Introducing the Concept of Expectation

Dmitri NesterukQUANTITATIVE ANALYST

@dnesteruk http://activemesa.com

Goals:

Understand the notion of an expectation and associated statistical measures.

Overview

Expectation

Mean

Law of the Unconscious Statistician

Variance

Moments and the Moment Generating Function

Joint Distributions

Covariance and Correlation

Expectation

If you measure a newborn baby, how tall do you expect it to be?

We don't know, since it's a random variable

Measure n newborn babies (the more the better) and average out the result

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

This is the *mean* or *average* baby height

So, given a random variable X representing a baby's height, \overline{x} is its expected value (51cm/20in, actually)

Expectation of a Random Variable

The expectation (expected value, mean, average) of a random variable is a weighted average of all possible values weighted by their respective probabilities.

Expectation Example

Suppose a stock price can increase by 1 point with $P_U = 0.6$, stay in place with $P_S = 0.1$ and go down by 1 point with $P_D = 0.3$

If X represents the change in stock price, what is E[X]?

$$E[X] = 1 \cdot 0.6 + 0 \cdot 0.1 + 0.3 \cdot (-1) = 0.3$$

In other words, on average, we'd expect the stock price to go up by 0.3 points

Mean

For a bounded discrete random variable X with probability function f, the expectation of X is

$$E[X] = \sum_{x} x f(x)$$

Also referred to as the *mean* of X or the *expected value* of X.

Mean of a Bernoulli Random Variable A rv X has a Bernoulli distribution when X can only take values 0 or 1 with P(X = 1) = p

$$E[X] = 0 \cdot (1-p) + 1 \cdot p = p$$

Note that the expectation does not have to be a possible value of the variable

Existence of Mean

Given a variable X with a pf f

Consider

$$\sum_{\text{Positive } x} x f(x)$$
 and $\sum_{\text{Negative } x} x f(x)$

If at least one of these is finite, then E[X] is said to exist, defined as

$$\sum_{\text{All } x} x f(x)$$

If both of the sums are infinite, mean does not exist

Existence of Mean Example

Let X be a rv with pf

$$f(x) = \begin{cases} \frac{1}{2|x|(|x|+1)}, & x = \pm 1, \pm 2, \pm 3, \dots \\ 0, & \text{otherwise} \end{cases}$$

Check the sums

$$\sum_{-1}^{-\infty} x \frac{1}{2|x|(|x|+1)} = -\infty$$

$$\sum_{1}^{\infty} x \frac{1}{2|x|(|x|+1)} = \infty$$

Both sums are infinite : E[X] does not exist

Expectation for a Continuous Distribution

For a continuous bounded random variable, a sum turns into an integral

If X is a bounded continuous rv with pdf f,

$$E[X] = \int_{-\infty}^{\infty} x f(x) \ dx$$

also called the expected value or mean

Continuous Expectation Example

Suppose the time *X* until a part fails has the pdf

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Then

$$E[X] = \int_{0}^{1} x \cdot 2x \, dx = \int_{0}^{1} 2x^{2} \, dx = \frac{2}{3}$$

The expectation of the distribution with pdf f is 2/3

Existence of Continuous Mean

If either $\int_0^\infty x f(x) dx$ or $\int_{-\infty}^0 x f(x) dx$ is finite,

The mean/expectation/expected value of X exists and is defined as

$$\int_{-\infty}^{\infty} x f(x) \ dx$$

If both integrals are infinite, then the mean does not exist

Existence of Continuous Mean Example

Consider the Cauchy distribution with pdf

$$f(x) = \frac{1}{\pi(1+x^2)}$$

This is a pdf, i.e.
$$\int_{-\infty}^{\infty} f(x) = 1$$
 because
$$\frac{d(\tan^{-1} x)}{dx} = \frac{1}{1 + x^2}$$

Calculate the two integrals:

$$\int_0^\infty \frac{x}{\pi(1+x^2)} \ dx = \infty \ \text{and} \ \int_{-\infty}^0 \frac{x}{\pi(1+x^2)} \ dx = -\infty$$

Thus the mean does not exist

Function of a Random Variable

If X is a rv with pdf f, consider a real-valued function r(X)

