Temat projektu: Modele parametryczne w analizie historii zdarzeń

Autor: Sebastian Boruch

Spis treści

1. Opis danych	3
1.1. Kategoryzacja zmiennej DAWKA	
2. Interpretacja wyników procedury LIFEREG	
2.1. Wyniki modelu z rozkładem wykładniczym bez zmiennych	4
2.2. Wyniki modelu z rozkładem wykładniczym ze zmiennymi objaśniającymi	6
2.3. Wyniki modelu z rozkładem Weibulla	8
2.4. Test stosunku wiarygodności (TSW)	10
3. Wnioski	11
4. Kod SAS	11

1. Opis danych

Australijskie badanie przeprowadzone przez Caplehorna i Bell (1991) z departamentu zdrowia publicznego Uniwersytetu w Sydney porównywało czas przeżycia w dwóch klinikach leczenia metadonem dla osób uzależnionych od heroiny. Czas przeżycia pacjenta określono jako czas w dniach, aż pacjent powrócił do nałogu lub opuścił klinikę. Obie kliniki różniły się w zależności od ogólnej polityki leczenia. Celem było zidentyfikowanie czynników, które wpływają na czas przeżycia: klinika, maksymalna dzienna dawka metadonu i (nie)obecność w więzieniu.

Proces leczenia pacjentów metadonem badano w kohorcie 238 osób uzależnionych od heroiny, którzy weszli do programu terapii uzależnień od lutego 1986 do sierpnia 1987 r. Wszyscy pacjenci zostali ocenieni w tym samym instytucie i odesłani do jednej z dwóch placówek leczniczych w celu rozpoczęcia terapii.

Rozkład Weibulla to ciągły rozkład prawdopodobieństwa często stosowany w analizie przeżycia do modelowania sytuacji, gdy prawdopodobieństwo awarii zmienia się w czasie.

Może on w zależności od parametrów przypominać zarówno rozkład normalny, jak i rozkład wykładniczy (sprowadza się do niego dla k=1). Model wykładniczy jest szczególnym przypadkiem modelu Weibulla. Model przedziałami stały zakłada, że funkcja hazardu jest przedziałami stała.

W programie SAS rozkład Weibulla wykorzystywany jest za pomocą procedury LIFEREG. Procedura LIFEREG umożliwia parametryczną estymację czasu porażki. Analizowane dane mogą być cenzurowane prawostronnie, lewostronnie bądź przedziałowo. Procedura ta wykorzystuje algorytm Newtona-Raphsona w celu estymacji parametrów, używając maksymalnej wiarygodności. Procedura uniemożliwia uwzględnienie zmiennych zależnych od czasu. Obserwacje nie mogą zawierać braków danych dla zmiennej zależnej – obserwacja zostaje wtedy ocenzurowana. Usuwane są również obserwacje które mają braki danych przy zmiennych objaśniających.

1.1. Kategoryzacja zmiennej DAWKA

Trudności w interpretacji może sprawiać pierwotna postać zmiennej DAWKA- jest to zmienna ilościowa z 15 poziomami. Dla potrzeb tej analizy, w celu ułatwienia interpretacji, zmienna DAWKA została skategoryzowana na 3 kategorie:

- poniżej 60 mg/dzień
- 60 mg/dzień
- powyżej 60/ dzień

Jest to kategoryzacja zgodna z rozkładem tej zmiennej- dominantą w rozkładzie była wartość 60, a pozostałe dwie kategorie są równoliczne. Rozkład zmiennej był zbliżony do normalnego.

2. Interpretacja wyników procedury LIFEREG

2.1. Wyniki modelu z rozkładem wykładniczym bez zmiennych

	Procedura LIFER	EC	9			
	Informacje o mod	lel	u			
Zbiór	•	Т		ORK	.ADDICTS	
Zmienna	zależna	L	og	(Dni	przeżycia)	
Zmienna	obcięcia				Status	
Wartości	obcięcia				0	
Liczba ob	-				238	
	nieobcięte				150	
	obcięte prawostronnie				88	
	obcięte lewostronnie				0	
	obcięte w przedziale				0	
	rametrów		1			
	Distribution		Exponential			
Log. wiar	ygodności		-295.4343382			
	Wczytano obserwacj	i	23	8		
	Użyto obserwacji		23	8		
	Statystyki dopasov	var	nia			
	 -2 log. wiarygodności 	_		869		
	AIC (jak najmniejsze)	5	92.	869		
	AICC (jak najmniejsze)	_		886		
	BIC (jak najmniejsze)	5	96.	341		
	dopasowania (odpowie	dź	ni	erej		
2 log. wiary					2237.852	
	AIC (jak najmniejsze)				2239.852	
	AICC (jak najmniejsze)				2239.869	
Exponential	BIC (jak najmniejsze)				2243.325	

Tabela 1. Podstawowe statystyki modelu z rozkładem wykładniczym bez zmiennych

Występuje tu tylko jeden parametr – parametr α. Logarytm funkcji wiarygodności nie jest w tym modelu wprost interpretowalny, ale będzie wykorzystany do późniejszego porównania modeli między sobą (TSW). Warto dodać, że każdy model dąży do maksymalizacji funkcji wiarygodności, więc model z większym log. wiarygodności uznaje się za lepszy.

