Programa Huckel_TB

Versão 1.0 (Março/2014)

Neste documento são reportadas as informações relevantes do programa Huckel_TB, bem como os procedimentos necessários para sua instalação, execução e estrutura dos arquivos de entrada necessários para rodá-lo. Dúvidas, críticas e sugestões de melhorias e/ou incorporação de novas funcionalidades com relação ao programa podem ser enviadas para Adriano Martins.

I. INTRODUÇÃO

I.1) Formalismo Teórico

O programa Huckel_TB destina-se ao cálculo da estrutura eletrônica de sólidos cristalinos dentro da aproximação de orbitais fortemente ligados (*tight-binding*). Para tanto, emprega o Método de Hückel Estendido [1] na construção dos elementos de matriz da hamiltoniana na aproximação monoeletrônica, empregando uma base de orbitais atômicos cuja parte radial é expandida em termos de uma base *double zeta* de orbitais de Slater:

$$\Phi_{nlm} = \sum_{j=1}^{2} c_{j} N_{j} r^{n-1} e^{-\varepsilon_{j} r} Y_{lm}(\theta, \phi)$$
(I.1)

onde c_j são os coeficientes de expansão e N_j as constantes de normalização dos orbitais de Slater que compõe o orbital atômico:

$$N_{j} = \left(2\varsigma\right)^{n} \sqrt{\frac{2\varsigma}{(2n)!}} \tag{1.2}$$

Os elementos de matriz da hamiltoniana entre dois orbitais α e β situados, respectivamente, nos sítios cristalinos i e j, são dados pela fórmula de Wolfsberg-Helmholtz [1]:

$$H_{i\alpha,j\beta} = \frac{1}{2} K \left(E_{i\alpha} + E_{j\beta} \right) S_{i\alpha,j\beta}$$
 (I.3)

onde K é uma constante adimensional cujo valor é tradicionalmente fixado em 1.75 (trabalho original do Hoffmann), $E_{i\alpha}$ corresponde à energia do orbital α no sítio i e $S_{i\alpha,j\beta}$ é o *overlap* entre os orbitais envolvidos.

Dentro da aproximação LCAO, os estados eletrônicos do sistema são expressos como combinações lineares dos orbitais de base:

$$\Psi_i = \sum_{\mu} c_{\mu i} \phi_{\mu} , \qquad (1.4)$$

onde os valores dos coeficientes de expansão c_i , nesta abordagem, estão para serem determinados. De modo a proceder com a determinação dos coeficientes, uma abordagem bastante utilizada é a aplicação do princípio variacional: ainda que seja um método aproximativo, as soluções encontradas convergem para a solução exata do problema. A energia do um estado i definido pela equação (I.4) é

$$E_{i} = \frac{\left\langle \Psi_{i} \middle| H \middle| \Psi_{i} \right\rangle}{\left\langle \Psi_{i} \middle| \Psi_{i} \right\rangle} = \frac{\sum_{\mu\nu} c_{i\mu} c_{i\nu} \left\langle \phi_{\mu} \middle| H \middle| \phi_{\nu} \right\rangle}{\sum_{\mu\nu} c_{i\mu} c_{i\nu} \left\langle \phi_{\mu} \middle| \phi_{\nu} \right\rangle}. \tag{I.5}$$

De modo a determinar os autoestados do sistema, procedemos a minimização do funcional acima com a restrição, $\langle \Psi_i \mid \Psi_i \rangle = 1$, utilizando o método dos multiplicadores de Lagrange. Para tanto, constrói-se o funcional:

$$G[\Psi] = \langle \Psi \mid H \mid \Psi \rangle - \varepsilon \langle \Psi \mid \Psi \rangle. \tag{I.6}$$

Em termo dos orbitais de base (I.4), a equação (I.6) pode ser rescrita como

$$G[\Psi] = \sum_{\mu} \sum_{\nu} c_{i\mu} c_{i\nu} \left\langle \phi_{\mu} \middle| H \middle| \phi_{\nu} \right\rangle - \varepsilon \sum_{\mu} \sum_{\nu} c_{i\mu} c_{i\nu} \left\langle \phi_{\mu} \middle| \phi_{\nu} \right\rangle \tag{I.7}$$