To find the expected value of r(X), we

- Let Y = r(X)
- Determine probability distribution of Y
- Determine E[Y]

$$E[r(x)] = E[Y] = \int_{-\infty}^{\infty} yg(y) dy$$
 if the expectation exists

Expection of Function Example

Given a rv X with pdf of $f(x) = 3x^2$, 0 < x < 1

Let
$$r(x) = 1/x$$

First we calculate pdf of Y = r(X):

$$g(y) = 3y^{-4}, \qquad y > 1$$

This gives us the mean

$$E[Y] = \int_{0}^{\infty} y \cdot 3y^{-4} \, dy = \frac{3}{2}$$

These manipulations are unnecessary due to LOTUS

Law of the Unconscious Statistician

If X is a rv and r(x) is a real-valued function of a real variable then, if X has a discrete distribution,

$$E[r(x)] = \sum_{All\ x} r(x)f(x)$$

If X has a continuous distribution,

$$E[r(x)] = \int_{-\infty}^{\infty} r(x)f(x) dx$$

Expectation of Function Example (LOTUS)

Given a rv X with pdf of $f(x) = 3x^2$, 0 < x < 1

Let
$$r(x) = 1/x$$

$$E[Y] = \int_0^1 r(x)f(x) dx = \int_0^1 \frac{1}{x} \cdot 3x^2 dx = 3/2$$

Note: in general, $E[f(X)] \neq f(E[X])$

Properties of Distributions

If X is a rv for which E[X] exists,

If X = c with probability 1, E[X] = c

If Y = aX + b where a and b are finite constants (linear function),

$$E[Y] = aE[X] + b$$

If
$$X_1, ..., X_n$$
 are n rvs s.t. $E[X_i]$ is finite, then
$$E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n]$$

$$E[X_1 \times \cdots \times X_n] = E[X_1] \times \cdots \times E[X_n]$$

Variance

A mean does not completely describe a distribution

A uniform distribution from -1 to 1 and a standard normal distribution have same mean, but are drastically different

We need another measure of how 'spread out' the distribution is

Variance

If X is a rv with finite mean $\mu = E[X]$, the *variance* of X is defined as

$$V[X] = E[(X - \mu)^2]$$

If X has infinite mean or if E[X] does not exist, V[X] does not exist.

The standard deviation of X is the non-negative square root of V[X] if the variance exists:

 σ - standard deviation, σ^2 - variance

Variance Example

Consider a coin flip that yields a 0 or a 1 with equal probability P = 0.5

$$\mu = E[X] = 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5$$

Define $Y = (X - \mu)^2$. Then V[X] = E[Y]

Compute pf of *Y*:

$\boldsymbol{\chi}$	0	1
У	0.25	0.25
f(y)	0.5	0.5

$$V[X] = E[Y] = 0.5(0.25 + 0.25) = 0.25$$

Standard deviation
$$\sigma = \sqrt{0.25} = 0.5$$

Alternative Variance Calculation Method

We can expand variance calculation

$$V[X] = E[(X - \mu)^{2}]$$

$$= E[X^{2} - 2\mu X + \mu^{2}]$$

$$= E[X^{2}] - 2\mu E[X] + \mu^{2}$$

$$= E[X^{2}] - \mu^{2}$$

In other words,

$$V[X] = E[X^2] - (E[X])^2$$

Additive Property of Variance

Given independent random variables $X_1, ..., X_n$ with finite means and constants $a_1, ..., a_n$ and b, $V[a_1X_1 + \cdots + a_nX_n + b] = a_1^2V[X_1] + \cdots + a_n^2V[X_n]$

Notice how b does not contribute to the variance

Moments

For a random variable X and $k \in \mathbb{N}$, the expectation $E[X^k]$ is called the kth moment of X

The mean E[X] is the first moment of X

The *k*th moment exists iff $E[|X|^k] < \infty$

Central Moment

An nth central moment μ_n is the moment of a probability distribution about the mean

$$\mu_n = E[(X - E[X])^n] = \int_{-\infty}^{\infty} (x - \mu)^n f(x) dx$$
 $\mu_0 = 1 \text{ (because } \int 1 \cdot f(x) dx = 1\text{)}$
 $\mu_1 = 0 \text{ (because } E[X - E[X]] = E[X] - E[E[X]] = 0\text{)}$

