Лабораторная работа 2.2–2.3

Изучение спектров атома водорода и молекулы йода

Зотов Алексей, 497гр.

В работе исследуются: а) сериальные закономерности в оптическом спектре водорода; б) спектр поглощения паров йода в видимой области.

Рис. 1: Схема экспериментальной установки для изучения спектра атома водорода

Теоретические сведения

Длины волн спектральных линий водородоподобного атома:

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{1}$$

где R — постоянная Ридберга (Для водорода $R_H \approx 109677.5~{\rm cm}^{-1}), \, m$ и n — целые числа, Z — заряд ядра ($Z_H=1$).

Энергия основного состояния электрона:

$$E = -RZ^2$$

Условие, соответствующее *п*-му состоянию электрона:

$$2\pi r = \lambda n$$
,

где r — радиус орбиты.

Ход выполнения и результаты измерений

Задание І. Градуировка спектрометра по спектру неона

1. В первую очередь проградуируем спектрометр по спектру неона. Для этого сопоставим спектральные линии неона с соответствующими им длинами волн.

n	3	4	5	6	7	8	9	10	11	12
дел	2841	2830	2804	2780	2772	2735	2726	2708	2698	2682
λ, \mathring{A}	6717	6678	6599	6533	6507	6402	6383	6334	6305	6267
n	13	14	15	16	17	18	19	20	21	22
дел	2662	2640	2630	2610	2600	2582	2556	2541	2512	2498
λ, \mathring{A}	6217	6164	6143	6096	6074	6030	5976	5945	5882	5852

Построим градуировочную кривую:

3. Проградуируем спектрометр по спектру ртути:

n	6	5	4	3	2	1	K1	K2
дел	650	1190	1852	2278	2455	2460	2662	2902
λ , HM	404.7	435.8	491.6	546.1	577.0	579.1	623.4	690.7

Построим градуировочную кривую:

Задание II. Спектр водорода

1. С помощью построенного калибровочного графика определим длины волн $H_{\alpha}, H_{\beta}, H_{\gamma}$.

Пусть x - количество делений полученных при измерении линии, y - искомая длина волны. Найдем на кривой такие точки на графике (x_l, y_l) и (x_r, y_r) , что x_l и x_r - ближайше к x и выполнено $x_l < x < x_r$. Тогда, приближенно считая градуировочную кривую на отрезке $[x_l, x_r]$ прямой линией, найдем y как:

$$y = y_l + (y_r - y_l) \frac{x - x_l}{x_r - x_l}$$
 (2)

	H_{α}	H_{β}	H_{γ}
цвет	красная	синяя	фиолетовая
дел	2786	1802	1160
$[x_l, x_r]$	[2780,2804]	[1190,1852]	[650,1190]
$[y_l, y_r]$	[6533,6599]	[4358, 4916]	[4047, 4358]
λ, \mathring{A}	6550	4874	4340
R	10.99	10.94	10.97

2. Убедимся, что отношение длин волн водородных линий соответствуют формуле сериальной закономерности (1) при n=2.

$$H_{\alpha}/H_{\beta} \approx 1.34$$
, для $m_{\alpha} = 3$, $m_{\beta} = 4$: $\frac{\lambda_{\alpha}}{\lambda_{\beta}} = 1.35$ $H_{\beta}/H_{\gamma} \approx 1.12$, для $m_{\beta} = 4$, $m_{\gamma} = 5$: $\frac{\lambda_{\beta}}{\lambda_{\gamma}} = 1.12$

что соответствуют формуле сериальной закономерности.

3. Для каждой из линий вычислим значение постоянной Ридберга (см. таблицу).

$$R_{cp} = 10.97 \pm 0.02 \; \mathrm{mkm}^{-1}$$

В пределах погрешности принятое и вычисленное значения совпадают.

Задание III. Спектр йода

1. Определим длины волн линий поглощения йода, соответствующие делениям барабана монохроматора.

	$n_{1,0}$	$n_{1,5}$	$n_{\rm rp}$
дел	2772	2688	2030
λ, \mathring{A}	6490	6250	5125

2. Вычислим энергию колебательного кванта возбужденного состояния молекулы йода:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} = \frac{hc}{5} \left(\frac{1}{\lambda_{1,5}} - \frac{1}{\lambda_{1,0}} \right) = 1467 \cdot 10^{-5} \text{ 9B}$$

3

- 3. Учитывая то, что $h\nu_1=0.027$ эВ энергия колебательного кванта основного состояния, $E_A=0.94$ эВ энергия возбуждения атома, рассчитаем
 - а) энергию электронного перехода

$$h\nu_{\text{эл}} = h\nu_{1.0} + h\nu_1 = 2.01 \text{ эB}$$

б) энергию диссоциации молекулы в основном состоянии

$$D_1 = h\nu_{\rm rp} - E_A = 1.48 \; {\rm 9B}$$

в) энергию диссоциации молекулы в возбужденном состоянии

$$D_2 = h\nu_{\rm rp} - h\nu_{\rm эл} = 0.41 \ {\rm эB}$$

4. Сравним полученные значения с табличными $h\nu_{\rm rp_t}=2.44$ эВ и $D_{1_t}=1.5$ эВ. Полученные значения $h\nu_{\rm rp}\approx 2.42$, $D_1=1.48$ совпадают с погрешностью $\approx 2\%$