Zhejiang University – University of Illinois at Urbana-Champaign Institute

ECE-210 Analog Signal Processing Spring 2022 Homework #10: Solution

1. Determine the 3-dB bandwidth and the 95%-bandwidth of signals f(t) and g(t) with the following energy spectra:.

Solution:

• For a low-pass signal, the 3-dB bandwidth is the frequency where the energy spectrum $|F(\omega)|^2$ falls to one-half the energy spectral value $|F(0)|^2$ at DC. Therefore, from the graph of the energy spectra, we can determine, that the 3-dB bandwidth of the signal f(t) is

$$\frac{3\pi}{4} \frac{\mathrm{rad}}{\mathrm{s}}$$

Next, the 95%-bandwidth (Ω in the figure below), can be calculated by finding the total energy W, and then finding Ω such that the total energy outside $|\omega| > \Omega$ equals 5% of W.

Calculating the total energy W using the formula for the area of a trapezoid, we have

$$W = \frac{1}{2\pi} \left(\frac{2\pi + \pi}{2} \right) = \frac{3}{4} = 0.75.$$

Thus the energy outside $|\omega| > \Omega$ is 0.05W = 0.0375. But this energy can be calculated as $\frac{1}{2\pi}$ times the combined areas of the right and left non-colored triangles shown in the figure, which is

$$\frac{1}{2\pi} \left(\pi - \Omega \right) \frac{\left(\pi - \Omega \right)}{\pi/2}.$$

Setting this quantity equal to 0.0375 yields

$$(\pi - \Omega)^2 = 0.0375\pi^2.$$

Hence,

$$\Omega = \pi \left(1 - \sqrt{0.0375} \right) \approx 0.80635 \pi \frac{\text{rad}}{\text{s}}.$$

• Since the band-pass signal g(t) has an energy spectrum $|G(\omega)|^2$ that is a shifted replica of $|F(\omega)|^2$, the bandwidth of g(t) is twice that of f(t), i.e.

$$\Omega_{3dB} = \frac{3\pi}{2} \frac{rad}{s}$$

and

$$\Omega_{95\%} \approx 1.6127 \pi \frac{\mathrm{rad}}{\mathrm{s}}.$$

2. Let $f(t) = f_1(t) + f_2(t)$ such that $f_1(t) \leftrightarrow F_1(\omega)$ and $f_2(t) \leftrightarrow F_2(\omega)$, and let $H(\omega) = |H(\omega)|e^{j\chi(\omega)}$. The functions $F_1(\omega)$, $F_2(\omega)$, $H(\omega)$ and $\chi(\omega)$ are given graphically below. The signal f(t) is the input to an LTI system with a frequency response $H(\omega)$. Express the output y(t) of the system as a superposition of scaled and/or shifted versions of $f_1(t)$ and $f_2(t)$.

Solution:

We know that in an LTI system, the input and output in the Fourier domain are related as

$$Y(\omega) = H(\omega)F(\omega).$$

With $F(\omega) = F_1(\omega) + F_2(\omega)$, we have

$$Y(\omega) = H(\omega) [F_1(\omega) + F_2(\omega)]$$

$$= \underbrace{H(\omega)F_1(\omega)}_{Y_1(\omega)} + \underbrace{H(\omega)F_2(\omega)}_{Y_2(\omega)}.$$

Now, for the region where $F_1(\omega) \neq 0$, we have

$$H(\omega) = 2.$$

Therefore,

$$Y_1(\omega) = 2F_1(\omega) \iff y_1(t) = 2f_1(t).$$

Also, for the region where $F_2(\omega) \neq 0$, we notice a phase that is changing linearly with slope $^{-1}/_{10}$. Hence,

$$H(\omega) = 4e^{-j\frac{1}{10}\omega}.$$

Consequently,

$$Y_2(\omega) = 4e^{-j\frac{1}{10}\omega}F_2(\omega) \iff y_2(t) = 4f_2\left(t - \frac{1}{10}\right).$$

Finally, adding the two results, we obtain

$$y(t) = 2f_1(t) + 4f_2\left(t - \frac{1}{10}\right).$$

3. Determine the response y(t) of the circuit shown below with an arbitrary input f(t) in the form of an inverse Fourier transform and then evaluate y(t) for the case $f(t) = e^{-\frac{t}{6}}u(t)$ V.

