THIS REPORT HAS BEEN DECLASSIFIED AND CLEARED FOR PUBLIC RELEASE.

DISTRIBUTION A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

UNCLASSIFIED

AD _____

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS DOD DIR 5200 10

UNCLASSIFIED

A METHOD FOR CALCULATING THE NATURAL FREQUENCIES OF CONTINUOUS BEAMS

bу

A. S. Veletsos and N. M. Newmark

A Technical Report of a Research Project

Sponsored by

THE OFFICE OF NAVAL RESEARCH DEPARTMENT OF THE NAVY

In Cooperation With

THE DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF ILLINOIS

Contract N6ori-71, Task Order VI Project Designation No. NR-064-183

> Urbana, Illinois January 1953

ABSTRACT

This report describes a method for calculating the undamped natural frequencies of flexural vibration of elastic beams which are continuous over non-deflecting supports. Numerical values of the quantities of "dynamic flexural stiffness" and of "the product of dynamic flexural stiffness and dynamic flexural carry-over factor" which are necessary in the analysis by this method are tabulated in the Appendix. The method is illustrated by a numerical example.

A METHOD FOR CALCULATING THE NATURAL FREQUENCIES OF CONTINUOUS BEAMS

INTRODUCTION

This report describes a method for calculating the undamped natural frequencies of flexural vibration of elastic beams which are continuous over non-deflecting supports. The method is strictly analogous to Holzer's method of determining the natural frequencies of torsional vibration of shafts, and like Holzer's method it is reduced to a routine tabular scheme of computation which when repeated a sufficient number of times will give the natural frequencies of the system to any desired degree of accuracy. In the available methods of Myklestad², Prohl³, Rankin⁴, and Beilin⁵, which are likewise similar to the basic Holzer method, the mass is assumed to be lumped at a number of discrete stations along the length of the beam and the portion of the beam between these stations is assumed to be massless. In the method presented herein, the mass is considered to be uniformly distributed between consecutive supports of the beam.

^{1. &}quot;Die Berechnung der Drechschwingungen," by H. Holzer, J. Springer, Berlin, 1921.

^{2. &}quot;A New Method of Calculating Natural Modes of Uncoupled Bending Vibration of Airplane Wings and Other Types of Beams," by N.O. Myklestad, Journal of the Aeronautical Sciences, Vol. 11, April, 1944, pp. 153-162.

^{3. &}quot;A General Method for Calculating Critical Speeds of Flexible Rotors," by M.A. Prohl, Journal of Applied Mechanics, Trans. ASME, Vol. 67, 1945, pp. 142-148.

^{4. &}quot;Calculation of the Multiple-Span Critical Speeds of Flexible Shafts by Means of Punched-Card Machines," by A.W. Rankin, Journal of Applied Mechanics, Vol. 13, 1946, pp. 117-126.

^{5. &}quot;Determination of the Natural Frequencies of the Bending Vibrations of Beams," by A.I. Bellin, Journal of Applied Mechanics, Vol. 14, 1947, pp. 1-6.

CHARACTERISTICS OF THE BEAMS CONSIDERED

The beams are assumed to be straight but may have any number of spans of arbitrary length. At their extreme ends they may be hinged, fixed, or only partially fixed by means of rotational restraints which are assumed to be proportional to the end rotations. The cross section and the mass per unit of length of the beam may vary from one span to the other, but in any one span these quantities are assumed to remain constant. It is further considered that vibration is restricted to one of the principal planes of flexure of the beam, and that the cross sectional dimensions of each span are small in comparison to its length so that the effects of shearing deformation and rotatory inertia can be disregarded.

OUTLINE OF THE METHOD

An undamped continuous beam vibrating at a natural frequency should satisfy the following conditions: the beam should execute harmonic oscillations of constant amplitude without any exciting force or exciting couple acting anywhere along its length; the deflection configuration of the beam should be a continuous smooth curve; and the imposed conditions of restraint at the two boundaries should be satisfied identically.

As formulated above, the condition regarding the external excitation is more restrictive than is actually necessary. In reality, the beam may be acted upon by an exciting force applied at a point which does not deflect during vibration, or it may be subjected to an exciting couple applied at a section which does not rotate during vibration. Since in either case the generalized force acts through zero generalized displacement, no energy is imparted to the beam and consequently the natural frequencies of the beam and its modes of vibration remain unaffected.

For any arbitrarily chosen frequency it is, in general, possible to determine a mode of vibration which satisfies all but one of the conditions referred to previously. The assumed frequency will represent a natural frequency of the system investigated only if the remaining condition is also satisfied. As presented in this report the method consists of (a) assuming a frequency of vibration (b) determining a configuration which satisfies all of the aforementioned conditions with the possible exception of the condition of restraint at (for example) the right hand boundary of the beam, and (c) determining the magnitude of the discrepancy between the actual condition of restraint at the right end and the condition corresponding to the computed configuration. These steps are carried out for a number of assumed frequencies and the magnitude of the discrepancy is plotted against the frequency of vibration. The points at which the resulting curve crosses the line of zero discrepancy represent the natural frequencies of the system.

DEFINITION OF TERMS

The following terms refer to a beam which is simply supported at one end and clamped at the other and which is undergoing steady-state oscillations under the action of a harmonically varying bending moment applied at the simply supported end. The frequency of the oscillations is the same as the frequency of the exciting moment. The rotation at the end is either in phase or 180 degrees out of phase with the exciting moment.

The moment necessary to produce a steady-state forced rotation of unit amplitude at the end of the beam at which the moment is applied is defined as the "dynamic flexural stiffness".

The ratic of the periodic moment at the fixed end of the beam to

the moment at the end at which the exciting moment is applied is defined as the "dynamic flexural carry-over factor".

The foregoing terms are generalizations of those originally introduced by Cross⁶ for the analysis of frames subjected to static loads and they were first used by Gaskell⁷ in applying the method of moment distribution to the determination of the steady-state response of continuous beams and frames subjected to pulsating loads.

In this paper discussion will be restricted to members having constant flexural rigidity of cross section and constant mass per unit of length; the stiffness and the carry-over factor for both ends of such members are equal. The following letter symbols are used: K for the stiffness and k for the carry-over factor.

NUMERICAL VALUES OF DYNAMIC STIFFNESS AND OF DYNAMIC CARRY-OVER FACTOR

The pertinent analytical expressions for dynamic stiffness and dynamic carry-over factor are to be found in reference 7. As was to be expected from purely physical considerations, these expressions involve not only the flexural rigidity of the cross section and the length of the member, as is the case with the static problem, but also the mass of the member and the frequency of vibration. The influence of these factors is expressible in terms of a single dimensionless parameter

$$\lambda = \sqrt[L]{\frac{m\omega^2}{EI}} \cdot L$$
 [1]

^{6. &}quot;Analysis of Continuous Frames by Distributing Fixed-End Moments", by Hardy Cross, Transactions A.S.C.E., Vol. 96, 1932, pp. 1-10.

^{7. &}quot;On Moment Balancing in Structural Dynamics", by R. E. Gaskell, Quarterly of Applied Mathematics, Vol. 1, 1943, pp. 237-249.

in which m = the mass per unit of length of the Leam

w = the circular frequency of vibration

E = the modulus of elasticity of the material in the beam

I = the moment of inertia of the cross section of the beam about its centroidal axis, and

L = the span length of the beam.

THE RESIDENCE OF THE PROPERTY OF THE PROPERTY

A graphical representation of the variation of the stiffness, the carry-over factor, and of the product of these quantities as a function of λ is given in Figures 1 through 3. For $\omega=o$ ($\lambda=o$) he three quantities have the well known static values of $K=4\frac{EI}{L}$, k=0.5, $KK=2\frac{EI}{L}$. Values of λ equal to 3.927, 7.069, and 10.210 correspond respectively to the first, the second, and the third natural frequencies of a hinged-clamped beam. At these frequencies no exciting soment is required to maintain the vibration, consequently the value for dynamic stiffness is equal to zero. Furthermore, since the moment at the clamped end of the beam has a finite magnitude, the carry-over factor for the member becomes infinite at these frequencies. Values of λ equal to 4.730 and 7.853 correspond respectively to the first and the second natural frequencies of a beam clamped at both ends. At these frequencies the end moments have a finite value while the corresponding rotations are equal to zero, accordingly the stiffness of the member has a infinite value.

In the method to be presented only the stiffness and the product of the stiffness and the carry-over factor are needed. A detailed tabulation of the coefficients of these quantities is given in Table I of the Appendix for values of λ ranging from zero to 10.22.

FIG. I COEFFICIENTS OF DYNAMIC FLEXURAL STIFFNESS FOR A BAR GLAMPED AT THE FAR END

FIG. 2 DYNAMIC FLEXURAL CARRY-OVER FACTOR, k,
FOR A BAR CLAMPED AT THE FAR END

FIG. 3 COEFFICIENTS OF THE PRODUCT OF DYNAMIC FLEXURAL
STIFFNESS AND DYNAMIC FLEXURAL CARRY - OVER
FACTOR FOR A BAR CLAMPED AT THE FAR END

SIGN CONVENTION AND NOTATION

A clockwise rotation is taken as positive. A moment at the end of a member is taken as positive when it tends to rotate the member (not the joint) on which it acts in a clockwise direction.

The supports of the continuous beam are numbered successively from left to right starting with 1 at the extreme left hand end and terminating with n at the extreme right hand end.

The portion of the beam between the two consecutive supports j and j+l is referred to as the j-th span. The quantities L_j , E_j , I_j , λ_j , K_j , and k_i refer to the j-th span.

 θ_j denotes the amplitude of rotation of the deflected beam over the j-th support and M_j denotes the amplitude of bending moment across a section at the same support. The subscripts L and R designate respectively sections just to the left and just to the right of a support.

