Dynamic Programming

CSE 180 Algorithmic Thinking

Introduction

Dynamic Programming is a clever algorithm design technique:

- ▶ Invented by Richard Bellman in the 1950s.
- ▶ Used to solve *optimization* problems.
- Programming here means Planning.
- ▶ Useful when solution results from a sequence of decisions.
- ► Avoids computing the same thing twice:
 - Keeps a table of results as subproblems are solved.
 - Each subproblem is solved (once), then recorded in table.
 - Final state of the table will be (or contain) solution.
- ► Also avoids considering suboptimal solutions.

Comparison

Dynamic Programming vs. Divide & Conquer

- Dynamic Programming is bottom up, Divide & Conquer is top down.
- In both, problems are divided into subproblems, but in Dynamic Programming, subproblems may be overlapping.
- ▶ Bottom up means starting at smallest or simplest subproblem,
- ► Then combining subproblem solutions of increasing size until solution of the original problem is reached.

Example: Fibonacci Numbers

Recall definition of Fibonacci numbers:

$$f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)$$

Computing the n^{th} Fibonacci number recursively (top down):

Computing the n^{th} Fibonacci number iteratively (bottom up):

$$f(0) = 0, f(1) = 1, f(2) = 0 + 1 = 1$$

$$f(3) = 1 + 1 = 2, f(4) = 1 + 2 = 3, f(5) = 2 + 3 = 5, ...$$

$$f(n-2) = f(n-3) + f(n-4), f(n-1) = f(n-2) + f(n-3)$$

$$f(n) = f(n-1) + f(n-2)$$

Floyd's Algorithm

- Robert W. Floyd is the man.
- ► Given a directed graph with edge weights, find the lengths of the shortest paths between every pair of vertices.
- ► Compare with Dijkstra's shortest path algorithm that finds the lengths of the shortest paths between one particular vertex and all other vertices.
- Build a matrix at each iteration.
- At iteration k, the matrix $D^{(k)}$ contains minimal paths on intermediate vertices $1 \dots k$.

Example: Floyd's Algorithm

Start with a weighted directed graph:

$D^{(0)}$	1	2	3
1	0	4	11
2	6	0	2
3	3	∞	0

Create matrix $D^{(0)}$ where $D^{(0)}_{ij} = w_{ij}$

Create other matrices $D^{(k)}$ where $k \geq 1, (k = 1, 2, 3, ...)$

$$D_{ij}^{(k)} = \min \left(D_{ij}^{(k-1)}, \ D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \right)$$

Example: Floyd's Algorithm

The formula: $D_{ij}^{(k)} = \min \left(D_{ij}^{(k-1)}, \ D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \right)$

$$\begin{array}{ll} D_{11}^{(1)} = & \min \left(D_{11}^{(0)}, \ D_{11}^{(0)} + D_{11}^{(0)} \right) = & \min \left(0, 0 + 0 \right) = 0 \\ D_{12}^{(1)} = & \min \left(D_{12}^{(0)}, \ D_{11}^{(0)} + D_{12}^{(0)} \right) = & \min \left(4, 0 + 4 \right) = 4 \\ D_{13}^{(1)} = & \min \left(D_{13}^{(0)}, \ D_{11}^{(0)} + D_{13}^{(0)} \right) = & \min \left(11, 0 + 11 \right) = 11 \\ \dots \\ D_{32}^{(1)} = & \min \left(D_{32}^{(0)}, \ D_{31}^{(0)} + D_{12}^{(0)} \right) = & \min \left(\infty, 3 + 4 \right) = 7 \end{array}$$

Example: Floyd's Algorithm

The formula: $D_{ij}^{(k)} = \min \left(D_{ij}^{(k-1)}, \ D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \right)$

$$D_{13}^{(2)} = \min \left(D_{13}^{(1)}, \ D_{12}^{(1)} + D_{23}^{(1)} \right) = \min \left(11, 4 + 2 \right) = 6$$

Example: Floyd's Algorithm

The formula:
$$D_{ij}^{(k)} = \min \left(D_{ij}^{(k-1)}, \ D_{ik}^{(k-1)} + D_{kj}^{(k-1)} \right)$$

$$D_{21}^{(3)} = \min \left(D_{21}^{(2)}, \ D_{23}^{(2)} + D_{31}^{(2)} \right) = \min (6, 2+3) = 5$$

for k = 1 to n do

for i = 1 to n do