Solution:

The equivalent circuit in the Fourier domain is

$$F(\omega) \stackrel{\stackrel{?}{=}}{=} \frac{1}{j\omega^3} \Omega \stackrel{\stackrel{+}{=}}{=} Y(\omega)$$

Using voltage division, we have

$$Y(\omega) = F(\omega) \frac{\frac{1}{j\omega 3}}{2 + \frac{1}{i\omega 3}} = F(\omega) \frac{\frac{1}{6}}{\frac{1}{6} + j\omega}.$$

Applying the inverse Fourier transform,

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} Y(\omega) e^{j\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\frac{1}{6} F(\omega)}{\frac{1}{6} + j\omega} e^{j\omega t} d\omega.$$

For the input $f(t) = e^{-t/6}u(t)$ the Fourier transform pair

$$e^{-at}u(t) \leftrightarrow \frac{1}{a+j\omega}, \ a>0,$$

yields

$$F(\omega) = \frac{1}{\frac{1}{6} + j\omega}.$$

Substituting this $F(\omega)$ into the inverse Fourier transform, we obtain

$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\frac{1}{6}}{\left(\frac{1}{6} + j\omega\right)^2} e^{j\omega t} d\omega.$$

Finally using the Fourier transform pair

$$te^{-at}u(t) \leftrightarrow \frac{1}{(a+j\omega)^2}, a > 0,$$

gives,

$$y(t) = \frac{1}{6}te^{-\frac{1}{6}t}u(t).$$

4. Determine the Fourier transform of $g(t) = f(t + \frac{\theta}{\omega_o})\cos(\omega_o t + \theta)$ in terms of scaled and/or shifted versions of $F(\omega)$. (Hint: use time-shift property.)

Solution

$$f(t + \frac{\theta}{\omega_o})\cos(\omega_o t + \theta) = f(t + \frac{\theta}{\omega_o})\cos\left[\omega_o(t + \frac{\theta}{\omega_0})\right].$$

Using the time-shift property

$$g(t+t_0) \leftrightarrow G(\omega)e^{j\omega t_0}$$

together with the modulation property

$$f(t)\cos(\omega_o t) \leftrightarrow \frac{1}{2}F(\omega - \omega_o) + \frac{1}{2}F(\omega + \omega_o),$$

we obtain

$$f(t + \frac{\theta}{\omega_o})\cos(\omega_o t + \theta) \leftrightarrow \frac{1}{2} [F(\omega - \omega_o) + F(\omega + \omega_o)] e^{j\omega\frac{\theta}{\omega_o}}.$$

5. An LTI system with frequency response $H(\omega)$ is excited with an input $f(t) \leftrightarrow F(\omega)$. $H(\omega)$ and $F(\omega)$ are plotted below:

- (a) Sketch the Fourier transform $Y(\omega)$ of the system output y(t) and calculate the energy W_y of y(t).
- (b) It is observed that output q(t) of the following system equals y(t) determined in part (a).

Sketch $P(\omega)$ and determine ω_o .

Solution

(a) The output of the system is

$$Y(\omega) = H(\omega)F(\omega),$$

but since $F(\omega) = 1$, for all $H(\omega) \neq 0$, we can easily sketch

$$Y(\omega) = H(\omega).$$

Using Parseval's theorem, the energy of the signal is

$$W_y = \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(\omega)|^2 d\omega = \frac{1}{\pi} \int_{4\pi}^{8\pi} 2^2 d\omega$$
$$= \frac{4}{\pi} (8\pi - 4\pi) = 16.$$

(b) Using $Y(\omega) = Q(\omega)$ and the modulation property, we have

$$Y(\omega) = \frac{1}{2}P(\omega - \omega_0) + \frac{1}{2}P(\omega + \omega_0).$$

So $P(\omega)$ can be sketched as

Clearly, from the graph we have

$$\omega_0 = 6\pi \frac{\mathrm{rad}}{\mathrm{s}}.$$

(rad/s)

6. Consider the system

where $F(\omega)$ and $H(\omega)$ are as follows:

- (a) Express q(t) in terms of p(t).
- (b) Sketch the Fourier transforms $G(\omega),\,P(\omega),\,Q(\omega),$ and $Y(\omega).$
- (c) Express y(t) in terms of f(t).

Solution

- (a) $q(t) = p(t)\cos(5\pi t)$.
- (b) .

(c) Notice from the sketches that $Y(\omega) = \frac{1}{4}F(\omega)$ so that $y(t) = \frac{1}{4}f(t)$.