# **ARJUNA (NEET)**

### Vector

**DPP-13** 

| 1. | The | magnitude | of a | vector | cannot | be |
|----|-----|-----------|------|--------|--------|----|
|    |     |           | ·    |        | •••••  |    |

- (A) positive
- (B) zero
- (C) negative
- (D) unity

#### Which of the following is not a vector?

- (A) Angular momentum
  - (B) Angular impulse
  - (C) Kinetic energy
  - (D) Magnetic intensity

- (A)  $\pi$
- (B)  $\pi/2$
- (C)  $\pi/3$
- (D)  $\pi/4$

**4.** The vectors 
$$\vec{A}$$
 and  $\vec{B}$  are such that  $\vec{A} + \vec{B} = \vec{C}$  and  $A^2 + B^2 = C^2$ . Angle between the positive directions of vectors  $\vec{A}$  and  $\vec{B}$  is equal to

- (A)  $\pi$  radian
- (B)  $\pi/2$  radian
- (C)  $\pi/3$  radian
- (D)  $\pi/4$  radian

#### For what angle between the two vectors, their resultant is maximum?

- (A)  $180^{\circ}$
- (B) zero
- (C) 90°
- (D) 45°

- (A)  $\pi$  radian
- (B)  $\pi$  radian
- (C) zero
- (D)  $\pi/2$  radian

7. The angle between vectors 
$$(\hat{\imath} + \hat{\jmath})$$
 and  $(\hat{\jmath} + \hat{k})$  is :

- (A) 90°
- (B)  $180^{\circ}$
- (C) 0°
- (D) 60°

8. The angle between two vectors given by 
$$(6\hat{i} + 6\hat{j} - 3\hat{k})$$
 and  $(7\hat{i} + 4\hat{j} + 4\hat{k})$  is:

- (A)  $\cos^{-1}\left(\frac{1}{2}\right)$  (B)  $\cos^{-1}\left(\frac{1}{3}\right)$  (C)  $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$  (D)  $\cos^{-1}\left(\frac{2}{3}\right)$

9. If 
$$\hat{i}$$
,  $\hat{j}$  and  $\hat{k}$  are unit vectors along X, Y and Z axis respectively, then tick the wrong statement:

- (A)  $\hat{\imath} \cdot \hat{\imath} = 1$
- (B)  $\hat{\imath} \times \hat{\jmath} = \hat{k}$
- (C)  $\hat{i} \cdot \hat{j} = 0$
- (D)  $\hat{\imath} \times \hat{k} = -\hat{\imath}$

**10.** Given: 
$$\vec{C} = \vec{A} + \vec{B}$$
. Also, the magnitude of  $\vec{A}$ ,  $\vec{B}$  and  $\vec{C}$  are 12, 5 and 13 units respectively. The angle between  $\vec{A}$  and  $\vec{B}$  is

- (A) 0°
- (B)  $\pi/4$
- (C)  $\pi/2$
- (D) π

11. What is the value of 
$$(\vec{A} + \vec{B}) \bullet (\vec{A} \times \vec{B})$$
?

- (B)  $A^2 B^2$
- (C)  $A^2 + B^2 + 2AB$  (D) none of these

12. If 
$$\vec{A} \times \vec{B} = \vec{0}$$
 and  $\vec{B} \times \vec{C} = \vec{0}$ , then the angle between  $\vec{A}$  and  $\vec{C}$  may be:

- (A) zero
- (B)  $\pi/4$
- (C)  $\pi/2$
- (D) none of these

13. Find the magnitude of 
$$3\hat{i} + 2\hat{j} + \hat{k}$$
?

- (A)  $\sqrt{14}$
- (B)  $\sqrt{13}$
- (C)  $\sqrt{12}$
- (D)  $\sqrt{10}$

#### Comprehension 14 to 15:

If 
$$\vec{A} = \hat{\imath} + \hat{\jmath} + \hat{k}$$
 and  $\vec{B} = 2\hat{\imath} + \hat{\jmath}$  find

