Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 3.

(Du skal altså ikke levere inn selve eksamensoppgaven med oppgaveteksten.)

- a) Den sterke kjernekraften formidles av
 - A. W- og Z-bosoner
 - B. fotoner
 - C. baryoner
 - D. gluoner
- b) Hvilken av prosessene kan ikke finne sted?

A.
$$p+p \rightarrow p+p+p+\overline{p}$$

B.
$$\mu^- \rightarrow e^- + \overline{\nu}_e + \nu_{\mu}$$

C.
$$\overline{\nu}_{\mu} + p \rightarrow n + \mu^{+}$$

D.
$$n \rightarrow p + e^- + v_e$$

c) Per sitter på en kjelke som glir med konstant fart på isen. Han holder en ball i hendene. Så kaster han ballen rett opp fra kjelken.

Hvilken påstand er riktig? Se bort fra luftmotstanden.

- A. Kjelken har fremdeles samme fart.
- B. I det ballen forlater kjelken, øker farten til kjelken.
- C. I det ballen forlater kjelken, avtar farten til kjelken.
- D. Ballen lander bak Per.

Eksamen REA3005 Side 20 av 44

d) Oda er på tivoli og sitter i en karusell. Hun beveger seg i en sirkelbane med konstant banefart. Vi måler radien r i sirkelbanen og rundetiden T. Akselerasjonen er gitt ved formelen $a=\frac{4\pi^2r}{T^2}$.

De relative usikkerhetene for radius og rundetid er $\frac{\Delta r}{r}$ og $\frac{\Delta T}{T}$.

Da er den relative usikkerheten for akselerasjonen

A.
$$\frac{\Delta a}{a} = 2 \frac{\Delta T}{T} \cdot \frac{\Delta r}{r}$$

B.
$$\frac{\Delta a}{a} = 2\frac{\Delta T}{T} + \frac{\Delta r}{r}$$

C.
$$\frac{\Delta a}{a} = \frac{\Delta r}{r} - 2\frac{\Delta T}{T}$$

D.
$$\frac{\Delta a}{a} = \left(\frac{\Delta T}{T}\right)^2 + \frac{\Delta r}{r}$$

e) En vogn starter fra ro på toppen av en halvsirkelformet bakketopp. Den beveger seg over i en halvsirkelformet bane og passerer det laveste punktet. Radius i begge sirkelbanene er r. Massen til vogna er m.

Hvor stor er normalkraften i bunnen av banen?

A.
$$N = 2mg$$

B.
$$N = 3mg$$

C.
$$N = 4mg$$

D.
$$N = 5mg$$

f) Vi dytter en kloss oppover et skråplan og slipper den når den har farten v. Det virker friksjon mellom klossen og skråplanet. Hvilken pil viser retningen til summen av kreftene på klossen like etter at vi har sluppet den?

g) En bil med masse m kjører med konstant fart i en dossert sving, slik at det ikke virker sideveis friksjon. Kreftene som virker på bilen, er tyngden G og en kraft N normalt fra underlaget. G_p er tyngdens komponent langs veien.

Gitt to påstander:

I.
$$G > N$$

II. Akselerasjonen til bilen er
$$\frac{G_p}{m}$$

Hvilke påstander stemmer?

- A. I
- B. II
- C. Begge
- D. Ingen

Side 22 av 44

Eksamen REA3005

h) Et lodd henger i ei fjær. Da er den potensielle energien i fjæra E_p . Et annet lodd

med samme masse henger i to parallelle fjærer som begge er identiske med den første fjæra.

Hva blir den samlede potensielle energien i de to parallelle fjærene?

A.
$$\frac{E_p}{4}$$

B.
$$\frac{E_p}{2}$$

c.
$$\frac{E_p}{\sqrt{2}}$$

i) Tre klosser starter fra samme sted over et horisontalt underlag. De beveger seg i ulike baner. Vi måler tiden fra start til de treffer underlaget.

Kloss 1 starter fra ro og faller rett ned. Kloss 2 starter fra ro og glir nedover et skråplan uten friksjon. Kloss 3 kastes horisontalt. Se bort fra luftmotstanden.

