Clustering Stocks in The Bases of Risk Factors

By: Alfredo Martinez

Mentor: Lucas Allen

February 2018

Introduction

Purpose:

- 1. Build a diversification system which groups stocks base on similar data and risk values.
- 2. Build a K-Means model which best fits each stock to others in similarity.
- 3. Find a strong amount of cluster which can best represent the data on hand.

Data Sets

- Quandl
 - Consisting of 3,996 different company ticker codes
 - 14 Quantitate variables for each ticker
- Nasdaq
 - Contains 2,457 different North America Stocks
 - 8 Quantitative and qualitative variables
- Combine Data File
 - 6,553,424 historical prices data points
 - 24 different qualitative and quantitative variables

Feature Selection and Engineering

- 1. Market Capitalization
- 2. Years Publicly Traded
- 3. Dollars Traded
- 4. Average Daily Return
- 5. Average Volatility
- 6. Average Sharpe Ratio
- 7. Average Dividend Yield

Other Potential Datasets

Quandl

• Premium members can get access to several different financial statements and ratios from companies

Nasdaq

Data with companies in different exchanges, regions, industries

Limitations

- Usage of North America Companies only
- Single year data (2017)
- Lack of different industry for companies

Preparing Data for Modeling

Split data for train and test methods

• Check to see if clusters amount is still appropriate for test/unseen/new data.

Data Scale

• Levels up the different magnitudes of numerical values in our features for better analysis

Setting Optimal Number of Clusters

Different Methods

1. Elbow Method

• Find a point where the addition of another cluster doesn't offer a much better model

2. Silhouette Method

Grades quality in similarity from data points to their given cluster

Elbow Method

The analysis was not very successful at identifying a good elbow

Silhouette Method

Silhouette Method Continues...

2- cluster

Analysis gives the highest coefficient grading values. However, grouping all of our data in two groups does not become very useful and practical.

5- cluster

From all other options, the five cluster grouping gives a better distribution of out data and a fair amount of quality in similarity from data points to its clusters

K-Means

The algorithm use for the analysis was base on K-means:

- It chooses a random point as the initial mean value for the number amount of k(clusters)
- Cluster are build by relating each point with its nearest mean.
- Finds new mean values within new clusters group values and becomes the new centroid.
- The cycle continues until convergence(same result) shows

PCA for Data Visualization

Principal Component Analysis

- Process consist of bringing all the features into a more compact manner in which the data can be better analyze.
- It provides a minimum amount of variation in features data and than assign to their corresponding target values(stock labels)

PCA for Data Visualization Continues..

The plot show some groups with a strong difference, while some are more similar within their neighboring groups.

Features' Averages by Group

Clustering variables means by cluster

	AVG_Market_Cap	AVG_Yrs_Trded	AVG_Dol_Trded	AVG_Return	AVG_Std(Volatility)	AVG_Sharpe_R	AVG_Dvdend_Yield
Group							
0	12382937858.434	22	75191806.585	0.005	0.106	0.005	0.020
1	15201864138.671	23	87044145.028	0.008	0.163	0.018	0.016
2	14850671415.222	24	82551377.791	0.006	0.136	0.016	0.017
3	15987237133.500	21	160588842.000	0.005	0.120	0.020	0.008
4	48212547402.136	27	188026607.955	0.003	0.075	0.021	0.021

- The highlighted results in the table above show some of the main difference between the clustering groups build within our data
- The groups can be used by different investors as way to classify and better analyze a particular investment in compare to others investments

