1

NCERT Physics 12.7 Q6

EE23BTECH11212 - SWATHI DEEPIKA*

Question: Obtain the resonance frequency of a series LCR circuit with L = 2.0 H, $C = 32 \mu F$, and $R = 10 \Omega$. What is the Q-value of the circuit.

Fig. 1. LCR Circuit

Solution: In Figure Fig. 1 the following information is provided:

Symbol	Value	Description
L	2.0 H	Inductance
C	$32 \mu F$	Capacitance
R	10 Ω	Resistance
Q	$\frac{f_r}{\Delta f}$	Quality Factor

TABLE I Parameters

SERIES LCR CIRCUIT ANALYSIS

Now, the voltage transfer function $(\frac{V(s)}{I(s)} = H(s))$ is given by Ohm's Law in the Laplace domain:

$$\frac{V(s)}{I(s)} = R + sL + \frac{1}{sC} \tag{1}$$

Now, after substitution the equation is

$$\frac{V(s)}{I(s)} = 10 + 2s + \frac{1}{32 \times 10^{-6} s} \tag{2}$$

This is the voltage transfer function for the series LCR circuit in the Laplace domain.

Resonance Frequency (ω_0):

At resonance, the impedance is purely resistive, meaning the imaginary part of Z(s) is zero.

$$Im\{Z(s)\} = \omega L - \frac{1}{\omega C} = 0$$
 (3)

Solving for ω_r :

$$\omega_0 = \frac{1}{\sqrt{IC}} \tag{4}$$

Substituting values:

$$\omega_0 = \frac{1}{\sqrt{2 \,\mathrm{H} \times 32 \,\mu\mathrm{F}}} = 125 \,\mathrm{rad/s} \tag{5}$$

The resonance frequency is 125 rad/s.

Quality Factor (Q) Calculation: The quality factor (Q) of a series RLC circuit is given by the formula:

$$Q = \frac{f_r}{\Delta f} \tag{6}$$

where f_r is the resonant frequency and Δf is the bandwidth of the circuit.

Resonant Frequency (f_r)

The resonant frequency (f_r) is related to the inductance (L) and capacitance (C) by the formula:

$$f_r = \frac{1}{2\pi\sqrt{LC}}\tag{7}$$

Bandwidth (Δf)

The bandwidth (Δf) is related to the resistance (R) and inductance (L) by:

$$\Delta f = \frac{R}{2\pi L} \tag{8}$$

Now, substitute these expressions into the formula for Q:

$$Q = \frac{f_r}{\Delta f} \tag{9}$$

$$Q = \frac{\frac{1}{2\pi\sqrt{LC}}}{\frac{R}{2\pi L}} \tag{10}$$

Simplify:

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \tag{11}$$

Substituting the values, we get:

$$Q = \frac{1}{10} \sqrt{\frac{2}{32 \times 10^{-6}}} = \frac{1}{40 \times 10^{-3}} = 25$$
 (12)

Therefore, the quality factor of the LCR circuit is 25.

The equivalent s domain of the circuit is:

Fig. 2. LCR Circuit in s-domain