

AGRICULTURAL RESEARCH INSTITUTE
PUSA

BEILSTEINS HANDBUCH DER ORGANISCHEN CHEMIE

VIERTE AUFLAGE

DIE LITERATUR BIS 1. JANUAR 1910 UMFASSEND

HERAUSGEGEBEN VON DER

DEUTSCHEN CHEMISCHEN GESELLSCHAFT

BEGONNEN VON

BERNHARD PRAGER UND PAUL JACOBSON

FORTGEFUHRT VON

FRIEDRICH RICHTER

ZWEIUNDZWANZIGSTER BAND

HETEROCYCLISCHE REIHE

VERBINDUNGEN MIT 1 CYCLISCH GEBUNDENEM STICKSTOFFATOM
CARBONSÄUREN SULFONSÄUREN
AMINE USW.

Published and distributed in the Public Interest by Authority of the Alien Property Custodian under License No. A-149

Photo-Lithoprint Reproduction

EDWARDS BROTHERS, INC.

PUBLISHERS
ANN ARBOR, MICHIGAN

1944

BERLIN

VERLAG VON JULIUS SPRINGER 1935

Mitarbeiter:

GÜNTHER AMMERIAHN MARGARETE BAUMANN ERNST BEHRLE GERTRUD BEREND JAKOB BIKERMAN GEORG COHN OLGA DIETRICH GUSTAV HAAS FRITZ HÖHN HERMANN HOMANN KONRAD ILBERG EDITH JOSEPHY Benno Kühn GERHARD LANGER Kornelia Loria ELISABETH MATERNE HERMANN MAYER WILHELM MERZ RUDOLF OSTERTAG KARL OTT FRITZ RADT OTTO SACHTLEBEN DORA STERN EUGEN WEEGMANN

Alle Rechte, insbesondere das der Übersetzung in fremde Sprachen, vorbehalten.

Copyright 1935 by Julius Springer in Berlin.

Printed in Germany.

Copyright vested in the Alien Property Custodian, 1942, pursuant to law.

Inhalt.

Dritte Abteilung.

Heterocyclische Verbindungen. (Fortsetzung.)

9. Verbindungen mit 1 cyclisch gebundenem Stickstoffatom (Heteroklasse 1 N).

(Schluß.)

IV. Carbonsäuren.

		Seite	Seite
1.	A. Monocarbonsäuren. Monocarbonsäuren $C_nH_{2n-1}O_2N$		Carbonsäuren $C_{12}H_{11}O_2N$ (z. B. Chinaldylessigsäure)
	(z. B. Prolin mit Hygrinsäure und Stachydrin, Pipecolinsäure, Nipe- cotinsäure, Cincholoipon)	1	8. Monocarbonsäuren C _n H _{2n-15} O ₂ N (z. B. Pyridylbenzoesäure, Chinolylacrylsäure, Tetrahydroacridin-
2.	Monocarbonsäuren $C_nH_{2n-3}O_2N$ (z. B. Guvacin mit Arecaidin und Arecolin; Merochinen)	14	carbonsäure)
	Monocarbonsäuren C _n H _{2n-5} O ₂ N		[z. B. Carbazol-carbonsaure-(1)] 99
9.	(z. B. Pyrrol-α-und-β-oarbonsäure; Norekgonidin mit Ekgonidin).	22	10. Monocarbonsäuren C _n H _{2n-19} O ₂ N (z. B. Acridincarbonsäure) 101
4.	$\begin{array}{lll} \textbf{Monocarbons\"aure} & C_nH_{2n-7}O_2N & \\ \textbf{Picolins\"aure} & C_{\bullet}H_{\bullet}O_2N & . & . & . & . \\ \end{array}$	33 33	11. Monocarbonsäuren C _n H _{2n-21} O ₂ N (z. B. Atophan) 103
	Nicotinsaure C ₆ H ₅ O ₂ N Isonicotinsaure C ₆ H ₅ O ₂ N	38 45	12. Monocarbonsäuren C _n H _{2n-23} O ₂ N (z. B. Benzalchinaldincarbonsäure) 106
	Carbonsauren C ₂ H ₂ O ₂ N · · · · · ·	48 50	18. Monocarbonsauren C _n H _{2n-25} O ₂ N . 111
	Carbonsäuren C. H ₁₁ O ₂ N usw	54	14. Monocarbonsäuren C _n H _{2n-27} O ₂ N (z. B. Acridylbenzoesäure, Phenyl-
5.	Monocarbonsäuren C _n H _{2n-9} O ₂ N (z. B. Pyridylacrylsäure, Tetra-		benzoeinchoninsäure) 111
_	hydrocinchoninsäure)	55	15. Monocarbonsäuren C _n H _{2n-29} O ₂ N (z. B. Diphenyleinchoninsäure) . 114
6.	Monocarbonsäuren C _n H _{2n-11} O ₂ N (z. B. Indol-α-und-β-carbonsäure,		16. Monocarbonsäuren CnH2n-31O2N . 110
	Skatol- ω -carbonsäure)	61	17. Monocarbonsäuren CnH2n-33O2N . 110
7.	$\begin{array}{c} \text{Monocarbons\"auren } C_nH_{2n-13}O_2N \ . \\ \text{Chinaldins\"aure } C_{10}H_{7}O_2N \ . \ . \ . \end{array} .$	71 71	18. Monocarbonsäuren C _n H _{2n-35} O ₂ N . 110
	Chinolin-carbonsaure-(3) und Cin-	74	B. Dicarbonsäuren.
	choninsäure C ₁₀ H ₇ O ₂ N	78 79 81 82	 Dicarbonsäuren C_nH_{2n-3}O₄N (z. B. α.α'-Imino-bernsteinsäure, Hexahydrochinolinsäure, Loiponsäure, Cincholoiponsäure)
	Carbonsauren C. H.O.N (z. B. Chi-		9 Diearhousäuren CnH2n-7O4N (z. B.
	nolylessigsaure, Methylchinolin-	82	

	79	ente		CONTRO
	Dicarbonsäuren CnH2n-9O4N (z. B.		1. N-Methyl-nor-l-ekgonin (l-Ekgo-	
•	Lutidinsäure, Chinolinsäure, Cin-		nin) und seine durch Veränderung	
	chomeronsäure, Lepidinsäure, Uvi-		der Hydroxyl- und Carboxylgrup-	400
	toninsäure, Kollidindicarbonsäure) 1	150	pe entstandenen Derivate	196
		167	a) Derivate des l-Ekgonins, die	
		1	nur durch Veränderung der	
	Dicarbonsäuren CnH2n-18O4N 1	100	Hydroxylgruppe entstanden	
6.	Dicarbonsäuren Cn H _{2n-15} O ₄ N (z. B.		sind (z. B. O-Benzoyl-l-ekgo-	405
	Chinolindicarbonsauren wie Acri-		nin)	197
	dinsäure) 1		b) Derivate des l-Ekgonins, die	
7.	Dicarbonsäuren $C_nH_{2n-17}O_4N$ 1	174	durch Veränderung der Carb-	
	Dicarbonsäuren CnH2n-19O4N 1		oxylgruppe bezw. dieser und	
	Dicarbonsäuren CnH2n-21O4N		der Hydroxylgruppe entstan- den sind (z. B. 1-Cocain)	100
	(Naphtholutidinsäuren) 1	77	2. Weitere durch Veränderung am	100
10	Dicarbonsäuren C _n H _{2n-23} O ₄ N(z.B.		Stickstoff entstandene funk-	
10.	Phenylchinolindicarbonsäure,		tionelle Derivate des Nor-l-ekgo-	
	Pyrrylendibenzoesäure) 1	77	nins (z. B. [l-Ekgonin]-methyl-	
			betain)	203
11.	Dicarbonsäuren CnH2n-25O4N 1	00	Nor-dl-ekgonin mit dl-Ekgonin	204
12.	Dicarbonsäuren C _n H _{2n-27} O ₄ N 1	80	Nor-d-pseudoekgonin mit d-Pseudo-	
	Dicarbonsäuren C _n H _{2n-29} O ₄ N 1		ekgonin und d-Pseudococsin	205
14.	Dicarbonsäuren C _n H _{2n-31} O ₄ N 1	81	Nor-dl-pseudoekgonin mit dl-Pseudo-	
15.	Dicarbonsäuren C _n H _{2n-33} O ₄ N 1	82		2 10
		1	Nor-α-ekgonin mit α-Ekgonin und	
	C. Tricarbonsäuren.			211
	C. Ifical nonsautem.	c)	Oxy-carbonsäuren C _n H _{2n-7} O ₃ N	
1.	Tricarbonsäuren C _n H _{2n-9} O ₆ N 1	82	(z. B. Oxypicolinsaure, Oxy-	~ ~ ~
2.	Tricarbonsäuren C _n H _{2n-11} O ₆ N		nicotinsaure, Pyridylmilchsaure)	212
	(z. B. Pyridintricarbonsäuren wie	(1)	Oxy-carbonsauren C _n H _{2n-9} O ₃ N	
	Berberonsäure) 1	82	(z. B. Oxytetrahydrochinolinear-	004
8.	Tricarbonsäuren C _n H _{2n-17} O ₆ N 1	87	· · · · · · · · · · · · · · · · · · ·	224
	Tricarbonsäuren C _n H _{2n-27} O ₆ N 1		Oxy-carbonsauren C _n H _{2n-11} O ₈ N	
7.		00	(z. B. Indoxylsäure)	226
		1)	Oxy-carbonsauren $C_nH_{2n-18}O_3N$	
	D. Tetracarbonsäuren.	-	(z. B. Oxychinaldinsäure, Oxy-	
1.	Tetracarbonsäuren C _n H _{2n-7} O ₈ N . 1	88	cinchoninsäure, Carbostyrilessig-	000
	Tetracarbonsäuren C _n H _{2n-11} O ₈ N . 1	99	•	
	Tetracarbonsäuren C _n H _{2n-18} O ₈ N	B)	Oxy-carbonsäuren $C_nH_{2n-15}O_3N$.	242
U.	(z. B. Pyridintetracarbonsaure) . 1	88 h)	Oxy-carbonsäuren $C_nH_{2n-17}O_3N$.	243
.4	Tetracarbonsäuren C _n H _{2n-21} O ₈ N . 1	1 11	Oxy-carbonsäuren $C_nH_{2n-19}O_3N$.	244
	Total Carlotte Children Childr	k)	Oxy-carbonsäuren $C_nH_{2n-21}O_3N$	
	77 Th. 4 h #		(z. B. Homapocinchensäure,	
	E. Pentacarbonsäuren.	1	Oxyphenylchinolincarbonsäure).	244
	Pyridinpentacarbonsaure 1	90 D	Oxy-carbonsauren C _n H _{2n-28} O ₃ N .	249
	-	1 -	Oxy-carbonsäuren C _n H _{2n-27} O ₈ N .	
	F. Oxy-carbonsäuren.		Oxy-carbonsäuren C _n H _{2n-31} O ₃ N .	
	I OLJ OMIGUNIONI	-,		-00
	1. Oxy-carbonsäuren mit 3 Sauer-		2. Oxy-carbonsäuren mit 4 Sauer-	
	stoffatomen.	ı	stoffatomen.	
a)	$0xy$ -carbonsäuren $C_nH_{2n-1}O_3N$	8)	Oxy-carbonsauren $C_nH_{2n-3}O_4N$.	25 0
•	(z. B. 4-Oxy-prolin) 1	90 b)	Oxy-carbonsäuren C _n H _{2n-7} O ₄ N	
P)	Oxy-carbonsäuren C _n H _{2n-3} O ₃ N . 1	95	(z. B. Dioxypyridinoarbonsäure)	251
~,		95 e)	Oxy-carbonsauren CnH2n-9O4N .	262
	Funktionelle Derivate des Nor-l-ek-		Oxy-carbonsäuren CnH2n-11O4N .	262
	gonins mit unveränderter NH-		Oxy-carbonsauren C _n H _{2n-13} O ₄ N	
	Gruppe (z. B. O-Benzoyl-nor-l-	"	(z. B. Dioxychinolinearbonsäure)	263
	ekgonin)	96	Oxy-carbonsauren $C_nH_{2n-15}O_4N$.	
	Funktionelle Derivate des Nor-l-ek-	1 -	•	264
	gonins mit veränderter NH-Grup-		Oxy-carbonsäuren $C_nH_{2n-21}O_4N$.	265
	De	96 h)	Ovv-carbonsäuren C. Ho. 2704N	98K

		Seite	1.	Seite
	3. Oxy-carbonsäuren mit 5 Sauer- stoffatomen.		g)	Oxo-carbonsäuren $C_nH_{2n-15}O_3N$ (z. B. Pyrroylbenzoesäure, "Le-
•)	Oxy-carbonsäuren C _n H _{2n-7} O ₅ N		l	pidinoxalsäure")
•	(z. B. Trioxypyridincarbonsäure) .	266	h)	Oxo-carbonsäuren $C_nH_{2n-17}O_3N$ (z. B. Benzoylnicotinsäure) 318
•	Oxy-carbonsäuren $C_nH_{2n-9}O_5N$ (z. B. Oxypyridindicarbonsäure).		i)	Oxo-carbonsäuren C _n H _{2n-19} O ₃ N [z. B. Acridon-carbonsäure-(2)] . 320
c)	Oxy-carbonsäuren $C_nH_{2n-11}O_5N$.	271	b)	Oxo-carbonsäuren $C_nH_{2n-21}O_3N$. 321
d)	Oxy-carbonsäuren C _n H _{2n-18} O ₅ N .	271		
e)	Oxy-carbonsauren C _n H _{2n-15} O ₅ N.	272	1)	Oxo-carbonsäuren C _n H _{2n-23} O ₃ N (z. B. Chinolylacetophenoncarbon-
1)	Oxy-carbonsäuren C _n H _{2n-17} O ₅ N .	272		säure)
	-	273	m)	Oxo-carbonsäuren C _n H _{2n-25} O ₃ N . 323
		273		Oxo-carbonsäuren $C_nH_{2n-27}O_3N$. 323
-	Oxy-carbonsäuren Cn H2n-27 O5 N	- 1	_	Oxo-carbonsäuren $C_nH_{2n-29}O_3N$. 324
•,	4. Oxy-carbonsäuren mit 6 Sauer-		_	Oxo-carbonsäuren $C_nH_{2n-37}O_3N$. 324
	stoffatomen.			449
۵)		274		2. Oxo-carbonsäuren mit 4 Sauer- stoffatomen.
	Oxy-carbonsauren $C_nH_{2n-9}O_6N$	2.2		
	(z. B. Dioxypyridindicarbonsäure)	- 1	a)	Oxo-carbonsäuren $C_nH_{2n-5}O_4N$ (z. B. Camphoronsäureimid) 324
c)	Oxy-carbonsäuren $C_nH_{2n-17}O_6N$.	280	b)	Oxo-carbonsäuren C _n H _{2n-7} O ₄ N (z. B. Aconitsäureimid, Biliverdin-
	5. Oxy-carbonsäuren mit 7 Sauer- stoffatomen.			säure) 328
	Oxy-carbonsäuren $C_nH_{2n-17}O_7N$.	281	,	Oxo-carbonsäuren $C_nH_{2n-9}O_4N$. 335 Oxo-carbonsäuren $C_nH_{2n-13}O_4N$
	6. Oxy-carbonsäuren mit 8 Sauer-	1	٠,	(z. B. Hemimellitsäureimid) 336
	stoffatomen.	1	e)	Oxo-carbonsäuren C _n H _{2n-15} O ₄ N . 340
a)		282		Oxo-carbonsäuren $C_nH_{2n-19}O_4N$. 340
	Oxy-carbonsauren $C_nH_{2n-17}O_8N$.	282		Oxo-carbonsäuren $C_nH_{2n-21}O_4N$. 340
•				Oxo-carbonsäuren $C_nH_{2n-25}O_4N$. 341
e,	•	200		Oxo-carbonsauren $C_nH_{2n-27}O_4N$. 341
	7. Oxy-carbonsäuren mit 9 Sauer- stoffatomen.			3. Oxo-carbonsäuren mit 5 Sauer-
	Oxypyridintetracarbonsäure	283		stoffatomen.
	8. Oxy-carbonsäuren mit 10 Sauer-	ļ		Oxo-carbonsăuren $C_nH_{2n-7}O_5N$. 342
	stoffatomen.		b)	Oxo-carbonsäuren CnH2n-9O5N
	Anilino-dioxy-piperidin-tetracarbon-	İ		(z. B. Pyrrol- α -carbonsäure- α' -oxalylsäure)
	säure-tetraäthylester usw	284	-3	lylsäure)
	O O O O O O O O O O O O O O O O O O O		•	
	G. Oxo-carbonsäuren.		•	Oxo-carbonsäuren $C_nH_{2n-13}O_5N$. 348
	1. Oxo-carbonsäuren mit 3 Sauer- stoffatomen.		-	Oxo-carbonsäuren $C_nH_{2n-15}O_5N$. 348 Oxo-carbonsäuren $C_nH_{2n-19}O_5N$
•)	Oxo-carbonsäuren C _n H _{2n-3} O ₃ N		•	(z. B. [Carboxybenzoyl]-picolin-
-,	(z. B. Pyroglutaminsaure, Mesi-	1		säure)
		284	g)	Oxo-carbonsäuren C _n H _{2n-21} O ₅ N
b)	A	294	• •	(z. B. Benzoylenlutidinsäure) 351
-	Oxo-carbonsäuren CnH2n-7O3N			Oxo-carbonsäuren $C_nH_{2n-23}O_5N$. 352
•	[z. B. 5-Acetyl-pyrrol-carbonsäu-	-		Oxo-carbonsäuren $C_nH_{2n-25}O_5N$. 353
		298	k)	Oxo-carbonsăuren $C_nH_{2n-29}O_5N$. 353
l)	Oxo-carbonsăuren $C_nH_{2n-9}O_3N$ (z. B. Acetylnicotinsăure)	305		4. Oxo-carbonsäuren mit 6 Sauer-
e)	Oxo-carbonsäuren C _n H _{2n-11} O ₃ N			stoffatomen.
	[z. B. Oxindol-carbonsaure-(6)].	307	a)	Oxo-carbonsäuren C _n H _{2n-7} O ₆ N [z. B. 2.6-Dioxo-piperidin-dicar-
ij	Oxo-carbonsäuren C _n H _{2n-18} O ₈ N (z. B. Brenztraubensäureindoge-			bonsäure-(4.4)]
	(z. D. Drenzuraubensaureindoge-	900	ы	Overenhangauren C. Hon offen 360

	Se:	ite	Seite
e)	Oxo-carbonsäuren C _n H _{2n-11} O ₆ N . 3	65	2. Oxy-oxo-carbonsäuren mit 5 Sauer-
á	Oxo-carbonsäuren C _n H _{2n-15} O ₆ N . 36	65	stoffatomen.
		66 •)	Oxy-oxo-carbonsăuren
		86	$\hat{C}_nH_{2n-5}O_5N$ (z. B. Citrimidsaure)
s)		67 b)	Oxy-oxo-carbonsäuren CnH2n-9O5N (z. B. Formyleitr-
	5. Oxo-carbonsäuren mit 7 Sauer- stoffatomen.	(c)	azinsāure)
•)	Oxo-carbonsäuren C _n H _{2n-9} O ₇ N . 30	67	$\tilde{\mathbf{C}}_{\mathbf{n}}\mathbf{H}_{2\mathbf{n}-11}\mathbf{O}_{5}\mathbf{N}$
	Oxo-carbonsäuren C _n H _{2n-11} O ₇ N . 30		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Oxo-carbonsäuren $C_nH_{2n-19}O_7N$. 30	00	Oxy-oxo-carbonsäuren Cn H _{2n-17} O ₅ N
	6. Oxo-carbonsäuren mit 8 Sauer- stoffatomen.	t)	0xy-oxo-carbonsäuren Cn H _{2n-19} O ₅ N
	2.5-Dioxo-pyrrolidin-carbonsaure- (3)-malonsaure-(4)		
	7. Oxo-carboneäuren mit 9 Sauer-		3. Oxy-oxo-carbonsäuren mit 6 Sauer- stoffatomen.
	stoffatomen.		Ovv.ovo.earhoneäuren
	Oxo-carbonsäuren $C_nH_{2n-13}O_9N$. 36	1	C _n H _{2n-9} O ₆ N 379 Oxy-oxo-carbonsäuren
	H. Oxy-oxo-carbonsäuren.		$ \mathring{C}_{n}H_{2n-11}O_{6}N \dots \dots 380 $
	1. Oxy-oxo-carbonsäuren mit 4 Sauer-	6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	stoffatomen.	1	Oxy-oxo-carbonsäuren mit 7 Sauer-
s)	$\begin{array}{c} 0xy\text{-}oxo\text{-}carbons\"{a}uren \\ C_nH_{2n-3}O_4N \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	70	stoffalomen.
b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
c)	Oxy-oxo-carbonsäuren	b)	Oxy-exe-carbons auren $C_nH_{2n-13}O_7N$
	$ \mathring{C}_n H_{2n-11} O_4 N $ (z. B. Indoxanthinsaure)	72 c)	0xy-oxo-carbonsäuren Cn H _{2n-15} O ₇ N
d)	Oxy-oxo-carbonsäuren CnH2n-18O4N	73 d)	0xy-oxo-carbonsäuren CnH _{2n-17} O ₇ N
->		9	
e,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	V. St	ulfons ā u	iren.
	A. Monosulfonsäuren.	6.	Monosulfonsäuren CnH2n-15O3NS
1.	Monosulfonsäuren $C_n H_{2n+1} O_3 NS$ [z. B. Piperidin - α - sulfonsäure,	0.0	[z. B. 6.7 - Benzo - indol - sulfon- săure-(2), 9.10 - Dihydro - scridin- sulfonsăure-(9)] 399
2.	Coniin-sulfonsăure-(6)] 30 Monosulfonsăuren C _n H _{2n-5} O ₃ NS	7.	Monosultonsäuren C _n H _{2n-17} O ₃ NS
R	(z. B. Pyridinsulfonsäure) 30 Monosulfonsäuren C _n H _{2n-7} O ₃ NS	1	(z. B. Benzochinolinsulfonsäure) 400
.	(z. B. Tetrahydrochinolinsulfon- säure)	1	Monesulfonsäuren C _n H _{2n-19} O ₃ NS (z. B. Phenylchinolinsulfonsäure) 401
4.	Monosulfonsäuren CnH2n-9O3NS. 3	89 9.	Monosultonsäuren C _n H _{2n-21} O ₈ NS
5.	Monosulfonsäuren CnH _{2n-11} O ₃ NS		[z. B. 2.3-Benzo-carbazol-sulfon-säure-(1)]
	(z. B. Chinolinsulfonsäure, Chinaldinsulfonsäure)	90 10.	Monosulfonsäuren CnH2n-28O8NS 402

		Seite		Seite
	B. Disulfonsäuren.		4. Sulfonsäuren der Tetraoxy- Verbindungen.	
I.	Disulfonsäuren C _n H _{2n-5} O ₆ NS ₂ (Py ridindisulfonsäure)	403		412
2.	Disulfonsäuren C _n H _{2n-11} O ₆ NS ₂ (Chinolindisulfonsäuren)	403	E. Oxo-sulfonsäuren.	
8.	Disulfonsäuren C _n H _{2n-15} O ₆ NS ₂ [z. B. Carbazol-disulfonsäure-(3.6)		 Sulfonsäuren der Monooxo- Verbindungen. 	
4.	Disulfonsäuren CnH2n-17O6NS2		a) Sulfonsäuren der Monooxo-Verbindungen C _n H _{2n-9} ON	4 13
5.	(z. B. Benzochinolindisulfonsäure) Disulfonsäuren C _n H _{2n-21} O ₆ NS ₂	405	b) Sulfonsäuren der Monooxo-Verbin-	
	Disulfonsäuren C _n H _{2n-25} O ₆ NS ₃ .	405	dungen $C_nH_{2n-17}ON$ [z. B. Acridon-sulfonsäure-(2)]	413
7.		405	c) Sulfonsäuren der Monooxo-Verbindungen CnH _{2n-28} ON	4 13
	C. Trisulfonsäuren.		d) Sulfonsäuren der Monooxo-Verbin-	
	Carbazol-trisulfonsäure-(1.3.6)	405	dungen C _n H _{2n-29} ON	414
	D. Oxy-sulfonsäuren.		2. Sulfonsäuren der Dioxo- Verbindungen.	
	1. Sulfonsäuren der Monooxy- Verbindungen.		a) Sulfonsäuren der Dioxo-Verbin-	
a)	Sulfonsäuren der Monooxy-Verbin-	400	dungen $C_nH_{2n-11}O_2N$ [z. B. Isatin-sulfonsäure-(5)]	414
b)	dungen $C_nH_{2n-7}ON$ Sulfonsäuren der Monooxy-Verbin-	406	b) Sulfonsäuren der Dioxo-Verbin- dungen C _n H _{2n-23} O ₂ N	415
•	dungen $C_nH_{2n-9}ON$	406	e) Sulfonsäuren der Dioxo-Verbin-	
e)	Sulfonsäuren der Monooxy-Verbin- dungen C _n H _{2n-11} ON (z. B. Oxy-	400	dungen C _n H _{2n-25} O ₂ N	4 15
d)	chinolinsulfonsäure)	400	F. Oxy-exo-sulfensäuren. 1. Sulfensäuren der Oxy-exo-Ver-	
	dungen $C_nH_{2n-15}ON$	410	bindungen mit 4 Sauerstoffatomen.	
•	Sulfonsäuren der Monooxy-Verbindungen C _n H _{2n-17} ON	410	eta-Alizarinblau-sulfonsäure usw	416
I)	Sulfonsäuren der Monooxy-Verbindungen C _n H _{2n-19} ON	440	2. Sulfonsäuren der Oxy-oxo-Ver- bindungen mit 5 Sauerstoffatomen.	
g)	Sulfonsäuren der Monooxy-Verbin-		Alizarinblaugrün usw	4 16
b.	dungen C _n H _{2n-25} ON	411	G. Sulfonsäuren der Carbonsäuren.	
n,	Sulfonsäuren der Monooxy-Verbindungen C _n H _{2n-29} ON	411	1. Sulfonsäuren der Monocarbonsäuren.	
	2. Sulfonsäuren der Dioxy-		a) Sulfonsäuren der Monocarbonsäuren CnH2n-7O2N	447
	Verbindungen.		b) Sulfonsäuren der Monocarbonsäuren	Z 1,
	-	412	$C_nH_{2n-13}O_2N$ (z. B. Sulfocinchoninsäure)	1 17
	3. Sulfonsäuren der Trioxy- Verbindungen.		2. Sulfonsäuren der Dicarbonsäuren.	
	$[Chlor-sulfo-trioxy-phenyl]-pyridin\;.$	412	[Sulfocarboxyphenyl]-picolinsäure . 4	118
	•	VI. A	Amine.	
	A. Monoamine.		5. Monoamine C _n H _{2n-6} N ₂ (z. B. Ami-	
1.	Monoamine $C_nH_{2n+2}N_2$ (z. B.		notetrahydrochinolin) 4	138
2.	4-Amino-2.6-dimethyl-piperidin). Monoamine $C_nH_{2n}N_2$ (z. B. Nortro-	419	6. Monoamine $C_nH_{2n-8}N_2$ (z. B. 3-Amino-2-methyl-indol) 4	L4 1
•	pylamin mit Tropylamin, Grana- tylamin)	425	7. Monoamine $C_nH_{2n-10}N_2$ (z. B.	
8.	Monoamine C ₂ H _{2n-2} N ₂	428	Aminochinolin, Aminochinaldin, Aminolepidin) 4	L4 3
	Monoamine Cn H _{2n-4} N ₂ (z. B. Ami-		8. Monoamine C _n H _{2n-12} N ₂ (z. B.	
	nopyridin, Aminolutidin)	42 0	Aminodihydrostilbazol) 4	158

	Seite	1		Seite
	Menoamine C _n H _{2n-14} N ₂ (z. B. 3-Amino-carbazol, Aminostilbazol) 460	d)	Aminoderivate der Monooxy-Verbindungen C _n H _{2n-11} ON (z. B.	500
10.	Monoamine $C_nH_{2n-16}N_2$ (z. B. Aminoacridin)	e)	Aminoderivate der Monooxy-Ver-	
11.	Monoamine C _n H _{2n-18} N ₂ (z. B. Aminophenylchinolin, Flavanilin) 465	f)	bindungen C _n H _{2n-13} ON Aminoderivate der Monooxy-Ver-	
12.	$\begin{array}{cccc} \textbf{Monoamine} & C_nH_{2n-20}N_2 & (z. & B. \\ & \textbf{Aminophenyl-chinolyl-athylen}) & . & 472 \end{array}$	g)	bindungen $C_nH_{2n-15}ON$ Aminoderivate der Monooxy-Ver-	506
18.		h)	bindungen $C_nH_{2n-17}ON$ Aminoderivate der Monooxy-Ver-	506
14.	$\begin{array}{cccc} \textbf{Monoamine} & C_nH_{2n-24}N_2 & (z. B.\\ \textbf{2-Amino-9-phenyl-acridin}) & . & . & . 476 \end{array}$		bindungen $C_nH_{2n-19}ON$ Aminoderivate der Monooxy-Ver-	5 07
	Monoamine $C_nH_{2n-26}N_2$ 479		bindungen $C_nH_{2n-23}ON$ Aminoderivate der Monooxy-Ver-	5 08
	Monoamine $C_nH_{2n-28}N_2$ 480 Monoamine $C_nH_{2n-80}N_2$ (z. B.	A)	bindungen $C_nH_{2n-25}ON$ (z. B. Chrysophenol)	50Q
	Aminophenylbenzoacridin) 481	1)	Aminoderivate der Monooxy-Ver-	
	B. Diamine.		bindungen C _n H _{2n-27} ON	010
1.	Diamine $C_nH_{2n+3}N_8$ 484	m)	Aminoderivate der Monooxy-Verbindungen C _n H _{2n-29} ON	511
2.	Diamine $C_nH_{2n+1}N_3$ 484	n)	Aminoderivate der Monooxy-Ver-	
	Diamine $C_nH_{2n-1}N_8$ 484		bindungen C _n H _{2n-37} ON	511
4.	$\begin{array}{llllllllllllllllllllllllllllllllllll$		2. Aminoderivate der Dioxy-	
5.	Diamine $C_nH_{2n-\theta}N_3$ (z. B. Diaminochinolin) 485	•)	Verbindungen. Aminoderivate der Dioxy-Verbin-	
6.	Diamine $C_nH_{2n-13}N_3$ (z. B. 3.6-Diamino-carbazol) 486		dungen $C_nH_{2n-3}O_2N$ Aminoderivate der Dioxy-Verbin-	511
7.	Diamine $C_nH_{2n-15}N_3$ (z. B. Diaminoacridin) 487	1	dungen $C_nH_{2n-5}O_2N$ (z. B. Aminodioxypyridin)	511
8.	Diamine $C_nH_{2n-17}N_3$ 489	(2)	Aminoderivate der Dioxy-Verbin-	· · ·
	Diamine $C_nH_{2n-19}N_8$	"	dungen $C_nH_{2n-11}O_2N$	514
10.	Diamine C_nH _{2n-21} N ₃ 490			
11.	Diamine $C_nH_{2n-28}N_3$ (z. B. Chrysanilin, Benzoflavin) 490		3. Aminoderivate der Trioxy- Verbindungen.	
12.	Diamine $C_nH_{2n-25}N_3 495$		4 - Amino - 1 - oxy-6.7-dimethoxy-iso-	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		indolenin usw	514
7.20	C. Triamine.		4. Aminoderivate der Tetraoxy- Verbindungen.	
1.	Triamine $C_nH_{2n-8}N_4$ 496	8)	Aminoderivate der Tetraoxy-Ver-	
2.	Triamine $C_nH_{2n-20}N_4$ 496		bindungen C _n H _{2n-15} O ₄ N (Ami-	K14
8.	Triamine $C_nH_{2n-22}N_4$ 496	b)	Aminoderivate der Tetraoxy-Ver-	OIT
	D. Tetraamine. Tetraaminocarbazol 497		bindungen $C_nH_{2n-19}O_4N$ (z. B. Aminopapaverin)	515
			F. Oxo-amine.	
	E. Oxy-amine.		`	
	1. Aminoderivate der Monooxy- Verbindungen.		1. Aminoderivate der Monooxo- Verbindungen.	
	Aminoderivate der Monooxy-Verbindungen C _n H _{2n-5} ON (z. B. Aminooxy-pyridin) 497	a)	Aminoderivate der Monoexo-Verbindungen $C_nH_{2n-1}ON$ [z. B. 3-Amino-piperidon-(2)]	515
p)	Aminoderivate der Monooxy-Verbindungen C _n H _{2n-7} ON 499	b)	Aminoderivate der Monooxo-Verbindungen C _n H _{2n-3} ON	
e)	Aminoderivate der Mongoxy-Ver- bindungen Ca-Hop ON 400	6)	Aminoderivate der Monooxo-Ver-	K477

		Seite 🗄	Seite
d)	Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-9}ON$ (z. B. 6-Amino-oxindol)	518	e) Aminoderivate der Oxy-oxo-Verbindungen $C_nH_{2n-28}O_2N$ 539
e)	Aminoderivate der Monooxo-Verbindungen C _n H _{2n-11} ON		f) Aminoderivate der Oxy-oxo-Verbindungen $C_nH_{2n-25}O_2N$ 540
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2. Aminoderivate der Oxy-oxo-Ver- bindungen mit 3 Sauerstoffatomen.
g)	Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-15}ON$ (z. B. Aminonaphthostyril)	594	a) Aminoderivate der Oxy-oxo-Verbindungen $C_nH_{2n-9}O_3N$ 540
h)	Aminoderivate der Monooxo-Verbindungen C _n H _{2n-17} ON (z. B.	02± ;	b) Aminoderivate der Oxy-oxo-Verbindungen C _n H _{2n-25} O ₃ N 541
i)	1-Amino-acridon)		3. Aminoderivate der Oxy-oxo-Ver- bindungen mit 4 Sauerstoffatomen.
k)	bindungen $C_nH_{2n-19}ON$ Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-23}ON$		5-Amino-4.6-dioxy-2.3-dioxo-2.3-di- hydro-pyridin
l)	Aminoderivate der Monooxo-Verbindungen C _n H _{2n-25} ON (z. B. Di-		4. Aminoderivate der Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.
m)	methylanilinisatin)		Aminopapaveraldin 541
	bindungen $C_nH_{2n-29}ON$	528	H. Amino-carbonsäuren.
	2. Aminoderivate der Dioxo-		1. Aminoderivate der Monocarbonsäuren.
	Verbindungen.		a) Aminoderivate der Monocarbonsäu-
a)	Aminoderivate der Dioxo-Verbindungen $C_nH_{2n-3}O_2N$ (z. B. Anilinobernsteinsäureimid, Anilino-		ren C _n H _{2n-7} O ₂ N (z. B. Amino- picolinsäure, Diaminonicotinsäure, Anilinolutidincarbonsäure) 541
	brenzweinsäureanil)	528	b) Aminoderivate der Monocarbonsäu-
b)	Aminoderivate der Dioxo-Verbindungen $C_nH_{2n-5}O_2N$	533	ren $C_nH_{2n-9}O_2N$
c)	Aminoderivate der Dioxo-Verbindungen $C_nH_{2n-11}O_2N$ (z. B.		ren $C_nH_{2n-11}O_2N$ (z. B. Tryptophan)
	[3-Amino-phthalsäure]-imid)	534	d) Aminoderivate der Monocarbonsäu-
ĺ	$\begin{array}{cccc} \textbf{Aminoderivate} & \textbf{der} & \textbf{Dioxo-Verbin-} \\ \textbf{dungen} & C_nH_{2n-18}O_2N & . & . & . \\ \end{array}$	535	ren C _n H _{2n-18} O ₂ N (z. B. Aminocinchoninsäure, Aminochinaldincarbonsäure)
e)	Aminoderivate der Dioxo-Verbindungen $C_nH_{2n-19}O_2N$	536	e) Aminoderivate der Monocarbonsäu-
t)	Aminoderivate der Dioxo-Verbin-		ren $C_nH_{2n-21}O_2N$
g)	dungen $C_nH_{2n-23}O_2N$ Aminoderivate der Dioxo-Verbin-	000	ren $C_nH_{2n-27}O_2N$ (z. B. Flaveo-
-,	dungen $C_nH_{2n-25}O_2N$	538	sin)
	3. Aminoderivate der Tetraoxo-		2. Aminoderivate der Dicarbonsäuren.
	Verbindungen.		a) Aminoderivate der Dicarbonsäuren $C_nH_{2n-9}O_4N$
	5-Amino-2.3.4.6-tetraoxo-piperidin.	538	b) Aminoderivate der Dicarbonsäuren CnH2n-17O4N
	G. Oxy-oxo-amine.		On 112h-170414
	l. Aminoderivate der Oxy-oxo-Ver- bindungen mit 2 Sauerstoffatomen.		3. Aminoderivate der Tricarbonsäuren.
a)	Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-3} O_2 N$	538	[Amino-carbāthoxy-pyrrolinyliden]- cyanessigsäure-äthylester 554
b)	Aminoderivate der Oxy-oxo-Verbin-		J. Amino-oxy-carbonsäuren.
e)	dungen $C_nH_{2n-11}O_3N$ Aminoderivate der Oxy-oxo-Verbin-	538	 Aminoderivate der Oxy-carbonsäuren mit 3 Sauerstoffatomen.
-	dungen $C_nH_{2n-17}O_2N$	538	a) Aminoderivate der Oxy-carbonsäu-
d)	Aminoderivate der Oxy-oxo-Verbin-	539	ren $C_nH_{2n-7}O_3N$ (z. B. Amino-

	3	Seite	Seite
b)	Aminoderivate der Oxy-carbonsäuren C _n H _{2n-18} O ₈ N (z. B. Aminocarbo-		2. Aminoderivate der Oxo-carbonsäuren mit 4 Sauerstoffatomen.
	styrilessigsäure)	555	Anilinotricarballylsäureimid usw. 559 3. Aminoderivate der Oxo-carbonsäuren
2.	Aminoderivate der Oxy-carbonsäuren mit 4 Sauerstoffatomen.		mit 5 Sauerstoffatomen. Äthyl-äthylamino-pyridon-dicarbon-
	Glutazincarbonsäureäthylester usw	558	säure 560
_			4. Aminoderivate der Oxo-carbonsäuren mit 7 Sauerstoffatomen.
3.	Aminoderivate der Oxy-carbonsäuren mit 6 Sauerstoffatomen.		Brom-amino-pyrrolidon-carbonsaure- brommalonsaure
	Glutazin - carbonsäureäthylester - essigsäure	557	L. Amino-oxy-oxo-carbonsäuren.
	K. Amino-oxo-carbonsäuren.		Anilino-oxy-oxo-phenylimino - dihy - dropyridin-carbonsäureamid 560
1.	Aminoderivate der Oxo-carbonsäuren		M. Amino-sulfonsäuren.
	mit 3 Sauerstoffatomen.		1. Aminoderivate der Monosulfonsäuren.
a)	Aminoderivate der Oxo-carbonsäuren C _n H _{2n-7} O ₃ N	558	Amino-methyl-chinolin-sulfonsäure usw
b)	Aminoderivate der Oxo-carbonsäuren $C_nH_{2n-11}O_3N$	558	2. Aminoderivate der Disulfonsäuren.
c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	558	Aminocarbazoldisulfonsäure 561 N. Amino-oxo-sulfonsäuren.
d)	Aminoderivate der Oxo-carbonsäuren		Methyl - methylamino - anthrapyri-
	$C_nH_{2n-17}O_3N$	558	don-sulfonsäure 561
	VII. F	Hydro	kylamine.
	Methyl-hydroxylamino-phenyl-dihydr	oacridi	in usw
		. Hyd	lrazine.
	. Hydrazinoderivate der Stammkerne.		B. Oxy-hydrazine.
	Monohydrazine $C_nH_{2n-3}N_3$ (z. B. Hydrazinolutidin)	563	Phenylhydrazino-oxy-picolin usw 567
2.	Monohydrazine $C_nH_{2n-9}N_3$ (z. B. Hydrazinochinolin)	564	C. Oxo-hydrazine. Bis-phenylhydrazino-maleinsäure-
	Monohydrazine $C_nH_{2n-18}N_3$	567	imid
	Monohydrazine C _n H _{2n-15} N ₃		D. Hydrazino-carbonsäuren.
5.	Monohydrazine C _n H _{2n-17} N ₃	567	Hydrazinonicotinsäure usw 568
		00.	
			bindungen.
A.	Mono-azo-derivate der Stammkerne.		bindungen. 5. Monoazoderivate der Stammkerne
и. 1.	Mono-azo-derivate der Stammkerne. Monoazoderivate der Stammkerne C _n H _{2n-3} N (z. B. 2-Benzolazo-1-	o-Verl	5. Monoazoderivate der Stammkerne C _n H _{2n-11} N (z. B. Azochinolin) 576 6. Monoazoderivate der Stammkerne
1.	Mono-azo-derivate der Stammkerne. Monoazoderivate der Stammkerne CnH2n-3N (z. B. 2-Benzolazo-1- methyl-pyrrol)	o-Verl	5. Monoazoderivate der Stammkerne CnH2n-11N (z. B. Azochinolin) 576 6. Monoazoderivate der Stammkerne CnH2n-13N 578
1. 2.	Mono-azo-derivate der Stammkerne. Monoszoderivate der Stammkerne CnH2n-3N (z. B. 2-Benzolazo-1- methyl-pyrrol) Monoszoderivate der Stammkerne CnH2n-5N (z. B. Pyridinazoresor- cin, Benzolazolutidin)	572	5. Monoazoderivate der Stammkerne CnH2n-11N (z. B. Azochinolin) 576 6. Monoazoderivate der Stammkerne CnH2n-13N 578 7. Monoazoderivate der Stammkerne CnH2n-15N [z. B. Carbazol-diazo-
1. 2. 8.	Mono-azo-derivate der Stammkerne. Monoszoderivate der Stammkerne CnH2n-3N (z. B. 2-Benzolazo-1- methyl-pyrrol) Monoszoderivate der Stammkerne CnH2n-5N (z. B. Pyridinazoresor- cin, Benzolazolutidin) Monoszoderivate der Stammkerne CnH2n-7N	572	5. Monoazoderivate der Stammkerne CnH2n-11N (z. B. Azochinolin) 576 6. Monoazoderivate der Stammkerne CnH2n-13N 578 7. Monoazoderivate der Stammkerne
1. 2. 8.	Mono-azo-derivate der Stammkerne. Monoszoderivate der Stammkerne CnH2n-3N (z. B. 2-Benzolazo-1- methyl-pyrrol) Monoszoderivate der Stammkerne CnH2n-5N (z. B. Pyridinazoresor- cin, Benzolazolutidin)	572 574	5. Monoazoderivate der Stammkerne CnH2n-11N (z. B. Azochinolin) 576 6. Monoazoderivate der Stammkerne CnH2n-13N 578 7. Monoazoderivate der Stammkerne CnH2n-15N [z. B. Carbazol-diazosulfonsäure-(3), Stilbazolazonaph-

Seite	Seite
B. Bis-azo-derivate der Stammkerne. Bis-benzolazo-pyrrol usw 582	2. Azoderivate der Dioxo- Verbindungen.
	Benzolazo-homophthalimid usw 587
C. Azoderivate der Oxy-Verbindungen.	
1. Azoderivate der Monooxy- Verbindungen.	3. Azoderivate der Trioxo- Verbindungen.
a) Azoderivate der Monooxy-Verbin- dungen C _n H _{2n-5} ON (z. B. Benzol- azopyridon)	Nitrobenzol-azo-trioxopiperidin 587
h) Azoderivate der Monooxy-Verbin- dungen C _n H _{2n-9} ON (Benzolazo- indoxyl)	E. Azoderivate der Oxy-oxo- Verbindungen.
c) Azoderivate der Monooxy-Verbin-	Azohemipinsäurediimid 587
dungen C _n H _{2n-11} ON (z. B. Benzolazooxychinolin) 584	F. Azoderivate der Carbonsäuren.
2. Azoderivate der Dioxy- Verbindungen.	Benzolazolutidincarbonsäuräthylester usw
Benzolazodioxypicolin usw 585	G. Azoderivate der Oxy-carbonsäuren.
3. Azoderivate der Trioxy- Verbindungen.	Benzolazocitrazinsäure usw 588
Nitrobenzol-azo-trioxypyridin 585	H. Azoderivate der Amine.
D. Azoderivate der Oxo-Verbindungen. 1. Azoderivate der Monooxo-	Benzolsulfonsäure-azo-aminostil- bazol usw
Verbindungen.	J. Azoderivate der Hydrazine.
Bis-benzolazo-tropinon, Bis-benzolazo-pyrrol usw	Benzolazo-phenylhydrazino-indol . 589
X. Diazo-Ve	erbindungen.
A. Diazoderivate der Stammkerne.	C. Diazoderivate der Oxo-Verbindungen.
Carbazol-diazoniumhydroxyd-(3) usw 590	Hydrocarbostyril-diazoniumhydroxyd usw
B. Diazoderivate der Oxy-Verbindungen.	D. Diazoderivate der Oxy-oxo- Verbindungen.
Oxychinaldin-diazoniumhydroxyd usw	Papaveraldin-diazoniumhydroxydusw592
XI. Azoxy-V	erbindungen.
Dimethyl-azoxychinolin usw	
XII. Nie	ramine.
XIII. T	riazene.
Diazoammopyrium usw	,
XIV. C-Magnesiu	-
Alphabetisches Register für Bd. XXII.	
•	e

Verzeichnis der Abkürzungen für die wichtigsten Literatur-Quellen.

(Die hier aufgeführten Journale sind vollständig nach dem Original bearbeitet.)

Abkursung	Titel	Bearbeitet b
4.	LIEBIGS Annalen der Chemie	871, 124
1. ch.	Annales de Chimie et de Physique	[8] 18, 574
lm.	American Chemical Journal	42, 541
lm. Soc.	Journal of the American Chemical Society	81, 1374
inn. Phys.	Annalen der Physik und Chemie (Poggendorff-Wiede-	01, 1014
initi i ngo.	MANN-DRUDE-WIEN und PLANCK)	[4] 80, 1024
lr.	Archiv für Pharmazie	
r. Pih.	Archiv für Experimentelle Pathologie und Pharmakologie	247, 657
3.	Berichte der Deutschen Chemischen Gesellschaft	62, 92
Bio. Z.	Biochemische Zeitschrift	42, 4918
81.		28, 328
н. 3. <i>Р</i> ћ. Р.	Bulletin de la Société Chimique de France	[4] 5, 1158
. <i>Ph. P.</i>	Beiträge zur Chemischen Physiologie und Pathologie	11, 514
	Chemisches Zentralblatt	1909 II, 221
hem. N.	Chemical News	100, 328
h. <i>I</i> .	Chemische Industrie	82, 840
h. Z.	Chemiker-Zeitung	88, 1364
. r .	Comptes rendus de l'Académie des Sciences	149, 1422
. R. P.	Patentschrift des Deutschen Reiches	Soweit im Chemis Zentralbl. bis 1. 1910 referiert
l. Ch. Z .	Elektrochemische Zeitschrift	16, 280
.	Zeitschrift für Analytische Chemie (FRESENIUS)	48, 762
,	Gazzetta Chimica Italiana	39 II, 556
•	Zeitschrift für Physiologische Chemie (HOPPE-SEYLER)	63, 484
	Jahresbericht über die Fortschritte der Chemie	00, 202
10F.	Journal für Praktische Chemie	[0] 01 00
pr. V. St.	Landwirtschaftliche Versuchsstationen	[2] 81, 96
	Monatahefte für Chemie	71, 482
. Fi.	Ofveriet of Finche Vetershope Societation William 31	80, 758
. Sv.	Ofversigt af Finska Vetenskaps-Societetens Förhandlingar	
. DV.	Öfversigt af Kongl. (Svenska) Vetenskaps - Akademiens Förhandlingar	
C. H.	Pharmazeutische Zentralhalle	50, 1100
. Ch.	Zeitschrift für Physikalische Chemie	
	Recueil des travaux chimiques des Pays-Bas	69, 685
A. L.	Atti della Reale Accademia dei Lincei (Rendiconti)	28, 456
c.	Jonesal of the Chamical Society of Lander	[5] 18 II, 66
••	Journal of the Chemical Society of London Zeitschrift für Chemie	95, 2219
a. Ch.	Zeitechrift für Anna 1 1 00	
Ang.	Zeitschrift für Anorganische Chemie	65, 232
B.	Zeitschrift für Angewandte Chemie	22, 2592
El. Ch.	Zeitschrift für Biologie	58, 318
	Zeitschrift für Elektrochemie	15, 988
Kr.	Zeitschrift für Krystallographie und Mineralogie	47, 208
•	Journal der Russischen Physikalisch-chemischen Ge- sellschaft	Soweit im Chemise Zentralbl. bis 1. 1910 referiert

Verzeichnis der Abkürzungen für weitere Literatur-Quellen.

(Die hier aufgeführten Journale sind nicht vollständig nach dem Original bearbeitet.)

Abkürzung Titel Abh. Disch. Bunsen-Ges. Abhandlungen der Deutschen Bunsen-Gesellschaft Acta Chemica Fennica Act. chem. Fenn. Koninkl. Akad. van Wetenschappen te Amsterdam; Verslag van Akad. Amsterdam Versl. de gewone vergaderingen der wis- en natuurkundige afdeeling Am. J. Pharm. American Journal of Pharmacy American Journal of Physiology Am. J. Physiol. American Journal of Science Am. J. Sci. Anales de la Sociedad Española de Física y Química An. Españ. Ann. Acad. Sci. Fenn. Annales Academiae Scientiarum Fennicae Annali di Chimica applicata Ann. Chim. applic. Ann. Physique Annales de Physique Annales Scientifiques de l'Université de Jassy Ann. scient. Jassy Anz. Krakau. Akad. Anzeiger der Akademie der Wissenschaften, Krakau Apotheker-Zeitung A poth. Ztg. Arbeiten aus dem Kaiserlichen Gesundheits-Amte; seit 1919: Arb. Geoundh .- Amt Arbeiten aus dem Reichsgesundheitsamte Arch. Anat. Physiol. Archiv für Anatomie und Physiologie. Anatomische Abteilung (anatom. Abtlg.) Arch. Farm. sperim. Archivio di Farmacologia Sperimentale e Scienze Affini Archiv für Hygiene Arch. Hyg. Archives des Sciences Physiques et Naturelles, Genève Arch. Sci. phys. nat. Genève Ark. Kem. Min. Arkiv för Kemi, Mineralogi och Geologi Atti della Reale Accademia delle scienze di Torino Atti Accad. Torino Ber. Disch. pharm. Ges. Berichte der Deutschen Pharmazeutischen Gesellschaft (seit 1924 mit Archiv der Pharmazie vereinigt) Ber. Heidelberg Akad. Sitzungsberichte der Heidelberger Akademie der Wissenschaften (Math.-nat. Kl.) Berliner Klinische Wochenschrift Berl. Klin. Wchechr. Biochemical Journal Biochem. J. Bulletin de l'Académie Royale de Belgique. Classe des Bl. Acad. Belg. Sciences Bulletin de l'Association des Chimistes de Sucrerie et de Distillerie Bl. Assoc. Chimistes de de la France Sucr. et Dist. Bulletin de la Société Chimique de Belgique Bl. Soc. chim. Belg. Bl. Soc. Natural. Bulletin de la Société Imp. des naturalistes de Moscou Moscou Boll. chim. farm. Bolletino chimico-farmaceutico Brennstoff-Chemie Brennstoffchemie Bulet. Buletinul Societatii de Sciinte din Bucuresci Bull. Bur. Mines Bulletin (Dep. of the Interior Bureau of Mines) Carnegie Inst. Publ. Carnegie Institution of Washington, Publications C. Bakt. Parasitenk. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten. Abt. I und II C. Bioch. Bioph. Zentralblatt für Biochemie und Biophysik Chemische Apparatur Chemische Apparatur Ch. Rev. Fett- u. Harz-Chemische Revue über die Fett- und Harzindustrie Ind. Chem. met. Eng. Chemical and Metallurgical Engineering Chem. Umschau a. d. Chemische Umschau auf dem Gebiete der Fette, Öle, Wachse und Geb. d. Fette usw. Harze Chem. Weekbl. Chemisch Weekblad Colleg. Collegium

Comptes rendus des Travaux du Laboratoire de Carlsberg

C.r. Trav. Lab, Carlsberg

Titel Abkürzung DINGLERS Polytechnisches Journal Kongelige Danske Videnskabernes Selskab, Mathematisk-fysiske Danske Videnskab. Selekab Meddelelser Disch, med. Wchschr. Deutsche medizinische Wochenschrift Zeitschrift für Färberei, Zeugdruck und den gesamten Farben-Färber-Zig. verbrauch (seit 1920: Textilberichte) Farben-Zeitung Farbenzta. Finska Kemistoam-Finska Kemistsamfundets Meddelanden jundets Medd. Fortschritte der Chemie, Physik und Physikalischen Chemie Fortschr. Ch., Phys., phys. Ch. Frdl. FRIEDLAENDERS Fortschritte der Teerfarbenfabrikation. Berlin. Von 1888 an Ges. Abh. z. Kenntnis Gesammelte Abhandlungen zur Kenntnis der Kohle der Kohle E. GILDEMEISTER, FR. HOFFMANN, Die ätherischen Öle. 3. Aufl. von E. GILDEMEISTER. 3 Bände. Miltitz bei Leipzig Gildem.-Hoffm. 1) (1928 - 1931)Giornale di Farmacia, di Chimica e di Scienze Affini L. GMELINS Handbuch der Organischen Chemie, 4. Aufl. 5 Bände und 1 Supplementband. Heidelberg (1848—1868) P. GROTH, Chemische Krystallographie. 5 Teile. Leipzig (1906 Giorn. Farm. Chim. Gm. Groth, Ch. Kr. bis 1919) Helv. Helvetica Chimica Acta J. biol. Chem. Journal of Biological Chemistry J. Chim. phys. Journal de Chimie physique J. Franklin Inst. Journal of the Franklin Institute J. Gashel. Journal für Gasbeleuchtung und verwandte Beleuchtungsarten sowie für Wasserversorgung (seit 1922: Das Gas- und Wasserfach) J. ind. eng. Chem. Journal of Industrial and Engineering Chemistry J. Inst. Brewing Journal of the Institute of Brewing J. Landw. Journal für Landwirtschaft J. Pharmacol. exp. Ther. Journal of Pharmacology and Experimental Therapeutics Journal de Pharmacie et de Chimie Journal of Physical Chemistry Journal of Physicology J. Pharm. Chim. J. phys. Chem., J. Physiology Journal of the Society of Chemical Industry (Chemistry and J. Soc. chem. Ind. Industry) J. Th.Jahresbericht über die Fortschritte der Tierchemie J. Washington Acad. Journal of the Washington Academy of Sciences Kali Kali Koll. Beih. Kolloidchemische Beihefte Koll. Z. Kolloid-Zeitschrift Mem. and Pr. Manche-Memoirs and Proceedings of the Manchester Literary and Philoster Lit. and Phil. Soc. sophical Society Midl. Drug. Pharm. Midland Druggist and pharmaceutical Review Mitt. Lebensmittel. Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung unters. u. Hyg. und Hygiene Monit. scient. Moniteur Scientifique Münch. med. Wchechr. Münchener medizinische Wochenschrift Nachr. landw. Akad. Nachrichten der landwirtschaftlichen Akademie zu Petrovako-Petrovako. Rasumovskoje Rasumovskoje Naturviss. Naturwissenschaften Ost.-ung.Z.Zucker-Ind. Österreichisch-ungarische Zeitschrift für Zuckerindustrie und Landwirtschaft P. Ch. S. Proceedings of the Chemical Society

Abkürzung	Titel				
Petroleum	Petroleum				
Pflügers Arch. Physiol.	Archiv für die gesamte Physiologie des Menschen und der Tiere (PFLÜGER)				
Pharm, J.	Pharmaceutical Journal (London)				
Pharm. Post	Pharmazeutische Post				
Philippine J. Sci.	Philippine Journal of Science				
Phil. Mag.	Philosophical Magazine and Journal of Science				
Phil. Trans.	Philosophical Transactions of the Royal Society of London				
Photographic J.	The Photographic Journal (London)				
Phys. Rev.	Physical Review				
Phys. Z.	Physikalische Zeitschrift				
Pr. Cambridge Soc.	Proceedings of the Cambridge Philosophical Society				
Pr. chem. Soc.	Proceedings of the Chemical Society (London)				
Pr. Imp. Acad. Tokyo	Proceedings of the Imperial Academy, Tokyo				
Pr. Roy. Irish Acad.	Proceedings of the Royal Irish Academy				
Pr. Roy. Soc.	Proceedings of the Royal Society (London)				
Pr. Roy. Soc. Edin- burgh	Proceedings of the Royal Society of Edinburgh				
Schimmel & Co. Ber.	Berichte von Schimmel & Co.				
Schultz, Tab. 1)	G. SCHULTZ, Farbstofftabellen. 5. Aufl. (Berlin 1914 [Neudruck 1920]); 7. Aufl. (Leipzig 1931—1932)				
Schweiz. Wchschr. Chem. Pharm.	Schweizerische Wochenschrift für Chemie und Pharmacie (seit 1914: Schweizerische Apotheker-Zeitung)				
Skand. Arch. Physiol.	Skandinavisches Archiv für Physiologie				
Svensk Kemisk Tidskr.	Svensk Kemisk Tidskrift				
Therapeut. Monatsh.	Therapeutische Halbmonatshefte				
Trans. New Zealand Inst.	Transactions and Proceedings of the New-Zealand Institute				
Z. Disch. Öl- u. Fettind.	Zeitschrift der Deutschen Öl- und Fettindustrie				
Z. exp. Path. Ther.	Zeitschrift für experimentelle Pathologie und Therapie (seit 1921 Zeitschrift für die gesamte Experimentelle Medizin)				
Z. ges. Naturw.	Zeitschrift für die gesamten Naturwissenschaften				
Z. ges. Schieß-Spreng- stoffwesen	Zeitschrift für das gesamte Schieß- und Sprengstoffwesen				
Z. NahrGenuβm.	Zeitschrift für Untersuchung der Nahrungs- und Genußmittel sowie der Gebrauchsgegenstände				
Z. öffentl, Ch.	Zeitschrift für öffentliche Chemie				
Z. wiss. Mikr.	Zeitschrift für wissenschaftliche Mikroskopie und für mikro- skopische Technik				
Z. wiss. Phot.	Zeitschrift für wissenschaftliche Photographie				
Z. Zuckerind. Böhmen	Zeitschrift für Zuckerindustrie in Böhmen (jetzt: Zeitschrift für Zuckerindustrie der čechoslowakischen Republik)				

¹⁾ Zitate ohne Angabe der Auflage beziehen sich auf die 5. Aufl.

Weitere Abkürzungen.

					1.
absol.		absolut	lin.		linear
ac.	===	alicyclisch	m-		meta-
āther.	===	ätherisch	Min.		Minute
AGFA	-	Aktien-Gesellschaft für Ani-	Mol	=	Gramm-Molekül (Mole-
		linfabrikation			kulargewicht in Gramm)
akt.	===	aktiv	MolGew.	===	Molekulargewicht
alkal.	====	alkalisch	MolRefr.	==	Molekularrefraktion
alkoh.	===	alkoholisch	ms-	=	meso-
ang.		angular	n (in Verbindun	Ø	
Anm.		Anmerkung	mit Zahlen)	=	Brechungsindex
ar.		aromatisch	n- (in Verbindun		J
asymm.		asymmetrisch	mit Namen)	_	normal
AtGew.		Atomgewicht	0-	==	ortho-
Atm.		Atmosphäre	optakt.	=	optisch aktiv
Aufl.		Auflage	p-		para-
В.		Bildung	prim.		primär
BASE		Badische Anilin- und Soda-	PrivMitt.		Privatmitteilung
DAGE		fabrik	Prod.		Produkt
Bd.		Band	°/ ₀		Prozent
ber.		berechnet	0/0ig		prozentig
bezw.		beziehungsweise	racem.		racemisch
Ca.		circa	RV		Reduktionsvermögen
D		Dichte	8.		siehe
D' ₁		Dichte bei 16°, bezogen auf	Š.		Seite
<i>D</i> 4		Wasser von 40	8. 8 .	_	
Darst.	_ 1	Darstellung	sek.	_	sekundār
Dielektr		Darswiiding	8. O.	_	siehe oben
Konst.	1	Dielektrizitäts-Konstante	spezif.		spezifisch
E Konst.		Erstarrungspunkt	Spl.		Supplement
Einw.		Einwirkung	Stde., Stdn.		Stunde, Stunden
			stdg.		stündig
Ergw.		Ergänzungswerk (des Beil- stein-Handbuches)	s. u.		siehe unten
F	s	Schmelzpunkt	svmm.		symmetrisch
-		geminal	Syst. No.		System-Nummer 1)
gem.		Hauptwerk (des Beilstein-	Temp.		Temperatur
Hptw.		Handbuches)	tert.		tertiär
inakt.	;	naktiv	Tl., Tle., Tln.		Teil, Teile, Teilen
K bezw. k			V.		Vorkommen
IX DOZW. K	0	lektrolytische Dissoziations-	verd.		verdünnt
konz.	1.	konstante conzentriert			
•			vgl. a.		vergleiche auch vicinal
korr. Kp	_	torrigiert Siedenwalst	vic. Vol.		Volumen
		Siedepunkt	wäßr.		
Kp ₇₅₀	= 2	Siedepunkt unter 750 mm Druck	Wadr. Zers.		wäßrig Zensetzung
		Diuck	avis.		Zersetzung

¹⁾ Vgl. dazu dieses Handbuch, Bd. I, S. XXIV.

Übertragung der griechischen Buchstaben in Zahlen.

Zusammenstellung der Zeichen für Maßeinheiten.

```
Meter, Zentimeter, Millimeter
m, cm, mm
                          Quadratmeter, Quadratzentimeter, Quadratmillimeter
Kubikmeter, Kubikzentimeter, Kubikmillimeter
Tonne, Kilogramm, Gramm, Milligramm
m2. cm2. mm2
                     =
m<sup>8</sup>, cm<sup>8</sup>, mm<sup>8</sup>
t, kg, g, mg
                           Gramm-Molekül (Mol.-Gew. in Gramm)
Mol
h
                           Stunde
                           Minute
min
                           Sekunde
80C
grad
                           Grad
                           Celsiusgrad
                     =
absol.
                           Grad der absoluten Skala
                     =
                           Grammealorie (kleine Calorie)
cal
                           Kilogrammcalorie (große Calorie)
kcal
                           760 mm Hg
Atm.
                           \frac{\text{gcm/sec}^2}{10^6} dyn
dyn
megadyn
                           dyn/cm²
bar
megabar
                           10<sup>6</sup> bar
                           10<sup>-7</sup> mm
10<sup>-4</sup> mm
\mathbf{m}\boldsymbol{\mu}
                           10-3 mm
                           Ampère
Amp.
                      ===
                           Milliampère
Milliamp.
                      =
                           Ampère-Stunde
Amp.-h
                     =
                           Watt
W
kW
                           Kilowatt
                      =
Wh
                           Wattstunde
kWh
                           Kilowattstunde
Coul.
                           Coulomb
                           Ohm
                           reziproke Ohm
rez. Ohm
                           Volt
                           Joule
Joule
```

DRITTE ABTEILUNG.

HETEROCYCLISCHE VERBINDUNGEN.

(FORTSETZUNG.)

9. Verbindungen mit 1 cyclisch gebundenem Stickstoffatom (Heteroklasse 1 N).

(FORTSETZUNG.)

IV. Carbonsäuren.

A. Monocarbonsäuren.

- 1. Monocarbonsäuren $C_n H_{2n-1} O_2 N$.
- 1. Pyrrolidin-carbonsāure-(2), Pyrrolidin- α -carbon- H_2C ——CH₂ sāure, Prolin C₈H₂O₂N, s. nebenstehende Formel. Zum Namen $\begin{vmatrix} 4 & 3 \\ 5 & 1 & 2 \end{vmatrix}$ H₂C·NH·CH·CO₂H , Prolin" vgl. E. FISCHER, SUZUKI, B. 87, 2843.
- a) Rechtsdrehende Pyrrolidin α carbonsäure, d Prolin $C_5H_9O_5N=H_2C-CH_2$. B. N-[3-Nitro-benzoyl]-dl-prolin wird durch Kombination mit Cinchonin in die optisch aktiven Komponenten gespalten. Das in Wasser schwerer lösliche Cinchoninsalz des N-[3-Nitro-benzoyl]-d-prolins wird durch aufeinanderfolgende Behandlung mit Natronlauge und verd. Schwefelsäure zerlegt, das N-[3-Nitro-benzoyl]-d-prolin durch Kochen mit Salzsäure gespalten und das erhaltene d-Prolin über das in Alkohol lösliche Kupfersalz vom beigemengten dl-Prolin getrennt (E. Fischer, Zemplen, B. 42, 2993, 2994). Hygroskopische Prismen (aus Alkohol + Äther). Schmilzt bei raschem Erhitzen zwischen 215° und 220° unter Zersetzung. $[\alpha]_D^m: +81,9°$ (Wasser; p=5). Kupfersalz. Krystallinisch.

N-[3-Nitro-bensoyl]-d-prolin $C_{12}H_{12}O_5N_2=\frac{H_2C-\dots-CH_2}{H_2C\cdot N(CO\cdot C_6H_4\cdot NO_3)\cdot CH\cdot CO_2H}$.

s. im Artikel d-Prolin. — Prismen (aus Wasser). F: 137—140°; in Wasser und Äther schwerer löslich als N-[3-Nitro-benzoyl]-dl-prolin; $[\alpha]_0^{m}$: +120,0° (1n-Natronlauge; p = 4) (E. F1., Z., B. 42, 2994).

b) Linksdrehende Pyrrolidin - α - carbonsäure, l - Prolin $C_5H_0O_2N=H_2C$ —— CH_2

H.C.NH.CH.CO.H.

V. Geringe Mengen 1-Prolin finden sich in etiolierten Keimlingen von Lupinus albus, wahrscheinlich auch in solchen von Vicia sativa (Schulze, Winterstein, H. 45, 47, 51). In geringer Menge im Fleisch und in den Schalen von Hummern (Suzuki, Yoshmuda, C. 1909 II, 638; S., Y., Jamakawa, Irie, H. 63, 23, 28). — B. Entsteht, häufig neben dl-Prolin, bei der Hydrolyse pflanzlicher und tierischer Proteine mit Säuren; Zusammenstellungen über diese Bildungsweisen: E. Abderhalden, Biochemisches Handlexikon, Bd. IV [Berlin 1911], S. 722; Bd. IX [Berlin 1915], S. 158; F. Hoppe-Seyler, H. Thierfelder, Handbuch der physiologisch- und pathologisch-chemischen Analyse, 9. Aufl. [Berlin 1924], S. 596, 598. 1-Prolin entsteht bei lange fortgesetzter Verdauung von Hämoglobin aus Pferdeblut mit Hundemagensaft in Gegenwart von Salzsäure (Salasein, Kowalevsky, H. 38, 572). Durch Verdauung von Casein (und anderen Proteinen) mit Pankreatin und Hydrolyse des entstandenen Polypeptids mit Salzsäure (E. Fischer, Abd., H. 39, 81, 92). Bei der aufeinanderfolgenden Verdauung von Casein durch Pepsin-Salzsäure und Pankreatin (E. Fi., Abd., H. 40, 215). Bei der Verdauung von Gelatine mit Trypsin (Levene, H. 41, 11, 99; Le., Wallace, H. 47, 143). — N-[3-Nitro-benzoyl]-d-prolin wird durch Kombination mit Cinchonin in die optisch aktiven Komponenten gespalten. Das Cinchoninsalz des N-[3-Nitro-benzoyl]-d-prolins krystallisiert aus. Das in der Mutterlauge verbleibende Salz wird durch aufeinanderfolgende Behandlung mit Natronlauge und verd. Schwefelsäure zerlegt, das N-[3-Nitro-benzoyl]-l-prolin durch Kochen mit Salzsäure gespalten und das erhaltene l-Prolin über das in Alkohol Kilche Kupfersalz vom beigemengten dl-Prolin getrennt (E. Fischer, Zemplen, B. 42, 2993, 2996). — Isolerung aus Protein-Hydrolysaten: E. Fi., H. 33, 152, 163; E. Fi., B. 39, 581, 591; Engeland, B. 42, 2962; vgl. ferner Abd., Handbuch der biochemischen Arbeitsmethoden, Bd. II [Berlin-Wien 1910], S. 472, 478; Handbuch der biologischen Arbeitsmethoden, Bd. IV [Berlin 1911], S. 725.

Krystalle (aus Alkohol + Äther). Hygroskopisch (E. FISCHEE, ZEMPLÉN, B. 42, 2997). F: 220—222° (Kossel, Dakin, H. 41, 411). Schmilzt bei raschem Erhitzen bei 215—220° unter Zersetzung (E. Fi., Z.). Leicht löslich in Wasser und Alkohol (E. Fi., H. 33, 168). [α][∞]: —80,9° (Wasser; p = 6); [α][∞]: —93,0° (0,6n-Kalilauge; p = 2) (E. Fi., Z.). Wird aus methylalkoholischer Lösung durch methylalkoholische Quecksilberacetat-Lösung bei Gegenwart von Kaliummethylat vollständig gefällt (Neuberg, C. 1904 II, 1576). — Wird durch Erhitzen mit Barytwasser auf 140—145° vollständig racemisiert (E. Fi., H. 33, 167). Versetzt man eine alkalische Lösung von l-Prolin unter Kühlung mit Phenylisocyanat, säuert an und engt auf dem Wasserbad ein, so erhält man 3-Phenyl-1.5-trimethylen-hydantoin (Syst. No. 3588) (E. Fi., H. 33, 167). — Schmeckt süß (Abd., Handbuch der biochemischen Arbeitsmethoden, Bd. II [Berlin-Wien 1910], S. 479). — Cu(C₅H₆O₂N)₂ (bei 107° unter 10—20 mm getrocknet). Dunkelblaue, hygroskopische Tafeln (aus absol. Alkohol) (E. Fi., Reif, A. 363, 123). Leicht löslich in Alkohol (E. Fi., Dörfinghaus, H. 36, 471). — Pikrat C₅H₆O₂N + C₆H₃O₇N₃. Nadeln (aus absol. Alkohol). F: 153—154° (Alexandrow, H. 46, 18).

l-Prolylchlorid $C_8H_8ONCl = \frac{H_2C - CH_8}{H_2C \cdot NH \cdot CH \cdot COCl}$. B. Das salzsaure Salz entsteht bei Einw. von Phosphorpentachlorid auf l-Prolin in Acetylchlorid unter Eiskühlung (E. FISCHER, REIF, A. 363, 123). — $C_5H_8ONCl + HCl$. Krystalle.

N-[1-Prolyl]-[d-phenylalanin] $C_{14}H_{18}O_3N_3=H_2C$ —CH₂C·NH·CH·CO·NH·CH(CH₂·C₆H₅)·CO₂H. B. Bei Einw. von salzsaurem 1-Prolylehlorid auf [d-Phenylalanin]-äthylester in Chloroform bei —10° und nachfolgendem Verseifen des entstandenen Esters mit Barytwasser (E. FISCHER, LUNIAK, B. 42, 4758). — Bitter schmeckende· Prismen mit 1 H₂O (aus Wasser). Schmilzt krystallwasserfrei bei ca. 223°

(korr.) unter Aufschäumen. Ziemlich leicht löslich in kaltem Wasser, sehr schwer in absol. Alkohol. [α] $_{0}^{m}$: —52,0° (Wasser; p=4). — $CuC_{14}H_{16}O_{3}N_{2}+2H_{2}O$. Dunkelblaue Prismen. Sehr schwer löslich in kaltem Wasser.

N-[1-Prolyl]-[1-phenylalanin] $C_{14}H_{18}O_3N_2 = H_2C$ —CH₂ H_2C —CH₂ H_2C —NH·CH·CO·NH·CH(CH₂·C₆H₅)·CO₂H

B. Entsteht als Zwischenprodukt bei der Hydrolyse von Protein aus Weizen mit verd. Schwefelsäure (Osborne, Clapp, Am. J. Physiol. 18, 124; C. 1908 I, 865; Fr. 48, 431). Bei Einw. von salzsaurem 1-Prolylehlorid auf [1-Phenylalanin]-āthylester in Chloroform bei —10° und nachfolgendem Verseifen des entstandenen Esters mit Barytwasser (E. Fischer, Luniak, B. 42, 4753). — Prismen mit 1 H_2O (aus Wasser) (O., C.). Geschmacklos (E. Fi., L.). Schmilzt krystallwasserfrei bei ca. 252° (korr.) unter Aufschäumen (E. Fi., L.). Zersetzt sich bei raschem Erhitzen bei ca. 249° (unkorr.) unter Gasentwicklung (O., C.). Sehr schwer löslich in kaltem Wasser, fast unlöslich in Alkohol (E. Fi., L.). Leicht löslich in verd. Säuren und Alkalilaugen (O., C.). [α] $_0^{\text{Do}}$: —40,9° (in 20°/ $_0$)ger Salzsäure; p = 5); [α] $_0^{\text{Do}}$: +15,7° (1n-Natronlauge; p = 7) (E. Fi., L.). — Wird bei der Hydrolyse mit 20°/ $_0$ iger Salzsäure (O., C.) oder bei der Verdauung mit Pankreatin (E. Fi., L.) in 1-Prolin und 1-Phenylalanin gespalten. Gibt die Xanthoproteinreaktion und die Pyrrolreaktion (O., C.). — CuC₁₄H₁₆O₃N₂ + 3¹/₂H₂O (O., C.). Dunkelblaue Prismen (aus Wasser). Zerfällt an der Luft in ein grünes Pulver (O., C.). Löslich in Wasser und Alkohol (O., C.).

N - Methyl - l - prolin - hydroxymethylat, l - Hygrinsäure - hydroxymethylat, Ammoniumbase des l-Stachydrins $C_7H_{15}O_3N = H_2C - CH_2 - CH_2$ $H_2C \cdot N(CH_3)_2(OH) \cdot CH \cdot CO_2H$ Solve entetchen hei den erzehänfenden Methylianen aus l Prolin (France entetchen hei den erzehänfenden Methylianen aus l Prolin (France entetchen hei den erzehänfenden Methylianen aus l Prolin (France entetchen hei den erzehänfenden Methylianen aus l Prolin (France entetchen hei den erzehänfenden Methylianen aus l Prolin (France entetchen hei den erzehänfenden Methylianen aus leine erzehänfenden Methylianen aus leine erzehänfenden Methylianen aus leine erzehänfenden Methylianen aus leine erzehänfenden Methylianen erzehänfenden er

Salze entstehen bei der erschöpfenden Methylierung von 1-Prolin (Engeland, B. 42, 2965). — Chlorid. Leicht löslich in Wasser und kaltem Alkohol (E., Ar. 247, 464). In salzsaurer Lösung stark linksdrehend; spaltet bei der Destillation mit konz. Kalilauge Dimethylamin ab (E., B. 42, 2965). — $C_7H_{14}O_2N\cdot Cl + AuCl_3$. Blättchen. Als Schmelzpunkte wurden gefunden: 217—218°, 209° (Zers.) und 205—206°; schwer löslich in Wasser (E., Ar. 247, 464). — Quecksilberchlorid-Doppelsalz. Krystalle. Sehr schwer löslich in Wasser (E., Ar. 247, 464). — $2C_7H_{14}O_2N\cdot Cl + PtCl_4 + 2H_2O.$ Krystalle (aus Wasser). Rhombisch (Schwantke, Ar. 247, 465; vgl. v. Haushoffer, B. 26, 941). Sehr leicht löslich in kaltem Wasser, unlöslich in Alkohol (E., Ar. 247, 464).

N-[akt.- α -Oxy-isocapronyl]-[l-prolin]-amid $C_{11}H_{20}O_3N_2=H_2C$ CH₂
B. Aus N-[d- α -Brom-isocapronyl]-l-prolin beim Stehenlassen mit bei 0^0 gesättigter Ammoniak-Lösung bei 25^0 oder beim Aufbewahren mit flüssigem Ammoniak (E. Fischer, Reif, A. 363, 119, 130, 132). — Nadeln (aus Essigester), Prismen (aus Wasser). Schmeckt bitter. F: 123—124 0 (korr.). Leicht löslich in Alkohol und Chloroform, löslich in Wasser und Aceton, fast unlöslich in Äther und Petroläther. [α] $_{\rm D}^{\rm m}$: —78,6 0 (Wasser; p = 3). — Spaltet beim Erhitzen auf 140—145 0 Ammoniak ab unter Bildung des Lactons des N-[akt.- α -Oxy-isocapronyl]-l-prolins.

N- β -Naphthalinsulfonyl-1-prolin $C_{15}H_{15}O_4NS = \frac{H_2C}{H_2C\cdot N(SO_2\cdot C_{10}H_7)\cdot CH\cdot CO_2H}$. Bei Einw. von β -Naphthalinsulfochlorid auf 1-Prolin in Natronlauge (E. FISCHER, BERGELL,

Bei Einw. von β -Naphthalinsulfoohlorid auf 1-Prolin in Natronlauge (E. FISCHER, BERGELL, B. 35, 3783). — Blättchen mit 1 H₂O (aus Wasser oder verd. Alkohol). Schmilzt krystallwasserfrei bei 138° (korr.). Leicht löslich in Alkohol, schwerer in Äther; löslich in ca. 130 Tln. siedendem Wasser.

c) Inakt. Pyrrolidin - α - carbonsäure, dl - Prolin C₅H₉O₂N = H₂C—CH₂
H₂C-NH·CH·CO₂H
B. Bei der Säure-Hydrolyse pflanzlicher und tierischer Proteine, neben l-Prolin; vgl. S. 2. Neben anderen Produkten aus δ-Oxy-α-amino-valeriansäure bei längerem Erhitzen für sich auf 195—200° oder beim Erhitzen mit Salzsäure (Sörensen, C. r. Trav. Lab. Carleberg 6, 163, 173; C. 1905 II, 399, 400; Bl. [3] 33, 1054; S., Andersen, H. 56, 241; C. r. Trav. Lab. Carleberg, 7, 76; C. 1908 II, 680). Man behandelt δ-Benzamino-n-valeriansäure mit Brom und rotem Phosphor und erhitzt die entstandene rohe α-Brom-δ-benzamino-n-valeriansäure mit Salzsäure (E. Fischer, Zemplén, B. 42, 1024, 1026). Beim Erhitzen von α-Brom-δ-phthalimido-propylmalonsäure-diäthylester (Bd. XXI, S. 489) mit alkoh. Ammoniak im Rohr auf 100° und Erwärmen des Reaktionsprodukts mit Salzsäure (D: 1,19) auf 100° (E. Fi., B. 34, 455, 458). Aus dl-a-[4-Oxy-prolin] (Leuchs, Felser, B. 41, 1727), l-a-[4-Oxy-prolin] (E. Fischer, B. 35, 2664) oder b-[4-Oxy-prolin] (L., Fe., B. 41, 1728) beim Erhitzen mit Jodwasserstoffsäure (D: 1,96) und rotem Phosphor im Rohr auf 150°. Beim Erhitzen von Pyrrolidin-α.α-dicarbonsäure-diamid (S. 118) mit konz. Salzsäure im Rohr auf 110—120° (Willstätter, B. 33, 1164; W., Ettlinger, A. 326, 104).

Nadeln (aus Alkohol + Äther), Pyramiden (aus Wasser), die wechselnde Mengen Krystallwasser enthalten (W., Ett.). Schmeckt süß (W., Ett.). Schmilzt wasserfrei bei 203—203,5° (W., Ett.), bei ca. 205° (Zers.) (E. Fl., B. 34, 459). Teilweise unzersetzt flüchtig beim Erhitzen (W., Ett.). Sehr leicht löslich in Wasser und warmem Alkohol, leicht in kaltem Alkohol, sehr schwer in Chloroform, Aceton und Benzol, unlöslich in Äther (W., Ett.). — Reduziert in der Wärme Silberoxyd unter Spiegelbildung (W., Ett.). Scheidet beim Erwärmen mit Goldchlorid unter Kohlendioxyd-Entwicklung metallisches Gold ab (W., Ett.). Ist in schwefelsaurer Lösung gegen Kaliumpermanganat beständig, in sodaalkalischer Lösung tritt Entfärbung ein (W., Ett.). Beim Behandeln von dl-Prolin mit Natriumhypochlorit-Lösung entsteht ein Pyrrolin (s. im Artikel Pyrrolin, Bd. XX, S. 133) (Langheld, B. 42, 2361, 2373). Verbindet sich mit Phenyliscovanat in alkal. Lösung zu dl-Prolin-N-carbonsäureanlid (E. Fr., B. 34, 459). — dl-Prolin ist für Penicillium glaucum und Aspergillus-Arten ein guter Nährstoff (Emmerling, B. 35, 2289). — Gibt in Dampfform die Fichtenspanreaktion (W., Ett.). — Cu(C₅H₂O₂N)₂ + 2 H₂O. Blaue Prismen (aus Wasser). Verliert beim Trocknen über Schwefelsäure das Krystallwasser und zerfällt dabei zu einem violetten Pulver (W., Ett.). Leicht löslich in heißem Wasser, schwer in kaltem Wasser und heißem Alkohol, unlöslich in Chloroform. — C₅H₅O₂N + HCl. Hygroskopische Krystalle (aus Wasser). F: 158—159°; sehr leicht löslich in Wasser, leicht in Alkohol, unlöslich in Chloroform (W., Ett.). — C₅H₅O₂N + HCl + AuCl₂. Blättchen (aus Wasser). F: 160—162°; leicht löslich in kaltem Wasser und kaltem Alkohol (W., Ett.). — Phosphorwolframat. Vierseitige, kalkspatähnliche Prismen (S.). — Pikrat C₅H₆O₂N + C₆H₅O₇N₃. Krystalle (aus Alkohol). F: 135—137°; leicht löslich in heißem Alkohol, Eisessig und Wasser, schwerer in Äther (Alexandbow, H. 46, 17).

dl-Prolin-äthylester $C_7H_{18}O_2N = H_2C - CH_2 H_2C \cdot NH \cdot CH \cdot CO_2 \cdot C_2H_3$. B. Beim Behandeln von dl-Prolin mit alkoh. Salzsäure (WILLSTÄTTER, ETTLINGER, A. 326, 108). — Öl. Kp₁₁: 75—76° (W., B. 33, 1164; W., ETT.). — Wandelt sich beim Aufbewahren allmählich in eine feste Verbindung vom Schmelzpunkt 185—186° um (W., ETT.).

Inakt. N-Prolyl-alanin $C_9H_{14}O_9N_9 = \frac{H_2C - CH_2}{H_2C \cdot NH \cdot CH \cdot CO \cdot NH \cdot CH(CH_2) \cdot CO_2H}$ Beim Erhitzen von inakt. [a.3-Dibrom-n-valeryl]-alanin mit 25%-igem Ammoniak im Rohr auf 100% (E. FISCHER, SUZUKI, B. 37, 2845). — Fast geschmacklose Blättchen (aus 80%-igem Alkohol). Schmilzt bei raschem Erhitzen zwischen 225% und 230% (korr.) unter Übergang in 3.6-Dioxo-5-methyl-1.2-trimethylen-piperazin (Syst. No. 3588). Sehr leicht löslich in Wasser, sehr schwer in absol. Alkohol, fast unlöslich in Ather, Benzol, Chloroform und Petroläther. — Wird beim Erhitzen mit rauchender Salzsäure in Prolin und Alanin gespalten. — Kupfersalz. Krystallinisch. Sehr leicht löslich in Wasser.

 $\textbf{N-Methyl-dl-prolin, dl-Hygrinsäure} \ \ C_6H_{11}O_2N = \frac{H_2C----CH_2}{H_2C\cdot N(CH_3)\cdot CH\cdot CO_2H} \ . \ \ \textit{B.} \ \ \ \textit{Bei}$

der Oxydation von Hygrin (Bd. XXI, S. 244) mit Chromschwefelsäure (Liebermann, Kühling, B. 24, 409; L., Cybulski, B. 28, 580). Bei der Oxydation von Cuskhygrin (Syst. No. 3564) mit Chromschwefelsäure (L., C., B. 29, 2051). Beim Erhitzen von Hygrinsäureäthylester mit Wasser unter Druck auf 120° oder durch Kochen mit frisch gefälltem Kupferhydroxyd (Schulze, Treer, B. 42, 4656). Beim Erhitzen von N-Methyl-pyrrolidin-α.α-dicarbonsäure-diäthylester (S. 118) mit Wasser im Rohr auf 160° (Willstätter, Ettlinger, A. 326, 122; vgl. W., B. 33, 1165) oder beim Erhitzen von N-Methyl-pyrrolidin-α.α-dicarbonsäure-bismethylamid mit konz. Salzsäure im Rohr auf 125° (W., E.). — Nadeln mit 1 H₂O (aus Alkohol + Äther oder aus Chloroform); F: 169—170° (W., E.). L., Priv.-Mitt.). Bei vorsichtigem Erhitzen größtenteils unzersetzt destillierbar; sehr leicht löslich in Wasser, Alkohol und heißem Chloroform, sehr schwer in kaltem Essigester, unlöslich in Äther und Benzol (L., K.; W., E.). Optisch inaktiv (Sch., T., B. 42, 4656; L., Priv.-Mitt.). — Die wäßr. Lösung entfärbt Permanganat (L., K.); ist in kalter schwefelsaurer Lösung gegen Permanganat beständig (W., E.). Löst Silberoxyd und gibt damit beim Erwärmen einen Silberspiegel (W., E.). Spaltet beim Erhitzen über den Schmelzpunkt Kohlendioxyd ab unter Bildung von N-Methyl-pyrrolidin (L., C., B. 28, 582). Liefert beim Kochen in wäßr. Lösung mit Goldchlorid unter Kohlendioxyd-Entwicklung und Abscheidung von Gold das Goldchlorid-Doppelsalz des N-Methyl-pyrrolidins; diese Reaktion wird durch überschüssige Salzsäure verhindert (W., E.). — Cu(C₆H₁₀O₂N)₂. Hellblaue Nadeln (aus Chloroform + Äther). F: 209° bis 210° (Zers.) (W., E.). Sehr leicht löslich in Wasser und Alkohol, schwerer in Chloroform, unlöslich in Äther und Benzol (L., K.; Sch., T.). Die konz. Lösung in Chloroform ist blau, die verdünnte rotviolett (W., E.; Sch., T.). — C₆H₁₁O₂N + HCl. Blättchen (aus Alkohol + Äther), Tafeln (aus Alkohol). F: 187—188° (W., E.), 188° (L., K.). Dunkelgelbe Tafeln. F: ca. 190—19

dl-Hygrinsäure-äthylester $C_8H_{15}O_2N=\frac{H_2C-CH_2}{H_2C\cdot N(CH_3)\cdot CH\cdot CO_2\cdot C_2H_5}$. B. Beim Behandeln von dl-Hygrinsäure mit alkoh. Salzsäure (Willstätter, Ettlinger, A. 326, 126). Beim Destillieren von Hygrinsäure-äthylester-chlormethylat (Schulze, Trier, B. 42, 4655). — Öl. Kp₁₂: 75—76° (korr.) (W., E.); Kp₁₈: 77—79° (Sch., T.). Mischbar mit Alkohol und Äther (Sch., T.), sehr leicht löslich in kaltem, ziemlich schwer in heißem Wasser (W., E.). — Läßt sich durch sukzessive Behandlung mit Methyljodid, Silberoxyd und Salzsäure in salzsaures Stachydrin überführen (Sch., T.). — $C_8H_{15}O_2N+HCl+AuCl_2$. Säulen (aus Wasser) (W., E.). F: 110,5°; sehr schwer löslich in kaltem, sehr leicht in heißem Wasser.

dl-Hygrinsäure-methylamid $C_7H_{14}ON_2 = \frac{H_2C-CH_2}{H_2C\cdot N(CH_3)\cdot CH\cdot CO\cdot NH\cdot CH_3}$. B. Neben anderen Produkten beim Erhitzen von $\alpha.\delta$ -Dibrom-butan- $\alpha.\alpha$ -dicarbonsäure-diäthylester mit Methylamin in Methylalkohol im Rohr auf 135—160° (WILLSTÄTTER, ETTLINGER, A. 326, 109, 119). Neben anderen Produkten beim Erhitzen von N-Methyl-pyrrolidin- $\alpha.\alpha$ -dicarbonsäure-diäthylester (S. 118) mit Methylamin in Benzol oder Methylalkohol im Rohr auf 120—160° (W., E., A. 326, 115, 119). Aus N-Methyl-pyrrolidin- $\alpha.\alpha$ -dicarbonsäure-monomethylamid beim Erhitzen für sich oder mit Wasser (W., E., A. 326, 119). — Äußerst hygroskopische Nadeln (aus Petroläther). F: 44—46°. Siedet unzersetzt. Ist unter vermindertem Druck bei gewöhnlicher Temperatur leicht flüchtig. Sehr leicht löslich in Wasser und fast allen organischen Lösungsmitteln. Reagiert stark alkalisch. — $C_7H_{14}ON_2 + HCl + AuCl_3$. Dunkelgelbe Tafeln. F: 149—150°. Leicht löslich in heißem Wasser, ziemlich schwer in kaltem Wasser. — $2C_7H_{14}ON_2 + 2HCl + PtCl_4$. Orangefarbene Spieße (aus Alkohol) oder orangerote Prismen. F: 197—198° (Zers.). Leicht löslich in kaltem Wasser, sehr schwer in kaltem Alkohol. — Pikrat $C_7H_{14}ON_3 + C_6H_4O_7N_3$. Prismen und Tafeln (aus Wasser oder Alkohol). F: 214° bis 216° (Zers.). Sehr schwer Jöslich in kaltem Wasser und Alkohol.

N-Methyl-dl-prolin-hydroxymethylat, dl-Hygrinsäure-hydroxymethylat, Ammoniumbase des dl-Stachydrins $C_7H_{16}O_3N = \frac{H_2C - CH_2}{H_2C \cdot N(CH_3)_3(OH) \cdot CH \cdot CO_2H}$. Findet sich in Form des Anhydrids (dl-Stachydrin) in den Wurzelknollen von Stachys Sieboldii (St. tuberifera) (v. Planta, Schulze, L. V. St. 40, 280; Ar. 231, 306; B. 26, 939; Sch., L. V. St. 46, 57). In den Blättern des Pomeranzenbaumes Citrus Bigaradia Risso (Folia Aurantii) (Jahns, B. 29, 2065; Sch., Trier, B. 42, 4655). — B. der Salze bzw. des Anhydrids. dl-Stachydrin entsteht bei aufeinanderfolgender Behandlung von dl-Hygrinsäure-äthylester

mit Methyljodid und Silberoxyd (Sch., T., B. 42, 4657, 4658). Das Natriumsalz des dl-Hygrinsäure-jodmethylats bildet sich aus dl-Hygrinsäure-äthylester-jodmethylat oder N-Methylpyrrolidin-[α.α-dicarbonsäure-diāthylester]-jodmethylat beim Kochen mit Natronlauge (Willstätter, B. 33, 1166; W., Ettlinger, A. 326, 128). — Darst. von dl-Stachydrin aus Folia Aurantii: Jahns, B. 29, 2065; aus Wurzelknollen von Stachys tuberifera: v. P., Sch., L. V. St. 40, 280; Ar. 231, 306, 307; B. 26, 939, 940; Sch., L. V. St. 46, 28, 57. — Die wäßr. Lösung des Chlorids gibt mit Phosphorwolframsäure, Phosphormolybdänsäure, Jod-Kaliumjodid und Kaliumysmutjodid Fällungen; die letztgenannte ist im Über-

säure, Jod-Kaliumjodid und Kaliumwismutjodid Fällungen; die letztgenannte ist im Überschuß des Reagens löslich (v. P., Sch., Ar. 231, 311).

Salze C₇H₁₄O₂N·Ac. Chlorid C₇H₁₄O₂N·Cl. Prismen. Sehr leicht löslich in Wasser, löslich in kaltem Alkohol (v. P., Sch., Ar. 231, 308; B. 26, 940; Sch., L. V. St. 46, 58; J., B. 29, 2066). — NaC₇H₁₃O₂N·I. Nicht rein erhalten. Hygroskopische Nadeln (aus Alkohol). F: 213—214° (W., E.). — Nitrat. Krystalle (aus Wasser). Sehr leicht löslich in Wasser (v. P., Sch., Ar. 231, 311). — C₇H₁₄O₂N·Cl+AuCl₂. Gelbe Prismen (aus Wasser), Blättchen (aus werd. Salzsäure). Schmilzt unter Zersetzung zwischen 190° und 210° (J., B. 29, 2067; vgl. Sch., T., B. 42, 4657, 4658). — Quecksilberchlorid-Doppelsalz. Krystalle. Sehr schwer löslich in kaltem Wasser (v. P., Sch., Ar. 231, 310; B. 26, 940). — 2C₇H₁₄O₂N·Cl+PtCl₄+2H₂O. Orangerote Prismen (aus Wasser), Nadeln (aus 80°/ajgem Alkohol). Rhombisch (v. Haushofer, Ar. 231, 310; B. 26, 941). Leicht löslich in Wasser, unlöslich in Alkohol (v. P., Sch., Ar. 231, 309).

Anhydrid, N-Methyl-dl-prolin-methylbetain, dl-Hygrinsäure-methylbetain, dl-Stachydrin C₇H₁₈O₂N = H₂C — CH₂ — Zur Konstitution vgl. Schulze, H₂C·N(CH₂)₂·CH·CO·O

TRIER, B. 42, 4654; H. 59, 234; 67 [1910], 81. — V., B. und Darst. s. im vorangehenden Artikel. — Krystalle mit 1 H₂O von süßem Geschmack; an der Luft zerfließlich (Jahns, B. 29, 2066). Schmilzt wasserfrei bei 235° (Sch., T., H. 67 [1910], 73). Leicht löslich in Wasser und Alkohol, unlöslich in kaltem Chloroform und in Äther (Jahns). Optisch inaktiv (Sch., T., B. 42, 4656; H. 67 [1910], 69, 73, 96; vgl. Yoshmura, T., H. 77 [1912], 302). Die beim Erhitzen sich entwickelnden Dämpfe färben einen mit Salzsäure befeuchteten Fichtenspan rot (Sch., T., H. 59, 234). Beständig gegen kalte verdünnte schwefelsaure Kaliumpermanganat-Lösung (Sch., T., H. 59, 233). — Liefert beim Schmelzen mit Kaliumhydroxyd Dimethylamin (J.). Gibt bei Behandlung mit Methanol + Chlorwasserstoff und

methylat (J.).

N-Methyl-dl-prolin-methylester-hydroxymethylat, dl-Hygrinsäure-methylester-hydroxymethylat $C_8H_{17}O_3N = \frac{H_2C-CH_2}{H_2C\cdot N(CH_3)_3(OH)\cdot CH\cdot CO_3\cdot CH_3}$. B. Das Chlorid entsteht beim Einleiten von Chlorwasserstoff in die Lösung von dl-Stachydrin in Methylakohol; aus dem Chlorid erhält man durch Behandeln mit Silberoxyd den freien Ester (Jahns, B. 29, 2067). — Der freie Ester zerfällt schon beim Aufbewahren in dl-Stachydrin und Methylalkohol. — $C_8H_{18}O_2N\cdot Cl + AuCl_3$. Blättchen (aus verd. Salzsäure). F: 85°.

Einw. von Silberoxyd auf das Reaktionsprodukt dl-Hygrinsäure-methylester-hydroxy-

dl-Prolin-N-carbonsäure-anilid $C_{12}H_{14}O_3N_2=\frac{H_2C-CH_2}{H_2C\cdot N(CO\cdot NH\cdot C_6H_5)\cdot CH\cdot CO_2H}$. Bei Einw. von Phenylisocyanat auf dl-Prolin in Natronlauge (E. Fi., B. 34, 459). — Krystalle (aus Aceton). Schmilzt bei ca. 170° unter Übergang in 3-Phenyl-1.5-trimethylenhydantoin (Syst. No. 3588). Leicht löslich in Alkohol und Aceton, schwer in heißem Wasser.

Inakt. N - [α - Oxy - isocapronyl] - prolin - amid $C_{11}H_{20}O_3N_2 = H_2C$ CH₂

CH₂

Bei Einw. von Ammoniak auf inakt. N - [α - Brom - isocapronyl] - prolin (E. Fi., ABDERHALDEN, B. 37, 3074; E. Fi., Reif, A. 363, 121, 134). — Nadeln (aus Essigester) von stark bitterem Geschmack (E. Fi., A.). F: 116—1190 (korr.); leicht löslich in Wasser und Alkohol, sehr schwer in Äther (E. Fi., A.). — Spaltet beim Erhitzen auf 1450 Ammoniak ab unter Bildung des Lactons des inakt. N - [α - Oxy - isocapronyl] - prolins (E. Fi., A.; E. Fi., R.). Wird beim Kochen mit verd. Salzsäure in inakt. α - Oxy - isocapronsäure, dl-Prolin und Ammoniak zerlegt (E. Fi., R.).

2. Carbonsäuren $C_6H_{11}O_2N$.

- a) Inakt. Piperidin α carbonsäure, dl Pipecolinsäure C₆H₁₁O₂N = H₂C·CH₂·CH₂

 B. Bei der Reduktion von Picolinsäure mit Natrium und Alkohol (Ladenburg, B. 24, 640; Mende, B. 29, 2887). Neben 5-Chlor-2-methyl-pyridin beim Erhitzen von 5-Chlor-picolinsäure oder von 4.5-Dichlor-picolinsäure mit rauchender Jodwasserstoffsäure und gelbem Phosphor auf 160° (Ost, J. pr. [2] 27, 287). Neben Picolinsäure beim Erhitzen von 4.5-Dichlor-picolinsäure mit rauchender Jodwasserstoffsäure auf 155—160° (O., J. pr. [2] 27, 284). Blättchen (aus Wasser), Krystalle (aus Alkohol). F: 261° (M.), 264° (Willstätter, B. 29, 390). Leicht löslich in Wasser und heißem Alkohol (L.). Läßt sich mit Weinsäure in die optisch aktiven Komponenten spalten (M.). C₆H₁₁O₂N + HCl. Warzen (aus Wasser) (O.). F: 259—261° (M.), 264° (L.). 2C₆H₁₁O₂N + 2 HCl + PtCl₄ + 2 H₂O. Orangerote bis braunrote Prismen. Monoklin prismatisch (Jander, B. 24, 641; vgl. Groth, Ch. Kr. 5, 712). F: 184° (L.; W.). Leicht löslich in Wasser (O.).

Äthylester $C_8H_{15}O_2N=\frac{H_2C\cdot CH_2\cdot CH_2}{H_3C\cdot NH\cdot CH\cdot CO_2\cdot C_2H_5}$. B. Beim Kochen des salzsauren Salzes der Pipecolinsäure mit Alkohol und Schwefelsäure (WILISTÄTTER, B. 29, 390). — Öl. Kp_{760} : 216—217° (korr.); Kp_{20} : 107°.

Inakt. N-Methyl-piperidin- α -carbonsäure-hydroxymethylat, N-Methyldl - pipecolinsäure-hydroxymethylat $C_8H_{17}O_3N = H_2C - CH_2 - CH_2$ dl-pipecolinsäure-hydroxymethylat $C_8H_{18}O_2N \cdot Cl + AuCl_3$. B. Man behandelt N-Methyl-dl-pipecolinsäure-äthylester-jodmethylat mit feuchtem Silberoxyd und fällt mit Goldchlorwasserstoffsäure (WILLSTÄTTER, B. 29, 392). — Goldgelbe Prismen (aus Wasser + etwas Alkohol). F: 227—228° (Zers.).

Inakt. N - Methyl - piperidin - α - [carbonsäure - äthylester] - hydroxymethylat, N - Methyl - dl - pipecolinsäure - äthylester - hydroxymethylat $C_{10}H_{21}O_3N=H_2C-CH_2$. B. Das Jodid entsteht bei Einw. von überschüssigem $H_2\dot{C}\cdot N(CH_3)_2(OH)\cdot\dot{C}H\cdot CO_3\cdot C_2H_5$. B. Das Jodid entsteht bei Einw. von überschüssigem Methyljodid auf Pipecolinsäure-äthylester in alkoh. Lösung bei Gegenwart von Kalium-carbonat (Willstätter, B. 29, 391). — $C_{10}H_{20}O_2N\cdot I$. Prismen (aus Alkohol oder Alkohol + Ather). F: 127—128° (Zers.). Sehr leicht löslich in Wasser, Alkohol und Chloroform, unlöslich in Ather. Zerfällt bei der Destillation in Methyljodid und (nicht näher beschriebenen) N-Methyldl-pipecolinsäure-äthylester. In Natronlauge unverändert löslich; spaltet beim Schmelzen mit Kaliumhydroxyd Dimethylamin ab. — $C_{10}H_{20}O_2N\cdot Cl + AuCl_3$. Gelbe Blättchen (aus heißem verdünntem Alkohol). F: 78°. Schwer löslich in Wasser, leichter in Alkohol.

 $\label{eq:continuous_continuous$

Inakt. N-Nitroso-piperidin- α -carbonsäure-methylester, N-Nitroso-dl-pipecolinsäure-methylester $C_7H_{12}O_3N_2=\frac{H_2C-CH_2-CH_2}{H_2C\cdot N(NO)\cdot CH\cdot CO_2\cdot CH_3}$. B. Aus dl-Pipecolinsäure-methylester-hydrochlorid und Kaliumnitrit (Ladenburg, B. 24, 642). — Öl. Löslich in Äther.

- b) Rechtsdrehende Piperidin α carbonsdure, d Pipecolinsdure $C_6H_{11}O_2N = \frac{H_2C \cdot CH_2 \cdot CH_2}{H_2C \cdot NH \cdot CH \cdot CO_2H}$. B. Man vermischt äquimolekulare Mengen dl-Pipecolinsäure und d-Weinsäure in heißer alkoholischer Lösung, läßt erkalten und zerlegt das ausgeschiedene saure d-Tartrat der d-Pipecolinsäure durch Bleiscetat (Mende, B. 29, 2888). Tafeln (aus Alkohol). F: 270°. [α] $_5^m$: +35,7° (Wasser; p = 10). Leicht löslich in Wasser und Alkohol. Saures d-Tartrat $C_6H_{11}O_2N + C_4H_6O_6$. Krystalle. F: 187°. Leicht löslich in Wasser, schwerer in Alkohol.
- c) Linksdrehende Piperidin-a-carbonsäure, l-Pipecolinsäure C₆H₁₁O₂N = H₂C·CH₂·CH₂

 H₂C·CH₃·CH₂

 B. Man vermischt äquimolekulare Mengen dl-Pipecolinsäure und d-Weinsäure in heißer alkoholischer Lösung, saugt nach dem Erkalten vom ausgeschiedenen sauren d-Tartrat der d-Pipecolinsäure ab, versetzt die Lösung mit l-Weinsäure und zerlegt das ausgeschiedene saure l-Tartrat der l-Pipecolinsäure durch Bleiacetat (MENDE, B. 29, 2889).

 F: 270°. [a]₅: —34,9° (Wasser; p = 10). Saures l-Tartrat. F: 187°.

Eine teilweise racemisierte l-Pipecolinsäure wurde von Willstätter (B. 34, 3168) beim Erhitzen von Conhydrin (Bd. XXI, S. 5) mit Chromtrioxyd und verd. Schwefelsäure erhalten. — Prismen und Nadeln (aus Alkohol + Äther). F: 264—265° (Zers.). Sublimiert bei vorsichtigem Erhitzen im Vakuum fast unzersetzt. Sehr leicht löslich in Wasser, schwer in absol. Alkohol, fast unlöslich in Aceton und Chloroform, unlöslich in Äther. [α] $_{\rm n}^{\rm n}$: —24,7° (Wasser; c = 10). Reagiert neutral. Gegen Permanganat in schwefelsaurer Lösung beständig. — ${\rm Cu}({\rm C_e}{\rm H_{10}}{\rm O_2}{\rm N})_2 + 2{\rm H_2}{\rm O}$. — ${\rm Cu}({\rm C_e}{\rm H_{10}}{\rm O_2}{\rm N})_2 + 3{\rm H_2}{\rm O}$. Blaue Blätter (aus Wasser). Zersetzt sich bei 120°. Ziemlich schwer löslich in kaltem Wasser mit violettblauer Farbe. Wandelt sich beim Digerieren mit Alkohol in hellblaue, in Alkohol ziemlich schwer löslich Nadelt des Salzes ${\rm Cu}({\rm C_e}{\rm H_{10}}{\rm O_2}{\rm N})_2 + {\rm C_2}{\rm H_6}{\rm O}$ um, die langsam im Vakuum, rasch bei 105° alkoholfrei werden. — ${\rm C_e}{\rm H_{11}}{\rm O_2}{\rm N} + {\rm HCl}$. Nadeln und Blätter (aus Alkohol). F: ca. 256—258° (Zers.). Sehr leicht löslich in Wasser, leicht in heißem Alkohol. — $2{\rm C_e}{\rm H_{11}}{\rm O_2}{\rm N} + 2{\rm HCl} + {\rm PtCl_4} + 2{\rm H_2}{\rm O}$. Prismen. Leicht löslich in Wasser und Alkohol.

2. Piperidin - carbonsdure - (3), Piperidin - β - carbonsäure, Hexahydronicotinsdure, Nipecotinsdure C₆H₁₁O₂N,
s. nebenstehende Formel. B. Bei Einw. von Natrium auf Nicotinsdure
(S. 38) in heißem absolutem Alkohol (Ladenburg, B. 25, 2768). Bei H₂C·NH·CH₂
Einw. von Natrium auf Chinolinsdure (S. 150) in siedendem Isoamylalkohol (Besthorn, B. 28, 3153). — Krystalle. F: 249—250°; sehr leicht löslich in Wasser, unlöslich in absol.
Alkohol und in Äther (L.). — C₆H₁₁O₂N + HCl. Krystallmasse. F: 239—240°; leicht löslich

in Wasser und Alkohol, schwer in Chloroform, unlöslich in Äther, Benzol und Aceton (L.). — $C_eH_{11}O_sN + HCl + AuCl_s$. Goldgelbe Nadeln. F: 197° (korr.) (L.), 194° (Zers.) (B.). Leicht löslich in Wasser und Alkohol (L.). — $C_eH_{11}O_sN + HCl + 5HgCl_s$. Würfel. F: 229—231° (Zers.) (L.). — $2C_eH_{11}O_sN + 2HCl + PtCl_s$ (bei 100°). Orangerote Prismen (aus Wasser). F: 212—213° (korr.) (L.), 219—220° (Zers.) (B.). Leicht löslich in heißem Wasser, unlöslich in Alkohol (L.).

Methylester $C_7H_{18}O_2N = \frac{H_2C \cdot CH_2 \cdot CH \cdot CO_2 \cdot CH_3}{H_2C \cdot NH \cdot CH_2}$. B. Beim Erhitzen des Natriumsalzes der Nipecotinsäure mit 1 Mol Methyljodid im Rohr auf 100° (LADENBURG, B. 25, 2771). — $C_7H_{18}O_2N + HCl$. Nadeln. F: 215—217°. Leicht löslich in Wasser und Alkohol. — $2C_7H_{18}O_2N + 2HCl + PtCl_4$. Rechtwinklige Tafeln. F: 207—208°. Leicht löslich in heißem Wasser.

N-Methyl-piperidin- β -carbonsäure, N-Methyl-nipecotinsäure, Dihydroare-caidin $C_7H_{13}O_2N=\frac{H_2C-CH_3-CH\cdot CO_2H}{H_2C\cdot N(CH_3)\cdot CH_2}$. B. Bei der Reduktion von Arecaidin (S. 15) mit Natrium und siedendem Isoamylalkohol (Jahns, Ar. 229, 686). — Undeutliche Krystalle mit 1 H_2O (über Schwefelsäure). Sehr hygroskopisch. Schmilzt wasserfrei bei 162—163°. Leicht löslich in Wasser, Alkohol und Chloroform, unlöslich in Äther. — $C_7H_{13}O_2N+HCl+AuCl_2$. Krystalle (aus verd. Salzsäure). F: 158—159°. — $2C_7H_{13}O_2N+2HCl+PtCl_4$. Prismen. F: 215—216° (Zers.).

N-Methyl-piperidin- β -carbonsäure-methylester, N-Methyl-nipecotinsäure-methylester, Dihydroarecolin $C_8H_{18}O_2N=\frac{H_2C-CH_2-CH\cdot CO_2\cdot CH_3}{H_2C\cdot N(CH_3)\cdot CH_2}$. B. Beim Erhitzen des Natriumsalzes der Nipecotinsäure mit mehr als 2 Mol Methyljodid im Rohr auf 120° (LADENBURG, B. 25, 2771). Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung der N-Methyl-nipecotinsäure (JAHNS, Ar. 229, 688). — Alkalisch reagierende Flüssigkeit; unzersetzt destillierbar; in jedem Verhältnis mischbar mit Wasser, Alkohol und Äther (J.). — Hydrochlorid. Zerfließliche Prismen (aus Äther-Alkohol) (J.). — $C_8H_{18}O_2N+HBr$. Krystallwarzen (aus Alkohol + Äther). Leicht löslich in Wasser und Alkohol (J.). — $2C_8H_{18}O_2N+2HCl+PtCl_4$ (bei 110°). Tafeln. F: 233—235°; leicht löslich in heißem, ziemlich schwer in kaltem Wasser (L.).

N-Methyl-piperidin- β -[carbonsäure-methylester]-hydroxymethylat, N-Methyl-nipecotinsäure-methylester-hydroxymethylat, Dihydroarecolin-hydroxymethylat $C_9H_{19}O_3N=\frac{H_2C-CH_2-CH\cdot CO_2\cdot CH_3}{H_2C\cdot N(CH_2)_2(OH)\cdot CH_2}$. B. Das Jodid entsteht bei Einw. von Methyl-jodid auf Dihydroarecolin in Alkohol (Willstätter, B. 30, 730). — Jodid. Säulen oder Warzen (aus Alkohol). F: 155—156°. Leicht löslich in Wasser und heißem Alkohol. — $C_9H_{18}O_3N\cdot Cl+AuCl_3$. Prismen (aus verd. Methanol). F: 111—112°. Ziemlich leicht löslich in heißem, sehr schwer in kaltem Wasser.

N - Äthyl - piperidin - β - carbonsäure, N - Äthyl - nipecotinsäure $C_8H_{15}O_2N = H_2C - CH_2 - CH \cdot CO_2H$ Bei der Reduktion von 1-Äthyl-1.2.5.6-tetrahydro-pyridin- $H_2C \cdot N(C_2H_5) \cdot CH_2$ Carbonsäure-(3) mit Natrium und siedendem Alkohol (Wohl, Losanitsch, B. 40, 4725). — $C_8H_{15}O_2N + HCl$. Nadeln (aus absol. Alkohol). F: ca. 178° (korr.). Sehr leicht löslich in Wasser, unlöslich in Äther und Aceton. — $C_8H_{15}O_2N + HCl + AuCl_3$. Prismen. F: 158° (korr.). Schwer löslich in kaltem Wasser und kaltem Alkohol. — $2C_8H_{15}O_2N + 2HCl + PtCl_4$ (im Vakuum über Schwefelsäure getrocknet). Krystalle. F: 214—215° (korr.; Zers.). Leicht löslich in kaltem Wasser, schwer in Alkohol.

N-Nitroso-piperidin- β -carbonsäure, N-Nitroso-nipecotinsäure $C_6H_{10}O_3N_3=H_3C-CH_3-CH\cdot CO_3H$. Beim Eintragen von Natriumnitrit in die angesäuerte Lösung $H_3C\cdot N(NO)\cdot CH_3$ des Hydrochlorids der Nipecotinsäure (Ladenburg, B. 25, 2770). — Prismen (aus Wasser). F: 111—112°.

4-Chlor-piperidin-carbonsäure-(3)-nitril, 4-Chlor-3-cyan-piperidin $C_0H_0N_1Cl=H_1C\cdot CHCl\cdot CH\cdot CN$ B. Das salzsaure Salz entsteht beim Eintragen von 1.2.5.6-Tetra-H_2C-NH-CH_2 hydro-pyridin-aldoxim-(3)-hydrochlorid (Bd. XXI, S. 256) in gekühltes Thionylchlorid (Wohl, Losanitsch, B. 40, 4699). — Das Hydrochlorid liefert mit Natronlauge 1.2.5.6-Tetrahydro-pyridin-carbonsaure-(3)-nitril (S. 15). — C₂H₂N₂Cl+HCl. Tafeln oder Prismen (aus Wasser). Zersetzt sich bei 192—193° (korr.). Leicht löslich in Wasser, schwerer in heißem absolutem Alkohol, unlöslich in Äther und Aceton.

3. Piperidin - carbonsäure - (4), Piperidin - γ - carbonsäure, Hexahydroisonicotinsäure, Isonipecotinsäure

C₄H₁₁O₂N, s. nebenstehende Formel. B. Bei der Reduktion von Isonicotinsäure mit Natrium und heißem Isoamylakohol (Ladenburg,

H₂C · CH(CO₂H)· CH₂

B

H₂C · CH(CO₂H)· CH₂

B

H₂C · CH(CO₂H)· CH₂

B

OH₂

OH₂

OH₃

OH₄

OH₄ B. 25, 2772). — Nadeln. Schwärzt sich bei ca. 300° und ist bei 320° noch nicht geschmolzen. Sehr leicht löslich in Wasser, fast unlöslich in absol. Alkohol. — C₆H₁₁O₂N + HCl. Prismen. Rhombisch (MILCH). F: 228° (Zers.). Sehr leicht löslich in Wasser, sehr schwer in absol. Alkohol. - $2C_6H_{11}O_2N + 2HCl + PtCl_4$. Gelbe Prismen. F: 239°.

N-Nitroso-piperidin- γ -carbonsäure, N-Nitroso-isonipecotinsäure $C_6H_{10}O_2N_2=$ $\mathbf{H_{s}C \cdot CH(CO_{s}H) \cdot CH_{s}}$ B. Beim Behandeln von Isonipecotinsäure mit Natriumnitrit und H.C-N(NO)-CH. Salzsaure (LADENBURG, B. 25, 2772). — Nadeln. F: 101°; zersetzt sich bei 110°. Leicht löslich in Wasser und Alkohol, schwerer in Äther.

4. $\alpha.\alpha$ - Dimethyl - trimethylenimin - α' - carbons dure $C_6H_{11}O_2N =$ $HO_{2}C \cdot HC < \stackrel{CH_{2}}{NH} > C(CH_{2})_{2} \text{ oder a.a.} \textbf{Dimethy l-$athylenimin-$a'$-essigs aure C_{4}H}_{11}O_{2}N = 0$ HO₂C·CH₂·HC NH C(CH₂)₂. B. Beim Erhitzen von Terebinsäure (Bd. XVIII, S. 377) mit alkoh. Ammoniak im Rohr auf 160-1700 (Corselli, G. 21 I, 271). - Blätter (aus siedendem Wasser). F: 204°. Sehr leicht löslich in Alkohol, schwer in Äther. — AgC₆H₁₀O₂N. Krystalle (aus Wasser).

Salzsaure) auf die freie Saure (C., G. 21 I, 272). — Krystalle (aus Alkohol). F: 170°.

- 3. Carbonsäuren $C_7H_{13}O_2N$.
- 1. α -Piperidylessigsäure $C_7H_{13}O_2N = H_2C \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CO_2H$ dation von α-Pipecolyl-carbinol mit Chromtrioxyd in warmer schwefelsaurer Lösung (Koenigs, HOPPE, B. 35, 1348; 36, 2906). — Nadeln (aus Alkohol). F: 214°. Zersetzt sich beim Erhitzen über den Schmelzpunkt. — C₇H₁₃O₂N + HCl. Krystalle (aus Alkohol). F: 180—182°. Leicht löslich in Wasser, unlöslich in Eisessig und Chloroform. — C₇H₁₃O₂N + HCl + AuCl₂ (bei 100° getrocknet). Gelbe Nadeln. F: 171—172° (Zers.). — Chloroplatinat. Hellgelbes Krystallpulver. F: 203° (Zers.). Leicht löslich in Wasser, sehr schwer in Alkohol.
- 2. 2 Methyl piperidin carbonsäure (5), 6 Methyl nipecotinsäure, α -Pipecolin- β '-carbonsäure $C_7H_{18}O_2N = HO_2C \cdot HC \cdot CH_2 \cdot CH_2$. B. Bei der Redukα-Pipecolin-β'-carbonsäure C₇H₁₈O₂N =

 H₂C·HC·CH₂·CH₃

 H₂C·NH·CH₃

 B. Bei der Reduktion von 2-Methyl-pyridin-carbonsäure-(5) mit Natrium und Isoamylalkohol (Auerbach, B. 25, 3491). — Prismen mit ¹/₂ H₂O (aus Alkohol + Äther). Hygroskopisch. Schmilzt im geschlossenen Röhrchen bei 239°. Sehr leicht löslich in Wasser und Alkohol, sonst unlöslich. — C₇H₁₃O₂N + HCl. Nadeln oder Prismen (aus Wasser). F: 221—222°. Sehr leicht löslich in Wasser und Alkohol, unlöslich in Benzin, Äther, Chloroform, Aceton und Benzol. Sehr leicht löslich in konz. Salzsäure. — C₇H₁₈O₂N + HCl + AuCl₂. Krystalle (aus salzsäure-haltigem Wasser). F: 185°. — Chloroplatinat. Wasserhaltige Krystalle. Schmilzt krystall-wasserfrei bei 199° (Zers.). wasserfrei bei 1990 (Zers.).
- 3. γ -Piperidylessigsäure $C_7H_{13}O_2N = H_2C \cdot CH(CH_2 \cdot CO_2H) \cdot CH_2$ oder 4-Methyl-piperidin carbonsäure (3). 4 Methyl nipecotinsäure, γ Pipecolin- β -carbonsäure $C_7H_{13}O_2N = H_2C \cdot CH(CH_2) \cdot CH \cdot CO_2H$ B. Entsteht neben 4-Methyl-pyridin und der isomeren Säure $C_7H_{13}O_2N$ (s. No. 4) beim Erhitzen von d- β -Cincholoiponsäure

(S. 128) mit konz. Schwefelsäure auf 260—270° (SKRAUP, M. 17, 368, 370). — Dunkelroter Sirup. Unlöslich in Alkohol. — $C_7H_{13}O_2N + HCl + AuCl_3 + \frac{1}{2}H_2O$. Blätter (aus Wasser). F: 174°. Sehr leicht löslich in Wasser.

4. 4 - Methyl - piperidin - carbonsäure - (3), 4 - Methyl - nipecotinsäure, γ -Pipecolin- β -carbonsäure $C_7H_{13}O_2N = H_2C \cdot CH(CH_3) \cdot CH \cdot CO_2H \ H_2C - NH - CH_2$ oder γ -Piperidyl-essigsäure $C_7H_{13}O_2N = H_2C \cdot CH(CH_2 \cdot CO_2H) \cdot CH_2 \ H_2C - NH - CH_2$. B. s. im vorangehenden Artikel. — Dunkelroter Sirup. Sehr leicht löslich in Alkohol (Sk., M. 17, 370). — Chloroaurat. Platten. F: 197—198°. — $2C_7H_{13}O_2N + 2HCl + PtCl_4 + 1^1/2H_2O$. Orangefarbene Krystallkörner. F: 200—202° (Zers.). Ziemlich schwer löslich in Wasser. Leicht löslich in warmer verdünnter Salzsäure.

4. β -[α -Piperidyl]-propionsäure, α -Pipecolylessigsäure $C_8H_{15}O_2N=H_2C\cdot CH_2\cdot CH_2$ $H_2C\cdot NH\cdot CH\cdot CH_2\cdot CH_2\cdot CO_2H$ B. Beim Kochen der mit etwas Salzsäure angesäuerten wäßrigen Lösung des salzsauren α -Pipecolylessigsäure-äthylesters (Löffler, Kaim, B. 42, 98). — Rechtwinklige Tafeln mit $2H_2O$ (aus Wasser). F (wasserfrei): $147-148^\circ$. Schwer löslich in Alkohol. — Gibt bei der trocknen Destillation Piperolidon-(2) (Bd. XXI, S. 261). — $C_8H_{15}O_2N+HCl$. Krystalle. F: 188° . Leicht löslich in Wasser, schwerer in Alkohol. — $C_8H_{15}O_2N+HCl+AuCl_2$. Nadeln. F: 151° . — $2C_8H_{15}O_2N+2HCl+PtCl_4$. Tafeln. F: 197° . Leicht löslich in Wasser, schwer in Alkohol.

Äthylester $C_{10}H_{19}O_2N=\frac{H_2C\cdot CH_2\cdot CH_2}{H_2C\cdot NH\cdot CH_2\cdot CH_2\cdot CO_2\cdot C_2H_5}$. B. Man reduziert β -[α -Pyridyl]-acrylsäure mit Natrium und siedendem Alkohol und dampft die mit Wasser und Salzsäure versetzte Lösung zur Trockne ein (Löffler, Kaim, B. 42, 97). — Öl. Kp₂₁: 143—144°. D₁°: 1,0214. Leicht löslich in Äther. — $C_{10}H_{19}O_2N+HCl$. Nadeln (aus Aceton). F: 122°. Leicht löslich in Wasser, etwas schwerer in Alkohol. — $C_{10}H_{19}O_2N+HCl+AuCl_3$. Gelbe Nadeln (aus Wasser). F: 127—128°. — $2C_{10}H_{19}O_2N+2HCl+PtCl_4$. Krystalle. F: ca. 127—130°.

5. Carbonsäuren C₂H₁₇O₂N.

1. [3 - Āthyl - piperidyl - (4)] - essigsäure. Cincholoipon C₉H₁₇O₂N = H₂C·CH(CH₂·CO₂H)·CH·C₂H₅. B. Durch Reduktion von Merochinen (Syst. No. 3245) mit H₂C NH CH₂

Jodwasserstoffsäure und Zinkstaub (Koenigs, B. 35, 1350; A. 347, 210). Bei mehrstündigem Kochen von 6-Oximino-3-āthyl-chinuclidin (Bd. XXI, S. 264) mit verd. Salzsäure (Rabe, Naumann, A. 365, 364). Neben Lepidin beim Erhitzen von Dihydroeinchen (Syst. No. 3487) mit 25% iger Phosphorsäure im Rohr auf 170—180% (K., B. 27, 1504). Bei der Oxydation von Cinchotin (Hydroeinchonin, Syst. No. 3512) durch Chromtrioxyd und verd. Schwefelsäure (K., Hoerlin, B. 27, 2292; Skraup, M. 16, 173; vgl. Sk., M. 9, 805). Bei der Oxydation von hydrochininhaltigem Chinin, hydrochinidinhaltigem Chinidin oder von hydroeinchonidinhaltigem Cinchonidin (Sk., M. 10, 49; Sk., Würstl, M. 10, 220, 222; vgl. Sk., M. 16, 173). — Krystalle (aus Methanol). Schmilzt bei 236% unter Zersetzung (K., H.). In wäßr. Lösung linksdrehend (K., A. 347, 212). — Cincholoipon gibt bei der Oxydation mit Chromtrioxyd in schwefelsaurer Lösung allmählich Cincholoiponsäure (Syst. No. 3274) (Sk., M. 9, 809, 811). Beim Glühen mit Zinkstaub entsteht 3-Äthyl-pyridin (Sk., M. 9, 812). — C₉H₁₇O₂N+HCl. Gelbe Krystalle. Rhombisch bisphenoidisch (Lippitsch, M. 9, 806; vgl. Groth, Ch. Kr. 5, 721). F: 198—200% (Zers.); leicht löslich in Wasser und Alkohol, unlöslich in Äther; löslich in Salzsäure (Sk., M. 9, 805). [a]₅⁵: —5,6% (Wasser; p = 10) (K., A. 347, 212; vgl. Sk., M. 9, 809). — C₉H₁₇O₂N+HCl+AuCl₂. Gelbe Tafeln oder Nadeln. F: 203% (Zers.); sehr leicht löslich in Alkohol und heißem Wasser (Sk., M. 9, 807). — 2C₉H₁₇O₂N+2 HCl+PtCl₄+3½, H₂O. Prismen. Leicht löslich in Wasser (Sk., M. 9, 808).

Cincholoipon-äthylester C₁₁H₂₁O₂N = HNC₅H₆(C₂H₅)·CH₂·CO₂·C₂H₅. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von salzsaurem Cincholoipon und längeren Aufbewahren der Flüssigkeit (Skraup, M. 16, 177) oder bei 1-stündigem Kochen von salzsaurem Cincholoipon mit alkoh. Salzsäure (Rabe, Naumann, A. 365, 364). — Prismen. Sehr leicht löslich in Wasser, leicht in heißem Alkohol, schwer in kaltem Alkohol, unlöslich in Äther (Sk.). — Bei der Reduktion mit Natrium und Alkohol entsteht unreines 3-Äthyl-4-[β-oxy-äthyl]-piperidin, das beim Kochen mit Jodwasserstoffsäure und rotem Phosphor

in die aktive Form des 3-Äthyl-4- $[\beta$ -jod-āthyl]-piperidins (Bd. XX, S. 129) übergeht (Kornigs, B. 37, 3246; K., Bernhart, B. 38, 3057). — $C_{11}H_{11}O_2N + HCl$ (Sk.). Krystalle (aus Chloroform + Essigester). F: 158° (K., A. 347, 212; R., N.). Leicht löslich in Chloroform (K., A. 347, 212). — Chlorosurst. F: 100—102° (Sk.).

N-Methyl-cincholoipon-nitril $C_{10}H_{10}N_3=CH_3\cdot NC_5H_6(C_2H_5)\cdot CH_3\cdot CN.$ B. Bei Einw. von Phosphorpentachlorid auf Isonitroso-methyl-cinchotintoxin (Syst. No. 3594) in Chloroform und nachfolgender Behandlung des Reaktionsprodukts mit Wasser (RABE, B. 40, 2014). — Flüssigkeit von piperidinartigem Geruch. Kp₉₀₋₉₅: 186—187° (korr.). D_a^{m} : 0,9366. n_2^{m} : 1,4707. Leicht löslich in Alkohol und Äther, löslich in Wasser. Leicht flüchtig mit Wasserdampf. — Pikrat $C_{10}H_{19}N_2+C_4H_3O_2N_3$. Blättchen (aus Alkohol). F: 142°. — Pikrolonat $C_{10}H_{19}N_2+C_{10}H_3O_5N_4$. Orangefarbene Blättchen. F: 208°.

N-Methyl-cincholoipon-hydroxymethylat $C_{11}H_{22}O_3N=(HO)(CH_2)_3NC_2H_3(C_3H_3)\cdot CH_2\cdot CO_2H$. — Chlorid. B. Man erhitzt Cincholoipon mit Methyljodid und Methanol auf 100^0 und führt das entstandene Jodid durch Silberchlorid in das Chlorid über (SKRAUP, M. 9, 816). — $C_{11}H_{22}O_3N\cdot Cl + AuCl_3$. Schuppen. Sehr schwer löslich in Wasser, sehr leicht in Alkohol.

N-Methyl-cincholoipon-nitril-hydroxymethylat $C_{11}H_{22}ON_2 = (HO)(CH_3)_2NC_2H_6$ $(C_2H_5)\cdot CH_2\cdot CN$. — Jodid $C_{11}H_{21}N_3\cdot I$. B. Aus äquivalenten Mengen von N-Methyl-cincholoipon-nitril und Methyljodid in Methanol·(RABE, B. 40, 2015). Nadeln. Zersetzt sich bei etwa 270°.

N-Acetyl-cincholoipon $C_{11}H_{19}O_3N=CH_3\cdot CO\cdot NC_5H_6(C_2H_5)\cdot CH_2\cdot CO_5H$. B. Beim Kochen von salzsaurem Cincholoipon mit Essigsäureanhydrid (Skraup, M. 9, 813). — Prismen. Rhombisch bisphenoidisch (Lippitsch; vgl. Groth, Ch. Kr. 5, 721). F: 121°. Ziemlich leicht löslich in Alkohol, schwer in kaltem Wasser, sehr schwer in Äther; leicht löslich in Alkalilaugen und Alkalicarbonat-Lösungen. — $AgC_{11}H_{18}O_3N + \frac{1}{2}H_2O$. Krystallinisch.

N-Nitroso-cincholoipon $C_9H_{16}O_3N_2=ON\cdot NC_5H_6(C_2H_5)\cdot CH_2\cdot CO_2H$. B. Beim Versetzen von salzsaurem Cincholoipon mit Natriumnitrit und Salzsäure (SERAUP, M. 9, 817). — Blättchen. F: 83—84°. — $Ca(C_9H_{15}O_3N_2)_2+2H_2O$. Prismen. Mäßig löslich in Wasser, unlöslich in Alkohol.

[1-Äthyl-3-($\alpha.\beta$ -dibrom-äthyl)-piperidyl-(4)]-essigsäure-äthylester, **M**-Äthylmerochinen-äthylester-dibromid $C_{12}H_{22}O_2NBr_2=C_2H_5\cdot NC_5H_6$ (CHBr·CH₂Br)·CH₂·CO₂·C₂H₅. B. Das bromwasserstoffsaure Salz entsteht bei der Kinw. von Brom auf bromwasserstoffsauren N-Äthyl-merochinen-äthylester in Chloroform unter Kühlung (Koenigs, B. 30, 1336; A. 347, 225). Das Hydrobromid liefert bei mehrstündigem Kochen mit verd. Bromwasserstoffsäure das Hydrobromid des Lactons der [1-Äthyl-3-(β -brom- α -oxy-āthyl)-piperidyl-(4)]-essigsäure (Syst. No. 4272). — $C_{12}H_{22}O_2NBr_2+HBr$. Nadeln (aus Alkohol). F: 182° (Zers.).

2. 2.2.4-Trimethyl-piperidin-carbonsäure-(5), 4.6.6-Trimethyl-niperotinsäure $C_9H_{17}O_9N= \frac{HO_2C\cdot HC\cdot CH(CH_2)\cdot CH_2}{H_2C-NH-C(CH_2)_2}$. B. Neben anderen Produkten bei der Einw. von Natrium und Isoamylalkohol auf 6-Oxo-2.2.4-trimethyl-5-cyan-1.2.3.6-tetrahydro-pyridin (Syst. No. 3366) (Issoglio, C. 1908 II, 1444). — Prismen mit $^1/_2H_2O$. F (wasserfrei): 123° (Zers.).

3. 2.2.5.5 - Tetramethyl - pyrrolidin - carbonsäure - (3) C₂H₁₇O₂N = H₂C—CH·CO₂H

(CH₂)₂C·NH·C(CH₃)₃

(D: 1,19) auf 130° (Pauly, Hültenschmot, B. 36, 3358). — Prismatische Nadeln mit 1 H₂O. F (wasserfrei): 220° (Zers.). Löslich in ca. 2 Tln. kaltem Wasser, schwerer löslich in Alkohol. — Beim Erhitzen auf 240—250° erhält man das carbamidsaure Salz des 5-Amino-2.5-dimethyl-hexens-(2) und 2.2-Dimethyl-4-isopropyliden-pyrrolidon-(5) (Bd. XXI, S. 263). Ist gegen Permanganat beständig. Nur wenig giftig. — C₂H₁₇O₂N + HCl. Nadeln (aus Wasser). Zersetzt sich gegen 234°. — 2C₂H₁₇O₂N + 2 HCl + PtCl₄. Orangerote Krystalle. Zersetzt sich bei 216°. Ziemlich leicht löslich in Wasser.

Methylester $C_{10}H_{19}O_2N=\frac{H_2C-CH\cdot CO_2\cdot CH_2}{(CH_3)_2C\cdot NH\cdot C(CH_3)_2}$. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung der 2.2.5.5-Tetramethyl-pyrrolidin-carbon-säure-(3) (Pauly, Hültenschmidt, B. 36, 3359). — Flüssigkeit von unangenehmem Geruch. Kp₇₆₀: 206° (korr.). Flüchtig mit Wasserdampf und Ätherdampf. D²⁴: 0,958. Schwer löslich in Wasser, mischbar mit organischen Lösungsbefeln.

Äthylester $C_{11}H_{21}O_2N = \frac{H_2C - CH \cdot CO_2 \cdot C_2H_5}{(CH_3)_2C \cdot NH \cdot C(CH_3)_2}$. Kp_{748} : 217° (korr.) (P., H., B. 36, 3360).

Amid $C_9H_{18}ON_2 = \frac{H_2C - CH \cdot CO \cdot NH_2}{(CH_3)_2}$. B. Bei der Reduktion von 2.2.5.5-Tetramethyl- \mathcal{A}^3 -pyrrolin-carbonsäure-(3)-amid (8. 21) mit Natriumamalgam (Pauly, Rossbach, B. 32, 2008; P., D. R. P. 109346; C. 1902 II, 405; Frdl. 5, 800). — Die wasserhaltigen Krystalle (aus Toluol) werden erst durch Erhitzen auf 180—200° und nachfolgende Destillation im Vakuum wasserfrei. F: 129—130°. Kp₁₈: 157—159,5°. Das wasserhaltige Amid ist leicht löslich in Alkohol und Aceton, ziemlich schwer in kaltem Wasser, Benzol, Toluol und Äther. — Liefert beim Erwärmen mit Kaliumhypobromit-Lösung 3-Amino-2.2.5.5-tetramethyl-pyrrolidin (P., R., B. 32, 2005; P., A. 322, 97). — Hydrochlorid. Sehr leicht löslich in Wasser, schwerer in Alkohol (P., R.). — $C_9H_{18}ON_2 + HBr$. Prismen. F: 256° (P., R.). — $C_9H_{18}ON_2 + HCl + AuCl_3$. Goldgelbe Nadeln. F: 210° (P., R.). Löslich in 2 Tln. heißem Wasser. — $2C_9H_{18}ON_2 + 2HCl + PtCl_4$ (bei 105°). Orangefarbene Tafeln. Ziemlich leicht löslich in Wasser (P., R.). — Pikrat. Gelbe Prismen (aus Wasser). F: 189° (P., R.).

 $\begin{array}{c} \textbf{Methylamid} \quad C_{10}H_{20}ON_2 = \frac{H_2C---CH\cdot CO\cdot NH\cdot CH_3}{(CH_3)_2C\cdot NH\cdot C(CH_3)_2}. \quad \textit{B.} \quad \text{Analog der vorangehenden Verbindung (P., D.R.P. 109346; $C. 1900 II, 405; $Frdl. 5, 800).} \quad --F: 50^{\circ}. \quad \text{Sehr hygroskopisch.} \end{array}$

1.2.2.5.5 - Pentamethyl - pyrrolidin - carbonsäure - (3) $C_{10}H_{19}O_2N =$

H₂C—CH·CO₂H (CH₃)·C(CH₃)· . B. Beim Erhitzen des entsprechenden Amids (s. u.) mit rau-(CH₃)·C·N(CH₃)·C(CH₃

1.2.2.5.5 - Pentamethyl - pyrrolidin - carbonsäure - (3) - methylester $C_{11}H_{21}O_2N = H_2C$ — $CH \cdot CO_2 \cdot CH_3$. B. Das jodwasserstoffsaure Salz entsteht beim Behandeln $(CH_3)_2C \cdot N(CH_3) \cdot C(CH_3)_3$. B. Das jodwasserstoffsaure Salz entsteht beim Behandeln von 2.2.5.5-Tetramethyl-pyrrolidin-carbonsäure - (3)-methylester in Alkohol mit der entsprechenden Menge Methyljodid (Pauly, Hültenschmidt, B. 36, 3361). — Unangenehm narkotisch riechende Flüssigkeit. Kp: 218° (korr.). Schwer löslich in Wasser, mischbar mit organischen Lösungsmitteln. — $C_{11}H_{21}O_2N + HI$. Krystallwarzen (aus wenig heißem Alkohol). F: 192° (Zers.). Leicht löslich in Wasser, Alkohol, Aceton, schwer in heißem Essigester.

1.2.2.5.5 - Pentamethyl - pyrrolidin - carbonsäure - (3) - äthylester $C_{12}H_{23}O_{2}N = H_{2}C - CH \cdot CO_{2} \cdot C_{2}H_{5}$. Kp_{760} : 227° (korr.); Kp_{14} : 108—109°; D^{15} : 0,955 (P., H., B. 36, 3361).

1.2.2.5.5-Pentamethyl-pyrrolidin-carbonsäure-(8)-amid $C_{10}H_{20}ON_2=$

H₂C——CH·CO·NH₂
B. Bei Einw. von Methyljodid auf 2.2.5.5-Tetramethyl-(CH₃)₂C·N(CH₃)·C(CH₃)₂
pyrrolidin-carbonsăure-(3)-amid in Methanol (Pauly, Rossbach, B. 32, 2010; P., D.R.P. 109349; C. 1900 H, 406; Frdl. 5, 802). Bei der Reduktion von 1.2.2.5.5-Pentamethyl- Δ^3 -pyrrolin-carbonsăure-(3)-amid (8. 22) mit Natriumamalgam (P., D. R. P. 109346; C. 1900 H, 405; Frdl. 5, 800). — Wasserhaltige Nadeln oder Prismen (aus Aceton). F (wasserfrei): 142° bis 144°; Kp₁₁: 165—167°; leicht löslich in Wasser und Alkohol, schwerer in Benzol, Aceton, Ather und Ligroin (P., R.). — Liefert beim Erwärmen mit Kaliumhypobromit-Lösung 3-Amino-1.2.2.5.5-pentamethyl-pyrrolidin (P., Schaum, B. 34, 2289; P., A. 322, 108). — $C_{10}H_{20}ON_2 + HI$. Prismen (aus 80°/ojgem Alkohol). Schmilzt oberhalb 250°; leicht löslich

in Wasser, schwerer in Alkohol (P., R.). — Chloroaurat. Tafeln (aus Wasser). F: 172° (P., R.). — Chloroplatinat. Stäbchen. F: 227° (P., R.). — Pikrat $C_{10}H_{20}ON_2 + C_0H_3O_7N_3$. Nadeln. F: 160° (P., R.).

1.2.2.5.5 - Pentamethyl - pyrrolidin - carbonsäure - (3) - methylamid $C_{11}H_{22}ON_2 = H_2C$ —CH·CO·NH·CH₂. B. Bei Einw. von Methyljodid auf 2.2.5.5-Tetramethyl-(CH₂), \dot{C} ·N(CH₃). \dot{C} (CH₃), \dot{C} (CH₃). methylamid in Methanol (Pauly, D. R. P. 109349; C. 1900 II, 406; Frdl. 5, 802). Durch Reduktion von 1.2.2.5.5-Pentamethyl- Δ^3 -pyrrolin-carbonsäure-(3)-methylamid (S. 22) mit Natriumamalgam (P., D. R. P. 109346; C. 1900 II, 405; Frdl. 5, 800). — Prismen (aus Ligroin). F: 100°.

1.2.2.5.5 - Pentamethyl - pyrrolidin - [carbonsäure - (3) - amid] - hydroxymethylat $\frac{H_2C - CH \cdot CO \cdot NH_2}{(CH_3)_2C \cdot N(CH_3)_2(OH) \cdot C(CH_3)_2}. \quad - \text{Jodid } C_{11}H_{22}ON_2 \cdot I. \quad B. \quad \text{Beim Erhitzen von 1.2.2.5.5-Pentamethyl-pyrrolidin-carbonsäure-(3)-amid mit Methyljodid in Methanol im Rohr auf 100° (P., H., B. 36, 3362). Nadeln (aus Wasser). Zersetzt sich bei 255°. Löslich in 5 Tln. heißem Wasser. Liefert beim Kochen mit verd. Kalilauge <math>\gamma$ -Dimethylamino- α -isopropyliden-isocapronsäure-amid.

1-Nitroso-2.2.5.5-tetramethyl-pyrrolidin-carbonsäure-(3)-amid $C_9H_{17}O_2N_3=H_2C$ —— $CH\cdot CO\cdot NH_2$. B. Beim Erwärmen einer schwach sauren Lösung des 2.2.5.5-(CH_3) $_2C\cdot N(NO)\cdot C(CH_3)_2$ Tetramethyl-pyrrolidin-carbonsäure-(3)-amids in wenig Wasser mit Natriumnitrit (PAULY, ROSSBACH, B. 32, 2009). — Nadeln (aus Wasser). F: 229°.

 β -[1-Methyl-3-äthyl-piperidyl-(4)]-propionsäure, N-Methyl-homocincholoipon $C_{11}H_{21}O_2N=CH_3\cdot NC_5H_6(C_2H_5)\cdot CH_3\cdot CH_2\cdot CO_2H$. B. Neben anderen Produkten aus dem Oxim des Methyl-cinchotintoxins (Syst. No. 3570) durch Beckmannsche Umlagerung mit Hilfe von Phosphorpentachlorid in Chloroform und nachfolgende Spaltung des Reaktionsprodukts durch Kochen mit Salzsäure (Koenigs, Bernhart, Ibelle, B. 40, 2881). — $C_{11}H_{21}O_2N+HCl+AuCl_2$. Krystallinisch. Schmilzt unscharf bei 120°.

eta-[1-Methyl-3-äthyl-piperidyl-(4)]-propionsäure-äthylester, N-Methyl-homocincholoipon-äthylester $C_{13}H_{25}O_3N=CH_3\cdot NC_5H_6(C_2H_5)\cdot CH_3\cdot CH_3\cdot CO_3\cdot C_3H_5$. — $C_{13}H_{25}O_3N+HCl+AuCl_3$. Gelbes Krystallpulver; schmilzt unscharf zwischen 80° und 100° (K., B., I., B. 40, 2881).

2. Monocarbonsäuren $C_n H_{2n-3} O_2 N$.

1. Carbonsäuren $C_6H_9O_2N$.

1. Derivat einer Tetrahydro - pyridin - carbonsäure - (2) $C_0H_0O_1N = NC_5H_3 \cdot CO_2H$ mit unbekannter Lage der Doppelbindung.

4(oder 5)-Chlor-x.x.x.x-tetrahydro-pyridin-carbonsäure-(2), 4(oder 5)-Chlor-x.x.x.x-tetrahydro-picolinsäure $C_0H_0O_2NCl=NC_0H_0C_0CO_2H$. B. Beim Erhitzen von 4.5-Dichlor-picolinsäure mit Zinn und Salzsäure (Ost, J. pr. [2] 27, 283). — Blättchen. F: 265° bis 270° (Zers.). Leicht löslich in Wasser. — Gibt mit Kupferacetat einen in Wasser unlöslichen blauen Niederschlag. — $C_0H_0O_2NCl+HCl$. Tafeln und Prismen. Leicht löslich in Wasser.

2. 1.2.5.6-Tetrahydro-pyridin-carbonsäure-(3), Δ°-Piperidein-carbonsäure - (3), 1.2.5.6 - Tetrahydro - nicotinsäure, Guvacin C₀H₀O₂N = H₂C·CH:C·CO₂H

H₂C·NH·CH₂ Zur Konstitution des Guvacins vgl. Freudenberg, B. 51 [1918], 976, 1676. — V. In den Arecanüssen (Betelnüssen; von Areca Catechu L.) (Jahns, Ar. 229, 674, 693). — B. Aus salzsaurem 4-Chlor-3-cyan-piperidin durch Eindampfen mit rauchender Salzsäure und folgendes Erwärmen mit Barytwasser (Wohl, Losanitsch, B. 40, 4701). —

Krystalle (aus verd. Alkohol). F: $271-272^{\circ}$ (Zers.) (J., Ar. 229, 693). Leicht löslich in Wasser, unlöslich in absol. Alkohol, Äther, Chloroform und Benzol (J.). Die wäßr. Lösung reagiert neutral (J.). — Spaltet beim Erhitzen mit überschüssigem Bariumhydroxyd Ammoniak ab (J.). Gibt bei der Destillation mit Zinkstaub 3-Methyl-pyridin (J.; vgl. Fr., B. 51, 1675). Das Hydrochlorid reagiert mit Natriumnitrit-Lösung auf dem Wasserbad unter Bildung des N-Nitroso-Derivats (J.). Beim Erhitzen mit 2 Mol methylschwefelsaurem Kalium und 2 Mol Natriummethylat in Methanol auf 140—150° erhält man hauptsächlich Arecaidin (s. u.), außerdem anscheinend Guvacinmethylester und Arecaidin-methylbetain (J.; vgl. Fr., B. 51, 1675). Beim Kochen mit Acetanhydrid und wasserfreiem Natriumacetat entsteht N-Acetyl-guvacin (J.). — Gibt mit Eisenchlorid eine rote Färbung (J.). — CeH.O.N + HCl. Prismen oder Nadeln (aus Wasser). Zersetzt sich je nach der Geschwindigkeit des Erhitzens bei 309—314° (korr.) (W., L.). Ziemlich leicht löslich in Wasser, sehr schwer in verd. Salzsäure (J.). — CeH.O.N + HCl + AuCl.3. Gelbe Prismen oder Nadeln (aus Wasser). Schmilzt bei langsamem Erhitzen bei 190°, bei raschem Erhitzen bei 196° (korr.) unter Zersetzung (W., L.); F: 194—195° (J.). Löslich in Wasser, Alkohol und feuchtem Äther, unlöslich in absol. Äther und Benzol (W., L.). — 2CeH.O.N + 2HCl + PtCl. Goldgelbe Nadeln (aus Wasser). Schmilzt je nach der Art des Erhitzens zwischen 215° und 224° (korr.) unter Zersetzung (W., L.). — 2CeH.O.N + 2HCl + PtCl. Tafeln (aus Wasser). Färbt sich bei ca. 210° dunkel und schmilzt einige Grade höher unter Zersetzung (J.).

Nitril, 3-Cyan-1.2.5.6-tetrahydro-pyridin $C_0H_0N_2=\frac{H_2C\cdot CH:C\cdot CN}{H_2C\cdot NH\cdot CH_2}$. B. Aus salzsaurem 4-Chlor-3-cyan-piperidin durch Behandeln mit Natronlauge (Wohl, Losanitsch, B. 40, 4700). — Farblose Flüssigkeit. $Kp_{0,2}$: 48°. Kp_{12} : 107,5° (korr.). Färbt sich beim Aufbewahren gelb. Sehr leicht löslich in Wasser, Alkohol, Äther und Benzol. — Liefert beim Erwärmen mit Natrium-malonester in Alkohol ein Produkt, das beim Kochen mit Barytwasser je nach der Dauer des Erhitzens vorwiegend dl- α -Cincholoiponsäure, ihr Monoamid oder Mononitril, beim Kochen mit rauchender Salzsäure dl- α - und dl- β -Cincholoiponsäure gibt. — $2C_0H_0N_2+2HCl+PtCl_4$. Gelbe Nadeln. Zersetzt sich bei 208—209° (korr.). Leichter löslich in heißem Wasser als in kaltem, schwer in verdünntem, unlöslich in absolutem Alkohol.

1-Methyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3), 1-Methyl-1.2.5.6-tetrahydro-nicotinsäure, N-Methyl-guvacin, Arecaidin C₇H₁₁O₂N = H₂C—CH—C·CO₂H

Lyching Chapter Coult and Konstitution vgl. H. Meyer, M. 23, 22; Wohl, B. 40, 4682; H₃C·N(CH₃)·CH₂

W., Johnson, B. 40, 4712.—V. In den Arecanüssen (Betelnüssen; von Areca Catechu L.) (Jahns, Ar. 229, 675).—B. Beim Erhitzen von Guvacin mit Kaliummethylsulfat und Natriummethylat-Lösung auf 140—150° (Ja., Ar. 229, 698; vgl. Freudenberg, B. 51 [1918], 978, 1668). Aus Arecolin (s. u.) durch Erhitzen mit konz. Salzsäure im Rohr auf 150°, durch Kochen mit konz. Jodwasserstoffsäure oder durch kurzes Kochen mit Kalilauge oder Barytwasser (Ja., Ar. 229, 679). Durch Reduktion von Nicotinsäure-methylester-chlormethylat (Ja., Ar. 229, 691) oder Trigonellin (Mey., M. 21, 927 Anm. 4) mit Zinn und heißer Salzsäure. Durch Eindampfen von 1-Methyl-1.2.5.6-tetrahydro-nicotinsäure-nitril mit rauchender Salzsäure und Erwärmen des Rückstands mit Barytwasser (Wohl, Johnson, B. 40, 4716).

Tafeln mit 1 H₂O (aus verd. Alkohol); schmilzt wasserfrei bei 223—224° (Zers.) (Ja., Ar. 229, 680), 222—223° (korr.; Zers.) (W., Jo.); aus absol. Alkohol umkrystallisiertes Arecaidin schmilzt bei 232° (korr.) (W., Jo.). Leicht löslich in Wasser und verd. Alkohol, fast unlöslich in absol. Alkohol, unlöslich in Chloroform, Äther und Benzol (Ja.; W., Jo.). Die verdünnte wäßr. Lösung reagiert neutral (Ja.; Mey.; W., Jo.), die konz. Lösung reagiert schwach sauer (Ja.; W., Jo.). — Liefert bei der Reduktion mit Natrium und siedendem Isoamylalkohol 1.Methyl-piperidin-carbonsäure-(3) (Ja.). Beim Erhitzen mit konz. Salzsäure auf 240° entsteht Methylchlorid, beim Erhitzen mit Bariumhydroxyd Methylamin (Ja.). — C₇H₁₁O₂N + HCl. Nadeln. Färbt sich bei 240—250° dunkel; schmilzt bei langsamem Erhitzen bei 257° bis 258° unter Aufschäumen; zersetzt sich bei schnellem Erhitzen bei 262—263° (korr.) (W., Jo.). Sehr leicht löslich in Wasser, schwer in kaltem absolutem Alkohol, unlöslich in Äther und Benzol. — C₇H₁₁O₂N + HCl + AuCl₃. Prismen (aus verd. Salzsäure). F: 197—198° (Ja.), 197—198° (korr.) (W., Jo.). Leicht löslich in absol. Alkohol (W., Jo.). Beim Erhitzen der wäßr. Lösung scheidet sich Gold ab (Ja.; W., Jo.). — 2C₇H₁₁O₂N + 2HCl + PtCl₄. Gelbe Krystalle. F: 208—209° (Ja.), 225—226° (korr.; Zers.; bei schnellem Erhitzen) (W., Jo.).

1-Methyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(8)-methylester, 1-Methyl-1.2.5.6 - tetrahydro - nicotinsäure - methylester, Arecolin $C_8H_{13}O_2N=H_2C-CH=C\cdot CO_2\cdot CH_3$. V. In den Arecanüssen (Betelnüssen; von Areca Catechu L.) $H_2C\cdot N(CH_2)\cdot CH_3$.

(Jahns, Ar. 229, 673). — B. Aus Arecaidin und Methanol in Gegenwart von Chlorwasserstoff (Ja., Ar. 229, 681). — Öl. Kp: 209° (unkorr.) (Ja.). Mit Wasserdampf flüchtig (Ja.). Löslich in Wasser, Alkohol, Äther und Chloroform (Ja.). Reagiert stark alkalisch (Ja.). — Gegen Luftsauerstoff beständig (H. Meyer, M. 23, 26). Gibt mit Kaliumwismutjodid einen granatroten Niederschlag (Ja.). — Arecolin ist giftig und wirkt wurmtreibend (Marmé; vgl. Ja.). Zur physiologischen Wirkung vgl. ferner H. H. Meyer, R. Gottileb, Die experimentelle Pharmakologie, 8. Aufl. [Berlin-Wien 1933], 8. 193, 202, 206, 221, 225, 227, 283, 300, 525, 671; vgl. H. Meier, C. 1907 I, 578. — Hydrochlorid. Sehr zerfließliche Nadeln. F: 157—158° (korr.) (Wohl, Johnson, B. 40, 4719). Leicht löslich in Wasser und Alkohol. — C₈H₁₃O₂N + HBr. Prismen (aus Alkohol). F: 167—168° (Ja.), 167—169° (korr.) (W., Jo.), 170—171° (Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926], S. 72). Leicht löslich in Wasser und heißem Alkohol (Ja.; W., Jo.), unlöslich in Äther (W., Jo.). An der Luft beständig (Ja.; W., Jo.). Prüfung auf Reinheit: Deutsches Arzneibuch. — C₈H₁₃O₂N + HCl + AuCl₃. Gelbes Öl (Ja.). Schwer löslich in kaltem, leichter in heißem Wasser. — 2C₈H₁₃O₂N + 2HCl + PtCl₄. Orangerote Tafeln. Rhombisch (Liebscher, Ar. 229, 678). F: 176° (Zers.) (Ja.).

1-Methyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3)-äthylester, 1-Methyl-1.2.5.6-tetrahydro-nicotinsäure-äthylester, Arecaidin-äthylester $C_9H_{18}O_2N=H_2C-CH=C\cdot CO_2\cdot C_2H_5$. B. Aus Arecaidin und Alkohol in Gegenwart von Chlor- $H_2C\cdot N(CH_3)\cdot CH_2$ wasserstoff (Jahns, Ar. 229, 682). — Alkalisch reagierende Flüssigkeit. Mischbar mit Wasser, Alkohol und Äther. — $2C_9H_{18}O_2N+2HCl+PtCl_4$ (bei 80°). Amorpher Niederschlag. Leicht löslich in Wasser.

1 - Methyl - 1.2.5.6 - tetrahydro - pyridin - carbonsäure - (3) - nitril, 1-Methyl-1.2.5.6-tetrahydro-nicotinsäure-nitril, 1-Methyl-3-cyan-1.2.5.6-tetrahydro-pyridin $C_7H_{10}N_2=\frac{H_2C-CH-C\cdot CN}{H_2C\cdot N(CH_3)\cdot CH_2}$. B. Aus salzsaurem 1-Methyl-1.2.5.6-tetrahydro-pyridin-aldoxim-(3) durch Umsetzung mit Thionylchlorid in der Kälte (Wohl, Johnson, B. 40, 4716). — Beim Eindampfen des Hydrochlorids mit rauchender Salzsäure auf dem Wasserbad und Erwärmen des Rückstands mit Barytwasser erhält man Arecaidin. — $C_7H_{10}N_2+HCl$. F: 230,5° (korr.). Sehr leicht löslich in Wasser, leicht in heißem verdünntem Alkohol, schwer in kaltem absolutem Alkohol, unlöslich in Äther und Aceton.

Anhydrid des 1-Methyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3)-hydroxymethylats, 1-Methyl-1.2.5.6-tetrahydro-nicotinsäure-methylbetain, Anhydrid des Arecaidin-hydroxymethylats, Arecaidin-methylbetain $C_8H_{13}O_2N=$

H₂C—CH=C·CO·O

H₂C·N(CH₃)₂·CH₂

B. Bei der Einw. von Silberoxyd auf Arecolin-jodmethylat (WILL-H₂C·N(CH₃)₂·CH₂

STÄTTER, B. 35, 615). — Prismen mit 2 H₂O (aus Alkohol). Verliert 1 Mol Krystallwasser stätter, das zweite bei 130°. Schmilzt krystallwasserfrei bei 248° (Zers.) (WILL-STÄTTER, B. 35, 615). Sehr leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther, Chloroform und Aceton. — Liefert beim Erhitzen auf 240° eine Verbindung C₇H₁₂N (s. u.) und andere Produkte.

Verbindung $C_7H_{13}N$. B. Beim Erhitzen von Arecaidin-methylbetain (s. o.) auf 240° (WILLSTÄTTER, B. 35, 615). — Öl. Sehr schwer löslich in Wasser, löslich in organischen Lösungsmitteln. — Addiert Brom. — $C_7H_{18}N + HCl + AuCl_8$. Bronzegelbe Blättchen. F: 66° bis 67°. — $2C_7H_{18}N + 2HCl + PtCl_4$. Hellrote Krystalle. F: 116—118°. Sehr schwer löslich in siedendem Alkohol.

1-Methyl-1.2.5.6-tetrahydro-pyridin-[carbonsäure-(3)-methylester]-hydroxymethylat, 1-Methyl-1.2.5.6-tetrahydro-nicotinsäure-methylester-hydroxymethylat, Arecolin-hydroxymethylat $C_9H_{17}O_3N = \frac{H_2C - CH - C \cdot CO_3 \cdot CH_2}{H_2C \cdot N(CH_3)_2(OH) \cdot CH_2}$. B. Das Jodid entsteht aus Arecolin und Methyljodid in Methanol (Willstätter, B. 80, 729). — Jodid $C_9H_{16}O_2N \cdot I$. Prismen. F: 173—174°; sehr leicht löslich in Wasser und heißem Alkohol, schwer in kaltem Alkohol, Methanol und Aceton, fast unlöslich in Äther (W., B. 80, 729). Spaltet erst beim Schmelzen mit Kaliumhydroxyd Dimethylamin ab unter Bildung einer öligen Fettsäure (W., B. 80, 730). Liefert beim Behandeln mit Silberoxyd Arecaidinmethylbetain (W., B. 85, 615). — $C_9H_{16}O_2N \cdot Cl + AuCl_2$. Gelbe Blätter (aus Methanol). F: 134—135°; sehr leicht löslich in warmem, schwer in kaltem Methanol (W., B. 80, 730).

- 1-Äthyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3), 1-Äthyl-1.2.5.6-tetrahydro-nicotinsäure $C_8H_{18}O_2N=\frac{H_2C-CH=C\cdot CO_2H}{H_2C\cdot N(C_2H_5)\cdot CH_2}$. B. Aus 1-Äthyl-1.2.5.6-tetrahydro-nicotinsäure-nitril durch Eindampfen mit rauchender Salzsäure und Erwärmen des Rückstands mit Barytwasser (Wohl, Losanitsch, B. 40, 4724). Liefert bei der Reduktion mit Natrium und siedendem Alkohol 1-Äthyl-piperidin-carbonsäure-(3). $C_8H_{18}O_2N+HCl$. Nadeln (aus absol. Alkohol). F: ca. 232—233° (korr.; Zers.). Sehr leicht löslich in Wasser, schwer in kaltem absolutem Alkohol, leichter in heißem, unlöslich in Äther und Aceton. $C_8H_{18}O_2N+HCl+AuCl_3$. Gelbe Prismen (aus Wasser). F: 214—215° (korr.). Schwer löslich in Wasser, Alkohol und Aceton in der Kälte, leichter in der Hitze, unlöslich in Äther. $2C_8H_{18}O_2N+2HCl+PtCl_4$. Zersetzt sich bei raschem Erhitzen bei 229° (korr.); geringe Zersetzung tritt auch bei längerem Erhitzen auf 105—107° ein. Schwer löslich in kaltem Wasser, leichter in heißem, unlöslich in absol. Alkohol.
- 1-Äthyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3)-nitril, 1-Äthyl-1.2.5.6-tetrahydro-nicotinsäure-nitril, 1-Äthyl-3-cyan-1.2.5.6-tetrahydro-pyridin $H_2C CH = C \cdot CN \\
 H_2C \cdot N(C_2H_3) \cdot CH_2$ B. Durch Eintragen von salzsaurem 1-Äthyl-1.2.5.6-tetrahydro-pyridin-aldoxim-(3) in eisgekühltes Thionylchlorid (Wohl, Herzberg, Losanitsch, B. 38, 4168; W., L., B. 40, 4723). Wasserhelle, sich rot färbende Flüssigkeit. Kp_{0,04}: 51° bis 53° (W., L.). Löslich in Wasser, Alkohol, Äther und Benzol (W., L.). Liefert beim Eindampfen mit rauchender Salzsäure und Erwärmen des Rückstands mit Barytwasser 1-Äthyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3) (W., L.). C₂H₁₂N₂ + HCl. Nadeln (aus verd. Alkohol). Sublimiert langsam bei 110°; schmilzt bei 265—266° (korr.) (W., H., L.). Leicht löslich in Wasser und heißem Alkohol, unlöslich in Äther und Aceton. C₂H₁₂N₂ + HCl + AuCl₃. Krystalle. Beginnt bei 110° sich zu zersetzen und schmilzt bei 144—145° (korr.) unter starkem Schäumen (W., L.). Schwer löslich in kaltem Wasser, leichter in heißem Wasser, leicht in Alkohol.
- $\begin{array}{ll} \textbf{1-Acetyl-1.2.5.6-tetrahydro-pyridin-carbons\"{a}ure-(3),} & \textbf{N-Acetyl-guvacin} \\ \textbf{C_8H_{11}O_3N} = & \begin{matrix} \textbf{H_2C-CH-C\cdot CO_2H} \\ \textbf{H_2C\cdot N(CO\cdot CH_2)\cdot CH_2} \end{matrix} \\ \textbf{B.} & \textbf{Durch Kochen von Guvacin mit Acetanhydrid} \\ \textbf{und wasserfreiem Natriumacetat (Jahns, $Ar. 229, 696).} \\ \textbf{-Tafeln (aus absol. Alkohol).} & \textbf{F: } 189^o \\ \textbf{bis } 190^o. & \textbf{Schwer löslich in kaltem Wasser und Alkohol}. \end{array}$
- 1 Nitroso 1.2.5.6 tetrahydro pyridin carbonsäure (3), N Nitroso guvacin $C_0H_0O_3N_2=\frac{H_2C-CH=C\cdot CO_2H}{H_2C\cdot N(NO)\cdot CH_2}$. B. Durch Erwärmen einer Lösung von Guvacinhydro-chlorid mit der berechneten Menge Natriumnitrit auf dem Wasserbad (Jahns, Ar. 229, 695). Nadeln. F: 167—168°. Schwer löslich in kaltem Wasser, ziemlich leicht in Alkohol und Äther.
- 2. 2.5 D i m e t h y l Δ⁴ p y r r o l i n c a r b o n s ä u r e (2) C₇H₁₁O₂N = HC—CH₂

 CH₃·C·NH·C(CH₃)·CO₂H

 B. Man erwärmt Acetonylaceton mit einer wäßr. Lösung von CH₃·C·NH·C(CH₃)·CO₂H

 Kaliumcyanid und Ammoniumchlorid im geschlossenen Gefäß auf 60°, leitet in die gekühlte Lösung Chlorwasserstoff bis zur Sättigung ein, verdünnt mit Wasser und kocht (Zelinsky, Schlesinger, B. 40, 2886). Gelbes Harz. F: ca. 72° (Zers.) (Schl., B. 42, 1159). Sehr leicht löslich in Wasser und Alkohol (Schl.). Gibt bei der Destillation mit Kalk 2.5-Dimethylpyrrol und 2.5-Dimethyl-pyrrolin (Schl.). Das Hydrochlorid entfärbt momentan Kaliumpermanganat (Schl.). C₇H₁₁O₂N + HCl. Krystalle (aus konz. Salzsäure). Schmilzt unscharf bei ca. 178° unter Zersetzung (Schl.). Sehr leicht löslich in Wasser und Alkohol (Z., Schl.). Cu(C₇H₁₀O₂N)₂. Hellblaue Krystalle (aus Alkohol). Sehr leicht löslich in Wasser, löslich in Alkohol, unlöslich in Äther; wird in neutraler Lösung durch Schwefelwasserstoff nicht zersetzt (Z., Schl.).
- 3. Nortropan-carbonsäure-(2)

 C₂H₁₃O₂N, Formel I.

 Tropan-carbonsäure-(2), Hydro-ekgonidin C₂H₁₄O₂N, Formel II. Zur

 H₂C-CH-CH·CO₂H

 H₂C-CH-CH₂

 II.

 H₃C-CH-CH₂

 H₄C-CH-CH₂

 II.

 H₂C-CH-CH₂

 H₄C-CH-CH₂

 H₄C-CH-CH₂

 II.

 H₂C-CH-CH₂

 H₄C-CH-CH₂

 II.

Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] wurden von v. Braun und E. Müller (B. 51 [1918], 235) und Gadamer und John (Ar. 259 [1921], 227) swei stereoisomere Formen aufgefunden. Die obigen Angaben besiehen sich auf Gemische. BEILSTEINS Handbuch. 4. Aufl. XXII.

Konstitution vgl. WILLSTÄTTER, W. MÜLLER, B. 31, 2657. — B. Durch Reduktion von Anhydroekgonin oder dessen Äthylester mit Natrium in siedendem Amylalkohol (WILLSTÄTTER, B. 30, 711, 712; D. R. P. 94175; C. 1898 I, 228; Frdl. 4, 1214). — Sehr hygroskopische Nadeln mit ½ H₂O (nach dem Trocknen über Schwefelsäure im Vakuum). Schmilzt wasserfrei bei 200° (W.). Sehr leicht löslich in Wasser, Alkohol und Chloroform, schwer in heißem Essigester, unlöslich in Äther (W.). — Gegen Kaliumpermanganat beständig (W.). — C₉H₁₆O₂N + HCl. Sehr hygroskopische Tafeln (aus Alkohol). F: 234—236° (W.), 232—235° (GADAMER, AMENOMIYA, Ar. 242, 10). Sehr leicht löslich in Wasser und siedendem Alkohol, schwer in kaltem Alkohol, unlöslich in Äther und Essigester (W.). [a]_D: —3,6° (Wasser: p = 9) (G., A.). — C₉H₁₆O₂N + HCl + AuCl₃. Gelbe Blätter mit 3 H₂O (W.), 5H₂O (G., A.). Schmilzt wasserfrei bei 210—212° (W.), 227° (G., A.). — 2C₉H₁₆O₂N + 2 HCl + PtCl₄. Orangerote Krystalle mit 1½ H₂O (aus Wasser), mit 2 H₂O (aus verd. Alkohol) (W.). Sehr leicht löslich in Wasser, sehr schwer in heißem Alkohol, unlöslich in kaltem Alkohol.

Tropan-carbonsäure-(2)-äthylester $C_{11}H_{10}O_2N=CH_3\cdot NC_7H_{11}\cdot CO_2\cdot C_2H_5$ ¹). B. Durch Einleiten von Chlorwasserstoff in die alkoh. Lösung von Hydroekgonidin-hydrochlorid (Willstätter, B. 30, 714). — Farbloses Öl von schwachem basischem Geruch. Kp₂₀: 137° bis 139° (korr.). Löst sich leichter in kaltem als in warmem Wasser. — Die Verseifung wird erst bei eintägigem Erhitzen mit Wasser im Rohr auf Temperaturen oberhalb 160° nahezu quantitativ. Scheidet aus Silbernitrat Silberoxyd ab. — $C_{11}H_{19}O_2N+HCl+AuCl_3$. Goldgelbe Prismen (aus Alkohol). F: 121—122°. Sehr schwer löslich in kaltem Wasser, schwer in kaltem Alkohol.

Tropan-carbonsäure-(2)-amid $C_9H_{18}ON_9=CH_3\cdot NC_7H_{11}\cdot CO\cdot NH_9$. B. Durch Erhitzen von Tropan-carbonsäure-(2)-äthylester mit methylalkoholischem Ammoniak im Rohr auf 140° (Willstätter, W. Müller, B. 31, 2660). — Tafeln. F: 126—127°. Sehr leicht löslich in Wasser, Alkohol und Benzol, löslich in Äther. Ist im Kohlendioxyd-Strom sublimierbar. — Liefert beim Erwärmen mit Kaliumhypobromit in wäßr. Lösung 2-Aminotropan.

Tropan-carbonsäure-(2)-hydrazid $C_9H_{17}ON_3 = CH_3 \cdot NC_7H_{11} \cdot CO \cdot NH \cdot NH_2$. B. Durch Erwärmen von Tropan-carbonsäure-(2)-äthylester mit Hydrazinhydrat (WILLSTÄTTER, W. MÜLLER, B. 31, 2665). — Liefert beim Behandeln mit Natriumnitrit in schwefelsaurer Lösung, Kochen des entstandenen Azids mit Wasser und Erhitzen des erhaltenen Produkts mit konz. Salzsäure im Rohr auf 130° 2-Amino-tropan. — Pikrat $C_9H_{17}ON_3 + 2C_6H_3O_7N_3$. Nadeln (aus Wasser). F: 172°. Sehr schwer löslich in kaltem, ziemlich leicht in heißem Alkohol und Wasser.

Tropan-carbonsäure-(2)-hydroxymethylat $C_{10}H_{19}O_3N=(H0)(CH_3)_2NC_7H_{11}\cdot CO_2H$. — Chloroaurat $C_{10}H_{19}O_3N\cdot Cl+AuCl_3+4H_2O$. B. Aus Tropan-[carbonsäure-(2)-äthylester]-jodmethylat durch Behandeln der wäßr. Lösung mit frisch gefälltem Silberoxyd oder mit Silbercarbonat in der Wärme und Versetzen der Lösung mit Goldchlorwasserstoffsäure (Willstätter, B. 30, 716). Gelbes Krystallmehl (aus Wasser). F: ca. 255° (Zers.). Sehr schwer löslich in kaltem Wasser und Alkohol, leicht in siedendem Alkohol.

Tropan-[carbonsäure-(2)-äthylester]-hydroxymethylat $C_{12}H_{23}O_3N = (H0)(CH_3)_2$ $NC_7H_{11} \cdot CO_2 \cdot C_2H_8$. B. Das Jodid erhält man aus Tropan-carbonsäure-(2)-äthylester und Methyljodid in Alkohol (Willstätter, B. 30, 715). — Das Jodid spaltet beim Erwärmen mit Kaliumcarbonat in wäßr. Lösung Jodwasserstoff ab unter Bildung von 5-Dimethylamino-cyclohepten-(1)-carbonsäure-(1)-äthylester (Bd. XIV, S. 309). Beim Behandeln der wäßr. Lösung des Jodids mit frisch gefälltem Silberoxyd oder mit Silbercarbonat in der Wärme und Versetzen der Lösung mit Goldchlorwasserstoffsäure erhält man das Chloroaurat des Tropan-carbonsäure-(2)-hydroxymethylats. — Jodid $C_{12}H_{22}O_2N \cdot I$. Nadeln. F: 156°. Sehr leicht löslich in Wasser, Methanol und siedendem Alkohol, leicht in Chloroform, schwer in kaltem Alkohol, unlöslich in Äther. — Chloroaurat $C_{12}H_{22}O_2N \cdot Cl + AuCl_3$. B. Aus dem Jodid durch Behandeln mit Silberchlorid und Versetzen der Lösung mit Goldchlorwasserstoffsäure (W.). Blätter (aus verd. Alkohol). F: 168—169°. Leicht löslich in heißem Wasser und heißem Alkohol, sehr schwer in kaltem Wasser und kaltem Alkohol.

2-Brom-tropan-carbonsäure-(2) C₉H₁₄O₂NBr, s. nebenstehende Formel. Zur Konstitution vgl. Gadamer, John, Ar. 259 | N·CH₃ CH₂ | N·CH₃ CH₃ CH

¹⁾ Vgl. S. 17 Anmerkung.

2.8 - Dibrom - tropan - carbonsäure - (2), Anhydroekgonin-dibromid, Ekgonidin - dibromid C₂H₁₃O₄NBr₂, s. nebenstehende Formel. Uber eine Verbindung, der vielleicht diese Konstitution H₂C-CH-CBr·CO₂H N.CH3 CHBr H2C-CH----CH2 zukommt, vgl. Einhorn, B. 20, 1226; Eichengrün, Einh., B. 23, 2874; GADAMER, AMENOMIYA, Ar. 242, 13; vgl. indessen Lindemann, Heinemann, A. 447 [1926], 85; nach L., H. ist das von Einh.; Eich., Einh. dargestellte Hydrobromid dieser Verbindung das Hydrobromid der Chlor-brom-tropan-carbonsäure (2).

4. Carbonsäuren C₉H₁₅O₂N.

a) Merochinen C₉H₁₅O₂N. B. Durch Erhitzen von Cinchen oder Chinen mit 25% ger Phosphorsaure-Lösung auf 170-1800 (Koenigs, B. 27, 901, 904; A. 347, 194, 195). Durch Erhitzen von saurem Weinsaurem Cinchen auf 170—180° (K., A. 347, 195). Durch Oxydation von Cinchotoxin (K., A. 347, 198), Cinchonin (K., B. 27, 1501; A. 347, 196) oder Chinin (K., B. 27, 1501) mit Chromschwefelsäure. Durch Kochen von 6-Oximino-3-vinyl-chinuclidin

mit Salzsaure (RABE, B. 41, 69).

Fast farblose Krystalle (aus Methanol + Essigester). F: 223—224° (K., A. 347, 200). Leicht löslich in Wasser, sehr schwer in kaltem Alkohol, kaum löslich in Äther und Chloroform (K., A. 347, 199). [α] β : + 27,6° (Wasser; p = 10) (K., A. 347, 200). — Wird in kalter schwefelsaurer Lösung von Kaliumpermanganat zu Cincholoiponsäure (Syst. No. 3274) und Ameisensäure oxydiert (K., B. 28, 3150; A. 347, 208). Cincholoiponsäure entsteht auch bei der Oxydation mit Chromschwefelsäure (K., B. 28, 1986; A. 347, 207). Merochinen läßt sich durch Zinkstaub und rauchende Jodwasserstoffsäure zu Chincholoipon (S. 11) reduzieren (K., B. 35, 1350; A. 347, 210). Gibt bei der Einw. von Bromwasser bromwasserstoffsaures Brommerochinen (Syst. No. 4272) (K., B. 27, 906; 28, 1988; A. 347, 217). Liefert beim Erhitzen mit Salzsäure im Rohr auf 140-1450 Merochinenlacton (Syst. No. 4272) und eine Base, deren Hydrochlorid in wäßr. Lösung Linksdrehung zeigt (K., A. 347, 230). Liefert beim Erhitzen mit verd. Salzsäure im Rohr auf 240° oder besser mit verd. Salzsäure und Sublimat auf 250° bis 260° γ -Methyl- β -äthyl-pyridin (K., B. 27, 1502; A. 347, 214). Beim Erhitzen mit Arsensäure-Lösung auf 180—190° entsteht [3-(α -Oxy-äthyl)-piperidyl-(4)]-essigsäure (K., B. 30, 1335; A. 347, 228). — C₉H₁₅O₂N + HCl. Krystalle. F: 146—148°; sehr leicht löslich in Wasser und Alkohol (K., A. 347, 201). — C₉H₁₅O₂N + HCl + AuCl₃. Gelbe Nadeln. F: ca. 142° (K., A. 347, 201). — Chloroplatinat. Krystallmasse. Sehr leicht löslich in Wasser, schwerer in Alkohol (K., A. 347, 201).

 $\textbf{Merochinen-methylester} \ C_{10}H_{17}O_{2}N = HNC_{5}H_{8}(C_{2}H_{3}) \cdot CH_{2} \cdot CO_{2} \cdot CH_{3}. \ \ \textit{Aus Merochinen-methylester} \ \ \textit{B.} \ \ \textit{Aus Merochinen-methylester} \ \ \textit{Co}_{10}H_{17}O_{2}N = HNC_{10}H_{17}O_{2}N = HNC_{10}H_{17}O_{2$ chinen und Methanol in Gegenwart von Schwefelsäure auf dem Wasserbad (Koenigs, A. 347, 201). — Öl. — Hydrochlorid. Krystalle.

Merochinen-äthylester $C_{11}H_{19}O_2N = HNC_5H_8(C_2H_3)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Aus Merochinen und Alkohol beim Einleiten von Chlorwasserstoff (Koenigs, B. 27, 1501; A. 347, 202). Aus Merochinen-nitril durch Verseifen mit Natronlauge, Ansäuern der Lösung mit Salzsäure, Eindampfen und Digerieren des Rückstands mit alkoh. Salzsäure (RABE, A. 850, 202). — Öl. Unter 715 mm Druck bei 254—255° teilweise unzersetzt destillierbar (K.). — C₁₁H₁₉O₂N + HCl. Nadeln. F: 165° (K.; R.). — Hydrobromid. Krystalle. F: 158° (K.). — Chloroaurat. Gelbe Nadeln. F: ca. 102° (Zers.) (K.).

Merochinen-nitril $C_0H_{14}N_0 = HNC_0H_0(C_0H_0) \cdot CH_0 \cdot CN$. B. In geringer Menge aus Isonitroso-cinchotoxin (Syst. No. 3595) durch Behandeln mit Phosphorpentachlorid in Chloroform und Zersetzen der Reaktions-Lösung mit Eiswasser (RABE, \hat{A} . 350, 201). — Eigenartig riechende Flüssigkeit. Kp₁₃: 147—150° (korr.). Mit Wasserdampf flüchtig. — Pikrolonat C₅H₁₄N₂ +C₁₀H₈O₅N₄. Gelbe Blättchen (aus Alkohol). Zersetzt sich bei 215—217°.

N-Methyl-merochinen $C_{10}H_{17}O_2N=CH_3\cdot NC_5H_8(C_2H_3)\cdot CH_2\cdot CO_2H$. B. Aus N-Methyl-merochinen-nitril durch Kochen mit Barytwasser (RABE, A. 350, 193). — Hellgelbe, harzige Masse. Leicht löslich in Wasser, Alkohol und Chloroform, unlöslich in Äther. — Pikrat $C_{10}H_{17}O_2N+C_0H_2O_7N_2$. Gelbe Blättchen (aus Alkohol) oder Nadeln (aus Wasser). Zersetzt sich bei 218°. — Pikrolonat $C_{10}H_{17}O_2N+C_{10}H_3O_5N_4$. Gelbe Nädelchen (aus Alkohol). Zersetzt sich bei 22.240° setzt sich bei ca. 210°.

Äthylester $C_{12}H_{21}O_2N=CH_3\cdot NC_5H_6(C_2H_3)\cdot CH_2\cdot CO_3\cdot C_2H_5$. B. Aus dem Nitril (s. u.) durch Verseifen mit Natronlauge, Eindampfen der Lösung mit Salzsäure und Behandeln des Reaktionsprodukts mit Alkohol (RABE, A. 350, 195). — Stark basisch riechende Flüssigkeit. Kp₂₂: 147—148° (korr.). — $C_{12}H_{21}O_2N+HCl$. Nadeln (aus Alkohol). F: 177°. Leicht

löslich in Wasser und heißem Alkohol, unlöslich in Äther. — Chloroaurat. Goldgelbe Nädelchen (aus Wasser). F: 128—130°. Zersetzt sich beim Kochen mit Wasser. — Pikrat $C_{12}H_{31}O_2N+C_6H_3O_7N_3$. Gelbe Nadeln (aus Wasser). F: 102—104°. Leicht löslich in heißem Wasser und Alkohol, schwer in kaltem Wasser und Alkohol, unlöslich in Äther. — Pikrolonat $C_{12}H_{31}O_2N+C_{10}H_8O_5N_4$. Blaßgelbe Nadeln (aus Wasser). F: 152—154°.

Nitril $C_{10}H_{16}N_2 = CH_2 \cdot NC_5H_6(C_2H_3) \cdot CH_2 \cdot CN$. B. Aus Isonitroso-methylcinchotoxin (Syst. No. 3595) durch Behandeln mit Phosphorpentachlorid in Chloroform und Zersetzen des Reaktionsprodukts mit Eis (RABE, RITTER, B. 38, 2770; Ra., A. 350, 191). — Flüssigkeit von piperidinartigem Geruch. Kp_{741} : 252—255° (korr.); Kp_{49} : 162° (korr.); D_4^{a} : 0,9505; n_5^{a} : 1,4803; $[\alpha]_5^{a}$: +17,1° (Wasser; p=1) (Ra.). Leicht löslich in Alkohol, Ather und Wasser (Ra.). Flüchtig mit Wasserdampf (Ra., Ri.; Ra.). — $C_{10}H_{16}N_2 + HCl + AuCl_3$. F: 121—123° (Ra.). — Pikrat. F: 93—95° (Ra.). — Pikrolonat $C_{10}H_{16}N_2 + C_{10}H_6O_5N_4$. Nadeln (aus Alkohol). F: 194—195° (Ra.).

N-Methyl-merochinen-nitril-hydroxymethylat $C_{11}H_{20}ON_2 = (HO)(CH_2)_2NC_2H_2$ $(C_2H_3)\cdot CH_2\cdot CN$. B. Das Jodid entsteht aus N-Methyl-merochinen-nitril und Methyljodid in Methanol (RABE, RITTER, B. 38, 2772). — Jodid $C_{11}H_{12}N_2\cdot I$. Nadeln. Zersetzt sich bei $264-265^\circ$.

N-Äthyl-merochinen $C_{11}H_{19}O_2N=C_2H_5\cdot NC_5H_6(C_2H_3)\cdot CH_2\cdot CO_2H$. B. Aus dem Äthylester (s. u.) durch Erwärmen mit verd. Salzsäure oder verd. Bromwasserstoffsäure (Koenigs, B. 30, 1336; A. 347, 225). — Leicht löslich in Wasser, Alkohol und Aceton, schwerer in Essigester. — $C_{11}H_{19}O_2N+HCl$. Krystalle. F: 165°. Sehr leicht löslich in Wasser und Alkohol. — $C_{11}H_{19}O_2N+HBr$. F: ca. 215°.

Äthylester $C_{13}H_{23}O_3N=C_2H_5\cdot NC_5H_6(C_2H_3)\cdot CH_2\cdot CO_2\cdot C_3H_5$. B. Aus Merochinen- äthylester und Äthyljodid (Koenics, B. 30, 1336; A. 347, 224). Aus dem Nitril (s. u.) durch Kochen mit Natronlauge, Eindampfen mit Salzsäure und Behandeln des Reaktionsprodukts mit Alkohol (Rabe, A. 350, 199). — Farbloses Öl von stark basischem Geruch. Kp₃₃: 158—160° (korr.) (R.). — Das Hydrobromid liefert mit Brom in Chloroform das Hydrobromid des N-Äthyl-merochinen-äthylester-dibromids (S. 12) (K.). — $C_{13}H_{23}O_2N + HCl$. Krystalle. F: 220—221° (K.), 213° (R.). — $C_{13}H_{23}O_2N + HBr$. Krystalle. F: 194° (K.), 187° bis 188° (R.). — $C_{13}H_{23}O_2N + HI$. Nadeln (aus Alkohol). F: 156—157° (K.).

Nitril $C_{11}H_{10}N_2 = C_2H_5 \cdot NC_5H_6(C_2H_3) \cdot CH_2 \cdot CN$. B. Aus Isonitroso-āthylcinchotoxin (Syst. No. 3595) durch Behandeln mit Phosphorpentachlorid in Chloroform und Zersetzen des Reaktionsprodukts mit Eis (RABE, A. 350, 198). — Piperidinartig riechende Flüssigkeit. Kp₇₅₀: 268° (korr.). Ziemlich leicht löslich in Wasser. Leicht flüchtig mit Wasserdampf.

N-Äthyl-merochinen-nitril-hydroxymethylat $C_{12}H_{22}ON_2 = (HO)(CH_2)(C_2H_3)NC_3H_4$ $(C_2H_3) \cdot CH_2 \cdot CN$. — Jodid $C_{12}H_{21}N_2 \cdot I$. Nadeln. Zersetzt sich bei 230—233° (RABE, A. **350**, 198).

N-Acetyl-merochinen $C_{11}H_{17}O_3N = CH_3 \cdot CO \cdot NC_5H_6(C_2H_3) \cdot CH_3 \cdot CO_2H$. B. Aus Merochinen beim Kochen mit Essigsäureanhydrid (Koenigs, A. 347, 203; Grimaux, C. r. 126, 578). — Warzen oder Tafeln (aus Äther). F: 110° (K.), 112,5° (Gr.). Löslich in Wasser (K.).

Äthylester $C_{13}H_{21}O_2N = CH_3 \cdot CO \cdot NC_8H_8(C_2H_3) \cdot CH_2 \cdot CO_2 \cdot C_2H_8$. B. Beim Kochen von Merochinen mit Essigsäureanhydrid und Behandeln des Reaktionsprodukts mit absol. Alkohol (Koenics, A. 347, 204). — Öl.

N-Nitroso-merochinen $C_9H_{14}O_3N_2 = ON \cdot NC_5H_8(C_2H_3) \cdot CH_3 \cdot CO_3H$. B. Durch Behandeln von Merochinen mit Natriumnitrit in schwefelsaurer Lösung (Koenigs, B. 27, 905; A. 347, 205). — Krystallmasse. F: 67°. — $Ca(C_9H_{12}O_3N_2)_2 + 2H_2O$. Krystallpulver.

b) Allomerochinen $C_9H_{15}O_2N$. B. Durch Oxydation von Allocinchonin mit Chromschwefelsäure (Skraup, Zwerger, M. 23, 460). — Hydrochlorid. Nadeln. Sehr leicht löslich in Wasser und Alkohol. [α]_D: —114° (Wasser; p=6). — $C_9H_{15}O_2N+HCl+AuCl_2$. Nadeln (aus Wasser). F: 165—166°. Schwer löslich in kaltem Wasser, sehr leicht in Alkohol. — $2C_9H_{15}O_2N+2HCl+PtCl_4+3H_2O$. Säulen (aus Wasser). F: 210—211°. Leicht löslich in kaltem Wasser, unlöslich in Alkohol.

c) β -Isomerochinen $C_9H_{15}O_2N$ s. bei β -Isocinchonin, Syst. No. 4495.

2. 2.2.5.5 - Tetramethyl - Δ² - pyrrolin - carbonsäure - (3) C₂H₁₅O₂N = HC — C·CO₂H . B. Aus dem Amid (s. u.) durch Kochen mit Alkalilauge oder Erhitzen (CH₂)₂C·NH·C(CH₂)₃. B. Aus dem Amid (s. u.) durch Kochen mit Alkalilauge oder Erhitzen mit rauchender Salzsäure (D: 1,19) im Rohr auf 130° (PAULY, ROSSBACH, B. 32, 2011). Durch Erhitzen des Methylamids oder Dimethylamids mit rauchender Salzsäure auf 130° (P., Boehm, B. 33, 922). — Wasserfreies Pulver (aus heißem Wasser). F: 300°; scheidet sich aus kaltem Wasser langsam in Säulen oder Tafeln ab, die 2H₂O enthalten und allmählich verwittern (P., R.). In heißem Wasser viel schwerer löslich als in kaltem; die Lösungen schimmeln leicht (P., R.). — Spaltet beim Erhitzen auf 290—310° Kohlendioxyd ab unter Bildung von 2.2.5.5-Tetramethyl-Δ²-pyrrolin (Pauly, Hültenschmidt, B. 36, 3371). — C₉H₁₅O₂N + HCl + 2H₂O. Tafeln (aus Wasser) (P., R.; P., B.). — C₉H₁₅O₂N + HCl + AuCl₃ + H₂O. Goldgelbe Nadeln. Sintert gegen 150° und schmilzt gegen 185° (P., R.).

Methylester $C_{10}H_{17}O_2N = \frac{HC = C \cdot CO_2 \cdot CH_3}{(CH_3)_2 \dot{C} \cdot NH \cdot \dot{C}(CH_3)_2}$. B. Durch Kochen des Hydrochlorids der 2.2.5.5-Tetramethyl- Δ^3 -pyrrolin-carbonsäure-(3) mit Methanol unter Einleiten von Chlorwasserstoff (Pauly, Rossbach, B. 32, 2013). — Flüssig. Kp₇₄₀: 201° (korr.). Riecht schwach, doch betäubend. Unlöslich in Wasser.

Äthylester $C_{11}H_{19}O_2N = \frac{HC - C \cdot CO_2 \cdot C_2H_5}{(CH_3)_2C \cdot NH \cdot C(CH_3)_2}$. B. Analog dem Methylester (Pauly, Rossbach, B. 32, 2013). — Flüssigkeit. Kp₇₄₀: 212°.

Amid $C_9H_{16}ON_2 = \frac{C \cdot CO \cdot NH_2}{(CH_3)_2}C \cdot NH \cdot C(CH_3)_2}$. B. Durch Einw. von konz. Ammoniak auf C.C-Dibrom-triacetonamin-hydrobromid (Bd. XXI, S. 251) (Pauly, B. 31, 672; A. 322, 97; D. R. P. 109345; C. 1900 II, 404; Frdl. 5, 798; P., Rossbach, B. 32, 2005). Aus dem Athylester durch Erhitzen mit methylalkoholischem Ammoniak auf 180—200° (P., R., B. 32, 2013). — Prismen (aus Benzol). Sublimiert in Nadeln; F: 180—181° (P., B. 31, 673; P., R.). Nimmt an der Luft 1 Mol Krystallwasser auf (P., B. 31, 673). Leicht löslich in Wasser und Alkohol, schwerer in Äther und Benzol (P., B. 31, 673). — Entfärbt Kaliumpermanganat in schwefelsaurer Lösung sofort (P., R., B. 32, 2005). Wird durch Natriumamalgam zu 2.2.5.5-Tetramethyl-pyrrolidin-carbonsäure-(3)-amid reduziert (P., R., B. 32, 2008; P., D. R. P. 109346; C. 1900 II, 404; Frdl. 5, 800). Gibt bei der Einw. von Kaliumhypobromit 2.2.5.5-Tetramethyl-pyrrolidon-(3) (P., Boehm, B. 34, 2289; P., A. 322, 113). — $C_9H_{16}ON_2 + HBr + 2Br$. B. Man versetzt eine bromwasserstoffsaure Lösung des Amids mit einer Brom-Kaliumbromid-Lösung (P., R., B. 32, 2006). Gelbrote Blätter (aus Eisessig). F: 201°. In trocknem Zustand beständig. Gibt beim Kochen mit Wasser Brom ab. — $C_9H_{16}ON_3 + HI$. Nadeln und Prismen (aus Wasser) (P., B. 31, 673). Löslich in 2 Tln. heißem Wasser. — $2C_9H_{16}ON_2 + 2HCl + PtCl_4$. Orangefarbene Prismen (P., B. 31, 673). Leicht löslich in Wasser. Zersetzt sich beim Kochen mit Wasser.

Methylamid $C_{10}H_{18}ON_3 = \frac{HC \longrightarrow C \cdot CO \cdot NH \cdot CH_3}{(CH_3)_2 \cdot C \cdot NH \cdot C(CH_3)_3}$. B. Durch Eintragen von C.C-Dibrom-triacetonamin in wäßrige 33%/sige Methylamin-Lösung (Pauly, Rossbach, B. 32, 2008; P., Borhm, B. 33, 922; P., D. R. P. 109347; C. 1900 II, 405; Frdl. 5, 801). — Nadeln (aus Ather). Erstarrt bei 80°; Kp_{10} : 150° (P., B.). Leicht löslich außer in Ligroin (P., R.). — $C_{10}H_{18}ON_2 + HCl + AuCl_3$. Krystallwasserhaltige Prismen (aus Wasser). F: 190° (P., R.).

 $\begin{array}{c} \textbf{Dimethylamid} \quad C_{11}H_{20}ON_2 = \frac{HC = C \cdot CO \cdot N(CH_3)_2}{(CH_3)_2C \cdot NH \cdot C(CH_3)_2}. \quad B. \quad \text{Aus C.C-Dibrom-tri-acetonamin und Dimethylamin-Lösung (Paully, Boehm, B. 33, 923; P., D. R. P. 109350; C. 1900 II, 406; Frdl. 5, 803). — Nadeln. F: 45°; Kp₁₅: 125° (P., B.). — <math>C_{11}H_{20}ON_2 + HCl$ (P., B.). — $2C_{11}H_{20}ON_2 + 2HCl + PtCl_4$ (P., B.).

Bensylamid $C_{16}H_{22}ON_2 = \frac{HC - C \cdot CO \cdot NH \cdot CH_2 \cdot C_6H_5}{(CH_3)_2C \cdot NH \cdot C(CH_3)_2}$. B. Aus C.C-Dibrom-triacetonamin und Benzylamin in wäßr. Lösung (Pauly, Boehm, B. 33, 923). — Täfelchen (aus Wasser), die im Vakuum verwittern. F: 71°.

Piperidid $C_{14}H_{24}ON_2 = \frac{HC - C \cdot CO \cdot NC_5H_{10}}{(CH_3)_2C \cdot NH \cdot C(CH_3)_2}$. B. Aus C.C.-Dibrom-triaceton-amin und Piperidin (Pauly, Borhm, B. 88, 923). — Nadeln. F: 74°. Kp₁₀: 170°.

- 1.2.2.5.5 Pentamethyl Δ^3 pyrrolin carbonsäure (3) amid $C_{10}H_{18}ON_2 = HC = C \cdot CO \cdot NH_2$. B. Das Hydrojodid entsteht aus 2.2.5.5-Tetramethyl- Δ^3 -pyr- $(CH_3)_2C \cdot N(CH_3) \cdot C(CH_3)_2$. B. Das Hydrojodid in Methanol (Pauly, Rossbach, B. 32, 2007; P., D. R. P. 109345; C. 1900 II, 404; Frdl. 5, 798). Täfelchen (aus Ligroin). F: 104°; sehr leicht löslich außer in Ligroin (P., R.; P.). Liefert beim Erwärmen mit Kaliumhypobromit-Lösung 1.2.2.5.5-Pentamethyl-pyrrolidon-(3) (P., A. 322, 128). $C_{10}H_{18}ON_2 + HI$. Nädelchen (aus Methanol + Essigester). F: 221—222°; sehr leicht löslich in Wasser und Alkohol (P., R.).
- 1.2.2.5.5-Pentamethyl- Δ^3 -pyrrolin-carbonsäure-(8)-methylamid $C_{11}H_{20}ON_2 = HC = C \cdot CO \cdot NH \cdot CH_3$. B. Das Hydrojodid entsteht aus 2.2.5.5-Tetramethyl- $(CH_3)_2C \cdot N(CH_3) \cdot C(CH_3)_3$. B. Das Hydrojodid in Methanol (Pauly, Borhm, B. 33, 922; P., D. R. P. 109348; C. 1900 II, 405; Frdl. 5, 801). In geringer Menge aus dem Kaliumsalz des 1.2.2.5.5-Pentamethyl- Δ^3 -pyrrolin-carbonsäure-(3)-amids und Methyljodid in Ather (P., B.). Nadeln (aus Ligroin). F: 108—109°.
- 1-Acetyl-2.2.5.5-tetramethyl- Δ^3 -pyrrolin-carbonsäure-(3)-amid $C_{11}H_{16}O_2N_2 = HC C \cdot CO \cdot NH_2$. B. Durch kurzes Kochen von 2.2.5.5-Tetramethyl- Δ^3 -pyrrolin-carbonsäure-(3)-amid mit Essigsäureanhydrid (Pauly, Rossbach, B. 32, 2006). Krystallwarzen (aus Eisessig + Äther). F: 256—256,5°.
- 1-Nitroso-2.2.5.5-tetramethyl- Δ^3 -pyrrolin-carbonsäure-(3)-amid $C_9H_{15}O_2N_3=HC=C\cdot CO\cdot NH_2$. B. Durch Einw. von Natriumnitrit auf 2.2.5.5-Tetramethyl- $(CH_3)_2C\cdot N(NO)\cdot C(CH_3)_2$ in salzsaurer Lösung (Pauly, Rossbach, B. 32, 2006). Nadeln (aus Aceton). F: 201°.
- 5. β -[3-Vinyl-piperidyl-(4)]-propionsäure, Homomerochinen $C_{10}H_{17}O_2N = H_2C \cdot CH(CH_2 \cdot CH_2 \cdot CO_2H) \cdot CH \cdot CH \cdot CH_2$ H.C.——NH———CH.

3. Monocarbonsauren $C_nH_{2n-5}O_2N$.

1. Carbonsäuren C₅H₅O₂N.

1. Pyrrol-carbonsäure-(2), Pyrrol-α-carbonsäure (α-Carbopyrrolsäure) C₅H₅O₂N = HC—CH
HC·NH·C·CO₂H
B. Beim Erhitzen von Pyrrol-α-carbonsäure-amid (8. 23) mit Barytwasser und Zersetzen des entstandenen Bariumsalzes mit verd. Schwefelsäure oder konz. Salzsäure (Schwanert, A. 116, 272; vgl. Weidel, Ciamician, M. 1, 292; Cia., Silber, B. 19, 1962; 20, 698; G. 16, 381; 17, 87). Beim Kochen von Pyrokoll (Syst. No. 3593) mit mäßig konzentrierter Kalilauge, zweckmäßig unter Zusatz von etwas Natriumamalgam (Wei., Cia., M. 1, 285, 288). Beim Erhitzen von Pyrrol mit Ammoniumcarbonat-Lösung auf 130—140° (Cia., Si., B. 17, 1150; G. 14, 162). Neben Pyrrol-carbonsäure-(3) beim Erhitzen von Pyrrol-Kalium im Kohlendioxydstrom auf 200—220° (Cia., M. 1, 625; Cia., Si., B. 17, 1438; G. 14, 266). Beim Erwärmen von Pyrrol mit Tetrachlorkohlenstoff und wäßrig-alkoholischer Kalilauge im geschlossenen Gefäß auf dem Wasserbad (Cia., Si., B. 17, 1437; G.

14, 265). Bei der Einw. von Kohlendioxyd auf Pyrrolmagnesiumjodid in Äther (Oddo, G. 39 I, 656). Beim Schmelzen der Kaliumverbindung des 2-Methyl-pyrrols mit Kaliumhydroxyd (Cia., M. 1, 628; B. 14, 1055; G. 11, 228). Beim Erwarmen von α-Pyrrolaldehyd (Bd. XXI, S. 270) mit alkal. Kaliumpermanganat-Lösung auf 40—50° (Bamberger, Djier-DJIAN, B. 33, 537, 541). — Darst.: Schw., A. 116, 271; CIA., SI., B. 17, 104; G. 13, 564. — Blättchen (aus Wasser). Monoklin prismatisch (Březina, M. 1, 286; Negri, G. 26 I, 71; vgl. Groth, Ch. Kr. 5, 522). Sublimiert im geschlossenen Röhrchen teilweise bei 190° in federartigen Krystallen (Schw.; vgl. Cia., Si., B. 17, 1151 Anm.; G. 14, 163 Anm.) und schmilzt unter Zerfall in Pyrrol und Kohlendioxyd bei 1920 (Cia., Si., B. 17, 1151; G. 14, 163; Oddo, G. 39 I, 657). Zersetzt sich bei schnellem Erhitzen bei 208,50 (Ba., D.). Löslich in Wasser, Alkohol (Schw.) und Ather (Cia., Si., B. 17, 1151; G. 14, 163). Elektrolytische Dissoziationskonstante k bei 25°: 4,0×10⁻⁵ (Angeli, G. 22 II, 6). — Wird in wäßr. Lösung durch nitrose Gase schon in der Kälte, durch Mineralsäuren beim Erwärmen in Kohlendioxyd und Pyrrolrot zerlegt (Schw.). Liefert mit überschüssiger rauchender Salpetersäure bei -180 2.4-Dinitropyrrol (F: 152°) und 2.5-Dinitro-pyrrol (F: 173°) (CIA., SI., B. 19, 1079; G. 16, 350; vgl. CIA., SI., B. 18, 1461, 1463; G. 15, 323; RINKES, R. 53 [1934], 1167). Beim Erhitzen von pyrrolα-carbonsaurem Natrium mit Methyljodid und Methylalkohol im Rohr auf 1200 erhält man Pyrrol-α-carbonsäure-methylester, Pentamethyl-pyrrolenin (Bd. XX, S. 180) und andere Produkte (CIA., Anderlini, B. 21, 2856; G. 18, 558; vgl. CIA., B. 37, 4230; Plancher, RAVENNA, R. A. L. [5] 22 II [1913], 703). Gibt beim Erhitzen mit überschüssigem Essigsäureanhydrid N-Acetyl-pyrrol und ein Produkt, das beim Erhitzen im Vakuum Pyrokoll liefert (Cia., Si., B. 17, 105; G. 18, 565). Beim Erwärmen von pyrrol-a-carbonsaurem Silber mit Acetylchlorid in Petroläther entsteht Essigsäure-[pyrrol-α-carbonsäure]-anhydrid (s. u.) (CIA., SI., B. 17, 1154; G. 14, 167). Liefert bei Einw. von Benzoldiazoniumchlorid bezw. p-Toluoldiazoniumchlorid in alkal. Lösung 2.5-Bis-benzolazo-pyrrol (Syst. No. 3448) bezw. 2.5 - Bis - p - toluolazo - pyrrol (Syst. No. 3448) (O. FISCHER, HEPP, B. 19, 2258). NH₄C₅H₄O₂N. Prismen. Ziemlich leicht löslich in Wasser (Wei., Cr.). — AgC₅H₄O₂N. Nadeln. Schwer löslich in Wasser (CIA., SI., B. 17, 1152; G. 14, 164). — $\operatorname{Ca}(C_5H_4O_2N)_2$. Schuppen. Schwer löslich in Wasser (CIA., SI., B. 17, 1152; G. 14, 164). — $\operatorname{Ba}(C_5H_4O_2N)_2$. (bei 100°). Blättchen (Wei., CIA.). Löslich in Wasser und Alkohol (Schw.). — $\operatorname{Pb}(C_5H_4O_2N)_2$. Schuppen. Schwer löslich in Wasser, leichter in Alkohol (Schw.).

Pyrrol-α-carbonsäure-methylester C₆H₇O₂N = HNC₄H₃·CO₂·CH₃. B. Beim Erwärmen des Silbersalzes der Pyrrol-α-carbonsäure mit überschüssigem Methyljodid im Rohr im Wasserbad (Ciamician, Silber, B. 17, 1152; G. 14; 165; Mazzara, Borgo, G. 35 II, 105; Oddo, G. 39 I, 657). — Nadeln (aus Petroläther). Monoklin prismatisch (Negri, G. 19, 93; vgl. Groth, Ch. Kr. 5, 522). F: 73° (Cia., Si.; M., B.). Leicht löslich in Alkohol und Äther, schwer in Petroläther und Wasser (Cia., Si.). — Liefert mit Sulfurylchlorid je nach den angewandten Mengen x-Chlor-, 3.4-Dichlor- und 3.4.5-Trichlor-pyrrol-carbonsäure-(2)-methylester (M., B.). Beim Einleiten von Bromdampf in eine siedende wäßrige Lösung von Pyrrol-α-carbonsäure-methylester erhält man 3.4.5-Tribrom-pyrrol-carbonsäure-(2)-methylester (Cia., Si.). Liefert beim Eintragen in eisgekühlte Salpetersäure (D: 1,50) 4-Nitro-pyrrol-carbonsäure-(2)-methylester, 5-Nitro-pyrrol-carbonsäure-(2)-methylester und 4.5-Dinitro-pyrrol-carbonsäure-(2)-methylester (Anderlini, B. 22, 2503; G. 19, 95, 350; vgl. Hale, Hoyt, Am. Soc. 37 [1915], 2539). Gibt beim Erhitzen mit überschüssigem Essigsäureanhydrid im Rohr auf 250—260° 5-Acetyl-pyrrol-carbonsäure-(2)-methylester (Syst. No. 3366) (Cia., Si.). Einw. von Benzoldiazoniumchlorid: O. Fischer, Hepp, B. 19, 2258.

Pyrrol- α -carbonsäure-äthylester $C_7H_{\bullet}O_2N=HNC_4H_3\cdot CO_2\cdot C_2H_5$. B. Beim Erhitzen des Silbersalzes der Pyrrol- α -carbonsäure mit überschüssigem Äthyljodid im Rohr auf dem Wasserbad (Ciamician, Silber, B. 17, 1152; G. 14, 165). Aus äquimolekularen Mengen Pyrrolmagnesiumjodid und Chlorameisensäure-äthylester in Äther (Oddo, G. 39 I, 658). — Krystalle. F: 39° (Ci., Si.), 38° (O.). Kp: 230—232° (Ci., Si.); Kp₇₅₈: 235° (O.). Sehr leicht löslich in Alkohol, Äther, Benzol und Petroläther, sehr schwer in Wasser (Ci., Si.).

Essigsäure-[pyrrol-α-carbonsäure]-anhydrid C₇H₇O₅N = HNC₄H₃·CO·O·CO·CH₃.

B. Beim Erhitzen von pyrrol-α-carbonsaurem Silber mit Acetylchlorid in Petroläther auf dem Wasserbad (Ciamician, Silber, B. 17, 1154; G. 14, 167). — Schuppen (aus Petroläther).

F: 75°. — Wird durch Wasser in Pyrrol-α-carbonsäure und Essigsäure zerlegt. Liefert beim Erhitzen über den Schmelzpunkt Pyrokoll (Syst. No. 3593) und Essigsäure.

Pyrrol- α -carbonsäure-amid $C_5H_6ON_2 = HNC_4H_3 \cdot CO \cdot NH_3$. B. Bei der trocknen Destillation von schleimsaurem Ammonium oder von Mucamid (Bd. III, S. 585) (MALAGUTI, C. r. 22, 854; Berzelius' Jahresber. 27, 513; vgl. Schwanert, A. 116, 269; Ciamician, Silber, B. 17, 104; G. 13, 565). Beim Erhitzen von Pyrokoll (Syst. No. 3593) mit bei 0° gesättigtem alkoholischem Ammoniak im Rohr auf 100° (Weidel, Ciamician, M. 1, 289). — Süß schmeckende (Schw.) Tafeln (aus Wasser oder Alkohol). Monoklin prismatisch (Březina, M. 1, 289; vgl. Groth, Ch. Kr. 5, 523). F: 176,5° (korr.) (Schw.). Leicht löslich in Alkohol

und Äther, schwerer in Wasser (Schw.). — Liefert mit 2 Mol Brom in gekühlter Eisessig-Lösung 3.4-Dibrom-pyrrol-carbonsäure-(2)-amid (Кнотимку, Рютет, В. 37, 2799).

 $N-\alpha-Pyrroyl-pyrrol\ C_9H_8ON_8=HNC_4H_8\cdot CO\cdot NC_4H_4.\ B.$ Neben Di- α -pyrryl-keton beim Erhitzen von N.N'-Carbonyl-di-pyrrol im Rohr auf 250° (Ciamician, Magnaghi, B. 18, 1829; G. 15, 258). — Blättchen (aus Petroläther). F: 62—63°. Läßt sich nicht mit Wasserdampf destillieren. — Liefert mit ammoniakalischer Silbernitrat-Lösung eine gelbe Silber-Verbindung. Gibt beim Kochen mit Kalilauge Pyrrol und Pyrrol- α -carbonsäure.

Pyrrol-α-carbonsäure-hydrazid, α-Pyrroylhydrazin C₅H₇ON₈ = HNC₄H₃·CO·NH·NH₂. B. Beim Erhitzen von Pyrrol-α-carbonsäure-methylester mit der berechneten Menge 50% giger wäßriger Hydrazinhydrat-Lösung (Piccinini, Salmoni, R. A. L. [5] 9 I, 539; G. 32 I, 247). — Krystalle (aus verd. Alkohol). F: 231—232% (Zers.). Schwer löslich in Alkohol, löslich in Wasser, fast unlöslich in Methanol und Petroläther. Reduziert Fehlingsche Lösung und ammoniakalische Silbernitrat-Lösung.

Pyrrol - α - carbonsäure - bengalhydrasid, Bengaldehyd - α - pyrroylhydrason $C_{12}H_{11}ON_3 = HNC_4H_3 \cdot CO \cdot NH \cdot N \cdot CH \cdot C_6H_5$. Bei schwachem Erwärmen von Pyrrol- α -carbonsäure-hydrazid mit der äquimolekularen Menge Benzaldehyd in wenig Essigsäure (PICCININI, SALMONI, R. A. L. [5] 9 I, 359; G. 32 I, 248). — Blättchen (aus verd. Alkohol). F: 164—165°.

Pyrrol- α -carbonsäure-asid $C_5H_4ON_4 = HNC_4H_3\cdot CO\cdot N_3$. B. Durch Einw. von Natriumnitrit auf eine Lösung von Pyrrol- α -carbonsäure-hydrazid in 1n-Salzsäure (Piccinini, Salmoni, R. A. L. [5] 9 I, 359; G. 32 I, 249). — Krystalle. F: 105° (Zers.). Sehr leicht löslich in Äther, löslich in Alkohol, unlöslich in Wasser. — Liefert bei der Reduktion mit Zink in Essigsäure Pyrrol- α -carbonsäure-amid, beim Kochen mit Alkohol α -Pyrrylurethan (Bd. XXI, S. 254).

N-Methyl-pyrrol-α-carbonsäure C₆H₇O₂N = CH₃·NC₆H₃·CO₂H. B. Beim Erhitzen von N-Methyl-pyrrol-α-carbonsäure-methylamid mit alkoh. Kalilauge im Rohr auf 120° bis 130° (Bell., B. 10, 1866; vgl. E. Fischer, B. 46 [1913], 2510). — F: 135° (B.; F.). — Silbersalz. Schwer löslich (B.).

N-Methyl-pyrrol-α-carbonsäure-methylamid C₇H₁₀ON₂ = CH₃·NC₄H₃·CO·NH·CH₃. B. Bei der trocknen Destillation von schleimsaurem Methylamin (Bell, B. 10, 1866).

— Schuppen oder Prismen. F: 89—90°; flüchtig mit Wasserdampf; löslich in Wasser; liefert beim Erhitzen mit alkoh. Kalilauge im Rohr auf 120—130° N-Methyl-pyrrol-carbonsäure-(2) (B., B. 10, 1866). Gibt beim Behandeln mit Bromwasser eine bei 204—205° schmelzende Verbindung C₇H₈O₃N₂Br₂ (B., B. 11, 1814). Liefert in essigsaurer Lösung mit den berechneten Mengen Brom 1-Methyl-x-brom-pyrrol-carbonsäure-(2)-methylamid bezw. 1-Methyl-3.4-dibrom-pyrrol-carbonsäure-(2)-methylamid bezw. 1-Methyl-3.4.5-tribrom-pyrrol-carbonsäure-(2)-methylamid (Khotinsky, Pioter, B. 37, 2801, 2802).

N-Äthyl-pyrrol- α -carbonsäure $C_7H_9O_2N=C_2H_5\cdot NC_4H_3\cdot CO_2H$. B. Beim Erhitzen von N-Äthyl-pyrrol- α -carbonsäure-äthylamid mit alkoh. Kalilauge im Rohr auf 120—130° (Bell, B. 10, 1864). — Nadeln (aus Wasser). F: 78° (B.). Leicht flüchtig mit Wasserdampf (B.). — Liefert beim Erhitzen für sich oder mit verd. Säuren N-Äthyl-pyrrol (B.; B., Lapper, B. 10, 1961). Gibt mit Eisenchlorid eine rote Färbung (B.). — AgC₇H₈O₂N. Nadeln (aus Wasser); zersetzt sich beim Erhitzen unter schwacher Verpuffung (B.).

N-Äthyl-pyrrol-α-carbonsäure-äthylamid C₉H₁₄ON₂ = C₂H₅·NC₄H₃·CO·NH·C₂H₅.

B. Neben anderen Produkten bei der trocknen Destillation von schleimsaurem Äthylamin (Bell, B. 10, 1861). — Prismen (aus Wasser). F: 43—44°; Kp: 269—270°; luftbeständig (B., B. 10, 1863). Löslich in Wasser, Äther und Chloroform (B., B. 11, 1812). Unzersetzt löslich in starken Säuren (B., B. 10, 1863). — Liefert beim Behandeln mit Bromwasser 1-Äthyl-3.4.5-tribrom-pyrrol-carbonsäure-(2)-äthylamid und die Verbindung C₉H₁₂O₃N₂Br₂ (s. u.) (B., B. 11, 1813). Gibt beim Erhitzen mit alkoh. Kalilauge im Rohr auf 120—130° Äthylamin und N-Äthyl-pyrrol-α-carbonsäure (B., B. 10, 1863).

Verbindung C₂H₁₂O₃N₂Br₂. B. Beim Behandeln von N-Äthyl-pyrrol-α-carbonsäureäthylamid oder 1-Äthyl-3.4.5-tribrom-pyrrol-carbonsäure-(2)-äthylamid mit Bromwasser (Bell, B. 11, 1813, 1814). — Krystalle (aus Wasser oder Alkohol). F: 197° (Zers.). Leicht löslich in kalten Alkalilaugen und daraus durch Säuren fällbar. — Liefert beim Kochen mit Alkalilaugen Äthylamin, Oxalsäure und andere Produkte. Beim Behandeln mit Säuren entsteht ebenfalls Äthylamin.

N-Isoamyl-pyrrol- α -carbonsäure-isoamylamid $C_{18}H_{28}ON_2 = C_5H_{11} \cdot NC_4H_2 \cdot CO \cdot NH \cdot C_5H_{11}$. B. Bei der trocknen Destillation von schleimsaurem Isoamylamin (Bell, B. 10, 1866). — Prismen (aus verd. Alkohol). F: 77°. Fast unlöslich in Wasser.

N-Phenyl-pyrrol- α -carbonsäure $C_{11}H_{\theta}O_{2}N=C_{6}H_{5}\cdot NC_{4}H_{3}\cdot CO_{2}H$. B. Durch kurzes Erhitzen von N-Phenyl-pyrrol- α -carbonsäure-anilid mit alkoh. Kalilauge im Rohr auf 150° (Piotet, Steinmann, B. 35, 2530; C. 1902 I, 1297). — Blättchen oder Nadeln (aus Alkohol oder Benzol). Schmilzt unter Zerfall in N-Phenyl-pyrrol und Kohlendioxyd bei 166°. Leicht löslich in Alkohol, Benzol, Chloroform und Eisessig, löslich in Äther, unlöslich in Petroläther und kaltem Wasser. Löst sich in siedendem Wasser unter Zersetzung in N-Phenyl-pyrrol und Kohlendioxyd. — $Cu(C_{11}H_{8}O_{2}N)_{2}$ (bei 110°). Dunkelgrün. Ziemlich leicht löslich in Benzol und Chloroform. — $AgC_{11}H_{8}O_{2}N$. Niederschlag, der sich am Licht ziemlich rasch schwärzt. — $Ca(C_{11}H_{8}O_{2}N)_{2}$. Krystalle mit 1 $H_{2}O$ (aus Wasser).

Methylester $C_{12}H_{11}O_2N=C_0H_5\cdot NC_4H_3\cdot CO_2\cdot CH_3$. B. Beim Erwärmen von N-phenylpyrrol- α -carbonsaurem Silber mit Methyljodid auf dem Wasserbad (Piotet, Steinmann, B. 35, 2532; C. 1902 I, 1298). — Blättchen (aus verd. Alkohol). F: 88°. Kp: 282° (unkorr.). Leicht löslich in den üblichen organischen Lösungsmitteln, unlöslich in Wasser.

Äthylester $C_{19}H_{19}O_9N = C_9H_5 \cdot NC_4H_3 \cdot CO_9 \cdot C_9H_5$. B. Aus N-phenyl-pyrrol- α -carbon-saurem Silber und Äthyljodid (P., St., B. 35, 2532; C. 1902 I, 1298). — Flüssigkeit. Kp: 289°; leicht löslich in den üblichen organischen Lösungsmitteln, unlöslich in Wasser.

Anilid $C_{17}H_{14}ON_2 = C_8H_5 \cdot NC_4H_3 \cdot CO \cdot NH \cdot C_6H_5$. B. Neben anderen Produkten beim Erhitzen von schleimsauren Anilin auf 240° (Feist, B. 35, 1654 Anm.; Piotet, Steinmann, B. 35, 2530, 2532; C. 1902 I, 1297). — Nadeln (aus verd. Alkohol). F: 136°; leicht löslich in Alkohol, Äther, Eisessig, Chloroform und Benzol, unlöslich in Wasser und Petroläther (P., St.). — Liefert bei kurzem Erhitzen mit alkoh. Kalilauge im Rohr auf 150° Anilin und N-Phenyl-pyrrol- α -carbonsäure (P., St.).

x-Chlor-pyrrol-carbonsäure-(2) C_sH₄O₂NCl = HNC₄H₃Cl·CO₂H. B. Aus dem zugehörigen Methylester (s. u.) beim Erwärmen mit verd. Kalilauge (MAZZARA, BORGO, G. 35 II, 110). — Krystalle (aus Wasser). Zersetzt sich bei ca. 130°.

Methylester $C_6H_6O_9NCl=HNC_4H_9Cl\cdot CO_9\cdot CH_3$. B. Beim Behandeln von 5 g Pyrrol- α -carbonsäure-methylester in 50 g absol. Äther mit 6 g Sulfurylchlorid unter Kühlung mit Eiswasser (MAZZABA, BORGO, G. 35 II, 109). — Krystalle, die nach mehrmaligem Umkrystallisieren aus Wasser noch geringe Mengen von 3.4-Dichlor-pyrrol-carbonsäure-(2)-methylester enthalten. — Gibt beim Erwärmen mit verd. Kalilauge x-Chlor-pyrrol-carbonsäure-(2).

- 8.4 Dichlor pyrrol carbonsäure (2) methylester $C_6H_5O_2NCl_2 = HNC_4Hcl_2 \cdot CO_2 \cdot CH_3$. B. Neben 3.4.5-Trichlor-pyrrol-carbonsäure-(2)-methylester beim Behandeln von 5 g Pyrrol- α -carbonsäure-methylester in 50 g absol. Äther mit 11 g Sulfurylchlorid unter Kühlung mit Eiswasser (M., B., G. 35 II, 108). Nadeln (aus Petroläther). F: 132—134°. Schwer löslich in Wasser, löslich in siedendem Petroläther.
- 3.4.5-Trichlor-pyrrol-carbonsäure-(2) $C_5H_2O_3NCl_3 = \frac{CIC CUI}{CIC \cdot NH \cdot C \cdot CO_2H}$. B. Beim Kochen von Perchlorpyrokoll (Syst. No. 3593) mit Kalilauge (CIAMICIAN, DANESI, G. 12, 34). Krystallisiert aus Wasser in Nadeln mit $1H_2O$; verliert das Krystallwasser im Vakuum. Zersetzt sich schnell bei cs. 150°. Ziemlich schwer löslich in Wasser, sehr leicht in Alkohol und Äther. Die wäßrige Lösung gibt mit Eisenchlorid eine intensiv rote Färbung; in konz. Lösung entsteht dabei ein braunroter Niederschlag. $Ba(C_5HO_2NCl_3)_2 + 1H_2O$. Schuppen, die bei 105° das Krystallwasser verlieren. Leicht löslich in Alkohol, schwer in Wasser.

Methylester C₆H₄O₂NCl₂ = HNC₄Cl₃·CO₃·CH₃. B. Neben 3.4-Dichlor-pyrrol-carbon-säure-(2)-methylester beim Behandeln von 5 g Pyrrol-α-carbonsäure-methylester in 50 g absol. Äther mit 19 g Sulfurylchlorid unter Kühlung mit Eiswasser (M., B., G. 35 II, 106). — Nadeln (aus Alkohol). F: 189°. Sehr schwer löslich in Wasser, schwer in Alkohol und Petrol-äther.

1-Methyl-x-brom-pyrrol-carbonsäure-(2) C_eH_eO₂NBr = CH₂·NC_eH₂Br·CO₂H. B. Beim Erhitzen von 1-Methyl-x-brom-pyrrol-carbonsäure-(2)-methylamid mit alkoh. Kalilauge auf 130° (Khotinsky, Piotet, B. 37, 2802). — Blättchen (aus verd. Alkohol). Zersetzt sich beim Erhitzen, ohne zu schmelzen. Sehr leicht löslich in Alkohol, Äther und Aceton, löslich in Chloroform und Eisessig, schwer löslich in Wasser, unlöslich in Benzol und Petroläther.

- 1 Methyl x brom pyrrol carbonsäure (2) methylamid C₇H₉ON₂Br = CH₃· NC₄H₂Br·CO·NH·CH₃. B. Bei der Einw. von 1 Mol Brom auf N-Methyl-pyrrol-α-carbonsäure-methylamid in essigsaurer Lösung (Κηστινκή, Ριστέτ, B. 37, 2801). Nadeln (aus Wasser). F: 112°. Sehr leicht löslich in Aceton, Alkohol, Äther, Chloroform und Eisessig, sehr schwer löslich in kaltem Wasser und Petroläther. Gibt beim Verseifen mittels alkoh. Kalilauge bei 130° 1-Methyl-x-brom-pyrrol-carbonsäure-(2).
- 3.4-Dibrom-pyrrol-carbonsäure-(2) $C_5H_3O_5NBr_2 = \frac{BrC---CBr}{HC\cdot NH\cdot C\cdot CO_2H}$. B. Beim Erhitzen von 3.4-Dibrom-pyrrol-carbonsäure-(2)-amid mit alkoh. Kalilauge im Rohr auf 110—115° (Khotinsky, Piotet, B. 37, 2800). Blättchen mit $1H_2O$ (aus Wasser). F: 110° . Schmilzt wasserfrei bei 158°. Leicht löslich in Alkohol, Äther und Aceton, schwerer in Benzol, Chloroform und Eisessig, unlöslich in Petroläther.
- Amid $C_5H_4ON_2Br_2 = HNC_4HBr_2 \cdot CO \cdot NH_2$. B. Aus Pyrrol- α -carbonsäure-amid und 2 Mol Brom in Eisessig unter Kühlung (Khotinsky, Piotet, B. 37, 2799). Blättchen mit 1 $C_2H_4O_2$ (aus Eisessig) vom Schmelzpunkt 145—146°. Krystallisiert aus Wasser in Blättchen mit 1 H_2O , die bei 158° schmelzen. Leicht löslich in Alkohol, Äther, Aceton und Eisessig, schwerer in Benzol und Chloroform, sehr schwer in Wasser und Petroläther. Löst sich in Alkalien unter Salzbildung. Liefert bei der Einw. von konz. Salpetersäure Dibrommaleinsäure-imid. Gibt beim Erhitzen mit alkoh. Kalilauge im Rohr auf 110—115° 3.4-Dibrompyrrol-carbonsäure-(2).
- 1-Methyl-3.4-dibrom-pyrrol-carbonsäure-(2) C₅H₅O₂NBr₃ = CH₃·NC₄HBr₂·CO₂H.

 B. Beim Erhitzen von 1-Methyl-3.4-dibrom-pyrrol-carbonsäure-(2)-methylamid mit alkoh.

 Kalilauge auf 130° (Khotinsky, Piotet, B. 37, 2801). Nadeln (aus Alkohol). Sehr leicht löslich in Alkohol, Äther und Aceton, ziemlich leicht in Benzol, Chloroform und Eisessig, unlöslich in Wasser und Petroläther. Liefert bei der Einw. von konz. Salpetersäure Dibrommaleinsäure-methylimid.
- 1-Methyl-3.4-dibrom-pyrrol-carbonsäure-(2)-methylamid C₇H₈ON₂Br₂ = CH₃·NC₄HBr₂·CO·NH·CH₃. B. Bei der Einw. von 2 Mol Brom auf N-Methyl-pyrrol-α-carbonsäure-methylamid in Eisessig unter Kühlung (Khotinsky, Picter, B. 37, 2801). Nadeln (aus verd. Alkohol). F: 137°. Leicht löslich in Alkohol, Äther, Eisessig, Aceton, Chloroform und Benzol, fast unlöslich in Wasser und Petroläther. Gibt beim Erhitzen mit alkoh. Kalilauge auf 130° 1-Methyl-3.4-dibrom-pyrrol-carbonsäure-(2).
- x.x-Dibrom-pyrrol-carbonsäure-(2) $C_5H_3O_9NBr_9=HNC_4HBr_9\cdot CO_9H$. B. Man kocht x.x.x.x-Tetrabrom-pyrokoll (Syst. No. 3593) mit Kalilauge bis zur Lösung (Ciamician, Silber, B. 16, 2388; G. 13, 405). Hellgelbe Täfelchen (aus Wasser). Zersetzt sich bei 105°. Leicht löslich in Alkohol und Äther, ziemlich leicht in heißem Wasser.
- 3.4.5-Tribrom-pyrrol-carbonsäure-(2) $C_8H_2O_2NBr_3=\frac{BrC-CBr}{BrC\cdot NH\cdot C\cdot CO_2H}$. B. Beim Verseifen des zugehörigen Methylesters mit Kalilauge (CIAMICIAN, SILBER, B. 17, 1153; G. 14, 166). Nadeln (aus Wasser). Zersetzt sich bei 140—150°, ohne zu schmelzen. Leicht löslich in Alkohol, Äther und Aceton, schwer in siedendem Wasser, unlöslich in Petroläther.
- Methylester C₆H₄O₂NBr₃ = HNC₄Br₃·CO₃·CH₃. B. Beim Einleiten von Bromdampf in eine siedende wäßrige Lösung von Pyrrol-α-carbonsäure-methylester (Ciamician, Silber, B. 17, 1153; G. 14, 166). Nadeln (aus Alkohol). F: 209—210°; löslich in Äther und heißem Alkohol, schwer löslich in Petroläther und Benzol, fast unlöslich in Wasser (Cia., Si., B. 17, 1153; G. 14, 166). Löst sich in kalter rauchender Salpetersäure unter Bildung von Dibrommaleinsäure-imid (Cia., Si., B. 20, 2605; G. 17, 274).
- 1-Methyl-3.4.5-tribrom-pyrrol-carbonsäure-(2) C₆H₄O₂NBr₂ = CH₂·NC₄Br₂·CO₂H.

 B. Bei längerem Erhitzen von 1-Methyl-3.4.5-tribrom-pyrrol-carbonsäure-(2)-methylamid mit alkoh. Kalilauge auf 145° (Khotinsky, Pictet, B. 37, 2802). Nadeln (aus Alkohol). Zersetzt sich beim Erhitzen, ohne zu schmelzen. Leicht löslich in Äther und Aceton, schwer in Alkohol, Eisessig, Benzol und Chloroform, unlöslich in Wasser und Petroläther.
- 1-Methyl-3.4.5-tribrom-pyrrol-carbonsäure-(2)-methylamid $C_7H_7ON_2Br_3 = CH_3 \cdot NC_4Br_3 \cdot CO \cdot NH \cdot CH_3$. B. Durch Zusatz von 3 Mol Brom zu einer Lösung von N-Methylpyrrol- α -carbonsäure-methylamid in Eisessig und Eindampfen der Lösung (Khotinsky, Piotet, B. 37, 2802). Blättchen (aus verd. Essigsäure oder Alkohol). F: 176°. Leicht löslich in Alkohol und Chloroform, schwer in Benzol und Äther, unlöslich in Wasser und Petroläther. Gibt bei längerem Erhitzen mit alkoh. Kalilauge auf 145° 1-Methyl-3.4.5-tribrom-pyrrol-carbonsäure-(2).

1-Äthyl-3.4.5-tribrom-pyrrol-carbonsäure-(2)-äthylamid $C_5H_{11}ON_2Br_3 = C_2H_5$ · NC_4Br_5 · $CO\cdot NH\cdot C_2H_5$. Neben einer Verbindung $C_5H_{12}O_2N_2Br_2$ (8. 24) beim Behandeln von N-Äthyl-pyrrol- α -carbonsäure-äthylamid mit Bromwasser (Bell, B. 11, 1813). — Nadeln (aus verd. Alkohol). F: 120—121° (Zers.). Leicht löslich in Alkohol, Äther und Eisessig, unlöslich in Wasser. — Liefert beim Behandeln mit Bromwasser die Verbindung $C_5H_{12}O_2N_2Br_2$ (S. 24).

3-Nitro-pyrrol-carbonsäure-(2) $C_5H_4O_4N_2=\frac{HC-C\cdot NO_2}{HC\cdot NH\cdot C\cdot CO_2H}$. Zur Konstitution vgl. Hale, Hoyt, Am. Soc. 37 [1915], 2538. — B. Man kocht Dinitropyrokoll (Syst. No. 3593) mit Kalilauge, bis die Lösung durch Säuren nicht mehr gefällt wird (Ciamician, Danesi, G. 12, 40). — Hellgelbe Nadeln mit $1H_2O$ (aus Wasser). Schmilzt wasserfrei bei $144-146^\circ$ (Cia., D.). Löslich in Wasser, Äther und Alkohol (Cia., D.). Die wäßr. Lösung gibt mit Eisenchlorid einen gelben Niederschlag (Cia., D.). — $NH_4C_5H_3O_4N_2$. Gelbliche Prismen oder Schuppen. Ziemlich leicht löslich in Wasser (Cia., D.).

4-Nitro-pyrrol-carbonsäure-(2) $C_5H_4O_4N_2 = \frac{O_2N\cdot C - CH}{HC\cdot NH\cdot C\cdot CO_2H}$. Zur Konstitution vgl. Hale, Hoyt, Am. Soc. 37 [1915], 2540. — B. Durch Verseifen des zugehörigen Methylesters mit Kalilauge (Anderlini, B. 22. 2504; G. 19, 96). — Hellgelbe Nadeln mit 1 H_2O (aus Wasser). Schmilzt wasserfrei bei 2170 (Zers.) (A.). Löslich in Alkohol und Äther, schwer löslich in kaltem Wasser, unlöslich in Benzol (A.). Die wäßr. Lösung gibt mit Eisenchlorid einen hellbraunen Niederschlag (A.).

Methylester $C_6H_6O_4N_2 = HNC_4H_2(NO_2) \cdot CO_2 \cdot CH_3$. Zur Konstitution vgl. Hale, Hoyt, Am. Soc. 87 [1915], 2542. — B. Neben 5-Nitro-pyrrol-carbonsäure-(2)-methylester, 4.5(?)-Dinitro-pyrrol-carbonsäure-(2)-methylester und anderen Produkten beim Eintragen von Pyrrolacrabonsäure-methylester in eisgekühlte Salpetersäure (D: 1,50) (Anderlini, B. 22, 2504; G. 19, 95). — Nadeln (aus Wasser). F: 197° (A.). — Liefert beim Verseifen mit Kalilauge 4-Nitro-pyrrol-carbonsäure-(2) (A.).

5-Nitro-pyrrol-carbonsäure-(2) $C_5H_4O_4N_2=\frac{HC-CH}{O_2N\cdot \dot{\mathbb{C}}\cdot NH\cdot \dot{\mathbb{C}}\cdot CO_2H}$. Zur Konstitution vgl. Hale, Hoyt, Am. Soc. 37 [1915], 2543, 2545. — B. Durch Verseifung des zugehörigen Methylesters mit Kalilauge (Anderlini, B. 22, 2504; G. 19, 351). — Hellgelbe Nadeln mit 1 H_2O (aus Wasser). Schmilzt wasserfrei bei 161° (A.). Leicht löslich in Alkohol und Äther, löslich in Benzol, schwer löslich in Wasser (A.).

Methylester $C_6H_6O_4N_2 = HNC_4H_2(NO_2)\cdot CO_2\cdot CH_3$. Zur Konstitution vgl. Hale, Hoyt, Am. Soc. 87 [1915], 2543, 2545, 2549. — B. Neben 4-Nitro-pyrrol-carbonsäure-(2)-methylester, 4.5(?)-Dinitro-pyrrol-carbonsäure-(2)-methylester und anderen Produkten beim Eintragen von Pyrrol- α -carbonsäure-methylester in eisgekühlte Salpetersäure (D: 1,50) (Anderlini, B. 22, 2504; G. 19, 350). — Gelbe Nadeln (aus verd. Alkohol). F: 179° (A.). — Liefert beim Verseifen mit Kalilauge 5-Nitro-pyrrol-carbonsäure-(2) (A.).

4.5(?) - Dinitro - pyrrol - carbonsäure - (2) - methylester $C_6H_5O_6N_3=O_2N\cdot C$ ——CH (?). B. Neben 4-Nitro- und 5-Nitro-pyrrol-carbonsäure-(2)-methylester beim Eintragen von Pyrrol- α -carbonsäure- methylester in eisgekühlte Salpetersäure (D: 1,50) (Anderlini, B. 22, 2505; G. 19, 352). — Hellgelbe Blättchen (aus Wasser oder verd. Alkohol oder aus Benzol). F: 115°. Ziemlich leicht löslich in heißem Wasser.

2. Pyrrol-carbonsäure-(3), Pyrrol-β-carbonsäure (β-Carbopyrrolsäure) $C_8H_8O_2N = {HC - C \cdot CO_2H \over HC \cdot NH \cdot CH}$ B. Neben Pyrrol-carbonsäure-(2) beim Erhitzen von PyrrolKalium im Kohlendioxydstrom auf 200—220°; man trennt die beiden Säuren in wäßr. Lösung durch Bleiacetat, wobei das schwer lösliche Bleisalz der Pyrrol-carbonsäure-(3) ausfällt (CIAMICIAN, M. 1, 625; CIA., SILBER, B. 17, 1438; G. 14, 266). Beim Verschmelzen der Kaliumverbindung des 3-Methyl-pyrrols mit Kaliumhydroxyd (CIA., B. 14, 1054; G. 11, 228; vgl. CIA., M. 1, 628). Durch Schmelzen der Kaliumverbindung des beim Kochen von Pyrrol mit Aceton in Gegenwart von Zinkchlorid erhältlichen Isopropyl-pyrrols mit Kaliumhydroxyd (Dennstedt, Zimmermann, B. 20, 855; vgl. CIA., B. 37, 4242). — Nadeln. F: 161—162°

(Zers.); läßt sich im Wasserstoff- und Kohlendioxydstrom nur unter starker Zersetzung subli-(Zers.); läst sich im Wasserstoff- und Kohlendioxydistrom hur unter starker Zersetzung subfimieren; zerfällt beim Erhitzen im Vakuum in Pyrrol und Kohlendioxyd (Cia., M. 1, 626, 627). Leicht löslich in Wasser, Alkohol und Äther (D., Z.). — Spaltet beim Liegen an der Luft, beim Kochen in wäßr. Lösung und beim Verdunsten der äther. Lösung Kohlendioxyd ab (Cia., M. 1, 626). — AgC₅H₄O₂N. Niederschlag (D., Z.). — Ba(C₅H₄O₂N)₃. Nadeln. Zersetzt sich teilweise beim Erhitzen in wäßr. Lösung auf dem Wasserbad (Cia., M. 1, 627).

Methylester $C_0H_7O_2N=HNC_4H_3\cdot CO_2\cdot CH_3$. B. Aus dem Silbersalz der Pyrrol- β -carbonsäure beim Erhitzen mit Methyljodid auf 100° (Dennstedt, Zimmermann, B. 20, 855). — Nadeln oder Blättchen. F: 129°. Leicht löslich in Alkohol und Äther, schwerer in Petrolather.

2. Carbonsäuren $C_6H_7O_2N$.

Carbonsauren $C_6H_7O_9N = \frac{HC---CH}{HC\cdot NH\cdot C\cdot CH_9\cdot CO_9H}$

N-Methyl-α-pyrrylessigsäure C₇H₅O₅N = CH₃·NC₄H₃·CH₂·CO₅H. B. Der Äthylester (Kp: 230—240°) entsteht beim Erhitzen von N-Methyl-pyrrol mit Diazoessigester auf 120°; man verseift ihn durch Kochen mit Barytwasser (PICCININI, R. A. L. [5] 8 I, 314; vgl. Nenttzescu, Solomonica, B. 64 [1931], 1924, 1930). — Blättchen (aus Petroläther). F: 113—114° (P.), 112° (N., Sol.). Leicht löslich in Wasser (P.).

- 2-Methyl-pyrrol-carbonsäure-(3) $C_0H_7O_3N = \frac{HC---C\cdot CO_2H}{HC\cdot NH\cdot C\cdot CH_3}$. B. Beim Erhitzen der Kaliumverbindung des 2-Methyl-pyrrols im Kohlendioxyd-Strom auf 180—200° (CIAMICIAN, B. 14, 1056; G. 11, 230; vgl. Benary, B. 44 [1911], 495). — Krystalle (aus Wasser). F: 169,5° (CIA.). — Liefert beim Erhitzen über den Schmelzpunkt oder bei der Destillation des Calciumsalzes mit Calciumhydroxyd 2-Methyl-pyrrol (Cia.). — Bleisalz. Leicht löslich (CIA.).
- 3. 4-Methyl-pyrrol-carbonsäure-(2 oder 3) $C_6H_7O_5N = \frac{CH_8 \cdot C CH}{HC \cdot NH \cdot C \cdot CO_6H}$ oder CH₃·C——C·CO₂H Beim Erhitzen der Kaliumverbindung des 3-Methyl-pyrrols im Kohlendioxyd-Strom auf 180—200° (CIAMICIAN, B. 14, 1056; G. 11, 230). — Krystalle (aus Äther). F: 142,4°. — Zersetzt sich teilweise beim Kochen mit Wasser. Liefert beim Erhitzen über den Schmelzpunkt oder bei der Destillation des Calciumsalzes mit Calcium-

3. Carbonsăuren C₇H₉O₂N.

hydroxyd 3-Methyl-pyrrol. — Bleisalz. Schwer löslich.

Carbonsauren $C_7H_9U_2N$.

1. 2.4 - Dimethyl-pyrrol-carbonsaure-(3) $C_7H_9O_2N = \frac{CH_2 \cdot C - C \cdot CO_2H}{HC \cdot NH \cdot C \cdot CH_2}$. Zur Konstitution vgl. Magnanini, B. 22, 40; G. 19, 80; Piloty, Hirsch, A. 395 [1913], 70. — B. Beim Kochen des zugehörigen Athylesters mit Alkalilauge (Knorr, A. 236, 325, 326). — Krystalle (aus Benzol). Schmilzt bei 183° unter Zerfall in 2.4-Dimethyl-pyrrol und Kohlendioxyd (K.); F: 186° (Angell, G. 22 II, 12). Elektrolytische Dissoziationskonstante k bei 25°: 7,5×10⁻⁷ (A.). — Liefert beim Erwärmen mit konz. Schwefelsäure 2.4-Dimethyl-pyrrol (K.). Gibt beim Kochen mit Essigsäureanhydrid 2.4-Dimethyl-5-acetyl-pyrrol (M., B. 21, 2875; G. 18, 550).

Äthylester C₉H₁₃O₂N = HNC₄H(CH₂)₂·CO₂·C₂H₅. B. Beim Erhitzen des 3.5-Dimethylpyrrol-dicarbonsäure-(2.4)-monoäthylesters-(4) über den Schmelzpunkt (Knorr, A. 236, 325). Beim Eintragen von Zinkstaub in eine Lösung von äquimolekularen Mengen Acetessigester und Isonitrosoaceton in 70°/0 iger Essigsäure (Knorr, Lange, B. 35, 3007). — Krystalle (aus Äther-Ligroin). F: 75—76° (K.; K., L.). Kp: 291° (korr.) (K.); Kp₁₀: 225—230° (K., L.); Kp₂₅: 181—182° (Feist, B. 35, 1652). Ziemlich wer flüchtig mit Wasserdampf (K.). Leicht löslich in Alkohol und Äther, schwer in Wasser (K.). — Liefert beim Behandeln mit warmer konzentrierter Schwefelsäure 2.4-Dimethyl-pyrrol (K.). Kondensiert sich mit Benzaldehyd in Gegenwart von etwas Kaliumdisulfat bei 90-100° zu 5.5'-Benzal-bis-[2.4-dimethyl-pyrrol-carbonsaure-(3)-athylester] (Syst. No. 3674), mit Anisaldehyd zu einer analog konstituierten, bei 171-172° schmelzenden, nicht näher untersuchten Verbindung (F.).

Anilid C₁₈H₁₄ON₂ = HNC₄H(CH₂)₂·CO·NH·C₆H₅. B. Aus 3.5-Dimethyl-pyrrol-dicarbonsāure-(2.4)-monoanilid-(4) beim Erhitzen für sich oder beim Kochen mit verd. Schwefelsäure (KNORR, A. 236, 329). — Amorph. F: 80°. Läßt sich bei gewöhnlichem Druck nicht ohne Zersetzung destillieren. Zeigt die Fichtenspanreaktion.

2. 3.5-Dimethyl-pyrrol-carbonsaure-(2) $C_7H_9O_2N = \frac{HC - C \cdot CH_9}{CH_3 \cdot C \cdot NH \cdot C \cdot CO_9H}$. B.

Beim Kochen von 1 - [3.5 - Dimethyl - pyrroyl - (2)] - 3.5 - dimethyl - pyrrol - carbonsäure - (2) mit 17% (iger Kalilauge (Magnanini, B. 22, 38; G. 19, 88). — Pulver (aus Benzol + Petroläther). F: 137% (Zers.); sehr schwer löslich in kaltem Wasser (M.). Elektrische Leitfähigkeit in Wasser bei 25%: Angeli, G. 22 II, 12. — Zerfällt beim Erwärmen mit Wasser teilweise in 2.4-Dimethylpyrrol und Kohlensäure (M.). Liefert beim Kochen mit Essigsäureanhydrid 2.4-Dimethylbacetyl-pyrrol und Tetramethylpyrokoll (Syst. No. 3593) (M.).

1-[3.5-Dimethyl-pyrroyl-(2)]-3.5-dimethyl-pyrrol-carbonsäure-(2) $C_{14}H_{16}O_{2}N_{2} = HC - C \cdot CH_{2}$

CCCO₃H):C·CH₃

CH₃·C·NH·C·CO·N

C(CH₃)=CH

Beim Kochen von 2 g Tetramethylpyrokoll

(Syst. No. 3593) mit alkoh. Kalilauge (2 g KOH in 40 cm³ 90—95°/oigem Alkohol) (Magnanini, B. 22, 36; G. 19, 82). — Niederschlag. Schmilzt bei ca. 145° unter Entwicklung von Kohlendioxyd. — Liefert beim Kochen mit 17°/oiger Kalilauge 3.5-Dimethyl-pyrrol-carbonsäure-(2). Die Salze zersetzen sich leicht in warmer wäßriger Lösung unter Bildung von Tetramethyl-pyrokoll. — Ba(C₁₄H₁₅O₃N₂)₂. Tafeln.

Methylester $C_{15}H_{15}O_3N_2 = HNC_4H(CH_3)_2 \cdot CO \cdot NC_4H(CH_3)_3 \cdot CO_2 \cdot CH_3$. B. Beim Erhitzen des Silbersalzes der 1-[3.5-Dimethyl-pyrroyl-(2)]-3.5-dimethyl-pyrrol-carbonsäure-(2) mit überschüssigem Methyljodid (Magnanini, B. 22, 36; G. 19, 84). — Tafeln (aus Essigester + Petroläther). Monoklin prismatisch (Negri, B. 22, 37; G. 19, 85; vgl. Groth, Ch. Kr. 5, 529). F: 163—163,5°; leicht löslich in Chloroform, schwerer in Essigester und Benzol, sehr schwer in Petroläther, unlöslich in Wasser (M.). — Liefert beim Erhitzen über den Schmelzpunkt oder beim Kochen in wäßrig-alkoholischer Lösung oder beim Erwärmen mit Soda-Lösung Tetramethylpyrokoll.

3. 2.5-Dimethyl-pyrrol-carbonsaure-(3) $^{*}_{\mathbf{A}}\mathbf{C}_{7}\mathbf{H}_{9}\mathbf{O}_{2}\mathbf{N} = \frac{\mathbf{HC} - \mathbf{C} \cdot \mathbf{CO}_{2}\mathbf{H}}{\mathbf{CH}_{3} \cdot \mathbf{C} \cdot \mathbf{NH} \cdot \mathbf{C} \cdot \mathbf{CH}_{3}}$. B.

Beim Kochen des zugehörigen Äthylesters mit wäßr. Alkalilauge (KNORR, B. 18, 1564) oder mit alkoh. Kalilauge (Hantzsch, B. 23, 1475). — Nadeln (durch Fällen der alkal. Lösung mit Mineralsäure). Schmilzt bei 213° (Angell, G. 22 II, 14) unter Zerfall in Kohlendioxyd und 2.5-Dimethyl-pyrrol (K.). Elektrolytische Dissoziationskonstante k bei 25°: 1,1×10⁻⁶ (A.). — Wird durch Säuren in 2.5-Dimethyl-pyrrol und Kohlendioxyd zersetzt (K.). Das Ammoniumsalz gibt mit Eisenchlorid-Lösung eine kirschrote Färbung (K.). Das Silbersalz zersetzt sich beim Erwärmen unter Spiegelbildung (K.).

Methylester $C_8H_{11}O_2N = HNC_4H(CH_3)_2 \cdot CO_3 \cdot CH_3$. B. Bei der Einw. von wäßr. Ammoniak auf ein Gemisch aus 1 Mol Acetessigsäuremethylester und 2 Mol Chloraceton bei —1° (Korschun, B. 37, 2196). — Krystalle (aus Alkohol). F: 119,5°. Kp₁₈: 170°.

Äthylester C₂H₁₃O₂N = HNC₄H(CH₃)₂·CO₂·C₂H₅. B. Beim Erhitzen von 2.5-Dimethyl-pyrrol-dicarbonsäure-(3.4)-monoäthylester über den Schmelzpunkt (Knorr, B. 18, 1563, 1564). Beim Versetzen eines Gemisches aus Acetessigester und Chloraceton mit überschüssigem konzentriertem wäßrigem Ammoniak (Hantzsch, B. 23, 1474; vgl. Korschun, B. 37, 2196) oder, neben 2.4-Dimethyl-furan-carbonsäure-(3)-äthylester und einer Verbindung C₇H₁₄O₄ (Bd. III, S. 653), beim Einleiten von Ammoniak in die äther. Lösung eines Gemisches von Acetessigester und Chloraceton (Feist, B. 35, 1539, 1545). Bei der Einw. von alkoholischem oder wäßrigem Ammoniak auf β.ε-Dioxo-hexan-γ-carbonsäure-äthylester (Ossipow, Korschun, Ж. 35, 633; C. 1903 II, 1281). F. 117—118° (Kn.), 117° (O., Ko.), 116—117° (H.). Kp₇₈₁: 290° (Kn.); Kp₁₈: 130° (Ko.). Flüchtig mit Wasserdampf (Kn.). Ziemlich leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser, verd. Säuren und Alkalien (H.). — Liefert beim Erhitzen mit Benzaldehyd in Gegenwart von Kaliumdisulfat auf 120° 4.4′-Benzal-bis-[2.5-dimethyl-pyrrol-carbonsäure-(3)-äthylester] (Syst. No. 3674) (F., B. 35, 1651).

1.2.5-Trimethyl-pyrrol-carbonsäure-(3) $C_2H_{11}O_2N = CH_2 \cdot NC_4H(CH_3)_2 \cdot CO_3H$. B. Durch Verseifen des zugehörigen Äthylesters (Korschun, \mathcal{H} . 35, 635; C. 1903 II, 1281). — Krystalle. Zersetzt sich bei ca. 175°, ohne zu schmelzen. Fast unlöslich in Benzol. Die Salze sind in Wasser löslich.

Äthylester $C_{10}H_{15}O_2N = CH_2 \cdot NC_4H(CH_3)_2 \cdot CO_2 \cdot C_2H_5$. Bei der Einw. von Methylamin auf $\beta.s$ -Dioxo-hexan-y-carbonsäure-äthylester (Korschun, \mathcal{H} . 35, 635; C. 1903 II,

1281). Beim Erhitzen der Kaliumverbindung des 2.5-Dimethyl-pyrrol-carbonsäure-(3)-äthylesters mit überschüssigem Methyljodid (K., Trefiljew, H. 35, 636; C. 1903 II, 1281). — Nadeln (aus verd. Alkohol). F: 48°; Kp₇₆₆: 282—283° (unkorr.); flüchtig mit Wasserdampf; leicht löslich in Alkohol, Benzol und anderen organischen Lösungsmitteln, unlöslich in Wasser (K.).

1-Äthyl-2.5-dimethyl-pyrrol-carbonsäure-(3) C₂H₁₂O₂N = C₂H₅·NC₄H(CH₂)₂·CO₂H.

B. Durch Verseifen des zugehörigen Äthylesters (Korschun, Ж. 35, 636; C. 1903 II, 1281).

— Zersetzt sich beim Erwärmen, ohne zu schmelzen.

Äthylester $C_{11}H_{17}O_2N=C_2H_5\cdot NC_4H(CH_3)_2\cdot CO_2\cdot C_2H_5$. Das Molekulargewicht ist kryoskopisch in Benzol bestimmt (Korschun, Ж. 35, 635; C. 1903 II, 1281). — B. Bei der Einw. von Äthylamin auf $\beta.\varepsilon$ -Dioxo-hexan- γ -carbonsäure-äthylester (K.). — Flüssigkeit. Kp₇₄₈: 286° (unkorr.). D₁₅°: 1,0122.

- 1-Butyl-2.5-dimethyl-pyrrol-carbonsäure-(3) $C_{11}H_{17}O_3N = CH_3 \cdot [CH_4]_3 \cdot NC_4H(CH_3)_3 \cdot CO_3H$. Das Molekulargewicht ist kryoskopisch in Benzol bestimmt (Korschun, Ж. 35, 636; C. 1903 II, 1281). B. Durch Verseifen des aus β . ε -Dioxo-hexan- γ -carbonsäure-äthylester und Butylamin erhaltenen Reaktionsprodukts (K.). Krystalle. F: 154°. Löslich in Alkohol, schwer löslich in Benzol.
- 1-Phenyl-2.5-dimethyl-pyrrol-carbonsäure-(3) $C_{19}H_{13}O_2N = C_0H_0 \cdot NC_4H(CH_3)_2 \cdot CO_2H$. B. Durch Verseifung des zugehörigen Äthylesters mit alkoh. Kalilauge (Feist, B. 35, 1547). Krystalle (aus verd. Alkohol). F: 205° (Zers.).

Äthylester $C_{15}H_{17}O_2N=C_0H_5\cdot NC_4H(CH_3)_2\cdot CO_2\cdot C_2H_5$. B. Beim Kochen äquimole-kularer Mengen Acetessigester und Chloraceton mit überschüssigem Anilin (Feist, B. 35, 1546). — Krystalle. F: 43°; Kp_{40} : 225°; sehr leicht löslich in organischen Solvenzien, außer in Ligroin (F., B. 35, 1547). — Kondensiert sich mit Benzaldehyd in Gegenwart von Kalium-disulfat bei 120—130° zu 4.4′-Benzal-bis-[1-phenyl-2.5-dimethyl-pyrrol-carbonsäure-(3)-äthylester] (Syst. No. 3674) (F., B. 35, 1653). Zeigt in verd. Schwefelsäure erst nach langem Kochen die rote Fichtenspanreaktion (F., B. 35, 1547).

1-Oxy-2.5-dimethyl-pyrrol-carbonsäure-(3) $C_7H_9O_8N = HO \cdot NC_4H(CH_5)_2 \cdot CO_2H$. B. Bei mehrstündigem Kochen einer Lösung von 1-Oxy-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diāthylester in überschüssiger Natronlauge (Knorr, A. 236, 300). Beim Kochen des zugehörigen Äthylesters (s. u.) mit Natronlauge (K., A. 236, 301). — Nadeln. Zersetzt sich bei 138°. — Liefert beim Erhitzen über den Schmelzpunkt 1-Oxy-2.5-dimethyl-pyrrol (Bd. XX, S. 175). Spaltet bei längerem Kochen mit Wasser Kohlensäure ab. Leicht löslich in Alkohol, schwer in Wasser.

Äthylester $C_9H_{13}O_3N = HO \cdot NC_4H(CH_3)_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von 1-Oxy-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-monoäthylester auf ca. 190° (Knorb, A. 236, 301). — Flüssigkeit.

1-Amino-2.5-dimethyl-pyrrol-carbonsäure-(3)-äthylester (?) $C_9H_{14}O_9N_9=H_2N\cdot NC_4H(CH_3)_9\cdot CO_9\cdot C_9H_5$ (?). B. Aus $\beta.\epsilon$ -Dioxo-hexan- γ -carbonsäure-äthylester und essigsaurem Hydrazin in Alkohol (Korsohun, B. 37, 2191; \mathcal{H} . 36, 1325; 37, 33). — Krystalle (aus Ligroin). F: 87—88°. An der Luft beständig. Leicht löslich außer in kaltem Ligroin, Petroläther und Wasser. Löst sich in schwach verdünnten Mineralsäuren. — Bleibt beim Kochen mit alkoh. Kalilauge unverändert.

4. Carbonsäuren $C_8H_{11}O_2N$.

1. 2.6-Dimethyl-1.4-dihydro-pyridin-carbonsäure-(3), 2.6-Dimethyl-1.4-dihydro-nicotinsäure, $N.\gamma$ -Dihydro-a.a'-lutidin- β -carbonsäure $C_{\bullet}H_{11}O_{\bullet}N$ $HC\cdot CH_{\bullet}\cdot C\cdot CO_{\bullet}H$

CH₃·C·NH·C·CH₃. B. Beim Kochen des zugehörigen Äthylesters (s. u.) mit konz. Kalilauge (Schiff, Prosio, G. 25 II, 75). — $C_8H_{11}O_2N + HCl$. Krystalle (aus Methanol + Äther). — $2C_8H_{11}O_2N + 2HCl + PtCl_4 + 2H_3O$. Orangerote Prismen, die bei 120° das Krystallwasser verlieren.

Äthylester $C_{10}H_{15}O_2N = HNC_5H_2(CH_2)_2 \cdot CO_2 \cdot C_2H_5$. Beim Lösen von 2.6-Dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester in alkoh. Chlorwasserstoff und Eindampfen der Lösung auf dem Wasserbad (Schuff, Prosio, G. 25 II, 73). — Hellgelbes, stark

riechendes Öl. Kp: 235°. In kaltem Wasser leichter löslich als in warmem. — $C_{10}H_{18}O_2N + HgCl_2$. Hellgelbes Pulver. Unlöslich in Wasser. — $2C_{10}H_{18}O_2N + 2HCl + PtCl_4$. Goldgelbe Nadeln. F: 140°.

2. 3.4.5-Trimethyl-pyrrol-carbonsäure-(3) $C_8H_{11}O_2N = \frac{CH_3 \cdot C - C \cdot CO_2H}{CH_3 \cdot C \cdot NH \cdot C \cdot CH_2}$

Methylester $C_9H_{13}O_2N = HNC_4(CH_9)_3 \cdot CO_2 \cdot CH_3$. B. Beim Erhitzen von Acetessigsäuremethylester mit Methyl- α -chloräthyl-keton in wäßr. Ammoniak unter Einleiten von Ammoniak (Korschun, B. 38, 1129; R. A. L. [5] 14 I, 396). — Krystalle (aus verd. Alkohol). F: 124,5—126°. Fast unlöslich in warmem Wasser, Ligroin und Petroläther, sonst leicht löslich.

Äthylester $C_{10}H_{15}O_2N = HNC_4(CH_3)_3 \cdot CO_2 \cdot C_2H_5$. B. Beim Kochen von β .s-Dioxo- δ -methyl-hexan- γ -carbonsäure-äthylester mit konzentriertem wäßrigem Ammoniak oder beim Erhitzen von Acetessigester mit Methyl- α -chloräthyl-keton in wäßr. Ammoniak unter Einleiten von Ammoniak (Korschun, B. 38, 1128; \mathcal{H} . 37, 227; R. A. L. [5] 14 I, 394). — Nadeln (aus Petroläther). F: 101,5—102,5° (korr.). Flüchtig mit Wasserdampf. Leicht löslich in Alkohol, Benzol, Essigester, Aceton und Chloroform, schwer in Ligrcin, Petroläther und heißem Wasser, unlöslich in kaltem Wasser. — Liefert beim Erhitzen mit alkoh. Kalilauge im Rohr auf 120—125° 2.3.5-Trimethyl-pyrrol.

3. Nortropen-(2)-carbonsäure-(2),
Anhydronorekgonin, Norekgonidin
C₈H₁₁O₂N, Formel I.

Tropen - (2) - carbonsäure - (2),
An
H₂C-CH-C·CO₂H

II. | N·CH₃ CH

H₂C-CH-CH₂

H₂C-CH-CH₂

Tropen - (2) - carbonsäure - (2), An-H₂C-CH-CH₂

hydroekgonin, Ekgonidin C₉H₁₃O₂N, Formel II. Zur Konstitution vgl. Willstätter, Bormer, A. 422 [1920], 22; Gadamer, John, Ar. 259 [1921], 227. — B. Beim Erhitzen von 1-Ekgonin mit Eisessig-Chlorwasserstoff im Rohr auf 140° (Einhorn, Marquardt, B. 23, 472; Gadamer, Amenomiya, Ar. 242, 2) oder mit 25°/0 iger Schwefelsäure auf 140° bis 160° (Hesse, A. 271, 183), ferner aus salzsaurem 1-Ekgonin beim Kochen mit Phosphoroxychlorid (Ein., B. 20, 1221), beim Erhitzen mit Phosphorund Jodwasserstoffsäure auf 140° (Merck, B. 19, 3003) oder mit rotem Phosphor und Jodwasserstoffsäure auf 140° (Ein., B. 21, 3035 Anm.). Beim Erhitzen von d-Pseudoekgonin (Ein., Ma., B. 23, 471; Ga., A., Ar. 242, 2, 9) oder von 1-Cocain (Ein., B. 21, 3035) mit Eisessig-Chlorwasserstoff im Rohr auf 140°.

Krystalle (aus Methanol oder Methanol + Äther). F: 235° (Zers.) (Einhorn, B. 20, 1223). Viel schwerer löslich in Alkohol als l-Ekgonin (Liebermann, Giesel, B. 21, 3199); sehr leicht löslich in Wasser, fast unlöslich in Äther, Chloroform, Benzol und Ligroin (Ern., B. 20, 1223). Elektrolytische Dissoziationskonstante des Anhydroekgonins als Base (kb) bei 14°: 3,68×10⁻¹¹ (bestimmt durch den colorimetrisch mit Methylorange ermittelten Hydrolysengrad des Hydrochlorids) (Velley, Soc. 95, 4). — Beim Behandeln der sodaalkalischen Lösung mit Kaliumpermanganat entstehen je nach Versuchsbedingungen l-Ekgonin, Norl-ekgonin, 2.3-Dioxy-tropan-carbonsäure-(2) (Syst. No. 3347), Bernsteinsäure und Oxalsäure (Ern., B. 21, 49, 3036, 3038; Ern., Rassow, B. 25, 1395). Bei der Reduktion mit Natrium in siedendem Amylalkohol erhält man Hydroekgonidin (Gemisch von Stereoisomeren) (S. 17) (WILLSTÄTTER, B. 80, 711; D. R. P. 94175; C. 1898 I, 228; Frdl. 4, 1214; GADAMER, AMENOMIYA, Ar. 242, 10; vgl. v. Braun, E. Müller, B. 51 [1918], 240; Ga., John, Ar. 259 [1921], 229). Beim Erhitzen von salzsaurem Anhydroekgonin mit Eisessig-Bromwasserstoff im Rohr auf 100° wird das Hydrobromid der 2-Brom-tropan-carbonsäure-(2) (S. 18) gebildet (Eichengrün, Ein., B. 28, 2888; Ga., A., Ar. 242, 16; vgl. Ga., Jo., Ar. 259 [1921], 231). Uber Einw. von Brom auf salzsaures Anhydroekgonin in Eisessig vgl. Ein., B. 20, 1226; Eichengrün, Ein., B. 23, 2873; Ga., A., Ar. 242, 14; Lindemann, Heinemann, A. 447 [1926], 85. Beim Erhitzen von Anhydroekgonin mit Wasser im Rohr auf 150° wird Methylamin abgespalten (EIN., B. 21, 3040); beim Erhitzen mit konz. Salzsäure im Rohr auf 280° entstehen Ammoniak, Methylamin, Methylchlorid, Pyridin, Tropidin (Bd. XX, S. 177) und andere Zersetzungsprodukte (Env., B. 22, 401, 1362; 28, 1339).

 $C_9H_{13}O_2N+HCl.$ Krystalle mit 1 H_2O (aus Alkohol) (Hesse, A. 271, 183); wasserhaltige rhombisch bipyramidale (Lehmann, B. 21, 3036; vgl. Groth, Ch. Kr. 5, 866) Tafeln (aus Wasser), die beim Erhitzen in wasserfreie(?) Nadeln zerfallen (Lehmann). F: 240—241° (EINHORN, B. 20, 1223). [α] $_5^6$: $-62,7^6$ [Wasser; c=3 (bezogen auf wasserfreie Substanz)] (Hesse, A. 271, 184; vgl. Ein., B. 22, 1495). $-C_9H_{13}O_2N+HBr.$ Krystalle (aus Alkohol). F: 222° (Zers.) (Ein., B. 20, 1224). $-C_9H_{13}O_2N+HBr+2Br.$ Orangefarbene Krystalle (aus Eisessig). F: 154—155° (Zers.); bei der Destillation mit Wasserdampf oder beim Lösen

in verschiedenen Lösungsmitteln, z. B. Essigester entsteht bromwasserstoffsaures Anhydroekgonin (Ein., B. 20, 1224). — $C_9H_{13}O_2N+HI$. Krystalle (aus Alkohol) (Ein., B. 20, 1222). — $C_9H_{13}O_2N+HI+2I$. Braunviolette Blättchen (aus Eisessig). F: 185—186°; liefert beim Kochen mit Wasser jodwasserstoffsaures Anhydroekgonin; gibt auch bei der Einw. von schwefliger Säure, von wäßr. Ammoniak oder von Quecksilber in siedendem Alkohol das addierte Jod ab (Ein., B. 20, 1222). — $C_9H_{13}O_2N+HCl+AuCl_2$ (Merok, B. 19, 3003). Schwefelgelbe Krystalle (aus Wasser). Schwer löslich (Ein., B. 20, 1223). — $2C_9H_{13}O_2N+2HCl+PtCl_4$. Gelbrote Prismen. F: 223° (Zers.) (Ein., B. 20, 1223).

Anhydroekgonin - äthylester, Ekgonidin - äthylester $C_{11}H_{17}O_2N = CH_2 \cdot NC_7H_3 \cdot CO_3 \cdot C_2H_5$. Beim Kochen von jodwasserstoffsaurem Anhydroekgonin mit absolut-alkoholischer Salzsäure (Einhorn, B. 20, 1225). Beim Kochen von (bei 120—130° getrocknetem) salzsaurem Anhydroekgonin mit absol. Alkohol und konz. Schwefelsäure (Willstätter, A. 317, 234; vgl. Ein., W., A. 280, 122). — Öl von schwachem Pyridingeruch (Liebermann, B. 40, 3602). Kp_{ca.16}: 136—139° (korr.) (W., A. 317, 235); Kp_{ca.11}: 130—132° (L.). Dⁿ: 1,064; [α]ⁿ: —51,9° (L.). Sehr leicht löslich in kaltem, schwer löslich in warmem Wasser (W., B. 30, 715). Reagiert stark alkalisch (L.). — $C_{11}H_{17}O_2N + HCl$. Nadeln (aus Alkohol). F: 243—244° (Ein.). — $C_{11}H_{17}O_3N + HCl + AuCl_3$. Citronengelbe Körner. F: 124° (L.). — $2C_{11}H_{17}O_3N + 2HCl + PtCl_4$. Gelbe Prismen (aus Wasser) (Ein.); blaßgelbe Nadeln (L.). F: 211° (Ein.), 217° (L.). Schwer löslich in Wasser (Ein.). — Pikrat $C_{11}H_{17}O_3N + C_6H_3O_7N_3$. Gelbe Blättchen. F: 168°; sehr schwer löslich (L.).

Anhydroekgonin-hydroxymethylat, Ekgonidin-hydroxymethylat, Ammonium-base des Anhydroekgonin-methylbetains $C_{10}H_{17}O_2N = (HO)(CH_2)_3NC_7H_3 \cdot CO_2H$. B. Das Jodid entsteht beim Erhitzen von l-Cocain-jodnethylat mit Eisessig-Chlorwasserstoff im Rohr auf 140° (Einhorn, B. 21, 3042). Das Jodid bezw. Chloroaurat entstehen beim Behandeln von Anhydroekgonin-methylbetain mit Jodwasserstoffsäure bezw. salzsaurer Goldchlorid-Lösung (Ein., Tahara, B. 26, 327, 328 Anm.). — Jodid $C_{10}H_{10}O_2N \cdot I + H_2O$. Prismen (aus Wasser oder Alkohol). F: 207—208° (Zers.) (Ein.; Ein., T.; Ein., Willstätter, B. 27, 2451). — $C_{10}H_{16}O_2N \cdot Cl + AuCl_3$. Bernsteingelbe Nadeln (aus Wasser). F: 217° (Ein., T.).

Anhydroekgonin - methylester - hydroxymethylat, Ekgonidin - methylester-hydroxymethylat $C_{11}H_{10}O_2N = (HO)(CH_2)_2NC_7H_2 \cdot CO_3 \cdot CH_2 \cdot \dots \text{Jodid } C_{11}H_{10}O_2N \cdot \text{I. } B.$ Beim Erwärmen der wäßr. Lösung von l-Cocain-jodmethylat (Einhorn, B. 21, 3042). Beim Behandeln der äther. Lösung von (nicht näher beschriebenem) Anhydroekgonin-methylester mit Methyljodid (Ein., Tahara, B. 26, 326). Beim Kochen von Anhydroekgonin-methylbetain mit Methyljodid in Methanol (Ein., T., B. 26, 328; Ein., Willstätter, B. 27, 2449, 2450). — Prismen (aus Alkohol). F: 195—196 (Ein.; Ein., W.). Leicht löslich in Wasser und heißem Alkohol, schwer in kaltem Alkohol (Ein., T.). — Geht bei der Einw. von feuchtem Silberoxyd in Anhydroekgonin-methylbetain tiber (Ein., W.). Beim Kochen mit absol. Alkohol entsteht Anhydroekgonin-äthylester-jedmethylat (Ein., W.).

Anhydroekgonin-äthylester-hydroxymethylat, Ekgonidin-äthylester-hydroxymethylat $C_{12}H_{21}O_2N = (HO)(CH_2)_2NC_2H_3 \cdot CO_2 \cdot C_2H_4$. B. Das Jodid entsteht bei der Einw. von Methyljodid auf Anhydroekgoninäthylester in Äther (Einhorn, Tahara, B. 26, 327; Ein., Willstätter, A. 280, 123; W., A. 317, 235). Salze entstehen ferner aus Anhydroekgonin-methylbetain beim Kochen mit äthylalkoholischer Salzsäure (Ein., T., B. 26, 329; vgl. Ein., W., B. 27, 2444), mit Äthylalkohol und Schwefelsäure (Ein., W., B. 27, 2452).

beim Erhitzen mit Äthyljodid im Rohr auf 100° (EIN., W., B. 27, 2451). Das Jodid entsteht beim Kochen von Anhydroekgonin-methylester-jodmethylat mit absol. Alkohol (EIN., W., B. 27, 2450). — Das Jodid geht bei der Einw. von feuchtem Silberoxyd oder gelbem Quecksilberoxyd in Anhydroekgonin-methylbetain über (EIN., T.; EIN., W., B. 27, 2448). Beim Kochen des Jodids mit verd. Natronlauge entstehen Cycloheptatriencarbonsäure vom Schmelzpunkt 32° (Bd. IX, S. 430) und Dimethylamin (EIN., T.; EIN., W., A. 280, 123; W.). — Jodid C₁₂H₂₀O₂N·I. Blättchen (aus Alkohol). F: 177°; leicht löslich in Wasser, schwer in kaltem Alkohol, unlöslich in Äther (EIN., T.). — C₁₂H₂₀O₂N·Cl + AuCl₃. Gelbe Krystalle (aus Wasser). F: 167° (EIN., T.). — Chloroplatinat. Rotgelbe Blätter. F: 218° (EIN., T.).

5. Carbonsäuren $C_9H_{13}O_2N$.

- 1. α [1.2 Dihydro pyridyl (2)] isobuttersäure $C_9H_{13}O_2N = HC \cdot CH : CH$
- HC.NH.CH.C(CH3)2.CO2H.
- B. Beim Behandeln einer kalten ätherischen HC·N[CO·CH(CH₃)₂]·CH·C(CH₃)₂·CO₂H.

 Lösung des Reaktionsprodukts aus Pyridin und Dimethylketen mit verd. Salzsäure (STAU-DINGER, KLEVER, B. 40, 1152; vgl. St., KL., KOBER, A. 374 [1910], 23). Prismen (aus verd. Methanol). F: 94—95°; leicht löslich in den gebräuchlichen Lösungsmitteln, unlöslich in Wasser und Petroläther (St., Kl., Ko.). Zerfällt beim Erhitzen mit verd. Salzsäure in Pyridin und Isobuttersäure (St., Kl., Ko.).
- 2. 2.4.6 Trimethyl 1.4 dihydro pyridin carbonsäure (3), 2.4.6 Trimethyl 1.4 dihydro nicotinsäure, 1.4 Dihydro kollidin carbonsäure (3) HC · CH(CH₃) · C · CO₂H C₉H₁₃O₂N = $\frac{\text{HC} \cdot \text{CH}(\text{CH}_3) \cdot \text{C} \cdot \text{CO}_2\text{H}}{\text{CH}_4 \cdot \text{C}} \cdot \text{NH} \text{C} \cdot \text{CH}_3}{\text{CH}_4 \cdot \text{C}} \cdot \text{CH}_3$

Äthylester C₁₁H₁₇O₂N = HNC₅H₂(CH₂)₃·CO₂·C₂H₅. B. Beim Erhitzen von 2.4.6-Trimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester mit 25°/ojger Salzsäure (Hantzsch, A. 215, 40) oder mit 60—75°/ojger Kalilauge (Cohnheim, B. 31, 1034). Beim Kochen von 2.4.6-Trimethyl-5-acetyl-1.4-dihydro-pyridin-carbonsäure-(3)-äthylester mit 40°/ojger Natronlauge (Knoevenagel, Ruschhaupt, B. 31, 1032; vgl. C.). — Krystalle, die nach wiederholtem Umkrystallisieren aus Ligroin an der Luft beständig sind und in weniger reinem Zustande zu einem Öl zerfließen (C.). F: 89—90° (C.). Leicht löslich in Äther, Chloroform, Benzol und Alkohol, schwer in Ligroin, unlöslich in kaltem Wasser; löslich in konz. Salzsäure, unlöslich in verd. Säuren (C.). Schwache Base (H.). — Reduziert kalte Permanganat-Lösung (C.). Liefert bei der Oxydation mit nitrosen Gasen in alkoh. Lösung 2.4.6-Trimethyl-pyridincarbonsäure-(3)-äthylester (H.). — 2C₁₁H₁₇O₂N+2HCl+PtCl₄. Hellbraune Nadeln (H.).

3. 2.5 - Dimethyl - 4 - āthyl - pyrrol - carbonsāure - (3) $C_9H_{19}O_2N = C_9H_3 \cdot C - C \cdot CO_2H$ $CH_2 \cdot C \cdot NH \cdot C \cdot CH_3$

Äthylester $C_{11}H_{17}O_2N=HNC_4(CH_2)_2(C_2H_5)\cdot CO_2\cdot C_2H_5$. B. Beim Erhitzen von β -Aminocrotonsäure-äthylester und Methyl- $[\alpha$ -chlor-propyl]-keton in konzentriertem wäßrigem Ammoniak am Rückflußkühler (Korschun, Bl. [4] 3, 594). — Krystalle (aus verd. Methanol). F: 74—75°. Leicht löslich in Methanol, Äthylalkohol, Aceton, Benzol, Chloroform, Äther und Essigester, ziemlich schwer in Petroläther.

6. 2-n-Hexyl-pyrrol-n-caprylsäure-(5), η -[5-n-Hexyl-pyrryl-(2)]-n-caprylsäure $C_{18}H_{21}O_2N=\frac{HC-CH}{CH_2\cdot[CH_2]_5\cdot C\cdot NH\cdot C\cdot[CH_2]_7\cdot CO_2H}$. Vgl. darüber Bd. III, 8. 762 unter θ . λ -Diketo-stearinsäure.

4. Monocarbonsäuren C_nH_{2n-7}O₂N.

1. Carbonsäuren $C_6H_5O_2N$.

1. Pyridin-carbonsäure-(2), Pyridin-α-carbonsäure, α-Picolineäure, gewöhnlich schlechthin Picolineäure genannt, C₆H₈O₉N, s. nebenstehende Formel. B. Bei der Oxydation von α-Picolin mit Kaliumpermanganat (Weidel, B. 12, 1992; vgl. Mende, B. 29, 2887; Camps, Ar. 240, 345; H. Meyer, M. 23, 438 Anm. 1; Pinner, B. 33, 1226). Beim Kochen von Beilsteins Handbuch. 4. Aufl. XXII.

2-Phenyl-pyridin mit Chromsäure in verd. Schwefelsäure (Seraup, Cobenzl, M. 4, 477). Nadeln (aus Wasser oder Alkohol). Schmeckt fade, sauer, nachträglich etwas bitter (W.). F: 134,5—136° (W.), 137° (C.), 137—139° (LADENBURG, B. 24, 640 Anm.). Sublimiert oberhalb des Schmelzpunkts, langsam schon unterhalb 100° in Nadeln (W.). Leicht löslich in Wasser und Alkohol, fast unlöslich in Äther, Chloroform, Benzol und Schwefelkohlenstoff (W.). 10 cm³ der gesättigten alkoholischen Lösung enthalten bei 25° 0,54 g Picolinsäure (Kahlan, M. 28, 706). Elektrische Leitfähigkeit und Dissoziationskonstante: Ostwald, Ph. Ch. 3, 385; vgl. Ladenburg, B. 24, 640 Anm. Einfluß auf die Elektrocapillarkurve des Quecksilbers: Gouy, A. ch. [8] 8, 334. Läßt sich mit Barytwasser gegen Phenolphthalein scharf titrieren (K.). — Picolinsaures Kupfer liefert bei der trocknen Destillation Pyridin und α.α-Dipyridyl (Syst. No. 3485) (Blau, M. 10, 375; vgl. B. 21, 1077); picolinsaures Calcium gibt beim Erhitzen mit Calciumoxyd Pyridin und γ.γ-Dipyridyl (Syst. No. 3485) (Weidel, B. 12, 2000). Bei der Reduktion mit Natrium in siedendem Alkohol entsteht Pipecolinsäure (LADENBURG, B. 24, 640; MENDE, B. 29, 2887), bei der Einw. von Natriumamalgam in alkal. Lösung α -Oxy-adipinsäure (Wei., M. 11, 522; vgl. B. 12, 2001). Beim Erwärmen mit Zinkstaub und Eisessig erhält man α -Picolin, beim Erhitzen mit rauchender Jodmit Zinkstaub und Eisessig erhalt man α-Piolin, beim Erhitzen mit Fauchender Jodwasserstoffsäure im Rohr auf 250—270° außerdem Piperidin (Seyfferth, J. pr. [2]
34, 242, 247). Picolinsäure ist beständig gegen Chlor in Eisessig und gegen Antimonpentachlorid in der Hitze (Sey., J. pr. [2] 34, 249). Erhitzt man Picolinsäure mit 5 Mol Phosphorpentachlorid bei Gegenwart von Phosphoroxychlorid im Rohr auf 250—270° und
kocht das Reaktionsprodukt mit 80°/0 iger Schwefelsäure, so erhält man 4-Chlor-picolinsäure und 4-Chlor-6-oxy-picolinsäure (Sey., J. pr. [2] 34, 250; vgl. Graf, J. pr. [2] 138
[1932], 37). Gibt bei 20 Min. langem Kochen mit Thionylchlorid Picolinsäurechlorid, das
bei Anwesenbeit von Fauchtickeit durch überschüssiges Thionylchlorid leicht in sein Hydrobei Anwesenheit von Feuchtigkeit durch überschüssiges Thionylchlorid leicht in sein Hydrochlorid verwandelt wird (Späth, Spitzer, B. 59 [1926], 1480; vgl. H. Meyer, M. 22, 112; M., Graf, B. 61 [1928], 2203). Picolinsäure wird durch konzentrierte alkoholische Kalilauge bei 240° in Pyridin und Kohlendioxyd gespalten (Wei., B. 12, 2001). Beim Erhitzen von picolinsaurem Kalium mit Methyljodid auf dem Wasserbad entsteht Picolinsäure-methylbetain (S. 36) (Hantzsch, B. 19, 37); dieses bildet sich auch beim Erhitzen von Picolinsäure mit Methyljodid ohne Lösungsmittel oder in Wasser oder Alkohol auf 100° (TURNAU, M. 26, 538, 543). Analog entsteht beim Erhitzen mit Äthyljodid in Soda-Lösung Picolinsäureäthylbetain (M., M. 24, 199; vgl. T., M. 26, 560), während man bei Einw. von Allyljodid Picolinsäure-hydrojodid $2C_6H_8O_2N+HI$ erhält (T., M. 26, 560). Beim Erhitzen von Picolinsäure-hydrojodid $2C_6H_8O_2N+HI$ erhält (T., M. 26, 560). säure mit methylalkoholischer bzw. alkoholischer Salzsäure erhält man den Methylester bezw. Äthylester (Engler, B. 27, 1785; vgl. a. Camps, Ar. 240, 346). Geschwindigkeit der Veresterung durch alkoh. Salzsaure: Kailan, M. 28, 706. — Die Lösungen der Picolinsaure geben mit Ferrosulfat eine gelbe (WEI., B. 12, 1994) bis gelbrote Färbung (SKRAUP. M. 7. 211; vgl. a. Wolff, A. 322, 372 Anm.).

NH₄C₄H₄O₅N. Tafeln (aus Wasser). Triklin pinakoidal (Ditscheiner, B. 12, 1995; vgl. Groth, Ch. Kr. 5, 684). Verflüchtigt sich schon unterhalb 100° langsam; sehr leicht löslich in Wasser (WEIDEL, B. 12, 1995). — Natriumsalz und Kaliumsalz bilden äußerst lich in Wasser (Weidel, B. 12, 1995). — Natriumsalz und Kaliumsalz bilden äußerst hygroskopische Schuppen und Nadeln (W.). — $Cu(C_0H_4O_2N)_2 + 2H_2O$ (E. FISCHER, Hess, Stahlschmidt, B. 45 [1912], 2463). Blauviolette Nadeln (W.). Verliert das Krystallwasser im Exsiccator über Schwefelsäure (F., H., St.). — $Mg(C_0H_4O_2N)_2 + 2H_2O$. Monoklin prismatisch (D.; Jander, Z. Kr. 20, 245; vgl. Groth, Ch. Kr. 5, 684). — $Ca(C_0H_4O_2N)_2 + 1^{1/3}H_2O$. Nadeln. Ziemlich schwer löslich in Wasser (W.). — $Ba(C_0H_4O_2N)_2 + H_2O$. Mikroskopische Prismen. Schwerer löslich als das Calciumsalz (W.). — $Cd(C_0H_4O_2N)_2$ (bei 120°). Süß schmeckende Tafeln (W.). — $C_0H_2O_2N + HCl$. Rhombische Krystalle (D.; W., B. 12, 1998; Jander, Z. Kr. 20, 246; v. Lang, Z. Kr. 40, 640; vgl. Groth, Ch. Kr. 5, 682). F: 210—212° (H. Meyer, M. 15, 164). — $2C_0H_2O_2N + HI$. B. Beim Eindampfen von Picolinsäure mit Jodwasserstoffsäure (Turnau, M. 26, 549). Gelbe Nadeln (aus Alkohol). F: 190—200° (Zers.). Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther und Benzol. — Chloroaurat. Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Ather und Benzol. — Chloroaurat. Gelbe Blättchen. F: 200°; zersetzt sich bei 204° (H. Meyer, M. 28, 441). Ziemlich leicht löslich in Wasser. — 2C₉H₅O₂N + 2 HCl + PtCl₄ + 2 H₂O. Orangerote Krystalle. Monoklin prismatisch (D.; vgl. J.; Groth, Ch. Kr. 5, 683). F: 215—216° (unkorr.) (M., M. 15, 168). D_{H.5}¹⁰: 2,0672 (W.).

Picolinsäure-methylester $C_7H_7O_2N=NC_5H_4\cdot CO_2\cdot CH_3$. B. Beim Erwärmen von Picolinsäure mit Methanol im Chlorwasserstoff-Strom auf dem Wasserbad (English, B. 27, 1785). Beim Erhitzen von picolinsaurem Kalium mit methylschwefelsaurem Kalium unter Druck auf 110—120° (H. MEYER, M. 15, 182). — Sehr hygroskopische Krystalle. F: 14° (E.). Kp: 232° (unkorr.) (E.). Leicht löslich in Wasser, Alkohol, Chloroform und Benzol, fast unlöslich in Ligroin (E.). — Hydrochlorid. Sehr hygroskopisch (E.). — 2C,H,O,N + 2HCl+PtCl₄+2H₂O. Orangegelbe Prismen (E.).

Picolinsäure-äthylester C₂H₉O₂N = NC₅H₄·CO₂·C₂H₈. B. Beim Erhitzen von Picolinsäure mit alkoh. Salzsäure (Engler, B. 27, 1785; H. Meyer, M. 23, 438) oder mit Alkohol + konz. Schwefelsäure (Camps, Ar. 240, 347). Entsteht als Hauptprodukt beim Erhitzen von picolinsaurem Kalium mit äthylschwefelsaurem Kalium und wenig Alkohol unter Druck auf 150° (M., M. 15, 165). — Öl, das an der Luft gelblich wird. Erstarrt bei —65° zu Krystallen und schmilzt dann wieder zwischen 0° und +2° (M., M. 15, 167). Kp: 240—241° (M., M. 15, 167), 243° (E.); Kp₁₃: 122—122,5° (Sobecki, B. 41, 4103). Mit Wasserdampf flüchtig (M.). Ist mit Wasser und den üblichen organischen Lösungsmitteln in jedem Verhältnis mischbar (M., M. 15, 167). — Reduktion mit Natrium und siedendem Alkohol: M., M. 15, 181; Willstätter, B. 29, 390 Anm. 1. Liefert beim Behandeln mit 3¹/4 Mol Methylmagnesiumjodid in Äther und Zerlegen des Reaktionsprodukts mit konz. Kaliumcarbonat · Lösung 2 · [α · Oxy · isopropyl] · pyridin (S.). — Hydrochlorid. Hygroskopische Krystalle (M., M. 15, 167). — 2C₈H₉O₂N +2 HCl + PtCl₄. Rotgelbe Krystalle (aus Wasser). F: 154° (unkorr.; Zers.) (M., M. 15, 168). Schwer löslich in Wasser, unlöslich in Alkohol. Beim Kochen mit Wasser entsteht das Chloroplatinat der Picolinsäure.

Picolinsäure-propylester $C_9H_{11}O_9N=NC_5H_4\cdot CO_2\cdot CH_2\cdot C_2H_5$. Gelbliches Öl. Kp: 255° (Engler, B. 27, 1785). — $2C_9H_{11}O_2N+2HCl+PtCl_4$. Orangegelbe Blätter (aus Wasser).

Picolinsäure-isobutylester $C_{10}H_{13}O_2N = NC_5H_4 \cdot CO_2 \cdot CH_2 \cdot CH(CH_2)_2$. Flüssig. Kp: 261,5° (Engler, B. 27, 1786). — $2C_{10}H_{13}O_2N + 2HCl + PtCl_4$. Gelbes Krystallpulver (aus verd. Alkohol).

Picolinsäure-isoamylester $C_{11}H_{15}O_5N=NC_5H_4\cdot CO_2\cdot C_5H_{11}$. Unangenehm riechendes gelbliches Öl. Kp: 278—279° (geringe Zers.) (Engler, B. 27, 1786). — $2C_{11}H_{15}O_5N+2HCl+PtCl_4$. Gelbe Nadeln (aus Alkohol).

Picolinsäure - chlorid C₅H₄ONCl = NC₅H₄·COCl. B. Bei 20 Min. langem Kochen von Picolinsäure mit Thionylchlorid (Späth, Spitzer, B. 59 [1926], 1481; vgl. H. Meyer, M. 22, 112; M., Graf, B. 61 [1928], 2204). — Farblose Krystalle (durch Sublimation im Hochvakuum). F: 46° (M., G.), 45—47° (Sp., Sp.). Kp₁₀: ca. 160° (geringe Zers.) (Sp., Sp.). Leicht löslich in Thionylchlorid und in organischen Lösungsmitteln (M., G.). — Die Krystalle gehen beim Aufbewahren rasch in eine grünschwarze Masse über; die Benzol-Lösung ist auch in der Hitze unverändert haltbar (M., G.). — Wird durch Thionylchlorid bei Anwesenheit von Feuchtigkeit in das Hydrochlorid übergeführt (M., G.). — C₅H₄ONCl+HCl. Blätter. F: 118—122° (Zers.) (M., G.). Äußerst hygroskopisch; zerfällt an der Luft rasch, allmählich auch im Exsiccator über Kaliumhydroxyd, in Picolinsäure-hydrochlorid und Chlorwasserstoff (M., G.).

Picolinsäure - amid C₅H₆ON₂ = NC₅H₆·CO·NH₂. B. Aus Picolinsäure-methylester bezw. -āthylester durch Behandeln mit alkoh. Ammoniak (H. Meyer, M. 15, 172, 182; Engler, B. 27, 1786) oder konzentriertem wäßrigem Ammoniak (E.; Camps, Ar. 240, 347). Beim Auflösen von Picolinsäure-chlorid in konzentriertem wäßrigem Ammoniak (M., M. 23, 438). — Nadeln (aus Benzol). Monoklin prismatisch (Stengel, M. 15, 183; vgl. Groth, Ch. Kr. 5, 685). F: 103,5° (unkorr.) (M., M. 15, 172), 105° (C.), 107° (unkorr.) (E.). Ist sublimierbar, destillierbar und mit Wasserdampf flüchtig (M., M. 15, 173). Leicht löslich in Alkohol und Benzol, schwer in Wasser (E.), fast unlöslich in Ligroin (M., M. 15, 173). — Gibt beim Erhitzen mit Phosphorpentoxyd (C., Ar. 240, 367) oder mit Thionylchlorid auf 100° (M., M. 23, 439, 900) Picolinsäure-nitril. Beim Erhitzen mit Brom und verd. Kalilauge entstehen 2 - Amino-pyridin und geringe Mengen bromfreier, gelblicher Nadeln, die bei ca. 92° schmelzen (M., M. 15, 173); Camps (Ar. 240, 347) erhielt bei Anwendung von überschüssigem Brom neben 2-Amino-pyridin 5-Brom-2-amino-pyridin und 3.5-Dibrom-2-amino-pyridin (Syst. No. 3393) (vgl. Tschitschirabin, Tjashelowa, Ж. 50, 484; C. 1923 III, 1021). — Hydrochlorid. Blättchen. Verwittert rasch an der Luft (E.). — Chloroaurat. Hellgelbes Krystallpulver. Sintert bei 215°, schmilzt erst bei viel höherer Temperatur (M., M. 23, 441). Schwer löslich. — 2C₆H₆ON₂ + 2HCl + PtCl₄. Orangefarbenes Krystallpulver (E.).

Picolinsaure-anilid C_{1.}H₁₀ON₂ = NC₅H₄·CO·NH·C₅H₅. B. Durch Erhitzen von Picolinsaure mit Anilin auf 120° (ENGLER, B. 27, 1786). — Krystalle (aus Alkohol). F: 76°. Löslich in Wasser.

Picolinsaure-o-toluidid $C_{12}H_{12}ON_2 = NC_5H_4 \cdot CO \cdot NH \cdot C_6H_4 \cdot CH_2$. B. Durch Erhitzen von Picolinsaure mit o-Toluidin auf 130° (Engras, B. 27, 1787). — Nadeln (aus Alkohol). F: 64,5°.

Picolinsäure-p-toluidid C₁₈H₁₉ON₂ = NC₈H₄·CO·NH·C₂H₄·CH₃. B. Durch Erhitzen von Picolinsäure mit p-Toluidin auf 140° (ENGLER, B. 27, 1787). — Tafeln (aus Alkohol). F: 104°.

N-[Pyridin- α -carboyl]-glycin, " α -Pyridinursäure", "Picolinursäure" $C_3H_4O_3N_2$ = $NC_3H_4\cdot CO\cdot NH\cdot CH_3\cdot CO_3H$. B. Tritt im Harn von Kaninchen nach subcutaner Injektion

von α-Picolin auf (Cohn, H. 18, 119; B. 27, 2907). — Prismen oder Tafeln (aus Wasser). F: 164—165° (Zers.). Schwer löslich in Äther und in kaltem Wasser, leicht in kochendem Wasser. — Zerfällt beim Kochen mit Barytwasser in Aminoessigsäure und Pyridin-α-carbonsäure. — AgC₃H₇O₃N₂. Nadeln. — Ba(C₃H₇O₃N₂)₂ + 2H₂O. Blättchen (aus Wasser). Leicht löslich in heißem Wasser.

Picolinsäure-nitril, 2-Cyan-pyridin, α-Pyridyleyanid C₆H₄N₂ = NC₅H₄·CN. B. Aus Picolinsäureamid durch Erhitzen mit Phosphorpentoxyd unter 20 mm Druck (CAMPS, Ar. 240, 367; vgl. H. Meyer, M. 23, 901) oder mit Thionylchlorid auf 100° (M., M. 23, 439, 900). — Nadeln (aus Äther) oder Prismen. F: 26° (M., M. 23, 440), 29° (C.). Kp: 212° bis 215° (M.). Riecht angenehm (C.). Ziemlich leicht löslich in Wasser, leichter in Äther, Alkohol und Benzol, schwer in Ligroin (C.; vgl. M.). — Liefert beim Erhitzen mit konz. Salzsäure oder mit Natronlauge Picolinsäure (M.; C.). — Hydrochlorid. Nadeln. Sehr leicht löslich in Wasser (C.). — C₆H₄N₅ + HCl + AuCl₅. Citronengelbe, wasserhaltige Nadeln (aus verd. Salzsäure). F: 190° (M., M. 23, 440). Sehr schwer löslich in Wasser, leichter in verd. Salzsäure. — 2C₆H₄N₅ + 2 HCl + PtCl₄. Orangerote Krystalle (aus verd. Salzsäure). Ziemlich schwer löslich in Wasser (M., M. 23, 440).

Picolinsäure - hydroxymethylat, Ammoniumbase des Picolinsäure - methylbetains $C_7H_9O_3N = (HO)(CH_2)NC_3H_4\cdot CO_2H$.

B. der Salze bezw. des Anhydrids (Picolinsäure-methylbetains). Das neutrale bezw. basische Hydrojodid entsteht bei der Einw. von Methyljodid auf picolinsaures Kalium (Hantzsch, B. 19, 37) oder auf Picolinsäure ohne Lösungsmittel oder in wäßriger oder alkoholischer Lösung im Rohr bei 100° (Turnau, M. 26, 538); aus den Salzen erhält man das Betain durch Schütteln mit Silberoxyd (H.; T.).

Anhydrid, Picolinsaure-methylbetain $C_7H_7O_2N = CH_3 \cdot \stackrel{+}{N}C_8H_4 \cdot CO \cdot \stackrel{-}{O}$. Zerfließliche Krystalle (H.).

Salze $C_7H_7O_2N \cdot Ac$ bezw. $C_7H_7O_2N + HAc.$ — $2C_7H_7O_2N + HCl + H_2O$. Nadeln (aus Wasser). F: ca. 120° (T., M. 26, 546). Ist in wasserfreiem Zustand sehr hygroskopisch. Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther. — $C_7H_7O_2N + HCl$. Krystalle (aus Alkohol + Äther). Zersetzt sich bei $165-170^\circ$ (T., M. 26, 541, 547). Leicht löslich in Wasser, schwer in Alkohol. — $2C_7H_7O_2N + HBr + H_2O$. Nadeln. F: ca. 115° (T., M. 26, 548). — $C_7H_7O_2N + HBr$. Nadeln (aus Alkohol + Äther). Zersetzt sich gegen 179° (T., M. 26, 548). — $2C_7H_7O_2N + HI$. Fast farblose Nadeln (aus Methanol oder Alkohol oder aus Alkohol + Essigester). Zersetzt sich bei $154-158^\circ$ (T., M. 26, 539). Leicht löslich in Wasser, schwer in Methanol, Alkohol und Eisessig, unlöslich in Benzol, Äther und Aceton. — $4C_7H_7O_2N + BaI_2 + 4H_2O$. Nadeln. Schmilzt zwischen 130° und 150° (T., M. 26, 556). Leicht löslich in Wasser und Methanol, sehr schwer in Alkohol, unlöslich in Äther. Gibt bei 100° 2 Mol Krystallwasser ab. — $2C_7H_7O_2N + 2HCl + PtCl_4$ (bei 100°). Krystalle (aus Alkohol) (H.; T., M. 26, 548).

Picolinsäure-hydroxyäthylat, Ammoniumbase des Picolinsäure-äthylbetains $C_8H_{11}O_3N=(HO)(C_2H_5)NC_5H_4\cdot CO_2H$. — $2C_8H_{10}O_2N\cdot Cl+PtCl_4$. B. Beim Eindunsten von Picolinsäure-äthylbetain (s. u.) mit Salzsäure und überschüssigem Platinchlorid (H. Mever, M. 15, 171). Gelbe Blätter (aus Alkohol). Schmilzt rasch erhitzt bei 176° (unkorr.; Zers.). Leicht löslich in heißem Alkohol.

Anhydrid, Picolinsäure-äthylbetain $C_8H_6O_2N = C_2H_5 \cdot \stackrel{\bullet}{N}C_5H_4 \cdot \stackrel{\bullet}{C}O \cdot \stackrel{\bullet}{O}$. B. Man erwärmt Picolinsäure mit Äthyljodid und verd. Soda-Lösung und schüttelt das Reaktionsprodukt mit Silberoxyd (H. Meyer, M. 24, 199; vgl. a. Turnau, M. 26, 560). Beim Schütteln einer wäßr. Lösung von Picolinsäure-äthylester-jodäthylat (s. u.) mit überschüssigem Silberoxyd (M., M. 15, 170). — Krystalle (aus Alkohol + Äther). F: 54—55° (M., M. 15, 170). Sehr leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther und Ligroin (M., M. 15, 170). — Wird beim Aufbewahren an der Luft rötlich (M., M. 15, 170). Beim Erhitzen in Gegenwart von Wasser entsteht Pyridin-hydroxyāthylat (M., M. 15, 171).

Picolinsäure-äthylester-hydroxyäthylat $C_{10}H_{18}O_2N=(HO)(C_2H_5)NC_3H_4\cdot CO_2\cdot C_2H_5$. Beim Erhitzen von Picolinsäure-äthylester mit Athyljodid auf 90° erhält man das Jodid (H. Meyer, M. 15, 168). — Jodid $C_{10}H_{14}O_2N\cdot I$. Gelbe Blättchen und Säulen (aus Alkohol). Rhombisch (Stengel, M. 15, 186; vgl. *Groth, Ch. Kr.* 5, 685). F: 104—105° (unkorr.) (M.). Sehr leicht löslich in Wasser und Alkohol, etwas schwerer in Chloroform und Benzol, unlöslich in Äther (M.). Beim Schütteln mit Silberoxyd und Wasser entsteht Picolinsäure-äthylbetain (M.).

4-Chlor-pyridin-carbonsäure-(2), 4-Chlor-picolinsäure C₆H₄O₂NCl, Cl. s. nebenstehende Formel. B. Bei der Oxydation von 4-Chlor-2-methyl-pyridin mit Kaliumpermanganat-Lösung (Sedgwick, Collie, Soc. 67, 406). Entsteht neben 4-Chlor-6-oxy-picolinsäure, wenn man Picolinsäure mit 5 Mol Phosphorpentachlorid im Rohr auf 250—270° erhitzt und das Reaktionsprodukt mit 80°/σiger Schwefelsäure kocht (Seyfferth, J. pr. [2] 34, 250; vgl. Graf, J. pr. [2] 133 [1932], 37). — Krystalle (aus Wasser), Nadeln und Prismen. F: 180° (Zers.) (Sey.). Schwärzt sich bei 185°; F: 194—195° (korr.) (Sedg., C.). Verflüchtigt sich schon bei 100° merklich (Sey.). Schwer löslich in kaltem Wasser, leicht in heißem Wasser, Alkohol, Äther und Chloroform (Sey.). Gibt mit verd. Mineralsäuren keine Salze (Sey.). — Gibt beim Erhitzen mit Jodwasserstoffsäure im Rohr auf 160° Picolinsäure, bei Gegenwart von Phosphor außerdem α-Picolin (Sey., J. pr. [2] 34, 256). Beim Schmelzen mit Kaliumhydroxyd erhält man eine Säure vom Schmelzpunkt 275—276° (korr.) (4-Oxy-picolinsäure?) (Sedg., C.). — Die wäßr. Lösung gibt mit Eisenchlorid eine schwache Rotgelbfärbung (Sey.). — KC₆H₃O₂NCl (Sedg., C.). — Ca(C₆H₃O₂NCl)₂ + H₂O. Prismen. Zersetzt sich bei 140° (Sey.). Schwer löslich in kaltem Wasser. — Bariumsalz. Krystalle (aus Wasser) (Sey.). — Weitere Metallsalze s. bei Sedg., C.

5-Chlor-pyridin-carbonsäure-(2), 5-Chlor-picolinsäure $C_eH_4O_2NCl$, Cl s. nebenstehende Formel. Zur Konstitution vgl. Graf, J. pr. [2] 133 [1932], N. CO₂H 31, 32. — B. Beim Erhitzen von 4.5-Dichlor-picolinsäure mit Eisessig-Jod-wasserstoff auf 140—150° (Ost, J. pr. [2] 27, 284). — Nadeln oder Prismen mit 1 H₂O (aus Wasser). F: 168° (O.). Sublimiert bei 100°; sehr schwer löslich in kaltem Wasser, ziemlich leicht in Äther, leicht in heißem Wasser und Alkohol; verbindet sich nicht mit verd. Mineralsäuren (O.). — Gibt beim Erhitzen mit Jodwasserstoffsäure und Phosphor auf 160° Pipecolinsäure und 5-Chlor-2-methyl-pyridin (O.). — Ba(C₆H₃O₂NCl)₂ + 2H₂O. Blättchen (aus Wasser) (O.).

8.5 - Dichlor - pyridin - carbonsäure - (2), 8.5 - Dichlor-picolinsäure Cl. C₆H₃O₂NCl₂, s. nebenstehende Formel. B. Man leitet Chlor in mit Chlor-wasserstoff gesättigtes α-Picolin bei 105—110° ein und erhitzt die bei 12 mm Druck zwischen 153° und 168° siedende Fraktion des Reaktionsprodukts mit 80°/oiger Schwefelsäure auf 130° (Sell, Soc. 93, 1994). — Nadeln (aus Wasser). F: 153—154° (Zers.). Schwer löslich in kaltem Wasser, leicht in siedendem Alkohol und anderen organischen Lösungsmitteln. — Beim Erhitzen in Glycerin entsteht 3.5-Dichlor-pyridin.

Methylester $C_7H_5O_2NCl_3=NC_5H_2Cl_2\cdot CO_2\cdot CH_3$. Nadeln (aus Wasser oder Methanol). F: 78—79° (unkorr.) (Sell., Soc. 93, 1996). Ist mit Wasserdampf flüchtig.

Amid $C_0H_4ON_2Cl_2 = NC_5H_2Cl_2 \cdot CO \cdot NH_2$. B. Beim Aufbewahren des Methylesters mit konz. Ammoniak (Sell, Soc. 93, 1996). — Nadeln (aus Wasser). F: 175—176° (unkorr.). — Gibt beim Behandeln mit Brom und Natronlauge 3.5-Dichlor-2-amino-pyridin (S., Soc. 93, 2003).

4.5 - Dichlor - pyridin - carbonsäure - (2), 4.5 - Dichlor - picolinsäure Cl C₈H₂O₂NCl₂, s. nebenstehende Formel. Zur Konstitution vgl. GRAF, J. pr. Cl. [2] 133 [1932], 38, 49. — B. Aus 4.5 - Dichlor - 2 - trichlormethyl - pyridin durch langes Kochen mit Wasser, schneller beim Kochen mit 80% es Schwefelsäure (Ost, J. pr. [2] 27, 278, 281). — Nadeln mit 1 H₂O (aus Wasser). F: 180% (Zers.) (O.). Verflüchtigt sich beträchtlich bei 100%; ist mit Wasserdampf schwer flüchtig (O.). Schwer löslich in kaltem Wasser und Äther, leicht in heißem Wasser, Alkohol und heißem Chloroform (O.). Verbindet sich nicht mit verd. Mineralsäuren (O.). — Bei der Reduktion mit Natriumamalgam in alkal. Lösung wird Ammoniak abgespalten (O.). Gibt beim Erhitzen mit Zinn und Salzsäure 4(oder 5)-Chlor-x.x.x.x-tetrahydro-picolinsäure (S. 14) (O.). Einw. von Eisessig-Jodwasserstoff führt bei 140—150% zu 5-Chlor-picolinsäure, bei 155—160% außerdem zu Picolinsäure und Pipecolinsäure, in Gegenwart von Phosphor bei 160% zu Pipecolinsäure und 5-Chlor-2-methyl-pyridin (O.). — NaC₆H₂O₂NCl₂. Blättchen und Spieße. Ziemlich leicht löslich in kaltem Wasser, unlöslich in Natronlauge (O.). — KC₆H₂O₂NCl₂. Krystalle (O.).

4.6 - Dichlor - pyridin - carbonsäure - (2), 4.6 - Dichlor - picolinsäure C₀H₂O₂NCl₂, s. nebenstehende Formel. B. Beim Kochen von 4.6 - Dichlor-2-methyl-pyridin mit verd. Kaliumpermanganat-Lösung (Sedgwick, Collie, Soc. 67, 408). — Nadeln (aus verd. Alkohol). F: 101—102°. Schwer löslich in Wasser. — Geht bei 150—160° anscheinend in ein Anhydrid über. Liefert beim Kochen mit Natriumäthylat-Lösung 4.6 - Diäthoxy-pyridin-carbonsäure-(2). — Ba(C₆H₂O₂NCl₂)₂ + 2H₂O. Krystalle.

· CO₂H

. 8.4.5-Trichlor-pyridin-carbonsäure-(2), 8.4.5-Trichlor-picolinsäure $C_6H_2O_3NCl_3$, s. nebenstehende Formel. B. Beim Erhitzen von 3.4.5-Trichlor-2-trichlormethyl-pyridin mit 80% iger Schwefelsäure auf 120–130° (Sell, Soc. 87, 802). — Nadeln (aus Wasser oder Alkohol). F: 164—165° (unkorr.; Zers.); schwer löslich in kaltem Wasser und Eisessig, leicht in anderen organischen Lösungsmitteln (S., Soc. 87, 802). — Absorptionsspektrum in alkoh. Lösung: Purvis, Soc. 95, 299. — Liefert bei der Destillation mit Glycerin 3.4.5-Trichlor-pyridin (8., Soc. 87, 802).

Methylester $C_7H_4O_3NCl_3 = NC_5HCl_3 \cdot CO_2 \cdot CH_3$. B. Beim Sättigen einer methylalkoholischen Lösung der Säure mit Chlorwasserstoff (Sell, Soc. 87, 803). — Tafeln (aus Methanol oder Wasser). F: 84—85° (unkorr.) (S.). Leicht löslich in organischen Lösungsmitteln, ziemlichen wasser (S.). Absorptionsspektrum in alkoh. Lösung: Purvis, Soc. 95, 299.

Amid $C_6H_3ON_2Cl_3 = NC_6HCl_3 \cdot CO \cdot NH_2$. B. Bei Einw. von wäßrig-methylalkoholischem Ammoniak auf den Methylester (Sell, Soc. 87, 803). - Nadeln (aus Alkohol). F: 184-1850 (unkorr.) (S.). Leicht löslich in den meisten organischen Lösungsmitteln, löslich in siedendem Wasser (S.). Absorptionsspektrum in alkoh. Lösung: Purvis, Soc. 95, 298. — Gibt beim Behandeln mit Brom und Kalilauge 3.4.5-Trichlor-2-amino-pyridin (S.).

2. Pyridin-carbonsäure-(3), Pyridin-β-carbonsäure, Nicotin-

 saure C_aH₅O₄N, s. nebenstehende Formel.
 B. Bei der Oxydation von β-Picolin mit Kaliumpermanganat-Lösung (Weidel, B. 12, 1992, 2004; Ost, J. pr. [2] 27, 286; Seyfferth, J. pr. [2] 34, 258), von 3-Äthyl-pyridin mit Kaliumpermanganat-Lösung (Weidel, Hazura, M. 8, 783; Ladenburg, A. 301, 152) oder mit Chromschwefelsäure (Wyschnegradski, B. 12, 1480; Ж. 11, 185), von 3-Phenyl-pyridin in verd. Schwefelsäure mit Kaliumpermanganat (Skraup, COBENZL, M. 4, 458). Aus Trigonellin (S. 42) bei der Destillation im Chlorwasserstoffstrom (HANTZSCH, B. 19, 34) oder beim Erhitzen mit rauchender Salzsäure im Rohr auf 250-270° (Jahn, B. 20, 2842; Thoms, B. 81, 276). Beim Behandeln von 6-Chlor-nicotinsäure mit Zinn + Salzsäure (v. Pechmann, Welsh, B. 17, 2392). Beim Behandeln von $2-\beta$ -Pyridylbenzoesāure (S. 96) mit Chromschwefelsāure (Sk., Co., M. 4, 453). Aus Pyridindicarbonsaure-(2.3) (Chinolinsaure, Syst. No. 3279) beim Erhitzen auf 150-160° (Hooge-WERFF, VAN DORP, R. 1, 122), auf 190—210° (CAMPS, $A\tau$. 240, 353), mit Salzsäure auf 180° (Ost, J. pr. [2] 27, 286) oder beim Kochen mit Eisessig (Ho., v. D., B. 14, 974; R. 1, 123). Durch Erhitzen von saurem chinolinsaurem Kalium auf 230—240° (Sk., M. 2, 150). Aus Pyridin-dicarbonsäure-(2.5) (Isocinchomeronsäure) beim Erhitzen auf 245—250° (Wei., Herzie, M. 1, 16; Ahrens, Gorkow, B. 37, 2063) oder mit essigsäureanhydridhaltigem Eisessig im Rohr auf 230° (Wei., He., M. 6, 982). Aus Pyridin-dicarbonsaure-(3.4) (Cinchomeronsaure) bei der Destillation (Ho., v. D., A. 204, 117; 207, 219, 226; Camps, Ar. 240, 359), beim Erhitzen mit Essigsäure + Essigsäureanhydrid oder beim Erhitzen des sauren Natriumsalzes (R. MAYER, M. 13, 351). Bei der thermischen Zersetzung von Pyridin-tricarbonsaure-(2.4.5) (Berberonsaure, Syst. No. 3310) oder ihrem Dikaliumsalz (Fürth, M. 2, 420, 423). Durch Destillation des Natriumsalzes der Pyridin-sulfonsäure-(3) (Syst. No. 3378) mit Kaliumcyanid und Erhitzen des entstandenen Nitrils mit konz. Salzsäure auf 110—120° (O. FISCHER, B. 15, 63). Bei der Oxydation von Nicotin (Syst. No. 3470) mit rauchender Salpetersäure (Wei., A. 165, 331), mit Chromschwefelsäure (Huber, A. 141, 271; B. 3, 849; Wei., A. 165, 346) oder mit Kaliumpermanganat-Lösung (Laiblin, B. 10, 2136; A. 196, 135). Bei der Oxydation von Dipyridyl-(3.3') (Syst. No. 3485) in verd. Schwefelsäure mit Kaliumpermanganat (SK., VORTMANN, M. 4, 595).

