Chap II. ESPACE TANGENT ET LISSITÉ

Martin Debaisieux

1 Les différentielles et les espaces tangents

Considérons dans un premier temps un corps K non nécessairement algébriquement clos. Étant donné un polynôme $f \in K[X_1, \ldots, X_n]$, son développement de Taylor au point $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbf{A}^n(K)$ est de la forme

$$f(X_1, \dots, X_n) = f(\mathbf{x}) + f_{\mathbf{x}}^{(1)}(X_1, \dots, X_n) + \dots + f_{\mathbf{x}}^{(d)}(X_1, \dots, X_n)$$

avec d le degré de f et où les $f_{\mathbf{x}}^{(i)}$ sont des polynômes homogènes de degré i en les $(X_j - x_j)$, ou bien :

$$f(\mathbf{X} - \mathbf{x}) = f(\mathbf{x}) + f^{(1)}(\mathbf{X} - \mathbf{x}) + \dots + f^{(d)}(\mathbf{X} - \mathbf{x})$$

avec $\mathbf{X} - \mathbf{x} = (X_1 - x_1, \dots, X_n - x_n)$. Dans l'expression précédente, nous posons $(\mathbf{d}_{\mathbf{x}} f)(X_1, \dots, X_n)$ la partie $f^{(1)}(\mathbf{X} - \mathbf{x})$; il s'agit d'un polynôme homogène de degré 1. Plus exactement,

$$(\mathbf{d}_{\mathbf{x}}f)(X_1,\dots,X_n) = \sum_{i=1}^n \frac{\partial f}{\partial X_i}(\mathbf{x}).(X_i - x_i). \tag{1.1}$$

Ceci donne lieu à une application $d_{\mathbf{x}} \colon K[\mathbf{X}] \to K[\mathbf{X}] \colon f \mapsto d_{\mathbf{x}} f$ additive et vérifiant la règle de Leibniz : $d_{\mathbf{x}}(fg) = f(\mathbf{x})d_{\mathbf{x}}(g) + g(\mathbf{x})d_{\mathbf{x}}f$. En particulier, pour $\lambda \in K$ un polynôme constant, l'égalité (1.1) implique que $d_{\mathbf{x}}(\lambda) = 0$. Ainsi $d_{\mathbf{x}} \colon K[\mathbf{X}] \to K[\mathbf{X}]$ est une application K-linéaire, appelée différentielle en \mathbf{x} .

Définition 1.1. Soit K un corps; l'espace tangent d'un sous-ensemble algébrique $V = V(f_1, \ldots, f_m)$ de $\mathbf{A}^n(K)$ en un point $\mathbf{x} \in V$ est le lieu d'annulation $T_{\mathbf{x}}(V)$ des différentielles des f_i en \mathbf{x} :

$$T_{\mathbf{x}}(V) := V(\mathbf{d}_{\mathbf{x}}f_1, \dots, \mathbf{d}_{\mathbf{x}}f_m).$$

Remarque 1.2. Noter que $T_{\mathbf{x}}(V)$ est non vide (il comprend \mathbf{x}). En réalité, $T_{\mathbf{x}}(V)$ est un sous-espace affine de $\mathbf{A}^n(K)$; il s'agit donc du translaté d'un sous-espace vectoriel E de K^n par $\mathbf{x}: T_{\mathbf{x}}(V) = \mathbf{x} + E$.

Exemple 1.3. Soit K un corps; $T_{\mathbf{x}}(\mathbf{A}^n(K)) = V(\mathbf{d}_{\mathbf{x}}0) = V(0) = \mathbf{A}^n(K)$ en tout point $\mathbf{x} \in \mathbf{A}^n(K)$.

Nota Bene 1.4. Si $K = \mathbf{R}$ ou \mathbf{C} , l'espace tangent de V en \mathbf{x} coïncide avec celui de la géométrie différentielle : (esquisse dans un cas lisse)

Remarque 1.5. L'espace tangent de $V = V(f_1, \ldots, f_m)$ en un point $\mathbf{x} \in V$ s'obtient en intersectant chacun des $T_{\mathbf{x}}(V(f_i))$:

$$T_{\mathbf{x}}(V) = T_{\mathbf{x}}(V(f_1)) \cap \cdots \cap T_{\mathbf{x}}(V(f_m)).$$

L'espace $T_{\mathbf{x}}(V(f)) = \{ \mathbf{y} \in \mathbf{A}^n(K) \mid \sum_{i=1}^n \partial_{X_i} f(\mathbf{x}). (y_i - x_i) = 0 \}$ est un hyperplan affine de $\mathbf{A}^n(K)$ si et seulement si $\nabla f(\mathbf{x}) \neq 0$.

