

BUS 243

Lecture 2: Vector Space Models

RANKED RETRIEVAL

- Consider the problem of Boolean search in the case of large corpus
 - The number of matching documents could be too large
- Ranked retrieval: order documents by how likely they are to be relevant to the information need
 - Estimate relevance score of query, document pair (q, d_i)
 - Sort documents by relevance
 - Display sorted results
- How do we estimate relevance?

 Assume document is relevant if it has a lot of query terms

- Obviously, it is too strong assumption. Why?
 - Structure
 - The ordering of the terms in a document is ignored
- •Replace relevance with $sim(q, d_i)$
- Compute similarity of vector representations

TEXT REPRESENTATION

- Central problem in NLP is how to store /represent / query text
- This is almost certainly wrong model... hopefully useful
- Modern NLP typically uses vector representations

TERM FREQUENCY

- Consider how to represent a document
- One way is to assign each term in a document a weight
- Thus far, view a document as a sequence of terms
 - assign a weight equal to the number of occurrences of term t in d
 - called term frequency, $tf_{t,d}$
- In this view of a document, known in the literature as the bag of words model

• Each document is a vector $d_i = (w_{i,1}, \dots, w_{i,V})$

STATISTICAL PROPERTIES OF TERMS IN IR

- The number of terms is the main factor in determining the size of the dictionary
- Compressing the dictionary is of interest, but need to estimate:
 - The number of distinct terms *M* in a corpus
 - Oxford English Dictionary defines more than 600,000 words, but the vocab of most large corpus is much large... Why?

HEAPS' LAW

- Estimate vocab size:
 - $M = kT^b$
 - *M*: The number of distinct terms in a corpus
 - *T*: the number of tokens in a corpus
 - k and b: parameters
- Reuters Corpus Volume I (RCV1)
 - b=0.49 and k=44
 - For the first 1,000,020 tokens, Heaps' predicts 38,323 terms
 - Actual number is 38,365

- So what's the problem of bag of words model?
- We may need to implement a mechanism to reduce the impact of frequently occurring terms in the collection
 - ullet Document frequency df_t : the number of documents in the collection including a term t
- Define the inverse document frequency (idf) of a term t

•
$$idf_t = log \frac{N}{df_t}$$

• How is this used to scale the term weight?

- Let's say, you have a corpus of 1 million documents
 - Consider the term "cat"
 - Suppose you have exactly 1 document that contains it
 - The raw IDF: 1,000,000/1
 - Now suppose there are 10 documents with the term "dog"
 - The raw IDF: 1,000,000/10 = 100,000
- The base of log function is not important, because you only want to make the frequency distribution uniform, not to scale it within a particular numerical range

INTUITIONS

- Term weights consist of two components
 - Local: how important is the term in this document?
 - Global: how important is the term in the collection?
- Here's the intuition:
 - Terms that appear often in a document should get high weights
 - Terms that appear in many documents should get low weights
- How do we capture this mathematically?
 - Term frequency (local)
 - Inverse document frequency (global)

TF-IDF TERM WEIGHTING

$$\mathbf{w}_{t,d} = \mathrm{tf}_{t,d} \times \log \frac{N}{\mathrm{df}_{\mathrm{t}}}$$

- Term t's weight in document d
- Frequency of word t in document d
- Total number of document N
- Number of documents t appears in

FREQUENCY OF TERMS (ZIPF'S LAW)

- The most frequent words ("the") are everywhere but useless for queries.
- The most useful words are relatively rare . . . but there are lots of them
 - $f_t = \frac{c}{R_t}$
 - The frequency of a term t is inversely proportional to
 - The rank (in frequency) of term
 - Scaled by a constant
 - Can't just throw out useless words

VECTOR REASONING

- Introduce the overlap score measure
 - Score $(q, d) = \sum_{t \in q} \text{tfidf}_{t, d}$
 - *q*: query
 - *t*: term
 - d: document
- What's intuition?

VECTOR SPACE MODEL FOR SCORING

- Denote $\vec{V}(d)$ the vector derived from document
 - Each component is the weight for each vocabulary term
 - Vector space model
 - Salton 1975
- The set of documents in a corpus may be viewed as a set of vectors in a vector space, in which there is one axis for each term

Now consider the angle between vectors

SIMILARITY WETRIC

- Angle between vectors
 - $sim(d_1, d_2) = \frac{\vec{v}(d_1) \cdot \vec{v}(d_2)}{|\vec{v}(d_1)| |\vec{v}(d_2)|} = \vec{v}(d_1) \cdot \vec{v}(d_2)$

EXAMPLE

- Corpus
 - Doc 0: The sky is blue
 - Doc 1: The sun is bright today
 - Doc 2: The sun in the sky is bright
 - Doc 3: We can see the shining sun the bright sun

How many docs did each term appear in?

```
Doc Frequency
blue 1.00
bright
        3.00
can 1.00
in 1.00
is 3.00
see 1.00
shining
         1.00
sky 2.00
sun 3.00
the 4.00
today 1.00
      1.00
we
```


TERM FREQUENCY

- Original Salton paper uses absolute frequency and makes vectors unit length later
 - let's use raw frequency immediately.

blue	0.25	0.00	0.00	0.00
bright	0.00	0.20	0.14	0.11
can	0.00	0.00	0.00	0.11
in	0.00	0.00	0.14	0.00
is	0.25	0.20	0.14	0.00
see	0.00	0.00	0.00	0.11
shining	0.00	0.00	0.00	0.11
sky	0.25	0.00	0.14	0.00
sun	0.00	0.20	0.14	0.22
the	0.25	0.20	0.29	0.22
today	0.00	0.20	0.00	0.00
we	0.00	0.00	0.00	0.11

Tr-IDr

• Use log base 10

bright	0.00	0.02	0.02	0.01
sun	0.00	0.02	0.02	0.03
today	0.00	0.12	0.00	0.00
can	0.00	0.00	0.00	0.07
is	0.03	0.02	0.02	0.00
blue	0.15	0.00	0.00	0.00
sky	0.08	0.00	0.04	0.00
in	0.00	0.00	0.09	0.00
we	0.00	0.00	0.00	0.07
the	0.00	0.00	0.00	0.00
see	0.00	0.00	0.00	0.07
shining	0.00	0.00	0.00	0.07

QUERY DOCUMENT

- The shining sky ball
- Don't use UNK (unknown) token
- Query
 - `the`: 0.0
 - `shining`: 0.2
 - `sky`: 0.1
 - **?**

Term frequencies

- $tf_{the} = 0.33$
- $tf_{shining} = 0.33$
- $tf_{sky} = 0.33$

Document frequencies

- $\bullet df_{the} = 4$
- $\mathrm{df}_{shining} = 1$
- $df_{sky} = 2$

•tfidf_{the} =
$$\frac{1}{3}\log_{10}\frac{4}{4} = 0$$

•tfidf_{shining} =
$$\frac{1}{3}\log_{10}\frac{4}{1} = 0.200486$$

•tfidf_{sky} =
$$\frac{1}{3}\log_{10}\frac{4}{2}$$
 = 0.100243

MOST SIMILAR DOCUMENT?

- Score(q,d)= $\sum_{t \in q} tfidf_{t,d}$
 - Doc 0: The sky is blue $\rightarrow 0.008$
 - Doc 1: The sun is bright today $\rightarrow 0.0$
 - Doc 2: The sun in the sky is bright $\rightarrow 0.004$
 - Doc 3: We can see the shining sun the bright sun $\rightarrow 0.013$

