5. Принцип на включването и изключването

"PIE: Count hard, not smart"

Ноември 2024

Обща формулировка

Теорема (inclusion-exclusion principle). Ако $A_1, A_2, ... A_n$ са множества, то

$$|A_1 \cup \dots \cup A_n| = \sum_{1 \le i \le n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \dots + (-1)^{n+1} |A_1 \cap \dots \cap A_n|,$$

или по-компактно:

$$|\bigcup_{i=1}^{n} A_{i}| = \sum_{k=1}^{n} (-1)^{k+1} (\sum_{1 \le i_{1} < \dots < i_{k} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}|)$$

Следствие. Ако множествата $A_1, A_2, ... A_n$ са част от универсум U, то:

$$|U\setminus (A_1\cap \cdots \cap A_n)| = |\overline{A_1}\cap \cdots \cap \overline{A_n}| = |U| - \sum_{k=1}^n (-1)^{k+1} (\sum_{1\leq i_1<\cdots < i_k\leq n} |A_{i_1}\cap \cdots \cap A_{i_k}|)$$

1 Общи задачи

Задача 1. Колко са естествените положителни числа ≤ 100, които се делят на 2, 3 или 5?

Решение. Нека със S_i означим множеството от числата ≤ 100, които са кратни на i. Ние търсим $|S_2 \cup S_3 \cup S_5|$. От принципа за включване и изключване $|S_2 \cup S_3 \cup S_5| = |S_2| + |S_3| + |S_5| - |S_2 \cap S_3| - |S_2 \cap S_5| - |S_3 \cap S_5| + |S_2 \cap S_3 \cap S_5|$, като например $|S_2 \cap S_5|$ са числата кратни едновременно на 2 и 5, т.е. кратни на 10. Значи $|S_2 \cup S_3 \cup S_5| = 100/2 + 100/3 + 100/5 - 100/6 - 100/10 - 100/15 + 100/30 = 74$, като делението в случая е целочислено (взима се цялата част). ■

Задача 2. Колко са решенията е естествени числа на равенството: $x_1 + x_2 + x_3 + x_4 = 100$ (различаваме променливите, редът е от значение), ако:

- $x_1 \le 30, x_2 \le 20, x_3 \le 40, x_4 \le 25,$
- $x_i \leq 30 \ \forall i$?

Решение.

- Нека със S_i означим множеството от решенията на уравнението, за които x_i е по-голямо от допустимата си граница. Явно, че търсим общ, брой решения $-|S_1 \cup S_2 \cup S_3 \cup S_4| = \binom{103}{3} |S_1 \cup S_2 \cup S_3 \cup S_4| = \binom{103}{3} (|S_1| + |S_2| + |S_3| + |S_4| |S_1 \cap S_2| |S_1 \cap S_3| |S_1 \cap S_4| |S_2 \cap S_3| |S_2 \cap S_4| |S_3 \cap S_4| + |S_1 \cap S_2 \cap S_3| + |S_1 \cap S_2 \cap S_4| + |S_1 \cap S_2 \cap S_3| + |S_1 \cap S_2 \cap S_4| + |S_1 \cap S_3 \cap S_4| + |S_2 \cap S_3 \cap S_4| |S_1 \cap S_2 \cap S_3|$. Сметката не е толкова важна, ще дадем само идея за пресмятане на мощностите на сеченията. Например $|S_1 \cap S_2 \cap S_4|$ е броят решения, в които $x_1 > 30, x_2 > 20, x_4 > 25$, това съответства на броя решения, в които за числата няма ограничения, а сумата е $(x_1 31) + (x_2 21) + x_3 + (x_4 26) = 100 78 = 22$, бройката е: $\binom{22+3}{3}$.
- Идеята е абсолютно същата, но тук за всички числа има едно и също ограничение, така че можем да запишем по-кратко горния израз: общ брой решения $|S_1 \cup S_2 \cup S_3 \cup S_4| = \binom{103}{3} |S_1 \cup S_2 \cup S_3 \cup S_4| = \binom{103}{3} \sum_{i=1}^4 (-1)^{i+1} \binom{4}{i} \binom{100-i.31+3}{3} = \sum_{i=0}^4 (-1)^i \binom{4}{i} \binom{100-i.31+3}{3}$

Задача 3. По колко начина могат да се подредят 4 портокала, 4 праскови, 4 ягоди (плодовете от всеки вид са неразличими помежду си), ако един до друг могат да стоят най-много три плода от един и същи вид?

