

Mehrad Ansari

Email: mehrad.ansari@utoronto.ca

Personal website: https://mehradans92.github.io

Summarv:

A detail-oriented chemical engineer with a strong background in materials science, computational modeling, machine learning and scientific software development, supported by academic research and professional work experience in interdisciplinary settings.

Education

Doctor of Philosophy in Chemical Engineering

(May 2023) (Oct 2021)

Master of Science in Chemical Engineering

University of Rochester, Rochester, NY Thesis: "Applications of Physics-informed Machine Learning in Chemical Engineering". Advisor: Andrew D White

Master of Science in Environmental Engineering

(May 2018)

Missouri University of Science and Technology (UMR), Rolla, MO

Thesis: "Numerical Modeling of Capillary-driven Flow in Open Microchannels: An Implication of Optimized Wicking Fabric Design"

Bachelor of Science in Chemical Engineering

(July 2015)

(Jan 2024 - present)

(June 2023 - Dec 2023)

University of Tehran, Iran

Staff Scientist

Thesis: "Experimental Setup and Optimization for Electro-catalytical Generation of Hydroxyl Radicals in Wastewater Treatment"

Work Experience

Acceleration Consortium Research Fellow

- Facilitating AI & Automation (representation learning, Bayesian opt, physics-informed ML and orchestration) across various self-driving chemistry labs
 - Incorporating built-in domain knowledge in self-driving chemistry lab workflows, materials inverse design problem and hit-to-lead optimization
 - Developed chemistry-informed AI agents within Slack API
 - Developed agent-based chemistry plugins via large language models to accelerate design of materials for CO2 reduction

Research Assistant (2019 - 2023)

University of Rochester, Rochester, NY

- Developed a HuggingFace app that answers questions from scientific papers using OpenAl's large language models
- Developed a edge-computing cheminformatics tool for semi-supervised classification of the activity of antimicrobial peptides via positive-unlabeled learning using recurrent neural networks
- Developed a disease modeling tool to predict future disease spreads and infer location of patient-zero
- Developed an <u>automated tool</u> in CFD modeling that reduces the number of simulations using active learning and generates a symbolic equation for the system of interest via symbolic regression
- Contributed to development of a simulation-based inference tool via maximum entropy reweighting
- Contributed to development of a plugin with TensorFlow GPU-accelerated operations combined with HOOMD-Blue molecular dynamics simulation engine (HOOMD-TF)
- Developed a web-app for peptide-based gelator transparency classification using Kernel ridge regression
- Developed an automated tool on a Raspberry-Pi for real-time monitoring of HPC using Python, JS and HTML
- Implemented finite difference analysis in Python to study 2D shallow water dynamics
- Implemented Monte Carlo simulations in MATLAB to study evolution of spin configurations of a ferromagnet using the Ising model

Energy & Materials Intern and Research Engineer

(May 2022 - Mar 2023)

(Jan - Dec 2020)

Toyota Research Institute, Los Altos, CA

Developed a deep learning software to predict degradation of used Li-ion batteries with unknown cycling histories (US Patent pending).

Teaching Assistant of "Advanced Transport Phenomena" University of Rochester, Rochester, NY

Lead CFD Analyst at Missouri S&T Solar Car Design Team

(2016 - 2018)

Missouri University of Science and Technology, Rolla, MO

- Developed validated wind tunnel simulations in STAR-CCM+ for aerodynamic optimization of the solar car
- Improved aerodynamic design efficiency prior to manufacturing

Manufacturing Process Modeling Intern

The Goodyear Tire & Rubber Company, Akron, OH

(Mav-Dec 2017)

Phase-change heat transfer modeling and optimization of tire vulcanization process in ANSYS

Tutored students on homework related problems and organized laboratory experiments

- Model verification based on plant data and analytical solution
- Utilized assets more efficiently through MATLAB post processing and automating the simulation process using OPTIMUS
- Provided faster simulation results using Adaptive Mesh Refinement and High-Performance Computing
- GUI development and coupling ANSYS with MATLAB for time-effective post processing

Teaching Assistant of "Applied Numerical Methods in CFD"

Missouri University of Science and Technology, Rolla, MO

(Jan-May 2017)

Organized CFD and programming workshops for ANSYS and Star-CCM +

Missouri University of Science and Technology, Rolla, MO

Research Assistant

(2016 - 2018)

Numerical modeling of multiphase flow in open microfluidics using ANSYS and STAR-CCM + Reduced simulation run-time by developing an algorithm for adaptive mesh refinement (AMR)

Mehrad Ansari

(July-Sept 2014)

