Problème. Automorphismes intérieurs d'un groupe.

On se donne (G, \cdot) un groupe (en notation multiplicative), de neutre e.

On note Aut(G) l'ensemble des automorphismes de G.

- 0. Soit $n \in \mathbb{N}^*$. On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. (Re)démontrer que (\mathbb{U}_n, \times) est un groupe. Indication : On pourra vérifier que c'est un sous-groupe de \mathbb{C}^* .
- 1. Démontrer que $(\operatorname{Aut}(G), \circ)$ est un groupe. Indication : on pourra prouver qu'il s'agit d'un sous-groupe de S_G , le groupe des permutations de G.
- 2. Pour $a \in G$, on définit $\tau_a : \begin{cases} G \to G \\ x \mapsto axa^{-1} \end{cases}$.
 - (a) Que vaut τ_e ?
 - (b) Soit $(a,b) \in G^2$. Montrez que $\tau_a \circ \tau_b = \tau_{ab}$.
 - (c) Soit $a \in G$. Justifiez que τ_a est inversible et montrer que $(\tau_a)^{-1} = \tau_{a^{-1}}$.
 - (d) Soit $a \in G$. Justifier que $\tau_a \in \operatorname{Aut}(G)$.
- 3. Les automorphismes τ_a sont appelés automorphismes intérieurs de G. On note :

$$Int(G) = \{ \tau_a \mid a \in G \}.$$

- (a) Montrer que Int(G) est un sous-groupe de Aut(G).
- (b) « Int(G) est trivial lorsque G est abélien. » Expliquez.
- 4. Soit $T: \left\{ \begin{array}{ccc} G & \to & \operatorname{Aut}(G) \\ a & \mapsto & \tau_a \end{array} \right.$
 - (a) Prouver que T est un morphisme de groupes.
 - (b) Ce qui précède permet de retrouver que $\mathrm{Int}(G)$ est un sous-groupe de $\mathrm{Aut}(G)$. Pourquoi ?
 - (c) Le noyau de T est un sous-groupe de G croisé dans le cours : lequel?

- 5. Dans cette question, on veut montrer que T n'est pas toujours surjectif, c'està-dire qu'il existe un groupe G tel que $Int(G) \subsetneq Aut(G)$.
 - (a) On considère $G = \mathbb{U}_3 = \{1, j, j^2\}$. On pose $f : \begin{cases} 1 \mapsto 1 \\ j \mapsto j^2 \end{cases}$ Montrez que $f \in \text{Aut}(G)$.
 - (b) Conclure.

Exercice.

Soit

$$H = \left\{ x + y\sqrt{3} \mid n \in \mathbb{N}, y \in \mathbb{Z}, x^2 - 3y^2 = 1 \right\}.$$

Démontrer que H est un sous-groupe de \mathbb{R}_{+}^{*} .