

TEST REPORT No.: 16-1-0219301T10a

According to: **FCC Regulations** Part 22, Part 24

ISED-Regulations

RSS-132 Issue 3, RSS-133 Issue 6, RSS-Gen Issue 4

for

ACTIA Nordic

TEM4G Telematics Module + Antenna 31409875

FCC-ID: 2AGKKTEM4G ISED: 20839-TEM4G PMN: TEM4G HVIN: TEM4G FVIN: 13

Laboratory Accreditation and Listings

Accredited EMC-Test Laboratory

Industry Canada Reg. No.: 3462D-1 Reg. No.: 3462D-2

Reg. No.: 3462D-1 Reg. No.: 3462D-2 Reg. No.: 3462D-3

Voluntary Controls for Electromagnetic Emissions

> Reg. No.: R-20013, C-20009, T-20006, G-20013

accredited according to DIN EN ISO/IEC 17025

CETECOM GmbH

Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.com • Internet: www.cetecom.com

Laboratory Accreditation and Listings

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. TX mode, Test overview of FCC and Canada ISED (RSS) Standards	3
1.2. RX mode, tests overview according FCC Part 15B and Canadian RSS Standards	
1.3. Attestation:	
2. ADMINISTRATIVE DATA	5
2.1. Identification of the testing laboratory	
2.2. Test location	
2.3. Organizational items	
2.5. Manufacturer's details	
3. EQUIPMENT UNDER TEST (EUT)	6
3.1. TECHNICAL DATA OF MAIN EUT DECLARED BY APPLICANT	6
3.2. EUT: Type, S/N etc. and short descriptions used in this test report	
3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	
3.4. EUT set-ups	
3.6. EUT operating modes	
3.7. Parameter Settings on mobile phone and base station CMU200	10
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	11
4.1. Test system set-up for conducted measurements on antenna port	11
4.2. Test system set-up for radiated magnetic field measurements below 30 MHz	
4.3. Test system set-up for radiated spurious emission measurements	
5. MEASUREMENTS	15
5.1. RF-Parameter - RF Peak power output conducted and PAPR-value	15
5.2. General Limit - Radiated field strength emissions below 30 MHz.	
5.3. RF-Parameter - Radiated out of Band RF emissions and Band Edge	
6. ABBREVIATIONS USED IN THIS REPORT	
7. ACCREDITATION DETAILS OF CETECOM'S LABORATORIES AND TEST SITES	
8. INSTRUMENTS AND ANCILLARY	
9. VERSIONS OF TEST REPORTS (CHANGE HISTORY)	
, versions of test reports (carrive motor)	20
Table of annex Tota	ıl pages
Annex 1: Test result diagrams (separate document) CETECOM_TR16-1-0219301T10a-A1	41
Annex 2: External photographs of EUT (separate document) CETECOM_TR16-1-0219301T10a-A2	7
Annex 3: Internal photographs of EUT (separate document) CETECOM_TR16-1-0219301T10a-A3	4
Annex 4: Test set-up photographs (separate document) CETECOM_TR16-1-0219301T10a-A4	7

The listed attachments are an integral part of this report.

1. Summary of test results

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests.

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests. Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

The Equipment Under Test (in this report, hereinafter referred as EUT) supports radiofrequency technologies and use an already approved cellular module with FCC-ID: QIPALS3-USR3 and ISED ID: 20839-TEM4G. This test report shows results for GPRS and (E)GPRS technologies only. Other implemented wireless technologies were not considered within this test report.

Following tests have been performed to show compliance with applicable FCC Part 2, Part 22, Subpart H, Part 24, Subpart E (Broadband PCS) of the FCC CFR Title 47 Rules, Edition 4th November 2016 and Canada RSS-132 Issue 3, RSS-133 Issue 6 and RSS-Gen Issue 4 standards.

1.1. TX mode, Test overview of FCC and Canada ISED (RSS) Standards

No. of Diagram	Test Port		References & Limits			EUT	EUT op-	Result
group	Cases	1011	FCC Standard	RSS Section	Test limit	set-up	mode	Kesuit
1	Emissions AC-Power lines conducted (0,15 to 30 MHz)	AC-Power lines	§15.207	RSS-Gen, Issue 4: Chapter 8.8	§15.207 limits IC: Table 3, Chapter 8.8	1		Remark 3.)
2	General field strength emissions radiated - (9 kHz to 30 MHz)		§15.209(a)	RSS-Gen, Issue 4: Chapter 8.9, Table 5	2400/F(kHz) μV/m 24000/F(kHz) μV/m 30 μV/m	2	1+2+3+	Passed
7	RF-Power (ERP/EIRP) radiated	Enclosure +	\$2.1046 \$22.913(a)(2)	RSS-132: 5.4 SRSP-503: 5.1.3 RSS-133: 4.1/6.4	< 11.5 Watt (EIRP) (mobile stations)			Passed (Calculated with declared antenna
8	Spurious emissions radiated (30 MHz to *tenth-times of the fundamental frequency)	Inter- connecting cables (radiated)	\$24.232(c) \$2.1053(a) \$2.1057 \$22.917(a)(b)	SRSP-510: 5.1.2 RSS-132: 5.5(i)(ii)	< 2 Watt (EIRP) Required attenuation below P(dBW):	2	1+2+3+	gain) passed
9	Rand-Edge		§22.917(a)(b) §24.238(a)(b)	RSS-133: 6.5.1(i)(ii)	43+10log(P) dBc	2	1+2+3+	passed

30	RF Power		§2.1046	RSS-132: 5.4 SRSP-503: 5.1.3 RSS-133: 4.1/6.4 SRSP-510: 5.1.2	< 11.5 Watt (EIRP) (mobile stations) < 2 Watt (EIRP)	1	2+4+5+	
34	26dB Emission bandwidth		§2.202 §2.1049(h)	RSS-Gen, Issue 4:	99% Power			
35	99% Occupied bandwidth	Antenna terminal	§22.917(a) §24.238(a)	Chapter 6.6	99/0 1 Owel			Remark
36	Spurious emissions	terminar	§2.1051 §2.1057	RSS-132: 5.5(i)(ii)	Required attenuation below P(dBW):			1
37	Band-Edge compliance		§22.917(a)(b) §24.238(a)(b)	RSS-133: 6.5.1(i)(ii)	43+10log(P) dBc	-		
38	Frequency stability		§22.355, table C-1	RSS-132: 5.3	< ±2.5ppm			
36	rrequency stability		§24.235 §2.1055(a)(2)	RSS-133: 6.3	<±0.1 ppm			

1.2. RX mode, tests overview according FCC Part 15B and Canadian RSS Standards

	22. Art mode, tests over view according to that the and canadian Abb Standards							
No. of Diagram	Test case	Port	References & Limits		EUT	EUT op-	Result	
group			FCC Standard	RSS Section	Test limit	set-up	mode	
1	AC-Power Lines conducted Emissions	AC-Power lines	§15.107 §15.207	RSS-Gen, Issue4: Chapter 8.8	FCC §15.107 class B limits §15.207 limits RSS-Gen: Table 3			Remark 3
3	Receiver radiated emissions	Cabinet + Interconnec ting cables	\$15.109 \$15.33 \$15.35	RSS-132, Issue 3: 6.6 RSS-Gen, Issue 4: 5.3 RSS 133, Issue 6: 6.6	FCC 15.109 class B limits RSS-Gen: Chapter 5.3+Chapter 7.1.2			Passed Remark 2

Remark:

- 1.) See RF-modules initial test report
- 2.) See separate test report no. CETECOM_TR16_1_0219301T10b for measurements according Part 15, Subpart B
- 3.) not applicable since car-environment

1.3. Attestation:

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in above table are met in accordance with enumerated standards.

