The Price of Incentivizing Exploration: A Characterization via Thompson Sampling and Sample Complexity

Mark Sellke (Stanford University) & Aleksandrs Slivkins (Microsoft Research NYC): NeurIPS StratML 2021, https://arxiv.org/abs/2002.00558

1 Incentivized Exploration: multi-armed bandits with incentives

- ightharpoonup K arms a_1, \ldots, a_K . IID rewards, independent prior \mathcal{P}_i over each mean reward μ_i . Each round t: new agent arrives, ALG recommends arm A_t , agent chooses an arm which maximizes $\mathbb{E}_{\mathcal{P}}[\mu_a \mid A_t]$
- \triangleright Info flow: ALG observes chosen arms & rewards, each agent only observes A_t (if ALG can reveal an arbitrary message, WLOG this message is A_t)
- Agent obeys ALG if *Bayesian Incentive-Compatible* (BIC): $\mathbb{E}[\mu_a \mu_b | A_t = a] \ge 0 \quad \forall t, \text{ arms } a, b.$
- ➤ Long line of work starting from [Kremer, Mansour, Perry: EC`13, JPE`14]
- > Our angle: what is the *Price of Incentives* (PoI) vs. ordinary bandits?
 - \triangleright Bayesian regret: $\mathbb{E}_{\mathcal{P}}[T \cdot \mu_{a^*} \sum_t \mu_{A_t}]$
 - \succ Sample complexity: time T_{SC} to explore every arm.*
- > [Mansour-Slivkins-Syrgkanis EC`15, OpRe`20]: reduction from any bandit algorithm
 - ightharpoonup Bayesian regret BReg(T) $\leq c_{\mathcal{P}}\sqrt{T}$.
 - $\succ c_{\mathcal{P}}$ and T_{SC} can be exponential in K and $1/\sigma_{\min}$, where $\sigma_{\min}^2 = \min_a \mathrm{Var}(\mathcal{P}_a)$

*Some arms may be unexplorable by BIC algorithm. Restrict to the explorable arms.

Thompson Sampling (TS) is BIC After Warm Start

TS is a standard bandit algorithm: $\mathbb{P}[A_t = a \mid \text{history}] = \mathbb{P}[a \text{ is best arm} \mid \text{history}].$

Theorem: if $N_{\mathcal{P}}$ samples of each arm collected by time t, then TS is BIC after time t.

Corollary: Bayesian regret $\leq N_{\mathcal{P}}T_{SC} + O(\sqrt{T}) \Rightarrow \text{additive Pol } N_{\mathcal{P}}T_{SC}$

Moreover: if $\mathbb{E}[\mu_1] = ... = \mathbb{E}[\mu_K]$ then $N_{\mathcal{P}} = 0$.

Arms from finite set \mathcal{C} of types: $N_{\mathcal{P}} \leq O_{\mathcal{C}}(K)$ always.

Upper bound on $T_{SC} \rightarrow \text{upper bound on Bayesian regret.}$

Neat proof that TS is BIC when $\mathbb{E}[\mu_1] = ... = \mathbb{E}[\mu_K]$:

– Want to show $\mathbb{E}[\mu_i - \mu_j | A_t = a_i] \ge 0$. Bayes and defin of TS imply:

$$\mathbb{E}[\mu_i - \mu_j | A_t = a_i] = \frac{\mathbb{E}\left[\mathbb{E}^t [\mu_i - \mu_j] \cdot \mathbb{P}^t [A^* = a_i]\right]}{\mathbb{P}\left[A^* = a_i\right]}.$$

- Red/blue terms are martingales that always move the same direction.
 - \Rightarrow Product is submartingale \Rightarrow numerator increases from $0 \Rightarrow \mathbb{E}[\mu_i \mu_i | A_t = a_i] \ge 0$.

BIC Algorithm for Initial Sampling: An Over-Simplified Outline

Goal: obtain 1 sample of each arm with a BIC algorithm.

To explore each arm j=1...K (in decreasing order of $\mathbb{E}[\mu_1] \geq \cdots \geq \mathbb{E}[\mu_K]$)

Getting started: if all j-1 previous arms are terrible, sample arm j

<u>Loop</u>: in k-th iteration, $p_k := \mathbb{P}[\text{have explored arm j}],$

 $\mathbb{P}[\text{explore arm } j \text{ in this iteration}] = \lambda \cdot p_k \Rightarrow p_{k+1} \leftarrow (1 + \lambda)p_k.$

Choose between 3 branches: explore arm j, exploit, and j-exploit (the secret sauce)

j-exploit: if arm j already explored, carefully choose when to recommend it, **maximizing** $\lambda \coloneqq \min_{i < j} \mathbb{E}[\mu_j - \mu_i | A_t = j \text{ in j-exploitation}].$

counterbalances $\lambda \cdot p_k$ amount of fresh exploration.

Exponential growth: $p_k \sim p_0 e^{\lambda k} \Rightarrow T_{SC} \approx \lambda^{-1}$.

Optimal λ via minimax theorem: $\lambda = \min_{j \in [K], \ q \in \Delta_{j-1}} \mathbb{E}\left[\left(\mu_j - \mu_q\right)_+\right], \quad \mu_q := \sum_i q_i \ \mu_i$

Consequences for Sample Complexity

Lower bound: $T_{SC} \ge L := \max_{j \in [K], q \in \Delta_K} \mathbb{E}[\mu_q - \mu_j] / \mathbb{E}[(\mu_j - \mu_q)_+].$

– Proof idea: need to play arm j at least once, beat μ_q on average.

Theorem: $T_{SC}(ALG) \le \text{poly}(L, \sigma_{\min}^{-1}, K)$. Resolves poly vs. exp dependence on K and σ_{\min}

Dependence on the prior for Beta priors:

Optimal $T_{SC} \sim \sigma_{\min}^{-2} m^{O(Km)}$, where $m = 1/[\text{second smallest Var}(\mathcal{P}_a)]$

Easy for *one* well-known arm (important special case!), difficult for ≥ 2

Dependence on K: Linear vs Exp Dichotomy if all priors \mathcal{P}_i lie in finite set \mathcal{C}

(a) If $\mathbb{P}[\mu_i > \mathbb{E}[\mu_i] + \delta] > \delta$ for all $\mu_i, \mu_i \in \mathcal{C}$: $T_{SC} = O_{\delta}(K)$.

(b) If $\mathbb{P}[\mu_j > \mathbb{E}[\mu_i] - \delta] = 0$ for some $\mu_i, \mu_j \in \mathcal{C}: T_{SC} \ge \exp_{\delta}(K)$. Typical case