## Микроэкономика-І

Павел Андреянов, PhD

1 апреля 2022 г.

# Программа

## Программа модуля

- Теория Потребителя
  - ullet Модель: товары x,y o полезность U(x,y)
  - Максимизация полезности
  - Предпочтения, спрос, эластичность...
  - CV, EV
- Теория Производителя
  - Модель: ресурсы  $x, y \to$  производство F(x, y)
  - Максимизация прибыли (минимизация издержек)
  - Технологии, предложение, эластичность...
- Частичное равновесие
  - налоги, DWL

Сквозная идиома: **Конкурентный рынок** для x, y, то есть товары и ресурсы покупаются по стабильным рыночным ценам px + qy. Модели ценообразования - темы следующих модулей. Большой упор будет на **эластичность** и **калибровку**.

## Люди и материалы

Лектор: Павел Андреянов (pandreyanov@gmail.com/hse.ru)

Семинаристы: Даша, Яна

Ассистенты: Лука, Настя, Саша, Антон

#### Учебники:

- Вэриан (V), Промежуточный уровень
- Бусыгин, Желободько, Цыплаков том I,II
- Ехил Рени (JR)

#### Прочие ресурсы:

- телеграм: channel\_micro\_2022, forum\_micro\_2022
- офис аурз: вторник 18:00-20:00 по договоренности
- консультации и тестовые контрольные
- pandreyanov.github.io/pashas\_micro\_one\_lectures

## План на первую половину лекции (2 часа)

Мы поговорим подробно о первых двух моделях (полезность и предпочтения) и, вскользь о третьей модели (выбор). Большой упор будет сделан на понятия непрерывности и выпуклости.

Затем, мы попробуем отождествить некоторые из этих моделей между собой. В частности, будет обсуждена относительно простая прямая связь между полезностью и предпочтениями.

Вершиной этого блока будет обратная связь между предпочтениями и полезностью, так называемая, Теорема Дебре. После нее надо сделать перерыв.

Модели потребителя

## Модели потребителя

Три конкурирующих модели поведения потребителя:

- полезность (классика)
- предпочтения (нео классика)
- выбор

Различия между ними скорее философские.

В модели полезности (классика) у каждого агента в голове зашита функция полезности, которая переводит любой портфель потребительских товаров в вещественное число с мистической единицей измерения «утили».

- 3 куба, 1 круг = 8 утилей
- 12 конусов = 60 утилей
- 1 конус, 4 круга = 3 утиля

Агенты сравнивают утили и принимают экономические решения, дабы их максимизировать. Это самая старая модель, поэтому мы будем называть ее классической.



Полезность определена с точностью до монотонного преобразования. Это серьезная проблема, это значит, что модель невозможно толком откалибровать.

Действительно, все ниже перечисленные полезности неразличимы с точки зрения эконометриста.

- $x^2y^3$
- $2 \log x + 3 \log y$
- $\bullet \ 2\log x + 3\log y + 1$
- $5(2 \log x + 3 \log y) + 1$

Необходимо либо мыслить в терминах классов эквивалентности полезностей, либо придумывать что-то более подходящее.

В (неоклассической) модели предпочтений от агентов требуется, казалось бы, меньше. Они должны в моменте сравнить два портфеля и назвать лучший. Другими словами, они должны озвучить предпочтения.



Однако этот минимализм обманчив. Чтобы оставаться экономическими агентами, они должны помнить все свои выборы, это матрица  $n \times n$ , где n - это число возможных портфелей...

... так уж это проще чем функция? Непонятно

## Выбор

В модели выбора от агентов требуется принимать решения, максимально приближенные к реальности. Вам предлагают меню из: мясо+брокколи+сок, рыба+пиво, рыба+мясо, пиво+сок, брокколи+сок...

И вы просто вычеркиваете то, что вам точно не нравится.

## Выбор



Модель полезности обладает высоким уровнем абстракции

- начнем с одного агента
- товары разделены на п категорий
- ullet портфель (потр. корзина) это точка в  $\mathbb{R}^n_+$
- ullet категории, а также координаты обозначаются x,y,z...
- ullet соответствующие цены обозначаются p, q, y...
- полезность обозначается U(x, y, z, ...)
- ullet множество доступных альтернатив  $X\subset \mathbb{R}^n_+$

Множество альтернатив будет, как правило, зависеть от цен и, может быть, еще от чего-то, например бюджета.

Таким образом, мы может сформулировать модель потребителя как абстрактную оптимизационную задачу, скажем, для трех товаров:

$$U(x, y, z, \ldots) \rightarrow \max_{(x, y, z, \ldots) \in X}$$

Формально классическая (утилитарная) модель это пара: множество альтернатив  $X \subset \mathbb{R}^n_+$  и полезность  $U: X \to \mathbb{R}$ .