Exemple 1.6. Soit K un corps et considérons le polynôme $f(X,Y) = Y^2 - X^3 \in K[X,Y]$. Ses dérivées partielles sont $\partial_X f(X,Y) = -3X^2$ et $\partial_Y f(X,Y) = 2Y$.

- Le plan tangent de V en (1,1) est $T_{(1,1)}(V) = V(-3(X-1)+2(Y-1)) = V(-3X+2Y+1)$ et il s'agit d'un hyperplan affine de $\mathbf{A}^2(K)$ étant donné que $\nabla f(1,1) = (-3,2) \neq (0,0)$ peu importe la caractéristique de K.
- Le plan tangent de V en (0,0) est $T_{(0,0)}(V) = V(0) = \mathbf{A}^2(K)$ et cette fois la dimension du sev correspondant est $\dim_K T_{(0,0)}(V) = 2$.

2 Les différentielles et les espaces cotangents

Nous travaillons sur un corps algébriquement clos K. Considérons $V = V(f_1, \ldots, f_m)$ un sous-ensemble algébrique non vide de $\mathbf{A}^n(K)$ tel que (f_1, \ldots, f_m) est un idéal radical (ssi $I(V) = (f_1, \ldots, f_m)$). Si un polynôme g s'annule sur V alors il existe des $g_i \in K[X_1, \ldots, X_n]$ pour lesquels $g = g_1 f_1 + \cdots + g_m f_m$. Dès lors, en tout point $\mathbf{x} = (x_1, \ldots, x_n) \in V$:

$$d_{\mathbf{x}}(g) = \sum_{i=1}^{m} d_{\mathbf{x}}(g_i f_i) = \sum_{i=1}^{m} (g_i(\mathbf{x}) d_{\mathbf{x}}(f_i) + f_i(\mathbf{x}) d_{\mathbf{x}}(g_i)) = \sum_{i=1}^{m} g_i(\mathbf{x}) d_{\mathbf{x}}(f_i).$$

Nous en déduisons que si $g \in I(V)$ alors $d_{\mathbf{x}}g \in (d_{\mathbf{x}}f_1, \dots, d_{\mathbf{x}}f_m) = I(T_{\mathbf{x}}(V))$; cette dernière égalité est due au Nullstellensatz et au fait que chaque $\deg(d_{\mathbf{x}}f_i) = 1$. Par conséquent, l'application K-linéaire ϕ se factorise en une application K-linéaire encore notée $d_{\mathbf{x}}$:

$$K[X_1, \dots, X_n] \xrightarrow{\mathbf{d_x}} K[X_1, \dots, X_n]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K[V] \xrightarrow{\mathbf{d_x}} K[T_{\mathbf{x}}(V)]$$

donnée par $(f: V \to K) \mapsto (d_{\mathbf{x}} f: T_{\mathbf{x}}(V) \to K)$: polynomiale et homogène de degré 1 en les $(X_j - x_j)$. Nous regardons alors plutôt cette application K-linéaire comme

$$d_{\mathbf{x}} \colon \left\{ \begin{array}{ccc} K[V] & \longrightarrow & T_{\mathbf{x}}(V)^* := \operatorname{Hom}_K(T_{\mathbf{x}}(V), K) \\ f & \longmapsto & \left\{ \begin{array}{ccc} T_{\mathbf{x}}(V) & \longrightarrow & K \\ \mathbf{x} + \mathbf{t} & \longmapsto & \operatorname{d}_{\mathbf{x}} f(\mathbf{x} + \mathbf{t}) = \sum_{i=1}^n \partial_{X_i} f(\mathbf{x}).t_i \end{array} \right.$$

