

Ð

May 16, 2022

Kamaljot Gill^{1,2}, Maria Sckaff³, Claire D Clelland²

¹Gladstone Institutes, San Francisco, CA, United States;

²University of California, San Francisco, Weill Institute for Neurosciences, San Francisco, CA, United States;

³University of California, San Francisco

1 &

dx.doi.org/10.17504/protocols.io.5qpvobkj9l4o/v1

This protocol describes how to conjugate antibodies and run the Meso Scale Discovery (MSD) Sandwich enzyme-linked immunosorbent assay (ELISA) on MSD GOLD 96-well Small Spot Streptavidin SECTOR Plates. This protocol is adapted from MSD GOLD™ Streptavidin Plate and Avidin Plates Quick Guide 1 and MSD GOLD™ SULFO-TAG NHS-Ester Conjugation Quick Guide 2 and optimized for C9orf72 dipeptide repeat detection from human iPSC derived neurons.

MSD protocol_ClellandLab.pdf

DOI

dx.doi.org/10.17504/protocols.io.5qpvobkj9l4o/v1

Kamaljot Gill, Maria Sckaff, Claire D Clelland 2022. MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.5qpvobkj9l4o/v1

Buffer Exchange, Biotinylate the Antibody, Sulfo-tag the Antibody, MSD, ELISA, protein quantification, streptavidin, antibody, protein

_____ protocol,

Mar 25, 2022

May 16, 2022

Mar 25, 2022 renuka.s

Mar 31, 2022 Maria Sckaff University of California, San Francisco

59888

1

Citation: Kamaljot Gill, Maria Sckaff, Claire D Clelland MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol https://dx.doi.org/10.17504/protocols.io.5gpvobkj9l4o/v1

References

¹MSD GOLD™ SULFO-TAG NHS-Ester Conjugation Quick Guide https://www.mesoscale.com/~/media/files/handout/msd%20gold%20sulfo-tag%20conjugation%20quick%20guide.pdf

²MSD® Biotin Conjugation Quick Guide

https://www.mesoscale.com/~/media/files/handout/biotin%20conjugation%20quick%20guide%20v2.pdf

³MSD® GOLD Streptavidin and Avidin Plates Quick Guide

 $\frac{\text{https://www.mesoscale.com/}{\sim}/\text{media/files/handout/msd\%20gold\%20strep_avidin\%20plates\%20quick\%2}{\text{Oquide.pdf}}$

Reagents List

Α	В	С
Reagents	Manufacturer	Catalog Number
MSD GOLD SULFO-TAG NHS-Ester Conjugation Pack	MSD	R31AA
Zeba Spin Desalting Columns	ThermoFisher	89882
EZ-LinkTM Sulfo-NHS-LC-Biotin, No-WeighTM Format	ThermoFisher	A39257
MSD GOLD 96-well Small Spot Streptavidin SECTOR Plate	MSD	L45SA
Blocker A	MSD	R93BA
MSD GOLD Read Buffer A	MSD	R92TG
PBS, pH 7.4	ThermoFisher	10010023
Tween-20	Sigma	P1379
Nuclease-Free Water (not DEPC-Treated)	ThermoFisher	AM9932

LLC. Catalog #R31AA

⊠ Zeba[™] Spin Desalting Columns, 7K MWCO, 0.5 mL **Thermo**

Fisher Catalog #89882

⊠ EZ-Link™ Sulfo-NHS-LC-Biotin, No-Weigh™ Format **Thermo**

Fisher Catalog #A39257

MSD GOLD 96-well Small Spot Streptavidin SECTOR Plate MESO SCALE DIAGNOSTICS,

LLC. Catalog #L45SA

⊠ Blocker A **MESO SCALE DIAGNOSTICS**,

LLC. Catalog #R93BA

⊠MSD GOLD Read Buffer A **MESO SCALE DIAGNOSTICS**,

LLC. Catalog #R92TG

⊠ PBS pH 7.4 **Thermo Fisher**

Scientific Catalog #10010023

⊠ Tween

20 Sigma Catalog #P1379

Fisher Catalog #AM9932

Alternative Reagents List

2

A	В	С	D
Reagents	Alternative Reagents	Manufacturer	Catalog Number
MSD Conjugation Buffer	PBS, pH 7.4	ThermoFisher	10010023
MSD Conjugation Storage Buffer	PBS, 0.05% Sodium Azide	Teknova	P0202
Blocker A	BSA	Sigma	A4503

