                                                                                            无纸化真考题库试卷(8) 第5页(共8页)
```

```
struct S int n; int a [20]:
    void f(struct S * p) { int i, j, t;
        for(i = 0; i  n - 1; i ++) for(j = i + 1; j  n; j ++) if(p -> a[i] > p -> a[j])  t = p -> a
       [i]; p \rightarrow a[i] = p \rightarrow a[j]; p \rightarrow a[j] = t;
    main()
    { int i; struct S s = \{10, \{2,3,1,6,8,7,5,4,10,9\}\};
     for (i = 0; i < s. n; i + +) print ("\%d,",s. a[i]);
    程序运行后的输出结果是()。
    A)1,2,3,4,5,6,7,8,9,10,
                                               B)10.9.8.7.6.5.4.3.2.1.
    C)2.3.1.6.8.7.5.4.10.9.
                                               D)10.9.8.7.6.1.2.3.4.5.
(37) 有以下程序:
    #include < stdio. h >
    int fun() \{ static int x = 1:
     x * = 2: return x:
    main() \{ int i, s = 1;
     for (i = 1; i < = 3; i + +) s = fun();
     printf("%d\n",s);
    程序运行后的输出结果是(
                                               C)4
                                                                      D)8
    A)0
                       B)1
(38) 有以下程序:
    #include < stdio. h >
    #define S(x) 4 * (x) * x + 1
    main() \{ \text{ int } k = 5, j = 2 \}
      printf("% d \in S(k+j));
    程序运行后的输出结果是()。
                                                                       D)28
    A) 197
                       B) 143
                                               C)33
(39) 设有定义语句 int (*f)(int):,则以下叙述正确的是()。
    A)f 是基类型为 int 的指针变量
    B)f是指向函数的指针变量,该函数具有一个int类型的形参
    C)f 是指向 int 类型一维数组的指针变量
    D)f 是函数名,该函数的返回值是基类型为 int 类型的地址
(40) 若有以下程序段:
    int r = 9:
    printf("% d \mid n", r > 1);
    输出结果是( )。
                                               C)8
                                                                      D)16
    A)2
                       B)4
二、程序填空题(共18分)
```

下列给定程序的功能是:从键盘输入若干行字符串(每行不超过80个字符),写入文件 myfile4. txt 中,用 -1 作字符串输入结束的标志,然后将文件的内容显示在屏幕上。文件的读写分别由函数 ReadText 和 Write-Text 实现。

请在下划线处填入正确的内容并将下划线删除,使程序得出正确的结果。 注意:部分源程序在文件 BLANKI. C 中。

```
不得增行或删行,也不得更改程序的结构!
#include < stdio. h >
#include < string. h >
\#include < stdlib. h >
void WriteText(FILE * );
void ReadText(FILE * );
main()
FILE * fp;
   if (fp = fopen("myfile 4. txt", "w")) = = NULL)
   printf(" open fail!! \n"); exit(0);}
   WriteText(fp);
   fclose(fp);
   if((fp = fopen("myfile4.txt", "r")) = = NULL)
   printf(" open fail!! \n"); exit(0);}
   ReadText(fp);
   fclose(fp);
/************************/
void WriteText(FILE 1 )
char str[81];
   printf("\nEnter string with -1 to end .\n"):
   gets(str);
   while (\text{strcmp}(\text{str}, "-1")! = 0)
/**********found ********/
         fputs(\underline{2}, fw); fputs("\n", fw);
         gets(str);
void ReadText(FILE * fr)
char str[81];
   printf("\nRead file and output to screen :\n");
   fgets(str,81,fr);
   while(! feof(fr))
/********* found * * * * * * * * * * * /
         printf("%s",____3___);
         fgets(str.81.fr):
```

三、程序修改题(共18分)

下列给定程序中,函数 fun 的功能是:从低位开始依次取出长整型变量 s 中奇数位上的数,构成一个新数 存放在 t 中。高位仍在高位,低位仍在低位。

例如,当 s 中的数为 7654321 时,t 中的数为 7531。

请改正程序中的错误,使它能得出正确的结果。

注意:部分源程序在文件 MODII. C 中,不得增行或删行,也不得更改程序的结构!

```
*t = s\%10 * sl + *t;
   /********** found *** *** ***
         sl = sl * 100:
   main()
   long s, t;
      printf("\nPlease enter s:"); scanf("%ld", &s);
      fun(s, &t):
      printf("The result is: % ld\n", t):
四、程序设计题(共24分)
   学生记录由学号和成绩组成,N 名学生的数据已放入主函数中的结构体数组中,请编写函数 fun,其功能
是:把分数最低的学生数据放入 b 所指的数组中,注意:分数最低的学生可能不止一个,函数返回分数最低的
学生人数。
   注意:部分源程序在文件 PROG1. C 中。
   请勿改动主函数 main 和其他函数中的任何内容,仅在函数 fun 的花括号中填入你编写的若干语句。
   #include < stdio. h >
   #define N 16
   typedef struct
   char num[10]:
      int s:
   } STREC;
   int fun( STREC *a, STREC *b)
   main()
   STREC s [N] = { "GA05",85}, { "GA03",76}, { "GA02",69}, { "GA04",85},
             {"GA01",91}, {"GA07",72}, {"GA08",64}, {"GA06",87},
             {"GA015",85}, {"GA013",91}, {"GA012",64}, {"GA014",91},
             {"GA011",91}, {"GA017",64}, {"GA018",64}, {"GA016",72}};
      STREC h[N]:
      int i.n:FILE * out:
      n = fun(s,h);
      printf("The % d lowest score:\n",n);
      for (i = 0; i < n; i + +)
       printf("% s %4d\n",h[i]. num,h[i].s);
      printf("\n");
      out = fopen("out. dat", "w");
      fprintf(out, "%d\n",n);
      for (i = 0; i < n; i + +)
       fprintf(out, "%4d\n",h[i].s);
      fclose(out):
```

*t = s % 10;while(s > 0)

s = s/100:

参考答案及解析

无纸化直考题库试卷(1)

一、选择题

- (1)C 【解析】在数据流图中,用标有名字的箭头表示 数据流。在程序流程图中,用标有名字的箭头表示控制流。所 以选择 C)。
- (2)A 【解析】结构化程序设计的思想包括:自顶向下、 逐步求精、模块化、限制使用 goto 语句,所以选择 A)。
- (3)B 【解析】软件设计中模块划分应遵循的准则是高 内聚低偶合、模块大小规模适当、模块的依赖关系适当等。模 块的划分应遵循一定的要求,以保证模块划分合理,并进一步 保证以此为依据开发出的软件系统可靠性强,易于理解和维 护。模块之间的耦合应尽可能的低,模块的内聚度应尽可能 的高。
- (4)B 【解析】A)错误,可行性分析阶段产生可行性分 析报告。C)错误,概要设计说明书是总体设计阶段产生的文 档。D)错误,集成测试计划是在概要设计阶段编写的文档。 B)正确,需求规格说明书是后续工作如设计、编码等需要的重 要参考文档。
- (5)A 【解析】算法原则上能够精确地运行,而目人们 用笔和纸做有限次运算后即可完成。有穷性是指算法程序的 运行时间是有限的。
- (6)D 【解析】除了堆排序算法的比较次数是 $O(n\log_2 n)$, 其他的都是n(n-1)/2。
- (7)B 【解析】栈是按"先进后出"的原则组织数据的, 数据的插入和删除都在栈顶进行操作。
- (8)C 【解析】E-R 图转换成关系模型数据则是把图 形分析出来的联系反映到数据库中,即设计出表,所以属于逻 辑设计阶段。
- (9)D 【解析】自然连接是一种特殊的等值连接,它要 求两个关系中进行比较的分量必须是相同的属性组,并且在结 果中把重复的属性列夫掉,所以 B) 错误。笛卡尔积是用 R 集 合中元素为第一元素,S集合中元素为第二元素构成的有序 对,所以 C)错误。根据关系 T 可以很明显地看出是从关系 R 与关系 S 中取得相同的关系组所以取得是交运算,选择 D)。
- (10)C 【解析】学号是学生表S的主键,课号是课程表C | 为B)。 的主键,所以选课表 SC 的关键字就应该是与前两个表能够直 接联系且能唯一定义的学号和课号,所以选择 C)。
- (11)A 【解析】C 语言中的非执行语句不会被编译,不 会生成二进制的机器指令,所以 A) 错误。由 C 语言构成的指 今序列称 C 源程序, C 源程序经过 C 语言编译程序编译之后生 成一个后缀为. OBJ 的二进制文件(称为目标文件);最后要由 "连接程序"把此, OBJ 文件与 C 语言提供的各种库函数连接 起来生成一个后缀为. EXE 的可执行文件。

- (12)A 【解析】C 语言中八进制整型常量的开头是数字 | 洗项中当产生的随机数 n 为 4 时要执行打印操作。C)洗项中 | 局变量)是在函数的外部定义的,它的作用域为从变量定义处 0,十六进制整型常量的数字开头是 0x。C 语言中的实型常量 有两种表示形式:小数形式,小数形式表示的实型常量必须要 有小数点:指数形式.以"e"或"E"后跟一个整数来表示以10 为底数的幂数,目规定字母 e 或 E 之前必须要有数字,目 e 或 E后面的指数必须为整数。B) 选项中 028 错误, 八进制中没 有数字 8。C) 选项中 4e1.5 中 e 后面的指数不是整数。D) 选 项中3.e5 小数点后面缺少数字。
- (13)A 【解析】C语言中标识符由字母、下划线、数字组 成,且开头必须是字母或下划线。另外,关键字不能作为标识 符。因为 C 语言中区分大小写, 所以 B) 选项中的"FOR"可以 作为标识符来用。A)选项中含有非法字符 &, 所以选择 A)。
- (14)A 【解析】B) 洗项中函数 pow(x,e) 错误应该直接 使用 exp(x)函数。C)选项中函数 abs(n^x + e^x)错误,应该使 用 fabs()返回浮点数的绝对值。D)选项中 pow(x,n)参数顺 | 错误。 序错误。
- 合性,参与运算的量均为整型。选项 B中的 a 变量是 double 实 型,所以B)不符合规定。
- (16)D 【解析】C 语言中利用 sizeof()函数判断数据类 型长度,在 VC6.0 平台中,整型 int 占有 4 个字节, double 型数 据占有8个字节。
- 给了变量 a,字符 2 给了变量 b,字符 < CR > 即回车给了变量 | 值为 A) 洗项。 c,字符3给了变量d。所以打印输出的结果为D)选项。
- (18)A 【解析】C 语言的逻辑运算符比较特别,它的操 作数没有明确的数据类型,可以是任意合法的表达式,所以选
- (19)C 【解析】本题中 if(a=1)b=1;与 else d=3; 之间 多了语句 c = 2; 所以会出现 else 语句的位置错误的编译失败 提示。
- (20)B 【解析】case 常量表达式只是起语句标号作用, 符串。 并不是该处进行条件判断。在执行 switch 语句时,根据 switch 的表达式,找到与之匹配的 case 语句,就从此 case 子句执行下 去,不在进行判断,直到碰到 break 或函数结束为止。所以执 行内层 switch(y)时只执行了 a++,此时 a 的值为 1。然后执 行外层 case 2 语句的 a ++; b ++; a 为 2, b 为 1。所以结果
- 后面直接跟了空语句";"所以在循环内部什么操作也不做,跳 出外层循环后执行打印语句,所以打印了一个"*",选择C)。
- (22)D 【解析】case 常量表达式只是起语句标号作用, 并不是该处进行条件判断。在执行 switch 语句时,根据 switch

当产生的随机数为1和2时分别执行 case3与 case4后面语句 的内容。由于存在 break 语句所以 for 循环不是固定执行 8 次. | 执行次数与产生的随机数 n 有关系。

- (23)A 【解析】第一次调用m = f(f(f(1))),第二次为m= f(f(2)),第三次为 m = f(4),即返回值为 8。
- (24)A 【解析】不能将一个整数直接赋给指针变量作为 地址,所以A)是错误的。函数的返回值可以是地址,即指针。 函数调用中形参值的变化不会传递给实参。
- (25)B 【解析】指针是用来存放地址的变量,用(类型 名 * 指针变量名)的形式定义。赋值时应将某个变量地址即 &x 赋给指针变量,所以选择 B)。
- (26)D 【解析】D) 选项中 x[2][3] 定义的是一个两行 三列的二维数组,而在给数组元素赋值时却赋成了三行,所以
- (27)A 【解析】本题中的函数 fun()的功能是将数组 k (15)B 【解析】取模运算符"%",二元运算符,具有左结 中前5个元素倒序,所以返回后数组k中的元素排列是5,4,3, 2,1,6,7,8,9,10。所以打印输出 k[2]到 k[7]元素的值,即 321678, 所以选择 A。
- (28)A 【解析】本题中由 fun 函数可知,b[0] = a[0][0] -a[0][3] = 1 - 4 = -3, b[1] = a[1][1] - [1][2] = 6 - 7 =-1, b[2] = a[2][2] - [2][1] = 11 - 10 = 1, b[3] = a[3]
 - (29)C 【解析】字符串的输入不能使用 scanf("% s", s);而应该使用 gets(s)。
 - (30)A 【解析】根据题目中的定义可以知道 sizeof(p) 计算的是数组 p 中所有元素所占用的字节数,而不是 char 型 数据所占字节数。
 - (31)A 【解析】p 是指向二维字符数组第二行 One * Dream! 的数组指针,所以长度是10,打印输出的也是该字
 - (32)B 【解析】本题中遇到"\"字符循环结束,所以只统 计"\"之前的数字字符,所以为3。
- (33)A 【解析】声明静态局部变量:函数调用结束后,其 占用的存储单元不释放,在下次该函数调用时,该变量保留上 一次函数调用结束时的值。本题子函数 fun 中的变量 i 和 m 均为静态局部变量。所以第一次调用 fun 函数,返回 m 的值为 (21)C 【解析】由于内层循环 for(k=1; k<3; k++) | 5,第二次再调用 fun 函数时,i 的值为3,m 的值已经是5了,所 | 以执行 i + = m + 1, i 的值变为 9, m = i + x + v = 9 + 1 + 1 = 11。
- (34)C 【解析】auto:函数中的局部变量,动态地分配存 | 储空间,数据存储在动态存储区中,在调用该函数时系统会给 它们分配存储空间,在函数调用结束时就自动释放这些存储空 |的表达式,找到与之匹配的 case 语句,就从此 case 子句执行下|间。register;为了提高效率,C 语言允许将局部变量的值放在 去,不再进行判断,直到碰到 break 或函数结束为止。简单的 | CPU 中的寄存器中,这种变量叫"寄存器变量",只有局部自动 | 说 break 是结束整个循环体,而 continue 是结束单次循环。B) | 变量和形式参数可以作为寄存器变量。extern:外部变量(即全

开始,到本程序文件的末尾。如果外部变量不在文件的开头定 义,其有效的作用范围只限于定义处到文件终了。static,静态 局部变量属于静态存储类别, 在静态存储区内分配存储单元。 在程序整个运行期间都不释放。

- (35)A 【解析】A) 洗项 struct ord { int x; int y; int z; } struct ord a:错误,不能在定义结构体的同时,又用结构体类型 名定义变量。应该写成 B) 选项或者 D) 选项的格式。
- (36)B 【解析】结构体变量可以作为函数的参数和返回 值。作为函数的实参时,可以实现函数的传值调用。当使用结 构体变量作为函数的形参时,实参也应该是结构体变量名以实 现传值调用,实参将拷贝副本给形参,在被调用函数中改变形 参值对于调用函数中的实参没有影响。所以选择 B)。
- (37)A 【解析】预处理命令是以"#"号开头的命令,它们 不是 C 语言的可执行命令,这些命令应该在函数之外书写,一 般在源文件的最前面书写,但不是必须在起始位置书写,所以 B),C)错误。C)语言的预处理能够实现宏定义和条件编译等 功能,所以 D)错误。
- (38)C 【解析】malloc(sizeof(int))的作用是开辟一个长 度为 sizeof(int)存储空间,并通过强制类型转换(int*)将此存 储空间的地址赋给了一个整型的指针变量 p。然后执行语句 *p=n,使得*p的值为10,并通过 return 返回此值,即 a 的值 为 10。然后在主函数中输出 a + fun(10) = 10 + 10 = 20。
- (39)B 【解析】无符号整型变量 a 的值为 8,二进制表示 为00001000, 右移3 位后为0000001, 即十进制的1, 所以输 出1。
- (40)D 【解析】fread(void * buffer, size t size, size t count, FILE * stream);功能是从一个文件流中读数据,读取 count 个元素,每个元素 size 字节,如果调用成功返回 count。 buffer:用于接收数据的内存地址,大小至少是 size * count 字 节;size:单个元素的大小,单位是字节;count:元素的个数,每 个元素是 size 字节; stream:输入流。

二、程序填空题

【参考答案】

(1)0 (2)10 * x (3) n/10

【考点分析】

本题考查:已知某数,如何求该数各个位数值,已知各个位 数值,如何表示该数;除法运算。

【解题思路】

填空1:定义变量 t 用来存放某数的各个位数值,此处判断 t 是否为偶数,即对2求余结果是否为0。

填空2:将t作为x的个位数,原来x的各个位上升1位, $\mathbb{R} | x = 10 * x + 1$

填空3.每循环一次,通讨除法运算, 卖掉数值最后一位。

【解题宝典】

如果知道某数 n 的各个位的数值,可以得到该数值 n,如 n

的个位为 a、十位为 b、百位为 c,那么 n = c * 100 + b * 10 + a。 法查找。可以证明的是对于长度为 n 的有序线性表,在最坏情 如果知道数值 n,可以采用求余和除法操作来表示其各个位, u_{n} v_{n} 是三位数,如何提取各个位? 四位数呢?

三、程序修改题

【参考答案】

- (1) * t = 0:
- (2) if (d%2! = 0) 或 if (d%2 = = 1)

【考点分析】

本题考查·指针型变量作为函数参数:if 语句条件表达式, 结合奇偶数的表示方法来确定该表达式内容。

【解题思路】

- (1)由函数定义可知,变量 t 是指针变量,所以对 t 进行赋 初值0是不对的。因为t指向的是存放新数的变量,所以此处 应给新数赋初值0,即*t=0。
- 断d是否为奇数。

四、程序设计题

【参考答案】

