

WEEK 4

THE RELATIONAL ALGEBRA BINARY OPERATION OF UNION AND DIFFERENCE

CS3319

1

STUDENT OBJECTIVES

- Upon completion of this video, you should be able to:
 - Decide if 2 tables are Union Compatible
 - Write a relational algebra expression that uses UNION given two tables and a query.
 - Given 2 tables and a UNION relational algebra expression, show the new table that would be returned once the expression is performed.
 - Write a relational algebra expression that uses DIFFERENCE given two tables and a query.
 - Given 2 tables and a DIFFERENCE relational algebra expression, show the new table that would be returned once the expression is performed.

BINARY OPERATIONS

- In arithmetic 8 ÷ 3 would be a binary operation because it has 2 operands: 8 and 3 and one operator: ÷
- Most of the remaining relational algebra expression we are going to look at use binary operators (i.e. they require TWO tables)
 - For example: Table 1 U Table 2 would return a new table, our result.
 - Could also write: RESULTTABLE ← Table 1 **U** Table 2

UNION COMPATIBLE

- Two tables are union compatible, if and only if:
 - They have the same number of columns
 - Each respective column from each table is from the same domain
- Examples \rightarrow Are these Union Compatible?

TableA and TableB
 NO

TableA and TableC

NO

TableB and TableD

YES

TableA

ID	Name	Age
22	Bob	46
34	Sam	33

TableB

ID	Age
22	46
34	33

TableC

ID	Age	Name
22	46	Bob
34	33	Sam

TableD

X	Υ
55	71
32	64
61	34

NOINU

• Creates a new table from the given 2 tables that include every row from both

tables with NO repeating identical rows.

- The 2 Tables MUST be union compatible
- Symbol \rightarrow \mathbf{U}
- Example Expression:

Table1 U Table2

First Table Name

CS3319

Symbol for Union

Second Table Name

Table 1

ID	FirstName	LastName	Age
12	Homer	Smith	24
24	Gene	Simpson	13
45	Walter	Reid	45

Table2

ID	FirstName	LastName	Age
33	Marg	Jones	28
24	Gene	Simpson	13

ANSWER

ID	FirstName	LastName	Age
12	Homer	Smith	24
24	Gene	Simpson	13
45	Walter	Reid	45
33	Marg	Jones	28

Temp1 $_{\text{(SuperSSN)}} \leftarrow \pi_{\text{ManagerSSN}}$ (Department) Result \leftarrow Temp1 U π_{SuperSSN} (Employee)

Temp1

SuperSSN

4

3

6

Result

SuperSSN

4

3

6

2

10/2/2023

QUESTION: What would the following relational expression result in?

Temp1(Field1) $\leftarrow \pi$ MiddleInitial (Employee)

Temp2(Field1) $\leftarrow \pi$ Sex (Employee)

Result ← Temp1 U Temp2

Temp1
Field1
P

Field 1

F

M

Result
Field1
P
J
F

QUESTION: What would the following relational expression result in?

Temp1(Loc) $\leftarrow \pi$ ProjectLocation (Project)

Temp2(Loc) $\leftarrow \pi$ Address (σ LastName = "Simpson" (Employee))

Result ← Temp1 U Temp2

Temp1

Loc

Toronto

Springfield

London

Temp2

Loc

London

Toronto

Result

Loc

Toronto

Springfield

London

QUESTION: What, in English, does the above expression represent?

Show me all the project locations cities together with the cities that the Simpson employee's live in.

■ Project : Table							
	ProjectName	ProjectNumber	ProjectLocation	DeptNumb(<u>▲</u>			
•	Accounting Upd	A1	Toronto	S7G			
	Acc3	A3	Springfield	G8H			
	Acct6	A6	Toronto	S7G			
	Inventory	11	Toronto	G8H			
	Inventory2	12	London	S7G			
	Payroll	P1	Springfield	G8H			
	Payroll2	P2	London	G8H			
	Payroll3	P3	London	G8H			
■ Department : Table							

III	Ⅲ Department : Table					
	DeptNumbe	DeptName	ManagerSSN	ManagerStartDate_		
ightharpoons	G8H	Head Office	4	2/2/9		
	S7G	Safety Department	3	1/1/9		
	Y5J	Research Department	6	3/3/9 ₩		
III	Ⅲ Employee : Table					

L	# Employee : I able								
		SSN	LastName	MiddleInitia	FirstName	BDate	Address	Sex	Salary
	▼	1	Simpson	Р	Bart	2/2/95	London	М	\$1,000.00
		2	Smithers	J	Waylan	1/1/60	Springfie	M	\$2,000.00
I		3	Beuvieau	Р	Patty	3/3/59	Toronto	F	\$4,000.00
		4	Burns	Р	Montgomer	7/7/20	Toronto	М	\$5,000.00
		6	Simpson	J	Lisa	6/6/90	London	F	\$1,000.00
l			Simpson	J	Homer	8/8/61	Toronto	M	\$2,000.00
	Re	cord: I	I I	1 > >1	▶ * of 6		•		

WRITE A RELATIONAL ALGEBRA EXPRESSION THAT WOULD NEED TO USE UNION

• Write the Relation Algebra expression to answer this query:

