Vector Analysis

Owen Cox

May 31, 2023

Contents

1	Det	erminants	2			
	1.1	Row Operations and Determinants	2			
	1.2	Determinant of Transpose	3			
	1.3	Determinant of Products	3			
	1.4	Crammer's Rule	3			
	1.5	Areas and Volumes by Determinant	4			
	1.6	Theorem 10	4			
2	Day 9 -					
	2.1		4			
	2.2	Vector Space	4			
	2.3	Subspaces	5			
3	Spa	ce	6			
	3.1	Null Space	6			
		3.1.1 Null space as a subspace theorem	7			
	3.2	Column Space Definition	7			
	3.3		7			
	3.4	Finding a vector in Col A	7			
	3.5	Linear Independence and Dependence	8			
	3.6	Linear Independence (Thm 4.4)	8			
4	Basi	is Definition	8			
_	4.1	Span in the context of removing linear combinations .	8			
	4.2	Basis of n vectors	8			
		4.2.1 Theorem 9	8			
		4.2.2 Theorem 10	8			
	4.3	Dimensions	9			
	4.4	Theorem 11	9			
	4.5	Theorem 12 - the basis theorem	10			
	4.6	Row Space	10			
	4.7	Theorem 13	10			
	4.8	Rank A	11			

	4.9	The Rank Theorem	11		
5	4.4 (Coordinate Systems and 4.6 Change of Basis	11		
	5.1	Objective	11		
	5.2	Coordinate Systems	11		
	5.3	Theorem 2: The Unique Representation Theorem	12		
	5.4	Theorem 8	13		
	5.5	Theorem 15 - Change of basis matrix P	14		
6	5.1 Eigenvectors and Eigenvalues, 5.2 The character				
	6.1	Eigenvectors	14		
	6.2	Eigenvalue	15		
	6.3	Theorem 1	15		
	6.4	Theorem 2	16		
	6.5	Invertible Matrix Theorem cont	16		
	6.6	Similar Matrices	16		
	6.7	Theorem 4	16		
7	5.3 Diagonalization and 5.4 Eigenvectors and Linear Trans-				
		nations	16		
	7.1	Difference Equations and Diagonalization	16		
	7.2	Theorem 5: The dianogalization Theorem	17		
	7.3	Determining diagonal	17		
	7.4	Theorem 6 and 7	17		
	7.5	Theorem 8 Diagonal matrix representation	18		
8	6.1 I	nner Product, Length, Orthogonality	18		
	8.1	Inner Product	18		
	8.2	Theorem 6.1	19		
	8.3	Theorem 2: Pythagorean Theorem	19		
	8.4	Theorem 4	20		
	8.5	Theorem 8: Orthogonal Decomposition Theorem	20		
	8.6	Theorem 9: Best approximation Theorem	20		
9	6.4 The Gram-Schmidt Process and 6.5 Least Squares Prob-				
	lem		20		
	9.1	Gram Schmidt			
	9.2	Theorem 11, The Gram Schmidt Process			
	9.3	1			
	9.4	Theorem 13			
	9.5	Theorem 14	22		
10	Fina	l Additions	22		
1	De	terminants			
1.1	l RC	DW OPERATIONS AND DETERMINANTS			
Ιρ	+ 4 h	e a square matrix			

- 1. If a multiple of one row of A is added to another row to produce a matrix B (replacement operation) then det(B) = det(A).
- 2. If two rows of A are interchanged to produce B then det(B) = -det(A)
- 3. If a row of A is multiplied by a scalar to produce B, then det(B) = k det(A)

Suppose a matrix A has been reduced to Echelon form U by row replacements and row interchanges. If there are r total interchanges performed

$$\det(A) = (-1^r)\det(U) \tag{1}$$

Since U is in echelon form (triangular) det(U) is the product of the diagonal entries.

- If *A* is invertible the entries on the diagonal are all pivots $(A \sim I_n)$
- If *A* is non-invertible, at least one of these entries u_1, u_2, \dots, u_{nn} must be zero, so the product

$$u_{11}, u_{22}, \dots, u_{nn} = 0$$
 (2)

So, for a matrix *A* to be invertible,

$$\det(A) \neq 0 \tag{3}$$

1.2 DETERMINANT OF TRANSPOSE

if $A m \times n$

$$\det(A^T) = \det(A) \tag{4}$$

1.3 DETERMINANT OF PRODUCTS

If *A* and *B* are $n \times n$ matrices:

$$\det(AB) = \det(A)\det(B) \tag{5}$$

1.4 CRAMMER'S RULE

Useful for solving systems of equations.

