Contents

1	Vector Spaces					
	1.1	Vector Spaces	3			
	1.2	Subspaces	14			
	1.3	Linear Combinations	27			
	1.4	Linear Dependence and Linear Independence	31			
	1.5	Bases and Dimension	40			
2	ear Transformations and Matrices	4 9				
	2.1	Linear Transformations, Null spaces, and Ranges	49			

Linear Algebra Exercises

Lance Remigio

December 27, 2023

Chapter 1

Vector Spaces

1.1 Vector Spaces

Exercise 1.2.1

Label the following statements as true or false.

- (a) Every vector space contains a zero vector.
- (b) A vector space may have more than one zero vector.
- (c) In any vector space, ax = bx implies that a = b.
- (d) In any vector space, ax = ay implies that x = y.

Exercise 1.2.7

Let $S = \{0, 1\}$ and $F = \mathbb{R}$. In $\mathcal{F}(S, \mathbb{R})$, show that f = g and where f(t) = 2t + 1, $g(t) = 1 + 4t - 2t^2$, and $h(t) = 5^t + 1$.

Proof. To show that f = g, we have to show that for each $s \in S$ that f(s) = g(s). Since $S = \{0, 1\}$, we can just evaluate both f and g for elements in S. Note that

$$f(0) = 2(0) + 1 = 1$$

and likewise,

$$g(0) = 1 + 4(0) - 2(0)^{2}.$$

Hence, f(0) = g(0). Now let us evaluate both functions f and g at s = 1. Hence, we have

$$f(1) = 2(1) + 1 = 3$$

and

$$g(1) = 1 + 4(1) - 2(1)^2 = 3.$$

Thus, we must have f(s) = g(s) for all $s \in S$.

Now, we need to show that f + g = h. Like we did above, we have to show that this is the case for all $s \in S$. Note that

$$(f+g)(s) = f(s) + g(s).$$

Hence, we have

$$f(s) + q(s) = 2 + 6s - 2s^2$$
.

Evaluating at s = 0, we have

$$f(0) + g(0) = 2.$$

and likewise,

$$h(0) = 5^0 + 1 = 2.$$

Hence, (f+g)(0) = h(0). Now let us evaluate f+g at s=1

$$f(1) + g(1) = 2 + 6(1) - 2(1)^2 = 6$$

and likewise, we have

$$h(1) = 5^1 + 1 = 6.$$

Hence, we have (f+g)(1)=h(1). Thus, we have that f+g=h for all $s\in S$.

Exercise 1.2.8

In any vector space V, we have

$$(a+b)(x+y) = ax + ay + bx + by$$

for any $x, y \in V$ and any $a, b \in F$.

Proof. Observe the following set equalities:

$$(a+b)(x+y) = a(x+y) + b(x+y)$$
 (VS 8)

$$= ax + ay + bx + by. (VS 7)$$

Hence, we have that

$$(a+b)(x+y) = ax + ay + bx + by$$

for any $x, y \in V$ and any $a, b \in F$.

Exercise 1.2.10

Let V denote the set of all differentiable real-valued functions defined on the real line. Prove that V is a vector space with the operations of addition and scalar multiplication defined in Example 3.

Proof. Let V denote the set of all differentiable real-valued functions defined on the real line. We need to show that V is a vector space over \mathbb{R} with addition and scalar multiplication defined in Example 3.

(VS 1) Let $f, g \in V$. We need to show that f + g = g + f for all $x \in \mathbb{R}$. Let $x \in \mathbb{R}$. Since f(x) and g(x) are also real numbers, we have

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).$$

Hence, we have f + g = g + f.

(VS 2) Let $f, g, h \in V$. We need to show that f + (g + h) = (f + g) + h. Let $x \in \mathbb{R}$. Since

 $f(x), g(x), h(x) \in \mathbb{R}$, we can see that

$$(f + (g + h))(x) = f(x) + (g + h)(x)$$

= $f(x) + g(x) + h(x)$
= $(f + g)(x) + h(x)$
= $((f + g) + h)(x)$.

Hence, we have f + (g + h) = (f + g) + h.

(VS 3) Observe that $f_0(x) = 0$ for all $x \in \mathbb{R}$ is also a real-valued function that is differentiable. We need to show that $f + f_0 = f$. Hence, we have

$$(f + f_0)(x) = f(x) + f_0(x) = f(x) + 0 = f(x).$$

Hence, $f + f_0 = f$ for all $x \in \mathbb{R}$.

(VS 4) Take c = -1 and perform a scalar operation with a $f \in V$. Observe that $(-1 \cdot f)(x) = (-1)f(x) = -f(x)$. Denote g = -f. Since additive inverses exists in \mathbb{R} , we have

$$(f-g)(x) = (f-f)(x)$$

$$= f(x) - f(x)$$

$$= 0$$

$$= f_0(x).$$

Hence, $f - g = f_0$ for all $x \in \mathbb{R}$.

(VS 5) Let $f \in V$ and let $x \in \mathbb{R}$. We need to show that $1 \cdot f = f$. Since $f(x) \in \mathbb{R}$, we can see that multiplicative identities in \mathbb{R} are also preserved in V; that is, we have

$$(1f)(x) = 1 \cdot f(x) = f(x).$$

Hence, we have 1f = f for all $x \in \mathbb{R}$.

(VS 6) Let $a, b \in \mathbb{R}$ and $f \in V$. Let $x \in \mathbb{R}$ be arbitrary. Then observe that

$$((ab)f)(x) = (ab)f(x) = a(bf(x)) = a(bf)(x).$$

Hence, we have (ab)f = a(bf) for all $x \in \mathbb{R}$.

(VS 7) Let $a \in \mathbb{R}$ and let $f, g \in V$. We need to show that a(f+g) = af + ag. Let $x \in \mathbb{R}$. Observe that $f(x), g(x) \in \mathbb{R}$ imply

$$(a(f+g))(x) = a(f+g)(x)$$

$$= a(f(x) + g(x))$$

$$= af(x) + ag(x)$$

$$= (af)(x) + (ag)(x).$$

Hence, we conclude that a(f+g) = af + ag for all $x \in \mathbb{R}$.

(VS 8) Let $a, b \in \mathbb{R}$ and let $f \in V$. Let $x \in \mathbb{R}$. Then we have

$$((a+b)f)(x) = (a+b)f(x)$$
$$= af(x) + bf(x)$$
$$= (af)(x) + (bf)(x).$$

Hence, we have (a+b)f = af + bf for all $x \in \mathbb{R}$.

Since all the properties of a vector space have been satisfied, we conclude that V is a vector space.

Exercise 1.2.11

Let $V = \{0\}$ consist of a single vector O and define O + O = O and cO = O for each scalar $c \in F$. Prove that V is a vector space over F.

Proof. Let $x, y \in O$. Since $V = \{0\}$, we know that x and y are both the 0 vector. By using the addition defined on V, we can see that

$$x + y = O + O = y + x.$$

Note that $x + y \in V$ implies that x + y = O + O and likewise y + z = O + O for every $x, y, z \in V$. Hence, we have that

$$x + (y + z) = O + (O + O) = (O + O) + O = (x + y) + z.$$

Since V consists of only the zero vector O, we know that (VS 3) and (VS 4) are satisfied. By the same reasoning, (VS 5) is satisfied because

$$1 \cdot O = O$$
.

Let $a, b \in F$. Then (VS 6) and (VS 7) are satisfied because

$$(ab)O = 0 = a \cdot 0 = a(bO)$$
 and $a(O + O) = 0 = O + O = aO + aO$ respectively.

Let $a, b \in F$ again. Then we have

$$(a+b)O = 0$$
$$= O + O$$
$$= aO + bO.$$

Hence, (VS 8) is satisfied.

Exercise 1.2.12

A real-valued function f defined on the real line is called an **even function** if f(-t) = f(t) for all $t \in \mathbb{R}$. Prove that the set of even functions defined on \mathbb{R} with the operations of addition and scalar multiplication defined in Example 3 is a vector space.

Proof. First, let us show that for every $t \in \mathbb{R}$ that (f+g)(t) is also an even function for every pair of even functions f, g and likewise (cf)(t) is an even function for every $c \in \mathbb{R}$.

Observe that

$$(f+g)(-t) = f(-t) + g(-t)$$

= $f(t) + g(t)$
= $(f+g)(t)$.

Hence, the function f + g is also even. Now observe that

$$(cf)(-t) = cf(-t)$$
$$= cf(t)$$
$$= (cf)(t).$$

Hence, cf is also even function.

Now we can show that the set of even functions is a vector space.

(VS 1) Let f, g be a pair of real-valued even functions. Let $t \in \mathbb{R}$ be arbitrary. We need to show that f + g = g + f. Since f(t) and g(t) are real numbers, observe that

$$(f+g)(t) = f(t) + g(t) = g(t) + f(t) = (g+f)(t).$$

Hence, we have that f + g = g + f.

(VS 2) Let f, g, h be even functions and let $t \in \mathbb{R}$ be arbitrary. We need to show that f + (g + h) = (f + g) + h. By the same reasoning we used to prove (VS 1), observe that

$$f(t) + ((g+h)(t)) = f(t) + (g(t) + h(t))$$
$$= (f(t) + g(t)) + h(t)$$
$$= ((f+g)(t)) + h(t)$$

Hence, we have that f + (g + h) + (f + g) + h.

(VS 3) Let f be an even function. Note that the zero function is an even function. Denote the zero function as f_0 . For every $t \in \mathbb{R}$, we have $f_0(x) = O$. We need to show that $f + f_0 = f$. Since $f_0(x)$ is just a real number, we have

$$(f + f_0)(t) = f(t) + f_0(t) = f(t) + O = f(t).$$

(VS 4) Let f be an even function and let f_0 be the zero function defined above. We need to show that there exists a even function g such that $f + g = f_0$. Let $t \in \mathbb{R}$ be arbitrary. Note that

$$(f+g)(t) = f(t) + g(t)$$

Since f(t) and g(t) are real numbers and there exists an additive identity in the real numbers, we have that $f(t) + g(t) = f_0(t)$. Hence, (VS 5) is satisfied.

- (VS 5) Let $x \in \mathbb{R}$ and f an even function. Then we immediately have $(1 \cdot f)(t) = 1f(t) = f(t)$.
- (VS 6) Let $a, b \in \mathbb{R}$. We need to show that (ab)f = a(bf). Hence, let $t \in \mathbb{R}$. Then we have

$$(abf)(t) = a(bf)(t).$$

(VS 7) Let $a \in \mathbb{R}$ and let f, g be even functions. Let $t \in \mathbb{R}$. We need to show that a(f+g) = af + ag. Then we have

$$a(f+g)(t) = a[f(t) + g(t)]$$
$$= af(t) + ag(t).$$

Hence, (VS 7) is satisfied.

(VS 8) Now let $a, b \in \mathbb{R}$ and let f be an even function. We need to show that (a+b)f = af + bf. Let $t \in \mathbb{R}$ be arbitrary. Observe that

$$(a+b)f(t) = af(t) + bf(t)$$
$$= (af)(t) + (bf)(t)$$

Hence, (VS 8) is satisfied.

Exercise 1.2.13

Let V denote the set of ordered pairs of real numbers. If (a_1, a_2) and (b_1, b_2) are elements of V and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + a_2, a_2b_2)$$
 and $c(a_1, a_2) = (ca_1, a_2)$.

Is V is a vector space over \mathbb{R} with these operations? Justify your answer.

Proof. We have that V is not a vector space of \mathbb{R} . To see why, let $(2,1), (4,2) \in V$ where x = (2,1) and y = (4,2). We will show that (VS 1) does not hold; that is, $x + y \neq y + x$. Hence, observe that

$$(2,1) + (4,2) = (2+1,2) = (3,2)$$

and

$$(4,2) + (2,1) = (4+2,2) = (6,2)$$

Hence, we have $x + y \neq y + x$ and so V is **NOT** a vector space.

Exercise 1.2.14

Let $V = \{(a_1, a_2, \dots, a_n) : a_i \in C \text{ for } i = 1, 2, \dots, n)\}$; so V is a vector space over C by Example 1. Is V is a vector space over the field of real numbers with the operations of coordinate-wise addition and multiplication?

Proof. Yes, V where

$$V = \{(a_1, a_2, \dots, a_n) : a_i \in \mathbb{R} \text{ for } i = 1, 2, \dots, n\}$$

is a vector space of \mathbb{R}

(VS 1) Let $x, y \in V$ such that $x = (a_1, a_2, \dots, a_n)$ and $y = (b_1, b_2, \dots, b_n)$. Since addition is

- entry-wise in V and each entry in both x and y are elements of \mathbb{R} (where \mathbb{R} is a field), we have $a_i + b_i = b_i + a_i$ for all i = 1, 2, ..., n. Hence, x + y = y + x.
- (VS 2) Let $x, y, z \in V$ with x and y as defined as before where z contains entries c_i for all i = 1, 2, ..., n. We can see that the entries of x, y, z are elements of \mathbb{R} so associativity is preserved; that is, $a_i + (b_i + c_i) = (a_i + b_i) + c_i$ for all i = 1, 2, ..., n. Hence, we have x + (y + z) = (x + y) + z.
- (VS 3) Since \mathbb{R} contains the zero element 0 and V is the set of n-tuples, there exists an element denoted by O such that this element consisting of entries that only have the zero element 0; that is, $O = (0, 0, \dots, 0)$. Take $x \in V$. Hence, we have $a_i + 0 = a_i$ for every $i = 1, 2, \dots, n$. Thus, we must have x + O = x.
- (VS 4) Let $x \in V$ be arbitrary as defined before. Since every entry in x is an element of \mathbb{R} ; that is, every $a_i \in \mathbb{R}$ for all i = 1, 2, ..., n, we know that every entry contains an element c_i such that $a_i + c_i = 0$ for every i = 1, 2, ..., n. Denote $x' = (c_1, c_2, ..., c_n)$. Hence, we have x + x' = O.
- (VS 5) Let $x \in V$. Every entry $a_i \in \mathbb{R}$ for all i = 1, 2, ..., n, we have $1 \cdot a_i = a_i$ which holds for all i. Denote this identity element as I with entries consisting only of 1. Hence, we have $I \cdot x = x$.
- (VS 6) Let $e, r \in \mathbb{R}$ and let $x \in V$. For every entry $a_i \in \mathbb{R}$ for all i = 1, 2, ..., n, we have $(er)a_i = e(ra_i)$ for all i = 1, 2, ..., n. By using the operations of scalar multiplication for n-tuples, this tells us that (er)x = e(rx). Hence, (VS 6) is satisfied.
- (VS 7) Let $e \in \mathbb{R}$ and let $x, y \in V$. We need to show that e(x + y) = ex + ey. Note that $a_i, b_i \in \mathbb{R}$ implies that $e(a_i + b_i) = ea_i + eb_i$. Hence, we have e(x + y) = ex + ey.
- (VS 8) Let $e, r \in \mathbb{R}$ and $x \in V$ as defined before. We need to show that (e+r)x = ex + rx. Since $a_i \in \mathbb{R}$ with $e, r \in \mathbb{R}$, we are guaranteed to have $(e+r)a_i = ea_i + ra_i$ for all $i = 1, 2, \ldots, n$. Hence, we have (e+r)x = ex + rx.

Exercise 1.2.16

Let V denote the set of all $m \times n$ matrices with real entries; so V is a vector space over \mathbb{R} by Example 2. Let F be the field of rational numbers. Is V a vector space over F with the usual definitions of matrix addition and scalar multiplication?

- **Proof**(VS 1) Let $A, B \in V$. Since A, B consist of elements $A_{ij}, B_{ij} \in \mathbb{R}$, we know that $A_{ij} + B_{ij} = B_{ij} + A_{ij}$. Hence, A + B = B + A.
- (VS 2) Let $A, B, C \in V$ with A, B defined as before and C containing real entries C_{ij} . With the same reasoning used to prove (VS 1), we know that $A_{ij} + (B_{ij} + C_{ij}) = (A_{ij} + B_{ij}) + C_{ij}$. Hence, we have A + (B + C) = (A + B) + C.
- (VS 3) Let $A \in V$ once again. Since the entries of A imply that there exists an element O such that $A_{ij} + 0 = A_{ij}$, we know that A + O = A where O is the **zero matrix** of V.
- (VS 4) Since the real entries of A also consists of an element A'_{ij} such that $A_{ij} + A'_{ij} = 0$, this implies that A + A' = O where A' is the additive inverse matrix of V.
- (VS 5) Let $x \in V$ as defined as before. Every entry of $A, A_{ij} \in \mathbb{R}$, has the following property:

- $1 \cdot A_{ij} = A_{ij}$ for all $1 \le i \le m$ and for all $1 \le j \le n$. The matrix whose entries consists of only one we can define as the **identity matrix** denoted by I where $I_{ij} = 1$ for all $1 \le i \le m$ and $1 \le j \le n$. Hence, we have $A \cdot I = A$.
- (VS 6) Let $r, t \in \mathbb{Q}$ and let $A \in V$ as defined before. We need to show that (rt)A = r(tA). Since $A_{ij} \in \mathbb{R}$, entry-wise scalar multiplication implies that $(rt)A_{ij} = r(tA_{ij})$ for all $1 \le i \le m$ and $1 \le j \le n$. Hence, we must have (rt)A = r(tA).
- (VS 7) Let $r \in \mathbb{Q}$ and $A, B \in V$ as defined before. Since $A_{ij}, B_{ij} \in \mathbb{R}$, we know that $r(A_{ij} + B_{ij}) = rA_{ij} + rB_{ij}$. Hence, we have r(A + B) = rA + rB.
- (VS 8) Let $r, t \in \mathbb{Q}$ and let $A \in V$ as defined before. Since $A_{ij} \in \mathbb{R}$ for all i, j, we must have $(r+t)A_{ij} = rA_{ij} + tA_{ij}$. Hence, we have (r+t)A = rA + tA. Hence, V is a vector space over \mathbb{Q} .