DiplIng. Niels Jeß	DiplIng. C. Lorenz
Responsible for test section	Responsible for test report

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: CETECOM GmbH Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Rachid Acharkaoui

Deputy: Dipl.-Ing. Niels Jeß

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Responsible for test report and

project leader: Dipl.-Ing. C. Lorenz

Receipt of EUT: 2017-03-20

Date(s) of test: 2017-03-20 to 2017-06-29

Date of report: 2017-08-02

Version of template: 13.02

2.4. Applicant's details

Applicant's name: ACTIA Nordic

Address: Hammarbacken 4A

19149 Sollentuna

Sweden

Contact person: Mr. Salah Alazawi

2.5. Manufacturer's details

Manufacturer's name: please see Applicant's details

Address: please see Applicant's details

3. Equipment under test (EUT)

3.1. TECHNICAL DATA OF MAIN EUT DECLARED BY APPLICANT

GSM Frequency range	☑ GSM 850: 824 – 849 MHz (Uplink), 869-894 MHz (Downlink)
(US/Canada -bands)	☑ GSM1900: 1850-1910 MHz (Uplink), 1930-1990 MHz (Downlink)
Type of modulation	☑ GSM,GPRS, GMSK
	■ E-GPRS-Mode: 8-PSK
Number of channels	☑ GSM 850: 128 – 251, 125 channels
(USA/Canada -bands)	図 GSM1900: 512 − 810, 300 channels
Test Channel frequencies	☑ GSM/E-GPRS 850 MHz Band: Channel 128/(192)/251
	☑ GSM/E-GPRS 1900 MHz Band: Channel 512/(661)/810
Emission designator(s)	From original report:
	https://apps.fcc.gov/oetcf/eas/reports/ViewExhibitReport.cfm?mode=Exhi
	bits&RequestTimeout=500&calledFromFrame=N&application_id=N1R4
	OGyLaKCotehafTuv1g%3D%3D&fcc_id=QIPALS3-USR3
Antenna Type	☑ Integrated (enclosure): Internal antenna set-up
	☐ External - dedicated, no RF- connector
	■ External, separate RF-connector: External antenna set-up
Antenna Gain TX	■ Values:
(main external)	850 MHz Band: 0.4dBd (2.55dBi)
(mani externar)	1900 MHz Band: 4.89 dBi
	Accord. Document: ACUII-05 / ACUII-06 Backup Antenna Specification
Antenna Gain TX	Rev.1.0
(secondary-backup antenna)	850MHz Band: -5.05dBd
	1900MHz Band: 2.5dBi
	☐ Not applicable
Antenna Gain Dx (diversity)	☐ Value: xyz (Data sheet xyz)
	No information from customer

Measured Output Power [dBm]: Conducted GSM 850	31.2dBm			
Conducted GSM 850 Conducted EDGE850	25.2dBm			
ERP Output Power [dBm]:	External Antenna:	Internal (Backup) antenna:		
Radiated GSM 850	31.2 dBm+0.4 dBd=31.6 dBm B	ERP 31.2dBm-5.05 dBd=26.15 dBm ERP		
Radiated EDGE 850	25.2 dBm+0.4 dBd=25.6 dBm F	ERP 25.2dBm-5.05 dBd=20.15 dBm ERP		
Measured Output Power [dBm]:				
Conducted GSM 1900	27.1dBm			
Conducted EDGE 1900	23.2dBm			
EIRP Output Power [dBm]:	External Antenna:	Internal (Backup) antenna:		
Radiated GSM 1900	27.1dBm+4.89dBi=31.99 dBm	EIRP 27.1dBm+2.5dBi=29.6 dBm EIRP		
Radiated EDGE1900	23.2dBm+4.89dBi=28.09 dBm	EIRP 23.2dBm+2.5dBi=25.7 dBm EIRP		
Installed options	■ GSM 900 and GSM 1800 Bands (not usable in USA/Canada) (not			
	tested within this test report)			
	■ W-CDMA Band I and Bar	nd VIII (not usable in USA/Canada) (not		
	tested within this test report)			
		ogies (not tested within this test report)		
	☑ GPS (not tested within thi	s test report)		
Power supply	区 DC power only: 12Volt D	C (car environment)		
Special EMI components				
Does EUT contain devices	□ yes			
susceptible to magnetic fields, e.g.	🗷 no			
Hall elements, electrodynamics				
microphones, etc.?				
EUT sample type	☐ Production	➤ Pre-Production ☐ Engineering		
FCC label attached	✓ yes (on module)	□ no		

3.2. EUT: Type, S/N etc. and short descriptions used in this test report

Short description*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	TEM4G	Telematics Module	20071090027	H1	13
EUT B	TEM4G	Telematics Module	20071090026	H1	13
EUT C	External Antenna	31409875	#1		

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short description *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	Main harness with power supply cables	For TEM4G	1007-141-06	Rev A1.1	
AE 2	External SIM card holder	For TEM4G	1		
AE 3	Button Unit/Microphone	30710477			
AE 4	USB Termination				

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.4. EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
set. 1	EUT A + AE 1+ AE 2 + AE 2 + AE 4	Conducted measurement set-up
set. 2	EUT B + EUT C + AE 1+ AE 2 + AE 2 + AE 4	Radiated Set-up (main TX external-antenna activated)
set. 3	EUT B + EUT C + AE 1+ AE 2 + AE 2 + AE 4	Radiated Set-up (Backup antenna activated)

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.5. Configuration of cables used for testing

Cable number	Item	Туре	S/N serial number	HW hardware status	Cable length
Cable 1	Cable harness	For TEM4G	1007-141-06	Rev A1.1	-

3.6. EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
op. 1	GSM 850-Voice Traffic channels = 128/251	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 33 dBm (power class 4; power control level 5). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link.
op. 2	GPRS 850 Data Traffic channels = 128/251	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 33 dBm (power class 4; power control level 5). USF_Duty CYCLE set to 100%, coding scheme CS-1 for GMSK modulation, slot 3 active, uplink gamma: 3 (33 dBm). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link.
op. 3	GSM1900-Voice Traffic channels = 512/810	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 30 dBm (power class 1; power control level 0). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link
op. 4	GPRS 1900 Data Traffic channels = 512/810	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 30 dBm (power class 1; power control level 0). USF_Duty CYCLE set to 100%, coding scheme CS-1 for GMSK modulation, slot 3 active, uplink gamma: 3 (30 dBm). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link
op. 5	E-GPRS 850 Data Traffic channels = 128/192/251	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 33 dBm (power class 4; power control level 5). USF_Duty CYCLE set to 100%, coding scheme MCS-5 for 8PSK modulation, slot 3 active, uplink gamma: 6 (27dBm). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link.
op. 6	E-GPRS 1900 Data traffic channels = 512/661/810	A communication link is established between the mobile station and the test simulator. The transmitter is operated at its maximum rated output power: 30 dBm (power class 1; power control level 0). USF_Duty CYCLE set to 100%, coding scheme MCS-5 for 8-PSK modulation, slot 3 active, uplink gamma: 5 (26 dBm). The input signal to the receiver is modulated with normal test modulation. The wanted RF input signal level to the receiver of the mobile station is set to a level to provide a stable communication link.

