Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 7 A

 $L\"{o}sungshinweise$

Aufgabe 1: Wir betrachten die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, die gegeben sind durch

$$a_n := \left(1 + \frac{1}{n}\right)^n$$
 und $b_n := \left(1 + \frac{1}{n}\right)^{n+1}$ für alle $n \in \mathbb{N}$.

- (a) Zeigen Sie, dass $a_n \leq b_n$ für alle $n \in \mathbb{N}$.
- (b) Rechnen Sie unter Verwendung der Bernoullischen Ungleichung nach, dass

$$\frac{a_{n+1}}{a_n} = \frac{n+2}{n+1} \left(1 - \frac{1}{(n+1)^2} \right)^n \ge 1 + \frac{1}{(n+1)^3} \quad \text{und}$$

$$\frac{b_n}{b_{n+1}} = \frac{n+1}{n+2} \left(1 + \frac{1}{n(n+2)} \right)^{n+1} \ge 1 + \frac{1}{n(n+2)^2}$$

für alle $n \in \mathbb{N}$ gilt. Zeigen Sie damit, dass $(a_n)_{n \in \mathbb{N}}$ monoton wachsend und $(b_n)_{n \in \mathbb{N}}$ monoton fallend ist.

(c) Folgern Sie, dass die Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ beide konvergent sind und den gleichen Grenzwert besitzen.

Bemerkung: Man bezeichnet diesen gemeinsamen Grenzwert mit e und nennt ihn die $eulersche\ Zahl.$

(d) Bestimmen Sie mittels der obigen Resultate eine Dezimalzahl, die e bis auf die zweite Nachkommastelle genau annähert. (Hierfür dürfen Sie einen Taschenrechner benutzen.)

Lösung:

(a) Für alle $n \in \mathbb{N}$ erhalten wir wegen $1 + \frac{1}{n} \ge 1$, dass wie behauptet

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n}\right)^n \ge \left(1 + \frac{1}{n}\right)^n = a_n.$$

(b) Für alle $n \in \mathbb{N}$ ergibt sich nach Definition der Folge $(a_n)_{n \in \mathbb{N}}$, dass

$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n}$$

$$= \frac{\left(\frac{n+2}{n+1}\right)^{n+1}}{\left(\frac{n+1}{n}\right)^n}$$

$$= \frac{n+2}{n+1} \left(\frac{(n+2)n}{(n+1)^2}\right)^n$$

$$= \frac{n+2}{n+1} \left(\frac{(n+1)^2 - 1}{(n+1)^2}\right)^n$$

$$= \frac{n+2}{n+1} \left(1 - \frac{1}{(n+1)^2}\right)^n.$$

Dies zeigt die erste Gleichheit. Wegen $-\frac{1}{(n+1)^2} \ge -1$ können wir hierauf die Bernoullische Ungleichung anwenden und erhalten

$$\frac{a_{n+1}}{a_n} \ge \frac{n+2}{n+1} \left(1 - \frac{n}{(n+1)^2} \right)$$

$$= \frac{n+2}{n+1} \frac{(n+1)^2 - n}{(n+1)^2}$$

$$= \frac{(n+2)(n^2 + n + 1)}{(n+1)^3}$$

$$= \frac{n^3 + 3n^2 + 3n + 2}{(n+1)^3}$$

$$= \frac{(n+1)^3 + 1}{(n+1)^3}$$

$$= 1 + \frac{1}{(n+1)^3},$$

womit die behauptete Ungleichung bewiesen ist. Weil $1 + \frac{1}{(n+1)^3} \ge 1$, sehen wir damit, dass $\frac{a_{n+1}}{a_n} \ge 1$ gilt, woraus sich wegen $a_n \ge 0$ folgern lässt, dass $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$ gilt, d. h. die Folge $(a_n)_{n \in \mathbb{N}}$ ist monoton wachsend (und tatsächlich sogar streng monoton wachsend).

Ebenso rechnen wir für die Folge $(b_n)_{n\in\mathbb{N}}$ für alle $n\in\mathbb{N}$ die Gültigkeit der ersten Gleichheit

$$\frac{b_n}{b_{n+1}} = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^{n+2}}
= \frac{\left(\frac{n+1}{n}\right)^{n+1}}{\left(\frac{n+2}{n+1}\right)^{n+2}}
= \frac{n+1}{n+2} \left(\frac{(n+1)^2}{n(n+2)}\right)^{n+1}
= \frac{n+1}{n+2} \left(\frac{n(n+2)+1}{n(n+2)}\right)^{n+1}
= \frac{n+1}{n+2} \left(1 + \frac{1}{n(n+2)}\right)^{n+1}$$

nach. Wie oben wenden wir nun die Bernoullische Ungleichung an, womit sich

$$\frac{b_n}{b_{n+1}} \ge \frac{n+1}{n+2} \left(1 + \frac{n+1}{n(n+2)} \right)$$

$$= \frac{n+1}{n+2} \frac{n(n+2) + (n+1)}{n(n+2)}$$

$$= \frac{(n+1)(n^2 + 3n + 1)}{n(n+2)^2}$$

$$= \frac{n^3 + 4n^2 + 4n + 1}{n(n+2)^2}$$

$$= \frac{n(n+2)^2 + 1}{n(n+2)^2}$$

$$= 1 + \frac{1}{n(n+2)^2}$$

ergibt. Weil nun $1 + \frac{1}{n(n+2)^2} \ge 1$, schließen wir daraus, dass $\frac{b_n}{b_{n+1}} \ge 1$ und wegen $b_{n+1} \ge 0$ somit $b_n \ge b_{n+1}$ für alle $n \in \mathbb{N}$ gilt, d. h. die Folge $(b_n)_{n \in \mathbb{N}}$ ist monoton fallend (und tatsächlich sogar streng monoton fallend).