DEVELOPMENT OF THE BASIC EQUATIONS OF THE METHOD

Figure 4 shows spans j-1 and j of a continuous beam undergoing undamped harmonic oscillations. It is assumed that there is no exciting force or exciting couple acting on the beam.

Fig. 4

In the figure, the rotations and bending moments at the ends of each span are indicated in their positive directions. The slope and the

bending moment at a time t for support j are

$$\theta_{j}(t) = \theta_{j} \cos \omega t$$
 $M_{j}(t) = M_{j} \cos \omega t$ [2]

In the equations to be used the cosut appears as a common factor; for convenience this will be omitted, and in the remainder of this discussion the terms "amplitude of slope" and "slope" and the terms "amplitude of moment" and "moment" will be used interchangeably.

To insure continuity and equilibrium of the beam over the interior support j it is required that

$$(\Theta_{\mathbf{j}})_{\mathbf{L}} = (\Theta_{\mathbf{j}})_{\mathbf{R}} = \Theta_{\mathbf{j}}$$
 [3]

and

$$(\mathbf{M}_{\mathbf{J}})_{\mathbf{L}} + (\mathbf{M}_{\mathbf{J}})_{\mathbf{R}} = 0$$

The moments $(M_j)_L$ and $(M_j)_R$ can now be expressed as functions of the rotations at the ends of the two spans as follows. We start by considering the j-th span. First, assume that the right end of the span is kept fixed while the left end is rotated through an angle θ_j ; the moment at the end being rotated necessary to produce the rotation is equal to the product of the rotation θ_j and the stiffness of the member K_j . Next, imagine that the left end of the span is kept fixed while the right end is rotated through θ_{j+1} ; the moment induced at the fixed left end is equal to the product of the rotation θ_{j+1} and the product of the stiffness and the carry-over factor of the member, K_jk_j . Because the principle of superposition holds true, the moment $(M_j)_R$ corresponding to the rotations θ_j and θ_{j+1} is the sum of the partial moments determined above.

$$(M_j)_R = K_j \vartheta_j + K_j k_j \vartheta_{j+1}$$
 [5a]

Considering span j-1, we obtain in a similar manner:

$$(M_j)_L = K_{j-1}\theta_j + K_{j-1}k_{j-1}\theta_{j-1}$$
 [5b]

Substituting Equations [5a] and [5b] in Equation [4] and solving for θ_{j+1} we obtain the following equation relating the slopes over three consecutive supports of a continuous beam:

$$\theta_{j+1} = -\frac{(K_{j-1} + K_{j}) \theta_{j} + K_{j-1}k_{j-1} \theta_{j-1}}{K_{j}k_{j}}$$
 [6a]

Equation [6a] is applicable only to interior supports; for the end supports the appropriate relations are given below.

It is assumed that the extreme ends of the beam are elastically restrained against rotation. The relationships between the moments and the rotations at these ends are

$$\mathbf{M}_{1} = -\mathbf{K}_{\mathbf{L}} \mathbf{\Theta}_{1} \tag{7}$$

$$M_n = -K_R \theta_n$$
 [8]

where, K_L and K_R are the known stiffnesses of the restraints at the left and the right ends, respectively. For a hinged end K = 0 and for a clamped end K = 1 infinity. The negative signs in these expressions follow from the sign convention used and indicate that for a positive restraint, the moment exerted on the beam by the restraint acts in a direction opposite to the direction of rotation of the beam.

The moments M_1 and M_n can also be expressed by the following equations obtained respectively from Equations [5a] and [5b].

$$M_1 = K_1 \theta_1 + K_1 k_1 \theta_2 \qquad [5a]$$

$$M_n = K_{n-1}\theta_n + K_{n-1}k_{n-1}\theta_{n-1}$$
 [5b]

Eliminating M_1 between [5a] and [7] and M_n between [5b] and [8] , we obtain

$$(K_L + K_1)\Theta_1 + K_1K_1\Theta_2 = 0$$
 [9a]

$$(K_R + K_{n-1})e_n + K_{n-1}k_{n-1}e_{n-1} = 0$$
 [10a]

At a natural frequency both of these equations should be satisfied identically.

Equations [9a] and [10a] apply only to hinged and to partially fixed ends. For the special case of clamped ends, the relations to be used are

$$\mathbf{M}_{1} = \mathbf{K}_{1}\mathbf{k}_{1}\mathbf{\Theta}_{2}$$
 [9b]
$$\mathbf{\Theta}_{n} = 0$$
 [10b]

DETAILS OF THE PROCEDURE

The procedure for arriving at the natural frequencies of a continuous beam may be outlined now as follows.

- 1. A fixed value is assigned to the amplitude of slope or bending moment at the first support of the beam. Since the natural frequencies of a system depend only on the relative values of the deflection, any arbitrary amplitude consistent with the actual boundary conditions may be chosen. For a hinged or for a partially fixed end, θ₁ is taken, for convenience, equal to unity; for a clamped end, θ₁ being zero, M₁ is taken equal to unity instead.
- 2. A trial frequency of vibration, ω, is chosen and the values for each span are evaluated. These calculations are carried out conveniently in a tabular form as illustrated in the next section.
- 3. With the λ values available, the stiffness and the product of the stiffness and the carry-over factor for each span of the beam are found from Table 1 in the Appendix.
- 4. The rotation of the beam over the second support is determined from Equation [9a] or [9b] .
- 5. By successive applications of Equation [6] the rotations θ_3 to θ_n are evaluated. A convenient tabular

- scheme for arranging the computations is described in the next section.
- 6. If support \underline{n} is clamped, the determination of the rotation Θ_n completes one cycle of the procedure (see Equation [10d]). However, if the support is hinged or is only partially fixed, it is necessary to carry out the additional step of evaluating the left hand side of Equation [10a].
- 7. Steps 1 through 6 are repeated for different assumed frequencies, and the calculated values for the left hand side of Equations [10b] or [10a] are plotted as a function of the assumed frequencies, or what is usually more convenient, as a function of the corresponding λ value for some one span. The zero intercepts of the resulting curve, the general shape of which resembles that shown in Figure 6, correspond to the natural frequencies of the system.

Since for each trial frequency, the rotations of the deflected beam over the supports are evaluated in this procedure, the deflection configuration of the beam for any desired frequency can ordinarily be sketched. If it is desired to evaluate the modes of vibration more precisely, it will be necessary to use appropriate influence coefficients relating the deflection of each span to the rotations at the ends of the span. Such coefficients are now being evaluated and it is expected that they will be made available in the near future.

ILLUSTRATIVE EXAMPLE

The details of the procedure and a convenient tabular scheme for arranging the computations are illustrated by considering the problem of determining the first five natural frequencies of a four-span continuous beam which is elastically restrained against rotation at one end and simply supported at the other, as shown in Figure 5. The stiffness of the end restraint and the characteristics of the various spans are shown on the figure.

Fig. 5 Characteristics of the Beam

For convenience in carrying out the calculations the natural frequencies of the system are expressed in terms of the pertinent properties of some one span, say span g. In this particular example we take g=1. In terms of the λ value of the g-th span, the λ value for any span g is

$$\lambda_{j} = \sqrt[L]{\frac{m_{j}}{m_{g}}} \times \frac{E_{g} I_{g}}{E_{j} I_{j}} \times \frac{L_{j}}{L_{g}} \times \lambda_{g}$$
 [11]

In terms of the EI/L of the g-th span, the stiffness and the product of the stiffness and of the carry-over factor for any span j are equal to the values obtained from Table I multiplied by the dimensionless factor

$$c_{j} = \frac{E_{j} I_{j}}{E_{g} I_{g}} \times \frac{L_{g}}{L_{j}}$$
 [12]

Equations [11] and [12] can be verified readily.

The quantities λ_j/λ_g and c_j are evaluated in Table A. It should be noted that the calculations in this table are independent of the rrequency of vibration.

3.00

	3	(2)	(3)	Ĩ	(3)	(9)
Span	ĒĒ	27.3	(<u>(2)</u>	757	Ai = (3)(4)	Cj = (2)
β=1	1.00	1.00	1.00	1.00	υ 00	1.00
2	0.80	1.00	0.9457	1.25	1.182	0.80
3	1.20	1.35	0.9710	1.00	0.9710	1.35
ŧ	1.00	1.35	0.9277	1.50	1.392	0.90

П		4					
(6)	118 5	from Table I	2.2555	2.5412	2.2250	3.2138	
(1)	118 53	(w) (m)	2.2555	2.0330	3.0038	2.8924	
(9)	6	[9] 4,67	1.0000	-1.8466	4.6185	-10.500	21.463
(5)	(Ky-+Ky) 23	Table I (3)-1-(4)-1-(4) (4) (4)		6.3061	7.6420	7.2337	
(+)	THE Y	from Table I	3.6649	3.3015	3.7043	2.4810	
(3)	Ü		1.00	0.80	1.35	8.0	
(2)	بك	?	(2.4O)	2.84	2.33	3.7	
(n)	द	279	1.00	1.182	0.9710	1.392	
	Span		J=R	2	3	7	5

 \mathbf{Eq} 'n [10a] = $\left[(0 + 2.4810 \times 0.90) 21.465 + 2.8924 (-10.500) \right] \frac{\mathbf{E_1} \, \mathbf{I_1}}{\mathbf{L_1}}$ = $17.55 \frac{\mathbf{E_1} \, \mathbf{I_1}}{\mathbf{L_1}}$