3.7. Parameter Settings on mobile phone and base station CMU200

Following settings apply to the MS during the measurements in **GSM/(E)GPRS**-Mode only:

Parameter	Traffic Mode	Idle Mode
Traffic Channels mobile station (EUT)	GSM 850: TCH _{MS} = 128/ 192 /251 GSM 1900: TCH _{MS} = 512 / 661 / 810	
maximum power level (PCL)	GSM 850: $PCL = 5 (2 \text{ Watt})$	
maximum power level (I CL)	GSM 1900: PCL = 0 (1 Watt)	
Modulation	GSM/GPRS: GMSK-Modulation Scheme EDGE: 8-PSK Modulation Scheme	
DTX	off	
Bitstream	PRBS 2E9-1 (pseudo-random-sequence) – CCITT 0.153	
Timeslot(s) in Uplink	1	
Hopping	off	
Timeslot (slot mode)	GSM-Mode: single GPRS-Mode: maximum allowed uplink slots no. according MS class	
Maximum data transmission rate, single time slot	GSM: 9,6 kbit/s Slot GPRS: 17,6 kbit/s Slot EDGE: 59,2 kBit/s Slot	
Speech transcoding (Traffic Mode)	Full rate Version 1	
Speed rate	130 Kb/s	
Mode	BCCH and TCH	
BCCH – base station (CMU,CMD)	GSM 850: 182 GSM 1900: 651	
TCH – base station (CMD, CMU)	auto	
Power level TCH – base station (used timeslot level)	- 70 dBm	
Power level BCCH – base station (control channel level)	- 80 dBm	
External attenuation RF/AF- Input/Output	Accord. calibration prior to measurements	
Mobile Country Code	310	310
BS_AG_BLKS_RES		0
Paging reorganisation		Off (0)
Signalling channel	Not applicable	SDCCH
Location Update		Auto
Cell access		Disabled (barred)

Settings for CMU (general)

Repetition	Continuous	
Stop condition	None	
Display mode	Max./Min	
Statistic Count	1000 Bursts	
Decoder	Standard	

Additional settings on the base stations CMU200 for frequency stability measurements

4. Description of test system set-up's

4.1. Test system set-up for conducted measurements on antenna port

Cellular Conducted RF-Setup 1 (Cel-1 Set-up)

Tests Specification: Conducted spurious emissions, Emission Bandwidth

General Description: The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The

signal is first attenuated (2) before it is 0° divided by a power divider (3). One of the RF-signal path is connected to the test unit communication tester (4), other RF-path is connected to the spectrum – analyzer (5) for specific RF-measurements. The specific attenuation losses for both signal paths/branches are determined prior to the measurement within a set-up calibration. These are then taken into account by correcting

the measurement readings on the spectrum-analyzer.

Schematic:

Used Equipment:

Testing method:

Passive Elements

Test Equipment

Remark:

See List of equipment under each test case and chapter 8 for calibration info

■ 10 dB ■ CMU200

Attenuator Communication Test-

(#530) Unit for GSM/W-

CDMA

■ Low loss RF■ DC-Power Supply

cables

■ 6 dB resistive ■ Spectrum-Analyser

power

divider/coupler

(#529)

ANSI C63.10:2013, KDB 971168 D01 v02r02

Measurement uncertainty: See chapter Measurement Uncertainties (Cel-1)

Cellular Conducted RF-Setup 2 (Cel-2 Set-up)

Tests Specification: Conducted Carrier power, Frequency Error

Schematic: Following modified test set-up apply for tests performed inside the climatic chamber

> (frequency stability) or conducted RF-carrier power-measurement. The EUT RF-Signal is directly connected over suitable RF-connector over low-loss cable and an attenuator

(2) to the cellular radio communication test-unit. (5)

Testing method:

ANSI C63.10:2013, KDB 971168 D01 v02r02

Used Equipment

Passive Elements

Test Equipment

Remark:

calibration info

See List of equipment under each

test case and chapter 8 for

≥ 20 dB

×

CMU200Communication

Attenuator (#613)

cables

Test-Unit for GSM/W-

■ Low loss RF-

☑ DC-Power Supply

CDMA

Measurement uncertainty

See chapter Measurement Uncertainties (Cel-2)

4.2. Test system set-up for radiated magnetic field measurements below 30 MHz

Specification: ANSI C63.4-2014 §5.3, §8.2.1, §8.3.1.1+§8.3.2.1, ANSI C63.10-2013 chapter

6.4 (§6.4.4.2)

General Description: Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

> The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed

in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0° to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$

 $M = L_T - E_C$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 C_L = Cable loss

D_F= Distance correction factor

 E_C = Electrical field – corrected value

 E_R = Receiver reading

G_A= Gain of pre-amplifier (if used)

 $L_T = Limit$ M = Margin

All units are dB-units, positive margin means value is below limit.

Reference for applied correction (extrapolating) factors due to reduced **Distance correction:**

measurement distance:

ANSI C63.10:2013, $\S6.4.4.2$ - Equations (2) + (3) + (4)

4.3. Test system set-up for radiated spurious emission measurements

Specification: ANSI C63.4-2014 chapter 8.3, ANSI C63.10-2013 chapter 6.6.3.3 & 6.6.4, ANSI

C63.26-2015, Chapter 4.6.3.3

General Description: Evaluating the emissions have to be done first by an exploratory emissions

measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements

on the EUT.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.50 m height which is placed on the turntable. By rotating the turntable (range 0° to 360° , step 45°) and the EUT itself on 3-orthogonal axis (the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined. Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out. The readings on the spectrum analyzer are corrected with conversion value between field strength and E(I)RP, so the readings shown are equivalent to ERP/EIRP values. Critical measurements near the limit are re-measured with a substitution method accord. ANSI/TIA/EIA 603 C/D

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ (1)

 $Ec_{E(I)RP} = Ec - 95.2 dB$

 $M = L_T - Ec_{E(I)RP}$

 $E_{C} = Electrical \ field - corrected \ value \\$

 E_R = Receiver reading

 $\boldsymbol{M} = \boldsymbol{Margin}$

 $L_{\text{T}} = Limit \\$

AF = Antenna factor

 C_L = Cable loss

 $D_F = Distance \ correction \ factor \ (if \ used)$

 $G_A = Gain of pre-amplifier (if used)$

 $Ec_{E(I)RP}$ = Electrical field corrected for E(I)RP

All units are dB-units, positive margin means value is below limit.

5. Measurements

5.1. RF-Parameter - RF Peak power output conducted and PAPR-value

5.1.1. Test location and equipments

	·····									
test location	▼ CETECOM Esser	☐ Please see Chapter. 2.2.2								
test site	■ 347 Radio.lab. 1	☐ Radio.lab. 2								
spectr. analys.	□ 584 FSU	■ 489 ESU 40	□ 264	FSEK	□ 620	ESU 26				
signaling	□ 392 MT8820A	■ 436 CMU	□ 547	CMU						
otherwise	□ 110 USB LWL									
DC power	□ 456 EA 3013A	■ 463 HP3245A	□ 459	EA 2032-50	□ 268	EA- 3050	□ 494	AG6632A	□ 498 NG	PE 40
otherwise	□ 331 HC 4055	≥ 530 10 dB Att.	≥ 529	Power div.	x -	cable OTA2	0			
line voltage	□ 230 V 50 Hz via p	oublic mains	□ 060	120 V/ 60 Hz v	via PAS	5000			•	

5.1.2. Requirements and limits

FCC	§2.1046(a)
IC	RSS-132 : 5.4 + SRSP 503 : 5.1.3 for GSM 850 RSS-133 4.1/6.4 + SRSP-510 : 5.1.2 for GSM 1900
ANSI	C63.26-2015
	Maximum conducted output power of the transmitter should be determined while measured on RF output terminal.
Limit	Limit GSM850: 7 Watt (38.4 dBm)
Lillit	Limit GSM1900: 2 Watt (33.0 dBm)
	PAPR≤13 dB

