Πολλαπλή Παλινδρόμηση

Δημήτρης Κουγιουμτζής

26 Νοεμβρίου 2019

Μοντέλο πολυωνυμικής γραμμικής παλινδρόμησης βαθμού k

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \epsilon.$$

Μοντέλο πολυωνυμικής γραμμικής παλινδρόμησης βαθμού k

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \epsilon.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Μοντέλο πολυωνυμικής γραμμικής παλινδρόμησης βαθμού k

Μοντέλο πολυωνυμικής γραμμικής παλινδρόμησης βαθμού k

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \epsilon.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$

Γενικά: x_1, x_2, \ldots, x_k ανεξάρτητες μεταβλητές

μοντέλο γραμμικής πολλαπλής παλινδρόμησης

Για *x*₁ και *x*₂:

1. Το μοντέλο πρώτου πολυωνυμικού βαθμού (γραμμικής πολλαπλής παλινδρόμησης)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

 $Για x_1 και x_2$:

1. Το μοντέλο πρώτου πολυωνυμικού βαθμού (γραμμικής πολλαπλής παλινδρόμησης)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

2. Το μοντέλο δεύτερου πολυωνυμικού βαθμού χωρίς αλληλεπίδραση

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \epsilon.$$

Για *x*₁ και *x*₂:

1. Το μοντέλο πρώτου πολυωνυμικού βαθμού (γραμμικής πολλαπλής παλινδρόμησης)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

2. Το μοντέλο δεύτερου πολυωνυμικού βαθμού χωρίς αλληλεπίδραση

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \epsilon.$$

3. Το μοντέλο πρώτου πολυωνυμικού βαθμού με αλληλεπίδραση

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon.$$

Για *x*₁ και *x*₂:

1. Το μοντέλο πρώτου πολυωνυμικού βαθμού (γραμμικής πολλαπλής παλινδρόμησης)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

2. Το μοντέλο δεύτερου πολυωνυμικού βαθμού χωρίς αλληλεπίδραση

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \epsilon.$$

3. Το μοντέλο πρώτου πολυωνυμικού βαθμού με αλληλεπίδραση

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon.$$

4. Το πλήρες μοντέλο δευτέρου πολυωνυμικού βαθμού (με αλληλεπίδραση)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \epsilon.$$

Γραφική διερεύνηση μοντέλου

Γραφική διερεύνηση μοντέλου

(a)
$$y = -1 + 0.5x_1 - x_2$$
, (β) $y = -1 + 0.5x_1 + 25x_1^2 - x_2 + 0.5x_2^2$,

$$(\gamma) y = -1 + 0.5x_1 - x_2 + x_1x_2,$$

(8)
$$y = -1 + 0.5x_1 + 25x_1^2 - x_2 + 0.5x_2^2 + x_1x_2$$

Πολυ-μεταβλητό δείγμα μεγέθους $n: \{x_{1i}, x_{2i}, \dots, x_{ki}, y_i\}_{i=1}^n$

Πολυ-μεταβλητό δείγμα μεγέθους $n: \{x_{1i}, x_{2i}, \ldots, x_{ki}, y_i\}_{i=1}^n$ Εκτίμηση παραμέτρων με τη μέθοδο ελαχίστων τετραγώνων:

$$f(\beta_0, \beta_1, \ldots, \beta_k) = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki}))^2.$$

Πολυ-μεταβλητό δείγμα μεγέθους $n: \{x_{1i}, x_{2i}, \ldots, x_{ki}, y_i\}_{i=1}^n$ Εκτίμηση παραμέτρων με τη μέθοδο ελαχίστων τετραγώνων:

$$f(\beta_0, \beta_1, \ldots, \beta_k) = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki}))^2.$$

Κανονικές εξισώσεις

$$b_{0} n + b_{1} \sum_{i} x_{1i} + b_{2} \sum_{i} x_{2i} + \cdots + b_{k} \sum_{i} x_{ki} = \sum_{i} y_{i}$$

$$b_{0} \sum_{i} x_{1i} + b_{1} \sum_{i} x_{1i}^{2} + b_{2} \sum_{i} x_{1i} x_{2i} + \cdots + b_{k} \sum_{i} x_{1i} x_{ki} = \sum_{i} x_{1i} y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_{0} \sum_{i} x_{ki} + b_{1} \sum_{i} x_{1i} x_{ki} + b_{2} \sum_{i} x_{2i} x_{ki} + \cdots + b_{k} \sum_{i} x_{ki}^{2} = \sum_{i} x_{ki} y_{i}$$

Πολυ-μεταβλητό δείγμα μεγέθους $n: \{x_{1i}, x_{2i}, \ldots, x_{ki}, y_i\}_{i=1}^n$ Εκτίμηση παραμέτρων με τη μέθοδο ελαχίστων τετραγώνων:

$$f(\beta_0, \beta_1, \ldots, \beta_k) = \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \cdots + \beta_k x_{ki}))^2.$$

Κανονικές εξισώσεις

$$b_{0}n + b_{1} \sum_{i} x_{1i} + b_{2} \sum_{i} x_{2i} + \cdots + b_{k} \sum_{i} x_{ki} = \sum_{i} y_{i}$$

$$b_{0} \sum_{i} x_{1i} + b_{1} \sum_{i} x_{1i}^{2} + b_{2} \sum_{i} x_{1i} x_{2i} + \cdots + b_{k} \sum_{i} x_{1i} x_{ki} = \sum_{i} x_{1i} y_{i}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_{0} \sum_{i} x_{ki} + b_{1} \sum_{i} x_{1i} x_{ki} + b_{2} \sum_{i} x_{2i} x_{ki} + \cdots + b_{k} \sum_{i} x_{ki}^{2} = \sum_{i} x_{ki} y_{i}$$

 \Longrightarrow εκτιμήσεις b_0, b_1, \ldots, b_k .

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki}$$

$$e_i = y_i - \hat{y}_i.$$

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki}$$
 $e_i = y_i - \hat{y}_i.$

$$s_e^2 = \frac{1}{n - (k+1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2,$$

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki}$$

$$e_i = y_i - \hat{y}_i.$$

$$s_e^2 = \frac{1}{n - (k+1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2,$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \dots + b_k x_{ki}$$

$$e_i = y_i - \hat{y}_i.$$

$$s_e^2 = \frac{1}{n - (k+1)} \sum_{i=1}^n (y_i - \hat{y}_i)^2,$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$\mathsf{adj} R^2 = 1 - rac{n-1}{n-(k+1)} rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$$

Εκτίμηση διασποράς $s_{b_j}^2$ για $j=0,1,\ldots,k$ (είναι πολύπλοκη) $(1-\alpha)\%$ παραμετρικό διάστημα εμπιστοσύνης για β_j :

$$b_j \pm t_{n-(k+1),1-\alpha/2} s_{b_j}.$$

Εκτίμηση διασποράς $s_{b_j}^2$ για $j=0,1,\ldots,k$ (είναι πολύπλοκη) $(1-\alpha)\%$ παραμετρικό διάστημα εμπιστοσύνης για β_j :

$$b_j \pm t_{n-(k+1),1-\alpha/2} s_{b_j}.$$

 H_0 : $β_j = β_i^0$ γίνεται με το στατιστικό

$$t = \frac{\beta_j - \beta_j^0}{s_{b_j}} \sim t_{n-(k+1)}.$$

Εκτίμηση διασποράς $s_{b_j}^2$ για $j=0,1,\ldots,k$ (είναι πολύπλοκη) $(1-\alpha)\%$ παραμετρικό διάστημα εμπιστοσύνης για β_j :

$$b_j \pm t_{n-(k+1),1-\alpha/2} s_{b_j}.$$

 H_0 : $β_j = β_i^0$ γίνεται με το στατιστικό

$$t = \frac{\beta_j - \beta_j^0}{s_{b_j}} \sim t_{n-(k+1)}.$$

Εκτίμηση διασποράς $s_{\hat{y}}^2$ (είναι πολύπλοκη) $(1-\alpha)\%$ διάστημα εμπιστοσύνης για τη μέση τιμή της y όταν δίνονται τα x_1,\ldots,x_k :

$$\hat{y} \pm t_{n-(k+1),1-\alpha/2} s_{\hat{y}}$$

Εκτίμηση διασποράς $s_{b_j}^2$ για $j=0,1,\ldots,k$ (είναι πολύπλοκη) $(1-\alpha)\%$ παραμετρικό διάστημα εμπιστοσύνης για β_j :

