MA-UY 2314: Discrete Mathematics

Final Exam Solutions

• NYU students are planning to participate in a hackathon. Assume that there are 50 teams from NYU that are participating. Moreover, assume that each team has at least 2 members and no team has more than 13 members. Use the pigeonhole principle to explain why there are at least 5 teams with the same number of teammates.

Solution: We define the pigeons to be the 50 teams. We define the holes to be the numbers 2-13. A pigeon is placed in a hole based on the number of teammates it has. There are 12 holes and $4 \cdot 12 = 48 < 50$. Therefore, there must be a hole with at least 5 pigeons. That is, at least 5 teams with the same number of teammates. \square

• Let A_1, A_2, \ldots, A_n be sets $(n \geq 2)$ such that $A_i \subseteq A_j$ or $A_j \subseteq A_i$. Use the Principle of Mathematical Induction to prove that one of these n sets is a subset of all of them.

Proof:

Base Case: For n=2; since $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$ then one of these two sets is a subset of all other sets.

Induction Step: Assume $k \geq 2$ is any integer such that P(k) is true. Let $X_1, X_2, \ldots X_{k+1}$ be any collection of sets such that $X_i \subseteq X_j$ or $X_j \subseteq X_i$. Remove X_{k+1} from this collection. Then we know from the induction hypothesis that one of the sets X_1, X_2, \ldots, X_k , call it X, is a subset of all other sets. That is, $X \subseteq X_i$ for $i = 1, 2, \ldots k$. Now, $X_{k+1} \subseteq X$ or $X \subseteq X_{k+1}$. Therefore, either X or X_{k+1} is a subset of the collection $X_1, X_2, \ldots X_{k+1}$ \square

- Determine if the given function is 1-1. If the function is 1-1, simply write "1-1" and move on. If the function is not 1-1, then write "not 1-1" and provide an appropriate counterexample.
 - (a) $f = \{(x, y) : x, y \in \mathbb{Z}, y = x^2\}$ Solution: Not 1-1. f(1) = f(-1) = 1 and $1 \neq -1$. There are infinite number of counterexamples.
 - (b) Let $A = \{1, 2, 3\}$ and let f be the function from the power set of A to the integers such that f(x) = z + 1 where z is equal to the number of elements in x.

Solution: Not 1-1. Set $x\{1\}$ and $y = \{2\}$. Then f(x) = f(y) = 2 and $x \neq y$. Other counterexamples are possible.

(c) $f = \{(x, y) : x, y \in \mathbb{Z}, y = x + 1\}.$ Solution: 1-1.

• Prove Directly:

Assume x and y are any consecutive integers and let d be the largest positive divisor of both x and y. Then d = 1.

Proof: Assume x and y are any consecutive integers and let d be the largest positive divisor of both x and y. Since x and y are consecutive, it follows that y = x + 1. Since d|x and d|(x + 1) we have

$$x = ds$$
$$x + 1 = dt$$

for some integers s and t. Adding 1 to equation x = ds yields x + 1 = ds + 1, hence dt = ds + 1. Therefore d(t - s) = 1 and it follows that d|1. By Theorem 4.2.2. (page 191), we must have d = 1 or d = -1. Since d is positive, it follows that d = 1. \square

• Fill in the truth table. Use T for true and F for false.

p	q	$p \wedge q$	$p \vee q$	$(p \land q) \to (p \lor q)$
Γ	T	T	Т	T
T	F	F	T	T
F	Т	F	Τ	T
F	F	F	F	Τ

• Prove by Contradiction:

If a is any real number such that

$$\frac{a^2-1}{a+2} > 0$$

Then -2 < a < -1 or a > 1.

Proof: Assume there exists a real number a such that

$$\frac{a^2 - 1}{a + 2} > 0 \tag{1}$$

and $(a \le -2 \text{ or } a \ge -1)$ and $a \le 1$. Applying DeMorgan's again we have $(a \le 1 \text{ and } a \le -2)$ or $(a \le 1 \text{ and } a \le -1)$.

Case 1: $a \le 1$ and $a \le -2$ Therefore $a \le -2$. Now a cannot be equal to -2 otherwise $\frac{a^2-1}{a+2}$ is undedfined. Moreover, $a^2-1=(a-1)(a+1)>0$ and a+2<0 for a<-2 which contradicts (1).

Case 2: $a \le 1$ and $a \le -1$ Therefore $a \le -1$. By Case 1, we can restrict a to the case $-2 < a \le -1$. Now for such values of a, $a^2 - 1 = (a - 1)(a + 1) \le 0$ and a + 2 > 0 which contradicts (1).