Sprint 5

Day 10 Task 1:

Sprints for AI Use Case For Demand Forecasting Using POS Transaction Data

Team Members: Tufail Irshad Amjad Ali Malik Zameer Ahmad Mir Asif Ahmad Najar Irfan Ahmad Mutoo

Sprint 5 Day 10 Task 1

Ai Deployment and Validation Report

Introduction:

Overview

generated an POS transaction data of 10 thousand rows and then applied a machine learning model on that data set to predict demand of an item in feature. And then after, Deploying a machine learning model to analysis the demand of an item at a particular time period.

Data Preparation

• Data collection: -

Generated POS transaction data by using faker lib, including transaction amount, timestamp, items, product details, and mode of transaction etc.

```
!pip install faker
from faker import Faker
import random
from datetime import datetime, timedelta
import csv
print("Done")
# Create a Faker instance
fake = Faker()
# Generate synthetic data
def generate synthetic data(num entries):
    synthetic data = []
    for in range(num entries):
        # Generate random date within the last year
        transaction date = fake.date between(start date='-1y',
end date='today')
        # Generate item purchased
        item purchased = fake.word()
        # Generate random unit price
        unit price = round(random.uniform(1, 1000), 2)
        # Generate random tax amount
        tax = round(random.choice([0.1, 0.3]), 2)
```

```
# Calculate transaction amount
        transaction amount = round(unit price + (unit price *
(tax / 100)), 2)
        # Generate random transaction mode
        transaction mode = random.choice(['Cash', 'Credit
Card', 'Debit Card'])
        # Generate random transaction currency
        transaction currency = random.choice(['USD', 'INR'])
        # Append data to the synthetic data list
        synthetic data.append([
            transaction date.strftime('%Y-%m-%d'),
            item purchased,
            unit price,
            tax,
            transaction amount,
            transaction mode,
            transaction currency
        ])
    return synthetic data
# Number of synthetic data points to generate
num entries = 10000
# Generate synthetic data
synthetic data = generate synthetic data(num entries)
# Write synthetic data to a CSV file
output file = 'synthetic data.csv'
with open (output file, 'w', newline='') as csvfile:
    writer = csv.writer(csvfile)
    writer.writerow(['Date of Transaction', 'Item Purchased',
'Unit Price', 'Tax', 'Transaction Amount', 'Transaction Mode',
'Transaction Currency'])
    writer.writerows(synthetic data)
print(f"Synthetic data written to {output file}")
```

Data Preprocessing

Loading the Data

The initial step involves loading your cleaned DataFrame (df_cleaned). This DataFrame is assumed to have no missing values or outliers.

```
import pandas as pd
```

```
dff=pd.read_csv('/content/pos_dataset.csv')
dff.head(5)
```

• Encoding Categorical Columns

Categorical columns are encoded using OneHotEncoder.

```
# Columns to encode and scale
categorical_columns = ['Item Purchased', 'Transaction Mode',
'Transaction Currency']
# Encode categorical columns
def encode_categorical_columns(df, categorical_cols):
    # Initialize the OneHotEncoder
    ohe = OneHotEncoder(sparse=False, drop='first')
    encoded_df =
pd.DataFrame(ohe.fit_transform(df[categorical_cols]),
columns=ohe.get_feature_names_out(categorical_cols))

# Concatenate the encoded columns back with the original
DataFrame
    df = df.drop(categorical_cols, axis=1).reset_index(drop=True)
    df = pd.concat([df, encoded_df], axis=1)
    return df
```

• Data cleaning

Address missing values, outliers, and inconsistencies in the dataset through techniques such as outlier removal, and data transformation.

• Filling Missing Values

```
# Find the most frequent value (mode) of the "Quantity" column
mode_quantity = dff["Quantity"].value_counts().idxmax()
```

```
# Fill missing values in the "Quantity" column with the mode
dff["Quantity"].fillna(mode_quantity, inplace=True)
```

Feature Engineering

Extract relevant features from the raw data, such as transaction amount, item purchased, date of transaction, mode of transaction.

Model Training and Evaluation

Splitting the Data

Split the data into training and test sets

```
from sklearn.model_selection import train_test_split

df_preprocessed = pd.read_csv('preprocessed_data.csv')

# Split the data into features (X) and target (y)

X = df_preprocessed.drop(['Transaction Amount','Date of Transaction'], axis=1)
y = df_preprocessed['Transaction Amount']
```

• Training Multiple Models

Train and evaluate multiple models to identify the best performer.

```
import pandas as pd
from sklearn.model_selection import train_test_split,
GridSearchCV
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
from sklearn.metrics import mean_squared_error, r2_score
import numpy as np
models = {
    "Linear Regression": LinearRegression(),
    "Decision Tree": DecisionTreeRegressor(),
    "Random Forest": RandomForestRegressor(),
    "Gradient Boosting": GradientBoostingRegressor(),
    "Support Vector Machine": SVR(),
}
results = {}
```

Error Calculation

Calculate the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) to assess model accuracy.

```
for model_name, metrics in results.items():
    print(f"Model: {model_name}")
    print(f" MSE: {metrics['MSE']}")
    print(f" RMSE: {metrics['RMSE']}")
    print(f" R-squared: {metrics['R-squared']}")
    print()

# Select the best model based on RMSE (or any other preferred metric)
best_model_name = min(results, key=lambda x: results[x]['RMSE'])
best_model = models[best_model_name]

print(f"Best Model: {best_model_name}")

Model: Linear Regression
MSE: 5.494355140883775e-09
RMSE: 7.41239174685457e-05
```

Deployment: -

• Model Integration

Integrate the trained model into the POS system or analytics platform for real-time or batch processing of transaction data.

Scalability

-Ensure that the deployed model can handle large volumes of transactions efficiently and scale as the business grows.

• API Development

Develop APIs or microservices to facilitate seamless interaction between the deployed model and other systems or applications.

Validation

• Data Quality Assurance

Continuously monitor the quality and integrity of the input data to ensure that the model receives accurate and reliable information. Model Performance

• Monitoring

Monitor the deployed model's performance over time, tracking key performance indicators (KPIs) and comparing them against baseline metrics.

Feedback Loop

Establish a feedback loop to collect user feedback, address model drift, and incorporate new insights or features into future iterations of the model.

Security and Compliance

• Data Privacy

Implement measures to protect sensitive customer information and comply with data privacy regulations (e.g., GDPR, CCPA).

• Fraud Detection

Implement fraud detection algorithms to identify and mitigate potential security threats, such as fraudulent transactions or data breaches.

• Regulatory Compliance

Ensure that the deployed model adheres to relevant industry regulations and standards, such as PCI-DSS for payment card security.

Conclusion

Summarize the key findings and outcomes of the AI deployment and validation process, highlighting improvements in decision-making, operational efficiency, and risk management. Provide recommendations for future enhancements or refinements to the deployed model based on ongoing monitoring and feedback.

				G	ian	tt (Cha	rt								
Sprints	Days	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
	Worked															Man-
	on Each															Days
	Sprint															·
~																
Synthetic Data	2	X	X													2
Generation																
Data Cleaning	2			X	X											2
Feature	1					X										1
Engineering																
Model Training							X	X								2
Model									X							1
Application and																
Iteration																
Minimization of										X						1
Bias and																
Overfitting																
Test Models on											X	X				2
Unseen Data or																
Validation Set													T 7			
Final Model													X			
Selection and																
Conclusion																
Documentation														X	X	
Total Days		X	X	X	X	X	X	X	X	X	X	X				14