où $T_{\mathbf{x}}(V)$ est vu comme le K-ev d'origine \mathbf{x} . D'autre part, $\mathfrak{m}_{\mathbf{x}} = \{f \in K[V] \mid f(\mathbf{x}) = 0\}$ est un idéal maximal de K[V]: il provient de l'idéal maximal $(X_1 - x_1, \dots, X_n - x_n)$ de $K[X_1, \dots, X_n]$. Dès lors $K[V]/\mathfrak{m}_{\mathbf{x}} \to K$: $f + \mathfrak{m}_{\mathbf{x}} \mapsto f(\mathbf{x})$ est un isomorphisme et $K \mapsto K[X_1, \dots, X_n] \twoheadrightarrow K[V]$ est un monomorphisme dans la catégorie des K-algèbres : injective ssi $K \cap I(V) = 0$ ssi $K \cap I(V) \neq K$ ssi $1 \notin I(V)$ ssi $I(V) \neq K[X_1, \dots, X_n]$ ssi V est non vide.

Lemme 2.1. Sous les hypothèses précédentes $K[V] = K \oplus \mathfrak{m}_{\mathbf{x}}$ en tant que K-espaces vectoriels.

PREUVE. Il est facile de montrer que $K \cap \mathfrak{m}_{\mathbf{x}} = 0$. Soit $f: V \to K$ une fonction régulière; alors pour tout $\mathbf{y} \in V$, $f(\mathbf{y}) = f(\mathbf{x}) + [f(\mathbf{y}) - f(\mathbf{x})]$ et l'application $g: \mathbf{y} \mapsto f(\mathbf{y}) - f(\mathbf{x})$ est telle que $g \in \mathfrak{m}_{\mathbf{x}}$. Ainsi f se décompose en $f = f(\mathbf{x}) + g$.

Conséquence 2.2. Dès lors $d_{\mathbf{x}} : K \oplus \mathfrak{m}_{\mathbf{x}} \to T_{\mathbf{x}}(V)^*$. Cette application K-linéaire s'annule sur K et donc $\operatorname{Im}(d_{\mathbf{x}}) = d_{\mathbf{x}}(K[V]) = d_{\mathbf{x}}(\mathfrak{m}_{\mathbf{x}})$. Ceci nous amène une nouvelle fois à considérer une application K-linéaire, encore notée $d_{\mathbf{x}}$:

$$d_{\mathbf{x}} \colon \left\{ \begin{array}{ccc} \mathfrak{m}_{\mathbf{x}} & \longrightarrow & T_{\mathbf{x}}(V)^* \\ f & \longmapsto & d_{\mathbf{x}}f. \end{array} \right.$$

Remarque 2.3. Le K-sev de \mathfrak{m}_P et idéal $\mathfrak{m}_{\mathbf{x}}^2 = (X_1 - x_1, \dots, X_n - x_n)^2/I(V)$ est contenu dans le noyau de cette application : $\mathfrak{m}_{\mathbf{x}}^2 = \langle fg \mid f, g \in \mathfrak{m}_{\mathbf{x}} \rangle_{K\text{-ev}}$ et $d_{\mathbf{x}}(fg) = f(\mathbf{x})d_{\mathbf{x}}(g) + g(\mathbf{x})d_{\mathbf{x}}(f) = 0$. Par conséquent, $d_{\mathbf{x}}$ se factorise en une application K-linéaire $\delta_{\mathbf{x}} \colon \mathfrak{m}_{\mathbf{x}}/\mathfrak{m}_{\mathbf{x}}^2 \to T_{\mathbf{x}}(V)^*$ faisant commuter le diagramme :

Il s'avère que $d_{\mathbf{x}} : \mathfrak{m}_{\mathbf{x}} \to T_{\mathbf{x}}(V)^*$ est surjective et que son noyau est exactement $\mathfrak{m}_{\mathbf{x}}^2$; pour cette raison, $\mathfrak{m}_{\mathbf{x}}/\mathfrak{m}_{\mathbf{x}}^2$ est appelé l'espace cotangent de V en $\mathbf{x} \in V$ (puisqu'il est isomorphe à $T_{\mathbf{x}}(V)^*$).

Proposition 2.4. L'application $\delta_{\mathbf{x}} \colon \mathfrak{m}_{\mathbf{x}}/\mathfrak{m}_{\mathbf{x}}^2 \to T_{\mathbf{x}}(V)^*$ est un isomorphisme K-linéaire.

