

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №5 по курсу «Моделирование»

Тема СМО
Студент Прянишников А. Н.
Группа ИУ7-75Б
Оценка (баллы)
Преподаватель Рудаков И. В.

Условие лабораторной работы

В информационный центр приходят клиенты через интервалы времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса за 20 ± 5 , 40 ± 10 и 40 ± 20 минут. Клиенты стараются занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в приёмный накопитель, откуда они выбираются на обработку. На первой картинке запросы от 1 и 2 оператора, на второй от третьего оператора. Время обработки на первом и втором компьютере равно 15 и 30 минут. Смоделировать процесс обработки 300 запросов, которые пришли. Определить вероятность отказа.

В процессе взаимодействия клиентов возможны два режима:

- 1. Режим нормального обслуживания, когда клиент выбирает одного свободного оператора.
- 2. Режим отказа.

Эндогенные переменные этой модели — время обработки задания i-м оператором и время решения задачи на j-м компьютере.

Экзогенные переменные – число обслуженных клиентов и число клиентов, получивших отказ.

Теоретическая часть

В этом разделе будет дано описание распределений, использованных в лабораторной работе, а также подходов к решению задачи.

Равномерное распределение

Равномерное распределение — распределение случайной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке постоянна.

Вывод основных формул

Пусть A и B – границы промежутка равномерного распределения. Исходя из определения, плотность можно посчитать по формуле 1:

$$f(x) = \begin{cases} C, & \text{если } x \in [A, B] \\ 0, & \text{иначе} \end{cases}$$
 (1)

Одно из важнейших свойств плотности распределения – нормированность. Его математическое представление выражено формуле 2:

$$\int_{-\infty}^{\infty} f(x) \, dx = 1 \tag{2}$$

Для равномерного распределения вычислим интеграл, учитывая свойства интеграла и формулу 1:

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{A} 0 dx + \int_{A}^{B} C dx + \int_{B}^{\infty} 0 dx = \int_{A}^{B} C dx = C * (B - A)$$
 (3)

Вычислим плотность распределения, сравняв полученное в формулах 2 и 3:

$$C * (B - A) = 1 \to C = 1/(B - A)$$
 (4)

Окончательная формула плотности распределения для равномерной случайной величины представлена на формуле 5:

$$f(x) = \begin{cases} 1/(B-A), & \text{если } x \in [A, B] \\ 0, & \text{иначе} \end{cases}$$
 (5)

Функцию распределения, зная плотность, можно рассчитать по формуле 6:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt = 1 \tag{6}$$

Для равномерного распределения требуется рассмотреть три случая: x < A; $x \in [A,B]$; x > B. Рассчитывая интеграл для каждого из трёх случаев, получим формулу 7:

$$F_X(x) = \begin{cases} 0 & \text{если } x < A \\ \frac{x - A}{B - A}, & \text{если } x \in [A, B] \\ 1, & x > B \end{cases}$$
 (7)

Визуальное представление модели

Визуальное представление модели представлена на рисунке 1:

Рисунок 1: Структурная схема потока

Реализация

В этом разделе будет приведены листинги кода реализации алгоритмов, продемонстрирована работа программы и построены таблицы с результатами.

Листинги кода

Для реализации ПО был использован язык Python, так как имеется опыт разработки на нём.

На листинге 1 представлена реализация оператора.

На листинге 2 представлена реализация компьютера.

На листинге 3 представлена инициализация эндогенных переменных и подсчёт экзогенных параметров.

Листинг 1: Реализация оператора

```
def update(self, delta):
    result = False
    if self.state == IN_PROCESS:
        self.rest_time -= delta
        if self.rest_time <= 0:
            self.state = FREE
            result = True
    return result</pre>
```

Листинг 2: Реализация компьютера

```
def update(self, delta):
    result = False
    if self.rest_time > 0:
        self.rest_time -= delta
        if self.rest_time <= 0:
            result = True
        if len(self.array_of_tasks) > 0:
            self.rest_time = self.a
            self.array_of_tasks.pop()
        else:
            self.rest_time = -1
```

Листинг 3: Инициализация эндогенных переменных и подсчёт экзогенных параметров

```
operators = [
    o.Operator(15, 25),
    o.Operator(30, 50),
    o.Operator(20, 60)
]

processors = [
    p.Processor(15),
    p.Processor(30)
]

result = m.modeling(operators, processors, 100)
print(result)
```

Полученные результаты

Тестирование проводилось при различных параметрах числа обработанных заявок. Результаты приведены в таблице 1.

Таблица 1: Таблица полученных значений

N заявок	N отказов	N обработанных	Процент отказов
300	58	242	0.193
500	90	400	0.18
1000	180	820	0.18

По результатам тестирования получилось, что средний процент отказов составляет 18 процентов.