5.1.3. Test condition and test set-up

5.1.3. Test condition and test s	
Climatic conditions	Temperature: (22±3°C) Rel. humidity: (40±20)%
Test system set-up	Please see chapter "Test system set-up for conducted measurements on antenna port"
Measurement method	The measurements were performed with the integrated power measurement function of the "radio communication tester CMU200 from Rohde & Schwarz company. In this way spectrum-analyzers instrument limitations can be avoided or minimized. Instead, CMU manufacturers declared measurement error can be considered for this measurement. The attenuation (insertion loss) at the RF Inputs/Outputs of CMU were set according the path loss of the test set-up, determined in a step before starting the measurements. A suitable artificial antenna or RF-connector is provided by the applicant in order to perform the conducted measurements. Any data provided with the artificial antenna or connector, have been taken in account in order to correct the measurement data. (typical 0.3dB for attenuation of antenna connector)
	Peak and Average Values have been recorded for each channel on test set-up Cel-2. The Peak-to - Average-Power Ratio is determined on test set-up Cel-1 with corresponding settings. (see plots). The guideline in ANSIC63.26-2016 is taken into account.
	A call was established with settings according chapter "Parameter settings on mobile phone and base station CMU200"
Mobile phone settings	UE Power should be set to maximum, continuous transmission. DTX or other power saving techniques have been disabled
	The measurements were made at the low, middle and high carrier frequencies of each of the supported operating band. Choosing three TX-carrier frequencies of the mobile phone, should be sufficient to demonstrate compliance.

5.1.4. Measurement results

Op. Mode 2, Set-up 1

op. mode 2, s	p. 110de 2, Set-up 1										
			Peak Output	Average	PAPR-	Peak	PAPR-	Result			
	Carrier (Carrier Channel		Output Power	Ratio on	power	Limit				
Op. Mode			[dBm]	[dBm]	0.1%	Limit					
	Range	No.			probability [dB]	[dBm]	[dB]				
	Low	128	31.2	31.1	0.33						
GSM 850	Middle	192	31.2	31.1	0.33	38.4	13	Passed			
	High	251	31.3	31.2	0.35						

Remark: --

Op. Mode 5, Set-up 1

pr 1.20 ac c, 8.	5 112 dd 5 7 5 5 5 4 F 2									
	Carrier Channel		Peak	Average	PAPR-	Peak	PAPR-	Result		
		I	Output	Output	Ratio on	power	Limit			
Op. Mode			Power	Power	0.1%	Limit				
	Range	No.	[dBm]	[dBm]	probability [dB]	[dBm]	[dB]			
	Low	128	28.0	24.8	3.47					
E-GPRS 850	Middle	192	28.2	25.0	3.55	38.4	13	Passed		
	High	251	28.4	25.2	3.52					

Remark: --

Op. Mode 4, Set-up 1

Op. Mode 4, 5	ct up I							
	Carrier (Channel	Peak	Average	PAPR-	Peak	PAPR-	Result
			Output	Output	Ratio on	power	Limit	
0. 1/1			Power	Power	0.1%	Limit		
Op. Mode	Range	No.	[dBm]	[dBm]	probability			
	- Tunge	1,0,			[dB]	[dBm]	[dB]	
	Low	512	27.3	27.1	0.34			
GSM 1900	Middle	661	27.0	26.9	0.34	38.4	13	Passed
	High	810	27.0	26.8	0.32			

Remark: --

Op. Mode 6, Set-up 1

			Peak Output	Average	PAPR-	Peak	PAPR-	Result
	Carrier C	Channel	Power	Output Power	Ratio on	power	Limit	
Op. Mode			[dBm]	[dBm]	0.1%	Limit		
	D	Mo			probability	[dBm]	[dB]	
	Range	No.			[dB]			
	Low	512	26.5	23.2	3.3			
E-GPRS 1900	Middle	661	25.2	23.0	3.2	33.0	13	Passed
	High	810	26.1	22.9	3.25			

Remark: --

5.2. General Limit - Radiated field strength emissions below 30 MHz

5.2.1. Test location and equipment

test location	■ CETECOM Esset	n (Chapter. 2.2.1)	☐ Please see Chapte	r. 2.2.2	☐ Please see Chapt	er. 2.2.3
test site	■ 441 EMI SAR	□ 487 SAR NSA	☐ 347 Radio.lab.			
receiver	□ 377 ESCS30	≥ 001 ESS				
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK			
antenna	□ 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	■ 030 HFH-Z2	□ 477 GPS
signaling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	☐ 482 Filter Matrix	☐ 378 RadiSense	
DC power	■ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
line voltage	№ 12V DC	•	□ 060 120 V 60 Hz	via PAS 5000	•	•

5.2.2. Requirements

FCC	Part 15, Subpart 0	Part 15, Subpart C, §15.205 & §15.209								
IC	RSS-Gen: Issue 4	: §8.9 Table 5								
ANSI	C63.10-2013									
Frequency [MHz]	Field [[[strength limit [dBµV/m]	Distance [m]	Remarks						
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m						
0.490 - 1.705	24000/f (kHz)	87.6 – 20Log(f) (kHz)	30	Correction factor used due to measurement distance of 3 m						
1.705 – 30	30	29.5	30	Correction factor used due to measurement distance of 3 m						

5.2.3. Test condition and test set-up

	ition and test set a	7					
Signal link to test s	ystem (if used):	🗷 air link	☐ cable connection	□ none			
EUT-grounding		☑ none ☐ with power supply ☐ additional connection					
Equipment set up		■ table top		☐ floor standing			
Climatic conditions	3	Temperature:	(22±3°C)	Rel. humidity: (40±20)%			
		≥ 9 – 150 kHz	z = RBW/VBW =	200 Hz Scan step = 80 Hz			
	Scan data	№ 150 kHz – 3	3 150 kHz - 30 MHz RBW/VBW = 9 kHz Scan step = 4 kHz				
		☐ other:					
EMI-Receiver or	Scan-Mode	ĭ 6 dB EMI-I	Receiver Mode 🗆 3dB Sp	ectrum analyser Mode			
Analyzer Settings	Detector	Peak (pre-mea	surement) and Quasi-PK	Average (final if applicable)			
	Mode:	Repetitive-Sca					
	Sweep-Time	Coupled – calibrated display if continuous signal otherwise adapted to EUT's individual					
		transmission duty-cycle					
General measureme	nt procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"					

5.2.4. Measurement Results

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

The EUT is put on operation on middle channel only. If critical peaks are found (Margin <10 dB) the lowest and highest channels will be performed too. For more information please see the diagrams.

Table of measurement results:

Diagram No.	Carı Char	nnel	Frequency range	Set- up no.	OP- mode no.	Remark		ed dete	ector QP	Result
	Range	No.					PK	AV	ŲI	
2.01	Low	128	9 kHz-30 MHz	3	1	Internal antenna EUT standing	×			passed
2.03	Low	512	9 kHz-30 MHz	3	3	Internal antenna EUT standing	×			passed
2.02	High	251	9 kHz-30 MHz	2	1	External Antenna EUT standing	×			passed
2.04	High	810	9 kHz-30 MHz	2	4	External Antenna EUT standing	×			passed

Remarks: no critical frequencies within noise-level found

5.2.5. Correction factors due to reduced meas. distance (f< $30\ MHz$)

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors.

