ROLL NUMBER: 210701068

EXP NO: 8 IMPLEMENT SVM/DECISION TREE CLASSIFICATION TECHNIQUES

a) SVM

```
# Install and load the e1071 package (if not already installed)
install.packages("e1071") library(e1071)
# Load the iris dataset
data(iris)
# Inspect the first few rows of the dataset
head(iris)
# Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility
sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))</pre>
train_data <- iris[sample_indices, ]</pre>
test_data <- iris[-sample_indices, ]
# Fit the SVM model
svm_model <- svm(Species ~ ., data = train_data, kernel = "radial")</pre>
# Print the summary of the model
summary(svm_model)
# Predict the test set
predictions <- predict(svm_model, newdata = test_data)</pre>
# Evaluate the model's performance
confusion_matrix <- table(Predicted = predictions, Actual = test_data$Species)
print(confusion_matrix)
# Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)</pre>
cat("Accuracy:", accuracy * 100, "%\n")
```

OUTPUT:

```
Number of Classes: 3

Levels:
setosa versicolor virginica

* Fredict the test set
> * Fredictions <- predict(sym model, newdata = test data)
> * Fredictions <- predict(sym model, newdata = test data)
> * Fredictions <- predict(sym model, newdata = test data)
> * Fredictions <- predict(sym model, newdata = test data)
> * Fredictions <- predict(sym model, newdata = test data)
> * Fredictions <- predict(sym model, newdata = test data)
> * Fredictions <- predictions <- p
```

ROLL NUMBER: 210701068

b) DECISION TREE

```
# Install and load the rpart package (if not already installed)
install.packages("rpart") library(rpart)
# Load the iris dataset
data(iris)
# Split the data into training (70%) and testing (30%) sets
set.seed(123) # For reproducibility
sample_indices <- sample(1:nrow(iris), 0.7 * nrow(iris))</pre>
train_data <- iris[sample_indices, ]</pre>
test_data <- iris[-sample_indices, ]
# Fit the Decision Tree model
tree_model <- rpart(Species ~ ., data = train_data, method = "class")
# Print the summary of the model
summary(tree_model)
# Plot the Decision Tree
plot(tree_model)
text(tree model, pretty = 0)
# Predict the test set
predictions <- predict(tree_model, newdata = test_data, type = "class")</pre>
# Evaluate the model's performance
confusion_matrix <- table(Predicted = predictions, Actual = test_data$Species)
print(confusion_matrix)
# Calculate accuracy
accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)
cat("Accuracy:", accuracy * 100, "%\n")
```

OUTPUT:

