Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Практическое задание №3 по дисципение Теория Автоматов Канонический метод структурного синтеза

Вариант 11

Студент: Саржевский Иван

Группа: Р3302

Преподаватель: Тропченко Александр Ювенальевич

г. Санкт-Петербург $2020 \ \Gamma.$

Цель

Практическое освоение метода перехода от абстрактного автомата к структурному автомату.

Задание

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Для синтеза структурного автомата использовать функционально полную систему логических элементов И, ИЛИ, НЕ и автомат Мура, обладающий полнотой переходов и полнотой выходов. Синтезированный структурный автомат представить в виде ПАМЯТИ и КОМБИНАЦИОННОЙ СХЕМЫ.

Исходные данные

Согласно полученному варианту исходный автомат Мура задается следующей таблицей переходов:

λ	W2	W1	W1	W2	W1	W 3	W1	W 4
δ	a ₁	a ₂	a ₃	a ₄	a 5	a ₆	a 7	as
Z ₁	a 5	a ₆	as	a 5	a ₁	a ₂	a ₄	a 7
Z2	a ₂	a ₃	as	a 7	a 7	as	a ₈	as

Кодирование исходного автомата двоичными кодами

Входной алфавит

	x_1
z_1	0
z_2	1

Выходной алфавит

	y_1	y_2
w_1	0	0
$ w_2 $	0	1
$ w_3 $	1	0
w_4	1	1

Состояния

	Q_1	Q_2	Q_3
a_1	0	0	0
a_2	0	0	1
a_3	0	1	0
a_4	0	1	1
a_5	1	0	0
a_6	1	0	1
a_7	1	1	0
a_8	1	1	1

Таблицы переходов и выходов соответствующего структурного автомата

После кодирования исходного абстрактного автомата Мура построим таблицы переходов и выходов структурного автомата.

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	100	101	111	100	000	001	011	110
1	001	010	111	110	110	111	111	111

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	01	00	00	01	00	10	00	11
1	01	00	00	01	00	10	00	11
	y_1y_2							

ДНФ для выходных сигналов

По полученным таблицам построим ДНФ для каждого выходного сигнала:

$$\begin{split} y_1 &= \bar{x_1}Q_1\bar{Q_2}Q_3 \vee \bar{x_1}Q_1Q_2Q_3 \vee x_1Q_1\bar{Q_2}Q_3 \vee x_1Q_1Q_2Q_3 = 5 \vee 7 \vee 13 \vee 15 \\ y_2 &= \bar{x_1}\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee \bar{x_1}\bar{Q_1}Q_2Q_3 \vee \bar{x_1}Q_1Q_2Q_3 \vee x_1\bar{Q_1}\bar{Q_2}\bar{Q_3} \vee x_1\bar{Q_1}Q_2Q_3 \vee x_1Q_1Q_2Q_3 \\ &= 0 \vee 3 \vee 7 \vee 8 \vee 11 \vee 15 \end{split}$$

Синтез автомата на D-триггерах

С учетом закона функционирования D-триггера построим таблицу сигналов функций возбуждения:

$x_1/Q_1Q_2Q_3$	000	001	010	011	100	101	110	111
0	100	101	111	100	000	001	011	110
1	001	010	111	110	110	111	111	111
	$D_1D_2D_3$							

ДНФ для сигналов функций возбуждения:

$$\begin{split} D_1 &= \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 Q_3 \vee \bar{x_1} \bar{Q_1} Q_2 \bar{Q_3} \vee \bar{x_1} \bar{Q_1} \bar{Q_2} \bar{Q_3} \vee \bar{x_1} \bar{Q$$

Функциональная схема структурного автомата на D-триггерах

TODO: нарисовать

Тестирование функциональной схемы автомата

Результирующее слово совпадает с ожидаемым.

Вывод