Metody Numeryczne – Zad 2

Zastosowanie rozwiązywania układów równań liniowych do obliczenia prawdopodobieństwa wygranej w grze losowej

Gra odbywa się na planszy złożonej z N pól ponumerowanych od 0 do N-1. W grze bierze udział dwóch graczy: $gracz_1$ i $gracz_2$. Na początku gry każdy z graczy dysponuje jednym pionem umieszczonym na polu o numerze 1. Grę rozpoczyna $gracz_1$, kolejne ruchy gracze wykonują na przemian.

Ruch polega na rzucie kostką i przesunięciu piona o wyrzuconą liczbę oczek x (jeśli pion stał na polu a, to gracz przesuwa go na pole a+x). Przesunięcie piona przez jednego z graczy poza planszę $(a+x\geqslant N)$ kończy grę i oznacza jego wygraną.

Pułapki

Na niektórych polach znajdują się pułapki. Z każdą pułapką związana jest pewna liczba k. Postawienie piona na polu z pułapką powoduje konieczność cofnięcia piona o k pól, a więc jeśli pułapka znajduje się na polu a, to pion trafia na pole o numerze a-k.

Zadanie

Dla zadanej planszy wraz z systemem pułapek oblicz prawdopodobieństwo, że $gracz_1$ wygra grę. Do obliczenia prawdopodobieństwa wykorzystaj układ równań (patrz przykład poniżej) oraz przedstawione na wykładzie metody: Gaussa oraz metodę iteracyjną Gaussa-Seidla.

Porównaj wyniki otrzymane obiema metodami, a prawidłowość otrzymanego wyniku zweryfikuj metodą Monte Carlo (wielokrotne losowanie przebiegu gry).

Jeśli prowadzący zajęcia nie przydzielił Ci konkretnej gry, to weź grę z listy poniżej o takim numerze jak ostatnia cyfra Twojego numeru indeksu.

Przykład 1

Niech plansza składa się z dwóch pól, a na polu numer jeden znajduje się pułapka z k=1 $(N=2, \{1,-1\})$. Gracze posługują się sprawiedliwą kostką dwuścienną (wyrzucamy 1 lub 2 oczy z prawdopodobieństwem 1/2). Niech x_1 oznacza prawdopodobieństwo, że wygra $gracz_1$, gdy ruch ma $gracz_1$ i pionki obu graczy znajdują się w polu 0, a x_2 niech oznacza prawdopodobieństwo, że wygra $gracz_1$, gdy ruch ma $gracz_2$ i pionki obu graczy znajdują się w polu 0, Możemy zapisać następujące równania:

$$x_1 = 1/2x_2 + 1/2 \cdot 1 \tag{1}$$

 $(gracz_1 \text{ wyrzuca } 1 \text{ z prawdopodobieństwem } 1/2, \text{ przesuwa się o jeden, wpada w pułapkę i wraca na pole startowe po czym ruch ma <math>gracz_2$ a z prawdopodobieństwem 1/2 wyrzuca 2 i wygrywa $\}$, oraz

$$x_2 = 1/2x_1 + 1/2 \cdot 0 \tag{2}$$

 $(gracz_2 \text{ wyrzuca } 1 \text{ z prawdopodobieństwem } 1/2, \text{ przesuwa się o jeden, wpada w pułapkę i wraca na pole startowe po czym ruch ma <math>gracz_1$ a z prawdopodobieństwem 1/2 wyrzuca 2 i wygrywa, a więc $gracz_1$ wygrywa z prawdopodobieństwem 0 – przegrywa).

Z otrzymanego układu otrzymujemy rozwiązanie: $x_1 = 2/3, x_2 = 1/3$ - gracz rozpoczynający grę ma dwa razy większą szansę na zwycięstwo niż drugi gracz.

Przykład 2

Niech plansza składa się z 6 pól, a pułapki z k=2 znajdują się na polach 4 i 5 (N=6, $\{4,-2\}$, $\{5,-2\}$). Gracze posługują się sprawiedliwą kostką sześciościenną. Niech x_{ab}^g oznacza, że ruch ma gracz g, pion pierwszego gracza znajduje się na polu a, a pion drugiego gracza znajduje się na polu b (wszystkich zmiennych jest 25).