$$b_j \pm t_{n-(k+1),1-\alpha/2} s_{b_j}.$$

 H_0 : $β_j = β_i^0$ γίνεται με το στατιστικό

$$t = \frac{\beta_j - \beta_j^0}{s_{b_j}} \sim t_{n-(k+1)}.$$

Εκτίμηση διασποράς $s_{\hat{y}}^2$ (είναι πολύπλοκη) $(1-\alpha)\%$ διάστημα εμπιστοσύνης για τη μέση τιμή της y όταν δίνονται τα x_1,\ldots,x_k :

$$\hat{y} \pm t_{n-(k+1),1-\alpha/2} s_{\hat{y}}$$

(1-lpha)% διάστημα πρόβλεψης μιας (μελλοντικής) τιμής της y

$$\hat{y} \pm t_{n-(k+1),1-\alpha/2} \sqrt{s_e^2 + s_{\hat{y}}^2}$$
.

	Εξαγώγιμο	Εξαγώγιμο	Δείκτης
A/A	σίδηρο x_1	αργίλλιο x_2	προσρόφησης y
1	61	13	4
2	175	21	18
3	111	24	14
4	124	23	18
5	130	64	26
6	173	38	26
7	169	33	21
8	169	61	30
9	160	39	28
10	244	71	36
11	257	112	65
12	333	88	62
13	199	54	40

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

Παράμετρος	Εκτιμητής b _i	Εκτίμηση SD s _{bi}
	-7.351	3.485
eta_{1}	0.11273	0.02969
$_{-}$	0.34900	0.07131
-		

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

Παράμετρος	Εκτιμητής b _i	Εκτίμηση SD s _{bi}
eta_0	-7.351	3.485
eta_{1}	0.11273	0.02969
eta_2	0.34900	0.07131

95% διάστημα εμπιστοσύνης για το συντελεστή του εξαγώγιμου σιδήρου β_1 ($t_{10,0.975}=2.228$)

$$0.11273 \pm 2.228 \cdot 0.02969 = [0.0466, 0.1789]$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon.$$

Παράμετρος	Εκτιμητής b _i	Εκτίμηση SD s _{bi}
	-7.351	3.485
eta_{1}	0.11273	0.02969
β_2	0.34900	0.07131

95% διάστημα εμπιστοσύνης για το συντελεστή του εξαγώγιμου σιδήρου β_1 ($t_{10,0.975}=2.228$)

$$0.11273 \pm 2.228 \cdot 0.02969 = [0.0466, 0.1789]$$

και για $β_2$

$$0.34900 \pm 2.228 \cdot 0.07131 = [0.1901, 0.5079].$$

$$s_e = 4.616$$

 $R^2 = 0.948$
 $adjR^2 = 0.931$

Διαγνωστικός έλεγχος

Διαγνωστικός έλεγχος

Πρόβλεψη για
$$x_1 = 160$$
 και $x_2 = 39$

$$\hat{y} = -7.351 + 0.11273 \cdot 160 + 0.34900 \cdot 39 = 24.30.$$

Διαγνωστικός έλεγχος

Πρόβλεψη για
$$x_1 = 160$$
 και $x_2 = 39$

$$\hat{y} = -7.351 + 0.11273 \cdot 160 + 0.34900 \cdot 39 = 24.30.$$

95% διάστημα εμπιστοσύνης για το μέσο δείκτη προσρόφησης y

$$24.30 \pm 2.228 \cdot 1.30 = [21.40, 27.20] \ s_{\hat{y}} = 1.30$$

Διαγνωστικός έλεγχος

Πρόβλεψη για
$$x_1 = 160$$
 και $x_2 = 39$

$$\hat{y} = -7.351 + 0.11273 \cdot 160 + 0.34900 \cdot 39 = 24.30.$$

95% διάστημα εμπιστοσύνης για το μέσο δείκτη προσρόφησης y

$$24.30 \pm 2.228 \cdot 1.30 = [21.40, 27.20]$$
 $s_{\hat{y}} = 1.30$

95% διάστημα πρόβλεψης για μια μελλοντική τιμή του *y*

$$24.30 \pm 2.228 \cdot \sqrt{(4.616)^2 + (1.30)^2} = [13.62, 34.98]$$

 x_1, x_2, \ldots, x_k ανεξάρτητες μεταβλητές, k μεγάλο

 x_1, x_2, \ldots, x_k ανεξάρτητες μεταβλητές, k μεγάλο

Επιλογή του μικρότερου δυνατού υποσύνολου ανεξάρτητων (επεξηγηματικών) μεταβλητών που εξηγεί καλά τη *y*