```
void fun (char p1 \lceil \rceil, char p2 \lceil \rceil)
int i, i:
for(i = 0: p1 [i]! = '\0': i + + ):
      for (j = 0; p2[j]! = '\0'; j + +) p1[i + +] = p2[j];
 p1 \lceil i \rceil = '\0';
```

【考点分析】

本题考查:不使用字符串函数实现字符串连接操作。通过 for 循环语句来完成,不要忘了最后需要加上字符串结束标识

【解题思路】

本题用两个循环完成操作,第1个循环的作用是求出第1 个字符串的长度,即将i指到第1个字符串的末尾。第2个循 环的作用是将第2个字符串的字符连到第1个字符串的末尾。 最后在第1个字符串的结尾加上字符串结束标识'\0'。

无纸化真考题库试卷(2)

一、选择题

- 栈最早的最后出栈,所以选择 B)。
- (2)D 【解析】循环队列有队头和队尾两个指针,但是 循环队列仍是线性结构的,所以A)错误;在循环队列中只需要 情况,所以B)与C)错误。
 - (3)C 【解析】当有序线性表为顺序存储时才能用二分 1) =2 * 3 = 6。

- 况下,二分法查找只需要比较 log,n 次,而顺序查找需要比较 | 优先级高于逗号运算符的优先级,所以可以将上式表示成(z=
- 以针对非线性结构,所以 B)与 C)错误。链式存储结构中每个 结点都由数据域与指针域两部分组成,增加了存储空间,所以 D) 错误。
- (5)D 【解析】数据流图中带箭头的线段表示的是数据 流,即沿箭头方向传送数据的通道,一般在旁边标注数据流名。
- (6)B 【解析】在需求分析阶段可以使用的工具有数据 流图(DFD图),数据字典(DD),判定树与判定表,所以冼择 所以是68。
- (7)A 【解析】对象有如下一些基本特点:标识唯一性、 分类性、多态性、封装性、模块独立性好。所以选择 A)。
- (8)B 【解析】因为一间宿舍可以住多个学生即多个学 (2)变量 d表示数 s 各个位上的数,此处的 if 条件应为判 | 生住在一个宿舍中,但一个学生只能住一间宿舍,所以实体宿 | (x - y)等价的是(x - y < 0 | 1x - y > 0)。 舍和学生之间是一对多的关系。
 - (9)C 【解析】数据管理发展至今已经历了三个阶段: 人工管理阶段、文件系统阶段和数据库系统阶段。其中最后-个阶段结构简单,使用方便逻辑性强物理性少,在各方面的表 现都最好,一直占据数据库领域的主导地位,所以选择 C)。
 - (10)D 【解析】自然连接是一种特殊的等值连接,它要 求两个关系中进行比较的分量必须是相同的属性组,并且在结 果中把重复的属性列夫掉,所以根据 T 关系中的有序组可知 R 与S进行的是自然连接操作。
 - (11)B 【解析】在一个 C 语言程序中可以进行多种算法 | 错误。 的实现,对算法的个数没有规定,所以 B)错误。
 - 字"0"开始,而不是字母"o"开始。
 - 成,且开头必须是字母或下划线。所以 D) 选项中的连接符不 | 行打印语句。 合法。
 - (14)A 【解析】B)与D)选项中取模运算符%的左右两 个操作数均应为整数,所以 B)、D)错误。C)选项中不能将 x + v 的值赋给表达式 v * 5, 所以 C) 错误。
- (1)B 【解析】 栈是先进后出的原则组织数据,所以入 | 式 2 * x,然后计算表达式 x + = 2 的值,即 x = x + 2 即 4,整个逗 | 出循环。 号表达式为第二个表达式的值 4, 所以选择 A)。B) 选项中首 二个表达式2 * x = 2 * 3 = 6,所以逗号表达式为第二个表达式 | 所以选择 A)。 队头指针与队尾两个指针来共同反映队列中元素的动态变化 \mid 的值 6。C)选项的赋值表达式可以表示为 x = x * (1 + x) =2*(1+2)=6。D) 洗项中的表达式可以表示为 x=x*(x+

- (16)C 【解析】z=x++,y++,++y;因为赋值运算符的 (4)A 【解析】链式存储结构既可以针对线性结构也可 │ 因为 x + + 先使用后自增, 所以 z 的值为 1. x 的值为 2。再计算 逗号表达式第二个表达式 v++,此时 v 的值为 2,最后计算第 三个表达式 ++ v, v 的值为 3。
 - (17) A 【解析】本题目中字符变量 cl 是字符'A'的 ASCII 码加上4.即69 所对应的字符'E'。字符变量 c2 是字符 'A'的 ASCII 码加上 3. 即 68 所对应的字符 'D'。但是打印输 出时,c1以%c的格式输出,所以是E,c2以%d的格式输出,
 - (18)A 【解析】条件表达式:x=表达式1?表达式2:表 达式3的含义是: 先求解表达式1, 若为非0(真), 则求解表达 式 2, 将表达式 2 的值赋给 x。若表达式 1 的值为 0(假),则求 解表达式3,将表达式3的值赋给x。在本题中与表达式1:
 - (19)D 【解析】在 if else 语句中 else 总是与离它最近的 if 配对。本题目中 x 为 1 所以! x 为 0, 所以执行 else if 语句中 的内容,判断(x = = 0)是否成立,因为x为1所以条件不成立, 所以 else if 内部的 if...else 语句不再执行,所以 v 的值还是初 始值0。
 - (20)A 【解析】B) 选项中 switch((int)x): 语句中不应该 有最后的分号。switch(exprl), 中的 exprl 不能用浮点类型或 long 类型, 也不能为一个字符串, 所以 C) 错误。case 后面常量 表达式的类型必须与 switch 后面表达式的类型一致, 所以 D)
- (21) A 【解析】第一次 for 循环, y 的值为9, y%3 的值为 (12)A 【解析】A)选项中115L表示115 是长整型数据、 0,满足条件打印 - - y,即先减一后打印,所以打印8;第二次 合法。B)选项是八进制常量的表示方法,但是在八进制中不 │ for 循环, y 的值为7, y%3 的值为1, 不执行打印语句;第三次 能含有数字 8, 所以 B) 错误。C) 选项中 e 后面应该是整数不 | for 循环, y 的值为 6, y % 3 的值为 0, 满足条件打印 - - y, 即先 能是小数 1.5, 所以 C) 错误。D) 选项中八进制常量应该是数 | 减一后打印, 所以打印5; 第四次 for 循环, y 的值为 4, 不满足 if 条件.不执行打印语句:第五次 for 循环, y 的值为 3, 满足 if 条 (13)D 【解析】C语言中标识符由字母、下划线、数字组 | 件,打印输出2;第六次 for循环,y 的值为1,不满足条件,不执
 - (22)C 【解析】第一次外循环 i 的值为 1,第一次内循环 i的值为3,不满足条件执行 m * = i * i 即 m 的值为3;第二次 i │的值为 2 , 不满足条件执行 m * = i * j , 即 m 的值为 6 ; 第三次 j 的值为1,不满足条件执行 m * = i * j,即 m 的值仍为 6。第二 (15)A 【解析】A)选项中逗号表达式先计算第一表达 │次外循环 i 的值为 2, j 的值为 3, 满足条件, 执行 break 语句, 跳
- (23)A 【解析】本题中第一次调用为 fun(8, fun(5,6)), |先计算逗号表达式中第一表达式 x + + ,此时 x 为 3 ,在执行第 │ 因为 fun(5 ,6)返回值为 5 ,所以第二次调用为 fun(8 ,5) = 6。
 - (24)D 【解析】D) 洗项中 * f(a,b) 表示调用后返回一个 指向整型数据的地址指针,即该函数的返回值为指针类型,所 以不能将其赋值给整形变量k。

- (25)A 【解析】洗项 B)的正确写法应为 p = &n; 洗项 C) 的正确写法应为 scanf("% d",p);选项 D)的正确写法应为 printf("%d\n", *p)
- (26)A 【解析】数组说明的一般形式为·类型说明符 数组名「常量表达式]。B)中 N 是变量,不能用变量定义数组 长度。C) 选项中数组长度是非法的一串数字。定义数组时必 须为其指明长度,D) 选项中数组长度为空,所以非法。
- (27)D 【解析】第一次循环 i 为 0, i % 2 为 0, 执行 switch (a[0]%2)中的 case 0 语句后内容即 a[0] + +,a[0]的值变 成3;第二次循环 i 的值为1,i%2 为1,执行 case 1;a[i] = 0;所 以 a [1] 的值变成 0; 第三次循环 i 的值为 2, i% 2 为 0, 执行 switch(a[2]%2)中的 case 1 语句后的内容 a[2] - - ,a[2]的 值变成4:第四次循环 i 的值为3,i%2 为1,执行 case 1:a[i] = 0; 所以 a[3] 的值变成 0。
- (28)B 【解析】每次内循环只循环一次就结束,第一次 外循环时 $t = t + b \lceil 0 \rceil \lceil b \lceil 0 \rceil \lceil 0 \rceil \rceil = 1 + b \lceil 0 \rceil \lceil 0 \rceil = 1 + 0 = 1;$ 第 二次外循环时 t = t + b[1][b[1][1]] = 1 + b[1][1] = 1 + 1 =2;第三次外循环时 t = t + b[2][b[2][2]] = 2 + b[2][2] =
- (29)A 【解析】数组定义后,不可以对数组整体赋值,s 是二维数组,因 ss[1]是一维字符数组,即字符串,字符串赋值 可以使用 strepy(ss[1], "right"): 这样的形式, 而选项 A) 中对 二维数组中的第"1"维(相当于一个一维数组)赋值,是不可以 的。洗项 B)和 D)是定义时对数组初始化,这是可以的。洗项 C)中,将字符串在内存中的首地址赋给指针数组的一个元素, 这是可以的。
- (30)A 【解析】do{*t++=*s++;}while(*s);不能 因为当*s='\0'时,while(*s)跳出循环,这样字符串结束标志 '\0'没有复制给*t,造成*t不完整。注意,*t++ = *s++是 先执行 t = *s, 然后才进行 t = t + 1, s = s + 1。 B), C), D)都能 将'\0'复制讨去。
- (31)D 【解析】字符串是一个特殊的数组,所以按照数 组的规则,sl 应该指向的是数组的首地址,即"abc"的第一个 字符的地址。s2 指向的是"123"的第一个字符的地址。调用 swap 函数之后交换的是两个字符串的第一个字符'a'和'1'的 内容,所以打印输出为 D)。
- (32)C 【解析】本题中由循环条件可知遇到'\0'或 x 与 v 所指的字符的值不等中的一个条件时就结束,所以功能是统 计x和y所指字符串中最前面连续相同的字符个数。
- (33)D 【解析】本题目中静态局部变量 x,在静态存储区 内分配存储单元。在程序整个运行期间都不释放。所以第一 次循环 s 的值为 2, 第二次循环中, 返回的 x 的值为 4, 所以 s 的 值为8,第三次循环,返回的x的值为8,所以s的值为64。
- (34)A 【解析】全局变量的作用域是从声明处到文件的 结束。所以选择 A)。
 - (35)A 【解析】关键字 typedef 的作用只是将 C 语言中

的已有的数据类型作了置换,并不是增加新的类型,所以 A) 错误。

- (36)D 【解析】声明 data 是结构 S 数组。初始化 data [0]. a = 10; data [0]. b = 100; data [1]. a = 20; data [1]. b = 200。主函数中 p = data[1];即 p. a = data[1].a;p. b = data [1]. b;执行语句 printf("% d\n", + + (p. a)); 打印输出时 p. a 先增 1 再打印。p. a = data[1]. a = 20, 先增 1 等于 21。
- (37)C 【解析】宏定义不是C语句,末尾不需要有分号。 所以语句 printf("%4.1f\n", S(a+b));展开后为 printf("% 4.1f\n", 3.5; * a + b * a + b;); 所以程序会出现语法错误。
- (38)B 【解析】& 按位与,如果两个相应的二进制位都 为1,则该位的结果值为1,否则为0。1 按位或,两个相应的二 进制位中只要有一个为1,该位的结果值为1。2的二进制为 00000010.4 的二进制为 00000100, 所以做或运算结果为 00000110,该数与5即00000101做与操作结果为00000100, 即4。
- (39)D 【解析】malloc 函数动态分配一个整型的内存空 间,然后把函数返回的地址用(int*)强制类型转换为整型指 针,再把它赋给 a,b,c,即让指针变量 a,b,c 都指向刚申请的内 存空间。所以只有最后一个赋值语句 * c = 3 的值保留在了该 空间内,因为 a,b,c 三个指针变量均指向该空间,所以打印该 空间内的数值为3。
- (40)A 【解析】B) 选项中打开一个已存在的文件并进行 了写操作后,原有文件中的全部数据不一定被覆盖,也可以对 源文件进行追加操作等。C)选项中在一个程序中当对文件进 行了写操作后,不用先关闭该文件然后再打开,才能读到第1 个数据,可以用fseek()函数进行重新定位即可。D)选项中,C 语言中的文件可以进行随机读写。

二、程序填空题

【参考答案】

(1) a[i] (2) a[j] (3) a[j]

【考点分析】

本题考查:数组的引用;if语句条件表达式,如果表达式的 值为真,则执行下面的语句,如果该值为假,则不执行下面的 语句。

【解题思路】

填空1:for循环语句循环体中将数组元素 a[i]赋值给变 量 max 和变量 min

填空2:通过一次 for 循环,找到数组中的最大值,if 语句的 条件表达式是 max < a[j]。

填空3:同理,此处 if 语句的条件表达式是 min > a[i]。

【解题宝典】

求最大值或者最小值的题目,一般都是假设一个元素最大 或最小,然后通过 if 条件语句将该元素和其他元素进行比较操 | 的线性表,所以 C)错误。 作来完成。

三、程序修改题

【参考答案】

- (1) 夫掉分号
- (2) case 1 · case 2 · return 1:

【考点分析】

