

Generalized Dissimilarity Modelling

Anusha Bishop & Anne Chambers (2024)

Generalized Dissimilarity Modelling

Goal: Determine how environmental and geographic distance (ecological distance) drive dissimilarity

dissimilarity = genetic distance

What's special? nonlinear relationships

Why? Understand the drivers of biodiversity (specifically, turnover in genetic diversity)

A. GDM models dissimilarity as a function of predicted ecological distance

B. It fits the best estimate of predicted ecological distance by transforming predictors using I-splines

C. The summed difference in the I-spline transformed predictor values = the predicted ecological distance

A. GDM models dissimilarity as a function of predicted ecological distance

B. It fits the best estimate of predicted ecological distance by transforming predictors using I-splines

C. The summed difference in the I-spline transformed predictor values = the predicted ecological distance

GDM model link function (negative exponential):
d. = 1 - eⁿ

dij = dissimilarity between sites i and j

η = transformed ecological distance between sites i and j (predicted ecological distance)

<u>Assumes:</u> dissimilarity **increases and saturates** with increasing ecological distance and is bound between 0 and 1

A. GDM models dissimilarity as a function of predicted ecological distance

B. It fits the best estimate of predicted ecological distance by transforming predictors using I-splines

C. The summed difference in the I-spline transformed predictor values = the predicted ecological distance

By default three I-splines are fit with **three knots positioned at the minimum, median and maximum** of the observed predictor values

$$f_B(i) = f_B(4) = 0.5$$

 $f_B(j) = f_B(11) = 3$
 $|f_B(i) - f_B(j)| = 2.5$
Partial predicted
ecological distance

A. GDM models dissimilarity as a function of predicted ecological distance

B. It fits the best estimate of predicted ecological distance by transforming predictors using I-splines

C. The summed difference in the I-spline transformed predictor values = the predicted ecological distance

Calculating predicted ecological distance (η)

Mokany et al. (2022) https://doi.org/10.1111/geb.13459

Mokany et al. (2022) https://doi.org/10.1111/geb.13459

EXERCISE

Run GDM

```
gdm full <- gdm run(
      gendist = genetic distances
                                        coords = coordinates
      coords = liz coords,
3
                                        env = environmental raster
4
      env = env,
                                        stack (must be continuous)
      model = "full", ◀
                                        model = whether to run a "full"
      scale gendist = TRUE
6
                                        model with all variables or find
                                        the "best" model by performing
                                        variable selection
```

gdm run() fits a generalized

dissimilarity model

scale_gendist = whether to scale the genetic distances from
0 to 1 (values of genetic distance must be between 0 and 1)

1 gdm_plot_diss(gdm_full\$model)

What we want it to look like:

1 gdm_plot_isplines(gdm_full\$model)


```
# Plot the I-splines with a free x-axis and a fixed y-axis
# This allows for visualization of relative importance (i.e., the height of the I-splines)
# gdm_plot_isplines(gdm_full$model, scales = "free_x")
```


1 gdm_table(gdm_full)

predictor	coefficient
Geographic	1.35
CA_rPCA1	0.00
CA_rPCA2	0.06
CA_rPCA3	0.02
% Explained:	36.89 ⁷
¹ The percentage of null deviance ex	plained by the fitted GDM model.

INTERLUDE


```
> summary(map)

Length Class Mode
rastTrans 1 SpatRaster S4 —
pcaRastRGB 1 SpatRaster S4
```


> summary(map)
Length Class Mode
rastTrans 1 SpatRaster S4
pcaRastRGB 1 SpatRaster S4 —


```
1 map <- gdm_map(gdm_full$model, CA_env, liz_coords)</pre>
```


Genomic signals of selection predict climate-driven population declines in a migratory bird

Exercise

- Run GDM using gdm_run()
- Plot observed versus predicted dissimilarity and predicted ecological distances vs dissimilarity using gdm_plot_diss()
- Plot I-splines using gdm_plot_isplines()
- Get coefficient table using gdm_table()
- 5. Create GDM raster map using gdm_map()