The trial-and-error procedure for determining the natural frequencies of the system is carried out in Table B. As an example of the use of this table a complete cycle of calculations is carried out for a trial value of $\lambda_g = \lambda_1 = 2.40$. This value, shown encircled in the g-th line of Column (2), corresponds to a circular frequency of vibration $\omega = \frac{(2.40)^2}{L_1^2} \sqrt{\frac{E_1 I_1}{m_1}}$ The arrangement of the various quantities in this table is believed to facilitate the computational work and to reduce substantially the probability for errors. The order in which the columns in this table are filled in is indicated by the following sequence of column numbers: (1), (3), (2), (4 and 8), (5), (7), and (6). Columns (1) and (3) are reproduced respectively from Columns (5) and (6) of Table A. The \(\gamma\) values for the various spans in Column (2) are obtained by multiplying the assumed λ_g by the values in Column (1). Columns (4) and (8) give respectively values of the stiffness and of the product of the stiffness and the carry-over factor for each span of the beam, in terms of E_jI_j/L_j ; these quantities are obtained directly from Table 1 using the λ values computed in Column (2). Column (5) gives the total stiffness of the spans adjoining each support in terms of $E_{\mathbf{g}}I_{\mathbf{g}}/L_{\mathbf{g}}$. The value for the j-th line in this column is determined by taking the sum of the products of the values in Columns (3) and (4) for lines j-l and j. Column (7) gives the product of the stiffness and of the carry-over factor for each span of the beam, in terms of $\mathbf{E_g}\mathbf{I_g}/\mathbf{L_g}$; the entries in this column are obtained by multiplying the entries in Column (8) by those in Column (3). Column (6) gives the rotation of the beam over the supports. The first value in this column is unity. (If the left support were clamped, this value would have been zero instead). The second value in the column, θ_2 , is evaluated from Equation [9a].

$$\theta_2 = -\frac{(0.5000 + 3.6649) \cdot 1.0000}{2.2555} = -1.8466$$

This operation is not indicated in the Table. (If support 1 were clamped,

Equation [9b] would have been used instead.) The values of θ_3 to θ_n are determined from the values in Columns (5) and (7) using Equation [6a] which in terms of column numbers takes the form:

$$\theta_{j+1} = -\frac{(5)_{,j}(6)_{,j} + (6)_{,j-1}(7)_{,j-1}}{(7)_{,j}}$$
 (for $j \ge 2$) [6b]

Thus,
$$\theta_3 = -\frac{6.3061 (-1.8466) + 1.0000 (2.2555)}{2.0330} = 4.6185$$

The left hand side of Equation [10a] is evaluated at the bottom of the table, and it is found to be equal to 17.55 E_1I_1/L_1 .

Since for the assumed values of $\lambda_1 = 2.40$, Equation [10a] was not satisfied identically, this value does not correspond to a natural frequency of the system. The physical significance of the computed value of $17.55 \frac{E1I_1}{L_1}$ is as follows: the negative of this value divided by the rotation θ_2

$$-\frac{17.55}{21.465}\frac{E_1I_1}{L_1} = -0.8179\frac{E_1I_1}{L_1}$$

represents the stiffness of a rotational constraint which if it were imposed at the right end of the beam would have made the assumed frequency of vibration correspond to a natural frequency of the system.

By repeating similar cycles of computation for different values of λ_1 the curve in Figure 6 was obtained. The first five critical values of λ_1 as read off this curve are

$$(\lambda_1)_1 = 2.504$$

 $(\lambda_1)_2 = 5.07$
 $(\lambda_1)_3 = 5.70$
 $(\lambda_1)_4 = 4.11$
 $(\lambda_1)_4 = 4.90$

The corresponding natural frequencies, in radians per second, are

$$\omega_1 = \frac{6.27}{L_1^2} \sqrt{\frac{211}{m_1}}$$

$$\omega_{2} = \frac{9.42}{L_{1}^{2}} \sqrt{\frac{E_{1} I_{1}}{m_{1}}}$$

$$\omega_{3} = \frac{13.7}{L_{1}^{2}} \sqrt{\frac{E_{1} I_{1}}{m_{1}}}$$

$$\omega_{4} = \frac{16.9}{L_{1}^{2}} \sqrt{\frac{E_{1} I_{1}}{m_{1}}}$$

$$\omega_{5} = \frac{24.0}{L_{1}^{2}} \sqrt{\frac{E_{1} I_{1}}{m_{1}}}$$

If it is desired to evaluate these quantities more precisely, the computations should be repeated for several additional values of λ_l in the neighborhood of the critical values and the results should be plotted on a larger scale.

The natural modes of the beam can be sketched from the rotations over the supports as determined in Column (6) of Table B for values of λ_1 corresponding to each of the natural frequencies. It should be stated that, in general, for the fundamental or lowest natural frequency the rotations of the beam over the supports are not very sensitive to the magnitude of the frequency of vibration. For some of the higher frequencies of vibration, however, a slight variation in the value of the frequency may affect the rotations materially. Accordingly the accurate evaluation of the rotations in these latter cases may become somewhat cumbersome.

CONCLUDING REMARKS

When properly extended, the method presented in this report can also be used to calculate the natural frequencies of beams having variable cross section or variable mass per unit of length. The natural frequencies of beams which are acted upon by fixed axial forces can be evaluated in a similar manner. To accomplish this, it is necessary however to tabulate values of the pertinent quantities of stiffness and of the product of stiffness and carry-over factor.

As presented herein, the method employs the three-slope equation for dynamic loading (Equation [6]). Actually any of the other basic equations of indeterminate stress analysis, if extended to account for the inertial effects, could have been used instead. In particular, one could have used the dynamic three-moment equation originally developed by W. Prager⁸. Values of the coefficients of this equation for different frequencies of vibration are available in tabular form in references⁹ and ¹⁰. It is probably true that the choice between any one of these two alternate methods of analysis is largely a question of personal preference and of one's familiarity with the particular method. In this paper the three-slope equation was adopted principally because it is believed that, for the particular problem treated, it has the following definite advantages:

- (a) As developed in this paper, the three-slope equation deals with concepts and quantities which are widely known among structural engineers.
- (b) Because it involves rotations, the three-slope equation gives the clearest possible picture of the distortions which the structure undergoes during vibration. This feature is particularly important because in practice it is frequently desirable to have a rapid means of sketching the configuration of vibration corresponding to a given frequency.
- (c) Probably the greatest advantage of the three-slope equation lies in the fact that, when properly extended, it is remarkably better suited than the three-moment equation for the analysis of continuous frames. The

^{8. &}quot;Die Beanspruchung von Tragwerken durch schwingende Lasten", by W. Prager, Ingenieur-Archiv, Vol. I, 1930, pp. 527-532.

^{9. &}quot;Beanspruchung und Formanderung von Stabwerken bei erzwungenen Schwingungen", by S. Gradstein and W. Prager, Ingenieur-Archiv, 1932, Vol. II, pp. 622-650.

^{10. &}quot;Dynamic der Stabwerke", by K. Hohenemser and W. Prager, Julius Springer, Berlin, 1933.

application of the present method to the determination of the natural frequencies of continuous frames which are free from sidesway will be described in a forthcoming paper.

In general, for the determination of the lower natural frequencies of continuous beams slide-rule accuracy will prove satisfactory. However, for the nigher natural frequencies the computations may involve small differences between large quantities and it may become necessary to retain a larger number of significant figures.

ACKNOWLED EMENTS

The method described herein was developed as part of a dissertation by A. S. Veletsos submitted to the Graduate College of the University of Illinois in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering. The dissertation was prepared under the direction of Professor N. M. Newmark in the Department of Civil Engineering. The details of this investigation were carried out as part of a research program on "Numerical and Approximate Methods of Stress Analysis" sponsored by the Office of Naval Research (Mechanics Branch) in the Structural Research Laboratory, Department of Civil Engineering, of the University of Illinois. The numerical values of the elastic constants reported in Table I of the Appendix were calculated using the Electronic Digital Computer of the University of Illinois. The governing expressions for these constants were coded for machine solution by Mr. A. J. Carlson, Research Associate in Civil Engineering, Whose valuable contribution to the completion of this work the writers acknowledge gratefully.

TABLE 1

DIMENSIONLESS COEFFICIENTS OF "DYNAMIC FLEXURAL STIFFNESS" AND OF "THE PRODUCT OF DYNAMIC FLEXURAL STIFFNESS AND DYNAMIC FLEXURAL CARRY-OVER FACTOR" FOR A BAR FIXED AT THE FAR END

The coefficients are given as a function of the dimensionless parameter $\lambda = \sqrt[4]{\frac{mn^2}{RT}} L$

in which m is the mass per unit of length of the bar; ω is the circular frequency of vibration; E is the modulus of elasticity of the material in the bar; I is the moment of inertia of the cross section of the bar about its centroidal axis; and L is the span length of the bar. The m and EI are assumed to be constant along the length of the member.