Frequency -Range	f [kHz/MHz]	Lambda [m]	Far-Field Point [m]	Distance Limit accord. 15.209 [m]	1st Condition (dmeas < D _{near-field})	2'te Condition (Limit distance bigger d _{near-field})	Distance Correction accord. Formula
kHz	9,00E+03 1,00E+04 2,00E+04 3,00E+04 5,00E+04 5,00E+04 7,00E+04 9,00E+04 9,00E+04 1,00E+05 2,00E+05 4,90E+05 4,90E+05	3333,33 3000,00 15000,00 15000,00 6000,00 5000,00 5000,00 4285,71 3750,00 3333,33 3000,00 2400,00 1500,00 1500,00 612,24	5305,17 4774,65 2387,33 1591,55 1193,66 954,93 795,78 682,09 596,83 530,52 477,47 381,97 238,73 159,16 119,37 97,44	300	fulfilled	not fulfilled fulfilled fulfilled fulfilled fulfilled fulfilled fulfilled	-80,00 -80,00 -80,00 -80,00 -80,00 -80,00 -80,00 -80,00 -80,00 -80,00 -80,00 -70,00 -70,23
	5,00E+05 6,00E+05 7,00E+05 8,00E+05 9,00E+05	600,00 500,00 428,57 375,00 333,33 300,00	95,49 79,58 68,21 59,68 53,05 47,75		fulfilled fulfilled fulfilled fulfilled fulfilled fulfilled	not fullfilled not fullfilled not fullfilled not fullfilled not fullfilled not fullfilled	-40,00 -40,00 -40,00 -40,00 -40,00 -40,00
MHz	1,59 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,00 11,00 12,00 13,56 15,00 15,92 17,00 18,00 20,00 21,00 23,00 25,00 27,00 29,00 30,00	188,50 150,00 100,00 75,00 60,00 50,00 42,86 37,50 33,33 30,00 28,30 27,27 25,00 22,12 20,00 18,85 17,65 16,67 15,00 14,29 13,04 12,00 11,11 10,34 10,00	30,00 23,87 15,92 11,94 9,55 7,96 6,82 5,97 5,31 4,77 4,50 4,34 3,98 3,52 3,18 3,00 2,81 2,65 2,39 2,27 2,08 1,91 1,77 1,65 1,59	30	fulfilled not fulfilled	not fulfilled	-40,00 -38,02 -34,49 -32,00 -30,06 -28,47 -27,13 -25,97 -24,95 -24,04 -23,53 -23,21 -22,45 -21,39 -20,51 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00 -20,00

5.3. RF-Parameter - Radiated out of Band RF emissions and Band Edge

5.3.1. Test location and equipments (for reference numbers please see chapter 'List of test equipment')

test location	▼ CETECOM Esser	(Chapter. 2.2.1)	☐ Please see Chapte	r. 2.2.2	☐ Plea	se see Chapte	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	≥ 443 FAR	□ 347 Radio.lab.1		Radio.lab.2	
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU 40	□ 620 ESU 26			
spectr. analys.	□ 584 FSU	□ 120 FSEM	≥ 264 FSEK				
antenna	¥ 439 HL 562	■ 549 HL 025	□ 302 BBHA9170	□ 289 CBL 6141	□ 030	HFH-Z2	□477 GPS
signaling	□ 017 CMD 65	□ 323 CMD 55	□ 340 CMD 55				
signaling	□ 392 MT8820A	≥ 546 CMU	□ 547 CMU				
power supply	¥ 463 HP3245A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494	AG6632A	□498 NGPE 40
otherwise	☐ 529 6dB divider	□ 530 6dB Att.	□ 110 USB LWL	☐ 482 Filter Matrix	□ 431	Near field	
line voltage	≥ 12V DC		□ 060 120 V/60 H	z via PAS 5000			

5.3.2. Requirements and limits (Variante RF-Parameter)

elelel Requirements and mints ()	
FCC	 ☑ Part 2.1053(a), Part2.1057(a)(1) ☑ Part 22 Subpart H, §22.917(a)(b) ☑ Part 24 Subpart E, §24.238(a)(b)
IC	☑ RSS-132, Issue 3: 5.5(i)(ii) ☑ RSS-133, Issue 6: 6.5.1(i)(ii)
Limit	\$22.917(a) & \$24.238(a): "The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB" Limit: -13dBm for all Power Control Levels of the cellular equipment

5.3.3. Test condition and test set-up

link to test system (if used):	🗷 air link	☐ cable connection						
EUT-grounding	⋈ none	□ with power supply	□ additional connection					
Equipment set up	■ table top		☐ floor standing					
Climatic conditions	Temperature: (22	2±3°C)	Rel. humidity: (40±20)%					
Test system set-up	Please see chapter "Test system set-up for radiated spurious emission measurements up to 20 GHz"							
	"§ 2.1057 Frequency spectrum to be investigated. (a) In all of the measurements set for § 2.1051 and 2.1053, the spectrum shall be investigated from the lowest radio freque generated in the equipment, without going below 9 kHz" The spectrum was scanned from 9 kHz (depend on the equipment, s. §2.1057) to the 10th of the highest frequency generated within the equipment. A PEAK detector was u measurements near the block-edge where a AVERAGE detector applied. According chapter "Test system set-up for electric field measurement in the range 30-1001 to 40GHz" and additionally: the readings on the spectrum analyzer are corrected with performed chamber path calibration values so the readings shown are equivalent to values. Critical measurements near the limit are re-measured with a substitution meth ANSI/TIA/EIA 603.							
EUT settings	A call was established with settings according chapter "Parameter settings on mobile phore base station CMU200" The UE and used accessories (if any used) were set to work according their introduced use/specification stated as by the applicant The measurements were made at the low, middle and high carrier frequencies of each supported operating band. Choosing three TX-carrier frequencies of the wireless device, show sufficient to demonstrate compliance.							

Spectrum-Analyzer settings for GSM/GPRS/E-GPRS 850 Mode

Spectrum manyzer set	· · · · · · · · · · · · · · · · · · ·	0.00-1-0-					
Sweep no.	Start freq. MHz	Stop freq. MHz	R-BW MHz	V-BW MHz	Sweep time sec.	Att. [dB]	Detector
Sweep 1 (subrange 1)	30	1000	0.1	0.3	10	10	MaxH-PK
Sweep 2 (subrange 2)	1000	2800	0.1	0.3	15	10	MaxH-PK
Sweep 3 (subrange 3)	2800	9000	0.1	0.3	60	10	MaxH-PK
Sweep 4a (Band-Edge)	823	824	0.003	0.01	30	10	MaxH-PK
Sweep 4b (Band-Edge)	849	850	0.003	0.01	30	10	MaxH-PK

Spectrum-analyzer settings for GSM/GPRS/E-GPRS 1900 Mode

Sweep no.	Start freq. MHz	Stop freq. MHz	R-BW MHz	V-BW MHz	Sweep time sec.	Att.	Detector
Sweep 1 (subrange 1)	30	1000	1	3	10	10	MaxH-PK
Sweep 2 (subrange 2)	1000	2800	1	3	15	10	MaxH-PK
Sweep 3 (subrange 3)	2800	18000	1	3	160	10	MaxH-PK
Sweep 4a (Band-Edge)	1849	1850	0.003	0.01	30	10	MaxH-PK
Sweep 4b (Band-Edge)	1910	1911	0.003	0.01	30	10	MaxH-AV

5.3.4. Measurement results

The results are presented below in summary form only. For more information please see each diagram enclosed in annex 4.

