

James 1:19-21 (NASB)

This you know, my beloved brethren: but everyone must be quick to hear, slow to speak and slow to anger;

for the **anger of man**does not achieve the **righteousness of God**.

Therefore, putting aside all filthiness and all that remains of wickedness, in humility receive the word implanted, which is able to save your souls.

- Heap sort (ch5)
 - Intro to trees (more in ch12)
 - Binary heaps and max-heaps
 - Heap sort
 - Max-heaps for priority queue
- Quicksort (ch6)
 - Lomuto partitioning and complexity analysis
 - Randomised Quicksort and analysis
- Monte-Carlo matrix multiply checking

cmpt231.seanho.com/lec3

Summary of sorting algorithms

- Comparison sorts (ch2, 6, 7):
 - Insertion sort: $\Theta(n^2)$, easy to program, slow
 - Merge sort: ⊖(n lg n), out-of-place copy (slow)
 - Heap sort: ⊕(n lg n), in-place, max-heap
 - Quicksort: ⊖(n^2) worst-case, ⊖(n lg n) average
 - and small (fast) constant factors
- Linear-time non-comparison sorts (ch8):
 - Counting sort: k distinct values: ⊖(k)
 - Radix sort: d digits, k values: Θ(d(n+k))
 - Bucket sort: uniform distribution: ⊖(n)
- A sort is stable if preserves order of equal items

Binary trees

- Graph: collection of nodes and edges
 - Edges may be directed or undirected
- Tree: directed acyclic graph (DAG)
 - One node designated root
 - Parent: immediate neighbour toward root
 - Leaf: node with no children
 - Degree: maximum number of children per node
 - Height of node: max num edges to leaf descendant
 - Depth of node: num edges to root
 - Level: all nodes of same depth

- Heap sort (ch5)
 - Intro to trees (more in ch12)
 - Binary heaps and max-heaps
 - Heap sort
 - Max-heaps for priority queue
- Quicksort (ch6)
 - Lomuto partitioning and complexity analysis
 - Randomised Quicksort and analysis
- Monte-Carlo matrix multiply checking

Binary heaps

- Array storage for certain types of binary trees:
 - Put node i's two children at 2i and 2i+1
 - Fill tree left-to-right, one level at a time
 - e.g.: [2, 8, 4, 7, 5, 3, 1, 6]
- The max-heap property: every node's value is ≤ its parent
 - (min-heap: ≥)
- max_heapify()(O(lg n)):
 - move a node i to satisfy max-heap property
- build_max_heap()(O(n)):

turn an unordered array into a max-heap

max_heapify() on single node

- Input: binary heap A and node index i
 - Precondition: left and right sub-trees of i are each separate max-heaps
- Postcondition: entire subtree at i is a max-heap
- Algorithm:
 - 1. Find largest of: i, left child of i, or right child of i
 - 2. If i is **not** the largest, then:
 - a. Swap i with the largest
 - b. Recurse (or iterate) on that subtree

max_heapify()

```
def max_heapify( A, i ):
 max = i
 if 2i \le length(A) and A[2i] > A[max]:
   max = 2i
 else if 2i+1 \le length(A) and A[2i+1] > A[max]: # right
   max = 2i+1
 if max != i:
   swap(A[i],A[max])
   max_heapify( A, max )
```

- Try it on previous heap at i=1
- Running time?

Building a max-heap

- Input: array A, in any order
 - Postcondition: A is a max-heap
- Algorithm:
 - 1. Last half of array is all leaves
 - 2. Run max_heapify() on each item in first half
 - Descending order: subtrees are already max-heaps

```
for i = floor( length(A)/2 ) to 1:
  max_heapify( A, i )
```

Max-heap: complexity

- Group iterations of for loop by height h of node:
 - Each call to max_heapify(i) takes O(h)
 - Num of nodes with height h is $\leq \left\lfloor \frac{n}{2^{h+1}} \right\rfloor$
 - Reaches that bound when tree is full
- Total running time T(n): $T(n) = \sum_{h=0}^{\lg n} \left(\frac{n}{2^{h+1}}\right) O(h)$

$$0 \leq n \sum_{h=0}^{\infty} \left(rac{1}{2^{h+1}}
ight) O(h) \ = n \sum_{h=1}^{\infty} \left(rac{1}{2^h}
ight) O(h) \ = O(n)$$

- → Can build a max-heap in linear time!
 - But it's not quite a sorting algorithm....

