

লিগ্যান্ডঃ যে সকল ইলেকট্রন সমৃদ্ধ মূলক বা আয়ন সন্নিবেশ বন্ধনের মাধ্যমে কোনো অবস্থান্তর মৌল বা আয়নের সাথে যুক্ত হয়ে জটিল যৌগ বা জটিল আয়ন গঠন করে তারা লিগ্যান্ড।

নিরপেক্ষ লিগ্যান্ড

		চার্জ
H_2O	অ্যাকুয়া	0
NH_3	অ্যামিন	0
СО	কার্বনিল	0
NO	নাইট্রোসো	0

ঋণাত্বক লিগ্যান্ড

		চার্জ
CN -	সায়ানো	-1
OH -	হাইড্রোক্সো	-1
o Cl -	ক্লোরো	-1
SO ₄ ²	সালফেটো	-2

জটিল যৌগের নামকরণ

ধনাত্বক জটিল যৌগঃ

লিগ্যান্ডের সংখ্যা+ লিগ্যান্ডের নাম+অবস্থান্তর মৌলের নাম+ অবস্থান্তর মৌলের চার্জ+ অ্যানায়ন

$$+2 0 -2$$
 $[Cu(NH_3)_4]SO_4$

টেট্রাঅ্যামিনকপার(২) সালফেট

ঋণাত্বক জটিল যৌগঃ

ক্যাটায়ন + লিগ্যান্ডের সংখ্যা+লিগ্যান্ডের নাম+অবস্থান্তর মৌলের ল্যাটিন নামের –um এর পরিবর্তে +ate + অবস্থান্তর মৌলের চার্জ

$$+4 +2 -6$$
 $K_4[Fe(CN)_6]$

পটাশিয়াম হেক্সাসায়ানোফেরেট(২)

জটিল যৌগের নামকরণ

ঋণাত্বক জটিল যৌগঃ

ক্যাটায়ন + লিগ্যান্ডের সংখ্যা+লিগ্যান্ডের নাম+অবস্থান্তর মৌলের ল্যাটিন নামের –um এর পরিবর্তে +ate + অবস্থান্তর মৌলের চার্জ

+4 +2 -6 $K_4[Fe(CN)_6]$

পটাশিয়াম হেক্সাসায়ানোফেরেট(২)

নিরপেক্ষ জটিল যৌগঃ

লিগ্যান্ডের সংখ্যা+ লিগ্যান্ডের নাম+অবস্থান্তর মৌলের নাম+ অবস্থান্তর মৌলের চার্জ+ অ্যানায়ন

 $[Ni(CO)_4]$

টেট্রাকার্বনিলনিকেল(o)

Step-1: জটিল আয়ন চিহ্নিতকরণ

Step-2: অবস্থান্তর মৌল ও চার্জ চিহ্নিতকরণ

Step-3: e- বিন্যাস হতে ফাঁকা অরবিটালের সংখ্যা নির্ণয়

Step-4: লিগ্যান্ডের সংখ্যা অনুসারে পুনর্বিন্যাসের মাধমে প্রয়োজনীয় ফাকা অরবিটাল সৃষ্টি

$$K_4[Fe(CN)_6]$$
 এর গঠনঃ

 $Fe^{2+} - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^0 4p^0$

11	1	1	1	1		
3.4			40	4n		

K₄[Fe(CN)₆] এর গঠনঃ Fe²⁺ − 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s⁰ 4p⁰

$$K_4[Fe(CN)_6]$$
 এর গঠনঃ $Fe^{2+}-1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,3d^6\,4s^0\,4p^0$

4p

 $K_3[Fe(CN)_6]$ এর গঠনঃ $Fe^{3+}-1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,3d^5\,4s^0\,4p^0$

 d^2sp^3 সংকরিত

[Ni(CO)₄] এর গঠনঃ

 $[Ni(CO)_4]$

 $Ni - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^8 4s^2 4p^0$ 3d45 4pNi (পূনর্বিন্যাস) -3d45

CO

CO

CO

CO

[Ni(CO)₄] এর গঠনঃ

Ni (পূনর্বিন্যাস) -

3d

[Ni(CO)₄]গঠনঃ

[Ni(CO)₄] গাঠনিক সংকেতঃ