Задача 4 (derangements). Колко са пермутациите на числата от 1 до n такива, че никое число не е на мястото си (т.е. число i не е на позиция i)?

Решение. 1 н.) Вместо да броим всички пермутации, отговарящи на условието, можем да извадим тези, които не отговарят. Всички пермутации са n!, от тях вадим, тези които имат $none\ e\partial no$ *число*, стоящо на позицията си. Това число можем да изберем по $\binom{n}{1}$ начина (застопоряваме го). Останалите числа можем да пермутираме по произволен начин, т.е. (n-1)! варианта оттам, умножаваме и получаваме n(n-1)!. Добре, но така сме извадили повече от веднъж всички пермутации, за които поне 2 числа са на позициите си, сега трябва да ги прибавим обратно. Разсъждаваме, както горе, 2 числа, които да са на позициите си, можем да изберем по $\binom{n}{2}$ начина, а останалите да разбъркаме по (n-2)! начина, общо $\binom{n}{2}(n-2)!$. Добре, но така ще прибавим всяка пермутация с поне 3 числа на местата си повече от веднъж, отново трябва да вадим излишъка... Стигаме до принципа за включване и изключване, търсеният брой пермутации е: $n! + \sum_{i=1}^{n} (-1)^{i} \binom{n}{i} (n-i)! =$ $\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)! = \sum_{i=0}^{n} (-1)^{i} \frac{n!}{i!(n-i)!} (n-i)! = \sum_{i=0}^{n} (-1)^{i} \frac{n!}{i!} = n! \sum_{i=0}^{n} \frac{(-1)^{i}}{i!}.$

2 n.) Нека със S_i да означим множеството от пермутациите, в които числото i е на мястото си (на позиция і). Това означава, че множеството на пермутациите, неотговарящи на условието е именно: $S_1 \cup \cdots \cup S_n$, а ние се интересуваме от бройката $n! - |S_1 \cup \cdots \cup S_n|$. От принципа за включване и изключване това е точно

$$n! - \sum_{k=1}^{n} (-1)^{k+1} (\sum_{1 \le i_1 < \dots < i_k \le n} |S_{i_1} \cap \dots \cap S_{i_k}|) = n! + \sum_{k=1}^{n} (-1)^k (\sum_{1 \le i_1 < \dots < i_k \le n} |S_{i_1} \cap \dots \cap S_{i_k}|) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)!$$

Горното следва от факта, че i_1, \cdots, i_k можем да изберем по $\binom{n}{k}$ начина. А веднъж фиксирали ги, за останалите числа имаме пълна свобода за разместване, т.е. $|S_{i_1} \cap \cdots \cap S_{i_k}| = (n-k)!$.

Задача 5 (*). Колко са пермутациите на числата от 1 до n такива, че за никое $i(1 \le i < n)$ числото i не е точно преди i+1?

Отговор.
$$\sum_{k=0}^{n-1} (-1)^k (n-k)!$$

Задача 6 (*IMO 1989). Пермутация на числата $1, 2, \cdots, 2n$ наричаме приятна, ако $|a_i - a_{i+1}| = n$ за някое $i, 1 \le i < 2n$.

- Да се намери броят на приятните пермутации;
- Да се докаже, че поне половината от всички пермутации са приятни

Pewenue. Нека със S_x означим множеството от пермутациите, в които числата x и x+n са едно до друго $(1 \le x \le n)$. Тогава $S_1 \cup \cdots \cup S_n$ е множеството от пермутациите, в които поне една двойка числа x, x + n са едно до друго, т.е. това са всички "приятни" пермутации. От принципа на включване и изключване:

$$|S_1 \cup \dots \cup S_n| = \sum_{k=1}^n (-1)^{k+1} (\sum_{1 \le i_1 \le \dots \le i_k \le n} |S_{i_1} \cap \dots \cap S_{i_k}|)$$
 (*)

