Lecturer: Tongyang Li, scribed by Rui Yang

Date: November 8, 2023

Lecture 11

Discrete-time Quantum Walk

- Qubitization
- Hitting time

1 Recap

Last lecture, we introduced quantum walks: Op $|0^n\rangle |j\rangle = \sum_k \sqrt{P_{jk}} |k\rangle |j\rangle$. We consider

UD: 1 step quantum walk.

Proposition 1.1. $\forall i, j \in [N], \ \langle 0^n | \langle i | U_D | 0^n \rangle | j \rangle = D_{ij}. \ Intuitively, \ U_D = \begin{pmatrix} D & \cdot \\ \cdot & \cdot \end{pmatrix} = |0^n\rangle \langle 0^n | \otimes D + \cdots.$ Such a form is called a block encoding of D.

2 Qubitization

Next: What can we obtain by using the block encoding?

Denote the eigendecomposition of D as $D = \sum_{i} \lambda_{i} |v_{i}\rangle \langle v_{i}|$. For each $|v_{i}\rangle$,

$$U_D |0^n\rangle |v_i\rangle = |0^n\rangle D |v_i\rangle + \left|\tilde{\perp}_i\right\rangle = \lambda_i |0^n\rangle |v_i\rangle + \left|\tilde{\perp}_i\right\rangle \tag{*}$$

Here $\left|\tilde{\perp}_{i}\right\rangle$ is an unnormalized state satisfying $\Pi\left|\tilde{\perp}_{i}\right\rangle=0$, where

$$\Pi = |0^n\rangle \langle 0^n| \otimes I$$

(*) should give a normalized state, so we may write $\left|\tilde{\perp}_i\right\rangle = \sqrt{1-\lambda_i^2}\left|\perp_i\right\rangle$, where $|\perp_i\rangle$ is a normalized state.

Suppose
$$\lambda_i \neq \pm 1$$
. First, notice that $U_D^{\dagger} = U_D$

$$(ABC)^{\dagger} = C^{\dagger}(AB)^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$$

$$U_D^{\dagger} = \left(\operatorname{Op} \operatorname{SWAP} \operatorname{Op}^{\dagger}\right)^{\dagger} = \left(\operatorname{Op}^{\dagger}\right)^{\dagger} \operatorname{SWAP}^{\dagger} \operatorname{Op}^{\dagger} = \operatorname{Op} \operatorname{SWAP} \operatorname{Op}^{\dagger} = U_D$$

Apply U_D to both sides of (*), we have $\left(U_D^2 = U_D^{\dagger} U_D = I\right)$

$$|0^{n}\rangle |v_{i}\rangle = \lambda_{i}U_{D} |0^{n}\rangle |v_{i}\rangle + \sqrt{1 - \lambda_{i}^{2}}U_{D} |\perp_{i}\rangle$$

$$= \lambda_{i} \left(\lambda_{i} |0^{n}\rangle |v_{i}\rangle + \sqrt{1 - \lambda_{i}^{2}} |\perp_{i}\rangle\right) + \sqrt{1 - \lambda_{i}^{2}}U_{D} |\perp_{i}\rangle.$$

$$\Rightarrow \left(1 - \lambda_{i}^{2}\right) |0^{n}\rangle |v_{i}\rangle = \sqrt{1 - \lambda_{i}^{2}}\lambda_{i} |\perp_{i}\rangle + \sqrt{1 - \lambda_{i}^{2}}U_{D} |\perp_{i}\rangle$$

$$\Rightarrow U_{D} |\perp_{i}\rangle = \sqrt{1 - \lambda_{i}^{2}} |0^{n}\rangle |v_{i}\rangle - \lambda_{i} |\perp_{i}\rangle. \tag{**}$$

Conclusion: Denoting $\beta_i = \{|0^n\rangle |v_i\rangle, |\perp_i\rangle\}, \mathcal{H}_i = \operatorname{span}\{\beta_i\}$ is an invariant subspace of U_D .