Statystyki dopasowania- najpierw widoczne są wyniki dla logarytmu zmiennej zależnej (log zmiennej czasowej), a następnie dla niezlogarytmowanej zmiennej czasowej. Wyniki te w tym momencie nie są interpretowalne. Będą one porównywane pomiędzy modelami. Wybiera się ten model, który ma jak najmniejsze wartości statystyk dopasowania.

Analiza ocen parametrów maksymalnej wiarygodności									
			Błąd						
Parametr	DF	Ocena	standardowy	Przedział u	fności 95%	Chi-kwadrat	Pr. > chi-kw.		
Intercept	1	6.4595	0.0816	6.2995	6.6195	6258.79	<.0001		
Skala	0	1.0000	0.0000	1.0000	1.0000				
Skala Weibulla	1	638.7466	52.1534	544.2874	749.5988				
Kształt Weibulla	0	1.0000	0.0000	1.0000	1.0000				

Statystyki mnożnika Lagrange'a						
Parametr	Chi-kwadrat	Pr. > chi-kw.				
Skala	11.4745	0.0007				

Tabela 2. Analiza ocen parametrów modelu z rozkładem wykładniczym bez zmiennych

Parametry zostały oszacowane za pomocą metody największej wiarygodności. Intercept i Skala to parametry rozkładu zmiennych ekstremalnych. Aby na ich podstawie uzyskać wartości parametrów α i β , należy przeprowadzić następujące obliczenia:

- $\alpha = \exp(-\text{Intercept}) \rightarrow \alpha = \exp(-6,4595) = 0.0015$
- $\beta = 1/\text{Skala}$ $\Rightarrow \beta = 1/1 = 1$

Parametry funkcji gęstości, przeżycia i hazardu:

- $\hat{f}(t) = 0.0015 * exp(-0.0015t)$
- $\hat{S}(t) = exp(-0.0015t)$
- $\hat{h}(t) = 0.0015$

Skala Weibulla to inaczej exp(Intercept)- interpretuje się tę wartość jako średni czas do zajścia zdarzenia (powrotu pacjenta do nałogu), który wynosi 638,75 dni.

Badana jest również istotność wyrazu wolnego (Intercept):

- H0 nieistotny statystycznie
- H1 istotny statystycznie

Na poziomie istotności 5% można odrzucić H0 na rzecz hipotezy alternatywnej, która uznaje parametr za istotny statystycznie.

Test mnożników Lagrange'a - jest to test punktowy, który bada hipotezę, że parametr Skala (β) = 1. Zatem, test bada czy model wykładniczy jest dobrym modelem do dopasowania do empirycznego rozkładu zmiennej czasowej. Test ten weryfikuje, czy parametr powinien być równy 1.

- $H0: \beta = 1$
- H1: $\beta \neq 1$

Na poziomie istotności 5% można odrzucić H0 na rzecz hipotezy alternatywnej, zatem można stwierdzić że rozkład wykładniczy nie jest odpowiednim rozkładem z punktu widzenia dopasowania do zmiennej czasowej.

2.2. Wyniki modelu z rozkładem wykładniczym ze zmiennymi objaśniającymi

	Pro	cedura	LIFE	RE	G		
	Info	rmacje					
Zbiór	W	ORŁ		_FOR_ADD			
Zmienna zależna			Lo	og(Dni przeź			
Zmienna obcięcia				S	tatus		
Wartości obcięcia							0
Liczba obserwacji							238
Wartości nieobcię		_					150
Wartości obcięte p							88
Wartości obcięte le							0
Wartości obcięte v	•	ale					0
Liczba parametróv							5
Name of Distributi						Expon	
Log. wiarygodnoś	ci					-272.98	9263
Info Naz	Wczyta Użyto o ormacje o	bserwa o pozio	icji macl	h kl	238 238 asyfikacj rtości	i	
Day	****	. 02.	-		<60 >60		
Klin	ika		2	12			
Wie	zienie			0 1			
	Staty	styki do		owa	nia		
	2 log. wia				545.979		
	AIC (jak na		_		555.979		
	AICC (jak	-			556.237		
E	BIC (jak n	ajmniejs	ze)	,	573.340		
Statystyki d	opasowa	nia (od	lpow	ied	ź niereje	strowana)	
-2 log. wiaryg				2192.962			
ExponentialA	IC (jak na	jmniejsz	ze)			2202.962	
ExponentialA			-			2203.221	
ExponentialB	IC (jak na	jmniejsz	ze)			2220.324	

