								nn <u>hol</u>	dsforte	gnelse	•										
								l. Ekvi	/alensr												
									inisjon												
									empler nskapei	(reflek	siv, sym	metrisk	, transit	iv)							
							2		ise ordr												
"Mindre enn eller lik" relasjonen Eksempler																					
Eksempler 3. Funksjoner																					
Definisjon og grunnprinsipp																					
Relasjon til mengdelære Typer funksjoner:																					
Typer funksjoner: Injeksjon (en-til-en)																					
Surjeksjon (på) Bijeksjon (en-til-en og på)																					
									empler i			u,									
							4		inalitet												
									inisjon a bare og												
							Ę		summe												
								• Vikt	ige kon	septer o	g anver	ndelser									

Llevivalensrelasjoner Delvise ordninger ~ "mindre enn eller lile" Ekvivalensrelasjoner ~ "lik" Des:-En regleksiv, Symmetrisk og transitiv relasjon kalles en ekvivalensrelasjon Eks: La A = P({1,2,3}) to elementer er related hvis de har like mange elemente. $R_1 = \{(x,y) \in AxA \mid x = y\}$

 $R_2 = \{(X, y) \in A \times A \mid |X| = |y| \}$ $L_{\alpha} R_3 = \{(X, y) \in N \times N \mid (X+y) \% 2 = 0\}$ R: |g| |g|

alle partall er relatert med hverandre, og alle oddetall er relatert med hverandre. R3= eksvivalens. relasjon

Funksjoner

Ide: Vi har to mengder A og B, en funksjon fra
A til B er en abstrakt "maskin" som tar inn
elementer fra A og gjr noe B

En funksjon er determenistisk, og semme input
vil alltid gj samme resultat

Funksjoner kun desireres som epessielle relasjoner

Le $A = \{a,b,c\}$ eg $B = \{0,1\}$ f(a) = 0 f(a) = 1 f(b) = 0

f(a) = 1 f(a) = 1 f(b) = 0 f(c) = 1 is fedet por $(a, 1) \in f(b, 0) \in f(c, 1) \in f(c,$

7	E B e	n	eur Slik	nles c	sjo nt	n al	f (le	pre X	, f	ti 1 4	ן [3 e1	es ut.	et	n +	rek il	asji Nø	ye Ye	g Kt	ra iy	A	ti ett
Ţ	-k																					
	2		1		(0	C L	e ,	gur ela	ilcs, ter	jon + t	; 3	2	ele	,m-t	ent	er.)					
	C		2 1		((Ik	ke r r	لا ماهن	nles ter	igon t ti	1 C) (z lej	mel	nte	/r)						
	6 1		0		(a	er lle	f' inj	unl put	csje	m:	ert	4	eh	ge	h	1)						
								•		σ			, ,	0	0	"						

Vi har sett junlesjonener for: f(x) = x+2 som junlesjon fra R til R: $f = \{(x,y) \in |RxR| | y = x+2\}$ $f = \{(x,y) \in |RxR| | y = x+2\}$ $f = \{(x,y) \in |RxR| | y = x+2\}$

en finksjon f fra A til B er surjektiv om den "treffer" alt ; B, Altse om det for enhver y eB finnen en xEA slik at f(x)=y

Def: En funksjøn f fra A til B er injektiv om elementene i B aldri treffes av to ulike elementer i A: $f(X_i) = f(X_Z) \Longrightarrow \chi_1 = \chi_2$

No two distinct input can result in the same output

Eks: La A= {a,b, c3, B= {0,13 figure for the second s for surgeletiv, ihle injektiv. fzer verken eller. La A=IR ag B=IR f(x) = x + 2 er injektiv og surjektiv. La A=Z og B=Z of (x) = z . x er injektiv, ikke surjektiv

Des -					
En punks	ien som	er ir	nge litie	de	suigentiv
Icalles	bijelctiv				

Bijettiv funksjoner mellom to mengeler er bare mulig om mengeler er like store:

7 >a

2**→**b

3->C

Vi sier at to mengeler A og B har lik Kardinalitet hvis det eksisterer hvis det eksisterer en bijehtiv junhsjon S: A > 13. Shriver |A|=|B| Eks | Z | = | N | La $f(x) = [-2x, if x \le 0]$ 2x - 1 if x > 0-3-96 -234 -1-92 090 1->1 2-33 3-5 4-37

En mengele A er tellbar hvis det ginnes en injeltic funksjon A => IN

Eksempelet over viser at z er tellbar

hvis vendelig, alltid tellbar hvis: arr = [4] for y in f(x) alle e i arr er unike