Report intership - 4A Polytech Clermont-Ferrand - GP4A (2024 - 2025) Engineering Physics Department

Quantum Superconducting circuit

Vincent MARAIS

Contents

1	Introduction of superconducting	2
	1.1 Current density and the LONDON equation	5
2	Quantum phase transition	7
3	Lagrangian and Hamiltonian mechanics	7

1. Introduction of superconducting

The superconducting state is a phase of matter or, more precisely, a second-order phase transition of matter at a temperature T_c that induces different properties. The historical property is the low resistance $(R < 10^{-5}\Omega)$ discovered by Heike Kamerlingh Onnes.

Figure 1.1: Mercury superconducting transition

In 1933, in Berlin, Walther Meissner and Robert Ochsenfeld showed that the magnetic field B is "expelled" from superconductors. This means that when subjected to an external magnetic field, superconductors divert the field lines so that the magnetic field vanishes inside. The superconducting material behaves as a perfect diamagnet [1] p.20.

Figure 1.2: Diagram of the Meissner-Ochsenfeld effect. Magnetic field lines **B**, represented as arrows, are excluded from a superconductor when it is below its critical temperature T_c [1].

Theorem: Type of particule

The Cooper pairs are bosons

Proof. The spin of the Cooper in equal to zero, by consequese of the statistical theorem the Cooper pairs are bosons. \Box

The microscopic wave function of the system of Cooper pairs

$$\psi(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N, t) = \varphi(\vec{r}_1, t)\varphi(\vec{r}_2, t)\cdots\varphi(\vec{r}_N, t)$$
(1)

Quantum Superconducting circuit

and $\varphi(\vec{r_i},t)$: describes the wavefunction of a single Cooper pair at the time t and the position $\vec{r_i}$

Is mean Field approach! (or the wave function is a seperable state in quantum information)

Definition: Mean Field Theory

The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field.[1] This reduces any many-body problem into an effective one-body problem.

1.1 Current density and the LONDON equation

Hypothesis:

COOPER pairs will be considered in this chapter as "particles" of mass m_p and charge q_p double those of an electron, and whose density n_p is half that of superconducting electrons:

$$m_p = 2m \; ; \quad q_p = -2e \; ; \quad n_p = \frac{n_s}{2}$$

And why now experiementaly at the temperature T_c the Cooper pairs condensate we can write the macroscopic wave function of the system of many Cooper pairs in polar representation

$$\Psi(\vec{r},t) = \sqrt{n_s(\vec{r},t)}e^{i\theta(\vec{r},t)}$$

where:

- n_s : density of charge carrier (Cooper pair)
- θ : superconducting phase

Proposal: Hamiltionan of charge particles

The Hamiltonian for a system of charged particles in an electromagnetic field is given by:

$$\hat{H} = \sum_{i} \left(\frac{1}{2m_i} \left(\hat{\mathbf{p}}_i - q_i \mathbf{A} (\hat{\mathbf{r}}_i) \right)^2 + q_i \phi(\hat{\mathbf{r}}_i) \right) + \frac{1}{2} \sum_{i \neq j} \frac{q_i q_j}{4\pi \epsilon_0 |\hat{\mathbf{r}}_i - \hat{\mathbf{r}}_j|}$$
(2)

- \hat{H} is the Hamiltonian operator for the system.
- m_i is the mass of the *i*-th particle.
- $\hat{\mathbf{p}}_i$ is the momentum operator of the *i*-th particle.
- q_i is the charge of the *i*-th particle.
- $\mathbf{A}(\hat{\mathbf{r}}_i)$ is the vector potential of the electromagnetic field at the position $\hat{\mathbf{r}}_i$ of the *i*-th particle.
- $\phi(\hat{\mathbf{r}}_i)$ is the scalar potential of the electromagnetic field at the position $\hat{\mathbf{r}}_i$ of the *i*-th particle.
- ϵ_0 is the permittivity of free space and $|\hat{\mathbf{r}}_i \hat{\mathbf{r}}_j|$ is the distance between the *i*-th and *j*-th particles.

Proof. cf book of Electrodynamics

Theorem: London equations

The London equations describe the electromagnetic properties of superconductors. One of the London equations can be written as:

$$\nabla \times \mathbf{J} = -\frac{n_s e^2}{m} \mathbf{B} \tag{3}$$

where:

- **J** is the superconducting current density,
- n_s is the density of superconducting electrons,
- *e* is the charge of an electron,
- m is the mass of an electron,
- $oldsymbol{\cdot}$ **B** is the magnetic field.

Proof.

Rq: A major triumph of the equations is their ability to explain the Meissner effect, wherein a material exponentially expels all internal magnetic fields as it crosses the superconducting threshold.

2. Quantum phase transition

Definition: Ground state

Definition: Bose–Einstein condensate (BEC)

In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (-273.15° C or -459.67° F or 0 K). Under such conditions, a large fraction of bosons occupy the same ground state.

Definition: Charge superfluid

Video BEC

3. Lagrangian and Hamiltonian mechanics

Definition: Lagrangian (L)

$$L = T - V$$

where T is the kinetic energy and V is the potential energy.

Definition: Hamiltonian (H)

$$H = \dot{q}_i p_i - L$$

where \dot{q}_i are the generalized velocities and p_i are the canonical momenta.

Definition: Euler-Lagrange Equations

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$$

Definition: Canonical Momenta (p i)

$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$

Definition: Hamilton's Equations of Motion

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}$$

Quantum Superconducting circuit

Definition: Phase Space

The space of canonical variables (q, p).

Definition: Cyclic Coordinates

Coordinates that do not appear in the Lagrangian, leading to conserved canonical momenta.

Definition: D'Alembert's Principle

$$\sum (\dot{p}_i - F_i) \cdot \delta r_i = 0$$

Definition: Virtual Displacement (δr_i)

An infinitesimal displacement consistent with the constraints, carried out at a fixed time.

Important Theorems

Theorem: Hamilton's Principle

The motion of a system extremizes the action S:

$$\delta S = \delta \int_{t_1}^{t_2} L \, dt = 0$$

This leads to the Euler-Lagrange equations.

Theorem: Noether's Theorem

Every differentiable symmetry of the action corresponds to a conservation law.

Theorem: Liouville's Theorem

The phase space distribution function is conserved along the trajectories of the system.

Key Concepts

Definition: Newtonian Mechanics

Describes the dynamics of particles using vector spatial coordinates or generalized coordinates.

<u>Definition</u>: Lagrangian Mechanics

Focuses on the Lagrangian function and provides a scalar approach to dynamics, making it easier to handle different coordinate systems and constraints.

Quantum Superconducting circuit

Definition: Hamiltonian Mechanics

Introduces canonical momenta and phase space, providing a different formalism that is especially useful in statistical mechanics and quantum mechanics.

References

[1] Philippe Mangin and Rémi Kahn. Superconductivity. Springer International Publishing, Cham, 2017.