Automatické řízení – simulační úloha

DVOUVÁLCOVÁ VODÁRNA SE ZUBOVÝM ČERPADLEM

Principiální schéma modelu nacházejícího se v laboratoři K26 je na obr. 1.

Obr. 1: Dvouválcová vodárna se zubovým čerpadlem

Jedná se o nelineární stabilní systém se čtyřmi vstupy

- napětí na zubovém čerpadle *u* [*V*] (akční veličina),
- míra otevření v_{o1} [-] ventilu V_{o1} (poruchová veličina), 0 uzavřen, 1 plně otevřen
- míra otevření v_t [–] ventilu V_t (poruchová veličina), 0 uzavřen, 1 plně otevřen
- míra otevření v_{o2} [–] ventilu V_{o2} (poruchová veličina), 0 uzavřen, 1 plně otevřen

a třemi výstupy

- průtok kapaliny za čerpadlem q_i [m³s⁻¹] (při měření nepoužíváme z důvodu ne příliš přesného měření),
- výška hladiny v první (levé) nádrži h_1 [m],
- výška hladiny v druhé (pravé) nádrži h_2 [m].

Čerpadlo čerpá vodu do první (levé) nádrže, odkud jednak odtéká zpět do zásobníku přes ventil V_{o1} , jednak přetéká do druhé (pravé nádrže) přes ventil V_t . Z druhé (pravé nádrže) voda odtéká zpět do zásobníku přes ventil V_{o2} .

Modelování

Za předpokladu zanedbatelné dynamiky zubového čerpadla vůči dynamice celého systému a za předpokladu, že se hladina v nádrži pohybuje mnohem pomaleji, než je výtoková rychlost, lze tento systém popsat následujícími rovnicemi:

$$S\dot{h}_{1}(t) = k_{c}u(t) - v_{t}S_{t}\operatorname{sgn}(h_{1}(t) - h_{2}(t))\sqrt{2g|h_{1}(t) - h_{2}(t)|} - v_{o1}S_{o1}\sqrt{2g(h_{1}(t) + \bar{h}_{1})}$$

$$S\dot{h}_{2}(t) = v_{t}S_{t}\operatorname{sgn}(h_{1}(t) - h_{2}(t))\sqrt{2g|h_{1}(t) - h_{2}(t)|} - v_{o2}S_{o2}\sqrt{2g(h_{2}(t) + \bar{h}_{2})}$$

kde S, S_{o1} , S_{o2} a S_t [m²] je po řadě průřez obou válců, ventilu V_{o1} , V_{o2} a V_t , k_c [m³s⁻¹V⁻¹] je konstanta čerpadla, g [ms⁻²] je gravitační zrychlení. \bar{h}_1 a \bar{h}_2 jsou výšky dna jednotlivých tanků oproti čerpadlu (viz. Obr. 1).

Motor obsahuje pásmo necitlivosti, rozsah vstupního signálu je omezen.

Úlohy:

- 1. Napište stavové rovnice popisující systém s obecnými parametry. Pokuste se sdružit konstanty u jednotlivých členů do jedné. [hodnocení 10 %]
- 2. Model z bodu 1. linearizujte ve Vámi (vhodně) zvoleném pracovním bodě a vytvořte linearizovaný model systému s obecnými parametry. [hodnocení 15 %]
- 3. Identifikujte všechny statické nelinearity saturace vstupů a stavů a pásmo necitlivosti vstupu [hodnocení 5 %]
- 4. Pomocí vhodných experimentů na původním systému identifikujte zbylé parametry modelu [hodnocení 25 %]
- 5. Vytvořte v Simulinku nelineární (včetně všech statických nelinearit) a linearizovaný model. [hodnocení 25 %]
- 6. Porovnejte odezvy (obou výstupů) modelů z bodu 5. a skutečného systému na Vámi (vhodně) zvolené vstupní signály a počáteční podmínky. Do grafů nezapomeňte uvést vstupní signál. Zhodnoť te úlohu. [hodnocení 20 %]