

Eksamen

16.11.2022 REA 3024 Matematikk R2

Nynorsk

Eksamensinformasjon	
Eksamenstid	5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal leverast inn seinast etter 5 timar.
Hjelpemiddel	Del 1: Skrivesaker, passar, linjal og vinkelmålar. (På del 1 er det ikkje tillate å bruke datamaskin.) Del 2: Etter tre timar er alle hjelpemiddel tillatne, bortsett frå opent Internett og andre verktøy som kan brukast til kommunikasjon.
	Når du bruker nettbaserte hjelpemiddel under eksamen, har du ikkje lov til å kommunisere med andre. Samskriving, chat og andre måtar å utveksle informasjon med andre på er ikkje tillatne.
Informasjon om oppgåva	Del 1 har 8 oppgåver. Del 2 har 4 oppgåver. Der oppgåveteksten ikkje seier noko anna, kan du fritt velje framgangsmåte. Om oppgåva krev ein bestemt løysingsmetode, vil ein alternativ metode kunne gi låg/noko utteljing. Poeng i del 1 og del 2 er berre rettleiande i vurderinga. Bruk av digitale verktøy som grafteiknar og CAS skal dokumenterast.
Kjelder	Alle grafar og figurar: Utdanningsdirektoratet
Informasjon om vurderinga	Sjå eksamensrettleiinga med kjenneteikn på måloppnåing til sentralt gitt skriftleg eksamen. Eksamensrettleiinga finn du på nettsidene til Utdanningsdirektoratet.

Eksamen REA3024 Side 2 av 20

Oppgåve 1 (4 poeng)

Deriver funksjonane

- a) $f(x) = x^3 + \sin(\pi x)$
- b) $g(x) = \ln(2 + \cos x)$

Oppgåve 2 (4 poeng)

Bestem integrala

a)
$$\int \left(\cos\left(\frac{x}{2}\right) - e^{-x} + 1\right) dx$$

b)
$$\int_{0}^{\sqrt{\pi}} x \cdot \sin x^2 \, dx$$

Oppgåve 3 (4 poeng)

a) Løys differensiallikninga

$$y' = \frac{2x^2}{y}$$
, $y(0) = 3$

b) Avgjer om $y = 2\sin(3x) + x$ er ei løysing av differensiallikninga

$$y'' + 9y = 9x$$

Oppgåve 4 (4 poeng)

Vi har gitt ei aritmetisk rekkje $s_n = a_1 + a_2 + \cdots + a_n$.

- a) Bestem s_{100} dersom $a_3 = 8$ og $a_{23} = 68$.
- b) Bestem $s_{\scriptscriptstyle 20}$ dersom $a_{\scriptscriptstyle 2}=a_{\scriptscriptstyle 1}+4$ og $s_{\scriptscriptstyle 10}=240$.

Oppgåve 5 (4 poeng)

På figuren ser du grafen til ein trigonometrisk funksjon.

- a) Bestem eit eksakt funksjonsuttrykk på forma $f(x) = A\sin(cx + \phi) + d$ som passar med grafen.
- b) Løys likninga

$$\sin x - \sqrt{3}\cos x = 0, \quad x \in [0, 3\pi]$$

Eksamen REA3024 Side 4 av 20

Oppgåve 6 (8 poeng)

Ei kuleflate er gitt ved

$$x^2 + y^2 + z^2 - 4x + 2y - 6z = 11$$

a) Vis at punktet S(2,-1,3) er sentrum til kuleflata. Bestem radiusen til kuleflata.

Eit plan α tangerer kuleflata i punktet P(6, -4, 3).

b) Bestem ei likning for α .

Den rette linja gjennom P og S skjer kuleflata i eit anna punkt Q.

c) Bestem koordinatane til Q.

Eit plan β , som er parallelt med α , skjer kuleflata langs ein sirkel. Avstanden frå β til Q er 3.

d) Bestem radiusen til skjeringssirkelen mellom β og kuleflata.

Oppgåve 7 (4 poeng)

Oline har løyst ei integrasjonsoppgåve

$$\int_{1}^{a} f(x) \, \mathrm{d}x \ , \ \mathrm{der} \ a \ge 1$$

og fått svaret $a^3 - \ln a + 3a - 3$.

