Théorie des langages

Alphabets et langages

Elise Bonzon
elise.bonzon@mi.parisdescartes.fr

LIPADE - Université Paris Descartes http://www.math-info.univ-paris5.fr/\sigmboxbonzon/

Alphabets et langages

- 1. Alphabets
- 2. Opérations sur les mots
- 3. Monoïde

4. Langages

Alphabets

Alphabet

Alphabet

Un alphabet est un ensemble fini de symboles.

Exemples:

- $A = \{0, 1\}$
- $\Sigma = \{a, b, c\}$
- $\Theta = \{if, then, else, a, b\}$
- $F = \{\rightarrow, \leftarrow, \uparrow, \downarrow\}$

Mot

Mot

Un **mot** sur l'alphabet *X* est une séquence finie et ordonnée, éventuellement vide, d'éléments de l'alphabet.

C'est une concaténation de lettres.

Par exemple, abbac et ba sont deux mots de l'alphabet $\{a, b, c\}$.

Mot

Mot

Un **mot** sur l'alphabet *X* est une séquence finie et ordonnée, éventuellement vide, d'éléments de l'alphabet.

C'est une concaténation de lettres.

Par exemple, abbac et ba sont deux mots de l'alphabet $\{a, b, c\}$.

Mot vide

Le **mot vide**, noté ϵ , correspond à la suite de symboles vide.

Longueur d'un mot

Longueur d'un mot

La **longueur** d'un mot w est le nombre de symboles constituant ce mot. On la note |w|.

Le mot vide est de longueur 0.

Par exemple, |abbac| = 5, |ba| = 2 et $|\epsilon| = 0$.

Longueur d'un mot

Longueur d'un mot

La **longueur** d'un mot w est le nombre de symboles constituant ce mot. On la note |w|.

Le mot vide est de longueur 0.

Par exemple, |abbac| = 5, |ba| = 2 et $|\epsilon| = 0$.

Ensemble de mots

L'ensemble de mots sur un alphabet X est noté X^* (fermeture transitive).

Par exemple, si $X = \{a, b, c\}$, $X^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, ...\}$

Notations

Soit $w \in X^*$

- |w| est la longueur de w
- X est l'alphabet
- x est une lettre de X
- $|w|_x$ est le **nombre d'occurences** de x dans w.

Exemple, avec $X = \{a, b\}$

- $|abb|_a = 1$
- $|abb|_b = 2$

Opérations sur les mots

Concaténation (produit)

Concaténation (produit) de lettres

Soit un alphabet X et $w_1, w_2 \in X^*$ tels que

$$w_1 = x_1 x_2 x_3 \dots x_n \quad \forall i \in \{1, \dots, n\}, x_i \in X$$

 $w_2 = y_1 y_2 y_3 \dots y_p \quad \forall i \in \{1, \dots, p\}, y_i \in X$

 w_1 et w_2 sont des **concaténation de lettres** (mots).

Concaténation (produit) de mots

Soit un alphabet X et $w_1, w_2 \in X^*$ des concaténation de lettres. Alors w tel que :

$$w = w_1.w_2 = x_1x_2x_3...x_ny_1y_2y_3...y_p$$

est une concaténation de mots.

Concaténation (produit)

Propriétés

• Le produit est associatif

$$\forall w_1, w_2, w_3 \in X^*, \quad w_1.(w_2.w_3) = (w_1.w_2).w_3$$

= $w_1.w_2.w_3$

 \bullet est l'élément neutre du produit

$$\forall w \in X^*, \ \epsilon.w = w.\epsilon = w$$

- $\forall w, z \in X^*$, |w.z| = |w| + |z|
- Le produit n'est pas commutatif

Puissance

Puissance

Soit un alphabet X et $w \in X^*$.

$$w^{n} = \begin{cases} \epsilon & \text{si } n = 0\\ w.w^{n-1} & \text{si } n > 0 \end{cases}$$

Puissance

Puissance

Soit un alphabet X et $w \in X^*$.

$$w^{n} = \begin{cases} \epsilon & \text{si } n = 0\\ w.w^{n-1} & \text{si } n > 0 \end{cases}$$

Par exemple, soit $X = \{a, b\}$ et w = abb

- $w^0 = \epsilon$
- $w^1 = abb$
- $w^2 = w.w = abbabb$
- $w^3 = w.w^2 = abbabbabb$

Egalité

Egalité de deux mots

Deux mots sont **égaux** s'ils sont de même longueur et s'ils ont des lettres identiques de positionnements identiques.

