Brouillon 4

Léo Burgund

May 27, 2025

1 Nomenclature

1.1 Dimensions

- b Mini-batch size
- d_e Embedding dimension
- d_s Sequence length
- d_k Query/Keys dimension
- d_v Value dimension
- h Number of heads

We make the hypothesis that $d_k < d_e < d_s$.

1.2 Matrix operations in a self-attention block

In the case of multi head attention, for each head i = 1, ..., h, we have:

- Input $X \in \mathbb{R}^{d_s \times d_e}$
- $\begin{array}{ll} \bullet & W_{Q_i} \in \mathbb{R}^{d_e \times \frac{d_k}{h}}, Q_i \coloneqq XW_{Q_i} \in \mathbb{R}^{d_s \times \frac{d_k}{h}} \\ \bullet & W_{K_i} \in \mathbb{R}^{d_e \times \frac{d_k}{h}}, K_i \coloneqq XW_{K_i} \in \mathbb{R}^{d_s \times \frac{d_k}{h}} \\ \bullet & S_i \coloneqq \frac{Q_i K_i^\top}{\sqrt{\frac{d_k}{h}}} \in \mathbb{R}^{d_s \times d_s} \end{array}$

- $$\begin{split} \bullet & \quad A_i \coloneqq \operatorname{softmax_{row}}(S) \\ \bullet & \quad W_{V_i} \in \mathbb{R}^{d_e \times \frac{d_v}{h}}, V_i \coloneqq XW_{V_i} \in \mathbb{R}^{d_s \times \frac{d_v}{h}} \\ \bullet & \quad H_i \coloneqq A_i V_i \in \mathbb{R}^{d_s \times \frac{d_v}{h}}, \ H = [H_1, ..., H_h] \in \mathbb{R}^{d_s \times d_v} \end{split}$$
- $W_O \in \mathbb{R}^{d_v \times d_e}$
- Output $Y := HW_O + X \in \mathbb{R}^{d_s \times d_e}$

For now, we study the case h = 1.

 \oint We omit the $\frac{1}{\sqrt{d_k}}$ scaling for the S matrix, it can cause problem with growing, so for growing we will make it a learnable parameter (and initialize it at $\frac{1}{\sqrt{d_{k_{\text{initial}}}}}$?). Or maybe scale with $\left(\frac{\sqrt{d_k}}{\sqrt{d_k+p}}\right)$? But need to maintain the same output for the model?

2 Problem

Goal:

$$\min_{f} \mathcal{L}(f).$$

We will study the variations of the loss made by the variations of S, with other parameters fixed. Hence we will study

$$\arg\min_{S}\mathcal{L}(S)$$

Let $G := \nabla_S \mathcal{L}(S)$.

We have

$$\operatorname{rk}(G) \le d_s, \quad \operatorname{rk}(S) \le d_k$$

We have the first order approximation, with the introduction of $\gamma \in \mathbb{R}_+^*$, similar to a step size:

$$\mathcal{L}(S + \gamma \, \mathrm{d}S) = \mathcal{L}(S) + \gamma \langle G, \mathrm{d}S \rangle_F + o(\|(\mathrm{d}S)\|_F)$$

We consider the problem

$$\arg\min_{\mathrm{d}S} \langle G, \mathrm{d}S \rangle_F \text{ s.t. } \|\mathrm{d}S\|_F \leq \gamma$$

Let $Z = W_Q W_K^{\top}$, with $\operatorname{rk}(Z) \leq d_k$, we then have

$$S = XW_Q W_K^\top X^\top$$
$$= XZX^\top$$

and

$$\begin{split} \mathrm{d}S &= X \Big(W_{Q_{+1}} W_{K_{+1}} \Big) X^\top - X W_Q W_K^\top X^\top \\ &= X (Z + \mathrm{d}Z) X^\top - X Z X^\top \\ &= X \, \mathrm{d}Z X^\top \end{split}$$

Moreover,

$$\operatorname{rk}(\mathrm{d}S) = \operatorname{rk}\big(X\,\mathrm{d}ZX^\top\big) = \operatorname{rk}(\mathrm{d}Z) \leq d_k < d_e < d_s$$

Hence, the problem becomes

$$\begin{split} \mathrm{d} Z^\star &= \arg\min_{\mathrm{d} Z} \left\langle G, X \, \mathrm{d} Z X^\top \right\rangle_F \; \mathrm{s.t.} \; \left\| X \, \mathrm{d} Z X^\top \right\|_F \leq \gamma \\ &= -\arg\max_{\mathrm{d} Z} \left\langle G, X \, \mathrm{d} Z X^\top \right\rangle_F \; \mathrm{s.t.} \; \left\| X \, \mathrm{d} Z X^\top \right\|_F \leq \gamma \\ &= -\arg\max_{\mathrm{d} Z} \left\langle G, X \, \mathrm{d} Z X^\top \right\rangle_F \; \mathrm{s.t.} \; \left\| X \, \mathrm{d} Z X^\top \right\|_F = \gamma \; (*) \\ &= -\gamma \arg\max_{\mathrm{d} Z} \left\langle G, X \, \mathrm{d} Z X^\top \right\rangle_F \; \mathrm{s.t.} \; \left\| X \, \mathrm{d} Z X^\top \right\|_F = 1 \\ &= -\frac{\gamma}{\alpha} \arg\min_{\mathrm{d} Z} \left\| G - X \, \mathrm{d} Z X^\top \right\|_F^2 \end{split}$$

(*) We make the hypothesis that we can always find a $\langle G, X \, \mathrm{d} Z X^\top \rangle_F < 0$.

