- 1°) Ecrire z₃ sous forme trigonométrique. Puis placer les points A, B et C.
- 2°) Donner une mesure de l'angle orienté (OA, OC).
- 3°) Ecrire $\frac{Z_3}{Z_1}$ sous forme algébrique puis déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$

<u>B/</u> Soit $\theta \in]$ 0, $\frac{\pi}{2}$ [, M_1 et M_2 les points d'affixes respectives :

 $z_1 = 1 + \cos 2\theta + i \sin 2\theta$ et $z_2 = 1 - \cos 2\theta - i \sin 2\theta$

- 1") a)Ecrire z₁ et z₂ sous forme trigonométrique.
- b) Déterminer la nature du triangle OM₁M₂
- c) Déterminer 0 pour que OM₁M₂ soit isocèle.
- 2°) a) Montrer que M₁ et M₂ sont symétriques par rapport à un point que l'on
 - b) Montrer que M1 et M2 varient sur un même cercle C que l'on précisera.

La vie n'est bonne qu'à étudier et à enseigner les mathématiques

Page 2

MR:LATRACH	Pour Bien Démarrer	4 ^{ème} M&SC
Pioneer	Les mathématiques sont la science mère des autres :	
	sans mathématiques, le mot science n'a plus de sens.	Sep 2024

Exercice 8:

I)On considère dans le plan complexe P muni d'un repère orthonormé (O, vi, v), les points I(1), A(2) et $B(\frac{1}{2})$

Soit f l'application du plan P dans P qui à tout point M(z) distinct de A associe le point f(M) = M'(z') tel que : $z' = \frac{1-2z}{z-2}$. On note N le symétrique de M par rapport à l'axe des abscisses.

- 1) a) M que l'ensemble des points M tels que M'=A est la médiatrice de [AB] .
 - b) Déterminer l'ensemble Γ des points M tels que M'= N.
- 2) Soit @ est l'ensemble des points M de P tels que BM = 2AM On se propose de construire le point M' pour un point M du cercle 🛞
- a) Mque $OM' = \frac{2BM}{AM}$ et en déduire que M' appartient à un cercle \mathscr{C} ' qu'on précisera. b) Montr.er que $\frac{z'-2}{z-2} = \frac{5-4Re(Z)}{|z-2|^2}$ et en déduire que les points A, N et M' sont alignés
- c) Construire le point M' dans la figure ci-dessous
- On se propose de déterminer et construire les points invariants par f. II)
- 1) Montrer que M(z) est invariant par f si et seulement si z est solution de l'équation : (E) : $z^2 - 2(z - \overline{z}) - 1 = 0$
- 2) Montrer que (E) admet deux solutions réelles qu'on précisera
- 3) Montrer que l'équation (E) est équivalente à : $(z-1)^2 = -2(\overline{z-1})$
- 4) Soit M(z) un point invariant par f tel que M≠I
 - a) Montrer que |z-1|=2 ; interpréter graphiquement le résultat.
 - b) Montrer alors que dans C {1}, l'équation (E) est équivalente à :(z-1)³ = -8
- III) On désigne par P* le plan privée de O . Soit g l'application de P* vers P qui à tout point M(z) associe le point M'(z') tel que $z' = \bar{z} + \frac{z^2}{z}$
- 1)On pose $z = re^{i\theta}$ avec $r \in IR^*$, et $\theta \in]-\pi,\pi[$.

Donner la forme exponentielle de z'. En déduire que les points O, M et M' sont

- 2) Déterminer et construire l'ensemble des points invariants par g.
- Montrer que le point I = O*M' est le projeté orthogonal de M, (z) sur la droite
- 4) Utiliser l'application g pour résoudre dans C l'équation $\bar{z} + \frac{z^2}{z} = 4i$.

Exercice :9 :On considère la suite (u_n) définie sur \mathbb{N} par : $\begin{cases} u_0 = \frac{3}{2} \\ u_{n+1} = \frac{2u_n + 2}{u_n + 3} \end{cases}$

- Montrer par récurrence que pour tout n ∈ N on a : 1 ≤ u_n ≤ 2.
- 2) Etudier la monotonie de cette suite.
- a) Montrer que pour tout n ∈ N on a: u_{n+1} 1 ≤ ¼ (u_n 1).
 - b) Montrer par récurrence que pour tout $n \in \mathbb{N}$ on a : $0 \le u_n - 1 \le \frac{1}{2} \left(\frac{1}{4}\right)^n$
- 4) On pose $v_n = \frac{1}{2+u_n}$ $o\dot{u} n \in \mathbb{N}$.
- a) Montrer que (v_n) est une suite géométrique dont-on précisera la raison
- b) Exprimer v_n puis u_n en fonction de n.
- 5) Soit la suite (S_n) définie sur \mathbb{N} par : $S_n = \sum_{k=0}^{k=n} (-1 + u_k)$. Montrer que (S_n) est croissante et majorée.

