

10. Sensor placement

Structural Dynamics part of 4DM00

dr.ir. R.H.B. (Rob) Fey, ir. D.W.M. (Daniël) Veldman

Sensor placement

Based on the **principle of modal independence:** place sensors such that the mode shapes are as linearly independent as possible.

s: number of sensors.

e: number of modes of interest.

Asssume $s \ge e$.

Sensor placement (preperation)

1. Start from a FEM model with n DOFs. Compute the (mass-normalized) eigenmodes:

$$(-\omega_i^2 M + K)u_i = 0, \qquad u_i^T M u_i = 1.$$

- 2. Collect all eigenmodes in a matrix $U_{nn} = [u_1 \quad u_2 \quad \cdots \quad u_n]$.
- 3. Select the e relevant eigenmodes Remove the columns of U_{nn} corresponding to other eigenmodes Result: matrix $U_{ne} = \begin{bmatrix} u_{k_1} & u_{k_2} & \cdots & u_{k_e} \end{bmatrix}$.
- 4. Select the m potential sensor locations (m>s) Remove all rotational, internal, inaccessible dof from U_{ne} Result: matrix U_{me} .

Sensor placement (criterion)

Using U_{me} form the **Fisher Information Matrix**

$$F_{ee} = U_{me}^{\mathsf{T}} U_{me}$$

Define the matrix

$$G_{mm} = U_{me} F_{ee}^{-1} U_{me}^{\mathsf{T}}.$$

Note that $G_{mm}^2 = G_{mm}$ (G_{mm} is idempotent). It therefore holds that $\operatorname{trace}(G_{mm}) = \operatorname{rank}(G_{mm}) = e$.

Diagonal elements of G_{mm} represent partial contributions of each dof to the rank of G_{mm} .

Idea of selection procedure (on next slide):

Remove of the dof with the smallest diagonal element of G_{mm} and recompute G_{mm} .

Sensor placement (procedure)

While m > s (i.e. there are more potential sensor locations than sensors)

- 1. Form the matrices F_{ee} and G_{mm}
- 2. Find the smallest diagonal element of G_{mm}
- 3. Remove the DOF corresponding to this element and set $m \coloneqq m-1$.

End while

Example: clamped-free beam

Non-uniform cross-section and 2 discrete springs, number of DOFs: n=36

Assume: only lowest 4 modes important (e=4) Candidate positions: only translational dof v_i , $i=1,\ldots,18$ (m=18) Search for 4 resp. 6 optimal sensor positions (s=4,6) Repeat procedure for 5 different values of the spring stiffness k.

Example: clamped-free beam

Stiffness k	4 Sensors	6 Sensors
$ \begin{array}{c c} 0\\ 5.0 \ 10^6\\ 1.0 \ 10^7\\ 2.0 \ 10^7 \end{array} $	6 11 15 18 6 11 15 18 5 10 13 16 5 9 13 16	5 6 11 14 15 18 5 6 11 14 15 18 5 6 10 13 16 17 5 9 10 13 14 16
$ 5.0 \ 10^7$	$\ 4 \ 8 \ 13 \ 16$	4 5 8 12 13 16