```
本题考查:switch 语句,其一般形式为:
switch(表达式)
```

case 常量表达式 1. 语句 1:

case 常量表达式 2. 语句 2:

case 常量表达式 n: 语句 n:

default: 语句 n + 1;

其中 switch(表达式)后不应该带有";",同时 case 语句常 量后应该是":"。

【解题思路】

量后应用的是冒号。

四,程序设计题

【参考答案】

```
void fun(STREC * a)
 int i:
 a \rightarrow ave = 0.0:
 for (i = 0; i < N; i + +)  a \rightarrow ave = a \rightarrow ave + a \rightarrow s[i];
 /*求各门成绩的总和*/
  a -> ave/ = N; /*求平均分*/
```

【考点分析】

本题考查:结构体类型成员运算,指向结构体类型的指针 变量作函数参数。

【解题思路】

本题考查自定义形参的相关知识点,程序流程是这样的: 在 fun()函数中求出平均分后,返回到主函数时平均分也要带 | 转换成关系的属性。 回,所以只能定义一个指针类型的形参STREC*a,此时,引用 成员的方式可以使用指向运算符,即 a -> ave 和 a -> s[i],当 然也可用(*a).ave 和(*a).s[i]。

无纸化真考题库试卷(3)

一、选择题

- (1)D 【解析】栈是先进后出的线性表,所以 A)错误; 队列是先进先出的线性表,所以 B)错误;循环队列是线性结构
- (2)A 【解析】栈支持子程序调用。栈是一种只能在一 端进行插入或删除的线性表,在主程序调用子函数时要首先保 存主程序当前的状态,然后转去执行子程序,最终把子程序的

执行结果返回到主程序中调用子程序的位置,继续向下执行, 的结合方向为自右向左,所以表达式 x = x + x 可以表示成 x这种调用符合栈的特点,因此本题的答案为 A)。

- (3)C 【解析】根据二叉树的基本性质3.在任意一棵二 本题中是5+1=6个。
- (4)D 【解析】冒泡排序与简单插入排序与简单选择排 序法在最坏情况下均需要比较 n(n-1)/2 次, 而堆排序在最 坏情况下需要比较的次数是 $n\log_2 n$ 。
- (5)C 【解析】编译软件、操作系统、汇编程序都属于系 统软件,只有C)教务管理系统才是应用软件。
- (6)A 【解析】软件测试的目的是为了发现错误而执行 程序的过程,并不涉及改正错误,所以选项 A)错误。程序调试 的基本步骤有:错误定位、修改设计和代码,以排除错误、进行 回归测试,防止引进新的错误。程序调试通常称为 Debug,即 排错。软件测试的基本准则有:所有测试都应追溯到需求、严 格执行测试计划,排除测试的随意性、充分注意测试中的群集 C 语言中, switch 语句之后不能有分号, 并且 case 语句常 划象、程序员应避免检查自己的程序、穷举测试不可能、妥善保 存测试计划等文件。
 - (7)B 【解析】模块独立性是指每个模块只完成系统要 求的独立的子功能,并且与其他模块的联系最少且接口简单。 一般较优秀的软件设计,应尽量做到高内聚,低耦合,即减弱模 块之间的耦合性和提高模块内的内聚性,有利于提高模块的独 立性,所以A)错误,B)正确。耦合性是模块间互相连接的紧 密程度的度量而内聚性是指一个模块内部各个元素间彼此结 合的紧密程度,所以C)与D)错误。
 - 的设计。
 - 入新的运算。本题中S是在原有关系R的内部进行的,是由R 中原有的那些域的列所组成的关系。所以选择 B)。
 - (10)C 【解析】从 E-R 图到关系模式的转换是比较直 接的,实体与联系都可以表示成关系,E-R 图中属性也可以
 - (11)A 【解析】使用顺序,选择(分支),循环三种基本结 构构成的程序可以解决所有问题,而不只是解决简单问题,所 以A)错误。
 - (12)B 【解析】C语言中注释语句的注释方法是: /* 注释内容 */或 //注释一行。所以 A) 与 C) 错误, D) 选项中预 编译命令 include < stdio. h > 前丢掉了"#"号。所以选择 B)。
 - (13)D 【解析】在 C 语言中整型常量可以用十进制、八 | 讲制和十六讲制等形式表示,但不包括二讲制,所以选择 D)。
 - (14)A 【解析】C语言中标识符由字母、下划线、数字组 成,且开头必须是字母或下划线。另外,关键字不能作为标识 │符。B)中以数字8开头,所以错误。C)与 D)中用的是关键字 void 与 unsigned,所以错误。
 - (15) C 【解析】算术运算符 + 的优先级高于 -= , 1 = 10 , 所以打印输出时的结果为 A) 选项。

- = x (x + x) = 10 (10 + 10) = -10, 选择 C)。
- (16)A 【解析】首先打印 b = a + b = 1 + 0 = 1 的值 1.此 叉树中, 度为0 的叶子节点总是比度为2 的节点多一个, 所以 | 时已给b 赋值为1。然后打印 a=2*b=2*1=2 的值 2。所 以结果是1.2。
 - (17)D 【解析】在输入多个数据时, 若格式控制串中无 非格式字符,则认为所有输入的字符均为有效字符。所以应按 洗项 D)的顺序输入数据。
 - (18)A 【解析】洗项 A)是非法的表达式,C语言中没有 < > 运算符。
 - (19)B 【解析】本题中 a > b 的条件不满足, 所以不执行 逗号表达式 a=b,b=c; 的操作, 而是执行 c=a 操作, 即 c 的值
 - (20)A 【解析】default 语句在 switch 语句中可以省略,所 以 B) 错误; switch 语句中并非每个 case 后都需要使用 break 语 句,所以 C)错误;break 语句还可以用于 for 等循环结构中,所
 - (21)A 【解析】选项 A)中 do 后面的语句只执行了一次 便结束了循环:B) 洗项中条件 while(1) 永远成立, 所以是死循 环;C)选项中 n 的值为 10, 而循环体为空语句, 所以 while (n) 永远为真,进入死循环;D)选项中 for 语句第二个表达式为空, 所以没有判别条件, 进入死循环。
 - (22)C 【解析】向 switch 语句块传送参数后,编译器会 先寻找匹配的 case 语句块,找到后就执行该语句块,遇到 break 跳出;如果没有匹配的语句块,则执行 default 语句块。case 与 (8)A 【解析】数据库应用系统中的核心问题是数据库 │ default 没有顺序之分。所以第一次循环 k 的值为 1,执行 c += k,c 的值为1,再执行 case 2 后的语句 c++,c 的值为2,遇到 (9)B 【解析】投影运算是指对于关系内的域指定可引 | break 语句跳出循环;第二次循环 k 的值为 2, 执行 case 2 后面 的语句 c++,c的值为3,跳出循环。
 - (23)D 【解析】调用 f(a,b)函数返回 3,调用 f(a,c)函 数返回6,所以外层调用f(f(a,b),f(a,c));即调用f(3,6)函 数返回9。
 - (24)A 【解析】在变量定义 double a, *p=&a;中,* 号是一个指针运算符,而非间址运算符,所以 A)错误。
 - (25) A 【解析】因为 x, y 都是 double 型数据, 所以输入 时的格式字符应为% lf, 所以 B) 与 C) 错误。D) 选项中 scanf
 - (26)B 【解析】B)选项中定义的数组为2行4列,而赋 值时赋成了3行所以出错。
 - (27)A【解析】函数调用中发生的数据传送是单向的。即 只能把实参的值传送给形参,而不能把形参的值反向地传送给 实参。因此在函数调用过程中,形参的值发生改变,而实参中的 值不会变化,所以数组 c 中的元素的值并没有变化,选择 A)。
 - (28)A 【解析】本题中输入的3个数据2.4.6分别赋值 给了x[0][0],x[1][0],x[2][0]。x[0][1]仍为初始时的

- 式从键盘上把数据输入到指定的变量之中。其中的格式命令 可以说明最大域宽。在百分号(%)与格式码之间的整数用于 限制从对应域读入的最大字符数。所以 j 的值为 55, v 的值为 D, 返回值), 所以 D) 选项错误。 566.0,字符数组 name 为7777abc。
- 方法:char * s; s = "Olympic", 洗项 C) 的写法:char * s, s = {"Olympic"}:是错误的。字符数组可以在定义的时候初始 化:char s[] = { "Olympic" };? 或者 char s[] = "Olympic",都 是正确的。但是不可以在定义字符数组后,对数组名赋值。 (数组名是常量,代表数组首地址)所以选项 B)和选项 D)都 是错误的。对于本例, 选项 B)、D) 中字符数组 s 的大小至少为 8.才能存放下字符串。(字符串的末尾都有结束标志"\0")。
- (31)A 【解析】首先 char *s 接受一个字符型数组的首 地址并将这个首地址赋给另一个字符型指针 char * t, while (*t++)不断循环直到 *t 为'\0',再将 t-1,这时字符指针 t 指向字符串的最后一个字符,又因为 s 指向字符数组的首地 址即字符串的首地址所以 return(t-s) 便是返回字符数组中 字符串的长度。
- (32)A 【解析】因为小写字符 a,b,c 的 ASCII 的值分别 为 97,98,99, 而在 do while 循环语句中, 每次对字符的 ASCII 的值取余数并输出,所以分别输出7.8.9。
- (33)B 【解析】首先 n = fun(3),3 被当作参数传递讲 | char。 夫,这就进行了一次调用,3被当做参数传进夫后,程序会执行 这句 else return fun(k-1)+1; 这就调用了第二次,而参数是 3-1 也就是2。2 被当做参数传进去后,程序会执行这句 else return fun(k-1)+1; 这就调用了第三次,而参数是2-1 也就 是1。1被当做参数传进去后,程序会执行这句 else if(k = = 1) return 1; 不再递归调用,所以最终结果为3次。
- (34)A 【解析】题目中静态局部变量 a,在静态存储区内 分配存储单元,在程序整个运行期间都不释放。所以第一次调 用函数执行 n += a ++; 时 a 先与 n 相加在再进行自增。n 的 值为4,a的值为2,且a变量执行完后空间没有释放。再执行 s=s+f(a)时, s 的值为4, 调用 f(a) 函数时 n 的返回值为 n=3+2=5,且此时 a 的值为 3 了。所以 s 的值为 9。
- (35)A 【解析】A)选项中可以在声明变量的同事为 data2 | 形参列表中给出类型说明。 赋值,但是 data2 = (2,6);应写作 data2 = {2,6}。所以选择 A)。
- (36)C 【解析】本题的子函数 f 的功能是对结构体变量 s中第二个成员数组中所有的数据进行从小到大的冒泡排序, 所以结果是 C)。
- (37)A 【解析】本题考查的是函数调用时的参数传递问 题。程序在调用函数 f 时, 传给函数 f 的参数只是结构变量 c 在栈中的一个拷贝,函数f所做所有操作只是针对这个数据拷 贝进行的修改,这些都不会影响变量 c 的值。
- (38)A 【解析】宏定义写在函数的花括号外边,作用域 为其后的程序,通常在文件的最开头,所以 B) 选项中宏定义必

(29)A 【解析】它是格式输入函数,即按用户指定的格 | 须位于源程序中所有语句之前是错误的。宏名一般用大写,但 | 值时出现错误。 不是必须用大写,所以 C)选项错误。宏展开不占运行时间,只 占编译时间,函数调用占运行时间(分配内存、保留现场、值传 | 给 b [k] 赋值空格,然后变量 k 再加 1。

- (39)B 【解析】b 为 2, 二进制为 00000010, 执行左移两 (30)A 【解析】字符型指针变量可以用洗项 A)的赋值 │ 位操作后为 00001000. 然后与 a 00000001 做异或操作结果为 │ 系, 在程序中用"∗"符号表示"指向", 例如, pointer 代表指针 00001001,即十进制的9。
 - (40)D 【解析】程序首先将数组 a [10]中的元素 1、2、3 分别写入了文件 d1. dat 文件中,然后又将 d1. dat 文件中的数 据123,整体写入到了变量 n 的空间中, 所以打印 n 时输出的 数据为123。

二、程序填空题

【参考答案】

(1) char (2) ch < = '9' (3) '0'

【考点分析】

本题考查:函数定义,注意函数定义的一般形式以及有参 函数和无参函数的区别;if 语句条件表达式,本题的条件表达 式是判断数字字符;函数返回值,其一般形式为"return 表 达式:"。

【解题思路】

填空1:函数定义时,类型标识符指明了本函数的类型,函 数的类型实际上是函数返回值的类型,所以此处应该填入

符,既大于等于字符'0',同时小于等于字符'9'。

填空3:return 语句完成函数返回操作,要实现字符转换, 应填入 return '9' - (ch - '0')。

【解题宝典】

有参函数定义,其一般形式为:

类型标识符 函数名(形式参数表列) 声明部分

语句

在形参表中给出的参数称为形式参数,它们可以是各种类 型的变量,各参数之间用逗号间隔。在进行函数调用时,主调 函数将赋予这些形式参数实际的值。形参既然是变量,必须在

三、程序修改题

【参考答案】

(1)b[k] = *p;

(2) b[k] = ''; k++;

【考点分析】

仅可以是整型、实型、字符型等数据类型,还可以是指针类型。 它的作用是将一个变量的地址传送到另一个函数中。

【解题思路】

(1)题目中p是指针型变量作函数参数,因此给 b[k]赋 |

(2)题目要求赋值3个字符后加一个空格,所以应该是先

【解题宝典】

C语言中为了表示指针变量和它所指向的变量之间的关 变量,而*pointer是pointer所指向的变量。

四、程序设计题

【参考答案】

