BIL516 - Oyun Teorisi ve Uygulamaları Oyunların Analizi

Feyza M. Hafızoğlu fmhafizoglu@ticaret.edu.tr

Bilgisayar Mühendisliği Bölümü İstanbul Ticaret Üniversitesi

Ajanda

- Stratejik (normal) form oyunlar
- En iyi tepki (best response)
- Dominant stratejiler
- Domine edilen stratejilerin yinelemeli elenmesi (iterative elimination of strictly dominated strategies)

Stratejik Form Oyunlar

- n-kişili oyun: $\langle N, A, u \rangle$
 - 1. N, n oyuncudan oluşan sonlu bir kümedir, i indisli
 - 2. $A = \langle S_1, \dots, S_n \rangle$ her bir oyuncu için mevcut eylemler kümesi
 - S_i , i oyuncusu için mevcut *eylemler kümesi*
 - $s_i \in S_i$, i oyuncusu için bir *eylem*
 - $S = \times_{i \in N} S_i$ için $s \in S$ bir eylem profili
 - 3. $u = \langle u_1, \dots, u_n \rangle$ her bir oyuncu için fayda fonksiyonu: $u_i : S \mapsto \mathbb{R}$
- Ek olarak
 - $s_{-i} = \langle s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n \rangle$, i oyuncusu dışındaki tüm oyuncular için eylem vektörü
 - $S_{-i} = \times_{j \neq i} S_j$, i oyuncusu dışındaki tüm oyuncular için eylem profili
 - $(s_i, s_{-i}) \in S$ bir eylem profili

Varsayımlar

- Eylem kümeleri (A) ve fayda fonksiyonları (u) ortak bilgidir
- Oyuncular rasyoneldir
 - Bir i oyuncusu ancak ve ancak u_i 'nin değerini maksimize edecek şekilde eylemde bulunuyorsa rasyoneldir

Stratejiler

Strateji

Oyunun nasıl oynanacağını her durum için gösteren eksiksiz bir açıklama.

- Bütün olası durumlar için planlama gerektirir
- Satranç, Go gibi oyunlar için imkansızdır
- Stratejik form oyunlar
 - 1. Saf (pure) strateji: Tek bir eylem
 - 2. Karma (mixed) strateji: Birden fazla eylem üzerindeki olasılık dağılımıdır

Sonlu Strateji Uzayı

Sonlu (finite) oyun

Tüm oyuncular için S_i sonlu olduğu oyunlar.

- 2-oyunculu oyunlar için matriks formda gösterim
- Örnek: Matching Pennies

Player #2
$$Head Tails$$
 Player #1
$$Tails (-1,1) (-1,1)$$

$$Tails (-1,1) (1,-1)$$

- $S_1 = \{Head, Tails\}, S_2 = \{Head, Tails\}$
- $S = \{(Head, Head), (Head, Tails), (Tails, Head), (Tails, Tails)\}$
- Örnek: s = (Head, Head)

Sonsuz (Infinite) Strateji Uzayı

Cournot Duopoly Competition

- Aynı ürünü üreten 2 üretici
- Her bir üretici üreteceği ürün miktarını belirliyor, $s_i \in [0, \infty]$ $(s_1 + s_2 \text{ toplam ürün miktarı})$
- Her bir üreticinin elde edeceği fayda (kâr) satış geliri eksi maliyet:
 - $u_i(s_1, s_2) = s_i p(s_1 + s_2) cs_i$
 - p(q) fiyat fonksiyonu
 - c ürün maliyeti
 - Mesela $p(q) = max(0, 2 s_1 s_2)$ ve c = 1

En İyi Cevap (Best Response)

- Diğer oyuncuların ne yapacağını bilseydiniz, kendi eyleminizi seçmek kolay olurdu
- $s_{-i} = \langle s_1, \dots, s_{i-1}, s_{i+1}, \dots, s_n \rangle$ • $s = (s_i, s_{-i})$

