Grupo de Risco

Análise Referente ao Relatório Técnico Parcial No 03 - Projeto UFCG/PETROBRAS BR PETROBRAS

Jul/2024

Testes de Vida Acelerados

Introdução

- Foram analisados 7 fluidos (F1, F2, ..., F7) de formulações diferentes;
- Foram medidas diferentes características físico-químicas, como pH, densidade, volume de filtrado;
- Os fluidos foram expostos a altas temperaturas e analisou-se tais características após determinados dias;
- Critério de falha: volumes de filtrado 40% superiores aos obtidos em temperatura ambiente ou mudanças nas características reológicas.

Testes de Vida Acelerados

- A análise dos tempos de vida é largamente utilizada, tendo várias distribuições disponíveis para implementação;
- A incerteza inerente dos dados censurados à esquerda ou à direita é incorporada na função de verossimilhança.

Processos de Degradação Acelerados

- A análise de dados de degradação é muito utilizada quando há poucas ou nenhuma falha;
- A análise é fundamentada no tempo de primeira passagem pelo threshold (limiar) especificado;
- Pressupõe uma distribuição para o caminho de degradação, podendo ser influenciada por valores extremos.

Testes acelerados

Construção da função verossimilhança: dados censurados em intervalos de tempo

Modelo:

Weibull com taxa de falha acelerada e lei de Arrhenius

Método de estimação:

Máxima Verossimilhança

Método de otimização:

BFGS

(Broyden-Fletcher-Goldfarb-Shanno)

Resultados:

- Estimativas dos parâmetros e Intervalo de confiança para os parâmetros.
- Estimativas de confiabilidade para tempos de vida específicos (em dias e anos)
- -Tempo médio de vida estimado (em dias)
- -Tempos de vida estimados para novas temperaturas (sob condições normais)
- -Intervalos de Confiança para as quantidades de interesse

Testes acelerados

Construção da função verossimilhança: dados censurados em intervalos de tempo

Modelo:

Weibull com taxa de falha acelerada e lei de Arrhenius

Método de estimação:

Máxima Verossimilhança

Método de otimização:

BFGS

(Broyden-Fletcher-Goldfarb-Shanno)

Quadro 1: Resultados obtidos

parâmetro	emv	IC (95%) inferior	IC (95%) superior
log(a)	1,9017	1,4214	2,3820
$\log(\sigma)$	-5,5295	-7,6907	-3,3683
<i>β</i> 1	1029,2682	717,9875	1340,5490

Quantidades de interesse:

- Estimativas de confiabilidade para tempos de vida específicos (em dias e anos)
- -Tempo médio de vida estimado (em dias)
- -Tempos de vida estimados para novas temperaturas
- -Intervalos de confiança para estas quantidades

Quadro 2: Tempos médios de vida.

	-		
Temp. ° C	t (dias)	IC (95%) inferior	IC (95%) superior
60	104391,76	4689,09	1721190,46
70	9002,58	862,08	74614,22
80	1432,66	242,04	7143,56
85	672,14	143,46	2719,81
90	343,01	90,12	1152,82
100	109,30	40,89	267,94
110	42,88	21,38	80,59
120	19,66	12,54	29,60
130	10,16	7,94	12,68
140	5,77	5,34	6,20
150	3,54	3,24	3,89

São agregados os intervalos de confiança.

Quadro 3: Tempos de vida estimados para S(t)=0,9.

Quadio 0.	rempos de vi	aa commaaco p	
Temp. ° C	t (dias)	IC (95%) inferior	IC (95%) superior
60	79934,42	4006,76	1592803,42
70	6893,42	695,12	66329,89
80	1097,01	195,94	6113,65
85	514,67	116,04	2297,93
90	262,64	72,27	961,67
100	83,69	32,40	218,70
110	32,83	16,91	64,89
120	15,05	9,38	23,82
130	7,78	5,78	10,13
140	4,42	3,53	5,11
150	2,71	2,16	3,17

Quadro 3: Valores	de cobrevivência	nara tempos	achacíficac
Quadio 5. Valores	de sobi evivencia	para terripus	especificos.

Temp.	t dias)	S(t)	IC (95%) inferior	IC (95%) superior
60	até 1095	1,00	>0,99	>0,99
70	183	1,00	>0,99	>0,99
70	365	1,00	0,99	>0,99
70	548	1,00	0,99	>0,99
70	730	1,00	0,93	>0,99
70	913	1,00	0,68	>0,99
70	1095	1,00	0,30	>0,99
80	183	1,00	0,96	>0,99
80	365	0,99	0,02	>0,99
80	548	0,99	0,00	>0,99
80	730	0,99	0,00	>0,99
80	913	0,97	0,00	>0,99
80	1095	0,90	0,00	>0,99

Quadro 4: Valores de sobrevivência para tempos específicos.