Exercise 1.2.17

Let $V = \{(a_1, a_2) : a_1, a_2 \in F\}$, where F is a field. Define addition of elements of V coordinatewise, and for $c \in F$ and $(a_1, a_2) \in V$, define

$$c(a_1, a_2) = (ca_1, 0).$$

Is V a vector space over F with these operations? Justify your answer.

Proof. We claim that V is not a vector space over F because V fails to satisfy (VS 5). To see why, let $(1,2) \in V$. Using (VS 5), we have

$$1 \cdot (1,2) = (1,0) \neq (1,2).$$

Hence, V cannot be a vector space.

Exercise 1.2.18

Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$.

Is V a vector space over $F = \mathbb{R}$ with these operations? Justify your answer?

Proof. We claim that V is not a vector space over \mathbb{R} and we will use (VS 1) to show this. Let $x, y \in V$ be defined by x = (1, 2) and y = (3, 4). Observe that

$$x + y = (1, 2) + (3, 4) = (7, 14)$$

and

$$y + x = (3, 4) + (1, 2) = (5, 10).$$

Clearly, we have $x + y = (7, 14) \neq (5, 10) = y + x$ and so (VS 1) does not hold.

Exercise 1.2.19

Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$. Define addition of elements of V coordinate-wise, and for $(a_1, a_2) \in V$ and $c \in \mathbb{R}$, define

$$c(a_1, a_2) = \begin{cases} (0, 0) & \text{if } c = 0\\ \left(ca_1, \frac{a_2}{c}\right) & \text{if } c \neq 0. \end{cases}$$

Is V a vector space over \mathbb{R} with these operations? Justify your answer.

Proof. We claim that V is not a vector space over \mathbb{R} . To see why, consider (VS 8). If we let $(0,1) \in V$ with c=2+1=3. Observe that

$$(2+1)(0,1) = \left(0, \frac{1}{2+1}\right) = \left(0, \frac{1}{3}\right).$$

Likewise, we have

$$2(0,1) + 1(0,1) = \left(0, \frac{1}{2}\right) + \left(0,1\right) = \left(0, \frac{3}{2}\right).$$

Notice that $(2+1)(0,1) \neq 2(0,1) + 1(0,1)$. Hence, V cannot be a vector space over \mathbb{R} .

Exercise 1.2.20

Let V denote the set of all real-valued functions f defined on the real line such that f(1) = 0. Prove that V is a vector space with the operations of addition and scalar multiplication defined in Example 3.

Proof. Define V as a vector space with the operations of addition and scalar multiplication defined in Example 3. We must show that V is a vector space.

(VS 1) Let $f, g \in V$. This means that f(1) = 0 and g(1) = 0. We need to show that f + g = g + f. Since $f(1), g(1) \in \mathbb{R}$ and commutativity holds in \mathbb{R} , we can write

$$(f+g)(1) = f(1) + g(1)$$

= $g(1) + f(1)$
= $(g+f)(1)$

Hence, we have f + q = q + f.

(VS 2) Let $f, g, h \in V$ then f(1) = g(1) = h(1) = 0. We need to show that f + (g + h) = (f + g) + h. Observe that

$$(f + (g + h))(1) = f(1) + (g + h)(1)$$

$$= f(1) + g(1) + h(1)$$

$$= (f + g)(1) + h(1)$$

$$= ((f + g) + h)(1).$$

Hence, we have f + (g + h) = (f + g) + h.

(VS 3) Let $f \in V$. We need to show that $f + f_0 = f$ for some $f_0 \in V$. Since V contains elements of $f \in V$ such that f(1) = 0, we can choose f_0 such that $f_0(1) = 0$. We can show that this is indeed the additive inverse of V by writing the following:

$$(f + f_0)(1) = f(1) + f_0(1) = f(1) + 0 = f(1).$$

Hence, we have $f + f_0 = f$.

(VS 4) Let $f \in V$. We need to find an element $g \in V$ such that $f + g = f_0$ By definition of V, f(1) = 0. We need to show that $f + g = f_0$ with f_0 defined as before. Choose g = -f

as our additive inverse and observe that

$$(f+g)(1) = (f-f)(1)$$

$$= f(1) - f(1)$$

$$= 0 - 0$$

$$= 0$$

$$= f_0(1).$$

Hence, g = -f an element such that $f + g = f_0$.

(VS 5) Let $f \in V$. By definition of V, we have f(1) = 0. Since $f(1) \in \mathbb{R}$, we know that $1 \cdot f(1) = f(1)$. We need to show that 1f = f. Observe that

$$(1f)(1) = 1 \cdot f(1) = f(1).$$

Hence, (VS 5) holds.

(VS 6) Let $a, b \in \mathbb{R}$ and let $x \in V$. We need to show that (ab)f = a(bf). By using scalar multiplication, we can see that

$$(ab \cdot f)(1) = (ab)f(1) = a(bf(1)) = a(b \cdot f)(1).$$

Hence, (VS 6) must hold.

(VS 7) Let $a \in \mathbb{R}$ and let $f, g \in V$. We need to show that a(f+g) = af + ag. Observe that

$$a(f+g)(1) = a(f(1) + g(1))$$

$$= af(1) + ag(1)$$

$$= (af)(1) + (ag)(1).$$

Hence, a(f+g) = af + ag and so (VS 7) is satisfied.

(VS 8) Let $a, b \in \mathbb{R}$ and let $f \in V$. Observe that

$$(a+b)f(1) = af(1) + bf(1)$$

= $(af)(1) + (bf)(1)$

Hence, (a+b)f = af + bf. Thus, V must be a vector space over \mathbb{R} .

Exercise 1.2.21

Let V and W be vector spaces over a field F. Let

$$Z = \{(v, w) : v \in v \text{ and } w \in W\}.$$

Prove that Z is a vector space over F with the operations

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$$
 and $c(v_1, w_1) = (cv_1, cw_1)$.

Proof. Let V and W be vector spaces over a field F.

(VS 1) Let $x, y \in Z$ where $x = (v_1, w_1)$ and $y = (v_2, w_2)$. Since V and W are vector spaces, commutativity holds. Since the addition defined on both V and W is entry-wise, we

can see that

$$x + y = (v_1, w_1) + (v_2, w_2)$$

$$= (v_1 + v_2, w_1 + w_2)$$

$$= (v_2 + v_1, w_2 + w_1)$$

$$= (v_2, w_2) + (v_1, w_1)$$

$$= y + x.$$

Hence, we can see that (VS 1) is satisfied.

(VS 2) Let $x, y, z \in Z$ with x and y as defined before as well as $z = (z_3, w_3)$. Using the entry-wise addition defined for Z, we can see that

$$x + (y + z) = (v_1, w_1) + ((v_2, w_2) + (v_3, w_3))$$

$$= (v_1, w_1) + (v_2 + v_3, w_2 + w_3)$$

$$= (v_1 + (v_2 + v_3), w_1 + (w_2 + w_3))$$

$$= ((v_1 + v_2) + v_3, (w_1 + w_2) + w_3)$$

$$= (v_1 + v_2, w_1 + w_2) + (v_3, w_3)$$

$$= (x + y) + z.$$

(VS 3) Since V and W are vector spaces, we know that there exists an additive identity O_V and O_W respectively. Hence, we have $(O_V, O_W) \in Z$ and denote $O_Z = (O_V, O_W)$. Now, let $x \in Z$ as defined before. Observe that

$$x + O_Z = (v_1, w_1) + (O_V, O_W)$$

= $(v_1 + O_V, w_1 + O_W)$
= (v_1, w_1)
= x .

(VS 4) Observe that V and W contain additive inverses for each $v \in V$ and $w \in W$ respectively. Since $x = (v_1, w_1)$ with $v_1 \in V$ and $w_1 \in W$, there exists an additive inverse $v'_1 \in V$ and $w'_1 \in W$ such that $v_1 + v'_1 = O_V$ and $w_1 + w'_1 = O_W$. This implies that $(v'_1, w'_1) \in Z$ which we will denote by x' such that

$$x + x' = (v_1, w_1) + (O_V, O_W)$$

$$= (v_1 + v'_1, w_1 + w'_1)$$

$$= (O_V, O_W)$$

$$= O_Z.$$

(VS 5) Let $x \in Z$. Since V and W are vector spaces (VS 5) implies that $1 \cdot v_1 = v_1$ and $1 \cdot w_1 = w_1$ respectively. Then observe that

$$1 \cdot x = 1 \cdot (v_1, w_1)$$

= $(1 \cdot v_1, 1 \cdot w_1)$
= (v_1, w_1)
- x

(VS 6) Let $x \in Z$ and $a, b \in F$. Then

$$(ab)x = (ab)(v_1, w_1)$$

$$= ((ab)v_1, (ab)w_1)$$

$$= (a(bv_1), a(bw_1))$$

$$= a(bv_1, bw_1)$$

$$= a(bx)$$

$$(V, W \text{ vector space})$$

(VS 7) Let $x, y \in Z$ as defined before. Let $a \in F$. Then

$$a(x + y) = a((v_1, w_1) + (v_2, w_2))$$

$$= a((v_1 + v_2, w_1 + w_2))$$

$$= (a(v_1 + v_2), a(w_1 + w_2))$$

$$= (av_1 + av_2, aw_1 + aw_2)$$

$$= (av_1, av_2) + (aw_1, aw_2)$$

$$= a(v_1, v_2) + a(w_1, w_2)$$

$$= ax + ay.$$

(VS 8) Let $a, b \in F$ and let $x \in V$ as defined before. Since V and W are vector spaces, we know that (VS 8) holds for bot entries $v_1 \in V$ and $w_1 \in W$. Hence, observe that

$$(a+b)x = (a+b)(v_1, w_1)$$

$$= ((a+b)v_1, (a+b)w_1)$$

$$= (av_1 + bv_1, aw_1 + bw_1)$$

$$= (av_1, aw_1) + (bv_1, bw_1)$$

$$= a(v_1, w_1) + b(v_1, w_1)$$

$$= ax + bx.$$

Hence, Z is a vector space.

1.2 Subspaces

Exercise 1.3.3

Prove that $(aA + bB)^t = aA^t + bB^t$ for any $A, B \in M_{m \times n}(F)$ and any $a, b \in F$.

Proof. Let $A, B \in M_{m \times n}(F)$ and let $a, b \in F$ be arbitrary. Using scalar multiplication defined on $M_{m \times n}(F)$, we have

$$(aA + bB)^t = (aA)^t + (bB)^t$$
$$= aA^t + bB^t.$$

Hence, we are done.

Exercise 1.3.4

Prove that $(A^t)^t = A$ for each $A \in M_{n \times n}(F)$.

Proof. Let $A \in M_{m \times n}(F)$. By definition of transpose, we have

$$\left((A^t)^t \right)_{ij} = (A^t)_{ji} = A_{ij}$$

for all $1 \le i, j \le n$. Hence, $(A^t)^t = A$.

Exercise 1.3.5

Prove that $A + A^t$ is symmetric for any square matrix A.

Proof. Let A be an arbitrary square matrix. Since square matrices are symmetric, we have that $A^t = A$. We need to show that $(A + A^t)^t$. Observe that

$$(A + A^t)^t = A^t + (A^t)^t$$
$$= A + A^t.$$

Hence, we have $A + A^t$ is symmetric.

Exercise 1.3.

Prove that tr(aA + bB) = atr(A) + btr(B) for any $A, B \in M_{n \times n}(F)$.

Proof. Let $A, B \in M_{n \times n}(F)$ and let $a, b \in F$ be arbitrary. Now, let i = j and observe that

$$\operatorname{tr}(aA + bB) = \sum_{i,j \in \mathbb{N}}^{n} (aA + aB)_{ij}$$

$$= \sum_{i,j \in \mathbb{N}}^{n} (aA)_{ij} + (bB)_{ij}$$

$$= \sum_{i,j \in \mathbb{N}}^{n} (aA)_{ij} + \sum_{i,j \in \mathbb{N}}^{n} (bB)_{ij}$$

$$= \sum_{i,j \in \mathbb{N}}^{n} aA_{ij} + \sum_{i,j \in \mathbb{N}}^{n} bB_{ij}$$

$$= a\sum_{i,j \in \mathbb{N}}^{n} A_{ij} + b\sum_{i,j \in \mathbb{N}}^{n} B_{ij}$$

$$= a\operatorname{tr}(A) + b\operatorname{tr}(B).$$

Hence, we conclude

$$tr(aA + bB) = atr(A) + btr(B)$$

for any $A, B \in M_{n \times n}(F)$.

Exercise 1.3.7

Prove that diagonal matrices are symmetric matrices.

Proof. Let $A \in M_{n \times n}(F)$ be diagonal. Let $i \neq j$ where $A_{ij} = 0$. We need to show that $A^t = A$. If we apply a transpose on A, we get that $A_{ji} = 0$ since A^t is also diagonal and square. Since $A_{ij} = A_{ji} = 0$ for all $1 \leq i \leq n$ and $1 \leq j \leq n$. Hence, $A^t = A$

Exercise 1.3.8

Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answers.

(a) $W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2\}$

Proof. We claim that W_1 is a subspace of \mathbb{R}^3 .

- (a) Note that $O_{\mathbb{R}^3} \in W_1$ where $O_{\mathbb{R}^3} = (0,0,0)$ because $0 = 3 \cdot 0$ and $0 = -1 \cdot 0$.
- (b) Let $x, y \in W_1$ where $x = (a_1, a_2, a_3)$ and $y = (b_1, b_2, b_3)$. We need to show that $x + y \in W_1$. Since $a_1 = 3a_2$ and $a_3 = -a_2$ as well as $b_1 = 3b_2$ and $b_3 = -b_2$, we can write $a_1 + b_1 = 3(a_2 + b_2)$ and $a_3 + b_3 = -(a_2 + b_2)$. Hence, $x + y \in W_1$.
- (c) Let $c \in \mathbb{R}$ and $x \in W_1$ with x defined as before. Then observe that $ca_1 = c(3a_2) = 3(ca_2)$ and $ca_3 = c(-a_2) = -(ca_2)$. Hence, $cx \in W_1$.

Since all the properties of a Theorem 3 have been satisfied, we can conclude that W_1 is a subspace of \mathbb{R}^3 .

- (b) $W_2 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = a_3 + 2\}$
- (c) $W_3 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 7a_2 + a_3 = 0\}$
- (d) $W_4 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 4a_2 3a_3 = 1\}$
- (e) $W_5 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 3a_3 = 1\}$
- (f) $W_6 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 5a_1^2 3a_2^2 + 6a_3^2 = 0\}$

Exercise 1.3.9

Let W_1, W_3, W_4 be as in Exercise 8. Describe $W_1 \cap W_3, W_1 \cap W_4$, and $W_3 \cap W_4$ and observe that each is a subspace of \mathbb{R}^3 .

Proof.

Exercise 1.3.11

Prove that the set $W_1 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 + a_2 + \dots + a_n = 0\}$ is a subspace of F^n , but $W_2 = \{(a_1, a_2, \dots, a_n)\} \in F^n : a_1 + a_2 + \dots + a_n = 1$ is not.

Proof. We need to show that W_1 is a subspace of F^n . We proceed by satisfying the properties of Theorem 3 to do this.

- (a) Note that $O_{F^n} \in W_1$ since $0 + 0 + \cdots + 0 = 0$ n times.
- (b) Let $x, y \in W_1$ with $x = (a_1, a_2, \dots, a_3)$ and $y = (b_1, b_2, \dots, b_n)$. By definition of W_1 ,

we can see that

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$
$$= 0 + 0$$
$$= 0.$$

Hence, $x + y \in W_1$ which tells us that W_1 is closed under addition.

(c) Let $x \in W_1$ and $c \in F$. Then observe that

$$\sum_{i=1}^{n} (ca_i) = c \sum_{i=1}^{n} a_i = c \cdot 0 = 0.$$

Hence, we have $cx \in F^n$.

We claim that W_2 is not a subspace because W_2 is not closed under addition. Let $(0,1), (1,0) \in F^2$. Observe that 0+1=1 and 1+0=1, but (0+1)+(1+0)=1+1=2. Hence, $(0,1)+(1,0) \notin W_2$.

Exercise 1.3.11

Is the set $W = \{f(x) \in P(F) : f(x) = 0 \text{ or } f(x) \text{ has degree } n\}$ a subspace of P(F) if $n \ge 1$? Justify your answer.

Exercise 1.3.12

Prove that the set of $m \times n$ upper triangular matrices is a subspace of $M_{m \times n}(F)$.