```
double fun( STREC * h ) {
  double ave = 0.0:
  STREC * p = h \rightarrow next;
  while (p! = NULL) | ave = ave + p \rightarrow s:
          p = p \rightarrow next;
  return ave/N:
```

【考点分析】

本题考查:链表的操作,对链表的主要操作有以下几种:建 立链表、结构的查找与输出、插入一个结点、删除一个结点。

【解题思路】

题目要求求链表中数据域的平均值,应首先使用循环语句 遍历链表,求各结点数据域中数值的和,再对和求平均分。遍 填空 2: 通讨 if 条件语句判断字符串中字符是否是数字字 | 历链表时应定义一个指向结点的指针 p,因为"头结点"中没有 数值,所以程序中让 p 直接指向"头结点"的下一个结点,使用 语句 STREC * p = h → next。

无纸化真考题库试卷(4)

一、选择题

- (1)C 【解析】树是简单的非线性结构,所以二叉树作 为树的一种也是一种非线性结构。
- (2)B 【解析】栈是按先进后出的原则组织数据的。队 列是先进先出的原则组织数据。
- (3)D 【解析】循环队列的队头指针与队尾指针都不是 固定的,随着人队与出队操作要进行变化。因为是循环利用的 队列结构,所以队头指针有时可能大于队尾指针,有时也可能 小于队尾指针。
- (4)A 【解析】算法的空间复杂度是指算法在执行过程 中所需要的内存空间。所以选择 A)。
- (5)B 【解析】一般较优秀的软件设计, 应尽量做到高 本题考查:指针类型变量作为函数的参数,函数的参数不一内聚,低耦合,即减弱模块之间的耦合性和提高模块内的内聚 性,有利于提高模块的独立性。
 - (6)A 【解析】结构化程序设计的思想包括:自顶向下、 逐步求精、模块化、限制使用 goto 语句, 所以选择 A)。
 - (7)C 【解析JN-S 图提出了用方框图来代替传统的

程序流程图,所以 A) 不对。PAD 图是问题分析图,它是继承 程序流程图和方框图之后提出的又一种主要用于描述软件详 细设计的图形表示工具,所以 B) 不对。E-R 图是数据库中的 用于表示 E-R 模型的图示工具, 所以 D) 不对。根据图中所 示表示方法是进行软件详细设计时使用的程序流程图。

- (8)B 【解析】数据库管理系统是数据库的机构,它是一 种系统软件,负责数据库中数据组织、数据操纵、数据维护、控制 及保护和数据服务等。是一种在操作系统之上的系统软件。
- (9)C 【解析】在 E-R 图中实体集用矩形,属性用椭 圆,联系用菱形。
- (10)D 【解析】关系 T 中包含了关系 R 与 S 中的所有元 组,所以讲行的是并的运算。
- (11)A 【解析】解释程序是将源程序(如 BASIC)作为输 入,解释一句后就提交计算机执行一句,并不形成目标程序。 编译程序是把高级语言(如 FORTRAN、COBOL、Pascal、C 等) 源程序作为输入,进行翻译转换,产生出机器语言的目标程序, 然后再让计算机执行这个目标程序,得到计算结果。
- (12)A 【解析】C 语言规定标识符只能由字母、数字和 下划线3种字符组成,且第一个字符必须为字母或下划线,排 除 D):用户定义标识符中大小写字母之间是有区别的并且应 尽量做到"见名识意",排除选项 B)和 C); C语言中还规定标 识符不能为C语言的关键字,故选项A)叙述错误,正确答案是
- (13)A 【解析】C 语言的字符型常量中,允许用一种特 殊形式的字符常量,就是以一个"\"开头的字符。其中, "\ddd"表示用 ASCII 码(八进制数)表示一个字符,本题中的 $char c = '\72'$ 即表示占一个字符的变量 c 的 ASCII 码值。
 - (14)B 【解析】双目运算中两边运算量类型转换规律:

运算数1	运算数2	转换结果类型
短整型	长整型	短整型 - >长整型
整型	长整型	整型 - >长整型
字符型	整型	字符型 - >整型
有符号整型	无符号整型	有符号整型 - > 无符号整型
整型	浮点型	整型 - >浮点型

在 a/b 的时候,a、b 的类型不一致,根据类型转换规则,把整型 转换成 double 类型,之后的加、减类似。转化规则为 char, short -> int -> unsigned -> long -> double←float

- (15)B 【解析】本题考查变量的定义方法。如果要一次 进行多个变量的定义,则在它们之间要用逗号隔开。因此选项 A)和D)错误;在选项C)中,变量c是一个浮点型指针,它只能 指向一个浮点型数据,不能指向指针变量 b; 所以正确答案 为 B)。
- (16)D 【解析】scanf 函数中的输入项必须是指针,只有 洗项 D) 符合这个要求。
- (17)B 【解析】由于在 main() 函数中, 变量 i = 4, 所以

就调用 fun(4),则输出"m=4k=4"。然后变量 k 增 1 等于 5. \n".i.k):"语句输出"i=5 k=5"。

(18)B 【解析】本题中 a 的值为 6.b 的值为 8.最后 s 的 值为8.s*=s等价于s=s*s。

(19)D 【解析】本题考查的是 switch 语句。在 switch 语 占的内存。 句中,表达式的值与某一个 case 后面的常量表达式的值相等 时,就执行此 case 后面的语句,若所有的 case 中的常量表达式 的值都没有与表达式的值匹配的,就执行 default 后面的语句, 各个 case 和 default 的出现次序不影响执行结果。所以在本题 中, 当 k = 5 和 k = 4 的时候, case 都没有与其匹配的值, 所以执 行了 default 语句: 当k = 3 时, 执行"case 3: n + = k;"得 n = 3, | printf("%c%c\n",c5,c6)输出 45。 然后执行 default; 当 k = 2 时,执行"case 2; case 3; n + = k; case 2: case 3: n + = k; "使得 n 加两次 k,得到 n = 7。

未配对的 if 匹配。本题的执行过程为:如果输入整数小于3则 不进行任何操作, 否则判断是否不等于 10, 若为真则进行输 | 式(a++)+c 的值为 7, a 递增为 4, k=6+7=13。语句 k+=出。因此程序输出的数据为大于3目不等于10的整数。

(21)D 【解析】执行第一个 printf 语句时, b = a + b = 1, 以输出结果为2。

输出空格,第二个用来输出数字。如此类型的输出某种格式的 │ 指向的存储单元,即*p=*q。 考题,一般是采用多重循环来解决,需要考生找出输出数据的 特点,并用相对应的数学公式表达出来。

(23)A 【解析】表达式 k = a > b? (b > c? 1: 0): 0 表 示:如果(a>b)条件为真,则k取值(b>c? 1: 0),否则k取 该表达式与选项 A) 功能相同。

(24)B 【解析】在内存中,字符数据以 ASCII 码存储,它 的存储形式与整数的存储形式类似。C语言中,字符型数据和 整型数据之间可以通用,也可以对字符型数据进行算术运算, 此时相当于对它们的 ASCII 码进行算术运算,在本题中,s++ 相当于 s = s + 1,即让 s 指向数组中的下一个元素。

(25)D 【解析】在 C 语言中, 定义一维数组的语句一般 | (8,5), 最终输出值为 6。 形式如下:

类型名 数组名[常量表达式];

示能被2整除或被5整除的个数,i则计算有多少个数组元素。

(26)D 【解析】该程序中 f 函数的功能是交换两个位置 字符的值,f函数共调用3次,依次更改了字符串中1和o,e和 的值。 m、w和e的值,因此更改后的字符串的值是emoclew。

(27)B 【解析】(x,v)考查逗号表达式,逗号运算符的结 合性为从左到右,因此,最后一个表达式的值就是此逗号表达 1+1*5+1=7。 式的值,因此选项B)正确。

变量 i 增 1 等于 5, 所以 main() 函数的"printf("i = % d k = % d | 改后的值传回调用函数,第二个参数传值,不能将更改后的值 | 果为"00000001",输出其十进制的值 1。 传回调用函数,故选A)。

> (29)B 【解析】strlen()用来返回字符串的长度,而 sizeof ()返回的是一个对象或者类型所占的内存字节数,即数组所

> (30)A 【解析】本题考查了二维数组元素的引用方法。 选项 A) 中 a + i 指向了数组 a 的第 i + 1 行, * (a + i) 则是第 i +1 行第0 列的地址值. * (a+i) + i 指向了数组 a 第 i + 1 行.i +1列,*(*(a+i)+j)取到的是数组 a 的 a [i] [j] 元素。

(31)D 【解析】putchar(c1)输出 1, putchar(c2)输出 2, 所以 for 循环语句循环条件是 i < M。

得 n = 5, 然后执行 default; 当 k = 1 时, 执行"case 1; n + = k; │ 的 a, 是其内部定义的静态局部变量, main 函数中语句 k + = f (a)访问的 a 是其局部变量, 所以两次调用实际上都是调用 f (20)B 【解析】if...else 控制结构中, else 总是与最近的 │(3)。第一次调用时, fun 函数中 c = 4, 表达式(a + +) + c 的值 为6,a 递增为3,k = 6。第二次调用时,fun 函数中 c = 4,表达 | 储存行下标的值。 a 中的 a 是全局变量, 所以 k = 13 + 1 = 14。

(33)A 【解析】本题考查的是指针变量的赋值。题目中 所以输出 1,执行第二个 printf 语句时, a = 2 * b = 2 * 1 = 2, 所 │ 各变量定义后,指针变量 p 指向了变量 n2 所在的存储单元,指 针变量 q 指向了变量 nl 所在的存储单元,要使得 nl 的值赋给 (22)C 【解析】此题中嵌套了两个 for 语句,第一个用来 | n2,可用指针变量 q 所指向的存储单元的值赋给指针变量 p 所

> (34)B 【解析】以上形式定义 NEW 表示 ST 的结构类 型,然后可以用 NEW 来说明结构体变量。因此选项 B) 正确。

(35)A 【解析】本题考查的是函数调用时的参数传递以 及结构体变量的引用的问题。程序在调用函数 f 时, 传给函数 f 值0;当a>b的情况下,如果b>c,则k值为1,否则为0。所以 的参数只是结构变量c在栈中的一个拷贝,函数f的所有操作只 是针对这个数据拷贝进行的修改,这些都不会影响变量 c 的值。

> (36)B 【解析】该题目中 fun 函数的功能是将二维数组 a 中符合条件的值赋给一维数组的符合条件的元素。主函数 即可。 的功能是将符合条件的一维数组的元素进行输出。

(37)B 【解析】本题中对函数 fun()进行了嵌套的调用。 首先调用 fun(5,6),返回值为5,2*a的值为8,然后调用 fun

(38)D 【解析】本题的考查点是条件运算符。这种条件 表达式的一般形式为:表达式1?表达式2:表达式3,条件运 一维数组的引用形式为:数组名[下标表达式]。count 表 | 算符的执行顺序为:先求解表达式1,若非0则求解表达式2, 此时表达式2的值就是整个条件表达式的值,若表达式1的值 为 0.则求解表达式 3.此时表达式 3 的值就是整个条件表达式

(39)B 【解析】根据宏替换的替换规则,我们可知,

f(2) = 2 * N + 1 = 2 * 5 + 1 = 11, f(1 + 1) = 1 + 1 * N + 1 = 1

(40)C 【解析】本题中将8赋值给字符变量 a.则 a 的二

(28) A 【解析】 函数 fun 的第一个参数传指针,可以将更 | 进制为"00001000", a > > 3 的位运算是把 a 向右移动三位,结

二、程序填空题

【参考答案】

(1) M (2) < (3) k

【考点分析】

本题考查·for循环语句的循环条件·if语句条件表达式: return 语句完成函数值的返回。

【解题思路】

填空1:题目指出 ss 所指字符串数组中共有 M 个字符串,

填空 2:要求求长度最短的字符串,*n中存放的是已知字 (32)D 【解析】fun 函数语句 return(a++)+c:中访问 | 符串中长度最短的字符串的长度,这里将当前字符串长度与 *n比较, 若小于*n,则将该长度值赋给*n,因此 if 语句的条 件表达式为 len < * n。

填空3:将最短字符串的行下标作为函数值返回,变量 k

三、程序修改题

【参考答案】

```
(1) if ((tt[i]>='a') &&(tt[i]<='z'))
(2) \text{ tt} [i] - = 32;
```

【考点分析】

本题考查:if 语句条件表达式: 小写字母转大写字母的 方法。

【解题思路】

(1)分析本题可知,要判断字符是否为小写字母,即判断 其是否在 a~z之间,所以这里需要进行连续的比较,用 &&。

(2)从ASCII 码表中可以看出,小写字母的 ASCII 码值比 对应大写字母的 ASCII 值大 32。将字符串中的小写字母改为 大写字母的方法是:从字符串第一个字符开始,根据 ASCII 码 值判断该字母是不是小写字母, 若是, 则 ASCII 码值减 32

四、程序设计题

【参考答案】