Minimizando o funcional (I.7) com o vínculo de normalização e definindo o *overlap* entre os orbitais como $S_{\mu\nu}=\left<\phi_{\mu}\mid\phi_{\nu}\right>$, obtemos a seguinte equação:

$$\sum_{\nu} [H_{\alpha\nu} - \varepsilon S_{\alpha\nu}] c_{i\nu} = 0, \qquad (1.8)$$

que corresponde a um sistema de *N* equações algébricas homogêneas conhecidas como **Equações de Roothan**, onde *N* é o número total de orbitais atômicos do sistema. Na equação acima, absorvemos no mesmo índice tanto a dependência com o tipo do orbital quanto do sítio onde este se localiza. A presença explícita dos *overlaps* em (I.8) faz com que tenhamos um problema de autovalores generalizado: somente no caso que os orbitais formam um conjunto ortonormal, com

zero *overlap* entre orbitais pertencentes a sítios distintos, é que recaímos no problema padrão de autovalor padrão.

A formulação acima é geral, sem se deter na forma específica dos orbitais de base. Contudo, nos sistemas cristalinos, a simetria de translação permite escrever as soluções da hamiltoniana na forma de somas de Bloch:

$$\Phi_{\mu\mathbf{k}} = \frac{1}{N} \sum_{\mathbf{R}} \phi_{\mu} (\mathbf{r} - \mathbf{R}) e^{i\mathbf{k} \cdot \mathbf{R}} , \qquad (1.9)$$

onde μ rotula o orbital atômico, \mathbf{k} é um vetor da rede recíproca e \mathbf{R} denota os sítios da rede cristalina. Com o emprego de condições de contorno periódicas, os valores de \mathbf{k} são definidos dentro da primeira zona de Brillouin. Considerando n orbitais por sítio e N sítios cristalinos, temos ao todo $n \times N$ estados no sistema.

Do mesmo modo como delineado na seção anterior, os estados eletrônicos cristalinos podem ser expressos como combinações lineares das funções de Bloch, e seguindo o mesmo procedimento teremos assim novamente um problema de autovalor generalizado:

$$\sum_{\nu} [H_{\alpha\nu}(\mathbf{k}) - \varepsilon S_{\alpha\nu}(\mathbf{k})] c_{i\nu} = 0, \qquad (1.10)$$

onde

$$H_{\alpha\nu}(\mathbf{k}) = \sum_{\nu',m'} e^{i\mathbf{k}\cdot(\mathbf{R}_{\alpha0} - \mathbf{R}_{\nu'm'})} H_{\alpha0,\nu'm'}$$

$$S_{\alpha\nu}(\mathbf{k}) = \sum_{\nu',m'} e^{i\mathbf{k}\cdot(\mathbf{R}_{\alpha0} - \mathbf{R}_{\nu'm'})} S_{\alpha0,\nu'm'}$$
, (I.11)

Na equação (I.10) acima, as letras gregas α e v rotulam os átomos da célula unitária e seus respectivos orbitais, ao passo que m' rotula as células unitárias. O valor m' = 0 corresponde à célula unitária de referência. A soma sobre v' corre sobre todos os átomos que têm posição equivalente ao átomo v da célula de referência. Os elementos de matriz $H_{\alpha 0, \nu' m'}$ e $S_{\alpha 0, \nu' m'}$ são calculados usando as prescrições do método de Hückel, Eq. (I.3).

I.2) Cálculo dos Overlaps

O programa Huckel_TB emprega as fórmulas analíticas de Michael Barnett [2] para o cálculo do *overlap* entre os orbitais de Slater. De modo a entender a nomenclatura introduzida pelo autor, vamos considerar dois sistemas de coordenadas centrados nos átomos A e B, onde o átomo B está

na posição $(0, 0, \rho)$ com relação ao sistema de coordenadas centrado em A e os eixos do sistemas são paralelos. Sejam dois orbitais de Slater centrados em A e B, com números quânticos respectivamente iguais a (n_a, l_a, m_a) e (n_b, l_b, m_b) e constantes de *screening* (zetas) ζ_a e ζ_b . Vamos denotar por $O_q^{(r)}(\kappa, \tau)$ a integral de *overlap* entre eles, onde $\kappa = \zeta_a/\zeta_b$ e $\tau = \zeta_b\rho$ e q corresponde à lista de números quânticos a (n_a, l_a, n_b, l_b, m) . Se considerarmos orbitais d por exemplo, as fórmulas de Michael Barnett nos fornecem a componente σ (m = 0), π (m = 1) e δ (m = 2) do *overlap*, dependendo do segundo orbital envolvido.