For any $n \times n$ matrix A and any $b \in \mathbb{R}$, let $A_i(b)$ be the matrix obtained from A by replacing column i by vector b

Let A be an invertible $n \times n$ matrix, for any $b \in \mathbb{R}^n$, the unique solution x of Ax = b has entries given by

$$x_i = \frac{\det(A_i b)}{\det(A)} \tag{6}$$

Solving Ax = b

- 1. Row reduction of augmented form
- 2. $A^{-1}b = x$
- 3. Crammer's Rule

1.5 Areas and volumes by determinant

- 1. If *A* is a 2×2 matrix, the area of the parallelogram determined by the columns of *A* is $|\det(A)|$
- 2. if A is a 3×3 matrix, the volume f the parallelepiped determined by the columns of a is $|\det(A)|$

1.6 THEOREM 10

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation determined by a 2×2 matrix A, if S is a parallelogram in \mathbb{R}^2 , then

$$A_{T(S)} = |\det(A)| \times A_S \tag{7}$$

Theorem 10 holds whenever S is a region in \mathbb{R}^2 with finite area or a region in \mathbb{R}^3 with finite volume.

2 Day 9 -

2.1 OBJECTIVES

- 1. Know hat conditions for a set to be a subspace of a larger vector space
- 2. Find the column space and null space of a matrix
- 3. Show that a transformation between vector spaces in linear
- 4. Find the kernel / Null space and range of a linear transformation
- 5. know how to find the basis for a vector space especially for the null space and column space

2.2 VECTOR SPACE

A vector space is a non-empty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by sacalars subject to the 10 axioms listed below. The axioms must be held for all vectors \vec{u} , \vec{v} , and \vec{w} in V and for all scalars c and d

- 1. The sum of \vec{u} and \vec{v} , directed by $\vec{u} + \vec{v}$, is in V
- 2. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 3. $(\vec{u} + \vec{v}) + w = \vec{u} + (\vec{v} + w)$
- 4. There is a zero vector 0 in *V* such that $\vec{u} + 0 = \vec{u}$
- 5. For each \vec{u} in V, there is a vector $-\vec{u} \in V$ such that $\vec{u} + (-\vec{u}) = 0$
- 6. The scalar multiple of \vec{u} by c , denoted by $c\vec{u}$, is in V
- 7. $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
- 8. $(c+d)\vec{u} = c\vec{u} + d\vec{u}$
- 9. $c(d\vec{u}) = (cd)\vec{u}$
- 10. $1\vec{u} = \vec{u}$

Can show:

- 1. $0\vec{u} = 0$
- 2. c0 = 0
- 3. $-\vec{u} = (-1)\vec{u}$

 P_n for $n \ge 0$, polynomials with degree of at most n

$$p(t) = a_0 + a_1t + a_2t^2 + \dots + a_nt^n$$

$$q(t) = b_0 + b_1 t + b_2 t^2 + \dots + b_n t^n$$

Addition

$$(p+q)(t) = p(t) + q(t) = (a_0 + b_0) + (a_1 + b_1)t + \dots + (a_n + b_n)t^n$$

2.3 SUBSPACES

Subspace - A subspace of a vector space V is a subset H of V that has these properties

- 1. the zero vector of *V* is in *H*
- 2. *H* is closed under vector addition

For any u and $v \in H$, $u + v \in H$

3. *H* is closed under multiplication by scalars

For any u in H, and scalar c, $cu \in H$

$$\left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s \text{ and t are real} \right\}$$
 (8)

Vectors in H can be written in the form $u = s_1v_1 + s_2v_2$ for some scalars s_1, s_2 .

Process for determining if H is a subspace

1. consider $s_1 = s_2 = 0$

$$0v_1 + 0v_2 = 0 \in H$$

2. consider $u, w \in H$

$$u = s_1 v_1 + s_2 v_2$$

$$w = t_1 v_1 + t_2 v_2$$

$$u + w = (s_1 + t_1)v_1 + (s_2 + t_2)v_2 \in H$$

3. consider

$$cu = c(s_1v_1 + s_2v_2) = (cs_1)v_1 + (cs_2)v_2$$

3 Space

3.1 NULL SPACE

Let

$$x_1 - 3x_2 - 2x_3 = 0$$

$$-5x_1 + 9x_2 + x_3 = 0$$

Solution set:

$$\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix}$$

We define the set of x that satisfy Ax = 0 the null space of A.