PREUVE. L'application $\delta_{\mathbf{x}}$ est surjective : considérons la base standard (e_1, \dots, e_n) de K^n . Dès lors

$$T_{\mathbf{x}}(V)^* = \{ \xi_{\mathbf{a}} : \mathbf{y} \mapsto \sum_{i=1}^n a_i (y_i - x_i) \mid \mathbf{a} = (a_1, \dots, a_n) \in K^n \}.$$

Pour un $\mathbf{a} = (a_1, \dots, a_n) \in K^n$, posons $f_{\mathbf{a}}(X_1, \dots, X_n) = \sum_{i=1}^n a_i(X_i - x_i) \in K[X_1, \dots, X_n]$. Ce polynôme est tel que $d_{\mathbf{x}}(f_{\mathbf{a}} \mod I(V)) = \xi_{\mathbf{a}}$. Ainsi $d_{\mathbf{x}} \colon K[V] \to T_{\mathbf{x}}(V)^*$ est surjective et nous concluons étant donné que $\mathrm{Im}(\delta_{\mathbf{x}}) = \mathrm{Im}(d_{\mathbf{x}})$.

L'application $\delta_{\mathbf{x}}$ est injective : pour se faire, nous étudions le noyau de $d_{\mathbf{x}} : \mathfrak{m}_{\mathbf{x}} \to T_{\mathbf{x}}(V)^*$. Remarquons que

$$\operatorname{Ker}(\operatorname{d}_{\mathbf{x}}) = \{ f \mod I(V) \in \mathfrak{m}_{\mathbf{x}} \mid \operatorname{d}_{\mathbf{x}}(f) \in I(T_{\mathbf{x}}(V)) \}$$

et $I(T_{\mathbf{x}}(V)) = (d_{\mathbf{x}}f_1, \dots, d_{\mathbf{x}}f_m)$. Soit $f \mod I(V) \in \mathrm{Ker}(d_{\mathbf{x}}) \subseteq \mathfrak{m}_{\mathbf{x}}$; nous montrons $f \mod I(V) \in \mathfrak{m}_{\mathbf{x}}^2$. Étant donné que $d_{\mathbf{x}}(f) \in I(T_{\mathbf{x}}(V))$, il existe des $\lambda_i \in K$ tels que $d_{\mathbf{x}}(f) = \lambda_1 d_{\mathbf{x}}(f_1) + \dots + \lambda_m d_{\mathbf{x}}(f_m)$. Également, $d_{\mathbf{x}}(f)$ est homogène de degré 1. Soit $g = f - \sum_{i=1}^m \lambda_i f_i \in K[X_1, \dots, X_n]$; par construction $g \equiv f \mod I(V)$ et

$$d_{\mathbf{x}}(g) = d_{\mathbf{x}}(f) - \sum_{i=1}^{m} \lambda_i d_{\mathbf{x}}(f_i) = 0.$$

Le développement de Taylor de g en ${\bf x}$ à l'ordre 1 est de la forme

$$g(X_1, \dots, X_n) = g(\mathbf{x}) + (\mathbf{d}_{\mathbf{x}}g)(X_1, \dots, X_n) + h(X_1, \dots, X_n) = h(X_1, \dots, X_n)$$

avec $h \in (X_1 - x_1, \dots, X_n - x_n)^2$. Ainsi $f \mod I(V) = g \mod I(V) \in \mathfrak{m}_P^2$ et donc $\operatorname{Ker}(d_{\mathbf{x}}) = \mathfrak{m}_{\mathbf{x}}^2$. \square

Corollaire 2.5. Par dualité, l'application $\delta_{\mathbf{x}}^*: T_{\mathbf{x}}(V) \to (\mathfrak{m}_{\mathbf{x}}/\mathfrak{m}_{\mathbf{x}}^2)^*$ est un isomorphisme K-linéaire.

