MATH 260, Linear Systems and Matrices, Fall '14 **Activity 2: Matrix Operations**

Matrices for today's problems:

Matrices for today's problems:

$$\mathbf{A} = \begin{bmatrix} 2 \\ 4 \\ -1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 3 & 2 & -5 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 1 & 4 \\ -3 & 5 \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \quad \mathbf{E} = \begin{bmatrix} 3 & 8 & 2 \\ -1 & x & x^2 \end{bmatrix}$$

Warmup: Constants and Matrices

Find $k\mathbf{C}$ where k is a constant. What is $k\mathbf{C}$ if k = 3?

Problem 1: Vectors, and Vectors with Matrices

a) Find the expected dimension of $\mathbf{AB},\,\mathbf{BI}_3,\,$ and $\mathbf{BE}.$

b) Now calculate each product.
Problem 2: Matrix on Matrix a) Find CD.
b) Make a prediction (don't calculate yet): Is the statement: $\mathbf{CD} = \mathbf{DC}$ true or false?

d) Can you find any two matrices (\mathbf{A} and \mathbf{B}) for which $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$? Note that here, \mathbf{A} and \mathbf{B} are NOT the matrices given on page 1. *Hint: This is a SPECIAL circumstance*.

Problem 3: More Matrix on Matrix

a) Which of these are true for any generic matrices where the operations are well-defined (give some reasoning, you don't *have* to prove them):

$$(\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A} + \mathbf{B}\mathbf{C}$$
 $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$ $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{A}\mathbf{B} + \mathbf{C}\mathbf{A}$

b) Under certain circumstances, we can raise a matrix to a power. Consider the $m \times n$ matrix **A**. Discuss at your table what some requirements on **A** might be, and what the resultant dimensions of \mathbf{A}^k would be.