Null Space definition: The null space of an $m \times n$ matrix A, denoted by Nul A is the set of all solutions that satisfy Ax = 0

3.1.1 Null space as a subspace theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n

Proof:

$$\mathbf{A}0 = 0$$

$$\vec{u}, \vec{v} \in \text{Nul}\mathbf{A} \to \mathbf{A}\vec{u} = 0, \mathbf{A}\vec{v} = 0 \to \vec{u} + \vec{v}\mathbf{A}(\vec{u} + \vec{v}) = \mathbf{A}\vec{u} + \mathbf{A}\vec{v} =$$

$$\vec{u} \in \text{Nul}\mathbf{A} \to \mathbf{A}\vec{u}\mathbf{A}(c\vec{u}) = c\mathbf{A}\vec{u} = c0 = 0$$

3.2 COLUMN SPACE DEFINITION

The column space of an $m \times n$ matrix **A** (Col **A**) is the set of all linear combinations of the columns of **A**, $\mathbf{A} = [a_1, a_2, \dots a_n]$

$$Col \mathbf{A} = span \{a_1, \dots, a_n\}$$

3.3

The column space of an $m \times n$ matrix **A** is a subspace of \mathbb{R}^n if Col**A** is a subspace of \mathbb{R}^k , what is k?

3.4 FINDING A VECTOR IN COL A

$$\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \in \text{Col}\mathbf{A}$$

Nul A

$$\begin{bmatrix} \mathbf{A} & 0 \end{bmatrix} \sim \begin{bmatrix} a_1 & a_2 & \cdots & a_n & 0 \end{bmatrix}$$

A linear transformation T from a vector space V into a vector space W is a rule that assigns each vector $x \in V$ to a unique vector T(x) in W such that

- 1. $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all $\vec{u}, \vec{v} \in V$
- 2. $T(c\vec{u}) = cT(\vec{u})$ for all $\vec{u} \in V$ and scalars c
- 3. The kernel (or null space) is the set of all \vec{u} in V such that $T(\vec{u}) = 0$
- 4. The range of T is the set of all vectors in W of the form $T(\vec{x}) = 0$

3.5 LINEAR INDEPENDENCE AND DEPENDENCE

The definition of Linear Independence in \mathbb{R}^n

Consider:
$$c_1 \vec{v_1} + c_2 \vec{v_2} + \cdots + c_p \vec{v_p} = \mathbf{0}$$

- 1. If this system has a non-trivial solution, v_1, \ldots, v_p , are linearly dependent
- 2. If this system has **only** the trivial solution, v_1, \ldots, v_p are **linearly independent**.

3.6 LINEAR INDEPENDENCE (THM 4.4)

An indexed set (put in a certain order) of 2 or more vectors with $v_1 \neq 0$, is linearly dependent iff some \vec{v}_j , (j > 1) is a linear combination of the preceding vectors v_{11}, \ldots, v_{j-1}

4 Basis Definition

Let H be a subspace of a vector space V_1 .

An indexed set of vectors $B = \{b_1, \dots, b_p\}$ in V is a basis for H if

- B is a linearly independent set
- H is the span of the vectors of B

4.1 SPAN IN THE CONTEXT OF REMOVING LINEAR COM-BINATIONS

Let
$$S = \{v1, ..., vp\}$$
 be a set in V and let $H = \text{Span}\{v_1, ..., v_p\}$

- 1. If one of the vectors in S, denoted v_k , is a linear combination of the remaining vectors in S, then the set formed from S by removing v_k will still span H
- 4.2 BASIS OF N VECTORS

4.2.1 Theorem 9

If a vector space V has a basis $B = \{b_1, \dots, b_n\}$, then any set in V containing more than n vectors must be linearly dependent.

4.2.2 Theorem 10

If a vector space *V* has a basis of *n* vectors, then every basis of *V* must consist of exactly *n* vectors.

Proof

let B_1 be a basis of n vectors and B_2 be another basis of V

- 1. Since B_1 is a basis and B_2 is linearly independent,
- 2. B_2 has no more than n vectors by theorem Theorem 9

4.3 DIMENSIONS

If V is spanned by a finite set, then V is said to be finite dimensional and **the dimension of V**, written as

$$\dim V$$
 (9)

is the number of vectors in a basis for V.

if V is not spanned by a finite set, then V is infinite dimensional.

The standard basis of \mathbb{R}^n contains n vectors

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \dots \\ 0 \end{bmatrix} \cdots e_n = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 1 \end{bmatrix}$$
 (10)

The standard polynomial basis $\{1, t, t^2\}$ spans \mathbb{P}_2 . dim $\mathbb{P}_2 = 3$.

