Семинар 14. **SARIMA**

План занятия

- 1. Запись SARIMA-моделей
- 2. SARIMA: оценивание и представление результатов.
- 3. Прогнозирование на основе моделей SARIMA.

Задание 1. Запись SARIMA-моделей. Запишите модели в аддитивной и

мультипликативной форме

 $SARIMA(0,1,2)(1,1,3)_4$

 $SARIMA(2,2,1) (1,1,2)_{12}$

 $SARIMA(1,0,1) (3,2,2)_4$

Пример. SARIMA(1,1,1) $(1,1,1)_{12}$

SARIMA(1,1,1) $(1,1,1)_{12}$ - период сезонности Сезонная часть

Несезонная часть

(р,d,q) (Р,D,Q)
р – несезонный порядок АR-части
d– несезонный порядок интегрируемости

D– сезонный порядок интегрируемости

Мультипликативная модель	$(1 - \alpha_1 L)(1 - \alpha_{12} L^{12}) \Delta \Delta_{12} y_t = (1 + \theta_1 L)(1 + \theta_{12} L^{12}) \varepsilon_t$
Аддитивная модель	$(1 - \alpha_1 L - \alpha_{12} L^{12}) \Delta \Delta_{12} y_t = (1 + \theta_1 L + \theta_{12} L^{12}) \varepsilon_t$

Задание 2. Прогноз по SARIMA-моделям.

2.1. Запишите

$$\Delta_4 y_t =$$

$$\Delta \Delta_4 y_t = \Delta^2 \Delta_4 y_t = \Delta^2 \Delta_4^2 y_t =$$

$$\Delta \Delta_{12} y_t =$$

2.2. Рассчитайте прогноз на 1 шаг для моделей

(1)
$$(1 - 0.5L^4)\Delta\Delta_4 y_t = 2 + (1 - 0.3L^4)\varepsilon_t$$

(2)
$$(1-0.7L)(1-0.1L^{12})\Delta\Delta_{12}y_t = 1 + (1-0.9L)\varepsilon_t$$

Задание 3. GRETL. Исходные данные: air

Исходные данные: «Авиаперевозки пассажиров».

Выборка содержит ежемесячные данные об авиаперевозках пассажиров в период с 1949 по 1960.

time	Time (in months)
air	Airline Passengers (1949-1960)
t	T=1,,144

- 1. Порядок несезонной/сезонной интегрируемости. Для построения SARIMA-модели необходимо определить порядок несезонной/сезонной интегрируемости в модели I(d), $I(D_s)$? Проведите серию тестов HEGY.
- 2. **Порядок AR/MA-частей.** На основе анализа коррелограмм сделайте предположение о порядках несезонных/сезонных AR/MA частей.

Анализ коррелограммы:

Ранее были оценены модели:

- arima(0,0,1) с линейным трендом (параболическим трендом)
- arima(0,1,1) с фиктивными сезонными переменными
- arima(0,0,1) с линейным трендом и с фиктивными сезонными переменными
- 4. **Sarima-модели.** Оцените и запишите модели в аддитивной и мультипликативной форме.
- sarima(1,1,0) $(1,1,0)_{12}$
- sarima(**0,1,1**) (0,1,1) ₁₂
- sarima(**1,1,1**) $(1,1,1)_{12}$

Мультипликативная sarima($\mathbf{1},\mathbf{1},\mathbf{0}$) (1,1,0)₁₂ Аддитивная sarima($\mathbf{1},\mathbf{1},\mathbf{0}$) (1,1,0)₁₂

Модель 2: АRIMA, использованы наблюдения 1950:02-1960:12 (T = 131)
Оценено при помощи фильтра Кальмана (Kalman) (точный метод МП)
Зависимая переменная: (1-L) (1-Ls) 1_air
Стандартные ошибки рассчитаны на основе Гессиана