λ	K EI	Kk EI	
0	4.000000	2.000000	
0.10	3.999999	2.00001	
0.20	3.999985	2.000011	
0.30	3.999923	2.000058	
0.40	3.999756	2.000183	
0.50	3.999405	2.000447	
0.55	3.999128	2.000654	
0.60	3.998766	2.000926	
0.65	3.998299	2.001276	
0.70	3.997712	2.001716	
0.75	3.996985	2.002262	·
0.75	3.996821	2.002385	
0.77	3.996650	2.002513	
0.78	3.996473	2.002646	
0.79	3.996288	2.002785	
0.80	3.996096	2.002928	
0.81	3.995897	2.003078	
0.82	3.995691	2.003233	
0.83	3.995476	2.003393	
0.84	3.995254	2.003560	
0.85	3.995024	2.003733	
0.86	3.994785	2.003912	
0.87	3.994538	2.004097	
0.88	3.994283	2.004289	
0.89	3.994018	2.004488	
0.90	3.993744	2.004693	
0.91	3.993461	2.004906	
0.92	3.993169	2.005125	
0.93	3.992867	2.005352	
0.94	3.992554	2.005586	

λ	K EI	Kk L
0.95	3.992232	2.005828
0.96	3.991899	2.006078
0.97	3.991556	2.006336
0.98	3.991202	2.006602
0.99	3.990836	2.006876
1.00	3.990460	2.007159
1.01	3.990072	2.007450
1.02	3.989672	2.007750
1.03	3.989260	2.008059
1.04	3.988836	2.008378
1.05	3.988400	2.008705
1.06	3.987950	2.009043
1.07	3.987488	2.009390
1.08	3.987013	2.009747
1.09	3.986524	2.010114
1.10	3.986021	2.010492
1.11	3.985505	2.010880
1.12	3.984974	2.011278
1.13	3.984428	2.011688
1.14	3.983868	2.012109
1.15	3.983293	2.012541
1.16	3.982702	2.012985
1.17	3.982096	2.013440
1.18	3.981474	2.013908
1.19	3.980836	2.014387
1.20	3.980181	2.014879
1.21	3.979510	2.015384
1.22	3.978821	2.015901
1.23	3.978116	2.016432
1.24	3.977392	2.016975

TABLE 1 (cont'd)

٦	K L	Kk L	٦	K L	Kk L
1.25	3.976651	2.017533	1.65	3.928503	2.053819
1.26	3.975892	2.018104	1.66	3.926731	2.055158
1.27	3.975114	2.018689	1.67	3.924925	2.056522
1.28	3.974317	2.019288	1.68	3.923086	2.057912
1.29	3.973 50 1	2.019901	1.69	3.921212	2.059329
1.30	3.972666	2.020530	1.70	5.919303	2.060772
1.31	3.971811	2.021173	1.71	3.917359	2.062242
1.32	3.970935	2.021831	1.72	3.915379	2.063740
1.33	3.970040	2.022505	1.73	3.913363	2.065265
1.34	3.969123	2.023194	1.74	3.911310	2.066818
1.35	3.968186	2.023899	1.75	3.909220	2.068400
1.36	3.967227	2.024621	1.76	3.907092	2.070011
1.37	3.966247	2.025359	1.77	3.904926	2.071651
1.38	3.965244	2.026113	1.78	3.902721	2.073321
1.39	3.964219	2.026885	1.79	3.900477	2.075021
1.40 1.41 1.42 1.43	3.963172 3.962101 5.961006 3.959888 3.958746	2.027674 2.028480 2.029 30 4 2.030146 2.031006	1.80 1.81 1.82 1.83 1.84	3.898193 3.895869 3.893504 3.891098 3.888649	2.076751 2.078512 2.080305 2.082129 2.083986
1.45 1.46 1.47 1.48	3.957579 3.956388 3.955171 3.953928 3.952660	2.031885 2.032782 2.033699 2.034635 2.035591	1.85 1.86 1.87 1.88 1.89	3.886159 3.883625 3.881048 3.878427 3.875761	2.085875 2.087797 2.089753 2.0917 ¹³ 5 2.093767
1.50	3.951365	2.036567	1.90	3.873050	2.095826
1.51	3.950043	2.037564	1.91	3.870293	2.097920
1.52	3.948694	2.038581	1.92	3.867490	2.100050
1.53	3.947318	2.039618	1.93	3.864640	2.102217
1.54	3.945913	2.040677	1.94	3.861742	2.104420
1.55	3.944480	2.041758	1.95	3.858796	2.106661
1.56	3.943019	2.042860	1.96	3.855801	2.108939
1.57	3.941528	2.043985	1.97	3.852757	2.111256
1.58	3.940008	2.045132	1.98	3.849662	2.113611
1.59	3.938458	2.046302	1.99	3.846517	2.116006
1.60 1.61 1.62 1.63	3.936877 3.935266 3.933623 3.931949 3.930242	2.047495 2.048711 2.049952 2.051216 2.052505	2.00 2.01 2.02 2.03 2.04	3.843321 3.840072 3.836771 3.833417 3.830008	2.118441 2.120916 2.123431 2.125989 2.128588

TABLE 1 (cont'd)

E G

		= 1			A Company of the Comp	The second secon	The Part of the same in the same and the	
	3	K EI	Kk EI		Ž	K EI	Kk Ei	
	2.05 2.06 2.07 2.08 2.09	3.826545 3.823026 3.819452 3.815820 3.812132	2.131230 2.133915 2.136644 2.139417 2.142235		2.45 2.46 2.47 2.48 2.49	3.634135 3.627716 3.621204 3.614597 3.607895	2.279348 2.284333 2.289394 2.294531 2.299745	
4 4	2.10 2.11 2.12 2.13 2.14	3.808384 3.804578 3.800713 3.796786 3.792799	2.145098 2.148008 2.150964 2.153968 2.157019		2.50 2.51 2.52 2.53 2.54	3.601095 3.594198 3.587200 3.580102 3.572901	2.305038 2.310411 2.315864 2.321400 2.327018	
	2.15 2.16 2.17 2.18 2.19	3.788749 3.784637 3.780461 3.776221 3.771915	2.160119 2.163269 2.166468 2.169718 2.173019		2.55 2.56 2.57 2.58 2.59	3.565596 3.558187 3.550671 3.543046 3.535313	2.332722 2.338510 2.344386 2.350350 2.356104	
	2.20 2.21 2.22 2.23 2.24	3.767544 5.763106 5.758599 5.754025 3.749381	2.176373 2.179779 2.183238 2.186751 2.190320) =====	2.60 2.61 2.62 2.63 2.64	3.527468 3.519511 3.521440 3.503253 3.494949	2.362548 2.368785 2.375115 2.381540 2.388061	
	2.25 2.26 2.27 2.28 2.29	3.744666 3.739881 3.735023 3.730092 3.725087	2.193943 2.197624 2.201361 2.205156 2.209010		2.65 2.66 2.67 2.68 2.69	3.486526 3.477983 3.469317 3.460527 3.451612	2.394681 2.401399 2.408219 2.415141 2.422167	
	2.30 2.31 2.32 2.33 2.34	3.720008 3.714852 3.709620 3.704309 3.698920	2.212923 2.216897 2.220932 2.225028 2.229188		2.70 2.71 2.72 2.73	3.442569 3.433397 3.424094 3.414658 -3.405087	2.429298 2.436537 2.443885 2.451343 2.458913	
	2.35 2.36 2.37 2.38 2.39	3.693451 3.687901 3.682270 3.676555 3.670756	2.233411 2.237699 2.242052 2.246472 2.250959		2.75 2.76 2.77 2.78 2.79	3.395378 3.385532 3.375544 3.365413 3.355137	2.466598 2.474398 2.482316 2.490354 2.498513	
	2.40 2.41 2.42 2.43 2.44	3.664872 3.658902 3.652844 3.646698 3.640462	2.255514 2.260138 2.264833 2.269599 2.274437		2.80 2.81 2.82 2.83 2.84	3.344714 3.334141 3.323417 3.312538 3.301504	2.506796 2.515204 2.525740 2.532405 2.541202	

TABLE 1 (cont'd)

	T		1 1			
2	K EI	Kk <u>E</u> I		ን	K EI	Kk El
2.85	3.290311	2.550133		3.25	2.677948	3.049260
2.86	3.278957	2.559200		3.26	2.657419	3.066324
2.87	3.267439	2.568405		3.27	2.636566	3.083677
2.88	3.255755	2.577751		3.28	2.615383	3.101326
2.89	3.243903	2.587240		3.29	2.593864	3.119276
2.90	3.231880	2.596875		3.30	2.572001	3.137534
2.91	3.219682	2.606657		3.31	2.549788	3.156107
2.92	3.207309	2.616590		3.32	2.527218	3.175002
2.93	3.194755	2.626675		3.33	2.504283	3.194225
2.94	3.182020	2.636917		3.34	2.480976	3.213784
2.95	3.169099	2.647316		3.35	2.457290	3.233686
2.96	3.155990	2.657877		3.36	2.453216	3.253938
2.97	3.142690	2.668602		3.37	2.408746	3.274550
2.98	3.129196	2.679493		3.38	2.383872	3.295528
2.99	3.115505	2.690554		3.39	2.358586	3 316881
3.00	3.101613	2.701788		3.40	2.332878	5.338617
3.01	3.087517	2.713198		3.41	2.306739	5.360746
3.02	3.073214	2.724786		3.42	2.280160	3.383277
3.03	3.058700	2.736557		3.43	2.253131	3.406218
3.04	3.043971	2.748513		3.44	2.225642	3.429581
3.05	3.029025	2.760658		3.45	2.197683	3.453374
3.06	3.013857	2.772996		3.46	2.169243	3.477607
3.07	2.998464	2.785529		3.47	2.140312	3.502293
3.08	2.982841	2.798262		3.48	2.110878	3.527441
3.09	2.966986	2.811199		3.49	2.080929	3.553063
3.10	2.950893	2.824342		3.50	2.050454	3.579170
3.11	2.934558	2.837697		3.51	2.019439	3.605776
3.12	2.917978	2.851266		3.52	1.987873	3.632891
3.13	2.901148	2.865055		3.53	1.955741	3.660530
3.14	2.884064	2.879067		3.54	1.923031	3.688705
3.15	2.866720	2.893306		3.55	1.889728	3.717430
3.16	2.849113	2.907778		3.56	1.855817	3.746720
3.17	2.831237	2.922486		3.57	1.821284	3.776590
3.18	2.813088	2.937436		3.58	1.786113	3.807054
3.19	2.794660	2.952632		3.59	1.750287	3.838128
3.20	2.775949	2.968079		3.60	1.713790	3.869830
3.21	2.756949	2.983782		3.61	1.676604	3.902175
3.22	2.737655	2.999746		3.62	1.638712	3.935182
3.23	2.718060	3.015977		3.63	1.600096	3.968868
3.24	2.698160	3.032479		3.64	1.560734	4.003253

TABLE 1 (cont'd)

