Machine Learning HW6

學號:r06921081系級: 電機碩一 姓名:張邵瑀

1. (1%)請比較有無normalize的差別。並說明如何normalize.

normalize方法: (y - mean,) / 標準差,

訓練參數:

batch size: 512 embedding dimension: 256

optimaizer: Adam(lr=0.00064) valitaion rate: 0.1

首先先減掉平均之後除上標準差,可以發現有標準化過的model在前幾個epoch的loss很早就已經降到1左右了,所以normalize過的過程會是收斂比較快速的,大約在第2,3個epoch就已經到最低點了,而沒有normalize的則要大概到4~6個epoch才到最低點。

2. (1%)比較不同的embedding dimension的結果。

邊我是取各個dimension做10次左右rmse在validation accuracy最好的一次結果上傳到 KAGGLE的分數,可以看到為度不夠高的時候會有比較差的結果,大概在512為的時候 會有很不錯的結果再往上加到1024結果反而變差,但這也有可能只是variance造成的誤 差,但至少知道不會再更好了。

dim	32	64	128	256	512	1024
kaggle public	0.86303	0.86011	0.85940	0.85686	0.85642	0.85849
kaggle private	0.85576	0.85357	0.85077	0.84980	0.84800	0.85186

3. **(1 %)比較有無bias的結果。**

我比較bias時也有對該model做normalize,normalize方法:(y - mean_y) / 標準差_y 訓練參數:

batch size: 512 embedding dimension: 256

optimaizer: Adam(lr=0.00064) valitaion rate: 0.1

架構:

沒有加bias的結果甚至比我加入bais的結果還要來的好,我想應該是實驗的次數做的不夠多的關係,理論上擁有較多資訊的model會做的比較好,所以只是單純增加bias應該是無法起到太大的作用,抑或是我取的embedding維度已經足夠高到以未處理過的資料來訓練無法汲取到更多的資訊。

4. (1%)請試著將movie的embedding用tsne降維後,將movie category當作 label來作圖。

上圖是用以下分組做出的圖

0: Action, Adventure, Horror

2: Animation, Children's, Sci-Fi

1: Crime, Documentary, Drama, Film-Noir, Musical, Thriller, Western

3: Romance

架構:

4: Fantasy

5: War

6: 其他分佈不明顯的(不顯示)

在18類下我觀察Action, Adventure, Horror三個分佈相近比較明顯,而Animation, Children's, Sci-Fi也是顏色分佈比較相近的一群,而分類1則是我抓出在中間分佈比較相近但卻跟第0類分很開的群體可以看出來都是劇情類的電影,跟動作片上有一定的區隔性,而紅色則是觀察到分佈較為靠近的一群又跟其他兩大類分的較開。

5. **(1 %)試著使用除了rating以外的feature, 並說明你的作法和結果,結果好壞不會影響評分。**

我的作法是把主要的movie type跟當作權重與movie embedding做點積相乘,再跟user embedding做內積,接著除了bias在Add層再把年份做1維的embedding加上去,結果有比單純做MF好一點點,大概好0.002~0.003,原本也有把user資訊也如法泡製但結果更差就沒有採用了。