Recall: 12 = 2H, T31N = 2x: xn 6 2H, T33 For $K \in IN$, $E_K = \{x \in \Omega_* : x_K = H\}$. Denote $\mathcal{E} = (E_n)_{n=1}^{\infty}$ and denote $\sigma_{\varepsilon} = \sigma(\dot{\varepsilon})$. Then σ_{ε} is a σ -algebra. For example, OF contains events such as EINE20 E3 NEG is the event that the first four tosses are H, H, T, T. For a fair coin, this should have probability 25 = 32. More generally, a fair coin should satisfy (i) $P(\bigcap_{i=1}^{n} \widetilde{E}_{i}) = \frac{1}{a^{n}}$ where $\widehat{E}_{i} \in \widehat{1} E_{i}, E_{i}^{i} \widehat{1}$. Theorem: There exists a (unique) probability measure $P = P_E$ on (Ω_*, σ_E) such that $P(\widehat{L}, \widehat{E}_i) = \frac{1}{2^n}$ for all neIN, $\widehat{E}_i \in \{E_i, E_i^c\}$. Proof: omitted. Remark: Each y & Lo, 1] can be written as $y = \sum_{n=1}^{\infty} \frac{y_n}{a^n}$ where $y_n \in \{0,1\}$ for each ne IN. We define g: 12 + → [o,1] by $g(x) = \sum_{n=1}^{\infty} \frac{2(x_n)}{2^n}$ Where $2(x_n) = \begin{cases} 1 & \text{if } x_n = H \\ 0 & \text{if } x_n = T. \end{cases}$ Then g(E1) = { y ∈ [01] : 41 = 13 = [= 1] g(E10 E2) = 14e [0,1]: 41=42=13 = [3/4,1] g(EinE2) = {4 = [01]: 4 = 0, 42 = 13 = [4, 2] Then PE on (12*, o=) corresponds to the lebesque measure (uniform distribution) on ([0,1], 3 ([0,1])).

Product Measures

Definition: Let $(\Omega_1, \mathcal{F}_1, P_1)$ and $(\Omega_2, \mathcal{F}_2, P_2)$ be probability spaces. The product measure space is $(\Omega_1 \times \Omega_2, \mathcal{F}_{12}, P_{12})$ where \mathcal{F}_{12} is the σ -algebra generated by the class $A_{12} = \{A \times B, A \in \mathcal{F}_1, B \in \mathcal{F}_2\}$ of measurable rectangles, and P_{12} is the probability measure on $(\Omega_1 \times \Omega_2, \mathcal{F}_{12})$ such that $P_{12}(A \times B) = P_1(A)P_2(B)$

for $A \in \mathcal{F}_1$, $B \in \mathcal{F}_2$.

Proposition: Let $(\Omega_1 \times \Omega_2, \mathcal{F}_{12}, P_{12})$ be a product measure space. Then the probability measure P_{12} on $(\Omega_1 \times \Omega_2, \mathcal{F}_{12})$ is unique.

In general, we can extend the product measure to $\Omega = \prod_{i=1}^{n} \Omega_i$, $\mathcal{F} = \mathcal{F}_{i,2,...n}$, $P = P_{i,...n}$ so (Ω, \mathcal{F}, P) is a probability triple.

Special Case: Product of Uniform (LO11) with itself gives Uniform (LO1132).

Random Variables

Definition: A random variable (RV) on (Ω, \mathcal{F}, P) is a function $X: \Omega \to IR$ such that $\{x \in \Omega: X(x) \leq t\}$ belongs to \mathcal{F} for all $t \in IR$.

Notation: For $D \subset \Omega$, the characteristic function (or indicator function) is $1_{D}(x) = \begin{cases} 1 & \text{if } x \in D \\ 0 & \text{if } x \notin D \end{cases}$

Technical Requirement: X must be compatible with \mathcal{F} .

Notation: Let $f: A \to B$ be a function. For $U \in B$,

the inverse image of U under f is $f^{-1}[U] = \{a \in A : f(a) \in U \}$

The definition of a RV says that X is a RV if $X^{-1}((-\omega,1)) \in \mathcal{F}$.

e.g if A = B = IR, $f(x) = x^2$, $f'([4,a]) = [-3,2] \cup [2,3]$

Consider 1_D . Then note $(1_D)^{-1}((-\infty, 0]) = D^c$. 4_{180} $(1_D)^{-1}((-\infty, x]) = \begin{cases} 0 : x < 0 \\ D : 0 \le x < 1 \\ \Omega : x \ge 1 \end{cases}$

Proposition: Let f: A -> B, (Ui)iEI CA, (Vi)iEI CB,

(i)
$$f^{-1}\left(\bigcup_{i\in I}U_i\right) = \bigcup_{i\in I}f^{-1}(U_i)$$

$$(ii) f^{-1} \left(\bigcap_{i \in I} U_i \right) = \bigcap_{i \in I} f^{-1} (U_i)$$

$$(iii) f^{-1}(u^c) = [f^{-1}(D)]^c$$

(iv)
$$f^{-1}(u \setminus V) = f^{-1}(u) \setminus f^{-1}(v)$$
.

Proof: Exercise.

Lemma: Let $g: A \rightarrow B$ be a function and let \mathcal{F} be a σ -algebra of A. Let $\mathcal{A} = \frac{1}{2} \mathsf{T} c B : g^{-1}(\mathsf{T}) \in \mathcal{F} g$

Then A is a J-algebra of B.

Proof: $g^{-1}(B) = A \in \mathcal{F}$, i.e. $B \in \mathcal{A}$.

Let $T \in A$. Then $g^{-1}(T^c) = [g^{-1}(T)]^c \in \mathcal{F}$ so $T^c \in A$.

Let $(T_n)_{n=1}^{\infty}$ be a collection in A. Then $g^{-1}(\bigcup_{n=1}^{\infty} T_n) = \bigcup_{n=1}^{\infty} g^{-1}(T_n) \in \mathcal{F} \quad \text{so} \quad \bigcup_{n=1}^{\infty} T_n \in \mathcal{A}.$

Corollary: Let X be a RV on (Ω, \mathcal{F}) . Then $X^-(V) \in \mathcal{F}$ for every Borel set V.

Proof: By previous lemma, because X is a RV, A contains $(-\infty,t]$ $\forall t \in IR$. Since A is a σ -algebra, it contains the σ -algebra generated by these intervals, which is 3B(IR).

Proposition: Let X, Y RVs and let CEIR. Then X+Y, CX,

χ^2 ,	XY are	RVs.			
•					