Soit un alphabet X et $w_1, w_2 \in X^*$ tels que

$$w_1 = x_1 x_2 x_3 \dots x_n \quad \forall i \in \{1, \dots, n\}, x_i \in X$$

 $w_2 = y_1 y_2 y_3 \dots y_p \quad \forall i \in \{1, \dots, p\}, y_i \in X$

On a $w_1 = w_2$ si et seulement si p = n et $\forall i \in [1, n], x_i = y_i$.

Préfixe et suffixe

Préfixe, suffixe

Soit un alphabet X et $w, u \in X^*$.

u est un **préfixe** de w si et seulement si $\exists v \in X^*$ tel que w = u.v

Préfixe et suffixe

Préfixe, suffixe

Soit un alphabet X et $w, u \in X^*$.

u est un **préfixe** de w si et seulement si $\exists v \in X^*$ tel que w = u.v

u est un **suffixe** de w si et seulement si $\exists v \in X^*$ tel que w = v.u

Préfixe et suffixe

Préfixe, suffixe

Soit un alphabet X et $w, u \in X^*$.

u est un **préfixe** de w si et seulement si $\exists v \in X^*$ tel que w = u.vu est un **suffixe** de w si et seulement si $\exists v \in X^*$ tel que w = v.u

Soit
$$X = \{a, b\}$$
, $w = babb$

- Les préfixes de w sont ϵ , b, ba, bab, babb
- Les suffixes de w sont ϵ , b, bb, abb, babb

Préfixe et suffixe propres

Préfixe et suffixe propres

Soit un alphabet X et $w, u \in X^*$.

u est un **préfixe propre** de w si et seulement si u est un préfixe de w et u est différent de w.

u est un **suffixe propre** de w si et seulement si u est un suffixe de w et u est différent de w.

Préfixe et suffixe propres

Préfixe et suffixe propres

Soit un alphabet X et $w, u \in X^*$.

u est un **préfixe propre** de w si et seulement si u est un préfixe de w et u est différent de w.

u est un **suffixe propre** de w si et seulement si u est un suffixe de w et u est différent de w.

Soit
$$X = \{a, b\}$$
, $w = babb$

- Les préfixes propres de w sont ϵ , b, ba, bab
- Les suffixes propres de w sont ϵ , b, bb, abb

Miroir d'un mot

Miroir d'un mot

Soit un alphabet X et $w \in X^*$ tel que $w = x_1x_2x_3 \dots x_n$, avec $\forall i \in \{1, \dots, n\}$, $x_i \in X$.

Le **miroir** de w, noté \tilde{w} , est défini par

$$\tilde{w} = x_n x_{n-1} \dots x_2 x_1$$

Miroir d'un mot

Miroir d'un mot

Soit un alphabet X et $w \in X^*$ tel que $w = x_1x_2x_3\dots x_n$, avec $\forall i \in \{1,\dots,n\}, \ x_i \in X$.

Le **miroir** de w, noté \tilde{w} , est défini par

$$\tilde{w} = x_n x_{n-1} \dots x_2 x_1$$

Définition récursive :

$$\tilde{w} = \begin{cases} w & \text{si } w = \epsilon \\ \tilde{u}.a & \text{si } w = a.u, \text{avec } a \in X \end{cases}$$

Monoïde

Monoïde

Monoïde

Un ensemble E muni d'une opération interne associative (notée .) et possédant un élément neutre est un **monoïde**, noté $M=\langle E,.\rangle$.

Monoïde

Monoïde

Un ensemble E muni d'une opération interne associative (notée .) et possédant un élément neutre est un **monoïde**, noté $M = \langle E, . \rangle$.

Exemples:

- $\langle \mathbb{N}, + \rangle$
- ⟨IN, *⟩
- $\langle X^*,. \rangle$: l'ensemble des mots sur l'alphabet X muni de l'opération de produit est un monoïde.

Sous-monoïde

Sous-monoïde

Soit $M = \langle E, . \rangle$ un monoïde. M' est un **sous-monoïde** de M si $M' = \langle E', . \rangle$, avec $E' \subseteq E$, est un monoïde pour la même loi de composition interne et le même élément neutre.

Sous-monoïde

Sous-monoïde

Soit $M = \langle E, . \rangle$ un monoïde. M' est un **sous-monoïde** de M si $M' = \langle E', . \rangle$, avec $E' \subseteq E$, est un monoïde pour la même loi de composition interne et le même élément neutre.

