6. Übung zur Komplexen Analysis

1. (a) Sei $f: \mathbb{E} \to \mathbb{C}$ holomorph in $\mathbb{E} := \{z: |z| < 1\}$ mit f(0) = 0 und $|f(z)| \le 1$ in \mathbb{E} . Untersuchen sie die Reihe

$$\sum_{n=1}^{\infty} f(z^n)$$

auf punktweise und kompakte Konvergenz in E. Ist die Grenzfunktion holomorph?

(b) Untersuchen Sie

$$\sum_{n=0}^{\infty} \sin(z^n)$$

auf punktweise und kompakte Konvergenz in E. Ist die Grenzfunktion holomorph?

2. Bestimmen Sie die Anzahl der Nullstellen von f(z) in den Gebieten

$$f(z) = z^5 + \frac{1}{3}z^3 + \frac{1}{4}z^2 + \frac{1}{3}, \quad G = \{z \in \mathbb{C} : |z| < 1/2\}$$

$$f(z) = z^7 - 5z^4 + iz^2 - 2, \quad G = \{z \in \mathbb{C} : |z| < 1\}.$$

- 3. Sei (g_n) eine Folge von ganzen Funktionen und $g_n \to g$ kompakt. Zeigen Sie: Haben die $g_n(z)$ nur reelle Nullstellen, dann hat g(z) nur reelle Nullstellen oder $g \equiv 0$.
- 4. Es sei G ein beschränktes Gebiet, f_n sei eine Folge von auf dem Abschluss von G stetigen Funktionen, die auf G selbst holomorph sind. Zeigen Sie: Wenn f_n auf dem Rand von G gleichmäßig konvergiert, so auch auf dem Abschluss von G.
- 5. Zeigen Sie, dass $p_n(z) := \left(1 + \frac{z}{n}\right)^n$ auf \mathbb{C} lokal gleichmäßig gegen $\exp(z)$ konvergiert, indem Sie zeigen, dass $\{p_n : n \in \mathbb{N}\}$ lokal beschränkt ist und indem Sie $\lim_{n \to \infty} p^{(k)}(0)$ für alle k bestimmen.
- 6. Zeigen Sie: Jede ganze Funktion, deren Nullstellen einfach sind und genau in $\mathbb Z$ liegen, ist von der Form

$$f(z) = ze^{g(z)} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right),$$

wobei g eine ganze Funktion ist.

Bestimmen Sie diese Darstellung speziell für $f(z) = \sin(\pi z)$.

7. Seien $\omega_1, \omega_2 \in \mathbb{C}$ reell linear unabhängig und f eine auf \mathbb{C} meromorphe nichtkonstante doppelt periodische Funktion mit den Perioden ω_1 und ω_2 , d.h. mit der Eigenschaft

$$f(z + \omega_1) = f(z + \omega_2) = f(z)$$

für alle $z \in \mathbb{C}$. Man zeige, dass f auf dem Fundamentalbereich $F = \{\lambda_1\omega_1 + \lambda_2\omega_2 : 0 \le \lambda_j < 1\}$ ebenso viele Polstellen wie Nullstellen hat (gezählt jeweils mit Vielfachheiten).

8.	Seien $\omega_1, \omega_2 \in \mathbb{C}$ reell linear unabhängig. Man zeige, dass es bis auf Addition einer Konstanten genau eine doppelt periodische meromorphe Funktion mit den Perioden ω_1 und ω_2 gibt, die außer einem Pol bei 0 mit dem Hauptteil $1/z^2$ keinen weiteren Pol im Fundamentalbereich hat.