Hvilken påstand er riktig?

- A. Alle klossene bruker like lang tid.
- B. Kloss 1 og 3 bruker like lang tid.
- C. Kloss 3 bruker lengst tid.
- D. Kloss 1 bruker kortest tid.

Eksamen REA3005 Side 23 av 44

j) Massen til en stjerne S er dobbelt så stor som massen til en stjerne X. Et legeme befinner seg i det punktet P på linja mellom stjernesentrene til S og X der gravitasjonskraften fra stjernene har samme absoluttverdi. Avstanden fra P til sentrum av X er r_x , og avstanden fra P til sentrum av S er r_s . Figuren er ikke tegnet med riktig størrelsesforhold. Hvilken formel er **riktig**?

D.
$$r_{s} = 4r_{x}$$

k) En positivt ladet partikkel har startfart v_0 . Den nærmer seg en positivt ladet kule som holdes fast. Litt senere har partikkelen farten v. Den stiplede linjen viser banen til partikkelen. Partikkelen er bare påvirket av kreftene fra kula.

Hvilken påstand er riktig om absoluttverdien av farten til partikkelen og den elektriske kraften som virker på den i det øyeblikket den har farten v?

- A. $v < v_0$ og kraften har retning langs pil 1.
- B. $v > v_0$ og kraften har retning langs pil 1.
- C. $v < v_0$ og kraften har retning langs pil 2.
- D. $v > v_0$ og kraften har retning langs pil 2.

I) Et punkt P og to ulike punktladninger ligger på en linje.

Absoluttverdien av den elektriske feltstyrken i punktet P er da

A.
$$E = 0$$

B.
$$E = \frac{k_{e}e}{3d^{2}}$$

C.
$$E = \frac{2k_{e}e}{3d^{2}}$$

D.
$$E = \frac{k_e e}{6d^2}$$

m) Et elektron skytes med farten v_0 vinkelrett på et avgrenset homogent elektrisk felt. Feltretningen er nedover.

Når elektronet kommer ut av feltet på høyre side, er farten

- A. større enn v_0 og retningen på skrå oppover
- B. større enn $v_{\scriptscriptstyle 0}$ og retningen på skrå nedover
- C. lik V_0 og retningen på skrå oppover
- D. lik ${\it V}_{\rm 0}$ og retningen på skrå nedover

Eksamen REA3005 Side 25 av 44

n) Et elektron skytes med farten v_0 vinkelrett på et avgrenset homogent magnetisk felt. Feltretningen er inn i arket.

Når elektronet kommer ut av feltet på høyre side, er farten

- A. større enn v_0 og retningen på skrå oppover
- B. større enn v_0 og retningen på skrå nedover
- C. lik V_0 og retningen på skrå oppover
- D. lik $v_{\rm o}$ og retningen på skrå nedover
- o) En gullring ruller inn i et magnetfelt. Ringen ruller mot høyre, og det magnetiske feltet har retning ut av arket. Da oppstår det en strøm i ringen og en magnetisk kraft som virker på ringen. Hvilken retning har strømmen og kraften mens ringen ruller inn i feltet?

			<u>-</u>					
	Kraftens retning	Strømmens retning		•	•	•	•	•
Α.	mot venstre	med klokka		•		•	•	•
В.	mot venstre	mot klokka		•	•	•	•	•
C.	mot høyre	med klokka		•	•	•	•	•
D.	mot høyre	mot klokka		•	•	•	•	•
υ.	i mot nøyre	тног кюкка		•	•	•	•	

₿

Eksamen REA3005 Side 26 av 44

p) Et elektron beveger seg gjennom fire kvadratiske områder. I alle områdene er det homogene magnetfelt. Først kommer elektronet vinkelrett inn på område 1. Banen til elektronet er stiplet i dette området. Elektronet fortsetter gjennom de andre områdene og kommer ut øverst til høyre i område 4, slik pila viser.

Hva er retningen på magnetfeltet i de tre siste områdene? (Inn eller ut av papiret?)