Proof. Let V denote the set of $m \times n$ upper triangular matrices. We will show that V is a subspace of $M_{m \times n}(F)$ using Theorem 3.

- (a) The zero matrix O from $M_{m \times n}(F)$ contains entries $O_{ij} = 0$ whenever i > j. Hence, $O \in V$.
- (b) Let $A, B \in V$. By definition of V, A and B are upper triangular where $A_{ij} = 0$ and $B_{ij} = 0$ whenever i > j. Observe that

$$(A+B)_{ij} = A_{ij} + B_{ij} = 0 + 0 = 0$$

whenever i > j. Hence, $A + B \in V$.

(c) Let $c \in F$ and $A \in V$ as defined before. Let i > j and observe that $(cA)_{ij} = cA_{ij} = c \cdot 0 = 0$. Hence, $cA \in V$.

Since all the properties of theorem 3 have been satisfied, we conclude that V is indeed a subspace of $M_{m\times n}(F)$.

Exercise 1.3.13

Let S be nonempty set and F is a field. Prove that for any $s_0 \in S$, the set $\{f \in \mathcal{F}(S, F) : f(s_0) = 0\}$, is a subspace of $\mathcal{F}(S, F)$.

Proof. We will proceed to prove that S is a subspace of $\mathcal{F}(S, F)$ over the field F by satisfying the properties of Theorem 3. Let $V = \{ f \in \mathcal{F}(S, F) : f(s_0) = 0 \}$.

- (a) Note that the zero function $f_0 \in \mathcal{F}(S, F)$ where $f_0(s_0) = 0$ for any $s_0 \in S$ implies that $f_0 \in V$.
- (b) Let $f, g \in V$. By definition of V, $f(s_0) = 0$ and $g(s_0) = 0$ for any $s_0 \in S$. We have $f + g \in V$ since

$$(f+g)(s_0) = f(s_0) + g(s_0) = 0 + 0 = 0.$$

Hence, V is closed under addition.

(c) Let $f \in V$ and $c \in F$. We have $cf \in V$ since

$$(cf)(s_0) = cf(s_0) = c \cdot 0 = 0$$

for any $s_0 \in S$. Hence, V is closed under scalar multiplication.

Exercise 1.3.14

Let S be a nonempty set and F a field. Let C(S, F) denote the set of all functions $f \in \mathcal{F}(S, F)$ such that f(s) = 0 for all but a finite number of elements of S. Prove that C(S, F) is a subspace of $\mathcal{F}(S, F)$.

Proof. We proceed by using Theorem 3 to prove that C(S, F) is a subspace where S is a nonempty set and F is a field.

- (a) Note that the zero vector $f_0 \in \mathcal{F}(S, F)$ is in $\mathcal{C}(S, F)$ because $f_0(x_n) = 0$ where $x_n \in S$ for finitely many n.
- (b) Let $f, g \in \mathcal{C}(S, F)$. We need to show that $f + g \in \mathcal{C}(S, F)$. Let $x_n \in S$ for finitely many n. Then using the addition defined on $\mathcal{F}(S, F)$, we can write

$$(f+q)(x_n) = f(x_n) + q(x_n) = 0 + 0 = 0.$$

(c) Let $f \in \mathcal{C}(S, F)$ and $c \in F$. We need to show that $cf \in \mathcal{C}(S, F)$. Let $x_n \in S$ for finitely many n. Using the scalar operation defined on $\mathcal{F}(S, F)$, we can write

$$(cf)(x_n) = cf(x_n) = c \cdot 0 = 0.$$

Since all the properties of Theorem 3 have been satisfied, we conclude that C(S, F) is indeed a subspace of F(S, F).

Exercise 1.3.15

Is the set of all differentiable real-valued functions defined on \mathbb{R} a subspace of $C(\mathbb{R})$?

Proof. We claim that the set of all differentiable real-valued functions defined on \mathbb{R} is a subspace of $C(\mathbb{R})$. Denote this set as V.

(a) Note that the zero function f_0 is differentiable for all $x \in \mathbb{R}$ and continuous for all $x \in \mathbb{R}$. Hence, $f_0 \in V$.

- (b) Let $f, g \in V$. Using the addition operation defined on $C(\mathbb{R})$, we get that the sum (f+g)(x) = f(x) + g(x) differentiable which implies that the sum of functions f, g is also continuous. Hence, $f+g \in V$.
- (c) Let $f \in V$ and let $c \in \mathbb{R}$. Then (cf)(x) = cf(x) is differentiable for all $x \in \mathbb{R}$ which means that cf is also continuous. Hence, $cf \in V$.

Hence, V is a subspace of $C(\mathbb{R})$.

Exercise 1.3.16

Let $C^n(\mathbb{R})$ denote the set of all real-valued functions defined on the real line that have a continuous nth derivative. Prove that $C^n(\mathbb{R})$ is a subspace of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Proof.

Exercise 1.3.17

Prove that a subset W of a vector space V is a subspace of V if and only if $W \neq \emptyset$ and, whenever $a \in F$ and $x, y \in W$, then $ax \in W$ and $x + y \in W$.

Proof. For the forwards direction, let $W \subseteq V$ where V is a vector space and W is a subspace of V. Let $a \in F$ and $x, y \in W$. Since W is a subspace, we know that $O_V \in W$. So, W is nonempty. Since W is closed under addition and multiplication, we get that $x + y \in W$ and $ax \in W$ and we are done.

For the backwards direction, let $W \neq \emptyset$ and $W \subseteq V$. Let $a \in F$ and $x, y \in W$ be arbitrary such that $ax \in W$ and $x + y \in W$. We need to show that W is a subspace of V. We need only show that $O_V \in W$ since W is closed under addition and scalar multiplication. Let $x \in W$. We can pick any $c \in F$ such that c = 0. So, we have $c \cdot x = 0 \cdot x = O_w$. Since the zero vector $O_W \in W$ is unique, we must have $O_V = O_W$. Hence, $O_V \in W$ and we conclude that W is a subspace of V.

Exercise 1.3.18

Prove that a subset W of a vector space V is a subspace of V if and only if $O \in W$ and $ax + y \in W$ whenever $a \in F$ and $x, y \in W$.

Proof. (\Rightarrow) Let $W \subseteq V$ where W is a subspace of V. Since W is a subspace of V, we know that W is closed under addition and scalar multiplication. Let $a \in F$ and $x, y \in W$. Using the third property of Theorem 3, we can see that $ax \in W$. Since W is closed under addition, we can take $y \in W$ and $ax \in W$ such that $ax + y \in W$. Since W is also a vector space by definition, we know that $O_W \in W$. But $O_W = O_V$ so $O_V \in W$.

- (\Leftarrow) Let $a \in F$ and $x, y \in W$. We want to show that $W \subseteq V$ is a subspace of V. We can do this by using Theorem 3.
 - (a) By assumption, the zero vector $O_V \in W$.
 - (b) Let $x, y \in W$. Choose a = 1 such that ax + y = x + y. Since $ax + y \in W$ and ax + y = x + y, we also have $x + y \in W$. Hence, W is closed under addition.
 - (c) Let $x \in W$ and $O_V \in W$. Let $a \in F$. Then we have $ax + O_V = ax \in W$.

Hence, W is a subspace of V by Theorem 3.

Exercise 1.3.19

Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Proof. (\Rightarrow) Let $W_1 \cup W_2$ is a subspace of V. We need to show that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. We proceed by showing the contrapositive. Assume $W_2 \not\subseteq W_1$ and $W_1 \not\subseteq W_2$. We need to show that $W_1 \cup W_2$ is **NOT** a subspace of V. By assumption, $x \in W_1$ is not contained in W_2 as well as $y \in W_2$ is not contained in W_1 . This implies that $W_1 \cup W_2 = \emptyset$. Since $W_1 \cup W_2$ is empty where $W_1 \cup W_2$ does not contain O_V , it cannot possibly be a subspace of V.

(\Leftarrow) Let $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. We need to show that $W_1 \cup W_2$ is a subspace of V. We proceed by using Theorem 3 to do this. Without loss of generality, assume $W_1 \subseteq W_2$. The proof will be the same if we use $W_2 \subseteq W_1$.

- (a) Since W_1 is a subspace of V, we get that $O_W \in W_1$. Furthermore, $W_1 \subseteq W_2$ implies that $O_V \in W$. Since $O_V \in W_1$ and $O_V \in W_2$, we get that $O_V \in W_1 \cup W_2$ by definition of union.
- (b) Let $x, y \in W_1$. Since W_1 is a subspace, we get that $x + y \in W_1$. Since $W_1 \subseteq W_2$, we also get that $x + y \in W_2$. Since both $x + y \in W_1$ and $x + y \in W_2$, we know that $x + y \in W_1 \cup W_2$ by definition of the union.
- (c) Let $x \in W_1$ and $c \in F$. Since W_1 is closed under scalar multiplication, we have that $cx \in W_1$. But $W_1 \subseteq W_2$ so W_2 also contains $cx \in W_1$. So we must have $cx \in W_1 \cup W_2$.

Hence, $W_1 \cup W_2$ is a subspace of a vector space V.

Exercise 1.3.20

Prove that if W is a subspace of a vector space V and w_1, w_2, \ldots, w_n are in W, then $a_1w_1 + a_2w_2 + \cdots + a_nw_n \in W$.

Proof. Let W be a subspace of a vector space V. Our goal is to show that the following statement: $a_1w_1 + a_2w_2 + \cdots + a_nw_n \in W$ for all $1 \leq i \leq n$. We proceed by induction on $i \geq 1$. Let i = 1. Since W is closed under scalar multiplication, we know that $a_1 \in F$ and $w_1 \in W$ implies that $a_1w_1 \in W$. Now let i = 2, then $w_1, w_2 \in W$ and $a_1, a_2 \in F$ implies that $a_1w_1 + a_2w_2 \in W$ since W is closed under scalar multiplication and addition. Now, assume that our result holds for all $1 \leq i \leq n$. We want to show that it also holds for i = n + 1. By our inductive hypothesis, we know that $a_1w_1 + a_2w_2 + \cdots + a_nw_n \in W$. Let $a_{n+1} \in F$ and $w_{n+1} \in W$. Using vector addition and scalar multiplication, we know that

$$(a_1w_1 + a_2w_2 + \dots + a_nw_n) + a_{n+1}w_{n+1} \in W.$$

Exercise 1.3.21

Let V denote the vector space of sequences in \mathbb{R} , as defined in Example 5 of section 1.2. Show that the set of convergent sequences (a_n) (that is, those for which $\lim_{n\to\infty} a_n$ exists) is a subspace of V.

Proof. We will show that W (the set of convergent sequences in \mathbb{R}) is a subspace of V by using Theorem 3.

- (a) Note that the zero sequence O_n is zero for all n=1,2,... Hence, the limit of O_n converges to 0 and so we have $O_n \in W$.
- (b) Let (a_n) and (b_n) be two convergent sequences in \mathbb{R} . Then we get that $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$ exists. Observe that

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n.$$

Since the a_n and b_n are both convergent sequences, we also get that the sum $(a_n + b_n)$ also converges. Hence, $(a_n + b_n) \in W$.

(c) Let $t \in F$ and $a_n \in W$ as before. Then we have

$$\lim_{n \to \infty} t a_n = t \lim_{n \to \infty} a_n.$$

Since any constant $t \in F$ multiplied by a convergent sequence is convergent, we also get that the sequence (ta_n) is also convergent. Hence, $ta_n \in W$.

Exercise 1.3.22

Let F_1 and F_2 be fields. A function $g \in \mathcal{F}(F_1, F_2)$ is called an **even function** if g(-t) = g(t) for each $t \in F_1$ and is called an **odd function** if g(-t) = -g(t) for each $t \in F_1$. Prove that the set of all even functions in $\mathcal{F}(F_1, F_2)$ and the set of all odd functions in $\mathcal{F}(F_1, F_2)$ are subspaces of $\mathcal{F}(F_1, F_2)$.

Proof. Let V be the set of all even functions and let W be the set of all odd functions. We will first prove that V is a subspace of $\mathcal{F}(F_1, F_2)$ and the same with W.

- (a) Note that the zero function f_0 from $\mathcal{F}(F_1, F_2)$ is even since $f_0(-t) = 0 = f_0(t)$ for all $t \in F_1$. Hence, $f_0 \in V$.
- (b) Let $f, g \in V$. We need to show that $f + g \in V$; that is, we need to show that it is even. Let $t \in F_1$. Then observe that

$$(f+g)(-t) = f(-t) + g(-t) = f(t) + g(t) = (f+g)(t)$$

Hence, (f+g)(-t) = (f+g)(t) for all $t \in F_1$.

(c) Let $f \in V$ and let $c \in F_2$. Then observe that

$$(cf)(-t) = cf(-t) = cf(t) = (cf)(t).$$

Hence, $cf \in V$.

Since all the properties of V are satisfied, we have that V is a subspace of $\mathcal{F}(F_1, F_2)$. Now we will prove W is a subspace of $\mathcal{F}(F_1, F_2)$.

(a) Note that the zero function f_0 is in W because for any $t \in F_1$ we have $f_0(-t) = 0 = -1 \cdot 0 = -f(t)$. Hence, $f_0 \in W$.

(b) Let $f, g \in W$ and Let $t \in F_1$. Observe that

$$(f+g)(-t) = f(-t) + g(-t) = -f(t) - g(t) - (f+g)(t).$$

Hence, $f + g \in W$.

(c) Let $c \in F_2$ and $f \in W$. Let $t \in F_1$ such that f(-t) = -f(t). Then observe that

$$(cf)(-t) = cf(-t) = cf(t) = (cf)(t).$$

Hence, $cf \in W$.

Hence, W is a subspace of $\mathcal{F}(F_1, F_2)$

Definition 1.2.1 (Sum of Two Sets). If S_1 and S_2 are nonempty subsets of a vector spaces V, then the sum S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } y \in S_2\}$.

Definition 1.2.2 (Direct Sum). A vector space V is called the **direct sum** of W_1 and W_2 if W_1 and W_2 are subspaces of V such that $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.

Exercise 1.3.23

Let $W_1 + W_2$ is a subspace of a vector space V.

(a) Prove that $W_1 + W_2$ is a subspace of V that contains both W_1 and W_2 .

Proof. Let W_1 and W_2 be subspaces of a vector space V. Define $W_1 + W_2$ as the set

$$\{x_1 + y_2 : w_1 \in W_1 \text{ and } w_2 \in W_2\}.$$

- (a) Since W_1 and W_2 are subspaces of V, we know that the zero vector O_V is contained in both W_1 and W_2 . Hence, the sum $O_V = O_V + O_V \in W_1 + W_2$.
- (b) Let $u, v \in W_1 + W_2$ with $u = x_1 + y_1$ and $v = x_2 + y_2$. Since W_1 and W_2 are subspaces of V, we know that addition is closed in both subsets W_1 and W_2 . Hence, $x_1 + x_2 \in W_1$ and $y_1 + y_2 \in W_2$. Observe that

$$u + v = (x_1 + y_1) + (x_2 + y_2)$$

= $(x_1 + x_2) + (y_1 + y_2) \in W_1 + W_2$.

Hence, addition is closed in $W_1 + W_2$.

(c) Let $c \in F$ where F is a field and let $u \in W_1 + W_2$ with $u = x_1 + y_1$. Since W_1 and W_2 are subspaces of V, we know that $cx_1 \in W_1$ and $cx_2 \in W_2$. Observe that

$$cu = c(x_1 + y_1)$$

= $cx_1 + cy_1 \in W_1 + W_2$.

Hence, $W_1 + W_2$ is a subspace of V.

(b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.

Proof. Let X be a subspace of V. Suppose X contains both W_1 and W_2 ; that is, $W_1 \subseteq X$ and $W_2 \subseteq X$. We must show that $W_1 + W_2 \subseteq X$. Let $u \in W_1 + W_2$ with $u = x_1 + y_1$. By definition, we have $x_1 \in W_1$ and $y_1 \in W_2$. Since $W_1 \subseteq X$ and $W_2 \subseteq X$, we have $x_1 \in X$ and $y_1 \in X$. Since X is a subspace of V and X is closed under addition, we have $x_1 + y_1 \in X$. Hence, $u \in X$ and we conclude $W_1 + W_2 \subseteq X$.

Exercise 1.3.24

Show that F^n is the direct sum of the subspaces

$$W_1 = \{(a_1, a_2, \dots a_n) \in F^n : a_n = 0\}$$

and

$$W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 = a_2 = \dots = a_{n-1} = 0\}$$

Proof. Let W_1 and W_2 be subspaces of F^n . Since W_1 and W_2 are subspaces, they both contain the zero vector O_{F^n} . Observe that for any element $x \in W_1$, we have the *n*th element $a_n = 0$. On the other hand, $y \in W_2$ implies that $a_1 = a_2 = \cdots = a_{n-1} = 0$ except for the *n*th element. Thus, the only element that W_1 and W_2 have in common is the zero vector O_{F^n} . Hence, we have $W_1 \cap W_2 = \{O_{F^n}\}$.

Now, we show $W_1 + W_2 = F^n$. To do this, we need to show the following containments:

- (i) $W_1 + W_2 \subseteq F^n$ and
- (ii) $F^n \subseteq W_1 + W_2$.