٦	K EI	Kk L/BI
3.65	1.520609	4.038357
3.66	1.479699	4.074199
3.67	1.437982	4.110800
3.68	1.395437	4.148183
3.69	1.352040	4.186371
3.70	1.307767	4.225387
3.71	1.262593	4.265255
3.72	1.216492	4.306002
3.73	1.169437	4.347654
3.74	1.121401	4.390238
3.75	1.072354	4.433783
3.76	1.022265	4.478320
3.77	0.9711032	4.523880
3.78	0.9188353	4.570494
3.79	0.8654270	4.618198
5.80	0.8108425	4.667027
5.81	0.7550443	4.717017
5.82	0.6979935	4.768208
5.83	0.6396492	4.820639
5.84	0.5799690	4.874353
3.85	0.5189083	4.929393
3.86	0.4564206	4.985807
3.87	0.3924572	5.043642
3.88	0.3269673	5.102948
3.89	0.2598972	5.163779
3.90	0.1911912	5.226191
3.91	0.1207906	5.290240
3.92	0.04863390	5.355990
3.93	-0.02534362	5.423503
3.94	-0.1012098	5.492847
3.95	-0.1790359	5.564093
3.96	-0.2588970	5.637315
3.97	-0.3408721	5.712593
3.98	-0.4250443	5.790008
3.99	-0.5115012	5.869648
4.00	-0.6003354	5.951605
4.01	-0.6916444	6.035976
4.02	-0.7855311	6.122864
4.03	-0.8821045	6.212376
4.04	-0.9814799	6.304628

જ	K EI	Kk EI
4.05	-1.083779	6.399742
4.06	-1.189131	6.497845
4.07	-1.297674	6.599074
4.08	-1.409552	6.703575
4.09	-1.524921	5.811501
4.10	-1.643944	6.923017
4.11	-1.766796	7.038296
4.12	-1.893664	7.157524
4.13	-2.024747	7.280900
4.14	-2.160257	7.408636
4.15	-2.300420	7.540957
4.16	-2.445480	7.678106
4.17	-2.595696	7.820343
4.18	-2.751348	7.967945
4.19	-2.912735	8.121212
4.20	-3.080179	8.280466
4.21	-3.254028	8.446053
4.22	-3.434655	8.618346
4.23	-3.622464	8.797749
4.24	-3.817893	8.984698
4.25	-4.021415	9.179666
4.26	-4.233543	9.383166
4.27	-4.454836	9.595756
4.28	-4.685901	9.818043
4.29	-4.927402	10.05069
4.30	-5.180064	10.29442
4.31	-5.444680	10.55003
4.32	-5.722121	10.81838
4.33	-6.013346	11.10044
4.34	-6.319410	11.39726
4.35	-6.641483	11.71000
4.36	-6.980856	12.03997
4.37	-7.338968	12.38859
4.38	-7.717421	12.75748
4.39	-8.118004	13.14841
4.40	-8.542724	13.56539
4.41	-8.993839	14.00468
4.42	-9.473899	14.47484
4.43	-9.985791	14.97674
4.44	-10.53280	15.51367

TABLE 1 (cont'd)

λ	K L	Kk <u>L</u>
4.45	-11.11869	16.08939
4.46	-11.74777	16.60822
4.47	-12.42501	17.37512
4.48	-13.15619	18.09587
4.49	-13.94805	18.87720
4.50	-14.80848	19.72701
4.51	-15.74682	20.65466
4.52	-16.77421	21.67124
4.53	-17.90398	22.79012
4.54	-19.15229	24.02745
4.55	-20.53888	25.40295
4.56	-22.08813	26.94103
4.57	-23.83053	28.67215
4.58	-25.80468	30.63493
4.59	-28.06021	32.87899
4.60	-30.66203	35.46924
4.61	-33.69666	38.49220
4.62	-37.28208	42.06585
4.63	-41.58344	46.35533
4.64	-46.83925	51.59916
4.65	-53.40725	58.15507
4.66	-61.84939	66.58504
4.67	-73.10214	77.82550
4.68	-88.85041	93.56137
4.69	-112.4624	117.1608
4.70	-151.7910	156.4769
4.71	-230.3633	235.0364
4.72	-465.4320	470.0923
4.73	-116083.6	116088.3
4.74	480.5811	-475.9468
4.75	+242.6212	-238.0001
4.76	+163.5132	-158.9054
4.77	+123.9967	-119.4023
4.78	+100.2974	- 95.71650
4.79	84.50119	- 79.93396
4.80	73.21909	- 68.66562
4.81	64.75741	- 60.21782
4.82	58.17555	- 53.64996
4.83	52.90931	- 48.39785
4.64	48.59974	- 44.10253

ゝ	K EI	Kk <u>E</u> I
4.85	45.00756	-40.52473
4.86	41.96715	-37.49882
4.87	39.36023	-34.90653
4.88	37.10005	-32.66111
4.89	35.12157	-30.69752
4.90	33.37505	-28.96602
4.91	31.82181	-27.42792
4.92	30.43130	-26.05271
4.93	29.17910	-24.81593
4.94	28.04544	-23.69783
4.95	27.01414	-22.68222
4.96	26.07182	-21.75574
4.97	25.20736	-20.90726
4.98	24.41139	-20.12741
4.99	23.67601	-19.40829
5.00	22.99447	-18.7 ¹ -315
5.01	22.36098	-18.12622
5.02	21.77057	-17.55252
5.03	21.21892	-17.01772
5.04	20.70227	-16.51807
5.05	20.21732	-16.05028
5.06	19.76119	-15.61146
5.07	19.33132	-15.19905
5.08	18.92545	-14.81081
5.09	18.54158	-14.44472
5.10	18 17790	-14.09698
5.11	17 .83282	-13.77201
5.12	17 .50490	-13.46236
5.13	17 .19284	-13.16873
5.14	16 .89548	-12.88997
5.15	16.61174	-12.62501
5.16	16.34069	-12.37290
5.17	16.08144	-12.13276
5.18	15.83319	-11.90381
5.19	15.59523	-11.68532
5.20	15.36689	-11.47662
5.21	15.14755	-11.27711
5.22	14.93667	-11.08624
5.23	14.73372	-10.90348
5.24	14.53823	-10.72837

TABLE 1 (cont'd)

ત્ર	K L	Kk <u>L</u>
5.25	14.34976	-10.56047
5.26	14.16791	-10.39939
5.27	13.99230	-10.24473
5.28	13.82259	-10.09617
5.29	13.65845	- 9.953372
5.30	13.49958	-9.816046
5.31	13.34570	-9.683912
5.32	13.19655	-9.556712
5.33	13.05188	-9.434204
5.34	12.91148	-9.316162
5.35	12.77511	-9.202375
5.36	12.64259	-9.092647
5.37	12.51373	-8.986792
5.38	12.38835	-8.884636
5.39	12.26629	-8.786017
5.40	12.14738	-8.690782
5.41	12.03149	-8.598786
5.42	11.91847	-8.509894
5.43	11.80820	-8.423979
5.44	11.70055	-8.340919
5.45	11.59541	-8.260601
5.46	11.49265	-8.182919
5.47	11.39219	-8.107770
5.48	11.29392	-8.035059
5.49	11.19775	-7.964694
5.50	11.10359	-7.896590
5.51	11.01135	-7.830666
5.52	10.92096	-7.766844
5.53	10.83233	-7.705051
5.54	10.74540	-7.645218
5.55	10.66009	-7.587276
5.56	10.57635	-7.531168
5.57	10.49409	-7.476829
5.58	10.41328	-7.424205
5.59	10.33384	-7.373241
5.60	10.25573	-7.323886
5.61	10.17888	-7.276090
5.62	10.10326	-7.229808
5.63	10.02881	-7.184994
5.64	9.955479	-7.141607

ን	K EI	Kk L
5.65	9.883234	-7.099606
5.66	9.812028	-7.058952
5.67	9.741819	-7.019609
5.68	9.672568	-6.981541
5.69	9.604238	-6.944714
5.70	9.536793	-6.909098
5.71	9.470196	-6.874660
5.72	9.404415	-6.841373
5.73	9.339416	-6.809207
5.74	9.275169	-6.778136
5.75	9.211643	-6.748135
5.76	9.148809	-6.719179
5.77	9.086639	-6.691245
5.78	9.025105	-6.664310
5.79	8.964181	-6.638353
5.80	8.903841	-6.613354
5.81	8.844060	-6.589294
5.82	8.784815	-6.566153
5.83	8.726082	-6.543913
5.84	8.667838	-6.522558
5.85	8.610061	-6.502072
5.86	8.552730	-6.482439
5.87	8.495825	-6.463643
5.88	8.439324	-6.445672
5.89	8.383208	-6.428511
5.90	8.327458	-6.412147
5.91	8.272055	-6.396569
5.92	8.216982	-6.381764
5.93	8.162219	-6.367722
5.94	8.107749	-6.354431
5.95	8.053556	-6.341882
5.96	7.999623	-6.330065
5.97	7.945933	-6.318972
5.98	7.832471	-6.308593
5.99	7.839219	-6.298920
6.00	7.786164	-6.289946
6.01	7.733290	-6.281664
6.02	7.680582	-6.274067
6.03	7.628025	-6.267148
6.04	7.575605	-6.260 3 02

TABLE 1 (cont'd)