Temp. ° C	t (dias)	S(t)	IC (95%) inferior	IC (95%) superior
85	183	0,99	0,20	>0,99
85	365	0,95	<0,01	>0,99
85	548	0,85	<0,01	>0,99
85	730	0,33	<0,01	>0,99
85	913	0,01	<0,01	>0,99
85	1095	0,00	<0,01	0,99
90	183	0,99	<0,01	>0,99
90	365	0,38	<0,01	>0,99
90	548	0,00	<0,01	0,99
90	730	0,00	<0,01	0,98
90	913	0,00	<0,01	0,95
90	1095	0,00	<0,01	0,85
100	183	0,00	<0,01	0,98
100	365	0,00	<0,01	0,06
100	548 até 1095	0,00	<0,01	<0,01
110	> 183	0,00	<0,01	<0,01
120	> 183	0,00	<0,01	<0,01
130	> 183	0,00	<0,01	<0,01
140	> 183	0,00	<0,01	<0,01
150	> 183	0,00	<0,01	<0,01

Temperaturas de 95 e 110 apresentam valores muito próximos de 1

Temperaturas de 60 e 70 apresentam valores muito próximos de 1

Temperaturas de 100 a 150 apresentam valores muito próximos de 0

Conclusões

- Os intervalos de confiança são pouco informativos, devido ao tamanho amostral pequeno (poucas unidades de fluido que foram testadas);
- Não tivemos acesso aos dados brutos (com 5 unidades para cada composto);
- Os compostos (fluidos) têm diferenças de formulação, mas isso não foi considerado, devido ao pequeno tamanho amostral, os fluidos foram agregados.

Processos de Degradação

Motivação

- A análise de dados de degradação é muito utilizada quando há poucas ou nenhuma falha;
- Nos ensaios destrutivos, apenas uma medição é realizada em cada unidade de teste;
- A análise é fundamentada no tempo de primeira passagem pelo threshold (limiar) especificado;
- Esta abordagem permite estimar a distribuição dos tempos de falha sob diferentes contextos de aceleração (temperaturas).*

*Escobar, L.A., Meeker, W.Q., Kugler, D.L., & Kramer, L.L. (2003). Accelerated Destructive Degradation Tests: Data, Models, and Analysis.

Processos de degradação

Quadro 5: Dados do experimento - Volume do Filtrado

Aml	biente		95°	С		110°	С		140 °	С		150 °	С
K	média	t	K	média	K	K	média	t	K	média	K	К	média
4	8,25	7	7	8,4286	7	7	9,2000	4	6	9,6000	1	7	9,1714
		8	7	9,0571	8	7	8,8000	5	6	10,3000	2	7	10,4286
		9	7	9,1143	9	7	8,1429	6	7	11,5429	3	7	10,7143
		10	6	8,1000	10	7	8,8857	7	7	45,2000	4	7	15,3714
								8	7	30,6857	5	7	36,6571
								9	7	30,9143	6	7	93,8857
								10	7	32,2857			

Figura 3: Caminhos de degradação - Variável VF (95°C)

Figura 4: Caminhos de degradação - Variável VF (110°C)

Figura 5: Caminhos de degradação - Variável VF (140°C)

Figura 8: Caminhos de degradação - Variável VF (95°C) com a visualização dos Fluidos e limiar

Figura 9: Caminhos de degradação - Variável VF (110°C) com a visualização dos Fluidos e limiar

Figura 10: Caminhos de degradação - Variável VF (140°C) com a visualização dos Fluidos e limiar

Figura 11: Caminhos de degradação - Variável VF (150°C) com a visualização dos Fluidos e limiar

Dúvidas

- Qual a temperatura ambiente considerada?
- Além do aumento de VF de 40%, qual critério de redução dos parâmetros reológicos caracteriza falha?
- Como se explicam os saltos para volumes de filtrado muito altos?

Dúvidas

- Qual a temperatura ambiente considerada?
- A redução dos parâmetros reológicos foi considerada como critério de falha?
- Como se explicam os saltos para volumes de filtrado muito altos?
- O algoritmo EM pode ser bastante sensível aos valores dos parâmetros iniciais*. Como essa questão foi tratada?

*Baudry, J. P., & Celeux, G. (2015). EM for mixtures: Initialization requires special care. Statistics and computing, 25, 713-726. Panić, B., Klemenc, J., & Nagode, M. (2020). Improved initialization of the em algorithm for mixture model parameter estimation. Mathematics, 8(3), 373.

Dúvidas

Quadro 6: Valores de VF - para verificar consistência

Tabela A4- Propriedades dos fluidos expostos à temperatura de 140°C.

