Chapter 7 Number Theory

Section 35 Dividing

Six children find a bag containing 25 marbles. How should they share them?

Theorem 35.1 (Division). Let a and b be integers with b > 0. There exists integers q and r such that a = qb + r and $0 \le r < b$. Moreover, there is only one such pair (q, r) that satisfies these conditions. The integer q is called the quotient and r is called the remainder.

*In the previous example, $25 = 6(4) + 1 \rightarrow a = qb + r$

Example: Find the integers q and r given a and b.

(1)
$$a = 23$$
; $b = 10$

(2)
$$a = -37$$
; $b = 5$

Recall Proposition 20.3: No integer is both even and odd.

Corollary 35.4. Every integer is either even or odd, but not both.

Proof:

Recall Definition 15.3: Let n be a positive integer. We say that integers x and y are <u>congruent modulo n</u> and we write $x \equiv y \pmod{n}$ provided that $n \mid (x - y)$. In other words, $x \equiv y \pmod{n}$ if and only if x and y differ by a multiple of n.

Examples: (a) $2 \equiv 0 \pmod{2}$

(b)
$$3 \equiv 13 \pmod{5}$$

<u>Corollary 35.5</u>. Two integers are congruent modulo 2 if and only if they are both even or both odd. *Proof:*

Div and Mod

div = quotient ; mod = remainder

<u>Definition</u>. Let a and b be integers with b > 0. By the Division Theorem, there exists a unique pair of integers q and r with a = qb + r and $0 \le r < b$. We define the operations \underline{div} and \underline{mod} by $a \ div \ b = q$ and $a \ mod \ b = r$.

Examples: (a) 12 div 3 = and 12 mod 3 =

(b) 23 div 10 = and 23 mod 10 =

(c) -37 div 5 = and -37 mod 5 =

* Remember that r is never negative!*

There are now two definitions of **mod**.

- (1) $a \equiv b \pmod{n}$ means that a b is a multiple of n. (This is an equivalence relation.)
- (2) a mod b means "divide and take the remainder."

Is there a connection between the two definitions? Yes!

<u>Proposition 35.8.</u> Let $a, b, n \in \mathbb{Z}$ with n > 0. Then $a \equiv b \pmod{n}$ if and only if $a \mod n = b \mod n$.

Example: $53 \equiv 23 \pmod{10}$ and $53 \mod{10} = 23 \mod{10} = 3$.