Ain Shams University
Faculty of Engineering
Electronics and Communications Department
Junior
Spring 2024

ECE252 – Fundamentals of Communication Systems

Sheet #4

Angle Modulation using Octave

FM transmitter

- 1. Using a FM Transmitter (Tx), a sinusoidal signal ($A_m = 1$ and $f_m = 100Hz$) is transmitted using a carrier of frequency $f_c = 10kHz$, $k_f = 10$.
 - a) Plot the baseband signal and the modulated signal versus time.
 - b) Plot the spectrum of the baseband signal and the modulated signal. Compare the peaks values with what is expected from your analysis.
 - c) Estimate the BW using universal method and compare results with Carson's rule
 - d) Repeat the problem using $k_f = 100 A_m = 10$

FM transceiver

- 2. Using a FM Transmitter (Tx), a sinusoidal signal ($A_m = 1$ and $f_m = 100Hz$) is transmitted using a carrier of frequency $f_c = 1kHz$, $k_f = 10$.
 - a) Design a FM transmitter. Plot the time domain signal and its corresponding spectrum
 - b) Design a FM receiver

Channel non-linearities

- 3. Given a non-linear channel $v_{out} = v_{in} + 0.5 v_{in}^2 + v_{in}^3$, $m(t) = \cos(2\pi 100t)$, $f_c = 1kHz$. Compare the performance in the following cases:
 - a) AM: $k_a = 0.5$
 - b) FM: $k_f = 10$