

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 1º semestre de 2019 – GABARITO

(a) A rede da empresa é dada pelo endereço de rede 144.37.168.0/23, a ser dividida nas subredes R_1 (com 30 estações), R_2 (com 80 estações), R_3 (com 100 estações), R_4 (com 100 estações) e R_5 (com 130 estações). Mostre que é impossível realizar esta divisão.

Resposta:

O endereço de rede de cada uma das subredes deve satisfazer um valor máximo de máscara de subrede, para que elas tenham pelo menos tantos endereços quanto a quantidade de estações desejada — R_1 deve utilizar, no máximo, máscara /27 (e, por isso conter pelo menos 32 endereços), R_2 , no máximo máscara /25 (ao menos 128 endereços), R_3 , no máximo máscara /25 (ao menos 128 endereços), R_4 , no máximo máscara /25 (ao menos 128 endereços) e R_5 , no máximo máscara /24 (ao menos 256 endereços). Isto significa que, em qualquer alocação que satisfaça todas as subredes, serão necessários no mínimo 672 endereços. No entanto, a rede principal (144.37.168.0/23) possui apenas 512 endereços, logo é impossível realizar essa divisão.

(b) A rede da empresa é dada pelo endereço de rede 228.83.128.0/17, a ser dividida nas subredes R_1 (com 2000 estações), R_2 (com 3000 estações), R_3 (com 1000 estações) e R_4 (com 2000 estações). Você deixou esta tarefa com o estagiário e ele lhe apresentou as seguintes propostas de subdivisão:

	Proposta 1	Proposta 2
R_1	228.83.144.0/21	228.83.144.0/21
R_2	228.83.136.0/21	228.83.128.0/20
R_3	228.83.128.0/21	228.83.160.0/21
R_4	228.83.152.0/21	228.83.152.0/21

Determine quais destas subdivisões são válidas e quais não são, e justifique as que não estiverem de acordo.

Resposta:

A proposta 2 é válida, pois todas as subredes possuem endereços de rede válidos, suas faixas de endereços estão contidas na faixa de endereços 228.83.128.0/17 da rede principal, não se sobrepõem, e receberam pelo menos tantos endereços quanto requisitado. Já a proposta 1 não satisfaz à última destas restrições, pois associa o endereço de rede 228.83.136.0/21 para a rede R_2 , não cumprindo os requisitos de alocação apresentados para esta rede.

Considere que, em um certo instante, o nó A possui o seguinte vetor de distâncias:

Vetor de distâncias de A								
B C D E F G H I								
10	8	10	18	12	18	15	17	

e recebe dos seus vizinhos os seguintes vetores de distâncias:

	Vetor de distâncias de B									
A	C	D E F G H 1								
10	14	10	8	8	14	11	13			
	Vetor de distâncias de C									
A	В	D	E	F	G	Н	I			
8	14	8	17	6	12	9	11			
	Vetor de distâncias de D									
A	В	С	\mathbf{E}	F	G	Н	I			
10	10	8	13	2	8	5	7			

(a) De posse destes vetores de distâncias e da topologia da vizinhança do nó A, calcule a sua tabela de distâncias.

Resposta: custo até 10 20 24 21 23 В 18 18 \mathbf{C} 20 16 14 17 19 10 12 15 17

(b) Determine o vetor de distâncias atualizado do nó A após o cálculo desta tabela.

Resposta:

Vetor de distâncias de A									
B C D E F G H I									
10	8	10	18	12	18	15	17		

(c) O nó A irá enviar este vetor de distâncias atualizado para outros nós da rede? Se sim, para quais? Justifique sua resposta.

Resposta:

A não irá enviar seu vetor de distâncias para outros nós, pois ele não sofreu atualização.

(a) Utilizando o algoritmo de Dijkstra, calcule os caminhos mais curtos a partir do nó F, destacado em verde, para todos os outros nós da rede. Construa uma tabela igual à mostrada em aula que mostra o funcionamento do algoritmo de forma iterativa.

Resposta:

	N'	d _A p _A	$d_{\mathrm{B}}p_{\mathrm{B}}$	$ m d_{C}p_{C}$	$ m d_Dp_D$	$d_{\rm E}p_{\rm E}$	$ m d_{G}p_{G}$	dн рн
0	F	2 F	∞ -	∞ -	5 F	∞ -	3 F	1 F
1	FH	2 F	∞ -	∞ -	5 F	∞ -	3 F	
2	FHA		5 A	∞ -	4 A	∞ -	3 F	
3	FHAG		5 A	∞ -	4 A	∞ -		
4	FHAGD		5 A	∞ -		∞ -		
5	FHAGDB			7 B		6 B		
6	FHAGDBE			7 B				
7	FHAGDBEC							

(b) Construa a tabela de roteamento do nó F, isto é, para cada roteador de destino, indique o enlace de saída utilizado por F para encaminhar pacotes para este destino.

