Case Study 2: Compute Optimized Instances

1. Overview of Recommended Instance Series

Recommended Series: C5, C6i, C7g

The C-series (Compute-optimized instances) is designed for applications that require high-performance CPUs but don't need a lot of memory.

These instances are ideal when your tasks involve **heavy computation**, like data analytics, real-time processing, or machine learning inference — just like a **sports car made for speed**, not carrying passengers.

Quick Intro:

- **C5** Proven and stable generation, Intel-based.
- **C6i** Newer Intel-based, better price/performance than C5.
- C7g Graviton3-based (ARM), faster and more energy-efficient.

2. Characteristics

Feature	C5	C6i	C7g
СРИ	Intel Xeon	3rd Gen Intel Xeon	AWS Graviton3 (ARM)
Performance	High	Higher (up to 15% better than C5)	Even better performance per cost
Memory	Lower than general-purpose	Lower than M-series	Similar
Networking	Up to 25 Gbps	Better EBS and network	Great for cloud-native apps
Use Case Focus	CPU-intensive tasks	Modern workloads	ARM-optimized, future-ready

3. Why They Are Suitable

- These instances offer high-performance CPUs, making them ideal for:
 - o Complex calculations (like financial simulations)
 - Real-time processing (like NLP chatbots)
 - Tasks that scale across multiple vCPUs

They don't waste money on unused memory, keeping things cost-effective.

4. Considerations Detailing the Instance Series

Scenario A: Monte Carlo Simulations - Hedge Fund

- Needs to run thousands of simulations quickly.
- Prioritizes fast, multi-threaded CPU performance.
- Memory needs are moderate.
- **Best Fit**: C6i High vCPU performance, stable, Intel-optimized for legacy apps.

Scenario B: NLP Chatbot - AI Company

- Requires real-time text processing and quick response.
- Needs low latency and fast CPU, can work with less memory.
- Best Fit: C7g Graviton3-powered, great performance-per-cost, ideal for cloud-native NLP models.

5. Comparison and Selection

Requirement	C 5	C6i	C7g
Legacy compatibility	ОК	Better	No, Only ARM-based Application
Price-to-performance	ОК	Better	Best
Energy efficiency	No	ОК	Best
AI/NLP performance	ОК	Better	Best
Long-term scalability	ОК	Better	Best

Selection:

- Choose **C6i** if using **Intel-based tools** or enterprise compatibility is key.
- Choose C7g if you're building modern, cloud-native apps and want cost savings + performance.

6. Key Considerations Supporting the Business Case

- Predictable, High-CPU Performance: Crucial for real-time systems or simulation-heavy workloads.
- Scalability: Can spin up many instances in parallel.
- Cost Optimization: Don't pay for excess memory.
- Flexibility:
 - o C5/C6i: Work well with traditional applications.
 - o C7g: Supports containerized workloads and modern DevOps pipelines.
- Future-Ready: C7g (Graviton3) aligns with cloud-native architecture and sustainable computing goals.

7. Conclusion

For compute-heavy workloads such as financial simulations and AI-powered chatbots, the **C-Series instances** (C5, C6i, C7g) provide the **best balance of CPU performance and cost efficiency**. While **C6i** is ideal for legacy and Inteloptimized tasks, **C7g** is the top choice for **modern cloud-native** applications, delivering superior **performance-perdollar** and **energy efficiency**.

The right instance depends on tech stack, legacy requirements, and long-term cloud goals.