Algorithm 1 OncoMark Algorithm

Require: Training data $(X_{\text{train}}, Y_{\text{train}}, T_{\text{train_one_hot}})$, Validation data $(X_{\text{val}}, Y_{\text{val}}, T_{\text{val_one_hot}})$, Input shape input_shape, Number of tasks num_tasks, Training hyperparameters (batch size batch_size, epochs epochs, learning rate lr, patience patience, etc.).

Ensure: Trained model \mathcal{M} and loss history.

- 1: Initialize shared base network with input layer and dense layers.
- 2: for t = 1 to num_tasks do
- 3: Add task-specific dense layer to shared base.
- 4: Add output layer with sigmoid activation for task t.
- 5: end for
- 6: Compile model $\mathcal M$ with Adam optimizer and task-specific losses.
- 7: Initialize variables: best_val_loss $\leftarrow \infty$, patience_counter $\leftarrow 0$, lr_patience_counter $\leftarrow 0$.
- 8: **for** e = 1 to epochs **do**
- 9: Divide training data into batches.
- 10: **for** each batch **do**
- 11: Compute predictions $\hat{\mathcal{Y}}$ and task-specific losses.
- 12: Combine losses using task indicators and backpropagate gradients.
- 13: end for
- 14: Compute validation losses and update best validation loss if improved.
- 15: **if** patience exceeded **then**
- 16: Stop training.
- 17: end if
- 18: if learning rate patience exceeded then
- 19: Reduce learning rate.
- 20: end if
- 21: end for
- 22: **return** Trained model \mathcal{M} and loss history.