Darst. Eine Lösung von 10 g Nicotin in 100 cm² Wasser und 20 g konz. Salpetersäure gießt man in 250 g konz. Salpetersäure, erhitzt im Wasserbad, bis die Entwicklung roter Dämpfe aufgehört hat, und dampft zur Trockne ein; das so erhaltene Nitrat kann durch Destillation, durch Erhitzen mit Essigsäureanhydrid oder über das Kupfersalz in die freie Saure verwandelt werden (Picter, Sussdorff, C. 1898 I, 677; vgl. Organic Syntheses, Coll. Vol. I [New York 1932], S. 378). Darstellung durch Oxydation des β -Picolin enthaltenden, bei 135—142° siedenden Teerbasengemisches mit Kaliumpermanganat: PINNER, B. 33, 1227; durch Permanganatoxydation der bei 132—140° siedenden Fraktion des Knochenteeröls: Weidel, B. 12, 1992.

Nadeln (aus Wasser oder Alkohol). F: 228—229° (Weidel, B. 12, 2004), 231—232° (LADENBURG, A. 801, 152), 232° (CAMPS, Ar. 240, 353). Sublimiert unzersetzt (Wei., A. 165, 333) von 150° an (Oechsner de Conince, Bl. [2] 42, 100). Leicht löslich in heißem Wasser und heißem Alkohol, sehr schwer in Äther (WEI., A. 165, 333). Einfluß auf die Elektrocapillarkurve des Quecksilbers: Gouy, A. ch. [8] 8, 334. Elektrolytische Dissoziationskonstante k bei 25°: 1,4×10⁻⁶ (Ostwald, Ph. Ch. 3, 386; vgl. Ph. Ch. 2, 902).

Nicotinsäure gibt bei der Reduktion mit Natrium in Alkohol Hexahydronicotinsäure (S. 8) (LADENBURG, B. 25, 2768). Wird in alkal. Lösung durch Natriumamalgam in α-[Oxymethyl]-glutarsaure (Bd. III, S. 449) übergeführt (Weidel, M. 11, 502; Fichter, BEISSWENGER, B. 36, 1202). Bei der Einw. von 1 Mol Phosphorpentachlorid auf 1 Mol nicotinsaures Kalium unter Kühlung entsteht salzsaures Nicotinsäurechlorid (LAIBLIN, A. 196, 168; vgl. Späth, Spitzer, B. 59 [1926], 1482). Erhitzt man Nicotinsäure mit 5 Mol Phosphorpentachlorid im Rohr auf 250—270°, destilliert das Reaktionsprodukt mit Wasserdampf und behandelt das überdestillierte Öl mit siedender Schwefelsäure, so erhält man eine x.x-Dichlor-nicotinsäure vom Schmelzpunkt 138° (S. 44), 5-Chlor-6-oxy-nicotinsäure und ein (nicht näher beschriebenes) Trichlorpyridin (Nadeln; F: 64—65°; leicht löslich in Alkohol, Ather, Benzol und Ligroin) (SEYFFERTH, J. pr. [2] 34, 259; vgl. GUTHZEIT, LASKA, J. pr. [2] 58, 426; H. MEYER, GRAF, B. 61 [1928], 2213). Die Einw. von Thionylchlorid führt je nach den Versuchsbedingungen zu salzsaurem Nicotinsäurechlorid oder den Chloriden von 5-Chlorund 5.6-Dichlor-nicotinsäure (SPÄ., SPI., B. 59, 1479, 1482; M., GR., B. 61, 2203, 2210; vgl. M., M. 22, 111, 113). Nicotinsäure wird durch Erhitzen mit Bromwasser im Rohr auf 120° zersetzt unter Bildung von Pyridin, Bromoform und Kohlendioxyd (WEI., A. 165, 344). Pyridin entsteht auch beim Erhitzen mit alkoh. Kalilauge im Rohr auf 240° (WEI., B. 12, 2006) oder bei der Destillation von nicotinsaurem Calcium mit Atzkalk (Wei., A. 165, 343; Lai., B. 10, 2140; A. 196, 157). — Beim Erhitzen von Nicotinsäure mit Methyljodid auf 150° (M., M. 21, 927 Anm.; Turnau, M. 26, 551) oder mit überschüssiger Soda-Lösung und Methyljodid (M., M. 24, 199, 200) erhält man Nicotinsäure-jodmethylat. Erhitzt man nicotinsaures Kalium mit überschüssigem Methyljodid auf 150°, so bildet sich Nicotinsauremethylesterjodmethylat (Hantzsch, B. 19, 32). Geschwindigkeit der Veresterung von Nicotinsäure durch alkoh. Salzsäure: Kailan, M. 28, 711. — Die wäßr. Lösung der Nicotinsäure wird durch Bleiacetat nicht gefällt (Wei., B. 12, 2007). Zeigt keine Färbung mit Ferrosalzen (Weidel, Herzig, M. 1, 41). Gibt in wäßr. Lösung mit Kupferacetat einen lichtblaugrünen Niederschlag, der auch in viel Wasser unlöslich ist (WEL, B. 12, 2007).

KC₆H₄O₂N (bei 110°). Zerfließliche Blättchen. Löslich in absol. Alkohol in jedem Verhältnis; aus der alkoh. Lösung mit Äther fällbar (Laiblin, A. 196, 148). — Cu(C₆H₄O₂N)₂ (bei 105°). Blaugrüner Niederschlag (Kaas, M. 23, 686). — HO·CuC₆H₄O₂N. Hellblauer, in Wasser unlöslicher Niederschlag (Obchsner de Coninck, Bl. [2] 42, 100). — AgC₆H₄O₂N. Nadeln (aus Wasser) (L., A. 196, 145). — Ca(C₆H₄O₂N)₂ + 5 H₂O. Prismen. Monoklin prismatisch (Ditscheiner, A. 165, 339; Arzhuni, R. 1, 125; vgl. Groth, Ch. Kr. 5, 686). Sehr schwer löslich in Wasser (Weil, A. 165, 338; B. 12, 2004; L., A. 196, 147). — C₆H₅O₂N + HCl. Prismen oder Tafeln (Weil, A. 165, 335; B. 12, 2005; L., A. 196, 151). Rhombisch bipyramidal (Jander, Z. Kr. 20, 248; vgl. Groth, Ch. Kr. 5, 685). F: 252—256° (J.). — C₆H₅O₂N + HBr. Gekrümmte Tafeln (L., A. 196, 152). F: 275°; sublimierbar; läßt sich aus Wasser oder Alkohol umkrystallisieren (Claus, Pychlau, J. pr. [2] 47, 416). — C₆H₅O₂N + HI. Fast farblos; sehr unbeständig; spaltet beim Umkrystallisieren aus Alkohol oder Äther Jod ab (Turnau, M. 29, 851). — C₆H₅O₂N + HNO₃ + H₂O. Blätter oder Prismen (Weil, A. 165, 334). F: 185° (Pictet, Sussdorff, C. 1898 I, 677). — 2C₆H₅O₂N + 2HCl + AuCl₃. Gelbe Blättchen. Leicht löslich (L., A. 196, 150). — C₆H₆O₂N + HCl + AuCl₃. Blättchen oder flache Nadeln. F: 207° (Jahns, B. 20, 2842; H. Meyer, M. 23, 906). — 2C₆H₆O₂N + 2HCl + PtCl₄ + 2H₂O. Orangerote Krystalle. Monoklin prismatisch (Di., A. 165, 336; Březina, M. 1, 17, 44; 2, 421; vgl. Groth, Ch. Kr. 5, 686). Wird beim Aufbewahren über Schwefelsäure (L., A. 196, 149) oder beim Erhitzen auf 100° (Seraup, Cobenzil, M. 4, 454) wasserfrei. D^{n.5}: 2,1297 (Weil, B. 12, 2005). — Piperidinsalz C₆H₅O₂N + C₅H₁₁N. Nadeln. F: 122° (Pi., Su., C. 1898 I, 678).

Nicotinsäure-methylester $C_7H_7O_2N=NC_3H_4\cdot CO_2\cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in die heiße methylalkoholische Lösung von Nicotinsäure (Engler, B. 27, 1787). Beim Erhitzen von Chinolinsäure- α -methylester auf 140° (Kirpal, M. 20, 768; vgl. K., M. 21, 957) oder von Chinolinsäure- β -methylester auf 120° (K., M. 27, 365). — Krystalle. F: 38°; Kp: 204° (unkorr.); löslich in Wasser, Alkohol und Benzol; gibt beim Stehenlassen mit methylalkoholischem Ammoniak Nicotinsäure-amid (E.).

Nicotinsäure-äthylester $C_9H_9O_2N=NC_5H_4\cdot CO_2\cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in die siedende alkoholische Lösung von Nicotinsäure (Engleb, B. 27, 1787; Pollak, M. 16, 46). Beim Erhitzen von Nicotinsäure mit Alkohol und konz. Schwefelsäure im Wasserbad (Camps, Ar. 240, 353). — Flüssigkeit. Erstarrt unterhalb 0° (E.; C.). Kp: 224° (unkorr.); Kp₁₇: 107—108° (Po.); Kp: 223—224° (C.); Kp₇₂₄: 220—221° (Piotet, Sussdorff, C. 1898 I, 677). Leicht löslich in Wasser, Alkohol, Äther, Benzol und Ligroin (Po.). — Liefert beim Stehenlassen mit 30°/oigem wäßrigem Ammoniak (C.) oder Erhitzen

mit alkoh. Ammoniak im Rohr auf 150° (Po.) Nicotinsäure-amid. Bei der Einw. von Essigester in Gegenwart von Natriumäthylat entsteht β -Pyridoylessigsäure-äthylester (Syst. No. 3366) (Pinner, B. 34, 4247). — Bewirkt auf der Haut starkes Brennen und Ekzembildung (Po.). — $C_8H_9O_9N+HCl$. Zerfließliche Nadeln. F: 118—120° (Po.), 126—127° (Pic., S.). Wird durch Erwärmen mit Wasser unter Bildung von salzsaurer Nicotinsäure und Alkohol zersetzt (Po.). — Nitrat. F: 185° (Pic., S.). — $C_8H_9O_9N+HCl+AuCl_9$. Hellgelbe Blättchen (aus salzsäurehaltigem Alkohol). F: 117° (Po.). — $2C_8H_9O_2N+2HCl+PtCl_4$. Gelbe Nadeln (aus Alkohol). F: 161° (Po.).

Nicotinsäure-propylester $C_0H_{11}O_2N=NC_5H_4\cdot CO_2\cdot CH_2\cdot C_2H_5$. B. Beim Leiten von Chlorwasserstoff durch die heiße Lösung von Nicotinsäure in Propylalkohol (Engler, B. 27, 1787). — Flüssigkeit. Kp: 232°.

Nicotinsäure-isoamylester $C_{11}H_{15}O_2N = NC_5H_4 \cdot CO_2 \cdot C_5H_{11}$. B. Beim Leiten von Chlorwasserstoff durch die heiße Lösung von Nicotinsäure in Isoamylalkohol (Engler, B. 27, 1787). — Flüssigkeit. Kp: 259° .

Nicotinsäure-chlorid C₆H₄ONCl = NC₅H₄·COCl. B. Das salzsaure Salz entsteht bei der Einw. von Phosphorpentachlorid auf nicotinsaures Kalium unter Kühlung (Laiblin, A. 196, 168) oder bei gelindem Erwärmen von Nicotinsäure mit Thionylchlorid (Späth, Spitzer, B. 59 [1926], 1479, 1482); durch längeres Kochen mit Thionylchlorid wird das salzsaure Salz in Nicotinsäure-chlorid und Salzsäure gespalten (H. Meyer, Graf, B. 61 [1928], 2205; vgl. M., M. 22, 113). — Krystalle. F: 15—16⁶; Kp₁₂: 85^o (M., G.). — C₆H₄ONCl. + HCl. Sublimiert in Nadeln (L.). F: 155,5—156,5^o (Spä., Spi.). Fast unlöslich in absol. Ather, Chloroform, Benzol und Petroläther (L.). Löst sich in Wasser unter Bildung von salzsaurer Nicotinsäure (Spä., Spi.).

Nicotinsäure-amid $C_6H_6ON_8 = NC_5H_4 \cdot CO \cdot NH_8$. B. Aus Nicotinsäure-methylester in methylalkoholischer Lösung beim Einleiten von Ammoniak (Engler, B. 27, 1787). Aus Nicotinsäure-äthylester beim Stehenlassen mit $30^{\circ}/_{\circ}$ igem wäßrigem Ammoniak (Camps, Ar. 240, 354) oder beim Erhitzen mit bei —10° gesättigtem alkoholischem Ammoniak im Rohr auf 150° (Pollar, M. 16, 53). — Nadeln (aus Benzol). F: 121° (unkorr.) (P.), 122° (C.). — Wird durch Destillation mit Phosphorpentoxyd bei ca. 25 mm Druck (C.) oder durch Erhitzen mit Thionylchlorid auf 100° (H. Meyer, M. 23, 900) in Nicotinsäure-nitril übergeführt. Durch Einw. von Brom + Kalilauge wurden erhalten: 3-Amino-pyridin (Syst. No. 3393), eine Verbindung $C_6H_6ON_2$ (?) vom Schmelzpunkt 129—131° (s. u.) (P.) und ein x.x-Dibrom-3-amino-pyridin (Syst. No. 3393) (C.). — Chloroaurat. F: 205° (M., M. 23, 906).

Verbindung C₅H₆ON₂(?). B. Durch 12-stdg. Erhitzen von 1 Mol Nicotinsäure-amid mit 1 Mol Brom und 2 Mol Kalilauge (Pollak, M. 16, 59; vgl. Camps, Ar. 240, 355). — Blättchen (aus Benzol). F: 129—131° (unkorr.); löslich in Wasser und Alkohol; leichter löslich in heißem Äther und in heißem Benzol als Nicotinsäure-amid; wird durch Kalilauge nur schwierig angegriffen und in Nicotinsäure umgewandelt (P.).

Nicotinsäure-methylamid $C_7H_8ON_2 = NC_5H_4 \cdot CO \cdot NH \cdot CH_3$. B. Beim Stehenlassen von Nicotinsäure-äthylester mit 33% giger Methylamin-Lösung (Piotet, Sussdorff, Arch. Sci. phys. nat. Genève [4] 5, 118; C. 1898 I, 677). — Nadeln (aus Benzol oder aus Chloroform + Ligroin). F: 104—105°.

Nicotinsäure-isoamylamid $C_{11}H_{10}ON_2 = NC_5H_4 \cdot CO \cdot NH \cdot C_5H_{11}$. B. Beim Stehenlassen von Nicotinsäure-äthylester mit Isoamylamin in wäßr. Lösung (P., S., Arch. Sci. phys. not. Genève [4] 5, 122; C. 1898 I, 677). — Dicke Flüssigkeit. Kp₈: 191—193°. Löslich in Äther. Leicht verseifbar.

Nicotinsäure-allylamid $C_0H_{10}ON_2 = NC_0H_4 \cdot CO \cdot NH \cdot CH_2 \cdot CH : CH_2$. B. Aus Nicotinsäure-athylester und Allylamin (P., S., Arch. Sci. phys. nat. Genève [4] 5, 122; C. 1898 I, 677). — Nicht rein erhalten.

Nicotinsäure-methylallylamid $C_{10}H_{12}ON_2 = NC_5H_4\cdot CO\cdot N(CH_3)\cdot CH_2\cdot CH_1\cdot CH_2$. Bei der Einw. von Allyljodid auf die Kaliumverbindung von Nicotinsäure-methylamid [hergestellt aus Nicotinsäure-methylamid und Kalium in Benzol] (P., S., Arch. Sci. phys. nat. Genève [4] 5, 127; C. 1898 I, 678). — Dicke Flüssigkeit.

Nicotinsäure-anilid $C_{18}H_{10}ON_8 = NC_5H_4 \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Erhitzen von Nicotinsäure mit Anilin auf 150° oder besser durch Behandeln von Nicotinsäure mit Phosphorpentachlorid im Wasserbad, Verjagen des Phosphoroxychlorids und Versetzen des entstandenen Nicotinsäure-chlorids mit Anilin (P., S., Arch. Sci. phys. nat. Genève [4] 5, 124; C. 1898 I, 677). — Nadeln mit 2 H_2O (aus Wasser); wasserfreie Nadeln (aus Ligroin + Benzol oder Ligroin + Chloroform). Die wasserhaltige Verbindung schmilzt bei 85°, die wasserfreie bei 132°. Löslich in heißem Wasser, Alkohol, Chloroform und Benzol, unlöslich in kaltem Wasser und in Ligroin.

Nicotinsäure-p-toluidid C₁₃H₁₂ON₂ = NC₅H₄·CO·NH·C₆H₄·CH₃. B. Analog der vorhergehenden Verbindung (P., S., Arch. Sci. phys. nat. Genève [4] 5, 125; C. 1898 I, 678). — Wasserfreie Nadeln (aus siedendem Wasser). F: 150°.

Nicotinsäure-nitril, 3-Cyan-pyridin, β-Pyridyleyanid $C_6H_4N_2 = NC_5H_4 \cdot CN$. B. Beim Erhitzen von Nicotinsäure-amid mit Thionylchlorid auf 100° (H. Meyer, M. 23, 901). Bei der Destillation von Nicotinsäure-amid mit Phosphorpentoxyd unter ca. 25 mm Druck (Camps, Ar. 240, 368). Man destilliert das Natriumsalz der Pyridin-sulfonsäure-(3) mit Kaliumeyanid (O. Fischer, B. 15, 63). — Nadeln (aus ätherhaltigem Petroläther). F: 48—49° (F.), 49—50° (C.), 50° (M.). Kp: 240—245° (M.). Verflüchtigt sich schon bei Zimmertemperatur (F.). Leicht löslich in Wasser, Alkohol, Äther und Benzol, schwerer in Ligroin (F.). — Wird durch Erhitzen mit konz. Salzsäure auf 110—120° in Nicotinsäure übergeführt (F.). — $C_6H_4N_3 + HCl + AuCl_3$. Hellgelbe Nadeln. F: 196—198°; leicht löslich (M.). — Chloroplatinat. Gelbe Nadeln. Ziemlich schwer löslich in Wasser (F.), leicht in Salzräure (M.).

Nicotinsäure-amidoxim, Nicotenylamidoxim $C_6H_7ON_3 = NC_8H_4 \cdot C(:NH) \cdot NH \cdot OH$ bezw. $NC_8H_4 \cdot C(NH_2) \cdot N \cdot OH$. B. Beim Erhitzen von Nicotinsäure-nitril mit salzsaurem Hydroxylamin und Natriumcarbonat in konzentrierter wäßriger Lösung unter Druck auf 70° (MICHAELIS, B. 24, 3439). — Krystalle (aus Chloroform). F: 128°. Leicht löslich in Wasser, Alkohol und Aceton, schwer in Äther, Chloroform und Benzol, unlöslich in Ligroin. Leicht löslich in Alkalien und Säuren. Gibt mit Eisenchlorid eine rote Färbung, mit Fehlingscher Lösung einen schmutzig braungrünen Niederschlag. — Gibt beim Erhitzen mit Bernsteinsäure-anhydrid auf 100° 3- β -Pyridyl-1.2.4-oxdiazol-[β -propionsäure]-(5)

 $NC_5H_4\cdot C \stackrel{N\cdot O}{\sim} C\cdot CH_3\cdot CH_3\cdot CO_2H$ (Syst. No. 4674). Beim Erwärmen mit Phenylsenföl

entsteht 5-Phenylimino-3- β -pyridyl-1.2.4-thiodiazol-dihydrid $NC_5H_4 \cdot C < \frac{N \cdot S}{NH} > C: N \cdot C_6H_5$ (Syst. No. 4673). — $C_6H_7ON_3 + 2HCl$. Zerfließliche Nadeln. F: 171°. Löslich in Wasser und Alkohol. — $C_6H_7ON_3 + 2HCl + PtCl_4$. Gelbe Blättchen. Löslich in Wasser und Alkohol.

Nicotinsäure-[ω -phenyl-ureid]-oxim $C_{12}H_{12}O_2N_4 = NC_5H_4 \cdot C(NH \cdot CO \cdot NH \cdot C_6H_5)$: N·OH bezw. desmotrope Formen. B. Aus Nicotinsäure-amidoxim und Phenylisocyanat (M., B. 24, 3444). — Nadeln (aus Chloroform). F: 167°. Leicht löslich in heißem Wasser, Alkohol und Chloroform, schwerer in Äther, Aceton und Benzol, unlöslich in Ligroin.

Nicotinsäure-amidoximbensyläther, O-Bensyl-nicotenylamidoxim $C_{13}H_{13}ON_8 = NC_8H_4 \cdot C(:NH) \cdot NH \cdot O \cdot CH_2 \cdot C_8H_5$ bezw. $NC_8H_4 \cdot C(NH_2) : N \cdot O \cdot CH_2 \cdot C_8H_5$. Beim Erwärmen von Nicotinsäure-amidoxim mit Benzylchlorid in Natriumäthylat-Lösung (M., B. 24, 3446). — Nadeln (aus Ligroin). F: 80°. Löslich in Äther, Alkohol, Chloroform, Benzol und Ligroin, unlöslich in Wasser.

Micotinsäure - amidoximacetat, O - Acetyl - nicotenylamidoxim $C_8H_9O_8N_8 = NC_8H_4 \cdot C(:NH) \cdot NH \cdot O \cdot CO \cdot CH_3$ bezw. $NC_8H_4 \cdot C(NH_2):N \cdot O \cdot CO \cdot CH_3$. B. Aus Nicotinsäure-amidoxim und Essigsäureanhydrid (M., B. 24, 3441). — Krystalle (aus Chloroform). F: 143°. Leicht löslich in Alkohol, Chloroform, Aceton und Benzol, etwas schwerer in Wasser, Äther und Ligroin. — Gibt beim Erhitzen über den Schmelzpunkt oder beim Kochen mit Wasser 5-Methyl-3-β-pyridyl-1.2.4-oxdiazol $NC_8H_4 \cdot C \stackrel{N \cdot O}{N} \subset C \cdot CH_3$ (Syst. No. 4671).

Nicotinssure-amidoximbensoat, O-Bensoyl-nicotenylamidoxim $C_{12}H_{11}O_2N_3=NC_2H_4\cdot C(:NH)\cdot NH\cdot O\cdot CO\cdot C_0H_5$ bezw. $NC_2H_4\cdot C(NH_2):N\cdot O\cdot CO\cdot C_0H_5$. B. Bei der Einw. von Benzoylchlorid auf die Lösung von Nicotinssure-amidoxim in Natronlauge (M., B. 24, 3442). — Blättchen (aus Alkohol). F: 190°. Leicht löslich in Alkohol, Chloroform und Benzol, sehr schwer in Äther, unlöslich in Ligroin. — Gibt beim Erhitzen über den Schmelzpunkt oder beim Kochen mit Wasser 5-Phenyl-3- β -pyridyl-1.2.4-oxdiazol (Syst. No. 4671).

Nicotinsäureamidoxim - O - carbonsäure - äthylester, O - Carbäthoxy-nicotenylamidoxim $C_2H_{11}O_2N_3 = NC_5H_4 \cdot C(:NH) \cdot NH \cdot O \cdot CO \cdot O \cdot C_2H_5$ bezw. $NC_5H_4 \cdot C(NH_2) : N \cdot O \cdot CO \cdot O \cdot C_2H_5$. B. Beim Eintragen von 2 Mol Chlorameisensäureäthylester in die absolut-ätherische Lösung von 3 Mol Nicotinsäure-amidoxim (M., B. 24, 3444). — Krystallmasse (aus Benzol + Ligroin). F: 136°. Unlöslich in Äther und Ligroin, löslich in Wasser, Alkohol, Benzol und Chloroform.

Nicotinsäure-hydrasid $C_0H_7ON_8 = NC_2H_4 \cdot CO \cdot NH \cdot NH_2$. B. Bei kurzem Erwärmen von Nicotinsäure-äthylester mit Hydrazinhydrat (Cuerius, Mohr, B. 81, 2493). — Nadeln (aus verd. Alkohol oder viel Benzol). F: 158—159°. Leicht löslich in Wasser und Alkohol, schwerer in Benzol. — $C_0H_7ON_3 + 2HCl$. Nadeln (aus alkoh. Salzsäure + Äther). F: 227°.

Nicotinsäure-benzalhydrazid $C_{18}H_{11}ON_3 = NC_5H_4 \cdot CO \cdot NH \cdot N : CH \cdot C_6H_5$. B. Bei der Einw. von Benzaldehyd auf die wäßr. Lösung von Nicotinsäure-hydrazid (C., M., B. 31, 2493). — Krystalle (aus Benzol). F: 149—152°.

Nicotinsäure-azid C₆H₄ON₄ = NC₅H₄·CO·N₃. B. Bei der Einw. von Natriumnitrit auf die wäßr. Lösung von salzsaurem Nicotinsäure-hydrazid (C., M., B. 31, 2493). — Krystallmasse von stechendem Geruch. F: 47—48° (Gasentwicklung). Verbrennt beim Anzünden mit helleuchtender Flamme ohne Knall. — Gibt beim Erwärmen mit Wasser N.N'-Diβ-pyridyl-harnstoff (Syst. No. 3393). Beim Kochen der äther. Lösung mit absol. Alkohol entsteht β -Pyridyl-urethan (Syst. No. 3393).

Nicotinsäure - hydroxymethylat, Ammoniumbase des Nicotinsäure - methyl-

betains, Ammoniumbase des Trigonellins C₇H₂O₃N = (HO)(CH₃)NC₅H₄·CO₃H.

Bildung der Salze bezw. des Anhydrids (Trigonellins). Die Salze entstehen beim Erhitzen
von Nicotinsäure mit Methyljodid auf 150° (Tubnau, M. 26, 551; vgl. H. Meyer, M. 21,
927 Anm.) oder mit überschüssiger Soda-Lösung und Methyljodid (M., M. 24, 196, 200); beim Erhitzen von Chinolinsäure mit Methyljodid und Methylalkohol auf 100° (Kiepal, M. 22, 365); beim Behandeln von Trigonellin mit Säuren (Jahns, B. 18, 2521; Hantzsch, B. 19, 33). Das freie Trigonellin erhält man beim Behandeln des jodwasserstoffsauren Salzes in wäßr. Lösung mit Silberoxyd (M., M. 21, 927 Anm.; 24, 200; K., M. 22, 366); durch Behandeln von Nicotinsäure-methylester-chlormethylat (Hantzsch, B. H₂C 19, 32) oder Nicotinsäure-methylamid-jodmethylat (PICTET, SUSSDORFF, ∠ĊH₂ C. 1898 I, 677) mit Silberoxyd in Wasser und Eindampfen der Lösung; bei der Oxydation der durch Einw. von Silberoxyd auf Nicotin-isojod-methylat (s. nebenstehende Formel) (Syst. No. 3470) erhaltenen Hydroxy-methylat-Lösung mit Kaliumpermanganat (PI., GENEQUAND, B. 30, 2122). CH₃

Anhydrid, Nicotinsaure-methylbetain, Trigonellin C7H7O2N = CH3·NC3H4. CO·O. V. In den Früchten von Avena sativa (Hafer) (in sehr geringer Menge) (SCHULZE, FRANKFURT, WINTERSTEIN, L. V. St. 46, 48). In den Samen von Cannabis sativa (Hanf) (Sch., Fr., B. 27, 769). In den Samen von Trigonella foenum graecum (Jahns, B. 18, 2521; 20, 2840; Ar. 225, 986). In den Samen (Sch., H. 15, 152; Sch., Fr., B. 27, 769) und Schoten (Sch., H. 60, 167) von Pisum sativum. In den Fruchthülsen von Phaseolus vulgaris (Pfen-NINGER, C. 1909 II, 636). In den Samen (Thoms, B. 31, 276) und der Wurzelrinde (Karsten, NINGER, C. 1909 II, 636). In den Samen (THOMS, B. 31, 276) und der Wurzelrinde (KARSTEN, C. 1902 II, 1514) von Strophantus hispidus. In den Samen von Strophantus Kombe (TH., B. 31, 404). In den Knollen von Stachys Sieboldii (St. tuberifera) (v. Planta, Sch., B. 26, 939; Ar. 231, 307, 313; vgl. Sch., Trier, H. 67 [1910], 65). In den Knollen von Solanum tuberosum (Kartoffel) (Sch., L. V. St. 59, 340). Im Samen von Coffea arabica und Coffea liberica (Polstorff, Görff, C. 1909 II, 2014; vgl. Paladino, G. 25 I, 105; Graf, C. 1904 II, 837; Gorffer, A. 372 [1910], 242). Zum Vorkommen von Trigonellin im Harn vgl. Kutscher, Lohmann, H. 49, 85; Linneweh, Reinwein, H. 207 [1932], 51. — Isolierung aus Pflanzensäften und Trennung von anderen organischen Basen: Sch., L. V. St. 59, 344; H. 60, 155. — Prismen mit 1 H.O (aus 96% jegem Alkohol) (J., B. 18, 2521; Ar. 225, 989). Verliert das Krystallwasser bei 100% (J., B. 18, 2521; Ar. 225, 989). Verliert das Krystallwasser bei 100% (J., B. 18, 2521; Ar. 225, 980). Die wasserhaltige Krystallwasser bei 100° (J., B. 18, 2521; Ar. 225, 990; Hantzsch, B. 19, 33). Die wasserhaltige Verbindung schmilzt bei raschem Erhitzen bei ca. 130°, die wasserfreie Verbindung färbt sich bei ca. 200° dunkel und schmilzt bei 218° unter Zersetzung (H., B. 19, 33). Sehr leicht löslich in Wasser, schwer in kaltem, leicht in heißem Alkohol, unlöslich in Äther, Chloroform und Benzol (J., B. 18, 2521; Ar. 225, 989). Die Lösungen reagieren neutral; verbindet sich mit Säuren (J., B. 18, 2521; Ar. 225, 990; H.). Bleibt beim Kochen mit konz. Schwefelsäure unverändert (H.). — Gibt bei der Reduktion mit Zinn + Salzsäure Arecaidin (S. 15) (H. Meyer, M. 21, 927 Anm.). Wird durch Destillation im Chlorwasserstoffstrom (H.) oder Erhitzen mit rauchender Salzsäure im Rohr auf 250—270° (J., B. 20, 2842; Ar. 225, 993; Thoms, B. 31, 276) unter Bildung von Nicotinsäure und Methylchlorid zersetzt. Beim Kochen mit Kalilauge oder Barytwasser entweicht Methylamin (H.; J., B. 20, 2841; Ar. 225, 992). - Trigonellin wird in wäßr. Lösung durch Spuren Eisenchlorid rötlich gefärbt; wird aus saurer Lösung durch Kaliumquecksilberjodid gefällt, nicht aber aus neutraler; in wäßr. Lösung erzeugt Kaliumwismutjodid und verd. Schwefelsäure einen krystallinischen, roten Niederschlag, Phosphormolybdänsäure eine reichliche Fällung (J., B. 18, 2521; Ar. 225, 990). Wird in 5% iger Schwefelsäure durch Phosphorwolframsäure fast quantitativ gefällt; das salzsaure Salz gibt in alkoh. Lösung mit Quecksilberchlorid ein krystallinisches, in kaltem Asser und kaltem Alkohol schwer lösliches Doppelsalz (Trennung von Cholin) (Sch., L. V. St. 59, 344, 345; H. 60, 159, 174). — Verhalten im Organismus: Kohlbausch, C. 1909 II, 465.

Salze $C_7H_9O_2N\cdot Ac$ bezw. $C_7H_7O_2N+HAc$. $C_7H_7O_2N+HCl$. Nadeln oder Prismen (aus Alkohol). F: 245—250° (Zers.) (Turnau, M. 26, 552). Leicht löslich in Wasser, schwer in Alkohol (Jahns, B. 18, 2521; Ar. 225, 991). 1 g löst sich bei Zimmertemperatur in 344 cm³ wasserfreien Alkohol (Schulze, H. 60, 174). Unlöslich in Äther und Benzol (T.). — $C_7H_7O_2N+HI$. Krystalle (aus Alkohol + Äther). Schwärzt sich bei 180°, schmilzt bei ca. 220°; bräunt sich bald am Licht (T.). — $4C_7H_7O_2N+3HCl+3AuCl_2$. Nadeln (aus heißem Wasser). F: 186° (J., B. 18, 2522; 20, 2841; Ar. 225, 992). — $C_7H_7O_2N+HCl+AuCl_2$. Vierseitige Blättchen oder flache Prismen (aus verd. Salzsäure). F: 198°; schwer löslich in kaltem, leicht in heißem Wasser (J.). — $2C_7H_7O_2N+2HCl+PtCl_4$. Prismen (aus Wasser); sehr schwer löslich in Alkohol (J.; vgl. Hantzsch, B. 19, 33). — $2C_7H_7O_2N+2HCl+PtCl_4+H_2O$ (H., B. 19, 33). — $2C_7H_7O_2N+2HCl+PtCl_4+H_2O$ (Schulze, Frankfurt, B. 27, 770).

Coffearin. Die unter diesem Namen von Paladino, G. 251, 105 beschriebene, aus den Kaffeebohnen isolierte Verbindung ist nach Gorter, A. 372 [1910], 242 identisch mit Trigonellin.

Gynesin. Die unter diesem Namen von Kutscheb, Lohmann, H. 49, 85 beschriebene, aus Frauenharn isolierte Verbindung ist nach Linnewen, Reinwein, H. 207 [1932], 51 wahrscheinlich identisch mit Trigonellin.

Nicotinsäure-methylester-hydroxymethylat $C_8H_{11}O_3N = (HO)(CH_8)NC_8H_4 \cdot CO_9 \cdot CH_8$. B. Das Jodid entsteht beim Erhitzen von nicotinsaurem Kalium mit Methyljodid auf 150°; zur Überführung in das Chlorid schüttelt man die wäßr. Lösung des Jodids mit Silberchlorid (Hantzsch, B. 19, 31). — Bei der Reduktion des Chlorids mit Zinn + Salzsäure entstehen Arecaidin (S. 15) und Dihydroarecaidin (S. 9) (Jahns, Ar. 229, 691). Durch Behandeln des Chlorids mit Silberoxyd in Wasser und Eindampfen der Lösung erhält man Trigonellin (H.). — $2C_8H_{10}O_2N\cdot Cl + PtCl_4$. Krystallisiert zuweilen auch mit 1 H_4O (H.).

Nicotinsäure-methylamid-hydroxymethylat $C_8H_{12}O_2N_2 = (HO)(CH_2)NC_8H_4 \cdot CO \cdot NH \cdot CH_2$. B. Das Jodid entsteht beim Kochen von Nicotinsäure-methylamid mit Methyljodid in Methylalkohol (Piotet, Sussdorff, Arch. Sci. phys. nat. Genève [4] 5, 119; C. 1898 I, 677). — Durch Behandeln des Jodids mit Silberoxyd in Wasser und Eindampfen der Lösung erhält man Trigonellin. — Jodid $C_8H_{11}ON_2 \cdot I$. Hellgelbe Nadeln. F: 174°. Leicht löslich in Wasser. — Nitrat $C_8H_{11}ON_2 \cdot O \cdot NO_2$. Prismen (aus Alkohol + Äther). F: 155—156°.

Nicotinsäure-hydroxyäthylat, Ammoniumbase des Nicotinsäure-äthylbetains $C_8H_{11}O_8N=(HO)(C_2H_3)NC_3H_4\cdot CO_2H$. — $2C_8H_{10}O_2N\cdot Cl+PtCl_4$. B. Wird aus der Lösung von Nicotinsäure-äthylbetain (s. u.) in verd. Salzsäure durch Platinchlorid ausgeschieden (Pollak, M. 16, 52). — Hellgelbe Nadeln (aus salzsäurehaltigem Alkohol). F: 205° (Zers.). Sehr schwer löslich in Wasser.

Anhydrid, Nicotinsäure-äthylbetain $C_0H_0O_0N=C_2H_5\cdot \stackrel{+}{N}C_5H_4\cdot CO\cdot O$. B. Beim Behandeln von Nicotinsäure-äthylester-chlor- oder jodäthylat mit Silberoxyd in Wasser (Pollar, M. 16, 51). — Hygroskopische Tafeln. F: 84—86°. Leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther und den üblichen Lösungsmitteln.

Nicotinsäure-äthylester-hydroxyäthylat $C_{10}H_{15}O_3N = (HO)(C_2H_5)NC_5H_4 \cdot CO_2 \cdot C_2H_5$. B. Das Jodid entsteht beim Erhitzen von Nicotinsäure-äthylester mit Äthyljodid; durch Behandeln mit Silberchlorid in Wasser wird es in das Chlorid übergeführt (Pollak, M. 16, 49). — $C_{10}H_{14}O_2N \cdot Cl + AuCl_2$. Blättchen (aus verd. Alkohol). F: 59°. — $2C_{10}H_{14}O_2N \cdot Cl + PtCl_4$. Gelbe Tafeln (aus salzsäurehaltigem Alkohol). F: 176° (unkorr.). Sehr schwer löslich in Wasser.

5-Chlor-pyridin-carbonsäure-(3), 5-Chlor-nicotinsäure C₆H₄O₂NCl, Clorente s. nebenstehende Formel. B. Beim Kochen von 5.6-Dichlor-nicotinsäure mit Kaliumjodid, rotem Phosphor und Jodwasserstoffsäure (Kp: 127°) (v. Pechmann, Mills, B. 37, 3834). — Nadeln (aus Wasser). F: 170—171°. Sublimiert bei vorsichtigem Erhitzen. Leicht löslich in Alkohol, ziemlich schwer in kaltem Eisessig, schwer in Äther und Chloroform, sehr schwer in Benzol. — Beim Erhitzen des Silbersalzes im Wasserstoffstrom entsteht 3-Chlor-pyridin.

6-Chlor-pyridin-carbonsäure-(3), 6-Chlor-nicotinsäure C₂H₄O₃NCl, s. nebenstehende Formel. B. Man erhitzt 6-Oxy-nicotinsäure (Syst. No. 3331) Cl. No. 3331 Mol Phosphorpentachlorid in Gegenwart von etwas Phosphoroxy-chlorid auf 120—130° und trägt das Reaktionsprodukt in Eiswasser ein (v. Pechmann, Weish, B. 17, 2392). — Blättchen (aus Wasser). F: 199° (Zers.); sublimierbar; leicht löslich in Alkohol, Äther und Eisessig, schwer in Chloroform und Benzol; leicht löslich in konz. Salzsäure (v. P., W.). — Wird durch Einw. von Zinn + Salzsäure in Nicotinsäure übergeführt

(v. P., W.). Gibt mit konzentriertem wäßrigem Ammoniak bei 170° 6-Amino-nicotinsäure (Syst. No. 3434) (MARCKWALD, B. 27, 1319). Liefert beim Erhitzen mit 50°/eiger wäßriger Hydrazinhydrat-Lösung auf 120—125° 6-Hydrazino-nicotinsäure-hydrazid (Syst. No. 3447) und in kleinerer Menge 6-Hydrazino-nicotinsäure (M., Rudzik, B. 36, 1111). Geht beim Kochen mit alkoh. Natronlauge in 6-Äthoxy-nicotinsäure (Syst. No. 3331) über (Reissert, B. 28, 122). Beim Erhitzen mit Anthranilsäure auf 170—180° entstehen 4-Oxo-2.3-benzo-1.4-dihydro-1.8-naphthyridin-carbonsäure-(6) nebenstehender Formel (Syst. No. 3696) bezw. deren 2-Carboxy-anilid (Rei., B. 28, 123; vgl. Räth, A. 486 [1931], 284).

Methylester $C_7H_6O_2NCl = NC_8H_6Cl \cdot CO_2 \cdot CH_3$. B. Durch Einw. von Phosphoroxychlorid und Phosphorpentachlorid auf 6-Oxy-nicotinsäure und Behandeln des Reaktionsprodukts mit Methylalkohol (Reissert, B. 28, 121). — Nadeln oder Blättchen (aus verd. Alkohol). Schmilzt bei 86—89° unter Sublimation. Mit Wasserdampf flüchtig. Äußerst leicht löslich in Chloroform, Benzol und Eisessig, sehr leicht in Alkohol und Äther, schwer in Wasser.

Amid C₆H₅ON₂Cl = NC₅H₅Cl·CO·NH₂. B. Man erhitzt 6-Oxy-nicotinsäure mit Phosphorpentachlorid und etwas Phosphoroxychlorid, zuletzt auf 120°, destilliert das Phosphoroxychlorid im Vakuum ab und leitet in die kalte Lösung des so erhaltenen 6-Chlornicotinsäure-chlorids in Benzol Ammoniak ein (Mills, Widdows, Soc. 93, 1379). — Nadeln (aus Wasser). F: 210—211°. — Gibt bei der Einw. von Brom + Kalilauge 6-Chlor-3-aminopyridin (Syst. No. 3393).

2.6 - Dichlor - pyridin - carbonsäure - (3), 2.6 - Dichlor - nicotinsäure

C₆H₂O₂NCl₃, s. nebenstehende Formel. B. Durch Erhitzen von 2.6-Dioxypyridin-carbonsäure-(3)-äthylester (Syst. No. 3349) mit Phosphorpentachlorid
und etwas Phosphoroxychlorid im Rohr auf 250—260° und Zersetzung des Reaktionsprodukts mit Eis (Guthzeit, Laska, J. pr. [2] 58, 425). — Nadeln (aus Äther + Petroläther).

F: 144°. — Ba(C₈H₂O₄NCl₃)₃. Leicht löslich.

x.x.-Dichlor-pyridin-carbonsäure-(3), x.x.-Dichlor-nicotinsäure $C_6H_3O_2NCl_3=NC_8H_2Cl_2\cdot CO_3H$ (vielleicht identisch mit 2.6-Dichlor-nicotinsäure?; vgl. Guthzeit, Laska, J. pr. [2] 58, 426). B. Entsteht neben anderen Produkten, wenn man Nicotinsäure mit 5 Mol Phosphorpentachlorid im Rohr auf 250—270° erhitzt, das Reaktionsprodukt mit Wasserdampf destilliert und das überdestillierte Öl mit $80^\circ/_{\rm alger}$ Schwefelsäure erhitzt (Seyfferth, J. pr. [2] 34, 259, 262). — Nadeln (aus Wasser). F: 138° (S.). — Calcium-und Bariumsalz sind in Wasser leicht löslich (S.).

Äthylester $C_8H_7O_8NCl_9=NC_5H_2Cl_9\cdot CO_9\cdot C_2H_5$. B. Aus x.x-Dichlor-nicotinsäure und alkoh. Salzsäure (Seyefferth, J. pr. [2] 34, 262). — Nadeln. Schmilzt bei 50° zu einer anisartig riechenden Flüssigkeit. Sehr schwer löslich in Wasser, leicht in Alkohol, Äther, Chloroform, Benzol und Ligroin.

5 - Brom - pyridin - carbonsäure - (3), 5 - Brom - nicotinsäure Br. CO2H C2H4O2NBr, s. nebenstehende Formel. Zur Konstitution vgl. CLAUS, HOWITZ, J. pr. [2] 50, 239. — B. Beim Kochen von 3.Bz.Bz-Tribrom-6-methoxychinolin (Bd. XXI, S. 90) mit konz. Salpetersäure (SRPEK, M. 10, 710). Beim Schmelzen von 5-Brom-chinolinsäure (CLAUS, COLLISCHONN, B. 19, 2768). — Platten oder Säulen mit 2 H2O (aus Wasser); verliert das Wasser beim Erhitzen auf 100° (CLAUS, PYCHLAU, J. pr. [2] 47, 414). F (der wasserfreien Verbindung): 182° (S.), 183°, sublimiert ohne Zersetzung (CL., P.). Löslich in 70 Tln. siedendem Wasser, leicht löslich in Alkohol und Äther (S.), — NH4C6H2O2NBr. Mikroskopische Blättchen. Leicht löslich in Wasser (CL., P.). — KC6H2O2NBr + 11/2H2O. Krystalle. Sehr leicht löslich in Wasser (CL., P.). — AgC6H2O2NBr. Krystallinischer Niederschlag (CL., P.). Schwer löslich in Wasser (S.). — Ca(C6H2O2NBr)2+2H2O (CL., P.). Säulen und Prismen. 1 Tl. (des wasserfreien Salzes) löst sich in 50 Tln. heißem Wasser (S.). — Ba(C2H2O2NBr)2+4H2O. Nadeln. Sehr leicht löslich in Wasser (CL., P.). — Co(C6H2O2NBr)2+4H2O. Rote Plättchen und Prismen. Ziemlich leicht löslich in Wasser

CO₂H

(CL., P.). — Ni(C₆H₃O₂NBr)₂ + 2 H₂O. Hellgrüne Oktaeder. Leicht löslich in Wasser (CL., P.). — C₆H₄O₂NBr + HBr. Nadeln (aus Wasser). F: 243°; sublimierbar; schwer löslich in kaltem Wasser (CL., P.).

3. Pyridin-carbonsäure-(4), Pyridin-γ-carbonsäure, Isonicotin-säure C₆H₅O₂N, s. nebenstehende Formel. Zur Konstitution vgl. Ladenburg, B.18, 2968.

B. Bei der Oxydation von γ-Picolin (Behrmann, Hofmann, B. 17, 2698; Seraup, M. 17, 369) oder 4-Äthyl-pyridin (Ladenburg, A. 247, 19; B. 25, 2772; 32, 46) mit Kaliumpermanganat-Lösung. Beim Erhitzen von 2.6-Dichlor-isonicotinsäure mit konz. Jodwasserstoffsäure im Rohr auf 170—180° (Behrmann, Hofmann, B. 17, 2696). Aus Pyridin-dicarbonsäure-(2.4) (Lutidinsäure) beim Erhitzen im Wasserstoffstrom auf 245° (Weidel, Herzig, M. 1, 28) oder durch Sublimation oberhalb 200° (Böttinger, B. 14, 68). Aus Pyridin-dicarbonsäure-(3.4) (Cinchomeronsäure) bei der Destillation (Hoogewerff, van Dorp, B. 13, 64; A. 204, 113), beim Erhitzen mit 10°/o Essigsäureanhydrid enthaltendem Eisessig im Rohr auf 215° (Ternájgó, M. 21, 446) oder mit Chinolin (R. Mayer, M. 13, 351). Durch Destillation des Silbersalzes des Pyridin-dicarbonsäure-(3.4)-methylesters-(4) im Wasserstoffstrom und Verseifung des entstandenen Isonicotinsäure-methylesters mit Kalilauge (Te., M. 21, 450, 452). Beim Erhitzen von Pyridin-tricarbonsäure-(2.3.4) (Sk., B. 12, 2332; M. 1, 184). Bei der thermischen Zersetzung von Pyridin-tricarbonsäure-(2.4.5) (Berberonsäure) oder ihres Monokaliumsalzes (Fürth, M. 2, 422, 428). Bei der Sublimation von entwässerter Pyridin-tricarbonsäure-(2.4.6) (Voigt, A. 228, 49). Bei der Oxydation von γ.γ-Dipyridyl (Syst. No. 3485) oder von Isonicotin (Syst. No. 3470) in verd. Schwefelsäure mit Kaliumpermanganat (Weil, Russo, M. 3, 864, 874).

Darst. Man erhitzt kleine Mengen Cinchomeronsäure vorsichtig bis zum Nachlassen der Kohlendioxyd-Entwicklung, destilliert dann rasch über und krystallisiert das übergegangene Gemisch von Isonicotinsäure und Nicotinsäure aus viel heißem Wasser um; die schwerer lösliche Isonicotinsäure krystallisiert zuerst aus (CAMPS, Ar. 240, 359). Darstellung durch Oxydation des γ -Picolin enthaltenden, bei 135—142° siedenden Gemisches der Pyridinbasen aus Steinkohlenteer: PINNER, B. 33, 1226; durch Behandeln der bei 150—170° siedenden Fraktion des Knochenteeröls mit Kaliumpermanganat: WEIDEL, HERZIG, M. 1, 2, 41, 46.

Nadeln (aus Wasser). F (im zugeschmolzenen Bohr): 317° (Skraup, M. 17, 369), 315° (Camps, Ar. 240, 359). Sublimiert beim Erhitzen unter gewöhnlichem Druck, ohne vorher zu schmelzen, in Täfelchen (Sk., B. 12, 2333) bei ca. 315° (Koenigs, Happe, B. 36, 2912). Schwer löslich in kaltem, leichter in siedendem Wasser, fast unlöslich in siedendem Alkohol (Weidel, Herzig, M. 1, 28), schwer löslich in Äther und Benzol (Hoogewerff, van Dorf, A. 207, 222). Elektrolytsche Dissoziationskonstante k bei 25°: 1,1×10⁻⁸ (Ostwald, Ph. Ch. 3, 387). — Bei der Sublimation von Isonicotinsäure erfolgt teilweise Zersetzung in Pyridin und Kohlendioxyd (Ladenburg, B. 32, 46). Bei Reduktion mit Natrium in heißem Amylalkohol erhält man Hexahydroisonicotinsäure (La., B. 25, 2772). Bei der Einw. von Natriumamalgam entsteht unter Ammoniak-Entwicklung [B-Oxy-āthyl]-bernsteinsäure (Bd. III, S. 452) (Weidel, M. 11, 517). Die Destillation des Calciumsalzes mit Kaliumhydroxyd führt zu Pyridin (W., He., M. 1, 34). Bei kurzem gelindem Kochen von Isonicotinsäure mit Thionylohlorid entsteht das salzsaure Salz des Isonicotinsäure-chlorids (Späth, Spitzer, B. 59 [1926], 1479, 1484), bei mehrtägigem Kochen das freie Isonicotinsäure-chlorid (H. Meyer, Graf, B. 61 [1928], 2206; vgl. M., M. 22, 114). — Beim Erhitzen mit Methyljodid auf 150° (Turnau, M. 26, 553) oder mit Methyljodid und überschüssiger Natriumcarbonat-Lösung (H. Meyer, M. 24, 199, 200; vgl. T., M. 26, 554) erhält man jodwasserstoffsaures Isonicotinsäure-methylbetain 2C₇H₇O₂N + HI (S. 47). Geschwindigkeit der Veresterung durch alkoh. Salzsäure: Kahlan, M. 28, 731. — Die heiße konzentrierte Lösung der Isonicotinsäure gibt mit Kupferscetat einen grünen krystallinischen, in Wasser fast unlöslichen Niederschlag (W., He., M. 1, 29); beim Fällen einer neutralisierten Lösung der Säure mit Kupferscetat entsteht ein himmelblauer Niederschlag (Sk., M. 17, 369).

NH₄C₆H₄O₂N. Nadeln (Weidel, Herrig, M. 1, 29). — Cu(C₆H₄O₂N)₂+4H₂O. Blaugrüne, sechsseitige Blättchen (Böttinger, B. 17, 94). — Ca(C₆H₄O₂N)₂+4H₂O. Nadeln; ziemlich leicht löslich in Wasser; verliert das Krystallwasser erst bei 170° (W., He.). — C₆H₅O₂N + HCl (Hoogewerff, van Dorp, A. 207, 222). Säulen. Triklin pinakoidal (Březina, M. 1, 31; vgl. *Groth*, Ch. Kr. 5, 687). — C₆H₅O₂N + HI. Gelbe Nadeln (aus Alkohol-Äther). Bräunt sich gegen 180°, zersetzt sich über 200° (Turnau, M. 29, 851). — Chloroaurat. F: 219° (H. Meyer, M. 23, 906). — $2C_6H_5O_2N+2HCl+PtCl_4+2H_2O$. Hellorangegelbe

Krystalle. Monoklin prismatisch (Březina, M. 1, 33, 42; Feussner, A. 207, 233; Lang, M. 21, 453; vgl. Groth, Ch. Kr. 5, 687). Disc. 2,1568; ziemlich schwer löslich in Wasser (W., He.).

Isonicotinsäure-methylester $C_7H_7O_2N=NC_5H_4\cdot CO_2\cdot CH_3$. B. s. bei Isonicotinsäure. — Flüssigkeit von krauseminzähnlichem Geruch. F: ca. 8,5°; Kp_{21} : 104° (unkorr.); Kp: 207—209° (geringe Zersetzung); löslich in Wasser, Alkohol, Ather und Benzol (Ternájgó, M. 21, 451). — Liefert beim Erhitzen auf 160° Isonicotinsäure-methylbetain (Kirpal, M. 24, 525). Gibt mit methylalkoholischem Ammoniak bei 140—150° Isonicotinsäure-amid (T.). — $C_7H_7O_2N + HCl$. Tafeln und Nadeln (aus salzsäurehaltigem Wasser). Zersetzt sich bei 257° (T.). — $2C_7H_7O_2N + 2HCl + PtCl_4$. Orangerote Nadeln (aus salzsäurehaltigem Methylalkohol). F: 174—175° (T.).

Isonicotinsäure-äthylester $C_8H_9O_2N=NC_5H_4\cdot CO_2\cdot C_2H_5$. B. Beim Erhitzen von Isonicotinsäure mit absol. Alkohol und konz. Schwefelsäure (Camps, Ar. 240, 360). — Flüssigkeit von eigentümlichem, esterartigem Geruch, die in einer Kältemischung zu Nadeln erstarrt (C.). Kp: $219-220^\circ$; Kp₁₅: 110° (Pinner, B. 34, 4248); Kp: 218° (C.). Dis: 1,0091; schwer löslich in Wasser, leicht in Alkohol, Äther, Chloroform und Benzol (P.). — Wird durch konz. Ammoniak in Isonicotinsäure übergeführt (C.). Durch Einw. von Äthyljodid, Behandlung des entstandenen Jodäthylats mit Silberoxyd in Wasser und Eindampfen der Lösung erhält man Isonicotinsäure-äthylbetain (C.). Bei der Einw. von Essigester in Gegenwart von Natriumäthylat entsteht γ -Pyridoylessigsäure-äthylester (Syst. No. 3366) (P.). — $C_8H_9O_2N+2HCl+PtCl_4$. Nadeln. F: 165° ; wird durch Wasser leicht zersetzt (P.). — $2C_8H_9O_2N+2HCl+PtCl_4$. Orangegelber Niederschlag. Schwer löslich (P.).

Isonicotinsäure-chlorid C₆H₄ONCl = NC₅H₄·COCl. B. Das salzsaure Salz entsteht bei kurzem gelindem Kochen von Isonicotinsäure mit Thionylchlorid (Späth, Spitzer, B. 59 [1926], 1479, 1484). Das freie Chlorid erhält man bei mehrtägigem Kochen von Isonicotinsäure mit Thionylchlorid (H. Meyer, Graf, B. 61 [1928], 2206; vgl. M., M. 22, 114). — Krystalle. F: 15—16° (M., G.). — C₆H₄ONCl+HCl. Krystalle. F: 164—165° (Spä., Spi.).

Isonicotinsäure-amid $C_6H_6ON_2 = NC_5H_4 \cdot CO \cdot NH_2$. B. Aus Isonicotinsäure-methylester oder -āthylester und wäßrigem oder alkoholischem Ammoniak (Ternajgó, M. 21, 459; Camps, Ar. 240, 361). — Wasserfreie Blättchen (aus Benzol + Alkohol) (T.), wasserfreie Prismen (aus Alkohol), wasserhaltige Nadeln (aus Wasser) (C.). Schmilzt wasserhaltig bei 117—120° unter Aufschäumen (C.), wasserfrei bei 155° (C.), 155,5—156° (T.). — Liefert bei der Einw. von Brom + Kalilauge 4-Amino-pyridin (Syst. No. 3393) und geringe Mengen von 3.5-Dibrom-4-amino-pyridin (Syst. No. 3393) (C.; vgl. Dohrn, Diedrich, A. 494 [1932], 301; den Herzog, Wiraut, R. 51 [1932], 944, 948). Beim Erhitzen mit Thionylchlorid auf 100° (H. Meyer, M. 23, 903) oder Destillieren mit Phosphorpentoxyd unter 25 mm Druck (Camps, Ar. 240, 368) entsteht Isonicotinsäure-nitril. — Chloroaurat. F: 185° (M.).

Isonicotinsäure-nitril, 4-Cyan-pyridin, γ-Pyridylcyanid C₆H₄N₂ = NC₅H₄·CN. B. Beim Erhitzen von Isonicotinsäure-amid mit Thionylchlorid auf 100° (H. MEYER, M. 23, 903). Beim Destillieren von Isonicotinsäure-amid mit Phosphorpentoxyd unter 25 mm Druck (CAMPS, Ar. 240, 368). — Nadeln (aus ätherhaltigem Ligroin) von nicht unangenehmem, an Pyridin erinnerndem Geruch (C.). F: 79° (C.), 83° (M.). Ünzersetzt flüchtig (M.). Löslich in Wasser, Alkohol, Äther und Benzol, schwieriger in Ligroin (C.). Wird durch Erhitzen mit konz. Salzsäure im Rohr auf 110—120° (M.) oder Kochen mit Natronlauge (C.) zu Isonicotinsäure verseift. — Hydrochlorid. Nadeln. F: 199° (Zers.) (C.). — C₆H₄N₂ + HCl + AuCl₃. Gelbe Nadeln. F: 185° (C.), 208—210° (M.). Schwer löslich in heißem Wasser (C.), leicht in heißer verd. Salzsäure (M.). — C₆H₄N₂ + HgCl₃. Nadeln (aus Wasser) (C.). — Chloroplatinat. Goldgelbe Blättchen (aus verd. Salzsäure). F: 293° (Zers.) (C.), 300° (Zers.) (M.).

Isonicotinsäure-hydroxymethylat, Ammoniumbase des Isonicotinsäure-methylbetains $C_7H_9O_3N=(HO)(CH_2)NC_5H_4\cdot CO_2H$.

Bildung der Salze bezw. des Anhydrids (Isonicotinsäure-methylbetains). Die Salze entstehen beim Erhitzen von Isonicotinsäure mit Methyljodid auf 150° (TURNAU, M. 26, 553), mit Methyljodid in überschüssiger wäßriger Soda-Lösung (H. Meyer, M. 24, 199, 200; vgl. Tu., M. 26, 554) sowie beim Eindampfen des Methylbetains mit Halogenwasserstoffsäuren (M., M. 24, 201; Tu., M. 26, 554). Das freie Methylbetain erhält man beim Behandeln des jodwasserstoffsauren Salzes mit Silberoxyd in Wasser (M., M. 24, 201), beim Erhitzen von Isonicotinsäure-methylester auf 160° (Kirpal, M. 24, 525), bei der Einw. von Silberoxyd

in Wasser auf Isonicotinsäure-methylester-halogenmethylat (Ternájgó, M. 21, 456) und beim Kochen von Pyropapaverinsäure-methylbetain (Syst. No. 3372) mit Barytwasser (Goldschmiedt, Hönigschmid, M. 24, 703).

Anhydrid, Isonicotinsäure-methylbetain $C_7H_7O_2N = CH_3 \cdot NC_5H_4 \cdot CO \cdot O$. Nadeln mit $1H_2O$; verliert das Krystallwasser bei 105° ; F: 264° ; sehr leicht löslich in Wasser

(TERNÁJGÓ, M. 21, 457).

Salze $C_7H_8O_2N\cdot Ac$ bezw. $C_7H_7O_2N+HAc$. Salzsaures Salz. Nadeln. F: 265° (Zers.); leicht löslich in heißem Wasser (H. MEYER, M. 24, 201). — $2C_7H_7O_2N+HI$. Gelbe Nadeln oder Prismen und Tafeln (aus Alkohol). Zersetzt sich zwischen 245° und 250°; leicht löslich in Wasser, schwer in säurehaltigem Wasser, in Methyl- und Äthylalkohol, unlöslich in Äther, Benzol und Eisessig (Tu., M. 26, 553). — $2C_7H_7O_2N+2HCl+PtCl_4+H_2O$. Orangerote Nadeln und Tafeln (aus Wasser) (Te., M. 21, 458). Triklin pinakoidal (Lang, M. 21, 458; vgl. Groth, Ch. Kr. 5, 689).

Isonicotinsäure - methylester - hydroxymethylat $C_8H_{11}O_2N = (HO)(CH_3)NC_5H_4$: $CO_2 \cdot CH_3$. — Jodid $C_8H_{10}O_2N \cdot L$. B. Bei der Einw. von Methyljodid auf Isonicotinsäure-methylester (Ternijgo, M. 21, 455). Scharlachrote Nadeln und Prismen (aus Wasser). Bräunt sich bei 179°, zersetzt sich vollständig bei 183—184° (unkorr.).

Isonicotinsäure-äthylbetain $C_8H_9O_2N=C_2H_5\cdot NC_5H_4\cdot CO\cdot O$. B. Durch Einw. von Äthyljodid auf Isonicotinsäure-äthylester und Eindampfen des Reaktionsprodukts in wäßr. Lösung mit Silberoxyd (Camps, Ar. 240, 361). — Nadeln. Bräunt sich bei 180° und schmilzt bei 241° unter Zersetzung. Leicht löslich in Alkohol und Wasser.

2.6 - Dichlor - pyridin - carbonsäure - (4), 2.6 - Dichlor - isonicotinsäure $C_6H_3O_2NCl_2$, s. nebenstehende Formel. B. Das Chlorid entsteht beim Erhitzen CO₂H von 2.6 - Dioxy - isonicotinsaure (Citrazinsaure; Syst. No. 3349) mit ca. 3 Mol Phosphorpentachlorid und etwas Phosphoroxychlorid im Rohr auf 250° (Behr-MANN, HOFMANN, B. 17, 2694), besser im Rohr auf 170°, oder bei anhaltendem Kochen am Rückflußkühler (SELL, Dootson, Soc. 71, 1070, 1071); das Chlorid wird durch Wasser zersetzt. Man erhitzt 1 Tl. Citrazinsäure mit 3 Tln. Phosphoroxychlorid im Rohr auf 210° (Bitt-NER, B. 35, 2933). — Blättchen (aus verd. Alkohol). F: 210° (BE., H.). Verflüchtigt sich beim Erhitzen, ohne zu verkohlen (S., D., Soc. 71, 1075). Nicht flüchtig mit Wasserdampf (BE., H.). Schwer löslich in kaltem Wasser, ziemlich schwer in kaltem, leicht in heißem Alkohol, sehr leicht in Äther, unlöslich in Salzsäure (Be., H.). — Gibt beim Kochen mit rauchender Jodwasserstoffsäure 2.6-Dijod-isonicotinsäure (S., D., Soc. 77, 238). Erhitzt man mit konz. Jodwasserstoffsäure im Rohr auf 170—180°, so entsteht Isonicotinsäure (Be., H.); setzt man dem Gemisch etwas Phosphor zu, so erhält man γ-Picolin (BE., H.). Liefert bei der Einw. von Phosphorpentachlorid 2.6-Dichlor-isonicotinsäure-chlorid; durch Behandeln mit überschüssigem Phosphorpentachlorid im Rohr bei 300° entsteht Pentachlorpyridin (S., D., Soc. 71, 1076, 1082). Beim Eindampfen mit wäßr. Natronlauge erhält man 6-Chlor-2-oxyisonicotinsāure (Syst. No. 3331), beim Erhitzen mit Natriumhydroxyd auf 170° Citrazinsāure (S., D., Soc. 71, 1075). Erhitzen mit konzentrierter alkoholischer Kaliumhydrosulfid-Lösung im Rohr auf 135° führt zu 2.6-Dimercapto-pyridin-carbonsäure-(4) (Syst. No. 3349) (Br., B. 35, 2935). Durch Einw. von wäßr. Ammoniak im Rohr bei 2000 entsteht 6-Chlor-2-aminopyridin-carbonsäure-(4) (Syst. No. 3434) (S., D., Soc. 71, 1075). Das Silbersalz liefert beim Erhitzen auf 100° im Kohlendioxyd-Strom 2.6-Dichlor-pyridin (Bd. XX, S. 231) (S., D., Soc. 77, 239). 2.6-Dichlor-pyridin-carbonsaure-(4) wird durch alkoh. Salzsaure leicht esterifiziert (S., D., Soc. 71, 1072, 1077). Beim Kochen mit Anilin entstehen 2.6-Dianilino-pyridin-carbonsäure-(4) (Syst. No. 3434) und deren Anilid (BI.). — AgC₄H₂O₂NCl₂. Nadeln (aus heißem Wasser) (Br., H.).

Äthylester $C_8H_7O_2NCl_2=NC_5H_2Cl_2\cdot CO_2\cdot C_2H_5$. B. Beim Sättigen der alkoh. Lösung von 2.6-Dichlor-isonicotinsäure mit Chlorwasserstoff oder aus 2.6-Dichlor-isonicotinsäure-chlorid und absol. Alkohol (Sell, Dootson, Soc. 71, 1077). — Nadeln (aus Wasser und Alkohol). F: 65—66° (unkorr.). Unlöslich in kaltem Wasser, schwer löslich in kaltem Alkohol, leicht in heißem Alkohol, Äther und Aceton. — Wird durch Erhitzen mit 50—80°/0iger Schwefelsäure verseift.

Chlorid $C_6H_6ONCl_9 = NC_5H_9Cl_2 \cdot COCl.$ B. s. bei 2.6-Dichlor-isonicotinsäure. Entsteht auch bei der Einw. von Phosphorpentachlorid auf 2.6-Dichlor-isonicotinsäure (Sell, Doorson, Soc. 71, 1076). — Farblose, bewegliche Flüssigkeit. Kp₃₅: 156—157°. — Gibt mit Ammoniak das entsprechende Amid, mit Athylalkohol den entsprechenden Athylester.

Amid $C_6H_4ON_2Cl_2 = NC_5H_2Cl_2 \cdot CO \cdot NH_2$. B. Aus dem Chlorid und konz. Ammoniak (Sell, Dootson, Soc. 71, 1076). — Nadeln (aus Wasser). F: 200° (unkorr.). Verflüchtigt

sich, ohne zu verkohlen. Leicht löslich in Alkohol und Aceton, schwer in siedendem Wasser und in Äther, unlöslich in kaltem Wasser und in Chloroform. — Wird durch 80% ige Schwefelsäure verseift.

2.3.5-Trichlor-pyridin-carbonsäure-(4), 2.3.5-Trichlor-isonicotinsäure C₀H₂O₂NCl₃, s. nebenstehende Formel. B. Aus 2.3.5-Trichlor-4-methyl-pyridin durch Oxydation mit Kaliumpermanganat (Sell, Dootson, Soc. 83, 400). — Krystalle. F: 188—189° (unkorr.). Sehr leicht löslich in den üblichen organischen Lösungsmitteln, schwer in kaltem Wasser.

Tetrachlorisonicotinsäure C₆HO₂NCl₄, s. nebenstehende Formel. B. Man erhitzt Citrazinsäure mit 5—6 Mol Phosphorpentachlorid im Rohr auf 170° cl und führt das entstandene Chlorid durch längeres Kochen mit Wasser oder durch Behandeln mit methylalkoholischem Ammoniak und Verseifung des so gewonnenen Amids mit 70°/oiger Schwefelsäure in Tetrachlorisonicotinsäure über (Sell, Dootson, Soc. 71, 1071, 1078). — Würfel (aus Wasser oder Alkohol). F: 224—225° (unkorr.). Schwer löslich in kaltem, ziemlich leicht in heißem Wasser, leicht in Alkohol, Äther und Nitrobenzol, unlöslich in Ligroin. — Liefert beim Erhitzen mit Wasser im Rohr auf 180° oder bei der Destillation mit Glycerin unter Kohlendioxyd-Entwicklung 2.3.5.6-Tetrachlor-pyridin. Gibt beim Erhitzen mit Ammoniak im Rohr 3.5.6-Trichlor-2-amino-pyridin (Syst. No. 3393) und 3.5-Dichlor-2.6-diamino-pyridin (Syst. No. 3406). Wird durch alkoh. Salzsäure nicht esterifiziert. Versetzt man die Lösung des Ammoniumsalzes in der Kälte mit Kupfersulfat-Lösung, so erhält man ein blaues Kupfersalz mit 8 H₂O, während sich oberhalb 60° ein farbloses Kupfersalz mit 2 H₂O bildet. — Cu(C₆O₂NCl₄)₂ + 8 H₂O. Blaue Tafeln.

Äthylester $C_8H_5O_2NCl_4=NC_5Cl_4\cdot CO_2\cdot C_2H_5$. B. Durch Erwärmen des Chlorids (s. u.) mit Alkohol (S., D., Soc. 71, 1080). — Nadeln. F: 66—67°. Leicht löslich in Äther und heißem Alkohol, unlöslich in kaltem Wasser. Wird durch Kochen mit 50°/eiger Schwefelsäure verseift.

Chlorid C_6 ONCl $_5$ = NC $_5$ Cl $_4$ ·COCl. B. s. o. bei Tetrachlorisonicotinsäure (S., D., Soc. 71, 1077). — Nadeln (aus Äther). Triklin pinakoidal (HUTOHINSON). F: 47—48° (unkorr.); mit Wasserdampf flüchtig; löslich in Chloroform, Tetrachlorkohlenstoff und Benzol; wird von kaltem Wasser kaum, von siedendem langsam zersetzt; gibt mit Alkohol langsam in der Kälte, rascher beim Erwärmen den Äthylester, mit wäßrigem oder alkoholischem Ammoniak das Amid (S., D.).

Amid $C_6H_2ON_2Cl_4=NC_5Cl_4\cdot CO\cdot NH_2$. B. Beim Erwärmen des Chlorids mit wäßrigmethylalkoholischem Ammoniak (S., D., Soc. 71, 1079). — Tafeln (aus verd. Alkohol). F: 235—236° (unkorr.). Sehr leicht löslich in Alkohol, Äther und Aceton, ziemlich leicht in siedendem, schwer in kaltem Wasser, ziemlich leicht in Benzol. — Wird durch Behandeln mit Natriumnitrit + Schwefelsäure oder Erhitzen mit 70°/0 iger Schwefelsäure verseift.

2.6 - Dijod - pyridin - carbonsäure - (4), 2.6 - Dijod - isonicotinsäure C₂H₂O₂NI₂, s. nebenstehende Formel. B. Beim Kochen von 2.6-Dichlor-isonicotinsäure mit rauchender Jodwasserstoffsäure (S., D., Soc. 77, 238). — Krystalle (aus verd. Alkohol). F: 195—196° (unkorr.). — Ammonium-, Natrium- und Kaliumsalz. Nadeln. Schwer löslich in kaltem Wasser. — Kupfersalz. Blaue Nadeln (aus Wasser). — Calciumsalz. Ziemlich leicht löslich in siedendem Wasser.

2. Carbonsăuren $C_7H_7O_2N$.

1. γ -Pyridylessigsäure $C_7H_7O_2N$, Formel I. $CH_2 \cdot CO_2H$ $CH_3 \cdot CO_2H$ $[2.3.5 - Trichlor - pyridyl - (4)] - essigsäure I. <math>C_7H_4O_2NCl_2$, Formel II. B. Aus $[2.3.5 \cdot Trichlor - pyridyl - (4)]$ -malonester (Syst. No. 3280) beim Kochen mit ca. $80^{\circ}/_{\circ}$ iger Schwefelsäure (Sell, Dootson, Soc. 83, 399). — Tafeln (aus Wasser). F: 144° bis 145° (unkorr.; Zers.). Leicht löslich in den meisten organischen Lösungsmitteln, schwer in Wasser. — Liefert beim Erhitzen auf ca. 160° unter 20—25 mm Druck 2.3.5-Trichlor-4-methyl-pyridin.

2. 3-Methyl-pyridin-carbonsäure-(2), 3-Methyl-picolinsäure, β -Picolin- α -carbonsäure $C_7H_7O_2N$, s. nebenstehende Formel. B. Aus dem Lacton der 3-Oxymethyl-picolinsäure (Syst. No. 4278) beim Erhitzen mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor im Rohr auf 150—160° (ZINOKE, WINZ-HEIMER, A. 290, 355). — Prismen (aus Alkohol). F: 111°. Sehr leicht löslich in Wasser, löslich in Alkohol. — $2C_7H_7O_2N + HCl + PtCl_4 + 2H_2O$ (?). Gelbe Prismen. F: 202°. —

2C₇H₇O₂N + 2HCl + PtCl₄ + 2H₂O. Gelbe Prismen (aus Alkohol). Erweicht oberhalb 100° und schmilzt bei 1920 unter Aufschäumen. Leicht löslich in Wasser, schwer in kaltem Alkohol; löslich in Salzsäure.

- 3. 4-Methyl-pyridin-carbonsaure-(2), 4-Methyl-picolinsaure, y-Picolinα-carbonsaure C₇H₇O₂N, Formel I.
- |6 Chlor 4 methyl pyridin carbonsäure (2), CH3 6-Chlor-4-methyl-picolinsäure, α'-Chlor-γ-picolinα-carbonsäure C₇H₆O₂NCl, Formel II. B. Aus 6-Chlor-2.4-dimethyl-pyridin durch Oxydation mit Kalium-permanganat in siedender wiscender I zeros I permanganat in siedender wäßriger Lösung, neben 6-Chlor-2-methyl-pyridin-carbonsäure-(4); läßt sich auf Grund ihrer größeren Löslichkeit in Wasser von der isomeren Säure trennen (ASTON, COLLIE, Soc. 71, 653, 655). — Krystalle mit 1 H₂O (aus Wasser). F: 98° (korr.). Ziemlich leicht löslich in Wasser. - Gibt mit Ferrosulfat ein orangebraunes Eisensalz, das sich mit orangeroter Farbe in heißem Wasser löst. — Liefert beim Erhitzen im Wasserstoffstrom 2-Chlor-4-methyl-pyridin.
- 4. 2-Methyl-pyridin-carbonsäure-(4), 2-Methyl-isonicotinsäure, CO₂H α-Picolin-y-carbonsdure C₇H₇O₂N, s. nebenstehende Formel. V. In gewissen unfruchtbaren Ackerböden (Schbeiner, Shorey, Am. Soc. 30, 1295). — B. Beim unfruchtbaren Ackerböden (Schbeiner, Shorey, Am. Soc. 30, 1295). — B. Beim N. CH3 Erhitzen von Uvitoninsäure (S. 161) auf 274° (BÖTTINGER, B. 14, 67; 17, 92; ALTAR, N CH₃

 A. 237, 201). — Krystalle mit 1 H₂O (aus Wasser). Sublimierbar (B., B. 14, 67; Sch., Sh.). Schmilzt nicht beim Erhitzen im Capillarrohr auf 300° (Sch., Sh.). Leicht löslich in heißem Wasser, schwer in Alkohol, fast unlöslich in Äther (B., B. 14, 67; Sch., Sh.). — Liefert bei der Oxydation mit Kaliumpermanganat Pyridin-dicarbonsäure-(2.4) (B., B. 14, 68). — Stimulierende Wirkung auf Weizenkeimlinge: Sch., Sh. — Cu(C,H,O,N),+aq. Dunkelblaue Krystalle. Das Krystallwasser entweicht beim Erhitzen auf 160° (B., B. 14, 68). — Ca(C₇H₆O₂N)₂ + H₂O. Krystalle. Verliert bei 120° kein Wasser; schmilzt bei höherer Temperatur unter Zersetzung (B., B. 17, 93). — $Ba(C_7H_6O_2N)_2 + 11H_2O$. Nadeln. Verwittert an der Luft; verliert bei 120° 10 Mol Wasser (B., B. 17, 92). Sehr leicht löslich in Wasser. — $C_7H_7O_2N + HCl$. Krystalle (B., B. 14, 68).
- 6-Chlor-2-methyl-pyridin-carbonsäure-(4), 6-Chlor-2-methylisonicotinsäure, α' -Chlor- α -picolin- γ -carbonsäure $C_7H_6O_2NCl$, s. nebenstehende Formel. B. Aus 6-Chlor-2.4-dimethyl-pyridin durch Oxydation mit CO2H Kaliumpermanganat in siedender wäßriger Lösung, neben 6-Chlor-4-methylpyridin-carbonsäure-(2); läßt sich auf Grund ihrer geringeren Löslichkeit in Wasser von der isomeren Säure trennen (Aston, Collie, Soc. 71, 656). — Krystallpulver (aus Alkohol). F: 214° (korr.). Fast unlöslich in siedendem Wasser. Gibt mit Ferrosulfat einen rötlichgelben Niederschlag. — Zersetzt sich beim Erhitzen auf höhere Temperatur. Liefert bei der Reduktion mit Zinn und Salzsäure ein Produkt, das bei der Destillation mit Kalk in 2-Methyl-pyridin übergeht.
- 5. 2-Methyl-pyridin-carbonsäure-(5), 6-Methyl-nicotinsäure, α -Picolin- β '-carbonsäure $C_7H_7O_2N$, s. nebenstehende Formel. B. Aus 2-Methyl-5-äthyl-pyridin beim Behandeln mit Kaliumpermanganat anfangs in der Kälte, dann bei 60° (Dürkopf, B. 18, 928, 3432; LADENBURG, A. 247, 42). — Prismen (aus Wasser oder Alkohol). F: 207°; sehr leicht löslich (D., B. 18, 3432; L.). Liefert bei der Destillation mit Calciumhydroxyd a-Picolin (L.). Bei der Oxydation mit Kaliumpermanganat entsteht Pyridin-dicarbonsäure-(2.5) (L.; vgl. D., B. 18, 3434).—Cu(C,H₆O₂N)₂+Cu(C₂H₃O₂)₂. Blaugrünes, krystallines Pulver (D., B. 18, 3432; L.; Benaby, Psille, B. 57 [1924], 833).—Chloroaurat. Gelbe Nadeln (aus Wasser). F: ca. 2020 (D., B. 18, 3432).—Chloroaurat. Gelbe Nadeln (aus Wasser). B. 18, 3433). — 2C₇H₇O₂N + 2HCl + PtCl₄. Gelbe Nadeln (aus Wasser). F: 240° (Zers.) (D., B. 18, 3433). Leicht löslich in Wasser, unlöslich in Alkohol-Äther (D., B. 18, 3433; L.).
- 6. 6-Methyl-pyridin-carbonsäure-(2), 6-Methyl-picolin-säure, a-Picolin-a'-carbonsäure C,H,O,N, s. nebenstehende Formel. B. Aus 2.6-Dimethyl-pyridin durch Oxydation mit Kaliumpermanganat-B. Aus 2.6-Dimethyl-pyridin durch Oxydation mit Kaliumpermanganat.

 Lösung bei 50—60° (Ladenburg, Scholtze, B. 33, 1081; vgl. Pinner, B. 33, 1226; P., Lewin, B. 33, 1230). Beim Erwärmen von 2-Methyl-6-[β-oxy-äthyl]-pyridin mit Salpetersäure auf dem Wasserbad (Koenigs, Happe, B. 36, 2908). — Krystalle mit 1H₂O (aus Benzol oder Alkohol). F: 95° (La., Sch.; K., H.; Turnau, M. 29, 846); die wasserfreie Substanz krystallisiert aus Benzol und schmilzt bei 129° (T., M. 29, 846), 128—129° (K., H.). Sehr leicht löslich in Wasser (La., Sch.; P., Le.) und Alkohol (P., Le.). — Beim Behandeln mit Methyljodid erhält man das Hydrojodid 2C₇H₇O₂N + HI (T., M. 26, 559; 29, 847). — Cu(C₇H₆O₂N)₂ + H₂O. Blaue Krystalle. Zersetzt sich bei 252—253° (La., Sch.). Schwer löslich in Wasser (La., Sch.; P., Le.). — Cu(C₇H₆O₂N)₂ + 2H₂O. Bläulichgrüne Prismen.

Schwer löslich in Wasser (P., Le.). — $Ba(C_7H_4O_2N)_2$. Blättchen. Leicht löslich in warmem Wasser, unlöslich in Alkohol (P., Le.). — $C_7H_7O_2N+HCl$. Nadeln (aus Alkohol + Äther). Zersetzt sich bei 201° (T., M. 29, 848). — $2C_7H_7O_2N+HI$. B. Aus α -Picolin- α' -carbonsäure bei Einw. von Jodwasserstoffsäure oder Methyljodid (T., M. 26, 559; 29, 846). Nadeln (aus Alkohol), Prismen (aus Wasser). Zersetzt sich gegen 230°. — $C_7H_7O_2N+H_2SO_4$. Prismen. Schwer löslich in kaltem Alkohol (P., Le.).

- 6-Methyl-pyridin-carbonsäure-(2)-äthylester $C_9H_{11}O_9N=NC_8H_8(CH_8)\cdot CO_2\cdot C_2H_8$. Flüssigkeit. Kp: 245°; Kp₂₅: 133° (Pinner, B. 34, 4252).
- 6-Methyl-pyridin-carbonsäure-(2)-chlorid $C_7H_6ONCl=NC_8H_3(CH_8)\cdot COCl$. B. Aus 6-Methyl-pyridin-carbonsäure-(2) bei Einw. von Thionylchlorid (Turnau, M. 29, 848). Nadeln (aus Thionylchlorid + Benzol). F: ca. 195° (Zers.). Geht bei längerem Aufbewahren an der Luft in das Hydrochlorid der 6-Methyl-pyridin-carbonsäure-(2) über.
- 4-Chlor-6-methyl-pyridin-carbonsäure-(2), 4-Chlor-6-methyl-picolinsäure, γ-Chlor-α-picolin-α'-carbonsäure C₇H₈O₈NCl, s. nebenstehende Formel. B. Neben 4-Chlor-pyridin-dicarbonsäure-(2.6) aus 4-Chlor-2.6-dimethyl-pyridin beim Kochen mit einer verd. Lösung von Kalium-permanganat (Sedgwick, Collie, Soc. 67, 401, 404). Nadeln mit ½H₂O (aus Wasser). F: 93—94°. Löslich in Alkohol und Äther. Liefert beim Erhitzen 4-Chlor-2-methyl-pyridin. Einw. von Brom in Eisessig: S., C. Ba(C₇H₅O₂NCl)₂. Krystalle. Wird beim Erhitzen auf 105° unter Zersetzung rot.
- 4-Methyl-pyridin-carbonsäure-(3), 4-Methyl-nicotinsäure, γ -Picolin- β -carbonsaure, Homonicotinsaure C,H,O,N, s. nebenstehende · CO2H Formel. B. Bei monatelanger Einw. von Kaliumpermanganat auf 4-Methyl-3-äthyl-pyridin in Gegenwart von Natriumdicarbonat (Obchsner de Coninck, A. ch. [5] 27, 491; Bl. [2] 48, 106; Koenigs, B. 27, 1503; A. 347, 215). Aus 4-Methylpyridin-dicarbonsaure-(2.3) beim Erhitzen für sich auf 160—170° (Hoogewerff, van Dorp, B. 14, 645; R. 2, 21) oder beim Erhitzen mit Eisessig (H., van D., R. 2, 21). Neben anderen Produkten beim Behandeln von Cinchomeronimidin (s. nebenstehende Formel; H₂C—NH Syst. No. 3567) mit Jodwasserstoffsäure (Kp: 127°) und rotem Phosphor im Rohr -do bei 180° (Gabriel, Colman, B. 35, 2847, 2849). — Nadeln (aus Alkohol). F: 211° bis 212° (H., van D., R. 2, 21), 212° (OE. DE CON.), 213—214° (K., B. 27, 1503; A. 347, 216), 215—216° (Zers.) (G., Col.). Verflüchtigt sich bei höherer Temperatur unter teilweiser Zersetzung (H., van D.). Leicht löslich in heißem Wasser, ziemlich leicht in heißem Alkohol (OE. DE CON.; H., VAN D.), fast unlöslich in Äther und Benzol (H., VAN D.). — Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Pyridin-dicarbonsäure-(3.4) (H., VAN D.; OE. DE CON., Bl. [2] 48, 106). Bei der Destillation mit Kalk entsteht 4-Methylpyridin (G., Col.; OE. DE Con., A. ch. [5] 27, 496); dabei bildet sich anscheinend auch etwas Pyridin (OE. DE Con., A. ch. [5] 27, 497). Beim Erhitzen von 4-Methyl-nicotinsäure mit Formaldehyd im Rohr auf dem Wasserbad erhält man das Lacton der $4-[\beta.\beta'.\beta''$ -Trioxytert.-butyl]-pyridin-carbonsäure-(3) (Syst. No. 4300); mit Acetaldehyd oder Paraldehyd und Wasser im Rohr bei 140—150° bilden sich das Lacton der $4-[\beta-Oxy-propyl]$ -pyridincarbonsäure-(3) (Syst. No. 4278) sowie das Lacton der 4- $[\beta$ -Oxy- γ -pentenyl]-pyridin-carbonsaure-(3) (Syst. No. 4279) (K., B. 34, 4337).

KC₇H₆O₂N. Blättchen (Oechsner de Conince, A. ch. [5] 27, 498). — $Cu(C_7H_6O_2N)_2$. Blaue Krystalle (Hoogewerff, van Dorp, R. 2, 22). — $AgC_7H_6O_2N$. Blättchen. Zersetzt sich bei ca. 180° (H., van D., R. 2, 23). Ist am Licht unbeständig; unlöslich in kaltem Wasser (Oe. de Con., A. ch. [5] 27, 498). — $C_7H_7O_2N + HCl$. Prismen (Oe. de Con., A. ch. [5] 27, 495). — $C_7H_7O_2N + HBr$. Tafeln (Oe. de Con., A. ch. [5] 27, 495). — $2C_7H_7O_2N + HCl + AuCl_3$. Gelbe Nadeln (aus Wasser) (Oe. de Con., A. ch. [5] 27, 496). — $C_7H_7O_2N + HCl + AuCl_3$. Citronengelbe Nadeln. Zersetzt sich beim Erhitzen (Gabriel, Colman, B. 35, 2849). — $2C_7H_7O_2N + 2HCl + PtCl_4$. Orangerote Prismen (Oe. de Con., A. ch. [5] 27, 496).

8. 5-Methyl-pyridin-carbonsäure-(3), 5-Methyl-nicotin-CH₃·CO₂H säure, β-Picolin-β'-carbonsäure C₇H₇O₂N, s. nebenstehende Formel.

B. Aus 5(oder 3)-Methyl-pyridin-dicarbonsäure-(2.3 oder 2.5) beim Erhitzen mit Eisessig und Acetanhydrid auf 225° (DÜRKOPF, GÖTTSCH, B. 23, 1111). — F: 214—216°. Ziemlich leicht löslich in Wasser.

3. Carbonsäuren $C_8H_9O_2N$.

1. $\beta - [\alpha - Pyridyl] - propionsäure$, $\alpha - Picolylessigsäure$ $C_2H_2O_2N$, s. nebenstehende Formel. B. Aus $\beta - [\alpha - Pyridyl]$ -acrylsäure (S. 55) beim Kochen mit rauchender Jodwasserstoffsäure (D: 1,96) und rotem Phosphor in Eisessig (Feist, Ar. 240, 185). — Krystalle (aus Benzol oder verd. Alkohol).

F: 141°. Leicht löslich in den meisten Lösungsmitteln. — $C_8H_9O_3N + HCl + AuCl_3$. Gelbe Tafeln. F: 164°. — $2C_9H_9O_2N + 2HCl + PtCl_4 + 2H_2O$. Tafeln. F: 177° (Zers.).

 β -Brom- β -[α-pyridyl]-propionsäure $C_8H_8O_2NBr=NC_5H_4\cdot CHBr\cdot CH_2\cdot CO_2H$. B. Aus β -[α-Pyridyl]-acrylsäure beim Erwärmen mit bei 0° gesättigtem Bromwasserstoff-Eisessig im Rohr auf dem Wasserbad (ΕΙΝΗΟΚΝ, A. 265, 228; vgl. Frist, Ar. 240, 187). — Öl. Sehr leicht löslich in Alkohol und Äther (ΕΙ.). — Liefert beim Erwärmen mit Soda-Lösung β -Oxy- β -[α-pyridyl]-propionsäure, β -[α-Pyridyl]-acrylsäure und α-Vinyl-pyridin (ΕΙ.). Einw. von Silbernitrat und von Silberchlorid: F. Bei Einw. von Trimethylamin in kaltem Alkohol entsteht eine Verbindung $C_{16}H_{14}O_4N_2$ (?), deren Chloroaurat bei 182—184° unter Zersetzung schmilzt; mit wäßriger oder alkoholischer Trimethylamin-Lösung bei höherer Temperatur erhält man in der Hauptsache β -[α-Pyridyl]-acrylsäure (F.). — $C_8H_8O_2NBr+HBr$. Nadeln oder Blättchen. F: 163—164° (ΕΙ.; F.). Geht nach dem Schmelzen in das Hydrobromid der β -[α-Pyridyl]-acrylsäure über (F.). — $C_8H_8O_2NBr+HBr+AuBr_3$. Braunschwarze Krystalle. F: 151—160° (Zers.) (F.).

α-Brom-β-[α-pyridyl]-propionsäure $C_8H_8O_2NBr = NC_5H_4 \cdot CH_2 \cdot CHBr \cdot CO_2H$. B. Aus α-Oxy-β-[α-pyridyl]-propionsäure beim Erhitzen mit Phosphortribromid im Rohr in einer Kohlendioxyd-Atmosphäre auf 130—140° (Feist, Ar. 240, 196). — Liefert bei Einw. von Trimethylamin in Alkohol in der Kälte eine Verbindung $C_{16}H_{14}O_4N_2$ (?), deren Chloroaurat bei 185° unter Zersetzung schmilzt. — $C_8H_8O_2NBr + HBr + AuBr_3$. Violette Nadeln. Zersetzt sich beim Erhitzen.

 $\alpha.\beta$ -Dibrom- β -[α -pyridyl]-propionsäure $C_8H_7O_8NBr_2=NC_6H_4\cdot CHBr\cdot CO_2H\cdot B$. Aus β -[α -Pyridyl]-acrylsäure beim Behandeln mit Brom in Eisessig auf dem Wasserbad (Еімнови, A. 265, 227). — Blaßgelbe Krystalle (aus Wasser). F: 127°.

- 2. 4-Äthyl-pyridin-carbonsäure-(3), 4-Äthyl-nicotinsäure C2H3 C8H9O2N, s. nebenstehende Formel. B. Aus 1.4-Dioxy-copyrin (Syst. No. 3535) beim Erhitzen mit Jodwasserstoffsäure und rotem Phosphor im Rohr auf 170° (GABRIEL, COLMAN, B. 35, 1363). Nadeln (aus Essigester). F: 136—136,5°. Sehr leicht löslich in Wasser und Alkohol. Liefert bei der Destillation mit Kalk 4-Äthyl-pyridin. Hydrojodid. Prismen. Sehr leicht löslich. C8H9O2N+HCl+AuCl3. Goldglänzende Schuppen. Mäßig löslich in Wasser. Pikrat. Citronengelbe Nadeln. Schmilzt bei ca. 100°, erstarrt dann wieder und schmilzt bei 139—140°.
- 3. 3-Äthyl-pyridin-carbonsäure-(4), 3-Äthyl-isonicotinsäure
 C₈H₂O₂N, s. nebenstehende Formel. B. Aus 3-Äthyl-4-[β.β'-dioxy-isopropyl]pyridin beim Behandeln mit Chromschwefelsäure auf dem Wasserbad (Koenics,
 B. 35, 1352). Nadeln (aus Alkohol). F: 216—217°. Zersetzt sich beim Erhitzen auf 250—260°. Leicht löslich in Wasser, schwer in Alkohol.
- 4. 2.4 Dimethyl pyridin carbonsäure (3), 2.4 Dimethyl CH₃ nicotinsäure, α.γ Lutidin β carbonsäure C₈H₉O₂N, s. nebenstehende Formel. B. Aus dem Äthylester (s. u.) durch Erhitzen mit alkoh. Alkalilauge (MICHAEL, B. 18, 2023; COLLIE, Soc. 71, 306). Prismen mit 2H₂O (M.). F: 158° N. CH₃ bis 160° (C.). Leicht löslich in Wasser und Alkohol (M.). Liefert beim Erwärmen mit Kaliumpermanganat-Lösung auf dem Wasserbad Pyridin-tricarbonsäure-(2.3.4) (M.). Bei der Destillation des Kaliumsalzes mit Calciumhydroxyd im Wasserstoffstrom entsteht 2.4-Dimethyl-pyridin (M.). C₈H₉O₂N + HCl. Prismen oder Tafeln. F: 166° (M.). 2C₈H₉O₂N + 2HCl + PtCl₄ + 2H₂O. Rotgelbe Prismen. Das wasserfreie Salz schmilzt bei 216° (M.). Mäßig löslich.
- 2.4-Dimethyl-pyridin-carbonsäure-(3)-äthylester $C_{10}H_{13}O_2N=NC_5H_4(CH_3)_2\cdot CO_2\cdot C_3H_5$. B. Beim Erhitzen von 1 Mol Acetessigsäureäthylester mit 1 Mol Acetaldehydammoniak und 1 Mol Acetaldehyd auf 100° (Michael, B. 18, 2022). Aus 6-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester beim Behandeln mit Zinn und starker Salzsäure auf dem Wasserbad (Collie, Soc. 71, 306). Kp: 246—247° (unkorr.) (M.), 246—248° (C.). Wird beim Aufbewahren dunkler (M.). Leicht löslich in verd. Mineralsäuren (M.). $2C_{10}H_{13}O_2N+2HCl+PtCl_4$. Braungelbe Prismen. F: 191° (Zers.) (M.), 208—210° (C.). Sehr schwer löslich in Wasser, leicht in heißem verdünntem Alkohol (M.).
- 2.4-Dimethyl-pyridin-carbonsäure-(3)-amid $C_3H_{10}ON_2 = NC_5H_2(CH_3)_2 \cdot CO \cdot NH_2$. B. Aus β -Cyan- α , γ -lutidin beim Erhitzen mit alkoh. Kalilauge im Rohr auf 180° (E. v. Meyer, J. pr. [2] 78, 520; C. 1908 II, 593). Nadeln mit $^1/_2H_2O$. F: 191°. Liefert beim Erhitzen mit konz. Salzsäure auf 220° 2.4-Dimethyl-pyridin.

- 2.4 Dimethyl pyridin carbonsäure (3) nitril, β Cyan α . γ lutidin $C_8H_8N_8 = NC_8H_8(CH_9)_8 \cdot CN$. B. Aus 6-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril beim Behandeln mit Zink und Salzsäure (E. v. MEYER, J. pr. [2] 78, 519; C. 1908 II, 593). Prismen. F: 53°. Kp: 218°; Kp₁₅: 108°. Liefert beim Erhitzen mit alkoh. Kalilauge im Rohr auf 180° 2.4-Dimethyl-pyridin-carbonsäure-(3)-amid. $C_8H_9N_2 + HCl$. F: 187°. $C_8H_9N_3 + HCl + HgCl_3$. F: 172°. $C_8H_9N_3 + HCl + HgCl_3$. F: 178°. $2C_8H_9N_2 + 2HCl + PtCl_4$. Sohmilzt unter Zersetzung. Pikrat $C_8H_9N_3 + C_9H_3O_7N_3$. Gelbe Prismen. F: 161°. Sohwer löslich.
- 6- Chlor-2.4-dimethyl-pyridin-carbonsäure-(3), 6- Chlor-2.4-dimethyl-nicotinsäure, α' -Chlor- $\alpha.\gamma$ -lutidin- β -carbonsäure $C_8H_6O_2NCl$, s. nebenstehende Formel. B. Aus dem Äthylester (s. u.) beim Kochen mit wäßrig-alkoholischer Kalilauge (Collie, Lean, Soc. 73, 590). Nadeln (aus Wasser). F: 148° (korr.); zersetzt sich bei ca. 190°.
- 6 Chlor 2.4 dimethyl pyridin carbonsäure (3) äthylester C₁₀H₁₂O₂NCl = NC₅HCl(CH₃)₂·CO₂·C₂H₅. B. Aus 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester beim Erhitzen mit Phosphorpentachlorid auf 180° (Collie, Soc. 71, 305; C., Lean, Soc. 73, 589). Kp: 288—290° (korr.) (C.; C., L.). Unlöslich in Wasser (C., L.). Ziemlich beständig gegen Kalilauge (C.; C., L.). Liefert beim Kochen mit Kaliumpermanganat 6-Chlor-pyridintricarbonsäure-(2.3.4) und 6-Chlor-pyridin-tricarbonsäure-(2.3.4)-äthylester-(3) (C., L.). Gibt beim Erwärmen mit Zinn und starker Salzsäure auf dem Wasserbad 2.4-Dimethyl-pyridincarbonsäure-(3)-äthylester (C.).
- 6-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril, 6-Chlor-2.4-dimethyl-8-cyan-pyridin $C_8H_7N_2Cl=NC_8HCl(CH_9)_2\cdot CN$. B. Aus 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril bei Einw. von Phosphorpentachlorid (E. v. Meyer, J. pr. [2] 78, 517; C. 1908 II, 593). Blättchen. Riecht betäubend. F: 65°. Flüchtig mit Wasserdampf. Liefert beim Kochen mit Natriummethylat in Methanol 6-Methoxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril. Mit alkoh. Ammoniak im Rohr bei 180° entsteht 6-Amino-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril.
- 5. 3.5-Dimethyl-pyridin-carbonsäure-(2), 3.5-Dimethyl-CH₃
 picolinsäure, β.β'-Lutidin-α-carbonsäure C₈H₂O₂N, s. nebenstehende Formel. B. Aus 3.5-Dimethyl-2-āthyl-pyridin durch Oxydation mit Kaliumpermanganat-Lösung bei Zimmertemperatur (DÜRKOFF, GÖTTSCH, B. 23, 687, 1111). Wurde nicht ganz rein erhalten. F: 150—151°; leicht löslich in Wasser und Alkohol (D., G., B. 23, 687). Liefert bei der Destillation mit Calciumhydroxyd 3.5-Dimethyl-pyridin (D., G., B. 23, 1111). 2C₈H₂O₂N + 2HCl + PtCl₄ + C₂H₅O. Nadeln (aus Alkohol). Zersetzt sich bei etwa 260°; sehr leicht löslich in Wasser, sehr schwer in Alkohol (D., G., B. 23, 687).
- 6. 2.6-Dimethyl-pyridin-carbonsäure-(3), 2.6-Dimethyl-nicotinsäure, a.a'-Lutidin- β -carbonsäure C₂H₂O₂N, s. nebenstehende Formel. B. Aus 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5) beim CH₃. CH₃ Erhitzen im Wasserstoffstrom (Weiss, B. 19, 1308). Aus dem Äthylester (s. u.) durch Verseifung mit alkoh. Kalilauge (Canzoneri, Spica, G. 14, 451). Nadeln mit $\frac{1}{2}$ H₂O. F: 160° (W.). Sehr leicht löslich in Wasser (W.). Liefert bei der Oxydation mit Kalium-permanganat Pyridin-tricarbonsäure-(2.3.6) (W.). AgC₃H₃O₂N. Krystallinisch (W.). C₃H₃O₂N+HCl. Prismen. Sehr leicht löslich in Wasser; zersetzt sich beim Erwärmen (W.). C₄H₃O₂N+HCl+H₂O. F: ca. 220° (Zers.); sehr leicht löslich in Wasser, ziemlich schwer in Alkohol (C., Sp.). 2C₄H₃O₂N+2HCl+PtCl₄. Rote Krystalle (aus Alkohol + Äther). Sehr leicht löslich in Wasser und Alkohol (C., Sp.). 2C₅H₃O₂N+2HCl+PtCl₄ + 2H₃O. Orangerote Nadeln. Leicht löslich in Wasser (W.).
- 2.6-Dimethyl-pyridin-carbonsāure-(3)-āthylester $C_{10}H_{10}O_2N=NC_5H_4(CH_3)_2\cdot CO_2\cdot C_2H_5$. Beim Erhitzen von Acetessigsäure-āthylester mit Formamid und Zinkchlorid auf 100° (Canzoneri, Spica, G. 14, 449). Aus 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-monoāthylester beim Erhitzen (Weiss, B. 19, 1307). Aus 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diāthylester beim Erhitzen mit Palladiummohr im Kohlendioxydstrom (Knoevenagel, Fuchs, B. 36, 2857). Neben anderen Produkten bei der Destillation von 2.6-Dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diāthylester (Guareschi, Grande, C. 1899 II, 440; vgl. Kn., F., B. 35, 1789; 36, 2855). Aus 2.4.6-Trimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diāthylester beim Erhitzen auf 340—350°, neben anderen Produkten (Gu., Gr.). Kp: 255—257° (Gu., Gr.); Kp: ca. 260° (C., Sr.); Kp₂₀: 140—142° (Kn., F.).

4 - Chlor - 2.6 - dimethyl - pyridin - carbonsäure - (3), 4 - Chlor-2.6 - dimethyl - nicotinsäure, γ - Chlor - α.α' - lutidin - β - carbonsäure C₈H₈O₂NCl, s. nebenstehende Formel. B. Aus 4-Oxy-2.6-dimethyl-pyridin-carbonsäure-(3) beim Erwärmen mit Phosphoroxychlorid und Phosphoroxychlorid und Phosphoroxychlorid auf 160° (Sedgwick, Collie, Soc. 67, 407). Aus dem Äthylester (s. u.) durch Kochen mit verd. Kalilauge (Michaelis, Hanisch, B. 35, 3159) oder wäßrig-alkoholischer Natronlauge (C., Soc. 59, 176). — Krystalle mit 2 H₂O (aus Wasser oder verd. Alkohol). F: 168—170° (M., H.), 183° (korr.) (S., C.). Schwer löslich in Chloroform, unlöslich in vielen anderen organischen Lösungsmitteln (M., H.). — Liefert beim Erhitzen 4-Chlor-2.6-dimethyl-pyridin (C.; M., H.). — Kupfersalz. Purpurrot (S., C.). Unlöslich in Wasser. —AgC₈H₇O₂NCl. Niederschlag. Zersetzt sich heftig beim Erhitzen (S., C.).

4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester C₁₀H₁₂O₂NCl = NC₅HCl(CH₃)₂·CO₃·C₄H₅. B. Aus β-Amino-crotonsäure-äthylester beim Erwärmen mit Phosphoroxychlorid in Benzol (Michaelis, v. Arend, B. 34, 2284; M., Hanisch, B. 35, 3156; M., A. 366, 338). Aus 4-Oxy-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester beim Erhitzen mit Phosphorpentachlorid auf 160° (Collie, Soc. 59, 175) oder beim Erhitzen mit Phosphoroxychlorid (M., A. 366, 340). — Öl. Kp₇₆₀: 259° (unkorr.; geringe Zersetzung) (M.); Kp: 263—264° (korr.) (C.); Kp₁₂: 132°; D₁₇: 1,155; n¹⁷: 1,5098 (M., v. A., B. 34, 2284; M.). Leicht löslich in Alkohol, Äther und Benzol, fast unlöslich in Wasser (M.). — Liefert beim Erhitzen mit rauchender Salzsäure auf 150° 4-Oxy-2.6-dimethyl pyridin (M., H.). Beim Erwärmen mit verd. Alkalilauge entsteht 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3) (M., H.; vgl. C.), mit konz. Alkalilauge 4-Oxy-2.6-dimethyl-pyridin-carbonsäure-(3) (M.). Liefert beim Erhitzen mit Methylbromid im Rohr auf dem Wasserbad 4-Chlor-2.6-dimethyl-pyridin-[carbonsäure-(3)-äthylester]-brommethylat (M., H.), beim Erwärmen mit Methyljodid im Rohr auf 95—100° 4-Jod-2.6-dimethyl-pyridin-[carbonsäure-(3)-äthylester]-jodmethylat (M., H.; M.). Erhitzt man mit Dimethylsulfat auf dem Wasserbad und versetzt dann die wäßr. Lösung mit Kaliumhydrosulfid oder Natriumthiosulfat, so erhält man 1.2.6-Trimethyl-thiopyridon-(4)-carbonsäure-(3)-äthylester (Syst. No. 3366) (M.). Beim Erhitzen mit Anilin im Rohr auf 180° entsteht 4-Anilino-2.6-dimethyl-pyridin (M., H.). Beim Erhitzen mit Phenylhydrazin und Behandlung des Reaktionsprodukts mit heißem Wasser, Alkohol oder verd. Natronlauge erhält man 4-Phenylhydrazino-2.6-dimethyl-pyridin-carbonsäure-(3) (M., v. A., B. 36, 517).

C₁₀H₁₂O₂NCl+HCl. Hygroskopisch, krystallinisch. F: ca. 134° (MICHAELIS, v. AREND, B. 34, 2285; M., HANISCH, B. 35, 3157). Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther. — Chloroaurat. F: 116—117° (M., H.). — C₁₀H₁₂O₂NCl+HCl+HgCl₂. Krystalle. F: 112—113° (M., v. A., B. 34, 2285; M., H.). — 2C₁₀H₁₂O₂NCl+2 HCl+PtCl₄+4H₂O. Rote Krystalle (aus verd. Salzsäure). F: 196—198° (M., v. A., B. 34, 2285). Verliert das Krystallwasser bei 115° (M., H.). Leicht löslich in heißem Wasser und Alkohol (M., v. A.). — Pikrat. Gelbe Krystalle. F: 129° (M., H.).

4 - Chlor - 2.6 - dimethyl -pyridin-[carbonsäure-(3)-āthylester]-hydroxymethylat $C_{11}H_{16}O_3NCl = (HO)(CH_3)NC_5HCl(CH_3)_2 \cdot CO_2 \cdot C_2H_5$. B. Das Bromid erhält man beim Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-āthylester mit Methylbromid (MICHAELIS, HANISCH, B. 35, 3157). Das Jodid entsteht beim Erwärmen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-āthylester mit Dimethylsulfat auf dem Wasserbad, Lösen des entstandenen Salzes in Wasser und Versetzen der Lösung mit Kaliumjodid (M., A. 366, 341). — Aus dem Jodid oder dem methylschwefelsauren Salz erhält man beim Behandeln mit Kaliumhydrosulfid 1.2.6-Trimethyl-thiopyridon-(4)-carbonsäure-(3)-āthylester (Syst. No. 3366), beim Behandeln mit Natriumdisulfit 2.6-Dimethyl-pyridin-[carbonsäure-(3)-āthylester]-sulfonsäure-(4)-methylbetain (Syst. No. 3383) (M., A. 366, 343, 346). — Bromid $C_{11}H_{15}O_2NCl$ -Br. Krystalle. F: 198° (M., H.). Die wäßr. Lösung wird bei Einw. von Silberoxyd rot. — Jodid $C_{11}H_{15}O_2NCl$ -I. Nadeln. Färbt sich bald rötlich (M.). F: 137°. Sehr leicht löslich in Wasser, Alkohol und Chloroform, unlöslich in Äther.

4-Jod-2.6-dimethyl-pyridin-[carbonsäure-(3)-äthylester]-hydroxymethylat $C_{11}H_{16}O_3NI=(HO)(CH_3)NC_5HI(CH_3)_2\cdot CO_2\cdot C_2H_5$. — Jodid $C_{11}H_{15}O_2NI\cdot I$. B. Aus 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester beim Erhitzen mit Methyljodid im Rohr auf 95—100° (MICHAELIS, HANISCH, B. 35, 3157; M., A. 366, 342). Nadeln oder blaßgelbe Prismen (aus Wasser). F: 194°. Die wäßr. Lösung wird bei Einw. von Silberoxyd rot.

7. 4.6-Dimethyl-pyridin-carbonsäure-(2), 4.6-Dimethyl-picolinsäure, a.y-Lutidin-a'-carbonsäure C₈H₂O₂N, s. nebenstehende Formel. B. Aus 2.4.6-Trimethyl-pyridin durch Oxydation mit Kaliumpermanganat in Wasser, anfangs in der Kälte, dann auf dem Wasserbad (Altar, A. 237, 183). Aus 2.4-Dimethyl-6-styryl-pyridin beim Erwärmen mit Salpetersäure auf dem Wasserbad (Koenigs, v. Bentheim, B. 38, 3908). — Krystalle mit 1/2 H₂O

(aus Alkohol) (A.). F: 157° (K., v. B.). Sehr leicht löslich in Wasser und Alkohol, ziemlich schwer in Äther (A.). — Gibt mit Ferrosulfat eine gelbe bezw. rotgelbe Färbung (K., v. B.); A.). — Kupfersalz. Blaugrüner, krystalliner Niederschlag (K., v. B.). — C₈H₂O₂N + HCl + H₂O. Nadeln. Sehr leicht löslich in Wasser (A.). — 2C₈H₂O₂N + 2HCl + PtCl₄ + 4C₂H₆O (aus Alkohol). F: 221° (A.). Verliert 2 Mol Alkohol an der Luft, den Rest bei 120° (A.; K., v. B.).

4. Carbonsäuren $C_9H_{11}O_2N$.

1. $\alpha - [6 - Methyl - pyridyl - (3)] - propionsäure, <math>\alpha - Pi - HO_2C \cdot CH(CH_3) \cdot Colin - \beta' - [\alpha - propionsäure] \cdot C_9H_{11}O_2N$, s. nebenstehende Formel.

α-Brom-α-[6-methyl-pyridyl-(3)]-propionsäure, α-Picolin-β'-[α-brom-α-propionsäure] $C_9H_{10}O_2NBr = NC_5H_3(CH_3)\cdot CBr(CH_3)\cdot CO_2H$. B. Aus α-Oxy-α-[6-methyl-pyridyl-(3)]-propionsäure beim Behandeln mit Phosphortribromid in Schwefelkohlenstoff, Abdestillieren des Lösungsmittels und Erhitzen des Rückstands auf 130—140° (KNUDSEN, B. 28, 1768). Aus α-Picolin-β'-[α-acrylsäure] bei Einw. von Bromwasserstoffsäure (Kn.).— Sehr zersetzlich. — Bei Einw. von Barytwasser entsteht α-Picolin-β'-[α-acrylsäure]. Liefert bei schwachem Erwärmen mit Dimethylamin im Rohr α-Picolin-β'-[α-acrylsäure] sowie 2-Methyl-5-[α-dimethylamino-āthyl]-pyridin. Beim Erwärmen mit überschüssiger Trimethylamin-Lösung entstehen α-Picolin-β'-[α-acrylsäure], eine Verbindung $C_{11}H_{18}N_2$ (s. u.) und eine Verbindung $C_{12}H_{18}O_2N_3$ (s. u.).— $C_0H_{10}O_2NBr+AuBr_2$. Dunkelviolette Tafeln. F: 156—157°. Sehr leicht löslich in Alkohol, ziemlich schwer in Wasser.

Verbindung $C_{11}H_{18}N_2$. B. Neben anderen Produkten aus α-Picolin-β'-[α-brom-α-propionsāure] beim Erwärmen mit überschüssiger Trimethylamin-Lösung im Rohr (KNUDSEN, B. 28, 1770). — Öl. Flüchtig mit Wasserdampf. Leicht löslich in Wasser. — $C_{11}H_{18}N_2+2$ AuCl₃. Krystalliner Niederschlag. F: 136—138°. — $C_{11}H_{18}N_2+2$ HCl +2 AuCl₃. Blättchen. F: 159—160°.

Verbindung $C_{12}H_{18}O_2N_2$. B. Neben anderen Produkten aus α -Picolin- β' - $[\alpha$ -brom- α -propionsāure] beim Ērwārmen mit überschüssiger Trimethylamin-Lōsung im Rohr (KNUDSEN, B. 28, 1770). — Nicht flüchtig mit Wasserdampf. — $C_{12}H_{18}O_2N_2 + 2\,\mathrm{AuCl}_3$. Krystallinisch. F: 141—143°. Zersetzt sieh bei 195—200° unter Entwicklung von Kohlendioxyd.

- 2. 6-Methyl-4-āthyl-pyridin-carbonsāure-(2), 6-Methyl-4-āthyl-picolinsāure $C_9H_{11}O_2N$, s. nebenstehende Formel. B. Aus 2.6-Dimethyl-4-āthyl-pyridin bei der Oxydation mit Kaliumpermanganat (Altar, A. 237, 190). $2C_9H_{11}O_2N + 2HCl + PtCl_4$. Rote Prismen. F: 194° bis 195° (Zers.).
- 3. 2.3.4 Trimethyl-pyridin-carbonsäure-(5), 4.5.6-Trimethyl-nicotinsäure C₂H₁₁O₂N, s. nebenstehende Formel. B. Aus
 4.5.6-Trimethyl-pyridin-dicarbonsäure-(2.3) beim Schmelzen oder beim
 Erhitzen mit der 10-fachen Menge Wasser auf 160—170° (Wolff, A. 322,
 373). Prismen (aus verd. Alkohol). F: 257° (Gasentwicklung). Leicht löslich in Wasser.
- 4. 2.4.6-Trimethyl-pyridin-carbonsäure-(3), 2.4.6-Trimethyl-nicotinsäure, Kollidin-carbonsäure-(3) C₉H₁₁O₂N,
 s. nebenstehende Formel. B. Aus 2.4.6-Trimethyl-pyridin-dicarbonsäure-(3.5)
 beim Erhitzen auf hohe Temperatur (Michael, A. 225, 122) oder bei
 vorsichtigem Erhitzen mit Silberpulver (Koenigs, Mengel, B. 37, 1336). Aus dem Äthylester (s. u.) beim Erwärmen mit alkoh. Kalilauge (Mi., A. 225, 133). Krystalle mit 2 H₂O
 (aus Wasser). Verliert das Krystallwasser unterhalb 100° (Mi.). Schmilzt wasserhaltig bei
 100°, wasserfrei bei 155° (Mi.), 153—155° (K., Me.). Sehr leicht löslich (Mi.; K., Me.). —
 Liefert bei der Oxydation mit Kaliumpermanganat 4.6(oder 2.4)-Dimethyl-pyridin-dicarbonsäure-(2.3 oder 3.6), 4-Methyl-pyridin-tricarbonsäure-(2.3.6) und Pyridin-tetracarbonsäure(2.3.4.6) (Mi.). KC₂H₁₀O₂N. Nadeln (aus Alkohol). Sehr leicht löslich in Wasser, löslich in Alkohol; zerfließt an der Luft (Mi.). Ca(C₂H₁₀O₂N)₃ + H₂O. Pulver. Löslich in Wasser (Mi.). C₂H₁₁O₂N + HCl. Nadeln oder Prismen. Leicht löslich in Wasser und Alkohol (Mi.). 2 C₃H₁₁O₃N + 2 HCl. + PtCl₄ + H₂O. Gelbrote Tafeln. Schmilzt unter Aufschäumen bei 198° (Mi.), 202° (K., Me.). Leicht löslich in Wasser, schwer in Alkohol (Mi.).
- 2.4.6-Trimethyl-pyridin-carbonsäure-(3)-äthylester $C_{11}H_{15}O_2N=NC_5H(CH_3)_2\cdot CO_2\cdot C_2H_5$. B. Aus 2.4.6-Trimethyl-1.4-dihydro-pyridin-carbonsäure-(3)-äthylester durch Behandeln mit nitrosen Gasen in Alkohol (Hantzsch, A. 215, 42). Aus 2.4.6-Trimethyl-pyridin-dicarbonsäure-(3.5)-monoäthylester beim Erhitzen (Michael, A. 225, 131).

- Öl. Färbt sich beim Aufbewahren gelb (M.). Kp: 255—256° (unkorr.); D¹⁵: 1,0315 (M.). Leicht löslich in Äther, Alkohol, Benzol und Chloroform (M.). 2C₁₁H₁₅O₂N + 2HCl + PtCl₄. Rotgelbe Prismen. F: 193° (M.), 194° (H.). Leicht löslich in Wasser (M.; H.), ziemlich schwer in Alkohol, unlöslich in Äther (M.).
- 2.4.6-Trimethyl-pyridin-carbonsäure-(3)-hydroxymethylat, Ammoniumbase des Kollidin-carbonsäure-(3)-methylbetains $C_{10}H_{15}O_3N = (HO)(CH_3)NC_5H(CH_3)_3 \cdot CO_2H$. B. Das Anhydrid (s. u.) entsteht aus 2.4.6-Trimethyl-pyridin-[carbonsäure-(3)-äthylester]-jodmethylat bei Einw. von Silberoxyd (Hantzsch, B. 19, 35). Chlorid $C_{10}H_{14}O_2N \cdot Cl + H_2O$.
- Anhydrid, Kollidin carbonsäure (3) methylbetain $C_{10}H_{13}O_2N = CH_3 \cdot + C_5H(CH_3)_3 \cdot CO \cdot O$. B. s. o. bei 2.4.6-Trimethyl-pyridin-carbonsäure-(3)-hydroxymethylat. Krystalle mit $3H_2O$. Wird bei 86^0 langsam wasserfrei; schmilzt, rasch erhitzt, im Krystallwasser (Hantzsch, B. 19, 35). Zersetzt sich völlig oberhalb 200^0 . Ist gegen siedende Kalilauge beständig.
- 2.4.6 Trimethyl pyridin [carbonsäure (3) äthylester] hydroxymethylat $C_{12}H_{19}O_3N = (HO)(CH_3)NC_5H(CH_3)_3 \cdot CO_2 \cdot C_2H_5$. Jodid $C_{12}H_{19}O_2N \cdot I$. B. Aus 2.4.6-Trimethyl-pyridin-carbonsäure-(3)-āthylester bei Einw. von Methyljodid bei Zimmertemperatur (Michael, A. 225, 133). Nadeln. F: 128° (M.). Unlöslich in Äther, leicht löslich in Alkohol, sehr leicht in Wasser (M.). Liefert beim Behandeln mit Silberoxyd Kollidin-carbonsäure-(3)-methylbetain (Hantzsch, B. 19, 35).
- 5. 5 Methyl 4.5 dihydro [bornyleno 3'.2':2.3 pyrrol] carbon-säure (4) 1), 2.4 Dimethyl 4.7 isopropyliden 2.3.4.5.6.7 hexahydro-indol carbonsäure (3), ,,2 Methyl camphen $_{\rm H_2C-C(CH_3)-C-CH-CO_2H}$ pyrrolin carbonsäure (3)" $_{\rm C_{14}H_{21}O_2N}$, s. nebenstehende Formel. B. Aus dem Äthylester (s. u.) beim Erhitzen mit alkoh. Kalilauge im Rohr auf 120° (DUDEN, TREFF, A. 313, 55). $_{\rm Cu(C_{14}H_{20}O_2N)_2}$. Hellgrüne Krystalle (aus Benzol).

Äthylester $C_{16}H_{25}O_2N=NC_{13}H_{20}\cdot CO_2\cdot C_2H_5$. B. Aus 2.4-Dimethyl-4.7-isopropyliden-4.5.6.7-tetrahydro-indol-carbonsäure-(3)-äthylester (S. 61) durch Behandeln mit Zinkstaub in Eisessig (Duden, Treff, A. 313, 54). — Dickflüssiges Öl von pfefferminzartigem Geruch. Kp: 293—295°; Kp₂₀₇: 245—246°. Ziemlich leicht flüchtig mit Wasserdampf. — Liefert bei der Destillation mit Silbersulfat 2.4-Dimethyl-4.7-isopropyliden-4.5.6.7-tetrahydro-indol-carbonsäure-(3)-äthylester. Bei der Reduktion mit Natriumamalgam in schwach saurer Lösung entstehen Nadeln vom Schmelzpunkt 121°.

5. Monocarbonsäuren $C_n H_{2n-9} O_2 N$.

1. Carbonsäuren $C_8H_7O_2N$.

1. β - [α - Pyridyl] - acrylsäure, α - Picolylidenessigsäure C₈H₇O₂N, s. nebenstehende Formel. B. Aus 2·[γ·γ·γ·Trichlor-β-oxy-propyl]-pyridin durch Kochen mit alkoh. Kalilauge (Einhorn, Liebeneder, B. 20, 1593; Ei., A. 265, 222; Boehringer & Söhne, D. R. P. 42987; Frdl. 1, 194). — Nadeln (aus Wasser). F: 202—203° (Zers.) (Ei.). Leicht löslich in Alkohol, fast unlöslich in kaltem Wasser (Ei.). — Liefert bei der Reduktion mit Natrium und siedendem Alkohol β-[α-Piperidyl]-propionsäure (Löffler, Kaim, B. 42, 97). Beim Kochen mit Jodwasserstoffsäure (D: 1,96) und Eisessig in Gegenwart von rotem Phosphor entsteht β-[α-Pyridyl]-propionsäure (Feist, Ar. 240, 185). Gibt beim Erwärmen mit Brom in Eisessig α.β-Dibrom-β-pyridyl-propionsäure (Ei.). Beim Erwärmen mit Bromwasserstoff-Eisessig im Rohr auf 100° erhält man β-Brom-β-[α-pyridyl]-propionsäure (Ei.). — AgC₈H₆O₂N. Krystalle (aus Wasser) (Ei.). — Ca(C₈H₆O₂N)₂. Nadeln (aus verd. Alkohol). Sehr leicht löslich in Wasser, fast unlöslich in absol. Alkohol (Ei.). — C₈H₇O₂N + HCl. Krystalle (aus absol. Alkohol). F: 220° (Zers.) (Ei., L.). Spaltet bei mehrfachem Umkrystallisieren aus absol. Alkohol Chlorwasserstoff ab (F.). —

¹⁾ Zur Stellungsbeseichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

·CO2H

C₂H₇O₂N + HBr. Krystalle (aus Eisessig). F: 222-223° (Ei.). — C₂H₇O₂N + HCl + AuCl₃. Hellgelbe Nadeln (aus Wasser). F: 194—195° (Ei.). — $2C_2H_7O_2N + 2HCl + PtCl_4$. Rotgelbe Prismen. F: 209—210° (Ei.), 213° (Zers.) (F., Ar. 240, 193). Mäßig löslich (Ei.).

 β -[α -Pyridyl]-acrylsäure-methylester $C_9H_9O_2N=NC_5H_4\cdot CH:CH\cdot CO_2\cdot CH_3$. B. Aus β -[α -Pyridyl]-acrylsäure durch Kochen mit methylalkoholischer Salzsäure (Einhorn, A. 265, 225). — $C_9H_9O_2N+HCl$. Krystalle (aus Methanol). F: 185—186°.

β-[α-Pyridyl]-acrylsäure-äthylester $C_{10}H_{11}O_2N=NC_5H_4\cdot CH:CH\cdot CO_2\cdot C_2H_5$. B. Aus β-[α-Pyridyl]-acrylsäure durch Erhitzen mit alkoh. Salzsäure (Löffler, Flügel, B. 42, 3423; vgl. Einhorn, A. 265, 226). — Erstarrt bei ca. 4° zu Nadeln, schmilzt bei Körpertemperatur (L., F.; Ei.). Kp₂₅: 161° (L., F.). — Liefert bei der Reduktion mit Natrium und heißem Alkohol 2-[γ-Oxy-propyl]-piperidin (L., F.). — $C_{10}H_{11}O_2N + HCl + AuCl_3$. Gelbe Nadeln. F: 149° (L., F.). — $2C_{10}H_{11}O_2N + 2HCl + PtCl_4$. Gelbe Nadeln. F: 114° (L., F.).

 β -[α -Pyridyl]-acrylsäure-hydroxymethylat $C_9H_{11}O_3N=(HO)(CH_3)NC_5H_4\cdot CH:CH\cdot CO_2H.$ — Bromid $C_9H_{10}O_2N\cdot Br.$ Krystalle (aus Eisessig). F: 242° (Zers.) (EINHORN, A. 265, 226). Sehr leicht löslich in Wasser, schwer in Eisessig, fast unlöslich in Alkohol. — Jodid $C_9H_{10}O_2N\cdot I.$ Gelbe Nadeln (aus verd. Alkohol). F: 219—220° (Zers.) (EI.).

- 2. 2-Vinyl-pyridin-carbonsäure-(3), 2-Vinyl-nicotinsäure $C_8H_7O_8N$, s. nebenstehende Formel.
- 2-[$\alpha.\beta$ -Dichlor-vinyl]-pyridin-carbonsäure-(8), 2-[$\alpha.\beta$ -Dichlor-vinyl]-nicotinsäure $C_8H_5O_2NCl_2=NC_5H_3(CCl:CHCl)\cdot CO_2H$. B. Aus Dichlorpyrindon (Bd. XXI, S. 301) beim Lösen in verd. Natronlauge oder in Barytwasser (Zincke, Wiederhold, A. 290, 377). Gelbliche Nädelchen oder Körner (aus Benzol). F: 139°. Leicht löslich in Alkohol, schwerer in Äther. Löslich in Natriumacetat-Lösung und in Salzsäure.
- 2 Trichlorvinyl pyridin carbonsäure (3), 2 Trichlorvinyl nicotinsäure $C_0H_1O_2NCl_3 = NC_5H_3(CCl:CCl_2) \cdot CO_2H$. B. Man sättigt eine Lösung von Dichlorpyrindon (Bd. XXI, S. 301) in Chloroform mit Chlor und behandelt das entstehende harzige Reaktionsprodukt mit Natronlauge und etwas Alkohol (ZINCKE, WIEDERHOLD, A. 290, 376). Nadeln (aus Benzol). F: 153—154°. Leicht löslich in Alkohol und Eisessig. Löslich in Natriumacetat-Lösung und in überschüssiger Salzsäure.

2. Carbonsäuren C.H.O.N.

- 1. β -[6-Methyl-pyridyl-(2)]-acrylsäure, α -Picolin- α' -[β -acrylsäure] $C_0H_0O_2N$, s. nebenstehende Formel. B. Aus HO_2C-CH:CH. N -CH_3 alkoh. Kalilauge (EINHORN, GILBODY, B. 26, 1419). Tafeln (aus Alkohol). F: 169,5°. Sublimierbar. Schwer löslich in kaltem Wasser, leichter in warmem Wasser und in Benzol. $C_0H_0O_2N + HCl$. Blättchen (aus absol. Alkohol). F: 234° (Zers.). Sehr leicht löslich in Wasser und Alkohol, fast unlöslich in Benzol und Äther. $2C_0H_0O_2N + 2HCl + PtCl_4$. Gelbe Krystalle (aus Wasser). F: 231° (Zers.).
- 2. $\alpha-[6-Methyl-pyridyl-(3)]-acrylsäure, \alpha-Picolin-Ho_2C\cdot Q(:CH_2)\cdot \beta'-[\alpha-acrylsäure]$ $C_9H_9O_2N$, s. nebenstehende Formel. B. Aus dem Bariumsalz der α -Brom- α -[6-methyl-pyridyl-(3)]-propionsäure durch Erhitzen mit Wasser (Knudsen, B. 28, 1768). Brauner Sirup. Liefert bei der Einw. von Bromwasserstoffsäure α -Brom- α -[6-methyl-pyridyl-(3)]-propionsäure. $C_9H_9O_2N+AuCl_2$. Stäbchen. F: 167—168°.
- 3. Indolin carbonsaure (2) $C_0H_0O_2N$, s. nebenstehende Formel.

1 - Benzoyl - indolin - carbonsäure - (2) $C_{16}H_{18}O_2N =$

NH OH · CO 3H

 C_0H_4 C_0H_5 C_0H_6

3. Carbonsauren $C_{10}H_{11}O_2N$.

- 1. β-[5-Åthyl-pyridyl-(2)]-acrylsäure C₁₀H₁₁O₂N, C₂H₅.

 s. nebenstehende Formel. B. Aus 5-Åthyl-2-[γ.γ.γ-trichlor-β-oxy-propyl]-pyridin durch Kochen mit alkoh. Kalilauge (Schubert, B.

 27, 89). Nadeln (aus Wasser). F: 137°. C₁₀H₁₁O₂N + HCl + H₂O. Tafeln. Schwärzt sich bei 170°. F: 195—197° (Zers.). Leicht löslich in Alkohol und Wasser. C₁₀H₁₁O₂N + HCl + AuCl₂. Prismen (aus verd. Salzsäure). F: 98°. Quecksilberchlorid-Doppelsalz. Gelbliche Blättchen (aus Wasser). F: 142°.
- 2. 1.2.3.4 Tetrahydro-chinolin-carbonsäure -(4). 1.2.3.4 Tetrahydro-cinchoninsäure C₁₀H₁₁O₂N, s. nebenstehende Formel. B. Durch allmähliches Erhitzen von Cinchoninsäure mit überschüssigem Zinn und konz. Salzsäure (Weidel, M. 2, 29; 3, 61). Das Hydrochlorid liefert bei der Destillation mit Zinkstaub in Wasserstoff-Atmosphäre 4-Methylchinolin (W., M. 3, 75). Einw. von Schwefelsäure: W., M. 3, 74. Das Hydrochlorid gibt mit Eisenchlorid in wäßr. Lösung zuerst eine braungrüne, dann eine grüne Färbung; die Lösung wird bei längerem Aufbewahren farblos (W., M. 2, 31). C₁₀H₁₁O₂N + HCl + 1,5 H₂O. Krystalle (aus Wasser). Monoklin prismatisch (Březina, M. 2, 30; vgl. Groth, Ch. Kr. 5, 796). Leicht löslich in Wasser, löslich in Alkohol. 2C₁₀H₁₁O₂N + 2HCl + PtCl₄. Dunkelgelbe Blättchen (W., M. 2, 32).
- N-Methyl-tetrahydrocinchoninsäure $C_{11}H_{13}O_2N=C_6H_4$ $CH(CO_2H)\cdot CH_2$. B. Aus dem Hydrochlorid der 1.2.3.4-Tetrahydro-cinchoninsäure durch Erhitzen mit Methyljodid und wenig Methanol im Rohr auf 100° (Weidel, M. 3, 66). Bitter schmeckende Prismen mit 2H₂O (aus Alkohol). Gibt 1 Mol Krystallwasser im Exsiccator über Schwefelsäure ab. F: 169—170° (unkorr.; Zers.). Sehr leicht löslich in Alkohol, sehr schwer in Benzol, Äther und Chloroform. Rötet Lackmus sehr schwach. Liefert beim Erhitzen auf ca. 190° das Anhydrid (s. u.) (W., HAZURA, M. 5, 643). $C_{11}H_{13}O_2N + HCl + H_2O$. Krystalle (aus sehr verd. Salzsäure). Monoklin prismatisch (Březina, M. 3, 68; vgl. Groth, Ch. Kr. 5, 797). $C_{11}H_{13}O_2N + HI + H_2O$. Krystalle (aus Wasser). Monoklin prismatisch (Bř.; vgl. Groth, Ch. Kr. 5, 797). $2C_{11}H_{13}O_2N + 2HCl + PtCl_4$. Gelbrote Krystalle (W.).
- [N Methyl tetrahydrocinchoninsäure] anhydrid $C_{22}H_{24}O_3N_2 = (CH_3 \cdot NC_9H_9 \cdot CO)_2O$. B. Durch Erhitzen von N-Methyl-tetrahydrocinchoninsäure auf ca. 190° (Weidel, Hazura, M. 5, 643). Öl. Kp₂₄₄: 297—299° (unkorr.). Leicht löslich in Alkohol und Äther, fast unlöslich in Wasser; leicht löslich in verd. Säuren. Färbt sich beim Aufbewahren an feuchter Luft blau. Gibt mit Salpetersäure eine blutrote Färbung. Liefert beim Erhitzen mit konz. Salzsäure auf 150° Methylchlorid und Tetrahydrocinchoninsäure. Beim Erhitzen mit Kaliumhydroxyd auf 150—180° erhält man eine Säure $C_{11}H_{13}O_2N$ (s. u.).

Säure $C_{11}H_{13}O_3N$, Homohydrocinchoninsäure. B. Aus [N-Methyl-tetrahydrocinchoninsäure]-anhydrid durch Erhitzen mit Kaliumhydroxyd auf 150—180° (Weidel, Hazura, M. 5, 646). — Krystalle (aus Ligroin). F: 125° (unkorr.). Leicht löslich in Alkohol, Äther und Benzol, unlöslich in Wasser. — Färbt sich beim Aufbewahren an feuchter Luft blaurot; zersetzt sich bei längerem Aufbewahren vollständig. Gibt mit Salpetersäure eine blutrote Färbung. Liefert beim Erhitzen mit konz. Schwefelsäure auf 170—190° eine Sulfonsäure $C_{10}H_{9}O_3NS+H_{2}O$ (gelbliche Blättchen; zersetzt sich beim Erhitzen; leicht löslich in heißem Wasser). — $C_{11}H_{13}O_3N+HCl+H_{2}O$. Rhombisch bipyramidale Krystalle (Březina; vgl. Groth, Ch. Kr. 5, 798). Leicht löslich in Wasser.

Hydroxymethylat $C_{12}H_{16}O_2N\cdot OH$. B. Das Jodid entsteht aus der Säure $C_{11}H_{12}O_2N$ (s. o.) durch Erhitzen mit Methyljodid und wenig Methanol im Rohr auf 100° (Weidel, Hazura, M. 5, 649). — Jodid $C_{12}H_{10}O_2N\cdot I+H_2O$. Gelbliche Krystalle (aus Wasser). Menoklin prismatisch (Bž.; vgl. *Groth*, Ch. Kr. 5, 798). Liefert bei der Einw. von Silberoxyd in Wasser das Anhydrid $C_{12}H_{16}O_2N$ (Prismen mit $1H_2O_3$); sehr leicht löslich in Wasser).

N-Acetyl-tetrahydrocinchoninsäure $C_{12}H_{13}O_3N=C_0H_4$ $CH(CO_2H)\cdot CH_2$. B. Aus dem Hydrochlorid der 1.2.3.4-Tetrahydro-cinchoninsäure durch Erhitzen mit viel Acetylchlorid im Rohr auf 100° (Weidel, M. 3, 62). — Krystalle (aus Wasser). Rhombisch bipyramidal (Březina; vgl. Groth, Ch. Kr. 5, 797). Erweicht bei 157°. F: 164,5° (unkorr.). Schwer löslich in Alkohol und Wasser in der Kälte, ziemlich leicht in der Hitze, fast unlöslich in Äther. — $Ca(C_{12}H_{12}O_3N)_3 + 2H_2O$. Prismen. Leicht löslich in Wasser.

N-Nitroso-tetrahydrocinchoninsäure $C_{10}H_{10}O_3N_3=C_6H_4$ $CH(CO_3H)\cdot CH_2$. B. Aus dem Hydrochlorid der 1.2.3.4-Tetrahydro-cinchoninsäure durch Einw. von Silbernitrit in heißer wäßriger Lösung (Weidel, M. 3, 73). — Gelbliche Nadeln (aus Wasser). F: 1370 (unkorr.). Leicht löslich in Alkohol und heißem Wasser, schwerer in Äther.

3. 1.2.3.4 - Tetrahydro - chinolin - carbonsäure - (5)

C₁₀H₁₁O₂N, s. nebenstehende Formel. B. Aus Chinolin-carbonsäure-(5)

durch Reduktion mit Zinn und Salzsäure auf dem Wasserbad (O. FISCHER,
KÖRNER, B. 17, 765; vgl. Lellmann, Alt, A. 237, 317). Aus 8-Bromchinolin-carbonsäure-(5) durch Reduktion mit Zinn und Salzsäure auf dem Wasserbad (L.,
A., A. 237, 315). — Nadeln oder Blättchen (aus verd. Alkohol). F: 146—147° (F., K.; L.,
A.). — C₁₀H₁₁O₂N + HCl + H₂O. Nadeln (L., A.).

1-Methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-(5), Kairolin-carbonsäure-(5) $C_{11}H_{13}O_2N = HO_2C \cdot C_6H_3 \cdot CH_2 \cdot B$. Aus 1.2.3.4-Tetrahydro-chinolin-carbonsäure-(5) durch Erhitzen mit Methyljodid im Rohr auf 140—150° (O. FISCHER, KÖRNER, B. 17, 766). — Nadeln (aus verd. Alkohol). F: 164°. Leicht löslich in Alkohol, schwerer in Äther, schwer in Wasser.

1 - Nitroso - 1.2.3.4 - tetrahydro - chinolin - carbonsäure - (5) $C_{10}H_{10}O_3N_2 = HO_2C \cdot C_6H_2 \cdot CH_2 \cdot B$. Aus 1.2.3.4 - Tetrahydro - chinolin - carbonsäure - (5) durch Einw. von Alkalinitrit in saurer Lösung (O. Fischer, Körner, B. 17, 766; Lellmann, Alt, A. 237, 316). — Gelbe Prismen (aus verd. Alkohol). F: 186° (Zers.) (L., A.).

4. 1.2.3.4 - Tetrahydro - chinolin - carbonsäure - (6)
C₁₀H₁₁O₂N, s. nebenstehende Formel. B. Durch Reduktion von Chinolin-carbonsäure-(6) mit Zinn und Salzsäure bei 40—50° (O. Fischer, Endres, B. 35, 2613). — Nadeln. Zersetzt sich bei ca. 170°. Leicht löslich in Alkohol, Äther und Benzol, schwer in kaltem Wasser.

1-Methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-(6), Kairolin-carbonsäure-(6) $C_{11}H_{13}O_2N = HO_2C \cdot C_0H_3 \cdot CH_2 - CH_2$. B. Aus dem Kaliumsalz der 1.2.3.4-Tetrahydro-chinolin-carbonsäure-(6) durch Erhitzen mit Methyljodid in Methanol im Rohr auf 100° (O. FISCHER, ENDRES, B. 35, 2614). — Säulen (aus Benzol). F: ca. 224° (Zers.). Leicht löslich in Alkohol, schwerer in Äther und Benzol, schwer in kaltem Wasser.

1 - Äthyl - 1.2.3.4 - tetrahydro - chinolin - carbonsäure - (6) $C_{12}H_{15}O_2N = HO_2C \cdot C_6H_3 \cdot CH_2 - CH_2 \cdot CH_2$. Blättchen (aus Benzol). F: ca. 200° (Zers.) (O. FISCHER, ENDRES, B. 35, 2614).

1 - Acetyl - 1.2.3.4 - tetrahydro - chinolin - carbonsäure - (6) $C_{12}H_{13}O_3N = HO_3C \cdot C_6H_3 \cdot CH_2 - CH_2$. B. Durch Erwärmen von 1-Acetyl-6-chloracetyl-1.2.3.4-tetrahydro-chinolin mit Wasserstoffperoxyd in verd. Natronlauge auf dem Wasserbad (Kunckell, Vollhase, B. 42, 3198; K., C. 1910 II, 661). — Nadeln (aus Wasser). F: 187°. Leicht löslich in Alkohol, Chloroform und Benzol, schwerer in heißem Wasser, unlöslich in Äther und Ligroin. — Physiologisches Verhalten des Natriumsalzes: Kobert, C. 1910 II, 661.

1 - Nitroso - 1.2.3.4 - tetrahydro - chinolin - carbonsäure - (6) $C_{10}H_{10}O_3N_3 = HO_2C \cdot C_6H_3 \cdot \frac{CH_2 - CH_2}{N(NO) \cdot CH_3}$. Gelbliche Prismen (aus Benzol). Zersetzt sich bei ca. 181° (O. FISCHER, ENDRES, B. 35, 2614).

5. 1.2.3.4 - Tetrahydro - chinolin - carbonsäure - (7)

C₁₀H₁₁O₂N, s. nebenstehende Formel. B. Durch Reduktion von Chinolin-carbonsäure-(7) mit Zinn und Salzsäure bei 40—50° (O. FISCHER, ENDRES, B. 85, 2612). — Blättchen (aus verd. Alkohol). F: 189°. Leicht löslich in Methanol, Alkohol und Chloroform, schwerer in Äther und Benzol, schwer in Wasser.

1-Methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-(7), Kairolin-carbonsäure-(7) $C_{11}H_{12}O_2N = HO_2C \cdot C_0H_2 \cdot CH_2 \cdot B$. Aus dem Kaliumsalz der 1.2.3.4-Tetrahydro-chinolin-carbonsäure-(7) durch Erhitzen mit Methyljodid in Methanol im Rohr auf 100° (O. FISCHER, ENDRES, B. 35, 2613). — Säulen (aus Benzol). F: 185°.

- 1 Äthyl 1.2.3.4 tetrahydro chinolin carbonsäure (7) $C_{12}H_{15}O_{2}N = HO_{2}C \cdot C_{6}H_{3} \underbrace{CH_{2} \quad CH_{2}}_{N(C_{*}H_{*}) \cdot CH_{*}}.$ Prismen (aus Benzol). F: 163—164° (O. F., E., B. 35, 2613).
- 1 Nitroso 1.2.3.4 tetrahydro chinolin carbonsäure (7) $C_{10}H_{10}O_3N_2 = HO_2C \cdot C_6H_3 CH_2 \cdot N(NO) \cdot CH_2$. Gelbliche Prismen (aus Benzol). Zersetzt sich bei 191° (O. F., E., B. 35, 2613).
- 6. 1.2.3.4-Tetrahydro-chinolin-carbonsäure-(8) C₁₀H₁₁O₂N, s. nebenstehende Formel. B. Durch Reduktion von Chinolin-carbonsäure-(8) mit Zinn und Salzsäure bei 40—50° (Tafel, B. 27, 825; O. Fischer, Endres, B. 35, 2611). Nadeln (aus Ligroin oder verd. HO₂C Alkohol). F: 163° (unkorr.) (T.). Sublimierbar (T.). Leicht löslich in Alkohol, Äther, Benzol, Chloroform und Schwefelkohlenstoff, sehr schwer löslich in heißem Wasser (T.). Zeigt in neutraler sowie in alkalischer Lösung blaue Fluorescenz (T.). Liefert beim Kochen mit Salzsäure 1.2.3.4-Tetrahydro-chinolin (F., E.); beim Erhitzen mit Quecksilberacetat entstehen außerdem noch geringe Mengen Chinolin-carbonsäure-(8) (T.).
- 1-Methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-(8), Kairolin-carbonsäure-(8) $C_{11}H_{13}O_2N = HO_2C \cdot C_6H_3 \cdot CH_2 \cdot B$. Aus dem Kaliumsalz der 1.2.3.4-Tetrahydro-chinolin-carbonsäure-(8) durch Erhitzen mit Methyljodid in Methanol im Rohr auf 100° (O. FISCHER, ENDRES, B. 35, 2612). Nadeln (aus Benzol). F: 218—219°.
- 1 Äthyl 1.2.3.4 tetrahydro chinolin carbonsäure (8) $C_{12}H_{18}O_{2}N = HO_{2}C \cdot C_{6}H_{3} CH_{2} CH_{2}$. Blättchen (aus verd. Alkohol). F: 196—197° (O. F., E., B. 35, 2612).
- 1 Nitroso 1.2.3.4 tetrahydro chinolin carbonsäure (8) $C_{10}H_{10}O_3N_2 = HO_2C \cdot C_6H_3 \cdot \frac{CH_2 CH_2}{N(NO) \cdot CH_2}$. Tafeln (aus Benzol). Zersetzt sich bei ca. 124° (O. F., E., B. 35, 2612).
- 7. 1.2.3.4-Tetrahydro-isochinolin-carbonsäure-(1), 1.2.3.4Tetrahydro-isochinaldinsäure C₁₀H₁₁O₂N, s. nebenstehende Formel.

 N-Methyl-tetrahydroisochinaldinsäure-nitril, 2-Methyl-1-cyanCH₂
 CH₂
 CH₂
 CH₃
 CH₂
 CH₄
 CH₂
 CH₂
 CH₂
 CH₃
 (Aus 2-Methyl-3.4-dihydro-isochinoliniumjodid dun Xilan)
 CH₂
 CH₃
 CH₄
 CH₂
 CH₄
 CH₂
 CH₅
 CO₂H

 (Aus 2-Methyl-3.4-dihydro-isochinoliniumjodid dun Xilan)
 CH₄
 CH₄
 CH₅
 CH₄
 CH₅
 CH₅
 CH₅
 CH₅
 CH₅
 CH₅
 CH₅
 CO₂H

(Aus 2-Methyl-3.4-dihydro-isochinoliniumjodid durch Einw. von Kaliumeyanid-Lösung Pyman, Soc. 95, 1750). — Nadeln (aus Äther). F: 77—78° (korr.). Fast unlöslich in Wasser, leicht löslich in Alkohol und Äther.

4. Carbonsäuren $C_{11}H_{13}O_2N$.

- 1. 6-Methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-(5 oder 7) C₁₁H₁₃O₂N, Formel I CH₃ CH₂ CH₂ II. CH₃ CH₂ CH₂ CH₂ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₄ CH₅ - 1-Acetyl-6-methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-(5 oder 7) $C_{13}H_{18}O_3N = (HO_2C)(CH_3)C_6H_2$ CH_2 CH_3 H
- 2. 8-Methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-5(oder 6 oder 7) $C_{11}H_{13}O_{2}N$, Formel III oder IV oder V.

1-Acetyl-8-methyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-5(oder 6 oder 7) $C_{13}H_{16}O_3N = (HO_3C)(CH_3)C_6H_2 CH_3 CH_3 \cdot B$. Aus 1-Acetyl-8-methyl-5(oder 6 oder 7)-chloracetyl-1.2.3.4-tetrahydro-chinolin (Bd. XXI, S. 299) durch Einw. von Wasserstoffperoxyd in alkal. Lösung (Kunckell, C. 1910 II, 662). — Gelbe Nadeln (aus Wasser). F: 108°. Löslich in Wasser, Alkohol, Benzol, Chloroform und Eisessig, unlöslich in Ligroin und Äther.

5. Carbonsäuren $C_{12}H_{15}O_2N$.

- 1. β -[1.2.3.4-Tetrahydro-chinolyl-(2)]-propion-säure $C_{12}H_{15}O_2N$, s. nebenstehende Formel. B. Aus β -[Chinolyl-(2)]-acrylsäure durch Reduktion mit Natrium und Alkohol (Koengs, B. 33, 221). Harzige Masse. Geht beim Eindampfen der wäßr. Lösung oder beim Erwärmen mit verd. Mineralsäuren in das Lactam der β -[1.2.3.4-Tetrahydro-chinolyl-(2)]-propionsäure (Bd. XXI, S. 319) über. Gibt in verdünnter wäßriger oder mineralsaurer Lösung mit Kaliumdichromat und mit Eisenchlorid dunkelrote Färbungen.
- β [1 Nitroso 1.2.3.4 tetrahydro chinolyl (2)] propionsäure $C_{12}H_{14}O_2N_2 = CH_2 CH_2$. Prismen (aus Äther oder Alkohol), Täfelchen (aus verd. Alkohol). F: 116—117° (Žers.) (Koenigs, B. 33, 222). Leicht löslich in Alkohol und Benzol, schwer in Ligroin und Wasser. Löslich in konz. Salzsäure mit roter Farbe.
- 2. β-[1.2.3.4-Tetrahydro-chinolyl-(4)]-propionsdure C₁₂H₁₅O₂N, s. nebenstehende Formel. B. Aus β-[Chinolyl-(4)]-propionsdure durch Reduktion mit Natrium und Alkohol (Koenics, MÜLLER, B. 37, 1339). Wurde nicht rein erhalten. Krystalle (aus Methanol oder absol. Alkohol). F: 217—218°.
- $\begin{array}{lll} \beta [1 Nitroso 1.2.3.4 tetrahydro chinolyl (4)] propionsäure & C_{12}H_{14}O_3N_3 = \\ & CH(CH_2 \cdot CH_2 \cdot CO_2H) \cdot CH_2 \\ & C_0H_4 \cdot N(NO) CH_2 \cdot CH$

6. Carbonsauren C₁₄H₁₉O₂N.

1. 2.4 - Dimethyl - 7 - isopropyl - 6.7 (?) - dihydro-indol - carbonsäure - (3), ,β-2 - Methyl-camphen-pyrrol-carbonsäure-(3)" C₁₄H₁₆O₅N, s. nebenstehende Formel. B. Aus α-2-Methyl-camphenpyrrol-carbonsäure-(3) H₂C CH₃CH (?) (S. u.) durch Erwärmen mit 40°/0 iger Schwefelsäure (DUDEN, HEYNSIUS, B. 34, 3058). Durch Kochen des Äthylesters (s. u.) (CH₃)cH mit alkoh. Kalilauge (D., Treff, A. 313, 51). — Nadeln (aus Alkohol). Bräunt sich bei 195°; F: 210° (Zers.) (D., T.). Leicht löslich in Alkohol, fast unlöslich in Wasser (D., T.); 6 Teile lösen sich in 10 Tln. Äther bei Zimmertemperatur (D., H.). — Das Natriumsalz gibt bei der Destillation mit Kalk β-2-Methyl-camphenpyrrol und γ-2-Methyl-camphenpyrrol (Bd. XX, S. 301) (D., T.).

Äthylester $C_{16}H_{23}O_2N=NC_{13}H_{18}\cdot CO_2\cdot C_2H_5$. B. Aus α -2-Methyl-camphenpyrrol-carbonsäure-(3)-äthylester (S. 61) durch Erhitzen mit $40^{\circ}/_{\circ}$ iger Schwefelsäure (Duden, Treff, A. 813, 50). — Krystalle (aus verd. Alkohol). F: 124—125°. Leicht löslich in organischen Lösungsmitteln.

2. 5-Methyl-[bornyleno-3'.2':2.3-pyrrol]-carbon- $H_2C-C(CH_3)-C$ $C\cdot CO_2H$ säure- $(4)^1$), 2.4-Dimethyl-4.7-isopropyliden-4.5.6.7- $C\cdot CO_2H$ tetrahydro-indol-carbonsäure- $(3)^*$, $(3)^*$,

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Äthylester C₁₆H₁₈O₂N = NC₁₃H₁₈·CO₂·C₃H₅. B. Aus β-[Campheryl-(3)-imino]-butter-säureāthylester (Bd. XIV, S. 16) durch Behandeln mit 1 Mol alkoh. Natriumāthylat-Lōsung bei Zimmertemperatur und Kochen des hierbei erhaltenen Zwischenprodukts mit Alkohol (Duden, Treff, A. 313, 47). — Blättchen (aus Eisessig). F: 198°. Kp: 330° (geringe Zersetzung). Lōslich in Alkohol, Eisessig, Chloroform und Benzol, schwer löslich in Ather und Ligroin. — Liefert bei der Reduktion mit Zinkstaub und Eisessig 2.4-Dimethyl-4.7-isopropyliden-2.3.4.5.6.7-hexahydro-indol-carbonsäure-(3)-äthylester (S. 55) (D., Tr., A. 313, 54). Geht beim Erhitzen mit 40°/oiger Schwefelsäure in β-2-Methyl-camphenpyrrol-carbonsäure-(3)-äthylester (S. 60) über (D., Tr.). Läßt sich durch Kochen mit alkoh. Alkalilauge nur schwer verseifen (D., Tr.; D., Heynsius, B. 34, 3058); beim Erhitzen mit alkoh. Kalilauge im Rohr auf 125° erhält man neben der Säure eine Base C₁₃H₂₁ON (Krystalle; F: 136°), deren Pikrat bei 141—142° schmilzt (D., Tr.).

N-Acetylderivat des Äthylesters $C_{18}H_{25}O_3N=CH_3\cdot CO\cdot NC_{13}H_{17}\cdot CO_2\cdot C_2H_5$. B. Aus α -2-Methyl-camphenpyrrol-carbonsäure-(3)-äthylester durch Kochen mit Acetanhydrid (Duden, Treff, A. 313, 48). — Blättchen (aus Ligroin). F: 63—64°.

N-Nitrosoderivat des Äthylesters $C_{16}H_{22}O_2N_2 = ON \cdot NC_{13}H_{17} \cdot CO_2 \cdot C_2H_5$. Nädelchen (aus Ligroin). F: 126—127° (DUDEN, TREFF, A. 313, 49).

6. Monocarbonsäuren $C_nH_{2n-11}O_2N$.

1. Carbonsäuren $C_9H_7O_2N$.

1. Indol-carbonsäure-(2), Indol-α-carbonsäure C₉H₇O₂N, s. nebenstehende Formel. B. Durch Reduktion von 2-Nitro-phenylbrenztraubensäure mit Zinkstaub und siedender Essigsäure (Reissert, B. 30, 1045). Der nicht näher beschriebene Indol-α-carbonsäure-äthylester (Prismen aus Alkohol) entsteht neben geringen Mengen der freien Säure beim Erhitzen der höherschmelzenden Form des Brenztraubensäureäthylester-phenylhydrazons mit der gleichen Gewichtsmenge Zinkchlorid auf 195°; man verseift den Ester durch Kochen mit wäßrig-alkoholischer Kalilauge (E. Fischer, B. 19, 1567; A. 236, 142; Höchster Farbw., D. R. P. 38784; Frdl. 1, 154). Indol-α-carbonsäure entsteht in sehr geringer Menge neben Indol-β-carbonsäure beim Erhitzen von Indol mit Natrium im Kohlendioxyd-Strom auf 230—250° und zuletzt auf 300° (Zatti, Ferratini, B. 23, 2296; G. 20, 707). Indol-α-carbonsäure entsteht beim Schmelzen von 2-Methyl-indol (Ciamician, Zatti, B. 21, 1930; G. 18, 387), 1-Acetyl-2-methyl-indol (Magnanini, B. 21, 1938; G. 18, 98) oder 1.2.3.4-Tetrahydro-carbazol (Zanetti, B. 26, 2007; G. 23 II, 297) mit Kaliumhydroxyd. Aus N-Oxy-indol-α-carbonsäure oder N-Methoxy-indol-α-carbonsäure durch Reduktion mit Zinkstaub und siedendem Eisessig oder mit Natriumamalgam in alkal. Lösung (R., B. 29, 655, 656).

Nadeln (aus Wasser), Blättchen (aus Benzol). F: 204° (Angell, G. 22 II, 17), 203—204° (Clamician, Zatti, B. 21, 1931; G. 18, 389; Reisser, B. 30, 1045), 200—201° (geringe Zersetzung) (Fischer, A. 236, 144). Destilliert bei raschem Erhitzen ziemlich unzersetzt (F., A. 236, 144). Leicht löslich in Alkohol und Äther, ziemlich schwer in heißem Benzol, schwer in kaltem Wasser (F., A. 236, 144), unlöslich in Petroläther (C., Zatti, G. 18, 389); leicht löslich in Alkalilauge und Ammoniak (F.). Elektrolytische Dissoziationskonstante k in Wasser bei 25°: 1,77×10⁻⁴ (Angell, G. 22 II, 17). — Indol-α-carbonsäure liefert beim Erhitzen für sich auf ca. 230° oder beim Erhitzen des Calciumsalzes mit Calciumhydroxyd entsteht Indol (C., Zatti, B. 22, 1976; G. 20, 85). Indol-α-carbonsäure gibt bei Behandlung mit Salpetersäure (D: 1,4) in Eisessig gelbe Krystalle, die sich mit roter Farbe in Alkalilauge lösen (F., A. 236, 145). Liefert beim Kochen mit Acetanhydrid die Verbindung nebenstehender Formel (Syst. No. 3602) (C., Zatti, B. 21, 1932; G. 18, 391; R., B. 29, 656). Beim Erhitzen von Indol-α-carbonsäure mit Acetanhydrid im Rohr auf 220° erhält man geringe Mengen 3-Acetyl-indol und 1.3-Diacetyl-indol (C., Zatti, B. 21, 1933; G. 18, 392, 406; Zatti, B. 22, 662; G. 19, 108). — Verhalten von Indol-α-carbonsäure im Organismus des Hundes: Porgher, Hervieux, C. r. 145, 347. — Indol-α-carbonsäure gibt mit Ferrichlorid-Lösung eine rotbraune Färbung und schließlich einen rotbraunen Niederschlag (C., Zatti, B. 21, 1931; G. 18, 390). Liefert mit Isatin und konz. Schwefelsäure eine violettrote Färbung (C., Zatti, B. 21, 1931; G. 18, 390). Liefert mit Isatin und konz. Schwefelsäure eine violettrote Färbung (C., Zatti, B. 21, 1931; G. 18, 389). — Bariumsalz. Blättohen (aus Wasser). Ziemlich schwer löslich in heißem Wasser (F., A. 236, 145). — Pikrat. Goldgelbe Nadeln (aus Äther) (F., A. 236 145).

Methylester $C_{10}H_9O_2N=C_0H_4 < CH_{NH} > C \cdot CO_2 \cdot CH_3$. B. Beim Erhitzen des Silbersalzes der Indol- α -carbonsäure mit Methyljodid im Rohr auf 100° (CIAMICIAN, ZATTI, B. 21, 1931; G. 18, 389). Durch Sättigen einer Lösung von Indol- α -carbonsäure in Methanol mit Chlorwasserstoff bei 0° (C., Z.). Beim Erhitzen von (nicht näher beschriebenem) Brenztraubensäuremethylester-phenylhydrazon mit Zinkchlorid auf 195° (E. FISCHER, B. 19, 1567; A. 236, 141, 142). — Nadeln (aus verd. Alkohol oder Benzol). F: 151—152° (C., Z.).

Hydrazid $C_9H_9ON_3 = C_6H_4 < \stackrel{CH}{NH} > C \cdot CO \cdot NH \cdot NH_2$. B. Aus Indol- α -carbonsäuremethylester beim Behandeln mit Hydrazin (Piccinini, Salmoni, G. 32 I, 252). — Blättehen (aus Alkohol). F: 241°. Schwer löslich in Wasser, Alkohol, Salzsäure und Essigsäure. — Reduziert wäßr. Silbernitrat-Lösung.

Azid $C_9H_6ON_4=C_6H_4< C_{NH}>C\cdot CO\cdot N_3$. B. Beim Behandeln einer Suspension von Indol- α -carbonsäure-hydrazid in verd. Salzsäure mit Natriumnitrit oder Kaliumnitrit (P., S., G. 32 I, 253). — Blättchen. Zersetzt sich heftig bei 140°. Sehr schwer löslich in Wasser. — Liefert beim Kochen mit Alkohol [Indolyl-(2)]-urethan.

N-Methyl-indol- α -carbonsäure $C_{10}H_{\bullet}O_{2}N = C_{\bullet}H_{\bullet} \underbrace{N(CH_{3})}_{N(CH_{3})}C \cdot CO_{2}H$. B. Beim Erwärmen von Brenztraubensäure-methylphenylhydrazon mit 10^{9} (gier Salzsäure auf dem Wasserbad (E. FISCHER, JOURDAN, B. 16, 2245; E. F., Hess, B. 17, 561). — Nadeln (aus Alkohol). F: 212°; ziemlich leicht löslich in heißem Alkohol, Äther und Benzol, fast unlöslich in kaltem Wasser; sehr leicht löslich in Alkalien und Ammoniak (F., H.). — Destilliert bei raschem Erhitzen teilweise unzersetzt; bei längerem Erhitzen auf den Schmelzpunkt entsteht N-Methyl-indol (F., H.). Entfärbt Kaliumpermanganat-Lösung schon in der Kälte (F., H.). Wird durch Natriumamalgam nicht reduziert (F., H.). Gibt beim Behandeln mit überschüssiger Natriumhypochlorit-Lösung 1-Methyl-3.3-dichlor-oxindol (Colman, A. 248, 116). — Löst sich in konz. Mineralsäuren mit roter Farbe (F., H.).

N-Äthyl-indol- α -carbonsäure $C_{11}H_{11}O_2N=C_6H_4$ $N(C_2H_5)$ $C\cdot CO_2H$. B. Beim Erwärmen von Brenztraubensäure-äthylphenylhydrazon, erhalten aus α -Äthyl-phenylhydrazin und Brenztraubensäure in verd. Salzsäure, mit $20^{\circ}/_{\circ}$ iger Salzsäure auf dem Wasserbad (E. Fischer, Hess, B. 17, 565; Michaelis, B. 30, 2811). — Nadeln (aus Äther + Ligroin). F: 183° (F., H.; M.). Sehr leicht löslich in Chloroform, Alkohol, Äther und Benzol; ist in heißem Wasser und heißem Ligroin viel leichter löslich als N-Methyl-indol- α -carbonsäure (F., H.). — Bei längerem Erhitzen auf 190—195° entsteht N-Äthyl-indol (F., H.; M.). Beim Behandeln mit Natriumhypochlorit-Lösung unter Kühlung entsteht 1-Äthyl-3.3-dichloroxindol (M.).

N-Propyl-indol- α -carbonsäure $C_{12}H_{13}O_2N=C_0H_4$ $N(CH_2\cdot C_2H_5)$ $C\cdot CO_2H$. B. Analog der vorangehenden Verbindung (M., B. 30, 2815). — Nadeln (aus Alkohol). F: 170°. Sublimiert bei höherer Temperatur und zerfällt dann in N-Propyl-indol und Kohlendioxyd.

N-Isopropyl-indol- α -carbonsäure $C_{12}H_{13}O_2N = C_6H_4$ $N[CH(CH_3)_2]$ $C \cdot CO_2H$. B. Analog N-Äthyl-indol- α -carbonsäure (s. o.) (M., B. 30, 2818). — F: 183°.

N-Isobutyl-indol- α -carbonsäure $C_{12}H_{16}O_2N=C_6H_4$ CH_4 $CH_{16}CH_{16}CH_{16}$ CO_2H . B. Analog N-Athyl-indol- α -carbonsäure (s. o.) (M., B. 30, 2820). — Nadeln. F: 152°.

N-Isoamyl-indol- α -carbonsäure $C_{14}H_{17}O_2N=C_6H_4$ $N(C_5H_{11})$ $C\cdot CO_2H$. B. Analog N-Äthyl-indol- α -carbonsäure (s. o.) (M., B. 30, 2821). — F: 122°.

N-Allyl-indol- α -carbonsäure $C_{12}H_{11}O_2N=C_6H_4$ CH CH: CH: CH: CO_2H . B. Aus Brenztraubensäure-allylphenylhydrazon, erhalten aus α -Allyl-phenylhydrazin und Brenztraubensäure in verd. Essigsäure, durch Erwärmen mit 20^6 /eiger Salzsäure (MICHAELIS, LUXEMBOURG, B. 26, 2176). — Nadeln (aus Alkohol oder Eisessig). F: 182°. Beginnt bei 120° zu sublimieren. Leicht löslich in heißem Alkohol und Eisessig, schwer in Ather, Benzol und Wasser. — Beim Erhitzen über 185° entsteht N-Allyl-indol. — $Ba(C_{12}H_{16}O_2N)_2 + 2H_2O$. Blättchen (aus Wasser).

N-Phenyl-indol- α -carbonsäure $C_{18}H_{11}O_8N = C_6H_4 < \stackrel{CH}{N(C_6H_8)}C \cdot CO_2H$. B. Beim Erwärmen einer Lösung von Brenztraubensäure-diphenylhydrazon in Eisessig mit rauchender

Salzsäure auf dem Wasserbad (E. FISCHER, HESS, B. 17, 567). — Nadeln (aus verd. Alkohol). F: 176°; sehr schwer löslich in kochendem Wasser, leicht in Äther und Alkohol (F., H.). — Liefert beim Erhitzen auf 200—210° N-Phenyl-indol (F., H.; Pfülf, A. 239, 221). Gibt beim Behandeln mit Natriumhypochlorit-Lösung und nachfolgenden Kochen des Reaktionsprodukts mit alkoh. Natronlauge N-Phenyl-isatin (Pf.).

N-Benzyl-indol- α -carbonsäure $C_{16}H_{13}O_2N=C_6H_4$ $N(CH_2\cdot C_6H_5)$ $C\cdot CO_2H$. B. Beim Erwärmen von Brenztraubensäure-phenylbenzylhydrazon, erhalten aus α -Benzylphenylhydrazin und Brenztraubensäure, mit $20^{\circ}/_{0}$ iger Salzsäure auf dem Wasserbad (Antrior, A. 227, 362). — Nadeln (aus Eisessig). F: 195° (Zers.). Leicht löslich in Äther, heißem Alkohol und Eisessig, schwer in Chloroform und Ligroin, fast unlöslich in kaltem Wasser und Benzol. — Liefert beim Erhitzen auf 200—205° N-Benzyl-indol. Gibt beim Behandeln mit Natriumhypochlorit-Lösung und nachfolgenden Kochen des Reaktionsprodukts mit alkoh. Natronlauge N-Benzyl-isatin.

N-Oxy-indol- α -carbonsäure $C_9H_7O_3N=C_6H_4$ CH_9 $C\cdot CO_2H$. B. Aus 2-Nitrobenzylmalonsäure beim Behandeln mit Ammoniumsulfid oder beim Kochen mit Natronlauge; Reinigung über das Calciumsalz (Reissert, B. 29, 646). Beim Schütteln von 2-Nitro-phenylbrenztraubensäure mit Natriumamalgam und Wasser (R., B. 30, 1045). — Fast farblose Prismen (aus wäßr. Aceton). F: 159,5° (Zers.) (R., B. 29, 647). Leicht löslich in Alkohol, Ather, Eisessig und Aceton, ziemlich leicht in heißem Wasser, schwer in Chloroform, Ligroin und Benzol (R., B. 29, 647). — Färbt sich in reinem Zustand sowohl beim Aufbewahren im geschlossenen Gefäß wie auch in wäßr. Lösung allmählich grün (R., B. 29, 647). Reduziert heiße Fehlingsche Lösung (R., B. 29, 648). Liefert bei der Oxydation mit Wasserstoffperoxyd Indoxin (s. u.) (R., B. 29, 660). Gibt beim Kochen mit Chromtrioxyd + Essigsäure Isatin (R., B. 29, 657). Liefert beim Oxydieren mit alkal. Kaliumpermanganat-Lösung unter Kühlung o.o'-Azoxybenzoesäure (R., B. 29, 656). Beim Stehenlassen der Lösung in konz. Schwefelsäure entsteht Indigo (R., B. 30, 1046). Beim Reduzieren mit Zinkstaub und Eisessig entsteht Indol-α-carbonsäure (R., B. 29, 655). Durch Einw. von Natriumnitrit und Salzsäure erhält man N-Nitro-indol-α-carbonsäure (R., B. 29, 661). N-Oxy-indol-α-carbonsäure liefert beim Behandeln mit methylalkoholischer Salzsäure N-Oxy-indol-a-carbonsäure-methylester; beim Kochen mit 2 Mol Natriummethylat-Lösung und 2 Mol Methyljodid entsteht N-Methoxyindol-α-carbonsäure (R., B. 29, 648, 651). Beim Behandeln mit Acetanhydrid bei Zimmertemperatur erhält man N-Acetoxy-indol-α-carbonsäure und Essigsäure-[N-acetoxy-indol-α-carbonsäure]-anhydrid (S. 64) (R., B. 29, 650). — N-Oxy-indol-α-carbonsäure gibt mit konz. Ammoniak eine kirschrote Färbung; mit Chlorkalk, Bromwasser oder Ferrichlorid erhält man blaue Färbungen; mit Alkalilaugen oder Ammoniak entsteht an der Luft erst eine smaragdgrüne, dann eine blaue Färbung (R., B. 29, 647, 648). — Salze: R., B. 29, 648.

Verbindung $C_{18}H_{19}O_4N_3(?)$, Indoxin. B. Aus N-Oxy-indol- α -carbonsäure beim Erwärmen mit verd. Wasserstoffperoxyd (Reisseet, B. 29, 660). Beim Schütteln von Essigsäure-[N-acetoxy-indol- α -carbonsäure]-anhydrid mit 33^0 /oiger Natronlauge (R.). — Blaue, kupferglänzende Nädelchen (aus Chloroform + Ligroin). F: 223°. Sehr leicht löslich in Chloroform, leicht in Alkohol, Äther, Aceton und Benzol, ziemlich leicht in heißem Wasser, sehwer in Eisessig und Ligroin; leicht löslich in Alkalilaugen mit smaragdgrüner Farbe; löslich in Ammoniak; unlöslich in Salzsäure.

N-Methoxy-indol-α-carbonsäure C₁₀H₉O₃N = C₆H₄ CH_{N(O·CH₃)}C·CO₂H. B. Beim Kochen von N-Oxy-indol-α-carbonsäure mit 2 Mol Natriummethylat-Lösung und 2 Mol Methyljodid (Reisser, B. 29, 652). — Nadeln (aus wäßr, Aceton). F: 185° (Zers.). Leicht löslich in heißem Alkohol, Äther, Aceton, Eisessig und Benzol, löslich in Chloroform, sehr schwer löslich in Ligroin und Wasser. — Liefert bei der Oxydation mit Chromtrioxyd + Eisessig N-Methoxy-isatin. Bei der Reduktion mit Natriumamalgam entsteht Indol-α-carbonsäure. Beim Behandeln mit 1 Mol Brom in Eisessig erhält man 1-Methoxy-3-bromindol-carbonsäure-(2). — Salze: R.

N-Acetoxy-indol- α -carbonsäure $C_{11}H_9O_4N=C_6H_4$ $N(0\cdot CO\cdot CH_2)$ $C\cdot CO_2H$. B. Neben Essigsäure-[N-acetoxy-indol- α -carbonsäure]-anhydrid beim Behandeln von N-Oxy-indol- α -carbonsäure mit Acetanhydrid bei Zimmertemperatur (Reissert, B. 29, 651). — Nädelchen (aus wäßr. Aceton). F: 161°. Leicht löslich in Alkohol, Äther, Aceton und Eisessig, löslich in Chloroform und Benzol, schwer löslich in Ligroin und Wasser. — Wird durch siedendes Wasser zersetzt. Beim Behandeln mit Natronlauge entstehen N-Oxy-indol- α -carbonsäure und Essigsäure.

N-Benzoyloxy-indol- α -carbonsäure $C_{16}H_{11}O_4N=C_6H_4$ C_6H_4 C_6H_{50} $C\cdot CO_2H$.

B. Beim Schütteln von N-Oxy-indol- α -carbonsäure mit 1 Mol Benzoylchlorid und 2 Mol Natronlauge (Reissert, B. 29, 649). — Krystalle (aus Benzol). F: 151° (Zers.). Leicht löslich in Äther, Aceton, heißem Alkohol, Eisessig und Chloroform, schwer in Ligroin und Wasser.

N-Oxy-indol- α -carbonsäure-methylester $C_{10}H_{\bullet}O_3N = C_6H_{\bullet} < CH_{N(OH)} > C \cdot CO_3 \cdot CH_3$.

B. Aus N-Oxy-indol- α -carbonsäure und methylalkoholischer Salzsäure (Reissert, B. 29, 648). — Angenehm riechende Nadeln. F: 100—101°. Sehr leicht löslich in den meisten organischen Lösungsmitteln, schwerer in Ligroin. — Liefert beim Behandeln mit Natriumnitrit in wäßrig-alkoholischer Essigsäure eine Verbindung $C_{10}H_{\bullet}O_3N(?)$ (s. u.) und eine aus Eisessig in gelben Nadeln krystallisierende Verbindung [F: 224—225°; sehr schwer löslich in organischen Lösungsmitteln; löslich in konz. Schwefelsäure mit gelbroter Farbe], die beim Lösen in Natronlauge in N-Nitro-indol- α -carbonsäure, beim Kochen mit Schwefelammonium-Lösung in N-Amino-indol- α -carbonsäure-methylester(?) (s. u.) übergeht.

Verbindung $C_{10}H_9O_3N(?)$. B. s. im vorangehenden Artikel. — Fast farblose Nadeln (aus wäßr. Aceton). Wird beim Erhitzen erst rot, dann farblos und schmilzt nicht bis 285° (R., B. 29, 664). Löslich in Alkalilauge mit gelber, in konz. Schwefelsäure mit blauer Farbe.

N - Methoxy - indol - α - carbonsäure - methylester $C_{11}H_{11}O_3N = C_6H_6 \underbrace{CH}_{N(O\cdot CH_3)}C\cdot CO_3\cdot CH_3$. B. Aus N-Methoxy-indol- α -carbonsäure und methylalkoholischer Salzsäure (R., B. 29, 653). Beim Kochen äquimolekularer Mengen von N-Oxy-indol- α -carbonsäure-methylester, Methyljodid und Natriummethylat-Lösung (R.). — Krystalle (aus Ligroin). F: 68°. Leicht löslich in den gebräuchlichen organischen Lösungsmitteln.

N-Oxy-indol- α -carbonsäure-äthylester $C_{11}H_{11}O_3N=C_6H_4 < C_1 > C \cdot CO_1 \cdot C_2H_5$. B. Aus N-Oxy-indol- α -carbonsäure und alkoh. Salzsäure (R., B. 29, 649). — Prismen (aus Ligroin). F: ca. 65°. Löslich in Natronlauge mit gelber Farbe.

Essigsäure - [N - acetoxy - indol - α - carbonsäure] - anhydrid $C_{18}H_{11}O_8N = C_8H_4 N_{(O\cdot CO\cdot CH_2)}C\cdot CO\cdot CO\cdot CH_3$. B. Neben N-Acetoxy-indol- α -carbonsäure beim Behandeln von N-Oxy-indol- α -carbonsäure mit Acetanhydrid bei Zimmertemperatur (R., B. 29, 650). — Nadeln (aus Ligroin oder wäßr. Aceton). F: 107°. Sehr leicht löslich in Chloroform, Aceton und Benzol, leicht in Alkohol, Äther und Eisessig, schwer in Ligroin. — Wird beim Kochen mit Wasser zersetzt. Beim schwachen Erwärmen mit verd. Natronlauge entsteht N-Oxy-indol- α -carbonsäure; beim Schütteln mit 33°/0iger Natronlauge erhält man Indoxin (S. 63).

N-Methoxy-indol- α -carbonsäure-chlorid $C_{10}H_8O_2NCl = C_6H_4$ $CH_{10}C \cdot COCl.$ B. Aus N-Methoxy-indol- α -carbonsäure beim Behandeln mit Phosphoroxychlorid + Phosphorpentachlorid (REISSERT, B. 29, 653). — Nadeln (aus Ligroin). F: 61°. Sehr leicht löslich in den gebräuchlichen organischen Lösungsmitteln.

N-Methoxy-indol- α -carbonsäure-amid $C_{10}H_{10}O_2N_2=C_6H_4$ $N(O \cdot CH_2)$ $C \cdot CO \cdot NH_2$.

B. Beim Kochen von N-Methoxy-indol- α -carbonsäure-chlorid mit Ammoniak (R., B. 29, 654). — Blättchen (aus Wasser). F: 108°. Sehr leicht löslich in den gebräuchlichen organischen Lösungsmitteln außer in Ligroin und Wasser; löslich in konz. Mineralsäuren. — Beim Behandeln mit 1 Mol Brom in Chloroform entsteht eine Verbindung vom Schmelzpunkt 175° [Prismen (aus Alkohol)].

N-Nitro-indol-α-carbonsäure C₈H₆O₄N₂ = C₆H₄ CH C·CO₂H. B. Beim Behandeln von N-Oxy-indol-α-carbonsäure mit Natriumnitrit und Salzsäure (Reissert, B. 29, 661). Entsteht neben anderen Produkten beim Umsetzen von N-Oxy-indol-α-carbonsäure-methylester mit Natriumnitrit in wäßrig-alkoholischer Essigsäure und Lösen der entstandenen Verbindung vom Schmelspunkt 224—225° in Natronlauge (R., B. 29, 663). — Gelbes Krystallpulver (aus Methanol). F: 189° (Zers.). Sehr schwer löslich in den gebräuchlichen organischen Lösungsmitteln. Löslich in Alkalilaugen, Alkalicarbonaten und konz. Schwefelsäure mit gelbroter Farbe. — Reduziert Fehlungsche Lösung beim Kochen.

N - Amino - indol - α - carbonsäure - methylester (?) $C_{10}H_{10}O_2N_2 = C_0H_4 \underbrace{CH}_{N(NH_2)}C\cdot CO_2\cdot CH_3$ (?). B. Neben anderen Produkten beim Umsetzen von N-Oxyindol- α -carbonsäure-methylester mit Natriumnitrit in wäßrig-alkoholischer Essigsäure und Kochen der entstandenen Verbindung vom Schmelzpunkt 224—225° mit Schwefelammonium-Lösung (R., B. 29, 663). — Krystalle. F: 136°.

- 1-Methoxy-8-brom-indol-carbonsäure-(2) $C_{10}H_{0}O_{3}NBr=C_{0}H_{4} < CBr > C \cdot CO_{2}H$.

 B. Aus 1 Mol N-Methoxy-indol- α -carbonsäure beim Behandeln mit 1 Mol Brom in Eisessig (Reissert, B. 29, 654). Prismen oder Nadeln (aus Alkohol). F: 189°. Sehr schwer löslich in Ligroin und Wasser, ziemlich leicht in heißem Alkohol, Aceton, Eisessig und Benzol, leicht in Chloroform, sehr leicht in Äther. Liefert beim Oxydieren mit Chromtrioxyd + Eisessig N-Methoxy-isatin (?).
- 3-Nitro-indol-carbonsäure-(2) $C_0H_0O_4N_2=C_0H_4$ $C(NO_2)$ $C\cdot CO_2H$. B. Aus 3-Nitro-2-methyl-indol (Angelico, Velardi, R. A. L. [5] 13 I, 243; G. 34 II, 65) oder 3-Nitroso-2-methyl-indol (A., V., G. 34 II, 66) bei der Oxydation mit alkal. Kalium-permanganat-Lösung. Gelbe Blättchen (aus Xylol). F: 230° (Zers.). Beim Erhitzen auf 240° entsteht 3-Nitro-indol.
- Indol-carbonsaure-(3). Indol- β -carbonsaure $C_9H_7O_9N_7$ C·CO₂H s. nebenstehende Formel. B. Entsteht neben geringeren Mengen Indol-∠ĊH carbonsaure-(2) beim Erhitzen von Indol mit Natrium im Kohlendioxyd-Strom auf 230—250° und zuletzt auf 300° (ZATTI, FERRATINI, B. 23, 2296; G. 20, 707), beim Schmelzen von Skatol mit Kaliumhydroxyd (Ciamician, Z., B. 21, 1933; G. 18, 392). Durch Oxydation von Indol-aldehyd-(3) mit Kaliumpermanganat in alkal. Lösung bei 50—60° (ELLINGER, B. 39, 2519). — Krystallpulver (aus Essigester + Petroläther) oder Blättchen (aus wäßr. Aceton). Schmilzt im zugeschmolzenen Röhrchen bei 218° (Zers.) (Z., F.; E.). Sublimiert bei vorsichtigem Erhitzen unzersetzt; löslich in Alkohol, Ather und Essigester, schwer löslich in siedendem Wasser und Benzol, fast unlöslich in Petroläther (C., Z.). Elektrolytische Dissoziationskonstante k in Wasser bei 25°: 5,6×10⁻⁶ (Angell, G. 22 II, 17). — Liefert bei raschem Erhitzen (C., Z.; E.) oder beim Kochen mit Wasser (C., Z.) Indol. -Gibt mit wäßr. Ferrichlorid-Lösung eine dunkelbraune, mit Isatin und Schwefelsäure eine violettbraune Färbung (C., Z.). — AgC, H, O, N. Weißer Niederschlag (C., Z.).

Methylester $C_{10}H_{9}O_{2}N = C_{6}H_{4} \stackrel{C(CO_{3} \cdot CH_{3})}{\sim} CH$. B. Beim Erhitzen des Silbersalzes der Indol-carbonsäure-(3) mit Methyljodid im Rohr auf 100° (ZATTI, FERRATINI, B. 23, 2297; G. 20, 708). — Nadeln (aus verd. Alkohol). F: 147—148°.

2. Carbonsäuren $C_{10}H_{9}O_{2}N$.

1. 1.2 - Dihydro - chinolin - carbonsäure - (2), 1.2 - Dihydro-chinaldinsäure C₁₀H₂O₂N, s. nebenstehende Formel.

1-Bensoyl-1.2-dihydro-chinaldinsäure-nitril, 1-Bensoyl-2-cyan-1.2-dihydro-chinolin $C_{17}H_{12}ON_2 = C_0H_0$ CH——CH

CH——CH

CH——CH

CH——CH

CH——CH

CH——CH

CH——CH

CH——CH

CH——CH

N(CO·C₀H₀)·CH·CN

B. Beim Schütteln von Chinolin mit Kaliumcyanid-Lösung und Benzoylchlorid (Reissert, B. 38, 1610). Aus Chinolin, Blausäure und Benzoylchlorid (Dieckmann, Kämmerer, B. 40, 3737 Anm. 2). — Prismen (aus Alkohol). F: 154—1556 (R.; D., K.). Leicht löslich in heißem Chloroform, Aceton, Eisesig, Essigester und Benzol, ziemlich schwer in Methanol und Alkohol, sehr schwer in Äther, Ligroin, Benzin und Wasser (R.). — Beim Behandeln mit 36% ger Salzsäure bei Zimmertemperatur erhält man Benzaldehyd, Chinaldinsäure, Chinaldinsäure-desylester und Chinaldinsäure-amid (R.).

2. 1.4(?)-Dihydro-chinolin-carbonsäure-(4). 1.4(?)-Dihydro-cinchoninsäure C₁₀H₂O₂N, s. nebenstehende Formel.

1 - Methyl - 1.4(?) - dihydro - cinchoninsäure - nitril, 1 - MethylCH(CN) · CH
V(CH₂) - CH

(?). B. Bei Zusatz von
Kaliumcyanid-Lösung zu einer mit Äther überschichteten wäßrigen Lösung von Chinolin-

Kaliumcyanid-Lösung zu einer mit Äther überschichteten wäßrigen Lösung von Chinolinjodmethylat (KAUFMANN, ALBERTINI, B. 42, 3780). — Nach Blausäure riechende Nadeln.
F: 80° (unkorr.). Sehr leicht löslich in kaltem Chloroform, Aceton und Benzol, leicht in
Alkohol, löslich in Äther und Ligroin; leicht löslich in konz. Mineralsäuren, kaum in verd.
Mineralsäuren. — Zersetzt sich nach einiger Zeit an der Luft. Läßt sich nicht ohne Zersetzung umkrystallisieren. Einw. von Luft auf Lösungen in konz. Mineralsäuren: K., A.
Liefert bei der Einw. von Luft oder Sauerstoff auf die Lösung in Alkohol in Gegenwart von

Platin-Asbest 1-Methyl-4-cyan-chinolon-(2). Gibt mit Pikrinsäure in Alkohol+Ather N-Methyl-chinolinium-pikrat, eine Verbindung vom Schmelzpunkt 209—210° und andere Produkte.

1-Äthyl-1.4(?) - dihydro-cinchoninsäure - nitril, 1-Äthyl-4-cyan-1.4(?) - dihydro-chinolin $C_{12}H_{12}N_2 = C_6H_4$ $N(C_2H_5) \cdot CH$?). B. Bei Zusatz von Kaliumcyanid-Lösung zu einer mit Äther überschichteten wäßrigen Lösung von Chinolin-jodäthylat (KAUFMANN, Albertini, B. 42, 3780). — Nadeln. F: 26°. — Oxydiert sich sehr schnell an der Luft. Bei der Einw. von Sauerstoff auf die Lösung in Alkohol bei Gegenwart von Platin-Asbest entsteht 1-Äthyl-4-cyan-chinolon-(2).

3. 1.2-Dihydro-chinolin-carbonsäure-(4), 1.2-Dihydro-cinchoninsäure $C_{10}H_0O_2N$, s. nebenstehende Formel.

1-Methyl-1.2-dihydro-cinchoninsäure $C_{11}H_{11}O_2N=$ $C(CO_2H):CH$ $C(CO_2H):CH$ $D(CH_3)\cdot CH_2$ B. Entsteht neben 1-Methyl-chinolon-(2)-carbon-new N(CH_3) \cdot CH_2

säure-(4) bei der Einw. von konz. Natronlauge auf Cinchoninsäure-chlormethylat bei Zimmertemperatur (Roser, A. 282, 364). — Unbeständige, gelbe Nadeln (aus verd. Alkohol). Hat keinen scharfen Schmelzpunkt. Löslich in Alkohol, Äther und Wasser; die Lösungen zersetzen sich beim Kochen; leicht löslich in Salzsäure, löslich in überschüssiger Soda-Lösung mit gelber Farbe. — Verhalten beim Behandeln mit Zinn und Salzsäure: R.

4. 1.2-Dihydro-isochinolin-carbonsäure-(1), 1.2-Dihydro-isochinaldinsäure $C_{10}H_{0}O_{2}N$, s. nebenstehende Formel.

2 - Benzoyl - 1.2 - dihydro-isochinaldinsäure - nitril, 2 - Benzoyl - CH CH CH CO2H CO2H

B. Beim Schütteln von Isochinolin mit Kaliumcyanid-Lösung und Benzoylchlorid (Reissert, B. 38, 3427). — Prismen (aus Alkohol). F: 125—126°. Sehr leicht löslich in Benzol, Chloroform und Aceton, leicht in Eisessig, heißem Alkohol und Methylalkohol, löslich in Äther, schwer löslich in Ligroin und Benzin, kaum in Wasser. Zersetzt sich bei längerem Kochen mit Alkohol. Liefert beim Behandeln mit 36°/0 iger Salzsäure bei Zimmertemperatur Benzaldehyd, Isochinaldinsäure, Isochinaldinsäure-amid, eine Verbindung vom Schmelzpunkt 151° und eine Verbindung $C_{24}H_{23}ON_2$ vom Schmelzpunkt 123—124°.

5. [Indolyl - (3)] - essigsäure, β - Indolylessigsäure, C.CH2.CO2H Skatol- ω -carbonsaure $C_{10}H_{9}O_{3}N$, s. nebenstehende Formel. V. Kommt im Harn vieler gesunder und kranker Menschen vor (NENCKI, SIEBER, J. pr. [2] 26, 333; E. SALKOWSKI, H. 9, 32; ROSIN, C. 1893 I, 487; Fr. 32, 516; Hebter, J. biol. Chem. 4, 239, 253; C. 1908 I, 1297, 1985). In einem Fall konnte β -Indolylessigsäure auch im Darminhalt eines an intestinaler Gärung leidenden Patienten nachgewiesen werden (H., J. biol. Chem. 4, 256). — B. Entsteht in geringer Menge neben anderen Produkten bei der Fäulnis von Fleisch, Serumalbumin, Fibrin, Pankreaspepton (E. Salkowski, H. Salkowski, B. 13, 191, 2217; E. S., H. 9, 9) und Tryptophan (Hôpkins, Cole, C. 1903 II, 1011). Man setzt (nicht näher beschriebenen) β -Formyl-propionsäure-methylester mit Phenylhydrazin um, kocht das entstandene Phenylhydrazon mit alkoh. Schwefelsäure und verseift das Reaktionsprodukt mit siedender alkoholischer Kalilauge (ELLINGER, B. 37, 1806). Man kocht das Phenylhydrazon des β -Formyl-propionsäure-phenylhydrazids (Bd. XV, S. 345) mit alkoh. Schwefelsäure (E.). — Blättchen (aus Benzol). F: 164° (E. S., H. 9, 14), 165° (E.). Leicht löslich in Alkohol und Äther, schwer in heißem Benzol, sehr schwer in Wasser (E. S.). — Liefert beim Erhitzen über den Schmelzpunkt Skatol (E. S., H. S., B. 13, 193; E. S., H. 9, 14; E.). — Verhalten von β -Indolylessigsäure im Organismus des Kaninchens: E. S., H. 9, 28, 31. – E.). — Vernälten von β -Indolylessigsaure im Organismus des Nanmenens: E. S., α . θ , 20, 31. — β -Indolylessigsaure gibt in stark verdünnter wäßriger Lösung beim Kochen mit Salzsaure und wenig Ferrichlorid eine violette Färbung (E. S., H. 9, 16, 25). Die stark verdünnte wäßrige Lösung gibt beim Versetzen mit dem gleichen Volum konz. Salzsaure und einigen Tropfen einer 1—20/0jeen Chlorkalk-Lösung eine purpurrote Färbung (E. S., H. 9, 25). Beim Versetzen einer β -Indolylessigsaure enthaltenden Lösung mit einigen Tropfen Salpetersaure (D: 1,2) und einigen Tropfen einer verdünnten wäßrigen Alkalinitrit-Lösung entsteht je nach der Konzentration eine rote Färbung bezw. ein roter Niederschlag (Urorosein, S. 67); zur Ausführung der Reaktion mit Harn genütt oft schon das Ansauern mit einer starken Säure (N. führung der Reaktion mit Harn genügt oft schon das Ansäuern mit einer starken Säure (N., S.; E. S.; R.; STAAL, H. 46, 246), da in vielen Fällen salpetrige Säure im Harn infolge bakterieller Tätigkeit vorhanden ist (H., C. 1908 I, 1297). — AgC₁₀H₈O₈N (E. S., H. 9, 14).

Utorosein. Zur Konstitution vgl. Ellinger, Flamand, H. 62, 285. Utorosein ist nach Porcher, Hervieux (H. 45, 494) sowie nach Staal (H. 46, 258, 262) mit Skatolrot (Bd. XX, S. 316) identisch, während es nach Herter (C. 1908 I, 1297) davon verschieden ist. Utorosein kann dem angesäuerten Harn durch Amylalkohol oder Essigester entzogen werden, nicht aber durch Äther, Chloroform, Schwefelkohlenstoff oder Benzol; die Lösung in Amylalkohol ist rosa und zeigt einen Absorptionsstreifen bei 557 m μ (Nencel, Sieber, J. pr. [2] 26, 334; E. Salkowski, H. 9, 24; Rosin, C. 1893 I, 487). Utorosein löst sich in Ammoniak und Alkalicarbonaten zu farblosen oder gelblichen Lösungen (N., S.; R., Fr. 32, 516). Es läßt sich auf der Wollfaser fixieren (N., S.).

N-Methyl- β -indolylessigsäure, N-Methyl-skatol- ω -carbonsäure $C_{11}H_{11}O_2N=C_0H_4$ C(CH₂·CO₂H) CH. B. Beim Erhitzen von N-Methyl-indol mit Diazoessigester auf 200° und Verseifen des Reaktionsprodukts mit Kalilauge (PICCININI, R. A. L. [5] 8 I, 315). — Prismen (aus Benzol + Petroläther). F: 128—129°. Löslich in Äther, schwer löslich in kaltem Wasser. — Beim Erhitzen auf 200—220° entsteht 1.3-Dimethyl-indol. — AgC₁₁H₁₀O₂N. Krystallpulver. — Zersetzt sich beim Erwärmen. — Pikrat. Dunkelrote Prismen. F: 173—174°.

6. 3-Methyl-indol-carbonsäure-(2), Skatol-carbonsäure-(2) C₁₀H₆O₂N, s. nebenstehende Formel. B. Man erwärmt
Propionylameisensäure-phenylhydrazon mit alkoh. Schwefelsäure und
kocht den gewonnenen Äthylester mit alkoh. Kalilauge (Wislioenus, Arnold, B. 20, 3395;
A. 246, 334). Beim Überleiten von Kohlendioxyd über ein auf 230—240° erhitztes Gemisch
aus Skatol und Natrium (Ciamician, Magnanini, B. 21, 1927; G. 18, 60). Entsteht neben
Skatol beim Kochen von N-[2-Acetyl-phenyl]-glycinäthylester mit Natriumdraht in Toluol
(Camps, B. 32, 3234). — Nadeln (aus Wasser), Nadeln und Blättchen (aus Benzol + Petroläther). F: 163—164° (W., A.), 165—167° (Cia., M.), 166° (Ca.), 167° (Angeli, G. 22 II, 19).
Leicht löslich in Alkohol und Äther, löslich in Benzol, sehr schwer löslich in Ligroin und
Wasser (W., A.; Cia., M.). Elektrolytische Dissoziationskonstante k in Wasser bei 25°:
4,7×10-6 (Ang.). — Liefert beim Erhitzen über den Schmelzpunkt oder beim Kochen mit
Wasser Skatol (W., A.). Verhalten beim Erhitzen mit Acetanhydrid: Cia., M. — 3-Methylindol-carbonsäure-(2) gibt beim Erwärmen mit Schwefelsäure eine purpurrote Lösung (Cta.,
M.). Gibt beim Erwärmen mit Ferrichlorid in Wasser eine violette, in Alkohol eine rote
Färbung (W., A.). — AgC₁₀H₈O₂N. Unlöslicher Niederschlag (W., A.).

Äthylester $C_{19}H_{13}O_{2}N=C_{6}H_{4} < \stackrel{C(CH_{2})}{NH} > C \cdot CO_{2} \cdot C_{2}H_{5}$. B. s. im vorangehenden Artikel. — Nadeln (aus Alkohol). F: 133—134°; sehr leicht löslich in Äther und Benzol, unlöslich in Wasser (Wislioenus, Arnold, A. 246, 334).

7. 2-Methyl-indol-carbonsäure-(3) C₁₀H₉O₂N, s. nebenstehende Formel. B. Bei 4—5-stündigem Überleiten von Kohlendioxyd über ein Gemisch aus 2-Methyl-indol und Natrium bei 230—300° (CIAMICIAM, MAGNANINI, B. 21, 1926; G. 18, 60). — Krystallpulver (aus Essigester). F: 176—177° (ANGELI, G. 22 II, 20), 176° (WALKEB, Am. 14, 578), 170—172° (C., M.). Leicht löslich in Alkohol, Aceton und Essigester, schwer in Benzol, sehr schwer in Ligroin und Wasser (C., M.). Elektrolytische Dissoziationskonstante k in Wasser bei 25°: 1,3×10—6 (A.). — Beim Schmelzen, beim Kochen mit Wasser oder schneller beim Kochen mit Ammoniak entsteht 2-Methyl-indol (C., M.). — Gibt mit Ferrichlorid in verd. Lösung eine braune Färbung (C., M.). — AgC₁₀H₈O₂N. Krystallinischer Niederschlag (C., M.).

Äthylester $C_{12}H_{13}O_2N = C_0H_4$ $C(CO_2 \cdot C_2H_5)$ $C \cdot CH_3$. B. Aus dem Silbersalz der 2-Methyl-indol-carbonsäure-(3) beim Erwärmen mit Äthyljodid auf dem Wasserbad (Walker, Am. 14, 578). Bei Einw. von konz. Schwefelsäure auf Acetessigsäure-äthylester-phenylhydrazon bei Zimmertemperatur (Nef. A. 266, 73; W., Am. 14, 578) oder auf α -Äthyl-acetessigsäure-äthylester-phenylhydrazon bei -12° (W., Am. 16, 435). — Nadeln (aus Alkohol). F: 131° (W., Am. 14, 578; 16, 435), 134° (Nef; Reissert, Heller, B. 37, 4378). — Bleibt beim Kochen mit alkoh. Kalilauge größtenteils unverändert (N.; W., Am. 14, 578); beim Erhitzen mit alkoh. Kalilauge im Rohr auf 150° entsteht 2-Methyl-indol (N.). — Gibt mit Ferrichlorid keine Färbung (W., Am. 14, 578).

1.2-Dimethyl-indol-carbonsäure-(8) $C_{11}H_{11}O_{9}N=C_{0}H_{4} < C(CO_{9}H) > C \cdot CH_{2}$. B. Man erhitzt Acetessigsäure-äthylester-methylphenylhydrazon mit der 5-fachen Menge Zinkehlorid erst auf dem Wasserbad, dann auf 150° und verseift den gewonnenen Äthylester durch Kochen mit alkoh. Kalilauge (Degen, A. 286, 157). — Tafeln (aus Alkohol). Schmilzt unter teilweiser Zersetzung bei 185°. Schwer löslich in Wasser, Äther, Benzol und Ligroin, ziemlich leicht in heißem Alkohol und Chloroform. — Beim Erhitzen auf 200—205° entsteht 1.2-Dimethyl-indol.

Äthylester $C_{13}H_{18}O_2N = C_6H_4 < C(CO_2 \cdot C_2H_5) > C \cdot CH_3$. B. s. im vorangehenden Artikel. — Nadeln (aus Alkohol + Ligroin). F: 95° (Degen, A. 236, 157). Leicht löslich in Alkohol, Äther, Benzol und Chloroform, schwerer in Ligroin.

1-Allyl-2-methyl-indol-carbonsäure-(3) C₁₃H₁₈O₂N = C₀H₄ C(CO₂H) C·CH₃. B. Man setzt Acetessigester mit α-Allyl-phenylhydrazin um, erhitzt das Reaktionsprodukt mit 10—15 Tln. Zinkchlorid erst im Wasserbad, dann auf 130° und verseift den entstandenen (nicht näher beschriebenen) Äthylester (Blättchen aus Äther) durch Kochen mit alkoh. Kalilauge (MICHAELIS, LUXEMBOURG, B. 26, 2178). — Nadeln (aus Alkohol). F: 167—168°. Schwer löslich in Wasser, Äther und Benzol, leichter in heißem Alkohol. — Beim Erhitzen auf 170—180° entsteht 1-Allyl-2-methyl-indol.

8. 5-Methyl-indol-carbonsäure-(2) C₁₀H₀O₂N, s. neben-CH₃· CH stehende Formel. B. Man erhitzt Brenztraubensäure-äthylester-p-tolylhydrazon mit der gleichen Gewichtsmenge Zinkchlorid auf 220° und verseift den entstandenen Äthylester durch Kochen mit alkoh. Kalilauge (RASCHEN, A. 239, 225). — Nadeln (aus Wasser). F: 227—228° (unkorr.; Zers.). Ziemlich schwer löslich in heißem Wasser, leicht in Alkohol, Äther, Chloroform und Eisessig. — Beim Erhitzen auf 235—240° entsteht 5-Methyl-indol.

Äthylester $C_{12}H_{13}O_2N = CH_2 \cdot C_4H_2 < \frac{CH}{NH} > C \cdot CO_2 \cdot C_2H_5$. B. s. im vorangehenden Artikel. — Blättchen oder Nadeln (aus Alkohol oder Benzol). F: 158—160° (unkorr.) (R., A. 239, 225).

1.5-Dimethyl-indol-carbonsäure-(2) $C_{11}H_{11}O_2N = CH_2 \cdot C_0H_2 \cdot C_0H_2 \cdot C \cdot CO_2H$. B. Beim Erwärmen von Brenztraubensäure-[methyl-p-tolylhydrazon] mit $10^9/_0$ iger Salzsäure auf dem Wasserbad (Hegel, A. 232, 216). — Nadeln (aus Alkohol). F: 221° (Zers.). Unlöslich in Ligroin, sohwer löslich in Äther, löslich in warmem Chloroform, Eisessig und Benzol. — Liefert beim Erhitzen auf 220—230° 1.5-Dimethyl-indol. Beim Behandeln des Natriumsalzes mit Natriumhypochlorit-Lösung entsteht ein Produkt, das beim Kochen mit Wasser 1.5-Dimethyl-isatin liefert.

- $\textbf{1-\ddot{A}thyl-5-methyl-indol-carbons\"{a}ure-(2)} \ C_{12}H_{13}O_2N = CH_3 \cdot C_6H_3 < \overbrace{N(C_2H_3)}^{CH} \subset \cdot CO_2H.$
- B. Beim Erwärmen von Brenztraubensäure-[äthyl-p-tolylhydrazon] mit 10% iger Salzsäure oder besser mit Phosphorsäure (Hegel, A. 232, 218). Krystalle (aus Alkohol). F: 202%. Unlöslich in Ligroin, leicht löslich in Äther, Benzol, Chloroform und Eisessig. Liefert beim Erhitzen über den Schmelzpunkt 1-Äthyl-5-methyl-indol. Gibt beim Behandeln mit alkal. Natriumhypochlorit-Lösung ein Produkt, das beim Kochen mit Wasser 1-Äthyl-5-methylisatin liefert.
- 9. G-Methyl-indol-carbonsäure-(2) C₁₀H₂O₂N, s. nebenstehende Formel. B. Aus 2-Nitro-4-methyl-phenylbrenztraubensäure bei der Reduktion mit Zinkstaub und Essigsäure (Reissert, B. 30, 1051). Nadeln (aus Wasser). F: 217⁶ (Zers.).
 - $\textbf{1-Oxy-6-methyl-indol-carbons\"{a}ure-(2)} \quad C_{10}H_{9}O_{2}N = CH_{3} \cdot C_{6}H_{3} < CH > C \cdot CO_{2}H.$
- B. Durch Reduktion von 2-Nitro-4-methyl-phenylbrenztraubensäure mit Natriumamalgam und Wasser (Reisser, B. 30, 1052). Wurde nicht ganz rein erhalten. Blaßgraues Krystall-pulver. F: 165°.
- 10. 7-Methyl-indol-carbonsäure-(2) C₁₀H₉O₂N, s. nebenstehende Formel. B. Man erhitzt Brenztraubensäure-äthylestero-tolylhydrazon mit Zinkchlorid auf 220° und verseift den entstandenen Äthylester durch Kochen mit alkoh. Kalilauge (Raschen, A. 239, 228).

 Nadeln (aus Wasser). F: 170—171° (unkorr.; Zers.). Leicht löslich in Alkohol, Äther und Eisessig.
- 1.7-Dimethyl-indol-carbonsäure-(2) $C_{11}H_{11}O_2N = CH_2 \cdot C_0H_2 \cdot C_0H_3 \cdot C \cdot CO_2H$. Beim Erwärmen von (nicht näher beschriebenem) Brenztraubensäure-[methyl-o-tolylhydrazon] mit Phosphorsäure (D: 1,17) auf dem Wasserbad (Hegel, A. 232, 220). Nadeln (aus Benzol). F: 209—210°. Sehr leicht löslich in kaltem Alkohol, schwer in heißem Ligroin.

teilweise.

6. [2-Methyl-indolyl-(3)] - essigedure C₁₁H₁₁O₂N, s. nebenstehende Formel. B. Beim Erhitzen von Lävulinsäure-phenylhydrazon mit Zinkehlorid auf 125° (E. Fischer, A. 236, 149), besser durch Erhitzen von Lävulinsäure-äthylester-phenylhydrazon mit Zinkehlorid auf 140° und Kochen des entstandenen Äthylesters mit alkoh. Kalilauge (F., A. 236, 149). Man kocht das mit Alkohol angefeuchtete Diphenyltetrazan-Derivat des Lävulinsäurephenylhydrazids (Bd. XVI, S. 744) mit rauchender Salssäure (Volhard, A. 267, 109). Man erhitzt 2-Methylindol mit Diazoessigsäureäthylester auf 200° und verseift den entstandenen Äthylester mit

und kocht das Reaktionsprodukt erst mit alkoh. Šchwefelsäure, dann mit alkoh. Kalilauge (Ellinger, B. 38, 2887). — Prismen. F: 107°. — Zersetzt sich beim Lösen in heißem Wasser

Man setzt β -Formyl-isobuttersäure mit Phenylhydrazin um

Kalilauge (PICCININI, R. A. L. [5] 8 I, 316). — Krystalle (aus Aceton). F: 195—197° (Zers.) (V.), 195—200° (Zers.) (F.), 104° (P.). Ziemlich leicht löslich in siedendem Alkohol, löslich in Ather, schwer löslich in heißem Wasser und Chloroform (F.). Elektrolytische Dissoziationskonstante k in Wasser bei 25°: 2,15×10⁻⁵ (Angell, G. 22 II, 21). — Liefert beim Erhitzen auf 220—230° 2.3-Dimethyl-indol (F.; Höchster Farbw., D. R. P. 38784; Frdl. 1, 151). Gibt die Fichtenspanreaktion nicht (F.). — Pikrat. Rotbraune Nadeln. F: 193—194° (P.).

[1.2-Dimethyl-indolyl-(3)]-essigsäure $C_{12}H_{13}O_2N = C_6H_4 \xrightarrow{C(CH_2 \cdot CO_2H)} C \cdot CH_2$.

B. Man erhitzt Lävulinsäure-äthylester-methylphenylhydrazon mit Zinkchlorid erst auf dem Wasserbad, dann 5 Min. auf 150° und verseift den entstandenen Äthylester durch Kochen mit alkoh. Kalilauge (Degen, A. 236, 159). — Blättchen (aus Äther + Alkohol). F: 188°. Schwer löslich in Wasser, Äther und Benzol, viel leichter in heißem Alkohol und Chloroform. — Liefert beim Erhitzen auf 210—215° 1.2.3-Trimethyl-indol. Gibt die Fichtenspanreaktion nicht.

7. 3.3 - Dimethyl - indolenin - carbonsaure - (2) $C_{11}H_{11}O_{2}N$, s. nebenstehende Formel.

Nitril, 8.3 - Dimethyl - 2 - cyan - indolenin $C_{11}H_{10}N_2 = C_0H_4 < C(CH_2)_2 < C < CN$. Beim Erhitzen von 3.3-Dimethyl-indolenin-aldoxim-(2) mit Acetanhydrid auf ca. 150° (Plancher, Bettinelli, G. 29 I, 114). — F: ca. 38° (Pl., Giumelli, R. A. L. [5] 18 II, 395). Kp₃₀: 150—151°; löslich in organischen Lösungsmitteln (Pl., B.). — Liefert beim Kochen mit alkoh. Kalilauge oder verd. Salzsäure 3.3-Dimethyl-oxindol (Pl., B.). Gibt mit Methylmagnesiumjodid 3.3-Dimethyl-2-acetyl-indolenin (Pl., G.).

2.5 - Dimethyl-indol-carbonsaure-(3) C₁₁H₁₁O₂N, CH₃ s. nebenstehende Formel.

Äthylester $C_{18}H_{15}O_2N = CH_3 \cdot C_6H_3 \cdot C(CO_2 \cdot C_2H_5) > C \cdot CH_3$. B. Durch Einw. von konz. Schwefelsäure auf Acetessigsäure-äthylester-p-tolylhydrazon bei —15° (WALKER, Am. 16, 431). — Krystalle (aus verd. Alkohol). F: 163—163,5°. Leicht löslich in Alkohol, Äther und Benzol. — Liefert beim Erhitzen mit alkoh. Kalilauge auf 150° im Rohr 2.5-Dimethyl-indol.

9. 2.7 - Dimethyl - indol - carbonsäure - (3) $C_{11}H_{11}O_2N$, s. nebenstehende Formel.

Äthylester $C_{13}H_{15}O_3N = CH_3 \cdot C_6H_3 \cdot \frac{C(CO_3 \cdot C_3H_5)}{NH} \cdot C \cdot CH_3$. B. CH_3 behandelt. Aceteografium at CH_3

Man behandelt Acetessigsäure-äthylester in Äther mit o-Tolylhydrazin und läßt auf das entstandene Acetessigsäure-äthylester-o-tolylhydrazon (Krystalle aus Ligroin; F: 95—97°; leicht löslich in organischen Lösungsmitteln) konz. Schwefelsäure bei —15° einwirken (Walker, Am. 16, 433). — Prismen (aus verd. Alkohol). F: 173°. Leicht löslich in Alkohol und Ather.

10. 4.7 - Dimethyl - indol - carbonsäure - (2) $C_{11}H_{11}O_{2}N$, s. nebenstehende Formel. B. Beim Erhitzen von Brenztraubensäure-[2.5-dimethyl-phenylhydrazon] mit Zinkchlorid auf 164° (Plancher, Caravaggi, R. A. L. [5] 14 I, 160). — Krystalle (aus Alkohol). F: 186°. Löslich in Äther. — Liefert beim Erhitzen mit Kalk 4.7-Dimethyl-indol.

4. 3.3.5 - Trimethyl - indolenin - carbonsaure - (2) CH_3 : $C(OH_3)_2$ $C(OH_3)_2$ $C(OH_3)_2$ $C(OH_3)_2$

Nitril, 3.3.5 - Trimethyl - 2 - cyan - indolenin $C_{12}H_{12}N_2 = CH_2 \cdot C_0H_3 \cdot C_0CH_3 \cdot C$ aldoxim-(2) oder seinem Acetat mit Acetanhydrid (Plancheb, Carrasco, R. A. L. [5] 18 II, 277). — Angenehm riechende Tafeln (aus Benzol). F: 50—51°. Kp₁₂: 144—145°. Sehr leicht löslich in den üblichen organischen Lösungsmitteln. Ist flüchtig mit Wasserdampf. — Liefert beim Behandeln mit alkoh. Kalilauge 3.3.5-Trimethyl-oxindol und geringere Mengen einer Verbindung C₁₁H₁₈ON vom Schmelzpunkt 81—82°.

Amidoxim C₁₂H₁₈ON₃ = CH₃·C₆H₃·C·C(CH₃)₂·C·C(:NH)·NH·OH bezw.

CH₃·C₆H₃·C·C(CH₃)₃·C·C(NH₂):N·OH. B. Beim Erwärmen von 3.3.5-Trimethyl-2-cyan-indolenin mit salessaurem Hydroxylamin und Natziumeenbeste in mod Allebol cut 50, 70°

indolenin mit salzsaurem Hydroxylamin und Natriumearbonat in verd. Alkohol auf 50—70° (Plancher, Carrasco, R. A. L. [5] 18 II, 277). — Krystalle (aus Alkohol). F: 172—173°.

5. Carbonsäuren $C_{13}H_{15}O_2N$.

1. a-[1.2-Dihydro-chinolyl-(2)]-isobuttersäure C₁₈H₁₅O₂N, s. nebenstehende Formel.

∨сн≈сн $\dot{\mathbf{C}}\mathbf{H} \cdot \mathbf{C}(\mathbf{CH_3})_2 \cdot \mathbf{CO_2H}$

 $\alpha - [1-Isobutyryl-1.2-dihydro-chinolyl-(2)] - isobutter - \\ \text{säure } C_{17}H_{21}O_3N = C_6H_4 \underbrace{\begin{array}{c} \text{CH} & \text{CH} \cdot \text{C}(\text{CH}_3)_2 \cdot \text{CO}_2\text{H} \\ N[\text{CO} \cdot \text{CH}(\text{CH}_3)_2] \cdot \text{CH} \cdot \text{C}(\text{CH}_3)_2 \cdot \text{CO}_2\text{H} \\ \end{array}}_{\text{N}} \cdot \underbrace{\begin{array}{c} \text{Zur Konstitution vol.} \\ \text{STAUDINGER, KLEVER, KOBER, A. 374 [1910], 5. - B. Aus Dimethylketen-Chinolin (Bd. XXI, Color of the color of th$ 8.524) beim kurzen Kochen mit verd. Mineralsäuren oder beim Erhitzen mit Wasser im Rohr auf 120° (STAUDINGER, KLEVER, B. 39, 971; 40, 1150). — Krystalle (aus Benzol + Ligroin). F: 152—153° (St., Kl.). — Spaltet beim Erhitzen Chinolin ab (St., Kl., B. 39, 971). Zerfällt beim Kochen mit konz. Salzsäure quantitativ in Chinolin und Isobuttersäure (St., Kl.). Addiert Brom (St., Kl., B. 40, 1150).

Methylester $C_{18}H_{23}O_3N = (CH_3)_2CH \cdot CO \cdot NC_9H_7 \cdot C(CH_3)_2 \cdot CO_2 \cdot CH_3$. B. Durch Verestern der Säure oder durch Kochen von Dimethylketen-Chinolin mit Methanol und einer Spur Chlorwasserstoff (St., Kl., B. 40, 1150). — F: 58—59°.

Äthylester $C_{19}H_{25}O_3N = (CH_3)_2CH \cdot CO \cdot NC_9H_7 \cdot C(CH_3)_3 \cdot CO_2 \cdot C_9H_5$. B. Durch Verestern der Säure oder durch Kochen von Dimethylketen-Chinolin mit Alkohol und einer Spur Chlorwasserstoff (St., Kl., B. 40, 1150). — F: 60,5—61,5°.

Anilid $C_{23}H_{36}O_2N_2 = (CH_3)_2CH \cdot CO \cdot NC_9H_7 \cdot C(CH_3)_2 \cdot CO \cdot NH \cdot C_6H_5$. B. Aus Dimethylketen-Chinolin durch Behandeln mit Anilin (St., Kl., B. 40, 1151). — Krystalle (aus Methanol). F: 109—110°.

3.3 - Diāthyl - indolenin - carbonsäure - (2) $C_{13}H_{15}O_2N$, s. nebenstehende Formel. B. Aus 2-Methyl-3,3-diathyl-indolenin beim Erwärmen mit Permanganat-Lösung auf dem Wasserbad (Plancher, G. 28 II, 363). Neben 3.3-Diathyl-oxindol beim Kochen von 3.3-Diathyl-2-cyan-indolenin mit alkoh. Kalilauge (Pl., G. 28 II, 413). — Nadeln (aus Petroläther). F: 125—126° (Pl., G. 28 II, 413). Löslich in Alkohol, Äther und Benzol, schwer löslich in Wasser (Pl., G. 28 II, 364). — Liefert beim Erhitzen auf 125—180° 3.3-Diäthyl-indolenin (Pl., G. 28 II, 365).

Nitril, 3.3-Diäthyl-2-cyan-indolenin $C_{13}H_{14}N_2 = C_0H_4 < C(C_2H_5)_2 < C < CN$. B. Beim Erhitzen von 3.3-Diäthyl-indolenin-aldoxim-(2) oder seiner Acetylverbindung mit Acetanhydrid auf 150° (PL., G. 28 II, 410). —Angenehm riechende, farblose Flüssigkeit. Kp27: 163° bis 164°. Löslich in den üblichen organischen Lösungsmitteln, schwer löslich in Wasser. - Liefert beim Kochen mit alkoh. Kalifauge 3.3-Diäthyl-indolenin-carbonsäure-(2) und 3.3-Diäthyl-oxindol.

Amidoxim $C_{13}H_{17}ON_3 = C_6H_4 \stackrel{C(C_9H_6)_3}{N} C \cdot C(:NH) \cdot NH \cdot OH$ bezw.

 $C_6H_4 \stackrel{C(C_2H_5)_2}{\sim} C \cdot C(NH_2): N \cdot OH.$ Beim Erwärmen von 3.3-Diäthyl-2-cyan-indolenin mit salzsaurem Hydroxylamin und Soda in verd. Alkohol (PL., G. 28 II, 411). -- Krystalle (aus Alkohol). F: 121—122°.

6. α -[2-Methyl-1.2-dihydro-chinolyl-(2)]-isobuttersäure C₁₄H₁₇O₂N, s. nebenstehende Formel.

NH C(CH₃)·C(CH₃)₂·CO₂H

α-[1-Isobutyryl-2-methyl-1.2-dihydro-chino-lyl-(2)]-isobuttersäure C₁₈H₂₂O₃N = (CH₃)₂CH·CO·NC₅H₆(CH₂)·C(CH₃)₂·CO₂H. Zur Konstitution vgl. Staudinger, Klever, Kober, A. 374 [1910], 5.— B. Bei vorsichtigem Erhitzen von Dimethylketen-Chinaldin mit verd. Essigsäure (Staudinger, Klever, B. 40, 1151). — Krystalle (aus Methanol). F: 137—138° (St., Kl.).

7. Monocarbonsäuren $C_n H_{2n-13} O_2 N$.

1. Carbonsäuren $C_{10}H_7O_2N$.

1. Chinolin - carbonsaure - (2), Chinaldinsaure C₁₀H₇O₂N, s. nebenstehende Formel. B. Beim Erhitzen von Chinaldin (DOEBNER, v. MILLER, B. 16, 2472) oder von Benzalchinaldin (Bd. XX, S. 497) (v. Mi., KRÄMER, B. 24, 1915) mit Chromsäure in verd. Schwefelsäure. Beim Erhitzen von $2 \cdot [\beta.\beta' \cdot \text{Dioxy-isopropyl}] \cdot \text{chinolin (Bd. XXI, S. 181) oder}$ $2 \cdot [\beta.\beta' \cdot \beta'' \cdot \text{Trioxy-tert.-butyl}] \cdot \text{chinolin (Bd. XXI, S. 204)}$ mit konz. Salpetersäure auf dem Wasserbad (Koenigs, B. 32, 226, 229; vgl. H. Meyer, M. 25, 1198; Besthorn, Ibele, B. 39, 2329; M., Turnau, M. 28, 155; Be., B. 42, 2698). Bei der Reduktion von Chinaldinsäure-N-oxyd (S. 73) mit Jodwasserstoffsäure und rotem Phosphor (Heller, Sourlis, B. 41, 2700). Bei 1-tägigem Außewahren von 1-Benzoyl-2-cyan-1.2-dihydro-chinolin (S. 65) mit 36%/giger Salzsäure (Reissert, B. 38, 1610). Neben anderen Produkten bei der Oxydation von Dichinolyl-(2.3') (Syst. No. 3491) oder von Kyklothraustinsäure [s. bei Dichinolyl-(2.3')] in essigsaurer Lösung mit Kaliumpermanganat (Weidel, Strache, M. 7, 283, 289, 300). — Nadeln mit 2 H₂O (aus Wasser) (Doe., v. Mi.). Krystallisiert wasserfrei aus Benzol (Weil, St.). Verliert das Krystallwasser beim Außewahren an der Luft, rascher bei 100°, und schmilzt dann bei 156° (Doe., v. Mi.), 157° (Weil, M. 8, 132; Reissert, B. 38, 1611). Ziemlich schwer löslich in kaltem, leicht in warmem Wasser (Doe., v. Mi.), leicht löslich in heißem Benzol (Weil, St.). Elektrolytische Dissoziationskonstante k bei 25°: 1,2×10⁻⁶ (Ostwald, Ph. Ch. 3, 395). Gibt mit Ferrosulfat eine rotgelbe Färbung (Skraup, M. 7, 213 Anm.; vgl. Wolff, A. 322, 372 Anm.). — Zerfällt oberhalb des Schmelzpunkts in Chinolin und Kohlendioxyd (Doe., v. Mi.). Bei der Destillation des Calciumsalzes entsteht Dichinolyl vom Schmelzpunkt 191—192° (Be., I., B. 37, 1243). Wird von Kaliumpermanganat in schwach alkalischer Lösung zu Pyridin-tricarbonsäure-(2.3.6) (Syst. No. 3310) oxydiert (v. Mi., Kr.). Gibt beim Nitrieren mit Salpeterschwefelsäure bei 60—70° 5-Nitro-chinaldinsäure und 8-Nitro-chinaldinsäure (Be., I., B. 39, 2333). Einw. von Thionylchlorid s. u. bei Chinaldinsäurechlorid. Beim Erhitzen von Chinaldinsäure mit Essigsäureanhydrid oder mit Benzoesäureanhydrid auf 130—140° entsteht die Verbindung C₁₀H₁₂ON₂ (S. 73) (Be., I., B. 37, 1239).

 $Cu(C_{10}H_6O_2N)_2+2H_2O$. Blaugrüne, mikroskopische Krystalle. Schwer löslich in verd. Mineralsäuren (Doebner, v. Miller, B. 16, 2474). — Silbersalz. Amorph, lichtbeständig; löst man das Salz in heißer, salpetersaurer Silbernitrat-Lösung, so scheidet sich das Salz $AgC_{10}H_6O_2N+C_{10}H_7O_2N+HNO_3+H_2O$ in Nadeln ab (D., v. Mi.). — $Ca(C_{10}H_6O_2N)_2$. Farbloser Niederschlag (D., v. Mi.). — $C_{10}H_7O_2N+HCl+H_2O$. Tafeln (aus salzsäurehaltigem Wasser). Ziemlich schwer löslich in Wasser (D., v. Mi.). — $2C_{10}H_7O_2N+H_2Cr_2O_7$. Rote Krystalle (aus Wasser). Schwer löslich in kaltem Wasser (D., v. Mi.). — Chloroaurat. F: 1470 (Zers.) (H. Meyer, M. 25, 1200 Anm. 2). — $2C_{10}H_7O_2N+2HCl+PtCl_4+2H_2O$ (D., v. Mi.). Hellrote Krystalle (aus verd. Salzsäure). Triklin pinakoidal (Březina, M. 7, 302; 8, 133; vgl. Groth, Ch. Kr. 5, 764). Schwer löslich in kaltem, leicht in heißem Wasser (D., v. Mi.). — Pikrat. Gelbe Nadeln (aus Wasser). Leicht löslich in heißem Wasser und in Alkohol (D., v. Mi.).

Chinaldinsäure-methylester $C_{11}H_0O_2N=NC_9H_6\cdot CO_2\cdot CH_3$. B. Aus Chinaldinsäure und Methanol in Gegenwart von Chlorwasserstoff (Besthorn, Ibele, B. 39, 2332). Aus Chinaldinsäurechlorid und Methanol (H. Meyer, M. 25, 1199; B. 38, 2490; B., I.). — Nadeln (aus Ligroin). F: 85° (B., I.).

Chinaldinsäure-desylester, [Chinolin-carboyl-(2)]-benzoin $C_{24}H_{17}O_3N = NC_9H_6$: $CO \cdot O \cdot CH(C_6H_5) \cdot CO \cdot C_6H_5$. B. Beim Behandeln von 1-Benzoyl-2-cyan-1.2-dihydro-chinolin mit 36% giger Salzsäure, zweckmäßig in Gegenwart von Benzaldehyd (Reissert, B. 38, 1610, 1612). Beim Erhitzen von Chinaldinsäurechlorid mit Benzoin auf 130% (R.). — Prismen (aus Alkohol). F: 168—168,5%. Schwer löslich in Methanol, Alkohol, Äther, Ligroin und Wasser, leicht in heißem Benzol, Eisessig, Essigester, Chloroform und Aceton. — Spaltet sich beim Kochen mit wäßrig-alkoholischer Natronlauge in Chinaldinsäure und Benzoin.

Chinaldinsäure-chlorid C₁₀H₆ONCl = NC₉H₆·COCl. Das Molekulargewicht ist kryoskopisch in Benzol bestimmt (Besthorn, B. 41, 2004). — B. Beim Erhitzen von Chinaldinsäure mit reinem Thionylchlorid (Besthorn, Ibele, B. 38, 2127; 39, 2330; H. Meyer, Turnau, B. 42, 1168; Be., B. 42, 2697) oder bei der Einw. von ungereinigtem Thionylchlorid auf Chinaldinsäure in Benzol oder auf ein Alkalisalz der Chinaldinsäure (M., T., B. 42, 1168); das unter anderen Bedingungen entstehende Produkt, das bei 175—177° (Zers.) schmilzt und sich in organischen Lösungsmitteln nicht löst (M., M. 25, 1199; B. 38, 2489; M., T., M. 28, 157; B. 42, 1165; Be., I., B. 39, 2331), ist wahrscheinlich Chinaldinsäurechlorid-hydrochlorid (Späth, Spitzer, B. 59 [1926], 1480; M., Graf, B. 61 [1928], 2202). — Nadeln (aus Äther oder Ligroin). F: 97—98° (Braunfärbung); sehr leicht löslich in Äther und Benzol, schwerer in Ligroin, sehr schwer in kaltem Wasser (Be., I., B. 38, 2128). — Bei längergin Aufbewahren mit Wasser wird Chinaldinsäure regeneriert (Be., I., B. 39, 2332). Gebt beim Aufbewahren (Be., I., B. 39, 2332; M., T., B. 42, 1169) sowie beim Behandeln mit Thionylchlorid + wenig Schwefeltrioxyd oder Salpetersäure (M., T.) in das Hydrochlorid (?) (s. o.) über. Reines Thionylchlorid wirkt selbst beim Kochen kaum ein (M., T.). Gibt beim Erwärmen mit Benzol in Gegenwart von Aluminiumchlorid Phenyl-[chinolyl-(2)]-keton (Bd. XXI, 8. 355) (Be., B. 41, 2002). Liefert beim Erhitzen mit Chinolin in Benzol den Farbstoff C₁₉H₁₂ON₂ (8. 73); dieser entsteht anscheinend auch beim Kochen des Chlorids mit Wasser

(Br., I., B. 38, 2128; D. R. P. 168948; C. 1906 I, 1856; Frdl. 8, 530); analoge Farbstoffe entstehen mit 6-Chlor-chinolin (braunrote, grünlich schimmernde Nadeln) und mit Cinchoninsäure-äthylester (s. bei diesem, S. 75) (Br., D. R. P. 168948). — Hydrochlorid. F: 168—170° (Zers.) (M., B. 38, 2489).

Verbindung C₁₉H₁₂ON₂, s. nebenstehende Formel. Zur Konstitution vgl. Besthorn, B. 46 [1913], 2763; Wieland, Hettche, Hoshino, B. 61 [1928], 2372. — B. Beim Erhitzen von Chinaldinsäure mit Essigsäureanhydrid oder Benzoesäureanhydrid auf 130—140° (Besthorn, Ibele, B. 87, 1239). Durch

Kochen von Chinaldinsäurechlorid mit Chinolin in Benzol (B., I., B. 38, 2128; B., D.R.P. 168948; C. 1906 I, 1856; Frdl. 8, 530), anscheinend auch beim Kochen von Chinaldinsäurechlorid mit Wasser (B., I., B. 38, 2128). — Rote, grüngelb schimmernde Nadeln (aus Alkohol); rote, benzolhaltige Prismen (aus Benzol). Sintert oberhalb 200°, schmilzt unscharf bei 230° bis 240°; schwer löslich in Benzol, Äther und Eisessig, leichter in Alkohol, ziemlich leicht in Chloroform; die goldgelben Lösungen in Alkohol und Eisessig fluorescieren grünlichgelb; die rote Benzol-Lösung fluoresciert scharlachrot; Absorptionsspektrum in Benzol: B., I., B. 37, 1240. — Am Licht entfärben sich die Lösungen sofort (B., I.). Wird durch Oxydationsmittel leicht zerstört (B., I.). Wird durch 6—8-stündiges Kochen mit konz. Bromwasserstoffsäure in Chinaldinsäure und Chinolin gespalten (B., I.). Gibt bei 4—5-stündigem Erwärmen mit konz. Schwefelsäure auf dem Wasserbad unter Entwicklung von schwefliger Säure Carbostyril und Chinaldinsäure (B., I.).

Chinaldinsäure-amid C₁₀H₈ON₂ = NC₉H₅·CO·NH₂. B. Neben anderen Verbindungen beim Aufbewahren von 1-Benzoyl-2-cyan-1.2-dihydro-chinolin mit 36% eiger Salzsäure (Reisser, B. 38, 1610). Bei der Einw. von konzentriertem wäßrigem Ammoniak auf Chinaldinsäure-chlorid (H. Meyer, M. 25, 1199; vgl. R., B. 38, 1612) sowie von wäßrig-alkoholischem Ammoniak auf Chinaldinsäure-methylester (M., M. 25, 1199; B. 38, 2490; Besthorn, Ibele, B. 39, 2332). — Nädelchen (aus verd. Alkohol oder Benzol-Ligroin). Schmilzt nach dem Trocknen im Vakuum bei 133° (R.), 132—133° (Be., I.). Leicht löslich in Alkohol, Benzol, Chloroform und Eisessig, schwerer in Äther, schwer in Ligroin und heißem Wasser; leicht löslich in verd. Salzsäure (R.). — Wird durch siedende Natronlauge unter Bildung von Chinaldinsäure verseift (R.). — Chloroaurat. Nädelchen (aus verd. Salzsäure). F: 210° (M., M. 25, 1199).

N-[Chinolin-carboyl-(2)]-anthranilsäure $C_{17}H_{19}O_9N_9=NC_9H_6\cdot CO\cdot NH\cdot C_9H_4\cdot CO_2H$. Diese Konstitution kommt vielleicht der Kyklothraustinsäure [s. bei Dichinolyl-(2.3'), Syst. No. 3491] zu.

Chinaldinsäure - nitril, 2 - Cyan - chinolin, [Chinolyl - (2)] - cyanid $C_{10}H_6N_2 = NC_0H_4\cdot CN$. B. Man acetyliert Chinolin-aldehyd-(2)-oxim (Bd. XXI, S. 322) mit Essigsäure-anhydrid und erhitzt das erhaltene Acetylderivat (Pfitzinger, J. pr. [2] 66, 264). Beim Kochen von Chinaldinsäureamid mit Thionylchlorid (H. Meyer, M. 25, 1199). — Nadeln (aus Chloroform). F: 89° (M.), 93° (Pf.). Sehr leicht flüchtig (M.). — Wird beim Erhitzen mit konz. Salzsäure im Rchr auf 120° verseift (M.). — $C_{10}H_6N_2 + HCl + AuCl_2$. Nadeln. F: 158° (Zers.); ziemlich schwer löslich (M.).

N.N'-Diphenyl-C-[chinolyl-(2)]-formazan, 2-[N.N'-Diphenyl-formazyl]-chinolin ("Chinolylformazyl") $C_{22}H_{17}N_5=NC_9H_6\cdot C < N:N\cdot C_6H_5$. B. Bei der Einw. von 2 Mol Benzoldiazoniumchlorid auf 1 Mol ω -[Chinolyl-(2)]-acetophenon-carbonsäure-(2) (Syst. No. 3366) in 2 Mol Natronlauge (Eibner, Hofmann, B. 37, 3013). — Dunkelrotbraune Nadeln mit grünem Oberflächenglanz (aus Äther + Petroläther). F: 185° (Zers.). Leicht löslich in den meisten organischen Lösungsmitteln; löslich in heißer konzentrierter Salzsäure mit roter, in konz. Natronlauge mit blauer Farbe, die beim Verdünnen mit Wasser in Orangerot umschlägt.

Chinaldinsäure-N-oxyd C₁₀H₇O₃N = ONC₉H₆·CO₂H. Zur Konstitution vgl. Meisen-Heimer, Stotz, B. 58 [1925], 2334; Heller, J. pr. [2] 121 [1929], 271. — B. Bei der Oxydation von Chinaldin-N-oxyd mit Kaliumpermanganat in alkal. Lösung (Heller, Sourlis, B. 41, 2699). — Nadeln (aus Wasser). F: 167° (Zers.). Leicht löslich in Aceton, Alkohol und Benzol, schwer in Ligroin und Äther; löslich in rauchender Salzsäure. — Wird durch Erhitzen mit Jodwasserstoffsäure und rotem Phosphor zu Chinaldinsäure reduziert.

5 - Nitro - chinolin - carbonsäure - (2), 5 - Nitro - chinaldinsäure O₂N C₁₀H₄O₄N₂, s. nebenstehende Formel. B. Neben 8-Nitro-chinaldinsäure bei der Nitrierung von Chinaldinsäure mit Salpeterschwefelsäure bei 60—70° (Besthorn, Ieele, B. 39, 2333). — Krystalle (aus Wasser). F: 203° (Zers.). — Durch Erhitzen über den Schmelzpunkt entsteht 5-Nitro-chinolin. — Bariumsalz. Nadeln (aus Wasser). Schwer löslich in Wasser.

8 - Nitro - chinolin - carbonsäure - (2), 8 - Nitro - chinaldinsäure $C_{10}H_6O_4N_9$, s. nebenstehende Formel. B. s. bei 5-Nitro-chinaldinsäure. — Krystalle (aus Wasser). F: 177° (Zers.) (B., I., B. 39, 2333). — Durch Erhitzen über den Schmelzpunkt entsteht 8-Nitro-chinolin. — Bariumsalz. O2N Krystalle (aus Wasser). Leicht löslich in Wasser.

x - Nitro - chinolin - carbonsäure - (2), x - Nitro - chinaldinsäure $C_{10}H_6O_3N_2 = NC_9H_5(NO_2)\cdot CO_3H$. B. Bei 40-stündigem Kochen von Chinaldin mit Salpetersäure (D: 1,4) (Doebner, v. Miller, B. 15, 3076). — Krystalle (aus Wasser). F: 219—220°. Schwer löslich in kaltem Wasser, leicht in heißem. — $AgC_{10}H_5O_4N_2$. Krystallpulver. Schwer löslich in Wasser.

- 2. Chinolin-carbonsäure-(3) C₁₀H₂O₂N, s. nebenstehende Formel.

 B. Bei der Oxydation von 3-Methyl-chinolin (Doebner, v. Miller, B. 18, 1644) sowie von 3-Äthyl-chinolin (Riedel, B. 16, 1613) mit Chromsäure und verd. Schwefelsäure. Beim Erhitzen von Chinolin-dicarbonsäure-(2.3) auf 120—130° (Graebe, Caro, B. 13, 101). Tafeln (aus verd. Alkohol). Schmilzt unter geringer Zersetzung bei 275° (Gr., C.), 271—272° (unkorr.) (R.). Schwer löslich in kaltem, leichter in heißem Wasser, leicht in Alkohol (Gr., C.). Beim Destillieren der Salze über Kalk entsteht Chinolin (Gr., C.; R.). Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Pyridin-tricarbonsäure-(2.3.5) und Oxalsäure (R.). AgC₁₀H₆O₂N. Farblose Prismen (aus Wasser). Färbt sich am Licht violett (R.). Sehr schwer löslich in kaltem, leichter in heißem Wasser (Gr., C.). Cu(C₁₀H₆O₂N)₅. Grünlichblauer Niederschlag. Unlöslich in Wasser (Gr., C.). 2C₁₀H₇O₂N+2HCl+PtCl₄. Orangegelbe Nadeln und Tafeln. Leicht lölich in heißem Wasser (Gr., C.). Pikrat. Nadeln. F: 216° (Zers.); schwer löslich in kaltem Alkohol (R.).
- 2-Chlor-chinolin-carbonsäure-(3) C₁₀H₆O₂NCl, s. nebenstehende Formel. B. Beim Behandeln von 2-Oxy-chinolin-carbonsäure-(3) mit Phosphorpentachlorid bei 140° (FRIEDLAENDER, GÖHRING, B. 17, 460). Nadeln. Schmilzt bei 200° und zerfällt dabei zum Teil in CO₂ und 2-Chlor-chinolin (F., G.). Gibt beim Erhitzen mit Natriummethylat-Lösung auf 100° 2-Methoxy-chinolin-carbonsäure-(3) und wenig 2-Oxy-chinolin-carbonsäure-(3) (H. MEYER, M. 28, 55), beim Erhitzen mit alkoh. Kalilauge 2-Äthoxy-chinolin-carbonsäure-(3) (F., G.).
- 3. Chinolin-carbonsäure-(4), Cinchoninsäure C₁₀H₇O₂N, s. nebenstehende Formel. B. Bei der Oxydation von Lepidin mit siedender Chromschwefelsäure (Weidel, M. 3, 79; Hoogewerff, van Dorp, R. 2, 11). Beim Erwärmen von Isatin mit Acetaldoxim in 40% iger Kalilauge (Pfitzinger, J. pr. [2] 66, 263). Aus Chinolin-dicarbonsäure-(2.4) bei vorsichtigem Erhitzen auf 240% (Pf., J. pr. [2] 56, 311) oder beim Kochen mit Phenol (Koenigs, Mengel, B. 37, 1330). Aus Cinchonin durch Oxydation mit konz. Salpetersäure (Weidel, A. 173, 78, 84; vgl. Claus, Muchall, B. 18, 362), Kaliumpermanganat (Skraup, M. 2, 601 Anm.) oder Chromschwefelsäure (Koen., B. 12, 97; Sk., A. 201, 294, 301; Decker, Remfry, J. pr. [2] 79, 344). Über die Bildung von Cinchoninsäure aus Produkten der Isomerisation bezw. anderer Umwandlung des Cinchonins vgl. Sk., A. 201, 300; M. 21, 529; Sk., Zwerger, M. 23, 457; Sk., M. 24, 301; Forst, Böhringer, B. 14, 436; Schniderschitsch, M. 10, 55; Rabe, Ritter, B. 38, 2770; Ra., B. 41, 68; A. 365, 363; Koen., B. 40, 651, 2881; Rohde, Antonaz, B. 40, 2332. Darst. Man erhitzt Lepidin mit 40% iger Formaldehydlösung im Rohr auf 100% und oxydiert das Gemisch der Reaktionsprodukte mit Salpetersäure (D: 1,4) (Ellinger, Flamand, B. 39, 4389).

Krystallisiert aus wäßr. Lösung je nach den Bedingungen in wasserfreien monoklinen Prismen (Muthmann, Z. Kr. 15, 400; vgl. Groth, Ch. Kr. 5, 765), in feinen Nadeln mit 1 H₂O (SKRAUP, A. 201, 303; vgl. Weidel, A. 173, 86) oder in monoklinen (Ditscheiner, A. 173, 85; Stuhlmann, Z. Kr. 14, 159; B. 20, 1605) oder triklinen (Mu., Nef. B. 20, 637; Mu., Z. Kr. 15, 399; vgl. Claus, Kickelhayn, B. 20, 1605) Tafeln und Prismen mit 2 H₂O. Wird bei 100° wasserfrei, sintert bei 235—236° und schmilzt bei 253—254° (unkorr.) (Sk., A. 201, 301, 302; Decker, Remfry, J. pr. [2] 79, 345). Ist triboluminescent (Trautz, Ph. Ch. 53, 59). Unlöslich in Ather, sehr schwer löslich in Wasser und Alkohol, leichter in angesäuertem Wasser (W., A. 173, 85). Elektrolytische Dissoziationskonstante k bei 25°: 1,3×10⁻⁶ (Ostwald, Ph. Ch. 3, 395). — Cinchoninsäure gibt bei der Oxydation mit Permanganat in schwach alkalischer Lösung Pyridin-tricarbonsäure-(2.3.4) (Skraup, A. 201, 309, 312, 331). Liefert beim Erhitzen mit konz. Salpetersäure unter Druck auf 120—140° Chinolsäure (S. 75) und Cinchomeronsäure (Weidel, A. 173, 90; W., v. Schmidt, B. 12,

1152; vgl. Sk., A. 201, 312). Liefert beim Schmelzen mit Kaliumhydroxyd 2-Oxy-chinolin-carbonsäure -(4) (Koenigs, B. 12, 99; Koen., Köener, B. 16, 2152). Wird durch Zinn und konz. Salzsäure in der Wärme zu 1.2.3.4-Tetrahydro-cinchoninsäure reduziert (W., M. 2, 29; 3, 61 Anm. 2). Beim Auflösen in Thionylchlorid (H. Meyer, M. 22, 115; vgl. Späth, Spitzer, B. 59 [1926], 1484), anscheinend auch beim Erhitzen mit Phosphorpentachlorid auf 100° (Claus, Muchall, B. 18, 363) erhält man das Hydrochlorid des Cinchoninsäure-chlorids. Cinchoninsäure addiert in wäßr. Lösung 2 Atome Brom bezw. Jod unter Bildung der entsprechenden Dihalogenide (s. u.) (Cl., B. 18, 1307). Beim Erwärmen mit Salpeterschwefelsäure entsteht 5-Nitro-cinchoninsäure (Koenigs, Lossow, B. 32, 717). Die Einw. von konz. Schwefelsäure + Phosphorpentoxyd führt bei ca. 180° zu 8-Sulfo-cinchoninsäure (W., M. 2, 565; vgl. v. Georgievics, M. 1, 845), bei ca. 260° zu 6-Sulfo-cinchoninsäure (W., M. 2, 565; vgl. v. Georgievics, M. 8, 644); 8-Sulfo-cinchoninsäure entsteht auch beim Erhitzen von Cinchoninsäure mit Schwefeltrioxyd im Rohr über 100° (W., C.). Cinchoninsäure gibt bei der Destillation mit Calciumoxyd Chinolin und geringe Mengen β-Dichinolyl (Syst. No. 3491) (Koen., B. 12, 98; W., M. 2, 501). Beim Erhitzen mit Methyljodid auf 120° bis 130° erhält man Cinchoninsäure-jodmethylat (Cl., A. 270, 346).

Additionelle Verbindungen und Salze. C₁₀H₇O₂N + 2 Br. B. Aus Cinchoninsäure und Brom in wäßr. Lösung (Claus, B. 18, 1307). Rote Nadeln. F: 188° (unkorr.). Wird durch Kochen mit Wasser zerlegt. — C₁₀H₇O₂N + 2 I. Grüne Nadeln (aus Wasser), blaue Tafeln (aus Alkohol). F: 242°; zersetzt sich schon von 200° an (Cl., B. 18, 1307). Fast unlöslich in kaltem Wasser und verd. Ammoniak. Wird bei längerem Kochen mit Wasser zerlegt. — KC₁₀H₆O₂N. Krystalle mit ½+120 (Weidel, A. 173, 89). — Cu(C₁₀H₆O₂N)₂. Violettblaue Blätter. Schwer löslich in Wasser (W.). Leicht löslich in verd. Mineralsäuren (Skraup, A. 201, 304). — AgC₁₀H₆O₂N. Nadeln (aus Wasser). Sehr schwer löslich in Wasser (W.; S.). — Cs(C₁₀H₆O₂N)₂. Prismen oder Tafeln. Enthält nach W. ½+12,0, ist nach S. wasserfrei. Sehr schwer löslich in Wasser (W.; S.). — C₁₀H₇O₂N + HCl. Krystalle mit ½+16,0 (S.). — C₁₀H₇O₂N + HBr. Nadeln. F: 238° (Zers.) (Cl., A. 270, 358). — 2C₁₀H₇O₂N + H₂SO₄. Prismen (aus Wasser oder Alkohol) (S.). — 2C₁₀H₇O₂N + H₂Cr₂O₇. Rote Krystalle. Wird durch siedendes Wasser zerlegt (Van der Kolf, van Leent, R. 8, 217 Anm.). — C₁₀H₇O₂N + HNO₃. Nadeln oder Prismen (S.). — C₁₀H₇O₂N + HCl + Cl + 2H₂O (Dittmar, B. 18, 1618). — Chloroaurat. Krystalle (aus Alkohol). F: 237° (S., M. 21, 531), 242° (H. Meyer, M. 23, 906). — 2C₁₀H₇O₂N + 2HCl + PtCl₄. Orangegelbe Nadeln. Triklin pinakoidal (Březina, M. 8, 80; vgl. Groth, Ch. Kr. 5, 766). Schwer löslich in kaltem Wasser (W., A. 173, 90).

Chinolsāure C₂H₆O₄N₂¹). B. Aus Cinchoninsāure beim Erhitzen mit Salpetersāure im Rohr auf 120—140° (Weidel, A. 173, 90). Bei mehrtāgigem Kochen von Cinchonin mit konz. Salpetersāure oder besser mit rauchender Salpetersāure (W., A. 173, 78). — Sāuerlich und bitter schmeckende, gelbliche Krystalle (aus verd. Salzsāure). Fast unlöslich in Wasser, schwer löslich in Alkohol (W.). Löslich in Mineralsāuren und Essigsäure (W.). — Beim Erhitzen entsteht unter starker Verkohlung in geringer Menge 6-Nitrochinolin (Claus, Kramer, B. 18, 1250; vgl. Cl., Vis, J. pr. [2] 38, 394). Liefert bei längerem Erhitzen mit konz. Salpetersäure auf 170° in geringer Menge Cinchomeronsäure (S. 155) (W., v. Schmidt, B. 12, 1152). Reduktion mit Zinn und Salzsäure: W. Beim Erhitzen mit Brom und Wasser im Rohr auf 100—180° erhält man x.x.x.x.x.x.x-Hexabromchinolin und harzige Produkte (W.). — Chinolsäure gibt mit Kalilauge oder Ammoniak eine carminrote Lösung, die allmählich farblos wird (W.). — AgC₂H₅O₄N₂. Krystallinisch. Ist am Licht beständig (W.). — C₂H₆O₄N₂ + HCl. Nadeln. Wird durch Wasser hydrolysiert (W.). — 2C₂H₆O₄N₂ + 2HCl + PtCl₄. Dunkelorangegelbe Nadeln (W.).

Cinchoninsäure-methylester $C_{11}H_9O_2N=NC_9H_6\cdot CO_2\cdot CH_3$. B. Beim Behandeln eines bei ca. 190° schmelzenden Produkts, das bei tagelangem Aufbewahren von Cinchoninsäurechlorid-hydrochlorid über Ätzkali entsteht, mit Methanol (H. Meyer, M. 22, 115; vgl. Späth, Spitzer, B. 59 [1926], 1485). — F: 24° (M., M. 22, 115). — Wird beim Erwärmen mit verd. Soda-Lösung zum Teil verseift (M., M. 28, 42).

Cinchoninsäure-äthylester $C_{12}H_{11}O_2N=NC_9H_6\cdot CO_2\cdot C_2H_5$. B. Beim Erhitzen von Cinchoninsäure mit alkoh. Salzsäure auf dem Wasserbad (van der Kolf, van Leent, R. 8, 218). Beim Erhitzen von einehoninsaurem Kalium mit äthylschwefelsaurem Kalium unter Druck auf 170—180° (Wenzel, M. 15, 454). — Krystalle (aus Äther). F: 13° (v. d. K., v. L.; W.). Kp₁₅: 173° (W.); Kp₆₅: 215° (Decker, Remfry, J. pr. [2] 79, 345). Sehr schwer löslich in Wasser, schwer in Alkohol, leicht in Äther, Chloroform und Benzol (v. d. K., v. L.). — Liefert bei Einw. von Phenylmagnesiumbromid in Benzol Phenyl-[chinolyl-(4)]-keton und Diphenyl-[chinolyl-(4)]-carbinol (R., D., B. 41, 1007). — $C_{12}H_{11}O_2N + HgCl_2$. Nadeln. F: 153° (v. d. K.,

¹⁾ Die Einheitlichkeit dieser Verbindung ist trots der zahlreichen Analysen Belege recht fraglich (vgl. a. SKRAUP, A. 201, 311, 314). Vielleicht lag unreine 6-Nitro-cinchoninsäure (8.78) vor (Beilstein-Redaktion).

v. L.). Schwer löslich in Wasser. — $2C_{12}H_{11}O_2N + 2HCl + PtCl_4$. Orangegelbe Nadeln. F: 204° (v. d. K., v. L.). Schwer löslich in kaltem Wasser.

Verbindung C₂₂H₁₆O₂N₂. Zur Konstitution vgl. Besthorn, B. 46 [1913], 2765; Wirland, Hettche, Hoshino, B. 61 [1928], 2372. — B. Beim Erwärmen von Chinaldinsäurechlorid mit Cinchoninsäure-äthylester in Benzol auf dem Wasserbad (Besthorn, D. R. P. 168948; C. 1906 I, 1856; Frdl. 8, 531). — Rotbraune Nadeln (aus Benzol). Die verd. Benzol-Lösung ist in der Durchsicht blaurot; im auffallenden Licht zeigt sie starke scharlachrote Fluorescenz (B., D. R. P. 168948).

Cinchoninsäure-chlorid $C_{10}H_6$ ONCl = NC_9H_6 ·COCl. B. Das Hydrochlorid erhält man beim Auflösen von Cinchoninsäure in Thionylchlorid (H. Meyer, M. 22, 115; vgl. Späth, Spitzer, B. 59 [1926], 1484), anscheinend auch beim Erhitzen von Cinchoninsäure mit Phosphorpentachlorid auf 100° (Claus, Muchall, B. 18, 363); das freie Säurechlorid entsteht bei wiederholter Destillation des Hydrochlorids unter vermindertem Druck (Sp., Sp.). — Krystalle. F: 68° (Sp., Sp.). Kp₁₈: 148° (Sp., Sp.). — Das Hydrochlorid wandelt sich bei tagelangem Aufbewahren im Exsiccator über Kaliumhydroxyd in eine bei 190° (M.), 197—198° (Sp., Sp.). schmelzende Substanz um und gibt beim Auflösen in Wasser Cinchoninsäurehydrochlorid (M.). — $C_{10}H_6$ ONCl+HCl. Nadeln. F: 170° (M.; Sp., Sp.).

Cinchoninsäure-amid C₁₀H₈ON₂ = NC₉H₆·CO·NH₂. B. Beim Auflösen von Cinchoninsäure-methylester in Ammoniak (H. Meyer, M. 22, 116). Aus Cinchoninsäure-äthylester durch Erhitzen mit konzentriertem wäßrigem Ammoniak im Rohr auf 100° (van der Kolf, van Leent, R. 8, 220) oder besser mit alkoh. Ammoniak im Rohr auf 145° (Wenzel, M. 15, 456). — Nadeln (aus Essigester). F: 178° (W.; M.), 181° (v. d. K., v. L.). Unlöslich in Benzol, schwer löslich in Äther und Chloroform, leicht in Wasser und Alkohol in der Wärme (v. d. K., v. L.). — Liefert beim Behandeln mit Phosphorpentoxyd oder Thionylchlorid Cinchoninsäure-nitril (H. Meyer, M. 23, 904). Bei Einw. von Brom und Kalilauge erhält man 4-Amino-chinolin (Hoogewerff, van Dorf, R. 10, 145) und 3-Brom-4-amino-chinolin (W.; Claus, Howitz, J. pr. [2] 50, 236; Cl., Frobenius, J. pr. [2] 56, 181). — Chloroaurat. F: 238° (M., M. 23, 906). — 2C₁₀H₈ON₂ + 2HCl + PtCl₄. Orangerote Tafeln. F: 250—255° (v. d. K., v. L.).

Cinchoninsäure-nitril, 4-Cyan-chinolin, [Chinolyl-(4)]-cyanid $C_{10}H_6N_2=NC_0H_6$ · CN. B. Beim Erhitzen von Cinchoninsäure-amid mit Thionylchlorid oder Phosphorpentoxyd (H. Meyer, M. 23, 904). — Krystalle (aus Chloroform). F: 95°. Kp: 240—245°. Sublimiert unterhalb des Schmelzpunkts in Nadeln. — Ist sehr beständig gegen verseifende Mittel. — $C_{10}H_6N_2+HCl+AuCl_3$. Nadeln. F: 232°. — $2C_{10}H_6N_3+2HCl+PtCl_4$. Rotgelbe Krystalle. Verkohlt beim Erhitzen. Ziemlich leicht löslich in verd. Salzsäure.

Cinchoninsäure - hydroxymethylat, Ammoniumbase des Cinchoninsäure - methylbetains $C_{11}H_{11}O_2N=(H0)(CH_2)NC_0H_6\cdot CO_2H$. B. Das Jodid entsteht aus Cinchoninsäure beim Erhitzen mit Methyljodid auf $120-130^{\circ}$ (Claus, A. 270, 346) oder beim Erwärmen mit Methyljodid und überschüssiger Soda-Lösung (H. Meyer, M. 24, 201) sowie aus Cinchoninsäure-äthylester-jodmethylat beim Auflösen in verd. Ammoniak oder in verd. Natronlauge und Zufügen von Kaliumjodid zur Reaktions-Lösung (Decker, Remfey, J. pr. [2] 79, 346). Die Salze bilden sich ferner beim Auflösen von Cinchoninsäure-methylbetain in Halogenwasserstoffsäuren (Cl.). Das freie Methylbetain erhält man beim Schütteln der halogenwasserstoffsauren Salze mit Silberoxyd in wäßr. Lösung (Cl.; M.; D., R.). — Die Salze wie das Methylbetain liefern bei Einw. von starkem Alkali das Lacton der 1-Methyl-2-oxy-1.2-dihydro-chinolin-carbonsäure-(4) (Syst. No. 4280), das sich äußerst leicht zu 1-Methyl-chinolon-(2)-carbonsäure-(4) oxydiert (Cl.; vgl. D., Hock, B. 37, 1005). — Chlorid $C_{11}H_{10}O_2N\cdot Cl.$ Prismen (aus Wasser). F: 243° (Cl.), 243° (Zers.) (M.). Leicht löslich in Alkohol (Cl.). — Bromid. Nadeln (aus Wasser). F: 262° (Cl.). — Jodid $C_{11}H_{10}O_2N\cdot I$. Orangerote bis dunkelrote Nadeln und Säulen (aus Wasser oder Alkohol). F: 224° (Cl.; D., R.), 222° (Zers.) (M.). Sehr schwer löslich in Chloroform und Äther (Cl.). — Dichromat (C₁₁H₁₀O₂N· O)₂Cr₂O₃. Gelbe Nadeln, die sich am Licht bräunen (D., R.). — Pikrat. Gelbe Krystalle (aus Alkohol). F: 226° (D., R.).

Anhydrid, Cinchoninsäure-methylbetain C₁₁H₉O₂N = CH₃·NC₉H₄·CO·O. Nadeln (aus Alkohol) (Claus, A. 270, 348), Krystalle mit 1½ H₂O (aus Alkohol + Äther) (Decker, Remfry, J. pr. [2] 79, 350). Schmeckt bitter (CL.). Schmilzt unter Zersetzung bei 236° (CL.), 232° (H. Meyer, M. 24, 201), 217—218° (D., R., J. pr. [2] 79, 349). Schwer löslich in kaltem Alkohol, unlöslich in Äther und Chloroform (CL.). Die wäßr. Lösung gibt beim Erwärmen mit Eisenchlorid eine rote Färbung (CL.).

Cinchoninsäure - methylester - hydroxymethylat $C_{12}H_{12}O_3N = (HO)(CH_2)NC_9H_4 \cdot CO_3 \cdot CH_2$. B. Das Jodid entsteht beim Erwärmen von Cinchoninsäure oder besser von

cinchoninsaurem Natrium mit Dimethylsulfat und Behandeln des Reaktionsprodukts mit Kaliumjodid in wäßr. Lösung (Decker, Remfry, J. pr. [2] 79, 347). — Jodid $C_{12}H_{12}O_2N\cdot I$. Rote Nadeln. F: 178°. Ziemlich leicht löslich in Wasser mit hellgelber, in Chloroform und Eigessig mit roter Farbe, unlöslich in Benzol und Äther. Die rote Chloroform-Lösung wird beim Schütteln mit Wasser fast farblos, mit festem Kaliumjodid wieder rot. Wird durch verd. Ammoniak oder Natronlauge leicht verseift. — Dichromat $(C_{12}H_{12}O_2N\cdot O)_2Cr_2O_3$. Gelbliche Nadeln (aus Wasser). Ist lichtempfindlich. — Pikrat $C_{12}H_{12}O_2N\cdot O\cdot C_6H_2(NO_3)_3$. Gelbe Nadeln (aus Alkohol). F: 146°.

Cinchoninsäure-äthylester-hydroxymethylat $C_{13}H_{15}O_3N = (HO)(CH_3)NC_9H_6 \cdot CO_2 \cdot C_2H_5$. B. Das Jodid entsteht beim Erhitzen von Cinchoninsäureäthylester mit Dimethylsulfat auf 100° und Behandeln des Reaktionsprodukts in wäßr. Lösung mit Kaliumjodid (Decker, Remfry, J. pr. [2] 79, 345). — Jodid $C_{13}H_{14}O_2N \cdot I$. Gelbe Krystalle mit 2 H_2O (aus Wasser). Verliert das Krystallwasser an der Luft unter Rotfärbung. Schmilzt wasserhaltig bei 57°, wasserfrei bei 63°. Leicht löslich in Wasser mit gelblicher, in Alkohol mit rötlicher, in Chloroform mit roter Farbe. Die Estergruppe wird durch verd. Ammoniak oder Natronlauge äußerst leicht verseift. — Pikrat. Gelbe Krystalle (aus Alkohol). F: 140°.

Cinchoninsäure-amid-hydroxymethylat $C_{11}H_{12}O_2N_2 = (HO)(CH_3)NC_9H_6 \cdot CO \cdot NH_2$. B. Das Jodid entsteht beim Erwärmen von Cinchoninsäure-methylester-jodmethylat mit konz. Ammoniak und Fällen der angesäuerten Reaktions-Lösung mit Kaliumjodid (Decker, Remfey, J. pr. [2] 79, 350). — Jodid $C_{11}H_{11}ON_2 \cdot I$. Gelbe Nadeln (aus Alkohol). F: 233°. — Pikrat $C_{11}H_{11}ON_2 \cdot O \cdot C_6H_2(NO_2)_3$. Gelbe Krystalle (aus Alkohol). F: 198°.

Cinchoninsäure - hydroxyäthylat, Ammoniumbase des Cinchoninsäure - äthylbetains C₁₂H₁₂O₂N = (HO)(C₂H₅)NC₉H₆·CO₂H. B. Das Jodid erhält man beim Erhitzen von Cinchoninsäure mit Äthyljodid im Rohr auf 130—140° (CLAUS, A. 270, 352; SEBAUP, M. 15, 435; H. MEYER, M. 24, 201). Das Jodid entsteht ferner bei Behandlung von jodwasserstoffsaurem Cinchoninjodäthylat mit Silbernitrat, Oxydation des Reaktionsprodukts mit Kaliumpermanganat und Fällung der Lösung mit Cadmiumjodid (SK., M. 15, 434). Beim Schütteln der Salze mit Silberoxyd in wäßr. Lösung entsteht das Äthylbetain (CL.). — Die Salze wie das Äthylbetain liefern bei Einw. von Alkalien das Lacton der 1-Äthyl-2-oxy-1.2-dihydro-chinolin-carbonsäure-(4) (Syst. No. 4280), das sich äußerst leicht zu 1-Äthylchinolon-(2)-carbonsäure-(4) (Syst. No. 3366) oxydiert (CL.; vgl. DECKEE, HOCK, B. 37, 1005). — Chlorid. Prismen. F: 229° (SK.; M.). — Bromid C₁₂H₁₂O₂N·Br. Nadeln (aus Alkohol + Äther), wasserhaltige Prismen (aus Wasser). F: 237° (CL.). — Jodid C₁₂H₁₂O₂N·I. Orangegelbe Nadeln (aus Alkohol) vom Schmelzpunkt ca. 200° (Zers.) oder orangerote wasserhaltige Prismen (aus Wasser) vom Schmelzpunkt 207—208° (Zers.) (SK.; vgl. CL.); F: 200° bis 203° (M.). Ist beständig gegen siedendes Wasser (CL.).

Anhydrid, Cinchoninsäure-äthylbetain $C_{12}H_{11}O_2N=C_2H_5\cdot NC_6H_6\cdot CO\cdot O$. Prismen mit 2 H_2O (aus Wasser). Schmilzt im Krystallwasser bei 90—92°, wird dann wieder fest und schmilzt erneut bei 199° (Zers.) (Claus, A. 270, 353); F: 204° (H. Meyer, M. 24, 201). Löslich in heißem Alkohol, unlöslich in Äther (Cl..). Beim Erwärmen mit Eisenchlorid gibt die wäßr. Lösung eine rote Färbung (Cl..).

Cinchoninsäure-hydroxypropylat $C_{13}H_{15}O_3N=(HO)(C_2H_5\cdot CH_2)NC_9H_6\cdot CO_2H$. — Bromid $C_{13}H_{14}O_3N\cdot Br$. Beim Erhitzen von Cinchoninsäure mit Propylbromid im Rohr auf 160—180° (Claus, A. 270, 357). Nadeln (aus Alkohol + Äther). F: 218° (Zers.). Leicht löslich in Wasser und Alkohol. Ist beständig gegen siedendes Wasser.

Cinchoninsäure-hydroxybensylat, Ammoniumbase des Cinchoninsäure-bensylbetains $C_{17}H_{18}O_2N = (HO)(C_8H_8 \cdot CH_2)NC_9H_6 \cdot CO_2H$. — Bromid $C_{17}H_{14}O_2N \cdot Br$. B. Beim Erhitzen von Cinchoninsäure mit Benzylbromid auf 150—160° (Claus, Muchall, B. 18, 363). Nadeln (aus Alkohol + Äther). F: 130° (unkorr.) (Cl.., M.). Unlöslich in Äther, leicht löslich in Wasser und Alkohol (Cl.., M.). Zerfällt beim Erwärmen mit Wasser in HBr und das Benzylbetain (Cl.., M.). Bei Einw. von Alkali auf das Bromid oder das Benzylbetain entsteht das Lacton der 1-Benzyl-2-oxy-1.2-dihydro-chinolin-carbonsäure-(4) (Syst. No. 4280), das sich äußerst leicht zu 1-Benzyl-chinolon-(2)-carbonsäure-(4) (Syst. No. 3366) oxydiert (Cl., A. 270, 337; vgl. Decker, Hock, B. 37, 1005).

Anhydrid, Cinchoninsäure-bensylbetain C₁₇H₁₂O₂N = C₆H₅·CH₂·NC₆H₆·CO·O. Monoklin prismatische (Stuhlmann, A. 270, 336; vgl. *Groth, Ch. Kr.* 5, 772) Tafeln mit 3 H₂O (aus Wasser) oder eisessighaltige gelbe Krystalle (aus Eisessig). Schmeckt intensiv bitter (Claus, Muchall, B. 18, 365). Die eisessighaltigen Krystalle schmelzen bei 71° (Cl., A. 270, 336), die wasserhaltige Verbindung schmilzt bei 83—84°, wird gegen 110° wieder fest und schmilzt erneut bei 190° (Zers.) (Cl., M.). Die wasserhaltige Verbindung ist leicht löslich in Wasser und Alkohol, unlöslich in Äther und Chloroform (Cl., M.). Die wasserfreie Verbindung ist sehr hygroskopisch (Cl., M.). — Gibt bei der Oxydation mit Kaliumpermanganat

- 2-Benzamino-benzoesaure und Benzoesaure (CL., A. 270, 344). Gibt mit Brom in wäßr. Lösung ein Additionsprodukt [orangerote Nadeln; F: 180° (Zers.)] (CL., B. 18, 1308). Die wäßr. Lösung gibt mit Eisenchlorid eine rote Färbung (CL., M.).
- 2 Chlor chinolin carbonsäure (4), 2 Chlor cinchoninsäure C₁₀H₈O₂NCl, s. nebenstehende Formel. B. Beim Erhitzen von 2-Oxy-cinchoninsäure mit Phosphorpentachlorid auf 100—120° und Kochen des entstandenen Säurechlorids mit verd. Soda-Lösung (Koenigs, B. 12, 100; K., Körner, B. 16, 2153, 2157). Nadeln (aus Alkohol). Gibt beim Erhitzen mit Wasser auf 170° das Ausgangsmaterial zurück (K.). Liefert beim Kochen mit Natriummethylat-Lösung 2-Methoxy-cinchoninsäure (Mulert, B. 39, 1904); reagiert analog mit Natriumäthylat (K., K.).
- 2-Chlor-cinchoninsäure-methylester $C_{11}H_8O_2NCl = NC_9H_5Cl\cdot CO_9\cdot CH_3$. B. Beim Eintragen von 2-Chlor-cinchoninsäure-chlorid in eisgekühltes Methanol (MULERT, B. 39, 1903). Nadeln (aus wäßr. Aceton). F: 89—90°.
- 2-Chlor-cinchoninsäure-chlorid $C_{10}H_5ONCl_2 = NC_9H_5Cl \cdot COCl$. B. Beim Erhitzen von 2-Oxy-cinchoninsäure mit Thionylchlorid im Rohr auf 100° (MULERT, B. 39, 1903). F. 89—90°. Ist sehr beständig gegen kaltes Wasser.
- 2-Chlor-cinchoninsäure-amid $C_{10}H_7ON_2Cl = NC_9H_5Cl \cdot CO \cdot NH_2$. B. Beim Einleiten von Ammoniak in eine Ligroin-Lösung von 2-Chlor-cinchoninsäure-chlorid (MULERT, B. 39, 1903). Nadeln (aus verd. Alkohol). Schmilzt bei 234—235°, wird bei weiterem Erhitzen wieder fest und schmilzt erneut bei 276—278°. Leicht löslich in Alkohol, schwer in Chloroform, unlöslich in Benzol und Wasser.
- 2-Chlor-cinchoninsäure-anilid $C_{16}H_{11}ON_2Cl = NC_9H_5Cl\cdot CO\cdot NH\cdot C_6H_5$. B. Aus 2-Chlor-cinchoninsäure-chlorid und Anilin in Ligroin (MULERT, B. 39, 1903). Nadeln (aus Alkohol). F: 202°.
- 3 Chlor chinolin carbonsäure (4), 3 Chlor cinchoninsäure C₁₀H₆O₂NCl, s. nebenstehende Formel. B. Man erhitzt 3-Chlor-4-methylchinolin mit 40%/oiger Formaldehyd-Lösung im Rohr auf 100% und oxydiert das Reaktionsprodukt mit Salpetersäure (D: 1,4) (ELLINGER, FLAMAND, B. 39, 4389). Krystalle (aus Alkohol). F: 262—263% (Zers.). Ziemlich schwer löslich in Alkohol. Geht beim Erhitzen über den Schmelzpunkt in 3-Chlor-chinolin über.
- 5 Nitro chinolin carbonsäure (4), 5 Nitro cinchoninsäure O2N CO2H C10H6O4N2, s. nebenstehende Formel. B. Beim Erwärmen von Cinchoninsäure mit Salpeterschwefelsäure auf 60—70° (Koenics, Lossow, B. 32, 717). Gelbliches Krystallpulver. Wird gegen 232° dunkel; F: 275—278° (Zers.). Schwer löslich in Wasser und indifferenten organischen Lösungsmitteln, leicht in Eisessig. Leicht löslich in konz. Salzsäure. Gibt bei der trocknen Destillation mit Silberpulver 5-Nitro-chinolin. Bei der Reduktion mit Schwefelammonium oder Zinnchlorür erhält man 5-Amino-cinchoninsäure bezw. ihr Lactam (Syst. No. 3570). AgC10H5O4N2. Gelblicher Niederschlag. Verpufft schwach beim Erhitzen. Sehr schwer löslich in Wasser und Alkohol. Bariumsalz. Gelbe Nadeln (aus Wasser). Leicht löslich.
- 6 Nitro chinolin carbonsäure (4), 6 Nitro cinchoninsäure

 C₁₀H₆O₄N₂, s. nebenstehende Formel¹). B. Wurde neben anderen Produkten
 bei anhaltendem Kochen von "Chinoidin", einem bei der Chininfabrikation
 anfallenden Basengemisch (vgl. H. Emde in F. Ullmanns Enzyklopädie
 der techn. Chemie Bd. III [Berlin-Wien 1929], S. 189) mit konz. Salpetersäure erhalten
 (STEACHE, M. 10, 642, 645). Schmilzt oberhalb 280° unter Zersetzung. Beim Sublimieren
 des Hydrochlorids entsteht 6-Nitro-chinolin. Hydrochlorid. Blätter (aus konz. Salzsäure).
 Wird durch warmes Wasser zerlegt.
- 4. Chinolin carbonsäure (5) C₁₀H₇O₂N, s. nebenstehende Formel.

 B. Beim Erhitzen von 3-Amino-benzoesäure mit Glycerin und konz. Schwefelsäure auf 140—145° in Gegenwart von 3-Nitro-benzoesäure (Schlosseb, Skeaup, M. 2, 519), neben sehr geringen Mengen Chinolin-carbonsäure-(7) (Sk., Brunneb, M. 7, 519) oder auf 160° in Gegenwart von Nitrobenzol (Lellmann, Alt, A. 237, 318). Neben Chinolin-carbonsäure-(7) beim Kochen von 3-Amino-phthalsäure mit Glycerin und konz. Schwefelsäure bei Gegenwart von 3-Nitro-phthalsäure (Tobtelli, G. 16, 367). Neben Chinolin-carbonsäure-(8) beim Erhitzen von Chinolin-dicarbonsäure-(5.8) bis auf 280° (Sk., Br., M. 7, 153). Man destilliert das Natriumsalz der Chinolin-sulfonsäure-(5) mit Kaliumcyanid oder

¹⁾ Vgl. a. die Anmerkung bei Chinolsäure (S. 75).

wasserfreiem Kaliumferrocyanid und erhitzt das entstandene Chinolin-carbonsäure-(5)-nitril mit konz. Salzsäure auf 140—150° (Bedall, O. Fischer, B. 14, 2574; 15, 683; Fi., Körner, B. 17, 765; Le., Lange, B. 20, 1449; Le., Reusch, B. 21, 397). Das Nitril entsteht neben Chinolin-carbonsäure-(8)-nitril auch beim Erhitzen des Natriumsalzes der Chinolin-sulfonsäure-(8) mit Kaliumcyanid (Fi., B. 15, 1980). Ferner erhält man das Nitril beim Eintragen von diazotiertem 5-Amino-chinolin in Kaliumcuprocyanid-Lösung (Freydl, M. 8, 581). — Krystallpulver (durch Sublimation). F: 338° (Le., A., A. 237, 321; Le., Lange, B. 20, 1450; Le., Reusch, B. 21, 399), 338—340° (korr.) (v. Jakubowski, B. 43 [1910], 3027). Ist nach Freydl (M. 8, 582) bei 320°, nach Be., Fi. (B. 14, 2574) und To. (G. 16, 371) bei 338°, nach Sch., Sk. (M. 2, 522) bei 357° noch nicht geschmolzen. Sublimiert unterhalb des Schmelzpunkts in wollartigen Mikrokrystallen (Sch., Sk.). Unlöslich in Äther, Benzol und Schwefelkohlenstoff, sehr schwer löslich in Wasser und Alkohol (Sch., Sk.). Leicht löslich in verd. Säuren und Alkalien (Sch., Sk.). — Liefert beim Erwärmen mit Zinn und Salzsäure auf dem Wasserbad 1.2.3.4-Tetrahydro-chinolin-carbonsäure-(5) (Fi., K., B. 17, 765; vgl. Le., A., A. 237, 323). Zerfällt beim Erhitzen mit Calciumoxyd in Chinolin und Kohlendioxyd (Le., A., A. 237, 323; vgl. Sch., Sk., M. 2, 522).

HO·Cu(C₁₀H₆O₂N). Blauviolette, mikroskopische Blättchen mit 2 H₂O. Unlöslich in Wasser (Schlosser, Skraup, M. 2, 523). — AgC₁₀H₆O₂N. Farbloses Pulver mit 2 H₂O (Sch., Sk.). Wird beim Kochen krystallinisch (Bedall, O. Fischer, B. 14, 2575). Ist ziemlich lichtbeständig (Sch., Sk.; Be., Fl.). Sehr schwer löslich in Wasser (Sch., Sk.). — 2Ca(C₁₀H₆O₂N)₂ + C₁₀H₇O₂N + 6H₂O. Nadeln. Merklich löslich in kaltem Wasser (Sch., Sk.). — Ca(C₁₀H₆O₂N)₂ + 2H₂O. Krystalle (Sch., Sk.). — Zn(C₁₀H₆O₂N)₂ (Lellmann, Lange, B. 2O, 1451). — C₁₀H₇O₂N + HCl. Nadeln und Prismen. Krystallisiert nach Sch., Sk. mit 1¹/₃ H₂O, nach Le., Alt (A. 237, 322) mit 1 H₂O. Wird durch kaltes Wasser zerlegt; leicht löslich in Alkohol und in verd. Salzsäure, schwer in konz. Salzsäure (Sch., Sk.). — 2C₁₀H₇O₂N + 2HCl + PtCl₄. Gelbe Blättchen oder Nadeln (Sch., Sk.; Le., La., B. 20, 1449). Schwer löslich in Wasser und verd. Salzsäure (Sch., Sk.).

Nitril, 5-Cyan-chinolin, [Chinolyl-(5)]-cyanid $C_{10}H_6N_2=NC_9H_6\cdot CN$. B. s. im vorangehenden Artikel. — Nadeln (aus Ligroin); Nadeln mit $1^1/_3H_2O$ (aus verd. Alkohol), die bei 70° schmelzen, an der Luft $1H_2O$ verlieren und dann bei 74,5° schmelzen, über konz. Schwefelsäure wasserfrei werden und dann bei 89° schmelzen (Lellmann, Reusch, B. 21, 397); F: 87-88° (Bedall, O. Fischer, B. 14, 2574). Schwer löslich in Wasser und Ligroin, leicht in Alkohol, Benzol und Schwefelkohlenstoff (B., F.). — $2C_{10}H_6N_2+2HCl+PtCl_4$. Nadeln (Le., Lange, B. 20, 1449).

8 - Brom - chinolin - carbonsäure - (5) C₁₀H₈O₂NBr, s. nebenstehende
Formel. B. Beim Erhitzen von 4-Brom-3-amino-benzoesäure mit Glycerin und
konz. Schwefelsäure bei Gegenwart von Nitrobenzol oder 2-Nitro-phenol auf ca.
160° (Lellmann, Alt, A. 237, 313). — Krystallpulver (aus Eisessig). F: 275°.
Fast unlöslich in Wasser, Chloroform und Äther, leichter in heißem Alkohol und
Eisessig. — Wird durch Zinn und konz. Salzsäure zu 1.2.3.4-Tetrahydro-chinolin-carbonsäure-(5) reduziert. — 2C₁₀H₈O₂NBr+2HCl+PtCl₄. Gelbe Krystalle mit 4 H₂O.

5. Chinolin-carbonsäure-(6) C₁₀H₇O₂N, s. nebenstehende Formel.

B. Beim Erhitzen eines Gemisches von 4-Amino-benzoesäure und 4-Nitrobenzoesäure mit Glycerin und konz. Schwefelsäure (Schlosser, Skraup,

M. 2, 526; vgl. v. Georgievics, M. 12, 306). Beim Behandeln von 6-Methyl-chinolin mit Kaliumpermanganat in schwefelsaurer oder essigsaurer Lösung (v. G., M. 12, 309). Das Nitril erhält man bei der trocknen Destillation des Kaliumsalzes der Chinolin-sulfonsäure-(6) mit Kaliumcyanid (O. Fischer, Willmack, B. 17, 440; Biedermann, B. 22, 2762); man verseift das Nitril durch Erhitzen mit konz. Salzsäure auf 140° (F., W.). — Prismen (durch Sublimation), mikroskopische Tafeln. F: 290—291° (Sch., Sk.). Sublimiert schon unterhalb des Schmelzpunkts (Sch., Sk.). Ist nahezu unzersetzt destillierbar (Sch., Sk.). Sehr schwer löslich in Wasser, etwas leichter in warmem Alkohol (Sch., Sk.). Sehr leicht löslich in verd. Säuren und Alkalien (Sch., Sk.). — Salze: Schlosser, Skraup, M. 2, 528. — Kupfersalz. Krystallwasserhaltige, blaugrüne, mikroskopische Blättchen. — AgC₁₀H₆O₂N. Gleicht dem Silbersalz der Chinolin-carbonsäure-(5). — Ca(C₁₀H₆O₂N)₂. Prismen mit 2 H₂O. Schwer löslich in kaltem Wasser. — C₁₀H₇O₂N + HCl. Nadeln oder Krystallpulver mit 1 H₂O. Wird durch Wasser hydrolysiert. — 2C₁₀H₇O₂N + 2 HCl. + PtCl₄. Rötlichgelbe Blätter.

Chinolin-carbonsäure-(6)-äthylester $C_{12}H_{11}O_2N=NC_0H_6\cdot CO_2\cdot C_2H_5$. B. Beim Kochen von Chinolin-carbonsäure-(6) mit alkoh. Salzsäure (Einhorn, Feibelmann, B. 42, 4854). — Nadeln (aus verd. Alkohol). F: 50° . — $C_{12}H_{11}O_2N+HCl$. Nadeln (aus Alkohol). F: 210° (Zers.). Sehr leicht löslich in Wasser.

Chinolin-carbonsäure-(6)-[β -diäthylamino-äthylester] $C_{16}H_{20}O_2N_2=NC_9H_4\cdot CO\cdot CH_2\cdot CH_2\cdot N(C_2H_5)_2$. B. Beim Erhitzen des Hydrochlorids der Chinolin-carbonsäure-(6) mit β -Diäthylamino-äthylalkohol und konz. Schwefelsäure (Einhorn, Feibelmann, B. 42, 4855). — Bräunliches Öl. — $C_{16}H_{20}O_2N_2+HCl$. Gelbliche, mikroskopische Krystalle (aus Alkohol). F: 180°. Leicht löslich in Wasser.

Chinolin-carbonsäure-(6)-amid $C_{10}H_6ON_2 = NC_9H_6\cdot CO\cdot NH_2$. B. Beim Auflösen von 6-Cyan-chinolin in konz. Schwefelsäure unter Kühlung (Einhorn, Feibelmann, A. 361, 153). — Schwach gelbliche Blättchen (aus Benzol + Alkohol). F: 174°.

Chinolin-carbonsäure-(6)-oxymethylamid $C_{11}H_{10}O_2N_2=NC_0H_0\cdot CO\cdot NH\cdot CH_2\cdot OH$. Beim Erwärmen von Chinolin-carbonsäure-(6)-amid mit Formaldehyd und Kalium-carbonat-Lösung (Einhorn, Feibelmann, A. 361, 154). — Mikroskopische Krystalle (aus $50^{\circ}/_{\circ}$ igem Alkohol). F: 179° . — Spaltet beim Erhitzen Formaldehyd ab.

Chinolin - carbonsäure - (6) - piperidinomethylamid $C_{16}H_{19}ON_3 = NC_9H_6 \cdot CO \cdot NH \cdot CH_2 \cdot NC_5H_{10}$. B. Beim Kochen von Chinolin - carbonsäure - (6) - amid mit wäßr. Formaldehyd-Lösung und Piperidin (Einhorn, Feibelmann, A. 361, 155). — Nadeln (aus Essigester). F: 98°. Löslich in Chloroform. — $C_{16}H_{19}ON_3 + HCl$. Mikroskopische Krystalle (aus Alkohol). F: 192°. Leicht löslich in Wasser, unlöslich in Aceton und Essigester.

Chinolin - carbonsäure - (6) - nitril, 6 - Cyan - chinolin, [Chinolyl - (6)] - cyanid $C_{10}H_8N_3 = NC_3H_6 \cdot CN$. B. s. im Artikel Chinolin-carbonsäure-(6). — Krystalle (aus Benzol und Ligroin). F: 131° (O. FISCHER, WILLMACK, B. 17, 440), 135° (BIEDERMANN, B. 22, 2762). Sublimiert in Nadeln (F., W.; B.). Löslich in Salzsäure mit roter Farbe (F., W.). — Wird beim Auflösen in konz. Schwefelsäure zum Amid (EINHORN, FEIBELMANN, A. 361, 153), beim Erhitzen mit konz. Salzsäure auf 140° zur Säure verseift (F., W.).

Chinolin - carbonsäure - (6) - amidoxim $C_{10}H_0ON_2 = NC_0H_6 \cdot C(:NH) \cdot NH \cdot OH$ bezw. $NC_0H_6 \cdot C(NH_2) : N \cdot OH$. B. Beim Erhitzen von Chinolin-carbonsäure-(6)-nitril mit salzsaurem Hydroxylamin und Natriumcarbonat in verd. Alkohol auf 100° (BIEDERMANN, B. 22, 2762). — Gelbliche Nadeln (aus Alkohol). F: 105°. Leicht löslich in Alkohol und Äther, schwerer in heißem Wasser, Chloroform und Benzol, fast unlöslich in Ligroin. Leicht löslich in Säuren, schwerer in Alkalilauge. — Reduziert Silbernitrat-Lösung in der Wärme. Gibt beim Auflösen in heißem Essigsäureanhydrid 5 · Methyl · 3 · [chinolyl · (6)] · 1.2.4 · oxdiazol $NC_0H_0 \cdot CCH_3$ (Syst. No. 4671), beim Schmelzen mit Phthalsäureanhydrid 5-[2-Carboxy-phenyl]-3-[chinolyl-(6)]-1.2.4 · oxdiazol (Syst. No. 4674). Die Umsetzung mit Chlorameisensäureäthylester führt bei vorsichtiger Einw. zu Chinolin-carbonsäure-(6) · amidoxim · O-carbonsäureäthylester, beim Erhitzen zu 5-Oxo-3-[chinolyl-(6)]-2.5 (bezw. 4.5) · dihydro-1.2.4 · oxdiazol (Syst. No. 4673). — Gibt in Lösung mit Eisenchlorid eine rote Färbung. — $C_{10}H_0ON_3 + HCl$. Nadeln (aus Alkohol + Äther). Leicht löslich in Wasser und Alkohol, unlöslich in Chloroform, Äther, Benzol und Ligroin. — $2C_{10}H_0ON_3 + 2HCl + PtCl_4$. Prismen.

Chinolin-carbonsäure-(6)-ureidoxim $C_{11}H_{10}O_2N_4 = NC_9H_6 \cdot C(:N \cdot CO \cdot NH_2) \cdot NH \cdot OH$ bezw. $NC_9H_6 \cdot C(NH \cdot CO \cdot NH_2):N \cdot OH$. B. Man behandelt das Hydrochlorid des Chinolin-carbonsäure-(6)-amidoxims in wäßr. Lösung mit Kaliumcyanat (Biedermann, B. 22, 2766). — Nadeln (aus Wasser). F: 164,5° (Zers.). Schwer löslich in kaltem Wasser, leichter in Alkohol, Äther, Benzol und Ligroin. Schwer löslich in Säuren, etwas leichter in Alkalilauge.

Chinolin-carbonsäure-(6)-amidoximäthyläther $C_{12}H_{13}ON_3 = NC_9H_6 \cdot C(:NH) \cdot NH \cdot O \cdot C_9H_6$ bezw. $NC_9H_6 \cdot C(NH_2): N \cdot O \cdot C_2H_5$. B. Beim Kochen von Chinolin-carbonsäure-(6)-amidoxim mit Äthyljodid und alkoh. Natriumäthylat-Lösung (BIEDERMANN, B. 22, 2763). — Nadeln (aus verd. Alkohol). F: 85°. Leicht löslich in heißem Wasser, Alkohol, Äther, Chloroform und Benzol, fast unlöslich in kaltem Wasser.

Chinolin-carbonsäure-(6)-amidoximacetat $C_{12}H_{11}O_2N_3 = NC_9H_4\cdot C(:NH)\cdot NH\cdot O\cdot CO\cdot CH_3$ bezw. $NC_9H_4\cdot C(NH_2):N\cdot O\cdot CO\cdot CH_2$. B. Beim Behandeln von Chinolin-carbonsaure-(6)-amidoxim mit Acetylchlorid in Äther (BIEDERMANN, B. 22, 2765). — Nadeln (aus Benzol). F: 115°. Schwer löslich in Alkohol, Äther, Chloroform und Benzol, fast unlöslich in kaltem Wasser. Unlöslich in kalter Alkalilauge. — Liefert beim Erwärmen mit Wasser oder Alkalilauge 5-Methyl-3-[chinolyl-(6)]-1.2.4-oxdiazol $NC_9H_6\cdot C < N\cdot O < CH_3$ (Syst. No. 4671).

Chinolin - carbonsäure - (6) - amidoxim - O - carbonsäure äthylester $C_{12}H_{12}O_2N_3 = NC_2H_6 \cdot C(:NH) \cdot NH \cdot O \cdot CO \cdot O \cdot C_2H_5$ bezw. $NC_2H_6 \cdot C(NH_2) : N \cdot O \cdot CO \cdot O \cdot C_2H_5$. B. Beim Behandeln von Chinolin-carbonsäure - (6) - amidoxim in Chloroform - Lösung mit Chlorameisensäure äthylester (Biedermann, B. 22, 2764). — Nadeln (aus Alkohol). F: 97°. Fast unlöslich in

Ligroin und kaltem Wasser, löslich in Alkohol, Äther, Chloroform und Benzol. Leicht löslich in Säuren. — Gibt beim Kochen mit Alkalilauge 5-Oxo-3-[chinolyl-(6)]-2.5 (bezw. 4.5)-dihydro-1.2.4-oxdiazol (Syst. No. 4673).

Chinolin-[carbonsäure-(6)-amid]-hydroxyäthylat $C_{12}H_{14}O_2N_2 = (HO)(C_2H_5)NC_9H_6$ · $CO\cdot NH_9$.— Jodid $C_{12}H_{13}ON_9\cdot I$. B. Beim Erhitzen von Chinolin-carbonsäure-(6)-amid mit Äthyljodid und Alkohol im Rohr auf 100—110° (EINHORN, A. 361, 154). Rot- oder grüngelbe Krystalle (aus verd. Alkohol). F: 229° (geringe Zersetzung).

6. Chinolin-carbonsäure-(7) C₁₀H₇O₂N, s. nebenstehende Formel.

B. In sehr geringer Menge neben Chinolin-carbonsäure-(5) beim Kochen von 3-Amino-benzoesäure mit Glycerin und konz. Schwefelsäure bei Gegenwart von 3-Nitro-benzoesäure (Škraup, Brunner, M. 7, 519). Neben Chinolin-carbonsäure-(5) beim Erhitzen von 3-Amino-phthalsäure mit Glycerin und konz. Schwefelsäure bei Gegenwart von 3-Nitro-phthalsäure (Tortelli, G. 16, 367). In geringer Menge bei der Einw. von Kaliumpermanganat und verd. Schwefelsäure auf Chinolin (v. Georgievics, M. 12, 313). Entsteht beim Erhitzen von 7-Methyl-chinolin mit verd. Chromschwefelsäure im Rohr auf 150° (Sk., Br., M. 7, 142). Beim Kochen von β-Dichinolyl (Syst. No. 3491) mit Chromtrioxyd in Eisessig (O. Fisoher, van Loo, B. 17, 1901; 19, 2473). — Nadeln (aus Wasser oder Alkohol). F: 247° (Sk., Br.), 248—249° (F., v. L., B. 19, 2473), 248,5—250° (T., G. 16, 370). Sublimiert in wollartigen Flocken (T.). Unlöslich in Äther, sehr schwer löslich in kaltem Wasser und Benzol, schwer in heißem Wasser, leicht in Alkohol (T.). — Zerfällt beim Erhitzen für sich (T.) oder mit Calciumoxyd (Sk., Br., M. 7, 143) in Chinolin und Kohlendioxyd. — HO·CuC₁₀H₉O₂N. Grünes Krystallpulver mit 1 H₂O (Sk., Br., M. 7, 143). — AgC₁₀H₆O₂N. Weißer Niederschlag (T.). — C₁₀H₇O₂N + HCl. Prismen mit 1 H₂O (aus Salzsäure). Triklin pinakoidal (Březina, M. 7, 144; vgl. Groth, Ch. Kr. 5, 763). Wird durch viel Wasser zerlegt. — 2C₁₀H₇O₂N + 2HCl + PtCl₄. Dunkelorangefarbene Prismen oder Nadeln (T.; Sk., Br.). Monoklin prismatisch (Březina; vgl. Groth, Ch. Kr. 5, 764).

7. Chinolin - carbonsäure - (8) C₁₀H₇O₂N, s. nebenstehende Formel.

B. Beim Erhitzen von 2-Amino-benzoesäure mit 2-Nitro-benzoesäure, Glycerin und konz. Schwefelsäure auf 140—145° (Schlosser, Skraup, M. 2, 530). Bei der Oxydation von Chinolin-aldehyd-(8) mit verd. Chromschwefelsäure (Howitz, Hogc B. 35, 1275). Beim Erhitzen von Chinolin-dicarbonsäure-(5.8) bis auf 280°, neben Chinolin-carbonsäure-(5) (Sk., Brunner, M. 7, 152). Das Nitril entsteht beim Erhitzen des Natriumsalzes der Chinolin-sulfonsäure-(8) mit Kaliumcyanid (La Coste, B. 15, 196; Bedall, O. Fischer, B. 15, 683) unter vermindertem Druck (Lellmann, Reusch, B. 22, 1391). Man verseift das Nitril durch Erhitzen mit konz. Salzsäure im Rohr auf 150° (L., R.).—Nadeln (aus Wasser). F: 186—187,5° (Sch., Sk.; Sk., Br.), 187° (L., R.). Sublimiert oberhalb des Schmelzpunkts (Sch., Sk.). Ist nahezu unzersetzt flüchtig (Sch., Sk.). Merklich löslich in kaltem Wasser, ziemlich leicht in heißem Wasser und Alkohol (Sch., Sk.). Leicht löslich in Säuren und Alkalilauge (Sch., Sk.).—Wird von Kaliumpermanganat in konz. Schwefelsäure zu Chinolinsäure oxydiert (v. Georgievics, M. 12, 311).—Die wäßr. Lösung des Ammoniumsalzes wird auf Zusatz von Ferrosulfat vorübergehend dunkelpurpurrot und scheidet dann ein purpurrotes Krystallpulver aus (Sch., Sk.).

Salze: Schlosseb, Seraup, M. 2, 532. — $\operatorname{Cu}(C_{10}H_6O_2N)_9$. Lichtblaue, wasserhaltige Nadeln. Unlöslich in Wasser. — $\operatorname{AgC}_{10}H_6O_2N$. Krystallpulver. Sehr schwer löslich in Wasser. — $\operatorname{2Ca}(C_{10}H_6O_2N)_2 + C_{10}H_7O_2N$. Nadeln. Leichter löslich in Wasser als das entsprechende Salz der Chinolin-carbonsäure-(6). — $\operatorname{2C}_{10}H_7O_2N + \operatorname{HCl} + 2H_2O$. Rötliche Prismen. Triklin pinakoidal (v. Lang, M. 2, 532; vgl. Groth , Ch , Kr . 5, 763). — $\operatorname{C}_{10}H_7O_2N + \operatorname{HCl}$. Prismen (aus verd. Salzsäure). Leicht löslich in Wasser, schwer in verd. Alchol. Wandelt beim Verdampfen der wäßr. Lösung in das vorangehende Salz um. — $\operatorname{2C}_{10}H_7O_2N + \operatorname{2HCl} + \operatorname{PtCl}_4$. Orangegelbe Nadeln oder rote Krystallkörner (aus Salzsäure). Sehr schwer löslich in Wasser, leichter in heißer Salzsäure.

Nitril, 8-Cyan-chinolin, [Chinolyl-(8)]-cyanid $C_{10}H_6N_2=NC_9H_6\cdot CN$. B. s. im vorangehenden Artikel. — Nadeln (aus $50^{\circ}/_{\circ}$ igem Alkohol). F: 84° (Lellmann, Reusch, B. 22, 1391). — $2C_{10}H_6N_2+2HCl+PtCl_4$. Orangegelbe Nadeln (aus Wasser).

Hydroxymethylat $C_{11}H_{11}O_3N=(HO)(CH_3)NC_9H_6\cdot CO_9H$. — Jodid $C_{11}H_{10}O_9N\cdot I$. B. Beim Erhitzen von Chinolin-carbonsäure-(8) mit Methyljodid im Rohr auf 100^6 (La Coste, B. 15, 196). Goldgelbe Nadeln. Durch Behandeln mit Silberoxyd in wäßriger oder alkoholischer Lösung und Eindampfen der Flüssigkeit erhält man Chinolin-carbonsäure-(8).

8 - Brom - chinolin - carbonsaure - (8) C₁₀H₅O₂NBr, s. nebenstehende Formel. B. Beim Kochen von 3-Brom-chinolin-aldehyd-(8) mit verd. Chromschwefelsäure (Howitz, Schwenk, B. 38, 1287). — Nadeln (aus verd. Alkohol). F: 206—207°. Ist unzersetzt sublimierbar. Schwer löslich in siedendem Wasser. Leicht löslich in warmer Alkalilauge. — Ba(C₁₀H₅O₂NBr)₂. Nadeln.

5-Nitro-chinolin-carbonsäure-(8) C₁₀H₆O₄N₂, s. nebenstehende Formel.

B. Beim Erwärmen von 5-Nitro-chinolin-aldehyd-(8) mit verd. Chromschwefelsäure (Howitz, Nöther, B. 39, 2712). — Gelbliche Nadeln. F: 212°. Schwer löslich in kaltem Wasser.

8. Isochinolin-carbonsäure-(1), Isochinaldinsäure $C_{10}H_7O_2N$, s. nebenstehende Formel. B. Neben dem Amid (s. u.) und anderen Produkten bei Einw. von 36% iger Salzsäure auf 2-Benzoyl-1-cyan-1.2-dihydro-isochinolin (S. 66) bei gewöhnlicher Temperatur (REISSERT, B. 38, 3428). — Krystalle (aus Benzol). F: 161° (Zers.). Leicht löslich in Methanol, Eisessig, Chloroform, Aceton und heißem Wasser, schwer in Wasser und Alkohol in der Kälte sowie in Benzol, sehr schwer in Ligroin.

Amid $C_{10}H_8ON_2 = NC_9H_8 \cdot CO \cdot NH_2$. B. s. im vorangehenden Artikel. — Nadeln (aus Benzol). F: 168—169° (REISSERT, B. 38, 3429). Leicht löslich in Chloroform und Aceton, ziemlich leicht in Alkohol, Benzol und heißem Wasser, ziemlich schwer in Äther, fast unlöslich in Ligroin.

Isochinolin - carbonsäure - (5 oder 8) HO₂C C₁₀H₂O₂N, Formel I oder II. B. Das Nitril entsteht bei II. der Destillation des Natriumsalzes der Isochinolin-sulfonsäure-(5 oder 8) mit Kaliumferrocyanid; man verseift das Nitril durch Erhitzen mit rauchender Salzsäure im Rohr auf 150—160° (JEITELES, M. 15, 809). — Nadeln (aus Alkohol). F: 272° (Zers.). Sehr schwer löslich in heißem Wasser, ziemlich schwer in heißem Alkohol. — Liefert bei der Oxydation mit Kaliumpermanganat in neutraler Lösung bei 100° Hemimellitsäure. Gibt mit Brom eine unbeständige Additionswerbindung. — $Cu(C_{10}H_6O_2N)_2$. Blaue Krystalle. Unlöslich in Wasser. — $C_{10}H_7O_2N + HCl$. Nadeln mit 2 H_2O (aus Wasser). Löslich in Alkohol, sehr leicht löslich in Wasser. — $C_{10}H_7O_2N + HNO_3$. Nadeln mit 1 H_2O (aus Wasser). F: 218—220° (Zers.). Sehr leicht löslich in heißem Wasser. — $2C_{10}H_7O_2N + 2HCl + PtCl_4$. Gelbe Nadeln. — Pikrat $C_{10}H_7O_2N + C_6H_3O_7N_3$. Gelbe Krystalle (aus Alkohol). F: 212—213°.

Nitril, 5 (oder 8) - Cyan-isochinolin $C_{10}H_6N_2 = NC_9H_6 \cdot CN$. B. s. im vorangehenden Artikel. — Nadeln (aus Wasser oder verd. Alkohol). F: 135° (Jeiteles, M. 15, 809). Sublimiert bei 100-120° in farblosen Nadeln. Ziemlich schwer löslich in Wasser, löslich in verd. Alkohol. Sehr leicht löslich in verd. Säuren. — Hydrochlorid. Gelbliche Nadeln. Sehr leicht löslich in Wasser. — $2C_{10}H_6N_3 + 2HCl + PtCl_4$. Gelbe Nadeln (aus konz. Salzsäure). Leicht löslich in heißer konz. Salzsäure.

2. Carbonsäuren $C_{11}H_9O_2N$.

[Chinolyl-(2)] - essigsaure $C_{11}H_0O_2N$, s. nebenstehende Formel. B. Bei der Einw. von Kaliumpermanganat auf das Natrium-·CH2·CO2H salz der α -Oxy- β -[chinolyl-(2)]-propionsäure (Syst. No. 3342) in Wasser (EINHORN, SHERMAN, A. 287, 39). Beim Kochen von [Chinolyl-(2)]-acetaldehyd (Bd. XXI, S. 324) mit frisch gefälltem Silberoxyd in verd. Alkohol (El., Sh.). — Prismen (aus Methanol). F: 274—275°. Sublimierbar. — Das Silbersalz liefert bei der trocknen Destillation im Wasserstoffstrom Chinolin. — $AgC_{11}H_8O_2N$. Schuppen. — $Ca(C_{11}H_8O_2N)_2$. Krystalle. Unlöslich in Wasser und Alkohol. — $C_{11}H_8O_2N + 2HCl + PtCl_4$. Dimorph: Nadeln und braunrote Blättchen. Leicht löslich in Wasser.

Methylester $C_{12}H_{11}O_2N = NC_2H_6 \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Man sättigt eine Lösung von [Chinolyl-(2)]-essigsäure in Methanol mit Chlorwasserstoff (El., Sh., A. 287, 41). — Schuppen (aus Ligroin). F: 72°.

Äthylester $C_{13}H_{13}O_4N = NC_6H_6 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Analog dem Methylester (E1., SH., A. 287, 41). — Tafeln (aus Ligroin). F: 67°.

2. [Chinolyl-(8)]-essigsaure $C_{11}H_9O_2N$, s. nebenstehende Formel. Nitril $C_{11}H_8N_2=NC_9H_6\cdot CH_2\cdot CN$. B. Aus 8-Chlormethyl-chinolin und Kaliumcyanid in Alkohol auf dem Wasserbad (CLAUS, D.R.P. 98272; C. 1898 II, 744; Frdl. 5, 912; vgl. Howitz, Nöther, B. 39, 2706). — Krystalle. F: 88° (C.).

HO2C · CH2

3. 3-Methyl-chinolin-carbonsäure-(2), 3-Methyl-chinaldin-säure C₁₁H₂O₂N, s. nebenstehende Formel. B. Bei der Oxydation von 3-Methyl-2-äthyl-chinolin mit Chromsäure in schwefelsaurer Lösung (Doebner, v. Miller, B. 17, 1715; 18, 1641). Bei längerem Erwärmen von 3-Methyl-2-[β.β'-dioxyisopropyl]-chinolin (Bd. XXI, S. 182) mit Salpetersäure (D: 1,4) auf dem Wasserbad (Koenigs, Stockhausen, B. 34, 4332). — Nadeln oder Prismen (aus Alkohol + Äther). Monoklin prismatisch (Haushofer, B. 18, 1642; Z. Kr. 11, 149; vgl. Groth, Ch. Kr. 5, 769). F: 144° (D., v. M., B. 18, 1642; K., St.). — Zerfällt bei 160° oder beim Erhitzen mit Natronkalk in Kohlendioxyd und 3-Methyl-chinolin; als Nebenprodukt entsteht eine Verbindung C₂₀H₁₆N₂ [Nadeln (aus Alkohol). F: 145°; leicht löslich in Alkohol, löslich in Äther, unlöslich in Wasser; löslich in Säuren] (D., v. M., B. 17, 1715; 18, 1642).

4. 2-Methyl-chinolin-carbonsäure-(3), Chinaldin-carbon-CO₂H säure-(3) $C_{11}H_9O_2N$, s. nebenstehende Formel. B. Man versetzt eine wäßr. Lösung von 2-Amino-benzaldehyd mit Acetessigester und einigen Tropfen Natronlauge und verseift den entstandenen Athylester mit konz. Salzsäure im Rohr bei 150° (Friedlaender, Göhring, B. 16, 1836; Hantzsch, B. 19, 37; Claus, Steinitz, A. 282, 117 Anm.). Aus 2.3-Dimethyl-chinolin bei der Oxydation mit Chromsäure in schwefelsaurer Lösung (Rohde, B. 22, 267). Bei anhaltendem Kochen von 3-Cyan-chinaldin mit konz. Natronlauge (v. Walther, J. pr. [2] 67, 509). — Nadeln (aus Alkohol). F: 235° (Zers.) (C., Stel.). Schwer löslich in den gebräuchlichen Lösungsmitteln, fast unlöslich in Wasser; gibt mit Salzsäure ein Hydrochlorid (F., G.). — Zerfällt beim Erhitzen auf den Schmelzpunkt in CO₂ und 2-Methyl-chinolin (F., G.; v. W.). Liefert beim Erhitzen mit der äquimolekularen Menge Methyljodid im Rohr auf 150° das (nicht näher beschriebene) Hydrojodid des 2-Methylchinolin-carbonsäure-(3)-methylesters; mit überschüssigem Methyljodid erhält man unter gleichen Bedingungen das Jodmethylat des Methylesters (S. 84) (C., STEI.). Beim Erhitzen mit 40% iger Formaldehyd-Lösung im Rohr auf 100% entsteht das Lacton CO der w.w.w-Tris-oxymethyl-chinaldin-carbonsäure-(3) (s. nebenstehende ∠ĊH2 Formel; Syst. No. 4300) (Koenigs, B. 34, 4324; K., Stockhausen, B. C(CH2·OH)2 34, 4333). — AgC₁₁H₈O₂N. Krystalle. Unlöslich in Wasser (C., STEI.).

Methylester $C_{12}H_{11}O_2N = NC_9H_5(CH_3) \cdot CO_2 \cdot CH_3$. B. Aus 2-Amino-benzaldehyd und Acetessigsäure-methylester (Claus, Steinitz, A. 282, 116). Aus dem Silbersalz der Chinaldincarbonsäure-(3) und Methyljodid bei 70° oder aus der freien Säure und Methyljodid in äquimolekularen Mengen im Rohr bei 150° (C., St.). — Nadeln (aus Alkohol). F: 72°.

Äthylester $C_{12}H_{13}O_2N=NC_9H_5(CH_3)\cdot CO_2\cdot C_2H_5$. B. s. o. bei der Säure. — Nadeln (aus verd. Alkohol). F: 71°; unzersetzt destillierbar; leicht löslich in den gebräuchlichen Lösungsmitteln, unlöslich in Wasser; unverändert löslich in Mineralsäuren (Friedlaender, Göhring, B. 16, 1836). — Gibt bei der Einw. von Salpeterschwefelsäure bei gewöhnlicher Temperatur die Äthylester der 5-Nitro- und der 8-Nitro-2-methyl-chinolin-carbonsäure-(3) (Claus, Momberger, J. pr. [2] 56, 375). Wird beim Erhitzen mit alkoh. Natronlauge auf dem Wasserbad oder mit verd. Salzsäure auf 120°, am besten mit konz. Salzsäure im Rohr auf 150°, verseift (F., G.; Claus, Steintz, A. 282, 117 Anm.). Liefert mit konz. Ammoniak bei 180° im Autoklaven das Ammoniumsalz der Chinaldin-carbonsäure-(3); bei längerer Einw. bei 40—50° erhält man daneben das Amid (C., M., J. pr. [2] 56, 388). Reagiert mit Methyljodid bei 100° unter Bildung von 2-Methyl-chinolin-[carbonsäure-(3)-āthylester]-jodmethylat (C., St., A. 282, 109; vgl. Hantzsch, B. 19, 37). — $2C_{13}H_{13}O_2N+2HCl+PtCl_4$. Gelbe Nadeln (aus Wasser). Schwer löslich in Wasser (F., G.).

Propylester $C_{16}H_{15}O_2N = NC_9H_5(CH_3) \cdot CO_2 \cdot CH_2 \cdot C_2H_5$. B. Aus dem Silbersalz der Chinaldin-carbonsäure-(3) und Propylbromid im Rohr bei 100° (CLAUS, STEINITZ, A. 282, 124). — Prismen und Nadeln (aus Alkohol). F: 51°.

Benzylester $C_{18}H_{15}O_2N = NC_9H_5(CH_3)\cdot CO_2\cdot CH_2\cdot C_6H_5$. B. Aus dem Silbersalz der Chinaldin-carbonsäure-(3) und Benzylchlorid im Rohr bei 100° (Claus, Steinitz, A. 282, 124). — Säulen. F: 82°.

Amid $C_{11}H_{10}ON_3 = NC_9H_5(CH_3)\cdot CO\cdot NH_2$. B. Bei wochenlanger Einw. von konz. Ammoniak auf 2-Methyl-chinolin-carbonsäure-(3)-äthylester bei 40—50° (Claus, Momberger, J. pr. [2] 56, 389). — Krystalle.

Nitril, 3-Cyan-chinaldin $C_{11}H_8N_2 = NC_9H_5(CH_3) \cdot CN$. B. Bei der trocknen Destillation der 3-Cyan-chinaldin-carbonsäure-(4) (S. 171) (v. Walther, J. pr. [2] 67, 507). — Krystallwasserhaltige (?) Prismen (aus Wasser). F: 125—127°. Mit Wasserdampf flüchtig; destillierbar und sublimierbar. Leicht löslich in verd. Mineralsäuren und in verd. Essigsäure. — Wird bei andauerndem Kochen mit konz. Natronlauge zu Chinaldin-carbonsäure-(3) verseift. — Chloroplatinat. Orangerote Nadeln. Ist bei 290° noch nicht

geschmolzen. Dissoziiert beim Kochen mit Wasser teilweise. — Pikrat. Gelbe Prismen. F: 208° (Zers.). Leicht löslich in heißem Eisessig.

2 - Methyl - chinolin - carbonsäure - (3) - hydroxymethylat, Ammoniumbase des Chinaldin-carbonsäure-(3)-methylbetains $C_{12}H_{12}O_3N = (HO)(CH_3)NC_9H_5(CH_2)\cdot CO_2H$. — Chlorid $C_{12}H_{12}O_2N\cdot Cl$. B. Beim Erhitzen von 2-Methyl-chinolin-[carbonsäure-(3)-methylester]-chlormethylat mit konz. Salzsäure im Rohr auf 150° (CLAUS, STEINITZ, A. 282, 126). Säulen (aus Alkohol). F: 230° (Zers.). Schwer löslich in kaltem absolutem Alkohol, leicht in heißem Wasser. Gibt beim Verreiben mit feuchtem Silberoxyd Chinaldin-carbonsäure-(3)-methylbetain.