Tabela 3. Podstawowe statystyki modelu z rozkładem wykładniczym ze zmiennymi

Powyższe statystyki jak i sposób interpretacji są analogiczne dla modelu bez zmiennych. Statystyki dopasowania zostaną porównane w dalszej części analizy. Dodatkową informacją jest tu informacja o poziomach klasyfikacji. Zmienna DAWKA posiada 3 poziomy po kategoryzacji. Zmienne KLINIKA i WIĘZIENIE to zmienne binarne. Poziom 1 dla KLINIKA oznacza odbycie przez pacjenta terapii w klinice nr 1, poziom 2- w klinice nr 2. Poziom 0 dla WIĘZIENIE oznacza, że pacjent nigdy nie przebywał w więzieniu, poziom 1- że przebywał.

Analiza efektów typu III							
Chi-kwadrat							
Efekt	DF	Walda	Pr. > chi-kw.				
Dawka	2	16.7009	0.0002				
Klinika	1	17.8638	<.0001				
Więzienie	1	2.1440	0.1431				

	Analiza ocen parametrów maksymalnej wiarygodności								
				Błąd					
Parametr		DF	Ocena	standardowy	Przedział u	fności 95%	Chi-kwadrat	Pr. > chi-kw.	
Intercept		1	7.3623	0.2261	6.9191	7.8054	1060.33	<.0001	
Dawka	60	1	-0.4508	0.2235	-0.8888	-0.0128	4.07	0.0437	
Dawka	<60	1	-0.7817	0.1913	-1.1566	-0.4068	16.70	<.0001	
Dawka	>60	0	0.0000						
Klinika	1	1	-0.9026	0.2135	-1.3211	-0.4840	17.86	<.0001	
Klinika	2	0	0.0000						
Więzienie	0	1	0.2437	0.1664	-0.0825	0.5699	2.14	0.1431	
Więzienie	1	0	0.0000						
Skala		0	1.0000	0.0000	1.0000	1.0000			
Kształt Weibulla		0	1.0000	0.0000	1.0000	1.0000			

Statystyki mnożnika Lagrange'a						
Parametr	Chi-kwadrat	Pr. > chi-kw.				
Skala	32.7829	<.0001				

Tabela 4. Analiza parametrów i efektów modelu z rozkładem wykładniczym ze zmiennymi

Analiza efektów typu III- występują tu 3 zmienne: DAWKA (2 stopnie swobody) oraz KLINIKA i WIĘZIENIE (po jednym stopniu swobody). Liczba kategorii to stopnie swobody + 1. Na podstawie tabeli efektów bada się istotność zmiennych:

- H0 nieistotna statystycznie
- H1 –istotna statystycznie.

Na poziomie istotności 5% odrzuca się H0 na rzecz H1. Zatem zmienne KLINIKA i DAWKA są istotne statystycznie, natomiast zmienna WIĘZIENIE jest nieistotna.

Analiza ocen parametrów- do modelu zostały włączone 3 zmienne, ale jedna z nich- WIĘZIENIE jest nieistotna statystycznie, więc nie ma powodu aby interpretować jej wynik.

Interpretacja ocen zmiennej DAWKA: jest to zmienna klasyfikująca z trzema kategoriami. Wartością referencyjną jest tu "powyżej 60 mg/dzień metadonu". Interpretacja wyników jest następująca:

- przeciętny czas powrotu do nałogu wśród pacjentów przyjmujących dawkę poniżej 60 mg/dzień jest 100%- exp(-0.7817)*100%= 54% krótszy niż w przypadku tych przyjmujących powyżej 60 mg/dzień
- ryzyko powrotu do nałogu u przyjmujących dawkę poniżej 60 mg/dzień jest o exp(-(-0.7818)-100% = 118% wyższe niż u osób przyjmujących powyżej 60 mg/dzień
- przeciętny czas powrotu do nałogu wśród pacjentów przyjmujących dawkę 60 mg/dzień jest 100%- exp(-0.4508)*100%= 36% krótszy niż w przypadku tych przyjmujących powyżej 60 mg/dzień
- ryzyko powrotu do nałogu u przyjmujących dawkę 60 mg/dzień jest o exp(-(-0.4508)-100% = 57%% wyższe niż u osób przyjmujących powyżej 60 mg/dzień