Można teraz zapisać kolejne równania:

$$\begin{array}{rcl} x_{0,0}^1 & = & 1/6 \cdot x_{1,0}^2 + 2/6 \cdot x_{2,0}^2 + 2/6 \cdot x_{3,0}^2 + 1/6 \\ x_{1,0}^1 & = & 2/6 \cdot x_{2,0}^2 + 2/6 \cdot x_{3,0}^2 + 2/6 \\ x_{2,0}^1 & = & 1/6 \cdot x_{2,0}^2 + 2/6 \cdot x_{3,0}^2 + 3/6 \\ x_{3,0}^1 & = & 1/6 \cdot x_{2,0}^2 + 1/6 \cdot x_{3,0}^2 + 4/6 \\ \dots & = & \dots \\ x_{2,2}^2 & = & 1/6 \cdot x_{2,2}^1 + 2/6 \cdot x_{2,3}^1 \\ \dots & = & \dots \end{array}$$

Rozwiązując otrzymany układ otrzymujemy $x_{0,0}^1 = 0.644729836219198$, a więc gracz rozpoczynający grę ma nieco ponad 64% szans na zwycięstwo.

Uwaga

Podane wyżej przykłady nie mają sugerować, że układ równań należy tworzyć "ręcznie" a jedynie pomóc w zrozumieniu sposobu jego powstawania.

Uwaga 2

W rozwiązaniu nie jest konieczne unikanie równań opisujących sytuacje niemożliwe, na przykład tych odpowiadających zmiennym $x_{0,0}^2$, $x_{0,1}^1$, $x_{0,1}^2$, $x_{0,2}^1$, ...z przykładu 2. Wtedy liczba równań w przykładzie 1 wynosiłaby 8, a w przykładzie 2 byłyby 72 równania.

Lista gier

Tak jak w przykładzie 2, gracze posługują się sprawiedliwą kostką sześciościenną. Dla każdej gry najpierw podano N - liczbę pól na planszy, a następnie listę pułapek w formacie $\{p,-k\}$, gdzie p oznacza numer pola, na którym znajduje się pułapka, a k oznacza liczbą pól o które należy się cofnąć.

0. 27,
$$\{4, -2\}$$
, $\{5, -2\}$, $\{7, -5\}$, $\{9, -3\}$, $\{14, -12\}$, $\{15, -2\}$, $\{17, -7\}$, $\{19, -8\}$, $\{21, -3\}$, $\{22, -16\}$, $\{25, -9\}$.

1. 27,
$$\{2, -2\}$$
, $\{5, -2\}$, $\{10, -4\}$, $\{14, -12\}$, $\{15, -2\}$, $\{17, -6\}$, $\{19, -8\}$, $\{21, -3\}$, $\{22, -16\}$, $\{25, -9\}$, $\{26, -22\}$.

- 2. 27, $\{2, -1\}$, $\{4, -4\}$, $\{6, -5\}$, $\{13, -4\}$, $\{14, -6\}$, $\{17, -2\}$, $\{19, -1\}$, $\{21, -1\}$, $\{22, -10\}$, $\{25, -2\}$, $\{26, -16\}$.
- 3. 27, {2, -1}, {4, -4}, {6, -3}, {13, -4}, {14, -5}, {17, -1}, {20, -2}, {21, -2}, {22, -10}, {24, -14}, {25, -2}, {26, -7}.
- 4. 28, {1, -1}, {4, -1}, {6, -3}, {7, -2}, {13, -4}, {14, -5}, {17, -1}, {20, -2}, {21, -2}, {22, -10}, {24, -14}, {25, -2}, {27, -8}.
- 5. 28, $\{1, -1\}$, $\{2, -2\}$, $\{3, -3\}$, $\{7, -1\}$, $\{13, -4\}$, $\{14, -5\}$, $\{17, -1\}$, $\{20, -1\}$, $\{21, -2\}$, $\{22, -3\}$, $\{24, -1\}$, $\{25, -2\}$, $\{26, -3\}$.
- 6. 28, $\{4, -1\}$, $\{5, -3\}$, $\{6, -5\}$, $\{7, -7\}$, $\{13, -1\}$, $\{14, -3\}$, $\{15, -5\}$, $\{20, -1\}$, $\{24, -1\}$, $\{25, -3\}$, $\{26, -5\}$.
- 7. 28, $\{2, -1\}$, $\{4, -1\}$, $\{6, -1\}$, $\{11, -1\}$, $\{13, -1\}$, $\{15, -14\}$, $\{20, -1\}$, $\{22, -1\}$, $\{24, -1\}$, $\{26, -25\}$.
- 8. 28, $\{2, -1\}$, $\{4, -1\}$, $\{6, -1\}$, $\{11, -8\}$, $\{13, -10\}$, $\{15, -12\}$, $\{18, -13\}$, $\{20, -15\}$, $\{22, -17\}$, $\{24, -1\}$, $\{26, -3\}$.
- 9. 28, {2, -1}, {4, -4}, {5, -2}, {6, -5}, {7, -6}, {10, -1}, {13, -2}, {15, -1}, {18, -4}, {20, -9}, {22, -3}, {24, -1}, {26, -26}.