- $\bullet\,$ Uma linguagem l.c. Lé não-ambígua se existe uma gl
c não-ambígua Gtq L=L(G).
- \bullet Uma linguagem l.c. L é inerentemente ambígua se toda gl
c que gera L é ambígua.

```
Exemplo: L = \{a^i b^j c^k : i, j, k \ge 0 \text{ e } (i = j \text{ ou } j = k)\}
```

<u>Obs</u>: As palavras $a^nb^nc^n$, para $n\geq 0$, são deriváveis de duas maneiras diferentes.

Exercício: Escreva uma gle que gera L.

<u>Teorema</u>: Não existe um algoritmo para decidir se uma linguagem livre de contexto é inerentemente ambígua ou não.

<u>Teorema 4</u>: A classe das ling. l.c. é fechada para as operações de união, concatenação e estrela.

<u>Prova</u>: Sejam L_1 e L_2 ling. l.c. sobre Σ . Então, existem gle $G_1 = (V_1, \Sigma, \mathcal{P}_1, \mathcal{S}_1)$, e $G_2 = (V_2, \Sigma, \mathcal{P}_2, \mathcal{S}_2)$, com $V_1 \cap V_2 = \Sigma$ tq $L(G_1) = L_1$ e $L(G_2) = L_2$.

• União:

Considere a glc
$$G = (V, \Sigma, \mathcal{P}, \mathcal{S})$$
, onde $V = V_1 \cup V_2 \cup \{\mathcal{S}\}$ (onde $\mathcal{S} \notin V_1 \cup V_2$) e $\mathcal{P} = \{\mathcal{S} \to \mathcal{S}_1 | \mathcal{S}_2\} \cup \mathcal{P}_1 \cup \mathcal{P}_2$.
Prove que $L(G) = L(G_1) \cup L(G_2)$.

• Concatenação:

Considere a glc
$$G = (V, \Sigma, \mathcal{P}, \mathcal{S})$$
, onde $V = V_1 \cup V_2 \cup \{\mathcal{S}\}$ (onde $\mathcal{S} \notin V_1 \cup V_2$) e $\mathcal{P} = \{\mathcal{S} \to \mathcal{S}_1 \mathcal{S}_2\} \cup \mathcal{P}_1 \cup \mathcal{P}_2$. Prove que $L(G) = L(G_1)L(G_2)$.

• Estrela:

Considere a glc
$$G = (V, \Sigma, \mathcal{P}, \mathcal{S})$$
, onde $V = V_1 \cup \{\mathcal{S}\}$ (onde $\mathcal{S} \notin V_1$) e $\mathcal{P} = \{\mathcal{S} \to \lambda | \mathcal{S}_1 \mathcal{S}\} \cup \mathcal{P}_1$. Prove que $L(G) = (L(G_1))^*$.

1 Autômatos com pilha

- Um autômato com pilha não-determinístico é um sistema $\mathcal{A} = (\mathcal{Q}, \Sigma, \Gamma, \delta, s, F)$:
 - $-\mathcal{Q}$ é o conjunto finito de estados;
 - $-\Sigma$ é o alfabeto dos símbolos de entrada;
 - $-\Gamma$ é o alfabeto dos símbolos da pilha;
 - $-s \in \mathcal{Q}$ é o estado inicial;
 - $-F \subseteq \mathcal{Q}$ é o conjunto de <u>estados finais</u>;

- $-\ \delta: \mathcal{Q} \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \longrightarrow 2^{\mathcal{Q} \times (\Gamma \cup \{\lambda\})} \text{ \'e a função de transição}.$
- Uma computação num a.p.n-det. começa no estado inicial, com a entrada na fita e a pilha vazia.
- Seja $\mathcal{A} = (\mathcal{Q}, \Sigma, \Gamma, \delta, s, F)$ um a.p.n-det. Se $(q, \mathcal{B}) \in \delta(p, a, \mathcal{A})$ (q = pr'oximo estado, $\mathcal{B} = \text{s\'ombolo}$ a ser empilhado ou λ , p = estado atual, a = simbolo da entrada ou λ , A = simbolo no topo da pilha ou λ).
- Uma configuração de \mathcal{A} é um elemento de $\mathcal{Q} \times \Sigma^* \times \Gamma^*$ descrevendo:
 - O estado inicial;
 - A parte não lida da entrada;
 - O conteúdo atual da pilha (topo..base).
- A configuração inicial para uma entrada x deve ser (s, x, λ) .

 $\vdash_{\mathcal{A}}$ relaciona duas configurações consecutivas de \mathcal{A} . Ex: se $(q, B) \in \delta(p, a, A)$, com $a \in (\Sigma \cup \{\lambda\})$ e $A, B \in (\Gamma \cup \{\lambda\})$, então para qualquer $y \in \Sigma^*$ e $\gamma \in \Gamma^*$, $(p, ay, A\gamma) \vdash_{\mathcal{A}} (q, y, B\gamma)$.

- $\vdash_{\mathcal{A}}^*$ denota o fecho reflexivo e transitivo de $\vdash_{\mathcal{A}}$.
- Uma palavra $x \in \Sigma^*$ é aceita por \mathcal{A} se existe uma computação tq $(s, x, \lambda) \vdash_{\mathcal{A}}^* (q, \lambda, \lambda)$ para algum $q \in F$
- A linguagem reconhecida por \mathcal{A} por estado final e pilha vazia é: $L(\mathcal{A}) = \{x \in \Sigma^* : x \text{ é aceita por } \mathcal{A}\}.$

Exemplo 1: $L = \{a^n b^n : n \ge 0\}$