HOW TO RUN CANLAB 2ND LEVEL ANALYSIS TEMPLATE SCRIPTS

walkthrough by Marianne Reddan, 2017 code & videos by tor, 2017

This document (editable version, may be updated):

https://docs.google.com/document/d/1bGpiXUyxxzu6aG0zAU4x8ELNy3bdUMogW_TiuoDaH0s/edit?ts=591b7 3b7#

GENERAL INFORMATION

Videos (see below):

Example HTML output from these scripts:

What you will need to run:

- 1. INSTALL THE CANIAb help examples FOLDER FROM GITHUB
- 2. ADD ALL THE FOLDERS TO PATH
- 3. SET UP YOUR DATA ANALYSIS FOLDER

STEP A - SET UP NEW FOLDERS

STEP B - SET UP THE STUDY INFO DOCUMENT

- 4. MODIFY THE TEMPLATE SCRIPTS
- 4. RUN THE BATCH AND PUBLISH

MORE

GENERAL INFORMATION

Videos (see below):

On Youtube [note: youtube video audio not working] and CANlab slack Or on <u>Drive</u>

Example HTML output from these scripts:

https://www.dropbox.com/s/rt8xzf6yq4h0h6e/Example_CANlab_second_level_html_output.zip?dl=0

What you will need to run:

1. CANIab core tools

https://github.com/canlab/CanlabCore

- 2. SPM (e.g., SPM12)
- 3. CANIab second-level analysis scripts https://github.com/canIab/CANIab_help_examples
- 4. For "signature"-based analysis: CANlab signatures (e.g., NPS); some private

If you are sharing data with CANIab, here is a post with details: https://slack-files.com/T09S4HMUL-F1866CCER-6f7a17803b

If you are applying the NPS and other "signatures" here are two posts about how to do it, and some notes about image scaling across studies:

https://slack-files.com/T09S4HMUL-F17M8PFS7-09e72ec85bhttps://slack-files.com/T09S4HMUL-F1J0TF0H5-2885e964cc

To do: add instructions on the behavioral data

1. INSTALL THE CANIab_help_examples FOLDER FROM GITHUB

Found here https://github.com/canlab

This video provides further instruction.

2. ADD ALL THE FOLDERS TO PATH

In MATLAB

- genpath(addpath('/CANLab_help_examples/'))
- genpath(addpath('/YOUR_ANALYSIS_FOLDER/'))

This video provides further instruction.

Check and make sure you have all the paths and dependencies before you get started by running this script (found in CANLab_help_examples):

run('/CANlab_help_examples/Second_level_analysis_template_scripts/a2_second_level_toolbox_check_dependencies.m')

You may need files from our <u>lab's google drive</u> which is *not* public. However, these are not necessary for all analyses.

3. SET UP YOUR DATA ANALYSIS FOLDER

Are your data set up so that the folders represent conditions and inside those folders are subject data? If not, maybe this bash reorganization <u>script</u> will help you. Alternatively you can change the way the 2nd Level Scripts look at your folders. However, I recommend you keep their inherent structure the same and just conform. Path of least resistance. Do not apply this advice to your social life.

STEP A - SET UP NEW FOLDERS

There is a script you can use which will auto set up your folders to play well with the 2nd level analysis pipeline. Go to your new **Analysis** folder and run this from within it:

a_set_up_new_analysis_folder_and_script.m

If you want to do this by hand you can go to your **Analysis** folder set up these subfolders:

- data
- extras
- results
- scripts
 - Here copy in a series of scripts from CANLab_help_examples

STEP B - SET UP THE STUDY INFO DOCUMENT

• Copy over to your **Analysis** folder 'study_info.json'

This video provides further instruction.