MR:LATRACH

Pour Bien Démarrer

4 me M&SC

Pioneer

Les mathématiques sont la science mère des autres :

sans mathématiques, le mot science n'a plus de sens.

Sep 2024

Exercice 4:

Questions indépendantes :

- 1) Montrer que si $\{|z| = |z'| = 1 \\ |2 + zz'| = 1 \}$ Alors zz' = -1
- 2) Résoudre dans C ; |z| 9i = 3z 7
- 3) Soit $z = 1+i\sqrt{3}$. Donner la forme algébrique puis trigonométrique des complexes suivants \bar{z} ; z^{-1} et z^2
- 4) Montrer que pour tout $z \in C$, $|z+1|^2 + |z|^2 = 1 \leftrightarrow (2z+1)(2z+1) = 1$
- 5) Soit z et z' deux nombres complexes non nuls d'arguments respectives θ et θ' .

Démontrer que $|z + z'| = |z - z'|ssi \theta' = \theta + \frac{\pi}{2} [\pi]$

6) $\forall n \in \mathbb{N}^*$, on pose $S_n = (1+i)^n + (1-i)^n$

Déterminer l'ensemble des entiers n pour lesquels :

- a) $S_n = 0$
- b) S_n est un entier relatif.

Exercice 5:

Déterminer les ensembles des points M(z) tels que :

$$E:|z-2i+1|=|z-4i|$$
;

$$F: arg(z-2i) \equiv arg(1-z) [2\pi].$$

G:
$$arg(2z-2) \equiv arg(1-\bar{z})[2\pi]$$
;

$$H: |z + \frac{1}{z}| = |z - i|.$$

$$K: |z| = 1 \ et \ |z^2 + \overline{z^2}| = 1$$

Exercice 6:

Le plan Complexe est rapporté à un repère orthonormé direct (O, u, v)

1) a) Construire le cercle (C) de centre 0 et passant par le point A d'affixe 2.

On désigne par B et C les points d'affixes respectives $b = -1 + i\sqrt{3}$ et $c = \overline{b}$

- b) Mettre chacun des nombre b et c sous forme trigonométrique.
- c) En déduire que les points B et C appartiennent au cercle (C) .
- d) Construire alors les points B et C
- 2) a) Montrer que $\frac{c}{b-2} = \frac{2}{c-b} = i\frac{\sqrt{3}}{3}$
 - b) En déduire que le point 0 est l'orthocentre du triangle ABC.
- 3) Soit M_n le point d'affixe b^n où n désigne un entier naturel supérieur ou égal à 2. Déterminer n pour que 0, B et M_n soient alignés.

Exercice 7:

Le plan complexe étant rapporté à un repère orthonormé direct (o, u, v).

<u>A</u> On considère les points A, B et C d'affixes respectives :

$$Z_1 = 1 + i$$
, $Z_2 = 1 - i$ et $Z_3 = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$.

- 1°) Ecrire z₃ sous forme trigonométrique. Puis placer les points A, B et C.
- 2°) Donner une mesure de l'angle orienté (OA, OC).
- 3°) Ecrire $\frac{Z_3}{Z_1}$ sous forme algébrique puis déduire les valeurs exactes

de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

B/ Soit $\theta \in]0$, $\frac{\pi}{2}[$, M_1 et M_2 les points d'affixes respectives :

 $z_1 = 1 + \cos 2\theta + i \sin 2\theta$ et $z_2 = 1 - \cos 2\theta - i \sin 2\theta$

- 1°) a)Ecrire z₁ et z₂ sous forme trigonométrique.
- b) Déterminer la nature du triangle OM: M2
- c) Déterminer θ pour que OM₁M₂ soit isocèle.
- 2°) a) Montrer que M₁ et M₂ sont symétriques par rapport à un point que l'on précisera.
 - b) Montrer que M₁ et M₂ varient sur un même cercle C que l'on précisera.