Interpretacja wyników zmiennej KLINIKA (wartość referencyjna- klinika 2):

 przeciętny czas powrotu do nałogu u pacjentów z kliniki 1 jest 100%-exp(-0.9026)=59% krótszy niż u pacjentów z kliniki 2 • ryzyko powrotu do nałogu u pacjentów z kliniki 1 jest o exp(-(-0.9026)-100%=147% wyższe niż u pacjentów z kliniki 2

Wykres 1. Wykres prawdopodobieństwa modelu z rozkładem wykładniczym ze zmiennymi

2.3. Wyniki modelu z rozkładem Weibulla

Wyniki modelu z rozkładem Weibulla są podobne do tych z modelu z rozkładem wykładniczym. Występują tu takie same zmienne objaśniające z taką samą liczbą stopni swobody. Inna jest wartość parametru Skala i oceny parametrów nieco się różnią od modelu wykładniczego. Interpretacja wyników informacji o modelu i statystyk dopasowania została opisana w poprzednich modelach. Wartości statystyk zostaną użyte do porównania w teście stosunku wiarygodności w dalszej części analizy.

	Inf	ormacje o mod	lelu		
Zbiór		WOI	WORK.QUERY_FOR_ADDICTS		
Zmienna za	leżna		Log(Dni przeżycia)		
Zmienna ob	cięcia			Statu	
Wartości ob	cięcia				
Liczba obse	rwacji			23	
Wartości nie				15	
	cięte prawostr			8	
Wartości ob	cięte lewostro	nnie			
Wartości ob	cięte w przedz	iale			
Liczba para					
Name of Dis				Weibu	
Log. wiaryg	odności			-264.166450	
		obserwacji o poziomach	238 klasyfikacji		
	Nazwa	Poziomy V			
	Dawka Klinika		0 <60 >60		
		2 1			
	Więzienie	2 0	1		
	Stat	ystyki dopasov	vania		
		iarygodności	528.333		
	AIC (jak	najmniejsze)	540.333		
	(najmniejsze)	540.697			
	BIC (jak	najmniejsze)	561.167		
Staty	styki dopasow	ania (odpowie	dź nierejes	strowana)	
	wiarygodności			2175.317	
	IAIC (jak najmn			2187.317	
M/oibl	IAICC (jak najm	miaicza)		2187.680	
	IBIC (jak najmn			2208.150	

Tabela 5. Podstawowe statystyki modelu z rozkładem Weibulla ze zmiennymi

Analiza efektów typu III							
Chi-kwadrat Efekt DF Walda Pr. > chi-ky							
Dawka	2	21.8571	<.0001				
Klinika	1	20.8543	<.0001				
Więzienie	1	3.6191	0.0571				

Analiza ocen parametrów maksymalnej wiarygodności									
				Błąd					
Parametr		DF	Ocena	standardowy	Przedział u	fności 95%	Chi-kwadrat	Pr. > chi-kw.	
Intercept		1	7.1227	0.1710	6.7875	7.4579	1734.22	<.0001	
Dawka	60	1	-0.3474	0.1659	-0.6726	-0.0223	4.39	0.0363	
Dawka	<60	1	-0.6670	0.1430	-0.9473	-0.3867	21.76	<.0001	
Dawka	>60	0	0.0000						
Klinika	1	1	-0.7357	0.1611	-1.0515	-0.4200	20.85	<.0001	
Klinika	2	0	0.0000						
Więzienie	0	1	0.2338	0.1229	-0.0071	0.4747	3.62	0.0571	
Więzienie	1	0	0.0000						
Skala		1	0.7374	0.0501	0.6454	0.8425			
Kształt Weibulla		1	1.3561	0.0922	1.1869	1.5494			

Tabela 6. Analiza parametrów i efektów modelu z rozkładem Weibulla ze zmiennymi

Zmienna WIĘZIENIE ponownie nie jest istotna statystycznie, ale tym razem balansuje na granicy istotności. Zmienne DAWKA i KLINIKA są istotne statystycznie na poziomie 5%.

