Integrirani pogonski sistemi

Modeliranje električnih pogonov

as. dr. Klemen Drobnič klemen.drobnic@fe.uni-lj.si 8. november 2016

Modeliranje AS v Simulinku

Definiranje konstant, začetnih vrednosti spremenljivk...

Vse konstante in začetne vrednosti spremenljivk definiramo v samostojni datoteki podatki.m, ki je v isti mapi kot model. Nato preko File→Model Properties...→Callbacks→InitFcn zagotovimo, da se datoteka naloži ob vsakem zagonu modela v Simulinku.

Main Callbacks History Description Data

Model callbacks
Prel cade For Post Load For Intelligent Start-For Continue For Stop-For Posts Swe-For Posts Swe-For Posts Swe-For Close-For Continue For Stop-For Pre-Swe-For Posts Swe-For Close-For Close-For Description For Swe-For Posts Swe-For Posts Swe-For Close-For Close-For Description For Swe-For Posts S

Slika 1: Datoteka podatki.m

Slika 2: Klic ob vsakem zagonu

Napetosti na faznih navitjih stroja

1. predpostavka

Simetrična zgradba stroja (enake upornosti in induktivnosti navitij, zamaknjene v prostoru za 120°)

2. predpostavka

Simetrično napajanje (enake amplitude sinusnih napetosti, zamaknjene v času za 120°)

z ničelnim vodnikom

$$u_{as} = U_s \cos(\omega_e t)$$

 $u_{bs} = U_s \cos(\omega_e t - 2\pi/3)$
 $u_{cs} = U_s \cos(\omega_e t + 2\pi/3)$

brez ničelnega vodnika

$$u_{as} = U_s \cos(\omega_e t)$$

 $u_{bs} = U_s \cos(\omega_e t - 2\pi/3)$
 $u_{cs} = -u_{as} - u_{bs}$

38

Napetosti na faznih navitjih

Iz knjižnjice (Simulink Library→Sources) izberemo Sine Wave in ga parametriramo (amplituda, fazni kot) v skladu z želenimi faznimi napetostmi ter signal multipleksiramo z Mux (Simulink Library→Signal Routing).

Označimo vse elemente ter z desnim klikom izberemo Create Subsystem from Selection.

40

Fazna transformacija

Fazno trasformacijo bomo realizirali kot matrično množenje konstantne matrike in vektorja faznih napetosti. Uporabili bomo ameriški dogovor. Vstavimo Gain (Math Operations), izberemo opcijo Matrix (K*u) ter vpišemo elemente matrike.

$$\frac{2}{3} \begin{pmatrix} 1 & -1/2 & -1/2 \\ 0 & +\sqrt{3}/2 & -\sqrt{3}/2 \\ 1/2 & 1/2 & 1/2 \end{pmatrix}$$

Rotacijska transformacija

Rotacijsko trasformacijo lahko prav tako obravnavamo kot matrično množenje, a z elementi, ki so odvisni od kota zasuka koordinatnega sistema θ . Zato se moramo poslužiti nekoliko drugačnega pristopa kot pri fazni transformaciji.

Vstavimo Fcn iz User-Defined Functions ter vpišemo transformacijske enačbe.

$$\begin{pmatrix}
\cos\theta & \sin\theta & 0 \\
-\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}$$

42

Napetostni enačbi v komponentni obliki

vektorski napetostni enačbi

$$\mathbf{u}_{s} = R_{s}\mathbf{i}_{s} + \frac{d\boldsymbol{\psi}_{s}}{dt} + j\omega\boldsymbol{\psi}_{s}$$

$$\mathbf{u}_{r} = R_{r}\mathbf{i}_{r} + \frac{d\boldsymbol{\psi}_{r}}{dt} + j(\omega - \omega_{r})\boldsymbol{\psi}_{r}$$

komponentni zapis veličin

$$egin{aligned} oldsymbol{u}_s &= u_{ds} + \mathrm{j} u_{qs} & oldsymbol{u}_r &= u_{dr} + \mathrm{j} u_{qr} \ oldsymbol{i}_s &= i_{ds} + \mathrm{j} i_{qs} & oldsymbol{i}_r &= u_{dr} + \mathrm{j} i_{qr} \ oldsymbol{\psi}_s &= \psi_{ds} + \mathrm{j} \psi_{qs} & oldsymbol{\psi}_r &= \psi_{dr} + \mathrm{j} \psi_{qr} \end{aligned}$$

razširjen zapis enačb

$$u_{ds} + ju_{qs} = R_s(i_{ds} + ji_{qs}) + \frac{d(\psi_{ds} + j\psi_{qs})}{dt} + j\omega(\psi_{ds} + j\psi_{qs})$$
$$u_{dr} + ju_{qr} = R_r(i_{dr} + ji_{qr}) + \frac{d(\psi_{dr} + j\psi_{qr})}{dt} + j(\omega - \omega_r)(\psi_{dr} + j\psi_{qr})$$

komponentni zapis statorske enačbe

$$u_{ds} = R_s i_{ds} + \frac{d\psi_{ds}}{dt} - \omega \psi_{qs}$$
 $u_{qs} = R_s i_{qs} + \frac{d\psi_{qs}}{dt} + \omega \psi_{ds}$

komponentni zapis rotorske enačbe

$$u_{dr} = R_r i_{dr} + \frac{d\psi_{dr}}{dt} - (\omega - \omega_r)\psi_{qr}$$
 $u_{qr} = R_r i_{qr} + \frac{d\psi_{qr}}{dt} + (\omega - \omega_r)\psi_{dr}$

Preoblikovanje napetostne enačbe - spremenljivka stanja

Vsako izmed štirih diferencialnih napetostnih enačb preoblikujemo v obliko primerno za reševanje v Simulinku. Npr. napetostna statorska enačba za *q*-os

$$u_{qs} = R_s i_{qs} + \frac{d\psi_{qs}}{dt} + \omega \psi_{ds} \rightarrow \frac{d\psi_{qs}}{dt} = u_{qs} - R_s i_{qs} - \omega \psi_{ds}$$

Z integriranjem leve in desne strani dobimo trenutno vrednost magnetnega sklepa ψ_{qs}

$$\psi_{qs} = \int_{0}^{t} (u_{qs} - R_s i_{qs} - \omega \psi_{ds}) dt.$$

V Simulinku integriranje realiziramo z Integrator (Continious).

