Dams Package Demo

Gopi Goteti

November 3, 2016

This document provides examples on how to obtain and extract data using the dams package and how to create summary graphics of the extracted data.

1 Data Attributes

If you have not already done so, load the package along with ggplot and maps (for graphics).

- > require(dams)
- > require(ggplot2)
- > require(maps)
- > require(mapproj)

2 Entire Dataset

Get the entire dataset. This might take a few moments.

- > dams_all <- nid_cleaned</pre>
- > dim(dams_all)
- [1] 74096 61
- > head(dams_all, 3)

	D	am_Name C	ther_Dam_	Name	NID_ID	Num_Separa	te_Struct	Other	_Struct	ure_ID
1	NIX MILL P	OND DAM	NIX MILL	DAM	AL00106		0			
2	LIGHTSEY S MILL P	OND DAM	MILL POND	DAM	AL00533		0			
3	ODUMS M	ILL DAM OD	OMS MILL	POND	AL00890		0			
	Latitude County		River	Owner	_Type Pi	rivate_Dam	Dam_Design	ner Da	m_Type	Core F
1	34.3483 FRANKLIN	EDGA	R BRANCH	Not L	isted	N		Ro	ckfill	
2	32.9100 BIBB	LIGHTSEY	S BRANCH	Pr	rivate	N			Earth	
3	33.9566 WALKER	BLACKWAT	ER CREEK	Pr	rivate	N		G	ravity	
	Primary_Purpose	All_Pu	rposes Ye	ar_Co	mpleted	Year_Modif	ied Dam_Le	ength	Dam_Hei	ght
1	Other		Other		1800			60		NA
2	Recreation	Recr	eation		1890			350		NA

```
125
            Other Recreation, Other
                                                1850
                                                                                         NA
  Structural_Height Hydraulic_Height NID_Height Max_Discharge Max_Storage Normal_Storage NII
                                    25
                                               25
                                                             140
                                                                           55
                                                                                           55
2
                                                             250
                  13
                                    10
                                               13
                                                                           80
                                                                                           80
3
                  12
                                    12
                                               12
                                                              NA
                                                                          180
                                                                                          150
  Surface_Area Drainage_Area EAP Inspection_Date Inspection_Frequency Spillway_Type Spillway
                           NA
1
2
                                                                        0
            NA
                           NA
                                N
3
            NA
                           NA
                                N
  Outlet_Gates Volume Num_Locks Length_Locks Width_Locks Permitting_Authority Inspection_Aut
1
                    NA
                              NA
                                             0
                                                         NA
2
                                             0
                    NA
                                                         NA
                                                                                N
                              NA
3
                    NA
                              NA
                                             0
                                                         NA
  Enforcement_Authority Jurisdictional_Dam State_Reg_Dam State_Reg_Agency Fed_Funding Fed_De
                       N
1
2
3
                       N
                                                          N
  Fed_Construction Fed_Regulatory Fed_Inspection Fed_Operation Fed_Owner Fed_Other Source_Ag
2
3
         Submit_Date Url_Address
                                             Congress_Rep Political_Party Congress_District
                               NA Robert B. Aderholt (R)
     AL 01\\02\\2013
                                                                          R
                                                                                          AL04
1
     AL 01\\02\\2013
                                       Spencer Bachus (R)
                                                                                          AL06
2
                               NA
                                                                          R
3
     AL 01\\02\\2013
                               NA Robert B. Aderholt (R)
                                                                          R
                                                                                          AL04
```

3 Summary Graphics

Data for graphics.

```
> gfx_data <- dams_all[, c("Year_Completed", "State")]
> head(gfx_data)
```

Year_Completed State 1800 1 2 1890 AL 3 1850 AL 4 1880 AL 1881 5 AR 6 1877 CA

Counts of number of dams built per decade or other time period of interest.

```
> gfx_data\$Year <- cut(gfx_data\$Year_Completed, \\ + breaks = c(0, 1850, seq(1900, 2000, 10), 2014), \\ + labels = c("<1850", "1850-1900", "1910", "1920", "1930",
```


Figure 1: Number of Dams by Year of Completion

```
"1940", "1950", "1960", "1970", "1980", "1990",
+
                                    "2000", "2014"))
> table(gfx_data$Year)
    <1850 1850-1900
                          1910
                                     1920
                                                1930
                                                          1940
                                                                     1950
                                                                                1960
     1264
                2588
                          1464
                                     2015
                                                2329
                                                          4130
                                                                     4825
                                                                               12816
     1990
                2000
                          2014
     4853
                4221
                          2794
> year_counts <- as.data.frame(table(gfx_data$Year), stringsAsFactors = FALSE)
> colnames(year_counts) <- c("Year", "Count")</pre>
  Histogram of number of dams by time period.
> gfx_bar <- ggplot(year_counts, aes(x = Year, y = Count))
> gfx_bar <- gfx_bar + geom_bar(position = "dodge", stat = "identity")</pre>
> gfx_bar <- gfx_bar + ylab("Number of Dams") + xlab("Year of Completion")
> gfx_bar <- gfx_bar + ggtitle("Number of Dams in the NID Database")</pre>
> plot(gfx_bar)
   Counts of dams per state in the US mainland.
> gfx_data <- subset(gfx_data, !(State %in% c("AK", "HI", "PR", "GU")))</pre>
> sort(table(gfx_data$State))
```