3 Fonctorialité

Soit $\phi \colon V \to W$ une application régulière sur un corps algébriquement clos K. Considérons un point $\mathbf{x} \in V$ et notons $\mathbf{y} = \phi(\mathbf{x})$ son image dans W. Alors l'application $\phi^* \colon K[W] \to K[V]$ est telle que $\phi^*(\mathbf{m_v}) \subseteq \mathbf{m_x}$. En effet, si $g \colon W \to K$ s'annule en \mathbf{y} alors

$$(\phi^{\star}(g))(\mathbf{x}) = g(\phi(\mathbf{x})) = g(\mathbf{y}) = 0.$$

De plus, ϕ^* est en particulier un morphisme d'anneau et donc $\phi^*(\mathfrak{m}^2_{\mathbf{y}}) \subseteq \mathfrak{m}^2_{\mathbf{x}}$. Cette discussion donne lieu à un morphisme K-linéaire $\overline{\phi^*} \colon \mathfrak{m}_{\mathbf{y}}/\mathfrak{m}^2_{\mathbf{y}} \to \mathfrak{m}_{\mathbf{x}}/\mathfrak{m}^2_{\mathbf{x}}$.

Définition 3.1. La différentielle d'une application régulière $\phi: V \to W$ sur un corps algébriquement clos $Ken \mathbf{x} \in V$ est l'application K-linéaire $d_{\mathbf{x}}\phi: T_{\mathbf{x}}(V) \to T_{\phi(\mathbf{x})}(W)$ faisant commuter :

$$T_{\mathbf{x}}(V) \xrightarrow{\mathbf{d}_{\mathbf{x}}\phi} T_{\phi(\mathbf{x})}(W)$$

$$\downarrow \delta_{\mathbf{x}}^{*} \qquad \qquad \downarrow (\delta_{\phi(\mathbf{x})}^{*})^{-1}$$

$$(\mathfrak{m}_{\mathbf{x}}/\mathfrak{m}_{\mathbf{x}}^{2})^{*} \xrightarrow{(\overline{\phi^{*}})^{*}} (\mathfrak{m}_{\phi(\mathbf{x})}/\mathfrak{m}_{\phi(\mathbf{x})}^{2})^{*}$$

Remarque 3.2. Si nous considérons deux applications régulières $\phi: V \to W$ et $\psi: W \to U$ et un point $\mathbf{x} \in V$ dont l'image dans W est $\mathbf{y} = \phi(\mathbf{x})$ et dont l'image dans U est $\mathbf{z} = \psi(\mathbf{y})$, nous obtenons le diagramme

$$\mathfrak{m}_{\mathbf{y}}/\mathfrak{m}_{\mathbf{y}}^{2}$$

$$\mathfrak{m}_{\mathbf{z}}/\mathfrak{m}_{\mathbf{z}}^{2} \xrightarrow{\overline{\phi^{\star}} \circ \overline{\psi^{\star}}} \mathfrak{m}_{\mathbf{x}}/\mathfrak{m}_{\mathbf{x}}^{2}$$

et les égalités suivantes sont satisfaites : $\overline{\phi^{\star}} \circ \overline{\psi^{\star}} = \overline{\phi^{\star} \circ \psi^{\star}} = \overline{(\psi \circ \phi)^{\star}}$. En passant aux duaux, nous obtenons le diagramme commutatif :

Conséquence 3.3. Nous obtenons de la commutativité du précédent diagramme la Chain Rule en tout point $\mathbf{x} \in V$:

$$d_{\mathbf{x}}(\psi \circ \phi) = d_{\phi(\mathbf{x})}(\psi) \circ d_{\mathbf{x}}(\phi).$$

En supplément, $d_{\mathbf{x}}(\mathrm{Id}_V) = \mathrm{Id}_{T_{\mathbf{x}}(V)}$ en tout point $\mathbf{x} \in V$.

Corollaire 3.4. Si $\phi: V \to W$ un isomorphisme entre deux ensembles algébriques sur K alors en tout point $\mathbf{x} \in V$ l'application $d_{\mathbf{x}}\phi: T_{\mathbf{x}}(V) \to T_{\phi(\mathbf{x})}(W)$ est un isomorphisme K-linéaire.