A tabela de integrais de *overlap* são separadas em dois casos: $\kappa = 1$ e $\kappa \neq 1$ e seguem as seguintes conveções:

- $n_a \ge n_b$. Caso contrário, temos que trocar a ordem dos orbitais e redefinir os valores de κ e τ . A correção do sinal se dá pela multiplicação do *overlap* obtido pelo fator $f = (-1)^{l_a + l_b}$.
- ullet Se $n_a=n_b$ e $l_a < l_b$, é necessário também aplicar a correção de sinal ao *overlap* discutida acima.

Após o cálculo dos componentes do *overlap* entre dois orbitais pelas fórmulas tabuladas, é necessário completar o cálculo aplicando as fórmulas das integrais de dois centros de Slater e Koster [3], que expressa os *overlaps* entre os orbitais em termos da sua posição relativa com relação a um sistema de coordenadas cartesiano.

II. Visão Geral do programa

O programa Huckel_TB tem estrutura modularizada, de forma a facilitar incorporações de novas feições e potencialidades. Na sua atual versão, o programa possui as seguintes características técnicas:

- 1. Expansão dos orbitais atômicos de valência (spd) numa base double zeta de orbitais de Slater;
- 2. Overlaps calculados a partir das fórmulas analíticas de Michael Barnett (Z < 54);
- 3. Diferentes simetrias cristalinas já estão pré-codificadas, além de permitir o uso de células unitárias gerais, a partir da especificação dos vetores primitivos e dos átomos da base.
- 4. Trabalha tanto no formalismo de supercélula (espaço real) quanto com células unitárias mínimas (espaço recíproco).
- 5. Emprega subrotinas LAPACK na diagonalização da hamiltoniana;

6. Calcula densidade de estados (total e projetada) e faz análise populacional de Mülliken.

Abaixo segue uma descrição sucinta dos módulos e as respectivas subrotinas que compõe a atual versão do programa:

	Programa principal, responsável pela leitura dos arquivos de entrada,
Huckel_TB.f90	impressão das informações lidas e que, de acordo com as opção de
	cálculo e de pós-processamento lidas no arquivo de entrada, coordena a
	chamada das subrotinas específicas.
	Suas subrotinas geram as posições atômicas, tanto para o caso do cálculo
	ser realizado no espaço recíproco quanto no modo de supercélula. No
	caso dos cálculos no espaço recíproco, possui várias simetrias de rede
Supercell.f90	cristalinas pré-codificadas (IBRAV=1,,5) ou pode-se também trabalhar
	com células primitivas gerais (IBRAV=6). No caso de cálculos envolvendo
	supercélulas, ele pega as estruturas pré-codificadas e repete-as ao longo
	das três dimensões espaciais através da especificação da trinca N_x , N_y e
	N_z .
	Módulo cujas subrotinas destinam-se ao cálculo do <i>overlap</i> entre dois
	orbitais atômicos dados, localizados em sítios cristalinos distintos. As
Sto_ov.f90	fórmulas de Michael Barnett estão separadas em "cases" envolvendo os
	números quânticos principais n e, para cada um desses cases, novos
	cases envolvendo os números quânticos <i>l</i> . Neste módulo também se
	encontra a subrotina que aplica as fórmulas de dois centros de Slater e
	Koster.
	Guarda as subrotinas destinadas à construção da hamiltoniana do
	sistema e sua posterior diagonalização, tanto para o cálculo no espaço
Diagonalize.f90	recíproco quanto o de supercélula. Neste módulo também está a
	subrotina que gera o <i>grid</i> de Monkhost-Pack para o cálculo da densidade
	de estados.
	Módulo que abriga as subrotinas destinadas ao pós processamento,
	cálculo de densidades de estado e análise populacional de Mülliken. Aqui
Postproc.f90	também há opções de cálculo tanto no espaço recíproco quanto em
	supercélulas.