ÿ	K EI	Kk L EI
6.05	7.523307	-6.255322
6.06	7.471119	-6.250404
6.07	7.419024	-6.246144
6.08	7.367011	-6.242535
6.09	7.315065	-6.239576
6.10	7.263173	-6.237261
6.11	7.211322	-6.235587
6.12	7.159499	-6.234552
6.13	7.107690	-6.234153
6.14	7.055883	-6.234388
6.15	7.004064	-6.235254
6.16	6.952222	-6.236750
6.17	6.900343	-6.238875
6.18	6.848415	-6.241627
6.19	6.796425	-6.245006
6.20	6.744360	-6.249012
6.21	6.692208	-6.253645
6.22	6.639957	-6.258904
6.23	6.587593	-6.264791
6.24	6.535105	-6.271306
6.25	6.482480	-6.278451
6.26	6.429704	-6.286228
6.27	6.376766	-6.294637
6.28	6.323653	-6.303681
6.29	6.270352	-6.313364
6.30	6.216850	-6.323687
6.31	6.163135	-6.334654
6.32	6.109192	-6.346268
6.33	6.055010	-6.358533
6.34	6.000575	-6.371453
6.35	5.945874	-6.385033
6.36	5.890893	-6.399277
6.37	5.835618	-6.414192
6.38	5.780036	-6.429781
6.39	5.724134	-6.446051
6.40	5.667896	-6.463009
6.41	5.611308	-6.480661
6.42	5.554357	-6.499013
6.43	5.497027	-6.518074
6.44	5.439303	-6.537851

Я	K EI	Kk <u>L</u>
6.45	5.381170	-6.558352
6.46	5.322613	-6.579586
6.47	5.263616	-6.601562
6.48	5.204162	-6.624289
6.49	5.144237	-6.647777
6.50	5.083822	-6.672036
6.51	5.022901	-6.697078
6.52	4.961457	-6.722913
6.53	4.899471	-6.749554
6.54	4.836927	-6.777011
6.55	4.773805	-6.805300
6.56	4.710086	-6.834431
6.57	4.645751	-6.864421
6.58	4.580781	-6.895282
6.59	4.515154	-6.927031
6.60	4.448851	-6.959682
6.61	4.381849	-6.993252
6.62	4.314127	-7.027759
6.63	4.245662	-7.063219
6.64	4.176432	-7.099651
6.65	4.106412	-7.137074
6.66	4.035577	-7.175508
6.67	3.963904	-7.214974
6.68	3.891365	-7.255493
6.69	3.817934	-7.297087
6.70	3.743584	-7.339780
6.71	3.668286	-7.383596
6.72	3.592012	-7.428559
6.73	3.514730	-7.474697
6.74	3.436410	-7.522035
6.75	3.357020	-7.570603
6.76	3.2 7 6526	-7.620429
6.77	3.194895	-7.671544
6.78	3.112090	-7.723981
6.79	3.028075	-7.777771
6.80	2.942811	-7.832950
6.81	2.856260	-7.889553
6.82	2.768381	-7.947617
6.83	2.679131	-8.007183
6.84	2.588466	-8.068289

TABLE 1 (cont'd)

J	K <u>E</u> I	Kk: L
6.85	2.496341	-8.130978
6.86	2.402709	-8.195295
6.87	2.307519	-8.261284
6.88	2.210722	-8.328995
6.89	2.112265	-8.398476
6.90	2.012091	-8.469781
6.91	1.910143	-8.542963
6.92	1.806362	-8.618079
6.93	1.700686	-8.695189
6.94	1.593049	-8.774354
6.95	1.483383	-8.855641
6.96	1.371617	-8.939115
6.97	1.257679	-9.024850
6.98	1.141490	-9.112918
6.99	1.022970	-9.203398
7.00	0.9020346	-9.296371
7.01	0.7785956	-9.391924
7.02	0.6525604	-9.490145
7.03	0.5238323	-9.591130
7.04	0.3923097	-9.694976
7.05	0.2578861	-9.801789
7.06	0.1204498	-9.911677
7.07	-0.02011682	-10.02475
7.08	-0.1639370	-10.14114
7.09	-0.3111406	-10.26097
7.10	-0 4618643	-10.38437
7.11	-0.6162518	-10.51148
7.12	-0.7744550	-10.64246
7.13	-0.9366336	-10.77746
7.14	-1.102957	-10.91664
7.15	-1.273603	-11.06019
7.16	-1.448760	-11.20829
7.17	-1.628628	-11.36114
7.18	-1.813418	-11.51894
7.19	-2.003355	-11.68192
7.20	-2.198675	-11.85031
7.21	-2.399632	-12.02437
7.22	-2.606493	-12.20436
7.23	-2.819544	-12.39056
7.24	-3.039089	-12.58327

ን	K EI	Ka <u>EI</u>
7.25	-3.265451	-12 78282
7.26	-3.498976	-12.98955
7.27	-3.740034	-13.20383
7.28	-3.989019	-13.42605
7.29	-4.246354	-13.65662
7.30	-4.512494	-13.89601
7.31	-4.787924	-14.14470
7.32	-5.073169	-14.40321
7.33	-5.368790	-14.67209
7.34	-5.675395	-14.95196
7.35	-5.993640	-15.24347
7.36	-6.324231	-15.54732
7.37	-6.667936	-15.86427
7.38	-7.025586	-16.19517
7.39	-7.398085	-16.54090
7.40	-7.786414	-16.90246
7.41	-8.191645	-17.28090
7.42	-8.614949	-17.67740
7.43	-9.057605	-18.09323
7.44	-9.521018	-18.52981
7.45	-10.00673	-18.98866
7.46	-10.51645	-19.47349
7.47	-11.05204	-19.98017
7.48	-11.61560	-20.51679
7.49	-12.20942	-21.08364
7 50	-12.83607	-21.68330
7 51	-13.49843	-22.31864
7 52	-14.19971	-22.99285
7 53	-14.94351	-23.70956
7 54	-15.73391	-24.47282
7.55	-16.57552	-25.28726
7.56	-17.47358	-26.15809
7.57	-18.43405	-27.09131
7.58	-19.46380	-28.09375
7.59	-20.57071	-29.17330
7.60	-21.76392	-30.33911
7.61	-23.05408	-31.60181
7.62	-24.45364	-32.97387
7.63	-25.97732	-34.46999
7.64	-27.64257	-36.10762

TABLE 1 (cont'd)

ત્ર	K EI	Kk <u>ri</u>
7.65	-29.47029	-37.90766
7.66	-31.48569	-39.89533
7.67	-33.71951	-42.10135
7.68	-36.20957	-44.56354
7.69	-39.00296	-47.32900
7.70	-42.15907	-50.45712
7.71	-45.75387	-54.02386
7.72	-49.88617	-58.12802
7.73	-54.68682	-62.90046
7.74	-60.33294	-68.51828
7.75	-67.07026	-75.22725
7.76	-75.25001	-83.37856
7.77	-85.39224	-93.49226
7.78	-98.30117	-106.3726
7.79	-115.2900	-123.3327
7.80 7.81 7.82 7.83	-138.6592 -172.8389 -227.5966 -329.5360 -585.8507	-146.6731 -180.8240 -235.5527 -337.4631 -593.7487
7.85	-2441.721	-2449.590
7.86	1164.517	- 1156.678
7.87	476.4133	- 468.6034
7.88	301.8962	- 254.1158
7.89	222.2283	- 214.4776
7.90	176.6028	168.8818
7.91	147.0380	139.3469
7.92	126.3206	118.6594
7.93	110.9942	103.3631
7.94	99.19553	91.59465
7.95	89.83116	82.26059
7.96	82.21726	74.67712
7.97	75.90419	68.39459
7.98	70.58414	63.10522
7.99	66.03932	58.59120
8 CO	62.11128	54.69409
8.01	58.68201	51.29587
8.02	55.66176	48.30681
8.03	52.98113	45.65750
8.04	50.58554	43.29337

ን	K EI	KVr EI
8.05	48.43154	41.17097
8.06	46.48407	39.25523
8.07	44.71453	37.51756
8.08	43.09937	35.93442
8.09	41.61902	34.48624
8.10	40.25708	33.15662
8.11	38.99970	31.93171
8.12	37.83512	30.79976
8.13	36.75327	29.75069
8.14	35.74548	28.77584
8.15	34.80426	27.86771
8.16	33.92307	27.01980
8.17	33.09624	26.22639
8.18	32.31875	25.48251
8.19	31.58621	24.78373
8.20	30.89470	24.12617
8.21	30.24078	23.50637
8.22	29.62136	22.92125
8.23	29.03368	22.36805
8.24	28.47527	21.84431
8.25	27.94390	21.34779
8.26	27.43758	20.87651
8.27	26.95449	20.42865
8.28	26.49298	20.00258
8.29	26.05158	19.59680
8.30	25.62890	19.20995
8.31	25.22373	18.84081
8.32	24.83491	18.48824
8.33	24.46142	18.15119
8.34	24.10231	17.82874
8.35	23.75668	17.51999
8.36	23.42374	17.22414
8.37	23.10274	16.94046
8.38	22.79299	16.66825
8.39	22.49385	16.40688
8.40	22.20474	16.15576
8.41	21.92510	15.91436
8.42	21.65442	15.68215
8.43	21.39222	15.45867
8.44	21.13807	15.24347

TABLE 1 (cont'd)

