Supervised versus Unsupervised Learning

Ogwal-Awio Kenneth
Lira University

Lecture objectives

- By the end of this lecture students should be able to:
 - ✓ Comprehend the difference between supervised, and unsupervised learning
 - ✓ Explain the problem peculiar to each method of machine learning
 - ✓ Identify the algorithms for each method of machine learning
 - ✓ Explain the uses and applications of the methods of machine learning

Supervised Learning

What is supervised learning?

• Supervised learning is a subdomain of machine learning in which an algorithm is employed to learn the mapping function from the input variable (x) to the output variable (y).

i.e.
$$y = f(x)$$

- It is about learning a mapping function from inputs to outputs.
- Supervised learning algorithms utilize datasets to make predictions.
 - The utilized datasets are called training datasets.
- It is based on labelled data

Labelled dataset

No	SIZE	COLOUR	SHAPE	FRUIT NAME
1	Big	Red	Rounded shape with a depression at the top	Apple
2	Small	Red	Rounded shape with a depression at the top	Tomato
3	Big	Green	Long curving cylinder	Banana
4	Small	Green	Rounded shape without a depression at the top	Orange

- Here, size, colour and shape form the input training dataset, while fruit name form the labels, also called classes.
- A supervised learning algorithm infers a function from this given labeled training data.

Supervised learning...

- The training data consists of a set of training examples.
 - ➤ Each example is a pair consisting of an input object and a desired output value
 - The input data is also called input vector, and output value is also called a label, category, or supervisory signal.
- A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for determining the classes of new inputs.
- The input vector must be sufficient to allow, and too small or too large.

Learning process in supervised learning

Supervised learning

- The algorithm should correctly determine the class labels for new instances of inputs.
 - ➤In Machine learning, an algorithm that is capable of learning a classification predictive model is called a classification algorithm.
 - This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way.
- Examples of the common classification algorithms include K-Nearest Neighbors (K-NN) algorithm, Decision trees (DT) algorithm, Logistic regression (LR) algorithm, and Naïve Bayes (NB) algorithm.

Supervised learning problems

- A supervised learning problem can be a:
 - ✓ Classification problem
 - ✓ Regression problem

Classification

- Classification algorithms estimate the mapping function (f) from the input variables (x) to discrete or categorical output variables (y).
 - The output variable in classification is categorical (or discrete), i.e. it classification returns categorical output
 - ➤In a way, it solves a yes/no problem
 - o i.e. whether something meets its required standards, or not.
- The goal of classification is to predict the target class.
 - Thus, classification predicts a discrete class label output for an example.

Classification...

- If the trained model is for predicting any of two target classes, then it is known as binary classification, or a two-class problem.
 - For example basing the student profile to predict whether the student will pass or fail, and predicting whether a customer will buy the new product or not, are both problems which can be addressed with binary classification.
- If we have to predict from more than two target classes, it is known as multi-classification.
 - For example, considering all subject details of a student to predict which subject the student will score more, and identifying the object in an image, are both multi-classification problems. Other application include customer segmentation, audio and image categorization, and text analysis.

Classification

More examples – Linear classification...

Supervised Learning 12

More examples - Non-linear classification...

Supervised Learning

Applications of classification

- Determining where email is a spam or not
- Determining where face is for male or female
- Attack detection in computer network flow
- Determining whether fruit is banana or orange
- Approving credit as yes or no
- Etc, etc, ...

Regression

- Regression algorithms attempt to estimate the mapping function (f) from the input variables (x) to numerical or continuous output variables (y).
- In this case, y is a real value
 - >A real values here can be an integer or a floating point value.
- Regression prediction problems are usually about quantities or sizes.
 - > It predicts a discrete or a continuous numerical value.
- A regression output is represented by a quantity determined based on the inputs of the model rather than being confined to a set of possible labels.

Regression algorithms

- Common regression algorithms include;
 - ✓ Linear regression (LR)
 - ✓ Support Vector Regression (SVR)
 - ✓ Regression trees

- □Other algorithms can be used for both classification and regression
 - ➤ E.g. Decision Tress and Random Forest.

Applications of regression

- Sample applications include:
 - ✓ Prediction of prices of houses when provided with a dataset about the houses.
 - ✓ Predicting whether it will rain, and if it will, how much rain we will get.
 - ✓ Predicting the likelihood of increase in customers' demand.
 - ✓ Knowledge extraction
 - ✓ Compression
 - ✓ Outlier detection e.g. exceptions that are not covered by the rule

Classification vs Regression

Unsupervised learning

What is unsupervised learning?

- Unsupervised Learning is the acquisition of knowledge on useful structure in a dataset which does not have labeled classes, optimization criterion, feedback signal, or any other information beyond the raw data
 - ➤ It is also referred to as self-organisation, or modelling probability density of inputs.
- It learns from unlabeled data to discover patterns in the data, and perform cohesive grouping and associations based on frequent co-occurrence.