When $\lambda_i = \pm 1$, span $\{|0^n\rangle |v_i\rangle\}$ is already an invariant subspace.

The matrix representation of U_D w.r.t. β_i is

$$[U_D]_{\beta_i} = \begin{pmatrix} \lambda_i & \sqrt{1 - \lambda_i^2} \\ \sqrt{1 - \lambda_i^2} & -\lambda_i \end{pmatrix} \begin{vmatrix} |0^n\rangle |v_i\rangle \\ |1_i\rangle \end{vmatrix}$$
$$|0^n\rangle |v_i\rangle \qquad |1_i\rangle$$

In literature, this phenomenon is known as qubitization - each eigenvector $|v_i\rangle$ is "qubitized" into two -dimensional space \mathcal{H}_i .

This also looks like Grover. But we need to make a rotation here.

Note that \mathcal{H}_i is also an invariant subspace for Π :

$$[\pi]_{\beta_i} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$$

Define
$$Z_{\pi} = 2\pi - I$$
, then $[Z_{\pi}]_{\beta_i} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

 Z_{π} acts as a reflection operator restricted to each subspace \mathcal{H}_{i} .

Now: \mathcal{H}_i is an invariant subspace for the iterate $O_D = U_D Z_{\pi}$, where

$$[O_D]_{\beta_i} = \begin{pmatrix} \lambda_i & \sqrt{1 - \lambda_i^2} \\ \sqrt{1 - \lambda_i^2} & -\lambda_i \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \lambda_i & -\sqrt{1 - \lambda_i^2} \\ \sqrt{1 - \lambda_i^2} & \lambda_i \end{pmatrix} \qquad \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

This is a desired rotation matrix! Applying it k times,

$$\left[0_{D}^{k}\right]_{\beta_{i}} = \left[\left(U_{D}Z_{\pi}\right)^{k}\right]_{\beta_{i}} = \left(\begin{array}{cc} T_{k}\left(\lambda_{i}\right) & -\sqrt{1-\lambda_{i}^{2}}U_{k-1}\left(\lambda_{i}\right) \\ \sqrt{1-\lambda_{i}^{2}}U_{k-1}\left(\lambda_{i}\right) & T_{k}\left(\lambda_{i}\right) \end{array}\right).$$

Here T_k and U_k are Chebyshev polynomials of first and second kinds, respectively.

$$T_k(\cos \theta) = \cos k\theta$$
 $U_{k-1}(\cos \theta) = \sin k\theta / \sin \theta$

$$T_1(x) = x$$
, $T_2(x) = 2x^2 - 1$, $T_3(x) = 4x^3 - 3x$,...
 $U_1(x) = 2x$, $U_2(x) = 4x^2 - 1$, $U_3(x) = 8x^3 - 4x$,...

Since $\{|0^n\rangle\,|v_i\rangle\}_{i=1}^N$ spans the range of $\prod(\{|v_i\rangle\})$ is a complete, orthonormal basis), we have: $O_D^k=\begin{pmatrix}T_k(A)&**&*\end{pmatrix}$. $A=\sum_i\lambda_i\,|v_i\rangle\,\langle U_i|\,,\,\,T_k(A)=\sum_iT_k\,(\lambda_i)\,|v_i\rangle\,\langle v_i|\,.\,\,$ i.e., $O_D^k=(U_DZ_\pi)^k$ is a block encoding of the Chebyshev polynomial $T_k(A)$:

$$\langle 0^n | \langle i | O_D^k | 0^n \rangle | j \rangle = (T_k(A))_{ij}.$$

Now to implement O_D^k ? We know U_D ; need to implement Z_{π} .

When n=1 $Z_{\pi}=Z$ (This reduces to amplitude amplification.)