Let $u \in W_1 + W_2$ with $u = x_1 + x_2$ where $x_1 \in W_1$ and $y_1 \in W_2$. Since $W_1 \subseteq F^n$, we know that $x_1 \in F^n$. Likewise, $W_2 \subseteq F^n$ implies that $y_1 \in F^n$. Since F^n is a vector space where addition is closed, we have that $u = x_1 + y_1 \in F^n$. Hence, $W_1 + W_2 \subseteq F^n$.

Now, let $u \in F^n$. Since F^n is a vector space over F, each entry in U (where each entry is an element of a field F) can written and separated using the addition defined in F^n in the following way:

$$u = (a_1, a_2, \dots, a_n)$$

= $(a_1 + 0, a_2 + 0, \dots, 0 + a_n)$
= $(a_1, a_2, \dots, 0) + (0, 0, \dots, a_n)$

where the first term is an element of W_1 and the second term is an element of W_2 . Hence, $u \in W_1 + W_2$.

Since both containments are satisfied, we that $W_1 + W_2 = F^n$. Thus, $W_1 \oplus W_2 = F^n$.

Exercise 1.3.25

Let W_1 denote the set of all polynomials f(x) in P(F) such that in the representation

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

we have $a_i = 0$ whenever i is even. Likewise, let W_2 denote the set of all polynomials g(x) in P(F) such that in the representation

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0,$$

we have $b_i = 0$ whenever i is odd. Prove that $P(F) = W_1 \oplus W_2$.

Proof. Let $f(x) \in W_1$. Then we have

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} a_n x^n$$

where $a_i = 0$ where i is even. Likewise, let $g(x) \in W_2$. Hence,

$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1} + b_n x^n$$

where $b_i = 0$ for i odd. This tells us that the only representation that W_1 and W_2 have in common is the zero polynomial f(x) = 0 where $a_i = 0$ for all $0 \le i \le n$. Hence, $W_1 \cap W_2 = \{O\}$.

Now, we want to show that $W_1 + W_2 = P(F)$; that is, we need to show $P(F) \subseteq W_1 + W_2$ and $W_1 + W_2 \subseteq P(F)$. Starting with the former, let $f \in P(F)$. Observe that for a_i where $1 \le i \le n$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

$$= \underbrace{(a_1 x + a_3 x^3 + \dots + a_n x^n)}_{\in W_1} + \underbrace{(a_0 + a_2 x^2 + a_4 x^4 + \dots + a_n x^n)}_{\in W_2}$$

The first term of the last equality contains coefficients $a_i = 0$ for even i and the second term contains coefficients $a_i = 0$ for odd i. This implies that $f(x) \in W_1 + W_2$. Hence, $P(F) \subseteq W_1 + W_2$.

Now, let $u(x) \in W_1 + W_2$ with u(x) = f(x) + g(x) with $f(x) \in W_1$ and $g(x) \in W_2$. Since W_1 and W_2 are subsets of P(F), we have that $f(x), g(x) \in P(F)$. Since addition is closed in P(F), we have that $u(x) = f(x) + g(x) \in P(F)$. Hence, $W_1 + W_2 \subseteq P(F)$ and $W_1 \cap W_2 = \{0\}$, we have $W_1 \oplus W_2 = P(F)$.

Exercise 1.3.26

In $M_{m\times n}(F)$ define $W_1 = \{A \in M_{m\times n}(F) : A_{ij} = 0 \text{ whenever } i > j\}$ and $W_2 = \{A \in M_{m\times n}(F) : A_{ij} \text{ whenever } i \leq j\}$. Show that $M_{m\times n}(F) = W_1 \oplus W_2$. (W_1 is the set of all triangular matrices as defined in the previous section.)

Exercise 1.3.30

Let W_1 and W_2 be subspaces of a vector space V. Prove that V is the direct sum of W_1 and W_2 if and only if each vector in V can be uniquely written as $x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$.

Proof. Let W_1 and W_2 be subspaces of V. Let $v \in V$. Let $x_1, x_1' \in W_1$ and $x_2, x_2' \in W_2$ such that $v = x_1 + x_2 = x_1' + x_2'$. Since W_1 and W_2 is closed under addition, we know that $x_1 - x_2' \in W_1$ and $x_2 - x_2' \in W_2$. But observe that $x_1 - x_1' = x_2 - x_2' \in W_1 \cap W_2$. Since V is a direct sum of the two subspaces W_1 and W_2 , we know that $W_1 \cap W_2 = \{O_V\}$ which implies that $x_1 = x_1'$ and $x_2 = x_2'$. This tells us that every v can be expressed uniquely as $x_1 + x_2$ with $x_1 \in W_1$ and $x_2 \in W_2$.

Conversely, suppose every vector $v \in V$ can be uniquely written as $x_1 + x_2$ with $x_1 \in W_1$ and $x_2 \in W_2$. We need to show that $W_1 \oplus W_2 = V$. Since $v \in V$ is uniquely expressed in terms of $x_1 + x_2$, the only vector that the two subspaces W_1 and W_2 share is the zero vector.

Hence, $W_1 \cap W_2 = \{O_V\}$. Now, we need to show that $V = W_1 + W_2$; that is, we need to show $V \subseteq W_1 + W_2$ and $W_1 + W_2 \subseteq V$. Suppose $v \in V$. Since $x_1 \in W_1$ and $x_2 \in W_2$, we have that $v \in W_1 + W_2$. Hence, $V \subseteq W_1 + W_2$. Now, let $v \in W_1 + W_2$. Since $v = x_1 + x_2$ where $x_1 \in W_1$ and $x_2 \in W_2$ and $W_1 \subseteq V$ and $W_2 \subseteq V$, we know that x_1 and x_2 are contained within V. Since V is vector space, we know that sum of x_1 and x_2 are contained in V. Hence, $v \in V$ and so $V \subseteq W_1 + W_2$. Thus, $V = W_1 \oplus W_2$.

Definition 1.2.3 (Cosets). Let W be a subspace of a vector space V over a field F. For any $v \in V$ the set $\{v\} + W = \{v + w : w \in W\}$ is called the **coset** of W **containing** v. It is customary to denote this coset by v + W rather than $\{v\} + W$.

Definition 1.2.4 (Addition of Cosets). The **addition** of two cosets $v_1 + W$ and $v_2 + W$ is defined as

$$(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$$

for all $v_1, v_2 \in V$.

Definition 1.2.5 (Scalar Multiplication of Cosets). The **scalar multiplication** of cosets by scalars of F can be defined as

$$a(v+W) = av + W$$

for all $v \in V$ and $a \in F$.

Exercise 1.3.31

The following exercises require the application of the definitions above.

(a) Prove that v + W is a subspace of V if and only if $v \in W$.

Proof. Suppose v+W is a subspace of V. Then $0_V \in v+W$ which implies that $O_V = v+w$. Hence, v=-w where $-w \in W$ and thus $v \in W$. Conversely, suppose $v \in W$.

- (a) Since W is a subspace of V, we know that $0_V \in W$. Since $v \in W$, there exists an element $v' \in W$ such that $v + v' = 0_V$. But this tell us that $O_V \in v + W$.
- (b) Let $x, y \in v + W$. By definition, x = v + w and y = v + w' for $w, w' \in W$. Then observe that

$$x + y = (v + w) + (v + w') = v + (v + w + w')$$

where $v + w + w' \in W$ since W is a subspace of V. Hence, v + W is closed under addition.

(c) Let $x \in v + W$. Choose $c \in F$ for which we will show that $cx \in v + W$. Then

$$cx = c(v + w) = cv + cw = v(cv + cw - v)$$

where cv + cw - v since W is a subspace of V.

Hence, v + W is a subspace of V.

(b) Prove that $v_1 + W = v_2 + W$ if and only if $v_1 - v_2 \in W$.

Proof. Let $x \in v_1 + W$. Then for $\alpha \in W$, we have $x = v_1 + \alpha$. Since $v_1 + W = v_2 + W$, then $x \in v_2 + W$ implies that for $\beta \in W$, we have $x = v_2 + \beta$. Then observe that

$$v_1 + \alpha = v_2 + \beta \Rightarrow v_1 - v_2 = \beta - \alpha$$
.

Since W is a subspace, we have that $\beta - \alpha = v_1 - v_2 \in W$.

Conversely, suppose $v_1 - v_2 \in W$. By part (a), we know that $(v_1 - v_2) + W$ is a subspace of V. Hence, $0_V \in (v_1 - v_2) + W$. This means that there exists $w' \in W$ such that

$$(v_1 - v_2) + w' = 0_V$$

$$\Rightarrow v_1 + w' = v_2 + (w - w)$$

$$\Rightarrow v_1 + \underbrace{(w' + w)}_{\in W} = v_2 + \underbrace{w}_{\in W}.$$

This tells us that $v_1 + W = v_2 + W$ and we are done.

(c) Prove that the preceding operations are well defined; that is, show that if $v_1 + W = v'_1 + W$ and $v_2 + W = v'_2 + W$, then

$$(v_1 + W) + (v_2 + W) = (v_1' + W) + (v_2' + W)$$

and

$$a(v_1 + W) = a(v_1' + W)$$

for all $a \in F$.

Proof. Suppose $v_1 + W = v_1' + W$ and $v_2 + W = v_2' + W$. Then $v_1 - v_1' \in W$ and $v_2 - v_2' \in W$ by part (b). Consequently, we have $(v_1 - v_1') + (v_2 - v_2') \in W$ if and only if $(v_1 + v_2) - (v_1' + v_2') \in W$ since W is subspace. Using part (b) again, we have that

$$(v_1 + v_2) + W = (v_1' + v_2') + W.$$

Using the addition defined on cosets, we get

$$(v_1 + W) + (v_2 + W) = (v_1' + W) + (v_2' + W).$$

Since W is a subspace, we have $c(v_1 - v_1') \in W$ if and only if $cv_1 - cv_1' \in W$ for some $a \in F$. By part (b), we get that

$$av_1 + W = av_1' + W$$

which can be re-written to

$$a(v_1 + W) = a(v_1' + W)$$

as our desired result.

(d) Prove that the set $S = \{v + W : v \in V\}$ is a vector space with the operations defined in (c). This vector space is called the **quotient space of** V **modulo** W by $V \setminus W$.

Proof. It suffices to show that S is a subspace of V.

(a) Since W is a subspace of V, we know that $0_V \in W$. Then $0_V + 0_V = 0_V \in S$.

(b) Let $x, y \in S$. Then using the operations defined in part (c), we write

$$x + y = (v_1 + W) + (v_2 + W) = (v_1 + v_2) + W.$$

This tells us that $x + y \in S$.

(c) Let $x \in S$. Our goal is to show that $c \in F$ implies $cx \in S$. Using the scalar multiplication in part (c), we get that

$$cx = c(v_1 + W) = cv_1 + W.$$

Thus, S is a vector space.

1.3 Linear Combinations

Exercise 1.4.7

In F^n , let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that $\{e_1, e_2, \ldots, e_n\}$ generates F^n .

Proof. Denote the set $V = \{e_1, e_2, \dots, e_n\}$. Our goal is to find scalars $\delta_1, \delta_2, \dots, \delta_n \in F$ such that for all $e_j \in V$ for $1 \leq j \leq n$,

$$\delta_1 e_1 + \delta_2 e_2 + \dots + \delta_n e_n = (a_1, a_2, \dots, a_n).$$
 (1)

Since $e_j = 1$ for the jth coordinate and the rest of the entries are zeros, we have that

$$\delta_j e_j = \delta_j(0, 0, \underbrace{1}_{j \text{th entry}}, \dots, 0) = (0, 0, \delta_j, \dots, 0)$$

for all $1 \leq j \leq n$. Summing up each term on the left side of (1) and equating each coordinate to the right side of (1), we get that $a_j = \delta_j$ for each $1 \leq j \leq n$. Hence, the set V can span the vector space F^n .

Exercise 1.4.8

Show that $P_n(F)$ is generated by $\{1, x, \dots, x^n\}$.

Proof. Let $V = \{1, x, \dots, x^n\}$. We need to find scalars $\delta_1, \delta_2, \dots, \delta_n \in F$ such that

$$\delta_0 + \delta_1 x + \delta_2 x^2 + \dots + \delta_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n. \tag{1}$$

Immediately, we have that equating coefficients in (1) gives us $a_i = \delta_i$ for all $1 \le i \le n$. Hence, V generates $P_n(F)$.

Exercise 1.4.9

Show that the matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

generate $M_{2\times 2}(F)$.

Proof. Define V with the given 2×2 matrices above. We need to find scalars $\delta_i \in F$ for all $1 \le i \le 4$ such that

$$\delta_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \delta_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \delta_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \delta_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}. \tag{1}$$

Distributing each scalar δ_i for all $1 \leq i \leq 4$ for each term in (1), summing up each matrix in (1), and equating each term entry-wise, we have that $a_{11} = \delta_1, a_{12} = \delta_2, a_{21} = \delta_3$, and $a_{22} = \delta_4$. Hence, V spans $M_{2\times 2}(F)$.

Exercise 1.4.10

Show that if

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, and $M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,

then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2×2 matrices.

Proof. We need to show that the set $\{M_1, M_2, M_3\}$ spans the set of all symmetric 2×2 matrices. We need to find scalars a_1, a_2, a_3 such that

$$a_1 M_1 + a_2 M_2 + a_3 M_3 = \begin{pmatrix} \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22} \end{pmatrix} = A$$
 (1)

where A is any 2×2 symmetric matrix. Observe that for i = j, we have $\delta_{12} = \delta_{21}$. Performing scalar multiplication on matrices M_1, M_2 , and M_3 , addition of all three terms on (1), and equating entry-wise, we get that $\delta_{12} = \delta_{21} = \delta_3$ and $\delta_{11} = \delta_1$ and $\delta_2 = a_{22}$. Hence, we have

$$\begin{pmatrix} a_1 & a_3 \\ a_3 & a_2 \end{pmatrix}^t = \begin{pmatrix} a_1 & a_3 \\ a_3 & a_2 \end{pmatrix}.$$

Thus, the set $\{M_1, M_2, M_3\}$ spans the set of all symmetric 2×2 matrices.

Exercise 1.4.11

Prove that span($\{x\}$) = $\{ax : a \in F\}$ for any vector x in a vector space V. Interpret this result geometrically in \mathbb{R}^3 .

Proof. We need to show that $\operatorname{span}(\{x\}) = \{ax : a \in F\}$, we need to show two containments; that is, $\operatorname{span}(\{x\}) \subseteq \{ax : a \in F\}$ and $\{ax : a \in F\} \subseteq \operatorname{span}(\{x\})$. Let $v \in \operatorname{span}(\{x\})$. Then observe that we can find $\delta \in F$ such that multiplying by $x \in V$ leads $v = \delta x$. But this means that $v \in \{ax : a \in F\}$ by definition. Hence, $\operatorname{span}(\{x\}) \subseteq \{ax : a \in F\}$. Let $v \in \{ax : a \in F\}$. Then v = ax for some $a \in F$. But this is a linear combination of x that makes v. So $v \in \operatorname{span}(\{x\})$ and hence, $\{ax : a \in F\} \subseteq \operatorname{span}(\{x\})$. This result can be viewed as the scaling of vectors in \mathbb{R}^3 .

Exercise 1.4.12

Show that a subset W of a vector space V is a subspace of V if and only if span(W) = W.

Proof. (\Rightarrow) Let W be a subspace of V. To show that $\operatorname{span}(W) = W$, we need to show two containments; that is, $\operatorname{span}(W) \subseteq W$ and $W \subseteq \operatorname{span}(W)$. Clearly, W contains itself. Hence, $\operatorname{span}(W) \subseteq W$ Theorem 5. Let $v \in W$. Since W is a subspace, we can find scalars $a_1, a_2, \ldots, a_n \in F$ and vectors $w_1, w_2, \ldots, w_n \in W$ such that

$$v = a_1 x_1 + a_2 x_2 + \dots + a_n x_n \in W$$

using the result in Exercise 1.3.20. But this tells us that $v \in \text{span}(W)$. Hence, $W \subseteq \text{span}(W)$.

 (\Leftarrow) Since the span of any subset of W is a subspace and $W = \operatorname{span}(W)$, we have that W is a subspace as well by Theorem 5.

Exercise 1.4.13

Show that if S_1 and S_2 are subsets of a vector space V such that $S_1 \subseteq S_2$, then $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$. In particular, if $S_1 \subseteq S_2$ and $\operatorname{span}(S_1) = V$, deduce that $\operatorname{span}(S_2) = V$.

Proof. Let S_1 and S_2 be subsets of a vector space V. Let $v \in \text{span}(S_1)$. We can find scalars $\delta_1, \delta_2, \ldots, \delta_n \in F$ and $x_1, x_2, \ldots, x_n \in S_1$ such that

$$v = \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_n x_n.$$

Since $S_1 \subseteq S_2$, we know that $x_1, x_2, \ldots, x_n \in S_2$ so we must have $v \in \text{span}(S_2)$. Hence, $\text{span}(S_1) \subseteq \text{span}(S_2)$.