Anhydrid, Chinaldin-carbonsäure-(3)-methylbetain $C_{12}H_{11}O_2N = CH_3 \cdot \overset{+}{N}C_9H_5(CH_2)$

- CO·O. B. Man verreibt 2-Methyl-chinolin-carbonsäure-(3)-chlormethylat mit feuchtem Silberoxyd (Claus, Steinitz, A. 282, 127). Krystalle (aus Alkohol + Äther), Platten und Säulen mit 2H₂O (aus Wasser). F: 144° (Zers.). Unlöslich in Äther, leicht löslich in Alkohol und in Wasser mit neutraler Reaktion; löslich in verd. Alkalien mit roter Farbe. Liefert beim Erhitzen mit, Methyljodid auf 100° 2-Methyl-chinolin-[carbonsäure-(3)-methylester]-jodmethylat. Schmeckt intensiv bitter.
- 2-Methyl-chinolin-[carbonsäure-(3)-methylester]-hydroxymethylat $C_{13}H_{15}O_2N = (HO)(CH_2)NC_9H_8(CH_2) \cdot CO_2 \cdot CH_3$. B. Das Jodid entsteht aus dem Silbersalz der 2-Methylchinolin-carbonsäure-(3) beim Erhitzen mit überschüssigem Methyljodid auf 100° oder aus der freien Säure beim Erhitzen mit überschüssigem Methyljodid auf 150° (CLAUS, STEINITZ, A. 282, 117); in besserer Ausbeute erhält man es bei der Umsetzung von 2-Methyl-chinolin-carbonsäure-(3)-methylester mit der äquimolekularen Menge Methyljodid bei 100—120° (C., St.). Das Jodid bildet sich auch aus Chinaldin-carbonsäure-(3)-methylbetain und Methyljodid bei 100° (C., St.). Verhalten des Chlorids oder Jodids gegenüber Alkalien und feuchtem Silberoxyd: C., St., A. 282, 120. Chlorid $C_{13}H_{14}O_3N \cdot Cl$. Säulen (aus Alkohol + Äther). F: 157° (Zers.). Sehr leicht löslich in Alkohol und Wasser. Jodid $C_{13}H_{14}O_3N \cdot I$. Gelbe Nadeln und Säulen (aus Wasser). F: 200° (Zers.). Leicht löslich in Wasser und heißem Alkohol, unlöslich in Äther.
- 2-Methyl-chinolin-[carbonsäure-(3)-äthylester]-hydroxymethylat $C_{14}H_{17}O_{3}N=(HO)(CH_{2})NC_{2}H_{5}(CH_{2})\cdot CO_{2}\cdot C_{2}H_{5}$. B. Das Jodid entsteht aus 2-Methyl-chinolin-carbonsäure-(3)-äthylester und Methyljodid bei 100° (Claus, Steinitz, A. 282, 109; vgl. Hantzsch, B. 19, 37). Verhalten des Chlorids oder Jodids gegenüber Alkalien und feuchtem Silberoxyd: H.; C., St.; vgl. Decker, J. pr. [2] 47, 235. Chlorid $C_{14}H_{16}O_{2}N\cdot Cl.$ Nadeln (aus Alkohol + Äther). F: 158° (Zers.) (C., St.). Jodid $C_{14}H_{16}O_{2}N\cdot I$. Gelbe Säulen oder Nadeln (aus Alkohol oder Wasser). F: 208° (Zers.) (C., St.). Schwer löslich in kaltem Wasser und Alkohol (H.). $2C_{14}H_{16}O_{2}N\cdot Cl.$ PtCl4. Gelbe Blätchen. F: 216—218° (Zers.) (H.).
- 2-Methyl-chinolin-(carbonsäure-(3)-propylester]-hydroxymethylat $C_{15}H_{15}O_3N=(HO)(CH_3)NC_3H_5(CH_2)\cdot CO_3\cdot CH_2\cdot C_2H_5$. Jodid $C_{15}H_{16}O_3N\cdot I$. B. Aus 2-Methyl-chinolin-carbonsäure-(3)-propylester und Methyljodid bei 100^6 (CLAUS, STEINITZ, A. 282, 124). Gelbe Nadeln. F: 186^6 (Zers.).
- 2-Methyl-chinolin-[carbonsäure-(3)-bensylester]-hydroxymethylat $C_{19}H_{19}O_{9}N=(HO)(CH_{9})NC_{9}H_{6}(CH_{2})\cdot CO_{2}\cdot CH_{2}\cdot C_{6}H_{5}.$ Jodid $C_{19}H_{19}O_{9}N\cdot I.$ B. Analog der vorhergehenden Verbindung (Claus, Steinitz, A. 282, 125). Gelbe Nadeln (aus Wasser). F: 172° (Zers.). Leicht löslich in heißem Wasser.
- 2-Methyl-chinolin-[carbonsäure-(3)-methylester]-hydroxyäthylat $C_{14}H_{17}O_3N = (HO)(C_2H_5)NC_9H_5(CH_3)\cdot CO_2\cdot CH_3$. B. Das Jodid entsteht beim Erhitzen von 2-Methyl-chinolin-carbonsäure-(3)-methylester mit Äthyljodid auf 160° (Claus, Steinitz, A. 282, 121). Verhalten des Jodids gegen Alkalien: C., St. Chlorid $C_{14}H_{16}O_3N\cdot Cl$. Nadeln (aus Alkohol + Äther). F: 150° (Zers.). Sehr leicht löslich in Wasser und Alkohol. Bromid $C_{14}H_{16}O_3N\cdot Br$. Prismen (aus Wasser). F: 154°. Ziemlich leicht löslich in Wasser und Alkohol. Jodid $C_{14}H_{16}O_3N\cdot I$. Gelbe Blättchen (aus Wasser oder Alkohol). F: 210° (Zers.). Leichter löslich in Wasser und Alkohol als das isomere Jodmethylat des 2-Methyl-chinolin-carbonsäure-(3)-äthylesters. $2C_{14}H_{16}O_3N\cdot Cl + PtCl_4$. Orangegelbe Prismen (aus Salzsäure).
- 2 Methyl-chinolin [carbonsäure (3) äthylester] hydroxyäthylat $C_{15}H_{18}O_3N = (HO)(C_3H_5)NC_5H_5(CH_3)\cdot CO_2\cdot C_2H_5$. B. Das Jodid entsteht bei längerem Erhitzen von 2-Methyl-chinolin-carbonsäure (3) äthylester und Äthyljodid im Rohr auf 150—180° (Claus, STEINITZ, A. 282, 113). Verhalten des Jodids gegen Silberoxyd oder Alkalien: C., ST. Chlorid $C_{15}H_{18}O_2N\cdot Cl$. Nadeln (aus Alkohol + Äther). F: 146° (Zers.). Sehr leicht löslich in Alkohol und Wasser. Bromid $C_{15}H_{18}O_2N\cdot Br$. Prismen (aus Wasser). F: 217°; ziemlich leicht löslich in Wasser und Alkohol (C., ST., A. 282, 123). Jodid $C_{15}H_{18}O_2N\cdot I$. Orangegelbe Nadeln (aus Alkohol). F: 236° (Zers.). $2C_{18}H_{18}O_2N\cdot Cl + PtCl_4$. Orangerote Prismen (aus Salzsäure). F: 238° (Zers.).

8-Chlor-2-methyl-chinolin-carbonsäure-(3), 8-Chlor-chinaldin-carbonsäure-(3) C₁₁H₆O₂NCl, s. nebenstehende Formel. B. Man diazotiert 8-Amino-2-methyl-chinolin-carbonsäure-(3)-äthylester (Syst. No. 3437), behandelt das Reaktionsprodukt mit Kupferchlorür und verseift den entstandenen Äthylester durch Erhitzen mit konz. Salzsäure auf dem Wasserbad (CLAUS, MCM-BERGER, J. pr. [2] 56, 383, 384). — Gelbe Nadeln (aus verd. Alkohol). F: 216°. Sehr leicht löslich in heißem Alkohol, schwer in Äther, Benzol und Chloroform, unlöslich in kaltem Wasser.

Äthylester $C_{13}H_{12}O_2NCl=NC_9H_4Cl(CH_3)\cdot CO_2\cdot C_2H_5$. B. s. bei der Säure. — Blättchen (aus Alkohol). F: 92°; leicht löslich in Äther, Benzol und Chloroform, schwer in Petroläther und Wasser (C., M., J. pr. [2] 56, 383). — $2C_{13}H_{12}O_2NCl + 2HCl + PtCl_4 + 4H_2O$. Gelbes Pulver. Zersetzt sich bei 205°.

5-Nitro-2-methyl-chinolin-carbonsäure-(3), 5-Nitro-chinaldin-O2N carbonsäure-(8) C11H₈O₄N₂, s. nebenstehende Formel. Zur Konstitution vgl. Decker, Remfry, B. 38, 2775. — B. Man verseift den Äthylester mit konz. Salzsäure und zersetzt das entstandene Hydrochlorid mit Alkalilauge (CLAUS, MOMBERGER, J. pr. [2] 56, 384). — Gelbe Nadeln (aus Alkohol). F: 236°; unlöslich in Wasser (C., M.). — Liefert beim Erhitzen mit 10°/0iger Schwefelsäure auf 150° 5-Nitrochinaldin (C., M.). — Hydrochlorid. Gelbrote, säulenförmige Krystalle. F: 215° (Zers.); löslich in Wasser (C., M.).

Äthylester $C_{13}H_{12}O_4N_2=NC_9H_4(NO_3)(CH_3)\cdot CO_2\cdot C_2H_5$. B. Beim Eintragen von 2-Methyl-chinolin-carbonsäure-(3)-äthylester in Salpeterschwefelsäure, neben 8-Nitro-2-methyl-chinolin-carbonsäure-(3)-äthylester (Claus, Momberger, J. pr. [2] 56, 375). — Gelbliche Nadeln. F: 126°. Leicht Kelich in Alkohol, Benzol, Äther und Chloroform, sehr schwer in Wasser. — Wird von wäßr. Laugen kaum, von alkoh. Laugen erst bei längerem Kochen verseift. — $2C_{13}H_{12}O_4N_2+2HCl+PtCl_4+2H_2O$. Nadeln (aus Salzsäure). Zersetzt sich bei 232°.

8-Nitro-2-methyl-chinolin-carbonsäure-(3), 8-Nitro-chinaldin-carbonsäure-(3) C₁₁H₉O₄N₂, s. nebenstehende Formel. B. Das Hydro-chlorid entsteht beim Verseifen des Äthylesters mit konz. Salzsäure (CL., M., J. pr. [2] 56, 376). — Gelbliche Blättchen (aus Alkohol). F: 196° (Zers.). O₂N Sehr schwer löslich in Wasser, löslich in heißem Alkohol. — Beim Erhitzen mit 10°/0 iger Schwefelsäure im Rohr auf 150° entsteht 8-Nitro-chinaldin. — Hydroch lorid. Gelbe Nadeln. Zersetzt sich bei 204°. Sehr schwer löslich in Wasser.

Äthylester $C_{13}H_{12}O_4N_9=NC_9H_4(NO_2)(CH_3)\cdot CO_2\cdot C_2H_5$. B. s. beim Äthylester der 5-Nitro-2-methyl-chinolin-carbonsäure-(3). — Gelbliche Säulen. F: 137°. Unlöslich in kaltem Wasser, schwer löslich in heißem Wasser und Petroläther, leicht in Alkohol, Äther, Benzol und Chloroform (CL., M.). Wird von wäßr. Laugen kaum, von alkoh. Laugen erst bei längerem Kochen verseift. — $2C_{13}H_{12}O_4N_2+2HCl+PtCl_4+2H_2O$. Orangegelbe Krystalle. Wird bei 120° wasserfrei und zersetzt sich bei 175—195°.

- 5. 4-Methyl-chinolin-carbonsäure-(2), 4-Methyl-chinal-dinsäure, Lepidin-carbonsäure-(2) C₁₁H₂O₂N, s. nebenstehende Formel. B. Bei 10-stündigem Erwärmen von 4-Methyl-2-[β-oxy-āthyl]-chinolin mit Salpetersäure (D: 1,4) auf dem Wasserbad (Koenigs, Mengel, B. 37, 1327). Das Oxalat entsteht bei der Oxydation der Lepidin-[β-acrylsäure]-(2) mit sodaalkalischer Permanganat-Lösung (K., M., B. 37, 1332). Bei der Oxydation von γ-Methyl-chinophthalon (Bd. XXI, S. 545) mit Salpetersäure (D: 1,4) (K., M., B. 37, 1333) Hellgelbe Krystalle mit 1½-120 (aus Wasser); wird bei 105° wasserfrei und schmilzt bei 153° bis 154° unter Abspaltung von Kohlendioxyd. Gibt beim Erhitzen auf 170—180° Lepidin und Kohlendioxyd. Die wäßr. Lösung färbt sich auf Zusatz von Ferrosulfat-Lösung rotgelb. Ammoniumsalz. Krystalle. Leicht löslich in Wasser und Alkohol. Die wäßr. Lösung gibt mit Metallsalzen amorphe Niederschläge. Hydrochlorid. Mikroskopische Krystalle. Leicht löslich in Wasser und Alkohol. 2C₁₁H₂O₂N+2HCl+PtCl₄+H₂O. Gelbrote Krystalle (aus Salzsäure). F: 210—212° (Zers.). Oxalat. Gelbe Nadeln. F: 182°.
- 6. 2-Methyl-chinolin-carbonsāure-(4), 2-Methyl-cinchoninsāure, Chinaldin-carbonsāure-(4) ("Aniluvitoninsāure")
 C₁₁H₂O₂N, s. nebenstehende Formel. B. Beim Kochen von Anilin mit Acetaldehyd und Brenztraubensäure in absol Alkohol (v. Miller, B. 24, 1918).

 Aus Brenztraubensäure-anil (Bd. XII, S. 516) beim Kochen mit Wasser (Böttinger, A. 188, 337; 191, 321) oder Alkohol (Simon, A. ch. [7] 9, 466). Bei der Oxydation von 2.4-Dimethyl-chinolin mit Chromschwefelsäure (Beyer, J. pr. [2] 38, 411; Höchster Farbw.

D. R. P. 35133; Frdl. 1, 192). Bei mehrstündigem Erwärmen von Isatin mit überschüssigem Aceton in 5% (aiger Natronlauge auf dem Wasserbad (Pfitzinger, J. pr. [2] 33, 100; 38, 582; 56, 284). — Krystallwasserhaltige, leicht verwitternde Nadeln (aus Wasser) (Pf., J. pr. [2] 56, 285). F: 241—242° (Bö., A. 191, 323; Pf., J. pr. [2] 56, 285), 246° (Simon, A. ch. [7] 9, 466). Sublimiert unter starker Verkohlung (Bö., A. 191, 323). Fast unlöslich in siedendem Chloroform (S.) und in Petroläther, schwer löslich in Äther, Benzol, kaltem Alkohol und kaltem Wasser, leicht in heißem Eisessig (Pf., J. pr. [2] 56, 285); löslich in verd. Säuren (Bö., A. 191, 323), löslich in konz. Schwefelsäure mit gelber Farbe (S.). Die Salze mit Säuren werden leicht hydrolysiert, die Salze mit Basen sind beständiger (Pf., J. pr. [2] 56, 285). — Gibt beim Erhitzen auf den Schmelzpunkt (S.) oder beim Erhitzen mit Natronkalk oder Ätzkalk Chinaldin (Bö., B. 14, 91; 16, 2359; Be., J. pr. [2] 33, 413; Küsel, B. 19, 2250). Liefert bei der Oxydation mit Kaliumpermanganat in Gegenwart von Kaliumcarbonat 6-Methyl-pyridin-tricarbonsäure-(2.3.4) (Syst. No. 3311); mit Permanganat in verd. Schwefelsäure erhält man N-Acetyl-anthranilsäure (Bd. XIV, S. 337) (v. M., B. 24, 1919; vgl. Bö., B. 14, 134). Einw. von Reduktionsmitteln: Bö., A. 191, 330; B. 14, 91. Das Hydrochlorid liefert mit Brom in Chloroform ein öliges Produkt, das an der Luft oder in Gegenwart von Wasser das Brom leicht wieder abgibt (Bö., B. 16, 2357). Erhitzt man das Hydrochlorid mit Methyljodid in Methanol, so erhält man ein jodhaltiges Derivat (gelbe, cantharidenglänzende Krystalle; zersetzt sich bei 164°, schmilzt bei ca. 213°) (Bö., B. 16, 2359). Gibt beim Schmelzen mit Phthalsäureanhydrid und Zinkchlorid bei 170—180° das Phthalon der 2-Methyl-cinchoninsäure (Syst. No. 3367) (Pf., J. pr. [2] 56, 292; vgl. Bö., B. 16, 2359).

Natriumsalz. Nadeln (aus Wasser). Leicht löslich in Wasser (Pfitzinger, J. pr. [2] 56, 288). — Ba(C₁₁H₈O₂N)₂. Nadeln. Schwer löslich in Wasser (Böttinger, A. 191, 329; B. 14, 91; Pf., J. pr. [2] 56, 289). — AgC₁₁H₈O₂N. Nadeln (aus Wasser). Sehr schwer löslich in Wasser; leicht löslich in verd. Salpetersäure und in Ammoniak (Pf., J. pr. [2] 33, 400; 56, 289; Beyer, J. pr. [2] 33, 412). — Hydrochlorid. Nadeln. Löslich in warmem Alkohol; leicht löslich in verd. Salzsäure. Wird von Wasser hydrolysiert (Bö., A. 191 326). — C₁₁H₉O₂N + HBr + H₂O. Spieße (aus gesättigter Lösung in mäßig starker Bromwasserstoffsäure). Leicht löslich in kaltem Wasser und Alkohol (Pf., J. pr. [2] 56, 287). — C₁₁H₉O₂N + HBr + 2H₂O. Krystalle (aus verdünnter wäßriger Lösung). Leicht löslich in kaltem Wasser und Alkohol (Bö., B. 16, 2358; Pf., J. pr. [2] 56, 286). — 2C₁₁H₉O₂N + H₂Cr₂O₇. Orangerote Prismen (aus Wasser). Zersetzt sich von 100—105° ab und verpufft bei höherer Temperatur (Pf., J. pr. [2] 56, 287). — 2C₁₁H₉O₂N + 2HCl + PtCl₄ + 2H₂O. Gelbe Nadeln; F: 220° (Zers.) (Bö., A. 191, 327; B. 14, 91; 16, 2358; Pf., J. pr. [2] 56, 286). — Pikrat C₁₁H₉O₂N + C₆H₃O₇N₃. Grüngelbe Nadeln (aus Alkohol). F: 190—191° (Pf., J. pr. [2] 56, 288).

Methylester $C_{12}H_{11}O_2N=NC_9H_5(CH_3)\cdot CO_2\cdot CH_3$. B. Aus der Säure und Diazomethan (H. Meyer, M. 28, 51). — F: 61—62°. Leicht löslich in Alkohol, Äther, Chloroform und Benzol. Ist in nicht ganz reinem Zustand leicht veränderlich; färbt sich an der Luft rot. Nicht unzersetzt destillierbar.

Äthylester $C_{13}H_{13}O_2N=NC_9H_5(CH_3)\cdot CO_2\cdot C_2H_5$. B. Aus 2-Methyl-einchoninsäure und alkoh. Salzsäure bei gewöhnlicher Temperatur (Pettzinger, J. pr. [2] 56, 289). — Prismen (aus Petroläther). F: 77°. Sehr leicht löslich in Benzol, Alkohol, Äther und Aceton, sehr schwer in siedendem Wasser. — $2C_{13}H_{13}O_2N+2HCl+PtCl_4+2H_2O$. Orangegelbe Nadeln (aus Wasser). F: 203° (Zers.). — Pikrat. Gelbe Nadeln (aus Alkohol). F: 155—156°.

Amid $C_{11}H_{10}ON_2 = NC_9H_5(CH_9)\cdot CO\cdot NH_9$. B. Man erhitzt den Äthylester mit Ammoniak (D: 0,880) im Rohr auf 100° (Pettzinger, J. pr. [2] 56, 291) oder schüttelt eine alkoh. Lösung des Methylesters mit wäßr. Ammoniak (H. Meyer, M. 28, 52). — Nadeln (aus Wasser oder verd. Alkohol). F: 238° (M.), 239° (Pf.). Leicht löslich in heißem Alkohol, schwer in Äther und kaltem Wasser (Pf.). Reagiert mit Bromlauge unter Bildung von 4-Aminochinaldin (M.).

7. 2-Methyl-chinolin-carbonsäure-(5), Chinaldin-carbon-HO2C säure-(5) C₁₁H₉O₂N, s. nebenstehende Formel. Zur Konstitution vgl. Decker, Remfey, B. 38, 2775. — B. Das Hydrochlorid entsteht beim Erwärmen von 3-Amino-benzoesäure-hydrochlorid mit Paraldehyd und konz. Salzsäure auf dem Wasserbad (Doebner, v. Miller, B. 17, 941). Beim Erhitzen von Chinaldin-aldehyd-(5) mit Chromschwefelsäure oder mit frisch gefälltem Silberoxyd in Wasser (Eckhardt, B. 22, 281). Beim Erhitzen von 2.5-Dimethyl-chinolin mit Chromschwefelsäure (v. Miller, B. 23, 2263). Das Hydrochlorid erhält man beim Erhitzen von 5-Cyan-chinaldin mit konz. Salzsäure im Rohr auf 130—150° (Rist, B. 23, 3486; Richard, B. 23, 3489). — Nadeln (aus Alkohol). F: 285° (Zers.); unter teilweiser Zersetzung sublimierbar (D., v. M.). Unlöslich in Benzol, Äther, Ligroin und Chloroform (v. M.), fast unlöslich in Wasser, ziemlich leicht löslich in Alkohol (D., v. M.); löslich in kaltem Ammoniak und in

warmen Säuren (v. M.). — $\operatorname{Cu}(C_{11}H_5O_2N)_2 + 3H_2O$. Zersetzt sich beim Erwärmen (D., v. M.). — $\operatorname{AgC}_{11}H_5O_2N$. Krystalle (D., v. M.). — $\operatorname{Ca}(C_{11}H_6O_2N)_2 + 2H_2O$. Wird bei 200° wasserfrei. Schwer löslich in Wasser; leicht löslich in Essigsäure (D., v. M.). — $\operatorname{C}_{11}H_5O_2N + \operatorname{HCl} + H_2O$. Tafeln. Schwer löslich in kaltem, leicht in heißem Wasser (D., v. M.). — $\operatorname{2C}_{11}H_9O_2N + H_2Cr_2O_7$. Gelbe Nadeln. Schwer löslich in kaltem, leicht in heißem Wasser (D., v. M.). — $\operatorname{4C}_{11}H_9O_2N + \operatorname{4HCl} + \operatorname{PtCl}_4$ (?). Prismen (D., v. M.).

Nitril, 5-Cyan-chinaldin C₁₁H₈N₂ = NC₂H₅(CH₈)·CN. Zur Konstitution vgl. Decker, Remfry, B. 38, 2775. — B. In schlechter Ausbeute beim Diazotieren von 5-Amino-chinaldin und nachfolgenden Verkochen des Gemisches mit Kaliumkupfercyanür (Rist, B. 23, 3486). Bei der trocknen Destillation des Natriumsalzes der 2-Methyl-chinolin-sulfonsäure-(5) (Syst. No. 3378) mit Kaliumcyanid (Richard, B. 23, 3489). — Nadeln mit 2 H₂O (aus Wasser) (Rich.). F: 82°; verliert das Krystallwasser über konz. Schwefelsäure und schmilzt dann bei 104°; ist mit Wasserdampf flüchtig; sehr leicht löslich in Alkohol, Äther, Benzol und heißem Wasser; sehr leicht in Säuren (Rist). — Liefert beim Erhitzen mit konz. Salzsäure im Rohr auf 130—150° 2-Methyl-chinolin-carbonsäure-(5) (Rist; Rich.).

- 8. 2-Methyl-chinolin-carbonsäure-(6), Chinaldin-carbonsäure-(6) C₁₁H₉O₂N, s. nebenstehende Formel. B. Das Hydrochlorid entsteht bei der Umsetzung von salzsaurer 4-Aminobenzoesäure mit Paraldehyd und konz. Salzsäure erst bei gewöhnlicher Temperatur, dann auf dem Wasserbad (Doebner, v. Miller, B. 17, 939). Bei der Oxydation von 2.6-Dimethylchinolin mit Chromsäuregemisch (v. M., B. 23, 2263). Nadeln (aus Alkohol). F: 259° (D., v. M.), 256° (v. M.). Unter teilweiser Zersetzung sublimierbar; sehr schwer löslich in siedendem Wasser, leicht in siedendem Alkohol (D., v. M.). Cu(C₁₁H₈O₂N)₂+6H₂O. Krystalle. Wird bei 250° wasserfrei. Schwer löslich in Essigsäure (D., v. M.). C₁₁H₉O₂N + 2H₂O. Krystalle. Wird bei 250° wasserfrei. Schwer löslich in Wasser; schwer löslich in Salzsäure (D., v. M.). C₁₁H₉O₂N + HCl + H₂O. Prismen (aus Salzsäure). Leicht löslich in Wasser; schwer löslich in heißem Wasser (D., v. M.). 2C₁₁H₉O₂N + 2HCl + PtCl₄ + 4H₂O. Tafeln (aus sehr verd. Salzsäure). Leicht löslich in heißem, schwer in kaltem salzsäurehaltigem Wasser (D., v. M.).
- 9. 2-Methyl-chinolin-carbonsäure-(8), Chinaldin-carbonsäure-(8) C₁₁H₂O₂N, s. nebenstehende Formel. B. Das Hydrochlorid entsteht bei der Einw. von 13 g Paraldehyd auf 25 g salzsaure 2-Aminobenzoesäure in 30 g konz. Salzsäure auf dem Wasserbad (Doebner, HO₂C v. Miller, B. 17, 943). Bei 4—5-tägigem Erwärmen von 2.8-Dimethyl-chinolin mit Chromschwefelsäure auf dem Wasserbad (v. M., B. 23, 2259). Nadeln mit ½ H₂O (aus Wasser). F: 151°; löslich in kaltem, sehr leicht löslich in heißem Wasser und in Alkohol; leicht löslich in Säuren und Alkalien (D., v. M.). Zersetzt sich beim Erhitzen über den Schmelzpunkt teilweise unter Bildung von Chinaldin (D., v. M.). Cu(C₁₁H₈O₂N)₂+1½ H₂O. Dunkelgrüne Nadeln. Verliert bei 100° 1 Mol H₂O (D., v. M.). Calciumsalz. Krystalle. Leicht löslich in Wasser (D., v. M.). C₁₁H₉O₂N + HCl. Tafeln (aus Alkohol). Unlöslich in Äther, leicht löslich in Alkohol, sehr leicht in Wasser. Färbt sich an der Luft rötlich (D., v. M.). 2C₁₁H₉O₂N + 2HCl + PtCl₄ + 2H₂O. Rote Prismen (aus Wasser). Schwer löslich in kaltem, leicht in heißem Wasser (D., v. M.).
- 10. 3-Methyl-chinolin-carbonsäure-(4), 3-Methyl-cinchonin-CO₂H säure C₁₁H₉O₂N, s. nebenstehende Formel. V. In Pflanzen der Gattung $\cdot CH_3$ Syndesmon thalictroides Hoffmg. unter gewissen pathologischen Verhältnissen (Beattie, Am. 40, 425). — B. Man erhitzt eine Lösung von 3.4-Dimethylchinolin mit Chromschwefelsäure auf dem Wasserbad (v. MILLER, B. 23, 2257). Bei längerem Erhitzen von Isatin und Propionaldoxim in 40% jeger Kalilauge auf dem Wasserbad (Orn-STEIN, B. 40, 1088). — Blättchen mit 2 H₂O (aus Wasser) (O.). F: 254° (O.). Unlöslich in Äther, Benzol und Petroläther, schwer löslich in Aceton, löslich in Alkohol, Eisessig und Wasser (v. M.). — Liefert bei der Destillation mit Natronkalk (v. M.) oder bei der Destillation des Bariumsalzes mit Bariumhydroxyd (BEA.) 3-Methyl-chinolin. Gibt beim Schmelzen mit 5 Tln. Kaliumhydroxyd und 2 Tln. Wasser 2-Oxy-3-methyl-chinolin-carbonsäure-(4) (O.). AgC₁₁H₅O₂N. Nadeln (aus Wasser). Leicht löslich in Säuren und Ammoniak (O.). Hydrochlorid. Nadeln. F: 240—241°; wird durch Wasser hydrolysiert (O.). — 2C₁₁H₂O₂N + 2HCl + PtCl₄ + 8H₂O. Orangegelbe Nadeln (aus salzsäurehaltigem Wasser). Zersetzt sich beim Erhitzen, ohne zu schmelzen (O.). — Pikrat C₁₁H₉O₂N + C₆H₃O₇N₃. Gelbe Nadeln (aus Alkohol). F: 222-2230 (O.).

Methylester $C_{12}H_{11}O_2N = NC_9H_5(CH_3)\cdot CO_3\cdot CH_3$. B. Aus dem Chlorid der 3-Methylchinolin-carbonsäure-(4) und Methanol oder aus der freien Säure und Diazomethan

(H. MEYER, M. 27, 37; 28, 35; vgl. Ornstein, B. 40, 1090). — Nadeln (aus Methanol). F: 77° (M., M. 27, 37). — Wird beim Erhitzen mit wäßr. Ammoniak auf 130° verseift (M., M. 27, 38).

Äthylester $C_{13}H_{13}O_3N=NC_9H_5(CH_3)\cdot CO_2\cdot C_2H_5$. B. Bei der Einw. von Äthyljodid auf das Silbersalz der 3-Methyl-chinolin-carbonsäure-(4) im Rohr bei 100—150° (Ornstein, B. 40, 1090). — Krystallisiert nicht. — $2C_{13}H_{13}O_3N+2HCl+PtCl_4$. Orangefarbene Plättchen (aus Wasser). F: $224-225^\circ$. — Pikrat $C_{13}H_{13}O_2N+C_6H_3O_7N_3$. Hellgelbe Nadeln (aus Alkohol). F: 175—176°.

Chlorid $C_{11}H_8ONCl = NC_9H_5(CH_8) \cdot COCl.$ B. Aus 3-Methyl-chinolin-carbonsäure-(4) und Thionylchlorid in der Siedehitze (H. Meyer, M. 27, 37) oder im Rohr bei 100^0 (Ornstein, B. 40, 1090; vgl. M., M. 28, 36). — Nadeln (aus Chloroform und Ligroin). F: 175^0 ; unlöslich in den gewöhnlichen organischen Lösungsmitteln (M.).

Amid $C_{11}H_{10}ON_2 = NC_9H_8(CH_3)\cdot CO\cdot NH_9$. B. Aus dem Chlorid und Ammoniak (H. Meyer, M. 27, 38) in Benzol (Ornstein, B. 40, 1090). — Nadeln (aus Wasser). F: 229° bis 230° (M.), 228—229° (O.). Unlöslich in kaltem Wasser, Alkohol und Benzol (M.). — Wird von siedender $10^9/_0$ iger Kalilauge nur langsam verseift und bleibt bei 3-stdg. Erhitzen mit wäßr. Ammoniak auf 130° unverändert (M.).

Anilid $C_{17}H_{14}ON_2 = NC_9H_5(CH_3)\cdot CO\cdot NH\cdot C_9H_5$. B. Aus dem Chlorid der 3-Methylchinolin-carbonsäure (4) und Anilin in Benzol (Ornstein, B. 40, 1091). — Nadeln (aus verd. Alkohol). F: 238—239°.

2-Chlor-3-methyl-chinolin-carbonsäure-(4), 2-Chlor-3-methyl-cinchoninsäure $C_{11}H_8O_2NCl$, s. nebenstehende Formel. B. Man erhitzt 2-Oxy-3-methyl-chinolin-carbonsäure-(4) mit überschüssigem Thionylchlorid im Rohr auf 100° und kocht das erhaltene Chlorid mit Wasser (Ornstein, B. 40, 1092). — Nadeln (aus Aceton + Petroläther). F: 191—192°. — Liefert beim Erhitzen mit Wasser auf 120° 2-Oxy-3-methyl-cinchoninsäure.

Methylester $C_{13}H_{10}O_2NCl = NC_3H_4Cl(CH_3) \cdot CO_2 \cdot CH_3$. B. Durch Eindampfen des Chlorids mit Methanol (Ornstein, B. 40, 1093). — Nadeln (aus Äther). F: 78—79° (O.). — Gibt mit überschüssigem Methylalkohol bei 100° 2-Oxy-3-methyl-chinolin-carbonsäure-(4)-methylester (H. MEYER, M. 28, 37).

Chlorid $C_{11}H_7ONCl_2 = NC_9H_4Cl(CH_9) \cdot COCl.$ B. Man erhitzt 2-Oxy-3-methyl-chinolin-carbonsäure-(4) mit Thionylchlorid im Rohr auf 100° (Ornstein, B. 40, 1092) oder mit Phosphorpentachlorid unter gewöhnlichem Druck (H. Meyer, M. 28, 37). — Gelbliche Krystalle (aus Petroläther). F: 52°; leicht löslich in indifferenten Lösungsmitteln (O.). — Gibt beim Kochen mit Wasser 2-Chlor-3-methyl-chinolin-carbonsäure-(4) (O.). Beim Eindampfen mit Methanol erhält man den Methylester der 2-Chlor-3-methyl-chinolin-carbonsäure-(4) (O.).

Amid $C_{11}H_9ON_9Cl = NC_9H_4Cl(CH_3)\cdot CO\cdot NH_9$. B. Beim Einleiten von Ammoniak in eine Lösung von 2-Chlor-3-methyl-chinolin-carbonsäure-(4)-chlorid in Ligroin (Ornstein, B. 40, 1093). — Nadeln (aus verd. Alkohol). F: 270—271°. — Gibt beim Erhitzen mit Wasser auf 180° das Amid der 2-Oxy-3-methyl-chinolin-carbonsäure-(4).

Anilid $C_{17}H_{13}ON_3Cl = NC_9H_4Cl(CH_3)\cdot CO\cdot NH\cdot C_9H_5$. B. Aus 2-Chlor-3-methyl-chinolin-carbonsăure-(4)-chlorid und überschüssigem Anilin in Ligroin (Ornstein, B. 40, 1093). — Flocken (aus Alkohol). F: 267—268°.

11. 4-Methyl-chinolin-carbonsäure-(6), Lepidin-carbonsäure-(6) C₁₁H₉O₂N, s. nebenstehende Formel. B. Bei der Oxydation
von 4.6-Dimethyl-chinolin mit Chromschwefelsäure in der Siedehitze
(v. Miller, B. 23, 2265). — Nadeln (aus Wasser). Schmilzt bei 250—270°
unter Zersetzung. — Gibt beim Destillieren mit Natronkalk Lepidin.

12. 6-Methyl-chinolin-carbonsaure-(5) C₁₁H₅O₂N, s. nebenstehende Formel.

Nitril, 6-Methyl-5-cyan-chinolin C₁₁H₅N₂ = NC₅H₅(CH₂)·CN. B.

Man behandel Bactiertes 5-Amino-6-methyl-chinolin mit KaliumkupferNo. 100 -

Man behandelt diazotiertes 5-Amino-6-methyl-chinolin mit Kaliumkupfer-cyanür (Finger, Breitwieser, J. pr. [2] 79, 454). — Krystalle (aus Benzin). F: 104—105°. — Liefert bei der Reduktion mit Natrium und Alkohol Dekahydro-p-toluchinolin (Bd. XX, S. 158).

13. 8-Methyl-chinolin-carbonsdure-(5) $C_{11}H_9O_2N$, s. nebenstehende Formel. B. Beim Erhitzen von 5.8-Dimethyl-chinolin mit 22^0 /giger Salpetersäure auf 170° (Lellmann, Alt, A. 237, 310). — Pulver. F: 286°. — Liefert bei der trocknen Destillation mit Ätzkalk 8-Methyl-chinolin. — $Ca(C_{11}H_9O_2N)$, Krystalle. — $C_{11}H_9O_2N$ + HCl + H₂O. Nadeln (aus Salzsäure). Wird von Wasser teilweise hydrolysiert. — $2C_{11}H_9O_2N + 2$ HCl + PtCl₄ + 6 H₂O. Gelbe Nadeln.

14. 6-Methyl-chinolin-carbonsäure-(7) C₁₁H₂O₂N, s. nebenstehende Formel.

Nitril, 6-Methyl-7-cyan-chinolin $C_{11}H_8N_2 = NC_9H_8(CH_3) \cdot CN$. B. Beim Erhitzen des Natriumsalzes der 6-Methyl-chinolin-sulfonsäure-(7) mit Kaliumcyanid (Edinger, Bühler, B. 42, 4317). — Gelbliche Nadeln (aus Ligroin). F: 133°. — $C_{11}H_8N_2 + HCl$. Zersetzt sich bei 244°. — Pikrat $C_{11}H_8N_3 + C_9H_3O_7N_3$. Zersetzt sich bei 266°.

3. Carbonsäuren $C_{12}H_{11}O_2N$.

1. 2 - Methyl - 4 - phenyl - pyrrol - carbonsäure - (3) $C_{12}H_{11}O_2N = C_4H_4 \cdot C_{---}C \cdot CO_2H$

HC·NH·C·CH, (KNORR, LANGE, B. 35, 3004). — Flocken (aus der alkal. Lösung durch verd. Schwefelsäure gefällt). F: 115° (Zers.).

Äthylester $C_{14}H_{15}O_2N=\frac{C_6H_5\cdot C_{---}C\cdot CO_2\cdot C_2H_5}{HC\cdot NH\cdot C\cdot CH_2}$. B. Durch gemeinsame Reduktion von Isonitrosoacetophenon und Acetessigester mit Zinkstaub und 75% gier Essigsäure (Knorr, Lange, B. 35, 3003). Aus salzsaurem ω -Amino-acetophenon, Acetessigester und Natrium-acetat in 75% gier Essigsäure auf dem Wasserbad (K., L.). — Krystalle (aus Methanol oder Benzol). F: 105%. Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser sowie in verd. Säuren und Alkalien.

2. 2 - Methyl - 5 - phenyl - pyrrol - carbonsäure - (3) C₁₂H₁₁O₂N = HC—C·CO₂H

C₄H₅·C·NH·C·CH₃

B. Durch Verseifung des Äthylesters (s. u.) mit wäßriger oder alkoholischer Kalilauge (Lederer, Paal., B. 18, 2593; Borsche, Fels, B. 39, 3881). — Gelbliche Nadeln (aus Eisessig), rötliche Nadeln (aus Alkohol). Zersetzt sich von 175° an, schmilzt bei 190° (L., P.); F: 185° (Zers.) (B., F.). Leicht löslich in Benzol, Eisessig und heißem Alkohol (L., P.).

Äthylester $C_{14}H_{15}O_2N=\frac{HC-C\cdot CO_2\cdot C_2H_5}{C_4H_5\cdot C\cdot NH\cdot C\cdot CH_3}$. B. Aus α -Phenacyl-acetessigsäure- āthylester (Bd. X, S. 820) durch Einw. von überschüssigem wäßrigem Ammoniak (Lederer, Paal, B. 18, 2593). Aus δ -Oxo- α -imino- α -phenyl-pentan- γ -carbonsäure-äthylester (Bd. X, S. 821) beim Aufbewahren im Exsiccator, beim Erhitzen auf 150°, beim Kochen der Lösungen in Äther oder Benzol oder beim Erwärmen mit verd. Schwefelsäure (Borsche, Fels, B. 39, 3880). — Tafeln (aus Alkohol), Nadeln (aus Methanol). F: 120° (L., P.), 116—117° (B., F.).

1.2 - Dimethyl - 5 - phenyl - pyrrol - carbonsäure - (3) - äthylester $C_{15}H_{17}O_2N = HC - C \cdot CO_3 \cdot C_2H_5$. B. Durch Einw. von konzentrierter wäßriger Methylamin-C₆H₅ · $C \cdot N(CH_3) \cdot C \cdot CH_3$. B. Durch Einw. von konzentrierter wäßriger Methylamin-Lösung auf α -Phenacyl-acetessigsäure-äthylester (Lederer, Paal, B. 18, 2594). — Blättchen (aus Alkohol + Äther). F: 112°. Leicht löslich in Alkohol, Äther und Benzol.

1-Allyl-2-methyl-5-phenyl-pyrrol-carbonsäure-(3) $C_{15}H_{15}O_2N=HC$ — $C\cdot CO_2H$. B. Durch Erhitzen von α -Phenacyl-acetessigsäure- $C_6H_5\cdot \overset{\circ}{\mathbb{C}}\cdot N(CH_3\cdot CH:CH_3)\cdot \overset{\circ}{\mathbb{C}}\cdot CH_3$ athylester mit Allylamin und etwas absol. Alkohol im Rohr auf 130° und Verseifen des entstandenen Äthylesters mit alkoh. Kalilauge (Lederer, Paal, B. 18, 2594). — Prismen (aus Benzol). F: 158°. Leicht löslich in Alkohol, Äther, Benzol und Eisessig. — Gibt bei der Destillation 1-Allyl-2-methyl-5-phenyl-pyrrol.

2-Methyl-1.5-diphenyl-pyrrol-carbonsäure-(3) $C_{18}H_{15}O_2N = HC - C \cdot CO_2H$ $C \cdot CO_2H$ $C_6H_5 \cdot C \cdot N(C_6H_5) \cdot C \cdot CH_2$ B. Durch Verseifung des Äthylesters (s. u.) mit alkoh. Kalilauge (Lederer, Paal, B. 18, 2595). — Nadeln (aus Eisessig oder Benzol). F: 226°. Leicht löslich in Eisessig und Benzol. — Gibt bei der Destillation 2-Methyl-1.5-diphenyl-pyrrol.

Äthylester $C_{20}H_{10}O_2N = \frac{HC - C \cdot CO_2 \cdot C_2H_5}{C_6H_5 \cdot C \cdot N(C_6H_5) \cdot C \cdot CH_3}$. B. Aus α -Phenacyl-acetessig-säure-äthylester und Anilin in siedendem Eisessig (Lederer, Paal, B. 18, 2595). — Prismen (aus Benzol + Ligroin). F: 100°. Ziemlich schwer löslich in Eisessig und verd. Alkohol.

- 1-[2-Nitro-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(8)-äthylester $C_{50}H_{18}O_4N_3= \frac{C\cdot CO_2\cdot C_2H_5}{C_6H_5\cdot C\cdot N(C_6H_4\cdot NO_2)\cdot C\cdot CH_3}$. B. Analog der vorangehenden Verbindung (Borsche, Titsingh, B. 40, 5012). Gelbe Nadeln (aus Alkohol). F: 96—97°.
- 1-[3-Nitro-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(3)-äthylester HC $C_{20}H_{18}O_4N_2 = C_6H_5 \cdot C \cdot N(C_6H_4 \cdot NO_2) \cdot C \cdot CH_3$ (Borsche, Titsingh, B. 40, 5011). Citronengelbe Tafeln (aus Alkohol). F: 146—147°.
- 1-[4-Nitro-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(3)-äthylester $C_{20}H_{18}O_4N_2=\frac{HC}{C_6H_5\cdot\dot{C}\cdot N(C_6H_4\cdot NO_2)\cdot\dot{C}\cdot CH_3}$. B. Analog der vorangehenden Verbindung (Borsche, Titsinge, B. 40, 5012). Gelbrote Tafeln (aus Alkohol). F: 116—117°.
- 1 o Tolyl 2 methyl 5 phenyl pyrrol carbonsäure (3) $C_{19}H_{17}O_2N = HC$ $C \cdot CO_2H$ $C_6H_6 \cdot C \cdot N(C_6H_4 \cdot CH_3) \cdot C \cdot CH_3$ B. Durch Umsetzung von α -Phenacyl-acetessigsäure-thylester mit o-Toluidin in siedendem Eisessig und Verseifung des entstandenen Äthylesters mit alkoh. Kalilauge (Lederer, Paal, B. 18, 2596). Prismen (aus Alkohol). F: 199°. Ziemlich leicht löslich in organischen Lösungsmitteln, schwer in Wasser. Gibt bei der Destillation 1-o-Tolyl-2-methyl-5-phenyl-pyrrol.
- 1 p Tolyl 2 methyl 5 phenyl pyrrol carbonsäure (3) $C_{19}H_{17}O_2N = HC C \cdot CO_2H$ $C_6H_5 \cdot C \cdot N(C_6H_4 \cdot CH_3) \cdot C \cdot CH_3$ B. Durch Verseifung des Äthylesters (s. u.) mit alkoh. Kalilauge (Lederer, Paal, B. 18, 2597). Blättchen (aus Eisessig). F: 227°. Leicht löslich in Alkohol, Äther, Benzol und Eisessig. Gibt bei der Destillation 1-p-Tolyl-2-methyl-5-phenyl-pyrrol.
- Äthylester $C_{21}H_{21}O_2N = \frac{HC C \cdot CO_2 \cdot C_2H_5}{C_6H_5 \cdot C \cdot N(C_6H_4 \cdot CH_2) \cdot C \cdot CH_3}$. B. Aus α -Phenacylacetessigsäure-äthylester und p-Toluidin in siedendem Eisessig (Lederer, Paal, B. 18, 2597). Säulen (aus Benzol + Ligroin), Blätter (aus Eisessig). F: 115°.
- 1-β-Naphthyl-2-methyl-5-phenyl-pyrrol-carbonsäure-(3) $C_{22}H_{17}O_2N = HC C \cdot CO_2H$. B. Durch Verseifung des Äthylesters (s. u.) mit alkoh. Kali-C₆H₅·C·N(C₁₀H₇)·C·CH₃
 lauge (Lederer, Paal, B. 18, 2599). Nadeln. F: 249°. Löslich in Alkohol und Eisessig. Liefert bei der Destillation 1-β-Naphthyl-2-methyl-5-phenyl-pyrrol.
- Äthylester $C_{24}H_{21}O_2N = \frac{HC}{C_0H_5 \cdot C \cdot N(C_{10}H_7) \cdot C \cdot CH_8}$. B. Aus α -Phenacyl-acetessig-säure-äthylester und β -Naphthylamin in siedendem Eisessig (Lederer, Paal, B. 18, 2598). Blättchen (aus Alkohol). F: 115°.
- 2 Methyl 5 phenyl pyrrol carbonsäure (3) essigsäure (1) $C_{14}H_{13}O_4N = HC$ $C \cdot CO_2H$ $C_6H_5 \cdot C \cdot N(CH_2 \cdot CO_2H) \cdot C \cdot CH_3$ alkoh. Kalilauge (Paal, Schneider, B. 19, 3160). Nadeln (aus Alkohol). F: 152° (Zers.). Leicht löslich in Alkohol und Äther, schwer in Chloroform, Ligroin, Benzol und Wasser.

- 1-[3-Carboxy-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(8) $C_{10}H_{18}O_4N = HC$ $C \cdot CO_2H$ $C_{6}H_{5} \cdot C \cdot N(C_{6}H_{4} \cdot CO_2H) \cdot C \cdot CH_{3}$ alkoh. Kalilauge (PAAL, SCHNEIDER, B. 19, 3162). Nadeln (aus verd. Alkohol). F: 210°; zersetzt sich bei stärkerem Erhitzen. Leicht löslich in organischen Lösungsmitteln.
- 1-[3-Carboxy-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(3)-äthylester $C_{21}H_{19}O_4N= \frac{C\cdot CO_3\cdot C_2H_5}{C_6H_5\cdot C\cdot N(C_6H_4\cdot CO_2H)\cdot C\cdot CH_3}$. B. Aus α -Phenacyl-acetessigsäure-āthylester und 3-Amino-benzoesäure in Eisessig (Paal, Schneider, B. 19, 3162). Gelbe Nadeln (aus verd. Essigsäure). F: 160°. Leicht löslich in organischen Lösungsmitteln. Ammoniumsalz. Blättchen (aus Wasser).
- 1.1'-Äthylen-bis-[2-methyl-5-phenyl-pyrrol-carbonsäure-(3)] $C_{26}H_{24}O_4N_2 = HO_2C \cdot C : C(CH_3) \cdot N \cdot CH_2 \cdot CH_2 \cdot N \cdot C(C_6H_5) \cdot CH_3 \cdot B$. Durch Verseifung des Diāthylesters $HC : C(C_6H_5) \cdot N \cdot CH_2 \cdot CH_2 \cdot N \cdot C(C_6H_5) \cdot CH_3 \cdot B$. Durch Verseifung des Diāthylesters (s. u.) mit alkoh. Kalilauge (Paal, Schneider, B. 19, 3159). Krystalle (aus Alkohol). F: 181°; zersetzt sich bei höherer Temperatur. Schwer löslich in Alkohol, Eisessig und in konz. Salzsäure, unlöslich in anderen Lösungsmitteln.
- Diäthylester $C_{30}H_{32}O_4N_9=C_3H_5\cdot O_2C\cdot C:C(CH_3):N\cdot CH_2\cdot N\cdot C(CH_3):C\cdot CO_2\cdot C_2H_5$. B. Aus Äthylendiamin und $HC:C(C_6H_5)\cdot N\cdot CH_2\cdot CH_2\cdot N\cdot C(C_6H_5):CH$ a-Phenacyl-acetessigsäure-äthylester in der Kälte (Paal, Schneider, B. 19, 3158). Blättchen (aus Essigsäure). F:197°. Leicht löslich in Alkohol, Benzol, Chloroform und Eisessig, unlöslich in Ligroin und Wasser. Unlöslich in Salzsäure.
- 1-[2-Amino-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(3)-äthylester $C_{20}H_{20}O_2N_2= { {\rm HC} - C\cdot CO_2\cdot C_2H_5 \over C_6H_5\cdot C\cdot N(C_6H_4\cdot NH_2)\cdot C\cdot CH_3}$. B. Durch Reduktion der entsprechenden Nitroverbindung (S. 90) mit Zinnehlorür und konz. Salzsäure in Alkohol auf dem Wasserbad (Borsche, Titsingh, B. 40, 5012). Krystalle (aus Alkohol). F: 109°. Zersetzt sich an der Luft.
- $1-[8-Amino-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(3)-äthylester \\ \frac{HC}{C_{20}H_{20}O_2N_2}=\frac{C_cCO_2\cdot C_2H_5}{C_6H_5\cdot C\cdot N(C_6H_4\cdot NH_2)\cdot C\cdot CH_3}. \quad B. \quad Durch \; Reduktion \; der \; entsprechenden \\ Nitroverbindung (S. 90) \; mit \; Zinnchlorür \; und konz. \; Salzsäure in \; Alkohol auf \; dem \; Wasserbad (Borsche, Titsingh, B. 40, 5011). Nadeln (aus Alkohol). \; F: 145°.$
- 1.1'- m Phenylen bis [2 methyl 5 phenyl pyrrol-carbonsäure-(3)-äthylester] $\frac{C_2H_5 \cdot O_2C \cdot C : C(CH_3)}{HC : C(C_6H_5)} N \cdot C_6H_4 \cdot N \underbrace{C(CH_3) : C \cdot CO_2 \cdot C_2H_5}_{C(C_6H_5) : CH}. \quad B. \quad \text{Aus} \quad 1 \quad \text{Mol} \quad \text{m-Phenylendiamin und 2 Mol α-Phenacyl-acetessigsäure-äthylester in Eisessig (Paal, Schneider, B. 19, 3161). Nadeln. F: 185°. Leicht löslich in organischen Lösungsmitteln. Unlöslich in konz. Salzsäure.$
- $\begin{array}{l} \textbf{1-[4-Amino-phenyl]-2-methyl-5-phenyl-pyrrol-carbons\"{a}ure-(3)-\"{a}thylester} \\ \textbf{C}_{20}\textbf{H}_{20}\textbf{O}_{2}\textbf{N}_{2} = & \textbf{C}_{0}\textbf{H}_{5}\cdot\overset{\square}{\textbf{C}}\cdot\textbf{N}(\textbf{C}_{6}\textbf{H}_{4}\cdot\textbf{N}\textbf{H}_{2})\cdot\overset{\square}{\textbf{C}}\cdot\textbf{C}\textbf{H}_{3}} \\ \textbf{Nitroverbindung} & \textbf{(S. 90)} & \textbf{mit Zinnchlor\"{u}} & \textbf{konz. Salzs\"{a}ure} & \textbf{in Alkohol (Borsche, Titsingh, B. 40, 5012).} \\ \textbf{-Nadeln (aus verd. Alkohol)}. & \textbf{F: 161-162}^{0}. & \textbf{-Unbest\"{a}ndig.} \end{array}$
- 1.1'-[Diphenylen-(4.4')]-bis-[2-methyl-5-phenyl-pyrrol-carbonsäure-(3)-äthylester] $C_{40}H_{36}O_4N_8 = \frac{C_2H_5 \cdot O_2C \cdot C = C(CH_3)}{HC \cdot C(C_6H_5)}N \cdot C_6H_4 \cdot C_6H_4 \cdot N \cdot \frac{C(CH_3) : C \cdot CO_2 \cdot C_2H_5}{C(C_6H_5) : CH}$. B. Aus 1 Mol Benzidin und 2 Mol α -Phenacyl-acetessigsäure-äthylester in Eisessig (Paal, Schneider, B. 19, 3161). Gelbliche Nadeln. F: 178—179°. Leicht löslich in Äther, Chloroform, Benzol und Ligroin, etwas schwerer in Alkohol und Eisessig.
- 1-[4-Benzolazo-phenyl]-2-methyl-5-phenyl-pyrrol-carbonsäure-(3) $C_{34}H_{19}O_{5}N_{5} = HO_{5}C \cdot C : C(CH_{5}) N \cdot C_{6}H_{4} \cdot N : N \cdot C_{6}H_{5}$. B. Durch Verseifung des Äthylesters (S. 92) mit $HC: C(C_{6}H_{5})$

alkoh. Kalilauge (PAAL, SCHNEIDER, B. 19, 3163). — Rote Krystalle (aus Eisessig). F: 195°; zersetzt sich bei stärkerem Erhitzen. Leicht löslich in Alkohol, Äther und Benzol, schwer in Ligroin und Eisessig, unlöslich in Wasser sowie in konz. Salzsäure.

Äthylester $C_{26}H_{23}O_{2}N_{3} = \frac{C_{2}H_{5}\cdot O_{2}C\cdot C: C(CH_{3})}{HC:C(C_{6}H_{5})}N\cdot C_{6}H_{4}\cdot N:N\cdot C_{6}H_{5}$. B. Aus 4-Amino-azobenzol und α -Phenacyl-acetessigsäure-äthylester in Eisessig (Paal, Schneider, B. 19, 3162). — Tiefrote Krystalle (aus Alkohol). F: 123°. Schwer löslich in Alkohol, Äther und Eisessig. leicht in Benzol und Ligroin.

- 3. 2 Methyl 5 phenyl pyrrol carbonsäure (4) $C_{12}H_{11}O_{2}N = HO_{2}C \cdot C$ CH CeH₅ · $C \cdot NH \cdot C \cdot CH_{2}$ B. Durch Verseifung des Äthylesters (s. u.) mit wäßrig-alkoholischer Kalilauge (Borsche, Fels, B. 39, 3885). Rötliche Flocken. F: 145°. Geht bei Einw. von warmem Wasser in 2-Methyl-5-phenyl-pyrrol über.
- Äthylester $C_{14}H_{15}O_{8}N=\frac{C_{2}H_{5}\cdot O_{2}C\cdot C}{C_{4}H_{5}\cdot C\cdot NH\cdot C\cdot CH_{3}}$. B. Neben α -Oxo- δ -imino- α -phenyl-pentan- β -carbonsäure-äthylester (Bd. X, S. 820) aus Acetonyl-benzoyl-essigsäureäthylester und Ammoniak in absol. Äther (Borsche, Fels, B. 39, 3884). Aus α -Oxo- δ -imino- α -phenyl-pentan- β -carbonsäure-äthylester beim Aufbewahren im Exsiccator oder bei kurzem Erwärmen mit verd. Schwefelsäure (B., F.). Blätter (aus verd. Methanol), Nadeln (aus Benzol + Ligroin). F: 81°. Gibt beim Kochen mit 2°/oiger Kalilauge und etwas Alkohol 2-Methyl-5-phenyl-pyrrol-carbonsäure-(4), beim Kochen mit $10^{\circ}/_{\circ}$ iger Kalilauge 2-Methyl-5-phenyl-pyrrol.
- 2 Methyl 1.5 diphenyl pyrrol carbonsäure (4) $C_{18}H_{18}O_{2}N = HO_{2}C \cdot C$ CH $C_{6}H_{5} \cdot C \cdot N(C_{6}H_{5}) \cdot C \cdot CH_{2}$ B. Durch Verseifung des Äthylesters (s. u.) mit $2^{0}/_{0}$ iger alkoholischer Kalilauge (Borsche, Fels, B. 39, 1928). Blättchen (aus Alkohol). F: 267° (Zers.). Gibt beim Erhitzen auf den Schmelzpunkt 2-Methyl-1.5-diphenyl-pyrrol.

Äthylester $C_{20}H_{19}O_2N=\frac{C_2H_5\cdot O_2C\cdot C}{C_6H_5\cdot C\cdot N(C_6H_5)\cdot C\cdot CH_2}$. B. Aus Acetonyl-benzoylessigsäureäthylester und Anilin in siedendem Eisessig (Borsche, Fels, B. 39, 1928). — Nadeln (aus Methanol). F: 133,5°.

- 4. β-[Chinolyl-(2)]-propionsāure, Chinaldylessig-sāure C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Durch Reduktion N. CH₂·CH₂·CO₂H vor β-[Chinolyl-(2)]-acrylsāure mit Zinn und konz. Salzsāure (EIN-HORN, SHERMAN, A. 287, 29), mit Natriumamalgam und verd. Natronlauge (EI., SH.) oder mit Jodwasserstoffsāure (D: 1,96) und rotem Phosphor in siedendem Eisessig (Koenigs, B. 38, 220). Blätter (aus Benzol). F: 122—123° (EI., SH.). Leicht löslich in Alkohol, Ather, Benzol, Chloroform und Aceton, ulöslich in Ligroin und Wasser (EI., SH.). Ca(C₁₂H₁₀O₂N)₂. Nadeln; fast unlöslich in allen Lösungsmitteln (EI., SH.). 2C₁₂H₁₀O₂N+2HCl+PtCl₄. Braunrote Blättehen (aus verd. Salzsāure). F: 197° (Zers.) (EI., SH.).
- Amid $C_{12}H_{12}ON_2 = NC_0H_6 \cdot CH_2 \cdot CH_2 \cdot CO \cdot NH_2$. Nadeln (aus Benzol). F: 149—150° (Einhorn, Sherman, A. 287, 31). Unzersetzt destillierbar. Leicht löslich in heißem Wasser, Alkohol und Benzol, unlöslich in Petroläther.
- β-Brom-β-[chinolyl-(2)]-propionsäure $C_{12}H_{10}O_2NBr = NC_2H_6 \cdot CHBr \cdot CH_2 \cdot CO_2H$. B. Das Hydrobromid entsteht bei der Einw. von Bromwasserstoff-Eisessig auf β-[Chinolyl-(2)]-acrylsäure allmählich bei gewöhnlicher Temperatur, rascher beim Erhitzen im Rohr auf 100° (ΕΙΝΗΟΚΝ, LEHNKERING, A. 246, 167). Beim Zufügen von Soda-Lösung zu einer kalten wäßrigen Suspension des Hydrobromids entsteht das Natriumsalz der β-Oxy-β-[chinolyl-(2)]-propionsäure, das beim Aufbewahren oder Erwärmen der Lösung in das entsprechende Lacton übergeht. Beim Eintragen des Hydrobromids in siedende konzentrierte Kaliumcarbonat-Lösung erhält man 2-Vinyl-chinolin. Das Hydrobromid liefert beim Behandeln mit überschüssiger Alkalilauge β-[Chinolyl-(2)]-acrylsäure, beim Behandeln mit überschüssigem Ammoniak bei gewöhnlicher Temperatur β-Oxy-β-[chinolyl-(2)]-propionsäureamid. $C_{12}H_{10}O_2NBr + HBr$. Gelbliche Krystalle (aus Bromwasserstoff-Eisessig). Schmilzt beim Erhitzen unter Zersetzung.

- 6. 3-Äthyl-chinolin-carbonsäure-(2), 3-Äthyl-chinaldin-säure C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Durch Oxydation von 3-Äthyl-2-propyl-chinolin mit Chromsäure in verd. Schwefelsäure (Kahn, B. 18, 3368). Nadeln mit ¹/₂H₂O (aus Wasser). F: 148° (Zers.). Schwer löslich in Äther, leichter in Wasser. Gibt beim Erhitzen über den Schmelzpunkt 3-Äthyl-chinolin. Cu(C₁₂H₁₀O₂N)₂. Hellblaues, mikrokrystallinisches Pulver. Chloroplatinat. Nadeln (aus Salzsäure). Pikrat. Gelbe Nadeln. F: 153°. Schwer löslich in Wasser und kaltem Alkohol.
- 7. 2-Åthyl-chinolin-carbonsäure-(4), 2-Åthyl-cinchonin-säure C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Aus Anilin, Propionaldehyd und Brenztraubensäure in siedendem absolutem Alkohol (Doebner, A. 242, 270). Nadeln oder Blättchen mit 2H₂O (aus Wasser oder Alkohol). F: 173°. Schwer löslich in kaltem Wasser, leicht in Alkohol und Äther und in heißem Wasser. Gibt bei der Destillation mit Natronkalk 2-Äthyl-chinolin. AgC₁₂H₁₀O₂N. Schwer löslich. C₁₂H₁₁O₂N + HCl. Krystalle. Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther. 2C₁₂H₁₁O₂N + 2HCl + PtCl₄ + H₂O. Orangegelbe Nadeln. Leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther.
- 8. 3-Āthyl-chinolin-carbonsāure-(4), 3-Āthyl-cinchonin-sāure C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Beim Erwärmen einer Lösung von Isatin in 40—50°/oiger Kalilauge mit Butyraldoxim (MULERT, B. 39, 1904). Krystalle mit ¹/₂ H₂O (aus Wasser). F: 222°. Ziemlich leicht löslich in heißem Wasser und Alkohol, schwer in Chloroform, Aceton und kaltem Wasser, unlöslich in Ligroin. AgC₁₂H₁₀O₂N + H₂O. Nadeln (aus Wasser). Leicht löslich in Säuren und in Ammoniak. 2C₁₂H₁₁O₂N + 2HCl + PtCl₄ + 3H₂O. Krystalle (aus Salzsäure).

Methylester $C_{13}H_{13}O_2N = NC_9H_5(C_2H_5) \cdot CO_2 \cdot CH_3$. B. Aus dem salzsauren Chlorid (s. u.) und siedendem Methanol (MULERT, B. 39, 1906). — Prismen (aus Äther). F: 37—38°. Leicht löslich in organischen Lösungsmitteln.

Chlorid $C_{12}H_{10}ONCl = NC_0H_5(C_2H_5)\cdot COCl$. B. Das Hydrochlorid entsteht bei der Einw. von Thionylchlorid auf 3-Äthyl-cinchoninsäure (MULERT, B. 39, 1906). — $C_{12}H_{10}ONCl + HCl$. Nadeln (aus Chloroform + Ligroin). F: 174—175°.

Amid $C_{12}H_{12}ON_2 = NC_9H_5(C_2H_5)\cdot CO\cdot NH_2$. B. Durch Einw. von Ammoniak-Gas auf das in Chloroform gelöste salzsaure Chlorid (MULERT, B. 39, 1906). — Nadeln (aus Wasser). F: 220—221°. Leicht löslich in heißem Wasser, Benzol, Aceton und Alkohol, unlöslich in Ligroin.

Anhydrid des 3-Äthyl-chinolin-carbonsäure-(4)-hydroxymethylats, 3-Äthyl-cinchoninsäure-methylbetain $C_{13}H_{13}O_3N=CH_3\cdot NC_9H_5(C_2H_5)\cdot CO\cdot O$. B. Durch Einw. von Methyljodid auf das Silbersalz der 3-Äthyl-cinchoninsäure in Methanol auf dem Wasserbad (MULERT, B. 39, 1905). — Nadeln (aus Alkohol + Äther). F: 261°. Leicht löslich in Wasser und Alkohol, unlöslich in Äther, Chloroform und Benzol. Schmeckt bitter. — Gibt mit Eisenchlorid in wäßr. Lösung beim Erwärmen eine rote Färbung.

- 9. 2.3 Dimethyl chinolin carbonsäure (4), 2.3 Dimethyl-cinchoninsäure C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Aus Methyläthylketon und einer Lösung von Isatin in verd. Natronlauge auf dem Wasserbad (Pettzinger, J. pr. [2] 56, 314). Blättchen (aus Wasser). Schmilzt unter Zersetzung oberhalb 310°. Gibt bei der Destillation mit Kalk 2.3-Dimethyl-chinolin.
- 10. 2.3 Dimethyl-chinolin-carbonsaure-(6) $C_{18}H_{11}O_2N$, HO_2C . CH₃ s. nebenstehende Formel. B. Durch Oxydation von 2.3.6-Trimethyl-chinolin mit Chromsaure (v. Miller, B. 23, 2269). Bräunliche Nadeln (aus absol. Alkohol). F: ca. 270° (Zers.). Schwer löslich in Wasser und Alkohol. Gibt beim Erhitzen mit Natronkalk 2.3-Dimethyl-chinolin. $Cu(C_{12}H_{10}O_2N)_2 + H_2O$.

11. 4.6 - Dimethyl-chinolin-carbonsäure-(2), 4.6-Dimethyl-chinaldinsäure $C_{12}H_{11}O_2N$, s. nebenstehende Formel. B. Durch Einw. von alkoh. Kalilauge auf α' -p-Tolylimino- α -p-toluidino- α -methyl-glutarsäure-diäthylester (Bd. XII, S. 980) (Simon, C. r. 147, 127). — Zersetzt sich bei 265°.

12. 2.6 - Dimethyl - chinolin - carbonsäure - (4), 2.6 - Di - methyl-cinchoninsäure C₁₂H₁₁O₂N, s. nebenstehende Formel. B.
Bei der Einw. von p-Toluidin auf Brenztraubensäure in Äther (SIMON, A. ch. [7] 9, 474). Aus 5-Methyl-isatin und Aceton in alkal. Lösung (Pfitzinger, J. pr. [2] 38, 584; 56, 318). — Blättchen (aus Wasser). F: 261° (Zers.) (Pf.), 265° (Zers.) (S.). Sehr schwer löslich in kaltem Alkohol (S., C. r. 146, 1402). — Liefert beim Erhitzen auf den Schmelzpunkt (S.) oder bei der Destillation mit Kalk (Pf.) 2.6-Dimethylchinolin. — AgC₁₂H₁₀O₂N (bei 100—110°). Sehr schwer löslich in Wasser (Pf.). — 2C₁₂H₁₁O₂N + 2HCl + PtCl₄ + 2H₂O. Nadeln (aus Alkohol). Gibt 1½-H₂O bei 100—110°, den Rest des Krystallwassers erst bei 125° ab. F: 243—244° (Zers.) (Pf.).

Äthylester $C_{14}H_{15}O_2N = NC_9H_4(CH_3)_2 \cdot CO_2 \cdot C_2H_5$. F: 74° (Simon, C. r. 146, 1402).

- 13. 2.8-Dimethyl-chinolin-carbonsäure-(4), 2.8-Dimethyl-cinchoninsäure C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Aus o-Toluidin und Brenztraubensäure in Äther, neben anderen Verbindungen (SIMON, A. ch. [7] 9, 478). F: 252°.
- 14. 6.8 Dimethyl chinolin carbonsäure (2), 6.8 Dimethyl-chinaldinsäure C₁₂H₁₁O₂N, s. nebenstehende Formel. B.

 Durch Oxydation von o.p-Dimethyl-chinophthalon (Bd. XXI, S. 548)
 mit Chromsäure in heißem Wasser (Panajorow, B. 28, 1513). CH₃
 Gelbliche Nadeln (aus Alkohol). Schmilzt unter Zersetzung; sehr schwer löslich in Wasser und in kaltem Alkohol.
- 15. 2.8 Dimethyl chinolin carbonsäure (6) C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Durch Oxydation von 2.6.8 Trimethylchinolin mit Chromsäure und verd. Schwefelsäure auf dem Wasserbad (Panajotow, B. 20, 38). Nadeln (aus Alkohol). Schmilzt beim Erhitzen unter Zersetzung. Sublimiert teilweise unzersetzt in langen Nadeln. Schwer löslich in Wasser und kaltem Alkohol. Gibt bei der Destillation mit Kalk 2.8 Dimethyl-chinolin. AgC₁₂H₁₀O₂N + H₂O. Krystallinisch. Ba(C₁₂H₁₀O₂N)₂. Nadeln. Leicht löslich in Wasser. 2C₁₂H₁₁O₂N + 2HCl + PtCl₄ + 4H₂O. Orangegelbe Nadeln. Pikrat C₁₂H₁₁O₂N + C₆H₃O₇N₃ + H₂O. Gelbe Nadeln. F: 221°. Schwer löslich in Wasser, leicht in Alkohol.
- 4. Carbonsäuren $C_{13}H_{13}O_2N$.
 - 1. β [5 Phenyl pyrryl (2)] propionsäure $C_{13}H_{13}O_2N = HC$

C₈H₅·C·NH·C·CH₂·CH₂·CO₂H.

B. Aus δ-Phenacyl-lävulinsäure und Ammoniumacetat in siedendem Eisessig (Kehrer, B. 34, 1266; 35, 2010). — Blättchen (aus Chloroform oder Äther). F: 140—141°. In der Kälte sehr leicht löslich in Äther, Aceton und Essigester, leicht in Alkohol, fast unlöslich in Benzol, Schwefelkohlenstoff und Wasser. — Gibt mit konz. Schwefelsäure eine rote Färbung. — AgC₁₃H₁₂O₂N. Gelblich. Schmilzt unterhalb 100°. — Ca(C₁₃H₁₂O₂N)₂. Blättchen. Sehr schwer löslich in heißem Wasser.

- 2. 2-Propyl-chinolin-carbonsäure-(4), 2-Propyl-cin-choninsäure C₁₃H₁₃O₂N, s. nebenstehende Formel. B. Aus Anilin, Brenztraubensäure und Butyraldehyd (Tonella, R. 16, 361). Krystalle mit 2 H₂O. F: 152,5°. Liefert bei der Destillation mit Natronkalk 2-Propyl-chinolin.
- 3. 3-Isopropyl-chinolin-carbonsäure-(2), 3-Isopropyl-chinolinsäure C₁₃H₁₃O₂N, s. nebenstehende Formel. B. Bei der Oxydation von 3-Isopropyl-2-isobutyl-chinolin mit Chromsäure in ca. 30% iger Schwefelsäure (Spady, B. 18, 3379). Blättchen (aus verd. Alkohol). F: 188—189%. Fast unlöslich in heißem Wasser, schwer löslich in Äther, leicht in heißem Alkohol. Ziemlich leicht löslich in verd. Salzsäure und Salpetersäure, fast unlöslich in kalter verdünnter Schwefelsäure; ziemlich leicht löslich in verd. Kalilauge, leicht in heißer Soda-Lösung. Gibt beim Erhitzen über den Schmelzpunkt 3-Isopropyl-chinolin. Bei der Destillation mit

Ätzkalk erhält man Chinolin und ein bei 192° schmelzendes Dichinolyl-(3.7′ oder 4.7′). — $AgC_{13}H_{12}O_2N+C_{13}H_{13}O_2N+HNO_3$. Mikroskopische Nadeln. Schwer löslich in verd. Salpetersäure. Wird durch Wasser zersetzt. — $2C_{13}H_{13}O_2N+2HCl+PtCl_4$. Orangefarbene Prismen. Schwer löslich in Salzsäure. Wird durch Wasser zersetzt.

- 4. 2-Isopropyl-chinolin-carbonsäure-(4), 2-Isopropyl-cinchoninsäure $C_{13}H_{13}O_2N$, s. nebenstehende Formel. B. Aus Anilin, Brenztraubensäure und Isobutyraldehyd in siedendem Alkohol (Doebner, A. 242, 276). Hellgelbe Nadeln oder Prismen mit $1^1/_2$ H_2O (aus Wasser oder Alkohol), monokline (?) Krystalle (aus Äther) (D.). F: 155° (Koenics, B. 32, 227). Schwer löslich in kaltem Wasser (D.). Liefert bei der Destillation mit Natronkalk 2-Isopropylchinolin (D.). $AgC_{13}H_{12}O_2N$ (D.). $C_{13}H_{13}O_2N + HCl$. Blättchen; sehr leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Ather (D.). $2C_{13}H_{13}O_2N + HCl + AuCl_3$. Citronengelbe Nadeln (D.). $4C_{13}H_{13}O_2N + 4HCl + PtCl_4 + H_2O$. Fleischfarbene Nadeln; schwer löslich in kaltem Wasser (D.).
- 5. 6 Methyl 2 äthyl chinolin carbonsäure (3) $C_{13}H_{13}O_2N$, s. nebenstehende Formel. B. Bei der Oxydation von 3.6-Dimethyl-2-āthyl-chinolin mit Chromsäure in heißer verdünnter Schwefelsäure (HARZ, B. 18, 3393). Aus 6-Methyl-2-āthyl-chinolin-aldehyd-(3) durch Oxydation mit Silberoxyd und Wasser (v. Miller, B. 23, 2267). Trikline Krystalle mit 1 H_2O (aus Wasser); F: 142—143° (unter schwacher Zersetzung) (H.). Liefert beim Erhitzen über den Schmelzpunkt 6-Methyl-2-āthyl-chinolin (H.). $NaC_{13}H_{12}O_2N + 3H_2O$. Krystalle. Leicht löslich in Wasser (H.). $Cu(C_{13}H_{12}O_2N)_2$. Blauer, krystallinischer Niederschlag. Unlöslich in Wasser (H.). $AgC_{13}H_{12}O_2N + C_{13}H_{13}O_2N$. Gallerte; geht beim Erhitzen in ein körniges, sehr lichtbeständiges Pulver über (H.). $Ba(C_{13}H_{12}O_2N)_2 + \frac{1}{2}H_2O$. Gelbliche Nadeln (H.).

Äthylester $C_{15}H_{17}O_2N=NC_9H_4(CH_3)(C_2H_5)\cdot CO_2\cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in eine Lösung der Säure in absol. Alkohol (Harz, B. 18, 3394). — Wasseroder alkoholhaltige Nadeln. Verwittert rasch an der Luft. Schmilzt nach dem Trocknen über Schwefelsäure unter Zersetzung bei 170—190°. Leicht löslich in Wasser und Alkohol, unlöslich in Äther. — Wird durch Wasser schon bei gewöhnlicher Temperatur rasch verseift.

- 6. 3-Methyl-2-äthyl-chinolin-carbonsäure-(8) C₁₃H₁₃O₂N, s. nebenstehende Formel. B. Aus Anthranilsäure und überschüssigem Propionaldehyd, anfangs in der Kälte, dann bei 100° (NIEMENTOWSKI, ORZECHOWSKI, B. 28, 2814). Durch Oxydation von 3.8-Dimethyl-2-äthyl-HO₂C chinolin mit Chromsäure in starker Schwefelsäure (v. MILLER, B. 23, 2268). Gelbliche Nadeln oder Blättchen (aus Eisessig), Nadeln (aus Wasser). F: 221° (N., O.), 215—216° (v. M.). Löslich in Eisessig und Äthylacetat, schwer löslich in Alkohol, Aceton, Benzol und siedendem Wasser, fast unlöslich in Äther (N., O.). Gibt bei der Destillation 3-Methyl-2-äthyl-chinolin (v. M.; N., O.). Ba(C₁₃H₁₂O₂N)₂ + ½ H₂O. Hellgelbe Blättchen; ziemlich leicht löslich in Wasser (v. M.).
- 7. 6-Methyl-2-äthyl-chinolin-carbonsäure-(4), 6-Methyl2-äthyl-cinchoninsäure C₁₈H₁₃O₂N, s. nebenstehende Formel. B. CH₃

 Aus p-Toluidin, Brenztraubensäure und Propionaldehyd in Alkohol
 (v. Miller, B. 23, 2266). Blättchen (aus Wasser oder Alkohol).

 F: 244—248° (Zers.). Schwer löslich in kaltem Wasser und Alkohol. Gibt bei der trocknen Destillation 6-Methyl-2-äthyl-chinolin. AgC₁₃H₁₂O₂N. Gallertartiger Niederschlag. Ba(C₁₃H₁₂O₂N)₂. Gelbliche Blättchen (aus Wasser).
- 8. 1.2.3.4-Tetrahydro-carbazol-carbonsäure-(3)
 C₁₃H₁₃O₂N, s. nebenstehende Formel. B. Durch Umsetzen
 von Cyclohexanon-(4)-carbonsäure-(1) mit Phenylhydrazin
 in verd. Essigsäure und Erwärmen des entstandenen Phenylhydrazons mit konz. Salzsäure
 bis zum beginnenden Sieden (Perkin, Soc. 85, 428). Krystalle (aus Benzol). F: ca. 195°.
 Leicht löslich in Alkohol, schwer in Benzol, Chloroform und Petroläther.
- 9. 1.2.3.4-Tetrahydro-carbazol-carbonsäure-(2 oder 4) C₁₃H₁₃O₂N, Formel I oder II. B. Aus dem Phenylhydrazon der Cyclohexanon-(3)-carbonsäure-(1) (Bd. XV, S. 348)

beim Erwärmen mit Mineralsäuren (BAEYER, TUTEIN, B. 22, 2185). — F: 230°; zersetzt sich bei höherer Temperatur.

5. Carbonsäuren $C_{14}H_{15}O_2N$.

- 1. 2-Isobutyl-chinolin-carbonsäure-(4), 2-Isobutyl-cinchoninsäure $C_{14}H_{15}O_2N$, s. nebenstehende Formel. B. Aus Anilin, Brenztraubensäure und Isovaleraldehyd in Alkohol bei mehrstündigem Erwärmen (Doebner, A. 242, 280). Blättchen mit 1½ H₂O (aus Wasser oder verd. Alkohol). F: 186°. Sehr leicht löslich in Alkohol und Äther, schwer in kaltem Wasser. Gibt beim Erhitzen mit Natronkalk 2-Isobutyl-chinolin. AgC₁₄H₁₄O₂N. Flockiger Niederschlag. $C_{14}H_{15}O_2N + HCl + H_2O$. Blättchen. $2C_{14}H_{15}O_2N + 2HCl + PtCl_4$. Gelbe, körnige Krystalle.
- 2. 3.6 Dimethyl 2 äthyl chinolin carbonsäure (8) CH₃ C₁₄H₁₅O₂N, s. nebenstehende Formel. B. Bei der Oxydation von 3.6.8-Trimethyl-2-äthyl-chinolin mit Chromsäure in starker Schwefelsäure (v. MILLER, B. 23, 2273). Nadeln (aus absol. Alkohol). F: 182—183°. HO₂C Leicht löslich in Wasser und Alkohol, schwer in Chloroform und Benzol, unlöslich in Äther. Bei der trocknen Destillation entsteht 3.6-Dimethyl-2-äthyl-chinolin.
- 6. 3 n A m y l 2 n h e x y l chinolin carbonsäure (8)

 C₂₁H₂₉O₂N, s. nebenstehende Formel. B. Aus Önanthylidenanthranilsäure beim Erhitzen mit konz. Salzsäure oder konz. Alkalilaugen,
 beim Erhitzen mit Önanthol auf dem Wasserbad oder beim Kochen

 mit Acetanhydrid (Niementowski, Orzechowski, B. 28, 2818, 2819, 2820). Prismen
 (aus Alkohol oder Äther). Rhombisch (Fock, B. 28, 2818; vgl. Groth, Ch. Kr. 5, 769).

 F: 69°. Leicht löslich in Alkohol, Äther und Benzol, unlöslich in kaltem Wasser. Gibt
 beim Erhitzen für sich oder bei der Destillation mit Zinkstaub 3-n-Amyl-2-n-hexyl-chinolin.

 Hydrochlorid. Nadeln. F: 200°.

8. Monocarbonsäuren $C_n H_{2n-15} O_2 N$.

1. Carbonsäuren $C_{12}H_9O_2N$.

- 1. 2-β-Pyridyl-benzoesäure C₁₂H₅O₂N, s. nebenstehende Formel.

 B. Beim Erhitzen von 3-[2-Carboxy-phenyl]-pyridin-carbonsäure-(2) (S.174)
 auf 180—185° (SKRAUP, COBENZL, M. 4, 450). Krystallfäden (aus Alkohol),
 Nadeln (aus Wasser). F: 185° (SK., C.). Unzersetzt destillierbar (SK., C.). Schwer löslich in kaltem Wasser, leichter in Alkohol (SK., C.). Elektrische Leitfähigkeit in wäßr. Lösung bei 25°: Ostwald, Ph. Ch. 3, 397. Gibt bei der Oxydation mit Chromsäure in verd. Schwefelsäure Nicotinsäure (SK., C.). Beim Erhitzen mit überschüssigem Kalk entsteht 3-Phenyl-pyridin (SK., C.). Gibt mit Eisenchlorid in wäßr. Lösung eine bräunliche Färbung (SK., C.). Cu(C₁₂H₈O₂N)₂+aq. Rötlichviolette Krystalle. Unlöslich in Wasser (SK., C.). Ca(C₁₄H₈O₂N)₂+2H₂O. Nadeln (aus Wasser). Leicht löslich in Wasser (SK., C.).
- 2. 6-Phenyl-pyridin-carbonsäure-(2), 6-Phenyl-picolin-säure C₁₂H₅O₂N, s. nebenstehende Formel. B. Durch Oxydation von 2-Methyl-6-phenyl-pyridin mit der 3 Atomen Sauerstoff entsprechenden Menge Kaliumpermangant (Scholtz, B. 28, 1728). Nadeln (aus Wasser). F: 109°. Sehr leicht löslich in Alkohol sowie in Salzsäure. Liefert beim Erhitzen auf 190—200° 2-Phenyl-pyridin. Gibt mit Ferrosulfat in Wasser eine rote Färbung. AgC₁₂H₅O₂N. Nadeln (aus Wasser).
- 3. β-[Chinolyl-(2)]-acrylsäure, Chinaldylidenessig-säure C₁₂H₉O₂N, s. nebenstehende Formel. B. Beim Kochen von 2-[γ.γ.γ-Trichlor-β-oxy-propyl]-chinolin (Bd. XXI, S.118) mit Kalium-carbonat-Lösung (v. Miller, Spady, B. 18, 3403; 19, 132; Einhorn, B. 19, 908) oder mit alkoh. Kalilauge (EI., Lehnkering, A. 246, 164; EI., Sherman, A. 287, 27). Blättchen (aus Alkohol). Zersetzt sich bei 190—195° (v. M., Sp.). Gibt bei der Oxydation mit Kalium-permanganat in sodaalkalischer Lösung bei 0° je nach den Bedingungen Chinolin-aldehyd-(2) (Bd. XXI, S. 322) (v. M., Sp.) oder α.β-Dioxy-β-[chinolyl-(2)]-propionsäure (Syst. No. 3352) (EI., Sh., A. 287, 35). Liefert bei der Reduktion mit Zinnchlorür und Salzsäure, mit Natriumamalgam und verd. Natronlauge oder mit Jodwasserstoffsäure und Phosphor in siedendem Eisessig β-[Chinolyl-(2)]-propionsäure (EI., Sh., A. 287, 29; Koenics, B. 33, 220); bei energischer Reduktion mit Natrium und Alkohol, mit Natriumamalgam und Natronlauge

oder mit Zinn und Salzsäure erhält man β -[1.2.3.4-Tetrahydro-chinolyl-(2)]-propionsäure (S. 60) bezw. ihr Lactam (Bd. XXI, S. 319) (K.; vgl. Ei., Sh.). Gibt mit Bromwasserstoff-Eisessig das Hydrobromid der β -Brom- β -[chinolyl-(2)]-propionsäure (S. 92) (Ei., L., A. 246, 167). — AgC₁₂H₆O₂N. Farbloser Niederschlag, der sich am Licht schwärzt (Ei., Sh., A. 287, 28). — Ba(C₁₂H₆O₂N)₂+2H₂O. Nadeln (aus Wasser) (Ei., Sh., A. 287, 27).

Äthylester $C_{14}H_{13}O_2N=NC_9H_4\cdot CH:CH\cdot CO_2\cdot C_2H_5$. Nadeln (aus Ligroin). F: 73° (EINHORN, SHERMAN, A. 287, 28).

Amid $C_{18}H_{10}ON_2 = NC_9H_6 \cdot CH \cdot CO \cdot NH_2$. Nadeln (aus Wasser). F: 175—176° (Einhorn, Sherman, A. 287, 28). Leicht löslich in warmem Alkohol und Benzol.

4. β-[Chinolyl-(4)]-acrylsäure, Lepidylidenessigsäure
C₁₂H₂O₂N, s. nebenstehende Formel. B. Aus 4-[γ.γ.γ.-Trichlor-β-oxy-propyl]-chinolin (Bd. XXI, S. 118) durch Einw. von siedender alkoholischer Kalilauge (Koenigs, Müller, B. 37, 1338). — Nadeln (aus Alkohol + Essigsäure). F: 250—255° (Zers.). Schwer löslich in Alkohol, fast unlöslich in Wasser. — Gibt bei der Reduktion mit Jodwasserstoffsäure und Phosphor in Eisessig β-[Chinolyl-(4)]-propionsäure. — Metallsalze: K., M. — Hydrochlorid. Nadeln. — 2C₁₂H₂O₂N + 2HCl + PtCl₄ + 1¹/₂H₂O. Gelbe Nadeln (aus Wasser).

2. Carbonsäuren $C_{18}H_{11}O_2N$.

- 1. β-[4-Methyl-chinolyl-(2)]-acrylsäure, Lepidin[β-acrylsäure]-(2) C₁₃H₁₁O₂N, s. nebenstehende Formel. B. Aus
 4-Methyl-2-[γ.γ.γ-trichlor-α-propenyl]-chinolin 1) durch Erwärmen mit
 alkoh. Kalilauge (Koenigs, Mengel., B. 37, 1331; vgl. a. Spallino,
 Cucchiaroni, G. 42 I [1912], 520). Gelbe Nadeln (aus Alkohol). F: 214° (Zers.). Schwer
 löslich in Wasser (K., M.). Gibt bei der Oxydation mit Kaliumpermanganat in Soda-Lösung
 das Oxalat der 4-Methyl-chinolin-carbonsäure-(2) (K., M.). 2C₁₃H₁₁O₂N+2HCl+PtCl₄.
 Rotgelbe Nadeln (aus verd. Salzsäure). Schmilzt oberhalb 300° (K., M.).
- 2. β-[2-Methyl-chinolyl-(5)]-acrylsäure, Chinaldin-HO₂C·CH:CH
 [β-acrylsäure]-(5) C₁₈H₁₁O₂N, s. nebenstehende Formel. Zur
 Konstitution vgl. Deoker, Remfey, B. 38, 2775. B. Durch Erhitzen von 3-Amino-zimtsäure mit Paraldehyd und konz. Salzsäure
 auf 150° (Eckhardt, B. 22, 272). Monokline (Haushofer) Prismen (aus Alkohol). F: 246°
 (Zers.); sehr schwer löslich in Äther, Chloroform und Ligroin, etwas leichter in Alkohol, Aceton
 und Benzol (E.). Gibt bei der Oxydation mit Kaliumpermanganat in Soda-Lösung 2-Methylchinolin-aldehyd-(5) (E.). Wird von Chromschwefelsäure nur schwer angegriffen (E.). Liefert
 beim Erwärmen mit überschüssigem Chloral Chloralchinaldin-[β-acrylsäure]-(5) (Syst. No.
 3344) und eine Verbindung C₂₈H₃₂O₅N₂Cl₂ (s. u.) (E.). Fällungsreaktionen: E., B. 22, 276.
 Salze: E., B. 22, 274. AgC₁₃H₁₀O₂N + 2H₂O. Krystallinisch. Calciumsalz. Nadeln (aus Wasser). C₁₃H₁₁O₂N + HCl + H₂O. Rhombische Nadeln. Chromat. Orangerote Nadeln. C₁₃H₁₁O₂N + HNO₃ + H₂O. Nadeln. —
 2C₁₃H₁₁O₂N + 2HCl + PtCl₄ + 2H₂O. Gelbe Blättchen. Pikrat C₁₃H₁₁O₂N + C₆H₃O₇N₃
 + H₂O. Nadeln (aus Alkohol). F: 150—152°. Löslich in Alkohol, Aceton und heißem Wasser,
 sehr schwer löslich in Äther.

Verbindung $C_{28}H_{23}O_5N_5Cl_2$. B. Neben Chloralchinaldin-[β -acrylsäure]-(5) beim Erwärmen von Chinaldin-[β -acrylsäure]-(5) mit überschüssigem Chloral auf dem Wasserbad (ECKHARDT, B. 22, 283). — Nadeln (aus Alkohol). F: 128°. Die Lösung in Salpetersäure fluoresciert blau. — $C_{28}H_{23}O_5N_2Cl_3+2$ HCl. Krystalle (aus Alkohol). F: 217°.

3. β-[2-Methyl-chinolyl-(6)]-acrylsäure, Chinal-din-[β-acrylsäure]-(6) C₁₃H₁₁O₂N, s. nebenstehende Formel.

B. Durch Erhitzen von 4-Amino-zimtsäure mit Paraldehyd und konz. Salzsäure auf dem Wasserbad (v. Miller, Kinkelin, B. 18, 3235). — Nadeln (aus Alkohol). Zersetzt sich bei 240—250°. Sehr schwer löslich in Wasser, schwer in kaltem Alkohol. Leicht löslich in verd. Alkalien, schwer in verd. Säuren. — Gibt bei der Oxydation mit Kaliumpermanganat in sodaalkalischer Lösung 2-Methyl-chinolin-aldehyd-(6). — C₁₃H₁₁O₂N + HCl + H₂O. Prismen (aus verd. Salzsäure). Leicht löslich in Wasser, sehr schwer in Salzsäure. — C₁₂H₁₁O₂N + HNO₃ + H₂O. Prismen (aus verd. Salpetersäure). Sehr schwer löslich in verd. Salpetersäure. — 2C₁₃H₁₁O₂N + 2HCl + PtCl₄ + 2H₂O. Rotgelbe Prismen. Gibt das Krystallwasser erst bei 200° vollständig ab.

Zur Konstitution vgl. 4-Methyl-2-[γ.γ.γ-trichlor-β-oxy-propyl]-chinolin, Bd. XXI, S. 121.
 BEILSTEINs Handbuch. 4. Aufl. XXII.

Essigsäure.

4. β-[2-Methyl-chinolyl-(7)]-acrylsäure, Chinaldin-[β-acrylsäure]-(7) C₁₃H₁₁O₂N, s. nebenstehende Formel.

B. Wurde einmal als Nebenprodukt bei der Darstellung von Chinaldin-[β-acrylsäure]-(5) (8. 97) aus 3-Amino-zimtsäure, Paraldehyd und konz. Salzsäure bei 150° erhalten (ЕСКНАКОТ, B. 22, 273). — Krystalle mit ½ C₂H₆O (aus Alkohol). F: 204°.

3. Carbonsäuren $C_{14}H_{13}O_2N$.

- 1. 2-[β-(α-Pyridyl)-āthyl]-benzoesäure, Dihydro-α-stilbazol-carbonsäure-(2') C₁₄H₁₃O₂N, s. nebenstehende
 Formel. B. Bei der Reduktion von α-Pyrophthalon (Bd. XXI,
 S. 531) mit Zinkstaub und verd. Natronlauge auf dem Wasserbad (GAEBELÉ, B. 36, 3916).

 Die freie Säure wurde nicht isoliert. Beim Behandeln der wäßr. Lösung des Hydrochlorids mit Alkalicarbonat entsteht 2-α-Pyridyl-hydrindon-(1) (Bd. XXI, S. 341).

 C₁₄H₁₃O₂N + HCl. Gelbe Krystalle (aus verd. Salzsäure). F: 158°.
- 2. 4-β-Phenāthyl-pyridin-carbonsāure-(3), 4-β-Phenāthyl-nicotinsāure, I.
 Dihydro-γ-stilbazol-carbonsāure-(3)
 C₁₄H₁₈O₂N, Formel I. B. Aus der Verbindung der
 Formel II (Syst. No. 4283) beim Erhitzen mit Jodwasserstoffsäure (Kp. 127°) und rotem
 Phosphor im Rohr auf 150° (Fels, B. 37, 2146). Blättchen. F: 156—157°. Unzersetzt destillierbar. Schwer löslich in Wasser. Unlöslich in Salzsäure (D: 1,10), löslich in verdünnterer Salzsäure. Gibt bei der Destillation mit Kalk oder beim Erhitzen mit Eisessig und Acetanhydrid im Rohr auf 230° 4-β-Phenāthyl-pyridin. AgC₁₄H₁₂O₂N. Krystallinisch. Pikrat. Gelbe Nadeln. F: 166—167°. Weitere Salze: F., B. 37, 2147.
- 3. 2.6 Dimethyl 4 phenyl pyridin carbonsäure (3), 2.6-Dimethyl-4-phenyl-nicotinsäure C₁₄H₁₃O₂N, s. nebenstehende Formel. B. Der Äthylester entsteht beim Erhitzen von 2.6-Dimethyl-4-phenyl-pyridin-dicarbonsäure-(3.5)-monoäthylester (S. 176) bis auf 300° (Hantzsch, B. 17, 2911; Höchster Farbw., D. R. P. 32280; Frdl. 1, 202) sowie (neben anderen Produkten) bei der trocknen Destillation von 2.6-Dimethyl-4-phenyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester (Guareschi, Grande, C. 1899 II, 440); man verseift den Äthylester durch Kochen mit alkoh. Kalilauge (Ha., B. 17, 2912). Prismen mit 2H₂O (aus Wasser) (Ha.). Wird bei 120—130° wasserfrei und schmilzt dann bei 189—190° (Ha.). Sehr leicht löslich in siedendem Wasser (Ha.). Cu(C₁₄H₁₂O₂N)₂. Violettes Pulver; unlöslich in Wasser (Ha.). 2C₁₄H₁₃O₂N + 2 HCl + PtCl₄ + H₂O. Orangerote Prismen; wird bei 110—115° unter Gelbfärbung wasserfrei (Ha.).

Äthylester $C_{16}H_{17}O_2N = NC_5H(CH_2)_2(C_6H_5) \cdot CO_2 \cdot C_2H_5$. B. s. im vorangehenden Artikel. — Dickflüssig. Kp: 316—320° (HANTZSCH, B. 17, 2912). Leicht löslich in verd. Säuren. — $2C_{16}H_{17}O_2N + 2HCl + PtCl_4$. Hellrote Krystallaggregate. F: 196° (Zers.).

Anhydrid des 2.6-Dimethyl-4-phenyl-pyridin-carbonsäure-(3)-hydroxy-methylats, 2.6-Dimethyl-4-phenyl-nicotinsäure-methylbetain $C_{15}H_{15}O_{2}N=CH_{3}$ · C_{1

2.6-Dimethyl-4-phenyl-pyridin-[carbonsäure-(3)-äthylester]-hydroxymethylat $C_{17}H_{31}O_3N = (HO)(CH_3)NC_5H(CH_3)_2(C_6H_5)\cdot CO_2\cdot C_2H_5$. — Jodid $C_{17}H_{20}O_2N\cdot I$. B. Aus dem Athylester und Methyljodid bei 100° (Hantzsch, B. 17, 2913). Nadeln (aus Alkohol). F: 205—206° (Zers.). Sehr schwer löslich in kaltem Wasser und Alkohol. Geht bei Einw. von heißer alkoholischer Kalilauge in 2.6-Dimethyl-4-phenyl-nicotinsäure-methylbetain (s. o.) über.

4. β-[6.8 - Dimethyl - chinolyl - (2)] - acrylsäure
C₁₄H₁₃O₃N, s. nebenstehende Formel. B. Beim Kochen von 6.8-Dimethyl-2-[γ.γ.γ-trichlor-β-oxy-propyl]-chinolin (Bd. XXI, S. 123)
mit Kaliumcarbonat-Lösung (Panajotow, B. 20, 42). — Gelbliche Nadeln (aus verd. Alkohol). Zersetzt sich bei 180° und geht in ein bei 210° schmelzendes Produkt über. — Gibt bei der Oxydation mit Kaliumpermanganat in sodaalkalischer Lösung 6.8-Dimethyl-chinolin-aldehyd-(2) (Bd. XXI, S. 326) (P., B. 23, 1471).

5. 1.2.3.4 - Tetrahydro - acridin - carbonsäure - (9)

C₁₄H₁₃O₂N, s. nebenstehende Formel. B. Durch Einw. von Cyclohexanon auf eine Lösung von Isatin in wäßrig-alkoholischer Kalilauge bei Wasserbad-Temperatur (Borsche, B. 41, 2207). — Blättchen (aus Hackohol). F: 284—286° (Zers.). 1 g löst sich in ca. 125 cm² siedendem Alkohol; schwer löslich in heißem Wasser. Löslich in warmen verdünnten Mineralsäuren und in wäßr. Ammoniak. — Gibt beim Erhitzen über den Schmelzpunkt 1.2.3.4-Tetrahydro-acridin, bei der Destillation über Bleioxyd-Bimsstein Acridin. — C₁₄H₁₃O₂N + HCl. Nadeln. F: 233°. Spaltet beim Aufbewahren oder beim Erhitzen Chlorwasserstoff ab.

9. Monocarbonsäuren $C_n H_{2n-17} O_2 N$.

1. Carbonsäuren $C_{13}H_9O_2N$.

1. 6.7 - Benzo - indol - carbonsäure - (2) (,, α-Naphth-indolcarbonsäure") C₁₃H₉O₂N, s. nebenstehende Formel. B. Man erhitzt Brenztraubensäureäthylester-α-naphthylhydrazon (Bd. XV, S. 567) mit Zinkchlorid auf 195° und kocht den erhaltenen Äthylester mit 10°/oiger alkoholischer Kalilauge (Schlieper, A. 239, 232, 233). — Nadeln. F: 202°. Sehr schwer löslich in heißem Wasser, schwer in Benzol und Ligroin, leicht in Alkohol, Äther und Eisessig. — Geht beim Erhitzen auf 210—220° in 6.7-Benzo-indol (Bd. XX, S. 432) über.

Äthylester $C_{16}H_{18}O_2N=C_{10}H_6 < \stackrel{CH}{NH} > C \cdot CO_2 \cdot C_2H_5$. B. s. bei 6.7-Benzo-indol-carbon-säure-(2). — Nadeln (aus Alkohol). F: 170° (SCHLIEPER, A. 239, 232). Schwer löslich in kaltem Alkohol, Äther und Ligroin, leicht in Benzol und Eisessig.

2. 4.5 - Benzo - indol - carbonsäure - (2) (,,β-Naphth-indolcarbonsäure") C₁₃H₉O₂N, s. nebenstehende Formel. B. In geringer Menge beim Erhitzen von 1 g Brenztraubensäureäthylester-β-naphthylhydrazon (Bd. XV, S. 574) mit 1—2 g Zinkchlorid auf 195° und Kochen des entstandenen Äthylesters mit alkoh. Kalilauge, neben 4.5-Benzo-indol (Schlieper, A. 236, 180). — Blättchen (aus Äther oder Essigsäure). Schmilzt bei 226° unter Entwicklung von Kohlendioxyd. Sehr schwer löslich in Wasser, schwer in Äther und kaltem Eisessig, viel leichter in Alkohol.

- 3. Carbazol carbonsdure (1) C₁₃H₉O₂N, s. nebenstehende Formel. Zur Konstitution vgl. Cassella & Co., D. R. P. 241899; C. 1912 I, 299; Frdl. 10, 260; Brisooe, Plant, Soc. 1928, 1990. B. Beim Erhitzen von Carbazol-Kalium (Bd. XX, S. 435) im Kohlendioxydstrom auf 270° (Clamician, Silber, G. 12, 272). Helblau fluorescierende Schuppen oder Prismen (aus Alkohol). F: 271—272°; sublimiert in Blättchen; sehr schwer löslich in siedendem Wasser, schwer in kaltem Alkohol, leicht in Äther; zerfällt bei raschem Erhitzen für sich oder leichter mit Kalk in Carbazol und Kohlendioxyd (C., S.). AgC₁₃H₈O₃N. Pulver. Schwer löslich in Wasser (C., S.). Ba(C₁₃H₈O₂N)₂ (bei 105°). Blättchen. Sehr schwer löslich in Wasser (C., S.).
- 4. Carbazol-carbonsäure-(2) C₁₃H₉O₂N, s. nebenstehende Formel. Zur Konstitution vgl. I. G. Farbenind., D. R. P. 555312; C. 1932 II, 2532; Frdl. 19, 798; Plant, Williams, Soc. 1934, 1142. — B. Beim Schmelzen von 2-Acetyl-carbazol (Bd. XXI, S. 342) mit Kaliumhydroxyd (Borsche, Feise, B. 40, 381). — Nadeln (aus Alkohol). F: 320—322° (B., F.).

Äthylester $C_{15}H_{12}O_2N = HNC_{12}H_7 \cdot CO_2 \cdot C_2H_5$. B. Beim Sättigen einer alkoh. Lösung von Carbazol-carbonesure-(2) mit Chlorwasserstoff auf dem Wasserbad (Borsche, Feise, B. 40, 382). — Blättchen. F: 184°.

2. Carbonsäuren $C_{14}H_{11}O_2N$.

1. β -[6-Phenyl-pyridyl-(2)]-acrylsäure $C_{14}H_{11}O_{2}N$, s. nebenstehende Formel. B. Durch Einw. von alkoh. Kalilauge auf 2-[γ -, γ -, γ -Trichlor- β -oxy-propyl]-6-phenyl-pyridin (Bd. XXI, S. 126) (Ollendorff, B. 35, 2785). — $2C_{14}H_{11}O_{2}N + 2HCl + PtCl_{4}$. Gelbe Blättchen (aus Alkohol). F: 204°.

2. 9.10 - Dihydro - acridin - carbonsdure - (9) $C_{14}H_{11}O_{2}N$, s. nebenstehende Formel.

NH OH

10-Methyl-9.10-dihydro-acridin-carbonsäure-(9)-nitril, 10-Methyl-9-cyan-9.10-dihydro-acridin $C_{15}H_{12}N_2=C_6H_4 < \frac{CH(CN)}{N(CH_2)} > C_6H_4.$

B. Beim Versetzen einer wäßr. Lösung von N-Methyl-acridiniumchlorid mit Kaliumcyanid-Lösung in Gegenwart von Äther (Kaufmann, Albertini, B. 42, 2004). — Nadeln (aus Alkohol), Spieße (aus Essigsäure). F: 143°. Sehr schwer löslich in Wasser, schwer in Äther und Ligroin, leichter in Alkohol, Benzol und Toluol, sehr leicht in Eisessig; die Lösungen in indifferenten Mitteln sind farblos, die essigsaure Lösung ist gelb; schwer löslich in verd. Säuren, etwas löslicher in konz. Mineralsäuren; die salzsaure Lösung ist gelbrot, die alkoholisch-salzsaure Lösung rein gelb. — Färbt sich beim Aufbewahren am Licht erst braun, dann schwarz unter Bildung von N-Methyl-acridon (Bd. XXI, S. 335). Liefert mit alkoh. Kalilauge in der Wärme oder mit Wasserstoffperoxyd in Alkohol in der Kälte N-Methyl-acridon. Beim Erhitzen mit konz. Salzsäure oder Bromwasserstoffsäure bilden sich N-Methyl-acridiniumsalze und wenig N-Methyl-acridon. — 2C₁₅H₁₂N₂ + 2HCl + PtCl₄. Rote Nadeln (aus Salzsäure). Zersetzt sich allmählich oberhalb 200°. — Pikrat C₁₅H₁₂N₂ + C₆H₃O₇N₃. Rote Nadeln. F: 189°. Leicht löslich in Alkohol, sehr leicht in Benzol.

3. 9.10-Dihydro-phenanthridin-carbonsaure-(9) $C_{14}H_{11}O_2N$, Formel I.

10-Methyl-9.10-dihydro-phenanthridin-I. carbonsäure-(9)-nitril, 10-Methyl-9-cyan-9.10-dihydro-phenanthridin C₁₅H₁₂N₂, Formel II. B. Aus Phenanthridinjodmethylat in alkoh. Lösung und Kaliumcyanid-Lösung (Tinkler, Soc. 89, 861). — Körniger Niederschlag. F: 120°. Leicht löslich in Äther und Chloroform. Absorptionsspektrum: T.

4. 3 (oder 6)-Methyl-carbazol-carbonsäure-(2) C₁₄H₁₁O₂N, Formel I oder II. B. Beim Schmelzen von 3 (oder 6)-Methyl-2.9-diacetyl-carbazol (Bd. XXI, S. 344) mit Kalium-

hydroxyd (Borsche, Frise, B. 40, 386; vgl. I. G. Farbenind., D. R. P. 555312; C. 1982 II, 2532; Frdl. 19, 798). — Krystalle (aus verd. Alkohol). F: 265° (B., F.).

3. [2-Methyl-4.5-benzo-indolyl-(3)]-essigsäure ("Methyl-β-naphthindol-essigsäure") C₁₅H₁₈O₂N, s. nebenstehende Formel. B. Beim Erhitzen von Lävulinsäure-äthylester-β-naphthylhydrazon (Bd. XV, S. 574) mit Zinkchlorid auf 130—135° und Kochen des Reaktionsprodukts mit alkoh. Kalilauge (Steche, A. 242, 368). — Krystalle mit ½ C₂H₄O (aus Aceton). Ziemlich leicht löslich in Alkohol, Äther, Aceton und Eisessig, sehr schwer in Wasser, Benzol und Chloroform. — Liefert beim Erhitzen auf 210° 2.3-Dimethyl-4.5-benzo-indol (Bd. XX, S. 448). — AgC₁₅H₁₂O₂N. Flocken. Zersetzt sich beim Kochen mit Wasser unter Abscheidung eines Silberspiegels.

4. 2.6-Diphenyl-piperidin-carbonsäure-(4), 2.6-Diphenyl-isonipecotin-

 $\begin{array}{lll} \textbf{säure} & \mathrm{C_{16}H_{19}O_{2}N} = \frac{\mathrm{H_{2}C \cdot CH(CO_{2}H) \cdot CH_{2}}}{\mathrm{C_{6}H_{5} \cdot HC} - \mathrm{NH} - \mathrm{CH \cdot C_{6}H_{5}}}. & B. & \mathrm{Neben} & 2.6 \cdot \mathrm{Diphenyl \cdot pyridin} \cdot \end{array}$

carbonsäure-(4) beim Erhitzen von Diphenacylessigsäure oder Diphenacylmalonsäure mit alkoh. Ammoniak im Rohr auf 120° (PAAL, STRASSER, B. 20, 2758, 2762; P., B. 29, 798).

— Krystalle (aus verd. Essigsäure durch Eindampfen). F: 339°; sublimierbar (P., St.). Sehr schwer löslich in Wasser und den gebräuchlichen organischen Lösungsmitteln, leicht in verd. Essigsäure und verd. Mineralsäuren (P., St.). — Liefert beim Erhitzen mit gebranntem Kalk 2.6-Diphenyl-piperidin (Bd. XX, S. 455) (P., Demeler, B. 30, 1503).

N-Nitrosoderivat $C_{18}H_{18}O_2N_2 = ON \cdot NC_5H_7(C_6H_5)_3 \cdot CO_2H$. B. Aus 2.6-Diphenylpiperidin-carbonsāure-(4) und Natriumnitrit in verd. Salzsāure (Paal, Strasser, B. 20, 2763). — Nadeln. F: 159°. Sublimiert größtenteils unzersetzt. Leicht löslich in Alkohol, Äther und Eisessig.

10. Monocarbonsäuren $C_n H_{2n-19} O_2 N$.

1. Carbonsäuren $C_{14}H_9O_2N$.

- 1. Acridin carbonsäure (9) C₁₄H₉O₂N, s. nebenstehende Formel.

 B. Beim Erwärmn von Acridin-aldehyd-(9) (Bd. XXI, S. 348) mit Silberoxyd und 5°/oiger Natronlauge auf dem Wasserbad (Beenthsen, Muhlert, B. 20, 1549). Gelbe Nadeln. Schwer löslich in Wasser, leichter in Alkohol.

 Scheidet sich aus salzsaurer Lösung beim Erkalten wieder aus. Die stark verdünnten Lösungen der Alkalisalze fluorescieren blau. Gibt beim Erhitzen über 300° Acridin.
- E.E.E.Trinitro-acridin-carbonsäure-(9) $C_{14}H_6O_3N_4 = NC_{13}H_5(NO_2)_2 \cdot CO_2H$. B. Beim Kochen von 9-Methyl-acridin mit Salpetersäure (D: 1,33) (Bernthsen, A. 224, 40). Gelbe Prismen. Zersetzt sich bei ca. 190°. Schwer löslich in den meisten Lösungsmitteln.
- 2. 5.6 Benzo chinolin carbonsäure (2), 5.6 Benzo chinaldinsäure, [Naphtho 1'.2':5.6 picolinsäure] 1)
 (,,β-Naphthochinolincarbonsäure") C₁₄H₂O₂N, s. nebenstehende
 Formel. B. Neben anderen Produkten bei der Oxydation von 5.6-Benzochinaldin mit Kaliumpermanganat in verd. Schwefelsäure (Seitz, B.
 22, 261). Nadeln (aus Alkohol oder Eisessig). Sehr schwer löslich in siedendem Wasser, ziemlich schwer in Alkohol und Eisessig. Schmilzt bei 187° unter Bildung von 5.6-Benzochinolin. NaC₁₄H₂O₂N + 2½, H₂O. Nadeln (aus Wasser). Ziemlich schwer löslich in kaltem
 Wasser. Sehr schwer löslich in Natronlauge. Cu(C₁₄H₂O₂N)₂ + 1½, H₄O. Grüne Krystalle.
 Gibt bei 150° ½ Mol Wasser ab. Unlöslich in Wasser. Ba(C₁₄H₂O₂N)₂ + 4H₂O. Krystalle.
 Unlöslich in Wasser. C₁₄H₂O₂N + HCl. Gelbe Nadeln. Sehr schwer löslich in verdünnter siedender Salzsäure. 2C₁₄H₂O₂N + 2HCl + PtCl₄ + 2H₂O. Gelbe Nadeln oder Tafeln.
 Sehr schwer löslich in heißer verdünnter Salzsäure.
- 2. 2-Methyl-5.6-benzo-chinolin-carbonsäure-(4), 2-Methyl-5.6-benzo-cinchoninsäure (,,α-Methyl-β-naphthocinchoninsäure") C₁₅H₁₁O₂N, s. nebenstehende Formel. B. Durch Einw. von 2 Mol Brenztraubensäure oder 1 Mol Brenztraubensäure und 1 Mol Acetaldehyd auf β-Naphthylamin in siedendem Alkohol oder in kaltem Äther (Doebner, B. 27, 353; D., Felber, B. 27, 2020; Simon, Bl. [3] 13, 338; A. ch. [7] 9, 480; vgl. Wegscheider, M. 17, 115). Nadeln mit 1 H₂O (aus verd. Alkohol). F: 310° (Zers.); unlöslich in kaltem Wasser, schwer löslich in Alkohol, Benzol, Äther, Petroläther, Chloroform und Schwefelkohlenstoff (D., F.). Zerfällt beim Erhitzen für sich oder mit Calciumhydroxyd in 5.6-Benzo-chinaldin und Kohlendioxyd (D., F.). Ca(C₁₈H₁₀O₂N)₂. Nadeln (aus Wasser). (D., F.).

 β -Naphthylamid $C_{25}H_{18}ON_2 = NC_{19}H_7(CH_2)\cdot CO\cdot NH\cdot C_{10}H_7$. B. Als Nebenprodukt beim Kochen von Brenztraubensäure mit β -Naphthylamin in alkoh. Lösung (Doebner, B. 81, 3197; Tiemann, B. 81, 3325). — F: 230—232° (T.), 232° (D.).

3. Carbonsäuren $C_{16}H_{13}O_2N$.

1. 3 - Benzyl - indol - carbonsäure - (2) C₁₆H₁₅O₂N, s. C·CH₂·C₆H₅ nebenstehende Formel.

Äthylester $C_{18}H_{17}O_2N = C_6H_4$ $C(CH_2 \cdot C_6H_5)$ $C \cdot CO_2 \cdot C_2H_5$. Beim Kochen von Benzylbrenztraubensäure-phenylhydrazon (Bd. XV, S. 354) mit $10^0/_0$ iger alkoh. Schwefelsäure (Wislioenus, Münzesheimer, B. 31, 555). — Krystalle (aus Benzol und Ligroin). F: $144-146^0$.

2. \$\textit{\beta-[Acridyl-(9)]-propions dure}\$ \$C_{16}H_{12}O_2N\$, s. nebenstehende
Formel. \$B\$. Beim Erhitzen von Bernsteins \(\text{aure}\$ ure Diphenylamin in Gegenwart von Zinkchlorid auf \$180-205^0\$ (Volpi, \$G\$. 22 II, \$53). —

Mikroskopische Nadeln. \$F\$: \$310^0\$ (Br\(\text{aurung}\$)\$ (SCHENE, \$B\$. 39, \$2425).

Unl\(\text{dislich}\$ in kaltem Wasser, Alkohol, \(\text{Ather, Chloroform und Benzol}\$; l\(\text{dislich}\$ in verd. S\(\text{auren}\$ mit gr\(\text{timer}\$, in stark verd\(\text{unnter}\$ Alkalilauge mit blauer Fluorescenz (V.). — \(\text{NaC}_{16}H_{12}O_2N + 2^1/2H_2O\$. Hellgelbe Nadeln (aus verd. Alkohol). Zersetzt sich bei ca. \$260^0\$; leicht l\(\text{dislich}\$ in Wasser, schwer in Alkohol, unl\(\text{dislich}\$ in \(\text{Ather}\$ und Benzol (\(\text{V.} \)). — \(\text{AgC}_{16}H_{13}O_2N + HCl. \) Gelbe Krystalle

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Methylester $C_{17}H_{16}O_2N = NC_{18}H_8 \cdot CH_2 \cdot CO_2 \cdot CH_3$. B. Beim Erwärmen von β-[Acridyl-(9)]-propionsäure mit gesättigtem methylalkoholischem Chlorwasserstoff (SCHENK, B. 39, 2425). — Krystalle. F: 95°. — Liefert beim Erhitzen mit Dimethylsulfat auf 120° das (nicht isolierte) methylschwefelsaure Salz des {β-[Acridyl-(9)]-propionsäure-methylester}-hydroxymethylats. — $C_{17}H_{15}O_2N + HI$. Orangefarbene Nadeln. F: 205° (Zers.). Leicht löslich in heißem Alkohol, schwerer in heißem Wasser. — Pikrat $C_{17}H_{15}O_2N + C_6H_3O_7N_3$. Gelbe Tafeln (aus Alkohol). F: 222°.

Äthylester $C_{18}H_{17}O_2N = NC_{13}H_8 \cdot CH_2 \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Analog dem Methylester (Schenk, B. 39, 2426). — Nadeln (aus verd. Alkohol). F: 83°. Sehr leicht löslich in Alkohol. — Pikrat $C_{18}H_{17}O_2N + C_6H_3O_7N_3$. Krystalle (aus Alkohol). F: 192°.

- $\{\beta\text{-}[\text{Acridyl-}(9)]\text{-}\text{propions}$ äure $\}\text{-}\text{hydroxymethylat}$ $C_{17}H_{17}O_{3}N=(\text{HO})(\text{CH}_{2})\text{NC}_{13}H_{8}\cdot \text{CH}_{2}\cdot \text{CO}_{2}H.$ Chlorid $C_{17}H_{16}O_{2}N\cdot \text{Cl.}$ B. Man versetzt das nicht isolierte methylschwefelsaure Salz des $\{\beta\text{-}[\text{Acridyl-}(9)]\text{-}\text{propions}$ äure-methylester $\}\text{-}\text{-}\text{hydroxymethylats}$ mit Natronlauge und erwärmt das ausgeschiedene Lacton (krystallinisch; leicht löslich in Alkohol, Äther und Benzol) mit verd. Salzsäure (SCHENK, B. 39, 2427). Braungelbe Krystalle. F: 260° (Zers.).
- $\{\beta$ -[Acridyl-(9)]-propionsäure-methylester $\}$ -hydroxymethylat $C_{18}H_{19}O_3N=(HO)(CH_3)NC_{12}H_8\cdot CH_2\cdot CH_2\cdot CH_3$. B. Das (nicht isolierte) methylschwefelsaure Salz bildet sich beim Erhitzen von β -[Acridyl-(9)]-propionsäure-methylester mit Dimethylsulfat auf 120° (SCHENK, B. 39, 2426). Pikrat $C_{18}H_{18}O_2N\cdot O\cdot C_6H_2(NO_2)_3$. Krystalle (aus Alkohol). F: 210°. Ist beständig gegen Wasser, Alkohol und Natriumdicarbonat-Lösung.
- 3. 2-Āthyl-5.6-benzo-chinolin-carbonsāure-(4), 2-Āthyl-5.6-benzo-cinchoninsāure (,,a-Āthyl-β-naphthocinchoninsāure) (,a-Āthyl-β-naphthocinchoninsāure) C₁₀H₁₃O₂N, s. nebenstehende Formel. B. Beim Erhitzen von 1 Mol Propionaldehyd mit 1 Mol Brenztraubensāure und 1 Mol β-Naphthylamin (Doebner, Felber, B. 27, 2021). Nadeln mit 2 H₂O (aus verd. Alkohol). F: 283°. Spaltet sich beim Erhitzen über den Schmelzpunkt in 2-Äthyl-5.6-benzo-chinolin und Kohlendioxyd.
- 4. 2-Isopropyl-5.6-benzo-chinolin-carbonsäure-(4), 2-Isopropyl-5.6-benzo-cinchoninsäure (,, α -Isopropyl- β -naphthocinchoninsäure") $C_{17}H_{15}O_2N$, s. nebenstehende Formel. B. Beim Erhitzen von Isobutyraldehyd mit Brenztraubensäure und β -Naphthylamin (Doebner, Friber, B. 27, 2022). Fleischfarbene Nadeln. F: 266°. Liefert beim Erhitzen mit Calciumhydroxyd 2-Isopropyl-5.6-benzochinolin.
- 5. 2-Isobutyl-5.6-benzo-chinolin-carbonsäure -(4), 2-Isobutyl-5.6-benzo-cinchoninsäure (,, α -Isobutyl-5.6-benzo-cinchoninsäure (), α -Isobutyl- β -naphthocinchoninsäure () $C_{18}H_{17}O_2N$, s. nebenstehende Formel. B. Beim Erhitzen von Isovaleraldehyd mit Brenztraubensäure und β -Naphthylamin (Doebner, Felber, B. 27, 2022). Blättchen (aus Essigester). F: 251°. Gibt beim Erhitzen mit Calciumhydroxyd 2-Isobutyl-5.6-benzo-chinolin.
- 6. 2-n-Amyl-5.6-benzo-chinolin-carbonsäure-(4), $2-n-Amyl-5.6-benzo-cinchoninsäure (,,,,,a-n-Amyl-<math>\beta$ -naphthocinchoninsäure") $C_{19}H_{19}O_2N$, s. nebenstehende Formel. B. Aus äquimolekularen Mengen Hexanal, Brenztraubensäure und β -Naphthylamin in alkoh. Lösung auf dem Wasserbad (Bagard, Bl. [4] 1, 320). Krystalle (aus Ameisensäure + Methanol). F: 255—260° (Zers.; Maquennescher Block). Unlöslich in allen organischen Lösungsmitteln außer Ameisensäure.
- 7. 2-n-Hexyl-5.6-benzo-chinolin-carbonsäure-(4), 2-n-Hexyl-5.6-benzo-cinchoninsäure β -naphthocinchoninsäure") $C_{20}H_{21}O_2N$, s. nebenstehende
 Formel. B. Beim Erhitzen von Önanthaldehyd mit Brenztraubensäure und β -Naphthylamin (Doebner, Felder, B. 27, 2022). Fleischfarbene Krystalle.
 F: 291°. Gibt beim Erhitzen mit Calciumhydroxyd 2-n-Hexyl-5.6-benzo-chinolin.

8. 2-n-Heptyl-5.6-benzo-chinolin-carbonsäure - (4), 2-n-Heptyl-5.6-benzo-cinchoninsäure (,, α -n-Heptyl- β -naphthocinchoninsäure") $C_{21}H_{23}O_2N$, s. nebenstehende Formel. B. Aus Octanal, Brenztraubensäure und β -Naphthylamin (SCHIMMEL & Co., Ber. vom April 1899, S. 25; C. 1899 I, 1043; D. R. P. 126736; C. 1901 II, 1375). — Krystalle (aus Alkohol). F: 234°.

9. 2-n-0 ctyl-5.6-benzo-chinolin-carbonsäure-(4), 2-n-0 ctyl-5.6-benzo-cinchoninsäure (,, α -n-Octyl- β -naphthocinchoninsäure") C₂₂H₂₅O₂N, s. nebenstehende Formel. B. Aus Nonanal, Brenztraubensäure und β -Naphthylamin (Schimmel & Co., D. R. P. 126736; C. 1901 II, 1375; BAGARD, Bl. [4] 1, 352). — Krystalle (aus Ameisensäure+Methanol). F: 238—240° (Zers.) (B.), 234° (Sch. & Co.).

10. Carbonsäuren $C_{23}H_{27}O_2N$.

- 1. 2-n-Nonyl-5.6-benzo-chinolin-carbonsäure-(4),
 2-n-Nonyl-5.6-benzo-cinchoninsäure (,,α-n-Nonylβ-naphthocinchoninsäure") C₂₃H₂₇O₂N, s. nebenstehende Formel.

 B. Aus Decanal, Brenztraubensäure und β-Naphthylamin (STEPHAN,
 J. pr. [2] 62, 525; SCHIMMEL & Co., D. R. P. 126736; C. 1901 II,
 1375; BAGARD, Bl. [4] 1, 358). Krystalle (aus Alkohol oder aus Ameisensäure + Methanol).
 F: 237° (ST.), 239—242° (B.).
- 2. $2-[\alpha-Athyl-n-heptyl]-5.6-benzo-chinolin-carbonsäure-(4), 2-[\alpha-Athyl-n-heptyl]-5.6-benzo-cinchoninsäure ("n-Nonyl-<math>\beta$ -naphthocinchoninsäure") $C_{23}H_{27}O_{2}N$, s. nebenstehende Formel. B. Aus Äthyl-hexyl-acetaldehyd, Brenztraubensäure und β -Naphthylamin in Alkohol auf dem Wasserbad (BAGARD, Bl. [4] 1, 363). Krystalle (aus Ameisensäure + Methanol). F: 190—195° (Zers.).
- 11. $2 n D \cdot cyl 5.6 b \cdot enzo chinolin carbons \ddot{a}ure (4),$ $2 n D \cdot cyl 5.6 b \cdot enzo cinchonins \ddot{a}ure$ $\beta naph tho cinchonins$ $\beta naph tho ci$

11. Monocarbonsäuren $C_n H_{2n-21} O_2 N$.

1. Carbonsäuren $C_{16}H_{11}O_2N$.

- 1. 4-Phenyl-chinolin-carbonsdure-(2), 4-Phenyl-chinal-dinsdure $C_{16}H_{11}O_2N$, s. nebenstehende Formel. B. Aus γ -Phenyl-chinophthalon (Bd. XXI, S. 552) durch Oxydation mit Chromtrioxyd in verd. Schwefelsäure auf dem Wasserbad (Koenigs, Nef, B. 19, 2428). Aus β -Benzoyl-acrylsäure durch Erhitzen mit Anilin, Nitrobenzol und Salzsäure (K., Jaeglé, B. 28, 1049). Gelbe Nadeln (aus verd. Alkohol). F: 171° (K., N.). Schwer löslich (K., N.). Liefert beim Erhitzen auf 180—190° 4-Phenyl-chinolin (K., N.; K., J.). Chloroplatinat. Gelbe Nadeln. F: 233—234° (Zers.) (K., J.).
- 2. 2-Phenyl-chinolin-carbonsäure-(4), 2-Phenyl-cinchonin-säure, Atophan C₁₆H₁₁O₂N, s. nebenstehende Formel. B. Durch Erhitzen von Brenztraubensäure mit Benzaldehyd und Anilin bezw. mit Benzalanilin in Alkohol auf dem Wasserbad (Doebner, Gieseke, A. 242, 291; Garza-rolli-Thurnlackh, B. 32, 2276). Aus Isatinsäure und Acetophenon in alkoh. Kalilauge auf dem Wasserbad (Pfitzinger, J. pr. [2] 38, 583; 56, 293). Bitter schmeckende Nadeln

(aus verd. Alkohol). F: 207° (D., G.), 208° (GA.-TH.), 208—209° (geringe Zers.) (Pf.). Leicht löslich in heißem Alkohol, schwer in Benzol, fast unlöslich in Petroläther und Wasser (D., G.; Pf.; GA.-TH.). — Liefert beim Erhitzen für sich oder besser bei der Destillation mit Kalk 2-Phenyl-chinolin (Pf.; D., G.). Liefert beim Erhitzen mit Methyljodid im Rohr auf 130° 2-Phenyl-chinolin-carbonsäure-(4)-jodmethylat (s. u.) (Claus, Büttner, A. 276, 282; vgl. dagegen Turnau, M. 29, 850). — Steigert die Harnsäure-Ausscheidung beim Menschen (Nicolaier, Dohrn, Disch. Arch. klin. Med. 93 [1908], 331). Findet als Heilmittel gegen Gicht Verwendung; über die physiologische Wirkung und die Umwandlung des Atophans im Organismus vgl. E. Rohde in A. Heffter, Handbuch der experimentellen Pharmakologie, Bd. II, 1. Hälfte [Berlin 1920], S. 16. — Prüfung auf Reinheit: Deutsches Arzneibuch, 6. Ausgabe [Berlin 1926], S. 27. — Cu(C₁₆H₁₀O₂N)₂ + H₂O. Grüne Flocken. Unlöslich in Wasser (D., G.). — AgC₁₆H₁₀O₂N. Farblose Flocken (D., G.). — Gelbliche Nadeln. Schwer löslich in Wasser (Pf.). — Zn(C₁₆H₁₀O₂N)₂ + H₂O. Farblose Flocken (D., G.). — Pb(C₁₆H₁₀O₂N)₂ + H₂O. Gelbliche Nadeln. Schwer löslich in Wasser (Pf.). — Zn(C₁₆H₁₀O₂N)₂ + H₂O. Farblose Flocken (D., G.). — Pb(C₁₆H₁₀O₂N)₂ + H₂O. Gelbliche Flocken (D., G.). — 2C₁₆H₁₁O₂N)₂ + 2HCl + PtCl₄. Orangerote Nadeln (aus salzsäurehaltigem Alkohol). Beginnt bei ca. 228° unter Zersetzung zu schmelzen; fast unlöslich in Wasser (GA.-Th.). — Pikrat 2C₁₆H₁₁O₂N + C₆H₃O₇N₃. Gelbe Krystalle (Pf.).

- 2-Phenyl-chinolin-carbonsäure-(4)-methylester $C_{17}H_{13}O_2N=NC_9H_6(C_6H_5)\cdot CO_2\cdot CH_2$. B. Aus dem Silbersalz der 2-Phenyl-chinolin-carbonsäure-(4) durch Erhitzen mit Methyljodid im Rohr auf 80—100° (CLAUS, BRANDT, A. 282, 106). Aus 2-Phenyl-chinolin-carbonsäure-(4) durch aufeinanderfolgendes Kochen mit Thionylchlorid und Methanol (H. Meyer, M. 28, 39). Blättehen. F: 58° (M.), 61° (Cl., B.).
- 2-Phenyl-chinolin-carbonsäure-(4)-äthylester $C_{18}H_{15}O_2N=NC_9H_5(C_6H_5)\cdot CO_2\cdot C_2H_5$. B. Aus 2-Phenyl-chinolin-carbonsäure-(4) durch Einw. von alkoh. Salzsäure (Pfitzinger, J. pr. [2] 56, 297). Krystalle (aus Alkohol). F: 50—51°. Sehr leicht löslich in Alkohol, Äther, Benzol und Petroläther, fast unlöslich in Wasser. $2C_{18}H_{16}O_2N+2HCl+PtCl_4$. Blaßrosa Nadeln. F: 210—211° (Zers.). Sehr sehwer löslich in Wasser. Pikrat $C_{18}H_{15}O_2N+C_6H_3O_7N_3$. Grüngelbe Nadeln (aus absol. Alkohol). F: 144—145°.
- **2-Phenyl-chinolin-carbonsäure-(4)-amid** $C_{16}H_{13}ON_2 = NC_9H_5(C_8H_5)\cdot CO\cdot NH_2$. B. Aus 2-Phenyl-chinolin-carbonsäure-(4) durch Kochen mit Thionylchlorid und nachfolgende Einw. von Ammoniak (H. Meyer, M. 28, 40). Aus 2-Phenyl-chinolin-carbonsäure-(4)-methylester durch Einw. von Ammoniak (M.). Krystalle (aus Methanol). F: 155°. Sehr schwer löslich in Wasser.
- 2-Phenyl-chinolin-carbonsäure-(4)-hydroxymethylat, Ammoniumbase des 2-Phenyl-cinchoninsäure-methylbetains C₁₇H₁₅O₅N = (HO)(CH₃)NC₉H₅(C₆H₅)·CO₂H. B. Das Jodid entsteht aus 2-Phenyl-chinolin-carbonsäure-(4) durch Erhitzen mit Methyljodid im Rohr auf 130° (CLAUS, BÜTTNER, A. 276, 282; vgl. dagegen TURNAU, M. 29, 850). Das Jodid liefert bei der Einw. von Silberoxyd in verd. Alkohol 2-Phenyl-cinchoninsäure-methylbetain (CL., B.). Chlorid C₁₇H₁₄O₂N·Cl+2H₂O. Farblose Prismen (aus Wasser). Färbt sich bei ca. 140° grün, F: 209—210° (Zers.) (CL., B.). Jodid C₁₇H₁₄O₂N·I. Kupferfarbene Schuppen (aus absol. Alkohol), orangerote Nadeln (aus Alkohol + Ather); färbt sich oberhalb 100° dunkler, F: 182—186° (Zers.); krystallisiert aus Wasser in dunkelgranatroten Tafeln, die oft schon zwischen 140° und 150° unter Zersetzung schmelzen (CL., B.). Leicht löslich in Alkohol und Aceton, unlöslich in Äther, löslich in ca. 64 Tln. Wasser von 15°.

Anhydrid, 2-Phenyl-cinchoninsäure-methylbetain $C_{17}H_{13}O_2N = CH_3 \cdot \overset{\top}{N}C_9H_5(C_6H_5)$

- CO·O. B. Aus 2-Phenyl-chinolin-carbonsäure-(4)-jodmethylat durch Einw. von Silberoxyd in verd. Alkohol (Claus, Büttner, A. 276, 284). Bitter schmeckende Prismen und Tafeln mit 1H₂O (aus Wasser). Färbt sich oberhalb 100° grün, wird bei weiterem Erhitzen fast schwarz, F: 220—221° (Zers.).
- **2-Phenyl-chinolin-[carbonsäure-(4)-methylester]-hydroxymethylat** $C_{18}H_{17}O_3N=(HO)(CH_2)NC_9H_5(C_6H_5)\cdot CO_2\cdot CH_3$. Jodid $C_{18}H_{16}O_2N\cdot I$. B. Aus 2-Phenyl-cinchoninsäure-methylbetain durch Erhitzen mit Methyljodid im Rohr auf 100° (Claus, Büttner, A. **276**, 286). Rote Krystalle (aus Alkohol oder Wasser). F: 160— 165° (Zers.).
- 6-Chlor-2-phenyl-chinolin-carbonsäure-(4), 6-Chlor-2-phenyl-cinchoninsäure $C_{16}H_{10}O_2$ NCl, s. nebenstehende Formel. B. Durch Erwärmen von Brenztraubensäure mit Benzaldehyd und 4-Chlor-anilin in Alkohol oder Eisessig auf dem Wasserbad (Borsche, B. 41, 3891). Krystallkörner. Färbt sich von 225° an allmählich dunkel, F: 243°.

- 7-Chlor-2-phenyl-chinolin-carbonsäure-(4), 7-Chlor-2-phenyl-cinchoninsäure $C_{16}H_{16}O_{9}NCl$, s. nebenstehende Formel. B. Durch Erwärmen von Brenztraubensäure mit Benzaldehyd und 3-Chlor-anilin in Alkohol oder Eisessig auf dem Wasserbad (Borsche, B. 41, 3890). Nädelchen (aus Alkohol). F: 244—2460 (Zers.).
 - $\begin{array}{c} CO_2H \\ \hline \\ Cl \cdot \\ \hline \\ \\ C_0H_5 \end{array}$

C₆H₅

CO₂H

- 3. 4-Phenyl-chinolin-carbonsäure-(3) $C_{16}H_{11}O_{2}N$, s. nebenstehende Formel. B. Durch Oxydation von 9-Phenyl-acridin mit Permanganat in schwefelsaurer Lösung (Claus, Nicolaysen, B. 18, 2706). $Ba(C_{16}H_{10}O_{2}N)_{2}+6H_{2}O$. Nadeln.
- 4. 3-Phenyl-chinolin-carbonsäure-(4), 3-Phenyl-cinchonin-säure C₁₆H₁₁O₂N, s. nebenstehende Formel. B. Durch Erhitzen von Isatin mit Phenylacetaldoxim in konz. Kalilauge auf dem Wasserbad (HÜBNER, B. 89, 983). Würfel oder Prismen (aus Eisessig). F: 273°. Ziemlich schwer löslich in Eisessig und Aceton, sonst fast unlöslich. Liefert beim Erhitzen auf ca. 290° 3-Phenyl-chinolin (H., B. 41, 482). Salze: H., B. 39, 984. AgC₁₆H₁₀O₂N. Pulver. Fast unlöslich. Dichromat. Dunkelgelbe Krystalle (aus verd. Schwefelsäure).

Methylester $C_{17}H_{18}O_2N = NC_2H_6(C_2H_5) \cdot CO_2 \cdot CH_3$. B. Aus 3-Phenyl-chinolin-carbon-saure-(4) durch Behandeln mit Thionylchlorid und nachfolgendes Kochen mit Methanol (HÜBNER, B. 39, 984). — Nadeln (aus verd. Methanol). F: 73°.

Amid $C_{16}H_{12}ON_2 = NC_9H_5(C_9H_5)\cdot CO\cdot NH_2$. B. Aus 3-Phenyl-chinolin-carbonsāure-(4) durch Behandeln mit Thionylchlorid und Einleiten von Ammoniak in die Chloroform-Lösung des Reaktionsprodukts (Hübner, B. 39, 984). — Mikrokrystallinisches Pulver (aus verd. Essigsäure). F: 274°.

Anilid $C_{52}H_{16}ON_5 = NC_9H_5(C_9H_5)\cdot CO\cdot NH\cdot C_9H_5$. B. Aus 3-Phenyl-chinolin-carbon-saure-(4) durch Behandeln mit Thionylchlorid und nachfolgendes Versetzen mit Anilin in Chloroform (HÜBNER, B. 39, 985). — Nadeln (aus verd. Alkohol). F: 222°.

Hydrazid $C_{16}H_{18}ON_3 = NC_9H_5(C_6H_5)\cdot CO\cdot NH\cdot NH_2$. B. Aus 3-Phenyl-chinolin-carbon-saure-(4) durch aufeinanderfolgendes Behandeln mit Thionylchlorid und Hydrazinhydrat in Chloroform (HÜBNER, B. 39, 985). — Plättchen mit $1H_2O$ (aus verd. Alkohol). F: 154°.

Isopropylidenhydramid $C_{19}H_{17}ON_3 = NC_9H_5(C_6H_5) \cdot CO \cdot NH \cdot N : C(CH_3)_2$. B. Aus 3-Phenyl-chinolin-carbonsāure-(4)-hydrazid durch Kochen mit Aceton (HÜBNER, B. 41, 482). — Krystalle. F: 191°.

Benzalhydrazid $C_{22}H_{17}ON_3 = NC_9H_5(C_6H_5)\cdot CO\cdot NH\cdot N: CH\cdot C_6H_5$. B. Aus 3-Phenylchinolin-carbonsäure-(4)-hydrazid durch Kochen mit Benzaldehyd in Alkohol (HÜBNER, B. 41, 482). — Krystalle (aus verd. Alkohol). F: 232°.

2-Chlor-8-phenyl-chinolin-carbonsäure-(4), 2-Chlor-3-phenyl-cinchoninsäure (Chlorisaphensäure) C₁₆H₁₀O₂NCl, s. nebenstehende Formel. B. Aus 2-Oxy-3-phenyl-chinolin-carbonsäure-(4) durch Erwärmen mit Phosphortrichlorid und Phosphorpentachlorid (Gysae, B. 26, 2485; Borsche, Jacobs, B. 47 [1914], 358). Aus dem Chlorid (s. u.) durch Kochen mit sehr verd. Natriumdicarbonat-Lösung (Hübner, B. 41, 486). — Krystalle (aus Chloroform + Ligroin). F: 226° (H.), 220° (G.; B., J.). — AgC₁₆H₉O₂NCl (H.).

Chlorid $C_{16}H_6ONCl_2 = NC_9H_4Cl(C_6H_5) \cdot COCl.$ B. Aus 2-Oxy-3-phenyl-chinolin-carbon-saure-(4) durch Erhitzen mit Thionylchlorid im Rohr auf 180° (HÜBNER, B. 41, 486). — Krystalle (aus Ligroin). F: 163°.

Amid $C_{16}H_{11}ON_{2}Cl = NC_{6}H_{4}Cl(C_{6}H_{5})\cdot CO\cdot NH_{2}$. B. Durch Einleiten von Ammoniak in die Lösung des Chlorids in Chloroform + Ligroin (HÜBNER, B. 41, 486). — Krystalle (aus Alkohol + Eisessig). F: 302°.

- 5. [6-Phenyl-chinolin]-carbonsāure-(x) C₁₆H₁₁O₂N = NC₉H₅(C₆H₅)·CO₂H. B. Aus Fluorenonchinolin (Bd. XXI, S. 357) durch Erhitzen mit Kaliumhydroxyd auf 260° (DIELS, STAEHLIN, B. 35, 3283). Prismen (aus Alkohol). Erweicht bei ca. 245°, F: 264° bis 265° (korr.). Schwer löslich in Äther, Chloroform und Aceton, unlöslich in Wasser. Salze: D., St.
- 6. β-[Acridyl-(9)]-acrylsåure C₁₈H₁₁O₂N, s. nebenstehende Formel. B. Aus 9-[γ.γ.γ-Trichlor-β-oxy-propyl]-acridin (Bd. XXI, S. 136) durch Erwärmen mit wäßrig-alkoholischer Natronlauge (Berntheen, Muhlert, B. 20, 1544). — Pulver. Zersetzt sich von 208° an. Fast unlöslich in den gebräuchlichen Lösungsmitteln. — Liefert bei der Oxydation mit Permanganat

in sodaalkalischer Lösung Acridin-aldehyd-(9). Verhalten bei der Reduktion mit Zink und Salzsaure: B., M. — AğC₁₆H₁₀O₂N. Gelber, amorpher Niederschlag. — C₁₆H₁₁O₂N+HCl. Nadeln.

2. Carbonsäuren $C_{17}H_{13}O_2N$.

1. 2.5-Diphenyl-pyrrol-carbonsäure-(3) $C_{17}H_{18}O_2N = \frac{HC - C \cdot CO_2H}{C_6H_6 \cdot C \cdot NH \cdot C \cdot C_6H_6}$ B. Das Amid entsteht aus Phenacyl-benzoyl-essigsäureäthylester durch Einw. von alkoh. Ammoniak; es wird schon durch Wasser verseift (KAPF, PAAL, B. 21, 3055, 3060; vgl. B. 21, 1491). — Orangerote Nadeln (aus Alkohol). F: 216°. — Liefert bei der Destillation mit Kalk unter teilweiser Verkohlung 2.5-Diphenyl-pyrrol.

 $HC \longrightarrow C \cdot CO_2 \cdot C_2H_5$. B. Durch Kochen von Phenacyl-Äthylester $C_{19}H_{17}O_2N = \frac{HC_{19}C_2C_2C_2H_5}{C_6H_5\cdot C\cdot NH\cdot C\cdot C_6H_5}$. B. Durch Kochen von Phenacylbenzoyl-essigsäureäthylester mit Ammoniumacetat und Eisessig (KAPF, PAAL, B. 21, 3060). Nadeln (aus Eisessig). F: 159°. Leicht löslich in Alkohol, Ather, Benzol und Eisessig, schwer in Ligroin, unlöslich in Wasser. — Liefert beim Kochen mit alkoh. Kalilauge 2.5-Diphenylpyrrol.

1.2.5-Triphenyl-pyrrol-carbonsäure-(3) $C_{23}H_{17}O_2N = \frac{HC - C \cdot CO_2H}{C_6H_5 \cdot C \cdot N(C_6H_5) \cdot C \cdot C_6H_5}$. B. Der Äthylester entsteht durch Kochen von Phenacyl-benzoyl-essigsäureäthylester mit Anilin und Eisessig; die freie Säure erhält man bei mehrstündigem Kochen des Äthylesters mit alkoh. Kalilauge (KAPF, PAAL, B. 21, 3061). — Nadeln (aus Eisessig). F: 273°; fast unzersetzt sublimierbar; ziemlich schwer löslich in den meisten organischen Lösungsmitteln (K., P.). — Liefert bei der Destillation mit Kalk 1.2.5-Triphenyl-pyrrol und 2.3.5-Triphenyl-pyrrol (K., P.: SMITH, Soc. 57, 646) (K., P.; SMITH, Soc. 57, 646).

Äthylester $C_{25}H_{21}O_2N = \frac{HC - C \cdot CO_2 \cdot C_2H_5}{C_6H_5 \cdot C \cdot N(C_6H_5) \cdot C \cdot C_6H_5}$. Gelbliche Nadeln (aus Eisessig). F: 169—170° (KAPF, PAAL, B. 21, 3061). Ziemlich schwer löslich in den üblichen organischen Lösungsmitteln.

1 - o - Tolyl - 2.5 - diphenyl - pyrrol - carbonsäure - (8) $C_{24}H_{19}O_2N =$ -----C·CO₂H

B. Der Äthylester entsteht durch Kochen von Phenacyl-C₆H₅·C·N(C₆H₄·CH₃)·C·C₆H₅

B. Der Athylester entstent durch Kochen von Fhenacyibenzoyl-essigsäureäthylester mit o-Toluidin in Eisessig; man verseift ihn durch Kochen mit alkoh. Kalilauge (Paal, Braikoff, B. 22, 3088). — Schuppen (aus Eisessig). F: 226—227°. Unzersetzt sublimierbar. Ziemlich schwer löslich in Äther, Alkohol und Benzol. Liefert bei der Destillation mit Kalk 1-o-Tolyl-2.5-diphenyl-pyrrol.

Äthylester $C_{26}H_{23}O_2N=\frac{HC-C\cdot CO_2\cdot C_2H_5}{C_6H_5\cdot C\cdot N(C_6H_4\cdot CH_3)\cdot C\cdot C_6H_5}$. Nadeln (aus Alkohol). F: 134—135° (Paal, Braikoff, B. 22, 3088). Leicht löslich in Alkohol, Äther, Benzol und Eisessig.

1 - p - Tolyl - 2.5 - diphenyl - pyrrol - carbonsäure - (8) $C_{24}H_{19}O_{2}N = HC$ $C \cdot CO_{2}H$ $R = D_{12} \text{ Yabslastan entable discalar in the polynomial of the polyn$

B. Der Äthylester entsteht durch Kochen von Phenacyl- $\mathbf{C_6H_5} \cdot \mathbf{C} \cdot \mathbf{N}(\mathbf{C_6H_4} \cdot \mathbf{CH_8}) \cdot \mathbf{C} \cdot \mathbf{C_6H_8}$ benzoyl-essigsaureathylester mit p-Toluidin in Eisessig (PAAL, BRAIKOFF, B. 22, 3089). — Blättchen (aus Eisessig). F: 205—206°. Unzersetzt sublimierbar. Leicht löslich in siedendem Nitrobenzol, schwer in Äther, Alkohol und Benzol, unlöslich in Ligroin. — Liefert bei der Destillation mit Kalk 1-p-Tolyl-2.5-diphenyl-pyrrol.

Äthylester $C_{26}H_{23}O_2N=\frac{HC}{C_6H_5\cdot C\cdot N(C_6H_4\cdot CH_3)\cdot C\cdot C_6H_5}$. Nadeln (aus Eisessig). F: 145° (Paal, Braikoff, B. 22, 3089). Leicht löslich in heißem Alkohol, Äther und Benzol, schwer in Ligroin.

1-[2.4-Dimethyl-phenyl]-2.5-diphenyl-pyrrol-carbonsäure-(3) $C_{25}H_{21}O_2N = \frac{1}{2}$ B. Der Äthylester entsteht durch Kochen von Phenacyl- $\mathbf{C_0H_5} \cdot \mathbf{C} \cdot \mathbf{N}[\mathbf{C_0H_3}(\mathbf{CH_2})_{\mathbf{2}}] \cdot \mathbf{C} \cdot \mathbf{C_0H_5}$ benzoyl-essigsäureäthylester mit 2.4-Dimethyl-anilin in Eisessig (PAAL, BRAIKOFF, B. 22, 3090). — Nadeln (aus Eisessig). F: 253—254°. Unzersetzt sublimierbar. Maßig löslich in heißem Alkohol und Benzol. — Liefert bei der Destillation mit Kalk 1-[2.4-Dimethyl-phenyl]-2.5-diphenyl-pyrrol.

1 - α - Naphthyl - 2.5 - diphenyl - pyrrol - carbonsäure - (3) $C_{27}H_{19}O_2N=HC$ — $C \cdot CO_2H$. B. Der Äthylester entsteht durch Kochen von Phenacyl-benzoylessigsäureäthylester mit α -Naphthylamin in Eisessig (Paal, Braikoff, B. 22, 3091). — Blättchen (aus Eisessig). F: 271,5—272°. Unzersetzt sublimierbar. Schwer löslich in siedendem Alkohol und Benzol, unlöslich in Ligroin. — Liefert bei der Destillation mit Kalk 1- α -Naphthyl-2.5-diphenyl-pyrrol. — Kaliumsalz. Schwer löslich in siedendem Wasser, unlöslich in Kalilauge.

Äthylester $C_{29}H_{23}O_2N = \frac{HC - C \cdot CO_3 \cdot C_2H_5}{C_6H_5 \cdot C \cdot N(C_{10}H_7) \cdot C \cdot C_6H_5}$. Nadeln oder Blättchen (aus Alkohol). F: 181—182° (Paal, Braikoff, B. 22, 3091). Leicht löslich in heißem Alkohol und Eisessig, schwerer in Benzol.

1 - β - Naphthyl - 2.5 - diphenyl - pyrrol - carbonsäure - (3) $C_{27}H_{19}O_{2}N=HC$ $C \cdot CO_{2}H$ $C_{6}H_{5} \cdot C \cdot N(C_{10}H_{7}) \cdot C \cdot C_{6}H_{5}$. B. Der Äthylester entsteht durch Kochen von Phenacyl-benzoylessigsäureäthylester mit β -Naphthylamin in Eisessig (Paal, Braikoff, B. 22, 3092). — Blätter (aus Eisessig). F: oberhalb 350°. Sublimiert unzersetzt. Schwer löslich in fast allen gebräuchlichen organischen Lösungsmitteln. — Liefert bei der Destillation mit Kalk 1- β -Naphthyl-2.5-diphenyl-pyrrol.

Äthylester $C_{29}H_{23}O_2N=\frac{HC-C\cdot CO_2\cdot C_2H_5}{C_6H_5\cdot C\cdot N(C_{10}H_7)\cdot C\cdot C_6H_5}$. Nädelchen (aus Alkohol oder Eisessig). F: 181—182° (Paal, Braikoff, B. 22, 3092). — Wird auch bei mehrstündigem Kochen mit alkoh. Kalilauge nur zum Teil verseift.

1 - [2 - Oxy - phenyl] - 2.5 - diphenyl - pyrrol - carbonsäure - (3) $C_{55}H_{17}O_{5}N = HC - C \cdot CO_{2}H$ $C_{6}H_{5} \cdot C \cdot N(C_{6}H_{4} \cdot OH) \cdot C \cdot C_{6}H_{5}$ B. Der Äthylester entsteht durch Kochen von Phenacyl-benzoyl-essigsäureäthylester mit 2-Amino-phenol in Alkohol (Paal, Braikoff, B. 22, 3093). — Nadeln (aus Eisessig). F: 244—245°. Sublimiert unzersetzt. Leicht löslich in Alkohol, Äther und Eisessig, schwer in Chloroform, Ligroin und Benzol. — Liefert bei der Destillation mit Kalk 1-[2-Oxy-phenyl]-2.5-diphenyl-pyrrol.

Äthylester $C_{25}H_{21}O_3N = HC - C \cdot CO_2 \cdot C_2H_5$. Prismen (aus Alkohol). F: 158—159° (Paal, Braikoff, B. 22, 3094). Löslich in den gebräuchlichen organischen Lösungsmitteln sowie in Alkalien.

1.1'- p - Phenylen - bis - [2.5 - diphenyl - pyrrol - carbonsäure - (3)] $C_{40}H_{28}O_4N_2 = HO_2C \cdot C:C(C_6H_5)$ $N \cdot C_6H_4 \cdot N \cdot C(C_6H_5):C \cdot CO_2H$ B. Der Diäthylester entsteht durch Erhitzen von Phenacyl-benzoyl-essigsäureäthylester mit p-Phenylendiamin in Eisessig (Paal, Braikoff, B. 22, 3095). — Krystallkörner (aus Alkohol). Schmilzt oberhalb 300°. Sublimiert unzersetzt. Ziemlich leicht löslich in Alkohol und Eisessig, schwer in Ligroin und Benzol.

 $\begin{array}{c} \textbf{Diäthylester} \quad \textbf{C}_{44}\textbf{H}_{36}\textbf{O}_{4}\textbf{N}_{2} \\ = \\ \begin{array}{c} \textbf{C}_{2}\textbf{H}_{5}\cdot\textbf{O}_{2}\textbf{C}\cdot\textbf{C}:\textbf{C}(\textbf{C}_{6}\textbf{H}_{5})\\ \textbf{H}\textbf{C}:\textbf{C}(\textbf{C}_{6}\textbf{H}_{5})\\ \textbf{N}\cdot\textbf{C}_{6}\textbf{H}_{4}\cdot\textbf{N}\\ \textbf{C}(\textbf{C}_{6}\textbf{H}_{5}):\textbf{C}\cdot\textbf{C}\textbf{O}_{2}\cdot\textbf{C}_{2}\textbf{H}_{5}\\ \textbf{C}(\textbf{C}_{6}\textbf{H}_{5}):\textbf{C}\textbf{H} \\ \textbf{C}(\textbf{C}_{6}\textbf{H}_{5}):\textbf{C}(\textbf{C}_{6}\textbf{H}_{5}):\textbf{C}(\textbf{$

2. 6-Methyl-2-phenyl-chinolin-carbonsäure-(4). 6-Methyl-2-phenyl-cinchoninsäure C₁₇H₁₃O₂N, s. nebenstehendeFormel. CH₃

B. Durch Erhitzen von Brenztraubensäure mit Benzaldehyd und p-Toluidin in Alkohol im Wasserbad (Doebner, Gieseke, A. 242, 296). — Gelbliche Nadeln (aus Alkohol). F: 228° (D., G.). Leicht löslich in Alkohol und Äther, unlöslich in Wasser (D., G.). — Liefert bei der Destillation mit Natronkalk 6-Methyl-2-phenyl-chinolin (D., G.). — Steigert die Harnsäure-Ausscheidung beim Menschen (Nicolaier, Dohrn, Dtsch. Arch. klin. Med. 93 [1908], 346). — Cu(C₁₇H₁₂O₂N)₂. Grüne Flocken. Unlöslich in heißem Wasser (D., G.). — AgC₁₇H₁₃O₂N. Unlöslich in Wasser (D., G.). — Pb(C₁₇H₁₂O₂N)₂. Gelbe, schwer lösliche Flocken (D., G.). — 2C₁₇H₁₃O₂N + 2HCl + PtCl₄. Goldgelbe Nadeln. Schwer löslich in siedendem Wasser (D., G.).

- 3. 7 Methyl 2 phenyl chinolin carbonsäure (4),
 7-Methyl-2-phenyl-cinchoninsäure C₁₇H₁₂O₂N, s. nebenstehende
 Formel. B. Durch Erhitzen von Brenztraubensäure mit Benzaldehyd und
 m-Toluidin in Alkohol auf dem Wasserbad (Borsohe, B. 41, 3888).

 Krystallpulver (aus verd. Alkohol oder Essigsäure). F: 212—214°.
- 4. 8-Methyl-2-phenyl-chinolin-carbonsäure-(4), 8-Methyl-2-phenyl-cinchoninsäure C₁₇H₁₃O₂N, s. nebenstehende Formel. B. Durch Erhitzen von Brenztraubensäure mit Benzaldehyd und o-Toluidin in Alkohol im Wasserbad (Doebner, Gieseke, A. 242, 298). Gelbliche Krystalle (aus Alkohol). F: 245°. Fast unlöslich in siedendem Wasser, leicht löslich in Äther und in heißem Alkohol. Liefert bei der Destillation mit Kalk 8-Methyl-2-phenyl-chinolin. Cu(C₁₇H₁₂O₂N)₂ + H₂O. Grüne Flocken. Unlöslich in siedendem Wasser. AgC₁₇H₁₂O₃N + H₂O. Nadeln (aus Wasser).
- 5. 2-Propenyl-5.6-benzo-chinolin-carbonsäure (4), 2-Propenyl-5.6-benzo-cinchoninsäure C₁₇H₁₈O₂N, s. nebenstehende Formel. B. In geringer Menge aus Brenztraubensäure, Crotonaldehyd und β-Naphthylamin in Alkohol (Doebner, B. 27, 2023). Nadeln (aus Alkohol). F: 289°. Liefert bei der trocknen Destillation 2-Propenyl-5.6-benzo-chinolin.

- 3. Carbonsäuren $C_{18}H_{15}O_2N$.
 - 1. 2.6-Diphenyl-1.4-dihydro-pyridin-carbonsäure-(4), 2.6-Diphenyl-
- 1.4-dihydro-isonicotinsäure $C_{18}H_{15}O_2N = \frac{HC \cdot CH(CO_2H) \cdot CH}{C_6H_5 \cdot C_6H_5}$. Aus Diphenacylessigsäure bei der Einw. von alkoh. Ammoniak (Paal, Strasser, B. 20, 2760). Krystallinische Flocken. Geht beim Aufbewahren in Diphenacylessigsäure über. $NH_4C_{18}H_{14}O_2N$. In Wasser leicht lösliche Nadeln. Färbt sich bei 240° bräunlich, schmilzt bei 270° unter Abspaltung von Ammoniak und Bildung von 2.6-Diphenyl-pyridin-carbon-säure-(4).
- 2. 2 Methyl 4.5 diphenyl pyrrol carbonsäure (3) $C_{18}H_{18}O_{2}N = C_{4}H_{5} \cdot C C \cdot CO_{2}H$ $C_{5}H_{5} \cdot C \cdot NH \cdot C \cdot CH_{2}$
- Äthylester $C_{20}H_{19}O_2N=\frac{C_0H_5\cdot C\cdot CO_2\cdot C_2H_5}{C_0H_5\cdot C\cdot NH\cdot C\cdot CH_2}$. B. Durch Erhitzen von Benzoin mit β -Amino-crotonsäureäthylester und Kaliumdisulfat auf 170° (FEIST, B. 35, 1559). Durch Reduktion eines Gemisches von Benzilmonoxim und Acetessigsäureäthylester mit Zinkstaub und Eisessig (Knorr, Lange, B. 35, 3005). Krystalle (aus Methanol). F: 202° (F.). Löslich in Methanol, Alkohol und Eisessig, schwer löslich in Ligroin, fast unlöslich in Wasser, Äther und Chloroform (F.). Sehr schwer verseifbar (F.).
- 3. 2-[α-Methyl-α-propenyl]-5.6-benzo-chinolin-carbonsdure-(4), 2-[α-Methyl-α-propenyl]-5.6-benzo-cinchoninsdure (,,α-Crotonyl-β-naphthocinchonin-saure") C₁₈H₁₈O₂N, s. nebenstehende Formel. B. Durch Erhitzen von Brenztraubensäure mit Tiglinaldehyd und β-Naphthyl-amin in Alkohol (Doebner, B. 27, 2023). Tafeln mit 1 H₂O (aus Alkohol). F: 226°. Liefert bei der Destillation 2-[α-Methyl-α-propenyl]-5.6-benzochinolin. AgC₁₈H₁₄O₂N. Schwer lösliches Pulver.
- 4. 2-[4-Isopropyl-phenyl]-chinolin-carbonsäure-(4), CO2H
 2-[4-Isopropyl-phenyl]-cinchoninsäure C12H17O2N, s.
 nebenstehende Formel. B. Durch Erwärmen von Brenztraubensäure
 mit 4-Isopropyl-benzaldehyd und Anilin in Alkohol (DOEBNER, A.
 249, 102). Hellgelbe Blättchen (aus Alkohol oder Eisessig). F: 201°. Schwer löslich in Wasser. Liefert beim Erhitzen mit Natronkalk 2-[4-Isopropyl-phenyl]-chinolin. —
 AgC18H16O2N. In Wasser schwer lösliches Pulver.

5. $2 - [\beta.\zeta - Dimethyl - \varepsilon (oder \zeta) - heptenyl] - 5.6 - benzo - chinolin - carbon-säure - (4), <math>2 - [\beta.\zeta - Dimethyl - \varepsilon (oder \zeta) - heptenyl] - 5.6 - benzo - cinchoninsäure (,, Citronellal - <math>\beta$ - naphthocinchoninsäure") $C_{23}H_{25}O_2N$, Formel I oder II. B.

Durch Erhitzen von Brenztraubensäure mit Citronellal und β -Naphthylamin in Alkohol (Doebner, B. 27, 2025). — Nadeln (aus verd. Alkohol). F: 225°. — Liefert beim Erhitzen über den Schmelzpunkt 2- $[\beta.\zeta$ -Dimethyl- ϵ (oder ζ)-heptenyl]-5.6-benzo-chinolin. — AgC₂₃H₂₄O₂N. Schwer lösliches Pulver.

12. Monocarbonsäuren $C_n H_{2n-23} O_2 N$.

1. 3.4-Benzo-carbazol-carbonsäure-(1) $C_{17}H_{11}O_2N$, s. nebenstehende Formel. B. Beim Erhitzen von 3-Oxy-naphthoesäure-(2) mit Phenylhydrazin unter Rückfluß (SCHÖFFF, B. 29, 268). — Gelbgrüne Nadeln (aus Eisessig). F: 325° (SCH.). Sehr schwer löslich in den meisten Lösungsmitteln (SCH.). — Liefert bei der Destillation mit Zinkstaub (SCH.) oder besser mit Kalk (Ullmann, A. 332, 102) 3.4-Benzo-carbazol. Beim Kochen mit Essigsäureanhydrid und entwässertem Natriumacetat entsteht eine krystallinische Verbindung $C_{19}H_{11}O_2N$ (?) [schmilzt noch nicht bei 350°; unlöslich in fast allen Lösungsmitteln und in Alkalien] (SCH.). — $Mg(C_{17}H_{10}O_2N)_2$ (bei 110°). Gelb. Schwer löslich in Wasser (SCH.).

Äthylester $C_{19}H_{15}O_2N = HNC_{16}H_9 \cdot CO_2 \cdot C_2H_5$. B. Bei der Einw. von Alkohol + Chlorwasserstoff auf 3.4-Benzo-carbazol-carbonsäure-(1) (SCHÖPFF, B. 29, 268). — Gelbe Nadeln (aus Eisessig). F: 175°. In organischen Lösungsmitteln leichter löslich als die entsprechende Säure.

2. Carbonsäuren $C_{18}H_{13}O_2N$.

- 1. 2.6-Diphenyl-pyridin-carbonsäure-(4), 2.6-Diphenyl-isonicotinsäure C₁₈H₁₈O₂N, s. nebenstehende Formel. B. Beim Erhitzen des Ammoniumsalzes der 2.6-Diphenyl-1.4-dihydro-pyridin-carbonsäure-(4) auf 270° (PAAL, STRASSER, B. 20, 2757, 2760). Neben 2.6-Diphenyl-piperidin-carbonsäure-(4) beim Erhitzen von Diphenacylessigsäure oder Diphenacylmalonsäure mit alkoh. Ammoniak im Rohr auf 120° (P., ST.; P., B. 29, 798). Beim Kochen von Diphenacyl-cyanessigsäure-alkylester mit alkoh. Kalilauge unter Luftabschluß (Klobb, Bl. [3] 29, 407). Nadeln (aus Alkohol, Eisessig oder Nitrobenzol). F: 275° (P., ST.), 278—279° (K.). Unzersetzt sublimierbar (P., ST.; K.). Fast unlöslich in Aceton, Chloroform und Schwefelkohlenstoff (K.), sehr schwer löslich in Benzol, etwas leichter in heißem Alkohol und Eisessig (P., ST.), sehr leicht in heißem Nitrobenzol (K.). Leicht löslich in Alkalilaugen und Alkalicarbonat-Lösung sowie in konz. Mineralsäuren (P., ST.). Zerfällt bei der Destillation des Calciumsalzes mit Calciumoxyd in Kohlendioxyd und 2.6-Diphenyl-pyridin (P., ST.; P.). Ist sehr beständig gegen Oxydationsmittel wie alkal. Permanganat-Lösung oder Chromessigsäure (P., ST.). Natriumsalz. Blätchen mit 3¹/2 H₂O. Leicht löslich in Wasser und Alkohol (K.; vgl. P., ST.). AgC₁₈H₁₂O₂N. Niederschlag. Etwas löslich in heißem Wasser (P., ST.). Ziemlich lichtbeständig (P., ST.; K.). Chloroaurat. Gelb, krystallinisch. Ziemlich sohwer löslich in Wasser und Alkohol (P., ST.). Wird durch heißes Wasser schnell in die Komponenten zerlegt (P., ST.).
- 2. 2-Styryl-chinolin-carbonsäure-(4), 2-Styryl-cinchoninsäure, w-Benzal-chinaldin-carbonsäure-(4)

 C₁₈H₁₃O₂N, s. nebenstehende Formel. B. Beim Kochen von Brenztraubensäure, Zimtaldehyd und Anilin in alkoh. Lösung (Doebner, Normalin von Brenztraubensäure, Zimtaldehyd und Anilin in sther. Lösung bei der Umsetzung von Brenztraubensäure, Zimtaldehyd und Anilin in sther. Lösung bei gewöhnlicher Temperatur, neben 1-Phenyl-5-oxo-4-phenylimino-2-styryl-pyrrolidin (D., P.; vgl. Gaezarolli-Thuenlackh, M. 20,

487; SIMON, CONDUCHÉ, A. ch. [8] 12, 17; BORSCHE, B. 41, 3886). Beim Erhitzen von 2-Methylchinolin-carbonsäure-(4) mit Benzaldehyd und Zinkehlorid (D., P.). — Gelbe Nadeln (aus Alkohol). Schmilzt bei 295° unter Bildung von 2-Styryl-chinolin (D., P.). Unlöslich in Wasser, schwer löslich in Äther, kaltem Alkohol, Benzol, Chloroform, Petroläther und kaltem Eisesig (D., P.). Die Lösung in salzsäurehaltigem Alkohol fluoresciert grün (D., P.). Löslich in warmen konzentrierten Mineralsäuren, Alkalilauge und Alkalicarbonat-Lösung (D., P.). — Liefert bei der Oxydation mit alkal. Permanganat-Lösung Chinolin-dicarbonsäure-(2.4) und Benzoesäure (D., P.). — AgC₁₈H₁₂O₂N (D., P.). — Mg(C₁₈H₁₂O₂N)₂. Gelbe Nadeln (aus Wasser) (D., P.).

- 3. 2-Styryl-chinolin-carbonsäure-(6), ω-Benzal-chinaldin-carbonsäure-(6) C₁₈H₁₃O₂N, s. nebenstehende Formel. B. Beim Erhitzen von 2-Methyl-chinolin-carbonsäure-(6) mit Benzaldehyd und Zinkchlorid auf 130—150° (v. Miller, B. 23, 2260). Gelbe Nadeln (aus verd. Essigsäure). F: 264°. Unlöslich in Wasser und den meisten organischen Lösungsmitteln, etwas löslich in heißem verdünntem Alkohol. Die Lösung in heißer verdünnter Alkalilauge ist farblos. Liefert bei der Oxydation mit Chromschwefelsäure Benzoesäure und Chinolin-dicarbonsäure-(2.6).
- 3. 2-Methyl-4.6-diphenyl-pyridin-carbonsäure-(3), 2-Methyl-4.6-diphenyl-nicotinsäure C₁₀H₁₆O₂N, s. nebenstehende Formel. B. Beim Erhitzen von 2-Methyl-4.6-diphenyl-3-cyan-pyridin mit konz. Salzsäure im Rohr auf 260° (v. Meyer, C. 1908 II, 594; J. pr. [2] 78, 528). Entsteht auch aus ihrem Amid beim Erhitzen mit Salzsäure auf ca. 210° (v. M.). Blättchen (aus Alkohol). F: 264°. Liefert bei der Destillation mit Natronkalk unter vermindertem Druck 2-Methyl-4.6-diphenyl-pyridin. Bei der Oxydation mit Kaliumpermanganat in Alkohol entsteht 4.6-Diphenyl-pyridin-dicarbonsäure-(2.3).

Amid $C_{19}H_{16}ON_2 = NC_5H(CH_3)(C_6H_5)_2 \cdot CO \cdot NH_2$. B. Beim Erhitzen von 2-Methyl-4.6-diphenyl-3-cyan-pyridin mit alkoh. Kalilauge im Rohr auf 160° (v. M., C. 1908 II, 594; J. pr. [2] 78, 528). — Nadeln mit 1H₂O. Schmilzt wasserfrei bei 216°.

Nitril, 2-Methyl-4.6-diphenyl-3-cyan-pyridin $C_{19}H_{14}N_2=NC_8H(CH_8)(C_6H_5)_2\cdot CN$. Beim Erwärmen von Benzalacetophenon mit β -Imino-butyronitril in absol. Alkohol in Gegenwart von Natriumäthylat (v. M., C. 1908 II, 594; J. pr. [2] 78, 526, 527). — Nadeln (aus Alkohol oder Aceton). F: 116°. Unlöslich in verd. Säuren. — $2C_{19}H_{14}N_2 + 2HCl + PtCl_4$. Goldgelbe Blättchen.

4. Carbonsäuren $C_{20}H_{17}O_2N$.

1. 2 - Methyl - 4 - phenyl - 6 - p - tolyl - pyridin - carbon - säure-(3), 2 - Methyl - 4 - phenyl - 6 - p - tolyl - nicotinsäure $C_{20}H_{17}O_2N$, s. nebenstehende Formel. $C_{13}C_{13}C_{13}$

Nitril, 2-Methyl-4-phenyl-6-p-tolyl-3-cyan-pyridin $C_{20}H_{16}N_{8}=NC_{5}H(CH_{2})(C_{6}H_{5})\cdot (C_{6}H_{4}\cdot CH_{3})\cdot CN$. B. Aus 4-Methyl- ω -benzal-acetophenon und β -Imino-butyronitril in Alkohol in Gegenwart von Natriumäthylat (v. M., C. 1908 II, 594; J. pr. [2] 78, 530). — Nadeln. F: 165°.

- 2. 2-Phenyl-1.2.3.4-tetrahydro-5.6-benzo-chinolin-carbonsäure-(4), 2-Phenyl-1.2.3.4-tetrahydro-5.6-benzo-cinchoninsäure ("Tetrahydrophenylnaphthochinolincarbonsäure") C₂₀H₁₇O₂N, s. nebenstehende Formel. B. Neben anderen Produkten bei der Einw. von Brenztraubensäure auf Benzal-β-naphthylamin in Chloroform oder Benzol in der Kälte (Simon, Mauguin, C. r. 144, 1276; vgl. Ciusa, Zerbini, G. 50 II [1920], 319 Anm. 1). Krystalle. F: 226° (Ci., G. 52 II [1922], 43, 44; vgl. a. Ci., Barattini, G. 56 [1926], 132).
- 5. $2 [2.3.3 Trimethyl cyclopenten (1) yl (1)] CO_2H$ 5.6 benzo chinolin carbon säure (4), $2 [2.3.3 Trimethyl cyclopenten (1) yl (1)] 5.6 benzo cinchoninsäure <math>C_{12}H_{21}O_2N$, s. nebenstehende Formel. B. $C_{C(OH_3)}O_{$

6. 2-[β.ζ-Dimethyl-α.ε-heptadienyl]-5.6-benzo-chinolin-carbonsäure-(4), 2-[β.ζ-Dimethyl-α.ε-heptadienyl]-5.6-benzo-cinchoninsäure (,, Citral-β-naphthocinchoninsäure") C₂₃H₂₃O₂N, s. nebenstehende Formel. B. Beim Kochen von Citral (Bd. I, S. 753; vgl. a. Ergw. Bd. I, S. 390) mit Brenztraubensäure und β-Naphthylamin in Alkohol (Doebner, B. 27, 354, 2026; 31, 3195; Tiemann, B. 31, 3313, 3324). — Citronengelbe Blättchen mit ½ H₂O (aus Alkohol). Die aus gewöhnlichem Citral hergestellte Säure schmilzt bei 199—200° (T., B. 31, 3313, 3327; vgl. D., B. 31, 3196, 3197), 200—201° (Schimmel & Co., Ber. v. April 1899, S. 72), die aus Citral b dargestellte Säure gegen 200° (T., Kerschbaum, B. 33, 881). Ein Gemisch der aus Citral a und Citral b hergestellten Säurepräparate zeigt fast keine Schmelzpunktsdepression (T., K.).

13. Monocarbonsäuren $C_n H_{2n-25} O_2 N$.

9-Phenyl-9.10-dihydro-acridin-carbonsäure-(9) C₂₀H₁₅O₂N, C₆H₅ CO₂H s. nebenstehende Formel.

10-Methyl-9-phenyl-9.10-dihydro-acridin-carbonsäure-(9)-nitril, 10-Methyl-9-phenyl-9-cyan-9.10-dihydro-acridin C₂₁H₁₆N₂ =

C₆H₄ C(C₆H₅)(CN) C₆H₄. B. Bei der Einw. von Kaliumcyanid auf 9-Phenyl-acridin-chlormethylat (Kaufmann, Albertini, B. 42, 2007) oder -jodmethylat (Hantzsch, Kalb, B. 32, 3126) in warmer wäßriger Lösung. — Nadeln (aus Alkohol, Benzol oder Ligroin), Spieße (aus Eisessig). F: 176° (H., K.), 182—183° (K., A.). Unlöslich in Wasser, löslich in den meisten organischen Lösungsmitteln (H., K.; K., A.). — Liefert beim Erhitzen mit konz. Salzsäure im Rohr auf 150—160° 9-Phenyl-acridin-chlormethylat zurück (K., A.). — Chloroplatinat. Goldgelbe Blättchen. F: 242—243° (K., A.). Liefert bei kurzem Erhitzen mit Salzsäure das Chloroplatinat des 9-Phenyl-acridin-hydroxymethylats (K., A.).

10-Äthyl-9-phenyl-9.10-dihydro-acridin-carbonsäure-(9)-nitril, 10-Äthyl-9-phenyl-9-cyan-9.10-dihydro-acridin $C_{22}H_{18}N_2 = C_6H_4 < \begin{array}{c} C(C_6H_5)(CN) \\ N(C_2H_5) \end{array} \subset C_6H_4$. B. Aus 9-Phenyl-acridin-jodäthylat und Kaliumcyanid in heißer wäßriger Lösung (KAUFMANN, ALBERTINI, B. 42, 2007). — Nadeln. F: 140°. Leicht löslich in Alkohol, Benzol, Eisessig und Chloroform, schwer in Äther und Ligroin.

14. Monocarbonsäuren $C_n H_{2n-27} O_2 N$.

1. Carbonsäuren $C_{20}H_{13}O_2N$.

1. 2-[Acridyl-(9)]-benzoesäure C₃₀H₁₃O₂N, s. nebenstehende
Formel. B. Bei längerem Erhitzen von Phthalsäureanhydrid mit Diphenylamin in Gegenwart von Zinkchlorid auf 180—200° (Bernthsen,
A. 224, 45). Aus 2-[3.6-Diamino-acridyl-(9)]-benzoesäure beim Diazotieren
und Verkochen der Diazoniumsalz-Lösung (R. Meyer, Gross, B. 32, 2370; vgl. BASF,
D. R. P. 73334; Frdl. 3, 296). — Gelbe Tafeln (aus Alkohol), gelbe Nadeln (durch Sublimation). F: 347° (Schwärzung) (Decker, Hock, B. 37, 1006). Fast unlöslich in heißem
Wasser, sehr schwer löslich in Ather, Chloroform, Benzol und heißem Alkohol (B.; vgl. a.
M., G.). Leicht löslich in verd. Mineralsäuren und Essigsäure mit grüner Fluorescenz (B.).
Die Lösungen in Alkalien sind farblos und fluorescieren bei starker Verdünnung blau (B.).
— Zerfällt bei stärkerem Erhitzen in Kohlendioxyd und 9-Phenyl-acridin (B.). Liefert bei der Reduktion mit Zinkstaub in Natronlauge 2-[9.10-Dihydro-acridyl-(9)]-benzoesäure
[farblose Blätter (aus Alkohol); F: 160—165° (Zers.); unlöslich in Wasser], die sich leicht wieder zu 2-[Acridyl-(9)]-benzoesäure oxydiert (B.; vgl. a. M., G.). Beim Erhitzen mit 70°/oiger Schwefelsäure bis auf 180° oder bei Einw. von rauchender Schwefelsäure bei höchstens 10° bildet sich 1(CO).9-Benzoylen-acridin (Bd. XXI, S. 364) (Decker, A. 348, 243, 244). Gibt beim Erhitzen mit Methyljodid auf 120° das Hydrojodid des 2-[Acridyl-(9)]-benzoesäure-methylesters (D., H.). — NaC₂₀H₁₂O₂N + aq. Farblose Blätter oder Nadeln. Leicht löslich in Wasser und Alkohol (B.). — C₂₀H₁₃O₂N + HCl. Dunkelgelbe Tafeln oder Nadeln. Zersetzt sich bei 163°. Sehr schwer löslich in Chloroform und Benzol, schwer in heißem Wasser, etwas löslich in heißem Alkohol und Äther (B.).

Methylester $C_{21}H_{15}O_2N=NC_{12}H_8\cdot C_6H_4\cdot CO_2\cdot CH_3$. B. Aus 2-[Acridyl-(9)]-benzoesäure beim Behandeln mit chlorwasserstoffhaltigem Methylalkohol auf dem Wasserbad oder beim Erhitzen mit Methyljodid oder Dimethylsulfat auf 120° (Decker, Hock, B. 37, 1007). — Hellgelbe Nadeln (aus Xylol). F: 173°. Unzersetzt sublimierbar. Leicht löslich in Benzol und Alkohol. Die Lösung in Säuren ist gelb und fluoresciert grün. Die Salze werden durch Dicarbonat in die Komponenten zerlegt. — Wird beim Kochen mit Natronlauge verseift. Liefert mit Methyljodid {2-[Acridyl-(9)]-benzoesäure-methylester}-jodmethylat. — $C_{21}H_{15}O_2N+HI$. Dunkelrote Krystalle. F: 228—230° (Zers.). — $2C_{21}H_{15}O_2N+H_2Cr_2O_7+H_2O$. Orangefarbene Blättchen. Schmilzt wasserfrei bei 147°. — Pikrat $C_{21}H_{15}O_2N+C_6H_3O_7N_3$. Gelbe Krystalle. F: 241° (Dunkelfärbung).

Äthylester $C_{22}H_{17}O_2N=NC_{18}H_8\cdot C_0H_4\cdot CO_2\cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in eine alkoh. Lösung von 2-[Acridyl-(9)]-benzoesäure bei 60—70° (Decker, Schenk, B. 39, 749). — Hellgelbe Nadeln (durch Sublimation). F: 161°. Die Lösung in verd. Säuren fluoresciert grün. — Wird beim Kochen mit Alkalilauge schnell verseift. — $C_{22}H_{17}O_2N+HI$. Orangefarbene Nadeln. F: 216° (Zers.). Wird beim Umlösen aus Wasser oder Alkohol teilweise zersetzt. — $2C_{22}H_{17}O_2N+H_2C_{17}O_7+H_2O$. Orangefarbene Nadeln. Schmilzt wasserfrei bei 141°. — Pikrat $C_{22}H_{17}O_2N+C_6H_3O_7N_3$. Gelbe Nadeln (aus Alkohol). F: 244°.

Chlorid $C_{20}H_{12}ONCl = NC_{13}H_{8} \cdot C_{9}H_{4} \cdot COCl$. B. Beim Eintragen von 2-[Acridyl-(9)]-benzoesäure in eine warme Lösung von Phosphorpentachlorid in Nitrobenzol (Dammann, Gattermann, Ztechr. f. Farben- u. Textilchemie 1, 326; C. 1902 II, 368). — Liefert beim Kochen mit Aluminiumchlorid in Schwefelkohlenstoff 1(CO).9-Benzoylen-acridin. — $C_{20}H_{12}ONCl + HCl$. Gelbe Nadeln

{2-[Acridyl-(9)]-benzoesäure}-hydroxymethylat C₂₁H₁₇O₂N = (HO)(CH₂)NC₁₂H₃·C₆H₄·CO₂H. B. Die Salze entstehen bei der Einw. von Säuren auf das Lacton der 2-[9-Oxy-10-methyl-9.10-dihydro-acridyl-(9)]-benzoesäure (Syst. No. 4287) (Decker, Hock, B. 37, 1004, 1010). — Die Lösungen der Salze sind gelb und fluorescieren grün (D., H.). Die Salze sind gegen Dicarbonat beständig (D., H.). — Beim Digerieren des Jodids mit Silberoxyd in Wasser erhält man eine neutral reagierende, gelbe, fluorescierende Lösung des Anhydrids ({2 [Acridyl-(9)]-benzoesäure}-methylbetain), das sich beim Versuch der Isolierung in das Lacton der 2-[9-Oxy-10-methyl-9.10-dihydro-acridyl-(9)]-benzoesäure umlagert (D., H.). Die letztgenannte Verbindung entsteht auch beim Zusatz von Alkalien zur Lösung des Anhydrids oder der Salze (D., H.), während bei Einw. von Ammoniak daneben noch das Lactam der 2-[9-Amino-10-methyl-9.10-dihydro-acridyl-(9)]-benzoesäure (Syst. No. 3576) erhalten wird (Decker, Schenk, B. 39, 751). — Salze: D., H. — Jodid C₂₁H₁₆O₂N·I + H₂O. Hellgelbe Blättehen (aus Wasser). Färbt sich gegen 100° rot und schmilzt bei 257—260° unter Abspaltung von Methyljodid und Bildung von 2-[Acridyl-(9)]-benzoesäure. Lieicht löslich in kaltem Wasser und Alkohol. — Dichromat (C₂₁H₁₆O₂N)₂Cr₂O₇. Orangerotes Krystallpulver. F: 252—255° (Zers.). — Pikrat C₂₁H₁₆O₂N·O·C₆H₂(NO₂)₃ (bei 110°). Krystallisiert aus Alkohol in gelben Prismen, die Krystallalkohol enthalten. F: 212—215°. Schwer löslich in Alkohol.

{2-[Acridyl-(9)]-benzoesäure-methylester}-hydroxymethylat C₂₂H₁₉O₃N = (HO)(CH₃)NC₁₃H₈·C₆H₄·CO₃·CH₃. B. Das Jodid entsteht bei der Einw. von Methyljodid auf 2-[Acridyl-(9)]-benzoesäure-methylester (Decker, Hock, B. 37, 1003). Das methylschwefelsaure Salz erhält man beim Erwärmen von 2-[Acridyl-(9)]-benzoesäure-methylester mit Dimethylsulfat auf 120° oder bei der Einw. von Dimethylsulfat auf das Lacton der 2-[9-Oxy-10-methyl-9.10-dihydro-acridyl-(9)]-benzoesäure bei 120—140° (D., H.). — Die Salze lösen sich in Wasser mit gelbgrüner Fluorescenz, sind in wäßr. Lösung beständig und durch Dicarbonat nicht fällbar (D., H.). — Sie gehen bei der Einw. von Natronlauge allmählich in das Lacton der 2-[9-Oxy-10-methyl-9.10-dihydro-acridyl-(9)]-benzoesäure über (D., H.), bei Anwendung von Ammoniak bildet sich daneben das Lactam der 2-[9-Amino-10-methyl-9.10-dihydro-acridyl-(9)]-benzoesäure (D., SCHENK, B. 39, 751). — Salze: D., H. — Jodid C₂₂H₁₈O₂N·I. B. s. o. Entsteht auch beim Zusatz einer konz. Kaliumjodid-Lösung zur Lösung des methylschwefelsauren Salzes (D., H.). Granatrote Nadeln (aus Alkohol). F: 226° bis 227° (Zers.). — Trichromat (C₂₂H₁₈O₂N)₂Cr₃O₁₀. Orangefarbene Würfel (aus Wasser). Schmilzt oberhalb 200° (Zers.). — Salz der Methylschwefelsäure. Leicht löslich in Wasser. — Pikrat C₂₂H₁₈O₂N·O·C₆H₃(NO₃)₃. Gelbe Nadeln. F: 201°.

{2-[Acridyl-(9)]-bensoesäure-äthylester}-hydroxymethylat $C_{23}H_{21}O_{3}N=(HO)(CH_{3})NC_{13}H_{3}\cdot C_{6}H_{4}\cdot CO_{2}\cdot C_{2}H_{5}.$ — Jodid $C_{23}H_{20}O_{2}N\cdot I.$ B. Beim Erwärmen von 2-[Acridyl-(9)]-benzoesäure-äthylester mit Dimethylsulfat auf 120° und Umsetzen des entstandenen methylschwefelsauren Salzes mit Kaliumjodid (Decker, Schenk, B. 89, 750). Granatrote Nadeln. F: 220° (Zers.). Liefert bei Einw. von Ammoniak dieselben Verbindungen wie die Salze des {2-[Acridyl-(9)]-benzoesäure-methylester}-hydroxymethylats.

- 2. 9-Phenyl-acridin-carbonsäure-(2) C₂₀H₁₂O₂N, s. nebenstehende Formel. B. Beim Erwärmen von 2-Methyl-9-phenyl-acridin mit Kaliumdichromat in verd. Schwefelsäure (Bonna, A. 239, 62). —

 Krystalle (aus Alkohol). F: 252—255° (Zers.). Löslich in Alkalilauge und Alkalicarbonat-Lösung. Gibt beim Erhitzen mit Natronkalk 9-Phenyl-acridin. —

 AgC₂₀H₁₂O₂N (bei 110°). Gelbe Krystalle (aus Alkohol). Färbt sich am Licht grünlich. —

 Ba(C₂₀H₁₂O₂N)₂. Krystallpulver (aus Wasser).
- 3. 2-Phenyl-7.8-benzo-chinolin-carbonsäure-(4), 2-Phenyl-7.8-benzo-cinchoninsäure (,,α-Phenyl-α-naphthocinchoninsäure) C₂₀H₁₃O₂N, s. nebenstehendeFormel. B. Aus Brenztraubensäure, Benzaldehyd und α-Naphthylamin in kalter ätherischer oder siedender alkoholischer Lösung (Doebner, Kuntze, A. 249, 110). Citronengelbe Nadeln (aus Alkohol + Aceton). F: 300° (Zers.). Unlöslich in Wasser, schwer löslich in kaltem Alkohol und Äther, löslich in heißem Alkohol, Aceton, Chloroform und heißem Eisessig. Die alkoh. Lösung fluoresciert blau. Löslich in heißen konzentrierten Mineralsäuren. Leicht löslich in Alkalilauge und Alkalicarbonat-Lösung. Zerfällt beim Erhitzen mit Natronkalk in Kohlendioxyd und 2-Phenyl-7.8-benzo-chinolin. Bei der Oxydation mit alkal. Permanganat-Lösung entstehen 2-Phenyl-6-[2-carboxy-phenyl]-pyridindicarbonsäure-(4.5), 6-Phenyl-2.3(CO)-benzoylen-pyridin-carbonsäure-(4) und Benzoesäure. NaC₂₀H₁₂O₂N + ½ H₂O. Nadeln (aus Wasser). Schwer löslich in kaltem Wasser. Cu(C₂₀H₁₃O₂N)₂. Grüne, unlösliche Flocken. AgC₂₀H₁₂O₂N. Unlösliches Pulver. Ca(C₂₀H₁₃O₂N)₂ + 4H₂O. Flocken. Fast unlöslich in Wasser. Zn(C₂₀H₁₂O₂N)₂. Citronengelber Niederschlag. Unlöslich in Wasser. Pb(C₂₀H₁₂O₂N)₂. Orangegelbe Flocken. Unlöslich in Wasser.

Äthylester $C_{22}H_{17}O_2N = NC_{13}H_7(C_6H_5) \cdot CO_2 \cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in eine Lösung von 2-Phenyl-7.8-benzo-chinolin-carbonsäure-(4) in absol. Alkohol (D., K., A. 249, 114). Entsteht auch beim Erhitzen des Silbersalzes der Säure mit Äthyljodid auf 150° (D., K.). — Gelbe Nadeln (aus Äther). F: 103°. Unlöslich in Wasser, löslich in Alkohol. — Wird bei anhaltendem Kochen mit alkoh. Kalilauge verseift.

4. 2-Phenyl-5.6-benzo-chinolin-carbonsäure-(4), 2-Phenyl-5.6-benzo-cinchoninsäure (,α. Phenyl-β-naphthocincho. ninsäure") C₂₀H₁₂O₂N, s. nebenstehende Formel. Zur Konstitution vgl. Doebner, Peters, B. 23, 1231; Ctusa, R. A. L. [5] 23 II [1914], 263; G. 46 I [1916], 136, 139; Ct., Buogo, R. A. L. [5] 23 II, 265. — B. Aus Brenztraubensäure, Benzaldehyd und β-Naphthylamin in kalter ätherischer oder heißer alkoholischer Lösung (Doebner, Kuntze, A. 249, 129). Neben anderen Produkten bei der Einw. von Brenztraubensäure auf Benzal-β-naphthylamin in Chloroform oder Benzol in der Kälte (Simon, Mauguin, C. r. 144, 1276). Bei der Einw. von Oxalessigsäure auf Benzal-β-naphthylamin in warmem Alkohol (S., M., C. r. 143, 468; A. ch. [8] 13, 390). Neben 2-Phenyl-5.6-benzo-chinolin beim Kochen von 2-Phenyl-1.2-dihydro-5.6-benzo-chinolin-dicarbonsäure-(3.4)-diäthylester mit alkoh. Kalilauge (S., M., C. r. 143, 466; A. ch. [8] 13, 388). — Nadeln (aus Isoamylalkohol + Eisessig), Krystalle (aus Essigsäureanhydrid). F: 2966 (Zers.) (D., K.; vgl. S., M., C. r. 143, 467; A. ch. [8] 13, 391). Unlöslich in wasser, sehr schwer löslich in den meisten organischen Lösungsmitteln (D., K.). Löslich in heißen konzentrierten Mineralsäuren (D., K.). Leicht löslich in Alkalilauge, Ammoniak und heißer Alkalicarbonat-Lösung (D., K.). — Zerfällt beim Erhitzen für sich oder mit Natronkalk in Kohlendioxyd und 2-Phenyl-5.6-benzo-chinolin (D., K.; S., M., C. r. 143, 467; A. ch. [8] 13, 391, 393). Ist sehr beständig gegen Oxydationsmittel wie alkalische Permanganat-Lösung oder Chromtrioxyd (D., K.). — NaC₂₀H₁₂O₂N+5H₂O. Nadeln. Schwer löslich in kaltem, leichter in heißem Wasser (D., K.). — Kupfersalz. Hellgrüm. Wird nach dem Trocknen fast farblos (D., K.). — Kupfersalz. Blaue Prismen (S., M., C. r. 143, 468). — AgC₂₀H₁₁O₂N. Flocken (D., K.). — Zn(C₂₀H₁₂O₂N)₂+6H₂O. Nadeln. Schwer löslich in kaltem, leicht in heißem Wasser (D., K.). — Zn(C₂₀H₁₂O₂N)₂+2H₂O. Citronengelbe Flocken (D., K.).

Methylester $C_{31}H_{15}O_{3}N = NC_{13}H_{7}(C_{6}H_{5}) \cdot CO_{2} \cdot CH_{3}$. Bei der Einw. von Dimethylsulfat auf 2-Phenyl-5.6-benzo-chinolin-carbonsäure-(4) (Simon, Mauguin, C. r. 143, 468; A. ch. [8] 13, 392). — Nadeln. F: 128°. — Beständig gegen siedende konzentrierte Kalilauge.

Äthylester $C_{22}H_{17}O_2N = NC_{12}H_{7}(C_6H_5) \cdot CO_2 \cdot C_3H_6$. B. Neben etwas $[\alpha \cdot (\beta \cdot Naphthylamino) \cdot benzyl] - brenztraubensäure - äthylester bei der Einw. von Brenztraubensäure - äthylester auf Benzal - <math>\beta$ - naphthylamin in Chloroform oder Benzol in der Kälte (S., M., C. r. 144, 1278).

- 2-[2-Nitro-phenyl]-5.6-benzo-chinolin-carbonsäure-(4) $C_{20}H_{12}O_4N_2=NC_{12}H_{7}(C_6H_4\cdot NO_2)\cdot CO_3H$. Beim Kochen von Brenztraubensäure mit 2-Nitro-benzaldehyd und β -Naphthylamin in absol. Alkohol (Ciusa, R. A. L. [5] 16 II, 203; G. 37 II, 543). Nadeln (aus Alkohol). F: 265° (Bräunung). Sehr schwer löslich in den gewöhnlichen Lösungsmitteln. Leicht löslich in Säuren, Alkalilauge, Alkalicarbonat-Lösung und Ammoniak.
- 5. 3-Phenyl-5.6-benzo-chinolin-carbonsäure-(4), 3-Phenyl-5.6-benzo-cinchoninsäure (,, β -Phenyl- β -naphthocinchoninsäure")C₃₀H₁₃O₂N, s. nebenstehende Formel. B. Bei längerem Erwärmen einer alkoh. Lösung von Phenylbrenztraubensäure mit β -Naphthylamin und 40% giger Formaldehyd-Lösung (Borsche, B. 42, 4081). Krystallflocken. Gibt beim Schmelzen 3-Phenyl-5.6-benzo-chinolin.

- 2. 2 Methyl 3 phenyl 5.6 benzo chinolin carbon-säure (4), 2 Methyl 3 phenyl 5.6 benzo cinchoninsäure (,, α Methyl β phenyl β naphthocinchoninsäure ") C₂₁H₁₅O₂N, s. nebenstehende Formel. B. Beim Erwärmen von Phenylbrenztraubensäure mit Acetaldehyd und β -Naphthylamin in Alkohol (Borsone, B. 42, 4080). Nadeln (aus verd. Salzsäure). Unlöslich in den üblichen organischen Solvenzien. Gibt beim Schmelzen 2-Methyl-3-phenyl-5.6-benzo-chinolin.
- 3. 2-[4-Isopropyl-phenyl]-5.6-benzo-chinolin-carbonsäure-(4), 2-[4-Isopropyl-phenyl]-5.6-benzo-cinchoninsäure C₂₃H₁₉O₂N, s. nebenstehende Formel. B. Beim Erhitzen von Cuminaldehyd mit Brenztraubensäure und β-Naphthylamin in Alkohol (Doebner, B. 27, 2030). Citronengelbe Nadeln. F: 255°. Löslich in Alkohol. Liefert beim Erhitzen über den Schmelzpunkt 2-[4-Isopropyl-phenyl]-5.6-benzo-chinolin. Hydrochlorid. Schwefelgelbe Nadeln (aus alkoh. Salzsäure).

15. Monocarbonsäuren C_nH_{2n-29}O₂N.

- 1. Carbonsäuren $C_{22}H_{15}O_2N$.
- 1. 2.3-Diphenyl-chinolin-carbonsäure-(4), 2.3-Diphenyl-cinchoninsäure C₂₂H₁₅O₂N, s. nebenstehende Formel. B. Bei vorsichtigem Zusatz einer alkoh. Lösung von Desoxybenzoin zu einer siedenden alkoholisch-alkalischen Lösung von Isatin (Pfitzinger, J. pr. [2] 56, 299).

 Nadeln (aus Alkohol). F: 295° (Zers.) (Pf.). Leicht löslich in heißem Eisessig und warmem Aceton, schwer in heißem Alkohol, in Äther und Benzol, fast unlöslich in Petroläther und heißem Wasser (Pf.). Löslich in heißen verdünnten Mineralsäuren (Pf.). Zerfällt beim Erhitzen über den Schmelzpunkt in Kohlendioxyd und 2.3-Diphenyl-chinolin (Pf.). Bleibt beim Behandeln mit alkoh. Salzsäure unverändert (Pf.). Steigert die Harnsäure-Ausscheidung beim Menschen (Nicolaier, Dohen, Dtech. Arch. klin. Med. 93, 346). NaC₂₂H₁₄O₂N + 8 H₂O. Nadeln (aus Wasser). Sehr leicht löslich in heißem Wasser und kaltem absolutem Alkohol; ist in wasserfreiem Zustand sehr hygroskopisch (Pf.). AgC₂₃H₁₄O₂N + H₂O. Krystallpulver (Pf.). Ca(C₂₁H₁₄O₂N)₂ + 9 H₂O. Nadeln (aus Wasser). Löslich in kaltem, leicht löslich in heißem Wasser; ist in wasserfreiem Zustand sehr hygroskopisch (Pf.). Hydrochlorid. Tafeln. Wird durch Wasser in die Komponenten zerlegt.
- 2. 2-Styryl-7.8-benzo-chinolin-carbonsdure-(4),
 2-Styryl-7.8-benzo-cinchoninsdure (,,α-Cinnamenyl-α-naphthocinchoninsdure") C₂₂H₁₂O₂N, s. nebenstehende
 Formel. B. Aus Brenztraubensdure, Zimtaldehyd und α-Naphthylamin in kalter ätherischer oder warmer alkoholischer Lösung (Doebner, Peters, B. 23, 1229, 1231). Citronengelbe Nadeln (aus Eisessig). F: 256° (Zers.). Unlöslich in Wasser, sehr schwer löslich in Äther, Petroläther, Benzol und Chloroform, etwas leichter in Alkohol, Aceton und Eisessig. Löslich in

heißen konzentrierten Säuren; die sauren Lösungen fluorescieren grün. — Zerfällt bei der Destillation für sich oder mit Natronkalk in Kohlendioxyd und 2-Styryl-7.8-benzo-chinolin. Wird von alkal. Permanganat-Lösung in der Kälte zu 7.8-Benzo-chinolin-dicarbonsäure-(2.4), in der Wärme zu 2.3(CO)-Benzoylen-pyridin-dicarbonsäure-(4.6) oxydiert. — Die Alkalisalze krystallisieren in Nadeln und sind in Wasser leicht löslich. — $\operatorname{Cu}(C_{22}H_{14}O_{2}N)_{2} + H_{2}O$. Grüngelbe Löcken. — $\operatorname{AgC}_{22}H_{14}O_{2}N$. Gelblicher Niederschlag. — $\operatorname{Ba}(C_{22}H_{14}O_{2}N)_{2} + 2H_{2}O$. Hellgelb. Löslich in heißem Wasser.

3. 2-Styryl-5.6-benzo-chinolin-carbonsäure-(4),
2-Styryl-5.6-benzo-cinchoninsäure (,,α-Cinnamenylβ-naphthocinchoninsäure") C₂₂H₁₈O₂N, s. nebenstehende
Formel. B. Aus Brenztraubensäure, Zimtaldehyd und β-Naphthylamin in kalter ätherischer oder warmer alkoholischer Lösung
(Doebneb, Peters, B. 23, 1229, 1238). — Citronengelbe Nadeln (aus Alkohol + Salzsäure).
F: 305°. Unlöslich in Wasser, Äther, kaltem Alkohol, Chloroform, Benzol und Petroläther, schwer löslich in Aceton, Eisessig und heißem Alkohol. — Zerfällt beim Erhitzen für sich oder mit Natronkalk in Kohlendioxyd und 2-Styryl-5.6-benzo-chinolin. Wird von alkal.
Permanganat-Lösung in der Kälte zu 5.6-Benzo-chinolin-dicarbonsäure-(2.4), in der Wärme zu 2(CO).3-Benzoylen-pyridin-dicarbonsäure-(4.6) oxydiert. — Natriumsalz. Nadeln.
Schwer löslich in kaltem, leicht in heißem Wasser. — AgC₂₂H₁₄O₂N. Flocken. — Strontiumsalz. Gelbe Nadeln. Löslich in heißem Wasser.

2. Carbonsäuren $C_{23}H_{17}O_2N$.

- 1. 2 Phenyl 3 benzyl chinolin carbonsaure (4), 2-Phenyl-3-benzyl-cinchoninsaure C₂₈H₁₇O₂N, s. nebenstehende Formel. B. Neben 4.5-Dioxo-1.2-diphenyl-3-benzyl-pyrrolidin beim Erwärmen von Benzylbrenztraubensäure mit Benzaldehyd und Anilin in Alkohol (Borsche, B. 42, 4086). Nadeln (aus Alkohol). Schmilzt bei 290° unter Bildung von 2-Phenyl-3-benzyl-chinolin. Löslich in Soda-Lösung.
- 2. 3 Phenyl 2 benzyl chinolin carbonsäure (4),
 3-Phenyl-2-benzyl-cinchoninsäure C₂₃H₁₇O₂N, s. nebenstehende
 Formel. B. Beim Erhitzen von Isatin mit Dibenzylketon in alkoholischalkalischer Lösung (Engelhard, J. pr. [2] 57, 467). Nadeln (aus
 Alkohol). F: 293—295°. Löslich in heißem Alkohol, Aceton und Eisessig, unlöslich in Äther,
 Benzol, Ligroin und Wasser. Leicht löslich in Natronlauge, Soda-Lösung und Ammoniak.
 Liefert beim Erhitzen über den Schmelzpunkt oder mit Natronkalk in geringer Menge
 3-Phenyl-2-benzyl-chinolin. AgC₂₃H₁₆O₂N. Nadeln (aus Wasser). Sehr schwer löslich in
 Wasser. Hydrochlorid. Nadeln. Wird durch Wasser in die Komponenten zerlegt.
- 3. 7 Methyl 2 phenyl 3 benzyl chinolin carbon-săure (4), 7 Methyl 2 phenyl 3 benzyl cinchonin-săure C₂₄H₁₀O₂N, s. nebenstehende Formel. B. Aus Benzyl-brenztraubensăure, Benzaldehyd und m-Toluidin in Alkohol in der Wärme (Borsche, B. 42, 4087). Nadeln (aus Essigsäure). Löslich in warmer verdünnter Soda-Lösung. Gibt beim Schmelzen 7-Methyl-2-phenyl-3-benzyl-chinolin.
- 4. 2 Methyl 4.5.6 triphenyl 1.4 dihydro-pyridin carbonsāure (3), 2 Methyl 4.5.6 triphenyl 1.4 dihydro-nicotinsāure $C_{25}H_{21}O_2N = C_0H_5 \cdot C \cdot CH(C_0H_5) \cdot C \cdot CO_2H$ $C_0H_5 \cdot C NH C \cdot CH_2$
- 1.2 Dimethyl 4.5.6 triphenyl 1.4 dihydro pyridin carbonsäure (3) äthylester $C_{28}H_{27}O_2N = \frac{C_6H_5 \cdot C \cdot CH(C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5}{C_6H_5 \cdot C N(CH_8) C \cdot CH_3}$. B. Aus dem Natriumsalz des $\beta.\gamma$ -Diphenyl- α -acetyl- γ -benzoyl-buttersäure-āthylesters und salzsaurem Methylamin in alkoh. Methylamin-Lösung (RABE, A. 360, 275). Gelb, amorph. F: 88°. Beständig gegen Mineralsäuren.

16. Monocarbonsäuren C_n H_{2n-31}O₂N.

1. 2.4.6 - Triphenyi - pyridin - carbonsäure - (3), 2.4.6 - Triphenyi - nicotinsäure $C_{24}H_{17}O_2N$, s. nebenstehende Formel.

CeHs COsH

Nitril, 2.4.6-Triphenyl-8-cyan-pyridin $C_{34}H_{16}N_{3}=NC_{5}H(C_{6}H_{5})_{2}$. $C_{6}H_{5}$.

2. 2.4 - Diphenyl - 6 - p - tolyl - pyridin - carbon saure - (5), 4.6 - Diphenyl - 2 - p - tolyl - nicotin saure $C_{95}H_{19}O_2N$, s. nebenstehende Formel.

HO₂C.

OH₂·CeH₄.

N·CeH₅

Nitril, 2.4-Diphenyl-6-p-tolyl-5-cyan-pyridin $C_{25}H_{18}N_2 = NC_5H(C_6H_5)_8(C_6H_4 \cdot CH_4) \cdot CN$. B. Aus Benzalacetophenon und β -Imino- β -p-tolyl-propionsaure-nitril in Alkohol in Gegenwart von Natriumathylat (v. M., C. 1908 II, 594; J. pr. [2] 78, 530). — Nadeln (aus Alkohol). F: 185°.

17. Monocarbonsäuren $C_n H_{2n-33} O_2 N$.

1. 2.6 - Diphenyl - 4 - styryl - pyridin - carbonsäure - (3), CH:OH·C6Hs 2.6 - Diphenyl - 4 - styryl - nicotinsäure, 2.6 - Diphenyl - γ - stilbazol - carbonsäure - (3) $C_{10}H_{10}O_{2}N$, s. nebenstehende $C_{0}H_{10}O_{2}N$ Formel.

Nitril, 2.6-Diphenyl-8-cyan- γ -stilbasol $C_{26}H_{18}N_2 = NC_8H(C_6H_5)_2(CH:CH\cdot C_6H_5)\cdot CN$. Aus Cinnamalacetophenon und β -Imino- β -phenyl-propionsäure-nitril in Alkohol bei Gegenwart von Natriumäthylat (v. Meyer, C. 1908 II, 594; J. pr. [2] 78, 531). — Nadeln. F: 184°.

2. 2-Phenyl-6-p-tolyl-4-styryl-pyridin-carbon-săure-(5), 6-Phenyl-2-p-tolyl-4-styryl-nicotin-săure, 2-Phenyl-6-p-tolyl- γ -stilbazol-carbon- $_{CH_3,C_6H_4}$. $_{N}$ - $_{C_6H_5}$ -săure-(5) $_{C_2H_3,C_3N}$, s. nebenstehende Formel.

Nitril, 2-Phenyl-6-p-tolyl-5-cyan-y-stilbasol $C_{27}H_{20}N_2=NC_5H(C_6H_5)(C_6H_4\cdot CH_2)(CH:CH\cdot C_6H_5)\cdot CN$. B. Aus Cinnamalacetophenon und β -Imino- β -p-tolyl-propionsaure-nitril in Alkohol bei Gegenwart von Natriumathylat (v. M., C. 1908 II, 594; J. pr. [2] 78, 531). — Nadeln. F: 181°.

18. Monocarbonsäuren C_nH_{2n-85}O₂N.

1. 2.3 - Diphenyl - 5.6 - benzo - chinolin - carbonsaure - (4), Co₃H 2.3 - Diphenyl - 5.6 - benzo - cinchoninsaure $(,,\alpha.\beta-Diphenyl-\beta-naphthocinchoninsaure'')$ Co₃H β -naphthocinchoninsaure'') Co₃H β -naphthocinchoninsaure, Benzaldehyd und β -Naphthylamin in Alkohol in der Wärme (Borsche, B. 42, 4079). — Blaßgelbes Krystallpulver (aus Anilin + Alkohol oder Nitrobenzol + Alkohol). Schmilzt bei ca. 275° unter Bildung von 2.3-Diphenyl-5.6-benzo-chinolin. Sehr schwer löslich in den gewöhnlichen organischen Lösungsmitteln, ziemlich leicht in heißem Anilin und Nitrobenzol. Löslich in warmer verdünnter Soda-Lösung.

2-Phenyl-3-[2-nitro-phenyl]-5.6-benzo-chinolin-carbonsăure-(4) $C_{26}H_{16}O_4N_2 = NC_{12}H_6(C_6H_8)(C_6H_4\cdot NO_2)\cdot CO_2H$. B. Beim Erwärmen von 2-Nitro-phenylbrenztraubensäure mit Benzal- β -naphthylamin in Alkohol (B., B. 42, 4083). — Gelbliche Nadeln (aus Nitrobenzol + Alkohol). Unlöslich in den üblichen organischen Lösungsmitteln, ziemlich leicht löslich in warmem Nitrobenzol. — Geht beim Schmelzen in 2-Phenyl-3-[2-nitro-phenyl]-5.6-benzo-chinolin über.

2. 2-Phenyl-3-benzyl-5.6-benzo-chinolin-carbon-säure-(4), 2-Phenyl-3-benzyl-5.6-benzo-cinchonin-säure (,, α -Phenyl- β -benzyl- α -naphthocinchonin-säure") $C_{27}H_{19}O_2N$, s. nebenstehende Formel. B. Beim Erwärmen von Benzylbrenztraubensäure mit Benzaldehyd und β -Naphthylamin in Alkohol (Borsche, B. 42, 4087). — Blaßgelbes Krystallpulver. Leicht löslich in Alkalilauge. — Gibt beim Erhitzen 2-Phenyl-3-benzyl-5.6-benzo-chinolin.

B. Dicarbonsäuren.

1. Dicarbonsäuren $C_n H_{2n-3} O_4 N$.

1. Äthylenimin- $\alpha.\alpha'$ -dicarbonsäure, $\alpha.\alpha'$ -lmino-bernsteinsäure $C_4H_5O_4N=HO_2C\cdot HC\frac{}{\sim NH}$ CH $\cdot CO_2H$.

α.α'-Imino-bernsteinsäure-monoäthylester C₆H₉O₄N = HO₂C·HC CH·CO₂·C₂H₅¹). B. Beim Lösen von α.α'-Imino-bernsteinsäure-äthylesteramid in Salzsäure (Lehrfeld, B. 14, 1822; Hell, Pollakow, B. 25, 646). — Nadeln (aus Wasser). Schmeckt bitter (L.). F: 100° (L.), 98° (Zers.) (H., P.). Schwer löslich in kaltem Wasser, leicht in Alkohol, Ather und Alkalien (L.). Bei der Einw. von salpetriger Säure entsteht Oxalsäure (L.). — KC₆H₈O₄N. Krystallpulver (L.).

 $\alpha.\alpha'$ -Imino-bernsteinsäure-äthylester-amid, $\alpha.\alpha'$ -Imino-succinamidsäure-äthylester $C_0H_{10}O_3N_2=C_2H_5\cdot O_2C\cdot HC$ NH— $CH\cdot CO\cdot NH_2^{-2}$). B. Durch Einleiten von Ammoniak in die alkoh. Lösung des Diäthylesters der hochschmelzenden $\alpha.\alpha'$ -Dibrom-bernsteinsäure (Bd. II, S. 624) bei 60—70° (Lehrfeld, B. 14, 1820; Hell, Pollakow, B. 25, 645). — Nadeln (aus warmem wäßrigem Ammoniak). Schmeckt süß (L.; H., P.). Schmilzt unter Zersetzung bei 118° (unkorr.) (L.), 116° (H., P.). Leicht löslich in Alkohol, schwer in heißem Wasser und in Ather, unlöslich in Schwefelkohlenstoff und Benzol (L.; H., P.). — Entfärbt in äther. Lösung Brom (L.). Gibt beim Lösen in Salzsäure $\alpha.\alpha'$ -Imino-bernsteinsäure-monoäthylester (L.; H., P.). Wird durch Erwärmen mit Alkalien unter Ammoniak-Entwicklung zersetzt (H., P.).

 $\alpha.\alpha'$ - Imino - bernsteinsäure - diamid, $\alpha.\alpha'$ - Imino - succinamid $C_4H_7O_2N_3 = H_2N \cdot CO \cdot HC - NH_2 \cdot CO \cdot NH_2 \cdot B$. Beim Erhitzen des Diäthylesters der hochschmelzenden $\alpha.\alpha'$ -Dibrom-bernsteinsäure mit alkoh. Ammoniak auf 120—130° (Hell, Poliakow, B. 25, 648). — Gelbliche Blättchen (aus Alkohol). F: 175—176°. Löslich in heißem Wasser, Alkohol und Äther. — Entwickelt bei der Einw. von Alkalien schon in der Kälte Ammoniak.

2. Dicarbonsăuren $C_6H_9O_4N$.

1. Pyrrolidin - dicarbons dure - (2.2), $Pyrrolidin - \alpha.\alpha - dicarbons dure C_6H_9O_4N = H_2C - CH_2 H_2C \cdot NH \cdot C(CO_1H)_2$

¹) Die Konstitution dieser Verbindung ist nicht bewiesen; man kann für sie auch die Formeln eines Iminobernsteinsäure-monoäthylesters bezw. Aminobutendisäure-monoäthylesters HO₂C·C(:NH)·CH₂·CO₂·C₂H₅ bezw. HO₂C·C(NH₂):CH·CO₂·C₂H₅ oder HO₂C·CH₂·C(:NH)·CO₂·C₂H₅ bezw. HO₂C·CH:C(NH₂)·CO₂·C₂H₅ (vgl. Bd. III, S. 780, 784, 785) in Betracht ziehen; vgl. a. Curtius, Dörr, J. pr. [2] 125, 428.

*) Für die Konstitution dieser Verbindung kommen auch die Formeln eines Iminobernsteinsäure-äthylester-amids bezw. Aminobutenamidsäure-äthylesters C₂H₅·O₂C·C(:NH)·CH₂·CO·NH₂ bezw. C₂H₅·O₂C·C(NH₂): CH·CO·NH₃ oder C₂H₅·O₂C·CH₂·C(:NH)·CO·NH₃ bezw. C₂H₅·O₂C·CH: C(NH₂)·CO·NH₃ (vgl. Bd. III, S. 785) in Betracht; vgl. a. CURTIUS, B. 45, 1078.

5) Für die Konstitution dieser Verbindung kann man auch die Formeln eines Iminobernsteinsäure-diamids bezw. Aminobutendiamids oder α.α'-Diamino-bernsteinsäure-imids H₂N·CO·C(:NH)·CH₂·CO·NH₂ bezw. H₂N·CO·C(NH₂): CH·CO·NH₂ (vgl. Bd. III, S. 786) oder H₂N·HC·CO NH in Betracht ziehen.

Pyrrolidin-a.a-dicarbonsäure-diamid $C_6H_{11}O_2N_3 = \frac{H_2C - CH_2}{H_2C \cdot NH \cdot C(CO \cdot NH_2)_2}$. B. Beim Erhitzen von a.ô-Dibrom-butan-a.a-dicarbonsäure-diāthylester (Bd. II, S. 658) mit ca. 12 Mol methylalkoholischem Ammoniak im Rohr auf 140° (Wilstätter, B. 33, 1164; W., Ettinger, A. 326, 101). — Oktaeder und würfelähnliche Säulen (aus Wasser), Tafeln (aus Essigester). Rhombisch (Gossner, A. 326, 103). F: 162—162,5°; bei vorsichtigem Erhitzen ohne Zersetzung flüchtig; leicht löslich in der Wärme in Wasser, Alkohol, Chloroform, Aceton und Essigester, unlöslich in Äther, Benzol und Ligroin; gibt mit Quecksilberchlorid einen in heißem Wasser löslichen Niederschlag (W., E.). — Spaltet beim Kochen mit Alkalien 2 Mol Ammoniak ab; die Verseifung mit Mineralsäuren führt unter Abspaltung von Kohlendioxyd zu inakt. Pyrrolidin-a-carbonsäure (W., E.). Die überhitzten Dämpfe röten einen mit Salzsäure getränkten Fichtenspan (W., E.). — Chloroaurat. Spieße oder rhombenähnliche Tafeln. F: 180,5°; sehr leicht löslich in heißem Wasser (W., E.). — Pikrat $C_6H_{11}O_2N_3 + C_6H_3O_7N_2$. Gelbe Prismen. F: 234—235° (Zers.); leicht löslich in heißem, schwer in kaltem Wasser und in Alkohol (W., E.).

N - Methyl - pyrrolidin - $\alpha.\alpha$ - diearbonsäure - mono - methylamid $C_8H_{14}O_3N_2=H_2C$ ——CH₂
. B. Beim Kochen von N-Methyl-pyrrolidin- $\alpha.\alpha$ -diearbon-laure-bis-methylamid mit 4 Mol Bariumhydroxyd in ca. 20% (giger Lösung (Willstätter, Ettiliger, A. 326, 113). — Tafeln oder Prismen (aus Aceton + Wasser). F: 137° (Zers.). Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther. Reagiert neutral. Gibt mit Goldchlorid und mit Pikrinsäure keine Fällung. — Reduziert beim Erwärmen feuchtes Silberoxyd unter Spiegelbildung. Zersetzt sich beim Erhitzen für sich oder mit Wasser in Kohlendioxyd und dl-Hygrinsäure-methylamid. — $Cu(C_8H_{13}O_3N_2)_2 + 3^1/2H_2O$. Blauviolette, rechteckige Tafeln. Leicht löslich in siedendem, ziemlich schwer in kaltem Wasser. sehr schwer in Alkohol und Chloroform, unlöslich in Aceton.

N-Methyl-pyrrolidin- $\alpha.\alpha$ -dicarbonsäure-äthylester-methylamid $C_{10}H_{18}O_3N_3=H_3C$ —CH₂

B. Entsteht neben Hygrinsäure und ihrem Methyl-H₂C·N(CH₃)·C(CO₃·C₃H₅)·CO·NH·CH₃

B. Entsteht neben Hygrinsäure und ihrem Methyl-amid sowie dem Bis-methylamid der N-Methyl-pyrrolidin- $\alpha.\alpha$ -dicarbonsäure beim Erhitzen von N-Methyl-pyrrolidin- $\alpha.\alpha$ -dicarbonsäure-diäthylester mit einer Lösung von Methylamin in Benzol im Rohr auf 150° (W., E., A. 326, 115). — Prismen (aus Aceton und Alkohol). F: 199,5—200°. Destilliert unzersetzt. Ziemlich leicht löslich in kaltem Wasser, ziemlich schwer in kaltem Alkohol, schwer in Äther, Benzol und kaltem Aceton. Reagiert neutral. Gibt mit Goldchlorid, Platinchlorid und Pikrinsäure keine Niederschläge. — Gibt beim Erhitzen mit Salzsäure im Rohr dl-Hygrinsäure.

N - Methyl - pyrrolidin - $\alpha.\alpha$ - dicarbonsäure - bis - methylamid $C_9H_{17}O_2N_3 = H_2C$ — CH_2 H_2C - $N(CH_3) \cdot C(CO \cdot NH \cdot CH_2)_2$ B. Als Hauptprodukt beim Erhitzen von $\alpha.\delta$ -Dibrom-butan- $\alpha.\alpha$ -dicarbonsäure-diäthylester mit 12,5 Mol Methylamin in Methylalkohol im Rohr auf 140° (W., E., A. 326, 109). — Rechteckige Tafeln oder Säulen (aus Äther oder Petroläther). Monoklin (Gossner, A. 326, 111). F: 122,5—123°; beim Erhitzen unzersetzt flüchtig; unter vermindertem Druck sublimierbar; sehr leicht löslich in Wasser, Alkohol, Chloroform, Eisessig und Benzol, in siedendem Aceton und Essigester, ziemlich schwer in kaltem Äther, schwer in kaltem Petroläther; reagiert neutral; gibt mit Platinchlorid und mit Pikrinsäure keine Fällung, mit salzsaurem Goldchlorid nur in sehr konz. Lösung einen Niederschlag (W., E.). — Liefert beim Kochen mit Barytwasser zunächst N-Methyl-pyrrolidin- $\alpha.\alpha$. dicarbonsäuremono-methylamid, dann dl-Hygrinsäure-methylamid (W., E.). Die überhitzten Dämpfe

färben einen mit Salzsäure getränkten Fichtenspan schwach rot, beim Erhitzen mit Zinkstaub intensiv rot (W., E.). — Chloroaurat. Rechteckige Säulen. F: 181° (W., E.).

N - Methyl - pyrrolidin - [$\alpha.\alpha$ - dicarbonsäure - diäthylester] - hydroxymethylat $C_{12}H_{23}O_{\delta}N = \frac{H_2C}{H_2C\cdot N(CH_3)_2(OH)\cdot C(CO_2\cdot C_2H_5)_2}$. — Jodid $C_{12}H_{22}O_{\delta}N\cdot I$. B. Beim Stehenlassen von N-Methyl-pyrrolidin- $\alpha.\alpha$ -dicarbonsäure-diäthylester mit Methyljodid (W., E., A. 326, 127). Rautenförmige Blättchen (aus Essigester). F: 98°. Sehr leicht löslich in Wasser, Alkohol und Aceton. Bildet beim Kochen mit Natronlauge das Natriumsalz des dl-Hygrinsäure-jodmethylats.

2. Pyrrolidin - dicarbonsäure - (2.5), Pyrrolidin - $\alpha.\alpha'$ - dicarbonsäure $C_6H_9O_4N = \frac{H_2C - CH_2}{HO_2C \cdot HC \cdot NH \cdot CH \cdot CO_2H}$.

N-Methyl-pyrrolidin-α.α'-dicarbonsäure C₇H₁₁O₄N = H₂C — CH₂
HO₂C·HC·N(CH₃)·CH·CO₂H

B. Durch Erhitzen von festem α.α'-Dibrom-adipinsäure-diäthylester (Bd. II, S. 654) mit Methylamin in Benzol im Rohr auf 135° und Verseifen des Reaktionsprodukts mit Barium-hydroxyd (Willstätter, Lessing, B. 35, 2067). — Sechsseitige Prismen (aus Wasser oder verd. Alkohol). F: 273—274° (Aufschäumen). Löslich bei 18,5° in 16 Tln. Wasser, sehr leicht löslich in siedendem Wasser, sehr schwer in Alkohol und Chloroform, unlöslich in Äther. Molekulare Leitfähigkeit in wäßr. Lösung: W., L. Der saure Charakter ist ausgeprägter als der basische. — Beständig gegen Permanganat in schwefelsaurer, unbeständig in Soda-Lösung. Reduziert Silberoxyd bei Zimmertemperatur, rascher in der Wärme. Die überhitzten Dämpfe röten einen mit Salzsäure befeuchteten Fichtenspan. — HO·CuC₇H₁₀O₄N + 5H₂O. Hellblaue, schiefwinklige Blättchen (aus Wasser). Verliert das gesamte Krystallwasser beim Trocknen im Vakuum über Schwefelsäure; beim Erhitzen auf 105° entweichen nur 4H₂O. F: 240° (Zers.). Leicht löslich in kaltem Wasser, ziemlich leicht in kaltem Alkohol, unlöslich in Chloroform und Aceton. — Ag₂C₇H₂O₄N. Nadeln. Wird aus wäßr. Lösung durch Alkohol gefällt. — C₇H₁₁O₄N + HCl. Sechsseitige Prismen und Tafeln (aus verd. Alkohol). Zersetzt sich bei 261—262°. Leicht löslich in kaltem Wasser, schwerer in Alkohol. Verliert durch kurzes Erhitzen mit Wasser die gesamte Salzsäure. — 2C₇H₁₁O₄N + 2HCl + PtCl₄. Sechsseitige Prismen (aus verd. Salzsäure). Sehr leicht löslich in Wesser, sehr schwer in Alkohol.

N - Methyl - pyrrolidin - $\alpha.\alpha'$ - dicarbonsäure - dimethylester $C_9H_{18}O_4N=H_9C$ —— CH_2 . Nadeln (aus Petroläther). F: 35—36°; Kp_{17-18} : 140°; leicht löslich in kaltem Wasser, scheidet sich beim Erwärmen ölig aus; sehr leicht löslich in Alkohol, Äther und Benzol; reagiert neutral auf Lackmus und Curcuma; gibt mit Goldchlorid und Platinchlorid krystallinische Fällungen (WILLSTÄTTER, LESSING, B. 35, 2070).

 $\label{eq:N-Methyl-pyrrolidin-[a.a'-dicarbonsäure-dimethylester]-hydroxymethylat H_2C CH_3$ CH_3 O_2C \cdot HC \cdot N(CH_3)_2(OH) \cdot CH \cdot CO_2 \cdot CH_3$ — Jodid $C_{10}H_{18}O_4N \cdot I.$ B. Aus N-Methyl-pyrrolidin-a.a'-dicarbonsäure-dimethylester und Methyljodid in der Kälte (W., L., B. 35, 2070). Prismen (aus Essigester). F: 120—120,5° (Zers.). Sehr leicht löslich in Wasser und Alkohol in der Hitze, leicht in Methanol und Chloroform. Durch Einw. von Alkalicarbonaten oder Ätzalkalien erfolgt Verseifung der Estergruppen, aber keine Ringspaltung.$

N-Phenyl-pyrrolidin- $\alpha.\alpha'$ -dicarbonsäure $C_{12}H_{13}O_4N$ H_2C — CH_2 HO $_2C\cdot HC\cdot N(C_6H_5)\cdot CH\cdot CO_2H$ B. Durch Erhitzen von festem $\alpha.\alpha'$ -Dibrom-adipinsäure-diäthylester (Bd. II, S. 654) mit Athylanilin auf 100° und Kochen des entstandenen Diäthylesters mit alkoh. Kalilauge (Le Sueur, Soc. 95, 276, 277). — Tafeln (aus Aceton + Petroläther). Zersetzt sich bei 252° unter Gasentwicklung. Leicht löslich in kaltem Alkohol und heißem Aceton, schwer in kaltem Äther und Wasser, unlöslich in Chloroform, Benzol und Petroläther. — Entfärbt saure oder alkalische Kaliumpermanganat-Lösung. Der beim Erhitzen mit Natronkalk entstehende Dampf färbt einen mit Salzsäure befeuchteten Fichtenspan rot. — $Ag_2C_{12}H_{11}O_4N$. Weißer Niederschlag. Zersetzt sich in warmer Lösung. — $BaC_{12}H_{11}O_4N + 8H_2O$. Nadeln (aus Wasser + Alkohol). Leicht löslich in Wasser, unlöslich in absol. Alkohol.

N - Phenyl - pyrrolidin - $\alpha.\alpha'$ - dicarbonsäure - dimethylester $C_{14}H_{17}O_4N = H_3C$ — CH_3 . B. Beim Erhitzen von $\alpha.\alpha'$ -Dibrom-adipinsäure-dimethylester (Bd. II, S. 654) mit Äthylanilin (Le Sueur, Soc. 95, 277). — Nadeln (aus Petroläther). F: 88°. Unlöslich in Wasser, Alkohol und Petroläther in der Kälte, leicht löslich in Äther, Chloroform, Aceton, Benzol und heißem Alkohol.

N - Phenyl - pyrrolidin - $\alpha.\alpha'$ - dicarbonsäure - diäthylester $C_{16}H_{21}O_4N = H_2C$ — CH_2 . B. s. o. bei N-Phenyl-pyrrolidin- $\alpha.\alpha'$ -dicarbonsäure. $C_2H_5\cdot O_3C\cdot H_C\cdot N(C_6H_5)\cdot CH\cdot CO_2\cdot C_2H_5$ —Gelbliches Öl. Kp_{20} : 227—228° (LE Sueur, Soc. 95, 276). Unlöslich in Wasser, leicht löslich in organischen Lösungsmitteln und in konz. Salzsäure. Entfärbt Brom in Chloroform unter Entwicklung von Bromwasserstoff.

N - Phenyl - pyrrolidin - $\alpha.\alpha'$ - dicarbonsäure - monoanilid $C_{18}H_{18}O_3N_2 = H_2C$ — CH_2 . B. Beim Kochen von N-Phenyl-pyrrolidin- $\alpha.\alpha'$ -dicarbonsäure mit überschüssigem Anilin (LE Sueur, Soc. 95, 278). — Nadeln (aus Chloroform + Benzol). Zersetzt sich bei 184°. Leicht löslich in Alkohol und Aceton, schwer in kaltem Wasser, in Chloroform, Benzol und Petroläther. Leicht löslich in wäßr. Kalilauge.

3. Dicarbonsăuren $C_7H_{11}O_4N$.

- 1. Piperidin-dicarbonsäure-(2.3), Piperidin-a. β -dicarbonsäure, Hexahydrochinolinsäure $C_7H_{11}O_4N = \frac{H_2C \cdot CH_2 \cdot CH \cdot CO_2H}{H_2C \cdot NH \cdot CH \cdot CO_2H}$.
- a) Höherschmelzende Piperidin α.β dicarbonsäure, "trans" Hexahydrochinolinsäure C₇H₁₁O₄N = HNC₅H₈(CO₂H)₂. Inaktive Form. B. Neben der niedrigerschmelzenden inaktiven Piperidin-α.β-dicarbonsäure bei der Reduktion von Chinolinsäure mit Natrium in absol. Alkohol; man führt das Gemisch der entstandenen Säuren durch Behandeln der salzsauren Lösung mit Natriumnitrit in die entsprechenden N-Nitrosoderivate über und krystallisiert diese aus heißem Wasser um; das schwerer lösliche Derivat der höherschmelzenden Säure scheidet sich aus, während das Derivat der niedrigerschmelzenden Säure in Lösung bleibt; die Nitrosoderivate werden mit Chlorwasserstoff bei Wasserbadtemperatur zersetzt und die so erhaltenen salzsauren Salze mit Silbercarbonat in die freien Säuren übergeführt (Besthorn, B. 28, 3154). Beim Kochen des salzsauren Salzes der niedrigerschmelzenden inaktiven Piperidin-α.β-dicarbonsäure mit Natriumamylat-Lösung (B., B. 28, 3160). Krystalle. F: 253° (Gasentwicklung); viel schwerer löslich in kaltem Wasser als die niedrigerschmelzende Säure; sehr schwer löslich in Alkohol und anderen organischen Lösungsmitteln (B., B. 28, 3158). Hydrochlorid. F (des bei 110° getrockneten Salzes): 221° (Gasentwicklung); sehr leicht löslich in Wasser, viel leichter löslich in konz. Salzsäure als das Hydrochlorid der niedrigerschmelzenden inaktiven Säure (B., B. 28, 3156). C₇H₁₁O₄N + HCl + AuCl₃ + H₂O. Krystalle. F (des wasserfreien Salzes): 185° (B., B. 28, 3157). Scheidet beim Kochen in neutraler Lösung Gold aus.

Dimethylester $C_0H_{15}O_4N = HNC_5H_8(CO_2 \cdot CH_3)_9$. B. Durch Behandeln des salzsauren Salzes der höherschmelzenden inaktiven Piperidin- $\alpha.\beta$ -dicarbonsäure mit methylalkoholischer Salzsäure bei 100° (B., B. 28, 3157). — Hydrochlorid. F (des bei 100° getrockneten Salzes): 166—167° (Zers.).

N-Nitrosoderivat $C_7H_{10}O_5N_2=ON\cdot NC_5H_8(CO_2H)_2$. B. s. o. bei der Säure. — Krystalle (aus Wasser). F (der bei 100° getrockneten Verbindung): 154° (Zers.); leicht löslich in heißem Wasser und in Alkohol, schwerer in Äther und Benzol; läßt sich über das Strychninsalz in zwei optisch aktive (nicht rein dargestellte) Formen spalten; die wäßr. Lösung wird durch Eisenchlorid rot gefärbt; gibt die Liebermannsche Reaktion (B., B. 28, 3155, 3156). — Ag_sC_7H_9O_5N_2. Krystallpulver. Sehr schwer löslich in Wasser. — BaC_7H_8O_5N_2+2H_2O. Glasartig; sehr leicht löslich in Wasser.

- b) Niedrigerschmelzende Piperidin $\alpha.\beta$ dicarbonsäure, "cis" Hexahydrochinolinsäure $C_7H_{11}O_4N=HNC_5H_6(CO_2H)_2$.
- a) Inaktive Form $C_7H_{11}O_4N = HNC_5H_3(CO_2H)_2$. B. s. o. bei der höherschmelzenden Säure. Glasige Masse. F: 227° (Zers.); äußerst leicht löslich in Wasser, unlöslich in Alkohol und anderen organischen Lösungsmitteln (B., B. 28, 3159). Geht beim Kochen mit Natriumamylat-Lösung in das höherschmelzende Isomere über (B., B. 28, 3160). Spaltet beim Erhitzen mit verd. Salzsäure im Rohr auf 250° kein Kohlendioxyd ab (B., B. 29, 2664). Ca($C_7H_{10}O_4N$),

 $+5\,\mathrm{H_2O}$. Nadeln. Sehr leicht löslich in Wasser (B., B. 28, 3159). — $\mathrm{C_7H_{11}O_4N+HCl.}$ Krystalle (aus Salzsäure). F: 239° (Gasentwicklung); schwer löslich in Alkohol, sehr schwer in konz. Salzsäure (B., B. 28, 3158). — $\mathrm{C_7H_{11}O_4N+HCl+AuCl_3.}$ Krystalle. F: 195° (Zers.); schwerer löslich in Wasser als das Salz der höherschmelzenden Form (B., B. 28, 3158).

Dimethylester $C_9H_{15}O_4N = HNC_8H_8(CO_2\cdot CH_3)_2$. B. Beim Behandeln der niedrigerschmelzenden inaktiven Piperidin- $\alpha.\beta$ -dicarbonsäure mit methylalkoholischer Salzsäure (B., B. 28, 3159). — Hydrochlorid. F: 189—190° (Zers.).

Diäthylester $C_{11}H_{19}O_4N = HNC_5H_8(CO_2 \cdot C_2H_5)_2$. B. Aus der niedrigerschmelzenden inaktiven Piperidin- $\alpha.\beta$ -dicarbonsäure und alkoh. Salzsäure (B., B. 28, 3153, 3159). — $C_{11}H_{19}O_4N + HCl.$ F: 204—2050 (Zers.).

N-Nitrosoderivat $C_7H_{10}O_5N_2=ON\cdot NC_5H_3(CO_3H)_2$. B. s. S. 120 bei der höherschmelzenden Piperidin- $\alpha.\beta$ -dicarbonsäure. Man erhält die Verbindung in festem Zustand durch Nitrosierung des reinen Hydrochlorids der niedrigerschmelzenden inaktiven Piperidin- $\alpha.\beta$ -dicarbonsäure in konz., wäßriger, mit Salzsäure angesäuerter Lösung und Ausschütteln des Produkts mit Äther (B., B. 29, 2663). — F: 138—139° (Zers.). Sehr leicht löslich. Läßt sich durch fraktionierte Krystallisation ihres Strychninsalzes in eine rechts- und eine linksdrehende Form spalten.

 β) Aktive Form $C_7H_{11}O_4N = HNC_5H_8(CO_2H)_2$.

N-Nitrosoderivat $C_7H_{10}O_5N_2=ON\cdot NC_5H_8(CO_3H)_3$. B. Man kocht die wäßr. Lösung des N-Nitrosoderivats der niedrigerschmelzenden inaktiven Piperidin- $\alpha.\beta$ -dicarbonsäure mit Strychnin, filtriert das schwer lösliche Strychninsalz des rechtsdrehenden (nicht näher beschriebenen) N-Nitrosoderivats ab, behandelt die Mutterlauge mit Natronlauge und säuert die von Strychnin abfiltrierte Lösung an (B., B. 29, 2663). — Krystalle. F: 152—153°. Linksdrehend. Schwerer löslich in Äther als die inakt. Säure.

- 2. Piperidin-dicarbonsäure-(2.6), Piperidin- α . α' -dicarbonsäure, Hexahydrodipicolinsäure $C_7H_{11}O_4N = \frac{H_1C\cdot CH_2\cdot CH_2}{HO_2C\cdot HC\cdot NH\cdot \dot{C}H\cdot CO_2H}$.
- a) Höherschmelzende Piperidin α.α' dicarbonsäure C₇H₁₁O₄N = HNC₅H₈ (CO₂H)₂. B. Das Diamid entsteht neben dem Diamid der niedrigerschmelzenden isomeren Säure beim Behandeln von α.α'-Dibrom-pimelinsäure-diāthylester (Bd. II, S. 671) mit flüssigem Ammoniak; man laugt das Reaktionsprodukt mit Wasser aus, wodurch das bromwasserstoffsaure Salz der höherschmelzenden Säure gelöst wird, während das (in freiem Zustande entstehende) Diamid der niedrigerschmelzenden Form ungelöst bleibt; die so getrennten Diamide führt man durch Kochen mit Barytwasser in die Säuren über (E. FISCHER, B. 84, 2545, 2549). Krystalle (aus Wasser). F: ca. 281° (korr.) (Aufschäumen). Ziemlich leicht löslich in heißem Wasser, sehr schwer in Alkohol, fast unlöslich in Äther und Benzol. Kupfersalz. Ziemlich schwer löslich in kaltem Wasser.

Diamid $C_7H_{18}O_9N_3 = HNC_5H_8(CO\cdot NH_2)_2$. B. s. o. bei der Säure. — Prismen (aus sehr wenig Wasser). F: 225—226° (korr.) (Bräunung); löslich in ca. 3 Tln. heißem Wasser, löslich in Alkohol, fast unlöslich in Äther und Benzol (E. FISCHER, B. 34, 2548). — $C_7H_{18}O_9N_3 + HBr + H_2O$. Prismen (aus sehr wenig Wasser). Hält das Krystallwasser noch bei 135° fest, bei 150° tritt schon Zersetzung ein; bräunt sich bei raschem Erhitzen gegen 270° und schmilzt gegen 280° unter Aufschäumen.

b) Niedrigerschmelzende Piperidin- $\alpha.\alpha'$ -dicarbonsäure $C_7H_{11}O_4N = HNC_5H_8$ ($CO_2H)_2$. B. s. o. bei der höherschmelzenden Säure. — Tafeln mit $1\,H_2O$ (aus verd. Alkohol oder sehr wenig Wasser); wird bei 134° wasserfrei, schmilzt gegen 258° (korr.) unter Aufschäumen; ziemlich schwer löslich in Alkohol, fast unlöslich in Äther (E. FISCHER, B. 34, 2546). — $CuC_7H_9O_4N$. Hellblaue Krystalle. Schwer löslich in Wasser.

Diamid $C_7H_{18}O_2N_3 = HNC_5H_6(CO\cdot NH_2)_2$. B. s. o. bei der höherschmelzenden Piperidina.a'-dicarbonsäure. — Plättchen mit $1\,H_2O$ (aus Wasser); wird bei 109° wasserfrei; schmilzt bei $228-229^\circ$ (korr.); sehr leicht löslich in heißem Wasser, schwerer in Alkohol, Äther und Benzol, unlöslich in Ligroin (E. F., B. 34, 2546). — $C_7H_{13}O_2N_3 + HBr$ (?). Platten (aus Wasser). Schmilzt, rasch erhitzt, unter Aufschäumen gegen 290° .

- ο) Piperidin-α.α'-dicarbonsäure-Derivate, von denen unbekannt ist, ob sie zur höher- oder niedrigerschmelzenden Form gehören.
- N-Methyl-piperidin- $\alpha.\alpha'$ -dicarbonsäure, N-Methyl-hexahydrodipicolinsäure $C_8H_{18}O_4N=CH_8\cdot NC_5H_6(CO_2H)_8$. Zur Konstitution vgl. Schmidt, C. 1913 II, 1310; Ar. 253 [1915], 499, 618; B. 49 [1916], 165; Hess, Wissing, B. 48 [1915], 1907; H., Suchier, B. 48

[1915], 2061; H., B. 49, 2337. — B. Bei vorsichtiger Oxydation von Dihydroscopolin (Bd. XXI, S. 160) mit Chromschwefelsäure (Sohmidt, Ar. 247, 80; vgl. Ar. 253, 499). — Tafeln mit $1\,\mathrm{H_2O}$; F: $214-216^\circ$ (CO₃-Entwicklung); verhält sich bei der Titration wie eine einbasische Säure ¹) (Soh., Ar. 247, 80). — $\mathrm{CuC_3H_{11}O_4N}$ (130°). Blaue Nadeln (Soh., Ar. 247, 80). — $\mathrm{C_2H_{13}O_4N} + \mathrm{HCl}$. Krystalle. F: $224-225^\circ$ (CO₃-Entwicklung) (Soh., Ar. 247, 80). — $\mathrm{C_3H_{13}O_4N} + \mathrm{HCl} + \mathrm{AuCl_3}$ (getrocknet). Gelbe Blätter (Sch., Ar. 247, 80).

N-Methyl-piperidin- $\alpha.\alpha'$ -dicarbonsäure-dimethylester, N-Methyl-hexahydro-dipicolinsäure-dimethylester $C_{10}H_{17}O_4N=CH_5\cdot NC_2H_6(CO_2\cdot CH_8)_3$. B. Durch Erhitzen von $\alpha.\varepsilon$ -Dibrom-pentan- $\alpha.\alpha.s$. ε -tetracarbonsäure-tetraäthylester (Bd. II, S. 866) mit Methylamin in Benzol im Rohr auf 140—150°, Kochen des Reaktionsprodukts mit konz. Barium-hydroxyd-Lösung und Esterifizierung der so erhaltenen Dicarbonsäure (WILLSTÄTTER, LESSING, B. 35, 2072). — Basisch riechende Flüssigkeit. Kp₁₃: 140—141°. Ziemlich schwer löslich in kaltem, noch schwerer in heißem Wasser.

N-Methyl-piperidin- $\alpha.\alpha'$ -[dicarbonsäure-dimethylester]-hydroxymethylat, N-Methyl-hexahydrodipicolinsäure-dimethylester-hydroxymethylat $C_{11}H_{21}O_{2}N = (HO)(CH_{2})_{2}NC_{2}H_{3}(CO_{2}\cdot CH_{2})_{2}$. — Jodid $C_{11}H_{20}O_{4}N\cdot I$. B. Beim Behandeln von N-Methyl-piperidin- $\alpha.\alpha'$ -dicarbonsäure-dimethylester mit Methyljodid (WILLSTÄTTER, LESSING, B. 35, 2072). Prismen. F: 167—168°. Leicht löslich in kaltem Wasser, schwer in kaltem Alkohol und Essigester, unlöslich in Äther. Beständig gegen Alkalien in der Wärme.

- 3. Piperidin-dicarbonsäure-(3.4), Piperidin- $\beta.\gamma$ -dicarbonsäure, Hexahydrocinchomeronsäure $C_7H_{11}O_4N= \frac{H_1C\cdot CH(CO_2H)\cdot CH\cdot CO_2H}{H_2C-NH-CH_2}$. Von den theoretisch vorauszusehenden 4 aktiven und 2 racemischen Formen sind nur 1 aktive und 2 inaktive Formen bekannt, von denen die unter c) angeführte wahrscheinlich ein Gemisch der beiden Racemate darstellt.
- a) Aktive Piperidin- β . γ -dicarbonsāure, aktive Hexahydrocinchomeronsāure, Loiponsāure $C_7H_{11}O_4N = HNC_5H_9(CO_2H)_2$. B. In geringer Menge durch Oxydation von Cinchonin (Syst. No. 3513) mit Kalium-permanganat und Behandeln des entstandenen Cinchotenins (s. nebenstehende Formel, Syst. No. 3690) mit Chromschwefelsāure (Skraup, M. 17, 377). Bei der Oxydation von d- β -Cincholoiponsāure $HNC_5H_9(CO_2H)$ · $CH_2 \cdot CO_2H$ (S. 128) mit Kaliumpermanganat-Lösung bei 0^o (Sk., M. 17, 376). Prismen (aus Wasser). F: 259—260° (Zers.); löslich in ca. 20 Thn. heißem Wasser, schwer löslich in kaltem Wasser, fast unlöslich in heißem Alkohol, sehr leicht löslich in Alkalien und Mineralsäuren (Sk.). Verhält sich bei der Titration mit Kaliunge wie eine einbasische Säure¹)(Sk.). Das salzsaure Salz zeigt α = ca. +1° (Wasser; c = 12; l = 1) (Koenigs, B. 30, 1330). Wird beim Erhitzen mit Kaliumhydroxyd und wenig Wasser auf 190—200° in die bei 275° schmelzende inaktive Piperidin- β . γ -dicarbonsäure (s. u.) umgelagert (K.). Gibt ein aus Wasser in Nadeln krystallisierendes, bei 167—168° unter Zersetzung schmelzendes, in Wasser ziemlich schwer lösliches N-Nitrosoderivat (K.). $C_7H_{11}O_4N + HCl$ (110°). Prismen. F: 216—220°; sehr leicht löslich in Wasser, sehr schwer in konz. Salzsäure (Sk.). $C_7H_{11}O_4N + HCl + AuCl_3 + H_2O$. Tafeln. F: 201—202°; mäßig löslich in kaltem Wasser; scheidet bei anhaltendem Kochen Gold ab (Sk.).

Diäthylester $C_{11}H_{10}O_4N := HNC_5H_6(CO_2 \cdot C_2H_5)_2$. B. Durch anhaltendes Einleiten von Chlorwasserstoff in die heiße alkoholische Suspension der Loiponsäure (Skraup, M. 17, 381). — $2C_{11}H_9O_4N + 2HCl + PtCl_4$. Schwer löslich.

N-Acetylderivat $C_9H_{12}O_5N=CH_3\cdot CO\cdot NC_5H_6(CO_5H)_2$. B. Durch Kochen von 1 Tl. Loiponsäure mit 10 Tln. Essigsäureanhydrid und Lösen des entstandenen Anhydrids (Syst. No. 4298) in wenig warmem Wasser (Seraup, M. 17, 380). — Krystalle. F: 204°.

b) Inaktive Piperidin- β .y-dicarbonsäure vom Schmelzpunkt 275°, inaktive Hexahydrocinchomeronsäure vom Schmelzpunkt 275° $C_7H_{11}O_4N = HNC_5H_8$ (CO₂H)₂. B. Beim Erhitzen der Loiponsäure (s. o.) oder der bei 256° schmelzenden inaktiven Hexahydrocinchomeronsäure (s. 123) mit Kaliumhydroxyd und wenig Wasser auf 190—200° (Koenigs, B. 30, 1329, 1330). — Krystalle (aus Wasser). F: 268—270° (Zers.), bei raschem Erhitzen 275°. Ziemlich schwer löslich in kaltem Wasser. Optisch inaktiv. — $C_7H_{11}O_4N +$

¹⁾ Indicator nicht angegeben.

HCl (bei 100°). Tafeln (aus Wasser). Monoklin (MUTHMANN, B. 80, 1330). F: 240—242° (Zers.); leicht löslich (K.). — Hydrobromid. Krystalle. F: 220—222°; sehr leicht löslich (K.). — $C_7H_{11}O_4N + HCl + AuCl_3$. Krystalle. F: 205° (Zers.) (K.).

- c) Inaktive Piperidin β.γ dicarbonsäure vom Schmelzpunkt 256°, inaktive Hexahydrocinchomeronsäure vom Schmelzpunkt 256° C₇H₁₁O₄N = HNC₅H₈(CO₂H)₂ (wahrscheinlich Gemisch der beiden inaktiven Diastereoisomeren; vgl. Koenigs, B. 30, 1331). B. Beim Kochen von Cinchomeronsäure (S. 155) mit Natrium und Alkohol (Koenigs, B. 28, 3149) oder besser beim Erhitzen der Lösung von 1 Tl. Cinchomeronsäure-γ-äthylester in 100 Tln. absol. Alkohol mit 10 Tln. Natrium auf 140° (Koenigs, Wolff, B. 29, 2187). Krystalle. F: 256° (Zers.); leicht löslich in Wasser (K., W.). Geht beim Erhitzen mit Kaliumhydroxyd und wenig Wasser auf 190—200° in die bei 275° schmelzende inaktive Hexahydrocinchomeronsäure (s. o.) über (K., B. 30, 1329). Scheint bei der Nitrosierung neben einem als Hauptprodukt entstehenden, in Wasser leicht löslichen N-Nitrosoderivat (K., W.) eine in Wasser schwerer lösliche N-Nitrosoverbindung zu liefern (K., B. 30, 1329). Ca(C₇H₁₀O₄N)₂+5H₂O (aus konzentrierter wäßriger Lösung durch Alkohol) (K., W.). C₇H₁₁O₄N + HCl. F: 237° (Gasentwicklung); sehr leicht löslich in Wasser, ziemlich schwer in Alkohol (K., W.). C₇H₁₁O₄N + HCl + AuCl₂ (im Vakuum). Krystalle (aus verd. Salzsäure). F: 205° (Zers.); die wäßr. Lösung scheidet beim Kochen Gold aus (K., W.).
- d) Piperidin- β . γ -dicarbonsäure-Derivate, deren sterische Beziehungen zu den unter a) bis c) angeführten Säuren unbekannt sind.

N-Methyl-piperidin- β . γ -dicarbonsäure, N-Methyl-hexahydrocinchomeronsäure $C_8H_{13}O_4N=CH_3\cdot NC_5H_8(CO_2H)_2$. B. Beim Erhitzen von Cinchomeronsäure-methylbetain (Apophyllensäure, S. 158) mit Zinn + konz. Salzsäure (Koenigs, Wolff, B. 29, 2192; vgl. Skraup, Piccoll, M. 23, 274). — $C_8H_{13}O_4N$ + HCl. Krystalle (aus konzentrierter wäßriger Lösung durch Alkohol). F: 206—207° (Gasentwicklung) (K., W.).

Diäthylester $C_{12}H_{21}O_4N = CH_3 \cdot NC_5H_8(CO_2 \cdot C_2H_5)_2$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung der N-Methyl-hexahydrocinchomeronsäure zuerst bei Zimmertemperatur, dann bei Siedehitze (Koenigs, Wolff, B. 29, 2192; Skrauf, Piocoli, M. 23, 275). — Flüssigkeit von schwach aminartigem Geruch. Kp₂₆: 153—155° (Sk., P.).

Hydroxymethylat des Diäthylesters $C_{13}H_{25}O_5N = (HO)(CH_3)_2NC_5H_8(CO_2 \cdot C_2H_5)_2$. — Jodid $C_{13}H_{24}O_4N \cdot I$. B. Beim Kochen des N-Methyl-hexahydrocinchomeronsäure-diäthylesters mit Methyljodid in Methylalkohol (SKRAUP, PICCOLI, M. 23, 276). Mikroskopische, dreieckige Tafeln (aus Alkohol). F: 141°. Leicht löslich in kaltem Wasser, schwer in kaltem Alkohol. Liefert beim Behandeln in wäßrig-alkoholischer Lösung mit Bariumhydroxyd in der Siedehitze 3 oder 4-Dimethylamino-cyclopentan-dicarbonsäure-(1.2) (Bd. XIV, S. 550).

- 4. $Pyrrolidin-carbonsäure-(2)-essigsäure-(5), Pyrrolidin-\alpha-carbonsäure-\alpha'-essigsäure <math>C_7H_{11}O_4N=\frac{H_1C-CH_2}{HO_1C\cdot CH_2\cdot HC\cdot NH\cdot CO_2H}$

a) Rechtsdrehende Tropinsäure, d-Tropinsäure C₈H₁₈O₄N =

H₂C———CH₂

B. Als Hauptprodukt neben l-Ekgoninsäure bei der HO₂C·CH₂·HC·N(CH₂)·CH·CO₂H

Oxydation von l-Ekgonin (S. 196) (Liebermann, B. 23, 2519; 24, 607; Willstätter, B. 31, 1547) oder d-Pseudoekgonin (S. 205) (L., B. 24, 612) mit siedender Chromschwefelsäure. Durch Spaltung von dl-Tropinsäure mit Cinchonin; man löst das durch Kochen der Säure mit Cinchonin und Wasser erhaltene Cinchoninsalz in absol. Alkohol und fällt mit Aceton, wodurch das Salz der l-Tropinsäure sich ausscheidet, während das der d-Tropinsäure in Lösung bleibt (Gadamer, Ar. 239, 670). — Krystalle (aus wenig Wasser oder verd. Alkohol). Schmilzt rasch erhitzt bei 253° (Zers.), langsam erhitzt bei 247—248° (L., B. 24, 612). Ziemlich leicht löslich in kaltem Wasser (L., B. 24, 607), sehr schwer löslich in Alkohol, unlöslich in Äther und Benzol (L., B. 23, 2519). [α]_D: +14,8° (Wasser; p = 12) (L., B. 24, 611). Verhält sich bei der Titration mit Kalilauge gegen Phenolphthalein wie eine einbasische Säure (W., B. 28, 3278). Die Salze sind linksdrehend (G., Ar. 239, 666). —

d-Tropinsäure reduziert Kaliumpermanganat-Lösung schon in der Kälte (L., B. 23, 2520; vgl. W., B. 28, 2279). — HO·CuC₅H₁₅O₄N. Tiefblaue Krystalle mit rotem Flächenschimmer. Geht bei 170° in CuC₅H₁₁O₄N über (L., B. 24, 609). — CuC₅H₁₁O₄N. Hellblaues Pulver. Geht beim Lösen in Wasser in das vorhergehende Salz über (L., B. 24, 610). — Ag₅C₅H₁₁O₄N + 2 H₅O(?). Sehr leicht löslich im Wasser; wird aus der wäßr. Lösung durch Alkohol und Äther gefällt; gibt beim Erwärmen der wäßr. Lösung sofort einen Silberspiegel (L., B. 28, 2520; vgl. L., B. 24, 609). — Ca(C₅H₁₂O₄N)₂. Sehr hygroskopisch (L., B. 28, 2519, 2520). — Ba(C₅H₁₂O₄N)₂ (120°). Sehr hygroskopisch (L., B. 28, 2520). — C₃H₁₅O₄N+HCl+H₂O. Krystalle. Schmilzt unterhalb 100° unter Abspaltung von Salzsäure (L., B. 28, 2520, 2521). — C₅H₁₃O₄N+HCl+AuCl₂. Lösliche, goldgelbe Prismen (L., B. 28, 2520, 2521). Triklin asymmetrisch (Fook, B. 24, 608 Anm.; vgl. Groth, Ch. Kr. 5, 544).

[d-Tropinsaure]-dimethylester $C_{10}H_{17}O_4N =$

CH₂·O₂C·H₂C·HC·N(CH₂)·CH·CO₂·CH₂

B. Beim Einleiten von Chlorwasserstoff in ein Gemisch von d-Tropinsäure und Methylalkohol (Liebermann, B. 24, 610). — Öl. — Pikrat. Nadeln. F: 120—121° (Willstätter, B. 28, 3279).

[d-Tropinsäure]-diäthylester $C_{12}H_{21}O_4N = C_2H_5 \cdot O_2C \cdot CH_2 \cdot HC \cdot N(CH_2) \cdot CH \cdot CO_2 \cdot C_2H_5$ B. Beim Einleiten von Chlorwasserstoff in ein Gemisch von d-Tropinsäure und Äthylalkohol (Liebermann, B. 24, 610). — Öl.

[d-Tropinsäure] - monomethylester - hydroxymethylat $C_{19}H_{10}O_5N = (HO)(CH_8)_8$ $NC_9H_{12}O_4$. — $C_{10}H_{18}O_4N\cdot Cl + AuCl_8$. B. Man digeriert [d-Tropinsäure]-dimethylester-jodmethylat mit feuchtem Silberoxyd und fällt die Lösung mit Goldchlorwasserstoffsäure (Willstätter, B. 28, 3281). Nadeln (aus Alkohol). F: 195° (Zers.).

[d - Tropinsäure] - dimethylester - hydroxymethylat $C_{11}H_{21}O_{5}N =$

CH₂·O₂C·CH₂·HC·N(CH₂)₂(OH)·CH·CO₂·CH₃.

B. Das Jodid entsteht aus [d-Tropinsäure]-dimethylester und Methyliodid (W.----dimethylester und Methyljodid (WILLSTÄTTER, B. 28, 3280). — Durch Erwärmen des Jodids mit Kaliumcarbonat-Lösung und Behandeln des entstandenen (nicht näher beschriebenen) akt. des-Methyltropinsäure-dimethylesters mit Methyljodid in Äther erhält man akt. des-Methyltropinsäure-dimethylester-jodmethylat (Bd. IV, S. 500). Das Jodid gibt beim Digerieren mit feuchtem Silberoxyd eine neutrale Lösung, aus der Goldchlorwasserstoffsäure das Goldchlorid-Doppelsalz des [d-Tropinsäure]-monomethylester-chlormethylats fällt. Das Jodid wird durch Erhitzen mit Kalilauge auf 240—250° zersetzt unter Bildung von Dimethylamin, Adipinsäure, Ameisensäure und Tseigessure. — Jodid C₁₁H₂₀O₄N·I. Blätter und Nadeln (aus Methylalkohol). F: 176—177° (Zers.). — C₁₁H₂₀O₄N·Cl + AuCl₂. Mikroskopische Blättchen und Nadeln (aus verd. Alkohol). F: 1146.

b) Linksdrehende Tropinsäure, l-Tropinsäure $C_8H_{18}O_4N =$ HO₂C·CH₂·HC·N(CH₂)·CH·CO₂H. B. s. S. 123 bei d-Tropinsäure. — Krystalle (aus Wasser). F: 243° ; $[\alpha]_{D}^{\infty}$: -14.8° (Wasser; c = 2), -15.2° (Wasser; p = 6) (Gadamer, Ar. 239, 672). — Ammoniumsalz. $[\alpha]_{D}^{\infty}$: $+16.5^{\circ}$ (Wasser; c = 3).

c) Inaktive Tropinsaure, dl-Tropinsaure C₂H₁₂O₄N = HO₂C·CH₂·HC·N(CH₂)·CH·CO₂H. B. Bei der Oxydation von Tropin (Bd. XXI, S. 16) (Merling, A. 216, 348; Liebermann, B. 24, 612; Willstätter, B. 31, 1547) oder Pseudotropin (Bd. XXI, S. 38) (L., B. 24, 2587) mit siedender Chromschwefelsäure. Aus Tropinon (Bd. XXI, S. 258) bei der Oxydation mit Chromsäure (Willstätter, B. 29, 398) oder, in geringer Menge, bei längerer Einw. von Ätzkali in Äther (W., Bode, B. 38, 414). Beim Kochen von 2.3-Dioxy-tropan (Bd. XXI, S. 160) mit Chromschwefelsäure (W., B. 28, 2279). Nadeln (aus verd. Alkohol). F: 251° (L., B. 24, 2587), ca. 248° (Zers.) (W., B. 28, 2279). Sehr leicht löslich in Wasser, sehr schwer in Alkohol, unlöslich in Äther und Benzol (W., B. 28, 2279). Ordisch inskip (L., B. 24, 642). Kenn mit Hilfe des Cinchoninesless in d. und I. Top 2279). Optisch inaktiv (L., B. 24, 613). Kann mit Hilfe des Cinchoninsalzes in d- und l-Tro-pinsäure gespalten werden (GADAMER, Ar. 239, 666). Verhält sich bei der Titration mit Alkali gegen Phenolphthalein wie eine einbasische Säure (W., B. 28, 3278). — Entwickelt beim Erhitzen über den Schmelzpunkt 1 Mol Kohlendioxyd (M.). Ist in wäßriger oder sodaalkalischer Lösung gegen Kaliumpermanganat sehr unbeständig, beständiger in verd. Schwefelsäure (W., B. 28, 2279). Geht bei der Einw. von siedender Chromschwefelsäure in N-Methylsuccinimid (Bd. XXI, S. 373) über (W., C. 1908 I, 841). Liefert beim Erhitzen mit Jodwasserstoffsäure und rotem Phosphor im Rohr auf 200° N-Methyl-pyrrolidin (Bd. XX, S. 4) (CIAMICIAN, SILBER, B. 29, 1217; CIA., G. 29, 408 Anm.). Bei der Destillation mit Calciumoder Bariumhydroxyd entstehen eine ölige Base, Ammoniak und andere Zersetzungsprodukte (M.). — HO·CuC₃H₁₂O₄N. Kryställchen. Leicht löslich in Wasser (L., B. 24, 613). — Ag₂C₃H₁₁O₄N(?). Körniger Niederschlag. Wird aus der wäßr. Lösung durch Alkohol gefällt; zersetzt sich in wäßr. Lösung beim Aufbewahren, sofort beim Erhitzen, unter Bildung eines Silberspiegels (M.). — Ba(C₃H₁₃O₄N)₂ (L., B. 24, 613). — C₃H₁₃O₄N + HCl + AuCl₃ (L., B. 24, 613). — 2C₃H₁₃O₄N + 2 HCl + PtCl₄. Orangegelbe Krystalle. Zersetzt sich bei 100° bis 110° (M.).

dl-Tropinsäure-diäthylester $C_{12}H_{21}O_4N = \frac{H_2C_--CH_2}{C_2H_5\cdot O_2C\cdot CH_2\cdot HC\cdot N(CH_3)\cdot CH\cdot CO_2\cdot C_2H_5}$ B. Beim Kochen von dl-Tropinsäure mit alkoh. Salzsäure (WILLSTÄTTER, BODE, B. 33, 414). — Öl. Kp_{18,5}: 160°. Leicht löslich in kaltem, schwer in heißem Wasser.

dl - Tropinsäure - monomethylester - hydroxymethylat $C_{10}H_{10}O_5N = (HO)(CH_9)_2NC_9H_{10}O_4$. — $C_{10}H_{10}O_4N\cdot Cl + AuCl_3$. B. Man digeriert dl-Tropinsäure-dimethylester-jodmethylat mit feuchtem Silberoxyd und fällt die Lösung mit Goldchlorwasserstoffsäure (WILLSTÄTTER, B. 28, 3281). Orangegelbe Nadeln (aus Wasser). F: 182° (Zers.). Leicht löslich in warmem Wasser.

dl - Tropinsäure - dimethylester - hydroxymethylat $C_{11}H_{21}O_5N = H_2C$ CH₂

P. Don Jodid entstable h

CH₃·O₂C·CH₂·HC·N(CH₃)₂(OH)·CH·CO₃·CH₃

von dl-Tropinsäure-dimethylester mit Methyljodid (Willstätter, B. 28, 3279). — Das Jodid gibt beim Digerieren mit feuchtem Silberoxyd eine neutrale Lösung, aus der Goldchlorwasserstoffsäure das Chloroaurat des dl-Tropinsäure-monomethylester-hydroxymethylats fällt (W.). Beim Erwärmen des Jodids mit Kaliumcarbonat-Lösung auf 70—80° erhält man inakt. des-Methyltropinsäure-dimethylester (Bd. IV, S. 500), beim Erhitzen mit Kalilauge auf 240—250° entstehen Dimethylamin, Adipinsäure, Ameisensäure und Essigsäure (W.).

— Jodid C₁₁H₂₀O₄N·I. Prismen mit ½ H₂O (aus Wasser oder Alkohol), krystallwasserfreie Blättchen (aus absol. Alkohol + Äther); F: 171—172° (Zers.); ziemlich schwer löslich in kaltem Wasser, schwer in kaltem Alkohol, sehr schwer in Chloroform, unlöslich in Äther (W.). Methylbestimmung: Herzig, B. 31, 1548. — C₁₁H₂₀O₄N·Cl+AuCl₃. Goldglänzende Blättchen (aus Alkohol). F: 116—117° (W.). Ziemlich leicht löslich in heißem Wasser.

dl-Tropinsäure-dipropylester-hydroxymethylat $C_{1b}H_{20}O_{\delta}N=H_{2}C$ — CH_{2} — CH_{2} — CH_{2} —B. Das Jodid entsteht beim $C_{2}H_{\delta}\cdot CH_{2}\cdot O_{2}C\cdot CH_{2}\cdot HC\cdot N(CH_{3})_{3}(OH)\cdot CH\cdot CO_{2}\cdot CH_{3}\cdot C_{2}H_{\delta}$. B. Das Jodid entsteht beim Sehandeln von [in analoger Weise wie dl-Tropinsäure-dimethylester dargestelltem] dl-Tropinsäure-dipropylester mit Methyljodid (Wilstatter, B. 28, 3291). — Beim Behandeln des Jodids in heißer wäßriger Lösung mit Kaliumcarbonat entsteht inakt. des-Methyltropinsäure-dipropylester, der mit Methyljodid inakt. des-Methyltropinsäure-dipropylester-jodmethylat (Bd. IV, S. 500) liefert. — Jodid. Öl. — $C_{1b}H_{2b}O_{4}N\cdot Cl + AuCl_{3}$. Schwefelgelbe Nadeln. F: 103°. Schwer löslich in Wasser und in kaltem Alkohol, leicht in heißem Alkohol.

5. 3 - Methyl - pyrrolidin - dicarbonsäure - (2.5) C₇H₁₁O₄N = H₂C — CH·CH₂

B. Beim Erhitzen von α.α'-Dibrom-β-methyl-adipinsäure-diäthylester (Bd. II, S. 675) mit methylalkoholischem Ammoniak im Rohr auf 140° und Verseifung des Reaktionsprodukts mit Barytwasser (Willstätter, v. Sicherer, B. 32, 1291). — Nadeln (aus Alkohol). F: 239° (Zers.). Sehr leicht löslich in Wasser, sehr schwer in kaltem Alkohol, unlöslich in Äther, Chloroform und Ligroin. Die Säure erweist sich bei der Titration gegen Phenolphthalein als einbasisch, die ölige, in Wasser leicht lösliche Nitrosoverbindung dagegen als zweibasisch. — Kupfersalz. Blaue Krystallbüschel. Leicht löslich. —

 $AgC_7H_{10}O_4N$. Flocken. Leicht löslich in Wasser. — $2C_7H_{11}O_4N+2HCl+PtCl_4$. Dreieckige Tafeln. Zersetzt sich oberhalb 200° , ohne zu schmelzen. Leicht löslich in heißem Wasser, unlöslich in Alkohol.

4. Dicarbonsauren CaH13O4N.

- 1. Piperidin-carbonsäure-(2)-essigsäure-(6), Piperidin-α-carbonsäure-α'-essigsäure, Granatsäure C₈H₁₃O₄N = H₂C·CH₂·CH₂·CH₂·CH₃·CH₄·B. Bei der Oxydation von Pseudogranatolin (Bd. XXI, S. 42) mit überschüssiger siedender Chromschwefelsäure (PICCININI, R. A. L. [5] 8 I, 397; G. 29 I, 415). Prismen. F: 270°. Durch Erhitzen mit Quecksilberacetat und 40°/oiger Essigsäure im Rohr auf 150—160° und Destillation der entstandenen Carbonsäure mit Bariumhydroxyd erhält man α-Picolin.
- N-Methyl-piperidin- α -carbonsäure- α -essigsäure, N-Methyl-granatsäure 1), H₂C-CH₂-CH₂-CH₂. B. Bei der Oxydation von N-Methyl-pseudogranatolin (Bd. XXI, S. 42) mit siedender Chromschwefelsäure (Clamician, Silber, G. 26 II, 154; B. 29, 487). Prismen oder Tafeln (aus Wasser). F: 240° bis 245° (Aufschäumen). Fast unlöslich in Alkohol und Äther. C₉H₁₅O₄N + HCl + AuCl₃. Gelbe Rosetten. F: 190° (Zers.).

Dimethylester $C_{11}H_{19}O_4N=\frac{H_aC-CH_a-CH_2}{CH_a\cdot O_aC\cdot CH_a\cdot HC\cdot N(CH_a)\cdot CH\cdot CO_a\cdot CH_a}$. B. Man leitet Chlorwasserstoff in eine Suspension von N-Methyl-granatsäure in Methylalkohol (Piccinini, G. 29 II, 108). — Stechend riechendes Öl. Löslich in verd. Säuren, gibt aber keine krystallisierbaren Salze.

- N Methyl granatsäure dimethylester hydroxymethylat $C_{12}H_{23}O_6N=H_2C-CH_2-CH_2$. Jodid $C_{12}H_{23}O_4N\cdot I$. B. Beim Stehen- $CH_3\cdot O_3C\cdot CH_3\cdot HC\cdot N(CH_3)_3(OH)\cdot CH\cdot CO_2\cdot CH_3$ lassen von N-Methyl-granatsäure-dimethylester mit Methyljodid (Piccinini, G. 29 II, 108). Prismen (aus Alkohol). F: 167°. Wird beim Erwärmen mit Kaliumcarbonat in wäßr. Lösung in Dimethylgranatensäure-dimethylester (Bd. IV, S. 500) übergeführt.
- - a) α -Cincholoiponsāure $C_8H_{18}O_4N = HNC_5H_8(CO_2H) \cdot CH_2 \cdot CO_2H$.
- α) Rechtsdrehende Form, d-α-Cincholoiponsäure $C_0H_{18}O_4N = HNC_8H_8(CO_2H) \cdot CH_2 \cdot CO_2H$. B. Man behandelt die heiße wäßrige Lösung von dl-α-Cincholoiponsäure mit Brucin; es krystallisiert ein Gemisch der Brucinsalze der l- und der dl-α-Cincholoiponsäure aus, während das Gemisch der Salze der d- und dl-α-Säure in Lösung bleibt; man zersetzt die so getrennten Brucinsalze mit Bariumhydroxyd-Lösung, fällt aus dem Filtrat das Barium mit Schwefelsäure aus und dampft ein; aus der Lösung krystallisiert zuerst die dl-Säure, dann die d- bezw. l-Säure (Wohl, Maag, B. 42, 627). Krystalle. F: 253°. [α]₀: +34,9° (Wasser; p=4).
- β) Linksdrehende Form, l-α-Cincholoiponsäure $C_8H_{18}O_4N = HNC_5H_6(CO_8H) \cdot CO_4H$. B. s. o. bei rechtsdrehender α-Cincholoiponsäure. Entsteht auch beim Erhitzen von d-β-Cincholoiponsäure mit Kaliumhydroxyd und etwas Wasser (Koenigs, B. 30, 1332). Wasserfreie Prismen (aus Wasser). F: 253° (korr.); leicht löslich in Wasser, unlöslich in Alkohol und Äther; $[\alpha]_0^m: -35,0°$ (Wasser; p=4) (Wohl, Maag, B. 42, 628). Gibt ein aus Wasser krystallisierbares, bei 173—175° schmelzendes N-Nitrosoderivat (K.). Hydrochlorid. Krystalle. F: ca. 197°; linksdrehend (K.).

N-Methyl-1(?)- α -cincholoiponsäure-diäthylester-hydroxymethylat $C_{14}H_{27}O_5N=(HO)(CH_2)_2NC_5H_3(CO_2\cdot C_2H_3)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Das Jodid entsteht beim Eintragen von siedender Kaliumcarbonat-Lösung in die siedende wäßrige Lösung des N-Methyl-[d- β -cincholoiponsäure]-diäthylester-jodmethylats (Skraup, M. 17, 391). — Jodid $C_{14}H_{26}O_4N\cdot I$.

¹⁾ Zu diesem Namen vgl. Procinini, G. 29 I, 410.

Prismen (aus Wasser). F: 120°. [α] $_{\rm p}^{\rm po}$: —92,9° (Wasser; p = 0,5). — $2C_{14}H_{26}O_4N\cdot Cl + PtCl_4$. Gelbe Blättchen (aus Wasser). F: 216° (Zers.). Ziemlich leicht löslich in heißem Wasser.

N-Äthyl-1(P)- α -cincholoiponsäure $C_{10}H_{17}O_4N=C_2H_5\cdot NC_5H_8(CO_2H)\cdot CH_2\cdot CO_3H$. B. Durch Erhitzen von N-Äthyl-d- β -cincholoiponsäure mit Essigsäureanhydrid und Kochen der entstandenen Verbindung $C_{10}H_{15}O_3N$ vom Schmelzpunkt 1940 (S. 129) mit Barytwasser (Koenigs, B. 30, 1333, 1334). — Krystalle. F: 2280 (Zers.). Linksdrehend. Wird durch Kochen mit Essigsäureanhydrid in die Verbindung $C_{10}H_{15}O_3N$ vom Schmelzpunkt 1940 zurückverwandelt. — Ba $(C_{10}H_{16}O_4N)_3$. Amorph. — Hydrochlorid. F: ca. 1800.

γ) Inaktive Form, dl-α-Cincholoiponsäure $C_8H_{18}O_4N = HNC_5H_8(CO_2H) \cdot CH_2 \cdot CO_2H$. B. Durch Erhitzen von 3-Cyan-1.2.5.6-tetrahydro-pyridin mit Natrium-malonester in Alkohol und 12-stdg. Kochen des Produkts mit Bariumhydroxyd und Wasser (Wohl, LOSANTSCH, B. 40, 4702, 4706). Beim Behandeln des Monoamids oder des Mononitrils (s. u.) mit Salzsäure (W., L., B. 40, 4704). Beim Erhitzen von dl-β-Cincholoiponsäure mit Kaliumhydroxyd und etwas Wasser auf 180—190° (W., L., B. 40, 4709). — Prismen mit 1 H₂O; verliert das Wasser bei 110°, nimmt es beim Stehen an der Luft wieder auf; die wasserhaltige Verbindung zersetzt sich bei 145°, die wasserfreie bei 208-209° (korr.); sehr leicht löslich in Wasser, schwerer in 96% igem Alkohol, unlöslich in absol. Alkohol, Ather und Aceton (W., L.). Last sich mit Hilfe von Brucin in die opt. akt. Komponenten zerlegen (W., MAAG, B. 42, 627). — Das salzsaure Salz gibt beim Behandeln in eiskalter wäßriger Lösung mit Natriumnitrit und Salzsäure ein N-Nitrosoderivat (s. u.) (W., L.). Beim Erhitzen des salzsäuren Salzes mit konz. Schwefelsäure auf 270—280° entsteht γ -Picolin (W., L.). Bei der Einw. von Essigsäureanhydrid auf die wäßr. Lösung von dl-Cincholoiponsäure bildet sich N-Acetyldl-cincholoiponsaure; kocht man das bromwasserstoffsaure Salz mit Essigsaureanhydrid, so erhält man N-Acetyl-dl-cincholoiponsäure-anhydrid (Syst. No. 4298) (W., M.). — C₈H₁₈O₄N + HCl. Tafeln oder Prismen (aus salzsäurehaltigem Wasser). Zersetzt sich bei 212—2130 (korr.); leicht löslich in Wasser, schwer in kaltem absolutem Alkohol, in siedendem erst nach einiger Zeit löslich; die Lösungen werden beim Eindunsten leicht sirupös und erstarren dann krystallinisch (W., L.). — C_eH₁₂O₄N + HBr. Körnige Krystalle oder Prismen (aus verd. Bromwasserstoffsäure). F: 224—225° (korr.) (Gasentwicklung) (W., L.). Leicht löslich in Wasser, sehr schwer in kaltem absolutem Alkohol (W., L.). — 2C_eH₁₂O₄N + 2HCl + PtCl₄ +2H₂O. Orangefarbene Tafeln oder Prismen. Das wasserhaltige Salz zersetzt sich rasch erhitzt bei 160-170°, das wasserfreie bei 215-217° (korr.), langsam erhitzt bei 210° (korr.); in warmem Wasser oder Alkohol leichter löslich als in kaltem, unlöslich in Äther (W., L.).

Monoamid, Piperidin- β -carbonsäureamid- γ -essigsäure $C_8H_{14}O_8N_2=HNC_5H_6(CO\cdot NH_2)\cdot CH_2\cdot CO_2H$. B. Bei kurzem Kochen des aus 3-Cyan-1.2.5.6-tetrahydro-pyridin und Natrium-malonester in Alkohol erhaltenen Produkts mit Bariumhydroxyd und Wasser (Wohl, Losanitsch, B. 40, 4703). — $C_8H_{14}O_8N_2+HCl$. Nadeln oder Prismen (aus Wasser oder verd. Alkohol). Zersetzt sich langsam erhitzt bei 244—245° (korr.), rasch erhitzt bei 251°. Löslich in warmem Wasser, unlöslich in Alkohol und Äther. — Liefert bei der Hydrolyse mit Salzsäure dl- α -Cincholoiponsäure.

Mononitril, [3-Cyan-piperidyl-(4)]-essigsäure $C_8H_{19}O_2N_9 = HNC_8H_6(CN)\cdot CH_2\cdot CO_3H$. B. Bei $1-1^1/_2$ -stdg. Kochen des aus 3-Cyan-1.2.5.6-tetrahydro-pyridin und Natrium-malonester in Alkohol erhaltenen Produkts mit Bariumhydroxyd und Wasser (Wohl, Losantrsch, B. 40, 4703, 4704). — $C_8H_{19}O_2N_2 + HCl$. Spieße (aus schwacher Salzsäure oder Wasser). Färbt sich bei 300° braun, zersetzt sich gegen 330° (korr.). Sehr leicht löslich in warmem Wasser, sehr schwer in Alkohol. —Liefert beim Kochen mit konz. Salzsäure dl- α -Cincholoiponsäure.

W-Acetylderivat $C_{10}H_{18}O_5N=CH_3\cdot CO\cdot NC_5H_3(CO_2H)\cdot CH_3\cdot CO_2H$. B. Durch Einw. von Essigsäureanhydrid auf die wäßr. Lösung von dl-α-Cincholoiponsäure bei gewöhnlicher Temperatur oder durch Kochen von bromwasserstoffsaurer dl-α-Cincholoiponsäure mit Essigsäureanhydrid und Behandeln des entstandenen Anhydrids (Syst. No. 4298) mit warmem Wasser (Wohl, MAAG, B. 42, 629). — Nadeln. F: 175° (korr.). Leicht löslich in heißem Wasser, schwer in kaltem Alkohol, unlöslich in Äther.

N-Nitrosoderivat $C_9H_{18}O_5N_9=ON\cdot NC_5H_5(CO_9H)\cdot CH_9\cdot CO_9H$. B. Beim Behandeln der eiskalten wäßrigen Lösung von salzsaurer dl- α -Cincholoiponsäure mit Natriumnitrit und Salzsäure (Wohl, Losanitsch, B. 40, 4705). — Prismen (aus Wasser). F: 152—153° (korr.) (Gasentwicklung). Sehr leicht löslich in heißem Wasser und Alkohol, schwerer in Äther, noch schwerer in Benzol und Chloroform, unlöslich in Petroläther und Ligroin. — Durch längeres Erwärmen mit kons. Salzsäure wird dl- α -Cincholoiponsäure regeneriert.

- b) β -Cincholoiponsäure $C_8H_{18}O_4N = HNC_5H_6(CO_2H) \cdot CH_2 \cdot CO_2H$.
- α) Rechtsdrehende Form, d-β-Cincholotponsäure C₈H₁₃O₄N = HNC₈H₈(CO₂H)·CH₂·CO₂H. Zur Konstitution vgl. Koenigs, B. 30, 1326; Skraup, M. 21, 880; 23, 269. B. Bei der Oxydation von [3-Äthyl-piperidyl-(4)]-essigsäure (Cincholoipon) (S. 11) mit siedender Chromsohwefelsäure (Skraup, M. 9, 811), von [3-Vinyl-piperidyl-(4)]-essigsäure (Merochinen) (S. 19) mit siedender Chromschwefelsäure (Koenigs, B. 28, 1986; A. 347, 207), glatter in kalter verdünnter Schwefelsäure mit Kaliumpermanganat (Koenigs, B. 28, 3150; A. 347, 208). Aus Cinchonin (Formel I) (Syst. No. 3513) beim Kochen mit

I.
$$\begin{array}{c} \text{CH} & \text{CH} \cdot \text{CH} \cdot \text{CH} : \text{CH}_2 \\ \text{CH}_2 & \text{CH} \cdot \text{CH} : \text{CH}_2 \\ \text{CH}_2 & \text{CH}_2 & \text{CH} \cdot \text{CH}_2 \\ \text{CH}_2 & \text{CH}_2 & \text{CH}_3 & \text{CH}_4 \\ \text{CH}_2 & \text{CH}_4 & \text{CH}_5 & \text{CH}_6 \\ \text{CH}_2 & \text{CH}_5 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_2 & \text{CH}_6 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_2 & \text{CH}_6 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_2 & \text{CH}_6 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_3 & \text{CH}_6 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_4 & \text{CH}_6 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_5 & \text{CH}_6 & \text{CH}_6 & \text{CH}_6 \\ \text{CH}_6 $

Chromschwefelsäure (Sk., M. 9, 785, 789), glatter durch Oxydation mit Kaliumpermanganat in verd. Schwefelsäure und Behandeln des entstandenen Cinchotenins (Formel II) (Syst. No. 3690) mit siedender Chromschwefelsäure (Sk., M. 16, 175; 17, 365). Durch Oxydation von Cinchonidin (Formel I) (Syst. No. 3513) mit Kaliumpermanganat in verd. Schwefelsäure und Behandeln des entstandenen Cinchotenidins (Formel II) (Syst. No. 3690) mit heißer Chromschwefelsäure (Schniderschitzsch, M. 10, 54, 57). Durch Oxydation von Chinin

(Formel III) (Syst. No. 3538) bezw. Chinidin (Formel III) (Syst. No. 3538) mit Kaliumpermanganat in verd. Schwefelsäure und Kochen des entstandenen Chitenins (Formel IV) (Syst. No. 3691) (Sk., M. 10, 42, 45, 47) bezw. Chitenidins (Formel IV) (Syst. No. 3691) (WÜRSTL, M. 10, 67, 70) mit Chromschwefelsäure. Bei der Oxydation von Cinchotoxin (Formel V) (Syst. No. 3571) (Sk., Pum, M. 10, 227) oder Chinotoxin (Formel VI) (Syst. No. 3635) (Sk., Wu.,

M. 10, 225) mit Kaliumpermanganat und dann mit Chromschwefelsäure. Man behandelt N-Acetyl-dl- β -cincholoiponsäure (S. 130) in wäßr. Lösung mit Brucin, zersetzt das sich aus-

N-Acetyl-di-β-cincholoiponsaure (S. 130) in wabr. Losung mit Brucin, zersetzt das sich ausscheidende Brucinsalz der N-Acetyl-d-β-cincholoiponsaure mit Bariumhydroxyd und verseift die Acetylverbindung mit verdünnter siedender Salzsäure (Wohl, Maag, B. 42, 630).

Prismen mit 1 H₂O (aus verdunstender wäßriger Lösung) (Skraup, M. 9, 797). Monoklin (sphenoidisch) (Lippitsch, M. 9, 801; vgl. Groth, Ch. Kr. 5, 720). Verliert das Krystallwasser bei 120—125° (Sk., M. 9, 800). Die wasserhaltige Verbindung schmilzt bei 126—127°, die wasserfreie bei 225—226° (Sk., M. 10, 46) unter Gasentwicklung (Sk., M. 9, 799). Sehr leicht löslich in Wasser (Sk., M. 9, 799), unlöslich in absol. Alkohol (Sk., M. 10, 46) und in Atherleicht löslich in gelegäuscheltigen Alkohol (Sk., M. 9, 799). leicht löslich in salzsäurehaltigem Alkohol (Sk., M. 9, 789). [α] $_{\rm D}^{\rm so}$: $+30,1^{\circ}$ (Wasser; α = 4) (Sk., M. 10, 47; Schniderschitsch, M. 10, 60), $+30,9^{\circ}$ (Wasser; α = 4) (Würsti, M. 10, 71). Verhält sich beim Titrieren mit Alkalilauge gegen Lackmus wie eine einbasische Säure (Sk., M. 9, 800). Geht beim Erhitzen mit Kaliumhydroxyd und etwas Wasser in l-α-Cincholoiponsäure über (Koenigs, B. 30, 1332). — Wird durch Kaliumpermanganat-Lösung in der Kälte zu Loiponsäure (S. 122) oxydiert (Sk., M. 17, 376). Wird weder durch Natriumamalgam (Sk., M. 9, 790) noch durch Erhitzen mit Jodwasserstoffsäure (Sk., M. 17, 386) angegriffen. Gibt mit salpetriger Säure ein N-Nitrosoderivat (S. 130) (SK., M. 9, 793). Einw. von Phosphorpentachlorid: Sk., M. 17, 374. Beim Erhitzen des Hydrochlorids mit konz. Schwefelsaure pentachlorid: Sk., M. 17, 374. Beim Erhitzen des Hydrochlorids mit konz. Schweielsaure auf 260—270° entstehen 4-Methyl-pyridin, γ -Piperidylessigsaure und 4-Methyl-piperidin-carbonsaure-(3) (S. 11) (Sk., M. 17, 368). Bei der Destillation des salzsauren Salzes mit Kalk erhält man viel Ammoniak, geringe Mengen einer Base C₇H₁₈N [deren Platinsalz C₇H₁₈N + 2 HCl + PtCl₄ bei 194—196° schmilzt] und ein bei 150—200° destillierendes, die Fichtenspan-Reaktion lieferndes Öl von der Zusammensetzung eines Tetramethylpyrrols (Sk., M. 17, 383; vgl. Kor., B. 30, 1327). Bei der Destillation des Bleisalzes mit Zinkstaub entstehen geringe Mengen Pyridin und vielleicht etwas Picolin (Sk., M. 9, 792; vgl. Sk., M. 17, 367). Beim Erhitzen des salzsauren Salzes mit Essigsaureanhydrid erhält man N-Acetyl-d- β -cincholoiponsäure-anhydrid (Syst. No. 4298) (Sk., M. 17, 372). Zur Einw. von Benzoylchlorid vgl. Schniderschitzch, M. 10, 62. — $Pb(C_3H_{12}O_4N)_2$. Pulver. In jedem Verhältnis löslich in Wasser, unlöslich in Alkohol und Ather (Sk., M. 9, 788). — $C_3H_{12}O_4N$ + HCl. Prismen und Tafeln (aus verd. Salzsäure). Rhombisch bisphenoidisch (Lippitsch, M. 9, 797; Lehmann, B. 42, 633; vgl. Groth, Ch. Kr. 5, 720). F: 192—194° (Gasentwicklung) (Sk., M. 9, 798; Wohl, Maag, B. 42, 631). Ziemlich leicht löslich in kaltem Wasser und Alkohol, etwas schwerer in Salzsäure (Schn., M. 10, 58). [α] $_D^{m}$: +38,0° (Wasser; p = 4) (Wohl, Maag, B. 42, 631).

Diäthylester $C_{12}H_{21}O_4N=HNC_5H_8(CO_2\cdot C_2H_5)(CH_2\cdot CO_2\cdot C_2H_5)$. B. Beim Sättigen der Lösung von salzsaurer d- β -Cincholoiponsäure in absol. Alkohol mit Chlorwasserstoff (Skraup, M. 16, 176). — Das salzsaure Salz wird erst durch wiederholtes Eindampfen der wäßr. Lösung unter Zusatz von Salzsäure zu salzsaurer d- β -Cincholoiponsäure verseift (Sk., M. 16, 177). — $C_{12}H_{21}O_4N+HCl$. Nadeln (aus absol. Alkohol). F: 164—165° (Sk., M. 16, 176). — $2C_{12}H_{21}O_4N+2HCl+PtCl_4$. Blättchen (aus Wasser). F: 181°; ziemlich schwer löslich in Wasser, unlöslich in Alkohol (Sk., M. 17, 387).

N-Methyl-d- β -cincholoiponsäure-monoäthylester-hydroxymethylat $C_{12}H_{22}O_5N = (HO)(CH_2)_9NC_{10}H_{16}O_4$. — $C_{12}H_{22}O_4N\cdot Cl + AuCl_2$. B. Durch Behandeln der wäßr. Lösung von N-Methyl-d- β -cincholoiponsäure-diäthylester-jodmethylat mit Silberoxyd und Fällen der Lösung mit Goldchlorid (Skraup, M. 17, 390). Tafeln. F: 90—95°. Scheidet beim Umkrystallisieren Gold ab.

N-Methyl-d- β -cincholoiponsäure-diäthylester-hydroxymethylat $C_{14}H_{37}O_5N=(HO)(CH_3)_2NC_4H_6(CO_3\cdot C_2H_5)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Das Jodid entsteht beim Kochen von salzsaurem d- β -Cincholoiponsäure-diäthylester mit Methylalkohol, staubförmigem (durch Erhitzen von Kaliumdicarbonat auf 180—200° bereitetem) Kaliumcarbonat und Methyljodid (Seraup, M. 17, 388; 21, 889). — Das Jodid geht beim Behandeln in siedender wäßriger Lösung mit siedender Kaliumcarbonat-Lösung in N-Methyl-l(?)- α -cincholoiponsäure-diäthylester-jodmethylat (S. 126) über (Sk., M. 17, 391). Bei der Einw. von konzentrierter warmer Kalilauge auf das Jodid entstehen 4 oder 5-Dimethylamino-cyclopentan-carbonsäure-(1)-essigsäure-(2) und ihr Diäthylester (Bd. XIV, S. 551); die Säure erhält man ausschließlich, wenn man verdünnte wäßrig-alkoholische Kalilauge auf das Jodid in der Wärme einwirken läßt; läßt man auf das Jodid zuerst Kalilauge in wäßr. Alkohol einwirken und erhitzt dann mit festem Kaliumhydroxyd auf 270°, so wird β -[α -Carboxy-äthyl]-glutarsäure (Bd. II, S. 827) gebildet (Sk., M. 21, 890, 893, 901). — Jodid $C_{14}H_{36}O_4N\cdot I$. Nadeln (aus schwefelwasserstoffhaltigem Wasser). F: 176°; sublimierbar; löslich bei Zimmertemperatur in ca. 4 Tln. Wasser; sehr leicht löslich in Methylalkohol, schwerer in Chloroform; [α] $_{0}^{\text{Di}}$: —43,1° (Wasser; p = 0,5) (Sk., M. 17, 389). — $C_{14}H_{36}O_4N\cdot Cl + AuCl_3$. Goldglänzende Blätter (aus Wasser). F: 80—82°; schwer löslich in heißem Wasser, sehr leicht in Alkohol (Sk., M. 17, 390). — Chloroplatinat. Blättchen. F: 210—213°; leicht löslich in heißem Wasser (Sk., M. 17, 390).

N-Äthyl-d- β -cincholoiponsäure $C_{10}H_{17}O_4N=C_2H_5\cdot NC_5H_8(CO_2H)\cdot CH_2\cdot CO_3H$. B. Durch Behandeln des d- β -Cincholoiponsäure-diāthylesters mit Äthyljodid und darauffolgende Verseifung mit verd. Salzsäure (Koenigs, B. 30, 1333). — F: 214—215° (Zers.). Rechtsdrehend. Wird durch Kochen mit Barytwasser nicht verändert. Liefert beim Kochen mit Essigsäureanhydrid zwei isomere Verbindungen $C_{10}H_{16}O_2N$ (s. u.).

Verbindung C₁₀H₁₅O₃N vom Schmelzpunkt 105°. B. Neben der isomeren Verbindung vom Schmelzpunkt 194° beim Kochen von N-Äthyl-d-β-cincholoiponsäure mit Essigsäure-anhydrid (Koenigs, B. 80, 1333). — F: 105°. Dreht schwächer nach links als das bei 194° schmelzende Isomere. Die wäßr. Lösung reagiert sauer. — Entfärbt kalte schwefelsaure Permanganat-Lösung. Bildet beim Erwärmen mit Wasser und Silbercarbonat ein Silbersalz, das bei der Zersetzung mit Schwefelwasserstoff die Verbindung C₁₀H₁₅O₃N regeneriert.

manganat-Losung. Bildet beim Erwarmen mit Wasser und Silbercarbonat ein Silbersalz, das bei der Zersetzung mit Schwefelwasserstoff die Verbindung C₁₀H₁₅O₃N regeneriert.

Verbindung C₁₀H₁₆O₃N vom Schmelzpunkt 194°. B. Aus N-Äthyl-d-β-eincholoiponsäure durch Kochen mit Essigsäureanhydrid oder Erhitzen mit Glycerin im Wasserstoffstrom auf 300° (Kornics, B. 30, 1333, 1334). — F: 194°. Linksdrehend. Die wäßr. Lösung reagiert sauer. — Entfärbt kalte schwefelsaure Permanganat-Lösung. Bildet beim Erwärmen mit Wasser und Silbercarbonat ein Silbersalz, das bei der Zersetzung mit Schwefelwasserstoff die Verbindung C₁₀H₁₅O₃N regeneriert. Wird durch Kochen mit überschüssigem Barytwasser in das Bariumsalz der N-Äthyl-l(?)-α-eincholoiponsäure (S. 127) übergeführt.

M-Acetyl-d- β -cincholoiponsäure $C_{10}H_{18}O_5N=CH_3\cdot CO\cdot NC_5H_6(CO_2H)\cdot CH_2\cdot CO_2H$. B. Durch Kochen von salzsaurer d- β -Cincholoiponsäure mit Essigsäureanhydrid und Erwärmen des entstandenen Anhydrids (Syst. No. 4298) mit Wasser (Seeaur, M. 17, 372). Aus N-Acetyl-dl- β -cincholoiponsäure durch Spaltung mit Brucin (Wohl, MAAG, B. 42, 630). — Strahlige Krystallmasse. F: 168° (Sk.), 167—168° (W., M.). [α] $_0^{\alpha}$: +19,9° (Wasser; p = 8), +19,4°

(Wasser; p=5) (W., M.). — Wird durch Kochen mit verd. Salzsäure in d- β -Cincholoiponsäure übergeführt (W., M.). — $CuC_{10}H_{19}O_5N+2H_9O$. Grüner, aus mikroskopischen Kügelchen bestehender Niederschlag (Sk.).

N-Nitroso-d- β -cincholoiponsäure $C_8H_{12}O_5N_2=ON\cdot NC_5H_8(CO_2H)\cdot CH_2\cdot CO_2H$. B. Bei der Einw. von Natriumnitrit und Salzsäure auf das Bariumsalz der d- β -Cincholoiponsäure in wäßr. Lösung (Skraup, M. 9, 793). — Tafeln oder Prismen (aus Wasser). Rhombisch (bisphenoidisch) (Lippitsch, M. 9, 795; vgl. Groth, Ch. Kr. 5, 720). F: 161—163°; schwer löslich in kaltem Wasser, ziemlich leicht in Alkohol; wird durch konz. Salzsäure unter Bildung von d- β -Cincholoiponsäure zersetzt; gibt die Liebermannsche Nitroso-Reaktion (Sk.). — Ba $C_9H_{10}O_5N_2$ (bei 115°). Amorph, hygroskopisch; wird aus wäßr. Lösung durch Alkohol gefällt (Sk.).

- β) Linksdrehende Form, l-β-Cincholoiponsäure $C_8H_{12}O_1N = HNC_5H_6(CO_2H) \cdot CH_2 \cdot CO_2H$. B. Man behandelt N-Acetyl-dl-β-cincholoiponsäure in heißer wäßriger Lösung mit Bruein, filtriert vom auskrystallisierenden Brueinsalz der N-Acetyl-d-β-cincholoiponsäure ab, befreit das Filtrat von Bruein und verseift die rohe N-Acetyl-l-β-cincholoiponsäure mit Salzsäure (Wohl, Maag, B. 42, 632). Hydrochlorid. Prismen (aus Wasser). Rhombisch bisphenoidisch (Lehmann, B. 42, 633; vgl. Groth, Ch. Kr. 5, 720). F: 192—194°; $[\alpha]_D^{ab}$: —36,5° (Wasser; p = 4) (W., M.).
- γ) Inaktive Form, $dl-\beta$ -Cincholoiponsäure $C_bH_{15}O_4N = HNC_bH_6(CO_2H)\cdot CH_2\cdot$ CO.H. B. Durch Erhitzen von 3-Cyan-1.2.5.6-tetrahydro-pyridin (S. 15) mit Natriummalonester in Alkohol und Kochen des Řeaktionsprodukts mit rauchender Salzsäure; aus dem so erhaltenen Gemisch von salzsaurer dl- β - und dl- α -Cincholoiponsäure krystallisiert das Hydrochlorid der β -Säure zuerst aus und wird mit Silbercarbonat in die freie Säure übergeführt (Wohl, Losanitsch, B. 40, 4702, 4710). — Prismen. Zersetzt sich schnell erhitzt bei 248—249° (korr.), langsam erhitzt bei 242° (korr.); sehr leicht löslich in Wasser, unlöslich in absol. Alkohol (W., L.). — Geht beim Erhitzen mit Kaliumhydroxyd und etwas Wasser auf 180—190° in dl-α-Cincholoiponsäure über (W., L.). Beim Erhitzen des salzsauren Salzes mit konz. Schwefelsäure auf 270—280° erhält man γ-Picolin (W., L.). Durch Einw. von Essigsäureanhydrid auf die wäßr. Lösung von dl-β-Cincholoiponsäure bei Zimmertemperatur entsteht N-Acetyl-dl- β -cincholoiponsäure; kocht man das bromwasserstoffsaure Salz mit Essigsäureanhydrid, so erhält man N-Acetyl-dl- β -cincholoiponsäure-anhydrid (Syst. No. 4298) (Wohl, Maag, B. 42, 630). — C₈H₁₈O₄N + HCl. Prismen (aus verd. Salzsäure). Rhombisch (DIETRICH, B. 40, 4710); zersetzt sich rasch erhitzt bei 229°, langsam erhitzt bei 223—224° (korr.); wird bei längerem Aufbewahren trübe; sehr leicht löslich in Wasser, sehr schwer in Alkohol, unlöslich in Aceton und Äther (W., L.). — $C_8H_{13}O_4N + HBr$. Körnige Krystalle (aus verd. Bromwasserstoffsäure). Zersetzt sich bei 226° (korr.); leicht löslich in kaltem Wasser, schwer in Alkohol (W., L.). — $2C_8H_{13}O_4N + 2HCl + PtCl_4 + 2H_3O$. Orangefarbene Tafeln oder Prismen. Zersetzt sich bei 225° ; sehr leicht löslich in heißem Wasser, schwer in absol. Alkohol (W., L.).

N-Acetylderivat $C_{10}H_{15}O_8N=CH_3\cdot CO\cdot NC_8H_8(CO_2H)\cdot CH_2\cdot CO_2H$. B. Durch Kochen von bromwasserstoffsaurer dl-β-Cincholoiponsäure mit Essigsäureanhydrid und Erwärmen des entstandenen Anhydrids (Syst. No. 4298) mit Wasser (Wohl, Maag, B. 42, 630). Durch Behandeln von dl-β-Cincholoiponsäure in wäßr. Lösung mit Essigsäureanhydrid bei gewöhnlicher Temperatur (W., M.). — Warzen. F: 184—185° (korr.). Leicht löslich in heißem Wasser, schwer in Alkohol, unlöslich in Ather. Läßt sich mit Brucin in die optisch aktiven Komponenten spalten.

N-Nitrosoderivat $C_8H_{12}O_5N_2=ON\cdot NC_5H_8(CO_2H)\cdot CH_2\cdot CO_2H$. B. Beim Behandeln der eiskalten Lösung von dl- β -Cincholoiponsäure mit Natriumnitrit und verd. Salzsäure (Wohl, Losanitsch, B. 40, 4711). — Krystalle (aus Wasser). F: 157—158° (korr.) (Zers.). In kaltem Wasser viel schwerer löslich als in heißem. Wird schon durch einmaliges Eindampfen mit rauchender Salzsäure in dl- β -Cincholoiponsäure zurückverwandelt.

5. 2.6 - Dimethyl - piperidin - dicarbonsäure - (3.5), 2.6 - Dimethyl - hexahydrodinicotinsäure, $\alpha.\alpha'$ - Lupetidin - $\beta.\beta'$ - dicarbonsäure $C_0H_{15}O_4N=HO_2C\cdot HC\cdot CH_2\cdot CH\cdot CO_3H$

CH3·HC·NH·CH·CH3

 $\begin{array}{c} \textbf{Diäthylester} \ C_{13}\textbf{H}_{23}\textbf{O}_{4}\textbf{N} = \frac{\textbf{C}_{2}\textbf{H}_{5}\cdot\textbf{O}_{2}\textbf{C}\cdot\textbf{HC}\cdot\textbf{CH}_{2}\cdot\textbf{CH}\cdot\textbf{CO}_{2}\cdot\textbf{C}_{2}\textbf{H}_{5}}{\textbf{CH}_{2}\cdot\textbf{HC}\cdot\textbf{NH}\cdot\textbf{CH}\cdot\textbf{CH}_{2}}. \ \ \textbf{\textit{B.}} \ \ \textbf{Neben} \ \alpha.\alpha'\cdot\textbf{Lutidin}\cdot \\ \boldsymbol{\beta.\beta'}\cdot\textbf{dicarbons\"{a}ure}\cdot\textbf{diāthylester} \ \ \textbf{aus} \ \ \textbf{N.\gamma}\cdot\textbf{Dihydro}\cdot\alpha.\alpha'\cdot\textbf{lutidin}\cdot\boldsymbol{\beta.\beta'}\cdot\textbf{dicarbons\"{a}ure}\cdot\textbf{diāthylester} \end{array}$

diathylester über.

durch Erhitzen in Gegenwart von Palladiummohr auf 120-2000 (KNOEVENAGEL, FUCHS, B. 35, 1788; 36, 2852) oder durch Behandeln mit konz. Salzsäure bei Zimmertemperatur (K., F., B. 85, 1791); man trennt die beiden Ester durch fraktionierte Krystallisation aus Petroläther (K., F., B. 85, 1796). Bei der Einw. von Zinnchlorür + Salzsäure auf das N-Nitrosoderivat (K., F., B. 85, 1795). — Würfel (aus 60% gigem Alkohol). F: 92—94°; 1 Tl. löst sich bei 17° in 1200 Tln. Petroläther; an der Luft sehr unbeständig; wird beim Erhitzen auf 100° unter Durchleiten von Sauerstoff oxydiert; entfärbt Kaliumpermanganat in neutraler, sauer oder alkalischer Lösung (K., F., B. 35, 1797, 1798). — Chloroplatinat. Krystalle (aus Alkohol). F: 128° (Zers.); sehr leicht löslich in Wasser, ziemlich leicht in Alkohol, unlöslich in Äther (K., F., B. 35, 1798).

N-Nitrosoderivat des Diäthylesters $C_{12}H_{22}O_5N_2 =$

 $C_gH_g \cdot O_gC \cdot HC - CH_g - CH \cdot CO_g \cdot C_gH_g$. B. Durch Lösen von N. γ -Dihydro- $\alpha.\alpha'$ -lutidin- $\beta.\beta'$ -di-CH_a·HC·N(NO)·CH·CH_a carbonsaure-diathylester in konz. Salzsaure und Behandeln der Lösung mit Natriumnitrit (K., F., B. 85, 1794). — Krystalle (aus Alkohol). F: 54°. Zersetzt sich beim Erhitzen auf 95°. Geht beim Behandeln mit Zinnchlorür + Salzsäure in $\alpha.\alpha'$ -Lupetidin- $\beta.\beta'$ -dicarbonsäure-

2. Dicarbonsäuren $C_n H_{2n-7} O_4 N$.

1. Pyrrol-dicarbonsäure-(2.5), Pyrrol- α,α' -dicarbonsäure $C_aH_5O_aN=$

HO₂C·C·NH·C·CO₂H. Zur Konstitution vgl. Ciamician, Silber, B. 20, 2595; G. 17, 261. — B. Beim Schmelzen von [5-Carboxy-pyrryl-(2)]-glyoxylsäure mit Kaliumhydroxyd (C., S.,
 B. 19, 1959; G. 16, 377). — Nadeln (aus verd. Alkohol). Schwärzt sich gegen 260° und zerfällt unter teilweiser Sublimation in Pyrrol und Kohlendioxyd; löslich in Äther und Aceton, fast unlöslich in Essigester, Chloroform, Benzol und Petroläther (C., S., B. 19, 1959; G. 16, 377). — Ag.C.H.O.N (C., S., B. 19, 1960; G. 16, 377).

Monomethylester $C_7H_7O_4N = HNC_4H_8(CO_9H)(CO_9\cdot CH_3)$. B. Neben dem Dimethylester beim Behandeln des Silbersalzes der Pyrrol-dicarbonsäure-(2.5) mit Methyljodid in Ather; man trennt die Ester mit Soda-Lösung (C., S., B. 19, 1960; 20, 2601 Anm.; G. 16, 378; 17, 269 Anm.). — F: 243° (C., S., B. 20, 2601 Anm.; G. 17, 269 Anm.).

Dimethylester C₆H₅O₄N = HNC₄H₂(CO₂·CH₃)₃. B. s. im vorangehenden Artikel. — Nadeln (aus Wasser). F: 132°; leicht löslich in Alkohol, Ather, Benzol und in siedendem Wasser (C., S., B. 19, 1960; G. 16, 378).

Diäthylester $C_{10}H_{13}O_4N = HNC_4H_8(CO_3 \cdot C_2H_5)_8$. *B.* Analog dem Dimethylester (C., S., *B.* 19, 1960; *G.* 16, 379). — Nadeln. F: 82°.

N-Äthyl-pyrrol- $\alpha.\alpha'$ -dicarbonsäure $C_8H_9O_4N=\frac{HC-CH}{HO_2C\cdot C\cdot N(C_2H_5)\cdot C\cdot CO_2H}$. B. Aus der folgenden Verbindung durch Erhitzen mit alkoh. Kalilauge im Rohr auf 130° (Bell, B. 10, 1864). — Nadeln (aus verd. Alkohol). Unlöslich in Wasser. — Zerfällt bei 250°, ohne zu schmelzen, in N-Äthyl-pyrrol und Kohlendioxyd. Wird auch bei der Behandlung mit konz. Säuren in der Kälte zersetzt. — $Ag_2C_8H_7O_4N$. Unlöslich in Wasser.

in Wasser. Löslich in konz. Säuren. — Bleibt beim Kochen mit wäßriger oder alkoholischer Kalilauge unverändert; zerfällt aber beim Erhitzen mit starker alkoholischer Kalilauge im Rohr auf 130° in Athylamin und N-Athyl-pyrrol-α.α'-dicarbonsäure.

 $\textbf{N-Phenyl-pyrrol-} \alpha.\alpha'-\textbf{dicarbons\"{a}ure} \quad C_{12}H_{9}O_{4}N \ = \frac{1}{HO_{2}C\cdot C\cdot N(C_{6}H_{5})\cdot C\cdot CO_{2}H}.$ Neben anderen Verbindungen beim Erhitzen von schleimsaurem Anilin auf 240° (Piotet, STEINMANN, B. 35, 2533; C. 1902 I, 1298). — Krystalle (aus Wasser). Leicht löslich in Alkohol und Eisessig, löslich in Benzol, Äther und Chloroform, unlöslich in Petroläther. - Zersetzt sich bei 235—240° in N-Phenyl-pyrrol und Kohlendioxyd. — Ag₂C₁₂H₇O₄N.

BrC--- $\mathbf{HO_{s}C \cdot \overset{\square}{C} \cdot NH \cdot \overset{\square}{C} \cdot CO_{s}H}$. B. 3.4-Dibrom-pyrrol-dicarbonsäure-(2.5) $C_6H_2O_4NBr_2 =$

Man behandelt Pyrrol-dicarbonsäure-(2.5)-dimethylester in Wasser mit Bromdampf und verseift den entstandenen 3.4-Dibrom-pyrrol-dicarbonsäure-(2.5)-dimethylester durch Kochen mit verd. Kalilauge (Ciamician, Silber, B. 20, 2600; G. 17, 267). — Nadeln. Schmilzt erst bei hoher Temperatur unter Zersetzung. Fast unlöslich in Wasser. — Gibt beim Auflösen in rauchender Salpetersäure 3.4-Dibrom-2.5-dinitro-pyrrol.

Dimethylester $C_8H_7O_4NBr_2 = CH_3 \cdot O_2C \cdot C \cdot NH \cdot C \cdot CO_2 \cdot CH_3$. B. s. die vorangehende Verbindung. — Nadeln (aus Alkohol). F: 222°; leicht löslich in Äther, fast unlöslich in Wasser

(C., S., B. 20, 2601; G. 17, 269).

Verbindung C₄H₄O₄NBr [vielleicht Oximinomalonsäure-methylester-bromid CH₃·O₂C·C(:N·OH)·COBr]. B. Beim Auflösen von 3.4-Dibrom-pyrrol-dicarbonsäure-(2.5)-dimethylester in rauchender Salpetersäure (D: 1,5) bei —18° (C., S., B. 20, 2601; G. 17, 270).—Krystallinisch. F: 168—171° (Zers.). Löslich in Alkohol und Ather, schwer löslich in kaltem Wasser, unlöslich in Petroläther. — Reagiert sauer; zerlegt Carbonate.

2. Dicarbonsäuren C₈H₉O₄N.

1. 2-Methyl-pyrrol-carbonsäure-(3)-essigsäure-(5) $C_sH_sO_tN=$ HC——C·CO.H HO.C.CH. C.NH.C.CH.

 $\begin{array}{c} \textbf{Diäthylester} \ \ C_{12}H_{17}O_4N = \frac{\textbf{HC} - - C \cdot \textbf{CO}_2 \cdot \textbf{C}_2H_5}{C_2H_5 \cdot \textbf{O}_2C \cdot \textbf{CH}_2 \cdot \overset{\parallel}{\textbf{C}} \cdot \textbf{NH} \cdot \overset{\parallel}{\textbf{C}} \cdot \textbf{CH}_2}. \ \ \textit{B.} \ \ \text{Beim Kochen des} \end{array}$ Natriumsalzes des β' -Oxo- α -acetyl-adipinsaure-diathylesters mit Ammoniumacetat und Eisessig (Nef, A. 266, 85). — Nadeln (aus verd. Alkohol oder Eisessig). F: 1860. Unzersetzt flüchtig.

