Simulacro Segundo Parcial

1. Sea $U=\{x\in\mathbb{Z}|x\geq -10\}$. Sean Q y P los conjuntos definidos por: $Q=\{-w^2\in U|w\in\mathbb{N}\} \ ; \ P=\{\sqrt[3]{y}\in\mathbb{Z}|y\in U\wedge y<10\}$

Describir por extensión Q - P.

- 2. Dibujar el diagrama de Venn del siguiente conjunto: $(A B) \cap C$
- 3. Completar la tabla de verdad de la proposición $(P \vee \neg Q) \Leftrightarrow S$
- 4. Se sabe que la proposición compuesta $[\neg((S \land P) \Rightarrow (Q \lor \neg R))] \land S$ es verdadera. Encontrar los valores de verdad de las proposiciones S,P,Q y R.
- 5. Determinar el valor de verdad de la siguiente proposición y escribir su negación sin usar símbolos como \nexists y $\lnot\,$:

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} | x \cdot y > 0$

- 6. Dar la ecuación de la recta paralela a la recta R_1 cuya ecuación es $y=\frac{2}{5}\cdot x+9$ que pase por el punto $(1,\frac{2}{25})$
- 7. Determinar si las rectas R_1 con ecuación $y = \sqrt{2} \cdot x + 5$ y la recta R_2 dada por $y = -\frac{\sqrt{2}}{2} \cdot x + 3$ son perpendiculares.
- 8. Dar el dominio de la función $f(x) = \frac{1}{\sqrt{4x-6}}$
- 9. Un punto P(t) en la circunferencia trigonométrica, que está en el tercer cuadrante tiene coordenada $y=-\frac{4}{5}$. Complete la siguiente tabla:

	\sin	cos	tan
P(t)			
$P(t-\frac{\pi}{2})$			

- 10. La parábola $f(x) = -x^2 + bx + 3$ alcanza su máximo en x = 1
 - a) Determine la constante b y las coordenadas del vértice
 - b) Calcule las intersecciones de la parábola con los ejes
 - c) Sea R la recta dada por la ecuación y=2x+7. Calcule analíticamente las intersecciones entre la recta y la parábola.
 - d) Grafique la parábola, su eje de simetría y la recta.
- 11. La figura 1 ilustra la gráfica de la función f(x). Determine su dominio e imagen.

1

12. Usando la figura 1, grafique g(x) = -f(x)

Figura 1