Now, let $\operatorname{span}(S_1) = V$. We need to show that $\operatorname{span}(S_2) = V$; that is, we need to show $\operatorname{span}(S_2) \subseteq V$ and $V \subseteq \operatorname{span}(S_2)$. By assumption, $S_2 \subseteq V$ and $\operatorname{span}(S_2)$ is a subspace. Clearly, $\operatorname{span}(S_2) \subseteq V$. Since $\operatorname{span}(S_1) = V$ and $\operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$, we have $V \subseteq \operatorname{span}(S_2)$. Hence, $\operatorname{span}(S_2) = V$.

Exercise 1.4.14

Show that if S_1 and S_2 are arbitrary subsets of a vector space V, then $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$. (The sum of two subsets is defined in the exercises of Section 1.3.)

Proof. Let S_1 and S_2 be subsets of a vector space V. We need to show $\operatorname{span}(S_1 \cup S_2) = \operatorname{span}(S_1) + \operatorname{span}(S_2)$; that is, $\operatorname{span}(S_1 \cup S_2) \subseteq \operatorname{span}(S_1) + \operatorname{span}(S_2)$ and $\operatorname{span}(S_1) + \operatorname{span}(S_2) \subseteq \operatorname{span}(S_1 \cup S_2)$. Let $v \in \operatorname{span}(S_1 \cup S_2)$. We can find $\delta_1, \delta_2, \ldots, \delta_n \in F$ such that $x_1, x_2, \ldots, x_n \in S_1 \cup S_2$ implies that

$$v = \delta_1 x_1 + \delta_2 x_2 + \dots + \delta_n x_n.$$

Hence, either $x_1, x_2, \ldots, x_n \in S_1$ or $x_1, x_2, \ldots, x_n \in S_2$. If $x_1, x_2, \ldots, x_n \in S_1$, then $v \in \operatorname{span}(S_1)$. Since $\operatorname{span}(S_2)$ is a subspace, we know that $O_V \in \operatorname{span}(S_2)$. Hence, $O_V \in \operatorname{span}(S_1)$ and $v \in \operatorname{span}(S_1)$ imply that $v + O_V = v \in \operatorname{span}(S_1) + \operatorname{span}(S_2)$. The other case follows a similar process. Hence, $\operatorname{span}(S_1 \cup S_2) \subseteq \operatorname{span}(S_1) + \operatorname{span}(S_2)$.

Let $s \in \text{span}(S_1) + \text{span}(S_2)$. Hence, s = u + v where $u \in \text{span}(S_1)$ and $v \in \text{span}(S_2)$. The former implies that we can find scalars $a_1, a_2, \ldots, a_n \in F$ such that $x_1, x_2, \ldots, x_n \in S_1$ where

$$u = \sum_{i=1}^{n} a_i x_i$$

and the latter implies that there exists scalars $b_1, b_2, \dots, b_n \in F$ such that $y_1, y_2, \dots, y_n \in S_2$

where

$$v = \sum_{i=1}^{n} b_i y_i.$$

Since both $x_i \in S_1$ and $y_i \in S_2$ for all $1 \le i \le n$, we have $x_i, y_i \in S_1 \cup S_2$ for all $1 \le i \le n$. So we must have $s \in \text{span}(S_1 \cup S_2)$. Hence, $\text{span}(S_1) + \text{span}(S_2) \subseteq \text{span}(S_1 \cup S_2)$.

Exercise 1.4.15

Let S_1 and S_2 be subsets of a vector space V. Prove that $\operatorname{span}(S_1 \cap S_2) \subseteq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$. Give an example in which $\operatorname{span}(S_2 \cap S_2)$ and $\operatorname{span}(S_1) \cap \operatorname{span}(S_2)$ are equal and one in which they are not unequal.

Proof. Let S_1 and S_2 be subsets of a vector space V. Let $v \in \text{span}(S_1 \cap S_2)$. Then we can find scalars $a_i \in F$ and vectors $x_i \in S_i \cap S_2$ for all $1 \le i \le n$ such that

$$v = \sum_{i=1}^{n} a_i x_i.$$

If $x_i \in S_1 \cap S_2$ for all $1 \le i \le n$, then $x_i \in S_1$ and $x_i \in S_2$ for all $1 \le i \le n$. This implies that $v \in \text{span}(S_1)$ and $v \in \text{span}(S_2)$. Hence, $v \in \text{span}(S_1) \cap \text{span}(S_2)$. Thus, we conclude that $\text{span}(S_1 \cap S_2) \subseteq \text{span}(S_1) \cap \text{span}(S_2)$.

Example 1.3.1. Define S_1 as the set

$$\{(1,1,0)\in\mathbb{R}^3\}$$

and S_2 as the set

$$\{(1,1,0),(1,0,1),(0,1,1)\in\mathbb{R}^3\}.$$

Observe that $S_1 \cap S_2 = \{(1, 1, 0)\}$ and thus the of this set yields $\{a(1, 1, 0) : a \in F \text{ and } (1, 1, 0) \in \mathbb{R}^3\}$. The span of S_1 yields the following set $\{a(1, 1, 0) : a \in F \text{ and } (1, 1, 0) \in \mathbb{R}^3\}$ and the span of S_2 yields the following set

$${a(1,10) + b(1,0,1) + c(0,1,1) : a,b,c \in F \text{ and } (1,1,0), (1,0,1), (0,1,1) \in \mathbb{R}^3}.$$

Note that $\operatorname{span}(S_1 \cap S_2) \neq \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$ since $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) \neq \emptyset$.

Now define $S_1 = \{O_V\} = S_2$. Clearly, $S_1 \cap S_2 = \{O_V\}$, $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \{O_V\}$, and that $\operatorname{span}(S_1 \cap S_2)$ is also equal to this set. $\operatorname{span}(S_1 \cap S_2) = \operatorname{span}(S_1) \cap \operatorname{span}(S_2)$

Exercise 1.4.16

Let V be a vector space and S a subset of V with the property that whenever $v_1, v_2, \ldots, v_n \in S$ and $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0$, then $a_1 = a_2 = \cdots = a_n = 0$. Prove that every vector in the span of S can be *uniquely* written as a linear combination of vectors of S.

Proof. Let $x \in \text{span}(S)$. Suppose there exists two sets of scalars $a_1, a_2, \ldots, a_n \in F$ and $b_1, b_2, \ldots, b_n \in F$ such that whenever $v_1, v_2, \ldots, v_n \in S$ such that

$$a_1 v_1 + a_2 v_2 + \dots + a_n v_n = x \tag{1}$$

and

$$b_1 v_1 + b_2 v_2 + \dots + b_n v_n = x \tag{2}$$

implies that a_i Setting (1) and (2) together, we have

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = b_1v_1 + b_2v_2 + \dots + b_nv_n \tag{3}$$

which implies that

$$(a_1 - b_1)v_1 + (a_2 - b_2)v_2 + \dots + (a_n - b_n)v_n = 0.$$

Since $v_1, v_2, \ldots, v_n \in S$, we have that $a_i - b_i = 0$ and thus $a_i = b_i$ for all $1 \le i \le n$. Hence, every vector in the span of S can be *uniquely* written as a linear combination of vectors of S.

1.4 Linear Dependence and Linear Independence

Exercise 1.5.1

Label the following statements as true or false.

(a) If S is a linearly dependent set, then each vector in S is a linear combination of other vector in S.

Proof. True

(b) Any set containing the zero vector is linearly dependent.

Proof. True

(c) The empty set is linearly dependent.

Proof. False. It is linearly independent.

(d) Subsets of linearly dependent sets are linearly dependent.

Proof. This is **False**. We can have a linearly independent subset of a set that is linearly dependent.

(e) Subsets of linearly independent sets are linearly independent.

Proof. True by corollary to Theorem 6.

(f) If $a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0$ and x_1, x_2, \ldots, x_n are linearly independent, then all the scalars a_i are zero.

Proof. True this is by definition.

Exercise 1.5.4

In F^n , let e_j denote the vector whose jth coordinate is 1 and whose other coordinates are 0. Prove that $\{e_1, e_2, \ldots, e_n\}$ is linearly independent.

Proof. Choose a finite amount of scalars $a_1, a_2, \ldots, a_n \in F$ to create the following linear combination:

$$a_1e_1 + a_2e_2 + \dots + a_ne_n = (0, 0, \dots, 0).$$
 (1)

To show that the set $\{e_1, e_2, \ldots, e_n\}$ is linearly independent, we need to show that the scalars $a_1, a_2, \ldots, a_n \in F$ have the trivial representation; that is, $a_1 = a_2 = \cdots = a_n = 0$.

Since the jth coordinate of e_j is 1 but 0 in all the other entries, we have that

$$a_1(1,0,\ldots,0) + a_2(0,1,\ldots,0) + \cdots + a_n(0,0,\ldots,1)$$

= $(a_1,0,\ldots,0) + (0,a_2,\ldots,0) + \cdots + (0,0,\ldots,a_n)$
= (a_1,a_2,\ldots,a_n) .

Hence, we have

$$(a_1, a_2, \dots, a_n) = (0, 0, \dots, 0).$$

Equating each entry of the left side of the equation above to 0, we find that $a_i = 0$ for all $1 \le j \le n$. Hence, the set $\{e_1, e_2, \dots, e_n\}$ is linearly independent.

Exercise 1.5.4

Show that the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent in $P_n(F)$.

Proof. Just like the prior exercise, we need to show that we can find scalars $a_0, a_1, \ldots, a_n \in F$ such that

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$

where $a_i = 0$ for all $0 \le i \le n$. Note that the 0 polynomial is just

$$0 + 0x + 0x^2 + \dots + 0x^n = 0.$$

Hence, equating coefficients we immediately get that $a_i = 0$ for all $0 \le i \le n$. Thus, the set $\{1, x, x^2, \dots, x^n\}$ is linearly independent.

Exercise 1.5.6

In $M_{m\times n}(F)$, let E^{ij} denote the matrix whose only nonzero entry is 1 in the *i*th row and *j*th column. Prove that $\{E^{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$ is linearly independent.

Proof. First, we create a linear combination of a finite amount vectors in $E = \{E^{ij} : 1 \le i \le m, 1 \le j \le n\}$ with scalars δ_k for $1 \le k \le N$ with N = mn as the number of total entries in each matrix in $\{E^{ij} : 1 \le i \le m, 1 \le j \le n\}$. Note that after doing our scalar multiplication and summing up each term, we find that each $\delta_k E_{ij} = \delta_k$ in our linear combination can equated with a corresponding i and j entry in the zero matrix such that $\delta_k = 0$ for all $1 \le k \le N$. Hence, E is a linearly independent set.

Exercise 1.5.7

Recall from Example 3 in Section 1.3 that the set of diagonal matrices in $M_{2\times 2}(F)$ is a subspace. Find a linearly independent set that generates this subspace.

Proof. Define W as the linearly independent spanning set of the set of diagonal matrices in $M_{2\times 2}$ where

$$W = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

To see why W is a linearly independent set, choose scalars $\delta_1, \delta_2 \in F$ such that

$$\delta_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \delta_2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Performing scalar multiplication and vector addition gives us the following equation

$$\begin{pmatrix} \delta_1 & 0 \\ 0 & \delta_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Since the zero matrix is a diagonal matrix, we know that equation entries where i = j yields $\delta_1 = \delta_2 = 0$. Hence, W is a linearly independent set that generates the set of diagonal matrices of $M_{2\times 2}(F)$.

Exercise 1.5.8

Let $S = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ be a subset of the vector space F^3 .

(a) Prove that if $F = \mathbb{R}$, then S is linearly independent.

Proof.

(b) Prove that if F has characteristic two, then S is linearly dependent.

Proof.

Exercise 1.5.9

Let u and v be distinct vectors in a vector space V. Show that $\{u, v\}$ is linearly dependent if and only if u or v is a multiple of the other. I have written two proofs for this:

Proof. Let u and v be distinct vectors in a vector space V.

 (\Rightarrow) Since $\{u,v\}$ is a linearly dependent set, we can find scalars $a_1,a_2\in F$ such that

$$a_1 u + a_2 v = 0 \tag{1}$$

Suppose v is not a multiple of u and choose $a_1 \neq 0$ since $\{u, v\}$ is linearly dependent. We need to show that u is a multiple of v. Solving for u, we get that

$$u = -\frac{a_2}{a_1}v.$$

Hence, u is a multiple of v.

(\Leftarrow) Suppose u or v is a scalar multiple of the other. Assume u is the scalar multiple of v. Then for some $c \neq 0 \in F$, we have u = cv. Hence, we have u - cv = 1u - cv = 0. This tells us that $\{u, v\}$ is linearly dependent.

Exercise 1.5.12

Prove Theorem 1.6 and its corollary.

Proof. See proof in notes.

Exercise 1.5.13

Let V be a vector space over a field of characteristic not equal to two.

(a) Let u and v be distinct vectors in V. Prove that $\{u,v\}$ is linearly independent if and only if $\{u+v,u-v\}$ is linearly independent.

Proof. Let u and v be distinct vectors in V.

For the forwards direction, assume $\{u, v\}$ is a linearly independent set. We need to show that $\{u+v, u-v\}$ is linearly independent. Hence, we need to find $a, b \in F$ such that

$$a(u+v) + b(u-v) = 0.$$
 (1)

Note that (1) leads to

$$a(u+v) + b(u-v) = au + av + bu - bv$$
$$= au - bv + av + bu.$$

Since $\{u,v\}$ is a linearly independent set, we have that

$$au - bv = 0$$

and

$$av + bu = 0$$

for a = b = 0. Hence,

$$a(u+v) + b(u-v) = 0$$

for a = b = 0 and so $\{u - v, u + v\}$ is a linearly independent set.

For the backwards direction, suppose $\{u+v, u-v\}$ is linearly independent. We need to show that $\{u,v\}$ is linearly independent. Note that $a,b\in F$ such that

$$a(u+v) + b(u-v) = 0$$

for a = b = 0 since $\{u - v, u + v\}$ is linearly independent. Note that

$$a(u+v) + b(u-v) = au + av + bu - bv$$
$$= au - bv + av + bu$$
$$= 0 + av + bu$$
$$= 0.$$

Thus, av + bu = 0 where a, b both zero. Thus, the set $\{u, v\}$ is linearly independent.

(b) Let u, v, and w be distinct vectors in V. Prove that $\{u, v, w\}$ is linearly independent if and only if $\{u + v, u + w, v + w\}$ is linearly independent.

Proof. For the forwards direction, suppose $\{u, v, w\}$ is linearly independent. Then choose scalars $a_1, a_2, a_3 \in F$ such that

$$a_1u + a_2v + a_3w = 0$$

with $a_1 = a_2 = a_3 = 0$. We need to show that $\{u + v, u + w, v + w\}$ is linearly independent; that is, we need to show that we can find scalars $a_1, a_2, a_3 \in F$ such that

$$a_1(u+v) + a_2(u+w) + a_3(v+w) = 0 (1)$$

for $a_1 = a_2 = a_3 = 0$. Observe that (1) can be written in the following way

$$(a_1u + a_3v + a_2w) + (a_1v + a_2u + a_3w) = 0 (2)$$

Since $\{u, v, w\}$ is linearly independent, we know that $a_1 = a_2 = a_3 = 0$. But this also has to mean that $\{u + v, u + w, v + w\}$ is a linearly independent set.

For the backwards direction, suppose $\{u+v, u+w, v+w\}$ is linearly independent. Then choose scalars $a_1, a_2, a_3 \in F$ such that

$$a_1(u+v) + a_2(u+w) + a_3(v+w) = 0. (1)$$

We need to show that $\{u, v, w\}$ is linearly independent. Observe that (1) can be re-written as

$$(a_1u + a_3v + a_2w) + (a_1v + a_2u + a_3w) = 0$$

$$\Rightarrow 0 + (a_1v + a_2u + a_3w) = 0$$

$$\Rightarrow a_1v + a_2u + a_3w = 0$$

where $a_1 = a_2 = a_3 = 0$. Hence, $\{u, v, w\}$ is linearly independent.

Exercise 1.5.14

Prove that a set S is linearly dependent if and only if $S = \{0\}$ or there exists distinct vectors $v, u_1, u_2, \ldots, u_n \in S$ such that v is a linear combination of u_1, u_2, \ldots, u_n .

Proof. For the forwards direction, Let S be a linearly dependent. Then we need to show that either $S = \{0\}$ or S contains distinct vectors $v, u_1, u_2, \ldots, u_n \in S$ such that $v \in \operatorname{span}(S)$. Suppose there does not exists distinct vectors $v, u_1, u_2, \ldots, u_n \in S$ such that $v \in \operatorname{span}(S)$. This tells us that S only contains the singleton $S = \{v\}$. Furthermore, we must require v = 0 since S is linearly dependent. Otherwise, $v \neq 0$ would imply that S is linearly independent. Hence, we have $S = \{0\}$. Now suppose $S \neq \{0\}$. Since S is linearly dependent, there exists scalars $a_1, a_2, \ldots, a_{n+1}$ and vectors v, u_1, u_2, \ldots, u_n such that

$$a_1v + a_2u_1 + a_3u_2 + \dots + a_{n+1}u_n = 0$$

with all $a_1, a_2, \ldots, a_n, a_{n+1}$ not all equal to zero. Solving for v, we get that

$$v = -(a_1^{-1}a_2)u_1 - (a_1^{-1}a_3)u_2 - \dots - (a_1^{-1}a_{n+1})u_n.$$

Since v is a linear combination of u_1, u_2, \ldots, u_n , we have that $v \in \text{span}(S)$.