In general dim $\mathbb{P}_n = n + 1$

Let
$$H = \operatorname{Span}\{v_1, v_2\}$$
 where $v_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$

then *H* is a plane, $\{v_1, v_2\}$ is a basis for $H \dim H = 2$

The subspaces of \mathbb{R}^3 can be classified by dimension

- 1. 0-dimensional subspace: only the zero subspace $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- 2. 1-dimensional subspace: Any subspace spanned by a non-zero vector: lines through origin
- 3. 2 dimensional subspaces: spanned by two linearly independent vectors: plane through origin
- 4. 3 dimensional subspaces: only \mathbb{R}^3 itself: any 3 vectors in \mathbb{R}^3 span \mathbb{R}^3

4.4 THEOREM 11

Let *H* be a subspace of a finite-dimensional vector space *V*

Any LI set in H can be expanded, if necessary, to form a basis for H. Also, H is finite dimensional and

$$dim H \le dim V$$
 (11)

$$S = \{v_1, \dots, v_p\} \in H \tag{12}$$

4.5 THEOREM 12 - THE BASIS THEOREM

- 1. Let V be a p-dimensional vector space $p \ge 1$
- 2. Any linearly independent set of exactly p elements in *V* is automatically a basis for *V*.
- 3. Any set of exactly p elements that spans *V* is automatically a basis of *V*

The pivot columns of a matrix A form the basis of Col A

$$A = [a_1, \dots, a_n] \tag{13}$$

Then we know the dimension of Cl A as soon as we know the dimensions of the pivot columns

For the dimensions of Nul A

Assume A is $m \times n$ and Ax = 0 has k free variables

The method for producing a basis for Nul A will produce exactly k linearly independent vectors

dim Nul A is the number of free variables in the equation Ax = 0 dim Col A is the number of pivot columns of A

4.6 ROW SPACE

The row space is the set of all linear combinations of the **row vectors**

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix} \tag{14}$$

$$r_1 = [1, 2, 3, 4], r_2 = [5, 6, 7, 8], etc$$
 (15)

The rows of A correspond to the columns of A^T

if we know the linear dependence relation among the rows of A, we could use the spanning theorem to shrink the set to a basis

4.7 THEOREM 13

If 2 matrices A and B are row equivalent then their row spaces are the same

If B is in echelon form, the non-zero rows of B form a basis for the row space of A as well as that of B

4.8 RANK A

the rank of A is the dimension of the column space of A

rank A=dim Col A

Since Row A = Col A^T , dim Row A = rank A^T

4.9 THE RANK THEOREM

The dimensions of the column space and the row space of an $m \times n$ matrix A are equal

This common dimension, the rank of A, also equals the number of pivot positions in A, and satisfies:

Rank A + dim Nul A =
$$n$$
(number of columns) (16)

addition to imt Let A $n \times n$, A is invertible (all this applies to A^T btw

The columns of A fom a basis of \mathbb{R}^n , (it spans)

 $Col A = \mathbb{R}^n$

 $\dim \operatorname{Col} A = n$

Nul A = 0

 $\dim \text{Nul } A = 0$

5 4.4 Coordinate Systems and 4.6 Change of Basis

5.1 OBJECTIVE

- 1. Find the coordinate vector relative to a given basis
- 2. Understand how this coordinate mapping as an isomorphism that allows us to answer questions abut abstract vector spaces in Euclidian Space
- 3. Find the change of basis matrix and use it t convert from one basis to another

5.2 COORDINATE SYSTEMS

a basis B creates a coordinate system for vector space

can map abstract vector maps to \mathbb{R}^n

different coordinate systems in \mathbb{R}^n offer different "views" of vector spaces

5.3 THEOREM 2: THE UNIQUE REPRESENTATION THEOREM

let $B = \{b_1, \dots, b_n\}$ be a basis for vector space V

Then for each $x \in V$ there exists a unique set of scalars so that we can write **x** as a linear combination of these vectors

Definition: Basis Coordinates

Suppose $B = \{b_1, \dots, b_n\}$ is a basis fr V and $x \in V$,

The coordinates of x relative t B (or the B coordinates of x) are the weights c_1, \ldots, c_n such that $x = c_1b_1 + \cdots + c_nb_n$

$$[x]_B = \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix} \tag{17}$$

The coordinate vector of x relative to B, or the B-coordinate vector of x

standard basis: $\varepsilon = \{e_1, e_2\}$

The coordinate mapping determined by $B = \{b_1, b_2\}$ for \mathbb{R}^n , $b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $b2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Suppose $[x]_b = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, find x

$$x = (-2)b_1 + 3b_2 \tag{18}$$

The matrix $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ changes the b coordinates of a vector (c_1, c_2) into the standard coordinates for x.

in general, for a basis $B = \{b_1, \ldots, b_n\}$, Let $P_B = [b_1, b_2, \ldots, b_n]$

Then the vector equation $x = c_1b_1 + \cdots + c_nb_n$ is equivalent to $P_B[x]_b = x$

 P_B is called the change of coordinate matrix from B to the standard basis in \mathbb{R}^n . Furthermore, the columns of P_B form a basis for \mathbb{R}^n , so P_B is invertible by IMT.

$$P_B^{-1}x = [x]_B (19)$$

By creating a basis in a vector space V, can create a coordinate system to relate to \mathbb{R}^n

5.4 THEOREM 8

Let $B = \{b_1, \dots, b_n\}$ be a basis for a vector space V

Then the coordinates mapping $x \to [x]_B$ is a one to one linear transformation from V onto \mathbb{R}^n . This transformation is both one-to-one and onto.