⊠ PBS 0.05% Sodium

Azide Teknova Catalog #P0202

⊠ Bovine Serum Albumin **Millipore**

Sigma Catalog #A4503

Equipment List

A	В	С
Equipment	Manufacturer	Catalog Number
Microseal 'B' PCR Plate Sealing Film, adhesive, optical	BioRad	MSB1001
1.5 mL Eppendorf tubes	Fisher Scientific	14-666-321
Meso Scale Discovery (MSD) Model 1250 Sector Imager 2400	MSD	1250
HeidolphTM Titramax Vibrating Platform Shakers	Fisher Scientific	13-889-420
Centrifuge (capable of 1,500g)	Any	Any
Vortex	Any	Any

Microseal 'B' PCR Plate Sealing Film, adhesive, optical Plate Sealing Film Microseal MSB1001

Meso Scale Discovery (MSD) Model 1250
Sector Imager 2400
multiplex assay reader
MESO SECTOR 1250

Buffer Exchange the Antibodies

20m

1

It is only needed to buffer exchange your antibodies if they are in buffers with preservatives such as sodium azide or EDTA or in buffers that contain primary amines or glycerol.

- 3 Equilibrate Zeba Spin Desalting Columns, MSD Storage Buffer, and Sulfo-NHS-LC-Biotin at Room temperature
 - 3.1 Use one Zeba column per \blacksquare 70 μ L of antibody.
 - 3.2 In order to both biotinylate and sulfo-tag the antibody, you need at least $\Box 140~\mu L$ of antibody at an optimal concentration of $\Box 1.0~mg/mL$.
 - 3.3 It still possible to move forward with a less concentrated sample.
 - 3.4 Dilute the antibodies with ice-cold PBS if necessary.

4

Remove the Zeba columns' bottom closure and loosen the cap.

protocols.io

4

Citation: Kamaljot Gill, Maria Sckaff, Claire D Clelland MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol https://dx.doi.org/10.17504/protocols.io.5gpvobkj9l4o/v1

Do not remove the cap.

5 Place the column in a collection tube to remove the storage buffer.

1m

Spin at $@1500 \times g$, 00:01:00. Empty collection tube.

7 (a) // Co

Wash 1: Add $\equiv 300~\mu L$ of PBS (or MSD Conjugation Buffer) to the column. Spin at 31500~x~g, 00:01:00. Empty collection tube.

Wash 2: Add $\equiv 300~\mu L$ of PBS (or MSD Conjugation Buffer) to the column. Spin at @1500~x~g, 00:01:00. Empty collection tube.

9 🔞 🥻 💫

Wash 3: Add $\equiv 300~\mu L$ of PBS (or MSD Conjugation Buffer) to the column. Spin at 31500~x~g, 00:03:00. Empty collection tube.

- 10 Change collection tube to a clean Eppendorf tube for sample recovery. Label one Eppendorf tube/sample for each sample to be biotinylated or sulfo-tagged.
- 11 Pipette **□70 μL** of the antibody to the spin column.
- 12

Spin at **1500** x g for 3-4 minutes.

13 Save the eluent & On ice.

The eluent is the buffer exchanged antibody.

protocols.io

5

Citation: Kamaljot Gill, Maria Sckaff, Claire D Clelland MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol https://dx.doi.org/10.17504/protocols.io.5gpvobkj9l4o/v1

Biotinylate the Antibody

2h

14

Note on planning when to biotinylate your antibodies: Before performing this step, plan to tag multiple antibodies at the same time to save both money and reagents.

Calculate how much Sulfo-NHS-LC-Biotin you need per antibody, using the following formula:

- 1,000 × ([Concentration of antibody in mg/mL]/ 150,000 Da) × 20 × ■70 µL of antibody = nmol of Biotin
- This nmol of Biotin needed divided by 0.5 nmol/ μ L Biotin reagent = μ L of Sulfo-NHS-LC Biotin needed
- See attached examples at the end of this document

15

Add $\Box 180 \ \mu L$ of ultrapure H₂O to the $\Box 1 \ mg$ vial to Sulfo-NHS-LC-Biotin.

16

Dilute the Sulfo-NHS-LC-Biotin by adding $\Box 10~\mu L$ of the stock to $\Box 190~\mu L$ of cold water. Once formed, this is highly unstable and should be used immediately.

17 Add the calculated volume of diluted reconstituted Sulfo-NHS-LC-Biotin to each antibody.

18

2h

Let the antibody and biotin incubate at 8 Room temperature for © 02:00:00 in the dark.