Conversely, suppose that either $S = \{0\}$ or there exists distinct vectors $v, u_1, u_2, \ldots, u_n \in S$ such that v is a linear combination of u_1, u_2, \ldots, u_n . Assume $S = \{0\}$. Then S is linearly dependent because the singleton is the zero vector. Now suppose v is a linear combination of vectors u_1, u_2, \ldots, u_n . Then there exists scalars $a_1, a_2, \ldots, a_n \in F$ and distinct vectors $u_1, u_2, \ldots, u_n \in S$ such that

$$v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n.$$

Subtracting v from both sides of this equation yields the following equation

$$a_1u_1 + a_2u_2 + \dots + a_nu_n - 1v = 0.$$

Since not all scalars in the equation above are zero and $v, u_1, u_2, \ldots, u_n \in S$, we must have that S is a linearly dependent set.

Exercise 1.5.15

Prove that a set $S = \{u_1, u_2, \dots, u_n\}$ be a finite set of vectors. Prove that S is linearly dependent if and only if $u_1 = 0$ or $u_{k+1} \in \text{span}(\{u_1, u_2, \dots, u_k\})$ for some k where $1 \le k < n$.

Proof. Suppose $u_{k+1} \notin \text{span}(\{u_1, u_2, \dots, u_k\})$ for all $1 \leq k < n$. Since S is linearly dependent, we know that the zero vector is contained in S. Choose k = 1 such that $u_1 = 0$ and we are done. On the other hand, suppose $u_1 \neq 0$. We need to show that $u_{k+1} \in \text{span}(\{u_1, u_2, \dots, u_k\})$. Choose k = n - 1. Then clearly n = k + 1. Since S is linear independent, choose scalars $a_1, a_2, \dots, a_n \in F$ such that

$$a_1u_1 + a_2u_2 + \dots + a_ku_k + a_{k+1}u_{k+1} = 0. (1)$$

where $a_1, a_2, \ldots, a_k, a_{k+1}$ not all zero. Solving for u_{k+1} by subtracting $a_{k+1}u_{k+1}$ on both sides of (1) and multiplying $-a_{k+1}^{-1}$ on both sides of (1), we end up with the following equation:

$$u_{k+1} = -(a_{k+1}^{-1}a_1)u_1 - (a_{k+1}^{-1}a_2)u_2 - \dots - (a_{k+1}^{-1}a_k)u_k.$$

This tells us that u_{k+1} can be written as a linear combination of vectors u_1, u_2, \ldots, u_k . Hence, $u_{k+1} \in \text{span}(\{u_1, u_2, \ldots u_k\})$.

Conversely, either $u_1 = 0$ or $u_{k+1} \in \text{span}(u_1, u_2, \dots, u_k)$. Suppose $u_1 = 0$. Then S contains the zero vector so S must be linearly dependent. On the other hand, choose k = n-1 where $1 \le k < n$ such that $u_{k+1} \in \text{span}(\{u_1, u_2, \dots, u_k\})$ implies that there exists scalars a_1, a_2, \dots, a_k such that

$$u_{k+1} = a_1 u_1 + a_2 u_2 + \dots + a_k u_k$$

$$\Rightarrow u_n = a_1 u_1 + a_2 u_2 + \dots + a_{n-1} u_{n-1}.$$
(1)

Subtracting u_n on both sides of (1) implies that

$$(a_1u_1 + a_2u_2 + \dots + a_{n-1}u_{n-1}) - 1u_n = 0.$$

Since not all scalars in the linear combination above are zero, we know that S must be linearly dependent.

Exercise 1.5.16

Prove that a set S of vectors is linearly independent if and only if each finite subset of S is linearly independent.

Proof. (\Rightarrow) Suppose S is a linearly independent set. Let S' be any finite subset of S. By corollary to Theorem 6, we can see that $S' \subseteq S$ implies that S' is also linearly independent. (\Leftarrow) We will proceed by proving the contrapositive. Let $S' \subseteq S$ be a finite subset that is linearly dependent set. We will prove that S is a linearly dependent set. Since $S' \subseteq S$, we have that S must be a linearly dependent set by Theorem 6.

Exercise 1.5.17

Let M be a square upper triangular matrix (as defined in Section 1.3) with nonzero diagonal entries. Prove that the columns of M are linearly independent.

Proof. Let M be a square upper triangular matrix. Note that M have the following form:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \cdots & \ddots & a_{n-1n} \\ 0 & 0 & \cdots & \cdots & a_{nn} \end{pmatrix}.$$

We can define the following columns as vectors $v_1, v_2, \dots v_n$ where

$$v_1 = \begin{pmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ 0 \end{pmatrix}, \dots, v_n = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{nn} \end{pmatrix}.$$

Choose scalars $\delta_1, \delta_2, \dots, \delta_n \in F$ such that

$$\delta_1 v_1 + \delta_2 v_2 + \dots + \delta_n v_n = 0$$

where the zero vector 0 is denoted as

$$0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Using scalar multiplication and addition, we arrive at the following system of equations:

$$\delta_{1}a_{11} + \delta_{2}a_{12} + \dots + \delta_{n-1}a_{1n-1} + \delta_{n}a_{1n} = 0$$

$$\delta_{2}a_{22} + \delta_{3}a_{23} + \dots + \delta_{n}a_{2n} = 0$$

$$\vdots$$

$$\delta_{n-1}a_{n-1n-1} + \delta_{n}a_{n-1n} = 0$$

$$\delta_{n}a_{nn} = 0.$$

Since all the diagonal entries of M are non-zero, we can see from the equation above that $\delta_n = 0$ which subsequently tells us that $\delta_{n-1} = 0$. We claim that $\delta_1 = \cdots = \delta_{n-1} = \delta_n = 0$ for all $n \ge 1$. We can prove this via induction. Let our base case be n = 1. Then we have $\delta_1 a_{11} = 0$ with $a_{11} \ne 0$ implies $\delta_1 = 0$. Now let n = 2. Then observe that we have an upper triangular 2×2 matrix such that the linear combination of the columns lead to the following system of linear equations:

$$\delta_1 a_{11} + \delta_2 a_{12} = 0$$
$$0 + \delta_2 a_{22} = 0.$$

Observe that $\delta_2 = 0$ which also implies that $\delta_1 = 0$. Now suppose our claim that $\delta_1 = \cdots = \delta_{n-1} = \delta_n = 0$ holds for all $n \ge 1$. We want to show that our claim still holds for the n+1 case. Observe that $\delta_{n+1} = 0$ derived from an $n+1 \times n+1$ matrix. Using the same process that proved the base case, we find that $\delta_n = \delta_{n+1} = 0$. By our inductive hypothesis, we know that $\delta_1 = \cdots = \delta_{n-1} = \delta_n = 0$ for all $n \ge 1$. This tells us that $\delta_1 = \cdots = \delta_{n+1}$ for all $n \ge 1$. Hence, the columns of M are linearly independent.

Exercise 1.5.18

Let S be a set of nonzero polynomials in P(F) such that no two have the same degree. Prove that S is linearly independent.

Proof. Let $0 \le n \le k$ such that $S = \{p_0(x), p_1(x), p_2(x), \dots, p_k(x)\}$ where every $p_n(x)$ non-zero such that no two polynomials in this set have the same degree. Define $p_n(x) = x^n + x^{n+1} + \dots + x^k$. Choose scalars $a_1, a_2, \dots, a_k \in F$ such that

$$a_1p_1(x) + a_2p_2(x) + \dots + a_kp_k(x) = 0$$
 (1)

We need to show that $\delta_1 = \delta_2 = \cdots = \delta_k = 0$. Observe that (1) implies that

$$a_0 + (a_0 + a_1 + a_2)x^2 + \dots + (a_0 + a_1 + \dots + a_k)x^k = 0.$$
 (2)

Setting each x^n to both sides of the equation above leads to the following system of linear equations:

$$a_{0} = 0$$

$$a_{0} + a_{1} = 0$$

$$a_{0} + a_{1} + a_{2} = 0$$

$$\vdots$$

$$a_{0} + a_{1} + a_{2} + \dots + a_{k} = 0.$$

It can be proved via induction that $a_1 = a_2 = \cdots = a_k = 0$ for all $1 \le n \le k$. Hence, S is a linearly independent set.

Exercise 1.5.19

Prove that if $\{A_1, A_2, \dots, A_k\}$ is a linearly independent subset of $M_{n \times n}(F)$, then $\{A_1^t, A_2^t, A_3^t, \dots, A_k^t\}$ is also linearly independent.

Proof. Suppose $\{A_1, A_2, \dots, A_k\}$ is a linearly independent set. Choose a finite set of scalars $\delta_1, \delta_2, \dots, \delta_k \in F$ such that

$$\delta_1 A_1 + \delta_2 A_2 + \dots + \delta_k A_k = 0$$

with $\delta_1 = \delta_2 = \cdots = \delta_k = 0$. Apply the transpose to both sides, we know that $0^t = 0$ and $(\delta_i A_i)^t = \delta_i (A_i)^t$ for all $1 \le i \le k$. Hence, we have

$$(\delta_1 A_1 + \delta_2 A_2 + \dots + \delta_k A_k)^t = 0^t \Rightarrow (\delta_1 A_1)^t + (\delta_2 A_2)^t + \dots + (\delta_k A_k)^t = 0 \Rightarrow \delta_1 A_1^t + \delta_2 A_2^t + \dots + \delta_k A_k^t = 0.$$

Hence, the set $\{A_1^t, A_2^t, \dots, A_k^t\}$ is also linearly independent.

Exercise 1.5.20

Let $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the functions defined by $f(t) = e^{rt}$ and $g(t) = e^{st}$, where $r \neq s$. Prove that f and g are linearly independent in $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Proof. Let $f,g \in \mathcal{F}(\mathbb{R},\mathbb{R})$ where f and g are defined by $f(t) = e^{rt}$ and $g(t) = e^{st}$ with

 $r \neq s$. Suppose for sake of contradiction that the set $\{f,g\}$ is a linearly dependent set of vectors. By Exercise 1.5.9, we know that either f is a multiple of g or g is a multiple of f. Assume f is a multiple of g. Hence, there exists a $c \in R$ such that f(t) = cg(t). In other words,

$$f(t) = cg(t) \Rightarrow e^{rt} = ce^{st}$$
.

To solve for c, let t = 0. Then we have

$$f(0) = cg(0) \Rightarrow 1 = c.$$

Hence, we have

$$e^{rt} = e^{st}$$
.

This equality is valid only when r = s because otherwise f would not be a scalar multiple of g. But note that $r \neq s$ by assumption. Hence, we have a contradiction and thus $\{f,g\}$ must be linearly independent.

Exercise 1.5.21

Let S_1 and S_2 be disjoint linearly independent subsets of V. Prove that $S_1 \cup S_2$ is linearly dependent if and only if $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) \neq \{0\}$.

Proof. (\Rightarrow) We will proceed via contrapositive. Since span $(S_1) \cap \text{span}(S_2) = \{0\}$, let $v \in \text{span}(S_1)$ such that we can find a $w \in \text{span}(S_2)$ such that both v = w where both v = 0 and w = 0. Since $v \in \text{span}(S_1)$, we can find a finite set of vectors $x_1, x_2, \ldots, x_n \in S_1$ and scalars $a_1, a_2, \ldots, a_n \in F$ such that

$$v = \sum_{i=1}^{n} a_i x_i = 0.$$

Likewise, $w \in \text{span}(S_2)$ implies that we can find $y_1, y_2, \ldots, y_n \in S_2$ and scalars $b_1, b_2, \ldots, b_n \in F$ such that

$$w = \sum_{j=1}^{n} b_j y_j = 0.$$

Observe that

$$v = w \Rightarrow \sum_{i=1}^{n} a_i x_i = \sum_{j=1}^{n} b_j y_j.$$

Then we have

$$\sum_{i=1}^{n} a_i x_i - \sum_{j=1}^{n} b_j y_j = 0.$$

Since S_1 and S_2 are disjoint linearly independent sets, we know that $x_i \notin S_2$ and $y_i \notin S_1$ and that $a_i = 0$ and $b_j = 0$ for all $1 \le i \le n$ and $1 \le j \le n$ respectively. Hence, $S_1 \cup S_2$ is a linearly independent set.

(\Leftarrow) We will proceed via contrapositive for this direction as well. Suppose $S_1 \cup S_2$ is linearly independent. Then choose a finite number of distinct vectors $x_1, x_2, \ldots, x_n \in S_1 \cup S_2$ and scalars $a_1, a_2, \ldots, a_n \in F$ such that

$$\sum_{i=1}^{n} a_i x_i = 0$$

$$\in \operatorname{span}(S_1)$$

with $a_i = 0$ for all $1 \le i \le m$. Since $x_i \in S_1 \cup S_2$, then either $x_i \in S_1$ or $x_i \in S_2$. Without loss of generality, suppose $x_i \in S_1$. Then we know that $x_i \notin S_2$ since $S_1 \cap S_2 = \emptyset$. Since S_2 is linearly independent, choose a finite number of vectors $y_1, y_2, \ldots, y_m \in S_2$ and scalars $b_1, b_2, \ldots, b_n \in F$ such that

$$\sum_{j=1}^{m} b_j y_j = 0$$

$$\in \operatorname{span}(S_2)$$

with $b_j = 0$ for all $1 \le j \le m$. Observe that

$$\sum_{i=1}^{n} a_i x_i = \sum_{j=1}^{m} b_j y_j = 0.$$

Hence, we have $\operatorname{span}(S_1) \cap \operatorname{span}(S_2) = \{0\}.$

1.5 Bases and Dimension

Exercise 1.6.11

Let u and v be distinct vectors of a vector space V. Show that if $\{u, v\}$ is a basis for V and a and b are nonzero scalars, then both $\{u + v, au\}$ and $\{au, bv\}$ are also bases for V.

Proof. (\Rightarrow) We want to show that $\{u+v, au\}$ and $\{au, bv\}$ is a basis for V; that is, we want to show that $\{u+v, au\}$ and $\{au, bv\}$ is both linearly independent and generates V. We will start by showing that $\{u+v, au\}$ is linearly independent. Choose scalars δ_1, δ_2 such that

$$\delta_1(u+v) + \delta_2(au) = 0 \tag{1}$$

with $\delta_1 = \delta_2 = 0$. Let us algebraically manipulate (1) into the following form:

$$\delta_1 u + \delta_1 v + (\delta_2 a)u = 0.$$

Since $\{u,v\}$ is linearly independent and $a \neq 0$, we get that

$$\delta_1 v + (\delta_2 a)u = 0$$

implies $\delta_1 = 0$ and $\delta_2 a = 0$ such that $\delta_2 = 0$. But this implies that $\{u+v, au\}$ is also linearly independent. To show that $\{u+v, au\}$ spans V, it suffices to show that $V \subseteq \{u+v, au\}$ since the other containment $\{u+v, au\} \subseteq V$ follows immediately. Let $v \in V$. By Theorem 1.7, we know that adjoining an arbitrary vector $w \in V$ but not in $\{u+v, au\}$ creates a linearly dependent set. So, we must have $w \in \text{span}(\{u+v, au\})$ and thus $V \subseteq \text{span}(\{a+v, au\})$.

Now, we want to show that $\{au, bv\}$ is a basis. Choose scalars δ_1, δ_2 such that

$$\delta_1(au) + \delta_2(bv) = 0 \tag{2}$$

such that $\delta_1 = \delta_2 = 0$. We can manipulate (2) by rewriting it in the following form:

$$(\delta_1 a)u + (\delta_2 b)v = 0. \tag{3}$$

Since $\{u, v\}$ is a linearly independent set, we know that $\delta_1 a = \delta_2 b = 0$. Since $a, b \neq 0$, this implies that $\delta_1 = \delta_2 = 0$. Hence, the representation in (2) is trivial and thus the

set $\{au, bv\}$ is linearly independent. Since adjoining any $w \in V$ not in $\{au, bv\}$ creates a linearly dependent set, we get that $w \in \text{span}(\{au, bv\})$ by Theorem 1.7. Hence, $\{au, bv\}$ generates V.

Exercise 1.6.12

Let u, v, and w be distinct vectors of a vector space V. Show that if $\{u, v, w\}$ is a basis for V, then $\{u + v + w, v + w, w\}$ is also a basis for V.

Proof. First, we prove that $\{u+v+w, v+w, w\}$ is linearly independent. Choose $\delta_1, \delta_2, \delta_3 \in F$ such that

$$\delta_1(u+v+w) + \delta_2(v+w) + \delta_3 w = 0. \tag{1}$$

We can rewrite (1) in the following way:

$$(\delta_1 u + \delta_2 v + \delta_3 w) + \delta_1 (v + w) + \delta_2 w = 0..$$
 (2)

Since $\{u, v, w\}$ is also a basis, we know that $\{u, v, w\}$ is also linearly independent. Hence, $\delta_1 = \delta_2 = \delta_3 = 0$. Thus, (1) contains the trivial representation and so $\{u + v + w, v + w, w\}$ is linearly independent.