Pour montrer que M' est un sous-monoïde de M, il suffit de montrer que

- 1. l'élément neutre de M appartient à M'
- 2. la loi de composition interne est stable pour $E': \forall x, y \in E'$, $x.y \in E'$

Ensemble de générateurs

Soit $M = \langle E, . \rangle$ un monoïde. Un **ensemble de générateurs** de M est un sous ensemble E_1 , avec $E_1 \subset E$, tel que tout élément de E, sauf l'élément neutre, est exprimable à l'aide d'une composition de E_1 .

Ensemble de générateurs

Soit $M = \langle E, . \rangle$ un monoïde. Un **ensemble de générateurs** de M est un sous ensemble E_1 , avec $E_1 \subset E$, tel que tout élément de E, sauf l'élément neutre, est exprimable à l'aide d'une composition de E_1 .

Exemple:

- $\{1\}$ est un générateur de $\langle \mathbb{N}, + \rangle$
 - $\rightarrow~$ Tout entier peut être exprimé comme une somme de 1
- L'ensemble des nombres premiers est un générateur de ⟨N, ∗⟩
 - $\,\rightarrow\,$ Tout entier peut être exprimé comme un produit de nombre premiers

Ensemble de générateurs indépendants

Soit $M = \langle E, . \rangle$ un monoïde. Un **ensemble de générateurs indépendants** de M est un ensemble de générateurs tels que tout élément de E sauf l'élément neutre est exprimable d'une et d'une seule façon sous forme d'une composition de générateurs.

Ensemble de générateurs indépendants

Soit $M = \langle E, . \rangle$ un monoïde. Un **ensemble de générateurs indépendants** de M est un ensemble de générateurs tels que tout élément de E sauf l'élément neutre est exprimable d'une et d'une seule façon sous forme d'une composition de générateurs.

Exemple:

- $\{1\}$ est un générateur indépendant de $\langle \mathbb{N}, + \rangle$
 - ightarrow Tout entier peut être exprimé d'une et d'une seule façon comme une somme de 1
- L'ensemble des nombres premiers n'est pas un générateur indépendant de $\langle \mathbb{N}, * \rangle$
 - \rightarrow Tout entier peut être exprimé comme un produit de nombre premiers, mais il y a plusieurs décompositions possibles. Par exemple, 12 = 2 * 3 * 2 = 2 * 2 * 3.

Monoïde libre

Un monoïde possédant un ensemble de générateurs indépendants X sera dit **libre** et sera noté X^* .

Monoïde libre

Un monoïde possédant un ensemble de générateurs indépendants X sera dit **libre** et sera noté X^* .

Soit X un alphabet. Le monoïde $\langle X^*,.\rangle$ est un monoïde libre.

Langages

Langage

Langage

Un **langage** sur un alphabet X est une partie de X^* . C'est donc un ensemble de mots.

$$L \subset X^*$$
 où $L \in \mathcal{P}(X^*)$

Langage

Langage

Un **langage** sur un alphabet X est une partie de X^* . C'est donc un ensemble de mots.

$$L \subset X^*$$
 où $L \in \mathcal{P}(X^*)$

Soit $X = \{a, b\}$ un alphabet.

- ∅ est un langage
- \bullet $\{\epsilon\}$ est un langage
- {a, ba, bba} est un langage
- $\{w \in X^* | w = a^n, n \in \mathbb{N}\}$ est un langage

- Union : $A, B \subseteq X^*$, $A \cup B = \{ w \in X^* | w \in A \text{ ou } w \in B \}$
 - Associative
 - Commutative
 - Elément neutre : ensemble vide ∅
 - Notée + dans la théorie des langages
- Intersection : $A, B \subseteq X^*$, $A \cap B = \{ w \in X^* | w \in A \text{ et } w \in B \}$
 - Associative
 - Commutative
 - Elément neutre X*
- Différence : $A, B \subseteq X^*$, $A \setminus B = \{ w \in X^* | w \in A \text{ et } w \notin B \}$
- Complémentaire : $A \subseteq X^*$, $\overline{A} = X^* \setminus A = \{ w \in X^* | w \notin A \}$

Egalité de langages

Deux langages $A, B \subseteq X^*$ sont **égaux**, noté A = B, si et seulement si $A \subseteq B$ et $B \subseteq A$.

Egalité de langages

Deux langages $A, B \subseteq X^*$ sont **égaux**, noté A = B, si et seulement si $A \subseteq B$ et $B \subseteq A$.