Define: Isomorphism

Isomorphisms are transformations that are both one to one and onto

For a set of polynomials, for example

$$1 + 2t^2, 4 + t + 5t^2, 3 + 2t$$
 (20)

We can set an augmented matrix and solve Ax=0 to show if the set is linearly dependent or independent, with the row a_1 being the coefficients of the non t value and so on.

It can be worthwhile to look at vectors in different coordinate systems

Consider vector **x** and bases *B* and *C*. Relate $[x]_B$ to $[x]_C$.

 $B = \{b_1, b_2\}, C = \{c_1, c_2\}$ for a vector space V such that $b_1 = 4c_1 + c_2$ and $b_2 = -6c_1 + c_2$. Suppose $x = 3b_1 + b_2$.

$$[x]_B = \begin{bmatrix} 3\\1 \end{bmatrix} \tag{21}$$

$$[x]_c = [3b_1 + b_2]_c = 3[b_1]_c + [b_2]_c.$$
 (22)

$$[x]_c = [[b_1]_c[b_2]_c] \begin{bmatrix} 3\\1 \end{bmatrix}$$
 (23)

$$\begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix} \tag{24}$$

$$x = 6c_1 + 4c_2 (25)$$

5.5 THEOREM 15 - CHANGE OF BASIS MATRIX P

Let $B = \{b_1, ..., b_n\}$, $C = \{c_1, ..., c_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $P_{C \Leftarrow B}$ such that

$$[x]_c = P_{C \Leftarrow B}[x]_b \tag{26}$$

The columns of $P_{C \leftarrow B}$ are the C-coordinate vectors of the vectors in the change of coordinate matrix from B to C

To find $P_{C \Leftarrow B}$

with b_1 , b_2 , c_2 , c_2 . Row reduce $[c_1, c_2, b_1, b_2]$, the left should reduce to identity matrix and the right half reduces to P. Vice Versa for C to B.

P is square and has LI columns, so it is invertible by the IMT

$$B = \{b_1, ..., b_n\} \text{ and } \epsilon = \{e_1, ..., e_n\}$$

$$[b_1]_{\epsilon} = b_1 \text{and} P_{\epsilon \leq B} = P_B$$
 (27)

6 5.1 Eigenvectors and Eigenvalues, 5.2 The character

6.1 EIGENVECTORS

Eigenvector: An eigenvector of an $n \times n$ matrix is a nonzero vector such that $Ax = \lambda x$ for some scalar λ

 λ is an eigenvalue of A if there is a nontrivial solution **x** of $Ax = \lambda x$.

To test if a vector is an eigenvector of a matrix, multiply the vector and matrix, then see if the result is a scalar multiple of the original vector.

To show that a value is an eigenvalue of a matrix and finding the corresponding eigenvalue:

given

$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \tag{28}$$

$$Ax = 7x \to Ax - 7x = 0 \to (A - 7I)x = 0 \to$$
 (29)

$$A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix}$$
 (30)

$$Bx = 0 \to \begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (31)

 $x_1 = x_2$ and x_2 is free.

 $Eigenspace = Span \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$

- 1. row reduction can be used to find eigenvectors, but does not help find eigenvalues
- 2. In general λ is an eigenvalue of A iff

$$(A - \lambda I)x = 0 (32)$$

has a nontrivial solution

- 3. The set of all solutions is the null space of the matrix $A \lambda I$
- 4. This space is a subspace of \mathbb{R}^n called the Eigenspace of A corresponding to λ

6.2 EIGENVALUE

To find the eigenvalues of A

Find all λ such that

$$(A - \lambda I)x = 0 (33)$$

has nontrivial solution.

$$\det(A - \lambda I) = 0 \tag{34}$$

$$A - \lambda I = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}$$
(35)

$$\det(A - \lambda I) = \det\begin{pmatrix} \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = 0.$$
 (36)

A scalar λ is an eigenvalue of an $n \times n$ matrix A iff λ satisfies the scalar equation

$$\det(A - \lambda I) = 0 \tag{37}$$

which we call the characteristic equation

if A is an $n \times n$ matrix, then the characteristic equation is a polynomial with degree n called the characteristic polynomial. The algebraic multiplication of an eigenvalue i its multiplicity as a root of the characteristic equation

6.3 THEOREM 1

The eigenvalues of a triangular matrix are the diagonal entries.