	2.	3.	4.
A.	Inn	Ut	Ut
B.	Ut	Ut	Inn
C.	Inn	Inn	Ut
D.	Ut	Inn	Inn

Eksamen REA3005 Side 27 av 44

q) En spole består av N parallelle vindinger, hver med areal A. Spolen kan dreies om en akse. Et homogent magnetisk felt med flukstetthet (feltstyrke) B står vinkelrett på spolen. Spolen roteres 90° i løpet av tiden t.

Hva blir den gjennomsnittlige induserte spenningen i spolen?

- A. $\frac{BA}{2Nt}$
- B. $\frac{BA}{Nt}$
- C. $\frac{NBA}{2t}$
- D. $\frac{NBA}{t}$
- r) En ubelastet transformator har 300 vindinger på primærsiden og 900 på sekundærsiden. Spenningen over primærsiden er 12 V og har en frekvens på 30 Hz.

Da er spenningen og frekvensen på sekundærsiden

- A. 4 V og frekvensen er 90 Hz
- B. 4 V og frekvensen er 30 Hz
- C. 36 V og frekvensen er 10 Hz
- D. $36 \, \text{V}$ og frekvensen er $30 \, \text{Hz}$

s) Arya og John diskuterer annihilering.

Arya sier: I en slik reaksjon vil den samlede kinetiske energien alltid være bevart. John sier: Den samlede bevegelsesmengden er den samme før og etter reaksjonen.

Hvem har rett?

- A. Arya
- B. John
- C. Begge
- D. Ingen
- t) Tre stoppeklokker er plassert i forskjellig avstand fra sentrum av en karusell. Klokkene begynner å gå når karusellen settes i gang. Etter mange runder stanses karusellen, og tidene på stoppeklokkene sammenlignes. Gitt to påstander:
 - I. Klokke 1 viser minst tid.
 - II. Klokke 3 viser mindre tid enn klokke 2.

Hvilke påstander stemmer?

- A. I
- B. II
- C. Begge
- D. Ingen

 u) I et forsøk blir det gjort målinger av posisjonen og bevegelsesmengden på en partikkel. Forsøket blir utført slik at vi må ta hensyn til Heisenbergs uskarphetsrelasjon.

Hvilket utsagn er riktig?

- A. Dersom vi kjenner den eksakte posisjonen til legemet, kjenner vi også eksakt bevegelsesmengden til legemet.
- B. Dersom vi ønsker å bestemme posisjonen mer nøyaktig, blir bevegelsesmengden mindre nøyaktig.
- C. Dersom vi ønsker å bestemme posisjonen mer nøyaktig, blir også bevegelsesmengden mer nøyaktig.
- D. Hvor nøyaktig vi kan måle posisjonen og bevegelsesmengden, er uavhengig av hverandre.
- v) Hvilket forsøk viser at partikler har bølgeegenskaper?
 - A. Comptons forsøk
 - B. forsøk med fotoelektrisk effekt
 - C. forsøk der partikler sendes mot et krystall
 - D. forsøk med sammenfiltrede fotoner

Eksamen REA3005 Side 29 av 44

w) Figuren viser Compton-effekten. Avbøyningsvinkelen θ er vinkelen mellom fartsretningen til foton 1 og foton 2.

Hvilken påstand er riktig?

- A. Foton 2 har lengre bølgelengde enn foton 1.
- B. Foton 2 har større frekvens enn foton 1.
- C. Den største vinkelen som er mulig, er $\theta = 90^{\circ}$.
- D. Støtet er uelastisk.
- x) Hvilket utsagn beskriver best fenomenet sammenfiltrede fotoner?
 - A. Fotoner befinner seg i én felles kvantetilstand.
 - B. Fotoner treffer en metallplate og river løs elektroner.
 - C. Elektroner treffer en metallflate, og det frigjøres fotoner.
 - D. Uskarpheten i posisjonen påvirker uskarpheten i bevegelsesmengden.

Eksamen REA3005 Side 30 av 44

- a) Tegn en figur, og beskriv det elektriske feltet rundt en positiv punktladning.
- b) I denne oppgaven er $g = 10 \text{ m/s}^2$.