```
void fun( int m, int *k, int xx[])
   int i, i, n = 0:
   for(i=4;i<m;i++) /* 找出大于1 小于整数 m
   的非素数 */
   for (j = 2; j < i; j + +) if (i\% j = = 0) break;
      if (j < i) xx[n + +] = i;
    *k=n; /*返回非素数的个数*/
```

【考点分析】

本题考查:如何判断非素数:循环判断结构:数组的引用。

【解题思路】

题目要求将1~m之间的非素数存入数组中,应使用循环 判断结构。循环语句用来遍历1~m之间的每个数.判断语句 用来判断该数是否为素数,若不是素数,则将其存入数组中。 这道题目是考查一个数是否为素数的简单延伸,只要掌握了判 断素数的方法,问题便能顺利解决。

【解题宝典】

判定一个数是否为素数,即该数除了能被1和它本身外, 不能被任何数整除。

代码实现为:

for(i=2:i< i:i++) if(i%i==0) /* 如余数为0,证 明 i 不是素数 */

此语句需要熟记,很多判断素数的题目也可通过此法

无纸化真考题库试卷(5)

一、冼择颢

- (1)B 【解析】线性链式存储结构中每个结点都由数据 域与指针域两部分组成,增加了存储空间,所以一般要多于顺 序存储结构。
- (2)D 【解析】栈是一种先进后出的线性表,队列是一 种先进先出的线性表,栈与队列都是线性结构。
- (3)D 【解析】软件测试是为了发现错误而执行程序的 过程,测试要以查找错误为中心,而不是为了演示软件的正确 功能。不是为了评估软件或改正错误。
- (4)D 【解析】需求分析阶段的工作可以概括为:需求 获取、需求分析、编写需求规格说明书、需求评审四个方面。所 以选择 D)。
- (5)A 【解析】通常,将软件产品从提出、实现、使用维 护到停止使用退役的过程称为软件生命周期。也就是说,软件 产品从考虑其概念开始,到该软件产品不能使用为止的整个时 期都属于软件生命周期。
- (6)D 【解析】继承是面向对象的方法的一个主要特 征,是使用已有的类的定义作为基础建立新类的定义技术。广 义地说,继承是指能够直接获得已有的性质和特征,而不必重 复定义它们,所以说继承是指类之间共享属性和操作的机制。
- (7)D 【解析】层次模型的基本结构是树形结构,网状 模型是一个不加任何条件限制的无向图,关系模型采用二维表 来表示,所以三种数据库的划分原则是数据之间的联系方式。
- (8)C 【解析】因为一个人可以操作多个计算机,而一台 计算机又可以被多个人使用,所以两个实体之间是多对多的关系。
- (9)C 【解析】数据库系统的三级模式是概念模式、外 模式和内模式。概念模式是数据库系统中全局数据逻辑结构 的描述,是全体用户公共数据视图。外模式也称子模式或用户 模式,它是用户的数据视图,给出了每个用户的局部数据描述,

所以选择 C)。内模式又称物理模式,它给出了数据库物理存 | 为3,故当i的值为1和2时,内层循环体都不会被执行。只有 储结构与物理存取方法。

- (10)B 【解析】关系 T 中的元组是 R 关系中有而 S 关系 │ 算结果为 1。 中没有的元组的集合,所以进行的是差的运算。
- (11)B 【解析】C语言是一种结构化程序设计语言。结 ↓ 址, 而 B) 答案中给出的 s[1]是一个值的表达式。 构化程序设计是以模块化设计为中心的,有三种基本结构:顺 序、选择和循环结构。各模块相互独立,因而可将原来较为复 杂的问题化简为一系列简单模块并充分利用现有模块搭建新 系统,提高程序的重用性和可维护性。
- (12)A 【解析】C语言规定的标识符只能由字母、数字 和下划线3种字符组成,第一个字符必须为字母或下划线,并 目不能使用 C 语言中的关键字作为标识符。选项 A) 中 goto 和 int 是关键字,c-b中'-'不是组成标识符的 3 种字符之一: 选项 B)中 do 是关键字;选项 C)中 float 是关键字;选项 D)中 goto 是关键字: 所以, 均是不合法用户标识符的选项是 A)。
- (13)B 【解析】字符常量'0'的值是 48,'1'的值是 49,'\0' 以本题输出的结果是 1,2,7,6,5,4,3,8,9,10,。 的值是0。所以1-'0'=-47,1-'\0'=1,'1'-0=49,'\0'-'0'= -48
- (14)A 【解析】"%"是求余运算符或模运算符,"%"两 侧均应为整型数据,选项 A) 中的 x 是 double 型数据。
- (15)B 【解析】(int)(x*100+0.5) 把 float 型数据(x* 四舍五人。例如 x = 1.234,则(1.234 * 100 + 0.5) = 123.9,则 $(int) 123.9/100.0 = 123/100.0 = 1.23_{\odot}$
- (16)D 【解析】首先 i ++==1&&(++ j == 3 | | k ++== 3)是一个逻辑表达式,i++==1&&(++j==3||k++==3) 分为两部分i++==1和(++i==3||k++==3),它们的关系 是 "且"的关系, 所以两部分都会被执行, 其中 i++==1 是先 判断 i 是否等于1(因为++在后面)此时 i = 1,在执行完后 i =2。然后执行第二部分(++i==3||k++==3|,又分为两部 分: ++i=3 和 k++=3 两部分,这两部分是"或"的关系, 如果第一部分满足条件就不执行后面的,如果第一部分不满足 是错误的。 条件,就执行后面的部分。++j==3是j先自己加1然后判断 此最后的结果为 i = 2 j = 3 k = 3。
- (17)B 【解析】满足表达式(c>=2&&c<=6)的整型变 │ 在 main 函数体内依然为1,所以选项 C)正确。 量 c 的值是 2,3,4,5,6。 当变量 c 的值不为 2,4,6 时,其值只 能为3或5,所以表达式 c! = 3和 c! = 5中至少有一个为真,即 | 母为"T"的个数,p[i][0]是字符串的首字符,一共有两个 | World",str[1]为"One * Dream!"。 不论 c 为何值,表达式 B)都为"真"。
- (18)D 【解析】本题中, scanf 函数的格式控制没有空格, 值给变量 cl,而不会被解释成分隔符。
- (19)C 【解析】选项 C)中 int(f)不正确,因为强制类型 转换表示为:(类型名)(表达式),正确表示为(int)f。
- (20)B 【解析】本题考查循环语句的嵌套以及条件的判 | 重循环定义了—个如下的二维数组: 断问题。在程序中,内层循环判断条件为"i<=i",而i的初值

- 当 i 和 i 都等于 3 时才会执行一次。m 的值为 55 对 3 取模,计
- (21)B 【解析】在格式输入中,要求给出的是变量的地
- (22)B 【解析】函数调用的一般形式为:函数名(形参 表) 若函数无形参, 调用形式为: 函数名(), 当所调用的函数用 干求出某个值时,函数的调用可作为表达式出现在允许表达式 | 素。从第二次的嵌套循环结束后 i 的值为,所以 出现的任何地方,本题中调用语句的参数个数为2个。
- (23)C 【解析】本题重点考查的是函数的调用。程序中 sort 函数的作用是将指定的数由大到小排序。被调函数"sort (aa + 2, 5): "中的实参 aa + 2 是指 aa [2]的地址,将其传给了 形参 a[], 使得形参中 a[0]的值为主函数中 aa[2]的值, 即 3; | 实参中的 5 传给形参中的 n,在 sort 函数中起着限制循环次数 | 到 s 值为 9。 的作用,即使得参加排序的只有5个数,从aa[2]到aa[6],所
- (24)C 【解析】赋值运算符左边必须是单一变量名,而 A) 选项中的"y*5=x+z"部分是非法赋值。在求余运算中的 操作对象中只能是整型,故选项 B)和选项 D)是错误的。选项 C) 为逗号表达式。
- (25)A 【解析】在 C 语言中函数参数的传递是"传值" 100+0.5) 强转成 int, 这样就可以去掉小数点, +0.5 就是为了 \ 的, 即形参和实参是两个没有关系的变量, 函数 fun 虽然看似 交换了参数值,但是只交换了形参的值,其结果不会传递给实 参,因此数组 C 没有变化。主函数中给数组 C 元素赋值 1.2, …,9,0。第一个 for 循环语句中调用 fun 函数,该函数功能是 交换变量的数值,注意循环变量 i 的增量。第二个 for 循环语 句将数组 C 中元素的值进行输出。
 - [0],因此选项 A)是正确的;p 是字符串指针,所指向的字符串 为"beijing",其长度为7,而数组 s 中元素的个数为20,因此选 (2+2*2+2),求得结果为3。故本题输出的值为4,3。 项 B) 和 D) 是错误的; s 是数组, 不是指针变量, 所以选项 C) 也
- (27)C 【解析】C 语言中函数参数传递满足"单向传 ;是否等于3,这部分的结果为真,所以后面的部分不执行,因 │ 递",只由实参传给形参,而不能由形参传给实参。Fun 函数体 │ fun2()的定义为 int 型,按照各类数值型数据间的混合运算,整 内输出 p 的值为 2, 而并没有影响到 fun 函数外 a 的值, a 的值 | 型数据被转换为实型数据。
 - (28)B 【解析】此程序是统计一周七天中英文名称首字 "T",因此 n = 2。
 - (29)B 【解析】i = f(1+1)展开后为 i = (1+1) * M = = 11 .
 - (30)B 【解析】本题主要考查的是用二维数组首地址和
 - 0 1 2 0 0 0 0 0

2 3 4 0 0 0 0 0 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

由于数组的下标是从 0 开始的, 所以二维数组元素 a[i] [i]表示的是一维数组 a 的第 i + 1 行。第 i + 1 列对应位置的元

for
$$(i = 0; i < 8; i + +) x + = a[i][j];$$

计算的是数组中所有第四列的元素的和,即0。

- (31)C 【解析】s = f(a)表达式第一次调用 f(n) 函数时, f(n) 函数运行结果为 n=4, a=2, 即 s 等于 4: s=s+f(a) 表达 式第二次调用 f(n) 函数时 f(n) 函数运行结果为 n=5 所以得
- (32)D 【解析】第一次循环时, k = 1, 在 switch 语句中, 先执行 default 后面的语句,即 c = c + k = 1,因为没有 break 语 | 句,所以不会跳出 switch 结构,会接着执行 case2 后面的语句, | 即 c = c + 1 = 2,然后跳出 switch;第二次循环时, k = 2, 直接执 行 case2 后面的语句,即 c = c + 1 = 3,然后跳出 switch 语句,结 束循环,执行输出语句。
- (33)B 【解析】本题中定义了一个结构体数组 dt[2],其 中 dt[0]. x = 11, dt[0]. y = 12, dt[1]. x = 13, dt[1]. y = 14。在 main 函数中指针 p 指向了结构体数组的第一个元素,因此 p -> x 值为 11,p->v 值为 12,自加运算的结果分别为 12 和 13。
- (34)C 【解析】本题考查的是宏定义。对带参数的宏的 展开只是将语句中宏名后面括号内的实参字符串代替#define 命令行中的形参。本题中"i1 = f(8)/f(4)"用"#define f(x)(x (26)A 【解析】p=s;后,指针p指向s的首地址,*p=s | *x)"代替得il=(8*8)/(4*4),结果为4;"i2=f(4+4)/f (2+2)"用"#define f(x) (x * x)"代替得 i2 = (4+4*4+4)/
 - (35)B 【解析】本题中, struct ex 是结构体类型名, example 是结构体变量名。
 - (36)C 【解析】题中变量 w 的定义为 double 型,函数 隔开。
 - (37)C 【解析】可以将二维数组 str 看成是一个特殊的 一维数组,其元素也是一个数组。那么,str[0]为"One *
- (38)C 【解析】本题题意要求删除所有空格,即除了空 │格以外的其他所有字符都要留下。由于 C 语言中没有直接删 所以,对于选项 A)、B)、C),输入的第一个空格会作为字符赋 | (1+1)*8=16。j=12(1+1)展开后为j=1+1=1+1*10 | 除字符的操作,所以我们对于删除字符的操作都是采用" 留 下"字符的算法,以前的题目亦是如此。用 str[i]从串头到串 | 尾逐一走动,每走到一个字符都判断其是否为空格,若不是空 下标来引用二维数组元素的方法。通过分析可知,程序中的双|格(注意在 if()的单引号之间有一个空格),则将其保存在 str| [i]中。注意 i 的下标变化、初值及最后加串结束符'\0'。
 - (39)A 【解析】考查用指针来引用字符数组元素的方

法。指针 p1+k 相当于指针 p1 向后移动了 k 个字符的位置, 指针 p2 同理。

(40)A 【解析】按位或运算符"|"是双目运算符,其功能 是参与运算的两数各对应的二进位相或。左移运算符" < <" 是双目运算符,其功能把" < < "左边的运算数的各二进位全 部左移若干位,由"<<"右边的数指定移动的位数,高位丢弃, 低位补0。将5变换为二进制数为101, 左移2位后为10100,1 转换为二进制数为00001.10100 与00001 进行或运算后为 10101.再将其转换为十进制数为21。因此,本题答案为A)。

二、程序填空题

【参考答案】

- $(1)_{i+1} + \underline{\vec{u}}_{i+1} +$
- (2) s[i] = t1[i]

(3)j

【考点分析】

本题考查: 指针型变量; 数组变量赋值; for 循环语句。

【解题思路】

填空1:根据函数 fun 中的内容可知,数组 tl 存储了 s 中的 非数字字符,数组 t2 存储了 s 中的数字字符,为了存储下一个 数字字符,下标 i 要进行加 1 操作。

填空2:将s串中的数字与非数字字符分开后,要先将非数 字字符放入字符串 s 中,因此填入 s[i] = t1[i]。

填空3:最后将数字字符加到s串之后,并目i要小于数字 的个数 i。

三、程序修改题

【参考答案】

- (1) for (j = i + 1; j < 6; j + +)
- (2) * (pstr + i) = * (pstr + j);

【考点分析】

本题考查:冒泡排序算法;for循环语句格式;指针数组。

【解题思路】

- (1)此处考查 for 语句的格式,各表达式之间应用";"
- (2)此处考查用指针表示数组元素的方法,*(pstr+I)表 示 pstr 所指向数组的第 I 个元素,同理*(pstr+j)表示 pstr 所 指向数组的第i个元素。

【解题宝典】

冒泡排序算法,其基本思想是,将待排序的元素看作是竖 着排列的"气泡",较小的元素比较轻,从而要往上浮。在冒泡 排序算法中我们要对这个"气泡"序列处理若干遍。所谓一遍 处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻 的元素的顺序是否正确。如果发现两个相邻元素的顺序不对, 即"轻"的元素在下面,就交换它们的位置。显然,处理一遍之 后,"最轻"的元素就浮到了最高位置:处理二遍之后,"次轻" 的元素就浮到了次高位置。依次类推,完成排序。

用代码实现数组 s[N]的升序排列为:

```
for(i=0; i < N; i++)for(j=i+1; j < N; j++)if(s[i] | 模式和内模式,所以选择 D)。
> s[i]) \{t = s[i]; s[i] = s[i]
   s[i] = t;
```

四、程序设计题

【参考答案】

```
int fun(char * ss. char c) {
   int i = 0:
   for (: * ss! = '\0': ss + +) if (* ss = = c)
          i++:/*求出ss 所指字符串中指定字符的个数*/
   return i:
```

【考点分析】

本题考查:for循环语句遍历字符串,并通过 if 条件语句, 判断字符串是否结束。

【解题思路】

语句用来遍历字符串,循环条件为字符串没有结束,即当前字 符不是'\0',判断语句用来判断当前字符是否为指定字符。最 后返回指定字符的个数。

无纸化真考题库试卷(6)

一、选择题

- (1)D 【解析】算法是指解题方案的准确而完整的描 述,算法不等于程序,也不等于计算方法,所以 A)错误。设计 算法时不仅要考虑对数据对象的运算和操作,还要考虑算法的 控制结构。
- (2)B 【解析】线性结构应满足:有且只有一个根结点 与每个结点最多有一个前件,也最多有一个后件,所以 B) 正 确。所以有一个以上根结点的数据结构一定是非线性结构,所 以 A) 错误。循环链表和双向链表都是线性结构的数据结构。
- (3)B 【解析】根据二叉树的基本性质3:在任意一棵二 选择 B)。
- (4)A 【解析】软件生命周期可以分为软件定义、软件 开发与软件运行维护三个阶段。主要活动阶段是:可行性研究 维护,所以选择 A)。
- (5)C 【解析】根据总体结构图可以看出该树的深度为 D)都可以。 3,比如:XY 系统 - - - 功能 2 - - - - 功能 2.1,就是最深的 度数的一个表现。
- 错误。
- (7)A 【解析】数据字典是在需求分析阶段建立,在数 据库设计过程中不断修改、充实和完善的。

- (9)A 【解析】自然连接是一种特殊的等值连接,它要 | 案为 B)。 求两个关系中进行比较的分量必须是相同的属性组,并且在结 果中把重复的属性列夫掉,所以根据 T 中元组可以判断 R 和 S 做的是自然连接操作。
- (10)A 【解析】面向对象基本方法的基本概念有对象、 类和实例、消息、继承与多态性,所以选择 A)。
- (11)C 【解析】一个 C 语言源程序至少包含一个 main 函数。无论 main 函数在程序中的位置如何,它都是 C 语言程 序的主函数,是程序执行的人口和出口。
- (12)A 【解析】C 语言规定用户标识符由英文字母、数 句也被执行了。 字和下划线组成,且第一个字符必须是字母或下划线,由此可 见选项 B),D)是错的;此外,C语言不允许用户将关键字作为 标识符,而选项C)选项项中的 int 是C语言的关键字。
- (13)D 【解析】scanf 函数中的格式控制说明为"%3d% 从字符串中查找指定字符,需要使用循环判断结构,循环 │ 2d",分别选中输入中的三位和两位,因此 a = 123,b = 45。因 此正确答案为 D) 选项。
 - (14)C 【解析】C语言的语法规定,字母 e(E)之前必须 │句组只有一条语句,编译将是正确的。 有数字,目e(E)后面的指数必须是整数,而选项C)中,e(E) 后面的指数是小数,所以不合法。
 - (15)B 【解析】本题考查的是整型无符号数的输出。%u 引用。 的作用是按无符号的十进制形式输出整型数,整型无符号数的 取值范围在0~65535之间,无符号数不能表示成小干0的负 数,十六进制数 0xFFFF 转换为二进制位其值为 16 个 1,代表 的整数就是65535。
 - (16)C 【解析】本题综合考查了输入函数的使用。scanf │储,在整个程序运行时间都存在。 函数会将空格视为分隔符, getchar 函数只能输入单个字符, getc 函数是文件操作函数,显然都不符合题意。通过 gets 函数 | 句。当变量 b 为 0 时,将 a 的值返回给主调函数,因此 a 进行 输入字符串时,输入的空格被认为是字符串的一个字符。
 - (17)C 【解析】本题考查简单的 if...else 语句。先执行 条件 if(a < b),显然不成立,然后执行 else 语句。
- 叉树中, 度为0的叶子结点总是比度为2的结点多一个。所以 | 函数中 fun(7)经过三次递归调用, 其过程可以描述为" fun(7) =7-fun(5)=7-(5-fun(3))=7-(5-(3-fun(1)))=7 数时,不能更改实参指针变量的指向。故在 printf("% c\n", -(5-(3-3))=7-5=2",所以最后的输出结果为2。
- (19)B 【解析】在本题中,选项 B)实际是先计算关系表 与计划阶段,需求分析,软件设计,软件实现,软件测试,运行和 达式"'A' $< e^{\text{t}}$ 的值是0 还是1,再比较该值与字符' \mathbf{Z} 之间的 大小关系,显然不能实现题目所要求的功能,而选项 A)、C)、
 - 人,因此876和543.0被看作两段输入。%2d只洗取了第一个 (6)D 【解析】程序调试的任务是诊断和改正程序中的 | 输入中的前两位,%f 选取随后的数字作为浮点数,因此输出 结果为87和6.000000。
 - (21)B 【解析】A)选项中如果 x 与 y 的值相等那么取余 时就会有除数为0的情况。C)选项中取余的两个数据都应为 | 对数组 s 中的元素进行首尾互相调换。所以在主函数中, 当 | 时 d 的二进制为:0000 0110, c 的值转换成二进制为:0000

- D) 洗项表达式本身就错误,不能给表达式赋值。所以,本题答 | 再执行 fun(a,4,9),数组 $a[12] = \{4,3,2,1,0,9,8,7,6,5\}$;
- (22)C 【解析】本题主要对 switch 语句讲行了考查。 switch 语句的执行过程为: 进入 switch 结构后, 对条件表达式 进行运算,然后从上至下去找与条件表达式值相匹配的 case, 以此作为人口,执行 switch 结构中后面的各语句,直到遇到 break 语句,则跳出 switch 语句,如果各 case 都不匹配时,则执 行 default 后面的语句。本题中 ch 为字符'H',所以 case 'H'条件 中的语句将被执行,由于没有 break 语句,所以 case 'G'后的语 句也被执行,由于同样的缺少 break 语句,所以 default 后的语
- (23)C 【解析】本题的程序是要统计字符串 s 中数字的 个数,其中前6个字符中有4个满足选择条件,此时n为4,然 后遇到字符'\0',这个转义字符表示值为 0 的空字符 NULL,此 时循环条件不满足,因此循环结束。
- (24)D 【解析】if 中的语句组包含两条语句,但是没有 花括号,所以编译有错。如果这个时候没有 else,就理解成语
- (25)C 【解析】考查二维数组元素的引用方法。题中通 过二维数组的行、列下标来定位元素的位置,从而实现元素的
- (26)A 【解析】本题的考查点是变量的存储类型。extern、register、static、auto 分别是定义自动变量、寄存器变量、静 | 杰变量、外部变量,其中,自动变量和寄存器变量属于动态存 储,调用时临时分配单元;而静态变量和外部变量属于静态存
- (27)B 【解析】该题目考查函数参数传递以及 if 条件语 两次自减1后,将其值返回并输出。
- (28) A 【解析】在函数 point 函数调用时,系统自动为函 后 sum = 15,所以 Fun(b,4) = 45,s = 45 + 15 = 60。 数的形参 p 分配内存空间,并赋值为实参 p 的值。当执行语句 (18)C 【解析】因为 fun(int x)是一个递归函数,所以主 | p+=3;时,系统操作的是形参 p 的内存空间,更改形参 p 的内 容,而实参指针变量 p 的值未受影响,即指针变量作为函数参 *p);语句中,p仍然指向字符数组的首元素。
 - (29)A 【解析】带参数的宏定义命令行形式如下:#de-| fine 宏名(形参表) 替换文本。首先进行 M 的宏替换,之后再 进行 N 的宏替换,替换后的表达式为 (a) * (b)/(c)。
- (20)B 【解析】scanf()函数用空格区分不同字符串的输 | 符(*指针变量名)()。void(*pf)()定义了一个没有返回值 | 为"ABCDIJK"。 的函数指针 pf,在给函数指针变量赋值时,只需给出函数名而 可。所以正确答案为选项 A)。
- (31)C 【解析】函数 fun(int *s.int n1.int n2)的功能是 (8)D 【解析】数据库系统的三级模式是概念模式、外 │ 整数,不能有一方为实型变量,而 a * v 的结果为 double 型。 | fun(a,0,3)执行完后,数组 a [12] = {4,3,2,1,5,6,7,8,9,0}; | 0101,接下来将 d 和 c 进行按位与运算(参加计算的两个位都

- 再执行 fun(a,0,9)后,数组 $a[12] = \{5,6,7,8,9,0,1,2,3,4\}$ 。 所以正确答案为 C)。
- (32)B 【解析】定义结构体变量有三种方式:①先声明 结构体类型,再定义变量名,如选项 A) 所示:②在声明类型的 同时定义变量,如选项 C) 所示: ③ 直接定义结构体类型变量, 如选项 D) 所示。
- (33)B 【解析】本题考查的是指针作为函数的参数和函 数的调用。题目中定义了一个指针变量作为函数 f()的形参。 主函数 main() 中调用 f() 函数, 当 i=0 时, 执行语句(* g) + +,此处*q代表的就是数组元素a[0]的值,即将1进行加1 操作: $\exists i=1$ 时, g 仍指向数组元素 a[0] 的地址, 因为在函数 f ()中并未对指针变量 q 作任何变动, 也即 * q 仍代表了数组元 $\bar{x} = [0]$ 的值,所以此次(*q)++即2+1,所以a[0]的值变为 3;……直到 i = 4 时,执行(*q)++(即5+1)后 a [0]的值变 为6。所以最后的输出结果为:6,2,3,4,5,。
- (34)C 【解析】在函数 fun(char * a, char * b)中, while (*a=='*')a++的功能是:如果*a的内容为'*',则a指针 向后移动, 直到遇到非'*'字符为止, 退出循环进入下一个 while 循环, 在 while(*b=*a) $\{b++;a++;\}$ 中, 把字符数组 a 中的字符逐个赋给字符数组 b。所以在主函数中,执行 fun (s,t)语句后,字符数组 t 中的内容为"a*b****"。所以 选项 C) 为正确答案。
- (35)C 【解析】数组名的值即为数组首地址,所以p-> y可得第一个元素的 y 值, $(++p) \rightarrow x$ 可得第二个元素的 x值。
- (36)C 【解析】内部静态变量是始终存在的,当函数被 调用退出后,内部静态变量会保存数据,再次调用该函数时,以 前调用时的数值仍然保留着。Fun(a,5)的值是15,再次调用
- (37)C 【解析】在语句"k = *f(a,b)"中,由于"()"的 优先级高于"*",所以"*f(a,b);"表示其返回类型为指针的 带有两个整型参数的函数。
- (38)C 【解析】: -> 的运算优先级比 ++ 高,此时,pt -> x = 10,执行自加运算后为 11。
- (39)B 【解析】char * strcat(char * dest, char * src)的 功能是:把 src 所指字符串添加到 dest 结尾处(覆盖 dest 结尾 处的'\0')并添加'\0'。因为'\0'是字符串的结束标志,所以a数 (30)A 【解析】函数指针的定义形式是:数据类型标识 | 组中存放的字符串为" ABCD", 所以将两个字符串拼接后结果
- (40)B 【解析】本题考查的是逻辑运算。本题中主要是 |不必给出参数。所以给 pf 赋值时,只把函数名 fun 赋给 pf 即|进行位的逻辑运算。将 a 的值转换成二进制为;0000 0010, b 的值转换成二进制为:0000 0100,将 a、b 进行按位或运算(参 加计算的两个位只要有一个为1,那么运算结果为1),因此此

为1,则结果为1,否则为0),结果为:0000 0100,转换成十进制 数结果为4。

二、程序填空题

【参考答案】

(1)N (2)k (3)ss[i]

【考点分析】

本题考查:for循环语句:if语句条件表达式:字符串拷贝 函数 strepy 的使用。

【解题思路】

填空1:for循环语句作用是遍历字符串数组中的每一个字 表达式:字符串结束标识'\0'。 符串,所以循环变量i的循环条件是i<N。

填空2:题目要求删除串长度小干 k 的字符串, 所以 if 条 件语句的条件表达式是 len < = k。

填空3:通过字符串拷贝函数将串长不大于 k 的字符串另 存,并记录个数。

【解题宝典】

字符串拷贝函数 strepy, 其格式为:

strepy (字符数组名1,字符数组名2)

功能:把字符数组2中的字符串拷贝到字符数组1中。字 符串结束标识'\0'也一同拷贝。字符数名2,也可以是一个字 符串常量。这时相当于把一个字符串赋予一个字符数组。

三、程序修改题

【参考答案】

- (1) int k = 0:
- (2) while (*p||*q)

【考点分析】

本题考查:变量初始化,需根据题意确定变量含义,然后对一般采用循环队列的形式。 其进行初始化操作; while 循环语句。

【解题思路】

- (1)变量 k 存放数组 c 的下标,因此应初始化为 0。
- (2) while 循环语句的循环条件是判断两个字符串是否到 达结尾。

四、程序设计题

【参考答案】

```
void fun( char * a )
   int i = 0:
   char *p = a;
   while (*p&&*p = ='*')
      a[i] = *p:
      i++;
      p ++;
   while(*p)
```

