Consider the following Python dictionary data and Python list labels:

data = {'birds': ['Cranes', 'Cranes', 'plovers', 'spoonbills', 'spoonbills', 'Cranes', 'plovers', 'Cranes', 'spoonbills', 'spoonbills'], 'age': [3.5, 4, 1.5, np.nan, 6, 3, 5.5, np.nan, 8, 4], 'visits': [2, 4, 3, 4, 3, 4, 2, 2, 3, 2], 'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'yes', 'no', 'no']}

```
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```

1. Create a DataFrame birds from this dictionary data which has the index labels.

Out[107]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
b	Cranes	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no

f	Cranes	3.0	4	no
---	--------	-----	---	----

	birds	age	visits	priority
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

2. Display a summary of the basic information about birds DataFrame and its data.

In [108]: df.describe()

Out[108]:

age	visits
8.000000	10.000000
4.437500	2.900000
2.007797	0.875595
1.500000	2.000000
3.375000	2.000000
4.000000	3.000000
5.625000	3.750000
8.000000	4.000000
	8.000000 4.437500 2.007797 1.500000 3.375000 4.000000 5.625000

3. Print the first 2 rows of the birds dataframe

In [109]: df.head(2)

```
Out[109]:

birds age visits priority

a Cranes 3.5 2 yes

b Cranes 4.0 4 yes
```

4. Print all the rows with only 'birds' and 'age' columns from the dataframe

```
In [110]: df[['birds','age']]
```

Out[110]:

	birds	age
а	Cranes	3.5
b	Cranes	4.0
С	plovers	1.5
d	spoonbills	NaN
е	spoonbills	6.0
f	Cranes	3.0
g	plovers	5.5
h	Cranes	NaN
i	spoonbills	8.0
j	spoonbills	4.0

5. select [2, 3, 7] rows and in columns ['birds', 'age', 'visits']

```
In [115]: first = df.loc[['c','d','h'], ['birds', 'age', 'visits']]
    first
```

```
Out[115]:

| birds | age | visits | |
| c | plovers | 1.5 | 3 |
| d | spoonbills | NaN | 4 |
| h | Cranes | NaN | 2 |
```

```
In [116]: #another way
    print(df['birds'].iloc[2],df['age'].iloc[2],df['visits'].iloc[2])
    print(df['birds'].iloc[3],df['age'].iloc[3],df['visits'].iloc[3])
    print(df['birds'].iloc[7],df['age'].iloc[7],df['visits'].iloc[7])

    plovers 1.5 3
    spoonbills nan 4
    Cranes nan 2
```

6. select the rows where the number of visits is less than 4

Out[119]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
С	plovers	1.5	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no
h	Cranes	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no

7. select the rows with columns ['birds', 'visits'] where the age is missing i.e NaN

```
In [121]: df[df['age'].isnull()]
```

Out[121]:

	birds	age	visits	priority
d	spoonbills	NaN	4	yes
h	Cranes	NaN	2	yes

8. Select the rows where the birds is a Cranes and the age is less than 4

```
In [38]: df[(df['birds'] == 'Cranes') \& (df['age'] < 4)]
```

Out[38]:

	birds	age	visits	priority
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no

9. Select the rows the age is between 2 and 4(inclusive)

```
In [39]: df[(df['age']>=2) & (df['age']<=4)]</pre>
```

Out[39]:

		birds	age	visits	priority
ć	3	Cranes	3.5	2	yes
k	C	Cranes	4.0	4	yes
f	:	Cranes	3.0	4	no
j		spoonbills	4.0	2	no

