1 Neural Network

1.1 One Step further of Logistic Regression

Model Description

We use two steps of logistic regression to illustrate a simple neural network. We first introduce the notation we use. The subscript j means the jth component of the input/output vector. The superscript of (i) means the ith sample. The superscript [k] indicates kth layer. So the input vector $X_i^{(j)}$ means the jth component in the ith sample. We write the operation in the first layer using matrix notation

$$z^{[1](i)} = W^{[1]}X^{(i)} + b^{[1](i)}$$

 $z^{[1](i)}$ means first layer, ith sample. Namely,

$$\begin{pmatrix} z_1^{1} & z_1^{[1](2)} & \dots & z_1^{[1](m)} \\ \dots & \dots & \dots & \dots \\ z_4^{1} & z_4^{[1](2)} & \dots & z_4^{[1](m)} \end{pmatrix} = \begin{pmatrix} w_{11}^{[1]} & w_{12}^{[1]} \\ \dots & \dots \\ \dots & \dots \\ w_{21}^{[1]} & w_{22}^{[1]} \end{pmatrix} \begin{pmatrix} x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(m)} \\ x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(m)} \end{pmatrix} + \begin{pmatrix} b_1^{[1]} & \dots & b_1^{[1]} \\ \dots & \dots & \dots \\ b_4^{[1]} & \dots & b_4^{[1]} \end{pmatrix}$$

$$a^{[1](i)} = tanh(z^{[1](i)})$$

In matrix notation

$$\left(\begin{array}{cccc} a_1^{1} & a_1^{[1](2)} & \dots & a_1^{[1](m)} \\ \dots & \dots & \dots & \dots \\ a_4^{1} & a_4^{[1](2)} & \dots & a_4^{[1](m)} \end{array} \right) = tanh \left(\begin{array}{cccc} z_1^{1} & z_1^{[1](2)} & \dots & z_1^{[1](m)} \\ \dots & \dots & \dots & \dots \\ z_4^{1} & z_4^{[1](2)} & \dots & z_4^{[1](m)} \end{array} \right)$$

For the 2nd layer, we have

$$z^{[2](i)} = W^{[2]} X^{(i)} + h^{[2](i)}$$

Namely,

$$a^{[2](i)} = sigmoid(z^{[2](i)})$$

In full matrix notation

$$\left(\begin{array}{ccc} a_1^{[2](1)} & a_1^{2} & \dots & a_1^{[2](m)} \end{array}\right) = sigmoid \left(\begin{array}{ccc} z_1^{[2](1)} & z_1^{2} & \dots & z_1^{[2](m)} \end{array}\right)$$

Gradient Calculation We now derive the gradient of the model above.

1) Cost function

$$J = -\frac{1}{m} \sum_{i}^{m} [y^{(i)} log(a^{[2](i)}) (1 - y^{(i)}) log(1 - a^{[2](i)})]$$

(i) denotes sample index [j] denotes layer index The sequence of calculating the gradient is

gradient is
$$J - a_{(i)}^{[2]} - z_{(i)}^{[2]} - W_k^{[2]} b^{[2]} - \text{chain rule } \dots \\ 2)$$

$$\begin{split} \frac{\partial J}{\partial a_{(j)}^{[2]}} &= \frac{\partial}{\partial a_{(j)}^{[2]}} (-\frac{1}{m} \sum_{i} [y_{(i)} log(a_{(i)}^{[2]}) + (1-y_{(i)}) log(1-a_{(i)}^{[2]}]) \text{ only i} = j \text{ survives} \\ &= \frac{\partial}{\partial a_{(j)}^{[2]}} (-\frac{1}{m} [y_{(j)} log(a_{(j)}^{[2]}) + (1-y_{(j)}) log(1-a_{(j)}^{[2]})] \\ &= -\frac{1}{m} [\frac{y^{(j)}}{a_{(j)}^{[2]}} - \frac{(1-y^{(j)})}{(1-a_{(j)}^{[2]})}] \end{split}$$

