Logistic Regression

Andy Grogan-Kaylor

9 May 2020

Last Updated

. display "\$S_TIME \$S_DATE" 17:40:15 9 May 2020

Key Concepts and Commands

• Fitting a Curve to 2 Possible Values

- Linear models, probit and logit
- y x1 x2 ... $\leftarrow \to F(y) = \beta_0 + \beta x_1 + \beta x_2...$
- regress y x1 x2 OLS; Linear Model
- logit y x1 x2 Logistic Regression
- probit y x1 x2 Probit Regression
- glm ...

Limited Dependent Variables

- Categorical Dependent Variable
- Binary Dependent Variable
- Limited Dependent Variable

General Social Survey

```
. use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey Panel Data/GSS_panel2010w12
> 3_R6 - stata.dta", clear
( )
```

. codebook happy_3 // what does this variable look like?

happy_3: GENERAL HAPPINESS

type: numeric (byte)
label: HAPPY_3

range: [1,3] units: 1
unique values: 3 missing .: 0/2,044
unique mv codes: 3 missing .*: 742/2,044

tabulation: Freq. Numeric Label
391 1 VERY HAPPY
758 2 PRETTY HAPPY
153 3 NOT TOO HAPPY
1 .d DK
740 .i IAP
1 .n NA

Data Management

. recode happy_3 (1/2 = 1)(3=0), generate(happy_3_D) (911 differences between happy_3 and happy_3_D)

. tabulate happy_3 happy_3_D // double check

happy_3: GENERAL	RECODE of (happy_3: HAPPINE		
HAPPINESS	0	1	Total
VERY HAPPY	0	391	391
PRETTY HAPPY	0	758	758
NOT TOO HAPPY	153	0	153
Total	153	1,149	1,302

Visualize

```
. twoway scatter happy_3_D coninc_3, scheme(burd) jitter(5)
```

[.] graph export happiness-income.png, width(500) replace (file happiness-income.png written in PNG format)

Figure 1: Happiness and Income

Linear Probability Model

•	regress happ	oy_3_D coninc_	3					
	Source	SS	df	MS	Numbe	er of obs	=	1,223
-					F(1,	1221)	=	22.87
	Model	2.26477708	1	2.26477708	B Prob	> F	=	0.0000
	Residual	120.937185	1,221	.099047654	1 R-sqı	ıared	=	0.0184
-					- Adj H	R-squared	=	0.0176
	Total	123.201962	1,222	.100819936	6 Root	MSE	=	.31472
	happy_3_D	Coef.	Std. Err.	t	P> t	[95% Cd	onf.	Interval]
	coninc_3 _cons	9.69e-07 .8368664	2.03e-07 .0137133	4.78 61.03	0.000	5.72e-0		1.37e-06 .8637706
_								

Normal and Cumulative Normal Distribution

```
. clear all
```

```
. set obs 100 // 100 observations number of observations (_N) was 0, now 100
```

- . generate z = runiform(-5, 5) // randomly distributed z scores
- . generate mynormal densities = normalden(z) $\//$ normal densities
- . generate myprobabilities = normal(z) // cumulative normal probabilities

- . twoway scatter mynormal densities myprobabilities ${\tt z}$, ${\tt scheme}({\tt michigan})$
- . graph export normal.png, width(500) replace (file normal.png written in PNG format)

Figure 2: Standard and Cumulative Normal Curves