Determinação do Plano Ótimo de Manutenção

Exercício Computacional – Pesquisa Operacional

Antonio Carlos da Anunciação
Departamento de Engenharia Elétrica
Engenharias de Sistemas
UFMG, Belo Horizonte, Brasil

Keywords—Simplex; optimization; multiple objective function; cplex, Pareto

I. INTRODUÇÃO

Deseja-se determinar a politica de manutenção ótima para cada um dos 500 equipamentos de uma empresa, considerandose a minimização do custo de manutenção e a minimização do custo de falha esperado, para isto devemos escolher a melhor opção de manutenção em risco por beneficio para cada um destes equipamentos. Cada um dos equipamentos se enquadra em um grupo específico que modela sua probabilidade de falhar, e tem sua própria característica de custo de manutenção e tempo médio até uma falha. A probabilidade de falha esperada é modelada por uma distribuição Weibull, onde os parâmetros de escala e forma são determinados pelo grupo, ou "clusters", onde cada equipamento deve ser enquadrado, e é função do plano de manutenção adotado para aquele equipamento. É importante ressaltar que o custo de manutenção e custo esperado de falha são inversamente proporcionais, ou seja, um plano de manutenção detalhado e minucioso para um equipamento é caro, porém reduz a probabilidade falha de para este equipamento consideravelmente, por consequência seu custo esperado de falha, e não fazer manutenção em um equipamento aumento o custo esperado de falha. Este trabalho é modelado no IBMcplex, via python e o link para o notebook estará no fim do trabalho para execução do programa, é importante que o Cplex seja a versão no mínimo acadêmica devido à quantidade de restrições do problema, e que os dados sejam da dimensão original do problema e estejam formatados conforme a descrição original do problema para evitar erros de execução.

II. MODELAGEM DO PROBLEMA

Modelo:

Neste problema duas funções objetivas devem ser modeladas, uma para o custo esperado de falha e outra para o custo de manutenção, ambos para um equipamento específico.

$$Custo_{esperado}(X_i) = \delta_{1i} \times X_{i1} \times CustoFalha_i$$
 (ep.1)

$$Custo_{falba}(X_i) = \lambda_{1i} \times X_{i1}$$
 (eq.2)

As equações (1) e (2) calculam os custos individuais de falha e manutenção dos equipamentos, onde:

Parâmetros do modelo:

 δ_{1i} = Probabilidade de falha

 λ_{1i} = custo do plano de manutenção

 $CustoFalha_i = custo da falha$

Variável do modelo:

 X_{i1} = plano de manutencao

Funções objetivas:

$$Z(X) = \begin{cases} \min \sum_{i=1}^{n} \delta_{1i} \times X_{i1} \times CustoFalha_{i} \\ \min \sum_{i=1}^{n} \lambda_{1i} \times X_{i1} \end{cases}$$

com:
$$i \in [1, 2, ..., n]$$

Restrições =
$$\begin{cases} \sum_{j=1}^{m} X_{j1} = 1 \ \forall \ j \in [1, ..., m] \\ X_{j1} \in [0, 1] \ \forall \ j \in [0, ..., m] \end{cases}$$

Onde "n" é a quantidade de equipamentos, 500 equipamentos, e "m" a quantidade de planos de manutenção, 3 planos de manutenção. A variável X_i é um vetor binário que representa o plano de manutenção aplicado ao equipamento "i".

III. MINIMIZAÇÃO MULTIOBJETIVO

Os métodos tradicionais não são efetivos para resolver o problema multiobjetivo deste trabalho, dessa maneira deve ser configurar o problema de modo que seja possível aplicar o método de otimização. Para este fim as equações do modelo podem ser reescritas da seguinte forma:

$$Z(X) = \begin{cases} \min \sum_{i=1}^{n} \delta_{1i} \times X_{i1} \times CustoFalha_{i} \end{cases}$$

$$Restrições = \begin{cases} \min \sum_{i=1}^{n} \lambda_{1i} \times X_{i1} \leq custoMax \\ \sum_{j=1}^{m} X_{j1} = 1 \forall j \in [1, ..., m] \\ X_{j1} \in [0,1] \ \forall j \in [0, ..., m] \end{cases}$$

Esta abordagem é conhecida como método Pε-restrito, e assim podemos calcular custo máximo de manutenção e resolver o problema para este custo, a partir dai iterativamente diminuímos o custo máximo até chegarmos ao custo mínimo de manutenção. Desse modo a cada iteração teremos um par ordenado, custo de manutenção e custo esperado de falha, a soma desse par ordeno é o custo total que estamos minimizando e o conjunto desses pares ordenados formam a fronteira do espaço de soluções factíveis. Os pares ordenados ótimos, que minimizam o problema são chamados de Conjunto Pareto.

Fig.1. Conjunto Pareto

IV. METODOLOGIA

Para o Problema de Programação Linear Inteiro (PLI) deste trabalho se os métodos de solução simplex do IBM-Cplex, este por sua vez resolve utilizando o algoritmo Branch and Cut, quando detecta as restrições de tipo das variáveis. O método Branch and bound é um algoritmo para encontrar soluções ótimas em problemas de programação linear inteiro. Consiste em uma enumeração sistemática de todos os candidatos a solução que são obtidos aplicando o método Simplex a cada novo nó da árvore binaria de soluções, e a cada passo um subconjuntos de candidatos infrutíferos são descartados utilizando os limites superior e inferior da quantia otimizada.

V. RESULTADOS

Foram calculados os valores das funções objetivas para diversos valores de custoMax, os resultados podem ser visto abaixo, na Fig.2:

Fig.2. Conjunto Solução

RESULTADOS	
Custo Total Esperado de falhas	1506.01
Custo Total de Manutenção	234.00
Custo Total de Manutenção	1740.01

Tab.1. Resultados Ótimos

VI. DISCUSSÃO

Para este problema de Programação Linear Inteiro, com o método Pε-restrito obtivemos resultados satisfatórios para a solução do problema de minimização de custo total de manutenção multiobjetivo, a Tab.1 mostra o resultado ótimo para as condições de execução do algoritmo.

Através da análise do hipervolume correspondente a nossa solução chegamos a um valor de,

HVI: 0.633783

Uma análise da Fig.2, construída com 1000 pontos de soluções compõe a curva inferior que delimita a região factível (pontos em vermelho), essa curva contem a solução ótima, é consequentemente o Conjunto de Pareto. Não existe garantia que a solução encontrado é a solução ótima, mas é garantido que dentro do domínio no qual o problema foi resolvido, está é a solução ótima. Heurísticas para determinação do Conjunto Pareto Ótimo poderiam nos fornecer um resultado melhor, mas este tipo de análise foge do escopo deste trabalho.

O código desenvolvido para resolver esse problema pode acessado no link:

 $\frac{https://github.com/antonioanunciacao/Pesquisa-Operacional/}{blob/main/Exercicio%20Computacional/}{tpComputacional.ipynb}$

REFERENCIAS

- [1] 1.ARENALES, M., ARMENTANO, V., MORABITO, R., YANASSE, H. "Pesquisa Operacional para Curso de Engenharia", Elsevier, 2007
- [2] Apostilas Otimização Escalar e Vetorial Prof. Ricardo Takahashi, Departamento de Matemática UFMG, 2007