3)

$$\begin{split} &\frac{\partial a}{\partial z} \\ &= \frac{\partial}{\partial z} (\frac{e^z}{e^z + 1}) \\ &= \frac{1}{(e^z + 1)^2} (e^z (e^z + 1) - e^z e^z) \\ &= \frac{1}{(e^z + 1)^2} e^z \\ &= \frac{e^z}{e^z + 1} \frac{1}{e^z + 1} \\ &= \frac{e^z}{e^z + 1} \frac{e^z + 1 - e^z}{e^z + 1} \\ &= a(z)(1 - a(z)) \end{split}$$

4)

$$\begin{split} &\frac{\partial J}{\partial z_{j}^{[2]}} \\ &= \frac{\partial J}{\partial a_{(j)}^{[2]}} \frac{\partial a_{(j)}^{[2]}}{\partial z_{(j)}^{[2]}} \\ &= -\frac{1}{m} [\frac{y^{(j)}}{a_{(j)}^{[2]}} - \frac{(1 - y^{(j)})}{(1 - a_{(j)}^{[2]})}] a_{(j)}^{[2]} (1 - a_{(j)}^{[2]}) \\ &= -\frac{1}{m} (y_{(j)} - y_{(j)} a_{(j)}^{[2]} - a_{(j)}^{[2]} + y_{j} a_{(j)}^{[2]}) \\ &= -\frac{1}{m} (y_{(j)} - a_{(j)}^{[2]}) \end{split}$$

matrix form

$$\begin{split} &\frac{\partial J}{\partial Z^{[2]}} \\ = &(\frac{\partial J}{\partial z_1^{[2]}}, \frac{\partial J}{\partial z_2^{[2]}}, ..., \frac{\partial J}{\partial z_m^{[2]}}) \\ = &-\frac{1}{m}(y_{(1)}a_{(1)}^{[2]}, y_{(2)}a_{(2)}^{[2]}, ..., y_{(m)}a_{(m)}^{[2]}) \\ = &\frac{1}{m}(A^{[2]} - Y) \end{split}$$

5)

$$z_{[2](i)} = \sum_{l} w_l^{[2]} a_l^{[1](i)} + b^{[2]}$$

$$\frac{\partial z_i^{[2]}}{\partial w_k^{[2]}} = a_l^{[1](i)}$$

$$\frac{\partial z_i^{[2]}}{\partial b^{[2]}} = 1$$

6)

$$\begin{split} &\frac{\partial J}{\partial w_k^{[2]}} \\ &= \sum_{(i)} \frac{\partial J}{\partial z_{(i)}^{[2]}} \frac{\partial z_{(i)}^{[2]}}{\partial w_k^{[2]}} \text{ chain rule in higher dimension} \\ &= \sum_{i}^{m} -\frac{1}{m} (y_{(i)} - a_{(i)}^{[2]}) a_k^{[1](i)} \\ &= \frac{1}{m} \left(\begin{array}{ccc} a_{(1)}^{[2]} - y_{(1)} & a_{(2)}^{[2]} - y_{(2)} & \dots & a_{(m)}^{[2]} - y_{(m)} \end{array} \right) \left(\begin{array}{c} a_k^{(1)[1]} \\ a_k^{(2)[1]} \\ \dots \\ a_k^{(m)[1]} \end{array} \right) \\ &\text{in matrix form} \\ &= \frac{1}{m} [A^{[2]} - Y] (a_k^{[1]})^T \end{split}$$

$$\begin{pmatrix} \frac{\partial J}{\partial w_k^{[2]}}, & \frac{\partial J}{\partial w_k^{[2]}}, & \dots & \frac{\partial J}{\partial w_k^{[2]}} \end{pmatrix}$$

$$\frac{1}{m} \begin{pmatrix} a_{(1)}^{[2]} - y_{(1)} & a_{(2)}^{[2]} - y_{(2)} & \dots & a_{(m)}^{[2]} - y_{(m)} \end{pmatrix} \begin{pmatrix} a_1^{(1)[1]} & a_2^{(1)[1]} & \dots & a_4^{(1)[1]} \\ a_1^{(2)[1]} & a_2^{(2)[1]} & \dots & a_4^{(2)[1]} \\ \dots & \dots & \dots & \dots \\ a_1^{(m)[1]} & a_2^{(m)[1]} & \dots & a_4^{(m)[1]} \end{pmatrix}$$
 in matrix form
$$= \frac{1}{m} [A^{[2]} - Y] (A^{[1]})^T$$