Interpretacja ocen zmiennej DAWKA: wartością referencyjną jest tu "powyżej 60 mg/dzień metadonu". Interpretacja wyników jest następująca:

- przeciętny czas powrotu do nałogu wśród pacjentów przyjmujących dawkę poniżej 60 mg/dzień jest 100%- exp(-0.6670)*100%= 49% krótszy niż w przypadku tych przyjmujących powyżej 60 mg/dzień
- ryzyko powrotu do nałogu u przyjmujących dawkę poniżej 60 mg/dzień jest o exp(-(-0.6670)-100% = 95% wyższe niż u osób przyjmujących powyżej 60 mg/dzień
- przeciętny czas powrotu do nałogu wśród pacjentów przyjmujących dawkę 60 mg/dzień jest 100%- exp(-0.3474)*100%= 29% krótszy niż w przypadku tych przyjmujących powyżej 60 mg/dzień
- ryzyko powrotu do nałogu u przyjmujących dawkę 60 mg/dzień jest o exp(-(-0.4508)-100% = 41% wyższe niż u osób przyjmujących powyżej 60 mg/dzień

Interpretacja wyników zmiennej KLINIKA (wartość referencyjna- klinika 2):

- przeciętny czas powrotu do nałogu u pacjentów z kliniki 1 jest 100%-exp(-0.7357)=52% krótszy niż u pacjentów z kliniki 2
- ryzyko powrotu do nałogu u pacjentów z kliniki 1 jest o exp(-(-0.7357)-100%=109% wyższe niż u pacjentów z kliniki 2

Wartość parametru $\hat{\beta} = \frac{1}{Skala} = \frac{1}{0.7374} = 1,35$ jest większa od 1, a więc funkcja hazardu jest rosnąca.

Wykres 2. Wykres prawdopodobieństwa dla modelu Weibulla ze zmiennymi

2.4. Test stosunku wiarygodności (TSW)

Korzystając z testu stosunku wiarygodności autor dokona teraz porównania modelu wykładniczego ze zmiennymi objaśniającymi i modelu Weibulla ze zmiennymi.

- Model 1- model wykładniczy ze zmiennymi (liczba parametrów: 5); log likelihood= -273
- Model 2- model Weibulla ze zmiennymi (liczba parametrów: 6); log likelihood= -264

Hipotezy:

- H0: Model 1 jest lepszy niż Model 2 parametry w 2 modelu przy zmiennej są równe 0
- H1: Model 2 jest lepszy niż model

```
TSW = -2*(LogLikelihood(model\ 1) - LogLikelihood(model\ 2)) TSW = -2*(-272,9892 + 264,1164) = 17,74
```

W tym porównaniu liczba stopni swobody wynosi: 6-2 = 4.

Na poziomie istotności α=0,05 wartość krytyczna testu wynosi X²_{0,05;4}=9,488. Wartość 17,74 wpada w obszar odrzuceń. Odrzuca się H0 na korzyść H1. Model 2 jest lepszy niż Model 1.

3. Wnioski

Najlepiej dopasowanym okazał się model z rozkładem Weibulla ze zmiennymi objaśniającymi. Oszacował on, że dawka powyżej 60 mg/dzień jest najkorzystniejsza dla pacjentów walczących z narkomanią, a pobyt w klinice 2 jest korzystniejszy niż w klinice 1 oraz, że pobyt w więzieniu na poziomie istotności 5% nie ma wpływu na powrót do nałogu. Model oszacował, że funkcja hazardu rośnie, więc ryzyko powrotu do nałogu rośnie w czasem.

4. Kod SAS

```
PROC FORMAT
     LIB=WORK;
           VALUE dawka
                 0 - 59 = "<60"
                 60 = "60"
                 61 - 120 = ">60";
RUN
PROC SQL;
   CREATE TABLE WORK.QUERY FOR ADDICTS AS
   SELECT t1.Dawka FORMAT=DAWKA. AS Dawka,
          t1.Klinika,
          t1.Status,
          t1.'Więzienie'n,
          t1.'Dni przeżycia'n
      FROM WORK.ADDICTS t1;
QUIT;
ODS GRAPHICS ON;
title1 "model z rozkładem wykładniczym bez zmiennych";
PROC LIFEREG data = WORK.ADDICTS;
MODEL "Dni przeżycia"n*STATUS (0) = / dist=exponential;
RUN;
title;
title1 "model z rozkładem wykładniczym ze zmiennymi";
PROC LIFEREG data = WORK.QUERY FOR ADDICTS;
CLASS DAWKA Klinika 'Wiezienie'n;
MODEL "Dni przeżycia"n*STATUS (0) = DAWKA klinika 'Więzienie'n/
dist=exponential;
probplot;
RUN;
```

```
TITLE1 "model Weibulla ze zmiennymi";
proc lifereg data=WORK.QUERY_FOR_ADDICTS;
class DAWKA Klinika 'Więzienie'n;
model "Dni przeżycia"n*STATUS (0)=DAWKA Klinika
'Więzienie'n/dist=weibull;
probplot;
run;
title;
ods graphics off;
```