- **14.** Find the  $\overrightarrow{A}$ .  $\overrightarrow{B}$ 
  - (A) 3
- (B) 4
- (C) 5
- (D) 6

- **15.** Find the  $\vec{A} \times \vec{B}$ 
  - (A)  $-\hat{\imath} + 2\hat{\jmath} + \hat{k}$
- (B)  $\hat{\imath} + 2\hat{\jmath} + \hat{k}$
- (C)  $-\hat{\imath} + 2\hat{\jmath} \hat{k}$
- (D)  $-\hat{\imath} 2\hat{\jmath} \hat{k}$
- **16.** The vector sum of the forces of 10 newton and 6 newton can be:
  - (A) 2 N
- (B) 8 N
- (C) 18 N
- (D) 20 N
- 17. Vector sum of two forces of 10 N and 6 N cannot
  - (A) 4 N
- (B) 8 N
- (C) 12 N
- (D) 2 N
- 18. Which of the following pair of forces will never give resultant force of 2 N:
  - (A) 2 N and 2 N
- (B) 1 N and 1 N
- (C) 1 N and 3 N
- (D) 1 N and 4 N
- **19.** Given :  $\vec{A} = 2\hat{i} + 3\hat{j} + \hat{k}$  and  $\vec{B} = 5\hat{i} 6\hat{j}$ . The magnitude of  $\vec{A} + \vec{B}$  is
  - (A) 4 units
- (B) 10 units
- (C)  $\sqrt{59}$  units
- (D)  $\sqrt{61}$  units
- **20.** Given:  $\vec{A} = 2\hat{\imath} \hat{\jmath} + 2\hat{k}$  and  $\vec{B} = -\hat{\imath} \hat{\jmath} + \hat{k}$ . The unit vector of  $\vec{A} - \vec{B}$  is

- (A)  $\frac{3\hat{i} + \hat{k}}{\sqrt{10}}$  (B)  $\frac{3\hat{i}}{\sqrt{10}}$  (C)  $\frac{\hat{k}}{\sqrt{10}}$  (D)  $\frac{-3\hat{i} \hat{k}}{\sqrt{10}}$

- **21.** The unit vector along  $\hat{i} + \hat{j}$  is:
  - (A)  $\hat{k}$
- (B)  $\hat{i} + \hat{j}$
- (C)  $\frac{\hat{i} + \hat{k}}{\sqrt{2}}$  (D)  $\frac{\hat{i} + \hat{j}}{2}$
- 22. If a unit vector is represented by  $0.5\hat{i} - 0.8\hat{j} + c\hat{k}$ , then the value of 'c' is:
  - (A) 1
- (B)  $\sqrt{0.11}$
- (C)  $\sqrt{0.01}$
- (D)  $\sqrt{0.39}$
- 23. If a vector  $2\hat{i} + 3\hat{j} + 8\hat{k}$  is perpendicular to the vector  $4\hat{i} - 4\hat{j} + \alpha \hat{k}$ , then the value of  $\alpha$ is:
  - (A) -1
- (C)  $-\frac{1}{2}$
- (D) 1
- **24.** If the angle between the vectors  $\vec{A}$  and  $\vec{B}$  is  $\theta$ , the value of the product  $(\vec{B} \times \vec{A})$ .  $\vec{A}$  is equal to:
  - (A)  $BA^2 \cos \theta$
- (B)  $BA^2 \sin \theta$
- (C)  $BA^2 \sin \theta \cos \theta$  (D) zero

### **ANSWERS KEY**

- **1.** (C)
- **2.** (C)
- 3. (C)
- **4.** (**B**)
- 5. (B)
- 6. (A)
- 7. **(D)**
- 8. (D)
- 9. (D)
- 10. (C)
- 11. (A)
- 12. (A)
- 13. (A)
- 14. (A)
- 15. (D)
- **16.** (**B**)
- 17. (D)
- 18. (D)
- **19.** (C)
- 20. (A)
- **21.** (C)
- **22.** (B)
- 23. (B)
- **24.** (**D**)







## \*Note\* - If you have any query/issue

Mail us at support@physicswallah.org