$$7)$$

$$\frac{\partial J}{\partial z_l^{[1](j)}} = \qquad \qquad \frac{\partial J}{\partial z^{[2](j)}} \frac{\partial z^{[2](j)}}{\partial a_l^{[1](j)}} \frac{\partial a_l^{[1](j)}}{\partial z_l^{[1](j)}}$$

$$= \frac{\partial J}{\partial z^{[2](j)}} \frac{\partial \sum_{l=1}^4 w_l^{[2]} a_l^{[1](j)}}{\partial a_l^{[1](j)}} g'(z_l^{[1](j)})$$

$$= \frac{\partial J}{\partial z^{[2](j)}} w_l^{[2]} g'(z_l^{[1](j)})$$

in matrix form

$$\begin{pmatrix} \frac{\partial J}{\partial z_1^{1}}, & \dots & \dots & \frac{\partial J}{\partial z_1^{[1](m)}} \\ \dots & \dots & \dots \\ \frac{\partial J}{\partial z_4^{1}}, & \dots & \dots & \frac{\partial J}{\partial z_4^{[1](m)}} \end{pmatrix}$$

$$= \begin{pmatrix} w_l^{[2]} \frac{\partial J}{\partial z^{[2](1)}}, & \dots & \dots & w_l^{[2]} \frac{\partial J}{\partial z^{[2](m)}} \\ \dots & \dots & \dots \\ y_4^{[2]} \frac{\partial J}{\partial z^{[2](1)}}, & \dots & \dots & w_4^{[2]} \frac{\partial J}{\partial z^{[2](m)}} \end{pmatrix}$$

$$\circ \begin{pmatrix} g'(z_l^{1}), & \dots & \dots & g'(z_l^{[1](m)}) \\ \dots & \dots & \dots & \dots \\ g'(z_4^{1}), & \dots & \dots & g'(z_4^{[1](m)}) \end{pmatrix}$$

2 Example: XNOR

The XNOR operation is well-know in computer science. It has the following truth table.

x1	x2	output
0	0	1
0	1	0
1	0	0
1	1	1

This is a well know problem and it is not linearly separable. By saying not

linearly separable we mean we are not able to draw a line on the x_1 - x_2 plane to separate output 0s and 1s. So we solve this by a 2-layer neural network. The idea of implementing this neural network comes from the following logic operation in the table below.

x1	x2	a1= x1 & x2	a2=not x1 & not x2	output=a1 OR a2
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

In the neural network implementation, the first layer take the input (x_1, x_2) and generates two output nodes (a_1, a_2) . The first node a_1 calculates AND operation using the following expression

$$a_1 = tanh(20x_1 + 20x_2 - 30)$$

The second node a_2 calculates $\bar{x}_1 AND\bar{x}_2$ using the following expression

$$a_2 = \tanh(-20x_1 - 20x_2 + 10)$$

Then the second layer calculates the final output node y, and it implements OR operation

$$y = tanh(20a_1 + 20a_2 - 10)$$

$$\left(\begin{array}{c} z_1^{1} \\ z_2^{1} \end{array} \right) = \left(\begin{array}{cc} 20 & 20 \\ -20 & -20 \end{array} \right) \left(\begin{array}{c} x_1^{(1)} \\ x_2^{(1)} \end{array} \right) + \left(\begin{array}{c} -30 \\ 10 \end{array} \right)$$

$$\left(\begin{array}{c} a_{1}^{1} \\ a_{2}^{1} \end{array}\right) = sigmoid \left(\begin{array}{c} z_{1}^{1} \\ z_{2}^{1} \end{array}\right)$$

$$z^{[2](1)} = \left(\begin{array}{cc} 20 & 20 \end{array}\right) \left(\begin{array}{c} a_1^{[2](1)} \\ a_2^{[2](1)} \end{array}\right) - 10$$

$$y^{[2](1)} = tanh(z^{[2](1)})$$