Interpolación Lineal y de lagrange

H.D Salinas Curso de métodos computacionales Universidad de Antioquia

16 de marzo de 2023

Linear interpolation formula

The linear interpolation formula can be derived from the equation of a straight line that passes through two given points (x_i, y_i) and (x_{i+1}, y_{i+1}) : (x_{i+1}, y_{i+1})

$$y = mx + b$$

$$m = \frac{y_{i+1} - y_i}{x_{i+1} - x_i}$$

$$b = y_i - \frac{y_{i+1} - y_i}{x_{i+1} - x_i} x_i$$

$$y = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} x + b$$

This formula can be applied for any value of x between the endpoints of the interval.

Linear interpolation formula

Notation

We can write the linear interpolation formula as:

$$f(x) \approx y = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} (x - x_i) + y_i \tag{1}$$

$$= \frac{y_{i+1} - y_i}{x_{i+1} - x_i} x + \left[y_i - \frac{y_{i+1} - y_i}{x_{i+1} - x_i} x_i \right]$$
 (2)

(3)

where (x_1, y_1) and (x_2, y_2) are the two given points and f(x) is the estimated value of the function at x.

16 de marzo de 2023

Interpolación

Teorema

Suponga que f esta definida en a, b, para cada $\epsilon < 0$, entonces existe un polinomio P(x) que cumple:

$$|f(x) - P(x)| < \epsilon \tag{4}$$

Figura: Interpolacion lagrange.

Interpolacion Lagrange

¿cómo podemos garantizar un polinomio que pase por los dos puntos?

Interpolación Lagrange

¿cómo podemos garantizar un polinomio que pase por los dos puntos?

Interpolación Lagrange

¿cómo podemos garantizar un polinomio que pase por los dos puntos?

$$P(x) = y_0 L_0(x) + y_1 L_1(x)$$

Interpolación de Lagrange para dos puntos

Si queremos interpolar una función en dos puntos (x_0, y_0) y (x_1, y_1) , el polinomio de interpolación de Lagrange es de grado 1 y se obtiene así:

$$P(x) = f(x_0)L_0(x) + f(x_1)L_1(x)$$

donde

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 y $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

Expandiendo los productos se tiene que:

$$P(x) = y_0 \left(\frac{x - x_1}{x_0 - x_1} \right) + y_1 \left(\frac{x - x_0}{x_1 - x_0} \right)$$

Note que : $L_0(x_0) = 1$, $L_0(x_1) = 0$, $L_1(x_0) = 0$, $L_1(x_1) = 1$

Interpolación de Lagrange

Dado un conjunto de n+1 puntos donde todos los x_j se asumen distintos, el polinomio interpolador en la forma de Lagrange es la combinación lineal de bases polinómicas de Lagrange:

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x)$$

donde

$$L_{n,k}(x) = \prod_{k=0, i \neq k}^{k} \frac{x - x_i}{x_k - x_i}$$

Grafica del polinomio de lagrange

Figura: Interpolacion lagrange.

Error en el polinomio de lagrange

$$P(x) = \sum_{k=0}^{n} f(x_k) L_{n,k}(x)$$

donde

$$L_{n,k}(x) = \prod_{k=0, i \neq k}^{k} \frac{x - x_i}{x_k - x_i}$$

$$f(x) = P(x) + \frac{f^{n+1}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n)$$

donde P(x) es el polinomio de interpolación

Referencias

 Burden, R. L., Faires, J. D., Burden, A. M. (2016). Análisis numérico (10a ed.). Cengage Learning.3