Toten.f90	Na atual versão este módulo está em desenvolvimento, de modo que
	suas subrotinas estão incompletas. Neste módulo estará abrigada a
	subrotina que dirige o cálculo da energia total e uma subortina que
	calcula a energia repulsiva. Na atual versão há apenas um potencial
	codificado , para o silício cristalino (Kaxiras).

III. Compilando e Executando o Programa Huckel TB

Para compilar o programa, é necessário ter instalado na máquina um compilador fortran (GFORTRAN ou INTEL) e as libraries LAPACK e BLAS. Além dos códigos fontes, são também fornecidos alguns arquivos de *inputs* relativos a diferentes tipos de cálculo e sistemas e um pequeno arquivo de compilação (mcopt.sh): o arquivo é um *shell script* escrito para o compilador GFORTRAN e possui poucas opções de otimização. Caso queira modificar ou incluir novas opções de otimização, é só editar esse arquivo. Para executá-lo, faça:

sh tbopt.sh &

Ao final da compilação será criado o arquivo executável HTB.x que, para ser executado, é necessário fornecer o arquivo de *input* e, no caso do sistema ter uma célula unitária não-convencional, o arquivo ATOMS.DAT, que contém a informação do número de átomos na célula, os vetores primitivos e as coordenadas dos átomos da base. O arquivo de *input* pode ter qualquer nome, ao passo que o outro arquivo não. Para executar, faça:

./htb.x<input>out &

No arquivo OUT são impressas várias informações, como os parâmetros de entrada lidos e alguns resultados finais. Dependendo do tipo de cálculo, arquivos de saída adicionais são gerados, como será explicado na seção devotada aos exemplos de aplicação.

IV. Parametrização dos Compostos Cristalinos

Nas parametrizações *tight-binding* típicas de compostos cristalinos, é assumido que os orbitais de base formam um conjunto ortonormal e o alcance das interações entre os átomos, expresso nas integrais de *hopping*, é de curto alcance, restrito em geral até segundos vizinhos. Nestas

condições, os parâmetros não só não são transferíveis para outros ambientes químicos como também é necessário empregar fórmulas empíricas para corrigir os *hoppings* no caso dos átomos do sistema ocuparem posições diferentes da cristalina, para as quais foram obtidas os parâmetros, como é o caso de sistemas sob pressão aplicada. No Método de Hückel Estendido os orbitais da base são assumidos não serem ortogonais e o alcance da interação é bem maior que nos esquemas tradicionais, o que resulta numa melhor transferibilidade dos parâmetros.

Para um dado um composto cristalino, o cálculo de sua estrutura eletrônica dentro do MHE se dá através da especificação de uma base de orbitais de valência para cada elemento químico e a computação dos elementos de matriz (I.3) nesta base. No programa Huckel_TB, os orbitais de valência são expressos numa base tipo *double zeta* e assim a parametrização de um determinado composto implica na especificação, para cada orbital de valência da base, de sua energia e os coeficientes de expansão c_i e as zetas ζ_i dos orbitais de Slater, resultando assim em quatro parâmetros por número quântico I para cada átomo constituinte do material. O segundo coeficiente de expansão pode ser obtido a partir do primeiro impondo-se a normalização do orbital. Denotando por $\left|S_1\right> = \left|\chi_{nlm}\right>$ e $\left|S_2\right> = \left|\chi_{nlm}\right>$ as funções de Slater que formam um orbital $\left|\Phi\right>$ da base, temos:

$$|\Phi\rangle = c_1|S_1\rangle + c_2|S_2\rangle, \qquad (IV.1)$$

Impondo a normalização para $|\Phi\rangle$:

$$\langle \Phi | \Phi \rangle = 1 = c_1^2 \langle S_1 | S_1 \rangle + c_2^2 \langle S_2 | S_2 \rangle + 2c_1 c_2 \langle S_1 | S_2 \rangle, \tag{IV.2}$$

Como as funções de Slater são normalizadas, temos que $\langle S_2 \big| S_2 \rangle = \langle S_1 \big| S_1 \rangle = 1$. O *overlap* entre duas funções de Slater centradas no mesmo sítio é:

$$\left\langle S_{1}\right|S_{2}\right\rangle =\left\langle \chi_{nlm}\right|\chi_{n'l'm'}\right\rangle =\delta_{ll'}\,\delta_{mm'}\frac{\left(n+n'\right)!}{\left(\varsigma+\varsigma'\right)^{n+n'+1}}\,,\tag{IV.3}$$

A partir das expressões (IV.2) e (IV.3) podemos calcular c_2 em função de c_1 . No caso de uma das funções de Slater que compõe o orbital atômico, $\left|S_2\right>$ por exemplo, ser muito localizada (tipicamente $\zeta_2 > 20$), temos simplesmente que $c_2 = \sqrt{1-c_1^2}$.