Pour Bien Démarrer

4^{ème} M&SC

Pioneer

Les mathématiques sont la science mère des autres :

sans mathématiques, le mot science n'a plus de sens.

Sep 2024

Exercice 1 : Questions indépendantes :

1) Soit $f(x) = \sqrt{1-x} + \sqrt{1+x}$

Montrer que pour tout $x \in [0, 1]$; $\sqrt{2} \le f(x) \le 2$.

- 2) Calculer les limites suivantes :
- .a) Si x \in]0,1[, et $S_n=1-x+x^2-x^3+\cdots+(-1)^nx^n$); caluler $\lim_{n\to+\infty}S_{2n+1}$
- b) Calculer $\lim_{x\to 0} (\frac{2+x-2\sqrt{1+x}\cos x}{x^2})$, $\lim_{x\to 1+} (\frac{\sqrt{x^2-1}}{(x-1)^2})$
- 3) Déterminer les limites suivantes :
- a) $\lim_{x\to +\infty} (x-1) \sin(\frac{\pi}{x-1})$
- b) $\lim_{x\to +\infty} x^2(\cos(\frac{2}{x})-1)$

Exercice 2:

Soit la fonction g telle que : $g(x) = -x^3 + x^2 + x + 2$ où $x \in \mathbb{R}$.

- 1) a) Dresser le tableau de variations de g.
 - b) Calculer g(2) puis donner le signe de g(x).
- 2) Soit la fonction $f(x) = \frac{x^2+2}{x^2-1}$ où $x \in \mathbb{R} \setminus \{-1,1\}$ et C_f sa courbe dans un repère orthonormé.
 - a) Dresser le tableau de variations de f.
 - b) Donner les asymptotes à Cf.
 - c) Vérifier que pour tout $x \in \mathbb{R} \setminus \{-1,1\}$ on a : $f(x) x = \frac{g(x)}{x^2 1}$.
 - d) En déduire la position relative de C_f et la droite Δ : y = x puis construire C_f
- 3) Montrer que : $f(x) = 1 + \frac{3}{2} \left(\frac{1}{x-1} \frac{1}{x+1} \right)$ où $\epsilon \mathbb{R} \setminus \{-1,1\}$.
- 4) On pose $S_n = \sum_{i=2}^{i=n} [1 f(i)]$ où n entier supérieur à 3.
 - a) Etudier les variations de la suite (S_n) .
 - b) Montrer que : $S_n = -\frac{9}{4} + \frac{3}{2} \left(\frac{1}{n} + \frac{1}{n+1} \right)$ où n entier supérieur à 3.

En déduire la limite de la suite $(S_n)_{n\geq 3}$

5) On pose $X_n = n(n+1)(\frac{9}{4} + S_n)$ où n entier supérieur à 3.

Montrer que (X_n) est une suite arithmétique dont-on précisera la raison puis calculer la limite de la suite $(X_n)_{n\geq 3}$

Exercice 3:

Soit la fonction F telle que : $F(x) = \sqrt{x^2 - 2x}$ où $x \in]-\infty, 0] \cup [2, +\infty[$ et C_F sa courbe dans un repère orthonormé.

- a) Montrer que la droite : x = 1 est un axe de symétrie de C_F.
- b) Montrer que la droite Δ : y = x 1 est une asymptote oblique de C_F au voisinage de $(+\infty)$.
 - c) Etudier la dérivabilité de F à droite en 2.
 - d) Dresser le tableau de variations de F (sur] $-\infty$, 0] \cup [2, $+\infty$ [).
- Tracer Δ. En déduire la construction de l'autre asymptote puis tracer la courbe de F (préciser les tangentes éventuelles).
- 3) Soit la fonction : $g(x) = \cos(\frac{\pi}{2}x) + 1$ où $x \in [0,2]$.
 - a) Montrer que g est bornée.
 - b) Dresser le tableau de variations de g.
- c) Tracer la courbe de g dans le même repère (préciser les tangentes éventuelles).
- 4) Soit la fonction : $h(x) = \begin{cases} g(x) & \text{si } x \in [0,2] \\ F(x) & \text{si } x \notin [0,2] \end{cases}$
 - a) Etudier la continuité de h en 0 puis en 2.
 - b) Etudier la dérivabilité de h en 2.