RSA Algorithm

An, Trevor, and Trinity

Situation

Alice wants to send a message to Bob

Alice \Rightarrow m \Rightarrow Bob

Situation

Alice wants to send a message to Bob

Alice \Rightarrow m \Rightarrow Bob

Alice wants to **send** this message **securely** such that **only Bob** can interpret it.

Situation

Alice wants to send a message to Bob

Alice \Rightarrow m \Rightarrow Bob

Alice wants to **send** this message **securely** such that **only Bob** can interpret it.

How? Encryption!

Types of encryption?

Symmetric

- Each party has same key k for encryption
 - Alice $\Rightarrow \epsilon(k, m) = c \Rightarrow Bob$
- Bob decrypts using same k
 - Bob $\Rightarrow \epsilon(k, c) = m$

Encryption + Decryption Key

Types of encryption?

Symmetric

- Each party has same key k for encryption
 - Alice $\Rightarrow \epsilon(k, m) = c \Rightarrow Bob$
- Bob decrypts using same k
 - ∘ Bob $\Rightarrow \epsilon(k, c) = m$

Encryption + Decryption Key

Asymmetric

- Each party has public and private key
- To send a message to Bob, Alice encrypts using Bob's public key.
 - Only Bob's private key can decrypt the message

Encryption Key Decryption Key

Rivest Shamir Adleman (RSA)

- One the **oldest** asymmetric cryptography systems
- Versatile and widely used today:
 - Securing Email Communication
 - E-commerce and Online Shopping
 - Digital Signature and Document Verification
 - Secure Remote Access (VPN & SSH)

Overview of RSA Encryption

Generate Public Key and Private Key

Encrypt Message

Decrypt Message

Key Generation

1) Choose 2 distinct random prime number p and q.

Realistically, these would be very large (~ 1024 bit to 2048)

1) Choose 2 distinct random prime number p and q.

Realistically, these would be very large (~ 1024 bit to 2048)

ex.
$$p = 3 & q = 11$$

2) Compute $n = p \cdot q$

2) Compute
$$n = p \cdot q$$

$$n = 3 \cdot 11 = 33$$

$$\varphi(pq) = \varphi(p) \cdot \varphi(q)$$

$$\varphi(pq) = \varphi(p) \cdot \varphi(q)$$

= $(p-1) \cdot (q-1)$

$$\varphi(pq) = \varphi(p) \cdot \varphi(q)$$

$$= (p-1) \cdot (q-1)$$

$$= 2 \cdot 10 = 20$$

4) Choose a public value e in [2, ϕ (n) - 1] that is coprime to ϕ (n).

4) Choose a public value e in [2, ϕ (n) - 1] that is coprime to ϕ (n).

With $\varphi(n) = 20$, e = 7 is valid:

- coprime to $\varphi(n)$
- 2 < 7 < 19

5) Compute a private value **d** such that:

 $(d \cdot e) \mod \varphi(n) = 1$.

5) Compute a private value **d** such that:

 $(d \cdot e) \mod \varphi(n) = 1$.

One such d- "modular multiplicative inverse" of e

5) Compute a private value **d** such that:

$$(d \cdot e) \mod \varphi(n) = 1$$
.

One such d- "modular multiplicative inverse" of e

$$3*7=21$$
 & $21 \mod 20=1$

Final Values

6) Public key (e, n)

(e: 7, n: 33)

Private key (d, n, p, q)

(d: 3, n: 33, p: 3, q: 11)

Encryption

How Does Encryption / Decryption Work?

Encryption and decryption involves
 exponentiation to make a message huge and
 modding it to bring it down to a reasonably sized
 but secure cipher.

RSA Encryption and Decryption

To encrypt the message m:

$$c = m^e \pmod{n}$$

RSA Encryption and Decryption

To encrypt the message m:

$$c = m^e \pmod{n}$$

To decrypt the cipher c:

$$m = c^d \pmod{n}$$

RSA Encryption and Decryption

To encrypt the message m:

$$c = m^e \pmod{n}$$

To decrypt the cipher c:

$$m = c^d \pmod{n}$$

(with ed mod $\varphi(n) = 1$)

RSA Encryption Walkthrough

With **Public key** \Rightarrow (7, 33) and **Private key** \Rightarrow (3, 33, 3, 11):

RSA Encryption Walkthrough

With **Public key** \Rightarrow (7, 33) and **Private key** \Rightarrow (3, 33, 3, 11):

Encrypt message m = 2:

$$c = m^e \pmod{n} = 2^7 \mod 33 = 29$$

RSA Encryption Walkthrough

With **Public key** \Rightarrow (7, 33) and **Private key** \Rightarrow (3, 33, 3, 11)):

Encrypt message m = 2:

$$c = m^e \pmod{n} = 2^7 \mod 33 = 29$$

Decrypt cipher c:

$$m = c^d \pmod{n} = 29^3 \mod 33 = 2$$

Why does this work?