Uma parte importante para se trabalhar com metodologias *tight-binding* é a disponibilidade de parametrizações para os diferentes compostos. No caso do MHE, existe uma razoável disponibilidade de parâmetros para metais e semicondutores, publicados por J. Cerdá [4-6]. Contudo, ainda que a transferibilidade dos parâmetros seja melhor que no *tight-binding* ortogonal, os parâmetros lá publicados se referem a compostos *bulk* [4,5] e, no caso do carbono, para nanotubos [6].

V. Estrutura do Arquivo de Entrada

Nesta seção vamos discutir o papel das variáveis lidas nos arquivos de entrada: o arquivo de INPUT.DAT e o ATOMS.DAT. As variáveis de *input* serão apresentadas na ordem em que são lidas nos respectivos arquivos pelo programa. Em outras palavras: não modifique a ordem de entrada das variáveis.

V.1) Arquivo INPUT.DAT (Mandatório)

Variável	Tipo	Descrição
CTIT	Character	Título do Cálculo, a ser impresso no arquivo de saída.
KCALC	Integer	Tipo de cálculo que será realizado. Na atual versão esta do
		programa temos: (a) Cálculo no espaço real com supercélula
		(KCALC = 1); (b) Cálculo no espaço recíproco (KCALC = 2) e (c)
		Cálculo da Densidade de Estados (KCALC = 3).
IBRAV	Integer	Seleciona o tipo de estrutura cristalina da célula primitiva. As
		estruturas codificadas são: (a) Cúbica de Face Centrada (IBRAV =
		1); (b) Zincblend, com dois tipos de átomo na célula unitária
		(IBRAV = 2); (c) Zincblend, com um tipo de átomo na célula
		unitária (IBRAV = 3); (d) Cúbica de Corpo Centrado (IBRAV = 4); (e)
		Hexagonal compacta, HCP (IBRAV = 5); (f) Free (IBRAV = 6).
NUMTP	Integer	Número de espécies atômicas do material.
ZAT	Real	ZAT(numtp) é um array que guarda os números atômicos de cada
		espécie atômica que compõe o material.
ZSIMB	Character	ZSIMB(numtp) é um <i>array</i> que guarda os símbolos das espécies
		atômicas do sistema.
NORBV	Integer	NORBV(numtp) é um <i>array</i> que atribui, para cada espécie
		atômica, o número de tipos de orbitais que compõe sua base de

		valência: NORBV(1) = 1 significa que a espécie 1 só terá na base
		orbital tipo s, ao passo que NORBV(2) = 3 significa que a base da
		espécie 2 terá orbitais s, p e d.
NVAL	Integer	NVAL(I,J) é um <i>array</i> bi-dimensional que atribui o valor do
		número quântico principal n do orbital J (J = 1,, NORBV(I)) da
		espécie I (I = 1,, NUMTP).
LVAL	Integer	NVAL(I,J) é um <i>array</i> bi-dimensional que atribui o valor do
		número quântico secundário / do orbital J (J = 1,, NORBV(I)) da
		espécie I (I = 1,, NUMTP).
LPAR	Real	Parâmetro de rede, em angstrons.
COVA	Real	Razão c/a (a = parâmetro de rede) da estrutuda HCP. Esta variável
		só é levada em conta para o caso de IBRAV = 5. Para outros
		valores de IBRAV, COVA = 1.
(Nx, Ny, Nz)	Integer	Número de repetições da célula unitária ao longo das direções x,
		y, e z, respectivamente. Estes parâmetros são utilizados na
		construção da supercéula no caso de KCALC = 1.
RCUT	Real	Raio de corte, ou seja, alcance da interação entre os átomos, em
		angstrons.
KEHT	Real	Parâmetro K da fórmula de de Wolfsberg-Helmholtz, equação
		(I.3). Adimensional.
NZT	Integer	Array de dimensão (NUMTP,3). Na presente versão, seu valor é
		sempre igual a 2 (base double zeta).
ZETA	Real	ZETA(NUMTP,3,2) é o <i>array</i> que atribui o valor da constante de
		decaimento zeta dos orbitais de Slater que formam os orbital de
		base de cada espécie atômica.
CF	Real	CF(NUMTP,3,2) é o <i>array</i> que atribui o valor dos coeficientes de
		expansão $c_{\scriptscriptstyle \rm j}$ dos orbitais de Slater que formam os orbital de base
		expansão $c_{\rm j}$ dos orbitais de Slater que formam os orbital de base de cada espécie atômica, equação (I.4).
ESIT	Real	de cada espécie atômica, equação (I.4). ESIT(I,J), onde I = 1,, NUMTP e J = 1,, NORBV(I) é o array que
ESIT	Real	de cada espécie atômica, equação (I.4). ESIT(I,J), onde I = 1,, NUMTP e J = 1,, NORBV(I) é o array que atribui o valor das energias dos orbitais de valência de cada
ESIT	Real	de cada espécie atômica, equação (I.4). ESIT(I,J), onde I = 1,, NUMTP e J = 1,, NORBV(I) é o array que