Sulfo-tag the Antibody

2h

19

Note on planning when to sulfo-tag: Before performing this step, plan to tag multiple antibodies at the same time to save both money and reagents.

Calculate how much SULFO-TAG NHS-Ester you need per antibody, using the following formula:

- 1,000 × ([Concentration of antibody in mg/mL]/ 150,000 Da) × 20 × ■70 µL of antibody = nmol of Sulfo-Tag reagent needed
- This nmol of Sulfo-Tag needed divided by 3.0 nmol/µL = µL of sulfo-tag ester solution needed
- See attached examples at the end of this document

m protocols.io

6

Citation: Kamaljot Gill, Maria Sckaff, Claire D Clelland MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol https://dx.doi.org/10.17504/protocols.io.5gpvobki9l4o/v1

mprotocols.io

Citation: Kamaljot Gill, Maria Sckaff, Claire D Clelland MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol https://dx.doi.org/10.17504/protocols.io.5qpvobkj9l4o/v1

7

29 😇 🖊 🗸

Wash 2: Add $\blacksquare 300 \, \mu L$ of MSD Conjugate Storage Buffer to the column. Spin at $\textcircled{3}1500 \, x \, g$, 00:01:00. Empty collection tube.

30

3m

Wash 3: Add $\blacksquare 300~\mu L$ of MSD Conjugate Storage Buffer to the column. Spin at 31500~x~g, 00:03:00. Empty collection tube.

- 31 Change collection tube for sample recovery.
- 32 Pipette

 70 μL of the unpurified biotinylated antibody to the spin column.
- 33

Spin at **31500 x g** for 3-4 minutes.

34 Save the eluent & On ice.

The eluent is the biotinylated antibody. It is stable at § 4 °C for 1 year.

Cleanup the Sulfo-Tagged Antibody

15m

- 35 Equilibrate Zeba Spin Desalting Columns, MSD Storage Buffer at & Room temperature.
- 36 Remove the columns' bottom closure and loosen the cap.

Do not remove the cap.

37 Place the column in a collection tube to remove the storage buffer.

1m

38

Spin at **§1500** x g, 00:01:00 . Empty collection tube.

39 🚇 🎢 🔗

1m

Wash 1: Add $\blacksquare 300~\mu L$ of MSD Conjugate Storage Buffer to the column. Spin at 31500~x~g, 00:01:00 . Empty collection tube.

40

1m

41 🗐 🎢 🏡

3m

Wash 3: Add \equiv 300 μ L of MSD Conjugate Storage Buffer to the column. Spin at \circledast 1500 x g, 00:03:00 . Empty collection tube.

- 42 Change collection tube for sample recovery.
- 43 Pipette **30** μL of the unpurified SULFO-TAG NHS-Ester tagged antibody to the spin column.
- 44

Spin at **31500 x g** for 3-4 minutes.

45 Save the eluent § On ice.

This is the SULFO-TAG NHS-Ester tagged antibody. It is stable at § 4 °C for 1 year.

Day 1 of MSD: Coating the Plate with Capture Antibody

Dilute biotinylated capture antibodies in 1x DPBS to your desired concentration.

» ⋒ protocols.io

9

Citation: Kamaljot Gill, Maria Sckaff, Claire D Clelland MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol https://dx.doi.org/10.17504/protocols.io.5gpvobkj9l4o/v1

/!\ 47

according to the plate format.

IMPORTANT: From this point forward, never let the plate dry.

- Tap the plate on its edges to ensure the antibody is spread evenly across the well. 48
- 49 Seal the plate with parafilm to avoid loss of antibody due to evaporation.
- 50

Store in the plate at § 4 °C to incubate © Overnight without shaking.

Day 2 of MSD 5h

Tap out the plate to dispose of the capture antibody. 51

52

Add ■150 µL /well of Blocking Solution (3% Blocker A (or BSA) + PBS) per well.

Α	В			
3% Blocker A in 1x PBS (Store at 4°C)				
For 100 mL				
Blocker A	3 g			
1X PBS	100 mL			
(Stir or shake overnight at 4°C to make sure it is				
dissolved completely.)				

53

Seal the plate and incubate at & Room temperature with shaking at \$\text{\alpha}750 \text{ rpm, 01:00:00} \tag{1.00}.