6.4 THEOREM 2

If $v_1, ..., v_p$ that correspond t distinct eigenvalues $\lambda_1, ..., \lambda_p$ of an $n \times n$ matrix A, then the set of these vectors is linearly independent.

6.5 INVERTIBLE MATRIX THEOREM CONT.

Let A be an $n \times n$ matrix then A is invertible iff

1. The number zero is not an eigenvalue of A

6.6 SIMILAR MATRICES

Similarity: A matrix A is similar to a matrix B iff there is an invertible matrix P such that

$$P^{-1}AP = B, \text{ or, } A = PBP^{-1}$$
 (38)

so B is similar to A, A and B are similar. Changing A into $P^{-1}AP$ is a similarity transformation.

6.7 THEOREM 4

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and the same eigenvalues.

if
$$B = P^{-1}AP$$
, then

$$B - \lambda I = P^{-1}AP - \lambda P^{-1}P = P^{-1}(AP - \lambda P) = P^{-1}(A - \lambda I)P$$
(39)

$$\det(B - \lambda I) = \det[P^{-1}(A - \lambda I)P] = \det(P^{-1})$$
 (40)

7 5.3 Diagonalization and 5.4 Eigenvectors and Linear Transformations

7.1 DIFFERENCE EQUATIONS AND DIAGONALIZATION

Difference Equation: A difference equation - a reurcive relation of the form $x_{k+1} = Ax_k$ for some matrix A and x_0, x_1, x_2

Assume we start with initial condition x_0 . $x_1 = Ax_0$. $x_2 = Ax_1 = AAx_0 = A^2x_0$. Generalized to:

$$A^k = PD^k P^{-1} (41)$$

Diagonalizable Definition: A square matrix A is said to be diagonalizable if A is similar t a diagonal matrix, that is $A = PDP^{-1}$ for some invertible P and some diagonal D.

7.2 THEOREM 5: THE DIANOGALIZATION THEOREM

- 1. An $n \times n$ matrix A is diagonalizable iff A has n linearly independent eigenvectors
- 2. $A = PDP^{-1}$ with a diagonal matrix D, iff the columns of P are n linearly independent eigenvectors of A
- 3. The diagonal entries of D are eigenvalues of A that correspond to

i

7.3 DETERMINING DIAGONAL

- 1. Find eigenvalues $det(A \lambda I)$
- 2. Find 3 linearly independent eigenvectors of A
- 3. Construct matrix *P* from vectors from step 2- Line up eigenvectors in matrix.
- 4. Construct matrix *D* as a diagonal matrix of the corresponding eigenvalues

7.4 THEOREM 6 AND 7

6 A $n \times n$ matrix with n distinct eigenvalues is diagonalizable

7 Let a $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$

for $1 \le x \le$, the dimensions of the eigenspace for λ_k is less than or equal to the multiplicity of λ_k

The matrix A is diagonalizable iff the sum of the dimensions of the eigenspaces equals n

- 1. The characteristic polynomial factors completely
- 2. The dimension of the eigenspace of each λ_k =multiplicity of λ_k
- 3. if A is diagonalizable and B_k is a basis for the eigenspace for each k, then the total collection of basis vectors is a basis for \mathbb{R}^n

Can use basis coordinates to relate abstrac transformations to matrix multiplication on vectors in real spaces

V is an n-dimensional vector space and W is a m-dimensional vector space

- 1. B is a basis for V, the B-coordinate vector $[x]_B$ is in \mathbb{R}^n
- 2. C is a basis for W, the C-coordinate vector $[u]_c$ is in \mathbb{R}^n .

3. $\{b_1, \ldots, b_n\}$ is the basis for B for V.

