문제 1. 다음 10 진수를 2 진수, 8 진수, 16 진수로 바꾸어 보아라.

	10 진수	2 진수	8 진수	16 진수
1	892 ₍₁₀₎	1101111100 ₍₂₎	1574 ₍₈₎	37C ₍₁₆₎
2	783.8125 ₍₁₀₎	1100001111.1101 ₍₂₎	1417.64 ₍₈₎	30F.D ₍₁₆₎
3	48.3515625 ₍₁₀₎	110000.0101101 ₍₂₎	60.264 ₍₈₎	30.5A ₍₁₆₎
4	0.0078125 ₍₁₀₎	0.0000001 ₍₂₎	0.004 ₍₈₎	0.02 ₍₁₆₎

문제 2. 다음 10 진수를 괄호 안의 진수로 바꾸어 보아라.

	10 진수	괄호 안 진수
1	398.3(3 진수)	112202.0220022(3)
2	89.328125(4 진수)	1121.111 ₍₄₎
3	32.2416(5 진수)	112.1101 ₍₅₎
4	98.22(9 진수)	118.187(9)

3. 다음 8 비트 2 진수에 대한 2 의 보수를 구하여라.

	2 진수	2의 보수
1	00101011 ₍₂₎	11010101 ₍₂₎
2	11010101 ₍₂₎	00101011 ₍₂₎
3	00011110 ₍₂₎	11100010 ₍₂₎
4	11011110 ₍₂₎	00100010 ₍₂₎

4. 다음 8 진수를 계산하여라.

	식	계산 결과
1	1372 ₍₈₎ + 4631 ₍₈₎	6223 ₍₈₎
2	47135 ₍₈₎ +5125 ₍₈₎	54262 ₍₈₎
3	175214 ₍₈₎ +152405 ₍₈₎	347621 ₍₈₎

4	110321 ₍₈₎ +56573 ₍₈₎	167114(8)
---	---	-----------

5. 음수를 표현할 때, 2 의 보수가 부호와 절대치 또는 1 의 보수보다 선호되는 이유를 설명하여라.

- 0 이 2 개로 표현되는 1 의 보수, 부호와 절대치 방법과는 달리 0 을 한 개로 표현할 수 있어 효율적이다. (기존의 0 하나를 다른 의미 있는 값을 표현하는데 사용할 수 있다)
- 부호와 절댓값 방법처럼 음수 간의 비교연산에서 모순이 발생하지 않는다.
- 1 의 보수와는 달리 가산 및 감산 연산에서 Carry(자리 올림)이 발생 시 이를 처리하는 회로를 구성할 필요가 없다.

상기된 이유에 따라 2 의 보수(Two's Complement)가 부호와 절대치(Sign and Magnitude) 또는 1의 보수(One's Complement) 보다 선호된다.