2. 3.5 - Dimethyl - pyrrol - dicarbonsaure - (2.4) $C_0H_0O_4N =$ $HO_2C \cdot C - C \cdot CH_2$

 $CH_3 \cdot C \cdot NH \cdot C \cdot CO_2H$. B. Der Diäthylester entsteht beim Behandeln einer Lösung äquimolekularer Mengen von Acetessigester und Isonitrosoacetessigester in Essigsäure mit Zinkstaub (Knorr, A. 236, 317), beim Eintragen einer konz. Lösung von 2 Tln. Natriumnitrit in eine essigsaure Lösung von 7 Tln. Acetessigester unter Kühlung und Reduktion des Reaktionsgemisches mit Zinkstaub (K., A. 236, 319) sowie bei der Reduktion eines Gemisches aus Isonitrosoacetessigester mit β -Amino-crotonsaure-athylester oder mit β -Methylaminocrotonsäure-äthylester (K., A. 236, 321). Die freie Säure entsteht durch Verseifung des Diäthylesters mit Natronlauge (K., A. 236, 324). — Krystallinische Flocken, die sich bei Gegenwart von Säuren rasch rot färben (K.). Elektrolytische Dissoziationskonstante k bei 25°: 2,1×10⁻⁵ (aus der Leitfähigkeit der wäßr. Lösung berechnet) (Angeli, G. 22 II, 15). — Zerfällt bei 260° glatt und ohne zu schmelzen in 2.4-Dimethyl-pyrrol und Kohlendioxyd; dieselbe Zersetzung erfolgt beim Kochen mit Mineralsäuren (Auftreten der Fichtenspan-Reaktion) (K.). Reduziert beim Kochen ammoniakalische Silber-Lösung (K.). Geht beim Kochen mit Essigsäureanhydrid in Tetramethyl-pyrokoll-dicarbonsäure nebenstehender Formel (Syst. No. 3699) über (Magnanini, HO2C C N CO CO2H CO4)

8.5 - Dimethyl - pyrrol - dicarbonsäure - (2.4) - äthylester - (4) $C_{10}H_{12}O_4N =$ $C_{\bullet}H_{\bullet} \cdot O_{\bullet}C \cdot C - C_{\bullet}C \cdot CH_{\bullet}$

B. 21, 2876; vgl. M., B. 22, 35; ERLENMEYER, B. 22,

794). — Die Salze sind amorph (K.).

CH₃·C·NH·C·CO₂H. Zur Konstitution vgl. Magnanini, B. 21, 2864; 2874; 22, 40.

B. Man kocht den Diäthylester (S. 133) mit einem mäßigen Überschuß alkoh. Kalilauge, bis sich das Reaktionsgemisch auf Zusatz von Wasser nicht mehr trübt (Knorr, A. 236, 320, 322). — Nadeln (aus Alkohol). F: 202° (Zers.) (K.). Fast unlöslich in Wasser (K.). — Liefert beim Erhitzen über den Schmelzpunkt 2.4-Dimethyl-pyrrol-carbonsäure-(3)-äthylester (K.). Gibt beim Kochen mit überschüssigem Acetanhydrid Tetramethyl-pyrolossäure-distribution (M. P. 21, 2027, 202, diäthylester (M., B. 21, 2877; 22, 35; vgl. Erlenmeyer, B. 22, 794). Beim Erhitzen mit Acetanhydrid auf 200—205° erhält man 2.4-Dimethyl-5-acetyl-pyrrol-carbonsäure-(3)-athylester (M., B. 21, 2865). — AgC₁₀H₁₂O₄N. Amorpher Niederschlag (K.).

8.5-Dimethyl-pyrrol-dicarbonsäure-(2.4)-diäthylester $C_{12}H_{12}O_4N =$ C.H. O.C.C. C.CH.

B. s. im Artikel 3.5-Dimethyl-pyrrol-dicarbonsaure-(2.4), CH₂·C·NH·C·CO₂·C₂H₅ 8. 132. — Krystalle (aus verd. Alkohol oder Essigsäure). F: 134—135° (Knorr, A. 236, 319). Ziemlich leicht löslich in Alkohol, Chloroform, Benzol und Eisessig, schwer in Ather und Ligroin, unlöslich in Wasser; unlöslich in starker Salzsäure (K.). Löslich in kalter konzentrierter Schwefelsäure; fällt beim Verdünnen der Lösung unverändert wieder aus (K.). — Beim Erwärmen mit konz. Schwefelsäure erhält man 2.4-Dimethyl-pyrrol (K.). Die gleiche Verbindung entsteht beim Erhitzen mit Alkalilauge im Rohr auf 150—160°, während man bei längerem Kochen mit wäßr. Alkalilauge oder mit viel überschüssiger alkoholischer Kalilauge 3.5-Dimethyl-pyrrol-dicarbonsäure-(2.4) erhält; beim Kochen mit einem mäßigen Überschuß alkoh. Kalilauge bildet sich hauptsächlich 3.5-Dimethyl-pyrrol-dicarbonsäure (2.4)āthylester-(4) (K.; vgl. Magnanini, B. 21, 2864, 2874; 22, 40). $\stackrel{\sim}{-}$ KC₁₂H₁₆O₄N (K.).

8.5-Dimethyl-pyrrol-dicarbons = (2.4)-anilid-(4) $C_{14}H_{14}O_{2}N_{2} =$ $C_{\bullet}H_{\bullet} \cdot NH \cdot OC \cdot C - C \cdot CH_{\bullet}$

B. Durch Kochen von 3.5-Dimethyl-pyrrol-dicarbon-CH, C·NH·C·CO₂H.

B. Duron Rochen von 3.5-Dimetnyl-pyrrol-dicarbon-saure-(2.4)-athylester-(2)-anilid-(4) mit alkoh. Kalilauge (Knobb, A. 236, 328). — Nadeln. Zersetzt sich bei 198°. — Geht beim Schmelzen sowie beim Kochen mit verd. Schwefelsäure in 2.4-Dimethyl-pyrrol-carbonsäure-(3)-anilid über. — Gibt die Fichtenspan-Reaktion.

8.5-Dimethyl-pyrrol-dicarbonsäure-(2.4)-äthylester-(4)-anilid-(2) $C_{16}H_{16}O_{5}N_{6} =$ $C_2H_5 \cdot O_2C \cdot C - C \cdot CH_2$

CH_s·C·NH·C·CO·NH·C₆H_s. B. Durch Reduktion einer Lösung äquimolekularer Mengen α-Isonitroso-acetessigsäure-anilid und Acetessigsäure-āthylester in Essigsäure mit Zinkstaub (Knors, A. 236, 330). — Nadeln (aus Alkohol). F: 180°. — Liefert beim Erwärmen mit konz. Schwefelsäure 2.4-Dimethyl-pyrrol.

8.5-Dimethyl-pyrrol-dicarbonsäure-(2.4)-äthylester-(2)-anilid-(4) $C_{1e}H_{18}O_2N_2 =$ $C_aH_a \cdot NH \cdot OC \cdot C - C \cdot CH_a$

B. Durch Reduktion einer Lösung äquimolekularer CH. C.NH. C.CO. C.H. Mengen Isonitrososocetessigester und Acetessigsäure-anilid in Eisessig mit Zinkstaub, zuletzt unter Erwärmen (Knore, A. 236, 327). — Krystalle (aus Essigsäure). F: 216°. Löslich in heißem Alkohol und Eisessig, unter Wasser. Unlöslich in Säuren und Alkalilaugen. Liefert beim Kochen mit alkoh. Kalilauge 3.5-Dimethyl-pyrrol-dicarbonsäure-(2.4)-anilid-(4). Beim Erwärmen mit konz. Schwefelsäure erhält man 2.4-Dimethyl-pyrrol.

3.5-Dimethyl-pyrrol-dicarbonsaure-(2.4)-dianilid $C_{20}H_{12}O_2N_3 =$ $C_0H_3 \cdot NH \cdot OC \cdot C - C \cdot CH_3$

Durch Reduktion aquimolekularer Mengen B. CH. C.NH. C.CO.NH. C.H. von α-Isonitroso-acetessigsäure-anilid und Acetessigsäure-anilid mit Zinkstaub in essigsaurer Lösung (Knore, A. 236, 331). — Nadeln (aus Alkohol). F: ca. 255°. — Liefert beim Erwärmen mit konz. Schwefelsäure 2.4-Dimethyl-pyrrol.

3. 2.5 - Dimethyl - pyrrol - dicarbonsaure - (3.4) $C_0H_0O_1N = HO_2C \cdot C - C \cdot CO_2H$

. B. Neben dem Monoathylester (s. u.) beim Kochen des Diathylesters CH₂·C·NH·C·CH₃
(s. u.) mit alkoh. Kalilauge (Knorr, B. 18, 1561). — Nadeln (aus Alkohol). F: 250—251° (Zers.) (K.). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Angell, G. 22 II, 16. — Geht beim Schmelzen sowie beim Behandeln mit starken Säuren in 2.5-Dimethyl-pyrrol tiber (K.). Oxydation mit Kaliumpermanganat in alkal. Lösung: K. — Gibt mit Eisenchlorid-Lösung eine tiefrote Färbung (K.). — $Cu(C_8H_8O_4N)_2 + 3H_2O$. Grüne Nadeln. Zersetzt sich beim Erhitzen (K.). — $Ba(C_8H_8O_4N)_8$ (bei 110°). Nadeln (K.). — Weitere Salze: K.

2.5-Dimethyl-pyrrol-dicarbonsäure-(8.4)-monoäthylester $C_{10}H_{18}O_4N=HNC_4(CH_8)_8(CO_2H)\cdot CO_3\cdot C_2H_5$. B. s. im vorangehenden Artikel. — Krystalle (aus Alkohol). F: 227° (Zers.) (KNORR, B. 18, 1562). Leicht löslich in Natronlauge und Soda-Lösung; wird aus diesen Lösungen schon durch Kohlendioxyd vieder abgeschieden. — Beim Erhitzen über den Schmelzpunkt entsteht 2.5-Dimethyl-pyrrol-carbonsäure-(3)-äthylester. — Salze: K.

2.5-Dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{12}H_{17}O_4N=HNC_4(CH_2)_2(CO_3\cdot C_4H_5)_2$. B. Aus Diacethernsteinsäure-diäthylester beim Behandeln mit konsentriertem wäßrigem Ammoniak oder mit Ammoniak in Eisessig (Knorr, B. 18, 302, 1559). Aus Diacethernsteinsäure-diäthylester-monomial beim Aufbewahren an der Luft oder im Vakuum, schneller beim Erwärmen für sich oder mit Eisessig, Alkohol oder verd.

Mineralsäuren (Knorr, Rabe, B. 33, 3803). Bei der Einw. von alkoh. Ammoniak auf Bis[α-benzoyloxy-āthyliden]-bernsteinsäurediäthylester (Paal, Härtel, B. 30, 1995). Durch
Behandeln von 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit Natriumnitrit in essigsaurer Lösung unter Kühlung (Bülow, Klemann, B. 40, 4753). — Krystalle
(aus Eisessig oder Alkohol), Nadeln (aus Benzol + Ligroin). F: 99° (Kn., B. 18, 1560; P., H.).
Leicht löslich in Alkohol und Chloroform, schwer in Äther und Essigsäure, fast unlöslich in Wasser, in verd. Säuren und in Alkalilauge (Kn., B. 18, 1560). — Gibt beim Verseifen mit siedender alkoholischer Kalilauge 2.5-Dimethyl-pyrrol-dicarbonsäure-(3.4) und ihren Monoäthylester (S. 133) (Kn., B. 18, 306, 1561). — Salze: Kn., B. 18, 1560, 1561. — KC₁₃H₁₆O₄N.
Nadeln. Zersetzt sich bei 260°. Wird durch Wasser hydrolysiert. — 2C₁₃H₁₇O₄N + 2 HCl
+ PtCl₄-Orangerote Krystalle. Zersetzt sich bei ca. 160°.

1.2.5 - Trimethyl - pyrrol - dicarbonsäure - (3.4) $C_9H_{11}O_4N = CH_3 \cdot NC_4(CH_3)_3(CO_2H)_3$. B. Durch kurzes Kochen des Diāthylesters (s. u.) mit überschüssiger alkoholischer Kalilauge (Knorr, B. 18, 306, 307; A. 236, 303). — Nadeln. Unlöslich in Wasser, schwer löslich in Ather, löslich in heißem Alkohol und Eisessig (K., B. 18, 306). — Zersetzt sich bei 258—260° unter Bildung von 1.2.5-Trimethyl-pyrrol (K., A. 236, 304). — Salze: K., A. 236, 304. — BaC_9H_9O_4N. Krystalle. — $Co(C_9H_{10}O_4N)_2$.

Diäthylester $C_{13}H_{19}O_4N=CH_3\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_3$. B. Aus Diacetbernsteinsäureester und Methylamin in währiger oder heißer essigsaurer Lösung (Knorr, B. 18, 303; A. 236, 303). — Krystalle (aus Essigsäure oder Äther + Ligroin). F: 72°.

1- α -Camphyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{13}H_{25}O_4N =$

HC — CH₂ CH·CH₂·CH₂·NC₄(CH₃)₂(CO₂H)₂. B. Der Diäthylester entsteht beim CH₃·C·C(CH₃)₂

CH·CH₂·C·C(CH₃)₂

Kochen von Diacetbernsteinsäureester mit α-Camphylamin in Eisessig; man verseift ihn durch siedende wäßrig-alkoholische Kalilauge (Bülow, B. 38, 190). — Krystalle. F: 204⁰ (Zers.). Leicht löslich in Alkohol und Eisessig, schwer in Benzol, unlöslich in Ligroin. Leicht löslich in Soda-Lösung, scheidet sich auf Zusatz von Mineralsäuren oder Essigsäure aus dieser Lösung wieder aus. Verhält sich bei der Titration mit Kalilauge in alkoholischer oder wäßrig-alkoholischer Lösung in Gegenwart von Phenolphthalein wie eine einbasische Säure. — Geht beim Schmelzen in 1-α-Camphyl-2.5-dimethyl-pyrrol über. — NH₄C₁₈H₂₄O₄N. Nadeln. Leicht löslich in heißem Wasser.

Diäthylester $C_{33}H_{33}O_4N = \frac{HC CH_2}{CH_3 \cdot C \cdot C(CH_3)_2} CH \cdot CH_3 \cdot CH_2 \cdot NC_4(CH_3)_2(CO_3 \cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Krystalle (aus verd. Alkohol, Aceton oder Eisessig). F: 78° (Bülow, B. 38, 190). Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser.

1-Phenyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{14}H_{18}O_4N = C_8H_5 \cdot NC_4(CH_3)_3$ (CO₂H)₂. B. Durch Erwärmen von Diacetbernsteinsäureester mit Anilin in Essigsäure und Verseifen des erhaltenen Diäthylesters mit siedender alkoholischer Kalilauge (KNORR, B. 18, 303, 307). — Pulver. Unlöslich in Wasser, schwer löslich in Äther, löslich in heißem Alkohol und Eisessig (K., B. 18, 306). — Zerfällt bei ca. 224° in Kohlendioxyd und 1-Phenyl-2.5-dimethylpyrrol (K., B. 18, 307; A. 236, 305). — $Ca(C_{14}H_{12}O_4N)_2$. Prismen (K., A. 236, 305). — $CaC_{14}H_{11}O_4N$. Krystalle (K., A. 236, 305).

Diäthylester $C_{18}H_{21}O_4N = C_8H_5 \cdot NC_4(CH_2)_2(CO_2 \cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Krystalle. F: 37—38° (Knorr, B. 18, 303). Kp₅₀: 280°.

1-o-Tolyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{18}H_{16}O_4N = CH_3 \cdot C_6H_4 \cdot NC_4(CH_4)_3(CO_4H)_3$. B. Durch Kondensation von Diacetbernsteinsäureester mit o-Toluidin in siedender Essigsäure und Verseifung des Reaktionsprodukts mit methylalkoholischer Kalilauge (BÜLOW, LIST, B. 35, 687). Beim Behandeln von diazotiertem 1-[4-Amino-2-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit Natriumstannit in Natronlauge unterhalb 5° und Verseifen des Reaktionsprodukts mit methylalkoholischer Kalilauge (B., L.). — Krystalle (aus Alkohol). F: 203—204° (Zers.). Löslich in Alkohol, Äther und Eisessig, schwer löslich in Benzol und Ligroin. — $AgC_{15}H_{14}O_4N$. Pulver. Unlöslich in den gebräuchlichen Lösungsmitteln. Unzersetzt löslich in Ammoniak und Kaliumcyanid-Lösung.

1-m-Tolyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{18}H_{15}O_4N=CH_3\cdot C_8H_4\cdot NC_4(CH_3)_3(CO_2H)_3$. B. Durch Kondensation von Diacetbernsteinsäureester mit m-Toluidin in siedender Essigsäure und Verseifung des Reaktionsprodukts mit methylalkoholischer Kalilauge (Bülow, List, B. 35, 687). — F: 222—223° (Zers.). Leicht löslich in Soda-Lösung. — Liefert beim Erhitzen 1-m-Tolyl-2.5-dimethyl-pyrrol. — $AgC_{15}H_{14}O_4N$. Ist fast farblos und siemlich lichtbeständig. Löslich in Ammoniak und Kaliumeyanid-Lösung.

1-p-Tolyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{15}H_{15}O_4N=CH_3\cdot C_6H_4\cdot NC_4(CH_4)_2(CO_2H)_2$. B. Aus dem Diäthylester (s. u.) durch Verseifen mit siedender alkoholischer Kalilauge (Knorr, B. 18, 307). Aus diazotierter 1-[2-Amino-4-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) durch Verkochen mit Alkohol oder durch Überführen in die Hydrazino-Verbindung und nachfolgendes Kochen mit Kupfersulfat- oder Eisenchlorid-Lösung (Bülow, List, B. 35, 191). — Krystalle (aus verd. Alkohol), Nadeln (aus Eisessig). Zerfällt bei ca. 250°, ohne zu schmelzen, in Kohlendioxyd und 1-p-Tolyl-2.5-dimethyl-pyrrol (K.). Unlöslich in Wasser, schwer löslich in Äther, leicht in heißem Alkohol und Eisessig (K.). — $K_4C_{18}H_{13}O_4N$. Krystalle (aus verd. Alkohol). Unlöslich in Alkohol (K.). — $AgC_{18}H_{14}O_4N$. Krystalle (K.).

Diäthylester $C_{19}H_{23}O_4N=CH_3\cdot C_8H_4\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Aus Diacetbernsteinsäureester und p-Toluidin in essigsaurer Lösung (Knorr, B. 18, 304). — Krystalle (aus Äther). F: 67°.

1- α -Naphthyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{18}H_{15}O_4N=C_{10}H_7$ · $NC_4(CH_3)_3(CO_2H)_9$. B. Der Diäthylester entsteht bei der Kondensation von Diacetbernsteinsäureester mit α -Naphthylamin in essigsaurer Lösung; man verseift ihn mit alkoh. Kalilauge (Knorr, A. 236, 307). — Nadeln. Zersetzt sich bei 244° unter Bildung von 1- α -Naphthyl-2.5-dimethyl-pyrrol. — $K_2C_{18}H_{13}O_4N$. Krystallpulver. Unlöslich in Alkohol. — $AgC_{18}H_{14}O_4N$. Krystalle.

Diäthylester $C_{22}H_{23}O_4N=C_{10}H_7\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Krystalle (aus Äther + Ligroin). F: 91—92° (Knorr, A. 236, 307).

1-β-Naphthyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{18}H_{15}O_4N = C_{10}H_7$ · $NC_4(CH_3)_2(CO_2H)_2$. B. Der Diäthylester entsteht aus Diacetbernsteinsäureester und β-Naphthylamin in essigsaurer Lösung; man verseift ihn durch Kochen mit alkoh. Kalilauge (KNORR, B. 18, 304). Spaltet von 260° an Kohlendioxyd ab unter Bildung von 1-β-Naphthyl-2.5-dimethyl-pyrrol (K., B. 18, 308; A. 236, 306). Schwer löslich in den meisten Lösungsmitteln (K., B. 18, 308). — $Ba(C_{18}H_{14}O_4N)_2$. Krystalle (K., A. 236, 306). — $BaC_{18}H_{13}O_4N$. Krystall-pulver (K., A. 236, 306).

Diäthylester $C_{22}H_{23}O_4N=C_{10}H_7\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Nadeln (aus Alkohol). F: 124° (Knorr, B. 18, 304). — Verharzt beim Erhitzen mit 20°/aiger Salzsäure im Rohr.

- 1-[β -Oxy-äthyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{14}H_{41}O_5N$ = $HO \cdot CH_2 \cdot CH_2 \cdot NC_4(CH_2)_2(CO_2 \cdot C_2H_5)_2$. B. Aus Diacethernsteinsäureester und β -Oxy-äthylamin (Knorr, Rabe, D. R. P. 116335; C. 1901 I, 71; Frdl. 6, 1214). F: 45°. Die beim Verseifen erhältliche Dicarbonsäure geht bei der trocknen Destillation in 1-[β -Oxy-äthyl]-2.5-dimethyl-pyrrol über.
- 1-[4-Äthoxy-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{20}H_{25}O_5N=C_2H_5\cdot O\cdot C_6H_4\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Durch Erhitzen äquimolekularer Mengen Diacetbernsteinsäureester und p-Phenetidin im Kohlensäurestrom auf 125—130° (Rossi, G. 36 II, 868). Gelbe Nadeln (aus Alkohol, Eisessig oder Benzol). F: 155—156°. Löslich in Alkohol, heißem Äther, Benzol, Aceton, Eisessig und Essigester. Unlöslich in Natriumcarbonat-Lösung. Liefert beim Erhitzen mit 1 Mol p-Phenetidin 1-[4-Äthoxy-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-[4-äthoxy-anil] (Syst. No. 3590). Gibt mit Eisenchlorid in alkoh. Lösung eine intensiv blaue Färbung.
- 1-[4-Acetyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{20}H_{23}O_5N=CH_3\cdot CO\cdot C_6H_4\cdot NC_4(CH_2)_2(CO_2\cdot C_2H_5)_2$. B. Durch Kochen von Diacetbernsteinsäureester mit 4-Amino-acetophenon in Essigsäure (Bülow, Nottbohm, B. 36, 394). Nadeln (aus Eisessig oder wäßr. Aceton). F: 114°. Löslich in Alkohol, Äther, Chloroform, Benzol und Essigester, sehr schwer löslich in heißem Wasser und Ligroin. Liefert beim Behandeln mit Oxalsäurediäthylester und Natrium 4-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-benzoyl-brenztraubensäure-äthylester (S. 136).
- 2.5-Dimethyl-pyrrol-dicarbonsäure-(3.4)-essigsäure-(1) $C_{10}H_{11}O_6N = HO_2C \cdot CH_2 \cdot NC_4(CH_2)_2(CO_2H)_2$. B. Der Diathylester entsteht beim Kochen von Diacetbernsteinsäure-ester mit Glycin in Essigsäure; man verseift ihn mit siedender alkoholischer Kalilauge (Knorr, A. 236, 314). Krystallpulver. Spaltet beim Erhitzen auf 214° Kohlendioxyd ab. $K_2C_{10}H_0O_6N$. Krystallpulver. $Ag_2C_{10}H_0O_6N$. Mikrokrystalliner Niederschlag.

2.5-Dimethyl-pyrrol-dicarbonsäure-(8.4)-diäthylester-essigsäure-(1) $C_{14}H_{19}O_6N$ = $HO_2C\cdot CH_2\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Tafeln (aus Alkohol + Essigsäure). $F: 169^6$ (Knorr, A. 236, 315). Leicht löslich in Alkohol und Äther, unlöslich in Wasser. Leicht löslich in Alkalilauge, unlöslich in verd. Mineralsäuren. — $Pb(C_{14}H_{18}O_6N)_2$. Prismen.

1-[2.2'-Dicarboxy-diphenylyl-(4)]-2.5-dimethyl-pyrrol-dicarbonsäure-(8.4), 4-[2.5-Dimethyl-8.4-dicarboxy-pyrryl-(1)]-diphensäure $C_{22}H_{17}O_8N$, Formel I. B. Durch Kochen des Diāthylesters (s. u.) mit 0,5% iger Kalilauge (Schmidt, Schall, B. 40, 3006). — Nadeln mit 1 H₂O (aus verd. Alkohol). Zersetzt sich bei 100% unter Abspaltung von Kohlendioxyd.

1-[2.2'-Dicarboxy-diphenylyl-(4)]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester, 4-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-diphensäure $C_{26}H_{25}O_{8}N$, Formel H. B. Durch Kochen von 4-Amino-diphensäure mit Diacetbernsteinsäureester und Natriumacetat in Alkohol (SCHMIDT, SCHALL, B. 40, 3006). — Nadeln (aus verd. Alkohol). F: 229—230°.

4-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-benzoylbrenztraubensäure-äthylester $C_{24}H_{37}O_{5}N=C_{2}H_{5}\cdot O_{3}C\cdot CO\cdot CH_{2}\cdot CO\cdot C_{6}H_{4}\cdot NC_{4}(CH_{3})_{3}(CO_{3}\cdot C_{2}H_{5})_{3}$. B. Durch Kondensation von 1-[4-Acetyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diāthylester mit Oxalsäurediāthylester in Gegenwart von Natrium (Bülow, Nottbohm, B. 36, 395). — Gelbliche Krystalle (aus wäßr. Aceton). F: 123°; sohwer löslich in Ligroin und heißem Wasser, leicht in anderen Lösungsmitteln (B., N., B. 36, 395). Löslich in kalter verdünnter Natronlauge; wird aus dieser Lösung bei sofortigem Einleiten von Kohlendioxyd unverändert abgeschieden (B., N., B. 36, 395). — Liefert beim Kochen mit 30°/oiger Natronlauge 1-[4-Acetyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diāthylester (B., N., B. 36, 395). Gibt beim Kochen mit Hydroxylamin-hydrochlorid in verd. Alkohol 5-{4-[2.5-Dimethyl-3.4-dicarbāthoxy-pyrryl-(1)]-phenyl}-isoxazol-carbonsäure-(3)-āthylester (Syst. No. 4385) (B., N., B. 36, 396, 2695). Bei der Einw. von Benzoldiazoniumchlorid in verd. Alkohol bei Gegenwart von Natriumacetat erhält man α.γ-Dioxo-β-phenylhydrazono-γ-{4-[2.5-dimethyl-3.4-dicarbāthoxy-pyrryl-(1)]-phenyl}-buttersäureāthylester (s. u.) (B., N., B. 36, 396). — Gibt mit Eisenchlorid in alkoh. Lösung eine rote Färbung (B., N., B. 36, 395). — Bildet ein graugrünes, in Chloroform lösliches Kupfersalz (B., N., B. 36, 395).

Monosemicarbazon $C_{25}H_{20}O_{2}N_{4}=C_{2}H_{5}\cdot O_{2}C\cdot C_{3}H_{2}O(:N\cdot NH\cdot CO\cdot NH_{2})\cdot C_{6}H_{4}\cdot NC_{4}(CH_{2})_{2}$ ($CO_{2}\cdot C_{2}H_{5})_{2}$. B. Aus der vorangehenden Verbindung beim Kochen mit Semicarbazid-hydrochlorid und Natriumacetat in verd. Alkohol (Bülow, Nottbohm, B. 36, 397). — Krystalle (aus verd. Essigsäure oder aus Äther). F: 134°. Leicht löslich in den meisten organischen Lösungsmitteln, sehr schwer in Ligroin und Wasser.

αγ-Dioxo-β-phenylhydrazono-γ-{4-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-phenyl}-buttersäure-äthylester (β-Benzolazo-4-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-benzoylbrenztraubensäure-äthylester) $C_{30}H_{31}O_8N_3=C_2H_5\cdot O_3C\cdot CO\cdot C(:N\cdot NH\cdot C_6H_5)\cdot CO\cdot C_6H_4\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_3.$ B. Aus 4-[2.5-Dimethyl-3.4-dicarbāthoxy-pyrryl-(1)]-benzoylbrenztraubensäure-äthylester und Benzoldiazoniumchlorid-Lösung in verd. Alkohol bei Gegenwart von Natriumacetat (Bülow, Nottbohm, B. 36, 396). — Gelbe Nadeln (aus verd. Alkohol). F: 122°. Schwer löslich in Ligroin, löslich in anderen Lösungsmitteln. — Löst sich in konz. Schwefelsäure mit gelber Farbe, die auf Zusatz von Oxydationsmitteln in schmutziges Braun übergeht.

1.1'- p-Phenylen-bis-[2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diåthylester] $C_{20}H_{24}O_3N_2=C_6H_4[NC_4(CH_3)_2(CO_3\cdot C_2H_5)_3]_3$. B. Durch Kochen von p-Phenylendiamin und Diacetbernsteinsäureester in essigsaurer Lösung (Bülow, B. 33, 2367). — Schuppen (aus verd. Alkohol). F: 172—173°. Leicht löslich in Alkohol, Benzol, Aceton, Essigsäure und Essigester, löslich in Äther und Schwefelkohlenstoff, schwer löslich in Ligroin. Leicht löslich in konz. Salzsäure; scheidet sich aus dieser Lösung auf Zusatz von Wasser unverändert wieder aus.

1-[5-Acetamino-2-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{31}H_{32}O_5N_3=CH_3\cdot CO\cdot NH\cdot C_6H_3(CH_3)\cdot NC_4(CH_3)_2(CO_3\cdot C_2H_5)_2$. B. Durch Kochen von Diacetbernsteinsäureester mit 2-Amino-4-acetamino-toluol in Essigsäure (Bülow, B. 33, 2369). — F: 160°. Leicht löslich in Alkohol, Aceton, Essigester, Eisessig, Benzol und

Chloroform, löslich in Schwefelkohlenstoff, schwer löslich in Äther, sehr schwer in Ligroin. Leicht löslich in konz. Salzsäure; wird aus der Lösung durch Wasser ausgefällt.

- 1-[4-Amino-2-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{19}H_{24}O_4N_2 = H_2N \cdot C_8H_3(CH_3) \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2$. B. Durch Kondensation äquimolekularer Mengen p-Toluylendiamin und Diacetbernsteinsäureester in verd. Alkohol, anfangs bei 40—50°, später in der Kälte (Bülow, List, B. 35, 684). Nadeln (aus Alkohol). F: 105—106°. Löslich in den meisten organischen Lösungsmitteln sowie in heißer 20°/siger Salzsäure. Liefert beim Diazotieren mit Natriumnitrit in salzsaurer Lösung eine Diazoniumverbindung, die beim Behandeln mit Natriumstannit und Natronlauge unterhalb 5° und Verseifen des Reaktionsprodukts mit methylalkoholischer Kalilauge in 1-o-Tolyl-2.5-dimethylpyrrol-dicarbonsäure-(3.4) übergeht und mit Naphthol-(2)-disulfonsäure-(3.6) unter Bildung eines roten Farbstoffes kuppelt.
- 1.1'-p-Toluylen-bis-[2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)] $C_{23}H_{22}O_{6}N_{3} = CH_{2}\cdot C_{6}H_{5}[NC_{6}(CH_{2})_{5}(CO_{2}H)_{5}]_{2}$. B. Der Tetraäthylester (s. u.) entsteht beim Kochen von Disoetbernsteinsäureester mit p-Toluylendiamin-hydrochlorid in verd. Alkohol bei Gegenwart von Natriumscetat; man verseift ihn durch Kochen mit methylalkoholischer Kalilauge (Bülow, List, B. 35, 683). Krystalle (aus verd. Alkohol). Schmilzt bei ca. 275° unter Abspaltung von Kohlendioxyd. Verhält sich bei der Titration mit 0,1 n-Kalilauge in Gegenwart von Phenolphthalein wie eine zweibasische Säure. $Ag_{2}C_{23}H_{20}O_{6}N_{2}$. Pulver. Löst sich in Ammoniak und Kaliumcyanid-Lösung. Wird durch Natronlauge zersetzt. Ist am Licht ziemlich beständig.

Tetraäthylester $C_{21}H_{28}O_8N_8 = CH_2 \cdot C_6H_2[NC_4(CH_3)_8(CO_3 \cdot C_2H_5)_8]_8$. 8. s. im vorangehenden Artikel. — Schuppen (aus verd. Alkohol). F: 134° (B., L., B. 35, 683). — Gibt die Fichtenspan-Reaktion.

- 1-[3-Amino-4-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{15}H_{16}O_4N_3=H_2N\cdot C_8H_8(CH_3)\cdot NC_4(CH_3)_8(CO_2H)_2$. Zur Konstitution vgl. Bülow, B. 33, 2365. B. Durch Verseifen des Diäthylesters (s. u.) mit siedender alkoholischer Kalilauge (Knorr, A. 236, 311). Gelbe Blättchen mit 2 H_2O (aus Essigsäure). Leicht löslich in Ather und Alkohol, unlöslich in Wasser; leicht löslich in Alkalilauge und Mineralsäuren (K.). Die wasserfreie Säure geht bei 203° in 1-[3-Amino-4-methyl-phenyl]-2.5-dimethyl-pyrrol über (K.).
- 1.1'- [asymm.- m Toluylen] bis [2.5 dimethyl pyrrol dicarbonsäure (3.4)] $C_{23}H_{23}O_{3}N_{2} = CH_{3} \cdot C_{6}H_{3}[NC_{4}(CH_{3})_{3}(CO_{2}H)_{3}]_{2}$. B. Durch Erhitzen von 2.4-Diamino-toluol mit überschüssigem Diacetbernsteinsäureester in Eisessig im Rohr auf 150—160° und Verseifen des Reaktionsprodukts mit alkoh. Kalilauge (Knorr, A. 286, 313). Krystalle (aus Resignäure). Zersetzt sich bei 247—248° unter Abspaltung von Kohlendioxyd. Schwer löslich in Alkohol und Äther, unlöslich in Wasser. Unlöslich in verd. Säuren. $K_{4}C_{23}H_{18}O_{8}N_{2}$. Krystallpulver. Unlöslich in Alkohol.
- 1-[3-Amino-4-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{19}H_{24}O_4N_9 = H_2N \cdot C_6H_3(CH_3) \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2$. B. Durch Kochen äquimolekularer Mengen Diacetbernsteinsäureester und 2.4-Diamino-toluol in Eisessig (Knork, A. 236, 311). Prismen (aus Alkohol). F: 134°. Reagiert stark alkalisch.
- 1-[3-Acetamino-4-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{51}H_{50}O_5N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3(CH_3) \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2$. B. Durch Kochen von Discetbernsteinsäureester mit 4-Amino-2-acetamino-toluol in Essigsäure (Bülow, B. 33, 2368). Durch Kochen von 1-[3-Amino-4-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit Eisessig und wenig Acetanhydrid (B.). Nadeln (aus verd. Alkohol). F: 120—121°. Leicht löslich in Alkohol, Aceton, Chloroform, Benzol, Eisessig und Essigester, löslich in Schwefelkohlenstoff, schwerer in Äther, sehr schwer in Ligroin. Leicht löslich in konz. Salzsäure; scheidet sich aus der Lösung beim Verdünnen wieder ab.
- 1-[2-Amino-4-methyl-phenyl]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{15}H_{16}O_4N_2 = H_2N \cdot C_6H_3(CH_3) \cdot NC_4(CH_2)_2(CO_5H)_2$. B. Durch Kochen von Diacetbernsteinsäureester mit 3.4-Diamino-toluol-hydrochlorid in Alkohol + Essigsäure und Behandeln des Reaktionsprodukts mit siedender methylalkoholischer Kalilauge (Bülow, List, B. 35, 190). Nadeln (aus verd. Alkohol). F: 205° (Zers.). Schwer löslich in Äther, Benzol, Nitrobenzol und anderen Lösungsmitteln. Gibt beim Diazotieren und Kuppeln des Diazoniumsalzes mit Naphthol-(2)-disulfonsäure-(3.6) in alkal. Lösung einen ziegelroten Farbstoff, der sich in Wasser mit bläulichroter Farbe löst; das Diazoniumsalz läßt sich durch Verkochen mit Alkohol oder durch Reduktion und Kochen der erhaltenen Hydrazino-Verbindung mit Kupfersulfat- oder Eisenchlorid-Lösung in 1-p-Tolyl-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) überführen. AgC₁₅H₁₅O₄N₃. Ziemlich schwer löslich in heißem Wasser. Leicht löslich in Ammoniak.

1.1'- [asymm. - o - Toluylen] - bis - [2.5 - dimethyl - pyrrol - dicarbonsäure - (3.4)] $C_{23}H_{22}O_8N_2 = CH_3 \cdot C_8H_2[NC_4(CH_9)_2(CO_2H)_2]_2$. B. Durch Kochen von 3.4-Diamino-toluolhydrochlorid mit 2 Mol Diacetbernsteinsäureester und Natriumacetat in Alkohol + Eisessig, zuletzt unter Zusatz von Wasser; man verseift das Reaktionsprodukt mit methylalkoholischer Kalilauge auf dem Wasserbad (BÜLOW, LIST, B. 35, 188). — Krystalle (aus verd. Alkohol). F: 272° (Zers.). Unlöslich oder schwer löslich in den meisten organischen Lösungsmitteln. Titration mit 0,1n-Kalilauge in Gegenwart von Phenolphthalein: B., L. — Ag₂C₂₂H₂₀O₂N₂. Niederschlag. Ist am Licht ziemlich beständig. Löslich in wäßr. Ammoniak. Wird von Natronlauge zersetzt.

1.1'-[2.2'-Dicarboxy-diphenylen-(4.4')]-bis-[2.5-dimethyl-pyrrol-dicarbon-säure-(3.4)], 4.4'-Bis-[2.5-dimethyl-3.4-dicarboxy-pyrryl-(1)]-diphensäure C₂₀H₂₄O₁₈N₂, Formel I. B. Durch Verseifen des Tetraäthylesters (s. u.) mit siedender 40/0 iger Kalilauge (SCHMIDT, SCHALL, B. 40, 3008). — Krystalle mit 2H₂O. Färbt sich beim Trocknen schwach rosa. Zersetzt sich beim Erhitzen auf 100° unter Abspaltung von Kohlendioxyd und Bildung harziger Produkte.

1.1'-[2.2'-Dicarboxy-diphenylen-(4.4')]-bis-[2.5-dimethyl-pyrrol-dicarbon-säure-(3.4)-diäthylester], 4.4'-Bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-diphensäure $C_{38}H_{40}O_{18}N_2$, Formel II. B. Durch Kochen von II. 4.4'-Diamino-diphensäure-hydrochlorid mit Diacetbernsteinsäure-ester und Natriumacetat in Alkohol (SCHMIDT, SCHALL, B. 40, 3007). — Blättchen. F: 285—286° (Zers.).

4'-[2.5-Dimethyl-8.4-dicarbāthoxy-pyrryl-(1)]-4-[2.5-dimethyl-4-carbāthoxy-8-anilinoformyl-pyrryl-(1)]-diphensäure-dianilid $C_{14}H_{51}O_{9}N_{5}$, Formel V. B. Aus

dem Trichlorid (s. o.) durch Kochen mit Anilin in absol. Alkohol (SCHMIDT, SCHALL, B. 40, 3010). — Amorphes Pulver. Zersetzt sich bei ca. 130°. Sehr leicht löslich in Alkohol, schwerer in Äther und Benzol, unlöslich in Wasser.

Verbindung $C_{57}H_{51}O_{18}N_5$, Formel VI. B. Aus dem Trichlorid (s. o.) durch Kochen mit 4-Amino-benzoesäure in absol. Alkohol (Schmidt, Schall, B. 40, 3010). — Amorphes

$$VI. \xrightarrow{HO_2C \cdot C_6H_4 \cdot NH \cdot CO} \xrightarrow{CO \cdot NH \cdot C_6H_4 \cdot CO_2H} \cdot NC_4(CH_3)_2(CO_3 \cdot C_2H_5) \cdot CO \cdot NH \cdot C_6H_4 \cdot CO_2H$$

Pulver. Zersetzt sich zwischen 160° und 170°. Leicht löslich in Alkohol und Benzol, schwer in Äther, sehr schwer in Wasser. Löst sich in Alkalilauge langsam.

- 1-Oxy-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-monoäthylester $C_{10}H_{13}O_5N=HO\cdot NC_4(CH_2)_2(CO_2H)\cdot CO_2\cdot C_2H_5$. B. Durch Kochen des Diäthylesters (s. u.) mit alkoh. Kalilauge (KNORR, A. 236, 299). Krystalle (aus Alkohol). Zersetzt sich bei 185° unter Bildung von 1-Oxy-2.5-dimethyl-pyrrol-carbonsäure-(3)-äthylester.
- 1-Oxy-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{12}H_{17}O_5N=HO-NC_4(CH_2)_2(CO_2\cdot C_2H_5)_2$. B. Beim Kochen von Diacetbernsteinsäureester mit Hydroxylaminhydrochlorid und Natriumacetat in Essigsäure (Knorr, A. 236, 297). Krystalle (aus Alkohol oder Ather). F: 98—100°. Unlöslich in Säuren, leicht löslich in verd. Alkalien. Liefert beim Behandeln mit wäßr. Alkalilauge in der Kälte oder unter gelindem Erwärmen sowie beim Kochen mit alkoh. Kalilauge den Monoäthylester (s. o.), beim Kochen mit wäßr. Natronlauge 1-Oxy-2.5-dimethyl-pyrrol-carbonsäure-(3). Gibt die Fichtenspan-Reaktion. $KC_{12}H_{16}O_5N$. Niederschlag.
- 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_8H_{10}O_4N_3=H_2N\cdot NC_4(CH_3)_2$ ($CO_3H)_3$. B. Durch Schmelzen von 1-Ureido-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diāthylester mit Kaliumhydroxyd bei 175° und Ansäuern der in Wasser gelösten Schmelze (Bülow, B. 38, 2371). Durch Kochen von 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diāthylester mit 10°/ $_0$ iger Kalilauge (B., B. 35, 4316; 38, 2371). Krystalle (aus Alkohol). F: 210° (Zers.) (B., B. 38, 2371). Löslich in Alkohol, Eisessig und heißem Wasser, unlöslich in Äther, Benzol, Chloroform und Ligroin; löslich in verd. Laugen (B., B. 38, 2371). Geht bei der Destillation in 1-Amino-2.5-dimethyl-pyrrol über (B., B. 35, 4316).
- 1-Methylamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_9H_{19}O_4N_9=CH_3\cdot NH\cdot NC_4(CH_9)_3(CO_9H)_9$. B. Durch Schmelzen von 1-[Methyl-aminoformyl-amino]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diāthylester mit Kaliumhydroxyd bei 170° und Ansäuern der in Wasser gelösten Schmelze (Bülow, B. 38, 2373). Krystalle (aus Chloroform + Ligroin). F: 182—183°. Leicht löslich in Alkohol, Eisessig, siedendem Wasser und Aceton, unlöslich in Benzol, Äther und Ligroin. Leicht löslich in verd. Laugen. Verhalten beim Erhitzen: B.
- 1-Anilino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{14}H_{14}O_4N_g=C_6H_5\cdot NH\cdot NC_4(CH_3)_g(CO_2H)_g$. Zur Konstitution vgl. Knorr, A. 236, 295, 296 Anm. B. Durch Verseifen des Diäthylesters (S. 140) mit siedender alkoholischer Kalilauge (K., B. 18, 308, 1568). Nadeln. Spaltet oberhalb 220° Kohlendioxyd ab und geht in 1-Anilino-2.5-dimethyl-pyrrol über (K., B. 18, 1568).
- 1 Methylanilino 2.5 dimethyl pyrrol dicarbonsäure (3.4) $C_{15}H_{16}O_4N_2 = (C_6H_5)(CH_2)N\cdot NC_4(CH_2)_2(CO_2H)_2$. B. Durch Kochen von Diacetbernsteinsäureester mit der äquimolekularen Menge N-Methyl-N-phenyl-hydrazin in Eisessig und Kochen des erhaltenen Diäthylesters mit alkoh. Kalilauge (Knorr, A. 236, 309). Nadeln. Zersetzt sich bei 231° unter Bildung von 1-Methylanilino-2.5-dimethyl-pyrrol. $AgC_{15}H_{15}O_4N_2$. Niederschlag.
- 1-Bensamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{15}H_{14}O_5N_9=C_9H_5\cdot CO\cdot NH\cdot NC_4(CH_3)_2(CO_9H)_9$. B. Aus dem Diäthylester (S. 141) durch mehrtägige Einw. von alkoh. Kalilauge bei Zimmertemperatur oder durch Erhitzen mit $30^9/_0$ iger Natronlauge im Rohr auf 100^9 ; am besten durch Schmelzen mit Kaliumhydroxyd und wenig Wasser (Bülow, B. 35, 4319). Krystalle (aus Alkohol). F: 231—232° (Zers.). Geht oberhalb des Schmelzpunkts oder beim Erhitzen mit Glycerin in 1-Benzamino-2.5-dimethyl-pyrrol über. $KC_{18}H_{13}O_5N_2+\frac{1}{2}H_2O$. Niederschlag.
- 1-Phenacetamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) $C_{16}H_{16}O_6N_2 = C_6H_5 \cdot CO \cdot NH \cdot NC_4(CH_2)_2(CO_2H)_2$. B. Durch ca. 12-stdg. Kochen des Diathylesters (S. 141) mit $10^9/_0$ iger Kalilauge (Bülow, B. 35, 4320). Krystalle (aus Alkohol). F: 216—217° (Zers.). Leicht löslich in verd. Ammoniak.
- 1-Ureido-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4), [2.5-Dimethyl-3.4-dicarboxy-pyrryl-(1)]-harnstoff $C_0H_{11}O_5N_3=H_2N\cdot CO\cdot NH\cdot NC_4(CH_2)_2(CO_2H)_2$. B. Aus dem Diäthylester (S. 142) durch Kochen mit $15^0/_0$ iger Kalilauge (Bülow, B. 38, 2370). Nadeln (aus Alkohol). F: 241°. Schwer löslich in siedendem Wasser und heißer Essigsäure, fast unlöslich in Benzol, Chloroform und Ligroin. Sehr leicht löslich in verd. Laugen und Soda-Lösung.
- 1 [Methyl aminoformyl amino] 2.5 dimethyl pyrrol dicarbonsäure (3.4), N-[2.5-Dimethyl-3.4-dicarboxy-pyrryl-(1)]-N-methyl-harnstoff $C_{10}H_{13}O_5N_3 = H_2N \cdot CO \cdot N(CH_3) \cdot NC_4(CH_3)_2(CO_2H)_2$. B. Durch Verseifen des Diäthylesters (S. 143) mit siedender $10^6/_0$ iger Kalilauge (Bülow, B. 38, 2372). Krystalle (aus Wasser oder Alkohol). F: 263° (Zers.). Leicht löslich in Eisessig, Wasser und Alkohol, unlöslich in Äther, Benzol, Chloroform, Aceton und Ligroin. Leicht löslich in Ammoniak, verd. Alkalilauge und konz. Schwefelsäure.

- 2.5.2'.5'-Tetramethyl-dipyrryl-(1.1')-tetracarbonsäure-(3.4.3'.4') $C_{16}H_{16}O_{5}N_{3} = (HO_{2}C)_{3}(CH_{3})_{3}C_{4}N\cdot NC_{4}(CH_{3})_{3}(CO_{3}H)_{2}$. B. Durch Verseifen des Tetraäthylesters (8. 143) mit siedender wäßrig-methylalkoholischer Kalilauge; Reinigung über das Bariumsalz (Bülow, Sautermeister, B. 37, 2700). Krystalle mit 1 H₂O (aus verd. Alkohol). Gibt das Krystallwasser zum Teil schon beim Aufbewahren an der Luft oder im Exsiccator, vollständig beim Erhitzen auf 80—92° ab, beim Erhitzen auf 100—120° tritt außerdem geringe Abspaltung von Kohlendioxyd ein. F: oberhalb 290° (Zers.). Löslich in Alkohol, Aceton, Eisessig und Pyridin, schwer löslich in siedendem Wasser, sehr schwer in Äther, Benzol, Chloroform und Ligroin. Löst sich in Soda-Lösung oder Alkalidicarbonat-Lösung. Verhalten bei der Titration mit 0,1n-Kalilauge in Gegenwart von Phenolphthalein: B., S.
- N.N'-Phenylhydrazonomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbon-säure-(3.4)], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarboxy-pyrryl-(1)-amid]-phenyl-hydrazon $C_{25}H_{24}O_{10}N_6=C_4H_5\cdot NH\cdot N:C[CO\cdot NH\cdot NC_4(CH_2)_2(CO_2H)_2]_2$. B. Beim Kochen des Tetraäthylesters (S. 144) mit $10^9/_0$ iger Natronlauge (Bülow, B. 42, 3317). Krystalle (aus Alkohol). F: 209° (Zers.). Löslich in Chloroform, Eisessig, Methanol, Alkohol und Aceton, ziemlich schwer löslich in aromatischen Kohlenwasserstoffen, unlöslich in Ligroin.
- 1-Formamino 2.5 dimethyl pyrrol dicarbonsäure (3.4) monoäthylester $C_1H_{14}O_5N_9=OHC\cdot NH\cdot NC_4(CH_3)_2(CO_2H)\cdot CO_2\cdot C_2H_5$. B. Durch mehrtägige Einw. von $10^9/_0$ iger Kalilauge auf den Diäthylester (8. 141) bei Zimmertemperatur (BÜLOW, KLEMANN, B. 40, 4757). Krystalle (aus Benzol + wenig Alkohol). Zersetzt sich bei 150°. Löslich in verd. Ammoniak und Natriumdicarbonat-Lösung.
- 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester C₁₃H₁₈O₄N₂ = H₂N·NC₄(CH₂)₂(CO₂·C₂H₅)₃. B. Aus Diacetbernsteinsäureester und Hydrazinhydrat in verd. Alkohol bei Zimmertemperatur oder besser in siedender essigsaurer Lösung (Bülow, B. 35, 4312, 4314). Beim Erhitzen von Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbāthoxy-pyrryl-(1)-amid]-phenylhydrazon mit Hydrazinhydrat und Alkohol im Rohr auf 160° (B., B. 42, 3319). Krystalle (aus verd. Alkohol oder Chloroform + Ligroin). F: 102—103° (B., B. 35, 4314). Destilliert unter 18 mm Druck unzersetzt (B., B. 35, 4314). Unlöslich in kalter Natronlauge, unzersetzt löslich in konz. Salzsäure (B., B. 35, 4315). Ist gegen kalte alkoholische Kalilauge beständig (B., B. 35, 4315), wird durch siedende 10% ige Kalilauge zu 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) verseift (B., B. 35, 4316; 38, 2371). Liefert bei der Einw. von Natriumnitrit in essigsaurer Lösung unter Kühlung 2.5-Dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B., Klemann, B. 40, 4753; vgl. a. B., B. 35, 4317). Gibt mit Benzoylchlorid in alkal. Lösung 1-Benzamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B., B. 35, 4315). Reagiert mit Phenylsenföl in siedendem absolutem Alkohol unter Bildung von 1-[ω-Phenyl-thioureido]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B. 143) (B., SAUTERMEISTER, B. 39, 649). Gibt beim Kochen mit Diacetbernsteinsäureester in Eisessig, zuletzt unter Zusatz von Wasser 2.5.2'.5'-Tetramethyl-dipyrryl-(1.1')-tetracarbonsäure-(3.4.3'.4')-tetraäthylester (B., S., B. 37, 2699). Setzt sich mit 3-Bron-cumalin-carbonsäure-(5)-methyl-3.4-dicarbāthoxy-pyrryl-(1)]-5-brom-pyridon-(6)-carbonsäure-(3)-methylester um (B., Filchner, B. 41, 3283).
- 1-Anilino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{18}H_{22}O_4N_8 = C_8H_5\cdot NH\cdot NC_4(CH_2)_2(CO_2\cdot C_2H_5)_2$. Zur Konstitution vgl. Knorr, A. 236, 295, 296 Anm. B. Aus äquimolekularen Mengen Phenylhydrazin und Diacetbernsteinsäureester in essigsaurer Lösung (K., B. 18, 304). Prismen (aus Ligroin). F: 127° (K., B. 18, 305).
- 1-Isopropylidenamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{15}H_{25}O_4N_2=(CH_2)_2C:N\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Durch Erhitzen von 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit Aceton im Rohr auf 100° (Bülow, Klemann, B. 40, 4755). Bläulich fluorescierendes Öl. Kp_{60} : 247—253°.
- 1-Bensalamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester C₁₉H₂₂O₄N₂ = C₆H₅·CH:N·NC₄(CH₃)₂(CO₂·C₂H₅)₂. B. Aus 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und Benzaldehyd in siedendem absolutem Alkohol (Bülow, Klemann, B. 40, 4754). Krystalle (aus verd. Alkohol). F: 49°. Leicht löslich in den meisten organischen Lösungsmitteln außer Ligroin. Spaltet beim Kochen mit Essigsäure Benzaldehyd ab.
- 1-[α -Methyl-bensalamino]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{20}H_{34}O_4N_2=C_0H_5\cdot C(CH_2):N\cdot NC_4(CH_2)_5(CO_2\cdot C_2H_3)_2$. B. Aus 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und überschüssigem Acetophenon in siedendem absolutem

Alkohol (Bülow, Klemann, B. 40, 4756). — Tafeln (aus Ligroin). F: 111—112°. Leicht löslich in Aceton, Äther und Benzol, schwerer in absol. Alkohol, schwer in Ligroin.

- 1-[4-Oxy-benzalamino]-2.5-dimethyl-pyrrol-dicarbonsäure-(8.4)-diäthylester $C_{19}H_{22}O_4N_2=H0\cdot C_6H_4\cdot CH:N\cdot NC_4(CH_3)_4(CO_3\cdot C_2H_5)_2$. B. Aus 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und 4-Oxy-benzaldehyd in siedendem absolutem Alkohol (BÜLOW, KLEMANN, B. 40, 4754). Krystalle (aus verd. Alkohol). F: 154°. Leicht löslich in Alkohol, Aceton und Eisessig, schwerer in Äther und Benzol, sehr schwer in Ligroin und Wasser.
- 1-Formamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{13}H_{18}O_5N_2=OHC\cdot NH\cdot NC_4(CH_3)_2(CO_3\cdot C_2H_5)_2$. B. Durch Erwärmen von 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit wasserfreier Ameisensäure auf dem Wasserbad unter Ausschluß von Feuchtigkeit (Bülow, Klemann, B. 40, 4756). Aus Ameisensäurehydrazid und Diacetbernsteinsäurediäthylester in siedendem absolutem Alkohol (B., K.). Nadeln (aus Benzol). F: 139°. Löslich in verdünnter kalter Natronlauge, daraus durch Kohlendioxyd fällbar. Wird bei längerer Einw. von kalter $10^{\circ}/_{\circ}$ iger Kalilauge zum Monoäthylester (S. 140) verseift.
- 1-Bengamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{19}H_{22}O_5N_2=C_6H_5\cdot CO\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Aus Diacetbernsteinsäureester und Benzoylhydrazin in siedender alkoholischer Lösung (Bülow, B. 35, 4317). Bei der Einw. von Benzoylchlorid auf 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B., B. 35, 4315), 1-Ureido-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B., B. 38, 2374) oder auf 1-[ω -Phenylthioureido]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester in alkal. Lösung (B., Sautermeister, B. 39, 650). Durch Verseifen von 1-Dibenzoylamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit alkoh. Alkalilauge (B., B. 35, 4315). —Krystalle (aus verd. Alkohol). F: 123,5—124°; ist bei 20 mm Druck unzersetzt destillierbar (B., B. 35, 4315). Löst sich in den meisten organischen Lösungsmitteln außer Ligroin; schwer löslich in kalter Soda-Lösung, leichter in kalter verdünnter Natronlauge; fällt auf Zusatz von überschüssiger Essigsäure aus den alkal. Lösungen wieder aus (B., B. 35, 4317). Wird bei mehrtägiger Einw. von alkoh. Kalilauge, schneller beim Erhitzen mit 30°/ $_0$ iger Natronlauge im Rohr auf 100° sowie beim Schmelzen mit Kaliumhydroxyd und wenig Wasser zu 1-Benzamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) verseift; beim Erhitzen mit 15°/ $_0$ iger Salzsäure im Rohr auf 135° bis 140° entstehen Benzoesäure, Benzoesäureäthylester und andere Produkte (B., B. 35, 4318).
- 1 Dibenzoylamino 2.5 dimethyl pyrrol dicarbonsäure (3.4) diäthylester $C_{26}H_{26}O_6N_2 = (C_6H_5\cdot CO)_2N\cdot NC_4(CH_9)_2(CO_2\cdot C_2H_5)_2$. B. Aus 1-Benzamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und Benzoylchlorid in alkal. Lösung (Bülow, B. 35, 4317). Beim Behandeln von 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B., B. 35, 4315) sowie von 1-Ureido-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B., B. 38, 2374) mit Benzoylchlorid in alkal. Lösung. Krystalle (aus absol. Alkohol). F: 132—133°; unlöslich in Alkalilauge (B., B. 35, 4315). Gibt beim Behandeln mit alkoh. Alkalilauge 1-Benzamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester (B., B. 35, 4315).
- 1-Phenacetamino 2.5 dimethyl pyrrol dicarbonsäure (3.4) diäthylester $C_{20}H_{24}O_5N_2=C_6H_5\cdot CH_2\cdot CO\cdot NH\cdot NC_4(CH_5)_2(CO_2\cdot C_2H_5)_2$. B. Durch Kondensation von Diacetbernsteinsäureester mit Phenacetylhydrazin in siedendem Alkohol (BüLow, B. 35, 4320). Aus 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und Phenylessigsäurechlorid (B., B. 35, 4316). Nadeln (aus verd. Alkohol). F: 146—147°. Löslich in den meisten organischen Lösungsmitteln, schwer löslich in siedendem Wasser. Löslich in konz. Mineralsäuren und in verd. Alkalilaugen. Fällt aus der frisch bereiteten alkal. Lösung beim Einleiten von Kohlendioxyd unverändert wieder aus. Liefert bei ca. 12-stündigem Kochen mit $10^0/_0$ iger Kalilauge 1-Phenacetamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4), bei mehrtägigem Kochen und nachfolgendem Destillieren 1-Phenacetamino-2.5-dimethyl-pyrrol.
- 1-[Methyl-phenacetyl-amino]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester $C_{21}H_{26}O_5N_2=C_6H_5\cdot CH_2\cdot CO\cdot N(CH_3)\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Durch Methylieren der vorangehenden Verbindung mit Dimethylsulfat in kalter $5^0/_{\rm o}$ iger Kalilauge (Bülow, Klemann, B. 40, 4758). Prismen oder Tafeln (aus Ligroin). F: 82°. Leicht löslich in Alkohol, Benzol und Aceton, schwerer in Äther, schwer in Ligroin. Unlöslich in verd. Alkalilaugen.
- [2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-oxamidsäure-[β -phenyl-hydrazid] $C_{20}H_{24}O_6N_4=C_6H_5\cdot NH\cdot NH\cdot CO\cdot CO\cdot NH\cdot NC_4(CH_5)_5(CO_5\cdot C_5H_5)_2$. B. Durch Kochen von Diacetbernsteinsäureester und Oxalsäure-hydrazid-phenylhydrazid in konz. Essigsäure (Bülow, B. 37, 2427). Krystalle (aus Essigsäure oder Alkohol). F: 194—195°. Sehr schwer löslich in siedendem Wasser, Äther, Benzol und Chloroform. Sehr leicht löslich in verd.

Kalilauge, leicht in konz. Salzsäure; wird aus der alkal. Lösung durch Kohlendioxyd oder Essigsäure, aus der salzsauren Lösung beim Verdünnen unverändert ausgefällt. — Die Lösung in konz. Schwefelsäure gibt mit Eisenchlorid- oder Kaliumdichromat-Lösung eine fuchsinrote Färbung.

N.N'-Oxalyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], N.N'-Bis-[2.5-dimethyl-3.4-dicarbāthoxy-pyrryl-(1)]-oxamid $C_{26}H_{34}O_{10}N_4 = [-CO\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2]_2$. B. Durch Kochen von Oxalsäuredihydrazid mit Diacetbernsteinsäure-diäthylester in Essigsäure (Bülow, B. 38, 3916). — Krystalle. F: 291—293°. Schwer löslich in den meisten organischen Lösungsmitteln, löslich in Eisessig, ziemlich leicht löslich in siedendem Nitrobenzol. Leicht löslich in stark verdünnter Alkalilauge und verd. Ammoniak; fällt beim Einleiten von Kohlendioxyd aus diesen Lösungen unverändert aus. Unverändert löslich in konz. Schwefelsäure. — Beim Verseifen und folgenden Erhitzen der nicht näher beschriebenen freien Säure erhält man N.N'-Bis-[2.5-dimethyl-pyrryl-(1)]-oxamid.

N.N'- Malonyl - bis - [1 - amino - 2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Malonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] $C_{27}H_{36}O_{10}N_4$ = $CH_2[CO \cdot NH \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2]_2$. B. Durch Kochen von Malonsäure-dihydrazid mit Diacetbernsteinsäureester in Essigsäure (Bülow, Weidlich, B. 39, 3373). — Krystalle mit $1H_2O$ (aus verd. Alkohol). F: 122^o (B., W.). Leicht löslich in Methanol, Alkohol, Aceton, Chloroform, Eisessig und Benzol, sehr schwer in Äther, Ligroin und Wasser; leicht löslich in verd. Alkalilaugen; wird durch Kohlendioxyd aus der alkal. Lösung unverändert ausgefällt (B., W.). — Geht bei der Einw. von Natriumnitrit in essigsaurer Lösung unterhalb 8° in Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-oxim über (B., B. 42, 3314). Gibt mit Benzoldiazoniumchlorid in verd. Alkohol bei Gegenwart von Natriumacetat in der Kälte Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-phenylhydrazon (B.).

N.N'-Succinyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], N.N'-Bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-succinamid $C_{28}H_{38}O_{10}N_4$ = [-CH₂·CO·NH·NC₄(CH₃)₂(CO₂·C₂H₅)₂]₂. B. Aus Diacetbernsteinsäure-ster und Bernsteinsäure-dihydrazid in siedender Essigsäure (Bülow, Weidlich, B. 39, 3376). — Krystalle (aus verd. Alkohol). F: 173°. Leicht löslich in heißem Aceton, Alkohol, Benzol, Chloroform und Eisessig, sehr schwer in Wasser, Äther und Ligroin.

N.N'-Isosuccinyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], N.N'-Bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-isosuccinamid $C_{28}H_{38}O_{10}N_4 = CH_3 \cdot CH[CO \cdot NH \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_3]_2$. B. Beim Kochen von Diacetbernsteinsäureester mit Isobernsteinsäure-dihydrazid in Essigsäure (Bülow, Weidlich, B. 39, 3375). — F: 139—140°.

1-Ureido-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester, [2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-harnstoff $C_{13}H_{19}O_5N_3=H_2N\cdot CO\cdot NH\cdot NC_4(CH_3)_2(CO_3\cdot C_2H_5)_2$. B. Durch Kochen von Diacetbernsteinsäureester mit Semicarbazid-hydrochlorid und Natriumacetat in Essigsäure (Bülow, B. 38, 2369). — Nadeln (aus verd. Alkohol). F: 202° bis 203°. Leicht löslich in Alkohol, Aceton und Eisessig in der Wärme, schwerer in siedendem Wasser, sehr schwer in Äther, Chloroform und Benzol, unlöslich in Ligroin. Löslich in stark verdünnter Natronlauge; wird durch Kohlendioxyd aus der alkal. Lösung unverändert wieder ausgefällt. Löslich in konz. Salzsäure; scheidet sich beim Verdünnen der Lösung wieder ab. — Wird durch siedende 15°/oige Kalilauge zu 1-Ureido-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) verseift. Beim Schmelzen mit Kaliumhydroxyd bei 175° und Ansäuern der in Wasser gelösten Schmelze entsteht 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4). Gibt beim Schütteln mit Dimethylsulfat in 1n-Kalilauge 1-[Methyl-aminoformyl-amino]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und 1-Dibenzoylamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und 1-Dibenzoylamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und 1-Dibenzoylamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester.

1-[ω -Methyl-thioureido]-2.5-dimethyl-pyrrol-dicarbonsäure - (3.4) - diäthylester, N'-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-N-methyl-thioharnstoff $C_{14}H_{21}O_4N_2S$ = $CH_3 \cdot NH \cdot CS \cdot NH \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2$. B. Aus 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diāthylester und Methylsenföl in siedendem absolutem Alkohol (Bülow, Klemann, B. 40, 4758). — Krystalle (aus Benzol + absol. Alkohol). F: 193—194°. Ziemlich leicht löslich in Alkohol und Eisessig, ziemlich schwer in Methanol und Benzol, sehr schwer in Ligroin

1- $[\omega$ -Allyl-thioureido]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester, N'-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-N-allyl-thioharnstoff $C_{16}H_{32}O_4N_3S=CH_2:CH\cdot CH_2\cdot NH\cdot CS\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Aus 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und Allylsenföl in siedendem absolutem Alkohol (BÜLOW, KLEMANN, B. 40, 4759). — Krystalle (aus Alkohol). F: 192°. Leicht löslich in Aceton, schwerer in Alkohol und Äther, schwer in Benzol, unlöslich in Ligroin und Wasser. Leicht löslich in verd. Natronlauge; wird aus der Lösung durch Kohlendioxyd wieder abgeschieden.

1-[\omega-Phenyl-thioureido]-2.5-dimethyl-pyrrol-dicarbons\u00e4ure-(3.4)-di\u00e4thylester, N'-[\u00a9.5-Dimethyl-3.4-dicarb\u00e4thoxy-pyrryl-(1)]-N-phenyl-thioharnstoff C₁₉H₂₃O₄N₃S=C₆H₅·NH·CS·NH·NC₄(CH₃)₂(CO₂·C₂H₅)₂. B. Durch Kochen von Diacetbernsteins\u00e4ureester mit 4-Phenyl-thiosemicarbazid in Alkohol oder von 1-Amino-2.5-dimethyl-pyrrol-dicarbons\u00e4ure-(3.4)-di\u00e4thylester mit Phenylsenf\u00f6l in absol. Alkohol (B\u00dcuow, Sautermeister, B. 39, 649). — Nadeln (aus verd. Alkohol). F: 197°. Leicht l\u00f6slich in Alkohol, \u00e4ther, Pyridin und Benzol, schwer in Aceton, unl\u00f6slich in Wasser, Chloroform und Ligroin. Leicht l\u00f6slich in Ammoniak und verd. Alkalilaugen, unl\u00f6slich in Minerals\u00e4uren. Wird aus alkal. L\u00f6sung durch Kohlendioxyd wieder ausgef\u00e4llt. — Gibt beim Behandeln mit Dimethylsulfat in verd. Kalilauge 1-[Methyl-anilinothioformyl-amino]-2.5-dimethyl-pyrrol-dicarbons\u00e4ure-(3.4)-di\u00e4thylester und geringe Mengen eines bei \u00e214—215° schmelzenden Produkts. Bei der \u00ealinw. von Benzoyl-chlorid in alkal. L\u00f6sung erh\u00e4lt man 1-Benzamino-2.5-dimethyl-pyrrol-dicarbons\u00e4ure-(3.4)-di\u00e4thylester und andere Produkte.

1-[ω -(α -Naphthyl)-thioureido]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4) - diäthylester, N'-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-N- α -naphthyl-thioharnstoff $C_{23}H_{25}O_4N_3S=C_{10}H_7\cdot NH\cdot CS\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Aus 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester und α -Naphthylsenföl in siedendem absolutem Alkohol (Bülow, Klemann, B. 40, 4760). — Krystalle (aus Benzol + Alkohol). F: 183° (Gelbfärbung). Leicht löslich in Alkohol, Methanol und Eisessig, schwerer in Äther und Benzol, schwer in Ligroin.

- 1-[Methyl-aminoformyl-amino]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester, N-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-N-methyl-harnstoff $C_{14}H_{21}O_5N_3=H_2N\cdot CO\cdot N(CH_3)\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Durch Schütteln von 1-Ureido-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit Dimethylsulfat in 1n-Kalilauge unter Kühlung (BüLow, B. 38, 2372). Blättchen (aus Wasser). F: 151°. Ziemlich leicht löslich in siedendem Wasser, siedendem Alkohol, heißem Benzol, Chloroform, Eisessig und Pyridin, schwer löslich in Äther und Ligroin. Unlöslich in kalten verdünnten Alkalilaugen und in Ammoniak. Liefert beim Kochen mit $10^0/_0$ iger Kalilauge 1-[Methyl-aminoformyl-amino]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4), beim Schmelzen mit Kaliumhydroxyd und Ansäuern der erhaltenen Schmelze mit verd. Schwefelsäure oder Salzsäure 1-Methylamino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4).
- 1-[Methyl-anilinothioformyl-amino]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester, N-[2.5-Dimethyl-3.4-dicarbäthoxy-pyrryl-(1)]-N-methyl-N'-phenyl-thioharnstoff $C_{20}H_{25}O_4N_3S = C_6H_5 \cdot NH \cdot CS \cdot N(CH_3) \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2$. B. Beim Behandeln von 1-[ω -Phenyl-thioureido]-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester mit Dimethylsulfat in verd. Kalilauge unter Kühlung (Bülow, Sautermeister, B. 39, 650). Nadeln (aus Alkohol). F: 154°. Löslich in Alkohol, Äther, Chloroform, Eisessig, Aceton und Pyridin, unlöslich in Wasser, Benzol und Ligroin.
- 2.5.2'.5'-Tetramethyl-dipyrryl-(1.1')-tetracarbonsäure-(3.4.3'.4')-tetraäthylester $C_{24}H_{32}O_8N_2 = (C_2H_5 \cdot O_2C)_2(CH_3)_2C_4N \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2$. B. Durch Kochen von Diacetbernsteinsäureester mit 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester in Eisessig, zuletzt unter Zusatz von Wasser (Bülow, Sautermeister, B. 37, 2699). Aus 2 Mol Diacetbernsteinsäureester und 1 Mol Hydrazinhydrat in siedendem Eisessig (B., S.). Nadeln oder Blättchen (aus verd. Alkohol). F: 126—127°. Leicht löslich in Alkohol, Äther, Aceton, Benzol, Chloroform, Eisessig und Pyridin, sehr schwer in siedendem Ligroin, unlöslich in Wasser.

Mesoxalsäure - methylester - [2.5 - dimethyl - 3.4 - dicarbäthoxy-pyrryl-(1)-amid]-p-tolylhydrazon $C_{23}H_{28}O_7N_4 = CH_3 \cdot O_2C \cdot C(:N \cdot NH \cdot C_6H_4 \cdot CH_3) \cdot CO \cdot NH \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2$. B. Durch Kochen von Diacetbernsteinsäureester mit dem p-Tolylhydrazon des Mesoxalsäure-methylester-hydrazids in starker Essigsäure (Bülow, Weidlich, B. 40, 4329). — Gelbliche Nadeln (aus verd. Alkohol). F: 161—162°. Sehr leicht löslich in Aceton, Benzol und Chloroform. Ziemlich leicht löslich in Alkohol, Äther und Eisessig, sehr schwer in Ligroin und Wasser.

N.N'-Oximinomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-oxim C_{9} , H_{95} O $_{11}$ N $_{5}$ = HO·N:C[CO·NH·NC $_{4}$ (CH $_{3}$) $_{2}$ (CO $_{2}$ ·C $_{2}$ H $_{5}$) $_{2}$] $_{2}$. B. Durch Einw. von Natriumnitrit auf Malonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] in essigsaurer Lösung unterhalb 8° (Bülow, B. 42, 3314). — Krystalle (aus Chloroform + Ligroin). F: 171°. Leicht löslich in Alkohol, Aceton und Eisessig, ziemlich leicht in siedendem Wasser und Äther, schwer in Ligroin und Benzol.

N.N'-Hydrasonomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-hydrason $C_{27}H_{36}O_{10}N_6=H_2N\cdot N:C[CO\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2]_2$. B. Aus der vorhergehenden Verbindung beim Erwärmen mit Hydrazinhydrat-Lösung (Bülow, B. 42, 3315). —

Nadeln (aus verd. Alkohol). F: 204—205°. Leicht löslich in Alkohol, Chloroform, Aceton und Eisessig, sehr schwer löslich in Ligroin und siedendem Wasser.

N.N'-Phenylhydrazonomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbon-diathylester] durch kurzes Erhitzen mit Phenylhydrazin auf 170-1750 (Bülow, B. 42, 3315). Durch Einw. von Benzoldiazoniumchlorid-Lösung auf N.N'-Malonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester] in verd. Alkohol bei Gegenwart von Natriumacetat in der Kälte (B.). — Gelbe Nadeln (aus Alkohol). F: 269°. Leicht löslich in Eisessig, Aceton und Chloroform, schwerer in Benzol, unlöslich in Ligroin und Wasser; 1 g löst sich in 57 cm³ siedendem Alkohol. Löst sich in 1% jeer Kalilauge beim Erwärmen und wird durch Kohlendioxyd aus der Lösung wieder abgeschieden. — Gibt bei der Reduktion mit Zinkstaub in siedender essigsaurer Lösung Aminomalonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxypyrryl-(1)-amid] (S. 145). Die Lösung in Eisessig liefert beim Einleiten von nitrosen Gasen Mesoxalsäure - bis - [2.5 - dimethyl - 3.4 - dicarbathoxy - pyrryl - (1) - amid] - [N - nitroso - phenylhydr azon]. Beim Erhitzen mit Hydrazinhydrat und Alkohol im Rohr auf 160° erhält man 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester. — Löst sich in konz. Schwefelsäure mit grüngelber Farbe, die auf Zusatz von Natriumnitrit in Gelb, auf Zusatz von Dichromat in Blaugrün übergeht.

N.N'-o-Tolylhydrazonomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbon-säure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-o-tolylhydrazon $C_{34}H_{42}O_{10}N_6=CH_3\cdot C_6H_4\cdot NH\cdot N:C[CO\cdot NH\cdot NC_4(CH_3)_2]$ ($CO_2\cdot C_2H_5)_2$]. B. Aus Malonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] und diazotiertem o-Toluidin in Alkohol bei Gegenwart von Natriumacetat (Bülow, B. 42, 3321). — Krystalle (aus Alkohol). F: 248°. Leicht löslich in Chloroform, Aceton und Eisessig, schwerer in Alkohol und aromatischen Kohlenwasserstoffen, unlöslich in Ligroin und Wasser. — Die Lösung in konz. Schwefelsäure gibt mit Kaliumdichromat eine grünblaue Färbung.

N.N'-p-Tolylhydrazonomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbon-säure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-p-tolylhydrazon $C_{34}H_{42}O_{10}N_6=CH_3\cdot C_6H_4\cdot NH\cdot N:C[CO\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2]_2$. B. Analog der vorangehenden Verbindung (Bülow, B. 42, 3320). Entsteht auch beim Kochen von Mesoxalsäure-dihydrazid-p-tolylhydrazon mit Diacetbernsteinsäure-ester in starker Essigsäure (B., Weidlich, B. 40, 4330). — Gelbe Nadeln (aus Alkohol). F: 242° bis 243° (B.). Löstich in den meisten organischen Lösungsmitteln, unlöslich in Wasser und Ligroin (B.). Löst sich in verd. Natronlauge und wird durch Kohlendioxyd aus der Lösung wieder ausgefällt (B., W.). — Löst sich in konz. Schwefelsäure mit gelber Farbe, die auf Zusatz von Kaliumdichromat in schmutziges Braun übergeht (B.).

N.N'-[(2.4 - Dimethyl - phenylhydrazono) - malonyl] - bis -[1-amino-2.5-dimethyl-pyrrol - dicarbonsäure - (3.4) - diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy - pyrryl - (1) - amid] - [2.4 - dimethyl - phenylhydrazon] $C_{35}H_{44}O_{10}N_6 = (CH_3)_2C_6H_3 \cdot NH \cdot N \cdot C[CO \cdot NH \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2]_2$. B. Aus Malonsäure-bis-[2.5-dimethyl-3.4-dicarbāthoxy-pyrryl-(1)-amid] und diazotiertem 2.4-Dimethyl-anilin in verd. Alkohol bei Gegenwart von Natriumacetat (Bülow, B. 42, 3321). — Krystalle (aus Alkohol). F: 216°. 1 g löst sich in 13 cm³ siedendem Alkohol.

N.N'- α -Naphthylhydrazonomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]- α -naphthylhydrazon $C_{37}H_{42}O_{10}N_6=C_{10}H_7\cdot NH\cdot N:C[CO\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2]_2$. B. Durch Einw. von diazotiertem α -Naphthylamin auf Malonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] in verd. Alkohol bei Gegenwart von Natrium-acetat (Bülow, B. 42, 3324). — Bräunlichgelbe Nadeln (aus Alkohol). F: 272°. Unlöslich in Ligroin, löslich in Äther und Benzol, leicht löslich in Alkohol, Chloroform, Eisessig und Aceton. — Löst sich in konz. Schwefelsäure mit brauner Farbe, die allmählich in Gelb übergeht.

N.N'- β -Naphthylhydrazonomalonyl-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]- β -naphthylhydrazon $C_{37}H_{42}O_{10}N_6=C_{10}H_7\cdot NH\cdot N:C[CO\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_5)_2]_2$. B. Analog der vorangehenden Verbindung (Bülow, B. 42, 3324). — Gelbe Nadeln (aus verd. Alkohol). F: 223°. Die Lösung in konz. Schwefelsäure ist gelbbraun und färbt sich auf Zusatz von Kaliumdichromat dunkler.

N.N'-[(2-Carboxy-phenylhydrazono)-malonyl]-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-[2-carboxy-phenylhydrazon] $C_{34}H_{40}O_{12}N_6 = HO_3C \cdot C_6H_4 \cdot NH \cdot N \cdot C[CO \cdot NH \cdot NC_4(CH_3)_3(CO_2 \cdot C_2H_5)_3]$. B. Aus Malonsäure-bis-[2.5-dimethyl-3.4-dicarbāthoxy-pyrryl-(1)-amid] und diazotierter Anthranilsäure in verd. Alkohol bei Gegenwart

von Natriumacetat in der Kälte (Bülow, B. 42, 3322). — Krystalle (aus Alkohol). F: 265—266°. Fast unlöslich in Wasser und Ligroin, schwer löslich in Benzol und Chloroform, leicht in Aceton und Eisessig. Langsam löslich in Alkalidicarbonat-Lösung, leichter in Soda-Lösung mit gelblicher Farbe. — Löst sich in konz. Schwefelsäure mit intensiv gelber Farbe, die auf Zusatz von Kaliumdichromat in Blau übergeht.

N.N'-[(3-Carboxy-phenylhydrazono)-malonyl]-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-[3-carboxy-phenylhydrazon] $C_{34}H_{40}O_{12}N_6 = HO_2C \cdot C_6H_4 \cdot NH \cdot N \cdot C[CO \cdot NH \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2]_2$. B. Analog der vorangehenden Verbindung (Bülow, B. 42, 3323). — Gelbe Nadeln (aus Alkohol). F: 234—235°. Leicht löslich in Chloroform, Aceton und Eisessig, löslich in Alkohol und Benzol, unlöslich in Äther, Ligroin und Wasser. Leicht löslich in warmer verdünnter Alkalidicarbonat-Lösung. — Löst sich in konz. Schwefelsäure mit gelblicher Farbe, die auf Zusatz von Kaliumdichromat unverändert bleibt.

N.N'- [(4 - Carboxy-phenylhydrazonc) - malonyl] - bis - [1 - amino - 2.5 - dimethyl-pyrrol - dicarbonsäure - (3.4) - diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-[4-carboxy-phenylhydrazon] $C_{34}H_{40}O_{12}N_6 = HO_3C \cdot C_6H_4 \cdot NH \cdot N \cdot C[CO \cdot NH \cdot NC_4(CH_3)_2(CO_2 \cdot C_2H_5)_2]_2$. B. Analog der vorangehenden Verbindung (Bülow, B. 42, 3323). — Krystalle (aus Alkohol). F: 286°.

N.N'-[(4-Sulfo-phenylhydrazono)-malonyl]-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarb-äthoxy-pyrryl-(1)-amid]-[4-sulfo-phenylhydrazon] $C_{33}H_{40}O_{13}N_6S = HO_3S \cdot C_6H_4 \cdot NH \cdot N \cdot C[CO \cdot NH \cdot NC_4(CH_3)_3(CO_3 \cdot C_2H_5)_2]_2$. B. Aus Malonsäure-bis-[2.5-dimethyl-3.4-dicarb-äthoxy-pyrryl-(1)-amid] und diazotierter Sulfanilsäure in verd. Alkohol bei Gegenwart von Natriumacetat (Bülow, B. 42, 3324). — Krystalle (aus Benzol + Alkohol). F: 222—223°. Ziemlich leicht löslich in Wasser und Alkohol. — Die Lösung in konz. Schwefelsäure ist fast farblos.

N.N'-{[4-Sulfo-naphthyl-(1)-hydrazono]-malonyl}-bis-[1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-[4-sulfo-naphthyl-(1)-hydrazon] $C_{37}H_{42}O_{13}N_6S=HO_3S\cdot C_{10}H_6\cdot NH\cdot N:C[CO\cdot NH\cdot NC_4(CH_3)_2(CO_2\cdot C_2H_6)_2]_2$. B. Aus Malonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] und diazotierter 4-Amino-naphthalin-sulfonsäure-(1) in verd. Alkohol bei Gegenwart von Natriumacetat unter Erwärmen auf 53° (Bülow, B. 42. 3325). — Braune Nadeln (aus Benzol + Alkohol). Unlöslich in Ligroin, löslich in heißem Wasser, Äther, Benzol und Chloroform, leicht löslich in Eisessig und Alkohol. Löst sich in Soda-Lösung mit bräunlicher Farbe. — Die Lösung in konz. Schwefelsäure ist gelbbraun.

N.N'- [(4 - Acetamino - phenylhydrazono) - malonyl] - bis - [1-amino-2.5-dimethyl-pyrrol - dicarbonsäure - (3.4) - diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] - [4-acetamino-phenylhydrazon] $C_{35}H_{43}O_{11}N_7 = CH_3 \cdot CO \cdot NH \cdot C_6H_4 \cdot NH \cdot N : C[CO \cdot NH \cdot NC_4(CH_3)_3(CO_2 \cdot C_2H_5)_3]_3$. B. Durch Einw. von diazotiertem N-Acetyl-p-phenylendiamin auf Malonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] in verd. Alkohol in Gegenwart von Natriumacetat bei 7° (Bülow, B. 42, 3321). — Krystalle (aus Alkohol). Beginnt bei 186° zu erweichen, wird bei weiterem Erhitzen wieder fest und schmilzt schließlich bei 225°.

N.N'- [(N-Nitroso-phenylhydrazono) - malonyl] - bis - [1-amino-2.5 - dimethyl-pyrrol-dicarbonsäure-(3.4) - diäthylester], Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid]-[N-nitroso-phenylhydrazon] $C_{33}H_{39}O_{11}N_7 = C_6H_5 \cdot N(NO) \cdot N:C[CO\cdot NH\cdot NC_4(CH_9)_8(CO_2\cdot C_2H_5)_8]_2$. B. Durch Einleiten von nitrosen Gasen in eine gekühlte Lösung von Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbāthoxy-pyrryl-(1)-amid]-phenylhydrazon in Eisessig (Bülow, B. 42, 3319). — Gelbe Krystalle (aus Alkohol). F: 246°. Leicht löslich in Eisessig, Methanol, Alkohol, Chloroform, Benzol und Aceton, sehr schwer in Wasser und Ligroin.

N.N'- Aminomalonyl - bis - [1-amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diäthylester], Aminomalonsäure-bis-[2.5-dimethyl-3.4-dicarbäthoxy-pyrryl-(1)-amid] $C_{27}H_{37}O_{10}N_5 = H_2N \cdot \text{CH}[\text{CO} \cdot \text{NH} \cdot \text{NC}_4(\text{CH}_3)_2(\text{CO}_2 \cdot \text{C}_2H_3)_2]_2$. B. Durch Reduktion von Mesoxalsäure-bis-[2.5-dimethyl-3.4-dicarbāthoxy-pyrryl-(1)-amid]-phenylhydrazon mit Zinkstaub in siedender starker Essigsäure (Bülow, B. 42, 3318). — Nadeln (aus Benzol). F: 219°.

Dehydracetsäure - mono - [2.5 - dimethyl - 3.4 - dicarbäthoxy - pyrryl - (1) - imid] $\begin{array}{l} \text{HC} \cdot \text{CO} \cdot \text{CH} \cdot \text{C}(\text{CH}_2) : \text{N} \cdot \text{NC}_4(\text{CH}_2)_2(\text{CO}_2 \cdot \text{C}_2\text{H}_5)_2} \\ \text{CH}_3 \cdot \text{C} - \text{O} - \text{CO} \\ \text{1-Amino-2.5-dimethyl-pyrrol-dicarbonsāure-(3.4)-diāthylester mit Dehydracetsāure (Bd. XVII, BEILSTEINS Handbuch. 4. Aufl. XXII.} \\ \end{array}$

S. 559) in Eisessig (Bülow, B. 41, 4165, 4167). — Krystalle (aus Ligroin). F: 160°. Löslich in heißem Alkohol, siedendem Ligroin, Benzol und Chloroform, fast unlöslich in Wasser und Äther. Leicht löslich in kalten verdünnten Alkalilaugen; wird durch Kohlendioxyd aus der alkal. Lösung wieder abgeschieden. Löslich in Ammoniak. — Gibt bei kurzer Einw. von siedender 10%/oiger Kalilauge 1-Amino-2.5-dimethyl-pyrrol-dicarbonsäure-(3.4)-diathylester und Dehydracetsäure zurück; beim Behandeln mit Phenylhydrazin erhält man das Monophenylhydrazon der Dehydracetsäure.

3. Dicarbonsäuren $C_9H_{11}O_4N$.

1. 2.6 - Dimethyl - 1.4 - dihydro - pyridin - dicarbonsäure - (3.5), 2.6 - Dimethyl-1.4-dihydro-dinicotinsäure, N.γ-Dihydro-α.α'-lutidin-β.β'-dicarbonsäure C₉H₁₁O₄N = HO₂C·C·CH₂·C·CO₂H
CH₃·C·NH·C·CH₃

Diäthylester C₁₃H₁₉O₄N = C₂H₅·O₂C·C·CH₂·C·CO₂·C₂H₅
CH₃·C·NH·C·CH₃

durch Einw. von alkoh. Ammoniak und Formaldehyl in 40% jeger wäßr. Lösung (Schiff, Prosio, G. 25 II, 70; Guareschi, Grande, C. 1899 II, 440) oder in verd. Salzsäure (Schi., P.). Neben 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester beim Erhitzen von Acet-P.). Neben 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester beim Erhitzen von Acetessigester mit Hexamethylentetramin und Zinkchlorid im Rohr auf 100° (Griess, Harrow, B. 21, 2740). Durch Einleiten von Ammoniak in eine alkoh. Lösung von Methylen-bisacetessigester (Knoevenagel, A. 281, 95). — Grünfluorescierende, gelbe Nadeln oder Blättchen (aus Alkohol). F: 176—183° (Schi., P.), 183° (Gu., Gra.), 183—185° (Kn., Fuchs, B. 35, 1791). Leicht löslich in Chloroform, ziemlich leicht in heißem Alkohol, schwer in Äther, fast unlöslich in siedendem Wasser (Gr., H.). Löst sich in stark gekühlter konzentrierter Salzsäure und scheidet sich bei sofortigem Zusatz von Wasser unverändert wieder ab (Kn., F., B. 35, 1791). — Dissoziiert beim Erhitzen, besonders rasch bei Gegenwart von Palladiummohr, in 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester und Wasserstoff; daneben entstehen je nach den Reaktionsbedingungen 2.6-Dimethyl-piperidin-dicarbonsäure-(3.5)diathylester und 2.6-Dimethyl-pyridin-carbonsäure-(3)-äthylester (Gu., Gra.; Kn., F., B. 35, 1788; 36, 2848). Geschwindigkeit der Zersetzung beim Erhitzen mit 2.6-Dimethyl-pyridindicarbonsäure-(3.5)-diäthylester in Gegenwart von Palladiummohr auf 263° und 302°: Kn., F., B. 36, 2854, 2855. Wird durch Kaliumpermanganat in sodaalkalischer Lösung oder in verd. Schwefelsäure langsam oxydiert (Kn., F., B. 35, 1798). Liefert beim Behandeln mit salpetriger Säure in alkoh. Lösung oder mit Salpetersäure 2.6-Dimethyl-pyridin-dicarbon-säure-(3.5)-diäthylester (Schi., P., G. 25 II, 79; Mohr, Schneider, J. pr. [2] 69, 247, 248). Gibt beim Behandeln mit überschüssiger alkoholeker Kalilauge auf dem der dem 2.5-II. methyl-pyridin-dicarbonsäure-(3.5) und 1-Methyl-cyclohexen-(1)-on-(3) (SCHI., P., G. 25 II, 76). Bei der Einw. von konz. Salzsäure bei Zimmertemperatur erhält man 2.6-Dimethylpyridin-dicarbonsäure-(3.5)-diäthylester und 2.6-Dimethyl-piperidin-dicarbonsäure-(3.5)-diäthylester (Kn., F., B. 35, 1791; vgl. a. Gr., H.; Schi., P., G. 25 II, 81).

 $NC \cdot C \cdot CH_2 \cdot C \cdot CN$ Dinitril, $\beta.\beta'$ -Dicyan-N. γ -dihydro- $\alpha.\alpha'$ -lutidin $C_9H_9N_8 =$ CH₃·C·NH·C·CH₃· Aus Diacetonitril (Bd. III, S. 660) durch Behandeln mit Formaldehyd in essigsaurer Lösung oder durch Erhitzen mit Hexamethylentetramin in Essigsäure + Salzsäure (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 508). — Gelbliche Tafeln (aus Methanol). F: 222°. Leicht löslich in Alkohol und Aceton, schwer in Wasser, unlöslich in Ather. — Beim Einleiten nitroser Gase in die Suspension in Alkohol erhält man 2.6-Dimethyl-3.5-dicyan-pyridin.

2. 2.5 - Dimethyl - pyrrol - carbonsäure - (3) - essigsäure - (4) $C_9H_{11}O_4N =$ $HO_2C \cdot CH_2 \cdot C - C \cdot CO_2H$. B. Man kondensiert β -Brom-lävulinsäure-äthylester in sieden- $CH_3 \cdot C \cdot NH \cdot C \cdot CH_3$ dem Alkohol mit Natrium-acetessigester und kocht das durch Eingießen in Wasser abge-schiedene Öl kurze Zeit mit überschüssigem Ammoniumacetat in starker Essigsäure; der erhaltene Diäthylester (s. u.) wird durch siedende Natronlauge verseift (KNORR, B. 19, 47). Prismen. Schmilzt bei 1960 unter Abspaltung von Kohlendioxyd. — Gibt die Fichtenspan-

Diäthylester $C_{13}H_{19}O_4N = \frac{C_2H_5 \cdot O_2C \cdot CH_2 \cdot C - C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot C \cdot NH \cdot C \cdot CH_3}$. B. s. im vorangehenden Artikel. — Blättchen (aus Äther). F: $109 - 110^{\circ}$ (KNORR, B. 19, 48). Leicht löslich in Berrol Albehel Chland aus Äther). Benzol, Alkohol, Chloroform und Äther, unlöslich in Wasser. Unlöslich in Alkalilaugen und verd. Säuren.

4. Dicarbonsäuren $C_{10}H_{13}O_4N$.

1. 2.4.6-Trimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), 2.4.6-Trimethyl-1.4-dihydro-dinicotinsäure. 1.4 - Dihydro-kollidin-dicarbon-säure-(3.5) $C_{10}H_{13}O_4N = \frac{HO_2C \cdot C \cdot CH(CH_3) \cdot C \cdot CO_2H}{CH_3 \cdot C - NH - C \cdot CH_3}$ Dimethylester $C_{12}H_{17}O_4N = \frac{CH_3 \cdot O_2C \cdot C \cdot CH(CH_3) \cdot C \cdot CO_2 \cdot CH_3}{CH_3 \cdot C - NH - C \cdot CH_3}$. B. Durch Erhitzen von 2 Mol Acetessigsäuremethylester mit 1 Mol Aldehydammoniak (Hantzsch, B. 16, 1946). Hellblau fluorescierende Krystalle (aus Alkohol). F: 1560 (H.). Verbrennungswärme

Dimethylester $C_{12}H_{17}O_4N = \frac{CH_3 \cdot C_2 \cdot C \cdot C \cdot C \cdot C \cdot C \cdot C}{CH_3 \cdot C \cdot C \cdot C}$. B. Durch Erhitzen von 2 Mol Acetessigsäuremethylester mit 1 Mol Aldehydammoniak (Hantzsch, B. 16, 1946). — Hellblau fluorescierende Krystalle (aus Alkohol). F: 156° (H.). Verbrennungswärme bei konstantem Druck: 1517,9 kcal/Mol (Stohmann, Ph. Ch. 10, 421). — Gibt beim Einleiten von nitrosen Gasen in die gekühlte alkoholische Lösung Kollidin-dicarbonsäure-(3.5)-dimethylester (H.). Beim Erwärmen mit wenig Salzsäure auf dem Wasserbad erhält man 1.4-Dihydro-kollidin-carbonsäure-(3)-methylester (H.).

Diäthylester C₁₄H₂₁O₄N = C₂H₅·O₂C·C·CH(CH₃)·C·CO₂·C₂H₅ B. Durch Erwärmen CH₃·C·NH—C·CH₃
von 2 Mol Acetessigester mit etwas mehr als 1 Mol Aldehydammoniak (Hantzsch, A. 215, 8; Michael, A. 225, 123; vgl. H., B. 18, 2580). Aus β-Imino-buttersäure-äthylester beim Erwärmen mit Paraldehyd und wenig Schwefelsäure (Collie, A. 226, 314) oder beim Behandeln mit α-Äthyliden-acetessigsäure-äthylester (Beyer, B. 24, 1666). Bei der Einw. von Ammoniak bezw. alkoh. Ammoniak auf α-Äthyliden-acetessigsäure-åthylester (QUENDA, C. 1897 I, 903; Guaresch, C. 1897 I, 927; Ruhemann, Soc. 83, 377) oder auf Äthyliden-bis-acetessigester (Rabe, A. 332, 19). — Darst. Man erwärmt ein Gemisch von 33 g Acetessigester und 10 g Aldehydammoniak 3 Min. auf 100—110° und versetzt das warme Reaktionsgemisch mit dem doppelten Volumen 2n-Salzsäure (L. Gattermann, Die Praxis des organischen Chemikers, 22. Aufl. von H. Wieland [Berlin-Leipzig 1930], S. 348; vgl. E. Fischer, An-eitung zur Darstellung organischer Präparate, 10. Aufl. von B. Helferich [Braunschweig 1922], S. 30). — Hellblau fluorescierende Tafeln (aus Alkohol). Monoklin prismatisch (Beckenkamp, Z. Kr. 33, 603; vgl. Groth, Ch. Kr. 5, 705). F: 131° (H., A. 215, 9; Ru.; Ra.). Siedet oberhalb 315° unter starker Zersetzung (H., A. 215, 10). Leuchtet nach Bestrahlung mit Radiumstrahlen (Kauffmann, B. 37, 2948). Absorptionsspektrum in alkoh. Lösung: Baker, Baly, Soc. 91, 1131. Fluorescenzspektrum: Ley, v. Engelhardt, B. 41, 2991. Sehr schwer löslich in Wasser, schwer in kaltem Alkohol, Äther und Schwefelkohlenstoff, leichter in Benzol, sehr leicht in Chloroform und siedendem Alkohol (H., A. 215, 10). Die Lösung in kaltem Eisessig fluoresciert; die Fluorescenz verschwindet beim Erwärmen und tritt beim Erkalten wieder auf (K., B. 37, 2944). Löst sich in kalter konzentrierter Schwefelsäure und kalter rauchender Salzsäure und scheidet sich aus diesen Lösungen beim Verdünnen unverändert wieder ab (H., A. 215, 12).

Zersetzt sich beim Erhitzen auf 340—350° unter Bildung von 2.6-Dimethyl-pyridin-carbonsäure-(3)-äthylester, 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester, Alkohol, Äthylen, Methan, Kohlendioxyd und Kohlenoxyd (Guareschi, Grande, C. 1899 II, 440). Wird beim Einleiten von nitrosen Gasen in die gekühlte alkoholische Suspension zu Kollidindicarbonsäure-(3.5)-diäthylester oxydiert (Hantzsch, A. 215, 21); die gleiche Verbindung erhält man beim Erhitzen mit Schwefel (H., B. 18, 2579 Anm. 2) sowie (neben anderen Produkten) beim Behandeln mit Chlorwasserstoff in Äther (H., A. 215, 37). 1.4-Dihydro-kollidin-dicarbonsäure-(3.5)-diäthylester gibt beim Erwärmen mit 25°/oiger Salzsäure auf dem Wasserbad 1.4-Dihydro-kollidin-carbonsäure-(3)-äthylester (H., A. 215, 40); beim Erhitzen mit verd. Salzsäure im Rohr auf 120—130° entstehen 1.4-Dihydro-kollidin, eine Verbindung C₁₆H₂₆N₂ (s. u.), 1.3-Dimethyl-cyclohexen-(3)-on-(5) und andere Produkte (H., A. 215, 43; Knoevenagel, A. 281, 42); bei höherer Temperatur und andauerndem Erhitzen erhält man fast ausschließlich die Verbindung C₁₆H₂₆N₂ (H., A. 215, 46). 1.4-Dihydro-kollidin-dicarbonsäure-(3.5)-diäthylester zersetzt sich beim Erwärmen mit rauchender Salzsäure unter Bildung von Äthylchlorid, Acetaldehyd, Aceton, Kohlendioxyd und Ammoniak (H., A. 215, 12). Ist gegen alkoh. Ammoniak bei 150° beständig (H., A. 215, 11). Einw. von alkoh. Kalilauge: H., A. 215, 11. Gibt beim Erhitzen mit ca. 70°/oiger Kalilauge 1.4-Dihydro-kollidin-carbonsäure-(3)-äthylester, 1.3-Dimethyl-cyclohexen-(3)-on-(5), 1.4-Dihydro-kollidin und geringe Mengen symm. Kollidin (Cohnheim, B. 31, 1034). Beim Sättigen der Lösung in Chloroform mit trocknem Chlor erhält man die Verbindung C₁₄H₁₄O₄NCl₇ (S. 148) (H., A. 215, 14); zuweilen entsteht außerdem die Verbindung C₁₄H₁₇O₄NBr₄ (S. 148) in geringer Menge (H., A. 215, 19).

Verbindung $C_{16}H_{26}N_2$. B. Bei lang dauerndem Erhitzen von 1.4-Dihydro-kollidindicarbonsäure-(3.5)-diathylester mit verd. Salzsäure im Rohr über 130° (Hantzsch, A. 215,

43, 46). — Öl. Kp: 255—260°. Riecht in der Wärme stechend. — Reduziert Silbernitrat-Lösung oder ammoniakalische Silber-Lösung bei längerem Kochen. — $C_{1e}H_{2e}N_2 + HI$. Krystalle (aus Alkohol + Äther). Sehr leicht löslich in Alkohol und Wasser. — $C_{1e}H_{2e}N_2 + H_{2e}N_2 +$

2HCl+PtCl₄. Krystalle C₁₄H₁₄O₄NCl₇. B. Beim Sättigen einer Lösung von 1.4-Dihydro-kollidin-dicarbonsäure-(3.5)-diäthylester in Chloroform mit trocknem Chlor, anfangs unter Kühlung (Hantzson, A. 215, 19). — Nadeln (aus Alkohol. F: 152°. Schwer löslich in siedendem Alkohol. — Ist gegen ruter Rühlung Salpetersäure beständig. Zersetzt sieh beim Erwärmen

mit alkoh. Kalilauge unter Bildung von Kaliumchlorid.
Verbindung C₁₄H₁₉O₄NBr₄. B. Aus 1.4-Dihydro-kollidin-dicarbonsäure-(3.5)-diäthylester und Brom in Schwefelkohlenstoff (Намтгзон, A. 215, 14). — Gelbe Prismen (aus Alkohol). F: 88°. Sehr leicht löslich in heißem Alkohol. — Ist gegen siedende rauchende Salzsäure beständig. Einw. von rauchender Salzsäure bei 160—170° sowie von alkoh. Kalilauge: H. Geht beim Behandeln mit roter rauchender Salpetersäure in die Verbindung C₁₄H₁₇O₄NBr₄ über. Verbindung C₁₄H₁₇O₄NBr₄. B. Beim Behandeln der Verbindung C₁₄H₁₉O₄NBr₄ mit roter rauchender Salpetersäure (Hantzsch, A. 215, 17). Entsteht zuweilen in geringer Menge bei der Einw. von überschüssigem Brom auf 1.4-Dihydro-kollidin-dicarbonsäure-(3.5)-diäthyl-

ester in Schwefelkohlenstoff (H.). — Nadeln (aus Alkohol oder Äther). Monoklin prismatisch (BECKENKAMP, Z. Kr. 40, 598; vgl. Groth, Ch. Kr. 5, 705). F: 1020 (H.).

 $\textbf{2.4.6-Trimethyl-1.4-dihydro-pyridin-dicarbons \"{a}ure-(3.5)-dinitril}, \quad \textbf{3.5-Dicyan-NC-C-CH(CH_3)-C-CN}\\ \textbf{1.4-dihydro-kollidin} \quad \textbf{C}_{10}\textbf{H}_{11}\textbf{N}_3 = \frac{\textbf{NC}-\textbf{NH}-\textbf{C}\cdot\textbf{CH}_3}{\textbf{CH}_3\cdot\textbf{C}-\textbf{NH}-\textbf{C}\cdot\textbf{CH}_3}. \quad \textbf{B}. \quad \textbf{Beim S\"{a}ttigen einer alkoh.}\\ \textbf{L\"{o}sung von Diacetonitril und Paraldehyd mit Chlorwasserstoff unter Erwärmen oder beim}$

Erhitzen einer wäßr. Lösung von Diacetonitril und Aldehydammoniak unter allmählichem Zusatz von verd. Salzsäure (v. Meyen, C. 1908 II, 593; J. pr. [2] 78, 510). — Nadeln (aus verd. Alkohol). F: 170°. — Wird durch salpetrige Säure zu 3.5-Dioyan-kollidin oxydiert. Zersetzt sich beim Erhitzen mit Kalilauge oder starker Salzsäure.

- 1.2.4.6 Tetramethyl 1.4 dihydro pyridin dicarbonsäure (3.5) diäthylester $C_{15}H_{23}O_4N = \frac{C_2H_5 \cdot O_3C \cdot C \cdot CH(CH_3) \cdot C \cdot CO_2 \cdot C_2H_5}{U}$ B. Durch Kondensation von β -Oxy- $CH_3 \cdot C \cdot N(CH_3) \cdot C \cdot CH_3$ β -methylamino-buttersäure-äthylester (Bd. IV, S. 80) mit Paraldehyd und Schwefelsäure (Kuckert, B. 18, 620). In geringer Menge bei der Einw. von Methylamin auf ein Gemisch von Acetessigsäureäthylester und Acetaldehyd (Hantzsch, B. 18, 2580). — Blau fluorescierende Krystalle. F: 86° (K.).
- 2. $\beta.\beta'$ [Pyrrylen (2.5)] di-propions dure $C_{10}H_{13}O_4N = HC$ ——CH $Ho_3C \cdot CH_3 \cdot CH_3 \cdot C \cdot NH \cdot C \cdot CH_3 \cdot CH_3 \cdot CO_3H$. B. [Bei der Einw. von Ammoniak auf Dilävulinsaure (Kehrer, B. 84, 1268; 85, 2010). — F: 166°.
- 5. 2.6-Dimethyl-4-äthyl-1.4-dlihydro-pyridin-dicarbonsäure-(3.5), 2.6 - Dimethyl - 4 - äthyl - 1.4 - dihydro - dinicotinsäure $C_{11}H_{18}O_{2}N=$ $HO_2C \cdot C \cdot CH(C_2H_5) \cdot C \cdot CO_2H$ CH. C-NH-C-CH.

Diäthylester $C_{15}H_{23}O_4N = C_2H_5 \cdot O_2C \cdot C \cdot CH(C_2H_5) \cdot C \cdot CO_2 \cdot C_2H_5$ Von Acetessigsäureäthylester mit Propionaldehyd und alkoh. Ammoniak (Engelmann, A. 231, 38). — Hellblau fluorescierende Prismen (aus Alkohol). F: 110°. Sehr leicht löslich in heißem Alkohol, Äther, Benzol und Chloroform, unlöslich in Wasser. — Gibt in Alkohol beim Einleiten von nitrosen Gasen 2.6-Dimethyl-4-äthyl-pyridin-dicarbonsäure-(3.5)-diäthyl-

6. Dicarbonsäuren $C_{12}H_{12}O_4N$.

1. 2.6 - Dimethyl - 4 - propyl - 1.4 - dihydro-pyridin-dicarbonsäure - (3.5)', 2.6 - Dimethyl - 4 - propyl - 1.4 - dihydro - dinicotinsäure $C_{12}H_{17}O_4N=HO_2C\cdot C\cdot CH(CH_2\cdot C_2H_6)\cdot C\cdot CO_2H$ CH₂·C—NH——C·CH₂

Diäthylester $C_{16}H_{26}O_4N = \frac{C_2H_5 \cdot O_2C \cdot C \cdot CH(CH_2 \cdot C_2H_5) \cdot C \cdot CO_2 \cdot C_2H_5}{H_5 \cdot C_2H_5 \cdot C_2H_5}$. B. Durch Kon-Diäthylester $C_{16}H_{25}O_4N=$ $CH_3\cdot C - NH - C\cdot CH_3$. B. Durch Kondensation von Acetessigester mit Ammoniak und Butyraldehyd in alkoh. Lösung (JAECKLE, A. 246, 34). — Gelbliche Prismen (aus Alkohol). F. 1180. Leicht löslich in Alkohol und Ather. — Gibt bei der Oxydation mit nitrosen Gasen in Alkohol 2.6-Dimethyl-4-propylpyridin-dicarbonsaure-(3.5)-diathylester.

2. 2.6-Dimethyl-4-isopropyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), 2.6 - Dimethyl - 4 - isopropyl - 1.4 - dihydro - dinicotinsäure $C_{1}H_{12}O_{4}N =$ $HO_2C \cdot C \cdot CH[CH(CH_3)_2] \cdot C \cdot CO_2H$

CH, C-NH-C-CH,

 $\begin{array}{c} \textbf{Diäthylester} \ \ C_{16}H_{25}O_4N = \frac{C_2H_5 \cdot O_2C \cdot C \cdot CH[CH(CH_3)_2] \cdot C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot C}. \quad \textit{B.} \quad \textbf{Durch} \ \ \textbf{Erwärmen von Acetessigsäureäthylester mit Isobutyraldehyd und konzentriertem alkoholischem} \end{array}$

Ammoniak (Engelmann, A. 231, 47). — Schwach blau fluorescierende Prismen (aus 90%) igem Alkohol oder aus Äther). F: 97%. Leicht löslich in kaltem absolutem Alkohol, Äther, Benzol und Chloroform, unlöslich in Wasser. — Bei der Oxydation mit nitrosen Gasen in Alkohol erhält man 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester.

7. 2.6-Dimethyl-4-isobutyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), 2.6 - Dimethyl-4 - isobutyl - 1.4 - dihydro - dinicotinsäure $C_{13}H_{19}O_4N=$ $HO_{\bullet}C \cdot C \cdot CH[CH_{\bullet} \cdot CH(CH_{\bullet})_{\bullet}] \cdot C \cdot CO_{\bullet}H$

CH.·C—NH—C·CH.

 $\begin{array}{c} \textbf{Diäthylester} \ \ C_{17}H_{27}O_4N = \frac{C_2H_5 \cdot O_2C \cdot C \cdot CH[CH_2 \cdot CH(CH_3)_2] \cdot C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot C - NH - C \cdot CH_3}. \quad \textit{B.} \quad \text{Durch} \\ \textbf{Erwärmen von Acetessigsäureäthylester mit Isovaleraldehyd und alkoh. Ammoniak (Engel-$ MANN, A. 231, 56). — Schwach fluorescierende Prismen (aus Petroläther oder verd. Alkohol). F: 100°. Leicht löslich in Alkohol, Äther, Benzol, Chloroform und Eisessig, unlöslich in Wasser. — Die alkoh. Lösung gibt beim Einleiten von Stickoxyden 2.6-Dimethyl-4-isobutylpyridin-dicarbonsäure-(3.5)-diathylester.

8. 2.6-Dimethyl-4-n-hexyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5). 2.6 - Dimethyl-4-n-hexyl-1.4-dihydro-dinicotinsäure $C_{15}H_{23}O_4N=HO_2C\cdot C\cdot CH([CH_2]_5\cdot CH_3)\cdot C\cdot CO_2H$

CH₂·C NH C·CH₂

Diäthylester $C_{19}H_{31}O_4N = C_2H_5 \cdot O_2C \cdot C \cdot CH([CH_2]_5 \cdot CH_2) \cdot C \cdot CO_2 \cdot C_2H_5$ $CH_3 \cdot C - NH - C \cdot CH_3$ densation von Acetessigester mit Ammoniak und Önanthol in Alkohol (JAECKLE, A. 246, 38). — Gelbe Prismen (aus verd. Alkohol). F: 54°. Sehr leicht löslich in Äther. — Beim Einleiten von nitrosen Gasen in die alkoh. Lösung unter Erwärmen erhält man 2.6-Dimethyl-4-n-hexyl-pyridin-dicarbonsaure-(3.5)-diathylester.

9. 2.6-Dimethyl-4-n-tridecyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), 2.6 - Dimethyl-4 - n - tridecyl - 1.4 - dihydro - dinicotinsaure $C_{22}H_{27}O_4N=$ $HO_2C \cdot C \cdot CH([CH_2]_{13} \cdot CH_3) \cdot C \cdot CO_2H$

CH.·C—NH——C·CH.

Diäthylester $C_{26}H_{45}O_4N = C_2H_5 \cdot O_2C \cdot C \cdot CH([CH_2]_{12} \cdot CH_2) \cdot C \cdot CO_3 \cdot C_2H_5$. B. Durch Kochen von Acetessigester mit Myristinaldehyd und alkoh. Ammoniak (Krafft, Mai, B. 22, 1757). — Krystalle (aus Alkohol). F: 60° . — Wird in warmer alkoholischer Lösung durch

Stickoxyde zu 2.6-Dimethyl-4-n-tridecyl-pyridin-dicarbonsaure-(3.5)-diathylester oxydiert.

3. Dicarbonsäuren $C_n H_{2n-9} O_4 N$.

1. Dicarbonsäuren $C_7H_5O_4N$.

1. Pyridin - dicarbonsäure - (2.3), Pyridin - α.β - dicarbonsäure, Chinolinsäure C₇H₅O₄N, s. nebenstehende Formel. B. Bei der Oxydation von 2.3-Dimethyl-pyridin mit Kaliumpermanganat (GARRETT, SMYTHE, Soc. 83, 765). Bei der Oxydation von Chinolin mit Kaliumpermanganat in alkal. Lösung (Hoogewerff, van Dorp, B. 12, 747; A. 204, 116 Anm. 2, 117; R. 1, 107, 110; Koenigs, B. 12, 983; Skraup, M. 2, 147; Camps, Ar. 240, 352). Bei Einw. von Kaliumpermanganat auf 6-Methyl-chinolin oder 8-Methyl-chinolin (Sk., M. 2, 157, 162). 8-Oxy-chinolin (O. Fischer, Renouf, B. 17, 756) oder 8-Oxy-chinolin-carbonsäure-(5) (Lippmann, Fleisner, B. 19, 2470; M. 8, 312; vgl. Niementowski, Sucharda, B. 49 [1916]. 13). Beim Kochen von Alizarinindigblau (Bd. XXI, S. 638) mit verd. Salpetersäure (GRAEBE, Philips, A. 276, 33; Ph., A. 288, 254). Bei der Oxydation von Chinolin-sulfonsäure-(8) mit Kaliumpermanganat in alkal. Lösung (Fi., R., B. 17, 755). Beim Behandeln von Cinchonin mit Permanganat (H., v. D., A. 204, 87, 117).

Prismen (aus Wasser). Monoklin prismatisch (Arzhuni, R. 1, 111; vgl. Groth, Ch. Kr. 5, 690). Zersetzt sich langsam von 110° an; schmilzt bei raschem Erhitzen bei ca. 180° (Zers.) (Hoogewerff, van Dorp, R. 1, 113), 190—195° (Zers.) (Skraup, M. 2, 148). Sehr schwer löslich in Alkohol und Äther, unlöslich in Benzin; löst sich bei 6,5° in 183 Tln. Wasser (H., v. D., R. 1, 112). Starke Säure; elektrisches Leitvermögen des Natriumsalzes bezw. der freien Säure in wäßr. Lösung bei 25°: Ostwald, Ph. Ch. 2, 902; 3, 389. — Chinolinsäure spaltet beim Erhitzen für sich sowie beim Kochen mit Eisessig Kohlendioxyd ab unter Bildung von Nicotinsäure (H., v. D., A. 204, 117; R. 1, 113, 121). Ist gegen Kaliumpermanganat in alkal. Lösung beständig, in saurer Lösung erfolgt rasch Oxydation (H., v. D., R. 1, 113, 130). Liefert bei der Reduktion mit Natriumamalgam in stark alkalischer Lösung δ-Valero-lacton-y.δ-dicarbonsäure (Bd. XVIII, S. 483) (Perlmuttter, M. 13, 842). Wird durch Natrium und siedenden Alkohol zu inakt. "cis"- und "trans"-Hexahydronicotinsäure (S. 120), durch Natrium und siedenden Isoamylalkohol zu Hexahydronicotinsäure (S. 8) reduziert (Besthorn, B. 28, 3153). Gibt beim Erhitzen mit Brom im Rohr auf 120—130° 3.5-Dibrom-pyridin (Pfeiffer, B. 20, 1351). Geht beim Erhitzen mit Essigsäureanhydrid in Chinolinsäureanhydrid (Syst. No. 4298) über (Bernttesen, Mettegang, B. 20, 1209; Philips, A. 288, 255). Beim Erhitzen des Calciumsalzes mit Calciumoxyd erhält man Pyridin und andere Produkte (Skraur, M. 2, 152; vgl. H., v. D., R. 1, 113). Beim Schmelzen von Chinolinsäure mit Kaliumhydroxyd und wenig Wasser entsteht 6-Oxy-pyridin-dicarbonsäure-(2.3) (Koemics, Körner, B. 16, 2158). Beim Erhitzen mit Jod und Kaliumjodid in alkal. Lösung auf 180—200° bildet sich 3.5-Dijod-2-oxy-pyridin (?) (Pf., B. 20, 1352). Chinolinsäure reagiert mit Methyljodid in verd. Soda-Lösung bei gewöhnlicher Temperatur unter Bildung von Chinolinsäure-methylbetain (S. 152) (H. Meyer, M. 24, 202), in methylalkoholischer Lösung bei längerem Erhitzen auf

Saures Ammoniumsalz. Nadeln (aus Wasser). F: 190° (Philips, A. 288, 257). Leicht löslich in kaltem Wasser. — $KC_7H_4O_4N + 2H_2O$. Prismen (aus verd. Alkohol), Tafeln (aus Wasser). Triklin pinakoidal (Baerwald, R. 1, 116; v. Lang, M. 2, 150; Schrauf, M. 8, 313; vgl. Groth, Ch. Kr. 5, 691). Sehr leicht löslich in Wasser, sehr schwer in Alkohol (Skrauf, M. 2, 149). Spaltet oberhalb 200° Kohlendioxyd ab (Sk.). — $K_2C_7H_3O_4N + 2H_2O$. Nadeln. Verliert bei 120° 1 H_2O , wird bei 210° wasserfrei, zersetzt sich bei 230° (Sk.). Sehr leicht löslich in Wasser, unlöslich in Alkohol (Sk.). — $Cu(C_7H_4O_4N)_2 + H_2O$. Blaue, mikroskopische Nadeln (aus ca. $32^\circ/_0$ iger Salpetersäure). Wird bei 258° schwarz (Boeseken, R. 12, 253). 1 Tl. löst sich bei 15° in 4320 Tln. Wasser (B.). — $AgC_7H_4O_4N + C_7H_5O_4N$. Nadeln (H., v. D., R. 1, 120). — $AgC_7H_4O_4N + 1H_2O$. Krystalle (aus sehr verd. Salpetersäure) (Hoogewerff, van Dorp, R. 1, 120). — $Ag_2C_7H_3O_4N$. Krystalle (Sk., M. 2, 158; H., v. D., R. 1, 119). Ist lichtempfindlich (H., v. D.). Zersetzt sich oberhalb 110° (Sk.). — $BaC_7H_2O_4N + 1H_2O$. Krystallkörner (Sk.; vgl. H., v. D.). Sehr schwer löslich in Wasser (Sk.).

Chinolinsäure- α -methylester $C_8H_7O_4N=NC_5H_3(CO_2H)\cdot CO_2\cdot CH_3$. Zur Konstitution vgl. Kirpal, M. 21, 957. — B. Neben Chinolinsäuredimethylester beim Kochen von Chinolinsäure mit Methanol und wenig konz. Schwefelsäure (K., M. 20, 771). Beim Kochen des Dimethylesters mit sehr verd. Schwefelsäure (K., M. 20, 771). Beim Erhitzen von Chinolinsäure- α -amid mit Methanol im Rohr auf 100° (K., M. 21, 959). Aus Chinolinsäure-anhydrid durch Kochen mit Methanol und wenig Essigsäureanhydrid (K., M. 20, 767)

oder durch Erhitzen mit methylalkoholischer Natriummethylat-Lösung (K., M. 20, 772). — Prismen mit 1 H₂O (aus Wasser); F: 90° (K., M. 20, 767, 773). Wasserfreie Krystalle (aus Essigester); F: 123°; leicht löslich in Alkohol und heißem Wasser, löslich in Benzol, Äther und Chloroform (K., M. 20, 767). Starke Säure; elektrische Leitfähigkeit in wäßr. Lösung: K., M. 28, 440. — Spaltet oberhalb 130° Kohlendioxyd ab und geht dabei in Nicotinsäuremethylester über (K., M. 20, 768). Bleibt beim Kochen mit Wasser unverändert (K., M. 20, 767). Gibt beim Erwärmen mit konz. Ammoniak Chinolinsäure-α-amid (K., M. 21, 960). Liefert beim Erhitzen mit Methyljodid und Methanol auf 100° Nicotinsäure-jodmethylat und Chinolinsäure-α-methylester-jodmethylat, das beim Behandeln mit Silberoxyd in Chinolinsäure-α-methylester-methylbetain übergeht (K., M. 22, 371). — Gibt mit Ferrosulfat eine gelbe Färbung (K., M. 27, 368). — Bildet ein schwer lösliches Ammoniumsalz (K., M. 27, 369).

Chinolinsäure- β -methylester $C_8H_7O_4N=NC_5H_3(CO_2H)\cdot CO_2\cdot CH_3$. B. In geringer Menge neben dem α -Methylester durch Auflösen von Chinolinsäureanhydrid in Methanol und Eindampfen der Lösung (Kirpal, M. 27, 364; 28, 441). — Krystalle (aus Benzol). Rhombisch (Gareiss, M. 27, 366; vgl. Groth, Ch. Kr. 5, 691). F: 1060 (K., M. 27, 365). Leicht löslich in Wasser und in organischen Lösungsmitteln; leicht löslich in konz. Ammoniak (K., M. 27, 369). Starke Säure; elektrische Leitfähigkeit in wäßr. Lösung: K., M. 28, 440. — Spaltet oberhalb 1200 Kohlendioxyd ab unter Bildung von Nicotinsäuremethylester (K., M. 27, 365). Bleibt beim Kochen mit Wasser unverändert (K., M. 27, 365). Geht beim Aufthewahren in konz. Ammoniak in das Ammoniumsalz des Chinolinsäure- β -amids über (K., M. 27, 369). — Gibt mit Ferrosulfat eine rotgelbe Färbung (K., M. 27, 368). — Kupfersalz. Violettblaue Prismen (K., M. 27, 368).

Chinolinsäure-dimethylester $C_0H_0O_4N=NC_5H_3(CO_2\cdot CH_3)_2$. B. Beim Kochen von Chinolinsäure mit methylalkoholischer Salzsäure (Engler, B. 27, 1787). Das Hydrochlorid entsteht beim Eindampfen von Chinolinsäure- α -methylester- β -chlorid mit Methanol (H. Meyer, M. 22, 580). — Blätter (aus Schwefelkohlenstoff + Ligroin). F: 53—54° (E.; M.). — Hydrochlorid. Schwach hygroskopische Nadeln. F: 56° (M.).

Chinolinsäure- α -äthylester $C_9H_9O_4N=NC_5H_3(CO_2H)\cdot CO_2\cdot C_2H_5$. Zur Konstitution vgl. Kirpal, M. 21, 957. — B. Beim Kochen von Chinolinsäureanhydrid mit Alkohol bei Gegenwart von Acetanhydrid (K., M. 20, 774). — Blätter (aus Benzol), Prismen mit 1 H_2O (aus Wasser). F: 132°.

Chinolinsäure- β -methylester- α -äthylester $C_{10}H_{11}O_4N=NC_5H_3(CO_2\cdot CH_3)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Alkohol auf Chinolinsäure- β -methylester- α -chlorid (Kirpal, M. 27, 367) oder von Methanol auf Chinolinsäure- α -äthylester- β -chlorid (H. Meyer, M. 22, 582). — Öl. Kp: 254—258° (Zers.) (M.). — $2C_{10}H_{11}O_4N+2HCl+PtCl_4$. Gelbe Nadeln (aus salzsäure-haltigem Alkohol). F: 174° (Zers.) (M.; K.).

Chinolinsäure- α -methylester- β -äthylester $C_{10}H_{11}O_4N = NC_5H_3(CO_2 \cdot CH_3) \cdot CO_2 \cdot C_2H_5$. Bei Einw. von Alkohol auf Chinolinsäure- α -methylester- β -chlorid (H. Meyer, M. 22, 581). — Öl. Erstarrt nicht bei —10°. Kp: 250—255° (Zers.). — Bildet ein zerfließliches Hydrochlorid. — $2C_{10}H_{11}O_4N + 2HCl + PtCl_4$. Orangerote Krystalle (aus salzsäurehaltigem Alkohol). F: 165° (Zers.).

Chinolinsäure-diäthylester $C_{11}H_{13}O_4N=NC_5H_3(CO_2\cdot C_2H_5)_2$. B. Beim Kochen von Chinolinsäure mit alkoh. Salzsäure (Engler, B. 27, 1788). Beim Behandeln von Chinolinsäure- α -äthylester β -chlorid mit Alkohol (H. Meyer, M. 22, 582). — Gelbliches Öl. Kp: 280—285° (geringe Zers.) (E.; M.).

Chinolinsäure- β -methylester- α -chlorid $C_8H_6O_3NCl=NC_5H_3(CO_2\cdot CH_3)\cdot COCl.$ B. Beim Erwärmen von Chinolinsäure- β -methylester mit Thionylchlorid (KIRPAL, M. 27, 367). — Krystalle. — Leicht löslich in Alkohol unter Bildung von Chinolinsäure- β -methylester- α -äthylester.

Chinolinsäure- α -methylester- β -chlorid $C_8H_6O_3NCl = NC_5H_3(CO_2 \cdot CH_3) \cdot COCl.$ B. Beim Erwärmen von krystallwasserhaltigem Chinolinsäure- α -methylester mit Thionylchlorid (H. MEYER, M. 22, 580). — Nadeln. F: 126° (im geschlossenen Röhrehen; Zers.).

Chinolinsäure- α -äthylester- β -chlorid $C_9H_8O_3NCl = NC_5H_3(CO_2 \cdot C_2H_5) \cdot COCl.$ B. Beim Erwärmen von Chinolinsäure- α -äthylester mit Thionylchlorid (H. MEYER, M. 22, 582). — F: 163° (im geschlossenen Röhrchen).

Chinolinsäure- α -amid $C_7H_6O_3N_2=NC_5H_3(CO_2H)\cdot CO\cdot NH_2$. B. Das Ammoniumsalz entsteht beim Einleiten von Ammoniak in eine heiße Lösung von Chinolinsäureanhydrid in Benzol (Philips, A. 288, 255) sowie beim Erwärmen von Chinolinsäure- α -methylester mit konz. Ammoniak (Kirpal, M. 21, 960); man zerlegt es mit Schwefeldioxyd in wäßr. Lösung (Ph.; K.). — Prismen. F: 168,5° (Zers.) (Ph.; K.). Schwer löslich in kaltem Wasser (Ph.).

— Liefert beim Behandeln mit alkal. Natriumbypobromit-Lösung 2-Amino-nicotinsäure (Ph.; K.). Beim Erhitzen des Ammoniumsalzes auf 130° entsteht Chinolinsäureimid (Ph.). Wird durch heißes Wasser unter Bildung des sauren Ammoniumsalzes der Chinolinsäure verseift (Ph.). — NH₄C₇H₅O₈N₂. Nadeln (aus Wasser). Sehr leicht löslich in Wasser (Ph.).

Chinolinsäure- β -amid $C_7H_8O_3N_2 = NC_5H_3(CO_2H)\cdot CO\cdot NH_3$. B. Das Ammoniumsalz entsteht beim Behandeln von Chinolinsäure- β -methylester mit konz. Ammoniak; man zerlegt es mit Schwefeldioxyd (Kirpal, M. 27, 369). — Prismen. F: 460° (Zers.). — Geht beim Schmelzen in Chinolinsäureimid über (K., M. 27, 369). Liefert bei Einw. von alkal. Natriumhypobromit-Lösung 3-Amino-pyridin-carbonsäure-(2) (K., M. 29, 228).

Chinolinsäure-diamid $C_7H_7O_2N_3 = NC_5H_3(CO \cdot NH_2)_2$. B. Bei Einw. von konz. Ammoniak auf Chinolinsäurediäthylester (ENGLER, B. 27, 1788) oder Chinolinsäureimid (Philips, A. 288, 258). — Nadeln (aus Alkohol). Schmilzt bei 190° unter Abspaltung von Ammoniak (Ph.); F: 209° (unkorr.) (E.). Leicht löslich in Wasser und Alkohol (E.), schwer in kaltem Wasser (Ph.). — Liefert beim Erhitzen Chinolinsäureimid (E.; Ph.).

Chinolinsäure-hydroxymethylat, Ammoniumbase des Chinolinsäure-methylbetains $C_8H_9O_5N=(HO)(CH_9)NC_5H_3(CO_9H)_9$. — Chlorid $C_8H_8O_4N\cdot Cl.~B$. Beim Lösen von Chinolinsäure-methylbetain (s. u.) in heißer konzentrierter Salzsäure (KIRPAL, M. 22, 369). Nadeln. Zersetzt sich oberhalb 220°. Liefert in Berührung mit Wasser augenblicklich das Methylbetain zurück. Beim Erhitzen mit alkoh. Salzsäure auf 100° entsteht Nicotinsäure-chlormethylat.

Anhydrid, Chinolinsäure-methylbetain $C_8H_7O_4N = CH_3 \cdot NC_5H_3(CO_2H) \cdot CO \cdot O$. Zur Konstitution vgl. K., M. 22, 363. — B. Beim Erwärmen von Chinolinsäure mit Methyljodid und Soda-Lösung (H. Meyer, M. 24, 202) sowie beim Erhitzen von Chinolinsäureanhydrid mit Methyljodid auf 100° und Behandeln der wäßr. Lösung des entstandenen Chinolinsäureanhydrid-jodmethylats mit Silberoxyd (Kirpal, M. 22, 366). — Tafeln mit 1 H_2O . Monoklin prismatisch (Pelikan, Zemlitschka, M. 22, 368; vgl. Groth, Ch. Kr. 5, 692). Wird bei längerem Erhitzen auf 100° zersetzt; F: 151° (Zers.) (K.). Ziemlich leicht löslich in heißem Wasser, fast unlöslich in anderen Lösungsmitteln (K.). Läßt sich mit Alkalilauge wie eine einbasische Säure titrieren (K.). — Spaltet beim Kochen mit Wasser nur langsam Kohlendioxyd ab; geht beim Kochen mit Alkohol schnell in Trigonellin (S. 42) über (K.). Spaltet beim Kochen mit konz. Jodwasserstoffsäure zum Teil die Methylgruppe ab (Goldschmiedt, Hönigschmid, B. 36, 1852; M. 24, 710). Liefert beim Erhitzen mit Thionylchlorid Chinolinsäureanhydridchlormethylat (K.). — $AgC_8H_6O_4N + 1H_2O$. Prismen (K.). — $Ca(C_8H_6O_4N)_2 + 3H_2O$. Prismen. Schwer löslich in Wasser (K.).

Chinolinsäure - α - methylester - methylbetain $C_9H_9O_4N=CH_3\cdot \overset{+}{N}C_5H_3(CO_2\cdot CH_3)\cdot$

CO·O. B. Aus dem Silbersalz des Chinolinsäure-methylbetains bei kurzem Kochen mit Methyljodid und Methanol (KIRPAL, M. 22, 372). Aus Chinolinsäure-α-methylester durch ½-stdg. Erhitzen mit Methyljodid und Methanol auf 100° oder durch Aufkochen von Chinolinsäureanhydrid-jodmethylat mit Methanol und Schütteln der Reaktions-Lösungen mit Silberoxyd (K., M. 22, 371). — Tafeln (aus Methanol + Äther). F: 163° (Zers.) (bei raschem Erhitzen). Leicht löslich in Wasser, schwer in kaltem Alkohol. Wird durch siedende Salzsäure rasch verseift.

Chinolinsäure - α - äthylester - methylbetain $C_{10}H_{11}O_4N=CH_3\cdot \overset{+}{N}C_5H_3(CO_2\cdot C_2H_5)\cdot \overset{-}{C}H_5$

CO·O. B. Beim Kochen von Chinolinsäureanhydrid-jodmethylat mit Alkohol und Schütteln der Reaktions-Lösung mit Silberoxyd (Kirpal, M. 22, 372). — Blättchen. F: 160° (Zers.).

Chinolinsäure- α -amid-methylbetain $C_8H_8O_2N_2=CH_3\cdot \overset{+}{N}C_8H_3(CO\cdot NH_2)\cdot CO\cdot O$. B. Beim Aufbewahren von Chinolinsäure- α -methylester-methylbetain mit konz. Ammoniak im geschlossenen Gefäß (Kirpal, M. 22, 373). — Gelbliche Tafeln und Pyramiden mit 1 H_9O (aus verd. Alkohol). Zersetzt sich bei 230°. — Sehr beständig gegen Wasser. Wird durch Kochen mit Salzsäure leicht verseift.

5-Brom-pyridin-dicarbonsäure-(2.3), 5-Brom-chinolinsäure

C₇H₄O₄NBr, s. nebenstehende Formel. B. Bei der Einw. von alkal. Permanganat-Lösung auf 3-Brom-chinolin (neben [2-Carboxy-phenyl]-oxamidsäure)

(CLAUS, COLLISCHONN, B. 19, 2767), 3.6-Dibrom-chinolin (CL., KÜTTNER, B. 19, 2884), 3-Brom-5.6-benzo-chinolin (CL., Besseler, J. pr. [2] 57, 62), 3.5.7(oder 3.5.8)-Tribrom-6-oxy-chinolin (CL., Howitz, J. pr. [2] 52, 537), 3.5.7-Tribrom-8-oxy-chinolin (CL., Ho., J. pr. [2] 52, 545; vgl. Cl., Giwartovsky, J. pr. [2] 54, 381 Anm. 2) oder 3.Bz.Bz-Tribrom-6-oxy-chinolin

(SRPEK, M. 10, 712). — Krystalle (aus Wasser). F: 165° (Zers.) (Cl., Co.; S.). Leicht löslich in Wasser, Alkohol, Äther und Aceton (Cl., Co.; S.). — Zerfällt beim Schmelzen in 5-Bromnicotinsäure und Kohlendioxyd (Cl., Co.; S.). — CaC₇H₂O₄NBr (bei 100°). Nadeln (aus Wasser). Leicht löslich in heißem Wasser (S.). — PbC₇H₂O₄NBr. Nadeln (aus Wasser). Schwer löslich in Wasser (S.).

2. Pyridin-dicarbonsäure (2.4), Pyridin-a.y-dicarbonsäure,
Lutidinsäure C₇H₅O₄N, s. nebenstehende Formel. B. Bei der Oxydation von
2.4-Dimethyl-pyridin mit Kaliumpermanganat (Weidel, Herzig, M. 1, 2, 20;
Ladenburg, Roth, B. 18, 915; La., A. 247, 37; vgl. Bachér, B. 21, 3080).

Durch Oxydation von 2-Methyl-pyridin-carbonsäure-(4) mit alkal. Permanganat-Lösung (Böttinger, B. 14, 68; 17, 93). Neben anderen Produkten beim
Behandeln von 2.2'-Dimethyl-dipyridyl-(4.4') (Syst. No. 3485) mit Permanganat (Heuser, Stoeher, J. pr. [2] 44, 409). — Blätter mit 1 H₂O (aus Wasser). F: 247° (Egucht, C. 1927 II, 1223), 248—250° (H. Meyer, Tropsch, M. 35 [1914], 194). Sehr schwer löslich in Äther und Benzol, leichter in Alkohol (L., R.; L.), ziemlich schwer in kaltem Wasser, leicht in heißem Wasser (Bö., B. 14, 68). Leicht löslich in Salzsäure und Schwafelsäure (Bö., B. 17, 93). Starke Säure; elektrisches Leitvermögen in wäßr. Lösung bei 25°: Tr., M. 35, 779; vgl. Ostwald, Ph. Ch. 3, 389. — Zerfällt oberhalb 200° in Pyridin-carbonsäure-(4) und Kohlendioxyd (L., R.; L.; Bö., B. 14, 68). Gibt bei Einw. von Phosphorpentachlorid eine bei 203° schmelzende Verbindung (Voigt, A. 228, 54; vgl. dazu M., Tr., M. 35, 195; M., R. 44 [1925], 327 und die zur Bildung von Picolinsäurechlorid (S. 35) zitierte Literatur). Liefert bei der Destillation mit Calciumoxyd Pyridin und Kohlendioxyd (Wei., Her., M. 1, 27; Waage, M. 4, 730). — Die wäßr. Lösung gibt mit Ferrosulfat eine rötlichgelbe Färbung (L., R.; L.; Bö., B. 14, 69; vgl. Wolff, A. 322, 372 Anm.).

NH₄(CH₄O₄N+H₄O. Mikroskopische Nadeln (aus Wasser). Hygroskopisch (Weidel, Herry M. 1, 23).

NH₄C₇H₄O₄N + H₂O. Mikroskopische Nadeln (aus Wasser). Hygroskopisch (WEIDEL, HERZIG, M. 1, 23). Ziemlich leicht löslich in Wasser. — (NH₄)₂C₇H₃O₄N. Mikroskopische Nadeln. Sehr hygroskopisch. Löslich in Wasser und Alkohol (WEI., H.). Geht bei 100° in das saure Ammoniumsalz über. — KC₇H₄O₄N + 1/₂H₂O. Krystalle. Ziemlich leicht löslich in Wasser, fast unlöslich in Alkohol (WEI., H.). — CuC₇H₃O₄N. Blaugrüne Krystalle, die nach WEI., H. 3H₂O enthalten, nach WAAGE (M. 4, 729) wasserfrei sind. — Ag₅C₇H₃O₄N. Krystalle (Böttinger, B. 14, 69; Voges, B. 18, 3164). Fast unlöslich in Wasser (Bö.). — MgC₇H₃O₄N + 5H₂O. Mikroskopische Nadeln (WEI., H.). Löslich in Wasser. — Ca(C₇H₄O₄N)₂ + H₂O. Nadeln. Ziemlich leicht löslich in warmem Wasser (WEI., H.). — CaC₇H₃O₄N + 1H₂O. Feinkörnige Krystalle oder Schuppen (aus heißer Lösung); verliert bei 145° 1/₂ H₂O (WEI., H.; Ladenburg, Roth, B. 18, 917; L., A. 247, 40; vgl. Bö., B. 17, 94; Voges, B. 18, 3163). — CaC₇H₃O₄N + 3H₂O bezw. 5H₂O. Krystalle (WEI., H.; V.). — BaC₇H₃O₄N. Krystalle mit 1 H₂O und mit 3 H₂O (V.; vgl. Bö., B. 17, 93). Schwer löslich in Wasser (Bö.). — CdC₇H₃O₄N + 4H₂O. Krystalle. Verliert über konz. Schwefelsäure oder beim Erhitzen auf 140° 2H₂O, den Rest oberhalb 200° (WAAGE, M. 4, 726).

3. Pyridin-dicarbonsäure-(2.5), Pyridin- $\alpha.\beta'$ -dicarbonsäure, Isocinchomeronsäure $C_7H_5O_4N$, s. nebenstehende Formel. B. Bei der Oxydation von 2.5-Dimethyl-pyridin mit Kaliumpermanganat HO₂C - 5 6 (LUNGE, ROSENBERG, B. 20, 135; WEIDEL, HERZIG, M. 1, 5; GARRETT, N. SMYTHE, Soc. 81, 454; AHRENS, GORKOW, B. 37, 2063). Bei der Oxydation von 2-Methyl-5-åthyl-pyridin oder von 2-Methyl-pyridin-carbonsaure-(5) mit Permanganat (DÜRKOPF, B. 18, 3434; D., Schlauck, B. 21, 294; Ladenburg, A. 247, 44). Beim Erhitzen von Pyridintricarbonsäure - (2.3.6) auf 160° (Weiss, B. 19, 1311). Bei tagelangem Kochen von Kyklothraustinsäure oder Pyridanthrilsäure (bei Dichinolyl-(2.3'), Syst. No. 3491) mit überschüssiger alkalischer Permanganat-Lösung (Weidel, Strache, M.7, 290). — Mikroskopische Blättehen oder Prismen (aus Wasser). Scheidet sich aus kalter Lösung mit 11/2 H2O, aus heißer Lösung mit 1 H₂O ab (Wei., Her., M. 1, 7). Die durch Umkrystallisieren oder Regeneration aus den Salzen gewonnenen Praparate schmelzen bei ca. 2370 (Wei., Her.; Ga., Sm.; Dür., SCH.; LAD.) und sind uneinheitlich; die über den Dimethylester (S.154) gereinigte Säure schmilzt bei 254° (Zers.) (H. MEYER, STAFFEN, M. 34 [1913], 520, 522). Sublimiert nur zum kleinsten Teil unzersetzt (Wei., Hen., M. 1, 5). Fast unlöslich in kaltem Wasser, Alkohol, Äther und Benzol, schwer löslich in siedendem Wasser und siedendem Alkohol (Wei., Heb., M. 1, 5). Leicht löslich in siedenden verdünnten Mineralsäuren (WEI., HEE.). Starke Säure; elektrisches Leitvermögen in wäßr. Lösung bei 25°: Ostwald, Ph. Ch. 3, 389. — Spaltet sich beim Erhitzen für sich auf ca. 245° oder beim Erhitzen mit Eisessig und etwas Acetanhydrid auf 220—230° in Nicotinsaure und Kohlendioxyd (Wei., Hen., M. 1, 16; 6, 982). Bei der

trocknen Destillation mit Calciumoxyd entsteht Pyridin (WEI., HER., M. 1, 15). — Die wäßr. Lösung gibt mit Ferrosulfat eine rotgelbe Färbung (Wei., Her., M. 1, 6; SKRAUP, M. 7, 211; vgl. Wolff, A. 322, 372 Anm.).

NH₄C₇H₄O₄N + H₂O. Prismen (aus Wasser). Triklin(?) (Březina, M. 1, 10; 6, 981; vgl. Groth, Ch. Kr. 5, 692). F: 253—254° (Weidel, Herzig, M. 6, 980). Schwer löslich in kaltem Wasser, leicht in heißem Wasser (W., H., M. 1, 9). — (NH₄)₂C₇H₃O₄N. Mikroskopische Nadeln. Sehr leicht löslich in Wasser; wandelt sich schon unterhalb 100° in das vorangehende Salz um (W., H., M. 1, 9). — KC₇H₄O₄N + ¹/₂ H₂O. Nadeln. Schwer löslich in kaltem Wasser, leicht in heißem Wasser, und heißem Wasser, leicht in heißem Wasser, leicht Krystallkörner (aus Wasser). Sehr leicht löslich in Wasser, fast unlöslich in Alkohol (W., H., M. 1, 7). — CuC₇H₃O₄N + H₃O. Undeutlich krystallinisch, blauviolett. Gibt bei 190° ½ Mol, bei 210° das gesamte Krystallwasser ab und wird dabei hellgrün (W., H., M. 1, 14). Unlöslich in Wasser. — $MgC_7H_3O_4N + 5H_2O$. Nadeln. Ziemlich schwer löslich in Wasser (W., H., M. 1, 13). — $Ca(C_7H_4O_4N)_2 + 3H_2O$. Mikroskopische Prismen. Ziemlich schwer löslich in kaltem Wasser (W., H., M. 1, 13). — $CaC_7H_3O_4N$. Nadeln. Schwer löslich in Wasser (W., H., M. 1, 12). — $CaC_7H_3O_4N + 2H_2O$. Krystallwarzen. Wird erst bei 210° wasserfrei (W., H., M. 1, 12). — $BaC_7H_3O_4N$. Krystalle. Schwer löslich in Wasser (LADENBURG, A. 247, 45).

Dimethylester $C_9H_9O_4N=NC_5H_3(CO_2\cdot CH_3)_2$. B. Aus der Säure durch Behandeln mit methylalkoholischer Salzsäure (GARRETT, SMYTHE, Soc. 81, 454) oder durch Erhitzen mit Methanol und konz. Schwefelsäure (H. MEYER, STAFFEN, M. 34 [1913], 521). — Nadeln (aus Wasser). F: 164° (M., St.).

Dichlorid $C_7H_3O_2NCl_2 = NC_5H_3(COCl)_2$. B. Aus Isocinchomeronsäure durch Einw. von Phosphorpentachlorid (Weidel, Herrig, M. 1, 19; 6, 987) oder besser durch Kochen mit Thionylchlorid (H. MEYER, STAFFEN, M. 34 [1913], 520). — Nadeln (aus Petroläther). F: 57-596 (Wei., H.), 590 (M., St.).

4. Pyridin-dicarbonsäure-(2.6), Pyridin-a.a'-dicarbonsäure, "Dipicolinsäure" C₇H₅O₄N, s. nebenstehende Formel. B. Bei der Oxydation von 2.6-Dimethyl-pyridin mit Kaliumpermanganat (RAMSAY, J. 1877, 436 1); LADENBURG, ROTH, B. 18, 52; LAD., A. 247, 33; ROTH, LANGE, B. 19, 790; EPSTEIN, A. 281, 26). Bei der Oxydation von 6-Methyl-pyridin-carbonsäure-(2) (PINNER, LEWIN, B. 38, 1231). Beim Behandeln von 2.6-Bis-[x-amino-phenyl]-pyridin (F: 75—76°; Syst. No. 3414) mit alkal. Permanganat-Lösung (PAAL, DEMELER, B. 30, 1502). — Schuppen, Prismen mit 1 H₂O oder haarförmige Nadeln mit 1 l/2 H₂O (aus Wasser). F: 226° (Zers.) (LAD., ROTH; LAD.; ROTH, LANGE; PAAL, DEM.), 236° (H. MEYER, M. 24, 207), 236—237° (Zers.) (EP.), 237,5° (RAM.) 2). Schwer löslich in der Kälte gewis in 3 theory significant leicht in giedendem Allschol (LAD.) Wasser und Alkohol in der Kälte sowie in Äther, ziemlich leicht in siedendem Alkohol (LAD., ROTH; LAD.; EP.). — Zerfällt beim Schmelzen in Pyridin und Kohlendioxyd (RAM.; LAD., ROTH; LAD.; HANTZSCF, B. 18, 1747). Wird beim Erhitzen mit Eisessig auf 160° in Picolinsäure, Pyridin und Kohlendioxyd gespalten (H., B. 18, 1748). — Die wäßr. Lösung gibt mit Ferrosulfat eine gelbrote Färbung (Ep., A. 231, 29; SKRAUP, M. 7, 211; vgl. Wolff,

mit Ferrosuliat eine gelorote Fardung (Er., A. 201, 20, Daraut, M. 1, 211, $\sqrt{2}$). A. 322, 372 Anm.).

A. 322, 372 Anm.).

NaC₇H₄O₄N + C₇H₅O₄N + 3 H₂O. Nadeln (aus Wasser). Wird an der Luft langsam rosa; bläht sich beim Erhitzen stark auf (H. Meyer, M. 24, 205). — $KC_7H_4O_4N + C_7H_5O_4N + 3H_2O$. Nadeln (Pinner, B. 33, 1229). — $K_2C_7H_3O_4N + 1^{1/3}H_2O$. Nadeln. Sehr leicht löslich (Ramsay, J. 1877, 437). — CuC₇H₃O₄N + 2 H₂O. Dunkelblaue Prismen (Epstein, A. 231, 30). — $Ag_2C_7H_3O_4N$. Farbloser Niederschlag (Paal, Demeler, B. 30, 1503). — CaC₇H₃O₄N + 2 H₂O. Mikroskopische Prismen (Ladenburg, Roth, B. 18, 53; Ladenburg, A. 247, 34; $\frac{1}{2}$). — RaC H O N + 1 H O. Krystalle (Ram. J. 1877, 437). vgl. a. Ramsay, J. 1878, 438). — $BaC_7H_3O_4N + 1H_2O$. Krystalle (Ram., J. 1877, 437). – $MnC_7H_3O_4N + 1H_2O$. Krystalle (RAM., J. 1877, 437).

Dimethylester $C_0H_0O_4N = NC_5H_3(CO_2 \cdot CH_3)_2$. B. Aus Pyridin-dicarbonsäure-(2.6) durch Einw. von Methyljodid in methylalkoholischer Lösung (Turnau, M. 29, 849) oder aus ihrem Kalium- oder Silbersalz durch Behandeln mit Methyljodid bei gewöhnlicher Temperatur (H. MEYER, M. 24, 205). Aus dem Dichlorid (S. 155) beim Behandeln mit Methanol (Ramsay, J. 1877, 437). — Krystalle (aus Wasser). F: 121° (Mex.; T.). Leicht löslich in heißem Wasser, Alkohol und Äther (MEY.).

¹⁾ Vgl. dazu Hantzsch, B. 19, 290; H. Meyer, B. 36, 618; M. 24, 206.

²⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] werden folgende Schmelzpunkte für Dipicolineäure angegeben: 2260 (HESS, WISSING, B. 48 [1915], 1908), 227° (EGUCHI, C. 1927 II, 1223), 228° (H. MEYER, MALLY, M. 88 [1912], 403), 235-236° (Zers.) (WINTERFELD, HOLSCHNEIDER, B. 64 [1931], 150) und 252° (HENZE, B. 67 [1934], 752).

Dichlorid $C_7H_3O_2NCl_2 = NC_5H_3(COCl)_2$. B. Beim Behandeln von Pyridin-dicarbonsäure-(2.6) mit Phosphorpentachlorid (Ramsay, J. 1877, 437; Epstein, A. 231, 30) oder mit Thionylchlorid (H. Meyer, M. 24, 206). — Nadeln. F: 60—61° (E.), 60,5—61° (R.), 61° (M.). Kp: 284° (R.; E.; M.). Unlöslich in Wasser, schwer löslich in Äther, löslich in Alkohol unter Veränderung (R.).

Diamid C₇H₂O₂N₃ = NC₅H₃(CO·NH₂)₂. B. Beim Behandeln des Dimethylesters mit konzentriertem wäßrigem Ammoniak (H. Meyer, M. 24, 207). Bei Einw. von gasförmigem Ammoniak auf das Dichlorid (Ramsay, J. 1877, 437). — Krystallpulver. F: 295,5—297° (R.), 301° (Turnau, M. 29, 850), 302° (M.). Ist sublimierbar (M.). Unlöslich in Wasser und Äther, schwer löslich in Alkohol (R.; M.).

4-Chlor-pyridin-dicarbonsäure-(2.6) C₇H₄O₄NCl, s. nebenstehende Formel. B. Beim Kochen von 4-Chlor-2.6-dimethyl-pyridin mit verd. Permanganat-Lösung (Sedgwick, Collie, Soc. 67, 401). — Krystall-körner mit 1 H₂O (aus Essigsäure). Zersetzt sich bei ca. 220°. Fast unlöslich in Wasser. — Liefert beim Schmelzen mit Kaliumhydroxyd 4-Oxy-pyridin-dicarbonsäure-(2.6). — Na₂C₇H₂O₄NCl (bei 115°). Sehr leicht löslich in Wasser. — BaC₇H₂O₄NCl +3H₂O. Krystalle. Löslich in heißem Wasser.

5. Pyridin-dicarbonsäure-(3.4), Pyridin-β.γ-dicarbonsäure, Cinchomeronsäure C₇H₅O₄N, s. nebenstehende Formel. B. Bei der Oxydation von 3.4-Dimethyl-pyridin mit Kaliumpermanganat (Ahrens, B. 29, 2997). Neben anderen Produkten bei der Oxydation von 4-Methyl-3-äthyl-pyridin mit Permanganat bei gewöhnlicher Temperatur (Oechsner de Coninck, A. ch. [5] 27, 491). Bei der Oxydation von Isochinolin mit alkal. Permanganat

Lösung (Hoogewerff, van Dorp, R. 4, 285). In geringer Menge beim Erhitzen von Chinolsäure (S. 75) mit konz. Salpetersäure im Rohr auf 1700 (Weidel, v. Schmidt, B. 12, 1152). Bei der Oxydation von 4-Methyl-pyridin-carbonsäure-(3) mit alkal. Permanganat-Lösung (Hoo., v. D., R. 2, 23; OE. DE C., Bl. [2] 42, 104; 43, 106). Beim Erhitzen von Apophyllensäure (S. 158) mit konz. Salzsäure im Rohr auf 240—250° (Vongerichten, B. 13, 1636). Aus Pyridin-tricarbonsäure-(2.3.4) durch Erhitzen auf 170—190° (Hoo., v. D., B. 12, 748 Anm. 3; 13, 61; A. 204, 107; SKRAUP, M. 1, 185; CAMPS, Ar. 240, 358) oder durch Kochen mit Eisessig (Hoo., v. D., B. 14, 974) oder besser mit einem Gemisch aus 10 Tln. Eisessig und 1 Tl. Essigsäureanhydrid (Wei., Brix, M. 3, 604). Beim Erhitzen von Pyridin-tricarbon-säure-(2.4.5) mit Eisessig im Rohr auf 140° bezw. mit Eisessig + Acetanhydrid auf 160° (FÜRTH, M. 2, 426; MAYER, M. 13, 346). Neben Pyridin-tricarbonsäure-(3.4.5) beim Erhitzen des Dikaliumsalzes der Pyridinpentacarbonsäure auf 2200 (Weber, A. 241, 16). Cinchomeronsäure entsteht neben anderen Produkten beim Kochen von Cinchonin (WEIDEL, A. 173, 78, 96) oder Cinchonidin (WEI., J. 1875, 772) mit konz. Salpetersäure. Entsteht als einziges Reaktionsprodukt beim Kochen von Chinin mit konz. Salpetersäure (Wei., v. Schm., B. 12, 1147; vgl. a. STRACHE, M. 10, 642). Bei 3-4-tägigem Kochen von Apochinin mit konz. Salpetersäure (Koenigs, B. 30, 1329). — Darst. Man löst 250 g Chinin in 6000 g Salpetersäure (D: 1,40), gibt 1500 g rote rauchende Salpetersäure hinzu und erhält die Reaktions-Lösung während ca. 150 Stdn. in schwachem Sieden; Ausbeute 42% des angewandten Chinins (Ternajgo, M. 21, 448; vgl. Kirpal, M. 23, 248, 771; Kaas, M. 23, 252).

Nadeln, Blättchen oder Prismen (aus reinem bezw. angesäuertem Wasser). F: 249%

Nadeln, Blattchen oder Ptismen (aus reinem bezw. angesauertem Wasser). F: 249° bis 251° (Zers.) (Weidel, v. Schmidt, B. 12, 1148; vgl. Hoogewerff, van Dorp, A. 204, 408; R. 2, 24; 4, 287; Oechsner de Coninck, Bl. [2] 43, 107), 258—259° (Zers.) (Skraup, M. 1, 186; B. 15, 1507; Weber, A. 241, 17; Kaas, M. 23, 252), 263° (Fürth, M. 2, 427), 264—265° (Ahrens, B. 29, 2998), 266—268° (Vongerichten, B. 13, 1636). Beim Erhitzen sublimiert ein geringer Teil unzersetzt (Wei., A. 173, 96). Fast unlöslich in Ather, schwer löslich in Alkohol, sehr schwer löslich in Benzol (H., v. D., B. 13, 61; A. 204, 108). Starke Säure; elektrisches Leitvermögen in Wasser bei 25°: Ostwald, Ph. Ch. 3, 389. — Spaltet beim Erhitzen über den Schmelzpunkt (H., v. D., A. 204, 113; 207, 219; Camps, Ar. 240, 359) oder beim Erhitzen mit Chinolin auf 200° (Mayer, M. 13, 350) Kohlendioxyd ab unter Bildung von Nicotinsäure und Isonicotinsäure. Liefert beim Kochen mit Natrium und Alkohol inakt. Piperidin β.γ-dicarbonsäure vom Schmelzpunkt 256° (Koenigs, B. 28, 3149; 30, 1329). Gibt beim Erwärmen mit Natriumamalgam, Ansäuern der Lösung mit Salzsäure oder Schwefelsäure und Eindampfen der Flüssigkeit δ-Valerolacton-β.γ-dicarbonsäure (Cinchonsäure; Bd. XVIII, S. 483) (Weidel, A. 173, 104; Wei., v. Schmidt, B. 12, 1150; Wei., Brix, M. 3, 604; Wei., Hoff, M. 13, 578). Beim Kochen mit Essigsäureanhydrid bildet sich Cinchomeronsäureanhydrid (Syst. No. 4298) (Goldschmiedt, Strache, M. 10,

157; St., M. 11, 134). Beim Erhitzen mit Calciumoxyd oder Natronkalk entsteht Pyridin (Wei., A. 173, 100; Vongeriohten, B. 13, 1638; H., v. D., B. 13, 61; A. 204, 108). Bei Einw. von Methyljodid in Methanol bei 100° (Roser, A. 234, 119) oder in Soda-Lösung bei gewöhnlicher Temperatur (H. Meyer, M. 24, 203) erhält man Apophyllensäure (S. 158).

licher Temperatur (H. Meyer, M. 24, 203) erhält man Apophyllensäure (S. 158).

NH₄C₇H₄O₄N. Krystalle. Verliert bei 130° sowie beim Eindampfen der wäßr. Lösung allmählich Ammoniak; schmilzt bei raschem Erhitzen unter Aufschäumen bei 205—206° und geht dabei in Cinchomeronsäureimid (Syst. No. 3591) über (Strache, M. 11, 140).

NaC₇H₄O₄N. Krystalle (aus Alkohol). Leicht löslich in Wasser, schwer in Alkohol (Weidel, V. Schmidt, B. 12, 1149; vgl. a. Skraup, M. 1, 187).

NaC₇H₄O₄N. Krystalle (aus 50°/oigem Alkohol). Sehr leicht löslich in Wasser (W., v. Sch.).

KC₇H₄O₄N + H₂O. Nadeln (aus 50°/oigem Alkohol). Sehr leicht löslich in Wasser (Fürth, M. 2, 427). Rötet sich an der Luft.

CuC₇H₃O₄N + 3¹/₂H₄O. Dunkelblaue Krystalle (Hoogeweff, van Dorp, R. 2, 25; vgl. a. W., A. 173, 99; Sk., M. 1, 189). Verliert bei 100° 3H₂O, den Rest unter Zersetzung bei 155—160° (H., v. D., R. 2, 25). Sehr schwer löslich in Wasser (H., v. D., A. 204, 112).

Ag₂C₇H₃O₄N. Krystalle (Sk., M. 1, 187; H., v. D., B. 13, 63; A. 204, 111). Ziemlich lichtbeständig (H., v. D.).

CaC₇H₃O₄N + 3¹/₂H₄O. Prismen (W., A. 173, 97; H., v. D., B. 13, 62; A. 204, 109; Vongerichten, B. 13, 1637; vgl. W., v. Sch.; Sk., M. 1, 188). Monoklin (?) (Arzeuni, A. 204, 110; vgl. v. Lang, M. 1, 188; Groth, Ch. Kr. 5, 693). Wird erst bei 200—210° wasserfrei (H., v. D.).

BaC₇H₃O₄N + 1¹/₂H₄O. Nadeln. Schwer löslich in Wasser (H., v. D., B. 13, 62; A. 204, 108; vgl. a. Vo.).

CyH₅O₄N + HCl. Prismen (aus konz. Salzsäure), Tafeln (aus verd. Salzsäure). Monoklin prismatisch (v. Lang, M. 1, 189; 18, 233; Korchlin, M. 13, 349; vgl. Groth, Ch. Kr. 5, 692). Gibt an der Luft langsam Chlorwasserstoff ab, schnell bei 100° (Strache, M. 10, 644). Wird durch viel Wasser zerlegt (Sk.).

2C₇H₅O₄N + 2 HCl + PtCl₄. Gelbe Blätter oder Prismen. Spaltet über konz. Schwefelsäure sellmählich Chlorwasserstoff ab (Sk., M. 1, 190). Ziemlich schwer löslich in Wasser, leicht in verd. Salzsäure.

Cinchomeronsäure- β -methylester $C_8H_7O_4N=NC_5H_3(CO_2H)\cdot CO_2\cdot CH_3$. Zur Konstitution vgl. Kaas, M. 23, 681. — B. Beim Behandeln des Dimethylesters (s. u.) mit weniger als der berechneten Menge methylalkoholischer Kalilauge in der Kälte (Kaas, M. 23, 255, 683; vgl. Kirpal, M. 23, 934). — Prismen (aus Methanol). F: 182° (bei schnellem Erhitzen) (Ki., M. 23, 934). Elektrisches Leitvermögen in wäßr. Lösung: Ki., M. 28, 444. Elektrolytische Dissoziationskonstante k bei 25°: 6,7×10⁻⁴ (Ki., M. 28, 444). — Liefert beim Erhitzen über den Schmelzpunkt Kohlendioxyd, Pyridin, Nicotinsäuremethylester, Cinchomeronsäure, Cinchomeronsäure- γ -methylester und Apophyllensäure (K. 158) (Kaas, M. 23, 686); bei längerem Erhitzen auf 154° entsteht nur Apophyllensäure (Ki., M. 24, 524). Bei der trocknen Destillation des Silbersalzes erhält man Nicotinsäuremethylester und Pyridin (Kaas, M. 23, 685). Liefert bei Einw. von konz. Ammoniak bei gewöhnlicher Temperatur Cinchomeronsäure- β -amid (Ki., M. 23, 934). — KC₈H₆O₄N. Tafeln (aus Methanol + Äther) (Kaas, M. 23, 256). — Cu(C₈H₆O₄N)₂. Hellblaue, mikroskopische Krystalle (Kaas, M. 23, 684). Mikroskopische Nadeln. Wird am Licht dunkel (Kaas, M. 23, 684).

Cinchomeronsäure-γ-methylester $C_8H_7O_4N = NC_5H_3(CO_2H) \cdot CO_2 \cdot CH_3$. Zur Konstitution vgl. Kirpal, M. 23, 239, 765; Kaas, M. 23, 681. — B. Beim Erhitzen von Cinchomeronsäure-γ-amid mit Methanol im Rohr auf 100° (Ki., M. 21, 964). Beim Behandeln von Cinchomeronsäureanhydrid (Syst. No. 4298) mit Methanol (Goldschmiedt, Strache, M. 10, 157; Str., M. 11, 137; Kaas, M. 23, 252). — Nadeln (aus Wasser). Schmilzt je nach der Schnelligkeit des Erhitzens zwischen 154° und 172° (Ki., M. 23, 241 Anm.). Elektrisches Leitvermögen in wäßr. Lösung: Ki., M. 28, 444; vgl. Bethmann, Ph. Ch. 5, 417. Elektrolytische Dissoziationskonstante k bei 25°: 6,7×10⁻⁴ (Ki., M. 28, 444). — Lagert sich bei etwa halbstündigem Erhitzen auf 154° in Apophyllensäure (K. 158) um (Ki., M. 23, 247); bei 180° entsteht daneben Cinchomeronsäure (Kaas, M. 23, 259). Das Silbersalz gibt bei der trocknen Destillation Isonicotinsäuremethylester (Ternájgó, M. 21, 450). Bei Einw. von konzentriertem wäßrigem Ammoniak auf Cinchomeronsäure-γ-amids (Ki., M. 21, 963). — Cu($C_8H_6O_4N$)₂. Violette, mikroskopische Tafeln (Kaas, M. 23, 253; vgl. Ki., M. 23, 766). Fast unlöslich in kaltem Wasser (Kaas). — Silbersalz. Mikroskopische Prismen (aus Wasser oder Methanol). F: 185° (Kaas, M. 23, 254). Leicht löslich in Wasser und Methanol.

Cinchomeronsäure-dimethylester $C_9H_9O_4N=NC_5H_3(CO_3\cdot CH_3)_2$. B. Beim Kochen von Cinchomeronsäure (Kirpal, M. 20, 777) oder ihrem γ -Methylester (s. o.) (Kaas, M. 23, 254) mit methylalkoholischer Salzsäure. — Öl. Kp₃₆: 169—171° (teilweise Zers.) (Kaas). — Gibt bei der teilweisen Verseifung mit methylalkoholischer Kalilauge Cinchomeronsäure- β -methylester (Kaas) und wenig Cinchomeronsäure- γ -methylester (Ki., M. 28, 933). — $C_9H_9O_4N+HCl.$ F: 141° (Zers.) (Ki., M. 20, 778).

Cinchomeronsäure - γ - äthylester $C_9H_9O_4N=NC_5H_3(CO_2H)\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von Cinchomeronsäureanhydrid mit absol. Alkohol (Goldschmiedt, Strache, M. 10, 157; St., M. 11, 135). — Tafeln (aus Benzol). F: 131—133° (G., St.; St.). Ziemlich leicht löslich in Wasser, Alkohol und Benzol (St.). Über elektrische Leitfähigkeit und Dissoziationskonstante vgl. Bethmann, Ph. Ch. 5, 417. — Zersetzt sich gegen 190° unter Bildung von Isonicotinsäure (?) (St.). Gibt bei der Reduktion mit Natrium und Alkohol inaktive Piperidin- β . γ -dicarbonsäure vom Schmelzpunkt 256° (Koenigs, Wolff, B. 29, 2187). Ist beständig gegen siedendes Wasser (G., St.; St.). Wird durch verd. Säuren und Alkalien leicht verseift (G., St.; St.). — AgC₉H₈O₄N. Nadeln (aus Wasser) (G., St.; St.).

Cinchomeronsäure-diäthylester $C_{11}H_{13}O_4N = NC_5H_3(CO_2 \cdot C_2H_5)_3$. B. Aus Cinchomeronsäure oder ihrem Monoäthylester beim Behandeln mit alkoh. Salzsäure (Blumenfeld, M. 16, 693, 695). Aus Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- $\alpha.\gamma$ -diäthylester durch Erhitzen für sich auf 150—160° oder mit gesättigter alkoholischer Salzsäure im Rohr auf 210° (Rint, M. 18, 232; vgl. Kirpal, M. 26, 59). — Brennend schmeckendes Öl. Bleibt bei —60° flüssig; Kp₂₁: 172,1° (korr.) (B.). Sehr schwer löslich in warmem Wasser, mit Alkohol, Äther, Benzol und Ligroin in jedem Verhältnis mischbar (B.). Leicht löslich in verd. Salzsäure (B.). — Wird am Licht gelb (B.). Wird durch siedendes Wasser verseift (R.). — $2C_{11}H_{13}O_4N + 2HCl + PtCl_4$. Gelbe Nadeln (aus salzsäurehaltigem Alkohol). F: 142—144° (Zers.) (B.).

Cinchomeronsäure- γ -methylester- β -chlorid ¹) $C_8H_8O_3NCl = NC_5H_3(CO_3 \cdot CH_3) \cdot COCl.$ B. Beim Behandeln von Cinchomeronsäure- γ -methylester mit Thionylchlorid (H. MEYER, M. 22, 583; KIRPAL, M. 30, 361).

a) Präparat von H. Meyer. Nadeln. Schmilzt und zersetzt sich bei 180° im geschlossenen, bei 183° im offenen Röhrchen. — Gibt beim Eindampfen mit Methanol das Hydrochlorid des Cinchomeronsäuredimethylesters.

b) Präparat von Kirpal. Weißes Pulver. F: 168° (im geschlossenen Röhrchen). — Liefert beim Umsetzen mit Benzol und Aluminiumchlorid 3-Benzoyl-pyridin-carbonsäure-(4).

Cinchomeronsäure-β-amid C₇H₆O₃N₂ = NC₅H₃(CO₂H)·CO·NH₂. B. Das Ammoniumsalz entsteht beim Behandeln von Cinchomeronsäure-β-methylester mit konz. Ammoniak; man zerlegt es durch Einleiten von Schwefeldioxyd in die Reaktions-Lösung (KIRPAL, M. 23, 934). Bei Einw. von 1n-Kalilauge auf Cinchomeronsäureimid (Syst. No. 3591) bei gewöhnlicher Temperatur (Gabriel, Colman, B. 35, 2841). — Krystalle (aus Wasser). Schmilzt bei raschem Erhitzen gegen 200° unter Aufschäumen und Bildung von Cinchomeronsäureimid (K.; G., C.). — Liefert bei Einw. von alkal. Brom-Lösung 3-Amino-pyridin-carbonsäure-(4) (K.; G., C.). — AgC₇H₅O₃N₂. Blätter (G., C.).

Cinchomeronsäure-γ-amid C₇H₆O₃N₅ = NC₅H₃(CO₂H)·CO·NH₂. Zur Konstitution vgl. Kirpal, M. 23, 240. — B. Das Ammoniumsalz entsteht bei Einw. von konz. Ammoniak auf Cinchomeronsäure-γ-methylester bei gewöhnlicher Temperatur; man zerlegt es durch Einleiten von Schwefeldioxyd in die Reaktions-Lösung (Kirpal, M. 21, 963). Das Ammoniumsalz erhält man beim Einleiten von trocknem Ammoniak in eine heiße Benzol-Lösung von Cinchomeronsäureanhydrid (Goldschmiedt, Strache, M. 10, 158; St., M. 11, 138). — Tafeln mit 1H₂O. F: 170° (Zers.) (K.). — Die Amidsäure und ihr Ammoniumsalz gehen beim Erhitzen in Cinchomeronsäureimid (Syst. No. 3591) über (St.; K.). Beim Verdunsten der wäßr. Lösung entsteht das saure Ammoniumsalz der Cinchomeronsäure (St.). Beim Behandeln mit Brom und Natronlauge entsteht 4-Amino-pyridin-carbonsäure-(3) (K., M. 23, 242). Beim Erhitzen mit Methanol im Rohr auf 100° erhält man Cinchomeronsäure-γ-methylester (K., M. 21, 964). — NH₄C₇H₅O₃N₂. Mikroskopische Krystalle. Sintert bei 50—60° (G., St.; St.). Sehr leicht löslich in Wasser. — AgC₇H₅O₃N₂. Mikroskopische Nadeln (aus Wasser). Lichtbeständig (G., St.; St.). Schwer löslich in Wasser.

Cinchomeronsäure-diamid $C_7H_7O_2N_3 = NC_5H_3(CO \cdot NH_2)_2$. B. Beim Erhitzen von Cinchomeronsäurediäthylester (Blumenfeld), M. 16, 700) oder besser Cinchomeronsäureimid (Gabriel, Colman, B. 35, 2842; vgl. Strache, M. 11, 144) mit alkoh. Ammoniak im geschlossenen Gefäß. — Würfelähnliche Krystalle. Schmilzt bei 175° (St.), 175—176° (G., C.) unter Aufschäumen und Umwandlung in Cinchomeronsäureimid. Leicht löslich in Wasser (B.; G., C.), unlöslich in Äther und Benzol (B.). — Liefert bei Einw. von Brom und Kalilauge 3-Amino-pyridin-carbonsäure-(4) und die Verbindung der nebenstehenden Formel (Syst. No. 3888) (G., C., B. 35, 2844, 3847; vgl. B., M. 16, 702). — C₇H₇O₂N₃ + H₂O. Prismen (aus Wasser). F: 175° (Zers.) (G., C.). Schwer löslich in kaltem Wasser. — 2C₇H₇O₂N₃ + AgNO₃. Nadeln (aus Wasser) (G., C.).

¹⁾ Für die Methylesterchloride sind nach KIRPAL (Priv.-Mitt.) 2 isomere Formen $NC_5H_5 < \frac{CO_2 \cdot CH_3}{COCl}$ und $NC_5H_5 < \frac{CCl \cdot O \cdot CH_3}{CO}$ in Betracht zu ziehen.

Cinchomeronsäure-dianilid $C_{19}H_{15}O_2N_3 = NC_5H_3(CO\cdot NH\cdot C_6H_5)_2$. B. Aus Cinchomeronsäure und Anilin auf dem Wasserbad (Strache, M. 11, 145). — Gelbliche Nädelchen (aus verd. Alkohol). F: 199—206°. Sehr schwer löslich in Ather, löslich in Benzol und Chloroform, leicht löslich in Alkohol, unlöslich in Wasser. — Geht beim Erhitzen über den Schmelzpunkt in Cinchomeronsäure-phenylimid (Syst No. 3591) über.

Cinchomeronsäure - bis - $[\beta$ - phenyl - hydrazid] $C_{19}H_{17}O_3N_5 = NC_5H_3(CO \cdot NH \cdot NH \cdot C_6H_5)_2$. B. Beim Eintragen von Cinchomeronsäure in siedendes Phenylhydrazin (Strache, M. 11, 146). — Nadeln (aus Alkohol). Schwer löslich in Wasser und Äther, leichter in Benzol, löslich in Alkohol. Leicht löslich in verd. Säuren und Alkalien. — Geht bei 100—110° in N-Anilino-cinchomeronsäureimid (Syst. No. 3591) über.

Cinchomeronsäure-hydroxymethylat, Ammoniumbase der Apophyllensäure $C_8H_9O_5N=(HO)(CH_3)NC_5H_3(CO_2H)_2$. — $2C_8H_8O_4N\cdot Cl+PtCl_4+H_2O$. B. Man versetzt die Lösung von Apophyllensäure (s. u.) in konz. Salzsäure mit Platinchlorid (Roser, A. 234, 124). Gelbe Krystalle. F: 235° (Zers.). Unlöslich in Alkohol, ziemlich leicht löslich in Wasser.

Anhydrid, Cinchomeronsäure - methylbetain, Apophyllensäure $C_8H_7O_4N =$

CH₃·NC₅H₃(CO₂H)·CO·Q. Zur Konstitution vgl. KIRPAL, M. 24, 519; MUMM, GOTTSCHALDT, B. 55 [1922], 2075; Ki., Reiter, A. 433 [1923], 112. — B. Aus Cinchomeronsaure durch Erhitzen mit Methyljodid und Methanol im Rohr auf 100° (Roser, A. 234, 119) oder durch Behandeln mit Methyljodid und Soda-Lösung (H. MEYER, M. 24, 203). Beim Erhitzen von Cinchomeronsäure- β -methylester (Kirpal, M. 24, 524; vgl. a. Kaas, M. 23, 686) oder Cinchomeronsäure- γ -methylester (Ki., M. 23, 247; vgl. a. Kaas, M. 28, 259) auf 154°. Neben dem Jodmethylat des Cinchomeronsäure-y-methylesters beim Erhitzen von Cinchomeronsäure-γ-methylester mit Methyljodid und Methanol auf 1000 (KAAS, M. 23, 257). Apophyllensäure entsteht aus Cinchomeronsäure β -methylester-methylbetain (S. 159) durch Kochen mit verd. Salzsäure oder Kalilauge oder durch Schütteln mit Silberoxyd in wäßr. Lösung (K1., M. 24, 524). Beim Erhitzen von Pyridin-tricarbonsäure-(2.3.4) mit Methyljodid und Methanol im Rohr auf 100° (Ro., A. 234, 118). Beim Erhitzen von Cinchomeronsäureanhydrid (Syst. No. 4298) mit Methyljodid im Rohr auf 100° und Schütteln des Reaktionsprodukts in wäßr. Lösung mit Silberoxyd (Ki., M. 23, 768). Apophyllensäure erhält man aus Kotarnin (Syst. No. 4426) durch Kochen mit verd. Salpetersäure (Anderson, A. 86, 196; Vongerich-TEN, B. 13, 1635; KIRPAL, M. 24, 525) oder durch Erhitzen mit Phosphorpentachlorid und Phosphoroxychlorid auf 160—170° und Kochen des Reaktionsprodukts mit verd. Salpetersäure (Koenigs, Wolff, B. 29, 2191; vgl. Skraup, Piccoli, M. 23, 274). Beim Erhitzen von Bromtarkonin (Syst. No. 4427) mit Chromschwefelsäure auf dem Wasserbad (Vo., A. 210, 85). In sehr geringer Menge neben Kotarnin und anderen Produkten beim Kochen von Narkotin (Syst. No. 4475) mit Braunstein und verd. Schwefelsäure (Wöhler, A. 50, 1, 24).

Nadeln oder Prismen (aus heißer wäßriger Lösung oder aus verd. Alkohol); krystallisiert aus kaltgesättigter wäßriger Lösung mit 1H₂O (Wöhler, A. 50, 24; Vongerichten, B. 13, 1635; Roser, A. 234, 119). Rhombisch bipyramidal (Hausmann, A. 50, 24; Brauns, A. 234, 120; vgl. Groth, Ch. Kr. 5, 693). Schmilzt und zersetzt sich wasserhaltig bei 219° (Ro.), wasserfrei bei 241—242° (Vo.), 242° (Kirpal, M. 23, 768; Koenigs, Wolff, B. 29, 2192). Schwer löslich in Wasser, unlöslich in Alkohol (Wö.) und Äther (Anderson, A. 86, 197). Die wäßr. Lösung reagiert stark sauer (Wö.). — Gibt bei der trocknen Destillation Pyridin (Vo.). Liefert bei kurzem Kochen mit Phenol Isonicotinsäure-methylbetain (Goldschmidden), Hönigschmid, M. 24, 705). Bei Einw. von Natriumamalgam wird Ammoniak entwickelt (Vo.). Bei der Reduktion mit Zinn und konz. Salzsäure entsteht N-Methylpiperidin-β.γ-dicarbonsäure (Koe., Wo., B. 29, 2192; vgl. Skraup, Piccoll, M. 23, 274). Beim Erwärmen mit Thionylchlorid bildet sich das (nicht näher beschriebene) Chlormethylat des Cinchomeronsäureanhydrids (Kirpal, M. 23, 770). Apophyllensäure ist gegen konz. Salzsäure bei 140° beständig; bei 240—250° bildet sich Cinchomeronsäure (Vo.). Das Silbersalz gibt beim Behandeln mit Methyljodid und Methanol bei gewöhnlicher Temperatur Cinchomeronsäure-γ-methylester-methylbetain (Ki., M. 24, 522). — AgC₈H₆O₄N. Krystallpulver. Unlöslich in Alkohol und Äther, leicht löslich in Wasser (Anderson, A. 86, 198). — AgC₆H₆O₄N + AgNO₃. Krystalle. Schwer löslich in Wasser (A.). Explodiert beim Erhitzen. — Ba(C₈H₆O₄N)₂ (bei 120°). Leicht löslich in Wasser, unlöslich in Alkohol (Roser, A. 234, 120).

Cinchomeronsäure - β - methylester - hydroxymethylat, Ammoniumbase des Cinchomeronsäure- β -methylester-methylbetains $C_0H_{11}O_5N=(HO)(CH_3)NC_5H_3(CO_3H)\cdot CO_2\cdot CH_3$. — Jodid $C_9H_{10}O_4N\cdot I$. B. Beim Erhitzen von Cinchomeronsäure- β -methylester mit

Methyljodid und Methanol im Rohr auf 100° (KAAS, M. 23, 258). Gelbe Nadeln (aus Methanol). F: 188°. Ziemlich leicht löslich in Wasser und Methanol.

Anhydrid, Cinchomeronsäure - β - methylester - methylbetain $C_0H_0O_4N=CH_3\cdot NC_5H_3(CO_2\cdot CH_3)\cdot CO\cdot O$. B. Beim Schütteln von Cinchomeronsäure- β -methylester-jodmethylat mit Silberoxyd in Methanol (KIRPAL, M. 24, 523). — Nadeln mit 1 H_2O (aus Methanol + Äther). F: 182° (Zers.). Leicht löslich in Wasser und Alkohol, unlöslich in Äther. — Wird durch siedende verdünnte Salzsäure, durch Kalilauge oder durch Silberoxyd in wäßr. Lösung in Apophyllensäure übergeführt.

Cinchomeronsäure - γ - methylester - hydroxymethylat, Ammoniumbase des Cinchomeronsäure- γ -methylester-methylbetains $C_9H_{11}O_5N = (HO)(CH_3)NC_5H_3(CO_2H) \cdot CO_2 \cdot CH_3$. — Jodid $C_9H_{10}O_4N \cdot I$. B. Beim Erhitzen von Cinchomeronsäure- γ -methylester mit Methyljodid und Methanol im Rohr auf 100° (Kaas, M. 23, 257). Mikroskopische Krystalle (aus Methanol + Äther). F: 223—224°. Schwer löslich in Wasser und Methanol.

Anhydrid, Cinchomeronsäure - γ - methylester - methylbetain $C_9H_9O_4N=CH_3$ · $NC_5H_3(CO_2\cdot CH_3)\cdot CO\cdot O$. B. Beim Schütteln von Cinchomeronsäure- γ -methylester-jodmethylat mit Silberoxyd in Methanol (Kirpal, M. 23, 769). Bei der Einw. von Methyljodid auf das Silbersalz der Apophyllensäure in Methanol bei Zimmertemperatur (KI., M. 24, 522). Beim Behandeln von Cinchomeronsäureanhydrid mit Methyljodid bei 100° und Schütteln des Reaktionsprodukts mit Silberoxyd in Methanol (KI., M. 23, 769). — Prismen (aus Methanol). Zersetzt sich, rasch erhitzt, bei 218° ; leicht löslich in Wasser und warmem Alkohol, fast unlöslich in Äther (KI., M. 23, 769).

Cinchomeronsäure-hydroxyäthylat, Ammoniumbase des Cinchomeronsäure-äthylbetains $C_9H_{11}O_5N=(HO)(C_2H_5)NC_5H_3(CO_2H)_2$. — Chlorid $C_9H_{10}O_4N\cdot Cl.$ B. Beim Eindunsten der Lösung von Cinchomeronsäure-äthylbetain (s. u.) in verd. Salzsäure im Vakuum (Blumenfeld, M. 16, 699). Tafeln. F: 214—2160 (Zers.).

Anhydrid, Cinchomeronsäure-äthylbetain C₉H₉O₄N = C₂H₅·NC₅H₃(CO₂H)·CO·O.

Br Beim Schütteln einer wäßr. Lösung von Cinchomeronsäure-diäthylester-jodäthylat mit Silberoxyd (Blumenfeld, M. 16, 698; vgl. a. Rint, M. 16, 239). — Tafeln (aus Wasser). F: 198° (B.). — AgC₉H₈O₄N. Nadeln. F: 170° (Zers.) (B.). Ist hygroskopisch und lichtempfindlich (B.).

Cinchomeronsäure-diäthylester-hydroxyäthylat $C_{13}H_{19}O_5N=(HO)(C_2H_5)NC_5H_3$ ($CO_2\cdot C_2H_5$)₂. B. Das Jodid entsteht beim Kochen von Cinchomeronsäurediäthylester mit Äthyljodid (Blumenfeld, M. 16, 697). Das Jodid entsteht ferner beim Erhitzen von Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- $\alpha.\gamma$ -diäthylester (S. 184) mit überschüssigem Äthyljodid im Rohr auf 110° (Rint, M. 18, 238). — Beim Behandeln des Jodids mit Silberoxyd in wäßr. Lösung bildet sich Cinchomeronsäure-äthylbetain (B.; vgl. a. R.). — $2C_{13}H_{18}O_4N\cdot Cl + PtCl_4$. Gelbe Nadeln. F: 184—185° (Zers.) (B.), 183—185° (unkorr.) (R.). Leicht löslich in Wasser und verd. Salzsäure (B.).

5-Brom-pyridin-dicarbonsäure-(3.4), 5-Brom-einchomeronsäure $C_7H_4O_4NBr$, s. nebenstehende Formel. Zur Konstitution vgl. UKAI, C. 1931 II, 2330. — B. Beim Behandeln von 4-Brom-isochinolin mit der berechneten Menge Kaliumpermanganat in alkal. Lösung bei 50—60° (Edinger, Bossung, J. pr. [2] 43, 194). — Krystalle (aus Wasser). F: 237°. — Ba $C_7H_2O_4NBr$.

x-Brom-pyridin-dicarbonsäure-(3.4)-hydroxymethylat, x-Brom-cinchomeronsäure-hydroxymethylat $C_8H_8O_5NBr=(HO)(CH_3)NC_5H_2Br(CO_2H)_2$. — $2\,C_8H_7O_4BrN\cdot Cl+PtCl_4$. B. Man läßt eine Lösung von x-Brom-apophyllensäure (s. u.) in ziemlich konz. Salzsäure mit Platinchlorid stehen (Vongerichten, A. 210, 93). Orangerote Tafeln (aus Salzsäure).

Anhydrid, x-Brom-apophyllensäure C₈H₆O₄NBr = CH₃·NC₅H₂Br(CO₂H)·CO·O. B. Beim Behandeln von Bromtarkonin (Syst. No. 4427) bezw. seinem Hydrochlorid mit Bromwasser und Kochen der Reaktions-Lösung (Vongerichten, A. 210, 86, 87, 91). — Nadeln (aus Alkohol + Äther), Prismen mit 2H₂O (aus Wasser). F: 204—205° (Zers.). Unlöslich in Äther, löslich in heißem Wasser und heißem Alkohol, leichter in angesäuertem Wasser. — Liefert bei weiterer Einw. von Bromwasser x.x-Dibrom-apophyllin (Syst. No. 4427). Gibt beim Erhitzen mit konz. Salzsäure im Rohr auf 200—210° eine Säure vom Schmelzpunkt 199°. — Ba(C₈H₅O₄NBr)₂. Nadeln mit 3H₂O. Leicht löslich in kaltem Wasser, schwer in Alkohol.

6. Pyridin-dicarbonsäure-(3.5), Pyridin-β.β'-dicarbonsäure, Dinicotinsäure C₇H₅O₄N, s. nebenstehende Formel. B. Bei der Oxydation von 3.5-Dimethyl-pyridin mit verd. Permanganat-Lösung (Dürkopf, Göttsch, B. 23, 1114; Ahrens, Gorkow, B. 37, 2065). Beim Erhitzen von Pyridin-tricarbonsäure-(2.3.5) auf 150° (RIEDEL, B. 16, 1613;

Erhitzen von Pyridin-tricarbonsäure-(2.3.5) auf 150° (RIEDEL, B. 16, 1613; WEBER, A. 241, 12). Aus Pyridin-tetracarbonsäure-(2.3.5.6) durch Erhitzen auf 150° oder durch Kochen mit Eisessig (Hantzsch, Weiss, B. 19, 286). Beim Erhitzen von 2.6-Dichlordinicotinsäure (s. u.) mit Jodwasserstoffsäure (D: 1,96) im Rohr auf 180° (Guthzeit, Dressel, A. 262, 130). Das Dinitril (s. u.) entsteht bei der Oxydation von 3.5-Dioyan-kollidin (S. 165) mit Kaliumpermanganat und nachfolgendem Erhitzen auf 180°; man verseift es durch Erhitzen mit Kalilauge (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 511). — Krystalle (aus salzsäurehaltigem Wasser), Prismen (aus Eisessig). F: 322° (Gu., Dr., A. 262, 131), 323° (Zers.) (Weber). Ist fast unzersetzt sublimierbar (Gu., Dr.). Sehr schwer löslich in Wasser (H., Weiss), Äther und Eisessig, leichter in rauchender Salzsäure (Gu., Dr.). Starke Säure; elektrische Leitfähigkeit in wäßr. Lösung bei 25°: Ostwald, Ph. Ch. 3, 389. — Zerfällt bei stärkerem Erhitzen in Nicotinsäure und Kohlendioxyd (H., Weiss; Gu., Dr.). — Salze: H., Weiss, B. 19, 287. — Ag₂C₇H₃O₄N. Niederschlag. Enthält lufttrocken 1—1¹/₂H₃O. — PbC₇H₃O₄N + 2 H₂O. Krystalle. — C₇H₅O₄N + HCl + 2 H₂O. Nadeln. Verliert bei 100° Wasser und Salzsäure vollständig. Wird durch kaltes Wasser zerlegt. — 2C₇H₈O₄N + 2 HCl + PtCl₄. Orangerote Nadeln. Wird durch Wasser zerlegt.

Dinitril, 3.5-Dicyan-pyridin $C_7H_3N_3 = NC_5H_3(CN)_2$. B. s. im vorangehenden Artikel. — $2C_7H_3N_3 + 2HCl + PtCl_4$ (v. Meyer, J. pr. [2] 78, 512).

2.6-Dichlor-pyridin-dicarbonsäure-(3.5), 2.6-Dichlor-dinicotinsäure C₇H₃O₄NCl₂, s. nebenstehende Formel. B. Man läßt Phosphorpentachlorid und wenig Phosphoroxychlorid auf 2-Oxy-6-äthoxy-pyridindicarbonsäure-(3.5) erst in der Siedehitze, dann im Rohr bei 240—250° einwirken und behandelt
das entstandene Säurechlorid mit Eis (Guthzeit, Dressel, A. 262, 126). — Krystalle (aus
Äther). Schmilzt bei schnellem Erhitzen gegen 230° (CO₂-Abspaltung). Ziemlich leicht löslich
in Äther und Alkohol, schwerer in kaltem Wasser. Leicht löslich in verd. Ammoniak. —
Wird durch Jodwasserstoffsäure (D: 1,96) bei 180° in Dinicotinsäure übergeführt. Beim
Kochen mit Wasser wird Chlor durch Hydroxyl ersetzt.

Diäthylester $C_{11}H_{11}O_4NCl_2 = NC_5HCl_2(CO_2 \cdot C_2H_5)_2$. B. Durch Einw. von Phosphorpentachlorid auf 2-Oxy-6-äthoxy-pyridin-dicarbonsäure-(3.5) bei 240—250° und Behandeln des entstandenen Säurechlorids mit absol. Alkohol (Guthzeit, Dressel, A. 262, 129). Beim Erhitzen von 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diäthylester mit Phosphorpentachlorid im Rohr auf 240—250° (G., B. 26, 2798). — Prismen (aus Äther). F: 75—76°; schwer löslich in kaltem Ligroin, leicht in Alkohol, Äther, Chloroform, Benzol, Eisessig und heißem Ligroin (G., Dr.).

2. Dicarbonsäuren $C_8H_7O_4N$.

2. Pyridin-carbonsäure-(2)-essigsäure-(5), Pyridinα-carbonsäure-β'-essigsäure C₈H₇O₄N, s. nebenstehende Formel.
Zur Konstitution vgl. Ladenburg, A. 247, 41, 42. — B. Beim Kochen
von 2-Methyl-5-äthyl-pyridin (Bd. XX, S. 248) mit Chromsäure + Schwefelsäure (Wyschnegradski, B. 12, 1507). — Prismen (aus Wasser). Sublimiert unter teilweiser Zersetzung (W.). — Bei der trocknen Destillation des Calciumsalzes erhält man 3-Methyl-pyridin und geringe Mengen Pyridin (W.). — Gibt mit Ferrosulfat-Lösung eine rötlichgelbe Färbung (W.). — Calciumsalz. Nadeln. Sehr schwer löslich in kaltem Wasser (W.).

- 3. 4-Methyl-pyridin-dicarbonsäure-(2.3), 4-Methyl-chinolin-säure, γ-Picolin-α.β-dicarbonsäure, Lepidinsäure C₈H₇O₄N, s. nebenstehende Formel. B. Durch Oxydation von 4-Methyl-chinolin mit Kalium-permanganat-Lösung bei 40—50° (Koenigs, B. 12, 983; 13, 912 Anm. 2; 14, 103; Hoogewerff, van Dorf, B. 13, 1640; R. 2, 12, 14). Beim Kochen von 6-Chlor-4-methyl-pyridin-dicarbonsäure-(2.3) mit Jodwasserstoffsäure, Phosphoresium (2.3) mit Jodwasserstoffsäure, Phosphoresiu
- CH₂
 5
 4
 5
 CO₂H
 6
 1
 N
 CO₂H

und Kaliumjodid (Besthorn, Byvanck, B. 31, 801). — Prismen oder Tafeln (aus Wasser). Rhombisch (K., B. 14, 104; vgl. Groth, Ch. Kr. 5, 694). F: 186° (Zers.) (K., B. 14, 104), 180° bis 185° (Zers.) (H., v. D., B. 13, 1640; 14, 645; R. 2, 15). Sehr schwer löslich in Alkohol, Äther und Benzol (H., v. D., B. 14, 645; R. 2, 15); 1 Tl. löst sich bei 10° in 118 Tln. Wasser (H., v. D., R. 2, 15). — Bei mehrstündigem Erhitzen auf 160—170° (H., v. D., B. 14, 645; R. 2, 21) oder beim Erhitzen mit Eisessig (H., v. D., R. 2, 21) entsteht 4-Methyl-pyridincarbonsäure-(3). Bei der Oxydation mit alkal. Kaliumpermanganat-Lösung erhält man Pyridin-tricarbonsäure-(2.3.4) (H., v. D., B. 13, 1640; R. 2, 18). — Gibt in wäßr. Lösung mit Ferrosulfat eine gelbe Färbung (K., B. 14, 104; H., v. D., B. 14, 645). — KC₈H₆O₄N + 2H₂O. Nadeln (aus Alkohol + Äther) (H., v. D., B. 14, 645; R. 2, 17). — KC₈H₆O₄N + 3H₂O. Krystalle (H., v. D., B. 14, 645; R. 2, 17). — Ag₂C₈H₆O₄N + H₂O. Krystallpulver (H., v. D., B. 14, 645; R. 2, 18; vgl. K., B. 14, 104).

- 6-Chlor-4-methyl-pyridin-dicarbonsäure-(2.3), 6-Chlor-4-methyl-chinolinsäure, 6-Chlor-lepidinsäure C₈H₆O₄NCl, s. nebenstehende Formel.

 B. Durch Oxydation von 2-Chlor-7(?)-oxy-4-methyl-chinolin (Bd. XXI, S. 109) mit Kaliumpermanganat in verd. Kalilauge bei Zimmertemperatur (Besthorn, Byvanck, B. 31, 800). Prismen mit 2H₂O (aus Wasser). Schmilzt wasserfei bei 183—184° (Zers.). Ziemlich leicht löslich in Alkohol, Äther und Wasser. Liefert beim Kochen mit Jodwasserstoffsäure, Phosphor und Kaliumjodid 4-Methyl-pyridin-dicarbonsäure-(2.3). Gibt in wäßr. Lösung mit Ferrosulfat eine gelbe Färbung. Mit Ferrichlorid entsteht nach einiger Zeit ein gelber Niederschlag.
- 4. 5 (oder 3) Methyl pyridin dicar CH₃ CO₂H bonsäure (2.3 oder 2.5), β Picolin I. CO₂H II. HO₂C CO₂H II. CO₂H α΄.β΄ (oder α.β΄) dicarbonsäure C₈H₇O₄N, Formel I oder II. Zur Konstitution vgl. Dürkopf, Göttsch, B. 23, 1111. B. Beim Behandeln von 3.5-Dimethyl-2-äthyl-pyridin mit verd. Kaliumpermanganat-Lösung (D., Schlaugk, B. 21, 834; D., G., B. 23, 688). Krystallpulver (aus Wasser). Schmilzt bei langsamem Erhitzen bei 223°, bei schnellem Erhitzen bei 223—239°; schwer löslich in heißem Wasser (D., G., B. 23, 688). Liefert beim Erhitzen mit Essigsäure + Essigsäureanhydrid auf 225° 5-Methyl-pyridin-carbonsäure-(3) (S. 50) (D., G., B. 23, 1111).
- 5. 2-Methyl-pyridin-dicarbonsäure-(3.5), 2-Methyl-HO₂C·CO₂H dinicotinsäure, α-Picolin-β.β'-dicarbonsäure C₂H₇O₄N, s. nebenstehende Formel. B. Beim Erhitzen von 6-Methyl-pyridin-tricarbonsäure-(2.3.5) auf 150° (Weber, A. 241, 9). Nadeln mit 1 H₂O (aus Wasser); wird bei 130° wasserfrei; F: 245—250° (Zers.); schwer löslich in kaltem Wasser (W.). Starke Säure; elektrisches Leitvermögen in Wasser bei 25°: Ostwald, Ph. Ch. 3, 391. Liefert bei der Oxydation mit Kaliumpermanganat Pyridin-tricarbonsäure-(2.3.5) (W.). PbC₃H₅O₄N + 2 H₂O. Krystallinisch (W.). C₃H₇O₄N + HCl + ca. 1,5 H₂O. Krystalle (aus konz. Salzsäure) (W.).
- 6. 6-Methyl-pyridin-dicarbonsäure-(2.4), \(\alpha Picolin \gamma \alpha' \delta' \delta' \)

 Carbonsäure, Uvitoninsäure C₈H₇O₄N, s. nebenstehende Formel. B.

 Beim Behandeln von Brenztraubensäure in Wasser mit Ammoniak bei gewöhnlicher Temperatur oder auf dem Wasserbad (Böttinger, A. 188, 330;

 208, 138; B. 13, 2032; De Jong, R. 23, 136). Beim Kochen einer wäßr. Lösung von brenztraubensaurem Ammonium (De J.). Aus 2.4.6-Trimethyl-pyridin oder 2.6-Dimethyl-4-äthyl-pyridin durch Oxydation mit Kaliumpermanganat (Altar, A. 237, 191, 194). Krystalle (aus Wasser). F: 274° (Zers.) (A.; De J.), 282° (Zers.) (B., B. 13, 2048 Anm.). Leicht löslich in heißem Anilin, Eisessig und Phenol, schwer in siedendem Chloroform und Amylalkohol, unlöslich in siedendem Benzol und Schwefelkohlenstoff (B., B. 13, 2033), sehr schwer löslich in kaltem Wasser (B., A. 208, 138; A.); löslich in Ammoniak, Salzsäure (A.) und in konz. Schwefelsäure (B., B. 13, 2033). Liefert beim Erhitzen auf den Schmelzpunkt 2-Methyl-pyridin-oarbonsäure-(4) (B., B. 14, 67; A., A. 237, 201). Gibt bei der trocknen Destillation des Calciumsalzes mit Natronkalk 2-Methyl-pyridin (B., B. 13, 2034). Bei der Oxydation mit siedender alkalischer Kaliumpermanganat-Lösung oder mit Chromsäure + Schwefelsäure entsteht Pyridin-tricarbonsäure-(2.4.6) (B., B. 18, 2048; A. 229, 248). Beim Schütteln der wäßr. Lösung mit Brom erhält man Ameisensäure, Kohlendioxyd, Bromoform, Bromal und andere Produkte (B., B. 17, 144). Starke Salpetersäure wirkt auch beim Kochen nicht ein; Verhalten gegen salpetrige Säure: B., A. 188, 334. Verhalten beim Schmelzen mit Kalium-

hydroxyd: B., A. 188, 335. — 6-Methyl-pyridin-dicarbonsäure-(2.4) gibt mit Ferrosulfat in wäßr. Lösung eine gelbrote Färbung (B., B. 13, 2049 Anm.). — Wirkt stark antiseptisch (B., B. 14, 70).

NH₄C₈H₆O₄N + (NH₄)₂C₈H₅O₄N. Krystalle (aus kaltem Wasser). F: 255° (Zers.) (DE Jong, R. 23, 137). — Na₂C₈H₆O₄N + 6H₂O. Nadeln. Verliert über Schwefelsäure 5H₂O (DE J.). — CuC₈H₅O₄N + 3,5 bis 4H₂O. Bläulichgrüner, krystallinischer Niederschlag (Altar, A. 237, 193, 199; DE J.). — Cu(C₈H₆O₄N)₂ + 2CuO + 9H₂O (A., A. 237, 199). — CaC₈H₅O₄N + 4H₂O. Prismen. Wird bei 130° wasserfrei (A., A. 237, 195; vgl. Böttinger, A. 188, 333). — CaC₈H₅O₄N + 6H₂O. Amorph (A., A. 237, 193). Verliert bei 130° 4H₂O. — BaC₈H₅O₄N + 2H₂O. Nadeln (B., A. 188, 332; A., A. 237, 192). Sehr schwer löslich in kaltem Wasser (B.).

7. 4-Methyl-pyridin-dicarbonsäure-(3.5), 4-Methyldinicotinsäure, γ-Picolin-β.β'-dicarbonsäure C₈H₇O₄N, 8.

nebenstehende Formel. B. Beim Erhitzen von 4-Methyl-pyridin-tetracarbonsäure-(2.3.5.6) mit Eisessig auf 130° (Wolff, A. 322, 377).

Nädelchen (aus Wasser). Wird bei 250° gelb und schmilzt, rasch erhitzt, bei 282—284° (Zers.).
Schwer löslich in Äther und Chloroform, ziemlich schwer in Wasser und Alkohol, leicht in Salzsäure.

3. Dicarbonsäuren $C_9H_9O_4N$.

- 1. 4 Äthyl pyridin dicarbonsäure (3.5), 4 Äthyl C2H5 dinicotinsäure C2H2O4N, s. nebenstehende Formel. Zur Konstitution vgl. Tschitschibabin, Oparina, J. pr. [2] 107 [1924], 154; 36. 54 [1924], 434. B. Bei der Oxydation von 3.5-Dimethyl-4-äthyl-pyridin mit Kaliumpermanganat (DÜRKOPF, GÖTTSCH, B. 23, 693, 1112). Gelbliche Nadeln. F: 258° (D., G.).
- 2. 2.4 Dimethyl pyridin dicarbonsäure (3.5), 2.4 Dinethyl dinicotinsäure, α,γ Lutidin β,β' dicarbonsäure
 C₉H₉O₄N, s. nebenstehende Formel. B. Aus 4.6-Dimethyl-pyridin-tricarbonsäure-(2.3.5) beim Erhitzen für sich auf 175° (Weber, A. 241, 20), beim Erhitzen mit Wasser auf 170° (Wolff, A. 322, 375) oder beim Kochen mit Isovaleriansäure oder Phenol (Koenigs, Mengel, B. 37, 1336). Prismen (aus Wasser). Wird bei 130° wasserfrei und schmilzt unter Zersetzung bei 254—255° (We.), 256° (K., M.), 260° (Wo.). Ziemlich schwer löslich in kaltem Wasser und Alkohol, sehr schwer in Äther und Chloroform (Wo.). Starke Säure; elektrisches Leitvermögen in Wasser bei 25°: Ostwald, Ph. Ch. 3, 392. Liefert beim Destillieren (Wo.) oder besser beim Erhitzen mit Silberpulver im Kohlendioxyd-Strom (K., M.) 2.4-Dimethyl-pyridin. Gibt bei der Oxydation mit Kaliumpermanganat-Lösung 4-Methyl-pyridin-tricarbonsäure-(2.3.5) (S. 186) und Pyridin-tetracarbonsäure-(2.3.4.5) (S. 188) (We.). PbC₉H₇O₄N. Krystallinisch (We.). C₉H₉O₄N + HCl + 0,5 bis 1H₂O. Nädelchen. Verliert bei 140° Wasser und Chlorwasserstoff; wird durch Wasser in die Komponenten gespalten (We.). 2C₉H₉O₄N + 2HCl + PtCl₄. Orangerote Tafeln. Schmilzt oberhalb 300°; leicht löslich in Wasser unter Hydrolyse (We.).
- 3. 4.6 (oder 2.4) Dimethyl pyridin CH₃ CH₃ dicarbonsäure (2.3 oder 3.6), $\alpha.\gamma$ Luti– I. CO₂H din $\alpha'.\beta'$ (oder $\beta.\alpha'$) dicarbonsäure C₃H₃O₄N, Formel I oder II. B. Beim Erwärmen CH₃. CO₂H HO₂C. N CH₃ einer wäßr. Lösung des Kaliumsalzes der Kollidin-carbonsäure-(3) mit 2 Mol Kaliumpermanganat (MICHAEL, A. 225, 136). Prismen mit 1,5 H₂O (aus Wasser). Wird über Schwefelsäure wasserfrei und schmilzt dann bei 245°. Schwer löslich in kaltem Wasser, fast unlöslich in Alkohol und Äther. MgC₃H₇O₄N + 3 H₂O. Krystallinisch. CaC₃H₇O₄N. Krystallinisch. Leicht löslich in Wasser. 2C₃H₃O₄N + 2 HCl + PtCl₄ + 6 H₃O. Rotgelbe Tafeln oder Prismen (aus Wasser). Wird bei 120° wasserfrei, schmilzt nicht bis 290°. Leicht löslich in Alkohol und Wasser.
- 4. 2.6 Dimethyl pyridin dicarbonsäure (3.5), 2.6 Dimethyl dinicotinsäure, $\alpha.\alpha'$ Lutidin $\beta.\beta'$ dicarbonsäure C₉H₉O₄N, s. nebenstehende Formel. B. Bei längerem Kochen von 2.6-Dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester (8. 146) mit alkoh. Kalilauge (Schiff, Prosio, G. 25 II, 76, 78). Aus 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester (8. 163) beim Erwärmen mit alkoh. Kalilauge (Engelmann, A. 231, 51; Mohr, Schneider,

J. pr. [2] 69, 250). — Nadeln (aus Wasser). F: 316° (Weber, A. 241, 31), ca. 315—320° (unkorr.) (M., Schn.). 1 g löst sich in ca. 3300 g Wasser bei Zimmertemperatur, in ca. 97 g bis 98 g siedendem Wasser und in 150—160 g siedendem absolutem Alkohol (M., Schn., J. pr. [2] 69, 252, 254); sehr schwer löslich in kaltem Alkohol und kaltem Äther; leicht löslich in Alkalilaugen und Salzsäure (E.; Sch., Pr.). Starke Säure; elektrisches Leitvermögen in Wasser bei 25°: Ostwald, Ph. Ch. 3, 391. — Liefert beim Erhitzen im Wasserstoffstrom 2.6-Dimethyl-pyridin-carbonsäure-(3) und etwas 2.6-Dimethyl-pyridin (Weiss, B. 19, 1308). Beim Erhitzen des Kaliumsalzes mit Kalk entsteht 2.6-Dimethyl-pyridin (E.). Das Kaliumsalz gibt beim Oxydieren mit 2 Mol Kaliumpermangsnat 6-Methyl-pyridin-tricarbonsäure-(2.3.5) (S. 187) (Weber, A. 241, 6), mit 4 Mol Kaliumpermanganat Pyridin-tetracarbonsäure-(2.3.5.6) (Hantzsch, Weiss, B. 19, 284). — Kaliumsalz. Nadeln (aus Wasser) (E.). — BaC₂H₇O₄N + 2H₂O. Krystalle. Ziemlich leicht löslich in Wasser (E.). — PbC₂H₇O₄N + 2H₂O. Prismen (E.). — C₃H₃O₄N + HCl + 2H₂O. Prismen (E.). Pr.).

2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-monoäthylester $C_{11}H_{18}O_4N=NC_5H(CH_2)_2(CO_2H)\cdot CO_3\cdot C_2H_5$. B. Beim Kochen von 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester mit 1 Mol alkoh. Kalilauge (Weiss, B. 19, 1306). Entsteht neben 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester beim Behandeln von 2.6-Dimethyl-1.4-dihydropyridin-dicarbonsäure-(3.5)-diäthylester (8. 146) mit heißer verdünnter Salzsäure (Griess, Harrow, B. 21, 2743). — Nadeln (aus Wasser). F: 131°; sehr schwer löslich in kaltem Wasser (W.; Gr., H.). — Liefert beim Erhitzen 2.6-Dimethyl-pyridin-carbonsäure-(3)-äthylester (W.). — $C_{11}H_{12}O_4N + HCl + 2H_2O$. Säulen. F: 90°; sehr leicht löslich in Wasser (W.).

2.6 - Dimethyl - pyridin - dicarbonsäure - (3.5) - diäthylester C₁₃H₁₇O₄N = NC₅H(CH₃)₂(CO₂·C₂H₅)₂. B. Beim Kochen äquimolekularer Mengen von Methenyl-bis-acetessigsäure-äthylester (Bd. III, S. 849), Ammoniumacetat und Eisessig (Claisen, A. 297, 39; Höchster Farbw., D. R. P. 79863; Frdl. 4, 1134). Beim Kochen von α-Äthoxymethylenacetessigsäure-äthylester (Bd. III, S. 878) mit β-Amino-crotonsäure-äthylester (Bd. III, S. 654) (Cl.). Entsteht aus 2.6-Dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester beim Erhitzen mit Palladiumschwarz auf 200—265° (Knoevenagel, Fuchs, B. 35, 1789; 36, 2848), beim Behandeln mit konz. Salzsäure bei Zimmertemperatur (Kn., F., B. 35, 1792; 36, 2852; vgl. Schiff, Prosio, G. 25 II, 80), beim Erwärmen mit verd. Salzsäure (Griess, Harrow, B. 21, 2743), beim Behandeln der alkoh. Lösung mit Stickoxyden (Gr., H.; Mohr, Schneider, J. pr. [2] 69, 247) oder beim Behandeln mit Salpetersäure (Schi., Pr.; M., Schn.). Entsteht neben anderen Produkten bei der trocknen Destillation von 2.6-Dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester, 2.4.6-Trimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester, 2.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester oder 2.6-Dimethyl-4-phenyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester (Guareschi, Grande, C. 1899 II, 440). Beim Einleiten von Stickoxyden in eine alkoh. Lösung von 2.6-Dimethyl-4-isopropyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester (Jeanrenaud, B. 21, 1784). Entsteht neben 2.6-Dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester (Jeanrenaud, B. 21, 1784). Entsteht neben 2.6-Dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester beim Erhitzen von 1 Tl. Hexamethylentetramin mit 5 Tln. Acetessigester und 5 Tln. Zinkchlorid im Rohr auf 100° (Gr., H., B. 21, 2740).

Nadeln (aus Alkohol), Prismen (aus Äther). F: 72° (Schiff, Prosio, G. 25 II, 78; Griess, Harrow, B. 21, 2743), 73° (Guareschi, Grande, C. 1899 II, 440; Engelmann, A. 231, 50), 75—76° (Knoevenagel, A. 281, 96). Kp₁₃, 5: 177,9° (korr.); Kp₄₀: 207,9° (korr.) (Mohr, Schneider, J. pr. [2] 69, 249); Kp: 301—302° (E.), 300—305° (Gu., Gr.). Sehr leicht löslich in Äther, leicht in Alkohol, Chloroform, Petroläther und Benzol, unlöslich in Wasser (E.); löslich in ca. 18 Tln. Petroläther bei 17° (Kr., Fuchs, B. 35, 1796); löslich in verd. Schwefelsäure (Claisen, A. 297, 39). — Beim Erhitzen mit Palladiumschwarz zum Sieden erhält man 2.6-Dimethyl-pyridin-carbonsäure-(3)-äthylester, Kohlendioxyd und Äthylen (Kn., F., B. 36, 2856). — C₁₃H₁₇O₄N + HCl + AuCl₃. Krystalle (aus Alkohol) (Gr., H.). Sehr leicht löslich in Alkohol.— Chloroplatinat. Gelbe Krystalle (aus Alkohol). F: 197° (Kn., F., B. 35, 1799). — Pikrat C₁₈H₁₇O₄N + C₆H₃O₇N₃. Gelbe Krystalle. F: 118—119° (Schi., Pr.), 119—120° (Kn., F., B. 35, 1793). Fast unlöslich in kaltem Alkohol (Schi., Pr.).

2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-dinitril, 2.6-Dimethyl-3.5-dicyan-pyridin $C_0H_7N_3=NC_5H(CH_3)_9(CN)_2$. B. Beim Einleiten von Stickoxyden in eine alkoh. Suspension von 2.6-Dimethyl-3.5-dicyan-1.4-dihydro-pyridin (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 509). — Nadeln (aus verd. Alkohol). F: 112°. Sehr leicht löslich in verd. Salzsäure. — $2C_9H_7N_3+2HCl+PtCl_4$. Krystalle.

2.6 - Dimethyl - pyridin - dicarbonsäure - (8.5) - dihydrazid $C_0H_{13}O_2N_5 = NC_2H(CH_3)_2(CO\cdot NH\cdot NH_2)_2$. B. Durch 12—15-stündiges Kochen des Diäthylesters (s. o.) mit Hydrazinhydrat (Mohr, B. 38, 1115). — Wasserfreie Prismen (aus Alkohol), Nadeln mit 1 H_2O (aus Wasser). Schmilzt wasserfrei bei 227—229° (geringe Zers.). Schwer löslich in siedendem Ligroin, Chloroform, Äther und Benzol. 100 g Alkohol lösen bei Siedetemperatur

- ca. 4 g, 100 g Wasser lösen bei 18° ca. 9 g wasserfreie Verbindung. Reduziert ammoniskalische Silber-Lösung schnell bei Zimmertemperatur, Fehlungsche Lösung erst beim Kochen. C₉H₁₂O₂N₅+3 HCl+H₂O. F: 251° (Zers.). Leicht löslich in Wasser, schwer in siedendem Alkohol und Äther.
- 2.6 Dimethyl pyridin dicarbonsäure (3.5) bis isopropylidenhydrasid $C_{15}H_{21}O_{2}N_{5} = NC_{5}H(CH_{3})_{3}[CO \cdot NH \cdot N : C(CH_{3})_{3}]_{2}$. B. Durch Schütteln des Dihydrazids (S. 163) mit Aceton und Wasser (M., B. 33, 1117). Wurde nicht ganz rein erhalten. Niederschlag. F: 298° (Zers.). Sehr schwer löslich in den üblichen organischen Lösungsmitteln.
- 2.6 Dimethyl pyridin dicarbonsäure (3.5) bis bensalhydrasid $C_{23}H_{21}O_{2}N_{5} = NC_{5}H(CH_{3})_{2}(CO \cdot NH \cdot N : CH \cdot C_{6}H_{5})_{2}$. B. Beim Schütteln des Dihydrazids (S. 163) mit Benzaldehyd und Wasser (M., B. 33, 1117). Krystalle (aus Eisessig). Schmilzt oberhalb 300°. Sehr schwer löslich.
- 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diazid $C_9H_7O_2N_7 = NC_5H(CH_3)_9(CO \cdot N_3)_9$. Aus dem Dihydrazid (S. 163) und Natriumnitrit in 1n-Salzsäure bei 0^0 bis $+5^0$ (M., B. 38, 1117). Pulver. Verpufft bei $79-80^0$. Beim Erwärmen mit Alkohol entsteht 3.5-Biscarbäthoxyamino-2.6-dimethyl-pyridin (Syst. No. 3406).
- 4-Chlor-2.6-dimethyl-pyridin-dicarbonsäure-(3.5), 4-Chlor-2.6-dimethyl-dinicotinsäure, γ -Chlor- $\alpha.\alpha'$ -lutidin- $\beta.\beta'$ -dicarbonsäure C₂H₂O₄NCl, s. nebenstehende Formel. B. Beim Erhitzen von 4-Oxy-2.6-dimethyl-pyridin-dicarbonsäure-(3.5) (S. 270) mit Phosphorpentachlorid und Phosphoroxychlorid auf 140° (Conrad, Epstein, B. 20, 164). Prismen (aus Wasser). Bräunt sich bei 217° und schmilzt bei 224° (C., E.). Liefert beim Erhitzen mit Ammoniak auf 130° 4-Amino-2.6-dimethyl-pyridin-dicarbonsäure-(3.5) (Marckwald, B. 27, 1323).

4. Dicarbonsăuren $C_{10}H_{11}O_4N$.

- 1. 4-Methyl-5-åthyl-pyridin-dicarbonsäure-(2.3), 4-Methyl-5-åthyl-chinolinsäure $C_{10}H_{11}O_4N$, Formel I.
- 2. 4.5.6-Trimethyl-pyridin-dicarbonsäure-(2.3), 4.5.6-Trimethyl-chinolinsäure C₁₀H₁₁O₄N, s. nebenstehende Formel. B. Aus CH₃. CO₂H
 4.5.6-Trimethyl-2-oxymethyl-nicotinsäure (S. 223) durch Oxydation mit Kaliumpermanganat (Wolff, A. 322, 371). Wasserfreie Krystalle (aus Alkohol), Krystalle mit 1 H₂O (aus Wasser). F: 194—195° (Zers.). Schwer löslich in kaltem Alkohol, Äther, Chloroform und Wasser. Beim Schmelzen oder beim Erhitzen mit Wasser auf 160—170° entsteht 2.3.4-Trimethyl-pyridin-carbonsäure-(5) (S. 54). Liefert beim Oxydieren mit Kaliumpermanganat in verd. Kalilauge auf dem Wasserbad 4.6-Dimethyl-pyridintricarbonsäure-(2.3.5) (S. 187).
- 3. 2.4.6 Trimethyl pyridin dicarbonsäure (3.5), 2.4.6 Trimethyl dinicotinsäure, Kollidin dicarbonsäure (3.5) HO2C. CO2H C10H11O4N, s. nebenstehende Formel. B. Man versetzt 1.4-Dihydro-kollidin-dicarbonsäure-(3.5)-diäthylester mit der gleichen Gewichtsmenge Alkohol und leitet unter schwacher Kühlung solange nitrose Gase ein, bis eine Probe des Reaktionsgemisches sich in verd. Salzsäure klar auflöst; der entstandene Kollidin-dicarbonsäure-(3.5)-diäthylester wird durch Erwärmen mit alkoh. Kalilauge auf dem Wasserbad verseift (HANTZSCH, A. 215, 21, 26; vgl. L. GATTERMANN, Die Praxis des organischen Chemikers, 22. Aufl. von H. Wieland [Berlin-Leipzig 1930], S. 348; E. Fischer, Anleitung zur Darstellung organischer Präparate, 10. Aufl. [Braunschweig 1922], S. 30). Nadeln (aus Wasser). Zersetzt sich beim Erhitzen, ohne zu schmelzen; sehr schwer löslich in Alkohol und Äther (H.). Liefert beim Erhitzen für sich (MICHAEL, A. 225, 122) oder besser im Gemisch mit Silberpulver (Koenigs, Mengel, B. 87, 1336) 2.4.6-Trimethyl-pyridin-carbon-

- säure-(3). Beim Erhitzen des Calciumsalzes oder besser eines Alkalisalzes der Kollidindicarbonsäure-(3.5) mit gelöschtem Kalk oder Natronkalk entsteht 2.4.6-Trimethyl-pyridin (H., A. 215, 32; K., ME., B. 37, 1335). Bei der Oxydation mit Kaliumpermanganat erhält man je nach den Bedingungen 4.6-Dimethyl-pyridin-tricarbonsäure-(2.3.5) (S. 187), 4-Methyl-pyridin-tetracarbonsäure-(2.3.5.6) (S. 189) und Pyridin-pentacarbonsäure (S. 190) (H., A. 215, 52; Weber, A. 241, 15, 20). Reagiert mit Brom weder in saurer noch in alkal. Lösung; bei der Einw. von Brom auf die wäßr. Lösung des Kaliumsalzes entsteht 3.5-Dibrom-2.4.6-trimethyl-pyridin (Bd. XX, S. 252) (Pfefffer, B. 20, 1345). K₂C₁₀H₉O₄N. Zerfließliche Nadeln. Schwer löslich in Alkohol, sehr leicht in Wasser (H.). Ag₂C₁₀H₉O₄N. Niederschlag (H.). MgC₁₀H₉O₄N+1,5 bis 2 H₂O. Amorph. Sehr leicht löslich in Wasser (H.). CaC₁₀H₉O₄N+H₂O. Nadeln (H.). BaC₁₀H₉O₄N+3H₂O. Krystallinisch. Leicht löslich in Wasser (H.). C₁₀H₁₁O₄N+HCl+2H₂O. Krystalle. Schwer löslich in Alkohol (H.). 2C₁₀H₁₁O₄N+2HCl+PtCl₄. Krystallinische Masse. Etwas leichter löslich in Wasser als das salzsaure Salz (H.).
- 2.4.6 Trimethyl pyridin dicarbonsäure (3.5) dimethylester $C_{12}H_{15}O_4N=NC_5(CH_3)_3(CO_2\cdot CH_3)_2$. B. Analog dem Diäthylester (Hantzsch, B. 16, 1947). Nadeln (aus Wasser). F: 82°; Kp: 285—287° (H.). Verbrennungswärme bei konstantem Volumen: 1460,3 kcal/Mol (Stohmann, Ph. Ch. 10, 421). $C_{12}H_{15}O_4N+HCl+2H_2O$. Prismen. F: 99,5°; verliert über H_2SO_4 alles Wasser und schmilzt dann bei 142° (H.). Nitrat. F: 104°; zersetzt sich oberhalb 120° (H.). $C_{12}H_{15}O_4N+HCl+AuCl_3$. Hellgelbe Nadeln (aus Wasser). F: 103—105°; zersetzt sich oberhalb 180° (H.). $2C_{12}H_{15}O_4N+2HCl+PtCl_4$. Rotgelbe Blättchen. F: 200° (Zers.) (H.).
- 2.4.6 Trimethyl pyridin dicarbonsäure (3.5) monoäthylester $C_{12}H_{15}O_4N = NC_5(CH_2)_3(CO_2H) \cdot CO_2 \cdot C_2H_5$. B. Man kocht den Diäthylester (s. u.) mit 1 Mol alkoh. Kalilauge (Michael, A. 225, 124). Nadeln (aus Alkohol). Prismen mit 2 H₂O (aus Wasser). Verwittert an der Luft. Schmilzt wasserfrei bei 157°. Sehr leicht löslich in kaltem Wasser, leicht in heißem Alkohol, sehr schwer in Äther. Liefert beim Erhitzen über den Schmelzpunkt 2.4.6 Trimethyl pyridin carbonsäure (3) äthylester. $Cu(C_{12}H_{14}O_4N)_2$. Violettes Krystallpulver. Unlöslich in Wasser. $AgC_{12}H_{14}O_4N + C_{12}H_{15}O_4N + H_2O$. Prismen. $Ca(C_{12}H_{14}O_4N)_2 + 3H_2O$. Nadeln (aus Wasser). Leicht löslich in Wasser, löslich in Alkohol. $Ba(C_{12}H_{14}O_4N)_2$. Krystallisiert aus Wasser in Nadeln mit 3 H₂O, aus verd. Alkohol mit 1 H₂O. In kaltem Wasser schwerer löslich als das Calciumsalz; unlöslich in Alkohol. $Zn(C_{12}H_{14}O_4N)_2 + 5H_2O$. Nadeln oder Prismen. Verwittert an der Luft. Leicht löslich in heißem Wasser. $Cd(C_{12}H_{14}O_4N)_2 + 4H_2O$. Prismen. $C_{12}H_{15}O_4N + HCl$. Würfel (aus Alkohol). F: 178° (Zers.). Leicht löslich in Alkohol, sehr leicht in Wasser. $2C_{12}H_{16}O_4N + 4H_2O$. Prismen mit 2 H₂O (aus Wasser). Schmilzt wasserfrei bei 219° (Zers.). Schwer löslich in kaltem Alkohol, leicht in Wasser.
- 2.4.6 Trimethyl pyridin dicarbonsäure (8.5) diäthylester $C_{14}H_{19}O_4N = NC_5(CH_3)_8(CO_2 \cdot C_2H_5)_2$. B. S. 164 bei der Säure. Hellgelbe Flüssigkeit; riecht angenehm, schmeckt brennend. Kp: 308—310°; D^{15} : 1,087; leicht löslich in verd. Mineralsäuren (Hantzsch, A. 215, 22). Ultraviolettes Fluorescenzspektrum: Ley, v. Engelhardt, B. 41, 2991. $C_{14}H_{19}O_4N + HCl$. Sehr hygroskopische Krystallmasse (H.). $C_{14}H_{19}O_4N + HI$. Fast farblose Blättchen (aus Alkohol). F: 170—173° (Zers.); leicht löslich in kaltem Wasser, sehr schwer in kaltem Alkohol (H.). $C_{14}H_{19}O_4N + HI + 3I$. Violettschwarze Pyramiden (H.); monoklin prismatische Tafeln (Beckenkamp, Z. Kr. 33, 603; vgl. Groth, Ch. Kr. 5, 694). $C_{14}H_{19}O_4N + HNO_3$. Nadeln. F: 92°; zersetzt sich heftig bei 122°; äußerst leicht löslich in Wasser (H.). $2C_{14}H_{19}O_4N + 2HCl + PtCl_4$. Rötliche Tafeln. F: 184°; leicht löslich in Wasser, kaum löslich in Alkohol, unlöslich in Äther (H.).
- 2.4.6-Trimethyl-pyridin-dicarbonsäure-(3.5)-dinitril, 3.5-Dicyan-kollidin $C_{10}H_5N_3 = NC_5(CH_2)_3(CN)_2$. B. Aus 2.4.6-Trimethyl-3.5-dicyan-1.4-dihydro-pyridin beim Behandeln mit Natriumnitrit und Essigsäure (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 511). Schuppen (aus Wasser). F: 111°. Leicht löslich in organischen Lösungsmitteln. Liefert beim Oxydieren mit Kaliumpermanganat und nachfolgenden Erhitzen auf 180° 3.5-Dicyan-pyridin. Läßt sich durch heiße alkoholische Kalilauge oder heiße konzentrierte Salzsäure nicht verseifen. Chromat. Gelbe Blättchen. Pikrat. Gelbe Tafeln.
- **2.4.6 Trimethyl pyridin dicarbonsäure (3.5) diäthylester hydroxymethylat** $C_{18}H_{22}O_5N = (HO)(CH_8)NC_5(CH_8)_3(CO_2\cdot C_2H_5)_2$. B. Das Jodid entsteht beim Erhitzen gleicher Gewichtsmengen von 2.4.6-Trimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester und Methyljodid im Rohr auf 120° (Hantzsch, A. 215, 25; B. 17, 1020). Chlorid $C_{18}H_{22}O_4N\cdot Cl$. Krystalle (Ha.). Jodid $C_{18}H_{22}O_4N\cdot I$. Nadeln (aus Alkohol + Äther). F: ca. 140°; äußerst leicht löslich in Wasser und Alkohol, unlöslich in Äther; reagiert sauer (Ha.). Wird aus wäßr.

Lösung durch verd. Natronlauge unverändert gefällt, beim Behandeln mit konz. Kalilauge dagegen entsteht 1.2.4-Trimethyl-5-acetyl-pyridon-(6)-carbonsäure-(3)-äthylester (Syst. No. 3367) (Ha.; vgl. Mumm, Hingst, B. 56 [1923], 2307; M., A. 448 [1925], 279). — 2C₁₅H₂₂O₄N·Cl +PtCl. Gelbe Prismen. Löslich in Wasser und heißem Alkohol (HA.).

5. 2.6 - Dimethyl - 4 - äthyl - pyridin - dicarbonsäure - (3.5), C_2H_5 2.6-Dimethyl-4-äthyl-dinicotinsäure $C_{11}H_{13}O_4N$, s. nebenstehende Formel. B. Beim Einleiten von nitrosen Gasen in eine alkoh. Suspension von 2.6-Dimethyl-4-äthyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester und nachfolgenden Verseifen des entstandenen Diäthylesters mit überschüssiger konzentrierter alkoholischer Kalilauge im Rohr bei 100° (Engelmann, A. 231, 40, 41). — Bitter schmeckende Prismen. F: 289—290° (Zers.). Ziemlich leicht löslich in kaltem Wasser und Alkohol; leicht löslich in heißer Salzsäure. — Das Kaliumsalz liefert beim Erhitzen mit Kalk im Wasserstoffstrom 2.6-Dimethyl-4-äthyl-pyridin. Das Kaliumsalz gibt mit wäßr. Ferrichlorid-Lösung eine dunkelrote Färbung. — Kaliumsalz. Fast farblose, hygroskopische Krystallmasse. Sehr leicht löslich in Alkohol. — $BaC_{11}H_{11}O_4N + 3H_2O$. Blättchen. Sehr leicht löslich in Wasser. — $2C_{11}H_{12}O_4N + HCl + H_2O$. Prismen.

Diäthylester $C_{15}H_{21}O_4N = NC_5(CH_3)_2(C_2H_5)(CO_2 \cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Schwach aromatisch riechende Flüssigkeit. Kp: 305—308° (E., A. 231, 40). B. s. im vorangehenden Leicht löslich in den üblichen organischen Lösungsmitteln, unlöslich in Wasser. — $2C_{15}H_{21}O_4N$ +2HCl+PtCl₄. Rote Prismen (aus Alkohol). F: 139°. Schwer löslich in Alkohol, leichter in Wasser.

6. 2.6 - Dimethyl - 4 - propyl - pyridin - dicarbonsäure - (3.5), $CH_2 \cdot C_2H_5$ 2.6-Dimethyl-4-propyl-dinicotins aure $C_{12}H_{15}O_4N$, s. neben- HO_2C stehende Formel. B. In eine alkoh. Suspension von 2.6-Dimethyl-4-propyl- $_{\text{CH}_3}$ \downarrow $_{\text{N}}$ \downarrow $_{\text{CH}_3}$ 1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester leitet man nitrose Gase ein und verseift den entstandenen Diäthylester durch nacheinanderfolgendes Kochen mit alkoh. Kalilauge und konzentrierter wäßriger Kalilauge (JAECKLE, A. 246, 35, 36). — Prismen mit 1 H₂O (aus Wasser). Schmilzt wasserhaltig bei 211—212°, wasserfrei bei 247°. Sehr leicht löslich in heißem Wasser. — Das Kaliumsalz liefert beim Erhitzen mit Kalk 2.6-Dimethyl-4-propyl-pyridin.

Diäthylester $C_{16}H_{89}O_4N = NC_5(CH_2)_3(CH_2 \cdot C_2H_5)(CO_2 \cdot C_2H_5)_3$. B. s. im vorangehenden Artikel. — Gelbliches Öl. $Kp_{714,8}$: 308° (J., A. 248, 36). — $2C_{16}H_{23}O_4N + 2HCl + PtCl_4$. Orangefarbene Prismen. F: 187°.

7. 2.6-Dimethyl-4-isobutyl-pyridin-dicarbonsäure-(3.5), 2.6 - Dimethyl - 4 - isobutyl - dinicotinsäure C₁₃H₁₇O₄N, s. HO₂C · CO₂H nebenstehende Formel. B. Man leitet nitrose Gase in ein Gemisch CH₃. CH₃ · CH₃ aus 2.6-Dimethyl-4-isobutyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diathylester und Alkohol ein und verseift den entstandenen 2.6-Dimethyl-4-isobutyl-pyridindicarbonsaure-(3.5)-diathylester durch Kochen mit überschüssiger alkoholischer Kalilauge zum Monoäthylester und diesen durch Kochen mit konzentrierter wäßriger Kalilauge zur freien Säure (Engelmann, A. 231, 57, 62). — Monokline Prismen mit 2 H₂O (aus Wasser). Schmilzt wasserfrei bei 273° (Zers.). Leicht löslich in heißem Alkohol, ziemlich schwer in kaltem Wasser; löslich in Salzsäure. — Das Kaliumsalz liefert beim Erhitzen mit Kalk 2.6-Dimethyl-4-isobutyl-pyridin. — $CaC_{13}H_{15}O_4N + 3H_2O$. Pyramiden. Leicht löslich in Wasser. — $BaC_{13}H_{15}O_4N + 5H_2O$. Krystalle. Leicht löslich in Wasser. — $C_{13}H_{17}O_4N + HCl$. Krystalle. Leicht löslich in heißem Alkohol, ziemlich schwer in kaltem Wasser.

Monoäthylester $C_{15}H_{21}O_4N = NC_5(CH_3)_2[CH_2 \cdot CH(CH_3)_2](CO_2H) \cdot CO_2 \cdot C_2H_5$. B. s. im vorangehenden Artikel. — Prismen (aus Wasser). F: 135°; zersetzt sich oberhalb 230° (E., 4. 231, 61). Leicht löslich in Wasser und Alkohol. — $Ca(C_{15}H_{20}O_4N)_3 + 4H_2O$. Blättchen. — $Ba(C_{15}H_{20}O_4N)_2 + 5H_2O$. Blättchen. Ziemlich leicht löslich in Wasser. — $C_{15}H_{21}O_4N + HCl + 2H_2O$. Prismen. Leicht löslich in Alkohol und Wasser.

Diäthylester $C_{17}H_{25}O_4N=NC_5(CH_3)_2[CH_2\cdot CH(CH_3)_2](CO_2\cdot C_2H_5)_2$. B. s. o. bei der freien Säure. — Schwach und angenehm riechendes Öl. Kp: 312—318° (E., A. 231, 59). Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser. — $C_{17}H_{25}O_4N+HCl$. Nadeln. Wird durch Wasser hydrolysiert. — $2C_{17}H_{25}O_4N+2HCl+PtCl_4$. Prismen (aus Wasser). F: 207—208° (Zers.).

Diäthylester $C_{19}H_{99}O_4N=NC_5(CH_9)_2([CH_2]_5\cdot CH_3)(CO_2\cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Gelbbraunes Öl (J., A. 246, 40). — $2C_{19}H_{29}O_4N+2HCl+PtCl_4$. Hellorangefarbene Blättchen. F: 141°.

9. 2.6 - Dimethyl-4-n-tridecyl-pyridin-dicarbonsäure-(3.5), 2.6 - Dimethyl-4-n-tridecyl-dinicotinsäure HO2C
C32H C32H 35O4N, s. nebenstehende Formel. B. Beim Einleiten von nitrosen CH2. CH3
CGASEN in eine schwach erwärmte alkoholische Lösung von 2.6-Dimethyl-4-n-tridecyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester und nacheinanderfolgenden Erwärmen des entstandenen Diäthylesters mit alkoholischer und wäßriger Kalilauge (KRAFFT, MAI, B. 22, 1758). — Das salzsaure Salz liefert beim Erhitzen mit Natronkalk 2.6-Dimethyl-4-n-tridecyl-pyridin. — C22H35O4N+HCl. Krystallpulver. Beginnt bei 100° sich zu zersetzen. Sehr leicht löslich in Alkohol.

Diäthylester $C_{26}H_{43}O_4N=NC_5(CH_3)_2(CH_2\cdot [CH_2]_{11}\cdot CH_3)(CO_2\cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Gelbliches Öl. Erstarrt nicht in Kältemischung (Kr., M., B. 22, 1758). Kp₁₀: 265°. Löslich in Äther. — $C_{26}H_{43}O_4N+HCl$. Nadeln.

4. Dicarbonsăuren $C_n H_{2n-11} O_4 N$.

2.6 - Dimethyl - 4 - phenyl - piperidin - dicarbonsäure - (3.5), 2.6 - Dimethyl - 4 - phenyl - hexahydrodinicotinsäure $C_{15}H_{19}O_4N=HO_3C\cdot HC\cdot CH(C_6H_5)\cdot CH\cdot CO_3H$

CH₃·HC—NH—CH·CH₃

B. Durch Reduktion von 2.6-Dimethyl-4-phenyl-pyridin-dicarbonsāure-(3.5) mit überschüssigem Natrium in Amylalkohol (Kirchner, B. 25, 2789).

— Die freie Säure ist sehr unbeständig. — Kupfersalz. Grün, amorph. Zersetzt sich bei 280°. Unlöslich in Wasser. — Silbersalz. Hellgelb, amorph. F: 220° (Zers.). Sehr schwer löslich in Wasser. — Bariumsalz. Schmilzt krystallwasserhaltig bei 92° und zersetzt sich wasserfrei bei 258°. Sehr leicht löslich in Wasser, sehr schwer in Alkohol. — HgC₁₅H₁₇O₄N. F: 136°. — C₁₅H₁₉O₄N + HCl + H₂O. Nadeln (aus konz. Salzsäure). Zersetzt sich bei 275° bis 280°. Sehr leicht löslich in Wasser.

 $\begin{array}{l} \textbf{1.2.6-Trimethyl-4-phenyl-piperidin-dicarbons\"{a}ure-(3.5)-dimethylester} & C_{18}H_{25}O_4N\\ & \overset{CH_3\cdot O_2C\cdot HC\cdot CH(C_6H_5)\cdot CH\cdot CO_2\cdot CH_3}{CH_3\cdot HC-N(CH_3)-CH\cdot CH_3}. & B. & Das Hydrojodid entsteht aus dem Natriumsalz der 2.6-Dimethyl-4-phenyl-piperidin-dicarbons\"{a}ure-(3.5) und überschüssigem Methyljodid (Kirchner, B. 25, 2790). — <math>C_{18}H_{25}O_4N+HCl+AuCl_3$. Hellgelb, amorph. F: 68°. — $2C_{18}H_{25}O_4N+2HCl+PtCl_4$. Amorph. F: 185° (Zers.). Leicht löslich in Salzs\"{a}ure.

 $\begin{array}{l} \textbf{1-\ddot{A}thyl-2.6-dimethyl-4-phenyl-piperidin-dicarbons\"{a}ure-(3.5)-di\"{a}thylester} \\ \textbf{C}_{21}\textbf{H}_{31}\textbf{O}_{4}\textbf{N} = & \textbf{C}_{2}\textbf{H}_{5}\cdot\textbf{O}_{2}\textbf{C}\cdot\textbf{HC}\cdot\textbf{CH}(\textbf{C}_{6}\textbf{H}_{5})\cdot\textbf{CH}\cdot\textbf{CO}_{2}\cdot\textbf{C}_{2}\textbf{H}_{5}} \\ \textbf{C}_{11}\textbf{H}_{31}\textbf{O}_{4}\textbf{N} = & \textbf{C}_{11}\textbf{H}_{2}\cdot\textbf{N}(\textbf{C}_{2}\textbf{H}_{5})\cdot\textbf{CH}\cdot\textbf{CH}_{3} \\ \textbf{C}\textbf{H}_{3}\cdot\textbf{HC}\cdot\textbf{N}(\textbf{C}_{2}\textbf{H}_{5})\cdot\textbf{CH}\cdot\textbf{CH}_{3} \\ \textbf{Silbersalz der 2.6-Dimethyl-4-phenyl-piperidin-dicarbons\"{a}ure-(3.5) und \"{A}thyljodid in siedendem Alkohol (Kirchner, B. 25, 2791). — Chloroaurat. Würfel (aus alkoh. Salzs\"{a}ure). \\ \textbf{F: 164^{\circ}.} & \textbf{2C}_{21}\textbf{H}_{31}\textbf{O}_{4}\textbf{N} + \textbf{2}\textbf{HC}l + \textbf{PtC}l_{4}. \text{ Schmilzt bei 165^{\circ}, zersetzt sich bei 180^{\circ}.} \end{array}$

1-Nitroso-2.6-dimethyl-4-phenyl-piperidin-dicarbonsäure-(3.5) $C_{15}H_{18}O_5N_2 = HO_2C \cdot HC \cdot CH(C_6H_5) \cdot CH \cdot CO_2H$ $CH_3 \cdot HC - N(NO) - CH \cdot CH_3$ 25, 2789). Sehr leicht löslich in Alkohol und Äther, sehr schwer in Wasser.

5. Dicarbonsäuren $C_n H_{2n-13} O_4 N$.

1. Dicarbonsäuren $C_{10}H_7O_4N$.

 Indol-dicarbonsäure-(2.3), Indol-α.β-dicarbonsäure C₁₀H₂O₄N, s. nebenstehende Formel.

NH C.CO2H

N - Methyl - indol - $\alpha.\beta$ - dicarbonsäure $C_{11}H_0O_4N = C_6H_4 < \frac{C(CO_2H)}{N(CH_3)} > C \cdot CO_2H$. B. Aus dem Kaliumsalz des Monoäthylesters (s. u.) durch Erhitzen mit wäßr. Kalilauge (Reif, B. 42, 3039). — Prismen (aus verd. Alkohol). F: ca. 2180 (korr.; Zers.). Sehr schwer löslich in kaltem Wasser, Äther, Benzol und Ligroin, ziemlich leicht in heißem Alkohol und Chloroform. — Gibt beim Erhitzen auf den Schmelzpunkt N-Methyl-indol. Geht beim Erwärmen mit Acetanhydrid oder Acetylchlorid in N-Methyl-indol-α.β-dicarbonsäureanhydrid (s. nebenstehende Formel; Syst. No. 4298) über. — Gibt keine Fichtenspan-Reaktion.

CH₃

N-Methyl-indol- $\alpha.\beta$ -dicarbonsäure-monoäthylester $C_{13}H_{13}O_4N=CH_3\cdot NC_8H_4$ ($CO_2H)\cdot CO_2\cdot C_2H_5$. B. Beim Erwärmen des Diäthylesters (s. u.) mit $20^0/_0$ iger alkoh. Kalilauge auf dem Wasserbad (Reif, B. 42, 3039). — Nadeln (aus verd. Alkohol). F: ca. 1580 (korr.; Zers.). Leicht löslich in Alkohol, Benzol und Chloroform, schwerer in Äther und Petroläther. - Kaliumsalz. Blättchen. Sehr schwer löslich in Alkohol.

N-Methyl-indol- $\alpha.\beta$ -dicarbonsäure-diäthylester $C_{15}H_{17}O_4N=CH_3\cdot NC_8H_4(CO_2\cdot C_2H_5)_2$. B. Beim Erhitzen von Oxalessigsäure-diäthylester-methylphenylhydrazon (Bd. XV, S. 375) mit Zinkchlorid auf ca. 125° (Reif, B. 42, 3038). — Fäkalartig riechendes Öl. Mit Wasserdampf flüchtig. Löslich in den gebräuchlichen Lösungsmitteln.

N-Methyl-indol- $\alpha.\beta$ -dicarbonsäure-dichlorid $C_{11}H_7O_2NCl_2=CH_3\cdot NC_6H_4(COCl)_2$. B. Aus N-Methyl-indol- $\alpha.\beta$ -dicarbonsäure und 2 Mol Phosphorpentachlorid in Petroläther (Reif, B. 42, 3040). — Nadeln (aus Benzol). Färbt sich von 82° an gelb und schmilzt bei etwas höherer Temperatur. Schwer löslich in Petroläther.

f N - Methyl - indol - lpha.eta - dicarbons aure - monoamid $C_{11}H_{10}O_3N_2=CH_3\cdot NC_8H_4(CO_2H)\cdot MC_4H_4$ CO NH. B. Das Ammoniumsalz entsteht beim Einleiten von trocknem Ammoniak in eine Lösung von N-Methyl-indol-α.β-dicarbonsäureanhydrid (Syst. No. 4298) in heißem Benzol

I.
$$(CH_3)$$
 (CH_3) (CH_3)

(Reif, B. 42, 3043). — Prismen (durch Ansäuern alkal. Lösungen). F: ca. 2040 (korr.; Zers.). Leicht löslich in organischen Lösungsmitteln außer Äther und Petroläther. Leicht löslich in Alkalilauge und Ammoniak. — Gibt mit alkal. Natriumhypochlorit-Lösung die Verbindung C₁₁H₈O₃N₂ (Formel I oder II; Syst. No. 4566). — NH₄C₁₁H₉O₃N₂. Leicht löslich in Wasser.

N-Methyl-indol- $\alpha.\beta$ -dicarbonsäure-äthylester-amid $C_{13}H_{14}O_3N_2=CH_3\cdot NC_8H_4(CO_2\cdot C_2H_5)\cdot CO\cdot NH_2$. B. Durch Umsetzung des Monoäthylesters (s. o.) mit Phosphorpentachlorid in Petroläther bei 40° und Behandlung des entstandenen Athylester-chlorids mit kaltem wäßrigem Ammoniak (Reif, B. 42, 3042). — Nadeln (aus Benzol oder Petroläther). F: 2010 (korr.; geringe Zers.). Sehr schwer löslich in Wasser und Äther, leichter in Petroläther, leicht in warmem Benzol, Chloroform und Alkohol. Löslich in heißen verdünnten Säuren und Alkalien.

N-Methyl-indol- $\alpha.\beta$ -dicarbonsäure-diamid $C_{11}H_{11}O_2N_3=CH_3\cdot NC_8H_4(CO\cdot NH_2)_2$. B. Aus dem Dichlorid (s. o.) und äther. Ammoniak-Lösung in der Kälte (Reif, B. 42, 3041). — Nadeln (aus Wasser oder verd. Alkohol). F: ca. 267° (korr.; geringe Zers.). Löslich in ca. 300 Tln. heißem Wasser. Fast unlöslich in Äther, ziemlich schwer löslich in Benzol und Chloroform, leicht in Alkohol. Ziemlich leicht löslich in Säuren.

HO₂C 2. Indol-dicarbonsäure- $\begin{array}{c|c} CH & IV. & CH \\ NH & C \cdot CO_2H & HO_2C \cdot \\ \hline \end{array}$ (2.4 oder 2.6) C₁₀H₇O₄N, For-III. mel III oder IV 1). B. Der Monoäthylester (S. 169) entsteht neben anderen Produkten bei kurzem Erhitzen von Brenztraubensäureäthylester-[3-carbäthoxyphenylhydrazon] (Bd. XV, S. 630) mit Zinkchlorid auf 215-220°; man verseift den Ester

¹⁾ Über Indol-dicarbonsäure-(2.6) vgl. nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] KERMACK, Soc. 125, 2288.

durch Erwärmen mit 25% eiger Kalilauge (Roder, A. 236, 168, 170). — Nadeln (aus Alkohol). Schmilzt unter Zersetzung oberhalb 250%. Schwer löslich in Wasser und Äther, ziemlich leicht in heißem Alkohol und Eisessig.

Monoäthylester $C_{12}H_{11}O_4N = HNC_8H_4(CO_2H) \cdot CO_2 \cdot C_2H_5$. B. s. im vorangehenden Artikel. — Nadeln (aus Eisessig). Schmilzt unter Zersetzung oberhalb 250° (Roder, A. 236, 170). Sehr schwer löslich in Wasser, ziemlich schwer in Äther, ziemlich leicht in heißem Alkohol sowie in verd. Alkalien.

C₆H₅·CH:C(CO₂H)·HC·NH·CH·CO₂H

C₈H₅·CH:C(CO₃H)·HC·N(CH₃)·CH·CO₂H

B. Durch Oxydation von 2.4-Dibenzal-tropinon C₈H₅·CH:C(CO₃H)·HC·N(CH₃)·CH·CO₂H

(Bd. XXI, S. 359) mit Chromsäure in verd. Schwefelsäure (Willstätter, B. 31, 1589). —

Prismen mit 1 H₂O (aus Wasser); wird über konz. Schwefelsäure wasserfrei; die wasserfreie Substanz ist sehr hygroskopisch. F: 190—191° (Zers.). Löslich in 3 Tln. heißem und in 12 Tln. kaltem Wasser, ziemlich schwer löslich in siedendem Alkohol, sehr schwer in kaltem Aceton und Chloroform, unlöslich in Äther. Verhält sich bei der Titration mit Natronlauge gegen Phenolphthalein wie eine einbasische Säure. — Entfärbt saure wie alkalische Permanganat-Lösung. — Gibt die Fichtenspan-Reaktion. — C₁₅H₁₇O₄N + HCl. Prismen. F: 244° (Zers.). Sehr leicht löslich in siedendem Wasser und Alkohol, leicht in kaltem Wasser, sehr schwer in kaltem Alkohol. — C₁₅H₁₇O₄N + HBr. Prismen und Tafeln (aus Wasser). Zersetzt sich bei 252—253°. Leicht löslich in heißem Wasser. — 2C₁₅H₁₇O₄N + HCl + AuCl₃. Blätter (aus Wasser). Zersetzt sich bei 192—193°. Ziemlich leicht löslich in siedendem, sehr schwer in kaltem Wasser. — C₁₅H₁₇O₄N + HCl + AuCl₃. Prismen (aus verd. Goldchlorwasserstoff-säure).

Dimethylester $C_{17}H_{21}O_4N = \frac{H_2C$ —— CH_8 $C_6H_5 \cdot CH : C(CO_2 \cdot CH_3) \cdot HC \cdot N(CH_5) \cdot CH \cdot CO_2 \cdot CH_3$ Durch Einleiten von Chlorwasserstoff in eine methylalkoholische Lösung von Benzaltropinsäure (WILLSTÄTTER, B. 31, 1592). — Blättchen oder Nadeln (aus verd. Alkohol oder wäßr. Aceton). F: 67—69°. Leicht löslich in Alkohol, Aceton und Äther, unlöslich in Wasser.

6. Dicarbonsäuren $C_n H_{2n-15} O_4 N$.

1. Dicarbonsäuren $C_{11}H_7O_4N$.

1. Chinolin-dicarbonsäure-(2.3), Acridinsäure C₁₁H₇O₄N, s. nebenstehende Formel. B. Bei langsamem Zufügen von Kaliumpermanganat-Lösung zu einer heißen, schwach alkalischen Lösung von Acridin (Graebe, Caro, B. 13, 100). —Nadeln mit 2H₂O (aus Wasser oder Alkohol); gibt bei längerem Aufbewahren über Schwefelsäure oder beim Erwärmen auf 80—90° 1 H₂O ab; ebenso erhält man beim Erwärmen mit wenig Wasser Tafeln mit 1 H₂O, die beim Auflösen in Wasser wieder in die Nadeln übergehen (G., C.). Leicht löslich in Alkohol, sehr schwer in kaltem Wasser und in Äther (G., C.). — Gibt beim Erhitzen auf 120—130° Chinolin-carbonsäure-(3), bei der Destillation mit Calciumhydroxyd Chinolin (G., C.). — Gibt mit Ferrosulfat in wäßr. Lösung eine rotgelbe Färbung (Skraup, M. 7, 213).

2. Chinolin - dicarbonsäure - (2.4) C₁₁H₇O₄N, s. nebenstehende
Formel. B. Aus Brenztraubensäure und isatinsaurem Kalium in heißer
Kalilauge (Pfitzinger, J. pr. [2] 56, 308). Durch Oxydation von 2-Styrylchinolin - carbonsäure - (4) mit Kaliumpermanganat in verd. Natronlauge
(Doebner, Peters, B. 22, 3009). — Nadeln (aus Wasser). F: 246° (Zers.) (D., Pe.), 245°
(Zers.) (Pf.). Schwer löslich in kaltem Wasser, Alkohol und Äther, unlöslich in Benzol, Chloroform und Petroläther (D., Pe.). — Gibt bei vorsichtigem Erhitzen auf 240° (Pf.) oder beim
Kochen mit Phenol (Koenigs, Mengel, B. 37, 1330) Chinolin-carbonsäure-(4), beim Erhitzen
mit Ätzkalk (D., Pe.) Chinolin. — K₂C₁₁H₅O₄N + 2½₂H₂O. Nadeln (aus verd. Alkohol). Wird
erst bei 170° völlig wasserfrei (Pf.). Sehr leicht löslich in Wasser, sehr schwer in absol. Alkohol

und in konz. Kalilauge. — $CuC_{11}H_5O_4N+H_3O$. Blaugrün; schwer löslich in Wasser (D., Pe.). — $Ag_2C_{11}H_5O_4N$. Gelatinös (D., Pe.). — $CaC_{11}H_5O_4N$. Nadeln (D., Pe.). — $BaC_{11}H_5O_4N$ (bei 120°). Nadeln (D., Pe.).

Chinolin-dicarbonsäure - (2.4) - nitril - (2), 2-Cyan-cinchoninsäure C₁₁H₆O₂N₂, s. nebenstehende Formel. B. Beim Erhitzen von 2-Oximinomethyl-cinchoninsäure (Syst. No. 3366) mit Acetanhydrid und Schmelzen der entstandenen Acetylverbindung (Pfitzinger, J. pr. [2] 66, 264). — Nadeln. F: 226°. — Liefert bei der Verseifung Chinolin-dicarbonsäure-(2.4).

- 3. Chinolin dicarbonsäure (2.6) $C_{11}H_7O_4N$, s. nebenstehende Formel. B. Durch Oxydation von 2-Styryl-chinolin-carbonsäure-(6) mit Chromschwefelsäure auf dem Wasserbad (v. MILLER, B. 23, 2261). Krystallinisch. Schmilzt unter Zersetzung bei 275—280°. $CuC_{11}H_5O_4N$. Hellgrünes Pulver.
- 4. Chinolin dicarbonsäure (5.6) C₁₁H₂O₄N, s. nebenstehende Formel. B. Durch Oxydation von x'.x'-Diamino-[benzo-1'.2':5.6-chinolin] (Syst. No. 3412) mit Kaliumpermanganat in Wasser oder mit Chromsäure in verd. Schwefelsäure (Hepner, M. 27, 1060, 1062). Blättehen mit 1H₂O (aus verd. Salzsäure oder Salpetersäure). F: 238—241° (Zers.). Schwer löslich in Wasser, Alkohol und Äther. Fällungsreaktionen: H., M. 27, 1065. CuC₁₁H₅O₄N + Cu(OH)₂ + aq. Hellgrün. Zersetzt sich bei ca. 260° unter Dunkelfärbung. PbC₁₁H₅O₄N + V₂H₂O (bei 105°). Gelbliche, mikroskopische Prismen. C₁₁H₂O₄N + HCl. Prismen (aus konz. Salzsäure). Wird durch Wasser leicht hydrolysiert. C₁₁H₂O₄N + HNO₃ + H₂O. Nadeln (aus Salpetersäure). Zersetzt sich bei 208—210°. 2C₁₁H₂O₄N + 2HCl + PtCl₄. Bräunlichgelbe Nadeln. Zersetzt sich oberhalb 240°.
- 5. Chinolin-dicarbonsäure-(5.8) C₁₁H₇O₄N, s. nebenstehende Formel.

 B. Durch Erhitzen von Aminoterephthalsäure mit Glycerin, o-Nitro-phenol und konz. Schwefelsäure auf 160—180° (Skraup, Brunner, M. 7, 149). Nadeln mit 2H₂O (aus sehr verd. Salzsäure). F: 268—270°. Sehr schwer löslich in kaltem Wasser. Gibt beim Erhitzen auf 270—280° Chinolin-carbonsäure-(5) und Chinolin-carbonsäure-(8). Fällungsreaktionen: Sk., B., M. 7, 150. 2CuC₁₁H₅O₄N + Cu(OH)₂ + H₂O. Grünlichblau. C₁₁H₇O₄N + HCl + 1½, H₂O. Krystallpulver. Wird durch Wasser hydrolysiert. 2C₁₁H₇O₄N + 2HCl + PtCl₄. Gelbrotes Krystallpulver. Wird durch Wasser und Alkohol zersetzt.
- 6. Chinolin dicarbonsāure (7.8) $C_{11}H_7O_4N$, s. nebenstehende Formel. B. Aus den bei 151° und bei 175° schmelzenden x'-Amino-[benzo-1'.2':7.8-chinolinen] (Syst. No. 3399) bei der Oxydation mit Kaliumpermanganat in wäßr. Lösung (Haid, M. 27, 333, 335). Prismen oder Nadeln mit HO_2C (2crs.). Schwer löslich in siedendem Alkohol und in kaltem Wasser. Zersetzt sich teilweise bei der Destillation mit Wasserdampf. Fällungsreaktionen: H., M. 27, 340. Na $C_{11}H_6O_4N + 3H_2O$. Tafeln. Zersetzt sich von 260° an, schmilzt nicht bis 300°. Sehr leicht löslich in warmem, ziemlich schwer in kaltem Wasser. $Cu(C_{11}H_6O_4N)_2$. Blaugrüne Prismen. Unlöslich in Wasser und Alkohol. $CuC_{11}H_5O_4N + \frac{1}{2}H_2O$. Heilblaue Prismen. Wird beim Trocknen grün. Unlöslich in Wasser. Hydrochlorid. Prismen. F: 212° (Zers.). Wird durch Wasser hydrolysiert.
- 7. Chinolin-dicarbonsäure-(x.x) $C_{11}H_7O_4N = NC_9H_5(CO_2H)_2$. B. Durch Kochen des Dinitrils (s. u.) mit Natronlauge (LA COSTE, VALEUR, B. 20, 100). Nadeln mit $1H_2O$ (aus Wasser). F: 268—270°. Schwer löslich in Alkohol, Äther, Benzol und Chloroform.

Dinitril, x.x-Dicyan-chinolin $C_{11}H_5N_3=NC_9H_5(CN)_2$. B. Aus dem Kaliumsalz der α -Chinolindisulfonsäure (Syst. No. 3379) bei der Destillation mit 2 Mol Kaliumcyanid (La Coste, Valeur, B. 20, 99). — Nadeln (aus Alkohol). F: 220—222°. Unlöslich in Wasser, schwer löslich in Äther, Benzol und Chloroform. Leicht löslich in Säuren und Alkalien.

2. Dicarbonsäuren $C_{12}H_9O_4N$.

1. 5 - Phenyl - pyrrol - dicarbonsäure - (2.3) (?) $C_{12}H_{0}O_{4}N = HC - C \cdot CO_{2}H$ $C_{6}H_{5} \cdot C \cdot NH \cdot C \cdot CO_{2}H$ (?). B. Beim Schmelzen von 6-Methyl-1.3-diphenyl-1.4-dihydropyridazin-carbonsäure-(5)-äthylester (Syst. No. 3647) mit Kaliumhydroxyd (Borsche, Spannagel, A. 831, 303, 311). — Nadeln (aus verd. Methanol). F: 250°.

CO₂H

· C2H5

CO₂H

- 2. Chinolin-carbonsaure-(3 oder 4)-essigsaure-(2). Chinaldin-3. ω -oder 4. ω -dicarbonsaure $C_{12}H_{9}O_{4}N$, Formel I oder II. B. Aus Aceton- α . α '-dicarbonsaurediathylester und isatinsaurem Kalium in ¬·CO2H alkal. Lösung bei gewöhnlicher Temperatur (Engelhard, J. pr. [2] 57, 476). — Blaßgelbe Nadeln mit 1 H₂O (aus Wasser). N J. CH2 · CO2H · CH2·CO2H F: 228—229°. Sublimiert beim Erhitzen auf 140—150° unter teilweiser Zersetzung. — $Ag_2C_{12}H_7O_4N + aq.$
- 3. 2 Methyl chinolin dicarbonsäure (3.4), Chinaldin-CO₂H dicarbonsaure-(3.4) C₁₂H₉O₄N, s. nebenstehende Formel. B. Aus Acet-·CO₂H essigester und isatinsaurem Kalium in alkal. Lösung bei gewöhnlicher Tem-J-CH₃ peratur (Pfitzinger, J. pr. [2] 56, 316; vgl. Engelhard, J. pr. [2] 57, N CH₃ 479). Aus dem Mononitril (s. u.) beim Kochen mit konz. Natronlauge (v. Walther, J. pr. [2] 67, 506). — Nadeln mit 1 H₂O (aus Wasser). F: 236—237° bei langsamem, ca. 245° bei raschem Erhitzen (Pf.); F: 238—239° (v. W.); gibt beim Erhitzen auf den Schmelzpunkt nur wenig Kohlendioxyd ab (Pf.; v. W.). Sehr schwer löslich in Wasser (Pf.). — Ag₂C₁₂H₇O₄N + aq. Schwer löslich in heißem Wasser (Pr.).
- 2 Methyl chinolin dicarbonsäure (3.4) nitril (3), 3 Cyan-CO₂H chinaldin - carbonsäure - (4), 2 - Methyl - 3 - cyan - cinchoninsäure $C_{12}H_8O_2N_2$, s. nebenstehende Formel. B. Aus Diacetonitril (Bd. III, S. 660) CN N J. CH3 und isatinsaurem Natrium in heißem Wasser (v. WALTHER, J. pr. [2] 67, 504). Tafeln (aus absol. Alkohol). F: 238º (Zers.). Löslich in Natronlauge. — Gibt beim Erhitzen auf den Schmelzpunkt 3-Cyan-chinaldin. Liefert beim Erhitzen mit Natronkalk Chinaldin. -Die Salze werden durch Wasser leicht hydrolysiert.
- CO₂H 4. 2 - Methyl - chinolin - dicarbonsäure - (4.6), Chinaldindicarbonsaure-(4.6) C₁₂H₉O₄N, s. nebenstehende Formel. B. Aus HO₂C. 4-Amino-benzoesäure, Brenztraubensäure und Acetaldehyd in siedendem absolutem Alkohol (v. MILLER, B. 23, 2262). — Pulver. Sintert bei 1600. — CuC₁₂H₂O₄N. Hellgrün, krystallinisch.
- 3. Dicarbonsäuren $C_{13}H_{11}O_4N$.
- 1. 4 Phenyl pyrrol carbonsäure (3) essigsäure (2) $C_{13}H_{11}O_4N=C_6H_5\cdot C$ —— $C\cdot CO_2H$ HC·NH·C·CH, ·CO,H

Dimethylester $C_{15}H_{15}O_4N = \frac{C_6H_5 \cdot C - C \cdot CO_3 \cdot CH_3}{H_0^2 \cdot NH \cdot C \cdot CH_3 \cdot CO_3 \cdot CH_3}$. B. Beim Erwärmen von Acetondicarbonsaure-dimethylester mit Phenacylamin-hydrochlorid (Bd. XIV, S. 49) und Natriumacetat in 75% jeger Essigsäure auf dem Wasserbad (Knorr, Lange, B. 35, 3004). – Krystalle (aus Methanol). F: 126°. Ziemlich leicht löslich in Alkohol, Äther, Benzol, Methanol und Eisessig.

- CO₂H 2 - Methyl-chinolin-carbonsäure-(4)-essigsäure-(3), Chinaldin - carbonsäure - (4) - essigsäure - (3) $C_{13}H_{11}O_4N$, s. nebenstehende Formel. B. Aus Lävulinsäure und isatinsaurem Kalium CH2 · CO2H in alkal. Lösung auf dem Wasserbad (Engelhard, J. pr. [2] 57, 474). — Gelbliche Blättchen oder Nadeln. F: ca. 280° (Zers.). — Gibt bei der Destillation mit Natronkalk 2.3-Dimethyl-chinolin. — Ag₂C₁₃H₂O₄N.
- 3. 2-Åthyl-chinolin-dicarbonsäure-(4.6) C₁₃H₁₁O₄N, s. nebenstehende Formel. B. Aus 4-Amino-benzoesäure, Brenztraubensaure und Propionaldehyd in siedendem absolutem Alkohol (v. MILLER, B. 23, 2262). — Amorphes Pulver.
- CO₂H 4. **2.6-Dimethyl-chinolin-dicarbons** $\mathbf{\ddot{a}ure}$ -(3.4) $\mathbf{C}_{13}\mathbf{H}_{11}\mathbf{O}_{4}\mathbf{N}$, s. nebenstehende Formel. B. Durch Erhitzen von 5-Methyl-isatin mit 30% iger Kalilauge und Behandeln der erhaltenen Lösung von 5-methylisatinsaurem Kalium mit Acetessigester bei gewöhnlicher Temperatur (Engelhard, J. pr. [2] 57, 482). — Nädelchen. F: $233-234^{\circ}$. — $Ag_2C_{13}H_9O_4N + H_2O$. Hygroskopisch.

4. 2.6 - Dimethyl - 4 - phenyl - 1.4 - dihydro - pyridin - dicarbonsaure - (3.5), 2.6 - Dimethyl - 4 - phenyl - 1.4 - dihydro - dinicotinsaure $C_{15}H_{18}O_4N=HO_2C\cdot C\cdot CH(C_6H_5)\cdot C\cdot CO_2H$

CH₃·C—NH—C·CH₃

- 2.6 Dimethyl 4 phenyl 1.4 dihydro pyridin dicarbonsäure (3.5) diäthylester C₁₉H₂₅O₄N = C₂H₅·O₂C·C·CH(C₆H₅)·C·CO₂·C₂H₅

 CH₃·C·C·NH—C·CH₃

 B. Bei gelindem Erwärmen von CH₃·C·C·NH—C·CH₃

 2 Mol Acetessigester und 1 Mol Benzaldehyd mit alkoh. Ammoniak (Schiff, Puliti, B. 16, 1607). Durch Einw. von Benzaldehyd auf 2 Mol β-Amino-crotonsäure-äthylester (Bd. III, S. 654) oder auf 1 Mol β Amino crotonsäure šthylester und 1 Mol Acetessigester auf dem Wasserbad (Knoevenagel, B. 31, 742). Aus Hydrobenzamid, Acetessigester und β-Amino-crotonsäure-äthylester auf dem Wasserbad (K., B. 31, 742). Aus der Verbindung C₆H₅·CH:N·CH(C₆H₆)·NH·C(CH₃):CH·CO₂·C₂H₅ (Bd. VII, S. 218) und Acetessigester in warmem Alkohol (Lachowicz, M. 17, 346). Aus Benzalacetessigester und Acetessigester in wenig Alkohol beim Sättigen mit Ammoniak oder aus Benzalacetessigester und β-Amino-crotonsäure-äthylester in wenig Alkohol bei gewöhnlicher Temperatur oder auf dem Wasserbad (K., B. 31, 743). Krystalle (aus verd. Alkohol). F: 156—157° (Sch., P.), 157° (L.; K.; Guareschi, Grande, C. 1899 II, 440). Liefert bei der trocknen Destillation 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diāthylester, 2.6-Dimethyl-4-phenyl-pyridin-carbonsäure-(3.5)-diāthylester, Xthylalkohol, Benzol, Äthan, Äthylen, CO₂ und CO (Gu., Gr.). Beim Einleiten von nitrosen Gasen in eine alkoh. Lösung erhält man 2.6-Dimethyl-4-phenyl-pyridin-dicarbonsäure-(3.5)-di-dicarbonsä
- 2.6 Dimethyl 4 phenyl 1.4 dihydro pyridin dicarbonsäure (3.5) dinitril, 2.6 Dimethyl 4 phenyl 3.5 dicyan 1.4 dihydro pyridin $C_{15}H_{13}N_3 = NC \cdot C \cdot CH(C_6H_5) \cdot C \cdot CN$ B. Durch Umsetzung von Benzaldehyd mit Diacetonitril (Bd. III, $CH_3 \cdot C NH C \cdot CH_3$ S. 660) bei Gegenwart von konz. Salzsäure in Eisessig (v. Meyer, J. pr. [2] 52, 101). Aus Benzal-bis-[imino-buttersäure-nitril] (Bd. X, S. 905) durch Kochen mit konz. Salzsäure oder Acetanhydrid (Mohr, J. pr. [2] 56, 127, 129; vgl. v. Mey., J. pr. [2] 52, 102). Krystalle (aus Alkohol). Fluoresciert hellblau (Lachowicz, M. 17, 351). F: 204—206° (Mo.), 207° (v. Mey.). Leicht löslich in Eisessig und in siedendem absolutem Alkohol (Mo.), schwer in Ather und Benzol, unlöslich in Wasser (v. Mey.). Löslich in heißer Natronlauge und in heißer konzentrierter Salzsäure mit gelber Farbe (Mo.).
- 2.6-Dimethyl-1.4-diphenyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5) $C_{31}H_{19}O_4N = HO_2C \cdot C \cdot CH(C_6H_5) \cdot C \cdot CO_2H$ $CH_3 \cdot C N(C_6H_5) C \cdot CH_3$ alkoh. Kalilauge (Lachowicz, M. 17, 352). Krystalle (aus Benzol). F: 165° (Zers.). Spaltet beim Erwärmen mit verd. Essigsäure Kohlendioxyd ab.
- Diäthylester $C_{25}H_{27}O_4N=\frac{C_2H_5\cdot O_2C\cdot C\cdot CH(C_6H_5)\cdot C\cdot CO_2\cdot C_2H_5}{CH_3\cdot C-N(C_6H_5)-C\cdot CH_2}$. B. Aus Benzalanilin und 2 Mol Acetessigester in Alkohol bei längerem Aufbewahren oder bei mehrstündigem Erhitzen auf dem Wasserbad (L., M. 17, 350). Beim Erwärmen von Acetessigeäure-äthylester-anil mit Benzaldehyd und Acetessigester (L., M. 17, 352). Bei längerem Aufbewahren der höherschmelzenden Form des α -[α -Anilino-benzyl]-acetessigsäure-äthylesters (Bd. XIV, S. 658) (SCHIFF, B. 31, 604 Anm. 1; Bertini, G. 29 II, 33). Hellblau fluorescierende Prismen (aus Alkohol). F: 159—160° (L.), 156—157° (SCH.; B.). Leicht löslich in Benzol, schwerer in Ather und Ligroin (L.).
- $\begin{array}{ll} \textbf{1-p-Tolyl-2.6-dimethyl-4-phenyl-1.4-dihydro-pyridin-dicarbons\"{a}ure-(8.5)-mono\"{a}thylester} & C_{24}H_{25}O_4N = \\ & \begin{array}{ll} HO_2C\cdot C CH(C_6H_5) C\cdot CO_2\cdot C_2H_5 \\ CH_3\cdot C\cdot N(C_6H_4\cdot CH_3)\cdot C\cdot CH_3 \end{array}. & B. & Bei 12-st\"{u}ndigem \\ Kochen des Di\"{a}thylesters (s. u.) mit alkoh. Kalilauge (Lachowicz, \textit{M. 17, 354}). & Bl\"{a}ttchen (aus Alkohol). & F: 160° (Zers.). Leicht löslich in Alkohol. \\ \end{array}$
- $1-p-Tolyl-2.6-dimethyl-4-phenyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester $C_{26}H_{29}O_4N = \frac{C_2H_5\cdot O_2C\cdot C-CH(C_6H_5)-C\cdot CO_2\cdot C_2H_5}{CH_2\cdot C\cdot N(C_6H_4\cdot CH_2)\cdot C\cdot C\cdot C}$.$$B.$$ Beim Erwärmen von 2 Mol Acetessigester mit 1 Mol Benzaldehyd und 1 Mol p-Toluidin auf dem Wasserbad (Lachowicz, M. 17, 353). Hellblau fluorescierende Blättchen (aus Alkohol). F: 133°. Leicht löslich in Alkohol, Ather, Benzol und Ligroin. Beim Kochen mit alkoh. Kalilauge wird nur eine Estergruppe verseift.$

2.6 - Dimethyl - 4 - [4 - chlor - phenyl] - 1.4 - dihydro - pyridin - dicarbonsäure - (3.5) - diäthylester $C_{19}H_{22}O_4NCl = \begin{array}{c} C_2H_5 \cdot O_2C \cdot C \cdot CH(C_6H_4Cl) \cdot C \cdot CO_2 \cdot C_2H_5 \\ CH_3 \cdot C - NH - C \cdot CH_3 \end{array}$. B. Durch Erwärmen von 1 Mol 4-Chlor-benzaldehyd mit 2 Mol Acetessigester und der berechneten Menge alkoh. Ammoniak auf dem Wasserbad (v. Walther, Raetze, J. pr. [2] 65, 287). Aus je 1 Mol 4-Chlor-benzaldehyd, Acetessigester und β -Amino-crotonsäure-äthylester (Bd. III, S. 654) (v. W., R.). — Platten (aus Alkohol). F: 147°. Ziemlich schwer löslich in organischen Lösungsmitteln, unlöslich in Wasser. — Liefert beim Einleiten von nitrosen Gasen in die alkoh. Suspension 2.6-Dimethyl-4-[4-chlor-phenyl]-pyridin-dicarbonsäure-(3.5)-diāthylester.

2.6 - Dimethyl - 4 - [3 - nitro - phenyl] - 1.4 - dihydro - pyridin - dicarbonsäure - (3.5) - diäthylester $C_{19}H_{22}O_6N_2 = \frac{C_2H_5 \cdot O_2C \cdot C \cdot CH(C_6H_4 \cdot NO_2) \cdot C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot C \cdot MH - C \cdot CH_3}$. B. Beim Erwärmen von 1 Mol 3-Nitro-benzaldehyd und 2 Mol Acetessigester mit etwas mehr als der berechneten Menge alkoh. Ammoniak auf dem Wasserbad (Lepetit, B. 20, 1338; G. 17, 460; Höchster Farbw., D. R. P. 42295; Frdl. 1, 195). — Tafeln (aus Alkohol). F: 161° (L.; H. F.). Leicht löslich in heißem Alkohol (L.). — Beim Behandeln mit rauchender Salpetersäure in Gegenwart von Alkohol entsteht das Nitrat des 2.6-Dimethyl-4-[3-nitro-phenyl]-pyridin-dicarbonsäure-(3.5)-diäthylesters (L.; H. F.).

2.6 - Dimethyl - 4 - [4 - nitro - phenyl] - 1.4 - dihydro - pyridin - dicarbonsäure - (3.5) - diäthylester $C_{19}H_{22}O_6N_2 = \frac{C_2H_5 \cdot O_2C \cdot C \cdot CH(C_6H_4 \cdot NO_2) \cdot C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot C - NH - C \cdot CH_3}$. B. Analog der vorangehenden Verbindung (Lepetit, B. 20, 1340; G. 17, 459). — Nicht rein erhalten. F: 118—120°.

5. Dicarbonsäuren $C_{16}H_{17}O_4N$.

1. 2.6 - Dimethyl - 4 - benzyl - 1.4 - dihydro - pyridin - dicarbonsäure-(3.5), 2.6 - Dimethyl - 4 - benzyl - 1.4 - dihydro - dinicotinsäure $C_{16}H_{17}O_4N = HO_2C \cdot C \cdot CH(CH_2 \cdot C_6H_5) \cdot C \cdot CO_2H$ $CH_3 \cdot C - NH - C \cdot CH_4 \cdot C - NH - C \cdot CH_5 \cdot C$

Diäthylester $C_{20}H_{25}O_4N=\frac{C_2H_5\cdot O_2C\cdot C\cdot CH(CH_2\cdot C_6H_5)\cdot C\cdot CO_2\cdot C_2H_5}{CH_3\cdot C-NH-C\cdot CH_3}$. B. Beim Erhitzen von 1 Mol Phenylacetaldehyd und 2 Mol Acetessigester mit etwas mehr als der berechneten Menge alkoh. Ammoniak auf dem Wasserbad (Jeanrenaud, B. 21, 1783). — Gelbliche Nadeln (aus Alkohol). F: 115°. Leicht löslich in Alkohol, Äther und Benzol. — Liefert bei der Oxydation mit nitrosen Gasen in alkoh. Lösung 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diäthylester und Benzoesäure.

2. 2.6-Dimethyl-4-p-tolyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), 2.6-Dimethyl-4-p-tolyl-1.4-dihydro-dinicotinsäure $C_{16}H_{17}O_4N=HO_2C\cdot C\cdot CH(C_4H_4\cdot CH_3)\cdot C\cdot CO_2H$ $CH_3\cdot C-NH$ $CH_5\cdot CH_5$

Diäthylester $C_{20}H_{25}O_4N = \frac{C_2H_5 \cdot O_2C \cdot C \cdot CH(C_6H_4 \cdot CH_3) \cdot C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot C - NH - C \cdot CH_3}$. B. Beim Erwärmen von 1 Mol β -Amino-crotonsäure-äthylester (Bd. III, S. 654) mit 1 Mol α -[4-Methylester]

wärmen von 1 Mol β -Amino-crotonsäure-äthylester (Bd. III, S. 654) mit 1 Mol α -[4-Methylbenzal]-acetessigsäure-äthylester in absol. Alkohol auf dem Wasserbad (Flürscheim, B. 34, 789). — Krystalle (aus Alkohol). F: 138°.

7. Dicarbonsäuren $C_n H_{2n-17} O_4 N$.

1. Dicarbonsäuren $C_{13}H_9O_4N$.

1. 3-[2-Carboxy-phenyl]-pyridin-carbonsäure-(2), 3-[2-Carboxy-phenyl]-picolinsäure, 2-[2-Carboxy-pyri-dyi-(3)]-benzoesäure C₁₃H₂O₄N, s. nebenstehende Formel. B. Durch Oxydation von 5.6-Benzo-chinolin (Bd. XX, S. 464) mit Kaliumpermanganat in wäßr. Lösung bei 40-50° (Skraup, Cobenzl, M. 4, 442). — Prismen mit 1 H₂O (aus Alkohol). F: 207° (unkorr.; Zers.) (Sk., C.), 196-197° (Marckwald, Dettmer, B. 35, 297). Schwer löslich in kaltem, ziemlich leicht in heißem Wasser und Alkohol, sehr schwer in Äther und Benzol (Sk., C., M. 4, 444). Elektrische Leitfähigkeit in Wasser bei 25°: Ostwald, Ph. Ch. 3, 397. Elektrolytische Dissoziationskonstante k bei 25°: 1,1×10-4 (O.). — Gibt beim Erhitzen auf 180-185° 2-β-Pyridyl-benzoesäure (S. 96) (Sk., C., M. 4, 450). Liefert bei der Destillation mit Ätzkalk 3-Phenyl-pyridin (Bd. XX, S. 424) (Sk., C., M. 4, 456). Beim Erhitzen der vom Krystallwasser befreiten Säure mit Acetanhydrid auf 120° erhält man das Anhydrid (s. nebenstehende Formel; Syst. No. 4298) (M., D.). Liefert mit Brom in wäßr. Lösung ein hellgelbes, krystallinisches Additionsprodukt, No. 00-0-Co das beim Kochen mit Wasser das gesamte Brom abgibt (Sk., C., M. 4, 444). — Farb- und Fällungsreaktionen: Sk., C., M. 4, 444.

Fällungsreaktionen: Sk., C., M. 4, 444.

Salze: Skraup, Cobenzi, M. 4, 446. — KC₁₃H₈O₄N + 2H₂O. Mikroskopische Blättchen. Wird erst bei 170° völlig wasserfrei. — K₂C₁₃H₇O₄N + 3H₂O. Mikroskopische Blättchen. Wird erst bei 300° wasserfrei. Sehr leicht löslich in Wasser, fast unlöslich in Alkohol. — CuC₁₃H₇O₄N + Cu(C₁₃H₈O₄N)₂. Hellviolstt. — CuC₁₃H₇O₄N + 4H₂O. Hellgrüner, krystallinischer Niederschlag. Unlöslich in Wasser, leicht löslich in Kupferacetat-Lösung. — AgC₁₃H₈O₄N + C₁₃H₉O₄N(?). Blättchen. Schwer löslich in Wasser. — CaC₁₃H₇O₄N + 3H₂O. Prismen. Wird erst bei 240° wasserfrei. Schwer löslich in siedendem Wasser. — BaC₁₃H₇O₄N + 4½-H₂O. Mikroskopische Tafeln. Ziemlich leicht löslich in siedendem Wasser. — C₁₃H₉O₄N + HCl. Prismen (aus Wasser). Leicht löslich in Wasser, ziemlich schwer in absol. Alkohol, sehr schwer in Salzsäure. Wird durch Wasser allmählich hydrolysiert. — 2C₁₃H₉O₄N + 2HCl + PtCl₄ + 2½-1/2 H₃O. Gelbes Krystallpulver. Sehr leicht löslich in heißem Wasser, ziemlich leicht in Alkohol.

3-[2-Carboxy-phenyl]-pyridin-carbonsäure-(2)-amid $C_{13}H_{10}O_3N_3=NC_5H_3(CO-NH_2)\cdot C_8H_4\cdot CO_2H$. B. Aus dem Anhydrid der 3-[2-Carboxy-phenyl]-pyridin-carbonsäure-(2) (Syst. No. 4298) beim Auflösen in konzentriertem wäßrigem Ammoniak (Marckwald, Dettmer, B. 35, 298). — Krystalle. F: 200°. Leicht löslich in heißem, schwer in kaltem Wasser. Leicht löslich in Mineralsäuren und in Alkalien. — Gibt bei der Einw. von alkal. Natriumhypobromit-Lösung 1-Oxy-[pyridino-2'.3':3.4-isochinolin] (s. nebenstehende Formel; Syst. No. 3513). — AgC₁₃H₉O₃N₃. Krystalle. — $C_{13}H_{10}O_3N_2 + H_3Cr_2O_7$. Gelbe Krystalle. Schwer löslich. — Pikrat $C_{13}H_{10}O_3N_2 + C_6H_3O_7N_3$. Gelbe Krystalle (aus Wasser). F: 174—175°. Sehr schwer OH

2. 2-[2-Carboxy-phenyl]-pyridin-carbonsäure-(3), 2-[2-Carboxy-phenyl]-nicotinsäure, 2-[3-Carboxy-pyridyl-(2)]-benzoesäure C₁₈H₉O₄N, s. nebenstehende Formel. B. Bei der Oxydation von 7.8-Benzo-chinolin (Bd. XX, S. 463) mit Kaliumpermanganat in Wasser bei 40—50° (SKEAUP, Cobenzi, M. 4, 463). — Krystalle (aus Wasser). Färbt sich von 200° an blau, schmilzt unter Zersetzung bei 230—236° (SK., C., M. 4, 465). Schwer löslich in kaltem Wasser und Alkohol, leicht in sehr verd. Säuren (SK., C.). Elektrische Leitfähigkeit in Wasser bei 25°: Ostwald, Ph. Ch. 3, 398. Elektrolytische Dissoziationskonstante k bei 25°: 1,2×10-4 (O.). — Geht beim Erhitzen auf 240—245° in eine Verbindung C₂₄H₁₄O₂N₂(?) über [dunkelblaue Krystalle; löslich in Chloroform und Eisessig, wird durch Alkohol zersetzt] (SK., C., M. 4, 470). Gibt bei der Destillation mit Ätzkalk 2-Phenyl-pyridin und 2.3(CO)-Benzoylen-pyridin (Bd. XXI, S. 334) (SK., C., M. 4, 473). Liefert mit Brom ein Dibromderivat (s. u.) (SK., C., M. 4, 466. — CuC₁₃H₇O₄N + 4 H₃O. Violette Krystalle. Unlöslich in siedendem Wasser. — Ag₂C₁₃H₇O₄N + 1¹/₂H₃O. Krystallinisch. — CaC₁₃H₇O₄N + 2 H₃O. Tafeln. Wird erst bei 290° völlig wasserfrei. Ziemlich leicht löslich in kaltem Wasser. — C₁₃H₉O₄N + HCl. Krystalle. Wird von wenig Wasser unzersetzt gelöst, von viel Wasser hydrolysiert. — 2 C₁₃H₉O₄N + 2 HCl + PtCl₄ + 3 H₂O. Orangegelbe Blätter. Leicht löslich in kaltem Wasser.

x.x-Dibrom - [2-(2-carboxy-phenyl) - pyridin - carbonsäure-(3)] $C_{13}H_7O_4NBr_9 = NC_{11}H_5Br_9(CO_2H)_9$. B. Beim Erwärmen von 2-[2-Carboxy-phenyl]-pyridin-carbonsäure-(3) mit Brom (Skraup, Cobenzi, M. 4, 469). — Gelbliche Krystallkörner. F: 204—205° (unkorr.). Sehr schwer löslich in Wasser, ziemlich leicht in warmem Alkohol.

3. 4-Phenyl-pyridin-dicarbonsäure-(3.5), 4-Phenyl-C₁₃H₅O₄N, s. nebenstehende Formel. B. Man erhitzt HO₂C. CO₂H das Monokaliumsalz der 4-Phenyl-pyridin-tetracarbonsäure-(2.3.5.6) auf 170°, bis 2 Mol Kohlendioxyd abgegeben sind (Weber, A. 241, 13). — Grünlichgelbe Blätter (aus dem Kupfersalz durch Schwefelwasserstoff). Krystallisiert meist mit 1 H₂O, bisweilen auch wasserfrei. Schmilzt wasserhaltig bei 229—230°, wasserfrei bei 245—246° (Zers.). — CuC₁₃H₇O₄N + 2 H₂O. Blauer Niederschlag. Wird beim Kochen mit Wasser krystallinisch.

2. Dicarbonsäuren $C_{14}H_{11}O_4N$.

- 1. 6-Methyl-3-[2-carboxy-phenyl]-pyridin-carbonsäure-(2), 6-Methyl-3-[2-carboxy-phenyl]-picolinsdure, 2-[6-Methyl-2-carboxy-pyridyl-(3)]-benzoesäure C₁₄H₁₁O₄N, s. nebenstehende Formel. B. Neben 5.6-Benzo-chinolin-carbonsäure-(2) und etwas Phthalsäure bei der Oxydation von 2-Methyl-5.6-benzo-chinolin (Bd. XX, S. 471) mit Kaliumpermanganat in schwefelsaurer Lösung (Seitz, B. 22, 258). Krystallisiert aus Wasser bei rascher Ausscheidung in wasserfreien Nadeln, bei langsamer Ausscheidung in Prismen mit 1 H₂O. F: 201° (Zers.). Sehr schwer löslich in kaltem Wasser. Gibt in wäßr. Lösung mit Ferrosulfat eine citronengelbe Färbung. Na₂C₁₄H₂O₄N + 2H₂O. Krystalle. Wird erst bei 150° wasserfrei. Sehr leicht löslich in Wasser, fast unlöslich in kaltem Alkohol. CuC₁₄H₂O₄N + 1¹/₂H₂O. Blaugrüne, mikroskopische Blättchen. Zersetzt sich beim Erhitzen. Unlöslich in Wasser. ZnC₁₄H₂O₄N + 1¹/₂H₂O. Wird erst oberhalb 150° wasserfrei. Unlöslich in Wasser.
- 2. 6-Methyl-4-phenyl-pyridin dicarbonsäure (2.3), C₆H₅
 6-Methyl-4-phenyl-chinolinsäure C₁₄H₁₁O₄N, s. nebenstehende Formel. B. Bei der Oxydation von 7-Oxy-2-methyl-4-phenyl-chinolin (Bd. XXI, S. 142) mit Kaliumpermanganat in schwach alkal. Lösung (Bülow, Issler, B. 36, 2457). F: 100° (Zers.). Leicht löslich in Alkohol, Äther, Aceton und Wasser, unlöslich in Ligroin, Benzol und Chloroform. Liefert bei der Destillation mit Calciumoxyd im Wasserstoffstrom 2-Methyl-4-phenyl-pyridin. CuC₁₄H₆O₄N. Blaugrün, amorph.

3. Dicarbonsäuren $C_{15}H_{18}O_4N$.

- 1. 4.6-Dimethyl-3-[2-carboxy-phenyl]-pyridin-carbonsäure-(2), 4.6-Dimethyl-3-[2-carboxy-phenyl]-picolinsäure, 2-[4.6-Dimethyl-2-carboxy-pyridyl-(3)]-benzoesäure C₁₅H₁₃O₄N, s. nebenstehende Formel.

 B. Bei der Oxydation von 2.4-Dimethyl-5.6-benzo-chinolin (Bd. XX, S. 476) mit Kaliumpermanganat in Wasser bei 60—70° (Reed, Co₂H)

 J. pr. [2] 35, 311). Wurde nicht krystallinisch erhalten. CH₃ CO₂H

 Ag₅C₁₅H₁₁O₄N.
- 2. 2.6-Dimethyl-4-phenyl-pyridin-dicarbonsäure (3.5), 2.6-Dimethyl-4-phenyl-dinicotinsäure C₁₅H₁₃O₄N, s. nebenstehende Formel. B. Durch Verseifung des Diäthylesters (S. 176) mit alkoh. Kalilauge (Hantzsch, B. 17, 1515; Kirchner, B. 25, 2786). Krystallwasserhaltige Nadeln (aus Wasser). F: 280° (Zers.) (K.). Schwer löslich in Wasser (K.). Elektrische Leitfähigkeit in Wasser bei 25°: Ostwald, Ph. Ch. 3, 394. Elektrolytische Dissoziationskonstante k bei 25°: 1,2×10⁻⁴ (O.). Gibt bei der Oxydation mit Kaliumpermanganat 4-Phenyl-pyridin-tetracarbonsäure-(2.3.5.6) (H.). Liefert bei der Reduktion mit überschüssigem Natrium und Amylalkohol 2.6-Dimethyl-4-phenyl-piperidin-dicarbonsäure-(3.5) (K.). Das Kaliumsalz gibt bei der Destillation mit Kalk 2.6-Dimethyl-4-phenyl-pyridin (Bally, B. 20, 2591). Salze: K., B. 25, 2787. Ammoniumsalz. Nadeln (aus Wasser). F: 288°. Leicht löslich in Wasser. Silbersalz. Nadeln. F: ca. 220° (Zers.). CaC₁₅H₁₁O₄N+aq. Tafeln. BaC₁₅H₁₁O₄N+7H₂O. Tafeln. C₁₅H₁₃O₄N+HCl. Nadeln. Leicht löslich in Wasser. Zerfällt beim Erhitzen in die Komponenten. Quecksilberchlorid-Doppelsalz. Nadeln. F: 261°. Ziemlich schwer löslich in Wasser.

Dimethylester $C_{17}H_{17}O_4N = NC_5(CH_3)_3(C_6H_5)(CO_2 \cdot CH_3)_2$. B. Aus dem Natriumsalz der 2.6-Dimethyl-4-phenyl-pyridin-dicarbonsäure-(3.5) und Methyljodid (Kirchner, B. 25, 2788). — Nadeln und Schuppen. F: 139—140°. Sehr leicht löslich in Alkohol und Äther, unlöslich in Wasser. — $C_{17}H_{17}O_4N + HCl + AuCl_3$. Gelbe Nadeln. F: 151° (Zers.). Schwer löslich in Wasser, leicht in Alkohol.

Monoäthylester $C_{17}H_{17}O_4N = NC_5(CH_3)_4(C_6H_5)(CO_3H) \cdot CO_3 \cdot C_2H_5$. B. Beim Kochen des Diāthylesters (s. u.) mit etwas weniger als 1 Mol alkoh. Kalilauge (Hantzsch, B. 17. 2911; Höchster Farbw., D. R. P. 32280; Frdl. 1, 203). — Krystalle (aus Alkohol). F: 179° bis 180° (Ha.). Schwer Iöslich in kaltem Alkohol und Äther (Ha.). Elektrische Leitfähigkeit in Wasser bei 25°: Ostwald, Ph. Ch. 3, 394. Elektrolytische Dissoziationskonstante k bei 25°: $4 \times 10^{-5} (O.)$. — Gibt beim Erhitzen auf 250—300° 2.6-Dimethyl-4-phenyl-pyridin-carbonsäum (3) äthylester (Ha.: Hä. Fa.) säure-(3)-äthylester (Ha.; Hö. Fa.).

Diäthylester $C_{19}H_{21}O_4N = NC_5(CH_2)_2(C_6H_5)(CO_2\cdot C_2H_5)_2$. B. Durch Oxydation von 2.6-Dimethyl-4-phenyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester mit nitrosen Gasen in alkoh. Lösung (Schiff, Puliti, B. 16, 1608). — F: 66—67°.

C6H4Cl 2.6 - Dimethyl - 4 - [4 - chlor-phenyl]-pyridin-dicarbonsäure-(8.5) 2.6 Dimetnyi-4-[4-0hlor-phonyi]-Byllinia vorseifung des Di-C₁₅H₁₂O₄NCl, s. nebenstehende Formel. B. Durch Verseifung des Di-äthylesters (s. u.) mit siedender alkoholischer Natronlauge (v. Walther, CH₃. CH₃. CH₃. RAETZE, J. pr. [2] 65, 289). — Pulver. F: 274°; zersetzt sich bei etwas höherer Temperatur. Unlöslich in den gebräuchlichen Lösungsmitteln außer Pyridin.

Diäthylester $C_{19}H_{20}O_4NCl=NC_5(CH_3)_2(C_6H_4Cl)(CO_2\cdot C_2H_5)_2$. B. Beim Einleiten von nitrosen Gasen in eine alkoh. Suspension von 2.6-Dimethyl-4-[4-chlor-phenyl]-1.4-dihydropyridin-dicarbonsaure-(3.5)-diathylester (v. Walther, Raetze, J. pr. [2] 65, 289). — Nadeln (aus Ligroin). F: 67°. Leicht löslich in Alkohol.

2.6 - Dimethyl - 4 - [8 - nitro - phenyl] - pyridin - dicarbon säure-(3.5)-diäthylester $C_{19}H_{20}O_6N_2$, s. nebenstehende Formel. B. Das Nitrat entsteht beim Behandeln von 2.6-Dimethyl- $\begin{array}{c} \mathbf{C_2H_5 \cdot O_3C \cdot } \\ \mathbf{CH_8 \cdot \begin{pmatrix} \mathbf{N} \end{pmatrix} \cdot \mathbf{CO_2 \cdot C_3H_5}} \end{array}$ 4-[3-nitro-phenyl]-1.4-dihydro-pyridin-dicarbonsäure-(3.5) - diäthylester mit rauchender Salpetersäure in Gegenwart von Alkohol (Lepetit, B. 20, 1339; G. 17, 461; Höchster Farbw., D. R. P. 42295; Frdl. 1, 195). — Tafeln (aus Äther oder Alkohol). F: 65° (L.). — Liefert bei der Reduktion mit Zinn und Salzsäure 2.6-Dimethyl-4-[3-aminophenyl]-pyridin-dicarbonsäure-(3.5)-diäthylester (Syst. No. 3440) (L.; H. F.). Zersetzt sich bei der Einw. von heißer alkoholischer Kalilauge (L.). — Nitrat. Krystalle. F: 129—130° (L.; H. F.). Leicht löslich in heißem Alkohol und Ather, schwer in Wasser. — $2C_{10}H_{20}O_8N_2 +$ 2 HCl + PtCl₄. Orangegelbe Nadeln. F: 202^o (Zers.) (L.). Fast unlöslich in Wasser und Alkohol.

4. 2.6 - Dimethyl - 4 - styryl - 1.4 - dihydro - pyridin - dicarbon säure - (3.5), 2.6 - Dimethyl - 4 - styryl - 1.4 - dihydro - dinicotinsäure, 4¹-Benzal - 1.4 - di hydro-kollidin-dicarbonsäure-(3.5) $C_{17}H_{17}O_4N =$ $HO_{\bullet}C \cdot C \cdot CH(CH : CH \cdot C_{\bullet}H_{\bullet}) \cdot C \cdot CO_{\bullet}H$

$$CH_3 \cdot \stackrel{\circ}{C} - NH - \stackrel{\circ}{C} \cdot CH_3$$

 $\textbf{Diäthylester} \quad \textbf{C}_{21}\textbf{H}_{25}\textbf{O}_{4}\textbf{N} = \begin{matrix} \textbf{C}_{2}\textbf{H}_{5} \cdot \textbf{O}_{2}\textbf{C} \cdot \textbf{C} \cdot \textbf{CH}(\textbf{CH} : \textbf{CH} \cdot \textbf{C}_{6}\textbf{H}_{5}) \cdot \textbf{C} \cdot \textbf{CO}_{2} \cdot \textbf{C}_{2}\textbf{H}_{5} \\ \textbf{N} & \textbf{N} \end{matrix}$ 1 Mol Zimtaldehyd, 2 Mol Acetessigester und etwas mehr als 1 Mol alkoh. Ammoniak bei gewöhnlicher Temperatur (EPSTEIN, A. 231, 3). — Fast farblose Krystalle (aus Alkohol). F: 148° bis 149° (E.), 151—152° (BIGINELLI, G. 23 I, 386). Löslich in Alkohol und Ather (E.). — Beim Einleiten von nitrosen Gasen in eine alkoh. Lösung erhält man 2.6-Dimethyl-4-styrylpyridin-dicarbonsäure-(3.5)-diäthylester (S. 177) (E.).

8. Dicarbonsäuren $C_n H_{2n-19} O_4 N$.

2.6 - Dimethyl - 4 - styryl - pyridin - dicarbonsaure - (3.5), 2.6 - Dimethyl -4-styryl-dinicotinsäure, 4¹-Benzal-kollidin-dicarbonsäure-(3.5) C₁₇H₁₅O₄N, s. nebenstehende Formel. B. Der Diäthylester entsteht beim Einleiten von nitrosen Gasen in eine alkoh. Lösung von 4¹-Benzal-1.4 - dihydro - kollidin - dicarbonsäure - (3.5) - diäthylester (s. o.); man verseift den Ester durch Kochen mit alkoh. Kalilauge (EPSTEIN, A. 231, HO2C. 6, 8). — Krystalle mit 2 H₂O (aus Wasser oder Alkohol). Schmeckt stark bitter (E.). Schmilzt bei 218—219°, wasserfrei bei 241° (E.). Schmilzt bei 218—219°, wasserfrei bei 241° (E.). Schmilzt bei 261° (E.). Alkohol, schwer in Wasser und Chloroform, sehr schwer in Äther, unlöslich in Benzol (E.). — Liefert bei der Oxydation mit Permanganat α.α'-Lutidin-β.γ.β'-tricarbonsäure (S. 187) und Benzoesaure (E.). Bei Einw. von Alkalihypochlorit entsteht eine krystallinische Verbindung $C_{17}H_{13}O_4N + 2H_5O$ (Messinger, B. 19, 196). Fällungsreaktionen: E. — $K_2C_{17}H_{13}O_4N + 3H_2O$. Krystalle. Löslich in Alkohol (E.). — $2C_{17}H_{18}O_4N + 2HCl + PtCl_4$. Rotgelbe Nadeln (aus Alkohol) (E.).

Diäthylester $C_{21}H_{23}O_4N = NC_5(CH_2)_5(CH:CH:C_2H_5)(CO_2\cdot C_2H_5)_3$. B. s. bei der Säure. Krystalle (aus Alkohol). F: 39° (E., A. 231, 7). Leicht löslich in Alkohol und Äther. Gibt mit Mineralsäuren krystallinische gelbe Salze, die durch Wasser hydrolysiert werden. — $2C_{21}H_{23}O_4N + 2HCl + PtCl_4$. Hellorangefarbene Nadeln (aus Alkohol). F: 195°. Löslich in heißem Alkohol.

9. Dicarbonsäuren C_nH_{2n-21}O₄N.

Dicarbonsauren $C_{15}H_9O_4N$.

- 1. 7.8 Benzo chinolin dicarbonsäure (2.4), [Naphtho-2'.1':5.6 lutidinsäure] 1) (,,α-Naphthochinolin-α.γ-dicarbon-säure") C₁₅H₂O₄N, s. nebenstehende Formel. B. Bei der Oxydation des Kaliumsalzes der 2-Styryl-7.8-benzo-chinolin-carbonsäure-(4) (S. 114) mit der berechneten Menge wäßr. Permanganat-Lösung in der Kälte (Doebner, Peters, B. 23, 1234). Grünlichgelbe Nadeln (aus Alkohol). F: 278° (Zers.). Löslich in heißem Alkohol, Aceton, Eisessig und Amylalkohol, schwer löslich in heißem Wasser, Äther, Benzol und Petroläther; leicht löslich in heißen konzentrierten Mineralsäuren. Zerfällt bei der Destillation in 7.8-Benzo-chinolin und Kohlendioxyd. Bei der Oxydation mit warmer Permanganat-Lösung entsteht 3'-Oxo-[indeno-1'.2':2.3-pyridin]-dicarbonsäure-(4.6) (Syst. No. 3368). Die Alkali- und Erdalkali-Salze sind in Wasser sehr leicht löslich. CuC₁₈H₇O₄N + 2H₂O. Grüner Niederschlag. Schwer löslich in Wasser. Ag₂C₁₈H₇O₄N. Flockiger Niederschlag.
- 2. 5.6-Benzo-chinolin-dicarbonsäure-(2.4), [Naphtho-1'.2':5.6-lutidinsäure]¹) (,,β-Naphthochinolin-α.γ-dicarbonsäure-(1) (B. 115) (B. 115

10. Dicarbonsäuren C_nH_{2n-23}O₄N.

1. Dicarbonsāuren $C_{17}H_{11}O_4N$.

- 1. 4-Phenyl-chinolin-dicarbonsäure-(2.3), 4-Phenylacridinsäure C₁₇H₁₁O₄N, s. nebenstehende Formel. B. Neben 4-Phenylchinolin-carbonsäure-(3) bei der Oxydation von 9-Phenyl-acridin (Bd. XX,
 S. 514) mit Permanganat in schwefelsaurer Lösung (Claus, Nicolaysen,
 B. 18, 2706). Wurde nicht rein erhalten. F: 200—215°. BaC₁₇H₂O₄N + 4H₂O. Nadeln.
- 2. 2-Phenyl-chinolin-dicarbonsäure (3.4) C₁₇H₁₁O₄N, s. CO₂H nebenstehende Formel. B. Bei der Einw. von Benzoylessigester auf Isatinsäure (Bd. XIV, S. 648) in stark alkal. Lösung (Engelhard, J. pr. [2] 57, 471). Nadeln mit 2H₄O (aus Wasser). F: 193—194° (E.). Schwer löslich in Wasser, leichter in Alkohol (E.). Steigert die Harnsäure-Ausscheidung beim Menschen (Nicolaier, Dohen, Deutsches Archiv f. klin. Medizin 93 [1908], 346). Ag₂C₁₇H₉O₄N. Flocken (E.).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1—3. BEILSTEINS Handbuch. 4. Auft. XXII.

3. 2-Phenyl-chinolin-dicarbonsäure-(4.8) $C_{17}H_{11}O_4N$, s. nebenstehende Formel. B. Bei längerem Kochen von Anthranilsäure mit Benzaldehyd und Brenztraubensäure in Alkohol (Doebner, Fettback, A. 281, 2). — Nadeln (aus Alkohol oder Eisessig). F: oberhalb 300° (Zers.) (D., F.). Schwer löslich in Alkohol und Eisessig, unlöslich in Äther, Petroläther, Chloroform, Benzol und Wasser (D., F.). — Beim Erhitzen mit Natronkalk entsteht unter Kohlendioxyd-Entwicklung 2-Phenyl-chinolin (Bd. XX, S. 481) (D., F.). — Steigert die Harnsäure-Ausscheidung beim Menschen (Nicolaier, Dohrn, Deutsches Archiv f. klin. Medizin 93 [1908], 346). — Ag₂C₁₇H₂O₄N. Krystallinischer Niederschlag (D., F.). — MgC₁₇H₉O₄N + H₂O. Krystalle (D., F.).

2. Dicarbonsäuren $C_{18}H_{18}O_4N$.

- 1. 2.2'-[Pyrrylen-(2.5)]-di-benzoesäure, 2.5-Bis-[2-carboxy-phenyl]
 Pyrrol C₁₈H₁₈O₄N = HO₂C·C₈H₄·C·NH·C·C₈H₄·CO₂H

 B. Bei 7-stündigem Erhitzen von

 Diphenacyl-dicarbonsäure-(2.2') (Bd. X, S. 915) mit alkoh. Ammoniak auf 100° (Gabriel,

 B. 19, 840). Aus 2.2'-[1-Methylanilino-pyrrylen-(2.5)]-di-benzoesäure (S. 179) oder 2.2'-[1-Benzylanilino-pyrrylen-(2.5)]-di-benzoesäure (S. 179) oder 2.2'-[1-Benzylanilino-pyrrylen-(2.5)]-di-benzoesäure (S. 179) beim Behandeln mit konz. Schwefelsäure

 (Reissert, Engel, B. 38, 3292). Gelbe Nadeln. F: 230—232° (Rotfärbung) (Ga.). Leicht

 löslich in heißem Alkohol, schwer in heißem Eisessig und Äther, sehr schwer in Chloroform,

 unlöslich in Benzol, Ligroin und Schwefelkohlenstoff (Ga.). Beim Glühen mit Calcium
 oxyd unter vermindertem Druck entsteht 2.5-Diphenyl-pyrrol (Bd. XX, S. 486) (Baumann,

 B. 20, 1490). Gibt in Eisessig mit salpetriger Säure ein Nitrosoderivat (s. u.) (Ga.).
- HC——CH
 HO₂C·C₆H₄· $\overset{\cdot}{\mathbb{C}}$ ·N(C₂H₅)· $\overset{\cdot}{\mathbb{C}}$ ·C₆H₄·CO₂H

 MANN, B. 20, 1488). Hellgelbe Blättchen (aus verd. Alkohol). F: 220°. Unlöslich in Wasser und Chloroform, schwer löslich in Äther, Schwefelkohlenstoff und Benzol, leichter in Alkohol, Eisessig und Nitrobenzol. $Ag_2C_{20}H_{15}O_4N$.
- 2.2'-[1-Phenyl-pyrrylen-(2.5)]-di-benzoesäure $C_{24}H_{17}O_4N=HC$ CH

 B. Man erhitzt Diphenacyl-dicarbonsäure-(2.2') $HO_3C\cdot C_6H_4\cdot \overset{\circ}{C}\cdot N(C_6H_5)\cdot \overset{\circ}{C}\cdot C_6H_4\cdot CO_2H$ B. Man erhitzt Diphenacyl-dicarbonsäure-(2.2')

 (Bd. X, S. 915) mit Anilin auf dem Wasserbad (BAUMANN, B. 20, 1487). Blaßgelbe Krystalle (aus Nitrobenzol). F: 295° (unkorr.). Unlöslich in Wasser, Äther, Chloroform, Schwefelkohlenstoff und Benzol, sehr schwer löslich in siedendem Alkohol und Eisessig, etwas leichter in siedendem Nitrobenzol. Gibt beim Erhitzen mit Calciumoxyd oder Bariumoxyd 1.2.5-Triphenyl-pyrrol (Bd. XX, S. 486). $Ag_3C_{24}H_{15}O_4N$. Voluminöser Niederschlag.

- 2.2'-[1-Nitroso-pyrrylen-(2.5)]-di-benzoesäure $C_{18}H_{18}O_5N_8=HC$ -CH B. Beim Einleiten von salpetriger Säure in ein Gemisch aus <math>2.2'-[Pyrrylen-(2.5)]-di-benzoesäure (s. o.) und Eisessig (Gabriel, B. 19, 842).

Hellgelbe Tafeln (aus Eisessig). F: ca. 210° (Zers.). Schwer löslich in Eisessig, sehr schwer in heißem Alkohol, Benzol und Chloroform, unlöslich in Äther, Schwefelkohlenstoff, Ligroin und in kalten Alkalilaugen.

- 2.2'- [1-Methylanilino-pyrrylen-(2.5)]-di-benzoesäure $C_{35}H_{30}O_4N_3=HC$
- HO₂C·C₆H₄·C·N[N(CH₂)·C₆H₅]·C·C₆H₄·CO₂H.

 B. Beim Kochen von Diphenscyl-dicarbon-saure-(2.2') (Bd. X, S. 915) mit α -Methyl-phenylhydrazin in viel Alkohol (Reissert, Engel, B. 38, 3291). Braunliche Nadeln (aus 75% alkohol). F: 205—206°. Leicht löslich in Alkohol, Eisessig, Aceton, Chloroform, Essigester und Äther. Beim Lösen in konz. Schwefelsaure erhält man Methylanilin und 2.2'-[Pyrrylen-(2.5)]-di-benzoesäure (S. 178). Na₂C₂₅H₁₈O₄N₂. B. Aus dem Anhydrid der Säure (Syst. No. 4298) beim Erhitzen mit Natronlauge. Blättchen (aus Wasser). Ag₂C₂₅H₁₈O₄N₂.
 - 2.2'- [1-Bensylanilino-pyrrylen-(2.5)] di-bensoesäure $C_{31}H_{24}O_4N_3 = HC$ CH

HO₂C·C₆H₄·C·N[N(CH₂·C₆H₅)·C₆H₅]·C·C₆H₄·CO₂H
dicarbonsaure-(2.2') (Bd. X, S. 915) mit α-Benzyl-phenylhydrazin in Alkohol (Reissert, Engel, B. 38, 3293). — Krystalle (aus verd. Alkohol). F: 218—219°. Leicht löslich in heißem Alkohol, Eisessig, Essigester und Chloroform. — Bei der Zersetzung mit konz. Schwefelsaure wurden Benzaldehyd und 2.2'-[Pyrrylen-(2.5)]-di-benzoesaure (S. 178) erhalten. — Ag₂C₃₁H₂₂O₄N₃.