9.7	8.64	3.888	3.153	0.2995	0.0020	20.0
557.6			3.133	0.2993	0.9939	20.0
9.8	9.00	4.626	3.214	0.3487	0.9956	14.0
9.8	8.93	10.345	2.852	0.3915	0.9955	13.6
9.8	8.89	10.928	2.416	0.4081	0.9959	12.8
9.8	8.98	9.814	3.171	0.3852	0.9950	14.0
9.7	8.96	9.166	3.250	0.3578	0.9942	14.4
9.7	6.84	4.319	0.186	0.7438	0.9450	126.0
	9.8 9.8 9.8 9.7 9.7	9.8 8.93 9.8 8.89 9.8 8.98 9.7 8.96 9.7 6.84	9.8 8.93 10.345 9.8 8.89 10.928 9.8 8.98 9.814 9.7 8.96 9.166 9.7 6.84 4.319	9.8 8.93 10.345 2.852 9.8 8.89 10.928 2.416 9.8 8.98 9.814 3.171 9.7 8.96 9.166 3.250 9.7 6.84 4.319 0.186	9.8 8.93 10.345 2.852 0.3915 9.8 8.89 10.928 2.416 0.4081 9.8 8.98 9.814 3.171 0.3852 9.7 8.96 9.166 3.250 0.3578 9.7 6.84 4.319 0.186 0.7438	9.8 8.93 10.345 2.852 0.3915 0.9955 9.8 8.89 10.928 2.416 0.4081 0.9959 9.8 8.98 9.814 3.171 0.3852 0.9950 9.7 8.96 9.166 3.250 0.3578 0.9942

Tabela A5- Propriedades dos fluidos expostos à temperatura de 150°C.

-								
	F1	9.7	8.60	5.572	2.668	0.3454	0.9910	18.4
	F2	9.8	8.74	4.833	1.690	0.3980	0.9928	15.6
	F3	9.7	8.18	3.049	3.033	0.2865	0.9649	48.8
6 dias	F4	9.9	9.49	15.526	0.102	0.9703	0.9865	18.4
	F5	9.8	6.60	6.991	0.267	0.7788	0.9192	182.0
	F6	9.8	6.45	4.619	0.139	0.8043	0.9395	190.0
	F7	9.8	6.57	10.487	0.078	0.9206	0.8594	184.0

Observações

Quadro 7: Exemplo de Banco de Dados Brutos

Preencher
para todas as
temperaturas
testadas e
tempos de
inspeção

Preencher
os parâmetros
reológicos e
identificar a
falha (ou não
falha) com
base nos
critérios

Temp.	Tempo	ID	Fluido	Densidade	РН	Parâmetros Reológicos	VF	Falha?
95°C	7 dias	1	F1	9,4	10,55	-	8,8	NAO
95°C	7 dias	2	F1	9	10,53	-	8,0	NAO
95°C	7 dias	3	F1	8	10,52	-	8,3	NAO
95°C	7 dias	4	F1	7	10,51	-	8,2	NAO
95°C	7 dias	5	F1	9	10,64	-	8,4	NAO
95°C	7 dias	6	F2	10	10,60	-	9,4	NAO
95°C	7 dias	7	F2	9,2	9,88	-	7,4	NAO
95°C	7 dias	8	F2	9,3	10,35	-	8,6	NAO
95°C	7 dias	9	F2	9,4	10,36	-	7,2	NAO
95°C	7 dias							
95°C	7 dias	21	F5	9,3	10,64	-	11,3	SIM
95°C	7 dias	22	F5	10	10,57	-	6,9	NAO
95°C	7 dias	23	F5	9,2	10,54	-	8,8	NAO
95°C	7 dias	24	F5	9,3	10,56	-	8,2	NAO
95°C	7 dias	25	F5	9,5	10,55	-	8,1	NAO

Tabela exemplo dos dados que gostaríamos de ter

Id	Tempo	Fluido	Temperatura	Densidade	Falha
1	7 dias	F1	95	9,4	1
2	7dias	F1	95	9	1
3	7 dias	F1	95	8	0
4	7 dias	F1	95	7	0
5	7 dias	F1	95	9	1
6	7 dias	F2	95	10	1
7	7dias	F2	95	9,2	1
8	7 dias	F2	95	9,3	0
9	7 dias	F2	95	9,4	0
10	7 dias	F2	95	9	1
11	7 dias	F3	95	8	1
12	7dias	F3	95	7	1
13	7 dias	F3	95	9	0
14	7 dias	F3	95	10	0
15	7 dias	F3	95	9,2	1
16	7 dias	F4	95	9,3	1
17	7dias	F4	95	10	1
18	7 dias	F4	95	9,2	0
19	7 dias	F4	95	9,3	0
20	7 dias	F4	95	9,5	1

Tabela exemplo dos dados que gostaríamos de ter

			Tempera	ntura = xx			
	F1	F2	F3	F4	F5	F6	F7
7 dias	8,8	8	8,4	9,4	7,4	8,6	8,4
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
8 dias	9,2	9,6	8,8	9,2	9,2	9,2	8,2
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
9 dias	8,8	8,2	11,2	8,8	9	8,2	9,6
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
10 dias	3,4	9	9,4	8,8	9	9	**
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX
	XX	XX	XX	XX	XX	XX	XX