What's the Point of Stats?

Tom Glinnan

November 6, 2020

Why might we care about correlation?

- Correlation is not causation
- But it helps us look in the right place. It's where all science starts
- ▶ We want to understand how correlation works so we know exactly how useful it is ⇒ we should revise some ST102

Populations and Samples

We want to know how the world works, but we won't observe everyone \rightarrow the problem of dumb luck

Names: Everyone in the world is the **Population**; our data is a **Sample**; the thing we are trying to estimate is called a **Parameter**

What is statistics really?

Statistics really has two main areas:

- ► **Estimation**: given our sample, what is our best guess for the population parameter?
 - \rightarrow e.g. what is the average height of 20-year olds in the UK?
- ► Inference (Hypothesis Testing): given our sample, how sure can we be that something is not true in the population?
 - \rightarrow e.g. is the average height of 20-year olds in the UK is above 170cm?

Both are fundamental to understanding correlation so we'll cover them here

Estimation I

'An estimator is just a function from data to the parameter space'. Ordinary Least Squares (OLS) is one type of estimator

Specifically:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

The Data: (x_i, y_i) for each person i

The Parameters: (α, β)

The Key Problem: Different Data \implies Different Estimates

We denote the estimates by hats: e.g. $\hat{\alpha}$ is the estimate for α

 $^{^1}$ An *estimator* is the function itself, the (point) *estimate* is the value of the function for a particular set of data

Estimation II

What properties might we like our estimator to have?

- ▶ **Unbiased**: on average it gives the true value
- Consistent: as our sample gets bigger, our estimate gets arbitrarily good eventually
- ▶ **Efficient**: our estimator has a small variance

In all statistics, we have to make some assumptions about the population to find properties of our estimator

Illustration

Figure: Three Key Properties

For consistency, labels 1, ..., 6 are the order of the shots

Why OLS?

Under some assumptions, OLS is unbiased, consistent, and has the smallest variance of **any** (linear) estimator

- 1. Our model $(y_i = \alpha + \beta x_i + \varepsilon_i)$ actually is how the world works
- 2. Not all x_i are the same
- 3. No matter what x_i is, what we don't know is random noise $(E(\varepsilon_i|x)=0)$
- 4. No matter what x_i is, what we don't know has the same magnitude on average $(Var(\varepsilon_i|x))$ is the same for all i)
- 5. What we don't know is for person i is correlated with what we don't know for person j ($Cov(\varepsilon_i, \varepsilon_j | x) = 0$)

We'll return to these issues when we talk about issues of using OLS in the real world

Multivariate Regression I

The thing written here is called a 'bivariate regression model':

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

If you imagine, we can extend this:

$$y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_n x_{ni} + \varepsilon_i$$

Where the y_i is called the **outcome** variable and the x_{ji} are called the **explanatory** variables. A **variable** is just a piece of data. A **coefficient** is the thing in front of a variable

For example: Wage_i = $\alpha + \beta_1$ Education Level_i + β_2 Gender_i + ε_i

Multivariate Regression II

What do the numbers actually mean?

When what we don't know is random, $E(\varepsilon_i|x) = 0$, so

$$E(y|x) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

and therefore:

$$\beta_j = \frac{\partial E(y|x)}{\partial x_j}$$

Because of what partial derivatives mean: β_j is the change in the line of best fit in the direction x_j , holding others constant

Illustration

Multivariate Regression III

Because maths people like vectors, we can use the shorthand:

$$y_i = \beta' x_i + \varepsilon_i$$

where

$$eta' = egin{bmatrix} lpha \ eta_1 \ \dots \ eta_n \end{bmatrix} \quad \text{and} \quad x_i = egin{bmatrix} 1 \ x_{1i} \ \vdots \ x_{ni} \end{bmatrix}$$

and talk about estimating β with $\hat{\beta}$

Hypothesis Testing I

As $\hat{\beta}$ is a random variable, it has a distribution, so we can do testing on it.

