Graph Structures A Review of Basic Concepts

Basic Graph Definitions

A graph is a mathematical object that is used to model different situations, objects and processes:

Linked list

Tree (partial instance of graph)

Flowchart of a program

City map

Electric circuits

Course curriculum

Vertices and Edges

Definition: A graph is a collection (nonempty set) of vertices and edges

Vertices: can have names and properties

Edges: connect two vertices,

can be labeled,

can be directed

Adjacent vertices: there is an edge between them

BASIC DEFINITIONS: Example

- *Graph*: G = {V, E}
- V = $\{v_1, v_2, ..., v_n\}$, E = $\{e_1, e_2, ... e_m\}$, $e_{ij} = (v_i, v_j, l_{ij})$
- A set of n nodes/vertices, and m edges/arcs as pairs of nodes: Problem sizes: n, m
- When I_{ij} is present, it is a *label*, if it is a number it is the weight of an edge.

$$V = \{v_1, v_2, v_3, v_4, v_5\}$$

$$E = \{e_1 = (v_1, v_2), (v_3, v_1), (v_3, v_4), (v_5, v_2), e_5 = (v_4, v_5)\}$$

degree(v_1)=2, degree(v_2)=2, ... :number of arcs

For directed graph: *indegree*, and *outdegree* may differ

More Examples

Graph1:Undirected

Vertices: A,B,C,D

Edges: AB, AC, BC, CD

Two ways to draw the same graph

Directed and undirected graphs

Graph2

Graph3

These two are different directed graphs

More definitions: Path

A list of vertices in which successive vertices are connected by edges

ABC

BACD

ABCABCABCD

BABAC

More definitions: Simple Path

No vertex is repeated.

ABCD

D CA

D C B

A B

A B C

More definitions: Cycle

Simple path with distinct edges, except that the first vertex is equal to the last

ABCA

BACB

CBAC

A graph without cycles is called acyclic graph.

More definitions: Loop

An edge that connects the vertex with itself

Connected and Disconnected graphs

Connected graph: There is a path between each two vertices

Disconnected graph: There are at least two vertices not connected by a path.

Examples of disconnected graphs:

Graphs and Trees

Tree: an undirected graph with no cycles, and a node chosen to be the root

Graphs and Trees

Complete graphs

Graphs with all edges present – each vertex is connected to all other vertices

A complete graph

Sparse graphs: relatively few of the possible edges are present

Weighted graphs and Networks

Weighted graph — weights are assigned to each edge (e.g. road map)

Networks: directed weighted graphs

Graph Representation Methods

- Adjacency matrix
- Adjacency lists

Adjacency Matrix: Undirected Graphs

Vertices:	A,B,	C,D					
Edges:AC, AB, AD, BD							
The matrix is symmetrical							
	Α	В	С	D			
Α	0	1	1	1			
В	1	0	0	1			
С	1	0	0	1			
D	1	1	0	0			

Adjacency Matrix: Directed Graphs

Vertices: A,B,C,D

Edges: AC, AB, BD, DA

The matrix is not symmetrical

	Α	В	С	D
Α	0	1	1	0
В	0	0	0	1
С	0	0	0	0
D	1	0	0	0

Adjacency lists:undirected graphs

Vertices: A,B,C,D

Edges: AC, AB, AD, BD

Vertex lists

A BCD

B A D

C A

D A B

Adjacency lists: directed graphs

Vertices: A,B,C,D

Edges: AC, AB, BD, DA

Vertex lists

A B C

B D

C /

D A

Graph Search Methods

- Fundamental operation: find out which vertices can be reached from a specified vertex.
- An algorithm that provides a systematic way to start at a specified vertex and then move along edges to other vertex.
- Every vertex that is connected to this vertex has to be visited at the end.
- Two common approaches :
 - depth-first (DFS) and
 - breadth-first search (BFS).

DFS

- Can be implemented with a stack to remember where it should go when it reaches a dead end.
- DFS goes far way from the starting point as quickly as possible and returns only if it reaches a dead end.
- Used in in most simulations of games

DFS

• Steps:

- -- start with a vertex
- -- visit it
- -- push it on a stack and mark it
- -- go to any vertex adjacent to it that hasn't yet been visited
- -- if there are no unvisited nodes, po a vertex off the stack till you come across a vertex that has unvisited adjacent vertices

DFS Complexity

- Time Complexity
 - Adjacency Lists
 - Each node is marked visited once: O(|V|)
 - Each node is checked for each incoming edge
 O (|V + E|)
 - Adjacency Matrix
 - Have to check all entries in matrix: $O(|V|^2)$
- Space Complexity
 - Worst case: all nodes are put on stack (if graph is linear)
 - O(n)

Breadth-First Search: BFS

- Implemented with a queue.
- Stays as close as possible to the starting point.
- Visits all the vertices adjacent to the starting vertex
- Continue with unvisited neighbors of the visited vertices

BFS

- Steps:
- -- start with visiting a starting vertex
- -- visit the next unvisited adjacent vertex, mark it and insert it into the queue.
- -- if there are no unvisited vertices, remove a vertex from the queue and make it the current vertex.
- -- continue until you reach the end.

BFS Complexity

- Memory required: Need to maintain a queue, which contains a list of all vertices we need to explore.
 - Worst case: all nodes put on queue (if all are adjacent to first node)
 O(n)
- Runtime :Adjacency List
 - O(|E|) to scan through adjacency list and O(|V|) to visit each vertex.
 - \rightarrow O(|V+E|) This is considered linear time in the size of G.
- Runtime : Adjacency Matrix
 - Scanning each row for checking the connectivity of a Vertex is O(n).
 - \rightarrow Have to check all entries in matrix: O(n²)