 μ_2 is the variance

Moment Generating Function

Given a rv X, for each $t \in \mathbb{R}$, the moment generating function (mgf) of X is defined as

$$\psi(t) = E[e^{tX}]$$

For $n \in \mathbb{N}$, the *n*th moment of *X* is the *n*th derivative of the mgf at t = 0, i.e.,

$$E[X^n] = \psi^{(n)}(0)$$

Calculating an MGF

Suppose X has a pdf $f(x) = e^{-x}$ for x > 0Let's find the mgf:

$$\psi(t) = E[e^{tX}] = \int_{0}^{\infty} e^{tx}e^{-x} dx$$
$$= \int_{0}^{\infty} e^{(t-1)x} dx$$

The integral diverges for $t \ge 1$, so mgf is

$$\psi(t) = \frac{1}{1-t}$$

for t < 1

Calculating variance from MGF

Mgf is
$$\psi(t) = \frac{1}{1-t}$$

Calculate derivatives:

$$\psi'(t) = \frac{1}{(1-t)^2}$$
 and $\psi''(t) = \frac{2}{(1-t)^3}$

Armed with this, we can calculate variance:

$$E[X^{2}] - (E[X])^{2} = \psi''(0) - [\psi'(0)]^{2}$$
$$= 2 - 1 = 1$$

Thus,
$$V[X] = 1$$

Means and Variances of Some Distributions

Distribution	Pmf	Mean	Variance
Uniform (disc)	$\frac{1}{b-a+1} \text{ for } x = a, \dots, b$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$
Binomial	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
Geometric	$(1-p)^k p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Hypergeometric	$p(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$	$n\frac{r}{N}$	$n\frac{r}{N}\frac{(N-r)}{N}\frac{N-n}{N-1}$

Means and Variances of Some Distributions

Distribution	Pdf	Mean	Variance
Uniform (cont)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Gamma	$\frac{x^{\alpha-1}e^{-\frac{x}{\beta}}}{\beta^{\alpha}\Gamma(\alpha)}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Beta	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$

Joint Distributions

Interested in several random variables related to each other

E.g., if you pick a random family and measure their earnings and how many cars they have, those things *might* be related

Instead of one variable, we consider two or more

We'll focus on 2 rvs

Joint Distribution Example

Suppose we roll two dice

We want the probability that first dice is a 1 and second is a 3

$$P(X = 1, Y = 3) = \frac{1}{36}$$

A general calculation can be expressed as a joint pmf

Joint Probability Mass Function

Given two discrete random variables X and Y, their joint probability mass function (pmf) is defined as

$$P_{XY}(x,y) = P(X = x, Y = y)$$

The joint pmf need to satisfy

$$\sum_{x \in X, y \in Y} P_{XY}(x, y) = 1$$

Marginal PMF

The joint pmf has all the information regarding the distribution of X and Y

We can try to 'extract' the pmf of X from P_{XY} :

$$P_X(x) = P(X = x) = \sum_{y_i} P(X = x, Y = y_i)$$

We call $P_X(x)$ the *marginal* pmf of X.

Consider rvs X and Y with joint pmf

	Y = 0	Y = 1	Y=2
X = 0	1/6	1/4	1/8
X = 1	1/8	1/6	1/6

Marginal PMF Example

Let's find $P_X(x)$

$$P_X(0) = \frac{1}{6} + \frac{1}{4} + \frac{1}{8} = 13/24$$

-
$$P_X(1) = 1 - P_X(0) = 11/24$$

$$P_X(x) = \begin{cases} \frac{13}{24}, & x = 0\\ \frac{11}{24}, & x = 1\\ 0, & \text{otherwise} \end{cases}$$

Joint Cumulative Distribution Function

The joint cumulative distribution function of two random variables *X* and *Y* is defined as