Now, to prove that $S = \{u + v + w, v + w, w\}$ generates V, it suffices to show that $V \subseteq \operatorname{span}(S)$. Adjoining a vector $x \in V$ but not in S produces a linearly independent set. Hence, Theorem 1.7 implies that $s \in \operatorname{span}(S)$. Hence, S generates V and that S is a basis for V.

Exercise 1.6.19

Complete the proof of Theorem 1.8.

Proof. See proof in notes.

Exercise 1.6.20

Let V be a vector space having dimension n, and let S be a subset of V that generates V.

(a) Prove that there is a subset of S that is a basis for V. (Be careful not to assume that S is finite.)

Proof. Let $\dim(V) = n$. Suppose S is a subset of V such that S generates V. Then S could be either $S = \{0\}$ or $S = \emptyset$. In either case, we find that $\operatorname{span}(\emptyset) = \{0\} = V$ or $\operatorname{span}(\{0\}) = \{0\} = V$. Now, suppose S contains a non-zero vector u_1 . Thus, the set $\{u_1\}$ is linearly independent. Suppose we continue adding vectors inductively u_2, u_3, \ldots, u_k into this set such that this process stops at exactly k vectors. We claim that our constructed set

$$L = \{u_1, u_2, \dots, u_k\}$$

is linearly independent for $k \geq 1$. Suppose we assume that L holds for the kth case. We want to show that it also holds for the k+1 case. Observe that

$$L = \{u_1, u_2, \dots, u_{k+1}\} = \{u_1, u_2, \dots, u_k\} \cup \{u_{k+1}\}.$$

If $u_{k+1} = 0$, then L would be linearly dependent. Otherwise $u_{k+1} \neq 0$ and so $\{u_{k+1}\}$ is linearly independent. By inductive hypothesis, we also know that $\{u_1, u_2, \ldots, u_k\}$ is

linearly independent. Since $\operatorname{span}(\{u_1, u_2, \dots, u_k\}) \cap \operatorname{span}(\{u_{k+1}\}) = \{0\}$ and that the two sets are disjoint, we know that $\{u_1, u_2, \dots, u_k\} \cup \{u_{k+1}\}$ is linearly independent. This ends our induction proof.

Note that we cannot have $S \neq L$ since S could be an infinite set. Since L is a subset of V where $\dim(V) = n$, L can be extended into a basis for V by Corollary 2 of the Replacement Theorem that contains exactly n vectors.

(b) Prove that S contains at least n vectors.

Proof. Denote the basis constructed from part (a) as β . Since β is a basis for V, β must contain exactly n vectors. Since $\beta \subseteq S$ and S is a generating set for V, then S must contain at least n vectors.

Exercise 1.6.21

Prove that a vectors space is infinite-dimensional if and only if it contains an infinite linearly independent subset.

Proof. Let V be a vector space. For the forwards direction, suppose V is an infinite-dimensional vector space. By definition, V contains a basis β that is infinite-dimensional. By definition, β is also linearly independent. Thus, V contains an infinite linearly independent set.

For the backwards direction, we proceed using the converse. Suppose V is a finite-dimensional vector space. Let $\dim(V) = n$. By definition, V contains a basis β that contains exactly n vectors. Since β is also linearly independent, β is a finite linearly independent subset.

Exercise 1.6.22

Let W_1 and W_2 be subspaces of a finite-dimensional vector space V. Determine the necessary and sufficient conditions on W_1 and W_2 so that $\dim(W_1 \cap W_2) = \dim(W_1)$.

Proof. We must have $W_1 \subseteq W_2$ in order for $\dim(W_1 \cap W_2) = \dim(W_1)$. Let W_1 and W_2 be subspaces of a finite dimensional vector space V. Since W_1 and W_2 are subspaces, we must also have $W_1 \cap W_2$ as a subspace. Hence, $W_1 \cap W_2$ is finite-dimensional by Theorem 1.11. This implies that $W_1 \cap W_2$ contains a basis β containing exactly $\dim(W_1 \cap W_2)$ vectors. Since β is a linearly independent subset of W_1 , we know that β must contain at most $\dim(W_1)$ vectors. Hence, we have $\dim(W_1 \cap W_2) \leq \dim(W_1)$. Since $W_1 \cup W_2$, then $W_1 \subseteq W_1 \cap W_2$. Since W_1 is finite-dimensional, let α be a basis containing exactly $\dim(W_1)$ vectors. Since $\alpha \subseteq W_1 \cap W_2$ and α is a linearly independent set, α must contain at most $\dim(W_1 \cap W_2)$ amount of vectors. Hence, $\dim(W_1) \leq \dim(W_1 \cap W_2)$. Thus, we have $\dim(W_1) = \dim(W_1 \cap W_2)$.

Conversely, we have $\dim(W_1 \cap W_2) = \dim(W_1)$. By Theorem 1.11, we have $W_1 \cap W_2 = W_1$. Since $W_1 \cap W_2 \subseteq W_2$, we know that $W_1 \subseteq W_2$.

Exercise 1.6.23

Let v_1, v_2, \ldots, v_k, v be vectors in a vector space V, and define $W_1 = \text{span}(\{v_1, v_2, \ldots, v_k\})$, and $W_2 = \text{span}(\{v_1, v_2, \ldots, v_k, v\})$.

(a) Find necessary and sufficient conditions on v such that $\dim(W_1) = \dim(W_2)$.

Proof. The condition we need is $v \in W_1$. Since W_1 and W_2 are subspaces, we also have $W_1 \cap W_2$ is a subspace. Hence, theorem 1.11 tells us that $W_1 \cap W_2$ is also finite-dimensional. Suppose $v \in W_1$. Since $v \in W_2$ as well, we have that $W_1 \subseteq W_2$. Now let $v \in W_2$. Then choose scalars a_1, a_2, \ldots, a_k such that

$$a_1v_1 + a_2v_2 + \dots + a_nv_k = v.$$

But this tells us that $v \in W_1$. So, $W_2 \subseteq W_1$ and thus $W_1 = W_2$. By theorem 1.11, $\dim(W_1) = \dim(W_2)$.

Conversely, $\dim(W_1) = \dim(W_2)$. Since $v \in W_2$, this also means that $v \in W_1$ since $W_1 = W_2$ by theorem 1.11.

(b) State and prove a relationship involving $\dim(W_1)$ and $\dim(W_2)$ in the case that $\dim(W_1) \neq \dim(W_2)$.

Proof. If $\dim(W_1) \neq \dim(W_2)$, then $v \notin W_1$. This is just the contrapositive of the statement above.

Exercise 1.6.24

Let f(x) be a polynomial of degree n in $P_n(\mathbb{R})$. Prove that for any $g(x) \in P_n(\mathbb{R})$ there exists scalars c_0, c_1, \ldots, c_n such that

$$g(x) = c_0 f(x) + c_1 f^{(1)}(x) + c_2 f^{(2)}(x) + \dots + c_n f^{(n)}(x),$$

where $f^{(n)}(x)$ denotes the *n*th derivative of f(x).

Proof. Since f is differentiable n times, we can construct the set

$$W = \{ f(x), f^{(1)}(x), f^{(2)}(x), \dots, f^{(n)}(x) \}$$

containing n+1 polynomials such that no two polynomials contain the same degree (with each derivative of f(x), the degree decreases by one). Since W is a subset of $P_n(\mathbb{R})$ with no two polynomials having the same degree, we see that following the process seen in example 4 in section 1.5 shows that W is a linearly independent set containing n+1 vectors. Hence, W is a basis for $P_n(\mathbb{R})$ such that any $g(x) \in P_n(\mathbb{R})$ by Theorem 1.11. Consequently, g(x) can be expressed in terms of the vectors in W such that

$$g(x) = c_0 f(x) + c_1 f^{(1)}(x) + c_2 f^{(2)}(x) + \dots + c^n f^{(n)}(x)$$

for unique scalars c_0, c_1, \ldots, c_n by Theorem 1.8.

Exercise 1.6.29

(a) Prove that if W_1 and W_2 are finite-dimensional subspaces of a vector space V, then the subspace $W_1 + W_2$ is finite-dimensional, and $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$.

Proof. Let W_1 and W_2 be subspaces of V. Since W_1 and W_2 are finite-dimensional, we also know that $W_1 + W_2$ is finite-dimensional. Now, we will show that

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

Consider $W_1 \cap W_2$ and note that $W_1 \cap W_2$ being finite-dimensional implies that it

contains a basis $\beta_0 = \{u_1, u_2, \dots, u_k\}$. We can extend β_0 into a basis for W_1 by adding vectors v_1, v_2, \dots, v_m into β_0 . Denote this new set as β_1 . Likewise, we add vectors w_1, w_2, \dots, w_p into β_0 to make a basis β_2 for W_2 . We claim that $\beta = \beta_0 \cup \beta_1 \cup \beta_2$ is a basis for $W_1 + W_2$. First, we will show that β is linearly independent. To do this, we need to show that

$$\sum_{i=1}^{k} a_i u_i + \sum_{j=1}^{m} b_j v_j + \sum_{\ell=1}^{p} \gamma_{\ell} w_{\ell} = 0.$$
 (1)

Subtracting the third term on both sides of (1) produces the following equation:

$$\sum_{j=1}^{k} a_i u_i + \sum_{j=1}^{m} b_j v_j = -\sum_{\ell=1}^{p} \gamma_{\ell} w_{\ell}.$$

Observe that the left-hand side is an element of W_1 while the other side is an element of W_2 . Hence, we know that the term on the right-hand side of (1) is also an element of $W_1 \cap W_2$. This implies that

$$-\sum_{\ell=1}^{p} \gamma_{\ell} w_{\ell} = \sum_{i=1}^{k} \delta_{i} u_{i}$$

which can be re-written as

$$\sum_{i=1}^{k} \delta_i u_i + \sum_{\ell=1}^{p} \gamma_{\ell} w_{\ell} = 0.$$

Since β_2 is a basis for W_2 , we know that $\delta_i = 0$ and $\gamma_\ell = 0$ implying that $a_i = 0$ and $\gamma_\ell = 0$. We can re-write (1) in the following form:

$$\sum_{i=1}^{k} a_i u_i + \sum_{j=1}^{m} b_j v_j = 0.$$
 (2)

Since β_1 is a linearly independent set, we get that $a_i = 0$ and $b_j = 0$. Hence, (1) contains the trivial-representation which implies that $\beta = \beta_0 \cup \beta_1 \cup \beta_2$ is a linearly independent set.

Now, we will show that β spans $W_1 + W_2$. Observe that $\operatorname{span}(\beta) \subseteq W_1 + W_2$. Now, we will show $W_1 + W_2 \subseteq \operatorname{span}(\beta)$. Suppose we take a vector $v \in W_1 + W_2$ that is not in β and adjoin this vector in β . Note that $\beta \cup \{v\}$ produces a linearly dependent set that by which Theorem 1.7 implies that $v \in \operatorname{span}(\beta)$ and we are done. Hence, β spans $W_1 + W_2$ and thus β is a basis.

Note that β contains exactly m+p+k vectors. Hence, denote $\dim(W_1+W_2)=m+p+k$ which can be re-written as

$$\dim(W_1 + W_2) = m + p + k$$

$$= (k + m) + (k + p) - k$$

$$= \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

(b) Let W_1 and W_2 be finite-dimensional subspaces of a vector space V, and let $V = W_1 + W_2$. Deduce that V is the direct sum of W_1 and W_2 if and only if $\dim(V) = \dim(W_1) + \dim(W_2)$.

Proof. Suppose V is a direct sum of W_1 and W_2 . Then $V = W_1 + W_2$ and $W_1 \cap W_2 =$ $\{0\}$. We need to show that $\dim(V) = \dim(W_1) + \dim(W_2)$. Since $W_1 \cap W_2 = \{0\}$, we know that it contains the empty set \emptyset as the basis for $W_1 \cap W_2$. Hence, $\dim(W_1 \cap W_2) =$ 0. Using the formula derived in part (a), we can write

$$\dim(V) = \dim(W_1 + W_2)$$

$$= \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

$$= \dim(W_1) + \dim(W_2)$$

and we are done.

Conversely, $\dim(V) = \dim(W_1) + \dim(W_2)$ implies that $V = W_1 + W_2$. Using part (a) again, we see that the sum $\dim(V) = \dim(W_1) + \dim(W_2) - 0$ implies that $\dim(W_1 \cap W_2) = 0$ W_2) = 0 and hence $W_1 \cap W_2$ must be equal to the zero set $\{0\}$ (which we know by definition that span(\emptyset) = {0}. Hence, V is a direct sum of W_1 and W_2 .

Exercise 1.6.31

Let W_1 and W_2 be subspaces of a vector space V having dimensions m and n, respectively, where m > n.

(a) Prove that $\dim(W_1 \cap W_2) \leq n$.

Proof. Observe that W_1 and W_2 being subspaces of V implies that $W_1 \cap W_2$ is a subspace of V. Hence, $W_1 \cap W_2$ is finite-dimensional. Denote $\dim(W_1 \cap W_2) = k$ and let β be a basis for $W_1 \cap W_2$. Since $W_1 \cap W_2 \subseteq W_2$, we know that β must contain at most $\dim(W_2) = n$. Hence, $\dim(W_1 \cap W_2) \leq n$.

(b) Prove that $\dim(W_1 + W_2) \leq m + n$.

Proof. Using the formula found in part (a) of Exercise 1.3.29, part (a) of this exercise, and $\dim(W_1) \ge \dim(W_2)$, we find that $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_1) - \dim(W_1 \cap W_2) \le \dim(W_1) + \dim(W_2).$

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_1) - \dim(W_1 \cap W_2) \le \dim(W_1) + \dim(W_2)$$

Exercise 1.6.33

(a) Let W_1 and W_2 be subspaces of a vector space V such that $V = W_1 \oplus W_2$. If β_1 and β_2 are bases for W_1 and W_2 , respectively, show that $\beta_1 \cup \beta_2$ is a basis for V.

Proof. Let W_1 and W_2 be subspaces of V. Assume β_1 and β_2 are bases for W_1 and W_2 respectively. We need to show that $\beta_1 \cap \beta_2 = \emptyset$ and $\beta_1 \cup \beta_2$ is a basis for V.

Since β_1 and β_2 contain distinct linearly independent vectors, we must have $\beta_1 \cap \beta_2 = \emptyset$. Since V is a direct sum of the W_1 and W_2 , we know that $W_1 \cap W_2 = \{0\}$ by definition. Since β_1 and β_2 generate W_1 and W_2 respectively, we must have $\operatorname{span}(\beta_1) \cap \operatorname{span}(\beta_2) =$ $\{0\}$. Now, we have the set $\beta_1 \cup \beta_2$ as a linearly independent set by exercise 1.5.21. Observe that span $(\beta_1 \cup \beta_2) \subseteq V$ follows immediately. Now, take any $v \in V$ that is not in $\beta_1 \cup \beta_2$ such that adjoining this vector $v \in V$ produces a linearly dependent set. By Theorem 1.7, we have $v \in \text{span}(\beta_1 \cup \beta_2)$. Thus, we have $V \subseteq \text{span}(\beta_1 \cup \beta_2)$. Hence, $\beta_1 \cup \beta_2$ is a generating set for V and we are done.

(b) Conversely, let β_1 and β_2 be disjoint bases for subspaces W_1 and W_2 , respectively, of a vector space V. Prove that if $\beta_1 \cup \beta_2$ is a basis for V, then $V = W_1 \oplus W_2$.

Proof. Let β_1 and β_2 be disjoint bases for subspaces W_1 and W_2 respectively. Suppose $\beta_1 \cup \beta_2$ is a basis for V. This tells us that $\beta_1 \cup \beta_2$ is linearly independent. Thus, $\operatorname{span}(\beta_1) \cap \operatorname{span}(\beta_2) = \{0\}$ and hence $W_1 \cap W_2 = \{0\}$ since $\operatorname{span}(\beta_1) = W_1$ and $\operatorname{span}(\beta_2) = W_2$. This tells us that $\dim(W_1 \cap W_2) = 0$. Using the fact that $\beta_1 \cup \beta_2$ is a basis for V that contains exactly $\dim(W_1) + \dim(W_2)$, we get that

$$\dim(V) = \dim(W_1) + \dim(W_2).$$

By part (b) of Exercise 1.6.29, we get that $V = W_1 \oplus W_2$.

Exercise 1.6.34

(a) Prove that if W_1 is any subspace of a finite-dimensional vector space V, then there exists a subspace W_2 of V such that $V = W_1 \oplus W_2$.

Proof. Since W_1 is a subspace of a finite-dimensional vector space V, we know that W_1 is also finite-dimensional and $\dim(W_1) \leq \dim(V)$ by Theorem 1.11. Thus, let β be a basis for W_1 and let α be a basis for V. Since α is a generating set consisting of $\dim(V)$ vectors and β is a linearly independent subset of V, we can find a subset σ of α consisting of $\dim(V) - \dim(W_1)$ vectors such that $\beta \cup \sigma$ generates V by the Replacement Theorem. Suppose σ is a basis for a subspace of V denoted by W_2 for which $\dim(W_2) = \dim(V) - \dim(W_1)$. Note that $\beta \cup \sigma$ contains exactly $\dim(V)$ vectors so it is also a basis for V and that $\beta \cap \sigma = \emptyset$. Hence, $\dim(V) = \dim(W_1) + \dim(W_2)$ for which it implies that $V = W_1 \oplus W_2$.