- 2.2'-[1-Methylanilino-pyrrylen-(2.5)]-di-benzoesäure-diäthylester $C_{20}H_{20}O_4N_2=HC$ $C_2H_5\cdot O_3C\cdot C_3H_4\cdot C\cdot N[N(CH_3)\cdot C_6H_5]\cdot C\cdot C_6H_4\cdot CO_2\cdot C_2H_5$ ENGEL, B. 38, 3292). Nadeln (aus Ligroin). F: 90—91°.
- 2. 2.5 Diphenyl pyrrol dicarbonsäure (3.4) $C_{18}H_{18}O_4N = HO_5C \cdot C C \cdot CO_5H$ $C_6H_5 \cdot C \cdot NH \cdot C \cdot C_6H_5$
- Diäthylester $C_{22}H_{21}O_4N=\frac{C_2H_5\cdot O_2C\cdot C-CO_2\cdot C_2H_5}{C_4H_5\cdot C\cdot NH\cdot C\cdot C_4H_5}$. B. Beim Erwärmen von β oder γ -Dibenzoyl-bernsteinsäure-diäthylester (Bd. X, S. 914) mit Ammoniumacetat in Eisessig (Knorr, Schmidt, A. 293, 107). Prismen (aus Alkohol). F: 151—152°. Leicht löslich in Alkohol und Eisessig, schwer in Ather, unlöslich in Wasser. Gibt nicht die Fichtenspanreaktion. Löst sich in warmer konzentrierter Schwefelsäure mit dunkelroter Farbe.
- 1-Anilino-2.5-diphenyl-pyrrol-dicarbonsäure-(3.4) $C_{34}H_{18}O_4N_3=HO_3C\cdot C$ $C\cdot CO_3H$ $C_6H_5\cdot C\cdot N(NH\cdot C_6H_5)\cdot C\cdot C_6H_5$ pyrazolon-(5)-yl-(4)] (Syst. No. 4146) bei 1-stündigem Erwärmen von β oder γ -Dibenzoylbernsteinsäureester mit Phenylhydrazin in Eisessig auf dem Wasserbad; man verseift den Diäthylester durch Kochen mit alkoh. Kalilauge (Knorr, Schmidt, A. 293, 108). Krystalle mit 1 H_2O (aus verd. Alkohol). F: ca. 154° (Zers.). Gibt beim Erhitzen das nicht näher beschriebene 1-Anilino-2.5-diphenyl-pyrrol (?). Zeigt keine Fichtenspanreaktion.
- Diäthylester $C_{28}H_{26}O_4N_3=\frac{C_2H_5\cdot O_2C\cdot C}{C_0H_5\cdot C\cdot N(NH\cdot C_0H_5)\cdot C\cdot C_0H_5}$. B. s. bei der Säure. Blättchen (aus Eisessig). F: 184.—185° (KNORR, SCHMIDT, A. 293, 108). Löslich in Alkohol, unlöslich in Äther. Löst sich in konz. Schwefelsäure mit rotbrauner Farbe, die beim Erwärmen dunkelrot wird.

- $\begin{array}{ll} \textbf{3. 2.6-Diphenyl-1.4-dihydro-pyridin-dicarbons \"{a}ure-(3.5), 2.6-Diphenyl-1.4-dihydro-dinicotins \~{a}ure \\ \textbf{C}_{10}\textbf{H}_{15}\textbf{O}_{4}\textbf{N} = \frac{\textbf{HO}_{2}\textbf{C}\cdot\textbf{C}\cdot\textbf{CH}_{2}\cdot\textbf{C}\cdot\textbf{CO}_{2}\textbf{H}}{\textbf{C}_{4}\textbf{H}_{5}\cdot\overset{\textbf{C}}{\textbf{C}}\cdot\textbf{N}\textbf{H}\cdot\overset{\textbf{C}}{\textbf{C}}\cdot\overset{\textbf{C}}{\textbf{O}_{4}\textbf{H}_{5}}}. \end{array}$
- 2.6 Diphenyl 1.4 dihydro pyridin-dicarbonsäure-(3.5) dinitril, 2.6 Diphenyl-3.5 dicyan 1.4 dihydro pyridin $C_{10}H_{10}N_3 = \frac{NC \cdot C \cdot CH_2 \cdot C \cdot CN}{C_0H_5 \cdot C \cdot NH \cdot C \cdot C_0H_5}$. B. Bei der Kondensation von "Benzoacetodinitril" (Bd. X, S. 681) mit Hexamethylentetramin in wäßr. Alkohol unter allmählichem Zusatz von konz. Salzsäure (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 513). Gelbliche Nadeln. F: 228°.
- 4. 4 Methyl 2.6 diphenyl 1.4 dihydro pyridin dicarbon säure (3.5), 4 Methyl 2.6 diphenyl 1.4 dihydro dinicotinsäure $C_{20}H_{17}O_4N=HO_3C\cdot C\cdot CH(CH_2)\cdot C\cdot CO_2H$ $C_6H_5\cdot C-NH-C\cdot CeH_5$

Diäthylester $C_{24}H_{25}O_4N=\frac{C_2H_5\cdot O_2C\cdot C\cdot CH(CH_3)\cdot C\cdot CO_2\cdot C_2H_5}{C_4H_5\cdot C-NH-C\cdot C_6H_5}$. B. Aus Benzoylessigester durch Kochen mit Aldehydammoniak und Alkohol (RABE, ELZE, A. 323, 88 Anm. 13). — Nadeln. F: 166°.

4 - Methyl - 2.6 - diphenyl - 1.4 - dihydro - pyridin - dicarbonsäure - (8.5) - dinitril, 4 - Methyl - 2.6 - diphenyl - 3.5 - dicyan - 1.4 - dihydro - pyridin $C_{50}H_{15}N_3 = NC \cdot C \cdot CH(CH_3) \cdot C \cdot CN$ C₀H₅·C — NH — $C \cdot C_0$ H₅

B. Bei der Kondensation von "Benzoacetodinitril" (Bd. X, S. 681) mit Paraldehyd in absol. Alkohol durch Chlorwasserstoff (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 514). — Nadeln. F: 267°.

11. Dicarbonsäuren $C_n H_{2n-25} O_4 N$.

4.6-Diphenyl-pyridin-dicarbonsāure-(2.3), 4.6-Diphenyl-chinolinsāure $C_{10}H_{12}O_4N$, s. nebenstehende Formel. B. Bei der Oxydation von 2-Methyl-4.6-diphenyl-pyridin-carbonsāure-(3) (S. 110) mit Permanganat in Alkohol (v. Meyer, C. 1908 II, 594; J. pr. [2] 78, 529). — Nadeln. F: ca. 185° (Zers.). — $Ag_2C_{10}H_{11}O_4N$.

12. Dicarbonsäuren $C_n H_{2n-27} O_4 N$.

2 - Phenyl - 1.2 - dihydro - 5.6 - benzo - chinolin - dicarbon-säure - (3.4), 2 - Phenyl - 1.2 - dihydro - [naphtho - 1'.2':5.6 - cinchomeronsäure] 1) (,, Phenyldihydronaphtho-chinolindicarbonsäure") $C_{a1}H_{16}O_4N$, s. nebenstehende Formel.

Diäthylester $C_{25}H_{22}O_4N = HNC_{13}H_7(C_6H_5)(CO_2 \cdot C_2H_8)_2$. B. Bei kurzem Behandeln von $[\alpha \cdot (\beta \cdot Naphthylamino) \cdot benzyl]$ -oxalessigsäure-diāthylester (Bd. XIV, S. 671) mit wenig kalter konzentrierter Schwefelsäure (Simon, Conducha, C. r. 139, 298; S., Mauguin, C. r. 143, 428; A. ch. [8] 13, 368). — Gelbe Nadeln (aus Alkohol). F: 146—147° (Rotfärbung) (S., C.; S., M., A. ch. [8] 13, 368). Löslich in organischen Lösungsmitteln, unlöslich in Wasser; löst sich in konz. Schwefelsäure mit roter Farbe (S., M., A. ch. [8] 18, 368). — Liefert bei der Oxydation mit Chromsäure in Eisessig "Phenylnaphthochinolindicarbonsäurediäthylester" (S. 181) (S., C.; S., M., C. r. 143, 428; A. ch. [8] 13, 369). Verändert sich nicht beim Erhitzen mit kons. Kalilauge; beim Kochen mit $5^{\circ}/_{\circ}$ iger alkoholischer Kalilauge erhält man 2-Phenyl-5.6-benzochinolin-carbonsäure-(4) (S. 113) und 2-Phenyl-5.6-benzo-chinolin (Bd. XX, S. 519) (S., C.; S., M., C. r. 143, 466; A. ch. [8] 13, 387).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, 8, 1-3.

13. Dicarbonsäuren $C_n H_{2n-29} O_4 N_a$.

2 - Phenyl - 5.6 - benzo - chinolin - dicarbonsăure - (3.4), CO₂H 2 - Phenyl - [naphtho - 1'.2': 5.6 - cinchomeron säure] 1) · CO₂H ("Phenylnaphthochinolindicarbonsäure") C₂₁H₁₃O₄N, $\cdot \, \mathbf{C_6H_5}$ s. nebenstehende Formel. B. Der Diäthylester entsteht bei der Oxydation von "Phenyldihydronaphthochinolindicarbonsäurediäthylester" (S. 180) mit Chromsäure in Eisessig; man verseift durch 15-stündiges Kochen mit 15% jeer alkoholischer Kalilauge (Smon, Conducti, C. r. 139, 298; S., Mauguin, C. r. 143, 428; A. ch. [8] 13, 372). — Blaßgelbe Nadeln. Unlöslich in Wasser und den gewöhnlichen organischen Lösungsmitteln (S. M., C. r. 143, 429; A. ch. [8] 13, 372). — Geht beim Erhitzen auf 218° in das Anhydrid (Syst. No. 4298) über (S., M., C. r. 143, 429; A. ch. [8] 13, 372). Beim Erhitzen mit Natronkalk entsteht 2-Phenyl-5-6-benzo-chinolin (Bd. XX, S. 519) (S., M., C. r. 143, 430; A. ch. [8] 13, 393). — $K_2C_{21}H_{11}O_4N+2H_2O$. Nadeln (aus Alkohol). Wird bei 170° wasserfrei (S., M., A. ch. [8] 13, 373). — $CuC_{21}H_{11}O_4N+3NH_2+6H_2O$. Blaue Prismen. Verliert beim Aufbewahren an der Luft Ammoniak und Wasser (S. M., C. r. 143, 428; A. ch. [8] 13, 374). bewahren an der Luft Ammoniak und Wasser (S., M., C. r. 143, 428; A. ch. [8] 13, 374).

8-Athylester C₂₃H₁₇O₄N, s. nebenstehende Formel. CO₂H 5-stündigem Kochen des Diäthylesters mit ca. 1,5% iger alkoholischer Kalilauge (Simon, Mauguin, C. r. 143, 429; A. ch. [8] 13, 376). Beim ·CO2·C2H5 Kochen von 2-Phenyl-5.6-benzo-chinolin-dicarbonsaure-(3.4)-anhydrid NJ.C6H5 (Syst. No. 4298) mit Alkohol (S., M.). — Doppelbrechende Krystalle mit 1 C₂H₆O (aus Alkohol). Riecht schwach nach Ambra. Verliert den Krystallalkohol bei 110-115° oder im Vakuum unterhalb 90° unter Bildung einer schwefelgelben, amorphen Masse. — Geht bei 145° unter Alkoholabspaltung in 2-Phenyl-5.6-benzo-chinolin-dicarbonsäure-(3.4)-anhydrid über.

Diäthylester $C_{25}H_{21}O_4N = NC_{13}H_6(C_6H_5)(CO_2 \cdot C_2H_5)_2$. B. s. bei der Säure. — Nadeln (aus Alkohol). F 128° (Simon, Conduché, C. r. 139, 298; S., Mauguin, C. r. 143, 428; A. ch. [8] 13, 370). Kp₁₀: 305°; unlöslich in Wasser, löslich in siedendem Alkohol, Essigsäure, Salzsaure und in konz. Schwefelsaure mit roter Farbe (S., M.). Wird von Salzsaure und Schwefelsäure sowie konz. Kalilauge nicht verseift (S., M.).

14. Dicarbonsauren $C_n H_{2n-81} O_4 N$.

1. 2.4.6-Triphenyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), 2.4.6-Tri- $\label{eq:phenyl-1.4-dihydro-dinicotinsaure} \begin{aligned} \text{phenyl-1.4-dihydro-dinicotinsaure} \quad & \text{$C_{25}H_{19}O_4N$} = \frac{\text{$HO_2C \cdot C \cdot CH(C_6H_5) \cdot C \cdot CO_2H$}}{\text{$C_6H_5 \cdot C - NH - C \cdot C_6H_5$}}. \end{aligned}$

2.4.6 - Triphenyl - 1.4 - dihydro - pyridin - dicarbonsäure - (8.5) - dinitril, 2.4.6-Tri- $NC \cdot C \cdot CH(C_6H_5) \cdot C \cdot CN$ der Kondensation von "Benzoacetodinitril" (Bd. X, S. 681) mit Hydrobenzamid (Bd. VII, S. 215) in Alkohol in Gegenwart von konz. Salzsäure (v. MEYER, C. 1908 II, 593; J. pr. [2] 78, 512; vgl. v. M., J. pr. [2] 52, 107). — Gelbliche Täfelchen (aus Chloroform + Methanol). F: 268°. — Gibt in Eisessig mit Natriumnitrit 2.4.6-Triphenyl-3.5-dicyan-pyridin (S. 182).

2.6 - Diphenyl - 4 - [2 - nitro - phenyl] - 1.4 - dihydro - pyridin - dicarbonsäure - (3.5)dinitril, 2.6 - Diphenyl - 4 - [2 - nitro - phenyl] - 3.5 - dioyan - 1.4 - dihydro - pyridin $C \cdot C_{\mathbf{e}} \mathbf{H}_{\mathbf{f}}$. Bei der Kondensation von "Benzoaceto-NC·C·CH(C₆H₄·NO₂)·C·CN $\mathbf{C_{as}H_{16}O_{2}N_{4}} = \mathbf{C_{6}H_{5} \cdot C_{-6}}$ --NH-dinitril" (Bd. X, S. 681) mit o-Nitro-benzaldehyd in alkoh. Salzsäure (v. MEYER, C. 1908 II, 593; J. pr. [2] 78, 513). — Gelbe Täfelchen (aus Essigsäureanhydrid). F: 258⁶ (Rotfärbung). Farbt sich im Licht dunkler und wird im Dunkeln wieder gelb.

 4-Phenyl-2.6-di-p-tolyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), 4-Phenyl-2.6-di-p-tolyl-1.4-dihydro-dinicotins $aure C_{n}H_{m}O_{4}N =$ $\mathbf{HO_{3}C \cdot C \cdot CH(C_{6}H_{5}) \cdot C \cdot CO_{2}H}$

CH₂·C₂H₄·C—NH—C·C₂H₄·CH₂·

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1—3.

4-Phenyl-2.6-di-p-tolyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-dinitril, 4-Phenyl-2.6-di-p-tolyl-8.5-dicyan-1.4-dihydro-pyridin $C_{27}H_{21}N_3=$

NC·C·CH(C_6H_5)·C·CN

B. Man kondensiert "p-Toluacetodinitril" (Bd. X, CH₃·C₆H₄·C—NH—C·C₆H₄·CH₃

8. 704) mit Benzaldehyd in Eisessig bei Gegenwart von konz. Salzsäure (v. Meyer, J. pr. [2] 52, 113; vgl. v. M., C. 1908 II, 593; J. pr. [2] 78, 512).—Krystalle. F: ca. 215° (Zers.) (v. M., J. pr. [2] 52, 113).

15. Dicarbonsäuren C_nH_{2n-33}O₄N.

2.4.6-Triphenyl-pyridin-dicarbonsäure-(3.5), 2.4.6-Triphenyl-dinicotinsäure $C_{26}H_{17}O_4N$, s. nebenstehende Formel.

Diäthylester $C_{29}H_{25}O_4N = NC_5(C_6H_5)_3(CO_3 \cdot C_2H_5)_2$. B. Bei 4-stündigem Erhitzen von Benzal-bis-benzoylessigester (Bd. X, S. 922) mit konzentrierter wäßriger Hydroxylamin-Lösung auf 120—130° (Knoevenagel, Schmidt, A. 281, 56). — Nadeln (aus Alkohol). F: 146°. Unlöslich in Ligroin, schwer löslich in Ather, löslich in Chloroform, Benzol, heißem Alkohol und heißem Eisessig.

2.4.6-Triphenyl-pyridin-dicarbonsäure-(8.5)-dinitril, 2.4.6-Triphenyl-3.5-dicyan-pyridin $C_{55}H_{16}N_5=NC_5(C_6H_5)_3(CN)_2$. B. Aus 2.4.6-Triphenyl-3.5-dicyan-1.4-dihydro-pyridin (8.181) und Natriumnitrit in Eisessig (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 513). — Nadeln (aus Eisessig). F: 238°.

C. Tricarbonsäuren.

1. Tricarbonsăuren $C_n H_{2n-9} O_6 N$.

 $\begin{array}{ll} \textbf{5-Methyl-pyrrol-tricarbons \"{a}ure-(2.3.4)} & \textbf{C}_{8}\textbf{H}_{7}\textbf{O}_{6}\textbf{N} = \frac{\textbf{HO}_{2}\textbf{C}\cdot\textbf{C}-\textbf{C}\cdot\textbf{CO}_{2}\textbf{H}}{\textbf{CH}_{3}\cdot\textbf{C}\cdot\textbf{N}\textbf{H}\cdot\textbf{C}\cdot\textbf{CO}_{2}\textbf{H}}. \end{array}$

Triäthylester $C_{14}H_{19}O_6N = HNC_4(CH_3)(CO_2 \cdot C_2H_5)_3$. B. Neben der Verbindung $C_{20}H_{20}O_9N_2$ (Bd. III, S. 833) beim Erhitzen von β -Amino-crotonsäure-äthylester (Bd. III, S. 654) mit Dioxobernsteinsäurediäthylester und einer Spur Kaliumdisulfat auf 130—140° und nachfolgenden Kochen des Reaktionsgemisches mit Zinkstaub und Eisessig (Feist, B. 35, 1542, 1559). — Krystalle (aus Äther). F: 104°. Leicht löslich in Alkohol, ziemlich leicht in Äther, sehr schwer in Wasser. Zersetzt sich beim Kochen mit Alkalilauge.

2. Tricarbonsäuren C_nH_{2n-11}O₆N.

1. Tricarbonsāuren $\mathrm{C_8H_5O_6N}$.

1. Pyridin-tricarbonsäure - (2.3.4). Pyridin - α.β.γ-tricarbonsäure, α-Carbocinchomeronsäure C₈H₅O₆N, s. nebenstehende Formel. B.
Bei der Oxydation von 2.3.4-Trimethyl-pyridin (Bd. XX, S. 250) mit Kaliumpermanganat-Lösung auf dem Wasserbad (Guareschi, C. 1900 I, 1161). Beim
Kochen von Lepidin (Bd. XX, S. 395) (Hoogewerff, van Dorp, B. 13, 1640; R. 2, 14) oder
4-Methyl-chinolinsäure (S. 161) (H., v. D., B. 13, 1640; R. 2, 18) mit Kaliumpermanganat
in alkal. Lösung. Bei der Oxydation von Papaverin (Bd. XXI, S. 220) mit siedender Kaliumpermanganat-Lösung unter Einleiten von Kohlensäure (Goldschmiedt, M. 6, 397). Aus
2.4-Dimethyl-pyridin - carbonsäure-(3) (S. 51) und Kaliumpermanganat-Lösung auf dem
Wasserbad (Michael, B. 18, 2027). Aus Cinchoninsäure (S. 74) (Skraup, A. 201, 309, 312,
331; H., v. D., B. 13, 162), 6-Oxy-cinchoninsäure (S. 233) (Weidel, M. 2, 577) oder 8-Oxycinchonin (Syst. No. 3513) bei der Oxydation mit siedender Salpetersäure (D: 1,4)
(W., A. 173, 77, 101; vgl. W., v. Schmidt, B. 12, 1152 Anm.) oder mit siedender alkalischer
Kaliumpermanganat-Lösung (H., v. D., A. 204, 94; vgl. H., v. D., B. 12, 160; Dobbie,

RAMSAY, Soc. 35, 189; CAMPS, Ar. 240, 358). Aus Cinchonidin (Syst. No. 3513), Chinin (Syst. No. 3538) oder Chinidin (Syst. No. 3538) durch Einw. von siedender alkalischer Kaliumpermanganat-Lösung (H., v. D., A. 204, 94; vgl. H., v. D., B. 12, 160; Dob., Ra., Soc. 35, 189).

Krystalle mit 2 H₂O (aus Wasser) (Camps, Ar. 240, 358); rhombisch bipyramidal (Hoogewerf, van Dorf, A. 204, 96; vgl. Groth, Ch. Kr. 5, 694). Gibt bei 115—120° das Krystall-wasser ab (H., v. D., A. 204, 99) und schmilzt bei raschem Erhitzen bei 249—250° unter Zersetzung (Skrauf, A. 201, 313). 1 Tl. der wasserhaltigen Säure löst sich bei 15° in 83,9 Tln., bei 10° in 95,5 Tln. Wasser; leicht löslich in heißem Wasser, ziemlich schwer in Alkohol, sehr schwer in Äther und Benzol (H., v. D., A. 204, 96, 115 Anm.). Starke Säure; elektrische Leitfähigkeit in Wasser bei 25°: Ostwald, Ph. Ch. 3, 392. — Liefert beim Erhitzen für sich auf ca. 170—190° (H., v. D., A. 204, 106; Ca.), beim Kochen mit Eisessig (H., v. D., B. 14, 974) oder besser mit Eisessig, der ca. 10°/₀ Essigsäureanhydrid enthält (Weidel, Brix, M. 3, 604), Cinchomeronsäure. Ist beständig gegen heiße konzentrierte Salpetersäure oder alkal. Kaliumpermanganat-Lösung; wird von saurer Permanganat-Lösung auf dem Wasserbad rasch oxydiert (H., v. D., A. 204, 97). Gibt beim Erhitzen mit Natriumamalgam in verd. Kalilauge, Ansäuern der Lösung und Eindampfen der Flüssigkeit Cinchomsäure (Bd. XVIII, S. 483) und Ammoniak (W., A. 173, 104; vgl. W., Br.). Liefert beim Erhitzen mit überschüssigem Methyljodid und Methanol im Rohr auf dem Wasserbad Cinchomeronsäure-schüssiger Soda-Lösung auf dem Wasserbad erhält man Pyridin-α.β.γ-tricarbonsäure-methylbetain (S. 184) (Kirpal, M. 26, 63). Beim Einleiten von Chlorwasserstoff in die siedende methylalkoholische Lösung von Pyridin-α.β.γ-tricarbonsäure bildet sich Pyridin-α.β.γ-tricarbonsäure-α.γ-dimethylester-hydrochlorid (Rint, M. 18, 225; vgl. Ro., A. 234, 125). Gibt beim Kochen mit alkoh. Salzsäure oder beim Behandeln mit Phosphorpentachlorid und Versetzen des (nicht näher beschriebenen) Chlorids mit Alkohol Pyridin-α.β.γ-tricarbonsäure-α.γ-diäthylester und Cinchomeronsäure-diäthylester (Ri., M. 18, 224, 226; vgl. Dobbie, Ramsay, Soc. 35, 194). Bei 8-tägiger Einw. von Essigsäureanhydrid (Syst. No. 4298) (K., M. 26, 53). — Di

 $K_3C_6H_2O_6N+3H_2O$. Blättchen (Hoogewerff, van Dorp, A. 204, 100). Sehr leicht löslich in Wasser, unlöslich in Alkohol (Dobbie, Ramsay, Soc. 35, 192). — Cu($C_3H_4O_6N$) $_2+2H_2O$. Krystalle (Skraup, A. 201, 318). — CuC $_8H_3O_6N+3^1/_2H_2O$. Hellblaue, mikroskopische Prismen (Sk.). — Cu $_3(C_3H_2O_6N)_2+9(?)H_2O$. Hellblauer, schleimiger Niederschlag (Sk.). — AgC $_8H_4O_6N+C_8H_5O_6N+2^1/_2H_2O$. Säulen (H., v. D.). — Ag $_2C_8H_3O_6N+H_2O$. Nadeln (H., v. D.), Prismen (Sk.). — Ag $_3C_8H_2O_6N+2H_2O$. Amorpher Niederschlag (H., v. D.). Bläht sich beim Erhitzen stark auf unter Bildung einer schwarzgrünen Masse (Sk.). — CaC $_8H_3O_6N+2^1/_2H_2O$. Krystallinische Masse (Sk.). — Ca $_3(C_8H_2O_6N)_2+14(?)H_2O$. Mikroskopische Nadeln (H., v. D.; Sk.). Schwer löslich in Wasser (Weidel, A. 173, 102). — Ba $_3(C_8H_2O_6N)_2+12H_2O$ (H., v. D.). — Ba $_3(C_8H_2O_6N)_2+6H_2O$. Krystallinisches Pulver. Unlöslich in Wasser und verd. Essigsäure (W., B. 12, 416).

Pyridin - $\alpha.\beta.\gamma$ - tricarbonsäure - β - methylester $C_9H_7O_6N$, s. nebenstehende Formel. B. Beim Erwärmen von Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- $\beta.\gamma$ -anhydrid (Syst. No. 4330) mit überschüssigem Methanol (KIRPAL, M. 26, 55). — Tafeln (aus Wasser). F: 170°. — Gibt mit siedender methylalkoholischer Salzsäure Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure-trimethylester. Mit wäßr. Ammoniak bildet sich Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- β -amid.

Pyridin-α.β.γ-tricarbonsäure-α.γ-dimethylester C₁₀H₉O₆N, s. nebenstehende Formel. Zur Konstitution vgl. Kirpal, M. 26, 59. — B. Beim Einleiten von Chlorwasserstoff in die siedende methylalkoholische Lösung von Pyridin-α.β.γ-tricarbonsäure und nachfolgenden Kochen des entstandenen Hydrochlorids mit Benzol (Rint, M. 18, 225; vgl. Roser, A. 234, 125). — Krystalle (aus Methanol). F: 165—166° (unkorr.) (Ri.), 183° (K., M. 26, 59). — C₁₀H₉O₆N + HCl. Nadeln (aus salzsäurehaltigem Methanol). F: 177—178° (unkorr.) (Ri.).

Pyridin - $\alpha.\beta.\gamma$ - tricarbonsäure - trimethylester $C_{11}H_{11}O_6N = NC_5H_4(CO_2 \cdot CH_3)_3$. B. Beim Sättigen einer siedenden methylalkoholischen Lösung von Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- β -methylester mit Chlorwasserstoff (Kirpal, M. 26, 57). Bei Einw. von Thionylchlorid auf Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- $\alpha.\gamma$ -dimethylester und nachfolgender Behandlung des entstandenen Chlorids mit Methanol (H. Meyer, M. 22, 585). — Blättchen (aus verd. Alkohol), Nadeln (aus Essigester oder Aceton). F: 102° (K.), 97° (M.). — Hydrochlorid. Zerfließliche Nadeln. F: 68° (M.).

Pyridin-α,β,γ-tricarbonsäure-α,γ-diäthylester C₁₂H₁₃O₆N, s. nebenstehende Formel: Zur Konstitution vgl. Kirpal, M. 26, 59. — B. Neben Cinchomeronsäurediäthylester beim Einleiten von Chlorwasserstoff in die Siedende alkoholische Lösung von Pyridin-α,β,γ-tricarbonsäure und nachfolgenden Kochen des erhaltenen Hydrochlorids mit Benzol (Rint, M. 18, 224, 226; vgl. Dobbie, Ramsay, Soc. 35, 194). Beim Behandeln von Pyridin-α,β,γ-tricarbonsäure mit Phosphorpentachlorid und Versetzen des entstandenen Chlorids mit Alkohol (Ri.; vgl. D., Ra.). — Krystalle (aus Benzol). F: 118° (unkorr.); leicht löslich in Alkohol, Essigester, Aceton, Chloroform und Benzol, schwerer in Wasser und Schwefelkohlenstoff, fast unlöslich in Äther und Ligroin (Ri.). — Liefert beim Erhitzen für sich auf 150—160° oder mit alkoh. Salzsäure im Rohr auf 210° Cinchomeronsäurediäthylester (Ri.). Gibt beim Aufbewahren mit bei —10° gesättigter wäßriger Ammoniak-Lösung das Ammoniumsalz des Pyridin-α,β,γ-tricarbonsäure-diamids (Ri.). Beim Erhitzen mit überschüssigem Äthyljodid im Rohr auf 110° bildet sich Cinchomeronsäure-diäthylester-jodäthylat (S. 159) (Ri.). — C₁₂H₁₃O₆N+HCl. Krystallpulver (aus salzsäurehaltigem Alkohol). F: 142° (unkorr.); löslich in Wasser und Alkohol (Ri.).

Pyridin - $\alpha\beta.\gamma$ - tricarbonsäure - triäthylester $C_{14}H_{17}O_6N = NC_5H_3(CO_2 \cdot C_2H_5)_3$. B. Man behandelt Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- $\alpha.\gamma$ -diäthylester mit Thionylchlorid und das Reaktionsprodukt mit Alkohol (H. Meyer, M. 22, 586). — Flüssigkeit von Krauseminzgeruch. Kp: 300—305° (Zers.). — Hydrochlorid. Nadeln. F: 61°.

Pyridin - $\alpha.\beta.\gamma$ - tricarbonsäure - β - amid $C_8H_6O_5N_2$, s. nebenstehende Formel. B. Aus Pyridin - $\alpha.\beta.\gamma$ - tricarbonsäure - β - methylester und wäßr. Ammoniak (KIRPAL, M. 26, 58). — Prismen. F: 180°. — Geht bei längerem Erhitzen auf den Schmelzpunkt in Cinchomeronsäureimid (Syst. No. 3591) über. — NH₄C₈H₅O₅N₂ + H₂O. Nadeln (aus Wasser). F: 150° (Zers.).

Pyridin - $\alpha.\beta.\gamma$ - tricarbonsäure - diamid $C_8H_7O_4N_3 = NC_5H_2(CO \cdot NH_2)_2 \cdot CO_3H$. — Ammoniumsalz $NH_4C_8H_6O_4N_3$. B. Beim Aufbewahren von Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure- $\alpha.\gamma$ -diäthylester mit bei — 10^o gesättigtem wäßrigem Ammoniak (Rint, M. 18, 239). Unlöslich in Alkohol, löslich in Wasser. Zersetzt sich beim Erhitzen unter Abgabe von Ammoniak und Wasser und Bildung einer nicht rein erhaltenen Verbindung $C_8H_5O_3N_3$ [vielleicht Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure-amid-imid]. Zersetzt sich beim Aufbewahren mit Wasser.

Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure-hydroxymethylat, Ammoniumbase des Pyridin- $\alpha.\beta.\gamma$ -tricarbonsäure-methylbetains $C_9H_9O_7N=(HO)(CH_9)NC_6H_2(CO_2H)_3$.

Anhydrid, Pyridin -α.β.γ-tricarbonsäure-methylbetain C₉H₇O₆N = CH₃·NC₅H₂ (CO₂H)₂·CO·O. B. Beim Erwärmen von Pyridin-α.β.γ-tricarbonsäure mit Methyljodid und überschüssiger Soda-Lösung auf dem Wasserbad (ΚΙRPAL, M. 26, 63). — Prismen. F: 220° (Zers.) (K.). — Geht in heißer wäßriger Lösung in Apophyllensäure (S.158) über (K.). Spaltet beim Kochen mit Jodwasserstoffsäure die Methylgruppe fast vollständig ab (Goldschmiedt, Hönigschmiedt, M. 24, 712).

- 6-Chlor-pyridin-tricarbonsäure-(2.3.4) C₈H₄O₆NCl, s. nebenstehende Formel. B. Neben 6-Chlor-pyridin-tricarbonsäure-(2.3.4)-äthylester-(3) bei der Oxydation von 6-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester (S. 52) mit siedender Kaliumpermanganat-Lösung (Collie, Lean, Soc. 78, 590). — Krystalle mit 2 H₂O. F: 212° (korr.). — Gibt bei der Einw. von Zinn und Salzsäure bei mäßiger Wärme Pyridin-tricarbonsäure-(2.3.4).
- 6-Chlor-pyridin-trioarbonsäure-(2.3.4)-äthylester-(3) $C_{10}H_5O_6NCl$, s. nebenstehende Formel. B. s. im vorangehenden Artikel. Krystalle mit 3 H_2O . F: 169° (korr.) (Collie, Lean, Soc. 78, 591). $KC_{10}H_7O_6NCl$.
- 2. Pyridin tricarbonsāure (2.3.5), Pyridin α.β.β' tri-carbonsāure, Carbodinicotinsāure C₈H₅O₆N, s. nebenstehende Formel. B. Neben anderen Produkten bei der Oxydation von 3.5-Dimethyl-2-āthyl-pyridin (Bd. XX, 8. 253) mit Kaliumpermanganat-Lösung auf dem Wasserbad (Dürkopf, Schlauge, B. 21, 835, 2707; D., Göttsch, B. 23, 689). Aus Chinolin-carbonsāure-(3) und Kaliumpermanganat in verd. Kalilauge auf dem Wasserbad (Riedel, B. 16, 1615). Bei der Oxydation von 2-Methyl-pyridin-dicarbonsāure-(3.5) (S. 161) mit Kaliumpermanganat-Lösung (Weber, A. 241, 11). Krystalle mit 1½ oder 2 H₂O (aus Wasser). Leicht löslich in heißem Wasser (W.) und in Alkohol (R.). Starke Säure; elektrisches Leit-

aufzufassen.

vermögen in Wasser bei 25°: Ostwald, Ph. Ch. 8, 392. — Zerfällt bei längerem Erhitzen auf ca. 150° in Pyridin-dicarbonsäure-(3.5) (S. 160) und Kohlendioxyd (R.; We.). — Gibt mit Ferrosulfat eine rote Färbung (We.; D., Sch., B. 21, 836; vgl. Skraup, M. 7, 212; Wolff, A. 322, 372 Anm.). Mit Ferrichlorid bildet sich ein gelblicher, flockiger Niederschlag (We.; D., Sch., B. 21, 836). — Kupfersalz. Blaugrüner, krystallinischer Niederschlag (R.; We.). Sehr schwer löslich in Wasser (D., Sch., B. 21, 835) und in verd. Essigsäure (R.). — Ag₂C₂H₃O₆N + 1½, H₂O. Blätter (D., G., B. 23, 689). — Ba₃(C₂H₃O₆N)₂ + 5 H₂O. Krystallinischer Niederschlag (We.).

- 4. Pyridin-tricarbonsäure (2.4.5), Pyridin-α.γ.β'-tricar-bonsäure, Berberonsäure C₈H₅O₆N, s. nebenstehende Formel. B. HO₂C.

 Beim Versetzen von Berberin (Syst. No. 4442) mit überschüssiger konzentrierter Salpetersäure und Kochen der Reaktions-Lösung (Weidel, B.

 12, 410; Fürth, M. 2, 416; Mayer, M. 13, 345). Trikline (Ditscheiner, B. 12, 413) Prismen mit 2 H₂O (aus verd. Salzsäure). Verwittert nicht an der Luft; verliert das Krystallwasser erst oberhalb 100° (Mumm, Hünere, B. 51 [1918], 163; vgl. W.). F: 243° (F.; M., H.). Schwer löslich in kaltem Wasser, sehr schwer in siedendem Alkohol, unlöslich in Äther, Benzol und Chloroform (W.). Beim Erhitzen der Berberonsäure und ihrer Salze findet Übergang in Pyridin-carbonsäure-(3) und Pyridin-carbonsäure-(4) statt (F.). Gibt mit Chlorwasserstoff Krystalle, die sich bei 100° zersetzen (F.). Liefert beim Erhitzen mit Eisessig im Rohr auf 140° (F.) oder mit Eisessig und Essigsäureanhydrid im Rohr auf 160° (M.) Cinchomeronsäure. Die wäßr. Lösung wird auf Zusatz von Ferrosulfat intensiv rot (W.; F.). KC₈H₄O₈N + 1½₂H₂O. Gelbliche Nadeln. Schwer löslich in kaltem Wasser, unlöslich in Alkohol (F.). K₂C₈H₂O₆N + 3H₂O. Tafeln (aus Wasser). Schwer löslich in kaltem Wasser, unlöslich in kaltem Wasser, unlöslich in Alkohol (F.). Ag₃C₈H₂O₆N. Krystallinischer Niederschlag. Sehr schwer löslich in Wasser (W.). Ca₃(C₈H₂O₆N)₂ + 8H₂O. Nadeln. Sehr schwer löslich in siedendem Wasser (W.).
- 5. Pyridin-tricarbonsäure-(2.4.6), Pyridin-α.γ.α'-tricarbonsäure (Trimesitinsäure) C₈H₅O₆N, s. nebenstehende Formel. B. Neben anderen Produkten beim Erwärmen von 2.4.6-Trimethyl-pyridin mit Kaliumpermanganat-Lösung auf dem Wasserbad (Voigt, A. 228, 31).

 Bei der Oxydation von 6-Methyl-pyridin-dicarbonsäure-(2.4) (S. 161) mit Kaliumpermanganat in siedenden wäßrigen Alkalien oder weniger gut mit Chromschwefelsäure (Böttinger, B. 13, 2048; A. 229, 248). Nadeln mit 2 H₂O (aus Wasser) (V.). F: 227° (Zers.) (V.). Ziemlich schwer löslich in kaltem Wasser, schwer in Alkohol und Äther (V.). Zerfällt beim Sublimieren in Pyridin-carbonsäure-(4), Kohlendioxyd und andere Produkte (V.). Ist beständig gegen siedenden Eisessig (V.). Die wäßr. Lösung wird auf Zusatz von Ferrosulfat violettrot (B., B. 13, 2049). KC₉H₄O₆N + H₂O. Nadeln (aus Wasser). Ziemlich schwer löslich in Wasser (V.). K₂C₈H₂O₆N + 5H₂O. Säulen (aus Wasser). Leicht löslich in Wasser (V.). Cu₂(C₈H₂O₆N)₂ + 12 H₂O. Himmelblaue Krystalle. Schwer löslich in Wasser und verd. Essigsäure (V.; B., B. 17, 95). Ag₃C₈H₂O₆N + 1¹/₂H₃O. Krystallinisches Pulver. Zersetzt sich beim Erhitzen. Sehr schwer löslich in Wasser, leicht in Ammoniak (B., B. 17, 95; V.). Mg₃(C₈H₂O₆N)₂ + 12 H₂O. Nadeln (aus Wasser). Leicht löslich in Wasser (V.). Ca₃(C₈H₂O₆N)₂ + 4 H₄O. Krystalle. Unlöslich in Wasser und verd. Essigsäure (B., B. 17, 94; V.). Ba(C₈H₄O₆N)₂ + 4 H₄O. Krystalle (V.). Ba₃(C₈H₂O₆N)₂ + 6 H₄O. Nadeln (B., B. 18, 2049; 17, 94; V.).

- 3.5-Dibrom-pyridin-tricarbonsäure-(2.4.6) $C_8H_8O_8NBr_8$, s. nebenstehende Formel. B. Bei 5-tägigem Erwärmen von 3.5-Dibrom-2.4.6-trimethyl-pyridin mit Kaliumpermanganat-Lösung auf dem Wasserbad (Pfeiffer, B. 20, 1347). Adstringierend bitter schmeckende Nadeln mit 4 H_8O . Leicht löslich in heißem Wasser, schwer in Alkohol, sehr schwer in Äther. Beim Erhitzen auf 165° oder beim Erhitzen des Kaliumsalzes mit Kalk bildet sich 3.5-Dibrom-pyridin. Ist beständig gegen siedenden Eisessig. Die wäßr. Lösung wird auf Zusatz von Ferrosulfat-Lösung carminrot. $KC_8H_8O_8NBr_2 + C_8H_8O_8NBr_2 + 6H_8O$. Nadeln. Verwittert beim Aufbewahren an der Luft. Leicht löslich in heißem Wasser. $Ag_3C_8O_8NBr_2 + H_8O$. Krystallinisches Pulver. Zersetzt sich beim Erhitzen. $Cu_3(C_8O_8NBr_3)_2 + H_8O$. Hellblaues Krystallpulver.
- 6. Pyridin-tricarbonsäure-(3.4.5), Pyridin-β.γ.β'-tricar-bonsäure, β-Carbocinchomeronsäure C₈H₅O₆N, s. nebenstehende HO₂C. CO₂H Formel. B. Beim Erhitzen von Pyridin-tetracarbonsäure-(2.3.4.5) auf 160° (Weber, A. 241, 23; Ahrens, B. 28, 798). Beim Erhitzen des Di-kaliumsalzes der Pyridinpentacarbonsäure (S. 190) auf 220°, neben Cinchomeronsäure (W., A. 241, 16). Aus 4-[4-Amino-benzyl]-isochinolin (Syst. No. 3400) und wäßr. Kaliumpermanganat-Lösung auf dem Wasserbad (Rügheimer, Friling, A. 326, 267). Tafelförmige Blättchen mit 3 H₂O. Wird bei 115° wasserfrei und zersetzt sich bei ca. 261° (R., F.; vgl. W.). Schwer löslich in kaltem Wasser (W.). Starke Säure; elektrische Leitfähigkeit in Wasser bei 25°: Ostwald, Ph. Ch. 3, 392. Gibt mit Ferrosulfat-Lösung keine Färbung (W.). Cu₂(C₆H₂O₆N)₂ + 2CuC₆H₃O₆N + 24 H₂O. Dunkelblaue Krystalle (W.). Ag₃C₆H₂O₆N + 2 H₂O. Krystalle (W.; R., F.).

2. Tricarbonsäuren $C_9H_7O_6N$.

- 1. 4-Methyl-pyridin-tricarbonsäure-(2.3.5), γ-Picolinα.β.β'-tricarbonsäure C₉H₇O₆N, s. nebenstehende Formel. B. Neben
 Pyridin-tetracarbonsäure-(2.3.4.5) bei der Oxydation von 2.4-Dimethylpyridin-dicarbonsäure-(3.5) (S. 162) mit siedender KaliumpermanganatLösung (Weber, A. 241, 22, 25). Krystallisiert aus heiß gesättigten wäßrigen Lösungen
 bei raschem Erkalten in Nadeln mit 1 H₂O; bei langsamem Verdunsten entstehen Prismen mit
 2 H₂O (W.). Wird bei 120° wasserfrei, färbt sich bei 204—205° gelb und zersetzt sich bei
 258—260° völlig unter heftiger Gasentwicklung (W.). Starke Säure; elektrische Leitfähigkeit in
 Wasser bei 25°: Ostwald, Ph. Ch. 3, 393. Das Calciumsalz gibt bei der trocknen Destillation 4-Methyl-pyridin (W.). Mit Ferrichlorid-Lösung bildet sich ein gelber Niederschlag (W.).
 Die wäßr. Lösung wird beim Behandeln mit Ferrosulfat-Lösung intensiv dunkelrot (W.).
- 2. 3-Methyl-pyridin-tricarbonsäure-(2.4.5)(?), β-Pico-CO₂H lin-α.γ.β'-tricarbonsäure(?), 3-Methyl-berberonsäure(?) HO₂C. CH₃ (?) C₂H₇O₆N, s. nebenstehende Formel. Zur Konstitution vgl. Mumm, Hüncke, B. 51 [1918], 152; Lawson, Perkin, Robinson, Soc. 125 N. CO₂H [1924], 632, 638. B. In geringer Menge bei der Oxydation von Corydalin (Bd. XXI, S. 217) mit konz. Salpetersäure (Dobbie, Lauder, Soc. 81, 151). Neben anderen Produkten bei der Oxydation von Corydinsäure (S. 282) mit siedender Kaliumpermanganat-Lösung oder mit Salpetersäure (D., Marsden, Soc. 71, 963; D., Lau.). Beim Kochen von Corydilinsäure (S. 283) mit Kaliumpermanganat-Lösung (D., Ma.; D., Lau.). Prismen mit 1 H₂O. F: 208° (D., Ma.). Leicht löslich in Alkohol, schwer in kaltem Wasser, unlöslich in Äther, Chloroform und Benzol (D., Ma.). Liefert mit Kaliumpermanganat in Kalilauge auf dem Wasserbad eine (nicht näher untersuchte) Pyridintetracarbonsäure, die beim Kochen mit Eisessig in Cinchomeronsäure übergeht (D., Lau.). Die wäßr. Lösung wird auf Zusatz von Ferrosulfat-Lösung schwach rotbraun (D., Ma.). Ag₃C₂H₄O₆N. Krystallinischer Niederschlag. Zersetzt sich beim Erhitzen (D., Ma.). Pb₃(C₆H₄O₆N)₂. Gelatinös. Unlöslich in Wasser (D., Ma.).
- 3. 6-Methyl-pyridin-tricarbonsäure-(2.3.4), α-Picolinγ.α'.β'-tricarbonsäure C₉H₇O₄N, s. nebenstehende Formel. B. In
 geringer Menge beim Erwärmen von 2-Methyl-chinolin-carbonsäure-(4)
 (8. 85) mit Kaliumpermanganat in Kaliumcarbonat-Lösung (v. MILLER,
 B. 24, 1919). Wurde nicht rein erhalten. Nadeln (aus Wasser). Zersetzt sich bei
 210—220°. Leicht löslich in Wasser, sehr schwer in Alkohol und Äther. Ist beständig
 gegen siedenden Eisessig. Wird auf Zusatz von Ferrosulfat-Lösung rot. Cu₃(C₉H₄O₆N)₂
 +5H₂O. Niederschlag.

- 4. 4-Methyl-pyridin-tricarbonsdure -(2.3.6), γ-Picolinα.β.α'-tricarbonsdure C, H,O,N, s. nebenstehende Formel. Zur
 Konstitution vgl. O. Fischer, Täuber, B. 17, 2928; Weber, A. 241,
 30. B. Aus 2.4-Dimethyl-chinolin (Bd. XX, S. 407) und Kaliumpermanganat in Kaliumcarbonat-Lösung auf dem Wasserbad (v. Miller, B. 24, 1913; vgl.
 Beyer, J. pr. [2] 33, 416). Neben anderen Produkten bei der Oxydation von 4-Methyl2-[4-oxy-phenyl]-chinolin (Bd. XXI, S. 143) mit 9 Mol Kaliumpermanganat in sehr verd.
 Natronlauge auf dem Wasserbad (Besthorn, O. Fischer, B. 16, 71; F., T., B. 17, 2926).
 Neben anderen Produkten bei der Oxydation des Kaliumsalzes der 2.4.6-Trimethyl-pyridincarbonsäure-(3) (S. 54) mit wäßr. Kaliumpermanganat-Lösung auf dem Wasserbad
 (Μισημεί, A. 225, 140). Nadeln mit 2 H₂O (aus Wasser). Wird zwischen 210—220° braun
 bis schwarz und schmilzt bei 238° unter Zersetzung (Mich.); wird von 210° an dunkel,
 schmilzt bei 232° und zersetzt sich bei 236° (F., T.). Liefert bei der Oxydation mit Kaliumpermanganat-Lösung Pyridin-tetracarbonsäure-(2.3.4.6) (F., T.). Die wäßr. Lösung wird
 auf Zusatz von Ferrosulfat dunkelbraunrot (Best., F.; F., T.). Ag₃C₃H₄O₆N. Gelatinöser
 Niederschlag (Best., F.). Ba₃(C₃H₄O₆N)₂ (bei 150°). Amorphes Pulver (Mich.).
- 5. 6-Methyl-pyridin-tricarbonsäure-(2.3.5), α-Picolin-β.α'.β'-tricarbonsäure C₉H₇O₆N, s. nebenstehende Formel. B. Aus dem Kaliumsalz der 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5) und Kaliumpermanganat in wäßr. Lösung auf dem Wasserbad (Weber, A. 241, 6). Krystalle mit 1 H₂O. F: 226° (Zers.) (W.). Elektrisches Leitvermögen in Wasser bei 25°: Ostwald, Ph. Ch. 3, 393. 6-Methyl-pyridin-tricarbonsäure-(2.3.5) oder ihr Kaliumsalz liefern beim Erhitzen auf 150° 2-Methyl-pyridin-dicarbonsäure-(3.5) (W.). KC₉H₆O₆N + C₉H₇O₆N + 6H₂O. Krystalle (W.). AgC₉H₆O₆N + 2H₂O. Nadeln (aus Wasser) (W.).

3. Tricarbonsäuren C₁₀H₂O₆N.

- 1. 4.6-Dimethyl-pyridin-tricarbonsäure-(2.3.5), α.γ-Luti-din-β.α'.β'-tricarbonsäure C₁₀H₉O₆N, s. nebenstehende Formel. B. HO₂C. CO₂H Aus 4.5.6-Trimethyl-pyridin-dicarbonsäure-(2.3) (S. 164) und Kalium-permanganat in verd. Kalilauge auf dem Wasserbad (WOLFF, A. 322, 374).

 Beim Kochen des Kaliumsalzes der 2.4.6-Trimethyl-pyridin-dicarbonsäure-(3.5) mit 2 Mol Kaliumpermanganat in wäßr. Lösung unter Einleiten von Kohlensäure (Hantzsch, A. 215, 53; Weber, A. 241, 20). Prismen mit 2H₂O (aus Wasser). F: 220° (Zers.) (H.), 218° (Zers.) (Wo.). Ziemlich schwer löslich in kaltem Wasser und Alkohol, sehr schwer in Äther und Chloroform; löslich in verd. Salzsäure (Wo.). Liefert beim Erhitzen für sich auf 175° (We.), beim Erhitzen mit Wasser im Rolff auf 170° (Wo.) oder beim Kochen mit Isovaleriansäure oder Phenol (Koenigs, Mengel, B. 37, 1336) 2.4-Dimethyl-pyridin-dicarbonsäure-(3.5). Das Kaliumsalz gibt beim Erhitzen mit Kalk 2.4-Dimethyl-pyridin (Bd. XX, S. 244) (H.). Gibt mit Ferroammonsulfat eine hellgelbrote Färbung, die auf Zusatz von Ferrichlorid verschwindet (Wo.). Beim Kochen mit Ferrichlorid erhält man einen gelblichen Niederschlag (H.). KC₁₀H₃O₆N + 2 H₂O. Nadeln. Ziemlich leicht löslich in Wasser (H.). Ag₃C₁₀H₆O₆N). Niederschlag (H.). Mg₃(C₁₀H₆O₆N)₂ + 10 H₂O. Amorphe Masse (H.). Ca₃(C₁₀H₆O₆N)₂ + 8(7)H₂O. Hygroskopische Nadeln (H.).
- 2. 2.6-Dimethyl-pyridin-tricarbonsäure-(3.4.5), $\alpha.\alpha'$ -Lutidin- $\beta.\gamma.\beta'$ -tricarbonsäure $C_{10}H_0O_0N$, s. nebenstehende Formel. B. HO₂C CO₂H Bei der Oxydation des Kaliumsalzes der 4¹-Benzal-kollidin-dicarbonsäure-(3.5) (S. 176) mit Kaliumpermanganat in wäßr. Lösung (Epstein, A. 231, 11). Prismen mit 1 H₂O (aus Wasser). Zersetzt sich oberhalb 220°. 1000 g Wasser lösen bei 8° 1,78 g Substanz. Sehr schwer löslich in Alkohol, unlöslich in Äther, Benzol und Chloroform. Gibt beim Erhitzen mit Ätzkalk im Wasserstoffstrom 2.6-Dimethyl-pyridin. $C_{10}H_0O_0N + HCl$. Hellgelbe Spieße. Wird durch Wasser und Alkohol zersetzt. $(NH_4)CuC_{10}H_4O_0N + 4H_2O$. Blaue Krystalle. $Ag_3C_{10}H_6O_6N + 3H_2O$. Niederschlag. $Pb_3(C_{10}H_6O_6N)_2 + 6H_2O$. Niederschlag.

3. Tricarbonsäuren $C_n H_{2n-17} O_6 N$.

Chinolin-tricarbonsäure-(2.3.4) $C_{12}H_7O_6N$, s. nebenstehende Formel. B. Bei der Oxydation von 9-Methyl-aeridin (Bd. XX, S. 470) mit der berechneten Menge Kaliumpermanganat in wäßr. Lösung auf dem Wasserbad (Bernthsen, Bender, B. 16, 1808; Bee., A. 224, 37). — Bräunliche

Masse. Sehr leicht löslich in Wasser (Ber.). Die ammoniakalische Lösung gibt mit Silbernitrat, Bariumchlorid und Bleinitrat Niederschläge (Ber., Ber.). — Ag₂C₁₂H₄O₆N. Niederschlag (Ber., Ber.).

4. Tricarbonsäuren C_nH_{2n-27}O₆N.

2-Phenyl-6-[2-carboxy-phenyl]-pyridin-dicarbonsäure-(4.5), 6-Phenyl-2-[2-carboxy-phenyl]cinchomeronsäure C₂₀H₁₂O₆N, s. nebenstehende Formel. B.
Neben anderen Produkten bei der Oxydation von 2-Phenyl-7.8-benzocinchoninsäure (S. 113) mit Kaliumpermanganat in verd. Kalilauge bei höchstens 50° (Doebner,
Kuntze, A. 249, 119). — Nadeln (aus verd. Alkohol). F: 250° (Zers.). Sehr schwer löslich
in kaltem Wasser, schwer in Ather, sehr leicht in Aceton; löslich in verd. Essigsäure. — Gibt
beim Erhitzen mit Natronkalk 2.6-Diphenyl-pyridin (Bd. XX, S. 496). — Ag₃C₃₀H₁₀O₆N.
Flockiger Niederschlag.

D. Tetracarbonsäuren.

1. Tetracarbonsäuren $C_nH_{2n-7}O_8N$.

 $\label{eq:constraints} \begin{aligned} & \text{Pyrrolidin-tetracarbons} \\ & \text{saure} \quad C_8 H_9 O_8 N = \underbrace{ \begin{array}{c} H_2 C & C H_9 \\ (HO_2 C)_2 C \cdot NH \cdot C(CO_2 H)_3 \end{array}}_{}. \end{aligned}$

N-Methyl-pyrrolidin- $\alpha.\alpha.\alpha'.\alpha'$ -tetracarbonsäure-tetrakis-methylamid $C_{13}H_{23}O_4N_5=H_2C$ —CH₂ . B. In geringer Menge beim Erhitzen von $\alpha.\delta$ -Di-(CH₃·NH·CO)₂C·N(CH₃)·C(CO·NH·CH₃)₂ . B. In geringer Menge beim Erhitzen von $\alpha.\delta$ -Di-brom-butan- $\alpha.\alpha.\delta$ - δ -tetracarbonsäure-tetraäthylester mit einer 25°/oigen Lösung von Methylamin in Methanol (Willstätter, Lessing, B. 35, 2071). — Prismen (aus Alkohol). F: 230—230,5°. Ziemlich schwer löslich in kaltem Wasser, Essigester und Benzol, schwer in Alkohol. — Liefert beim Verseifen mit Barytwasser eine (nicht näher beschriebene) N-Methyl-pyrrolidindicarbonsäure vom Schmelzpunkt 280—281°.

2. Tetracarbonsäuren C_nH_{2n-11}O₈N.

 $\label{eq:prol-dicarbons} \begin{array}{l} \text{Pyrrol-}\alpha.\beta'\text{-dicarbon-}\\ \text{säure-}\beta.\alpha'\text{-diessigsäure-}\text{C_{10}H$}_{9}\text{O}_{8}\text{N} = \frac{\text{HO}_{3}\text{C}\cdot\text{C}}{\text{HO}_{2}\text{C}\cdot\text{CH}_{2}\cdot\text{C}}\cdot\text{NH}\cdot\text{C}\cdot\text{CO}_{2}\text{H}} \\ \text{HO}_{2}\text{C}\cdot\text{CH}_{2}\cdot\text{C}\cdot\text{NH}\cdot\text{C}\cdot\text{CO}_{3}\text{H}} \\ \text{kurzes Erwärmen des Tetraäthylesters mit alkoh. Kalilauge (Feist, B, 35, 1557).} \\ \text{-Nadeln mit 1H}_{2}\text{O (aus Wasser)}. Schmilzt bei 220° unter Zersetzung und Bildung von 2.4-Dimethyl-pyrrol.} \end{array}$

Tetraäthylester $C_{18}H_{25}O_8N = \frac{C_2H_5\cdot O_2C\cdot C_{--}C\cdot CH_2\cdot CO_2\cdot C_2H_5}{C_3H_5\cdot O_2C\cdot CH_2\cdot C\cdot NH\cdot C\cdot CO_2\cdot C_2H_5}$. B. Beim Versetzen von Acetondicarbonsäurediäthylester mit Natriumnitrit in Eisessig und Kochen des Reaktionsgemisches mit Zinkstaub (Frist, B. 35, 1541, 1556). — Krystalle. F: 113° bis 113,5°. Leicht löslich in Alkohol, Benzol und Chloroform, ziemlich leicht in Äther und heißem Ligroin. Unlöslich in verd. Säuren und Alkalien.

3. Tetracarbonsäuren $C_nH_{2n-13}O_8N$.

1. Tetracarbonsäuren $C_9H_5O_8N$.

1. Pyridin-tetracarbonsäure-(2.3.4.5), Pyridin- $\alpha.\beta.\gamma.\beta'$ -tetracarbonsäure $C_0H_0O_0N$, s. nebenstehende Formel. B. Bei der Oxydation von 2.3.4.5-Tetramethyl-pyridin (Bd. XX, S. 254) mit $1^0/_0$ iger Kaliumpermanganat-Lösung (Ahrens, B. 28, 798). Neben 4-Methyl-

pyridin-tricarbonsäure-(2.3.5) bei der Oxydation von 2.4-Dimethyl-pyridin-dicarbonsäure-(3.5) mit siedender Kaliumpermanganat-Lösung (Weber, A. 241, 22). — Prismen mit 2 oder $3H_2O$. Wird bei 115^0 wasserfrei. Elektrisches Leitvermögen in Wasser bei 25^0 : Ostwald, Ph. Ch. 3, 393. — Zersetzt sich beim Erhitzen auf 160^0 in Pyridin-tricarbonsäure-(3.4.5) und Kohlendioxyd (W.; A.). Die wäßr. Lösung wird auf Zusatz von Ferrosulfat intensiv dunkelrot (W.). — $Ag_4C_9HO_8N + Ag_3C_9H_2O_8N + H_2O$. Krystalle (W.). — $Ba_2C_9HO_8N + 4H_2O$. Niederschlag (W.).

- 2. Pyridin tetracarbonsäure (2.3.4.6), Pyridin α,β.γ.α' tetracarbonsäure C₂H₅O₈N, s. nebenstehende Formel. B. Aus 4-Methyl-2-[4-oxy-phenyl]-chinolin (Bd. XXI, S. 143) und 11 Mol Kalium-permanganat in verd. Natronlauge auf dem Wasserbad (O. FISCHER, TÄUBER, B. 17, 2927). Neben anderen Produkten bei der Oxydation des Kaliumsalzes der 2.4.6-Trimethyl-pyridin-carbonsäure-(3) (S. 54) mit wäßr. Kaliumpermanganat-Lösung auf dem Wasserbad (MICHAEL, A. 225, 142). Nadeln mit 2 H₂O. Die bei 115° getrocknete Verbindung schmilzt bei 227° (Zers.) (F., T.), die bei 100° getrocknete bei 187° (Zers.) (F., T.; M.). Sehr leicht löslich in Wasser, sehr schwer in Alkohol und Äther (M.). Die wäßr. Lösung wird auf Zusatz von Ferrosulfat kirschrot (F., T.). Cu₂C₂HO₃N + 2¹/₂H₂O. Hellblaugrüner, amorpher Niederschlag. Gibt das Wasser erst bei ca. 200° ab, wobei die Farbe in Olivgrün übergeht; unlöslich in siedendem Wasser und Essigsäure (M.). Ag₄C₂HO₃N + H₂O. Niederschlag (F., T.). Ba₂C₃HO₃N + 2¹/₂H₂O. Pulveriger Niederschlag (M.).
- 3. Pyridin-tetracarbonsäure (2.3.5.6), Pyridin α.β.α'.β'- HO₂C CO₂H tetracarbonsäure C₂H₅O₈N, s. nebenstehende Formel. B. Bei der Oxydation des Kaliumsalzes der 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)
 (S. 162) mit 4 Mol Kaliumpermanganat-Lösung auf dem Wasserbad (Hantzsch, Weiss, B. 19, 284; Weber, A. 241, 4). Nadeln mit 2H₂O (aus Wasser) (Web.). Sehr leicht löslich in Wasser (H., Weiss). Zerfällt beim Erhitzen auf 150° in Pyridin-dicarbonsäure-(3.5) und Kohlendioxyd (H., Weiss). Gibt mit Ferrosalzen eine blutrote Färbung (H., Weiss). Cu₂C₂HO₈N + 5H₂O. Hellblaues Pulver (H., Weiss). Ag₄C₂HO₆N + 2H₂O. Niederschlag. Wird beim Erwärmen krystallinisch (H., Weiss). CaC₂H₂O₈N + 2H₂O. Nadeln. Leicht löslich in heißem Wasser (H., Weiss).
- 2. 4-Methyl-pyridin-tetracarbonsäure-(2.3.5.6), γ -Picolin- $\alpha.\beta.\alpha'.\beta'$ -tetracarbonsäure $C_{10}H_{7}O_{8}N$, s. nebenstehende Formel. HO₂C. CO₂H B. Beim Kochen des Kaliumsalzes der 2.4.6-Trimethyl-pyridin-dicarbonsäure-(3.5) (S. 164) mit 4 Mol Kaliumpermanganat in wäßr. Lösung (Hantzsch, A. 215, 57). Neben anderen Produkten bei der Oxydation von 2¹-Oxy-2.4.5.6-tetramethyl-pyridin-carbonsäure-(3) (S. 223) mit der berechneten Menge Kaliumpermanganat in verd. Kalilauge auf dem Wasserbad (Wolff, A. 322, 376). Prismen mit 2H₂O (aus Wasser). Schmilzt wasserfrei bei 199° (Zers.) (H.), 200° (Zers.) (W.). Sehr leicht löslich in Wasser, löslich in Alkohol, schwer in Äther und Chloroform (H.; W.). Liefert beim Erhitzen mit Kalk 4-Methyl-pyridin (H.). Beim Erhitzen mit Eisessig auf 130° bildet sich 4-Methyl-pyridin-dicarbonsäure-(3.5) (S. 162) (W.). Gibt mit Ferroammoniumsulfat eine rote Färbung, die auf Zusatz von Ferrichlorid verschwindet (H.; W.). KC₁₀H₆O₈N+2H₂O. Nadeln (H.). K₂C₁₀H₅O₈N+4H₂O. Tafeln. Leicht löslich in heißem Wasser (H.). Mg₂C₁₀H₃O₈N+6H₃O. Verliert das Wasser erst oberhalb 200° (H.). Ca₂C₁₀H₃O₈N+4H₂O. Kaum krystallinische Masse. Wird erst oberhalb 200° wasserfrei (H.).

4. Tetracarbonsäuren $C_n H_{2n-21} O_8 N$.

4-Phenyl-pyridin-tetracarbonsäure-(2.3.5.6) $C_{15}H_9O_9N$, s. nebenstehende Formel. B. Bei der Oxydation des Kaliumsalzes der 2.6-Dimethyl-4-phenyl-pyridin-dicarbonsäure-(3.5) mit 4 Mol Kaliumpermanganat (Hantzsch, B. 17, 1515). — Krystalle mit $3H_2O$. Schmilzt wasserfrei bei $205-207^{\circ}$ (Zers.) (H.). Sehr leicht löslich in Wasser, löslich in Äther (H.). — Das Kaliumsalz gibt beim Erhitzen auf 170° wenig 4-Phenyl-pyridin-dicarbonsäure-(3.5) und Kohlendioxyd (Weber, A. 241, 13). Beim Erhitzen des Kaliumsalzes mit Kalk im Wasserstoffstrom erhält man 4-Phenyl-pyridin (H.). — Die ammoniakalische Lösung wird auf Zusatz von Ferrosalzen dunkelrot (H.). — $KC_{15}H_8O_9N + H_2O$. Krystalle. Schwer löslich in kaltem Wasser (H.). — $Cu_2C_{15}H_5O_9N + 7H_2O$. Blaues Krystallpulver. Unlöslich in Wasser (H.). — $Ba_3(NH_4)_3(C_{15}H_5O_9N)_2 + 6H_2O$. Mikroskopische Tafeln. Ziemlich schwer löslich in kaltem, schwer in heißem Wasser (H.).

E. Pentacarbonsäuren.

CO₂H Pyridinpentacarbonsaure $C_{10}H_5O_{10}N$, s. nebenstehende Formel. B. Neben anderen Produkten beim Kochen des Kaliumsalzes der 2.4.6-Tri- HO2Cmethyl-pyridin-dicarbonsäure-(3.5) mit Kaliumpermanganat in wäßr. Ho₂C N CO₂H Lösung (Hantzsch, A. 215, 62; Weber, A. 241, 15). Neben anderen Produkten bei der Oxydation von 2¹-Oxy-2.4.5.6-tetramethyl-pyridin-carbonsäure-(3) (S. 223) mit Kaliumpermanganat in verd. Kaliumpermanganat in var. Undeutlich krystallinische Substanz mit 2H₂O (aus wasserhaltigem Äther) (H.), mit 3H₂O (aus Wasser) (We.). Wird bei 120° wasserfrei und zersetzt sich oberhalb 200° (H.). Sehr leicht löglich in Wasser gehr gehren in Äther (H.). Starke Säure elektrisches Leitver-HO⁵C. N CO⁵H leicht löslich in Wasser, sehr schwer in Äther (H.). Starke Säure; elektrisches Leitvermögen in Wasser bei 25°: Ostwald, Ph. Ch. 3, 393. — Das Dikaliumsalz liefert beim Erhitzen auf 220° Pyridin-tricarbonsäure-(3.4.5) und Cinchomeronsäure (WE.). Wird von Kaliumpermanganat zu Oxalsäure oxydiert (H.). Beim Erhitzen der Salze der Pyridin-tricarbonsäure (ME.). carbonsaure mit Kalk bildet sich wenig Pyridin (H.). Gibt beim Erhitzen mit Brom auf 170° 3.5-Dibrom-pyridin (Pfeiffer, B. 20, 1351). Die neutralen Alkalisalze geben mit überschüssigen Ferrosalzen eine dunkelrote Färbung, die auf Zusatz von Eisessig allmählich in schussigen Ferrosaizen eine dunkeirote Fardung, die auf Zusatz von Eisessig allmanich in Violett übergeht; zuletzt entsteht ein violetter Niederschlag (H.). — $KC_{10}H_4O_{10}N+2H_2O$. Fasern (H.). — $KC_{10}H_4O_{10}N+3H_2O$. Nadeln. Zersetzt sich beim Erhitzen (H.). — $K_2C_{10}H_3O_{10}N+3^{1/2}H_2O$ (WE.). Würfel (H.). — $K_5C_{10}O_{10}N$. Krystallinisches Pulver. Zersetzt sich beim Erhitzen. Sehr leicht löslich in Wasser, unlöslich in Alkohol; zerfließt an feuchter Luft (H.). — $Ag_4C_{10}HO_{10}N+2H_2O$ (WE.). — $Mg_5(C_{10}O_{10}N)_2+12H_2O$. Niederschlag (H.). — $CaC_{10}H_3O_{10}N+1/2H_2O$. Krystallpulver. Schwer löslich in Wasser (H.). — $Ca_5(C_{10}O_{10}N)_2+12H_2O$. Amorphes Pulver (H.). — $Ca_2(NH_4)\cdot C_{10}O_{10}N+5H_2O$. Niederschlag. Unlöslich in wäßr. Ammoniak (H.). — $Ba_5(C_{10}O_{10}N)_2+11H_2O$. Mikrokrystallinisches Pulver (aus sehr verdünnter wäßriger Lösung) (H.). — Doppelsalz mit Kaliumoxalat $KC_{10}H_4O_{10}N+KC_2HO_4+5H_2O$. Prismen (H.). $KC_2HO_4 + 5H_2O$. Prismen (H.).

F. Oxy-carbonsäuren.

1. Oxy-carbonsäuren mit 3 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_n H_{2n-1} O_3 N$.

1. 4-0xy-pyrrolidin-carbonsäure-(2), 4-0xy-prolin C₅H,o3N = HO·HC——CH,

H₂C·NH·CH·CO₂H. Existiert in 2 diastereoisomeren Reihen, die als a- und b-[4-Oxyproline] (dl, d und l) unterschieden werden. Von diesen 6 Formen sind bis zum Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] die beiden Racemformen sowie die linksdrehende Form des a-[4-Oxy-prolins] beschrieben. Über die weiteren Stereoisomeren vgl. Leuchs, Brewster, B. 46 [1913], 986; L., Bormann, B. 52 [1919], 2086.

- a) a-[4-Oxy-prolin] $C_bH_0O_3N = HNC_4H_6(OH)\cdot CO_2H$.
- a) Inaktive Form, dl-a-[4-Oxy-prolin] $C_5H_9O_3N = HNC_4H_6(OH) \cdot CO_2H$. Neben b-[4-Oxy-prolin] beim Behandeln von δ-Chlor-α-brom-γ-valerolacton (Bd. XVII, S. 237) mit konzentriertem wäßrigem Ammoniak bei gewöhnlicher Temperatur (Leucus, B. 38, 1939, 1940). Neben $\gamma.\delta$ -Dioxy- α -amino-n-valeriansäure beim Erhitzen von α -Amino- δ -[4-brom-phenoxy]- γ -valerolacton ($\check{\mathbf{Bd}}$. XVIII, S. 622) mit bei 0° gesättigter Bromwasserstoffsäure im Rohr auf 100° und Kochen des Reaktionsprodukts mit Wasser (E. Fischer, Krämer, B. 41, 2736). — Tafeln (aus Methanol). F: 261° (korr.; Zers.) (L.). Sehr leicht löslich in Wasser mit neutraler Reaktion, ziemlich leicht in heißem Methanol, sehr schwer in Alkohol (L.). Die wäßr. Lösung schmeckt süß (L.). — Gibt bei der Reduktion mit Jodwasserstoffsäure (D: 1,96) und rotem Phosphor im Rohr bei 140-150° dl-Prolin (S. 4) (L., Felser, B. 41, 1727). — $Cu(C_5H_8O_3N)_2 + 4H_2O$. Blaue, mikroskopische Prismen (aus Wasser) (L.; Fr., K.). Sehr schwer löslich in Wasser.

1-Methyl-dl-a-[4-oxy-prolin] $C_6H_{11}O_3N=CH_3\cdot NC_4H_6(OH)\cdot CO_2H$. B. Neben 1-Methyl-b-[4-oxy-prolin] beim Behandeln von δ -Chlor- α -brom- γ -valerolacton (Bd. XVII, S. 237) mit

33% iger wäßriger Methylamin-Lösung (Leuchs, Felser, B. 41, 1732, 1734). — Prismen oder Tafeln (aus Methanol). F: 207—208° (korr.; Zers.). Sehr leicht löslich in Wasser mit neutraler Reaktion, ziemlich leicht in Methanol, sehr schwer in Alkohol. Schmeckt stark süß. — Kupfersalz. Hellblaue Nadeln (aus Methanol). Sehr leicht löslich in Wasser, ziemlich leicht in Methanol, schwer in Alkohol.

1-Anilinoformyl-dl-a-[4-oxy-prolin] $C_{12}H_{14}O_4N_2 = C_6H_5 \cdot NH \cdot CO \cdot NC_4H_6(OH) \cdot CO_2H$. B. Aus dl-a-[4-Oxy-prolin] und Phenylisocyanat in verd. Natronlauge (Leuchs, Felser, B. 41, 1728). — Tafeln (aus Wasser). F: 194—195° (korr.; Zers.). Leicht löslich in Alkohol, ziemlich schwer in Aceton und Essigester, unlöslich in Äther, Benzol und Chloroform. — Liefert beim Abdampfen mit verd. Salzsäure 3-Phenyl-1.5-[β -oxy-trimethylen]-hydantoin $\begin{array}{c} \text{CH}_2\text{--CH}\cdot\text{CO} \\ \text{CH}_2\text{--N}\text{--CO} \\ \text{N}\cdot\text{C}_6\text{H}_5 \text{ (Syst. No. 3636).} \end{array}$

vom Schmelzpunkt 164—165° HO·HC

- 1- β -Naphthalinsulfonyl-dl-a-[4-oxy-prolin] $C_{15}H_{15}O_5NS = C_{10}H_7 \cdot SO_3 \cdot NC_4H_6(OH) \cdot CO_2H$. B. Aus dl-a-[4-Oxy-pyrolin] und β -Naphthalinsulfochlorid in verd. Alkalilauge (Leuchs, B. 38, 1941). — Prismen (aus Alkohol), Tafeln (aus Essigester). F: 186—187º (korr.). Leicht löslich in heißem Alkohol, sehr schwer in Äther, Benzol, Chloroform, Petroläther und in kaltem Wasser.
- β) Linksdrehende Form, l-a-[4-Oxy-prolin] C₅H₅O₅N = HNC₄H₆(OH)·CO₄H. Zur Konstitution vgl. Leuchs, Brewster, B. 46 [1913], 986; L., Bormann, B. 52 [1919], 2086. — B. Bei der Hydrolyse von Gelatine mit siedender konzentrierter Salzsäure (E. Fischer, B. 35, 2660; Leuchs, Felser, B. 41, 1730; Skraup, v. Biehler, M. 30, 469, 476). Zur Bildung aus einigen anderen Proteinen durch Hydrolyse mit Salzsäure vgl. ABDERHALDEN, H. 37, 484, 499; Fi., H. 39, 156). — Tafeln (aus Wasser). Rhombisch (v. Wolff, B. 35, 2662). F: ca. 270° (Zers.) (Fi., B. 35, 2662; H. 39, 157), 271° (unkorr.) (A., H. 37, 503). Sehr leicht löslich in Wasser, sehr schwer in absol. Alkohol (Fi., B. 35, 2662). [a]. —75,7° (Wasser; p = 9) (L., Bo., B. 52, 2091). Die wäßr. Lösung schmeckt stark süß (Fi., B. 35, 2662). — Wird beim Erhitzen mit Barytwasser bis auf 200° nicht völlig racemisiert (L., Fe.; vgl. dazu L., Bo., B. 52, 2088). Liefert beim Erhitzen mit Jodwasserstoffsäure (D: 1,96) und Phosphor im Rohr auf 150° dl. Prolin (S. 4) (Fr. R. 35, 2664). — Cu(C. H.O.N). Rleve Nadelp (Sz. im Rohr auf 150° dl-Prolin (S. 4) (F1., B. 35, 2664). — $Cu(C_5H_8O_3N)_2$. Blaue Nadeln (Sx., v. B.; vgl. F1., B. 35, 2663). Sehr leicht löslich in Wasser, unlöslich in Alkohol. — $C_5H_9O_3N +$ HCl. Prismen. F: 192-1940 (SK., v. B.). Sehr leicht löslich in Wasser, schwer in Alkohol.
- 1-Anilinoformyl-l-a-[4-oxy-prolin] $C_{12}H_{14}O_4N_2 = C_6H_5 \cdot NH \cdot CO \cdot NC_4H_6(OH) \cdot CO_2H$. B. Aus l-a-[4-Oxy-prolin] und Phenylisocyanat in verd. Natronlauge bei 0° (E. Fischer, B. 35, 2663). — Blättchen (aus Alkohol + Äther). F: 175°(Zers.). Ziemlich leicht löslich in Wasser.
- 1- β -Naphthalinsulfonyl-l-a-[4-oxy-prolin] $C_{15}H_{15}O_5NS = C_{10}H_7\cdot SO_3\cdot NC_4H_6(OH)\cdot CO_2H$. B. Aus l-a-[4-Oxy-prolin] and β -Naphthalinsulfochlorid in verd. Natronlauge (E. FI-SCHER, BERGELL, B. 35, 3780, 3785). — Blättchen mit 1 H.O (aus Wasser). F: 91—920 (korr.). Löslich in ca. 25 Tln. siedendem Wasser, ziemlich leicht löslich in Äther, sehr leicht in Alkohol.
- b) b-[4-Oxy-prolin] $C_5H_9O_8N = HNC_4H_6(OH)\cdot CO_2H$. Inaktive Form. B. Neben dl-a-[4-Oxy-prolin] beim Behandeln von δ -Chlor- α -brom- γ -valerolacton (Bd. XVII, S. 237) mit konzentriertem wäßrigem Ammoniak bei gewöhnlicher Temperatur (Leuchs, B. 38, 1939, 1942). — Krystalle (aus Wasser oder verd. Alkohol). F: 250° (korr.; Zers.) (L.). Leicht löslich in Wasser mit schwach saurer Reaktion, schwer in Methanol (L.). Die wäßr. Lösung schmeckt fade (L.). — Gibt bei der Reduktion mit Jodwasserstoffsäure (D: 1,96) und rotem Phosphor im Rohr bei 140—150° dl-Prolin (S. 4) (L., Felser, B. 41, 1728). — Cu(C₈H₈O₂N)₂. Tiefblaue, mikroskopische Tafeln (aus Wasser) (L.). Ziemlich leicht löslich in heißem Wasser, unlöslich in Alkohol.
- 1-Methyl-b-[4-oxy-prolin] $C_6H_{11}O_3N = CH_2 \cdot NC_6H_6(OH) \cdot CO_2H$. B. Neben 1-Methyldl-a-[4-oxy-prolin] beim Behandeln von δ -Chlor- α -brom- γ -valerolacton (Bd. XVII, S. 237) mit 33% iger wäßriger Methylamin-Lösung (Leuchs, Felser, B. 41, 1732). Aus b-[4-Oxyprolin] und Methyljodid in wäßrig-methylalkoholischer Natronlauge (L., F., B. 41, 1734).

 Krystalle (aus Methanol). F: 226—227° (korr.; Zers.). Sehr leicht löslich in Wasser mit schwach saurer Reaktion, ziemlich leicht in Methanol, sehr schwer in Alkohol. Die wäßr.

 Lösung schmeckt süßlich fade. — Cu(C₆H₁₀O₂N)₂. Tiefblaue Tafeln (aus Wasser). Schwer löslich in Wasser, unlöslich in Alkohol und Methanol.
- 1 Anilinoformyl b [4 oxy prolin] $C_{12}H_{14}O_4N_2 = C_6H_6\cdot NH\cdot CO\cdot NC_4H_6(OH)\cdot CO_2H$. B. Aus b-[4-0xy-prolin] und Phenylisocyanat in verd. Natronlauge (Leuchs, Felser, B. 41, 1729). Tafeln (aus Wasser). F: 1870 (korr.). Liefert beim Abdampfen mit verd. Salzsaure 3-Phenyl-1.5- $[\beta$ -oxy-trimethylen]-hydantoin vom Schmelzpunkt 156—158° HO·HC $CH_s \cdot CH \cdot CO$ N·C₆H₅ (Syst. No. 3636).

O.N - Di - β - naphthalinsulfonyl - b - [4 - oxy - prolin] $C_{25}H_{21}O_7NS_2 = C_{10}H_7 \cdot SO_8 \cdot NC_4H_4(CO_2H) \cdot O \cdot SO_2 \cdot C_{10}H_7$. B. Beim Schütteln von b-[4-Oxy-pyrolin] mit überschüssigem β -Naphthalinsulfochlorid in Äther bei Gegenwart von verd. Natronlauge (Leuchs, B. 38, 1942). — Nadeln (aus Chloroform + Toluol). F: 181—182° (korr.). Sehr leicht löslich in Chloroform, leicht in heißem Alkohol, löslich in warmem Benzol, fast unlöslich in Äther und Wasser.

2. Oxy-carbonsäuren $C_9H_{17}O_3N$.

- 2. 4-Oxy-2.2.6-trimethyl-piperidin-carbonsäure-(4) $C_9H_{17}O_9N=H_2C\cdot C(OH)(CO_2H)\cdot CH_2$. B. Aus dem Nitril (s. u.) beim Kochen mit konz. Salz-säure (Chem. Fabr. Schering, D. R. P. 91121; Frdl. 4, 1220). Krystallinisches Pulver. Schmilzt beim Erhitzen unter Zersetzung.

Methylester $C_{10}H_{19}O_3N = HNC_5H_5(CH_3)_3(OH) \cdot CO_2 \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine siedende methylalkoholische Lösung der freien Säure (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1222). — Bildet ein leicht lösliches Hydrochlorid.

- 4-Benzoyloxy-2.2.6-trimethyl-piperidin-carbonsäure-(4)-methylester $C_{17}H_{28}O_4N$ = $HNC_5H_5(CH_3)_3(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_5$. B. Durch Erhitzen von salzsaurem 4-Oxy-2.2.6-trimethyl-piperidin-carbonsäure-(4)-methylester mit Benzoylchlorid (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1223). F: ca. 100°.
- 4-Oxy-2.2.6-trimethyl-piperidin-carbonsäure-(4)-nitril, 4-Oxy-2.2.6-trimethyl-4-cyan-piperidin, "Vinyldiacetonamin-cyanhydrin" $C_9H_{16}ON_9=HNC_8H_{5}(CH_9)_3(OH)$ ·CN. B. Beim Behandeln von 4-Oxo-2.2.6-trimethyl-piperidin (Bd. XXI, S. 246) mit Kalium-cyanid in kalter verdünnter Salzsäure (Ch. F. Sch., D. R. P. 91122; Frdl. 4, 1217). Nadeln (aus Alkohol). F: 132°.
- 4 Benzoyloxy 1.2.2.6 tetramethyl piperidin carbonsäure (4) methylester $C_{18}H_{35}O_4N=CH_3\cdot NC_5H_5(CH_3)_3(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_5$. Nadeln (aus Petroläther). F: 101° bis 101,5° (Chem. Fabr. Schering, D. R. P. 90245; Frdl. 4, 1224). Wirkt lokalanästhesierend (Vinci, C. 1897 I, 1217).
- 4-p-Toluyloxy-1.2.2.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{19}H_{27}O_4N=CH_3\cdot NC_4H_5(CH_9)_5(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot CH_8$. Krystallinisch. F: ca. 116° (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1227).
- 3. 3 Oxy 2.2.5.5 tetramethyl pyrrolidin carbonsäure (3) C₉H₁₇O₉N = H₂C C(OH) · CO₂H(CH₃)₂C · NH · C(CH₃)₂ . B. Aus dem Nitril (s. u.) durch Einw. von konz. Salzsäure zuerst unter Kühlung, dann bei Siedetemperatur (Pauly, A. 399, 118). — Leicht löslich in Wasser. — C₉H₁₇O₂N + HCl + H₂O. Prismen oder Tafeln (aus Wasser). F: 226°. Leicht löslich in heißem Wasser.
- Nitril, 8-Oxy-2.2.5.5-tetramethyl-8-cyan-pyrrolidin $C_9H_{16}ON_8 = H_1C$ — $C(OH)\cdot CN$ $C(CH_2)_2C\cdot NH\cdot C(CH_3)_2$. B. Aus 3-Oxo-2.2.5.5-tetramethyl-pyrrolidin-hydrochlorid und Kaliumcyanid in kaltem Wasser (Pauly, Borhm, B. 84, 2290; P., A. 322, 117). — Mikroskopische Tafeln. F: 138° (Bad auf 130° vorgewärmt). Fast unlöslich in Wasser. — Zersetzt sich bei langsamem Erhitzen unter Abspaltung von Blausäure.
- 3. $4-0 \times y-2.2.6.6$ -tetramethyl-piperidin-carbonsäure-(4) $C_{10}H_{19}O_{3}N = H_{1}C \cdot C(OH)(CO_{2}H) \cdot CH_{2}$ $(CH_{2})_{2}C$ —NH— $C(CH_{3})_{3}$. Beim Kochen des Nitrils (Triacetonamin-cyanhydrin; S. 193) mit konz. Salzsäure (Chem. Fabr. Schuring, D. R. P. 91121; Frdl. 4, 1219).

- Krystallpulver. F: 285° (Zers.). Fast unlöslich in Wasser, Äther, Benzol und Essigester. Leicht löslich in Alkalilaugen und in verd. Mineralsäuren.
- 4 Benzoyloxy 2.2.6.6 tetramethyl piperidin carbonsäure (4) $C_{17}H_{25}O_4N = HNC_5H_4(CH_3)_4(CO_2H) \cdot O \cdot CO \cdot C_6H_5$. B. Beim Erhitzen von 4-Oxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4) oder ihrem Hydrochlorid mit überschüssigem Benzoylchlorid auf 140° (Ch. F. Sch., D. R. P. 92588; Frdl. 4, 1228). Krystallpulver. Zersetzt sich beim Erhitzen.
- 4-Oxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{11}H_{21}O_{2}N=HNC_{5}H_{4}(CH_{2})_{4}(OH)\cdot CO_{2}\cdot CH_{3}$. B. Beim Einleiten von Chlorwasserstoff in eine siedende methylalkoholische Lösung von 4-Oxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4) (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1222). Krystalle. F: 69—70°. Sehr leicht löslich in fast allen Lösungsmitteln. Wird durch kaltes Wasser langsam, durch siedendes Wasser rasch verseift. Hydrochlorid. Krystalle.
- 4-Benzoyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{18}H_{25}O_4N=HNC_5H_4(CH_3)_4(CO_5\cdot CH_3)\cdot O\cdot CO\cdot C_6H_5$. B. Durch Erhitzen von salzsaurem 4-Oxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester mit Benzoylchlorid auf 140° bis 145°, zweckmäßig in Gegenwart von etwas Zinkchlorid (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1222). Prismen (aus Ligroin). F: 91—92°. Sehr leicht löslich in Alkohol, Äther, Chloroform und Benzol. Formiat. Krystalle. Löslich in 4 Tln. kaltem Wasser.
- 4-o-Toluyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{19}H_{27}O_4N=HNC_5H_4(CH_3)_4(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot CH_3$. B. Analog der vorangehenden Verbindung (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1225). F: ca. 90°.
- 4-p-Toluyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{19}H_{27}O_4N=HNC_5H_4(CH_3)_4(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot CH_3$. B. Analog dem 4-Benzoyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1225). F: ca. 116°.
- 4-Oxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-äthylester $C_{12}H_{23}O_3N=HNC_5H_4(CH_3)_4(OH)\cdot CO_2\cdot C_2H_5$. B. Analog dem Methylester (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1222). Krystalle. F: 96—97°. Wird durch Wasser leicht verseift.
- 4 Oxy 2.2.6.6 tetramethyl piperidin carbonsäure (4) iminomethyläther $C_{11}H_{22}O_2N_2 = HNC_5H_4(CH_3)_4(OH)\cdot C(:NH)\cdot O\cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine kalte methylalkoholische Suspension von Triacetonamin-cyanhydrin (s. u.) (Ch. F. Sch., D. R. P. 91081; Frdl. 4, 1218). Nadeln (aus Äther). F: 160°.
- 4 Oxy 2.2.6.6 tetramethyl piperidin carbonsäure (4) iminoäthyläther $C_{12}H_{24}O_2N_2 = HNC_5H_4(CH_5)_4(OH) \cdot C(:NH) \cdot O \cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Ch. F. Sch., D. R. P. 91081; Frdl. 4, 1218). Krystallinisch. F: 159°.
- 4-Oxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-nitril, 4-Oxy-2.2.6.6-tetramethyl-4-cyan-piperidin, Triacetonamin-cyanhydrin $C_{10}H_{18}ON_2 = HNC_5H_4(CH_3)_4(OH) \cdot CN$. B. Durch Zufügen von Kaliumcyanid-Lösung zu einer eiskalten Lösung von Triacetonamin (Bd. XXI, S. 249) in verd. Salzsäure (Ch. F. Sch., D. R. P. 91122; Frdl. 4, 1216). Krystalle (aus Alkohol). F: 136° (Zers.).
- 4 Oxy 1.2.2.6.6 pentamethyl piperidin carbonsäure (4) $C_{11}H_{21}O_3N = CH_3 \cdot NC_5H_4(CH_3)_4(OH)\cdot CO_2H$. B. Aus N-Methyl-triacetonamin-cyanhydrin (S. 195) beim Kochen mit konz. Salzsäure (Ch. F. Sch., D. R. P. 91121; Frdl. 4, 1219). Krystalle (aus Wasser). Rhombisch bipyramidal (Tietze, C. 1898 II, 1081; vgl. Groth, Ch. Kr. 5, 726). Zersetzt sich beim Erhitzen, ohne zu schmelzen (Ch. F. Sch.). Leicht löslich in siedendem Wasser (Ch. F. Sch.). Hydrochlorid. Krystalle (Ch. F. Sch.).
- 4-Benzoyloxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4) $C_{18}H_{25}O_4N=CH_3\cdot NC_5H_4(CH_3)_4(CO_2H)\cdot O\cdot CO\cdot C_6H_5$. Beim Erhitzen von 4-Oxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4) mit überschüssigem Benzoylchlorid auf ca. 140° (Ch. F. Sch., D. R. P. 92588; Frdl. 4, 1228). Hydrochlorid. Nadeln. Sehr schwer löslich in Wasser.
- 4-Oxy-1.2.8.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{13}H_{23}O_3N=CH_3\cdot NC_5H_4(CH_3)_4(OH)\cdot CO_2\cdot CH_3$. Kp: 268°; Kp₄₀: 170° (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). Wird durch siedendes Wasser leicht verseift (Ch. F. Sch., D. R. P. 92589). Überführung in eine Natriumverbindung: Ch. F. Sch., D. R. P. 108223; C. 1900 I, 1082; Frdl. 5, 790.

siedendem Äther (Ch. F. Sch., D. R. P. 106492; C. 1900 I, 1081; Frdl. 5, 791). — Öl. 4 - Acetoxy - 1.2.2.6.6 - pentamethyl - piperidin - carbonsäure - (4) - methylester $C_{14}H_{25}O_4N = CH_2 \cdot NC_5H_4(CH_3)_4(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot CH_2$. B. Beim Erhitzen von 4-Oxy-1.2.2.6.6 - pentamethyl-piperidin-carbonsäure - (4) - methylester mit Acetanhydrid auf ca. 140° (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). — Krystalle (aus Äther). F: 64°.

- 4-Bensoyloxy-1.2.2.6.8-pentamethyl-piperidin-carbonsäure-(4)-methylester C₁₉H₂₇O₄N = CH₂·NC₂H₄(CH₂)₄(CO₂·CH₂·O·CO·C₆H₅. B. Aus 4-Benzoyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4) und Methyljodid in alkoh. Kalilauge (Chem. Fabr. Schering, D. R. P. 90245; Frdl. 4, 1223, 1224; vgl. a. Merling, Ber. Disch. pharm. Ges. 6, 175; C. 1896 II, 709). Prismen (aus Äther oder Alkohol). F: 104—105° (Ch. F. Sch., D. R. P. 90245; Vinci, C. 1896 II, 394), 104° (M.), 103° (Parsons, Am. Soc. 23, 887). Sehr schwer löslich in Wasser, leicht in Benzol, Chloroform, Alkohol, Äther (V., C. 1896 II, 393) und Petroläther (P.). Wirkt lokalanästhesierend (V., C. 1896 II, 394; 1897 I, 1217) und fand früher in Form seines Hydrochlorids unter den Bezeichnungen Eucain, Eucain A, α-Eucain als Ersatzmittel für Cocain Verwendung (Ch. F. Sch., C. 1896 I, 1131; 1898 II, 824; M.; Kiesel, C. 1896 I, 1131; vgl. Fränkel, Die Arzneimittel-Synthese, 6. Aufl. [Berlin 1927], S. 373). Unterscheidung von Cocain, β-Eucain usw.: V., C. 1896 II, 394; P.; Eigel, C. 1903 II, 900; Candussio, C. 1908 II, 1749; 1909 II, 1900; Saporetti, C. 1909 II, 1015. C₁₉H₄₇O₄N + HCl. Krystallisiert aus Wasser in Blättchen mit 1 H₂O, aus Methanol in Prismen mit 2 CH₄O (M.; V., C. 1896 II, 394; P.), sehr leicht löslich in Alkohol, sehr schwer in Äther (P.).
- 4-Phenacetoxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{20}H_{20}O_4N=CH_3\cdot NC_5H_4(CH_3)_4(CO_3\cdot CH_3)\cdot O\cdot CO\cdot CH_2\cdot C_6H_5$. B. Aus 4-Oxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester und Phenylessigsäurechlorid in Xylol bei ca. 140° (Chem. Fabr. Schering, D. R. P. 92589; Frdl. 4, 1226). Hydrochlorid. Krystall-pulver.
- 4-Phenylchloracetoxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{50}H_{98}O_4NCl = CH_3 \cdot NC_5H_4(CH_5)_4(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot CHCl \cdot C_6H_5$. B. Analog der vorangehenden Verbindung (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). F: 120—121°.
- 4-Phenylbromacetoxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{20}H_{28}O_4NBr = CH_3 \cdot NC_5H_4(CH_3)_4(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot CHBr \cdot C_6H_5$. B. Analog dem 4-Phenacetoxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). Krystalle (aus Äther). F: 117—118°.
- 4-o-Toluyloxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{20}H_{20}O_4N=CH_3\cdot NC_5H_4(CH_3)_4(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot CH_3$. B. Analog der p-Toluylverbindung (s. u.) (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). F: ca. 92°.
- 4-m-Toluyloxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{20}H_{29}O_4N = CH_3 \cdot NC_5H_4(CH_3)_4(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_4 \cdot CH_3$. B. Analog der p-Toluylverbindung (s. u.) (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). F: ca. 104°.
- 4-p-Toluyloxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{20}H_{20}O_4N=CH_3\cdot NC_5H_4(CH_3)_4(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot CH_3$. B. Durch Behandlung von 4-p-Toluyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4) mit Methyljodid und methylalkoholischer Kalilauge (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). Durch Erhitzen von 4-Oxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4) mit p-Toluylchlorid auf 140—1500 und nachfolgende Veresterung mit methylalkoholischer Salzsäure oder durch Erhitzen von 4-Oxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester mit p-Toluylchlorid auf 130—1400 (Ch. F. Sch.). F: ca. 1220. Unlöslich in Wasser, löslich in Ather und Ligroin.
- 4-Cinnamoyloxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{21}H_{29}O_4N=CH_2\cdot NC_5H_4(CH_2)_4(CO_2\cdot CH_2)\cdot O\cdot CO\cdot CH:CH\cdot C_5H_5$. B. Aus 4-Oxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester und Cinnamoylchlorid in Xylol bei ca. 140° (Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1226). Krystalle. F: 125—126°.
- 4-Anilinoformyloxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{19}H_{88}O_4N_2=CH_3\cdot NC_5H_4(CH_3)_4(CO_3\cdot CH_3)\cdot O\cdot CO\cdot NH\cdot C_6H_5$. B. Aus der Natriumverbindung des 4-Oxy-1.2.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylesters und Carbanilsäurechlorid in Ather (Ch. F. Sch., D. R. P. 106492; C. 1900 I, 1082; Frdl. 5, 792). F: 132—133°.
- 4-Phenylglykoloyloxy-1.2.6.6-pentamethyl-piperidin-carbonsäure-(4)-methylester $C_{50}H_{50}O_5N = CH_5 \cdot NC_5H_4(CH_5)_4(CO_5 \cdot CH_5) \cdot O \cdot CO \cdot CH(OH) \cdot C_6H_5$. Vgl. hierüber Ch. F. Sch., D. R. P. 92589; Frdl. 4, 1227.

- 4 Benzoyloxy 1.2.2.6.6 pentamethyl piperidin carbonsäure (4) äthylester $C_{26}H_{26}O_4N=CH_2\cdot NC_5H_4(CH_2)_4(CO_2\cdot C_2H_5)\cdot O\cdot CO\cdot C_6H_5$. Krystalle (aus Ligroin). F: 90° (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1224).
- **4-Oxy-1.2.2.6.6**-pentamethyl-piperidin-carbonsäure-(4)-nitril, **4-Oxy-1.2.2.6.6**-pentamethyl-**4-cyan-piperidin**, **N-Methyl-triacetonamin-cyanhydrin** $C_{11}H_{20}ON_2 = CH_2 \cdot NC_5H_4(CH_3)_4(OH) \cdot CN$. B. Aus N-Methyl-triacetonamin (Bd. XXI, S. 250) und Kalium-cyanid in verd. Salzsäure unter Kühlung (Ch. F. Sch., D. R. P. 91122; Frdl. **4**, 1217). Krystallinisch. Zersetzt sich beim Aufbewahren.
- 1-Äthyl-4-bensoyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{20}H_{32}O_4N=C_2H_5\cdot NC_5H_4(CH_3)_4(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_5$. Prismen (aus Ligroin). F: 94° (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1224).
- 1-Äthyl-4-bensoyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-äthylester $C_{21}H_{31}O_4N = C_2H_5 \cdot NC_5H_4(CH_3)_4(CO_2 \cdot C_2H_5) \cdot O \cdot CO \cdot C_6H_5$. Krystalle (aus Ligroin). F: 91—92° (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1224).
- 1-Propyl-4-benzoyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{21}H_{21}O_4N=C_2H_5\cdot CH_2\cdot NC_5H_4(CH_3)_4(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_5$. Nadeln. F: 95° (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1224). Hydrochlorid. Nadeln und Blättchen.
- 1-Allyl-4-bensoyloxy-2.2.6.6-tetramethyl-piperidin-carbonsäure-(4)-methylester $C_{31}H_{39}O_4N=CH_2:CH\cdot CH_3\cdot NC_5H_4(CH_3)_4(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_5$. Amorphes Pulver. F: 91° (Ch. F. Sch., D. R. P. 90245; Frdl. 4, 1224).

b) Oxy-carbonsäuren $C_n H_{2n-3} O_3 N$.

1. Oxy-carbonsäuren $C_8H_{13}O_8N$.

- 1. 3-Oxy-nortropan-carbonsäure-(2), Nortropanol-(3)- H₂C-CH-CH-CH-CO₂H carbonsdure-(2) C₂H₁₃O₃N, s. nebenstehende Formel. Von dieser Formel sind theoretisch 4 diastereoisomere Reihen ableitbar, jede 2 enantiostereoisomere optisch aktive Formen und die zugehörige inakt. Form umfassend. Bekannt sind 2 aktive 3-Oxy-nortropan-carbonsäureu-(2), die 2 verschiedenen, durch räumliche Anordnung des Hydroxyls sich unterscheidenden Reihen angehören, das Nor-l-ekgonin und das Nor-d-pseudoekgonin. Von den N-Methylderivaten sind bis zum Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] 2 aktive, dem Nor-l-ekgonin und Nor-d-pseudoekgonin sterisch entsprechende Formen, das 1-Ekgonin und d-Pseudoekgonin und die zugehörigen inaktiven Formen (dl-Ekgonin und dl-Pseudoekgonin) beschrieben worden; später wurde von Willstätter, Wolfes, Mäder (A. 434 [1923], 114, 136) eine dritte inaktive Form dargestellt. Der 3-Benzoyloxy-tropan-carbonsäure-(2)-methylester war bis zum Literatur-Schlußtermin in 2 aktiven, dem l-Ekgonin und d-Pseudoekgonin sterisch entsprechenden Formen, dem l-Cocain und d-Pseudococain, sowie der diesem entsprechenden inaktiven Form, dem dl-Pseudococain, bekannt; später erhielten Willstätter, Wolfes, Mäder (A. 434, 113, 129) auch das dem l-Cocain entsprechende dl-Cocain und spalteten die inaktiven Formen in die aktiven Komponenten. Zur Stereochemie der Ekgoninformel vgl. Gadamer, Ar. 239, 663; Ga., Amenomiya, Ar. 242, 1; Willstätter, Bommer, A. 422 [1920], 22.
- a) Nor-l-ekgonin, "Cocayloxyessigsäure" $C_8H_{13}O_3N$, s. nebenstehende Formel. Zur Konstitution vgl. Willstätter, Müller, B. 31, 2655.— B. Beim Behandeln von salzsaurem l-Ekgonin mit Kaliumpermanganat in verd. Soda-Lösung (Einhorn, B. 21, 3033; Boehringer & Söhne, D. R. P. 48274; Frdl. 2, 516). Beim Erhitzen von O-Benzoyl-nor-l-ekgonin mit konz. Salzsäure im Rohr auf 100° (Ein., B. 21, 3031).— Nadeln (aus wasserhaltigem Methanol + Ather). F: 233°; sehr leicht löslich in Wasser (Ein.; B. & S.).— $C_8H_{13}O_3N + HCl + H_2O$. Krystallie (aus Methanol + Ather) (Ein.; B. & S.).— $C_8H_{13}O_3N + HCl + AuCl$, Krystallisiert aus Wasser in gelben Nadeln mit 2 H_2O , aus Alkohol in alkoholhaltigen Prismen (Ein.). Das aus Wasser, Alkohol oder Eisessig umkrystallisierte Salz ist monoklin sphenoidisch (Lehmann, B. 21, 3033; vgl. Groth, Ch. Kr. 5, 865). F: 211°; schwer löslich in Wasser (Ein.).

A. Funktionelle Derivate des Nor-l-ekgonins mit unveränderter NH - Gruppe.

O-Bensoyl-nor-1-ekgonin $C_{15}H_{17}O_4N = HNC_7H_{10}(CO_3H) \cdot O \cdot CO \cdot C_6H_5$. B. Beim Behandeln einer verdünnten sodaalkalischen Lösung von O-Benzoyl-1-ekgonin mit Kaliumpermanganat (Einhorn, B. 21, 3030; Boeheinger & Söhne, D. R. P. 48274; Frdl. 2, 516). — Prismen (aus Wasser oder Alkohol). F: 230° (Zers.) (Ein.). Wird von salpetriger Säure nicht angegriffen; geht beim Erhitzen mit konz. Salzsäure im Rohr auf 100°, teilweise auch schon beim Eindampfen mit Salzsäure in Nor-1-ekgonin über (Ein.). — $C_{15}H_{17}O_4N + HCl + 2H_2O$. Blättchen. F: 217—218° (Ein.). — $C_{15}H_{17}O_4N + HCl + AuCl_3$. Gelbe Nadeln (aus säurehaltigem Wasser). F: 228° (Zers.) (Ein.). — $2C_{15}H_{17}O_4N + 2HCl + PtCl_4 + aq$. Gelbrote Warzen (aus Wasser). F: cs. 233° (Ein.). — Zur physiologischen Wirkung vgl. Poulsson, Ar. Pth. 27, 305.

Methylester $C_{16}H_{19}O_4N = HNC_7H_{10}(CO_3 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_8$. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von O-Benzoyl-nor-l-ekgonin (Einhorn, B. 21, 3032, 3441). — Öl. — Zur physiologischen Wirkung vgl. Poulsson, Ar. Pth. 27, 304; Ehrlich, Einhorn, B. 27, 1873. — $C_{16}H_{19}O_4N + HI$. Nadeln (aus Wasser). Schwer löslich (Ein.). — $C_{16}H_{19}O_4N + HCl + AuCl_3$. Nadeln (aus Wasser). F: 181—182°. Schwer löslich in Wasser (Ein.).

Äthylester $C_{17}H_{21}O_4N = HNC_7H_{10}(CO_2 \cdot C_2H_5) \cdot O \cdot CO \cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von O-Benzoyl-nor-l-ekgonin (EINHOBN, B. 21, 3032, 3442). — Öl. Bei der Einw. von Natriumnitrit auf das salzsaure Salz in wäßr. Lösung entsteht ein Nitrosoderivat (S. 204) (EIN., FRIEDLAENDER, B. 26, 1487). — Zur physiologischen Wirkung vgl. Poulsson, Ar. Pth. 27, 302. — $C_{17}H_{21}O_4N + HCl$. Nadeln (aus Essigester + Äther oder aus Alkohol + Äther) (EIN.). — $C_{17}H_{21}O_4N + HBr$. Nadeln (aus Essigester) (EIN.). — $C_{17}H_{21}O_4N + HI$. Prismen (aus Wasser). Schwer löslich (EIN.). — $C_{17}H_{21}O_4N + HCl$ + AuCl₂. Bernsteingelbe Krystalle (aus säurehaltigem Alkohol). F: 160,5°. Schwer löslich in Wasser (EIN.).

Propylester $C_{18}H_{23}O_4N = HNC_7H_{10}(CO_3 \cdot CH_3 \cdot C_2H_5) \cdot O \cdot CO \cdot C_6H_5$. B. Beim Einleiten von Chlorwasserstoff in die propylalkoholische Lösung von O-Benzoyl-nor-1-ekgonin (Einhorn, B. 21, 3441, 3443). — Nadeln. F. ca. 56—58°. Unlöslich in Wasser, sehr leicht löslich in Alkohol, Ather, Chloroform, Essigester und Ligroin. — $C_{18}H_{23}O_4N + HCl$. Nadeln (aus Essigester). — $C_{18}H_{23}O_4N + HBr$. Nadeln (aus Essigester).

- B. Funktionelle Derivate des Nor-l-ekgonins mit veränderter NH-Gruppe.
- 1. N-Methyl-nor-l-ekgonin (l-Ekgonin) und seine durch Veränderung der Hydroxyl- und Carboxylgruppe entstandenen Derivate.

1-Ekgonin C₉H₁₈O₃N, s. nebenstehende Formel. Zur Konstitution H₂C-CH-CH·CO₂H vgl. Willstätter, B. 31, 1540, 2499; Wi., Müller, B. 31, 2655. — N.CH. CH.OH Beim Behandeln von salzsaurem Anhydroekgonin (S. 31) −ĊH₂ mit Kaliumpermanganat in verd. Soda-Lösung (EINHORN, B. 21, 3036). Bei der Einw. von Salzsäure in der Hitze auf O-Benzoyl-l-ekgonin (Merck, B. 18, 1594; SKBAUP, M. 6, 559), O-Benzoyl-l-ekgonin-methylester (Cocain) (Wöhler, Lossen, A. 121, 372; Lo., A. 133, 363), O-Cinnamyl-l-ekgonin-methylester ("Cinnamylcocain") (Liebermann, B. 21, 3374; 22, 2661), β-Truxinsäure-bis-[2-carbomethoxy-tropylester] ("β-Truxillin") (S. 201) oder α-Truxillsäure-bis-[2-carbomethoxy-tropylester] ("β-Truxillin") (S. 202) (Lie., B. 21, 2345, 2351). — Gewinnung aus dem Gemisch von Nebenalkaloiden der Cocablatter durch Kochen mit Salzsäure: Lie., Giesel, B. 21, 3197; D. R. P. 47602; Frdl. 2, 513. — Prismen mit 1 H₂O (aus Alkohol); verliert das Krystallwasser bei 120—130° (Lossen, A. 183, 364). Monoklin sphenoidisch (Tschermak, A. 183, 365; Fock, B. 21, 2352; STEINMETZ; vgl. Groth, Ch. Kr. 5, 883). Schmilzt wasserhaltig bei ca. 198°, wasserfrei bei 205° (LIEBERMANN, B. 21, 2351). Dichte und Brechung einer wäßrigen Lösung: EIJKMAN, B. 25, 3073. Verbrennungswärme bei konstantem Volumen: 1194,3 kcal/Mol (GAUDECHON, Bl. [4] 1, 684). Ist triboluminescent (Tschugajew, B. 84, 1823; Trautz, Ph. Ch. 53, 62). 1 g löst sich bei 17° in 4,6 cm² Wasser und in 67 cm² 95% igem Athylalkohol, bei 19,2° in 18,5 cm² Methanol, bei 20,6° in 77 cm² Essigester; sehr schwer löslich in Ather, unlöslich in Chloroform, Tetrachlorkohlenstoff, Aceton, Schwefelkohlenstoff, Benzol, Toluol und Ligroin (Oechsner de Coninck, $C.\tau$. 124, 1159). [α]¹⁵: -45° (Wasser; c=5) (Hesse, Pharm. J. [3] 21, 1112). Die wäßr. Lösung reagiert neutral (Lo., A. 133, 365). Hydrolyse des Hydrochlorids: Veley, Soc. 95, 3.

l-Ekgonin wandelt sich beim Kochen mit Kalilauge, langsam auch beim Kochen mit Soda-Lösung, in d-Pseudoekgonin um (Einhorn, Marquardt, B. 23, 470, 981; Boehringer & Söhne, D. R. P. 55338; Frdl. 2, 518). Wird durch Behandeln mit Kaliumpermanganat-Lösung in Nor-l-ekgonin übergeführt (Ein., B. 21, 3033; B. & S., D. R. P. 48274; Frdl. 2,

516). Liefert bei gelinder Oxydation mit Chromschwefelsäure Tropinon (Bd. XXI, S. 258) (WILLSTÄTTER, MÜLLER, B. 31, 2666; WI., Bode, B. 33, 415), bei energischer Oxydation d-Tropinsaure (S. 123) und l-Ekgoninsaure (S. 287) (LIEBERMANN, B. 23, 2519; 24, 607; vgl. W1., Bo., B. 34, 520). l-Ekgonin geht in Anhydroekgonin über beim Erhitzen mit Chlorwasserstoff-Eisessig im Rohr auf 140° (EIN., MAR., B. 23, 472; GADAMER, AMENOMIYA, Ar. 242, 2) oder mit 25°/oiger Schwefelsäure auf 140—160° (HESSE, A. 271, 183) sowie beim Erhitzen mit Chlorwasserstoff-Eisesse im 25°/oiger Schwefelsäure auf 140—160° (HESSE, A. 271, 183) sowie beim Erhitzen mit Chlorwasserstoff-Eisesse, A. 271, 183) sowie beim Erhitzen mit Chlorwasserstoff-Eisesse, A. 271, 183) sowie beim Erhitzen mit Chlorwasserstoff-Eisesse, A. 271, 183) sowie beim Erhitzen mit Chlorwasserstoff-Eisesse im Erhitzen mit Er Erhitzen des salzsauren Salzes mit Phosphoroxychlorid zum Sieden (Ein., B. 20, 1221) oder mit Phosphorpentachlorid in Chloroform im Rohr auf 1000 (MERCK, B. 19, 3003) oder mit Jodwasserstoffsäure und rotem Phosphor auf 140º (EIN., B. 21, 3035 Anm.). Bei der trocknen Destillation von l-Ekgonin mit Kalk und Zinkstaub bildet sich neben anderen Produkten α-Äthyl-pyridin (Storer, B. 22, 1127). Zersetzt sich bei der Destillation mit Bariumhydroxyd unter Bildung von Kohlendioxyd und Methylamin (Merck, B. 19, 3002). l-Ekgonin liefert beim Kochen mit Methyljodid und Methanol [l-Ekgonin]-jodmethylat (HESSE, J. pr. [2] 65, 92); erhitzt man mit alkoh. Methyljodid-Lösung im Rohr auf 100°, so entsteht nur jodwasserstoffsaures l-Ekgonin (Lo., A. 133, 367). Durch Einw. von Benzoesäureanhydrid auf die heißgesättigte wäßrige Lösung bei 100° erhält man O-Benzoyl-l-ekgonin (Lie., Giesel, B. 21, 3198; BOEHRINGER & Söhne, D. R. P. 47713; Frdl. 2, 513). — I-Ekgonin schmeckt schwach süßlichbitter (Lo., A. 133, 365). Wirkt nicht anästhesierend; zur physiologischen Wirkung vgl. Ehrlich, Einhorn, B. 27, 1870; Poulsson in Heffters Handbuch der experimentellen Pharmakologie, Bd. II [Berlin 1920], S. 149. — Zum Nachweis von l-Ekgonin vgl. Proelss, C. 1901 II, 1321. Bestimmung in Coca-Alkaloiden: DE JONG, R. 25, 5; C. 1908 I, 559; Greshoff, C. 1907 II, 1023.

2C₉H₁₅O₃N + HCl + H₂O. Prismen (aus Wasser) (Hesse, Pharm. J. [3] 21, 1111), Nadeln (aus wasserhaltigem Methanol) (Willstätter, Bode, A. 326, 60). Hygroskopisch (H.; W., B.). Sehr leicht löslich in wasserhaltigem, schwer in warmem wasserfreiem Methanol (W., B.). — C₉H₁₅O₃N + HCl. Tafeln (aus Wasser), Würfel (aus 93%)eigem Alkohol). Triklin (Lehmann, B. 21, 3036; vgl. Groth, Ch. Kr. 5, 866). F: 246° (Liebermann, B. 21, 2351; Wi., Bo.). Schwer löslich in Alkohol (Lie.). [α]₀: —57° (Wasser) (Einhorn, B. 22, 1495); [α]₀; —59,4° (Wasser; c = 10) (He.). — C₉H₁₆O₃N + HCl + AuCl₂. Krystallisiert aus Wasser in gelben Prismen mit 2 H₂O (Ein., B. 21, 3037), aus Alkohol in regulären Würfeln, aus wasserhaltigem Alkohol in rhombischen oder monoklinen Prismen (Lehmann, B. 21, 3037; vgl. Groth, Ch. Kr. 5, 866). Das wasserfreie Salz schmilzt bei 202° (Ein.). — 2C₉H₁₅O₃N + 2HCl + PtCl₄. Orangerote Spieße (aus verd. Alkohol) (Lossen, A. 133, 365). F: 226° (Lie., B. 21, 2351). Leicht löslich in Wasser (Lo.).

a) Derivate des l-Ekgonins, die nur durch Veränderung der Hydroxylgruppe entstanden sind.

O-Bensoyl-1-ekgonin $C_{16}H_{19}O_4N=CH_3\cdot NC_7H_{10}(CO_2H)\cdot O\cdot CO\cdot C_6H_5$. V. und B. Wurde als Nebenprodukt bei der Darstellung von l-Cocain aus den Cocablättern erhalten (Merce, B. 18, 1594; Seraup, M. 6, 556). Entsteht durch Behandeln einer heißgesättigten wäßrigen Lösung von l-Ekgonin mit Benzoesäureanhydrid bei 1000 (Liebermann, Giesel, B. 21, 3198; D. R. P. 47602; Frdl. 2, 513). Bei mehrstündigem Kochen von l-Cocain mit Wasser (EINHORN, B. 21, 48). — Prismen mit 4 H₂O (aus Wasser) (Sk.). Rhombisch bisphenoidisch (Fock, B. 21, 3199; vgl. Groth, Ch. Kr. 5, 887). Schmilzt wasserhaltig bei 86° bis 87° (Lie., Gie.), 92° (Hesse, A. 271, 182), wasserfrei bei 195° (Lie., Gie.). Verbrennungswärme bei konstantem Volumen: 1973,9 kcal/Mol (Gaudechon, Bl. [4] 1, 684). Unlöslich in Ather, sehr schwer löslich in kaltem Wasser, leichter in Alkohol, leicht in heißem Wasser sowie in verd. Säuren und Alkalien (Sk.). [α]: —44,6° [absol. Alkohol; c=3 (wasserhaltig)] (Hesse, *Pharm. J.* [3] 21, 1111). Die wäßr. Lösung reagiert gegen Lackmus neutral (Sk.).

— Liefert beim Behandeln mit Kaliumpermanganat in sodaalkalischer Lösung Bernsteinsäure (EINHORN, B. 21, 49) und O-Benzoyl-nor-l-ekgonin (EIN., B. 21, 3030; BOEHRINGER & Söhne, D. R. P. 48274; Frdl. 2, 516). Gibt beim Erhitzen mit konz. Salzsäure im Rohr auf 100° Benzoesäure und l-Ekgonin (MERCK, B. 18, 1594; Sk.). Beim Kochen mit Kalilauge entstehen Benzoesäure (Sk.) und d-Pseudoekgonin (Ein., Marquardt, B. 23, 469; B. & S., D. R. P. 53338; Frdl. 2, 518). Beim Erhitzen mit Methyljodid und Methanol (MERCE, B. 18, 2265) oder mit Methyljodid, Natriummethylat und Methanol (Sk., M. 6, 561) im Rohr auf 100° oder beim Behandeln mit methylalkoholischer Salzsäure (Lie., Gie., B. 21, 3197, 3200) erhält man 1-Cocain. — Wirkt nicht anästhesierend; zur physiologischen Wirkung vgl. STOCEMANN, Pharm. J. [3] 16, 897; J. 1886, 1865; EHBLICH, EIN., B. 27, 1870. — $C_{16}H_{19}O_4N$ +HCl+AuCl₃. Gelbe Blätter. Sehr schwer löslich in Wasser, ziemlich leicht in Alkohol $-C_{10}H_{10}O_4N + HCl + AuCl_2 + H_2O$. Tafeln (aus Alkohol) (Hesse, Pharm. J. [3] 21, (SK.). ~ 1111).

O-Cinnamoyl-1-ekgonin $C_{18}H_{21}O_4N=CH_2\cdot NC_7H_{10}(CO_2H)\cdot O\cdot CO\cdot CH:CH\cdot C_6H_5$. Beim Erhitzen von 1-Ekgonin mit Zimtsäureanhydrid und Wasser im Wasserbad (LIEBERMANN,

B. 21, 3373). — Nadeln (aus Alkohol + Äther). F: 216° (Zers.). — Wird durch Kochen mit Salzsäure in Zimtsäure und l-Ekgonin gespalten. — $C_{18}H_{21}O_4N + HCl + AuCl_3$. Niederschlag.

O-Anisoyl-1-ekgonin $C_{17}H_{21}O_5N=CH_3\cdot NC_7H_{10}(CO_2H)\cdot O\cdot CO\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Erhitzen von l-Ekgonin mit Anissäureanhydrid und Wasser (Liebermann, B. 22, 132). — Nadeln (aus Alkohol + Äther). F: 194°.

b) Derivate des l-Ekgonins, die durch Veränderung der Carboxylgruppe bezw.
dieser und der Hydroxylgruppe entstanden sind.

[1-Ekgonin]-methylester C₁₀H₁₇O₃N = CH₃·NC₇H₁₀(CO₂·CH₃)·OH. B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von l-Ekgonin (Einhorn, Klein, B. 21, 3336; Boehringer & Söhne, D. R. P. 47713; Frdl. 2, 514). Gewinnung aus den Nebenalkaloiden der Cocablätter durch Erhitzen mit methylalkoholischer Schwefelsäure: Höchster Farbw., D.R.P. 76433; Frdl. 3, 979. — Flüssigkeit. Kp₁₈: 177° (Willstätter, Bode, A. 326, 77). — Geht beim Erhitzen mit bei 0° gesättigtem alkoholischem Ammoniak im Rohr auf 100° in [l-Ekgonin]-amid über (Ein., Konek de Norwall, B. 26, 963). Das Hydrochlorid wird durch warme starke Mineralsäuren unter Bildung von l-Ekgonin zersetzt (B. & S., D. R. P. 47713). Beim Kochen von [l-Ekgonin]-methylester mit Kalilauge erhält man d-Pseudoekgonin (Ein., Marquard, B. 23, 469; B. & S., D. R. P. 55338; Frdl. 2, 517). Beim Erhitzen des Hydrochlorids mit Benzoylchlorid entsteht l-Cocain (Ein., Kl.; B. & S., D. R. P. 47713). — [l-Ekgonin]-methylester wirkt nicht anästhesierend (Ehrlich, Ein., B. 27, 1870). — C₁₀H₁₇O₃N + HCl + H₂O. Prismen (aus Alkohol). F: 212° (Zers.) (Ern., Kl.). Sehr leicht löslich in Wasser, schwer in Alkohol, Äther, Benzol und Benzin (B. & S.).

O-Isovaleryl-1-ekgonin-methylester $C_{15}H_{25}O_4N=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot CH_2\cdot CH(CH_3)_2$. B. Beim Erhitzen von salzsaurem 1-Ekgonin mit Isovalerylchlorid im Wasserbad (Einhorn, Klein, B. 21, 3337; Boehringer & Söhne, D. R. P. 47713; Frdl. 2, 515). — Öl. Schwer löslich in Wasser (B. & S.). — $2C_{15}H_{25}O_4N+2HCl+PtCl_4$ (bei 100°). Blättchen (Ein., K.).

O-Bensoyl-l-ekgonin-methylester, l-Cocain, gewöhnlich schlechthin Cocain genannt C₁₇H₂₁O₂N, s. nebenstehende Formel.

V. In den Blättern von Erythroxylon Coca (Niemann, Ar. 158, 146, 291; A. 114, 215; J. 1860, 365). Über den Alkaloid-Gehalt von Cocablättern verschiedener Herkunft und verschiedenen Alters vgl. Hartwich,

Ar. 341, 622; DE JONG, R. 25, 233; 27, 16; C. 1908 II, 1613; TSCHIECH, Handbuch der Pharmakognosie, 2. Aufl., Bd. III [Leipzig 1923], S. 321; HENRY, The Plant Alkaloids, 2. Aufl. [London 1924], S. 95.

B. Beim Erhitzen von l-Ekgonin mit Benzoesäureanhydrid und Methyljodid im Rohr auf 100° (MERCK, B. 18, 2953). Aus O-Benzoyl-l-ekgonin beim Erhitzen mit Methyljodid und Methanol (MERCK, B. 18, 2265) oder mit Methyljodid und Natriummethylat in Methanol (Seraup, M. 6, 561) im Rohr auf 100°, besser beim Behandeln mit methylalkoholischer Salzsäure (Liebermann, Giesel, B. 21, 3197, 3200). Beim Erhitzen von salzsaurem [l-Ekgonin]methylester mit Benzoylchlorid im Wasserbad (Einhorn, Klein, B. 21, 3337; Borhringer & Söhne, D. R. P. 47713; Frdl. 2, 514). — Zur Darst. von Cocain aus den Cocablättern vgl. Emde in Ullmanns Enzyklopädie der technischen Chemie, 2. Aufl., Bd. III [Berlim-Wien 1929], S. 453; Schwyzer, Die Fabrikation pharmazeutischer und chemisch-technischer Produkte [Berlim 1931], S. 327. Ältere Angaben über die Gewinnung von Cocain aus Cocablättern: Wöhler, Lossen, A. 121, 374; Lossen, A. 138, 351; Squibe, Pharm. J. [3] 15, 775, 796; 16, 67; Chem. N. 51, 90, 98; J. 1885, 1713, 1714; Bignon, J. 1885, 1714; Lévy, C. 1904 II, 238; de Jong, R. 25, 311.

Physikalische Eigenschaften. Prismen (aus Alkohol). Monoklin sphenoidisch (Tschermak, A. 133, 355; Fock, B. 21, 3200; vgl. Groth, Ch. Kr. 5, 887). F: 98° (NIEMANN, Ar. 153, 292; A. 114, 216; J. 1860, 366; Merck, B. 18, 2265). Verbrennungswärme bei konstantem Vol.: 2147,11 kcal/Mol (Gaudechon, Bl. [4] 1, 1684). Brechung der Krystalle: Kley, R. 22, 377; Fr.

43, 165. Cocain-Krystalle zeigen blaue Fluorescenz (Reichard, C. 1907 II, 1423). Cocain ist triboluminescent (Tschugajew, B. 34, 1823; Trautz, Ph. Ch. 53, 61). Dielektr.-Konst. bei 20°: 3,1 (λ = 63) (Stewart, Soc. 93, 1061). 1 Tl. löst sich bei 12° in 704 Tln. Wasser (Nie.; vgl. Paul, J. 1885, 1719), bei 18—22° in 563 Tln. Wasser, 8,6 Tln. Äther, 394 Tln. mit Äther gesättigtem Wasser, 1,7 Tln. Essigester, 1 Tl. Benzol, 42 Tln. Petroläther (Kp: 59—64°) (Beckurts, Müller, C. 1903 I, 1142). Leicht löslich in Alkohol (Nie.). 100 Tle. Tetrachlorkohlenstoff lösen bei 17° 18,5 Tle. Cocain (Schindelmeiser, Ch. Z. 25, 129). Löslich in flüssigem Ammoniak (Sherry, C. 1908 I, 200). [α][∞]: —16,3° (Chloroform; p = 10 bis 25) (Antrick, B. 20, 321), —24,0° (flüssiges Ammoniak; c = 4) (Sh., C. 1908 I, 200). Reagiert in wäßr. Lösung alkalisch gegen Lackmus, neutral gegen Phenolphthalein (Flückiger, Pharm. J. [3] 16, 602). Leicht löslich in verd. Säuren unter Salzbildung (Nie.). Ammoniak, Soda und Ätzalkalien fällen aus der verd. Lösung des salzsauren Cocains die freie Base (Lossen, A. 133, 356); der durch Ammoniak erzeugte Niederschlag löst sich wieder auf Zusatz von Wasser, von überschüssigem Ammoniak oder Soda; setzt man soviel Wasser hinzu, daß eben Lösung erfolgt, so scheidet sich bald krystallines wasserzeise Cocain ab (Liebermann, Giesel, B. 21, 3201). Abscheidung aus verdünnter wäßriger Lösung durch Zinkrhodanid: Henriques, D. R. P. 77437; Frdl. 4, 1207. Verhalten der wäßrigen neutralen oder sauren Lösungen verschiedener Cocainsalze gegen Chloroform: Simmer, Ar. 244, 675. Hydrolyse des Hydrochlorids: Veley, Soc. 95, 4, 763. Einfluß auf die Elektrocapillarkurve des Quecksilbers: Gouy, A. Ch. [8] 9, 119.

Chemisches Verhalten. Cocain zersetzt sich schon beim Eindampfen in wäßr. Lösung (Paul, J. 1885, 1719); bei mehrstündigem Kochen mit Wasser erfolgt vollständige Verseifung zu O-Benzoyl-lekgonin (Einhorn, B. 21, 48). Wird durch Eindampfen mit konz. Salzsäure unter Bildung von Benzoesäure und l-Ekgonin zersetzt; beim Erhitzen mit Salzsäure im Rohr auf 100° oder mit verd. Schwefelsäure entsteht daneben auch Benzoesäuremethylester (Wöhler, Lossen, A. 121, 372; Lo., A. 133, 361, 362). Liefert beim Kochen mit Kalilauge Benzoesäure und d-Pseudoekgonin (Ein., Marquardt, B. 23, 469; Boehringer & Söhne, D. R. P. 55338; Frdl. 2, 518); d-Pseudoekgonin entsteht auch beim Behandeln mit Bariumhydroxyd oder anderen Alkalien (B. & S., D. R. P. 55338; Frdl. 2, 517; vgl. ('Almels, Gossin, C. r. 100, 1143; J. 1885, 1715). Cocain liefert mit Brom in Tetrachlorkohlenstoff das Perbromid C₁₇H₂₁O₄N + HBr + 2Br (S. 200) (DE Jong, R. 25, 7; vgl. Morel, Leulier, Denoyel, Bl. [4] 45 [1929], 443). Beim Erhitzen mit Chlorwasserstoff-Eisessig im Rohr auf 140° entsteht Anhydroekgonin (Ein., B. 21, 3035). Beim Behandeln mit Salpeterschwefelsäure erhält man O-[3-Nitro-benzoyl]-l-ekgonin-methylester (Ein., His, B. 27, 1876). Beim Erhitzen mit Methyljodid im Rohr auf 100° wird [1-Cocain]-jodmethylat gebildet (Ein., B. 21, 3041; B. & S., D. R. P. 48273; Frdl. 2, 517).

Physiologisches Verhalten. Cocain schmeckt schwach bitter und hinterläßt auf der Zunge ein taubes Gefühl (Niemann, Ar. 153, 291; A. 114, 216; J. 1860, 366). Cocain ist ein Nervengift, es hebt bei lokaler Applikation die Empfindlichkeit der sensiblen Nervenendigungen und die Leitfähigkeit der sensiblen Nervenbahnen auf und ist daher ein Lokalanästhetikum: wirkt auch mydriatisch; zur physiologischen Wirkung vgl. Ehrlich, Einhorn, B. 27, 1870; Poulsson in Heffters Handbuch der experimentellen Pharmakologie, Bd. II [Berlin 1920], S. 103 ff.; H. H. Meyer, Gottlier, Die experimentelle Pharmakologie, 7. Aufl. [Berlin-Wien 1925], S. 151 ff. Über Zersetzung und Ausscheidung von Cocain im tierischen Organismus vgl. Wiechowski, Ar. Pth. 46, 155; Poulsson in Heffters Handbuch, Bd. II, S. 125. Verhalten gegen Enzyme: Gonnermann, C. 1906 II, 618; 1907 I, 168.

Verwendung. Cocain wird (hauptsächlich in Form seines Hydrochlorids) in der Medizin als Lokalanästhetikum verwendet. Zur Verwendung in der Therapie und als Rauschgift vgl. H. H. MEYER, GOTTLIEB, Die experimentelle Pharmakologie, 7. Aufl. [Berlin-Wien 1925], S. 160 ff.

Analytisches. Der Nachweis von Cocain kann durch Identifizierung der beim Erhitzen mit Schwefelsäure entstehenden Spaltungsprodukte Benzoesäure und Methanol erfolgen (vgl. Birl., Ar. 224, 305; Flückiger, J. 1886, 1704; C. 1891 I, 472; Lerch, Schaerges, C. 1889 II, 814; Aurelj, C. 1904 II, 1257). Beim Behandeln von Cocainsalzen mit alkoh. Kalilauge (Ferreira da Silva, Bl. [3] 4, 472; J. 1890, 2527; vgl. Béhal, Bl. [3] 4, 690; [4] 15 [1914], 565) oder beim Erwärmen von salzsaurem Cocain mit äthylschwefelsaurem Kalium und einigen Tropfen konzentrierter Schwefelsäure (Reichard, Ch. Z. 28, 299) tritt Pfefferminzgeruch auf. Versetzt man eine Lösung von 0,01 g salzsaurem Cocain in 16 cm³ Wasser mit 4 cm³ einer gesättigten Kaliumpermanganat-Lösung, so scheiden sich rasch violette Blättchen von Cocain-Permanganat aus (Giesel, Ar. 224, 305; C. 1890 I, 352; vgl. Flüt., J. 1886, 1704; Beckurts, List, J. 1886, 1975). Beim Versetzen einer mehr als 1º/sigen Cocain-Lösung mit konz. Kaliumdichromat-Lösung bildet sich ein citronengelber Niederschlag von chromsaurem Cocain; löst man diesen durch vorsichtigen Zusatz von Wasser und gibt 1 Tropfen konz. Salzsäure zu, so scheidet sich der Niederschlag sofort wieder aus

(Parsons, Am. Soc. 23, 890; vgl. Mezger, C. 1890 I, 352; Müller, C. 1890 II, 818; Schaerges, C. 1893 II, 888). Vermischt man salzsaures Cocain mit Quecksilberchlorür und feuchtet die Masse mit Wasser (Schell, C. 1891 I, 471) oder Alkohol (Flü., C. 1891 I, 471; Pa., Am. Soc. 23, 890) an, so erfolgt sofort Schwärzung. Über Fällungs- und Farbreaktionen des Cocains vgl. ferner Niemann, Ar. 153, 295; J. 1860, 366; Lossen, A. 133, 356; Pa., Am. Soc. 23, 887; Proelss, C. 1901 II, 1321; Siemssen, C. 1908 II, 466; 1904 I, 58; Garsed, C. 1904 I, 762; Rei., Ch. Z. 28, 299; C. 1904 II, 1257; P. C. H. 45, 645; 47, 347; C. 1906 I, 974; II, 634; DE Jong, R. 25, 7. Über Reaktionen zur Unterscheidung des Cocains von Tropacocain vgl. Rei., P. C. H. 49, 337; von α - und β -Eucain und anderen Cocain-Ersatzmitteln: Pa., Am. Soc. 23, 890; Eigel, C. 1903 II, 900; Saporetti, C. 1909 II, 1015; von Morphin: REI., C. 1904 II, 1257; 1906 I, 974; P. C. H. 47, 347. Mikrochemischer Nachweis von Cocain auf Grund der Doppelbrechung: KLEY, R. 22, 377; Fr. 43, 165. — Jodometrische Bestimmung des Cocains für sich oder in Mischung mit Ekgonin und O-Benzoyl-ekgonin: GARSED, COLLIN, Soc. 79, 675. Bestimmung mit Kaliumquecksilberjodid: Heikel, Ch. Z. 32, 1163, 1212. Zur gravimetrischen Bestimmung des Cocains im Rohcocain vgl. SQUIBB, Fr. 28, 743; GA., Zur gravimetrischen Bestimmung des Cocains im Koncocain vgl. SQUIBB, Fr. 26, 745; GA., C. 1904 I, 762; DE JONG, R. 25, 1.— Zur Prüfung auf Reinheit löst man 0,1 g salzsaures Cocain in 85 cm³ Wasser, setzt 0,2 cm³ Ammoniak (D: 0,96) zu und rührt unter Reiben; es entsteht ein flockig krystallinischer Niederschlag; bei Anwesenheit von Isatropylcocain tritt milchige Trübung ein (Maclagan-Probe; vgl. Pharm. J. [3] 17, 1039; J. 1887, 2175; Boehringer & Söhne, P. C. H. 39, 141; 40, 393). Zur Prüfung von salzsaurem Cocain auf Reinheit vgl. ferner: Deutsches Arzneibuch, 6. Ausg. [Berlin 1926], S. 158; Berl-Lunge, Chemisch-technische Untersuchungsmethoden, 8. Aufl., Bd. III [Berlin 1932], S. 1082.— Zur Restimmung des Gesantalkaleid Gebalts der Cocablätter vgl. I. 2004 I. 1460. Zur Bestimmung des Gesamtalkaloid-Gehalts der Cocablätter vgl. Léger, C. 1904 I, 1460; GRESHOFF, C. 1905 I, 1342; 1908 I, 1938; DE JONG, R. 24, 307; 25, 326; 27, 419; C. 1908 I, 1743; II, 1612; Ar. 249 [1911], 209; Bierling, Pape, Viehöfer, Ar. 248 [1910], 303; Seka in Kleins Handbuch der Pflanzenanalyse, Bd. IV [Wien 1933], S. 538.

Salze. C₁₇H₂₁O₄N + HCl. Prismen(aus Alkohol) (Lossen, A. 133, 358). Rhombisch bisphenoidisch (Valentin, Z. Kr. 15, 36; vgl. Groth, Ch. Kr. 5, 888). F: 1920 (bei raschem Erhitzen) (WILLSTÄTTER, WOLFES, MÄDER, A. 484 [1923], 132; vgl. HESSE, A. 276, 343; 277, 308). Zeigt starke blaue Fluorescenz (Reichard, C. 1907 II, 1423). Ist triboluminescent (Trautz, Zeigt starke blaue Fluorescenz (Reichard, C. 1907 II, 1423). Ist triboluminescent (Trautz, Ph. Ch. 53, 61). [α]¹⁶⁻¹⁶: -71,9° (Wasser; c = 2), -69,1° (Wasser; c = 8) (Hérissey, C. 1898 I, 512); [α]¹⁶: -70,8° (Wasser; c = 2), -67,5° (Wasser; c = 10), -64,0° (Wasser; c = 20); [α]¹⁶: -68,3° (40° /ojeer Alkohol; c = 2), -67,0° (40° /ojeer Alkohol; c = 8), -67,5° ($65-80^{\circ}$ /ojeer Alkohol; c = 2-6) (Imbert, Bl. [3] 27, 985); [α]¹⁶: -66,9° (40° /ojeer Alkohol; p = 7,3), -65,6° (40° /ojeer Alkohol; p = 14,7), -64,3° (40° /ojeer Alkohol; p = 23,9) (Antrick, B. 20, 317), -16,3° (Chloroform; p = 10-25) (A., B. 20, 321). Hydrolyse: Veley, Soc. 95, 4, 763. - $C_{17}H_{21}O_4N + HCl + 2H_2O$. Prismen (aus eiskaltem Wasser) (Hesse, J. 1891, 2107; vgl. Paul, J. 1885, 1720; Polenske, J. 1886, 1701). Verliert das Krystalle asser in trockner Luft schon bei 15° (Flückiger, Z. Kr. 15, 35; J. 1888, 2244). - $C_{17}H_{21}O_4N + HBr + 2Br$. Krystalle. Sintert bei 75°, schmilzt bei 85°; unlöslich in Wasser und Åther, schwer löslich in Tetrachlorkohlenstoff, löslich in Essigester: geht beim Erhitzen mit Wasser schwer löslich in Tetrachlorkohlenstoff, löslich in Essigester; geht beim Erhitzen mit Wasser unter Entwicklung von Brom in bromwasserstoffsaures Cocain über (DE Jong, R. 25, 7). -Hydrojodid. Gelbe Nadeln (aus Wasser und Alkohol) (MERCK, B. 18, 2265). Ist triboluminescent (Tschugajew, B. 34, 1823; Trautz, Ph. Ch. 53, 61). — $C_{17}H_{21}O_4N + HI + 2I$. B. Aus Cocainsalzen und Jod-Jodkalium-Lösung (Garsed, Collie, Soc. 79, 676). Purpurrote Krystalle. F: 161° . — $C_{17}H_{21}O_4N + H_2CrO_4$. B. Beim Fällen der salzsauren Lösung von Cocain mit Chromsäure oder Kalium-mono- oder dichromat (MEZGER, C. 1890 I, 352). Orangegelbe Blättchen. F: 1270 (MÜLLER, C. 1890 II, 819). — Nitrat. Zerfließliche Krystalle (Niemann, Ar. 153, 294; J. 1860, 366). Ist triboluminescent (Tsch., B. 34, 1823; Tr., Ph. Ch. 58, 61). — $C_{17}H_{21}O_4N + HCl + AuCl_3$. Goldglänzende Blättchen. F: 1960 (Hesse, Pharm. J. [3] 21, 1111), 1980 (WILLSTÄTTER, BODE, A. 326, 78). Beständig (He.; vgl. Lossen, A. 133, 359). — $2C_{17}H_{21}O_4N + 2HSCN + Zn(SCN)_2$. Farbloser, voluminöser Niederschlag. F: 80° ; sehr schwer löslich in Wasser, leichter in Mineralsäuren, unlöslich in 24° /oiger Rhodanid-Lösung; wird durch Alkalicarbonat schon in der Kälte unter Bildung von freiem Cocain zersetzt (Henriques, D. R. P. 77437; Frdl. 4, 1207). — C₁₇H₂₁O₄N + HCl + HgCl₂. Krystall-pulver. F: 122,5—123°; 100 cm³ Wasser lösen bei 20° 0,513 g (Balbiano, Tartuferi, J. 1887, 2167). — 2C₁₇H₂₁O₄N + 2 HCl + TlCl₃. Nadeln (aus verd. Salzsäure). Ziemlich schwer löslich in Wasser, Alkohol und verd. Salzsäure (Renz, B. 35, 2771). — 2C₁₇H₂₁O₄N + 2 HBr + TeBr₄. Carminrote Nadeln (aus verd. Bromwasserstoffsaure). Wird durch Erhitzen oder durch Wasser light named All Salzsäure). Wasser leicht zersetzt (Lenher, Titus, Am. Soc. 25, 732). — C₁₇H₂₁O₄N + H[Cr(NH₃)₂(SCN)₄] (bei 100°). Rote Blättchen (aus Alkohol). Leicht löslich in heißem Alkohol (Christensen, J. pr. [2] 45, 368). — C₁₇H₂₁O₄N + HCl + FeCl₃. Hellgelbe Nadeln (Chr., J. pr. [2] 74, 179). F: 165—166°; sehr leicht löslich in Wasser und Alkohol; in warmen Wasser schwerer löslich als in kaltem (SCHOLTZ, C. 1908 I, 1466). — $2C_{17}H_{11}O_4N + 2HCl + PtCl_4$. Mikroskopische Blättehen (aus verd. Salzeäure) (Lo., A. 133, 358). F: 215° (Hesse, Pharm. J. [3] 21, 1111). —

Verbindung mit der synthetischen Glycerinphosphorsäure (Bd. I, S. 517) $C_{17}H_{21}O_4N + C_3H_9O_6P$. Glasige Masse. Leicht löslich in Wasser und Alkohol, sehr schwer in Ather (Adrian, Trillat, Bl. [3] 19, 686). — Formiat. Nadeln von schwach bitterem Geschmack. F: 42°; zersetzt sich bei höherer Temperatur; löslich bei 20° in 41 Tln. Wasser, leichter löslich in warmem Wasser, wird durch Wasser von 90° zersetzt; 100 Tle. 95°/0 igen Alkohols lösen bei 20° 43 Tle; schwer löslich in Ather und Chloroform; $[\alpha]_0^{\infty}$: —56,7° (Wasser; c=1) (Vigier, C. 1906 I, 765.) Brechung in wäßr. Lösung: V. — Oxalat $C_{17}H_{21}O_4N + C_2H_2O_4$. Federartige Krystalle. F: etwas oberhalb 100° (Zers.) (Lo., A. 133, 360). — Salz der hochschmelzenden $\alpha.\alpha'$ -Dibrom-bernsteinsäure $C_{17}H_{21}O_4N + C_4H_4O_4$ Brg. Krystalle (Liebermann, B. 26, 251). — Tartrat, Citrat und besonders Salicylat sind triboluminescent (TSCH.; Trautz).

- O-[2-Chlor-benzoyl]-1-ekgonin-methylester, o-Chlor-l-cocain $C_{17}H_{20}O_4NCl=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4Cl.$ B. Beim Erhitzen von 1 Tl. salzsaurem [l-Ekgonin]-methylester mit 2 Tln. 2-Chlor-benzoylchlorid auf 100° (Einhorn, His, B. 27, 1874). Krystalle (aus verd. Alkohol). F: 63—64° (Ein., H.). Zur physiologischen Wirkung vgl. Ehrlich, Ein., B. 27, 1872. $C_{17}H_{20}O_4NCl+HI$. Lamellen (aus Alkohol). F: 196—197° (Ein., H.). $C_{17}H_{20}O_4NCl+HCl+AuCl_3$. Gelbe Blättchen (aus verd. Alkohol) (Ein., H.). $2C_{17}H_{20}O_4NCl+2HCl+PtCl_4$. Orangefarbene Blättchen (aus verd. Alkohol) (Ein., H.).
- O-[8-Nitro-benzoyl]-1-ekgonin-methylester, m-Nitro-l-cocain $C_{17}H_{20}O_6N_2=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot NO_9$. B. Beim Behandeln von Cocain mit Salpeterschwefelsäure (Einhorn, His, B. 27, 1876). Prismen (aus Alkohol). F: 76—77° (Ein., H.). Wird durch Zinn + Salzsäure zu O-[3-Amino-benzoyl]-l-ekgonin-methylester (S. 202) reduziert (Ein., H.). Zur physiologischen Wirkung vgl. Ehrlich, Ein., B. 27, 1872. $C_{17}H_{20}O_6N_2+HCl$. Nadeln (aus Alkohol + Essigester) (Ein., H.). $C_{17}H_{20}O_6N_2+HNO_3$. Nadeln (aus Alkohol + Essigester). F: 164° (Ein., H.). $2C_{17}H_{20}O_6N_2+2HCl+PtCl_4$. Hellgelbe Blättchen (aus verd. Alkohol). F: 237° (Ein., H.).
- O-Phenacetyl-1-ekgonin-methylester $C_{18}H_{29}O_4N=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot CH_2\cdot C_8H_5$. Beim Erhitzen von salzsaurem [l-Ekgonin]-methylester mit Phenacetyl-chlorid auf 100° (Einhorn, Klein, B. 21, 3337; Boehringer & Söhne, D. R. P. 47713; Frdl. 2, 515). Öl. Zur physiologischen Wirkung vgl. Ehrlich, Ein., B. 27, 1871. $2C_{18}H_{23}O_4N + 2HCl + PtCl_4$. Krystalle (aus Wasser) (Ein., K.).
- O-[trans-Cinnamoyl]-l-ekgonin-methylester, "Cinnamylcocain" $C_{19}H_{89}O_4N=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_2)\cdot O\cdot CO\cdot CH:CH\cdot C_6H_5.$ V. In den Blättern von Erythroxylon Coca (Liebermann, Giesel, B. 22, 2661; Paul, Cownley, Pharm. J. [3] 20, 166; J. 1889, 2114); in vorherrschender Menge in den Cocablättern javanischer Herkunft (Hesse, A. 271, 184). B. Beim Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von O-Cinnamoyl-lekgonin (L., B. 21, 3374). Prismen (aus Benzol + Ligroin). Monoklin sphenoidisch (Fock, B. 22, 132, 2661; vgl. Groth, Ch. Kr. 5, 889). F: 121°; fast unlöslich in Wasser, löslich in Alkohol, Äther, Aceton, Chloroform, Benzol und Petroläther (L.). [α] $^{\text{in}}$: —4,7° (Chloroform; c = 10)(H.). Das Hydrochlorid wird in wäßr. Lösung durch Kaliumpermanganat schon in der Kälte sofort unter Auftreten von Bittermandelgeruch oxydiert (Unterschied von Cocain) (L.). Wird durch Kochen mit Salzsäure in Zimtsäure und l-Ekgonin gespalten (L.). Zur physiologischen Wirkung vgl. Ehrlich, Einhorn, B. 27, 1871. $C_{19}H_{29}O_4N + HCl + 2H_2O$. Blätter (aus Wasser). Das wasserfreie Salz schmilzt bei 176°; leicht löslich in Wasser; [α] $^{\text{in}}$: —104,1° [Wasser; c = 66 (wasserfrei)] (H.). $C_{19}H_{29}O_4N + HCl + AuCl_3$. Gelbe Nadeln. F: 156° (H.). $2C_{19}H_{29}O_4N + 2HCl + PtCl_4$. Blaßgelbe Nadeln. F: 217° (L.). Schwer löslich in kaltem, ziemlich leicht in siedendem Wasser (H.).
- O [cis Cinnamoyl] 1 ekgonin methylester, ,,Allocinnamylcocain" $C_{19}H_{23}O_4N=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot CH:CH\cdot C_8H_5$. B. Durch Erhitzen von [cis-Zimtsäure]-anhydrid mit l-Ekgonin und Wasser und Behandeln des entstandenen (nicht näher beschriebenen) O-[cis-Cinnamoyl]-l-ekgonins mit methylalkoholischer Salzsäure (Liebermann, B. 27, 2046). Öl. Wird durch verd. Säuren in Methanol, l-Ekgonin und Allozimtsäure gespalten. $2C_{19}H_{23}O_4N+2HCl+PtCl_4$ (bei 80°). Gelber Niederschlag.
- O.O'-Phthalyl-bis-[l-ekgonin-methylester] $C_{38}H_{38}O_{8}N_{8}=[CH_{2}\cdot NC_{7}H_{10}(CO_{2}\cdot CH_{2})\cdot O\cdot CO]_{2}C_{6}H_{4}$. B. Beim Erhitzen von salzsaurem [l-Ekgonin]-methylester mit Phthalylchlorid auf 100° (Einhorn, Klein, B. 21, 3338; Boehringer & Söhne, D. R. P. 47713; Frdl. 2, 515). Krystallinisch. Unlöslich in Wasser, leicht löslich in Alkohol (B. & S.). $C_{28}H_{36}O_{8}N_{2}+2HCl+PtCl_{4}$. Blättchen (aus Wasser) (Ein., K.).
- β-Truxinsäure-bis-[2-carbomethoxy-tropylester], ,,δ-Isa tropyleocain", ,,β-Truxillin", ,,Isococamin" $C_{38}H_{46}O_8N_8 = CH_3 \cdot NC_7H_{10}(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot HC CH \cdot C_8H_5$ Cur Molekulargröße vgl. Liebermann, A. Ch₃·NC₇H₁₀(CO₂·CH₃)·O·CO·HC CH·C₆H₅

272, 239 Anm. 5. — V. In den Blättern von Erythroxylon Coca (LIEBERMANN, B. 21, 2342; 22, 672; A. 272, 239; Hesse, A. 271, 191). — B. Beim Behandeln von β -Truxinsäure-bis-[2-carboxy-tropylester] (S. 198) mit methylalkoholischer Salzsäure (L., Dbory, B. 22, 681). — Beginnt bei 45° zu sintern (L., D.). Etwas leichter löslich in Petroläther als der entsprechende α -Truxillsäure-ester (s. u.) (H.). — Wird durch Erhitzen mit Salzsäure zersetzt unter Bildung von Methylchlorid, 1-Ekgonin und β -Truxinsäure (L., B. 21, 2345; L., D.; H.). — Erzeugt auf der Zunge ein taubes Gefühl und schmeckt bitter (L., D.).

 $\begin{array}{lll} \alpha \text{-Truxillsäure-bis-} [2 \text{-carbomethoxy-tropylester}], & ,,\gamma \text{-Isatropylcocain'',} \\ ,,\alpha \text{-Truxillin'',} & ,,\text{Cocamin''} & \text{C}_{38}\text{H}_{46}\text{O}_{8}\text{N}_{8} = \\ \text{CH}_{3} \cdot \text{NC}_{7}\text{H}_{10}(\text{CO}_{3} \cdot \text{CH}_{3}) \cdot \text{O} \cdot \text{CO} \cdot \text{HC} - \text{CH} \cdot \text{C}_{6}\text{H}_{5} \end{array}$

C₆H₅·HC—CH·CO·O·(CH₃·O₂C)C₇H₁₀N·CH₃

vgl. Liebermann, A. 272, 239 Anm.; Hesse, J. pr. [2] 66, 418. — V. In den Blättern von Erythroxylon Coca (Liebermann, B. 21, 2342; Hesse, B. 22, 665; Pharm. J. [3] 19, 1112; A. 271, 187). — B. Durch Kochen von l-Ekgonin mit α-Truxillsäure-dichlorid (Bd. IX, S. 955) oder mit der aus α-truxillsaurem Natrium und α-Truxillsäure-dichlorid erhältlichen Verbindung [C₃₆H₃₀O_{7]s} (?) (Bd. IX, S. 953) in Benzol und Behandeln des entstandenen (nicht näher beschriebenen) α-Truxillsäure-bis-[2-carboxy-tropylesters] mit methylalkoholischer Salzsäure (L., Drory, B. 22, 682). — Kreidiger Niederschlag. Leicht löslich in Alkohol, Äther, Chloroform und Benzol, sehr schwer in Petroläther (Unterschied von Cocain); schwerer löslich in Ammoniak als Cocain (L., B. 21, 2343; L., D.; vgl. H., A. 271, 187). — Wird beim Erhitzen mit Salzsäure zersetzt unter Bildung von Methylchlorid, l-Ekgonin und α-Truxillsäure (L., B. 21, 2345; L., D.; vgl. H., A. 271, 188). — Schmeckt stark bitter (L., D.). Zur physiologischen Wirkung vgl. Lieberich, B. 21, 2344; Faleson, C. 1889 II, 1057.

 γ -Truxillsäure-bis-[2-carbomethoxy-tropylester], " ϵ -Isatropylcocain", " γ -Truxillin" $C_{38}H_{46}O_8N_9=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot HC$ — $CH\cdot C_6H_5$ Zur Molekulargröße

C₆H₅·HC·—CH·CO·O·(CH₃·O₂C)C₇H₁₀N·CH₃· Zur Molekulargröße vgl. Liebermann, A. 272, 239 Anm. — B. Durch Erhitzen von l-Ekgonin mit γ-Truxillsäureanhydrid (Bd. XVII, S. 536) und Wasser auf 100° und Behandeln des entstandenen (nicht näher beschriebenen) γ-Truxillsäure-bis-[2-carboxy-tropylesters] mit methylalkoholischer Salzsäure (Liebermann, B. 22, 130). — Kreidig. Beginnt bei 63° zu sintern; sehr leicht löslich in Alkohol, Äther, Chloroform, Aceton und Benzol, schwer in Ligroin. — Gibt beim Kochen mit Salzsäure γ-Truxillsäure (Bd. IX, S. 956). — Schmeckt stark bitter.

O-[8-Oxy-benzoyl]-l-ekgonin-methylester, m-Oxy-l-cocain $C_{17}H_{21}O_5N=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot OH$. B. Durch Diazotierung von m-Amino-l-cocain in salzsaurer Lösung mit Natriumnitrit und Verkochen der Diazoniumsalz-Lösung (Einhorn, His, B. 27, 1879). — Blättchen (aus Benzol). F: 123°; löslich in Äther und in Natronlauge (Ein., H.). — Physiologische Wirkung: Ehrlich, Ein., B. 27, 1872. — $C_{17}H_{21}O_5N+HCl$. Krystalle (Ein., H.). — $C_{17}H_{21}O_5N+HCl+AuCl_3$. Gelbe Krystalle (aus Wasser). F: 181° bis 182° (Ein., H.). — $2C_{17}H_{21}O_5N+2HCl+PtCl_4$. Orangefarbene, prismatische Blättchen (aus Wasser) (Ein., H.).

O-Anisoyl-1-ekgonin-methylester, "Anisylcocain" $C_{18}H_{23}O_5N = CH_3 \cdot NC_7H_{10}(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot C_8H_4 \cdot O \cdot CH_2$. B. Beim Behandeln von O-Anisoyl-1-ekgonin mit methylalkoholischer Salzsäure (Liebermann, B. 22, 132). — Zähflüssig. Unlöslich in Wasser. — $C_{16}H_{23}O_5N + HCl + AuCl_2$. Gelber Niederschlag. Unlöslich in Wasser und verd. Alkohol.

O-[8-Amino-benzoyl]-l-ekgonin-methylester, m-Amino-l-cocain $C_{17}H_{22}O_4N_2 = CH_3 \cdot NC_7H_{10}(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_4 \cdot NH_2$. B. Bei der Reduktion von m-Nitro-l-cocain mit Zinn + konz. Salzsäure (Einhorn, His, B. 27, 1877). — Krystalle (aus Alkohol). F: 125° (Ein., H.). — Physiologische Wirkung: Ehrlich, Ein., B. 27, 1872. — $C_{17}H_{22}O_4N_2 + 2$ HCl. Prismatische Tafeln (aus verd. Alkohol). F: 227—228° (Ein., H.). — $C_{17}H_{22}O_4N_2 + 2$ HI. Gelbliches Pulver. F: 219° (Ein., H.).

O-[3-Carbāthoxyamino-bensoyl]-l-ekgonin-methylester, "m-Cocainurethan" $C_{30}H_{30}O_6N_2=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot NH\cdot CO_2\cdot C_2H_5$. B. Bei der Einw. von Chlorameisensäureāthylester auf m-Amino-l-cocain in Essigester (Einhorn, His, B. 27, 1878). — Krystalle (aus verd. Alkohol). F: 143° (Ein., H.). — Physiologische Wirkung: Ehrlich, Ein., B. 27, 1872. — $C_{30}H_{30}O_6N_2+HBr$. Krystalle (aus Methanol + Ather). Leicht löslich in Methanol (Ein., H.).

O-Benzoyl-1-ekgonin-äthylester, Cocäthylin $C_{18}H_{23}O_4N=CH_3\cdot NC_7H_{10}(CO_3\cdot C_2H_5)$ O·CO· C_6H_5 . B. Aus O-Benzoyl-1-ekgonin beim Erhitzen mit Äthyljodid und Äthylalkohol

- im Rohr auf 100° (MERCK, B. 18, 2954; vgl. Novy, Am. 10, 145) oder beim Behandeln mit äthylalkoholischer Salzsäure (Einhorn, B. 21, 48). Durch Einw. von äthylalkoholischer Salzsäure auf salzsaures l-Ekgonin und Erhitzen des entstandenen salzsauren [l-Ekgonin]-äthylesters mit Benzoylchlorid (Boehringer & Söhne, D. R. P. 47713; Frdl. 2, 515; vgl. auch Höchster Farbw., D. R. P. 76433; Frdl. 3, 979). Prismen (aus Alkohol). F: 108° bis 109° (M.). Wirkt anästhesierend (FALCK, B. 18, 2955; Novy, Am. 10, 147). $2C_{18}H_{22}O_4N + 2HCl + PtCl_4$. Hellgelbe Krystalle (aus Wasser) (M.).
- O-Benzoyl-l-ekgonin- $[\beta$ -brom-äthylester] $C_{18}H_{18}O_4NBr = CH_3\cdot NC_7H_{10}(CO_2\cdot CH_2\cdot CH_2Br)\cdot O\cdot CO\cdot C_6H_5$. B. Beim Erhitzen von O-Benzoyl-l-ekgonin mit Athylenbromid und Alkohol im Rohr auf 95° (Novy, Am. 10, 147). Sirup. Schmeckt bitter; wirkt anästhesierend.
- O-Benzoyl-1-ekgonin-propylester $C_{19}H_{25}O_4N=CH_2\cdot NC_7H_{10}(CO_2\cdot CH_2\cdot C_3H_5)\cdot O\cdot CO\cdot C_6H_5$. Beim Erhitzen von O-Benzoyl-1-ekgonin mit Propyljodid und Propylalkohol im Rohr auf 95° (Novy, Am. 10, 147). Prismen (aus Alkohol). F: 78—79,5°. Schmeckt sehr bitter; wirkt anästhesierend.
- O-Benzoyl-1-ekgonin-isobutylester $C_{20}H_{27}O_4N=CH_3\cdot NC_7H_{10}[CO_2\cdot CH_2\cdot CH(CH_3)_3]\cdot O\cdot CO\cdot C_6H_5$. B. Beim Erhitzen von O-Benzoyl-1-ekgonin mit Isobutyljodid und Isobutylakohol im Rohr auf 95° (Novy, Am. 10, 148). Prismen (aus Alkohol). F: 61—62°. Schmeckt sehr bitter; wirkt anästhesierend.
- [1-Ekgonin]-amid C₉H₁₆O₂N₃ = CH₃·NC₇H₁₀(CO·NH₂)·OH. B. Beim Erhitzen von [1-Ekgonin]-methylester mit bei 0° gesättigtem alkoholischem Ammoniak im Rohr auf 100° (EINHORN, KONEK DE NORWALL, B. 26, 963). Prismen (aus Alkohol), Nadeln (aus Chloroform). Rhombisch bisphenoidisch (Steinmetz; vgl. Groth, Ch. Kr. 5, 884). F: 198°; sublimierbar; sehr leicht löslich in Wasser, unlöslich in Äther, Aceton und Benzol (EIN., K. DE N.). Wird durch Kochen mit Alkalilauge unter Entwicklung von Ammoniak zersetzt; geht bei der Einw. von Benzoylchlorid in Gegenwart von Natronlauge in O-Benzoyl-l-ekgonin-nitril über; durch Behandeln mit viel überschüssigem Benzoylchlorid bei 100° entsteht [1-Ekgonin]-nitril (EIN., K. DE N.). Hat keine anästhesierende Wirkung (EHRLICH, B. 26, 964). C₉H₁₆O₂N₂ + HCl. Nadeln (aus verd. Alkohol + Äther). F: 275° (Zers.); sehr leicht löslich in Wasser (EIN., K. DE N.). C₉H₁₆O₂N₃ + HBr + H₂O. Prismen (aus Alkohol). F: ca. 260° (Zers.) (EIN., K. DE N.). C₉H₁₆O₂N₃ + HI + H₂O. Blättchen (aus Alkohol). F: 245° (EIN.; K. DE N.). C₉H₁₆O₂N₃ + HCl + AuCl₃ + 1¹/₂ H₂O. Gelbe Nadeln (aus Wasser). Schmilzt wasserhaltig bei 70—80°, wasserfrei bei 140—142° (EIN., K. DE N.). 2C₉H₁₆O₂N₃ + 2HCl + PtCl₄. Orangefarbene Nadeln (aus Wasser). F: 239° (Zers.) (EIN., K. DE N.). Pikrat C₉H₁₆O₂N₃ + C₆H₃O₇N₃ + H₂O. Nadeln (aus wasserhaltigem Alkohol). F: 150° (EIN., K. DE N.).
- [1-Ekgonin]-nitril, 2-Cyan-tropin $C_0H_{14}ON_3 = CH_3 \cdot NC_7H_{10}(CN) \cdot OH$. B. Beim Erhitzen von [1-Ekgonin]-amid mit viel überschüssigem Benzoylehlorid auf 100° (EINHORN, KONEK DE NORWALL, B. 26, 968). Nadeln (aus Äther oder Benzol). F: 145,5°. Leicht löslich in Alkohol, Äther, Chloroform und Benzol. Spaltet beim Kochen mit Alkalien Ammoniak ab. $C_0H_{14}ON_3 + HCl$. Blättchen (aus Alkohol). Sehr leicht löslich in Wasser.
- O-Benzoyl-1-ekgonin-nitril $C_{16}H_{18}O_2N_3 = CH_3 \cdot NC_7H_{10}(CN) \cdot O \cdot CO \cdot C_6H_5$. B. Beim Behandeln von [1-Ekgonin]-amid mit Benzoylchlorid in Gegenwart von Natronlauge (EINHORN, KONEK DE NORWALL, B. 26, 966). Farnkrautähnliche Krystalle. F: 105°. Leicht löslich in den üblichen Lösungsmitteln. Liefert beim Kochen mit alkoh. Kalilauge Ammoniak, Benzoesäure und ein Gemisch von 1-Ekgonin und d-Pseudoekgonin. Wirkt (in Form des Hydrochlorids angewandt) anästhesierend und mydriatisch, jedoch schwächer als Cocain (Ehrlich). $C_{16}H_{18}O_2N_2 + HCl$. Blättchen oder Prismen (aus Alkohol). $C_{16}H_{18}O_2N_2 + HCl + AuCl_3 + H_2O$. Goldgelbe Blättchen (aus verd. Alkohol). F: 188°.
- 2. Weitere durch Veränderung am Stickstoff entstandene funktionelle Derivate des Nor-l-ekgonins.

sehr sohwer löslich in kaltem, leichter in heißem Wasser (W.). Tafeln (aus Wasser); F (wasserfrei): 130° (H.). — $2C_{10}H_{16}O_3N \cdot Cl + PtCl_4 + H_2O$. Orangerote Nadeln. F (wasserfrei): 194° ; leicht löslich in Wasser, schwer in Alkohol (H.).

Anhydrid, [1-Ekgonin]-methylbetain $C_{10}H_{17}O_2N = (CH_2)_2NC_7H_{10}(OH)\cdot CO\cdot O$. B. Bei der Einw. von feuchtem Silberoxyd auf [1-Ekgonin]-jodmethylat (Hesse, J. pr. [2] 65, 93) oder auf [1-Ekgonin]-āthylester-jodmethylat (Willstätter, B. 32, 1637). — Wasserfreie Prismen (aus Alkohol) (W., B. 32, 1637); Prismen mit 2 H_2O (aus verdunstendem Wasser), die bei 130° 1 H_2O abgeben (H.; W., Privatmitteilung). F (wasserfrei): 278° (Zers.); sehr leicht löslich in Wasser, sehr schwer in siedendem Alkohol, unlöslich in Äther (W., B. 32, 1637). [α] $_0^n$: —42,4° (Wasser; c = 4,5 (wasserhaltig)] (H.). Die wäßr. Lösung reagiert neutral (W., B. 32, 1637; H.). — Gibt beim Behandeln mit Benzoylchlorid O-Benzoyl-l-ekgonin-chlormethylat [Blättchen; sehr leicht löslich in Wasser] (H.).

O-Bensoyl-1-ekgonin-methylester-hydroxymethylat, [1-Cocain]-hydroxymethylat $C_{18}H_{25}O_5N = (HO)(CH_3)_5NC_7H_{10}(CO_3 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_5$. B. Das Jodid entsteht beim Erhitzen von Cocain mit Methyljodid im Rohr auf 100° (EINHORN, B. 21, 3041; Boehringer & Söhne, D. R. P. 48273; Frdl. 2, 517); analog erhält man mit Methylbromid das Bromid (B. & S.). — Das Jodid geht beim Kochen in wäßr. Lösung unter Abscheidung von Benzoesäure in Anhydroekgonin-methylester-jodmethylat (S. 32) über; erhitzt man mit Chlorwasserstoff-Eisessig im Rohr auf 140°, so entsteht Anhydroekgonin-jodmethylat (EIN.). — Zur physiologischen Wirkung der 1-Cocain-halogenalkylate vgl. Ehrlich, EIN., B. 27, 1873; Poulsson in Heffters Handbuch der experimentellen Pharmakologie, Bd. II [Berlin 1920], S. 152. — Chlorid $C_{19}H_{24}O_4N \cdot Cl$. Nadeln oder Blättchen (aus Alkohol + Äther). F: 152,5°; sehr leicht löslich in Wasser (EIN.). — Bromid. Krystalle (aus Alkohol) (B. & S.). — Jodid $C_{18}H_{24}O_4N \cdot I$. Blättchen (aus Alkohol). F: 164°; schwer löslich in absol. Alkohol (EIN.).

[1-Ekgonin]-äthylester-hydroxymethylat $C_{12}H_{22}O_4N=(HO)(CH_2)_2NC_7H_{10}(CO_2\cdot C_2H_5)\cdot OH$. — Das Jodid geht beim Kochen mit Natronlauge in Cycloheptatriencarbonsaure vom Schmelzpunkt 55—56° (Bd. IX, S. 429) über (Einhorn, Friedlaender, B. 26, 1491; vgl. Willstätter, B. 31, 1546, 2503). — Jodid $C_{12}H_{22}O_3N\cdot I$. Nadeln. F: 187°; bleibt bei 12-stdg. Kochen mit Wasser unverändert (W., B. 32, 1636). — $C_{12}H_{22}O_3N\cdot Cl + AuCl_3$. Prismen. F: 176—177° (Zers.); schwer löslich in Wasser (W., B. 32, 1636).

[1-Ekgonin]-amid-hydroxymethylat $C_{10}H_{20}O_3N_9=(HO)(CH_2)_2NC_7H_{10}(CO\cdot NH_2)\cdot OH.$ — Jodid $C_{10}H_{19}O_3N_2\cdot I.$ B. Beim Erhitzen von [l-Ekgonin]-amid mit Methyljodid in Alkohol im Rohr auf 90—100° (EINHORN, KONEK DE NORWALL, B. 26, 965). Nadeln (aus Alkohol). F: 203°. Leicht löslich in Wasser, schwer in siedendem Alkohol.

[1-Ekgonin]-hydroxyäthylat, Ammoniumbase des [1-Ekgonin]-äthylbetains $C_{11}H_{21}O_4N=(HO)(C_2H_5)(CH_2)NC_7H_{10}(CO_2H)\cdot OH$. — Jodid $C_{11}H_{20}O_3N\cdot I+2H_2O$. B. Durch Behandeln von 1-Ekgonin mit Äthyljodid in Alkohol bei 50—55° (Hesse, J. pr. [2] 65, 94). Prismen (aus Alkohol). Schmilzt langsam erhitzt bei 192°, rasch erhitzt bei 185° (Zers.). Leicht löslich in Wasser, schwer in Alkohol.

Anhydrid, [1-Ekgonin]-äthylbetain $C_{11}H_{19}O_3N = (C_2H_5)(CH_5)NC_7H_{10}(OH)\cdot CO\cdot \overline{O}$. B. Beim Behandeln von [1-Ekgonin]-jodäthylat mit feuchtem Silberoxyd (Hesse, J. pr. [2] 65, 94). — Prismen mit 2 H_2O (aus Wasser); verliert bei 120° 1 H_2O . F: 202° (Zers.). Die wäßr. Lösung reagiert neutral.

O-Benzoyl-l-ekgonin-methylester-hydroxycyanmethylat, [l-Cocain]-hydroxycyanmethylat $C_{12}H_{24}O_5N_2=(HO)(NC\cdot CH_2)(CH_2)NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_5$. — Bromid $C_{12}H_{22}O_4N_2\cdot Br$. B. Aus Cocain und Bromacetonitril bei 100° (v. Braun, B. 41, 2122). F: 169° (Zers.); schwer löslich in Alkohol (v. B.). Physiologische Wirkung: Heinz, B. 41, 2122.

O-Benzoyl-N-nitroso-nor-l-ekgonin-äthylester $C_{17}H_{20}O_5N_2=ON\cdot NC_7H_{10}(CO_2\cdot C_2H_5)\cdot O\cdot CO\cdot C_9H_5$. Bei der Einw. von Natriumnitrit auf den salzsauren O-Benzoylnor-l-ekgonin-äthylester in wäßr. Lösung (Einhorn, Friedlaender, B. 26, 1486). — Zähes Öl.

b) Nor - dl - ekgonin C₈H₁₈O₃N, H₂C-CH-CH·CO₂H H₂C-CH-CH·CO₂H
Formel I.

dl-Ekgonin C₉H₁₅O₃N, Formel II. Zur
Konstitution vgl. WILLSTÄTTER, WOLFES, H₂C-CH-CH₂ H₂C-CH-CH₃

MXDER, A. 434 [1923], 134. — B. Neben dl-Pseudoekgonin und Pseudotropin durch
Behandeln von Tropinon (Bd. XXI, S. 258) in äther. Lösung mit Natrium und Kohlendioxyd und Reduktion des entstandenen Gemisches von Natriumsalzen in eiskalter,

schwach salzsaurer Lösung mit Natriumamalgam (Willstätter, Bode, B. 34, 1458; A. 326, 50, 52). — Tafeln mit 3 H₂O (aus Wasser). Monoklin prismatisch (Steinmetz, A. 326, 55). Gibt das Krystallwasser im Vakuum über Schwefelsäure vollständig ab; F (wasserfrei): 201—202° (Zers.); sehr leicht löslich in heißem Wasser, sehr schwer in kaltem absolutem Alkohol, unlöslich in Äther; reagiert neutral (W., B.). — Ist in schwefelsaurer Lösung gegen Kaliumpermanganat beständig; liefert beim Behandeln mit methyl- oder äthylalkoholischer Salzsäure oder beim Kochen mit konz. Salzsäure Pseudotropin (Bd. XXI, S. 38) (W., B.). — 2C₉H₁₅O₂N + HCl. Rhombenförmige, hygroskopische Tafeln. F: 239° (Zers.); schwer löslich in Methanol, leicht in kaltem Wasser (W., B.). — C₉H₁₅O₃N + HCl. Prismen (aus Wasser), rhombenförmige Tafeln (aus Alkohol). Krystallisiert wasserfrei in monoklin domatischen (v. Sustschinsky, A. 326, 58) Prismen oder mit ½, 1 oder 2 Mol H₂O; die wasserhaltigen Krystalle verlieren das Wasser erst bei 120—130°; F (wasserfrei): 239° (Zers.); leicht löslich in kaltem Wasser, schwer in kaltem Methanol, schwer in kaltem und heißem Alkohol (W., B.). — C₉H₁₅O₃N + HCl + AuCl₂. Hellgelbe Nadeln (aus Wasser). F: 174—176° (Zers.); schwer löslich in kaltem, leicht in heißem Wasser und in Alkohol (W., B.).

c) Nor-d-pseudoekgonin. früher Nor-d-ekgonin genannt H₂C—CH—CH·CO₂H C₆H₁₃O₃N, s. nebenstehende Formel. B. Beim Behandeln von salzsaurem d-Pseudoekgonin mit Kaliumpermanganat in verdünnter sodaalkalischer Lösung (EINHORN, FRIEDLAENDER, B. 26, 1484). — Nadeln (aus verd. H₂C—CH—CH₂ Alkohol + Äther). Sehr schwer löslich in den gebräuchlichen Lösungsmitteln. — Geht beim Behandeln mit Methyljodid in Gegenwart von wäßrig-alkoholischer Kalilauge in d-Pseudoekgonin über. — C₈H₁₃O₃N + HCl. Krystalle (aus verd. Alkohol + Äther).

A. Funktionelle Derivate des Nor-d-pseudoekgonins mit unveränderter NH-Gruppe.

O-Benzoyl-nor-d-pseudoekgonin $C_{15}H_{17}O_4N = HNC_7H_{10}(CO_2H)\cdot O\cdot CO\cdot C_6H_5$. B. Bei längerem Kochen von O-Benzoyl-nor-d-pseudoekgonin-äthylester mit Wasser (EINHORN, FRIEDLAENDER, B. 26, 1488). — Nadeln (aus verd. Alkohol).

Nor-d-pseudoekgonin-methylester $C_9H_{15}O_3N = HNC_7H_{10}(CO_2 \cdot CH_3) \cdot OH$. B. Beim Kochen von Nor-d-pseudoekgonin mit Methanol in Gegenwart von konz. Schwefelsäure (Einhorn, Friedlaender, B. 26, 1485). — Krystalle (aus Essigester oder Benzol). F: 160°. Sehr leicht löslich in Methanol und Alkohol, unlöslich in Äther und Ligroin.

Nor-d-pseudoekgonin-äthylester $C_{10}H_{17}O_3N = HNC_7H_{10}(CO_2 \cdot C_2H_5) \cdot OH$. B. Beim Kochen von Nor-d-pseudoekgonin mit Alkohol in Gegenwart von konz. Schwefelsäure (Einhorn, Friedlaender, B. 26, 1484). — Nadeln (aus Essigester). F: 137°. Leicht löslich in Wasser, löslich in Alkohol, unlöslich in Äther. — Das salzsaure Salz gibt mit Natriumnitrit in wäßr. Lösung ein Nitrosoderivat (S. 210).

O-Benzoyl-nor-d-pseudoekgonin-äthylester $C_{17}H_{21}O_4N=HNC_7H_{10}(CO_3\cdot C_2H_5)\cdot O\cdot CO\cdot C_6H_5$. B. Beim Kochen von Nor-d-pseudoekgonin-äthylester mit Benzoylchlorid in Chloroform (Einhorn, Friedlaender, B. 26, 1487). — Nadeln (aus Alkohol). F: 127°; sehr leicht löslich in Chloroform, Essigester und Benzol, etwas schwerer in Alkohol, unlöslich in Schwefelkohlenstoff und Ligroin (Ein., F.). — Gibt bei anhaltendem Kochen mit Wasser O-Benzoyl-nor-d-pseudoekgonin (Ein., F.). — Physiologische Wirkung: Ehrlich, B. 26, 1488. — $C_{17}H_{21}O_4N+HCl$. Blättchen (aus Alkohol). Schwer löslich in Wasser (Ein., F.). — $2C_{17}H_{21}O_4N+2HCl+PtCl_4$. Gelbe Schuppen (aus Alkohol). F: 142° (Ein., F.).

B. Funktionelle Derivate des Nor-d-pseudoekgonins mit veränderter NH-Gruppe. 1. N-Methyl-nor-d-pseudoekgonin (d-Pseudoekgonin) und seine durch Veränderung der Hydroxylund Carboxylgruppe entstandenen Derivate.

Lösung Nor-d-pseudoekgonin (Ein., F., B. 26, 1484). Gibt bei der Oxydation mit siedender Chromschwefelsäure d-Tropinsäure (S. 123) und l-Ekgoninsäure (S. 287) (L., B. 24, 612). Beim Erhitzen mit Chlorwasserstoff-Eisessig im Rohr auf 140° entsteht Anhydroekgonin (S. 31) (Ein., M., B. 23, 471; Gadamer, Amenomiya, Ar. 242, 9). — $C_9H_{15}O_3N + HCl$. Wasserfreie Krystalle (aus Alkohol). Krystalle mit $^{1}/_2H_2O$ (aus Wasser) (Willstätter, Bode, A. 326, 65); monoklin sphenoidisch (Steinmetz, A. 326, 67; vgl. Arzruni, B. 23, 470). F: 233—234° (Ein., M., B. 23, 980; W., B.), 236° (L., Gie.; Ga., A., Ar. 242, 9). Sehr schwer löslich in absol. Alkohol, sehr leicht in Wasser (Ein., M., B. 23, 470). [α]_D: +20,8° (Wasser; α = 9,6) (L., Gie.), +21,1° (Wasser; α = 4,3) (Ga., A.). — α C₉H₁₅O₃N + HCl + AuCl₃. Gelbe Blättchen. F: 220° (Zers.) (Ein., M., B. 23, 471; L., Gie.; W., B.).

- a) Derivate des d-Pseudoekgonins, die nur durch Veränderung der Hydroxylgruppe entstanden sind.
- O-Isovaleryl-d-pseudoekgonin $C_{14}H_{29}O_4N=CH_3\cdot NC_7H_{10}(CO_2H)\cdot O\cdot CO\cdot CH_2\cdot CH(CH_3)_2$. B. Durch Einw. von Isovalerylchlorid auf salzsaures d-Pseudoekgonin bei 114—1170 (Deckers, Einhorn, B. 24, 11). Nadeln (aus Methanol + Äther). F: 224° (Zers.). Sehr leicht löslich in Wasser. $C_{14}H_{23}O_4N+HCl$. Nadeln (aus Wasser). F: 236°. $2C_{14}H_{25}O_4N+2HCl+PtCl_4$. Orangefarbene Prismen (aus Wasser). F: 216°.
- O-Benzoyl-d-pseudoekgonin $C_{16}H_{19}O_4N=CH_3\cdot NC_7H_{10}(CO_2H)\cdot O\cdot CO\cdot C_6H_5$. B. Aus d-Pseudoekgonin beim Erhitzen mit Benzoylehlorid oder mit Benzoesäureanhydrid und Wasser (Boehringer & Söhne, D. R. P. 55338; Frdl. 2, 519; vgl. Liebermann, Giesel, B. 23, 926). Aus d-Pseudococain durch anhaltendes Erhitzen mit Wasser, durch Erwärmen mit ammoniakhaltigem Wasser (Einhorn, Marquardt, B. 23, 984) oder durch Behandeln mit einer zur Lösung gerade hinreichenden Menge Salzsäure (D: 1,19) bei 90° (L., G., B. 23, 510). $C_{16}H_{19}O_4N+HCl$. Prismen (aus Alkohol oder Wasser). Rhombisch bisphenoidisch (Fock, B. 23, 927; vgl. Groth, Ch. Kr. 5, 889). F: 244—245° (Zers.) (Ein., M.). Nitrat. 100 Tle. Wasser lösen bei 19° 1,1 Tle. Salz (L., G., B. 23, 928).
- O-Cinnamoyl-d-pseudoekgonin $C_{18}H_{21}O_4N=CH_3\cdot NC_7H_{10}(CO_3H)\cdot O\cdot CO\cdot CH:CH\cdot C_6H_5$. B. Beim Erhitzen von salzsaurem d-Pseudoekgonin mit Zimtsäurechlorid auf 150° bis 160° (Deckers, Einhorn, B. 24, 8). Durch Behandeln einer heißgesättigten wäßrigen Lösung von d-Pseudoekgonin mit Zimtsäureanhydrid bei 100° (D., El.). Krystalle (aus Wasser). $C_{18}H_{21}O_4N+HCl$. Nadeln (aus Wasser). F: 236° (Zers.). $C_{18}H_{21}O_4N+HNO_3$. Mikroskopische Krystalle (aus Wasser). $2C_{18}H_{21}O_4N+2HCl+PtCl_4$. Hellgelbe Nadeln (aus Wasser). F: 225° (Zers.).
- O.O'-Phthalyl-bis-d-pseudoekgonin $C_{26}H_{32}O_8N_2=[CH_3\cdot NC_7H_{10}(CO_2H)\cdot O\cdot CO]_2C_6H_4$. B. Beim Eintragen von Phthalsäureanhydrid in eine heiße, gesättigte, wäßrige Lösung von d-Pseudoekgonin (Deckers, Einhorn, B. 24, 12). Öl. $C_{36}H_{32}O_8N_2+2$ HI. Gelbe Krystalle (aus Alkohol + Äther). F: 103°.
- b) Derivate des d-Pseudoekgonins, die durch Veränderung der Carboxylgruppe bezw. dieser und der Hydroxylgruppe entstanden sind.
- [d-Pseudoekgonin]-methylester $C_{10}H_{17}O_3N=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot OH$. B. Beim Behandeln von d-Pseudoekgonin mit methylalkoholischer Salzsäure (Einhorn, Marquardt, B. 23, 472; Boehringer & Söhne, D. R. P. 55338; Frdl. 2, 518). Prismen (aus Alkohol). F: 115° (Ein., M.; B. & S.). α_0 : +3° (verd. Alkohol; p=6; l=2) (Liebermann, Giesel, B. 23, 928). Gibt beim Erhitzen mit methylalkoholischem Ammoniak im Rohr auf 140° bis 150° [d-Pseudoekgonin]-amid (Ein., Konek de Norwall, B. 26, 970).
- O-Isovaleryl-d-pseudoekgonin-methylester $C_{15}H_{35}O_4N=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot CH_2\cdot CH(CH_3)_2$. B. Beim Erhitzen von [d-Pseudoekgonin]-methylester mit Isovalerylchlorid auf 112—114° (Deckers, Einhorn, B. 24, 10). Öl. $C_{15}H_{25}O_4N+HCl$. Blättchen (aus Alkohol). F: 192°. [α]_{ν}: +25° (Alkohol (?); c=2). $C_{15}H_{25}O_4N+HNO_3$. Blättchen (aus Alkohol und Äther). F: 163°. $C_{15}H_{25}O_4N+HCl+AuCl_3$. Hellgelbe Nadeln (aus wasserhaltigem Methanol). F: 88°. $2C_{15}H_{25}O_4N+2HCl+PtCl_4$. Citronengelbe Nadeln (aus Wasser). F: 202°.
- O-Benzoyl-d-pseudoekgonin-methylester, d-Pseudococain, früher d-Cocain, auch Isococain genannt $C_{17}H_{21}O_4N$, s. nebenstehende Formel. B. Fand sich in geringer Menge in den bei der Darstellung von l-Cocain aus l-Ekgonin erhaltenen Mutterlaugen (Liebermann, Giesel, B. 23, 508, 926), wahrscheinlich infolge eines geringen, durch Alkali verursachten Gehalts der Ausgangssubstanz an d-Pseudoekgonin (Einhorn, Marquardt,

- B. 23, 981). Beim Behandeln von O-Benzoyl-d-pseudoekgonin mit methylalkoholischer Salzsäure (Boehringer & Söhne, D. R. P. 55338; Frdl. 2, 519). Beim Erhitzen von [d-Pseudoekgonin]-methylester mit Benzoylchlorid auf 150—160° (Ein., M., B. 23, 473; B. & S., D. R. P. 55338; Frdl. 2, 518). Prismen. F: 46—47° (L., G.), 43—45° (Ein., M., B. 23, 981, 983). Leicht löslich in Äther, Chloroform, Benzoul und Ligroin (L., G.). Dielektr.-Konst. bei 20°: 3,05 (λ = 63) (Stewart, Soc. 93, 1061). Liefert bei längerem Kochen mit Wasser O-Benzoyl-d-pseudoekgonin; beim Erwärmen mit ammoniakhaltigem Wasser erfolgt zum Teil weitere Spaltung in d-Pseudoekgonin und Benzoesäure (Ein., M., B. 23, 984). Auch beim Erhitzen mit Salzsäure erfolgt Bildung von O-Benzoyl-d-pseudoekgonin bezw. von d-Pseudoekgonin (L., G.). Wirkt lokalanästhesierend (Ein., M., B. 23, 474; Poulsson, Ar. Pth. 27, 309); zur physiologischen Wirkung vgl. a. H. H. Meyer, Gottlier, Die experimentelle Pharmakologie, 7. Aufl. [Berlin-Wien 1925], S. 163. C₁₇H₂₁O₄N + HCl Blätter (aus Alkohol) (Ein., M., B. 23, 473); Nadeln oder Säulen (aus Alkohol) (L., G.). F: 205—207° (Ein., M., B. 23, 473, 980), 209—210° (L., G.). In kaltem Wasser viel schwerer löslich als das entsprechende Salz des l-Cocains (Ein., M., B. 23, 473; L., G.). [α]_D: +39,5° (40°/ojger Alkohol); c=2) (Ein., M., B. 23, 473), +41,1° (Wasser; c=5) (L., G.). C₁₇H₂₁O₄N + HBr + H₂O. Nadeln (aus Wasser) (Ein., M., B. 23, 982). C₁₇H₂₁O₄N + HBr + H₂O. Nadeln (aus Wasser) (Ein., M., B. 23, 982). C₁₇H₂₁O₄N + HP + H₂O₄N + HNO₃. Blättchen (aus Wasser oder Alkohol) (Ein., M., B. 23, 983). C₁₇H₂₁O₄N + HNO₃. Blättchen (aus Wasser oder Alkohol) (Ein., M., B. 23, 983). C₁₇H₂₁O₄N + HNO₃. Blättchen (aus Wasser oder Alkohol) (Ein., M., B. 23, 983). C₁₇H₂₁O₄N + HCl + AuCl₃. Gelbe Nadeln (aus verd. Alkohol). F: 148° (L., G., B. 23, 509), 149° (Ein., M., B. 23, 982). 2C₁₇H₂₁O₄N + 2HCl + PtCl₄. Hellgelbe Nadeln (aus verd. Alkohol). F: 218° (Ze
- O-[2-Chlor-benzoyl]-d-pseudoekgonin-methylester, o-Chlor-d-pseudococain $C_{17}H_{20}O_4NCl=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4Cl.$ B. Beim Erhitzen von [d-Ekgonin]-methylester mit 2-Chlor-benzoylchlorid in Chloroform (Einhorn, His, B. 27, 1875). Krystalle. Physiologische Wirkung: Ehrlich, Einhorn, B. 27, 1872. $C_{17}H_{20}O_4NCl+HCl.$ Blättchen (aus Wasser). F: 208° (Zers.) (Ein., H.). $C_{17}H_{20}O_4NCl+HCl+AuCl_3$. Gelbe Nadeln oder Blättchen (aus verd. Alkohol). F: 152° (Ein., H.). $2C_{17}H_{20}O_4NCl+2HCl+PtCl_4$. Orangegelbe Nadeln (aus salzsäurehaltigem Alkohol). F: 210—211° (Zers.) (Ein., H.).
- O-[3-Nitro-benzoyl]-d-pseudoekgonin-methylester, m-Nitro-d-pseudococain $C_{17}H_{20}O_6N_2=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot NO_2$. B. Beim Behandeln von d-Pseudococain mit Salpeterschwefelsäure (Einhorn, Faust, B. 27, 1880). Sirup. Wird durch Zinn + Salzsäure zu m-Amino-d-pseudococain reduziert. Liefert beim Kochen mit konz. Salzsäure 3-Nitro-benzoesäure (Ein., F.). Physiologische Wirkung: Ehrlich, Ein., B. 27, 1872. $C_{17}H_{20}O_6N_2 + HCl$. Blätter (aus Alkohol). F: 196—197°; sehr leicht löslich in Wasser (Ein., F.). $C_{17}H_{20}O_6N_2 + HBr + aq$. Blättchen (aus Wasser). F: 198—199° (Ein., F.). $C_{17}H_{20}O_6N_2 + HI$. Gelbliche Blättchen (aus Wasser). F: 205—206° (Ein., F.). Nitrat. Blättchen (aus Wasser). F: 169° (Ein., F.). $C_{17}H_{20}O_6N_2 + HCl + AuCl_3$. Gelbe Krystalle (aus verd. Alkohol). F: 163° (Ein., F.). Chloroplatinat. Nadeln (aus verd. Alkohol). F: 232° (Zers.) (Ein., F.).
- O-Cinnamoyl-d-pseudoekgonin-methylester $C_{19}H_{33}O_4N=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot CH:CH\cdot C_6H_5$. B. Beim Erhitzen von [d-Pseudoekgonin]-methylester mit Zimtsäurechlorid auf 150—160° (Deckers, Einhorn, B. 24, 7). Prismen. F: 68°. $C_{19}H_{23}O_4N+HCl$. Nadeln (aus Wasser). Schwer löslich in kaltem Wasser. F: 186—188°. [α]_D: +47,4° (Alkohol; c=2). $C_{19}H_{23}O_4N+HBr$. Nadeln (aus Wasser). F: 209°. $C_{19}H_{23}O_4N+HNO_3$. Nadeln (aus Wasser). F: 197°. Schwer löslich in kaltem Wasser. $C_{19}H_{23}O_4N+HCl+AuCl_3$. Orangefarbene Nadeln (aus Alkohol). F: 164°. $2C_{19}H_{23}O_4N+2HCl+PtCl_4$. Hellgelbe Nadeln (aus Alkohol). F: 208—210°.
- O.O'-Phthalyl-bis-[d-pseudoekgonin-methylester] $C_{28}H_{36}O_8N_2=[CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO]_2C_6H_4$. B. Beim Erhitzen von [d-Pseudoekgonin]-methylester mit Phthalyl-chlorid auf 150—160° (Deckers, Einhorn, B. 24, 11). $C_{28}H_{36}O_8N_2+2$ HI. Krystalle (aus Methanol). F: 226°.
- O-[3-Oxy-benzoyl]-d-pseudoekgonin-methylester, m-Oxy-d-pseudococain $C_{17}H_{21}O_5N=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot OH$. B. Durch Behandeln von m-Aminod-pseudococain in verd. Salzsäure mit Natriumnitrit und Erhitzen der entstandenen Diazoniumsalz-Lösung (Einhorn, Faust, B. 27, 1886). Prismen (aus verd. Alkohol). F: 82° (Ein., F.). Physiologische Wirkung: Ehrlich, Ein., B. 27, 1872. $C_{17}H_{21}O_5N+HCl$. Krystalle (aus Alkohol) + Ligroin). F: 201° (Zers.) (Ein., F.).

- O-[3-Amino-benzoyl]-d-pseudoekgonin-methylester, m-Amino-d-pseudococain $C_{17}H_{22}O_4N_2=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_5H_4\cdot NH_2$. B. Bei der Reduktion von m-Nitro-d-pseudococain mit Zinn + Salzsäure (Einhorn, Faust, B. 27, 1881). Krystalle (aus verd. Alkohol). F: $116-117^{\circ}$. $C_{17}H_{22}O_4N_2+2$ HCl. Sehr zerfließlich. F: $208-209^{\circ}$. $C_{17}H_{23}O_4N_2+2$ HCl + 2 AuCl₂ + H_2O . Gelbe Krystalle (aus alkoholhaltigem Wasser). F: 98° (Zers.).
- O [3 Acetamino bensoyl] d pseudoekgonin methylester, m Acetamino-d-pseudococain $C_{19}H_{24}O_5N_2 = CH_3 \cdot NC_7H_{10}(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_2$. B. Beim Behandeln von m-Amino-d-pseudococain mit Acetylchlorid in Essigester (EINHORN, FAUST, B. 27, 1882). Krystalle (aus verd. Alkohol). F: $44-45^{\circ}$. $C_{19}H_{24}O_5N_2 + HCl$. Blättchen (aus Alkohol) + Ligroin). F: 196—197°. Leicht löslich in Wasser und Alkohol.
- O [3 Benzamino benzoyl] d pseudoekgonin methylester, m Benzamino-d-pseudococain $C_{24}H_{36}O_5N_2=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_2)\cdot O\cdot CO\cdot C_5H_4\cdot NH\cdot CO\cdot C_6H_5$. B. Bei der Einw. von Benzoylchlorid auf m-Amino-d-pseudococain in Essigester (Einhorn, Faust, B. 27, 1883). $C_{24}H_{36}O_5N_2+HCl$. Nadeln (aus Alkohol). F: 216—217°. Nitrat. Blättchen (aus Wasser). Schwer löslich.
- O-[3-Carbäthoxyamino-benzoyl]-d-pseudoekgonin-methylester $C_{20}H_{20}O_6N_3=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot NH\cdot CO_2\cdot C_2H_5$. B. Bei der Einw. von Chlorameisensäure-äthylester auf m-Amino-d-pseudococain in Essigester (Einhorn, Faust, B. 27, 1884).—Nadeln (aus verd. Alkohol). F: 100—101° (Ein., F.).—Physiologische Wirkung: Ehrlich, Ein., B. 27, 1872.— $C_{20}H_{26}O_6N_2+HCl$. Krystallpulver (aus Alkohol)—Äther). F: 214° (Zers.) (Ein., F.).
- O [3 Ureido benzoyl] d pseudoekgonin methylester $C_{18}H_{23}O_5N_8 = CH_3 \cdot NC_7H_{10}(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_4 \cdot NH \cdot CO \cdot NH_2$. B. Bei längerer Einw. von Kaliumcyanat auf salzsaures m-Amino-d-pseudococain in wäßr. Lösung (Einhorn, Faust, B. 27, 1884). Schuppen (aus Äther). F: 72°. $C_{18}H_{23}O_5N_3 + HCl$. Flocken. F: 135°. Sehr leicht löslich in Wasser und Alkohol.
- O-[3-(ω -Phenyl-thioureido)-bensoyl]-d-pseudoekgonin-methylester $C_{24}H_{27}O_{4}N_{3}S$ = $CH_{3}\cdot NC_{7}H_{10}(CO_{2}\cdot CH_{3})\cdot O\cdot CO\cdot C_{6}H_{4}\cdot NH\cdot CS\cdot NH\cdot C_{6}H_{5}$. B. Beim Erhitzen von m-Aminod-pseudococain mit Phenylsenföl im Wasserbad (EINHORN, FAUST, B. 27, 1885). Mikroskopische Krystalle (aus Alkohol). F: ca. 190—193°.
- Thiocarbonyl bis [3 amino bensoesaure (2 carbomethoxy tropylester)] $C_{25}H_{45}O_8N_4S = [CH_3\cdot NC_7H_{10}(CO_3\cdot CH_6)\cdot O\cdot CO\cdot C_8H_4\cdot NH]_5CS$. B. Beim Kochen von m-Amino-d-pseudococain mit Schwefelkohlenstoff in Alkohol (Einhorn, Faust, B. 27, 1885). Gelbliches Pulver (aus starkem Alkohol). F: 63°.
- O-[3-Benzolsulfamino-benzoyl]-d-pseudoekgonin-methylester, m-Benzolsulfamino-d-pseudococain $C_{22}H_{26}O_8N_2S=CH_3\cdot NC_7H_{10}(CO_2\cdot CH_2)\cdot O\cdot CO\cdot C_0H_4\cdot NH\cdot SO_2\cdot C_0H_5$. Aus m-Amino-d-pseudococain beim Erhitzen mit Benzolsulfochlorid auf 115° oder beim Behandeln mit Benzolsulfochlorid in Essigester (Einhorn, Faust, B. 27, 1883). Gelbliche Blättchen (aus Äther oder verd. Alkohol). F: 69°. $C_{22}H_{26}O_8N_2S+HCl$. Gelbliche Krystalle (aus Alkohol). Ziemlich schwer löslich in Wasser.
- O-[3-(4-Dimethylamino-benzolazo)-benzoyl]-d-pseudoekgonin-methylester, [d-Pseudococain]-azo-dimethylanilin $C_{25}H_{20}O_4N_4=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot O\cdot CO\cdot C_6H_4\cdot N:N\cdot C_6H_4\cdot N(CH_3)_2$. B. Man diazotiert m-Amino-d-pseudococain und trägt in die gekühlte Lösung des Diazoniumsalzes Dimethylanilin ein (Einhorn, Faust, B. 27, 1886). Ziegelrote Blättchen (aus Alkohol). F: 220°. Das Hydrochlorid löst sich in Wasser mit tiefblauvioletter Farbe.
- O-[3-(4-Anilino-benzolaso)-benzoyl]-d-pseudoekgonin-methylester, [d-Pseudococain]-aso-diphenylamin $C_{29}H_{20}O_4N_4=CH_2\cdot NC_7H_{10}(CO_2\cdot CH_2)\cdot O\cdot CO\cdot C_6H_4\cdot N:N\cdot C_6H_4\cdot NH\cdot C_6H_5$. B. Durch Diazotieren von m-Amino-d-pseudococain und Behandeln der gekühlten Diazoniumsalz-Lösung mit alkoh. Diphenylamin-Lösung (Einhorn, Faust, B. 27, 1887). Dunkelrote Blättchen (aus verd. Alkohol). F: 172—173°.
- O [3 (4 Amino naphthalinaso) bensoyl] d pseudoekgonin methylester, [d-Pseudococain]-aso-naphthylamin $C_{27}H_{29}O_4N_4 = CH_3 \cdot NC_7H_{10}(CO_3 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_4 \cdot N: N \cdot C_{10}H_4 \cdot NH_2$. B. Durch Diazotieren von m-Amino-d-pseudococain und Versetzen der gekühlten Diazoniumsalz-Lösung mit alkoh. α -Naphthylamin-Lösung (Einhorn, Faust, B. 27, 1887). Rote Flocken. Leicht löslich in Säuren. Das Hydrochlorid löst sich in Wasser mit violetter Farbe.
- [d-Pseudoekgonin]-äthylester $C_{11}H_{19}O_3N=CH_3\cdot NC_7H_{10}(CO_2\cdot C_2H_3)\cdot OH$. Beim Behandeln von salzsaurem d-Pseudoekgonin mit äthylalkoholischer Salzsäure (EINHORN.

- MARQUARDT, B. 23, 985). Beim Erhitzen von [d-Pseudoekgonin]-methylester mit einer bei 0° gesättigten Lösung von Ammoniak in absol. Alkohol im Rohr auf 100° (Einhorn, Koner de Norwall, B. 26, 969). $C_{11}H_{19}O_3N + HCl + AuCl_3$. Gelbe Blättchen (aus verd. Alkohol); F: 153° (Ein., K. d. N.).
- O-Benzoyl-d-pseudoekgonin-äthylester $C_{18}H_{23}O_4N=CH_3\cdot NC_7H_{10}(CO_2\cdot C_8H_6)\cdot O\cdot CO\cdot C_8H_6$. B. Beim Behandeln von O-Benzoyl-d-pseudoekgonin mit äthylalkoholischer Salzsäure (Boehennger & Söhne, D. R. P. 55338; Frdl. 2, 519). Bei kurzem Erhitzen von [d-Pseudoekgonin]-äthylester mit Benzoylchlorid auf 160—165° (Einhorn, Marquardt, B. 23, 986; B. & S., D. R. P. 55338; Frdl. 2, 518). Prismen (aus Ather). F: 57° (Ein., M.; B. & S.). $C_{18}H_{23}O_4N+HCl+H_3O$. Blättchen (aus Wasser oder Alkohol). F: 215°; $[\alpha]_D$: $+40^\circ$ (Wasser; c=2) (Ein., M.; B. & S.).
- [d-Pseudoekgonin]-propylester $C_{19}H_{21}O_3N = CH_3 \cdot NC_7H_{10}(CO_2 \cdot CH_2 \cdot C_2H_5) \cdot OH$. Beim Behandeln von salzsaurem d-Pseudoekgonin mit propylalkoholischer Salzsaure in der Wärme (Einhhorn, Marquardt, B. 23, 985). $C_{19}H_{21}O_3N + HCl + AuCl_3$. Orangefarbene Krystalle (aus verd. Alkohol). F: 132°.
- O-Benzoyl-d-pseudoekgonin-propylester $C_{19}H_{25}O_4N=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3\cdot C_2H_5)\cdot O\cdot CO\cdot C_6H_5$. B. Beim Behandeln von O-Benzoyl-d-pseudoekgonin mit propylalkoholischer Salzsäure (Boehbinger & Söhne, D. R. P. 55338; Frdl. 2, 519). Bei kurzem Erhitzen von [d-Pseudoekgonin]-propylester mit Benzoylchlorid auf 160—165° (Einhobn, Marquardt, B. 28, 985, 987; B. & S., D. R. P. 55338). $C_{19}H_{25}O_4N + HCl + H_2O$. Prismen. F: 220°; $[\alpha]_D$: +46,2° (Wasser; c=2,6) (Ein., M.; B. & S.).
- [d-Pseudoekgonin]-isobutylester $C_{13}H_{23}O_3N = CH_2 \cdot NC_7H_{10}[CO_2 \cdot CH_2 \cdot CH(CH_3)_3] \cdot OH$. B. Beim Erwärmen von salzsaurem d-Pseudoekgonin mit isobutylalkoholischer Salzsäure (Einhorn, Marquardt, B. 23, 985). $C_{13}H_{23}O_3N + HCl + AuCl_3$. Orangefarbene Blättchen. F: 130°.
- O-Benzoyl-d-pseudoekgonin-isobutylester $C_{20}H_{27}O_4N=CH_2\cdot NC_7H_{10}[CO_2\cdot CH_2\cdot CH(CH_3)_2]\cdot O\cdot CO\cdot C_6H_5$. B. Beim Behandeln von O-Benzoyl-d-pseudoekgonin mit isobutylalkoholischer Salzsäure (Boehringer & Söhne, D. R. P. 55338; Frdl. 2, 519). Bei kurzem Erhitzen von [d-Pseudoekgonin]-isobutylester mit Benzoylchlorid auf 160—165° (Einhorn, Marquardt, B. 23, 985, 987; B. & S.). $C_{20}H_{27}O_4N+HCl+H_2O$. Nadeln (aus Wasser oder Alkohol). F: 201°. [α]_D: +46° (Wasser; c=2,5) (Ein., M.; B. & S.).
- [d-Pseudoekgonin]-isoamylester $C_{14}H_{25}O_3N=CH_3\cdot NC_7H_{10}(CO_3\cdot C_5H_{11})\cdot OH$. B. Beim Erwärmen von d-Pseudoekgonin mit isoamylalkoholischer Salzsäure (EINHORN, MARQUARDT, B. 23, 985). Chloroaurat. Gelbe Prismen (aus Alkohol). F: 152°.
- O-Benzoyl-d-pseudoekgonin-isoamylester $C_{21}H_{20}O_4N=CH_2\cdot NC_7H_{10}(CO_3\cdot C_5H_{11})\cdot O\cdot CO\cdot C_6H_5$. B. Beim Behandeln von O-Benzoyl-d-pseudoekgonin mit isoamylalkoholischer Salzsäure (Boehringer & Söhne, D. R. P. 55338; Frdl. 2, 519). Bei kurzem Erhitzen von [d-Pseudoekgonin]-isoamylester mit Benzoylehlorid auf 160—165° (EINHORN, MARQUARDT, B. 28, 985, 987; B. & S.). $C_{21}H_{29}O_4N+HCl$. Nadeln (aus Wasser oder Alkohol). F: 217°; $[\alpha]_0$: +38,6° (Wasser; c=2,2) (EIN., M.; B. & S.).
- [d-Pseudoekgonin]-amid $C_9H_{16}O_2N_3=CH_3\cdot NC_7H_{10}(CO\cdot NH_2)\cdot OH$. B. Beim Erhitzen von [d-Pseudoekgonin]-methylester mit gesättigtem methylalkoholischem Ammoniak im Rohr auf 140—150° (EINHORN, KONEK DE NORWALL, B. 26, 970). Nadeln (aus Alkohol). F: 173°. Sehr leicht löslich in Wasser, unlöslich in Äther, Essigester und Benzol. Gibt beim Erwärmen mit Benzoylchlorid auf 100° O-Benzoyl-d-pseudoekgonin-nitriä. $C_9H_{16}O_2N_3$ + HCl. Prismen (aus Alkohol). F: 268°. Pikrat $C_9H_{16}O_2N_3 + C_6H_3O_7N_3$. Nadeln (aus Alkohol). F: 177°.
- O-Acetyl-d-pseudoekgonin-nitril $C_{11}H_{16}O_8N_8=CH_2\cdot NC_7H_{10}(CN)\cdot O\cdot CO\cdot CH_2$. B. Beim Kochen von [d-Pseudoekgonin]-amid mit Essigsäureanhydrid (EINHORN, KONEK DE NORWALL, B. 26, 972). Wird durch Kochen mit alkoh. Kalilauge unter Bildung von Ammoniak, Essigsäure und d-Pseudoekgonin zersetzt. $C_{11}H_{16}O_2N_2+HI$. Nadeln (aus Alkohol). F: 243° (Zers.).
- O-Bensoyl-d-pseudoekgonin-nitril $C_{18}H_{18}O_3N_3=CH_3\cdot NC_7H_{16}(CN)\cdot O\cdot CO\cdot C_8H_8$. B. Beim Erhitzen von [d-Pseudoekgonin]-amid mit Benzoylchlorid auf 100° (EINHORN, KONEK DE NORWALL, B. 26, 971). Krystelle. Sehr leicht löslich in den üblichen Lösungsmitteln. Wird durch Kochen mit Kalilauge zersetzt unter Bildung von Ammoniak, Benzoesäure und d-Pseudoekgonin. $C_{16}H_{18}O_2N_2+HBr$. Nadeln (aus Alkohol). F: 210°. $2C_{16}H_{18}O_2N_2+2HCl+PtCl_4$. Nadeln (aus Alkohol). Pikrat $C_{16}H_{18}O_2N_2+C_6H_3O_7N_3$. Nadeln. F: 227°.

- 2. Weitere durch Veränderung am Stickstoff entstandene funktionelle Derivate des Nor-d-pseudoekgonins.
- [d Pseudoekgonin] methylester hydroxymethylat $C_{11}H_{21}O_4N = (HO)(CH_2)_2NC_7H_{10}(CO_2\cdot CH_3)\cdot OH.$ Jodid. Nadeln. F: 165°¹) (EINHORN, FRIEDLAENDER, B. 26, 1491). Liefert beim Kochen mit Natronlauge Cycloheptatriencarbonsäure vom Schmelzpunkt 55—56° (Bd. IX, S. 429) (EIN., F.).
- O [3 Amino benzoyl] d pseudoekgonin methylester hydroxymethylat, m-Amino-d-pseudococain-hydroxymethylat $C_{18}H_{26}O_5N_2=(HO)(CH_2)_2NC_7H_{10}(CO_2 \cdot CH_3) \cdot O \cdot CO \cdot C_6H_4 \cdot NH_2$. Jodid $C_{18}H_{25}O_4N_2 \cdot I$. B. Bei der Einw. von Methyljodid auf m-Amino-d-pseudococain in Alkohol (Einhorn, Faust, B. 27, 1882). Krystalle. F: 197—198°.
- [d-Pseudoekgonin]-äthylester-hydroxymethylat $C_{12}H_{23}O_4N=(HO)(CH_3)_2NC_7H_{10}$ ($CO_2\cdot C_2H_5$) · OH. B. Das Jodid entsteht bei der Einw. von Methyljodid auf Nord-pseudoekgonin-äthylester in Essigester oder auf [d-Pseudoekgonin]-äthylester in Chloroform (Einhorn, Friedlaender, B. 26, 1489). Beim Kochen des Jodids mit verd. Natronlauge entstehen Dimethylamin und Cycloheptatriencarbonsäure vom Schmelzpunkt 55—56° (Bd. IX, S. 429). Jodid $C_{12}H_{23}O_3N\cdot I$. Nadeln (aus Alkohol). F: 190°; sehr schwer löslich in Äther, Essigester, Benzol und Ligroin. Chloroaurat. Gelbe Blättchen (aus Wasser), Nadeln (aus Alkohol). F: 182°.
- [d-Pseudoekgonin]-amid-hydroxymethylat $C_{10}H_{20}O_3N_2 = (HO)(CH_2)_2NC_7H_{10}(CONH_2) \cdot OH$. Jodid $C_{10}H_{19}O_2N_2 \cdot I + H_2O$. B. Beim Erwärmen von [d-Pseudoekgonin]-amid mit Methyljodid in Alkohol im Rohr auf 95° (Einhorn, Konek de Norwall, B. 26, 971). Blättchen (aus Alkohol). F: 220°.
- N-Nitroso-nor-d-pseudoekgonin-äthylester $C_{10}H_{16}O_4N_9=ON\cdot NC_7H_{10}(CO_9\cdot C_9H_5)\cdot OH$. B. Bei der Einw. von Natriumnitrit auf salzsauren Nor-d-pseudoekgonin-äthylester in wäßr. Lösung (Einhorn, Friedlaender, B. 26, 1486). Gelbes, dickflüssiges Öl. Wird durch Salzsäure sehr leicht unter Rückbildung von Nor-d-pseudoekgonin-äthylester gespalten. Gibt die Liebermannsche Reaktion.
- d) Nor-dl-pseudoekgonin C₈H₁₈O₈N, H₂C—CH—CH·CO₂H

 Formel I.

 dl Pseudoekgonin, früher racem.

 Ekgonin genannt C.H. O.N. Formel II.

 H₂C—CH—CH·CO₂H

 II. | N·CH₃ CH·OH

 H₂C—CH—CH₂

 H₂C—CH—CH₂
- Ekgonin genannt C₉H₁₅O₃N, Formel II.

 B. Neben dl-Ekgonin und Pseudotropin durch Behandeln von Tropinon in äther. Lösung mit Natrium und Kohlendioxyd und Reduktion des so erhaltenen Gemisches von Natriumsalzen in eiskalter, schwach salzsaurer Lösung mit Natriumamalgam (Willstätter, Bode, B. 34, 1458, 1461; A. 326, 50, 52, 61; vgl. Wi., Wolfes, Mäder, A. 434 [1923], 135). Prismen (aus wasserhaltigem Alkohol). Monoklin (Steinmetz, A. 326, 63). F: 251° (Zers.); sehr leicht löslich in Wasser, schwer in kaltem und heißem absolutem Alkohol, unlöslich in Äther; reagiert neutral; ist in schwefelsaurer Lösung gegen Kaliumpermanganat beständig; wird durch Erhitzen mit Alkalilauge nicht verändert (Wi., B.). C₉H₁₅O₃N + HCl. Tafeln oder Prismen mit 1 H₂O (aus wasserhaltigem Alkohol), Nadeln mit ½ H₃O (aus absol. Alkohol); verliert das Krystallwasser erst bei 120—125° (Wi., B.). Rhombisch bipyramidal (Steinmetz, A. 326, 66; vgl. Groth, Ch. Kr. 5, 886). Schmilzt wasserhaltig bei 149°, wasserfrei bei 193—194° unter Zersetzung; sehr leicht löslich in Wasser, sehr schwer in kaltem, leichter in heißem absol. Alkohol, ziemlich leicht in heißem Methanol, unlöslich in Chloroform (Wi., B.). C₉H₁₅O₃N + HCl + AuCl₃. Nadeln (aus Wasser). F: 213° (Zers.); ziemlich schwer löslich in kaltem, leicht in heißem Wasser, sehr leicht in Alkohol (Wi., B.).
- dl-Pseudoekgonin-methylester $C_{10}H_{17}O_3N=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot OH$. B. Beim Behandeln von salzsaurem dl-Pseudoekgonin mit methylalkoholischer Salzsäure (WILLSTÄTTER, BODE, B. 34, 1461; A. 326, 68). Spieße und Prismen (aus Essigester). F: 125—126°. Sehr leicht löslich in Wasser und in Methanol, ziemlich leicht in kaltem Essigester, sehr schwer in Äther. Reagiert stark alkalisch.

Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erhielten WILLSTÄTTER, WOLFES, MÄDER (A. 434, 127) aus [d-Pseudoekgonin]-methylester ein Jodmethylat $C_{11}H_{20}O_3N\cdot I$ vom Schmelzpunkt 209°; aus [l-Ekgonin]-methylester und Methyljodid in der Wärme entstand (unter Umlagerung) ein isomeres Jodmethylat vom Schmelzpunkt 165°; $[\alpha]_{00}^{100}$: + 11,3° (Wasser; p = 5).

O-Benzoyl-dl-pseudoekgonin-methylester, dl-Pseudococain, früher racem. Cocain genannt C₁₇H₂₁O₄N, s. nebenstehende Formel. B. Beim Erhitzen von dl-Ekgonin-methylester
mit Benzoylchlorid auf 150—160° oder mit Benzoesäureanhydrid
in Benzol auf dem Wasserbad (Willstätter, Bode, B. 34, 1461; A. 326, 70). — Blättchen
(aus Ligroin). Monoklin sphenoidisch (Steinmetz, A. 326, 71). F: 80°. Fast unlöslich in
Wasser, schwer löslich in kaltem Ligroin, sehr leicht in absol. Alkohol und Äther (W., B.).
Die mit Ammoniak, dann mit Wasser versetzte Lösung bleibt klar (W., B.). Ließ sich durch
Weinsäure, Äpfelsäure, Camphersäure oder Chinasäure nicht in die aktiven Komponenten
spalten (W., B.). — Schmeckt bitter, erzeugt auf der Zunge pelziges Gefühl (W., B.). Bewirkt
Anästhesie der Schleimhäute; wirkt bei subcutaner Injektion toxisch (Stubenrauch, A. 326,
72). — C₁₇H₂₁O₄N + HCl. Rhombenförmige Tafeln und Blättchen (aus Alkohol). F: 205°
bis 205,5° (Zers.). Löslich in 11—12 Tln. Wasser bei Zimmertemperatur; schwer löslich in
kaltem, sehr leicht in siedendem Alkohol (W., B.). — C₁₇H₂₁O₄N + HNO₂. Blättchen oder
Tafeln (aus Wasser). F: 172° (Zers.); 100 Tle. Wasser lösen bei 20,5° 2,652 g; in verd. Salpetersäure viel schwerer löslich; schwer löslich in kaltem, leicht in heißem Alkohol (W., B.). —
C₁₇H₂₁O₄N + HCl + AuCl₃. Hellgelbe Nadeln mit 2 H₂O (aus Alkohol), wasserfreie Blätter
(aus Alkohol) + Äther) oder Prismen (aus Essigester). Das wasserhaltige Salz schmilzt bei
65—70°, das wasserfreie bei 164—165°; fast unlöslich in kaltem, sehr schwer löslich in
heißem Wasser, sehr leicht in Alkohol, Aceton und Essigester (W., B.).

dl-Pseudoekgonin-methylester-hydroxymethylat $C_{11}H_{21}O_4N=(HO)(CH_3)_2NC_7H_{10}(CO_3\cdot CH_3)\cdot OH$. — Jodid $C_{11}H_{20}O_3N\cdot I$. Nadeln (aus Alkohol). F: 182—182,5°; leicht löslich in Wasser, in heißem Methanol (in ca. 4 Tln.) und heißem Alkohol, schwer löslich in kaltem Alkohol, fast unlöslich in Essigester (Willstätter, Bode, B. 34, 1461; A. 326, 69). Liefert beim Erwärmen mit Natronlauge Dimethylamin und Cycloheptatriencarbonsäure vom Schmelzpunkt 55—56° (Bd. IX, S. 429).

- 3-Oxy-tropan-carbonsäure-(3), Tropanol-(3)-carbonsäure-(3), α-Ekgonin C₂H₁₅O₂N, Formel II. B. Beim Behandeln von Tropinon-cyanhydrin (8. 212) mit konz. Salzsäure; zur Reinigung führt man das entstandene α-Ekgonin durch Behandeln mit methylalkoholischer Salzsäure in den Methylester über und zerlegt diesen durch Kochen mit Wasser (Willstätter, B. 29, 2218, 2220; vgl. Chem. Fabr. Schering, D. R. P. 91711; Frdl. 4, 1221). Krystallisiert aus heißgesättigter wäßriger Lösung in Blättern mit 1 H₂O; durch Eindampfen der wäßr. Lösung oder Fällen aus wäßr. Lösung mit Alkohol erhält man Krystalle mit ½ H₂O; wird bei 130° wasserfrei; die wasserfreie Verbindung schmilzt bei 305° unter in Äther; die wäßr. Lösung reagiert neutral (W.). Spaltet beim Erwärmen mit Bleidioxyd sofort Kohlendioxyd ab (W.). Die wäßr. Lösung schmeckt schwach süßlich bitter (W.). Hydrochlorid. Prismen. F: 250°; zersetzt sich bei 260°; sehr schwer löslich in Alkohol (Schering). C₂H₁₅O₂N + HCl + AuCl₂ + H₂O. Bernsteingelbe Säulen. F: 183—184° (Zers.); sehr leicht löslich in Wasser und Alkohol (W.). 2C₂H₁₅O₂N + 2HCl + PtCl₄ + 5H₂O. Orangegelbe Tafeln. F: 223—224° (Zers.); sehr leicht löslich in heißem, schwer in kaltem Wasser, unlö-lich in Alkohol (W.).
- O-Benzoyl- α -ekgonin $C_{10}H_{10}O_4N=CH_2\cdot NC_7H_{10}(CO_2H)\cdot O\cdot CO\cdot C_0H_5$. B. Beim Erhitzen von α -Ekgonin in konzentrierter wäßriger Lösung mit Benzoesäureanhydrid (WILL-STÄTTER, B. 29, 2223). Kugelige Krystallaggregate oder Blätter mit $^1/_2$ H_2O (aus Wasser); wird bei 130° wasserfrei. F: 209° (Zers.). Ziemlich leicht löslich in kaltem Wasser.
- α-Ekgonin methylester $C_{10}H_{17}O_3N=CH_3\cdot NC_7H_{10}(CO_3\cdot CH_3)\cdot OH$. B. s. o. bei α-Ekgonin. Prismen (aus Aceton oder Essigester). F: 114° (W., B. 29, 2220). Leicht löslich in Wasser, sehr leicht in Alkohol und Chloroform, ziemlich leicht in Benzol, ziemlich schwer in Äther, schwer in Ligroin und in kaltem Aceton. $C_{10}H_{17}O_3N+HCl+AuCl_3$. Orangegelbe Blätter (aus Wasser). F: 95—96°. Schwer löslich in kaltem, leicht in heißem Wasser, sehr leicht in Alkohol. $2C_{10}H_{17}O_3N+2HCl+PtCl_4+2H_2O$. Tafeln (aus Wasser). F: 204° (Zers.). Schwer löslich in kaltem, sehr leicht in heißem Wasser, unlöslich in Alkohol. Pikrat $C_{10}H_{17}O_3N+C_4H_3O_7N_3$. Hellgelbe Würfel (aus Methanol). F: 189—191°. Sehr schwer löslich in kaltem Wasser und in Alkohol.

- O-Benzoyl-α-ekgonin-methylester, α-Cocain C₁₇H₂₁O₄N, H₂C—CH—CH₂ O·CO·C₄H₅ s. nebenstehende Formel. Zur Konstitution vgl. Willstätter, B. 31, 1540. B. Beim Kochen von α-Ekgonin-methylester mit Benzoylchlorid in Benzol (W., B. 29, 2224). Prismen (aus Ligroin). F: 87—88°. Fast unlöslich in kaltem, sehr schwer löslich in heißem Wasser, sehr leicht in Alkohol, Äther, Chloroform und Benzol. Die salzsaure Lösung wird durch Soda oder Ammoniak milchig gefällt; auf Zusatz von Wasser oder wäßr. Ammoniak entsteht eine klare Lösung, aus der sich bald Nadeln von α-Cocain ausscheiden. Schmeckt bitter. Zeigt (auch in Form seiner Salze) keine betäubende Wirkung auf die Zungennerven. C₁₇H₂₁O₄N + HCl. Nadeln und Prismen (aus Amylacetat oder aus Methanol + Äther). F: 180° (Zers.). Sehr leicht löslich in Wasser, Alkohol, heißem Aceton, schwer in Essigester, sehr schwer in Benzol, unlöslich in Äther. C₁₇H₂₁O₄N + HI + 1¹/₂H₃O. Nadeln (aus Wasser). Wird bei 130° wasserfrei; F: 192° (Zers.). C₁₇H₂₁O₄N + HCl + AuCl₂. Blätter (aus Methanol). F: 222° (Zers.). Unlöslich in kaltem Wasser, schwer löslich in kaltem, sehr leicht in heißem Methanol. 2C₁₇H₂₁O₄N + 2 HCl + PtCl₄. Nadeln (aus Wasser). F: 220° (Zers.). Unlöslich in kaltem Wasser und in Alkohol, schwer löslich in heißem Wasser. Pikrat C₁₇H₂₁O₄N + C₆H₂O₇N₃. Goldgelbe Säulen (aus Methanol). F: 195°. Fast unlöslich in Wasser, sehr schwer löslich in kaltem Methanol.
- O-Benzoyl- α -ekgonin-äthylester, α -Cocäthylin $C_{10}H_{22}O_4N=CH_3\cdot NC_7H_{10}(CO_3\cdot C_2H_3)\cdot O\cdot CO\cdot C_0H_5$. B. Durch Benzoylierung des (nur als wasserlösliches Öl erhaltenen) α -Ekgonin-äthylesters (Willstätter, B. 29, 2227). $C_{10}H_{22}O_4N+HCl+AuCl_3$. Hellgelbe Blätter (aus verd. Methanol). F: 188°. Unlöslich in kaltem Wasser, leicht in Alkohol.
- α-Ekgonin-nitril, Tropinon-cyanhydrin $C_9H_{14}ON_2=CH_2\cdot NC_7H_{10}(CN)\cdot OH$. B. Beim Eintragen von 1 Mol Kaliumcyanid-Lösung in die konz. Lösung von 1 Mol salzsaurem Tropinon unter Kühlung (Willstätter, B. 29, 1577; vgl. Chem. Fabr. Schering, D. R. P. 91711; Frdl. 4, 1220). Prismen (aus Essigester). Schmilzt bei 145°, dabei in Cyanwasserstoff und Tropinon zerfallend; schwer löslich in Alkohol, fast unlöslich in Äther, kaltem Benzol und kaltem Essigester; wird durch Erwärmen mit Wasser rasch zersetzt (W., B. 29, 1577). Wird durch konz. Salzsäure zu α-Ekgonin verseift (W., B. 29, 2220).
- α-Eikgonin-hydroxymethylat $C_{10}H_{19}O_4N=(HO)(CH_3)_2NC_7H_{10}(OH)\cdot CO_2H$. B. Das Jodid entsteht aus α-Ekgonin-methylester-jodmethylat beim Kochen mit wäßr. Alkalien oder mit Acetylchlorid sowie bei wiederholtem Eindampfen mit konz. Salzsäure (WILLSTÄTTER, B. 29, 2222). Jodid $C_{10}H_{18}O_3N\cdot I$. Blättchen (aus Methanol). F: 225° (Zers.). $C_{10}H_{18}O_3N\cdot Cl+AuCl_8$. Blättchen. F: 212° (Zers.). Sehr leicht löslich in Alkohol.
- α-Ekgonin-methylester-hydroxymethylat $C_{11}H_{21}O_4N=(HO)(CH_2)_2NC_7H_{10}(CO_2\cdot CH_3)\cdot OH$. B. Das Jodid entsteht bei der Einw. von Methyljodid auf α-Ekgonin-methylester in Methanol (W., B. 29, 2222). Beim Kochen des Jodids mit wäßr. Alkalien, mit konz. Salzsäure oder Acetylchlorid entsteht α-Ekgonin-jodmethylat. Jodid $C_{11}H_{20}O_3N\cdot I$. Nadeln (aus Methanol). F: 201—202°. Sehr leicht löslich in Wasser, schwer in kaltem Alkohol, sehr schwer in Aceton und Essigester. $C_{11}H_{20}O_3N\cdot Cl + AuCl_3$. Goldgelbe Nadeln (aus Methanol). F: 120°. Fast unlöslich in kaltem, ziemlich leicht löslich in heißem Wasser, sehr leicht in heißem Methanol.
- O-Bensoyl- α -ekgonin-methylester-hydroxymethylat, α -Cocain-hydroxymethylat $C_{18}H_{26}O_2N=(HO)(CH_3)_2NC_7H_{10}(CO_3\cdot CH_2)\cdot O\cdot CO\cdot C_6H_8$. Jodid $C_{18}H_{24}O_4N\cdot I+H_2O$. B. Aus α -Cocain und Methyljodid in Methanol (W., B. 29, 2227). Blättchen (aus Wasser), Tafeln (aus Methanol). Wird bei 130° wasserfrei. F: 202°. Sehr leicht löslich in heißem Wasser und heißem Alkohol, unlöslich in Äther.

c) Oxy-carbonsäuren C_nH_{2n-7}O₈N.

1. Oxy-carbonsäuren $C_eH_5O_3N$.

1. 3 - Oxy - pyridin - carbonsdure - (2), 3 - Oxy - picolinsdure

C_eH₅O₃N, s. nebenstehende Formel. B. Aus 3-Amino-pyridin-carbonsaure-(2)

beim Diazotieren mit Natriumnitrit in verd. Schwefelsaure und Verkochen der

Diazoniumsalz-Lösung (Kirpal, M. 29, 231). — Prismen oder Tafeln (aus Wasser). F: 215°.

Liefert bei der trocknen Destillation 3-Oxy-pyridin (Bd. XXI, S. 46).

2. 4-Oxy-pyridin-carbonsäure-(2), 4-Oxy-picolinsäure bezw. 4-Oxo-1.4-dihydro-pyridin-carbonsäure-(2), Pyridon-(4)-carbonsäure-(2)

C₆H₅O₅N, Formel I bezw. II. B. Beim Erwärmen von
Pyron-(4)-carbonsäure-(2) (Bd. XVIII, S. 405) mit konz.

Ammoniak (Ost, J. pr. [2] 29, 63, 64). Beim Erhitzen von I.

5-Chlor-4-oxy-picolinsäure mit Jodwasserstoff-Eisessig auf
200° (O., J. pr. [2] 27, 291). Beim Behandeln von 1-Oxypyridon-(4)-carbonsäure-(2) (S. 298) mit Zinn und Salzsäure (O., J. pr. [2] 29, 379).

Blättehen mit 1 H₅O. F: ca. 250° (Zers.) (O., J. pr. [2] 29, 64). Nicht flüchtig; leicht löslich in Wasser und Alkohol, unlöslich in Äther (O., J. pr. [2] 27, 291). Elektrische Leitfähigkeit: Peratoner, Palazzo, C. 1905 II, 678; G. 36 I, 13. — Zerfällt beim Erhitzen über den Schmelzpunkt in Kohlendioxyd und 4-Oxy-pyridin (O., J. pr. [2] 29, 65). —
Ba(C₆H₄O₅N)₂+2H₂O. Tafeln. Ziemlich schwer löslich in Wasser (O., J. pr. [2] 27, 292)

— Hydrochlorid. Prismen (aus Salzsäure) (O., J. pr. [2] 27, 292).

5-Chlor-4-oxy-pyridin-carbonsäure-(2), 5-Chlor-4-oxy-picolin-säure (5-Chlor-pyridon-(4)-carbonsäure-(2)) $C_6H_4O_3NCl$, s. nebenstehende Formel. B. Beim Kochen von 4.5-Dichlor-2-trichlormethyl-pyridin (Bd. XX, S. 238) bezw. von 4.5-Dichlor-picolinsäure (S. 37) mit $80^9/_0$ iger Schwefelsäure (Ost, J. pr. [2] 27, 281, 290). — Nadeln mit 1 H₂O (aus Wasser). F: 257° (Zers.) (O.). Nicht flüchtig (O.). Fast unlöslich in Chloroform (O.). Reagiert stark sauer (O.). — Wird von Zinn und Salzsäure nicht angegriffen (Bellmann, J. pr. [2] 29, 9). Liefert beim Erhitzen mit Jodwasserstoff-Eisessig auf 200° 4-Oxy-picolinsäure (O.). Gibt mit Ferrisalzen eine gelbrote Färbung (O.). — Ca(C₆H₃O₃NCl)₂+4H₂O. Tafeln (aus Wasser). Leicht löslich in Wasser (O.).

- 3. 5-Oxy-pyridin-carbonsäure-(2), 5-Oxy-picolinsäure

 C₂H₅O₂N, s. nebenstehende Formel. B. Beim Behandeln von 4-Chlor-5-oxypicolinsäure mit Zinn und Salzsäure (Bellmann, J. pr. [2] 29, 7). Tafeln

 mit 1 H₂O. F: 258° (Zers.). Nicht flüchtig. Unlöslich in Ährer, schwer löslich in Wasser,
 etwas leichter in Alkohol. Löslich in konz. Salzsäure. Zersetzt sich beim Erwärmen mit
 Zinn und Salzsäure unter Bildung von Ammoniak. Gibt in wäßr. Lösung mit Ferrisalzen
 eine gelbrote Färbung. Ca(C₅H₄O₂N)₂ + 4H₂O. Nadeln. Ziemlich leicht löslich in Wasser.

 Ba(C₆H₄O₃N)₂. Prismen. Ziemlich schwer löslich in Wasser.
- 4-Chlor-5-oxy-pyridin-carbonsäure-(2), 4-Chlor-5-oxy-picolinsäüre $C_0H_4O_3NCl$, s. nebenstehende Formel. B. Neben anderen Produkten beim Erhitzen von 4.5-Dioxy-pyridin-carbonsäure-(2) mit Phosphorpentachlorid und Phosphoroxychlorid im Rohr auf ca. 200°, Extrahieren des Reaktionsprodukts mit heißem Wasser und Kochen der wäßr. Lösung (Bellmann, J. pr. [2] 29, 2, 5, 13). Entsteht auch bei analoger Behandlung von 4.5-Dioxy-2-methyl-pyridin (Bd. XXI, S. 163) (B., J. pr. [2] 29, 19). Nadeln mit 1 H₂O. F: 224° (Zers.). Nicht flüchtig. Unlöslich in Chloroform, Äther und Benzol, fast unlöslich in kaltem, löslich in 25—30 Tln. heißem Wasser, leicht löslich in heißem Alkohol. Löslich in konz. Mineralsäuren. Liefert beim Behandeln mit Zinn und Salzsäure 5-Oxy-picolinsäure. Gibt in wäßr. Lösung mit Eisenchlorid einen schmutzigroten Niederschlag, der sich auf Zusatz von überschüssigem Eisenchlorid mit gelbroter Farbe löst. Ca(C₀H₂O₂NCl)₂ + aq. Nadeln, die an der Luft rasch verwittern. Ziemlich leicht löslich in Wasser. CaC₂H₂O₃NCl + 1/₂H₂O. Gelbliches Pulver. Sehr schwer löslich in heißem Wasser. CaH₄O₃NCl + HCl. Nadeln. Sehr leicht löslich in Wasser. Wird bei wiederholtem Eindampfen mit Wasser in die Komponenten zerlegt.
- 4. 6-Oxy-pyridin-carbonsdure-(2), 6-Oxy-picolinsdure bezw. 6-Oxo-1.6-dihydro-pyridin-carbonsdure-(2), Pyridon-(6)-carbonsdure-(2) C_eH₅O₅N, Formel III bezw. IV. B. Beim Erhitzen von 4.5-Dichlor-6-oxy-picolinsdure mit Jodwasser- III. Ho. N. CO₂H IV. O: N. CO₂H stoff-Eisessig auf 200—210° (Ost, J. pr. [2] 27, 289).

 Wasserleie Nadeln oder Nadeln mit 1 H₂O (aus
 Wasser). F: 267°. Nicht flüchtig. Leicht löslich in heißem Wasser und in Alkohol, unlöslich in Äther. Leicht löslich in konz. Salzsäure. Reduziert Silber-Lösung nicht. Zersetzt sich beim Erhitzen mit Jodwasserstoffsäure über 220° unter Bildung von Ammoniak.

 K₂C₆H₂O₃N + H₂O. Nadeln. Ca(C₆H₄O₃N)₃. Prismen oder Tafeln. Löslich in Wasser. Ba(C₆H₄O₂N)₂ + H₂O. Nadeln (aus Wasser). Schwer löslich in kaltem Wasser. Hydrochlorid. Nadeln. Wird durch Wasser hydrolysiert.

4-Chlor-6-oxy-pyridin-carbonsäure-(2), 4-Chlor-6-oxy-picolin-säure (4-Chlor-pyridon-(6)-carbonsäure-(2)) C_eH₄O₃NCl, s. nebenstehende Formel. Zur Konstitution vgl. Graf, J. pr. [2] 133 [1932], 37, 45. — B. Neben 4-Chlor-picolinsäure beim Erhitzen von Picolinsäure mit 5 Mol Phosphorpentachlorid und etwas Phosphoroxychlorid im Rohr auf 250—270° und Kochen des entstandenen Gemisches von 4-Chlor-2-trichlormethyl-pyridin und 4.6-Dichlor-2-trichlormethyl-pyridin mit 80°/oiger Schwefelsäure (Sexfferh, J. pr. [2] 34, 250, 251, 254, 255). — Nadeln (aus Wasser). Schwärzt sich bei 315° unter teilweiser Sublimation (S.). Schwer löslich in kaltem, leichter in heißem Wasser, Alkohol und Eisessig, unlöslich in Äther und Chloroform (S.). Sehr schwer löslich in heißer konzentrierter Salzsäure (S.). Starke Säure (S.). — Liefert beim Erhitzen mit rauchender Jodwasserstoffsäure im Rohr auf 200° Ammoniak (S.). Gibt mit Eisenchlorid eine gelbrote Färbung (S.).

4.5-Dichlor-6-oxy-pyridin-carbonsäure-(2), 4.5-Dichlor-6-oxy-picolinsäure (4.5-Dichlor-pyridon-(6)-carbonsäure-(2)) C₆H₃O₃NCl₂, Cl. s. nebenstehende Formel. B. Beim Kochen von 4.5.6-Trichlor-2-trichlor-methyl-pyridin mit 80% giger Schwefelsäure (Ost, J. pr. [2] 27, 281, 288; vgl. Graf, J. pr. [2] 133 [1932], 38, 39, 49). — Nadeln mit 1 H₂O (aus Wasser). F: ca. 282% (Zers.) (O.). Fast unlöslich in Chloroform, sehr schwer löslich in Wasser (O.). — Wird von Zinn und Salzsäure nicht angegriffen (O.). Liefert beim Erhitzen mit Jodwasserstoff-Eisessig auf 200—210% 6-Oxy-picolinsäure (O.). Gibt mit Ferrisalzen eine schwache gelbrote Färbung (O.). — Ca(C₆H₂O₃NCl₂)₂. Krystalle. Schwer löslich in Wasser (O.).

5. 2-Oxy-pyridin-carbonsäure-(3), 2-Oxy-nicotinsäure bezw. 2-Oxo-1.2-dihydro-pyridin-carbonsäure-(3), Pyridon-(2)-carbonsäure-(3) C₆H₅O₃N, Formel I bezw. II. B. Beim Erhitzen von 6-Oxy-pyridin-dicarbonsäure-(2.5) mit Eisessig und etwas I. CO₂H II. Essigsäureanhydrid im Rohr auf 210° (Weidel, Strache, M. 7, 295). Aus 2-Amino-pyridin-carbonsäure-(3) durch Diazotieren mit Natriumnitrit in verd. Schwefelsäure und Verkochen der Diazoniumsalz-Lösung (Philips, A. 288, 264). Neben Chinolin-carbonsäure-(6) beim Kochen von 6-[x-Amino-phenyl]-chinolin (Syst. No. 3400) mit Kaliumpermanganat in verd. Schwefelsäure (Weidel, v. Georgievics, M. 9, 144, 145). — Nadeln (aus Wasser). F: 255° (Zers.) (Ph.), 256° (unkort.) (W., St.; W., v. G.). Schwer löslich in kaltem, leicht in heißem Wasser (Ph.; vgl. W., St.). Elektrolytische Dissoziationskonstante k bei 25°: 5×10-6 (Ostwald, Ph. Ch. 3, 387). — Liefert beim Erhitzen über den Schmelzpunkt 2-Oxy-pyridin (W., St.; Ph.). Bei der Zinkstaubdestillation entsteht Pyridin (W., v. G.). Einw. von Thionylchlorid: Kirpal, M. 27, 376. Gibt mit Ferrosulfat eine gelbliche (W., St.), mit Eisenchlorid in konz. Lösung eine gelbe Färbung (W., v. G.). — AgC₆H₄O₈N. Nadeln. Lichtbeständig (W., St.).

Methylester $C_7H_7O_3N = NC_5H_3(OH) \cdot CO_3 \cdot CH_3$. B. Beim Erhitzen von 2-Oxy-nicotinsäure mit Methanol und etwas konz. Schwefelsäure (KIRPAL, M. 27, 376). Entsteht auch beim gelinden Erwärmen von 2-Oxy-nicotinsäure mit Thionylchlorid und Behandeln des Reaktionsprodukts mit Methylalkohol (K.). — Nadeln (aus Benzol). F: 153°.

Anhydrid des 1 - Carboxymethyl - 2 - oxy - 3 - carboxy - pyridiniumhydroxyds, 2-Oxy-nicotinsäure-betain (Pyridon-(2)-carbonsäure-(3)-essigsäure-(1)) $C_8H_7O_5N=\begin{bmatrix} C_5H_3N(OH)(CH_2\cdot CO\cdot O)\cdot CO\cdot O\end{bmatrix}H^+$ bezw. $C_5H_3N(:O)(CH_2\cdot CO_2H)\cdot CO_2H$. B. Bei mehrstündigem Erhitzen einer schwach alkalischen Lösung von 2-Oxy-nicotinsäure mit Chloressigsäure (Kirpal, M. 29, 471, 472, 483). — Nadeln (aus Wasser). F: 240° (Zers.).

6. 4-Oxy-pyridin-carbonsäure-(3), 4-Oxy-nicotinsäure bezw. 4-Oxo-1.4-dihydro-pyridin-carbonsäure-(3), Pyridon-(4)-carbonsäure-(3)

C₆H₈O₃N, Formel III bezw. IV. B. Bei der Einw.
von nitrosen Gasen auf 4-Amino-pyridin-carbonsäure-(3) in konz. Schwefelsäure und Eintragen des
Diazoniumsalzes in Eiswasser (KIRPAL, M. 23, 240, 246). — Nadeln (aus Wasser). Schmilzt bei 250°

unter Entwicklung von Kohlendioxyd und Bildung von 4-Oxy-pyridin.

Anhydrid des 1 - Carboxymethyl - 4 - oxy-3 - carboxy - pyridiniumhydroxyds, 4-Oxy-nicotinsäure-betain (Pyridon-(4)-carbonsäure-(3)-essigsäure-(1)) $C_8H_7O_8N=$ [$C_8H_3N(OH)(CH_2\cdot CO\cdot O)\cdot CO\cdot O]H^+$ bezw. $C_5H_3N(:O)(CH_2\cdot CO_2H)\cdot CO_2H$. B. Beim Erhitzen einer schwach alkalischen Lösung von 4-Oxy-nicotinsäure mit Chloressigsäure (Kirpal, M. 29, 471, 472, 484). — Tafeln. F: 220° (Zers.).

6 - Oxy - pyridin - carbonsäure - (3), 6 - Oxy - nicotinsäure bezw. 6 - Oxo-

1.6 - dihydro - pyridin - carbonsäure - (3), Pyridon - (6) - carbonsäure - (3) C₆H₅O₅N, Formel I bezw. II. B. Aus Cumalin-carbonsäure-(5)-methylester (Bd. XVIII, S. 406) durch Einw. von wäßr. Ammoniak und darauffolgendes Kochen mit Natronlauge (v. Pechmann.

- folgendes Kochen mit Natronlauge (v. PECHMANN, Welsh, B. 17, 2391; v. P., Baltzer, B. 24, 3145). Aus 6-Oxy-pyridin-dicarbonsäure-(2.3) beim Erhitzen mit Wasser im Rohr auf 195° (Koenigs, Geigy, B. 17, 589) oder mit Eisessig im Rohr auf 250° (DIAMANT, M. 16, 767; vgl. K., G.). Beim Behandeln von 6-Amino-pyridin-carbonsäure-(3) mit Natriumnitrit und konz. Schwefelsäure und Aufgießen der Lösung auf Eis (MARCKWALD, B. 27, 1323). Aus 6-Hydrazino-pyridin-carbonsaure-(3) (Syst. No. 3447) oder ihrem Hydrazid beim Erhitzen mit Salzsäure im Rohr auf 150° (MARCKWALD, RUDZIK, B. 36, 1114). — Nadeln (aus Wasser). F: 301—302° (Zers.) (K., G.), 303° (Zers.) (v. P., W.). Sublimiert bei vorsichtigem Erhitzen unzersetzt (K., G.; v. P., W.). Schwer försch in heisem Wasser, fast unlöslich in Alkohol, Äther, Chloroform und Benzol (v. P., W.). Verbindet sich nicht mit Säuren (v. P., W.). — Liefert beim Erhitzen über den Schmelzpunkt, beim Erhitzen mit Salzsäure auf 200° oder bei der trocknen Destillation des Silbersalzes 2-Oxy-pyridin (v. P., W.; v. P., B.; D.). Beim Erhitzen mit Zinkstaub entsteht Pyridin (v. P., W.). Bei der Reduktion mit Natriumamalgam in heißer alkalischer Lösung bilden sich Ammoniak, trans-α-Methyl-glutaconsäure (Bd. II, S. 775) und ihr Monoamid (v. Smoluchowski, M. 15, 56). Beim Erhitzen mit Phosphorpentachlorid und etwas Phosphoroxychlorid auf 120° bis 1300 und Eintragen des Reaktionsprodukts in Eiswasser erhält man 6-Chlor-nicotinsäure (v. P., W.); behandelt man das Reaktionsprodukt mit Methylalkohol, so entsteht 6-Chlornicotinsaure-methylester (REISSERT, B. 28, 121). Bei kurzem Kochen mit Thionylchlorid und Behandeln des Reaktionsprodukts mit Methylalkohol bildet sich 6-Oxy-nicotinsäuremethylester (H. MEYER, M. 22, 440). Liefert beim Behandeln mit Methyljodid in wäßrigalkalischer (MEY., M. 26, 1318) oder methylalkoholisch-alkalischer Lösung (v. P., W.; v. P., B. 18, 317) 1-Methyl-pyridon-(6)-carbonsäure-(3) (S. 298). Bei der Einw. von Diazomethan in Ather bilden sich 1-Methyl-pyridon-(6)-carbonsäure-(3)-methylester und wenig 6-Methoxy-nicotinsāure-methylester (Mey., M. 26, 1320). — Gibt mit Eisenchlorid eine blaßgelbe Färbung (K., G.; vgl. v. P., W.). — Pb(C_eH₄O₃N)₂ + 2¹/₂H₂O. Nadeln (aus Wasser). Verliert bei 160° 2H₂O und ist bei 180° wasserfrei; zersetzt sich oberhalb 180° (K., G.).
- 6 Methoxy pyridin carbonsäure (3), 6 Methoxy nicotinsäure $C_7H_7O_3N=NC_5H_3(O\cdot CH_3)\cdot CO_2H$. B. Beim Erhitzen von 6-Chlor-nicotinsäure mit Natriummethylat und Methylalkohol im Rohr auf 110° (H. Meyer, M. 28, 59). Blättchen (aus Wasser und Aceton). F: 173°. Liefert beim Erhitzen über 260° 6-Oxy-nicotinsäure und wenig 2-Methoxy-pyridin.
- 6-Äthoxy-pyridin-carbonsäure-(3), 6-Äthoxy-nicotinsäure $C_8H_9O_3N=NC_5H_3(O\cdot C_2H_3)\cdot CO_2H$. B. Bei längerem Kochen von 6-Chlor-nicotinsäure mit alkoh. Natronlauge (Reissert, B. 28, 122). Krystalle (aus Alkohol). F: 183°. Leicht löslich in heißem Alkohol, schwer in Wasser.
- 6-Oxy-pyridin-carbonsäure-(3)-methylester, 6-Oxy-nicotinsäure-methylester (Pyridon-(6)-carbonsäure-(3)-methylester) $C_7H_7O_3N=NC_5H_3(OH)\cdot CO_2\cdot CH_3$. B. Beim Behandeln des Einwirkungsprodukts von Thionylchlorid auf 6-Oxy-nicotinsäure mit Methylalkohol (H. Meyer, M. 22, 440). Tafeln (aus Aceton). F: 164° (M., M. 22, 440). Liefert beim Behandeln mit Diazomethan in Äther fast ausschließlich 1-Methyl-pyridon-(6)-carbonsäure-(3)-methylester (M., M. 26, 1321).
- 6-Methoxy-pyridin-carbonsäure-(3)-methylester, 6-Methoxy-nicotinsäure-methylester $C_8H_9O_3N=NC_5H_3(O\cdot CH_3)\cdot CO_2\cdot CH_3$. B. Neben 1-Methyl-pyridon-(6)-carbonsäure-(3)-methylester beim Behandeln von 6-Oxy-nicotinsäure mit Diazomethan in Äther (H. Meyer, M. 26, 1320). Aus 6-Methoxy-nicotinsäure und Diazomethan (M., M. 28, 61). Nadeln von anisartigem Geruch. F: 42°; Kp: 256°; bei gewöhnlicher Temperatur merklich flüchtig; leicht löslich in organischen Lösungsmitteln (M., M. 28, 61). Unlöslich in heißem Wasser (M., M. 26, 1320).
- 6 Oxy pyridin carbonsäure (3) äthylester, 6 Oxy nicotinsäure äthylester (Pyridon-(6)-carbonsäure-(3)-äthylester) $C_8H_9O_3N = NC_5H_3(OH)\cdot CO_2\cdot C_2H_5$. B. Beim Erhitzen einer alkoh. Lösung von 6-Oxy-nicotinsäure im Chlorwasserstoffstrom (Mills, Widdows, Soc. 93, 1381). Nadeln (aus Wasser). F: 149—150°.
- 6 Oxy pyridin carbonsäure (3) hydrasid, 6 Oxy nicotinsäure hydrasid (Pyridon-(6)-carbonsäure-(3)-hydrasid) $C_6H_7O_2N_3=NC_5H_3(OH)\cdot CO\cdot NH\cdot NH_2$. B. Beim Erhitzen von 6-Oxy-nicotinsäure-äthylester mit einer $50^{\circ}/_{\circ}$ igen Lösung von Hydrazinhydrat auf dem Wasserbad (M., W., Soc. 93, 1381). Krystalle (aus Alkohol). F: 310° (nach vorher-

gehender Dunkelfärbung). Schwer löslich in den gebräuchlichen organischen Lösungsmitteln, leicht in Wasser und Eisessig. — Die wäßr. Lösung wird auf Zusatz von Ferrichlorid gelb.

6-Oxy-pyridin-carbonsäure-(3)-axid, 6-Oxy-nicotinsäure-axid (Pyridon-(6)-carbonsäure-(3)-axid) $C_0H_4O_2N_4=NC_5H_3(OH)\cdot CO\cdot N_3$. B. Bei tropfenweisem Zusatz einer Lösung von 1 Mol 6-Oxy-nicotinsäure-hydrazid und 1 Mol Natriumnitrit in $12^0/o$ ger Natronlauge zu der berechneten Menge eiskalter verdünnter Salzsäure (M., W., Soc. 93, 1382). — Krystalle (aus Benzol). F: $139-140^0$ (Zers.). Färbt sich schnell rot. — Liefert beim Kochen mit Wasser N.N'-Bis-[6-oxy-pyridyl-(3)]-barnstoff (Syst. No. 3420).

5-Chlor-6-oxy-pyridin-carbonsäure-(3), 5-Chlor-6-oxy-nicotin-säure (5-Chlor-pyridon-(6)-carbonsäure-(3)) C₆H₄O₃NCl, s. nebenstehende Formel. B. Beim Verseifen des Methylesters mit verd. Natronlauge (v. Pechmann, Mills, B. 37, 3832). Entsteht neben anderen Produkten beim Erhitzen von Nicotinsäure mit 5 Mol Phosphorpentachlorid und etwas Phosphoroxychlorid im Rohr auf 250—270°, Destillieren des Reaktionsprodukts mit Wasserdampf und Kochen des überdestillierten Öls mit 80°/0 iger Schwefelsäure (Seyfferth, J. pr. [2] 34, 259, 260). — Platten oder Nadeln (aus Wasser). F: 302° (unkorr.) (S.), 308° (Zers.) (v. P., M.). Unlöslich in Äther und Chloroform, schwer löslich in kaltem, leichter in heißem Wasser und Alkohol (S.; vgl. v. P., M.). Verbindet sich nicht mit Mineralsäuren (S.). — Liefert beim Erhitzen mit Phosphorpentachlorid und etwas Phosphoroxychlorid auf 100—120° und Zersetzen des Reaktionsprodukts mit Wasser, zuletzt mit Soda-Lösung, 5.6-Dichlor-nicotinsäure (v. P., M.). — Gibt mit Eisenchlorid eine schmutzigrote Färbung (S.). — Bariumsalz. Prismen. Schwer löslich in kaltem Wasser (S.).

Methylester C₇H₆O₃NCl = NC₅H₂Cl(OH)·CO₂·CH₃. B. Bei der Einw. von konz. Ammoniak auf 3-Chlor-cumalin-carbonsäure-(5)-methylester (Bd. XVIII, S. 406) (v. Pechmann, Mills, B. 37, 3832). — Prismen (aus Wasser). F: 218°. Leicht löslich in Eisessig, Alkohol und Chloroform, löslich in Äther und Benzol, sehr schwer löslich in kaltem Wasser. Löst sich in Soda-Lösung und wird aus dieser Lösung durch CO₂ gefällt. — NaC₇H₅O₃NCl. Krystalle (aus Alkohol). Leicht löslich in Wasser.

5-Brom-6-oxy-pyridin-carbonsäure-(3), 5-Brom-6-oxy-nicotin-Brom-6-oxy-pyridin-carbonsäure-(3)) C₆H₄O₃NBr, s. nebenstehende Formel. B. Beim Verseifen des Methylesters mit Natronlauge (v. Pechmann, B. 17, 2398). — Nadeln oder rhombenförmige Tafeln (aus Wasser). F: 296°. Schwer löslich in heißem Wasser, fast unlöslich in Alkohol, Äther und Eisessig.

Methylester C₇H₆O₃NBr = NC₅H₂Br(OH)·CO₂·CH₃. B. Bei der Einw. von konz. Ammoniak auf 3-Brom-cumalin-carbonsäure-(5)-methylester (Bd. XVIII, S. 406) (v. Pechmann, B. 17, 2398). Bei der Einw. von Natriumnitrit auf 1-Amino-5-brom-pyridon-(6)-carbonsäure-(3)-methylester (S. 299) in verd. Schwefelsäure unter Eiskühlung (v. P., Mills, B. 37, 3839). Beim Kochen von 5.5'-Dibrom-6.6'-dioxo-bis-[1.6-dihydro-pyridyl-(1)]-dicarbonsäure-(3.3')-dimethylester (S. 300) mit Zinkstaub in Eisessig (v. P., M.). — Nadeln (aus Wasser oder Alkohol). F: 221—222° (v. P.; v. P., M.). Unlöslich in kalten Lösungsmitteln, löslich in heißem Wasser, Alkohol und Eisessig (v. P.). Löst sich in Natronlauge und wird daraus durch CO₂ gefällt (v. P.).

5-Nitro-6-oxy-pyridin-carbonsäure-(3), 5-Nitro-6-oxy-nicotinsäure (5-Nitro-pyridon-(6)-carbonsäure-(3)) C₆H₄O₅N₂, s. nebenstehende Formel. B. Aus 5-Nitro-6-amino-pyridin-carbonsäure-(3) (Syst.

No. 3434) beim Diazotieren in konz. Schwefelsäure und Zersetzen der Diazoniumsalz-Lösung mit Eis (Marckwald, B. 27, 1335; vgl. Räth, Prance, A. 467 [1928], 3, 9). — Krystalle (aus Wasser). F: 277° (Zers.) (R., P.; vgl. M.). Schwer löslich in Alkohol und Wasser in der Kälte, leicht in der Wärme (M.). — NH₄C₆H₃O₅N₂. Gelbe Krystalle. Ziemlich schwer löslich in kaltem Wasser (M.). — BaC₆H₂O₅N₂. Gelbe Krystalle (M.).

8. 2-Oxy-pyridin-carbonsäure-(4), 2-Oxy-isonicotinsäure bezw. 2-Oxo-1.2-dihydro-pyridin-carbonsäure-(4), Pyridon-(2)-carbonsäure-(4)C₆H₅O₂N, Formel I bezw. II.

NOH

CO2H

II.

NOH

H

6-Chlor-2-oxy-pyridin-carbonsäure-(4), 6-Chlor-2-oxy-isonicotin-säure (6-Chlor-pyridon-(2)-carbonsäure-(4)) C₆H₄O₃NCl, s. nebenstehende Formel. B. Aus 2.6-Dichlor-isonicotinsäure oder ihrem Äthylester beim Eindampfen mit wäßr. Natronlauge (Sell, Dootson, Soc. 71, 1075). Neben anderen Produkten beim Kochen von 2.6-Dioxy-pyridin-carbonsäure-(4) (S. 254) mit Phosphorpentachlorid und etwas Phosphoroxychlorid am Rückflußkühler und Zersetzen des Reaktions-

produkts mit heißem Wasser (S., D., Soc. 71, 1070, 1072). Beim Behandeln von 6-Chlor-2-amino-pyridin-carbonsäure-(4) mit nitrosen Gasen in konz. Schwefelsäure auf dem Wasserbad und Erwärmen des mit Wasser verd. Reaktionsgemisches (S., D., Soc. 77, 236). — Nadeln (aus Wasser). Verkohlt beim Erhitzen, ohne zu schmelzen (S., D., Soc. 71, 1074). Nicht flüchtig mit Wasserdampf (S., D., Soc. 71, 1072). Schwer löslich in kaltem Wasser, Alkohol und Äther, mäßig löslich in heißem Wasser (S., D., Soc. 71, 1074), leicht in heißem Alkohol (S., D., Soc. 77, 237). Die wäßr. Lösung zeigt blaue Fluorescenz, die auf Zusatz von Säuren nicht verschwindet (S., D., Soc. 71, 1074). Leicht löslich in Alkalien und Alkalicarbonat-Lösung (S., D., Soc. 71, 1074). Unlöslich in verd. Mineralsäuren (S., D., Soc. 77, 237). — Liefert beim Erhitzen mit konz. Ammoniak im Rohr auf 170—180° 6-Amino-2-oxy-pyridin-carbonsäure-(4) (S., D., Soc. 77, 237). — Salze: S., D., Soc. 71, 1074. — Kupfersalz. Grünblaue Nadeln. Leicht löslich in Wasser. — AgC₆H₃O₂NCl. Amorph. Schwer löslich in heißem, unlöslich in kaltem Wasser. — Ag₂C₆H₃O₂NCl. Niederschlag. Unbeständig. Sehr schwer löslich in Wasser. — Ba(C₆H₃O₂NCl)₂ + 9 H₂O. Nadeln (aus Wasser).

Methylester $C_7H_6O_9NCl = NC_8H_4Cl(OH)\cdot CO_9\cdot CH_9$. Krystalle (aus Alkohol). F: 189° bis 190° (unkorr.) (8., D., Soc. 77, 236).

9. 3-Oxyp-yridin-carbonsäure-(4), 3-Oxy-isonicotinsäure-C₆H₅O₃N, CO₂H s. nebenstehende Formel. B. Aus 3-Amino-pyridin-carbonsäure-(4) beim Diazotieren mit Natriumnitrit in verd. Schwefelsäure und Verkochen der Diazoniumsalz-Lösung (Kirpal, M. 23, 932, 936). — Tafeln (aus Wasser). F: 315° (Zers.). Fast unlöslich in kaltem Wasser. — Gibt bei der Destillation 3-Oxy-pyridin (Bd. XXI, S. 46)
Anhydrid des 1-Carboxymethyl-3-oxy-4-carboxy-pyridiniumhydroxyds, 3-Oxy-

isonicotinsäure-betain $C_3H_7O_2N = [C_3H_2N(OH)(CH_2 \cdot CO \cdot O) \cdot CO \cdot O]H^+$ bezw. $C_3H_2N(:O)(CH_2 \cdot CO_2H) \cdot CO_2H$. B. Beim Erhitzen einer schwach alkalischen Lösung von 3-Oxy-isonicotinsäure mit Chloressigsäure (KIBPAL, M. 29, 471, 473, 483). — Nadeln. F: 200° (Zers.).

2. 3 - 0 xymethyl - pyridin - carbonsaure - (2), 3 - 0 xymethyl - pyridin - (2), 3 - 0 xymethyl - (2), 3 - 0

3. Oxy-carbonsauren $C_8H_{\bullet}O_8N$.

1. β-Oxy-β-[α-pyridyl]-propionsāure, β-[α-Pyridyl]hydracryisāure C₂H₂O₃N, s. nebenstehende Formel. B. Aus
β-Brom-β-[α-pyridyl]-propionsāure durch Erwārmen mit SodaLösung (ΕΙΝΗΟΒΝ, A. 265, 231; vgl. FEIST, Ar. 240, 189). — Krystalle. F: 86° (ΕΙ.). —
Cu(C₂H₂O₃N)₂+CuO. Blaue Krystalle (aus verd. Ammoniak) (ΕΙ.). — C₃H₂O₃N+HCl.
Prismen (aus absol. Alkohol). F: 147° (ΕΙ.). — 2C₃H₂O₃N+2HCl+PtCl₄. Gelbe Krystalle
(aus verd. Alkohol). F: 191° (ΕΙ.).

O-Benzoyl- β -[α -pyridyl]-hydracrylsäure $C_{18}H_{12}O_4N=NC_5H_4\cdot CH(O\cdot CO\cdot C_6H_5)\cdot CH_2\cdot CO_5H$. B. Beim Erwärmen von β -[α -Pyridyl]-hydracrylsäure äthylester mit Benzoylchlorid auf dem Wasserbad und Behandeln des Reaktionsprodukts mit Salzsäure (EINHORN, A. 265, 234). — Prismen (aus Wasser). F: 135,5°. — Silbersalz. Krystalle. — Hydrochlorid. Krystallinisch. Wird durch Wasser zersetzt.

 β -[α -Pyridyl]-hydracrylsäure-methylester $C_9H_{11}O_3N=NC_5H_4\cdot CH(OH)\cdot CH_3\cdot CO_3\cdot CH_3$. B. Aus β -[α -Pyridyl]-hydracrylsäure durch Einw. von methylalkoholischer Salzsäure (Einhorn, A. 265, 233). — $2C_9H_{11}O_3N+2HCl+PtCl_4$. Gelbe Blättchen (aus verd. Alkohol). F: 178,5°.

O-Benzoyl- β -[α -pyridyl]-hydracrylsäure-methylester $C_{16}H_{15}O_4N=NC_5H_4\cdot CH(O\cdot CO\cdot C_6H_5)\cdot CH_2\cdot CO_2\cdot CH_2$. Aus dem Silbersalz der O-Benzoyl- β -[α -pyridyl]-hydracrylsäure durch Erwärmen mit Methyljodid in Methanol im Rohr auf 100° (Einhorn, A. 265, 235). Aus β -[α -Pyridyl]-hydracrylsäure-methylester durch Erwärmen mit Benzoylchlorid auf dem Wasserbad (Ei.). — Prismen (aus Äther). F: 79°.

 β -[α -Pyridyl]-hydracrylsäure-äthylester $C_{10}H_{18}O_{s}N=NC_{s}H_{4}\cdot CH(OH)\cdot CH_{2}\cdot CO_{2}\cdot C_{s}H_{s}$. B. Aus β -[α -Pyridyl]-hydracrylsäure durch Einw. von_alkoh. Salzsäure (Einhorn, A. 265, 233). — Hydrochlorid. Blättehen (aus Alkohol + Äther).

2. α -Oxy- β -[α -pyridyl]-propionsäure, β -[α -Pyridyl]-milchsäure $C_2H_2O_2N$, s. nebenstehende Formel. B. Aus salzsaurem 2-[γ - γ -Trichlor- β -oxy-propyl]-pyridin durch Kochen mit

verd. Alkalicarbonat-Lösung (Einhorn, A. 265, 212; Boehringer & Söhne, D. R. P. 42987; Frdl. 1, 194). — Prismen (aus absol. Alkohol). F: 124—125° (Ei.). Schwer löslich in Essigester, leichter in Chloroform (Ei.). — Geht beim Erhitzen im Vakuum auf 130—140° oder bei der Vakuumdestillation des Silbersalzes in β-[α-Pyridyl]-acrylsäure (S. 55) über (Ei.). Gibt bei der Oxydation mit Permanganat Pyridin-carbonsäure-(2) (Ei.). Liefert bei der Reduktion mit Natrium und Alkohol und nachfolgendem Kochen mit Wasser 3-Oxy-piperolidon-(2) (Bd. XXI, S. 576) (Löffler, Kaim, B. 42, 100). Beim Erhitzen mit Phosphortribromid im Rohr in einer Kohlendioxyd-Atmosphäre auf 130—140° erhält man α-Brom-β-[α-pyridyl]-propionsäure (Feist, Ar. 240, 196). — Cu(C₈H₈O₃N)₂+CuO. Grüne Nadeln (aus Ammoniak). Fast unlöslich in kaltem Wasser (Ei.). — AgC₈H₈O₃N. Nadeln (aus verd. Ammoniak). Schwer löslich in Wasser (Ei.). — C₈H₉O₃N + HCl. Krystalle (aus absol. Alkohol). F: 85—86° (Ei.). — C₈H₉O₃N + HBr. Nadeln (aus Eisessig oder absol. Alkohol). F: 125° bis 126° (Ei.), 126—127° (F.). — C₈H₉O₃N + HCl + AuCl₂. Gelbe Säulen. F: 177° (Ei.), 180° (F.). — 2C₈H₉O₃N + 2 HCl + PtCl₄. Krystalle (aus Wasser). F: 202—204° (Ei.).

O-Bensoyl- β -[α -pyridyl]-milchsäure $C_{15}H_{13}O_4N=NC_5H_4\cdot CH_3\cdot CH(O\cdot CO\cdot C_6H_5)\cdot CO_2H$. B. Durch Erwärmen einer wäßr. Lösung von β -[α -Pyridyl]-milchsäure mit Benzoesäureanhydrid auf 90° (Einhorn, A. 265, 217). — Nadeln (aus Wasser). F: 145° (Zers.). — Silbersalz. Nadeln (aus verd. Ammoniak). — $2C_{15}H_{13}O_4N+2HCl+PtCl_4$. Gelbe Nadeln (aus Wasser oder verd. Alkohol). F: 179° (Zers.).

β-[α-Pyridyl]-milchsäure-methylester $C_9H_{11}O_3N = NC_5H_4 \cdot CH_9 \cdot CH(OH) \cdot CO_3 \cdot CH_3 \cdot B$. Aus dem Silbersalz der β-[α-Pyridyl]-milchsäure durch Erhitzen mit Methyljodid in Methanol im Rohr auf 50—60° (ΕΙΝΗΟΒΝ, A. 265, 219). Aus β-[α-Pyridyl]-milchsäure durch Einw. von methylalkoholischer Salzsäure (ΕΙ.). — Krystalle. F: ca. 34°. — $C_9H_{11}O_3N + HCl + AuCl_3$. Krystalle (aus Wasser). F: ca. 119°.

O-Bengoyl- β -[α -pyridyl]-milchsäure-methylester $C_{16}H_{15}O_4N=NC_5H_4\cdot CH_3\cdot CH(O\cdot CO\cdot C_6H_5)\cdot CO_2\cdot CH_3$. B. Aus dem Silbersalz der O-Benzoyl- β -[α -pyridyl]-milchsäure durch Erhitzen mit Methyljodid in Methanol im Rohr auf dem Wasserbad (Einhorn, A. 265, 218). Aus β -[α -Pyridyl]-milchsäure-methylester durch Erwärmen mit Benzoylchlorid auf dem Wasserbad (Ei.). — Nadeln. F: ca. 41°. — $2C_{16}H_{15}O_4N + 2HCl + PtCl_4$. Gelbe Nadeln (aus Wasser oder verd. Alkohol). F: 193° (Zers.).

 $\begin{array}{c} \beta \cdot [\alpha - \text{Pyridyl}] - \text{milehsäure - tropylester}, \quad \text{H$_2\text{C}$_-\text{CH}$_-\text{CH}$_2$}\\ [\alpha \cdot \text{Oxy} \cdot \beta \cdot (\alpha - \text{pyridyl}) - \text{propionyl}] - \text{tropein} \\ \text{C$_{16}$H$_{22}$O$_3$N$_2, s. nebenstehende Formel.} \quad B. \quad \text{Beim} \\ \text{Einleiten von Chlorwasserstoff in ein auf 130$_-1350} \\ \text{H$_2\text{C}$_-\text{CH}$_-$_-\text{CH}$_2$}\\ \text{erhitztes Gemisch von $\beta \cdot [\alpha \cdot \text{Pyridyl}]$_-milchsäure und Tropin (Bd. XXI, S. 16) (Jowett, Pyman, Soc. 95, 1024).} \\ \text{Krystallisiert nieht.} \quad \text{Wirkt mydriatisch.} \quad \text{C$_{16}$H$_{22}$O$_3$N$_2$_+$_2$_HCl.} \\ \text{Zerfließliche Prismen (aus absol. Alkohol).} \quad F: 208$_-2100 (korr.; Zers.). Leicht löslich in Wasser, schwer in kaltem absolutem Alkohol.} \\ \text{C$_{16}$H$_{22}$O$_3$N$_2$_+$_2$_HCl.} + 2\text{Aucl}_3$_+$_1$_1$_2$_-1540 (korr.). Leicht löslich in Wasser und Alkohol.} \\ \text{C$_{16}$H$_{22}$O$_3$N$_2$_+$_2$_HCl.} + 2\text{Aucl}_3$_+$_1$_1$_2$_-1540 (korr.). Leicht löslich in Wasser und Alkohol.} \\ \text{C$_{16}$H$_{22}$O$_3$N$_2$_+$_2$_HCl.} + 2\text{Aucl}_3$_+$_1$_1$_2$_-1540 (korr.). Leicht löslich in Wasser und Alkohol.} \\ \text{C$_{16}$H$_{22}$O$_3$N$_2$_+$_2$_HCl.} + 2\text{Aucl}_3$_+$_1$_1$_2$_-1540 (korr.). Sehr schwer löslich in Wasser und Alkohol.} \\ \text{C$_{16}$H$_{22}$O$_3$_3$_2$_+$_2$_HCl.} + 2\text{Aucl}_3$_+$_1$_1$_2$_-1540_-154$_$

3. [G-Oxy-4-methyl-pyridyl-(2)]-essigsäure, a'-Oxy
\(\gamma - \text{picolin} - \alpha - \text{essigsäure} \) \(\text{C}_8 \) \(\text{H}_9 \) \(\text{O}_8 \) \(\text{N} \) \(\text{N} \) \(\text{CO}_2 \) \(\text{H}_2 \) \(\text{CO}_2 \)

Äthylester $C_{10}H_{13}O_3N = NC_5H_3(CH_3)(OH)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Neben 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester beim Erhitzen einer ätherischen Lösung von β -Amino-crotonsäure-äthylester, die nur zur Hälfte mit Chlorwasserstoff gesättigt ist, auf 120° (Collie, Soc. 71, 303, 309; vgl. C., B. 20, 446). — F: 166—167° (C., Soc. 71, 303, 309). — Liefert bei der Einw. von Brom in Eisessig den Äthylester eines Dibromderivats (s. u.) (C., Soc. 71, 309). Wird durch warme verdünnte Natronlauge leicht verseift (C., Soc. 71, 304, 305, 310).

Dibromderivat $C_8H_7O_8NBr_2 = NC_7H_6OBr_2 \cdot CO_2H$. B. Beim Verseifen des Äthylesters (s. u.) mit Natronlauge (C., Soc. 71, 310). — Nadeln. Zerfällt bei 256—258° unter teilweiser Verkohlung unter Bildung von Kohlendioxyd, Bromaceton und Bromwasserstoff.

Äthylester des Dibromderivats $C_{10}H_{11}O_2NBr_2 = NC_7H_6OBr_2\cdot CO_2\cdot C_2H_5$. B. Durch Bromieren von [6-Oxy-4-methyl-pyridyl-(2)]-essigsäureäthylester in Eisessig (C., Soc. 71, 309). — F: 168—170°.

4. 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3), 6-Oxy-2.4-dimethyl-nicotinsäure, α'-Oxy-α.γ-lutidin-β-carbonsäure
C₂H₂O₃N, s. nebenstehende Formel. B. Aus dem Athylester (s. u.) bei längerem Kochen mit konz. Alkalilauge (Collie, Soc. 71, 305, 306; vgl. auch C., B. 20, 446; Anschütz, Bendix, Kerp, A. 259, 173; Fleischmann, Soc. 91, 257) oder beim Schmelzen mit Kaliumhydroxyd (Moir, Soc. 81, 109). Entsteht auch aus Isodehydracetsäure (Bd. XVIII, S. 409) durch Erwärmen mit konz. Ammoniak-Lösung (Nieme, v. Pechann, A. 261, 206). — Krystalle mit 1 H₂O (aus Wasser). Schmilzt gegen 300° unter Zerfall in Kohlendioxyd und 6-Oxy-2.4-dimethyl-pyridin (C., Soc. 71, 306). Sehr schwer löslich in den meisten Lösungsmitteln (C., Soc. 71, 306). — Liefert bei der Einw. von Salpeterschwefelsäure 5-Nitro-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3) (C., Tickle, Soc. 73, 234). — Ammoniumsalz. F: ca. 270° (Zers.); leicht löslich in Wasser (Moir).

Methylester $C_9H_{11}O_3N = NC_5H(CH_3)_2(OH)\cdot CO_2\cdot CH_3$. B. Aus 2-Oxy-2-amino-4.6-dimethyl-[1.2-pyran]-carbonsäure-(5)-methylester (Bd. XVIII, S. 410) durch Einw. von alkoh. Salzsäure (Kerp, A. 274, 275). — Nadeln (aus Wasser). F: 202°.

Äthylester C₁₀H₁₃O₃N = NC₅H(CH₂)₂(OH)·CO₂·C₂H₅. B. Beim Erhitzen des Hydrochlorids des β-Amino-crotonsäure-äthylesters auf ca. 120° (Collie, Soc. 71, 303; vgl. C., B. 20, 445). Beim Einleiten von trocknem Ammoniak in auf 150—160° erhitzten Isodehydracetsäure-äthylester (Anschütz, Bendix, Kerp, A. 259, 173, 185). Aus ζ-Oxoβ-imino-δ-methyl-ζ-[2.4-dioxo-6-methyl-dihydropyryl-(3)]-δ-hexylen-γ-carbonsäure-äthylester (Bd. XVIII, S. 508) durch Kochen mit alkoh. Kalilauge (Fleischmann, Soc. 91, 257). — Nadeln (aus Wasser). F: 138—139° (C., Soc. 71, 303), 138° (Fl.). Löslich in konz. Schwefelsäure (C., B. 20, 445). — Liefert beim Erhitzen mit Phosphorpentachlorid auf 180° δ-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester (C., Soc. 71, 305; C., Lean, Soc. 73, 589). Bei der Einw. von Brom in Chloroform (Kerp, A. 274, 281) oder in Eisessig (C., Soc. 71, 305) erhält man 5-Brom-δ-oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester. Wird erst bei längerem Kochen mit konz. Natronlauge (C., Soc. 71, 305, 306) oder beim Schmelzen mit Kaliumhydroxyd (More, Soc. 81, 109) vollständig verseift.

Amid $C_8H_{10}O_2N_9 = NC_5H(CH_8)_8(OH)\cdot CO\cdot NH_8$. B. Durch Erhitzen von Acetessigsäureamid (Claisen, K. Meyer, B. 35, 584). — Krystallinisch.

6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril, α'-Oxy-β-cyan-α-γ-lutidin C₈H₈ON₂ = NC₅H(CH₃)₂(OH)·CN. B. Aus Diacetonitril (Bd. III, S. 660) durch Kochen mit Wasser (Moir, Soc. 81, 101), neben einer isomeren Verbindung C₈H₈ON₂ (s. u.) (v. Meyer, J. pr. [2] 78, 515, 521; vgl. Holtzwarf, J. pr. [2] 39, 239; v. M., J. pr. [2] 52, 89; C. 1908 II, 593). Aus α-Cyan-acetessigester durch Kochen mit Wasser (Held, A.ch. [6] 18, 518). Aus 6-Amino-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril durch Einw. von Natriumnitrit in verd. Schwefelsäure (v. M., J. pr. [2] 52, 89; 78, 515, 517; C. 1908 II, 593; Moir, Soc. 81, 111). — Bitter schmeckende Nadeln (aus Eisessig). F: 305° (korr.) (Moir). Löslich zu ca. 1°/0 in siedendem Wasser und Alkohol, leichter löslich in siedendem Eisessig, löslich in 600 Tln. siedendem Benzol (Moir). Löslich in Alkalien (Held; Moir; v. M., J. pr. [2] 78, 522). — Liefert beim Behandeln mit Phosphorpentachlorid 6-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril (v. M., C. 1908 II, 593; J. pr. [2] 78, 517). Bei der Einw. von Bromwasser (Held) oder von Brom in Eisessig bei 40° (Moir) erhält man 5-Brom-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril. Liefert beim Erhitzen mit konz. Bromwasserstoffsäure im Rohr auf 170° 6-Oxy-2.4-dimethyl-pyridin (Moir). Beim Erwärmen mit Methyljodid in methylalkoholisch-alkalischer Lösung bilden sich 1.2.4-Trimethyl-pyridon-(6)-carbonsäure-(3)-nitril und geringe Mengen 6-Methoxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril (v. M., C. 1908 II, 593; J. pr. [2] 78, 518). — NaC₈H₇ON₂. Nadeln (aus Alkohol + Äther). Leicht löslich in Alkohol und Aceton (Moir). — KC₈H₇ON₂. Nadeln (aus Alkohol + Äther). Leicht löslich in Alkohol und Aceton (Moir).

Verbindung C₈H₈ON₂ [2.4-Dimethyl-3-cyan-pyridon-(6)(?)]. B. Beim Kochen von Diacetonitril mit Wasser, neben 6-Oxy-2.4-dimethyl-pyridin-carbonsăure-(3)-nitril (HOLTZWART, J. pr. [2] 39, 239; v. MEYER, J. pr. [2] 52, 89; 78, 515, 521; C. 1908 II, 593; vgl. dagegen Moir, Soc. 81, 111). Aus 6-Ureido-2.4-dimethyl-pyridin-carbonsăure-(3)-nitril(?) beim Kochen mit Wasser (v. M., J. pr. [2] 52, 93; vgl. Moir). — Nadeln (aus Wasser). Zersetzt sich bei ca. 230° (H.; v. M., J. pr. [2] 52, 90, 93). Unlöslich in kalter verdünnter Natronlauge (v. M., J. pr. [2] 78, 522). — Liefert bei der Einw. von Phosphorpentachlorid eine Verbindung C₈H₆N₂ vom Schmelzpunkt 174—175° (H.; v. M., J. pr. [2] 52, 91; 78, 522; C. 1908 II, 594).

6-Methoxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril, α' -Methoxy- β -cyan- $\alpha.\gamma$ -lutidin $C_0H_{10}ON_2=NC_0H(CH_2)_2(O\cdot CH_2)\cdot CN$. B. Aus 6-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril durch Kochen mit Natriummethylat-Lösung (v. Meyer, J. pr. [2] 78, 518; C. 1908 II, 593). — Nadeln (aus verd. Alkohol). F: 96°. Kp: ca. 239°. — Liefert beim Erhitzen auf 300° 1.2.4-Trimethyl-3-cyan-pyridon-(6).

- 5-Brom-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(8)-äthylester, 5-Brom-6-oxy-2.4-dimethyl-nicotinsäure-äthylester, β'-Brom-α'-oxy-α.γ-lutidin-β-carbonsäure-äthylester C₁₀H₁₂O₂NBr, s. nebenstehende Formel. B. Aus 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-āthylester durch Einw. von Brom in Chloroform (Kerp, A. 274, 281) oder Eisessig (Collie, Soc. 71, 305).

 Aus Bromisodehydracetsäureäthylester (Bd. XVIII, S. 412) durch Behandeln mit trocknem Ammoniak bei 100° (K., A. 274, 280) oder durch Kochen mit konzentriertem wäßrigem Ammoniak, neben 5.6-Dioxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester (Feist, B. 26, 757). Nadeln (aus verd. Alkohol). F: 155° (F.), 157° (K.), 158—159° (C.). Leicht löslich in Alkohol und Äther, schwer in heißem Wasser (F.).
- 5-Brom-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril, β' -Brom- α' -oxy- β -cyan- α - γ -lutidin $C_8H_7ON_9Br=NC_8Br(CH_9)_9(OH)\cdot CN. B.$ Aus 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril durch Einw. von Brom in Eisessig bei 40° (Moir, Soc. 81, 106) oder von Bromwasser (Held, A. ch. [6] 18, 520). Nadeln. F: 327° (korr.; Zers.) (M.). Na $C_8H_6ON_9Br$ (H.). Nadeln. Leicht löslich in Wasser (M.).
- 5-Nitro-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3), 5-Nitro-6-oxy-2.4-dimethyl-nicotinsäure, β' -Nitro- α' -oxy- α - γ -lutidin- β -carbonsäure $C_8H_8O_8N_2$, s. nebenstehende Formel. B. Aus 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3) durch Einw. von Salpeterschwefelsäure unter Kühlung (COLLIE, TICKLE, Soc. 73, 234). Nadeln mit 1 H₂O (aus Essigsäure oder Wasser). Schmilzt, rasch erhitzt, bei 260° (korr.) unter Zerfall in Kohlendioxyd und 5-Nitro-6-oxy-2.4-dimethyl-pyridin. Schwer löslich in Wasser. Liefert bei der Reduktion mit Zinn und Salzsäure 5-Amino-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3).

Äthylester $C_{10}H_{12}O_5N_2 = NC_5(NO_3)(CH_3)_2(OH) \cdot CO_3 \cdot C_3H_5$. B. Aus 6-Oxy-2.4-dimethylpyridin-carbonsäure-(3)-äthylester durch Einw. von Salpeterschwefelsäure (Collie, Tickle, Soc. 78, 233). — Blaßgelbe Nadeln (aus Essigsäure). F: 215° (korr.). Schwer löslich in Wasser. — Wird von heißer Natronlauge langsam verseift.

Nitril, β' -Nitro- α' -oxy- β -cyan- α - γ -lutidin $C_8H_7O_3N_3=NC_5(NO_2)(CH_3)_2(OH)\cdot CN$. B. Aus 6-Oxy-2.4-dimethyl-pyridin-carbonsaure-(3)-nitril durch Einw. von rauchender Salpetersaure oder von Salpeterschwefelsaure in der Wärme (Moir, Soc. 81, 106). — Prismen (aus Wasser). F: 260° (korr.). — Liefert bei der Reduktion eine Verbindung, die an der Luft in Gegenwart von Ammoniak eine kirschrote Färbung gibt; mit Eisenchlorid erhält man eine grüne, allmählich blau werdende Färbung. — Ammoniumsalz. Rotbraune Prismen. F: 251° (korr.). — NaC₈H₆O₃N₃. Gelbe Nadeln. Schwer löslich in Wasser.

- 5. 6-Oxy-2.5-dimethyl-pyridin-carbonsäure-(3), 6-Oxy-CH₃. CO₂H 2.5-dimethyl-nicotinsäure, α'-Oxy-α,β'-lutidin-β-carbonsäure (C₃H₃O₃N, s. nebenstehende Formel. B. Aus der Silberverbindung des 2-Oxy-4-āthoxy-2.5-dimethyl-5-cyan-piperidon-(6)-carbonsāure-(3)-āthylesters(?) durch Behandeln mit Methyljodid in Methanol und nachfolgendes Kochen mit konz. Salzsāure (ERRERA, LABATE, G. 33 II, 162). Aus dem Äthylester (s. u.) bei kurzem Kochen mit verd. Alkalilauge (E., G. 31 II, 593; B. 34, 3696). Nadeln (aus konz. Essigsäure). Schmilzt, rasch erhitzt, bei 300—305° unter Zersetzung (E.). Fast unlöslich in Wasser und Alkohol (E.). Liefert beim Erhitzen mit Salzsäure (D: 1,1) im Rohr auf ca. 150° 6-Oxy-2.5-dimethyl-pyridin (E.).
- 6-Methoxy-2.5-dimethyl-pyridin-carbonsäure-(3) $C_9H_{11}O_2N = NC_5H(CH_2)_2(O\cdot CH_2)\cdot CO_2H$. B. Aus 6-Methoxy-2.5-dimethyl-pyridin-carbonsäure-(3)-åthylester durch Kochen mit Alkalien (Errera, Labate, G. 33 II, 170). Nadeln (aus verd. Alkohol oder Benzol). F: 167—168°. Sehr schwer löslich in Wasser, schwer in Benzol, leicht in Alkohol.
- 6-Oxy-2.5-dimethyl-pyridin-carbonsäure-(3)-äthylester $C_{10}H_{13}O_3N=NC_5H$ $(CH_2)_3(OH)\cdot CO_2\cdot C_2H_5$. B. Aus 2-Oxy-4-āthoxy-2.5-dimethyl-5-cyan-piperidon-(6)-carbon-sāure-(3)-āthylester (?) durch Kochen mit verd. Salzsäure (Erbera, G. 31 II, 592; B. 34, 3695; vgl. E., Labate, G. 38 II, 161). Nadeln (aus Alkohol). F: 216—217° (E.). Schwer löslich in Wasser, Alkohol und Benzol (E.). Wird durch Alkalien leicht verseift (E.). Löst sich unzersetzt in siedender konzentrierter Salzsäure (E.), wird aber bei längerem Kochen verseift (E., L.). Liefert beim Erhitzen mit Salzsäure (D: 1,1) im Rohr auf ca. 150° 6-Oxy-2.5-dimethyl-pyridin (E.).
- 6-Methoxy-2.5-dimethyl-pyridin-carbonsäure-(3)-äthylester $C_{11}H_{18}O_2N=NC_5H(CH_3)_3(O\cdot CH_3)\cdot CO_3\cdot C_2H_5$. B. Aus der Silberverbindung des 6-Oxy-2.5-dimethylpyridin-carbonsäure-(3)-äthylesters durch Kochen mit Methyljodid in Methanol (Errera, Labate, G. 33 II, 169). Nadeln mit 1 H_2O (aus Wasser). F: 80° (wasserfrei). Nimmt an der Luft das Krystallwasser wieder auf. Die wasserhältige Substanz ist leicht löslich in Methanol und Alkohol.

- 6. 4-Oxy-2.6-dimethyl-pyridin-carbonsdure-(3), 4-Oxy-2.6-dimethyl-nicotinsdure, γ-Oxy-α.α'-lutidin-β-carbonsdure
 C₃H₂O₃N, s. nebenstehende Formel. B. Aus 4-Chlor-2.6-dimethyl-pyridin-carbonsdure-(3)-āthylester durch Kochen mit konz. Natronlauge (Michaelis, A. 366, 340). Aus 2.6-Dimethyl-pyron-(4)-carbonsdure-(3) durch Erhitzen mit Ammoniak (Collie, Soc. 77, 975; C., Hildteh, Soc. 91, 788). Der Athylester entsteht neben anderen Produkten aus β-Amino-crotonsdure-āthylester bei der Destillation (C., A. 226, 310; Soc. 59, 174; 67, 215) oder bei der Behandlung mit Phosphoroxychlorid in Benzol (Michaelis, Hanisch, B. 35, 3158; M., A. 366, 339); man verseift ihn durch Kochen mit Alkalilauge (C., A. 226, 310, 312; Soc. 59, 176). Nadeln mit 1 H₂O (aus Alkohol) (C., A. 226, 312). F: 251° (Zers.) (M.), 257—258° (korr.; Zers.) (C., Soc. 59, 176). Zerfällt beim Erhitzen auf den Schmelzpunkt in 4-Oxy-2.6-dimethyl-pyridin und Kohlendioxyd (M.; C., Soc. 59, 176; 67, 219; 77, 975; C., Hi.). Liefert beim Erhitzen mit Phosphorpentachlorid und Phosphoroxychlorid auf 160° 4-Chlor-2.6-dimethyl-pyridin-carbonsdure-(3) (Sedwick, C., Soc. 67, 407). Cu(C₈H₈O₃N)₃. Hellblaue Nadeln (C., A. 226, 313). AgC₈H₈O₃N (C., A. 226, 313; Soc. 77, 975). Ba(C₈H₈O₃N)₂. Krystalle. Sehr leicht löslich (C., A. 226, 312). Wird durch Kohlendioxyd zersetzt (C., Soc. 59, 176; 77, 975).
- 4-Äthoxy-2.6-dimethyl-pyridin-carbonsäure-(3) $C_{10}H_{13}O_3N = NC_5H(CH_3)_8(O \cdot C_2H_5) \cdot CO_3H$. B. Aus 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester durch Erhitzen mit alkoh. Natronlauge im Rohr auf 170° (Michaelis, Hanisch, B. 35, 3160). Nadeln mit 3H₂O (aus Wasser). F: 200—201°. NaC₁₀H₁₂O₃N. Krystalle (aus Methanol oder Alkohol). Leicht löslich in Wasser, schwerer in Alkohol. AgC₁₀H₁₂O₃N. Prismen (aus Alkohol). $C_{10}H_{13}O_3N + HCl$. Krystalle (aus Alkohol). F: 127°. Sehr leicht löslich in Wasser, schwerer in Alkohol).
- 4-Oxy-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester $C_{10}H_{18}O_3N=NC_6H$ (CH₃)₈(OH)·CO₂·C₂H₅. B. s. o. bei der Säure. Nadeln (aus Alkohol). F: 163—164° (korr.) (COLLIE, Soc. 59, 174), 161° (MICHAELIS, A. 366, 340). Kp: 240—250° (geringe Zers.) (C.). Leicht löslich in Alkohol und Wasser, unlöslich in Äther (M.). Liefert beim Erhitzen mit Phosphorpentachlorid (C.) oder Phosphoroxychlorid (M.) 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester. Bei der Einw. von Brom in essigsaurer Lösung entsteht 5-Brom-4-oxy-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester (C.).
- 4-Oxy-2.6-dimethyl-pyridin-carbonsäure-(3)-nitril, γ -Oxy- β -cyan- α . α' -lutidin $C_8H_8ON_2=NC_5H(CH_8)_3(OH)\cdot CN$. B. Durch Kochen von Acetessigester mit Diacetonitril in Gegenwart von sehr wenig Piperidin (v. Meyer, C. 1908 II, 594; J. pr. [2] 78, 523, 524). Nadeln (aus Alkohol). Ist bei 280° noch nicht geschmolzen. Leicht löslich in Alkalien.
- 5-Brom-4-oxy-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester, 5-Brom-4-oxy-2.6-dimethyl-nicotinsäure-äthylester, β' -Brom- γ -oxy- α . α' -lutidin- β -carbonsäure-äthylester $C_{10}H_{12}O_3NBr$, s. nebenstehende Formel. B. Aus 4-Oxy-2.6-dimethyl-pyridin-carbonsäure-(3)-āthylester durch Einw. von Brom in essigsaurer Lösung (Collie, Soc. 59, 175). Nadeln oder Körner (aus verd. Alkohol). $E: 249-250^{\circ}$ (korr.).
- 4 Methylmercapto 2.6 dimethyl pyridin carbonsäure (3) hydroxymethylat $C_{10}H_{15}O_3NS = (HO)(CH_3)NC_5H(CH_2)_3(S\cdot CH_2)\cdot CO_2H$. Jodid $C_{10}H_{14}O_2SN\cdot I$. B. Aus 1.2.6-Trimethyl-thiopyridon-(4)-carbonsäure-(3) durch Erhitzen mit Methyljodid in Alkohol (Michaelis, A. 366, 347). Prismen. F: 230°. Mäßig löslich in Wasser und Alkohol.
- 4-Methylmercapto-2.6-dimethyl-pyridin-[carbonsäure-(3)-äthylester]-hydroxymethylat $C_{12}H_{18}O_2NS = (HO)(CH_2)NC_5H(CH_2)_2(S\cdot CH_2)\cdot CO_2\cdot C_2H_5$. Jodid $C_{12}H_{18}O_2SN\cdot I$. B. Aus 1.2.6-Trimethyl-thiopyridon-(4)-carbonsäure-(3)-äthylester durch Erhitzen mit Methyljodid in Alkohol (MICHAELIS, A. 366, 345). Nadeln (aus Alkohol). F: 185°.
- 7. 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(5), 2-Oxy-4.6-dimethyl-nicotinsäure, α'-Oxy-α.γ-lutidin-β'-carbonsäure
 C₂H₂O₂N, s. nebenstehende Formel. B. Beim Behandeln des Äthylesters
 (S. 222) mit konz. Säuren in der Kälte oder mit konz. Alkalien in der Siedehitze (Knoevenagel, Cremer, B. 35, 2394). Aus dem Amid (S. 222) durch Erhitzen mit sehr konz. Alkalien (K., C.) oder durch Kochen mit salpetriger Säure (Moir, Soc. 81, 115). Krystalle (aus Alkohol). F: 254° (K., C.), 252° (korr.) (M.). Löslich in heßem Eisessig, sehrer löslich in Alkohol, Chloroform, Benzol und Wasser (K., C.). Löslich in konz. Salzsäure und in Alkalien (K., C.). Geht beim Erhitzen über den Schmelzpunkt unter Kohlendioxyd-Abspaltung in 6-Oxy-2.4-dimethyl-pyridin über (K., C.; M.). Liefert beim Nitrieren 3-Nitro-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(5) (M.). KC₂H₂O₃N. Nadeln (aus Alkohol) (M.).

Äthylester $C_{10}H_{18}O_3N = NC_5H(CH_3)_3(OH)\cdot CO_3\cdot C_3H_5$. B. Beim Kochen von Malonsäurediäthylester mit Acetylacetonamin (Bd. I, S. 785) in Gegenwart von Natriumäthylat (KNOEVENAGEL, CREMER, B. 35, 2391, 2393). — Nadeln (aus Alkohol), Tafeln (aus Wasser). F: 136°. Sehr leicht löslich in Chloroform und heißem Eisessig, ziemlich leicht in Benzol, schwer in Äther, Ligroin, kaltem Alkohol und kaltem Wasser. — Liefert beim Kochen mit $20^{0}/_{0}$ iger Salzsäure 6-Oxy-2.4-dimethyl-pyridin. — Hydrochlorid. F: 95°. Zerfließlich. Zersetzt sich leicht in die Komponenten.

Amid $C_8H_{10}O_2N_2=NC_5H(CH_5)_3(OH)\cdot CO\cdot NH_2$. B. Beim Erhitzen von Malonsäurediamid mit Acetylacetonamin (Bd. I, S. 785) auf 160—165° (KNOEVENAGEL, CREMER, B. 35, 2391, 2395). Aus α' -Oxy- β' -cyan- $\alpha.\gamma$ -lutidin beim Schmelzen mit Kaliumhydroxyd oder beim Erwärmen mit rauchender Schwefelsäure von $10^{\circ}/_{\circ}$ Anhydridgehalt auf 100° (Moir, Soc. 81, 114). — Krystalle mit $1H_2O$ (aus Wasser). F: 224° (K., C.), 227° (korr.) (M.). Leicht löslich in Eisessig, löslich in Alkohol, Chloroform und Wasser in der Wärme, unlöslich in Benzol, Ligroin und Äther (K., C.). Löslich in verd. Kalilauge unter Bildung des Kaliumsalzes (K., C.; vgl. a. M.). — Liefert bei der Einw. von Brom und Natronlauge 5-Amino-6-oxy-2.4-dimethyl-pyridin (M.). Beim Kochen mit ca. $25^{\circ}/_{\circ}$ iger Salzsäure entsteht 6-Oxy-2.4-dimethyl-pyridin (K., C.). — Sulfat. Nadeln. F: 215° (korr.) (M.). Schwer löslich in Wasser.

Acetylamid $C_{10}H_{12}O_3N_2 = NC_5H(CH_3)_2(OH)\cdot CO\cdot NH\cdot CO\cdot CH_3$. B. Aus dem Amid durch Acetylierung (Moir, Soc. 81, 115). — Nadeln. F: 290° (korr.).

Nitril, α'-Oxy-β'-cyan-α.γ-lutidin C₈H₈ON₂ = NC₅H(CH₃)₂(OH)·CN. B. Aus Acetylaceton, Cyanessigester und Ammoniak (Guareschi, C. 1899 I, 289). Beim Erwärmen von Acetylacetonamin (Bd. I, S. 785) mit Cyanacetamid in wäßr. Lösung (Moir, Soc. 81, 104, 105, 113; vgl. Gua., B. 26 Ref., 943). Beim Erhitzen von Acetylaceton-mono-methylimid mit Cyanacetamid (M., Soc. 81, 114). Aus 6-Oxo-2.2.4-trimethyl-5-cyan-1.2.3.6-tetrahydro-pyridin durch Erhitzen auf 320—330° (Gua., Grande, C. 1899 II, 440). — Bitter schmeckende Nadeln (aus Alkohol oder Wasser). F: 291° (korr.) (M.). Schwer löslich in den gebräuchlichen Lösungsmitteln (M.). — Liefert bei der Einw. von rauchender Bromwasserstoffsäure 6-Oxy-2.4-dimethyl-pyridin, Kohlendioxyd und Ammoniak (M.). — Physiologisches Verhalten: Deriu, C. 1901 I, 582. — AgC₈H₇ON₂. Krystallinisch (Gua., B. 26 Ref., 943).

3-Brom-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(5)-nitril, β -Brom- α -oxy- β -cyan- α -puttidin C₂H₇ON₂Br, s. nebenstehende Formel. B. Bei der Einw. von Brom auf α -Oxy- β -cyan- α -puttidin (Guareschi, B. 26 Ref., 944; vgl. Moir, Soc. 81, 106). — Krystalle. F: 260—262° (G.).

3-Nitro-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(5), 5-Nitro-CH₃
2-oxy-4.6-dimethyl-nicotinsäure, β -Nitro- α' -oxy- α - γ -lutidin- β' -carbonsäure C₈H₈O₅N₂, s. nebenstehende Formel. B. Beim Nitrieren von 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(5) (Moir, Soc. 81, 116). — Nadeln. F: 225—227° (korr.). Schwer löslich. — Geht beim Erhitzen auf 260° unter Kohlendioxyd-Abspaltung in 3-Nitro-6-oxy-2.4-dimethyl-pyridin über. — Die Salze sind orangegelb.

Nitril, β -Nitro- α' -oxy- β' -cyan- α . γ -lutidin $C_8H_7O_3N_3 = NC_5(NO_3)(CH_3)_2(OH)\cdot CN$. B. Aus α' -Oxy- β' -cyan- α . γ -lutidin durch Einw. von rauchender Salpetersäure oder von Salpeterschwefelsäure in der Wärme (Moir, Soc. 81, 107). — Tafeln. F: 272° (korr.). — Das farblose Kaliumsalz gibt eine orangegelbe wäßrige Lösung.

4. Oxy-carbonsăuren $C_9H_{11}O_8N$.

- 1. $\alpha-Oxy-\beta-[6-methyl-pyridyl-(2)]-propion-säure$, $\beta-[6-Methyl-pyridyl-(2)]-milchsäure$ $C_9H_{11}O_3N$, s. nebenstehende Formel. B. Aus salzsaurem 2-Methyl-6- $[\gamma.\gamma.\gamma$ -trichlor- β -oxy-propyl]-pyridin durch Kochen mit Soda-Lösung (Einhorn, Gilbody, B. 26, 1421). Krystalle (aus Alkohol). F: 166°. $Cu(C_9H_{10}O_3N)_2+CuO+1^{1/2}H_2O$. Etwas hygroskopische, grüne Blättchen (aus Wasser). $C_9H_{11}O_3N+HCl+AuCl_2+H_2O$. Gelbe Tafeln (aus angesäuertem Wasser). Schmilzt bei ca. 100°, zersetzt sich bei 143° bis 144°. $2C_9H_{11}O_3N+2HCl+PtCl_4$. Orangerote Krystalle. F: 185°.
- 2. α-Oxy-α-[6-methyl-pyridyl-(3)]-propionsäure, HO₂C·C(CH₃)(OH)·α-[6-Methyl-pyridyl-(3)]-milchsäure C₂H₁₁O₃N, s. nebenstehende Formel. B. Das Nitril entsteht aus 2-Methyl-5-acetyl-pyridin bei der Einw. von wasserfreier Blausäure; man erhält die freie Säure durch Verseifen mit Salzsäure (KNUDSEN, B. 28, 1765). Blättchen (aus Chloroform + Benzol). F: 158—159° (unkorr.). Sehr leicht löslich in Wasser und Alkohol, schwerer in Chloroform, unlöslich in Äther, Benzol und Ligroin. Liefert beim Erhitzen mit Phosphortribromid auf

130—140° α -Brom- α -[6-methyl-pyridyl-(3)]-propionsäure. — Schmeckt intensiv sauer und zugleich unangenehm bitter. — Ba(C₉H₁₀O₃N)₂. Hygroskopische, glasartige Masse. — C₉H₁₁O₃N + HCl. Prismen oder Tafeln (aus Methanol + Ather). F: 190—191° (unkorr.). — C₉H₁₁O₃N + HBr. Tafeln. F: 219—220°. — C₉H₁₁O₃N + HCl + AuCl₃. Nadeln. F: ca. 114°.

α-Oxy-α-[6-methyl-pyridyl-(3)]-propionitril, Cyanhydrin des 2-Methyl-5-acetyl-pyridins $C_9H_{10}ON_2=NC_5H_3(CH_3)\cdot C(CH_2)(OH)\cdot CN$. B. s. S. 222 beider Säure. — Nadeln (aus Benzol). F: 103—104° (KNUDSEN, B. 28, 1765). Unlöslich in Wasser. Fast unlöslich in verd. Salzsäure. — Zerfällt beim Aufbewahren an der Luft in 2-Methyl-5-acetyl-pyridin und Blausäure.

3. 6-Oxy-2-methyl-5-äthyl-pyridin-carbonsäure -(3), 6-Oxy-2-methyl-5-äthyl-5-cyan-piperidon-(6)-carbonsäure-(3)-äthylester (?) durch Kochen mit verd. Salzsäure; man verseift ihn durch siedende verdünnte Alkalilauge (Errera, Labate, G. 38 II, 168). — Nadeln (aus Alkohol). F: ca. 305° (Zers.). Sehr schwer löslich in Wasser.

Äthylester $C_{11}H_{15}O_3N = NC_5H(CH_3)(C_2H_5)(OH) \cdot CO_3 \cdot C_2H_5$. B. s. o. bei der Säure. — Nadeln (aus Alkohol). F: 190° (Errera, Labate, G. 33 II, 168). Schwer löslich in Wasser, löslich in Alkohol und Benzol.

- 4. 6-Oxy-2.3.4-trimethyl-pyridin-carbonsäure-(5), 2-Oxy-CH₃
 4.5.6-trimethyl-nicotinsäure C₃H₁₁O₃N, s. nebenstehende Formel.

 HO₂C

 CH₃
- 6-Oxy-2.3.4-trimethyl-pyridin-carbonsäure-(5)-nitril, 6-Oxy-2.3.4-trimethyl-5-cyan-pyridin $C_9H_{10}ON_8=NC_5(CH_3)_3(OH)\cdot CN$. B. Aus Methyl-acetylaceton, Cyanessigester und Ammoniak (Guareschi, C. 1899 I, 289). Prismen (aus Alkohol). F: 305—306° (G., C. 1899 I, 289). Liefert beim Erhitzen mit Zinkpulver im Wasserstoffstrom auf dunkle Rotglut 6-Oxy-2.3.4-trimethyl-pyridin und 2.3.4-Trimethyl-pyridin (Hauptprodukt) (G., C. 1900 I, 1161). Physiologisches Verhalten: Deriu, C. 1901 I, 582.

5. Oxy-carbonsäuren $C_{10}H_{13}O_3N$.

- 1. α Oxy- β -[5 $\ddot{a}thyl$ pyridyl-(2)] $propions\ddot{a}ure$, C_2H_5 · β -[5 $\ddot{A}thyl$ pyridyl-(2)] $milchs\ddot{a}ure$ $C_{10}H_{12}O_3N$, s. nebenstehende Formel. B. Aus 5- $\ddot{A}thyl$ -2-[γ . γ . γ -trichlor- β -oxy-propyl] pyridin durch Einw. von heißer Kaliumcarbonat-Lösung (SCHUBERT, B. 27, 88). Blättchen (aus Chloroform + Ligroin). F: 66°. Sehr leicht löslich in Wasser und Alkohol, unlöslich in $\ddot{A}ther$ und Ligroin. $Ca(C_{10}H_{12}O_3N)_2 + 4^1/_2H_2O$. Blättchen (aus Wasser). F: 105°. $Sr(C_{10}H_{12}O_3N)_2$. Krystalle. F: 143—144°. $C_{10}H_{13}O_3N + HCl + AuCl_3 + H_2O$. Nadeln (aus sehr verd. Salzsäure). F: 83—84°.
- 2. 6-Oxy-2-methyl-5-propyl-pyridin-carbonsäure-(3), 6-Oxy-2-methyl-5-propyl-nicotinsäure C₁₀H₁₃O₂N, s. nebenstehende Formel. B. Der Äthylester entsteht aus 2-Oxy-4-äthoxy-2-methyl-5-propyl-5-cyan-piperidon-(6)-carbonsäure-(3)-äthylester (?) durch Kochen mit verd. Salzsäure; man verseift ihn durch siedende verdünnte Kalilauge (ERBERA, LABATE, G. 33 II, 166). Nadeln (aus Alkohol). F: ca. 300° (Zers.). Sehr schwer löslich in Wasser, leichter in Alkohol.

Äthylester $C_{12}H_{17}O_{2}N = NC_{5}H(CH_{2})(CH_{2}\cdot C_{2}H_{5})(OH)\cdot CO_{2}\cdot C_{2}H_{5}$. B. s. o. bei der Säure. — Nadeln (aus Alkohol). F: 152° (ERRERA, LABATE, G. 33 II, 166). Sehr schwer löslich in Wasser, schwer in Alkohol und Benzol.

3. 2¹ - Oxy - 2.4.5.6 - tetramethyl - CH₃

pyridin-carbonsäure-(3), 4.5.6-Tri
methyl - 2 - oxymethyl - nicotinsäure

C₁₀H₁₂O₂N, Formel I. B. Aus dem Lacton der

Formel II (Syst. No. 4278) durch Kochen mit Barytwasser (Wolff, A. 322, 367). — Prismen.

F: 169° (Zers.). Leicht löslich in Wasser, schwer in Alkohol, Äther und Chloroform. —

Liefert beim Erhitzen auf den Schmelzpunkt, beim Kochen mit verd. Salzsäure, langsamer beim Kochen mit Wasser, das Lacton zurück. Gibt bei der Oxydation mit Permanganat 4.5.6-Trimethyl-pyridin-dicarbonsäure-(2.3). — AgC₁₀H₁₂O₂N. Nadeln. Schwer löslich in siedendem Wasser. — Bariumsalz. Krystalle. Sehr leicht löslich in Wasser.

Anhydrid des 2¹-Oxy-2.4.5.6-tetramethyl-pyridin-carbonsäure-(8)-hydroxy-methylats, Anhydrid des 4.5.6-Trimethyl-2-oxymethyl-nicotinsäure-hydroxy-methylats, 2¹-Oxy-2.4.5.6-tetramethyl-pyridin-carbonsäure-(8)-methylbetain

C₁₁H₁₈O₃N = CH₃·NC₆(CH₃)₃(CH₃·OH)·CO·O. Zur Konstitution vgl. Deoker, Kaufmann, J. pr. [2] 84 [1911], 434. — B. Aus dem Jodmethylat des Lactons der Formel II auf S. 223 (Syst. No. 4278) durch Behandeln mit Silberoxyd, Natronlauge oder Kaliumcarbonat bei Zimmertemperatur (Wolff, A. 322, 369). — Tafeln mit 3H₂O (aus Wasser). F: 259° (Zers.) (W.). Verwittert an der Luft (W.). Leicht löslich in Wasser, schwer in Alkohol, sehr schwer in Ather, Benzol und Chloroform (W.). Reagiert in wäßr. Lösung neutral (W.). — Reduziert Silber-Lösung nicht (W.). Reagiert nicht mit Hydroxylamin und Phenylhydrazin (W.). Liefert beim Behandeln mit Jodwasserstoffsäure oder beim Erhitzen mit Methyljodid im Rohr auf 100° das Jodmethylat des Lactons der Formel II auf S. 223 zurück (W.).

6. Oxy-carbonsauren $C_{18}H_{19}O_8N$.

1. $6-Oxy-2-methyl-4-n-hexyl-pyridin-carbon-säure-(5), 2-Oxy-6-methyl-4-n-hexyl-nicotinsäure <math>C_{13}H_{19}O_3N$, s. nebenstehende Formel.

6-Oxy-2-methyl-4-n-hexyl-pyridin-carbonsäure-(5)-nitril,
6-Oxy-2-methyl-4-n-hexyl-5-cyan-pyridin $C_{13}H_{18}ON_3 = NC_5H(CH_3)(C_6H_{13})(OH)\cdot CN$.

B. Neben 6-Oxy-4-methyl-2-n-hexyl-5-cyan-pyridin bei der Kondensation von Decandion-(2.4) mit Cyanessigsäureäthylester und Ammoniak (Issoglio, C. 1905 II, 336; vgl. Guareschi, C. 1899 I, 290). — Blättchen. F: 108° (I.). Löslich in 18 Tln. 60° /oigem Alkohol bei 50° (I.). Löslich in Äther, Benzol und Aceton, unlöslich in siedendem Wasser (I.). Löslich in Alkalilauge (I.).

2. 6-Oxy-4-methyl-2-n-hexyl-pyridin-carbon-säure-(5), 2-Oxy-4-methyl-6-n-hexyl-nicotinsäure $C_{13}H_{19}O_3N$, s. nebenstehende Formel.

6-Oxy-4-methyl-2-n-hexyl-pyridin-carbonsäure-(5)- nitril, 6-Oxy-4-methyl-2-n-hexyl-5-cyan-pyridin $C_{12}H_{18}ON_2 = NC_5H(CH_2)(C_6H_{12})(OH)$ · CN. B. s. im vorangehenden Artikel. — Nadeln. F: 193—194° (Issoglio, C. 1905 II, 337). Löslich in 144 Tln. $60^{\circ}/_{\circ}$ igem Alkohol bei 50°. Löslich in Äther, Aceton und warmem Benzol, schwer löslich in siedendem Wasser. Löslich in Alkalilauge.

d) Oxy-carbonsäuren $C_n H_{2n-9} O_3 N$.

1. Oxy-carbonsauren $C_{10}H_{11}O_3N$.

1. 6-Oxy-1.2.3.4-tetrahydro-chinolin-carbonsäure-(4), 6-Oxy-1.2.3.4-tetrahydro-cinchoninsäure $C_{10}H_{11}O_{2}N$, s. nebenstehende Formel (R = H).