4. if
$$x \in r_1b_1 + \cdots + r_nb_n$$
, $[x]_B = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}$

 $T: v \to W$ is a linear transformation

$$T(x) = T(r_1b_1 + \dots + r_nb_n = r_1T(b_1) + \dots + r_nT(b_1) \in W$$

Since the C coordinate mapping from W to \mathbb{R}^n is linear:

$$[T(x)]_c = [r_1 T(b_1) + \cdots + r_n T(b_1)]_c = r_1 [T(b_1)] + \cdots + r_n [T(b_n)]_c \in \mathbb{R}^n$$
(42)

$$[T(x)]_c = M[x]_B, M = [[T(b_1]_c \dots [T(b_n)]_c]$$
 (43)

Linear transformations in \mathbb{R}^n

- 1. A linear transformation T represented by marix multiplication $x \to Ax$
- 2. if A is diagonalizable then there is a basis B fr \mathbb{R}^n consisting of eigenvectors of A.
- 3. it turns out that the B matrix for T is diagonal

7.5 THEOREM 8 DIAGONAL MATRIX REPRESENTATION

Suppose $A = PDP^{-1}$. D is diagonal, P is invertible

if B is the basis for \mathbb{R}^n formed from the columns of P, call them b_1, b_2, \dots, b_n are eigenvalues of A.

D is the B matrix for the transformations $x \to Ax$.

8 6.1 Inner Product, Length, Orthogonality

8.1 INNER PRODUCT

If **u** and **v** vectors in \mathbb{R}^n consider them as $n \times 1$ matrices.

The transpose u^T is a $1 \times n$

The matrix product: $u^T * v = 1 \times 1$ matrix, a scalar, the inner product.

$$u = \begin{bmatrix} u \\ \dots u_n \end{bmatrix} \begin{bmatrix} v = v \\ \dots v_n \end{bmatrix} \tag{44}$$

The inner product is

$$\begin{bmatrix} u & \dots & u_n \end{bmatrix} \times \begin{bmatrix} v \\ \dots \\ v_n \end{bmatrix} \tag{45}$$

8.2 THEOREM 6.1

u,v,w are vectors in \mathbb{R}^n . $c \in \mathbb{R}$.

- 1. $u \cdot v = v \cdot u$
- 2. $(u+v) \cdot w = u \cdot w + v \cdot w$
- 3. $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$
- 4. $u \cdot u \ge 0$ and $u \cdot u = 0$ iff u = 0

Definition: Length The length or form of \mathbf{v} is the non-negative scalar ||v||

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$
 (46)

$$||v|| = \sqrt{v^T v} \tag{47}$$

For any scalar c cv is |c| times the length of v

Definition: Unit Vector: A vector whose length is one

$$v, u = \frac{1}{||v||}v. (48)$$

u is a unit vector in the direction of v, "normalized v"

Definition: distance For $\mathbf{u},\mathbf{v} \in \mathbb{R}^n$, the distance between \mathbf{u} and \mathbf{v} , written as $\mathrm{dist}(\mathbf{u},\mathbf{v})$ is the length of the vector \mathbf{u} - \mathbf{v} .

$$\operatorname{dist}(u,v) - ||u - v|| \tag{49}$$

Definition: Orthogonal: $u, v \in \mathbb{R}^n$ are orthogonal if $u \cdot v = 0$. They are perpendicular.

8.3 THEOREM 2: PYTHAGOREAN THEOREM

if we have two vectors u,v are orthogonal iff $||u+v||^2 = ||u||^2 + ||v||^2$.

Orthogonal Set Definition A set of vectors $\{u_1, \ldots, u_n\}$ in \mathbb{R}^n is an orthogonal set if each pair of distinct vectors from the set is orthogonal

$$u_i \cdot u_j = 0 \tag{50}$$

for any i,j

 $W \in \mathbb{R}^n$ if a vector z is orthogonal to every vector in W (plane) z is orthogonal to W.

8.4 THEOREM 4

if $S = \{u_1, \dots, u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and is a basis fr the subspace spanned by S.

Definition: Orthogonal Basis: An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set

Theorem 5: Let $[u]_1, \ldots, [u]_p$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y \in W the weights of the linear combination $y = c_1[u]_1 + \cdots, c_p[u]_p$ are given by $c_i = \frac{y \cdot u_i}{u_i \cdot u_i}$

$$[y]_B = \begin{bmatrix} \frac{y \cdot u_1}{u_1 \cdot u_1} \\ \vdots \\ \frac{y \cdot u_p}{u_p \cdot u_p} \end{bmatrix}$$
 (51)

$$\hat{y} = \left(\frac{y \cdot u}{u \cdot u}\right) = \operatorname{proj}_{u} y \tag{52}$$

which is the orthogonal projection of y onto u.