ત્ર	K L	Kk <u>i.</u>		λ	K EI	Kis <u>L</u>
8.45	20.89156	15.03616		8.85	14.57743	10.53909
8.46	20.65228	14.83654		8.86	14.46906	10.48372
8.47	20.41989	14.64366		8.87	14.36198	10.43009
8.48	20.19405	14.45778		8.88	14.25614	10.37815
8.49	19.97443	14.27839		8.89	14.15149	10.32786
8.50	19.76074	14.10520		8.90	14.04799	10.27920
8.51	19.55270	13.93792		8.91	13.94560	10.23211
8.52	19.35005	13.77631		8.92	13.84427	10.18657
8.53	19.15253	13.62011		8.93	13.74397	10.14255
8.54	18.95993	13.46909		8.94	13.64465	10.10000
8.55	18.77200	13.32305		8.95	13.54627	10.05890
8.56	18.58856	13.18177		8.96	13.44880	10.01922
8.57	18.40939	13.04506		8.97	13.35221	9.980935
8.58	18.23432	12.9 12 75		8.98	13.25645	9.944014
8.59	18.06317	12.78465		8.99	13.16149	9.908450
8.60	17.89577	12.66061		9.00	13.06730	9.874161
8.61	17.73196	12.54048		9.01	12.97385	9.841183
8.62	17.57161	12.42410		9.02	12.88111	9.809472
8.63	17.41455	12.31135		9.03	12.78904	9.779007
8.64	17.26066	12.20208		9.04	12.69762	9.749769
8.65	17.10981	12.09618		9.05	12.60682	9.721736
8.66	16.96187	11.99352		9.06	12.51661	9.694890
8.67	16.81674	11.89401		9.07	12.42696	9.669213
8.68	16.67429	11.79752		9.08	12.33784	9.644688
8.69	16.53443	11.70396		9.09	12.24923	9.621299
8.70	16.39705	11.61323		9.10	12.16111	9.599029
6.71	16.26205	11.52525		9.11	12.07344	9.577865
8.72	16.12935	11.43992		9.12	11.98621	9.557793
8.73	15.99885	11.35716		9.13	11.89939	9.538798
8.74	15.87048	11.27689		9.14	11.81295	9.520868
8.75	15.74414	11.19903	-	9.15	11.72688	9.503991
8.76	15.61977	11.12353		9.16	11.64114	9.488156
8.77	15.49728	11.05029		9.17	11.55573	9.473353
8.78	15.37662	10.97927		9.18	11.47060	9.459570
8.79	15.25770	10.91040		9.19	11.38576	9.446799
8.80	15.14046	10.84361		9.20	11.30116	9.435030
8.81	15.02485	10.77886		9.21	11.21680	9.424256
8.82	14.91080	10.71608		9.22	11.13264	9.414468
8.83	14.79825	10.65523		9.23	11.04868	9.405660
8.84	14.68714	10.59625		9.24	10.96488	9.397824

TABLE 1 (cont'd)

λ	r <u>L</u>	Kk EI	ત્ર	K L	Rk-L EI
9.25	10.88124	9.390955	9.65	7.438114	9.899006
9.26	10.79772	9.385047	9.66	7.343936	9.932536
9.27	10.71432	9.380095	9.67	7.249055	9.967223
9.28	10.63100	9.376094	9.68	7.153448	10.00308
9.29	10.54776	9.373041	9.69	7.057087	10.04013
9.30	10.46457	9.370931	9.70	6.959947	10.07839
9.31	10.38141	9.369761	9.71	6.861998	10.11787
9.32	10.29826	9.369530	9.72	6.763213	10.15861
9.33	10.21511	9.370235	9.73	6.663564	10.20060
9.34	10.13194	9.371874	9.74	6.563021	10.24389
9.35	10.04873	9.374445	9.75	6.461553	10.28849
9.36	9.965451	9.377950	9.76	6.359131	10.33442
9.37	9.882096	9.382386	9.77	6.255721	10.38171
9.38	9.798643	9.387754	9.78	6.151291	10.43038
9.39	9.715072	9.394056	9.79	6.045809	10.48046
9.40	9.631366	9.401292	9.80	5.939238	10.53198
9.41	9.547507	9.409463	9.81	5.831545	10.58496
9.42	9.463474	9.418573	9.82	5.722692	10.63944
9.43	9.379250	9.428623	9.83	5.612642	10.69544
9.44	9.294815	9.439616	9.84	5.501357	10.75299
9.45	9.210151	9.451556	9.85	5.388796	10.81214
9.46	9.125239	9.464447	9.86	5.274920	10.87291
9.47	9.040059	9.478294	9.87	5.159684	10.93534
9.48	8.954592	9.493101	9.88	5.043047	10.99947
9.49	8.868820	9.508873	9.89	4.924962	11.06533
9.50	8.782721	9.525618	9.90	4.805384	11.13297
9.51	8.696277	9.543340	9.91	4.684264	11.20243
9.52	8.609467	9.562048	9.92	4.561552	11.27375
9.53	8.522272	9.581747	9.93	4.437198	11.34697
9.54	8.434670	9.602448	9.94	4.311149	11.42216
9.55	8.346641	9.624157	 9.95	4.183348	11.49935
9.56	8.258165	9.646884	9.96	4.053739	11.57859
9.57	8.169220	9.670638	9.97	3.922263	11.65994
9.58	8.079784	9.695431	9.98	3.788860	11.74346
9.59	7.989835	9.721271	9.99	3.65 3 464	11.82921
9.60	7.899352	9.748172	10.00	3.516011	11.91723
9.61	7.808312	9.776143	10.01	3.376432	12.00761
9.62	7.716692	9.805199	10.02	3.234656	12.10040
9.63	7.624468	9.835352	10.03	3.090608	12.19568
9.64	7.531617	9.866616	10.04	2.944213	12.29350

TABLE 1 (cont'd)

ን	K EI	Kk EI
10.05	2.795390	12.39396
10.06	2.694055	12.59713
10.07	2.490123	12.60309
10.08	2.333502	12.71193
10.09	2.174099	12.82373
10.10	2.011816	12.93860
10.1	1.846549	13.05662
10.12	1.678192	13.17790
10.13	1.506632	13.30255
10.14	1.331752	13.43069

y	K EI	Kk <u>L</u>
10.15	1.153431	13.56242
10.16	0.9715397	13.69788
10.17	0.7859436	13.83719
10.18	0.5965024	13.98050
10.19	0.4030684	14.12793
10.20	0.2054871	14.27966
10.21	0.003595060	14.43583
10.22	-0.2027782	14.59661

DISTRIBUTION LIST - PROJECT NR 064-183

Administrative, Reference and Liaison Activities

Chief of Naval Research Department of the Navy Washington 25, D. C. ATTN: Code 438 : Code 432	(2)	Commanding Officer Office of Naval Research Branch Office 801 Donahue Street San Francisco 24, California (1)
Director, Naval Research Laboratory Washington 25, D. C. ATTN: Tech. Info. Officer : Technical Library : Mechanics Division	(9) (1) (2)	Commanding Officer Office of Naval Research Branch Office 1030 Green Street Pasadena, California () (1)
Commanding Officer Office of Naval Research Branch Office 495 Summer Street Boston 10, Massachusetts	(1)	Contract Administrator, SE Area Office of Naval Research Department of the Navy Washington 25, D. C. ATTN: R. F. Lynch (1)
Commanding Officer Office of Naval Research Branch Office 346 Broadway New York City 13, New York	(1)	Officer in Charge Office of Naval Research Branch Office, London Navy No. 100 FPO, New York City, New York (5)
Office of Naval Research The John Crerar Library Bldg. Tenth Floor, 86 East Randolph St. Chicago 1, Illinois	(2)	Library of Congress Washington 25, D. C. ATTN: Navy Research Section (2) Commander
Commander U.S. Naval Ordnance Test Station Inyokern, China Lake, California ATTN: Code 501	(1)	U. S. Naval Ordnance Test Station Pasadena Annex 3202 East Foothill Blvd. Pasadena 8, California ATTN: Code P8087 (1)
Commander U. S. Naval Proving Grounds Dahlgren, Virginia	(1)	

Department of Defense Other Interested Government Activities GENERAL

Research and Development Board Department of Defense Pentagon Building Washington 25, D. C. ATTN: Library (Code 3D-1075)	(1)	Engineering Research and Development Laboratory Fort Belvoir, Virginia ATTN: Structures Branch	(1)
Armed Forces Special Weapons Project P.O. Box 2610 Washington, D. C. ATTN: Lt. Col. G. F. Blunda	(1)	The Commanding General Sand'a Base, P.O. Box 5100 Albuquerque, New Mexico ATTN: Col. Canterbury	(1)
Joint Task Force 3 12 St. and Const. Ave., N.W. (Temp.U) Washington 25, D. C. ATTN: Major B. D. Jones	(1)	Operation Research Officer Department of the Army Ft. Lesley J. McNair Washington 25, D. C. ATTN: Howard Brackney	(1)
ARMY			
Chief of Staff Department of the Army Research and Development Division Washington 25, D. C.		Office of Chief of Ordnance Research and Development Servic Department of the Army The Pentagon	e
ATTN: Chief of Res. and Dev.	(1)	Washington 25, D. C. ATTN: ORDTB	(2)
Office of the Chief of Engineers Assistant Chief for Public Works Department of the Army Bldg. T-7, Gravelly Point Washington 25, D. C.		Ballistic Research Laboratory Aberdeen Proving Ground Aberdeen, Maryland ATTN: Dr. C. W. Lampson	(1)
ATTN: Structural Branch (R. L. Bloor)	(1)	Commanding Officer	
Office of the Chief of Engineers Asst. Chief for Military Const. Department of the Army		Watertown Arsenal Watertown, Massachusetts ATTN: Laboratory Division	(1)
Bldg. T-7, Gravelly Point Washington 25, D. C.		Commanding Officer Frankford Arsenal	
ATTN: Structures Branch (H. F. Carey) : Protective Construction	(1)	Philadelphia, Pa. ATTN: Laboratory Division	(1.)
Branch (I. O. Thorley)) Office of the Chief of Engineers	(1)	Commanding Officer Squier Signal Laboratory Fort Monmouth, New Jersey	
Asst. Chief for Military Operations Department of the Army Bldg. T-7, Gravelly Point Washington 25, D. C. ATTN: Structures Dev. Brch (W.F. Wool	l la rd) (1)	ATTN: Components and Materials	(1)