Никаких дополнительных аксиом не требуется.

## Пример 1

У Пети есть 100 рублей. Он может купить яблоки по цене 20 рублей за штуку либо груши по цене 50 рублей за штуку. Петя получает полезность 2 за каждое яблоко и 3 за каждую грушу, но не получает никакой полезности за оставшиеся деньги.

Попробуем записать это формально:

- $X = \{(x, y) \in \mathbb{N}_+^2 : 20x + 50y \leqslant 100\}$
- U(x, y) = 2x + 3y

## Пример 2

У Кати есть 24 часа в сутки, из которых она должна как минимум 8 часов поспать, а оставшиеся часы входят в полезность вида Кобба-Дугласа с одинаковыми весами, то есть учеба и вечеринки в полезности умножаются под корнем.

Попробуем записать это формально:

- $X = \{(x, y, z) \in \mathbb{N}^3_+ : x + y + z \leq 24\}$
- $U(x, y, z) = \mathbb{I}(x \ge 8) \cdot y^{1/2} z^{1/2}$

## Пример 3

У Саши есть 10,000,000 рублей, которые он может вложить в биткойн по курсу 1,000,000:1 или этериум по курсу 1,000,000:2. Саша ожидает, что через год рубль подешевеет на 10%, биткойн подорожает на 50%, а этериум подорожает на 100%.

Попробуем записать это формально:

- $X = \{(x, y, z) \in \mathbb{N}^3_+ : x + 10^6 (y + 2z) \le 10^7\}$
- U(x, y, z) = .9x + 1.5y + 2z

Свойства полезности

## Непрерывность

Мы начнем с двух эквивалентных определений непрерывности.

#### Definition 1

Полезность U непрерывна в X, если для любого  $x \in X$  множества  $L_+(x)$  и  $L_-(x)$  замкнуты, где

$$L_{+}(x) = \{ y \in X : U(y) \geqslant U(x) \}$$
  
 $L_{-}(x) = \{ y \in X : U(y) \leqslant U(x) \}$ 

Описанные выше множества  $L_+(x)$  (или  $L_-(x)$ ) - это подмножества допустимых альтернатив, которые не хуже (или не лучше), чем сам x.

Их часто называют Лебеговыми множествами.

## Непрерывность



## Непрерывность

Эквивалентное (но только в Евклидовых пространствах) определение непрерывности можно дать на более знакомом вам с курса мат. анализа языке эпсилон-дельта.

#### Definition 2

Полезность U непрерывна в X, если для любого  $\varepsilon > 0$  существует  $\delta > 0$  такой что для любых  $x, y \in X$ :

$$||x-y|| < \delta \quad \Rightarrow \quad ||U(x)-U(y)|| < \varepsilon.$$

Оно абсолютно бесполезно.

#### Вогнутость

Следующее важное определение - это вогнутость.

#### **Definition 3**

Полезность U вогнута, если для любых  $x, y \in X$ :

$$\forall \alpha \in (0,1) : U(\alpha x + (1-\alpha)y)) \geqslant \alpha U(x) + (1-\alpha)U(y)$$

Грубо говоря, если вы возьмете две точки на поверхности, соответствующей вогнутой полезности, то соединяющая их хорда пройдет "под"поверхностью.

Другими словами, полезность в усредненной точке меньше, чем усредненная полезность.

## Вогнутость



#### Квази вогнутость

Далее идет определение квазивогнутости.

#### **Definition 4**

Полезность U квазивогнута в X, если  $\forall x \in X$  множество  $L_+(x)$  выпукло, то есть оно содержит все свои хорды.

И почти (но не совсем) эквивалентное ему

#### **Definition 5**

Полезность U квазивогнута в X, если для любых  $x,y\in X$  их линейная комбинация не хуже, чем худшая из двух:

$$\forall \alpha \in (0,1): U(\alpha x + (1-\alpha)y)) \geqslant \min(U(x), U(y))$$

## Квазивогнутость



### Вогнутость против квазивогнутости

#### Lemma 6

Из вогнутости следует квазивогнутость, но не наоборот.

#### Доказательство.

$$(1): \quad U(\alpha x + (1 - \alpha)y)) \geqslant \alpha U(x) + (1 - \alpha)U(y)$$

$$(2): \quad \alpha U(x) + (1 - \alpha)U(y) \geqslant \min(U(x), U(y))$$

$$(1),(2) \quad \Rightarrow \quad U(\alpha x + (1-\alpha)y)) \geqslant \min(U(x),U(y))$$

P.S. Иногда я буду делать приставку "строго", это значит, что либо множество строго выпукло, либо неравенство строгое. Смотрите на контекст.