8.5 THEOREM 8: ORTHOGONAL DECOMPOSITION THE-OREM

Let W be a subspace of \mathbb{R}^n . Then every $y \in \mathbb{R}^n$ can be written uniquely in the form $y = \hat{y} + z$, where $\hat{y} \in W$ and $z \in W^T$, and if $[u]_1, \dots, [u]_n$ is an orthogonal basis of W

8.6 THEOREM 9: BEST APPROXIMATION THEOREM

W is a subspace f \mathbb{R}^n , let y be any vector in \mathbb{R}^n , \hat{y} is the orthogonal projection of y into W

then \hat{y} is the closest point in W to y

$$||y - \hat{y}|| < ||y - v|| \tag{53}$$

for all v in W distinct from \hat{y}

9 6.4 The Gram-Schmidt Process and 6.5 Least Squares Problem

9.1 GRAM SCHMIDT

If we have $[v]_1, \ldots, [v]_n$

Let
$$W = [x]_1, \dots, [x]_n, x1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
. Construct an orthog-

onal basis for W

$$v_1 = x_1 \tag{54}$$

$$v_2 = x_2 - p \tag{55}$$

$$p = \text{proj}_{x_1} x_2 = \frac{x_2 \cdot x_1}{x_1 \cdot x_1} x_1 \tag{56}$$

9.2 THEOREM 11, THE GRAM SCHMIDT PROCESS

Given a basis $[x]_1, \ldots, [x]_n$ fr a nonzero space $W \in \mathbb{R}^n$, define Step 1.

$$v_1 = x_1 \tag{57}$$

Step 2:

$$v_2 = x_2 - proj_{w_1} x_2 (58)$$

Step 3:

$$W_2 = \operatorname{Span}\{x_1, x_2\} \tag{59}$$

$$v_3 = x_3 - \text{proj}_{w_2} x_3 = x_3 - \left(\frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2\right)$$
 (60)

$$v_p = x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \dots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$$
 (62)

9.3 LEAST SQUARES

- 1. in applications Ax = b won't often be consistent
- 2. **Definition:** Least Squares if A is $m \times n$ and $b \in \mathbb{R}^n$, a least squares solution of Ax = b is an x in \mathbb{R}^n such that

$$||b - Ax|| \le ||b - Ax|| \tag{63}$$

for all $x \in \mathbb{R}^n$

- 3. no matter what x e pick Ax will always be in the column space of A
- 4. Find x that makes *Ax* the closest point in Col A to b
- 5. Apply the approximation thm

$$\hat{b} = \operatorname{proj}_{ColA} b \tag{64}$$

6. because b in in Col A $Ax = \hat{b}$ is consistent

Suppose x satisfies Ax = b, by the orthogonal decomposition theorem $b - \hat{b}$ is rthogonal to Col A, meaning $b - \hat{b}$ is orthogonal to each column of A.

$$a_i \cdot (b - \hat{b}) = 0 \tag{65}$$

$$a_i^T(b-\hat{b}) = 0 \tag{66}$$

$$A^{T}(b - \hat{b}) = A^{T}(b - Ax) = 0$$
(67)

$$A^T b - A^T A x = 0 (68)$$

$$A^T A x = A^T b (69)$$

9.4 THEOREM 13

The set of least squares solutions of Ax=b coincides with the non-empty set of solution to the novel equations.

9.5 THEOREM 14

Let A be an $m \times n$ matrix, the following statements are logically equivalent

- 1. The equation Ax=b has a unique least squares solution for each b in \mathbb{R}^n
- 2. The columns of A are linearly independent
- 3. The matrix $A^T A$ is invertible

When these statements are true, the least squares slution \hat{x} is given by

$$\hat{x} = (A^T A)^{-1} A^T b \tag{70}$$

10 Final Additions

Prove Linear Transformation

$$T(u+v) = T(u) + T(v)$$
(71)

and

$$T(cu) = cT(u) \tag{72}$$

Linear Combination Matrix T(x) represented as Ax=b

$$A = [T(e_1), T(e_2), \dots, T(e_n)]$$
(73)

with e_1, \ldots, e_n vectors/columns of the identity matrix

Change of Basis Transformation Matrix For matrix transformations between coordinate systems

$$M = [[T(b_1)]_C \dots [T(b_n)]_C]$$
(74)

 $T(b_1)$ is the transformation of the original first basis vector. Possibly identity, depending on question.

For putting in it coordinates of C, say $[v]_C$, row reduce the matrix made from the basis vectors in C to v, or in the above case $T(b_n)$

Theorem one to one matrix transformations logically equivalent:

1. t is one to one

- 2. for every b in Rm the equation T(x)=b has at mst one solution
- 3. for every b in rm AX=b is either unique or is inconsistent
- 4. Ax-0 has only trivial
- 5. Columns linearly independent
- 6. A has a pivot in every column
- 7. The range of T has dimensions n

Theorem onto

- 1. T is onto
- 2. T(x)=b has at least one solution fr ever b in R
- 3. Ax=b is consistent for every b in R
- 4. The columns of A span R
- 5. A has a pivot in every row
- 6. The range of T has dimensions m