• e and d are modular multiplicative inverses, which are related through totient function $\phi(n)$.

RSA encryption – How is it secure?

• **Trapdoor Function:** Easy to calculate φ(n) given p & q, but

very **difficult** to calculate **p** or **q** from $\phi(n)$

RSA encryption – How is it secure?

- Trapdoor Function: Easy to calculate φ(n) given p & q, but
 very difficult to calculate p or q from φ(n)
- Means that without knowing p & q, it's very difficult to brute
 force what d is, even though its value is calculated using e
 and φ(n)

Why is it interesting?

• Relatively straightforward / simple calculations with a pretty

secure outcome

Why is it interesting?

- Relatively straightforward / simple calculations with a pretty secure outcome
- Proofs of statements include a lot of math we've learned in discrete
 - proof of Euler's Totient Function via inclusion-exclusion
 - Fermat's Little Theorem proof via induction

Efficiency

Increasing Efficiency

• Carmichael's Totient function vs Euler's Totient Function

Increasing Efficiency

Carmichael's Totient function vs Euler's Totient
 Function

Decryption using Chinese remainder theorem

Increasing Efficiency

- Carmichael's Totient function vs Euler's Totient Function
- Decryption using Chinese remainder theorem
- Optimized Code

Euler's Vs. Carmichael's Key Generation

Euler's	$\varphi(n)$)
---------	--------------	---

 $\phi(n)$ is the total sum of positive integers that are lesser than n and are co-prime numbers to n

$$\phi(pq) = (p-1)(q-1)$$

Euler's Vs. Carmichael's Key Generation

Euler's $\varphi(n)$	Carmichael's λ(n)
φ(n) is the total sum of positive integers that are lesser than n and are co-prime numbers to n	λ (n) is the smallest integer m where $\mathbf{a}^m \equiv 1 \pmod{n}$ for all a co-prime to n and < n.
$\phi(pq) = (p-1)(q-1)$	λ(pq) = lcm(p-1,q-1)

Euler's Vs. Carmichael's Key Generation

Euler's $\varphi(n)$	Carmichael's λ(n)
φ(n) is the total sum of positive integers that are lesser than n and are co-prime numbers to n	λ (n) is the smallest integer m where $\mathbf{a}^m \equiv 1 \pmod{n}$ for all a co-prime to n and < n.
$\phi(pq) = (p-1)(q-1)$	λ(pq) = lcm(p-1,q-1)

n	1	2	3	4	8	12	15	16	20	21
$\lambda(n)$	1	1	2	2	2	2	4	4	4	6
$\phi(n)$	1	1	2	2	4	4	8	8	8	12

Time Complexity of Generating Public/Private Key Pairs

Attacks

Attacks

- RSA Algorithm currently has no major vulnerabilities
- Attacks usually require specific conditions to be fulfilled
- Most attacks involve figuring out p, q, or d
 - If you know p and q, you can calculate φ(n) which allows you to calculate the private key (d)

Attacks - Implementation

Wiener's Attack: If the p & q values are close, and the private key (d) size is small, we can calculate what d is from the convergents of the continued fraction e/n

Hastad's Broadcast Attack: You can bypass needing to know the private key if you have enough ciphertexts using the same public key and same plaintext

Future of RSA

- Currently a widely used encryption algorithm
- Increasing computational efficiency and quantum computing
 - Currently no widely accepted method of cracking securely implemented RSA encryption

Future of RSA

- Currently a widely used encryption algorithm
- Increasing computational efficiency and quantum computing
 - Currently no widely accepted method of cracking securely implemented RSA encryption
 - **Shor's Algorithm:** *theoretically* allows factorization of prime numbers in polynomial time rather than exponential time in quantum computing

Future of RSA

- Currently a widely used encryption algorithm
- Increasing computational efficiency and quantum computing
 - Currently no widely accepted method of cracking securely implemented RSA encryption
 - **Shor's Algorithm:** *theoretically* allows factorization of prime numbers in polynomial time rather than exponential time in quantum computing
 - Chinese Researchers have "claimed" to have created another algorithm that could easily break a 2048-bit key RSA (2023)

Thanks For Listening

Citations