Критика классической модели

#### Неоднозначность полезности

Для любого строго монотонного преобразования  $\varphi$ , две полезности - U(x) и  $\varphi(U(x))$  - производят идентичное поведение у потребителей.

Довольно легко генерировать примеры идентичных функций, используя такие монотонные преобразования, как  $\varphi(z) = z + c, cz, \log z.$ 

$$x^{2}y^{3}$$
,  
 $2 \log x + 3 \log y$ ,  
 $2 \log x + 3 \log y + 1$ ,  
 $2(2 \log x + 3 \log y) + 1$ .

Все выше перечисленные полезности эквивалентны.

#### Неоднозначность вогнутости

Вогнутость легко ломается при монотонных преобразованиях

#### Lemma 7

Если U(x) вогнута, то  $\varphi(U(x))$  квазивогнута для любого строго монотонного преобразования  $\varphi$ .

Чтобы придумать доказательство, достаточно знать следующие свойства монотонных преобразований:

$$U(x) \leqslant U(y) \quad \Leftrightarrow \quad \varphi(U(x)) \leqslant \varphi(U(y))$$

$$U(x) \geqslant U(y) \quad \Leftrightarrow \quad \varphi(U(x)) \geqslant \varphi(U(y))$$

$$\min(\varphi(U(x)), \varphi(U(y))) = \varphi(\min(U(x), U(y)))$$

Попробуйте теперь написать доказательство самостоятельно.

## Неоднозначность вогнутости

В отличие от вогнутости, квазивогнутость сохраняется при монотонных преобразованиях.

Это верно хотя бы потому, что одно из двух определений вообще никак не опирается на форму полезности, а только на форму Лебеговых множеств.

#### Lemma 8

Если U(x) квазивогнута, то  $\varphi(U(x))$  тоже квазивогнута для любого строго монотонного преобразования  $\varphi$ .

Это делает ее гораздо более удобной, чем просто вогнутость.

#### Модель предпочтений еще более абстрактна

- снова один агент
- товары разделены на n категорий
- ullet портфель (потр. корзина) это точка в  $\mathbb{R}^n_+$
- ullet категории, а также координаты обозначаются x,y,z...
- ullet множество доступных альтернатив  $X\subset \mathbb{R}^n_+$

Однако вместо полезности  $U:X \to \mathbb{R}$  у агента в голове зашито бинарное предпочтение  $\succcurlyeq: X^2 \to \{0,1\}.$  Что это значит?

Проще всего визуализировать бинарное отношение на множестве альтернатив малой размерности, например 3.

$$x\succcurlyeq y$$
 означает что  $(x,y)\mapsto 1.$ 

$$x \preccurlyeq y$$
 означает что  $(y,x) \mapsto 1$ .

Формально, бинарное отношение – это любое расположение ноликов и единичек внутри матрицы.

Для простоты вводятся дополнительные обозначения:

 $x \sim y$  означает что  $x \succcurlyeq y$  и  $x \preccurlyeq y$ .

 $x \succ y$  означает что  $x \succcurlyeq y$  но не  $x \sim y$ .

 $x \prec y$  означает что  $x \preccurlyeq y$  но не  $x \sim y$ .

Получаются пять интуитивных отношений сильного, слабого предпочтений и безразличия.

Однако какие попало матрицы писать не стоит.

Поскольку у бинарного отношения есть экономическая интерпретация, это накладывает на него определенные ограничения, называемые аксиомами рациональности.

#### **Definition 9**

Предпочтения ≽ рациональны, если

- для любых  $x, y \in X$ , хотя бы  $x \succcurlyeq y$  либо  $y \succcurlyeq x$ .
- ullet для любой  $x \in X$ , всегда верно что  $x \sim x$
- для любых  $x, y, z \in X$ :

$$x \succcurlyeq y, y \succcurlyeq z \Rightarrow x \succcurlyeq z$$

Последнее свойство - самое важное и называется транзитивностью.

Рациональность накладывают структуру на то, как может заполняться матрица.

Попробуйте дозаполнить следующую матрицу так, чтобы предпочтения были рациональными.

Свойства предпочтений

Переопределив Лебеговы множества  $L_+$  и  $L_-$  в терминах предпочтений, мы получаем непрерывность предпочтений.

#### **Definition 10**

Предпочтения  $\succcurlyeq$  непрерывны в X, если для любого  $x \in X$  множества  $L_+(x)$  и  $L_-(x)$  замкнуты, где

$$L_{+}(x) = \{ y \in X : y \succcurlyeq x \}, \quad L_{-}(x) = \{ y \in X : y \preccurlyeq x \}$$

И совершенно аналогично мы переносим квазивогнутость в мир предпочтений...

