Лекция 07.02.22

Note 1

b84aca6df42d4d74ad1fea51970c01d9

Пусть $\{(c3):W-$ линейное пространство, $V\subset W$. $\|$ Тогда V называется $\{(c2):$ линейным подпространством $\|$, если $\{(c1):$

- 1. $\forall v \in V, k \in \mathbb{R} \implies kv \in V$,
- $2. \ \forall v_1, v_2 \in V \implies v_1 + v_2 \in V.$

Note 2

haa489a3d13c4978866a82630he13e73

Пусть W — линейное пространство, $V \subset W$ — линейное подпространство в W. Тогда V — $\{(c)\}$ тоже линейное пространство $\{(c)\}$.

Note 3

3c2988d9ae174eb4aa377f43ebd61f74

Является ли прямая проходящая через начало координат подпространством в \mathbb{R}^n ?

Да, поскольку любая линейная комбинация векторов на прямой тоже лежит на этой прямой.

Note 4

18b402a364da457aaaf95095b9113dcd

Пусть $W=\mathbb{R}^n, A\sim m\times n.$ Является ли множество

$$V = \{ x \in W \mid Ax = 0 \}$$

линейным подпространством?

Да, поскольку $\forall u,v\in V,\quad \alpha,\beta\in\mathbb{R}\quad A(\alpha u+\beta v)=0.$

Note 5

a5081684e6014eeb8d4cd352f7dfd46l

Пусть V — подпространство в \mathbb{R}^n . Тогда всегда существует $A \in \mathbb{R}^{\{\!\{ c2::m \times n \}\!\}}$ такая, что $\{\!\{ c4::m \times n \}\!\}$

$$V = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

}}

Пусть $W = \mathbb{R}^n$, $a_1, a_2, \dots a_n \in W$. Является ли

$$\mathcal{L}(a_1, a_2, \dots a_n)$$

подпространством в W?

Да, является, поскольку любая линейная комбинация линейных комбинаций $a_1, a_2, \dots a_n$ тоже является их линейной комбинацией.

Note 7

d633780bbade46968c2bcb66d05be478

Пусть $W=\mathbb{R}^n, \quad V_1,V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cap V_2$ — тоже линейное подпространство в W?

Да, всегда.

Note 8

9c714ab9fa4b457f993438ef25421061

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Всегда ли $V_1\cup V_2$ — тоже линейное подпространство в W?

Нет, не всегда.

Note 9

2b9216d113914ad98cbc81b055dc174b

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Тогда

$$\{ (c2) : V_1 + V_2 \} \stackrel{\text{def}}{=} \{ (c1) : \{ v_1 + v_2 \mid v_1 \in V_1, \quad v_2 \in V_2 \}. \} \}$$

Note 10

cd25e86c13c141be80e3673edfece8d2

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Тогда

$$\dim(V_1 + V_2) = \{\{\text{cli} \ \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).\}\}$$

Пусть $W=\mathbb{R}^n, \quad V_1, V_2\subset W$ — два линейных подпространства в W. Всегда ли V_1+V_2 — тоже линейное подпространство в W?

Да, всегда.

Note 12

fe58542dc0ee4e48ab330cd68be1fd77

Пусть $W=\mathbb{R}^n,\ V$ — линейное подпространство в W и e_1,e_2,\ldots,e_k — нега базис в V.) Тогда в W существует базис вида нега $e_1,e_2,\ldots,e_k,e_{k+1},\ldots,e_n$.)

Note 13

7e41e14368b94d50be88c6e5b025c706

В чем основная идея доказательства теоремы о размерности суммы подпространств?

Дополнить базис в $V_1 \cap V_2$ до базисов в V_1 и V_2 соответственно и построить на их основе базис в $V_1 + V_2$.

Note 14

01ac0beb84404bed8a9f676002a2804

Пусть

- $e_1, e_2, \dots e_k$ базис в $V_1 \cap V_2$,
- $e_1, e_2, \dots e_k, f_1, \dots f_p$ базис в V_1 ,
- $e_1, e_2, \dots, e_k, g_1, \dots g_q$ базис в V_2 .

Как можно построить базис в $V_1 + V_2$?

$$e_1, \ldots e_k, f_1, \ldots f_p, g_1, \ldots, g_q$$
 — базис в $V_1 + V_2$.

Семинар 09.02.22

Note 1

3fd21160928849f8achc526a60229e49

Пусть e_1,e_2,\ldots,e_n и e'_1,e'_2,\ldots,e'_n — два базиса в линейном пространстве V. Тогда перехода от базиса e к базису e' называют перехода от базису C такую, что для любого $v\in V$, если

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n,$$

 $v = \mu_1 e'_1 + \mu_2 e'_2 + \dots + \mu_n e'_n,$

то

$$C \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

}}

Note 2

8fab27df46a451190278cbc1d38698f

 $\{\{e^{2\pi}\}$ Матрицу перехода от базиса e к базису $e'\}$ обычно обозначают $\{\{e^{1\pi}\}\}$

Note 3

c9e84965d5ea4157b50f6576e2cbddad

Пусть e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n — два базиса в линейном пространстве. Как в явном виде задать матрицу $C_{e \to e'}$?