For general
$$n, Z_{\pi} = 2\pi - I = 2 |0^n\rangle \langle 0^n| - I$$

$$z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Consider the following circuit with an ancilla qubit:

$$|0\rangle$$
 X Z X $|0\rangle$

$$\begin{array}{lll} \text{If } b = 0^n \colon & |0\rangle|b\rangle \xrightarrow{X} |1\rangle|b\rangle & \stackrel{\text{CNOT}}{\longmapsto} & |0\rangle|b\rangle \xrightarrow{Z} |0\rangle|b\rangle & \stackrel{\text{CNOT}}{\longmapsto} & |1\rangle|b\rangle \xrightarrow{X} |0\rangle|b\rangle \\ \text{If } b \neq 0^n \colon & |0\rangle|b\rangle \xrightarrow{X} |1\rangle|b\rangle & \stackrel{\text{CNOT}}{\longmapsto} & |1\rangle|b\rangle \xrightarrow{Z} -|1\rangle|b\rangle & \stackrel{\text{CNOT}}{\longmapsto} -|1\rangle|b\rangle \xrightarrow{X} -|0\rangle|b\rangle \end{array}$$

In other words, it returns $|0\rangle|b\rangle$ if $b=0^n$, and $-|0\rangle|b\rangle$ if $b\neq 0^n$. This is exactly Z_{π} . In all:

 $(O_D)^k$: $X^2 = I$.

3 Hitting time

In the above, we have shown that $\mathcal{H}_i = \operatorname{span} \{ |0^n\rangle |v_i\rangle, |\perp_i\rangle \}$ is an invariant subspace for the iterate $O_D = U_D Z_{\pi}$, where $[O_D]_{\beta_i} = \begin{pmatrix} \lambda_i & -\sqrt{1-\lambda_i^2} \\ \sqrt{1-\lambda_i^2} & \lambda_i \end{pmatrix}$.

Proposition 3.1. The eigenvalues of $[O_D]_{\beta_i}$ in the 2×2 matrix block are $e^{\pm i \arccos(\lambda_i)}$.

Proof. Denote $\lambda_i = \cos \theta_i$. Then we need to find the eigenvalue of

$$[O_D]_{\beta_i} = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \qquad f(x) = \begin{vmatrix} x - \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & x - \cos \theta_i \end{vmatrix}$$

Its characteristic function is $f(x) = (x - \cos \theta_i)^2 + \sin^2 \theta_i = x^2 - 2\cos \theta_i x + 1$

$$x = \frac{2\cos\theta_i \pm \sqrt{4\cos^2\theta_i - 4}}{2} = \cos\theta_i \pm i\sin\theta_i = e^{\pm i\theta_i} = e^{\pm i\arccos(\lambda_i)}$$

We have proved that if a random walk is ergodic and reversible, then eigenvalues of D and P are the same.

- The largest eigenvalue of D is unique is equal to 1 (with eigenvector π).
- The second largest eigenvalue of D is 1δ , where $\delta > 0$ is called the spectral gap.

Since $\arccos 1 = 0$ and $\arccos(1 - \delta) \approx \sqrt{2\delta}$, the spectral gap of O_D on the unit circle is in fact $O(\sqrt{\delta})$ instead of δ .

This is known as spectral gap amplification.

Ex. (Determining marked vertices in the complete graph)

Let G=(V,E) be a complete graph of $N=2^n$ vertices. We want to distinguish the following two scenarios:

(1) All vertices are the same, and the random walk is given by the transition matrix:

$$P = \frac{1}{N} e_N e_N^{\top} \quad e_N = (1, 1, \dots, 1)^{\top}.$$

(2) There are M marked item (vertices). WLOG, we may assume that they are the 1st, 2nd,... M-th vertices for better notations (of course we do not have access to this information). In this case, the transition matrix is

$$\widetilde{P} = \begin{cases} \delta_{ij} & i \in [M] \\ P_{ij} & i \in \{M+1, \dots, N\} \end{cases}$$