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

We expect that

$$F_{XY}(\infty, \infty) = 1$$

 $F_{XY}(-\infty, y) = 0$, for any y
 $F_{XY}(x, -\infty) = 0$, for any x

Functions of 2 or More Random Variables

Sometimes we have a function which involves two or more rvs

- E.g., sum of two dice being rolled
- r(X,Y)

LOTUS for two discretervs

$$E[r(X,Y)] = \sum_{x_i,y_i} r(x_i,y_i) P_{XY}(x_i,y_i)$$

Joint Probability Density Function

Two random variables X and Y are jointly continuous if there exists a non-negative function f_{XY} s.t. for any set $A \in \mathbb{R}^2$,

$$P((X,Y) \in A) = \iint_A f_{XY}(x,y) \, dx \, dy$$

The function f_{XY} is called the *joint probability density* function of X and Y. Naturally,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx \, dy = 1$$

Joint PDF Example

Suppose *X* and *Y* have joint pdf

$$f_{XY}(x,y) = x + cy^2$$
, $0 \le x \le 1, 0 \le y \le 1$

Let's find the constant c

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx \, dy = \int_{0}^{1} \int_{0}^{1} x + cy^{2} \, dx \, dy$$
$$= \left[\frac{y}{2} + \frac{cy^{3}}{3} \right]_{y=0}^{y=1} = \frac{1}{2} + \frac{1}{3}c = 1$$

Therefore, c = 3/2

Marginal PDFs

Similarly to marginal pmfs, marginal pdfs involve leaving one of the two variables alone, i.e.

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dy, \qquad \text{for all } x$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dx, \qquad \text{for all } y$$

This lets us find a pdf for one of the two (or more) variables from a joint pdf

Marginal PDF Example

Given the joint pdf

$$f(x,y) = 10x^2y, \qquad 0 \le y \le x \le 1$$

Let's find $f_X(x)$ and $f_Y(y)$

- Note the domains of x and y!

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \ dy = \int_{0}^{x} 10x^2y \ dy = 5x^4$$

$$f_Y(y) = \int_y^1 10x^2y \, dx = \frac{10}{3}y(1-y^3)$$

Search for Related Variables

Does smoking cause cancer?

Need to take measurements of cancer and amounts smoked

- Also variables that influence the result

Do the two sets of values vary together (as one grows, so does another)?

Calculate covariance

Can we get a standardized measure of how related they are?

Calculate correlation

Reminder: correlation does not imply causation

Covariance

If X and Y are rvs with finite means $E[X] = \mu_X$ and $E[Y] = \mu_Y$, the covariance of X and Y is defined as $cov(X,Y) = \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$

if the expectation exists.

Covariance Example

Let X, Y have a joint pdf

$$f(x) = \begin{cases} 2xy + 0.5, & 0 \le x \le 1, 0 \le y \le 1 \\ 0, & \text{otherwise} \end{cases}$$

Let's compute cov(X, Y)

First we need $\mu_X = \mu_Y$

$$\mu_X = \int_0^1 \int_0^1 (2x^2y + 0.5) \, dy \, dx = 7/12$$

Then,

$$cov(X,Y)$$

$$= \int_{0}^{1} \int_{0}^{1} \left(x - \frac{7}{12}\right) \left(y - \frac{7}{12}\right) (2xy + 0.5) dy dx$$

$$= 1/144$$

What is Covariance?

Covariance gives a numerical measure to the degree to which *X* and *Y* vary together

The magnitude of cov(X, Y) is influenced by X and Y

Correlation is a much better, standardized measure

Correlation

Given random variables X and Y with finite variances σ_X^2 and σ_Y^2 , the *correlation* of X and Y is defined as

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

Correlation Values

Correlation values range from -1 to 1

 $\rho=0$ means variables are uncorrelated (we expect this for independent variables)

ho=1 means as one variable grows/shrinks, so does another, perfectly

- Correlation measures only a linear relationship

ho = -1 means variables have a perfect inverse relationship (as one grows, another shrinks)

Summary

A random variable has an expected value E[X] also called mean or average

Variance ($E[(X - \overline{x})^2]$) measures how 'spread out' the values are

Two or more variables can have a joint pmf/pdf/cdf

Marginal functions can be extracted from joint function

Covariance/correlation are measures of a linear relationship between two variables