45

Preoblikovanje napetostne enačbe - vektorski zapis

Po opravljenih transformacijah je napetostni signal predstavljen v vektorski obliki

$$\begin{pmatrix} u_{ds} & u_{qs} & u_{0s} \end{pmatrix}^T$$
.

Če iz vektorja odvzamemo ničelno komponento, lahko za realizacijo statorske oz. rotorske napetostne enačbe v modelu uporabimo 2-D signale

$$\begin{pmatrix} \psi_{ds} \\ \psi_{qs} \end{pmatrix} = \int_{0}^{t} \left[\begin{pmatrix} u_{ds} \\ u_{qs} \end{pmatrix} - R_{s} \begin{pmatrix} i_{ds} \\ i_{qs} \end{pmatrix} - \omega M \begin{pmatrix} \psi_{ds} \\ \psi_{qs} \end{pmatrix} \right] dt,$$

kjer je

$$M = \begin{pmatrix} 0 & -1 \\ +1 & 0 \end{pmatrix}$$

rotacijska matrika, ki jo realiziramo podobno kot fazno transformacijo.

46

Odnos med tokovi in magnetnimi sklepi

sklepi odvisni od tokov

$$\psi = f(i)$$

$$\psi_{ds} = L_{ss}i_{ds} + L_m(i_{ds} + i_{dr})$$

$$\psi_{qs} = L_{ss}i_{qs} + L_m(i_{qs} + i_{qr})$$

$$\psi_{dr} = L_{sr}i_{dr} + L_m(i_{dr} + i_{ds})$$

$$\psi_{ar} = L_{sr}i_{ar} + L_m(i_{ar} + i_{as})$$

tokovi odvisni od sklepov

$$i = f(\psi)$$

$$i_{ds} = \frac{\psi_{ds} - k_r \psi_{dr}}{I_{-\tau}}$$

$$i_{qs} = \frac{\psi_{qs} - k_r \psi_{qr}}{L_{sT}}$$

$$i_{dr} = \frac{\psi_{dr} - k_s \psi_{ds}}{I_{rT}}$$

$$i_{qr} = \frac{\psi_{qr} - k_s \psi_{qs}}{I_{sT}}$$

vpeljane konstante

$$k_s = L_m/L_s$$
 $L_{sT} = L_s - L_m^2/L_r$

$$k_r = L_m/L_r$$
 $L_{rT} = L_r - L_m^2/L_s$

pri čemer velja
$$L_{s}=L_{ss}+L_{m}$$
 in

$$L_r = L_{sr} + L_m$$
.

47

Izračun tokov

Rezultat diferencialne enačbe so magnetni sklepi, iz katerih nato izračunamo tokove. Z upoštevanjem vektorske definicije, dobimo

$$\begin{pmatrix} i_{ds} \\ i_{qs} \end{pmatrix} = \frac{1}{L_{sT}} \left[\begin{pmatrix} \psi_{ds} \\ \psi_{qs} \end{pmatrix} - k_r \begin{pmatrix} \psi_{dr} \\ \psi_{qr} \end{pmatrix} \right]$$

$$\begin{pmatrix} i_{dr} \\ i_{qr} \end{pmatrix} = \frac{1}{L_{rT}} \left[\begin{pmatrix} \psi_{dr} \\ \psi_{qr} \end{pmatrix} - k_s \begin{pmatrix} \psi_{ds} \\ \psi_{qs} \end{pmatrix} \right]$$

Elektromagnetni navor

Elektromagnetni navor lahko določimo več enakovrednih enačb. Če izhajamo iz

$$M_{\rm e}=rac{3}{2}p_{p}L_{m}m{i}_{r} imesm{i}_{s}$$

je ekvivalenten zapis

$$M_e = \frac{3}{2}p_p L_m \operatorname{Im}\left[\boldsymbol{i}_r^* \boldsymbol{i}_s\right] = \frac{3}{2}p_p L_m (i_{dr}i_{qs} - i_{qr}i_{ds}).$$

Zato lahko v vektorski obliki zapišemo

$$M_{e} = \frac{3}{2} p_{p} L_{m} \begin{pmatrix} i_{ds} \\ i_{qs} \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ +1 & 0 \end{pmatrix} \begin{pmatrix} i_{dr} \\ i_{qr} \end{pmatrix} = \frac{3}{2} p_{p} L_{m} \begin{pmatrix} i_{ds} \\ i_{qs} \end{pmatrix} \cdot M \begin{pmatrix} i_{dr} \\ i_{qr} \end{pmatrix}$$

49

Vztrajnost

Vse količine so skalarji, zato le preoblikujemo

$$\omega_{rm} = \frac{1}{J_M} \int_0^t (M_e - D\omega_{rm} - M_{br}) dt$$

pri čemer je $\omega_{\it rm} = \omega_{\it r}/p_{\it p}$ mehanska rotorska hitrost.