- a) Forklar korleis vi kan sjå at Oline sitt svar ikkje kan vere riktig.
- b) Bestem f(x) dersom du får vite at det berre er konstantleddet (-3) som er feil.

Eksamen REA3024 Side 5 av 20

Oppgåve 8 (4 poeng)

Eit linjestykke OP går frå origo til punktet P som vist på figuren ovanfor. Punktet (2,3) ligg på linjestykket. Dreier vi dette linjestykket om x-aksen, får vi ein omdreiingslekam med volum V.

a) Bestem h slik at V blir 48π .

Volumet V av ei kjegle med radius r og høgd h er gitt ved

$$V = \frac{1}{3}\pi r^2 h$$

b) Bruk ein omdreiingslekam til å bevise formelen for volumet av ei kjegle.

Eksamen REA3024 Side 6 av 20

Oppgåve 1 (6 poeng)

Vi har fire punkt A(2, -3, 0), B(t, 0, 2t), C(2, -3, t) og T(1, -3, 1), der $t \neq 0$.

a) Vis at likninga for planet gjennom punkta A, B og C kan skrivast som

$$3x + (2-t)y = 3t$$

b) Avgjer om $\triangle ABC$ er rettvinkla for nokre verdiar av t.

Dei fire punkta A, B, C og T definerer ein pyramide med trekanta grunnflate.

c) Bestem t slik at volumet av pyramiden blir 10.

Oppgåve 2 (4 poeng)

I ei bedrift er det i dag 158 tilsette. For å lage ein modell for talet på tilsette i bedrifta har dei sett opp følgjande differensiallikning:

$$A' = 0.1 \cdot A - 1$$

Her er A(t) talet på tilsette om t år.

a) Kva har leiinga anteke for å setje opp differensiallikninga.

Bedrifta seier at dei med denne utviklinga kjem til å bli meir enn 400 tilsette i løpet av 10 år.

b) Avgjer om dette kan stemme.

Eksamen REA3024 Side 7 av 20

Oppgåve 3 (8 poeng)

Figuren ovanfor består av halve kvadrat som vender opp og ned annankvar gong. Lengdene til sidene i eit halvkvadrat er alltid $\frac{3}{4}$ av lengdene til sidene i det førre halvkvadratet.

Anta at vi startar med eit halvkvadrat der sidelengdene til saman er 24.

- a) Bestem den samla summen av sidelengdene til dei fire første halvkvadrata.
- b) Kor mange halvkvadrat må vi minst ha for at den samla summen av sidelengdene til halvkvadrata skal bli meir enn 90?

Anta no at vi startar med eit halvkvadrat med ukjende sidelengder.

c) Kva må sidelengdene i det første halvkvadratet vere for at den samla summen av sidelengdene til dei 20 første halvkvadrata skal bli 120?

Vi skal no sjå på areala til halvkvadrata i figuren vi starta med. Det vil seie at arealet til det første halvkvadratet er 72.

d) Kva blir summen av alle areala når vi tek med uendeleg mange halvkvadrat?

Eksamen REA3024 Side 8 av 20

Oppgåve 4 (6 poeng)

Funksjonen f er gitt ved

$$f(x) = 2 \cdot \sin\left(x + \frac{\pi}{6}\right) + 5$$
, $x \in \left[0, 2\pi\right]$

Når grafen til f blir dreidd 360 gradar om x-aksen, får vi ein omdreiingslekam M.

a) Bestem volumet av M.

Ei krukke har same form og storleik som ${\it M}$. Eininga langs aksane er gitt i desimeter.

Ei kjegle skal plasserast i krukka slik at spissen til kjegla treffer botnen av krukka. Kjegla skal ha same høgd som krukka.

- b) Avgjer om kjegla får plass i krukka dersom radiusen til kjegla er 5 dm.
- c) Bestem den største radiusen kjegla kan ha for å få plass i krukka.