PREUVE. Puisque $\mathrm{Id}_V = \phi^{-1} \circ \phi$, en tout point $\mathbf{x} \in V$ les égalités suivantes sont vérifiées :

$$\mathrm{Id}_{T_{\mathbf{x}}(V)}=\mathrm{d}_{\mathbf{x}}(\mathrm{Id}_{V})=\mathrm{d}_{\mathbf{x}}(\phi^{-1}\circ\phi)=\mathrm{d}_{\phi(\mathbf{x})}(\phi^{-1})\circ\mathrm{d}_{\mathbf{x}}(\phi).$$

Comme il s'agit d'une application K-linéaire en dimension finie, $d_{\mathbf{x}}(\phi)^{-1} = d_{\phi(\mathbf{x})}(\phi^{-1})$.

4 La jacobienne d'un morphisme

Définition 4.1. Soient $V \subseteq \mathbf{A}^n(K)$ et $W \subseteq \mathbf{A}^m(K)$ deux ensembles algébriques sur un corps algébriquement clos K; la *jacobienne* d'une application régulière $\phi = (\phi_1, \dots, \phi_m) \colon V \to W$ est donnée par la matrice

$$J(\phi) = \begin{pmatrix} \frac{\partial \phi_1}{\partial X_1} & \cdots & \frac{\partial \phi_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_m}{\partial X_1} & \cdots & \frac{\partial \phi_m}{\partial X_n} \end{pmatrix} \in \mathcal{M}_{m,n}(K[X_1, \dots, X_n]).$$

Remarque 4.2. En tout point $\mathbf{x} \in V$, nous obtenons une application K-linéaire $J(\phi)(\mathbf{x}) \colon K^n \to K^m$ définie par

$$(t_1, \dots, t_n) \longmapsto \begin{pmatrix} \frac{\partial \phi_1}{\partial X_1}(\mathbf{x}) & \cdots & \frac{\partial \phi_1}{\partial X_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_m}{\partial X_1}(\mathbf{x}) & \cdots & \frac{\partial \phi_m}{\partial X_n}(\mathbf{x}) \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n \partial_{X_i} \phi_1(\mathbf{x}) \cdot t_i \\ \vdots \\ \sum_{i=1}^n \partial_{X_i} \phi_m(\mathbf{x}) \cdot t_i \end{pmatrix}.$$

Lemme 4.3. La différentielle d'une application régulière $\phi: V \to W$ en un point $\mathbf{x} \in V$ est donnée par $T_{\mathbf{x}}(V) \to T_{\phi(\mathbf{x})}(W): \mathbf{x} + \mathbf{t} \mapsto \phi(\mathbf{x}) + J(\phi)(\mathbf{x}).\mathbf{t}^{\intercal}$.

PREUVE. Notons $\phi = (\phi_1, \dots, \phi_m)$ avec chaque $\phi_i \colon V \to K$. Dès lors la différentielle de chaque ϕ_i en $\mathbf{x} \in V$ est donnée par

$$\mathbf{d}_{\mathbf{x}}\phi_i \colon \left\{ \begin{array}{ccc} T_{\mathbf{x}}(V) & \longrightarrow & T_{\phi_i(\mathbf{x})}(\mathbf{A}^1(K)) = \mathbf{A}^1(K) \\ \mathbf{x} + \mathbf{t} & \longmapsto & \phi_i(\mathbf{x}) + \sum_{j=1}^m \partial_{X_j}\phi_i(\mathbf{x}).t_j. \end{array} \right.$$

Posons $\gamma_i : \mathbf{A}^1(K) \to \mathbf{A}^m(K)$ les monomorphismes $\alpha \mapsto (0, \dots, \alpha, \dots, 0)$ en *i*-ième position pour tout $i = 1, \dots, m$. Alors $\phi = \gamma_1 \circ \phi_1 + \dots + \gamma_m \circ \phi_m$ et donc

$$d_{\mathbf{x}}\phi = \sum_{i=1}^{m} d_{\mathbf{x}}(\gamma_i \circ \phi_i) = \sum_{i=1}^{m} d_{\phi_i(\mathbf{x})}\gamma_i \circ d_{\mathbf{x}}\phi_i.$$

