Инструмент для оценки эффективности направляющих РНК в CRISPR/Cas системах

Студент: Решетняк Полина

ТЕХНОЛОГИЯ CRISPR/Cas

CRISPR/Cas система состоит из направляющей РНК (gRNA) и CRISPR-ассоциированного белка (Cas)

- гидРНК направляет систему к заданному участку ДНК
- Саѕ-белок разрезает ДНК в нужном месте

Чаще всего в исследованиях используется белок Cas9

Минимальные составляющие CRISPR/Cas системы

возможности

Knock-Out

Перманентная инактивация гена с помощью разреза ДНК

Knock-in

Интеграция заданной последовательности ДНК в ген

Визуализация областей ДНК

С помощью флуоресцентных белков

Регуляция активности генов

Подавление или активация экспрессии генов без изменения ДНК с использованием неактивного белка Cas

Base Editing

Точная замена одной пары нуклеотидных оснований без разреза ДНК

ОБЛАСТИ ПРИМЕНЕНИЯ

Исследования

- Изучение функций конкретных генов
- Создание клеток с мутациями

Биотехнологии

- Улучшение свойств с/х животных и растений
- Контроль распространения инфекций, переносимых животными
- Оптимизация микроорганизмов для биопроизводства

Терапия

- Лечение генетических заболеваний (редактирование клеток вне организма)
- Потенциал для терапии против рака

РЫНОК

CAGR

15.67 %

Самый быстрорастущи й рынок

Азиатско-тихоокеанский регион

Самый большой рынок

Северная Америка

Прогнозируемое изменение объема мирового рынка к 2029 году

Крупнейшие компании

- 1 OriGene Technologies, Inc.
- 2 Thermo Fisher Scientific
- 3 Takara Bio Inc
- 4 Addgene
- PerkinElmer Inc. (Horizon Discovery Ltd.)

Эффективность гидРНК

Что может пойти не так:

Слабая связь между участком ДНК и гидРНК – белок не успевает сделать разрез

Связывание с нецелевым участком ДНК (off-target эффект)

Слабая стабильность системы – ранний распад комплекса

Некоторые свойства, влияющие на эффективность гидРНК:

длина последовательности, процент содержания GC, определенные нуклеотиды на конкретных позициях, энергия гибридизации ДНК-гидРНК, энергия свободной укладки РНК

Инструменты оценки эффективности гидРНК

Подход: ML/DL

Свойство	Коммерческие сервисы	Научные разработки
Открытый исходный код		✓
Доступность обучающих датасетов		✓
Удобный интерфейс	✓	
Отечественная разработка		

Решение

Создание отечественного инструмента для оценки эффективности гидРНК с удобным веб-интерфейсом

4 898 исходных sgRNA, таргетирующих **2 449** генов, с фенотипами роста в клетках K562 и Jurkat

~120 000 sgRNA-вариантов, каждый из которых содержит

1-2 мисматча к таргетной последовательности

gene	PMsgRNA	mismatch position	new pairing	K562	Jurkat	mean relative gamma	Target	MMsgRNA
AAR2	GTGAGGC GAGGCGG TGAGTG	-17.0	rA:dC	True	False	0.6656245 44693458 7	ACGTGGGGC GAGGCGGTG AGTGTGGC	ACGTGAGGCG AGGCGGTGA GTGTGGC

M. Jost et al. (2020) Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs

ExsgRNA

Возможности:

- Генерация mismatched-sgRNA (MMsgRNA), содержащие от 1 до 3 несовпадений
- Оценка активности MMsgRNA по сравнению с идеально совпадающей sgRNA (perfectly matched sgRNA, PMsgRNA)
- Классификация целевых участков ДНК по типу активности направляющей РНК (PMsgRNA или MMsgRNA) для данного участка

Типы off-target эффектов

- (a) off-target участок с несовпадением нуклеотида
- (b) off-target участок с недостающим нуклеотидом (RNA bulge, insertion)
- (c) off-target участок с лишним нуклеотидом (DNA bulge, deletion)

Y. Lin, T.J. Cradick et al. (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences

off-target модели

название	год	архитектура	доп фичи
CRISPR-HW	2023	Hybrid NN combining optimized residual blocks, BLSTM and attention mechanisms in a parallel architecture	
CrisprDNT	2023	Incorporates CNN, LSTM and transformer	
CRISPR-M	2024	Multi-view deep learning network combining BiLSTM, CNN and positional encoding	
CRISPR-BERT	2024	Inception-based CNN, a BERT-base module and a BiGRU	adaptive batch-wise class balancing strategy for imbalanced off-target data

Процесс подбора направляющей РНК

ROADMAP

Цель	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Литературный обзор	/											
Сбор и подготовка данных		/	/									
Выбор и обучение модели			/									
Валидация и тестирование модели												
Разработка веб- интерфейса												
Интеграция модели с веб-приложением												

СПАСИБО!

Готова ответить на ваши вопросы

Контакты

pole4ka004@gmail.com

tg: @oreshnya

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**