

Giovanni Luca Favuzzi TU-B @ MAR 4.033 03/07/2019

Intro

Definition

Word Embedding

Language models that map words onto vectors

Word Embedding

Word Embedding

Embeddings for Language Models

Residual Connection

https://en.wikipedia.org/wiki/Residual_neural_network

Residual connections are **short-cuts** that jump over some **layers**.

Character
Convolution
Embeddings

Character Convolutions

$$\mathbf{t}_i = \text{bruh}$$

1-Hot

		D						П										ſ			u						
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0		1																									0
0																		1									0
0																					1						0
0						/		7																			0
0	0	0	0	0	0	0	ø	0	0	Ь	þ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

F0	F1	F2
F3	F4	F5
F6	F7	F8

Filter

strides=1 pad=1

		_																							
x0	-	-	-	1	1	1	ı	ı	1	ı	-	ı	ı	ı	-	-	1	1	1	ı	1	1	1	-	-
-	-	-	-	ı	1	ı	-	1	-	1	-	-	1	1	-	-	1	1	1	ı	1	1	1	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	ı	ı	ı	1	ı	-	ı	-	ı	ı	ı	-	-	ı	ı	ı	ı	ı	ı	ı	-	-

$$c_F(\mathbf{t}_i) = \mathbf{x}_i$$

Intra-Layer Representations

Definition

Language Model

A statistical language model is a **probability** distribution **over** sequences of **words**.

Bi-Language Model

This is a full sentence

$$t_1 t_2 \cdots t_{N=5}$$

[1]
$$P(t_1...t_N) = \prod_{i=1}^{N} P(t_i | t_1...t_{i-1})$$
 Forward

[2]
$$P(t_1 \dots t_N) = \prod_{i}^{N} P(t_i | t_{i+1} \dots t_N)$$
 Backward

 $\log\{[1]\cdot[2]\}$

Logarithmic Likelihood

$$\sum_{k=1}^{N} \log p(t_k | t_1 \dots t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k | t_1 \dots t_{k-1}; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s)$$

Neural Architecture

Embeddings

Embedding Interpolation

Task-Specific Scalar

$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}$$

Softmax Normalization Coefficients

Task Specific Integration

Framework

- 1. Run the pre-trained biLM
- 2. Record all layer representations
- 3. Learn the optimal interpolation

Optimal Interpolation

Original Model

Optimal Interpolation

Enhanced Model

Features

ELMo

```
# Layers = 2
# Units = 4096
# Dimension Projections = 512
Rich Dropout & L2 Regularization
```

Character Convolutions

```
# n-gram CC Filters = 2048
2 Highway Layers
Linear Projection: 512 features
```

Definition

Projection Layer

https://stackoverflow.com/questions/37889914/what-is-a-projection-layer-in-the-context-of-neural-networks

Projection layers map discrete word **indices** of an n-gram to a **continuous vector** space.

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

TASK	PREVIOUS SOTA		OUR BASELINI	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Interpolation Weights

Outro

Thanks for your attention

Questions?

