A Bird's Eye View on Discrete Logarithm Problems over Finite Fields

Xiao'ou He

December 14, 2017

Key Laboratory of Mathematics Mechanization, AMSS

Motivation

- Origin of The Problem in Cryptography
- **Exposition of The Problem**

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Motivation

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Public-Key Cryptography

- Proposed by Diffie and Hellman, 1976
- Based on number-theoretical hard problems
 - Integer Factorizations
 - Discrete Logarithms
 Concerning with two class of groups:
 - 1. Elliptic curves
 - 2. Multiplicative groups of finite fields

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Case in General

- Cyclic group: $(G, \cdot) = \langle g \rangle$.
- Exponential v. Logarithm
 - $x \mapsto h = g^x$
 - $h \mapsto x = \log_g h$
- Generic Algorithms:
 - Pohlig-Hellman: Two reductions CRT and p^e to p
 - Collision Making: Baby-step giant-step, Pollard's rho Method, etc.

Case over Finite Fields

- Given: Q, g and h, where $\langle g \rangle = \mathbb{F}_Q^{\times}$ containing h.
- Find: $\log_g h$.

Previous Work

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Complexity

The \mathcal{L} Notation

$$\mathcal{L}_Q(\beta, c) = \exp((c + o(1))(\log Q)^{\beta}(\log \log Q)^{1-\beta})$$

- c > 0 and $0 \le \beta \le 1$
- $\mathcal{L}_Q(0, c) = (\log Q)^{c+o(1)} = \text{poly}(\log Q),$ $\mathcal{L}_Q(1, c) = (\exp(\log Q))^{c+o(1)} = \exp(\log Q).$
- When $0 < \beta < 1$, $\mathcal{L}_Q(\beta, c)$ is sub-exponential.

Quasi-poly

 $(\log Q)^{O(\log \log Q)}$ is **quasi-polynomial**, which is smaller than any $\mathcal{L}_Q(\beta,\cdot)$ for $\beta>0$.

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Overview

$\mathcal{L}_Q(\frac{1}{2},\cdot)$ Index Calculus Method

Adleman, 1979 and Pohlig, 1977 independently

$\mathcal{L}_Q(\frac{1}{3},\cdot)$ by Coppersmith, 1984

- Originally \mathbb{F}_{2^n}
- More general: FFS by Adleman and Huang, 1999
- Medium and large char.: NFS by Gordon, 1993

$\mathcal{L}_Q(\frac{1}{4},\cdot)$ Joux, 2013 to quasi-poly by BGJT, 2014

- For small char.: Take \mathbb{F}_{2^n} for instace. Roughly $p \leq \mathcal{L}_Q(\frac{1}{3}, \cdot)$.
- Heuristics

Smooth - Set A Bound

Definition

Given B > 0. $\forall n \in \mathbb{Z}$ is called B-smooth if all its prime factors are no larger than B. Thus denote factor basis as

$$\mathcal{F}(B) = \{ p \in \mathbb{N} : \text{prime and } p \leq B \}$$

Definition

Given $\beta \in \mathbb{Z}_{>0}$. $\forall f[X] \in \mathbb{F}_q[X]$ is called β -smooth if all its irreducible factors are of degree no higher than β . Thus denote respective factor basis as

$$\mathcal{F}_q(\beta) = \{ F[X] \in \mathbb{F}_q[X] : \text{irre. monic and of deg.} \leq \beta \}$$

• Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_a h$
- Process:
 - 1. Main Phase

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Fix parameter B, thus $\mathcal{F}(B)$ is also given.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection: random $x \in [1, Q-2]$ s.t. g^x is B-smooth:

$$g^{x} = \prod_{p \in \mathcal{F}(B)} p^{v(p,x)}$$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection: random $x \in [1, Q-2]$ s.t. g^x is B-smooth:

$$g^{x} = \prod_{p \in \mathcal{F}(B)} p^{v(p,x)}$$

• Relation Collection: take $\log_g \cdot$ on both sides and substitute $\log_q p$ by unknown variable x_p (denoted as $\log_q p \leftrightarrow x_p$):

$$X \equiv \sum_{p \in \mathcal{F}(B)} v(p, x) x_p \mod Q - 1$$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection: random $x \in [1, Q-2]$ s.t. g^x is B-smooth:

$$g^{x} = \prod_{p \in \mathcal{F}(B)} p^{v(p,x)}$$

• Relation Collection: take $\log_g \cdot$ on both sides and substitute $\log_g p$ by unknown variable x_p (denoted as $\log_g p \leftrightarrow x_p$):

$$X \equiv \sum_{p \in \mathcal{F}(B)} v(p, x) x_p \mod Q - 1$$

- Linea Algebra: Solve system of linear equations.
- 2. Individual Logarithm

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:

1. Main Phase

- Fix parameter B, thus $\mathcal{F}(B)$ is also given.
- Smoothness Selection: random $x \in [1, Q-2]$ s.t. g^x is B-smooth:

$$g^{x} = \prod_{p \in \mathcal{F}(B)} p^{v(p,x)}$$

• Relation Collection: take $\log_g \cdot$ on both sides and substitute $\log_q p$ by unknown variable x_p (denoted as $\log_q p \leftrightarrow x_p$):

$$X \equiv \sum_{p \in \mathcal{F}(B)} v(p, x) x_p \mod Q - 1$$

- Linea Algebra: Solve system of linear equations.
- 2. Individual Logarithm

Find $y \in [1, Q - 2]$ s.t. $g^y h$ is B-smooth.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$; Find: $\log_g h$
- Process:
 - 1. Main Phase
 - Fix parameter B, thus $\mathcal{F}(B)$ is also given.
 - Smoothness Selection: random $x \in [1, Q-2]$ s.t. g^x is B-smooth:

$$g^{x} = \prod_{p \in \mathcal{F}(B)} p^{v(p,x)}$$

• Relation Collection: take $\log_g \cdot$ on both sides and substitute $\log_g p$ by unknown variable x_p (denoted as $\log_g p \leftrightarrow x_p$):

$$x \equiv \sum_{p \in \mathcal{F}(B)} v(p, x) x_p \mod Q - 1$$

- Linea Algebra: Solve system of linear equations.
- 2. Individual Logarithm

Find $y \in [1, Q-2]$ s.t. $g^y h$ is *B*-smooth. Then factorization $g^y h = \prod p^{v_0(p)}$ implies

$$\log_a h \equiv \sum v_0(p) \log_a p - y \mod Q - 1$$

• Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.
- Process:
 - 1. Main Phase

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.
- Process:
 - 1. Main Phase
 - Fix parameter β then obtain $\mathcal{F}_q(\beta) = \{F(X) : \cdots \}$. Find n satisfying $q^{n-1} < k \le q^n$, fix $n_1 + n_2 = n$.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.
- Process:
 - 1. Main Phase
 - Fix parameter β then obtain $\mathcal{F}_q(\beta) = \{F(X) : \cdots \}$. Find n satisfying $q^{n-1} < k \le q^n$, fix $n_1 + n_2 = n$.
 - Find S(X) of deg. $\leq \beta$ s.t. $\exists I_k(X)|X^{q^n} S(X)$ with a root α .

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.
- Process:

1. Main Phase

- Fix parameter β then obtain $\mathcal{F}_q(\beta) = \{F(X) : \cdots \}$. Find n satisfying $q^{n-1} < k \le q^n$, fix $n_1 + n_2 = n$.
- Find S(X) of deg. $\leq \beta$ s.t. $\exists I_k(X)|X^{q^n} S(X)$ with a root α .
- Smoothness Selection: random A(X), B(X) of $\deg \le \beta$ s.t. both $C(X) = A(X) + X^{q^{n_1}}B(X)$ and $D(X) = C(X)^{q^{n_2}}$ are β -smooth, notice $\deg \le q^{n_1} + \beta$ and $(q^{n_2} + 1)\beta$ respectively.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.
- Process:

1. Main Phase

- Fix parameter β then obtain $\mathcal{F}_q(\beta) = \{F(X) : \cdots \}$. Find n satisfying $q^{n-1} < k \le q^n$, fix $n_1 + n_2 = n$.
- Find S(X) of deg. $\leq \beta$ s.t. $\exists I_k(X)|X^{q^n} S(X)$ with a root α .
- Smoothness Selection: random A(X), B(X) of $\deg \le \beta$ s.t. both $C(X) = A(X) + X^{q^{n_1}}B(X)$ and $D(X) = C(X)^{q^{n_2}}$ are β -smooth, notice $\deg \le q^{n_1} + \beta$ and $(q^{n_2} + 1)\beta$ respectively.
- Relation Collection: known

$$(\prod F(X)^{\nu(C,F)})^{q^{n_2}} \equiv \prod F(X)^{\nu(D,F)} \mod I_k(X)$$

 $X \leftrightarrow \alpha$, take $\log_g \cdot$ on both sides, and $\log_g F(\alpha) \leftrightarrow x_F$

$$\sum (q^{n_2}v(C,F)-v(D,F))x_F\equiv 0\mod Q-1$$

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.
- Process:

1. Main Phase

- Fix parameter β then obtain $\mathcal{F}_q(\beta) = \{F(X) : \cdots \}$. Find n satisfying $q^{n-1} < k \le q^n$, fix $n_1 + n_2 = n$.
- Find S(X) of deg. $\leq \beta$ s.t. $\exists I_k(X)|X^{q^n} S(X)$ with a root α .
- Smoothness Selection: random A(X), B(X) of $\deg \le \beta$ s.t. both $C(X) = A(X) + X^{q^{n_1}}B(X)$ and $D(X) = C(X)^{q^{n_2}}$ are β -smooth, notice $\deg \le q^{n_1} + \beta$ and $(q^{n_2} + 1)\beta$ respectively.
- Relation Collection: known

$$(\prod F(X)^{v(C,F)})^{q^{n_2}} \equiv \prod F(X)^{v(D,F)} \mod I_k(X)$$

 $X \leftrightarrow \alpha$, take $\log_g \cdot$ on both sides, and $\log_g F(\alpha) \leftrightarrow x_F$

$$\sum (q^{n_2}v(C,F)-v(D,F))x_F\equiv 0\mod Q-1$$

• Linear Algebra: Solve system of linear equations.

- Given: $h \in \mathbb{F}_Q^{\times} = \langle g \rangle$ where $Q = q^k$; Find: $\log_g h$.
- Process:

1. Main Phase

- Fix parameter β then obtain $\mathcal{F}_q(\beta) = \{F(X) : \cdots \}$. Find n satisfying $q^{n-1} < k \le q^n$, fix $n_1 + n_2 = n$.
- Find S(X) of deg. $\leq \beta$ s.t. $\exists I_k(X)|X^{q^n} S(X)$ with a root α .
- Smoothness Selection: random A(X), B(X) of $\deg \le \beta$ s.t. both $C(X) = A(X) + X^{q^{n_1}}B(X)$ and $D(X) = C(X)^{q^{n_2}}$ are β -smooth, notice $\deg \le q^{n_1} + \beta$ and $(q^{n_2} + 1)\beta$ respectively.
- Relation Collection: known

$$(\prod F(X)^{v(C,F)})^{q^{n_2}} \equiv \prod F(X)^{v(D,F)} \mod I_k(X)$$

 $X \leftrightarrow \alpha$, take $\log_g \cdot$ on both sides, and $\log_g F(\alpha) \leftrightarrow x_F$

$$\sum (q^{n_2}v(C,F)-v(D,F))x_F\equiv 0\mod Q-1$$

- Linear Algebra: Solve system of linear equations.
- Individual Logarithm Descent Method.

Joux, 2013

BGJT, 2014

Motivation

Origin of The Problem in Cryptography

Exposition of The Problem

Previous Work

Preliminaries

From Sub-exp to Quasi-poly

Summary

Research Plan

Paradigm with Transitions

1. Main Phase

- Initiation: field extension brings freedom in presentation
- Smoothness Selection:
 Randomly choose ⇒ Sieve ⇒ Generate
- Relation Collection:
 Understanding the factor basis and (virtual) logarithms
- Linear Algebra: Take advantage of the sparseness

2. Individual Logarithm Phase: Descent Strategy

Research Plan

Future Work

- In Theory
 - **Heuristics**: From assumption to rigorous.
 - CWZ, 2014: Three Heuristics
 - Existence of (S_0, S_1) s.t. $\exists I_k(X) | S_1(X) X^q S_0(X)$.
 - Construction of the finite fields:

$$\mathbb{F}_q[X]/\langle I_k[X]\rangle \Rightarrow \mathcal{O}_{\mathbb{K}}/P \Rightarrow ?$$

- Relation Obtaining:
 - Balance two medium-deg. poly.s \Rightarrow half-relation \Rightarrow ?
- Tiny Goal:
 - Generalize small char. cases to medium and large ones? Truly poly. algo.?
- In Practice: TBD.