Return the first name of all students and faculty at Western whose name starts with D

Faculty

ID	FirstName	LastName	Office Number
12	Dave	Smith	MC316
24	Walter	Simpson	MC416
45	Donald	Reid	SSC22

Student

StudentID	FName	LName	HomeCity	Major
2501	Daisy	Jones	Windso	Math
2509	Walter	Simpson	Arva	CS
2508	Donald	Cook	Milton	Math
2588	Wally	Webster	Milton	CS

Temp1_(FName) $\leftarrow \pi_{\text{FirstName}} (\sigma_{\text{FirstName like "D*"}} (\text{Faculty}))$

Temp2 $\leftarrow \pi_{\text{FName}}(\sigma_{\text{FName like "D*"}}(\text{Student)})$

ANSWER ← Temp1 U Temp2

DIFFERENCE

- Create a new table from the given 2 tables that include every row from the table on the left side that is NOT in the table on the right side.
- The 2 Tables MUST be union compatible
- Symbol → —
- Example Expression:

Table1 – Table2

First Table Name

Symbol for Difference

Second Table Name

Table1

ID	FirstName	LastName	Age
12	Homer	Smith	24
24	Gene	Simpson	13
45	Walter	Reid	45

Table2

ID	FirstName	LastName	Age
33	Marg	Jones	28
24	Gene	Simpson	13

ANSWER

ID	FirstName	LastName	Age
12	Homer	Smith	24
45	Walter	Reid	45

MORE ON DIFFERENCE

• NOTE that Table 1 - Table 2 does NOT equal Table 2 - Table 1

e.g Answer ← Table2 – Table1

Table1

ID	FirstName	LastName	Age
12	Homer	Smith	24
24	Gene	Simpson	13
45	Walter	Reid	45

Table2

ID	FirstName	LastName	Age
33	Marg	Jones	28
24	Gene	Simpson	13

ANSWER

ID	FirstName	LastName	Age
33	Marg	Jones	28

RESULT $\leftarrow \pi_{LastName}$ (Employee) $-\pi_{LastName}$ ($\sigma_{Sex="M"}$ (Employee))

RESULT

LastName

Beuvieau

QUESTION: What would the following relational expressions result in?

Temp1 (SSN) $\leftarrow \pi$ ManagerSSN (Department)

Temp2 (SSN) $\leftarrow \pi$ SuperSSN ($\sigma_{\text{SuperSSN}} \leftarrow (\text{Employee})$)

Result1 \leftarrow Temp1 – Temp2

Result2 ← Temp2 – Temp1

6

CS319

Temp1	Temp2	Result1	Result2
SSN	SSN	SSN	SSN
4	2	3	2
3	4		

Y5J

▶ G8H

S7G

Record: I◀ ◀ SSN LastName MiddleInitia FirstName BDate Address Sex Salary SuperSSN DeptNumb 1 Simpson P \$1,000.00 Bart 2/2/95 London | M 2 G8H 2 Smithers J Waylan 1/1/60 Springfie M \$2,000.00 4|S7G 3/3/59 Toronto F 6 Y5J 3 Beuvieau | P Patty \$4,000.00 \$5,000.00 S7G 4 Burns Montgomer 7/7/20 Toronto M 6 Simpson J Lisa 6/6/90 London | F \$1,000.00 2 S7G

ProjectLocation

Toronto

Toronto

Toronto London

London

London

Springfield

Springfield

ManagerSSN

ProjectNumber

DeptName

Safety Department

Research Department

1 ▶ ▶1 ▶* of 6

Head Office

ProjectName |

Accounting Upd A1

Acc3

Acct6

Inventory

Payroll2

Payroll3

DeptNumbe

12 Simpson J

Record: I I I

Inventory2 Payroll

QUESTION: What do they mean in English?

Result1 means: Show me all the employee ids for people who are departmental \bigcirc managers but not also supervisors.

Result2 means: Show me all the ids for people who are employee supervisors but

not also departmental managers.

10/2/2023

8/8/61 Toronto | M

1

2 G8H

■ Works_On : Table

SSN ProjectNu

2/2/9

1/1/9

3/3/9 🕶

\$2,000.00

ManagerStartDate -

DeptNumb(*

S7G

G8H

S7G

G8H

S7G

G8H

G8H

WRITE A RELATIONAL ALGEBRA EXPRESSION THAT WOULD NEED TO USE DIFFERENCE

Write the Relation Algebra expression to answer this query:
 Return the first name of all faculty members who don't have the same first name as any of our students.

Faculty

ID	FirstName	LastName	Office Number
12	Dave	Smith	MC316
24	Walter	Simpson	MC416
45	Donald	Reid	SSC22

Student

StudentID	FName	LName	HomeCity	Major
2501	Daisy	Jones	Windso	Math
2509	Walter	Simpson	Arva	CS
2508	Donald	Cook	Milton	Math
2588	Wally	Webster	Milton	CS

 $Temp1_{(FName)} \leftarrow _{\pi \ FirstName} (Faculty)$

Temp2 $\leftarrow _{\pi \text{ FName}}$ (Student)

ANSWER \leftarrow Temp1 – Temp2