```
if(*p! = '*')
   \{a[i] = *p; i++; \}
   p ++:
a[i] = '\0':
```

程序设计题解析:

【考点分析】

本题考查:指针型变量定义:while 循环语句:if 语句条件

【解题思路】

函数 fun 的功能:除了字符串前导的*号之外,将串中其 他*号全部删除。解答本题,(1) 定义一个临时指针 p,初始 指向原串首地址;(2) 利用循环语句把字符串前导*号拷贝到 原串:(3) 继续移动指针,把串中和串尾的非*号字符拷贝到 原串:(4)为修改后的字符串赋结束字符'\0'。

【解题宝典】

要删除字符串中的指定字符,我们通常采用保留非指定字 符的方法。可以将非指定字符保留在原串,即将需要保留的字 符从原串的起始位置重新赋值;也可以保留到新串,即新建-个字符串,存放要保留的字符。

无纸化真考题库试卷(7)

一、选择题

- (1)B 【解析】在实际应用中,队列的顺序存储结构-
- (2)C 【解析】一般来说,在线性表的链式存储结构中, 各数据结点的存储序号是不连续的,并且各结点在存储空间中 的位置关系与逻辑关系也不一致。线性链表中数据的插入和 删除都不需要移动表中的元素,只需改变结点的指针域即可。
- (3)A 【解析】根据二叉树的性质3:在任意一棵二叉树 中,度为0的叶子结点总是比度为2的结点多一个,所以本题 中度为2的结点是5-1=4个,所以度为1的结点的个数是25 $-5 - 4 = 16 \, \uparrow_{\circ}$
- (4)B 【解析】数据库系统的三级模式是概念模式、外 模式和内模式。概念模式是数据库系统中全局数据逻辑结构 的描述,是全体用户公共数据视图。外模式也称子模式或用户 模式,它是用户的数据视图,给出了每个用户的局部数据描述。 内模式又称物理模式,它给出了数据库物理存储结构与物理存 | 险,建议不使用。 取方法,所以选择 B)。
- (5)A 【解析】实体完整性约束要求关系的主键中属性 值不能为空值,所以选择 A)。
- (6)C 【解析】如果 S = T/R. 则 S 称为 T 除以 R 的商。 在除运算中S的域由T中那些不出现在R中的域所组成,对 +S 中的任一有序组,由它与关系 R 中每个有序组所构成的

有序组均出现在关系 T 中。所以本题选择 C)。

- (7)A 【解析】软件危机主要表现在:软件需求的增长 得不到满足:软件开发成本和进度无法控制:软件质量难以保 证:软件不可维护或维护程度非常低;软件的成本不断提高;软 件开发生产率的提高赶不上硬件的发展和应用需求的增长。 所以选择 A)。
- (8)D 【解析】需求分析阶段的工作有:需求获取;需求 分析;编写需求规格说明书;需求评审,所以选择 D)。
- (9)B 【解析】黑盒测试是对软件已经实现的功能是否 满足需求进行测试和验证,黑盒测试完全不考虑程序内部的逻 辑结构和内部特性,只根据程序的需求和功能规格说明,检查 程序的功能是否符合它的功能说明,所以本题选择 B)。
- (10)C 【解析】系统结构图是对软件系统结构的总体设 计的图形显示。在需求分析阶段,已经从系统开发的角度出 发,把系统按功能逐次分割成层次结构,是在概要设计阶段用 到的。PAD 图是在详细设计阶段用到的。程序流程图是对程 序流程的图形表示,在详细设计过程中用到。数据流图是结构 化分析方法中使用的工具,它以图形的方式描绘数据在系统中 流动和处理的过程,由于它只反映系统必须完成的逻辑功能, 所以它是一种功能模型,是在可行性研究阶段用到的而非软件 设计时用到,所以选择 C)。
- (11)B 【解析】C 语言规定用户标识符由字母、数字和 下划线组成, 且第一个字符必须是字母或下划线, 可见选项 C),D)是错误的;此外,C语言不允许用户将关键字作为标识 符,而选项 A) 中的 void 正是 C 语言的关键字。
- (12)D 【解析】C语言的可执行程序是由一系列机器指 令组成的,用 C 语言编写的源程序必须经过编译生成二进制 目标代码,再经过连接才能运行,并且可以脱离 C 语言集成开 发环境。故答案为 D)。
- (13)C 【解析】C语言规定每个语句以;(分号)结束,因 此选项 C) 为两条语句。
- (14)A 【解析】本题考查的是 C 语言表达式。如果算术 运算符"/"中参与运算的变量都是整型变量,则"/"表示整除 运算,所以"1/3"的值应为0,故选项A)的表达式值为0,而事 实上代数式 $\frac{1}{2}$ × sin $\frac{1}{2}$ × sin $\frac{1}{2}$ 的值并不为 0, 所以选项 A) 不 能正确计算题目所要求的代数式。
- (15)D 【解析】"&"是求址运算符,"*"是指变量说明 符。选项 A)、B) 应改为 scanf("% d",p);选项 C) 中指针变量 p 未指向一确定的内存单元,不能为其赋值,并且这样做很危
- (16)B 【解析】本题的考查点是不同格式的数据输出。 printf 函数对不同类型的数据用不同的格式字符,"%d"是以 带符号的十进制形式输出整数(正数不输出符号);"%o"以八 进制无符号形式输出整数(不包括前导符 0): "% x"以十六进 制无符号形式输出整数(不包括前导符0x)。
 - (17)C 【解析】本题考查的是逗号表达式。逗号表达式 答案为 D)。

的求解步骤是先求解表达式1,然后依次求解表达式2,直到表 达式 N 的值。整个逗号表达式的值就是最后一个表达式 N 的 值。表达式(x=3*v.x+6)中.x=15。表达式v=x-1=14。

- (18)C 【解析】本题考查的是 if 语句。if 是 C 语言关键 字,表达式两侧的圆括号不可少,最后是一条语句或是用花括 号括起来的一组语句。选项 A) 和 B) 是在表达式后跟了一条 空语句, 选项 D) 是在表达式后跟了一组空语句, 选项 C) 中 x -- 是表达式而不是语句, 所以在编译时会出现错误信息, 在 x --后面加上":"号就对了。
- (19)A 【解析】考查 switch 语句的使用。switch 语句的 执行过程为:进入 switch 结构后,对条件表达式进行运算,然后 从上至下去找与条件表达式值相匹配的 case,以此作为人口, 执行 switch 结构中后面的各语句, 直到遇到 break 语句,则跳出 switch 语句,如果各 case 都不匹配时,则执行 default 后面的
- (20)B 【解析】本题考查的是标准输入输出函数。在使 用标准输入输出库函数(除了 printf 和 scanf)前,必须要用预编 译命令"#include"将头文件"stdio. h"包括到用户源文件中。 调用 printf 函数时可以没有输出项,比如 printf("")是允许的。 C 语言中整数的输出形式中没有十二进制的形式。getchar 函 数读入字符时可以得到第一个输入字符的 ASCII 码, 无法通过 输入相应字符的 ASCII 得到该字符。
- (21)D 【解析】scanf 函数常用的格式控制中"s"代表输 入的是字符串,"d"代表输入带符号的十进制整型数,根据语 句 char b[8]; int c;可确定正确的输入语句是 D) 选项。
- (22)D 【解析】在程序中指针变量 p 初始指向 a [3],执 行 p 减 1 后 , p 指向 a [2] , 语句 v = * p 的作用是把 a [2] 的值 赋给变量 v, 所以输出为 v = 3。
- (23)D 【解析】本题的考查点是数组元素的引用。cp = c 这个语句是将数组 c 的首行元素地址赋给了指针数组 cp。 选项 A), cp +1 是指将数组 c 的首行地址加1,即为第二行地 址;选项 B), * (cp + 3)是地址, 等于数组 c 的首地址加 3 的那 个内存单元的内容,不是对数组元素的引用;选项 C),*(cp+ 1)+3是地址,等于数组c的首地址加1的那个内存单元中存 放的值加3,不是对数组元素的引用。
- (24)B 【解析】本题考查的是用于字符串处理的函数。 题目中首先通过 streat(p,r)将 r 所指字符串的内容连接到 p 所指的字符串后面,p[20] = {'a','b','c','d','a','b','c','d','e'}。 然后通过 p + strlen(q) 在数组元素 p[0] 地址的基础上向后移 动三位,然后将 q 所指字符串的内容复制到 p 所指的存储空间 中,从字符"d"往后全部覆盖,p[20]={'a','b','c','a','b','c'}。 在输出语句中 strlen(p)是求字符串的长度,值为6。
- (25)D 【解析】本题考察 for 循环语句,注意第二个 for 语句的后面有一个分号,即 printf 函数不属于循环体,无论循 环执行多少次,printf("*")语句只执行一次。因此,本题正确

- (26)A 【解析】表达式*(pc+5)先将指针向后移动5 个存储单元,指向 ch[5],再取出其中的值。其值为字符'z'。
- (27)A 【解析】语句 void fun(char * * p) 中的形参是 一个指向指针的指针,在调用函数 fun(a)后,指针数组 a 加 1, 则指向了数组的第2个字符串"Afternoon"的'A'的地址。
- 变其值。函数 f 的功能是: 判断 n 是否为 3 或 5 的倍数, 如果 是,则将指针 r 所指的内存空间赋值为 n 除以 3 或 5 的商;否 则n说减,直到它可以被3或5整除。初始时调用函数f(7, &r):n = 7.执行 else 子句,调用 f(6.&r1):后 n = 6.执行语句 if (n%3 = = 0) r1 = n/3;,此后执行语句*r=r1;。所以r=6/3
- (29)B 【解析】首先二维数组 a 中的元素都初始化为 0. 其次定义了指向数组的指针 ptr,并且依次将 ptr 指向二维数组 a 中的各行,循环语句 for(i=0;i<2;i++)等价于:

scanf("% d", a + 0); scanf("% d", a + 1);

其中 a+i 即是数组 a[i] 的首地址,也是元素 a[i][0] 的 的输出结果为 2,4,3,9,12,12,11,11,18,9,...地址,故以上语句读人两个整数,分别存入二维数组 a 第 1 列 中,在输入123后,a= $\{\{1,0\},\{2,0\},\{0,0\}\}$ 。

- 码能被 2 整除的字符, g 的 ASCII 码为 103, o 的 ASCII 码为 111,d的 ASCII 码为 100,只有 d满足。因此,本题答案为 A)。
- (31)C 【解析】统计1~9 九个数中的奇数和,此题重点 考察指向数组的指针。C语言规定数组名代表数组的首地址, 也就是第一个元素的地址。因此*(t+i)代表数组的第i+1 个元素。程序运行的结果是1+3+5+7+9=25。
- (32)D 【解析】字符替换定义格式为:#define 标识符(形 参表)形参表达式。题中 F 是代表形参表达式的标识符(字符 串)。
- (33)A 【解析】由函数 fun(int *a,int n)中语句 if(a[j] >a[k]) k = i;可知当前 k 是记录数组中较大数据值所在位置 的下标变量,所以该函数的作用是对数组 a 中的下标为偶数位 置的数据进行从大到小的排序,即对 a[0],a[2],a[4],a[6] 中的数据 1,3,5,7 进行从大到小的排序,其他位置的数据不 变,所以答案为 A)。
- (34)D 【解析】在整个程序运行期间,静态局部变量在 内存的静态存储区中占据着永久的存储单元,即使退出函数以 后,下次再进入该函数时,静态局部变量仍使用原来的存储单 | 之间。 元,静态局部变量的初值是在编译的时候赋予的,在程序执行 对静态变量 x 进行操作, x 的值应依次为4.5.6。
- (35)B 【解析】若有以下定义:int a[3][4],i,j;且当0 < = i < 3,0 < = j < 4,则可以有以下几种方式来引用数组中的 │如果 n = -1,说明没有找到,否则输出 n。 第 i 行,第 i 列的元素:

$$a[i][j], *(a[i]+j), *(*(a+i)+j), (*(a+i))$$

[j], *(&a[0][0]+4*i+j).

0 2 4

赋值语句完成后数组中数据如下:

0 2 4 0 2 4

因为 func() 函数打印的是第1行第2列的数据, 所以

- (36)C 【解析】本题考查的是结构体的定义。typedef 关 错误。 键字用于声明一个新的类型名代替已有的类型名。本题中如 果没有用 typedef 进行定义,则 struct NODE 为结构体类型,现 在用 typedef 定义后,相当于用 OLD 代表了 struct NODE 这一结 构体类型,故 OLD 为结构体类型。
- (37)A 【解析】本题考查的是结构体成员的引用。在主 函数 main()中定义了一个整型变量 i 和一个结构体变量 s。f ()函数中,通过指针 a 来引用数组中的元素;通过 for 循环语 句将数组中除最后一个元素外的其他元素(由条件 i < n-1 决 定的)分别加上由0开始的递增数据(即0、1、2…8),所以最后
- (38)A 【解析】函数 stremp(s2,s1)的作用是比较字符串 的大小,函数 strepy(s1,s2)的作用是进行字符串复制,所以选 (30)A 【解析】fun 函数的功能是输出字符串中 ASCII | 择 A)选项。B)和 D)都是比较的字符串 s1 与 s2 的地址是否 一致而不是比较字符串内容是否一致。
 - (39)B 【解析】本题考查的是结构体。本程序将结构体 数组 s 的首地址传递给了结构体指针变量 p,并在函数 f 中改 | 删除的字符保留起来。 变了指针变量 p 所指向的第二个结构体中的成员变量,这一改 一变,也就是改变了主函数中 s[1]的成员变量,故程序输出的值 为 Penghua 20045 537。
 - |移运算符,运算符的左边是移位对象;右边是整型表达式,代表 │ 为 * 号,直到找到非 * 号字符为止,最后在该字符后面加上结 左移的位数,左移时,右端(低位)补0;左端(高位)移出的部 | 束符号'\0'。 分舍弃。

二、程序填空题

【参考答案】

(1)N (2)i (3) -1

【考点分析】

本题考查: for 循环语句; 函数返回值; if 语句条件表达式。

【解题思路】

填空1:变量 i 是循环变量,它的取值范围是在 0 到 N

填空 2: 如果 ss 所指字符串数组中的字符串和 t 所指字符 | 作, 所以选择 C)。 期间不再赋予初值。本题由于连续三次调用函数 fun(),三次 | 串相同的话,则返回其下标值,即 return i;否则返回 - 1,即 re-

填空 3:在 main 函数中输出最后结果,判断函数返回值 n,

三、程序修改题

【参考答案】

(1) a2 = k/10:

(2) return i;

【考点分析】

本题考查·取数值 n 的各个位: return 语句. 将需要返回的 函数值返回给函数 main。

【解题思路】

- (1) a2 存放十位数,所以是 a2 = k/10,此处是一个书写
- (2)根据题意,要返回能被3整除的数的个数,从循环体 中可以知道其个数是由i来计算的,所以返回的是i。

四、程序设计题

【参考答案】

