UD2. BINARIO – PRÁCTICA

PARTE 1: CONVERSIÓN BINARIO ↔ DECIMAL

A. Observa los siguientes patrones (rellena los huecos):

Bits	Total de valores posibles	Rango de valores
1	2	0 –
2	4	
3		
4		
8		

B. Conversión de binario a decimal

Convierte estos números binarios a decimal:

- 1. 0001
- 2. 0101
- 3. 1011
- 4. 10100100
- 5. 11111011

PARTE 2: CONVERSIÓN DE DECIMAL A BINARIO

Convierte estos números decimales a binario:

- 1. 6
- 2. 15
- 3. 64
- 4. 255
- 5. 127

PARTE 3: PROPIEDADES DEL BINARIO

Completa las siguientes frases con V (verdadero) o F (falso):

Afirmación	V/F
Añadir ceros a la izquierda de un binario cambia su valor	
Añadir ceros a la derecha de un binario lo multiplica por 2	

Un número binario que termina en 1 siempre es impar	
(11111111) ₂ equivale a (256) ₁₀	
(1000000) ₂ - 1 = (111111) ₂	

PARTE 4: BINARIO \leftrightarrow HEXADECIMAL

A. Hexadecimal a binario

Convierte estos números hexadecimales a binario:

- 1. A
- 2. F
- 3. 10
- 4. 1F
- 5. FF

B. Preguntas rápidas

- 1. ¿Cuántos símbolos hay en el sistema hexadecimal?
- 2. ¿Cuántos bits representa cada dígito hexadecimal?
- 3. ¿Es válido el número (GG)₁₆? ¿Por qué?
- 4. ¿Cuánto es (FF)₁₆ en decimal?