En gjenstand blir kastet på skrå opp fra et horisontalt underlag med startfarten 10 m/s. Vinkelen som startfarten danner med horisontalen, er 30°.

- 1. Finn tiden gjenstanden bruker til det høyeste punktet i banen.
- 2. Finn lengden på kastet.
- c) En romsonde går med konstant banefart i sirkelbane rundt jorda. Massen til romsonden er *m*, og massen til jorda er *M*. Radien i sirkelbanen er *r*.

1. Vis at den kinetiske energien til romsonden i sirkelbanen er $E_k = \frac{\gamma mM}{2r}$.

Romsonden er seks jordradier fra jordens sentrum, r = 6R.

- 2. Hva er forholdet mellom gravitasjonsfeltstyrken fra jorda i denne avstanden og feltstyrken ved jordoverflaten?
- d) Bildet viser en magnettomograf som brukes til magnetisk resonansavbildning. Tomografen sender ut radiostråling mot pasienten. Hvilken funksjon har denne radiostrålingen?

e) Gjør rede for postulatene som er grunnlaget for den spesielle relativitetsteorien.

Eksamen REA3005 Side 31 av 44

Del 2

Oppgave 3

En kloss starter fra ro på et skråplan. Den glir en avstand s til enden av skråplanet, der den støter rett mot en kule som henger i ro i en snor. Kula svinger opp og når en maksimal høyde h = 12 cm. Klossen fortsetter bortover et horisontalt underlag.

a) Finn farten til kula like etter støtet.

Massen til klossen er M = 0,20 kg, massen til kula er m = 0,10 kg, og skråplanvinkelen α = 41°. Friksjonstallet mellom klossen og skråplanet er 0,15. Langs den horisontale delen virker det ikke friksjon. Farten til klossen etter støtet er 0,86 m/s.

- b) Finn farten til klossen like før støtet.
- c) Vis at støtet ikke er elastisk.
- d) Regn ut avstanden s.

Eksamen REA3005 Side 32 av 44

En drone har masse 2,4 kg. Vi antar at hele massen er plassert i sentrum av dronen.

For å akselerere må dronen «lene seg» framover. Ved ett tilfelle er skyvekraften fra propellene F = 26 N. Vinkelen mellom skyvekraften og loddlinja er 25°. Se bort fra luftmotstanden på dronen.

a) Vis at akselerasjonen til dronen er horisontal. Finn størrelsen til akselerasjonen.

Til en teaterforestilling skal dronen fly ei dokke kledd ut som heks. Dokka er festet til dronen med en lang snor. Massen til dokka er 0,50 kg. Det virker luftmotstand på dokka. Dronen er mye mindre, derfor kan vi fremdeles se bort fra luftmotstanden på den.

Dronen og dokka beveger seg med konstant horisontal fart. Vinkelen mellom horisontalen og snora som holder dokka, er 35°.

- b) Lag en figur som viser kreftene på dokka. Vis at snordraget er 8,6 N.
- c) Hvor stor må skyvekraften til propellene være mens dronen flyr med denne farten?

Eksamen REA3005 Side 33 av 44

I en pardanning kolliderer et foton med et proton. Bildet til høyre viser bare sporene etter de ladede partiklene i et boblekammer.

Et magnetfelt står vinkelrett på planet som partiklene beveger seg i. Partiklene mister fort energi, men vi kan se på starten av bevegelsen som en del av sirkelbanene, slik figuren under viser.

a) Hvilken retning har magnetfeltet?

Den magnetiske flukstettheten er 0,10 T, og radien til elektronbanen er r = 1,1 mm.

b) Regn ut farten til elektronet.

Like etter kollisjonen vil protonet bevege seg i en del av en sirkel med radius R.

c) Hvor stor kan R være uten at vi behøver å regne relativistisk?

Eksamen REA3005 Side 34 av 44

En kvadratisk ledersløyfe med masse 50 g, resistans 0,041 Ω og sidekanter 20 cm slippes fra ro, slik figuren viser. Etter 20 cm kommer sløyfa inn i et homogent magnetfelt med magnetisk flukstetthet 0,50 T. Magnetfeltet har retning ut av papiret.