 $\oint \text{Justification for } \alpha, \alpha = \|?\|_F$

Let $\lambda \coloneqq \frac{\gamma}{\alpha}$, $P \coloneqq \arg\min_{\mathrm{d}Z} \|G - X \, \mathrm{d}ZX^{\top}\|_F^2$.

We will first search P, then λ with a line search.

$\mathbf{2.1} \; \mathbf{Find} \; P$

Let

$$f(P) = \left\| G - XPX^{\top} \right\|_{F}^{2}.$$

 $P \mapsto XPX^{\top}$ is linear, $P \mapsto G - XPX^{\top}$ is affine, and $A \mapsto ||A||_F^2$ is convex. f is a composition of those functions, hence is convex.

We have

$$\nabla_P f = -2X^\top (G - XPX^\top)X$$

SO

$$\nabla_P f = 0 \Longleftrightarrow X^\top X P X^\top X = X^\top G X$$

2.1.1 X full column rank (ϕ true in practice?)

Under the hypothesis that X has full column (d_e) rank, $X^{\top}X$ is invertible, we have the pseudoinverse

$$X^+ = (X^\top X)^{-1} X^\top$$

and the solution

$$P^* = (X^\top X)^{-1} X^\top G X (X^\top X)^{-1}$$
$$= (X^\top X)^+ X^\top G X (X^\top X)^+$$
$$= X^+ G (X^+)^\top$$

 \oint Which formula to implement for P^* ? Numerical stability?

2.1.2 $X^{\top}X$ not invertible

Let

$$\mathcal{A} := P \mapsto X^\top X P X^\top X$$

If $X^{\top}X$ is not invertible, $X^{\top}X$ is not injective, and under the hypothesis that $X^{\top}X \neq 0$,

$$X^{\top}XNX^{\top}X = 0 \Longleftrightarrow XNX^{\top} = 0$$

hence

$$\ker(\mathcal{A}) = \left\{ N \in \mathbb{R}^{d_e \times d_e} \mid XNX^\top = 0 \right\}$$

Hence any solution P_0 of $X^\top X P X^\top X = X^\top G X$ can be changed by $N \in \ker(\mathcal{A})$.

$$P = P_0 + N \Rightarrow X^\top X (P_0 + N) X^\top X = X^\top X P_0 X^\top X$$

We can always take N = 0.

2.2 Batch

To account for the batch, there are several ways to average:

$$\begin{split} \mathbb{E}_{X} \Big[\big(X^{\top} X \big)^{+} X^{\top} G X \big(X^{\top} X \big)^{+} \Big] &= \mathbb{E}_{X} \Big[X^{+} G \big(X^{+} \big)^{\top} \Big] \\ \mathbb{E}_{X} \big[X^{\top} X \big]^{+} \mathbb{E}_{X} \big[X^{\top} G X \big] \mathbb{E}_{X} \big[X^{\top} X \big]^{+} \\ \mathbb{E}_{X} \big[X \big]^{+} \mathbb{E}_{X} \big[G \big] \big(\mathbb{E}_{X} \big[X \big]^{+} \big)^{\top} \\ \mathbb{E}_{X} \big[X^{\top} X \big]^{-1} \mathbb{E}_{X} \big[X^{\top} G X \big] \mathbb{E}_{X} \big[X^{\top} X \big]^{-1} \end{split}$$

Which one to take?

When $d_s \gg d_e$, we see with experiments:

$$\mathbb{E}_{X}[X^{\top}X]^{+}\mathbb{E}_{X}[X^{\top}GX]\mathbb{E}_{X}[X^{\top}X]^{+} \to \mathbb{E}_{X}\big[(X^{\top}X)^{+}X^{\top}GX(X^{\top}X)^{+}\big]$$

With the left member being cheaper to compute

Test full pinv VS (if possible inv else pinv)

2.3 Line search

Do a line search to find λ

2.3.1 "Normal" way

Line search on

$$\mathcal{L} \Big(\boldsymbol{X} \; \mathrm{SVD}_{d_k + p} \Big(W_Q^t W_K^{t^\top} - \lambda P \Big) \boldsymbol{X}^\top \Big)$$

2.3.2 Testing fast way

Lose the rank constraint, but lose the SVD so faster. Get a good approximation of λ ?

$$\mathcal{L} \left(X \Big(W_Q^t W_K^{t^\top} - \lambda P \Big) X^\top \right) = \mathcal{L} \Big(X W_Q^t W_K^{t^\top} X^\top - \lambda X P X^\top \Big)$$