 $|S_1 \cup \dots \cup S_n| = \sum_{k=1}^n (-1)^{k+1} (\sum_{1 \leq i_1 < \dots < i_k \leq n} |S_{i_1} \cap \dots \cap S_{i_k}|)$ (*) Нека първо намерим $|S_{i_1} \cap \dots \cap S_{i_k}|$, това е именно броят пермутации, за които числата i_1 и $i_1 + n$, ..., i_k и i_k+n са едно до друго. Можем да считаме, че двойките са "пакетирани", например (i_j,i_j+n) и да ги разглеждаме като един цял елемент. Така получаваме общо 2n-k елемента (k от които двойни), което са (2n-k)! пермутации. Нямаме изискване за реда i_j, i_j+n в пермутацията (важно е само абсолютната стойност да е n), така че умножаваме по още 2^k (във всяка двойка числата могат за подредят по и двата начина). Общо $(2n-k)!2^k$.

Заместваме в сумата (*) с допълнителното уточнение, че при вече фиксирано k, i_1, \cdots, i_k можем да изберем по $\binom{n}{k}$ начина, така броят приятии пермутации= $\sum_{k=1}^{n} (-1)^{k+1} \binom{n}{k} (2n-k)! 2^k$.

Сега да докажем, че поне половината пермутации са "приятни". За краткост да положим $q_k :=$

 $\binom{n}{k}(2n-k)!2^k$ и да означим броя "приятни" с Q, а останалите ("неприятните") съответно с \overline{Q} . $\overline{Q}=(2n)!-Q=(2n)!-\sum_{k=1}^n(-1)^{k+1}\binom{n}{k}(2n-k)!2^k=(2n)!+\sum_{k=1}^n(-1)^k\binom{n}{k}(2n-k)!2^k=\sum_{k=0}^n(-1)^k\binom{n}{k}(2n-k)!2^k=\sum_{k=0}^n(-1)^k\binom{n}{k}(2n-k)!2^k=\sum_{k=0}^n(-1)^kq_k=q_2+(-q_3+q_4)+(-q_5+q_6)+\cdots$. Сега ползваме: $q_2=\binom{n}{2}(2n-2)!2^2<\frac{(2n)!}{2}$, също и $\forall j:q_{j+1}< q_j$ (понеже $1<\frac{q_j}{q_{j+1}}$)) $\Rightarrow (-q_j+q_{j+1})<0$ $0\Rightarrow \overline{Q}=q_2+(-q_3+q_4)+(-q_5+q_6)+\cdots< q_2<\frac{(2n)!}{2}$, т.е. неприятните са по-малко от половината.

2 Сюрекции

Задача 7 (*брой тотални сюрекции*). Колко са сюрективните (тотални) функции $f: X \mapsto Y$, където |X| = m, |Y| = n.

Решение. Нека със S_i $(1 \le i \le n)$ означим множеството от функциите, за които елементът с номер i от кодомейна, y_i не е покрит, т.е. $\neg \exists x \in X: f(x) = y_i$. Тогава множеството от всички функции, нарушаващи условието е $S_1 \cup \dots \cup S_n$. Тогава търсеният отговор е: $n^m - |S_1 \cup \dots \cup S_n| = n^m - \sum_{k=1}^n (-1)^{k+1} (\sum_{1 \le i_1 < \dots < i_k \le n} |S_{i_1} \cap \dots \cap S_{i_k}|) = n^m - \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} (n-k)^m = n^m + \sum_{k=1}^n (-1)^k \binom{n}{k} (n-k)^m = \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)^m$. Където ползвахме факта, че тоталните функции от a-елементно в b-елементно множество са b^a , а изборът на i_1, \dots, i_k може да стане по $\binom{n}{k}$ начина.

Задача 8 (*брой частични сюрекции*). Колко са частинчните сюрективни функции $f: X \mapsto Y$, където |X| = m, |Y| = n.