Når sløyfa kommer inn i magnetfeltet, induseres det en spenning.

- a) Vis at denne spenningen er på 0,20 V.
- b) Tegn kreftene som virker på ledersløyfa idet den kommer inn i magnetfeltet, og regn ut hvor store kreftene er.

Det magnetiske feltet er 40 cm.

- c) Finn strømmen som induseres, og strømretningen
 - 1. idet sløyfa kommer inn i feltet
 - 2. idet sløyfa er helt inne i feltet
 - 3. idet sløyfa går ut av feltet

d) Tegn en skisse som viser farten til sløyfa som funksjon av tiden fra den slippes, til den er helt ute av magnetfeltet.

Eksamen REA3005 Side 35 av 44

Kjeldeliste/Kildeliste

Oppgåve/Oppgave 2d: Wikipedia https://no.wikipedia.org/wiki/Magnetresonanstomografi#/media/File:Modern_3T _MRI.JPG

Oppgåve/Oppgave 5: Britannica https://www.britannica.com/science/bubble-chamber/media/82672/3048

Eksamen REA3005 Side 36 av 44

Faktavedlegg som er tillate brukt ved eksamen i Fysikk 2 Kan brukast under både Del 1 og Del 2 av eksamen.

Jorda

Ekvatorradius	6378 km
Polradius	6357 km
Middelradius	6371 km
Masse	5,974·10 ²⁴ kg
Standardverdien til tyngdeakselerasjonen	9,80665 m/s ²
Rotasjonstid	23 h 56 min 4,1 s
Omløpstid om sola	$1 a = 3,156 \cdot 10^7 s$
Middelavstand frå sola	1,496·10 ¹¹ m

Sola

Radius	6,95·10 ⁸ m
Masse	1,99·10 ³⁰ kg

Månen

Radius	1738 km
Masse	7,35·10 ²² kg
Tyngdeakselerasjon ved overf ata	1,62 m/s ²
Middelavstand frå jorda	3,84·10 ⁸ m

Eksamen REA3005 Side 37 av 44

Planetane og Pluto

Planet	Masse, 10 ²⁴ kg	Ekvator-radius, 10 ⁶ m	Midlare solavstand, 109 m	Rotasjonstid, d	Siderisk omløpstid +, a	Massetettleik, 10³ kg/m³	Tyngde- akselerasjon på overf ata, m/s²
Merkur	0,33	2,44	57,9	58,6	0,24	5,4	3,7
Venus	4,9	6,05	108	243*	0,62	5,2	8,9
Jorda	6,0	6,38	150	0,99	1,00	5,5	9,8
Mars	0,64	3,40	228	1,03	1,88	3,9	3,7
Jupiter	1900	71,5	778	0,41	11,9	1,3	25
Saturn	568	60,3	1429	0,45	29,5	0,7	10
Uranus	87	25,6	2871	0,72*	84,0	1,3	8,9
Neptun	103	24,8	4504	0,67	165	1,6	11
Pluto	0,013	1,2	5914	6,39*	248	2,1	0,6

^{*} Retrograd rotasjonsretning, dvs. motsett rotasjonsretning av den som er vanleg i solsystemet.

IAU bestemte i 2006 at Pluto ikkje lenger skulle reknast som ein planet.

Nokre konstantar

Fysikkonstantar	Symbol	Verdi
Atommasseeininga	u	1,66·10 ⁻²⁷ kg
Biot-Savart-konstanten	k_m	$2 \cdot 10^{-7}$ N/A ² (eksakt)
Coulombkonstanten	k _e	8,99·10 ⁹ N·m ² / C ²
Elementærladninga	е	1,60·10 ⁻¹⁹ C
Gravitasjonskonstanten	γ	$6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 / \text{kg}^2$
Lysfarten i vakuum	С	3,00·10 ⁸ m/s
Planckkonstanten	h	6,63·10 ⁻³⁴ Js