5.3.4.1. GSM 850: Set-up 2+3

Diagram no.	Carrier Channel Range No.		Frequency range	OP- mode no.	Remark	Use PK	d dete	ctor OP	Result
8.01_RSE_R_Ch128_Internal_ Voice_GSM_laying 8.01b_RSE_R_Ch128_Internal_ Voice_GSM_standing	Range	110.	30 MHz – 1 GHz		Carrier on diagram, not relevant for results -> Internal antenna used	×			passed
8.01c_RSE_R_Ch128_GSM_ 1G-12G	Low	128	128 1 – 12 GHz 823 – 824 MHz		Standing/laying Internal antenna used	×			passed
9.01_BE_R_Ch128_Internal_ Voice_Laying 9.01b_BE_R_Ch128_Internal_ Voice_Standing					Band Edge Compliance Internal antenna used	×	X		passed
9.03_BE_R_Ch128_ExtAnt_ GPRS_Laying 9.03b_BE_R_Ch128_ExtAnt_ GPRS_Standing	Low	128	823 – 824 MHz	2 GPRS	Band Edge Compliance External antenna used	×	×		passed

8.06_RSE_R_Ch251_External_GPRS_ 30M_1G_Laying 8.06b_RSE_R_Ch251_External_GPRS_ _30M_1G_Standing	High	251	30 MHz – 1 GHz	2	Carrier on diagram, not relevant for results External antenna used	×		passed
8.06b_RSE_R_Ch251_GPRS_1G-12G			1 to 12GHz		Standing/laying External antenna used	×		passed
9.02_BE_R_Ch251_IntAnt_GSM_ VOICE_Laying 9.02b_BE_R_Ch251_IntAnt_GSM_ VOICE_Standing	High	2.1	849 – 850	1	Band-Edge compliance Internal antenna used	×		passed
9.04_BE_R_Ch251_External_GPRS_ Laying 9.04b_BE_R_Ch251_External_GPRS_ Standing	High	251	MHz	2	Band-Edge compliance External antenna used	×		passed

Remark:--

5.3.4.2. GPRS 1900: Set-up 2/3

Diagram no.	Carrier Channel		Frequency range	OP- mode	Remark	Use	ctor	Result	
	Range	No.	8-	no.		PK	AV	QP	
8.10a_RSE_R_Ch512_GSM_Standing	Low	512	30 MHz – 19.5 GHz	4	Carrier on diagram, not relevant for results Internal antenna used	×			passed
9.07_BE_R_Ch512_Internal_Voice_ Standing 9.07b_BE_R_Ch512_Internal_Voice_ Laying			1849 – 1850	3	Band Edge Compliance Internal antenna used	×			passed
9.09_BE_R_Ch512_ExtAnt_GPRS_ Standing 9.09b_BE_R_Ch512_ExtAnt_GPRS_ Laying	Low	512	MHz	4	Band Edge Compliance External antenna used	×			passed

8.15_RSE_R_Ch810_External_GPRS_ Laying 8.15_RSE_R_Ch810_External_GPRS_ Standing	High	810	30 MHz – 1 GHz	4	Carrier on diagram, not relevant for results External antenna used	×		passed
8.15_RSE_R_Ch810_GPRS_1G-18G			1GHz – 18 GHz	4	Standing/ Laying	×		passed
9.08_BE_R_Ch810_Internal_Voice_ Standing 9.08b_BE_R_Ch810_Internal_Voice_ Laying	High	810	1910 – 1911	3	Band-Edge compliance Internal antenna used	×		passed
9.10_BE_R_Ch810_ExtAnt_GPRS_ Standing 9.10b_BE_R_Ch810_ExtAnt_GPRS_ Laving	High		MHz	4	Band-Edge compliance External antenna used	×		passed

Remark:--

5.4. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Reference	Frequency range	Ca		d uncer	•	oased or 95%	ı a	Remarks
Conducted emissions (U CISPR)	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dE 3.6 dE	3		-			
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz	4.2 dE 5.1 dE			E-Field			
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz	-						-
Power Output radiated	-	30 MHz - 4 GHz) MHz - 4 (†Hz 13 1 / dB 1				Substitution method		
D O 4 . 4 1 . 4 . 1		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		-
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77		
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79		
Power density	-	1 – 2.8GHz	1.40 d	В					
Occupied bandwidth	-	9 kHz - 4 GHz	0.1272 1.0 dE		Delta N	Marker)			Frequency error Power
Emission bandwidth	-	9 kHz - 4 GHz		2 ppm (pove: 0	Delta N .70 dB	Marker)			Frequency error Power
Frequency stability	-	9 kHz - 20 GHz	0.0636	5 ppm					-
Radiated emissions Enclosure	-	150 kHz - 30 MHz 30 MHz - 1 GHz 1 GHz - 20 GHz	5.0 dE 4.2 dE 3.17 d	3		Magnetic field E-field Substitution			

Table: measurement uncertainties, valid for conducted/radiated measurements

6. Abbreviations used in this report

The abbreviation	The abbreviations				
ANSI	American National Standards Institute				
AV , AVG, CAV	Average detector				
EIRP	Equivalent isotropically radiated power, determined within a separate measurement				
EGPRS	Enhanced General Packet Radio Service				
EUT	Equipment Under Test				
FCC	Federal Communications Commission, USA				
IC	Industry Canada				
n.a.	not applicable				
Op-Mode	Operating mode of the equipment				
PK	Peak				
RBW	resolution bandwidth				
RF	Radio frequency				
RSS	Radio Standards Specification, Dokuments from Industry Canada				
Rx	Receiver				
TCH	Traffic channel				
Tx	Transmitter				
QP	Quasi peak detector				
VBW	Video bandwidth				
ERP	Effective radiated power				

7. Accreditation details of CETECOM's laboratories and test sites

Ref No.	Accreditation Certificate	Valid for laboratory area or test site	Accreditation Body			
-	D-PL- 12047-01-01	All laboratories and test sites of CETECOM GmbH, Essen	DAkkS, Deutsche Akkreditierungsstelle GmbH			
337 487 558 348 348	(MRA US-EU 0003)	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	FCC, Federal Communications Commission Laboratory Division, USA			
337 487 550 558	3462D-1 3462D-2 3462D-2 3462D-3	Radiated Measurements 30 MHz to 1 GHz, 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Radiated Measurements above 1 GHz, 3 m (FAR)	IC, Industry Canada Certification and Engineering Bureau			
487 550 348 348	R- 4452 G- 20013 C- 20009 T- 20006	Radiated Measurements 30 MHz to 1 GHz, 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz, 3 m (SAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	VCCI, Voluntary Control Council for Interference by Information Technology Equipment, Japan			
OATS	OATS = Open Area Test Site, SAR = Semi Anechoic Room, FAR = Fully Anechoic Room					

