Chapitre 7: DENOMBREMENT- PROBABILITE

7.1. RESUME DU COURS

7.1.1. DENOMBREMENT

Réunion – intersection – complémentaire

Soit A et B deux parties d'un ensemble Ω .

 \triangleright La réunion de A et B, notée AUB est la partie de Ω constituée des éléments qui sont dans A ou dans B.

ightharpoonup L'intersection de A et B, notée A \cap B est la partie de Ω constituée des éléments qui sont à la fois dans A et dans B.

ightharpoonup Le complémentaire de A dans Ω , notée \overline{A} est la partie de Ω constituée des éléments de Ω qui ne sont pas dans A.

Propriétés des cardinaux

Soit A et B des parties d'un ensemble fini Ω .

- \triangleright cardA \cup B = cardA + cardB card A \cap B.
- \triangleright cardA = card Ω card \overline{A} .

Les p-listes

- ightharpoonup Définition : Une p-liste ou p-uplet d'un ensemble fini Ω est une suite ordonnée de p éléments de Ω , chaque élément pouvant être répété.
- **Exemple :** Soit $\Omega = \{a, b, c\}$. les 2-listes de Ω sont (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b) et (c, c).
- ightharpoonup Théorème : Le nombre de p-listes d'un ensemble à n éléments est n^p .

Les arrangements

Soit Ω un ensemble fini ayant n éléments.

- ▶ **Définition :** Un arrangement de p éléments de Ω (p ≤ n) ou un p-arrangement est une p-liste d'éléments de Ω , distincts deux à deux.
- ightharpoonup **Exemple :** Soit $\Omega = \{a, b, c\}$. les arrangements de 2 éléments de Ω sont (a, b), (a, c), (b, a), (b, c), (c, a) et (c, b).
- **Théorème :** Le nombre d'arrangements de p éléments d'un ensemble à n éléments $(p \le n)$ est noté A_n^p ; $A_n^p = n(n-1) \times ... \times (n-p+1)$.

Les permutations

Soit Ω un ensemble fini ayant n éléments.

ightharpoonup Définition : Une permutation de Ω est un arrangement des n éléments de Ω .

- Fremple: Soit $\Omega = \{a, b, c\}$. Les permutations de Ω sont: (a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b) et (c, b, a).
- ➤ **Théorème :** Le nombre de permutations d'un ensemble à n éléments est noté n!;

$$n! = n(n-1) x...x2x1.$$

Par convention : 0! = 1.

Les combinaisons

Soit Ω un ensemble fini ayant n éléments.

- \triangleright **Définition :** Une combinaison de p éléments de Ω (p ≤ n) est une partie de Ω ayant p éléments.
- **Exemple :** Soit $\Omega = \{a, b, c\}$. les combinaisons de 2 éléments de Ω sont $\{a, b\}$, $\{a, c\}$ et $\{b, c\}$
- ➤ **Théorème**: Le nombre de combinaisons de p éléments d'un ensemble à n éléments $(p \le n)$ est noté C_n^p ; $C_n^p = \frac{A_n^p}{p!}$.

Propriétés des A_n^p et des C_n^p

$$A_n^p = \frac{n!}{(n-p)!}; A_n^0 = 1; A_n^1 = n; A_n^n = n!.$$

$$C_n^p = \frac{n!}{p!(n-p)!}; \quad C_n^0 = 1; \quad C_n^1 = n \ (n \ge 1);$$

$$C_n^n = 1; \quad C_n^p = C_n^{n-p}.$$

Remarque: L'écriture de A_n^p comporte p facteurs; pour calculer A_n^p , on écrit n, puis les facteurs suivants en retranchant chaque fois 1, jusqu'à ce qu'on l'on ait écrit p facteurs.

<u>Différence entre une p-liste, un arrangement et une combinaison</u>

Dans un exercice de dénombrement

- > Si un élément peut être répété, alors on a des p-listes.
- ➤ Sinon on a des arrangements ou des combinaisons

- Si l'ordre des éléments est pris en compte, alors on a des arrangements.
- Sinon on a des combinaisons.

Autrement : En traitant un exercice de dénombrement, pour savoir si on a des p-listes, des arrangements ou des combinaisons, on peut se poser ces questions ?

Les Tirages

- ➤ Si le tirage est successif avec remise, on a des p-listes.
- ➤ Si le tirage est successif sans remise, on a des arrangements.
- > Si le tirage est simultané, on a des combinaisons.

