One Chatbot Per Person

Creating Personalized Chatbots based on Implicit User Profiles

Zhengyi Ma, Zhicheng Dou, Yutao Zhu, Hanxun Zhong, Ji-Rong Wen

SIGIR 2021

Introduction

Personalized chatbot

- More consistent conversation style
- Behave like a real person
- Even act as a personal assistant.

Introduction(cont.)

But

- The cost of collecting a large number of user profiles is high.
- Troublesome pre-configuration required for application.
- Existing methods cannot automatically update user information

Introduction(cont.)

Learn user profiles from historical data

Introduction(cont.)

	User Profiles	Historical Data
包含用戶資訊	包含	包含
收集難易度	難	簡單
擴充難易度	難	簡單
 噪音	低	高

DHAP

user **D**ialogue **H**istory **A**utomatically and generating **P**ersonalized responses

DHAP(cont.) Personalized Vocab

Calculate $attnWeight(c_t, E^R)$

 E^R is the "word" embedding after the historical response sentence passes Transformer.

DHAP(cont.) Personalized Vocab(cont.)

Attention Weights

Α	A	В	C	D	C	A
0.1	0.08	0.2	0.15	0.22	0.13	0.12

Sum the weights of the same word

Α	В	C	D
0.3	0.2	0.28	0.22

Human Evaluation

Model	Readability	Informativeness	Personalization
(1) Seq2SeqWA	2.10^{\dagger}	1.85^{\dagger}	0.19^{\dagger}
(1) MMI	2.06^{\dagger}	1.88^{\dagger}	0.23^{\dagger}
(2) Speaker	$\underline{2.14}^{\dagger}$	1.93^{\dagger}	0.25^{\dagger}
(2) PersonaWAE	2.07^{\dagger}	1.99^{\dagger}	0.36^{\dagger}
(3) GPMN	2.12^{\dagger}	1.92^{\dagger}	0.35^{\dagger}
(3) PerCVAE	2.04^{\dagger}	$\underline{2.01}^{\dagger}$	0.39^{\dagger}
(4) VHRED-P	2.09^{\dagger}	1.96^{\dagger}	$\underline{0.47}^{\dagger}$
(4) ReCoSa-P	2.12^{\dagger}	1.93^{\dagger}	0.44^{\dagger}
(4) DHAP (ours)	2.26	2.09	0.56
Ground-truth	2.69	2.35	0.84

Ablation Study

Ablation Study(cont.)

Model		Word Overlap			Diversity	
		BLEU-1	BLEU-2	ROUGE-L	Dist-1	Dist-2
D	HAP	9.324	0.894	14.122	15.175	58.806
	w/o G	7.726^{\dagger}	0.801^{\dagger}	11.815 [†]	12.176^{\dagger}	49.808 [†]
	<i>w/o</i> D	8.503^{\dagger}	0.855^{\dagger}	12.610^\dagger	13.699^{\dagger}	54.623^\dagger
	w/o PC	8.830	0.868^{\dagger}	13.981	14.457	56.263 [†]
	w/o GEN	4.982^{\dagger}	0.328^{\dagger}	9.571 [†]	9.051 [†]	32.566^{\dagger}
	w/o COP	8.347^\dagger	0.837^\dagger	12.585^\dagger	13.487^\dagger	52.087^\dagger
	w FIX	8.549^{\dagger}	0.855^{\dagger}	12.871^{\dagger}	13.904^{\dagger}	54.539^{\dagger}

Ablation Study(cont.)

Model	Embedding Similarity			Personalization	
1110 401	Average	Extrema	Greedy	P-F1(%)	P-Cover
DHAP	0.523	0.747	0.313	7.013	0.144
w/o G	0.495^{\dagger}	0.707^{\dagger}	0.294^\dagger	6.179 [†]	0.107^{\dagger}
<i>w/o</i> D	0.499^\dagger	0.713^{\dagger}	0.303^{\dagger}	6.286^{\dagger}	0.109^{\dagger}
w/o PC	0.503^{\dagger}	0.728^{\dagger}	0.301^{\dagger}	6.884	0.120^{\dagger}
w/o GEN	0.478†	0.571^{\dagger}	0.276^{\dagger}	9.331	0.165
w/o COP	0.499^\dagger	0.717^\dagger	0.298^{\dagger}	6.234^{\dagger}	0.110^{\dagger}
w FIX	0.496^{\dagger}	0.716^{\dagger}	0.301^{\dagger}	6.326^{\dagger}	0.113^{\dagger}

Ablation Study(cont.)

Conclusion

- Use historical conversations to replace the predefined User Profile.
 - There is no need to prepare expensive User Profile as training data.
 - The ability to dynamically expand has been obtained.
- Too much historical data will introduce noise and degrade performance.

Thanks for your attention.