B10A1 Seien Y und Y_n für alle $n \in \mathbb{N}$ Zufallsvariablen mit Werten in \mathbb{Z} . Zeigen Sie

$$Y_n \Rightarrow Y \iff \forall j \in \mathbb{Z} \colon P(Y_n = j) \xrightarrow{n \to \infty} P(Y = j).$$

Wir verwenden die Rücktransformation der charakteristischen Funktionen φ_n und φ von Y_n und Y. Für φ gilt

$$P(X=j) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi(t) dt.$$

In der Tat gilt mit der Definition der charakteristischen Funktion

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi(t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ijt} E_k \left[e^{ikt} \right] dt.$$

Da E_k nur Masse bei X=k hat erhalten wir

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ijt} \sum_{k \in \mathbb{Z}} e^{ikt} P(X = k) dt$$

Zusammenfassen liefert, wobei man sich eventuell überlegen sollte, ob man die Summe und das Integral vertauschen darf

$$= \sum_{k \in \mathbb{Z}} P(X = k) \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-j)t} dt.$$

Wenn k-j=0, so ist der Integrand 1. Wenn $k-j=\ell\neq 0$, gilt

$$\int_{-\pi}^{\pi} e^{i\ell t} dt = \frac{1}{i\ell} \left(e^{i\ell\pi} - e^{-i\ell\pi} \right) = \frac{1}{i\ell} \left((\pm 1) - (\pm 1) \right) = 0.$$

Eingesetzt in die obige Rechnung verschwinden somit alle Summanden mit $k \neq j$ und wir erhalten die Darstellung für die Rücktransformation der charakteristischen Funktion. Entsprechendes gilt dann auch für Y_n und φ_n . Mithilfe dieser Rücktransformationen erhalten wir die gesuchte Konvergenz. Für den Abstand von $P(Y_n = j)$ und P(Y = j) gilt mithilfe

Rücktransformation

$$|P(Y_n = j) - P(Y = j)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi_n dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itj} \varphi dt \right|.$$

Mit Zusammenfassen und der "Dreiecksungleichung" des Integrals können wir abschätzen

$$\leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |e^{itj} (\varphi_n(t) - \varphi(t))| dt.$$

Das vereinfacht sich, weil $\left| \mathrm{e}^{\mathrm{i}tj} \right| = 1$. Weiterhin konvergiert $\varphi_n(t)$ gegen $\varphi(t)$ nach dem Portmanteau-Theorem, denn $\mathrm{e}^{\mathrm{i}tj}$ ist Lipschitz-stetig. Da $|\varphi_n(t)| \leq 1$ können wir schließlich den Satz über majorisierte Konvergenz verwenden und erhalten

$$\xrightarrow{n\to\infty} 0.$$

Wenn andererseits für alle $j \in \mathbb{Z}$ gilt, dass $P(Y_n = j) \xrightarrow{n \to \infty} P(Y = j)$, dann gilt auch $\sum_{j \in \mathbb{Z}} f(j) P(Y_n = j) \xrightarrow{n \to \infty} \sum_{j \in \mathbb{Z}} f(j) P(Y = j)$ für alle $f \in \mathcal{C}_b$ und somit $Y_n \Rightarrow Y$.

B10A2 Zeigen Sie, dass jedes Wahrscheinlichkeitsmaß auf \mathbb{R} schwacher Limes einer Folge von diskreten Wahrscheinlichkeitsmaßen ist.

Sei hierfür ein Wahrscheinlichkeitsmaß $P\in\mathcal{P}_1(\mathbb{R})$ und ein $f\in\mathcal{C}_b(\mathbb{R})$ gegeben. Dann gilt

$$\int f \mathrm{d}P = \sup \left\{ \int g \mathrm{d}P \ \bigg| \ g \leq f \text{ einfach} \right\}$$

wobei einfach heißt, dass Folgen (α_n) in \mathbb{R} und $(A_n) \in \mathcal{B}(\mathbb{R})$ existieren, sodass $g = \sum \alpha_n \mathbbm{1}_{A_n}$ und $\int g \mathrm{d}P = \sum \alpha_n P(A_n)$. Gebe es eine Folge diskreter Wahrscheinlichkeitsmaße (P_n) , sodass P schwacher Limes von (P_n) ist, dann wäre $\int f \mathrm{d}P_n = \sum_{j \in \mathbb{Z}} f(j) P_n(X=j)$. Eventuell kann man auch die Konstruktion $\frac{1}{n} \sum \delta_{k/n}$ aus Aufgabe 1 von Blatt 9 verwenden.