1970

18770

```
NV
       DE
             RI
                         AZ
                              VT
                                    IL
                                          WV
                                                ID
                                                     LA
                                                           NC
                                                                 NM
                                                                      NJ
                                                                            NH
                                                                                        UT
                                                                                                   FL
                                                                                            700
                                                                                                  781
  43
       51
            174
                  305
                        319
                             358
                                   391
                                         413
                                               431
                                                    441
                                                          444
                                                                453
                                                                     510
                                                                           590
                                                                                 597
                                                                                       617
                                                     OH
                                                           VA
                                                                 PA
                                                                       CA
                                                                            WY
                                                                                  CO
                                                                                        NY
                                                                                              MS
                                                                                                   AL
  OR.
             ΜI
                   MN
                         ΚY
                                    WI
                                          AR
                                                MA
 839
      847
            914 1005 1025
                            1113 1116
                                       1243 1244 1261 1307 1311 1500 1607 1704 1761 1981 2135 22
  SD
       MT
             GA
                   ΙA
                         OK
                              MO
                                    KS
                                          TX
2510 3236 3724 3913 4756 5002 5692 7253
```

Map of dams per state in the US mainland.

```
> state_counts <- as.data.frame(table(gfx_data$State), stringsAsFactors = FALSE)
> colnames(state_counts) <- c("state", "Count")
> # add long names of states
> state_names <- data.frame(state = state.abb,</pre>
                             name = state.name,
                             stringsAsFactors = FALSE)
> gfx_data <- merge(state_counts, state_names, by = "state")
> # change state name to lower case to be consistent with ggplot
> gfx_data$name <- tolower(gfx_data$name)</pre>
> # geo reference data on states from ggplot
> geo_state <- map_data("state")</pre>
> # merge data with above for graphics
> gfx_data <- merge(geo_state, gfx_data, by.x = "region", by.y = "name")</pre>
> gfx_data <- gfx_data[order(gfx_data$order), ]</pre>
> # discretize state counts
> color_breaks <- c(0, 100, 500, 1000, 2000, 3000, 4000, 5000, 7500)</pre>
> color_labels <- c("<100", "100 - 500", "500 - 1000", "1000 - 2000", "2000 - 3000",
                     "3000 - 4000", "4000 - 5000", "5000 - 7500")
> gfx_data$dams <- cut(gfx_data$Count,</pre>
                        breaks = color_breaks,
                        labels = color_labels)
> gfx_map <- ggplot(data = gfx_data)</pre>
> gfx_map <- gfx_map + geom_polygon(aes(x = long, y = lat, group = group, fill = dams))
> gfx_map <- gfx_map + geom_path(data = geo_state, aes(x = long, y = lat, group = group,
                                                          fill = NA))
 gfx_map <- gfx_map + labs(list(title = "Number of Dams in the NID Database",
                                  x = NULL, y = NULL)
> gfx_map <- gfx_map + guides(fill = guide_legend(title = "Number of Dams"))
> gfx_map <- gfx_map + scale_fill_brewer(palette = "Accent")</pre>
> gfx_map <- gfx_map + coord_map()</pre>
> plot(gfx_map)
```

4 Other Analyses: Flood Control Dams

A number of interesting analyses could be performed with the dataset. Of interest to water resources managers and hydrologists is the location of flood

Figure 2: Number of Dams by State

control dams. It is interesting to see a few states like Texas have a large number of flood control dams.

- > flood_dams <- subset(dams_all, Primary_Purpose == "Flood Control")
- > table(flood_dams\$State)

AK	AL	AR	ΑZ	CA	CO	CT	DE	FL	GA	ΗI	IA	ID	IL	IN	KS	KY	LA
4	131	221	91	190	230	20	2	171	369	6	369	12	49	147	1905	223	40
ME	MI	MN	MO	MS	MT	NC	ND	NE	NH	NJ	NM	NV	NY	OH	OK	OR	PA
113	28	305	897	596	98	79	91	950	43	33	208	12	139	112	2340	20	195
SC	SD	TN	TX	UT	VA	VT	WA	WI	WV	WY							
112	89	209	2260	125	199	15	109	123	178	100							