R·O CH CH₂

6-Methoxy-1.2.3.4-tetrahydro-chinolin-carbonsäure-(4), 1.2.3.4-Tetrahydro-chininsäure $C_{11}H_{13}O_2N$, s. nebenstehende Formel (R = CH₃). B. Durch Reduktion von Chininsäure (S. 234) mit Zinn und konz. Salzsäure (SRPEK, M. 10, 701). — Bei der Einw. von überschüssigem Brom auf das Hydrochlorid erhält man 3.Bz.Bz.-Tribrom-6-methoxy-chinolin (Bd. XXI, S. 90). — $C_{11}H_{13}O_3N$ + HCl. Nadeln (aus Salzsäure). F: 205—206° (unkorr.). Leicht löslich in Wasser und Alkohol. Gibt mit Eisenchlorid eine blaue, allmählich in Rot übergehende Färbung.

N-Acetylderivat $C_{13}H_{15}O_4N=CH_3\cdot O\cdot C_6H_3$ $CH(CO_2H)\cdot CH_3$. B. Aus dem Hydrochlorid der 1.2.3.4-Tetrahydro-chininsäure beim Kochen mit Essigsäureanhydrid (SRPEK, M. 10, 703). — Krystalle (aus Wasser). F: 240—241° (unkorr.). Schwer löslich in kaltem, leicht in heißem Wasser und Alkohol, unlöslich in Äther.

2. 8-Oxy-1.2.3.4-tetrahydro-chinolin-carbonsäure-(5)
C₁₀H₁₁O₂N, s. nebenstehende Formel. B. Durch Reduktion von 8-Oxy-chinolin-carbonsäure-(5) (S. 236) mit Zinn und Salzsäure (Lippmann, Fleissner, M. 8, 316). — Krystalle (aus der ammoniakalischen Lösung durch Essigsäure). Monoklin prismatisch (Hookauf; vgl. Groth, Ch. Kr.

- 5, 787). F: 265° (Zers.). Schwer löslich in Wasser und Alkohol, unlöslich in Benzol, Äther und Chloroform. Gibt mit Ferrosulfat und Ferrichlorid rote Färbungen. $C_{10}H_{11}O_3N + HCl + H_2O$. Nadeln. Leicht löslich in Wasser. $2C_{10}H_{11}O_3N + H_2SO_4 + 3H_2O$. Kugelige Aggregate. Schwer löslich in Wasser. Acetat $C_{10}H_{11}O_3N + C_2H_4O_3$. Niederschlag.
- 1-Äthyl-8-oxy-1.2.3.4-tetrahydro-chinolin-carbonsäure-(5) $C_{12}H_{15}O_3N = HO_2C\cdot(HO)C_6H_2$ CH_2 CH_2 CH_3 CH_3 CH_3 CH_4 CH_3 CH_4 CH_5 $CH_$
- 1 Nitroso 8 oxy 1.2.3.4 tetrahydro chinolin carbonsäure (5) $C_{10}H_{10}O_4N_8 = HO_2C \cdot (HO)C_6H_2 \cdot CH_2 \cdot B$. Aus 8-Oxy-1.2.3.4 tetrahydro chinolin carbonsäure (5) und Natriumnitrit in sehr verd. Salzsäure (Lippmann, Fleissner, M. 8, 320). Krystallinisch. F: 195° (Zers.).

3. 8-Oxy-1.2.3.4-tetrahydro-chinolin-carbonsäure-(7)

C₁₀H₁₁O₂N, s. nebenstehende Formel. B. Durch Reduktion von 8-Oxychinolin-carbonsäure-(7) (S. 236) mit Zinn und Salzsäure (Schmitt,
Engelmann, B. 20, 1219). — Prismen. Sehr schwer löslich. — HÖ

C₁₀H₁₁O₂N + HCl. Prismen (aus Wasser).

Mit dieser Säure identisch ist jedenfalls die 8-Oxy-1.2.3.4-tetrahydro-chinolin-carbon-

Mit dieser Säure identisch ist jedenfalls die 8-Oxy-1.2.3.4-tetrahydro-chinolin-carbonsäure, die aus 8-Oxy-chinolin durch Behandlung mit äthylxanthogensaurem Kalium, Kochen des Bariumsalzes der entstandenen Dithiocarbonsäure mit Quecksilberchlorid und Reduktion der erhaltenen 8-Oxy-chinolin-carbonsäure (S. 236) mit Zinn und Salzsäure gewonnen wurde (Lippmann, Fleisnner, M. 9, 297, 304). — Krystallpulver. F: 222° (Zers.). Schwer löslich in Wasser. — Die wäßr. Lösung wird allmählich violett. Gibt mit Ferrosulfat eine rote Färbung. — C₁₀H₁₁O₃N+HCl. Nadeln. Leicht löslich in Wasser.

1-Methyl-8-oxy-1.2.3.4-tetrahydro-chinolin-carbonsäure-(7) $C_{11}H_{12}O_2N = HO_2C\cdot(HO)C_6H_2$ CH_2 CH_2 CH_3 CH_2 CH_3 CH_4 CH_4 CH_5 CH_5 CH_5 CH_5 CH_6 H

Krystalle (aus Methanol) (Sch., E.).

Verbindung C₁₁H₁₁O₄N [vielleicht 1-Methyl-4.8-dioxy-1.4-dihydro-chinolin-carbonsäure-(7), s. nebenstehende Formel. B. Findet sich in geringer Menge im Harn von Menschen und Hunden nach Verabreichung von 1-Methyl-8-oxy-1.2.34-tetrahydro-chinolin-carbonsäure-(7) (Królikowski, Nencki, M. 9, 214, 215).

Nadeln (aus verd. Alkohol). F: 254-255° (Zers.). Leicht löslich in Alkohol und Äther, fast unlöslich in Wasser. — Gibt mit Eisenchlorid eine blaue, über Violett in Braunrot übergehende Färbung.

- $\begin{array}{c} \textbf{Methylester} \quad \textbf{C}_{18}\textbf{H}_{21}\textbf{O}_{3}\textbf{N} = \frac{\textbf{H}_{2}\textbf{C}\cdot\textbf{C}(\textbf{OH})(\textbf{CO}_{3}\cdot\textbf{CH}_{3})\cdot\textbf{CH}_{3}}{\textbf{C}_{0}\textbf{H}_{5}\cdot\textbf{H}\textbf{C}} \cdot \textbf{NH} \frac{\textbf{C}(\textbf{CH}_{3})_{3}}{\textbf{C}(\textbf{CH}_{3})_{3}} \cdot \textbf{B}. \quad \text{Durch Einleiten} \\ \textbf{von Chlorwasserstoff in eine siedende methylalkoholische Lösung der Säure (Chem. Fabr. Schering, D. R. P. 90245; Frdl. 4, 1222). Krystallmasse. Hydrochlorid. Sehr hygroskopisches Krystallpulver. \\ \end{array}$

- 4-Bensoyloxy-2.2-dimethyl-6-phenyl-piperidin-carbonsäure-(4)-methylester $C_{22}H_{25}O_4N= \frac{H_2C\cdot C(O\cdot CO\cdot C_6H_5)(CO_2\cdot CH_3)\cdot CH_2}{C_6H_5\cdot HC-NH-C(CH_3)_2}$. B. Aus dem Hydrochlorid der vorangehenden Verbindung und Benzoylchlorid bei 140° (Chem. Fabr. Schering, D. R. P. 90245; Frdl. 4, 1223). Prismen (aus Ligroin). F: 110—111°.
- 4-Oxy-2.2 -dimethyl-6-phenyl-piperidin carbonsäure (4) nitril, "Benzal-diacetonamin-cyanhydrin" $C_{14}H_{18}ON_2 = {H_1C \cdot C(OH)(CN) \cdot CH_2 \over C_6H_5 \cdot HC}$. B. Aus Benzal-diacetonamin (Bd. XXI, S. 299) durch Umsetzung mit Kaliumcyanid und Salzsäure (Chem. Fabr. Schering, D. R. P. 91122; Frdl. 4, 1217). Krystallpulver (aus Äther). F: 123—124°. Unlöslich in Wasser und in Alkalien, leicht löslich in Säuren.
- $\begin{array}{l} \textbf{4-Benzoyloxy-1.2.2-trimethyl-6-phenyl-piperidin-carbons\"{a}ure-(4)-methyl-ester} \\ \textbf{C}_{23}\textbf{H}_{27}\textbf{O}_{4}\textbf{N} = & \\ \textbf{C}_{6}\textbf{H}_{5}\cdot\textbf{HC} & \textbf{N}(\textbf{CH}_{2}) & \textbf{C}(\textbf{CH}_{3})\cdot\textbf{CH}_{3} \\ \textbf{C}_{6}\textbf{H}_{5}\cdot\textbf{HC} & \textbf{N}(\textbf{CH}_{2}) & \textbf{C}(\textbf{CH}_{3})_{2} \\ \textbf{C}_{6}\textbf{H}_{5}\cdot\textbf{HC} & \textbf{A}, 1224). \end{array}$

e) Oxy-carbonsäuren $C_n H_{2n-11} O_3 N$.

1. Oxy-carbonsäuren $C_9H_7O_3N$.

3-Oxy-indol-carbonsdure-(2) bezw. 3-Oxo-indolin-carbonsdure-(2) C₉H₇O₃N, Formel I bezw. II, Indoxyl-carbonsaure-(2), Indoxylsaure (Indogensăure). B. Beim Erhitzen von phenylglycin o carbonsaurem Natrium mit der 2-fachen Gewichts- I. menge Natriumhydroxyd auf 235° bis 265° unter Luftausschluß und nachfolgenden Ansäuern der Schmelze mit verd. Schwefelsäure unter Kühlung (BASF, D. R. P. 85071; Frdl. 4, 1032). Aus N-[2-Cyan-phenyl]-glycin durch Erhitzen mit Natronlauge (Kalle & Co., D. R. P. 206903; C. 1909 I, 807; Frdl. 9, 516). Aus Indoxylsäureäthylester beim Erhitzen mit Natriumhydroxyd und wenig Wasser auf ca. 180° und nachfolgenden Ansäuern mit Schwefelsäure unter Kühlung (BAEYER, B. 14, 1743; FORRER, B. 17, 976). Über Bildungsweisen von Indoxylsäure-methylester und Indoxylsäure-äthylester s. S. 227 und 228. — Fast farblose Krystallmasse. F: 122—123° (Zers.); schwer löslich in Wasser (BAEYER). — Gibt beim Erhitzen über den Schmelzpunkt Indoxyl (BAEYER). Ist in trocknem Zustand ziemlich beständig und färbt sich nur allmählich blau (BAEYER). Geht bei längerem Aufbewahren in Indirubin (Syst. No. 3599), Indigo (Syst. No. 3599), Isatin, Phenylglycino-carbonsäure(?) und andere Produkte über (Perkin, Soc. 95, 850). Gibt bei Behandlung mit Oxydationsmitteln je nach den Versuchsbedingungen Isatin (BASF, D. R. P. 107719; C. 1900 I, 1113; Frdl. 5, 397) oder Indigo (BAEYER). Liefert beim Erhitzen mit Wasser Indoxyl (Baeyer; Forrer; Vorländer, Drescher, B. 34, 1856; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 553). Überführung von Indoxylsäure in Halogenderivate des Indoxyls: BASF, D. R. P. 131401; C. 1902 I, 1344; Frdl. 6, 590. Indoxylsaure gibt mit Nitrosobenzol in verd. Alkohol bei Gegenwart von Natriumdicarbonat bei 10° Isatin-α-anil neben geringen Mengen $\begin{array}{l} \text{Indigo und [Indol-(2)]-[indol-(3)]-indigo-monoanil C_6H_4} < \overset{NH}{CO} > C: C \overset{C(:N \cdot C_6H_5)}{C_6H_4} > NH (Syst.) \end{array}$ No. 3599); diese beiden Verbindungen entstehen als Hauptprodukte beim Arbeiten in 10% iger Natronlauge (Pummerer, Goettler, B. 42, 4273). Indoxylsäure liefert mit Essigsäureanhydrid oder Acetylchlorid beim Schütteln in wäßriger neutraler oder schwach alkalischer Lösung oder beim Erwärmen auf höchstens 30—40° O-Acetyl-indoxylsäure und in geringerer Menge N-Acetyl-indoxyl (V., Dr., B. 84, 1856; D.R.P.131400; C. 1902 I, 1343; Frdl. 6, 551); bei 1—2-stdg. Kochen von Indoxylsäure mit Acetylchlorid oder mit Acetanhydrid Natriumacetat erhält man ausschließlich O.N-Diacetyl-indoxyl (V., Dr., B. 84, 1856; D. R. P. 133146; C. 1902 II, 491; Frdl. 6, 554). Bei der Umsetzung mit salzsaurem N.N-Dimethyl-4-nitroso-anilin in Natriumdicarbonat-Lösung bei 15° entsteht ein gelbbraunes, schnell violett werdendes Produkt vom Schmelzpunkt ca. 105°, das beim Erwärmen mit 80°/oigem Aceton Isatin-α-[4-dimethylamino-anil] und beim Erwärmen mit verd. Schwefelsäure auf dem Wasserbad Isatin neben wenig Indigo und geringen Mengen eines violetten Farbstoffs liefert; dieser entsteht als Hauptprodukt beim Behandeln von Indoxylsaure mit N.N-Dimethyl-4-nitroso-anilin in 10% liger Natronlauge (P., G.). Indoxylsaure

liefert beim Erwärmen mit Nitrosoantipyrin in Alkohol auf dem Wasserbad die Verbindung C₀H₄< $\frac{\text{CO}}{\text{NH}}$ >C:N·C C:CH₃ (Syst. No. 3774) (BECHHOLD, B. 36, 4132).

OC·N(C₈H₈)·N·CH₃

- 3 Äthoxy indol carbonsäure (2), Äthylätherindoxylsäure $C_{11}H_{11}O_3N = C_0H_4$ C(O·C₂H₅) C·CO₂H. B. Beim Kochen von 3-Äthoxy-indol-carbonsäure-(2)-äthylester (8. 228) mit alkoh. Baryt-Lösung (Baeyer, B. 14, 1743). Blättchen (aus Alkohol). F: 160° (Zers.) (B., B. 14, 1743). Beim Erhitzen auf den Schmelzpunkt entsteht Indoxyläthyläther (B., B. 14, 1745). Beim Erwärmen mit Ferrichlorid und Salzsäure erhält man Indigo; in alkal. Lösung tritt keine Oxydation zu Indigo ein (B., B. 14, 1743). Gibt bei Einw. von Natriumnitrit und verd. Schwefelsäure Isatin- α -oxim (B., B. 14, 1743; 15, 782; 16, 2191).
- 3 Acetoxy indol carbonsäure (2), O Acetyl indoxylsäure $C_{11}H_9O_4N = C_9H_4 C(0 \cdot CO \cdot CH_9) C \cdot CO_2H$. B. Aus Indoxylsäure und Essigsäureanhydrid oder Acetylchlorid beim Schütteln in wäßriger neutraler oder schwach alkalischer Lösung oder beim Erwärmen auf höchstens 30—40° (Vorländer, Drescher, B. 34, 1856; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). Farblose Krystalle; färbt sich beim Umkrystallisieren aus Wasser bläulich. Wird bei ca. 160° grünlich; F: 175° (Zers.) (V., Dr., B. 34, 1856; D. R. P. 131400). Leicht löslich in Alkohol und Äther, schwerer in Benzol und Chloroform (V., Dr., D. R. P. 131400). Die Lösung in überschüssigem Alkalicarbonat bleibt bei Luftabschluß farblos; bei Luftzutritt färbt sie sich grün und scheidet bald Indigo ab (V., Dr., D. R. P. 131400). Das Silbersalz liefert bei der Umsetzung mit Äthyljodid O-Acetyl-indoxylsäureäthylester (V., Priv.-Mitt.). O-Acetyl-indoxylsäure gibt beim Kochen mit Essigsäureanhydrid mit oder ohne Zusatz von Natriumacetat O.N-Diacetyl-indoxyl (V., Dr., B. 34, 1856; D. R. P. 133146; C. 1902 II, 491; Frdl. 6, 554). Gibt in alkoh. Lösung mit Ferrichlorid eine dunkel-wasserhaltige Blättchen (aus essigsaurer Natriumacetat-Lösung). Färbt sich beim Trocknen graublau (V., Dr., D. R. P. 131400). Kaliumsalz. Krystalle mit 1 H₂O (aus konz. Kaliumacetat-Lösung) (V., Dr., D. R. P. 131400).
- 3-Propionyloxy-indol-carbonsäure-(2), O-Propionyl-indoxylsäure $C_{12}H_{11}O_4N=C_0H_4$ $C(O\cdot CO\cdot C_2H_5)$ $C\cdot CO_2H$. B. Beim Schütteln von Indoxylsäure mit Propionsäure-anhydrid in schwach alkalischer Lösung (Vorländer, Drescher, B. 34, 1856; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). F: 163° (Zers.).
- 3-Benzoyloxy-indol-carbonsäure-(2), O-Benzoyl-indoxylsäure $C_{16}H_{11}O_4N = C_0H_4 \xrightarrow{C(O \cdot CO \cdot C_0H_5)} C \cdot CO_2H$. B. Beim Schütteln von Indoxylsäure mit Benzoylchlorid in alkal. Lösung (Vorländer, Drescher, B. 34, 1856; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). Krystalle (aus Wasser oder Benzol). F: 196° (Zers.). Leicht löslich in Alkohol und Äther, schwerer in Benzol. Gibt in alkoh. Lösung mit Ferrichlorid eine braunrote Färbung.

Indoxylsäure-methylester $C_{10}H_{\bullet}O_{3}N = C_{0}H_{\bullet} < C(OH) > C \cdot CO_{2} \cdot CH_{3}$. B. Bei $^{1}/_{2}$ -stdg. Kochen von [Phenylglycin-o-carbonsäure]-dimethylester mit Natriummethylat-Lösung in Benzol oder Äther (Vorländer, v. Schilling, A. 301, 351). Neben "Diindoxylsäure-anhydrid" $C_{0}H_{\bullet}$ — $CO_{\bullet}H_{\bullet}$ —

3-Acetoxy-indol-carbonsäure-(2)-methylester, O-Acetyl-indoxylsäure-methylester $C_{12}H_{11}O_4N = C_6H_4$ $C(O\cdot CO\cdot CH_3)$ $C\cdot CO_2\cdot CH_3$. B. Aus Indoxylsäure-methylester beim Erhitzen mit Essigsäureanhydrid oder beim Schütteln der alkal. Lösung mit Essigsäureanhydrid bei Zimmertemperatur (VORLÄNDER, DRESCHER, B. 34, 1854; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). — Nadeln (aus Alkohol). F: 143—144°:

3-Bensoyloxy-indol-carbonsäure-(2)-methylester, O-Bensoyl-indoxylsäure-methylester $C_{17}H_{12}O_4N = C_6H_4 \xrightarrow{C(O \cdot CO \cdot C_6H_5)} C \cdot CO_3 \cdot CH_2$. B. Aus Indoxylsäure-methylester und Benzoylchlorid in alkal. Lösung (Vorländer, Drescher, B. 34, 1854; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). — Nadeln (aus Methanol). F: 160°.

Indoxylsäure-äthylester $C_{11}H_{11}O_2N = C_6H_4 < \underbrace{C(OH)}_{NH} > C \cdot CO_2 \cdot C_2H_5$. B. Aus 2-Nitrophenylpropiolsaure-athylester beim Behandeln mit Schwefelammonium-Lösung (BAEYER, B. 14, 1742; BASF, D. R. P. 17656; Frdl. 1, 134). Beim Erhitzen von Anilinomalonsäurediathylester auf 260—265° (Blank, B. 81, 1816; Cassella & Co., D. R. P. 109416; C. 1900 II, 406; Frdl. 5, 405). Aus [Phenylglycin-o-carbonsaure]-diathylester beim Erwarmen mit Natriumathylat-Lösung auf dem Wasserbad (Vorländer, B. 35, 1694; vgl. a. V., v. Schilling, A. 301, 350; Hochster Farbw., D. R. P. 105495; C. 1900 I, 272; Frdl. 5, 400), beim Kochen mit Natriumamid und Benzol oder beim Erhitzen mit den Natriumverbindungen des Formanilids, Acetanilids oder Phenylurethans und Xylol auf 120—130° (Chem. Fabr. v. Heyden, D. R. P. 158089; C. 1905 I, 573; Frdl. 8, 421). Beim Erwärmen von N-Acetyl-[phenylglycin-o-carbonsaure]-diathylester mit Natriumathylat-Lösung (V., Weissbrenner, [phenylglycin-o-carbonsaure]-diathylester mit Natriumathylat-Losung (V., Weissberner, B. 38, 556). Aus (nicht näher beschriebenem) N-Nitroso-[phenylglycin-o-carbonsaure]-diathylester beim Behandeln mit 20%/eiger Natronlauge bei Zimmertemperatur oder besser beim Erwärmen mit Natriumsulfid-Lösung, alkal. Zinnchlorür-Lösung oder mit Ferrosulfat + Natronlauge auf dem Wasserbad (Ch. F. v. H., D. R. P. 138845; C. 1903 I, 547; Frdl. 7, 263). Durch Reduktion von Isatogensäure-äthylester (S. 309) mit Zink und Salzsäure (BASF, D. R. P. 17656; Frdl. 1, 134) oder mit Schwefelwasserstoff in wäßr. Lösung (BAEYER, B. 15, 780; vgl. Bae., B. 14, 1742). — Prismen (aus wäßr. Aceton). F: 116° (V., v. Sch.), 116—117° (Bl.). Leicht in Chloroform, Alkohol, Essigester und Benzol, sehr schwer in Petroläther und Wasser; löslich in Ammoniak, Natronlauge und Soda-Lösung (V., v. Son.). — Färbt sich allmählich graugrün (V., v. Son.). Liefert bei schnellem Erhitzen geringe Mengen Indigo (BAE., B. 14, 1743). Gibt beim Versetzen mit Kaliumdichromat und verd. Schwefelsäure zunächst Indoxanthinsäure-äthylester (S. 372) und dann N-Äthoxalyl-anthranilsäure (BAE., B. 15, 777, 778). Liefert beim Erwärmen mit Ferrichlorid + Ferrihydroxyd in Aceton auf 60° Indoxanthinsäure-äthylester (BAE., B. 15, 775, 778). 776). Gibt bei Behandlung mit Natriumnitrit in Eisessig eine Verbindung C₃₂H₁₈O₈N₄(?) [gelbliches Krystallpulver; F: 173° (Zers.); sehr schwer löslich] neben geringeren Mengen einer Verbindung vom Schmelzpunkt 120° und einer Verbindung vom Schmelzpunkt 143° (Zers.) (Bae., B. 15, 782). Beim Erwärmen mit konz. Schwefelsäure auf dem Wasserbad entsteht eine dunkelblaue Färbung unter Bildung von Indigo-disulfonsäure-(5.5') (Bae., B. 14, 1743; V., v. Sch.).

3-Äthoxy-indol-carbonsäure-(2)-äthylester, Äthylätherindoxylsäure-äthylester $C_{13}H_{15}O_3N = C_6H_4$ $C(O \cdot C_3H_5)$ $C \cdot CO_2 \cdot C_3H_5$. B. Durch Einw. von Äthyljodid auf ein Alkalisalz des Indoxylsäure-äthylesters (Baever, B. 14, 1742). — Krystalle. F: 98° (B., B. 14, 1743). — Liefert beim Behandeln mit Natriumnitrit + Eisessig eine in Äther schwer lösliche Verbindung vom Schmelzpunkt 121°, die durch Behandeln mit Zinkstaub und Essigsäure zu Indoxylsäure-äthylester und Indoxanthinsäure-äthylester reduziert wird (B., B. 15, 781).

3-Acetoxy-indol-carbonsäure-(2)-äthylester, O-Acetyl-indoxylsäure-äthylester $C_{13}H_{13}O_4N=C_4H_4$ $C(O\cdot CO\cdot CH_3)$ $C\cdot CO_2\cdot C_2H_5$. B. Beim Behandeln von Indoxylsäure-äthylester mit Acetanhydrid (Baeyer, B. 14, 1742; Vorländer, Drescher, B. 34, 1854; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). Aus dem Silbersalz der O-Acetyl-indoxylsäure und Äthyljodid (Vorländer, Priv.-Mitt.). — Nadeln. F: 138° (B.), 136° (V., Dr.).

8-Bensoyloxy-indol-carbonsäure-(2)-äthylester, O-Bensoyl-indoxylsäure-äthylester $C_{18}H_{18}O_4N = C_4H_4 \underbrace{C(O \cdot CO \cdot C_9H_8)}_{NH} \underbrace{C \cdot CO_2 \cdot C_2H_8}_{C}$. B. Beim Behandeln von Indoxylsäure-äthylester mit Bensoylchlorid in alkal. Lösung (Vorländer, Drescher, B. 34, 1854; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 553). — F: 163°.

Carbanilsäureester des Indoxylsäure - äthylesters $C_{18}H_{16}O_4N_8 = C_6H_4 \xrightarrow{C(O \cdot CO \cdot NH \cdot C_6H_5)} C \cdot CO_2 \cdot C_2H_5$. B. Beim Erwärmen von Indoxylsäure-äthylester mit Phenylisocyanat (Vorländer, Drescher, B. 34, 1855). — Nadeln (aus Eisessig). F: 187° bis 189°. — Beim Kochen mit Alkohol entsteht Indoxylsäure-äthylester.

Indoxylsäure-anilid $C_{15}H_{15}O_{5}N_{5} = C_{6}H_{4} < \stackrel{C(OH)}{\sim} C \cdot CO \cdot NH \cdot C_{6}H_{5}$. B. Beim Erwärmen von [Phenylglycin-o-carbonsäure]-eso-methylester-exo-anilid oder [Phenylglycin-

o-carbonsäure]-eso-äthylester-exo-anilid mit alkoholfreiem Natriumäthylat und Benzol (Vorländer, Weissbrenner, B. 33, 555). Aus [Phenylglycin-o-carbonsäure]-eso-äthylester-exo-anilid oder (nicht näher beschriebenem) [Phenylglycin-o-carbonsäure]-dianilid beim Erhitzen mit der Natriumverbindung des Acetanilids und Xylol auf 120—125° (Chem. Fabr. v. Heyden, D. R. P. 158089; C. 1905 I, 573; Frdl. 8, 422). — Nadeln (aus Alkohol oder Aceton). Färbt sich bei langsamem Erhitzen gegen 200° graugrün und oberhalb 210° dunkelbraun; bei raschem Erhitzen tritt Zersetzung unter Bildung von Indigo ein (V., W.).

1-Methyl-3-oxy-indol-carbonsäure-(2)-methylester, N-Methyl-indoxylsäure-methylester $C_{11}H_{11}O_2N=C_6H_4 < \frac{C(OH)}{N(CH_2)} > C \cdot CO_2 \cdot CH_3$. B. Entsteht in 2 Formen beim Schütteln von N-Methyl-[phenylglycin-o-carbonsäure]-dimethylester mit überschüssiger verdünnter Kalilauge (Vorländer, Mumme, B. 35, 1700). — a) Höherschmelzende Form. Krystalle (aus Methanol). F: 144—146°. Schwerer löslich in kaltem Methanol als die niedrigerschmelzende Form. — b) Niedrigerschmelzende Form. Krystalle (aus Methanol). F: ca. 88°. Leicht löslich in kaltem Methanol. — Beide Formen sind leicht löslich in Alkalilauge, schwerer in Soda-Lösung und verd. Salzsäure. — Beide Formen geben beim Erwärmen mit absoluter oder rauchender Schwefelsäure eine orangefarbene Lösung, beim Erwärmen mit konz. Schwefelsäure eine zunächst schmutzig grüne, dann blaue Lösung.

1-Acetyl-8-oxy-indol-carbonsäure-(2)-methylester, N-Acetyl-indoxylsäure-methylester $C_{12}H_{11}O_4N=C_6H_4$ C(OH) $C\cdot CO_2\cdot CH_2$. B. Aus N-Acetyl-[phenylglycino-carbonsäure]-dimethylester durch Behandeln mit Natriummethylat-Lösung bei Zimmertemperatur (Leonhardt & Co., D. R. P. 126962; C. 1902 I, 82; Frdl. 6, 556). — F: 117°.

1-Acetyl-3-acetoxy-indol-carbonsäure-(2)-methylester, O.N-Diacetyl-indoxylsäure-methylester $C_{14}H_{13}O_5N=C_6H_4 < C(O \cdot CO \cdot CH_2) > C \cdot CO_2 \cdot CH_3$. B. Beim Kochen von Indoxylsäure-methylester mit Essigsäureanhydrid und Natriumacetat (Vorländer, Drescher, B. 34, 1855; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). — Blättchen (aus Methanol). F: 84°.

1-Acetyl-3-oxy-indol-carbonsäure-(2)-äthylester, N-Acetyl-indoxylsäure-äthylester C₁₈H₁₈O₄N = C₆H₄ C(OH) C·CO₂·C₂H₅. B. Durch Einw. von Natriumäthylat-Lösung auf N-Acetyl-[phenylglycin-o-carbonsäure]-diäthylester bei Zimmertemperatur (Vorländer, B. 35, 1692; Leonhardt & Co., D. R. P. 126962; C. 1902 I, 82; Frdl. 6, 556). — Nadeln (aus verd. Alkohol). F: 115° (L. & Co.), 114—115° (V.). Leicht löslich in Benzol und Eisessig, schwer in Äther, Petroläther und Wasser (V.). — Gibt in alkoh. Lösung mit Eisenchlorid eine grüne Färbung (V.; L. & Co.).

1-Acetyl-3-acetoxy-indol-carbonsäure-(2)-äthylester, O.N-Diacetyl-indoxylsäure-äthylester $C_{15}H_{15}O_5N=C_0H_4 < C(O \cdot CO \cdot CH_2) > C \cdot CO_2 \cdot C_2H_5$. B. Beim Kochen von Indoxylsäure-äthylester mit Acetanhydrid und Natriumacetat (Vorländer, Drescher, B. 34, 1855; D. R. P. 131400; C. 1902 I, 1343; Frdl. 6, 551). — Nadeln. F: 82°.

1-Bensoyl-3-oxy-indol-carbonsäure-(2)-äthylester, N-Bensoyl-indoxylsäure-äthylester $C_{18}H_{18}O_4N=C_0H_4$ C(OH) $C\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Natrium-äthylat-Lösung auf N-Benzoyl-[phenylglycin-o-carbonsäure]-diäthylester bei Zimmertemperatur (Vorländer, B. 35, 1692; Leonhardt & Co., D. R. P. 126962; C. 1902 I, 82; Frdl. 6, 556). — Gelbe Krystalle. F: 87—88° (L. & Co.), 84—86° (V.). Leicht löslich in Alkohol, Äther und Benzol, schwer in Petroläther und Wasser (V.). — Natriumsalz. Löslich in Alkohol, schwer löslich in Wasser (L. & Co.).

Indoxylsäure-N-essigsäure $C_{11}H_{\bullet}O_{\delta}N=C_{\bullet}H_{\bullet}$ C(OH) $C\cdot CO_{2}H$. B. Man erhitzt das Trinatriumsals der Anthranilsäure-N.N-diessigsäure mit Kaliumhydroxyd auf 200° (BASF, D. R. P. 128955; C. 1902 I, 690; Frdl. 6, 559; vgl. dazu Jackson, Kenner, Soc. 1928, 580). — F: 150° (Zers.); schwer löslich in Wasser (BASF). — Wird an der Luft blau (BASF). Beim Kochen der wäßr. Lösung entsteht Indoxyl-N-essigsäure (BASF).

5-Brom-indoxylsäure-äthylester $C_{11}H_{10}O_2NBr$, s. nebenstehende Formel. B. Beim Erwärmen von [N-Nitroso-4-brom-phenylglycin-carbonsäure-(2)]-diäthylester mit Natriumsulfid-

Lösung auf dem Wasserbad (Chem. Fabr. v. HEYDEN, D. R. P. 138845; C. 1908 I, 547; Frdl. 7, 264). Aus [4-Brom-phenylglycin-carbonsäure-(2)]-diathylester beim Erhitzen mit Acetanilid-natrium und Xylol auf 120-125° (Ch. F. v. H., D. R. P. 158089; C. 1905 I, 573; Frdl. 8, 422). — Grünliche Krystalle (aus verd. Alkohol). F: 152—154°.

2. 3-Oxy-indol-carbonsaure-(5), Indoxyl-carbon- HO10 säure-(5) C.H.O.N, s. nebenstehende Formel.

1-Acetyl-3-acetoxy-indol-carbonsaure-(5), O.N-Diacetyl-indoxyl-carbon- $\mathtt{s\"{a}ure-(5)} \ \ C_{12}H_{11}O_5N = HO_5C \cdot C_0H_3 \underbrace{ \begin{array}{c} C(O \cdot CO \cdot CH_2) \\ N(CO \cdot CH_3) \\ \end{array} } CH. \ \ \textit{B}. \ \ \text{Beim Kochen von N-Acetyl-}$ [phenylglycin-dicarbonsaure-(2.4)] mit Acetanhydrid und wasserfreiem Natriumacetat (BAYER & Co., D. R. P. 113240; C. 1900 II, 615; Frdl. 5, 940). — Krystalle (aus Eisessig). F: 250° (Zers.). Schwer löslich in Wasser, Alkohol und Äther, leichter in heißem Eisessig. — Gibt beim Erwärmen mit Soda-Lösung eine intensiv blaue Lösung.

2. Oxy-carbonsauren $C_{10}H_{9}O_{2}N$.

1. 3-Oxy-5-methyl-indol-carbonsäure-(2), 5-Methyl- CH3 indoxyl - carbonsaure - (2), 5 - Methyl - indoxylsaure C₁₀H₂O₂N, s. nebenstehende Formel.

p-Toluidinomalonsäure-diāthylester auf ca. 250° (Blank, B. 31, 1816; Cassella & Co.. D. R. P. 109416; C. 1900 II, 406; Frdl. 5, 405). — Krystalle. F: 156° (C. & Co.), 155—156° (BL.). Leicht löslich in Alkohol und Benzol, unlöslich in Ligroin und Wasser; löslich in Alkalilauge (Bl.). — Beim Kochen mit Alkalilauge und nachfolgenden Durchleiten von Luft durch die Lösung entsteht 5.5'-Dimethyl-indigo (BL.).

3-Oxy-7-methyl-indol-carbonsäure-(2), 7-Methylindoxyl - carbonsäure - (2), 7 - Methyl - indoxylsäure C₁₀H₂O₂N, s. nebenstehende Formel.

o-Toluidinomalonsäure-diäthylester auf 250° (Cassella & Co., D. R. P. 109416; C. 1900 II, 406; Frdl. 5, 405). — Nadeln. F: 140°.

3. $0 \times y$ -carbonsaure $C_{13}H_{15}O_3N = \frac{(HO_2C)(CH_3)C \cdot C \cdot C_2H_5}{(HO)(C_6H_5)C \cdot N}$.

Verbindung $C_{13}H_{14}ON_3 = \frac{(NC)(CH_3)C \cdot C \cdot C_2H_5}{(HO)(C_6H_5)C \cdot N}$. Diese Konstitution kommt vielleicht dem Benzovldipropionitril Bd III S 200 dem Benzoyldipropionitril, Bd. III, S. 688, zu.

f) Oxy-carbonsäuren $C_n H_{2n-18} O_8 N$.

1. Oxy-carbonsäuren $C_{10}H_7O_8N$.

 4-Oxy-chinolin-carbonsäure-(2), 4-Oxy-chinaldinsäure bezw. 4-Oxo-1.4 - dihydro - chinolin - carbonsäure - (2), Chinolon - (4) - carbonsäure - (2) C₁₀H₇O₃N, Formel I bezw. II, Kynurensäure. Zur Konstitution vgl. Homer, J. biol. Chem. 17 [1914], 509; Späth, M. 42 [1921], 91; Besthorn, B. 54 [1921], 1330. — V. Kynurensaure findet sich in geringer Menge und als nicht völlig regelmäßiger Bestandteil im Hundeharn (v. Liebig, A. 86, 125; 108, 354; Eckhard, A. 97, 358: ZABELIN, A. Spl. 2, 335; SEEGEN, Sitzungeber. Akad. Wies. Wien 49 [1864], 183; KRETSCHY, M. 2, 58; SCHMIEDEBERG, SCHULTZEN, A. 164, 156; SOLOMIN, H. 23, 497; ABDERHALDEN, LONDON, PINCUSSOHN, H. 62, 139). SWAIN (C. 1905 I, 827) fand Kynurensäure auch im Harn des Steppenhundes ("Coyote") (vgl. dagegen Hunter, Givens, J. biol. Chem. 8, 449). Der Kynurensäure-Gehalt des Hundeharns wird durch Fleischfütterung (A. Schmidt, Dissert. [Königsberg 1884], S. 10; A. Josephsohn, Dissert. [Königsberg 1898], S. 14; Mendel, Jackson, Am. J. Physiol. 2 [1899], 5; vgl. a. Voit, Riederer, Z. B. 1, 315; Glaessner, LANGSTEIN, B. Ph. P. 1, 34) und durch Verabreichung von Tryptophan stark erhöht (Ellinger, B. 37, 1807; H. 43, 325); nach Verabreichung von Tryptophan findet sich Kynurensäure auch im Kaninchenharn (E., H. 43, 330). Nach Verfütterung von Leim findet sich im Hundeharn keine Kynurensäure (F. Rosenhain, Dissert. [Königsberg 1886], S. 8; Mendel, Jackson, Am. J. Physiol. 2 [1899], 21). Einfluß von Darmdesinfektionsmitteln auf die Kynurensäure-Ausscheidung des Hundes: Baumann, H. 10, 131; Rosenhain, Dissert., S. 16; M. Haagen, Dissert. [Königsberg 1887], S. 13; Mendel, Jackson, Am. J. Physiol. 5 [1901], 429. Über den Einfluß von Giftstoffen auf die Kynurensäure-Ausscheidung des Hundes vgl. Gies, Am. J. Physiol. 5 [1901], 191; Mendel, Schneider, Am. J. Physiol. 5 [1901], 435.—
B. Beim Kochen von 2-Athoxalylamino-acetophenon mit wäßrig-alkoholischer Natronlauge (Camps, B. 34, 2712; H. 33, 404). In geringer Menge bei der Oxydation von schwefelsaurem Galipin (Bd. XXI, S. 207) mit Kaliumpermanganat in neutraler Lösung (Troeger, Müller, C. 1909 II, 1570; Ar. 248, 16; vgl. T., Bönicke, Ar. 258 [1920], 254; Späth, Brunner, B. 57 [1924], 1243). Biochemische Bildung aus Tryptophan s. S. 230 unter Vorkommen.— Isolierung von Kynurensäure aus Hundeharn: Schmiedeberg, Schultzen, A. 164, 156; Hofmeister, H. 5, 67.

Nadeln (aus verd. Essigsäure). Enthält nach Schmiedeberg, Schultzen (A. 164, 157) 2 Mol, nach Kretschy (M. 2, 60) 1 Mol Krystallwasser. Wird bei 140-145° wasserfrei (K.). Rhombisch (v. Lang, M. 2, 60). F: 290° (Zers.) (Camps, B. 34, 2712; H. 33, 404), 288—289° (unkorr.; Zers.) (Homer, J. biol. Chem. 17 [1914], 512), 287—2880 (Zers.; Bad suf 2600 vorgeheizt) (Späth, M. 42 [1921], 92). 1000 Tle. siedendes Wasser lösen ca. 0,9 Tle. (K.). Schwer löslich in organischen Lösungsmitteln (C.). Leicht löslich in Natronlauge, Soda-Lösung und Ammoniak (C.). — Geht beim Erhitzen auf den Schmelzpunkt in 4-Oxy-chinolin (Kynurin, Bd. XXI, S. 83) über (Schmiedeberg, Schultzen, A. 164, 58; K., M. 2, 68; C.). Gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung [2-Carboxy-phenyl]-oxamidsäure und Oxalsäure (K., M. 4, 156; 5, 16). Liefert bei der Destillation mit Zinkstaub im Wasserstoff-Strom Chinolin (K., B. 12, 1674; M. 2, 79). Kynurensäure liefert bei Behandlung mit Kaliumchlorat und heißer Salzsäure eine Verbindung C9H3O2NCl4 (s. u.) und andere Produkte (JAFFÉ, H. 7, 399). Einw. von Phosphorpentachlorid auf Kynurensäure: K., M. 2, 77. Beim Erwärmen von Kynurensäure mit Bromwasser erhält man eine gelbe, krystallinische Verbindung C, H, ONBr, (?), die beim Kochen mit Alkohol in x.x.x-Tribrom-4-oxy-chinolin übergeht (Brieger, H. 4, 90). — Kynurensäure wird durch Fäulnisbakterien nicht verändert (F. Rosen-HAIN, Dissert. [Königsberg 1886], S. 24; CAPALDI, H. 23, 91). Verhalten im Organismus: HAUSER, Ar. Pth. 36, 4; SOLOMIN, H. 23, 502. — Beim Eindampfen von Kynurensäure mit Kaliumchlorat und Salzsäure und Befeuchten des Rückstandes mit Ammoniak tritt nach kurzer Zeit eine smaragdgrüne Färbung auf (J., H. 7, 399). Kynurensäure gibt beim Erhitzen mit Acetanhydrid auf 140° geringe Mengen roter bis violetter Farbstoffe (Kretschy, M. 2, 76). Bestimmung im Hundeharn durch Überführung in das Bariumsalz: Capaldi, H.

NH₄C₁₀H₆O₃N. Sehr leicht löslich in Wasser (Kretschy, M. 2, 65). — KC₁₀H₆O₃N + 2H₂O. Nadeln (K., M. 2, 66). Verwittert rasch an der Luft. Sehr leicht löslich in Wasser. — Cu(C₁₀H₆O₃N)₂ + 2H₂O. Gelblichgrüne, mikroskopische Nadeln (K., M. 2, 64). Sehr schwer löslich in Wasser. — AgC₁₀H₆O₃N + H₂O. Niederschlag (K., M. 2, 65). Sehr schwer löslich in Wasser. — Ca(C₁₀H₆O₃N)₂ + 2H₂O. Nadeln (K., M. 2, 63). Löslich in heißem Wasser. — Ba(C₁₀H₆O₃N)₂ + 3H₂O (über Schwefelsäure getrocknet). Nadeln (Schmiedeberg, Schultzen, A. 164, 156; Hofmeister, H. 5, 68). Wird erst bei 150—160° wasserfrei (Sch., Sch.). — Ba(C₁₀H₆O₃N)₂ + 4½₁₂H₂O (lufttrocken). Schuppen und Nadeln (K., M. 2, 61). Gibt beim Trocknen über Schwefelsäure ca. 1 Mol Wasser ab und wird bei 150—155° wasserfrei. Schwer löslich in kaltem, leichter in heißem Wasser. — C₁₀H₇O₃N + HCl (Brieger, H. 4, 92). Wird durch Wasser hydrolysiert.

Eine von Heller, Sourlis (B. 41, 2699) als 4-Oxo-1.4-dihydro-chinolin-carbon-säure-(2) (Formel II auf S. 230) angesehene Verbindung ist als Chinaldinsäure-N-oxyd (S. 73) erkannt worden (Meisenheimer, Stotz, B. 58 [1925], 2334).

Verbindung C₉H₃O₂NCl₄ ("Tetrachloroxykynurin"). B. Neben anderen Produkten beim Eintragen von Kaliumchlorat in eine siedende Suspension von Kynurensäure in konz. Salzsäure (Jaffé, H. 7, 399). — Gelbe Blättchen oder orangefarbene Prismen (aus Eisessig). F: 179° (unkorr.). Unzersetzt sublimierbar. Unlöslich in Wasser, schwer in Alkohol und Äther. Löslich in Alkalilaugen und Alkalicarbonat-Lösungen mit gelber Farbe. — Gibt mit Ammoniak erst eine braune, dann eine dunkelgrüne, zuletzt eine dunkelblaue Färbung.

4-Methoxy-chinolin-carbonsäure-(2), 4-Methoxy-chinaldinsäure $C_1H_9O_3N=NC_9H_5(O\cdot CH_9)\cdot CO_2H$. B. Bei der Oxydation von schwefelsaurem Galipin (Bd. XXI, S. 207) mit Kaliumpermanganat in neutraler Lösung (Troeger, Müller, C. 1909 II, 1570; Ar.

248, 18; vgl. T., Kroseberg, Ar. **250** [1912], 522, 525; Späth, Brunneb, B. **57** [1924], 1245, 1246). — Krystalle mit 2H₂O (aus Wasser). Schmilzt wasserfrei bei 194° (T., K.).

2. 2-Oxy-chinolin-carbonsäure-(3) bezw. 2-Oxo-1.2-dihydro-chinolin-carbonsäure-(3), Chinolon-(2)-carbonsäure-(3) C₁₀H₂O₃N, Formel I bezw. II, Carbostyril-carbonsäure-(3). B. Durch Reduktion von 2-Nitro-benzalmalonsäure mit Ferrosulfat und Ammoniak in siedendem Wasser (STUART, Soc. 53, 143; H. MEYER, M. 28, 54). Beim Erhitzen von 2-Amino-benzaldehyd mit Malonsäure auf 120° (FRIED-LAENDER, Göhring, B. 17, 459). Aus 2.6-Dioxo-1.2.3.6-tetrahydro-[chinolino-2'.3':4.5-pyrimidin] (Formel III; Syst. No. 3888) beim Erhitzen mit Natronlauge unter Druck auf 200°

I.
$$N = 0$$
 III. $N = 0$ III. $N = 0$

(Conrad, Reinbach, B. 34, 1342). — Nadeln (aus Eisessig oder Alkohol). Schmilzt oberhalb 320° (F., G.). Sublimierbar (C., R.). Löslich in siedendem Eisessig und Alkohol, sehr schwer löslich in anderen Lösungsmitteln (F., G.). — Liefert beim Erhitzen mit Phosphorpentachlorid auf 140° 2-Chlor-chinolin-carbonsäure-(3) (F., G.). — Gibt mit Eisenchlorid in wäßr. Lösung eine braunrote Färbung (F., G.). — Ag₂C₁₀H₅O₃N. Gelbliche Nadeln (F., G.). — Ba(C₁₀H₆O₃N)₂. Nadeln. Schwer löslich in Wasser (F., G.).

2-Methoxy-chinolin-carbonsäure-(3) $C_{11}H_9O_3N=NC_9H_5(O\cdot CH_3)\cdot CO_2H$. B. Durch Erhitzen von 2-Chlor-chinolin-carbonsäure-(3) mit überschüssiger Natriummethylat-Lösung auf 100° (H. Meyer, M. 28, 55). — Nadeln (aus Äther). F: 182°. — Gibt beim Erhitzen über den Schmelzpunkt ein hochschmelzendes Produkt, das bei langem Kochen mit Natronlauge in 2-Oxy-chinolin-carbonsäure-(3) übergeht, und geringe Mengen 2-Methoxy-chinolin.

2-Äthoxy-chinolin-carbonsäure-(3) $C_{12}H_{11}O_3N=NC_9H_5(O\cdot C_2H_5)\cdot CO_2H$. B. Bei längerem Kochen von 2-Chlor-chinolin-carbonsäure-(3) mit alkoh. Kalilauge (FRIEDLAENDER, GÖHRING, B. 17, 460). — Nadeln. F: 133°. — Liefert bei raschem Erhitzen 2-Äthoxy-chinolin; bei langsamem Erhitzen auf 180—200° erhält man ein hochschmelzendes Produkt, das bei längerem Kochen mit Natronlauge in 2-Oxy-chinolin-carbonsäure-(3) übergeht.

2-Oxy-chinolin-carbonsäure-(8)-methylester $C_{11}H_9O_3N = NC_9H_5(OH) \cdot CO_9 \cdot CH_3$. B. Aus 2-Oxy-chinolin-carbonsäure-(3) durch Einw. von methylalkoholischer Schwefelsäure oder von Diazomethan (H. Meyer, M. 28, 55). — Nadeln (aus Äther oder aus verd. Alkohol). F: 186°. Sehr schwer löslich in Äther.

2 - Oxy - chinolin - carbonsäure - (3) - nitril, 3 - Cyan - carbostyril $C_{10}H_6ON_2=NC_0H_5(OH)\cdot CN$. B. Beim Erhitzen von 2-Amino-benzaldehyd mit etwas mehr als 1 Mol Cyanessigester auf 160—190° (Guareschi, Atti Accad. Torino 28, 724; B. 26 Ref., 944). — Nadeln (aus Wasser oder Alkohol). F: 329—331° (Zers.). Unlöslich in Äther, sehr schwer löslich in Wasser und Chloroform. Löslich in heißer Kalilauge. — $AgC_{10}H_5ON_2$. Krystallinisches Pulver.

3. 4-Oxy-chinolin-carbonsāure-(3)
bezw. 4-Oxo-1.4-dihydro-chinolincarbonsāure-(3), Chinolon-(4)-carbonsāure-(3), Chinolon-(4)-carbonsāure-(3), Chinolon-(4)-carbonsāure-(3), Chinolon-(4)-carbonsāure-(3), Chinolon-(4)-carbonN

H

Seim Kochen von 2-Formamino-phenylpropiolsāure-āthylester mit wāßrig-alkoholischer Natronlauge (Camps, B. 84, 2714; H. 83, 407; vgl.
Spāth, M. 42 [1921], 91).— Nadeln (aus verd. Essigsāure + Salzsāure), Prismen (aus Alkohol + Salzsāure). F: 266—267° (Zers.) (C.).— Gibt beim Erhitzen auf den Schmelzpunkt 4-Oxychinolin (C.).— Zeigt beim Behandeln mit Kaliumchlorat und Salzsāure dieselbe Farbreaktion wie Kynurensāure (S. 231) (C.).

4. 2-Oxy-chinolin-carbonsdure-(4), 2-Oxy-cinchoninsdure bezw. 2-Oxo-1.2-dihydro-chinelin-carbonsdure-(4), Chinolon-(2)-carbonsdure-(4)

C₁₀H₂O₂N, Formel VI bezw. VII, Carbostyril-carbonsdure-(4). B. Beim Schmelzen von Cinchonin-saure(8.74) mit 5 Tln. Kaliumhydroxyd und etwas Wasser VI.

(KOENIGS, B. 12, 99; KOEN., KÖBNER, B. 16, 2152).

Aus N-Acetyl-isatin beim Kochen mit verd. Natron-

- lauge (Camps, Ar. 237, 688). Gelbe Nadeln (aus Alkohol oder Eisessig oder durch Sublimation); farblose Nadeln mit 1 H₂O (aus Wasser). F: ca. 340° (C.). Schwer löslich in siedendem Wasser, leichter in siedendem Alkohol und heißem Eisessig (Koen.). Gibt bei der Oxydation mit Kaliumpermanganat Oxalsäure und Ammoniak (Koen., Kör.). Beim Erhitzen des Silbersalzes im Kohlendioxyd-Strom erhält man Carbostyril und Chinolin (Koen., Kör.). Gibt beim Erhitzen mit Phosphorpentachlorid auf 100—120° (Koen.) oder mit Thionylchlorid im Rohr auf 100° (Mulert, B. 39, 1903) das Chlorid der 2-Chlor-cinchoninsäure. Cu(C₁₀H₆O₂N)₂ (bei 140—150°). Hellgrüne Nadeln (aus Wasser) (Koen.). AgC₁₀H₆O₂N (bei 110°). Flockig (Koen.).
- 2-Methoxy-chinolin-carbonsäure-(4), 2-Methoxy-cinchoninsäure $C_{11}H_0O_3N=NC_0H_5(O\cdot CH_3)\cdot CO_3H$. B. Durch Kochen von 2-Chlor-cinchoninsäure mit Natriummethylat-Lösung (Mulert, B. 39, 1904). Nadeln (aus Benzol). F: 178—179°. Lagert sich beim Erhitzen über den Schmelzpunkt in 2-Oxy-cinchoninsäure-methylester um.
- 2-Äthoxy-chinolin-carbonsäure-(4), 2-Äthoxy-cinchoninsäure $C_{19}H_{11}O_3N=NC_9H_5(O\cdot C_2H_5)\cdot CO_2H$. B. Beim Kochen von 2-Chlor-cinchoninsäure mit Natriumäthylat-Lösung (Koenigs, Körner, B. 16, 2153; Camps, Ar. 237, 689). Nadeln (aus Wasser). F: 145—146° (K., K.), 146° (C.). Leicht löslich in Alkohol und in heißem Wasser sowie in verd. Mineralsäuren (K., K.). Geht beim Erhitzen bis auf 240° in 2-Oxy-cinchoninsäure-äthylester über (K., K.; C.). Das Silbersalz gibt beim Erhitzen im Kohlendioxyd-Strom 2-Äthoxy-chinolin und 2-Äthoxy-cinchoninsäure-äthylester (K., K.). $AgC_{12}H_{10}O_3N + C_{12}H_{11}O_3N$ (bei 100°). Krystalle (aus Wasser) (K., K.). $2C_{12}H_{11}O_3N + 2HCl + PtCl_4$. Krystalle (K., K.).
- 2-Oxy-chinolin-carbonsäure-(4)-methylester, 2-Oxy-cinchoninsäure-methylester C₁₁H₂O₃N = NC₂H₅(OH)·CO₂·CH₃. B. Durch Verestern von 2-Oxy-cinchoninsäure mit methylalkoholischer Salzsäure (MULEBT, B. 39, 1902), mit methylalkoholischer Schwefelsäure, mit Thionylchlorid und Methanol oder mit Diazomethan in Äther (H. MEYEB, M. 26, 1321). Beim Erhitzen von 2-Methoxy-cinchoninsäure über den Schmelzpunkt (Mu., B. 39, 1904). Nadeln (aus Alkohol oder durch Sublimation). F: 242° (Mey., M. 26, 1321), 245° (Mu.). Sublimiert bei 240—250°; schwer löslich in Alkohol, fast unlöslich in Äther; unlöslich in Soda-Lösung, leicht löslich in Natronlauge (Mey., M. 26, 1321). Wird durch heiße Soda-Lösung ziemlich leicht verseift (Mey., M. 28, 42).
- 2-Methoxy-chinolin-carbonsäure-(4)-methylester, 2-Methoxy-cinchoninsäure-methylester $C_{12}H_{11}O_3N = NC_2H_5(O \cdot CH_3 \cdot CO_2 \cdot CH_3 \cdot B$. Durch Einleiten von Chlorwasserstoff in eine methylalkoholische Lösung von 2-Methoxy-cinchoninsäure (MULERT, B. 39, 1904). Aus 2-Chlor-chinolin-carbonsäure-(4)-chlorid und siedender Natriummethylat-Lösung (Ges. f. chem. Ind., Priv.-Mitt.). Nadeln (aus verd. Alkohol). F: 71° (M.; G. f. ch. I.).
- 2-Oxy-chinolin-carbonsäure-(4)-äthylester, 2-Oxy-cinchoninsäure-äthylester $C_{19}H_{11}O_{9}N=NC_{9}H_{6}(OH)\cdot CO_{2}\cdot C_{2}H_{5}$. B. Aus dem Silbersalz der 2-Oxy-cinchoninsäure und Äthyljodid (Koenigs, Körner, B. 16, 2155). Beim Erhitzen von 2-Äthoxy-cinchoninsäure bis auf 240° (K., K.; Camps, Ar. 237, 689). Nadeln (aus verd. Alkohol). F: 206° bis 207° (K., K.), 207° (C.). Unlöslich in verd. Mineralsäuren, löslich in Natronlauge (K., K.). Löst sich in Soda-Lösung bei gewöhnlicher Temperatur langsam, beim Erhitzen rasch unter Verseifung (H. Meyer, M. 28, 42, 58).
- 2-Äthoxy-chinolin-carbonsäure-(4)-äthylester, 2-Äthoxy-cinchoninsäure-äthylester $C_{14}H_{15}O_{9}N=NC_{9}H_{8}(O\cdot C_{9}H_{5})\cdot CO_{3}\cdot C_{2}H_{5}$. B. Aus dem Silbersalz der 2-Äthoxy-cinchoninsäure und siedendem Äthyljodid (Koenics, Körner, B. 16, 2156). Aus dem Silbersalz der 2-Äthoxy-cinchoninsäure beim Erhitzen im Kohlendioxyd-Strom, neben 2-Äthoxy-chinolin (K., K.). Nadeln (aus Alkohol). F: 86°.
- 2-Oxy-chinolin-earbonsäure-(4)-amid, 2-Oxy-cinchoninsäure-amid $C_{10}H_8O_2N_2 = NC_0H_8(OH)\cdot CO\cdot NH_2$. B. Aus dem Methylester und wäßr. Ammoniak (Mulert, B. 39, 1902). Krystalle (aus Essigsäure). F: 357—358°.
- 5. 6-Oxy-chinolin-carbonsäure-(4), 6-Oxy-cinchoninsäure,

 Xanthochinsäure C₁₀H₇O₂N, s. nebenstehende Formel. Zur Konsti-HO
 tution vgl. Seraup, M. 4, 699 Anm. 1. B. Beim Erhitzen von Chininsäure
 (S. 234) mit 10 Tln. konz. Salzsäure auf 220—230° (Seraup, M. 2, 601). Man
 löst Chinolin-carbonsäure-(4)-sulfonsäure-(6) in 5 Tln. Kaliumhydroxyd und etwas Wasser,
 verdampft zur Trockne und erhitzt bis zum beginnenden Schmelzen (Weidel, M. 2, 571).

 Krystallisiert wasserfrei (Se., M. 2, 603) oder in Blättchen mit 1 H₂O (aus Wasser) (W.).
 Schmilzt im zugeschmolzenen Röhrchen bei ca. 320° (W.). 100 g der Lösung in siedendem
 absolutem Alkohol enthalten 0,28 g (Claus, Brandt, A. 282, 106). Leicht löslich in Alkalien
 und Mineralsäuren mit tiefgelber Farbe, ziemlich leicht in warmem Eisessig mit gelblicher

Farbe (Sr.). — Gibt beim Erhitzen über den Schmelzpunkt 6-Oxy-chinolin (W.; Sr., M. 4, 696). Liefert bei der Oxydation mit Kaliumpermanganat Pyridin-tricarbonsäure-(2.3.4) (W.).

Cu(C₁₀H₆O₂N)₂ + H₂O. Dunkelgrünes Krystallpulver (Serauf, M. 2, 603). Fast unlöslich in Wasser. — AgC₁₀H₆O₂N + 2H₂O. Gelb; wird über Schwefelsäure wasserfrei (Se., M. 2, 603). — Ca(C₁₀H₆O₃N)₂ + 10H₂O. Hellgelbe Nadeln (Se., M. 2, 604). Ziemlich leicht löslich in heißem, schwer in kaltem Wasser. — Ba(C₁₀H₆O₃N)₂ + 6H₂O. Gelb, krystallinisch (Se., M. 2, 604). Sehr schwer löslich in kaltem Wasser. — C₁₀H₇O₃N + HCl + H₂O. Gelbliche Nadeln (Weidel, M. 2, 574). Wird durch Wasser hydrolysiert. — C₁₀H₇O₃N + HCl + 2H₂O. Goldgelbe Nadeln oder Blättschen (aus Salzsäure) (Se., M. 2, 605). Gibt beim Trocknen über konz. Schwefelsäure oder bei 100° 1 H₂O ab. Ziemlich leicht löslich in warmer verdünnter, fast unlöslich in kalter konzentrierter Salzsäure. Wird durch Wasser hydrolysiert. — 2C₁₀H₇O₃N + H₂SO₄ + 3 H₂O. Goldgelbe Prismen (Se., M. 2, 606). — 2C₁₀H₇O₃N + 2 HCl + PtCl₄ + 2 H₂O. Gelbe Tafeln (W.). Wird durch Wasser hydrolysiert. — 4C₁₀H₇O₃N + 2 HCl + PtCl₄ + 6 H₂O. Gelbbraune Nadeln (Se., M. 2, 606).

6-Methoxy-chinolin-carbonsäure-(4), 6-Methoxy-cinchonin-säure, Chininsäure C₁₁H₂O₃N, s. nebenstehende Formel. B. Bei der Oxydation von Chinin oder Chinidin (Syst. No. 3538) mit Chromtrioxyd in verd. Schwefelsäure (SKRAUP, M. 2, 589, 591; vgl. HIRSCH, M. 17, 327). Bei der Oxydation der aus Chinidin und schwefliger Säure entstehenden Disulfonsäure C₂₀H₂₆O₇N₂S₂ (s. bei Chinidin, Syst. No. 3538) mit Chrom-

Disulfonsäure C₂₀H₂₆O₇N₂S₂ (s. bei Chinidin, Syst. No. 3538) mit Chromtrioxyd in verd. Schwefelsäure (Koenigs, Schönewald, B. 35, 2986). Aus Chinotoxin und Methylchinotoxin (Syst. No. 3635) durch Einw. von Natriumäthylat und Nitrobenzol in absol. Alkohol (Rohde, Antonaz, B. 40, 2331, 2332); entsteht ferner in geringer Menge bei der Einw. von Natriumäthylat und Isoamylnitrit auf Methylchinotoxin in absol. Alkohol (Ro., Schwab, B. 38, 317; Ro., A., B. 40, 2330). Bei der Einw. von Natriumäthylat und Isoamylnitrit auf Chininon (Syst. No. 3635) in absol. Alkohol (Rabe, A. 365, 361). Bei der Oxydation von Chitenidin (Syst. No. 3691) mit Chromsäure in verd. Schwefelsäure (Würstl. M. 10, 67).

Gelbliche Prismen (aus verd. Salzsäure). F: 280° (unkorr.; Zers.) (SKRAUP, M. 2, 592). 100 g der Lösung in siedendem absol. Alkohol enthalten 1,24 g (CLAUS, BRANDT, A. 282, 106); sehr schwer löslich in Äther und Benzol und in kaltem Wasser (SK.). Zeigt in alkoh. Lösung blaue, bei stärkerer Verdünnung violette Fluoresoenz (SK.). Leicht löslich in verd. Mineralsäuren mit gelber Farbe; die Lösungen in Alkalien sind farblos (SK.). Elektrolytische Dissoziationskonstante k bei 25°: 9×10⁻⁶ (Ostwald, Ph. Ch. 3, 395). — Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Pyridin-tricarbonsäure-(2.3.4) (SK., M. 2, 600). Gibt beim Erhitzen mit konz. Salzsäure auf 220—230° 6-Oxy-cinchoninsäure und Methylchlorid (SK., M. 2, 601).

Cu(C₁₁H₈O₃N)₂ + 1¹/₂H₂O. B. Wird aus der Lösung des Ammoniumsalzes durch Kupferacetat als hellgrüner, flockiger Niederschlag ausgeschieden, der sich beim Erwärmen der Flüssigkeit in ein grauviolettes Krystallpulver umwandelt (Sekaup, M. 2, 595). Fast unlöslich in Wasser. — AgC₁₁H₈O₃N. Pulveriger Niederschlag (Sk., M. 2, 593). — Ca(C₁₁H₈O₃N)₂ + 2H₂O. Nadeln (Sk., M. 2, 594). Ziemlich leicht löslich in kaltem Wasser. — Ba(C₁₁H₈O₃N)₂ + 4H₂O. Nadeln (Sk., M. 2, 595). Leicht löslich in kaltem Wasser. — C₁₁H₂O₃N + HCl+2H₂O. Gelbe Tafeln (Skeaup, M. 2, 597). Triklin pinakoidal (v. Lang, M. 2, 598; vgl. Groth, Ch. Kr. 5, 767). F: 225° (Rohde, Antonaz, B. 40, 2330). Löslich in wenig Wasser: wird durch viel Wasser hydrolysiert (Sk.). — 2C₁₁H₂O₃N + 2HCl + PtCl₄. Orangerote Prismen (Sk., M. 2, 598). — 2C₁₁H₂O₃N + 2HCl + PtCl₄. Gelbe Nadeln und Prismen (Sk., M. 2, 597).

Methylester $C_{13}H_{11}O_3N = NC_9H_5(O \cdot CH_3) \cdot CO_3 \cdot CH_3$. B. Aus chininsaurem Silber und Methyljodid im Rohr bei 80—100° (CLAUS, BRANDT, A. 282, 106). — Prismen (aus Äther oder Alkohol). F: 85°.

Äthylester $C_{13}H_{13}O_3N=NC_9H_5(O\cdot CH_9)\cdot CO_2\cdot C_3H_5$. B. Durch wiederholtes Sättigen einer absolut-alkoholischen Lösung von Chininsäure mit Chlorwasserstoff (Hirson, M. 17, 328). — Nadeln (aus Benzol + Ligroin). F: 69° (unkorr.). Unlöslich in Wasser. — $C_{13}H_{13}O_3N+HCl$. Gelbe Nadeln (aus Alkohol). F: 160° (unkorr.; Zers.). — $2C_{13}H_{12}O_3N+2HCl+PtCl_4+2H_2O$. Orangerote Krystalle (aus konz. Salzsäure). F: 228° (Zers.).

Amid $C_{11}H_{10}O_2N_2 = NC_9H_6(O\cdot CH_3)\cdot CO\cdot NH_2$. B. Aus dem Äthylester und konzentriertem alkoholischem Ammoniak bei ca. 100° (HIRSOH, M. 17, 331). — Nadeln (aus Essigester). F: 197°. Leicht löslich in Alkohol, sohwer in Äther und Wasser, unlöslich in Benzol und Ligroin. — Liefert bei Behandlung mit Kaliumhypobromit-Lösung 4-Amino-6-methoxychinolin. — $C_{11}H_{10}O_2N_2 + HCl$. Gelbe Nadeln. F: 244° (Zers.). Schwer löslich in Alkohol. leicht in Wasser und verd. Salzsäure. — $2C_{11}H_{10}O_2N_3 + 2HCl + PtCl_4$. Tafeln (aus verd. Salzsäure).

6-Oxy-chinolin-carbonsäure-(4)-hydroxymethylat, Ammoniumbase des 6-Oxy-cinchoninsäure-methylbetains $C_{11}H_{11}O_4N=(HO)(CH_2)NC_9H_5(OH)\cdot CO_2H$. B. Das Jodid entsteht bei mehrstündigem Erhitzen von 6-Oxy-chinolin-carbonsäure-(4) mit überschüssigem Methyljodid auf 140° (Claus, Brandt, A. 282, 93). Das Chlorid entsteht beim Erhitzen von 6-Methoxy-chinolin-carbonsäure-(4)-chlormethylat (s. u.) mit konz. Salzsäure auf 230° (C., B., A. 282, 95). — Chlorid $C_{11}H_{10}O_3N\cdot Cl.$ Grünlichgelbe Säulen. F: 295°. — Jodid $C_{11}H_{10}O_3N\cdot I.$ Orangegelbe Nadeln und Säulen (aus absol. Alkohol). F: 302°.

Anhydrid, 6 - Oxy - cinchoninsäure - methylbetain $C_{11}H_0O_2N = CH_3 \cdot \stackrel{\top}{N}C_0H_5(OH)$

- CO·O. B. Durch Einw. von feuchtem Silberoxyd auf die Halogenmethylate der 6-Oxychinolin-carbonsäure-(4) (s. o.) (CLAUS, BRANDT, A. 282, 96). Grünlichgelbe Nadeln oder Prismen mit 1 H₂O (aus Wasser). F: 304° (Zers.). Leicht löslich in Wasser, unlöslich in Äther.
- 6-Methoxy-chinolin-carbonsäure-(4)-hydroxymethylat, Ammoniumbase des Chininsäure-methylbetains $C_{19}H_{13}O_4N = (HO)(CH_3)NC_9H_5(O\cdot CH_3)\cdot CO_2H$. B. Das Jodid entsteht beim Erhitzen von Chininsäure mit Methyljodid auf 130° (CLAUS, STOHR, A. 276, 267). Das Jodid liefert mit Silberoxyd Chininsäure-methylbetain (C., St.). Chlorid und Jodid liefern beim Behandeln mit Alkalilaugen unter Luftzutritt 1-Methyl-6-methoxychinolon-(2)-carbonsäure-(4) (S. 373) (C., St.; vgl. Roser, A. 282, 363, 367; Decker, Hook, B. 37, 1005). Beim Erhitzen des Chlorids mit konz. Salzsäure auf 230° erhält man 6-Oxychinolin-carbonsäure-(4)-chlormethylat (C., Brandt, A. 282, 95). Chlorid $C_{12}H_{12}O_3N\cdot Cl$. Gelbe Nadeln. F: 215° (C., St.). Leicht löslich in Wasser. Jodid $C_{12}H_{12}O_3N\cdot I$. Gelbe Säulen und Nadeln (aus Alkohol oder Wasser). F: 205° (Zers.) (C., St.). Leicht löslich in siedendem Wasser und Alkohol. Sulfat. Gelbe Nadeln und Säulen. F: 245° (C., St.). Nitrat. Gelbe Säulen. F: 192° (C., St.). Leicht löslich in Wasser und Alkohol.

Anhydrid, Chininsäure-methylbetain $C_{12}H_{11}O_3N = CH_3 \cdot NC_9H_5(O \cdot CH_3) \cdot CO \cdot O$. B. Aus 6-Methoxy-chinolin-carbonsäure-(4)-jodmethylat und Silberoxyd in kaltem Wasser (Claus, Stohe, A. 276, 269). — Nadeln (aus Alkohol). F: 194° (Zers.). Leicht löslich in Wasser, schwerer in Alkohol.

- 6-Methoxy-chinolin-carbonsäure-(4)-hydroxyäthylat $C_{13}H_{15}O_4N=(HO)(C_2H_5)NC_9H_5(O\cdot CH_3)\cdot CO_2H$. Bromid $C_{13}H_{14}O_3N\cdot Br$. B. Aus Chininsäure und Äthylbromid bei 140° (Claus, Stohr, A. 276, 275). Gelbliche Nadeln (aus Alkohol). F: 210°.
- 6-Methoxy-chinolin-carbonsäure-(4)-hydroxypropylat $C_{14}H_{17}O_4N=(HO)(C_2H_5\cdot CH_1)NC_0H_5(O\cdot CH_3)\cdot CO_2H$. Bromid $C_{14}H_{16}O_3N\cdot Br$. B. Analog der vorangehenden Verbindung (CLAUS, STOHR, A. 276, 276). Gelbe Nadeln. F: 192°.
- 6-Methoxy-chinolin-carbonsäure-(4)-hydroxybensylat, Ammoniumbase des Chininsäure-bensylbetains $C_{18}H_{17}O_4N=(HO)(C_6H_5\cdot CH_2)NC_9H_5(O\cdot CH_3)\cdot CO_2H$. Bromid $C_{18}H_{16}O_3N\cdot Br$. B. Aus Chininsäure und Benzylbromid bei höchstens 130° (Claus, Stohe, A. 276, 277). Gelbe Nadeln (aus Alkohol). F: 149° (Zers.) (C., St.). Löelich in Alkohol, unlöslich in Äther, Benzol und Chloroform (C., St.). Gibt beim Behandeln mit Alkalilaugen bei Luftzutritt 1-Benzyl-6-methoxy-chinolon-(2)-carbonsäure-(4) (S. 373) (C., St.; vgl. Roser, A. 282, 363; Decker, Hock, B. 37, 1005).

Anhydrid, Chininsäure-benzylbetain $C_{18}H_{15}O_3N = C_6H_5 \cdot CH_2 \cdot NC_9H_5(O \cdot CH_3) \cdot CO \cdot O$. B. Aus 6-Methoxy-chinolin-carbonsäure-(4)-brombenzylat (s. o.) und Silberoxyd in Wasser (Claus, Stohr, A. 276, 279). — Hellgelbe Prismen (aus Alkohol). F: 159° (C., St.). Sehr leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther und Benzol (C., St.). — Liefert bei Behandlung mit Alkalilauge und Oxydation des Reaktionsprodukts 1-Benzyl-6-methoxy-chinolon-(2)-carbonsäure-(4) (S. 373) (C., St.; vgl. Roser, A. 282, 363; Decker, Hock, B. 37, 1005).

6. 8-Oxy-chinolin-carbonsäure-(4), 8-Oxy-cinchoninsäure

C₁₀H₇O₃N, s. nebenstehende Formel. B. Durch vorsichtiges Verschmelzen von
8-Sulfo-cinchoninsäure (Syst. No. 3383) mit Kaliumhydroxyd (Weidel, Cobenzi,
M. 1, 855). — Hellgelbe, mikroskopische Prismen mit 1 H₂O (aus Wasser).

Schmilzt im geschlossenen Röhrchen bei 254—256° (unkorr.). Sehr schwer

HO

löslich in siedendem Wasser und Benzol, etwas leichter in heißem Alkohol und Eisessig. —

Geht bei wiederholter Destillation unter gewöhnlichem Druck in 8-Oxy-chinolin über.

Liefert bei der Oxydation mit Kaliumpermanganat Pyridin-tricarbonsäure-(2.3.4). —

Gibt mit Eisenchlorid in verdünnter wäßriger Lösung eine grüne Färbung. — AgC₁₀H₆O₃N+

C₁₀H₇O₃N + H₂O. Hellgelbe, mikroskopische Nadeln. Fast unlöslich in Wasser. — AgC₁₀H₆O₃N (bei 100°). Gelbliche Nadeln. — Ba(C₁₀H₆O₃N)₂. Hellgelb, krystallinisch. — BaC₁₀H₅O₃N +

H₂O. Fast farblose Nadeln. — C₁₀H₇O₃N + HCl + H₂O. Orangegelbe Nadeln oder Prismen

(aus Salzsäure). Monoklin (Březina, M. 1, 860). — $2C_{10}H_{1}O_{2}N + 2HCl + PtCl_{4} + 2H_{2}O$. Hellgelbe Nadeln. Wird durch Wasser oder Salzsäure zersetzt.

- 7. 6-Oxy-chinolin-carbonsäure-(5) C₁₀H₇O₂N, s. nebenstehende Formel. Zur Konstitution vgl. Bobbański, J. pr. [2] 184 [1932], 145. —

 B. Beim Kochen von 6-Oxy-chinolin mit Tetrachlorkohlenstoff und wäßrigalkoholischer Natronlauge (Lippmann, Fleisener, M. 8, 322). Durch Erhitzen von 6-Oxy-chinolin-Kalium mit Kohlendioxyd unter Druck auf 170° (Schmitt, Altschul, B. 20, 2695). Mikroskopische Prismen (aus Wasser). F: 200° (Zers.) (L., F.), 203° bis 204° (Zers.) (Sch., A.). Gibt beim Erhitzen auf den Schmelzpunkt 6-Oxy-chinolin (L., F.; Sch., A.). Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Chinolin-säure (L., F.). Gibt beim Kochen mit Salpetersäure (D: 1,35) 5-Nitro-6-oxy-chinolin (Sch., A.). NH₄C₁₀H₆O₃N + 1/₃ H₃O. Nadeln (Sch., A.). Zerfällt beim Erhitzen auf 110° oder beim Kochen mit Wasser in die Komponenten. AgC₁₀H₆O₃N. Schwer löslich in Wasser (L., F.). Ca(C₁₀H₆O₃N)₃ + 6H₃O. Braungelbe Nadeln (L., F.). Ba(C₁₀H₆O₃N)₃ + 2H₂O. Nadeln (Sch., A.). PbC₁₀H₆O₃N + H₂O (L., F.). C₁₀H₇O₃N + HCl. Nadeln (aus Wasser), Prismen (aus konz. Salzsäure) (Sch., A.). Wird durch heißes Wasser hydrolysiert. 2C₁₀H₇O₃N + 2HCl + PtCl₄ + 2H₂O. Dunkelgelbes Krystallpulver (L., F.). Schwer löslich in heißem Wasser.
- 8. 8-Oxy-chinolin-carbonsäure-(5) C₁₀H₇O₃N, s. nebenstehende HO₅C Formel. Zur Konstitution vgl. Niementowski, Sucharda, B. 49 [1916], 13; Matsumura, Sone, Am. Soc. 53 [1931], 1493. B. Durch Einw. von Tetrachlorkohlenstoff und wäßrig-alkoholischer Kalilauge auf 8-Oxy-chinolin erst bei gewöhnlicher Temperatur, dann auf dem Wasserbad (Lipp- Ho Mann, Fleissner, B. 19, 2468; M. 8, 311). Gelbes Krystallpulver. Schmilzt im geschlossenen Röhrchen bei 280°; schwer löslich in Wasser, Alkohol, Äther und Eisessig, unlöslich in Benzol und Petroläther (L., F., B. 19, 2468, 2469). Gibt bei der trocknen Destillation 8-Oxy-chinolin (L., F., B. 19, 2469). Wird durch Kaliumpermanganat in alkal. Lösung zu Chinolinsäure oxydiert (L., F., B. 19, 2470; M. 8, 312). Gibt bei der Reduktion mit Zinn und Salzsäure 8-Oxy-1.2.3.4-tetrahydro-chinolin-carbonsäure-(5) (L., F., M. 8, 316). Liefert mit Brom in verd. Salzsäure 5.7-Dibrom-8-oxy-chinolin (L., F., M. 8, 315). Gibt in wäßr. Lösung mit Eisenchlorid eine grüne Färbung (L., F., B. 19, 2469). AgC₁₀H₆O₃N + C₁₀H₇O₃N (bei 105°). Mikroskopische Nadeln (L., F., B. 19, 2469). BaC₁₀H₅O₃N + aq. Nadeln (L., F., B. 19, 2469).

9. 8-Oxy-chinolin-carbonsäure-(7) C₁₀H₇O₃N, s. nebenstehende Formel.

a) Prāparat von Schmitt, Engelmann. B. Durch Erhitzen von 8-Oxychinolin-Natrium mit Kohlendioxyd unter Druck auf 140—150° (Schmitt, Engelmann, B. 20, 1217, 2690; vgl. Chem. Fabr. v. Heyden, D. R. P. 39 662; Frdl. 1, 236). — Gelbe Prismen mit 1 H₂O (aus Wasser). Zersetzt sich bei 237—250° (Sch., E., B. 20, 1218, 2690). Schwer löslich in kaltem, leichter in siedendem Wasser, Alkohol und Benzol; die Lösungen sind gelb (Sch., E., B. 20, 1218). — Gibt beim Erhitzen 8-Oxy-chinolin (Sch., E., B. 20, 1218, 2690). Liefert bei der Reduktion mit Zinn und Salzsäure 8-Oxy-chinolin (Sch., E., B. 20, 1218, 2690). Liefert bei der Reduktion mit Zinn und Salzsäure 8-Oxy-chinolin (Sch., E., B. 20, 1219). Gibt in siedendem Eisessig mit 1 Mol Brom 5-Brom-8-oxy-chinolin-carbonsäure-(7), mit 2 Mol Brom 5.7-Dibrom-8-oxy-chinolin und 5-Brom-8-oxy-chinolin-carbonsäure-(7), mit 2 Mol Brom 5.7-Dibrom-8-oxy-chinolin und 5-Brom-8-oxy-chinolin-carbonsäure-(7) (Sch., E., B. 20, 2694). Liefert beim Erwärmen mit konz. Salpetersäure in Eisessig 5.7-Dinitro-8-oxy-chinolin; beim Erwärmen des Nitrats mit Eisessig erhält man 5-Nitro-8-oxy-chinolin-carbonsäure-(7) (Sch., E., B. 20, 2692). — 8-Oxy-chinolin-carbonsäure-(7) wird im Organismus des Hundes nicht verändert (Kroli-kowski, Nencki, M. 9, 211). — Gibt in wäßr. Lösung mit Eisenchlorid eine violettrote bis tiefbraune Färbung (Sch., E., B. 20, 1218). — Salze: Schmitt, Engelmann, B. 20, 2690. — NH₄C₁₀H₄O₂N + H₂O. Nadeln. Zersetzt sich bei 120°. — Ba(C₁₀H₄O₂N)₂ + 2 H₂O. Nadeln (aus Wasser). Schwer löslich in Wasser. — BaC₁₀H₅O₂N. Amorph. Sehr schwer löslich in Wasser. — C₁₀H₇O₂N + HCl. Prismen (aus Salzsäure). Wird durch Wasser hydrolysiert.

b) Praparat von Lippmann, Fleissner. B. Aus 8-Oxy-chinolin-dithiocarbonsaure-(7) (S. 237) durch Kochen des Bariumsalzes mit Quecksilberchlorid oder durch kurzes Erhitzen mit konz. Kalilauge (LIPPMANN, FLEISSNER, M. 9, 300, 304). — Nadeln mit 1 H₂O (aus verd. Essignaure). F: 256° (Zers.). Löslich in Wasser, schwerer in Alkohol, fast unlöslich in Ather, Chloroform und Benzol. — Gibt beim Erhitzen auf den Schmelzpunkt 8-Oxy-chinolin. —

Die wäßr. Lösung gibt mit Eisenchlorid eine rotbraune Färbung. — $KC_{10}H_0O_3N$. Nadeln (aus verd. Alkohol). Sehr leicht löslich in Wasser, sehr schwer in Alkohol. — $AgC_{10}H_0O_3N$ (bei 130°). Amorph; wird beim Erhitzen mit Wasser krystallinisch. — $Ba(C_{10}H_0O_3N)_3 + aq$. Krystallinisch. Schwer löslich in Wasser. — $Hg(C_{10}H_0O_3N)_3 + HgCl_2$. Gelb, krystallinisch. Fast unlöslich in Wasser. — $C_{10}H_7O_3N + HCl + 2^1/2H_2O$. Prismen oder Nadeln (aus Salzsäure). Rhombisch (Hockauf). Wird durch Wasser zersetzt. — $2C_{10}H_7O_3N + 2HCl + PtCl_4 + 4H_2O$. Gelb, krystallinisch.

Methylester $C_{11}H_9O_3N=NC_9H_5(OH)\cdot CO_2\cdot CH_3$. B. Aus 8-Oxy-chinolin-carbonsäure-(7) beim Kochen mit methylalkoholischer Salzsäure unter Zusatz von konz. Schwefelsäure (Einhorn, A. 311, 64). — Prismen (aus Benzol). F: 140°. Leicht löslich in Alkohol, Aceton und Essigester, schwer in Wasser, Äther, Petroläther und Benzol. — Gibt in wäßr. Lösung mit Eisenchlorid eine grüne Färbung.

Äthylester $C_{12}H_{11}O_3N = NC_9H_5(OH)\cdot CO_2\cdot C_2H_5$. B. Analog der des Methylesters (EINHORN, A. 311, 64). — Grünliche Nadeln (aus Benzol und Ligroin). F: 87°. — Gibt mit Eisen-

chlorid in Wasser eine grüne Färbung.

Phenylester $C_{16}H_{11}O_{5}N = NC_{9}H_{5}(OH)\cdot CO_{2}\cdot C_{6}H_{5}$. B. Beim Erhitzen von 8-Oxychinolin-carbonsäure-(7) und Phenol mit Phosphoroxychlorid (Schmitt, Engelmann, B. 20, 2691). — Prismen (aus Alkohol). F: $225-226^{\circ}$.

5-Brom-8-oxy-chinolin-carbonsäure-(7) C₁₀H₆O₃NBr, s. nebenstehende Formel. B. Aus 8-Oxy-chinolin-carbonsäure-(7) und 1 Mol Brom in siedendem Eisessig (SCHMITT, ENGELMANN, B. 20, 2694). — Citronengelbe Nadeln (aus Wasser). F: 233—235° (Zers.). — Gibt beim Erhitzen auf den Schmelzpunkt 5-Brom-8-oxy-chinolin. — Hydrochlorid. Tafeln. Wird durch Wasser hydrolysiert.

$$\text{HO}_2\text{C}. \underbrace{\bigcap_{\text{HO}}^{\text{Br}}}_{\text{N}}$$

5-Nitro-8-oxy-chinolin-carbonsäure-(7) $C_{10}H_6O_5N_2$, s. nebenstehende Formel. B. Aus dem Nitrat der 8-Oxy-chinolin-carbonsäure-(7) beim Erwärmen mit Eisessig (Schmitt, Engelmann, B. 20, 2693). — Gelbe Nadeln (aus Salzsäure). Zersetzt sich bei 200°. — Schwer löslich in Eisessig; leicht löslich in konz. Salzsäure, Alkalilauge und Ammoniak. — Gibt beim Erhitzen mit Glycerin auf 200° 5-Nitro-8-oxy-chinolin.

Methylester $C_{11}H_8O_5N_2 = NC_9H_4(NO_2)(OH) \cdot CO_2 \cdot CH_3$. B. Aus 8-Oxy-chinolin-carbon-säure-(7)-methylester und Salpetersäure in Eisessig bei 50° (Einhorn, A. 311, 65). — Gelbe Nadeln (aus Alkohol). F: 191°. Sehr leicht löslich in Chloroform, Benzol und Essigester. — Acetat $C_{11}H_8O_5N_3+C_2H_4O_2$. Gelbe Nadeln (aus Eisessig). Gibt die Essigsäure beim Aufbewahren oder beim Erwärmen auf 100° ab.

- 8-Oxy-chinolin-dithiocarbonsäure-(7) C₁₀H₇ONS₂ = NC₆H₅(OH)·CS₂H. B. Bei längerem Erhitzen von 8-Oxy-chinolin mit äthylxanthogensaurem Kalium und absol. Alkohol unter Druck auf 100° (Lippmann, Fleisner, M. 9, 297). Braungelb, krystallinisch. F: 180° (Zers.). Sehr schwer löslich in Wasser und organischen Lösungsmitteln. Löslich in starker Salzsäure. Gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Chinolinsäure. Liefert beim Behandeln mit konz. Kalilauge oder mit Quecksilber-, Bleioder Kupfersalzen 8-Oxy-chinolin-carbonsäure-(7). NH₄C₁₀H₆ONS₂. Rotbraune Krystalle. Krystallographisches: Hookauf. Schwer löslich in Wasser.
- 10. 6-Oxy-chinolin-carbonsaure-(8) C₁₀H₇O₂N, s. nebenstehende HO. Formel.
- 6 Benzoylmercapto chinolin carbonsäure (8) C₁₇H₁₁O₂NS = NC₂H₅(S·CO·C₆H₅)·CO₂H. B. Man erhitzt das Natriumsalz der Chinolin-carbonsäure-(8)-sulfonsäure-(6) mit Phosphorpentachlorid auf 125—135°, reduziert das Sulfochlorid mit Zinnchlorür und konz. Salzsäure und benzoyliert die so erhaltene 6-Mercaptochinolin-carbonsäure-(8) nach Schotten-Baumann (Edinger, Bühler, B. 42, 4319). Gelbe Nadeln (aus Alkohol). F: 213°.
- 11. 1-Oxy-isochinolin-carbonsdure-(3) bezw. 1-Oxo-1.2-dihydro-isochinolin-carbonsdure-(3), Isochinolon-(1)-carbonsdure-(3) C₁₀H₇O₂N, Formel I bezw. II, Isocarbostyril-carbonsdure-(3). V. und B. Findet sich mit Methanol und Äthylalkohol verestert, in fasziierten Exemplaren von Anemone thalictroides L.; man

verseift die Ester durch Kochen mit Kalilauge (Beattle, Am. 40, 417). — Entsteht aus Isocumarin-carbonsäure-(3) durch Einw. von Ammoniak (Bamberger, Kitschelt, B. 25, 1142; Zinore, B. 25, 1496; Höchster Farbw., D. R. P. 65497; Frdl. 3, 966). Durch Erhitzen von 4-Oxy-3.4-dihydro-isocumarin-carbonsäure-(3) mit konz. Ammoniak auf 160—170° (Z.; H. F.). — Nadeln. F: 320° (Zers.) (Ba., K.), 319,4° (Zers.) (Bea.); sublimiert beim Erhitzen unter teilweiser Zersetzung (Ba., K.; Z.). Sehr schwer löslich in kaltem Wasser, schwer in organischen Lösungsmitteln in der Kälte (Ba., K.). — Gibt beim Erhitzen auf den Schmelzpunkt oder beim Erhitzen des Silbersalzes auf 150—160° Isocarbostyril (Ba., K.). Liefert bei der Zinkstaub-Destillation Isochinolin (Z.; H. F.). — Gibt mit Eisenchlorid in wäßr. Lösung eine gelbrote Färbung (Ba., K.). — Salze: Ba., K., B. 25, 1143. — Cu(C₁₀H₆O₃N)₂ (bei 100°). Grünlichblau, krystallinisch. Fast unlöslich in Wasser. — AgC₁₀H₆O₃N. Gelatinös. Löslich in kaltem Wasser. — Ba(C₁₀H₆O₃N)₂ (bei 100°). Krystallinisch. Leicht löslich in siedendem Wasser. — Pb(C₁₀H₆O₃N)₂ (bei 100°). Krystallinisch. Ziemlich leicht löslich in siedendem Wasser.

12. 1-Oxy-isochinolin-carbonsäure-(4) bezw. 1-Oxo-1.2-dihydro-isochinolin-carbonsäure-(4), Isochinolon-(1)-carbonsäure-(4), C₁₀H₇O₂N, Formel I bezw. II, Isocarbostyril-carbonsäure-(4).

B. Aus Isocumarin-carbonsäure-(4) und konzentriertem wäßrigem Ammoniak in der Kälte (DIECKMANN, MEISER, B. 41, 3266). Durch Verseifung des Äthylesters (s. u.) mit alkoh. Kalilauge (D., M.). — Nadeln (aus Eisessig). F: 290°

(Zers.). — Gibt beim Erhitzen Isocarbostyril.

Äthylester $C_{12}H_{11}O_3N=NC_9H_5(OH)\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von konzentriertem wäßrigem Ammoniak auf Oxymethylen-homophthalsäure-diäthylester (Bd. X, S. 863) (DIEGEMANN, MEISER, B. 41, 3265). Aus Isocumarin-carbonsäure-(4)-äthylester und alkoh. Ammoniak (D., M.). — Nadeln (aus Alkohol). F: 227°. Sehr schwer löslich in Wasser, schwer in Alkohol, Äther, Benzol und Chloroform.

2. Oxy-carbonsäuren $C_{11}H_9O_3N$.

1. [2 - Oxy - chinolyl - (4)] - essigsäure, Carbostyril - essigsäure-(4) C₁₁H₉O₃N, s. nebenstehende Formel. B. Durch Erwärmen von
Aceton-α.α'-dicarbonsäure-äthylester-anilid mit konz. Schwefelsäure (BestHORN, GARBEN, B. 33, 3445, 3446) oder von Aceton-α.α'-dicarbonsäure-dianilid mit 80°/oiger Schwefelsäure (B., G., B. 33, 3444). — Nadeln (aus Wasser). F: 205°
bis 206° (Zers.). — Gibt beim Erhitzen auf 250° 2-Oxy-4-methyl-chinolin. — AgC₁₁H₈O₃N.
Weißer Niederschlag.

Äthylester $C_{13}H_{13}O_3N=NC_9H_5(OH)\cdot CH_2\cdot CO_2\cdot C_2H_5$. Nadeln (aus Benzol). F: 172° bis 173° (B., G., B. 33, 3447). Sehr leicht löslich in absol. Alkohol, ziemlich leicht in heißem Benzol, schwer in Äther.

- 2. 4-Oxy-2-methyl-chinolin-carbonsäure-(3), 4-Oxy-OH chinaldin-carbonsäure-(3) C₁₁H_{\$}O₃N, s. nebenstehende Formel. B. Neben der Verbindung C₂₂H₁₆O₅N₂ (Bd. XIV, S. 317) bei sehr langem Erhitzen von Anthranilsäure mit Acetessigester auf 130—160° (NIEMENTOWSKI, B. 27, 1400). Neben anderen Verbindungen beim Kochen von 2-Acetamino-phenylpropiolsäure-äthylester mit wäßrig-alkoholischer Natronlauge (Camps, B. 34, 2717). Durch Oxydation von 4-Oxy-chinaldin-aldehyd-(3) mit Kaliumpermanganat in alkal. Lösung (Conrad, Limpach, B. 21, 1975). Krystalle (aus Alkohol). F: 247—248° (Zers.) (Ca.), 245° (Zers.) (Co., L.). Gibt beim Erhitzen auf den Schmelzpunkt 4-Oxy-chinaldin (Co., L.; N.; Ca.). Das Ammoniumsalz gibt in wäßr. Lösung mit Eisenchlorid eine rote Färbung (Co., L.). Mg(C₁₁H_{\$}O_{\$}N)_{\$2}. Krystalle (Co., L.).
- 4-Oxy-2-methyl-chinolin-carbonsäure-(3)-[2-carboxy-anilid], N-[4-Oxy-2-methyl-chinolin-carboyl-(3)]- anthranilsäure $C_{18}H_{14}O_4N_2=NC_9H_4(CH_3)(OH)\cdot CO\cdot NH\cdot C_6H_4\cdot CO_2H$. Zur Konstitution vgl. Heller, Grundmann, B. 56 [1923], 200. B. Durch Einw. von Phosphoroxychlorid auf N-Acetyl-anthranilsäure (Bd. XIV, S. 337) oder ihren Äthylester oder auf "Acetanthranil" C_6H_4 (Syst. No. 4279) (Anschütz, Schmidt, B. 35, 3465, 3469). Krystalle (aus Eisessig). F: 249—250°; leicht löslich in heißem Eisessig, löslich in Pyridin, sehr schwer löslich in Alkohol, fast unlöslich in anderen organischen Lösungsmitteln (A., Sch.). Löslich in Soda-Lösung, Natrium-acetat-Lösung und Ammoniak (A., Sch.). Gibt beim Erhitzen mit Zinkstaub Anilin und

geringere Mengen Benzonitril (A., Sch.). — Ammoniumsalz. Nadeln. F: 239° (Zers.). (A., Sch.) — HO·CuC₁₈H₁₃O₄N₂. Dunkelgrünes Pulver (A., Sch.).

Methylester $C_{19}H_{16}O_4N_2 = NC_9H_4(CH_3)(OH)\cdot CO\cdot NH\cdot C_8H_4\cdot CO_3\cdot CH_3$. B. Durch Erhitzen von N-Acetyl-anthranilsäure mit Phosphoroxychlorid in Toluol auf 100—110° und Behandeln des erhaltenen Reaktionsprodukts mit Methanol (Anschütz, Schmidt, B. 35, 3466). — Nadeln (aus Pyridin). F: 250—251° (Zers.). Ziemlich leicht löslich in Pyridin, schwer in heißem Eisessig, fast unlöslich in anderen Lösungsmitteln.

Äthylester $C_{90}H_{18}O_4N_2 = NC_9H_4(CH_3)(OH)\cdot CO\cdot NH\cdot C_9H_4\cdot CO_2\cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Anschütz, Schmidt, B. 35, 3467). — Nadeln (aus Pyridin). F: 227—228°. Ziemlich leicht löslich in Pyridin, schwer in heißem Eisessig, fast unlöslich in anderen Lösungsmitteln.

Propylester $C_{21}H_{20}O_4N_2 = NC_9H_4(CH_3)(OH)\cdot CO\cdot NH\cdot C_6H_4\cdot CO_2\cdot CH_2\cdot C_2H_6$. B. Analog den vorangehenden Estern (Anschütz, Schmidt, B. 35, 3467). Entsteht ferner beim Sättigen einer Lösung von 4-Oxy-chinaldin-carbonsäure-(3)-[2-carboxy-anilid] in Propylalkohol mit Chlorwasserstoff (A., Sch., B. 35, 3469). — Nadeln (aus Pyridin). F: 251° (Zers.). In organischen Lösungsmitteln leichter löslich als die vorangehende Verbindung. — Spaltung durch Eisessig-Salzsäure: A., Sch., B. 35, 3470.

- 3. 8-Oxy-2-methyl-chinolin-carbonsäure-(7?), 8-Oxy-chinaldin-carbonsäure-(7?)C₁₁H₂O₃N, s. nebenstehende Formel.

 B. Durch Erhitzen von 8-Oxy-chinaldin-Kalium mit Kohlendioxyd auf 180—190° (König, B. 21, 883). Goldgelbe Nadeln mit 1H₂O (aus Wasser). F: 207° (Zers.). Schwer löslich in kaltem Wasser und Alkohol, unlöslich in Äther. Gibt beim Schmelzen 8-Oxy-chinaldin. Gibt mit Eisenchlorid in wäßr. Lösung eine kirschrote Färbung.
- 4. 2-Oxy-4-methyl-chinolin-carbonsäure-(3), 2-Oxy-lepidin-carbonsäure-(3), 4-Methyl-carbostyril-carbonsäure-(3)

 C₁₁H₀O₃N, s. nebenstehende Formel. B. Durch Verseifen des Äthylesters mit siedender Natronlauge (CAMPS, Ar. 240, 142). Durch Erhitzen des 2-Acetylanilids oder des Nitrils mit starker Schwefelsäure (C., Ar. 240, 143, 145). Nadeln (aus Alkohol). F: 254—255° (Zers.). Geht beim Schmelzen in 4-Methyl-carbostyril über.

Äthylester $C_{13}H_{13}O_3N=NC_9H_4(CH_3)(OH)\cdot CO_2\cdot C_2H_5$. B. Durch kurzes Erhitzen von N-[2-Acetyl-phenyl]-malonamidsäure-äthylester (Bd. XIV, S. 44) mit alkoh. Natronlauge (Camps, Ar. 240, 142). — Blättehen oder Nadeln (aus Alkohol). F: 251—252°. Schwer löslich in kalter Natronlauge.

2-Acetyl-anilid C₁₉H₁₆O₃N₂ = NC₉H₄(CH₃)(OH)·CO·NH·C₆H₄·CO·CH₃. B. Entsteht als Hauptprodukt beim Erhitzen von 1 Mol Malonester mit 2 Mol 2-Amino-acetophenon auf Siedetemperatur (Camps, Ar. 240, 141). Aus N.N'-Malonyl-bis-[2-amino-acetophenon] beim Schmelzen oder beim Erhitzen mit alkoh. Natronlauge (C., Ar. 240, 143). — Nadeln. Krystallisiert aus Eisessig mit Krystall-Essigsäure. F: 275°. Unlöslich in Äther und Benzol. — Wird durch siedende Natronlauge nicht, durch starke Schwefelsäure erst bei längerem Erhitzen verseift.

Nitril, 2-Oxy-3-cyan-lepidin, 4-Methyl-3-cyan-carbostyril $C_{11}H_8ON_2=NC_9H_4(CH_3)(OH)\cdot CN$. B. Beim Erhitzen von 2-Amino-acetophenon mit Cyanessigester auf ca. 200° (Guareschi, Atti Accad. Torino 28 [1893], 719; B. 26 Ref., 944; Camps, Ar. 240, 144). — Nadeln (aus Alkohol). F: 330—332° (Zers.) (G.), 320° (C.). Sehr schwer löslich in Alkohol, unlöslich in Äther, Chloroform, Benzol und Wasser (G.). Löslich in heißen verdünnten Säuren und Alkalien (C.). — Gibt bei der Zinkstaub-Destillation Lepidin (G.). Wird durch starke Schwefelsäure bei 130—140° verseift (C.). — AgC₁₁H₇ON₂ (bei 100°). Gelbliches Krystall-pulver (G.).

5. 2 - Oxy - 3 - methyl - chinolin - carbonsdure - (4), 2 - Oxy - CO₂H

3 - methyl - cinchoninsdure, 3 - Methyl - carbostyril - carbonsdure-(4) C₁₁H₀O₃N, s. nebenstehende Formel. B. Durch Kochen von
N-Propionyl-isatin mit 2°/0iger Natronlauge (H. MEYER, M. 26, 1323; ORNSTEIN, B. 40, 1091). Beim Schmelzen von 3-Methyl-cinchoninsäure mit 5 Tln. Kaliumhydroxyd und 2 Tln. Wasser (O.). — Nadeln mit 1 H₂O (aus Wasser). F: 315—317° (M.),
311—312° (O.). — Das Silbersalz gibt beim Erhitzen im Kohlendioxyd-Strom 3-Methylcarbostyril (O.). — AgC₁₁H₂O₂N. Nadeln (aus Wasser) (O.).

Methylester $C_{12}H_{11}O_3N=NC_3H_4(CH_3)(OH)\cdot CO_3\cdot CH_3$. B. Aus 2-Oxy-3-methyl-cinchoninsaure durch Umsetzung mit Diazomethan oder durch Behandlung mit Thionylchlorid und Kochen des entstandenen Chlorids mit Methanol oder durch Umsetzung des Silbersalzes mit überschüssigem Methyljodid (H. MEYER, M. 26, 1323; 28, 36). Beim Erhitzen von 2-Chlor-3-methyl-cinchoninsaure-methylester mit überschüssigem Methanol auf 100° (M.,

M. 28, 37). — Nadeln (aus Methanol). F: 177—178° (M., M. 28, 36 Anm. 1). — Wird beim Erwärmen mit Soda-Lösung auf dem Wasserbad teilweise verseift (M., M. 28, 42).

Äthylester $C_{13}H_{13}O_3N=NC_9H_4(CH_3)(OH)\cdot CO_2\cdot C_2H_5$. B. Durch Behandeln von 2-Oxy-3-methyl-cinchoninsäure mit Thionylchlorid und Kochen des entstandenen Chlorids mit absol. Alkohol (H. Meyer, M. 28, 40). — Nadeln (aus verd. Alkohol). F: 167°. Leicht löslich in konz. Mineralsäuren. — Wird durch Soda-Lösung auf dem Wasserbad nur zu einem geringen Teil verseift.

Amid $C_{11}H_{10}O_2N_2 = NC_9H_4(CH_3)(OH) \cdot CO \cdot NH_2$. B. Durch Erhitzen von 2-Chlor-3-methyl-cinchoninsäure-amid mit Wasser auf 180° (Örnstein, B. 40, 1094). — F: 353—354°.

Anilid $C_{17}H_{14}O_2N_2 = NC_0H_4(CH_3)(OH)\cdot CO\cdot NH\cdot C_0H_5$. B. Analog dem Amid (Obustein, B. 40, 1094). — Krystalle (aus Alkohol + Petroläther). F: 314—315°.

6. 2-Oxy-4-methyl-chinolin-carbonsäure-(8), 2-Oxy-lepidin-carbonsäure-(8), 4-Methyl-carbostyril-carbon-säure-(8) C₁₁H₂O₂N, s. nebenstehende Formel. B. Bei der Oxydation von α₁-Oxo-γ₁-methyl-julolin (Bd. XXI, S. 327) mit Kaliumpermanganat in verd. Schwefelsäure (Reissert, B. 24, 853) oder mit Chromschwefelsäure (R., B. Ho₂C 25, 111). — Nadeln (aus verd. Alkohol). F: 312,4° (korr.; Zers.) (R., B. 24, 853). Schwer löslich in siedendem Wasser, ziemlich leicht in Alkohol und Eisessig, fast unlöslich in Äther, Chloroform und Benzol (R., B. 24, 853). — Beim Erhitzen des Silbersalzes erhält man 4-Methyl-carbostyril (R., B. 24, 855). — AgC₁₁H₈O₂N. Sehr schwer löslich in heißem Wasser (R., B. 24, 854).

7. 2-Oxy-6(oder 8)-methyl-chinolin-carbonsäure-(8 oder 6), 6(oder 8)- I. Methyl - carbostyril - carbonsäure-(8 oder 6) C₁₁H₂O₂N, Formel I bezw. II, HO₂C CH₂ Cytisolinsäure. B. Durch Oxydation von Cytisolin (Bd. XXI, S. 117) mit Chromtrioxyd in Essigsäure oder verd. Schwefelsäure (Freund, B. 87, 19). — Nadeln (aus Essigsäure). Schmilzt oberhalb 350°. Leicht löslich in Ammoniak.

8. 1-Oxy-3-methyl-isochinolin-carbonsäure-(4), 3-Methyl-isocarbostyril-carbonsäure-(4) C₁₁H₉O₂N, s. nebenstehende Formel.

Nitril, 3-Methyl-4-cyan-isocarbostyril C₁₁H₈ON₂ = NC₉H₄(CH₂)(OH)·
CN. B. Beim Erwärmen von β-Acetoxy-α-[2-cyan-phenyl]-crotonsäure-nitril (Bd. X, S. 523) mit verd. Natronlauge (Gabriel, Neumann, B. 25, 3567). — Mikroskopische Nadeln (aus Eisessig). Schmilzt nicht bis 310°. Sehr schwer löslich in den gebräuchlichen Lösungsmitteln. Löslich in siedenden Alkalilaugen mit gelber Farbe. — Gibt beim Kochen mit starker Schwefelsäure 3-Methyl-isocarbostyril. Beim Kochen mit Methyljodid und wäßrig-alkoholischer Kalilauge entsteht 2.3-Dimethyl-4-cyan-isocarbostyril (S. 313).

9. [2 - Methyl - indoleninyliden - (3)] - glykolsäure $C_{11}H_9O_3N$, s. nebenstehende Formel, ist desmotrop mit [2-Methylindolyl-(3)]-glyoxylsäure, S. 313.

3. Oxy-carbonsauren $C_{12}H_{11}O_8N$.

1. β-Oxy-β-[chinolyl-(2)]-propionsdure, β-[Chinolyl-(2)]-hydracrylsdure C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Neben anderen Verbindungen bei der Einw. von Alkalicarbonat-Lösungen auf β-Brom-β-[chinolyl-(2)]-propionsäure (Einhorn, Lehnkering, A. 246, 171, 172, 176). Beim Kochen des Amids (s. u.) mit Salzsäure (Ei., L.). — Prismen (aus Chloroform + Methanol oder aus Essigester). F: 176°. Leicht löslich in Alkohol und Essigester, unlöslich in Chloroform, Benzol und Petroläther. — NaC₁₂H₁₀O₂N (bei 100°). Krystalle (aus absol. Alkohol). — AgC₁₂H₁₀O₂N. Voluminöser Niederschlag. — C₁₂H₁₁O₂N + HCl. Prismen. F: 187°. — 2C₁₂H₁₁O₃N + 2 HCl + PtCl₄. Gelbrote Prismen (aus verd. Salzsäure). F: 218° (Zers.).

Methylester $C_{12}H_{13}O_2N=NC_2H_4\cdot CH(OH)\cdot CH_2\cdot CO_2\cdot CH_2$. Prismen (aus Benzol + Ligroin). F: 62° (EINHORN, LEHNKERING, A. **246**, 178). Loelich in Äther, Alkohol und Benzol, unlöslich in Ligroin.

Amid $C_{19}H_{19}O_2N_2 = NC_9H_6 \cdot CH(OH) \cdot CH_2 \cdot CO \cdot NH_2$. B. Aus β -Brom- β -[chinolyl-(2)]-propionsāure-hydrobromid und überschüssigem Ammoniak bei gewöhnlicher Temperatur (Einhorn, Lehnerring, A. 246, 175). — Krystalle (aus absol. Alkohol). F: 151—152°.

- 2. α-Oxy-β-[chinolyl-(2)]-propionsdure, β-[Chino-lyl-(2)]-milchsdure C₁₂H₁₁O₂N, s. nebenstehende Formel. B.

 Beim Erwärmen von 2-[γ·γ·γ·Trichlor-β-oxy-propyl]-chinolin mit
 wäßrig-alkoholischer Natronlauge, neben β-[Chinolyl-(2)]-acrylsäure (Einhorn, B. 18, 3465;
 19, 906). Gelbrote Krystalle mit 1 H₂O (aus sehr verd. Alkohol). F: 123—125° (Zers.)
 (Ei., B. 19, 907). Das Natriumsalz liefert bei der Oxydation mit Kaliumpermanganat in kaltem Wasser bei Gegenwart von Benzol Chinolyl-(2)-acetaldehyd (Ei., B. 18, 3467; 19, 908); dieser entsteht auch beim Kochen der freien Säure mit Benzol oder Wasser (Ei., B. 19, 910), bei der Elektrolyse des Natriumsalzes in essigsaurer Lösung (Carlier, Ei., B. 23, 2894; Ei., Sherman, A. 287, 38) und beim Erhitzen des Natriumsalzes mit konz. Schwefelsäure auf 110—120° (C., Ei.; Ei., Sh.). Durch Oxydation des Natriumsalzes mit überschüssigem Kaliumpermanganat erhält man Chinolyl-(2)-essigsäure (Ei., Sh.). Einw. von Brom in Eisesig: C., Ei. NaC₁₂H₁₀O₂N + 3H₂O. Orangefarbene Nadeln (aus Wasser) (Ei., B. 19, 906). Nimmt beim Trocknen oder beim Umkrystallisieren aus absol. Alkohol eine gelbe Färbung an. Ag C₁₂H₁₀O₂N. Krystalle (aus verd. Alkohol) (Ei., B. 18, 3467). Sehr schwer löslich in verd. Alkohol. 2C₁₂H₁₁O₂N + 2 HCl + PtCl₄ + 5 H₂O. Gelbe Nadeln (aus verd. Salzsäure) (Ei., B. 18, 3466).
- 3. 2-Oxy-3-äthyl-chinolin-carbonsäure-(4), 2-Oxy-3-äthyl-cinchoninsäure, 3-Äthyl-carbostyril-carbonsäure-(4)

 C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Beim Kochen von N-Butyrylisatin mit verd. Natronlauge (Mulert, B. 39, 1907; H. Meyer, M. 28, 38).

 Nadeln (aus Wasser). F: 285° (Mu.). Löslich in Alkohol und Aceton, schwer löslich in Wasser und Äther, unlöslich in Ligroin, Benzol und Chloroform (Mu.). AgC₁₂H₁₀O₂N. Prismen (aus Wasser). Leicht löslich in Säuren und in Ammoniak (Mu.).

Methylester $C_{13}H_{13}O_3N=NC_9H_4(C_2H_5)(OH)\cdot CO_2\cdot CH_3$. B. Aus dem Chlorid (s. u.) und siedendem Methanol oder aus dem Silbersalz der Säure und Methyljodid (MULERT, B. 39, 1907). — Krystalle (aus verd. Alkohol). F: 160° (Mu.). Leicht löslich in organischen Lösungsmitteln außer Ligroin (Mu.). — Verseifung durch Soda-Lösung: H. Meyer, M. 28, 43.

Äthylester $C_{14}H_{15}O_{3}N = NC_{9}H_{4}(C_{9}H_{5})(OH)\cdot CO_{2}\cdot C_{2}H_{5}$. B. Bei mehrstündigem Kochen des Chlorids mit Alkohol (H. Meyer, M. 28, 41). — Nadeln (aus verd. Alkohol). F: 133° bis 134°. — Wird beim Erwärmen mit Soda-Lösung nicht verseift.

Chlorid $C_{12}H_{10}O_2NCl = NC_2H_4(C_2H_5)(OH)\cdot COCl$. B. Bei kurzem Kochen der Säure mit Thionylchlorid (MULERT, B. 39, 1907). — Tafeln (aus Chloroform). F: 194—195° (MU.). — Wird durch Alkohol erst bei mehrstündigem Kochen in den Äthylester umgewandelt (H. MEYER, M. 28, 40).

Amid $C_{19}H_{19}O_2N_2=NC_9H_4(C_9H_5)(OH)\cdot CO\cdot NH_2$. B. Aus dem Chlorid und Ammoniak in Chloroform (MULERT, B. 39, 1908). — Krystalle (aus verd. Alkohol). F: 304—305°. Unlöslich in den meisten organischen Lösungsmitteln.

4. 4 - Oxy - 2.7 - dimethyl - chinolin - carbonsaure - (3)

C₁₂H₁₁O₂N, s. nebenstehende Formel. B. Neben einer Verbindung
C₂₄H₂₆O₅N₂ (Bd. XIV, S. 485) beim Erhitzen von 4-Methyl-anthranilsäure mit Acetessigester auf 130—160° (NIEMENTOWSKI, B. 27, 1401).

— Nadeln (aus Amylalkohol oder Benzol). F: 249°.

5. 1-Oxy-3-āthyi-isochinolin-carbonsāure-(4), 3-Āthyi-isocarbostyril-carbonsāure-(4) C₁₂H₁₁O₃N, s. nebenstehende Formel.

Nitril, 8-Āthyl-4-cyan-isocarbostyril C₁₂H₁₀ON₂ = NC₂H₄(C₂H₅)

(OH)·CN. B. Beim Kochen von β-Propionyloxy-α-[2-cyan-phenyi]-α-buty-len-α-carbonsāurenitril (Bd. X, S. 524) mit wāβrig-alkoholischer Natronlauge

(Damerow, B. 27, 2233).— Tafeln (aus Alkohol). F: 261—262° (Zers.). Leicht löslich in Eisessig, schwer in kaltem Wasser und Benzol, sehr schwer in Alkohol.— Gibt beim Erhitzen mit starker Schwefelsäure oder Phosphorsäure 3-Āthyl-isocarbostyril. Beim Kochen mit Methyljodid in wäßrig-alkoholischer Kalilauge entsteht 2-Methyl-3-āthyl-4-cyan-isocarbostyril (S. 315).

4. Oxy-carbonsäuren $C_{12}H_{18}O_8N$.

1. 4-Oxy-2.Bz.Bz-trimethyl-chinolin-Bz-carbonsäure, 4-Oxy-Bz.Bz-dimethyl-chinaldin-Bz-carbonsäure $C_{13}H_{13}O_3N=NC_3H_1(CH_2)_3(OH)\cdot CO_3H$.

8-Nitro-4-oxy-2.Bs.Bs-trimethyl-chinolin-Bs-carbonsäure, 3-Nitro-4-oxy-Bs.Bs-dimethyl-chinaldin-Bs-carbonsäure $C_{13}H_{13}O_5N_2=NC_9H(NO_2)(CH_3)_8(OH)\cdot CO_2H$. B. Neben anderen Produkten beim Erwärmen von 4-Oxy-2.5.6.8-tetramethyl-chinolin mit

Salpetersäure (D: 1,4) (CONRAD, LIMPACH, B. 21, 529). — Pulver. Zersetzt sich bei höherer Temperatur, ohne zu schmelzen. Unlöslich in Alkohol, Äther und Wasser. — $NaC_{13}H_{11}O_{5}N_{2} + H_{2}O$. Gelbliche Nadeln.

2. 1 - Oxy - 3 - propyl - isochinolin - carbonsäure - (4), CO₂H
3-Propyl-isocarbostyril-carbonsäure-(4) C₁₂H₁₃O₂N, s. nebenstehende Formel.

Nitril, 8-Propyl-4-cyan-isocarbostyril $C_{13}H_{12}ON_3=NC_9H_4$ OH ($CH_2\cdot C_2H_5$)(OH)·CN. B. Beim Kochen von β -Butyryloxy- α -[2-cyan-phenyl]- α -amylen- α -carbonsäurenitril (Bd. X, S. 525) mit alkoh. Kalilauge (Albahaby, B. 29, 2393). — Nadeln (aus Alkohol). F: 221°. Unlöslich in Wasser, schwer löslich in Alkohol, Ligroin und Schwefelkohlenstoff, leicht in anderen organischen Lösungsmitteln. Leicht löslich in siedenden Alkalilaugen. — Gibt beim Erwärmen mit starker Schwefelsäure 3-Propylisocarbostyril.

3. 1 - Oxy - 3 - isopropyl - isochinolin - carbonsäure - (4),3 - Isopropyl - isocarbostyril - carbonsäure - (4) $C_{12}H_{12}O_2N$,
s. nebenstehende Formel.

Nitril, 3 - Isopropyl - 4 - cyan - isocarbostyril $C_{13}H_{12}O_{12}$ ON:

Nitril, 3-Isopropyl-4-cyan-1socarbostyril $C_{13}H_{12}UN_3=0$ $NC_9H_4(OH)(CN)\cdot CH(CH_3)_2$. B. Durch Erhitzen von β -Isobutyryloxy- γ -methyl- α -[2-cyan-phenyl]- α -butylen- α -carbonsäurenitril (Bd. X, S. 525) mit wäßrig-alkoholischer Kalilauge (Lehmkuhl, B. 30, 890). Aus β -Äthoxy- γ -methyl- α -[2-cyan-phenyl]- α -butylen- α -carbonsäurenitril (Bd. X, S. 525) beim Kochen mit Bromwasserstoffsäure (D: 1,47) (L., B. 30, 891). — Gelbliche Nadeln (aus Alkohol). F: 227—229°. Leicht löslich in Alkohol, Aceton, Eisessig, Essigester und Benzol, schwer in Ligroin und Äther. — Gibt beim Erhitzen mit starker Schwefelsäure 3-Isopropyl-isocarbostyril. Beim Kochen mit Methyljodid und wäßrig-alkoholischer Kalilauge entsteht 2-Methyl-3-isopropyl-4-cyan-isocarbostyril (S. 315).

5. 1-0xy-3-isobutyl-isochinolin-carbonsäure.-(4), 3-Isobutyl-isocarbostyril-carbonsäure-(4) $C_{14}H_{15}O_{3}N$, s. nebenstehende Formel.

CO₂H
·CH₂·CH(CH₃)₂
·OH

Nitril, 3-Isobutyl-4-cyan-isocarbostyril $C_{14}H_{14}ON_3=NC_9H_4(OH)(CN)\cdot CH_2\cdot CH(CH_3)_2$. B. Beim Erhitzen von β -Isovaleryloxy- δ -methyl- α -[2-cyan-phenyl]- α -amylen- α -carbonsäurenitril (Bd. X, S. 525) mit wäßrig-alkoholischer Kalilauge (Lehmkuhl, B. 30, 895). Beim Kochen von β -Äthoxy- δ -methyl- α -[2-cyan-phenyl]- α -amylen- α -carbonsäurenitril (Bd. X, S. 525) mit verd. Bromwasserstoffsäure (L., B. 30, 896). — Gelbliche Nadeln (aus Alkohol). F: 227—229°. Schwer löslich in Ligroin, leicht in Alkohol, Eisessig, Benzol und Äther. — Beim Erhitzen mit starker Schwefelsäure entsteht 3-Isobutyl-isocarbostyril.

g) Oxy-carbonsäuren $C_n H_{2n-15} O_3 N$.

1. $2-[\alpha-0 \times y-2-c \ arbo \times y-benzal]-pyrrolenin C_{12}H_{0}O_{3}N=HC-CH$ HC: $N\cdot C:C(OH)\cdot C_{6}H_{4}\cdot CO_{2}H$ ist desmotrop mit 2-[2-Carboxy-benzoyl]-pyrrol, 2- α -Pyrroyl-benzoesäure, S. 316.

2. Oxy-carbonsauren $C_{13}H_{11}O_{2}N$.

1. 6-Oxy-2-methyl-4-phenyl-pyridin-carbonsäure-(3), C₂H₅
6-Oxy-2-methyl-4-phenyl-nicotinsäure C₁₃H₁₁O₃N, s. nebenstehende Formel. B. Der Äthylester entsteht beim Behandeln des Silbersalzes des 2-Oxy-2-amino-6-methyl-4-phenyl-[1.2-pyran]-carbonsäure-(5)- HO CH₃

äthylesters (Bd. XVIII, S. 436) mit Äthyljodid und Destillieren des Reaktionsprodukts im Vakuum; man verseift den Ester durch Kochen mit konz. Kalilauge (RUHEMANN, Soc. 75, 412). — Prismen (aus Alkohol). F: 240° (Zers.). Schwer löslich in Alkohol. — Gibt beim Erhitzen auf 240—245° 6-Oxy-2-methyl-4-phenyl-pyridin (Bd. XXI, S. 123).

Äthylester $C_{15}H_{15}O_3N=NC_5H(CH_3)(C_6H_5)(OH)\cdot CO_3\cdot C_2H_5$. B. Siehe oben. — Nadeln (aus Alkohol). F: 184° (Ruhemann, Soc. 75, 412). Kp₁₀: ca. 270°. Leicht löslich in Alkohol, schwer in Äther. Löslich in Säuren und Alkalien. Die alkoh. Lösung wird auf Zusatz von Eisenchlorid gelbrot.

2. 4-0xy-2-methyl-6-phenyl-pyridin-carbonsäure-(5), OH 4-0xy-6-methyl-2-phenyl-nicotinsäure $C_{13}H_{11}O_3N$, s. nebenstehende Formel.

Nitril, 4-Oxy-2-methyl-6-phenyl-5-cyan-pyridin $C_{13}H_{10}ON_2 = NC_5H(CH_3)(C_6H_5)(OH)\cdot CN$. B. Bei der Kondensation von "Benzoacetodinitril" (Bd. X, S. 681) mit Acetessigester in Gegenwart von Chlorwasserstoff (v. Meyer, J. pr. [2] 70, 560; 78, 524; C. 1908 II, 594). — Blättchen (aus Alkohol). F: 244°. — Liefert beim Erhitzen mit konz. Salzsäure auf 200° 4-Oxy-2-methyl-6-phenyl-pyridin (Bd. XXI, S. 123) (v. M., J. pr. [2] 70, 560).

3. 6-Oxy-2-methyl-4-phenyl-pyridin-carbonsäure-(5), C₆H₅
2-Oxy-6-methyl-4-phenyl-nicotinsäure C₁₃H₁₁O₃N, s. neben-HO₂C Stehende Formel.

Nitral 6-Oxy-2-methyl-4-phenyl-5-cyan-pyridin C. H. ON

Nitril, 6-Oxy-2-methyl-4-phenyl-5-cyan-pyridin C₁₃H₁₀ON₂ = NC₅H(CH₂)(C₆H₅)(OH)·CN. B. Neben 6-Oxy-4-methyl-2-phenyl-5-cyan-pyridin bei der Kondensation von Benzoylaceton (Bd. VII, S. 680) mit Cyanessigsäureäthylester und 20% ammoniak (Issoglio, C. 1905 II, 336). — Nadeln (aus Alkohol). F: 263—264°. 1 g löst sich in 1440 g siedendem Wasser und in 44,3 g siedendem 90% alkohol). Schwer löslich in warmem Aceton, fast unlöslich in kaltem Äther. Löslich in verd. Alkalien. Reduziert Permanganat-Lösung unter Blausäureentwicklung.

4. 6-Oxy-4-methyl-2-phenyl-pyridin-carbonsäure-(5), CH₃
2-Oxy-4-methyl-6-phenyl-nicotinsäure C₁₃H₁₁O₃N, s. neben HO₂C.
stehende Formel.

Nitril, 6-Oxy-4-methyl-2-phenyl-5-cyan-pyridin $C_{18}H_{10}ON_8 = NC_5H(CH_3)(C_6H_5)(OH)\cdot CN$. B. s. im vorhergehenden Artikel. — Bläulich fluorescierende Blättchen (aus Alkohol). F: 310°; 1 g löst sich in 3246 g siedendem Wasser und in 285 g siedendem 90°/sigem Alkohol; fast unlöslich in Äther, Aceton und Benzol in der Kälte; löslich in verd. Alkalilaugen (Issoglio, C. 1905 II, 336). — Liefert bei der Destillation mit Zinkpulver im Wasserstoffstrom (nicht näher beschriebenes) 4-Methyl-2-phenyl-pyridin. Reduziert Permanganat-Lösung unter Blausäureentwicklung.

3. β -[2-(β -0xy-propyl) - chinolyl-(5)] - acryl- $_{\rm HO_2C\ CH:CH}$ säure $C_{1z}H_{1z}O_2N$, s. nebenstehende Formel.

β-[2-(γ·γ·γ-Trichlor-β-oxy-propyl) - chinolyl-(5)] acrylsäure, Chloralchinaldinacrylsäure C_{1t}H₁₂O₂NCl₂
= NC₂H₃(CH:CH·CO₂H)·CH₂·CH(OH)·CCl₂. B. Neben einer Verbindung C_{2t}H_{2t}O₅N₂Cl₂
(S. 97) beim Erwärmen von Chinaldin-[β-acrylsäure]-(5) mit überschüssigem Chloral auf dem Wasserbad (Εσκηλκοτ, B. 22, 282). — Prismen (aus Alkohol). F: 201°. — Beim Erhitzen mit Kaliumcarbonat-Lösung auf 100° entsteht eine Säure C_{1t}H₁₁O₄N (?), die oberhalb 300° schmilzt. — AgC_{1t}H₁₁O₃NCl₂. Nadeln. — C_{1t}H₁₂O₃NCl₃ + HCl. Prismen (aus Alkohol) Schmilzt oberhalb 300°. Löst sich in konz. Salpetersäure mit violetter Fluorescenz.

h) Oxy-carbonsäuren $C_nH_{2n-17}O_3N$.

Oxy-carbonsauren C₁₅H₀O₅N.

1. 3-Oxy-6.7-benzo-indol-carbonsaure-(2), 6.7-Benzo-indoxyl-carbonsaure-(2), 6.7-Benzo-indoxylsaure (,, α -Naphthindoxylsaure") $C_{18}H_{9}O_{8}N_{s}$, s. nebenstehende Formel.

Äthylester C₁₈H₁₂O₅N = HNC₁₂H₆(OH)·CO₂·C₂H₅. B. Beim

Behandeln von α-Naphthylamin mit Brommalonsäure-diäthylester in Alkohol und Erhitzen des entstandenen α-Naphthylaminomalonsäure-diäthylesters auf ca. 200° (BLANK, D. R. P. 95268; C. 1898 I, 542; Frdl. 5, 404; CASSELLA & Co., D. R. P. 109416; C. 1900 II, 406; Frdl. 5, 405). — F: 198° (CA. & Co.).

2. 3-Oxy-4.5-benzo-indol-carbonsäure-(2), 4.5-Benzo-indoxyl-carbonsäure-(2), 4.5-Benzo-indoxylsäure (,, β -Naphthindoxylsäure") $C_{13}H_{+}O_{3}N$, s. nebenstehende Formel.

Äthylester $C_{15}H_{15}O_{5}N = HNC_{15}H_{6}(OH) \cdot CO_{2} \cdot C_{5}H_{5}$. Beim Erhitzen von β -Naphthylaminomalonsäure-diäthylester (Bd. XII,

S. 1301) auf ca. 230° (Blank, B. 31, 1817; Cassella & Co., D. R. P. 109416; C. 1900 II, 406; Frdl. 5, 405). — Krystalle (aus Alkohol). F: 156° (Ca. & Co.), 158° (Bl.). — Liefert durch Verseifung und darauffolgende Oxydation 4.5; 4'.5'-Dibenzo-indigo (Syst. No. 3606) (Bl.).

i) Oxy-carbonsäuren $C_nH_{2n-19}O_8N$.

1. Oxy-carbonsauren $C_{14}H_9O_3N$.

- 1. 9-Oxy-acridin-carbonsäure-(2),
 Acridol carbonsäure (2) C₁₄H₂O₂N,
 Formel I, ist desmotrop mit Acridon-carbonsaure-(2), S. 320.

 OH

 OH

 OH

 CO₂H

 II.
- 2. 9-Oxy-acridin-carbonsaure-(4), Acridol-carbonsaure-(4) C₁₄H₅O₃N, Formel II, ist desmotrop mit Acridon-carbonsaure-(4), S. 320.
- 2. 2-0 xymethyl-5.6-benzo-chinolin-carbonsäure-(4), 2-0 xymethyl-5.6-benzo-cinchoninsäure (,, α -0 xymethyl- β -naphthocinchoninsäure") $C_{1\delta}H_{11}O_3N$, s. nebenstehende Formel. B. Beim Kochen von β -Naphthylamin mit Glykolaldehyd und Brenztraubensäure in verd. Alkohol (CIUSA, R. A. L. [5] 16 II, 204; G. 37 II, 544). Krystalle (aus Alkohol). F: 255°. Schwer löslich in den gewöhnlichen Lösungsmitteln. Leicht löslich in Säuren und Alkalien.
- 3. $2 [\beta 0 \times y propyl] 5.6 benzo chinolin carbon-säure (4), <math>2 [\beta 0 \times y propyl] 5.6 benzo cinchoninsäure (,,\alpha O \times y propyl \beta naphtho-cinchoninsäure") <math>C_{17}H_{18}O_3N$, s. nebenstehende Formel.

 B. Beim Erhitzen von Aldol mit Brenztraubensäure und \beta-Naphthylamin in alkoh. Lösung (Doebner, B. 27, 2028). Nadeln (aus Alkohol). F: 234°.

k) Oxy-carbonsäuren $C_n H_{2n-21} O_3 N$.

1. Oxy-carbonsäuren $C_{16}H_{11}O_3N$.

1. 4-[2-Oxy-3(oder 4) - carboxy - phenyl]chinolin, 2(oder 3)-Oxy-3(oder 4) - [chinolyl-(4)]-benzoesäure, Homapocinchensäure 1)
C₁₆H₁₁O₃N, Formel III oder IV. B. Bei längerem Kochen
von Athylätherhomapocinchensäure (s. u.) oder 3-Äthoxy-4-[chinolyl-(4)]-phthalsäure (S. 273) mit konz.
Bromwasserstoffsäure (Koenigs, J. pr. [2] 61, 37,
38). — Flockiger Niederschlag (aus Soda-Lösung + Essigsäure). F: oberhalb 290°. Sehr

Sol. — Flockiger Niederschiag (aus Soda-Losung + Essignaure). F: Obernald 290°. Sehr schwer löslich. — Beim Erhitzen des Silbersalzes mit Zinkstaub im Wasserstoffstrom entsteht 4-[2-Oxy-phenyl]-chinolin (Bd. XXI, S. 139). — $AgC_{16}H_{10}O_3N + H_2O$. Fast unlöslicher Niederschlag.

4-[2-Åthoxy-3(oder 4)-carboxy-phenyl]-chinolin, Äthylätherhomapocinchensäure 1) $C_{18}H_{15}O_3N = NC_9H_6 \cdot C_6H_3(0 \cdot C_3H_6) \cdot CO_2H$. B. Neben anderen Produkten bei der Oxydation von Homapocinchen-äthyläther (Bd. XXI, S. 146) mit Braunstein und Schwefelsäure (Koenigs, B. 26, 718; J. pr. [2] 61, 34). Beim Behandeln von Ketohomapocinchen-äthyläther (Bd. XXI, S. 596) mit Jod und Kaliumcarbonat in Methanol oder besser mit Natriumhypobromit-Lösung (K.). — Krystalle (aus Alkohol). F: 253—254°. Ziemlich leicht löslich in heißem Alkohol, kaum löslich in Wasser, löslich in heißen verdünnten Mineralsäuren; leicht löslich in Natriumdicarbonat- und Ammoniumcarbonat-Lösung. — Das Silbersalz gibt beim Erhitzen auf 280—290° 4-[2-Åthoxy-phenyl]-chinolin (Bd. XXI, S. 139). — AgC₁₈H₁₄O₃N. Schwer löslicher Niederschlag.

¹⁾ A pocinchen, das das erste Ausgangsmaterial für obige Verbindung bildet, ist nach KENNER, STATHAM, Soc. 1985, 299 als 4-[6-Oxy-3.4-disthyl-phenyl]-chinolin aufsufassen.

2. 4-Oxy-2-phenyl-chinolin-carbonsaure-(3) C₁₆H₁₁O₃N, s. nebenstehende Formel. B. Der Äthylester entsteht beim Erhitzen von β-Phenylimino-benzylmalonsäure-diäthylester (Bd. XII, S. 536) auf ca. 150° (Just, B. 18, 2633; 19, 1462; D. R. P. 33497; Frdl. 1, 200) oder von Anthranilsäure (Bd. XIV, S. 316) mit Benzoylessigsäureäthylester auf 140—150°, neben anderen Verbindungen (Niementowski, B. 38, 2045); man verseift den Äthylester durch Erhitzen mit verd. Salzsäure im Rohr auf 120° oder durch Kochen mit verd. Kalilauge (J.; N.).—Krystalle (aus Essigsäure). F: 232° (Zers.) (J.; N.). Leicht löslich in Eisessig, schwer in Erhitzen über den Schmelzpunkt oder beim Erhitzen des Silbersalzes im Wasserstoffstrom entsteht 4-Oxy-2-phenyl-chinolin (Bd. XXI, S. 137) (J., B. 19, 1464, 1466).—AgC₁₆H₁₀O₃N. Niederschlag. In Wasser schwer löslich (J., B. 19, 1464).—Ca(C₁₆H₁₀O₃N)₂+aq. Nadeln. Ziemlich schwer löslich in kaltem Wasser (J., B. 19, 1463).

Äthylester $C_{18}H_{18}O_3N=NC_9H_4(C_6H_5)(OH)\cdot CO_3\cdot C_3H_5$. B. s. oben bei der Säure. — Krystalle (aus Alkohol oder besser aus Methanol). F: 262° (Zers.) (Just, B. 18, 2633; D.R.P. 33497; Frdl. 1, 201; Niementowski, B. 38, 2045). Unlöslich in Wasser und Äther, sehr schwer löslich in heißem Alkohol, leichter löslich in Methanol und Essigsäureanhydrid (J., B. 18, 2634; N.). Leicht löslich in starker Salzsäure (J., B. 18, 2634). — Bei der Zinkstaubdestillation entsteht 2-Phenyl-chinolin (N.). Liefert bei längerem Erhitzen mit starker Salzsäure auf 150—190° 4-Oxy-2-phenyl-chinolin (Bd. XXI, S. 137) (J., B. 19, 1464; N.). — Chloroplatinat. Gelbe Nadeln (J., B. 18, 2634).

- 3. 4-[2-Oxy-phenyl]-chinolin-carbonsäure-(2). 4-[2-Oxy-phenyl]-chinaldinsäure C₁₆H₁₁O₃N, s. nebenstehende Formel. B. Bei der Oxydation von 4 [x Sulfo 2 āthoxy phenyl] 2 styryl chinolin (S. 411) mit Permanganat in sodaalkalischer Lösung und Kochen des Reaktionsprodukts mit konz. Bromwasserstoffsäure (Besthorn, Banzhaf, Jaeglé, B. 27, 3039; Höchster Farbw., D. R. P. 79173; Frdl. 4, 1142). Gelbrote Nadeln. F: 243—245° (Zers.) (Be., Ba., J.). Fast unlöslich in Wasser (Be., Ba., J.; Hö. Fa.). Beim Erhitzen über den Schmelzpunkt entsteht 4-[2-Oxy-phenyl]-chinolin (Bd. XXI, S. 139) (Be., Ba., J.; Hö. Fa.). Liefert bei längerem Kochen mit Essigsäureanhydrid einen roten Farbstoff, der sich in Alkohol mit starker Fluorescenz löst (Be., Ba., J.). Gibt mit konz. Mineralsäuren gelbe, gut krystallisierende Salze (Be., Ba., J.).
- 4. 4-[3-Oxy-phenyl]-chinolin-carbonsdure-(2), 4-[3-Oxy-phenyl]-chinolin-carbonsdure-(2), 4-[3-Oxy-phenyl]-chinaldinsdure C₁₆H₁₁O₃N, s. nebenstehende Formel. B. Analog der vorhergehenden Verbindung. Hellgelb. F: ca. 235° (Zers.) (Besthorn, Banzhar, Jaeglé, B. 27, 3043; Höchster Farbw., D. R. P. 79173; Frdl. 4, 1141). Fast unlöslich in Wasser und den gewöhnlichen organischen Lösungsmitteln. Bei längerem Erhitzen über den Schmelzpunkt entsteht 4-[3-Oxy-phenyl]-chinolin (Bd. XXI, 8. 139).
- 5. 4-[4-Oxy-phenyl]-chinolin-carbonsdure-(2), 4-[4-Oxy-phenyl]-chinaldinsdure C₁₆H₁₁O₅N, s. nebenstehende Formel. B. Bei der Oxydation von 4 · [x · Sulfo · 4 · methoxy · phenyl] · 2 · styryl · chinolin (S. 412) mit Permanganat in sodaalkalischer Lösung und nachfolgendem Kochen des Reaktionsprodukts mit konz. Bromwasserstoffsäure (Besthobn, Jarglé, B. 37, 912; Höchster Farbw., D. R. P. 79173; Frdl. 4, 1140). Gelbe Nadeln aus (Wasser). F: 234—235° (Zers.). Unlöslich in Äther und Benzol, löslich in heißem Wasser und heißem Alkohol. Beim Erhitzen über den Schmelzpunkt entsteht 4-[4-Oxy-phenyl]-chinolin (Bd. XXI, S. 139). Liefert bei längerem Kochen mit Easigsäureanhydrid einen roten Farbstoff, der auf Zusatz von Alkohol mit Fluorescenz in Lösung geht.
- 6. 3-Oxy-2-phonyl-chinolin-carbonsdure-(4), 3-Oxy-2-phonyl-cinchoninsdure C₁₆H₁₁O₅N, s. nebenstehende Formel. Steigert die Harnsäure-Ausscheidung beim Menschen (NICOLAIER, DOHEN, Deutsches Archiv f. klin. Medizin 98, 346).
- 7. 6-Oxy-2-phenyl-chinolin-carbonsdure-(4), 6-Oxy-2-phenyl-cinchoninsdure C₁₀H₁₁O₂N, s. nebenstehende Formel. B.
 Bei 4-stündigem Kochen von p-Amino-phenol mit Brenztraubensäure und Benzaldehyd in absol. Alkohol (Doebner, Fettback, A. 281, 11; Claus, Brandt, A. 282, 99). Nadeln (aus verd. Alkohol oder besser aus Nitrobenzol). Krystallisiert aus verd. Salzsäure mit 1H₂O (D., F.). Zersetzt sich bei ca. 300°, ohne zu schmelzen (Cl., Br.). 4,4 glösen sich in 1 siedendem absolutem Alkohol (Cl., Br.). Löslich in Alkohol, schwer löslich in Äther und heißem Eisessig, unlöslich in Benzol, Petroläther und Chloroform (D., F.). Liefert bei der Destillation 6-Oxy-2-phenyl-chinolin (Bd. XXI, S. 137)

- 6-Methoxy-2-phenyl-chinolin-carbonsäure-(4), 6-Methoxy-2-phenyl-cinchonin-säure, 2-Phenyl-chininsäure $C_{17}H_{13}O_3N=NC_8H_4(C_6H_6)(O\cdot CH_3)\cdot CO_2H$. B. Bei längerem Kochen von Benzaldehyd mit p-Anisidin und Brenztraubensäure in absol. Alkohol (Doebner, A. 249, 105). Nadeln (aus Alkohol oder Eisessig). F: 237° (D.). Löst sich in siedendem absolutem Alkohol zu 2,2°/ $_0$ (Claus, Brandt, A. 282, 106). Unlöslich in Wasser (D.). Die alkoh. Lösung fluoresciert blau (D.). Liefert beim Erhitzen 6-Methoxy-2-phenyl-chinolin (D.). Na $C_{17}H_{12}O_3N + 6H_2O$. Gelbe Nadeln. Zersetzt sich bei ca. 230°, ohne zu schmelzen; verwittert an der Luft (Cl., Br., A. 282, 91). Ag $C_{17}H_{13}O_3N$. Schwer löslicher Niederschlag (D.). Cu $(C_{17}H_{12}O_3N)_2 + 2H_2O$. Grüner, krystallinischer Niederschlag. Kaum löslich in Wasser und Alkohol; löslich in Ammoniak mit blaugrüner Farbe (Cl., Br., A. 282, 92). $C_{17}H_{13}O_3N + 3HCl$. Gelbe Nadeln (Cl., Br., A. 282, 92). $2C_{17}H_{13}O_3N + 2HCl + PtCl_4$. Orangerote Krystalle (D.).
- 6-Oxy-2-phenyl-chinolin-carbonsäure-(4)-methylester, 6-Oxy-2-phenyl-cinchoninsäure-methylester $C_{17}H_{12}O_3N=NC_9H_4(C_9H_8)(OH)\cdot CO_2\cdot CH_2$. B. Beim Erhitzen des Silbersalzes der 6-Oxy-2-phenyl-cinchoninsäure mit Methyljodid auf 80—100° (CLAUS, BRANDT, A. 282, 106). Krystalle. F: 148°.
- 6-Methoxy-2-phenyl-chinolin-carbonsäure-(4)-methylester, 6-Methoxy-2-phenyl-cinchoninsäure-methylester $C_{18}H_{15}O_3N=NC_9H_4(C_6H_5)(O\cdot CH_3)\cdot CO_3\cdot CH_3$. Beim Erhitzen des Silbersalzes der 6-Methoxy-2-phenyl-cinchoninsäure mit Methyljodid auf 80–100° (Claus, Brandt, A. 282, 106). Krystalle. F: 111°.
- 6-Methoxy-2-phenyl-chinolin-carbonsäure-(4)-äthylester, 6-Methoxy-2-phenyl-cinchoninsäure-äthylester $C_{19}H_{17}O_3N=NC_9H_4(C_6H_8)(O\cdot CH_3)\cdot CO_2\cdot C_2H_8$. B. Analog der vorangehenden Verbindung (Claus, Brandt, A. 282, 106). Krystalle. F: 105°.
- 6-Oxy-2-phenyl-chinolin-carbonsäure-(4)-hydroxymethylat, Ammoniumbase des 6-Oxy-2-phenyl-cinchoniusäure-methylbetains $C_{17}H_{15}O_4N=(HO)(CH_3)NC_9H_4$ (C_8H_5)(OH)·CO₂H. Chlorid $C_{17}H_{14}O_9N$ ·Cl. B. Bei längerem Erhitzen von 6-Methoxy-2-phenyl-chinolin-carbonsäure-(4)-chlormethylat mit ca. 8 Tln. rauchender Salzsäure auf 230—235° (Claus, Brandt, A. 282, 103). Grüne Krystalle (aus Salzsäure). F: 248°. Leicht löslich in Wasser unter hydrolytischer Spaltung.
- Anhydrid, 6-Oxy-2-phenyl-cinchoninsäure-methylbetain $C_{17}H_{13}O_3N=CH_3$ + $NC_tH_4(C_0H_5)(OH)\cdot CO\cdot O$. B. Beim Behandeln von 6-Oxy-2-phenyl-chinolin-carbonsäure-(4)-chlormethylat (s. o.) mit feuchtem Silberoxyd (CLAUS, BRANDT, A. 282, 104). Krystalle (aus Alkohol + Äther). F: 243°. Leicht löslich in Alkalien mit gelber Farbe, die beim Erwärmen über Rot in Dunkelbraun übergeht.
- 6-Methoxy-2-phenyl-chinolin-carbonsäure-(4)-hydroxymethylat, Ammonium-base des 6 Methoxy 2 phenyl cinchoninsäure methylbetains $C_{18}H_{17}O_4N = (HO)$ (CH₃)NC₃H₄(C₆H₅)(O·CH₃)·CO₂H. B. Das Jodid entsteht bei $2^1/_2$ -stdg. Erhitzen von 2-Phenyl-chininsäure (s. o.) mit wenig überschüssigem Methyljodid im Rohr auf 135° bis 136° (CLAUS, BRANDT, A. 282, 85). Das Chlorid gibt beim Kochen in Wasser 6-Methoxy-2-phenyl-cinchoninsäure-methylbetain (s. u.). Chlorid $C_{18}H_{16}O_3N\cdot Cl$. Nadeln (aus Alkohol). F: 195°. Sehr leicht löslich in Wasser. Jodid $C_{18}H_{16}O_3N\cdot I$. Rötlichgelbe Nadeln (aus Wasser oder Alkohol). F: 216°. Leicht löslich in heißem Wasser und siedendem Alkohol.
- Anhydrid, 6-Methoxy-2-phenyl-cinchoninsäure-methylbetain $C_{18}H_{15}O_3N = CH_3 + NC_9H_4(C_6H_5)(O \cdot CH_2) \cdot CO \cdot D$. Beim Behandeln von 6-Methoxy-2-phenyl-chinolin-carbon-säure-(4)-jodmethylat (s. o.) mit feuchtem Silberoxyd (Claus, Brandt, A. 282, 87). Gelbe Säulen mit 1 H_2O (aus Wasser). Schmilzt bei 218° (Schwärzung). Leicht löslich in Wasser und heißem Alkohol, schwer in Chloroform, sehr schwer in Petroläther, unlöslich in Äther und Benzol. Löslich in Alkalilaugen.
- 8. 7-Oxy-2-phenyl-chinolin-carbonsäure-(4), 7-Oxy2-phenyl-cinchoninsäure C₁₆H₁₁O₂N, s. nebenstehende Formel.

 B. Beim Kochen von Benzaldehyd mit Brenztraubensäure und m-Aminophenol in Alkohol (Borsche, B. 41, 3889). Gelbliches Krystallpulver (aus verd. Salzsäure). F: 333—334°. Unlöslich in den üblichen organischen Lösungsmitteln.

 1 g löst sich in ca. 500 cm² 2n-Salzsäure. Leicht löslich in Alkalilaugen und Alkalicarbonat-Lösungen. Beim Schmelzen entsteht 7-Oxy-2-phenyl-chinolin (Bd. XXI, S. 137).

- 9. 8-Oxy-2-phenyl-chinolin-carbonsäure-(4), 8-Oxy-2-phenyl-cinchoninsäure C₁₆H₁₁O₃N, s. nebenstehende Formel. B. Bei 5-stdg. Kochen von o-Amino-phenol mit Brenztraubensäure und Benzaldehyd in absol. Alkohol (Doebner, Fettback, A. 281, 7). Gelbe Nadeln (aus Eisessig). F: 247°. Leicht löslich in Alkohol und heißem Eisessig, Holöslich in Äther, schwer löslich in Chloroform, Petroläther und Benzol. Leicht löslich in Alkalilaugen. Beim Erhitzen über den Schmelzpunkt entsteht 8-Oxy-2-phenyl-chinolin (Bd. XXI, S. 137). Cu(C₁₆H₁₀O₃N)₂ + H₂O. Braunschwarzes Pulver. AgC₁₆H₁₀O₃N. Niederschlag. Zersetzt sich beim Aufbewahren an der Luft. Ca(C₁₆H₁₀O₃N)₂. Blaßgelber Niederschlag.
- 8-Methoxy-2-phenyl-chinolin-carbonsäure-(4), 8-Methoxy-2-phenyl-cinchonin-säure $C_{17}H_{13}O_3N=NC_9H_4(C_6H_5)(O\cdot CH_3)\cdot CO_2H$. B. Bei mehrstündigem Erwärmen von Benzaldehyd mit Brenztraubensäure und o-Anisidin in absol. Alkohol auf dem Wasserbad (Doebner, A. 249, 107). Citronengelbe Nadeln (aus Alkohol). F: 216°. Unlöslich in Wasser und Äther. Löst sich in Mineralsäuren mit gelber Farbe. Die alkoh. Lösung fluoresciert sehwach grün. Beim Erhitzen über den Schmelzpunkt entsteht 8-Methoxy-2-phenyl-chinolin (Bd. XXI, S. 137). AgC₁₇H₁₂O₃N. Pulver. Pb(C₁₇H₁₂O₃N)₂ + H₂O. Schwer löslicher Niederschlag. Chloroplatinat. Gelbe Nadeln (aus Alkohol).
- 10. 2-[2-Oxy-phenyl]-chinolin-carbonsäure-(4), 2-[2-Oxy-phenyl]-cinchoninsäure C₁₆H₁₁O₃N, s. nebenstehende Formel. B. Man vermischt unter Abkühlen die alkoh. Lösungen von Brenztraubensäure, Salicylaldehyd und Anilin und erhitzt einige Stunden auf dem Wasserbad (Doebner, A. 249, 99). Braungelbe Nadeln (aus Eisessig oder verd. Alkohol). F: 238°. Leicht löslich in Alkohol, Chloroform, Benzol und Eisessig, weniger leicht in Äther und Ligroin, fast unlöslich in Wasser. Beim Erhitzen über den Schmelzpunkt entsteht 2-[2-Oxy-phenyl]-chinolin (Bd. XXI, S. 138). AgC₁₆H₁₀O₃N. Hellgelber Niederschlag. Unlöslich in Wasser. 2C₁₆H₁₁O₃N + 2HCl + PtCl₄. Goldgelbe Nadeln.
- 11. 2-Oxy-3-phenyl-chinolin-carbonsäure-(4), 2-Oxy-3-phenyl-cinchoninsäure, 3-Phenyl-carbostyril-carbon-säure-(4) (Isaphensäure) C₁₆H₁₁O₃N, s. nebenstehende Formel. B Aus Isatin (Bd. XXI, S. 432) beim Erhitzen mit Phenylessigsäure und entwässertem Natriumacetat auf 200—220° (Gysae, B. 26, 2484; vgl. Borsche, Jacobs, B. 47 [1914], 354, 357) oder bei längerem Erhitzen mit Phenylessigsäureanhydrid auf 180° (Hübner, B. 41, 483). Blättchen (aus Eisessig). F: 291° (H.), 294—296° (G.; B., J.). Leicht löslich in Alkohol, löslich in heißem Eisessig, fast unlöslich in Chloroform, Benzol und den gewöhnlichen organischen Lösungsmitteln (G.; H.). Beim Erhitzen auf 320—330° entsteht 2-Oxy-3-phenyl-chinolin (Bd. XXI, S. 138) (H.). Liefert bei der Reduktion mit Natriumamalgam in verd. Natronlauge 3-Phenyl-3.4-dihydro-carbostyril-carbonsäure-(4) (S. 321) (G.). Bei gelindem Erwärmen mit Phosphortrichlorid und Phosphorpentachlorid auf dem Wasserbad und Eintragen des Reaktionsprodukts in Wasser erhält man 2-Chlor-3-phenyl-chinolin-carbonsäure-(4) (S. 105) (G.; B., J.). Mit überschüssigem Thionylchlorid entsteht bei 100° 2-Oxy-3-phenyl-chinolin-carbonsäure-(4)-chlorid (S. 105) (H.). Liefert bei Einw. von Brom in Eisessig Bromisaphensäure (S. 248) (G.). AgC₁₆H₁₀O₃N + H₂O. Krystalle (aus Wasser + wenig Silbernitrat) (H.).

Methylester $C_{17}H_{19}O_3N=NC_9H_4(C_9H_5)(OH)\cdot CO_3\cdot CH_3$. B. Aus dem Silbersalz beim Kochen mit Methyljodid in Benzol oder aus dem Chlorid (s. u.) beim Behandeln mit Methanol (HÜBNER, B. 41, 484). — Krystalle (aus verd. Alkohol). F: 258—259°. Ziemlich leicht löslich in Alkohol und Benzol, schwer in den übrigen organischen Lösungsmitteln.

Chlorid $C_{16}H_{10}O_2NCl = NC_9H_4(C_6H_5)(OH)\cdot COCl.$ B. Beim Erhitzen der Säure mit überschüssigem Thionylchlorid auf 100° (HÜBNER, B. 41, 484). — Krystalle (aus Chloroform + Ligroin). F: 234°.

Amid $C_{16}H_{19}O_2N_2 = NC_0H_4(C_0H_5)(OH)\cdot CO\cdot NH_2$. B. Beim Einleiten von Ammoniak in die Chloroform-Lösung des Säurechlorids (HÜBNER, B. 41, 485). — Krystalle (aus Alkohol). F: 296—298°.

Anilid $C_{22}H_{16}O_2N_2 = NC_2H_4(C_6H_5)(OH) \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Kochen des Säurechlorids mit Anilin in Chloroform (HÜBNER, B. 41, 485). — Krystalle (aus verd. Alkohol). F: 313°.

Hydraxid $C_{16}H_{18}O_{2}N_{2}=NC_{9}H_{4}(C_{6}H_{5})(OH)\cdot CO\cdot NH\cdot NH_{2}$. B. Beim Schütteln der Chloroform-Lösung des Säurechlorids mit $50^{9}/_{0}$ igem Hydrazinhydrat (HÜBNER, B. 41, 485). — Krystalle (aus verd. Alkohol). F: 298°. Ist nur in heißem Alkohol löslich.

x-Brom-[2-oxy-3-phenyl-chinolin-carbonsaure-(4)] (Bromisaphensaure) C₁₆H₁₀O₃NBr. B. Beim Behandeln von Isaphensäure (S. 247) mit Brom in Eisessig (Gysae, B. 26, 2484). — Krystalle. F: oberhalb 310°.

 $\cdot C_6H_4 \cdot CO_2H$ 12. 1-Oxy-3-[2-carboxy-phenyl]-isochinolin. 3-[2-Carboxy-pheny[]-isocarbostyril, 2-[1-Oxy-isochinolyl-(3)]benzoesaure C₁₆H₁₁O₃N, s. nebenstehende Formel; s. S. 321. ÓН

CO₂H

 C_2H_5

CO₂H

HO

13. 1-Oxy-3-phenyl-isochinolin-carbonsäure-(4), 3-Phenylisocarbostyril-carbonsaure-(4) $C_{16}H_{11}O_3N$, s. nebenstehende Formel.

·C₆H₅ Nitril, 8-Phenyl-4-cyan-isocarbostyril $C_{16}H_{10}ON_2 = NC_9H_4(C_6H_5)$ (OH) CN. B. Bei 2-3-stdg. Erhitzen von 3-Phenyl-4-cyan-isocumarin ÒН (Bd. XVIII, S. 444) mit alkoh. Ammoniak auf 180° (GABRIEL, NEUMANN, B. 25, 3573; Höchster Farbw., D. R. P. 69138; Frdl. 3, 968). — Nadeln. F: 2850 (G., Posner. B. 27, 832 Anm.). Schwer löslich in kaltem Alkohol (G., N.).

1-Oxy-8-[3-nitro-phenyl]-isochinolin-carbonsäure-(4)-nitril, 3-[8-Nitro-phenyl]-**4-cyan-isocarbostyril** $C_{16}H_0O_3N_3 = NC_0H_4(C_0H_4\cdot NO_2)(OH)\cdot CN$. B. Bei 12-stdg. Erhitzen von 3-[3-Nitro-phenyl]-4-cyan-isocumarin (Bd. XVIII, S. 444) mit alkoh. Ammoniak im Rohr auf ca. 1000 (HARPER, B. 29, 2545). — Krystalle (aus Nitrobenzol). Schmilzt oberhalb 315°. Unlöslich in Alkohol und Äther, löslich in warmem Eisessig und siedendem Nitrobenzol. — Wird beim Erhitzen mit Phosphoroxychlorid nicht verändert. Beim Erhitzen mit rauchender Salzsäure + Eisessig auf 180° entsteht 1-Oxy-3-[3-nitro-phenyl]-isochinolin (Bd. XXI, S. 140).

2. Oxy-carbonsäuren $C_{17}H_{13}O_3N$.

OH 1. **4-**0xy-6-methyl-2-phenyl-chinolin-carbonsäure-(3) C₁₇H₁₃O₃N, s. nebenstehende Formel. B. Der Äthylester entsteht beim · CO2H Erhitzen von β -p-Tolylimino-benzylmalonsäure-diäthylester (Bd. XII, 8. 973) auf ca. 160°; man verseift den Ester durch Kochen mit Kalilauge (Just, B. 19, 1542). — Nadeln. Fast unlöslich in Wasser, Alkohol und Äther. löslich in heißem Eisessig und in Salzsäure. — Liefert beim Erhitzen auf 250° 4-Oxy-6-methyl-2-phenyl-chinolin (Bd. XXI, S. 143).

Äthylester $C_{10}H_{17}O_3N = NC_0H_3(CH_3)(C_6H_5)(OH) \cdot CO_2 \cdot C_2H_5$. B. s. oben bei der Säure. — Nadeln (aus Alkohol). F: 236° (Just, B. 19, 1542). Ziemlich leicht löslich in heißem Alkohol. Beim Erhitzen mit Salzsäure auf ca. 150° entsteht 4-Oxy-6-methyl-2-phenyl-chinolin (Bd. XXI, S. 143). — Chloroplatinat. Rote Prismen (aus Alkohol).

4 - Oxy - 8 - methyl - 2 - phenyl - chinolin-carbonsäure - (3) C₁₇H₁₈O₂N, s. nebenstehende Formel. CO₂H ·C₆H₅

Äthylester $C_{19}H_{17}O_3N=NC_9H_3(CH_3)(C_9H_5)(OH)\cdot CO_3\cdot C_2H_5$. B. Beim Erhitzen von β -o-Tolylimino-benzylmalonsäure-diäthylester (Bd. XII, S. 825) auf 170° (Just, B. 19, 1545). — F: 208,5°. CH₃

3. 1 - Oxy - 3 - p - tolyl - isochinolin - carbonsäure - (4),CO₂H 3-p-Tolyl-isocarbostyril-carbonsaure-(4) C₁₇H₁₈O₃N, s. neben- $\cdot C_6H_4 \cdot CH_3$ stehende Formel.

Nitril, 3-p-Tolyl-4-cyan-isocarbostyril C₁₇H₁₂ON₂ = NC₅H₄ (C₆H₄·CH₃)(OH)·CN. B. Bei 7-stdg. Erhitzen von 3-p-Tolyl-4-cyan. OH isocumarin (Bd. XVIII, S. 445) mit alkoh. Ammoniak auf 100° (HARPER, B. 29, 2549).

— Farblose Nadeln (Gyr., B. 40, 1208). F: 290—292° (H.). — Liefert beim Erhitzen mit Eisessig und rauchender Salzsäure auf 170-180° 3-p-Tolyl-isocarbostyril (Bd. XXI, S. 144).

CO₂H

C₂H₅

II.

ОН

3. 4-[2-0xy-3(oder4)-äthyl-4(oder 3)carboxy-phenyl]-chinolin, 3 (oder 6)-0xy-2-äthyl-4(oder5)-[chinolyl-(4)]benzoesäure1) C18H15O3N, Formel I oder II.

4 - [2 - Methoxy - 3 (oder 4) - äthyl-4 (oder 3)carboxy-phenyl]-chinolin, Methylätherapo-cinchensäure¹) $C_{19}H_{17}O_8N = NC_9H_6 \cdot C_6H_2(O \cdot CH_3)(C_9H_5) \cdot CO_9H$. B. Bei längerem Kochen von schwefelsaurem Apocinchen-methyläther (Bd. XXI, S. 147) mit verd. Salpetersäure

¹⁾ s. die Fußnote auf S. 244.

(Comstock, Kornigs, B. 18, 2383). — Krystalle (aus Alkohol). F: 233—234°. Kaum löslich in Wasser, leicht in Alkohol, Alkalien und Säuren.

4-[2-Äthoxy-3 (oder 4)-äthyl-4 (oder 3) - carboxy - phenyl] - chinolin, Äthylätherapocinchensäure¹) $C_{20}H_{19}O_3N = NC_9H_4 \cdot C_6H_2(O \cdot C_2H_5)(C_2H_5) \cdot CO_3H$. B. Neben anderen Verbindungen aus schwefelsaurem Apocinchen-äthyläther (Bd. XXI, S. 148) beim Kochen mit verd. Salpetersäure (Comstock, Koenigs, B. 18, 2384) oder mit Braunstein und verd. Schwefelsäure (Koe., J. pr. [2] 61, 24). — Wasserfreie Nadeln (aus starkem Alkohol), Nadeln mit 1 H₂O (aus verd. Alkohol). Schmilzt wasserhaltig bei 124—126°, wasserfrei bei 161° bis 162° (Co., Koe., B. 18, 2384), 163—164° (Co., Koe., B. 20, 2680). Leicht löslich in Alkohol, kaum in Wasser (Co., Koe., B. 18, 2384). — Beim Erhitzen mit konz. Salzsäure im Rohr auf 130° oder bei längerem Kochen mit konz. Bromwasserstoffsäure (D: 1,49) erhält man Homapocinchen (Bd. XXI, S. 146) (Co., Koe., B. 18, 2385; 20, 2682). — Salze: Co., Koe., B. 20, 2681. — AgC₂₀H₁₈O₃N. Krystalle. — 2C₂₀H₁₉O₃N + 2 HCl + PtCl₄. Gelbe bis orangefarbene Nadeln.

l) Oxy-carbonsäuren $C_n H_{2n-23} O_5 N$.

1. 6-0xy-2.4-diphenyl-pyridin-carbonsäure-(3), 6-0xy-2.4-diphenyl-nicotinsäure $C_{18}H_{18}O_3N$, s. nebenstehende Formel.

Äthylester C₃₀H₁₇O₃N = NC₅H(C₆H₅)₂(OH)·CO₂·C₂H₅. B. Man be- HO· N · C₆H₅ handelt 4.6-Diphenyl-pyron-(2)-carbonsäure-(5)-äthylester (Bd. XVIII, S. 447) mit alkoh. Ammoniak, setzt die entstandene Ammoniak-Additionsverbindung mit Silbernitrat um, behandelt das erhaltene Silbersalz AgC₂₀H₁₈O₄N mit Äthyljodid und destilliert das rote Reaktionsprodukt im Vakuum (RUHEMANN, Soc. 75, 414). — Prismen (aus Alkohol). F: 210°. Kp₁₀: 300—315° (geringe Zersetzung). Schwer löslich in Alkohol und Äther. Löslich in Kalilauge, unlöslich in Salzsäure. — Die alkoh. Lösung zeigt auf Zusatz von Eisenchlorid eine gelblichrote Farbe.

2. 2-Methyl-6-phenyl-4-[4-oxy-phenyl]-pyridin-carbon-säure-(3), 2-Methyl-6-phenyl-4-[4-oxy-phenyl]-nicotin-säure $C_{19}H_{18}O_3N$, s. nebenstehende Formel. $C_{0}H_{18}O_3N$

2-Methyl-6-phenyl-4-[4-methoxy-phenyl]-pyridin-carbonsäure-(3)-nitril, 2-Methyl-6-phenyl-4-[4-methoxy-phenyl]-3-cyan-pyridin $C_{50}H_{16}ON_2 = NC_5H(CH_3)(C_6H_5)(C_6H_4\cdot O\cdot CH_3)\cdot CN$. B. Bei der Kondensation von Diacetonitril (Bd. III, S. 660) mit Anisalacetophenon (Bd. VIII, S. 192) in Gegenwart von Natriumäthylat-Lösung (v. Meyer, C. 1908 II, 594; J. pr. [2] 78, 529). — Nadeln. F: 157°.

m) Oxy-carbonsäuren C_nH_{2n-27}O₃N.

Oxy-carbonsauren $\mathrm{C}_{20}H_{13}\mathrm{O}_3N.$

1. 2-[3-Oxy-acridyl-(9)]-benzoesäure C₂₀H₁₃O₂N, s. nebenstehende Formel. B. Beim Erhitzen von 2-[3-Anilino-acridyl-(9)]-benzoesäure (Syst. No. 3439) mit 20% (jer Salzsäure auf 250% (Besthoen, Curtman, B. 24, 2048). — Braune Nadeln. F: oberhalb 250%. — Gibt mit Mineralsäuren Salze, die beim Kochen mit Wasser hydrolysiert werden. Die Alkalisalze lösen sich leicht in Wasser mit grünlicher Fluorescenz.

2. 2-[2-Oxy-phenyl]-5.6-benzo-chinolin-carbon-săure-(4), 2-[2-Oxy-phenyl]-5.6-benzo-cinchoninsăure (,,o-Oxyphenyl-β-naphthocinchoninsăure") C₂₀H₁₂O₂N, s. nebenstehende Formel. B. Bei 3-stdg. Erhitzen von Salicylaldehyd mit Brenztraubensăure und β-Naphthylamin in alkoh. Lösung (DOEBNER, B. 27, 2029). — Krystalle. F: 226°. — Gibt beim Erhitzen 2-[2-Oxy-phenyl]-5.6-benzo-chinolin (Bd. XXI, S. 157). — Hydrochlorid. Gelbe Nadeln (aus Alkohol).

¹⁾ a. die Fußnote auf S. 241.

3. $2-[4-Oxy-phenyl]-5.6-benzo-chinolin-carbon-säure-(4), 2-[4-Oxy-phenyl]-5.6-benzo-cinchoninsäure <math>C_{20}H_{13}O_{2}N$, s. nebenstehende Formel.

CO₂H

n) Oxy-carbonsäuren $C_nH_{2n-31}O_3N$.

1. 2.6 - Diphenyl - 4 - [4 - oxy-phenyl] - pyridin - carbon - säure - (3), 2.6 - Diphenyl - 4 - [4 - oxy-phenyl] - nicotinsäure $C_{24}H_{17}O_3N$, s. nebenstehende Formel.

2.6-Diphenyl-4-[4-methoxy-phenyl]-pyridin-carbonsäure-(3)-nitril, 2.6-Diphenyl-4-[4-methoxy-phenyl]-3-cyan-pyridin $C_{25}H_{15}ON_3 = NC_5H(C_9H_5)_2(C_9H_4 \cdot O \cdot CH_3) \cdot CN$. B. Bei der Kondensation von Anisalacetophenon mit Benzoacetodinitril (Bd. X, S. 681) in Gegenwart von Natriumäthylat-Lösung (v. Meyer, C. 1908 II, 594; J. pr. [2] 78, 530). — Nadeln. F: 181°.

2. 2-Phenyl-4-[4-oxy-phenyl]-6-p-tolyl-pyridin-carbonsäure-(5), 6-Phenyl-4-[4-oxy-phenyl]- $\frac{C_6H_4\cdot OH}{1}$ 2-p-tolyl-nicotinsäure $C_{25}H_{19}O_3N$, s. nebenstehende Formel. $CH_3\cdot C_6H_4\cdot C_8H_4$

2-Phenyl-4-[4-methoxy-phenyl]-6-p-tolyl-pyridin-carbonsäure-(3)-nitril, 2-Phenyl-4-[4-methoxy-phenyl]-6-p-tolyl-5-cyan-pyridin $C_{26}H_{20}ON_2 = NC_5H(C_6H_6\cdot CH_3)(C_6H_4\cdot CH_3)(C_6H_4\cdot O\cdot CH_3)\cdot CN$. B. Bei der Kondensation von Anisalacetophenon mit p-Toluacetodinitril (Bd. X, S. 704) bei Gegenwart von Natriumäthylat-Lösung (v. Meyer, C. 1908 II, 594; J. pr. [2] 78, 530.) — Nadeln. F: 195°.

2. Oxy-carbonsäuren mit 4 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_n H_{2n-3} O_4 N$.

2.3 - Dioxy-nortropan - carbonsăure - (2), Nortropandiol - (2.3) - carbonsăure - (2) $C_8H_{13}O_4N$, Formel I.

2.3-Dioxy-tropan-carbonsäure-(2), Tropandiol-(2.3)-carbonsäure-(2), "Dioxy-anhydroekgonin" ("Dihydroxyanhydroekgonin") $C_0H_{15}O_4N$, Formel II. Zur Konsti-

tution vgl. die im Artikel Anhydroekgonin (S. 31) angegebene Literatur. — B. Durch Oxydation von Anhydroekgonin mit Kaliumpermanganat in sodaalkalischer Lösung in der Kälte; zur Reinigung stellt man das salzsaure Salz dar, führt es durch Erwärmen in methylalkoholischer Lösung in Gegenwart von Chlorwasserstoff in den Methylester über und verseift diesen durch Kochen mit Wasser (EINHORN, RASSOW, B. 25, 1395). — Krystalle (aus Wasser). Zersetzt sich gegen 280°, ohne zu schmelzen. Leicht löslich in Wasser und Methanol, unlöslich in absol. Alkohol und Äther. — C₂H₁₅O₄N + HCl. Krystalle (aus verd. Alkohol). F: 251°.

2.3 - Dioxy - tropan - carbonsäure - (2) - methylester, Tropandiol - (2.3) - carbonsäure - (2) - methylester $C_{10}H_{17}O_4N = CH_3 \cdot NC_7H_9(OH)_9 \cdot CO_9 \cdot CH_9$ B. s. im vorangehenden Artikel. — Prismen (aus Äther). F: 138—139°; sehr leicht löslich in Chloroform, ziemlich schwer in Äther (E1., R., B. 25, 1396). — $2C_{10}H_{17}O_4N + 2HCl + PtCl_4$. Rötlichgelbe Nadeln (aus verd. Alkohol). F: 210°.

O-Bensoylderivat $C_{17}H_{21}O_5N=CH_3\cdot NC_7H_6(OH)(O\cdot CO\cdot C_6H_5)\cdot CO_3\cdot CH_3$. B. Neben dem O.O-Dibenzoylderivat beim Erwärmen von 2.3-Dioxy-tropan-carbonsäure-(2)-methylester mit Benzoylchlorid; man trennt mittels der Nitrate (EI., R., B. 25, 1397). — Nadeln (aus verd. Alkohol). F: 107—108°. — $C_{17}H_{21}O_5N+HCl$. F: 202—203° (Zers.). Leicht löslich in Wasser. — $C_{17}H_{21}O_5N+HNO_3$. Tafeln. F: 215—216°. Leicht löslich in heißem Wasser. — $C_{17}H_{21}O_5N+HCl+AuCl_3$. Nadeln (aus Wasser). F: 172—173°. — $2C_{17}H_{21}O_5N+2HCl+PtCl_4$. Nadeln (aus Wasser). F: 207—208°.

O.O-Dibenzoylderivat $C_{24}H_{25}O_6N = CH_3 \cdot NC_7H_9(O \cdot CO \cdot C_9H_5)_2 \cdot CO_2 \cdot CH_3$. B. s. im vorangehenden Artikel. — Wurde nicht ganz rein erhalten. Nadeln (aus verd. Alkohol). F: 99—100°. Spaltet leicht Benzoesäure ab. — $C_{24}H_{25}O_6N + HCl$. Krystalle (aus Wasser). F: 280°. Schwer löslich in heißem Wasser. — $C_{24}H_{25}O_6N + HNO_8$. Nadeln. F: 189—190°.

Sehr schwer löslich in heißem Wasser, schwer in Alkohol.

2.3-Dioxy-tropan-carbonsäure-(2)-hydroxymethylat, Tropandiol - (2.3) - carbonsäure - (2) - hydroxymethylat, Ammoniumbase des "Dioxyanhydroekgoninmethylbetains" ("Dihydroxyanhydroekgoninmethylbetains") $C_{10}H_{19}O_5N$, s. nebenstehende Formel. — Jodid $C_{10}H_{18}O_4N \cdot I$. B. Aus Dioxyanhydroekgoninmethylbetain (s. u.) und Jodwasserstoffsäure (WILLSTÄTTER, B. 32, 1638). Tafeln. Zersetzt sich bei 255°. Sehr leicht löslich in Wasser, schwer in Alkohol.

Anhydrid, "Dioxyanhydroekgoninmethylbetain" ("Dihydroxyanhydroekgoninmethylbetain") $C_{10}H_{17}O_4N = (CH_3)_2NC_7H_9(OH)_2 \cdot CO \cdot O$. B. Beim Behandeln von 2.3-Dioxy-tropan-carbonsaure (2)-methylester-jodmethylat mit frisch gefälltem Silberoxyd

2.3-Dioxy-tropan-carbonsaure-(2)-methylester-jodmethylat mit frisch gefälltem Silberoxyd (WILLSTÄTTER, B. 32, 1638). — Schwach hygroskopische Tafeln und Pyramiden (aus Alkohol). Zersetzt sich zwischen 260° und 270°. Sehr leicht löslich in Wasser, sehr schwer in Alkohol.

2.3 - Dioxy - tropan - [carbonsäure-(2)-methylester] - hydroxymethylat, Tropandiol-(2.3) - [carbonsäure-(2)-methylester] - hydroxymethylat $C_{11}H_{21}O_5N = (HO)(CH_2)_2NC_2H_3(OH)_2\cdot CO_2\cdot CH_3$. — Jodid $C_{11}H_{20}O_4N\cdot I$. B. Bei der Einw. von Methyljodid auf 2.3-Dioxy-tropan-carbonsäure-(2)-methylester in Chloroform bei gewöhnlicher Temperatur (Wilstatter, B. 32, 1638). Prismen (aus Alkohol), Tafeln (aus Methanol). F: 205—206° (Zers.). Sehr leicht löslich in Wasser und warmem Methanol, schwer in Alkohol. Beständig gegen Erhitzen mit Wasser und Alkalilaugen. Geht beim Behandeln mit feuchtem Silberoxyd in Dioxyanhydroekgoninmethylbetain (s. o.) über.

b) Oxy-carbonsäuren $C_n H_{2n-7} O_4 N$.

1. Oxy-carbonsäuren $C_4H_5O_4N$.

1. 4.5 - Dioxy - pyridin - carbonsäure - (2), 4.5 - Dioxy - picolinsäure bezw. 5-Oxy-4-oxo-1.4-dihydro-pyridin-carbonsäure-(2), 5-Oxy-pyridon-(4)-carbonsäure-(2) C₆H₅O₄N, Formel I bezw. II, Komenaminsäure. B. Beim Kochen von Komensäure (Bd. XVIII, S. 461) mit überschüssigem Ammonisk (How, A. 80, 91; H. Meyer, M. 26, 1325) oder beim Erhitzen von saurem komensaurem

Ammonium im Rohr auf 199° (How, A. 80, 70, 91). Beim Erhitzen von 6-Brom-komensäure mit konz. Ammoniak im Rohr auf 150° (REIBSTEIN, J. pr. [2] 24, 285). Beim Kochen von Mekonsäure (Bd. XVIII, S. 503) mit überschüssigem Ammoniak (How, A. 80, 92 Anm.; 83, 353).

Blättchen mit 2H₂O (aus Wasser). F: 262° (Zers.) (Meyer, M. 26, 1325). Unlöslich in Äther (Tuschnowa-Philippowa, Ar. Pth. 51, 187), löslich in heißem verdünntem Alkohol, sehr schwer löslich in kaltem Wasser und absol. Alkohol (How., A. 80, 93). Elektrolytische Dissoziationskonstante k bei 25°: 2,4×10⁻⁴ (Peratoner, Palazzo, C. 1905 II, 678; G. 36 I, 13). Leicht löslich in Ammoniak, Alkalien und konz. Mineralsäuren (H., A. 80, 93, 94). — Spaltet sich beim Erhitzen auf 270° in Kohlendioxyd und 3.4-Dioxy-pyridin (Peratoner, Tamburello, C. 1905 II, 681; G. 36 I, 56). Liefert bei der Oxydation mit Kaliumpermanganat in verd. Schwefelsäure 4.5.6-Trioxy-pyridin-carbonsäure-(2) und viel Oxalsäure (Ost, J. pr. [2] 27, 266, 269; vgl. Mey.). Bei der Zinkstaubdestillation entsteht Pyridin (Lieben, Haitinger, B. 16, 1263). Beim Erhitzen mit 3 Mol Phosphorpentachlorid unter Zusatz von Phosphoroxychlorid am Rückflußkühler und Behandeln des mit Eiswasser gefällten Reaktionsprodukts mit Zinn und Salzsäure erhält man 4.5-Dioxy-2-methyl-pyridin (Ost; Bellmannn, J. pr. [2] 29, 14; vgl. a. Yabuta, Soc. 125 [1924], 577). Erhitzt man Komenaminsäure mit 3—5 Mol Phosphorpentachlorid unter Zusatz von Phosphoroxychlorid im Rohr auf 200°

bis 230°, so entsteht neben 4.5-Dichlor-2-trichlormethyl-pyridin und 4.5.6-Trichlor-2-trichlormethyl-pyridin ein Reaktionsgemisch, aus dem sich 4-Chlor-5-oxy-picolinsäure und eine Verbindung C₈H₈O₄NCl (s. u.) isolieren lassen; verläuft die Reaktion bei 250°, so erhält man nur 4.5-Dichlor-2-trichlormethyl-pyridin und 4.5.6-Trichlor-2-trichlormethyl-pyridin (B.; vgl. Ost; Graf, J. pr. [2] 183 [1932], 38, 39). Letztere Verbindung wird fast ausschließlich erhalten, wenn man Komenaminsäure mit 6-7 Mol Phosphorpentachlorid auf 280-2900 erhitzt (Ost). Komenaminsäure liefert beim Behandeln mit 2 Mol Brom in Wasser Oxalsäure und in geringer Menge 3-Brom-4.5.6-trioxy-pyridin-carbonsäure-(2) (Ost). Wird von salpetriger Säure in Gegenwart von Wasser vollständig zersetzt; leitet man dagegen nitrose Gase in eine Suspension von Komenaminsäure in Eisessig, so läßt sich neben Oxalsäure in geringer Menge Tetraoxopiperazin $HN <_{CO}^{CO} <_{CO}^{CO} > NH$ (Syst. No. 3628) isolieren (Ost, Mente, B. 19, 3228; vgl. DE MOUILPIED, RULE, Soc. 91, 176). Beim Erwärmen mit Salpetersäure entstehen Blausäure und Oxalsäure (Ost). Komenaminsäure zerfällt beim Erhitzen mit Halogenwasserstoffsäuren, am schnellsten mit konz. Jodwasserstoffsäure im Rohr auf 270° in Kohlendioxyd und 3.4-Dioxy-pyridin (Osr). Bei der trocknen Destillation des Ammionumsalzes im Kohlendioxyd-Strom unter vermindertem Druck bildet sich Oxykomazin C₁₀H₇ON₃ (s. u.) (KRIPPENDORFF, J. pr. [2] 82, 153). Komenaminsäure wird beim Kochen mit Alkalien nicht angegriffen; beim Schmelzen mit Kaliumhydroxyd tritt bei hoher Temperatur Zersetzung unter Bildung von Dicyan ein (Ost). Die Einw. von Diazomethan in Äther führt zur Bildung von 4-Oxy-5-methoxy-picolinsäure-methylester (Mex.). — Verhalten im tierischen Organismus: Tu.-PH. — Gibt in wäßr. Lösung mit Ferrisalzen eine purpurne bis violette Färbung (H., A. 80, 93; Tu.-Ph.). Mit Alkalinitrit-Lösung entsteht keine Blaufärbung (Unterschied von Citrazinsäure) (Behrmann, A. W. Hofmann, B. 17, 2694). — NH₄C₆H₄O₄N (bei 100°). Nadeln. Löslich in heißem Wasser (H., A. 80, 94). — Ba(C₆H₄O₄N)₂ + 2 H₂O. Prismen (aus Wasser) (H., A. 80, 95; Tu.-Ph.). — BaC₆H₃O₄N + H₃O. Unlöslich in heißem Wasser (H., A. 80, 95; vgl. Ost).

Oxykomazin C₁₀H₇ON₃. B. Bei der trocknen Destillation von komenaminsaurem Ammonium im Kohlendioxyd-Strom unter vermindertem Druck (Krippendorff, J. pr. [2] 32, 153). — Farblose Prismen (aus Alkohol). F: ca. 360° (vorher Gelbfärbung). Sublimiert teilweise unzersetzt in farblosen Prismen. Fast unlöslich in Äther, Benzol und Schwefel-kohlenstoff. 1 l Wasser löst bei 20° ca. 0,035 g. Leichter löslich in Alkohol mit gelber Farbe und schwach blauvioletter Fluorescenz. Sehr leicht löslich in Säuren; die verdünnte saure Lösung fluoresciert hellgrün, die konzentrierte saure Lösung azurblau. Schwer löslich in wäßr. Ammoniak. Löst sich in Alkalilaugen mit hellgelber Farbe und bläulicher Fluorescenz und wird durch Kohlendioxyd aus diesen Lösungen gefällt. — Einw. von Kaliumpermanganat: K. Liefert beim Erwärmen mit Zinn und Salzsäure ein gegen 214° schmelzendes Aminooxy-pyridin (Syst. No. 3420) und Piperidin. Zersetzt sich bei der Einw. von Natriumamalgam in heißer saurer Lösung unter Bildung von Ammoniak. Wird beim Erhitzen mit konz. Salzsäure oder rauchender Jodwasserstoffsäure im Rohr auf 230° nicht angegriffen. Ohne Einw. sind auch konzentrierte oder rauchende Salpetersäure, Königswasser, salpetrige Säure und konz. Kalilauge in der Wärme. Beim Schmelzen mit Kaliumhydroxyd tritt Zersetzung ein. Wirkt auf den tierischen Organismus giftig (GAULE, J. pr. [2] 32, 158). — AgC₁₀H₆ON₃. Schwefelgelbe Prismen. Unlöslich in Wasser und kaltem Ammoniak, schwer löslich in heißem Ammoniak. — C₁₀H₇ON₂ + 2 HCl. Hellgelbe Prismen (aus Wasser). Schmilzt gegen 265°. Sehr leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther und Benzol. — C₁₀H₂ON₃ + H₂SO₄ + 3 H₂O. Gelbe Tafeln. Schmilzt wasserfrei bei 295°. Sehr leicht löslich in Wasser, schwer in Alkohol. — C₁₀H₇ON₃ + 2 HCl + PtCl₄. Hellgelbe Prismen (aus salzsäurehaltigem Wasser). Fast unlöslich in kaltem Wasser.

Verbindung $C_9H_9O_4NCl$ ("Chlorkyaminsäure"). B. Man erhitzt Komenaminsäure mit Phosphorpentachlorid und Phosphoroxychlorid im Rohr auf 220—230°, extrahiert das Reaktionsprodukt mit heißem Wasser, kocht die wäßr. Lösung bis zur vollkommenen Abscheidung der 4-Chlor-5-oxy-picolinsäure, dampft das Filtret mit konz. Ammoniak ein, löst den Niederschlag in Salzsäure, dampft ein, extrahiert den Rückstand mit absol. Alkohol und verjagt den Alkohol (Bellmann, J. pr. [2] 29, 2, 3, 10, 11, 13). — Blättchen mit 1 H_9O (aus Wasser). F: 186°. Nicht flüchtig. Schwer löslich in kaltem, leicht in heißem Wasser. Leicht löslich in Salzsäure. Die wäßr. Lösung reagiert fast neutral. Eisenchlorid erzeugt eine violette Färbung, die sofort in Dunkelblau übergeht. — $AgC_8H_7O_4NCl$. Pulver. Zersetzt sich beim Kochen mit Wasser. — $Ba(C_8H_7O_4NCl)_2 + 8H_9O$. Prismen. Ziemlich leicht löslich in Wasser.

4-Oxy-5-methoxy-pyridin-carbonsäure-(2)-methylester, 4-Oxy-5-methoxy-picolinsäure-methylester C₂H₂O₄N, s. nebenstehende Formel. B. Aus Komenaminsäure und Diazomethan in Äther (H. Meyer, M. 26, 1328). — Krystalle. Schmilzt unscharf bei 118°. Sehr leicht löslich in Wasser und Alkohol, schwer in Äther.

- 4.5-Dioxy-pyridin-carbonsäure-(2)-äthylester, 4.5-Dioxy-picolinsäure-äthylester $C_8H_9O_4N=NC_5H_2(OH)_2\cdot CO_2\cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in eine Suspension von Komenaminsäure in absol. Alkohol (How, Edinburgh new philos. Journ. [2] 1, 221, 223; J. 1855, 495; Reibstein, J. pr. [2] 24, 284). Nadeln mit 1 H_2O (aus Wasser). F: 205° (R.). Schwer löslich in absol. Alkohol und kaltem Wasser, löslich in heißem Wasser (H.). Leicht löslich in Mineralsäuren (H.) sowie in kaltem wäßrigem Ammoniak (R.). Einw. von Essigsäureanhydrid liefert beim Erwärmen ein O-Acetylderivat, bei längerem Menge eine Verbindung $C_8H_7O_3N$ [Prismen (aus Alkohol); F: 261°; fast unlöslich in Wasser] (O., J. pr. [2] 27, 270). Ba $(C_8H_8O_4N)_2 + 2H_2O$. Gelbe Nadeln. Schwer löslich in kaltem, leicht in heißem Wasser (R.). Wird bei Einw. von heißem Wasser allmählich unter Bildung von komenaminsaurem Barium zerlegt (R.). $C_8H_9O_4N + HCl + H_2O$. Nadeln (aus Alkohol oder Ather). Wird durch warmes Wasser zersetzt (H.).
- O-Acetylderivat $C_{10}H_{11}O_5N = NC_5H_8(OH)(O\cdot CO\cdot CH_8)\cdot CO_3\cdot C_2H_5$. B. Beim Erwärmen von 4.5-Dioxy-picolinsäure-äthylester mit Essigsäureanhydrid (Ost, J. pr. [2] **29**, 59). Krystalle (aus Chloroform). F: 152°. Ziemlich sehwer löslich. Spaltet bei der Einw. von Wasser oder Alkohol schon in der Kälte Essigsäure ab.
- O.O-Diacetylderivat $C_{12}H_{13}O_6N=NC_5H_2(O\cdot CO\cdot CH_3)_2\cdot CO_2\cdot C_2H_5$. B. Bei längerem Kochen von 4.5-Dioxy-picclinsäure-åthylester mit Essigsäureanhydrid (Ost, J. pr. [2] **29**, 59). Krystalle (aus Chloroform). F: 38°. Sehr leicht löslich. Spaltet bei der Einw. von Wasser oder Alkohol schon in der Kälte Essigsäure ab.
- O.O-Dibenzoylderivat $C_{22}H_{17}O_6N=NC_5H_2(O\cdot CO\cdot C_6H_5)_2\cdot CO_2\cdot C_2H_5$. B. Beim Kochen von 4.5-Dioxy-picolinsäure-äthylester mit Benzoylchlorid und etwas Chloroform (Ost, J. pr. [2] **29**, 60). Prismen (aus Chloroform). F: 101—102°. Sehr leicht löslich in Chloroform, schwerer in Alkohol.
- 2. 4.6-Dioxy-pyridin-carbonsäure-(2), 4.6-Dioxy-picolin-säure C₆H₅O₄N, s. nebenstehende Formel, bezw. desmotrope Formen. B. Beim Kochen von 4.6-Diäthoxy-picolinsäure mit rauchender Jodwasserstoff-säure (Sedgwick, Collie, Soc. 67, 410). Krystalle (aus Jodwasserstoff-säure). F: 270—273° (korr.) (Zers.). AgC₆H₄O₄N. Unlöslich in Wasser. Färbt sich beim Erhitzen braun.
- 4.6-Diäthoxy-pyridin-carbonsäure-(2), 4.6-Diäthoxy-picolinsäure $C_{10}H_{13}O_4N=NC_5H_3(O\cdot C_9H_5)_2\cdot CO_3H$. B. Bei längerem Kochen von 4.6-Dichlor-picolinsäure mit Natrium-äthylat-Lösung (8., Č., Soc. 67, 409). Krystalle (aus Alkohol und Wasser). F: 93—95°. $NaC_{10}H_{12}O_4N+2H_2O$.
- 3. 2.6-Dioxy-pyridin-carbonsäure-(3), 2.6-Dioxy-nicotin-säure C₆H₅O₄N, s. nebenstehende Formel, bezw. desmotrope Formen. B. HO N OH Beim Erhitzen des Äthylesters mit konz. Schwefelsäure im Wasserbad (Guthzeit, Laska, J. pr. [2] 58, 423). Nadeln. Schmilzt im Rohr unter Zersetzung bei 197—198°. Die Lösung in Ammoniak färbt sich an der Luft bald blau. Gibt mit konz. Kaliumnitrit-Lösung keine Färbung. Gibt mit Eisenchlorid eine purpurviolette Färbung.

Äthylester C₈H₉O₄N = NC₅H₈(OH)₂·CO₃·C₂H₅. B. Neben 2.6-Dioxy-nicotinsāure-amid bei der Einw. von bei 0° gesāttigtem wäßrigem Ammoniak auf Isoaconitsāure-triāthylester (Bd. II, S. 848) in der Kālte (Guthzeit, Laska, J. pr. [2] 58, 419, 420). Beim Kochen von 2.6-Dioxy-pyridin-dicarbonsāure-(3.5)-monoāthylester mit Wasser (Errera, G. 27 II, 406; 28 I, 273; B. 31, 1245; vgl. Guthzeit, B. 32, 781). — Nadeln (aus Alkohol, Benzol oder Aceton). F: 179° (Zers.) (Ē.), 183° (G., L.). Schwer löslich in Äther, kaltem Aceton (G., L.), Benzol und Wasser, leichter in Alkohol (Ē.). Schwer löslich in verd. Säuren, Ammoniak und Natronlauge (G., L.). — Beim Erhitzen mit Phosphorpentachlorid und etwas Phosphoroxychlorid im Rohr auf 250—260° und Zersetzen des Reaktionsprodukts mit Eis erhält man extensit (G., L.). Liefert beim Kochen mit überschüssiger Alkalilauge 2.6-Dioxy-pyridin (E.). Beim Schmelzen mit Phthalsäureanhydrid und Versetzen der Schmelze mit Wasser erhält man eine rote Lösung, die auf Zusatz von Ammoniak blau fluoresciert (G., L.). — Gibt in alkoh. Lösung mit Eisenchlorid eine blutrote Färbung (G., L.). — NH₄C₈H₈O₄N. Hellgelbes Pulver. F: ca. 215°; unlöslich in Wasser, Alkohol, Äther und Chloroform; löslich in konz. Säuren (G., L.). Spaltet beim Kochen mit Alkalien Ammoniak ab (G., L.). — NaC₈H₈O₄N. Krystallpulver. Schwer löslich (E.). — AgC₈H₈O₄N. Pulver. Ziemlich lichtbeständig (G., L.).

6-Oxy-2-äthoxy-pyridin-carbonsäure-(3)-äthylester, 6-Oxy-2-äthoxy-nicotinsäure-äthylester $C_{10}H_{13}O_4N$, s. nebenstehende Formel. B. Beim Erhitzen des Silbersalzes des 2.6-Dioxy-nicotinsäure-äthylesters mit Äthyljodid in Äther auf dem Wasserbad (GUTHZEIT, LASKA, J. pr. [2] 58, 422). — Krystalle (aus Petroläther). F: 66—67°. Leicht löslich in allen indifferenten Lösungsmitteln außer in Wasser. — Wird von Natriumcarbonat nicht angegriffen. Gibt in alkoh. Lösung mit Eisenchlorid eine hellgelbrote Färbung.

- 2.6 Dioxy pyridin carbonsäure (3) amid, 2.6 Dioxy nicotinsäure amid $C_eH_eO_3N_2=NC_5H_2(OH)_2\cdot CO\cdot NH_2$. B. Neben 2.6-Dioxy-nicotinsäure-äthylester bei der Einw. von bei O^0 gesättigtem wäßrigem Ammoniak auf Isoaconitsäure-triäthylester in der Kälte (G., L., J. pr. [2] 58, 427). — F: 2060 (Zers.). — Gibt mit Eisenchlorid eine blutrote Färbung.
- 4.5 Dichlor 2.6 dioxy pyridin carbonsäure (3) äthylester, 4.5-Dichlor-2.6-dioxy-nicotinsäure-äthylester C₈H₇O₄NCl₂, s. nebenstehende Formel. B. Beim Sättigen einer Lösung von 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diäthylester in konz. Salzsäure mit Chlor (Ruhe-mann, Browning, Soc. 73, 286). — Tafeln (aus Alkohol). Zersetzt sich bei 248°. Schwer löslich in heißem Alkohol. Gibt mit Phenylhydrazin ein in Alkohol leicht lösliches Additionsprodukt. — Liefert mit Eisenchlorid in alkoh. Lösung eine rotviolette Färbung.
- 5 Brom 2.6 dioxy pyridin carbonsäure (3) äthylester, $\begin{array}{c} \text{Br.} \\ \text{HO.} \\ \\ \text{N} \end{array} \begin{array}{c} \text{CO}_2 \cdot \text{C}_2 \text{H}_5 \\ \\ \text{OH} \end{array}$ 5-Brom-2.6-dioxy-nicotinsaure-athylester C₈H₈O₄NBr, s. nebenstehende Formel. B. Bei der Einw. von Bromwasser auf 2.6-Dioxynicotinsäure-äthylester (Errera, G. 27 II, 408; 28 I, 273; B. 31, 1245; vgl. a. Guthzeit, Laska, J. pr. [2] 58, 425). — Nadeln (aus Alkohol). Zersetzt sich oberhalb 2000, ohne zu schmelzen (E.; vgl. G., L.).
- 4. 4.6-Dioxy-pyridin-carbonsäure-(3), 4.6-Dioxy-nicotinsäure C₆H₅O₄N, s. nebenstehende Formel, bezw. desmotrope Formen. B. Bei kurzem Kochen des Äthylesters mit Kalilauge (Errera, G. 28 I, 489; B. 31, 1686). — Nadeln (aus Wasser). F: ca. 310°. Fast unlöslich in den gewöhnlichen Lösungsmitteln. Löslich in konz. Schwefelsäure. — Liefert beim Erhitzen mit konz. Salzsäure im Rohr auf 190—200° 2.4-Dioxy-pyridin.

Äthylester $C_8H_8O_4N=NC_5H_2(OH)_4\cdot CO_2\cdot C_2H_5$. B. Durch Erhitzen von 1 Mol Aceton-dicarbonsäurediäthylester mit 1 Mol Orthoameisensäuretriäthylester und 2 Mol Essigsäureanhydrid und Behandeln des Reaktionsprodukts mit Ammoniak (E., G. 28 I, 482, 484, 487; B. 31, 1683, 1684, 1685). — Nadeln (aus Wasser), Blättchen (aus Benzol). F: 213° (Zers.). Schwer löslich in Wasser und Benzol, leichter in Alkohol. Leicht löslich in konz. Säuren und verd. Alkalilauge. — Liefert beim Erhitzen mit konz. Salzsäure im Rohr auf 190—200° 2.4-Dioxy-pyridin. Wird von überschüssigem Hydroxylamin in der Wärme nicht angegriffen. - Gibt in wäßr. Lösung mit Eisenchlorid eine rotbraune Färbung. — Ba(C₈H₈O₄N)₂+6H₂O. Krystallinisch. Wird bei 150° wasserfrei. Zersetzt sich bei längerem Kochen mit Wasser.

O-Acetylderivat $C_{10}H_{11}O_5N = NC_5H_2(OH)(O \cdot CO \cdot CH_3) \cdot CO_2 \cdot C_2H_5$. B. Beim Kochen von 4.6-Dioxy-nicotinsäure-äthylester mit Essigeäureanhydrid (E., G. 28 I, 488; B. 31, 1686). — Nadeln (aus Alkohol). F: 147—148°. — Wird von kechendem Wasser langsam verseift.

5-Brom-4.6-dioxy-pyridin-carbonsäure-(3), 5-Brom-4.6-dioxynicotinsäure C₆H₄O₄NBr, s. nebenstehende Formel. B. Beim Behandeln des Athylesters mit Alkalilauge (E., G. 28 I, 490; B. 31, 1687). — Krystallpulver (aus Alkohol). Verkohlt bei ca. 250°, ohne zu schmelzen. Sehr schwer löslich in Wasser, leichter in Alkohol.

Äthylester $C_8H_8O_4NBr = NC_5HBr(OH)_2 \cdot CO_2 \cdot C_2H_5$. B. Bei der Einw. von Bromwasser auf 4.6-Dioxy-nicotinsäure-äthylester (E., G. 28, 489; B. 81, 1686). — Nadeln (aus Alkohol), die sich am Licht gelb färben. Zersetzt sich bei ca. 225°, ohne zu schmelzen. Unlöslich in Wasser und Benzol.

5. 2.6-Dioxy-pyriain-curvonsuure-(x), 2.6-Dioxy-pyr 5. 2.6-Dioxy-pyridin-carbonsäure-(4), 2.6-Dioxy-isonicotin-CO₂H wäßrigem oder alkoholischem Ammoniak (SCHNEIDER, B. 21, 670, 671; vgl. dazu

RUHEMANN, B. 21, 1247). Beim Kochen von α-Cyan-aconitsäure-triäthylester (Bd. II, S. 876) mit methylalkoholischer Kalilauge (Rogerson, Thorpe, Soc. 89, 640). Bei 3-stündigem Erhitzen von Diammoniumcitrat auf 130° (Easterfield, Sell, Soc. 65, 29). Beim Erhitzen von Citronensäuretrimethylester mit Ammoniak im Rohr (Ea., Sell, Soc. 61, 1009; vgl. Behrmann, A. W. Hofmann, B. 17, 2688). Aus dem leicht verseifbaren Citronensäuremonosmid (Bd. III, S. 569), aus Citronensäurediamid oder aus Citronensäuretriamid beim Erwärmen mit 70—75°/ciger Schwefelsäure auf ca. 130° (Behr., Hof.) oder mit Ammoniak (D: 0,88) im Rohr auf 120—130° (Ea., Sell, Soc. 61, 1009). Beim Erhitzen von α.β-Anhydroaconitsäure (Bd. XVIII, S. 463) mit Ammoniak (D: 0,88) im Rohr auf 120° (Ea., Sell, Soc. 61, 1011). Aus O-Acetyl-anhydrocitronensäure (Bd. XVIII, S. 539) beim Erhitzen mit Ammoniak (D: 0,88) im Rohr auf 120—130° (Ea., Sell, Soc. 61, 1008). Beim Erhitzen von 2.6-Dichlor-isonicotinsäure mit Natriumhydroxyd und etwas Wasser auf ca. 170° (Sell, Dootson, Soc. 71, 1075). Aus 2.6-Dioxy-pyridin-dicarbonsäure-(3.4)-diäthylester beim Kochen mit konz. Salzsäure (Ruhemann, Stapleton, Soc. 77, 250) oder mit verd. Natronlauge (Rogerson, Thorpe, Soc. 89, 640).

Mikroskopische Platten (aus konz. Salzsäure). Verkohlt oberhalb 300°, ohne zu schmelzen (Behrmann, Hofmann, B. 17, 2689). Sehr schwer löslich in heißem Wasser, unlöslich in den übrigen neutralen Lösungsmitteln (Behr., Hof.). Schwer löslich in heißer konzentrierter Salzsäure und warmer konzentrierter Schwefelsäure (Behr., Hor.). Leicht löslich in Alkalilauge und Alkalicarbonat-Lösung (Behr., Hof.). Die alkal. Lösungen fluorescieren blau (Easterfield, Sell, Soc. 61, 1008; 63, 1038; Baker, Bally, Soc. 91, 1130). Absorptionsspektrum in Natronlauge: Baker, Baly. — Citrazinsäure liefert beim Kochen mit Zinn und Salzsäure Tricarballylsäure (Behr., Hof.). Beim Einleiten von Chlor in eine wäßrige Suspension von Citrazinsäure bei höchstens 50° entsteht 3.3.5-Trichlor-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-carbonsaure-(4) (Trichlorcitrazinsaure; S. 330) (Sell, Ea., Soc. 63, 1041). Citrazinsäure liefert beim Erhitzen mit Phosphorpentachlorid und etwas Phosphoroxychlorid am Rückflußkühler oder im Rohr auf 170° die Chloride der 6-Chlor-2-oxy-isonicotinsäure, 2.6-Dichlor-isonicotinsäure und Tetrachlorisonicotinsäure sowie 2.6-Dichlor-4-trichlormethylpyridin (Sell, Dootson, Soc. 71, 1069; vgl. Behr., Hor.). Erhitzt man Citrazinsäure mit 3 Tln. Phosphoroxychlorid 4 Stunden im Rohr auf 210°, so läßt sich aus dem Reaktionsprodukt 2.6-Dichlor-isonicotinsäure in guter Ausbeute isolieren (BITTNER, B. 35, 2933). Bei der Einw. von Brom auf Citrazinsäure in essigsaurer Lösung entsteht Tribromcitrazinsäure (Sell, Ea., Soc. 63, 1042). Beim Einleiten von nitrosen Gasen (aus As₂O₃ und Salpetersäure) in eine wäßr. Suspension von Citrazinsäure entsteht eine Verbindung C.H.O.N. (Nitrosocitrazinsäure?) (s. u.) (Sell, Ea., Soc. 63, 1046; vgl. Sell, Jackson, Soc. 75, 508). Citrazinsäure liefert beim Erwärmen mit einer verdünnten, schwefelsäurehaltigen Lösung von 1/2 Mol Kaliumnitrit (unter Blaufarbung der Lösung) die Verbindung C₁₀H₆O₆N₂ (S. 256); bei Anwendung von überschüssigem Kaliumnitrit entsteht (unter Gelbfärbung der Lösung) die Verbindung C₁₂H₄O₁₆N₄ (S. 256) (Sell, Ea., Soc. 63, 1043, 1045, 1049; vgl. Sell, Jack., Soc. 75, 508, 514; Behe., Hop.). Leitet man Stickoxyd [aus Kupfer und Salpetersäure (D: 1,2)] unter Luftzutritt durch eine wäßr. Suspension von Citrazinsäure, so bilden sich die Verbindung C₁₂H₄O₁₀N₄ und eine in gelben Blättchen mit 1 H₂O krystallisierende Verbindung C₂H₄O₅N₃ (Sell, Ea., Soc. 63, 1045; vgl. Sell, Jack., Soc. 75, 508). Bei der Einw. von Salpetersäure (D: 1,42) unter starker Kühlung bilden sich Dinitrocitrazinsäure (S. 258) und 5-Nitro-2.3.4.6-tetraoxo-piperidin (?) (Bd. XXI, S. 571) (Sell, Ea., Soc. 65, 832). Citrazinsäure liefert bei kurzem Erwärmen mit rauchender Schwefelsäure auf 110—120° die Verbindung C₁₀H₂O₁₈N₂S₂ (S. 258) und Sellen auf Chlematica auf 20° die Verbindung C₁₀H₂O₁₈N₂S₃ (S. 258) und Sellen auf 20° die (S. 257); diese läßt sich auch aus dem aus Citrazinsaure und Chlorsulfonsaure erhaltenen Reaktionsgemisch isolieren (Sell, Ea., Soc. 65, 834). Citrazinsäure zerfällt beim Erhitzen mit konz. Šalzsaure im Rohr auf 180° in CO₂, Ammoniak und Aconitsaure (Guthzeit, Dressel, A. 262, 123; ROGERSON, THORPE, Soc. 89, 640). Bleibt beim Kochen mit konz. Alkalien unverändert; beim Schmelzen mit Kaliumhydroxyd entetehen Kaliumcyanid und Oxalsäure (Behb., Hop.). Citrazinsaure reagiert mit Chloroform und Natriumhydroxyd in der Warme unter Bildung von 2.6-Dioxy-3-formyl-isonicotinsäure (Syst. No. 3372) (Sell, Soc. 69, 1448). Citrazinsaure kuppelt mit Diazobenzol in alkal. Lösung zu 3-Benzolazo-2.6-dioxy-pyridincarbonsaure-(4) (Syst. No. 3448) (Sell, Ea., Soc. 63, 1042). — Die ammoniakalische Lösung der Citrazinsaure färbt sich bei Luftzutritt tief blau (Behr., Hof.; Ea., Sell, Soc. 65, 29). Über die Blaufärbung mit Kaliumnitrit-Lösung s. o. Citrazinsäure gibt mit Eisenchlorid keine charakteristische Färbung (Unterschied von Komenaminsäure) (Behr., Hof.). Salze: Sell, Ea., Soc. 63, 1040. — NH₄C₆H₄O₄N + H₂O. Krystalle (aus Wasser). Löslich in heißem Wasser. — (NH₄)₂C₄H₂O₄N + H₂O. Krystalle. — NaC₆H₄O₄N + 2H₂O. Krystallinisch. Schwer löslich. — Na₂C₆H₂O₄N (im Vakuum getrocknet). Leicht löslich in Wasser. — K₂C₆H₂O₄N (bei 100°). Nadeln. Leicht löslich in Wasser.

Verbindung $C_0H_4O_5N_2$, vielleicht Nitrosocitrazinsäure $NC_5H(NO)(OH)_2\cdot CO_2H$ bezw. desmotrope Formen. Zur Zusammensetzung und Konstitution vgl. Sell, Jackson,

Soc. 75, 508, 513. — B. Beim Einleiten von nitrosen Gasen (aus As₂O₃ und Salpetersäure) in eine wäßr. Suspension von Citrazinsäure (Sell, Easterfield, Soc. 63, 1046). — Krystalle mit 1 H₂O (aus Alkohol). Explosiv; sehr unbeständig (S., Ea.). Leicht löslich in Alkohol (S., Ea.). — Liefert bei der Einw. von nitrosen Gasen oder von Salpetersäure die Verbindung C₁₂H₄O₁₀N₄ (s. u.) (S., Ea.; S., J.). Beim Behandeln mit warmer verdünnter Schwefelsäure oder mit Schwefelwasserstoff en Schwefelwasserstoff (S., Ea.; vgl. S., J.). Cibt die Lymphytypecke Nitrosepalation (S., T.) Gibt die LIEBERMANNsche Nitrosoreaktion (S., J.).

Acetylderivat $C_8H_6O_6N_2=C_5H_2O_3N_2(CO\cdot CH_3)\cdot CO_2H$. B. Beim Kochen von Nitrosocitrazinsäure mit Acetylchlorid und etwas Essigsäureanhydrid (S., J., Soc. 75, 513). — Kry-

stalle. Explosiv.

Verbindung C₁₂H₄O₁₀N₄. Zur Zusammensetzung und Konstitution vgl. S., J., Soc. 75, 508, 514. — Das Molekulargewicht ist ebullioskopisch in Alkohol bestimmt (S., J.). B. Aus Citrazinsäure beim Erwärmen mit überschüssigem Kaliumnitrit in verd. Schwefelsäure oder beim Einleiten von Stickoxyd [aus Kupfer und Salpetersäure (D: 1,2)] in die wäßr. Suspension bei Luftzutritt (S., EASTERFIELD, Soc. 63, 1045, 1046). Aus Nitrosocitrazinsaure bei der Einw. von nitrosen Gasen (aus As₂O₃ und Salpetersaure) oder von socitrazinsaure dei der Einw. von nitrosen Gasen (aus As₂O₃ und Salpetersäure) oder von Salpetersäure (S., Ea.; S., J.). — Schwefelgelbe Nadeln mit 8H₂O. Explosiv (S., Ea.; S., J.). Leicht löslich in Wasser und Alkohol, unlöslich in Benzol und Äther (S., Ea.). Fast unlöslich in konz. Salzsäure (S., Ea.). — Liefert bei der Reduktion mit Zinnchlorür und nachfolgender Luftoxydation die Verbindung C₁₀H₆O₆N₂ (s. u.) (S., Ea.; S., J.). Gibt die Liebermannsche Nitrosoreaktion (S., J.). — (NH₄)₂C₁₂H₂O₁₀N₄. Krystalle. Schwer löslich (S., Ea.). — Hydroxylaminsalz 2HO·NH₂ + C₁₂H₄O₁₀N₄. Goldgelbe Nadeln (S., J.). — K₂C₁₂H₂O₁₀N₄. Citronengelbe Krystalle. Schwer löslich (S., Ea.). — Ag₃C₁₂H₂O₁₀N₄ + 4H₂O. Gelbe Tafeln (S., Ea.). — Ag₄C₁₂O₁₀N₄. Schwefelgelbes, explosives Pulver (S., Ea.).

Verbindung $C_{10}H_6O_6N_2$. Zur Zusammensetzung und Konstitution vgl. Sell, Jackson, Soc. 75, 509, 512. — B. Aus Citrazinsäure beim Erwärmen mit $^{1}/_{2}$ Mol Kaliumnitrit in verd. Schwefelsäure (S., Easterfield, Soc. 63, 1044). Aus Nitrosocitrazinsäure beim Behandeln mit warmer verdünnter Schwefelsäure oder mit Schwefelwasserstoff (S., Ea., Soc. 63, 1047). Aus der Verbindung C₁₂H₄O₁₀N₄ durch Erwärmen mit Zinnchlorür und nachfolgender Oxydation mit Luft (S., Ea., Soc. 68, 1049; S., J.). — Bronzegrüne Nadeln mit 2H₂O (aus Wasser). Unlöslich in den gewöhnlichen Lösungsmitteln (S., Ea., Soc. 63, 1044). Löslich in Alkalilauge mit intensiv blauer Farbe (S., Ea., Soc. 63, 1044). — Liefert bei der Oxydation mit Salpetersaure die Verbindung C₁₀H₄O₆N₂ (s. u.) (S., EA., Soc. 63, 1048; S., J.). Beim Behandeln mit Zinn und Salzsäure (S., J.) oder bei 24-stündiger Einw. von rauchender Jodwasserstoffsäure (S., Ea., Soc. 65, 830) entsteht die Verbindung C₁₀H₈O₆N₈ (s. u.). Beim wasserstoffsaure (S., EA., Soc. 65, 830) entsteht die Verbindung C₁₀H₂O₆N₂ (s. u.). Beim Kochen mit rauchender Jodwasserstoffsaure und etwas farblosem Phosphor bildet sich Hexan-α.γ.δ.ζ-tetracarbonsaure (S., EA., Soc. 65, 829; S., J.). Bei kurzem Erhitzen mit Chlorsulfonsaure auf 100° entsteht die Verbindung C₁₀H₄O₃N₂Cl₂ (S. 257) (S., J.).

Diacetylderivat C₁₄H₁₀O₈N₂ = C₁₀H₄O₄N₂(O·CO·CH₃)₂. B. Beim Kochen der Verbindung C₁₀H₆O₆N₂ mit Essigsaureanhydrid (Sell, Jackson, Soc. 63, 1048). — Blättchen. Tetra ben zoylderivat C₃₈H₃₂O₁₀N₃ = C₁₀H₂O₂N₂(O·CO·C₆H₅)₄. B. Beim Kochen der Verbindung C₁₀H₆O₆N₂ mit Benzoylchlorid (S., J., Soc. 75, 509, 515). — Dunkelbraune Platten. Schwer löslich in den gebräuchlichen Solvenzien.

Verbindung $C_{10}H_4O_6N_8$, vielleicht 6.6'-Dioxy-2.5.2'.5'-tetraoxo-2.5.2'.5'-tetra-hydro-dipyridyl-(3.3') [NC₅H(OH)(:O)₈-]₈. Zur Zusammensetzung und Konstitution vgl. S., J., Soc. 75, 511, 512. — B. Beim Behandeln der Verbindung $C_{10}H_6O_6N_8$ mit Salpetersäure (S., Ea., Soc. 63, 1048; S., J.). — Goldgelb. Schwer löslich in den gewöhnlichen Lösungsmitteln (S., Ea.; S., J.). Löslich in den gewöhnlichen Lösungsmitteln (S., Ea.; S., J.). Löslich in verbinder konzentrierter Salzsäure (S., J.). — Wird von schweftiger Säure oder Hudeskin in weider und Verbinder S. V. O. N. J.) schwefliger Säure oder Hydrochinon wieder zu der Verbindung C₁₀H_eO₆N₂ reduziert (S., E_{A.};

Dioxim $C_{10}H_6O_6N_4=C_{10}H_4O_4N_2(:N\cdot OH)_3$. B. Aus der Verbindung $C_{10}H_4O_6N_2$ und überschüssigem salzsaurem Hydroxylamin in konz. Salzsäure (S., J., Soc. 75, 511, 516). — Blutrot. Disemicarbazon $C_{19}H_{10}O_6N_8 = C_{10}H_4O_4N_2(:N\cdot NH\cdot CO\cdot NH_2)_2$. B. Aus der Verbindung C₁₀H₄O₆N₅ und salzsaurem Semicarbazid in Salzsaure (S., J., Soc. 75, 511, 516). — Grünlichgelbe Nadeln.

Verbindung $C_{10}H_{8}O_{6}N_{2}$, vielleicht 2.5.6.2'.5'.6'-Hexaoxy-dipyridyl-(3.3') [NC₅H(OH)₃-]₂. Zur Konstitution vgl. S., J., Soc. 75, 511, 512. — B. Aus der Verbindung $C_{10}H_{6}O_{6}N_{2}$ beim Behandeln mit Zinn und Salzsäure (S., J., Soc. 75, 511, 516) oder bei 24-stündiger Einw. von rauchender Jodwasserstoffsäure (S., Ea., Soc. 65, 830). — Gelbinden Madeln mit 1 H₂O. — Färbt sich an der Luft schnell rot (S., Ea.). Liefert bei der Einw. von Oxydationsmitteln wie Fienrehlerid die Verbindung C. H.O.N. gerfühl (S. L.) Oxydationsmitteln, wie Eisenchlorid, die Verbindung $C_{10}H_{0}O_{0}N_{2}$ zurück (8., J.). — Hydrochlorid. Nadeln (8., J.). — $C_{10}H_{0}O_{0}N_{2}+2HI+H_{0}O$. Krystalle (aus konz. Jodwasserstoffsäure). Hygroskopisch; wird durch Wasser zersetzt (8., Ea.).

Hexabenzoylderivat $C_{12}H_{23}O_{12}N_2 = C_{10}H_2N_2(O\cdot CO\cdot C_0H_3)_4$. Beim Kochen des Hydrochlorids der Verbindung $C_{10}H_3O_6N_3$ mit Benzoylchlorid (8., J., Soc. 75, 511, 516). — Krystallinisch. F: 185°.

S., J., Soc. 75, 512, 517. — B. Bei kurzem Erhitzen der Verbindung C₁₀H₆O₆N₂ mit Chlorsulfonsäure auf 100° (S., J., Soc. 75, 517). — Farblose Nadeln (aus Eisessig). Leicht löslich in Äther, Alkohol und Aceton, unlöslich in Wasser. — Na₂C₁₀H₂O₃N₂Cl₂ + 3H₂O. Krystalle. Diacetylderivat C₁₄H₃O₃N₂Cl₂ = C₁₀H₂ON₂Cl₃(O·CO·CH₃)₃. B. Aus der Verbindung C₁₀H₄O₃N₂Cl₂ und siedendem Essigsäureanhydrid (S., J., Soc. 75, 518). — Blättchen. Dibenzoylderivat C₂₄H₁₂O₃N₂Cl₂ = C₁₀H₂ON₃Cl₂(O·CO·C₂H₅)₃. B. Beim Kochen der Verbindung C₁₀H₄O₃N₂Cl₂ mit Benzoylchlorid (S., J., Soc. 75, 512, 518). — Nadeln.

Verbindung C₁₀H₆O₁₆N₆S₂. B. Bei kurzem Erwärmen von Citrazinsäure mit rauchender Schwefelsäure auf 110—120° (Sell, Easterfield, Soc. 65, 834). Aus Citrazinsäure und Chlorsulfonsaure (S., EA.). — Na₆C₁₀O₁₆N₂S₃ + 10H₂O. Nadeln (aus Wasser). Schwer löslich. – $K_{4}C_{10}O_{16}N_{2}S_{3}$ (bei 150°). — $Ag_{4}C_{10}O_{16}N_{2}S_{3}$.

- 2.6-Diacetoxy-pyridin-carbonsäure-(4), 2.6-Diacetoxy-isonicotinsäure, O.O-Diacetyl-citraginsäure $C_{10}H_2O_0N=NC_0H_2(O\cdot CO\cdot CH_2)_2\cdot CO_2H$. B. Aus Citraginsäure und Essigsäureanhydrid in der Wärme (Behrmann, A. W. Hofmann, B. 17, 2691). Krystallinisch. Wird durch Wasser oder Alkohol leicht verseift.
- 2.6 Dioxy pyridin carbonsäure (4) methylester, Citraxinsäure methylester $C_7H_7O_4N = NC_5H_2(OH)_2 \cdot CO_2 \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine Suspension von Citrazinsäure in Methanol (B., H., B. 17, 2690). Blättchen (aus Alkohol). Zersetzt sich oberhalb 220°. Sublimiert teilweise unzersetzt. Schwer löslich in Wasser, Alkohol und Äther. Löst sich in Ammoniak mit gelber Farbe und wird aus dieser Lösung durch Säuren gefällt.
- 2.6 Dioxy pyridin carbonsäure (4) äthylester, Citrazinsäure äthylester $C_2H_2O_4N = NC_2H_2(OH)_2 \cdot CO_2 \cdot C_2H_2$. B. Analog Citrazinsaure-methylester (B., H., B. 17, 2691). — Gleicht dem Methylester (B., H.). Absorptionsspektrum in neutraler und alkalischer Lösung: BAKER, BALY, Soc. 91, 1131.
- 2.6-Dioxy-pyridin-carbonsäure-(4)-amid, Citrasinsäure-amid $C_6H_6O_3N_3=NC_5H_2(OH)_3\cdot CO\cdot NH_3$. B. Aus Aconiteäure-triäthylester bei längerer Einw. von wäßr. Ammoniak (Ruhmmann, B. 20, 3368; Lován, B. 22, 3054 Anm.). Beim Erhitzen von wasserfreier Citronensaure mit überschüssigem Harnstoff auf 155-160° (SELL, EASTERFIELD, Soc. 63, 1037). Bei längerer Einw. von konzentriertem wäßrigem Ammoniak auf Acetylcitronensaure-triathylester (Ruhemann, Soc. 51, 405; B. 20, 803). Beim Erhitzen von Citrazinsaure-athylester mit konz. Ammoniak im Rohr auf 120—130° (Easterfield, Sell, Soc. 65, 29). — Mikroskopische Krystalle (aus Wasser). Sehr schwer löslich in Wasser; löslich in konz. Salzsaure und konz. Schwefelsaure; leicht löslich in Ammoniak und Alkalilauge (R., Soc. 51, 405, 406; B. 20, 803, 804). — Liefert bei der Reduktion mit Natriumamalgam in alkal. Lösung 2.6-Dioxy-4-oxymethyl-pyridin (Citrazinalkohol) (Bd. XXI, S. 198) und α.α'-Bis-[2.6-dioxy-pyridyl-(4)]-āthylenglykol (Syst. No. 3554) (Ea., S., Soc. 65, 29). Beim Sättigen einer Lösung von Citrazinsaure-amid in konz. Salzsaure mit Chlor bildet sich 3.3.5-Trichlor-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-carbonsāure-(4)-amid (8. 330); analog verlāuft die Reaktion mit Brom (R., B. 20, 3369, 3370). Citrazinsāure-amid wird beim Erhitzen mit konz. Salzsāure im Rohr auf 200—220° vollkommen zersetzt; beim Erhitzen im offenen Gefäß erhält man Citrazinsäure (R., Soc. 51, 407; B. 20, 805). Diese bildet sich auch beim Erwärmen mit überschüssiger Alkalilauge auf dem Wasserbad (S., Ea., Soc. 68, 1038). Beim Erhitzen mit Kalilauge im Rohr auf 150° entsteht Aconitsäure (R., B. 27, 1271). — Färbt sich mit warmer wäßriger Kaliumnitrit-Lösung erst nach Zusatz von Mineralsäuren blau (R., B. 21, 1247). — NH₄C₆H₅O₂N₂. Gelbe Krystalle (S., Ea., Soc. 63, 1039; 65, 29). — NaC₆H₅O₂N₂ + 2 H₂O. Krystalle (S., Ea., Soc. 63, 1039). — KC₆H₅O₂N₂ (im Vakuum getrocknet). Nadeln (S., Ea., Soc. 68, 1039). — Ba(C₂H₅O₂N₂)₂ + 6 H₂O. Verliert bei 100° 4 H₂O (S., Ea., Soc. 63, 1037; vgl. R., Soc. 51, 406; B. 20, 804). — Salz der Citrazinsäure C.H.O.N. + C.H.O.N. Nadeln (S. Ea., Soc. 68, 1038). $C_0H_0O_3N_1+C_0H_5O_4N$. Nadeln (8., Ea., Soc. 63, 1038).
- O.O-Diacetylderivat $C_{10}H_{10}O_2N_2 = NC_2H_2(O\cdot CO\cdot CH_2)_2\cdot CO\cdot NH_2$. B. Beim Kochen von Citrazinsäure-amid mit Essigsäureanhydrid (SELL, EASTERFIELD, Soc. 68, 1038). Prismen (aus Alkohol). F: 183—185° (Zers.).

 $\mathbf{HlgC}: \mathbf{C(CO_2H) \cdot C(Hlg)_2}$, s. 8.330. Halogenderivate der Citrasinsäure vom Typus oc-nh-co

3.5-Dinitro-2.6-dioxy-pyridin-carbonsäure-(4), 3.5-Dinitro-2.6-dioxy-isonicotinsäure, Dinitrocitrasinsäure C₆H₂O₈N₂, s. nebenstehende Formel. B. Neben 5-Nitro-2.3.4.6-tetraoxo-piperidin(?) bei der Einw. von Salpetersäure (D: 1,42) auf Citrazinsäure unter starker Kühlung (Sell, Easterfield, Soc. 65, 831, 833). — Gelbe Nadeln mit 2 H₂O (aus Eisessig). Verpufft bei 115—120°. Schwer löslich in Benzol und Petroläther, leicht in Alkohol und Wasser.

2.6 - Dimercapto - pyridin - carbonsäure - (4), 2.6 - Dimercapto - isonicotinsäure $C_6H_5O_3NS_3=NC_5H_2(SH)_2\cdot CO_2H$. B. Beim Erhitzen von 2.6-Dichlor-isonicotinsäure mit konzentrierter alkoholischer Kaliumhydrosulfid-Lösung im Rohr auf 135° (BITTNER, B. 35, 2935). — Rötlichgelbe Nadeln. F: 230°. Schwer löslich in Wasser, ziemlich leicht in Alkohol. — Oxydation mit rauchender Salpetersäure: B. — $K_2C_6H_3O_2NS_2 + \frac{1}{2}C_2H_6O$. Goldglänzende Blättchen (aus Alkohol). Gibt den Krystallalkohol bei 110° nicht ab. Sehr leicht löslich in Wasser, fast unlöslich in Alkohol.

Methylester $C_7H_7O_2NS_3 = NC_5H_2(SH)_3 \cdot CO_3 \cdot CH_3$. B. Beim Einleiten von Chlorwasserstoff in eine Suspension von 2.6-Dimercapto-isonicotinsäure in Methanol (B., B. 35, 2936). — Mikroskopische, zinnoberrote Nadeln von obstartigem, aber unangenehmem Geruch. F: 156°. Wird von Alkalilauge in der Kälte verseift.

2. Oxy-carbonsäuren $C_7H_7O_4N$.

1. 4.6-Dioxy-2-methyl-pyridin-carbonsäure-(5), 2.4-Dioxy-6-methyl-nicotinsäure, γ.α'-Dioxy-α-picolin-β'-carbonsäure C₇H₇O₄N, s. nebenstehende Formel, bezw. desmotrope Formen.

Äthylester $C_0H_{11}O_4N = NC_8H(CH_3)(OH)_3 \cdot CO_2 \cdot C_8H_8$. Zur Konstitution vgl. Späth, Koller, B. 58 [1925], 2124, 2126. — B. Beim Erhitzen von 1 Mol Malonsäurediäthylester mit 1 Mol β -Amino-crotonsäure-äthylester (Bd. III, S. 654) in Gegenwart von Natriumäthylat auf 140—150° (Knoevenagel, Fries, B. 31, 768, 769; vgl. a. Kn., F., B. 31, 765). — F: 206—206,5° (Kn., F.). Unlöslich in Äther und Ligroin, schwer in heißem Wasser, kaltem Alkohol, Aceton und Benzol, leicht in heißem Alkohol, kaltem Eisessig und Chloroform (Kn., F.). Leicht löslich in kalter konzentrierter Salzsäure und in Alkalilauge, löslich in Alkalicarbonat-Lösung und Ammoniak (Kn., F.). — Liefert beim Kochen mit wäßriger oder alkoholischer Kalilauge oder mit 20°/0 iger Salzsäure 4.6-Dioxy-2-methyl-pyridin (Kn., F.). Bei der Einw. von überschüssigem Hydroxylamin in der Wärme entsteht 4.6-Bis-hydroxylamino-2-methyl-pyridin-carbonsäure-(5)-äthylester (Syst. No. 3446) (Kn., F.). — Gibt mit Eisenchlorid in verdünnter wäßriger oder alkoholischer Lösung eine goldgelbe, in konzentrierter essigsaurer oder salzsaurer Lösung eine blutrote Färbung (Kn., F.). — $C_0H_{11}O_4N + HCl + 3H_2O$. F: 152° (bei raschem Erhitzen) (Kn., F.). Wird durch Wasser in die Komponenten gespalten.

- 2. 2.6-Dioxy-4-methyl-pyridin-carbonsäure-(3), 2.6-Dioxy-4-methyl-nicotinsäure, $\alpha.\alpha'$ -Dioxy- γ -picolin- β -carbonsäure $C_7H_7O_4N$, s. nebenstehende Formel, bezw. desmotrope Formen.

Äthylester $C_0H_{11}O_4N=NC_5H(CH_3)(OH)_2\cdot CO_2\cdot C_2H_5$. B. Neben anderen Verbindungen beim Kochen von β -Methyl- α -cyan-glutaconsäure-diāthylester (Bd. II, S. 854) mit konz. Salzsäure (Rogerson, Thorpe, Soc. 87, 1688). Beim Erhitzen des Diāthylester-amids der β -Methyl- α -carboxy-glutaconsäure (Bd. II, S. 853) auf 190° (R., Th.). — Prismen (aus Eisesig). F: 218°. Leicht löslich in konz. Salzsäure. Unlöslich in Natriumcarbonat-Lösung, löslich in Alkalilauge. — Liefert mit Natriumnitrit in essigsaurer Lösung 2.6-Dioxo-5-oximino-4-methyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3)-āthylester (S. 346). Beim Kochen mit konz. Salzsäure entsteht 2.6-Dioxy-4-methyl-pyridin. — Hydrochlorid. Nadeln. Wird durch Wasser sofort zersetzt.

2.6-Dioxy-4-methyl-pyridin-carbonsäure-(8)-nitril, $\alpha.\alpha'$ -Dioxy- β -cyan- γ -picolin (β -Methyl- γ -oyan-glutaconsäure-imid) $C_7H_4O_2N_3=NC_5H(CH_2)(OH)_2\cdot CN$. B. Aus Acetessigester, Cyanessigester und Ammoniak bei gewöhnlicher Temperatur (Guareschi, Mem.

Accad. Torino, cl. sci. fis., mat. e nat. [2] 48, 11; C. 1896 I, 601; B. 29 Ref., 655). — Nadeln (aus Wasser), Prismen (aus Alkohol). Verkohlt bei 300—304°, ohne zu schmelzen; fast unlöslich in Äther, sehr schwer löslich in kaltem, leichter in heißem Wasser, löslich in Alkohol; farblos löslich in konz. Schwefelsäure (Gua., Mem. Accad. Torino [2] 46, 12, 13). Zuckerinversionsvermögen: Torres, C. 1907 I, 875. — Färbt sich an der Luft in feuchtem Zustand grün (Gua., Mem. Accad. Torino [2] 48, 11). Liefert mit Brom in Schwefelkohlenstoff eine farblose, krystallinische Verbindung [vielleicht 5-Brom-2.6-dioxy-4-methyl-pyridin-carbon-säure-(3)-nitril] (Gua., Mem. Accad. Torino [2] 48, 13). Beim Erhätzen mit Bromwasser entsteht zunächst eine violette, dann eine fuchsinrote Färbung (Gua., Mem. Accad. Torino [2] 48, 13). Beim Erwärmen mit 60°/ajger Schwefelsäure bildet sich 2.6-Dioxy-4-methyl-pyridin (Gua., Atti Accad. Torino 36, 453; C. 1901 I, 822; vgl. Gibson, Simonsen, Soc. 1929, 1074). — Gibt mit Eisenchlorid eine violette, mit warmer Kaliumnitrit-Lösung eine blaugrüne Färbung (Gua., Mem. Accad. Torino [2] 48, 13). — NH₄C₇H₅O₂N₂. Krystalle (aus Wasser). F: ca. 290—292° (Zers.). Leicht löslich in warmem, schwerer in kaltem Wasser, löslich in Alkohol, unlöslich in Äther (Gua., Mem. Accad. Torino [2] 48, 14). — NaC₇H₅O₂N₂+ 4H₄O. Prismen oder Tafeln (aus Wasser). Ist bei 130° wasserfrei (Gua., Mem. Accad. Torino [2] 48, 14). — Cu(C₇H₅O₂N₃)₂+7H₃O. Gelbe Nadeln (aus Wasser). Ist bei 130° krystall-wasserfrei; schwer löslich in kaltem, leichter in warmem Wasser; färbt sich beim Erhitzen violett (Gua., Mem. Accad. Torino [2] 48, 17). — Cu(C₇H₅O₂N₃)₂+4NH₃+2H₃O. Blauviolette Prismen (aus 10°/oigem Ammoniak). Sehr schwer löslich in kaltem Wasser, löslich in ca. 300 Tln. 10°/oigem Ammoniak bei 15°; verliert bei vorsichtigem Erhitzen auf 125° 2NH₃ und 2H₂O und geht in das dunkelgrüne, in Wasser unlösliche Salz Cu(C₇H₅O₂N₃)₂+2NH₃ über (Gua., Att. Accad. Torino 32, 193;

Mit vorstehender Verbindung ist wahrscheinlich die in Bd. III, S. 797 aufgeführte Verbindung C₂H₆O₂N₂ identisch (vgl. hierzu Guareschi, Mem. Accad. Torino, cl. sci. fis., mat. e nat. [2] 46, 18; C. 1896 I, 602; B. 29 Ref., 655; Atti Accad. Torino 32, 399; Held, Bl.

[3] 15, 343).

3. 2.6-Dioxy-3-methyl-pyridin-carbonsäure-(4), 2.6-Dioxy3-methyl-isonicotinsäure, α.α'-Dioxy-β-picolin-γ-carbonsäure,
Methylcitrazinsäure C₇H₇O₄N, s. nebenstehende Formel, bezw. desmotrope
Formen. B. Beim Kochen von α-Methyl-α-cyan-aconitsäure-triäthylester
(Bd. II, S. 879) oder von γ-Methyl-α-cyan aconitsäure-triäthylester (Bd. II, S. 879) mit
alkoh. Kalilauge (Rogerson, Thorpe, Soc. 89, 643, 646). Beim Kochen von 2.6-Dioxy5-methyl-pyridin-dicarbonsäure-(3.4)-diäthylester mit wäßr. Kalilauge (R., Th.). — Prismen
(aus konz. Salzsäure). Verkohlt beim Erhitzen, ohne zu schmelzen. Unlöslich in heißem
Wasser und organischen Lösungsmitteln. Löslich in Alkalien und Alkalicarbonat-Lösung. —
Das Ammoniumsalz reduziert Silbernitrat-Lösung und gibt in wäßrig-alkoholischer Lösung
mit Eisenchlorid eine tief rotviolette Färbung.

O.O-Diacetylderivat $C_{11}H_{11}O_eN=NC_gH(CH_3)(O\cdot CO\cdot CH_2)_a\cdot CO_2H$. B. Beim Kochen von Methylcitrazinsäure mit Essigsäureanhydrid (R., Th., Soc. 89, 644). — Prismen (aus

Alkohol). F: ca. 165° (Zers.).

4. 5.6-Dioxy-2 (oder 3)-methyl-pyridin-carbonsaure-(4), 5.6-Dioxy-2 (oder 3)-methyl-isonicotinsaure, α'.β'-Dioxy-α (oder β)-picolin-γ-carbonsaure C₇H₇O₄N, Formel I oder II, bezw. desmotrope
Formen. B. Beim Behandeln des entsprechenden
Athylesters mit Alkalilauge (Feist, B. 35, 1553, I. Ho
1554). — Blättchen mit 2 H₂O. F: 255° (Zers.). Leicht
Blöslich in heißem Wasser, ziemlich leicht in Alkohol und
Ather, sehr schwer in Schwefelkohlenstoff, Ligroin, Aceton und Chloroform. — Zerfällt beim Erhitzen über den Schmelzpunkt in Kohlendioxyd und 5.6-Dioxy-2 (oder 3)-methylpyridin. Gibt mit Eisenchlorid in alkoh. Lösung eine braune, in wäßr. Lösung eine hellgrüne Färbung. — KC₇H₆O₄N. Krystallinisch. Zersetzt sich bei 283°. — AgC₇H₆O₄N. Flocken. In Wasser nicht unzersetzt löslich. — Ba(C₇H₆O₄N)₂. Pulver. Die wäßr. Lösung

fluoresciert violett. Äthylester $C_0H_{11}O_4N=NC_5H(CH_3)(OH)_3\cdot CO_2\cdot C_2H_5$. B. Neben viel Oxamid und geringen Mengen eines Pyrrolderivats beim Einleiten von Ammoniak in ein Gemisch von 1 Mol Oxalessigester und 1 Mol Chloraceton in Äther (F., B. 35, 1540, 1541, 1552). — Krystallinisch. F: 223°. Sublimiert unter partieller Zersetzung. Ziemlich leicht löslich in heißem Wasser, fast unlöslich in Alkohol, Äther und Ligroin, leichter in Benzol und Aceton.

Löslich in Alkalilaugen, unlöslich in verd. Säuren. Gibt mit Eisenchlorid in sehr verdünnter wäßriger oder alkoholischer Lösung eine smaragdgrüne Färbung, die auf Zusatz von Soda in Rosa umschlägt.

Amid $C_7H_8O_3N_2 = NC_5H(CH_2)(OH)_2 \cdot CO \cdot NH_2$. B. Beim Erhitzen von 5.6-Dioxy-2 (oder 3)-methyl-isonicotinsäure-äthylester mit wäßr. Ammoniak im Rohr auf 120° (F., B. 35, 1555). — Pulver. Zersetzt sich oberhalb 280°, ohne zu schmelzen. Unlöslich in Wasser und Alkohol, leicht löslich in Ammoniak. — Gibt mit Eisenchlorid eine hellgrüne Färbung.

3. Oxy-carbonsäuren $C_8H_9O_4N$.

1. 5.6 - Dioxy - 2.4 - dimethyl - pyridin - carbonsäure - (3), 5.6 - Dioxy - 2.4 - dimethyl-nicotinsäure, $\alpha'.\beta'$ - Dioxy - $\alpha.\gamma$ - lutidin- β - carbonsäure $C_8H_9O_4N$, s. nebenstehende Formel, bezw. desmotrope Formen.

Äthylester $C_{10}H_{12}O_4N = NC_5(CH_3)_3(OH)_2 \cdot CO_2 \cdot C_3H_5$. B. Neben 5-Brom-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-äthylester beim Kochen von Bromisodehydracetsäureäthylester (Bd. XVIII, S. 412) mit konzentriertem wäßrigem Ammoniak (Feist, B. 26, 757). — Krystalle (aus Wasser). F: 118°. Sublimiert leicht. Leicht löslich in Alkohol und Äther. Unlöslich in Alkalilauge und Alkalicarbonat-Lösung.

2. 2.6 - Dioxy - 4.5 - dimethyl - pyridin - carbonsäure - (3), CH₃ 2.6 - Dioxy - 4.5 - dimethyl - nicotinsäure, a.a' - Dioxy - β . γ - cutidin - CH₃ CO₂H β ' - carbonsäure C₃H₃O₄N, s. nebenstehende Formel, bezw. desmotrope Formen.

Äthylester $C_{10}H_{13}O_4N = NC_5(CH_3)_2(OH)_2 \cdot CO_2 \cdot C_2H_5$. B. Bei 12-stdg. Einw. von konz. Schwefelsäure auf $\beta.\gamma$ -Dimethyl- α -cyan-glutaconsäure-diäthylester (Bd. II, S. 856) ohne Kühlung (Rogerson, Thorpe, Soc. 87, 1701). — Nadeln (aus Alkohol). F: 187°. Löslich in konz. Säuren und in Alkalilauge, unlöslich in Alkalicarbonat-Lösung. — Liefert beim Kochen mit Salzsäure 2.6-Dioxy-3.4-dimethyl-pyridin. — Hydrochlorid. Nadeln. Wird durch Wasser sofort zersetzt.

2.6 - Dioxy - 4.5 - dimethyl - pyridin - carbonsäure - (3) - nitril, α.α'-Dioxy-β'-cyan-β.γ-lutidin (α.β-Dimethyl-γ-cyan-glutaconsäure-imid) C₂H₂O₂N₂ = NC₅(CH₂)₂(OH)₃·CN.

B. Bei der Einw. von Cyanessigester auf α-Methyl-acetessigsäure-amid in Ammoniak (Guaneschi, Mem. Accad. Torino, cl. sci. fis., mat. e nat. [2] 46, 25; C. 1896 I, 603; B. 29 Ref., 655). — Krystalle. Schmilzt gegen 270—272° zu einer dunkelroten Flüssigkeit; zersetzt Carbonate (Gua., Mem. Accad. Torino [2] 46, 25). Zuckerinversionsvermögen: Torress, C. 1907 I, 875. — Wird in feuchtem Zustand an der Luft rot (Gua., Mem. Accad. Torino [2] 46, 25). Liefert beim Kochen mit 60°/ciger Schwefelsäure 2.6-Dioxy-3.4-dimethyl-pyridin (Gua., Mem. Accad. Torino [2] 57, 295; C. 1907 I, 459; vgl. Gibson, Smonsen, Soc. 1929, 1074). — NH₄C₂H₇O₂N₂. Krystalle (aus Wasser) (Gua., Mem. Accad. Torino [2] 46, 26). — NaC₂H₇O₄N₂. Prismen. Löslich in kaltem Wasser. (Gua., Mem. Accad. Torino [2] 46, 26). — Cu(C₃H₇O₂N₂)₂ + H₃O (bei 130°). Ziegelrot, krystallinisch (Gua., Mem. Accad. Torino [2] 46, 27). — Cu(C₃H₇O₂N₂)₂ + 4NH₃ + 4H₂O. Blauviolette Prismen (aus verd. Ammoniak). Verliert im Vakuum fast alles Krystallwasser und wenig Ammoniak (Gua., Mem. Accad. Torino [2] 46, 28; Atti Accad. Torino 32, 197; C. 1897 I, 368). — CuC₃H₆O₃N₃ + ½ oder 1 H₂O. Gelbbraune, bronzeglänzende Blättchen (Gua., Mem. Accad. Torino [2] 46, 27). — AgC₃H₇O₂N₃ (bei 130—135°). Prismen (Gua., Mem. Accad. Torino [2] 46, 27). — Ba(C₃H₇O₂N₃)₂ (bei 130—135°). Prismen (Gua., Mem. Accad. Torino [2] 46, 27). — Ba(C₃H₇O₂N₃)₂ (bei 100—120°). Prismen. Löslich in warmem Wasser (Gua., Mem. Accad. Torino [2] 46, 26).

4. Oxy-carbonsauren $C_9H_{11}O_4N$.

1. $\beta.\gamma$ - $Dioxy - \gamma$ - $[\beta$ - pyridyl] - buttersdure(?) CH(OH) · CH(OH) · CH₂ · CO₂H C₂H₁₁O₄N(?), s. nebenstehende Formel. B. Beim Behandeln von 1-Methyl-2.4-dibrom-3.5-dioxo-2- β -pyridyl-pyrrolidin (Dibromticonin; Syst. No. 3591) mit Zinkstaub in alkal. Lösung in der Wärme

(PINNER, B. 26, 301, 302 Anm.). — Hygroskopische, harzige Masse. Leicht löslich in Wasser und Alkohol, schwer löslich in Äther. — $AgC_9H_{10}O_4N$. Niederschlag. — $Ba(C_9H_{10}O_4N)_2$. Harzige Masse.

Athylester C₁₁H₁₅O₄N=NC₅(CH₃)(C₂H₅)(OH)₃·CO₃·C₂H₅. B. Bei 12-stdg.

Einw. von konz. Schwefelsäure auf β-Methyl-γ-šthyl-α-cyan-glutaconsäure-diäthylester (Bd. II, 8. 856) ohne Kühlung (Rogerson, Thorpe, Soc. 87, 1713). — Nadeln (aus Alkohol). F: 134°.

Löslich in konz. Salzsäure und in Alkalilauge, unlöslich in Alkalicarbonat-Lösung. — Liefert beim Kochen mit konz. Salzsäure 2.6-Dioxy-4-methyl-3-šthyl-pyridin. — Hydrochlorid. Nadeln. Wird durch Wasser sofort zersetzt.

- 2.6-Dioxy-4-methyl-5-äthyl-pyridin-carbonsäure-(3)-nitril, 2.6-Dioxy-4-methyl-5-äthyl-3-cyan-pyridin (β-Methyl-α-äthyl-γ-cyan-glutaconsäure-imid) C₉H₁₀O₂N₂ = NC₅(CH₃)(C₂H₅)(OH)₂·CN. B. Bei der Einw. von Cyanessigester oder Cyanacetamid auf α-Äthyl-acetessigsäure-amid in Ammoniak (Guareschi, Mem. Accad. Torino, cl. sci. fis., mat. e nat. [2] 48, 7; C. 1896 I, 602; B. 29 Ref., 656). Nadeln (aus Wasser). F: 234—235° (Rotfärbung); sehr schwer löslich in Wasser, schwer in Alkohol und Äther (Gua., Mem. Accad. Torino [2] 46, 7). Zuckerinversionsvermögen: Torbess, C. 1907 I, 875. Liefert beim Kochen mit 60°/oiger Schwefelsäure 2.6-Dioxy-4-methyl-3-äthyl-pyridin (Gua., Mem. Accad. Torino [2] 57, 297; C. 1907 I, 459; vgl. Gibson, Simonsen, Soc. 1929, 1074). NH₄C₂H₄O₂N₂. Krystalle (aus Wasser oder Alkohol). F: 308—310° (Zers.) (Gua., Mem. Accad. Torino [2] 46, 8). Cu(C₂H₂O₂N₂)₂ + H₂O (bei 130°). Ziegelrot. Fast unlöslich in Wasser (Gua., Mem. Accad. Torino [2] 46, 9). Cu(C₂H₂O₂N₃)₂ + 4NH₃. Blaue Krystalle (aus verd. Ammoniak). Unlöslich in Wasser. Verliert bei 180° 3NH₃, den Rest nur unter Zersetzung (Gua., Atti Accad. Torino 32, 200; C. 1897 I, 369). CuC₂H₃O₂N₂. Grünlichgelbe Krystalle. Fast unlöslich in Wasser (Gua., Mem. Accad. Torino [2] 46, 8).
- 3. 2.6 Dioxy-5-methyl-4-āthyl-pyridin-carbonsāure-(3), 2.6 Dioxy-5-methyl-4-āthyl-nicotinsāure C₉H₁₁O₄N, s. nebenstehende Formel, bezw. desmotrope Formen.

 2.6 Dioxy 5 methyl 4 āthyl pyridin carbonsāure (3) nitril, HO N
- 2.6 Dioxy 5 methyl 4 āthyl pyridin carbonsāure (3) nitril, HO··· N·· OH
 2.6 Dioxy 5 methyl 4 āthyl 8 cyan pyridin (α-Methyl-β-āthyl-γ-cyan-glutaconsāure-imid) C₂H₁₀O₂N₂ = NC₅(CH₃)(C₂H₅)(OH)₂· CN. B. Durch Einw. von Ammoniak auf α-Propionyl-propionsāure-āthylester und Zusatz von Cyanessigester zu dem Reaktionsgemisch (Sabbatani, Atti Accad. Torino 32, 252, 253; C. 1897 I, 904). Krystalle (aus Wasser), die sich an der Luft röten (S.). F: 261—262° (Zers.) (S.). Löslich in ca. 381 Tln. Wasser von 19° (S.). Zersetzt Carbonate (S.). Einfluß auf die Geschwindigkeit der Inversion des Rohrzuckers: Tobbesse, C. 1907 I, 875. Liefert beim Erwärmen mit 60°/ jiere Schwefelsäure (nicht rein erhaltenes) 2.6-Dioxy-3-methyl-4-āthyl-pyridin (Guareschi, Mem. Accad. Torino, cl. sci. fis., mat. e nat. [2] 57, 298; C. 1907 I, 459; vgl. Gibson, Simonsen, Soc. 1929, 1074). Salze: S., Atti Accad. Torino 32, 255. NH₄C₂H₂O₂N₂. Krystalle (aus Wasser). NaC₂H₂O₂N₂. Prismen (aus Wasser). Brāunt sich gegen 200°. Schwer löslich in kaltem Wasser. Cu(C₂H₂O₂N₂)₂ + 2(?)H₂O. Rostrote Krystalle. Enthält bei 180° 1 H₂O. Unlöslich in Wasser. AgC₂H₂O₂N₂)₂ (bei 130°). Pulver. Unlöslich in Wasser. Ba(C₂H₂O₂N₃)₂ + H₂O. Krystalle. Verliert oberhalb 110° 1/₂H₃O; zersetzt sich gegen 200°.
- 5. 2.6 Dioxy 4 methyl 5 propyl pyridin carbon sāure (3), 2.6 Dioxy 4 methyl 5 propyl nicotinsāure $\begin{array}{c} C_{18} \\ C_{2}H_{5} \\ \end{array}$ CO₂H C₁₀H₁₃O₄N, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6 Dioxy 4 methyl 5 propyl pyridin carbonsäure (3) nitril, 2.6 Dioxy-4-methyl-5-propyl-3-cyan-pyridin (β-Methyl-α-propyl-γ-cyan-glutaconsäure-imid) C₁₀H₁₂O₂N₂ = NC₅(CH₂)(CH₂·C₂H₅)(OH)₂·CN. B. Bei der Einw. von Cyanessigester auf α-Propyl-acetessigsäure-amid in Ammoniak oder bei der Einw. von Cyanacetamid auf α-Propyl-acetessigsäure-amid in Ammoniak (Guareschi, Mem. Accad. Torino, cl. eci. fis., mat. e nat. [2] 55, 287, 288; C. 1905 II, 682). Krystalle (aus Alkohol). F: 221—222° (Gua., Mem. Accad. Torino [2] 55, 287; C. 1905 II, 682). Liefert beim Erwärmen mit 60°/oiger Schwefelsäure 2.6-Dioxy-4-methyl-3-propyl-pyridin (Gua., Mem. Accad. Torino [2] 55, 287; 57, 301; C. 1905 II, 682; 1907 I, 459; vgl. Gibson, Simonsen, Soc. 1929, 1074). Gibt mit Eisenchlorid in alkoh. Lösung eine violette Färbung (Gua., Mem. Accad. Torino [2] 55, 287; C. 1905 II, 682). NH₄C₁₀H₁₁O₂N₂. Krystalle (aus Wasser). Löslich in kaltem Wasser (Gua., Mem. Accad. Torino [2] 55, 287; C. 1905 II, 682).

6. Oxy-carbonsäuren $C_{11}H_{15}O_4N$.

1. 2.6 - Dioxy - 4 - methyl - 5 - butyl - pyridin - carbon - $CH_3 \cdot [CH_2]_3 \cdot [CH_2]_3 \cdot [CH_1]_3 \cdot [CH_2]_3 \cdot [CH_2]_$

- 2.6 Dioxy-4-methyl-5-butyl-pyridin-carbonsäure-(3)-nitril, 2.6-Dioxy-4-methyl-5-butyl-3-cyan-pyridin (β -Methyl- α -butyl- γ -cyan-glutaconsäure-imid) $C_{11}H_{14}O_{2}N_{2}=NC_{5}(CH_{3})(CH_{2}\cdot CH_{2}\cdot CH_{3}\cdot (OH)_{2}\cdot CN.$ B. Aus α -Butyl-acetessigsäure-äthylester, Cyanessigester und Ammoniak (Guareschi, Mem. Accad. Torino, cl. sci. fis., mat. e nat. [2] 55, 292; C. 1905 II, 683). Ammoniumsalz. Krystalle (aus Wasser).
- 2. 2.6 Dioxy 4 methyl 5 isobutyl pyridin-carbonsäure (3), 2.6 Dioxy 4 methyl 5 isobutyl-nicotinsäure $C_{11}H_{15}O_4N$, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6 Dioxy 4 methyl 5 isobutyl pyridin carbonsäure (3) nitril, 2.6 Dioxy 4 methyl 5 isobutyl 3 cyan pyridin $(\beta$ Methyl α isobutyl γ cyan glutaconsäure-imid) $C_{11}H_{14}O_2N_2 = NC_5(CH_2)[CH_2 \cdot CH(CH_2)_2](OH)_2 \cdot CN$. B. Aus α -Isobutyl-acetessäure-äthylester, Cyanessigester und Ammoniak (Guareschi, Mem. Accad. Torino, cl. sci. fis., mat. e nat. [2] 55, 289; C. 1905 II, 682). $NH_4C_{11}H_{13}O_2N_2$. Krystalle (aus Wasser). $Cu(C_{11}H_{13}O_2N_2)_2$. Gelbes Krystallpulver. $CuC_{11}H_{12}O_2N_2$. Gelbes Krystallpulver.

c) Oxy-carbonsäuren $C_n H_{2n-9} O_4 N$.

Oxy-carbonsăuren $C_{10}H_{11}O_4N$.

- 1. 2.6 Dioxy 4 methyl 5 allyl pyridin carbonsāure-(3), 2.6 - Dioxy - 4 - methyl - 5 - allyl - nicotinsāure C₁₀H₁₁O₄N, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6 Dioxy 4 methyl 5 allyl pyridin carbonsäure (3) nitril, 2.6 Dioxy 4 methyl 5 allyl 3 cyan pyridin $(\beta$ -Methyl α -allyl γ -cyan-glutaconsäure-imid) $C_{10}H_{10}O_2N_2 = NC_5(CH_2)(CH_2\cdot CH:CH_2)(OH)_2\cdot CN$. B. Durch Behandeln von α -Allyl-acetessigsäure-äthylester in wäßrig-ammoniakalischer Lösung mit Cyanessigester (Guareschi, C. 1905 II, 683). Krystalle mit 1 H₂O (aus Wasser). F: 172—173° (G.). Färbt sich in wäßr. Lösung an der Luft violett (G.). Einfluß auf die Geschwindigkeit der Inversion des Rohrzuckers: Torrese, C. 1907 I, 875. Einw. von konz. Schwefelsäure: G.
- 2. 6.7 Dioxy 1.2.3.4 tetrahydro isochinolin carbonsaure-(1) C₁₀H₁₁O₄N, s. nebenstehende Formel.
- 2-Methyl-6.7-dimethoxy-1.2.3.4-tetrahydro-isochinolin-carbonsäure-(1)-nitril, 2-Methyl-6.7-dimethoxy-1-cyan-1.2.3.4-tetrahydro-isochinolin $C_{13}H_{16}O_2N_2 = CH_3\cdot NC_2H_7(O\cdot CH_2)_2\cdot CN$. B. Aus 2-Methyl-6.7-dimethoxy-3.4-dihydro-isochinoliniumchlorid (Bd. XXI, S. 170) und Kaliumcyanid in wäßr. Lösung (Pyman, Soc. 95, 1272). Stäbchen (aus feuchtem Äther). F: 127—128° (korr.). Unlöslich in Wasser, schwer löslich in Äther, ziemlich leicht in absol. Alkohol.

d) Oxy-carbonsäuren $C_n H_{2n-11} O_4 N$.

OH

4.8 - Dioxy - 1.4 - dihydro - chinolin - carbonsaure - (7) $C_{10}H_{\bullet}O_4N$, s. nebenstehende Formel.

1-Methyl-4.8-dioxy-1.4-dihydro-chinolin-carbonsäure-(7)
C₁₁H₁₁O₄N = CH₂·NC₂H₅(OH)₂·CO₂H. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. S. 225.

OH

e) Oxy-carbonsäuren $C_n H_{2n-13} O_4 N$.

1. Oxy-carbonsauren C₁₀H₂O₄N.

- 1. 2.4-Dioxy-chinolin-carbonsäure-(3), 4-Oxy-carbostyril-carbonsäure-(3) $C_{10}H_7O_4N$, s. nebenstehende Formel, bezw. desmotrope NOH Formen.
- 4 Oxy 2 äthoxy chinolin carbonsäure (3) äthylester

 C₁₄H₁₅O₄N, s. nebenstehende Formel. B. Neben anderen Produkten aus
 2-Nitro-benzoylmalonsäure-diäthylester bei der Einw. von Zink und Chlorwasserstoff in absolut-alkoholischer Lösung (Bischoff, A. 251, 364). —

 Nadeln (aus Alkohol). F: 107° (unkorr.). Löslich in Alkohol, Äther und Benzol, unlöslich in Wasser. Löst sich in Soda-Lösung mit rötlicher Farbe. Die alkoh. Lösung gibt mit Eisenchlorid eine violettrote Färbung.
- 2. 2.4-Dioxy-chinolin-carbonsäure-(6), 4-Oxy-carbostyril-carbonsäure-(6) $C_{10}H_7O_4N$, s. nebenstehende Formel.

Äthylester $C_{12}H_{11}O_4N = NC_2H_4(OH)_2 \cdot CO_2 \cdot C_2H_5$. B. Durch Erhitzen von 4-Acetamino-isophthalsäure-diäthylester mit Natrium in Toluol (Höchster Farbw., D. R. P. 102894; C. 1899 II, 462; Frdl. 5, 667). — F: 300° (unscharf). Unlöslich in Wasser, sehr schwer löslich in den gebräuchlichen organischen Lösungsmitteln. Löslich in Soda-Lösung und konz. Salzsäure. — Gibt mit Eisenchlorid in salzsaurer Lösung eine rotgelbe Färbung. — Die Nitrosoverbindung zersetzt sich gegen 250°.

- 3. 6.7-Dioxy-isochinolin-carbonsäure-(1) C₁₀H₇O₄N, s. nebenstehende Formel. B. Beim Kochen von 6.7-Dimethoxy-isochinolin-carbonsäure-(1) mit konz. Jodwasserstoffsäure (Goldschmiedt, M. 8, 522). Hellgelbes Pulver. F: 221° (Zers.). Fast unlöslich in Wasser. Gibt mit Eisenchlorid eine violette, mit Eisensulfat eine gelbrote Färbung. Die Salze sind gelb.
- 6.7-Dimethoxy-isochinolin-carbonsäure-(1) $C_{12}H_{11}O_4N=NC_9H_4(O\cdot CH_3)_2\cdot CO_2H$. Zur Konstitution vgl. Goldschmiedt, M. 9, 781. B. Bei der Oxydation von Papaverin (Bd. XXI, 8. 220) mit überschüssiger $5^0/_0$ iger Kaliumpermanganat-Lösung (G., M. 6, 963). Gelbliche Nadeln mit $2H_2O$ (aus Wasser). F: 205° (Zers.) (G., M. 8, 519). Ziemlich schwer löslich in kaltem Wasser, leicht in heißem Wasser und in Alkohol (G., M. 6, 964). Liefert beim Erhitzen auf 210° 6.7-Dimethoxy-isochinolin (G., M. 8, 521). Beim Kochen mit konz. Jodwasserstoffsäure entsteht 6.7-Dioxy-isochinolin-carbonsäure-(1) (G., M. 8, 522). Gibt mit Eisenchlorid eine gelbe Färbung (G., M. 8, 520). $C_{12}H_{11}O_4N + HCl + 2H_2O.$ Nadeln. Wird durch Wasser zersetzt (G., M. 8, 520).
- 4. 1.4-Dioxy-isochinolin-carbonsaure-(3), 4-Oxy-isocarbostyril-carbonsaure-(3) $C_{10}H_7O_4N$, s. nebenstehende Formel, bezw. desmotrope Formen.

Methylester $C_{11}H_{\bullet}O_{\bullet}N = NC_{\bullet}H_{\bullet}(OH)_{2} \cdot CO_{2} \cdot CH_{3}$. B. Durch Erhitzen OH von Phthalylglycin-āthylester (Bd. XXI, S. 481) mit methylalkoholischer Natriummethylat-Lösung im geschlossenen Gefäß auf dem Wasserbad (Gabriel, Colman, B. 33, 984; 35, 2421). — Nadeln (aus Alkohol). F: 221—222°. — 1 Tl. löst sich in ca. 100 Tln. siedendem Alkohol. — Liefert beim Kochen mit Bromwasserstoffsäure (D: 1,49) oder mit Schwefelsäure 4-Oxy-isocarbostyril. — Na $C_{11}H_{\bullet}O_{\bullet}N$. Gelbes, hygroskopisches Krystallpulver.

Äthylester $C_{12}H_{11}O_4N = NC_9H_4(OH)_2 \cdot CO_2 \cdot C_2H_5$. B. Durch Erhitzen von Phthalylglycin-äthylester mit alkoh. Natriumäthylat-Lösung auf 100° (Garriel, Colman, B. 83, 983). — Nadeln. F: 194°. Schwer löslich in Alkohol; leicht löslich in Alkalien mit gelber Farbe. — Liefert beim Kochen mit konz. Jodwasserstoffsäure 4-Oxy-isocarbostyril.

2. Oxy-carbonsäuren $C_{11}H_9O_4N$.

1. [2.7 - Dioxy - chinolyl - (4)] - essigsäure, 7 - Oxy - carbostyril-essigsäure-(4) C₁₁H₉O₄N, s. nebenstehende Formel. B. Aus
[7-Amino-2-oxy-chinolyl-(4)]-essigsäure durch Diazotieren in schwefelsaurer Lösung und Kochen der Reaktions-Lösung (Besthorn, Garben,
B. 33, 3452). — Nadeln (aus Wasser). F: ca. 320° (Bräunung). Schwer löslich in Wasser,
Alkohol, Äther und Benzol. In Natriumdicarbonat-Lösung mit blauer Fluorescenz löslich. —
Spaltet beim Erhitzen Kohlendioxyd ab unter Bildung von 2.7-Dioxy-4-methyl-chinolin.

Äthylester $C_{18}H_{18}O_4N=NC_9H_4(OH)_9\cdot CH_2\cdot CO_2\cdot C_8H_5$. B. Durch Einleiten von Chlorwasserstoff in die alkoh. Lösung der [2.7-Dioxy-chinolyl-(4)]-essigsäure (Besthorn, Garben, B. 33, 3452). — Nadeln (aus Alkohol). Erweicht bei 180° und schmilzt bei 204—205° unter geringer Gasentwicklung; die wiedererstarrte Substanz schmilzt bei erneutem Erhitzen erst über 220°. Ziemlich leicht löslich in heißem Alkohol, schwer in Äther und Benzol. Löst sich in verd. Soda-Lösung mit blauer Fluorescenz.

- 2. 6.7-Dioxy-2-methyl-chinolin- Ho₂C Ho₂C carbonsäure-(5), 6.7-Dioxy-chi- I. Ho naldin-carbonsäure-(5) $C_{11}H_2O_4N$, H_0 CH_3 CH_3 CH_3 CH_4 H_0 CH_5 CH_5
- 7-Oxy-6-methoxy-2-methyl-chinolin-carbonsäure-(5) $C_{12}H_{11}O_4N$, Formel II. B. Bei der Reduktion von 4-Nitro-3-acetonyl-mekonin (Bd. XVIII, S. 171) mit Zinn und Salzsäure, neben anderen Produkten (Book, B. 36, 2211). Rötlichgrau. F: 212°. Unlöslich in Wasser, Alkohol, Äther und Benzol. $2C_{12}H_{11}O_4N + HCl + AuCl_3 + H_2O$. Hellgelber. amorpher Niederschlag. F: 168—170°.
- 3. 1.4 Dioxy 7 methyl isochinolin carbonsäure (3), 4-Oxy-7-methyl-isocarbostyril-carbonsäure (3) $C_{11}H_{2}O_{4}N$, s. nebenstehende Formel, bezw. desmotrope Formen.

isochinolin.

Methylester $C_{12}H_{11}O_4N = NC_9H_3(CH_3)(OH)_2 \cdot CO_2 \cdot CH_2$. B. Beim Erhitzen von [4-Methyl-phthalyl]-glycinäthylester (Bd. XXI, S. 513) mit methylalkoholischer Natriummethylat-Lösung auf 100° (FINDERLEE, B. 38, 3547). — Nadeln (aus Alkohol). F: 210°. Die alkoh. Lösung fluoresciert violettblau. — Gibt beim Erwärmen mit konz. Schwefelsäure unter Kohlendioxyd-Abspaltung 1.4-Dioxy-7-methyl-

3. α.β - Dioxy - β - [chinolyl - (2)] - propionsäure, β - [Chinolyl - (2)] - glycerinsäure C₁₂H₁₁O₄N, s.

nebenstehende Formel. B. Bei langsamer Oxydation von β-[Chinolyl-(2)]-acrylsäure mit Kaliumpermanganat in verdünnter neutraler Lösung bei 0° (ΕΙΝΗΟΚΝ, SHERMAN, A. 287, 35). — Blättchen mit 3H₂O (aus verd. Alkohol). Zersetzt sich zwischen 100° und 150°. Schwer löslich in heißem Wasser, unlöslich in absol. Alkohol, Benzol, Chloroform und Äther. — Reduziert ammoniakalische Silbernitrat-Lösung. — Ba(C₁₂H₁₀O₄N)₂. Pulver. Unlöslich in warmem Wasser. — C₁₂H₁₁O₄N + HCl + AuCl₃. Gelbe Prismen. F: 174°.

Methylester $C_{12}H_{13}O_4N=NC_9H_6\cdot CH(OH)\cdot CH(OH)\cdot CO_2\cdot CH_9$. B. Durch Einleiten von Chlorwasserstoff in eine methylalkoholische Lösung von β -[Chinolyl-(2)]-glycerinsäure (Einhorn, Sherman, A. 287, 37). — Schuppen. F: 140—141°. Schwer löslich in Benzol und Ligroin, leicht in Alkohol.

Äthylester C₁₄H₁₅O₄N = NC₉H₅·CH(OH)·CH(OH)·CO₂·C₂H₅. Blättchen (aus Benzol). F: 107—108° (Einhorn, Sherman, A. 287, 37). Schwer löslich in Ligroin, leicht in Alkohol und Äther.

f) Oxy-carbonsäuren $C_n H_{2n-15} O_4 N$.

1. 2.6-Dioxy-4-phenyl-pyridin-carbonsäure-(3), 2.6-Dioxy-4-phenyl-nicotinsäure $C_{12}H_{\bullet}O_{4}N$, s. nebenstehende Formel, bezw. desmotrope Formen.

C₆H₅
HO. NOO₂H

OH

· CO₂H

Äthylester $C_{14}H_{13}O_4N = NC_5H(C_6H_5)(OH)_2 \cdot CO_3 \cdot C_2H_5$. B. Aus β -Phenyl- β -propylen- $\alpha.\alpha.\gamma$ -tricarbonsāure-triāthylester durch Einw. von alkoh. Ammoniak bei 100° (Ruhemann, Soc. 75, 247). — Prismen (aus verd. Alkohol). F: 200° . Leicht löslich in Alkohol und Äther, schwer löslich in Wasser. — Gibt in alkoh. Lösung mit Eisenchlorid eine purpurrote Färbung.

Nitril, 2.6 - Dioxy - 4 - phenyl - 8 - cyan - pyridin (β -Phenyl - γ -cyan-glutaconsäureimid) $C_{18}H_8O_2N_2=NC_5H(C_6H_5)(OH)_2$ · CN. B. Bei der Umsetzung von Benzoylessigsäureäthylester mit Cyanessigester und Ammoniak (Guarrechi, C. 1896 I, 603; 1905 II, 685). —

Nadeln mit $1\,H_2O$ (aus verd. Alkohol). F: ca. 285° (Zers.) (G., C. 1905 II, 685). Ziemlich schwer löslich in Wasser, löslich in Alkohol (G.). Einfluß auf die Geschwindigkeit der Inversion des Rohrzuckers: Torres, C. 1907 I, 875. — Gibt beim Behandeln mit 60° /eiger Schwefelsäure β -Phenyl- γ -cyan-vinylessigsäure (G., C. 1905 II, 685). — $NH_4C_{12}H_7O_2N_3$. Nadeln. Färbt sich an der Luft grün (G., C. 1905 II, 685). — $Cu(C_{12}H_7O_2N_3)_2 + 4NH_3$. Blauer, krystalliner Niederschlag (G., C. 1897 I, 369). Gibt bei 175—180° ca. $2NH_3$ ab. — $Ba(C_{12}H_7O_2N_3)_2 + 5H_2O$. Nadeln (G., C. 1905 II, 685). Sehr leicht löslich in siedendem, ziemlich schwer in kaltem Wasser.

2. 2.6 - Dioxy - 4 - methyl - 5 - benzyl - pyridin - carbon - säure - (3), 2.6 - Dioxy - 4 - methyl - 5 - benzyl - nicotinsäure $C_{14}H_{18}O_4N$, s. nebenstehende Formel, bezw. desmotrope Formen.

Nitril, 2.6-Dioxy-4-methyl-5-bensyl-3-cyan-pyridin $(\beta$ -Methyl- α -bensyl- γ -cyan-glutaconsäure-imid) $C_{14}H_{12}O_2N_2=NC_5(CH_3)(CH_2\cdot C_6H_6)(OH)_3\cdot CN$. B. In geringer Menge bei der Umsetzung von α -Benzyl-acetessigester (Bd. X, S. 710) mit Ammoniak und Cyan-essigester (Guareschi, C. 1897 I, 369; 1905 II, 684). — Prismen mit 1 H_2O (aus Alkohol). F: 217—218° (G., C. 1905 II, 684). Sehr schwer löslich in Wasser und Alkohol. — Gibt bei der Einw. von siedender $60^{\circ}/_{\circ}$ iger Schwefelsäure β -Methyl- α -benzyl- γ -cyan-vinylessigsäure (G., C. 1905 II, 684). — Die alkoh. Lösung gibt mit Eisenchlorid eine blauviolette Färbung. — $NH_4C_{14}H_{11}O_2N_3$. Nadeln. Löslich in kaltem Wasser (G., C. 1905 II, 684). — $Cu(C_{14}H_{11}O_2N_3)_2 + 4NH_3 + 2H_3O$. Violettblaue Nadeln (G., C. 1897 I, 369). Gibt bei 105—110° die Verbindung $Cu(C_{14}H_{11}O_2N_3)_2 + 2NH_3$. — Silbersalz. Mikrokrystallinischer Niederschlag; sehr schwer löslich (G., C. 1905 II, 684). — $Mg(C_{14}H_{11}O_2N_3)_2 + 9H_3O$. Nadeln (aus Wasser) (G., C. 1905 II, 684). 1 g löst sich bei 14° in ca. 200 g Wasser.

g) Oxy-carbonsăuren $C_n H_{2n-21} O_4 N$.

1.3-Dioxy-4-[2-carboxy-benzyl]-isochinolin, 3-0xy-4-[2-carboxy-benzyl]-isocarbostyril bezw. 1.3-Dioxo-4-[2-carboxy-benzyl]-1.2.3.4-tetrahydro-isochinolin, α -[2-Carboxy-benzyl]-homophthalsäure-imid C.H. O.N. Mormel I. bezw. II. bezw.

C₁₇H₁₈O₄N, Formel I bezw. II, bezw. weitere desmotrope Formen. B. Beim Kochen von 2.2'.α·Trioyan·dibenzyl I. (Bd. IX, S. 987) mit Bromwasserstoffsäure (D: 1,47) (GABRIEL, POSNER, B. 97 2493) — Nadeln (ang Ficessin)

I. OH CO2H CH2·C6H4·CO2H
OH CH2·C6H4·CO2H
OH CH CO

sāure (D: 1,47) (GABRIEL, POSNER, B. 27, 2493). — Nadeln (aus Eisessig).

F: 242°. Fast unlöslich in Alkohol. — Bei der Einw. von Luftsauerstoff auf eine ammoniakalische Lösung entsteht das Ammoniumsalz des 1-Oxo-3-[2-carboxy-phenyl]-isochromancarbonsäure-(3)-monoamids (Bd. XVIII, S. 499). Beim Erhitzen mit Methyljodid in methylalkoholischer Kalilauge im Rohr auf 100° erhält man α-Methyl-α-[2-carbomethoxy-benzyl]-homophthalsäure-methylimid und α-Methyl-α-[2-carboxy-benzyl]-homophthalsäure-imid. Beim Kochen mit überschüssigem Acetanhydrid entsteht [1-Oxo-hydrinden]-[1'.3'-dioxo-1'.2'.3'.4'-tetrahydro-isochinolin]-spiran-(2.4') (Bd. XXI, S. 570).

h) Oxy-carbonsäuren C_nH_{2n-27}O₄N.

2-[3.4-Dioxy-phenyl]-5.6-benzo-chinolin-carbonsaure-(4), 2-[3.4-Dioxy-phenyl]-5.6-benzo-cinchoninsaure $C_{so}H_{13}O_4N$, Formel III.

2-[4-Oxy-3-methoxy-phenyl]5.6-benzo-chinolin-carbonsäure-(4),
2-[4-Oxy-3-methoxy-phenyl]5.6-benzo-cinchoninsäure (,,Vanillyl-β-naphthocinchoninsäure")
C₂₁H₁₅O₄N, Formel IV. B. Beim Erhitzen von Vanillin mit Brenztraubensäure und β-Naphthylamin in alkoh. Lösung (Doebner, B. 27, 2029). — Citronengelbe Prismen. F: 288°.

3. Oxy-carbonsäuren mit 5 Sauerstoffatomen.

a) Oxy-carbonsauren $C_n H_{2n-7} O_5 N$.

1. Oxy-carbonsäuren $C_aH_aO_EN$.

- 1. 4.5.6 Trioxy pyridin carbonsäure (2), 4.5.6 Trioxypicolinsdure, Oxykomenaminsdure C,H,O,N, s. nebenstehende HO. Formel, bezw. desmotrope Formen. Zur Konstitution vgl. Peratoner, R. A. L. [5] 11 I, 333; H. Meyer, M. 26, 1328. — B. Durch Oxydation von 4.5-Dioxy-pyridin-carbonsäure-(2) mit Kaliumpermanganat in schwefelsaurer Lösung (Ost, J. pr. [2] 27, 266). Durch Erhitzen von 6-Oxy-komensäure (Bd. XVIII, S. 540) mit konzentriertem wäßrigem Ammoniak auf 150° (Reibstein, J. pr. [2] 24, 290; O., J. pr. [2] 27, 265). — Nadeln mit 1 H₂O (aus Wasser) (R.). Schwer löslich in kaltem Wasser und Alkohol, sehr schwer in Ather (R.). Die Lösung in Natronlauge fluoresciert blaugrün (O.). Leicht löslich in Säuren (R.). — Gibt bei der Oxydation mit absol. Salpetersäure in Äther Azoncarbonsäure (S. 345) (O.). Liefert in wäßr. Suspension bei der Einw. von Brom 3-Brom-4.5.6-trioxy-pyridin-carbonsäure-(2) (O.). Reagiert mit ammoniakalischer Barium-chlorid-Lösung bei Luftzutritt unter Bildung eine Niederschlags (R.; O.). Beim Behandeln mit alkoh. Kalilauge erhält man ein blaues Produkt, das sich in Wasser farblos löst (R.).
- 8-Brom-4.5.6-trioxy-pyridin-carbonsäure-(2), 8-Brom-4.5.6-trioxy-picolinsäure C_sH₄O_sNBr, s. nebenstehende Formel. B. Durch Einw. HO. von Brom auf 4.5-Dioxy-picolinsaure oder besser auf 4.5.6-Trioxy-picolin-HO-L N J. CO3H saure in waßr. Suspension (Ost, J. pr. [2] 27, 266). — Nadeln mit 2 H₂O (aus Wasser). Schwer löslich in kaltem Wasser. — Reduziert Silbernitrat in wäßr. Lösung. – Gibt mit ammoniakalischer Bariumchlorid-Lösung einen farblosen Niederschlag, der sich an der Luft blaugrün färbt; mit Eisenchlorid-Lösung erhält man eine tiefblaue Färbung, die auf Zusatz von mehr Eisenchlorid in Grün und schließlich in Gelbrot übergeht.
- 2. 2.4.6-Trioxy-pyridin-carbonsäure-(3), 2.4.6-Trioxy-nicotinsäure $C_0H_5O_5N$, s. nebenstehende Formel, bezw. desmotrope · CO₂H Formen.

Äthylester C_sH₉O₅N = NC₅H(OH)₃·CO₂·C₂H₅. B. Durch Erhitzen von β-Oxo-α-cyanglutarsäure-monoäthylester (Bd. III, S. 851) auf 147° (Baron, Remery, Thorpe, Soc. 85, 1746). — Tafeln (aus Eisessig). Löslich in Säuren und Alkalien. — Geht beim Behandeln mit Kalilauge in 2.4.6-Trioxy-pyridin über. — Gibt mit Eisenchlorid in alkoh. Lösung eine rote Färbung.

3. 5-Oxy-pyrrol-dicarbons dure-(2.3) $C_0H_5O_5N = \frac{HC--C\cdot CO_2H}{HO\cdot C\cdot NH\cdot C\cdot CO_2H}$

 $\textbf{1-Phenyl-5-oxy-pyrrol-dicarbons\"{a}ure-(2.8)} \quad C_{12}H_{9}O_{5}N \ = \ \frac{1}{HO \cdot C \cdot N(C_{5}H_{5}) \cdot C \cdot CO_{2}H}$ ist desmotrop mit 1-Phenyl-\(\Delta^2\)-pyrrolon-(5)-dicarbons\(\text{\text{a}}\)ure-(2.3), S. 342.

2. Oxy-carbonsäuren $C_7H_7O_8N$.

- 1. [2.4.6-Trioxy-pyridyl-(3)]-essigsäure C₇H₇O₈N, s. nebenstehende Formel, bezw. desmotrope Formen. B. Durch Kochen von [4-Amino-2.6-dioxy-pyridyl-(3)]-essigsäure mit 10°/ojger Schwefelsäure HO. NOH CH₂·CO₂H (BEST, THORPE, Soc. 95, 1528). Aus dem Lacton der [2.4.6-Trioxy-5-carbäthoxy-pyridyl-(3)]-essigsäure (Syst. No. 4331) beim Erhitzen mit 30°/ojger Kalilauge (B., Th.). Prismen (aus Wasser). Färbt sich von ca. 220° an schwarz. Licht löslich in Wasser. Gibt mit Eisenchlorid-Lösung eine rote Färbung die beim Erwärmen von Wasser. — Gibt mit Eisenchlorid-Lösung eine rote Färbung, die beim Erwärmen verschwindet.
- 2. 2.4.6-Trioxy-5-methyl-pyridin-carbonsäure-(3), 2.4.6-Trioxy-5-methyl-nicotinsaure, a.y.a'-Trioxy- β -picolin- β '-car- CH₃: CO₁ bonsaure C₇H₇O₈N, s. nebenstehende Formel, bezw. desmotrope Formen. HO: N OH Y. COaH

Äthylester $C_9H_{11}O_5N=NC_5(CH_2)(OH)_3\cdot CO_2\cdot C_9H_5$. B. Durch Einw. von Natriumnitrit auf 4-Amino-2.6-dioxy-5-methyl-pyridin-carbonsāure-(3)-āthylester in Essigsāure (Baron, Remfry, Thorpe, Soc. 85, 1749). — Krystalle (aus Essigsāure). Schmilzt bei hoher Temperatur unter Zersetzung. Löslich in Säuren und Alkalien. — Geht beim Kochen mit Kalilauge in 2.4-6-Trioxy-3-methyl-pyridin über. — Gibt mit Eisenchlorid in alkoh. Lösung eine rote Färbung.

3. 2.4.6-Trioxy-5-āthyl-pyridin-carbonsāure-(3), 2.4.6-Trioxy-5-āthyl-nicotinsāure $C_8H_9O_5N$, s. nebenstehende Formel, C_2H_5 : C_3H_5 : $C_$

Äthylester $C_{10}H_{13}O_5N=NC_5(C_2H_5)(OH)_3\cdot CO_2\cdot C_2H_5$. B. Durch Einw. von Natriumnitrit auf 4-Amino-2.6-dioxy-5-äthyl-pyridin-carbonsäure-(3)-äthylester in Essigsäure (Babon, Remfry, Thorpe, Soc. 85, 1759). — Prismen (aus absol. Alkohol). Schmilzt oberhalb 260°. Löslich in Säuren und Alkalien. — Geht beim Kochen mit wäßr. Kalilauge in 2.4.6-Trioxy-3-äthyl-pyridin über. — Gibt mit Eisenchlorid in alkoh. Lösung eine purpurrote Färbung.

b) Oxy-carbonsäuren $C_n H_{2n-9} O_5 N$.

1. Oxy-carbonsauren $C_7H_5O_5N$.

- 1. 6-Oxy-pyridin-dicarbonsäure-(2.3), 6-Oxy-chinolinsäure bezw.
 6-Oxo-1.6-dihydro-pyridin-dicarbonsäure-(2.3), Pyridon-(6)-dicarbonsäure-(2.3), Pyridon-(6)-dicarbonsäure-(0.3), Pyridon-(6)-dicarbonsäure-(0.3), Pyridon-(6)-dicarbonsäure-(0.3), Pyridon-(6)-dicarbonsäure-(0.3), Pyridon-(6)-dicarbonsäure-(0.3), Pyridon-(6)-dicarbonsäure-(0.3), Pyridon-(6)-dicarbonsäure-(0.3), Pyridon-(6)-dicarbons-süure-(0.3), Pyridon-(0.3), Pyri
- 6-Methoxy-pyridin-dicarbonsäure-(2.3), 6-Methoxy-chinolinsäure $C_9H_7O_5N=NC_5H_9(O\cdot CH_9)(CO_9H)_9$. B. Durch Oxydation von 6-Amino-2-methoxy-chinolin mit Kalium-permanganat in wäßr. Lösung bei 40^6 (Feer, Koenics, B. 18, 2398). Nadeln. F: 140^6 (Zers.). Sehr leicht löslich in Eisessig, Wasser und Alkohol, unlöslich in Benzol, Ligroin und Chloroform. Gibt beim Erhitzen mit verd. Salzsäure im Rohr auf 120^6 6-Oxy-chinolinsäure. Die wäßr. Lösung liefert mit Ferrosulfat eine gelbe Färbung, die auf Zusatz von Mineralsäuren verschwindet. $AgC_8H_6O_5N+C_8H_7O_5N$. Nadeln (aus Wasser).
- 2. 6-Oxy-pyridin-dicarbonsäure-(2.5), 6-Oxy-isocinchomeronsäure bezw. 6-Oxo-1.6-dihydro-pyridin-dicarbonsäure-(2.5), Pyridon-(6)-dicarbonsäure-(2.5), Pyridon-(6)-dicarbonsäure-(2.5), C₇H₅O₅N, Formel III bezw. IV.

 B. Bei der Oxydation von Dichinolyl-(2.3') III.

 (Syst. No. 3491) oder von Kyklothraustinsäure

 [s. bei Dichinolyl-(2.3')] mit Kaliumpermanganat in siedender Essigsäure (Weidel, Strache, M. 7, 283, 289, 292). Krystalle (aus Wasser oder verd. Salzsäure). F: 287—289° (Zers.) (W., St.). Fast unlöslich in kaltem Wasser, Äther und Alkohol. Die wäßr. Lösung fluoresciert blau (Ostwald, Ph. Ch. 3, 390). Elektrolytische Dissoziationskonstante der 1. Stufe k, bei 25°: 1,67×10-² (O.), der 2. Stufe k, bei 25°: 2×10-² (aus Leitfähigkeitsmessungen berechnet) (Wegscheider, M. 23, 631). Geht beim Erhitzen über den Schmelzpunkt in 2-Oxy-pyridin über (W., St., M. 7, 297). Beim Erhitzen mit Eisessig und Acetanhydrid im Rohr auf 210° erhält man 2-Oxy-pyridin-carbonsäure-(3); bei höherer Temperatur tritt vollständige Zersetzung ein (W., St., M. 7, 295). 6-Oxy-isocinchomeronsäure gibt mit Ferrosulfat-Lösung eine intensiv gelbe Färbung (W., St.). Ag₂C₇H₃O₅N. Nadeln. Sehr schwer löslich in siedendem Wasser (W., St.). BaC₇H₂O₅N (bei 180°). Nadeln. Kaum löslich in Wasser (W., St.).

5, 387; H., LIEB.; S., C.

3. 4-Oxy-pyridin-dicarbonsäure-(2.6), 4-Oxy-dipicolinsäure bezw. 4-Oxo-1.4-dihydro-pyridin-dicarbonsäure-(2.6), Pyridon-(4)-dicarbonsaure-(2.6) C,H,O,N, Formel I bezw. II, Chelidamsäure (Ammonchelidonsäure). B. Aus Chelidonsäure (Bd. XVIII, S. 490) J. CO₂H durch Behandeln mit Ammoniak in der Wärme (LIETZENMAYER, Dissertation [Erlangen 1878], S. 43; LERCH, M. 5, 383; vgl. HAITINGER, LIEBEN, M. 6, 285, 289). Durch Schmelzen von 4-Chlor-pyridin-dicarbonsäure-(2.6) mit Kaliumhydroxyd (SEDGWICK, COLLIE, Soc. 67, 403). — Prismen mit 1 H₂O (aus Wasser). Gibt das Krystallwasser bei 130—140° ab (LE.). Die wasserfreie Verbindung nimmt beim Aufbewahren an der Luft 1 Mol Krystallwasser auf (H., Lieb.). Färbt sich von ca. 235° an dunkel; F: 245° (Zers.) (Lietz.), 248° (H. Meyer, M. 24, 204). Zersetzt sich bei ca. 230—250° (H., Lieb.), 255—260° (bei raschem Erhitzen) (S., C.). 1 Tl. löst sich in 637 Tln. kaltem Wasser (LE.); sehr schwer löslich in Alkohol und Äther (Le.; Lietz.). Löslich in Mineralsäuren (Lietz.; Le.; H., Lieb.); fällt beim Verdünnen der Lösungen unverändert wieder aus (LE.). Löslich in Alkalilaugen (LIETZ.; H., LIEB.). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Ostwald, Ph. Ch. 3, 400. — Zersetzt sich beim Erhitzen für sich auf 230—250° (LE., M. 5, 402; H., LIEB.; S., C.; vgl. auch LIETZ.) oder mit Wasser auf 196° (H., LIEB.) unter Bildung von 4-Oxy-pyridin. Wird von Kaliumpermanganat in alkal. Lösung unter Bildung von Ammoniak und Oxalsäure oxydiert (LE.). Liefert bei der Destillation mit Zinkstaub Desidin (H. Lynn). Beim Finlaiten von Chlometer (LE.). Liefert bei der Destillation mit Zinkstaub Pyridin (H., LIEB.). Beim Einleiten von Chlor in die alkal. Lösung erhält man 3.5-Dichlor-4-oxy-pyridin-dicarbonsäure-(2.6) (Le., M. 5, 399); analog verläuft die Reaktion mit Brom in wäßr. Lösung (Le., M. 5, 397; H., Lieb.) oder mit Jod in alkal. Lösung (Le., M. 5, 401). Bleibt beim Kochen mit Kalilauge (Le., M. 5, 398; I verzichen beim Erlichen der Schaffen de 5, 388; Lietz.) sowie beim Erhitzen mit konz. Schwefelsäure auf 200° (H., Lieb.) unverändert. Reagiert auch bei längerer Einw. von Methyljodid in sodaalkalischer Lösung nicht; bei längerem Erwärmen des trocknen Natriumsalzes mit überschüssigem Athyljodid auf ca. 25° erhält man den Diäthylester (s. u.) (M., M. 24, 204). — Färbung mit Eisensalzen: LE., M.

Ag₂C₇H₃O₅N. Gallertartiger Niederschlag (aus Wasser); schwer löslich in siedendem Wasser (Lietzenmayer, Dissertation [Erlangen 1878], S. 50; Leech, M. 5, 393; Sedgwick, Collie, Soc. 67, 403). — CaC₇H₃O₅N + 2H₃O. Nadeln (Le., M. 5, 395). — Ca₂(C₇H₂O₅N)₂ + 8H₄O (bei 100°). Gelbliche Prismen (Le., M. 5, 396). Geht bei längerem Kochen mit Wasser in das vorangehende Salz über. Sehr schwer löslich in Wasser. — NH₄CaC₇H₂O₅N + 2H₃O (bei 100°). Krystalle (Le.). — (NH₄)₂Ca₅(C₇H₂O₅N)₄ + 8H₂O. Gelbliche Prismen. Sehr schwer löslich in Wasser (Le.). Spaltet bei längerem Kochen mit Wasser Ammoniak ab und geht in das Salz CaC₇H₃O₅N + 2H₃O (s. o.) über. — PbC₇H₃O₅N. Krystalle (Le., M. 5, 391). Fast unlöslich in Wasser und Essigsäure. Löst sich in Alkalicarbonat-Lösung unter Bildung des Kaliumbleisalzes (s. u.). Zersetzt sich, ebenso wie die beiden folgenden Salze, beim Erhitzen über 250° unter Bildung von 4-Oxy-pyridin. — Pb₃(C₇H₂O₅N)₂. Nadeln (aus Wasser) (Le.). Leicht löslich in Kalilauge. — NH₄PbC₇H₂O₅N (bei 100°). Nadeln (Le.). Verwittert an der Luft. Leicht löslich in Wasser. Die wäßr. Lösung reagiert neutral. Geht bei der Einw. von Säure oder beim Kochen mit Wasser in das Salz PbC₇H₂O₅N (s. o.) über. — KPbC₇H₂O₅N + 3H₂O. Krystalle (Le., M. 5, 393). Schwer löslich in kaltem Wasser. Geht beim längeren Kochen mit Wasser. Geht oberhalb 250° in 4-Oxy-pyridin über. — BaPb₂(C₇H₂O₅N)₂ + 3H₂O. Nadeln (Le.). Schwer löslich in kaltem Wasser. — C₇H₅O₅N + HCl + H₂O. Krystalle (Haitinger, Lieben, M. 6, 286). Wird durch Wasser hydrolysiert.

Dimethylester $C_0H_0O_5N=NC_5H_2(OH)(CO_3\cdot CH_3)_2$. B. Durch Einw. von Diazomethan auf Chelidamsäure (H. MEYER, M. 26, 1324). — Nadeln. F: 125°. Schwer löslich in Äther.

Diäthylester $C_{11}H_{18}O_5N=NC_5H_9(OH)(CO_9\cdot C_2H_5)_9$. B. Durch Erwärmen von Chelidamsäure mit Alkohol und Schwefelsäure (Lerch, M. 5, 388). Aus dem Natriumsalz der Chelidamsäure durch längeres Erwärmen mit überschüssigem Äthyljodid auf 25° (H. Meyer, M. 24, 204). Durch Umsetzen von Chelidamsäure mit Thionylchlorid und Einw. von Alkohol auf das entstandene Dichlorid (M.). — Nadeln mit $1H_9O$ (aus Alkohol oder Wasser). F: 80—81° (L.; M.). Leicht löslich in Wasser, Alkohol und Äther (L.). — Einw. von siedendem Wasser: L.

3.5 - Dichlor - 4 - oxy- pyridin- dicarbonsäure- (2.6), 3.5 - Dichlor - 4-oxy- dipicolinsäure, Dichlorchelidamsäure $C_7H_8O_8NCl_2$, s. nebenstehende Formel. B. Beim Einleiten von Chlor in eine Lösung von Chelidamsäure in Kalilauge (Lerch, M. 5, 399). — Nadeln mit $1\,H_2O$ (aus Wasser). Verwittert an der Luft. Zersetzt sich beim Erhitzen unter Abspaltung von Kohlendioxyd. Leicht löslich in warmem Wasser, etwas schwerer in Alkohol. — Gibt mit Eisenchlorid eine purpurrote Färbung. — $Ag_8C_7O_8NCl_2$. Nadeln. — $Pb_3(C_7O_8NCl_2)_2$. Krystalle.

- 3.5 Dibrom-4-oxy-pyridin-dicarbonsäure-(2.6), 3.5 Dibrom-4-oxy-dipicolinsäure, Dibromchelidamsäure $C_7H_3O_5NBr_2$, s. nebenstehende Formel. B. Durch Einw. von Brom auf Chelidamsäure in Wasser (Lerch, M. 5, 397; Haftinger, Lieben, M. 6, 291). Krystalle mit 2H₂O (aus Wasser) (Le.; H., Lie.). Verwittert an der Luft (Le.). Leicht löslich in heißem Wasser, schwer in Alkohol; unverändert löslich in heißer konzentrierter Schwefelsäure und heißer konzentrierter Salzsäure (Le.). Liefert beim Erhitzen 3.5-Dibrom-4-oxy-pyridin (H., Lie.; vgl. Le.). Gibt mit Eisenchlorid-Lösung eine rote Färbung (Le.; H., Lie.); aus konz. Lösungen scheidet sich ein Eisensalz in Form roter Nadeln ab (Le.). Ag₂C₇HO₅NBr₂. Nadeln. Fast unlöslich in Wasser (Le.).
- 3.5-Dijod-4-oxy-pyridin-dicarbonsäure-(2.6), 3.5-Dijod-4-oxy-dipicolinsäure, Dijodchelidamsäure C₇H₃O₅NI₂, s. nebenstehende Formel. B. Aus Chelidamsäure und Jod in überschüssiger Kalilauge (LEECH, M. 5, 401). Nadeln. Leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther. Zersetzt sich beim Erhitzen unter Abspaltung von Jod. Gibt mit Eisenchlorid eine purpurrote Färbung. Eisensalz. Rote Nadeln.
- 4. 4 Oxy pyridin dicarbon oH säure (3.5), 4 Oxy dinicotinsäure bezw. 4 Oxo 1.4 dihydro pyridin-dicarbonsäure (3.5), Pyridon (4)-dicarbonsäure (3.5), C₇H₅O₅N, Formel I bezw. II. B. Der Diäthylester (s. u.) entsteht in geringer Menge beim Kochen von 1 Mol Acetondicarbonsäurediäthylester mit 2 Mol Orthoameisensäureester und 4 Mol Acetanhydrid und Behandeln des Reaktionsprodukts mit alkoh. Ammoniak; man verseift ihn durch Erhitzen mit starker Salzsäure im Rohr auf 165° oder durch Kochen mit Kalilauge (ERRERA, B. 31, 1690). Krystalle. F: ca. 315° (Zers.). Schwer löslich in Wasser. Liefert beim

Diäthylester $C_{11}H_{13}O_5N = NC_5H_2(OH)(CO_2 \cdot C_2H_5)_2$. B. s. im vorangehenden Artikel. — Nadeln (aus Alkohol). F: 251° (bei raschem Erhitzen) (Errera, B. 31, 1690). — Unlöslich in Wasser und Benzol, schwer löslich in Alkohol. Leicht löslich in Alkalien und konz. Säuren.

Erhitzen mit starker Salzsäure im Rohr auf ca. 210-215° 4-Oxy-pyridin.

2. Oxy-carbonsäuren $C_8H_7O_5N$.

- 1. G-Oxy-4-methyl-pyridin-dicarbonsäure-(2.3), G-Oxy4-methyl-chinolinsäure, G-Oxy-lepidinsäure, α'-Oxy-γ-picolin-α,β-dicarbonsäure C₈H₇O₅N, s. nebenstehende Formel. B. Durch
 Oxydation von 2.7-Dioxy-4-methyl-chinolin mit Kaliumpermanganat in
 verd. Kalilauge bei Zimmertemperatur in geringer Ausbeute (Besthorn, Byvanck, B. 31, 802). Nadeln (aus Wasser). Erweicht von 210° an; F: 252—253° (Zers.). Ziemlich schwer löslich in kaltem Wasser und kaltem Alkohol. Gibt mit Eisenchlorid in wäßr. Lösung eine rote Färbung.
- 2. 6-Oxy-2-methyl-pyridin-dicarbonsdure-(3.5), 6-Oxy2-methyl-dinicotinsdure, α'-Oxy-α-picolin-β.β'-dicarbonsäure C₈H₇O₅N, s. nebenstehende Formel. B. Aus dem Ammoniumsalz
 des Monoäthylesters (s. u.) durch Kochen mit überschüssiger alkoholischer Kalilauge (Simonsen, Soc. 93, 1030). Durch Erhitzen von 6-Oxy-2-methyl-pyridin-dicarbonsäure-(3.5)-amid-(5)
 (S.270) oder von 6-Oxy-2-methyl-pyridin-dicarbonsäure-(3.5)-äthylester-(3)-nitril-(5)(S.270) mit Salzsäure (D: 1,1) im Rohr auf 120° (Erbera, B. 33, 2970; G. 31 I, 173). Blättchen oder Nadeln mit 1 H₂O (aus Wasser). Gibt bei 100° 1/2 Mol Krystallwasser ab, wird bei 115° wasserfrei (S.). F: 303° (E.), 302° (Zers.; bei raschem Erhitzen) (S.). Leicht löslich in heißem Wasser und Alkohol, schwer in Äther, Benzol, Essigsäure und Essigester (S.). Geht beim Erhitzen mit konz. Salzsäure im Rohr auf 120°, schneller bei 140—150° in 6-Oxy-2-methyl-pyridin über (E.; S.). Kupfersalz. Tafeln (S.). BaC₈H₅O₅N + 2H₂O (bei 115°). Nadeln (S.).
- 6-Oxy-2-methyl-pyridin-dicarbonsäure-(3.5)-äthylester-(3) $\text{HO}_2\text{C}_{10}\text{H}_{11}\text{O}_5\text{N}$, s. nebenstehende Formel. B. Durch Behandeln von 6-Methyl-pyron-(2)-dicarbonsäure-(3.5)-diäthylester mit wäßr. Ammoniak (Smonsen, Soc. 93, 1028). Gelbe Nadeln (aus Alkohol). F: 223°. Unlöslich in Wasser, schwer löslich in Äther, Petroläther und Essigester, leicht in heißem Alkohol. Unlöslich in kalter Soda-Lösung, löslich in verd. Kalilauge. Die alkoh. Lösung fluoresciert blau. $\text{NH}_4\text{C}_{10}\text{H}_{10}\text{O}_5\text{N}$. Gelbliche Nadeln (aus Wasser oder verd. Alkohol). F: 263—265° (Zers.). Schwer löslich in organischen Lösungsmitteln. Die alkoh. Lösung fluoresciert blau. $\text{AgC}_{10}\text{H}_{10}\text{O}_5\text{N}$. Nieder-

- 6-Oxy-2-methyl-pyridin-dicarbonsäure-(3.5)-äthylester-(3)-nitril-(5), 6-Oxy-2-methyl-5-cyan-nicotinsäure-äthylester, α' -Oxy- β' -cyan- α -picolin- β -carbonsäure-äthylester $C_{10}H_{10}O_3N_2$, s. nebenstehende Formel. B. Durch Kondensation von Natrium-cyanacetamid mit α -Äthoxymethylen-acetessigsäure-äthylester in alkoh. Lösung (Errera, B. 33, 2969, 3469; G. 31 I, 170).— Hoolong Krystalle (aus Alkohol oder Benzol). F: 208°. Liefert beim Behandeln mit konz. Schwefelsäure oder beim Kochen mit verd. Alkalilaugen die vorangehende Verbindung. $KC_{10}H_{9}O_{3}N_{2}$. Blättchen (aus verd. Alkohol). Schwer löslich in Alkohol, leicht in Wasser.

3. Oxy-carbonsauren C₂H₂O₅N.

- 1. 6-Oxy-2-methyl-pyridin-carbonsäure-(3)-essigsäure-(4),
 α'-Oxy-α-picolin-β-carbonsäure-γ-essigsäure C₉H₉O₅N, s. nebenstehende Formel. B. Durch wiederholtes Abdampfen von Citracumalsäure (Bd. XVIII, S. 511) mit Ammoniak (NIEME, v. PECHMANN, A. 261, 203).

 Nadeln (aus Wasser). F: 200—201° (Zers.). Sehr schwer löslich in kaltem Wasser, Alkohol und Äther. Löslich in konz. Salzsäure, unlöslich in verd. Säuren. Geht bei der trocknen Destillation in 6-Oxy-2.4-dimethyl-pyridin über. Ag₂C₉H₇O₅N. Niederschlag.
- 2. 4-Oxy-2.6-dimethyl-pyridin-dicarbonsäure-(3.5), 4-Oxy-2.6-dimethyl-dinicotinsäure, $\gamma-Oxy-\alpha.\alpha'-lutidin-\beta.\beta'-dicarbonsäure$ C, $H_{\bullet}O_{\delta}N$, s. nebenstehende Formel. B. Aus dem Diäthylester (s. u.) durch Erhitzen mit überschüssiger, konzentrierter alkoholischer Kalilauge (Conrad, Guthzeit, B. 20, 155). Bei der Reduktion von 1-Oxy-2.6-dimethyl-pyridon-(4)-dicarbonsäure-(3.5) (S. 347) mit Zinn und Salzsäure (Palazzo, R. A. L. [5] CH₃ · CO₂H dicarbonsäure-(3.5) (S. 347) mit Zinn und Salzsäure (Palazzo, R. A. L. [5] CH₃ · CH₃

Diäthylester $C_{13}H_{17}O_5N=NC_5(OH)(CH_3)_2(CO_2\cdot C_2H_5)_2$. B. Durch mehrtägige Einw. von wäßrig-alkoholischem Ammoniak auf 2.6-Dimethyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester (Conrad, Guthzeit, B. 19, 24; 20, 154). — Krystalle (aus Alkohol). F: 221° (C., G.). Schwer löslich in Wasser, Äther, Benzol und Schwefelkohlenstoff, leicht in Chloroform, Eisessig und heißem Alkohol; 1 Tl. löst sich in 100 Tln. Alkohol bei 20°; leicht löslich in konz. Salzsäure und konz. Schwefelsäure (C., G.). Löslich in verd. Kalilauge (Ssabanezew, \mathcal{K} . 41, 789; C. 1909 II, 1751). — Liefert beim Erhitzen mit Acetanhydrid auf 140—150° 1-Acetyl-2.6-dimethyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester (S. 347) (C., G., B. 20, 155). — Kaliumsalz. Krystalle (aus Alkohol). Leicht löslich in Wasser und Äther (Ss.). — $2C_{13}H_{17}O_5N+2HCl+PtCl_4$. Orangegelbe Nadeln (aus Wasser). F: 190° (C., G.). Leicht löslich in heißem Wasser.

4. 4.6.7 - Trioxy - 2 - methyl - 1.2.3.4 - tetrahydro - chinolin - carbon säure - (5), 4.6.7 - Trioxy - 1.2.3.4 - tetrahydro - chinaldin - carbon säure - (5) $C_{11}H_{18}O_5N$, Formel I.

4.7 - Dioxy - 6 - methoxy - 2 - methyl - 1.2.3.4 - tetrahydro - chinolin-carbonsäure - (5) $C_{12}H_{15}O_5N$, Formel II. B. Neben anderen Produkten bei der Reduktion von 4-Nitro-3-acetonyl -

mekonin (Bd. XVIII, S. 171) mit Zinn und Salzsäure (Book, B. 36, 2212). — $C_{12}H_{15}O_5N + HCl$. Nadeln. F: 213°. Leicht löslich in Wasser. — $2C_{12}H_{15}O_5N + 2HCl + PtCl_4$. Hellgelbe Nadeln. F: 204°.

c) Oxy-carbonsäuren $C_n H_{2n-11} O_5 N$.

1. 4.6.7-Trioxy-3.4-dihydro-chinolin-carbonsäure-(5) $C_{10}H_9O_5N$, Formel I.

2-Chlor-4-oxy-6.7-dimethoxy3.4-dihydro-chinolin-carbonsäure-(5)

C₁₂H₁₂O₅NCl, Formel II. B. Das Bariumsalz entsteht beim Kochen des zugehörigen
Lactons (Syst. No. 4300) mit Barytwasser
(Liebermann, Kleemann, B. 19, 2298). — Das Bariumsalz gibt beim Erhitzen mit Jodwasserstoffsäure in Eisessig auf 120° das Lacton der 4.6.7-Trioxy-3.4-dihydro-chinolin-carbonsäure-(5) (Syst. No. 4300) und andere Produkte. — Ba(C₁₂H₁₁O₅NCl)₂. Krystalle. Schwer löslich in Alkohol.

2. 4.6.7 - Trioxy - 2 - methyl - 3.4 - dihydro - chinolin - carbonsäure - (5), 4.6.7 - Trioxy - 3.4 - dihydro - chinaldin - carbonsäure - (5) $C_{11}H_{11}O_5N$, Formel III.

4.7-Dioxy-6-methoxy-2-methyl3.4 - dihydro - chinolin - carbon säure-(5) C₁₂H₁₃O₅N, Formel IV. B. Bei III. Hoder Reduktion von 4-Nitro-3-acetonylmekonin (Bd. XVIII, S. 171) mit Zinn
und rauchender Salzsäure (Book, B. 35, 1500). — Krystalle (aus Wasser). F: 212°. Löslich
in Alkohol, unlöslich in Benzol, Äther und Ligroin. Löslich in kalter Soda-Lösung, Alkalilaugen, Ammoniak und verd. Salzsäure. — Ba(C₁₂H₁₂O₅N)₂ + H₂O. Niederschlag. Gibt das
Krystallwasser bei 160—170° ab (B., B. 36, 2210). — 2C₁₂H₁₃O₅N + HCl + AuCl₃. Goldgelbe
Blättchen (B., B. 36, 2210).

d) Oxy-carbonsäuren $C_n H_{2n-13} O_5 N$.

1. 1.4.6 (oder 1.4.7) - Trioxy-isochinolin-carbonsäure-(3), 4.6 (oder 4.7) - Dioxy-isocarbostyril-carbonsäure-(3) $C_{10}H_7O_8N$, Formel V oder VI, bezw. desmotrope Formen.

1.4-Dioxy-6 (oder 7)-methoxy-isochinolin-carbonsäure-(3)-methylester, 4-Oxy-6 (oder 7)-methoxy-isocarbostyril-carbonsäure-(3)-methylester $C_{12}H_{11}O_5N$, Formel VII oder VIII. B. Durch Erhitzen von [4-Äthoxy-phthalyl]-glycinäthylester (Bd. XXI, S. 608)

mit Natriummethylat-Lösung im geschlossenen Gefäß auf 100° (Kusel, B. 37, 1975). — Nadeln (aus Methanol). F: ca. 248° (Zers.). — Gibt beim Kochen mit Bromwasserstoffsäure (D: 1,49), schneller mit Jodwasserstoffsäure (D: 1,7) 1.4.6 (oder 1.4.7)-Trioxy-isochinolin.

1.4 - Dioxy - 6(oder 7) - \ddot{a} thoxy - isochinolin - carbons \ddot{a} ure - (3) - \ddot{a} thylester, 4-Oxy-6(oder 7) - \ddot{a} thoxy - isocarbostyril - carbons \ddot{a} ure - (3) - \ddot{a} thylester $C_{14}H_{15}O_{5}N$, Formel IX oder X. B. Durch Erhitzen von [4- \ddot{a} thoxy-phthalyl]-glycin \ddot{a} thylester mit Natrium \ddot{a} thylat-

$$IX. \begin{tabular}{ccccc} OH & OH \\ \hline ON & C_2H_5 \cdot O \cdot & OH \\ \hline OH & OH \\$$

Lösung im Rohr auf 100° (Kusel, B. 37, 1974). — Nadeln (aus Alkohol oder Wasser). Zersetzt sich bei ca. 233°. Leicht löslich in Aceton und Eiseseig, unlöslich in Äther, Ligroin, Benzol und Chloroform. Unlöslich in Ammoniak. — Gibt beim Kochen mit Bromwasserstoffsäure (D: 1,49), schneller mit Jodwasserstoffsäure (D: 1,7) 1.4.6(oder 1.4.7)-Trioxy-isochinolin.

2. 4.5.7-Trioxy-2-methyl-chinolin-carbonsäure-(3 oder 6), 4.5.7-Trioxy-chinaldin-carbonsäure-(3 oder 6) $C_{11}H_{9}O_{5}N$, Formel I oder II.

Äthylester C₁₃H₁₃O₅N = NC₉H₂(OH)₃(CH₂)·CO₃·C₂H₅. B. Aus β-Imino-buttersäure-äthylester durch Erhitzen mit Malonsäure-diåthylester auf 130—170°, am besten unter vermindertem Druck (Knoevenagel, Fries, B. 31, 774) oder, neben anderen Produkten, beim Erhitzen mit ½ Mol Benzalmalonsäure-diåthylester auf 130—170° (K., Fries, B. 31, 765) oder mit ½ Mol Cuminalmalonsäurediåthylester unter vermindertem Druck über 160° (K., Brunswig, B. 35, 2178). In geringer Menge beim Erhitzen von 6-Oxo-2-methyl-4-phenyl-1.4.5.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-diåthylester mit 20°/0 iger Salzsäure auf 100° (K., B.). — Nadeln (aus absol. Alkohol). F: 268—269° (K., B.). Unlöslich in Äther, Ligroin, Benzol, kaltem Wasser und kaltem Aceton, sehr schwer löslich in kaltem Chlorbform, kaltem Alkohol und heißem Wasser, leicht in heißem Eisessig; löslich in kalter konz. Salzsäure, unlöslich in kalter Alkalilauge, Soda-Lösung und Ammoniak (K., F., B. 31, 775). — Liefert beim Behandeln mit alkoh. Kalilauge oder mit 10°/0 iger wäßriger Kalilauge auf dem Wasserbad 4.5.7-Trioxy-chinaldin (K., F., B. 31, 775).

e) Oxy-carbonsäuren $C_n H_{2n-15} O_5 N$.

- 2. Oxy-carbonsauren $C_{15}H_{16}O_{8}N$.
- 1. 2.6 Dimethyl 4 [2 oxy phenyl] 1.4 dihydro pyridin dicarbon säure-(3.5) $C_{15}H_{15}O_5N = \frac{HO_2C \cdot C \cdot CH(C_6H_4 \cdot OH) \cdot C \cdot CO_2H}{CH_2 \cdot C NH C \cdot CH_3}$

 $\begin{array}{ll} \mbox{Dinitril}, & \mbox{2.6-Dimethyl-4-[2-oxy-phenyl]-3.5-dicyan-1.4-dihydro-pyridin} \\ \mbox{$\rm C_{15}H_{12}ON_3$} = & \mbox{$\rm CH_2$}. \\ \mbox{$\rm B.$ Beim Kochen von Discetonitril (Bd. III, 8.660)} \\ \mbox{mit Salicylaldehyd in Eisessig (Mohr, $J.$ $pr.$ [2] 56, 138). $-- Prismen (aus Alkohol). Färbt sich bei 230-240° gelb; F: 265-270° (Zers.). Unlöslich in Wasser, Eisessig und Chloroform, schwer löslich in siedendem Benzol, kaltem Methanol und kaltem Alkohol. Unlöslich in verd. Schwefelsäure und Ammoniak. \\ \mbox{$\rm Chwefelsäure} & \mbox{$\rm Chwefelsaure} & \mbox{$$

 $\begin{array}{ll} 2. & \textbf{2.6-Dimethyl-4-[4-oxy-phenyl]-1.4-dihydro-pyridin-dicarbon-sdure-(3.5)} & C_{15}H_{15}O_5N = \\ & \begin{array}{ll} HO_5C\cdot C\cdot CH(C_6H_4\cdot OH)\cdot C\cdot CO_9H \\ CH_3\cdot C---NH----C\cdot CH_3 \end{array}. \end{array}$

2.6 - Dimethyl - 4 - [4 - methoxy-phenyl] - 1.4 - dihydro-pyridin-dicarbonsäure - (3.5) - dinitril, 2.6 - Dimethyl - 4 - [4 - methoxy-phenyl] - 3.5 - dicyan - 1.4 - dihydro-pyridin $C_{16}H_{15}ON_3 = \frac{NC \cdot C \cdot CH(C_6H_4 \cdot O \cdot CH_3) \cdot C \cdot CN}{CH_3 \cdot C - NH - C \cdot CH_3}$. B. Durch Kochen von Anisal-bis-[imino-buttersäure-nitril] (Bd. X, S. 1039) mit Acetanhydrid (Mohr, J. pr. [2] 56, 132). — Nadeln (aus Alkohol). F: 215—216° (unter Braunfärbung; bei raschem Erhitzen). Schwer Kelich in Ather, Benzol und Ligroin.

f) Oxy-carbonsauren $C_nH_{2n-17}O_5N$.