8. Instruments and Ancillary

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

8.0.1. Test software and firmware of equipment

, o				
Z.	Equipment	Type	Serial-No.	Version of Firmware or Software during the test
RefNo.	• •			
П				
001	EMI Test Receiver	ESS	825132/017	Firm.= 1.21, OTP=2.0, GRA=2.0
012	Signal Generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	Power Meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Digital Radiocommunication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
053	Audio Analyzer	UPA3	860612/022	Firm. V 4.3
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	Firm.= V 3.1DHG
140	Signal Generator	SMHU	831314/006	Firm.= 3.21
261	Thermal Power Sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	Power Meter	NRV-S	825770/0010	Firm.= 2.6
263	Signal Generator	SMP 04	826190/0007	Firm.=3.21
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04, SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
200	w. n. a	C1 (11 200	022221/00:	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f.
298	Univ. Radio Communication Tester	CMU 200	832221/091	all band used
323	Digital Radiocommunication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
335	CTC-EMS-Conducted	System EMS Conducted	-	EMC 32 V 8.52
340	Digital Radiocommunication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	Power Meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V5,30+ SW-Option K55, K57
377	EMI Test Receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	Broadband RF Field Monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
389	Digital Multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001, GSM=4.41#013, W-CDMA= 4.54#004, scenario= 4.52#002
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	Spuri 7.2.5 or EMC 32 Ver. 9.15.00
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 9.15.00
				R&S Test Firmware Base=5.14, GSM=5.14
460	Univ. Radio Communication Tester	CMU 200	108901	WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14
547	Univ. Radio Communication Tester	CMU 200	835390/014	WCDMA=5.14 (current Testsoftw.,f. all band to be used R&S Test Firmware Base=V5.1403 (current Testsoftw.,
584	Spectrum Analyzer	FSU 8	100248	f. all band used, GSM = 5.14 WCDMA: = 5.14 2.82_SP3
				R&S Test Firmware Base=5.01, GSM=5.02 WCDMA=
597	Univ. Radio Communication Tester	CMU 200	100347	not installed, Mainboard= μP1=V.850
598	Spectrum Analyzer	FSEM 30 (Reserve)	831259/013	Firmware Bios 3.40 , Analyzer 3.40 Sp 2
607	Signal Generator	SMR 20	832033/011	V1.25
620	EMI Test Receiver	ESU 26	100362	4.43_SP3
642	Wideband Radio Communication Tester	CMW 500	126089	Setup V03.26, Test programm component V03.02.20
670	Univ. Radio Communication Tester	CMU 200	106833	μ P1 =V8.50, Firmware = V.20
689	Vector Signal Generator	SMU200	100970	02.20.360.142
692	Bluetooth Tester	CBT 32	100236	CBT V 5.40, FW: V.2.41 (FPGA Digital, V. 3.09 FPGA RF)
			1	

8.0.2. Single instruments and test systems

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	16.05.2018
005	AC - LISN (50 Ohm/50μH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	15.05.2018
007	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	892563/002	Rohde & Schwarz	12 M	-	17.05.2018
009	Power Meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	24 M	-	15.05.2019
016	Line Impedance Simulating Network	Op. 24-D	B6366	Spitzenberger+Spies	36 M	-	30.05.2019
020	Horn Antenna 18 GHz (Subst 1) Loop Antenna (H-Field)	3115 6502	9107-3699	EMCO EMCO	36/12 M	-	31.07.2017
021	Loop Antenna (H-Field) Loop Antenna (H-field)	HFH-Z2	9206-2770 879604/026	Rohde & Schwarz	36 M 36 M	-	30.04.2018 30.04.2018
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	24 M	-	15.05.2019
057	relay-switch-unit (EMS system)	RSU	494440/002	Rohde & Schwarz	pre-m	1a	
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
086	DC - power supply, 0 -10 A	LNG 50-10	-	Heinzinger Electronic	pre-m	2	
087	DC - power supply, 0 -5 A	EA-3013 S	-	Elektro Automatik	pre-m	2	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	36 M	-	30.04.2018
100	passive voltage probe	Probe TK 9416	without	Schwarzbeck	36 M	-	30.04.2018
110	USB-LWL-Converter	OLS-1	-	Ing. Büro Scheiba	-	4	
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	BOCONSULT	36 M	-	30.05.2019
133	horn antenna 18 GHz (Meas 1)	3115	9012-3629	EMCO	36 M	1c	10.03.2020
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	36 M	-	10.03.2020
136	adjustable dipole antenna (Dipole 1)	3121C-DB4	9105-0697	EMCO	36 M	-	30.04.2018
140	Signal Generator	SMHU	831314/006	Rohde & Schwarz	24 M	-	30.05.2018
248	attenuator	SMA 6dB 2W	-	Radiall	pre-m	2	
249	attenuator	SMA 10dB 10W	-	Radiall	pre-m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre-m	2	
256	attenuator	SMA 3dB 2W	-	Radiall	pre-m	2	
257	hybrid	4031C	04491	Narda	pre-m	2	
260	hybrid coupler	4032C	11342	Narda	pre-m	2	
261	Thermal Power Sensor	NRV-Z55	825083/0008	Rohde & Schwarz	24 M	-	30.05.2018
262	Power Meter	NRV-S SMP 04	825770/0010	Rohde & Schwarz	24 M 36 M	-	30.05.2018
263 265	Signal Generator peak power sensor	NRV-Z33, Model 04	826190/0007 840414/009	Rohde & Schwarz Rohde & Schwarz	24 M	-	30.05.2019 30.05.2018
266	Peak Power Sensor	NRV-Z31, Model 04	843383/016	Rohde & Schwarz	24 M	-	30.05.2018
267	notch filter GSM 850	WRCA 800/960-6EEK	9	Wainwright GmbH	pre-m	2	
270	termination	1418 N	BB6935	Weinschel	pre-m	2	
271	termination	1418 N	BE6384	Weinschel	pre-m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre-m	2	
273	attenuator (10 dB) 100 W	Model 48	BF9229	Weinschel	pre-m	2	
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre-m	2	
275	DC-Block	Model 7003 (N)	C5129	Weinschel	pre-m	2	
276	DC-Block	Model 7006 (SMA)	C7061	Weinschel	pre-m	2	
279	power divider	1515 (SMA)	LH855	Weinschel	pre-m	2	
298	Univ. Radio Communication Tester	CMU 200	832221/091	Rohde & Schwarz	pre-m	3	
300	AC LISN (50 Ohm/50μH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	12 M	-	17.05.2018
301	attenuator (20 dB) 50W, 18GHz	47-20-33	AW0272	Lucas Weinschel	pre-m	2	17.03.2016
302	horn antenna 40 GHz (Meas 1)	BBHA9170	155	Schwarzbeck	36 M	-	14.03.2020
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	36 M	-	20.03.2020
331	Climatic Test Chamber -40/+180 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	30.10.2018
341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	30.05.2018
342	Digital Multimeter	Voltcraft M-4660A	IB 255466	Voltcraft	24 M	-	17.05.2019
347	laboratory site	radio lab.	-	-	-	5	
348	laboratory site	EMI conducted	-	-	-	5	
354	DC - Power Supply 40A	NGPE 40/40	448	Rohde & Schwarz	pre-m	2	
355	Power Meter	URV 5	891310/027	Rohde & Schwarz	24 M	-	30.05.2018
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24 M	-	24.05.2019
371 373	Bluetooth Tester Single-Line V-Network (50 Ohm/5µH)	CBT32 ESH3-Z6	100153 100535	R&S Rohde & Schwarz	36 M 12 M	-	30.05.2019 17.05.2018
377	EMI Test Receiver	ESH3-26 ESCS 30	100535	Ronde & Schwarz Rohde & Schwarz	12 M	-	15.05.2018
392	Radio Communication Tester	MT8820A	6K00000788	Anritsu	12 M	-	18.05.2018
405	Thermo-/Hygrometer	OPUS 10 THI	126.0604.0003.3.3.3.22	LUFFT Mess u. Regeltechnik	24 M	-	30.03.2019
431	Model 7405	Near-Field Probe Set	9305-2457	EMCO	-	4	
436	Univ. Radio Communication Tester	CMU 200	103083	Rohde & Schwarz	12 M	-	24.05.2018
439	UltraLog-Antenna	HL 562	100248	Rohde & Schwarz	36 M	-	10.03.2020
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI-RSE	- 2021 4 02 472	ETS-Lindgren / CETECOM	12 M	5	30.09.2017
463	Universal source	HP3245A	2831A03472	Agilent	-	4	20.05.2010
466	Digital Multimeter	Fluke 112	89210157	Fluke USA	24 M	-	30.05.2018
467 468	Digital Multimeter Digital Multimeter	Fluke 112 Fluke 112	89680306 90090455	Fluke USA Fluke USA	36 M 36 M	-	30.04.2018 30.04.2018
477	ReRadiating GPS-System	AS-47	-	Automotive Cons. Fink	-	3	30.04.2010
,			1		l		1