```
void fun( char * a )
  while (*a! = '\0')
      a + +:
  a--; /*指针a指向字符串的尾部*/
  while( * a = = ' * ')
        a - -; /* 指针 a 指向最后一个字母 */
  *(a+1)='\0';/*在字符串最后加上结束标志符*/
```

【考点分析】

本题考查:删除字符串尾部*号:删除的主要思想是把不

【解题思路】

对于一个字符串要删除其尾部的*号,只需要在最后一个 不是*号的字符后面加上结束符号'\0'。具体操作为:首先找 (40)C 【解析】本题考查位运算的运算原理。<<为左│到字符串的结尾,然后从最后一个字符开始往前逐个判断是否

无纸化真考题库试卷(8)

一、选择题

- (1)A 【解析】栈是先进后出的数据结构,所以栈顶元 素最后人栈却最先被删除。栈底元素最先人栈却最后被删除。 所以选择 A)。
- (2) C 【解析】栈是先进后出的数据结构,在整个过程 中,栈底指针不变,入栈与出栈操作均由栈顶指针的变化来操
- (3)D 【解析】根据二叉树的基本性质3:在任意一棵二 叉树中, 3为 0 的叶子结点总比度为 2 的结点多一个, 所以本 9。因此, 本题答案为 D)。 │题中度为2的结点为1-1=0个,所以可以知道本题目中的二 度为7。

库管理系统都属于系统软件。所以 B)、C)、D)都是系统软件, 只有 A) 是应用软件。

- (5)B 【解析】1966 年 Boehm 和 Jacopini 证明了程序设 计语言仅仅使用顺序、选择和重复三种基本控制结构就足以表 达出各种其他形式结构的程序设计方法。
- (6)A 【解析】详细设计的任务是为软件结构图中而非 总体结构图中的每一个模块确定实现算法和局部数据结构,用 某种选定的表达工具表示算法和数据结构的细节,所以 A)
- (7)C 【解析】数据定义语言:负责数据的模式定义与 数据的物理存取构建:数据操纵语言:负责数据的操纵,包括查 询及增、删、改等操作;数据控制语言:负责数据完整性、安全性 的定义与检查以及并发控制、故障恢复等功能。
- (8)D 【解析】因为一个教师可讲授多门课程,而一门 课程又能由多个老师讲授所以他们之间是多对多的关系,可以 表示为m:n。
- (9)D 【解析】关系 T 中的元组是关系 R 中有而关系 S 中没有的元组的集合,即从关系 R 中除去与关系 S 中相同元 组后得到的关系 T。所以做的是差运算。
- (10)B 【解析】只有 B)选项 369 可以用无符号整数来 表示和存储。A)选项-369有负号,选项C)0.369是小数都 不能用无符号整数类存储。洗项 D) 是一个整数集合得用数组 来存储。
- (11)D 【解析】并不是源程序中的所有行都参加编译。 在条件编译形式下,相关内容只在满足一定条件时才进行编 译。选项 D) 中的非执行语句不在其范围内。
- (12)B 【解析】标识符命名规则:标识符必须由字母(a ~z或A~Z)或下划线(_)开头;标识符的其他部分可以用字 母、下划线或数字(0~9)组成;大小写字母表示不同意义,如 cout 和 Cout 代表不同的标识符;在定义标识符时,虽然语法上 允许用下划线开头,但是,我们最好避免定义用下划线开头的 标识符,因为编译器常常定义一些下划线开头的标识符。因 此,本题正确答案为B)。
- (13)D 【解析】本题考查逗号运算符的运算方式,逗号 运算符的作用是将若干表达式连接起来,它的优先级别在所有 运算符中是最低的,结合方向为"自左至右"。A)选项和C)选 项的结果是一样的,可展开为:x = x * (x + 1) = 3 * 4 = 12;B) 项中先执行 x++,因为++运算符有自加功能,逗号之前执行 后x的值为4,逗号后的值就是整个表达式的值,即12;D)选项 逗号之前并未给 x 赋值,所以表达式的值就是 x +=6 的值,即
- (14)C 【解析】本题考查复合的赋值表达式。本题中, 叉树的每一个结点都有一个分支,所以共7个结点共7层,即 | 程序先执行语句 x = 1.2;,根据赋值运算的类型转换规则,先 将 double 型的常量 1.2 转换为 int 型,即取整为 1,然后将 1 赋 (4)A 【解析】软件按功能可以分为:应用软件、系统软 │ 值给变量 x。接下来执行语句 y = (x + 3.8)/5.0;根据运算符 │件、支撑软件。操作系统、编译程序、汇编程序、网络软件、数据│的优先级,先计算小括号内,再计算除法,最后执行赋值运算。

小括号内的运算过程: 先將整型变量 x 的值 1 转换为 double 型 1.0,然后与3.8进行加法运算,得到中间结果4.8。接着进行 除法运算4.8/5.0,其结果小干1.0,这里没有必要计算出精确 值,因为接着进行赋值运算,赋值号左边变量 v 的类型为整型, 于是对这个小于1.0的中间结果进行取整,结果为0,于是变 量 y 的值为 0,d * y 的值也为 0。

- (15)C 【解析】程序根据用户输入分别给字符型变量 a、 b、c、d 赋值为'1'、' < CR > '、'2'、'3', 因此输出到屏幕得到选项 C) 中的格式。
- (16)C 【解析】if...else 语句的执行过程如下,首先计算 if 后面一对圆括号内表达式的值,若表达式的值为非 0,执行 if 子句,然后跳过 else 子句,去执行 if 语句后的下一条语句;若表 达式的值为0,跳过 if 子句, 去执行 else 子句, 接着去执行 if 语 句后的下一条语句。C语言的语法规定,else 子句总是与前面 最近的不带 else 的 if 匹配,与书写格式无关,本题目的后一个 if - else 相当于嵌套在第一个 if 子句里, 相当于 x < y&&y < 0 时,z = 0; 当 x < y&&y > = 0 时,z = z + 1。
- (17)B 【解析】C语言中整型变量分为4种,基本型int, 短整型 short int.长整型 long int 和无符号型(unsigned int, unsigned short、unsigned long)。因此 B) 选项不属于 C 语言的 **类型**。
- (18)C 【解析】aa 是字符串,字符串的表示要用双引号, 可以赋值给字符数组和字符指针变量,但字符串不能赋值给字 符变量,只能给字符变量赋值单个字符。
- (19)C 【解析】本题的考查点是查找程序运行错误的原 因。主要考查运算中字符的转换。初看此题,可能不太容易发 现错误,该题的运行结果是1.0000,算法错误。s = s + 1/n; 1/ 2=0,因为 n 为整型,所以 1/n 都为 0。这就是导致本题出错 的原因。s = s + 1/n 应改为 s = s + 1.0/n。
- (20)C 【解析】嵌套的 if 语句功能是将 k 赋值为 a、b、c 中的最小值, 选项 A) 中没有比较 a、c 的大小, 选项 B) 中语句 "((b < c)? a:b);((b > c)? b:c)"错误,选项 D)中没有比较 b、c 大小。
- (21)D 【解析】洗项 A)的循环表达式的条件永久为 1, 并且小于100的数与100取余不超过99,所以在循环体内表达 | 数值类型,则默认函数返回值的类型为 int 型。 式 i% 100 + 1 的值永远不大于 100, break 语句永远不会执行, 所以是死循环;选项 B)的括号内没有能使循环停下来的变量 增量, 是死循环: 洗项 C) 中先执行 k + +, 使 k = 10001, 从而使 循环陷入死循环。
- (22)D 【解析】此题目中变量 s 是迷惑考生的,变量 t 赋 初值为1,由语句t=t-2;将使t得到的是负奇数。所以选项 D) 是正确答案。
- (23)D 【解析】本题考查 switch 语句的掌握。必须掌握 | [4]赋值为 8、9、10。 以下内容:首先应该明白 switch 语句的语法格式:

switch 语句的语法格式为:

```
switch (表达式)
  case 常量表达式1:语句组1:
  case 常量表达式 2: 语句组 2:
  case 常量表达式 n:语句组 n;
  default:语句组 n+1;
```

另外,以下几点关于 switch 语句的重点:

①系统在执行时计算开关表达式的值;②根据所得的值在 各个 case 标号表达式中寻找匹配,直到发现与表达式匹配的 标号(本例中匹配的是 case'B':);③找到匹配后执行后面相应 的语句表,顺序往下执行:④如果无相匹配的标号,若存在 de- | 结果为 fault 标号,则执行该语句标号后面的语句表 n + 1; 当不存在 default 标号时,不执行 switch 中的任何一个语句表。

一般而言,在多分支结构中总会出现"意外"的情况,这时 均可归入 default 程序段,作统一的处理。default 标号是可选性 | 能直接将变量 t1 的成员 mark 数组的地址赋给另一个变量 t2 的,不必每次都有,视需要而定。switch 语句中还可以包含 switch 语句,形成 switch 的嵌套。

- (24)C 【解析】语句 printf("% c,",b++);中b++是先 返回后自增,所以执行完该语句后,输出结果是2,变量 b 的值 为3'。printf("%d\n",b-a): b='3',ASCII 值是51,a='1'. ASCII 值是 49, 所以 b-a=51-49=2。
- (25)A 【解析】在 f(int * p, int * q) 函数中, 执行 p = p+1将 p 所对应的地址加1, 而 * q = * q + 1 是将 q 所指向的 n 的地址所对应的值加1,即 m 的地址所对应的值不变,而 n 的
- 值,再对该值递增,计算中q的值不变。所以f函数的功能是 | 小到大进行排序,最后将排序后的元素输出:1,2,3,4,5,6,7, 将指针 g 所指的数加 5。函数调用 f(a);相当于将数组 a 的第 8.9.10. 一个元素加 5, 操作后 a [5] = { 10,4,3,2,1}。
- 归表示为a[3] + a[2] + a[1] + a[0] + f(t,0) = 10
- (28)C 【解析】函数之间的数据传递。如果没有指明函
- (29)D 【解析】在 for(i = 0; i < 12; i + +) c[s[i]] + + 中,数组元素 s[i]的值作为数组 c 的下标, 当退出循环时, 数组 c 的 4 个元素的值分别为 1、1、1、1。所以选项 D) 正确。
- (30)A 【解析】change 函数的功能是将数组中的第6个 元素值赋给第1个元素。第一次调用后,x[0] = x[5] = 6。第 二次调用实际是以 x 的第2个元素作为数组首元素,所以调用 结束时 x[1] = x[6] = 7。后三次调用分别将 $x[2] \setminus x[3] \setminus x$ 故答案选 B)。
- (31)B 【解析】引用数组元素可以有两种方法,—种是 │0100,即十进制 4。 使用下标值法,如x[i]表示引用数组下标为i的元素,另一种

方法是使用指针引用数组元素,如*(pt+i)表示引用指针 pt 当前所指元素后的第 i 个元素。这两种方法的前提条件是所 引元素的位置包含在数组范围以内,即不发生溢出,否则会出 现错误。因此,本题的答案为B)。

- (32)C 【解析】字符型一维指针 p 只能指向一个一维数 组如 char s[3],而不能指向二维数组的地址,所以 A)错误。p 应该为字符型变量的地址,而不能为数组指针的地址,所以 B) 错误。k 为数组指针,但如果想将 s 的地址赋给它,定义形式 应为 char (*k) [10] 而不是 char (*k) [3], 所以 D) 错误。
- (33)C 【解析】函数f的功能是利用冒泡排序方法,将二 维字符数组的前n行进行递增排序。

注意,本题目排序时整个字符串都交换。数组 p 排序后的

 $p[5][10] = {\text{"aabdfg","abd","abc","cd","dedbe"}}.$ 所以第一行字符串的长度是6。

- (34)C 【解析】结构体变量中的第一成员都是数组,不 的成员 mark 数组的地址。因为地址都是固定值,不能被赋值。 结构体可以进行整体的赋值。
- (35)C 【解析】本题考查两个知识点: strlen 函数的功能 是求字符串的长度,并返回字符个数,不计最后的'\0',strcpv 函 数的功能是把后面的字符串复制到前面字符串所指向的空间。
- (36)A 【解析】本题考查的是结构体成员的引用。在主 函数 main()中定义了一个整型变量 i 和一个结构体变量 s。f ()函数中,定义了一个结构体类型的指针 p,外层循环变量 i 表示数组的第 i 个元素,内层循环变量 j 表示数组的第 i +1 个 元素,调用f()函数,通过指针变量 p 来引用结构体成员。执 (26)D 【解析】表达式(*q)++ 先取出 q 所指对象的 │ 行 if 语句, 当 p -> a [i] > p -> a [j] 时进行互换, 其作用就是从
- (37)D 【解析】x 被声明为静态变量,第一次调用 fun() (27)B 【解析】函数的功能是求数组所有元素的和。递 $| f_{,x}$ 值为 2,第二次调用时直接执行 x * = 2,值为 4,第三次调 用时直接执行 x *= 2, 值为 8。
 - (38)B 【解析】宏定义又称为宏代换,格式为"#define 标 识符 字符串",其中的标识符就是所谓的符号常量,也称为 一"宏名", 宏的预处理工作也叫做宏展开, 即将宏名替换为字符 串。本题中把 S(k+j) 替换成 4*(k+j)*k+j+1, 计算结果 为143。
 - (39)B 【解析】本题考查的是指向函数的指针。语句 "int(*f)(int);"是对一个函数的声明,其中f是指向该函数 的指针,该函数有一个整型的参数,函数返回值类型为整型。

二、程序填空题

【参考答案】

(1) * fw (2) str (3) str

【考点分析】

本题考查:函数定义以及文件指针; fputs 函数的功能是向 指定的文件写入一个字符串,其调用形式为: fputs(字符串,文 件指针)。

【解题思路】

填空1:定义函数,函数的形参是一个文件类型的指针。

填空2:此处考查fputs函数的形式,应填入str。

填空 3:依据 printf 函数的格式,输出字符串内容,即 printf ("%s",str):

三、程序修改题

【参考答案】

- (1) void fun(long s, long * t)
- (2) sl = sl * 10:

【考点分析】

函数定义,指针型变量:数值 n 和其各个位如何表示。

【解题思路】

- (1)主函数中调用函数的参数为地址,因此函数 fun 的形 式参数应为指针类型。
- (2)重新组合一个数,从个位开始,然后十位,依次类推, 因此每增加一位数,原数值需乘以10,即s1 = s1 * 10;

四、程序设计题

【参考答案】

```
int fun( STREC * a, STREC * b)
int i, j = 0, min = a\lceil 0 \rceil. s:
 for (i = 0; i < N; i + +)
     if (\min > a[i], s)
       min = a[i].s: /*找出最小值*/
 for (i = 0 : i < N : i + +)
    if (\min = a[i], s)
      b[i++]=a[i]:/*找出成绩与 min 相等的学生
      的记录,存入结构体 b 中 */
 return i:
```

【考点分析】

本题考查: 查找结构体数组中的最小数据,需要通过 for 循 环语句和if条件语句来完成。

【解题思路】

本题中第一个循环语句的作用是遍历数组求出最低分数, (40)B 【解析】9 用二进制表示为 1001, 右移 1 位后为 │ 第二个循环语句的作用是将数组中的元素与最低分比较, 查找 是否存在与最低分相等的成绩。