Cost of

represents a sequence of 4 to 10 amino acids, X_4 represents a sequence of 3 to 10 amino acids, X_5 represents an amino acid or a sequence of 2 to 4 amino acids, X_6 represents a sequence of 7 to 15 amino acids, and X_7 represents an amino acid or a sequence of 2 to 10 amino acids.

- 14. The method of Claim 13, wherein X_1 represents a dipeptide, X_2 represents a tripeptide, X_3 represents a heptapeptide, X_4 represents a tetrapeptide, X_5 represents an amino acid, X_6 represents a nonapeptide, and X_7 represents a pentapeptide.
 - 15. The method of Claim 13, wherein

 X_1 satisfies the sequence y_1y_2 wherein y_1 and y_2 each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine;

 y_1 represents an amino acid selected from the group consisting of alanine, serine, glycine and threonine, and y_2 represents glutamic acid or aspartic acid;

 X_2 satisfies the sequence $y_3y_4y_5$ wherein y_3 represents glutamine or asparagine, and y_4 and y_5 each represent an amino acid selected from the group consisting of alanine, serine, glycine, threonine, valine, leucine, isoleucine and methionine;

 X_3 satisfies the sequence $y_6y_7y_8y_9y_{10}y_{11}y_{12}$ wherein y_6 represents an amino acid selected from the group consisting of alanine, serine, glycine and threonine, y_7 , y_{11} and y_{12} each represent proline, y_8 represents an amino acid selected from the group consisting of phenylalanine, tryptophan and tyrosine, y_9 represents aspartic acid or glutamic acid, and y_{10} represents an amino acid selected from the group consisting of valine, leucine, isoleucine and methionine;

 X_4 satisfies the sequence $y_{13}y_{14}y_{15}y_{16}$, wherein y_{13} , y_{14} , y_{15} and y_{16} each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine, or y_{14}

20

altid

represents an amino acid selected from the group consisting of alanine, serine, glycine and threonine, y_{13} and y_{15} each represent a basic amino acid, and y_{16} represents aspartic acid or glutamic acid;

X₅ represents a basic amino acid;

 X_6 satisfies the sequence $y_{17}y_{18}y_{19}y_{20}y_{21}y_{22}y_{23}y_{24}y_{25}$, wherein y_{17} , y_{19} , y_{21} and y_{23} each represent an amino acid selected from the group consisting of valine, leucine, isoleucine and methionine, y_{18} represents proline, y_{20} and y_{24} each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine, y_{22} represents an amino acid selected from the group consisting of valine, leucine, isoleucine, methionine, phenylalanine, tryptophan and tyrosine, and y_{25} represents an amino acid selected from the group consisting of phenylalanine, tryptophan and tyrosine; or

 X_7 satisfies the sequence $y_{26}y_{27}y_{28}y_{29}y_{30}$ wherein y_{26} represents a basic amino acid or an amino acid selected from the group consisting of valine, leucine, isoleucine and methionine, y_{27} represents asparagine or glutamine or a basic amino acid, y_{28} represents proline, and y_{29} and y_{30} each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine.

- 16. The method of Claim 13, wherein the polypeptide has at least 60% identity with any one of the isoforms of a PA1b albumin.
- 17. The method of Claim 13, wherein said polypeptide is chosen from the group consisting of PA1b albumins and leginsulins.
 - 18. The method of Claim 13, wherein said plant is a cereal producing plant.
- 19. The method of Claim 13, wherein said polypeptide is present in a concentration of 10 µmol/kg to 100 mmol/kg.

20

20. The method of Claim 19, wherein said polypeptide is present in a concentration of 50 μmol/kg to 10 mmol/kg.

21. A method of protecting a plant from insects comprising transforming said plant with a polynucleotide which encodes a polypeptide having a sequence of the formula (I):

(I)

wherein C represents a cysteine residue, X_1 represents an amino acid or a sequence of 2 to 10 amino acids, X_2 represents an amino acid or a sequence of 2 to 5 amino acids, X_3 represents a sequence of 4 to 10 amino acids, X_4 represents a sequence of 3 to 10 amino acids, X_5 represents an amino acid or a sequence of 2 to 4 amino acids, X_6 represents a sequence of 7 to 15 amino acids, and X_7 represents an amino acid or a sequence of 2 to 10 amino acids.

- 22. The method of Claim 21, wherein X_1 represents a dipeptide, X_2 represents a tripeptide, X_3 represents a heptapeptide, X_4 represents a tetrapeptide, X_5 represents an amino acid, X_6 represents a nonapeptide, and X_7 represents a pentapeptide.
 - 23. The method of Claim 21, wherein

 X_1 satisfies the sequence y_1y_2 wherein y_1 and y_2 each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine;

 y_1 represents an amino acid selected from the group consisting of alanine, serine, glycine and threonine, and y_2 represents glutamic acid or aspartic acid;

 X_2 satisfies the sequence $y_3y_4y_5$ wherein y_3 represents glutamine or asparagine, and y_4 and y_5 each represent an amino acid selected from the group consisting of alanine, serine, glycine, threonine, valine, leucine, isoleucine and methionine;

College 5

 X_3 satisfies the sequence $y_6y_7y_8y_9y_{10}y_{11}y_{12}$ wherein y_6 represents an amino acid selected from the group consisting of alanine, serine, glycine and threonine, y_7 , y_{11} and y_{12} each represent proline, y_8 represents an amino acid selected from the group consisting of phenylalanine, tryptophan and tyrosine, y_9 represents aspartic acid or glutamic acid, and y_{10} represents an amino acid selected from the group consisting of valine, leucine, isoleucine and methionine;

 X_4 satisfies the sequence $y_{13}y_{14}y_{15}y_{16}$, wherein y_{13} , y_{14} , y_{15} and y_{16} each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine, or y_{14} represents an amino acid selected from the group consisting of alanine, serine, glycine and threonine, y_{13} and y_{15} each represent a basic amino acid, and y_{16} represents aspartic acid or glutamic acid;

X₅ represents a basic amino acid;

 X_6 satisfies the sequence $y_{17}y_{18}y_{19}y_{20}y_{21}y_{22}y_{23}y_{24}y_{25}$, wherien y_{17} , y_{19} , y_{21} and y_{23} each represent an amino acid selected from the group consisting of valine, leucine, isoleucine and methionine, y_{18} represents proline, y_{20} and y_{24} each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine, y_{22} represents an amino acid selected from the group consisting of valine, leucine, isoleucine, methionine, phenylalanine, tryptophan and tyrosine, and y_{25} represents an amino acid selected from the group consisting of phenylalanine, tryptophan and tyrosine; or

20

 X_7 satisfies the sequence $y_{26}y_{27}y_{28}y_{29}y_{30}$ wherein y_{26} represents a basic amino acid or an amino acid selected from the group consisting of valine, leucine, isoleucine and methionine, y_{27} represents asparagine or glutamine or a basic amino acid, y_{28} represents

5

proline, and y_{29} and y_{30} each represent an amino acid selected from the group consisting of alanine, serine, glycine and threonine.

- 24. The method of Claim 21, wherein the polypeptide has at least 60% identity with any one of the isoforms of a PA1b albumin.
- 25. The method of Claim 21, wherein said polypeptide is chosen from the group consisting of PA1b albumins and leginsulins.
 - 26. The method of Claim 21, wherein said plant is a cereal producing plant.--