 $x_1, x_2, ..., x_k$ ανεξάρτητες μεταβλητές, k μεγάλο

Επιλογή του μικρότερου δυνατού υποσύνολου ανεξάρτητων (επεξηγηματικών) μεταβλητών που εξηγεί καλά τη *y*

Απλή προσέγγιση:

Προσαρμογή όλων των δυνατών μοντέλων

 x_1, x_2, \ldots, x_k ανεξάρτητες μεταβλητές, k μεγάλο

Επιλογή του μικρότερου δυνατού υποσύνολου ανεξάρτητων (επεξηγηματικών) μεταβλητών που εξηγεί καλά τη y

Απλή προσέγγιση:

Προσαρμογή όλων των δυνατών μοντέλων Κριτήριο προσαρμογής, π.χ. adj R^2

 x_1, x_2, \ldots, x_k ανεξάρτητες μεταβλητές, k μεγάλο

Επιλογή του μικρότερου δυνατού υποσύνολου ανεξάρτητων (επεξηγηματικών) μεταβλητών που εξηγεί καλά τη y

Απλή προσέγγιση:

Προσαρμογή όλων των δυνατών μοντέλων Κριτήριο προσαρμογής, π.χ. $adj R^2$

Υπολογισμός βέλτιστου μοντέλου πολλαπλής παλινδρόμησης βηματικά:

διαδοχικοί έλεγχοι για H_0 : $\beta_j=0$

 x_1, x_2, \ldots, x_k ανεξάρτητες μεταβλητές, k μεγάλο

Επιλογή του μικρότερου δυνατού υποσύνολου ανεξάρτητων (επεξηγηματικών) μεταβλητών που εξηγεί καλά τη y

Απλή προσέγγιση:

Προσαρμογή όλων των δυνατών μοντέλων Κριτήριο προσαρμογής, π.χ. adj R^2

Υπολογισμός βέλτιστου μοντέλου πολλαπλής παλινδρόμησης βηματικά:

διαδοχικοί έλεγχοι για H_0 : $\beta_j=0$

μέθοδος απαλοιφής προς τα πίσω

 x_1, x_2, \ldots, x_k ανεξάρτητες μεταβλητές, k μεγάλο

Επιλογή του μικρότερου δυνατού υποσύνολου ανεξάρτητων (επεξηγηματικών) μεταβλητών που εξηγεί καλά τη y

Απλή προσέγγιση:

Προσαρμογή όλων των δυνατών μοντέλων Κριτήριο προσαρμογής, π.χ. $adj R^2$

Υπολογισμός βέλτιστου μοντέλου πολλαπλής παλινδρόμησης βηματικά:

διαδοχικοί έλεγχοι για H_0 : $\beta_j=0$

- μέθοδος απαλοιφής προς τα πίσω
- επιλογή προς τα μπρος

Πολλαπλή συγγραμικότητα

Πρόβλημα πολλαπλής συγγραμικότητας: Κάποια(ες) από τις x_1, x_2, \ldots, x_k είναι ισχυρά αλληλοεξαρτημένες

Πολλαπλή συγγραμικότητα

Πρόβλημα πολλαπλής συγγραμικότητας: Κάποια(ες) από τις x_1, x_2, \ldots, x_k είναι ισχυρά αλληλοεξαρτημένες

Προσαρμογή μοντέλου παλινδρόμησης της x_j ως προς όλες τις υπόλοιπες.

Πολλαπλή συγγραμικότητα

Πρόβλημα πολλαπλής συγγραμικότητας: Κάποια(ες) από τις x_1, x_2, \ldots, x_k είναι ισχυρά αλληλοεξαρτημένες

Προσαρμογή μοντέλου παλινδρόμησης της x_j ως προς όλες τις υπόλοιπες.

Αν η x_j μπορεί να προβλεφθεί καλά από τις υπόλοιπες $k-1 \Rightarrow$ πολλαπλή συγγραμικότητα