Heap sort

- Algorithm:
 - 1. Make array a max-heap
 - 2. Repeat, working backwards from end of array:
 - Swap root with last leaf of heap
 - Shrink heap by 1 and re-apply max_heapify()
- Loop invariant:

cmpt231.seanho.com/lec3

- First portion of array is still a max-heap
- Last portion of array is sorted (largest items)
- Complexity: $T(n) = \Theta(n \lg n)$
 - $\Theta(n)$ calls to max_heapify() ($\Theta(\lg n)$)

7 /

- Heap sort (ch5)
 - Intro to trees (more in ch12)
 - Binary heaps and max-heaps
 - Heap sort
 - Max-heaps for priority queue
- Quicksort (ch6)
 - Lomuto partitioning and complexity analysis
 - Randomised Quicksort and analysis
- Monte-Carlo matrix multiply checking

Priority queue

- We can use binary heaps to make a priority queue:
 - Set of items with attached priorities
- Interface (set of operations) for priority queue:
 - insert(A, item, pri):add anitem
 - find_max(A): get item with highest priority
 - pop_max(A): same but also delete the item
 - set_pri(A, item, pri):change
 (increase) priority of item
- Initialise queue by building a max-heap:
 - find_max() is easy: just return A[1]
- pop max () also easy: remove A[1] and

14/35

Insert into queue

 set_pri(): start at i and bubble up to proper place:

```
A[ i ] = pri
while i > 1 and A[ i/2 ] < A[ i ]:
```

```
swap(A[i/2], A[i]) i = i/2
```

- Complexity: num iterations = $\Theta(\lg n)$
- insert(): make new node, then set its priority:

```
A.size++
A[ size ] = item
set_pri( A, A.size, pri )
```

■ Complexity: same as set_pri(): ⊖(lg n)

cmpt23f.seafhod: speed, often pre-allocate A as fixed-length array.135

Priority queue operations

- Build queue (with max-heap): ⊖(n)
- Fetch highest priority item: ⊖(1)
- Fetch and remove highest priority item: ⊖(lg n)
- Change priority of an item: ⊖(lg n)
- Insert new item: ⊖(lg n)

- Heap sort (ch5)
 - Intro to trees (more in ch12)
 - Binary heaps and max-heaps
 - Heap sort
 - Max-heaps for priority queue
- Quicksort (ch6)
 - Lomuto partitioning and complexity analysis
 - Randomised Quicksort and analysis
- Monte-Carlo matrix multiply checking

cmpt231.seanho.com/lec3

Randomised algorithms

- Vegas-style: always correct, fast on average
 - But still slow in worst-case
- Monte Carlo: always fast
 - But not always correct!
 - Approximate: margin of error ε
 - Stochastic: probability P of being correct
 - Estimate improves with more computation time (iterations)

Quicksort

- **Divide**: partition A[lo..hi] such that:
 - max(A[lo..piv-1]) ≤ A[piv] ≤ min(A[piv+1..
 hi])
 - Not always balanced; this is the "magic sauce"
- Conquer: recurse on each part:
 - quicksort(A, lo, piv-1) and quicksort(A, piv+1, hi)
 - No combine / merge step needed
- In-place sort (only uses swaps) (unlike merge sort)
- Worst case still $\Theta(n^2)$, but
 - **Average** case is $\Theta(n \lg n)$, with small constants
- One of the best sorts for arbitrary inputs

Partitioning (Lomuto)

- One option: pick last item as the pivot
- Walk through array from left to right:
 - Throw items smaller than pivot to left part of array
 - Items larger than pivot stay in right part of array
- Lastly, swap pivot in-between two parts

Quicksort: complexity

- Worst case: every partition is maximally uneven:
 - Pivot is either largest or smallest in subarray
 - $T(n) = T(n-1) + T(0) + \Theta(n) = \Theta(n^2)$
 - Example inputs that do this?
- Best case: every partition is exactly half:
 - $T(n) = 2T(n/2) + \Theta(n) = \Theta(n \lg n)$
 - Example inputs that give this?
- What about average case, assuming random input?

Average case complexity

- Intuition: on average, get splits in-between best and worst
 - If say, average split is 90% vs 10%, then:
 - $T(n) = T(0.90n) + T(*0.10n) + *\Theta(n)$
 - Still results in O(n lg n)
- If assume splits alternate between best and worst:
 - Only adds O(n) work to each of O(lg n) levels
 - Still O(n lg n)! (But maybe larger constants)

Quicksort with constant splits

- (p.178 #7.2-5): All splits are v vs 1-v, with 0 < v < 1/2
 - ⇒ what is min/max depth of leaf in recursion tree?
- Min depth: follow smaller (v) side of each split
 - How many splits m until reach leaf (1 item)

array)?
$$lpha^m n = 1 \Rightarrow m = -rac{\log(n)}{\log(lpha)}$$

- Max depth: same with 1-v side: $-\frac{\log(n)}{\log(1-\alpha)}$
- Both are Θ(log n)

Quicksort with median split

- Best case splits happen when pivot is median:
 - Half of items smaller, half of items larger
 - Not same as average when distribution is skewed
- Median (rank finding) algorithm in O(n): see ch9
 - Partitioning also takes only O(n), so
 - Quicksort T(n) = 2T(n/2) + O(n) = O(n lg n) (always!)
- But, in practise:
 - Extra work, splits are usually already good
 - Benchmarks slower than merge sort

- Heap sort (ch5)
 - Intro to trees (more in ch12)
 - Binary heaps and max-heaps
 - Heap sort
 - Max-heaps for priority queue
- Quicksort (ch6)
 - Lomuto partitioning and complexity analysis
 - Randomised Quicksort and analysis
- Monte-Carlo matrix multiply checking

cmpt231.seanho.com/lec3

Randomised Quicksort

- With random input, get nice ⊖(n lg n) behaviour
- But presorted input gives worst case behaviour
 - Much real-world data is at least partially presorted
 - Choice of last element (hi) as pivot
- Great candidate for randomised algorithm:
 - Before partitioning, swap hi with a random item
- Still possible to get worst-case behaviour, but unlikely
 - Vegas-style: always correct, and usually fast

R-Quicksort: complexity

- Assume all items distinct
- Name items according to true order: $\{z_i\}_{i=1}^n$
- Analyse complexity by counting comparisons performed
 - Worst case: compare all pairs (z_i, z_j) : $\Theta(n^2)$
- No comparison can happen multiple times, because
 - Comparisons are only done against pivots, and
 - Each pivot is used only once and not revisited
- So what is the **probability** of a pair (z_i, z_j) being compared?

R-Quicksort: pair comparison

- A pair (z_i, z_j) is compared only if:
 - Either z_i or z_j is chosen as a pivot before any other item ordered in-between them:

$$\{z_i, z_{i+1}, ..., z_{j-1}, z_j\}$$

- Otherwise z_i and z_j would be on opposite sides of a split, and would never be compared
- Probability of this happening: $2\left(\frac{1}{j-i+1}\right)$

R-Quicksort: total comparisons

Sum over all pairs (z_i, z_j) :

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} rac{2}{j-i+1}$$
 $= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} rac{2}{k+1}$ (let k=j-i) $< \sum_{i=1}^{n-1} \sum_{k=1}^{n} rac{2}{k}$

$$=\sum_{i=1}^{n-1}O(\ln n)$$
 (harmonic series)

$$=O(n {
m lg} n)$$

- Heap sort (ch5)
 - Intro to trees (more in ch12)
 - Binary heaps and max-heaps
 - Heap sort
 - Max-heaps for priority queue
- Quicksort (ch6)
 - Lomuto partitioning and complexity analysis
 - Randomised Quicksort and analysis
- Monte-Carlo matrix multiply checking

cmpt231.seanho.com/lec3

Randomised mat-mul check

- Recall matrix multiply: naive $\Theta(n^3)$, Strassen $\overline{\Theta}(n^{2.81})$
 - Best-known: Coppersmith-Winograd, $\Theta(n^{2.376})$
- What if we have 3 n x n matrices A, B, C:
 - Check if A * B = C, faster than full multiply?
- Frievald's matrix-multiply checker in $\Theta(n^2)$:
 - If A * B = C, always returns True (0% falsenegatives)
 - If A * B ≠ C, returns False > 50% of the time
- If returns True, run it k times:
 - False-positive rate $< 2^{-k}$, in time $O(kn^2)$

Frievald's algorithm

- Make a random boolean vector $\vec{r} = \{r_i\}_1^n$:
 - $P(r_i = 1) = 0.5$ for all i, independently
 - i.e., flip a fair coin n times
- Return value: check if $A \cdot (B \cdot \vec{r}) = C \cdot \vec{r}$
 - Each multiply is only a (n x n) matrix by a (n x 1) vector
 - lacksquare \Rightarrow total time still only $\Theta(n^2)$
- Example of a Monte-Carlo style algorithm
- If A * B = C, this always returns True
- If A * B \neq C, want $P(A \cdot (B \cdot \vec{r}) \neq C \cdot \vec{r}) > 0.5$

Frievald: false-positive rate

- Let D = AB C: by assumption, $D \neq 0$, so choose $d_{ij} \neq 0$
 - \Rightarrow Want to show $P(D\vec{r}=0) \leq 0.5$
- $Dec{r}$ is 0 iff all its elts are 0, so $P(Dec{r}=0) \leq P((Dec{r})_i=0)$
- ullet This is a $oldsymbol{\mathsf{dot}}$ product: $\left(Dec{r}
 ight)_i = \sum_{k=1}^n d_{ik} r_k = d_{ij} r_j + y$
- Two possibilities: if y = 0: $P((D\vec{r})_i = 0) = P(d_{ij}r_j = 0)$ $= P(r_i = 0) = 0.5$
- ullet If y
 eq 0, then $P((Dec r)_i = 0) = P(r_j = 1 ext{ and } d_{ij} = -y)$ $\leq P(r_j = 1) = 0.5$

- Heap sort (ch5)
 - Intro to trees (more in ch12)
 - Binary heaps and max-heaps
 - Heap sort
 - Max-heaps for priority queue
- Quicksort (ch6)
 - Lomuto partitioning and complexity analysis
 - Randomised Quicksort and analysis
- Monte-Carlo matrix multiply checking

cmpt231.seanho.com/lec3