En İyi Cevap

$$s_i^* \in BR(s_{-i}) \iff \forall s_i \in S_i, u_i(s_i^*, s_{-i}) \geqslant u_i(s_i, s_{-i})$$

Dominant Stratejiler

• Örnek: The Prisoner's Dilemma

- Diğer oyuncunun ne yaptığından bağımsız olara, itiraf etmek (Defect) her oyuncu için daha faydalıdır.
- Defect eylemi, Cooperate eylemini kesin domine (strictly dominates) eder.
- Kendi çıkarını gözeten rasyonel davranışın, ortak (sosyal olarak) optimum sonuca ulaşmadığına bir örnektir.

Kesin Domine Edilen (Strictly Dominated) Stratejiler

- s_i ve s'_i , i oyuncusuna ait iki strateji ve S_{-i} diğer oyunculara ait tüm strateji (eylem) profilleri kümesi olsun:
- s_i , s_i' 'yi kesin domine (strictly dominates) eder eğer

$$\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

Dominant Stratejiler

Dominant

Diğer tüm stratejileri domine eden strateji.

- Varsayımlar
 - Tüm oyuncular rasyoneldir
 - Tüm oyuncuların rasyonel olduğu bilgisi, ortak bilgidir
 - Rasyonel bir oyuncu, kesin domine edilen bir strateji seçmez

Kesin Domine Edilen Stratejilerin Yinelemeli Elenmesi

- Kesin domine edilen bir strateji hiçbir zaman en iyi cevap olamaz
- Hiçbir zaman seçilmeyeceği için eleyebiliriz
- Faydalar ve rasyonellik hakkındaki ortak bilgi
- Kesin domine edilen stratejileri yinelemeli olarak ortadan kaldır

Kesin Domine Edilen Stratejilerin Yinelemeli Elenmesi

Player #2

		L	M	R
Player #1	U	(1,0)	(1, 2)	(0,1)
	D	(0,3)	(0,1)	(2,0)

• Player 2'nin M stratejisi, R stratejisini domine eder

Player
$$\#2$$

$$L \qquad M$$
 Player $\#1$
$$U \qquad (1,0) \qquad (1,2) \qquad D \qquad (0,3) \qquad (0,1)$$

Player 1'in U stratejisi, D stratejisini domine eder

Kesin Domine Edilen Stratejilerin Yinelemeli Elenmesi

Player #2
$$L \qquad M$$
 Player #1
$$U \boxed{ (1,0) \ \ (1,2) }$$

ullet Player 2'nin M stratejisi, L stratejisini domine eder

Player #2
$$\frac{M}{U} \label{eq:mass_eq}$$
 Player #1 $U \end{(1,2)}$

Kesin Domine Edilen Stratejilerin Elenme Sıralaması

- Birden fazla kesin domine edilen strateji mevcutsa, kaldırma sıralaması ne olacak?
 - Farketmez!

Zayıf Domine Edilen (Weakly Dominated) Stratejiler

- s_i ve s'_i , i oyuncusuna ait iki strateji ve S_{-i} diğer oyunculara ait tüm strateji (eylem) profilleri kümesi olsun:
- s_i , s_i' 'yi zayıf domine (weakly dominates) eder eğer

$$\forall s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) \geqslant u_i(s_i', s_{-i}) \text{ ve}$$

$$\exists s_{-i} \in S_{-i}, u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

- Yinelemeli olarak kaldırılabilir, fakat:
 - Bazen en iyi cevap olabilirler
 - Kaldırılma sırası önemli olabilir

Zayıf Domine Edilen Stratejiler

Farklı faydalarla sonuçlanan, üç kaldırma sırası:

	Elenme sırası soldan sağa	Sonuç	Fayda
(1)	T, R, B, C	(M, L)	(2, 2)
(2)	B, L, C, T	(M, R)	(3, 2)
(3)	T, C, R	(M, L) ya da (B, L)	(2, 2) ya da (2, 1)

Odev: Doğrula