Personal website: https://mehradans92.github.io

Email: mehrad.ansari@utoronto.ca

Work Experience

Engineering Intern Leer University of Applied Sciences, Emden, Germany

Design of experiments in advanced oxidation process (AOP) for wastewater treatment

Computer Skills

Scientific Softwares Developed:

MATLAB Programming Contest

• MaxEnt AL-CFD • <u>Py0</u> Peptide.bio HOOMD-TF

 Decode-ELM Bye-Cycle

• Eunomia

Other tools: AWS, TensorFlow, PyTorch, Scikit-learn, JAX, LangChain

Languages: Python, JavaScript, HTML, CSS

Honors and Awards

3 rd Place Radical AI Winner at the <u>2024 LLM Hackathon - Materials and Chemistry</u> Toronto, ON	(May 2024)
2 nd Place Winner Team at the <u>Bayesian Optimization Hackathon for Chemistry and Materials</u> Toronto, ON	(Apr 2024)
Acceleration Consortium Research Fellowship University of Toronto, Toronto	(May 2023)
1st place winner at the <u>Battery Informatics & ML Kaggle Competition</u> Materials Research Society, Boston, MA	(Dec 2022)
Kwang-Yu and Lee-Chien Wang Fellowship Department of Chemical Engineering, University of Rochester	(Nov 2021)
Earl W. Costich Graduate Fellowship Department of Chemical Engineering, University of Rochester	(May 2020)
1st place winner: 2017 Mike Alizadeh Scholarship American Society of Civil Engineers (ASCE)	(Aug 2017)
Recognized reviewer: Journal of Environmental Chemical Engineering	(May 2016)

Selected Publications and Patents (Google Scholar)

1.	Agent-based Learning of Materials Datasets from Scientific Literature	(Dec 2023)
	Digital Discovery (Pending review) M Ansari, SM Moosavi	
2	Leaving Boottle December 2014 Decition Formula Color	(1.4 000.4)

Learning Peptide Properties with Positive Examples Only Digital Discovery M Ansari, AD White

Sharif Computer-Aided Chemical Engineering Contest (SC₃), Sharif University of Technology, Iran

(Mar 2024)

(Mar 2014)

<u>History-agnostic Battery Degradation Inference</u> and US Patent Pending Journal of Energy Storage M Ansari, S Torrisi, A Trewartha, S Sun

(Dec 2023)

Serverless Prediction of Peptide Properties with Recurrent Neural Networks Journal of Chemical Information and Modeling
M Ansari, AD White

(Apr 2023)

5. Assessment of Chemistry Knowledge in Large Language Models that Generate Code Digital Discovery
AD White, GM Hocky, HA Gandhi, **M Ansari**, S Cox, GP Wellawatte, S Sasmal, Z Yang, K Liu, Y Singh, WJ Peña Ccoa

(Jan 2023)

Book chapter: Hyper-parameter Optimization in Deep Learning Deep Learning for Molecules and Materials, Living Journal of Computational Molecular Science M Ansari, AD White (July 2022)

Inferring Spatial Source of Disease Outbreaks using Maximum Entropy American Physical Society, Physical Review E M Ansari, D Soriano-Paños, G Ghoshal, AD White

(July 2022)

<u>Iterative Symbolic Regression for Learning Transport Equations</u>

(Mar 2022)

AlChE Journal, Special Edition for Al M Ansari, HA Gandhi, DG Foster, AD White 9. Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy Machine Learning in Science and Technology R Barrett, **M Ansari**, G Ghoshal, AD White

Advances in Neural Information Processing Systems 33: Workshop on Machine Learning for Structural Biology

(Apr 2022)

E

<u></u>	Presentations and Talks	
1.	Materials Inverse Design with AI Agents (Invited talk) Trillion Parameter Consortium, Barcelona, Spain	(June 2024)
2.	Al That Probably Wouldn't Kill You (Invited talk) 2024 LLM Hackathon - Materials and Chemistry, Toronto, ON	(May 2024)
3.	Flexible Automation of Self-driving Labs with Built-in Domain Knowledge (Invited talk) Toyota Research Institute, Los Altos, CA	(Mar 2024)
4.	Positive Unlabeled Learning of Peptide Properties Accelerate 23 Conference, Toronto, ON	(Aug 2023)
5.	Maximum Entropy Inference in Chemical Reaction Networks with Unknown Kinetic Parameters AICHE, Phoenix, AZ	(Nov 2022)
6.	Rescuing Physics-based Models with Maximum Entropy Reweighting Wang Lecture, University of Rochester, NY	(Sept 2022)
7.	Serverless Prediction of Peptide Properties with Recurrent Neural Networks Middle Atlantic Regional Meeting of the American Chemical Society. Ewing Township, NJ	(June 2022)
8.	Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy	(Dec 2020)