Столбцы $C_{e \to e'}$ — это координаты векторов e'_1, e'_2, \dots, e'_n в базисе e_1, e_2, \dots, e_n .

Лекция 14.02.22

Note 1

825he05che9f4850806682f4dh48f5e1

Пусть W — линейное пространство, $V_1,V_2 \triangleleft W$. (кез:: Сумму V_1+V_2)) называют (кез:: прямой суммой,)) если (кез:: $V_1\cap V_2=\{0\}$.))

Note 2

90c98477312541878454fb9689685fc8

 $_{\mathbb{R}^{22}}$ Прямая сумма подпространств V_1 и V_2 обозначается $_{\mathbb{R}^{12}}$ $V_1 \oplus V_2.$

Note 3

51dc5cc9d7d4722ac40423e92273c7a

Пусть V_1 и V_2 — два линейных подпространства. Тогда эквивалентны следующие утверждения:

- 1. $\{(c1::V_1+V_2-прямая сумма;)\}$
- 2. $\{(v_1 + V_2) = \dim V_1 + \dim V_2;\}\}$
- 3. $\{(c3): Для \ любого \ a \in V_1 + V_2 \ разложение разложение <math>a$ в сумму $v_1 + v_2$, где $v_1 \in V_1, v_2 \in V_2$, единственно. $\{(c3): Q_1 \in V_1 \in V_2 \}$

Note 4

78239c298e504fa9841235fdd06ac419

«((сз.: Монотонность размерности подпространств))»

Пусть W — линейное пространство, $V \triangleleft W$. Тогда

- 1. $\{ \text{ci:} \dim V \leqslant \dim W, \}$
- 2. $\{c2: \dim V = \dim W \iff V = W.\}$

Note 5

a6b854ec7f5b4473a76276e0bff1e27

 $\{\{c\}: O$ тображение $f: V \to W\}$ называется $\{\{c\}:$ линейным отображением, $\}$ $\{\{c\}:$ если

1.
$$f(x+y) = f(x) + f(y)$$
, $\forall x, y \in V$,

2.
$$f(\lambda x) = \lambda f(x), \quad \forall \lambda \in \mathbb{R}, x \in V.$$

5

Линейное отображение так же ещё называют $\{ (c) = \mathbf{n}$ линейным оператором. $\}$

Note 7

df5862f6f1d4456cb943a7f07c8d8b68

Линейный оператор $f:V\to W$ называется ([cli: изоморфизмом линейных пространств) тогда и только тогда, когда ([cli: f — биекция.])

Note 8

d8bd78dfda034119ae049b476da96449

Линейные пространства V и W называются (сы: изоморфными) тогда и только тогда, когда (сы: существует изоморфизм

$$f: V \to W$$
.

,

Note 9

2d4f456313e24261b688216f4b7f1996

Отношение ($\ensuremath{\mathbb{C}}$ 2: изоморфности)) обозначается символом ($\ensuremath{\mathbb{C}}$ 1: \simeq .

Note 10

7112c4ddaf614005b6a37c3f4fbd3edc

Если $f:V \to W$ — изоморфизм, то $f^{-1}:W \to V$ ((c.:. — тоже изоморфизм.))

Note 11

9 fa 0 2b 16e 5e 74 fc ea 1923 55 d 84b 99 109

Пусть V,W — конечномерные линейные пространства. Тогда

$$\{\text{c2::}\ V\simeq W\}\}\{\text{c3::}\iff\}\}\{\text{c1::}\ \dim V=\dim W.\}$$

Note 12

13b90eb2ff704cc69e067a3f047966cc

Пусть $f:V \to W$ — линейный оператор. Тогда патрицей линейного оператора f в паре базисов в V и W соответственнов называют патрицу A, переводящую координаты любого вектора $v \in V$ в координаты вектора $f(v) \in W$ в соответствующих базисах.

Пусть $f:V \to W$ — линейный оператор,

- e_1, e_2, \dots, e_n базис в V,
- $\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_m$ базис в W.

Как в явном виде задать матрицу оператора f в этих базисах?

j-ый столбец — это координаты вектора $f(e_j)$ в базисе $\tilde{e}_1,\tilde{e}_2,\ldots,\tilde{e}_m$

Note 14

b595ad9b198f46299eb5af10d49e413d

Композиция линейных операторов — тоже $\{(clif)$ линейный оператор.(flif)