Puisque $d_{\alpha}\gamma_i = \gamma_i$ via $T_{\alpha}(\mathbf{A}^1(K)) = \mathbf{A}^1(K)$ et $T_{\gamma_i(\alpha)}(\mathbf{A}^m(K)) = \mathbf{A}^m(K)$, nous obtenons au final que

$$(\mathbf{d}_{\mathbf{x}}\phi)(\mathbf{x}+\mathbf{t}) = \sum_{i=1}^{m} (\mathbf{d}_{\phi_{i}(\mathbf{x})}\gamma_{i}) \left(\phi_{i}(\mathbf{x}) + \sum_{j=1}^{m} \frac{\partial \phi_{j}}{\partial X_{j}}(\mathbf{x}).t_{j}\right) = \phi(\mathbf{x}) + J(\phi)(\mathbf{x}).\mathbf{t}^{\mathsf{T}}.$$

Remarque 4.4. À nouveau, en considérant deux applications régulières $\phi \colon V \to W$ et $\psi \colon W \to U$, nous retrouvons la Chain Rule en tout point $\mathbf{x} \in V$:

$$J(\psi \circ \phi)(\mathbf{x}) = J(\psi)(\phi(\mathbf{x})) \cdot J(\phi)(\mathbf{x})$$

et également $J(\mathrm{Id}_V) = \mathrm{Id}_{K^n}$ pour tout ensemble algébrique $V \subseteq \mathbf{A}^n(K)$. En particulier, si ϕ est un isomorphisme d'ensembles algébriques alors $J(\phi)(\mathbf{x})$ est un isomorphisme K-linéaire en tout $\mathbf{x} \in V$.

Exemple 4.5. Soit V un ensemble algébrique sur un corps algébriquement clos K et considérons un point $\mathbf{x} \in V$ dont $\dim_K T_{\mathbf{x}}(V) = n$. Alors V ne peut pas être isomorphe à un sous-ensemble algébrique W de $\mathbf{A}^m(K)$ avec m < n. Autrement dit, si $V \simeq W$ alors $m \geq n$. En effet, un isomorphisme $\phi \colon V \to W$ d'ensembles algébriques induit un isomorphisme K-linéaire $\mathrm{d}_{\mathbf{x}}(\phi) \colon T_{\mathbf{x}}(V) \to T_{\phi(\mathbf{x})}(W)$ et donc $J(\phi)(\mathbf{x}) \colon K^n \rightarrowtail K^m$ (ainsi $n \leq m$).

Lemme 4.6. Soit V un ensemble algébrique sur un corps algébriquement clos K; l'application $V \to \mathbf{N}$ donnée par $\mathbf{x} \mapsto \dim_K T_{\mathbf{x}}(V)$ est semi-continue supérieurement (i.e. $\{\mathbf{x} \in V \mid \dim_K T_{\mathbf{x}}(V) \geq r\}$ est fermé dans V pour tout $r \geq 0$).

PREUVE. Soit $V = V(f_1, \dots, f_m) \subseteq \mathbf{A}^n(K)$ et considérons la jacobienne de V au point \mathbf{x} :

$$J_{V}(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_{1}}{\partial X_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{1}}{\partial X_{n}}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial X_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{m}}{\partial X_{n}}(\mathbf{x}) \end{pmatrix} \in \mathbf{M}_{m,n}(K).$$

D'après le théorème du rang : $\dim T_{\mathbf{x}}(V) = n - \operatorname{rg} J_V(\mathbf{x})$. Dès lors, $\dim T_{\mathbf{x}}(V) \geq r$ ssi $\operatorname{rg} J_V(\mathbf{x}) \leq n - r$ ssi $\Lambda^{n-r+1}J_V(\mathbf{x}) = 0$ (où $\Lambda^{n-r+1}J_V(\mathbf{x})$ est la matrice obtenue en prenant (\pm) le déterminant des mineurs d'ordre n-r+1 de $J_V(\mathbf{x})$). Les coefficients de $\Lambda^{n-r+1}J_V(\mathbf{x})$ étant polynomiaux en $\mathbf{x} = (x_1, \dots, x_n)$, nous obtenons le résultat.

Conséquence 4.7. Soit $d = \min\{\dim_K T_{\mathbf{x}}(V) \mid \mathbf{x} \in V\}$; l'ensemble $V_{\ell} = \{\mathbf{x} \in V \mid \dim_K T_{\mathbf{x}}(V) = d\}$ est alors ouvert dans V (puisqu'il s'agit du complémentaire d'un fermé) et est non vide. Si V est supposé irréductible alors V_{ℓ} est dense dans V.