	Коэффициент	Ст. ошибка	z	Р-значение		Коэффициент	Ст. ошибка	z	Р-значение
const phi_1 Phi_1	6,40747e-05 -0,374462 -0,463689	0,00171181 0,0808196 0,0807987	0,03743 -4,633 -5,739	0,9701 3,60e-06 *** 9,53e-09 ***	const phi_1 phi_12	9,83130e-05 -0,311141 -0,411006	0,00200764 0,0727461 0,0759387	0,04897 -4,277 -5,412	0,9609 1,89e-05 *** 6,22e-08 ***
Среднее зав. перемен Среднее инноваций 0,000291 Ст. откл. зав. перемен Ст. откл. инноваций 0,045848 Среднее зав. перемен Среднее инноваций 0,000291 Ст. откл. зав. перемен Ст. откл. инноваций 0,038167 Среднее инноваций 0,000775 Ст. откл. инноваций Лот. правдоподобие 240,4071 Крит. Акаике -472,8142 Лог. правдоподобие 238,9818 Крит. Акаике Крит. Шварца -461,3134 Крит. Хеннана-Куинна -468,1409 Крит. Шварца -458,4629 Крит. Хеннана-Куинна					ваций 0,038640 -469,9637				
	Действ. час	гь Мним. част	ь Модуль	Частота		Действ. час	ть Мним. част	ь Модуль	Частота
AR Корень 1 AR (сезонн Корень 1	-2,6705 swe)	0,0000	2,6705 2,1566	0,5000	АR Корень 1 Корень 2 Корень 3	-1,0112 -1,0112 1,0639	-0,2603 -0,2915	1,0441 1,0441 1,1031	0,4599 -0,4599 -0,0426 0.0426

Опишите полученные модели:

- запишите математическую форму моделей через лаговый оператор (с учетом аддитивного и мультипликативного эффектов),
- оцените качество моделей,
- рассчитайте информационные критерии, характеристики качества прогноза.
- рассчитайте предсказанные значения по модели и постройте совмещенные графики.

Опишите и сравните построенные модели. Выберите наилучшую. Ответ обоснуйте.

модели SARIMA	Инф.критерии,	Стационарность,	Анализ	Общий вывод
	ошибка модели	обратимость	остатков	
1. sarima $(0,1,1)$ $(0,1,1)_{s=12}$				
Аддитивная форма				
Мультипликативная форма				
2. sarima(1,1,0) $(1,1,0)_{s=12}$				
Аддитивная форма				
Мультипликативная форма				
3. sarima(1,1,1) $(1,1,1)_{s=12}$				
Аддитивная форма				
Мультипликативная форма				

2. Проверка адекватности модели.

Оцените адекватность построенных моделей на основе анализа остатков.

- Обладают ли остатки свойствами белого шума?
- автокорреляция остатков. Тесты?
- нормальность. Тесты?

Альтернативные тесты на нормальность остатков в Gretl.

- 1. Сохраняете остатки модели
- 2. Используете тесты: Переменные -Тесты на нормальное распределение

```
Тест на нормальное распределение uhat1:

Тест Дурника-Хансена (Doornik-Hansen) = 8,28896, р-значение 0,0158517

Тест Шапиро-Уилка (Shapiro-Wilk W) = 0,957794, р-значение 0,0448994

Тест Лиллифорса (Lilliefors) = 0,104789, р-значение ~= 0,12

Тест Жака-Бера (Jarque-Bera) = 4,95901, р-значение 0,0837846
```

3. Прогнозирование.

- По выбранной наилучшей модели постройте прогноз на 1 месяц вперед (аналитически)
- По выбранной наилучшей модели постройте прогноз на 12 месяцев вперед (в пакете). Постройте 95% доверительный интервал.
- Рассчитайте характеристики точности прогноза. Какие характеристики можно использовать?

4. (Самостоятельно на занятии)

Данные: Уровень безработицы в России (1994- 2022) Файл: UnempRus.gdt Источник: http://sophist.hse.ru/hse/nindex.shtml

Уровень безработицы определяется как удельный вес численности безработных в численности экономически активного населения.

Постройте модели SARIMA с учетом сезонности. Какие модели Вы бы построили? Каким будет порядок несезонной/сезонной интегрируемости в модели $\mathbf{I}(\mathbf{d})$, $\mathbf{I}(\mathbf{D}_s)$? Обоснуйте выбор порядков несезонных/сезонных \mathbf{p} , \mathbf{d} , \mathbf{q} , детерминированных составляющих (тренда, фиктивных переменных). Проверьте адекватность полученной модели. Постройте прогноз.

Домашняя работа (ТДЗ) 14. SARIMA

Исходные данные: Число зарегистрированных браков в регионах (оперативные данные) в России по месяцам (2006- 2017; 2017-2021).

