

082742 — Elettrotecnica (E-O) Prima prova in itinere, 20 Aprile 2012 Prof. F. Bizzarri

Cognome	Nome	
Matricola	Firma	

AVVERTENZE

- La prova dura 1 ora e mezza
- I punteggi massimi per ogni quesito sono indicati nella tabella sottostante; un punteggio complessivo inferiore a 6 punti invalida la prova.

Quesito o	E1a	E1b	E2a	E2b	E2c
Esercizio	6.0 punti	1.0 punto	5.0 punti	1.0 punto	1.0 punto
Voto					

Voto Finale

Riportare i risultati e i passaggi salienti nel riquadro relativo ad ogni esercizio

E1a

Per il circuito in Figura 1 si calcoli il potenziale ai nodi 1, 2 e 3 utilizzando l'analisi nodale modificata.

$$V_1 = M_2 - M_3$$

$$V_2 = M_2 - M_1$$

$$V_3 = M_3$$

$$V_4 = M_4$$

$$\square: 1_2 + 1_1 - 1_1 + 1_3 = 0 \rightarrow \underbrace{M_2 - M_1}_{\mathbb{R}_2} + \underbrace{M_3}_{\mathbb{R}_3} = 0 \xrightarrow{OK}$$

$$\frac{1}{2} : M_1 = CN_1 = \frac{C}{C} (M_2 - M_3)$$
 on

$$\frac{M_{3}+E-\frac{2}{R_{1}}E}{R_{2}}+\frac{M_{3}}{R_{3}}=0$$

$$\frac{R_{3}M_{3}+R_{3}E-R_{3}zE+R_{3}M_{3}=0}{R_{3}}$$

$$\frac{R_{3}+R_{2}R_{3}}{R_{3}}=\frac{R_{3}(z-R_{1})E}{R_{3}}$$

$$M_{3}(R_{3}+R_{2})R_{1}=R_{3}(z-R_{1})E$$

$$M_{3}=\frac{R_{3}(z-R_{1})E}{R_{1}(R_{2}+R_{3})}$$

E₁b

Per il circuito in Figura 1 si calcoli la potenza dissipata dal generatore indipendente di tensione.

$$P_{E} = E^{2} \left(\frac{z - R_{1}}{R_{1}(R_{2}+R_{3})} \frac{1}{R_{1}} \right)$$

E2a

Per il circuito in Figura 2 determinare i parametri del circuito equivalente di Norton ai morsetti a e b.

Figura 2

kcl of modo
$$x$$
: $A + gv - (i - \frac{1}{K_x}) = 0$

$$i = (g + \frac{1}{K_x})v + A$$

$$A_{NR} = A$$

$$G_{NR} = g + \frac{1}{F_A}$$

E2b

Determinare la relazione che deve esistere tra g ed R_1 tale che il circuito equivalente di Thevénin non sia definito.

Se Gne = 0 non posso nicorone re modello equivalente di Thereun.

$$G_{NR} = g + \frac{1}{R_1} = 0$$
 $g_1 + 1 = 0$ $(AR_1 \neq 0)$ $g_1 + 1 = 0$

E2c

Perché il circuito equivalente di Norton non risente del resistore di resistenza R₃?

R3 è collegato un servie et un componente (A) mon controllable un corrente.