1. 6-0 xy-2-methyl-4-phenyl-pyridin-dicarbonsaure-(3.5), 6-0 xy-2-methyl-4-phenyl-dinicotinsaure $C_{14}H_{11}O_5N$, s. HO_5C . CO_2H nebenstehende Formel.

CO₂H

· CO₂H

6-Oxy-2-methyl-4-phenyl-pyridin-dicarbonsäure-(8.5)-äthylester-(3)-nitril-(5), 6-Oxy-2-methyl-4-phenyl-5-cyan-nicotinsäure-äthylester $C_{16}H_{14}O_3N_2$, s. nebenstehende Formel. B. Bei der Einw. von 1 Mol Benzaldehyd auf 1 Mol Acetessigsäureäthylester, 1 Mol Cyanessigsäure-methylester oder -äthylester und 3 Mol Ammoniak (Guareschi, C. 1907 I, 333). — F: 226—227°.

2. 2.6 - Dimethyl - 4 - [3 - oxy - phenyl] - pyridin - dicarbonsăure - (3.5), 2.6 - Dimethyl - 4 - [3 - oxy - phenyl] - dinicotin-box CO₂H - CO₂H - CO₂H - CH₃ - CO₂H - CH₃ - CH

Diäthylester $C_{19}H_{21}O_5N=NC_5(CH_3)_2(C_0H_4\cdot OH)(CO_2\cdot C_2H_5)_2$. B. Durch Diazotieren von 2.6-Dimethyl-4-[3-amino-phenyl]-pyridin-dicarbonsäure-(3.5)-diäthylester in schwefelsaurer Lösung und Verkochen der Diazoniumsalz-Lösung (Lepetit, G. 17, 465). — Krystalle (aus Benzol). F: 174°. Löslich in Alkalien und Ammoniak. — Bildet mit Säuren Salze, die von Wasser nicht hydrolysiert werden. — Hydrochlorid. Prismen. Ziemlich schwer löslich in kaltem Wasser. — Nitrat. Nadeln. — Pikrat. Gelbe Nadeln. Schwer löslich.

g) Oxy-carbonsäuren $C_n H_{2n-23} O_5 N$.

3-0xy-4-[chinolyl-(4)]-phthalsäure $C_{17}H_{11}O_5N$, s. nebenstehende Formel (R = H).

3-Åthoxy-4-[chinolyl-(4)]-phthalsäure¹)C₁₉H₁₅O₅N, s. nebenstehende
Formel (R = C₃H₅). B. Aus dem Lacton der 6(oder 3)-Äthoxy-2-[α-oxyāthyl]-5(oder 4)-[chinolyl-(4)]-benzoesäure (Syst. No. 4300) durch Einw.
von Brom in verd. Natronlauge, anfangs bei Zimmertemperatur, später
in der Wärme (Koenigs, J. pr. [2] 61, 29). — Krystalle (aus verd. Alkohol oder verd.
Methanol). F: ca. 236° (Zers.). Sehr schwer löslich in Wasser, Benzol und Chloroform, schwer
in Methanol und Alkohol. Löslich in siedenden Mineralsäuren. — Das Silbersalz liefert beim
Erhitzen auf 280—290° geringe Mengen 4-[2-Äthoxy-phenyl]-chinolin. Wird durch Chromschwefelsäure zu Chinolin-carbonsäure-(4) oxydiert. Geht beim Kochen mit konz. Bromwasserstoffsäure in Homapocinchensäure (S. 244) über. Beim Erwärmen mit Acetylchlorid
auf dem Wasserbad erhält man 3-Äthoxy-4-[chinolyl-(4)]-phthalsäure-anhydrid (Syst. No.
4300). — Na₂C₁₉H₁₃O₅N. Krystalle. Leicht löslich in Wasser und Alkohol. — K₂C₁₉H₁₃O₅N.
Nadeln (aus Alkohol). — Ag₂C₁₉H₁₂O₅N. Niederschlag. Sehr schwer löslich. — Hydrochlorid. Krystalle (aus verd. Salzsäure). Wird durch siedendes Wasser hydrolysiert.

h) Oxy-carbonsäuren $C_n H_{2n-25} O_5 N$.

4-0xy-2.6-diphenyl-pyridin-dicarbonsāure-(3.5),
4-0xy-2.6-diphenyl-dinicotinsāure C₁₀H₁₃O₅N, s. neben-stehende Formel. B. Aus dem Diäthylester (S. 274) durch Kochen mit konzentrierter alkoholischer Kalilauge (Petrenko-Kritschenko, Petrow, B. 41, 1694; Schtwan, 3K. 41, 479; C. 1909 II, 833). — Krystalle (aus verd. Alkohol). F: 258° (Zers.) (P.-K., P.), 250—258° (Zers.) (Scht.). Unlöslich in Wasser, schwer löslich in heißem Alkohol (P.-K., P.). — Geht beim Erhitzen auf 258° in 4-Oxy-2.6-diphenyl-pyridin über (P.-K., Schöttle, B. 42, 2021).

4-Methoxy-2.8-diphenyl-pyridin-dicarbonsäure-(8.5) $C_{20}H_{15}O_5N=NC_5(C_6H_5)_2(O\cdot CH_2)(CO_2H)_3$. B. Durch Einw. von Methyljodid auf 4-Oxy-2.6-diphenyl-pyridin-dicarbonsäure-(3.5)-diäthylester in alkal. Lösung und Verseifung des neben 1-Methyl-4-oxo-2.6-diphenyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5)-diäthylester erhaltenen bei 125° bis 130° schmelzenden Produkts mit $7^0/_0$ iger Kalilauge bei Zimmertemperatur (Ретвенко-Кritschenko, Schöttle, B. 42, 2024; 43 [1910], 203; Ж. 42 [1910], 311). — Tafeln mit 1,5 $C_2H_4O_2$ (aus Essigsäure). F: 240° (Zers.). Unlöslich in Wasser. — $Ag_2C_{20}H_{13}O_5N$. Ziemlich schwer löslich in Wasser.

1) S. die Fußnote auf S. 244.
BEILSTEINs Handbuch. 4. Aufl. XXII.

4 - Oxy - 2.6 - diphenyl - pyridin - dicarbonsäure - (3.5) - diäthylester $C_{23}H_{51}O_{5}N = NC_{5}(C_{6}H_{5})_{5}(OH)(CO_{2} \cdot \hat{C}_{2}H_{5})_{5}$. B. Durch Oxydation von 2.6-Diphenyl-piperidon-(4)-dicarbonsäure-(3.5)-diäthylester mit Chromsäure in Essigsäure auf dem Wasserbad (Petrenko-Kritschenko, Petrow, B. 41, 1693). Aus 2.6-Diphenyl-pyron-(4)-dicarbonsäure-(3.5)-diäthylester durch Behandeln mit alkoh. Ammoniak (P.-K., B. 42, 3683; Schtwan, Ж. 41, 479; C. 1909 II, 832). — Krystalle (aus Alkohol). F: 195° (P.-K., P.; Scht.). Unlöslich in Wasser, schwer löslich in kaltem Alkohol (P.-K., P.). Leicht löslich in verd. Kalilauge (P.-K., Schöttle, B. 42, 2020). — Bleibt bei $^{1}/_{3}$ -stdg. Kochen mit mäßig konzentrierter alkoholischer Kalilauge unverändert, wird durch siedende konzentrierte alkoholische Kalilauge zur Dicarbonsäure (S. 273) verseift; bei längerem Kochen mit verdünnter wäßriger Kalilauge erhält man eine bei 225—227° (Zers.) schmelzende, in Wasser schwer lösliche Verbindung (P.-K., P.). Gibt beim Behandeln mit Methyljodid in alkal. Lösung hauptsächlich 1-Methyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester und geringere Mengen eines Produkts, das bei längerer Einw. von $^{70}/_{0}$ iger Kalilauge bei Zimmertemperatur 4-Methoxy-2.6-diphenyl-pyridindicarbonsäure-(3.5) liefert (P.-K., Soh., B. 42, 2024; 43 [1910], 203; Ж. 42 [1910], 311). — $^{70}/_{0}$ KC₂₃ $^{70}/_{0}$ 0. Niederschlag (aus Chloroform + Ligroin). F: 300° (P.-K., Sch., B. 42, 2021).

4-Methoxy-2.6-diphenyl-pyridin-dicarbonsäure-(3.5)-diäthylester $C_{24}H_{22}O_5N=NC_5(C_8H_5)_2(O\cdot CH_5)(CO_2\cdot C_2H_5)_2$. B. Durch Einw. von Athyljodid auf das Silbersalz der 4-Methoxy-2.6-diphenyl-pyridin-dicarbonsäure-(3.5) (Petrenko-Kritschenko, Schöttle, B. 43 [1910], 205; \Re . 42 [1910], 313). — Krystalle (aus Alkohol). F: 229—230°. Unlöslich in Ammoniak.

i) Oxy-carbonsäuren $C_n H_{2n-27} O_5 N$.

Oxy-carbonsauren $\mathrm{C}_{20}\mathrm{H}_{13}\mathrm{O}_{5}\mathrm{N}$.

1. $2 - [2.4.5 - Trioxy - phenyl] - 5.6 - benzo - chinolin-carbonsäure - (4), <math>2 - [2.4.5 - Trioxy - phenyl] - 5.6 - benzo-cinchoninsäure <math>C_{20}H_{12}O_5N$, s. nebenstehende Formel.

OH OH OH

2-[2.4.5-Trimethoxy-phenyl]-5.6-benso-chinolin-carbon-säure-(4), 2-[2.4.5-Trimethoxy-phenyl]-5.6-benso-cinchonin-säure, ,,Asaryl- β -naphthocinchoninsäure" $C_{22}H_{19}O_5N=$ OH $NC_{19}H_{7}(CO_{2}H)\cdot C_{6}H_{2}(O\cdot CH_{3})_{3}$. B. Durch Kochen von 2.4.5-Trimethoxy-benzaldehyd mit Brenztraubensäure und β -Naphthylamin in absol. Alkohol (Fabinyi, Széki, B. 39, 1217). — Gelbe Nadeln. F: 258°. Unlöslich in den gewöhnlichen Lösungsmitteln.

2. $2-[3.4.5-Trioxy-phenyl]-5.6-benzo-chinolin-carbonsaure-(4), 2-[3.4.5-Trioxy-phenyl]-5.6-benzo-cinchoninsaure <math>C_{20}H_{13}O_5N$, s. nebenstehende Formel.

2 - [8.4.5 - Trimethoxy - phenyl] - 5.6-benzo-chinolin-carbon-

OH OH OH

säure - (4), 2-[3.4.5-Trimethoxy-phenyl]-5.6-benzo-cinchonin-säure $C_{23}H_{19}O_5N=NC_{19}H_{7}(CO_9H)\cdot C_6H_{9}(O\cdot CH_9)_3$. B. Durch Kochen OH von 3.4.5-Trimethoxy-benzaldehyd mit Brenztraubensäure und β -Naphthylamin in absol. Alkohol (MAUTHNER, B. 41, 2533). — Gelbe Nadeln. F: 262—263°. Unlöslich in Alkohol und Äther, schwer löslich in Xylol, leichter in kaltem Nitrobenzol.

4. Oxy-carbonsäuren mit 6 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_n H_{2n-7} O_6 N$.

1. 3.4 - Dioxy - pyrrol - dicarbons aure - (2.5) bezw. 3.4 - Dioxo - pyrrolidin-dicarbons aure - (2.5) $C_6H_5O_6N = \frac{HO \cdot C}{HO_2C \cdot C \cdot NH \cdot C \cdot CO_2H}$ bezw.

HO,C.HC.NH.CH.CO,H.

1-Phenyl-3.4-dioxy-pyrrol-dicarbonsaure-(2.5)-dimethylester bezw. 1-Phenyl-8.4-dioxo-pyrrolidin-dicarbonsäure-(2.5)-dimethylester $C_{14}H_{13}O_{e}N =$ HO·C____C·OH CH₃·O₂C·C·N(C₆H₅)·C·CO₂·CH₃ bezw. CH₃·O₂C·HC·N(C₆H₅)·CH·CO₂·CH₃ Stitution vgl. Johnson, Bengis, Am. Soc. 83 [1911], 745. — B. Aus Anilin-N.N-diessigsäure-dimethylester, Oxalsäure-dimethylester und Natriummethylat-Lösung (DE MOUILPIED, Soc. 87, 437, 450; J., B., Am. Soc. 33 [1911], 753). — Prismen (aus Alkohol). F: 188—1890 (J., B.), 195° (DE M.). 1-Phenyl-3.4-dioxy-pyrrol-dicarbonsäure-(2.5)-diäthylester bezw. 1-Phenyl-3.4-dioxo-pyrrolidin-dicarbonsäure-(2.5)-diäthylester $C_{16}H_{17}O_6N=$ $HO \cdot C - - - C \cdot OH$ C₂H₅·O₂C·C·N(C₆H₅)·C·CO₂·C₂H₅ bezw. C₂H₅·O₂C·HC·N(C₆H₅)·C·H·CO₂·C₂H₅ Zur Konstitution vgl. Johnson, Bengis, Am. Soc. **33** [1911], 745. — B. Aus Anilin-N.N-diessigsäurediäthylester, Oxalsaure-diäthylester und Natriumäthylat-Lösung (DE MOUILPIED, Soc. 87, 447). — Nadeln (aus Alkohol). F: 1370 (DE M.). Sehr leicht löslich in Chloroform, schwerer in Eisessig, schwer in Äther, unlöslich in Wasser (DE M.). Löslich in Natronlauge mit gelber Farbe (DE M.). — Reduziert Silbernitrat-Lösung (DE M.). Liefert mit Brom in Chloroform 2.4.6-Tribrom-anilin (DE M.). — Gibt mit Eisenchlorid in Alkohol eine grünlichblaue Färbung (DE M.). 1-Phenyl-3-oxy-4-anilinoformyloxy-pyrrol-dicarbonsäure-(2.5)-diäthylester $C_{33}H_{33}O_7N_2 = C_6H_5 \cdot NH \cdot CO \cdot O \cdot C - C \cdot OH$ bezw. desmotrope Formen. B. $C_{23}H_{23}O_7N_2 = C_2H_5 \cdot O_2C \cdot C \cdot N(C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5$ bezw. desmotrope Formen. B. Aus der vorangehenden Verbindung und Phenylisocyanat beim Erwärmen (DE MOUILPIED, Soc. 87, 448). — Krystalle (aus verd. Alkohol). F: 169°. 1-o-Tolyl-8.4-dioxy-pyrrol-dicarbonsäure-(2.5)-diäthylester bezw. 1-o-Tolyl-3.4-dioxo-pyrrolidin-dicarbonsäure-diäthylester $C_{17}H_{19}O_6N=$ ---C·OH bezw. C₂H₅·O₂C·HC·N(C₅H₄·CH₃)·CH·CO₂·C₂H₅ C₂H₅·O₂C·C·N(C₆H₄·CH₃)·C·CO₂·C₂H₅

C₂H₅·O₂C·HC·N(C₆H₄·CH₃)·CH·CO₂·C₂H₅

Zur Konstitution vgl. Johnson, Bengis, Am. Soc. 33 [1911], 745. — B. Aus o-Toluidin-N.N - diessigsäure - diäthylester, Oxalsäure - diäthylester und Natriumäthylat - Lösung (DE MOUILPIED, Soc. 87, 450). — Krystalle. F: 1460 (DE M.).

2. 2.6-Dioxy-1.4-dihydro-pyridin-dicarbonsäure-(4.4) $C_7H_7O_6N = HC \cdot C(CO_2H)_2 \cdot CH$

HO·C-NH-C·OH

 $\begin{array}{c} \textbf{Diäthylester} \ \ C_{11}H_{15}O_6N = \frac{HC \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH}{HO \cdot C} \quad \text{ist desmotrop mit 2.6-Dioxopiperidin-dicarbonsāure-(4.4)-diāthylester, S. 354.} \end{array}$

b) Oxy-carbonsäuren $C_n H_{2n-9} O_6 N$.

1. Oxy-carbonsäuren $C_7H_5O_6N$.

1. 2.6-Dioxy-pyr/din-dicarbonsäure-(3.4), 2.6-Dioxy-cin-chomeronsäure $C_7H_5O_6N$, s. nebenstehende Formel, bezw. desmotrope Formen.

Monoäthylester $C_9H_9O_6N=NC_5H(OH)_9(CO_2H)\cdot CO_3\cdot C_2H_5$. B. Beim Kochen von 2.6-Dioxy-pyridin-tricarbonsäure-(3.4.5)-triäthylester (S. 282) mit 2 Mol Natronlauge (Errera, Perciabosco, B. 34, 3714). — Nadeln (aus verd. Alkohol). Zersetzt sich bei ca. 215°. Sehr schwer löslich in Wasser und Alkohol, unlöslich in Benzol.

Diäthylester $C_{11}H_{13}O_6N=NC_5H(OH)_2(CO_2\cdot C_2H_5)_2$. B. Durch mehrtägige Einw. von Ammoniak auf den durch Anlagerung von Malonester an Acetylendicarbonsäure-diäthylester entstehenden Propylentetracarbonsäure-tetraäthylester (Ruhemann, Stapleton, Soc. 77, 243, 250). Aus α-Cyan-aconiteäure-triäthylester durch Einw. von kalter konzentrierter Schwefelsäure (Rogerson, Thorpe, Soc. 89, 640). Beim Kochen von α.β.γ-Tricarbäthoxyglutaconisoimid (Bd. XVIII, S. 513) mit Salzsäure (D: 1,06) (Errera, Perciabosco, B. 34, 3713). — Blättchen (aus Alkohol). F: 157° (E., P.; Ro., Th.), 161—162° (Ru., St.; Ru.,

- B. 34, 4165). Leicht löslich in Alkohol und Benzol (E., P.), unlöslich in Wasser (Ro., Th.). Leicht löslich in Alkalilaugen und Alkalicarbonat-Lösungen (Ro., Th.). Liefert beim Kochen mit konz. Salzsäure (Ru., Sr.) oder mit verd. Natronlauge (Ro., Th.) Citrazinsäure (S. 254). Gibt mit Eisenchlorid in Wasser oder Alkohol eine rotviolette Färbung (Ru., Sr.). Bei der Einw. von Natriumnitrit in heißem Wasser tritt eine blaue Färbung auf (E., P.).
- 2. 2.6 Dioxy pyridin dicarbon sdure-(3.5), 2.6 Dioxy dinicotins dure C₇H₅O₆N, Formel I, bezw. desmotrope Formen. I. $\frac{\text{HO}_2\text{C}}{\text{N}} \cdot \frac{\text{CO}_2\text{H}}{\text{N}} \cdot \frac{\text{HO}_2\text{C}}{\text{N}} \cdot \frac{\text{CO}_2\text{H}}{\text{HO}} \cdot \frac{\text{HO}_2\text{C}}{\text{N}} \cdot \frac{\text{CO}_2\text{H}}{\text{O}_2\text{H}_4}$
- 2-Oxy-6-āthoxy-pyridin-dicarbonsāure-(3.5), 2-Oxy-6-āthoxy-dinicotinsāure C₉H₉O₈N, Formel II. B. Beim Kochen von 6-Oxy-2-āthoxy-pyridin-dicarbonsāure-(3.5)-āthylester-(3) (s. u.) mit 10%-iger Kalilauge (Guthzeit, Dressel, A. 262, 116; vgl. B. 22, 1429). Nadeln (aus Aceton), Krystalle mit 1 H₂O (aus Wasser). F: 181—182° (Zers.). Bei 20° lösen 100 Tle. Äther 0,13 Tle., 100 Tle. Aceton 1,85 Tle.; fast unlöslich in Ligroin, Benzol und Chloroform. Gibt beim Erhitzen mit rauchender Salzsäure erst auf 130—140°, dann auf 180° Glutaconsāure. Liefert beim Erhitzen mit Phosphorpentachlorid und etwas Phosphoroxychlorid auf 240—250° und nachfolgenden Behandeln mit Wasser 2.6-Dichlorpyridin-dicarbonsāure-(3.5). Fällungsreaktionen: G., D., A. 262, 118. Ag₈C₈H₇O₈N. Sehr unbeständig.
- 2.6 Dioxy pyridin dicarbonsäure (3.5) monoäthylester, 2.6 Dioxy dinicotinsäure monoäthylester C₀H₀O₆N, s. nebenstehende Formel. B. Beim Kochen von 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diäthylester mit 2 Mol Natronlauge (ERRERA, G. 27 II, 403; 28 I, 272; B. 31, 1244; vgl. Guthzeit, B. 32, 780). Krystallinisch. Geht beim Kochen mit Wasser in 2.6-Dioxy-pyridin-carbonsäure-(3)-äthylester über (E.; G.). NaC₀H₀O₆N + 2 H₂O. Nadeln (aus Alkohol). Schwer löslich in kaltem Alkohol und Wasser (E.).
- 6-Oxy-2-äthoxy-pyridin-dicarbonsäure-(3.5)-äthylester-(3), HOzC.
 6-Oxy-2-äthoxy-dinicotinsäure-äthylester-(3) C₁₁H₁₂O₆N, s. nebenstehende Formel. B. Durch Einw. von verd. Ammoniak auf 6-Äthoxy-pyron-(2)-dicarbonsäure-(3.5)-diäthylester (Guthzeit, Debsell, A. 262, 106; vgl. G., D., B. 22, 1427).—Nadeln (aus Äther + Aceton). F: 159—160° (Zers.) (G., D.). Bei 20° lösen 100 Tle. Äther 2,3 Tle., 100 Tle. Eisessig 4,4 Tle., 100 Tle. Aceton 10,5 Tle. (G., D.). Unlöslich in kalter konzentrierter Salzsäure (Ruhemann, Soc. 73, 352). Gibt beim Erhitzen auf 160° bis 180° 2-Oxy-6-äthoxy-pyridin-dicarbonsäure-(3.5)-diäthylester und andere Produkte (G., D.). Beim Kochen mit konz. Salzsäure entsteht 2.6-Dioxy-pyridin (R.). Die wäßr. Lösung des Ammoniumsalzes gibt mit wenig Eisenchlorid eine rote Färbung (G., D., B. 22, 1428). Fällungsreaktionen: G., D., B. 22, 1428. AgC₁₁H₁₃O₆N (G., D., A. 262, 107).
- 2-Åthoxy-6-acetoxy-pyridin-dicarbonsäure-(3.5)-äthylester-(3)
 ester-(3), 2-Åthoxy-6-acetoxy-dinicotinsäure-äthylester-(3) $C_{12}H_{15}O_7N$, s. nebenstehende Formel. B. Aus 6-Oxy-2-äthoxy-pyridin-dicarbonsäure-(3.5)-äthylester-(3) und Essigsäureanhydrid bei 130° (GUTHZEIT, Dressel, A.262, 108). Krystalle (aus Benzol). F: 99—100°. Schwer löslich in Ligroin, leicht löslich in Benzol. Wird durch Erwärmen mit Wasser, Alkohol oder Eisessig rasch verseift.
- 2.6 Dioxy pyridin dicarbonsäure (3.5) diāthylester, C₂H₅·O₂C· C₂H₅·O₂C· C₂H₅
 2.6 Dioxy dinicotinsäure diāthylester C₁₁H₁₂O₆N, s. nebenstehende Formel. B. Das Ammoniumsalz entsteht beim Erhitzen
 von α.γ-Dicarboxy-glutaconsāure-tetraāthylester mit Formamid auf 100° (Ruhemann, Sedgwick, B. 28, 825). Das Natriumsalz entsteht bei der Einw. von wäßrig-alkoholischer Natronlauge auf γ-Carboxy-α-cyan-glutaconsāure-triāthylester (Errera, B. 81, 1244). Aus α.γ-Dicyan-glutaconsāure-diāthylester beim Kochen mit verd. Salzsāure (R., Browning, Soc. 73, 284) oder (als Ammoniumsalz) beim Kochen mit Alkohol (Err., B. 81, 1242; Guthzeht, B. 82, 779; Dimboth, B. 35, 2882). Aus α.γ-Dicarbāthoxy-glutaconsiomid (Bd. XVIII, S. 506) beim Erhitzen auf den Schmelzpunkt, beim Kochen mit Alkohol oder beim Erhitzen mit Zinkstaub und Eisessig (G., B. 26, 2801; G., Eyssen, J. pr. [2] 80, 40; vgl. Err., B. 34, 3703). Nadeln (aus Alkohol oder aus verd. Salzsāure). F: 199° (G., B. 26, 2801; Err., B. 81, 1242), 202° (R., B., Soc. 78, 284). Sehr schwer löslich in Wasser (R., S.); 1 Tl. löst sich bei 22° in 26 Tln. Eisessig, 42 Tln. Äther, 50 Tln. absol. Alkohol, 73 Tln. Aceton oder 185 Tln. Benzol (G.). Löslich in kalter konzentrierter Salzsāure (R., B.). Liefert beim Kochen mit konz. Salzsāure 2.6-Dioxy-pyridin (R., Soc. 78, 351). Beim Kochen mit 2 Mol Natronlauge entsteht der Monoāthylester (a. o.) (E., B. 81, 1244; G. 27 II, 404; 28 I, 272). Gibt beim Chlorieren in salzsaurer Lösung 4.5-Dichlor-2.6-dioxy-pyridin-carbonsāure-(3)-āthylester (R., B., Soc. 78, 286). Liefert mit Phosphorpentachlorid bei 240—250° 2.6-Dichlor-pyridin-dicarbonsāure-(3.5)-diāthylester (G., B. 26, 2798). Gibt mit Brom in konz.

Salzsäure ein unbeständiges, gelbes Additionsprodukt (R., S.). — Gibt mit Eisenchlorid

in verd. Alkohol eine rotviolette Färbung (G., B. 26, 2801). NH₄C₁₁H₁₂O₄N. Nadeln oder Blättchen. Verkohlt beim Erhitzen, ohne zu schmelzen (Еввева, B. 31, 1242; Guthzeit, B. 32, 780; Dimroth, B. 35, 2882). Löst sich in Wasser von 20° zu ca. 0,1°/0 (G.); fast unlöslich in Alkohol (Ruhemann, Sedgwick, B. 28, 825). Läßt sich aus 50°/0 iger Essigsäure fast unverändert umkrystallisieren (G.). — NaCuH₁₂O₀N +2H₂O. Krystalle (aus Wasser). Wird bei 130° wasserfrei (Err., B. 31, 1243); das bei 110° bis 120° getrocknete Salz enthält 1 /₂ H₂O (G., B. 26, 2800). Bei 20° enthälten 100 g wäßr. Lösung 0,09 g (G.). — Cu(C₁₁H₁₂O₆N)₂. Hellgelb (G., B. 32, 782). — AgC₁₁H₁₂O₆N (G., B. 26, 2803; 32, 781). — Phenylhydrazinsalz C₆H₈N₂ + C₁₁H₁₃O₆N. Nadeln (aus Alkohol). Zersetzt sich bei 198° (R., Browning, Soc. 73, 285). Schwer löslich in heißem Alkohol.

- 2-Oxy-6-äthoxy-pyridin-dicarbonsäure-(3.5)-diäthyl-C₂H₅·O₂C·C₂H₅ ester, 2-Oxy-6-äthoxy-dinicotinsäure-diäthylester C₁₃H₁₇O₆N, s. nebenstehende Formel. B. Aus dem Silbersalz des 6-Oxy-2-äthoxy-pyridin-dicarbonsäure-(3.5)-äthylesters-(3) (S. 276) und Äthyljodid in siedendem Alkohol (Guthzeit, Dressel, A. 262, 109). Beim Erhitzen von 6-Oxy-2-äthoxy-pyridin-dicarbonsäure-(3.5)-äthylester-(3) über den Schmelzpunkt (G., D., A. 262, 111). Aus dem Silbersalz des 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diäthylesters und Äthyljodid in siedendem Äther (G., B. 26, 2804). Nadeln (aus Alkohol). F: 80—81° (G., D.). Kp₁₅: 200—210° (G., D.). Ziemlich leicht löslich in Alkohol: löslich in Alkalien (G., D.) Ziemlich leicht löslich in Alkohol; löslich in Alkalien (G., D.).
- 2.6-Diacetoxy-pyridin-dicarbonsäure-(3.5)-diäthylester, C₂H₅·O₂C·C₂H₅
 2.6-Diacetoxy-dinicotinsäure-diäthylester C₁₈H₁₇O₈N, s. nebenstehende Formel. B. Aus 2.6-Dioxy-pyridin-dicarbonsaure-(3.5)-diathylester und Acetanhydrid bei 120-130° (GUTHZEIT, B. 26, 2798). - Krystalle (aus Benzol). F: 69-70°.
- 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-monoamid, 2.6-Dioxy-dinicotinsäure-monoamid $C_7H_9O_5N_9$, s. nebenstehende Formel. B. HO. NOH Beim Kochen von 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-amid-nitril (s. u.) mit überschüssiger Kalilauge (Errera, B. 33, 2976). — Nadeln (aus Wasser). F: 213º (Zers.). Schwer löslich in Alkohol und Wasser.
- 2.6 Dioxy pyridin dicarbonsäure (3.5) äthylester-amid, $C_2H_5 \cdot O_2C \cdot O_2$ S. 506) (GUTHZEIT, EYSSEN, J. pr. [2] 80, 45). — Nadeln (aus Aceton). Zersetzt sich bei 259°. Löslich in Alkohol und Aceton, leicht löslich in Eisessig unter Zersetzung, unlöslich in anderen Lösungsmitteln. Löslich in Alkalilaugen. — Gibt mit Eisenchlorid in siedender alkoholischer Lösung eine rote Färbung.
- 2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-diamid, 2.6-Dioxy-dinicotinsäure-diamid $C_7H_7O_4N_8$, s. nebenstehende Formel. B. Neben anderen Verbindungen bei der Einw. von konzentriertem wäßrigem Ammoniak auf $\alpha.\gamma$ -Dicarboxy-glutaconsäure-tetraäthylester (Ruhemann, Morrell, Soc. 59, 746). Nadeln (aus Wasser). Zersetzt sich oberhalb 300°, ohne zu schmelzen. Löslich in Alkalien und Ammoniak.
- 2.6 Dioxy pyridin dicarbonsäure (8.5)-dianilid, C₆H₅ · NH · C₀ · NH · C₆H₅ · Dioxy-dinicotinsäure dianilid C₁₉H₁₅O₄N₃, s. neben-dianilid C₁₉H₁₅O₄N₃, s. neben-dianilid C₁₉H₁₅O₄N₃, s. neben-dianilid C₁₉H₁₆O₄N₃, s. neben-dianilid C₁₉H₁₆O₄N₃ **2.6-Dioxy-dinicotinsäure-dianilid** $C_{19}H_{15}O_4N_3$, s. nebenstehende Formel. B. Aus 2.6-Dioxy-pyridin-dicarbon-saure-(3.5)-diathylester und siedendem Anilin (Guthzeit, Eyssen, J. pr. [2] 80, 49). — Gelbes Krystallpulver (aus Eisessig). Zersetzt sich gegen 298°. — NaC₁₉H₁₄O₄N₃. Farblos.
- **2.6-Dioxy-pyridin-dicarbonsäure-(3.5)-amid-nitril, 2.6-Dioxy-**H₂N·CO·
 H₂N·CO·
 H₃N·CO·
 NOHOH
 OH 5-cyan-nicotinsäure-amid $C_7H_5O_5N_3$, s. nebenstehende Formel. B. Das Ammoniumsalz entsteht aus dem Ammoniumsalz des 2.6-Dioxy-3.5-dicyan-pyridins beim Auflösen in warmer konzentrierter Schwefelsäure und Fällen mit Wasser (Errera, G. 27 II, 414; B. 33, 2975). — NH₄C₇H₄O₃N₃+¹/₂H₅O. Krystalle (aus Wasser). Sehr schwer löslich in Wasser, noch schwerer in Ammoniumchlorid-Lösung. Leicht löslich
- 2.6 Dioxy pyridin dicarbonsäure-(8.5)-dinitril, 2.6 Dioxy-8.5 dicyan-pyridin $C_7H_3O_3N_3=NC_5H(OH)_3(CN)_3$. B. Das Ammoniumsalz entsteht bei Einw. von Chloroform auf Cyanacetamid in Natriumäthylat-Lösung und Behandlung der entstandenen Natriumverbindung mit verd. Salzsäure (Errera, G. 27 II, 412; B. 83, 2973). — NH₄C₇H₂O₂N₃ + H₂O. Gelbe Blattchen oder Nadeln (aus Wasser). Schmilzt unter Zersetzung oberhalb 280°. Schwer

löslich in Wasser, sehr schwer in Alkohol. Läßt sich aus Salzsäure (D: 1,1) unverändert umkrystallisieren. Gibt beim Auflösen in warmer konzentrierter Schwefelsäure und Fällen mit Wasser das Ammoniumsalz des 2.5-Dioxy-pyridin-dicarbonsäure-(3.5)-amid-nitrils.

2. Oxy-carbonsäuren $C_8H_7O_6N$.

- 1. 2.6 Dioxy 5 methyl pyridin dicarbonsäure (3.4), 2.6 Dioxy 5 methyl cinchomeronsäure, a.a'-Dioxy- β -picolin- γ . β '-dicarbonsäure $C_8H_7O_6N$, s. nebenstehende Formel, bezw. desmotrope Formen.
- Diäthylester $C_{12}H_{15}O_6N=NC_5(CH_3)(OH)_3(CO_2\cdot C_2H_5)_9$. B. Aus $\alpha(\text{oder }\gamma)$ -Methyloder α -cyan-aconitsäure-triäthylester (Bd. II, S. 879) durch Einw. von konz. Schwefelsäure (Rogerson, Thorre, Soc. 89, 645). Mikroskopische Nadeln (aus Alkohol). F: 173°. Unlöslich in Wasser und konz. Salzsäure, leicht löslich in Alkalilaugen und Alkalicarbonat-Lösungen. Liefert beim Kochen mit verd. Kalilauge 2.6-Dioxy-3-methyl-pyridin-carbonsäure-(4). Gibt mit Eisenchlorid in Alkohol eine rötlichviolette Färbung.
- 2. 2.6 Dioxy 4 methyl pyridin dicarbonsäure (3.5), 2.6 Dioxy 4 methyl dinicotinsäure, $\alpha.\alpha'$ Dioxy γ picolin $\beta.\beta'$ dicarbonsäure $C_8H_7O_6N_7$, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6 Dioxy 4 methyl pyridin dicarbonsäure (3.5) dinitril, $\alpha.\alpha'$ Dioxy- $\beta.\beta'$ dicyan γ picolin (β Methyl $\alpha.\gamma$ dicyan glutaconsäure imid) $C_8H_5O_2N_3 = NC_5(CH_2)(OH)_2(CN)_2$. B. Aus Cyanessigester, Acetaldehyd und Ammoniak (Quenda, C. 1897 I, 903). Neben anderen Verbindungen bei der Einw. von Cyanessigester und Ammoniak auf α -Åthyliden-acetessigsäure-äthylester (Qu.). Bei der Zersetzung neutraler oder schwach alkalischer Lösungen von β -Methyl- β -āthyl- $\alpha.\alpha'$ -dicyan-glutarsäure-imid (S. 355) (Grande, C. 1897 I, 903; Guareschi, Gr., C. 1898 II, 544; Gu., C. 1901 I, 578); entsteht auf analoge Weise auch aus anderen β -Methyl- β -alkyl- $\alpha.\alpha'$ -dicyan-glutarsäure-imiden (Gu., C. 1897 I, 927; 1901 I, 578, 579, 580; Gu., Gr., C. 1899 II, 439; Minozzi, G. 30 I, 268, 275; vgl. a. Pasquali, C. 1897 I, 903). Blättchen mit $2^1/2_1$ 0 (aus Wasser). Schmilzt wasserhaltig bei 244°, wasserfrei bei 250—252° (Qu.). Sehr leicht löslich in Wasser und Alkohol (Qu.). Über Inversion von Rohrzucker in Gegenwart von β -Methyl- $\alpha.\gamma$ -dicyan-glutaconsäure-imid vgl. Torrese, C. 1907 I, 875. Liefert beim Erwärmen mit $60^6/_0$ iger Schwefelsäure 2.6-Dioxy-4-methyl-pyridin (Gu., C. 1901 I, 822; vgl. Gibson, Simonsen, Soc. 1929, 1075). Gibt mit Eisenchlorid eine violettblaue Färbung (Qu., C. 1897 I, 903). NH₄C₈H₄O₂N₃. Nadeln. Gibt von 120° an Ammoniak ab, sohmilzt nicht bis 320° (M., G. 30 I, 275). Nach Quenda (C. 1897 I, 903) enthält das Ammoniumsalz 2 Mol Krystallwasser. Cu(C₈H₄O₂N₃)₂ + 9 H₃O (Gr., C. 1897 I, 903). Mg(C₈H₄O₂N₃)₂ + 4 H₂O (Gr.). Ba(C₈H₄O₂N₃)₂ + 4 H₂O (Qu.).

3. Oxy-carbonsāuren $C_0H_0O_6N$.

- 1. 2-[α.β-Dioxy-β-carboxy-āthyl]-pyridin-carbonsäure-(3), 2-[α.β-Dioxy-β-carboxy-āthyl]-nicotinsäure, α.β-Dioxy-β-[3-carboxy-pyridyl-(2)]-propionsäure, β-[3-Carboxy-pyridyl-(2)]-glycerin-säure C₉H₉O₆N, s. nebenstehende Formel. B. Durch Oxydation von 6-Oxy-chinolin mit Chlorkalk-Lösung in der Kälte (Rosen-Heim, Tafel, B. 26, 1505). Krystallinisch. Schwer löslich in kaltem Wasser, sehr schwer in Alkohol, unlöslich in Äther oder Benzol. Bei längerem Kochen mit Wasser, beim Kochen mit 10% giger Schwefelsäure oder beim Erwärmen des Calciumsalzes mit Salzsäure erhält man das zugehörige Lacton (Syst. No. 4331). Gibt mit verdünnter wäßriger Eisenchlorid-Lösung eine citronengelbe Färbung. Ag₂C₉H₇O₆N. Krystallinisch. Löslich in warmem Wasser unter teilweiser Zersetzung.
- 2. 2.6-Dioxy-4-methyl-pyridin carbonsdure (3) essig I. Ho₂C·CH₂·CO₂H \rightarrow II. Ho₂C·CH₂·CO₂H \rightarrow OH \rightarrow
- 2.6-Dioxy-4-methyl-pyridin-[carbonsäure-(3)-nitril]-essigsäure-(5), [2.6-Dioxy-4-methyl-5-cyan-pyridyl-(3)]-essigsäure $C_0H_8O_4N_2$, Formel II, bezw. desmotrope Formen. B. Aus Acetbernsteinsäureester, Cyanessigester und wäßr. Ammoniak bei gewöhnlicher Temperatur (Guareschi, C. 1905 II, 684). Nadeln (aus Wasser). F: 202°. Löslich in Wasser. Gibt mit Kaliumnitrit-Lösung eine blaue, mit Bromwasser eine fuchsinrote

Färbung, mit Eisenchlorid einen dunkelvioletten Niederschlag. — $NH_4C_9H_7O_4N_9$. Krystallinisch. Schmilzt unter Zersetzung oberhalb 280°. Schwer löslich in kaltem Wasser. — $(NH_4)_2C_9H_6O_4N_9$. Löslich in kaltem Wasser. — $AgC_9H_7O_4N_9+H_9O$. Blättchen. Sehr schwer löslich in kaltem Wasser mit saurer Reaktion. — $Ag_2C_9H_6O_4N_9$. — $BaC_9H_6O_4N_9+2H_9O$. Blättchen. Schwer löslich in siedendem Wasser.

- 3. 2.6 Dioxy 4 āthyl pyridin dicarbonsāure (3.5), 2.6 Dioxy 4 āthyl dinicotinsāure $C_0H_0O_6N$, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6 Dioxy 4 äthyl pyridin dicarbonsäure (3.5) dinitril,
 2.6 Dioxy 4 äthyl 3.5 dicyan pyridin (β -Äthyl- α . γ -dicyan-glutaconsäure-imid) $C_9H_7O_2N_3 = NC_5(OH)_2(CN)_2 \cdot C_2H_5$. B. Das Ammoniumsalz entsteht beim Aufbewahren einer mit Ammoniak neutralisierten Lösung von β . β -Diāthyl- α . α' -dicyan-glutarsäure-imid (S. 357) (Peano, C. 1901 I, 582). Inversion von Rohrzucker in Gegenwart von 2.6-Dioxy-4-äthyl-3.5-dicyan-pyridin: Torrese, C. 1907 I, 875. $NH_4C_9H_6O_2N_3$. Kugelige Aggregate (aus Wasser). Sehr leicht löslich in warmem Wasser (P.).
- 4. 2.6 Dioxy 4 propyl pyridin dicarbons aure (3.5), 2.6 Dioxy 4 propyl dinicotins aure $C_{10}H_{11}O_6N$, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6-Dioxy-4-propyl-pyridin-dicarbonsäure-(3.5)-dinitril, 2.6-Dioxy-4-propyl-3.5 dicyan pyridin (\$\beta\$-Propyl \$\alpha.\gamma\$ dicyan glutaconsäure imid) \$C_{10}H_9O_2N_3 = NC_5(OH)_2(CN)_2 \cdot CL_2+C_2H_5\$. B. Das Ammoniumsalz entsteht aus Butyraldehyd, Cyanessigsäuremethylester und Ammoniak (Guareschi, \$C\$. 1902 II, 700). Beim Aufbewahren von mit Ammoniak oder Magnesiumhydroxyd neutralisierten wäßrigen Lösungen von \$\beta\$-Äthyl-\$\beta\$-propyl-\$\alpha.\alpha'-dicyan-glutarsäure-imid (\$S\$. 358) und von \$\beta\$.\$\beta\$-Dipropyl-\$\alpha.\alpha'-dicyan-glutarsäure-imid (\$S\$. 358) (Gu., \$C\$. 1901 I, 580). Beim Erwärmen des Ammoniumsalzes mit 60% oliger Schwefelsäure erhält man 2.6-Dioxy-4-propyl-pyridin (Gu., \$C\$. 1902 II, 700; 1907 I, 459; vgl. Gibson, Simonsen, \$Soc. 1929, 1075). Fällungsreaktionen: Gu., \$C\$. 1902 II, 700. NH4C_{10}H_8O_2N_3\$. Nadeln (aus Wasser). Löslich in kaltem Wasser, sehr leicht löslich in Pyridin (Gu., \$C\$. 1902 II, 700). Schmeckt sehr bitter. \$AgC_{10}H_8O_2N_3 + 1^1/2\$(?) H_2O\$. Prismen. Schwer löslich in kaltem Wasser (Gu., \$C\$. 1901 I, 580).
- 5. 2.6 Dioxy-4-isobutyl-pyridin-dicarbonsäure -(3.5), 2.6 Dioxy-4-isobutyl-dinicotinsäure $C_{11}H_{12}O_6N$, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6 Dioxy 4 isobutyl pyridin dicarbonsäure (3.5) dinitril, 2.6 Dioxy 4 isobutyl 3.5 dicyan pyridin $(\beta$ Isobutyl $\alpha.\gamma$ dicyan glutaconsäure imid) $C_{11}H_{11}O_2N_3 = NC_5(OH)_2(CN)_2 \cdot CH_2 \cdot CH(CH_3)_2$. B. Das Ammoniumsalz entsteht bei der Einw. von Isovaleraldehyd und Ammoniak auf Cyanessigester oder Cyanacetamid (Guareschi, C. 1903 II, 192). Inversion von Rohrzucker in Gegenwart von 2.6-Dioxy-4-isobutyl-3.5-dicyan-pyridin: Torresc, C. 1907 I, 875. $NH_*C_{11}H_{10}O_2N_3$. Nadeln (aus Wasser oder Alkohol). Schwer löslich in Wasser, fast unlöslich in Äther (G.). $CuC_{11}H_9O_2N_3$. Grüne Krystalle. Sehr schwer löslich in Wasser (G.). $AgC_{11}H_{10}O_2N_3 + H_2O$. Prismen (aus Wasser) (G.). $Co(C_{11}H_{10}O_2N_3)_2 + 7H_2O$. Nadeln. Gibt bei 135° 6 H_2O ab und nimmt dann an der Luft wieder $4H_2O$ auf. Weitere Salze: G.
- 6. 2.6-Dioxy-4-n-hexyl-pyridin-dicarbonsäure-(3.5), 2.6-Dioxy-4-n-hexyl-dinicotinsäure $C_{12}H_{17}O_eN$, s. nebenstehende Formel, bezw. desmotrope Formen.
- 2.6-Dioxy-4-n-hexyl-pyridin-dicarbonsäure-(3.5)-dinitril, 2.6-Dioxy-4-n-hexyl-3.5-dicyan-pyridin (β -n-Hexyl- α . γ -dicyan-glutaconsäure-imid) $C_{13}H_{15}O_2N_3=NC_5(OH)_5(CN)_2\cdot CH_2\cdot [CH_2]_4\cdot CH_3$. B. Das Ammoniumsalz entsteht bei der Umsetzung von Önanthol mit Cyanessigester und Ammoniak (Guareschi, C. 1903 II, 192). Gibt beim Erwärmen mit $60^0/_0$ iger Schwefelsäure 2.6-Dioxy-4-n-hexyl-pyridin (Gu., C. 1907 I, 459; vgl. Gibson, Simonsen, Soc. 1929, 1075). $NH_4C_{13}H_{14}O_2N_3$. Nadeln (aus Wasser). Löslich in Alkohol, sehr leicht löslich in Pyridin (Gu., C. 1903 II, 192). Salz des Nicotins s. bei diesem, Syst. No. 3470.

c) Oxy-carbonsäuren $C_n H_{2n-17} O_6 N$.

C₆H₅ 1. 2.6 - Dioxy - 4 - phenyl - pyridin - dicarbonsäure - (3.5), 2.6 - Dioxy - 4 - phenyl-dinicotinsaure C13H,O6N, s. neben. HO2C CO₂H stehende Formel, bezw. desmotrope Formen.

2.6-Dioxy-4-phenyl-pyridin-dicarbonsäure-(3.5)-dinitril, 2.6-Dioxy-4-phenyl-8.5 - dicyan - pyridin $(\beta$ - Phenyl - $\alpha.\gamma$ - dicyan - glutaconsäure - imid) $C_{13}H_7O_2N_3 = NC_5(OH)_2(CN)_2 \cdot C_6H_5$. B. Das Ammoniumsalz entsteht bei der Umsetzung von Benzaldehyd mit Cyanessigester und Ammoniak (Guareschi, C. 1899 II, 118). — Nadeln (aus Wasser). F: 234—235° (Gu.). Die wäßr. Lösung reagiert stark sauer (Gu.). Inversion von Rohrzucker in Gegenwart von 2.6-Dioxy-4-phenyl-3.5-dioyan-pyridin: Torrese, C. 1907 I, 875.— Gibt beim Erwärmen mit 60% iger Schwefelsäure 2.6-Dioxy-4-phenyl-pyridin (Gu., C. 1901 I, 821; 1907 I, 459; vgl. Gibson, Simonsen, Soc. 1929, 1075). — Salze: Gu., C. 1899 II, 118. 821; 1907 I, 459; vgl. GIBSON, SIMONSEN, Soc. 1929, 1075). — Salze: GU., C. 1899 II, 118. — NH₄C₁₃H₆O₂N₃ + 2 H₂O. Nadeln (aus Wasser). Unlöslich in Salzsäure. — Cu(C₁₃H₆O₂N₃)₂ + 6 H₃O. Gelbe Nadeln. Wird bei 100—105° unter Braunfärbung wasserfrei; nimmt an der Luft wieder 6 H₂O auf und wird wieder gelb. — Cu(C₁₃H₆O₂N₃)₂ + 4 NH₃ + H₂O. Blaue Nadeln. Geht bei 100—125° in ein grünes Salz Cu(C₁₃H₆O₂N₃)₂ + 2 NH₃ über. Verbrennt unter starkem Anschwellen. — AgC₁₃H₆O₂N₃. Sehr schwer löslich in Wasser. — Ba(C₁₃H₆O₂N₃)₂ + 4 oder 4¹/₂H₂O. Nadeln und Prismen. — Fe(C₁₃H₆O₂N₃)₂ + 11 oder 12 H₂O. Nadeln. Sehr schwer löslich in kaltem Wasser. — Fe(C₁₃H₆O₂N₃)₃ + 9(?) H₂O. Rotbraune Nadeln. Geht beim Kochen mit Wasser in ein Salz Fe(OH)(C₁₃H₆O₂N₃)₃ (ziegelrote Nadeln) über.

2.6-Dioxy-4-[8-nitro-phenyl]-pyridin-dicarbonsäure-(8.5)-dinitril, 2.6-Dioxy-4-[3-nitro-phenyl]-3.5-dicyan-pyridin (β -[3-Nitro-phenyl]- α . γ -dicyan-glutacon-săure-imid) $C_{13}H_4O_4N_4 = NC_5(OH)_2(CN)_3 \cdot C_6H_4 \cdot NO_2$. B. Das Ammoniumsalz entsteht aus 3-Nitro-benzaldehyd, Cyanessigester und Ammoniak (Issociio, C. 1904 I, 877). — Färbt sich von 200° an braun, zersetzt sich bei 260° (I.). Sehr leicht löslich in Wasser, Alkohol, Essigester und Eissesig, sehwert von Ammoniak (Issociio, C. 1904 I, 877). — Wille Parker von 200° an braun, zersetzt sich bei 260° (I.). Nervon von Rohrzucker in Gegen von 200° and Rohrzucker in 200° and Ro 2.6-Dioxy-4-[3-nitro-phenyl]-3.5-dicyan-pyridin: Torrese, C. 1907 I, 875. — $NH_4C_{18}H_5O_4N_4$. Gelbliche Prismen. Schmilzt unter Ammoniak-Entwicklung oberhalb 300° (I.). Schwer löslich in kaltem, leicht in heißem Wasser, löslich in Alkohol, unlöslich in Äther und Aceton. -CuC₁₂H₅O₄N₄ + 2NH₂ + 3H₃O. Blaulich, unbeständig. Geht bei 90—100° in ein grünes Salz CuC₁₂H₅O₄N₄ + 1¹/₂NH₃ + 1¹/₂H₃O über, aus dem es in Ammoniak-Atmosphäre wieder zurückgebildet wird (I.). — AgC₁₃H₅O₄N₄ + 4H₂O. Hellgelb. Sehr schwer löslich in Wasser (I.). Gibt beim Erhitzen ein aus roten Nadeln bestehendes Sublimat. — Ba(C₁₃H₅O₄N₄)₂ + 7H.O. Gelbliche Nadeln. Ziemlich schwer löslich in Wasser (I.).

3.6-Dioxy-4-[4-nitro-phenyl]-pyridin-dicarbonsäure-(3.5)-dinitril,2.6-Dioxy-4-[4-nitro-phenyl]-3.5-dicyan-pyridin $(\beta$ -[4-Nitro-phenyl]- α . γ -dicyan-glutacon-säure-imid) $C_{13}H_4O_4N_4=NC_5(OH)_2(CN)_2\cdot C_6H_4\cdot NO_4$. B. Das Ammoniumsalz entsteht aus 4-Nitro-benzaldehyd, Cyanessigester und Ammoniak (Issoguro, C. 1904 I, 878). — Krystalle. Färbt sich von 250° an braun, zersetzt sich bei 270—275° (I.). Löslich in Alkohol und warmem Wasser, unlöslich in Äther (I.). Inversion von Rohrzucker in Gegenwart von 2.6-Dioxy-4-[4-nitro-phenyl]-3.5-dicyan-pyridin: Torrese, C. 1907 I, 875. — $NH_4C_{13}H_5O_4N_4 + 1^{1}/_2H_2O$. Gelbe Krystalle (aus Wasser). Zersetzt sich bei ca. 250° (I.). Löslich in Alkohol und Aceton, sohwer löslich in kaltem Wasser, unlöslich in Äther. — $Ba(C_{13}H_5O_4N_4)_2 + 6H_2O$. Krystalle (I.).

2. 2.6 - Dioxy - 4 - m - tolyl - pyridin - dicarbonsaure - (3.5), 2.6 - Dioxy - 4 - m - tolyl - dinicotinsaure $C_{14}H_{11}O_6N$, s. neben-

2.6-Dioxy-4-m-tolyl-pyridin-dicarbonsäure-(8.5)-dinitril, 2.6-Dioxy-4-m-tolyl-8.5 - dicyan - pyridin $(\beta$ - m - Tolyl - α . γ - dicyan - glutaconsäure - imid) $C_{14}H_{9}O_{3}N_{3} = NC_{5}(OH)_{2}(CN)_{3} \cdot C_{6}H_{4} \cdot CH_{3}$. B. Das Ammoniumsalz entsteht aus m-Toluylaldehyd, Cyanessigester und Ammoniak (Guareschi, C. 1903 II, 699). — Das Ammoniumsalz liefert beim Erwärmen mit 60% iger Schwefelsäure 2.6-Dioxy-4-m-tolyl-pyridin (Gu., C. 1902 II, 699; 1907 I, 459; vgl. Gibson, Simonsen, Soc. 1929, 1075). — NH₄C₁₄H₈O₂N₃. Nadeln (aus Wasser). Schmilzt oberhalb 290° (Gu.). Unlöslich in Äther, löslich in Pyridin. — Cu(C₁₄H₈O₂N₃)₂ +6H₂O (Gu.). — AgC₁₄H₂O₂N₂. Mikrokrystallinischer Niederschlag (Gu.).

CH2 · CH2 · C6H5 3. 2.6 - Dioxy - 4 - β - phenāthyl - pyridin - dicarbon saure-(3.5), 2.6-Dioxy-4- β -phenathyl-dinicotinsaure $^{\mathrm{HO_{2}C}}$ C₁₅H₁₂O₂N, s. nebenstehende Formel, bezw. desmotrope Formen.

2.6 - Dioxy - 4 - β - phenäthyl - pyridin - dicarbonsäure - (3.5) - dinitril, 2.6 - Dioxy-4- β -phenäthyl-3.5-dieyan-pyridin (β -[β -Phenäthyl]- α . γ -dieyan-glutaconsäure-imid) $C_{15}H_{11}O_{2}N_{3}=NC_{5}(OH)_{5}(CN)_{3}\cdot CH_{2}\cdot CH_{3}\cdot C_{6}H_{5}$. B. Das Ammoniumsalz entsteht bei der Umsetzung von Zimtaldehyd mit Cyanessigester oder Cyanacetamid und Ammoniak (Piccinini, C. 1903 II, 714). — $NH_{4}C_{15}H_{10}O_{2}N_{3}$. Krystallinisch (aus 90% gigem Alkohol). F: 215—220% (Zers.). Löslich in ca. 2800 Tln. Wasser von 15%, fast unlöslich in Äther und Chloroform.

4. 2.6 - Dioxy - 4 - [4 - isopropyl - phenyl] - pyridin - dicarbonsäure - (3.5), 2.6 - Dioxy - 4 - [4 - isopropyl - phenyl] - dinicotinsäure $C_{16}H_{16}O_6N$, s. nebenstehende Formel, bezw. desmotrope Formen.

2.6-Dioxy-4-[4-isopropyl-phenyl]-pyridin-dicarbonsäure-(3.5)-dinitril, 2.6-Dioxy-4-[4-isopropyl-phenyl]-3.5-dioyan-pyridin $(\beta$ -[4-isopropyl-phenyl]- α . γ -dicyan-glutaconsäure-imid) $C_{16}H_{13}O_2N_3 = NC_5(OH)_2(CN)_2 \cdot C_6H_4 \cdot CH(CH_3)_2$. B. Das Ammoniumsalz entsteht bei der Umsetzung von Cuminaldehyd mit Cyanessigsäuremethylester und Ammoniak (Guareschi, C. 1902 II, 699). — Das Ammoniumsalz liefert beim Erhitzen mit 60%-giger Schwefelsäure 2.6-Dioxy-4-[4-isopropyl-phenyl]-pyridin (Gu., C. 1902 II, 699; 1907 I, 459; vgl. Gibson, Simonsen, Soc. 1929, 1075). — NH₄C₁₆H₁₂O₂N₃. Gelbliche Nadeln (aus Wasser). Schmilzt oberhalb 290% (Gu.). Löslich in Alkohol und Pyridin, unlöslich in Ather. — Cu(C₁₆H₁₂O₂N₃) + 8 H₂O (?). Grünlichgelbe Nadeln (Gu.). — AgC₁₆H₁₂O₂N₃. Gelblicher Niederschlag (Gu.). — Salz des d-Coniins C₈H₁₇N + C₁₆H₁₃O₂N₃. Nadeln oder Prismen. F: 251—252% (Gu.). — Salz des Nicotins s. bei diesem, Syst. No. 3470.

5. Oxy-carbonsäuren mit 7 Sauerstoffatomen.

Oxy-carbonsauren $C_n H_{2n-17} O_7 N$.

1. 2.6 - Dio xy - 4 - [4 - oxy - phenyl] - pyridin - dicarbon - Săure - (3.5), 2.6 - Dio xy - 4 - [4 - oxy - phenyl] - dinicotins ăure $C_{02}H_{0}O_{7}N_{1}$, s. nebenstehende Formel, bezw. desmotrope Formen.

2.6-Dioxy-4-[4-methoxy-phenyl]-pyridin-dicarbonsäure-(3.5)-dinitril, 2.6-Dioxy-4-[4-methoxy-phenyl]-8.5-dicyan-pyridin (β -[4-Methoxy-phenyl]- α . γ -dicyan-glutaconsäure-imid) $C_{14}H_{9}O_{3}N_{3}=NC_{5}(OH)_{3}(CN)_{2}\cdot C_{5}H_{4}\cdot O\cdot CH_{3}$. B. Das Ammoniumsalz entsteht bei der Einw. von Ammoniak auf Anisaldehyd und Cyanessigester (Guaresohi, C. 1899 II, 119). — Krystalle. Enthält 2 Mol Krystallwasser. Löslich in Wasser. — $NH_{4}C_{14}H_{8}O_{3}N_{3}+H_{2}O$. Nadeln. — $Cu(C_{14}H_{8}O_{3}N_{3})_{2}+4NH_{3}+H_{2}O$. Blaue Nadeln. — $AgC_{14}H_{8}O_{3}N_{3}$. Krystallinischer Niederschlag. Schwer löslich in siedendem Wasser.

2. Oxy-carbonsaure $C_{16}H_{18}O_7N$, Formel I bezw. II bezw. III.

Anhydroverbindung C_{1e}H₁₂O_eN, Formel IV. Zur Konstitution vgl. die bei Corydalin (Bd. XXI, S. 217) zitierte Literatur. — B. Beim Kochen von Corydinsäure (S. 282) mit konz.

Jodwasserstoffsäure (Dobbie, Marsden, Soc. 71, 662; Haars, Ar. 243, 186). — Gelbe Blättchen mit 2 H₂O (aus Wasser). F: 281° (D., M.); färbt sich von 200° an dunkel, schmilzt

282

unter Zersetzung bei 278° (H.). Fast unlöslich in kaltem Wasser und in organischen Lösungsmitteln (D., M.). Die alkal. Lösungen sind nach D., M. tiefrot, nach H. rotbraun. Neutralisiert bei der Titration gegen Phenolphthalein 2 Mol Kalilauge (H.). — PbC₁₆H₁₁O₆N. Scharlachrot. Schwer löslich in Wasser (D., M.).

Anhydroverbindung des Dimethyläthers, Corydinsäure (Corydsäure) $C_{18}H_{17}O_6N$, Formel Vauf S. 281. Zur Konstitution vgl. die bei Corydalin (Bd. XXI, S. 217) zitierte Literatur. - B. Bei der Oxydation von Corydalin mit verd. Salpetersäure (Dobbie, Marsden, Soc. 71, 661; HAARS, Ar. 243, 181). — Die aus alkal. Lösung durch Mineralsäure abgeschiedene Säure krystallisiert in gelben Blättchen vom Schmelzpunkt 218°(Zers.) (D., M.; H.), die nach H. 1H₂O, nach D., M. ½H₂O (nach dem Trocknen bei 100°) enthalten; aus Wasser erhält man gelbe Nadeln mit 2 H₂O vom Schmelzpunkt 218° oder durchsichtige Rhomboeder mit 1 H₂O vom Schmelzpunkt 224° (H.). Leicht löslich in heißem Wasser und Alkohol, schwer in Chloroform, fast unlöslich in Äther; die Lösungen sind gelb (D., M.); ziemlich schwer löslich in heißem Wasser (H.). Absorptionsspektrum in wäßr. Lösung: D., Lauder, Soc. 83, 620. Neutralisiert bei der Titration gegen Phenolphthalein 1 Mol Kalilauge (D., M.; H.). — Gibt bei der Oxydation mit 2 Tln. Kaliumpermanganat in kaltem Wasser eine Verbindung C₁₆H₁₇O₆N (s. u.) (D., Lau., Soc. 81, 156), mit 4 Tln. Kaliumpermanganat in siedendem Wasser Metahemipinsäure, Corydilinsäure (S. 283) und 3-Methyl-pyridin-tricarbonsäure-(2.4.5) (?) (S. 186) (D., M.; D., Lau., Soc. 81, 151; H., Ar. 243, 188, 192; vgl. Lawson, Perkin, Robinson, Soc. 125 [1924], 632, 638). Reduktion mit Zink und verd. Schwefelsäure: H., Ar. 243, 187. Liefest beim Erbitzen mit kong. Induserent offensure die Arberdermehindung C. H. O.N. Liefert beim Erhitzen mit konz. Jodwasserstoffsäure die Anhydroverbindung C₁₆H₁₈O₆N (S. 281) (D., M.; H., Ar. 243, 186). Gibt beim Erhitzen mit Methyljodid und methylalkoholischer Kalilauge das Jodid des Corydinsäure-dimethylesters (s. u.) (H., Ar. 243, 184).

Verbindung C₁₆H₁₇O₆N. B. Durch Oxydation von Corydinsäure mit 2 Tln. Kalium-permanganat in kaltem Wasser (Dobbie, Lauder, Soc. 81, 156). — Gelbe Krystalle (aus Wasser). F: 212—215°. Ist eine zweibasische Säure.

Dimethyläther - dimethylester, "Corydin säure - dimethylester" C₂₀H₂₂O₇N, Formel I, bezw. desmotrope Formen (s. S. 281). B. Das Jodid entsteht beim Erhitzen von Corydinsäure mit Methyljodid und

methylalkoholischer Kalilauge (HAARS, Ar. 243, 184). — C₃₀H₃₂O₄N·Cl+4H₃O. Rotgelbe Blättchen.

Sehr leicht löslich in Wasser und Alkohol. — C₃₀H₃₂O₄N·I+4H₃O. Rotgelbe Krystalle.

F: 100°. Leicht löslich in Alkohol und Wasser, unlöslich in Ather. — C₃₀H₃₂O₄N·Cl+AuCl₃.

Gelbe Krystalle (aus angesäuster Alkohol).

F: 145°. — 2C₃₀H₃₂O₄N·Cl+PtCl₄+2H₃O. Gelbe Nadeln. Sehr schwer löslich in Wasser.

6. Oxy-carbonsäuren mit 8 Sauerstoffatomen.

a) Oxy-carbonsäuren $C_n H_{2n-11} O_8 N$.

CO₃H 2.6-Dioxy-pyridin-tricarbonsäure-(3.4.5), ${f Dioxy-eta-car-}$ HO3C. · CO₂H bocinchomeronsäure CaHaOaN, s. nebenstehende Formel, bezw. HO-/ M J-OH desmotrope Formen.

Triëthylester $C_{14}H_{17}O_8N = NC_5(OH)_2(CO_2 \cdot C_2H_5)_3$. B. Beim Kochen von $\alpha.\beta.\gamma$ -Tricarbäthoxy-glutaconisoimid (Bd. XVIII, S. 513) mit absol. Alkohol (Errera, Perciabosco, B. 34, 3706). — Nadeln (aus Benzol + Petroläther). F: 137°. Leicht löslich in Alkohol, schwer in Benzol, unlöslich in Petroläther. — Gibt beim Kochen mit 2 Mol Natronlauge 2.6-Dioxy-pyridin-dicarbonsaure-(3.4)-monoathylester (S. 275).

b) Oxy-carbonsauren $C_n H_{2n-17} O_8 N$.

2.6 - Dioxy - 4 - [3.4 - dioxy - phenyl] - pyridin - dicarbon -C6H3(OH)2 saure-(3.5), 2.6-Dioxy-4-[3.4-dioxy-phenyl]-dinicotin- HO2C-· CO₂H saure C,2H,O,N, s. nebenstehende Formel, bezw. desmotrope Formen.

2.6 - Dioxy - 4 - [3.4 - dioxy - phenyl] - pyridin - dicarbonsäure - (3.5) - dinitril, 2.6 - Dioxy - 4 - [3.4 - dioxy - phenyl] - 3.5 - dioyan - pyridin $(\beta - [3.4 - Dioxy - phenyl] - \alpha.\gamma$ -dioyan-glutaconsäure-imid) $C_{13}H_7O_4N_3 = NC_5(OH)_2(CN)_2 \cdot C_6H_3(OH)_2$. B. Das Ammoniumsalz entsteht bei der Umsetzung von Protocatechualdehyd mit Cyanessigester und Ammoniak (Piccinini, C. 1904 II, 903). — Krystalle. Färbt sich bei 250° braun. — NH₂C₁₃H₅O₄N₃ + H₂O. Existiert in 2 Modifikationen: α -Form. Nadeln. 1 Tl. wasserfreies Salz löst sich bei 24° in 424 Tln. Wasser. β -Form. Bildet das Hauptprodukt der Reaktion zwischen Protocatechualdehyd, Cyanessigester und Ammoniak. Prismen. Gibt das Krystallwasser schwerer ab als die α -Form. 1 Tl. wasserfreies Salz löst sich bei 15,5° in 589 Tln. Wasser. Geht beim Kochen mit Wasser in die α -Form über. — Ba $(C_{13}H_6O_4N_3)_2 + 4H_2O$. Nadeln (aus Wasser).

2.6 - Dioxy - 4 - [4 - oxy - 3 - methoxy - phenyl] - pyridin - dicarbonsäure - (3.5) - dinitril, 2.6 - Dioxy - 4 - [4 - oxy - 3 - methoxy - phenyl] - 3.5 - dicyan - pyridin (β -[4-Oxy-3 - methoxy - phenyl] - α . γ - dicyan - glutaconsäure - imid) $C_{14}H_9O_4N_3 = NC_5(OH)_8(CN)_8$: $C_6H_3(OH) \cdot O \cdot CH_3$. B. Das Ammoniumsalz entsteht bei der Umsetzung von Vanillin mit Cyanessigester oder Cyanacetamid und Ammoniak (Piccinini, C. 1904 II, 902). — $NH_4C_{14}H_8O_4N_3 + 2^{1/2}H_2O$. Krystalle (aus Wasser). Gibt im Vakuum und über Schwefelsäure $1^{1/2}H_2O$ ab. Gibt bei $115-120^{0}$ Ammoniak ab, färbt sich bei 250^{0} braun. Löst sich bei 14^{0} in 860, bei 65^{0} in 185 Tln. Wasser. Gibt in wäßr. Suspension mit Bromwasser eine rote, auf Zusatz von Ammoniak in Grün und dann wieder in Rot übergehende Färbung.

2.6 - Dioxy - 4 - [3.4 - dimethoxy - phenyl] - pyridin - dicarbonsäure - (3.5) - dinitril, 2.6 - Dioxy - 4 - [3.4 - dimethoxy - phenyl] - 3.5 - dicyan - pyridin $(\beta$ - [3.4 - Dimethoxy-phenyl] - α . γ - dicyan - glutaconsäure - imid) $C_{15}H_{11}O_4N_3 = NC_5(OH)_2(CN)_2 \cdot C_6H_3(O \cdot CH_3)_2$. B. Das Ammoniumsalz entsteht bei der Umsetzung von Veratrumaldehyd mit Cyanessigester und Ammoniak (Piccinini, C. 1904 II, 903). — NH₄C₁₅H₁₀O₄N₃ + 2¹/₂H₂O. Prismen (aus 70% igem Alkohol). Färbt sich bei 280—290% braun. Leicht löslich in verd. Alkohol, fast unlöslich in Äther und Aceton.

c) Oxy-carbonsäuren $C_n H_{2n-19} O_8 N$.

3-Methyl-2-[4.5-dioxy-2-carboxy-phenyl]-pyridin-dicarbonsäure-(4.5), 5-Methyl-6-[4.5-dioxy-2-carboxy-phenyl]-cinchomeronsäure $C_{15}H_{11}O_8N$, s. nebenstehende Formel.

3-Methyl-2-[4.5-dimethoxy-2-carboxy-phenyl]-pyridin-dicarbonsäure-(4.5), Corydilinsäure (Corydilsäure) $C_{17}H_{16}O_8N = NC_6H(CH_3)(CO_2H)_2 \cdot C_6H_2(O \cdot CH_3)_2 \cdot CO_2H$. Zur Konstitution vgl. die bei Corydalin (Bd. XXI, S. 217) zitierte Literatur. — B. Neben anderen Verbindungen bei der Oxydation von Corydinsäure (S. 282) mit 4 Tln. Kaliumpermanganat in siedendem Wasser (Dobbie, Marsden, Soc. 71, 663; D., Lauder, Soc. 81, 155; Haars, Ar. 243, 189). — Nadeln mit 2 H_2O (aus Wasser). F: 228° (D., M.; H.). Schwer ißeich in Alkohol, unlöslich in Äther, Benzol und Chloroform (D., M.). — Gibt bei weiterer Oxydation mit Kaliumpermanganat in alkal. Lösung Metahemipinsäure und 3-Methyl-pyridin tricarbonsäure-(2.4.5) (D., Lau.; vgl. Lawson, Perkin, Robinson, Soc. 125 [1924], 632, 638). — $Ag_3C_{17}H_{12}O_8N$ (D., M.). — Hydrochlorid. Sehr unbeständige, grünlichgelbe Krystalle (D., Lau.).

Hydroxymethylat des Corydilinsäure-trimethylesters $C_{21}H_{25}O_9N = (HO)(CH_3)NC_5H(CH_3)(CO_2\cdot CH_3)_2\cdot C_6H_2(O\cdot CH_3)_2\cdot CO_2\cdot CH_3$. B. Das Jodid entsteht beim Erhitzen von Corydilinsäure mit überschüssigem Methyljodid und methylalkoholischer Kalilauge im Rohr auf 80—90° (HAARS, Ar. 243, 191). — Jodid $C_{21}H_{24}O_8N\cdot I$. Citronengelbe Säulen. F: 142° (Zers.). Leicht löslich in Alkohol, löslich in warmem Wasser. — Nitrat $C_{21}H_{24}O_8N\cdot NO_3+2H_2O$. Gelbliche Säulen. F: 102°.

7. Oxy-carbonsäuren mit 9 Sauerstoffatomen.

Tetraëthylester $C_{17}H_{21}O_9N=NC_5(OH)(CO_2\cdot C_2H_2)_4$. B. Bei $^1/_4$ -stdg. Kochen von Pyron-(4)-tetracarbonsäure-(2.3.5.6)-tetraëthylester (Bd. XVIII, S. 514) mit wäßr. Ammoniak (Peratoner, Strazzeri, G. 21 I, 304). — Nadeln (aus Alkohol). F: 229°. Löslich in siedendem Wasser sowie in kalten konzentrierten Mineralsäuren.

8. Oxy-carbonsäuren mit 10 Sauerstoffatomen.

 $\begin{array}{lll} \textbf{1-Anilino-2.6-dioxy-piperidin-tetracarbons \"aure-(2.8.5.6)-tetra \"athylester} \\ \textbf{und} & \textbf{Homologe} & \textbf{C}_2\textbf{H}_5 \cdot \textbf{O}_2\textbf{C} \cdot \textbf{HC} - \textbf{CH}(\textbf{R}) - \textbf{CH} \cdot \textbf{CO}_2 \cdot \textbf{C}_2\textbf{H}_5 \\ \textbf{C}_2\textbf{H}_5 \cdot \textbf{O}_2\textbf{C} \cdot (\textbf{HO}) \dot{\textbf{C}} \cdot \textbf{N}(\textbf{NH} \cdot \textbf{C}_4\textbf{H}_5) \cdot \dot{\textbf{C}}(\textbf{OH}) \cdot \textbf{CO}_2 \cdot \textbf{C}_2\textbf{H}_5 \\ \textbf{C}_2\textbf{H}_5 \cdot \textbf{CH}_2). & \textbf{Verbindungen, denen diese Formeln zugeschrieben werden, s. Bd. XV, S. 388. \\ \end{array}$

1 - Ureido - 2.6 - dioxy - piperidin - tetracarbonsäure - (2.3.5.6) - tetraäthylester $C_2H_5 \cdot O_2C \cdot HC - CH(R) - CH \cdot CO_3 \cdot C_2H_5$ und Homologe $C_2H_5 \cdot O_2C \cdot (HO)C \cdot N(NH \cdot CO \cdot NH_2) \cdot C(OH) \cdot CO_2 \cdot C_2H_5$ (R = H, CH₂, C₂H₅, [CH₂]₅ · CH₃). Verbindungen, denen diese Formeln zugeschrieben werden, s. Bd. III, S. 866, 867, 868.

G. Oxo-carbonsauren.

1. Oxo-carbonsäuren mit 3 Sauerstoffatomen.

a) Oxo-carbonsăuren $C_n H_{2n-3} O_3 N$.

1. Oxo-carbonsauren C₄H₇O₂N.

1. 5-0x0-pyrrolidin-carbonsäure-(2), Pyrrolidon-(5)-carbonsäure-(2), Lactam der α -Amino-glutarsäure, Lactam der Glutaminsäure, Pyroglutaminsäure $C_1H_7O_2N=\frac{H_1C---CH_2}{OC\cdot NH\cdot CH\cdot CO_2H}$

s) Rechtsdrehende Pyrrolidon-(5)-carbonsdure-(2), Lactam der linksdrehenden a-Amino-glutarsdure, Lactam der l-Glutaminsdure $C_1H_1O_2N=H_1C----CH_1$

OC·NH·CH·CO₂H. B. Aus rechtsdrehendem Pyroglutamid durch Kochen mit ½ Mol Bariumhydroxyd in Wasser (Menozzi, Applani, G. 24 I, 382). — F: 162°. [a]; +7° (Wasser; c = 3). Gleicht in den übrigen Eigenschaften der linksdrehenden Form. — Geht beim Erhitzen auf 180° in die inaktive Form über. Das Ammoniumsalz gibt beim Erhitzen auf 180° bis 190° inaktives Pyroglutamid.

Amid, rechtsdrehendes Pyroglutamid C₅H₅O₅N₅ = NC₄H₄(:O)·CO·NH₅. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von l-Glutaminsäure und Behandeln des (nicht näher beschriebenen) l-Glutaminsäure-monoäthylesters mit alkoh. Ammoniak (Menozzi, Appiani, G. 24 I, 380). — Nadeln mit 1 H₂O (aus Alkohol). F: 165° (wasserfrei). [a]₀^m: +41,3° (Wasser; c = 3). — Liefert beim Erhitzen für sich auf 180—190° oder mit alkoh. Ammoniak auf 140—150° inaktives Pyroglutamid. Gibt beim Erhitzen mit 1 Mol Bariumhydroxyd in Wasser l-Glutaminsäure, mit ½ Mol Bariumhydroxyd in Wasser das Lactam der l-Glutaminsäure (s. o.).

b) Linksdrehende Pyrrolidon-(5)-carbonsäure-(2), Lactam der rechtsdrehenden α -Amino-glutarsäure, Lactam der d-Glutaminsäure $C_8H_7O_8N=H_8C$ — CH_8 OC·NH·CH·CO₈H.

B. Aus d-Glutaminsäure beim Erhitzen auf 150—160° (Menozzi, Appiani, G. 22 II, 106; 24 I, 373; vgl. E. Fischer, Dörfinghaus, H. 36, 476). Aus dem Ammoniumsalz der d-Glutaminsäure beim Erhitzen auf 150°, neben linksdrehendem Pyroglutamid (M., A., G. 24 I, 376, 377). Aus linksdrehendem Pyroglutamid durch Kochen mit $^{1}/_{9}$ Mol Bariumhydroxyd in Wasser (M., A., G. 24 I, 376). — Krystalle (aus Wasser). Rhombisch bisphenoidisch (Artini, G. 22 II, 107; 24 I, 374; vgl. Groth, Ch. Kr. 3, 412). F: 162° (M., A., G. 24 I, 374). Löslich in 2,1 Tin. Wasser von 13° (M., A.). [α] $_{0}^{n}$: —7,2° (Wasser; c = 13)

(M., A., G. 24 I, 375). — Geht beim Erhitzen auf 180° in die inaktive Form über (M., A.). Liefert beim Kochen mit Barytwasser d-Glutaminsäure (M., A.). Das Ammoniumsalz gibt beim Erhitzen auf 180—190° inaktives Pyroglutamid (M., A., G. 24 I, 385).

Amid, linksdrehendes Pyroglutamid $C_bH_8O_2N_2 = NC_4H_6(:0)\cdot CO\cdot NH_2$. B. Aus d-Glutaminsäure-monoäthylester bei der Einw. von alkoh. Ammoniak bei Zimmertemperatur (Menozzi, Appiani, R. A. L. [4] 7 I, 36). Aus dem Ammoniumsalz der d-Glutaminsäure beim Erhitzen auf 150°, neben linksdrehender Pyrrolidon-(5)-carbonsäure-(2) (M., A., G. 24 I, 377). — Prismen mit 1 H_2O (aus Wasser). Rhombisch (Artini, R. A. L. [4] 7 I, 38). F: ca. 165° (wasserfrei); leicht löslich in Wasser, schwer in kaltem, leichter in warmem Alkohol; [α]]: -40° (Wasser; c = 9) (M., A., R. A. L. [4] 7 I, 37, 38). — Geht beim Erhitzen für sich auf 200° oder mit alkoh. Ammoniak auf $140-150^\circ$ in inaktives Pyroglutamid über (M., A., G. 24 I, 376; R. A. L. [4] 7 I, 38). Liefert beim Kochen mit 1 /₈ Mol Bariumhydroxyd in wäßr. Lösung linksdrehende Pyrrolidon-(5)-carbonsäure-(2) (M., A., G. 24 I, 377). Beim Kochen mit überschüssiger Alkalilauge oder Erhitzen mit Salzsäure erhält man d-Glutaminsäure (M., A., G. 24 I, 376; R. A. L. [4] 7 I, 37). — $C_5H_8O_2N_2 + HCl$. Nadeln (M., A., G. 24 I, 376).

c) Inaktive Pyrrolidon-(5)-carbonsäure-(2), Lactam der inaktiven a-Amino-glutarsäure, Lactam der dl-Glutaminsäure C₅H₇O₃N = H₂C——CH₂
OC·NH·CH·CO₂H

B. Aus dl-Glutaminsäure beim Erhitzen auf 150° (MENOZZI, APPIANI,

GC·NH·CH·CO₂H

G. 24 I, 384; R. A. L. [5] 3 I, 39). Aus d-Glutaminsäure durch Erhitzen auf 180—190° (HAITINGER, M. 3, 228; ANDERLINI, G. 19, 100) oder durch Erhitzen mit Barytwasser unter Druck auf 160—170°, neben dl-Glutaminsäure (Hauptprodukt) (E. FISCHER, KROPP, STAHLSCHMIDT, A. 365, 183). Durch Erhitzen des Ammoniumsalzes der d-, l- oder dl-Glutaminsäure auf 180—190°, neben dem Amid (M., A., G. 24 I, 387). Aus rechtsdrehender oder linksdrehender Pyrrolidon-(5)-carbonsäure-(2) durch Erhitzen auf 180° (M., A., G. 24 I, 387). Aus inakt. Pyroglutamid durch Erwärmen mit ½ Mol Bariumhydroxyd in Wasser (M., A., G. 24 I, 387). In geringer Menge bei der Spaltung von Eieralbumin mit Barytwasser (Schützenberger, A. ch. [5] 16, 382). — Prismen (aus Wasser). Monoklin sphenoidisch (Negri, G. 19, 101; vgl. Groth, Ch. Kr. 3, 412). F; 182—183° (A.). Löslich in 19 Tln. Wasser von 13,5° (M., A., G. 22 II, 107). — Bei der trocknen Destillation des Calciumsalzes erhält man Pyrrol (HAITINGER, M. 3, 228). Beim Erhitzen mit Salzsäure (M., A., G. 24 I, 383) oder beim Erwärmen mit Barytwasser entsteht dl-Glutaminsäure (M., A., G. 24 I, 387). — AgC₅H₆O₃N. Krystalle (aus Wasser). F: 176—180° (A.). Schwer löslich in kaltem Wasser, löslich in verd. Alkohol.

Amid, inaktives Pyroglutamid $C_5H_8O_2N_2 = NC_4H_6(:O)\cdot CO\cdot NH_2$. B. Durch Erhitzen von d., l. oder dl-glutaminsaurem Ammonium auf 185-190° (HABERMANN, A. 179, 251; MENOZZI, APPIANI, Ğ. 24 I, 385; R. A. L. [4] 7 I, 35). Aus aktivem oder inaktivem Glutaminsäure-monoäthylester durch Erhitzen mit alkoh. Ammoniak im Rohr auf 140-1500 (H., A. 179, 255; M., A., G. 24 I, 385; R. A. L. [4] 7 I, 35). Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung der inakt. Pyrrolidon-(5)-carbonsäure (2) und Behandeln des (nicht näher beschriebenen) Äthylesters mit alkoh. Ammoniak in der Kälte (M., A., G. 24 I, 385). Aus dem Ammoniumsalz der rechtsdrehenden, linksdrehenden oder inaktiven Pyrrolidon-(5)carbonsaure-(2) durch Erhitzen auf 180-190° (M., A., G. 24 I, 385). Aus rechtsdrehendem oder linksdrehendem Pyroglutamid durch Erhitzen für sich auf ca. 200° oder mit alkoh. Ammoniak auf 140-150° (M., A., G. 24 I, 385; R. A. L. [4] 7 I, 38). Durch Vermischen äquimolekularer Mengen von rechtsdrehendem und linksdrehendem Pyroglutamid (M., A., G. 24 I, 382). — Nadeln. Monoklin (prismatisch?) (ARTINI, R. A. L. [4] 7 I, 36; vgl. Groth, Ch. Kr. 3, 411; DITSCHEINER, A. 179, 252). F: 2140 (M., A., G. 24 I, 385). Eine bei 180 gesättigte wäßrige Lösung enthält ca. 9% Amid (H.). Schwer löslich in Alkohol, unlöslich in Äther (H.). — Liefert bei der Einw. von ½ Mol Bariumhydroxyd in Wasser inaktive Pyrrolidon-(5)-carbonsäure-(2), bei der Einw. von 1 Mol Bariumhydroxyd in Wasser inaktive Glutaminsaure (M., A., G. 24 I, 383, 387). Beim Erhitzen mit Salzsaure entsteht inaktive Glutaminsäure (M., A., G. 24 I, 383; R. A. L. [4] 7 I, 39). — AgC₅H₇O₂N₂. Körnige Krystalle (H.). — C₅H₈O₂N₂ + HCl. Nadeln. Zersetzt sich beim Erhitzen (H.). Leicht löslich in Wasser.

2. 5-Oxo-pyrrolidin-carbonsäure-(3), Pyrrolidon-(5)-carbonsäure-(3) $C_5H_7O_3N = {H_1C - CH \cdot CO_2H \over OC \cdot NH \cdot CH_2}$

1-Phenyl-pyrrolidon-(5)-carbonsäure-(3), "Pseudoitaconanilsäure" $C_{11}H_{11}O_3N=H_2C$ —CH·CO₂H . B. Beim Kochen von Itaconsäure mit ca. 1 Mol Anilin in Wasser OC·N(C_0H_5)·CH₂ . B. Beim Kochen von Itaconsäure mit ca. 1 Mol Anilin in Wasser (MICHAEL, PALMER, Am. 9, 199; Anschütz, Reuter, A. 254, 139, 141, 143; vgl. Gottlieb,

A. 77, 284; TINGLE, BATES, Am. Soc. 31, 1239). Durch Erhitzen von Itabrombrenzweinsäurediäthylester mit 2 Mol Anilin in Alkohol im Rohr auf 100° und Kochen des rohen Äthylesters mit überschüssiger konz. Kalilauge unter Zusatz von etwas Alkohol (A., R., A. 254, 144). — Nadeln (aus Wasser), Tafeln (aus verd. Alkohol). F: 189° (teilweise Zers.) (G.; M., P.), 190° (A., R.). Unlöslich in verd. Salzsäure (M., P.). — Liefert beim Erhitzen auf 260° Itaconsäure, Citraconsäure, 1. Phenyl-pyrrolidon-(5)-carbonsäure-(3)-anilid (s. u.) und Citraconanil (Bd. XXI, S. 407) (G., A. 77, 287). Wird durch Erhitzen mit konz. Kalilauge im Rohr auf 100° oder durch Kochen mit Salzsäure nicht verändert (A., R.). — Cu(C₁₁H₁₀O₃N)₂ (bei 160°) Blaugrün (G.). — AgC₁₁H₁₀O₃N) (bei 100°). Nadeln (aus Wasser) (G.). — Ba(C₁₁H₁₀O₃N)₂ (bei 170°). Sehr leicht löslich in Wasser (G.).

Chlorid $C_{11}H_{10}O_2NCl = \frac{H_2C$ —CH·COCl OC·N(C_6H_5)·CH₂. B. Aus Pseudoitsconanilsäure durch Erwärmen mit Phosphorpentschlorid in Chloroform auf 50° (Anschütz, Reuter, A. 254, 147). — Krystallinisch. Wird durch Wasser sehr leicht verseift.

Anilid $C_{17}H_{16}O_2N_2 = \frac{H_2C - CH \cdot CO \cdot NH \cdot C_6H_5}{OC \cdot N(C_6H_5) \cdot CH_2}$. B. Durch Erhitzen von Itaconsäure mit überschüssigem Anilin auf 182° (GOTTLIEB, A. 77, 282). Aus 1-Phenyl-pyrrolidon-(5)-carbonsäure-(3)-chlorid bei der Einw. von Anilin in Chloroform (Anschütz, Reuter, A. 254, 148). — Blättchen (aus verd. Alkohol). F: 185° (G.). Sublimierbar (G.). Leicht löslich in Äther, schwer in Wasser (G.). — Einw. von Salpeterschwefelsäure: G., A. 85, 40.

1-p-Tolyl-pyrrolidon-(5)-carbonsäure-(3) $C_{12}H_{13}O_3N = {H_1C \over OC \cdot N(C_6H_4 \cdot CH_2) \cdot CH_3 \over OC \cdot N(C_6H_4 \cdot CH_3) \cdot CH_3}$ B. Durch Kochen von Itaconsäure mit p-Toluidin und Wasser (Schaffenberg, A. 254, 150). — Nadeln (aus Wasser). F: 184—185°. Leicht löslich in Chloroform und heißem Alkohol, unlöslich in Äther.

- 1- α -Naphthyl-pyrrolidon-(5)-carbonsäure-(3) $C_{15}H_{13}O_3N=H_{12}C_{15}H_{13}O_3N=C_{15}H_{13}O_3N$. B. Durch Kochen von Itaconsäure mit α -Naphthylamin und $OC \cdot N(C_{10}H_7) \cdot CH_2$ Wasser (SCHARFENBERG, A. 254, 151). Krystallpulver (aus Wasser). F: 205—206°. Sehr wenig löslich in Äther und Chloroform, löslich in heißem Alkohol.
- 1 Anilino pyrrolidon (5) carbonsäure (3) $C_{11}H_{12}O_2N_2 = H_2C$ $CH \cdot CO_2H$ $OC \cdot N(NH \cdot C_6H_5) \cdot CH_2$ B. Durch Kochen von Itaconsäure mit Phenylhydrazin und Wasser (SCHARFENBERG, A. 254, 150). Gelbe Prismen (aus Wasser oder Alkohol). F: 193—194°. Schwer löslich in Äther und Chloroform.
- 3. Derivat der Pyrrolidon-(3)-carbonsäure-(2) oder der Pyrrolidon-(4)-carbonsäure-(3) $C_5H_7O_3N = \frac{H_2C-CO}{H_2C\cdot NH\cdot CH\cdot CO_2H} \text{ oder } \frac{OC-CH\cdot CO_2H}{H_2C\cdot NH\cdot CH_2}$
- 1-Phenyl-pyrrolidon-(3)-carbonsäure-(2) oder 1-Phenyl-pyrrolidon-(4)-carbonsäure-(3) $C_{11}H_{11}O_3N = H_2C$ CO OC $CH \cdot CO_2H$ oder $H_2C \cdot N(C_6H_5) \cdot CH \cdot CO_2H$ $CH \cdot CO_2H$ C

Äthylester $C_{13}H_{15}O_3N=C_6H_5\cdot NC_4H_5(:0)\cdot CO_2\cdot C_3H_5$. B. s. o. bei der Säure. — Tafeln (aus verd. Alkohol), Nadeln (aus Alkohol). F: 69—70° (de Moulleted, Soc. 87, 443). — Gibt mit Phenylhydrazin eine bei 160—161° schmelzende Verbindung. Gibt mit alkoh. Eisenchlorid-Lösung eine dunkelviolette Färbung.

2. Oxo-carbonsäuren $C_6H_9O_3N$.

1. 6-Oxo-piperidin-carbonsäure-(2), 6-Oxo-pipecolinsäure, Piperidon-(6)-carbonsäure-(2), Lactam der α -Amino-adipinsäure $C_0H_0O_2N=H_2C\cdot CH_2\cdot CH_2$.

OC·NH· $CH\cdot CO_2H$.

B. Aus α -Amino-adipinsäure durch Erhitzen auf den Schmelzpunkt

(DIECEMANN, B. 88, 1657). — Prismen (aus Wasser). F: 177—178°. Schwer löslich in Äther, Benzol und Chloroform, leichter in Alkohol, ziemlich leicht in Eisessig und Wasser. — Wird durch Kochen mit Barytwasser oder konz. Salzsäure zu α-Amino-adipinsäure aufgespalten.

2. [5-Oxo-pyrrolidyl-(2)]-essigsäure, Pyrrolidon-(5)-essigsäure-(2), Lactam der β -Amino-adipinsäure $C_6H_9O_3N = {H_2C-CH_2 \over OC\cdot NH\cdot CH\cdot CH_2\cdot CO_2H}$.

Pyrrolidon-(5)-essigsäure-(2)-amid $C_6H_{10}O_3N_2 = {H_3C-CH_2 \over OC\cdot NH\cdot CH\cdot CH_2\cdot CO\cdot NH_2}$. B.

Beim Behandeln des Lactons der β -Oxy-adipinsäure (Bd. XVIII, S. 371) mit methylalkoholischer Salzsäure und nachfolgenden Erhitzen des entstandenen Methylesters mit methylalkoholischem Ammoniak im Rohr auf 100° (Leuchs, Möbis, B. 42, 1234). Entsteht analog aus β -Brom-adipinsaure (L., M.). — Nadeln oder Prismen (aus Essigester). F: 149—150 $^{\circ}$ (korr.). Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther.

- 1 Methyl pyrrolidon (5) essigsäure (2), Ekgoninsäure $C_7H_{11}O_2N =$ H₂C-----CH₂ OC·N(CH₂)·CH·CH₂·CO₂H
- a) Linksdrehende Ekgoninsäure, l-Ekgoninsäure C,H,,O,N = OC·N(CH₃)·CH·CH₃·CO₃H . B. Aus l-Ekgonin und d-Pseudoekgonin (S. 205) durch Oxy-H,C----CH, dation mit siedender Chromschwefelsäure, neben d-Tropinsäure (Liebermann, B. 23, 2519; 24, 607, 612; vgl. Willstätter, Bode, B. 34, 520). — Krystalle (aus Wasser oder Alkohol). F: 117—118° (L., B. 23, 2521). $[\alpha]_D$: —43,2° (Wasser; c = 12) (L., B. 24, 612). Leicht löslich in Wasser und Alkohol (L., B. 23, 2521), ziemlich schwer löslich in siedendem Essigester, sehr schwer in Benzol (W., B.). — Liefert bei der Oxydation mit siedender Chromschwefelsäure N-Methyl-succinimid (Bd. XXI, S. 373) (W., C. 1903 I, 841). — Salze: L., B. 23, 2522. —

AgC₇H₁₀O₈N. — Ca(C₇H₁₀O₈N)₂ (bei 110°). — Ba(C₇H₁₀O₈N)₂ (bei 120°).

Methylester C₈H₁₃O₃N = $\frac{H_2C}{OC \cdot N(CH_3) \cdot CH \cdot CH_2 \cdot CO_3 \cdot CH_3}$ B. Durch Einleiten von Chlorwasserstoff in die methylalkoholische Lösung von l-Ekgoninsäure (WILLSTÄTTER, BODE, B. 34, 523). — Öl. Kp₁₃: 159° (W., Hollander, A. 326, 90). Leicht löslich in Wasser (W., B.).

 $\ddot{\textbf{A}} \textbf{thylester} \ \, \textbf{C}_{9}\textbf{H}_{15}\textbf{O}_{3}\textbf{N} = \frac{\textbf{H}_{2}\textbf{C} - \textbf{C}\textbf{H}_{2}}{\textbf{O}_{2}^{\perp} \cdot \textbf{N}(\textbf{C}\textbf{H}_{3}) \cdot \overset{1}{\textbf{C}}\textbf{H} \cdot \textbf{C}\textbf{H}_{2} \cdot \textbf{C}\textbf{O}_{2} \cdot \textbf{C}_{2}\textbf{H}_{5}}. \quad \textit{B.} \quad \text{Beim Einleiten von}$ Chlorwasserstoff in eine alkoh. Lösung von 1-Ekgoninsäure (LIEBERMANN, B. 24, 611). — Öl.

b) Inaktive Ekgoninsäure, dl-Ekgoninsäure $C_7H_{11}O_2N$ OC·N(CH₂)·CH·CH₂·CO₂H. B. Aus Tropin (Bd. XXI, S. 16) durch Oxydation mit Chromschwefelsäure, neben inaktiver Tropinsäure (Liebermann, B. 24, 613; Willstätter, Bode, schwefelsäure, neben inaktiver Tropinsäure (Liebermann, B. 24, 613; Willstätter, Bode, B. 34, 520). Aus β -Brom-adipinsäure durch Erhitzen mit Methylamin in Benzol im Rohr auf 170—175° (W., Hollander, B. 34, 1819; A. 326, 83). — Nadeln (aus Aceton, Essigester oder Alkohol + Äther). F: 93—94° (W., H.). Sehr leicht löslich in Wasser, Alkohol und Chloroform, fast unlöslich in kaltem Benzol, unlöslich in Äther (W., H.). Elektrische Leitfähigkeit der wäßr. Lösung bei 25°: W., H., A. 326, 85. Elektrolytische Dissoziationskonstante k bei 25°: 9×10-6 (W., H.). — Wird beim Kochen mit Barytwasser oder Erhitzen mit konz. Salzsäure im Rohr auf 120° nicht aufgespalten (W., H.). — Cu(C₇H₁₀O₃N)₂ + 2¹/₂H₂O. Grüne Nadeln oder Tafeln (aus wäßr. Aceton). Monoklin (W., H.). Sehr leicht löslich in Wasser und Alkohol, unlöslich in Chloroform und Aceton. — AgC₇H₁₀O₃N. Nadeln (aus verd. Alkohol). F: ca. 240° (Zers.) (W., H.). Löslich in Wasser, sehr schwer löslich in Alkohol. — Ba(C₇H₁₀O₃N)₃ (L., B. 24, 614). — C₇H₁₁O₃N + HCl. Prismen (aus Alkohol + Äther). Erweicht bei 80°; F: 133° (W., H.). Sehr leicht löslich in Wasser.

Chlorwasserstoff in die methylalkoholische Lösung von dl-Ekgoninsäure (Willstätter, Hollander, A. 326, 89). — Öl. Kp₁₀: 165—170°. Mischbar mit Wasser.

- 3. 5-Oxo-2-methyl-pyrrolidin-carbonsäure-(2),2-Methyl-pyrrolidon-(5)-carbonsäure-(2) $C_6H_9O_3N = {H_2C CH_2 \over OC \cdot NH \cdot C(CH_9) \cdot CO_3H}$
- 2 Methyl pyrrolidon (5) carbonsäure (2) amid $C_0H_{10}O_2N_2 = H_2C$ — CH_2 . B. Aus 2-Methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril durch $OC \cdot NH \cdot C(CH_2) \cdot CO \cdot NH_2$. B. Aus 2-Methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril durch Einw. von kalter konzentrierter Schwefelsäure (Kühling, B. 28, 708). Nadeln (aus Alkohol). F: 161°. Sehr leicht löslich in Wasser, unlöslich in Äther.
- 2-Methyl-pyrrolidon-(5)-carbonsäure-(2)-amidoxim $C_6H_{11}O_3N_3=H_2C$ — CH_2 H_2C — CH_2 B. Aus 2-Methyl-OC·NH·C(CH₂)·C(:NH)·NH·OH OC·NH·C(CH₃)·C(NH₂):N·OH OC·NH·C(CH₃)·C(NH₂):N·OH OC·NH·C(CH₃)·C(NH₂):N·OH OC·NH·C(CH₃)·C(NH₂):N·OH OC·NH·C(CH₃)·C(NH₂):N·OH OC·NH·C(CH₃)·C(NH₃):N·OH OC·NH·C(CH₃
- 1-Äthyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_8H_{18}O_8N=C_2H_5\cdot NC_4H_4$ (: O) (CH₃)·CO₃H. B. Durch Kochen des Amids (s. u.) mit Kalilauge (Kühling, B. 23, 710). Nadeln (aus Benzol). F: 123°. Sehr leicht löslich in Wasser und Alkohol, schwerer in Äther.

Amid $C_8H_{14}O_2N_2 = C_2H_5 \cdot NC_4H_4(:0)(CH_3) \cdot CO \cdot NH_2$. B. Aus dem Nitril (s. u.) durch Einw. von kalter konzentrierter Schwefelsäure (KÜHLING, B. 23, 710). — Nadeln oder Prismen (aus Alkohol). F: 183°. Löslich in Wasser, unlöslich in Äther.

Nitril, 1-Äthyl-2-methyl-2-cyan-pyrrolidon-(5) $C_0H_{19}ON_2=C_2H_5\cdot NC_4H_4(:0)$ (CH₂)·CN. B. Durch Erhitzen äquimolekularer Mengen Lävulinsäure-äthylester, Blausäure und Äthylamin in alkoh. Lösung (Kühling, B. 23, 709). — Sirup. Leicht löslich in Alkohol und Äther, unlöslich in Wasser. — Zersetzt sich beim Destillieren. Spaltet beim Erhitzen mit Alkalien Blausäure ab.

Amidoxim $C_8H_{15}O_2N_3 = C_2H_5 \cdot NC_4H_4(:O)(CH_2) \cdot C(:NH) \cdot NH \cdot OH$ bezw. $C_9H_5 \cdot NC_4H_4(:O)(CH_3) \cdot C(NH_2) \cdot N \cdot OH$. B. Aus 1-Äthyl-2-methyl-pyrrolidon-(5)-thiocarbonsaure-(2)-amid durch Kochen mit Hydroxylamin in wäßr. Lösung (Kühling, B. 23, 712). — Nadeln oder Blättchen (aus Wasser). F: ca. 160° (Zers.). Zersetzt sich bei längerem Erhitzen schon teilweise bei 100°. Leicht löslich in Wasser und Alkohol, unlöslich in Äther.

- 1-Phenyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{12}H_{13}O_3N = C_0H_5 \cdot NC_4H_4(:0)$ (CH₂)·CO₂H. B. Beim Kochen von Lävulinsäure-äthylester mit wasserfreier Blausäure und Anilin, Behandeln des entstandenen Nitrils mit alkoh. Salzsäure und nachfolgenden Kochen mit Alkalilauge (KÜHLING, B. 22, 2367). Prismen (aus Wasser). F: 183°. Leicht löslich in Alkohol, schwer in Wasser, unlöslich in Äther. $AgC_{12}H_{12}O_2N$. Schuppen. Schwer löslich in Wasser. $Ba(C_{12}H_{12}O_3N)_2$. Krystalle. Ziemlich leicht löslich in Wasser.
- 1-[4-Chlor-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{12}H_{12}O_{2}NCl = C_{4}H_{4}Cl\cdot NC_{4}H_{4}(:O)(CH_{2})\cdot CO_{2}H$. B. Aus dem Amid (8.289) durch Kochen mit verd. Salzsäure (Weber, B. 40, 4046). Nadeln (aus Wasser). F: 179°. Leicht löslich in Alkohol, Aceton, Chloroform, heißem Wasser und Benzol, fast unlöslich in Ather und Ligroin. $Ba(C_{12}H_{11}O_{2}NCl)_{2} + H_{2}O$. Prismen. Leicht löslich in Wasser.
- 1-[4-Brom-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{19}H_{19}O_{9}NBr = C_{6}H_{4}Br\cdot NC_{4}H_{4}(:0)(CH_{2})\cdot CO_{9}H.$ B. Aus dem Amid (8. 289) durch Kochen mit verd. Salssäure (Weber, B. 40, 4047). Nadeln (aus Wasser). F: 189°. Ziemlich leicht löslich in heißem Wasser, Alkohol, Aceton, Eisessig und Chloroform, schwer in Benzol, Äther und Ligroin. $AgC_{19}H_{11}O_{2}NBr$. Prismen. $Ba(C_{19}H_{11}O_{2}NBr)_{2}+H_{2}O$. Nadeln. Sehr leicht löslich in Wasser.
- 1-[4-Jod-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{19}H_{19}O_9NI = C_9H_4I$ · $NC_4H_4(:0)(CH_2)\cdot CO_9H$. B. Aus dem Amid (8. 289) durch Kochen mit verd. Salzsäure (Weber, B. 40, 4049). Nadeln (aus Wasser). F: 211—212°. Leicht löslich in heißem Wasser, löslich

- in Alkohol, Chloroform und Eisessig, schwer löslich in Äther, fast unlöslich in Benzol und Ligroin. $AgC_{19}H_{11}O_3NI$. Prismen. Schwer löslich in kaltem Wasser.
- 1-[4-Chlor-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-methylester $C_{12}H_{14}O_3NCl=C_0H_4Cl\cdot NC_4H_4(:O)(CH_3)\cdot CO_2\cdot CH_3$. B. Aus 1-[4-Chlor-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) durch Einw. von methylalkoholischer Salzsäure (Weber, B. 40, 4047). Erstarrt nach längerem Aufbewahren.
- 1-[4-Brom-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-methylester $C_{13}H_{14}O_3NBr=C_5H_4Br\cdot NC_4H_4(:O)(CH_3)\cdot CO_2\cdot CH_3$. B. Aus 1-[4-Brom-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) durch Einw. von methylalkoholischer Salzsäure (Weber, B. 40, 4048). Prismen. Leicht löslich in den meisten organischen Lösungsmitteln außer in Ligroin.
- 1 [4 Jod phenyl] 2 methyl pyrrolidon (5) carbonsäure (2) methylester $C_{13}H_{14}O_3NI = C_6H_4I\cdot NC_4H_4(:O)(CH_2)\cdot CO_3\cdot CH_3$. Braunes, dickflüssiges Öl (Weber, B. 40, 4049).
- 1-Phenyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid $C_{12}H_{14}O_2N_2=C_6H_5$ · $NC_4H_4(:O)(CH_2)\cdot CO\cdot NH_2$. B. Aus 1-Phenyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril (s. bei der Säure, S. 288) durch Einw. von kalter konzentrierter Schwefelsäure (KÜHLING, B. 22, 2366). Nadeln (aus Alkohol). F: 127°. Löslich in Alkohol, Benzol und Essigester, ziemlich schwer löslich in Wasser, unlöslich in Äther.
- 1-Phenyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-anilid $C_{18}H_{18}O_2N_2 = C_6H_5$ · NC_4H_4 (:0)(CH₃)·CO·NH·C₆H₅. B. Aus γ -Methyl-butyrolacton- γ -carbonsäure (Bd. XVIII, S. 371) durch Kochen mit Anilin und salzsaurem Anilin (R. Meyer, Kissin, B. 42, 2837). Nadeln (aus Alkohol). F: 205—206°. Unlöslich in Alkalilauge.
- 1-[4-Chlor-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid $C_{12}H_{12}O_2N_2Cl=C_6H_4Cl\cdot NC_4H_4(:0)(CH_3)\cdot CO\cdot NH_2$. B. Man erhitzt Lävulinsäure-äthylester mit 4-Chloranilin und Blausäure in absol. Alkohol unter Druck auf 100° und behandelt das Reaktionsprodukt (F: 40—42°) mit kalter rauchender Salzsäure (Weber, B. 40, 4046). Nadeln (aus verd. Alkohol). F: 207°. Leicht löslich in heißem Wasser, Alkohol, Aceton und Chloroform, schwer in Benzol, Ligroin und Äther.
- 1-[4-Brom-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid $C_{12}H_{12}O_2N_2Br = C_6H_4Br\cdot NC_4H_4(:0)(CH_2)\cdot CO\cdot NH_4$. B. Man erhitzt Lavulinsäure-äthylester, 4-Brom-anilin und wasserfreie Blausäure in absol. Alkohol unter Druck auf 100° und behandelt das Reaktionsprodukt (Nadeln; F: 49—51°; leicht löslich in Alkohol, Benzol, Äther, Chloroform und Aceton, unlöslich in Wasser und Ligroin) mit kalter rauchender Salzsäure (Weber, B. 40, 4047). Säulenförmige Prismen. F: 208°. Leicht löslich in heißem Wasser, Alkohol, Aceton und Chloroform, fast unlöslich in Benzol, Ligroin und Äther.
- 1-[4-Jod-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid $C_{12}H_{13}O_2N_2I=C_0H_4I\cdot NC_4H_4(:0)(CH_2)\cdot CO\cdot NH_2$. B. Man erhitzt Lävulinsäure-äthylester, 4-Jod-anilin und wasserfreie Blausäure in absol. Alkohol unter Druck auf 100° und behandelt das Reaktionsprodukt mit kalter konzentrierter Salzsäure (Weber, B. 40, 4049). Prismen (aus Aceton). F: 222°. Löslich in heißem Wasser, Alkohol, Aceton und Chloroform, unlöslich in Benzol, Ligroin und Äther.
- 1-o-Tolyl-2-methyl-pyrrolidon (5) carbonsäure (2) $C_{18}H_{15}O_3N = CH_3 \cdot C_6H_4 \cdot NC_4H_4 \cdot (\cdot)(CH_3) \cdot CO_3H$. B. Aus dem Amid (s. u.) durch Kochen mit verd. Salzsäure (Kühling, Falk, B. 38, 1223). Nadeln (aus Aceton + Ligroin). F: 209,5°. Leicht löslich in Alkohol, Aceton, Chloroform und heißem Wasser.
- Amid $C_{12}H_{16}O_2N_2 = CH_2 \cdot C_6H_4 \cdot NC_4H_4(:O)(CH_2) \cdot CO \cdot NH_2$. B. Aus dem Nitril (s. u.) durch Einw. von kalter rauchender Salzsäure (Kühling, Falk, B. 38, 1223). Säulen (aus Wasser). F: 215,5°. Leicht löslich in heißem Wasser und Alkohol, schwerer in Benzol und Ligroin, schwer löslich in Äther.
- Nitril, 1 o Tolyl 2 methyl 2 cyan pyrrolidon (5) $C_{12}H_{14}ON_2 = CH_3 \cdot C_6H_4 \cdot NC_4H_4$: (0)(CH₂)·CN. B. Durch Erhitzen von Lävulinsäure-äthylester mit o-Toluidin und Blausäure in absol. Alkohol unter Druck auf 100° (Kühling, Falk, B. 88, 1223). Gelbes Öl.
- 1-m-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{12}H_{15}O_{2}N=CH_{3}\cdot C_{6}H_{4}\cdot NC_{4}H_{4}(:0)(CH_{2})\cdot CO_{2}H$. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) (KUHLING, FALK, B. 88, 1222). Nadeln (aus Wasser). F: 136°. Leicht löslich in heißem Wasser, Alkohol, Aceton, Chloroform und Eisessig, schwer in Benzol, unlöslich in Ligroin. AgC₁₃H₁₄O₂N. Tafeln.
- Methylester $C_{14}H_{17}O_3N=CH_3\cdot C_4H_4\cdot NC_4H_4(:O)(CH_2)\cdot CO_3\cdot CH_3$. Nadeln. Leicht löslich in Alkohol und Äther (KÜHLING, FALK, B. 88, 1222).

Amid $C_{13}H_{16}O_2N_2 = CH_3 \cdot C_6H_4 \cdot NC_4H_4 (:O)(CH_3) \cdot CO \cdot NH_2$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsaure-(2)-amid (Kühling, Falk, B. 38, 1222). — Prismen. F: 198°. Leicht löslich in heißem Wasser, Alkohol, Chloroform, Eisessig und heißem Benzol, schwer in Äther, unlöslich in Ligroin.

Nitril, 1-m-Tolyl-2-methyl-2-cyan-pyrrolidon-(5) $C_{13}H_{14}ON_2 = CH_3 \cdot C_0H_4 \cdot NC_4H_4$: O)(CH₃)·CN. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsāure-(2)-nitril (KÜHLING, FALK, B. 38, 1222). — Dunkelbraunes Öl.

1-p-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{13}H_{18}O_3N = CH_3 \cdot C_4H_4 \cdot NC_4H_4(:O)(CH_3) \cdot CO_2H$. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) (KÜHLING, FALK, B. 38, 1220). — Tafeln (aus Wasser). F: 204°. Ziemlich leicht löslich in Alkohol, Eisessig und heißem Wasser, schwer in Äther, Chloroform, Benzol und Ligroin. — $AgC_{13}H_{14}O_3N$. Tafeln. — $Ba(C_{13}H_{14}O_3N)_2 + 4H_2O$. Krystalle.

Methylester $C_{14}H_{17}O_3N = CH_3 \cdot C_6H_4 \cdot NC_4H_4 (:0)(CH_3) \cdot CO_3 \cdot CH_3$. B. Aus 1-p-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) bei der Einw. von methylalkoholischer Salzsäure (KÜHLING, FALK, B. 38, 1221). — Öl. Leicht löslich in organischen Lösungsmitteln, unlöslich in Wasser.

Amid $C_{13}H_{16}O_2N_2 = CH_3 \cdot C_6H_4 \cdot NC_4H_4(:O)(CH_3) \cdot CO \cdot NH_2$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid (KÜHLING, FALK, B. 38, 1220). — Blätter (aus Alkohol). F: 175°. Leicht löslich in Alkohol und Eisessig, etwas schwerer in heißem Wasser, schwer löslich in Äther, Benzol, Chloroform und Ligroin.

Anilid $C_{19}H_{20}O_2N_2 = CH_3 \cdot C_6H_4 \cdot NC_4H_4(:0)(CH_3) \cdot CO \cdot NH \cdot C_6H_5$. B. Aus 1-p-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) durch Erwärmen mit Thionylchlorid und Kochen des Reaktionsprodukts mit Anilin in Benzol (Kühling, Falk, B. 38, 1221). — Tafeln (aus Ligroin).

p-Toluidid $C_{20}H_{22}O_2N_2 = CH_3 \cdot C_8H_4 \cdot NC_4H_4(:0)(CH_3) \cdot CO \cdot NH \cdot C_8H_4 \cdot CH_3$. B. Durch Kochen von γ -Methyl-butyrolacton- γ -carbonsaure (Bd. XVIII, S. 371) mit p-Toluidin und salzsaurem p-Toluidin (R. Meyer, Kissin, B. 42, 2838). — Nadeln (aus Alkohol). F: 198° bis 199°.

Nitril, 1-p-Tolyl-2-methyl-2-cyan-pyrrolidon-(5) $C_{13}H_{14}ON_2 = CH_3 \cdot C_4H_4 \cdot NC_4H_4(:0)(CH_3) \cdot CN$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril (Kühling, Falk, B. 38, 1219). — Öl.

Amidoxim $C_{13}H_{12}O_2N_3 = CH_3 \cdot C_6H_4 \cdot NC_4H_4(:0)(CH_3) \cdot C(:NH) \cdot NH \cdot OH$ bezw. $CH_3 \cdot C_6H_4 \cdot NC_4H_4(:0)(CH_3) \cdot C(NH_2) : N \cdot OH$. B. Aus dem entsprechenden Nitril und Hydroxylamin in verd. Alkohol (Kühling, Falk, B. 38, 1221). — Nadeln (aus Benzol). F: 163,5°. Leicht löslich in Alkohol, Äther, Chloroform und Eisessig, schwer in Wasser und kaltem Benzol.

1-Bensyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril, 1-Bensyl-2-methyl-2-cyan-pyrrolidon-(5) C₁₃H₁₄ON₂ = C₆H₅·CH₂·NC₄H₄(:O)(CH₃)·CN. B. Beim Erhitzen von Lävulinsäure-äthylester mit Benzylamin und wasserfreier Blausäure in absol. Alkohol unter Druck auf 100° (KÜHLING, FRANK, B. 42, 3954). — Krystalle (aus Ligroin oder aus Benzol + Ligroin). F: 76—77°. Schwer löslich in Wasser, Ligroin und Äther, leicht in Alkohol, Aceton, Benzol, Eisessig und Chloroform. — Gibt in Benzol mit einer äther. Lösung von Methylmagnesiumjodid 1-Benzyl-2-methyl-2-acetyl-pyrrolidon-(5) (Bd. XXI, S. 392).

1-[2.3-Dimethyl-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{14}H_{17}O_3N = (CH_3)_2C_6H_3\cdot NC_4H_4(:0)(CH_3)\cdot CO_2H$. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) (Kühling, Falk, B. 38, 1227). — Nadeln (aus Wasser). F: 186°. Leicht löslich in Chloroform, Eisessig und heißem Alkohol, schwer in Wasser, Äther und Benzol.

Methylester $C_{15}H_{19}O_3N=(CH_3)_2C_6H_3\cdot NC_4H_4(:O)(CH_3)\cdot CO_2\cdot CH_3$. Nicht vollständig erstarrendes Öl (Kühling, Falk, B. 38, 1228).

Amid $C_{14}H_{18}O_2N_2 = (CH_3)_2C_6H_3 \cdot NC_4H_4(:O)(CH_3) \cdot CO \cdot NH_2$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid (KÜHLING, FALK, B. 38, 1227). — Tafeln (aus Alkohol). F: 203°. Ziemlich leicht löslich in Alkohol, Chloroform und Eisessig, schwer in Äther, Benzol und Wasser.

Nitril, 1-[2.3-Dimethyl-phenyl]-2-methyl-2-cyan-pyrrolidon-(5) $C_{14}H_{18}ON_8 = (CH_3)_2C_6H_3\cdot NC_4H_4(:0)\cdot (CH_3)\cdot CN$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbon-säure-(2)-nitril (KÜHLING, FALK, B. 38, 1227). — Öl.

Amidoxim $C_{14}H_{19}O_{9}N_{3} = (CH_{3})_{2}C_{6}H_{3} \cdot NC_{4}H_{4}(:O)(CH_{3}) \cdot C(:NH) \cdot NH \cdot OH$ bezw. $(CH_{3})_{2}C_{6}H_{3} \cdot NC_{4}H_{4}(:O)(CH_{3}) \cdot C(NH_{2}) : N \cdot OH$. Krystalle. F: 122° (Kühling, Falk, B. 38, 1228).

1-[8.4-Dimethyl-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{14}H_{17}O_9N = (CH_3)_2C_8H_3 \cdot NC_4H_4(:O)(CH_3) \cdot CO_2H$. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-

carbonsaure-(2) (KÜHLING, FALK, B. 38, 1226). — Nadeln (aus verd. Alkohol). F: 192°. Leicht löslich in Chloroform, Eisessig und warmem Alkohol, schwer in Wasser, Äther und Benzol. — $Ba(C_{14}H_{16}O_3N)_2 + 2H_2O$.

Methylester $C_{15}H_{19}O_3N = (CH_3)_2C_6H_3 \cdot NC_4H_4(:0)(CH_3) \cdot CO_2 \cdot CH_3$. Teilweise erstarrendes, hellgelbes Öl (KÜHLING, FALK, B. 38, 1227).

Amid $C_{14}H_{19}O_{9}N_{2} = (CH_{3})_{2}C_{6}H_{3} \cdot NC_{4}H_{4}(:0)(CH_{3}) \cdot CO \cdot NH_{2}$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsāure-(2)-amid (Kühling, Falk, B. 38, 1226). — Tāfelchen (aus Alkohol). F: 206—207°. Ziemlich leicht löslich in Alkohol, Chloroform, Eisessig und heißem Wasser, schwer in Äther, Benzol und Ligroin.

Nitril, 1-[8.4-Dimethyl-phenyl]-2-methyl-2-cyan-pyrrolidon-(5) $C_{14}H_{14}ON_3 = (CH_2)_2C_4H_3\cdot NC_4H_4(:0)(CH_2)\cdot CN$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbon-saure-(2)-nitril (KÜHLING, FALK, B. 38, 1226). — Öl.

Amidoxim $C_{14}H_{19}O_9N_9=(CH_9)_2C_6H_9\cdot NC_4H_4(:O)(CH_3)\cdot C(:NH)\cdot NH\cdot OH$ bezw. $(CH_9)_2C_6H_9\cdot NC_4H_4(:O)(CH_9)\cdot C(NH_9):N\cdot OH$. Krystalle (aus Alkohol). F: 110° (KÜHLING, FALK, B. 38, 1227).

1-[2.4-Dimethyl-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{14}H_{17}O_3N = (CH_2)_2C_6H_3\cdot NC_4H_4(:0)(CH_2)\cdot CO_2H$. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) (Kthling, Falk, B. 38, 1225). — Prismen (aus Wasser). F: 169°. Leicht löslich in Alkohol und heißem Wasser, schwer in Benzol und Ligroin. — $Cu(C_{14}H_{16}O_3N)_2 + 1^1/_2H_2O$. Grüne Tafeln.

Methylester $C_{15}H_{19}O_3N = (CH_2)_3C_6H_3 \cdot NC_4H_4(:O)(CH_3) \cdot CO_3 \cdot CH_3$. Tafeln (aus Aceton + Ligroin). F: 97,56 (KÜHLING, FALK, B. 38, 1226). Schwer löslich in Wasser und Ligroin, sonst leicht löslich.

Amid $C_{14}H_{19}O_{9}N_{2} = (CH_{3})_{2}C_{6}H_{2}\cdot NC_{4}H_{4}(:O)(CH_{3})\cdot CO\cdot NH_{2}$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsaure-(2)-amid (Kühling, Falk, B. 38, 1225). — Nadeln (aus Wasser). F: 196°. Leicht löslich in Alkohol, Chloroform, Eisessig und heißem Wasser, schwer in Äther, Benzol und Ligroin.

Nitril, 1-[2.4-Dimethyl-phenyl]-2-methyl-2-cyan-pyrrolidon-(5) $C_{14}H_{14}ON_3 = (CH_2)_3C_4H_3 \cdot NC_4H_4(:0)(CH_2) \cdot CN$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbon-saure-(2)-nitril (KÜHLING, FALK, B. 38, 1225). — Hellgelbes Öl.

1-[2.5-Dimethyl-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{14}H_{17}O_3N=(CH_3)_2C_9H_9\cdot NC_4H_4(:0)(CH_3)\cdot CO_2H$. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) (KÜHLING, FALK, B. 38, 1226). — Nadeln (aus Aceton + Ligroin). F: 226°. Ziemlich leicht löslich in Alkohol, Chloroform, Eisessig und heißem Wasser, schwer in Benzol, fast unlöslich in Ligroin.

Amid $C_{14}H_{18}O_2N_2 = (CH_3)_2C_6H_3\cdot NC_4H_4(:O)(CH_3)\cdot CO\cdot NH_2$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonssure-(2)-amid (Kühling, Falk, B. 38, 1226). — Tafeln (aus Wasser). F: 211°. Leicht löslich in Alkohol, Eisessig und heißem Wasser, schwerer in Aceton, Äther, Benzol und Chloroform, fast unlöslich in Ligroin.

Nitril, 1-[2.5-Dimethyl-phenyl]-2-methyl-2-cyan-pyrrolidon-(5) $C_{14}H_{16}ON_3 = (CH_3)_2C_6H_3\cdot NC_4H_4(:0)(CH_2)\cdot CN$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbon-saure-(2)-nitril (KÜHLING, FALK, B. 38, 1226). — Hellgelbes Öl.

1- α -Naphthyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{16}H_{16}O_2N=C_{10}H_7$ ·NC₄H₄(:0)(CH₂)·CO₂H. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) (KÜHLING, FALK, B. 38, 1225). — Nadeln (aus Wasser). F: 255°. Leicht löslich in Alkohol, Aceton und Eisessig, schwerer in heißem Wasser und Äther, fast unlöslich in Benzol und Ligroin.

Methylester $C_{17}H_{17}O_3N = C_{10}H_7 \cdot NC_4H_4(:0)(CH_3) \cdot CO_2 \cdot CH_3$. Krystalle. F: 91° (Kühling, Falk, B. 38, 1225).

Amid $C_{16}H_{16}O_{2}N_{3} = C_{10}H_{7} \cdot NC_{4}H_{4}(:0)(CH_{3}) \cdot CO \cdot NH_{2}$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsaure-(2)-amid (Kühling, Falk, B. 38, 1224). — Nadeln. F: 247,5—248°. Leicht löslich in Eisessig und heißem Alkohol, schwer in Wasser, fast unlöslich in Äther, Benzol, Chloroform und Ligroin.

Nitril, $1-\alpha$ -Naphthyl-2-methyl-2-cyan-pyrrolidon-(5) $C_{16}H_{14}ON_3=C_{10}H_7$ · $NC_4H_4(:0)(CH_3)\cdot CN$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsaure-(2)-nitril (KÜHLING, FALK, B. 38, 1224). — Dunkelbraunes Öl.

1- β -Naphthyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{16}H_{15}O_3N=C_{10}H_7$ · $NC_4H_4(:0)(CH_3)\cdot CO_2H$. B. Analog der 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2) (KUHLING, FALK, B. 38, 1224). — Blättchen. F: 231°. Leicht löslich in Aceton und Eisessig, schwerer in Alkohol, Chloroform und heißem Wasser, schwer in Äther, Benzol und Ligroin. — $Ba(C_{16}H_{14}O_3N)_3$. Krystalle. — $Zn(C_{16}H_{14}O_3N)_3+2^{1}/_3H_2O$. Prismen.

19*

Mothylester $C_{17}H_{17}O_2N = C_{10}H_7 \cdot NC_4H_4(:O)(CH_2) \cdot CO_2 \cdot CH_3$. Krystelle (aus wäßr. Aceton). F: 104—105° (KÜHLING, FALK, B. 38, 1224).

Amid $C_{16}H_{16}O_2N_3 = C_{10}H_7 \cdot NC_4H_4(:0)(CH_3) \cdot CO \cdot NH_2$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsaure-(2)-amid (KÜHLING, FALK, B. 88, 1223). — Krystalle. F: 2236. Leicht löslich in Alkohol und Eisessig, schwerer in heißem Wasser und Chloroform, fast unlöslich in Äther, Ligroin und Benzol.

Nitril, $1-\beta$ -Naphthyl-2-methyl-2-cyan-pyrrolidon-(5) $C_{16}H_{14}ON_2=C_{16}H_7$ · $NC_4H_4(:O)(CH_3)\cdot CN$. B. Analog dem 1-o-Tolyl-2-methyl-pyrrolidon-(5)-carbonsaure-(2)-nitril (KUHLING, FALK, B. 38, 1223). — Krystalle (aus Benzol + Ligroin). F: 78,5°. Leicht löslich in Äther, Benzol, Chloroform, heißem Alkohol und Eisessig, unlöslich in Wasser und Ligroin.

Amidoxim $C_{16}H_{17}O_2N_3=C_{10}H_7\cdot NC_4H_4(:O)(CH_3)\cdot C(:NH)\cdot NH\cdot OH$ bezw. $C_{10}H_7\cdot NC_4H_4(:O)(CH_3)\cdot C(NH_2)\cdot N\cdot OH$. Blattchen (aus Benzol). F: 176° (KÜHLING, FALK, B. 38, 1224).

- 1-[4-Carboxy-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2) $C_{13}H_{13}O_{1}N=HO_{1}C\cdot C_{2}H_{4}\cdot NC_{4}H_{4}(:0)(CH_{3})\cdot CO_{2}H$. B. Aus 1-[4-Carbāthoxy-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid durch Kochen mit verd. Salzsäure (Weber, B. 40, 4051). Prismen mit 1 $H_{2}O$. F: 228—229°. Löslich in heißem Wasser und Alkohol, fast unlöslich in Benzol, Ather, Ligroin und Chloroform.
- 1-[4-Carbomethoxy-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid $C_{14}H_{16}O_4N_2=CH_2\cdot O_2C\cdot C_6H_4\cdot NC_4H_4(:O)(CH_2)\cdot CO\cdot NH_2$. B. Man kondensiert 4-Aminobenzoesäure-methylester mit Lävulinsäure-äthylester und Blausäure in absol. Alkohol unter Druck bei 100° und behandelt das Kondensationsprodukt mit kalter rauchender Salzsaure (Weber, B. 40, 4051). — Krystalle (aus Benzol). F: 171—172°. Leicht löslich in Alkohol, Chloroform und heißem Benzol, schwer in heißem Wasser, kaum löslich in Äther und Ligroin.
- 1-[4-Carbāthoxy-phenyl]-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-amid $C_{18}H_{18}O_4N_2=C_8H_5\cdot O_2C\cdot C_6H_4\cdot NC_4H_4(:0)(CH_2)\cdot CO\cdot NH_2$. B. Aus γ -[4-Carbāthoxy-anilino]- γ -cyan-valeriansāure-āthylester (Bd. XIV, S. 435) bei der Einw. von kalter rauchender Salzsäure (Weber, B. 40, 4051). — Krystalle. F: 149°. Ziemlich leicht löslich in Alkohol, Chloroform, heißem Benzol und heißem Wasser, kaum löslich in Ligroin und Äther.
- **2 Methyl pyrrolidon (5) thiocarbonsäure (2) amid** $C_aH_{10}ON_aS =$ H₂C-----CH₂ OC·NH·C(CH₃)·CS·NH₃. B. Beim Einleiten von Schwefelwasserstoff in die mit etwas Ammoniak versetzte wäßrige Lösung von 2-Methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril (KÜHLING, B. 22, 2370). — Prismen (aus Wasser). F: 220⁶ (Zers.). Schwer löslich in Wasser, unlöslich in Alkohol und Äther.
- 1- \ddot{A} thyl-2-methyl-pyrrolidon-(5)-thiocarbonsäure-(2)-amid $C_2H_{14}ON_2S =$ $C_2H_3\cdot NC_4H_4(:0)(CH_2)\cdot CS\cdot NH_2$. B. Beim Einleiten von Schwefelwasserstoff in die mit etwas Ammoniak versetzte alkoh. Lösung von 1-Äthyl-2-methyl-pyrrolidon-(5)-carbonsaure-(2)-nitril (Kühling, B. 23, 711). — Prismen (aus Wasser). F: ca. 176° (Zers.). Unlöslich in Äther.
- 1-Phenyl-2-methyl-pyrrolidon-(5)-thiocarbonsäure-(2)-amid $C_{12}H_{14}ON_2S$ = C₆H₅·NC₄H₄(:O)(CH₂)·CS·NH₂. B. Beim Einleiten von Schwefelwasserstoff in die mit Ammoniak versetzte wäßr. Lösung von 1-Phenyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril (KÜHLING, B. 22, 2368). — Nadeln (aus Wasser). F: 193° (Zers.). Schwer löslich in Wasser und Alkohol, unlöslich in Äther.
- 1-p-Tolyl-2-methyl-pyrrolidon-(5)-thiocarbonsäure-(2)-amid $C_{18}H_{16}ON_8S=CH_3\cdot C_9H_4\cdot NC_4H_4(:O)(CH_3)\cdot CS\cdot NH_3$. Bei der Einw. von Schwefelwasserstoff auf 1-p-Tolyl-2-methyl-pyrrolidon-(5)-carbonsäure-(2)-nitril in wäßrigem oder wäßrig-alkoholischem Ammoniak (KÜHLING, FALK, B. 38, 1221). — Krystalle (aus Wasser). F: 207—208 (Zersetzung).
- 1-[2.3-Dimethyl-phenyl]-2-methyl-pyrrolidon-(5)-thiocarbonsäure-(2)-amid $C_{14}H_{18}ON_2S=(CH_3)_2C_6H_3\cdot NC_4H_4(:O)(CH_3)\cdot CS\cdot NH_2$. Krystalle (aus verd. Alkohol). F: 217° (KÜHLING, FALE, B. 38, 1228).
- 1-[3.4-Dimethyl-phenyl]-2-methyl-pyrrolidon-(5)-thiocarbonsäure-(2)-amid $C_{14}H_{16}ON_{2}S=(CH_{3})_{2}C_{6}H_{2}\cdot NC_{4}H_{4}(:O)(CH_{3})\cdot CS\cdot NH_{2}$. Krystalle (aus verd. Alkohol). F: 220° (KÜHLING, FALK, B. 38, 1227).

- 1- β -Naphthyl-2-methyl-pyrrolidon-(5)-thiocarbonsäure-(2)-amid $C_{16}H_{16}ON_2S=C_{16}H_7\cdot NC_4H_4(:O)(CH_2)\cdot CS\cdot NH_2$. Krystalle (aus Wasser). F: 151° (KÜHLING, FALK, B. 38, 1224).
- 3. 6-0xo-4-methyl-piperidin-carbonsäure-(2), $\alpha'-0xo-\gamma$ -pipecolin- α -carbonsäure, 4-Methyl-piperidon-(6)-carbonsäure-(2) $C_7H_{11}O_2N=H_2C\cdot CH(CH_2)\cdot CH_2$ OC—NH— $CH\cdot CO_2H$ B. Durch Einengen einer wäßrigen oder salzsauren Lösung von α' -Amino- β -methyl-adipinsäure (Dieckmann, B. 38, 1659). Prismen mit 1 H_2O . F: 124°. Ziemlich schwer löslich in Wasser und Alkohol, sehr schwer in Äther und Chloroform. Wird durch Kochen mit Alkalien oder konz. Salzsäure zu α' -Amino- β -methyl-adipinsäure aufgespalten. $AgC_7H_{16}O_2N+H_2O$. Nädelchen (aus Wasser).

4. 0xo-carbonsäuren $C_8H_{12}O_8N$.

1. 4-Oxo-2.6-dimethyl-piperidin-carbonsäure-(2), γ -Oxo- α . α '-lupetidin- α -carbonsäure, 2.6-Dimethyl-piperidon-(4)-carbonsäure-(2) $C_3H_{13}O_3N = H_2C\cdot CO\cdot CH_3$ $CH_4\cdot HC\cdot NH\cdot C(CH_4)\cdot CO_3H$

Oxim der 1-Oxy-2.6-dimethyl-piperidon-(4)-carbonsäure-(2) $C_8H_{14}O_4N_2 = H_2C \cdot C(:N \cdot OH) \cdot CH_3$ $CH_2 \cdot HC - N(OH) - C(CH_2) \cdot CO_2H$ B. Aus dem Anhydrid der Acetondibrenztraubensäure (Bd. III, S. 830) bei der Einw. von Hydroxylamin in Wasser (Doebner, B. 31, 684). — Nadeln. F: 209° (Zers.). Unlöslich in Wasser, Alkohol und Äther. Löslich in Alkalicarbonat-Lösungen und Mineralsäuren.

2. 5-0x0-2.4.4-trimethyl-pyrrolidin-carbonsäure-(2), 2.4.4-Trimethyl-pyrrolidon-(5)-carbonsäure-(2), Mesitylsäure $C_8H_{18}O_8N=(CH_2)_2C$ — CH_2

OC·NH·C(CH₂)·CO₂H

B. Durch Kochen von mit Chlorwasserstoff gesättigtem Aceton oC·NH·C(CH₂)·CO₂H

Mit Kaliumcyanid und Alkohol (Simpson, A. 148, 352; Pinner, B. 14, 1072; 15, 577). Durch Kochen von mit Chlorwasserstoff gesättigtem Mesityloxyd (Bd. I, S. 736) mit Kaliumcyanid und Alkohol (Weidel, Hoppe, M. 13, 605). Aus dem aus Mesityloxyd und Blausäure erhaltenen Additionsprodukt durch Kochen mit Kalilauge (Knoevenagel, B. 37, 4070). Aus dem Dinitril der α'-Οxy-α.α.α'-trimethyl-glutarsäure durch Erwärmen mit Salzsäure (Lapworth, Soc. 85, 1224). — Wasserfreie Prismen (aus Aceton); Prismen mit 1 H₂O (aus Wasser). Monoklin (Hockaue, M. 13, 607; vgl. Groth, Ch. Kr. 5, 542). F: 174° (P., B. 14, 1074), 171° bis 172° (W., H.; K.), 171° (S.). Destillierbar (P., B. 14, 1074). Ziemlich leicht löslich in heißem Wasser und in Alkohol, schwer in Äther, unlöslich in kaltem Wasser (S.). Leicht löslich in konz. Säuren (P., B. 14, 1074). — Liefert bei der Oxydation mit Permanganat in saurer Lösung Dimethylmalonsäuremonosmid und α.α-Dimethyl-bernsteinsäure-imid (Bd. XXI, S. 387) (P., B. 14, 1075; 15, 580). Beim Erhitzen mit konz. Schwefelsäure auf 150° erhält man Mesitonsäure (Bd. III, S. 702) (P., B. 15, 584). — AgC₈H₁₂O₈N. Tafeln. Sehr leicht löslich in Wasser (S.).

Äthylester $C_{10}H_{17}O_3N = \frac{(CH_3)_2C - CH_2}{OC \cdot NH \cdot C(CH_2) \cdot CO_2 \cdot C_3H_4}$. B. Durch Erhitzen des Kaliumsalzes der Mesitylsäure mit Äthylbromid (PINNER, B. 14, 1074). Aus Mesitylsäure bei der Kinw. von alkoh. Salzsäure (Weidel, Hoppe, M. 13, 608). — Prismen (aus Äther). Monoklin (Hockauf, M. 13, 608; vgl. Groth, Ch. Kr. 5, 543). F: 90° (P.), 87° (W., H.). Leicht löslich in Alkohol, sehr schwer in Wasser (P.). Leicht löslich in verd. Säuren (P.). — Liefert beim Erhitzen mit Benzoylchlorid eine Verbindung $C_{17}H_{31}O_4N$, die bei ca. 74° schmilzt (P., B. 14, 1077).

Amid $C_8H_{14}O_8N_8 = \frac{(CH_3)_2C_{---}CH_8}{OC\cdot NH\cdot C(CH_3)\cdot CO\cdot NH_8}$. B. Durch Kochen von mit Chlorwasserstoff gesättigtem Aceton mit Kaliumeyanid und Alkohol (PINNER, B. 15, 577). Aus Mesitylsäureäthylester durch Erhitzen mit alkoh. Ammoniak auf 100° (P., B. 15, 578). — Krystalle. F: 222°. Leicht löslich in Wasser und Alkohol.

- 3. 5-Oxo-2.3.3 (oder 3.3.4)-trimethyl-pyrrolidin-carbonsäure-(2) (?), 2.3.3 (oder 3.3.4)-Trimethyl-pyrrolidon-(5)-carbonsäure-(2) (?) $C_8H_{13}O_3N=H_2C$ — $C(CH_2)_2$ $C_8H_{13}O_3N=H_2C$ — $C(CH_3)_2$ $C_8H_{13}O_3N=H_3C_3$ C_8H
- 5. ε -Lactam der ε -Amino- $\beta.\beta.\delta$ (oder $\beta.\delta.\delta$) trimethyl-pentan- $\alpha.\gamma$ -dicarbonsäure $C_{10}H_{17}O_5N=H_2C$ $C(CH_3)_3\cdot CH(CO_2H)\cdot CH\cdot CH_3$ oder $C(CH_3)_2\cdot CH(CO_3H)\cdot CH\cdot CH_3$ oder $C(CH_3)_2\cdot CH(CO_3H)\cdot CH\cdot CH_3$. B. Aus dem Hydrochlorid des Oxims des Isophoron-carbonsäureäthylesters (Bd. X, S. 635) durch Reduktion mit Natrium und siedendem Methanol (SKITA, B. 40, 4179). Nadeln (aus Aceton + Essigester). F: 153—154°. Kp₈: 125°. Leicht löslich in Alkohol, schwer in Äther, unlöslich in Essigsäure.

b) Oxo-carbonsauren $C_n H_{2n-5} O_3 N$.

- 1. $5 \cdot 0 \times 0 \cdot 2 \cdot methyl \cdot \Delta^2 \cdot pyrrolin \cdot carbonsäure \cdot (3)$, $2 \cdot Methyl \cdot \Delta^2 \cdot pyrrolon \cdot (5) \cdot carbonsäure \cdot (3)$ $C_6H_7O_3N = \frac{H_2C C \cdot CO_2H}{OC \cdot NH \cdot C \cdot CH_3}$.
- 2 Methyl Δ^2 pyrrolon (5) carbonsäure (3) äthylester $C_8H_{11}O_3N = H_1C$ — $C \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von [α -Amino-äthyliden]-bernsteinsäure-diäthylester (Bd. III, S. 802) auf 145—150° (EMERY, A. 260, 144; Am. 13, 90). Nadeln (aus Äther oder Wasser). F: 133—134°. Kp₁₂: 195°. Leicht löslich in Alkohol, schwer in Äther und Schwefelkohlenstoff.
- 2-Methyl- Δ^2 -pyrrolon-(5)-carbonsäure-(3)-amid $C_0H_8O_2N_2=\frac{H_2C-C\cdot CO\cdot NH_2}{OC\cdot NH\cdot C\cdot CH_2}$.

 B. Bei 24-stündiger Einw. von konzentriertem wäßrigem Ammoniak auf Acetbernsteinsäure-ester (Bd. III, S. 801) bei gewöhnlicher Temperatur (Ruhemann, Hemmy, Soc. 71, 331; vgl. aber Guareschi, C. 1897 I, 283; J. 1897, 1599). Nadeln (aus Wasser). Zersetzt sich bei ca. 250° (R., H.). Leicht löslich in siedendem Wasser (R., H.). Gibt beim Kochen mit Kalilauge Bernsteinsäure (R., H.).
- 1.2 Dimethyl Δ^2 pyrrolon (5) carbonsäure (8) äthylester $C_9H_{13}O_2N = H_2C C \cdot CO_2 \cdot C_2H_5$. B. Beim Aufbewahren von Acetbernsteinsäureester mit Methylamin in Alkohol und Destillieren des Reaktionsprodukts unter vermindertem Druck (EMERY, A. 260, 146; Am. 18, 92). Nadeln (aus Äther oder Schwefelkohlenstoff). F: 42°. Kp₁₁: 160°. Sehr leicht löslich in Äther und Schwefelkohlenstoff.
- 1-Äthyl-2-methyl- Δ^2 -pyrrolon-(5)-carbonsäure-(3)-äthylester $C_{10}H_{15}O_3N = H_2C$ — $C \cdot CO_2 \cdot C_2H_5$. B. Analog der vorangehenden Verbindung (Emery, A. 260, 148; Am. 13, 94). Nadeln. F: 75—76°. Kp₁₄: 165°.
- 1-Propyl-2-methyl- Δ^2 -pyrrolon-(5)-carbonsäure-(3)-äthylester $C_{11}H_{17}O_3N = H_2C C \cdot CO_2 \cdot C_2H_5$. B. Analog der entsprechenden 1-Methyl-Verbindung (EMERY, A. 260, 148; Am. 13, 95). Nadeln. F: 50°. Kp_{14-15} : 172°.
- 1-Isobutyl-2-methyl- A^2 -pyrrolon-(5)-carbonsäure-(8)-äthylester $C_{12}H_{10}O_3N = H_2C$ $C \cdot CO_2 \cdot C_2H_3$ $OC \cdot N[CH_2 \cdot CH(CH_3)_2] \cdot C \cdot CH_3$ (Emery, A. 260, 150; Am. 13, 96). Krystalle (aus Schwefelkohlenstoff). F: 68°. Kp₁₈: 175°.

1-Isoamyl-2-methyl- Δ^2 -pyrrolon-(5)-carbonsäure-(3)-äthylester $C_{13}H_{21}O_3N=H_2C$ $C \cdot CO_2 \cdot C_2H_5$ B. Analog der entsprechenden 1-Methyl-Verbindung (EMERY, A. 260, 150; Am. 13, 97). — Blättchen (aus Schwefelkohlenstoff). F: 51—52°. Kp₁₆: 188°. 1-Acetyl-2-methyl- Δ^2 -pyrrolon-(5)-carbonsäure-(3)-äthylester $C_{10}H_{13}O_4N=H_2C$ $C \cdot CO_2 \cdot C_2H_5$ B. Beim Erhitzen von 2-Methyl- Δ^2 -pyrrolon-(5)-carbonsäure-(3)-äthylester mit Acetanhydrid auf 155—160° (EMERY, A. 260, 145; Am. 13, 92). — Krystallpulver (aus Äther). F: 141—142°. Schwer löslich in Äther.

2. Oxo-carbonsäuren $C_7H_9O_3N$.

1. 6-Oxo-2-methyl-1.4.5.6-tetrahydro-pyridin-carbonsäure-(3), α' -Oxo-N. γ . α' . β' -tetrahydro- α -picolin- β -carbonsäure $C_7H_{\bullet}O_3N = \frac{H_3C \cdot CH_2 \cdot C \cdot CO_2H}{OC \cdot NH \cdot C \cdot CH_2}$.

Äthylester $C_9H_{18}O_3N = \frac{H_2C \cdot CH_3 \cdot C \cdot CO_2 \cdot C_2H_5}{OC \cdot NH \cdot C \cdot CH_3}$. B. Beim Aufbewahren von α -Acetylglutarsäure-diäthylester mit alkoh. Ammoniak und Destillieren des Reaktionsprodukts unter vermindertem Druck (EMERY, Am. 13, 352). — Krystalle (aus Chloroform + Äther). F: 156°.

- 1 Phenyl 6 oxo 2 methyl 1.4.5.6 tetrahydro pyridin carbonsäure (3) äthylester $C_{15}H_{17}O_3N = \frac{H_2C CH_3 C \cdot CO_3 \cdot C_2H_5}{OC \cdot N(C_9H_5) \cdot C \cdot CH_3}$. B. Beim Aufbewahren von α -Acetylglutarsäure-diāthylester mit Anilin und Destillieren des Reaktionsprodukts unter vermindertem Druck (EMERY, Am. 13, 353). Krystalle (aus Chloroform + Äther). F: 196—197°. Leicht löslich in Chloroform, schwer in Äther.
- 2. $5-Oxo-2.4-dimethyl-\Delta^2-pyrrolin-carbonsäure-(3), 2.4-Dimethyl-\Delta^2-pyrrolon-(5)-carbonsäure-(3) <math>C_7H_9O_3N=\frac{CH_3\cdot HC-C\cdot CO_2H}{OC\cdot NH\cdot C\cdot CH_3}$.
- 2.4 Dimethyl Δ^2 pyrrolon (5) carbonsäure (3) äthylester $C_9H_{13}O_8N = CH_3 \cdot HC C \cdot CO_2 \cdot C_3H_5$. B. Beim Aufbewahren von α -Methyl- α' -acetyl-bernsteinsäure-diäthylester mit alkoh. Ammoniak (Emery, A. 260, 151; Am. 13, 97). Prismen (aus Essigester). F: 127°. Schwer löslich in Essigester.
- 3. $6 \cdot 0 \times 0 \cdot 2.2 \cdot dimethyl \cdot 1.2.3.6 \cdot tetrahydro-pyridin-carbonsäure (4) <math>C_8H_{11}O_3N = {HC:C(CO_2H)\cdot CH_3 \over OC-NH-C(CH_3)_3}$
- 6-Oxo-1.2.2-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4) $C_9H_{13}O_3N = HC:C(CO_2H)\cdot CH_2$ B. Bei der Oxydation von 6-Oxo-1.2.2.4-tetramethyl-1.2.3.6-tetra-OC-N(CH₃)-C(CH₃)

 hydro-pyridin-carbonsäure-(5)-nitril (S. 296) mit verd. Kaliumpermanganat-Lösung (Piccinini, C. 1907 I, 411, 413). Prismen (aus Wasser). F: 174—174,5°. Sublimiert bei 270° unzersetzt. Zersetzt sich bei 290—300°. Sehr leicht löslich in siedendem Wasser, leicht in Benzol und warmem absolutem Alkohol, löslich in Eisessig und Chloroform, schwer löslich in Ather, fast unlöslich in Petroläther. Gibt beim Behandeln mit Brom in Chloroform 3.3-Dibrom-6-oxo-1.2.2-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4), in Essigsäure 3.5-Dibrom-6-oxo-1.2.2-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4). Ist beständig gegen Kalilauge und Mineralsäuren. Liefert beim Schmelzen mit Kaliumhydroxyd unter vermindertem Druck Methylamin, Oxalsäure, Acrylsäure (?) und andere Produkte. Die wäßr. Lösung gibt mit Kupfersulfat eine grüne Färbung. Eisensalze bewirken in wäßriger, alkoholischer oder Aceton-Lösung eine blutrote Färbung.—NaC₉H₁₂O₂N + H₂O. Weiße Masse. Ba(C₉H₁₂O₂N)₂. Amorph.
- $8.8-\text{Dibrom} -6 \text{oxo} -1.2.2-\text{trimethyl} -1.2.8.6-\text{tetrahydro-pyridin-carbons} \\ \text{C}_9\text{H}_{11}\text{O}_8\text{NBr}_8 = \begin{matrix} \text{HC}:\text{C(CO}_9\text{H)}\cdot\text{CBr}_8 \\ \text{OC-N(CH}_9)-\text{C(CH}_9)_2 \end{matrix}. \quad B. \quad \text{Beim Bromieren der vorangehenden Verbindung} \\ \begin{matrix} \text{Description} \\ \text$

in Chloroform-Lösung (Piccinini, C. 1907 I, 412). — Prismen mit ½, C₆H₆ (aus Benzol). F: 201—202°. Leicht löslich in Alkohol, Äther, Chloroform und Benzol, schwer in Wasser und Schwefelkohlenstoff. — Spaltet bei mehrstündigem Kochen mit Wasser alles Brom ab. — Die wäßr. Lösung gibt mit Eisenchlorid eine blutrote Färbung.

 $8.5 \cdot \text{Dibrom - 6 - oxo - 1.2.2-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4)} \\ C_9H_{11}O_3NBr_2 = \begin{cases} \text{BrC}: C(CO_2H) \cdot \text{CHBr} \\ \text{OC-N(CH}_3) - \text{C(CH}_3)_2 \end{cases} . \\ B. \text{ Beim Bromieren der 6-Oxo-1.2.2-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4) in essigsaurer Lösung (Piccinnii, C. 1907 I, 412). — Prismen (aus Benzol). F: 137—139°. Schwer löslich in Wasser. — Zersetzt sich bei raschem Erhitzen sowie bei längerer Einw. von Wasser.$

4. 6-0xo-2.2.4-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(5)

 $\begin{array}{c} HO_2C\cdot C:C(CH_3)\cdot CH_2\\ OC-NH-C(CH_3)_2 \end{array}. \quad B. \quad \text{Man versetzt eine kalte Lösung des Amids (s. u.)}\\ \text{in 95\% giger Schwefelsäure mit kalter konzentrierter Natriumnitrit-Lösung und erwärmt zum Schluß langsam auf 80-90\% (Piccinini, Atti Accad. Torino 43 [1907/08], 556). — Prismen (aus Alkohol). Schmilzt bei 116-117\% (korr.) unter Bildung von 6-Oxo-2.2.4-trimethyl-1.2.3.6-tetrahydro-pyridin (Bd. XXI, S. 260). Leicht löslich in Alkohol und Chloroform. schwer in Benzol. — NaC₉H₁₂O₃N + 2H₂O. Krystalle. Sehr leicht löslich in Wasser und Alkohol. — Ba(C₉H₁₂O₃N)₂ + 3H₂O. Krystallpulver. Sehr leicht löslich in Wasser, Alkohol und Aceton. \\ \end{array}$

Amid $C_9H_{14}O_2N_3=\frac{H_2N\cdot CO\cdot C:C(CH_3)\cdot CH_2}{OC-NH-C(CH_3)_2}$. B. Man löst das Nitril (s. u.) in 95% iger Schwefelsäure, erhitzt kurze Zeit auf 150—160% und versetzt nach dem Abkühlen mit Wasser (PICCININI, Atti Accad. Torino 43 [1907/08], 550, 555). — Prismen (aus Wasser). F: 199—200% (korr.). Leicht löslich in Alkohol, Chloroform und Aceton, ziemlich leicht in Wasser, schwer in Äther und Benzol.

Nitril, 6-Oxo-2.2.4-trimethyl-5-cyan-1.2.3.6-tetrahydro-pyridin $C_9H_{12}ON_2 = NC \cdot C \cdot C(CH_3) \cdot CH_3$

OC—NH—C(CH₃)₂
entsteht daher auch beim Behandeln von Aceton oder Mesityloxyd mit Ammoniak und Umsetzen des Reaktionsprodukts mit Cyanessigester (Guareschi, Atti Accad. Torino 28, 333; B. 26 Ref., 450). — Nadeln oder Prismen (aus Wasser). F: 194—194,5° (Gu.). Sublimiert in Nadeln (teilweise Zers.). Schwer löslich in Benzol; 1 Tl. löst sich bei 14° in etwa 345 Tln. Wasser (Gu.). — Zerfällt beim Erhitzen auf 320—330° zum größten Teil in Methan und α'-Oxy-β'-cyan-α.γ-lutidin (S. 222) (Gu., Grande, C. 1899 II, 440). Gibt bei der Einw. von Natrium und Amylalkohol 2.2.4-Trimethyl-piperidin, 4.6.6.4'.6'.6'-Hexamethyl-[dipiperidyl-(3.3')], 2.2.4-Trimethyl-piperidin-carbonsāure-(5) und eine in Blättchen krystallisierende Verbindung vom Schmelzpunkt 283° (Issoglio, C. 1908 II, 1444). Liefert beim Erhitzen mit Salzsāure (D: 1,19) auf 150—160° 6-Oxo-2.2.4-trimethyl-1.2.3.6-tetrahydropyridin (Piccinini, Atti Accad. Torino 42 [1906/07], 1013).

6 - Oxo - 1.2.2.4 - tetramethyl - 1.2.3.6 - tetrahydro - pyridin - carbonsäure - (5) $C_{10}H_{15}O_3N = \frac{HO_2C \cdot C : C(CH_2) \cdot CH_2}{OC \cdot N(CH_3) \cdot C(CH_3)}.$ Bei längerem Erhitzen des entsprechenden

Nitrils (s. u.) mit Salzsäure (D: 1,19) auf 120—125° (PICCININI, Atti Accod. Torino 43 [1907/08], 553). Aus dem Amid beim Erhitzen mit 45°/oiger Schwefelsäure sowie beim Versetzen der Lösung in konz. Schwefelsäure mit einer kalten Natriumnitrit-Lösung und nachfolgenden Erwärmen auf 80—90° (P.). — Prismen (aus Wasser). Schmilzt je nach der Art des Erhitzens bei 118—120° bezw. 125—126° unter Bildung von 6-Oxo-1.2.2.4-tetramethyl-1.2.3.6-tetrahydro-pyridin. Löslich in Alkohol, schwer in Ather, Petroläther und Benzol. — Ba(C₁₀H₁₄O₃N)₂. Löslich in Alkohol.

Amid $C_{10}H_{16}O_2N_2 = CH_3 \cdot NC_5H_3(:0)(CH_3)_3 \cdot CO \cdot NH_2$. B. Beim Erhitzen des Nitrils (s. u.) mit $95^{\circ}/_{0}$ iger Schwefelsäure auf $150-160^{\circ}$ (Piccinini, Atti Accad. Torino 48, [1907/08], 550, 551). — Prismen (aus Wasser). F: $195-196^{\circ}$. Sehr leicht löslich in Wasser Methanol, heißem Alkohol und Chloroform, schwer löslich oder unlöslich in Äther, Aceton und Benzol.

Nitril, 6-Oxo-1.2.2.4-tetramethyl-5-cyan-1.2.8.6-tetrahydro-pyridin $C_{10}H_{14}ON_2 = CH_2 \cdot NC_3H_2(:O)(CH_2)_3 \cdot CN$. B. Beim Umsetzen von Cyanessigester mit Methylamin in währ.

Aceton (Guareschi, Atti Accad. Torino 28, 341; B. 26 Ref., 451). — Nadeln oder Prismen (aus Wasser). F: 142—143,5° (Gu.). Sehr schwer löslich in Äther (Gu.). — Zerfällt beim Erhitzen auf 320—330° in Methan und 1.2.4-Trimethyl-5-cyan-pyridon-(6) (S. 303) (Gu., Grande, C. 1899 II, 440). Liefert beim Behandeln mit verd. Kaliumpermanganat-Lösung 6-Oxo-1.2.2-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4) und eine neutrale Verbindung C₁₀H₁₆O₄N₂ (Piccinini, C. 1907 I, 411).

1-Allyl-6-oxo-2.2.4-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(5)-nitril, 1-Allyl-6-oxo-2.2.4-trimethyl-5-cyan-1.2.3.6-tetrahydro-pyridin $C_{12}H_{16}ON_3 = CH_1: CH_2: NC_3: H_2: O)(CH_2)_2: CN. B.$ Analog der vorangehenden Verbindung (Guarschi, Att. Accad. Torino 28, 347; B. 26 Ref., 451). — Prismen. F: 152—153,5°. Sublimiert oberhalb des Schmelzpunkts. Leicht löslich in kochendem Wasser und Alkohol, sehr schwer in Äther.

- 1-Bensyl-6-oxo-2.2.4-trimethyl-1.2.3.6-tetrahydro-pyridin-carbonsäure-(5)-nitril, 1-Bensyl-6-oxo-2.2.4-trimethyl-5-cyan-1.2.3.6-tetrahydro-pyridin $C_{16}H_{16}ON_2=C_6H_5\cdot CH_2\cdot NC_5H_2(:O)(CH_3)_3\cdot CN$. B. Analog der entsprechenden 1-Methyl-Verbindung (Guareschi, Atti Accad. Torino 28, 345; B. 26, Ref. 451). Nadeln (aus verd. Alkohol). F: 168—169°. Unlöslich in Wasser, fast unlöslich in Ather, löslich in Alkohol. Gibt mit Brom in Chloroform ein Monosubstitutionsprodukt.
- 1.1'-Äthylen-bis-[6-oxo-2.2.4-trimethyl-1.2.3.6-tetrahydro-pyridin-carbon-säure-(5)-nitril], 1.1'-Äthylen-bis-[6-oxo-2.2.4-trimethyl-5-cyan-1.2.3.6-tetrahydro-pyridin] $C_{90}H_{24}O_{9}N_{4}=[-CH_{2}\cdot NC_{5}H_{2}(:0)(CH_{3})_{3}\cdot CN]_{3}$. B. Analog der entsprechenden 1-Methyl-Verbindung (GUARESCHI, Atti Accad. Torino 28, 839; B. 26 Ref. 943). Nadeln aus Essigsäure). F: 349—350° (Zers.). Unlöslich in den gewöhnlichen Lösungsmitteln. Ist beständig gegen siedende konzentrierte Kalilauge.
- 5. Lactam der 2¹-Amino-1.1.2-trimethyl-cyclobutan-[a-isobernsteinsäure]-(4) (,,Pinencarbon-säurepseudoxim") C₁₁H₁₇O₂N, s. nebenstehende Formel.

 B. Das Amid (s. u.) entsteht beim Erhitzen von Oximino-pinan-carbonsäure-amid (Bd. X, S. 641) mit konz. Schwefelsäure auf 100°; man verseift es durch Kochen mit konz. Natron-lauge (Tilden, Bubrows, Soc. 87, 347). Prismen mit 1 H₂O (aus Alkohol). F: 220° (T., Bu.). Liefert beim Erhitzen mit Salzsäure im Rohr auf ca. 120° 2¹-Amino-1.1.2-trimethyl-cyclobutan-[a-isobernsteinsäure]-(4) (Bd. XIV, S. 551) (T., Bu.; T., Blyther, Soc. 89, 1564). Ammoniumsalz. Prismen (T., Bu.). AgC₁₁H₁₆O₂N. Krystalle (T., Bu.).

Methylester $C_{12}H_{19}O_9N = NC_{10}H_{16}(:0)\cdot CO_3\cdot CH_3$. B. Aus dem Silbersalz der vorangehenden Verbindung und Methyljodid in Äther (Tilden, Burbows, Soc. 87, 348). — F: 132°.

Amid $C_{11}H_{10}O_2N_2 = NC_{10}H_{10}(:0)\cdot CO\cdot NH_2$. B. s. o. bei der Säure. — Krystalle mit 1 H_2O . F: 209° (Tilden, Burrows, Soc. 87, 347). Unlöslich in kalter Alkalilauge.

6. Lactam der 3-Amino-p-menthan-dicarbonsäure-(3.8) $C_{12}H_{10}O_3N = CH_2 \cdot HC < \frac{CH_2}{CH_3} \cdot \frac{C(CO_3H)}{C(CO_3H)} > CH \cdot C(CH_2)_3$. B. Neben Menthon-carbonsäure-(8) bei längerem NH·CO

Kochen von Pulegon mit Kaliumcyanid in verd. Alkohol (CLARKE, LAPWORTH, Soc. 89, 1879). Entsteht beim Erhitzen von 8-Cyan-menthon-cyanhydrin (Bd. X, S. 463) mit Salzsäure auf 100° (CL., L.). — Mikroskopische Nadeln (aus Eisessig). F: 237—239°. Sehr schwer löslich in Wasser, Petroläther, Benzol und Chloroform, etwas leichter in Alkohol, Aceton und Essigester, leicht in Eisessig. — Ist beständig gegen siedende Salzsäure und Kalilauge. Beim Erhitzen mit rauchender Salzsäure im Rohr auf 170—180° erhält man eine geringe Menge Menthon-carbonsäure-(8).

c) Oxo-carbonsauren C_nH_{2n-7}O₈N.

- 1. Oxo-carbonsäuren C₆H₅O₃N.
- 1. 6-Oxo-1.6-dihydro-pyridin-carbonsäure-(2), Pyridon-(6)-carbonsäure-(2) $C_6H_5O_3N = {HC: CH \cdot CH \over OC \cdot NH \cdot C \cdot CO_2H}$ ist desmotrop mit 6-Oxy-pyridin-carbonsäure-(2), S. 213.
- 2. 4-Oxo-1.4-dihydro-pyridin-carbonsäure-(2), Pyridon-(4)-carbonsäure-(2) $C_6H_5O_3N = \frac{HC \cdot CO \cdot CH}{HC \cdot NH \cdot C \cdot CO_2H}$ ist desmotrop mit 4-Oxy-pyridin-carbonsäure-(2), S. 213.
- 1-Äthyl-pyridon-(4)-carbonsäure-(2) $C_8H_9O_3N = \frac{HC-CO-CH}{HC\cdot N(C_2H_5)\cdot C\cdot CO_2H}$. B. Aus Komansäure (Bd. XVIII, S. 405) und Äthylamin (Ost, J. pr. [2] 29, 380). Prismen mit $^{1}/_{2}H_9O$. Leicht löslich in Wasser. Zerfällt bei 160° in (nicht näher beschriebenes) 1-Äthylpyridon-(4) und Kohlendioxyd.
- 1-Oxy-pyridon-(4)-carbonsäure-(2) $C_6H_5O_4N = \frac{HC-CO-CH}{HC\cdot N(OH)\cdot C\cdot CO_2H}$. B. Beim Erwärmen von Komansäure mit salzsaurem Hydroxylamin und Natriumcarbonat in Wasser (Ost, J. pr. [2] 29, 378; vgl. Peratoner, R. A. L. [5] 11 I, 331). Krystalle (aus Wasser). Zersetzt sich bei etwa 200° (O.). Wird durch Zinn und Salzsäure zu 4-Oxy-picolinsäure reduziert (O.). Zerfällt beim Erhitzen mit konz. Salzsäure auf 200° in 1-Oxy-pyridon-(4) und Kohlendioxyd (O.).
- 1-Methyl-3.5.6-trichlor-pyridon-(4)-carbonsäure-(2) $C_7H_4O_8NCl_3=ClC-CO-Ccl$ ClC-CO-ccl B. Bei der Einw. von Natronlauge auf das 2-Methylimid des $ClC\cdot N(CH_3)\cdot C\cdot CO_2H$ 3.5.5.6.6-Pentachlor-cyclohexantrions-(1.2.4) (ZINCKE, FUCHS, A. 267, 42). Nadeln (aus verd. Salzsäure). Zerfällt beim Schmelzen (bei 220°) sowie beim Kochen mit Wasser, Alkohol oder Eisessig in 1-Methyl-2.3.5-trichlor-pyridon-(4) und Kohlendioxyd.
- 1-Phenyl-3.5.6 trichlor pyridon (4) carbonsäure (2) $C_{12}H_6O_3NCl_3 = ClC-CO-Ccl$ ClC-N(C₆H₅)·C·CO₂H

 hexantrion-(1.2.4)-anil-(2) (ZINCKE, FUCHS, A. 267, 26). Nadeln. F: 245° (Zers.). Unlöslich in Benzin, schwer löslich in Äther, Chloroform und Benzol, löslich in Alkohol und Wasser. Geht beim Schmelzen sowie beim Kochen mit Alkohol oder Eisessig oder beim Erhitzen mit Wasser auf 150° in 1-Phenyl-2.3.5-trichlor-pyridon-(4) über. Liefert beim Erwärmen mit Natronlauge auf dem Wasserbad 1-Phenyl-3.5-dichlor-4.6-dioxo-1.4.5.6-tetrahydropyridin-carbonsäure-(2) (S. 329). AgC₁₂H₅O₃NCl₃. Nadeln. Färbt sich am Licht violett. Sehr schwer löslich in kaltem Wasser. Ba(C₁₂H₅O₃NCl₃). Krystalle. Leicht löslich in heißem Wasser, etwas schwerer in kaltem Wasser.

Methylester $C_{13}H_8O_3NCl_3 = \frac{ClC - CO - CCl}{ClC \cdot N(C_6H_5) \cdot C \cdot CO_2 \cdot CH_3}$. Tafeln (aus Alkohol). F: 205° (Zers.) (Zincke, Fuchs, A. 267, 28).

- 3. 6-Oxo-1.6-dihydro-pyridin-carbonsäure-(3), Pyridon-(6)-carbonsäure-(3) $C_6H_5O_3N = {HC:CH\cdot C\cdot CO_2H \atop OC\cdot NH\cdot CH}$ ist desmotrop mit 6-Oxy-pyridin-carbonsäure-(3) 8. 215.
- 1-Methyl-pyridon-(6)-carbonsäure-(3) $C_7H_7O_3N = \frac{HC = CH C \cdot CO_2H}{OC \cdot N(CH_2) \cdot CH}$. Zur Konstitution vgl. v. Pechmann, B. 18, 318. B. Aus 6-Oxy-nicotinsäure durch Eindampfen mit 2 Mol Kalilauge und Erhitzen des Produkts mit Methyljodid und Methanol auf 100° bis 110° (v. P., Welsh, B. 17, 2394) oder durch Kochen mit Methyljodid in alkal. Lösung (H. Meyer, M. 26, 1318). Durch Eintragen von Cumalinsäuremethylester (Bd. XVIII, S. 406) in wäßr. Methylamin-Lösung und Kochen mit Natronlauge (v. P., W., B. 17, 2395). Nadeln mit 1 H_2O . F: 237—238° (v. P., W.), 238—239° (M.). Sehr schwer löslich in kaltem

Wasser, leicht in siedendem Wasser, löslich in Alkohol, Äther und Eisessig, unlöslich in Chloroform und Benzol (v. P., W.). — Spaltet beim Kochen mit Natriumamalgam und Wasser Methylamin ab (v. P., B. 18, 318).

Methylester $C_8H_9O_8N = \frac{HC = CH - C \cdot CO_8 \cdot CH_8}{OC \cdot N(CH_8) \cdot CH}$. B. Bei der Einw. von Diazomethan auf 1-Methyl-pyridon-(6)-carbonsäure-(3) (H. MEYER, M. 26, 1319), auf 6-Oxy-nicotinsäure (M., M. 26, 1320) oder 6-Oxy-nicotinsäure-methylester (M., M. 26, 1321). — Nadeln (aus Wasser). F: 139°. Sehr schwer löslich in Äther, sehr leicht in Alkohol.

1-Phenyl-pyridon-(6)-carbonsäure-(8) $C_{12}H_{0}O_{3}N = \frac{HC \longrightarrow CH \longrightarrow C \cdot CO_{2}H}{OC \cdot N(C_{6}H_{5}) \cdot CH}$ Zur

Konstitution vgl. v. Pechmann, B. 18, 318. — B. Beim Kochen von α-Anilinomethylen-glutaconsäure (Bd. XII, S. 535) mit Natronlauge (v. P., A. 273, 180), ebenso aus α-Anilinomethylen-glutaconsäure-α-methylester (v. P., Welsh, B. 17, 2393; v. P., A. 273, 181) sowie in geringer Menge aus α-Anilinomethylen-glutaconsäure-dimethylester (v. P., A. 273, 178). — Nadeln (aus Wasser). F: 275—280° (v. P., W.). Sublimierbar (v. P., W.). Löslich in heißem Wasser, Alkohol und Eisessig, fast unlöslich in Äther, Chloroform und Benzol (v. P., W.). — Beim Kochen mit Natriumamalgam und Wasser wird Anilin abgespalten (v. P., B. 18, 318).

Methylester $C_{18}H_{11}O_{8}N = \frac{HC = CH - C \cdot CO_{2} \cdot CH_{8}}{OC \cdot N(C_{6}H_{8}) \cdot CH}$. B. Beim Erwärmen von α -Anilinomethylen-glutaconsäure- α -methylester mit Soda-Lösung oder Ammoniak (v. Pechmann, A. 278, 181 Anm.). — Prismen (aus Methanol). F: 103°.

Amid $C_{18}H_{10}O_8N_8 = HC CH C\cdot CO\cdot NH_8$. B. Aus α -Anilinomethylen-glutacon-säure- α -methylester durch längere Einw. von Ammoniak (v. Pechmann, A. 273, 181 Anm.). — Prismen (aus Methanol). F: 221—226°.

- 1-Phenyl-5-brom-pyridon-(6)-carbonsäure-(3)-methylester $C_{18}H_{10}O_{2}NBr=BrC=CH-C\cdot CO_{2}\cdot CH_{3}$. Zur Konstitution vgl. v. Pechmann, B. 18, 318. B. Aus $OC\cdot N(C_{6}H_{5})\cdot CH$ 3-Brom-cumalin-carbonsäure-(5)-methylester und Anilin in alkoh. Lösung (v. Pechmann, B. 17, 2399). Nadeln (aus Alkohol). F: 183,5°; destilliert unzersetzt; löslich in Alkohol, Äther und Chloroform, unlöslich in Wasser, Säuren und Alkalilaugen (v. P., B. 17, 2399). Besitzt einen an faules Obst erinnernden Geruch.
- 1 Amino 5 brom pyridon (6) carbonsäure (3) C₆H₅O₂N₂Br = BrC=CH-C·CO₂H
 OC·N(NH₂)·CH
 methylalkoholischer Natronlauge (v. Pechmann, Mills, B. 37, 3839). Krystalle (aus Alkohol). F: 238°. Leicht löslich in kaltem Alkohol und Eisessig, ziemlich leicht in siedendem, schwer in kaltem Wasser, sonst sehr schwer löslich. Reduziert Fehlingsche Lösung beim Kochen. Die wäßr. Lösung schmeckt süß.
- 1-Bensalamino 5-brom pyridon (6) carbonsäure (3) $C_{13}H_{0}O_{3}N_{2}Br = BrC = CH C \cdot CO_{2}H$ OC·N(N:CH·C₀H₅)·CH
 Benzaldehyd in 50°/₀iger Essigsäure (v. Pechmann, Mills, B. 37, 3840). Krystalle (aus Alkohol). F: 243°. Leicht löslich in Eisessig, mäßig in Alkohol, sonst schwer löslich. Löslich in Soda-Lösung. Spaltet beim Kochen mit verd. Schwefelsäure Benzaldehyd ab.
- 1 Amino 5 brom pyridon (6) carbonsäure (3) methylester C₇H₇O₃N₂Br = BrC = CH C·CO₂·CH₃
 OC·N(NH₂)·CH
 Behandeln mit kalter Hydrazinhydrat-Lösung (v. Pechmann, Mills, B. 37, 3837). Krystalle (aus Benzol). F: 144—145,5°. Schwer löslich in kaltem Wasser, kaltem Äther, Alkohol und Benzol, leichter löslich in Eisessig und Chloroform, leicht in heißem Wasser. Reduziert

FEHLINGSCHE LÖSUNG nach längerem Kochen. Gibt bei Behandlung mit Natriumnitrit und verd. Schwefelsäure 5-Brom-6-oxy-nicotinsäure-methylester. Reagiert mit 3-Brom-cumalin-carbonsäure-(5)-methylester in heißem Alkohol unter Bildung von 5.5'-Dibrom-6.6'-dioxo-bis-[1.6-dihydro-pyridyl-(1)]-dicarbonsäure-(3.3')-dimethylester (s. u.).

- 1-Bensalamino-5-brom-pyridon-(6)-carbonsäure-(3)-methylester $C_{14}H_{11}O_8N_8Br=BrC=CH-C\cdot CO_8\cdot CH_3$. B. Aus 1-Amino-5-brom-pyridon-(6)-carbonsäure-(3)-methylester und Benzaldehyd in siedender alkoholischer Lösung (v. Pechmann, Mills, B. 37, 3838).— Nadeln (aus Alkohol). F: 173°. Sehr leicht löslich in Chloroform, leicht in Eisesig, mäßig in Alkohol und Benzol, ziemlich schwer in Äther und Ligroin, fast unlöslich in Wasser.
- 1-[2.5-Dimethyl-3.4-dicarbāthoxy-pyrryl-(1)]-5-brom-pyridon-(6)-carbon-sāure-(3)-methylester $C_{10}H_{21}O_7N_2Br = HC < C(CO_2 \cdot CH_2) : CH > N \cdot N < C(CH_2) : C \cdot CO_2 \cdot C_2H_5$ B. Beim Kochen einer absolut-alkoholischen Lösung von 3-Brom-cumalin-carbonsaure-(5)-methylester und 1-Amino-2.5-dimethyl-pyrrol-dicarbonsaure-(3.4)-diāthylester in Eisensig (Bülow, Filchner, B. 41, 3283). Nadeln (aus Alkohol). F: 155°. Löslich in den gebräuchlichen organischen Lösungsmitteln, sohwer löslich in Ligroin.
- 5.5'-Dibrom-6.6'-dioxo-bis-[1.6-dihydro-pyridyl-(1)] dicarbonsäure (8.3') dimethylester $C_{14}H_{10}O_{e}N_{g}Br_{g} = \begin{bmatrix} HC < C(CO_{g} \cdot CH_{g}) : CH > N- \\ CBr & CO > N- \end{bmatrix}_{g}$. B. Aus 1-Amino-5-brompyridon-(6)-carbonsäure-(3)-methylester und 3-Brom-cumalin-carbonsäure-(5)-methylester in Alkohol auf dem Wasserbad (v. Pechania, Mills, B. 37, 3840). Säulen (aus Nitrobenzol). F: 344°. Läßt sich in kleinen Mengen sublimieren. Löslich in geschmolzenem Phenol und heißem Nitrobenzol, sonst sehr schwer löslich. Zerfällt bei der Reduktion mit Zinkstaub und Eisessig unter Bildung von 5-Brom-pyridon-(6)-carbonsäure-(3)-methylester.
- 4. 4-Oxo-1.4-dihydro-pyridin-carbonsdure-(3), Pyridon-(4)-carbonsdure-(3), $C_6H_5O_8N = \frac{HC \cdot CO \cdot C \cdot CO_2H}{HC \cdot NH \cdot CH}$ ist desmotrop mit 4-Oxy-pyridin-carbonsdure-(3), 8. 214.
- Pyridon (4) carbonsäure (8) essigsäure (1) $C_0H_7O_5N = HC CO C \cdot CO_2H$ $HC \cdot N(CH_2 \cdot CO_2H) \cdot CH$. Vgl. hierzu das Anhydrid des 1-Carboxymethyl-4-oxy-3-carboxy-pyridiniumhydroxyds, S. 214.
- 5. 2-Oxo-1.2-dihydro-pyridin-carbonedure-(3), Pyridon-(2)-carbon-edure-(3) C₆H₅O₅N = HC·CH: C·CO₂H ist desmotrop mit 2-Oxy-pyridin-carbonedure-(3), S. 214.
- $\begin{array}{lll} & \textbf{Pyridon (3) carbons \"aure (3) casigu \ddot{a}ure (1)} & C_0H_7O_5N = \\ & \textbf{HC} & \textbf{CW} & \textbf{C} \cdot \textbf{CO}_9H \\ & \textbf{HC} \cdot \textbf{N}(\textbf{CH}_2 \cdot \textbf{CO}_2H) \cdot \textbf{CO} & \textbf{Vgl. hierzu das Anhydrid des } 1 \cdot \textbf{Carboxymethyl} \cdot 2 \cdot \textbf{oxy} \cdot 3 \cdot \textbf{Carboxy-pyridiniumhydroxyds, S. 214.} \end{array}$
- 6. 2-Oxo-1.2-dihydro-pyridin-carbonsdure-(4), Pyridon-(2)-carbonsdure-(4) $C_4H_4O_5N = \frac{HC \cdot C(CO_2H) : CH}{HC NH CO}$.
- 6-Chlor-pyridon-(2)-carbonsāure-(4) $C_0H_4O_3NCl = \frac{HC \cdot C(CO_3H) \cdot CH}{ClC NH CO}$ ist desmotrop mit 6-Chlor-2-oxy-pyridin-carbonsāure-(4), S. 216.

7. Oxo-a-pyrrylessigsäure, a-Pyrroylameisensäure, a-Pyrrylglyoxylsäure C₆H₅O₃N = HC——CH
HC·NH·C·CO·CO₃H.

B. Aus 2-Acetyl-pyrrol durch Oxydation mit
Kaliumpermanganat in verd. Kalilauge (Ciamician, Dennstedt, B. 16, 2350; G. 18, 457).

Gelbliche Nadeln mit 1 H₂O (aus Benzol). F: 74—76° (Zers.) (C., D.). Die wasserfreie Säure ist intensiv gelb; sie fängt bei 111—113° an sich zu zersetzen (C., D.). In wasserfreiem Zustand schwer löslich in kaltem Wasser, leicht in heißem (C., D.). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Angeli, G. 22 II, 7. Löst sich in warmer Salzsäure mit intensiv carminroter Farbe; die Lösung wird auf Zusatz von Alkali gelbgrün (C., D.). — Gibt in wäßr. Lösung mit Eisenchlorid eine rote Färbung (C., D.). — AgC₆H₄O₃N. Nadeln (C., D.).

Methylester $C_7H_7O_3N = \frac{HC - CH}{HC \cdot NH \cdot C \cdot CO \cdot CO_3 \cdot CH_3}$. B. Durch Erhitzen des Silbersalzes der α -Pyrrylglyoxylsäure mit Methyljodid auf 100° (Ciamician, Dennstedt, B. 17, 2949; G. 15, 15). — Tafeln (aus Benzol). Monoklin prismatisch (La Valle, B. 17, 2950; vgl. Groth, Ch. Kr. 5, 525). F: 70—72°. Kp: 285° (Zers.). Sehr leicht löslich in Äther, Benzol und siedendem Alkohol, schwer in Wasser, unlöslich in Petroläther.

N-Methyl- α -pyrrylglyoxylsäure $C_7H_7O_3N = \frac{HC - CH}{HC \cdot N(CH_3) \cdot C \cdot CO \cdot CO_3H}$. B. Durch Oxydation von 1-Methyl-2-acetyl-pyrrol mit Kaliumpermanganat in alkal. Lösung (DE VARDA, B. 21, 2872; G. 18, 451). — Hellgelbe Nadeln (aus Benzol). F: 141—142,5° (Zers.) (DE V.). Schwer löslich in Wasser, Äther und Benzol (DE V.). Starke Säure; elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Angeli, G. 22 II, 7. — Spaltet beim Erhitzen Kohlendioxyd ab unter Bildung von 1-Methyl-pyrrol und anderen Produkten (DE V.). Liefert bei Behandlung mit Brom in Eisessig [1-Methyl-3.4-dibrom-pyrryl-(2)]-glyoxylsäure (DE V.). — AgC₇H₆O₃N. Niederschlag (DE V.).

[1-Methyl-3.4-dibrom-pyrryl-(2)]-glyoxylsäure C₇H₅O₈NBr₂ = BrC ——CBr

HC·N(CH₃)·C·CO·CO₂H

B. Aus N-Methyl-α-pyrrylglyoxylsäure und Brom in Eisessig (DE VARDA, B. 21, 2873; G. 18, 455). — Schwefelgelbe Prismen (aus Benzol). F: 160° (Zers.) (DE V., B. 21, 2874; G. 18, 455). Schwer löslich in Wasser, Äther und Benzol (DE V., G. 18, 455). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Angell, G. 22 II, 8. — Liefert bei der Oxydation mit rauchender Salpetersäure auf dem Wasserbad Dibrommaleinsäuremethylimid (DE V., B. 21, 2874; G. 18, 547).

2. 5^{1} -Oxo-5-äthyl-pyrrol-carbonsäure - (2), 5-Acetyl-pyrrol-carbonsäure - (2) $C_{7}H_{7}O_{8}N = \frac{HC-CH}{CH_{8}\cdot CO\cdot C\cdot NH\cdot C\cdot CO_{2}H}$. B. Aus dem Methylester (s. u.) durch

Kochen mit Kalilauge (Ciamician, Silber, B. 17, 1157; G. 14, 171). — Blättchen (aus Toluol). F: 186°; sublimierbar; löslich in Wasser, Alkohol, Äther und Aceton, schwer löslich in siedendem Toluol, unlöslich in Petroläther (C., S., B. 17, 1157; G. 14, 171). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Angeli, G. 22 II, 9. Elektrolytische Dissoziationskonstante k bei 25°: 3,05×10⁻⁴ (Ang.). — Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung [5-Carboxy-pyrryl-(2)]-glyoxylsäure (C., S., B. 19, 1961; G. 16, 379). Wird das Kaliumsalz mit Kaliumcarbonat auf 280—300° erhitzt, so entsteht 2-Acetyl-pyrrol (C., S., B. 19, 1963; G. 16, 382). Beim Kochen mit überschüssigem Acetanhydrid entsteht, Diacetylpyrokoll' (Syst. No. 3632) (Anderlini, G. 19, 354). — Gibt mit Eisenchlorid in wäßr. Lösung einer gelbbraunen Niederschlag (C., S., B. 17, 1157; G. 14, 171). — AgC, H₆O₃N. Pulver. Schwer löslich in Wasser (C., S., B. 17, 1157; G. 14, 171). — Ca(C, H₆O₃N)₂ + 7 H₂O. Prismen (aus Wasser) (C., S., B. 17, 1157; G. 14, 171). Triklin (La Valle, B. 17, 1158; G. 14, 172).

Methylester C₈H₉O₃N = ... B. Beim Erhitzen von Pyrrol-CH₃·CO·C·NH·C·CO₃·CH₃ B. Beim Erhitzen von Pyrrolα-carbonsāure-methylester mit Acetanhydrid im Rohr auf 250—260° (CIAMICIAN, SILBER, B. 17, 1156; G. 14, 169). — Nadeln (aus Wasser). F: 113°; löslich in siedendem Wasser, leicht in Alkohol und Äther (C., S., B. 17, 1156; G. 14, 170). — Beim Einleiten von Bromdampf in die warme wäßrige Lösung erhält man 3.4-Dibrom-5-acetyl-pyrrol-carbonsäure-(2)-methylester (C., S., B. 20, 2603; G. 17, 272). — AgC₈H₈O₃N. Niederschlag (C., S., B. 17, 1156; G. 14, 170).

3.4 - Dibrom - 5 - acetyl - pyrrol - carbonsäure - (2) - methylester $C_8H_7O_8NBr_2 = BrC$ ——CBr

CH₂·CO·C·NH·C·CO₂·CH₃

B. Beim Einleiten von Bromdampf in eine warme wäßrige

CH₃·CO·C·NH·C·CO₂·CH₃

Lösung von 5-Acetyl-pyrrol-carbonsäure-(2)-methylester (Ciamician, Silber, B. 20, 2603;

G. 17, 272). — Einw. von Salpetersäure: C., S.

3. Oxo-carbonsäuren $C_8H_9O_3N$.

1. $6-0x_0-2.4$ -dimethyl-1.6-dihydro-pyridin-carbonsäure-(3), a'- $0x_0-N.a'$ -dihydro- $a.\gamma$ -lutidin- β -carbonsäure, 2.4-Dimethyl-pyridon-(6)-carbonsäure-(3) $C_8H_9O_3N = {HC:C(CH_3)\cdot C\cdot CO_2H \atop OC-NH-C\cdot CH_3}$ ist desmotrop mit 6-0xy-2.4-dimethyl-pyridin-carbonsäure-(3), S. 219.

Nitril, 2.4-Dimethyl-3-cyan-pyridon-(6) $C_8H_8ON_2 = NC_5H_2(:0)(CH_2)_3\cdot CN$ ist desmotrop mit 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-3-nitril, S. 219. Vgl. auch Verbindung $C_8H_8ON_2$, S. 219.

Imid des 2.4 - Dimethyl - pyridon - (6) - carbonsäure - (3) - nitrils $C_8H_9N_3 = HC:C(CH_3)\cdot C\cdot CN$ ist desmotrop mit 6-Amino-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril, $HN:C-NH-C\cdot CH_3$ is desmotrop mit 6-Amino-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril, S.544.

- 1.2.4 Trimethyl pyridon (6) carbonsäure (3) nitril, 1.2.4 Trimethyl 3 cyan-pyridon (6) $C_9H_{10}ON_2 = \frac{HC:C(CH_3)\cdot C\cdot CN}{OC\cdot N(CH_3)\cdot C\cdot CH_3}$. B. Aus 6-Methoxy-2.4-dimethyl-3-cyan-pyridin durch Erhitzen auf 300° (v. Meyer, C. 1908 II, 593; J. pr. [2] 78, 518). Durch Erwärmen von 6-Oxy-2.4-dimethyl-3-cyan-pyridin mit Methyljodid in alkalisch-methyl-alkoholischer Lösung (v. M.). Nadeln. F: 125°.
- 2. 4-Oxo-2.6-dimethyl-1.4-dihydro-pyridin-carbonsäure-(3), γ - $Oxo-N.\gamma$ -dihydro- $\alpha.\alpha'$ -lutidin- β -carbonsäure, 2.6-Dimethyl-pyridon-(4)-carbonsäure-(3) $C_8H_9O_3N = \frac{HC \cdot CO \cdot C \cdot CO_2H}{CH_3 \cdot C \cdot NH \cdot C \cdot CH_3}$ ist desmotrop mit 4-Oxy-2.6-dimethyl-pyridin-carbonsäure-(3), S. 221.

Anil der 1.2.6-Trimethyl-pyridon-(4)-carbonsäure-(3) $C_{15}H_{16}O_2N_3 = HC \cdot C(:N \cdot C_6H_5) \cdot C \cdot CO_2H$. — Halogenwasserstoffsaure Salze $C_{15}H_{16}O_2N_2 + HHlg$ $CH_3 \cdot C -N(CH_3) - C \cdot CH_3$. — Halogenwasserstoffsaure Salze $C_{15}H_{16}O_2N_2 + HHlg$ bezw. Halogenmethylate der 4-Anilino-2.6-dimethyl-pyridin-carbonsäure-(3) $(Hlg)(CH_3)NC_5H(CH_3)_2(CO_2H) \cdot NH \cdot C_6H_5$. Zur Konstitution vgl. Tschitschibabin, R. A. Konowalowa, A. A. Konowalowa, B. 54 [1921], 814. — B. Das Hydrojodid erhält man aus 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester durch Erwärmen mit Dimethylsulfat, Umsetzen mit Anilin, Kochen des entstandenen, bei 233° schmelzenden Produkts mit Salzsäure und Versetzen der kalten Lösung mit Kaliumjodid (MICHAELIS, A. 366, 355). — $C_{15}H_{16}O_2N_2 + HI$. Blättchen (aus Alkohol + Äther). F: 200° (M.). Schwer löslich in Wasser, leicht in Alkohol (M.). — $2C_{15}H_{16}O_2N_2 + 2HCl + PtCl_4$. Rotgelbe Nadeln (aus verd. Salzsäure). F: 230° (M.).

 $\begin{array}{c} \text{Hydrazon des} \quad \textbf{1.2.6 - Trimethyl - pyridon - (4) - carbons\"{a}ure - (3) - \"{a}thylesters} \\ \text{HC} \cdot \text{C}(:\text{N} \cdot \text{NH}_2) \cdot \text{C} \cdot \text{CO}_2 \cdot \text{C}_2\text{H}_5} \\ \text{C}_{11}\text{H}_{17}\text{O}_2\text{N}_3 = & \text{CH}_3 \cdot \text{C} - \text{N}(\text{CH}_3) - \text{C} \cdot \text{CH}_3} \\ \text{CH}_3 \cdot \text{C} - \text{N}(\text{CH}_3) - \text{C} \cdot \text{CH}_3} \\ \text{4 - Hydrazino - 2.6 - dimethyl - pyridin - [carbons\"{a}ure \cdot (3) - \ddot{a}thylester] - jod methylat late C_{11}\text{H}_{18}\text{O}_2\text{N}_3\text{I}, \text{ Formel I. B. Aus 4-Chlor- 2.6-dimethyl - pyridin - [carbons\"{a}ure \cdot (3) - \ddot{a}thylester] - jod methylat beim Erwärmen mit Hydrazinhydrat in wäßr. Lösung (MICHAE-LIS, A. 366, 378). Gelbe Nadeln (aus jodwasserstoffs\"{a}urehaltigem Wasser). F: 247°. Schwer löslich in kaltem Wasser, ziemlich leicht in Alkohol. Gibt bei Behandlung mit Natronlauge die Verbindung der Formel II. \\ \end{array}$

Phenylhydrazon des 1.2.6-Trimethyl-pyridon-(4)-carbonsäure-(3)-äthylesters $HC \cdot C(:N \cdot NH \cdot C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5$. — Jod wasserstoffsaures Salz bezw. $C_{17}H_{21}O_2N_3 = \frac{\|C_{13} \cdot C - N(CH_3) - C \cdot CH_3}{CH_3 \cdot C - N(CH_3) - C \cdot CH_3}$. — Jod wasserstoffsaures Salz bezw. 4 · [β -Phenyl-hydrazino] - 2 · 6 · dimethyl-pyridin - [carbonsäure-(3)- athylester] - jod methylat $C_{17}H_{22}O_2N_3I$, s. nebenstehende Formel. B. Beim Erwärmen von 4 · Chlor-2 · 6 · dimethyl-pyridin - [carbonsäure · (3) · athylester] - jod methylat mit Phenylhydrazin auf dem Wasserbad (Michaelle, CH3) · CH3
1-Phenyl-2.6-dimethyl-pyridon-(4)-carbonsäure-(8) C₁₄H₁₃O₃N = HC—CO—C·CO₂H

B. Durch Erhitzen von 1-Phenyl-2.6-dimethyl-pyridon-(4)-dicarbonsäure-(3.5) (S. 347) auf 227° (Conrad, Guthzeit, B. 20, 161). Aus β-Anilino-crotonsäure-äthylester (Bd. XII, S. 518) durch Erhitzen mit Methyljodid auf 130—140° (C., Eckhardt, B. 22, 84) oder mit Natriumäthylat auf 80—90° (Knorr, B. 20, 1398). In geringer Menge beim Erhitzen von β-Anilino-crotonsäure-äthylester auf 240° und Verseifen des entstandenen Äthylesters mit Kalilauge (C., Limpach, B. 20, 947). — Nadeln (aus Alkohol). Schmilzt, langsam erhitzt, bei 257° (C., G.; C., L.; C., E.), 254—259° (Kn.), rasch erhitzt, bei 266° (C., L.), 265—267° (C., E.), 260—261° (Kn.) unter Zersetzung. — Liefert beim Erhitzen auf 270° 1-Phenyl-2.6-dimethyl-pyridon-(4) (C., G.; C., L.; C., E.). — Ba(C₁₄H₁₂O₃N)₂ + 4H₂O. Nadeln. Leicht löslich (C., E.).

1-Phenyl-2.6-dimethyl-pyridon-(4)-carbonsäure-(3)-methylester (?) $C_{15}H_{16}O_3N = HC-CO-C \cdot CO_2 \cdot CH_3$ (?). B. Bei gelindem Erwärmen von Dehydracetsäuremethyl-CH₃· $\overset{..}{C}$ · $N(C_6H_5)$ · $\overset{..}{C}$ · CCH_3 äther (Bd. XVII, S. 563) mit Anilin in Methanol (Perkin, B. 18, 683; Soc. 51, 498). — Nadeln. F: 152°. Leicht löslich in Alkohol und Benzol, unlöslich in Wasser. Unlöslich in Soda-Lösung.

1-[2.3.4.6-Tetramethyl-phenyl]-2.6-dimethyl-pyridon-(4)-carbonsäure-(3) $\frac{HC - CO - C \cdot CO_2H}{C_{18}H_{21}O_3N} = \frac{ ... \cdot C \cdot N[C_6H(CH_5)_4] \cdot ... \cdot B. \quad \text{Bei kurzem Erhitzen von } \beta\text{-Isoduridino-crotonsäure-äthylester (Bd. XII, S. 1176) auf 280—285° und Verseifen des neben anderen Produkten entstandenen Äthylesters mit alkoh. Kalilauge (Conrad, Limpach, B. 21, 1656). — Krystallinisch. F: 145°. Leicht löslich in Alkohol und Äther.$

1.2.6 - Trimethyl - thiopyridon - (4) - carbonsäure - (3) C₉H₁₁O₂NS = HC—CS—C·CO₂H

. B. Durch Erhitzen des Äthylesters mit alkoh. Kalilauge CH₃·C·N(CH₃)·C·CH₃

(MICHAELIS, A. 366, 346). — Gelbe Krystalle (aus Wasser). F: 241°. Schwer löslich in kaltem Wasser und Alkohol, unlöslich in Äther. Leicht löslich in Alkalilauge. — Beim Einleiten von Chlor in die wäßr. Lösung erhält man das Anhydrid des 2.6-Dimethyl-pyridin-carbonsäure-(3)-sulfonsäure-(4)-hydroxymethylats. — NH₄C₉H₁₀O₂NS. Nadeln (aus Alkohol + Äther). Leicht löslich in Wasser.

3. 6-Oxo-2.4-dimethyl-1.6-dihydro-pyridin-carbonsäure-(5), α' -Oxo-N. α' -dihydro- α . γ -lutidin- β' -carbonsäure, 2.4-Dimethyl-pyridon-(6)-carbonsäure-(5) $C_8H_9O_3N = \frac{HO_2C \cdot C : C(CH_3) \cdot CH}{OC-NH-C \cdot CH_3}$ ist desmotrop mit 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(5), S. 221.

1.2.4-Trimethyl-pyridon-(6)-carbonsäure-(5)-nitril, 1.2.4-Trimethyl-5-cyan-pyridon-(6) $C_9H_{10}ON_2= {\begin{array}{c} NC\cdot C: C(CH_3)\cdot CH \\ OC-N(CH_3)-C\cdot CH_3 \\ OC-N(CH_3)-C\cdot CH_3 \\ \end{array}}.$ B. Aus Cyanessigester, Acetylaceton und Methylamin (Guareschi, C. 1899 I, 289). Durch Erhitzen von Acetylacetonamin (Bd. I, S. 785) mit (nicht näher beschriebenem) Cyanacetmethylamid (Moir, Soc. 81, 113). Beim Erhitzen von 6-Oxo-1.2.2.4-tetramethyl-5-cyan-1.2.3.6-tetrahydro-pyridin auf 320—330° (Guareschi, Grande, C. 1899 II, 440). — Prismen (aus Alkohol). F: 203—204° (Gu.; Gu., Gr.). — Pharmakologisches Verhalten: Deriu, C. 1901 I, 582.

1-Äthyl-2.4-dimethyl-pyridon-(6)-carbonsäure-(5)-nitril,1-Äthyl-2.4-dimethyl-5-cyan-pyridon-(6) $C_{10}H_{12}ON_2 = \frac{NC \cdot C : C(CH_3) \cdot CH}{OC \cdot N(C_2H_5) \cdot C \cdot CH_3}$. B. Aus Cyanessigester, Acetylaceton und Äthylamin (Guareschi, C. 1899 I, 289). — Prismen. F: 174—175°. — Pharmakologisches Verhalten: Deriu, C. 1901 I, 582.

1-Allyl-2.4-dimethyl-pyridon-(6)-carbonsäure-(5)-nitril, 1-Allyl-2.4-dimethyl-5-cyan-pyridon-(6) $C_{11}H_{12}ON_3 = \frac{NC \cdot C \longrightarrow C(CH_3) \longrightarrow CH}{OC \cdot N(CH_2 \cdot CH : CH_2) \cdot C \cdot CH_3}$. B. Aus Cyanessigester, Acetylaceton und Allylamin (Guareschi, C. 1899 I, 289). — Nadeln (aus Wasser). F: 114°.

4. 0xo-carbonsäuren $C_9H_{11}O_3N$.

1. $6 - Oxo - 2.3.4 - trimethyl - 1.6 - dihydro - pyridin - carbonsäure - (5), 2.3.4 - Trimethyl - pyridon - (6) - carbonsäure - (5) <math>C_0H_{11}O_3N = HO_2C \cdot C : C(CH_3) \cdot C \cdot CH_3$

OC-NH-C-CH.

1.2.3.4 - Tetramethyl - pyridon - (6) - carbonsäure - (5) - nitril, 1.2.3.4 - Tetramethyl-S-cyan-pyridon - (6) $C_{10}H_{12}ON_3 = \frac{NC \cdot C \cdot C(CH_3) \cdot C \cdot CH_3}{OC \cdot N(CH_3) \cdot C \cdot CH_3}$. B. Aus Methyl-acetylaceton, Cyanessigester und Methylamin (Guareschi, C. 1899 I, 289). — Nadeln (aus Wasser). F: 180°. Besitzt einen sehr bitteren Geschmack (Sabbatani, C. 1899 II, 528). — Pharmakologische Wirkung: S.; Deriu, C. 1901 I, 582.

2. 5¹-Oxo-2.4-dimethyl-5-dthyl-pyrrol-carbonsdure-(3), 2.4-Dimethyl-5-acetyl-pyrrol-carbonsdure-(3) C₉H₁₁O₃N = CH₃·C·C·O₅H CH₃·C·C·NH·C·CH₃. B. Aus dem Äthylester (s. u.) durch Kochen mit Kalilauge (Magnanin, B. 21, 2866; G. 18, 446). — Krystalle (aus Alkohol). F: 252—254° (Zers.) (Zanetti, Levi, G. 24 I, 553). Im Vakuum sublimierbar (M.). Fast unlöslich in Wasser und kaltem Alkohol, sehr schwer löslich in Chloroform, Äther und Petroläther, leicht in heißer Essigsäure (M.). — Spaltet beim Erhitzen unter Atmosphärendruck Kohlendioxyd ab unter Bildung von 2.4-Dimethyl-5-acetyl-pyrrol (M.; Z., L.). 2.4-Dimethyl-5-acetyl-pyrrol entsteht auch beim Kochen mit Acetanhydrid (Z., L.). — Gibt mit Isatin und konz. Schwefelsäure in der Wärme eine grüne Färbung (M.).

Äthylester $C_{11}H_{15}O_3N = \frac{CH_3 \cdot C - C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot CO \cdot C \cdot NH \cdot C \cdot CH_2}$. B. Man behandelt Acetylaceton mit Natriumnitrit in essigsaurer Lösung, gibt Acetessigester zu und reduziert mit Zinkstaub bei 0° (Zanetti, Levi, G. 24 I, 552). Beim Erhitzen von 3.5-Dimethyl-pyrroldicarbonsäure-(2.4)-äthylester-(4) mit Acetanhydrid im Rohr auf 200—205° (MAGNANINI, B. 21, 2865; G. 18, 445). — Nadeln (aus Wasser). F: 142—143° (M.; Z., L.). Ziemlich leicht löslich in siedendem Wasser, sehr leicht in Alkohol, Äther, Chloroform und Benzol, schwer in Petroläther.

3. 4¹-Oxo-3.5-dimethyl-4-āthyl-pyrrol-carbonsāure-(2), 3.5-Dimethyl-4-acetyl-pyrrol-carbonsāure-(2) $C_9H_{11}O_3N = \frac{CH_2 \cdot CO \cdot C}{CH_2} \cdot C \cdot NH \cdot \frac{C}{C} \cdot CO_2H$. B. Aus dem Äthylester (s. u.) durch Kochen mit Kalflauge (Zanetti, Levi, G. 24 I, 548). — Nadeln (aus Alkohol). Schmilzt, rasch erhitzt, bei 208—210° (Zers.). Sublimiert bei langsamem Erhitzen teilweise unzersetzt. — Spaltet beim Erhitzen Kohlendioxyd ab unter Bildung von 2.4-Dimethyl-3-acetyl-pyrrol. Beim Kochen mit Essigsāureanhydrid entsteht Tetramethyldiacetyl-pyrokoll (Syst. No. 3632).

Äthylester $C_{11}H_{15}O_3N=\frac{CH_3\cdot CO\cdot C-C\cdot CH_3}{CH_3\cdot C\cdot NH\cdot C\cdot CO_3\cdot C_2H_5}$. B. Auf Acetessigester in essignaurer Lösung läßt man bei 0^0 allmählich Natriumnitrit einwirken, gibt eine essigsaure Lösung von Acetylaceton und dann Zinkstaub zu und erwärmt (Zanetti, Levi, G. 24 I, 547). — Nadeln (aus Alkohol). F: 143°. Ziemlich leicht löslich in absol. Alkohol, schwer in kaltem verd. Alkohol, unlöslich in kaltem Wasser.

5. Cantharidinimid C₁₀H₁₃O₂N.

Dieser früher als Lactam der 6-Amino-bicyclo-[1.1.3]-heptan-carbonsäure-(1)-essigsäure-(6), Formel I, formulierten Verbindung ist nach dem

Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] durch GADAMER (Ar. 260, 200, 203) die Formel II erteilt worden; s. Syst. No. 4298.

6. 5^1 -Oxo-2.4.6-trimethyl-5-āthyl-1.4-dihydro-pyridin-carbonsāure-(3), 2.4.6-Trimethyl-5-acetyl-1.4-dihydro-pyridin-carbonsāure-(3), 5-Acetyl-1.4-dihydro-kollidin-carbonsāure-(3) $C_{11}H_{18}O_8N=CH_2\cdot CO\cdot C\cdot CH(CH_2)\cdot C\cdot CO_2H$

CH. C.NH.C.CH.

Äthylester $C_{12}H_{19}O_9N=\frac{CH_3\cdot CO\cdot C\cdot CH(CH_3)\cdot C\cdot CO_2\cdot C_2H_5}{CH_3\cdot C\cdot MH-C\cdot CH_2}$. B. Aus Acetylacetonamin und α -Äthyliden-acetessigsäure-äthylester (Beyer, B. 24, 1669). — Nadeln (aus verd. Methanol). F: 120° (B.). — Liefert beim Kochen mit 10°/ $_{o}$ iger Natronlauge oder Kalilauge 1.3-Dimethyl-cyclohexen-(3)-on-(5) (Bd. VII, 8.59), beim Kochen mit 40°/ $_{o}$ iger Natronlauge 2.4.6-Trimethyl-1.4-dihydro-pyridin-carbonsäure-(3)-äthylester (Knoevenagel, Ruschhaupt, B. 31, 1032).

7. Lactam der [3-Amino-p-menthen-(3)-yl-(8)]-malonsäure $C_{18}H_{19}O_{3}N = CH_{8}\cdot HC < CH_{8}\cdot CH_{8}\cdot CH_{19}CO > CH\cdot CO_{2}H$.

Nitril, Lactam der [8-Amino-p-menthen-(8)-yl-(8)]-cyanessigsäure $C_{18}H_{18}ON_8 = NC_9H_9(:0)(CH_9)_8 \cdot CN$. B. Aus dem Lacton der Pulegon-cyanessigsäure (Bd. XVIII, S. 416) durch Einw. von konzentriertem alkoholischem Ammoniak (Vorländer, Kötener, A. 345, 183). — Krystalle (aus Alkohol), Nadeln (durch Sublimation). Schmilzt oberhalb 300° unter Zersetzung.

d) Oxo-carbonsăuren $C_n H_{2n-9} O_3 N$.

1. Oxo-carbonsauren $C_0H_7O_2N$.

1. β - Oxo - β - $[\alpha$ - pyridyl] - propionsdure, [Pyridin- α -carboyl]-essigsdure, α -Pyridoylessigsdure $C_0H_7O_0N$, s. nebenstehende Formel.

Äthylester $C_{10}H_{11}O_2N = NC_3H_4\cdot CO\cdot CH_2\cdot CO_3\cdot C_2H_5$. B. Das Natriumsalz entsteht bei der Einw. von alkoholfreiem Natriumäthylat auf ein Gemisch von Pyridin-carbonsäure-(2)-äthylester und Essigester (PINNER, B. 84, 4237). — Öl. Zersetzt sich bei der Destillation im Vakuum. — Liefert beim Kochen mit verd. Salzsäure 2-Acetyl-pyridin. Bei der Einw. von Jod auf das Kaliumsalz in alkoholisch-ätherischer Lösung entsteht $\alpha.\alpha'$ -Di- $[\alpha$ -pyridoyl]-bernsteinsäure-diäthylester. Das Natriumsalz liefert beim Erwärmen mit Methyljodid in methylsalkoholischer Lösung α - $[\alpha$ -Pyridoyl]-propionsäure-äthylester. Bei der Einw. von Phenylhydrazin in äther. Lösung entsteht das Phenylhydrazon (s. u.), in essigsaurer Lösung 1-Phenyl-3- $[\alpha$ -pyridyl]-pyrazolon-(5). — Gibt mit Eisenchlorid in alkoh. Lösung eine kirschrote Färbung. — NaC₁₀H₁₀O₂N. Nadeln (aus Alkohol). F: 234° (Zers.). — KC₁₀H₁₀O₂N. Nadeln (aus Alkohol oder Aceton). — Cu(C₁₀H₁₀O₂N)₃. Dunkelgrüne Nadeln (aus Alkohol); Krystalle mit 3H₂O (aus Wasser). Unlöslich in Wasser, leicht löslich in Alkohol und Aceton.

β-Imino-β-[α-pyridyl]-propionsäure-äthylester bezw. β-Amino-β-[α-pyridyl]-acrylsäure-äthylester $C_{10}H_{19}O_{2}N_{2}=NC_{2}H_{4}\cdot C(:NH)\cdot CH_{2}\cdot CO_{2}\cdot C_{2}H_{5}$ bezw. $NC_{5}H_{4}\cdot C(NH_{2}):CH\cdot CO_{2}\cdot C_{2}H_{5}$. B. Durch Einw. von konz. Ammoniak auf α-Pyridoylessigsäure-äthylester (Pinner, B. 34, 4240). — Gelbliche Nadeln (aus wäßrig-alkoholischem Ammoniak). F: 63°. Leicht löslich in Alkohol und Benzol, unlöslich in Wasser. — Wird durch Säuren unter Bildung von α-Pyridoylessigsäure-äthylester zersetzt.

β-Phenylhydrasono-β-[α-pyridyl]-propionsäure-äthylester, α-Pyridoylessigsāureāthylester-phenylhydrazon $C_{16}H_{17}O_2N_3=NC_5H_4\cdot C(:N\cdot NH\cdot C_6H_5)\cdot CH_2\cdot CO_2$. C_2H_3 . B. Aus α-Pyridoylessigsäure-äthylester und Phenylhydrazin in äther. Lösung (PINNER, B. 34, 4238). — Gelbliche Nadeln (aus Methanol). F: 122°. — Pikrat $C_{16}H_{17}O_2N_3+C_6H_3O_7N_3$. Goldgelbe Nadeln (aus verd. Alkohol). F: 197°.

2. β - Oxo - β - $[\beta$ - pyridyl] - propions dure. [Pyridin- β -carboyl]-essigs dure, β -Pyridoylessigs dure $C_8H_7O_2N$, s. nebenstehende Formel.

Äthylester $C_{10}H_{11}O_2N=NC_2H_4\cdot CO\cdot CH_2\cdot CO_2\cdot C_2H_3$. B. Das Natriumsalz entsteht bei der Einw. von alkoholireiem Natriumäthylat auf ein Gemisch von Pyridin-carbonsäure-(3)-äthylester und Essigester (Pinner, B. 34, 4247). — Das Kaliumsalz gibt in alkoh. Lösung mit Eisenchlorid eine weinrote Färbung. — $KC_{10}H_{10}O_2N$. Nadeln (aus Aceton). Leicht löslich

in Wasser und Alkohol, schwer in Aceton. — $\text{Cu}(C_{10}H_{10}O_3N)_2$. Grüner Niederschlag. Zersetzt sich beim Erhitzen mit Wasser und Alkohol. — $2C_{10}H_{11}O_3N + 2HCl + PtCl_4$. Goldgelbe Krystalle. Ziemlich leicht löslich.

3. β -Oxo- β - $[\gamma$ -pyridyl]-propionsäure, [Pyridin- γ -carboyl]-essigsäure, γ -Pyridoylessigsäure $C_8H_7O_3N$, s. nebenstehende Formel.

Äthylester $C_{10}H_{11}O_3N=NC_5H_4\cdot CO\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Das Natriumsalz entsteht bei der Einw. von alkoholfreiem Natriumäthylat auf ein Gemisch von Pyridin-carbonsäure-(4)-äthylester und Essigester (PINNER, B. **34**, 4249). — Prismen. F: 54°. Leicht löslich in Alkohol und Äther, unlöslich in Wasser. — Gibt mit Eisenchlorid in alkoh. Lösung eine dunkelrote, auf Zusatz von Natriumacetat eine gelbe Färbung. — $NaC_{10}H_{10}O_3N$. Strohgelbe Nadeln. Ziemlich schwer löslich in Wasser und Alkohol. — $KC_{10}H_{10}O_3N$. Gelbe Nadeln (aus Aceton). Leicht löslich in Wasser und Alkohol. — $Cu(C_{10}H_{10}O_3N)_2$. Blaugrüner Niederschlag. F: 183—184°. Kaum löslich in Wasser und Alkohol. — $2C_{10}H_{11}O_3N + 2HCl + PtCl_4$. Orangerote Blättchen. F: 156°.

 β -Phenylhydrazono- β -[γ -pyridyl]-propionsäure-äthylester, γ -Pyridoylessigsäure-äthylester-phenylhydrazon $C_{16}H_{17}O_2N_3=NC_5H_4\cdot C(:N\cdot NH\cdot C_6H_5)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. Aus γ -Pyridoylessigsäure-äthylester und Phenylhydrazin in alkoh. Lösung (Pinner, B. 34, 4249). — Nadeln. — Geht beim Erhitzen mit etwas Essigsäure in 1-Phenyl-3-[γ -pyridyl]-pyrazolon-(5) über.

- 4. 3^1 -Oxo-3- $\ddot{a}thyl$ -pyridin-carbons $\ddot{a}ure$ -(2), 3-Acetyl-picolin- N-CO₂H s $\ddot{a}ure$ C₈H₇O₃N, s. nebenstehende Formel.
- 3-Dichloracetyl-picolinsäure C₈H₅O₃NCl₂ = NC₅H₅(CO·CHCl₂)·CO₂H. B. Beim Chlorieren von 2.3-[Chlor-malonyl]-pyridin (Bd. XXI, Š. 431) in Soda-Lösung (ZINCKE, WINZHEIMER, A. 290, 349). Durch Einw. von überschüssiger Soda-Lösung auf 2.3-[Dichlor-malonyl]-pyridin (Z., W.). Prismen (aus Eisessig). F: 151° (Zers.). Leicht löslich in Alkohol und Aceton, schwerer in Benzol, kaum löslich in Äther und Benzin. Löst sich in wäßriger und alkoholischer Alkalilauge. Spaltet beim Erhitzen über den Schmelzpunkt Kohlendioxyd ab. Zersetzt sich beim Erhitzen mit Wasser im Rohr auf 170—180° unter Entwicklung von Kohlendioxyd und Chlorwasserstoff. Gibt bei der Reduktion mit Jodwasserstoffsäure und Phosphor bei 150° ein Produkt (wahrscheinlich 3-Äthyl-picolinsäure), das bei der Destillation mit Kalk und folgenden Oxydation Nicotinsäure liefert. Gibt beim Behandeln mit Chlor in Soda-Lösung 3-Trichloracetyl-picolinsäure liefert. beim Erhitzen mit konz. Salzsäure im Rohr auf 165° das Lacton der 3-Oxymethyl-picolinsäure. Geht beim Erwärmen mit rauchender Schwefelsäure in das Lacton der 3-[β.β-Dichlor-α-oxy-vinyl]-picolinsäure über. Beim Erhitzen mit Kalk entsteht Pyridin.
- x-Chlor-8-dichloracetyl-picolinsäure C₈H₄O₃NCl₃ = NC₅H₂Cl(CO·CHCl₂)·CO₃H. B. Aus x-Chlor-2.3-[dichlor-malonyl]-pyridin (Bd. XXI, S. 431) durch Behandeln mit Soda-Lösung (ZINCKE, WINZHEIMER, A. 290, 358). Nadeln (aus Benzol). F: 148°.
- 3-Trichloracetyl-picolinsäure C₈H₄O₃NCl₃ = NC₅H₃(CO·CCl₃)·CO₂H. B. Bei der Einw. von Chlor auf 3-Dichloracetyl-picolinsäure in Soda-Lösung (ZINCKE, WINZHEIMER, A. 290, 352). Aus 7-Chlor-6-oxy-chinolinchinon-(5.8) oder 7.7-Dichlor-5.6.8-trioxo-5.6.7.8-tetrahydro-chinolin durch Einw. von überschüssiger Chlorkalk-Lösung in der Kälte (Z., W.). Blättchen (aus verd. Salzsäure). F: 174° (Zers.). Wird durch Natronlauge in Chloroform und Chinolinsäure gespalten.
- 5. 2¹-Oxo-2-āthyl-pyridin-carbonsāure-(3), 2-Acetyl-nicotin-sāure C₈H₇O₃N, s. nebenstehende Formel. B. Aus dem Lacton der β-[3-Carboxy-pyridyl-(2)]-glycerinsäure (Syst. No. 4331) durch Erhitzen mit Wasser im Rohr auf 140° (Rosenheim, Tafel, B. 26, 1510). Nadeln (aus Wasser). F: 127° (unkorr.). Leicht löslich in heißem Wasser, heißem Alkohol, Essigester und Aceton, schwerer in Äther, schwer in Chloroform, Ligroin und Benzol. Wird durch konz. Salpetersäure zu Chinolinsäure oxydiert. Liefert beim Erwärmen mit Hydroxylamin und verd. Salzsäure das Anhydrid des Oxims NC₈H₃ CO——O (Syst. No. 4548). Gibt mit salzsaurem Phenylhydrazin in

heißer wäßriger Lösung das Anhydrid des Phenylhydrazons NC_5H_3 CO— $N \cdot C_6H_5$ (Syst. No. 3876). — Kaliumsalz. Krystalle. Sehr leicht löslich in Wasser.

Äthylester $C_{10}H_{11}O_3N = NC_5H_3(CO \cdot CH_2) \cdot CO_2 \cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in die alkoh. Lösung von 2-Acetyl-nicotinsäure (Rosenheim, Tafel, B. 26, 1511). — Öl. — $C_{10}H_{11}O_3N + HCl$. Tafeln (aus Alkohol). F: 133—134° (unkorr.). Leicht löslich in Alkohol, schwerer in Äther, sehr schwer in Benzol.

	2.	0 x	0 -	ca	rb	0 1	SÃ	ur	e n	C.H.	O.	.N	Ī.
--	----	-----	-----	----	----	-----	----	----	-----	------	----	----	----

1. β - $Oxo - \beta$ - $[\alpha - pyridy/]$ - isobuttersäure, α - [Pyridinα-carboyl] - propionsaure, α-[α-Pyridoyl]-propionsaure N -CO-CH(CH₃)-CO₂H C₂H₂O₂N, s. nebenstehende Formel.

Äthylester $C_{11}H_{12}O_2N = NC_5H_4 \cdot CO \cdot CH(CH_2) \cdot CO_2 \cdot C_2H_5$. B. Aus dem Natriumsalz des a-Pyridoylessigsaure-athylesters und Methyljodid in warmer methylalkoholischer Lösung (PINNER, B. 84, 4242). Aus Pyridin-carbonsaure-(2)-athylester und Propionsaureathylester bei Gegenwart von alkoholfreiem Natriumäthylat (P.). — Liefert beim Erwärmen mit Salzsaure Athyl- α -pyridyl-keton. $-2C_{11}H_{12}O_2N+2HCl+PtCl_4$. Amorpher Niederschlag. F: 175°.

2. β -Oxo- β -[6-methyl-pyridyl-(2)]-propionsäure, [6-Methyl-pyridin-carboyl-(2)]-essigsäure, [6-Methyl-pyridoyl-(2)]-essigsäure C,H,O,N, s. nebenstehende Formel. HO2C · CH2 · CO ·

Äthylester C₁₁H₁₂O₂N = NC₅H₂(CH₂)·CO·CH₂·CO₂·C₂H₅. B. Das Natriumsalz entsteht aus 6-Methyl-pyridin-carbonsäure-(2)-äthylester und Essigester in Gegenwart von alkoholfreiem Natriumäthylat (PINNER, B. 34, 4253). — Öl. Nicht destillierbar. — Liefert beim Erwärmen mit verd. Salzsäure 2-Methyl-6-acetyl-pyridin. — NaC₁₁H₁₂O₂N. Hellgelbe Krystalle (aus Alkohol). Leicht löslich in Wasser. — KC₁₁H₁₂O₂N. Nadeln (aus Alkohol) + Aceton).

e) Oxo-carbonsăuren $C_n H_{2n-11} O_3 N$.

1. Oxo-carbonsauren $C_aH_aO_aN$.

1. β-Lactam der 4-Amino-iso-HO₂C· phthalsaure C.H.O.N, Formel I. II. N.CO.CH.

 β -Lactam der 4-Acetamino-isophthalsäure $C_{10}H_7O_4N$, Formel II. Diese Konstitution wurde früher dem β -Lactam der N-Acetyl-anthranilsäure-carbonsäure-(5) (Syst. No. 4330) zugeschrieben.

2. β - Lactam der Aminoterephthalsaure C.H.O.N, Formel III. III. -N·CO·CH₂ HO₂C. β-Lactam der Acetaminotere-

phthalsäure $C_{10}H_7O_4N$, Formel IV. Diese Konstitution wurde früher dem β -Lactam der N-Acetyl-anthranilsaure-carbonsaure-(4) (Syst. No. 4330) zugeschrieben.

2. Oxo-carbonsäuren $C_9H_7O_8N$.

1. **3-Oxo-indolin-carbons**äure-(2) (Indoxyl-carbonsaure-(2), Indoxylsaure) C.H.O.N., s. nebenstehende Formel, ist desmotrop mit 3-Oxy-indol-carbonsaure-(2), S. 226.

CH-CO₂H

2. 2-Oxo-indolin-carbonsäure-(3), Oxindol-carbonsaure-(3) C₉H₇O₂N, s. nebenstehende Formel.

CH · CO₂H

1-Methyl-2-imino-indolin-carbonsäure-(3) $C_{10}H_{10}O_2N_2 =$ $C_6H_4 \stackrel{CH(CO_9H)}{\sim} C: NH$ ist desmotrop mit 1-Methyl-2-amino-indol-carbonsäure-(3), Syst. No. 3436.

3. 2-Oxo-indolin-carbonsäure-(6), Oxindol-carbon-CH säure-(6) C₂H₇O₂N, s. nebenstehende Formel, bezw. desmotrope HO₂C. Formen. B. Beim Erwärmen von 2-Nitro-4-carboxy-phenylessigsäure mit Ferrosulfat und Ammoniak oder besser mit Schwefelammonium (FILETI, CAIROLA, G. 22 II, 392; J. pr. [2] 46, 564). — Braunlichgelbe Krystalle (aus verd. Alkohol). F: 313°. Schwer löslich oder unlöslich in den meisten Lösungsmitteln. — Das Bariumsalz liefert beim Destillieren über Zinkstaub Indol. — NH₄C₅H₆O₅N + 2H₅O. Braungelbe Prismen. — $Ba(C_0H_0O_0N)_2 + 3.5H_2O$. Gelbbraune Krystalle. Schwer löslich in Wasser.

3. 0×0 -carhonsäuren $C_{10}H_{9}O_{3}N$.

CH2~CH·CO3H 1. 2 - Oxo - 1.2.3.4 - tetrahydro - chinolin - carbon säure-(3), 3.4 - Dihydro - carbostyril - carbonsäure - (3), Hydrocarbostyril - carbonsaure - (3) C₁₀H₂O₃N, s. neben-stehende Formel, bezw. desmotrope Formen. B. Durch Behandeln von 2-Nitro-benzylmalonsäure-diäthylester in alkoh. Salzsäure mit Zinkstaub unter Kühlung und Verseifen des entstandenen Äthylesters (s. u.) mit heißer Natronlauge (REISSERT, B. 29, 665). Die freie Säure entsteht auch durch Reduktion von 2-Nitro-benzylmalonsäure in saurer Lösung, neben Hydrocarbostyril (R.). — Prismen. Schmilzt bei ca. 146° unter Bildung von Hydrocarbostyril. Leicht löslich in heißem Alkohol, Eisessig und Wasser, sehr schwer in Chloroform, Äther und Benzol, unlöslich in Ligroin. — Fällungsreaktionen: R.

Nadeln (aus Benzol + Ligroin). F: 137-138° (R., B. 29, 665). Leicht löslich in Chloroform, Ather, Benzol, heißem Methanol und Alkohol, schwer in Ligroin und Wasser; löslich in warmen konzentrierten Mineralsäuren.

- 2. 2 Oxo 1.2.3.4 tetrahydro chinolin carbonsäure (4), 2 Oxo 1.2.3.4 tetrahydro cinchoninsäure, 3.4 Dihydro-CO₂H CH CH2 carbostyril - carbonsaure - (4). Hydrocarbostyril - carbon-saure-(4) C₁₀H₂O₂N, s. nebenstehende Formel, bezw. desmotrope Formen. NH\ço B. Durch Reduktion von 2-Nitro-phenylbernsteinsaure mit Ferrosulfat und Ammoniak (Fighter, Walter, B. 42, 4313). — Nadeln (aus Wasser). F: 223°.
- 3. 2-Oxo-1.2.3.4-tetrahydro-chinolin-carbonsäure-(7), CH₂ CH₂ 3.4-Dihydro-carbostyril-carbonsäure-(7), Hydrocarbostyril-carbonsäure-(7), hydrocarbostyril-carbonsäure-(7) C₁₀H₂O₂N, s. nebenstehende Formel, bezw.

 desmotrope Formen. B. Durch Reduktion von 2-Nitro-hydrozimtsäure-carbonsäure-(4) mit Ferrosulfat und Ammoniak (WIDMAN, B. 22, 2273). — Gelbe Blätter. Schmilzt oberhalb 280°. Äußerst schwer löslich in siedendem Wasser, Methanol und Alkohol, unlöslich in Benzol.

Methylester $C_{11}H_{11}O_{2}N = CH_{2} \cdot O_{2}C \cdot C_{6}H_{2} \cdot \frac{CH_{2} \cdot CH_{2}}{NH \cdot CO}$ Aus Hydrocarbostyril-В. carbonsāure-(7) beim Kochen mit methylalkoholischer Salzsäure (W., B. 22, 2274). --- Gelbe Tafeln (aus Alkohol). F: 191—192°. Schwer löslich in siedendem Alkohol.

- -CH(CH₂·CO₂H) NH 4. [3-0xo-isoindolinyl-(1)]-essigsäure, Phthalimidin-essigsaure-(3) C10H2O2N, s. nebenstehende Formel.
- 2-Methyl-phthalimidin-essigsäure-(3) $C_{11}H_{11}O_3N = C_0H_4$ $CH(CH_4 \cdot CO_2H)$ $N \cdot CH_3$ B. Beim Schütteln von Benzoylessigsäure-o-[carbonsäuremethylamid] (Ergw. Bd. X, S. 419) mit Natriumamalgam in verd. Natronlauge (Gabriel, Giere, B. 29, 2524). Durch Reduktion von 2-Methyl-3-carboxymethylen-phthalimidin (S. 312) mit Natriumamalgam (G., G.). — Krystalle mit 1 H₂O (aus Wasser). Schmilzt wasserfrei bei 174—175°. Leicht löslich in Alkohol, schwer in Äther und kaltem Wasser, fast unlöslich in Benzol. — Liefert beim Destillieren 2.3-Dimethyl-phthalimidin (Bd. XXI, S. 291).
- 4. 0xo-carbonsāuren $C_{11}H_{11}O_{2}N$.
- 1. 5-Oxo-3-phenyl-pyrrolidin-carbonsdure-(2), 3-Phenyl-pyrrolidon-(5)-1. 5-Oxo-3-pnenyi-pyrroitain-ai concern carbonsaure-(2) $C_{11}H_{11}O_{2}N = \frac{H_{2}C_{-}-CH\cdot C_{0}H_{5}}{OC\cdot NH\cdot CH\cdot CO_{2}H}$
- ----CH·C₀H₅ B. Durch Erhitzen von 1.3-Diphenyl-pyrrolidon-(5)-dicarbon- $OC \cdot N(C_0H_0) \cdot CH \cdot CO_2H$ saure-(2.2) auf 180° (Conbad, Reinbach, B. 35, 520). — Krystalle (aus Alkohol). F: 147°. — AgC₁₇H₁₄O₂N. Nadeln (aus Wasser).
- 2. [2-0xo-1.2.3.4-tetrahydro-chinolyl-(4)]-essigsäure, 3.4-Dihydro-carbostyril-essigsäure-(4), Hydrocarbostyril-essigsäure-(4) $C_{11}H_{11}O_{2}N$, s. nebenstende Formel, bezw. desmotrope Formen. B. Beim Behandeln von β -[2-Nitro-phenyl]-glutarsäure mit Zinnehlorür und alkoh. Salzsäure unter Kühlung und Kochen des Re-CH₃·CO₃H CH CH duktionsprodukts mit konz. Salzsāure (Schroeter, Meerwein, B. 35, 2076). — Intensiv bitter schmeckende Nadeln (aus Wasser). F: 183°.

 $\begin{array}{lll} \textbf{Methylester} & C_{12}H_{12}O_2N = C_8H_4 & CH(CH_2 \cdot CO_2 \cdot CH_2) \cdot CH_2 \\ NH & CO \end{array}$ F: 111° (SCH., M., B. **35,** 2076).

7-Nitro-hydrocarbostyril-essigsäure-(4) $C_{11}H_{10}O_5N_2$, s. nebenstehende Formel. B. Beim Behandeln von β -[2.4-Dinitro-phenyl]-glutarsäure mit Zinnchlorür und alkoh. Salzsäure und Kochen des Reduktionsprodukts mit konz. Salzsäure (Schroeter, Meerwein, B. 85, 2077). — Gelbe, intensiv bitter schmeckende Krystalle. F: 185,5°.

Methylester $C_{12}H_{12}O_5N_2 = O_2N \cdot C_6H_3 \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_2$. Goldgelbe Nadeln (aus Wasser). F: 125° (Sch., M., B. 35, 2077). Sehr leicht löslich in Alkalilaugen. — Das Silbersalz ist rotgelb.

5. 2-0xo-3-āthyl-1.2.3.4-tetrahydro-chinolin-carbonsäure-(3), 3-Āthyl-3.4-dihydro-carbostyril-carbonsäure-(3), 3-Āthyl-hydrocarbostyril-carbonsäure-(3), $C_{12}H_{12}O_2N$, s. nebenstehende Formel.

Äthylester $C_{14}H_{17}O_3N = C_6H_4 < CH_2 \cdot C(C_2H_5) \cdot CO_2 \cdot C_2H_5$. B. Entsteht in schlechter Ausbeute beim Behandeln von Äthyl-[2-nitro-benzyl]-malonsäure-diäthylester mit Zink und Eisessig (Leilmann, Schleich, B. 20, 440). — Nadeln (aus Alkohol). F: 114°.

f) Oxo-carbonsauren $C_n H_{2n-18} O_8 N$.

1. $3-0 \times o$ -indoienin-carbonsaure-(2) $C_0H_1O_3N$, s. nebenstehende Formel.

8 - Oxo - indolenin - carbonsäure - (2) - oxyd - (1), Isatogensäure $C_{\phi}H_{a}O_{a}N = C_{\phi}H_{a} < CO > C \cdot CO_{a}H$.

Äthylester $C_{11}H_{\bullet}O_{\bullet}N = C_{\bullet}H_{\bullet} \stackrel{CO}{N(:O)} C \cdot CO_{2} \cdot C_{2}H_{5}$. Zur Konstitution vgl. Scholl, B. 34, 869 Anm.; Pfriffer, B. 45 [1912], 1821; A. 411 [1916], 87. — B. Beim Schütteln von 2-Nitro-phenylpropiolsäure-äthylester mit konz. Schwefelsäure bei Zimmertemperatur (Barter, B. 14, 1741; BASF, D. R. P. 17656; Frdl. 1, 135). — Gelbe Nadeln. F: 115° (B., B. 14, 1741; BASF). — Liefert bei der Reduktion mit Schwefelwasserstoff in wäßr. Lösung oder mit Zink und Salzsäure Indoxylsäureäthylester (S. 228) (B., B. 15, 55, 780; BASF). Beim Kochen mit Ammonium- oder Kaliumdisulfit-Lösung entsteht eine Disulfit-Verbindung, die durch Reduktionsmittel in Indoxylsäureäthylester übergeführt wird (B., B. 15, 55). Isatogensäureäthylester gibt beim Erwärmen mit Ferrochlorid- oder Ferrosulfat-Lösung Indoxanthinsäure-äthylester (S. 372) (B., B. 15, 780). Liefert beim Behandeln mit konz. Schwefelsäure und Ferrosulfat Indoin (Bd. IX, S. 637) (B., B. 15, 55). Verhalten bei kurzer Einw. von Barytwasser: B., B. 15, 55; bei längerer Einw. von Barytwasser entsteht o.o'-Azobenzoesäure; beim Behandeln mit Soda-Lösung erhält man außerdem Isatin (B., B. 15, 55).

2. Oxo-carbonsauren $C_{10}H_7O_2N$.

- 1. 4-Oxo-1.4-dihydro-chinolin-carbonsäure-(2), Chinolon-(4)-carbonsäure-(2) C₁₀H₇O₂N, s. nebenstehende Formel, ist desmotrop mit 4-Oxy-chinolin-carbonsäure-(2), S. 230.
 - on-(2)- CO2H
- 2. 2-Oxo-1.2-dihydro-chinolin-carbonsduro-(4), Chinolon-(2)-carbonsduro (4) (Carbostyril carbonsduro (4)) C₁₀H₇O₂N, s. nebenstehende Formel, ist desmotrop mit 2-Oxy-chinolin-carbonsaure-(4), S. 232.

alkoh. Kalilauge oder besser beim Erhitzen mit starker Schwefelsäure auf 130—140° (Kaufmann, Albertini, B. 42, 3787). — Nadeln (aus Wasser, Alkohol oder Eisessig). F: 249° (Cl.), 246° (R.), 242—243° (K., A.). Sublimiert langsam bei 120° (Cl.). Schwer löslich in kaltem Wasser und Alkohol, löslich in Äther, sehr leicht löslich in Eisessig und heißem Alkohol (R.; K., A.). — Beim Erhitzen des Silbersalzes im Wasserstoff-Strom (R.) oder Kohlendioxyd-Strom (K., A.) entsteht N-Methyl- α -chinolon. — Natriumsalz. Gelbe, krystallwasserhaltige Säulen (aus Wasser). Verwittert an der Luft (Cl.). Leicht löslich in Alkohol und Wasser. — Kaliumsalz. Krystallwasserhaltige Nadeln. Leicht löslich in Alkohol und Wasser (Cl.). — AgC₁₁H₈O₃N. Niederschlag (R.). Unlöslich in Wasser (Cl.). — Ba(C₁₁H₈O₃N)₂. Krystalle. Ist in kaltem und heißem Wasser gleich löslich (R.).

Methylester $C_{12}H_{11}O_3N = C_6H_4 < C(CO_2 \cdot CH_3) : CH$ $N(CH_3) — CO$. Gelbliche Nadeln (aus Äther). F: 122° (H. MEYER, M. 28, 59). Leicht löslich in Alkohol und Äther, schwer in Wasser.

Nitril, 1-Methyl-4-cyan-chinolon-(2), 1-Methyl-4-cyan-carbostyril $C_{11}H_8ON_2 = C(CN) = CH$ $C_6H_4 \cap N(CH_3) \cdot CO$ B. Bei der Einw. von Sauerstoff auf 1-Methyl-4-cyan-1.4(?)-dihydrochinolin (S. 65) in Alkohol in Gegenwart von Platinasbest (Kaufmann, Albertini, B. 42, 3784). — Nadeln (aus Alkohol). F: 165—166°. Leicht löslich in Alkohol und Chloroform, löslich in Benzol, schwer löslich in Wasser und Ligroin, kaum löslich in kalten verdünnten Säuren. — Gibt beim Erwärmen mit Säuren sowie beim Kochen mit alkoh. Kalilauge 1-Methyl-chinolon-(2)-carbonsäure-(4).

1-Äthyl-chinolon-(2)-carbonsäure-(4), 1-Äthyl-carbostyril-carbonsäure-(4) ("Äthylidencinchoxinsäure") $C_{12}H_{11}O_2N = C_6H_4$ $C(CO_2H):CH$ ("Äthylidencinchoxinsäure") $C_{12}H_{11}O_2N = C_6H_4$ $N(C_2H_5)\cdot CO$ B. Durch längeres Kochen von "Äthylidencinchoninsäure" (Syst. No. 4280) in wäßrig-alkoholischer Lösung unter Luftzutritt (Claus, A. 270, 356; vgl. Decker, Hock, B. 37, 1005). Beim Erhitzen von 1-Äthyl-4-cyan-chinolon-(2) mit starker Schwefelsäure auf 130—140° (Kaufmann, Albertin, B. 42, 3788). — Farblose Nadeln (aus Alkohol). F: 202° (K., A.), 206° (Cl.). Sublimiert unzersetzt; schwer löslich in Chloroform, fast unlöslich in Äther und Wasser (Cl.). — Das Silbersalz liefert beim Destillieren im Wasserstoffstrom N-Äthyl-α-chinolon (K., A.). — Natriumsalz. Wasserhaltiges, krystallines Pulver. Verwittert an der Luft (Cl.). Leicht löslich in Alkohol und Wasser (Cl.). — Silbersalz. Krystallpulver (Cl.).

Nitril, 1-Äthyl-4-cyan-chinolon-(2), 1-Äthyl-4-cyan-carbostyril $C_{12}H_{10}ON_2 = C(CN) = CH$ C_0H_4 $N(C_2H_5) \cdot CO$ B. Durch Einw. von Luft auf 1-Äthyl-4-cyan-1.4-dihydro-chinolin in Alkohol bei Gegenwart von Platinasbest (Kaufmann, Albertini, B. 42, 3785). Beim Eintragen einer wäßr. Kaliumcyanid-Lösung in eine siedende methylalkoholische Lösung von Chinolin-jodäthylat unter gleichzeitigem Einleiten von Luft (K., A.). — Nadeln (aus Methanol). F: 152°.

1-Bensyl-chinolon-(2)-carbonsäure-(4), 1-Bensyl-carbostyril-carbonsäure-(4) ("Bensylidencinchoxinsäure") $C_{17}H_{18}O_3N = C_6H_4$ ("Bensylidencinchoxinsäure") $C_{17}H_{18}O_3N = C_6H_4$ ("C(CO₂H)—CH

N(CH₂·C₈H₅)·CO

N(CH₂·C₈H₅)·CO

RODO (CLAUS, A.

270, 341; vgl. Decker, Hock, B. 37, 1005). — Farblose Nadeln (aus Eisessig). Gelbliche chloroformhaltige Prismen (aus Chloroform); monoklin (Stuhlmann, A. 270, 341; vgl. Groth, Ch. Kr. 5, 772). Leicht löslich in Chloroform, Alkohol, Äther, Aceton und Eisessig, unlöslich in siedendem Wasser (CL.). — Die Alkalisalze sind in Wasser sehr leicht löslich (CL.). — AgC₁₇H₁₂O₃N. Nadeln (CL.). — Calciumsalz. Krystallwasserhaltige Nadeln (aus Wasser) (CL.). — Bariumsalz. Krystallwasserhaltige Nadeln. Ziemlich schwer löslich in kaltem Wasser, unlöslich in Alkehol (CL.).

Äthylester $C_{19}H_{17}O_8N = C_6H_4$ $C(CO_2 \cdot C_2H_5): CH$ Beim Behandeln von 1-Benzylchinolon-(2)-carbonsäure-(4) mit Alkohol und Chlorwasserstoff (CL., A. 270, 344). — Nadeln (aus Äther). F: 120°.

3. 1-Oxo-1.2-dihydro-isochinolin-carbonsdure-(3), Isochinolon - (1) - carbonsdure - (3) (Isocarbostyril - carbonsdure - (3) (CH $_{\text{C}}$ ·CO₂H saure-(3)) $C_{10}H_{7}O_{2}N$, s. nebenstehende Formel, ist desmotrop mit 1-Oxy-isochinolin-carbonsdure-(3), S. 237.

- 2-Methyl-isocarbostyril-carbon-carbon-säure-(3), 2-Methyl-isocarbostyril-carbon-säure-(3) $C_{11}H_{\bullet}O_3N = C_6H_{\bullet} CO \cdot N \cdot CH_3$. Bei 2-stdg. Erhitzen von Isocumarin-carbonsäure-(3) mit einer konzentrierten wäßrigen Lösung von Methylamin auf 100° (Bamberger, Frew, B. 27, 204). Prismen. F: 238°. Zerfällt oberhalb des Schmelzpunktes in N-Methyl-isocarbostyril und Kohlendioxyd. $AgC_{11}H_{\bullet}O_3N$. Nadeln (aus Wasser).
- 2-Åthyl-isochinolon-(1)-carbonsäure-(3), 2-Äthyl-isocarbostyril-carbonsäure-(3) $C_{12}H_{11}O_3N = C_6H_4$ $CO \cdot N \cdot C_2H_5$ $CO \cdot N \cdot C_$
- 2-Phenyl-isochinolon-(1)-carbonsäure-(3), 2-Phenyl-isocarbostyril-carbonsäure-(3) $C_{16}H_{11}O_3N = C_6H_4$ $CO \cdot N \cdot C_6H_5$ B. Bei 5 Minuten langem Kochen von Isocumarin-carbonsäure-(3) mit überschüssigem Anilin (Bamberger, Frew, B. 27, 202.) Gelbliche Prismen (aus verd. Alkohol). F: 265°; leicht löslich in Alkohol, schwer in Äther, Benzol und siedendem Wasser (B., Fr.). Liefert beim Erhitzen über den Schmelzpunkt N-Phenyl-isocarbostyril (B., Fr.). Gibt bei der Zinkstaub-Destillation Isochinolin (B., Fr.). Verhalten beim Titrieren mit Jod: Ingle, C. 1904 II, 507. AgC₁₆H₁₀O₃N. Nadeln (B., Fr.).
- 4. 1-Oxo-1.2 dihydro isochinolin carbonsäure (4), Isochinolon (1) carbonsäure (4) (Isocarbostyril carbonsäure-(4)) $C_{10}H_7O_3N$, s. nebenstehende Formel, ist desmotrop mit 1-Oxyisochinolin-carbonsäure-(4), S. 238.
- 2-Methyl-isochinolon-(1)-carbonsäure-(4), 2-Methyl-isocarbostyril-carbonsäure-(4) $C_{11}H_9O_3N=C_6H_4$ $C_{12}H_9O_3N=C_6H_4$ $C_{13}H_9O_3N=C_6H_4$ $C_{13}H$
- äthylester $C_{13}H_{13}O_3N = C_6H_4$ $C(CO_2 \cdot C_2H_5): CH$ amin auf Oxymethylen-homophthalsäure-diäthylester (Bd. X, S. 863) oder Isocumarin-carbonsäure-(4)-äthylester (Bd. XVIII, S. 431) (DIECKMANN, MEISER, B. 41, 3266). Nadeln (aus Methanol). F: 98°. Leicht löslich in Alkohol und Benzol, schwer in Äther und Ligroin, kaum in Wasser.
- 2-Phenyl-isochinolon-(1)-carbonsäure-(4), 2-Phenyl-isocarbostyril-carbonsäure-(4) $C_{18}H_{11}O_3N = C_8H_4$ $C(CO_2H):CH$ 8. Durch Einw. von alkoh. Kalilauge auf 2-Phenyl-isocarbostyril-carbonsäure-(4)-āthylester (s. u.) oder auf α -Anilinomethylenhomophthalsäure-diāthylester (Bd. XII, S. 537) (DIECKMANN, MEISER, B. 41, 3268). Nadeln (aus Eisessig). F: 267°. Sehr schwer löslich in Äther, Benzol und Wasser, leichter in Alkohol. Geht beim Destillieren zum größten Teil in N-Phenyl-isocarbostyril über.
- Äthylester $C_{18}H_{15}O_3N = C_8H_4$ $C(CO_2 \cdot C_2H_5) : CH$ $CO_2 \cdot C_2H_5$ $CO_3 \cdot C_6H_5$ $CO_4 \cdot C_6H_5$ $CO_5 \cdot C_6H_5$ $CO_6 \cdot C_6H_5$ $CO_6 \cdot C_6 \cdot C_6 \cdot C_6$ $CO_6 \cdot CO_6$ $CO_6 \cdot CO_6$
- 5. [Oxo-isoindolinyliden] essigsäure, 3 Carboxy-methylen-phthalimidin (,,Phthalimidylessigsäure")

 C10H,O3N, s. nebenstehende Formel. Zur Konstitution vgl. Gabriel.,

 B. 18, 2451. B. Beim Lösen von Phthalylessigsäure in Ammoniak und Fällen der Lösung mit Salzsäure (G., Michael, B. 10, 1556). Nadeln (aus Wasser). F: ca. 200° (Zers.); schwer löslich in heißem Wasser, sehr leicht in Alkohol (G., M.). Beim Kochen mit Alkalilauge

Mikroskopische Nadeln (G.).

entsteht Acetophenon-carbonsäure-(2) (ROSER, B. 17, 2623). — $AgC_{10}H_6O_3N$. Amorph. Unlöslich in Wasser (R.). — $Ca(C_{10}H_6O_3N)_2 + H_2O$. Krystallpulver. Fast unlöslich in Wasser (R.). — $Ba(C_{10}H_6O_3N)_2 + 4H_2O$. Prismen. Leicht löslich in heißem Wasser (R.).

2 - Methyl - 3 - carboxymethylen - phthalimidin $C_{11}H_{2}O_{3}N =$ C_0H_4 $C(:CH \cdot CO_2H)$ $N \cdot CH_3$. B. Bei 24-stdg. Aufbewahren einer Lösung von Benzoylessigsäure-o-[carbonsäuremethylamid] (Ergw. Bd. X, S. 419) in konz. Schwefelsäure bei Zimmertemperatur (Gabriel, B. 18, 2453). — Nadeln (aus Alkohol). Beginnt bei 2000 sich zu zersetzen und schmilzt bei ca. 2120; löslich in Alkalilaugen und Ammoniak (G.). — Liefert beim Erhitzen über den Schmelzpunkt oder bei kurzem Kochen mit Eisessig 2-Methyl-3-methylen-phthalimidin (Bd. XXI, S. 313) (G.). Gibt bei der Reduktion mit Natriumamalgam 2-Methyl-phthalimidin-essigsäure-(3) (S. 308) (Gabriel, Giebe, B. 29, 2524). — $AgC_{11}H_8O_3N$.

2-Äthyl-3-carboxymethylen-phthalimidin $C_{12}H_{11}O_{3}N =$ C₆H₄ C(:CH·CO₂H) N·C₂H₅. B. Man setzt Phthalylessigsaure (Bd. XVIII, S. 431) mit wäßr. Äthylamin-Lösung um, säuert mit Salzsäure unter Kühlung an und läßt die hierbei gewonnene Verbindung C₂₃H₂₄O₅N₂ (s. u.) 24 Stdn. mit konz. Schwefelsäure bei Zimmertemperatur stehen (Mertens, B. 19, 2368, 2370). — Gelbe Nadeln (aus verd. Alkohol). F: 180° (Zers.). Leicht löslich in heißem Wasser, Alkohol und Äther, schwerer in Ligroin und Benzol; löslich in Ammoniak und Alkalilaugen. — AgC₁₂H₁₀O₃N. Krystallinischer Niederschlag.

 $Verbindung C_{22}H_{24}O_5N_2 =$ C_0H_4 C_0 : C_0H_5 C_0 Äther und Chloroform, schwerer in Benzol und Ligroin. — Liefert beim Erhitzen über den Schmelzpunkt 2-Äthyl-3-methylen-phthalimidin (Bd. XXI, S. 313). Reagiert mit Brom. Zersetzt sich beim Kochen mit Wasser. Gibt beim Behandeln mit konz. Schwefelsäure bei Zimmertemperatur 2-Äthyl-3-carboxymethylen-phthalimidin (s. o.).

2 - Propyl - 8 - carboxymethylen - phthalimidin $C_{18}H_{18}O_3N =$ C_0H_4 C_1 C_2H_3 C_2H_5 .

 $\begin{array}{c} \text{Verbindung $C_{25}H_{28}O_5N_2=C_6H_4$} \overbrace{C(:CH\cdot CO_2H)}^{CO} N\cdot CH_2\cdot C_3H_5 \ + \\ C_6H_4 \overbrace{C(:CH_2)}^{CO} N\cdot CH_2\cdot C_3H_5 + H_2O. \quad \textit{B.} \quad \text{Durch Umsetzen von Phthalylessigsäure mit} \end{array}$ Propylamin unter Kühlung und nachfolgendes Neutralisieren des Reaktionsgemisches mit Salzsaure (Mertens, B. 19, 2371). — Prismen (aus verd. Alkohol). F: 103° (Zers.). — Wird durch Ammoniak, Kalilauge und heißes Wasser zersetzt. Bei der Einw. von konz. Schwefelsäure bilden sich gelbe Nadeln.

3. 0xo-carbonsäuren $C_{11}H_9O_3N$.

- 1. 2 Oxo 6 methyl 1.2 dihydro chinolin carbon-CO₂H säure - (4), 6 - Methyl - chinolon - (2) - carbonsäure - (4), 6-Methyl-carbostyril-carbonsäure-(4) $C_{11}H_{\bullet}O_{3}N$, s. nebenstehende Formel.
- 1.6 Dimethyl chinolon (2) carbonsäure (4), 1.6 Dimethyl carbonstyril carbonsäure (4) $C_{12}H_{11}O_3N = CH_3 \cdot C_6H_3 \cdot C_6H_3 \cdot CO$. B. Beim Erhitzen von 1.6 Dimethyl CO 4-cyan-chinolon-(2) (s. u.) mit starker Schwefelsäure auf 130—140° (KAUFMANN, ALBERTINI, B. 42, 3788). — Hellgelbe Nadeln (aus Wasser). F: 287—290°. Schwer löslich in Wasser und Alkohol, leichter in Eisessig und Essigester.

Nitril, 1.6 - Dimethyl - 4 - cyan - chinolon - (2), 1.6 - Dimethyl - 4 - cyan - carbostyril $\mathbf{C_{12}H_{10}ON_2} = \mathbf{CH_3} \cdot \mathbf{C_6H_3} \underbrace{\overset{\mathbf{C}(\mathbf{CN}) = \mathbf{CH}}{\mathbf{N}(\mathbf{CH_3}) \cdot \mathbf{CO}}}_{\mathbf{N}(\mathbf{CH_3}) \cdot \mathbf{CO}}.$ B. Bei der Einw. von Luft auf 1.6-Dimethyl-4-cyan-1.4(?)-dihydro-chinolin (Kaufmann, Albertini, B. 42, 3786). — Nadeln (aus Alkohol). F: 1970 bis 198°.

2. 2-Oxo-8-methyl-1.2-dihydro-chinolin-carbonsdure-(4), 8-Methyl-chinolon-(2)-carbonsdure-(4), 8-Methyl-carbo-

1.8-Dimethyl-4-cyan-chinolon-(2), 1.8 - Dimethyl-4-cyan-carbo-

styril-carbonsaure-(4) C₁₁H₂O₂N, s. nebenstehende Formel.

CO₂H

ĊH2

styril $C_{12}H_{10}ON_2 = CH_3 \cdot C_0H_3 \cdot C(CN) = CH$ $N(CH_2) \cdot CO$. B. Bei der Einw. von Luft auf 1.8-Dimethyl-
4-cyan-1.4(?)-dihydro-chinolin (KAUFMANN, ALBERTINI, B. 42, 3786). — Blättchen (aus Alkohol). F: 180°. Sehr schwer löslich in den meisten Lösungsmitteln. — Gibt beim Kochen mit alkoh. Kalilauge eine violette Färbung.
3. $1-0x_0-3-methyl-1.2-dihydro-isochinolin-carbonsäure-carbonsäure-(4), 3-Methyl-isochinolon-(1)-carbonsäure-(4), 3-Methyl-isocarbostyril-carbonsäure-(4) C_{11}H_{\bullet}O_{3}N, s. nebenstehende Formel.$
Nitril, 8-Methyl-4-cyan-isochinolon-(1) (8-Methyl-4-cyan-isocarbostyril)
$C_{11}H_8ON_2 = C_8H_4 < \frac{C(CN):C \cdot CH_8}{CO - NH}$ ist desmotrop mit 1-Oxy-3-methyl-isochinolin-carbon-
säure-(4)-nitril, S. 240. 2.3 - Dimethyl - isochinolon - (1) - carbonsäure - (4) - nitril, 2.3 - Dimethyl - 4 - cyan-
isochinolon - (1), 2.8 - Dimethyl - 4 - cyan - isocarbostyril $C_{12}H_{10}ON_2 = C(CN) \cdot C \cdot CH$
C.H. CO.N.CH. B. Beim Kochen von 3-Methyl-4-cyan-isocarbostyril (S. 240) mit
Methyljodid und wäßrig-alkoholischer Kalilauge (Gabriel, Neumann, B. 25, 3568). — Nadeln (aus Alkohol). F: 182—183°. — Liefert beim Kochen mit starker Schwefelsäure 2.3-Dimethylisochinolon-(1).
4. α-Oxo-β-[indolyl-(3)]-propionsdure, [Indo- lyl-(3)]-brenztraubensdure C ₁₁ H ₂ O ₂ N, s. nebenstehende NH CH
α-Bensimino-β-[indolyl-(3)]-propionsäure bezw. α-Bensamino-β-[indolyl-(3)]- acrylsäure $C_{18}H_{14}O_3N_3 = HNC_8H_5 \cdot CH_3 \cdot C(:N \cdot CO \cdot C_6H_6) \cdot CO_3H$ bezw. $HNC_8H_5 \cdot CH : C(:N \cdot CO \cdot C_6H_6) \cdot CO_3H$ bezw. $HNC_8H_5 \cdot CH : C(:N \cdot CO \cdot C_6H_6) \cdot CO_3H$ bezw. $HNC_8H_5 \cdot CH : C(:N \cdot CO \cdot C_6H_6) \cdot CO_3H$ bezw. $HNC_8H_5 \cdot CH : C(:N \cdot CO \cdot C_6H_6) \cdot CO_3H_6
HN—CH OC—O FLAMAND, B. 40, 3031; H. 55, 17). — Prismen (aus 70% igem Alkohol). Färbt sich bei 228%, schmilzt bei 232—234%, zersetzt sich bei 235%. Fast unlöslich in Wasser. — Gibt beim Kochen mit Natrium und Alkohol, Verdünnen der erhaltenen Lösung mit Wasser und Aufkochen dl-Tryptophan (Syst. No. 3436). Wird beim Kochen mit Acetanhydrid in das Ausgangs-
material zurückverwandelt. Äthylenter CHO.N. = HNC.HCHCY:N:CO:C.H.):CO:C.H. bezw. HNC.H
Äthylester $C_{30}H_{18}O_3N_8 = HNC_8H_5 \cdot CH_2 \cdot C(:N \cdot CO \cdot C_6H_8) \cdot CO_3 \cdot C_2H_5$ bezw. $HNC_8H_5 \cdot CH : C(NH \cdot CO \cdot C_6H_5) \cdot CO_3 \cdot C_2H_5$. Nadeln. F: 2060 (Ellinger, Flamand, H. 55, 18).
5. a - [3 - Oxo - indolinyliden - (2)] - propionsäure, 2 - [a - Carboxy - āthyliden] - indoxyl, Brenztrauben- sāureindogenid C ₁₁ H ₂ O ₂ N, s. nebenstehende Formel. B. Aus Brenztraubensäure und Indoxyl in Salzsäure (BAEYER, B. 16, 2199). — Dunkelrote Krystalle (aus Alkohol). F: 197°. Leicht löslich in Aceton und Alkohol; löslich in Alkalilaugen und Alkalicarbonaten mit braunroter, in konz. Schwefelsäure mit blauer Farbe. — Verhalten bei der Reduktion mit Zinkstaub und Ammoniak: B.
6. [2-Methyl-indolyl-(3)]-glyoxylsäure, 2-Methyl-indol-oxalylsäure-(3) bezw. [2-Methyl-indoleninyliden-(3)]-glykolsäure $C_{11}H_{\bullet}O_{\bullet}N$, Formel I bezw. II,
I. C:CO:CO2H II. C:C(OH):CO2H II. C:C(CH2)

"a-Methyl-indoloxalsäure". B. Aus dem Äthylester (S. 313) durch Kochen mit wäßrigalkoholischer Kalilauge (Angell, Marchetti, R. A. L. [5] 16 II, 794). — Wird beim Erhitzen braun und zersetzt sich gegen 190°. Leicht löslich in Alkohol und Aceton, fast unlöslich in Äther und Benzol. — Gibt beim Kochen mit verd. Schwefelsäure eine fuchsinrote Lösung.

Äthylester $C_{13}H_{13}O_3N = C_0H_4 \xrightarrow{C(CO \cdot CO_2 \cdot C_2H_3)} C \cdot CH_3$ bezw. $C_0H_4 \xrightarrow{C[:C(OH) \cdot CO_2 \cdot C_2H_5]} C \cdot CH_3$. B. Aus α -Methyl-indol beim Behandeln mit Oxal-säurediäthylester und Natrium in Äther (Angell, Marchetti, R. A. L. [5] 16 II, 793). — Gelbe Nadeln (aus Benzol). F: 126°.

7. β - [Oxo - isoindolinyliden] - propionsäure, 3-[β -Carboxy-äthyliden]-phthalimidin (" β -Phthalimidin (" β -Phthalimidyl-propionsäure") $C_{11}H_{\theta}O_{3}N$, s. nebenstehende Formel.

B. Beim Erwärmen der Anhydroverbindung $C_{11}H_{\theta}O_{4}$ aus β -[2-Carboxy-benzoyl]-propionsäure (Bd. X, S. 867) mit verd. Ammoniak, Ansäuern mit Salzsäure und Erwärmen auf dem Wasserbad (Roser, B. 18, 3119). — Gelbliche Nadeln (aus verd. Alkohol). F: 225°. Schwer löslich in Wasser, leicht in heißem Alkohol. — Die Salze sind schwer in reinem Zustand zu erhalten, da ihre Lösungen sich beim Erwärmen unter Bildung eines roten Farbstoffs zersetzen. — $AgC_{11}H_{\theta}O_{3}N$. Amorph. Unbeständig am Licht. Ziemlich leicht löslich in Wasser. — $Ca(C_{11}H_{\theta}O_{3}N)_{2}+H_{3}O$. — $Ba(C_{11}H_{\theta}O_{3}N)_{2}$. Krystalle. Leichter löslich als das Calciumsalz.

8. α-[Oxo-isoindolinyliden]-propionsäure.
3-[α-Carboxy-āthyliden]-phthalimidin (,,α-Phthalinidin (,α-Phthalinidin (,α-Phthal

4. 0xo-carbonsäuren $C_{12}H_{11}O_3N$.

1. $5-0xo-2-methyl-4-phenyl-\Delta^2-pyrrolin-carbonsäure-(3), 2-Methyl-4-phenyl-\Delta^2-pyrrolon-(5)-carbonsäure-(3) <math>C_{12}H_{11}O_3N = \begin{array}{c} C_6H_5 \cdot HC - C \cdot CO_2H \\ OC \cdot NH \cdot C \cdot CH_3 \end{array}$ B. Die Säure entsteht aus ihrem Amid (s. u.) beim Behandeln mit kalter verdünnter Natron-

B. Die Säure entsteht aus ihrem Amid (s. u.) beim Behandeln mit kalter verdünnter Natronlauge oder beim Kochen mit Salzsäure (Weltner, B. 18, 794). — Nadeln (aus Wasser oder verd. Alkohol). F: 148—149°.

Äthylester $C_{14}H_{15}O_3N=\frac{C_6H_5\cdot HC}{OC\cdot NH\cdot C\cdot CH_5}$. B. Man läßt α -Phenyl- α' -acetylbernsteinsäure-diäthylester 2 Tage lang mit gesättigtem alkoholischem Ammoniak stehen und erhitzt das Reaktionsprodukt auf 160° (EMERY, A. 260, 153; Am. 13, 100; vgl. Weltner, B. 18, 795). Beim Behandeln von α -Phenyl- α' -acetyl-bernsteinsäure- α' -äthylester- α -nitril mit kalter konzentrierter Schwefelsäure (Ruhemann, Soc. 85, 1457). — Nadeln (aus Essigester oder verd. Alkohol). F: 128—129° (W.; R.), 127—128° (E.). Leicht löslich in Alkohol und Äther, schwerer in Essigester und Schwefelkohlenstoff (E.). — Wird beim Kochen mit verd. Alkalilaugen zersetzt (R.). Liefert beim Kochen mit Barytwasser α -Phenyl-lävulinsäure (W.). — Löst sich in konz. Salzsäure mit gelber Farbe (W.). Gibt in alkoh. Lösung mit Ferrichlorid eine gelbrote Färbung (R.).

Amid $C_{12}H_{12}O_2N_2 = \frac{C_6H_5 \cdot HC - C \cdot CO \cdot NH_2}{OC \cdot NH \cdot C \cdot CH_3}$. B. Entsteht neben dem Äthylester (s. o.) beim Erhitzen von α -Phenyl- α -acetyl-bernsteinsäure-diäthylester mit alkoh. Ammoniak auf 130—140° (Weltner, B. 18, 794). — Krystalle (aus Essigsäure). F: 264°. Schwer löslich in Alkohol. — Beim Lösen in kalter verdünnter Natronlauge oder beim Kochen mit Salzsäure entsteht 2-Methyl-4-phenyl- Δ 2-pyrrolon-(5)-carbonsäure-(3).

2. 1-0xo-3-4thyl-1.2-dihydro-isochinolin-carbonsaure-(4), 3-Athyl-isochinolon-(1)-carbonsaure-(4), 3-Athyl-isocarbostyr-il-carbonsaure-(4) $C_{12}H_{11}O_2N$, s. nebenstehende Formel.

Nitril, 8-Äthyl-4-cyan-isochinolon-(1) (8-Äthyl-4-cyan-isocarbostyril) $C_{12}H_{10}ON_2 = C_6H_4 < \begin{matrix} C(CN):C\cdot C_2H_5 \\ CO-NH \\ \end{matrix}$ ist desmotrop mit 1-Oxy-3-äthyl-isochinolin-carbonsäure-(4)-nitril, S. 241.

2-Methyl-3-äthyl-isochinolon-(1)-carbonsäure-(4)-nitril, 2-Methyl-3-äthyl-4-cyan-isochinolon-(1), 2-Methyl-3-äthyl-4-cyan-isocarbostyril $C_{18}H_{12}ON_2 = C_0H_4 \stackrel{C(CN):C\cdot C_2H_5}{CO-N\cdot CH_s}$. B. Beim Kochen von 3-Äthyl-4-cyan-isocarbostyril (S. 241) mit Methyljodid und wäßrig-alkoholischer Kalilauge (Damerow, B. 27, 2234). — Nadeln (aus Alkohol). F: 135—136°.

5. Oxo-carbonsăuren $C_{13}H_{13}O_3N$.

- 2. 1-Oxo-3-isopropyl-1.2-dihydro-isochinolin-carbonsäure-(4), 3-Isopropyl-isochinolon-(1)-carbonsäure-(4), 3-Isopropyl-isocarbostyril-carbonsäure-(4) $C_{13}H_{13}O_3N$, s. nebenstehende Formel.

Nitril, 3-Isopropyl-4-cyan-isochinolon-(1) (3-Isopropyl-4-cyan-isocarbostyril) $C_{13}H_{12}ON_2 = C_6H_4 \underbrace{CO-NH}_{CO-NH} \text{ ist desmotrop mit 1-Oxy-3-isopropyl-isochinolinearbonsäure-(4)-nitril, S. 242.}$

2-Methyl-3-isopropyl-isochinolon-(1)-carbonsäure-(4)-nitril, 2-Methyl-3-isopropyl-4-cyan-isocarbostyril $C_{14}H_{14}ON_2 = C_6H_4 CO_N \cdot C\cdot CH(CH_3)_2$. B. Beim Kochen von 3-Isopropyl-4-cyan-isocarbostyril (S. 242) mit Methyljodid und wäßrig-alkoholischer Kalilauge (Lehmkuhl, B. 30, 891). — Nadeln (aus Alkohol). F: 200—210°. Leicht löslich in Alkohol, schwer in Äther und Ligroin. — Beim Erwärmen mit starker Schwefelsäure entsteht 2-Methyl-3-isopropyl-isocarbostyril.

6. 6-0xo-2-methyl-4-[4-isopropyl-phenyl]-1.4.5.6-tetrahydro-pyridin-carbonsäure-(3), 6-0xo-2-methyl-4-[4-isopropyl-phenyl]- Δ^2 -piperidein-carbonsäure-(3) $C_{16}H_{19}O_3N = \frac{H_2C \cdot CH[C_6H_4 \cdot CH(CH_3)_2] \cdot C \cdot CO_2H}{OC - NH - C \cdot CH_3}$ Äthylester $C_{18}H_{28}O_3N = \frac{H_2C \cdot CH[C_6H_4 \cdot CH(CH_3)_2] \cdot C \cdot CO_2 \cdot C_2H_6}{OC - NH - C \cdot CH_3}$. B. Aus 6-0xo-2-methyl 4. [4. isopropyl phenyl] 4. 5.6 tetrahydro-pyridin-dicarbonsäure. (3.5)-äthylester. (2)

Äthylester $C_{18}H_{22}O_3N = \frac{H_2C \cdot CH[C_6H_4 \cdot CH(CH_3)_2] \cdot C \cdot CO_2 \cdot C_2H_6}{OC -NH - C \cdot CH_3}$. B. Aus 6-Oxo-2-methyl-4-[4-isopropyl-phenyl]-1.4.5.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-äthylester-(3)-[a-methyl- β -carbāthoxy-vinylamid]-(5) (S. 349) beim Erhitzen mit 20%/eiger Salzsäure im Rohr auf 110—120% oder beim Kochen mit Acetanhydrid und Natriumacetat (Knoevenagel, Brunswig, B. 35, 2174). — Krystalle (aus Alkohol oder Benzol). F: 182—183%. Leicht löslich in heißem Eisessig und kaltem Chloroform, löslich in heißem Alkohol und Benzol, schwer löslich in heißem Ligroin, sehr schwer in Äther; unlöslich in kalter konzentrierter Salzsäure, in Ammoniak, Alkalicarbonaten und kalten Alkalilaugen. — Beim Kochen mit 8%/eiger Natronlauge entsteht eine Verbindung vom Schmelzpunkt ca. 120%. Verharzt beim Erhitzen mit konz. Alkalilauge oder konz. Salzsäure.

7. 4-0x0-9-propyl-2-phenyl-piperolidin-carbonsaure-(3), 9-Propyl-2-phenyl-piperolidon-(4)-carbonsaure-(3), "Tetrahydropropyl-phenylazindoncarbonsaure" $C_{18}H_{28}O_{3}N$ =

H₂C—CH₂—CH—CO CH·CO₂H. B. Der Äthylester entsteht aus d-Coniin H₂C·CH(CH₂·C₂H₅)·N·CH(C₆H₅)
CH·CO₂H. B. Der Äthylester entsteht aus d-Coniin (Bd. XX, S. 110) und Benzalmalonsäurediäthylester bei längerem Aufbewahren; man verseift ihn mit Kalilauge (Goldstein, B. 29, 816). — Krystallpulver (aus Alkohol). F: 85°. — Liefert beim Erwärmen auf 95° 9-Propyl-2-phenyl-piperolidon-(4) (Bd. XXI, S. 321). — Pb(C₁₈H₂₈O₂N)₈ + H₂O. Amorpher Niederschlag.

Athylester $C_{20}H_{27}O_2N=NC_8H_{10}(:O)(CH_2\cdot C_3H_3)(C_0H_5)\cdot CO_2\cdot C_2H_3$. B. s. o. — Krystalle (aus Alkohol). F: 150—152° (G., B. 29, 817). Unlöslich in Ligroin, Ather und Wasser; löslich in Salzsäure. — Liefert bei der trocknen Destillation Coniin. Bei längerem Kochen mit alkoh. Kalilauge entsteht 9-Propyl-2-phenyl-piperolidon-(4) (Bd. XXI, S. 321). — $C_{20}H_{27}O_2N+HCl+AuCl_3$. Gelber Niederschlag. Sehr zersetzlich. — $2C_{20}H_{27}O_2N+2HCl+PtCl_4$. Orangegelber Niederschlag. Sehr schwer löslich in Wasser.

g) Oxo-carbonsäuren $C_n H_{2n-15} O_3 N$.

CO₂H

1. 2-Formyl-chinolin-carbonsaure-(4), 2-Formyl-cin-choninsaure $C_{11}H_7O_3N$, s. nebenstehende Formel.

Oxim, 2-Oximinomethyl-cinchoninsäure $C_{11}H_0O_2N_2=NC_0H_0(CH: \ N\cdot OH)\cdot CO_2H$. B. Aus Isatinsäure und Isonitrosoaceton in stark alkalischer Lösung (Pettzinger, J. pr. [2] 66, 264). — Graugelbe Blättchen. F: 251°. — Gibt mit Acetanhydrid ein Acetylderivat, das bei 195° unter Bildung von 2-Cyan-cinchoninsäure (S. 170) schmilzt.

2. Oxo-carbonsāuren $C_{12}H_{9}O_{3}N$.

1. 2-[2-Carboxy-benzoyl]-pyrrol, 2-α-Pyrroyl-benzoesdure C₁₂H₀O₃N = HC——CH

HC——CH

Bezw. desmotrope Formen. Zur Konstitution vgl. Oddo, Tog-HC·NH·C·CO·C₆H₄·CO₂H

NACCHINI, G. 53 [1923], 265; O., MINGOIA, G. 55 [1925], 235; O., G. 55 [1925], 242; FISCHER, ORTH, Die Chemie des Pyrrols, Bd. I [Leipzig 1934], S. 73. — B. Beim Kochen von 2-Phthalidyliden-pyrrolenin (Syst. No. 4282) mit verd. Kalilauge (Ciamician, Dennstedt, B. 17, 2958; G. 15, 26). — Krystalle (aus verd. Alkohol). Schmilzt unter Zersetzung bei 174—1840 (C., D.). Leicht löslich in Alkohol und Äther, schwer in Wasser, unlöslich in Benzol (C., D.). —Geht beim Schmelzen oder bei wiederholtem Eindampfen der wäßr. Lösung, namentlich in Gegenwart von etwas Ammoniak, in 2-Phthalidyliden-pyrrolenin über (C., D.). Gibt mit Brom in alkal. Lösung Phthalsäure und 2.3.4.5-Tetrabrom-pyrrol (Anderluni, B. 21, 2870; G. 18, 150). Reagiert nicht mit Hydroxylamin (C., D.). Das Kaliumsalz liefert bei der trocknen Destillation mit Kaliumearbonat Pyrrol und Benzol (A.). — AgC₁₂H₈O₃N. Krystallpulver (C., D.).

Methylester $C_{13}H_{11}O_2N=NC_4H_4\cdot CO\cdot C_6H_4\cdot CO_2\cdot CH_3$. B. Aus dem Silbersalz der Säure beim Erhitzen mit Methyljodid (Ciamician, Dennstedt, B. 17, 2959). — Prismen (aus Benzol). Monoklin prismatisch (La Valle; vgl. *Groth*, Ch. Kr. 5, 532). F: 104—105°. Leicht löslich in Alkohol und Benzol, fast unlöslich in Wasser. — Geht beim Kochen mit Wasser in 2-Phthalidyliden-pyrrolenin über.

2. α-Oxo-β-[chinolyl-(2)]-propionsäure, [Chinolyl-(2)]-brenztraubensäure, Chinaldylglyoxylsäure, Chinaldin-ω-oxalylsäure bezw. α-Oxy-β-[chinolyl-(2)]-acrylsäure, Chinaldylidenglykolsäure C₁₂H₂O₂N, Formel I bezw. II, "Chinaldinoxal-säure". B. Durch Einw. von I. N. · CH₂·CO·CO₂H II. N. · CH:C(OH)·CO₂H Kaliumäthylat auf Chinaldin und Oxalsäurediäthylester in Alkohol + Äther und Verseifung des entstandenen Äthylesters (S. 317) mit siedender 6% siger Schwefelsäure (Wislicenus, Klessinger, B. 42, 1141, 1142; vgl. W., B. 30, 1479). — Rote Nadeln (aus Alkohol), gelbe Nadeln (aus Wasser). Zersetzt sich bei 167—168° (W., K.). Löslich in Alkalilaugen mit rotgelber Farbe (W.). — Wird beim

Kochen mit Alkalilaugen in Chinaldin und Oxalsäure gespalten (W.). — Gibt mit Eisenchlorid in Alkohol eine braunrote Färbung (W.). Die siedende wäßrige Lösung färbt Wolle orangegelb (W., K.).

Äthylester, "Chinaldinoxalester" $C_{14}H_{13}O_3N=NC_9H_6\cdot CH_2\cdot CO\cdot CO_2\cdot C_2H_5$. B. s. im vorangehenden Artikel. — Gelbe Nadeln oder Prismen (aus verd. Alkohol). F: 130—132° (W., K., B. 42, 1141). — Wird durch verd. Schwefelsäure zu Chinaldinoxalsäure hydrolysiert, durch Alkalilaugen in Chinaldin und Oxalsäure gespalten. — Gibt mit Eisenchlorid in Alkohol eine braune Färbung. Die siedende wäßrige Lösung färbt Wolle gelb. — KC₁₄H₁₂O₂N. Gelb, hygroskopisch. Verändert sich bis 180° nicht. Löslich in Alkohol mit gelber Farbe. Wird durch Wasser teils zu Chinaldinoxalester hydrolysiert, teils in Chinaldin und Kaliumoxalat gespalten. — $C_{14}H_{18}O_{8}N + H_{2}SO_{4}$. Farbloses Krystallpulver. Gibt mit Wasser eine gelbe Lösung.

3. α-Oxo-β-[chinolyl-(4)]-propionsäure, [Chinolyl-(4)]-brenztraubensäure, Lepidylglyoxylsäure, Lepidin-ω-oxalylsäure bezw. α-Oxy-β-[chinolyl-(4)]-acrylsäure, Lepidylidenglykolsäure C₁₂H₂O₃N, Formel I bezw. II, ,,Lepidinoxalsäure''. B. Durch CH₂·CO CO₂H CH:C(OH)·CO₂H Einw. von Kaliumäthela auf Lepidin **I.** und Diäthyloxalat in Alkohol + Ather und Verseifung des entstandenen Athylesters mit siedender 60/oiger Schwefelsäure (Wislicenus, Kleisinger, B. 42, 1142, 1143). — Gelbes Pulver. F: 224—225° (Zers.).

Sehr schwer löslich in indifferenten Lösungsmitteln, löslich in Alkalilaugen und Ammoniak mit gelber Farbe.

Äthylester, "Lepidinoxalester" $C_{14}H_{13}O_3N=NC_9H_6\cdot CH_2\cdot CO\cdot CO_2\cdot C_2H_5$. B. s. im vorangehenden Artikel. — Orangerote Täfelchen mit blauviolettem Oberflächenschimmer (aus Chloroform). F: 194—196° (W., K., B. 42, 1142). Leicht löslich in Eisessig, schwer in anderen Lösungsmitteln; die Lösungen sind gelb. Gibt mit verd. Schwefelsäure eine farblose Lösung. — Gibt in wäßriger oder alkoholischer Lösung mit Eisenchlorid eine braunrote Färbung. — KC14H12O3N. Gelb, sehr hygroskopisch.

3. 3(oder 4) - Methyl - 2 - [2 - carboxy - benzoyl] - pyrrol, 2 - [3(oder 4) - Methyl-pyrroyl-(2)]-benzoesäure C₁₃H₁₁O₃N, Formel III oder IV, bezw. desmotrope

III.
$$\frac{HC - C \cdot CH_3}{HC \cdot NH \cdot C \cdot CO \cdot C_6H_4 \cdot CO_2H}$$
 IV. $\frac{HC - C \cdot CH_3}{HO_2C \cdot C_6H_4 \cdot CO \cdot C \cdot NH \cdot CH}$

Formen. Zur Konstitution vgl. die im Artikel 2-[2-Carboxy-benzoyl]-pyrrol (S. 316) angegebene Literatur. — B. Beim Erwärmen von 3(oder 4)-Methyl-2-phthalidyliden-pyrrolenin (Syst. No. 4282) mit verd. Kalilauge (Dennstedt, Zimmermann, B. 19, 2202). — Krystalle (aus Wasser oder Ather). F: 159° (Zers.). — Geht beim Kochen mit Wasser und etwas Ammoniak in 3(oder 4)-Methyl-2-phthalidyliden-pyrrolenin über.

4. Oxo-carbonsauren $C_{16}H_{17}O_3N$.

1. 2.4.6-Trimethyl-5-benzoyl-1.4-dihydro-pyridin-carbonsäure-(3), 5-Benzoyl-1.4-dihydro-kollidin-carbonsaure-(3) $C_{16}H_{17}O_{3}N =$ $C_6H_5 \cdot CO \cdot C \cdot CH(CH_3) \cdot C \cdot CO_2H$

$$CH_3 \cdot C - NH - C \cdot CH_3$$

 $\frac{\text{CH}_{3} \cdot \overset{\text{H}}{\text{C}} - \text{NH} - \overset{\text{H}}{\text{C}} \cdot \text{CH}_{3}}{\text{C}} \cdot \text{CH}_{3}}{\text{CH}_{3} \cdot \overset{\text{H}}{\text{C}} - \text{C}} \cdot \text{C} \cdot \text{CH}(\text{CH}_{3}) \cdot \text{C} \cdot \text{CO}_{3} \cdot \text{C}_{2} \text{H}_{5}}$ $\frac{\text{Athylester } C_{18}H_{21}O_{3}N = \frac{C_{6}H_{5} \cdot \text{CO} \cdot \text{C} \cdot \text{CH}(\text{CH}_{3}) \cdot \text{C} \cdot \text{CO}_{3} \cdot \text{C}_{2} \text{H}_{5}}{\text{CH}_{3} \cdot \overset{\text{H}}{\text{C}} - \text{NH} - \overset{\text{H}}{\text{C}} \cdot \text{CH}_{3}}. \quad B. \text{ Beim Erwärmen von CH}_{3} \cdot \overset{\text{H}}{\text{C}} \cdot \text{CH}_{3} \cdot \overset{\text{H}}{\text{C}} \cdot \overset{$

Benzoylaceton-imid mit a-Athyliden-acetessigester (Beyer, B. 24, 1667). — Blättchen (aus Alkohol). F: 186-187°. - Gibt beim Einleiten von nitrosen Gasen in die alkoh. Suspension 2.4.6-Trimethyl-5-benzoyl-pyridin-carbonsaure-(3)-athylester.

1.2.4.6 - Tetramethyl - 5 - bensoyl-1.4-dihydro-pyridin-carbonsäure-(3)-äthylester $C_{10}H_{23}O_{2}N = \frac{C_{6}H_{5} \cdot \text{CO} \cdot \text{C} \cdot \text{CH(CH}_{5}) \cdot \text{C} \cdot \text{CO}_{2} \cdot \text{C}_{2}H_{5}}{\text{H}_{5} \cdot \text{CO}_{2} \cdot \text{C}_{2}H_{5}}.$ B. Beim Erwärmen von Benzoylaceton- $CH_{\bullet} \cdot C - N(CH_{\bullet}) - C \cdot CH_{\bullet}$ methylimid mit α-Äthyliden-acetessigsäure-äthylester (Beyer, B. 24, 1669). — Nadeln (aus Petroläther). F: 97°.

2. 5'-Oxo-2.6-dimethyl-5-äthyl-4-phenyl-1.4-dihydro-pyridin-carbon-2. 5-0x0-2.6-atmethyt-3-athyt-4-phenyt-1.4-athytro-pyrtatn-carbon-säure-(3), 2.6-Dimethyt-4-phenyt-5-acetyl-1.4-dihydro-pyridin-carbon-säure-(3) $C_{16}H_{17}O_3N = \begin{array}{c} CH_3 \cdot CO \cdot C \cdot CH(C_6H_5) \cdot C \cdot CO_2H \\ CH_2 \cdot C - NH - C \cdot CH_3 \\ CH_3 \cdot CO \cdot C \cdot CH(C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5 \\ CH_3 \cdot CO \cdot C \cdot CH(C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5 \\ CH_3 \cdot C - NH - C \cdot CH_3 \\ CH_3 \cdot C$

$$CH_3 \cdot C - NH - C \cdot CH_3$$

Äthylester
$$C_{18}H_{21}O_3N = \frac{CH_3 \cdot CO \cdot C \cdot CH(C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5}{CH_3 \cdot CH_3 \cdot CH_3}$$
. B. Beim Erwärmen von

HAUPT, B. 31, 1027). Aus ms-Benzal-acetylaceton und β -Amino-crotonsäure-äthylester auf dem Wasserbad (K., R.). — Gelbe Krystalle (aus Alkohol). F: 167°. Siedet unter 25—30 mm Druck bei 210—230°. Leicht löslich in Alkohol, löslich in siedendem Wasser, sehr schwer löslich in Äther und Benzol, unlöslich in Schwefelkohlenstoff. Schwer löslich in Säuren. — Gibt beim Erwärmen mit verd. Salpetersäure 2.6-Dimethyl-4-phenyl-5-acetyl-pyridincarbonsäure-(3)-äthylester.

h) Oxo-carbonsauren $C_n H_{2n-17} O_3 N$.

1. Oxo-carbonsäuren $C_{19}H_{0}O_{2}N$.

1. 4-[Pyridin- β -carboyl]-benzoesäure, 3-[4-Carboxy-benzoyl]-pyridin $C_{13}H_9O_3N$, s. nebenstehende Formel. B. Durch Erhitzen von 3-[4-Carboxy-benzoyl]-pyridin-carbonsäure-(2) bis auf 210° N (Fulda, M. 21, 988). — Blättchen. F: 267° . Schwer löslich in Alkohol und Wasser. — $C_{13}H_9O_3N + HCl$. Gelbliche Nadeln. Ziemlich schwer löslich in Wasser. — $AgC_{13}H_8O_3N$)₂ + H_2O . Blättchen.

Phenylhydrazon $C_{19}H_{15}O_2N_3 = NC_5H_4\cdot C(:N\cdot NH\cdot C_6H_5)\cdot C_6H_4\cdot CO_2H$. B. Aus der vorangehenden Verbindung und Phenylhydrazin in siedendem Alkohol (F., M. 21, 991). — Gelbe, mikroskopische Krystalle (aus Alkohol). F: 246—248°. Sehr schwer löslich in Alkohol.

2. 3-Benzoyl-pyridin-carbonsäure-(2), 3-Benzoyl-picolinsäure C₁₃H₂O₃N, Formel I. Zur Konstitution vgl. Kirpal, M. 27, 372. — B. Aus Chinolinsäure-anhydrid (Syst. No. 4298) und Benzol in Gegenwart von Aluminiumchlorid (Berntheen, Mettegang, Methegang, Methega B. 20, 1209; Jeiteles, M. 17, 516). — Nadeln oder Prismen. F: 147° (Zers.) (B., M.; J.). Sehr leicht löslich in heißem, ziemlich leicht in kaltem Wasser (B., M.). — Gibt beim Erhitzen auf den Schmelzpunkt 3-Benzoyl-pyridin (Bd. XXI, S. 331) (B., M.; J., M. 17, 517). Liefert

I.
$$\bigcap_{N=CO_2H} CO \cdot C_6H_5$$
 III. $\bigcap_{N=CO_1H} CO_N$

bei der Reduktion mit Zinkstaub und Ammoniak das Lacton der 3-[α-Oxy-benzyl]-picolinsäure (Syst. No. 4282) (J., M. 22, 846). Liefert beim Erhitzen mit konz. Schwefelsäure auf 270° α-Anthrapyridinchinon (Formel II) (Bd. XXI, S. 531) (Philips, B. 27, 1926). Gibt beim Kochen mit Hydrazinhydrat und verd. Kalilaue 3-Oxo-6-phenyl-2.3-dihydro-[pyridino-2'.3':4.5-pyridazin] (Formel III; Syst. No. 3880) (J., M. 22, 843); reagiert analog mit Phenylhydrazin in siedendem Alkohol (J., M. 17, 525). — AgC₁₃H₈O₃N + C₁₃H₉O₃N. Prismen (aus verd. Salpetersäure) (J. M. 17, 516) verd. Salpetersäure) (J., M. 17, 516).

Oxim, 3-[α -Oximino-benzyl]-picolinsäure $C_{13}H_{10}O_3N_2=NC_5H_3[C(:N\cdot)]$ OH) · C₆H₅] · CO₂H. B. Aus 3-Benzoyl-picolinsaure, Hydroxylaminhydrochlorid und Natriumcarbonat in siedendem absolutem Alkohol (JEITELES, M. 17, 523). - Ist nur in Form des Natriumsalzes bekannt. Beim Ansäuern der konz. Lösung des Natriumsalzes erhält man die Verbindung der nebenstehenden Formel (Syst. No. 4552). — NaC₁₃H₉O₃N₂. Prismen.

3-Benzoyl-picolinsäure-methylester $C_{14}H_{11}O_3N=NC_5H_3(CO\cdot C_6H_5)\cdot CO_3\cdot CH_3$. Aus 3-Benzoyl-picolinsäure durch Erhitzen mit Methanol und etwas konz. Schwefelsäure (JEITELES, M. 22, 846). — Krystalle. F: 91°.

3-Benzoyl-picolinsäure-äthylester $C_{15}H_{13}O_2N = NC_5H_3(CO \cdot C_6H_5) \cdot CO_2 \cdot C_2H_5$. B. Durch Erhitzen von 3-Benzoyl-picolinsäure mit absol. Alkohol und etwas konz. Schwefelsäure (Jeiteles, M. 22, 845). Aus dem Chlorid (S. 319) und Alkohol (H. Meyer, M. 22, 116). — Nadeln (aus Wasser). F: 108—109° (J.), 108—110° (M., M. 22, 116). Gibr mit wäßr. Am Moniak bei gewähnlichen Tenantung den Allen (Allen aus Wasser). niak bei gewöhnlicher Temperatur das Ammoniumsalz der 3-Benzoyl-picolinsäure (M., M. **27,** 38).

- 3-Benzoyl-picolinsäure-chlorid $C_{13}H_8O_2NCl=NC_5H_3(CO\cdot C_6H_5)\cdot COCl.$ B. Durch Erwärmen von 3-Benzoyl-picolinsäure mit Thionylchlorid (H. Meyer, M. 22, 116). F: 137°.
- **3-Benzoyl-picolinsäure-amid** $C_{13}H_{10}O_2N_2=NC_5H_3(CO\cdot C_6H_5)\cdot CO\cdot NH_2$. B. Aus 3-Benzoyl-picolinsäure-chlorid und kaltem wäßrigem Ammoniak (KIRPAL, M. 27, 374). Tafeln (aus Wasser oder Alkohol). F: 175°. Schwer löslich in Wasser, leichter in heißem Alkohol. Gibt mit alkal. Natriumhypobromit-Lösung 2-Amino-3-benzoyl-pyridin (Syst. No. 3427).
- 3. 4-Benzoyl-pyridin-carbonsäure-(3),
 4-Benzoyl-nicotinsäure C₁₃H₉O₃N, Formel I.
 B. Aus Cinchomeronsäureanhydrid, Benzol und Aluminiumchlorid (Philips, B. 27, 1925; Kirpal,
 M. 30, 357; vgl. a. Freund, M. 18, 447; Fulda, M. 20, 762), neben 3-Benzoyl-pyridincarbonsäure-(4) (K.). Aus Cinchomeronsäure-γ-methylester-β-chlorid vom Schmelzpunkt 183° (S. 157), Benzol und Aluminiumchlorid (K., M. 30, 360). Nadeln (aus Wasser), Prismen (aus Alkohol). F: 226°; zersetzt sich bei etwas höherer Temperatur (K.). Schwer löslich in kaltem Wasser, leicht in heißem Alkohol (K.). Gibt beim Erhitzen über den Schmelzpunkt 4-Benzoyl-pyridin (Bd. XXI, S. 331) (Ph.; Fu.; K.). Liefert beim Erhitzen mit konz. Schwefelsäure auf 175° β-Anthrapyridinchinon (Formel II) (Bd. XXI, S. 531) (Ph.). C₁₃H₉O₃N + HCl. Prismen (aus starker Salzsäure). F: 240° (Zers.) (K.). Wird durch Wasser hydrolysiert.

Äthylester $C_{15}H_{13}O_3N=NC_5H_3(CO\cdot C_6H_5)\cdot CO_2\cdot C_2H_5$. B. Durch Erwärmen von 4-Benzoyl-nicotinsäure mit Thionylchlorid und Behandeln des entstandenen Chlorids mit Äthylalkohol (H. Meyer, M. 22, 117). — Gelbliche Krystalle. F: 75°.

- 4. 3-Benzoyl-pyridin-carbonsäure-(4), 3-Benzoyl-isonicotin-säure C₁₃H₉O₃N, s. nebenstehende Formel. B. Neben 4-Benzoyl-pyridin-carbonsäure-(3) bei der Umsetzung von Cinchomeronsäureanhydrid mit Benzol und Aluminiumchlorid (KIRPAL, M. 30, 359). Aus Cinchomeronsäure-γ-methylester-β-chlorid vom Schmelzpunkt 168° (S. 157), Benzol und Aluminiumchlorid (K., M. 30, 360). Tafeln (aus Alkohol). F: 270° (Zers.). Sehr schwer löslich in heißem Wasser und Alkohol. Gibt beim Erhitzen auf den Schmelzpunkt 3-Benzoyl-pyridin (Bd. XXI, S. 331).
- 5. 5-Benzoyl-pyridin-carbonsäure-(3), 5-Benzoyl-C₆H₅·CO·Lincotinsäure C₁₃H₉O₃N, s. nebenstehende Formel. B. Beim Kochen von 3.5-Dibenzyl-pyridin oder 3.5-Dibenzoyl-pyridin mit Chromschwefelsäure (Rügheimer, Kronthal, A. 280, 50). Nadeln (aus Benzol). F: 199—201°. Schwer löslich in Wasser, ziemlich schwer in Benzol. Cu(C₁₃H₈O₃N)₂. Blauer, krystallinischer Niederschlag. AgC₁₃H₈O₃N.

2. Oxo-carbonsäuren $C_{14}H_{11}O_3N$.

1. ω -[α -Pyridyl]-acetophenon-carbonsäure-(2) bezw. 3-Oxy-3- α -picolyl-phthalid $C_{14}H_{11}O_3N$, Formel III bezw. IV. Eine Verbindung, die vielleicht als 3-Oxy-3- α -picolyl-phthalid zu formulieren ist, s. Bd. XX, S. 237.

$$III. \ \ \bigcap_{N} \cdot_{\mathrm{CH}_2 \cdot \mathrm{CO} \cdot \mathrm{C}_6 \mathrm{H}_4 \cdot \mathrm{CO}_2 \mathrm{H}} \qquad \qquad IV. \ \ \bigcap_{N} \cdot_{\mathrm{CH}_2 \cdot \mathrm{C}(\mathrm{OH})} < \stackrel{\mathrm{C}_6 \mathrm{H}_4}{\circ} > \mathrm{CO}$$

2. 4-Phenacetyl-pyridin-carbonsäure-(3), 4-Phenacetyl-nicotinsäure C₁₄H₁₁O₃N, s. nebenstehende Formel. B. Beim Erwärmen von "Benzalmerid" NC₅H₃—CO (Syst. No. 4283) mit verd. Kalilauge (Fels, B. 37, 2143). — Blättchen. F: 187—188° (Zers.). Schwer löslich in Wasser; löslich in verd. Salzsäure mit gelber Farbe. — AgC₁₄H₁₀O₃N. Gelbliche Flocken. Wird durch heißes Wasser zersetzt. — Hydrochlorid. Citronengelbe Krystalle. — Chloroplatinat. Gelbe Nadeln.

Amid $C_{14}H_{18}O_2N_2=NC_5H_3(CO\cdot CH_2\cdot C_6H_5)\cdot CO\cdot NH_2$. B. Beim Erhitzen von "Benzalmerid" mit konzentriertem alkoholischem Ammoniak im Rohr auf 100° (Fels, B. 37, 2144). — Prismen (aus Wasser). F: $205-206^{\circ}$ (Zers.). Schwer löslich in Wasser, leicht in Alkohol. Leicht löslich in Kalilauge und Essigsäure. — Geht beim Abdampfen mit verd. Salzsäure in "Benzalmerimidin" NC_5H_3 CO NH (Syst. No. 3572) über.

3. 3-p-Toluyl-pyridin-carbonsaure-(2), 3-p-Toluyl-picolinsaure C₁₄H₁₁O₃N, s. nebenstehende Formel. B. Aus Chinolinsaure C₁₄H₁₁O₃N. Leicht löslich in Kaliumermanganat in Alkal. F: 166° (Zers.) (J.). Leicht löslich in heißem Wasser und Alkohol, unlöslich in Äther, Benzol und Chloroform (J.). — Gibt beim Erhitzen auf den Schmelzpunkt 3-p-Toluyl-pyridin (Bd. XXI, S. 332) (J.). Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung je nach den Mengenverhältnissen 3-[4-Carboxy-benzoyl]-pyridin-carbonsäure-(2) oder Terephthalsäure (F.). — AgC₁₄H₁₀O₃N + C₁₄H₁₁O₃N. Krystalle. — AgC₁₄H₁₀O₃N. Krystallinischer Niederschlag. — C₁₄H₁₁O₃N + HCl. Nadeln (J.).

Äthylester $C_{16}H_{18}O_3N=NC_5H_3(CO\cdot C_6H_4\cdot CH_3)\cdot CO_2\cdot C_3H_5$. B. Durch Einw. von Alkohol auf das Chlorid (s. u.) (H. MEYER, M. 22, 116). — Gelbliche Krystalle. F: 58°.

Chlorid $C_{14}H_{10}O_2NCl = NC_8H_2(CO \cdot C_6H_4 \cdot CH_3) \cdot COCl.$ B. Durch Erwärmen von β -p-Toluyl-picolinsäure mit Thionylchlorid (M., M. 22, 116). — Krystalle.

3. Oxo-carbonsäuren $C_{16}H_{15}O_{3}N$.

1. 2.4.6-Trimethyl-5-benzoyl-pyridin-carbonsäure-(3), 5-Benzoyl-kollidin-carbonsäure-(3) C₁₆H₁₅O₃N, s. nebenstehende Formel. C₁₆CO₂H CO₂H
Äthylester $C_{18}H_{19}O_3N=NC_5(CH_3)_3(CO\cdot C_6H_5)\cdot CO_2\cdot C_2H_5$. B. Beim Einleiten von Stickoxyden in eine alkoh. Suspension von 5-Benzoyl-1.4-dihydro-kollidin-carbonsäure-(3)-äthylester (Beyer, B. 24, 1668). — Flüssig. — Hydrochlorid. Prismen. F: 192°. — $C_{18}H_{19}O_3N+HNO_3$. Blättchen. — $2C_{18}H_{19}O_3N+2HCl+PtCl_4$. Nadeln (aus verd. Salzsäure).

2. 5^1 - 0xo-2.6- dimethyl-5- athyl-4- phenyl- pyridin- carbons aure-(3), 2.6- Dimethyl-4- phenyl-5- acetyl- pyridin- carbons aure-(3) $C_{16}H_{15}O_3N$, s. nebenstehende Formel.

Äthylester $C_{18}H_{19}O_3N = NC_5(CH_3)_2(C_0H_5)(CO \cdot CH_3) \cdot CO_2 \cdot C_2H_5$. B. Beim Erwärmen von 2.6-Dimethyl-4-phenyl-5-acetyl-1.4-dihydro-pyridin-carbonsäure-(3)-äthylester mit sehr verd. Salpetersäure (Knoevenagel, Ruschhaupt, B. 31, 1028). — F: 85—86°. Leicht löslich in Alkohol, Chloroform und Benzol, fast unlöslich in Ligroin und Äther, unlöslich in Wasser. Sehr leicht löslich in Säuren.

i) Oxo-carbonsäuren $C_n H_{2n-19} O_3 N$.

1. 0xo-carbonsäuren $C_{14}H_{9}O_{3}N$.

1. 9 - Oxo - 9.10 - dihydro - acridin - carbonsäure - (2),
Acridon - carbonsäure - (2) (Acridol - carbonsäure - (2))

C₁₄H₂O₃N, s. nebenstehende Formel. B. Beim Erwärmen von Diphenylamin-dicarbonsäure-(2.4') mit konz. Schwefelsäure auf 100° (Ulimann,
A. 355, 357). — Gelbliches Pulver. Schmilzt oberhalb 350°. Unlöslich in Wasser, Ligroin und Benzol, sehr schwer löslich in siedendem Alkohol mit blauer Fluorescenz. Löslich in verd. Alkalilaugen mit blaßgelber Farbe und starker, blauer Fluorescenz; löslich in konz. Schwefelsäure mit gelber Farbe und schwacher, blaugrüner Fluorescenz.

Methylester $C_{15}H_{11}O_5N=C_6H_4 < \stackrel{CO}{NH} > C_6H_5 \cdot CO_5 \cdot CH_5$. B. Aus Acridon-carbon-säure-(2) und Dimethylsulfat in alkal. Lösung (ULLMANN, A. 855, 357). — Fast farblose Nadeln (aus Methanol). F: 339°. Löslich in siedendem Alkohol mit blaßgelber Farbe und starker, blauer Fluorescenz, unlöslich in Wasser und Ligroin.

2. 9-Oxo-9.10-dihydro-acridin-carbonsäure-(4), Acridon-carbonsäure-(4) (Acridol-carbonsäure-(4)) C₁₄H₉O₃N, s. nebenstehende Formel. B. Durch Erwärmen von Diphenylamin-dicarbonsäure-(2.2') mit konz. Schwefelsäure auf 100° (ULLMANN, A. 355, 354).— Normalia (2.2') mit konz. Schwefelsäure auf 100° (ULLMANN, A. 355, 354).— Normalia (2.2') mit konz. Schwefelsäure auf 100° (ULLMANN, A. 355, 354).— Normalia (2.2') mit konz. Schwefelsäure nit delich in heißem Alkalien mit blaßgelber Farbe und blauer Fluorescenz, in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz.

Methylester $C_{15}H_{11}O_5N = C_6H_4 < {CO \atop NH} > C_6H_3 \cdot CO_5 \cdot CH_3$. B. Aus Acridon-carbonsäure-(4) und Dimethylsulfat in verd. Soda-Lösung (Ullmann, A. 355, 355). — Gelbe Nadeln (aus Methanol). F: 172°. Schwer löslich in Alkohol mit gelber Farbe und blauvioletter Fluorescenz, löslich in konz. Schwefelsäure mit blaßgelber Farbe und blaugrüner Fluorescenz.

2. $2 \cdot 0 \times 0 \cdot 3$ - phenyl - 1.2.3.4 - tetrahydro-chinolin-carbonsäure - (4), 3 - Phenyl - 3.4 - dihydro-carbostyril-carbonsäure - (4), 3 - Phenyl-hydrocarbostyril-carbonsäure - (4) (Hydroisaphen-co₂H säure) $C_{16}H_{13}O_3N$, s. nebenstehende Formel. B. Durch Reduktion von Isaphensäure (S. 247) mit Natriumamalgam und sehr verd. Natronlauge (Gysae, B. 26, 2485; vgl. Borsche, Jacobs, B. 47 [1914], NH co NH co State - Blättchen (aus Eisessig). F: 202° (G.). Leicht löslich in Alkohol und Eisessig, schwer in Wasser (G.). — $AgC_{16}H_{12}O_3N$ (G.).

k) Oxo-carbonsäuren $C_nH_{2n-21}O_3N$.

- 1. Oxo-carbonsäuren $C_{16}H_{11}O_3N$.
- 1. 1-Oxo-3-phenyl-1.2-dihydro-isochinolin-carbon-säure-(4), 3-Phenyl-isocarbostyril-carbonsäure-(4) $C_{16}H_{11}O_3N$, s. nebenstehende Formel.

Nitril, 3-Phenyl-4-cyan-isochinolon-(1) (3-Phenyl-4-cyan-isocarbostyril) $C_{16}H_{10}ON_2 = C_6H_4 CO - NH$ s. S. 248.

- 2. [2-Oxo-indolinyliden-(3)]-phenylessigsäure,
 3-[a-Carboxy-benzal]-oxindol (Isaphensäure)
 C16H103N, s. nebenstehende Formel. Ist als 2-Oxy-3-phenylcinchoninsäure (S. 247) erkannt worden (Borsche, Jacobs, B. 47 [1914], 354).
- 3. 5-Benzoyl-indol-carbonsäure-(2) C₁₆H₁₁O₃N, C₆H₅·CO·CH s. nebenstehende Formel. B. Bei kurzem Erhitzen von Brenztraubensäure-äthylester-[4-benzoyl-phenylhydrazon] (Bd. XV, S. 620) mit Zinkchlorid auf 220° (Ruhemann, Blackman, Soc. 55, 617). Nadeln (aus Alkohol). F: 284—285° (Zers.). Leicht löslich in Alkohol, schwer in siedendem Wasser. Gibt beim Erhitzen auf den Schmelzpunkt 5-Benzoyl-indol (Nadeln; F: 144—145°).
- 4. Lactam der α Amino stilben dicarbonsdure (2.2') C₁₆H₁₁O₃N = C₆H₄·CO₂H oder C₆H₄·CO₂H oder C₆H₄·CO₂H. B. Beim Erhitzen von Desoxybenzoin-dicarbonsäure-(2.2') mit alkoh. Ammoniak im Rohr auf 100° (Ернгаім, B. 24, 2822). Rhomboeder (aus Alkohol). Leicht löslich in Alkohol. Liefert mit Phosphoroxychlorid auf dem Wasserbad 2(CO).3-Benzoylen-isocarbostyril (Bd. XXI, S. 540).
- 2. Oxo-carbonsăuren $C_{17}H_{18}O_8N$.
- 1. 1-0xo-3-p-tolyl-1.2-dihydro-isochinolin-carbon-säure-(4), 3-p-Tolyl-isochinolon-(1)-carbonsäure-(4), 3-p-Tolyl-isocarbostyril-carbonsäure-(4) $C_{17}H_{13}O_3N$, $C_{17}H_{13}$

Nitril, 8-p-Tolyl-4-cyan-isochinolon-(1) (8-p-Tolyl-4-cyan-isocarbostyril) $C_{17}H_{12}ON_2 = C_6H_4 \cdot CC_9H_4 \cdot CH_3$ s. 8. 248.

2. 2-[2-Methyl-indol-carboyl-(3)]-benzoesdure,
2-Methyl-3-[2-carboxy-benzoyl]-indol C₁₇H₁₃O₃N,
s. nebenstehende Formel. B. Aus 2-Methyl-indol und Phthalsäureanhydrid beim Verschmelzen mit Zinkchlorid auf dem Wasserbad (E. FISCHER, B. 19,
2989; A. 242, 381) oder beim Erhitzen im Rohr auf 150° (RENZ, B. 37, 1223). — Prismen

21

BEILSTEINs Handbuch. 4. Aufl. XXII.

3. $2-[\gamma-0 \times 0-butyl]-7.8-benzo-chinolin-carbon-coshure-(4), 2-[\gamma-0 \times 0-butyl]-7.8-benzo-cin-choninsäure-(,,2-[\gamma-0 \times 0-butyl]-naphthocin-choninsäure-()-C₁₈H₁₅O₃N, s. nebenstehende Formel.

B. Aus <math>\beta$ -Naphthylamin, Brenztraubensäure und Lävulin-aldehyd in siedendem absolutem Alkohol (Harries, Boegemann, B. 42, 443). — Gelbliche Nadeln. F: 290—291°. Sehr schwer löslich in den gebräuchlichen Lösungsmitteln.

1) Oxo-carbonsäuren $C_n H_{2n-23} O_3 N$.

1. Oxo-carbonsauren $C_{18}H_{15}O_{3}N$.

1. ω-[Chinolyl-(2)]-acetophenon-carbonsäure-(2)
C₁₈H₁₃O₃N, s. nebenstehende Formel. B. Beim Kochen von
3-Chinaldyliden-phthalid (Syst. No. 4286) mit wäßr. Alkalilaugen (ΕΙΒΝΕΚ, ΗΟΓΜΑΝΝ, B. 37, 3011). — Gelbe Krystalle (aus wäßr. Aceton). F: 155°
(Zers.). Leicht löslich in Chloroform, Benzol und Aceton, schwer in Äther, unlöslich in Petroläther. — Gibt beim Erhitzen über den Schmelzpunkt Chinophthalon (Bd. XXI, S. 542)
und Chinaldin; Chinophthalon entsteht auch beim Erwärmen mit konz. Schwefelsäure oder beim Erhitzen mit Benzaldehyd. Liefert mit Natriumnitrit und verd. Salzsäure ω-Isonitrosoω-[chinolyl-(2)]-acetophenon-carbonsäure-(2). Gibt beim Erwärmen mit Phenylhydrazin
3-Phenyl-1-chinaldyl-phthalazon-(4) C₆H₄ CO N·C₆H₅ (Syst. No. 3883). Liefert mit 2 Mol Benzoldiazoniumchlorid in verd. Natronlauge 2-[N.N'-Diphenyl-formazyl]-chinolin (S. 73). — Löslich in konz. Schwefelsäure mit gelber, beim Erwärmen in Blutrot übergehender Farbe.

3-Oxy-3-chinaldyl-phthalid $C_{18}H_{18}O_3N = NC_8H_6 \cdot CH_8 \cdot C(OH) \stackrel{C_6H_6}{\bigcirc} CO$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Bd. XX, S. 390.

Oxim der ω -[Chinolyl-(2)]-acetophenon-carbonsäure-(2) $C_{18}H_{14}O_{3}N_{2}=NC_{9}H_{4}\cdot CH_{4}\cdot CH_{2}\cdot CH_{3}\cdot CH_{4}\cdot CO_{3}H$. B. Aus ω -[Chinolyl-(2)]-acetophenon-carbonsäure-(2), Hydroxylamin und Natriumcarbonat in siedendem Alkohol (Er., H., B. 37, 3012). — Nadeln (aus Wasser). F: 145° (Zers.). Leicht löslich in Alkalien.

 ω -[Chinolyl-(2)]-acetophenon-carbonsäure-(2)-äthylester $C_{20}H_{17}O_3N=NC_0H_6$: $CH_2 \cdot CO \cdot C_0H_4 \cdot CO_3 \cdot C_2H_5$. B. Durch Einleiten von Chlorwasserstoff in eine Lösung von ω -[Chinolyl-(2)]-acetophenon-carbonsäure-(2) in absol. Alkohol (Eibner, B. 39, 2203). — Hellgelbe Nadeln (aus Petroläther). F: 250°. Liefert beim Erwärmen mit Natriumäthylat-Lösung Chinophthalon (Bd. XXI, S. 542).

 ω -Nitroso- ω -[chinolyl-(2)]-acetophenon-carbonsäure-(2) $C_{18}H_{12}O_4N_2 = NC_9H_4 \cdot CH$ (NO)·CO·C₆H₄·CO₂H. Vgl. ω -Isonitroso- ω -[chinolyl-(2)]-acetophenon-carbonsäure-(2), 8. 341.

2. 6¹ - Oxo - 6 - āthyl - 2 - phenyl - chinolin - carbon-sāure-(4), 2-Phenyl-6-acetyl-cinchoninsāure C₁₈H₁₃O₃N, s. nebenstehende Formel. B. Aus 4-Amino-acetophenon, Benzaldehyd und Brenztraubensäure in Eisessig auf dem Wasserbad (Borsche, B. 41, 3892). — Nadeln mit ¹/₂ H₂O (aus Alkohol). F: ca. 200°. Ziemlich leicht löslich in warmem Alkohol.

2. Oxo-carbonsäuren $C_{20}H_{17}O_{8}N$.

1. γ -Oxo- α . α -diphenyl- γ -[α -pyrryl]-buttersäure, α . α -Diphenyl- β -[α -pyr-royl]-propionsäure $C_{50}H_{17}O_3N = \frac{HC}{HC \cdot NH \cdot C \cdot CO \cdot CH_3 \cdot C(C_6H_5)_3 \cdot CO_3H}$. B. Neben α . α -Diphenyl- γ -[α -pyrryl]- Δ β -crotonlacton (Syst. No. 4286) beim Erwärmen von 2-Acetyl-pyrrol mit Benzil und konz. Kalilauge auf dem Wasserbad (Angell, B. 23, 1355; G. 20, 554). — Krystalle (aus Alkohol). F: 216°. Unlöslich in Wasser, löslich in Alkohol und Benzol. — Ag $C_{50}H_{16}O_3N$. Hellgelber Niederschlag.

2. γ -Phenyl- γ -[2-oxo-5-phenyl- Δ 4-pyrrolinyliden - (3)] - buttersäure, 2-Phenyl-4-[α -phenyl- γ -carboxy-propyliden]- Δ -pyrrolon-(δ) $C_{20}H_{17}O_{2}N=HO_{1}C\cdot CH_{2}\cdot CH_{2}\cdot C(C_{6}H_{5}):C$ ——CH

OC.NH.C.C.H.

 $\gamma - \text{Phenyl} - \gamma - [2 - \text{oxo} - 1.5 - \text{diphenyl} - \Delta^4 - \text{pyrrolinyliden} - (3)] - \text{buttersäure-anilid}$ $C_{32}H_{36}O_2N_2 = \begin{array}{c} C_6H_5 \cdot \text{NH} \cdot \text{CO} \cdot \text{CH}_2 \cdot \text{CH}_2 \cdot \text{C}(C_6H_5) : C - CH \\ & \vdots \\ &$ $OC \cdot N(C_6H_5) \cdot C \cdot C_6H_5$. B. Neben β -Benzoyl-nepring.

propionsāure-anilid beim Erhitzen von β -Benzoyl-propionsāure mit Phenylisocyanat oder Anilin auf 160—170° (Klobb, Bl. [3] 19, 391, 393, 398). Durch Einw. von Acetylchlorid auf β -Benzoyl-propionsāure-anilid (K., Bl. [3] 19, 394). — Gelbe Nadeln (aus Alkohol). F: 195°. Sehr leicht löslich in heißem Benzol, löslich in Ather, Chloroform und Aceton, sehr schwer löslich in kaltem Alkohol. — Wird von kalter konzentrierter Schwefelsäure unverändert gelöst. Die Lösung in alkoh. Kalilauge nimmt Sauerstoff auf. Gibt beim Erhitzen mit konz. Salzsaure auf 150° β -Benzoyl-propionsaure und Anilin.

