

Indian Institute of Technology, Kanpur Department of Electrical Engineering Introduction to Reinforcement Learning (EE932) Theory Assignment 4

Deadline: Submission **NOT** Required 2023-24 Quarter 4 Max points: 10

1. Tick all the correct options. Q-Learning algorithm is:

(2 pt)

- (a) Off-Policy
- (b) Online
- (c) Offline
- (d) On-Policy

Answer: (a), (b)

2. Memory replay buffer and Target Q-network are two important concepts used in DQN. Answer which concept is used to solve the correlated training data problem and which is used for solving the non-stationary target data problem.

(2 pt)

Answer:

Memory replay buffer: Correlation problem Target Q-Network: Non-stationarity problem.

3. Consider an MDP with two states A and B and two actions a and b in each state. Assume $\gamma = 0.8$ and $\alpha = 0.2$, $\epsilon = 0.1$. Suppose the initial Q-values are shown in the table below. (2 pt)

Q(A,a)	2.0
Q(A,b)	2.0
Q(B,a)	4.0
Q(B,b)	2.0

Suppose that we were initially in state A, we took action b, received reward 1, and moved to state B, and then took action b again to get a reward of -1 and landed up in state A. In other words, the trajectory observed so far $S_0, A_0, R_1, S_1, A_1, R_2, S_2$ is

$$A, b, 1, B, b, -1, A$$
.

Suppose this was the data corresponding to a Q-learning algorithm. Which Q-table items would have changed after the first update of Q-learning, and what is its new value?

Answer:

Trajectory: A, b, 1, B, b, -1, A.

$$Q_{new}(S_t, A_t) = Q_{old}(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a'} Q_{old}(S_{t+1}, a') - Q_{old}(S_t, A_t)]$$

The first update of Q-learning corresponds to $Q(S_0, A_0)$, i.e., Q(A, b). The new value can be calculated as shown below.

$$Q_{new}(A,b) = 2 + 0.2[1 + 0.8 * \max\{Q_{old}(B,a), Q_{old}(B,b)\} - Q_{old}(A,b)]$$
$$Q_{new}(A,b) = 2 + 0.2[1 + 0.8 * \max\{4,2\} - 2] = 2.44$$

4. In the context of reinforcement learning, Monte Carlo function approximation is used to estimate the value function $V(s; \mathbf{w})$. Suppose we represent states with a feature vector $\phi(s)$ and approximate the value function as a linear combination of these features: (2 pts)

$$V(s; \mathbf{w}) = \mathbf{w}^{\top} \phi(s)$$

Given the following feature representations and rewards received by the agent for state s_2 during three episodes:

- Feature Vector for s_2 : $\phi(s_2) = [1, 2]$
- Weights Vector: $\mathbf{w} = [0.5, -0.5]$

Rewards received for s_2 in three episodes:

- Episode 1: Reward = -1
- Episode 2: Reward = 2
- Episode 3: Reward = -2

Using Monte Carlo function approximation, update the weights **w** after these three episodes with a learning rate $\alpha = 1$.

What are the updated weights \mathbf{w} ?

- (A) [0.49, -0.51]
- (B) [0.52, -0.48]
- (C) [0.55, -0.45]
- (D) [0.4625, -0.575]

Answer: (D)

Monte Carlo function approximation updates the weights based on the error between the observed return and the estimated value. The update rule is:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(G_t - V(s_t; \mathbf{w}) \right) \phi(s_t)$$

Where G_t is the return (reward) at time t.

1. Episode 1:

$$G_1 = -1$$

$$V(s_2; \mathbf{w}) = 0.5 \times 1 + (-0.5) \times 2 = 0.5 - 1 = -0.5$$

$$\delta = G_1 - V(s_2; \mathbf{w}) = -1 - (-0.5) = -0.5$$

$$\mathbf{w} = [0.5, -0.5] + 0.1 \times (-0.5) \times [1, 2] = [0.5, -0.5] + [-0.05, -0.1] = [0.45, -0.6]$$

2. **Episode 2:**

$$G_2 = 2$$

 $V(s_2; \mathbf{w}) = 0.45 \times 1 + (-0.6) \times 2 = 0.45 - 1.2 = -0.75$
 $\delta = G_2 - V(s_2; \mathbf{w}) = 2 - (-0.75) = 2.75$
 $\mathbf{w} = [0.45, -0.6] + 0.1 \times 2.75 \times [1, 2] = [0.45, -0.6] + [0.275, 0.55] = [0.725, -0.05]$

3. **Episode 3:**

$$G_3 = -2$$

$$V(s_2; \mathbf{w}) = 0.725 \times 1 + (-0.05) \times 2 = 0.725 - 0.1 = 0.625$$

$$\delta = G_3 - V(s_2; \mathbf{w}) = -2 - 0.625 = -2.625$$

$$\mathbf{w} = [0.725, -0.05] + 0.1 \times (-2.625) \times [1, 2]$$

$$= [0.725, -0.05] + [-0.2625, -0.525]$$

$$= [0.4625, -0.575]$$

Therefore, the updated weights **w** are:

- D) [0.4625, -0.575]
- 5. In the context of reinforcement learning, Q-learning with function approximation is used to estimate the action-value function $Q(s, a; \mathbf{w})$. Suppose we represent state-action pairs with a feature vector $\phi(s, a)$ and approximate the Q-function as a linear combination of these features:

(2pt)

$$Q(s, a; \mathbf{w}) = \mathbf{w}^{\top} \phi(s, a)$$

Given the following feature representations and rewards received by the agent during one episode in a two-state MDP (Markov Decision Process):

- Feature Vector for state A: $\phi(A) = [1, 0]$
- Feature Vector for state B: $\phi(B) = [0, 1]$
- Feature Vector for action x: $\phi(x) = [1]$
- Feature Vector for action y: $\phi(y) = [0]$
- Initial Weights Vector: $\mathbf{w} = [0.5, 0.5, 0.5]$

The feature vector for a state-action pair (s, a) is obtained by concatenating the feature vectors of the state and the action.

Rewards and transitions during the episode: A, x, 2, B, x, -1, A

Using Q-learning with a learning rate $\alpha = 0.1$ and a discount factor $\gamma = 0.9$, update the weights **w** after this episode. What are the updated weights **w**?

- (A) [0.55, 0.45, 0.5]
- (B) [0.6, 0.4, 0.5]
- $(\mathrm{C})\ [0.65,\,0.35,\,0.5]$
- $(D)\ [0.69,\,0.4,\,0.59]$

Answer: (D)

Q-learning with function approximation updates the weights based on the error between the observed return and the estimated Q-value. The update rule is:

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(r + \gamma \max_{a'} Q(s', a'; \mathbf{w}) - Q(s, a; \mathbf{w}) \right) \phi(s, a)$$

Where:

- r is the reward received after taking action a in state s.
- s' is the next state.

• a' is the action taken in the next state.

1. Step 1: (A, x, 2, B)

$$\phi(A, x) = [\phi(A), \phi(x)] = [1, 0, 1]$$

$$Q(A, x; \mathbf{w}) = \mathbf{w}^{\top} \phi(A, x) = [0.5, 0.5, 0.5]^{\top} [1, 0, 1] = 0.5 + 0 + 0.5 = 1.0$$

$$\phi(B, x) = [\phi(B), \phi(x)] = [0, 1, 1]$$

$$Q(B, x; \mathbf{w}) = \mathbf{w}^{\top} \phi(B, x) = [0.5, 0.5, 0.5]^{\top} [0, 1, 1] = 0 + 0.5 + 0.5 = 1.0$$

$$\phi(B, y) = [\phi(B), \phi(y)] = [0, 1, 0]$$

$$Q(B, y; \mathbf{w}) = \mathbf{w}^{\top} \phi(B, y) = [0.5, 0.5, 0.5]^{\top} [0, 1, 0] = 0 + 0.5 + 0 = 0.5$$

$$\max_{a'} Q(B, a'; \mathbf{w}) = \max\{Q(B, x; \mathbf{w}), Q(B, y; \mathbf{w})\} = \max\{1.0, 0.5\} = 1.0$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (2 + 0.9 \times 1.0 - 1.0) [1, 0, 1]$$

$$\mathbf{w} = [0.5, 0.5, 0.5] + 0.1 \times (2 + 0.9 - 1.0) [1, 0, 1]$$

$$\mathbf{w} = [0.5, 0.5, 0.5] + 0.1 \times 1.9 [1, 0, 1] = [0.5, 0.5, 0.5] + [0.19, 0, 0.19] = [0.69, 0.5, 0.69]$$

2. Step 2: (B, x, -1, A)

$$Q(B, x; \mathbf{w}) = \mathbf{w}^{\top} \phi(B, x) = [0.69, 0.5, 0.69]^{\top} [0, 1, 1] = 0 + 0.5 + 0.69 = 1.19$$

$$\phi(A, x) = [\phi(A), \phi(x)] = [1, 0, 1]$$

$$Q(A, x; \mathbf{w}) = \mathbf{w}^{\top} \phi(A, x) = [0.69, 0.5, 0.69]^{\top} [1, 0, 1] = 0.69 + 0 + 0.69 = 1.38$$

$$\phi(A, y) = [\phi(A), \phi(y)] = [1, 0, 0]$$

$$Q(A, y; \mathbf{w}) = \mathbf{w}^{\top} \phi(A, y) = [0.69, 0.5, 0.69]^{\top} [1, 0, 0] = 0.69 + 0 + 0 = 0.69$$

$$\max_{a'} Q(A, a'; \mathbf{w}) = \max\{Q(A, x; \mathbf{w}), Q(A, y; \mathbf{w})\} = \max\{1.38, 0.69\} = 1.38$$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha (-1 + 0.9 \times 1.38 - 1.19) [0, 1, 1]$$

$$\mathbf{w} = [0.69, 0.5, 0.69] + 0.1 \times (-1 + 1.242 - 1.19) [0, 1, 1]$$

$$\mathbf{w} = [0.69, 0.5, 0.69] + 0.1 \times (-0.948) [0, 1, 1]$$

$$= [0.69, 0.5, 0.69] + [0, -0.0948, -0.0948]$$

$$= [0.69, 0.4052, 0.5952]$$

Therefore, the updated weights w are:

D) [0.69, 0.4052, 0.5952]