Massar	Symbol	Verdi
Elektronmassen	m _e	$9,1094 \cdot 10^{-31} \text{ kg} = 5,4858 \cdot 10^{-4} \text{ u}$
Nøytronmassen	m_{n}	1,6749·10 ⁻²⁷ kg = 1,0087 u
Protonmassen	m_{p}	1,6726·10 ⁻²⁷ kg = 1,0073 u
Hydrogenatomet	m _H	1,6817·10 ⁻²⁷ kg = 1,0078 u
Heliumatomet	m_{He}	6,6465·10 ⁻²⁷ kg = 4,0026 u
Alfapartikkel (Heliumkjerne)	m_{α}	$6,6447 \cdot 10^{-27} \text{ kg} = 4,0015 \text{ u}$

Eksamen REA3005 Side 38 av 44

[†]Omløpstid målt i forhold til stjernehimmelen.

Data for nokre elementærpartiklar

Partikkel	Symbol	Kvark- samansetning	Elektrisk ladning/e	Anti- partikkel
Lepton				Partition
Elektron	e ⁻		-1	e ⁺
Myon	μ^-		-1	μ^{+}
Tau	$ au^-$		-1	$\tau^{\scriptscriptstyle +}$
Elektronnøytrino	ν_{e}		0	$\overline{\nu}_{\rm e}$
Myonnøytrino	ν_{μ}		0	$\overline{ u}_{\mu}$
Taunøytrino	ν_{τ}		0	\overline{v}_{τ}
Kvark				
Орр	u	u	+2/3	ū
Ned	d	d	-1/3	d
Sjarm	С	С	+2/3	c
Sær	s	S	-1/3	Ī
Торр	t	t	+2/3	ī
Botn	b	b	-1/3	b
Meson				
Ladd pi-meson	π^-	ūd	-1	π^{+}
Nøytralt pi-meson	π^{o}	u u , d d	0	$\overline{\pi^0}$
Ladd K-meson	K ⁺	us	+1	K ⁻
Nøytralt K-meson	K ^o	ds	0	K ^o
Baryon				
Proton	р	uud	+1	p
Nøytron	n	udd	0	ī
Lambda	Λ^{0}	uds	0	Λ^0
Sigma	Σ^+	uus	+1	$\overline{\Sigma^+}$
Sigma	Σ^{O}	uds	0	$\overline{\Sigma^0}$
Sigma	Σ^-	dds	-1	$\overline{\Sigma^-}$
Ksi	五0	uss	0	$\overline{\Xi^{o}}$
Ksi	Ξ-	dss	-1	$ \begin{array}{c} \Sigma^{+} \\ \overline{\Sigma^{\circ}} \\ \overline{\Sigma^{-}} \\ \overline{\Xi^{\circ}} \\ \overline{\Xi^{-}} \\ \overline{\Omega^{-}} \end{array} $
Omega	Ω^{-}	SSS	-1	Ω^-

Eksamen REA3005 Side 39 av 44

Formelvedlegg tillatt brukt ved eksamen i Fysikk 2

Kan brukes på både Del 1 og Del 2 av eksamen.

Formler og definisjoner fra Fysikk 1 som kan være til hjelp

$v = \lambda f$	$f = \frac{1}{T}$	$ \rho = \frac{m}{V} $	P = Fv		
$I = \frac{Q}{t}$	$R = \frac{U}{I}$	P = UI	$E_0 = mc^2$		
^A _z X, der X er	$s = \frac{1}{2}(v_0 + v)t$				
Z er antall protoner i kjernen og A er antall nukleoner i kjernen $v^2 - v_0^2 = 2as$					
nukleoner i	nukleoner i kjernen				

