Automi e Linguaggi Formali – 28/4/2023 Prima prova intermedia – Soluzione

1. (12 punti) Data una parola $w \in \Sigma^*$, definiamo evens(w) come la sottosequenza di w che contiene solo i simboli in posizione pari (iniziando a contare da 1). Per esempio, evens(INDICEPARI) = NIEAI. Dimostra che se $L \subseteq \Sigma^*$ è un linguaggio regolare allora anche il linguaggio

$$evens(L) = \{evens(w) \mid w \in L\}$$

è un linguaggio regolare.

Soluzione: Se L è un linguaggio regolare, allora sappiamo che esiste un DFA $A=(Q,\Sigma,\delta,q_0,F)$ che riconosce L. Costruiamo un ε -NFA A' che accetta il linguaggio evens(L), aggiungendo un flag 0,1 agli stati di A, dove flag 0 corrisponde a "simbolo in posizione pari" e flag 1 corrisponde a "simbolo in posizione dispari". La funzione di transizione è fatta in modo da alternare i flag 0 e 1 dopo ogni transizione dell'automa. Se lo stato corrente ha flag 0, l'automa consuma il prossimo simbolo della stringa di input e prosegue nello stesso stato che raggiungerebbe A dopo aver consumato lo stesso simbolo. Se lo stato corrente ha flag 1, l'automa prosegue con una ε -transizione verso uno degli stati raggiungibili dall'automa A consumando un simbolo: simulando in questo modo il fatto che i simboli in posizione dispari vanno "saltati".

Formalmente, $A' = (Q', \Sigma, \delta', q'_0, F')$ è definito come segue.

- $Q' = Q \times \{0, 1\}.$
- L'alfabeto Σ rimane lo stesso.
- $\delta'((q,0),a) = \{(\delta(q,a),1)\}$. Con il flag 0 l'automa consuma un simbolo di input ed ha una sola alternativa possibile: lo stato $\delta(q,a)$ raggiunto da A dopo aver consumato a. Il flag diventa 1.
- $\delta'((q,1),\varepsilon) = \{(q',0) \mid \text{ esiste } a \in \Sigma \text{ tale che } \delta(q,a) = q'\}$. Con il flag 1 l'automa procede nondeterministicamente con una ε -transizione verso uno degli stati raggiungibili da A dopo aver consumato un simbolo arbitrario.
- $q'_0 = (q_0, 1)$. Lo stato iniziale corrisponde allo stato iniziale di A con flag 1 (simbolo in posizione dispari).
- $F' = F \times \{0, 1\}$. L'insieme degli stati finali di A' corrisponde all'insieme degli stati finali di A con qualsiasi flag.

Per dimostrare che A' riconosce il linguaggio evens(L), data una parola $w = w_1 w_2 \dots w_n$, dobbiamo considerare due casi.

• Se $w \in L$, allora esiste una computazione di A che accetta la parola. Di conseguenza, esiste una computazione di A che accetta la parola:

$$s_0 \xrightarrow{w_1} s_1 \xrightarrow{w_2} \dots \xrightarrow{w_n} s_n$$

con $s_0 = q_0$ e $s_n \in F$. Se w è di lunghezza pari, la computazione

$$(s_0,1) \xrightarrow{\varepsilon} (s_1,0) \xrightarrow{w_2} (s_2,1) \xrightarrow{\varepsilon} (s_3,0) \xrightarrow{w_4} (s_4,1) \xrightarrow{\varepsilon} \dots \xrightarrow{w_n} (s_n,1)$$

è una computazione accettante per A' sulla parola $evens(w) = w_2w_4w_6...w_n$, perché $(s_n, 1) \in F'$. Se w è di lunghezza dispari, allora la computazione accettante per A' su evens(w) è

$$(s_0,1) \xrightarrow{\varepsilon} (s_1,0) \xrightarrow{w_2} (s_2,1) \xrightarrow{\varepsilon} (s_3,0) \xrightarrow{w_4} (s_4,1) \xrightarrow{\varepsilon} \dots \xrightarrow{w_{n-1}} (s_{n-1},1) \xrightarrow{\varepsilon} (s_n,1).$$