Resposta:

Destino	A	В	C	D	E	G	Н
Enlace de saída	(F,A)	(F,A)	(F,A)	(F,A)	(F,A)	(F,G)	(F,H)

Considere um mecanismo NAT cujo endereço IP na rede pública é 22.212.117.9 e que gerencia as conexões da rede privada, que ocupa a faixa 192.168.0.0/16. Suponha que o NAT possui a seguinte tabela de tradução de endereços, onde cada regra é identificada por um número:

	(IP, porta) da estação local	(IP, porta) da estação remota	Porta pública no NAT
(1)	192.168.0.1, 21415	109.83.25.198, 31571	12561
(2)	192.168.0.1, 29903	153.127.83.179, 1958	17556
(3)	192.168.0.2, 21029	19.169.54.224, 20303	26727
(4)	192.168.0.3, 19909	146.86.207.245, 27429	17750
(5)	192.168.0.1, 4507	28.149.18.49, 8571	1028
(6)	192.168.0.1, 7809	158.0.179.53, 13390	12167
(7)	192.168.0.1, 14775	89.255.69.142, 15418	13478
(8)	192.168.0.1, 8176	195.200.2.229, 12005	24553
(9)	192.168.0.1, 29425	48.209.66.123, 11116	26280
(10)	192.168.0.3, 28663	46.223.54.129, 15986	32360

Determine se cada uma das afirmações a seguir é verdadeira ou falsa e justifique usando apenas uma frase:

- $\sqrt{}$ Um pacote enviado pela estação 192.168.0.1 na porta 21415, com destino à estação 109.83.25.198, porta 12620 exigirá que o NAT crie uma nova entrada para encaminhá-lo.
 - Nenhuma das entradas da tabela de tradução do NAT é compatível com o cabeçalho deste pacote.
- \bigcirc A estação 192.168.0.3 é capaz de hospedar um servidor Web, acessível de qualquer estação da Internet através da porta 80 (HTTP).
 - Qualquer estação que envie um pacote para este NAT com porta de destino 80 terá seu pacote descartado, logo nenhuma estação conseguirá abrir uma conexão com a estação 192.168.0.3.
- $\sqrt{}$ O emprego do NAT interfere com o uso de aplicações P2P, mas não de navegadores Web, pelas estações da rede local.
 - Aplicações P2P precisam receber pedidos de conexão, que em geral serão descartados pelo NAT, ao contrário de navegadores Web, que somente necessitam iniciar conexões.
- $\sqrt{}$ As estações 192.168.0.1 e 192.168.0.1 serão vistas por todas as estações na Internet como sendo uma única estação.
 - De fato, em todas as comunicações de ambas as estações com a Internet, elas irão compartilhar o IP 22.212.117.9, de modo que elas serão indistinguíveis.
- $\sqrt{}$ Um pacote com origem 195.200.2.229, porta 12005 e destino 22.212.117.9, porta 24553 será encaminhado para a rede local.
 - Conforme a tabela de tradução do NAT, ele será encaminhado para a estação 192.168.0.1 na porta 8176.

Questão 5

Considere um servidor realizando *streaming* de um vídeo para um cliente. Essa transmissão é composta de 24 pacotes numerados, enviados em slots de tempo pré-determinados (um pacote por slot).

Suponha também que, para cada grupo de 5 pacotes consecutivos, o servidor irá criar um pacote adicional FEC, contendo o XOR destes pacotes. Este pacote será incluído na

transmissão, logo após o grupo correspondente, e sua transmissão irá ocupar um slot a mais. Caso o último grupo tenha menos que 5 pacotes, o último FEC será aplicado nos pacotes restantes.

(a) Qual é o objetivo da transmissão destes pacotes FEC?

Resposta:

O objetivo é permitir que pacotes que eventualmente sejam perdidos durante a transmissão possam ser recuperados sem que o cliente precise pedir que o servidor transmita-os novamente, pois este procedimento é muito demorado para reprodução de vídeo por *streaming*.

(b) Quantos pacotes (tanto vídeo como FEC) o servidor irá enviar ao cliente nesta transmissão?

Resposta:

Serão transmitidos 29 pacotes, sendo 24 pacotes de vídeo e 5 pacotes FEC.

(c) Suponha que, nos slots 1, 3, 11, 12, 15, 26 e 28, os pacotes enviados se percam durante a transmissão (nos slots restantes, o pacote chega com sucesso). Quais pacotes de vídeo o cliente não irá receber?

Resposta:

O cliente não irá receber os pacotes de vídeo 1, 3, 10, 13, 22 e 24.

(d) No cenário descrito do item anterior, quais pacotes de vídeo o cliente não irá reproduzir?

Resposta:

Utilizando os pacotes FEC e os outros pacotes recebidos, o cliente somente será capaz de recuperar o pacote 13. Logo, ele não irá reproduzir os pacotes de vídeo 1, 3, 10, 22 e 24.

	FDMA	TDMA	CSMA	CDMA
permite que uma estação detecte	×	×	×	×
uma colisão e interrompa sua trans-				
missão				
se o meio estiver livre, toda estação	✓	×	✓	✓
que quiser iniciar uma nova trans-				
missão pode acessá-lo				
protocolo de acesso aleatório	×	×	√	×
proíbe acesso simultâneo ao meio	×	✓	×	×
(mesmo sem colisão)				
livre de colisões	✓	✓	×	✓