(b) Let $V = \mathbb{R}^2$ and $W_1 = \{(a_1, 0) : a_1 \in \mathbb{R}\}$. Give examples of two different subspaces W_2 and W_2' such that $V = W_1 \oplus W_2$ and $V = W_1 \oplus W_2'$.

Proof. TO DO.

Exercise 1.6.35

Let W be a subspace of a finite-dimensional vector space V, and consider the basis $\beta_0 = \{u_1, u_2, \dots, u_k\}$ for W. Let $\beta_1 = \{u_1, u_2, \dots, u_k, u_{k+1}, \dots, u_n\}$ be an extension of this basis to a basis for V.

(a) Prove that $\beta_2 = \{u_{k+1} + W, u_{k+2} + W, \dots, u_n + W\}$ is a basis for V/W.

Proof. To show that β_2 is a basis, we need to show that β_2 is a linearly independent set and a generating set for V. Observe that

$$\sum_{j=k+1}^{n} \delta_j(u_j + W) = W \tag{1}$$

for scalars δ_j for $k+1 \leq j \leq n$. Note that W, in this case, is the zero vector of V/W. Hence, (1) implies that

$$\left[\sum_{j=k+1}^{n} \delta_j u_j\right] + W = W. \tag{2}$$

This implies that

$$\sum_{j=k+1}^{n} \delta_j u_j \in W. \tag{3}$$

Since W contains β_0 as a basis, we can write

$$\sum_{j=k+1}^{n} \delta_j u_j = \sum_{i=1}^{k} \gamma_i u_i$$

for scalars γ_i for all $1 \leq i \leq k$ which can be re-written to

$$\sum_{j=k+1}^{n} \delta_j u_j - \sum_{j=1}^{k} \gamma_i u_i = 0$$

where all $\delta_j = 0$ and $\gamma_i = 0$ since β_1 is a basis for V. Since all $\delta_j = 0$, we get that β_2 is a linearly independent set.

To show that β_2 is a generating set for V/W, we need to show that $\operatorname{span}(\beta_2) = V/W$. Note that the containment $\operatorname{span}(\beta_2) \subseteq V/W$. To show that other containment, let $v \in V$ not in β_2 . Observe that adjoining v to β_2 creates a linearly dependent set. By Theorem 1.7, we have $v \in \operatorname{span}(\beta_2)$. Hence, $V \subseteq \operatorname{span}(\beta_2)$.

(b) Derive a formula relating $\dim(V)$, $\dim(W)$, and $\dim(V/W)$.

Proof. In part (a), we see that β_2 contains n amount of vectors. Unioning this set with β_1 creates a basis for V that contains $\dim(W) + \dim(V/W)$ vectors. Hence, we must have

$$\dim(V/W) = \dim(V) - \dim(W).$$

Chapter 2

Linear Transformations and Matrices

2.1 Linear Transformations, Null spaces, and Ranges

Exercise 2.1.7

Prove properties 1, 2, 3, and 4 on page 65.

Proof. See proof in notes.

Exercise 2.1.8

Prove that the transformations in Example 2 and 3 are linear.

Proof. First we prove that $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T_{\theta}(a_1, a_2) = (a_1 \cos \theta - a_2 \sin \theta, a_1 \cos \theta + a_2 \sin \theta)$$

is linear. Let $x, y \in \mathbb{R}^2$ defined by $x = (a_1, a_2)$ and $y = (b_1, b_2)$. Let $c \in F$ such that $cx = (ca_1, ca_2)$. To make the computation less difficult, we have

$$cx + y = (ca_1 + b_1, ca_2 + b_2).$$

Using the definition T_{θ} now, we have that

$$T_{\theta}(cx + y) = ((ca_1 + b_1)\cos\theta - (ca_2 + b_2)\sin\theta,$$

$$(ca_1 + b_1)\cos\theta + (ca_2 + b_2)\sin\theta)$$

$$= (c(a_1\cos\theta - a_2\sin\theta) + (b_1\cos\theta - b_2\sin\theta),$$

$$c(a_1\cos\theta + a_2\sin\theta) + (b_1\cos\theta + b_2\sin\theta))$$

$$= c(a_1\cos\theta - a_2\sin\theta, a_1\cos\theta + a_2\sin\theta)$$

$$+ (b_1\cos\theta - b_2\sin\theta, b_1\cos\theta + b_2\sin\theta)$$

$$= cT_{\theta}(a_1, a_2) + T_{\theta}(b_1, b_2)$$

$$= cT_{\theta}(x) + T_{\theta}(y).$$

Hence, we get that T_{θ} is linear.

Using the same process, we show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(a_1, a_2) = (a_1, -a_2)$ is

linear. That is, we have

$$T(cx + y)(ca_1 + b_1, -(ca_2 + b_2))$$

$$= (ca_1 + b_1, -ca_2 - b_2)$$

$$= c(a_1, -a_2) + (b_1, -b_2)$$

$$= cT(a_1, a_2) + T(b_1, b_2)$$

$$= cT(x) + T(y).$$

Hence, T is also linear.

Exercise 2.1.13

Let V and W be vector spaces, let $T: V \to W$ be linear, and let $\{w_1, w_2, \ldots, w_k\}$ be a linearly independent subset of R(T). If $S = \{v_1, v_2, \ldots, v_k\}$ is chosen so that $T(v_i)$ for $i = 1, 2, \ldots, k$ then S is linearly independent.

Proof. Consider

$$\sum_{i=1}^{k} a_i v_i = 0 \tag{1}$$

for some scalars $a_1, a_2, \ldots, a_k \in F$. In order to show that S is linearly independent, we need to show that $a_i = 0$ for all $1 \le i \le k$. Since T is linear, we get that T(0) = 0 implies

$$T\Big(\sum_{i=1}^k a_i v_i\Big) = 0.$$

Since T is linear and S is chosen so that $T(v_i) = w_i$ for $1 \le i \le k$, we get that

$$\sum_{i=1}^{k} a_i T(v_i) = 0 \Leftrightarrow \sum_{i=1}^{k} a_i w_i = 0.$$

Since $\{w_1, w_2, \dots, w_k\}$ is linearly independent, we must have $a_i = 0$ for all $1 \le i \le k$. But this tell us that (1) must have the trivial representation. Hence, S must also be linearly independent.

Exercise 2.1.14

Let V and W be vector spaces and $T: V \to W$ be linear.

(a) Prove that T is injective if and only if T carries linearly independent subsets of V onto linearly independent subsets of W.

Proof. (\Rightarrow) Define $T: S \to \mathcal{W}$ where S and \mathcal{W} are linearly independent subsets of V and W respectively. Since T is injective, we have that T is an onto map by Theorem 2.5.

 (\Leftarrow) Suppose T carries linearly independent subsets of V onto linearly independent subsets of W. Our goal is to show that T is injective. Suppose

$$T\left(\sum_{i=1}^{n} a_i v_i\right) = T\left(\sum_{i=1}^{n} b_i v_i\right) \tag{1}$$

for some scalars a_i, b_i and vectors $v_i \in S$ for all $1 \leq i \leq k$. Since T is linear and

 $T: S \to \mathcal{W}$ is onto, we can re-write (1) into the following form:

$$\sum_{i=1}^{k} a_i T(v_i) = \sum_{i=1}^{k} b_i T(v_i)$$
(2)

which manipulating again, we get that

$$\sum_{i=1}^{k} (a_i - b_i) T(v_i) = 0.$$
(3)

Since $T(v_i) \in W$ and W is linearly independent, we must have $a_i - b_i = 0$ if and only if $a_i = b_i$. Hence, we have

$$\sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{n} b_i v_i$$

and so T must be injective.

(b) Suppose that T is injective and that S is a subset of V. Prove that S is linearly independent if and only if T(S) is linearly independent.

Proof. (\Rightarrow) In order to show that T(S) is linearly independent, we must show that

$$\sum_{i=1}^{n} a_i T(v_i) = 0 \tag{1}$$

contains the trivial-representation. Since T is linear, we can write (1) into the following form

$$T\left(\sum_{i=1}^{n} a_i v_i\right) = 0.$$

This implies that

$$\sum_{i=1}^{n} a_i v_i \in N(T).$$

Since T is injective, we know that $N(T) = \{0\}$ (by Theorem 2.4), and so we must have

$$\sum_{i=1}^{n} a_i v_i = 0. \tag{2}$$

But $v_i \in S$ for $1 \le i \le k$ is linearly independent, and so $a_i = 0$ for all $1 \le i \le k$. This tells us that (1) contains the trivial-representation. Hence, T(S) is linearly independent.

 (\Rightarrow) Suppose T(S) is linearly independent. Then observe that

$$\sum_{i=1}^{n} a_i T(v_i) = 0$$

for some scalars a_i and $T(v_i) \in T(S)$ for $1 \le i \le k$ such that $a_i = 0$. Since T is linear and T is injective, we can write

$$T\left(\sum_{i=1}^{n} a_i v_i\right) = 0 \Leftrightarrow \sum_{i=1}^{n} a_i v_i = 0.$$

Since $a_i = 0$ and $v_i \in S$, we also find that S is a linearly independent set.

(c) Suppose $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V and T is injective and surjective. Prove that $T(\beta) = \{T(v_1), T(v_2), \dots, T(v_n)\}$ is a basis for W.

Proof. Since β is a basis for V, we get that $\operatorname{span}(T(\beta)) = R(T)$ by Theorem 2.2. Since T is surjective, we have R(T) = W, so $\operatorname{span}(T(\beta)) = W$. Hence, $T(\beta)$ generates W. Since β is a linearly independent subset of V and T is an injective linear map, we must also have $T(\beta)$ as a linearly independent subset of W by part (b). Hence, $T(\beta)$ is a basis for W.

Exercise 2.1.15

Recall the definition of $P(\mathbb{R})$ on page 10. Define

$$T: P(\mathbb{R}) \to P(\mathbb{R})$$
 by $T(f(x)) = \int_0^x f(t) dt$.

Prove that T is linear and injective, but not surjective.

Proof. First, we show that $T: P(\mathbb{R}) \to P(\mathbb{R})$ defined by

$$T(f(x)) = \int_0^x f(t) dt.$$

Let $cf(x) + g(x) \in P(\mathbb{R})$ where $c \in F$. Then observe that

$$T(cf(x) + g(x)) = \int_0^x [cf(t) + g(t)] dt$$

$$= \int_0^x cf(t) dt + \int_0^x g(t) dt$$

$$= c \int_0^x f(t) dt + \int_0^x g(t) dt$$

$$= cT(f(x)) + T(g(x)).$$

Hence, $T: P(\mathbb{R}) \to P(\mathbb{R})$ is a linear map. Let $f(x), g(x) \in P(\mathbb{R})$, then

$$T(f(x)) = T(g(x))$$

$$\int_0^x f(t) dt = \int_0^x g(t) dt$$

$$\frac{d}{dx} \left[\int_0^x f(t) dt \right] = \frac{d}{dx} \left[\int_0^x g(t) dt \right]$$

$$f(x) = g(x).$$

Hence, T is an injective map. To see why T fails to be surjective, observe that $1 \in P(\mathbb{R})$ but we cannot find a polynomial f(x) such that T(f(x)) = 1; that is, the integration of any polynomial can never yield 1.

Exercise 2.1.16

Let $T: P(\mathbb{R}) \to P(\mathbb{R})$ be defined by T(f(x)) = f'(x). Recall that T is linear. Prove that T is surjective, but not injective.

Proof. Let $T: P(\mathbb{R}) \to P(\mathbb{R})$ be defined by $T(f(x)) = f'(x) = \frac{d}{dx}[f(x)]$. For $cf(x) + g(x) \in P(\mathbb{R})$ where $c \in F$, observe that

$$T(cf(x) + g(x)) = \frac{d}{dx}[cf(x) + g(x)]$$

$$= \frac{d}{dx}[cf(x)] + \frac{d}{dx}[g(x)]$$

$$= c\frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$$

$$= cT(f(x)) + T(g(x)).$$

Hence, T is a linear map. Now, we want to show that T is surjective. Define

$$f(x) = \int_0^x g(t) \ dt.$$

Then

$$T(f(x)) = \frac{d}{dx}[f(x)] = \frac{d}{dx} \left[\int_0^x g(t) \ dt \right] = g(x)$$

by the Second Fundamental Theorem of Calculus. Hence, T is surjective.

To show that T is not injective, let $x^n + a$, $x^n + b \in P(\mathbb{R})$ where $a, b \in \mathbb{R}$ such that $a \neq b$ and n > 0. Clearly, we have $x^n + a \neq x^n + b$. But, we have

$$T(x^n + a) = \frac{d}{dx}[x^n + a] = nx^{n-1}$$

and

$$T(x^n + b) = \frac{d}{dx}[x^n + b] = nx^{n-1}.$$

Note that $x^n + a \neq x^n + b$ yet $T(x^n + a) = T(x^n + b)$. Hence, T is not injective.

Exercise 2.1.17

Let V and W be finite-dimensional vector spaces and $T: V \to W$ be linear.

(a) Prove that if $\dim(V) < \dim(W)$, then T cannot be surjective.

Proof. Using the Dimension Theorem, we find that

$$rank(T) = dim(V) - nullity(T).$$

 $\operatorname{Fank}(I) = G$ Since $\dim(V) < \dim(W)$, we find that

$$rank(T) < dim(W) - nullity(T) < dim(W).$$

Hence, T cannot be surjective in this case.

(b) Prove that if $\dim(V) > \dim(W)$, then T cannot be injective.

Proof. Using the Dimension Theorem again and $\dim(V) > \dim(W)$, we find that

$$\operatorname{nullity}(T) = \dim(V) - \operatorname{rank}(T) > \dim(W) - \operatorname{rank}(T) > 0.$$

This means that $\operatorname{nullity}(T)$ can never be zero, otherwise T is injective. Hence, T can never be injective if $\dim(V) > \dim(W)$.

Exercise 2.1.20

Let V and W be vector spaces with subspaces V_1 and W_1 , respectively. If $T: V \to W$ is linear, prove that $T(V_1)$ is a subspace of W and that $\{x \in V: T(x) \in W_1\}$ is a subspace of V.

Proof. First, we prove that $T(V_1)$ is a subspace of W. Let $x, y \in T(V_1)$ and $c \in F$. Since V_1 is a subspace of V, we know that $0_V \in V_1$, $x + y \in V_1$, and $cx \in V_1$. Observe that $T(0_V) = 0_W$ since T is linear. Hence, $0_W \in T(V_1)$. Let $x, y \in T(V_1)$. Since T is linear and $x + y \in V_1$, we have T(x + y) = T(x) + T(y). Hence, we must have $x + y \in T(V_1)$. Now, $cx \in V_1$ implies T(cx) = cT(x). Hence, $cx \in T(V_1)$. This tells us that $T(V_1)$ is a subspace of W.

Now, we show $S = \{x \in V : T(x) \in W_1\}$ is a subspace of V. Since $0_W \in W_1$ (because W_1 is a subspace of W) and T is linear, we have that $T(0_V) = 0_W$. Hence, $0_V \in S$. Now, let $x, y \in S$. Hence, $T(x), T(y) \in W_1$ implies $T(x) + T(y) \in W_1$ since W_1 is a subspace of W. Since T is linear, we have T(x) + T(y) = T(x+y), and so $x+y \in S$. Now, let $c \in F$ and $x \in S$. Again, W_1 is a subspace so $cT(x) \in W_1$. Thus, T being linear implies that cT(x) = T(cx). Hence, $cx \in S$. Thus, S is a subspace of V.

Exercise 2.1.21

Let V be the vector space of sequences described in Example 5 of Section 1.2. Define the functions $T, U: V \to V$ by

$$T(a_1, a_2, \dots) = (a_2, a_3, \dots)$$
 and $U(a_1, a_2, \dots) = (0, a_1, a_2, \dots)$.

T and U are called the **left shift** and **right shift** operators on V, respectively.

(a) Prove that T and U are linear.

Proof. Let $(x_n), (y_n) \in V$ with $(x_n) = (a_1, a_2, \dots)$ and $(y_n) = (b_1, b_2, \dots)$. Let $c \in F$. Then we have

$$T(cx_n + y_n) = (ca_2 + b_2, ca_3 + b_3, \dots)$$

$$= (ca_2, ca_3, \dots) + (b_2, b_3, \dots)$$

$$= c(a_2, a_3, \dots) + (b_2, b_3, \dots)$$

$$= cT(x_n) + T(y_n).$$

Hence, $T: V \to V$ is a linear map.

Now with $U:V\to V$ observe that

$$U(cx_n + y_n) = (0, ca_1 + b_1, ca_2 + b_1, \dots)$$

$$= (0, ca_1, ca_2, \dots) + (0, b_1, b_2, \dots)$$

$$= c(0, a_1, a_2, \dots) + (0, b_1, b_2, \dots)$$

$$= cU(x_n) + U(y_n).$$

Hence, $U: V \to V$ is a linear map.

(b) Prove that T is surjective, but not injective.

Proof.

(c) Prove that U is injective, but not surjective.

Proof.