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	-	16.05.2019
482	filter matrix	Filter matrix SAR 1	-	CETECOM (Brl)	-	1d	
484	pre-amplifier 2,5 - 18 GHz	AMF-5D-02501800-25-10P	1244554	Miteq	12 M	-	30.07.2017
487	System CTC NSA-Verification SAR-EMI	System EMI field (SAR) NSA	-	ETS Lindgren / CETECOM	24 M	-	31.07.2017
489	EMI Test Receiver	ESU40	1000-30	Rohde & Schwarz	12 M	-	18.05.2019
502	band reject filter	WRCG 1709/1786-1699/1796-	SN 9	Wainwright	pre-m	2	
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	pre-m	2	
512	notch filter GSM 850	WRCA 800/960-02/40-6EEK	SN 24	Wainwrght	12 M	1c	30.06.2017
517	relais switch matrix	HF Relais Box Keithley	SE 04	Keithley	pre-m	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	18.05.2019
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre-m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre-m	2	
546	Univ. Radio Communication Tester	CMU 200	106436	R&S	12 M	-	30.03.2018
547	Univ. Radio Communication Tester	CMU 200	835390/014	Rohde & Schwarz	12 M	-	30.04.2017
549	Log.Per-Antenna	HL025 System EMI Field SAR S-	1000060	Rohde & Schwarz	36/12 M	-	31.07.2018
550	System CTC S-VSWR Verification SAR-EMI	VSWR	-	ETS Lindgren/CETECOM	24 M	•	31.07.2017
552	high pass filter 2,8-18GHz	WHKX 2.8/18G-10SS	4	Wainwright	12 M	1c	30.06.2017
557	System CTC-OTA-2	R&S TS8991	-	Rohde & Schwarz	12 M	5	30.09.2016
558	System CTC FAR S-VSWR	System CTC FAR S-VSWR	-	CTC	24 M	-	31.07.2017
574	Biconilog Hybrid Antenna	BTA-L	980026L	Frankonia	36/12 M	-	31.03.2019
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	pre-m	-	
594	Wideband Radio Communication Tester	CMW 500	101757	Rohde & Schwarz	12 M	-	30.04.2017
597	Univ. Radio Communication Tester	CMU 200	100347	Rohde & Schwarz	pre-m	-	
598	Spectrum Analyzer	FSEM 30	831259/013	Rohde & Schwarz	24 M	-	30.04.2017
600	power meter	NRVD (Reserve)	834501/018	Rohde & Schwarz	24 M	-	17.05.2019
601	medium-sensitivity diode sensor	NRV-Z5 (Reserve)	8435323/003	Rohde & Schwarz	24 M	-	15.05.2019
602	peak power sensor	NRV-Z32 (Reserve)	835080	Rohde & Schwarz	24 M	-	
611	DC power supply	E3632A	KR 75305854	Agilent	pre-m	2	
612	DC power supply	E3632A	MY 40001321	Agilent	pre-m	2	
613	Attenuator	R416120000 20dB 10W	Lot. 9828	Radiall	pre-m	2	
616	Digitalmultimeter	Fluke 177	88900339	Fluke	24 M	-	30.05.2018
617	Power Splitter/Combiner	ZFSC-2-2-S+	S F987001108	Mini Circuits	-	2	
618	Power Splitter/Combiner	50PD-634	600994	JFW Industries USA	-	2	
619	Power Splitter/Combiner	50PD-634	600995	JFW Industries, USA	-	3	
620	EMI Test Receiver	ESU 26	100362	Rohde-Schwarz	12 M	-	16.05.2018
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre-m	2	
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	
627	data logger	OPUS 1	201.0999.9302.6.4.1.43	G. Lufft GmbH	24 M	-	30.03.2019
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre-m	2	
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet 1m	-	KogiLink	-	2	
638	HDMI Kabel with Ethernet 1,5 m flach	HDMI cable with Ethernet	-	Reichelt	-	2	
640	HDMI cable 2m rund	HDMI cable 2m rund	-	Reichelt	-	2	
641	HDMI cable with Ethernet	Certified HDMI cable with	_	PureLink	_	2	
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	12 M	-	24.05.2018
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	12 IVI	-	24.03.2010
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	24 M	_	30.05.2018
671	DC-power supply 0-5 A	EA-3013S	-	Elektro Automatik	pre-m	2	55.55.2016
678	Power Meter	NRP	101638	Rohde&Schwarz	pre-m	-	
683	Spectrum Analyzer	FSU 26	200571	Rohde & Schwarz	12 M	-	17.05.2018
686	Field Analyzer	EHP-200A	160WX30702	Narda Safety Test Solutions	24 M	-	29.03.2019
687	Signal Generator	SMF 100A	102073	Rohde&Schwarz	12 M	-	17.05.2018
688	Pre Amp	JS-18004000-40-8P	1750117	Miteq	pre-m	-	-
690	Spectrum Analyzer	FSU	100302/026	Rohde&Schwarz	12 M	-	16.05.2018
691	OSP120 Base Unit	OSP120	101183	Rohde & Schwarz	12 M	-	22.05.2018
692	Bluetooth Tester	CBT 32	100236	Rohde & Schwarz	36 M	-	29.05.2020
693	TS8997	CTC-Radio Lab 1_TS8997	-	Rohde&Schwarz	12 M	5	06.06.2017
697	Power Splitter	ZN4PD-642W-S+	165001445	Mini-Circuits	-	2	
703	INNCO Antennen Mast	MA 4010-KT080-XPET-ZSS3	MA4170-KT100-XPET-	INNCO	pre-m	-	
704	INNCON Controller	CO 3000-4port	CO3000/933/38410516/L	INNCO Systems GmBh	pre-m	-	
711	Harmonic Mixer 90 GHz - 140GHz	RPG FS-Z140	101004	RPG	12 M	-	22.02.2018
712	Harmonic Mixer 75 GHz - 110GHz	FS-Z110	101468	Rohde & Schwarz	12 M	-	22.02.2018
713	Harmonic Mixer, 50 GHz - 75GHz	FS-Z75	101022	Rohde & Schwarz	12 M	-	22.05.2018
714	Signal Analyzer 67GHz	FSW67	104023	Rohde & Schwarz	24 M	-	03.03.2019
715	Harmonic Mixer, 140 GHz - 220GHz	FS-Z220	101009	RPG Radiometer Physics	12 M	-	03.08.2018
716	Harmonic Mixer 220 GHz to 325 GHZ	FS-Z325	101005	RPG Radiometer Physics	12 M	-	13.02.2018
747	Spectrum Analyzer	FSU 26	200152	Rohde & Schwarz	12 M	-	18.05.2018
748	Pickett-Potter Horn Antenna	FH-PP 4060	010001	Radiometer Physiscs	-	-	
749	Pickett-potter Horn Antenna	FH-PP 60-90	010003	Radiometer Physics	-	-	
750	Pickett-Potter Horn Antenna	FH-PP 140-220	010011	Radiometer Physics	-	-	

8.0.3. Legend

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month	
	24 M	24 month	
	36 M	36 month	
24/12 M Calibration every 24 months, between this every 12 months internal validation			
	36/12 M	Calibration every 36 months, between this every 12 months internal validation	
	Pre-m	Check before starting the measurement	
	-	Without calibration	

9. Versions of test reports (change history)

Version	rsion Applied changes			
	Initial release	2017-08-02		