Eksamen REA3024 Side 9 av 20

Bokmål

Eksamensinformasjon	
Eksamenstid	5 timer: Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.
Hjelpemidler	Del 1: Skrivesaker, passer, linjal og vinkelmåler. (På del 1 er det ikke tillatt å bruke datamaskin.) Del 2: Etter tre timer er alle hjelpemidler tillatt, bortsett fra åpent Internett og andre verktøy som kan brukes til
	kommunikasjon. Når du bruker nettbaserte hjelpemidler under eksamen, har du ikke lov til å kommunisere med andre. Samskriving, chat og andre måter å utveksle informasjon med andre på er ikke tillatt.
Informasjon om oppgaven	Del 1 har 8 oppgaver. Del 2 har 4 oppgaver. Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Dersom oppgaven krever en bestemt løsningsmetode, kan en alternativ metode gi lav/noe uttelling. Poeng i del 1 og del 2 er bare veiledende i vurderingen. Bruk av digitale verktøy som graftegner og CAS skal dokumenteres.
Kilder	Alle grafer og figurer: Utdanningsdirektoratet
Informasjon om vurderingen	Se eksamensveiledningen med kjennetegn på måloppnåelse til sentralt gitt skriftlig eksamen. Eksamensveiledningen finner du på Utdanningsdirektoratets nettsider.

Eksamen REA3024 Side 10 av 20

Oppgave 1 (4 poeng)

Deriver funksjonene

- a) $f(x) = x^3 + \sin(\pi x)$
- b) $g(x) = \ln(2 + \cos x)$

Oppgave 2 (4 poeng)

Bestem integralene

a)
$$\int \left(\cos\left(\frac{x}{2}\right) - e^{-x} + 1\right) dx$$

b)
$$\int_{0}^{\sqrt{\pi}} x \cdot \sin x^2 \, dx$$

Oppgave 3 (4 poeng)

a) Løs differensiallikningen

$$y' = \frac{2x^2}{y}$$
, $y(0) = 3$

b) Avgjør om $y = 2\sin(3x) + x$ er en løsning av differensiallikningen

$$y'' + 9y = 9x$$

Oppgave 4 (4 poeng)

Vi har gitt en aritmetisk rekke $s_n = a_1 + a_2 + \cdots + a_n$.

- a) Bestem s_{100} dersom $a_3 = 8$ og $a_{23} = 68$.
- b) Bestem $s_{\scriptscriptstyle 20}$ dersom $a_{\scriptscriptstyle 2}=a_{\scriptscriptstyle 1}+4$ og $s_{\scriptscriptstyle 10}=240$.

Oppgave 5 (4 poeng)

På figuren ser du grafen til en trigonometrisk funksjon.

- a) Bestem et eksakt funksjonsuttrykk på formen $f(x) = A\sin(cx + \phi) + d$ som passer med grafen.
- b) Løs likningen

$$\sin x - \sqrt{3}\cos x = 0, \quad x \in [0, 3\pi]$$

Eksamen REA3024 Side 12 av 20

Oppgave 6 (8 poeng)

En kuleflate er gitt ved

$$x^2 + y^2 + z^2 - 4x + 2y - 6z = 11$$

a) Vis at punktet S(2, -1, 3) er sentrum til kuleflaten. Bestem radiusen til kuleflaten.

Et plan α tangerer kuleflaten i punktet P(6, -4, 3).

b) Bestem en likning for α .

Den rette linja gjennom P og S skjærer kuleflaten i et annet punkt Q.

c) Bestem koordinatene til Q.

Et plan β , som er parallelt med α , skjærer kuleflaten langs en sirkel. Avstanden fra β til Q er 3.

d) Bestem radiusen til skjæringssirkelen mellom β og kuleflaten.

Oppgave 7 (4 poeng)

Oline har løst en integrasjonsoppgave

$$\int_{1}^{a} f(x) \, \mathrm{d}x \ , \ \mathrm{der} \ a \ge 1$$

og fått svaret $a^3 - \ln a + 3a - 3$.

- a) Forklar hvordan vi kan se at Olines svar ikke kan være riktig.
- b) Bestem f(x) dersom du får vite at det kun er konstantleddet (-3) som er feil.

Eksamen REA3024 Side 13 av 20

Oppgave 8 (4 poeng)

Et linjestykke OP går fra origo til punktet P som vist på figuren ovenfor. Punktet (2,3) ligger på linjestykket. Dreier vi dette linjestykket om x-aksen, får vi et omdreiingslegeme med volum V.

a) Bestem h slik at V blir 48π .