Prepare the lysate samples according to plate layout, by diluting the protein samples in the lysate buffer to the desired lysate concentrations.

protocols.io

10

1h

Citation: Kamaljot Gill, Maria Sckaff, Claire D Clelland MSD Gold Streptavidin Antibody Preparation and Plate Run Protocol https://dx.doi.org/10.17504/protocols.io.5qpvobkj9l4o/v1

55 Tap out the plate. 56 Wash 1x with \blacksquare 150 μ L /well of PBS - T (0.05% Tween). 57 Discard the wash solution, without letting the plate dry. 58 Add $\blacksquare 25 \,\mu L$ /well of the lysate to the target wells. Add lysate to the bottom corner of the wells. 2h 59 Seal the plate and incubate at & Room temperature with shaking at \$\approx 750 \text{ rpm}\$ for 1-2 hours. While the lysates incubate, prepare the detection antibodies (your sulfo-tagged antibodies) in 1% MSD Blocker A in 60 1x DPBS. 61 Discard the lysate solution. Do not let the plate dry, but remove the excess solution. 62 Wash with PBS - T (0.05% Tween). Wash with $\blacksquare 150 \, \mu L$ /well of PBS - T (0.05% Tween). (1/3)

Wash with **■150** µL /well of PBS - T (0.05% Tween). (3/3)

- 63 Discard the wash solution, but do not let the plate dry.

62.3

64

Add 25 µL /well of sulfo-tag antibodies (in 1% Blocker A in DPBS) to the plate layout.

65 <u>—</u> 1h

Seal the plate and incubate at & Room temperature with shaking at #2750 rpm, 01:00:00.

- 66 Tap out the plate.
- 67 🔗

Wash with PBS - T (0.05% Tween).

- 67.1 Wash with \Box 150 μ L /well of PBS T (0.05% Tween). (1/3)
- 67.2 Wash with \blacksquare 150 μ L /well of PBS T (0.05% Tween). (2/3)
- 67.3 Wash with **150 μL** /well of PBS T (0.05% Tween). (3/3)
- 68 Tap out the plate.
- 69

Add 150 µL /well of Read Buffer A using reverse pipetting to avoid making bubbles.

IMPORTANT: Ensure there is no plastic wrap, tape, or parafilm on the plate.

70 Read the plate immediately.

5m

Sample calculations

71

This section outlines sample calculations for the biotinylation and sulfo tagging of antibodies for the IVISD assay, as described in the protocol above.

Relevant notes, using Poly-GR 1VIABN778 and Poly-PR ABN1354 antibodies as references:

- 0.5mg/mL is the concentration of the antibody
- 150,000Da is the protein weight for IgG protein
- 20:1 is the challenge ratio
- 70 pL is the volume of the protein solution

Sample Biotinylation Calculations

72 Poly-GR MABN778 and Poly-PR ABN1354

$$1000 \times \frac{0.5mg/mL}{150,000Da} \times \frac{20}{1} \times 70\mu L = 4.67nmol \tag{1}$$

■4.67 nmol of sulfo-NHS-LC Biotin required

73

$$\frac{4.67}{0.5nmol/\mu L} = 9.34\mu L \tag{2}$$

■9.34 µL of sulfo-NHS-LC Biotin stock solution .

74 Poly-GA MABN889

$$1000 \times \frac{0.33mg/mL}{150,000Da} \times \frac{20}{1} \times 70\mu L = 3.08nmol$$
 (3)

■3.08 nmol of sulfo-NHS-LC Biotin required

$$\frac{3.08}{0.5nmol/\mu L} = 6.16\mu L \tag{4}$$

■6.16 µL of sulfo-NHS-LC Biotin stock solution.

Sample Sulfo-tag Calculations

76 Poly-GR MABN778 and Poly-PR ABN1354

$$1000 \times \frac{0.5mg/mL}{150,000Da} \times \frac{20}{1} \times 70\mu L = 4.67nmol$$
 (5)

■4.67 nmol of sulfo-tag reagent required.

$$\frac{4.67}{3.0nmol/\mu L} = 1.56\mu L \tag{6}$$

 \blacksquare 1.56 μ L of sulfo-tag ester solution .

78 Poly-GA MABN889

$$1000 \times \frac{0.33mg/mL}{150,000Da} \times \frac{20}{1} \times 70\mu L = 3.08nmol$$
 (7)

■3.08 nmol of sulfo-tag reagent required.

$$\frac{3.08}{3.0nmol/\mu L} = 1.03\mu L \tag{8}$$

■1.03 µL of sulfo-tag ester solution.