(c) Nach (a), und weil $(b_n)_{n\in\mathbb{N}}$ nach (b) monoton fallend ist, haben wir

$$a_n \le b_n \le b_1 = 4$$
 für alle $n \in \mathbb{N}$,

d.h. die Folge $(a_n)_{n\in\mathbb{N}}$ ist nach oben beschränkt. Da $(a_n)_{n\in\mathbb{N}}$ nach (b) monoton wachsend ist, liefert das Monotoniekriterium die Konvergenz der Folge $(a_n)_{n\in\mathbb{N}}$. Andererseits erhalten wir aus Aufgabenteil (a), und weil die Folge $(a_n)_{n\in\mathbb{N}}$ monoton wachsend ist, dass

$$b_n > a_n > a_1 = 2$$
 für alle $n \in \mathbb{N}$.

d. h. die Folge $(b_n)_{n\in\mathbb{N}}$ ist nach unten beschränkt. Da $(b_n)_{n\in\mathbb{N}}$ nach (b) monoton fallend ist, liefert das Monotoniekriterium die Konvergenz der Folge $(b_n)_{n\in\mathbb{N}}$. Schließlich nutzen wir aus, dass $b_n=a_n\big(1+\frac{1}{n}\big)$ für alle $n\in\mathbb{N}$ gilt. Demnach muss nach den Grenzwertrechenregeln

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(a_n \left(1 + \frac{1}{n} \right) \right) = \left(\lim_{n \to \infty} a_n \right) \underbrace{\left(\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) \right)}_{=1} = \lim_{n \to \infty} a_n$$

gelten, womit die Gleichheit der Grenzwerte bewiesen ist.

(d) Für den gemeinsamen Grenzwert e der beiden Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ gilt

$$a_n < a_{n+1} < e < b_{n+1} < b_n$$
 für alle $n \in \mathbb{N}$.

Wir finden somit Intervalle $[a_n, b_n]$, von denen jedes e enthält und die mit wachsendem n immer kleiner werden, d. h. wir erhalten immer bessere Näherungswerte für e. Konkret ist $\frac{a_n+b_n}{2}$, die Mitte des Intervalls $[a_n,b_n]$, ein Näherungswert für e, der e bis auf einen Fehler von höchstens $\frac{b_n-a_n}{2}$ annähert.

Mit einem Taschenrechner bestimmt man die folgenden Werte:

n	a_n	b_n	$\frac{a_n+b_n}{2}$	$\frac{b_n-a_n}{2}$
1	2	4	3	1
5	2,48832	2,98598	2,73715	0,248832
10	2,59374	2,85312	2,72343	0,129687
50	2,69159	2,74542	2,7185	0,0269159
100	2,70481	2,73186	2,71834	0,0135241
500	2,71557	2,721	2,71828	0,00271557
1000	2,71692	2,71964	2,71828	0,00135846

An der letzten Zeile der Tabelle lesen wir die Näherung $e \approx 2,71828$ ab, die e bis auf einen Fehler von höchstens 0,00135846 approximiert und deren ersten beiden Nachkommastellen garantiert mit denen von e übereinstimmen. (Tatsächlich sind sogar alle angegebenen Nachkommastellen der Näherung korrekt.)

Wir veranschaulichen die Situation zusätzlich mit dem folgenden Schaubild:

Die Werte der Folge $(a_n)_{n\in\mathbb{N}}$ sind blau und die Werte der Folge $(b_n)_{n\in\mathbb{N}}$ rot dargestellt.

Aufgabe 2: Es seien $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ reelle Zahlenfolgen. Beweisen oder widerlegen Sie die folgenden Aussagen.

- (a) Ist $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und konvergiert $\sum_{n=1}^{\infty} b_n$, so konvergiert auch $\sum_{n=1}^{\infty} a_n$.
- (b) Ist die Reihe $\sum_{n=1}^{\infty} a_n$ konvergent, so konvergiert auch $\sum_{n=1}^{\infty} a_n^2$.
- (c) Ist die Reihe $\sum_{n=1}^{\infty} a_n$ absolut konvergent, so konvergiert auch $\sum_{n=1}^{\infty} a_n^2$ absolut.

Lösung:

- (a) Die Aussage ist falsch. Es seien $a_n = -\frac{1}{n}$ und $b_n = 0$ für alle $n \in \mathbb{N}$. Dann gilt $a_n \leq b_n$ für alle $n \in \mathbb{N}$ und $\sum_{n=1}^{\infty} b_n = 0$ konvergiert, aber $\sum_{n=1}^{\infty} a_n = -\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert (da die harmonische Reihe divergiert).
- (b) Die Aussage ist falsch. Es sei $a_n = \frac{(-1)^n}{\sqrt{n}}$ für alle $n \in \mathbb{N}$. Dann konvergiert die Reihe $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ nach dem Leibniz-Kriterium, während $\sum_{n=1}^{\infty} a_n^2 = \sum_{n=1}^{\infty} \frac{1}{n}$ die harmonische Reihe darstellt und somit divergiert.
- (c) Die Aussage ist richtig. Es sei $\sum_{n=1}^{\infty} a_n$ absolut konvergent. Dann ist die Folge $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge, also insbesondere konvergent und somit insbesondere beschränkt. Es gibt also eine reelle Zahl C>0, sodass $|a_n|\leq C$ für alle $n\in\mathbb{N}$. Daraus folgt $|a_n|^2\leq C|a_n|$ für alle $n\in\mathbb{N}$, sodass nach dem Majorantenkriterium die Reihe $\sum_{n=1}^{\infty}|a_n|^2=\sum_{n=1}^{\infty}|a_n^2|$ konvergiert.