Volumet V av en kjegle med radius r og høyde h er gitt ved

$$V = \frac{1}{3}\pi r^2 h$$

b) Bruk et omdreiingslegeme til å bevise formelen for volumet av en kjegle.

Oppgave 1 (6 poeng)

Vi har fire punkter A(2,-3,0), B(t,0,2t), C(2,-3,t) og T(1,-3,1), der $t \neq 0$.

a) Vis at likningen for planet gjennom punktene A, B og C kan skrives som

$$3x + (2-t)y = 3t$$

b) Avgjør om $\triangle ABC$ er rettvinklet for noen verdier av t.

De fire punktene A, B, C og T definerer en pyramide med trekantet grunnflate.

c) Bestem *t* slik at volumet av pyramiden blir 10.

Oppgave 2 (4 poeng)

I en bedrift er det i dag 158 ansatte. For å lage en modell for antall ansatte i bedriften har de satt opp følgende differensiallikning:

$$A' = 0, 1 \cdot A - 1$$

Her er A(t) antall ansatte om t år.

a) Hvilke antagelser har ledelsen brukt for å sette opp differensiallikningen?

Bedriften sier at de med denne utviklingen kommer til å bli mer enn 400 ansatte i løpet av 10 år.

b) Avgjør om dette kan stemme.

Eksamen REA3024 Side 15 av 20

Oppgave 3 (8 poeng)

Figuren ovenfor består av halve kvadrater som vender opp og ned annenhver gang. Lengdene til sidene i et halvkvadrat er alltid $\frac{3}{4}$ av lengdene til sidene i det forrige halvkvadratet.

Anta at vi starter med et halvkvadrat der sidelengdene til sammen er 24.

- a) Bestem den samlede summen av sidelengdene til de fire første halvkvadratene.
- b) Hvor mange halvkvadrater må vi minst ha for at den samlede summen av sidelengdene til halvkvadratene skal bli mer enn 90?

Anta nå at vi starter med et halvkvadrat med ukjente sidelengder.

c) Hva må sidelengdene i det første halvkvadratet være for at den samlede summen av sidelengdene til de 20 første halvkvadratene skal bli 120?

Vi skal nå se på arealene til halvkvadratene i figuren vi startet med. Det vil si at arealet til det første halvkvadratet er 72.

d) Hva blir summen av alle arealene når vi tar med uendelig mange halvkvadrater?

Eksamen REA3024 Side 16 av 20

Oppgave 4 (6 poeng)

Funksjonen f er gitt ved

$$f(x) = 2 \cdot \sin\left(x + \frac{\pi}{6}\right) + 5$$
, $x \in \left[0, 2\pi\right]$

Når grafen til *f* dreies 360 grader om *x*-aksen, får vi et omdreiingslegeme *M*.

a) Bestem volumet av M.

En krukke har samme form og størrelse som M. Enheten langs aksene er gitt i desimeter.

En kjegle skal plasseres i krukken slik at spissen til kjeglen treffer bunnen av krukken. Kjeglen skal ha samme høyde som krukken.

- b) Avgjør om kjeglen får plass i krukken dersom radiusen til kjeglen er 5 dm.
- c) Bestem den største radiusen kjeglen kan ha for å få plass i krukken.

Eksamen REA3024 Side 17 av 20

Blank side

Eksamen REA3024 Side 18 av 20

Blank side

Eksamen REA3024 Side 19 av 20

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGÅVA:

- Start med å lese oppgåveinstruksen godt.
- Hugs å føre opp kjeldene i svaret ditt dersom du bruker kjelder.
- Les gjennom det du har skrive, før du leverer.
- Bruk tida. Det er lurt å drikke og ete undervegs.

Lykke til!

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGAVEN:

- Start med å lese oppgaveinstruksen godt.
- Husk å føre opp kildene i svaret ditt hvis du bruker kilder.
- Les gjennom det du har skrevet, før du leverer.
- Bruk tiden. Det er lurt å drikke og spise underveis.

Lykke til!