So what is a test?

Whenever you hear 'hypothesis', just think 'initial guess'. We aim to see if our estimate $\hat{\beta} \approx \beta_0$, our initial guess

- ▶ Make a null hypothesis H₀
- Assume that the null is true
- Work out the probability we saw what we just did, or more extreme
- If under our assumption it was really unlikely to see what we just saw, then our assumption was probably wrong!

Hypothesis Testing II (non-essential)

- For mathy/philosophy-types: this is like a generalised version of a proof by contradiction
- We never 'accept' a hypothesis.
 - ightarrow To show why, say we have two possible null hypotheses:
 - $H': \beta_1 = 0 \text{ and } H'': \beta_1 = 0.000000001$
 - ightarrow any test would probably reject both in very similar circumstances.
 - \rightarrow Accepting both would mean you think that β_1 takes two different values, which is philosophically a bit dodgy
- ▶ We can do a test using its test statistic *T* or its *p* value
- ▶ Interpretation of a *p* value: assuming that the null is true, what is the probability that we saw what we just did, or something more 'extreme'

Hypothesis Testing III

Figure: A bottle-filling machine

The inventor of the t-stat worked in a beer factory. The aim was to check if bottles were over-filled or under-filled

Illustration

Technical Note: we need to assume the distribution of $\hat{\beta}$. When small amounts of data assume t. When large amounts of data, Normal becomes an arbitrarily good approximation by the central limit theorem

Errors

I promise errors are a less confusing concept than you think!

Type I: $\hat{\beta}_j$ failed the test but it should have passed Type II: $\hat{\beta}_j$ passed the test but it should have failed

Note that:

- ► $P(Type\ I) = \alpha$ (the significance level) → You get to pick this
- ▶ Power = $1 P(Type\ II)$

More power comes from either having more data, or using a more efficient estimator

Understanding Errors

A court case is effectively a hypothesis test:

- The jury have some beliefs about whether or not the defendant is guilty
- ➤ Someone is 'innocent until proven guilty', i.e. H₀: Innocent and H₁: Guilty
- The jury sees evidence and decides using the same principle as hypothesis testing: assuming that they are innocent, how likely is it that this evidence exists? Level of reasonable doubt $= \alpha$
- What are Type I and Type II errors here?
- ▶ If we reduce Type I (fewer innocents go to jail) then more guilty people go free (increase Type II), and vice versa
- How to solve? More evidence, or better inference from the evidence we have!

Testing in practice

What might we want to test?

- ▶ Whether a given $\beta_j = 0$ This would mean that x_i wouldn't help to explain y_i (t test)
 - ightarrow if we conclude $eta_j
 eq 0$ then we say that eta_j is 'statistically significant'
- ▶ Whether all of the β are 0 This would mean that the model is useless (f test)
 - \rightarrow This is related to R^2 : the percentage of variation in y_i that the model explains
 - ightarrow This is Regression ANOVA from ST102
- Anything else depending on context!

Remember to realise the Type I / Type II tradeoffs! Usually pick $\alpha=10\%^*, 5\%^{**}, 1\%^{***}$

Looking at stata

. reg price weight

Source	SS	df	MS 🖈 Number of obs	=	74
			F(1, 72)	=	29.42
Model	184233937	1	184233937 Prob > F	=	0.0000
Residual	450831459	72	6261548.04 R-squared	=	0.2901
			———— Adj R-squared	=	0.2802
Total	635065396	73	8699525.97 Root MSE	=	2502.3

_	price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
		2.044063 -6.707353				1.292857 -2347.89	2.795268 2334.475

Questions

- How do we rule out that a correlation is due to dumb luck?
- ▶ What is the most important property an estimator can have: unbiasedness, consistency, efficiency, something else?
- ▶ Why might OLS not be the best way to estimate a regression slope?
- ▶ Under which circumstances would you want to test a hypothesis using a high α ? A low one?