Unsupervised learning...

- Unsupervised learning identifies commonalities in the example data and predicts based on the presence or absence of commonalities.
 - >It is a prelude to discovery of underlying properties of the dataset.
- It takes as training examples the set of attributes/features alone.
- The purpose of unsupervised learning is to attempt to find natural partitions in the training set.
 - The core approach is by clustering of inputs to generate the output.

Unsupervised learning

Clustering

- In clustering, the data has no target attribute, but we want to explore the data to find any intrinsic structures in them.
 - ➤ A cluster is a collection of data items which are similar between them and dissimilar to data items of other clusters
- The goal of clustering is to
 - ✓ Group data points that are similar or close to each other, and
 - ✓ Identify such groupings without basing on labels.

Example of clustering

Cluster centroids

- Each cluster is represented by its central point known as a centroid
 - A cluster boundary is determined by the farthest data point in the cluster.

Which is a better way of clustering?

Types of clustering

- Common types of clustering include:
 - ✓ Exclusive clustering also known as hard clustering, is where a given data point in n-dimensional space only belongs to one cluster. E.g. K-means method.
 - ✓ Overlapping clustering also called soft clustering, is where a given data point can belong to more than one cluster. E.g. Fuzzy C-means and Fuzzy K-means.
 - ✓ Hierarchical clustering where a hierarchy of clusters is built using top-down (divisive clustering) or bottom-up (agglomerative clustering) approach.
 - ✓ Flat clustering a simple clustering technique where no hierarchy is present
 - ✓ Spectral clustering where the nodes in a graph are linked based on similarity weights
 - ✓ Model-based clustering also called probabilistic clustering, is where data is modelled using a standard statistical method after partitioning the training set into clusters with each cluster composed of values from different clusters, in order to find a model that best fits the data.

Example – Hierarchical clustering

Flat Clustering vs Hierarchical Clustering

Important elements in clustering

- Similarity function
 - ➤ Also called proximity measure function, it is a real-valued function that quantifies the similarity between two objects.
- Stopping criteria.
 - Since an clustering algorithm computes successive approximations to the solution of a linear system, a practical test is needed to determine when to stop the iteration.
- Cluster quality
 - There are a number of metrics used to quantify the quality of clustering, and so we need to determine which is more suitable for that application.

When to use clustering

- Clustering can be used in the following situations:
 - √ When the data has high dimensionality
 - ✓ When the dataset is large
 - ✓ When the dataset consists of different kinds of attributes, such as numerical, categorical, or binary data.
 - ✓ When there is need to discover clusters with arbitrary shapes.
 - ✓ When the dataset contains noisy, missing or erroneous data.
 - √ When the results should be interpretable, comprehensible and usable.

Applications of clustering

- √ Climatology
 - Study of climates
- √ Bioinformatics
 - Processing, storage and retrieval of data related to life.
- ✓ Data mining
 - Finding insights from data
- ✓ Image processing
 - Object and character recognition
- ✓ Medical imaging
 - Finding patterns from images related to life.

Applications of clustering...

- ✓ Pattern recognition
 - Finding and classifying data based on knowledge already gained from patterns and/or their representation.
- ✓ Spatial data analysis
 - Analysis of space
- ✓ Etc, etc

Challenges with Unsupervised Learning

- Data mining deals with large databases
- Scalability with respect to number of instance
 - ➤ Use a random sample (possible bias)
- Dealing with mixed data
 - ➤ Many algorithms only make sense for numeric data
- High dimensional problems
 - ➤ Can the algorithm handle many attributes?
 - ➤ How do we interpret a cluster in high dimensions?
- Shape of clusters

Challenges with Clustering

- Minimum domain knowledge (e.g., knowing the number of clusters)
- Noisy data
- Insensitivity to instance order
- Interpretability and usability

Applications of unsupervised learning

- Understanding and visualization
- Anomaly detection
- Information retrieval
- Data compression

Clustering in a nutshell

Clustering in a nutshell...

- Hierarchical algorithms find successive clusters using previously established clusters. They include:
 - ➤ Agglomerative algorithms begin with each element as a separate cluster and merge them into successive larger clusters, until all clusters are merged into a single cluster (root cluster).
 - ➤ Divisive algorithms begin with the whole set and proceed to recursively divide it into successive smaller clusters, until only singleton clusters of individual data points remain.
- Partitional algorithms determine all clusters at once, but can also be used as devise algorithms in the hierarchical clustering.
- Bayesian algorithms generate a posteriori distribution over the collection of all partitions of the data.

Summary of ML algorithms

A taxonomy of some of the best known AI methods

Reading Assignment

• Read about use of the Measures of evaluating a machine learning product based on the Confusion Matrix. Submission to [akogwal@gmail.com] is optional, as it will not attract any mark.

Big thanks