Other Interested Government Activities

NAVY

Chief of Bureau of Ships		Chief of Bureau of Aeronautics
Navy Department		Navy Department
Washington 25, D. C.	(0)	Washington 25, D. C.
ATTN: Director of Research	(5)	ATTN: TD-41, Technical Library (1)
: Code 449	(1)	DE-22, C. W. Hurley (1)
: Code 430	(1)	: DE-23, E. M. Ryan (1)
: Code 421	(1)	
		Naval Air Experimental Station
Director		Naval Air Material Center
David Taylor Model Basin		Naval Base
Washington 7, D. C.		Philadelphia 12, Ps.
ATTN: Structural Mechanics		ATTN: Head, Aeronautical Materials
Division	(2)	Laboratory (1)
D1 1 1 2 2 0 H	(2)	
Director		Chief of Bureau of Yards and Docks
Naval Engr. Experiment Station	(2)	Navy Department
Annapolis, Maryland	(1)	Washington 25, D. C.
		ATTN: Code P-314 (1)
		: Code C-313 (1)
Director		
Materials Laboratory		Officer in Charge
New York Naval Shipyard		Naval Civil Engr. Research and
Brooklyn 1, New York	(1)	Eval. Lab, Naval Station
		Port Hueneme, California (1)
Chief of Bureau of Ordance		•
Navy Department		Superintendent
Washington 25, D. C.		Post Graduate School
ATTN: Ad-3, Technical Library	(1)	U. S. Naval Academy
: Rec., P. N. Girauard	(1)	Monterey, California (1)
. neer, i. n. olladald	(1)	Monterey, carriering (1)
Superintendent		AIR FORCES
Naval Gun Factory		Commanding General
Washington 25, D. C.	(1)	'. S. Air Forces
washing con 2), b. c.	(1)	
Name 1 Andrews a Laboura		The Pentagon
Naval Ordnance Laboratory		Washington 25, D. C.
White Oak, Maryland		ATTN: Research and Development
RFD 1, Silver Spring, Maryland	1-3	Division (1)
ATTN: Mechanics Division	(5)	
		Commanding General
Naval Ordnance Test Station		Air Material Command
Inyokern, California		Wright-Patterson Air Force Base
ATTN: Scientific Officer	(1)	Dayton, Ohio
		ATTN: MCREK-B (E. H. Schwartz) (2)
Naval Ordnance Test Station		Office of Air Research
Underwater Ordnance Division		Wright-Patterson Air Force Base
Pasadena, California		Dayton, Ohio
ATTN: Structures Division	(1)	
	(1)	ATTN: Chief, Applied Mechanics
: Physics Division	(1)	Group (1)

OTHER GOVERNMENT AGENCIES

U. S. Atomic Energy Commission Division of Research		National Advisory Committee for Aeronautics	or
Washington, D. C.	(1)	1724 F Street, N.W. Washington, D. C.	(1)
Argonne National Laboratory			
P. O. Box 5207 Chicago 80, Illinois	(1)	National Advisory Committee for Aeronautics	or
Director,		Langley Field, Virginia ATTN: Mr. E. Lundquist	(1)
National Bureau of Standards			
Washington, D. C.	(2)	National Advisory Committee for	or
ATTN: Dr. W. H. Ramberg	(2)	Aeronautics Cleveland Municipal Airport	
U. S. Coast Guard		Cleveland, Ohio	
1300 E Street, N.W.		ATTN: J. H. Collins, Jr.	(1)
Washington, D. C.			(-)
ATTN: Chief, Testing and			
Development Division	(1)		
-		U. S. Maritime Commission	
Forest Products Laboratory		Technical Bureau	
Madison, Wisconsin		Washington, D C.	
ATTN: L J. Markwardt	(1)	ATTN: Mr. V. Russo	(1)
CONTRACTORS AND OTHER INVESTIGATORS	ACTIVELY E	NGAGED IN RELATED RESEARCH	
Professor Issae Ormandroud		Professor M. A. Sedovsky	
Professor Jesse Ormendroyd		Professor M. A. Sadowsky	
inivareity of Michigan		•	0001
University of Michigan	(1)	Illinois Institute of Technol	ogy
Ann Arbor, Michigan	(1)	•	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head	(1)	Illinois Institute of Technology Center Chicago 16, Illinois	
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood	
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute	
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street		Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute	
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York		Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier		Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech.	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering		Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech.	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering		Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massschusetts Professor B. Fried	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts	(1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr.	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr. New York University	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics Massachusetts Inst. of Tech.	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr. New York University University Heights, Bronx New York City, New York	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr. New York University University Heights, Bronx New York City, New York Professor C. T. Wang	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics Massachusetts Inst. of Tech. Cambridge 39, Massachusetts	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr. New York University University Heights, Bronx New York City, New York Professor C. T. Wang Department of Aeronautical Engr.	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Dr. A. Phillips	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr. New York University University Heights, Bronx New York City, New York Professor C. T. Wang Department of Aeronautical Engr. New York University	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Dr. A. Phillips School of Engineering	(1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr. New York University University Heights, Bronx New York City, New York Professor C. T. Wang Department of Aeronautical Engr. New York University University Heights, Bronx	(1) (1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Dr. A. Phillips School of Engineering Stanford University	(1) (1) (1) (1)
Ann Arbor, Michigan Dr. N. J. Hoff, Head Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 99 Livingston Street Brooklyn 2, New York Dr. J. N. Goodier School of Engineering Stanford University Stanford, California Professor F. K. Teichmann Department of Aeronautical Engr. New York University University Heights, Bronx New York City, New York Professor C. T. Wang Department of Aeronautical Engr. New York University	(1)	Illinois Institute of Technology Center Chicago 16, Illinois Dr. W. Osgood Armour Research Institute Technology Center Chicago, Illinois Professor R. L. Bisplinghoff Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Professor B. Fried Washington State College Pullman, Washington Professor E. Reissner Department of Mathematics Massachusetts Inst. of Tech. Cambridge 39, Massachusetts Dr. A. Phillips School of Engineering	(1) (1) (1)

CONTRACTORS AND OTHER INVESTIGATORS	ACTIVELY	ENGAGED IN RELATED RESEARCH	
Professor E. Sternberg		Professor L. S. Jacobsen	
Illinois Institute of Technology		Stanford University	
Technology Center		Stanford, California ((1)
Chicago 16, Illinois	(1)	927 - 10	
		Professor A. C. Eringen	
Dr. W. Prager		Illinois Institute of Technology	•
Grad. Div. Applied Mathematics		Technology Center	
Brown University	4	Chicago 16, Illinois ((1)
Providence, Rhode Island	(1)		
Dr. W. H. Hoppmann		Professor B. J. Lazan	
Department of Applied Mechanics		Engineering Experiment Station	
Johns Hopkins University		University of Minnesota	
Baltimore, Maryland	(1)	Minneapolis 14, Minnesota ((1)
Professor W. K. Krefeld		Professor Paul Lieber	
College of Engineering		Dept. of Aeronautical Engineerin	ng
Columbia University		and Applied Mechanics	
New York City, New York	(1)	Polytechnic Inst. of Brooklyn	
**	•	85 Livingston Street	
Professor R. M. Hermes		Brooklyn 2, New York ((1)
University of Santa Clara			
Santa Clara, Culifornia	(1)	Professor Vito Salerno	
		Dept. of Aeronautical Engineering	ng
Dr. R. P. Petersen		and Applied Mechanics	
Director, Applied Physics Div.		Polytechnic Inst. of Brooklyn	
Sandia Laboratory		85 Livingston Street	
Albuquerque, New Mexico	(1)	Brooklyn 2, New York ((1)
Dr. R. J. Hansen	-	Professor George Lee	
Massachusetts Inst. of Technology		U.S. Naval Post Graduate School	
Cambridge 59, Massachusetts	(1)	Annapolis, Maryland ((1)
Dr. Francis H. Clauser		Professor Lloyd Donnell	
Chairman, Dept. of Aeronautics		Department of Mechanics	
The Johns Hopkins University		Illinois Institute of Technology	f
School of Engineering		Technology Center	
Baltimore, 18, Maryland	(1)		(1)
Dr. G. E. Uhlenbeck		Professor Lynn Beedle	
Engineering Research Institute		Fritz Engineering Laboratory	
University of Michigan		Lehigh University	
Ann Arbor, Michigan	(1)		(1)
Dr. Walter Bleakney		Dr. Bruce Johnston	
Department of Physics		301 West Engineering Bldg.	
Princeton University		University of Michigan	
Princeton, New Jersey	(1)		1)
		,	•

Library, Engineering Foundation 29 West 39th Street New York City, New York	(1)	Dr. C. B. Smith Department of Mathematics Walker Hall, University of Flo Gainesville, Florida	orida (1)
Frofessor N. M. Newmark Department of Civil Engineering University of Illinois Urbana, Illinois	(2)	Dean R. E. Johnson Graduate College University of Illinois Urbana, Illinois	(1)
Dean W. L. Everitt College of Engineering University of Illinois Urbana, Illinois	(1)	Professor W. C. Huntington, He Department of Civil Engineering University of Illinois Urbana, Illinois	
Professor T. J. Dolan Dept. of Theoretical and Applied Mechanics University of Illinois Urbana, Illinois	(2)	Professor A. E. Green Kings College Newcastle on Tyne, 1 England Dr. L. Fox	(1)
TASK VI PROJECT - C. E. RESEARCH W. H. Munse	STAFF	Mathematics Division National Physical Laboratory Teddington, Middlesex England	(1)
G. K. Sinnamon R. J. Mosborg H. C. Roberts		Professor W. J. Duncan, Head Dept. of Aerodynamics College of Aeronautics Cranfield, Bletchley Bucks, England	(1)
W. J. Austin L. E. Goodman		Professor R. V. Southwell Imperial College of Science and Technology Prince Consort Road	
C. P. Siess Research Assistants	(10)	South Kensington London S.W. 7, England	(1)
Files	(5)		
Reserve	(20)		