... однако, вопреки логике, термин квазиВОГНутости полезности превращается в ВЫПУклость предпочтений.

#### Definition 11

Предпочтения  $\succcurlyeq$  выпуклы в X, если  $\forall x \in X$  множество  $L_+(x)$  выпукло, то есть, оно содержит все свои хорды.

Парадокс в том, что вогнутые полезности - квазивогнутые, которые, в свою очередь, ассоциированы с выпуклыми предпочтениями.

А выпуклые полезности (которые еще надо отыскать) с выпуклыми предпочтениями вообще никак не связаны и даже прямо противоположны им.

#### Модель выбора максимально абстрактна

- снова один агент
- товары разделены на *n* категорий
- ullet портфель (потр. корзина) это точка в  $\mathbb{R}^n_+$
- ullet категории, а также координаты обозначаются x,y,z...
- ullet множество доступных альтернатив  $X\subset \mathbb{R}^n_+$

Вместо полезности  $U:X o\mathbb{R}...$ 

или бинарного предпочтения  $\succcurlyeq : X^2 \to \{0,1\}...$ 

у агента в голове зашито отображение  $C: 2^X \to 2^X$ .

Что это значит?

Это значит, что агент отображает подмножества в подмножества. Так же как и с предпочтениями, есть несколько естественных технических ограничений:

- $C(Z) \neq \emptyset$
- $C(Z) \subset Z$

Для любого непустого меню  $Z \subset X$ .

Есть еще третья, самая важная аксиома.

Рассмотрим любые два портфеля  $x,y\in X$  и два меню  $Z,Z'\subset X$ , таких что x,y содержатся в обоих меню.

#### **Definition 12**

Слабой аксиомой выбора (WARP) называется следующее.

Невозможно, чтобы в первом меню Z: x был выбран в присутствии y, а во втором меню Z': y был выбран в присутствии x, но сам x при этом выбран не был.

Интуитивно это означает, что при работе с несколькими меню вы не можете выразить свое предпочтение (или полезность) таким образом, чтобы оно противоречило само себе.

В домашней работе про это будет задачка.

# Прямая связь

# Прямая связь

Предположим, что у вас уже есть откалиброванная полезность. Как вывести из нее модель предпочтений?

#### Definition 13

Будем говорить, что U представляет  $\succcurlyeq$ , если

$$U(x) \geqslant U(y) \Leftrightarrow x \succcurlyeq y.$$

Это определение должно быть понятно на интуитивном уровне.

Также должно быть понятно, что если предпочтения представлены U, то они будут обязательно рациональны, поскольку это просто свойства вещественных чисел.

# Обратная связь

# Обратная связь

Предположим, что у вас уже есть откалиброванные рациональные предпочтения. Можно ли восстановить по ним хотя бы одну непротиворечивую полезность?

Оказывается, что в простых случаях, действительно, можно.

#### Lemma 14

Если X конечно, то для любых рациональных предпочтений  $\succcurlyeq$  существует полезность U, представляющая  $\succcurlyeq$ .

Это легко доказать алгоритмически.

# Обратная связь

В случае когда пространство альтернатив достаточно мощное, нам придется потребовать непрерывность предпочтений.

#### Theorem 15 (Дебре)

Если  $X \subset \mathbb{R}^n$  связно и сепарабельно, то для любых рациональных и непрерывных предпочтений  $\succcurlyeq$  существует непрерывная полезность U, представляющая  $\succcurlyeq$ .

Связность и сепарабельность - скучные технические условия. По-настоящему важной здесь является именно непрерывность.

Однако не стоит забывать, что, если предпосылки теоремы не выполнены, это еще не значит, что полезности нет. К примеру, дискретные пространства вовсе не связны.

Перед тем как уйти на перерыв

#### Заключение

Мы продемонстрировали, что из любой полезности можно вывести рациональные предпочтения, а из любых непрерывных и рациональных предпочтений - непрерывную полезность.

Получается, что полезности и предпочтения — это, по большому счету, одно и то же. Вернее, предпочтения эти и есть тот самый класс эквивалентности полезностей, который надо себе воображать.

#### Заключение

Выбор представителя внутри класса эквивалентности - дело вкуса. Как только вы видите ту или иную полезность, можно спокойно применять к ним монотонные преобразования. В частности, у вас может быть больше развита техника работы с полезностью  $2\log x + 3\log y$ , чем с полезностью  $x^2y^3$ .

Более того, удачно наложив монотонное преобразование, можно случайно сделать функцию вогнутой, хотя она была изначально всего лишь квазивогнута.