```
10. Find the total number of visits of the bird Cranes
```

```
In [40]: df[(df['birds']=='Cranes') \& (df['visits']>0)].sum()
Out[40]: birds
                      CranesCranesCranes
                                           10.5
         age
         visits
                                              12
         priority
                                    yesyesnoyes
         dtype: object
         11. Calculate the mean age for each different birds in dataframe.
In [47]: print('Cranes')
         print(df['age'][df['birds'] =='Cranes'].mean())
          print('spoonbills')
         print(df['age'][df['birds'] =='spoonbills'].mean())
         print('plovers')
          print(df['age'][df['birds'] =='plovers'].mean())
         Cranes
          3.5
         spoonbills
         6.0
         plovers
          3.5
         12. Append a new row 'k' to dataframe with your choice of values for each column. Then
         delete that row to return the original DataFrame.
In [14]: import pandas as pd
         import numpy as np
         new data = [({'birds':'parrots','age':2.5, 'visits':3,'priority':'yes'
         })]
          data = pd.DataFrame(new_data,index=['k'])
          data
Out[14]:
```

	age	piras	priority	visits
	age	birds	priority	visits
k	2.5	parrots	yes	3

Out[20]:

	age	birds	priority	visits
k	2.5	parrots	yes	3
а	3.5	Cranes	yes	2
b	4.0	Cranes	yes	4
С	1.5	plovers	no	3
d	NaN	spoonbills	yes	4
е	6.0	spoonbills	no	3
f	3.0	Cranes	no	4
g	5.5	plovers	no	2
h	NaN	Cranes	yes	2
i	8.0	spoonbills	no	3

	age	birds	priority	visits
j	4.0	spoonbills	no	2

```
In [22]: data.drop('k')
```

Out[22]:

	age	birds	priority	visits
а	3.5	Cranes	yes	2
b	4.0	Cranes	yes	4
С	1.5	plovers	no	3
d	NaN	spoonbills	yes	4
е	6.0	spoonbills	no	3
f	3.0	Cranes	no	4
g	5.5	plovers	no	2
h	NaN	Cranes	yes	2
i	8.0	spoonbills	no	3
j	4.0	spoonbills	no	2

13. Find the number of each type of birds in dataframe (Counts)

```
In [71]: df.groupby('birds').count()
```

Out[71]:

	age	visits	priority
birds			
Cranes	3	4	4
plovers	2	2	2

	age	visits	priority
birds			
spoonbills	3	4	4

14. Sort dataframe (birds) first by the values in the 'age' in decending order, then by the value in the 'visits' column in ascending order.

```
In [87]: print(df)
       print("----")
       print('sorted data frame')
       df.sort values(by=[ 'age', 'visits'], ascending=[False,True])
              birds age visits priority
             Cranes 3.5
       а
                                   yes
             Cranes 4.0
        b
                                   yes
             plovers 1.5
        С
                                   no
       d spoonbills NaN
                                   yes
       e spoonbills 6.0
                                  no
             Cranes 3.0
                                  no
             plovers 5.5
                                  no
             Cranes NaN
                                   yes
       i spoonbills 8.0
                                    no
       j spoonbills 4.0
                                    no
       sorted data frame
Out[87]:
```

	biius	aye	VISILS	priority
i	spoonbills	8.0	3	no
е	spoonbills	6.0	3	no
g	plovers	5.5	2	no

no

spoonbills 4.0

	birds	age	visits	priority
b	Cranes	4.0	4	yes
а	Cranes	3.5	2	yes
f	Cranes	3.0	4	no
C	plovers	1.5	3	no
h	Cranes	NaN	2	yes
d	spoonbills	NaN	4	yes

15. Replace the priority column values with'yes' should be 1 and 'no' should be 0

```
In [89]: df.replace(to_replace = ['yes','no'],value = [1,0])
```

Out[89]:

	birds	age	visits	priority
а	Cranes	3.5	2	1
b	Cranes	4.0	4	1
С	plovers	1.5	3	0
d	spoonbills	NaN	4	1
е	spoonbills	6.0	3	0
f	Cranes	3.0	4	0
g	plovers	5.5	2	0
h	Cranes	NaN	2	1
i	spoonbills	8.0	3	0
j	spoonbills	4.0	2	0

16. In the 'birds' column, change the 'Cranes' entries to 'trumpeters'.

In [91]: df.replace('Cranes', 'trumpeters')

Out[91]:

	birds	age	visits	priority
а	trumpeters	3.5	2	yes
b	trumpeters	4.0	4	yes
С	plovers	1.5	3	no
d	spoonbills	NaN	4	yes
е	spoonbills	6.0	3	no
f	trumpeters	3.0	4	no
g	plovers	5.5	2	no
h	trumpeters	NaN	2	yes
i	spoonbills	8.0	3	no
j	spoonbills	4.0	2	no