Data assimilation using ensemble methods for hurricane forecasting

Pushkar Kumar Jain, Yuxiang Lin, Kyle Mandli, Clint Dawson

Outline

- Introduction
- Ensemble Kalman filter algorithm
- Schematic EnKF in action
- Implementation
- Conclusion

Introduction

- Data assimilation addresses the problem of incorporating observations into a model of the system in an optimal way
- Given a noisy discrete model of dynamics of the system and noisy observations of the system, find estimates of the state of the system
- The objective is to investigate computational methods to advance the science of real time prediction of coastal and hydrological hazards and improve the designs of observational systems
- Techniques Optimal interpolation, 3D Var, 4D Var, EKF, EnKF

"Data driven simulation"

Algorithm

- X_b : Prior guess of initial state
- $x_{new} = \mathcal{M}(x_{old})$: State evolution in time
- **y** : Observation vector
- $\mathcal{H}(\cdot)$: Observations map to state
- B: Prior guess error covariance matrix
- **R** : Observation error covariance matrix
- $m{Q}$: Model error covariance matrix

1. Generate ensemble of size *N*:

$$x_b^{(i)} = x_b + \eta \text{ for } i = 1, N \text{ and } \eta \sim \mathcal{N}(\mathbf{0}, \mathbf{B})$$

- 1. <u>Prediction step</u>:
 - a) Propagate each ensemble member forward in time:

$$\mathbf{x}_{b}^{(i)}(t+1) = \mathcal{M}\left(\mathbf{x}_{b}^{(i)}(t)\right)$$

- 2. Update step:
 - a) $\mathbf{P_b}$ is evolved B matrix: $\mathbf{P_b} = \frac{1}{N-1} \sum \left(\mathbf{x_b^{(i)}} \bar{\mathbf{x}} \right) \left(\mathbf{x_b^{(i)}} \bar{\mathbf{x}} \right)^T$
 - b) Calculate Kalman gain: $K = P_b H^T (R + H P_b H^T)^{-1}$
 - c) Update each ensemble member:

$$x_b^{(i)} \leftarrow x_b^{(i)} + K\left(y + \epsilon - \mathcal{H}\left(x_b^{(i)}\right)\right)$$
, where $\epsilon \sim \mathcal{N}(\mathbf{0}, R)$

- a) Calculate analysis error covariance: $P_a = (I KH)P_b$ (if needed)
- 3. Repeat 2 and 3 till all observations are assimilated

EnKF in action

Implementation

- Data assimilation is performed using the library PDAF Parallel Data assimilation Framework
- Objective Sequential forecasting and analysis step to obtain estimated analysis state
- Goals
 - Tight two way coupling between AMR and data assimilation
 - Analyze how assimilation affects adpative mesh refinement
- Issues
 - Varying size of field due to adaptive mesh refinement
 - Code refactoring to accommodate the PDAF routines
 - Forced refinement/fixed reference mesh
 - Multi-level assimilation

Schematic representation

Conclusion

- The technology will be tested using actual data from recent events, and implemented on high-performance computational platforms.
- These advances offer the promise of significantly transforming datadriven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

Collaborators

- Dr. Clint Dawson, The University of Texas at Austin
- Dr. Kyle Mandli, Columbia University

Acknowledgement: This work is supported by King Abdullah
University of Science & Technology (KAUST)