Vocabulaire

- ➤ « Au moins » correspond à l'inégalité « ≥ » ; sa négation est « moins de » et correspond à l'inégalité « < ».</p>
- \succ « Au plus » correspond à l'inégalité « \leq » ; sa négation est « plus de » et correspond à l'inégalité « > ».
- ightharpoonup Si A= « Au moins une boule noire (par exemple) » alors $\overline{A}=$ « moins d'une boule noire » = « pas de boule noire ».

Principe multiplicatif - principe additif

- ➤ Si une expérience A résulte de deux actions indépendantes et successives B puis C, alors on a multiplication. C'est-à-dire cardA = cardB x cardC.
- ➤ Si une expérience A résulte de deux actions disjointes B ou C, alors on a une addition.

 $C'est-\grave{a}-dire\ cardA = cardB + cardC.$

Formule du binôme de Newton

Soit a, b des réels et n un entier naturel non nul ; $(a + b)^n = \sum_{n=0}^n C_n^p a^{n-p} b^p$.

7.1.2. PROBABILITES SIMPLES

Vocabulaire

- ➤ Une expérience aléatoire est une épreuve dont l'issue ne peut être déterminée avant sa réalisation.
- ightharpoonup L'ensemble de toutes les éventualités ou possibilités d'une expérience aléatoire est appelé univers et est en général noté Ω .
 - \triangleright Toute partie de l'univers Ω est appelé événement.

- ➤ Un événement élémentaire est un événement ayant un élément.
- ightharpoonup Deux événements A et B sont disjoints ou incompatibles si $A \cap B = \emptyset$.
 - \blacktriangleright Les événements A et \bar{A} sont disjoints et $A \cup \bar{A} = \Omega$.

Définition

p est une probabilité sur Ω signifie que :

- $p(\Omega) = 1$, $p(\emptyset) = 0$
- pour tout événement A de Ω , $0 \le p(A) \le 1$.
- si A = $\{e_1, e_2, \dots e_n\}$ où les e_i sont des événements élémentaires, alors $p(A) = \sum_{i=1}^n p(\{e_i\})$

Propriétés

Soit A et B deux événements de Ω

- $ightharpoonup p(A \cup B) = p(A) + p(B) p(A \cap B).$
- \triangleright Si A et B sont disjoints alors $p(A \cup B) = p(A) + p(B)$
- $ightharpoonup p(A) = 1 p(\bar{A}).$

Equipro ba bilité

- ightharpoonup **Définition :** Dans une expérience aléatoire, si tous les événements élémentaires e_i ont la même probabilité alors il y a équiprobabilité.
- Théorème: Dans le cas d'équiprobabilité, la probabilité d'un événement A est $p(A) = \frac{cardA}{card\Omega} = \frac{nombre\ de\ cas\ favorables}{nombre\ de\ cas\ possibles}$.

Cas de non équiprobabilité

Dans ce cas les événements élémentaires e_i n'ont pas la même probabilité.

Ces probabilités $p_i = p(e_i)$ seront données de manière explicite ou à travers une ou plusieurs relations qui permettront de les calculer.

Pour ce calcul, on exprime chaque probabilité p_i en fonction de p_1 (par exemple) et on utilise l'égalité $\sum_{i=1}^n p_i = 1$ pour déterminer p_1 . Ensuite on en déduit toutes les probabilités p_i qui permettront de calculer la probabilité d'événements quelconques.

7.1.3. PROBABILITES CONDITIONNELLES

Définition

Soit A et B deux événements tels que $p(A) \neq 0$. La probabilité de B sachant que A est réalisé est $p(B/A) = \frac{p(A \cap B)}{p(A)}$.

p(B/A) est aussi notée $p_A(B)$.

Propriété

Soit A et B deux événements tels que $p(A) \neq 0$ et $p(B) \neq 0$. $p(A \cap B) = p(A)p(B/A) = p(B)p(A/B)$.

Evénements indépendants

- ➤ **Définition :** Les événements A et B sont indépendants si p(B/A) = p(B) ou p(A/B) = p(A).
- Théorème : Deux événements A et B sont indépendants ssi $p(A \cap B) = p(A)p(B)$.

Attention

Il ne faut pas confondre événements disjoints et événements indépendants.