4. MODIFY THE TEMPLATE SCRIPTS

1. In a text editor, edit the **study_info.json** file to fit your data For example:

```
{
    "Primary_publication":
    "Fill in this JSON-format file and call it study_info.json, in your main
    study folder. This field would contain the primary publication associated
    with the study, if any, or null if none.",

    "Associated_publications":
    "Other publications here, e.g.,
    Reddan MC, Wager TD, Schiller D. Imagined Extinction Reduces Learned Threat in Brain and Body. (submitted)",

    "Notes":
    "This dataset was shared by Daniela Schiller for Marianne Reddan to analyze the effects of imagined extinction",

    "Publication_URLs": null,

    "Publication_DOIs": null,

    "Paradigm_files_links": null,

    "Brandigm_files_links": null,

    "TRB_number": null,

    "Scanner_site": "New York University",

    "Field_strength": "3.0T",

    "Citing_this_work":
    "If you use this dataset in a publication,
    please include as authors or acknowledge individuals as specified below.
    Please also see information on publications and grants to cite.",

    "Authors_to_include_on_reuse": "Tor Wager, Daniela Schiller, Marianne Reddan",

    "Grant_numbers_to_cite": null

}
```

This video provides further instruction.

- 2. Next, in MATLAB open a_set_up_paths_always_run_first.m and change:
 - a. basedir to the filepath of your analysis folder
- 3. Next, open up **prep_1_set_conditions_constrasts_colors.m** and change the paths and wildcards referring to the contrast images in your data folder:
 - a. Update the conditions to reflect how *your* data are set up
 - i. DAT.subfolders
 - ii. DAT.conditions
 - iii. DAT.structural_wildcard

```
% /Users/maus/Desktop/2017_AuditoryThreatConditioning/data/subj_contrasts/IE101NC/con_0001.hdr
fprintf('Image data should be in /data folder\n');

DAT = struct();
% Names of subfolders in /data
DAT.subfolders = {'subj_contrasts'};
% Names of conditions
DAT.conditions = {'CSp' 'CSm'};

DAT.conditions = format_strings_for_legend(DAT.conditions);

DAT.structural_wildcard = {};
DAT.functional_wildcard = {'IE*/con_0001.img' 'IE*/con_0002.img'};
```

- b. Update the contrasts to reflect what contrasts you are interested in
 - i. DAT.contrasts
 - ii. DAT.contrastnames

```
% Set Contrasts
% ------
% Vectors across conditions
DAT.contrasts = [1 -1];

DAT.contrastnames = {'CSp_vs_CSm'};

DAT.contrastnames = format_strings_for_legend(DAT.contrastnames);
```

- c. Update the colors or leave to default
- d. Update between-condition contrasts if you have more than one subject group. If you only one group leave it empty.

```
% Set BETWEEN-CONDITION contrasts, names, and colors
% -----
% Currently used in c2c_SVM_between_condition_contrasts
%
% Matrix of [n contrasts x k conditions]

DAT.between_condition_cons = [];

DAT.between_condition_contrastnames = {};

DAT.between_condition_contrastcolors = custom_colors ([.2 .2 .8], [.2 .8 .2], si
```

- Save & run your a_set_up_paths_always_run_first.m and prep_1_set_conditions_constrasts_colors.m in MATLAB
- 5. Run prep_2, 3, and 4
- 6. It will be saved here in data_objects.mat

This video provides further instruction on steps 4.2 to 4.6.

4. RUN THE BATCH AND PUBLISH

1. There are multiple options for what to run. Try **z_batch_publish_analyses.m**

And you are set. If you have issues with your file structure check out the <u>youtube channel</u> to learn more ways to use the wildcards.

USER OPTIONS FOR CLASSIFICATION

c2_SVM_contrasts has user-controlled functionality. Prep script
prep_3b_run_SVMs_on_contrasts_and_save runs SVMs and saves results.
c2_SVM_contrasts reloads them from the saved mat files and displays results.

You can copy this script **a2_set_default_options** to your analysis/scripts folder and change the following options:

- Bootstrapping -- Default OFF
- Save the stats maps -- Default ON

Those options will be called by the classification analysis scripts.

MORE

Look through the folder:

CANIab_help_examples/Second_level_analysis_template_scripts/core_scripts_to_run_wit hout_modifying

There you can run specific additional analyses, like lasso-pcr or the buckner parcellations

For example:

5. Run z_batch_bucknerlab_network_analyses.m

Or load up the data_objects.mat from your results folder and run some predictions like LASSO-PCR, etc