 \bullet Se w è accettata dal nuovo automa A', allora esiste una computazione accettante che ha la forma

$$(s_0,1) \xrightarrow{\varepsilon} (s_1,0) \xrightarrow{w_1} (s_2,1) \xrightarrow{\varepsilon} (s_3,0) \xrightarrow{w_2} (s_4,1) \xrightarrow{\varepsilon} \dots \xrightarrow{w_n} (s_n,1),$$

se $(s_n, 1)$ è uno stato finale, oppure la forma

$$(s_0,1) \xrightarrow{\varepsilon} (s_1,0) \xrightarrow{w_1} (s_2,1) \xrightarrow{\varepsilon} (s_3,0) \xrightarrow{w_2} (s_4,1) \xrightarrow{\varepsilon} \dots \xrightarrow{w_n} (s_n,1) \xrightarrow{\varepsilon} (s_{n+1},0),$$

quando è necessaria una ε -transizione finale per raggiungere uno stato finale. In entrambi i casi possiamo costruire una computazione accettante per A sostituendo le ϵ -transizioni con transizioni che consumano un carattere. Nel primo caso si ottiene una computazione che ha la forma

$$s_0 \xrightarrow{u_1} s_1 \xrightarrow{w_1} s_2 \xrightarrow{u_2} s_3 \xrightarrow{w_2} s_4 \xrightarrow{\varepsilon} \dots \xrightarrow{w_n} s_n$$

e accetta una parola $u = u_1 w_1 u_2 w_2 \dots u_n w_n$. Nel secondo caso si ottiene una computazione

$$s_0 \xrightarrow{u_1} s_1 \xrightarrow{w_1} s_2 \xrightarrow{u_2} s_3 \xrightarrow{w_2} s_4 \xrightarrow{\varepsilon} \dots \xrightarrow{w_n} s_n \xrightarrow{u_{n+1}} s_{n+1},$$

che accetta la parola $u=u_1w_1u_2w_2\dots u_nw_nu_{n+1}$. In entrambi i casi evens(u)=w, come richiesto.

2. (12 punti) Considera il linguaggio

$$L_2 = \{uwu \mid u, w \text{ sono stringhe di } 0 \text{ e } 1 \text{ tali che } |u| = |w|\}.$$

Dimostra che L_2 non è regolare.

Soluzione: Usiamo il Pumping Lemma per dimostrare che il linguaggio non è regolare. Supponiamo per assurdo che L_2 sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = 1^k 0^k 1^k$, che è di lunghezza maggiore di k ed appartiene ad L_2 perché il primo terzo della parola è uguale all'ultimo terzo;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- poiché $|xy| \le k$, allora x e y sono entrambe contenute nella sequenza iniziale di 1. Inoltre, siccome $y \ne \varepsilon$, abbiamo che $x = 1^q$ e $y = 1^p$ per qualche $q \ge 0$ e p > 0. z contiene la parte rimanente della stringa: $z = 1^{k-q-p}0^k1^k$. Consideriamo l'esponente i = 2: la parola xy^2z ha la forma

$$xu^2z = 1^q1^{2p}1^{k-q-p}0^k1^k = 1^{k+p}0^k1^k$$

Poiché p > 0, la sequenza iniziale di 1 è più lunga della sequenza finale di 1, e quindi la parola iterata xy^2z non appartiene ad L_2 perché il primo terzo della parola è fatta solamente da 1 mentre l'ultimo terzo include anche un certo numero di 0.

Abbiamo trovato un assurdo quindi L_2 non può essere regolare.

3. (12 punti) Dimostra che se $L \subseteq \Sigma^*$ è un linguaggio context-free allora anche L^R è un linguaggio context-free, dove $L^R = \{w^R \in \Sigma^* \mid w \in L \text{ e } w^R \text{ è la stringa } w \text{ rovesciata}\}.$

Soluzione: Se L è un linguaggio context-free, allora esiste una grammatica $G = (V, \Sigma, R, S)$ che lo genera. Per dimostrare che L^R è context-free, dobbiamo essere in grado di definire una grammatica che possa generarlo. Questa grammatica è una quadrupla $G' = (V', \Sigma', R', S')$ definita come segue.

- L'alfabeto è lo stesso del linguaggio Loriginale: $\Sigma' = \Sigma.$
- L'insieme di variabili è lo stesso della grammatica G: V' = V.
- Il nuovo insieme di regole R' è ottenuto "rovesciando" la parte destra delle regole di R: $R' = \{A \to u^R \mid A \to u \in R\}$. In questo modo qualsiasi derivazione deve ora seguire le regole rovesciate.
- Si noti che mentre la parte destra delle regole deve rovesciata, l'ordine delle regole nella derivazione non deve essere invertito. Pertanto, la variabile iniziale rimane la stessa: S' = S.