Définition 4.8. Un ensemble algébrique V sur un corps algébriquement clos K est lisse (ou non-singulier) en un point $\mathbf{x} \in V$ si $\dim_K T_{\mathbf{x}}(V) = \dim_{\mathrm{top}} V$. Un ensemble algébrique lisse en tout point est dit lisse.

Fait 4.9. Soit V un ensemble algébrique sur un corps algébriquement clos K; si V est irréductible alors $\dim_{top} V = \min\{\dim_K T_{\mathbf{x}}(V) \mid \mathbf{x} \in V\}$.

Corollaire 4.10. Ainsi $V_{\ell} = \{ \mathbf{x} \in V \mid V \text{ est lisse en } \mathbf{x} \}$ et est dense dans V. En particulier, ceci donne un sens à la notation.

Exemple 4.11. Soit $f \in K[X_1, ..., X_n]$ un polynôme homogène de degré au moins 2; alors V(f) n'est pas lisse en $\mathbf{x} = (0, ..., 0)$: au chapitre précédent, nous avons vu que $\dim(V(f)) = n - 1$ alors que $\dim_K T_{\mathbf{x}}(V(f)) = \dim_K \mathbf{A}^n(K) = n$.

Exemple 4.12. Soit K un corps algébriquement clos et soient n, m deux naturels non nuls simultanément; lors de cet exemple, nous étudions la lissité de $V(X^n + Y^m) \subseteq \mathbf{A}^2(K)$.

- (a) Si n=0 et m>0: alors $f(X,Y)=X^n+Y^m=1+Y^m$. Par le chapitre I, nous savons que $\dim(V(f))=2-1=1$. Soit à présent $(a,b)\in V(f), i.e.$ $b^m=-1$; la remarque 1.5 nous apprend que $\dim T_{(a,b)}(V(f))=2-1=1$ ssi $(0,mb^{m-1})\neq (0,0)$, ou encore ssi $mb^{m-1}\neq 0$.
 - Si char(K) = 0: alors V(f) est lisse en (a,b) et donc V(f) est lisse.
 - Si char $(K) = p \in \mathbf{Z}$ premier: alors V(f) est lisse en (a, b) ssi p ne divise pas m. Ainsi, V(f) est soit lisse (quand p ne divise m), soit lisse en aucun point (quand p divise m).
- (b) Si n > 0 et m > 0: à nouveau le chapitre I nous apprend que $\dim(V(f)) = 2 1 = 1$ avec $f(X,Y) = X^n + Y^m$. Considérons un point $(a,b) \in V(f)$, i.e. $a^n = -b^m$; par la remarque 1.5, $\dim T_{(a,b)}(V(f)) = 2 1 = 1$ ssi $(na^{n-1}, mb^{m-1}) \neq (0,0)$.
 - Si char(K) = 0: alors V(f) est lisse en $(a, b) \neq (0, 0)$ et donc V(f) est lisse sur $V(f) \{(0, 0)\}$.
 - Si char $(K) = p \in \mathbb{Z}$ premier : alors V(f) n'est pas lisse en (a,b) ssi (a,b) = (0,0) ou p divise n et m. Dès lors, V(f) est lisse sur $V(f) \{(0,0)\}$ quand p ne divise pas nm et n'est lisse en aucun point sinon.

Proposition 4.13. Tout groupe algébrique irréductible est lisse.

PREUVE. Soit G un groupe algébrique irréductible; alors $G_{\ell} = \{x \in G \mid x \text{ lisse}\}$ est un ouvert non vide et donc est dense dans G. Nous concluons étant donné que les translations $\tau_y \colon G \to G \colon x \mapsto yx$ sont des isomorphismes d'ensembles algébriques.

Remarque 4.14. Les espaces tangents et la lissité sont des notions locales; les mêmes définitions s'appliquent aux ensembles algébriques quasi-affines. Par exemple $GL_n(K)$ est lisse.

Références

[Vol07] Maja Volkov. « Géométrie algébrique : espace tangent - lissité ». US-M1-SCMATH-003-M, Projet en géométrie algébrique. 2007.