		hamiltoniana de acordo com a equação $\mathbf{H} o \mathbf{H} + \lambda \mathbf{S}$, onde λ é o
		shift. Serve para posicionar o nível de Fermi num certo valor.
IMC	Integer	Inteiro que controla o cálculo das cargas de Mulliken: se IMC = 0
		elas não são calculadas e, do contrário, se IMC = 1 elas são.
IDS	Integer	Idem a IMC, mas para o cálculo da densidade de estados. Para
		este cálculo, é necessário especificar os valores das variáveis de
		input QP, QR e QS e, no caso de cálculos no espaço recíproco, os
		índices ICP1 e ICP2.
QP, QR, QS	Integer	Dimensões do <i>grid</i> de Monkhost-Pack
ICP1, ICP2	Integer	Índices dos orbitais da base para os quais a população de overlap
		cristalino (COOP) será salva: serão impressos COOP(ICP1,ICP2),
		COOP(ICP1,ICP2+1), COOP(ICP1,ICP2+2) e COOP(ICP1,ICP2+3) no
		arquivo de saída COOP.DAT

V.2) Arquivo ATOMS.DAT (opcional)

Conforme dito antes, este arquivo só é lido se IBRAV = 6, no caso de se trabalhar com células unitárias mais gerais. Se IBRAV \neq 6, o número de átomos na célula unitária, seus tipos e os vetores primitivos estão pré-codificados.

Variável	Tipo	Descrição
NAUX	Integer	Número de átomos na célula unitária.
PV1, PV2,	Real	Os arrays PV1(3), PV2(3) e PV3(3) correspondem aos vetores
PV3		primitivos que definem a célula unitária, em unidades do parâmetro de rede LPAR.
ITYPE	Integer	ITYPE(ntype) é um array que atribui o tipo de cada átomo pertencente à célula unitária.
BASE	Real	BASE(NAUX,3) é o array que especifica as coordenadas cartesianas dos vetores de base. No caso de cálculos envolvendo supercélulas, os átomos de base são deslocados ao longo das direções cartesianas N_x , N_y e N_z vezes, respectivamente.

Referências

- [1] R. Hoffmann, An Extended Hückel Theory . I. Hydrocarbons, J. Chem. Phys. 39, 1397 (1963)
- [2] M. P. Barnett, Molecular Integrals and Information Processing, Int. Journ. Quantum Chem. **95**, 791 (2003)
- [3] J. C. Slater and G. F. Koster, Simplified LCAO Method for the Periodic Potential Problem. Phys. Rev. **90**, 1498 (1954)
- [4] J. Cerdá and F. Soria, Accurate and Transferable Extended Hückel-type Tight-Binding Parameters. Phys. Rev. B **61**, 7965 (2000)
- [5] D. Kienle *et al.*, Extended Hückel theory for band structure, chemistry, and transport. I. Carbon nanotubes. J. Appl. Phys. **100**, 043715 (2006)
- [6] D. Kienle *et al.*, Extended Hückel theory for band structure, chemistry, and transport. II. Silicon. J. Appl. Phys. **100**, 043715 (2006)