Formler og sammenhenger fra Fysikk 2 som kan være til hjelp

$\lambda = \frac{h}{p}$	$p = \frac{E}{c} = \frac{h}{\lambda}$	$hf_{\text{maks}} = eU$
$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$t = \gamma t_0$	$p = \gamma mv$
$E = \gamma mc^2$	$E_{k} = E - E_{0} = (\gamma - 1)mc^{2}$	$E = \frac{U}{d}$
$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$	$\Delta E \cdot \Delta t \ge \frac{h}{4\pi}$	$\varepsilon = vB\ell$
ω = 2πf	$U = U_m \sin \omega t$, der $U_m = nBA\omega$	$U_{\rm s}I_{\rm s}=U_{\rm p}I_{\rm p}$
$\frac{U_s}{U_p} = \frac{N_s}{N_p}$	$hf = W + E_{k}$	$F_{\rm m} = K_{\rm m} \frac{I_1 I_2}{r} \ell$

Eksamen REA3005 Side 40 av 44

Formler fra matematikk som kan være til hjelp

Likninger

Formel for løsning av andregradslikninger	$ax^{2} + bx + c = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
---	--

Derivasion

$(g(u))' = g'(u) \cdot u'$
(u+v)'=u'+v'
$(u \cdot v)' = u' \cdot v + u \cdot v'$
$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$
$(x^r)^{\scriptscriptstyle T} = r \cdot x^{r-1}$
$(\sin x)' = \cos x$
$(\cos x)' = -\sin x$
$(e^x)^t = e^x$

Integrasion

integrasjon	
Konstant utenfor	$\int k \cdot u(x) \mathrm{d}x = k \cdot \int u(x) \mathrm{d}x$
Sum	$\int (u+v) dx = \int u dx + \int v dx$
Potens	$\int x^r dx = \frac{x^{r+1}}{r+1} + C , r \neq -1$
Sinusfunksjonen	$\int \sin kx dx = -\frac{1}{k} \cos kx + C$
Cosinusfunksjonen	$\int \cos kx dx = \frac{1}{k} \sin kx + C$
Eksponentialfunksjonen	$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$

Vektorer

VOINLOI CI	
Skalarprodukt	$\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{b} \cdot \cos u$
	$[x_1, y_1, z_1] \cdot [x_2, y_2, z_2] = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2$
Vektorprodukt	$ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b} \cdot \sin u$
	$\vec{a} \times \vec{b}$ står vinkelrett på \vec{a} og vinkelrett på \vec{b} .
	\vec{a} , \vec{b} og $\vec{a} \times \vec{b}$ danner et høyrehåndssystem.

Eksamen REA3005 Side 41 av 44

Geometri

Areal og omkrets av sirkel: $A = \pi r^2$ $O = 2\pi r$	$A = 4\pi r^2$ Overflate og volum av kule: $V = \frac{4}{3}\pi r^3$
sin <i>v</i> = motstående katet	
hypotenus	$a^2 = b^2 + c^2 - 2bc \cos A$
$cosv = \frac{hosliggende katet}{hosliggende katet}$	
hypotenus	sinA_sinB_sinC
tanv = motstående katet	$\frac{}{a} = \frac{}{b} = \frac{}{c}$
hosliggende katet	

Noen eksakte verdier til de trigonometriske funksjonene

	0°	30°	45°	60°	90°
sinv	0	<u>1</u>	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosv	1	<u>√3</u> 2	$\frac{\sqrt{2}}{2}$	<u>1</u> 2	0
tanv	0	<u>1</u> √3	1	√3	

Eksamen REA3005 Side 42 av 44

Svarskjema

Oppgåve	1	/	Oppgave	1
---------	---	---	---------	---

Kandidatnummer.:	
Totalt tal på sider i svaret på Del 1 /	
Totalt antall sider i besvarelsen på Del 1:	

0 1 1 1	
Oppgåve 1 /	Svaralternativ A, B, C eller D?
Oppgave 1	b, Cellel D!
a)	
b)	
c)	
d)	
e)	
f)	
g)	
h)	
i)	
j)	
k)	
l)	
m)	
n)	
0)	
p)	
q)	
r)	
s)	
t)	
u)	
v)	
w)	
x)	
	1

Vedlegg 3 skal leverast kl. 11.00 saman med svaret for oppgåve 2. Vedlegg 3 skal leveres kl. 11.00 sammen med besvarelsen for oppgave 2.

Eksamen REA3005 Side 43 av 44