11. 给出商环 $Z_2[x]/(x^2+x+1)$ 上的加法表和乘法表,问次商环是否为域。解题思路: $Z_2[x]/(x^2+x+1)=\{0,1,x,x+1\}$ 加法表

MILA									
+	0	1	X	x+1					
0	0	1	X	x+1					
1	1	0	x+1	X					
X	X	x+1	0	1					
x+1	x+1	X	1	0					

乘法表

*	0	1	X	x+1
0	0	0	0	0
1	0	1	X	x+1
X	0	X	1	x+1
x+1	0	x+1	x+1	1

由两表可知,乘法满足交换律,有单位元,有逆元,是一个域

20. 设 $f(x) = x^3 + x + 1 \in GF(2)[x]$, 试证明模 f(x) 的剩余类环 GF(2)[x]/(f(x)) 是域,并给出域中所有非零元的逆元。

证明:因为 f(x)是三次的,那么 f(x)可约必有一次因式。 又因为 f(0)=1, f(1)=1,故 f(x)没有一次因式,因此,f(x)不可约。

因此, GF(2)[x]/(f(x))是域。

非零元: 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1 分别用扩展欧几里得算法求出逆元:

元素	1	х	x+1	x ²	x ² +1	x ² +x	x^2+x+1
逆元	1	x ² +1	x^2+x	x^2+x+1	x	x+1	x^2

例如, x^2+x+1 的逆元求解过程如下:

由

$$x^{3} + x + 1 = (x+1)(x^{2} + x + 1) + x$$

 $x^{2} + x + 1 = (x+1)x + 1$

知

$$x^{3} + x + 1 = (x+1)(x^{2} + x + 1) + x$$

$$1 = (x^{2} + x + 1) + (x+1)x$$

$$= (x^{2} + x + 1) + (x+1)[(x^{3} + x + 1) + (x+1)(x^{2} + x + 1)]$$

$$= x^{2}(x^{2} + x + 1) + (x+1)(x^{3} + x + 1)$$

故
$$(x^2+x+1)^{-1}=x^2$$

第八章

3. 椭圆曲线 $E_{11}(1,6)$ 表示 $y^2 \equiv x^3 + x + 6 \mod 11$, 求其上所有点。

二次剩余:

у	0	1	2	3	4	5	6	7	8	9	10
y²	0	1	4	9	5	3	3	5	9	3	1

X	0	1	2	3	4	5	6	7	8	9	10
$x^3 + x + 6$	6	8	5	3	8	4	8	2	9	7	4
У			3 7	5 6		2			3 8		2

故椭圆曲线所有的点为: $\{(2,3),(2,7),(3,5),(3,6),(5,2),(8,3),(8,8),(10,2)\}$

4. 已知点 G=(2,7) 在椭圆曲线 E₁₁(1,6)上,求 2G 和 3G

解题思路: 椭圆曲线 $E_{11}(1,6)$ 表示 $v^2 \equiv x^3 + x + 6 \mod 11$

$$G=(2,7)$$
 所以 $2G=(2,7)+(2,7)$

$$\lambda_3 = \frac{3 \times 2^2 + 1}{2 \times 7} \mod 11 = 8 \mod 11$$
 所以 $\alpha = 7 - 8 \times 2 \mod 11 = 2 \mod 11$

故
$$x_3 = 8^2 - 2 - 2 \mod 11 = 5$$
 $y_3 = -8 \times 5 - 2 \mod 11 = 2$

所以 2G=(5,2)

$$3G=2G+G=(5,2)+(2,7)$$

所以
$$\lambda_4 = \frac{7-2}{2-5} \mod 11 = 2 \mod 11$$
 $\alpha = 7-2 \times 2 \mod 11 = 3 \mod 11$

故
$$x_4 = 2^2 - 5 - 2 \mod 11 = 8$$
 $y_4 = -2 \times 8 - 3 \mod 11 = 3$

所以 3G=(8,3)

5. 写出 GF (7) 上椭圆曲线 E: $v^2 = x^3 - 2$ 所有的点, 计算曲线 E 上 (3,2) + (5,5)

的和, 计算曲线 E上(3,2)+(3,2)的和。

解题思路: 椭圆曲线 E 所有的点是: {(3,2), (3,5), (6,2), (6,5), (5,2), (5,5)}

① 计算(3,2)+(5,5)

$$\lambda_3 = \frac{y_2 - y_2}{x_2 - x_1} = \frac{5 - 2}{5 - 3} \mod 7 = 5 \mod 7 \qquad \alpha_3 = y_1 - \lambda_1 \times x_1 \mod 7 = 2 - 5 \times 3 \mod 7 = 1 \mod 7$$

$$x_3 = \lambda_3^2 - x_1 - x_2 \mod 7 = 3$$
 $y_3 = -\lambda_3 x_3 - \alpha_3 = 5$

$$\lambda_4 = \frac{3x_1^2}{2y_1} = \frac{3 \times 3^2}{2 \times 2} \mod 7 = 5 \mod 7$$
 $\alpha_4 = y_1 - \lambda_4 x_1 = 1 \mod 7$

$$x_4 = \lambda_4^2 - x_1 - x_2 = 5^2 - 3 - 3 \mod 7 = 5$$
 $y_4 = -\lambda_4 x_4 - \alpha_4 = 2$

故
$$(3,2)+(3,2)=(5,2)$$