Файл: браки.xls

Источник: EMИCC https://fedstat.ru/indicator/33553

4	Число зарегистрированных браков (оперативные данные) (единица)							
-	число зарегистрированных оракс	B (onepai	ивные да	нные) (единица)				
2								
3		2006						
4		январь	февраль	январь-февраль	март	январь-март	апрель	
5	Российская Федерация	55 509	62 449	117 958	70 798	188 756	86 055	
6	Центральный федеральный округ	14 845	16 414	31 259	15 753	47 012	21 803	
7	Белгородская область	686	751	1 437	639	2 076	809	
8	Брянская область	471	625	1 096	554	1 650	665	
9	Владимирская область	473	623	1 096	601	1 697	779	
10	Воронежская область	945	1 042	1 987	785	2 772	1 254	
11	Ивановская область	347	438	785	447	1 232	529	
12	Калужская область	372	431	803	463	1 266	648	
13	Костромская область	306	367	673	339	1 012	426	

Замечание. Обратите внимание на формат представления данных на сайте Росстат. Данные необходимо предварительно преобразовать в «длинный» ряд, удалить лишние строки в Экселе.

!Можно взять свои данные по двум странам/регионам/городам и т.д. Не забудьте приложить файл с данными.

- 1. Описательный анализ. Выберите два региона для исследования и сравнения (северный южный/ западный восточный). Постройте графики рядов и опишите исходные данные. Исследуйте наличие сезонности в данных (график сезонной пакете), ACF/PACF, периодограмма), сравните региональные особенности. Приведите графики И дайте интерпретацию полученным результатам.
- 2. **Порядок интегрируемости**. С помощью HEGY-тест сделайте вывод о наличии сезонных/несезонных единичных корней и оцените порядок несезонной/сезонной разности (для двух регионов). Приведите результаты тестирования различных модификаций в виде таблицы, дайте интерпретацию результатам тестирования (для одного из регионов, по второму сделайте короткий вывод).

BP	Тест	Нулевая	Статистика	р-значение	Вывод
		гипотеза	критерия		
у	HEGY (с трендом/без)				
	НЕGY (с фикт пер/без)				
	НЕGY (с трендом+ фикт пер)				
Δy	НЕGY (без тренда)				
	НЕGY (с фикт пер)				
	НЕGY (с гарм пер)				
$\Delta_s y$	HEGY (с трендом/без)				
	НЕGY (с фикт пер/без)				
ΔΔ _s y	НЕGY (с трендом/без)				
	НЕGY (с фикт пер/без)				

- **3. Sarima.** Оцените и запишите модели в аддитивной/мультипликативной (на выбор) форме (для **одного** из двух регионов)
 - sarima(**0,1,1**)(0,1,1)

- sarima(**1,0,0**) (1,1,0)
- sarima(**1,1,1**) (1,1,1)
- предложите свою модель, задав порядки p, d, q (обычные и сезонные), включив по необходимости детерминированные составляющие (тренд, сезонные фиктивные переменные, учет структурного сдвига) произвольно, ответ обоснуйте.

Опишите полученные модели в виде сводной таблицы:

- запишите математическую форму моделей (с учетом аддитивного или мультипликативного эффектов),
- оцените качество моделей.

модели SARIMA	Инф.критер	Стационарность,	Анализ	Общий вывод
	ии, ошибка	обратимость	остатков	
	модели			
Регион1				
1. sarima $(0,1,1)$ $(0,1,1)_{s=12}$				
2. sarima(1,1,0) $(1,1,0)_{s=12}$				
3. sarima(1,1,1) $(1,1,1)_{s=12}$				
Наилучшая модель:				
Регион2				
Наилучшая модель:				

Для второго региона приведите одну наилучшую модель.

- 4. **Предпосылка стационарности**. Сформулируйте условие стационарности полученной модели (любой на выбор) (аналитически, через характеристическое уравнение).
- 5. **Прогноз.** По наилучшей модели постройте прогноз (точечную и интервальную оценку) в пакете, приведите графики (наблюдаемые+ предсказанные значения). Сделайте вывод, как будет меняться анализируемый показатель в двух регионах. Насколько реалистичный прогноз получился?
 - Напишите решение задач (скан рукописного варианта по необходимости) и краткий отчет с выводами и полученными графиками, где это необходимо. Допускается сдача работы в группе по 2 человека (не забывайте указывать авторов).
 - Выполненная домашняя работа загружается в SmartLMS. Срок выполнения 1 неделя.

Задания для самоконтроля (сдавать не нужно!!!).

- 1. Проиллюстрируйте схему теста HEGY для случая *ежемесячных данных* (запишите подробно все необходимые разложения с использованием теории приближенных функций, выведите подробно тестовое уравнение). Приведите все подробные пояснения.
- 2. Проверить стационарность процесса, используя для вычисления корней характеристического уравнения метод Феррари. Подробно описать схему метода и привести подробные расчеты.

$$y_{t} = 2 + y_{t-4} - y_{t-3} + y_{t-1} + \varepsilon_{t} - 0.5\varepsilon_{t-1}$$