Produit de langages

Soit deux langages $A, B \subseteq X^*$. Le **produit** de A et B est noté $A \circ B = \{u.v | u \in A \text{ et } v \in B\}$.

Attention!

- o produit de langages
- . produit de mots
- ⇒ Par la suite, nous les noterons de la même façon, le contexte fera la différence.

Attention!

- o produit de langages
- . produit de mots
- ⇒ Par la suite, nous les noterons de la même façon, le contexte fera la différence.

Soit un alphabet $X = \{a, b\}$, un langage $A = \{\epsilon, a, ab\}$ et un langage $B = \{b, ba\}$.

- $A \circ B = A.B = AB = \{b, ba, ab, aba, abb, abba\}$
- $B \circ A = B.A = BA = \{b, ba, bab, ba, baa, baab\} = \{b, bab, ba, baa, baab\}$
- $\Rightarrow AB \neq BA$

Théorème

Le produit de langages est distributif par rapport à l'union.

$$\forall A, B, C \subseteq X^*$$
 $A.(B \cup C) = (A.B) \cup (A.C)$
 $(B \cup C).A = (B.A) \cup (C.A)$

Théorème

Le produit de langages est distributif par rapport à l'union.

$$\forall A, B, C \subseteq X^*$$
 $A.(B \cup C) = (A.B) \cup (A.C)$
 $(B \cup C).A = (B.A) \cup (C.A)$

Ce théorème reste vrai pour des unions infinies

$$\forall A, B_i \subseteq X^* \quad A.(\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A.B_i) (\bigcup_{i=1}^{\infty} B_i).A = \bigcup_{i=1}^{\infty} (B_i.A)$$

Théorème

Le produit de langages est distributif par rapport à l'union.

$$\forall A, B, C \subseteq X^*$$
 $A.(B \cup C) = (A.B) \cup (A.C)$
 $(B \cup C).A = (B.A) \cup (C.A)$

Ce théorème reste vrai pour des unions infinies

$$\forall A, B_i \subseteq X^* \quad A.(\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} (A.B_i)$$

$$(\bigcup_{i=1}^{\infty} B_i).A = \bigcup_{i=1}^{\infty} (B_i.A)$$

Attention! Le produit de langages *n'est pas* distributif par rapport à l'intersection.

$$\forall A, B, C \subseteq X^*, A.(B \cap C) \subseteq (A.B) \cap (A.C)$$

Fermeture de Kleene

Soit $A \subseteq X^*$. On note $A^* = \bigcup_{i=0}^{\infty} A^i$ l'**opération étoile** (ou fermeture par étoile, ou fermeture de Kleene, ou fermeture itérative) du langage A.

Note: Comme $A^0 = \{\epsilon\}$, on a toujours $\epsilon \in A^*$

Fermeture de Kleene

Soit $A \subseteq X^*$. On note $A^* = \bigcup_{i=0}^{\infty} A^i$ l'**opération étoile** (ou fermeture par étoile, ou fermeture de Kleene, ou fermeture itérative) du langage A.

Note : Comme $A^0 = \{\epsilon\}$, on a toujours $\epsilon \in A^*$

Fermeture positive

Soit $A \subseteq X^*$. On note $A^+ = \bigcup_{i=1}^{\infty} A^i$ la **fermeture positive** du langage A.

Fermeture de Kleene

Soit $A \subseteq X^*$. On note $A^* = \bigcup_{i=0}^{\infty} A^i$ l'**opération étoile** (ou fermeture par étoile, ou fermeture de Kleene, ou fermeture itérative) du langage A.

 $\underline{\mathsf{Note}} : \mathsf{Comme} \ A^0 = \{\epsilon\}, \ \mathsf{on \ a \ toujours} \ \epsilon \in A^*$

Fermeture positive

Soit $A \subseteq X^*$. On note $A^+ = \bigcup_{i=1}^{\infty} A^i$ la **fermeture positive** du langage A.

Théorème

Soit $A \subseteq X^*$. On a $A^+ = A.A^* = A^*.A$

Opération miroir

Soit $A \subseteq X^*$. On définit l'**opération miroir** comme étant :

$$A^R = \{ \tilde{w} | w \in A \}$$

Opération miroir

Soit $A \subseteq X^*$. On définit l'**opération miroir** comme étant :

$$A^R = \{ \tilde{w} | w \in A \}$$

Théorème

Soit
$$A, B \subseteq X^*$$
. On a $(A.B)^R = B^R.A^R$