Решение. Частична функция лесно може да бъде сведена до тотална, ако в кодомейна бъде добавен един допълнителен елемент null, значещ недефинираност на съответната стойност на функцията (f(x) = null), когато f(x) няма зададена стойност). Във формулата това ще се отрази на броя валидни функции, който ще стане $(n-k+1)^m$. Общият брой съответно става $\sum_{k=0}^n (-1)^k \binom{n}{k} (n-k+1)^m$.

Обърнете обаче внимание, че не би било правилно да кажем, че търсеният брой е: $\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} (n+1-k)^m$, това просто би ни дало броя на сюрекциите, в които $\exists x \in X : f(x) = null$, тоест всички нетотални (с поне една недефинирана стойност) функции. Но тогава можем да съберем с вече намерената бройка на тоталните: $\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} (n+1-k)^m + \sum_{k=0}^n (-1)^k \binom{n}{k} (n-k)^m$, получава се еквивалентен израз за отговора.

Задача 9. По колко начина Дядо Коледа може да раздаде 30 различни въглена на 10 деца, ако всяко дете трябва да получи поне по един въглен (не се изисква числен отговор).

Решение. Задачата е директно приложение на задачата за сюрекции. Ако си представим, че домейнът е множеството от въглените, а децата са кодомейн, то всяко такова раздаване съответства на някаква сюрективна функция от въглени в деца. При това "раздаване" предполага всички въглени да са били раздадени (тоталност на функцията). Крайният отговор е: $\sum_{k=0}^{30} (-1)^k \binom{30}{k} (30-k)^{10}$.

Забележка. Ако въглените се считаха еднакви (както нормално би трябвало да е, все пак надали ги различаваме), то задачата се свежда до вече разгледаните в предната тема (по колко начина можем да поставим топки в номерирани кутии, ако във всяка има поне по една).

Задача 10. Колко са разбиванията на m-елементно множество на n множества?

Решение. Нека X е множеството, което ще разбиваме, а Y е разбиването (фамилия от n множества). Да разгледаме тоталните функции $f:X\mapsto Y$, които свързват елементите на множеството с множества от кодомейна. На f може да се гледа така: тя определя в коя част от разбиването ще попадне всеки елемент от X. Има два проблема пред това да заявим, че f определя разбиване на m части:

• 1) Някое от множествата от фамилията Y може да остане празно, което противоречи на дефиницията за разбиване. Решение: ще изискваме във всяко множество на Y да е отнесено поне по един елемент от X, т.е. f да е сюрекция.

• 2) Всяко възможно разбиване ще бъде преброено повече от веднъж, защото за нас елементите на Y имат идентичност, а в случая на разбиване, частите на разбиването нямат. Решение: всяко разбиване е преброено n! пъти, така че накрая разделяме на толкова.

В крайна сметка заключаваме, че търсеният брой съответства на броя на сюрекциите от m-елементен домейн в n-елементен кодомейн, разделено на n!: $\frac{1}{n!}\sum_{k=0}^{n}(-1)^k\binom{n}{k}(n-k)^m$.

Задача 11. (предложи М. Георгиев) Колко са n-цифрените числа, в които всяка цифра от 1 до 9 се среща поне веднъж?

Решение. Всички n-цифрени числа, записани с цифрите 1-9 са 9^n . Нека с $A_i, 1 \leq i \leq 9$ бележим множеството от числата, записани с цифрите 1-9, в които цифрата i HE се среща. Тогава ние търсим $9^n - |A_1 \cup \dots \cup A_9| = 9^n - \sum_{k=1}^9 (-1)^{k+1} (\sum_{1 \leq i_1 < \dots < i_k \leq 9} |A_{i_1} \cap \dots \cap A_{i_k}|) = 9^n - \sum_{k=1}^9 (-1)^{k+1} \binom{9}{k} (9-k)^n = \sum_{k=0}^9 (-1)^k \binom{9}{k} (9-k)^n$ Разяснение: $|A_{i_1} \cup \dots \cup A_{i_k}|$ е бройката n-цифрени числа, в които цифрите $0, i_1, \dots, i_k$ не участват, точната бройка е $(9-k)^n$. Приликата със сюрекциите е очевидна и има защо, все пак искаме всяка цифра от 1 до 9 да е "покрита", отговора можехме направо да получим оттам.