Розглянемо виток площею S, у якому циркулює струм I, магнітний момент якого $\vec{p}_m = \frac{1}{c} I S \vec{n}$. Вважаємо, що магнітний момент не змінюється за величиною, тільки може змінювати напрямок у просторі. Останнє припущення істотне, і воно передбачає, що в коло витка ввімкнене джерело енергії (EPC), що підтримує струм незмінним. Якщо виток перебуває в магнітному полі, то виникає момент сил, які прагнуть орієнтувати його магнітний момент за напрямком поля:

$$\vec{M} = \left[\vec{p}_m \times \vec{B} \right]$$

З визначення потенціальної енергії знаходимо

$$U = -\vec{p}_m \cdot \vec{B}$$

Той факт, що потенціальна енергія досягає мінімуму $\vec{p}_m \uparrow \uparrow \vec{B}$, означає, що момент прагне орієнтуватися за напрямом поля.

Сила, що діє на диполь в магнітному полі

У зовнішньому магнітному полі потенціальна енергія магнітного моменту дорівнює $U = -\vec{p}_m \cdot \vec{B}$, а сила, що діє на момент:

$$\vec{F} = -\vec{\nabla}U = \vec{\nabla}(\vec{p}_m \cdot \vec{B}).$$

$$\vec{\nabla} \left(\vec{A} \cdot \vec{B} \right) = \left[\vec{B} \times \operatorname{rot} \vec{A} \right] + \left[\vec{A} \times \operatorname{rot} \vec{B} \right] + \left(\vec{B} \cdot \vec{\nabla} \right) \vec{A} + \left(\vec{A} \cdot \vec{\nabla} \right) \vec{B}.$$

Якщо в середовищі, в якому перебуває момент, відсутні струми провідності, то $\vec{B}=0$. Тоді має місце тотожність:

$$\vec{F} = \left(\vec{p}_m \cdot \vec{\nabla}\right) \vec{B}.$$

У окремому випадку, коли момент спрямований уздовж поля $\vec{p}_m \uparrow \uparrow \vec{B}$, а поле залежить тільки від координати z, сила спрямована по осі z і дорівнює:

$$F_z = p_m \frac{dB}{dz}.$$