Formule des probabilités totales

Soit A et B deux événements de Ω .

$$A = A \cap \Omega = A \cap (B \cup \overline{B}) = (A \cap B) \cup (A \cap \overline{B}).$$

➤ Théorème 1:

$$p(A) = p(A \cap B) + p(A \cap \overline{B}) = p(B)p(A/B) + p(\overline{B})p(A/\overline{B}).$$

> Théorème 2 : De manière générale si

 $\Omega = A_1 \cup A_2 \cup ... \cup A_n$ et si les A_i sont disjoints deux à deux alors

$$p(A) = p(A \cap A_1) + p(A \cap A_2) + \dots + p(A \cap A_n)$$

= $p(A_1)p(A/A_1) + p(A_2)p(A/A_2) + \dots + p(A_n)p(A/A_n)$.

7.1.4. VARIABLES ALEATOIRES

Définition

Une variable aléatoire est une application notée X en général, qui à tout résultat d'une expérience aléatoire, associe un nombre réel.

Exemple

> On lance trois fois de suite une pièce de monnaie.

L'application X qui à tout résultat obtenu, on associe le nombre de fois que « pile » apparait est une variable aléatoire.

- \triangleright Cette variable aléatoire prend les valeurs 0; 1; 2 et 3; on les appelle valeurs prises par la variable aléatoire X.
- ightharpoonup (X = 2) par exemple désigne l'événement « pile est sortie 2 fois lors des trois lancers ».

Loi de probabilité

Soit X une variable aléatoire et x_1 , x_2 , ..., x_n les différentes valeurs prises par X. On appelle loi de probabilité l'application qui à x_i , $1 \le i \le n$, on associe $p_i = p[(X = x_i)]$ la probabilité de l'événement $(X = x_i)$.

Cette loi est présentée dans un tableau de la manière suivante :

x_i	<i>X1</i>	<i>X</i> 2	 x_n
p i	p_1	p_2	 p _n

<u>Remarque</u>: $p_1 + p_2 + ... + p_n = 1$.

Espérance mathématique – variance – écart-type

Soit X une variable aléatoire prenant les valeurs $x_1, x_2, ..., x_n$ et $p_i = p[(X = x_i)], 1 \le i \le n$.

- ightharpoonup L'espérance mathématique de la variable aléatoire X est le réel $E(X) = \sum_{i=1}^{n} x_i p_i$.
- \triangleright La variance de la variable aléatoire X est le réel positif $V(X) = \sum_{i=1}^{n} x_i^2 p_i [E(x)]^2$.
 - ightharpoonup L'écart-type de la variable aléatoire X est le réel positif $\sigma(X) = \sqrt{V(X)}$.

Remarques:

- Lorsque les valeurs prises par X sont des gains d'un jeu de hasard, alors E(X) traduit l'espérance de gain moyen par partie lorsqu'on joue.
- Un jeu équitable est un jeu où l'espérance de gain est nulle.
- Un jeu où l'espérance de gain est positive avantage le joueur, contrairement à un jeu ou l'espérance de gain est négative.

Fonction de répartition

- Soit x un réel, l'événement $(X \le x)$ est la réunion des événements $(X=x_i)$ pour les valeurs x_i , $x_i \le x$.
 - La fonction de répartition de la variable aléatoire X est la

fonction F définie sur \mathbb{R} par $F(x) = p(X \le x)$.

F est une fonction en escalier qu'on définit de la manière suivante :

 $x_1, x_2, x_3, ..., x_n$ étant les valeurs prises par X dans l'ordre croissant,

- si $x \in]-\infty$; $x_1[$ alors F(x) = 0.
- si $x \in [x_1; x_2]$ alors $F(x) = p_1$.
- $\sin x \in [x_2; x_3[\text{ alors } F(x) = p_1 + p_2.$
-
- si x ∈ [x_n : + ∞[alors $F(x) = p_1 + p_2 + ... + p_n = 1$.

Loi binomiale

- ➤ **Définition 1:** Une épreuve de Bernouilli est une expérience aléatoire ayant exactement deux issues, l'une appelée en général « succès » et l'autre « échec ».
- ➤ **Définition 2:** On dit qu'une variable aléatoire X suit la loi binomiale de paramètres n et p si X est la variable aléatoire définie par le nombre de succès obtenus en répétant n fois et de manière indépendante une épreuve de Bernouilli ; p désigne la probabilité d'un succès.
- **Théorème 1 :** Si X suit la loi binomiale de paramètres n et p alors la probabilité d'obtenir exactement k succès $(0 \le k \le n)$ est $p[(X=k)] = C_n^k \cdot p^k \cdot (1-p)^{n-k}$.
- Théorème 2 : Si X suit la loi binomiale de paramètres n et p alors l'espérance mathématique de X est E(X) = n.p et sa variance est V(X) = n.p(1-p).