3. 5¹-0xo-2-methyl-5-äthyl-4.6-diphenyl-1.4-dihydro-pyridin-carbonsäure-(3), 2-Methyl-4.6-diphenyl-5-acetyl-1.4-dihydro-pyridin-carbon-säure-(3) $C_{s_1}H_{1s}O_sN = \frac{CH_s \cdot CO \cdot C \cdot CH(C_eH_s) \cdot C \cdot CO_sH}{C_eH_s \cdot C - NH - C \cdot CH_s}$ Äthylester $C_{s_2}H_{s_3}O_sN = \frac{CH_s \cdot CO \cdot C \cdot CH(C_eH_s) \cdot C \cdot CO_s \cdot C_sH_s}{C_eH_s \cdot C - NH - C \cdot CH_s}$. B. Aus je 1 Mol α -Benzal-benzal-secton and β Amino contoneaure at hylester in a bool. Alkohol bei 40° (K NOEVENAGE).

 α -benzoyl-aceton und β -Amino-crotonsäure-äthylester in absöl. Alkohol bei 40° (Knoevenagel, B. 36, 2188). — Gelbe Krystalle (aus Alkohol). F: 174°. Sehr leicht löslich in Chloroform und heißem Alkohol, leicht in heißem Benzol, fast unlöslich in Äther und kaltem Ligroin.

4. γ -p-Tolyl- γ -[2-oxo-5-p-tolyl- Δ 4-pyrrolinyliden-(3)]-buttersäure, $2 - p - Tolyl - 4 - [\alpha - p - tolyl - \gamma - carboxy - propyliden] - \Delta^2 - pyrrolon - (5)$ $C_{32}H_{31}O_2N = CH_{31}CH_{31}CH_{31}CH_{31}CH_{32}CH_{31}CH_{32}CH_{32}CH_{33}C$ OC·NH·C·CaH4·CH3

 γ -p-Tolyl- γ -[1-phenyl-2-oxo-5-p-tolyl- Δ 4-pyrrolinyliden-(8)]-buttersäure-anilid $C_{34}H_{30}O_{2}N_{2} = C_{6}H_{5} \cdot NH \cdot CO \cdot CH_{2} \cdot CH_{2} \cdot C(C_{6}H_{4} \cdot CH_{3}) \cdot C - CH$ Neben $OC \cdot N(C_6H_5) \cdot C \cdot C_6H_4 \cdot CH_3$

 β -p-Toluyl-propionsaure-anilid beim Erhitzen von β -p-Toluyl-propionsaure mit Phenylisocyanat bis auf 210° (Klobb, C. r. 130, 1254; Bl. [3] 23, 521). — Goldgelbe Nadeln (aus Benzol + Ligroin). F: 204°.

m) Oxo-carbonsäuren $C_n H_{2n-25} O_3 N$.

[4.5 (CO) - Benzoylen - chinolyl - (2)] - essigsäure $C_{18}H_{11}O_3N$, s. nebenstehende Formel. B. Durch Erhitzen von 1-Amino-anthrachinon mit Acetessigester und Natriummethylat auf 140° (BAYER & Co., D. R. P. 185548; C. 1907 II, 863; Frdl. 9, 730). — Grünlichgelbe Blättehen (aus Nitrobenzol). Löslich in Soda-Lösung und in konz. Schwefelsäure mit gelber Farbe. — Geht bei der Sublimation in 4.5(CO) - Benzoylen-chinaldin (Bd. XXI, S. 358) über.

n) Oxo-carbonsäuren $C_n H_{2n-27} O_3 N$.

3'- 0xo - 6 - phenyl - [indeno - 1'.2': 2.3 - pyridin] - carbon -CO₂H săure-(4)1), 6-Phenyl-2.3(CO)-benzoylen-pyridincarbonsaure - (4) C10H11O2N, s. nebenstehende Formel. Neben überwiegenden Mengen 6-Phenyl-2-[2-carboxy-phenyl]-cinchomeronsaure bei der Oxydation von 2-Phenyl-7.8-benzo-cinchoninsaure mit Kalium-

¹⁾ Zur Stellungsbeseichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

permanganat in siedender verdünnter Kalilauge (DOEBNER, KUNTZE, A. 249, 123). — Orangerote Nadeln (aus Eisessig oder verd. Alkohol). F: 226°. Unlöslich in Wasser, löslich in Aceton und Äther. Unlöslich in verd. Säuren, löslich in Alkalien und Ammoniak mit hellgelber Farbe. — Liefert bei der Destillation mit Natronkalk 6-Phenyl-2.3(CO)-benzoylen-pyridin. — AgC₁₉H₁₀O₂N. Hellgelbe Flocken. Fast unlöslich in Wasser.

o) Oxo-carbonsauren $C_n H_{2n-29} O_3 N$.

3-Benzoyl-5.6-benzo-chinolin-carbonsaure-(4), 3-Benzoyl-5.6-benzo-cinchoninsaure (,, β -Benzoyl- β -naph-thocinchoninsaure") $C_{21}H_{12}O_2N$, s. nebenstehende Formel. B. Aus Benzoylbrenztraubensaure, β -Naphthylamin und Formaldehyd auf dem Wasserbad (Borsohe, B. 42, 4085). — Gelbliches Krystallpulver. — Gibt beim Schmelzen 3-Benzoyl-5.6-benzo-chinolin.

p) Oxo-carbonsauren C_n H_{2n-37} O₃ N.

2-Phenyl-3-benzoyl-5.6-benzo-chinolin-carbon-säure-(4), 2-Phenyl-3-benzoyl-5.6-benzo-cinchonin-säure (,, α -Phenyl- β -benzoyl- β -naphthocinchonin-säure") $C_{27}H_{17}O_{2}N$, s. nebenstehende Formel. B. Aus Benzoyl-brenztraubensäure und Benzal- β -naphthylamin in siedendem Alkohol (Borsche, B. 42, 4084). — Nadeln (aus Alkohol oder Nitrobenzol). — Gibt beim Schmelzen 2-Phenyl-3-benzoyl-5.6-benzo-chinolin.

2. Oxo-carbonsäuren mit 4 Sauerstoffatomen.

a) Oxo-carbonsăuren $C_n H_{2n-5} O_4 N$.

1. 2.4-Dioxo-pyrrolidin-carbonsaure-(3) $C_5H_5O_4N = \frac{OC-CH \cdot CO_2H}{H_2C \cdot NH \cdot CO}$ bezw. desmotrope Formen.

 $\begin{array}{c} \mathbf{Amid} \ \ \mathbf{C_5H_6O_3N_5} = \frac{\mathbf{OC} - \mathbf{CH} \cdot \mathbf{CO} \cdot \mathbf{NH_3}}{\mathbf{H_2C} \cdot \mathbf{NH} \cdot \mathbf{CO}} . \quad \textbf{\textit{B.}} \quad \textbf{\textit{Aus dem Nitril (s. u.) durch Kochen} \\ \mathbf{mit} \ \ \mathbf{30^0/_0iger} \ \ \mathbf{Kalilauge} \ \ (\mathbf{Benaley}, \ \textbf{\textit{B. 41, 2406}}). \quad - \mathbf{Prismen (aus Wasser)}. \quad \mathbf{Zersetzt} \ \ \mathbf{sich bei} \\ \mathbf{215^0}. \ \ \mathbf{Sehr schwer} \ \ \mathbf{loslich in \ Ather, Alkohol und kaltem Wasser.} - \mathbf{Reduziert ammoniakalische} \\ \mathbf{Silber-Losung in der Warme} \ \ (\mathbf{B.}, \ \textbf{\textit{B. 41, 2405}}). \quad - \mathbf{Gibt \ mit \ Eisenchlorid \ eine \ rote \ Farbung.} \\ \end{aligned}$

Nitril, 2.4 - Dioxo - 3 - cyan - pyrrolidin $C_8H_4O_2N_2 = \frac{OC - CH \cdot CN}{H_2C \cdot NH \cdot CO}$. B. Aus γ -Chlor- α -cyan-acetessigsäure-äthylester durch Einw. von Ammoniak und Natronlauge bei Zimmertemperatur (Benaby, B. 41, 2405). — Körnchen (aus Wasser). Beginnt bei 210° sich unter Bräunung zu zersetzen; schmilzt völlig bei 220—221°. Schwer löslich in den üblichen organischen Lösungsmitteln, ziemlich leicht in kaltem, sehr leicht in heißem Wasser. — Reduziert ammoniakalische Silber-Lösung in der Wärme. — Gibt mit Eisenchlorid eine rote Färbung. — $AgC_8H_2O_2N_2$. Nadeln.

 in Äther, Petroläther und Benzol. — Reduziert in der Wärme ammoniakalische Silber-Lösung. — Gibt mit Eisenchlorid eine rote Färbung. — NH₄C₇H₇O₂N₂. Krystallpulver (aus Alkohol + Äther). F: 194—195°.

2. 0xo-carbonsăuren $C_6H_7O_4N$.

- 1. [2.5-Dioxo-pyrrolidyl-(3)]-essigsäure, Tricarballylsäure- $\alpha.\beta$ -imid $C_0H_7O_4N = {H_3C CH \cdot CH_3 \cdot CO_2H \over OC \cdot NH \cdot CO}$
- [2.5-Dioxo-pyrrolidyl-(3)]-essigsäure-amid, Tricarballylsäure- α' -amid- $\alpha.\beta$ -imid $C_0H_0O_3N_2=\frac{H_2C_--CH\cdot CH_2\cdot CO\cdot NH_2}{OC\cdot NH\cdot CO}$. B. Beim Erhitzen von Tricarballylsäure-triamid auf 220° (EMERY, B. 24, 600). Krystalle (aus verd. Alkohol). F: 173°. Leicht löslich in Wasser, schwer in verd. Alkohol.

- Propylester $C_{18}H_{17}O_4N=\frac{H_2C_{-----}CH\cdot CH_2\cdot CO_2\cdot CH_2\cdot C_2H_5}{OC\cdot N(C_6H_5)\cdot CO}$. B. Durch Reduktion von Aconitanilsäure-propylester (S. 331) mit Aluminium und Essigsäure (Bertram, B. 38, 1621). Nadeln. F: ca. 55°. Sehr leicht löslich in Alkohol, etwas schwerer in Äther.
- Anilid $C_{18}H_{16}O_{3}N_{2} = \frac{H_{2}C$ $CH \cdot CH_{2} \cdot CO \cdot NH \cdot C_{6}H_{5}}{OC \cdot N(C_{6}H_{5}) \cdot CO}$. B. Beim Erhitzen von 1 Mol $\alpha.\beta$ -Anhydro-tricarballylsäure mit 3 Mol Anilin auf ca. 185° (Bertram, B. 38, 1622). Nadeln (aus verd. Alkohol). F: 168°. Schwer löslich in Wasser, leichter in Alkohol.
- [1-o-Tolyl-2.5-dioxo-pyrrolidyl-(3)]-essigsäure, Tricarballylsäure $\alpha.\beta$ -o-tolylimid $C_{12}H_{12}O_4N = \frac{H_2C}{OC \cdot N(C_6H_4 \cdot CH_3) \cdot CO}$. B. Aus Tricarballylsäure-monootoluidid (Bd. XII, S. 800) durch Einw. von Acetylchlorid (EMEBY, B. 24, 600). Krystalle (aus Wasser). F: 152°.
- B. Beim Erhitzen von 1 Mol Tricarballylsäure mit 2 Mol Phenylhydrazin auf dem Wasserbad (Manuelli, de Righi, G. 29 II, 152). Beim Kochen der alkoh. Lösung des Phenylhydrazinsalzes der Tricarballylsäure (M., de R.). Nadeln. F: 229—230°. Unlöslich in Alkohol, Chloroform und Benzol, löslich in heißem Eisessig. Liefert bei der Zinkstaub-Destillation Pyrrol. Gibt mit salpetriger Säure ein Dinitrosoderivat C₁₂H₁₄O₂N₄ (gelbbraune Krystalle; sehr leicht löslich in Alkohol, Äther und Benzol, sehr schwer in Ligroin).
- $\begin{array}{ll} \textbf{[1-Bensoylanilino-2.5-dioxo-pyrrolidyl-(3)]-essigsäure-[\beta-phenyl-\beta-bensoyl-phydrasid]} & C_{32}H_{36}O_{5}N_{4} = & \begin{array}{c} H_{2}C & CH \cdot CH_{2} \cdot CO \cdot NH \cdot N(C_{6}H_{5}) \cdot CO \cdot C_{6}H_{5} \\ OC \cdot N[N(C_{6}H_{5}) \cdot CO \cdot C_{6}H_{5}] \cdot CO \end{array}. \end{array}$

B. Durch Einw. von Benzoylchlorid auf die vorangehende Verbindung in Soda-Lösung (Manuelli, de Right, G. 29 II, 153). Aus Tricarballylsäure und α-Benzoyl-phenylhydrazin durch Erhitzen auf 135-140° (M., DE R.). - Amorphes Pulver (aus Benzol). F: 140-145°.

2. 4.5 - Dioxo - 2 - methyl - pyrrolidin - carbonsäure - (2) $C_4H_7O_4N =$ OC-CH, OC·NH·C(CH₂)·CO₂H

1 - Phenyl - 4.5 - dioxo - 2 - methyl - pyrrolidin - carbonsäure - (2) $C_{12}H_{11}O_4N =$ OC·N(C₆H₅)·C(CH₃)·CO₃H. Zur Konstitution vgl. Simon, C. r. 144, 140 Anm.; 147, 128. — B. Durch kurzes Kochen des Äthylesters (s. u.) mit überschüssiger Alkalilauge (S., C. r. 184, 1064). — Krystalle. Zersetzt sich bei 132—133°. Unlöslich in Wasser, löslich in Alkohol. — Reduziert Silbernitrat-Lösung in der Wärme.

Monophenylhydrason $C_{18}H_{17}O_3N_3 = C_6H_5 \cdot NC_4H_2(CH_3)(:0)(:N \cdot NH \cdot C_6H_5) \cdot CO_2H$. B. Aus den beiden stereoisomeren Monophenylhydrazonen des 1-Phenyl-4.5-dioxo-2-methylpyrrolidin-carbonsaure-(2)-athylesters durch Behandeln mit alkoh. Kalilauge (SIMON, C. r. 135, 631). — Hellgelbe Nadeln. Zersetzt sich bei 151—152°. — Liefert beim Verestern mit Alkohol das höherschmelzende Phenylhydrazon des 1-Phenyl-4.5-dioxo-2-methyl-pyrrolidincarbonsaure (2)-athylesters. — Gibt mit konz. Schwefelsaure eine orangerote Färbung, die über Grün in Blau übergeht.

Athylester $C_{14}H_{15}O_4N = \frac{OC - CH_2}{OC \cdot N(C_6H_5) \cdot C(CH_3) \cdot CO_2 \cdot C_2H_5}$. Zur Konstitution vgl. Simon, C. r. 144, 140 Anm.; 147, 126. — B. Aus 1-Phenyl-5-oxo-4-phenylimino-2-methyl-pyrrolidin-

carbonsaure-(2)-athylester (s. u.) durch Einw. von konz. Schwefelsaure (S., C. r. 134, 1063). -Prismen (aus Eisessig). F: 139—140°. Unlöslich in kaltem Wasser, schwer löslich in kaltem Alkohol, ziemlich leicht in Eisessig und siedendem Alkohol, leicht in Pyridin. Unlöslich in verd. kalten Mineralsäuren, unzersetzt löslich in konz. Säuren, Alkalien, Alkalicarbonat-Lösungen und Ammoniak. — Liefert mit Phenylhydrazin zwei stereoisomere Phenylhydrazone (s. u.), von denen das höherschmelzende in überwiegender Menge entsteht (S., C. r. 135, 630).

1-Phenyl-5-oxo-4-phenylimino-2-methyl-pyrrolidin-carbonsäure-(2)-äthylester $C_{20}H_{20}O_2N_2 = C_6H_5 \cdot N : C_{20}H_{20}O_2N_3 = C_6H_5 \cdot$ $C_{20}H_{20}U_2N_2 = OC \cdot N(C_0H_0) \cdot C(CH_0) \cdot CO_2 \cdot C_2H_0$. Zur Konstitution vgl. Simon, C.r. 144, 140 Anm.; 147, 126. — B. Bei der Einw. von Anilin auf Brenztraubensäure-äthylester (8., C. r. 118, 1344; Bl. [3] 18, 478; A. ch. [7] 9, 490). — Krystalle. F: 146°. Unlöslich in Wasser und kaltem Alkohol, etwas löslich in Ather, Chloroform und Benzol. — Liefert bei der Einw. von konz. Schwefelsäure 1-Phenyl-4.5-dioxo-2-methyl-pyrrolidin-carbonsäure-(2)athylester (8., C. r. 134, 1063). Liefert mit Phenylhydrazin eine bei 155° und eine bei 119—120° schmelzende Verbindung (8., Bl. [3] 18, 479; A. ch. [7] 9, 492).

1-Phenyl-5 (oder 4)-oxo-4 (oder 5)-phenylhydrazono-2-methyl-pyrrolidin-carbonsäure-(2)-äthylester $C_{50}H_{51}O_{5}N_{5}=C_{6}H_{5}\cdot NC_{4}H_{2}(CH_{3})(:O)(:N\cdot NH\cdot C_{6}H_{5})\cdot CO_{3}\cdot C_{2}H_{5}$.

a) Höherschmelzende Form. B. Neben geringen Mengen der niedrigerschmelzender Form bei der Umsetzung von 1-Phenyl-4.5-dioxo-2-methyl-pyrrolidin-carbonsäure-(2)-äthylester mit Phenylhydrazin (SIMON, C. r. 135, 630). Durch Einw. von alkoh. Salzsäure auf die niedrigerschmelzende Form (S., C. r. 135, 631). Durch Verestern des Phenylhydrazons der 1-Phenyl-4.5-dioxo-2-methyl-pyrrolidin-carbonsäure-(2)(S.). — Gelbliche Krystalle mit 1 H₂O. F: 195-196. Schwerer löslich in Alkohol und Aceton als die niedrigerschmelzende Form; unlöslich in Wasser wäßr Kalilauge und konz Salzsäure — Geht beim Erhitzen allmählich unlöslich in Wasser, wäßr. Kalilauge und konz. Salzsäure. — Geht beim Erhitzen allmählich in die niedrigerschmelzende Form über. — Gibt mit konz. Schwefelsäure eine orangerote Färbung, die über Grün in Blau übergeht.

b) Niedrigerschmelzende Form. B. s. o. bei der höherschmelzenden Form. — Goldgelbe Nadeln. F: 133° (Simon, C. r. 135, 630). Löslich in Alkohol und Aceton, unlöslich in Wasser, wäßr. Kalilauge und konz. Salzsäure. — Geht bei der Einw. von alkoh. Salzsäure in die höherschmelzende Form über. Verhält sich gegen konz. Schwefelsäure wie die höher-

schmelzende Form.

1-Phenyl-5-oxo-4-phenylimino-2-methyl-pyrrolidin-carbonsäure-(2)-iso-amylester $C_{22}H_{24}O_2N_2 = \begin{array}{c} C_6H_6\cdot N:C & CH_2 \\ C_6H_6\cdot N:C \\ C_6H_6\cdot$ Since, C. r. 144, 140 Anm.; 147, 126. — B. Aus Brenztraubensaure-isoamylester und Anilin (S., C. r. 118, 1344; Bl. [3] 18, 481; A. ch. [7] 9, 496). — Krystalle (aus Alkohol). F: 126° bis 127°. Löslich in Chloroform, Äther und Benzol, unlöslich in Wasser.

1 p-Tolyl-4.5-dioxo-2-methyl-pyrrolidin-carbonsäure-(2)-äthylester $C_{15}H_{17}O_4N=OC$ CH₂
CC-Signature CH₃
CC-Signature CH₃
CC-CH₃
CC-Signature CH₃
CC-CH₃
CC-C₂H₅
CC-C₃H₅
CC-C₄H₅
CC-

1-p-Tolyl-5-oxo-4-p-tolylimino-2-methyl-pyrrolidin-carbonsäure-(2)-äthylester $C_{32}H_{34}O_3N_2=$ $C_{43}\cdot C_6H_4\cdot N:C$ $C_{44}\cdot CH_3\cdot C(CH_3)\cdot C(CH_3)\cdot CO_2\cdot C_2H_5$ Zur Konstitution vgl. Simon, C.r. 147, 126. — B. Aus Brenztraubensäure-äthylester und p-Toluidin (8., B. [3] 13, 480; A. ch. [7] 9, 494). — Krystalle (aus Alkohol). F: 197° (8., A. ch. [7] 9, 494), 193—194° (8., C. r. 147, 125). Unlöslich in Wasser, schwer löslich in siedendem Alkohol und den übrigen organischen Lösungsmitteln; unlöslich in wäßr. Alkalilaugen (8., C. r. 147, 125). — Liefert bei der Einw. von alkoh. Kalilauge 1-p-Tolyl-5-oxo-4-p-tolylimino-2-methyl-pyrrolidin (8., C. r. 147, 126). Gibt beim Behandeln mit konz. Salzsäure oder konz. Schwefelsäure 1-p-Tolyl-4.5-dioxo-2-methyl-pyrrolidin-carbonsäure-(2)-äthylester (8., C. r. 134, 1065; 147, 125).

 $\begin{array}{ll} \textbf{1-p-Tolyl-5} (oder~\textbf{4}) - oxo-\textbf{4} (oder~\textbf{5}) - phenylhydrazono-\textbf{2}-methyl-pyrrolidin-carbon-säure-(\textbf{2})-äthylester & C_{21}H_{23}O_3N_3 = CH_3\cdot C_6H_4\cdot NC_4H_2(CH_3)(:O)(:N\cdot NH\cdot C_6H_5)\cdot CO_2\cdot C_2H_5. \end{array}$

a) Höherschmelzende Form. B. Neben sehr geringen Mengen der niedrigerschmelzenden Form bei der Einw. von Phenylhydrazin auf 1-p-Tolyl-4.5-dioxo-2-methyl-pyrrolidin-carbonsäure-(2)-äthylester (Simon, C. r. 135, 631). — Krystalle mit 1H₂O. F: 175—176°. Schwerer löslich als die niedrigerschmelzende Form. — Geht beim Erhitzen in die niedrigerschmelzende Form über. — Löst sich in konz. Schwefelsäure mit orangeroter Farbe, die über Grün in Blau übergeht.

b) Niedrigerschmelzende Form. B. s. o. bei der höherschmelzenden Form. — F: 117—118° (Simon, C. r. 135, 631). — Verhält sieh gegen konz. Schwefelsäure wie die höherschmelzende Form.

3. 4.5 - Dioxo - 2 - methyl - pyrrolidin - carbonsäure - (3) $C_6H_7O_4N = OC - CH \cdot CO_2H$ $OC \cdot NH \cdot CH \cdot CH_1$

Äthylester $C_8H_{11}O_4N= {{\rm OC---CH\cdot CO_2\cdot C_2H_5} \atop {\rm OC\cdot NH\cdot CH\cdot CH_8}}$ bezw. desmotrope Formen. B. Aus Oxalessigester und Acetaldehyd in Gegenwart von Ammoniak in wäßrig-alkoholischer Lösung (Simon, Conduché, A. ch. [8] 12, 39). — Existiert in Tafeln vom Schmelzpunkt 1460 und in Nadeln, die sich bei 132° zersetzen und mit Eisenchlorid eine rote Färbung geben. — NH $_4C_8H_{10}O_4N$. Sintert bei 150°, zersetzt sich bei 160°. Schwer löslich in heißem Wasser. — Cu $(C_8H_{10}O_4N)_2+2H_2O$. Dunkelgrüne Krystalle. Leicht löslich in kaltem Wasser.

3. Oxo-carbonsāuren $C_8H_{11}O_4N$.

1. β -[2.5-Dioxo-4-methyl-pyrrolidyl-(3)]-propionsäure, Pentana. γ . δ -tricarbonsäure- γ . δ -imid, Hämotricarbonsäure-imid $C_8H_{11}O_4N=HO_2C\cdot CH_2\cdot CH_3\cdot HC$ — $CH\cdot CH_3$. B. Durch Reduktion des Imids der dreibasischen OC·NH·CO

Hämatinsäure (S. 333) mit Zinkstaub und Essigsäure auf dem Wasserbad (Küster, A. 345,

- 51; vgl. a. K., B. 85, 2950). Wurde nicht ganz rein erhalten. Krystalle. F: $80-83^{\circ}$. Gibt beim Verseifen mit $50^{\circ}/_{\circ}$ iger Schwefelsäure auf dem Wasserbad hauptsächlich niedrigschmelzende Hämotricarbonsäure neben geringen Mengen hochschmelzender Hämotricarbonsäure (K., A. 845, 54). Ag₂C₃H₂O₄N. Amorphe Masse. Ca(C₃H₁₀O₄N)₂ + 2H₂O.
- 2. [2.5-Dioxo-4.4-dimethyl-pyrrolidyl-(3)]-essigsäure, γ -Methyl-butan-a. β - γ -tricarbonsäure- β - γ -imid, a.a-Dimethyl-tricarballylsäure-a. β -imid $O_2^{C} \cdot CH_2 \cdot HC \longrightarrow C(CH_3)_2$ B. Beim Kochen von a.a-Dimethyl- β -cyan-tricarballylsäure-triäthylester (Bd. II, S. 867) mit 10^0 /oiger Salzsäure (Haller, Blanc, C. r. 131, 21). Prismen. F: 182—183°. Schwer löslich in kaltem, leicht in heißem Wasser. Liefert beim Behandeln mit Kalilauge a.a-Dimethyl-tricarballylsäure (Bd. II, S. 827):
- 4. $[\beta.\gamma$ -Dimethyl-butan- $\alpha.\beta.\gamma$ -tricarbonsäure]-imid, Camphoronsäure-imid $C_9H_{13}O_4N$. Für Camphoronsäure-imid erscheinen drei verschiedene Strukturformeln¹) möglich:

- B. Aus dem Ammoniumsalz des Camphoronamidsäure-monoäthylesters (Bd. II, S. 839) durch Kochen mit Kalilauge und Behandlung des Reaktionsprodukts mit Salzsäure oder Schwefelsäure (Hjelt, B. 13, 798; Hess, B. 28, 2690). Das Ammoniumsalz entsteht beim Erhitzen einer mit Ammoniak gesättigten alkoholischen Lösung von Camphoronsäure-diäthylester im Rohr auf 120—130° (Hess, B. 28, 2691) oder beim Erhitzen einer mit Ammoniak gesättigten Lösung von Anhydrocamphoronsäure (Bd. XVIII, S. 456) in Benzol im Rohr auf 140° (Hess, B. 28, 2692). Tafeln (aus Alkohol). F: 210—212° (Zers.) (Hess), 212° (Hj.). Zerfällt beim Erhitzen mit Salzsäure in Ammoniak und Camphoronsäure (Hj.; Hess). NH₄C₈H₁₂O₄N. Tafeln (aus Alkohol). F: 175° (Hess).
- $[\beta.\gamma$ Dimethyl butan $\alpha.\beta.\gamma$ tricarbonsäure] amid imid $C_9H_{14}O_3N_2 = (H_2N \cdot OC)(CH_9)_3C_8H_2 < CO > NH$. Ob diese Verbindung das Amid der vorangehenden Verbindung oder das einer der beiden strukturisomeren Formen ist, ist unentschieden. B. In geringer Menge bei 20-stündigem Erhitzen der mit Ammoniak gesättigten alkoholischen Lösung von Camphoronsäure-triäthylester auf 170—190° (HESS, B. 28, 2693). Krystalle. F: 210—218°.
- 5. 4.5 Dioxo 2 n hexyl pyrrolidin-carbonsäure (3) $C_{11}H_{17}O_4N = OC CH \cdot CO_8H$ bezw. desmotrope Formen.

 $\begin{array}{c} OC \cdot NH \cdot CH \cdot [CH_2]_5 \cdot CH_3 \\ \\ \ddot{A} thylester \ C_{12}H_{21}O_4N = \\ OC \cdot NH \cdot CH \cdot [CH_2]_5 \cdot CH_3 \\ \\ OC \cdot NH \cdot CH \cdot [CH_2]_5 \cdot CH_3 \\ \\ OC \cdot NH \cdot CH \cdot [CH_2]_5 \cdot CH_3 \\ \\ 12, 42). \quad Blättchen (aus verd. Alkohol). \ F: 128^o. Sehr schwer löslich in siedendem Wasser, löslich in Alkohol und Aceton. \\ MH_{4}C_{12}H_{20}O_4N. \ Nadeln. \ F: 146^o (Zers.). \ Schwer löslich in siedendem Wasser und heißem Alkohol. \\ KC_{12}H_{20}O_4N + H_2O. \ Nadeln (aus verd. Alkohol). \ Sehr schwer löslich in kaltem Wasser, leichter in heißem Wasser. \\ Masser. \\ Masser. \\ Masser. \\ Masser. \\ Nadeln. \end{array}$

b) Oxo-carbonsäuren $C_n H_{2n-7} O_4 N$.

- 1. 0xo-carbonsäuren $C_6H_5O_4N$.
- 1. 4.5-Dioxo-1.4.5.6-tetrahydro-pyridin-carbonsäure-(2) (Komenamin-säure) $C_6H_5O_4N = \frac{OC \cdot CO \cdot CH}{H_2C \cdot NH \cdot C \cdot CO_2H}$ ist desmotrop mit 4.5-Dioxy-pyridin-carbonsäure-(2), 8. 251.

¹⁾ Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] wurden von GOEBEL, NOYES (Am. Soc. 45, 3064) zwei isomere Camphoronsäure-imide dargestellt.

1 - Äthyl - 4.5 - dioxo - 1.4.5.6 - tetrahydro-pyridin-carbonsäure - (2) bezw. 1-Äthyl-5-oxy-pyridon-(4)-carbonsäure-(2) $C_8H_9O_4N = \frac{OC - CO - CH}{H_2C \cdot N(C_2H_5) \cdot C \cdot CO_2H}$

HO·C—CO—CH

HC·N(C₂H₂)·C·CO₂H, Äthylkomenaminsäure. B. Beim Erhitzen von Komensäure (Bd. XVIII, S. 461) mit Äthylamin in wäßr. Lösung im Rohr auf 100° (MENNEL, J. pr. [2] 32, 178). Aus Mekonsäure (Bd. XVIII, S. 503) und Äthylamin (M., J. pr. [2] 32, 179). Prismen mit 2H₂O. F: 210° (Zers.). Verwittert an der Luft. — Spaltet beim Erhitzen auf den Schmelzpunkt Kohlendioxyd ab unter Bildung von Äthylpyromekonaminsäure (Bd. XXI, S. 405). Liefert beim Erhitzen mit Acetanhydrid im Rohr auf 160° 1-Athyl-3-acetoxypyridon-(4). — Gibt mit Eisenchlorid in wäßr. Lösung eine violette Färbung.

OC---CO---CH Äthylester $C_{10}H_{13}O_4N = \frac{1}{H_2C \cdot N(C_2H_5) \cdot C \cdot CO_2 \cdot C_2H_5}$. B. Durch Einleiten von Chlorwasserstoff in eine Suspension von Athylkomenaminsäure in Alkohol (Mennel, J. pr. [2] 32, 179). — Nadeln mit 1 H₂O (aus Wasser). F: 114—115°. — 2C₁₀H₁₃O₄N + HCl. Nadeln (aus Alkohol). Zersetzt sich bei 100°. Sehr leicht löslich in Wasser, schwerer in Alkohol. — $Ba(C_{10}H_{12}O_4N)_2 + H_2O$ (?). Gelbe Nadeln. Zersetzt sich bei 100°.

1-Phenyl-4.5-dioxo-1.4.5.6-tetrahydro-pyridin-carbonsäure-(2) bezw. 1-Phenyl-5-oxy-pyridon-(4)-carbonsäure-(2) $C_{12}H_9O_4N = \frac{OC-CO-CH}{H_9C\cdot N(C_8H_8)\cdot \overset{\parallel}{C}\cdot CO_2H}$ bezw. HO·C——CO——CH

 $\overset{\parallel}{\mathrm{HC}}\cdot\mathrm{N}(\mathrm{C_6H_5})\cdot\overset{\parallel}{\mathrm{C}}\cdot\mathrm{CO_9H}$, Phonylkomenaminsäure. B. Beim Kochen einer wäßr. Lösung von Komensäure mit Anilin (Mennel, J. pr. [2] 32, 177). — Krystalle mit 1 H₂O (aus Wasser). Ziemlich leicht löslich in Wasser. — Die wäßr. Lösung gibt mit Eisenchlorid eine violette Färbung.

- 2. 4.6 Dioxo 1.4.5.6 tetrahydro pyridin carbonsäure (2) $C_6H_5O_4N =$ H₂C·CO·CH ist desmotrop mit 4.6-Dioxy-pyridin-carbonsäure-(2), S. 253. OC·NH·C·CO.H
- 1-Phenyl-3.5-dichlor-4.6-dioxo-1.4.5.6-tetrahydro-pyridin-carbonsäure-(2) $C_{12}H_7O_4NCl_2 = \begin{array}{c} ClHC CO CCl \\ Cl NCH & Cl NCH & CO CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & Cl NCH & CC CCl \\ Cl NCH & CC$ $OC \cdot N(C_aH_a) \cdot C \cdot CO_aH$ 3.5.6-trichlor-pyridon-(4)-carbonsäure-(2) (S. 298) beim Erwärmen mit 10% iger Natronlauge auf dem Wasserbad (ZINCKE, FUCHS, A. 267, 29). — Nadeln mit ½ H₂O (aus Wasser). F: 206° (Zers.). Sehr schwer löslich in Chloroform und Benzol, leicht in Alkohol, Äther, Eisessig und heißem Wasser. — Spaltet beim Erhitzen auf den Schmelzpunkt Kohlendioxyd ab unter Bildung von 1-Phenyl-3.5-diohlor-2.4-dioxo-1.2.3.4-tetrahydro-pyridin. Beim Behandeln des Silbersalzes mit Methyljodid entsteht 1-Phenyl-3.5-dichlor-4(oder 6)-methoxy-pyridon-(6 oder 4)-carbonsaure-(2)-methylester (S. 370). Liefert beim Erhitzen mit Acetanhydrid und Natriumacetat 1-Phenyl-3.5-dichlor-4(oder 2)-acetoxy-pyridon-(2 oder 4) (Bd. XXI, S. 577). — Ag₂C₁₂H₅O₄NCl₂. Krystalle. Verpufft beim Erhitzen, ohne zu schmelzen. Ziemlich lichtbeständig.
- 3. 2.6- Dioxo-1.2.3.6 (oder 1.2.5.6) tetrahydro-pyridin-carbonsdure-(3) HC:CH·CO₂H H₂C·CH:C·CO₂H ist desmotrop mit 2.6-Dioxy-OC·NH·CO $C_{\textbf{6}}H_{\textbf{5}}O_{\textbf{4}}N = \begin{matrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ &$ pyridin-carbonsaure-(3), S. 253.
- OC·N(C_2H_5)·C:N· C_2H_5 oder C_2H_5 ·N:C·N(C_2H_5)·CO bezw. desmotrope Formen. B. Beim Erwärmen von 1-Athyl-6-oxo-2-äthylimino-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-athylester (3) mit konz. Schwefelsäure auf dem Wasserbad (Haussmann, A. 285, 81). Blättchen (aus verd. Alkohol). Schmilzt rasch erhitzt bei 207° unter Zersetzung. Sehr leicht löslich in Wasser. — Spaltet beim Schmelzen Kohlendioxyd ab.
- 4. 2.4-Dioxo-1.2.3.4-tetrahydro-pyridin-carbonsäure-(3) $C_6H_6O_4N=$ HC · CO · CH · CO • H HC-NH-CO

1-Methyl-2.4-dioxo-1.2.3.4-tetrahydro-pyridin-carbonsäure-(3)-nitril, 1-Methyl-2.4 - dioxo - 3 - cyan - 1.2.3.4 - tetrahydro - pyridin, Ricininsäure $C_7H_4O_2N_2$ = HC—CO—CH·CN bezw. desmotrope Formen. Zur Konstitution vgl. Späth, Koller, HCON(CH₂)·CO B. 56 [1923], 880. — B. Durch Verseifen von Ricinin (S. 371) mit wäßr. Alkali (Soave, Ann. di Chim. e di Farmacol. 21 [1895], 58) oder mit alkoh. Kalilauge (MAQUENNE, PHILIFPE, C. r. 138, 506; Bl. [3] 31, 468). — Nadeln (aus Wasser). F: 295° (8.). Fast unlöslich in kaltem Wasser, löslich in 100 Tln. siedendem Wasser (M., Ph.). Zerfällt beim Erhitzen mit rauchender Salzsäure im Rohr auf 150° in 1-Methyl-2.4-dioxo-1.2.3.4-tetrahydro-pyridin, Kohlendioxyd und Ammoniak (M., Ph., Bl. [3] 31, 469; 33, 107; C. r. 139, 842; vgl. Sp., TSCHELNITZ, M. 42 [1921], 254).

3.3.5-Trichlor-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-carbonsaure-(4), Trichlorcitrasinsäure $C_6H_2O_4NCl_3 = \frac{Cl_2C \cdot C(CO_2H) : CCl}{OC-NH-CO}$ bezw. desmotrope Formen. B. Beim Einleiten von Chlor in eine Suspension von Citrazinsäure in Wasser unterhalb 50° (SELL, EASTER-William, Soc. 63, 1041). — Gelbliche Krystalle mit 1 H₂O. — Zersetzt sich beim Kochen mit Wasser. Liefert beim Kochen mit Phenylhydrazin in alkoh. Lösung rote Tafeln der Zusammensetzung C₁₈H₁₆O₄N₅Cl [Phenylhydrazinsalz der 5-Chlor-2.6-dioxo-3-phenylhydrazono-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4)?].

saure Lösung von Citrazinsäure-amid (Ruhemann, B. 20, 3371). — Krystalle. Löst sich leicht in Natronlauge. — Zersetzt sich bei längerem Kochen mit Wasser unter Abspaltung von Chlorwasserstoff und Kohlendioxyd; entwickelt beim Erhitzen mit Alkali Ammoniak (R., B. 20, 3371). Liefert beim Einleiten von Schwefelwasserstoff in die ammoniakalische wäßrig-alkoholische Lösung das Ammoniumsalz des 5.5-Dichlor-3-oxy-2.6-dioxo-piperidincarbonsāure-(4)-amids (R., Öbton, B. 27, 3450). Gibt mit Anilin in Alkohol 2.6-Dioxo-3.5-bis-phenylimino-piperidin-carbonsāure-(4)-amid (S. 360) (R., B. 21, 1248; R., Allhusen, B. 27, 579). Beim Erhitzen mit Phenylhydrazin und Alkohol entsteht 3-Benzolazo-5-chlor-2.6-dioxy-pyridin-carbonsaure-(4)-amid (Syst. No. 3448) (R., A.).

Citrazinsaure und Brom in warmer essigsaurer Lösung (Sell, Easterfield, Soc. 63, 1042). — Krystalle mit 1 H.O. Zersetzt sich bei gewöhnlicher Temperatur an feuchter Luft langsam, in Lösung schnell.

 $\begin{array}{lll} \textbf{Amid} & C_6H_3O_2N_2Br_3 = \begin{array}{ll} Br_2C\cdot C(CO\cdot NH_2):CBr \\ OC & NH & CO \end{array}. \end{array} \quad \textbf{\textit{B}. Aus Citrazinsăure-amid und Brom}$ in konz. Salzsäure (Ruhemann, B. 20, 3369). — Krystallinisch. Sehr leicht löslich in Ammoniak und Kalilauge. - Zersetzt sich bei Gegenwart von Feuchtigkeit allmählich, schneller beim Kochen mit Wasser.

6. [2.5-Dioxo-pyrrolinyl-(3)]-essigsdure oder [2.5-Dioxo-pyrrolidy-liden-(3)]-essigsdure $C_0H_0O_4N = \frac{HC - C \cdot CH_2 \cdot CO_2H}{OC \cdot NH \cdot CO}$ oder $\frac{H_2C - C \cdot CH \cdot CO_2H}{OC \cdot NH \cdot CO}$, Aconitsāure-imid, Aconitimidsāure. B. Aus β-Anilino-tricarballylsāure-α'-āthylester-α.β-imid (Syst. No. 3442) oder der entsprechenden m-Toluidino- oder p-Phenetidino-Verbindung durch Kochen mit verd. Salzsāure (Schroeter, B. 38, 3184, 3188, 3189). Aus [3-Benzoyloxy-2.5-dioxo-pyrrolidyl-(3)]-essigsāure-āthylester durch Behandel mit Natronlauge (Sch., B. 38, 3201). — Krystallwasserhaltige(?) Krystalle (aus Wasser). F: 191° (Zers.). Sehr schwer löslich in Äther, Chloroform und Benzol, löslich in Essigester und Wasser. — Liefert beim Kochen mit Natronlauge Aconiteāure.

Liefert beim Kochen mit Natronlauge Aconiteaure. — Ag₂C₆H₂O₄N. Niederschlag.

[1 - Phenyl - 2.5 - dioxo - pyrrolinyl - (8)] - essigsäure oder [1 - Phenyl - 2.5 - dioxo - pyrrolidyliden (8)] - essigsäure $C_{18}H_9O_4N = \frac{HC}{OC \cdot N(C_6H_5) \cdot CO}$ H₂C———C:CH·CO₂H , Aconitsäure-anil, Aconitsäure. B. Durch Behandeln von Citranilsäure (S. 374) mit Phosphorpentachlorid und Zersetzen des Produkts mit Wasser (PEBAL, A. 98, 83; vgl. NAU, BROWN, BAILEY, Am. Soc. 47 [1925], 2599, 2605). — Krystalle (aus Alkohol). F: 189° (N., Br., B.). Leicht löslich in Essigester, löslich in siedendem Wasser, schwer in Äther und Benzol (N., Br., B.). — Gibt mit verd. Kalilauge vorübergehend eine gelbe Färbung (N., Br., B.).

Methylester $C_{13}H_{11}O_4N = \frac{HC - C \cdot CH_2 \cdot CO_3 \cdot CH_3}{OC \cdot N(C_6H_5) \cdot CO}$ oder $C:CH \cdot CO_3 \cdot CH_3$.

B. Beim Einleiten von Chlorwasserstoff in eine methylgelbe Färbung (N., Br., B.). alkoholische Lösung des Anilinsalzes des Aconitsäure-monoanilids (Bd. XII, S. 318) (Bertram, B. 38, 1617; vgl. Nau, Brown, Bailey, Am. Soc. 47 [1925], 2605). Aus Aconitanilsäure und methylalkoholischer Salzsäure (N., Br., Bai.). — Blättchen (aus Wasser oder Äther), Nadeln (aus Alkohol). F: 149° (N., Br., Bai.). Ziem Gibt mit Alkali eine rote, violett fluoresing sehr schwert und Wasser (Bert.). Gibt mit Alkali eine rote, violett fluoresing sehr schwert und Wasser (Bert.). cierende Lösung, die infolge Verseifung bald farblos wird (Bert.). Liefert bei der Reduktion mit Aluminiumpulver und Essigsäure bei 95° Tricarballylanilsäure-methylester (S. 325) (BERT.). Lösung des Anilinsalzes des Aconitsaure-monoanilids (Bd. XII, S. 318) (Bertram, B. 38, 1618; vgl. NAU, Brown, Bailey, Am. Soc. 47 [1925], 2605). Aus Aconitanilsaure und alkoh. Salzsäure (N., Br., Bal.). Durch Einw. von Phosphorpentachlorid auf Citranilsäureäthylester (N., Br., Bai.). — Tafeln (aus Alkohol). F: 1230 (N., Br., Bai.). Leicht löslich in Alkohol und Benzol (BERT.). $O\dot{C} \cdot N(C_aH_a) \cdot \dot{C}O$ löslich in Benzol. Anilid $C_{18}H_{14}O_{3}N_{2} = \frac{HC - C \cdot CH_{2} \cdot CO \cdot NH \cdot C_{6}H_{5}}{OC \cdot N(C_{6}H_{5}) \cdot CO}$ oder $C \cdot CH_{2} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $C \cdot CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{5}$ oder $OC \cdot N(C_6H_5) \cdot CO$ auf 140° (PEBAL, A. 98, 81) oder in geringer Menge beim Kochen mit 2 Mol Anilin in wäßr. Lösung (MICHAEL, Am. 9, 192). Aus Citronensaure durch Behandlung mit Phosphorpentachlorid und Einw. von Anilin auf das Reaktionsprodukt (Skinner, Ruhemann, Soc. 55, 238; vgl. P., A. 98, 79). Durch Einw. von Anilin auf das Reaktionsprodukt aus Citranilsaure und Phosphorpentachlorid (P., A. 98, 86). Durch Erhitzen von αβ-Anhydro-aconitsaure (Bd. XVIII, S. 463) mit 3 Mol Anilin (BERTRAM, B. 38, 1619). — Gelbliche Nadeln. F: 2500 bis 252° (M.), ca. 255° (BERT.). Unlöslich in Wasser und Äther, schwer löslich in Alkohol (M.; Sk., R.). — Einw. von Alkali: Sk., R.; vgl. Nau, Brown, Bailey, Am. Soc. 47 [1925], 2599. [1-o-Tolyl-2.5-dioxo-pyrrolinyl-(3)]-essigsäure-o-toluidid oder [1-o-Tolyl-2.5 - dioxo - pyrrolidyliden - (3)] - essigsäure - o - toluidid $C_{20}H_{18}O_3N_3 =$ HC C·CH₃·CO·NH·C₆H₄·CH₃ oder

[1-Bensyl-2.5-dioxo-pyrrolidyliden-(8)]-bromessigsäure(?), γ -Brom-aconitsäure- $\alpha.\beta$ -bensylimid (?) $C_{12}H_{10}O_4NBr = \frac{H_2C - C:CBr \cdot CO_2H}{OC \cdot N(CH_2 \cdot C_2H_3) \cdot CO}$ (?). B. In geringer Menge aus Citronensäure- $\alpha.\beta$ -benzylimid (8. 375) durch Erhitzen im Kohlendioxyd-Strom auf 230°, Behandeln des Reaktionsprodukts mit Brom in der Wärme und folgende Abspaltung von Bromwasserstoff (GIUSTINIANI, G. 24 I, 229). — Fest.

2. 0xo-carbonsauren $C_7H_7O_4N$.

- 1. 4.6 Dioxo 2 methyl 1.4.5.6 tetrahydro pyridin carbonedure (5) $C_7H_7O_4N = \begin{array}{c} HO_2C\cdot HC\cdot CO\cdot CH \\ OC\cdot NH\cdot C\cdot CH_2 \end{array}$ ist desmotrop mit 4.6-Dioxy-2-methyl-pyridin-carbon-saure (5), S. 258.
- $\begin{array}{lll} \textbf{4.6 Dioximino 2-methyl-1.4.5.6-tetrahydro-pyridin-carbons\"{a}ure-(5)-\"{a}thylester} \\ \textbf{C}_{9}\textbf{H}_{13}\textbf{O}_{4}\textbf{N}_{3} = & & & & & & & & \\ \textbf{C}_{2}\textbf{H}_{5}\cdot\textbf{O}_{2}\textbf{C}\cdot\textbf{HC}\cdot\textbf{C}(:\textbf{N}\cdot\textbf{OH})\cdot\textbf{CH} & & & & & \\ \textbf{HO}\cdot\textbf{N}:\overset{\textbf{C}}{\textbf{C}}---\textbf{NH}--\overset{\textbf{C}}{\textbf{C}}\cdot\textbf{CH}_{3} & & & & \\ \textbf{2-methyl-pyridin-carbons\"{a}ure-(5)-\"{a}thylester, Syst. No. 3446.} \end{array}$
- 2. 2.6 Dioxo 4 methyl 1.2.5.6 tetrahydro pyridin carbonsdure (3) $C_7H_7O_4N = \begin{array}{c} H_2C \cdot C(CH_2) : C \cdot CO_2H \\ OC NH CO \end{array} \quad \text{ist desmotrop mit 2.6-Dioxy-4-methyl-pyridin-carbonsoure-(3), S. 258.}$
- Nitril, 2.6 Dioxo 4 methyl 3 cyan 1.2.5.6 tetrahydro pyridin, β -Methyl- γ -cyan-glutaconsäure-imid $C_7H_8O_3N_3= {H_2C\cdot C(CH_3):C\cdot CN \atop OC-NH-CO}$ ist desmotrop mit 2.6-Dioxy-4-methyl-pyridin-carbonsäure-(3)-nitril, S. 258.
- 2.6 Dioxo 1.4 dimethyl 1.2.5.6 tetrahydro pyridin carbonsäure (3) nitril, 2.6 Dioxo 1.4 dimethyl 3 cyan 1.2.5.6 tetrahydro pyridin, β -Methyl- γ -cyan-glutaconsäure-methylimid $C_8H_8O_2N_8 = \frac{H_2C \cdot C(CH_3) : C \cdot CN}{OC \cdot N(CH_3) \cdot CO}$ bezw. desmotrope Formen. B. Aus Acetessigester, Cyanessigester und Methylamin (Guarrent, C. 1896 I, 602). F: ca. 285° (G.). Einfluß auf die Geschwindigkeit der Inversion des Rohrzuckers: Torrest, C. 1907 I, 875. Gibt mit Eisenchlorid eine blauviolette Färbung (G.). AgC₂H₇O₂N₂ (G.).
- 1-Äthyl-2.6-dioxo-4-methyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(3)-nitril, 1-Äthyl-2.6-dioxo-4-methyl-3-cyan-1.2.5.6-tetrahydro-pyridin, β -Methyl- γ -cyan-glutaconsäure-äthylimid $C_9H_{10}O_9N_9=\frac{H_9C-C(CH_9)=C\cdot CN}{OC\cdot N(C_9H_9)\cdot CO}$ bezw. desmotrope Formen. B. Aus Acetessigester, Cyanessigester und Äthylamin (GUARESCHI, C. 1896 I, 602). F: gegen 242°.
- 1-Allyl-2.6-dioxo-4-methyl-1.2.5.6-tetrahydro-pyridin-carbonsäure-(8)-nitril, 1-Allyl-2.6-dioxo-4-methyl-3-cyan-1.2.5.6-tetrahydro-pyridin, β -Methyl- γ -cyan-glutaconsäure-allylimid $C_{10}H_{10}O_{2}N_{2}=\frac{H_{2}C-C(CH_{2})-C\cdot CN}{OC\cdot N(CH_{2}\cdot CH:CH_{2})\cdot CO}$ bezw. desmotrope Formen. B. Aus Acetessigester, Cyanessigester und Allylamin (GUARESCHI, C. 1896 I, 603). F: 222°.

3. 0×0 -carbonsauren $C_8 H_9 O_4 N_.$

1. 2.6 - Dioxo - 3.4 - dimethyl-1.2.3.6-tetrahydro-pyridin-carbonsdure-(5) $C_{8}H_{9}O_{4}N = \frac{CH_{3} \cdot HC \cdot C(CH_{2}) : C \cdot CO_{3}H}{OC-NH-CO} .$

Nitril, 2.6-Dioxo-8.4-dimethyl-5-cyan-1.2.8.6-tetrahydro-pyridin, $\alpha.\beta$ -Dimethyl- γ -cyan-glutaconsäure-imid $C_8H_8O_2N_2 = \begin{array}{c} CH_2 \cdot HC \cdot C(CH_2) : C \cdot CN \\ OC-NH-CO \\ \end{array}$ ist desmotrop mit 2.6-Dioxy-4.5-dimethyl-pyridin-carbonsäure-(3)-nitril, S. 260.

2.6 - Dioxo - 1.3.4 - trimethyl - 1.2.3.6 - tetrahydro - pyridin-carbonsäure - (5) - nitril, 2.6 - Dioxo - 1.3.4 - trimethyl - 5 - cyan - 1.2.3.6 - tetrahydro - pyridin, $\alpha.\beta$ - Dimethyl - γ - cyanglutaconsäure - methylimid $C_9H_{10}O_2N_2=\frac{CH_3\cdot HC\cdot C(CH_3)\cdot C\cdot CN}{OC\cdot N(CH_3)\cdot CO}$ bezw. desmotrope Formen. B. Aus α -Methyl-acetessigester, Cyanessigester und Methylamin (Guareschi, C. 1896 I, 603). — F: 264—265° (G.). Einfluß auf die Geschwindigkeit der Inversion des Rohrzuckers: Torrese, C. 1907 I, 875. — Wird durch Eisenchlorid zu einer bei 235° schmelzenden Verbindung oxydiert (G.).

2. β -[2.5-Dioxo-4-methyl-pyrrolinyl-(3)]-propionsäure, γ -Amylen-a. γ . δ -tricarbonsäure- γ . δ -imid, Imid der dreibasischen Hämatinsäure, Biliverdinsäure $C_8H_9O_4N = \frac{HO_2C\cdot CH_2\cdot CH_2\cdot C}{OC\cdot NH\cdot CO}$. Zur Konstitution vgl.

KÜSTER, B. 38, 3022; 35, 2948; A. 315, 180; 345, 2. — Das Mol.-Gew. wurde ebullioskopisch in Äther und kryoskopisch in Phenol bestimmt (KÜ., A. 315, 187, 188). — B. Bei der Oxydation von Hämatin (KÜ., B. 29, 823; 32, 679; H. 28, 5, 16; A. 315, 186), von Hämatoporphyrin (KÜ., B. 30, 106; 32, 679; H. 28, 8; KÜ., KÖLLE, H. 28, 35), von Bilirubin bezw. Biliverdin (KÜ., B. 30, 1833; 32, 678; 35, 1271; H. 26, 324, 329) mit Natriumdichromat und Essigsäure. Durch Oxydation von Hämatoporphyrin mit Chromschwefelsäure (KÜ., H. 61, 174). Aus dem Anhydrid der dreibasischen Hämatinsäure (Bd. XVIII, S. 464) durch Erhitzen mit alkoh. Ammoniak auf 100—110° (KÜ., B. 33, 3022; A. 315, 206). — Nadeln (aus Wasser), monoklin-prismatische (WÜLFING) Krystalle (aus Äther). F: 113,5—114,5° (KÜ., A. 315, 189). In der Wärme sehr leicht löslich in Wasser, Alkohol, Äther und Chloroform; bei Zimmertemperatur lösen 100 Tle. Wasser ca. 4 Tle., 100 Tle. Äther ca. 6 Tle. Imid (KÜ., A. 315, 189; KÜ., KÖ., H. 28, 36). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: KÜ., A. 315, 189; vgl. KÜ., B. 35, 1272 Anm. 2.

Biliverdinsäure liefert bei der trocknen Destillation Methyläthylmaleinsäure-imid (Bd. XXI, S. 413) (Küster, A. 345, 23). Gibt bei der Reduktion mit Jodwasserstoffsäure und Phosphonium jodid die beiden stereoisomeren Formen der Hämotricarbonsäure (Bd. II, S. 825) (Kü., A. 345, 50), bei der Reduktion mit Zinkstaub und Essigsäure auf dem Wasserbad Pentan-α.y.δ-tricarbonsäure-y.δ-imid (S. 327) (Kü., B. 35, 2950; A. 345, 51). Liefert beim Erwärmen mit 50% giger Schwefelsäure sowie beim Erhitzen mit Bromwasserstoff-Eisessig auf 130° das Anhydrid der dreibasischen Hämatinsäure (Bd. XVIII, S. 464) (Kü., A. 315, 195, 196; H. 54, 506 Anm. 1, 514); dieses entsteht auch beim Erwärmen des Imids mit Natronlauge (Kü., B. 32, 679; Kü., Kölle, H. 28, 36), Soda-Lösung, Magnesiumhydroxyd (Kü., A. 315, 194, 195) oder Barytwasser (Kü., H. 54, 515) sowie beim Kochen mit wäßr. Ammoniak (Kü., A. 315, 195) und folgenden Ansäuern. Beim Erhitzen mit alkoh. Ammoniak auf 1300 entsteht Methyläthylmaleinsäure-imid (Kü., B. 33, 3023; A. 315, 207; 345, 20). Bei der Einw. von 3 Mol Silbernitrat auf eine mit Ammoniak neutralisierte alkoholische Lösung der Säure bei Zimmertemperatur bildet sich das Disilbersalz des Monoamids der dreibasischen Hämatinsäure (Bd. II, S. 855) (Kü., H. 54, 513). Bei der Einw. von Methyljodid auf das Silbersalz Ag₂C₈H₇O₄N (s. u.) entsteht neben dem Methylester (s. u.) ein Produkt, das beim Kochen mit Natronlauge Methylamin abspaltet (Kü., A. 315, 193; H. 54, 530). — NH₄C₈H₈O₄N. Nadeln. Zersetzt sich im Kapillar-Rohr bei 170° (Kü., A. 315, 190). — KC₈H₈O₄N. Nadeln (aus 90°/ojgem Alkohol). Zersetzt sich bei 212° (Kü., H. 54, 510). — AgC₈H₈O₄N. Nadeln (Kü., A. 315, 192). — Ag₂C₈H₇O₄N. Amorph. Löslich in Alkohol (Kü., B. 30, 1834; A. 315, 193; vgl. Kü., H. 54, 512). — Ca(C.H.O.N). + H.O. Nadeln (aus Wasser) (Kü.. B. 32, 681 · H. 193; vgl. Kü., H. 54, 512). — Ca(C₈H₈O₄N)₂ + H₂O. Nadeln (aus Wasser) (Kü., B. 52, 681; H. 26, 331; vgl. Kü., A. 315, 190). Leicht löslich in heißem Wasser. — Zn(C₈H₈O₄N)₂. Monoklin prismatisch (Wülfing, A. 315, 191). Schwer löslich in kaltem Wasser (Kü., A. 315, 191). — Cd(C₈H₈O₄N)₂. Nadeln (aus Wasser) (Kü., A. 315, 191; H. 26, 332). Leicht löslich in heißem Wasser. — Bleisalze: Kü., H. 54, 511.

des Imids der dreibasischen Hämatinsäure Ag₂C₈H₇O₄N beim Behandeln mit Methyljodid in Methanol oder heißem Benzol (KÜSTER, H. 54, 530). Beim Erhitzen des Ammoniumsalzes des Monomethylesters oder des Monomethylester-monoamids der dreibasischen Hämatinsäure (Bd. II, S. 854) (K.). — Krystalle (aus Wasser oder Chloroform). F: 64°. Kp₁₀: 170° bis 172°.

Äthylester $C_{10}H_{13}O_4N = \frac{C_2H_5 \cdot O_2C \cdot CH_2 \cdot CH_2 \cdot C}{OC \cdot NH \cdot CO}$. B. Aus dem Silbersalz des Imids der dreibesischen Hämatinsäure $Ag_2C_3H_7O_4N$ durch Kochen mit Äthylbromid

in Benzol (Küster, H. 54, 533). Aus dem Imid der dreibasischen Hämatinsäure durch Erwärmen mit alkoh. Salzsäure auf dem Wasserbad (K., H. 54, 535). Bei der Destillation des Ammoniumsalzes des Monoäthylester-monoamids der dreibasischen Hämatinsäure (Bd. II, S. 855) unter vermindertem Druck (K., H. 54, 533). — Zähes Öl. Kp₁₀: 195°; Kp₁₆: 205°. — Liefert bei der Einw. von Ammoniak das Ammoniumsalz des Monoäthylester-monoamids der dreibasischen Hämatinsäure und geringe Mengen des Anhydrids der dreibasischen Hämatinsäure. Gibt beim Erwärmen mit 10°/oiger Schwefelsäure auf dem Wasserbad das

 β -[1-Phenyl-2.5-dioxo-4-methyl-pyrrolinyl-(8)]-propionsäure, γ -Amylen- $\alpha.\gamma.\delta$ -tricarbonsäure- $\gamma.\delta$ -anil, Anil der dreibasischen Hämatinsäure $C_{14}H_{13}O_4N=HO_2C\cdot CH_2\cdot CH_2\cdot C$ $C\cdot CH_3\cdot C$ OC· $N(C_6H_5)\cdot CO$ B. Durch Kochen des Monoanilids der dreibasischen OC· $N(C_6H_5)\cdot CO$

Hämatinsäure (Bd. XII, S. 318) mit Wasser (Küster, H. 54, 544). Durch Verseifung des Methylesters (s. u.) mit 2% jeger Natronlauge oder 10% jeger Schwefelsäure auf dem Wasserbad (K., H. 54, 547). — Nadeln (aus Wasser). F: 120%. Leicht löslich in Äther.

$$\begin{array}{c} \textbf{Methylester} \quad \mathrm{C}_{1\delta}\mathrm{H}_{1\delta}\mathrm{O}_{4}\mathrm{N} = \frac{\mathrm{CH}_{3}\cdot\mathrm{O}_{2}\mathrm{C}\cdot\mathrm{CH}_{2}\cdot\mathrm{CH}_{3}\cdot\mathrm{C}}{\mathrm{OC}\cdot\mathrm{N}(\mathrm{C}_{4}\mathrm{H}_{5})\cdot\mathrm{CO}}. \quad \textit{B. Bei 3-tägigem} \end{array}$$

Kochen des Methylesters der dreibasischen Hämatinsäure mit Anilin in Benzol (KÜSTER, H. 54, 545). — Prismen (aus Äther). F: 47—48°. — Gibt bei der Verseifung mit 10°/0 iger Natronlauge dreibasische Hämatinsäure, beim Erwärmen mit 2°/0 iger Natronlauge oder 10°/0 iger Schwefelsäure das Anil der dreibasischen Hämatinsäure.

4. Oxo-carbonsäuren $C_9H_{11}O_4N$.

Imid der dreibasischen Hämatinsäure.

 $\begin{array}{ll} 1. & \textit{2.6-Dioxo-3-methyl-4-$athyl-1.2.3.6-tetrahydro-pyridin-carbon-saure-(5)} & C_9H_{11}O_4N = \\ & \overset{CH_3\cdot HC\cdot C(C_2H_5): C\cdot CO_2H}{OC-NH-CO}. \end{array}$

Nitril, 2.6-Dioxo-3-methyl-4-äthyl-5-cyan-1.2.3.6-tetrahydro-pyridin, α -Methyl- β -äthyl- γ -cyan-glutaconsäure-imid $C_0H_{10}O_3N_2= {CH_3\cdot HC\cdot C(C_2H_5):C\cdot CN \atop OC---NH-CO}$ ist desmotrop mit 2.6-Dioxy-5-methyl-4-äthyl-pyridin-carbonsäure-(3)-nitril, S. 261.

2.6 - Dioxo - 1.8 - dimethyl - 4- äthyl - 1.2.8.6 - tetrahydro - pyridin - carbonsäure - (5)-nitril, 2.6 - Dioxo - 1.3 - dimethyl - 4- äthyl - 5- cyan - 1.2.8.6 - tetrahydro - pyridin, α - Methyl - β - äthyl - γ - cyan - glutaconsäure - methylimid $C_{10}H_{12}O_2N_2 = \begin{array}{c} CH_2 \cdot HC \cdot C(C_2H_5) : C \cdot CN \\ OC \cdot N(CH_3) \cdot CO \\ OC \cdot N(CH_3$

2. Nortropanon-(3)-oxalylsäure-(2) C₀H₁₁O₄N, Formel I.

Tropanon-(3)-oxalylsäure-(2), "Tropinonoxalsäure" $C_{10}H_{13}O_4N$, Formel II. B. Das Hydrochlorid entsteht beim Kochen des Äthylesters (s. u.) mit konz. Salzsäure (WILL-

STÄTTER, B. 30, 2712). — $C_{10}H_{13}O_4N + HCl$. Prismen (aus verd. Alkohol). F: 194° (Zers.). Sehr leicht löslich in Wasser, unlöslich in Alkohol.

Äthylester $C_{12}H_{17}O_4N=CH_2\cdot NC_7H_0O\cdot CO\cdot CO_3\cdot C_2H_5$. B. Aus Tropinon (Bd. XXI, S. 258) und Oxalsäurediäthylester in Gegenwart von alkoh. Natriumäthylat-Lösung (Willstätter, B. 30, 2710). — Tafeln (aus Alkohol). F: 169,5° (Zers.). Sehr leicht löslich in Wasser, leicht in Methanol, schwer in heißem Alkohol, sehr schwer in Benzol, fast unlöslich in Äther. — Liefert bei der Einw. von Amylnitrit und Chlorwasserstoff in Eisessig gelbe Krystalle, die an der Luft oder beim Behandeln mit Wasser in Isonitrosotropinonoxalsäure (S. 348)

übergehen. Gibt mit Eisenchlorid-Lösung eine dunkelrote Färbung. — $2C_{12}H_{17}O_4N + 2HCl + PtCl_4 + 3H_4O$. Rote Blättchen. F: 194—195° (Zers.). Sehr schwer löslich in kaltem Wasser, unlöslich in Alkohol. Zersetzt sich beim Erwärmen mit Wasser unter Bildung von Tropinonchloroplatinat.

c) Oxo-carbonsauren $C_n H_{2n-9} O_4 N$.

1. $\alpha \gamma$ -Dioxo- γ -[α -pyrryl]-buttersäure, [Pyrroyl-(2)]-brenztrauben-3āure $C_8H_7O_4N = \frac{HC}{HC} \cdot NH \cdot C \cdot CO \cdot CH_2 \cdot CO \cdot CO_3H$

 γ -Oxo-α-phenylimino- γ -[α-pyrryl]-buttersäure, [Pyrroyl-(2)]-brenstraubensäure-α-anil $C_{14}H_{13}O_3N_3=NC_4H_4\cdot CO\cdot CH_2\cdot C(:N\cdot C_6H_5)\cdot CO_2H$. B. Durch Behandeln von γ -Oxo-α-phenylimino- γ -[α-pyrryl]-buttersäure-äthylester oder des Anhydrids der γ -Oxo-α-phenylimino- γ -[α-pyrryl]-buttersäure (Bd. XXI, S. 564) mit wäßrig-alkoholischer Kalilauge (Angell, B. 23, 2157). — Orangegelbe Krystalle (aus Benzol). F: 179° (Zers.). — Löst sich in konz. Schwefelsäure mit fuchsinroter Farbe. — Über Metallsalze vgl. A.

[Pyrroyl - (2)] - brenstraubensäure - äthylester $C_{10}H_{11}O_4N = NC_4H_4 \cdot CO \cdot CH_2 \cdot CO \cdot CO_3 \cdot C_2H_5$. Bei der Kondensation von 2-Acetyl-pyrrol Oxalsäurediäthylester in Alkohol in Gegenwart von Natriumäthylat (Angell, B. 28, 1794). — Gelbliche Blättchen (aus Benzol). F: 123° (A., B. 23, 1794). Leicht löslich in Alkohol und Benzol, schwer in Wasser, sehr schwer in Petroläther; die Lösung in Benzol fluoresciert schwach grün (A., B. 23, 1794). Liefert bei der Einw. von kalter Alkalilauge 2-Acetyl-pyrrol und Oxalsaure; geht beim Behandeln mit Ammoniak oder Alkalicarbonat-Lösung in das Anhydrid der [Pyrroyl-(2)]brenztraubensäure über (A., B. 23, 1794). Reagiert mit Hydroxylamin-hydrochlorid beim Erwärmen in essigsaurer Lösung unter Bildung von 5-α-Pyrryl-isoxazol-carbonsäure-(3)-äthylester (Syst. No. 4588) (A., B. 23, 1796, 2158; vgl. Salvatori, G. 21 II, 290; Bülow, Nottbohm, B. 36, 2696). Gibt beim Erwärmen mit Anilin in Essigsäure γ-Οκο-α-phenylimino- γ -[α -pyrryl]-buttersäure-äthylester und das Anhydrid der γ -Oxo- α -phenylimino- γ -[α -pyrryl]-buttersäure (A., B. 23, 2156). Beim Erwärmen mit Phenylhydrazin in Eisessig auf dem Wasserbad erhält man 1-Phenyl-5-α-pyrryl-pyrazol-carbonsaure-(3)-athylester (Syst. No. 3902) (A., B. 28, 2159; vgl. Salvatori, G. 21 II, 290). — [Pyrroyl-(2)]-brenztraubensäure-äthylester gibt mit Eisenchlorid-Lösung eine intensiv grüne Färbung (A., B. 23, 1794).

 γ - Oxo - α - phenylimino - γ - [α - pyrryl] - buttersäure - äthylester, α - Anil des [Pyrroyl - (2)] - brenztraubensäure - äthylesters $C_{16}H_{16}O_3N_2 = NC_4H_4 \cdot CO \cdot CH_2 \cdot C(:N \cdot C_6H_5) \cdot CO_2 \cdot C_2H_5$. B. Being Erwärmen der vorangehenden Verbindung mit Anil in essignation of the control of the cont saurer Lösung (Angell, B. 23, 2156). — Citronengelbe Nadeln (aus Alkohol). F: 114—115°. - Wird durch kalte wäßrig-alkoholische Kalilauge zu [Pyrroyl-(2)]-brenztraubensäureα-anil verseift. Gibt beim Behandeln mit alkoh. Ammoniak das Anhydrid der γ-Οxo-α-phenylimino-γ-[α-pyrryl]-buttersäure. — Löst sich in konz. Schwefelsäure mit fuchsinroter Farbe.

2. 6.5¹- Dioxo- 2.4 - dimethyl - 5 - äthyl - 1.6 -dihydro - pyridin - carbonsaure-(3), 2.4-Dimethyl-5-acetyl-pyridon-(6)-carbonsaure-(3)

 $\begin{array}{c} C_{10}H_{11}O_4N = CH_3 \cdot CO \cdot C \cdot C(CH_3) \cdot C \cdot CO_2H \\ OC - NH - C \cdot CH_3 \\ \\ 1.2.4 - Trimethyl - 5 - acetyl - pyridon - (6) - carbonsäure - (3) - äthylester \\ carbokollidyliumdehydrid") C_{13}H_{17}O_4N = CH_3 \cdot CO \cdot C \cdot C(CH_3) \cdot C \cdot CO_3 \cdot C_2H_5 \\ OC \cdot N(CH_3) \cdot C \cdot CH_3 \\ \end{array}. \label{eq:carbons}$ carbokollidyllumdehydrid") $C_{18}H_{17}O_4N = OC\cdot N(CH_2)\cdot C\cdot CH_3$. Zur Konstitution vgl. Mumm, Hingst, B. 56 [1923], 2307; M., A. 448 [1925], 279. — B. Beim Behandeln von 2.4.6-Trimethyl-pyridin-bonsaure-(3.5)-diahylester-jodmethylat (S. 165) mit konz. Kalilauge (Hantzson, B. 17, 1022). — Nadeln (aus Wasser oder Ather). F: 92°; krystallisiert aus Ligroin auszeilen in Kanstallen von Schmelmunkt et al. (200 (H.)). Datilliset al. (200 (H.)). aus Ligroin zuweilen in Krystallen vom Schmelzpunkt 81—82° (HA.). Dezi, krystallen to Barbaret 360° fast unzersetzt; mit Wasserdampf nicht flüchtig; äußerst leislich in Chloroform, Alkohol und Benzol, sehr schwer löslich in kaltem Wasser und Ligroin; löslich in Salzsäure (Ha.). Reagiert neutral (Ha.). — Liefert beim Erhitzen mit konz. Schwefelsäure auf 150—180° oder mit konz. Salzsäure auf 160—180° 1.2.4-Trimethyl-pyridon-(6) (Bd. XXI, S. 274) (Ha.). Absorbiert Chlorwasserstoff; beim Erhitzen im Chlorwasserstoffstrom entsteht 1.2.4-Trimethyl-5-acetyl-pyridon-(6) (Bd. XXI, 8. 426) (Ha.). Liefert mit Quecksilberchlorid eine in Nadeln krystallisierende Verbindung (Ha.).

d) Oxo-carbonsäuren $C_n H_{2n-13} O_4 N$.

1. Oxo-carbonsäuren $C_9H_5O_4N$.

- 1. 1.3 Dioxo 4 aza hydr-inden-carbonsäure-(2)1) $C_9H_5O_4N$, I. C_0 CH CO_2H II. C_0 CH $CO_2 \cdot CH_3$ Formel I.
- 1.3-Dioxo-4-aza-hydrinden-carbonsäure-(2)-methylester¹) ("Pyrindandion-carbonsäure methylester") C₁₀H₇O₄N, Formel II. B. Durch Erwärmen von Chinolinsäure-dimethylester mit Essigsäuremethylester und Natrium auf 60—80° (BITTNER, B. 35, 1412).— Gelbe Krystalle (aus Wasser). — Das Natriumsalz gibt beim Erhitzen mit starker Essigsäure, am besten im Rohr, auf 100° Anhydro-bis-pyrindandion (Syst. No. 3623). Beim Behandeln des Natriumsalzes mit Hydroxylamin-hydrochlorid in wäßr. Lösung erhält man das Monoxim (s. u.). — Natriumsalz. Gelbe Nadeln (aus Methanol). Verharzt an der Luft. — $Ba(C_{10}H_6O_4N)_2$. Gelbe Nadeln (aus Wasser).

Monoxim $C_{10}H_8O_4N_8 = NC_5H_3 = C(:N \cdot QH)$ $CH \cdot CO_2 \cdot CH_3$. B. Aus dem Natriumsalz der vorangehenden Verbindung durch Einw. von Hydroxylamin-hydrochlorid in wäßr. Lösung (BITTNER, B. 35, 1413). — Gelbe Nadeln (aus Wasser).

2. 2.3-Dioxo-indolin-carbonsäure-(4) bezw. 2-Oxy-3-oxo-indolenin-carbonsäure-(4) $C_9H_5O_4N$, Formel III bezw. IV, Isatin-carbonsäure-(4). B. Durch Oxydation von 1-Nitro-naphthalin mit siedender hBriger Kaliumpermanganat-Lösung und Behandlung des Reaktionsgemisches mit III. Ferrosulfat (Friedlaender, Weisberg, B. 28, 1642). — Ziegelrote Krystalle (aus Nitrobenzol).

Färbt sich oberhalb 200° braun und zersetzt sich bei ca. 260°. Leicht löslich in Wasser, schwerer in Alkohol, Eisessig, Essigester und Äther, sehr schwer in Ligroin und aromatischen Kohlenwasserstoffen. — Liefert beim Behandeln mit Phosphorpentachlorid und Reduzieren des erhaltenen Chlorids mit Jodwasserstoffsäure Indigo-dicarbonsäure-(4.4'). — Löst sich in konz. Schwefelsäure mit kirschroter Farbe. Gibt beim Schütteln mit thiophenhaltigem Benzol eine blaue Lösung, die auf Zusatz von Wasser violettblaue Flocken abscheidet. Die wäßr.

3. 1.3-Dioxo-isoindolin-carbonsäure-(4), Hemimellitsäure-imid $C_9H_5O_4N$, s. nebenstehende Formel. B. Durch Einleiten von Ammoniak CO₂H in Anhydrohemimellitsäure (Bd. XVIII, S. 468) bei 200-2200 (Graebe, Leon-HARDT, A. 290, 228). — Nadeln (aus Wasser). F: 247° (korr.). Sehr wenig löslich in kaltem Wasser, löslich in Alkohol und Eisessig. — Geht beim Kochen mit Alkalilauge oder Alkalicarbonat-Lösung in Hemimellitsäure über. — Ag₂C₉H₂O₄N (bei 100°). Nieder-

Lösung des Bariumsalzes gibt mit Barytwasser eine intensiv kirschrote Färbung, die beim Erwärmen in Blaßgelb übergeht. — Ba(C₉H₄O₄N)₈ (bei 100°). Hellgelbe Nadeln. Leicht

schlag. — $CaC_0H_3O_4N+1,5H_2\bar{O}$. Blättchen. [4.6-Dichlor-hemimellitsäure]-imid C₂H₂O₄NCl₂, s. nebenstehende Formel. B. Durch Einleiten von Ammoniak in geschmolzene Anhydro-[4.6-dichlor-hemimellitsäure] (Bd. XVIII, S. 468) (Crossley, Hills, Soc. 89, 885). — Krystalle (aus Wasser). F: 253—254°. CO₂H

2. 0×0 -carbonsäuren $C_{11}H_{0}O_{4}N$.

löslich in heißem Wasser.

1. 4.5 - Dioxo - 2 - phenyl-pyrrolidin-carbonsäure-(3) bezw. 4-Oxy-5-oxo-2-phenyl- Δ^3 -pyrrolin-carbonsäure-(3), 4-Oxy-2-phenyl- Δ^3 -pyrrolon-(5)carbonsäure - (3) C₁₁H₂O₄N, Formel V V. OC CH·CO₂H VI. HO·C CCO₂H bezw. VI, bezw. weitere desmotrope Formen. V. OC·NH·CH·C₆H₅

Äthylester $C_{13}H_{13}O_4N = \frac{OC}{OC \cdot NH \cdot CH \cdot C_6H_5}$. B. Aus äquimolekularen Mengen Benzaldehyd und Oxalessigester unter Zusatz von wäßrig-alkoholischem Ammoniak (Simon, CONDUCHÉ, C. r. 188, 977; A. ch. [8] 12, 20). — Blättchen (aus Aceton), Krystalle mit 1 H₂O (aus Alkohol). F: 185° (Zers.; bei raschem Erhitzen). Leicht löslich in heißem Alkohol und

¹⁾ Über den Gebrauch des Präfixes "Aza" vgl. STELZNER, Literatur-Register der Organischen Chemie, Bd. V, S. IX-XV.

Aceton, schwer in Chloroform und kaltem Benzol, unlöslich in Wasser und Petroläther. In der Kälte leicht löslich in konz. Salzsäure, konz. Schwefelsäure und Eisessig; scheidet sich aus diesen Lösungen beim Verdünnen unverändert wieder ab. Läßt sich mit Alkalilauge in Gegenwart von Phenolphthalein titrieren. — Liefert bei der Einw. von Hydroxylämin in alkoh. Lösung das Monoxim (s. u.); mit Phenylhydrazin in Alkohol erhält man das Monophenylhydrazon (s. u.). — Beim Erwärmen mit Schwefelsäuremonohydrat entsteht eine blaue Lösung. Gibt mit Eisenchlorid in wäßriger oder alkoholischer Lösung eine rote Färbung. — NH₄C₁₂H₁₃O₄N. Krystalle. Zersetzt sich bei ca. 175°. Unlöslich in Alkohol. 1,5 Tle. lösen sich in ca. 100 Tln. kaltem Wasser. — KC₁₂H₁₂O₄N. Krystalle (aus Wasser). Zersetzt sich bei ca. 270°. Schwer löslich in kaltem Wasser. — AgC₁₂H₁₂O₄N. Krystalle. Zersetzt sich bei ca. 200°. Unlöslich in Wasser, löslich in Ammoniak. — Cu(C₁₂H₁₂O₄N)₂ + 2C₂H₄O₂. Grüne Krystalle. Gibt die Krystallessigsäure bei längerem Erhitzen auf 150° ab und bleibt dann bis 200° unverändert. Unlöslich in siedendem Wasser und den üblichen organischen Lösungsmitteln, löslich in kaltem Eisessig. Löslich in Ammoniak und Salpetersäure. — An ilinsalz C₄H₇N + C₁₂H₁₃O₄N. Krystalle. F: 160°. Gibt das Anilin bei 120—130° allmählich ab. Bei höherer Temperatur tritt langsam weitergehende Zersetzung ein. — p-Toluidinsalz. Nadeln. Zersetzt sich bei ca. 173°.

5-Oxo-4-oximino-2-phenyl-pyrrolidin-carbonsäure-(3)-äthylester $C_{13}H_{14}O_4N_3 = HO \cdot N : C - CH \cdot CO_3 \cdot C_2H_5$. B. Aus der vorangehenden Verbindung und Hydroxylamin

OC·NH·CH·C₀H₅
in Alkohol (Simon, Conducité, C. r. 138, 979; A. ch. [8] 12, 23). — Krystalle mit 1 H₂O. F: 100°. Die wasserfreie Verbindung schmilzt bei 150°. Leicht löslich in Alkohol. — Löst sich in warmer konzentrierter Schwefelsäure mit roter Farbe.

5-Oxo-4-phenylhydrasono-2-phenyl-pyrrolidin-carbonsäure-(3)-äthylester $C_{10}H_{10}O_{0}N_{3} = C_{0}H_{5}\cdot NH\cdot N:C$ —— $CH\cdot CO_{2}\cdot C_{2}H_{5}$. B. Aus 4.5-Dioxo-2-phenyl-pyrrolidin-carbonsäure-(3)-äthylester und Phenylhydrazin in Alkohol (Simon, Conduché, C. r. 138, 979; A. ch. [8] 12, 23). — Hellgelbe Krystalle. F: 172—173°. — Löst sich in konz. Schwefelsäure mit blauer Farbe, die über Grün und Braun in Dunkelrot übergeht.

1-Methyl-4.5-dioxo-2-phenyl-pyrrolidin-carbonsäure-(3)-äthylester $C_{14}H_{15}O_4N=OC$ — $CH\cdot CO_2\cdot C_2H_5$. B. Das Methylaminsalz entsteht aus äquimolekularen Mengen $OC\cdot N(CH_2)\cdot CH\cdot C_4H_5$. B. Das Methylaminsalz entsteht aus äquimolekularen Mengen Oxalessigester und Benzaldehyd und überschüssigem Methylamin durch Erwärmen in wäßrigalkoholischer Lösung; man zersetzt es mit Essigsäure (SIMON, CONDUCHÉ, A. ch. [8] 12, 44). — Nadeln. Zersetzt sich bei 162°. Unlöslich in Wasser, ziemlich leicht löslich in heißem Alkohol. — Gibt mit Eisenchlorid in alkoh. Lösung eine rote Färbung. — Methylaminsalz $CH_5N+C_{14}H_{15}O_4N$. Hygroskopische Prismen. Zersetzt sich bei 155°. Sehr leicht löslich in Wasser und Alkohol, weniger in Äther.

1-Allyl-4.5-dioxo-2-phenyl-pyrrolidin-carbonsäure-(3)-äthylester $C_{16}H_{17}O_4N = OC$ CH·CO₂·C₂H₅

B. Das Allylaminsalz entsteht aus 1 Mol Oxalessigester, OC·N(CH₂·CH:CH₂)·CH·C₆H₅

1 Mol Benzaldehyd und 2 Mol Allylamin in Alkohol; man zersetzt es mit Essigsäure (Simon, Conduché, A. ch. [8] 12, 46). — Nadeln (aus Alkohol oder wäßr. Aceton). Zersetzt sich bei 146°. Unlöslich in Wasser, löslich in Alkohol. — Gibt mit Eisenchlorid in alkoh. Lösung eine rote Färbung. — Allylaminsalz. Prismen. Zersetzt sich bei 142°. Sehr leicht löslich in Alkohol.

4.5 - Dioxo - 1.2 - diphenyl - pyrrolidin - carbonsäure - (3) - äthylester C₁₉H₁₇O₄N = OC — CH·CO₂·C₂H₅
B. Beim Erwärmen äquimolekularer Mengen Oxalessigester, OC·N(C₆H₅)·CH·C₆H₅
Anilin und Bensaldehyd oder Oxalessigester und Benzalanilin ohne Lösungsmittel auf dem Wasserbed (Schiff, Bertini, B. 30, 602, 603; vgl. Sch., Gigli, B. 31, 1307) oder in alkoholischer oder ätherischer Lösung (Simon, Conduché, C. r. 189, 211; A. ch. [8] 12, 49). — Krystalle (aus Alkohol). F: 171° (Sch., B.), 173° (Si., C.). Unlöslich in Wasser, sehr schwer löslich in kaltem Äther, kaltem Benzol und kaltem Alkohol, leichter in Eisessig; unverändert löslich in konz. Mineralsäuren (Si., C.). — Reagiert mit Hydroxylamin unter Bildung zweier isomerer Monoxime (S. 338) (Sch., B.). Gibt mit 1 Mol Phenylhydrazin ein Monophenylhydrazon (S. 338) (Si., C.). — Mit Eisenchlorid entsteht eine purpurote Färbung (Sch., B.; Si., C.), mit Chromschwefelsäure eine violettbraune Färbung (Si., C.). — NaC₁₉H₁₆O₄N. Unlöslich in Alkohol (Sch., B.). — KC₁₉H₁₆O₄N + 3,5H₂O. Krystalle (aus Wasser). F: 40° (Si., C.). Gibt das Krystallwaser im Vakuum bei Zimmertemperatur ab. Schwer löslich in kaltem

Wasser, leichter in Alkohol. — $Cu(C_{19}H_{16}O_4N)_9$. Grüne Krystalle. Zersetzt sich bei ca. 180° unter Braunfärbung (SI., C.). Unlöslich in Wasser, Alkohol und den meisten organischen Lösungsmitteln, löslich in Eisessig und Chloroform. — $AgC_{19}H_{16}O_4N$. Niederschlag. Zersetzt sich bei 140° (SI., C.). Zersetzt sich langsam beim Aufbewahren am Licht. Unlöslich in Wasser und Alkohol. — $Ba(C_{19}H_{16}O_4N)_9$. Krystalle. Zersetzt sich oberhalb 300° (SI., C.). Sehr schwer löslich in Wasser, schwer in Alkohol.

- $\begin{array}{l} \textbf{1-[3-Nitro-phenyl]-4.5-dioxo-2-phenyl-pyrrolidin-carbons\"{a}ure-(3)-\"{a}thylester} \\ \textbf{C}_{19}\textbf{H}_{16}\textbf{O}_{6}\textbf{N}_{2} = \\ \textbf{OC} & \textbf{CH} \cdot \textbf{CO}_{2} \cdot \textbf{C}_{2}\textbf{H}_{5} \\ \textbf{OC} \cdot \textbf{N}(\textbf{C}_{6}\textbf{H}_{4} \cdot \textbf{NO}_{2}) \cdot \textbf{CH} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{Benzaldehyd und 3-Nitro-anilin (Schiff, Bertini, B. 30, 604).} \end{array} . \begin{array}{l} \textbf{B. Beim Erwärmen von Oxalessigester mit} \\ \textbf{Benzaldehyd und 3-Nitro-anilin (Schiff, Bertini, B. 30, 604).} \end{array} . \end{array}$
- $\begin{array}{l} \textbf{5-Oxo-4-oximino-1.2-diphenyl-pyrrolidin-carbons\"{a}ure-(3)-\"{a}thylester} \\ \textbf{C}_{19}\textbf{H}_{18}\textbf{O}_{4}\textbf{N}_{2} = \\ \begin{array}{c} \textbf{HO\cdot N:C-----CH\cdot CO_{2}\cdot C_{2}H_{5}} \\ \textbf{Odd.N(C.H.).dH.C.H.} \end{array}. \end{array}$
- C₁₉H₁₈O₄N₂ = OC·N(C₆H₅)·CH·C₆H₅
 a) Oxim vom Schmelzpunkt 110°. B. Beim Erhitzen von 4.5-Dioxo-1.2-diphenylpyrrolidin-carbonsäure-(3)-äthylester, Hydroxylamin-hydrochlorid und wasserfreier Soda mit Alkohol (Schiff, Bertini, B. 30, 603). Niederschlag (aus Benzol + Ligroin). F: 110°. Sehr leicht löslich in Alkohol und Alkohol.
- b) Oxim vom Schmelzpunkt 224°. B. Durch Einw. von Hydroxylamin auf 4.5-Dioxo-1.2-diphenyl-pyrrolidin-carbonsäure-(3)-äthylester in warmer wäßrig-alkoholischer Lösung (Schiff, Bertini, B. 30, 603). F: 224°. Unlöslich in Äther.
- $\begin{array}{lll} \textbf{5-Oxo-4-phenylhydrazono-1.2-diphenyl-pyrrolidin-carbons\"{a}ure-(3)-\"{a}thylester} \\ \textbf{C$_{25}$H$_{23}$O$_{3}$N$_{3}} &= & \begin{matrix} \textbf{C$_{6}$H$_{5}$\cdot NH \cdot N : C} & \textbf{CH} \cdot \textbf{CO}_{2} \cdot \textbf{C}_{2}H_{5} \\ \textbf{OC} \cdot \textbf{N}(\textbf{C}_{6}H_{5}) \cdot \textbf{CH} \cdot \textbf{C}_{6}H_{5} \\ \textbf{4.5-Dioxo-1.2-diphenyl-pyrrolidin-carbons\"{a}ure-(3)-\"{a}thylester} & \textbf{und Phenylhydrazin in Alkohol} \\ \textbf{auf dem Wasserbad (Simon, Conduch\'{a}, \textit{C. r. 139, 212; A. ch. [8] 12, 55).} & \textbf{Krystalle (aus Alkohol).} & \textbf{F: 150}^{\circ}. \end{array}$

- 1-Benzyl-4.5-dioxo-2-phenyl-pyrrolidin-carbonsäure-(3)-äthylester $C_{20}H_{19}O_4N=OC$ $CH \cdot CO_2 \cdot C_2H_5$ $B. Das Benzylaminsalz entsteht aus Oxalessigester, Benz-OC \cdot N(CH_2 \cdot C_6H_5) \cdot CH \cdot C_6H_5$ $A. ch. [8] 12, 48). Nadeln. F: 190° (Zers.). Benzylaminsalz <math>C_7H_9N + C_{20}H_{19}O_4N$. Nadeln (aus Alkohol). F: 140°. Ziemlich leicht löslich in Alkohol, weniger in Äther.
- 1-\$\beta\$-Naphthyl-4.5-bis-\$\beta\$-naphthylimino 2 phenyl pyrrolidin carbons\textbf{aure} (3)-\textbf{athylester} (P) \ \text{C}_{43}\text{H}_{33}\text{O}_2\text{N}_3 = \frac{\text{C}_{10}\text{H}_7\text{N}:\text{C}\text{-N}(\text{C}_{10}\text{H}_7\text{).\text{C}\text{H}_5} \ \text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{C}_1\text{H}_5\text{D}_1\text{Photolylimin} in Alkohol (Simon, Mauguin, \$A\$. \$ch\$. [8] 18, 365). Nadeln (aus Eisessig). F: 294\text{0} (Maquennesser Block). Unl\text{Oslich} in Wasser, Alkohol und Benzol, l\text{Oslich} in siedendem Pyridin, schwer l\text{Oslich} in siedendem Chloroform und siedendem Eisessig. L\text{Ost} sich in konz. Schwefels\text{\text{aure}} mit roter Farbe.

1-[4-Bensolaso-phenyl]-4.5-dioxo-2-phenyl-pyrrolidin - carbonsäure - (3) - äthylester $C_{25}H_{21}O_4N_3= {{\rm OC} \atop {\rm OC}\cdot N(C_6H_4\cdot N:N\cdot C_6H_5)\cdot CH\cdot C_6H_5}\atop {\rm OC}\cdot N(C_6H_4\cdot N:N\cdot C_6H_5)\cdot CH\cdot C_6H_5}$. B. Beim Erwärmen äquimolekularer Mengen Oxalessigsäureester, Benzaldehyd und 4-Amino-azobenzol auf 100° (Schiff, Bertini, B. 30, 604). — Rote Krystalle (aus Xylol). F: 215°. Unlöslich in Alkohol.

4.5-Dioxo-2-[8-nitro-phenyl]-pyrrolidin-carbonsäure-(3)-äthylester $C_{13}H_{12}O_6N_2$ OC— $CH \cdot CO_2 \cdot C_2H_5$ B. Aus Oxalessigester und 3-Nitro-benzaldehyd in wäßrigalkoholischem Ammoniak (Simon, Conduché, C. r. 138, 979; A. ch. [8] 12, 37). — Nadeln oder Blättchen mit 1 H_2O . Zersetzt sich bei 173°. Leicht löslich in Wasser. — Gibt mit Eisenchlorid in alkoh. Lösung eine rote Färbung, mit Schwefelsäuremonohydrat bei 100° eine blaue Färbung. — Ammoniumsalz. Zersetzt sich bei 166°. — $KC_{13}H_{11}O_6N_2+2H_2O$. Krystalle (aus Alkohol).

1-Phenyl-4.5-dioxo-2-[3-nitro-phenyl] - pyrrolidin - carbonsäure - (3) - äthylester $C_{19}H_{16}O_6N_2= {{\rm OC-CH\cdot CO_2\cdot C_2H_5} \atop {{\rm OC\cdot N(C_6H_5)\cdot CH\cdot C_6H_4\cdot NO_2}}}$. B. Durch Erwärmen äquimolekularer Mengen Oxalessigester, 3-Nitro-benzaldehyd und Anilin auf dem Wasserbad (Schiff, Bertini, B. 30, 604). — Gelblich. F: 208—209°. Sehr schwer löslich in Alkohol.

2. 3.5-Dioxo-2-phenyl-pyrrolidin-carbonsäure-(4) C₁₁H₂O₄N = HO₂C·HC——CO
OC·NH·CH·C₂H₃

Äthylester $C_{18}H_{13}O_4N=\frac{C_2H_5\cdot O_2C\cdot HC-CO}{OC\cdot NH\cdot CH\cdot C_6H_5}$. Die unter dieser Formel beschriebene Verbindung ist nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] von Anschütz (B. 45 [1912], 2378) als 3-Oxo-5-imino-2-phenyl-furantetrahydrid-carbonsäure-(4)-äthylester (Bd. XVIII, S. 473) erkannt worden.

3. Oxo-carbonsäuren $C_{12}H_{11}O_4N$.

1. 2.6-Dioxo-4-phenyl-piperidin-carbonsäure-(3) $C_{12}H_{11}O_4N=H_1C\cdot CH(C_4H_5)\cdot CH\cdot CO_2H$ bezw. desmotrope Formen.

Äthylester $C_{14}H_{18}O_4N = \frac{H_2C \cdot CH(C_6H_5) \cdot CH \cdot CO_2 \cdot C_2H_5}{OC-NH-CO}$. B. Durch Kochen von Zimtsäureamid mit Natriummalonester in Alkohol (Vorländer, A. 320, 87; V., Herrmann, C. 1899 I, 730). — Nadeln (aus Wasser). F: 119°. Löslich in Natronlauge, Ammoniak, Soda-Lösung und Salzsäure. — Liefert beim Kochen mit Salzsäure β -Phenyl-glutarsäure.

2.6 - Dioxo - 1.4 - diphenyl - piperidin - carbonsäure - (3) - äthylester $C_{20}H_{19}O_4N=H_2C\cdot CH(C_6H_5)\cdot CH\cdot CO_2\cdot C_2H_5$. B. Beim Kochen von Zimtsäureanilid mit Natriummalon-och $N(C_6H_5)\cdot CO$ ester in Alkohol (Vorländer, A. 320, 94; V., Herrmann, C. 1899 I, 730). — Nadeln (aus Alkohol). F: 166°. Unlöslich in Ammoniak und Soda-Lösung. — Gibt beim Kochen mit Salzsäure β -Phenyl-glutarsäure und Anilin, Beim Behandeln mit kalter alkoholischer Kalilauge erhält man ein Produkt [Nadeln (aus verd. Alkohol)], das beim Erhitzen unter Abspaltung von Kohlendioxyd in β -Phenyl-glutarsäure-monoanilid übergeht.

2. 1.3-Dioxo-4.4-dimethyl-1.2.3.4-tetrahydro-iso-chinolin-carbonsäure-(7), Joniregentricarbonsäure-tmid C₁₂H₁₁O₄N, s. nebenstehende Formel, bezw. desmotrope Formen.

B. Bei der Destillation des Ammoniumsalzes der Joniregentricarbonsäure (Bd. IX, S. 983) im Kohlendioxyd-Strom (Tiemann, Krüger, B. 26, 2686). — Krystallpulver (aus verd. Ammoniak durch Salzsäure). F: oberhalb 300°. Unlöslich in den gebräuchlichen Lösungsmitteln. — Das Silbersalz geht bei der trocknen Destillation im Kohlensäure-Strom in α.α-Dimethyl-homophthalsäure-imid über.

22*

4. 2.6-Dioxo-3-methyl-4-phenyl-piperidin-carbonsaure-(3) $C_{18}H_{18}O_4N$ $= \begin{array}{c} H_1C \cdot CH(C_0H_1) \cdot C(CH_2) \cdot CO_2H \\ OC - NH - CO \end{array}$

1-Acetyl-2.8-dioxo-8-methyl-4-phenyl-piperidin-carbonsäure-(8) $C_{15}H_{16}O_{5}N=H_{2}C-CH(C_{6}H_{5})-C(CH_{3})\cdot CO_{2}H$. B. Durch Einw. von Acetylchlorid auf die α -Form der α -Me-OC·N(CO·CH₃)·CO thyl- β -phenyl- α -cyan-glutarsäure (Bd. IX, S. 984) (Carter, Lawrence, P. Ch. S. No. 227).

- F: 110°. - Reagiert sauer. Wird von Wasser leicht zersetzt.

e) Oxo-carbonsăuren $C_n H_{2n-15} O_4 N$.

1. α -[0xo-isoindolinyliden]-acetessigsäure¹), 3-[Acetyl-carboxy-methylen]-phthalimidin¹) $C_{12}H_{2}O_{4}N$, s. nebenstehende Formel.

 α - [2 - Oxy - 3 - oxo - isoindolinyliden - (1)] - acetessigsäure - äthylester - oxim 1),

"Phthaloxim-acetessigesteroxim"1) $C_{14}H_{14}O_5N_2 =$

C₀H₄ CO N·OH C[C(:N·OH)·CH₃]·CO₃·C₂H₃·1). B. Aus Phthalylacetessigester und Hydroxylamin-hydrochlorid in Essigsäure in Gegenwart von Natriumacetat (Bülow, B. 38, 1912). — Nadeln (aus Eisessig). F: 224°. Löslich in Alkohol und Eisessig, unlöslich in Wasser, Äther und Ligroin. Löst sich in kalter verdünnter Kalilauge mit orangegelber Farbe und wird durch Kohlendioxyd aus der Lösung wieder ausgefällt.

2. 2.4-Dimethyl-3-benzoyl-4.5-dihydro-pyridon-(6)-carbonsaure-(5) $C_{15}H_{15}O_4N = \frac{HO_2C \cdot HC \cdot CH(CH_2) \cdot C \cdot CO \cdot C_6H_5}{OC-NH-C \cdot CH.}$ bezw. desmotrope Formen.

f) Oxo-carbonsäuren $C_n H_{2n-19} O_4 N$.

4.7 - Dioxo-2 - methyl - 4.7 - dihydro - 5.6 - benzo- Ω indol-carbonsăure - (3), 2 - Methyl - 5.6 - benzo- Ω indolchinon - (4.7) - carbonsăure - (3) $C_{14}H_{\bullet}O_{4}N$, $O_{14}H_{\bullet}O_{4}N$, s. nebenstehende Formel.

s. hebenstehende Formel.

1-Äthyl-2-methyl-5.6-benso-indolchinon - (4.7) carbonsäure - (3) - äthylamid (,,Äthyl-methylnaphthindolchinon-carbonsäureäthylamid")

C₁₀H₁₈O₃N₂, s. nebenstehende Formel. B. Bei längerer
Einw. von Äthylamin auf 3-Brom-2-[scetyl-carbāthoxymethyl]-naphthochinon-(1.4) in wäßrig-alkoholischer Lösung (Liebermann, B. 33, 571).

Stahlblaue Nadeln (aus verd. Alkohol). Unlöslich in Wasser.

g) Oxo-carbonsäuren $C_n H_{2n-21} O_4 N$.

1. 1.3 - Dioxo-4 - [2 - carboxy - benzyi] - 1.2.3.4 - tetra-hydro-isochinolin, α - [2 - Carboxy - benzyl] - homo-phthalsäure-imid $C_{17}H_{13}O_4N$, s. nebenstehende Formel, ist desmotrop mit 1.3-Dioxy-4-[2-carboxy-benzyl]-isochinolin, 8. 265.

¹⁾ Vgl. Fußnote Bd. XVIII, S. 476.

h) Oxo-carbonsäuren $C_n H_{2n-25} O_4 N$.

 $\alpha.\beta$ -Dioxo- α -[2-carboxy-phenyl]- β -[chinolyl-(2)]- α -than, [2-Carboxy-phenyl]-[chinolyl-(2)]-diketon $C_{18}H_{11}O_4N$, s. pebenstehende Formel.

α-Oxo-β-oximino-α-[2-carboxy-phenyl]-β-[chinolyl-(2)]-äthan, ω-Isonitroso-ω-[chinolyl-(2)]-acetophenon-carbonsäure-(2) $C_{10}H_{12}O_4N_2=NC_0H_4\cdot C(:N\cdot OH)\cdot CO\cdot C_0H_4\cdot CO_2H$. B. Durch Einw. von Natriumnitrit auf eine Lösung von ω-[Chinolyl-(2)]-acetophenon-carbonsäure-(2) in verd. Salzsäure (ΕΙΒΝΕΕ, ΗΟΓΜΑΝΝ, B. 37, 3013). — Nadeln (aus Aceton). F: 205° (Zers.).

i) Oxo-carbonsäuren C_nH_{2n-27}O₄N.

2-[1.3-Dioxo-hydrindyl-(2)]-chinolin-carbonsäure-(4), 2-[1.3-Dioxo-hydrindyl-(2)]-cinchoninsäure, Phthalon der 2-Methyl-cinchoninsäure C₂H₁₁O₄N, s. nebenstehende Formel. B. Beim Erhitzen von 2-Methyl-cinchoninsäure mit Phthalsäure-anhydrid und Zinkehlorid auf 170° bis 180° (Pettenger, J. pr. [2] 56, 292). — Nadeln (aus Eisessig).

Schmilzt oberhalb 300° (Zers.). — Natriumsalz. Gelbe Flocken.

3. Oxo-carbonsäuren mit 5 Sauerstoffatomen.

- a) Oxo-carbonsäuren $C_n H_{2n-7} O_5 N$.
- 1. β 0 x o ăthan α . α . β tricarbons ăure α . α imid $C_5H_3O_5N=HO_3C\cdot CO\cdot HC<\frac{CO}{CO}>NH$.
- β -Phenylimino-äthan-α.α. β -tricarbonsäure- β -methylester-α.α-anil bezw. β -Anilino-äthylen-α.α. β -tricarbonsäure- β -methylester-α.α-anil $C_{18}H_{14}O_4N_2=CH_3\cdot O_2C\cdot C(:N\cdot C_6H_5)\cdot HC<_{CO}^{CO}>N\cdot C_6H_5$ bezw. $CH_3\cdot O_2C\cdot C(NH\cdot C_6H_5):C<_{CO}^{CO}>N\cdot C_6H_5$. B. Aus α. γ -Dicarboxy-aconitsäure-pentamethylester (Bd. II, S. 882) beim Erwärmen mit Anilin auf dem Wasserbad (Ruhemann, Soc. 91, 1365). Gelbe Prismen (aus Methanol). F: 194°. In Alkohol, Benzol und Chloroform schwer löslich in der Kälte, leicht in der Siedehitze.

2. Oxo-carbonsäuren $C_6H_5O_5N$.

- 1. 2.4.6-Trioxo-piperidin-carbonsäure-(3), 2.4.6-Trioxo-nipecotinsäure $C_6H_5O_5N = {H_2C \cdot CO \cdot CH \cdot CO_2H \over OC \cdot NH \cdot CO}$ ist desmotrop mit 2.4.6-Trioxy-pyridin-carbonsäure-(3), S. 266.
- 2.6-Dioxo-4-imino-piperidin-carbonsäure-(3)-äthylester (Glutazin-carbonsäure-äthylester) $C_8H_{10}O_4N_8= {H_2C\cdot C(:NH)\cdot CH\cdot CO_2\cdot C_2H_5 \atop OC-NH-CO}$ ist desmotrop mit 2.6-Dioxy-4-amino-pyridin-carbonsäure-(3)-äthylester, Syst. No. 3441.
- 1-Benzoyl-2.6-dioxo-4-benzimino-piperidin-carbonsäure-(3)-äthylester, Dibenzoyl-glutazin-carbonsäure-äthylester $C_{22}H_{18}O_6N_2= \frac{H_2C\cdot C(:N\cdot CO\cdot C_6H_5)\cdot CH\cdot CO_2\cdot C_2H_5}{OC-N(CO\cdot C_6H_5)-CO}$.

 B. Durch Kochen von Glutazin-carbonsäure-äthylester mit Benzoylchlorid (Baron, Remfry, Thorpe, Soc. 85, 1741). Nadeln (aus Eisessig). F: 220°.

- Diäthylester $C_{16}H_{17}O_5N=C_6H_5\cdot NC_4H_2(:O)(CO_2\cdot C_2H_5)_2$ bezw. $C_6H_5\cdot NC_3H(OH)(CO_2\cdot C_3H_5)_2$. B. s. bei der vorhergehenden Verbindung. Gelbliche Tafeln (aus Alkohol). F: 1810 (Ruhemann, Allhusen, Soc. 65, 12). Löslich in heißem Alkohol, unlöslich in Äther. Löslich in verd. Kalilauge.
- Monoamid $C_{13}H_{10}O_4N_3 = C_6H_5 \cdot NC_4H_3 (:0)(CO_2H) \cdot CO \cdot NH_2$ bezw. $C_6H_5 \cdot NC_4H(OH)(CO_3H) \cdot CO \cdot NH_2$. B. Aus dem Diäthylester bei der Einw. von konz. Ammoniak (RUHEMANN, Allhusen, Soc. 65, 13). Zersetzt sich beim Erhitzen, ohne zu schmelzen. Fast unlöslich in Wasser und Alkohol.

3. Derivat eines Lactams der y-Amino-aconitsäure C₈H₅O₅N.

Lactam des γ - Anilino - aconitsäure - diäthylesters $C_{16}H_{17}O_5N = OC \underbrace{N(C_6H_5)}C:C(CO_2\cdot C_2H_5)\cdot CH_2\cdot CO_2\cdot C_2H_5$ oder $OC\cdot C(CH_2\cdot CO_2\cdot C_2H_5):C\cdot CO_2\cdot C_2H_5$. B. Aus Dibromtricarballylsäuretriäthylester beim Erwärmen mit Anilin auf dem Wasserbad (Ruhemann, Allhusen, Soc. 65, 11). — Nadeln (aus Äther). F: 87—88°. Sehr leicht löslich

in Alkohol. — Liefert beim Erhitzen mit Barytwasser Anilin, Oxalsäure und Bernsteinsäure.

- 3. Oxo-carbonsauren $C_7H_7O_5N$.
- 1. 2.4.6-Trioxo-5-methyl-piperidin-carbonsäure-(3), a.y.a'-Trioxo- $\beta\text{-pipecolin-}\beta'\text{-carbonsäure} \quad C_7H_7O_5N = \frac{\text{CH}_3\cdot\text{HC}\cdot\text{CO}\cdot\text{CH}\cdot\text{CO}_2\text{H}}{\text{OC}\cdot\text{NH}\cdot\text{CO}} \quad \text{ist desmotrop mit} \\ 2.4.6\text{-Trioxy-5-methyl-pyridin-carbonsäure-(3), S. 266.}$
- 2.6 Dioxo -4 imino -5 methyl piperidin carbonsäure -(3) äthylester (Methylglutagin-carbonsäure äthylester) $C_9H_{12}O_4N_2 = \begin{array}{c} CH_3 \cdot HC \cdot C(:NH) \cdot CH \cdot CO_2 \cdot C_2H_5 \\ OC NH CO \end{array}$ ist desmotrop mit 2.6 Dioxy -4 amino -5 methyl pyridin carbonsäure -(3) äthylester, Syst. No. 3441.
- 1-Benzoyl -2.6- dioxo -4- benzimino -5-methyl piperidin carbonsäure (8)- äthylester, Dibenzoyl methyl glutazin carbonsäure äthylester $C_{23}H_{20}O_6N_2=CH_8\cdot HC\cdot C(:N\cdot CO\cdot C_6H_8)\cdot CH\cdot CO_2\cdot C_2H_5$. B. Durch Kochen von Methyl-glutazin-carbonsäure-

OC—N(CO·C₆H₅)—CO

āthylester mit Benzoylchlorid (Baron, Remfry, Thorpe, Soc. 85, 1749). — Nadeln (aus absol. Alkohol). F: 210°.

2. [5-Oxo- Δ^1 -pyrrolinyl-(2)]-malonsāure, Δ^1 -Pyrrolon-(5)-malonsāure $C_7H_7O_5N = \begin{array}{c} H_2C - CH_2 \\ OC \cdot N : C \cdot CH(CO_2H)_2 \end{array}$

Äthylester-nitril, Δ^1 -Pyrrolon-(5)-cyanessigsäure-(2)-äthylester $C_9H_{10}O_3N_2=H_3C$ — CH_2 O. $N.C.CH_2$ O. $N.C.CH_3$ B. Aus β -Imino- α -cyan-adipinsäure-monoäthylester beim schnellen Destillieren (Best, Thorpe, Soc. 95, 1535). Aus [5-Oxo-pyrrolidyliden-(2)]-cyanessigsäure-äthylester (s. u.) beim Kochen mit Wasser (B., Th., Soc. 95, 1534). Aus [5-Imino-pyrrolidyliden-(2)]-cyanessigsäure-äthylester bei kurzem Kochen mit Natriumnitrit und Essigsäure oder bei längerem Kochen mit verd. Salzsäure (B., Th., Soc. 95, 1533). — Nadeln (aus Wasser oder Alkohol). F: 145°. — Beim Erwärmen mit Soda-Lösung entsteht β -Imino- α -cyan-adipinsäure-monoäthylester, beim Behandeln mit kalter wäßriger oder alkoholischer Kalilauge das Kaliumsalz des [5-Oxo-pyrrolidyliden-(2)]-cyanessigsäure-äthylesters.

3. [5-Oxo-pyrrolidyliden-(2)]-malonsäure $C_7H_7O_5N = \frac{H_2C - CH_2}{OC \cdot NH \cdot C \cdot C(CO_2H)_2}$.

[5-Oxo-pyrrolidyliden-(2)]-cyanessigsäure-äthylester $C_9H_{10}O_3N_2 = H_2C - CH_2$ OC·NH·C·C(CN)·CO₂·C₂H₅. B. Aus [5-Imino-pyrrolidyliden-(2)]-cyanessigsäure-äthylester (s. u.) bei der Einw. von elkoholischer Kalilauge (B., Th., Soc. 95, 1532). Aus \(\Delta^1\text{-Pyrrolon-(5)-cyanessigsäure-(2)-äthylester (s. o.) bei der Einw. von alkoholischer Kalilauge (B., Th., Soc. 95, 1534). — Prismen (aus Alkohol). F: 181°. Sublimierbar. — Geht beim Kochen mit Alkohol oder schneller mit Wasser in \(\Delta^1\text{-Pyrrolon-(5)-cyanessigsäure-(2)-äthylester \(\text{über.} - KC_9H_9O_3N_2\). Prismen (aus Wasser). Sehr schwer löslich in Alkohol, leicht in kaltem Wasser. — AgC₉H₉O₃N₂. Amorph.

[5-Imino-pyrrolidyliden-(2)]-cyanessigsäure-äthylester C₉H₁₁O₂N₃ = H₂C—CH₂

B. Aus [5-Imino-3-carbāthoxy-pyrrolidyliden-(2)]-cyanessig-HN:C·NH·C:C(CN)·CO₃·C₂H₅

säure-äthylester durch sehr kurzes Erwärmen mit verd. Kalilauge und nachfolgendes Kochen der mit Essigsäure angesäuerten Reaktionsflüssigkeit (Best, Thorpe, Soc. 95, 1530). —Gelbliche Nadeln (aus Alkohol). F: 256° (Zers.). Schwer löslich in den gebräuchlichen organischen Lösungsmitteln, löslich in heißem Wasser. Löslich in verd. Salzsäure, unlöslich in

(Š. 343); letztere Verbindung entsteht auch beim Kochen mit Natriumnitrit und Essigsäure. [1-Methyl-5-oxo-pyrrolidyliden-(2)] - cyanessigsäure - äthylester $C_{10}H_{12}O_3N_2=H_2C$ ——CH.

OC·N(CH₃)·C:C(CN)·CO₃·C₂H₅. B. Aus dem Silbersalz des [5-Oxo-pyrrolidyliden-(2)]cyanessigsaure-athylesters durch Erwarmen mit Methyljodid in Benzol auf dem Wasserbad (Best, Thorre, Soc. 95, 1536). Beim schnellen Destillieren von β -Methylimino- α -cyan-adipinsaure-a-monoathylester (Bd. IV, S. 82) (B., Th., Soc. 95, 1537). — Prismen (aus Alkohol). F: 120°. Unlöslich in kalter Kalilauge. — Liefert beim Kochen mit Soda-Lösung β -Methyl $imino-\alpha$ -cyan-adipinsäure- α -monoathylester.

4. 0×0 -carbonsäuren $C_8 H_9 O_5 N$.

- 1. 2.4.6-Trioxo-5-äthyl-piperidin-carbonsäure-(3) $C_8H_9O_5N =$ $C_2H_5 \cdot HC \cdot CO \cdot CH \cdot CO_2H$ ist desmotrop mit 2.4.6-Trioxy-5-āthyl-pyridin-carbonsaure-(3), OC·NH·CO S. 267.
- 2.6 Dioxo 4 imino 5 äthyl piperidin carbonsäure (3) äthylester (Äthyl -oc-NH-co motrop mit 2.6-Dioxy-4-amino-5-äthyl-pyridin-carbonsäure-(3)-äthylester, Syst. No. 3441.
- 1-Benzoyl-2.6-dioxo-4-benzimino-5-äthyl-piperidin-carbonsäure-(3)-äthylester, Dibenzoyl - äthyl - glutasin - carbonsäure - äthylester $C_{24}H_{22}O_6N_8 = C_3H_5 \cdot HC \cdot C(:N \cdot CO \cdot C_6H_5) \cdot CH \cdot CO_2 \cdot C_3H_5$. B. Durch Kochen von Äthyl-glutazin-carbonsäure-
- $OC N(CO \cdot C_aH_a) CO$ athylester mit Benzoylchlorid (Baron, Remfry, Thorpe, Soc. 85, 1758). — Platten (aus Eisessig). F: 229°.
- 2. 2.4.6 Trioxo 3.5 dimethyl piperidin carbonsäure (3) $C_8H_9O_5N =$ $CH_3 \cdot HC \cdot CO \cdot C(CH_2) \cdot CO_2H$

OC·NH·CO

- 2.6 Dioxo 4 imino 3.5 dimethyl piperidin carbonsäure (3) äthylester, Dimethyl - glutasin - carbonsäure - äthylester $C_{10}H_{14}O_4N_4 =$ $CH_2 \cdot HC \cdot C(:NH) \cdot C(CH_3) \cdot CO_2 \cdot C_2H_5$
- B. Aus β -Imino- α . α' -dimethyl- α -cyan-glutarsäure-di-OC-NH-CO äthylester (Bd. III, S. 857) bei der Einw. von konz. Schwefelsäure (Baron, Remfry, Thorpe, Soc. 85, 1753). — Blättchen (aus Eisessig). F: 225° (Zers.). Löslich in heißem Wasser und verd. Alkohol. Unlöslich in kalten Alkalien. — Liefert beim Erhitzen mit konz. Kalilauge Dimethylglutazin (Syst. No. 3426). — Gibt mit Eisenchlorid in neutraler Lösung eine tiefviolette Färbung. — Hydrochlorid. Prismen (aus konz. Salzsäure).
- 1-Bensoyl-2.6-dioxo-4-bensimino-3.5-dimethyl-piperidin-carbonsaure-(3)-athylester, Dibenzoyl - dimethyl - glutazin - carbonsäure - äthylester $C_{24}H_{22}O_6N_1 =$ $CH_2 \cdot \acute{H}C \cdot C(: N \cdot C\acute{O} \cdot C_6H_5) \cdot C(\acute{C}H_3) \cdot CO_2 \cdot C_2H_5$
- B. Aus Dimethyl-glutazin-carbonsaure-athyl- $OC \longrightarrow N(CO \cdot C_6H_5) \longrightarrow CO$ ester durch Kochen mit Benzoylchlorid (Baron, Remfry, Thorre, Soc. 85, 1753). — Prismen (aus Eisessig). F: 235°.
- 5. 6-0xo-2.4-dimethyl-1.4.5.6-tetrahydro-pyridin-dicarbonsäure-(3.5), α' -0xo-N. γ . α' . β' -tetrahydro- α . γ -lutidin- β . β' -dicarbonsaure C₉H₁₁O₅N = HO₂C·HC·CH(CH₂)·C·CO₂H OC—NH—C·CH₂

Diäthylester $C_{13}H_{19}O_5N = \frac{C_2H_5 \cdot O_2C \cdot HC \cdot CH(CH_3) \cdot C \cdot CO_2 \cdot C_2H_5}{1}$ OC-NH-C-CH₂ bewahren eines Gemisches von Äthylidenmalonsäurediäthylester und β -Amino-crotonsäureäthylester bei Zimmertemperatur (Knoevenagel, Brunswig, B. 35, 2179). — Krystalle (aus Äther). F: 54—54,5°. Leicht löslich in organischen Lösungsmitteln, schwer in Wasser.— Zersetzt sich teilweise bei der Destillation im Vakuum unter Biklung von a-Äthyliden-acetessigsaure-athylester. Liefert beim Erhitzen mit 20% giger Salzsaure im Rohr auf 110—115% oder beim Erwärmen mit 8 $^{\circ}$ eiger Natronlauge δ -Öxo- β -methyl-pentan- α . α -dicarbonsäure (Bd. III, S. 813).

6 - Oxo - \$.4 - dimethyl - 1.4.5.6 - tetrahydro - pyridin - dicarbonsäure - (8.5) - äthyl ester - (8) - [α - methyl - β - carbathoxy - vinylamid] - (5) (?) $C_{17}H_{24}O_6N_8 =$ $C_3H_3 \cdot O_3C \cdot CH \cdot C(CH_3) \cdot NH \cdot OC \cdot HC \cdot CH(CH_3) \cdot C \cdot CO_3 \cdot C_3H_5$ (2). Durch Erhitzen von OC-NH-C-CH.

Athylidenmalonsäurediäthylester mit β -Amino-crotonsäure-äthylester im Vakuum auf 120° bis 140° (Knoevenagel, Brunswig, B. 85, 2183). — Krystalle (aus Alkohol). F: 155—157°. Leicht löslich in Chloroform, Eisessig und heißem Alkohol, schwer in heißem Äther und kaltem Benzol. — Liefert beim Erhitzen mit 20% iger Salzsäure auf 100° eine bei 196-197° schmelzende, stickstoffhaltige Verbindung.

b) Oxo-carbonsauren $C_n H_{2n-9} O_5 N$.

- 1. Oxo-carbonsăuren CaH2OEN.
- 1. 4.5.6 Trioxo 1.4.5.6 tetrahydro pyridin-carbonsäure-(2) (Azoncar-

bonsaure) $C_0H_3O_5N = \frac{OC \cdot CO \cdot CH}{OC \cdot NH \cdot C \cdot CO_2H}$. Zur Konstitution vgl. Peratoner, R. A. L. [5]

- 11 I, 333. B. Aus Oxykomenaminsäure (S. 266) bei der Oxydation mit absol. Salpetersäure in Äther (Ost, J. pr. [2] 27, 267). Orangerote Tafeln mit 2 H₂O (aus Wasser oder Eisessig). Leicht löslich in Wasser und warmem Alkohol, unlöslich in Äther (O.). Wird durch schweflige Säure zu Oxykomenaminsäure reduziert (O.). — Färbt die Epidermis schmutzigviolett (O.).
- 2. 2.3.6-Trioxo-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4) $C_4H_4O_4N=$ $OC \cdot C(CO_2H) : CH$ OC-NH-CO
- 2.6-Dioxo-3-oximino-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4)(?) (Nitrosocitraxinsäure(?)) $C_0H_4O_5N_2= { HO\cdot N:C\cdot C(CO_2H):CH \over OC-NH-CO}$ (?) s. bei Citrazinsäure, S. 255.
- 2.6 Dioxo 3 phenylhydrasono 1.2.3.6 tetrahydro pyridin carbonsäure (4) (Bensolasocitrasinsäure) $C_{12}H_{0}O_{4}N_{3} = \frac{C_{6}H_{5}\cdot NH\cdot N:C\cdot C(CO_{2}H):CH}{OC-NH-CO}$ ist desmotrop mit 3-Benzolazo-2.6-dioxy-pyridin-carbonsaure-(4), Syst. No. 3448.
- 2. Oxo-carbonsăuren $C_7H_8O_8N$.
- 1. 4-Oxo-1.4-dihydro-pyridin-dicarbonsäure-(2.6), Pyridon-(4)-dicarbonsaure-(2.6) (Chelidamsaure) $C_7H_5O_4N = \frac{1}{HO_4C \cdot C \cdot NH \cdot C \cdot CO_4H}$ HC · CO · CH mit 4-Oxy-pyridin-dicarbonsaure-(2.6), S. 268.
- HC-CO-CH $\textbf{1-Methyl-pyridon-(4)-dicarbons\"{a}ure-(2.6)} \quad C_{\mathfrak{g}}H_{7}O_{\mathfrak{g}}N \ = \ \frac{1}{HO_{\mathfrak{g}}C\cdot C\cdot N(CH_{\mathfrak{g}})\cdot C\cdot CO_{\mathfrak{g}}H}.$ B. Aus Chelidonsäure (Bd. XVIII, S. 490) durch Erhitzen mit wäßr. Methylamin-Lösung im Rohr auf 100° (HAITINGER, LIEBEN, M. 6, 293). — Krystalle (aus Wasser). — Zerfällt beim Erhitzen auf 180° in N-Methyl-γ-pyridon und Kohlendioxyd. Liefert bei der Einw. von Bromwasser 1-Methyl-3.5-dibrom-pyridon-(4)-dicarbonsaure-(2.6). — Gibt mit waßr. Eisenchlorid-Lösung eine gelbe Färbung. — $C_0H_1O_0N + HCl$. Krystalle. Wird durch Wasser zerlegt.
- $\textbf{1-Phenyl-pyridon-(4)-dicarbons \"{a}ure-(2.6)} \quad C_{18}H_{9}O_{5}N = \frac{1}{HO_{2}C \cdot C \cdot N(C_{6}H_{5}) \cdot C \cdot CO_{2}H} \cdot C \cdot CO_{2}H \cdot C$ B. Durch Kochen von Chelidonsäure mit Anilin und Wasser (HAITINGER, LIEBEN, M. 6, 296). — Nadeln mit 1 H₂O (aus Wasser). — Liefert beim Erhitzen N-Phenyl-γ-pyridon. — Gibt mit Eisenchlorid eine gelbe Färbung.

- 1-Methyl-3.5-dibrom-pyridon-(4)-dicarbonsäure-(2.6) $C_8H_8O_5NBr_2=BrC-CO-CBr$ B. Aus 1-Methyl-pyridon-(4)-dicarbonsäure-(2.6) bei der Einw. von Bromwasser (Haitinger, Lieben, M. 6, 295). Zerfällt beim Erhitzen auf 170° in 1-Methyl-3.5-dibrom-pyridon-(4) und Kohlendioxyd.
- 2. 2.5.6 Trioxo 4 methyl 1.2.5.6 tetrahydro-pyridin-carbonsäure-(3), a.a'. β' Trioxo N.a.a'. β' tetrahydro γ picolin β carbonsäure $C_7H_5O_5N=OC\cdot C(CH_2):C\cdot CO_2H$ OC-NH-CO
- 2.6 Dioxo 5 oximino 4 methyl 1.2.5.6 tetrahydro-pyridin-carbonsäure-(3)-äthylester $C_9H_{10}O_5N_2= {{\rm HO\cdot N:C\cdot C(CH_3):C\cdot CO_2\cdot C_2H_5} \over {{\rm OC-NH-CO}}}$. B. Aus 2.6-Dioxy-4-methyl-pyridin-carbonsäure-(3)-äthylester bei der Einw. von Natriumnitrit in Essigsäure (Rogerson, Thorpe, Soc. 87, 1688). Gelbe Nadeln (aus Alkohol). F: 160° (Zers.). Löslich in Soda-Lösung mit violettroter Farbe. Gibt mit Ferrosulfat in neutraler Lösung eine grünblaue Färbung. Natriumsalz. Grüne Tafeln.
- 3. 4-Oxo-1.4-dihydro-pyridin-dicarbonsäure-(3.5), Pyridon-(4)-dicarbonsäure-(3.5) $C_7H_5O_5N = \frac{HO_2C \cdot C \cdot CO \cdot C \cdot CO_2H}{HC \cdot NH \cdot CH}$ ist desmotrop mit 4-Oxy-pyridin-dicarbonsäure-(3.5), S. 269.
- 4. Pyrrol-carbonsäure-(2)-oxalylsäure-(5), Pyrrol-α-carbonsäure-α'-oxalylsäure, [5-Carboxy-pyrryl-(2)]-glyoxylsäure C₇H₅O₅N =
 HC——CH

 HO₂C·CO·C·NH·C·CO₃H

 B. Aus 2.5-Diacetyl-pyrrol oder 5-Acetyl-pyrrol-carbonsäure-(2) durch Oxydation mit alkal. Permanganat-Lösung (CIAMICIAN, SILBER, B. 19, 1957, 1961; G. 16, 374, 379). Krystalle. Leicht löslich in Methanol, Alkohol, Äther und heißem Wasser, fast unlöslich in Benzol, Petroläther und Chloroform. Liefert bei der Kalischmelze Pyrroldicarbonsäure-(2.5). Ag₂C₇H₃O₅N. Gelber Niederschlag.
- Dimethylester $C_9H_9O_8N=\frac{HC_--CH}{CH_3\cdot O_9C\cdot CO\cdot C\cdot NH\cdot C\cdot CO_9\cdot CH_3}$. B. Aus dem Silbersalz der Pyrrol-carbonsäure-(2)-oxalylsäure-(5) durch Erhitzen mit Methyljodid in Äther (Ciamician, Silber, B. 19, 1958, 1961; G. 16, 375, 380). Nadeln (aus Wasser). F: 144—145°. Ziemlich leicht löslich in heißem Alkohol, schwer in Äther. Löslich in Benzol bei 22° zu $0.63^{\circ}/_{0}$.
- 3. 6-0xo-2-methyl-1.6-dihydro-pyridin-dicarbonsäure-(3.5), α' -0xo-N. α' -dihydro- α -picolin- β . β' -dicarbonsäure, 2-Methyl-pyridon-(6)-dicarbonsäure-(3.5) $C_8H_7O_5N = \frac{HO_2C \cdot C : CH \cdot C \cdot CO_2H}{OC \cdot NH \cdot C \cdot CH_3}$ ist desmotrop mit 6-0xy-2-methyl-pyridin-dicarbonsäure-(3.5), S. 269.
- 4. 0xo-carbonsauren $C_9H_9O_5N$.
- 1. 4-Oxo-2.6-dimethyl-1.4-dihydro-pyridin-dicarbonsäure-(3.5), γ -Oxo-N. γ -dihydro- α . α '-lutidin- β . β '-dicarbonsäure, 2.6-Dimethyl-pyridon-(4)-dicarbonsäure-(3.5) $C_9H_9O_9N = {HO_2C \cdot C \cdot CO \cdot C \cdot CO_2H \over CH_3 \cdot C \cdot NH \cdot C \cdot CH_3}$ ist desmotrop mit 4-Oxy-2.6-dimethyl-pyridin-dicarbonsäure-(3.5), S. 270.

- 1.2.6 Trimethyl pyridon (4) dicarbonsäure (3.5) $C_{10}H_{11}O_5N =$
- $HO_2C \cdot C CO C \cdot CO_2H$. B. Der Diäthylester entsteht aus 2.6-Dimethyl-pyron-(4)-dicarbon-CH₃·C·N(CH₃)·C·CH₃
 saure-(3.5)-diathylester (Bd. XVIII, S. 494) durch Erhitzen mit Methylamin in Eisessig; man erhält die freie Säure durch Erhitzen des Diäthylesters mit konzentrierter alkoholischer Natronlauge (Conrad, Guthzeit, B. 19, 25; 20, 159; C., Eckhardt, B. 22, 80). — Prismen (aus Wasser). Schmilzt bei 245° unter Zerfall in 1.2.6-Trimethyl-pyridon-(4) und Kohlendioxyd (C., E.).
- 1.2.6 Trimethyl pyridon (4) dicarbonsäure (3.5) diäthylester $C_{14}H_{19}O_8N=$ $C_2H_5 \cdot O_3C \cdot C - CO - C \cdot CO_2 \cdot C_2H_5$. B. s. o. bei der Säure. — Nadeln. F: 193° (Conrad, $CH_{\bullet} \cdot \ddot{C} \cdot N(CH_{\bullet}) \cdot \ddot{C} \cdot CH_{\bullet}$ GUTHZEIT, B. 19, 25). Schwer löslich in kaltem Wasser, leichter in heißem Wasser und heißem Alkohol.
- 1 Phenyl 2.6 dimethyl pyridon (4) dicarbonsäure (3.5) $C_{15}H_{12}O_5N =$ $HO_{\bullet}C \cdot C - CO - C \cdot CO_{\bullet}H$. B. 1 - Phenyl -2.6 - dimethyl - pyridon -(4) - dicarbonsaure - (3.5) - di- $CH_3 \cdot C \cdot N(C_6H_5) \cdot C \cdot CH_3$ athylester entsteht aus 2.6-Dimethyl-pyron-(4)-dicarbonsaure-(3.5)-diathylester durch Kochen mit Anilin in Eisessig; man erhält die Säure durch Erhitzen des Diäthylesters mit konzentrierter alkoholischer Kalilauge (Conrad, Guthzeit, B. 19, 25; 20, 160). — Nadeln oder Prismen (aus Alkohol). F: 227° (Zers.). Schwer löslich in Äther, Benzol und Wasser. — Geht beim Erhitzen auf den Schmelzpunkt unter Kohlendioxyd-Abspaltung in 1-Phenyl-2.6-dimethyl-pyridon-(4)-carbonsäure-(3) über; beim Erhitzen auf 270° erhält man 1-Phenyl-2.6-dimethyl-pyridon-(4). — Ba(C₁₈H₁₂O₈N)₂ + aq. Krystalle. Leicht löslich in Wasser.
- 1-Phenyl-2.6-dimethyl-pyridon-(4)-dicarbonsäure-(8.5)-diäthylester $C_{19}H_{11}O_{5}N=$ $C_2H_5 \cdot O_2C \cdot C$ —CO— $C \cdot CO_2 \cdot C_2H_5$. B. s. o. bei der Säure. — Krystalle (aus Benzol). F: 170° $CH_3 \cdot \ddot{C} \cdot N(C_6H_5) \cdot \ddot{C} \cdot CH_3$ bis 171° (CONRAD, GUTHZEIT, B. 19, 26). Leicht löslich in Alkohol und siedendem Benzol, schwer in Äther und heißem Wasser. Leicht löslich in konz. Säuren. — 2C19H21O5N+ 2HCl+PtCl. Orangegelber, krystallinischer Niederschlag. F: ca. 120°.
- 1-Acetyl-2.6-dimethyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester $\mathrm{C_{1k}H_{10}O_{6}N}$ = $CH_3 \cdot \ddot{C} \cdot N(CO \cdot CH_3) \cdot \ddot{C} \cdot CH_3$ (3.5)-diathylester durch Erhitzen mit Essigsäureanhydrid auf 140—150° (CONRAD, GUTHZEIT, B. 20, 155). — Krystalle. F: 65°. Leicht löslich in Äther und in siedendem Alkohol.
- 2.6 Dimethyl pyridon-(4) [dicarbonsäure-(3.5) diäthylester] [carbonsäure-(1) -Eine Verbindung. CH, · C·N(CO·NH·NH,)·C·CH, der vielleicht diese Konstitution zukommt, s. Bd. XVIII, S. 494.
- 1 Oxy 2.6 dimethyl pyridon (4) dicarbonsäure (8.5) $C_0H_0O_6N =$ $HO_{\bullet}C \cdot C - CO - C \cdot CO_{\bullet}H$. B. Aus 1-Benzyloxy-2.6-dimethyl-pyridon-(4)-dicarbonsaure-(3.5)-CH, C.N(OH) C.CH, diathylester durch Kochen mit verd. Salzsaure (Palazzo, G. 36 I, 600; R. A. L. [5] 14 II, 160). — Krystalle (aus Alkohol). F: 245° (Zers.). — Liefert bei der Reduktion mit Zinn und Salzsaure 4 Oxy-2.6-dimethyl-pyridin-dicarbonsaure-(3.5). — Gibt mit Eisenchlorid eine rote
- 1 Bensyloxy 2.6 dimethyl pyridon (4) dicarbonsaure (3.5) diathylester $C_{20}H_{22}O_{6}N = C_{2}H_{5} \cdot O_{2}C \cdot C - CO_{2} \cdot C_{2}H_{5}$ B. Aus 2.6-Dimethyl-pyron-(4)- $C_{30}H_{32}O_6N = CH_3 \cdot C \cdot N(O \cdot CH_3 \cdot C_6H_5) \cdot C \cdot CH_3$ dicarbonsāure-(3.5)-diāthylester durch Erhitzen mit O-Benzyl-hydroxylamin in Essigsäure auf 70—80° (Palazzo, G. 36 I, 599; R. A. L. [5] 14 II, 159). — Nadeln (aus Essigester). F: 138°.
- $CH_2 \cdot \tilde{C} \cdot N(C_6H_5) \cdot \tilde{C} \cdot CH_3$ dicarbonsaure-(3.5)-diathylester beim Erwarmen mit Anilin in Eisessig (GUTHZEIT, EPSTEIN,

B. 20, 2112). Aus 1-Phenyl-2.6-dimethyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester durch Erhitzen mit Phosphorpentasulfid auf 140—150° (G., E.). — Gelbe Nadeln (aus Alkohol). F: 245—246°.

4-Oxim der Tropandion-(3.4)-oxalylsäure-(2), 4-Oximino-tropinon-oxalylsäure-(2), "Isonitrosotropinonoxalsäure" $C_{10}H_{12}O_5N_2$, Formel II. B. Aus Tropanon-(3)-oxalylsäure-(2)-äthylester (S. 334) durch Einw. von Isoamylnitrit und Chlorwasserstoff in Eisessig und Behandeln des Reaktionsprodukts mit Wasser (WILLSTÄTTER, B. 30, 2713). — Gelbe Krystalle. Sehr schwer löslich in Wasser, unlöslich in Alkohol. Löslich in Alkalilauge mit gelber Farbe.

c) Oxo-carbonsäuren $C_n H_{2n-11} O_5 N$.

 $\alpha\text{-}[8\text{-}Imino\text{-}5\text{-}methyl\text{-}4\text{-}acetyl\text{-}pyrroleninyl\text{-}(2)]\text{-}acetessigsäure\text{-}äthylester}\\ HN:C---C\cdot CO\cdot CH_3\\ C_{13}H_{16}O_4N_2 = H_5\cdot O_2C\cdot CH(CO\cdot CH_3)\cdot C:N\cdot C\cdot CH_3\\ C_3H_5\cdot O_2C\cdot CH(CO\cdot CH_3)\cdot C:N\cdot C\cdot CH_3\\ (Bd. III, S. 827) und Acetessigester in Alkohol bei Gegenwart von Natriumäthylat (Traube, B. 31, 2945; A. 332, 113). — Krystalle (aus Wasser). F: 153--158°.$

d) Oxo-carbonsäuren $C_n H_{2n-13} O_5 N$.

 $\begin{array}{lll} 5\text{-}0\text{-}x\text{o-}3\text{-}phenyl\text{-}pyrrolidin-dicarbons}\\ \text{lidon-(5)-dicarbons}\\ \text{aure-(2.2)} & \text{$C_{18}H_{11}O_{5}N$} = & \frac{H_{2}C - CH \cdot C_{6}H_{5}}{OC \cdot NH \cdot C(CO_{2}H)_{2}}. \end{array}$

1.3 - Diphenyl - pyrrolidon - (5) - dicarbonsäure - (2.2) $C_{18}H_{18}O_5N =$

H₂C———CH·C₆H₅
OC·N(C₆H₅)·C(CO₂H)₂
bezw. -diāthylester beim Erwärmen mit Zimtsäure-methylester bezw. -āthylester bei Gegenwart von Natriummethylat-Lösung bezw. Natriumäthylat-Lösung; man erhält die freie Säure durch Verseifen mit heißer konzentrierter Natronlauge (Conrad, Reinbach, B. 35, 519, 520). — Prismen (aus Alkohol). F: 178° (Zers.). Leicht löslich in heißem Eisessig, schwer in Äther und Benzol. — Geht beim Erhitzen auf 180° unter Kohlendioxyd-Abspaltung in 1.3-Diphenyl-pyrrolidon-(5)-carbonsäure-(2) über.

Dimethylester $C_{20}H_{10}O_5N=C_6H_5\cdot NC_4H_2(:O)(C_6H_5)(CO_2\cdot CH_2)_2$. Prismen. F: 130° (C., R.).

Diäthylester $C_{22}H_{22}O_5N=C_6H_5\cdot NC_4H_2(:0)(C_6H_5)(CO_2\cdot C_2H_5)_2$. Krystalle (aus Äther oder verd. Alkohol). F: 99° (C., R.).

e) Oxo-carbonsauren $C_n H_{2n-15} O_5 N$.

1. [2-0xo-indolinyliden-(3)]-malonsāure, 3-Dicarb-oxymethylen-oxindol, Mesoxalsāure-isoindogenid $C_{11}H_{17}O_{2}N$, s. nebenstehende Formel.

Dinitril, 8-Dicyanmethylen-oxindol, "Isatomalonitril" $C_{11}H_5ON_3 =$ CaHa C[:C(CN)2] CO 1). B. Aus Isatin und Malonitril in Alkohol (WALTER, B. 35, 1321). Hellrote Nädelchen. F: 235°. Ziemlich leicht löslich in heißem Alkohol und siedendem Wasser mit dunkelroter, leicht in Eisessig, schwer in Äther und Benzol mit gelbröter Farbe. Leicht löslich in Schwefelsäure mit braunroter Farbe. Natronlauge färbt zunächst blau und löst dann mit gelber Farbe.

2. 6-0xo-2-methyl-4-phenyl-1.4.5.6-tetrahydro-pyridin-dicarbonsaure-(3.5), α' -0xo- γ -phenyl-N. γ . α' . β' -tetrahydro- α -picolin- β . β' -dicar-

bonsäure $C_{14}H_{13}O_5N = HO_2C \cdot HC \cdot CH(C_6H_5) \cdot C \cdot CO_2H$ $\begin{array}{c} OC \longrightarrow NH \longrightarrow C \cdot CH_3 \\ OC \longrightarrow NH \longrightarrow C \cdot CH_3 \end{array}$ Diäthylester $C_{18}H_{21}O_5N = C_{2}H_5 \cdot O_2C \cdot HC \cdot CH(C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5 \\ OC \longrightarrow NH \longrightarrow C \cdot CH_2 \end{array}$ hitzen von Benzalmalonester mit $\beta \cdot A$ mino - crotonsäure- äthylester bei 40 mm Druck auf 130—150° (Knoevenagel, Fries, $\beta \cdot B$. 31, 762; K., Brunswig, $\beta \cdot B$. 35, 2176). — Krystalle (aug Alkoho) F: 149 5—150° Schr leight löglich in Chlomform löglich in Benzel und Figessig. (aus Alkohol). F: 149,5—150°. Sehr leicht löslich in Chloroform, löslich in Benzol und Eisessig, schwer löslich in kaltem Alkohol, Äther und Ligroin. — Liefert beim Erhitzen mit Salzsäure im allgemeinen nur β -Phenyl- γ -acetyl-buttersäure; beim Erhitzen mit $20^{\circ}/_{\circ}$ iger Salzsäure auf 100° entstand in einem Fall etwas 4.5.7-Trioxy-2-methyl-chinolin-carbonsaure-(3 oder 6)-athylester (K., F.; K., B., B. 85, 2176, 2178). Bei kurzem Kochen mit 8% iger Natronlauge erhalt man 6-Oxo-2-methyl-4-phenyl-1.4.5.6-tetrahydro-pyridin-carbonsaure-(3) (K., B.). Beim Erhitzen mit β -Amino-crotonsäure-äthylester bei 40 mm Druck auf 150—170° entsteht die nachfolgende Verbindung.

6-Oxo-2-methyl-4-phenyl-1.4.5.6-tetrahydro-pyridin-dicarbonsäure-(8.5)äthylester - (8) - [α - methyl - β - carb thoxy - vinylamid] - (5) $C_{22}H_{24}O_{6}N_{2}$ = athylester - (a) - [u - mom_3 - p - $C \cdot CH(C_6H_5) \cdot C \cdot CO_2 \cdot C_2H_5$. B. Durch Erhitzen von Benzal-OC-NH-CCH,

malonester mit β-Amino-crotonsaure-athylester bei 40 mm Druck zuerst auf 130-150°, dann auf 150-1760 (Knoevenagel, Fries, B. 31, 764). Aus 6-Oxo-2-methyl-4-phenyl-1.4.5.8-tetrahydro-pyridin-dicarbonsāure-(3.5)-diāthylester durch Erhitzen mit β -Amino-crotonsāure-āthylester bei 40 mm Druck auf 150—170° (K., F.). — Krystalle (aus Alkohol). F: 179—180°. — Liefert beim Erhitzen mit 20°/eiger Salzsaure je nach den Reaktionsbedingungen β-Phenyl-y-acetyl-buttersäure oder eine stickstoffhaltige bei 217-219° schmelzende Verbindung, die in siedendem verdünntem Alkali leicht löslich ist (K., F.; K., Brunswig, **B. 85**, 2175).

3. 6-0xo-2-methyl-4-[4-isopropyl-phenyl]-1.4.5.6-tetrahydro-pyridindicarbonsaure - (3.5), α' - 0xo - γ - [4 - isopropyl - phenyl] - N. γ . α' . β' - tetra hydro- α -picolin- $\beta.\beta'$ -dicarbonsaure $C_{17}H_{19}O_5N =$

 $HO_2C \cdot HC \cdot CH[C_4H_4 \cdot CH(CH_3)_2] \cdot C \cdot CO_2H$

6-Oxo-2-methyl-4-[4-isopropyl-phenyl]-1.4.5.6-tetrahydro-pyridin-dicarbonsaure - (3.5) - athylester - (3) - [α - methyl - β - carbathoxy-vinylamid] - (5) $C_{35}H_{32}O_6N_2=$ saure - (3.5) - athly leaver - (5) - [$C_8H_8 \cdot CH(CH_8)_8$] $\cdot C \cdot CO_8 \cdot C_2H_8$. B. Durch Erhitzen OC___NH___C·CH₃

von 1 Mol Cuminalmalonsäurediäthylester mit 2 Mol β -Amino-crotonsäure-äthylester bei 30—50 mm Druck auf 140—155° (Knoevenagel, Brunswig, B. 35, 2173). — Krystalle (aus Alkohol). F: 172°. Leicht löslich in heißem Chloroform, löslich in heißem Alkohol, schwer löslich in Eisessig, Benzol und Äther. — Liefert beim Erhitzen mit 20% eiger Salzsäure im Rohr auf 110—120° oder beim Kochen mit Essigsäureanhydrid und Natriumacetat 6-Oxo- $\textbf{2-methyl-4-[4-isopropyl-phenyl]-1.4.5.6-tetra hydro-pyridin-carbons \"{a}ure-(3)- \"{a}thy lester.}$

¹⁾ Diese Formel ist vermutlich vor der vom Autor gegebenen C₆H₄<\frac{CO}{NH}>C: C(CN)₈ zu bevorzugen.

f) Oxo-carbonsäuren C_nH_{2n-19}O₅N.

1. Oxo-carbonsäuren $C_{13}H_7O_5N$.

- 1. 2.4.7 Trioxo 4.7 dihydro 5.6 benzo indolin carbonsäure (3), 5.6 Benzo oxindolchinon (4.7) carbonsäure (3) $C_{13}H_7O_8N$, Formel I, bezw. desmotrope Formen.
- 1- $\ddot{\text{A}}$ thyl-5.6-benzo-oxindolchinon-(4.7)-carbonsäure-(3)- $\ddot{\text{A}}$ thylester $C_{17}H_{15}O_5N$, Formel II. B. Aus 3-Chlor- oder 3-Brom-naphthochinon-(1.4)-malonsäure-(2)-di $\ddot{\text{A}}$ thylester

I.
$$\begin{array}{c} O \\ CH \cdot CO_2H \\ O \\ O \\ \end{array}$$
 II.
$$\begin{array}{c} O \\ CH \cdot CO_2 \cdot C_2H_5 \\ O \\ C_2H_5 \\ \end{array}$$

und Äthylamin in verd. Alkohol bei Zimmertemperatur (LIEBERMANN, B. 32, 919). — Gelbe Nadeln (aus Alkohol). F: 195° (Zers.). — Liefert beim Kochen mit verd. Natronlauge 1-Äthyl-5.6-benzo-oxindolchinon-(4.7) (Bd. XXI, S. 569) (L., B. 33, 569). — Löslich in Alkalicarbonat-Lösung, Alkalilaugen und Ammoniak mit blauer Farbe (L., B. 32, 919). Färbt mit Tonerde gebeizte Faser gelb (L., B. 32, 919). — Na $C_{17}H_{14}O_5N$ (bei 110°). Dunkelblaue Nadeln (L., B. 33, 568). — $Cu(C_{17}H_{14}O_5N)_2$. Rote Krystalle. — Verbindung mit Äthylamin $C_2H_7N + C_{17}H_{15}O_5N$. Stahlblaue Prismen. Löslich in Wasser mit blauer Farbe, unlöslich in Alkohol.

- 1 p Tolyl 5.6 benzo oxindolchinon (4.7) Oxindolchinon Oxindolchinon (4.7) Oxindolchinon -
- 1 Benzyl 5.6 benzo oxindolchinon (4.7) carbon-säure-(3)-äthylester C₂₂H₁₇O₅N, s. nebenstehende Formel. B. Entsteht als Benzylaminsalz aus 3-Brom-naphthochinon-(1.4)-malonsäure-(2)-diāthylester und Benzylamin (Liebermann, B. 33, 570). Gelbe Nadeln (aus Alkohol). Färbt sich bei ca. 160° dunkel. Liefert beim Kochen mit verd. Natronlauge 1-Benzyl-5.6-benzo-oxindolchinon-(4.7) (Bd. XXI, S. 569). Färbt die Faser auf Aluminiumbeize orange, auf Eisenbeize braun.
- 2. 2.6.7 Trioxo 6.7 dihydro 4.5 benzo indolin carbonsäure (3), 4.5-Benzo oxindolchinon (6.7) carbonsäure (3) $C_{13}H_7O_8N$, Formel III, bezw. desmotrope Formen.

III.
$$\begin{array}{c|c}
CH \cdot CO_2H \\
\hline
O: & NH \cdot CO
\end{array}$$

$$\begin{array}{c|c}
CH \cdot CO_2 \cdot C_2H_5 \\
\hline
O: & CO \cdot CH_5
\end{array}$$

1-Acetyl-4.5-benzo-oxindolchinon-(6.7)-carbonsäure-(3)-äthylester $C_{17}H_{13}O_6N$, Formel IV, ist desmotrop mit 1-Acetyl-7-oxy-2.6-dioxo-2.6-dihydro-4.5-benzo-indol-carbonsäure-(3)-äthylester, S. 379.

2. 3-[4-Carboxy-benzoyl]-picolinsäure C₁₄H₂O₅N. s. nebenstehende Formel. B. Aus 3-p-Toluyl-pyridin-carbonsäure-(2) (S. 320)
bei der Oxydation mit 2 Mol Permanganat in alkal. Lösung bei 30—40° (FULDA, M. 21,
984). — Krystalle mit 1 H₂O (aus Wasser). Leicht löslich in Alkohol, schwerer in Wasser.
— Geht beim Erhitzen auf 100—210° unter Kohlendioxyd-Abspaltung in 3-[4-Carboxybenzoyl]-pyridin über. — CdC₁₄H₇O₅N. Sehr schwer löslich in Wasser.

Dimethylester $C_{16}H_{13}O_5N = NC_5H_3(CO_3 \cdot CH_3) \cdot CO \cdot C_6H_4 \cdot CO_3 \cdot CH_3$. B. Aus 3-[4-Carboxy-benzoyl]-pyridin-carbonsäure-(2) durch Erhitzen mit methylalkoholischer Schwefelsäure (Fulda, M. 21, 986). — Nadeln (aus Methanol). F: 110—111°. Sehr leicht löslich in Alkohol und Äther.

g) Oxo-carbonsäuren $C_n H_{2n-21} O_5 N$.

1. Oxo-carbonsäuren $C_{14}H_7O_5N$.

1. 3' - Oxo - [indeno - 1'.2':2.3 - pyridin] - dicarbon - säure - (4.6)¹), 2.3(CO) - Benzoylen - pyridin - dicarbon-säure - (4.6), 5(CO).6 - Benzoylen - lutidinsäure, α-Phenylenpyridinketondicarbonsäure C₁₄H₇O₅N, s. nebenstehende

Formel. B. Aus 2-Styryl-7.8-benzo-chinolin-carbonsäure-(4) oder aus 7.8-Benzo-chinolindicarbonsäure-(2.4) durch Oxydation mit alkal. Permanganat-Lösung in der Wärme (Doebner, Peters, B. 23, 1236). — Gelbe Nadeln (aus Wasser). F: 264°. Löslich in heißem Wasser und Eisessig, schwer löslich in kaltem Wasser, Äther, Alkohol, Benzol, Chloroform und Petroläther. Löslich in Alkalien mit rotgelber Farbe. — Geht bei der Destillation unter Kohlendioxyd-Abspaltung in 2.3(CO)-Benzoylen-pyridin über. — Ag₂C₁₄H₅O₅N. Gelblicher Niederschlag.

2. 3' - Oxo - [indeno - 2'.1':2.3 - pyridin] - dicarbon - säure-(4.6)¹), 2(CO).3 - Benzoylen - pyridin - dicarbon - säure-(4.6), 5.6(CO) - Benzoylenlutidinsäure, β - Phenylen-pyridinketondicarbonsäure C₁₄H₇O₈N, s. nebenstehende Formel.

B. Aus 2-Styryl-5.6-benzo-chinolin-carbonsäure-(4) oder aus 5.6-Benzo-chinolin-dicarbonsäure-(2.4) durch Oxydation mit alkal. Permanganat-Lösung in der Wärme (Doebner, Peters, B. 23, 1241).—Gelbe, sehr hygroskopische Nadeln (aus Wasser oder Alkohol). F: 284°. Leicht löslich in Eisessig und Aceton, schwer in kaltem Wasser und kaltem Alkohol sowie in Äther, Benzol, Chloroform und Petroläther. — Geht beim Erhitzen über den Schmelzpunkt unter Kohlendioxyd-Abspaltung in 2(CO).3-Benzoylen-pyridin über. — Ag₂C₁₄H₅O₅N. Fast unlöslich in Wasser.

$\begin{array}{ll} \textbf{2. 4-0xo-2.6-diphenyl-piperidin-dicarbons\"{a}ure-(3.5),} & \textbf{2.6-Diphenyl-piperidon-(4)-dicarbons\~{a}ure-(3.5)} & \textbf{C}_{19}\textbf{H}_{17}\textbf{O}_{5}\textbf{N} = \\ & \frac{\textbf{HO}_{2}\textbf{C}\cdot\textbf{HC}\cdot\textbf{CO}\cdot\textbf{CH}\cdot\textbf{CO}_{2}\textbf{H}}{\textbf{C}_{6}\textbf{H}_{5}\cdot\textbf{HC}\cdot\textbf{NH}\cdot\textbf{C}_{H}\cdot\textbf{C}_{6}\textbf{H}_{5}} & . \end{array}$

2.6 - Diphenyl - piperidon - (4) - dicarbonsäure - (8.5) - dimethylester $C_{21}H_{21}O_5N = CH_3 \cdot O_2C \cdot HC \cdot CO \cdot CH \cdot CO_2 \cdot CH_3$

C₆H₅·HC·NH·CH·C₆H₅

B. Durch Sättigen eines Gemisches von AcetondicarbonSäuredimethylester und Benzaldehyd mit Ammoniak unter Eiskühlung (РЕТВЕНКО-КВІТSCHENKO, ZONEW, Ж. 38, 551; B. 39, 1358). — Krystalle (aus Alkohol oder Alkohol +
Chloroform). F: 144—148° (P.-K., Z.). Leicht löslich in Chloroform und Benzol, schwer
in kaltem Alkohol, unlöslich in Wasser (P.-K., Z.). Löslich in verd. Säuren (P.-K., Petrbow,
B. 41, 1695). Ziemlich leicht löslich in konz. Schwefelsäure (P.-K., Z.). Durch Fällen einer
Benzol-Lösung mit Säuren erhält man in Wasser unlösliche Salze (P.-K., P.). — C₂₁H₂₁O₅N
+HCl (P.-K., Z.). — C₂₁H₂₁O₅N + HNO₂. Zur Konstitution vgl. P.-K., P., B. 41, 1692.
Krystalle. F: 148—149° (P.-K., Z.). Schwer löslich in kaltem, leichter in heißem Alkohol
(P.-K., Z.). — 2C₂₁H₂₁O₅N + 2 HCl + PtCl₄. Orangefarbene Krystalle. Schwer löslich in
Wasser (P.-K., P.).

2.6 - Diphenyl - piperidon - (4) - dicarbonsäure - (3.5) - diäthylester $C_{23}H_{25}O_5N=C_2H_4\cdot O_2C\cdot HC\cdot CO\cdot CH\cdot CO_2\cdot C_2H_5$. B. Durch Sättigen eines Gemisches von 2 Mol Benzaldehyd

C₈H₅·HĊ·NH·ĊH·C₆H₅
und 1 Mol Acetondicarbonsäurediäthylester mit Ammoniak unter Eiskühlung (Petrenko-Kritschenko, Zonew, Ж. 38, 552; B. 39, 1359). — F: 116—119° (P.-K., Z.). Leicht löslich in Chloroform, Benzol und heißem Alkohol (P.-K., Z.). — Liefert bei der Oxydation mit heißer Chromessigsäure 4-Oxy-2.6-diphenyl-pyridin-dicarbonsäure-(3.5)-diäthylester (P.-K., Petrow, B. 41, 1693). — Gibt mit Eisenchlorid eine rote Färbung (P.-K., Z.). — KC₂₃H₂₄O₅N. Liefert beim Kochen mit Wasser den freien Ester (P.-K., Z.). — C₂₃H₂₅O₅N + HCl (P.-K., Z.). Unlöslich in Wasser; über eine in Wasser lösliche Form vgl. P.-K., P., B. 41, 1695. — C₂₃H₂₅O₅N + HNO₂. Zur Konstitution vgl. P.-K., Petrow, B. 41, 1692. Krystalle. F: 147° bis 150°; ziemlich schwer löslich in Alkohol (P.-K., Z.). — C₂₃H₂₅O₅N + HNO₃. Krystalle (aus Alkohol). F: 154—157° (P.-K., P.). — 2C₂₃H₂₅O₅N + 2 HCl + PtCl₄. Unlöslich in Wasser (P.-K., P.).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

- 1 Methyl 2.6 diphenyl piperidon (4) dicarbonsäure (8.5) diäthylester $C_2H_5 \cdot O_2C \cdot HC CO CH \cdot CO_2 \cdot C_2H_5$ $C_{24}H_{27}O_5N = C_2H_5 \cdot O_2C \cdot HC CO CH \cdot CO_2 \cdot C_2H_5$
- C₈H₅·HC·N(CH₃)·CH·C₆H₅
 a) Niedrigerschmelzende Form. B. Aus Acetondicarbonsäurediäthylester, Benzaldehyd und Methylamin in der Kälte, neben der höherschmelzenden Form (Petrenko-Kritschenko, Lewin, B. 40, 2884; P.-K., B. 42, 3684). Aus 2.6-Diphenyl-piperidon-(4)-dicarbonsäure-(3.5)-diäthylester durch Einw. von Methyljodid (P.-K., L.). Krystalle. F: 85—86° (P.-K., L.). Leicht löslich in Benzol und Chloroform, ziemlich leicht in heißem Alkohol, unlöslich in Wasser (P.-K., L.). Das Hydrochlorid liefert bei der Oxydation mit heißer Chromessigsäure 1-Methyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester (P.-K.). Gibt mit alkoh. Eisenchlorid-Lösung eine rote Färbung (P.-K., L.). C₂₄H₂₇O₅N + HCl. Krystalle (aus Chloroform + Ligroin). F: 195—200° (P.-K., L.). Leicht löslich in heißem Chloroform, schwer in heißem Alkohol, unlöslich in Benzol und Wasser (P.-K., L.). Über ein in Wasser lösliches Hydrochlorid vgl. P.-K. C₂₄H₂₇O₅N + HNO₃. F: 137—139° (P.-K.). Schwer löslich in Wasser (P.-K.).
- b) Höherschmelzende Form. B. s. o. bei der niedrigerschmelzenden Form. Krystalle. F: 138° (Petrenko-Kritschenko, B. 42, 3685). Leicht löslich in heißem Alkohol, löslich in Benzol, unlöslich in Wasser. Das Hydrochlorid liefert bei der Oxydation mit heißer Chromessigsäure 1-Methyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester. Gibt mit alkoh. Eisenchlorid-Lösung eine rote Färbung. Hydrochlorid. F: ca. 153°. Löslich in Alkohol, Benzol und heißer Essigsäure, unlöslich in Wasser. Über ein in Wasser lösliches Hydrochlorid vgl. P.-K. C24H27O2N+HNO2. Krystalle (aus Alkohol). F: 108° (Zers.).
- 1 Äthyl 2.6 diphenyl piperidon (4) dicarbonsäure (8.5) diäthylester $C_{25}H_{25}O_5N=C_2H_5\cdot O_2C\cdot HC$ —CO— $CH\cdot CO_2\cdot C_2H_5$.
- C₂₆H₅·HC·N(C₂H₅)·CH·C₆H₅
 a) Niedrigerschmelzende Form. B. Bei der Einw. von Äthylamin-Dampf auf ein abgekühltes Gemisch von Acetondicarbonsäurediäthylester und Benzaldehyd (Ретремко-Критеснемко, B. 42, 3689). Neben Benzal-bis-acetondicarbonsäureester (Bd. X, S. 1052) aus Benzaläthylamin und Acetondicarbonsäurediäthylester in Alkohol (P.-K.). Krystalle. F: 92°. Das Hydrochlorid liefert bei der Oxydation mit heißer Chromessigsäure 1-Äthyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester. Hydrochlorid. Krystalle (aus Chloroform + Ligroin). F: 179—181°. Leicht löslich in Chloroform, schwer in Benzol und Alkohol, unlöslich in Wasser, Äther und Ligroin.
- b) Höherschmelzende Form. B. Bei Zusatz von flüssigem Äthylamin zu einem Gemisch von Benzaldehyd und Acetondicarbonsäurediäthylester (Petrenko-Kritschenko, B. 42, 3689). Aus Benzaläthylamin und Acetondicarbonsäurediäthylester in Benzol (P.-K.). Krystalle (aus Alkohol). F: 137—140°. Unlöslich in Wasser. Das Hydrochlorid liefert bei der Oxydation mit heißer Chromessigsäure 1-Äthyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester. Hydrochlorid. F: 152—153°. Unlöslich in Wasser und Benzol. C₂₅H₂₉O₅N + HNO₂. Krystalle (aus Alkohol). F: 118—120°. 2C₂₅H₂₉O₅N + 2HCl + PtCl₄.
- 1.2.6 Triphenyl piperidon (4) dicarbonsäure (8.5) diäthylester $C_{29}H_{29}O_5N=C_2H_5\cdot O_2C\cdot HC$ —CO— $CH\cdot CO_2\cdot C_2H_5$. B. Durch Kondensation von 1 Mol Acetondicarbon-
- C_eH₅·HC·N(C_eH₅)·CH·C_eH₅
 säurediäthylester mit 2 Mol Benzalanilin oder mit 1 Mol Benzalanilin und 1 Mol Benzaldehyd
 in Alkohol (MAYER, Bl. [3] 33, 499). Blättchen (aus Benzol). F: 124° (M.). Leicht löslich
 in Benzol und Äther, ziemlich sel wer in siedendem Alkohol (M.). C₂₉H₂₉O₅N+HCl.
 F: 145° (Zers.) (Petrenko-Keitschenko, B. 42, 3693). Unlöslich in Wasser und Benzol,
 schwer in Alkohol.

h) Oxo-carbonsăuren $C_n H_{2n-23} O_5 N$.

2-[1.4-Dioxe-1.2.3.4-tetrahydro-isochinelin-carboyl-(3)]-benzoesäure, 1.4-Dioxe-3-[2-carboxy-benzoyl]-1.2.3.4-tetrahydro-isochinelin $C_{17}H_{11}O_{4}N$, s. nebenstehende Formel, ist desmotrop mit 1.4-Dioxy-3-[2-carboxy-benzoyl]-isochinelin, S. 379.

i) Oxo-carbonsäuren $C_n H_{2n-25} O_5 N$.

4-0xo-2.6-diphonyl-1.4-dihydro-pyridin-dicarbonsäuro-(3.5), 2.6-Diphenyl-pyridon-(4)-dicarbonsaure-(3.5) $C_{10}H_{13}O_{5}N = \frac{HU_{1}U \cdot U \cdot U \cdot U \cdot U \cdot U}{C_{0}H_{5} \cdot U \cdot NH \cdot U \cdot C \cdot C_{0}H_{5}}$ $HO_{\bullet}C \cdot C \cdot CO \cdot C \cdot CO_{\bullet}H$ ist desmotrop mit 4-Oxy-2.6-diphenyl-pyridin-dicarbonsäure-(3.5), S. 273.

1 - Methyl - 2.6 - diphenyl - pyridon - (4) - dicarbonsäure - (8.5) $C_{50}H_{15}O_5N=$ $C_{e}H_{5} \cdot C \cdot N(CH_{9}) \cdot C \cdot C_{e}H_{5}$. B. Aus dem Diäthylester (s. u.) durch Verseifen mit siedender $HO_{\bullet}C \cdot C - CO - C \cdot CO_{\bullet}H$ alkoh. Kalilauge (Petrenko-Kritschenko, Schöttle, B. 42, 2024; P.-K., B. 42, 3687; H. 42 [1910], 311; P.-K., Sch., B. 43 [1910], 205). — Körner mit 1 $C_2H_4O_2$ (aus Essignäure). F: 270° (Zers.). Schwer löslich in Alkohol und Eisessig, ziemlich leicht in heißem verdünntem Alkohol und heißer Essigsäure, unlöslich in Wasser.

1-Methyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(3.5)-diäthylester $C_{M}H_{20}O_{L}N=$ C.H. ·O.C·C—CO—C·CO. ·C.H.

B. Aus 4-Oxy-2.6-diphenyl-pyridin-dicarbonsäure-(3.5)-C₆H₅·C·N(CH₅)·C·C₆H₅

diathylester durch Erwarmen mit 5% jeger alkoh. Kalilauge und Behandeln des Reaktionsprodukts in wäßr. Lösung mit Methyljodid (Petrenko-Kritschenko, Schöttle, B. 42, 2024). Aus den Hydrochloriden der beiden Formen des 1-Methyl-2.6-diphenyl-piperidon-(4)-dicarbonsäure-(3.5)-diäthylesters durch Oxydation mit heißer Chromessigsäure (P.-K., B. 42, 3686). Aus dem Silbersalz der 1-Methyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(3.5) durch Kochen mit Athyljodid (P.-K., B. 42, 3687).—Krysenyl-pyridon-(4)-dicarbonsäure-(3.5) durch Kochen mit Athyljodid (P.-K., B. 42, 3687).—Krysenyl-gyridon-(4)-dicarbonsäure-(3.5) lich in Wasser, schwer löslich in kaltem, leicht in heißem Alkohol.

1 - Åthyl - 2.6 - diphenyl - pyridon - (4) - dicarbonsäure - (8.5) $C_{21}H_{17}O_{5}N=$ HO.C.C.CO_CO_H B. Aus dem Diathylester (s. u.) durch Erwarmen mit alkoh. C₂H₅·C·N(C₂H₅)·C·C₆H₅

B. Aus dem Diäthylester (s. u.) durch Erwärmen mit aikon. Kalilauge (Petreenko-Kritschenko, B. 42, 3692). — Krystalle. F: 248—250° (Zers.). Unlöslich in Wasser, schwer löslich in Alkohol. — Ag₂C₂₁H₁₅O₅N. Unlöslich in Wasser. 1-Äthyl-2.6-diphenyl-pyridon-(4)-dicarbonsäure-(8.5)-diäthylester $C_{25}H_{25}O_5N=$ $C_2H_5 \cdot O_2C \cdot C - CO - C \cdot CO_3 \cdot C_2H_5$ B. Aus den Hydrochloriden der beiden Formen des C₆H₅·C·N(C₂H₅)·C·C₆H₅

1-Äthyl-2.6-diphenyl-piperidon-(4)-dicarbonsäure-(3.5)-diäthylesters durch Oxydation mit heißer Chromessigsäure (Petrenko-Kritschenko, B. 42, 3691). — Krystalle (aus verd. Alkohol). F: 189—190°. Unlöslich in Wasser, ziemlich leicht in Alkohol und Äther.

k) Oxo-carbonsăuren $C_n H_{2n-29} O_5 N$.

4 - [2 - Carboxy - benzoyl] - naphthalin - [dicarbonsaure-(1.8)-imid], 4-[2-Carboxy-benzoyl]-naphthalsaure-imid C₂₀H₁₁O₅N, s. nebenstehende Formel. B. Bei wiederholtem Eindampfen von 4-[2-Carboxy-benzoyl]-naphthalsäure mit Ammoniak (Graebe, A. 327, 101). — Schmilzt oberhalb 300°.

4. Oxo-carbonsäuren mit 6 Sauerstoffatomen.

a) Oxo-carbonsäuren $C_n H_{2n-7} O_6 N$.

1. 3.4-Dioxo-pyrrolidin-dicarbonsăure-(2.5) $C_6H_8O_6N=$ OC----CO

HO.C.HC.NH.CH.CO.H.

1 - Phenyl - 8.4 - dioxo - pyrrolidin - dicarbonsäure - (2.5) $C_{12}H_2O_4N =$

 $HO_2C \cdot HC \cdot N(C_2H_2) \cdot CH \cdot CO_2H$ ist desmotrop mit 1-Phenyl-3.4-dioxy-pyrrol-dicarbonsaure (2.5), vgl. 8. 275.

1 - o - Tolyl - 3.4 - dioxo - pyrrolidin - dicarbonsäure - (2.5) $C_{12}H_{11}O_6N =$ OC CO ist desmotrop mit 1-o-Tolyl-3.4-dioxy-pyrrol-dicarbonsäure (2.5), vgl. S. 275.

2. 0xo-carbonsäuren $C_7H_7O_6N$.

1. 2.6-Dioxo-piperidin-dicarbonsaure-(4.4) $C_7H_7O_6N = \begin{array}{c} H_2C \cdot C(CO_2H)_2 \cdot CH_2 \\ OC - NH - CO \end{array}$ bezw. desmotrope Formen.

Diäthylester $C_{11}H_{15}O_6N = \frac{H_2C \cdot C(CO_2 \cdot C_2H_5)_2 \cdot CH_2}{OC - NH - CO}$. B. Das Natriumsalz entsteht bei der Einw. von Chloralammoniak auf Dinatriummalonsäurediäthylester in Alkohol; man gewinnt den freien Diäthylester über das Silbersalz (Zwerger, M. 24, 740). — Nadeln mit ½H₂O. Wird bei 105° wasserfrei. F: 195—196°. Löslich in Äther und heißem Wasser, ziemlich leicht löslich in verdünntem, sehr leicht in absolutem Alkohol. — Gibt beim Erhitzen mit Zinkstaub schwachen Pyridingeruch. Mit Ferrichlorid entsteht eine rote Färburg. — Na C. H. O. N. + 2 $NaC_{11}H_{14}O_6N+2H_2O$. Nadeln (aus Wasser). Löslich in ca. 100 Tln. heißem Wasser; sehr schwer löslich in kaltem Wasser. — $AgC_{11}H_{14}O_6N$. Nadeln. Sehr schwer löslich in Wasser. — $Ba(C_{11}H_{14}O_6N)_2+2H_2O$. Nadeln. Fast unlöslich in Wasser.

2. 2.5 - Dioxo - pyrrolidin - carbonsāure - (3) - essigsāure - (4) $C_7H_7O_6N = HO_1C \cdot CH_2 \cdot HC - CH \cdot CO_2H$

 $\begin{array}{c} OC \cdot NH \cdot CO \\ OC \cdot NH \cdot CO \\ \end{array}$ $Diamid \ C_7H_9O_4N_3 = \begin{array}{c} H_2N \cdot OC \cdot CH_3 \cdot HC - CH \cdot CO \cdot NH_2 \\ OC \cdot NH \cdot CO \\ \end{array} \quad \begin{array}{c} B. \ \ Beim \ Aufbewahren \ von \\ OC \cdot NH \cdot CO \\ \end{array}$

Propan-α.α.β.γ-tetracarbonsäure-tetraäthylester mit konzentriertem wäßrigem Ammoniak (Ruhemann, Cunnington, Soc. 78, 1007). — Prismen (aus Wasser). F: 237—238° (Zers.). Schwer löslich in kaltem Wasser.

3. 2.6-Dioxo-4.4-dimethyl-piperidin-dicarbonsäure-(3.5) $C_{\bullet}H_{11}O_{e}N =$ $HO_2C \cdot HC \cdot C(CH_2)_2 \cdot CH \cdot CO_2H$

oc-NH-co

 $\textbf{Dinitril, 2.6-Dioxo-4.4-dimethyl-3.5-dicyan-piperidin, } \beta.\beta-\textbf{Dimethyl-}\alpha.\alpha'-\textbf{dicyan-piperidin, } \beta.\beta-\textbf{D$ glutarsäure-imid $C_9H_9O_2N_3 = \frac{NC \cdot HC \cdot C(CH_3)_3 \cdot CH \cdot CN}{NH}$. B. Bei der Einw. von Aceton glutarsäure-imid C₉H₉O₂N₃ = OC—NH—CO

auf Cyanessigester und alkoh. Ammoniak (Guareschi, Grande, C. 1899 II, 439). — Blättohen. F: 216—217°; schwer löslich in kaltem Wasser, löslich in Alkohol und Essigsäure (Gua., Gr.). — Zersetzt sich beim Erhitzen auf 310—320° unter Methan-Entwicklung (Gua., Gr.). Gibt mit Kaliumnitrit und Schwefelsäure eine gelbe Färbung (Gua., Gr.). — NH₄C₉H₈O₂N₃. Krystallinische Masse. Sehr leicht löslich in Wasser (Gua., Gr.). — Silbersalz. Niederschlag Löslich in word Salvetowäure (Gua. (Gr.). — Silbersalz. Niederschlag Löslich in word Salvetowäure (Gua. (Gr.). — 578) schlag. Löslich in verd. Salpetersäure (Gua., C. 1901 I, 578).

2.6 - Dioxo - 1.4.4 - trimethyl - 3.5 - dioyan - piperidin, $\beta.\beta$ - Dimethyl - $\alpha.\alpha'$ - dioyan-glutarsäure-methylimid $C_{10}H_{11}O_2N_3 = \frac{NC \cdot HC \cdot C(CH_3)_2 \cdot CH \cdot CN}{OC \cdot N(CH_2) \cdot CO}$. B. Aus Aceton, Cyanessigester und Methylamin in Alkohol (GUARESCHI, C. 1901 I, 578). — Krystalle (aus verd. Alkohol). F: 163—163,5°. Sehr schwer löslich in Akher, sehr leicht in Pyridin. 100 Tle. Wasser lösen bei 11° 0,14 Tle. Substanz; 100 Tle. 90% iger Alkohol lösen bei 17° 1,4 Tle. Substanz. — Liefert mit Brom in Essigsäure 3.5-Dibrom-2.6-dioxo-1.4.4-trimethyl-3.5-dicyanpiperidin. Gibt mit Kaliumnitrit und Schwefelsäure eine gelbe Färbung. — $AgC_{10}H_{10}O_2N_3$. Niederschlag. — $Ag_2C_{10}H_9O_2N_3$. Zersetzlicher Niederschlag.

1-Äthyl-2.6-dioxo-4.4-dimethyl-3.5-dicyan-piperidin, $\beta.\beta$ -Dimethyl- $\alpha.\alpha'$ -dicyan-glutarsäure-äthylimid $C_{11}H_{13}O_2N_3 = \begin{array}{c} NC \cdot HC \cdot C(CH_3)_2 \cdot CH \cdot CN \\ Od NC H \cdot dO \\ Od NC H$. B. Aus Aceton, Cyanglutarsäure-äthylimid $C_{11}H_{18}O_2N_8 = OC \cdot N(C_2H_5) \cdot CO$. B. Aus Aceton, Cyanessigester und Äthylamin in Alkohol (Guareschi, C. 1901 I, 578). — Krystalle (aus $60^{\circ}/_{\circ}$ igem Alkohol). F: 110,5—111,5°. Schwer löslich in Wasser, löslich in Alkohol, sehr leicht in Pyridin; leicht löslich in Alkalilauge. — Die alkal. Lösung gibt bei Zusatz von Kaliumnitrit und verd. Schwefelsäure einen zunächst farblosen, dann gelben Niederschlag. 1-Bensyl-2.6-dioxo-4.4-dimethyl-3.5-dicyan-piperidin, β . β -Dimethyl- α . α' -dicyan-glutarsäure-bensylimid $C_{16}H_{16}O_2N_3 = \frac{NC \cdot HC - C(CH_3)_2 - CH \cdot CN}{OC \cdot N(CH_2 \cdot C_6H_5) \cdot CO}$. B. Aus Aceton, Cyanessigester und Benzylamin in 95% alkohol, neben Cyanacetyl-benzylamin (Guanacetyl-benzylamin (Guanacetyl-benzylamin Guanacetyl-benzylamin (Guanacetyl-benzylamin Guanacetyl-benzylamin Guanacetyl-benzylamin (Guanacetyl-benzylamin Guanacetyl-benzylamin Guanacetyl-benzylamin Guanacetyl-benzylamin (Guanacetyl-benzylamin Guanacetyl-benzylamin Guanacetyl-benzyla

Cyanessigester und Benzylamin in 95% jigem Alkohol, neben Cyanacetyl-benzylamin (Guabeschi, C. 1901 I, 578). — Nadeln (aus 60% jigem Alkohol). F: 149—150%. Sehr schwer löslich in Wasser. Löslich in Kalilauge; wird aus der Lösung durch verd. Schwefelsäure wieder gefällt. — Gibt mit Kaliumnitrit und Schwefelsäure keine Färbung.

1.1'-Äthylen-bis-[2.6-dioxo-4.4-dimethyl-3.5-dicyan-piperidin], N.N'-Äthylen-bis-[$\beta.\beta$ -dimethyl- $\alpha.\alpha$ '-dicyan-glutarsäure-imid] $C_{20}H_{20}O_4N_6=$ [(CH₃)₂C<CH(CN)·CO>N·CH₃-]. B. Aus Aceton, Cyanessigester und Äthylendiamin in absol. Alkohol (GUARESCHI, C. 1901 I, 578). — Krystalle (aus Alkohol). F: 287—290° (Zers.). Schwer löslich in Alkohol, sehr schwer in Wasser; löslich in Alkalilauge.

8.5 - Dibrom - 2.6 - dioxo - 4.4 - dimethyl - piperidin - dicarbonsäure - (3.5) - dinitril, 8.5 - Dibrom - 2.6 - dioxo - 4.4 - dimethyl - 3.5 - dicyan - piperidin, $\alpha.\alpha'$ - Dibrom - $\beta.\beta$ - dimethyl - NC · BrC · C(CH₂)₂ · CBr · CN

 $\alpha.\alpha'$ -dioyan-glutarsäure-imid $C_9H_7O_2N_3Br_3=\frac{NC\cdot BrC\cdot C(CH_9)_9\cdot CBr\cdot CN}{OC-NH-CO}$. B. Durch Einw.

von Bromwasser auf 2.6-Dioxo-4.4-dimethyl-3.5-dicyan-piperidin (Guareschi, Grande, Atti Accad. Torino 34, 931; C. 1899 II, 439). — F: 190—195°. — Gibt mit 40°/0 iger Essigsäure auf dem Wasserbad [3.3-Dimethyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid (S. 362).

3.5 - Dibrom - **2.6** - dioxo - **1.4.4** - trimethyl - **3.5** - dioyan - piperidin, $\alpha.\alpha'$ - Dibrom - $\beta.\beta$ - dimethyl - $\alpha.\alpha'$ - dioyan - glutarsäure - methylimid $C_{10}H_9O_2N_3Br_3 = NC \cdot BrC \cdot C(CH_3)_3 \cdot CBr \cdot CN$

OC·N(CH₃)·CO

in Essigsäure (Guareschi, C. 1901 I, 578). — Krystalle. F: 144—145°. Zersetzt sich bei 200°. — Liefert beim Erhitzen mit überschüssiger 50°/0 iger Essigsäure [3.3-Dimethyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-methylimid (S. 362).

1-Äthyl-3.5-dibrom-2.6-dioxo-4.4-dimethyl-3.5-dioyan-piperidin, $\alpha.\alpha'$ -Dibrom- $\beta.\beta$ -dimethyl- $\alpha.\alpha'$ -dioyan-glutarsäure-äthylimid $C_{11}H_{11}O_2N_3Br_2 = NC \cdot BrC \cdot C(CH_3)_2 \cdot CBr \cdot CN$

OC·N(C₂H₅)·CO

B. Aus 1-Äthyl-2.6-dioxo-4.4-dimethyl-3.5-dicyan-piperidin und OC·N(C₂H₅)·CO

Brom in Eisessig (GUARESCHI, *Mem. Accad. Torino* [2] 50, 243; C. 1901 I, 578). — Krystalle (aus Alkohol). F: 130—132°. Sehr schwer löslich in Wasser, löslich in Essigsäure. — Gibt beim Erhitzen mit 50°/aiger Essigsäure [3.3-Dimethyl-1.2-dicyan-cyclopropan-dicarbon-säure-(1.2)]-äthylimid (S. 363).

4. 2.6-Dioxo-4-methyl-4-äthyl-piperidin-dicarbonsäure-(3.5) $C_{10}H_{13}O_{e}N$ $= \frac{HO_{s}C \cdot HC \cdot C(CH_{s})(C_{s}H_{s}) \cdot CH \cdot CO_{s}H}{OC - NH - CO}.$

Dinitril, 2.6-Dioxo-4-methyl-4-äthyl-3.5-dicyan-piperidin, β -Methyl- β -äthyl-a.a'-dicyan-glutarsäure-imid $C_{10}H_{11}O_2N_3=\frac{NC\cdot HC\cdot C(CH_3)(C_2H_5)\cdot CH\cdot CN}{OC-NH-CO}$. B. Aus Methyläthylketon, Cyanessigester und wäßr. Ammoniak (Grande, C. 1897 I, 903; Guareschi, Gr., C. 1898 II, 544). — Blättchen. F: 193° (Gr.; Gua., Gr.). — Ist beständig gegen überschüssige Alkalien oder Säuren (Gua., Gr.). Zersetzt sich in neutraler wäßriger oder schwach alkalischer Lösung (Ammoniak-, Soda- oder besser Magnesiumhydroxyd-Lösung) in 2.6-Dioxy-4-methyl-pyridin-dicarbonsäure-(3.5)-dinitril (S. 278) und Äthan (Gua., Gr.; Gua., C. 1901 I, 578). Gibt bei Behandlung mit Bromwasser 3.5-Dibrom-2.6-dioxo-4-methyl-4-äthyl-3.5-dicyan-piperidin (Gua., Gr.). — Bildet ein Ammoniumsalz (Gua., Gr.).

2.6-Dioxo-1.4-dimethyl-4-äthyl-8.5-dicyan-piperidin, β -Methyl- β -äthyl- α . α' -dicyan-glutarsäure-methylimid $C_{11}H_{13}O_2N_3 = \begin{array}{c} NC \cdot HC \cdot C(CH_3)(C_2H_5) \cdot CH \cdot CN \\ OC \longrightarrow N(CH_3) \longrightarrow CO \end{array}$. B. Aus Methyläthylketon, Cyanessigester und Methylamin in Alkohol (Guareschi, C. 1901 I, 579). — Blättehen (aus Alkohol). F: 192,5°. Schwer löslich in Wasser, löslich in Alkohol und Eisessig, leicht löslich in Pyridin. — Zersetzt sich nach dem Neutralisieren mit Ammoniak in Äthan und eine nicht näher beschriebene Verbindung (vielleicht β -Methyl- α . γ -dicyan-glutaconsäure-methylimid). — Gibt mit Kaliumnitrit und Schwefelsäure eine gelbe Färbung.

2.6-Dioxo-4-methyl-1.4-diäthyl-3.5-dicyan-piperidin, β -Methyl- β -äthyl- α . α' -dicyan-glutarsäure-äthylimid $C_{12}H_{15}O_2N_3= {\begin{array}{c} NC\cdot HC\cdot C(CH_3)(C_2H_5)\cdot CH\cdot CN\\ OC-N(C_3H_5)-CO \end{array}}$. B. Aus Methyläthylketon, Cyanessigester und Äthylamin in Alkohol (Guaresohi, C. 1901 I, 579). — Blättchen. F: 146—147,5°. Sehr schwer löslich in kaltem Wasser. — Die mit Ammoniak neutralisierte wäßr. Lösung entwickelt Äthan.

1-Allyl-2.6-dioxo-4-methyl-4-äthyl-3.5-dioyan-piperidin, β -Methyl- β -äthyl- α . α' -dioyan-glutarsäure-allylimid $C_{13}H_{15}O_{2}N_{3}= \begin{tabular}{c} NC \cdot HC ---C(CH_{3})(C_{2}H_{5}) --CH \cdot CN \\ OC \cdot N(CH_{2} \cdot CH : CH_{2}) \cdot CO \end{tabular}$ Aus Methyläthylketon, Cyanessigester und Allylamin in Alkohol (GUARESCHI, C. 1901 I, 579). — Nadeln (aus Wasser). F: 91—92°. Sehr schwer löslich in Wasser mit saurer Reaktion.

- B. Aus 2.6-Dioxo-4-methyl-4-āthyl-3.5-dicyan-piperidin und Bromwasser (Guareschi, Grande, C. 1898 II, 545). Prismen (aus Wasser) (Gua., Gr., C. 1898 II, 545). Gibt beim Erhitzen für sich auf ca. 110° (Gua., Gr., C. 1899 II, 439) oder mit 50°/oiger Essigsäure (Gua., Mem. Accad. Torino [2] 50, 246; C. 1901 I, 579) [3-Methyl-3-āthyl-1.2-dicyan-cyclo-propan-dicarbonsäure-(1.2)]-imid (S. 363).

3.5-Dibrom-2.6-dioxo-1.4-dimethyl-4-äthyl-3.5-dicyan-piperidin, $\alpha.\alpha'$ -Dibrom- β -methyl- β -äthyl- $\alpha.\alpha'$ -dicyan-glutarsäure-methylimid $C_{11}H_{11}O_2N_2Br_3=NC\cdot BrC\cdot C(CH_3)(C_2H_5)\cdot CBr\cdot CN$

- OC—N(CH₂)—CO
 und Brom in Eisessig (Guareschi, *Mem. Accad. Torino* [2] **50**, 249; C. **1901** I, 579). Prismatische Krystalle. F: 106—107,5°. Gibt beim Erwärmen mit 50% iger Essigsäure [3-Methyl-3-äthyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-methylimid.
- 3.5-Dibrom-2.6-dioxo-4-methyl-1.4-diäthyl-3.5-dioyan-piperidin, $\alpha.\alpha'$ -Dibrom- β -methyl- β -äthyl- $\alpha.\alpha'$ -dioyan-glutarsäure-äthylimid $C_{12}H_{12}O_2N_3Br_2 = NC \cdot BrC \cdot C(CH_2)(C_2H_3) \cdot CBr \cdot CN$
- OC $N(C_2H_5)$ —CO 3.5-dicyan-piperidin (Guareschi, C. 1901 I, 579). Krystalle (aus Wasser). F: 112—115°. Gibt beim Erwärmen mit 50°/oiger Essigsäure [3-Methyl-3-äthyl-1.2-dicyan-cyclopropandicarbonsäure-(1.2)]-äthylimid.

5. Oxo-carbonsăuren $C_{11}H_{15}O_6N_c$

 $= \underbrace{\begin{array}{l} \textbf{1. 2.6-Dioxo-4-methyl-4-propyl-piperidin-dicarbonsäure-(3.5)} & \textbf{C}_{11}\textbf{H}_{16}\textbf{O}_{6}\textbf{N} \\ & \textbf{HO}_{2}\textbf{C}\cdot\textbf{HC}\cdot\textbf{C}(\textbf{CH}_{2})(\textbf{CH}_{2}\cdot\textbf{C}_{2}\textbf{H}_{6})\cdot\textbf{CH}\cdot\textbf{CO}_{2}\textbf{H} \\ & \textbf{OC} & \textbf{NH} & \textbf{CO} \end{array}}_{\textbf{CO}}.$

 $2.6 - \text{Dioxo} - 1.4 - \text{dimethyl} - 4 - \text{propyl} - 3.5 - \text{dicyan} - \text{piperidin}, \ \beta - \text{Methyl} - \beta - \text{propyl} - \alpha.\alpha' - \text{dicyan-glutars} \\ \text{a.a'-dicyan-glutars} \\ \text{a.a'-dicyan-glutars} \\ \text{C}_{12}H_{15}O_2N_3 = \frac{\text{NC} \cdot \text{HC} \cdot \text{C(CH}_2)(\text{CH}_2 \cdot \text{C}_2H_5) \cdot \text{CH} \cdot \text{CN}}{\text{OC}} \\ \text{OC} \\ \text{OC$

B. Aus Methylpropylketon, Cyanessigester und Methylamin in Alkohol, neben einer Verbindung vom Schmelzpunkt 208° (Guareschi, C. 1901 I, 579). — Blättohen (aus Wasser). F: 134—135,5°. Löslich in Alkohol, schwer in Wasser mit saurer Reaktion; ziemlich leicht löslich in Alkalien. — Die mit Ammoniak neutralisierte wäßrige Lösung entwickelt Propan. — Beim Versetzen der alkal. Lösung mit Kaliumnitrit und verd. Schwefelsäure entsteht ein zunächst farbloser, dann gelber Niederschlag.

 $\alpha.\alpha'-\text{dioyan-glutarsäure-imid }C_{12}H_{15}O_2N_3 = \frac{\text{NC}\cdot \text{HC}\cdot \text{C}(\text{CH}_2)(\text{CH}_2\cdot \text{CH}_2\cdot \text{C}_2H_3)\cdot \text{CH}\cdot \text{CN}}{\text{CH}\cdot \text{CN}}$

Aus Methylbutylketon, Cyanessigester und alkoh. Ammoniak (Guareschi, C. 1901 I, 579). —

Blättchen (aus Wasser). F: 180—182°. 1 Tl. löst sich bei 14° in 620 Tln. Wasser; löslich in Alkohol, Essigsäure und Äther, sehr leicht löslich in Aceton und Pyridin; leicht löslich in Alkalien. — Die mit Ammoniak neutralisierte wäßrige Lösung zersetzt sich unter Bildung von Butan und 2.6-Dioxy-4-methyl-3.5-dicyan-pyridin. — AgC₁₂H₁₄O₂N₃. Niederschlag. Löslich in siedendem Wasser.

8.5 - Dibrom-2.6-dioxo-4-methyl-4-butyl-piperidin-dicarbonsäure-(3.5)-dinitril, 8.5 - Dibrom - 2.6 - dioxo - 4 - methyl - 4 - butyl - 3.5 - dicyan - piperidin, $\alpha.\alpha'$ - Dibrom - β - methyl - β - butyl - $\alpha.\alpha'$ - dicyan - glutarsäure - imid $C_{12}H_{13}O_2N_3Br_2 = NC \cdot BrC \cdot C(CH_3)(CH_2 \cdot CH_2 \cdot C_2H_5) \cdot CBr \cdot CN$

OC——NH———CO

B. Aus 2.6-Dioxo-4-methyl-4-butyl-3.5-dicyan-piperidin und Brom in Eisessig (Guareschi, Mem. Accad. Torino [2] 50, 255; C. 1901 I, 579). — Krystalle. F: 128—129°. Sehr schwer löslich in Wasser, löslich in Eisessig. — Liefert beim Erwärmen mit 50°/0 iger Essigsäure [3-Methyl-3-butyl-1.2-dicyan-cyclopropan-dicarbon-säure-(1.2)]-imid.

2. 2.6 - Dioxo - 4 - methyl - 4 - isobutyl - piperidin - dicarbonsäure - (3.5) $C_{12}H_{17}O_6N = \frac{HO_2C \cdot HC \cdot C(CH_3)[CH_2 \cdot CH(CH_3)_2] \cdot CH \cdot CO_2H}{OC - NH - CO}.$

Dinitril, 2.6-Dioxo-4-methyl-4-isobutyl-3.5-dicyan-piperidin, β -Methyl- β -isobutyl - α α' - dicyan - glutarsäure - imid $C_{12}H_{15}O_{2}N_{3} = NC \cdot HC \cdot C(CH_{2})[CH_{2} \cdot CH(CH_{3})_{2}] \cdot CH \cdot CN$

OC——NH——CO
alkoh. Ammoniak (Guareschi, C. 1901 I, 580). — Nadeln (aus 60% gigen Alkohol). F: 241% bis 242%. Schwer löslich in siedendem Wasser, löslich in Alkohol; löslich in Alkalien und Alkalicarbonaten.

3. 2.6-Dioxo-4-āthyl-4-propyl-piperidin-dicarbonsāure-(3.5) $C_{12}H_{17}O_6N=HO_2C\cdot HC\cdot C(C_2H_5)(CH_2\cdot C_2H_5)\cdot CH\cdot CO_2H$

oc _____ NH _____ co

3.5.- Dibrom - 2.6 - dioxo-4-äthyl-4-propyl-piperidin-dicarbonsäure-(3.5)-dinitril, 3.5-Dibrom-2.6-dioxo-4-äthyl-4-propyl-3.5-dicyan-piperidin, $\alpha\alpha'$ -Dibrom- β -äthyl- β -propyl- $\alpha\alpha'$ -dicyan-glutarsäure-imid $C_{12}H_{13}O_2N_3Br_2=NC\cdot BrC\cdot C(C_2H_5)(CH_2\cdot C_2H_5)\cdot CBr\cdot CN$

OC—NH—CO

B. Bei der Einw. von Brom auf 2.6-Dioxo-4-āthyl-4-propyl-3.5-dicyan-piperidin in Eisessig (Guabeschi, Mem. Accad. Torino [2] 50, 266; C. 1901 I, 580). — Prismen. F: 159—161°. Sehr schwer löslich in Wasser. — Liefert beim Koehen mit 50°/oiger Essigsäure [3-Äthyl-3-propyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid.

7. 2.6-Dioxo-4.4-dipropyl-piperidin-dicarbonsaure-(3.5) $C_{18}H_{19}O_6N = \frac{HO_2C \cdot HC \cdot C(CH_2 \cdot C_2H_5)_8 \cdot CH \cdot CO_2H}{OC-NH-CO}$

Dinitril, 2.6-Dioxo-4.4-dipropyl-3.5-dicyan-piperidin, $\beta.\beta$ -Dipropyl- $\alpha.\alpha'$ -dicyan-glutarsäure-imid $C_{13}H_{17}O_2N_2= {NC\cdot HC\cdot C(CH_2\cdot C_2H_5)_2\cdot CH\cdot CN \over OC-NH-CO}$. B. Aus Dipropylketon, Cyanessigester und alkoh. Ammoniak (GUARESCHI, C. 1901 I, 581). — Nadeln oder prismatische

Krystalle (aus verd. Alkohol). F: 220,5°. Schwer löslich in Wasser, sehr leicht in Pyridin. — Gibt in wäßr. Lösung auf Zusatz von Ammoniak oder Magnesiumhydroxyd 2.6-Dioxy-4-propyl-3.5-dicyan-pyridin (S. 279) und Propan.

8.5 - Dibrom - 2.6 - dioxo - 4.4 - dipropyl - piperidin - dicarbonsäure - (3.5) - dinitril, 8.5 - Dibrom - 2.6 - dioxo - 4.4 - dipropyl - 3.5 - dicyan - piperidin, $\alpha.\alpha'$ - Dibrom - $\beta.\beta$ - dipropyl - $\alpha.\alpha'$ - dicyan - glutarsäure - imid $C_{13}H_{15}O_2N_3Br_2 = \frac{NC \cdot BrC \cdot C(CH_2 \cdot C_2H_5)_2 \cdot CBr \cdot CN}{OC}$. B. Aus 2.6 - Dioxo - 4.4 - dipropyl - 3.5 - dicyan - piperidin und Brom in Eisessig (Guareschi, Mem. Accad. Torino [2] 50, 271; C. 1901 I, 581). — Blättchen. F: 136—138°. Löslich in Essigsäure.

8. Oxo-carbonsăuren $C_{14}H_{21}O_6N$.

1. 2.6 - Dioxo - 4 - methyl - 4 - n - hexyl - piperidin - dicarbonsäure - (3.5) $C_{14}H_{21}O_{6}N = \frac{HO_{2}C \cdot HC \cdot C(CH_{3})(CH_{2} \cdot [CH_{2}]_{4} \cdot CH_{5}) \cdot CH \cdot CO_{2}H}{OC - NH - CO}.$

Dinitril, 2.6 - Dioxo - 4 - methyl - 4 - n - hexyl - 3.5 - dicyan - piperidin, β -Methyl- β - n - hexyl - $\alpha.\alpha'$ - dicyan - glutarsäure - imid $C_{14}H_{19}O_2N_3 = NC \cdot HC \cdot C(CH_3)(CH_3 \cdot [CH_3]_4 \cdot CH_3) \cdot CH \cdot CN$. B. Bei der Einw. von Cyanessigester auf Methyl-

n-hexyl-keton und alkoh. Ammoniak (Guareschi, Grande, C. 1899 II, 439). — Blättchen. F: 156—157°. Sehr schwer löslich in Wasser. — Zersetzt sieh in neutraler wäßriger Lösung in Hexan und 2.6-Dioxy-4-methyl-3.5-dicyan-pyridin.

3.5 - Dibrom - 2.6 - dioxo - 4 - methyl - 4 - n - hexyl - piperidin - dicarbonsäure- (3.5) - dinitril, 3.5 - Dibrom - 2.6 - dioxo - 4 - methyl - 4 - n - hexyl - 3.5 - dicyan - piperidin, $\alpha.\alpha'$ - Dibrom - β - methyl - β - n - hexyl - $\alpha.\alpha'$ - dicyan - glutarsäure - imid $C_{14}H_{17}O_2N_3Br_2 = NC \cdot BrC \cdot C(CH_3)(CH_2 \cdot [CH_2]_4 \cdot CH_3) \cdot CBr \cdot CN$. Bei der Einw. von Brom auf 2.6-Dioxo-•

4-methyl-4-n-hexyl-3.5-dicyan-piperidin in Eisessig (Guareschi, Grande, Atti Accad. Torino 34, 935; C. 1899 II, 439).—Krystalle. F: 135°. Sehr schwer löslich in kaltem Wasser und verdünnter Essigsäure, löslich in konz. Essigsäure.— Liefert beim Erhitzen mit 50°/0 iger Essigsäure [3-Methyl-3-n-hexyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid.

2. 2.6 - Dioxo - 4 - methyl - 4 - isohexyl - piperidin - dicarbonsäure - (3.5) $C_{14}H_{21}O_{6}N = \frac{HO_{2}C \cdot HC \cdot C(CH_{3})[CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot CH(CH_{3})_{2}] \cdot CH \cdot CO_{2}H}{NH}.$

Dinitril, 2.6 - Dioxo-4-methyl-4-isohexyl-3.5-dicyan-piperidin, β -Methyl- β -isohexyl- α . α' -dicyan-glutarsäure-imid $C_{14}H_{19}O_2N_3=NC\cdot HC\cdot C(CH_2)[CH_2\cdot CH_2\cdot CH_2\cdot CH(CH_3)_2]\cdot CH\cdot CN$

OC——NH———CO
essigester und alkoh. Ammoniak (GUARESCHI, C. 1901 I, 580). — Blättchen (aus Alkohol).
F: 166,5—168,5°. Sehr schwer löslich in Wasser.

9. 2.6 - Dio x o - 4 - meth y | -4 - n - nony | - piperidin - dicarbonsäure - (3.5) $C_{17}H_{27}O_6N = \frac{HO_2C \cdot HC \cdot C(CH_3)(CH_2 \cdot [CH_2]_7 \cdot CH_3) \cdot CH \cdot CO_2H}{OC - NH - CO}.$

Dinitril, 2.6-Dioxo-4-methyl-4-n-nonyl-3.5-dicyan-piperidin, β -Methyl- β -n-nonyl- α . α' -dicyan-glutarsäure-imid $C_{17}H_{25}O_2N_3=N_3$

NC·HC·C(CH₃)(CH₃·[CH₃]₇·CH₃)·CH·CN
OC——NH——CO
durch Einw. von Cyanessigester und alkoh. Ammoniak (Guareschi, C. 1901 I, 580). —
Nadeln (aus verd. Alkohol). F: 136,5—137,5°. Sehr schwer löslich in Wasser und Äther, löslich in Alkohol. — Das Ammoniumsalz zersetzt sich in wäßr. Lösung in Nonan und 2.6-Dioxy-4-methyl-3.5-dicyan-pyridin. — NH₄C₁₇H₂₄O₃N₃.

b) Oxo-carbonsäuren $C_n H_{2n-9} O_6 N$.

1. Oxo-carbonsäuren C₆H₃O₆N.

- 1. 2.4.5.6-Tetraoxo-piperidin-carbonsäure-(3) $C_6H_3O_6N = \frac{OC \cdot CO \cdot CH \cdot CO_3H}{OC \cdot NH \cdot CO}$.
- 2.6-Dioxo-4-imino-5-oximino-piperidin-carbonsäure-(3)-äthylester $C_8H_9O_5N_3 = HO \cdot N : C \cdot C(:NH) \cdot CH \cdot CO_2 \cdot C_2H_5$ bezw. desmotrope Formen. B. Durch Einw. von Natrium-
- OC—NH—CO
 nitrit auf 4-Amino-2.6-dioxy-pyridin-carbonsäure-(3)-äthylester in essigsaurer Lösung (Baron, Remfry, Thorpe, Soc. 85, 1741). Gelbe Nadeln (aus Essigsäure). Löst sich in Soda-Lösung mit roter Farbe. Löst sich in konz. Schwefelsäure und fällt aus dieser Lösung beim Verdünnen mit Wasser unverändert wieder aus. Die wäßr. Lösung des Natriumsalzes oder Ammoniumsalzes gibt mit Ferrosulfat eine tiefblaue Lösung, aus der sich beim Kochen ein indigoblauer Niederschlag abscheidet. Natriumsalz. Ziegelrotes Pulver.
- 2.6 Dioxo 4 imino 5 oximino piperidin carbonsäure (3) nitril, 2.6 Dioxo-4 imino 5 oximino piperidin $C_6H_4O_3N_4= {\rm HO\cdot N:C\cdot C(:NH)\cdot CH\cdot CN}\atop {\rm OC-NH-CO}$ bezw. desmotrope Formen. B. Durch Einw. von Natriumnitrit auf 4-Amino-2.6-dioxy-pyridin-carbonsäure-(3)-nitril in Essigsäure (Baron, Remfry, Thorpe, Soc. 85, 1745). Gelbes Krystall-pulver. Verbrennt beim Erhitzen. Ist gegen siedende Salzsäure ziemlich beständig. Gibt mit Ferrosulfat in neutraler Lösung eine tiefblaue Färbung.
 - 2. 2.3.5.6-Tetraoxo-piperidin-carbonsäure-(4) $C_6H_3O_6N = {\begin{array}{c} OC \cdot CH(CO_2H) \cdot CO \\ OC NH CO \\ \end{array}}$
- 2.8.5.6 Tetraoxo piperidin carbonsäure (4) amid C₆H₄O₅N₂ = OC·CH(CO·NH₂)·CO

 DC·CH(CO·NH₂)·CO

 bezw. desmotrope Formen. B. Durch Erhitzen von 2.6-Dioxo
 3.5-bis-phenylimino-piperidin-carbonsäure-(4)-amid mit Salzsäure im Rohr auf 100° (Ruhemann, B. 21, 1248). Gelbbraune Nadeln (aus Wasser). Zersetzt sich beim Erhitzen (R.). Löslich in Ammoniak mit gelber Farbe (R.). Zersetzt sich beim Erhitzen mit Alkaliauge unter Bildung von Ammoniak, Essigsäure und Oxalsäure (R.; R., Allhusen, B. 27, 579). Gibt mit Silbernitrat in ammoniakalischer Lösung einen gelben, gelatinösen Niederschlag, der sich nach kurzer Zeit, besonders in der Wärme, schwarz färbt (R.). Gibt in wäßr. Lösung mit Eisenchlorid eine tiefbraune Färbung (R.).
- 2.6 Dioxo 3.5 bis phenylimino-piperidin-carbonsäure-(4)-amid $C_{18}H_{14}O_3N_4=C_6H_5\cdot N:C\cdot CH(CO\cdot NH_2)\cdot C:N\cdot C_6H_5$ bezw. desmotrope Formen. B. Beim Erwärmen von OC—NH—CO 3.3.5-Trichlor-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4)-amid mit Anilin in absol. Alkohol (Ruhemann, B. 21, 1248; R., Allhusen, B. 27, 579). Rotes Pulver (aus Salzsäure durch Ammoniak). Unlöslich in Wasser, sehr schwer löslich in Alkohol (R.). Sehr leicht löslich in Salzsäure mit tiefroter Farbe, schwerer in wäßr. Ammoniak (R.). Zersetzt sich bei längerem Kochen mit Eisessig (R.). Beim Erhitzen mit Salzsäure im Rohr auf 100° erhält man die vorangehende Verbindung (R.).
- 2.6 Dioxo 3.5 bis o tolylimino-piperidin-carbonsäure-(4)-amid $C_{20}H_{18}O_3N_4=CH_2\cdot C_6H_4\cdot N:C\cdot CH(CO\cdot NH_2)\cdot C:N\cdot C_6H_4\cdot CH_8$ bezw. desmotrope Formen. B. Beim Erwärmen von 3.3.5-Trichlor-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4)-amid mit o-Toluidin in Alkohol auf dem Wasserbad (Ruhemann, Obton, B. 27, 3449). Braune Krystalle.
- 2.6 Dioxo 3.5 bis [2.4 dimethyl phenylimino] piperidin carbonsäure (4)-amid $C_{22}H_{22}O_3N_4 = \frac{(CH_3)_2C_6H_3\cdot N:C\cdot CH(CO\cdot NH_2)\cdot C:N\cdot C_6H_3(CH_3)_2}{OC----NH-----CO}$ bezw. desmotrope Formen. B. Beim Erwärmen von 3.3.5-Trichlor-2,6-dioxo-1.2.3.6-tetrahydro-pyridin-carbon-säure-(4)-amid mit 4-Amino-1.3-dimethyl-benzol in Alkohol (Ruhemann, Obton, B. 27, 3450). Roter Niederschlag.

- 2. 2.6 Dioxo 1.2.3.6 tetrahydro pyridin dicarbonsäure (3.5) $C_7H_6O_6N = \frac{HO_2C \cdot HC \cdot CH : C \cdot CO_2H}{OC \cdot NH \cdot CO}$
- 1-Äthyl-6-oxo-2-äthylimino-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5) bezw. 1-Athyl-6-äthylamino-pyridon-(2)-dicarbonsäure-(3.5) $C_{11}H_{14}O_5N_3=HO_2C\cdot HC$ —CH— $C\cdot CO_2H$ — $C\cdot C\cdot CH$ — $C\cdot CO_2H$ — $C\cdot CO\cdot CH$ — $C\cdot C\cdot CH$ — $C\cdot C\cdot CH$ —C
- 1-Äthyl-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-äthylester-(3) bezw. 1-Äthyl-6-oxy-pyridon-(2)-dicarbonsäure-(3.5)-äthylester-(5) $C_{11}H_{13}O_6N=C_2H_5\cdot O_2C\cdot HC$ — $CH=C\cdot CO_2H$ bezw. $C_2H_5\cdot O_2C\cdot C$ — $CH=C\cdot CO_2H$ bezw. $C_2H_5\cdot O_2C\cdot C$ — $CH=C\cdot CO_2H$ bezw. $C_2H_5\cdot O_2C\cdot C$ — $CH=C\cdot CO_2H$ B. Aus 1-Äthyl-6-äthoxy-pyridon-(2)-dicarbonsäure-(3.5)-äthylester-(5) beim Erhitzen mit konz. Schwefelsäure auf 100° oder beim Kochen mit 5°/oiger alkoh. Kalilauge (HAussmann, A. 285, 73, 74). Krystalle (aus Benzol). F: 103°. Spaltet beim Erhitzen auf ca. 150° 1 Mol Kohlendioxyd ab. Gibt mit Eisenchlorid in verd. Alkohol eine tief rotviolette Färbung.
- 1-Äthyl-6-oxo-2-äthylimino-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-äthylester-(3) bezw. 1-Äthyl-6-äthylamino-pyridon-(2)-dicarbonsäure-(3.5)-äthylester-(5) C₁₈H₁₈O₈N₂ = C₂H₅·O₂C·HC—CH—C·CO₂H C₂H₅·O₃C·C—CH—C·CO₂H bezw. C₂H₅·NH·C·N(C₂H₅)·CO

 B. Bei mehrstündiger Einw. von 2°/oiger wäßriger Äthylamin-Lösung auf 6-Äthoxy-pyron-(2)-dicarbonsäure-(3.5)-diāthylester oder auf 1-Äthyl-6-äthoxy-pyridon-(2)-dicarbonsäure-(3.5)-äthylester-(5) (S. 379) (HAUSSMANN, A. 285, 75). Beim Erhitzen des Äthylaminsalzes des 1-Äthyl-6-äthoxy-pyridon-(2)-dicarbonsäure-(3.5)-äthylesters-(5) in Benzol (H., A. 285, 68). Nadeln (aus Chloroform + Äther). F: 165°. Leicht löslich in Alkohol, Aceton, Benzol und Chloroform, sehr schwer in Äther und Petroläther, unlöslich in Wasser. Leicht löslich in Soda-Lösung; scheidet sich aus der Lösung auf Säurezusatz unverändert wieder ab. Wird durch Kochen mit 6°/oiger Kalilauge zu 1-Äthyl-6-oxo-2-äthylimino-1.2.3.6-tetrahydropyridin-dicarbonsäure-(3.5), durch Erwärmen mit konz. Schwefelsäure auf dem Wasserbad zu 1-Äthyl-6(oder 2)-oxo-2(oder 6)-äthylimino-tetrahydropyridin-carbonsäure-(3) (S. 329) verseift. Äthylaminsalz C₂H₂N+C₁₂H₁₈O₂N₂. Pulver. F: 165° (H., A. 285, 77). Leicht löslich in Wasser. Wird durch Mineralsäuren in die Komponenten gespalten.
- 1-Åthyl-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-diäthylester bezw. 1-Åthyl-6-oxy-pyridon-(2)-dicarbonsäure-(3.5)-diäthylester $C_{13}H_{17}O_8N = C_2H_5 \cdot O_2C \cdot HC \longrightarrow CH \longrightarrow C \cdot CO_2 \cdot C_2H_5$ OC·N(C₂H₅)·CO

 6-Oxo-2-āthylimino-[1.2-pyran]-dihydrid-(3.6)-dicarbonsäure-(3.5)-diāthylester (Bd. XVIII, S. 507) beim Schmelzen oder beim Behandeln mit absol. Alkohol (Haussmann, A. 285, 91). Aus 6-Åthoxy-pyron-(2)-dicarbonsäure-(3.5)-diāthylester (Bd. XVIII, S. 553) und 2,5°/ojger āther. Āthylamin-Lösung in der Wärme (Hau., A. 285, 90). Nadeln (aus Petroläther). F: 89,5° (Hau.). Leicht löslich in den üblichen Lösungsmitteln außer kaltem Petroläther; löslich in heißer Soda-Lösung (Hau.). Liefert bei längerer Einw. von Ammoniak bei Zimmertemperatur die im folgenden Artikel beschriebene Verbindung (Hantzsch, Dollfus, B. 35, 244). Das Silbersalz gibt beim Kochen mit Äthyljodid in absol. Äther 1-Äthyl-6-āthoxy-pyridon-(2)-dicarbonsäure-(3.5)-diāthylester (Hau.). Liefert mit Eisenchlorid in verd. Alkohol eine intensiv rote Färbung (Hau.). AgC₁₃H₁₆O₈N. Niederschlag (Hau.). Lichtbeständig. Äthylaminsalz C₂H₇N+C₁₃H₁₇O₈N. Gelbes Pulver. F: 181° (Hau.). Sehr leicht löslich in Chloroform, löslich in Alkohol und Wasser, schwer löslich in Benzol und Aceton, unlöslich in Äther und Petroläther. Die gelbe wäßrige Lösung reagiert neutral. Ist gegen siedendes Benzol beständig; wird durch Mineralsäuren in die Komponenten gespalten.

1 - Äthyl - 2.6 - dioxo - 1.2.3.6 - tetrahydro - pyridin - dicarbonsäure - (3.5) - äthylester - (3 oder 5) - amid - (5 oder 3) bezw. 1-Äthyl-6-oxy-pyridon-(2)-dicarbonsäure - (3.5)-äthylester - (3 oder 5) - amid - (5 oder 3) $C_{11}H_{14}O_5N_2 = C_2H_5 \cdot NC_5H_2(:O)_2(CO_2 \cdot C_2H_5) \cdot CO \cdot NH_2$ bezw. $C_2H_5 \cdot NC_5H(:O)(OH)(CO_2 \cdot C_2H_5) \cdot CO \cdot NH_2$. B. Durch längere Einw. von Ammoniak auf die vorangehende Verbindung in Äther oder Benzol bei Zimmertemperatur (HANTZSCH, Dollfus, B. 35, 244). Beim Schütteln von 6-Oxo-2-äthylimino-[1.2-pyran]-dihydrid-(3.6)-dicarbonsäure-(3.5)-diäthylester (Bd. XVIII, S. 507) mit 2,5°/ojegen alkoholischem Ammoniak (Guthzeit, Eyssen, J. pr. [2] 80, 52). — Nadeln (aus Alkohol). Färbt sich von 190° an rot, F: 204° (G., Ey.), 184—185° (H., D.). — Gibt mit alkoh. Eisenchlorid-Lösung erst nach längerer Zeit eine rötliche Färbung (G., Ey.).

1-Phenyl-2.6-dioxo-1.2.8.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-diäthylester bezw. 1-Phenyl-6-oxy-pyridon-(2)-dicarbonsäure-(3.5)-diäthylester $C_{17}H_{17}O_6N=C_2H_5\cdot O_2C\cdot HC-CH-C\cdot CO_2\cdot C_2H_5$ bezw. $C_2H_5\cdot O_2C\cdot C-CH-C\cdot CO_2\cdot C_2H_5$ bezw. $C_2H_5\cdot O_2C\cdot C-CH-C\cdot CO_2\cdot C_2H_5$ B. Aus OC·N(C₆H₅)·CO

6-Oxo-2-phenylimino-[1.2-pyran]-dihydrid-(3.6)-dicarbonsäure-(3.5)-diäthylester (Bd. XVIII, 8. 507) beim Schmelzen oder beim Erhitzen mit Alkohol (Band, A. 285, 112, 113, 115). — Nadeln (aus Alkohol). F: 197° (B.). Bei ca. 20° löst sich 1 Tl. in 5300 Tln. Ligroin, 630 Tln. Äther, 180 Tln. absol. Alkohol und 43 Tln. Benzol, sehr schwer löslich in siedendem Wasser (B.). Löslich in siedender Soda-Lösung, leicht löslich in kalter verdünnter Kalilauge und kaltem verdünntem Ammoniak (B.). — Das Silbersalz gibt beim Erwärmen mit Äthyljodid in absol. Äther 1-Phenyl-6-äthoxy-pyridon-(2)-dicarbonsäure-(3.5)-diäthylester (B.). Liefert beim Kochen mit Anilin eine bei 265° schmelzende Verbindung $C_{25}H_{10}O_4N_3$ (B.). — Mit Eisenchlorid in Alkohol entsteht eine tief rotviolette Färbung (B.). — Ammoniumsalz. Niederschlag. Schwer löslich in Alkohol und Äther (Hantzsch, Dollfus, B. 35, 244). — Natriumsalz. Krystalle. Schwer löslich (B.). — Kaliumsalz. Krystalle. Leicht löslich

1-Phenyl-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-äthylester-(3 oder 5)-amid-(5 oder 3) bezw. 1-Phenyl-6-oxy-pyridon-(2)-dicarbonsäure-(3.5)-äthylester-(3 oder 5)-amid-(5 oder 3) $C_{18}H_{14}O_5N_2 = C_6H_5$. $NC_5H_3(:O)_3(CO_2:C_3H_5)\cdot CO\cdot NH_2$ bezw. $C_6H_5\cdot NC_5H_4(:O)(OH)(CO_2\cdot C_3H_5)\cdot CO\cdot NH_2$. B. Durch Einw. von 2,5% igem alkoholischem Ammoniak auf 6-Oxo-2-phenylimino-[1.2-pyran]-dihydrid-(3.6)-dicarbonsäure-(3.5)-diäthylester (Bd. XVIII, S. 507) (Guthzeit, Eyssen, J. pr. [2] 80, 56). — Nadeln (aus Alkohol). Zersetzt sich bei 271%. Ziemlich leicht löslich in heißem Chloroform, schwer in Alkohol und Aceton, unlöslich in Wasser und anderen indifferenten Lösungsmitteln. Gibt nach mehrstündigem Aufbewahren in alkoh. Lösung mit Eisenchlorid eine rote Färbung.

in Wasser (B.). — $AgC_{17}H_{16}O_6N$. Niederschlag (B.).

3. 2.6-Dioxo-4-methyl-1.2.3.6-tetrahydro-pyridin-dicarbonsaure-(3.5) $\frac{\text{HO}_2\text{C}\cdot\text{HC}\cdot\text{C}(\text{CH}_3):\text{C}\cdot\text{CO}_2\text{H}}{\text{OC}-\text{NH}-\text{CO}}$

Dinitril, 2.6-Dioxo-4-methyl-3.5-dicyan-1.2.3.6-tetrahydro-pyridin, β -Methyl- $\alpha.\gamma$ -dicyan-glutaconsäure-imid $C_8H_5O_2N_3= {NC\cdot HC\cdot C(CH_3):C\cdot CN \atop OC-NH-CO}$ ist desmotrop mit 2.6-Dioxy-4-methyl-pyridin-dicarbonsäure-(3.5)-dinitril (S. 278).

4. [3.3-Dimethyl-cyclopropan-tetracarbonsaure-(1.1.2.2)]-1.2-imid $C_9H_9O_6N=(CH_3)_9C \stackrel{C(CO_9H)\cdot CO}{C(CO_9H)\cdot CO}NH$.

Dinitril, [8.3 - Dimethyl - 1.2 - dicyan - cyclopropan - dicarbonsäure - (1.2)] - imid $C_0H_7O_2N_3 = (CH_3)_2C \setminus C(CN) \cdot CO$ NH. B. Bei längerem Erhitzen von 3.5-Dibrom-2.6-dioxo-4.4-dimethyl-3.5-dicyan-piperidin mit $40^{\circ}/_{\circ}$ iger Essigsäure auf dem Wasserbad (Guareschi, Grande, C. 1899 II, 439). — Prismen. F: 242° (Zers.). Löslich in Wasser, Alkohol und Essigsäure. — Silbersalz. Niederschlag. Unlöslich in Wasser.

[3.3 - Dimethyl - 1.2 - dicyan - cyclopropan - dicarbonsäure - (1.2)] - methylimid $C_{10}H_9O_2N_3 = (CH_9)_2C \stackrel{C(CN) \cdot CO}{\downarrow_{C(CN) \cdot CO}} N \cdot CH_8$. B. Beim Erhitzen von 3.5 - Dibrom - 2.6 - dioxo-1.4.4-trimethyl-3.5-dicyan-piperidin mit $50^{\circ}/_{\circ}$ iger Essigsäure (Guareschi, C. 1901 I, 578). — Nadeln (aus Alkohol oder durch Sublimation). F: 241,5°. Ist mit Wasserdampf flüchtig. Schwer löslich in Wasser und kaltem Alkohol, sehr leicht in Pyridin.

[3.3 - Dimethyl - 1.2 - dicyan - cyclopropan - dicarbonsäure - (1.2)] - äthylimid $C_{11}H_{11}O_2N_3 = (CH_3)_2C C(CN)\cdot CO N\cdot C_2H_5$. B. Durch Erhitzen von 1-Äthyl-3.5-dibrom-2.6-dioxo-4.4-dimethyl-3.5-dicyan-piperidin mit $50^\circ/_0$ iger Essigsäure (Guareschi, C. 1901 I, 578). — Krystalle (aus Alkohol). F: 211°. Ist sublimierbar. Sehr schwer löslich in Wasser.

Dinitril, [3-Methyl-3-äthyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid $C_{10}H_0O_3N_3 = \frac{CH_3}{C_2H_5} \cdot \frac{C(CN)\cdot CO}{C(CN)\cdot CO}$ NH. B. Aus 3.5-Dibrom-2.6-dioxo-4-methyl-4-äthyl-3.5-dicyan-pieridin durch kurzes Erhitzen auf ca. 110° (Guareschi, Grande, Atti Accad. Torino 34, 925; C. 1899 II, 439) oder durch Erhitzen mit 40 oder 50°/ojeer Essigsäure (Gua., Gr.; Gua., Mem. Accad. Torino [2] 50, 246; C. 1901 I, 579). — Prismen (aus Essigsäure). F: 220—225° (Gua.). Schwer löslich in Wasser; die wäßr. Lösung reagiert sauer (Gua., Gr.; Gua.). — Spaltet bei der Destillation mit Natronlauge 1 Mol Ammoniak ab unter Bildung einer in Wasser schwer löslichen Säure vom Schmelzpunkt 184° (Gua., Gr.). — Silbersalz. Niederschlag (Gua., Gr.). Unlöslich in Wasser, leicht löslich in Ammoniak.

- [8-Methyl-3-äthyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-methylimid $C_{11}H_{11}O_2N_3 = C_2H_5$ $C(CN)\cdot CO$ $N\cdot CH_3$. B. Durch Kochen von 3.5-Dibrom-2.6-dioxo-1.4-dimethyl-4-äthyl-3.5-dicyan-piperidin mit 50°/ojger Essigsäure (Guareschi, C. 1901 I, 579). Nadeln. F: 161—162°. Sublimierbar. Schwer löslich in kaltem Wasser, löslich in Alkohol.
- [3-Methyl-3-äthyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-äthylimid $C_{13}H_{13}O_2N_3 = C_2H_5$ $C_2(CN)\cdot CO$ $N\cdot C_3H_5$. B. Durch Kochen von 3.5-Dibrom-2.6-dioxo-4-methyl-1.4-diāthyl-3.5-dicyan-piperidin mit 50% giger Essigsäure (Guareschi, C. 1901 I, 579). Nadeln (aus Essigsäure oder Alkohol). F: 155,5%. Sublimierbar. Sehr schwer löslich in siedendem Wasser, löslich in Pyridin, leicht löslich in heißem Alkohol.

6. Oxo-carbonsäuren $C_{11}H_{13}O_6N$.

 $\begin{array}{ll} \text{1.} & \textit{[3-Methyl-3-propyl-cyclopropan-tetracarbons \"{a}ure-(1.1.2.2)]-1.2-imid} \\ \text{C}_{11}\text{H}_{13}\text{O}_{6}\text{N} = & \text{C}_{2}\text{H}_{5}\cdot\text{CH}_{2} \\ & \text{C}_{1}(\text{CO}_{2}\text{H})\cdot\text{CO} \\ \end{array} \\ \text{NH}. \end{array}$

Dinitril, [3-Methyl-3-propyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid $C_{11}H_{11}O_2N_3 = C_2H_5 \cdot CH_2 \cdot C(CN) \cdot CO$ NH. B. Durch Erhitzen von 3.5-Dibrom-2.6-dioxo-4-methyl-4-propyl-3.5-dicyan-piperidin mit $50^{\circ}/_{\circ}$ iger Essigsäure (Minozzi, G. 30 I, 269). — Blättchen (aus Essigsäure), Nadeln (aus Wasser). Zersetzt sich von 175° an; F: 183° (M.), 183—184° (Guareschi, C. 1901 I, 579). Fast unlöslich in kaltem Wasser; die wäßr. Lösung reagiert stark sauer (M.). — Gibt beim Erhitzen mit verd. Natronlauge 3-Methyl-3-propyl-cyclopropan-tetracarbonsäure-(1.1.2.2)-dinitril-(1.2) (M.). — Die ammoniakalische Lösung liefert mit Bleiacetat oder Quecksilberchlorid in siedendem Wasser unlösliche Niederschläge (M.). — Ag $C_{11}H_{10}O_2N_3$. Niederschlag (M.). Färbt sich am Licht braun. Wird von warmem Wasser zersetzt.

2. [3 - Methyl - 3 - isopropyl - cyclopropan - tetracarbonsäure - (1.1.2.2)]-1.2-imid $C_{11}H_{18}O_6N = \frac{CH_3}{(CH_3)_2CH} CCCO_3H) \cdot CO$ NH.

Dinitril, [8-Methyl-8-isopropyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid $C_{11}H_{11}O_2N_3 = C(CN)\cdot CO$ NH. B. Aus 3.5-Dibrom-2.6-dioxo-4-methyl-4-isopropyl-3.5-dicyan-piperidin durch längeres Kochen mit $10^0/_0$ iger Essigsäure (Minozzi, G. 30 I, 277). — Prismen. Zersetzt sich von ca. 220° an; F: ca. 240°. Schwer löslich in Wasser.

Die wäßr. Lösung reagiert stark sauer. — ${\rm AgC_{11}H_{10}O_2N_3}$. Niederschlag. Zersetzt sich am Licht oder in der Wärme. Löslich in Wasser.

3. [3.3 - Diāthyl - cyclopropan - tetracarbonsāure - (1.1.2.2)] - 1.2 - imid $C_{11}H_{13}O_{6}N = (C_{2}H_{3})_{2}C \begin{pmatrix} C(CO_{2}H)\cdot CO \\ C(CO_{3}H)\cdot CO \end{pmatrix} NH$.

Dinitril, [3.8 - Diäthyl - 1.2 - dicyan - cyclopropan - dicarbonsäure - (1.2)] - imid $C_{11}H_{11}O_2N_3 = (C_2H_5)_2C \begin{bmatrix} C(CN) \cdot CO \\ C(CN) \cdot CO \end{bmatrix}$ NH. B. Durch Erhitzen von 3.5 - Dibrom - 2.6 - dioxo-4.4-diāthyl-3.5-dicyan-piperidin mit Essigsäure (Peano, C. 1901 I, 582). — Krystalle (aus Essigsäure). F: 202°. — $AgC_{11}H_{10}O_2N_3$. Niederschlag.

7. 0×0 -carbonsäuren $C_{12}H_{15}O_{e}N$.

1. [3-Methyl-3-butyl-cyclopropan-tetracarbonsaure-(1.1.2.2)]-1.2-imid $\begin{array}{c} C_{12}H_{15}O_{6}N = \underbrace{C_{2}H_{5}\cdot CH_{2}\cdot CH_{2}} \\ C_{(CO_{2}H)\cdot CO)} \\ \end{array} \text{NH}.$

Dinitril, [3-Methyl-3-butyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid $C_{12}H_{12}O_2N_3 = C_2H_5 \cdot CH_2 \cdot C(CN) \cdot CO$ NH. B. Durch Erhitzen von 3.5-Dibrom-2.6-dioxo-4-methyl-4-butyl-3.5-dicyan-piperidin mit $50^{\circ}/_{\circ}$ iger Essigsäure (Guareschi, C. 1901 I, 579). — Blättchen. F: 188—189°. Löslich in Wasser. — Ag $C_{12}H_{12}O_2N_2$. Niederschlag. Schwer löslich in Wasser. Ist am Licht beständig.

Dinitril, [8-Äthyl-3-propyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid $C_{12}H_{12}O_{2}N_{3} = \frac{C_{2}H_{5}}{C_{2}H_{5}} \cdot CH_{2} \cdot C(CN) \cdot CO$ NH. B. Durch Erhitzen von 3.5-Dibrom-2.6-dioxo-4-āthyl-4-propyl-3.5-dicyan-piperidin mit 50% jeger Essigsäure (Guareschi, C. 1901 I, 580). — Krystalle. F: 186—186,5%. Löslich in Alkohol, sehr schwer löslich in siedendem Wasser. — Spaltet beim Erhitzen mit verd. Alkalilauge Ammoniak ab. — Silbersalz. Niederschlag.

8. Oxo-carbonsäuren $C_{14}H_{19}O_6N_{\bullet}$

1. 2.6-Dioxo-4-methyl-4-fô-methyl- γ -pentenyl]-piperidin-dicarbon-säure-(3.5) $C_{14}H_{19}O_{4}N = HO_{2}C \cdot HC \cdot C(CH_{3}) [CH_{1} \cdot CH_{2} \cdot CH : C(CH_{3})_{2}] \cdot CH \cdot CO_{2}H$

Dinitril, 2.6 - Dioxo - 4 - methyl - 4 - [δ - methyl - γ - pentenyl] - 8.5 - dicyan - piperidin $\operatorname{C}_{14}\operatorname{H}_{17}\operatorname{O}_2\operatorname{N}_3 = \begin{array}{c} \operatorname{NC}\cdot\operatorname{HC}\cdot\operatorname{C}(\operatorname{CH}_3)[\operatorname{CH}_3\cdot\operatorname{CH}_3\cdot\operatorname{CH}:\operatorname{C}(\operatorname{CH}_3)_2]\cdot\operatorname{CH}\cdot\operatorname{CN} \\ \operatorname{OC} & \operatorname{NH} & \operatorname{CO} \\ \end{array}$. B. Aus 2-Methyl-hepten-(2)-on-(6) und Cyanessigester in alkoh. Ammoniak (Guareschi, C. 1901 I, 580). — Blättchen (aus verd. Alkohol). F: 183—184,5°. Löslich in Alkohol, Aceton, Pyridin und Essigsäure, schwer löslich in Wasser. — Verhalten gegen Brom: G.

2. [3-Methyl-3-n-hexyl-cyclopropan-tetracarbonsaure-(1.1.2.2)]-1.2-imid $\begin{array}{c} CH_3 \cdot C(CO_3H) \cdot CO \\ CH_3 \cdot CO \end{array} \text{NH}. \end{array}$

Dinitril, [8-Methyl-8-n-hexyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid $C_{14}H_{17}O_2N_2 = CH_2 \cdot [CH_2]_4 \cdot CH_2 \cdot C_{(CN) \cdot CO}$ NH. B. Durch Erhitzen von 3.5-Dibrom-2.6-dioxo-4-methyl-4-n-hexyl-3.5-dicyan-piperidin mit $50^{\circ}/_{\circ}$ iger Essigsäure auf dem Wasserbad (Guarbschi, Grande, C. 1899 II, 439). — Blättchen. F: 154—155°. Sehr schwer löslich in Wasser, löslich in Alkohol und Essigsäure.

c) Oxo-carbonsauren $C_n H_{2n-11} O_6 N$.

Oxo-carbonsăuren $C_{10}H_{9}O_{6}N_{c}$

1. 3.5-Dioxo-2-diacetylmethyl- Δ^1 -pyrrolin-carbonsäure-(4) $C_{10}H_{\bullet}O_{\bullet}N=$ HO₂C·HC——CO

OC·N:C·CH(CO·CH₃)₂

5 - Oxo - 8 - imino - 2 - diacetylmethyl - Δ^1 - pyrrolin - carbonsäure - (4) - äthylester, "Dicyanmalonester-acetylacetonlactam" $C_{18}H_{14}O_{8}N_{8} =$ $C_2H_3 \cdot O_2C \cdot HC - C: NH$

OC·N:C·CH(CO·CH₃)₂. B. Aus Acetylaceton und α-Dicyanmalonester (Bd. III, S. 850) in Gegenwart von Natriumäthylat-Lösung (Traube, A. 332, 132). — Gelbe Nadeln (aus Benzol oder Alkohol). F: 135°. — Liefert beim Behandeln mit alkoh. Salzsäure Dicyanmalonäthylestersäure (Bd. III, S. 850).

5-Oxo-8-imino-2-diacetylmethyl- Δ^1 -pyrrolin-carbonsäure-(4)-nitril, 5-Oxo-NC·HC-C:NH 8-imino-2-diacetylmethyl-4-cyan- Δ^1 -pyrrolin $C_{10}H_2O_2N_2=$

- OC · N: C·CH(CO·CH₂)₂ B. Aus Acetylaceton und Dicyan-cyanessigester (Bd. III, S. 851) in Gegenwart von Natriumäthylat-Lösung (Traube, A. 332, 156). — Gelbgrüne Tafeln (aus verd. Alkohol). F: 175°.
- 2. $\alpha [3.5 Dioxo 4 acetyl \Delta^1 pyrrolinyl (2)] acetessigs aure, 3.5 Dioxo-$ 4 - acetyl - 2 - [acetyl - carboxy - methyl] - Δ^1 - pyrrolin $C_{10}H_{9}O_{6}N =$ CH₃·CO·HC——CO

OC·N:C·CH(CO·CH₂)·CO₂H

- α -[5 Oxo-3 imino -4 acetyl Δ^1 pyrrolinyl (2)] acetessigsäure äthylester, "Dicyanbisacetessigester-lactam" $C_{12}H_{14}O_{5}N_{2} =$ CH₃·CO·HC——C:NH
- $O_{\mathbf{L}}^{\dagger} \cdot \mathbf{N} : \stackrel{\bullet}{C} \cdot \mathbf{CH}(\mathbf{CO} \cdot \mathbf{CH_3}) \cdot \mathbf{CO_3} \cdot \mathbf{C_3H_5}$. B. Durch Behandeln von α -Dicyanbisacetessigester (Bd. III, S. 862) mit wäßriger oder wäßrig-alkoholischer Natronlauge (TRAUBE, B. 31, 2943; A. 332, 141). Aus α-Dicyanacetessigester (Bd. III, S. 836) und Natriumacetessigester in Alkohol (T., A. 332, 141). — Dunkelgelbe Nadeln (aus Alkohol). F: 136°. Schwer löslich in Äther, Benzol und Wasser, ziemlich leicht in heißem Alkohol. Löslich in Ammoniak; löst sich in Alkalilauge mit rotgelber Farbe und fällt aus der Lösung bei sofortigem Zusatz von Säure unverändert aus; bei längerer Einw. von Alkalilauge tritt Zersetzung ein. — Gibt beim Kochen mit 8% jeger Natronlauge Dicyan-bis-acetessigsäure.

d) Oxo-carbonsäuren $C_n H_{2n-15} O_6 N$.

1. 2.6 - Dioxo-4-methyl-4-phenyl-piperidin-dicarbonsäure - (3.5) $HO_{\bullet}C \cdot HC \cdot C(CH_{\bullet})(C_{\bullet}H_{\bullet}) \cdot CH \cdot CO_{\bullet}H$ $C_{14}H_{12}O_4N =$

Dinitril, 2.6 - Dioxo - 4 - methyl - 4 - phenyl - 8.5 - dicyan - piperidin, β - Methyl- $NC \cdot HC \cdot C(CH_3)(C_6H_6) \cdot CH \cdot CN$ β -phenyl- $\alpha\alpha'$ -dicyan-glutarsäure-imid $C_{14}H_{11}O_2N_2=$ OĊ--NH-Aus Acetophenon und Cyanessigester in alkoh. Ammoniak (GUARESOHI, Mem. Accad. Torino [2] 50, 271; C. 1901 I, 581). — Blättchen (aus Alkohol). Färbt sich bei ca. 270° braun; F: ca. 280°. Sehr schwer löslich in Wasser. Löslich in Alkohol.

2. 2.6-Dioxo-4-methyl-4- β -phenäthyl-piperidin-dicarbonsäure-(3.5) HO,C.HC.C(CH,)(CH, CH, C,H,).CH.CO,H

Dinitril, 2.6 - Dioxo-4-methyl-4- β -phenäthyl-3.5-dicyan-piperidin, β -Methyl- $B-[eta-{
m phenäthyl}]-lpha.lpha'-{
m dicyan-glutars}$ äure-imid ${
m C_{16}H_{15}O_2N_3}=0$ NC·HC·C(CH₂)(CH₂·CH₂·C₂H₃)·CH·CN B. Aus Benzylaceton und Cyanessigester in O¢--NH-

14°/₀igem alkoholischem Ammoniak (Guareschi, Mem. Accad. Torino [2] 50, 272; C. 1901 I, 581). — Blättchen (aus Alkohol). F: 223—224,5°. Fast unlöslich in Wasser. — Liefert bei der Einw. von verd. Ammoniak 2.6-Dioxy-4-methyl-pyridin-dicarbonsäure-(3.5)-dinitril und Äthylbenzol. Beim Behandeln mit Brom in Eisessig erhält man 3.5-Dibrom-2.6-dioxo-4-methyl-4-β-phenäthyl-3.5-dicyan-piperidin (s. u.). — NH₄C₁₆H₁₄O₂N₃. Krystalle. Löslich in Wasser. — (NH₄)₂C₁₆H₁₂O₂N₃. Spaltet beim Aufbewahren im Vakuum 1 Mol Ammoniak ab. — Silbersalz. Niederschlag. Färbt sich beim Erhitzen in feuchtem Zustand bei ca. 100° braup. Schwer löslich in siedendem Wasser. bei ca. 100° braun. Schwer löslich in siedendem Wasser.

2.6 - Dioxo - 1.4 - dimethyl - 4 - β - phenäthyl - 3.5 - dicyan - piperidin, β - Methyl - β - $[\beta$ - phenäthyl] - $\alpha.\alpha'$ - dicyan - glutarsäure - methylimid $C_{17}H_{17}O_2N_3 = NC \cdot HC \cdot C(CH_3)(CH_2 \cdot CH_2 \cdot C_6H_5) \cdot CH \cdot CN$

. B. Aus Benzylaceton, Cyanessigester und Methyl-OC-----N(CH₂)---amin in wäßrig-alkoholischer Lösung (Guareschi, Mem. Accad. Torino [2] 50, 275; C. 1901 I, 581). — Nadeln (aus Alkohol). F: 203—204°. Sehr schwer löslich in siedendem Wasser, schwer in kaltem Alkohol. Löslich in heißer Essigsäure und in verd. Alkalilauge. — Verhält sich bei der Titration mit Natronlauge in verd. Alkohol wie eine einbasische Säure. Einw. von Brom: G.

8.5 - Dibrom - 2.6-dioxo-4-methyl-4-eta-phenäthyl-piperidin - dicarbonsäure-(3.5)dinitril, 3.5 - Dibrom - 2.6 - dioxo - 4 - methyl - 4 - β - phenäthyl - 3.5 - dicyan - piperidin, $\alpha.\alpha'$ -Dibrom- β -methyl- β -[β -phenäthyl]- $\alpha.\alpha'$ -dicyan-glutarsäure-imid $C_{16}H_{18}O_{8}N_{8}Br_{8} = NC \cdot BrC \cdot C(CH_{3})(CH_{2} \cdot CH_{2} \cdot C_{6}H_{5}) \cdot CBr \cdot CN$. B. Aus 2.6-Dioxo-4-methyl-4- β -phenāthyl-3.5-di-

cyan-piperidin und Brom in Eisessig (Guareschi, Mem. Accad. Torino [2] 50, 274; C. 1901 I, 581). — Krystalle. F: 163—165° (Zers.). — Liefert beim Kochen mit 50°/0iger Essigsäure [3-Methyl-3- β -phenäthyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]-imid.

e) Oxo-carbonsäuren $C_n H_{2n-17} O_6 N$.

[3-Methyl-3-eta-eta-phenäthyl-cyclopropan-tetracarbonsäure-(1.1.2.2)]- $\text{1.2-imid} \ \ C_{16}H_{15}O_6N = \underbrace{C_6H_5 \cdot CH_3 \cdot CH_3}_{C_1CO_2H_3} \cdot \underbrace{C(CO_2H_1) \cdot CO}_{C_1CO_2H_1) \cdot CO} NH.$

Dinitril, [3-Methyl-3- β -phenäthyl-1.2-dicyan-cyclopropan-dicarbonsäure-(1.2)]imid $C_{16}H_{13}O_{2}N_{3} = C_{6}H_{5} \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot CH_{2} \cdot CH_{3} \cdot CH_{2} \cdot CH_{3} \cdot CH_$ 4 - methyl - 4 - β - phenäthyl - 3.5 - dicyan - piperidin durch Kochen mit 50% iger Essigsäure (Guareschi, Mem. Accad. Torino [2] 50, 274; C. 1901 I, 581). — Krystalle (aus Essigsaure). F: 203—205°. Sehr wenig löslich in Wasser. — Spaltet bei der Destillation mit Natronlauge Ammoniak ab.

f) Oxo-carbonsäuren $C_n H_{2n-29} O_6 N$.

fOxo-carbonsäuren $f C_{21}f H_{12}f O_af N_a$

1. 3.5 - Bis - [3 - carboxy - benzoyl] - pyridin $C_{21}H_{13}O_6N$, s. nebenstehende Formel. B. Durch Oxydation von 3.5-Di-m-tolubenzyl-pyridin mit Kaliumdichromat in siedender verdünnter Schwefelsäure (Rüchemer, A. 280, 82), — Nadeln (aus Essigsäure). F: 270—271°.

2. 3.5-Bis-[4-carboxy-benzoyl]-pyridin $C_{21}H_{13}O_6N$, s. nebenstehende Formel. B. Durch Oxydation von 3.5-Bis-[4-isopropyl-benzyl]-pyridin oder $HO_2C \cdot C_0H_4 \cdot CO \cdot {\bigodot}_N \cdot CO \cdot C_0H_4 \cdot CO_2H$ von 3.5-Dis-[4-isopropyl-benzyl]-pyridin oder von 3.5-Di-p-tolubenzyl-pyridin mit Kaliumdichromat in siedender verdünnter Schwefelsäure (Rüghemer, A. 280, 66, 78). — Krystallpulver (aus Essigsäure). F: ca. 308° (Zers.). Fast unlöslich in Wasser, Alkohol, Äther, Benzol, Chloroform und Ligroin, schwer in Eisessig. Unlöslich in Mineralsäuren. — Zersetzt sich beim Erhitzen mit Eisessig teilweise. Bei der trocknen Destillation des Silbersalzes erhält man 3.5-Dibenzoyl-pyridin. — CuC₂₁H₁₁O₆N. Dunkelblaue Körner. — Ag₂C₂₁H₁₁O₆N. Körner. Unlöslich. Ist in trocknem Zustand am Licht beständig. — CaC₂₁H₁₁O₆N + H₂O. Krystalle. Schwer löslich in Wasser.

g) Oxo-carbonsäuren $C_n H_{2n-39} O_6 N$.

3.6 - Bis - [2 - carboxy-benzoy!] - carbazol C₂₈H₁₇O₆N, s. nebenstehende Formel.

Zur Konstitution vgl. Scholl, Neovius, B.

44 [1911], 1250; Ehbenreich, M. 32 [1911], 1103. — B. In geringer Menge beim Kochen von Carbazol mit Phthalsäureanhydrid in Gegenwart von wasserfreiem Aluminiumchlorid in Schwefelkohlenstoff (Stümmer, M. 28, 411, 413 Anm.). — Krystalle. F: 312° (St.). — Gibt mit kalter konzentrierter Schwefelsäure eine rote Färbung, die beim Verdünnen über

5. Oxo-carbonsäuren mit 7 Sauerstoffatomen.

a) Oxo-carbonsäuren $C_n H_{2n-9} O_7 N$.

 $\mathbf{0}$ xo-carbonsäuren $\mathbf{C_8H_7O_7N_.}$

Violett in Blau übergeht (Sr.).

1. 5- $Oxo-\Delta^1$ -pyrrolin-carbonsäure-(3)-malonsäure-(2), Δ^1 -Pyrrolon-(5)-carbonsäure-(3)-malonsäure-(2) $C_8H_7O_7N = \frac{H_2C-CH\cdot CO_2H}{OC\cdot N:C\cdot CH(CO_2H)_2}$.

2. [5-Oxo-3-carboxy-pyrrolidyliden-(2)]-malonsdure, 3-Carboxy-2-dicarboxymethylen-pyrrolidon-(5) $C_8H_7O_7N = \frac{H_1C-CH\cdot CO_1H}{OC\cdot NH\cdot C:C(CO_1H)_2}$.

[5-Oxo-3-carbāthoxy-pyrrolidyliden-(2)]-cyanessigsäure-āthylester $C_{12}H_{14}O_5N_2=H_2C$ — $CH\cdot CO_2\cdot C_2H_5$ B. Bei gelindem Erwärmen von Δ^1 -Pyrrolon-(5)-[carbon-OC·NH·C:C(CN)·CO_2·C_2H_5
säure-(3)-āthylester]-[cyanessigsäure-(2)-āthylester] mit Soda-Lösung und vorsichtigem Ansäuern der abgekühlten Lösung mit Salzsäure (B., Th., Soc. 95, 1521). — Krystalle. F: 129°. Löslich in Wasser, sehr schwer löslich in Alkohol. — Geht beim Schmelzen oder beim Lösen in heißem Alkohol oder in siedendem Wasser in Δ^1 -Pyrrolon-(5)-[carbonsäure-(3)-āthylester]-[cyanessigsäure-(2)-āthylester] über. Liefert beim Kochen mit Soda-Lösung β -Oxo- α -cyan-adipinsäure-monoāthylester, beim Kochen mit Kalilauge Bernsteinsäure und Malonsäure. Das Silbersalz liefert mit Methyljodid in wasserfreiem Benzol bei Wasserbadtemperatur [1-Methyl-5-oxo-3-carbāthoxy-pyrrolidyliden-(2)]-cyanessigsäure-āthylester (S. 368). — Ag $C_{19}H_{13}O_5N_2$. Gallertartige Masse.

368

selbst in siedenden Alkalicarbonat-Lösungen. Die alkalische Lösung wird an der Luft dunkelblau. Beim Lösen in heißer verdünnter Kalilauge, Kühlen und Ansauern der Lösung mit Essigsäure und Kochen des Filtrats erhält man [5-Imino-pyrrolidyliden-(2)]-cyanessigsäureäthylester. Beim Behandeln mit heißer verdünnter Kalilauge entsteht β -Imino- α -cyanbutan- α - γ - δ -tricarbonsäure-monoäthylester. Bei der Einw. von heißer verdünnter Salzsäure oder heißer salpetriger Säure erhält man △1-Pyrrolon-(5)-[carbonsäure-(3)-äthylester]-[cyanessigsaure-(2)-athylester].

Silbersalzes des [5-Oxo-3-carbāthoxy-pyrrolidyliden-(2)]-cyanessigsāure-āthylesters in Benzol mit überschüssigem Methyljodid (B., Th., Soc. 95, 1529). — Nadeln (aus Alkohol). F: 84°. Unlöslich in kalter Kalilauge. — Liefert beim Kochen mit der berechneten Menge Kalilauge Methylamin und das Kaliumsalz des β -Oxo- α -cyan-adipinsaure-monoathylesters.

b) Oxo-carbonsăuren $C_n H_{2n-11} O_7 N$.

1. 3.5 - Dioxo - Δ^1 - pyrrolin - carbonsäure - (4) - [α - acetessigsäure] - (2) $C_0H_7O_7N = \frac{HO_2C \cdot HC}{CO}$ OC·N:C·CH(CO·CH_a)·CO_aH

5-Oxo-8-imino- Δ^1 -pyrrolin-[carbonsäure-(4)-äthylester]-[α -acetessigsäure-(2)äthylester], "Dicyan-malon-acetessigester-lactam" $C_{18}H_{16}O_6N_8 = C_2H_5\cdot O_2C\cdot HC$ —C: NH

C₂H₅· C₂C· HC—C: NH
OC·N:C·CH(CO·CH₂)·CO₂·C₂H₅

ester (Bd. III, S. 850) in Gegenwart von Natriumäthylat-Lösung (W. TRAUBE, HOEPNER, A. 332, 115, 129, 130). — Gelbe Nadeln (aus Benzol). Schmilzt unscharf zwischen 103° and 137°. Leicht löslich in heißem Alkohol und Benzol, fast unlöslich in Wasser. — Liefert beim Behandeln mit 20' imm Natriumschare in Wasser. — Liefert beim Behandeln mit 3% igem Natriumamalgam in Wasser bei 0% β -Amino-äthan- $\alpha.\alpha.\beta$ -tricarbonsäure-monoamid (Bd. IV, S. 501). Bei der Einw. von alkoh. Salzsäure erhält man β -Imino- β -cyan-athan- α . α -dicarbonsaure-monoathylester (Bd. III, S. 850).

5-Oxo-3-imino- Δ^1 -pyrrolin-[carbonsäure-(4)-nitril]-[α -acetessigsäure-(2)-äthylester], α -[5-Oxo-3-imino-4-cyan- Δ^1 -pyrrolinyl-(2)]-acetessigsäure-äthylester, "Dicyan-cyanessigester-acetessigester-lactam" $C_{11}H_{11}O_4N_8=$ NC·HC——C:NH

OC·N:C·CH(CO·CH₃)·CO₃·C₃H₅

B. Aus Dicyan-cyanessigester (Bd. III, S. 851) und
Natriumacetessigester in Alkohol (W. Traube, Sander, A. 832, 156). — Krystalle (aus verd. Alkohol). F: 168°.

2. α -Methyl- α -[3.5-dioxo-4-carboxy- Δ^1 -pyrrolinyl-(2)]-acetessigsäure HO,C HC—CO $C_{10}H_0O_2N =$ $O\dot{C} \cdot N : \dot{C} \cdot C(CH_2)(CO \cdot CH_2) \cdot CO_2H$

 α -Methyl- α -[5-oxo-8-iming - 4 - carbāthoxy - Δ^1 - pyrrolinyl - (2)] - acetessigsäureäthylester, "Dicyan-malon-methylacetessigester-lactam" $C_{14}H_{18}O_{4}N_{2}=C_{2}H_{5}\cdot O_{2}C\cdot HC$ —C: NH

B. Bei längerer Einw. von Natrium-OC·N:C·C(CH₂)(CO·CH₂)·CO₂·C₂H₃.

B. Bei langerer Einw. von Natriummethylacetessigester auf Dicyan-malonester (Bd. III, S. 850) in wenig Alkohol (W. TRAUBE, HOEPNER, A. 332, 130). — Gelbe Nadeln (aus Alkohol). F: 139°.

3. Nortropanon-(3)-dioxalyisäure-(2.4) $C_{11}H_{11}O_7N$, Formel I.

Tropanon-(8)-dioxalylsäure-(2.4)-diäthylester, "Tropinon-dioxalylsäure-(2.4)-diäthylester" C₁₀H₂₁O₂N, Formel II. B. Beim Versetzen einer Lösung von 5 g Tropanon-(3)oxalylsaure-(2)-athylester in 6 g Oxalester unter guter Kühlung mit 2,9 g alkoholfreiem

Natriumäthylat (WILLSTÄTTER, B. 30, 2714). — Gelbe Prismen (aus Alkohol) oder pleochroitische Rhomboeder (aus Methanol). F: 176° (Zers.). Schwer löslich in Chloroform, sehr schwer in Alkohol, Methanol und Äther, fast unlöslich in Wasser. Leicht löslich in Säuren. Nicht unverändert löslich in Alkalilaugen mit gelber Farbe. Zeigt in wäßr. Suspension oder in alkoh. Lösung eine intensive smaragdgrüne Färbung.

c) Oxo-carbonsäuren $C_n H_{2n-19} O_7 N$.

3.5 - Dioxo - Δ^1 - pyrrolin - carbonsäure - (4) - [α - benzoylessigsäure] - (2) $C_{14}H_9O_7N = \frac{HO_2C \cdot HC - CO}{OC \cdot N : C \cdot CH(CO \cdot C_4H_8) \cdot CO_4H}$

5-Oxo-3-imino- Δ^1 -pyrrolin-[carbonsäure-(4)-äthylester]-[α -bengoylessigsäure-(2)-äthylester], "Dicyan-malon-benzoylessigester-lactam" $C_{18}H_{18}O_6N_2=C_2H_8\cdot O_2C\cdot HC$ —C:NH

 $O^{\dagger}_{\mathbf{C}}\cdot \mathbf{N}:\dot{\mathbf{C}}\cdot \mathbf{CH}(\mathbf{CO}\cdot \mathbf{C_6H_5})\cdot \mathbf{CO_2}\cdot \mathbf{C_2H_5}$. B. Man läßt Dicyan-malonester (Bd. III, S. 850) auf Natriumbenzoylessigester in alkoh. Lösung einwirken und fällt mit Säure (W. Traube, Hoepner, A. 332, 131). — Gelbe Nadeln (aus Alkohol oder Benzol). F: 194°. — Liefert in alkoh. Salzsäure β -Imino- β -cyan-āthan- α . α -dicarbonsäure-monoāthylester (Bd. III, S. 850).

6. Oxo-carbonsäuren mit 8 Sauerstoffatomen.

2.5 - Dioxo - pyrrolidin - carbon säure - (3) - malon säure - (4) $C_8H_7O_8N = (HO_2C)_2CH \cdot HC - CH \cdot CO_2H \cdot OC \cdot NH \cdot CO$

Triamid $C_8H_{10}O_8N_4 = \frac{(H_8N \cdot CO)_8CH \cdot HC - CH \cdot CO \cdot NH_8}{OC \cdot NH \cdot CO}$. B. Bei 8—10-tägigem

Aufbewahren von Propan-α.α.β.γ.γ-pentacarbonsäure-pentaäthylester mit konzentriertem wäßrigem Ammoniak bei gewöhnlicher Temperatur (Ruhemann, Soc. 75, 247). — Nadeln (aus Wasser). F: 212° (Zers.). Leicht löslich in siedendem Wasser.

7. Oxo-carbonsäuren mit 9 Sauerstoffatomen.

Oxo-carbonsăuren $C_n H_{2n-13} O_9 N$.

- 1. 4-0xo-1.4-dihydro-pyridin-tetracarbonsäure-(2.3.5.6), Pyridon-(4)-tetracarbonsäure-(2.3.5.6) $C_9H_8O_9N = \frac{HO_4C \cdot C \cdot CO \cdot C \cdot CO_2H}{HO_4C \cdot C \cdot NH \cdot C \cdot CO_2H}$ ist desmotrop mit 4-0xy-pyridin-tetracarbonsäure-(2.3.5.6), S. 283.
- $\begin{array}{l} \textbf{2.} \; \alpha \text{-Acetyl-} \; \alpha \text{-} [3.5 \text{-dioxo-4-carboxy-} \Delta^1 \text{-pyrrolinyl-(2)}] \text{-bernsteinsäure} \\ \textbf{C}_{11} \textbf{H}_9 \textbf{O}_9 \textbf{N} = \begin{array}{c} \textbf{HO}_2 \textbf{C} \cdot \textbf{HC} & \textbf{CO} \\ \textbf{OC} \cdot \textbf{N} : \textbf{C} \cdot \textbf{C} (\textbf{CO} \cdot \textbf{CH}_3) (\textbf{CO}_3 \textbf{H}) \cdot \textbf{CH}_3 \cdot \textbf{CO}_2 \textbf{H} \end{array} \\ \end{array} .$

 α -Acetyl- α -[5-oxo-8-imino-4-carbāthoxy- Δ^1 -pyrrolinyl-(2)]-bernsteinsäure-diāthylester, "Dicyan-malon-acetbernsteinsäureester-lactam" $C_{17}H_{22}O_8N_2=C_3H_5\cdot O_2C\cdot HC$ —C: NH

OC·N:C·C(CO·CH₃)(CO₂·C₂H₅)·CH₂·CO₂·C₂H₅

ester (Bd. III, S. 850) auf die Natrium-Verbindung des Acetbernsteinsäureesters in alkoh.

Lösung einwirken und säuert mit verd. Schwefelsäure an (W. Traube, Hoepner, A. 332, 131). — Gelbe Krystalle. F: 116°. Leicht löslich in heißem Alkohol und Benzol, sehwer in Wasser.

H. Oxy-oxo-carbonsäuren.

1. Oxy-oxo-carbonsäuren mit 4 Sauerstoffatomen.

a) Oxy-oxo-carbonsäuren $C_n H_{2n-3} O_4 N$.

 $\begin{array}{lll} \textbf{2-0xy-5-oxo-2.3-dimethyl-pyrrolidin-carbonsaure-(4), 2-0xy-2.3-dimethyl-pyrrolidon-(5)-carbonsaure-(4)} & C_7H_{11}O_4N = \\ & HO_2C\cdot HC ------CH\cdot CH_3 & bezw. \ desmotrope \ Formen. \end{array}$

2-Oxy-2.3-dimethyl-pyrrolidon-(5)-carbonsäure-(4)-nitril (?), 2-Oxy-2.3-dimethyl-4-cyan-pyrrolidon-(5) (?) $C_7H_{10}O_3N_2 = {NC \cdot HC - CH \cdot CH_3 \over OC \cdot NH \cdot C(OH) \cdot CH_3}$ (?). B. Beim Erwärmen von 1 Mol Aldehydammoniak mit 1 Mol Cyanessigester in alkoh. Lösung (RIEDEL, J. pr. [2] 54, 550, 551). — Blättchen (aus Wasser). Sehr leicht löslich in heißem Wasser, fast unlöslich in Alkohol, Äther, Chloroform, Benzol und Ligroin. — Zersetzt sich beim Erhitzen. Verhalten beim Erhitzen mit alkoh. Ammoniak im Rohr: R.

b) Oxy-oxo-carbonsäuren $C_n H_{2n-7} O_4 N$.

Oxy-oxo-carbonsauren $C_6H_5O_4N$.

- 1. 5-Oxy-4-oxo-1.4-dihydro-pyridin-carbonsäure-(2), 5-Oxy-pyridon-(4)-carbonsäure-(2) (Komenaminsäure) $C_0H_0O_4N = \frac{HO \cdot C \cdot CO \cdot CH}{HC \cdot NH \cdot C \cdot CO_4H}$ ist desmotrop mit 4.5-Dioxy-pyridin-carbonsäure-(2), 8. 251.
- 1-Äthyl-5-oxy-pyridon-(4)-carbonsäure-(2) (Äthylkomenaminsäure) $C_8H_9O_4N=HO\cdot C$ —CO—CH ist desmotrop mit 1-Äthyl-4.5-dioxo-1.4.5.6-tetrahydro-pyridin-carbonsäure-(2), S. 329.
- $\begin{array}{lll} \textbf{1-Phenyl-5-oxy-pyridon-(4)-carbons\"{a}ure-(2)} & \textbf{(Phenylkomenamins\"{a}ure)} \\ \textbf{C}_{12}\textbf{H}_{9}\textbf{O}_{4}\textbf{N} & = \begin{array}{c} \textbf{HO\cdot C-CO-CH} \\ \textbf{HC\cdot N(C_{6}\textbf{H}_{5})\cdot C\cdot CO_{2}\textbf{H}} \\ \textbf{hydro-pyridin-carbons\"{a}ure-(2), S. 329.} \end{array} \\ \end{array}$ ist desmotrop mit 1-Phenyl-4.5-dioxo-1.4.5.6-tetra-hydro-pyridin-carbons\"{a}ure-(2), S. 329.
- 2. 4 (bezw. 6) Oxy 6 (bezw. 4) oxo dihydropyridin carbonsäure (2), 4 (bezw. 6) Oxy pyridon (6 bezw. 4) carbonsäure (2) $C_eH_sO_4N = HC:C(OH)\cdot CH$ $HC:CO\cdot CH$ bezw. $HC:CO\cdot CH$ ist desmotrop mit 4.6-Dioxy-pyridin-carbonsäure (2), 8. 253.
- $\begin{array}{c} \textbf{1-Phenyl-3.5-dichlor-4 (besw. 6)-oxy-pyridon-(6 besw. 4)-carbons\"{a}ure-(2)} \\ \textbf{C}_{12}\textbf{H}_{7}\textbf{O}_{4}\textbf{NCl}_{2} = \begin{array}{c} \textbf{ClC} = \textbf{C}(\textbf{OH}) \textbf{CCl} \\ \textbf{OC} \cdot \textbf{N}(\textbf{C}_{4}\textbf{H}_{5}) \cdot \textbf{C} \cdot \textbf{CO}_{2}\textbf{H} \end{array} \\ \textbf{1-Phenyl-3.5-dichlor-4.6-dioxo-1.4.5.6-tetrahydro-pyridin-carbons\"{a}ure-(2), S. 329. \end{array}$
- $\begin{array}{l} \textbf{1-Phenyl-3.5-dichlor-4 (oder 6)-methoxy-pyridon-6(oder 4)-carbons \"{a}ure-(2)-methylester } & C_{14}H_{11}O_4NCl_2 = & \begin{array}{l} ClC:C(O\cdot CH_3)\cdot CCl \\ OC-N(C_6H_5)-C\cdot CO_2\cdot CH_3 \end{array} & oder \\ \hline & ClC-CO-CCl \end{array}$
- CIC—CO—CCl

 CH₂·O·C·N(C₆H₅)·C·CO₂·CH₃

 B. Aus dem Disilbersalz der 1-Phenyl-3.5-dichlor-4.6-dioxo-1.4.5.6-tetrahydro-pyridin-carbonsäure-(2) und Methyljodid (ZINCKE, FUCHS, A. 267, 32).

 Nadeln (aus absol. Alkohol) oder Tafeln (aus verd. Alkohol). F: 140°. Leicht löslich in Chloroform, Benzol, Alkohol und Eisessig, fast unlöslich in Äther, unlöslich in Wasser.

- 3. 4-Oxy-2-oxo-1.2-dihydro-pyridin-carbonsäure-(3), 4-Oxy-pyridon-(2)-carbonsäure-(3) $C_6H_5O_4N = \frac{HC \cdot C(OH) : C \cdot CO_2H}{HC NH CO}$.
- 1-Methyl-4-oxy-pyridon-(2)-carbonsäure-(3)-nitril, 1-Methyl-4-oxy-3-cyan-pyridon-(2) (Ricininsäure) $C_7H_6O_2N_2=\frac{HC\cdot C(OH):C\cdot CN}{HC\cdot N(CH_3)\cdot CO}$ ist desmotrop mit 1-Methyl-2.4-dioxo-1.2.3.4-tetrahydro-pyridin-carbonsäure-(3)-nitril, S. 330.
- 1-Methyl-4-methoxy-pyridon-(2)-carbonsäure-(3)-nitril, 1-Methyl-4-methoxy-3-cyan-pyridon-(2), Ricinin C₈H₈O₂N₂ = HC·C(0·CH₃):C·CN
 HC·N(CH₃)-CO
 Lution vgl. Späth, Koller, B. 56 [1923], 880, 2454. V. In den Samen von Ricinus communis L. (Tuson, Soc. 17, 195; Chem. N. 22, 229; J. 1864, 457; 1870, 877). In den Keimpflanzen von Ricinus communis L. (Schulze, B. 30, 2197; vgl. Evans, Am. Soc. 22, 40; Schulze, Winterstein, H. 43, 212). Ricinin-Gehalt von ungekeimten Ricinussamen: Soave, Ann. di Chim. e di Farmacol. 21 [1895], 53; C. 1895 I, 853; Bl. [3] 14, 836; Schu., WI.; von etiolierten und von grünen Ricinuskeimpflanzen: Schu.; Schu., Wi. Zur Darstellung aus Ricinussamen bezw. aus den Preßrückständen desselben vgl. Evans; Maquenne, Philippe, C. r. 138, 506; Bl. [3] 31, 467; Schu., Wi., aus Ricinuskeimpflanzen vgl. Schu., Phil., C. r. 138, 506; Schu., Wi.). Sublimiert bei vorsichtigem Erhitzen unzersetzt (Soave). Löslich in Wasser von 10° zu 0,27%, in 98 volumprozentigem Alkohol von 10° zu 0,16%, leichter löslich in Wasser und Alkohol in der Wärme (Soave). Leicht löslich in heißem Chloroform, unlöslich in Petroläther (Schu., Wi.). Unlöslich in kalter, löslich in warmer verd. Natronlauge (Schu.).

Ricinin entwickelt beim Erwärmen mit Kaliumdichromat und verd. Schwefelsäure Blausäure (Schulze, B. 30, 2198). Beim Einleiten von Chlor in eine Lösung von Ricinin in Eisessig bildet sich Chlorricinin (s. u.) (Soave, Ann. di Chim. e di Farmacol. 21 [1895], 56). Brom in Wasser oder Chloroform erzeugt Bromricinin (Evans, Am. Soc. 22, 42; vgl. Soave). Wird beim Kochen mit Salzsäure nicht verändert (Schu.). Beim Kochen mit Alkalien entstehen Ricininsäure (S. 330) und Methanol (Soave; Maquenne, Philippe, C. r. 138, 506; Bl. [3] 31, 468). — Besitzt bitteren Geschmack (Soave; Ma., Phi., Bl. [3] 31, 468). Giftwirkung auf den tierischen Organismus: Soave. — Die farblose Lösung in kalter konzentrierter Schwefelsäure färbt sich beim Erwärmen erst strohgelb, dann bordeaukrot, auf Zusatz von Kaliumdichromat gelbgrün bis grün (Soave; vgl. Winterstein, Keller, Weinhagen, Ar. 255 [1917], 519). Die beim Behandeln von Ricinin mit Salpetersäure (Schu.) oder mit konz. Salzsäure und etwas Kaliumchlorat (Schu., Wi., H. 43, 213) erhaltenen Verdampfungsrückstände geben mit Ammoniak eine rote Färbung. — Fällung durch Phosphorwolframsäure und Salzsäure: Schu.; vgl. Wi., K., Wei. — C₈H₈O₂N₂ + HgCl₂. Krystalle. F: 204°; leicht löslich in Wasser, Alkohol und Äther (Soave; vgl. Wi., K., Wei.).

- 1-Methyl-6-chlor-4-methoxy-pyridon-(2)-carbonsäure-(3)-nitril, 1-Methyl-6-chlor-4-methoxy-3-cyan-pyridon-(2), Chlorricinin $C_8H_7O_2N_2Cl=HC\cdot C(O\cdot CH_2):C\cdot CN$. B. Beim Einleiten von Chlor in eine Lösung von Ricinin in Eisessig ClC—N(CH₂)—CO (SOAVE, Ann. di Chim. e di Farmacol. 21 [1895], 56; C. 1895 I, 853; Bl. [3] 14, 836; vgl. SCHEOETER, SEIDLER, SULZBACHER, KANITZ, B. 65-[1932], 442). Nadeln (aus Alkohol). F: 240° (Zers.); sehr schwer löslich in Wasser (SOAVE).
- 1-Methyl-6-brom-4-methoxy-pyridon-(2)-carbonsäure-(3)-nitril, 1-Methyl-6-brom-4-methoxy-3-cyan-pyridon-(2), Bromricinin C₈H₂O₂N₂Br = HC·C(O·CH₃):C·CN
 BrC—N(CH₃)—CO
 Ar. 255 [1917], 535.—B. Aus Ricinin und Brom in Wasser oder Chloroform (Evans, Am. Soc. 22, 42; vgl. a. Soave, Ann. di Chim. e di Farmacol. 21 [1895], 56; C. 1895 I, 853; Bl. [3] 14, 836).— Nadeln (aus Alkohol). F: 229,5—230° (Zers.) (E.).
- 4. 2 (bezw. 6) Oxy 6 (bezw. 2) oxo dihydropyridin carbonsäure (3), 2 (bezw. 6) Oxy pyridon (6 bezw. 2) carbonsäure (3) $C_6H_5O_4N = HC : CH \cdot C \cdot CO_2H$ HC $\cdot CH : C \cdot CO_2H$ ist desmotrop mit 2.6 · Dioxypyridin carbon-säure (3), 8. 253.

- 6. 6-Oxy-2-oxo-2.3 (bezw. 1.2)-dihydro-pyridin-carbonsäure-(4) (Citratinsäure) $C_4H_5O_4N = \begin{array}{c} H_2C \cdot C(CO_2H) : CH \\ OC N = C \cdot OH \end{array}$ bezw. HC: $C(CO_2H) \cdot CH$ ist desmotrop mit 2.6-Dioxy-pyridin-carbonsäure-(4), S. 254.
- $3.8.5 Trichlor 6 oxy 2 oxo 2.3 dihydro-pyridin-carbons \"{a}ure-(4) (Trichlor-Cl_2C \cdot C(CO_2H) : CCl} ist desmotrop mit 3.3.5 Trichlor 2.6 dioxo-1.2.3.6 tetrahydro-pyridin-carbons \"{a}ure-(4), S. 330.$

c) Oxy-oxo-carbonsäuren $C_n H_{2n-11} O_4 N$.

- 1. $Oxy-oxo-carbonsauren C_9H_7O_4N$.
- 2.2-Dichlor-1-oxy-8-oxo-4-asa-hydrinden-carbonsäure-(1) 1) ("Dichlor-oxyketopyrhydrindencarbonsäure") C₂H₃O₄NCl₂ = NC₅H₃C(OH)(CO₂H) CCl₂. B. Bei der Einw. von kalter 10°/oiger Soda-Lösung auf 7.7-Dichlor-5.6.8-trioxo-5.6.7.8-tetra-hydro-chinolin (ZINCKE, WINZHEIMER, A. 290, 344). Prismen (aus Aceton + Benzol oder aus starker Salzsäure). Schwer löslich in Äther, Benzol und Chloroform, sehr leicht in Aceton. Liefert beim Erhitzen auf 100° 2-Chlor-1.3-dioxo-4-aza-hydrinden (Chlor-oxypyrindon, Bd. XXI, S. 431); dieses entsteht auch beim Kochen mit Wasser oder beim Behandeln mit Natronlauge.

Methylester $C_{10}H_7O_4NCl_2 = NC_9H_2Cl_2(OH)(:O)\cdot CO_2\cdot CH_2$. B. Beim Sättigen einer Lösung von 2.2-Dichlor-1-oxy-3-oxo-4-aza-hydrinden-carbonsäure-(1) in Methanol mit Salzsäure (Z., W., A. 290, 346). — Krystalle (aus verd. Methanol, Äther oder Benzol). F: 171° (Zers.).

2. 2-Oxy-3-oxo-indolin-carbonsäure-(2), Indoxanthinsäure C₂H₇O₄N, s. nebenstehende Formel.

Indoxanthinsäure-äthylester $C_{11}H_{11}O_4N = C_0H_4 < \frac{CO}{NH} > C(OH) \cdot CO_2 \cdot C_2H_5$. B. Aus Indoxylsäure-äthylester (S. 228) beim Erwärmen mit Ferrihydroxyd + Ferrichlorid in Aceton auf 60° oder bei kurzer Einw. von Chromschwefelsäure bei Zimmertemperatur (BAEYER, B. 15, 776). Beim Erwärmen von Isatogensäure-äthylester (S. 309) mit Ferrosalzen in wäßr. Lösung (B., B. 15, 780). — Strohgelbe Nadeln (aus Äther). F: 107°. Löslich in Wasser mit gelber Farbe, in Äther mit blaßgelber Farbe und schwach grüner Fluorescenz. — Wird durch Chromschwefelsäure zu N-Äthoxalyl-anthranilsäure oxydiert. Liefert beim Erwärmen mit Zinkstaub und Essigsäure oder mit Jodwasserstoffsäure Indoxylsäure-äthylester zurück. Beim Zusatz von konz. Salzsäure zu der wäßr. Lösung scheidet sich eine gelbe, amorphe Verbindung $C_{22}H_{20}O_7N_2$ ab, aus deren alkal. Lösung Säuren indigblaue Flocken einer in

¹⁾ Über den Gebrauch des Präfixes "Aza" vgl. STELZNER, Literatur-Register der Organischen Chemie, Bd. V, S. IX—XV.

Wasser unlöslichen Säure fällen. Wird beim Kochen mit Wasser teilweise zersetzt. Bei der Einw. von wäßr. Alkalien bildet sich Anthranilsäure.

N-Nitroso-indoxanthinsäure-äthylester $C_{11}H_{10}O_5N_2=C_6H_4 < CO > C(OH) \cdot CO_2 \cdot C_2H_5$. B. Bei der Einw. von Natriumnitrit auf Indoxanthinsäure-äthylester in verd. Schwefelsäure (B., B. 15, 777). — Nadeln oder Tafeln (aus Äther). F: 113° (Zers.). Sehr schwer löslich in Wasser, leicht in Alkohol, Äther und Eisessig. — Liefert bei der Einw. von Zinkstaub oder Ferrosulfat in essigsaurer Lösung Indoxanthinsäure-äthylester zurück. Gibt die Liebermannsche Nitrosoreaktion.

3. 3-Oxy-2-oxo-indolin-carbonsäure-(3), Dioxindol-carbonsäure-(3) C₉H₇O₄N, s. nebenstehende Formel.

Nitril, 3-Oxy-2-oxo-3-cyan-indolin, Isatin-β-cyanhydrin,

"Hydrocyanisatin" C₉H₆O₂N₂ = C₆H₄ C(OH)(CN) CO. B. Beim Schütteln von feingepulvertem Isatin mit wasserfreier Blausäure unter Eiskühlung (Heller, J. pr. [2] 77, 171). — Krystalle (aus Aceton + Ligroin). Schwer löslich in Benzol, leicht in Aceton, Alkohol

2. [1-0xy-3-oxo-isoindolinyl-(1)]-essigsäure, 3-0xy-phthalimidin-essigsäure-(3) $C_{10}H_0O_4N$, $C_{10H_0O_4N}$, $C_{10H_0O_4N}$, s. nebenstehende Formel.

und Ather. — Zerfällt beim Erhitzen für sich oder mit Wasser in Blausäure und Isatin.

2 • Methyl • 3 • oxy • phthalimidin • essigsäure • (3) $C_{11}H_{11}O_4N = C_6H_4 \underbrace{COH_1(CH_2 \cdot CO_2H)}_{N \cdot CH_3}$. Vgl. Benzoylessigsäure • o-[carbonsäure-methylamid] $CH_3 \cdot NH \cdot CO \cdot C_6H_4 \cdot CO \cdot CH_3 \cdot CO_2H$, Ergw. Bd. X, S. 419.

d) Oxy-oxo-carbonsäuren $C_n H_{2n-13} O_4 N$.

1. $2-0 \times y-3-0 \times 0$ -indolenin-carbonsäure-(4) (Isatin-CO₂H carbonsäure-(4)) C₀H₈O₄N, s. nebenstehende Formel, ist desmotrop it 2.3-Dioxo-indolin-carbonsäure-(4), S. 336.

2. 6-0xy-2-oxo-1.2-dihydro-chinolin-carbonsāure-(4), 00. 00

1-Methyl-6-methoxy-chinolon-(2)-carbonsäure-(4), 1-Methyl-6-methoxy-carbo-styril-carbonsäure-(4) (,,Methylenchininoxinsäure") $C_{12}H_{11}O_4N=C(CO_2H):CH$

C(CO₂H): CH N(CH₂)—CO

B. Aus den Halogenmethylaten der 6-Methoxy-chinolin-carbonsäure-(4) (Chininsäure) (CLAUS, STOHR, A. 276, 270, 274; ROSER, A. 282, 367, 368; vgl. Decker, Hock, B. 37, 1005) oder aus Chininsäure-methylbetain (C., St.) beim Behandeln mit Alkalilauge an der Luft. — Gelbe Nadeln (aus Alkohol oder Eisessig). F: 282° (C., St.), oberhalb 290° (R.). Sublimiert bei vorsichtigem Erhitzen unzersetzt (C., St.). Sehr schwer löslich in warmem Wasser, ziemlich leicht in heißem Alkohol (C., St.). Fast unlöslich in heißer Salzsäure und Bromwasserstoffsäure (C., St.). — AgC₁₈H₁₀O₄N. Gelbliches Pulver. Unlöslich in Wasser (C., St.). — Ba(C₁₈H₁₀O₄N)₂. Gelbe Nadeln. Schwer löslich in Wasser (R.).

1-Bensyl-6-methoxy-chinolon-(2)-carbonsäure-(4), 1-Bensyl-6-methoxy-carbo-styril-carbonsäure-(4) (,,Benzylidenchininoxinsäure") C₁₈H₁₈O₄N = CH₁·O·C·H

CH₈·O·C₆H₈·C(CO₂H)—CH N(CH₈·C₆H₅)·CO

B. Beim Behandeln von 6-Methoxy-chinolin-carbon-säure-(4)-brombenzylat oder von Chininsäure-benzylbetain mit Alkalilauge an der Luft (CLAUS, STOHE, A. 276, 280; vgl. ROSEE, A. 282, 363; DECKEE, HOCK, B. 37, 1005). — Gelbe Nadeln (aus Alkohol). F: 270°; sublimierbar (C., St.). — $AgC_{18}H_{14}O_4N$. Bräunlichgelbes Pulver (C., St.).

e) Oxy-oxo-carbonsäuren $C_n H_{2n-21} O_4 N$.

 $CO \sim C(CH_2 \cdot C_0H_5) \cdot CO_2H$ 2-0xy-4-oxo-3-benzyl-3.4-dihydro-chinolincarbonsaure-(3) C₁₇H₁₈O₄N, s. nebenstehende Formel.

2- \ddot{a} thoxy-4-oxo-3-bensyl-3.4-dihydro-chinolin-carbonsäure-(3) $C_{19}H_{17}O_{4}N=$ $CO \cdot C(CH_2 \cdot C_6H_8) \cdot CO_2H$. Bei der Reduktion von Benzyl-[2-nitro-benzoyl]-malon- C_6H_4 $N = C \cdot O \cdot C_2H_5$ Saure-diathylester (Bd. X, S. 885) (Bischoff, A. 251, 384). — F: 147° (Zers.).

2. Oxy-oxo-carbonsäuren mit 5 Sauerstoffatomen.

a) Oxy-oxo-carbonsauren $C_n H_{2n-5} O_5 N$.

Oxy-oxo-carbonsauren $C_6H_7O_5N$.

1. 3 - Oxy - 2.6 - dioxo - piperidin - carbonsäure - (4) C₆H₇O₅N = H₅C·CH(CO₅H)·CH·OH bezw. desmotrope Formen. OC--NH---CO

5.5 - Dichlor - 8 - oxy - 2.6 - dioxo-piperidin - carbonsaure - (4) - amid (Dichlor - oxy - $\begin{array}{ll} \text{dihydrocitrazins \& ure-amid) } C_6H_6O_4N_2Cl_2 = \begin{array}{ll} \text{Cl}_2\text{C}\cdot\text{CH}(\text{CO}\cdot\text{NH}_2)\cdot\text{CH}\cdot\text{OH}} \\ \text{OC---NH----CO} \end{array}. \quad B. \quad \text{Beim Ein---} \end{array}$ leiten von Schwefelwasserstoff in eine alkoholisch-ammoniakalische Lösung von 3.3.5-Trileiten von Schwefelwasserstoff in eine alkoholisch-ammoniakalische Lösung von 3.3.5-Trichlor-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-carbonsäure-(4)-amid (8. 330) (RUHEMANN, ORTON, B. 27, 3450). — Nadeln mit 1 H₂O. Zersetzt sich bei 98°. — Liefert mit Phenylhydrazin in alkoh. Lösung das Phenylhydrazinsalz (s. u.), das beim Erwärmen mit Phenylhydrazin in verdünnter Essigsäure in das Phenylhydrazinsalz des 1-Phenyl-5'-benzolazo-2'.6'-dioxy-[pyridino-3'.4': 3.4-pyrazolons-(5)] (s. nebenstehende Formel; Syst. No. 3999) übergeht, und eine Verbindung (hellrote Krystalle), die beim Kochen mit Salzsäure 1-Phenyl-pyrazolon-(5)-carbonsäure-(3) bildet. — NH₄C₆H₅O₄N₂Cl₂. Gelbliche Nadeln. Leicht löslich in Wasser, löslich in Alkohol. —

Anilinsalz C₆H₇N+C₈H₈O₄N₈Cl₈. Gelbe Nadeln. Zersetzt sich bei 135°. Löslich in heißem Anilinsalz C₆H₇N + C₆H₆O₄N₂Cl₂. Gelbe Nadeln. Zersetzt sich bei 135°. Löslich in heißem Alkohol. — Phenylhydrazinsalz C₆H₆N₂ + C₆H₆O₄N₂Cl₂. Gelbe Nadeln. Zersetzt sich bei 145°. Schwer löslich in heißem Alkohol, ziemlich leicht in Wasser. Spaltet bei der

2. [3 - Oxy - 2.5 - dioxo - pyrrolidyl - (3)] - essigsäure, Citronensäure- $a.\beta$ -imid, Citrimidsäure $C_6H_7O_5N = \begin{array}{c} H_2C - C(OH) \cdot CH_2 \cdot CO_5H \\ OC \cdot NH \cdot CO \end{array}$. B. Durch Destillieren

Einw. von Kalilauge Phenylhydrazin ab. Reduziert FEHLINGsche Lösung.

von Citronensäure-diäthylester-amid unter 13 mm Druck und Verseifen des entstandenen Öls (Citronensäure-α'-äthylester-α.β-imid?) mit Natronlauge (Schrofter, B. 38, 3199). — $AgC_6H_6O_5N + AgNO_3$. Niederschlag.

[8 - Benzoyloxy - 2.5 - dioxo - pyrrolidyl - (3)] - essigsäure - äthylester $C_{15}H_{18}O_6N = H_2C - C(O \cdot CO \cdot C_6H_5) \cdot CH_2 \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von Citronensäure-diäthylester-OC·NH·CO

amid mit Benzoylchlorid auf 130° (SCHROETER, B. 38, 3200). — Nadeln (aus verd. Alkohol oder Chloroform + Petroläther). F: 115°. Unlöslich in Wasser und Petroläther, leicht löslich in Alkohol, Äther und Chloroform. — Löst sich in Natronlauge mit blutroter Farbe; die Lösung entfärbt sich schnell unter Bildung von Benzoesäure und Aconitimidsäure (S. 330).

[1-Phenyl-3-oxy-2.5-dioxo-pyrrolidyl-(8)]-essigsäure, Citranilsäure $C_{12}H_{11}O_5N = H_2C C(OH) \cdot CH_2 \cdot CO_2H$ Citronensäure- $\alpha.\beta$ - anil. B. Beim Schmelzen des $OC \cdot N(C_0H_5) \cdot CO$ Monoanilinsalzes der Citronensäure (PEBAL, A. 82, 92; ANSELMINO, Ber. Disch. pharm. Ges. 18, 152; C. 1903 II, 566) oder (neben anderen Produkten) bei längerem Erhitzen von Citronensaure-dianilid.

säure mit Anilin auf 140—150° (P., A. 82, 85; 98, 92). — Krystalle (aus Wasser). Leicht löslich in Wasser und Alkohol (P., A. 82, 92). — Gibt beim Behandeln mit Phosphorpentachlorid und Zersetzen des Reaktionsprodukts mit Wasser Aconitanilsäure (S. 331) (P., A. 98, 83; vgl. Nau, Brown, Bailey, Am. Soc. 47 [1925], 2599). Beim Sättigen der wäßr. Lösung mit Ammoniak und Fällen mit Silbernitrat bildet sich das Disilbersalz einer Verbindung $C_{12}H_{13}O_6N$ (vielleicht Citronensäure-monoanilid), das beim Behandeln mit verd. Salzsäure Citranilsäure zurückliefert (P., A. 82, 95). Liefert beim Erhitzen mit Anilin auf ca. 150° Citronensäure-a'-anilid-a. β -anil (P., A. 98, 88). — $AgC_{12}H_{10}O_5N$. B. Aus Citranilsäure in alkoh. Ammoniak durch Silbernitrat (P., A. 82, 93, 94). Krystallinisch. — Anilinsalz $C_6H_7N+C_{12}H_{11}O_5N$. Krystalle (aus Wasser). Leicht löslich in Alkohol (P., A. 82, 94).

[1-p-Tolyl-3-oxy-2.5-dioxo-pyrrolidyl-(3)]-essigsäure, Citronensäure- $\alpha.\beta$ -p-tolylimid $C_{12}H_{12}O_5N= \begin{matrix} H_2C & C(OH)\cdot CH_2\cdot CO_2H \\ OC\cdot N(C_6H_4\cdot CH_3)\cdot CO \end{matrix}$. B. Beim Erhitzen des Monop-toluidinsalzes der Citronensäure den Schmelzpunkt (Anselmino, Ber. Disch. pharm. Ges. 13, 152; C. 1903 II, 566; vgl. Gill, B. 19, 2353). — Krystalle (aus Wasser). F: 172,5° (G.). Sohwer löslich in kaltem, leicht in heißem Wasser sowie in Alkohol und Äther (G.). Leicht löslich in Natronlauge (G.).

[1-Bensyl-8-oxy-2.5-dioxo-pyrrolidyl-(3)]-essigsäure, Citronensäure- $\alpha.\beta$ -benzylimid $C_{13}H_{13}O_5N= \begin{array}{c} H_2C & C(OH)\cdot CH_2\cdot CO_2H \\ OC\cdot N(CH_2\cdot C_6H_5)\cdot CO & B. \end{array}$ Beim Erhitzen von citronensaurem Benzylamin (F: 110°; erhalten aus äquimolekularen Mengen Citronensäure und Benzylamin) auf 155° (Giustiniani, G. 24 I, 226). — Krystalle (aus verd. Essigsäure). F: 195°. Schwer löslich in kaltem, leicht in heißem Wasser und in Alkohol. — Bei raschem Erhitzen auf 230° im Kohlendioxyd-Strom erhält man gelbliche Krystalle, die in der Wärme leicht Brom addieren; das ölige Additionsprodukt spaltet rasch Bromwasserstoff ab unter Bildung von γ -Brom-aconitsäure- $\alpha.\beta$ -benzylimid (?) (S. 332). Wird durch Alkalien in der Wärme zersetzt. Liefert beim Erwärmen mit wäßr. Ammoniak oder bei der Einw. von Barytwasser Citronensäure-monobenzylamid.

[1.4.5-Trimethyl-phenyl) - 3-oxy - 2.5-dioxo-pyrrolidyl-(3)] - essigsäure-[2.4.5-trimethyl-anilid], Citronensäure- α' -[2.4.5-trimethyl-anilid]- $\alpha.\beta$ -[2.4

- [1- α -Naphthyl-3- α y-2.5-dioxo-pyrrolidyl-(3)]-essigsäure- α -naphthylamid, Citronensäure- α '-[α -naphthylamid]- α β -[α -naphthylimid] $C_{20}H_{20}O_4N_2=H_2C$ ——C(OH)·CH₂·CO·NH·C₁₀H₇.

 B. Bei mehrstündigem Erhitzen von Citronen-OC·N(C₁₀H₇)·CO säure mit α -Naphthylamin auf 140—150° (Hecht, B. 19, 2616). Blättchen (aus Benzol). F: 194°. Leicht löslich in Alkohol, Benzol, Eisessig und Aceton. Unlöslich in Salzsäure. Liefert beim Erhitzen mit überschüssigem Ammoniak im Rohr auf 150—160° Citronensäure-bis- α -naphthylamid, beim Erhitzen mit α -Naphthylamin auf 150—170° Citronensäure-tris- α -naphthylamid.
- [1-\$\beta\$-Naphthyl-3-oxy-2.5-dioxo-pyrrolidyl-(3)]-essigsäure-\$\beta\$-naphthylamid, Citronensäure-\$\alpha'-\left([\beta]-\text{naphthylamid}\right]-\alpha.\beta-[\beta-\text{naphthylamid}\right]-\alpha.\beta-[\beta-\text{naphthylamid}\right] C_{26}H_{20}O_4N_2=H_2C-C(OH)\cdot CH_2\cdot CO\cdot NH\cdot C_{10}H_7. B. Bei längerem Erhitzen von Citronensäure mit OC·N(C_{10}H_7)·CO \$\beta-\text{Naphthylamin auf } 140-150^0\text{ oder beim Schmelzen des }\beta-\text{Naphthylaminsalzes der Citronensäure } C_{10}H_2N + C_4H_8O_7\text{ (H., B. 19, 2615, 2616).} Sechsseitige Blättchen (aus Eisessig). F: 233^o. Schwer löslich in Alkohol, unlöslich in Wasser und Salzsäure. Liefert beim Erhitzen mit überschüssigem Ammoniak im Rohr auf 170^o Citronensäure-bis-\$\beta-\text{naphthylamid, beim Erhitzen mit }\beta-\text{Naphthylamin auf } 150-170^o\text{ Citronensäure-tris-}\beta-\text{naphthylamid.}
- [1 Anilino 3 oxy 2.5 dioxo pyrrolidyl (3)] essigsäure phenylhydrazid ,,Citryldiphenylhydrazid " $C_{18}H_{18}O_4N_4 = H_2C$ $C(OH)\cdot CH_2\cdot CO\cdot NH\cdot NH\cdot C_6H_5$ B. Beim Erhitzen von citronensaurem $OC\cdot N(NH\cdot C_6H_5)\cdot CO$

Phenylhydrazin 2C₆H₈N₂ + C₆H₈O₇ + H₂O für sich oder in absol. Alkohol oder beim Erhitzen von 1 Mol Citronensäure mit 2 Mol Phenylhydrazin auf dem Wasserbad (Manuelli, de Right, G. 29 II. 155, 156). — Krystalle, F: 208°. Sehr schwer löslich in den üblichen Lösungsmitteln.

G. 29 II, 155, 156). — Krystalle. F: 208°. Sehr schwer löslich in den üblichen Lösungsmitteln. Dia cetylderivat C₂₂H₂₂O₆N₄. B. Aus der vorangehenden Verbindung und Essigsäureanhydrid in der Wärme (M., DE R., G. 29 II, 156). — Krystalle (aus Benzol + Ligroin). F:

138°. Sehr leicht löslich in organischen Lösungsmitteln.

Dibenzoylderivat C₃₂H₂₆O₆N₄. B. Aus [1-Anilino-3-oxy-2.5-dioxo-pyrrolidyl-(3)]essigsäure-phenylhydrazid und Benzoylchlorid in verd. Kalilauge (M., DE R., G. 29 II,
157). — Amorphes Pulver (aus Benzin + Ligroin). F: 129—130°. Sehr leicht löslich in organischen Lösungsmitteln. — Gibt mit salpetriger Säure ein Mononitrosoderivat C₃₂H₂₅O₇N₅,
das bei 83—88° unter Zersetzung schmilzt.

b) Oxy-oxo-carbonsäuren $C_n H_{2n-9} O_5 N$.

- 2. 2.6 Dioxy 3^1 oxo 3 methyl pyridin carbonsäure (4), 2.6 Dioxy 3 formyl pyridin carbonsäure (4), 2.6 Dioxy 3 formyl isonicotinsäure, Formyl citrazinsäure $C_7H_5O_5N$, s. nebenstehende Formel, co2H bezw. desmotrope Formen. B. Beim Kochen von Citrazinsäure (8. 254) mit Chloroform und Natriumhydroxyd (Sell, Soc. 69, 1448). Nadeln mit $2H_2O$. HO Wird bei $130-140^\circ$ krystallwasserfrei und schwärzt sich beim Erhitzen auf höhere Temperatur, ohne zu schmelzen. Schwer löslich in kaltem, leichter in heißem Wasser, löslich in Alkohol, Äther und Aceton. Na $_2C_7H_3O_5N+2H_2O$. Nadeln (aus Wasser). Na $_3C_7H_3O_5N+2H_2O$. Prismen (aus Wasser). Verwittert an der Luft.

Oxim $C_7H_6O_5N_2 = NC_5H(OH)_2(CH:N\cdot OH)\cdot CO_2H$. B. Bei der Einw. von salzsaurem Hydroxylamin auf Formyleitrazinsäure in Soda-Lösung (S., Soc. 69, 1450). — Blaßgelbe Nadeln mit $1H_2O$.

Phenylhydrason $C_{13}H_{11}O_4N_3 = NC_5H(OH)_2(CH:N\cdot NH\cdot C_6H_5)\cdot CO_2H$. B. Das Phenylhydrazinsalz entsteht beim Zusatz von essigsaurem Phenylhydrazin zu einer essigsauren Lösung von formyleitrazinsaurem Natrium (S., Soc. 69, 1451). — Phenylhydrazinsalz $C_6H_8N_2+C_{13}H_{11}O_4N_3$. Gelbe Nadeln (aus Methanol). Schwer löslich in Wasser.

c) Oxy-oxo-carbonsäuren $C_n H_{2n-11} O_5 N$.

 $\beta\text{-Lactam der }6\text{-Propionylamino-}3.4\text{-dimethoxy-phthalsäure }C_{13}H_{13}O_6N=\\ (HO_2C)(CH_3\cdot O)_2C_6H < \begin{matrix} CO \\ N\cdot CO\cdot C_2H_5 \end{matrix}. \quad \text{Vgl. hierzu das entsprechende Azlacton}\\ (HO_2C)(CH_3\cdot O)_2C_6H < \begin{matrix} CO\cdot O \\ N=C\cdot C_2H_5 \end{matrix}, \quad \text{Syst. No. 4331.}$

2. 1.5-Dioxy-3-oxo-isoindolin-carbonsăure-(1), HOCO3H) NH 3.6-Dioxy-phthalimidin-carbonsăure-(3) $C_9H_7O_5N$, s. nebenstehende Formel.

2 - Methyl - 3 - oxy - 6 - äthoxy - phthalimidin - carbonsäure - (3) $C_{12}H_{13}O_5N = C_2H_5 \cdot O \cdot C_6H_3 \cdot C(OH)(CO_2H) \cdot N \cdot CH_3$. Vgl. 5-Äthoxy-phthalonsäure-methylamid - (1) $CH_3 \cdot NH \cdot CO \cdot C_6H_3(O \cdot C_2H_5) \cdot CO \cdot CO_2H$, Bd. X, S. 1019.

d) Oxy-oxo-carbonsäuren $C_n H_{2n-13} O_5 N$.

Oxy-oxo-carbonsäuren $C_{11}H_9O_8N$.

1. 4.5 - Dioxo - 2 - [2-oxy-phenyl]-pyrrolidin-carbonsäure-(3) $C_{11}H_{9}O_{8}N = OC - CH \cdot CO_{2}H$ $OC \cdot NH \cdot CH \cdot C_{9}H_{4} \cdot OH$ bezw. desmotrope Formen.

OC·NH·CH·C₈H₄·OH

Athylester $C_{12}H_{12}O_5N = {\begin{array}{*{20}} OC-CH \cdot CO_2 \cdot C_2H_5 \\ OC \cdot NH \cdot CH \cdot C_8H_4 \cdot OH \\ \end{array}}$ aldehyd in wäßrig-alkoholischem Ammoniak (Simon, Conduché, A. ch. [8] 12, 29; C. r. 188, 979). — Farblos. Enthält 1 H₂O. Zersetzt sich bei 175°. — Gibt mit Eisenchlorid in Alkohol

eine rote Färbung. — $\mathrm{NH_4C_{13}H_{13}O_5N}$. Farblos. Zersetzt sich bei 190°. Schwer löslich in Wasser, unlöslich in Alkohol. — $\mathrm{Cu(C_{13}H_{13}O_5N)_3} + 4\,\mathrm{H_3O}$. Ist bei 130° noch nicht wasserfrei. Unlöslich in kaltem Wasser.

- 2. 4.5-Dioxo-2-[4-oxy-phenyl]-pyrrolidin-carbonsdure-(3) $C_{11}H_{9}O_{5}N = OC CH \cdot CO_{2}H$ bezw. desmotrope Formen.
- 4.5 Dioxo 2 [4 methoxy phenyl] pyrrolidin carbonsäure (3) äthylester $C_{14}H_{15}O_5N = {\rm OC CH \cdot CO_2 \cdot C_2 H_5 \over {\rm OC \cdot NH \cdot CH \cdot C_6 H_4 \cdot O \cdot CH_2}}$. B. Aus Oxalessigester und Anisaldehyd in wäßrigalkoholischem Ammoniak (Simon, Conduché, A. ch. [8] 12, 32; C. r. 138, 979). Prismen (aus Alkohol). Zersetzt sich gegen 160°. Gibt mit Eisenchlorid eine rote Färbung. $NH_4C_{14}H_{14}O_5N$. Zersetzt sich bei 175°.

e) Oxy-oxo-carbonsăuren $C_n H_{2n-17} O_5 N$.

2 - [3.4 - Dioxy - benzoyl] - pyridin - carbonsaure - (4), 2-[3.4-Dioxy-benzoyl]-isonicotinsaure, $C_{13}H_{5}O_{5}N$, s. nebenstehende Formel.

2 - [8.4 - Dimethoxy - bensoyl] - pyridin - carbonsäure - (4),
2 - Veratroyl - isonicotinsäure, Pyropapaverinsäure $C_{12}H_{12}O_5N$,
s. nebenstehende Formel. Zur Konstitution vgl. Goldschmiedt, M.
9, 357; G., Kirpal, M. 17, 498; G., Hönigschmid, M. 24, 704. — B.
Beim Schmelzen von Papaverinsäure (8. 382) (G., M. 6, 394; G., Strache, M. 10, 694). —
Blättchen (aus Alkohol). F: 230°; leichter löslich in Wasser und Alkohol als Papaverinsäure (G., M. 6, 395). Die Lösung in konz. Schwefelsäure ist totgelb (G., St.; vgl. G., M. 6, 382). —
Beim Erhitzen mit Methyljodid in Soda-Lösung und beim des Reaktionsprodukts mit Silberoxyd erhält man Pyropapaverinsäure-methylbetain (G., H., M. 24, 702). — AgC₁₅H₁₂O₅N.
Krystalle. Schwer löslich in Wasser (G., M. 6, 396). — Ca(C₁₅H₁₂O₅N)₂ + 4H₂O. Nadeln (G., St.). — Ba(C₁₅H₁₂O₅N)₂ + 4H₂O. Tafeln (G., St.). — C₁₅H₁₂O₅N + HCl + H₂O. Orangerote Nadeln. Wird beim Erhitzen auf 130° sowie bei Einw. von Wasser oder Alkohol zersetzt (G., St.).

Oxim $C_{18}H_{14}O_5N_2 = NC_5H_3(CO_2H)\cdot C(:N\cdot OH)\cdot C_6H_3(O\cdot CH_3)_2$. B. Beim Erwärmen von Pyropapaverinsäure mit salzsaurem Hydroxylamin in Kalilauge (Goldschmiedt, Strache, M. 10, 699). — Nadeln (aus Alkohol). F: 226°. — $C_{18}H_{14}O_5N_2 + HCl + H_2O$. Citronengelbe Nadeln. Wird beim Erhitzen auf 105° sowie bei Einw. von Wasser zersetzt.

Phenylhydrazon $C_{21}H_{19}O_4N_3 = NC_5H_9(CO_5H)\cdot C(:N\cdot NH\cdot C_6H_5)\cdot C_6H_8(O\cdot CH_8)_2$. Beim Kochen von Pyropapaverinsäure mit salzsaurem Phenylhydrazin und Natriumacetat in verd. Alkohol (G., St., M. 10, 698). — Gelbe Prismen (aus Alkohol). F: 223° (Zers.) (G., St.). Elektrolytische Dissoziationskonstante k bei 25°: 3,8×10⁻⁶ (Bethmann, Ph. Ch. 5, 420). Löst sich in konz. Schwefelsäure mit dunkelgrüner, in verd. Schwefelsäure mit dunkelrotgelber Farbe (G., St.). — $C_{21}H_{19}O_4N_3 + HCl$. Zinnoberrote Prismen. Wird durch Wasser zersetzt (G., St.).

Methylester $C_{16}H_{16}O_5N = NC_5H_3(CO_2 \cdot CH_3) \cdot CO \cdot C_6H_3(O \cdot CH_3)_2$. B. Aus Pyropapaverinsäure durch Kochen mit Methanol und Schwefelsäure (Goldschmiedt, Kirpal, M. 17, 498). — Nadeln (aus Methanol). F: 108°.

Pyropapaverinsäure-hydroxymethylat, Ammoniumbase des Pyropapaverinsäure-methylbetains $C_{16}H_{17}O_6N=(HO)(CH_8)NC_5H_3(CO_2H)\cdot CO\cdot C_6H_3(O\cdot CH_2)_2\cdot —$ Chloroplatinat $2C_{16}H_{16}O_5N\cdot Cl+PtCl_4+2H_2O.$ B. Bei Zusatz von Platinchlorid-Lösung zu einer mit Salzsäure angesäuerten wäßrigen Lösung von Pyropapaverinsäure-methylbetain (Goldschmiedt, Hönigschmid, M. 24 703). Gelbe Nadeln.

Anhydrid, Pyropapaverinsäure-methylbetain $C_{16}H_{15}O_5N=CH_3\cdot NC_5H_3(CO\cdot O)\cdot CO\cdot C_6H_3(O\cdot CH_3)_2$. B. Beim Erhitzen von Pyropapaverinsäure mit Methyljodid in Soda-Lösung und Behandeln des Reaktionsprodukts mit Silberoxyd (G. H., M. 24, 702). Aus Papaverinsäure-methylbetain (S. 384) beim Erhitzen mit Phenol (G., H., M. 24, 701). — Nadeln mit $3H_3O$ (aus Wasser). F: 182° ; löslich in Alkohol und Wasser; unlöslich in Soda-Lösung (G., H., M. 24, 701, 702). — Spaltet beim Kochen mit Jodwasserstoffsäure die O-Methylgruppen quantitativ, die N-Methylgruppe teilweise ab (G., H., M. 24, 715). Liefert beim Kochen mit Kalilauge oder Barytwasser Veratrumsäure und Isonicotinsäure-methylbetain (G., H., M. 24, 703).

f) Oxy-oxo-carbonsäuren $C_n H_{2n-19} O_5 N$.

7 - 0xy-2.6 - dioxo - 2.6 - dihydro - 4.5 - benzo - indol-carbonsăure - (3) bezw. 2.6.7 - Trioxo - 6.7 - dihydro - 4.5 - benzo - indolin - carbonsăure - (3), 4.5 - Benzo - oxindolchinon - (6.7) - carbonsăure - (3) $C_{13}H_7O_5N$, Formel I bezw. II.

1-Acetyl-7-oxy-2.6-dioxo-2.6-dihydro-4.5-benzo-indol-carbonsäure-(3)-äthylester bezw. 1-Acetyl-4.5-benzo-oxindolchinon-(6.7)-carbonsäure-(3)-äthylester $C_{17}H_{13}O_6N=(HO)(O:)C_{10}H_4 < \begin{array}{c} C(CO_2\cdot C_2H_5) \\ N(CO\cdot CH_3) \end{array} > CO$ bezw. $(O:)_2C_{10}H_4 < \begin{array}{c} CH(CO_2\cdot C_2H_5) \\ N(CO\cdot CH_3) \end{array} > CO$. Zur Konstitution vgl. Sachs, Craveri, B. 38, 3687. — B. Bei der Einw. von Natriummalonester auf 4-Chlor-3-acetamino-naphthochinon-(1.2) in Alkohol (Liebermann, B. 32, 265). — Retbraune Nadeln (aus verd. Alkohol oder Benzol + Ligroin). F: 234° (Zers.)(L.). — Natriumsalz. Dunkelviolett. Unlöslich in Alkohol (L.).

g) Oxy-oxo-carbonsäuren $C_n H_{2n-23} O_5 N$.

2-[1.4-Dioxy-isochinolin-carboyl-(3)]-benzoesäure,
1.4-Dioxy-3-[2-carboxy-benzoyl]-isochinolin
C₁₇H₁₁O₅N, s. nebenstehende Formel, bezw. desmotrope Formen. B.
Beim Eingießen einer alkal. Lösung von 1.4-Dioxo-3-phthalidyliden1.2.3.4-tetrahydro-isochinolin (Syst. No. 4299) in Eisessig (Gabriel,
COLMAN, B. 35, 2423). — Blättchen. Schmilzt noch nicht bei 265°. Sehr leicht löslich in Ammoniak.

3. Oxy-oxo-carbonsäuren mit 6 Sauerstoffatomen.

a) Oxy-oxo-carbonsäuren $C_n H_{2n-9} O_6 N$.

1. 5.6-Dioxy-2.3-dioxo-2.3-dihydro-pyridin-carbonsaure-(4) $C_eH_sO_eN=OC\cdot C(CO_2H):C\cdot OH$ $OC-N=C\cdot OH$

5.6 - Dioxy - 2.8 - dioxo - 2.8 - dihydro- pyridin - carbonsäure - (4) - amid $C_6H_4O_5N_2 = OC \cdot C(CO \cdot NH_2): C \cdot OH$ ist desmotrop mit 2.3.5.6 Tetraoxo-piperidin - carbonsäure - (4) - amid, 8. 360.

2. 6-0 xy-2-oxo-1.2-dihydro-pyridin-dicarbonsäure-(3.5), 6-0 xy-pyridon-(2)-dicarbonsäure-(3.5) $C_7H_8O_8N = \frac{HO_2C\cdot C:CH\cdot C\cdot CO_2H}{OC\cdot NH\cdot C\cdot OH}$

1- Äthyl-6- äthoxy-pyridon-(2)-dicarbonsäure-(3.5)- äthylester-(5) $C_{18}H_{17}O_6N=HO_8C\cdot C=CH-C\cdot CO_8\cdot C_2H_5$. B. Bei kurzer Einw. von $2^0/_0$ iger wäßriger Äthylamin-Lösung

OC·N(C₂H₅)·C·O·C₂H₅
auf 6-Äthoxy-cumalin-dicarbonsāure-(3.5)-diāthylester (Haussmann, A. 285, 61). — Nadeln (aus Benzol + Äther). F: 81°. Sehr leicht löslich in Chloroform und Benzol, leicht in Alkohol, Äther, Aceton und Eisessig, löslich in heißem Wasser, schwer löslich in Petroläther. Leicht

380

löslich in Ammoniak und Natriumcarbonat-Lösung. Leicht löslich in verd. Salzsäure und kalter konzentrierter Schwefelsäure. — Liefert beim Erhitzen mit rauchender Salzsäure im Rohr auf 130-140° Kohlendioxyd, Äthylchlorid und Äthylamin. Beim Erwärmen mit konz. Schwefelsäure im Wasserbad entsteht 1-Äthyl-2.6-dioxo-1.2.3.6-tetrahydro-pyridindicarbonsäure-(3.5)-äthylester-(3) (S. 361). Erhitzen mit ca. 11% iger Kalilauge führt zur Bildung von N-Athyl-glutsconimid. Bei der Einw. von wäßr. Athylamin-Lösung bildet sich zunächst 1-Äthyl-6-oxo-2-äthylimino-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-äthylester-(3), dann 1-Athyl-6-oxo-2-athylimino-1.2.3.6-tetrahydro-pyridin-dicarbonsaure-(3.5). AgC₁₃H₁₆O₆N. Blaßgelb. Unlöslich. — Verbindung mit Athylamin 2C₂H₇N+C₁₃H₁₇O₆N. B. Aus 1-Athyl-6-athoxy-pyridon-(2)-dicarbonsaure-(3.5)-athylester-(5) und 10% iger ather. Athylamin-Lösung in Benzol (H.). Krystallpulver. F: ca. 158—160°. Wird durch Wasser teilweise in die Komponenten zerlegt. Gibt beim Kochen in Benzol 1-Athyl-6-oxo-2-äthylimino-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-äthylester-(3).

1-Äthyl-6-äthoxy-pyridon-(2)-dicarbonsäure-(8.5)-diäthylester $C_{15}H_{21}O_{4}N = C_{2}H_{5} \cdot O_{2}C \cdot C = CH - C \cdot CO_{2} \cdot C_{2}H_{5}$

B. Beim Erwärmen des Silbersalzes des 1-Athyl- $OC \cdot N(C_2H_5) \cdot C \cdot O \cdot C_2H_5$ 6-āthoxy-pyridon-(2)-dicarbonsāure-(3.5)-āthylesters-(5) mit Athyljodid in Alkohol (H., A. 285, 66). Beim Kochen des Silbersalzes des 1-Athyl-2.6-dioxo-1.2.3.6-tetrahydro-pyridin-dicarbonsäure-(3.5)-diäthylesters mit Äthyljodid in Äther (H., A. 285, 95). — Nadeln (aus Petroläther). F: ca. 56°. Leicht löslich in den gewöhnlichen Lösungsmitteln außer in kaltem Petroläther.

1-Phenyl-6-oxy-pyridon-(2)-dicarbonsäure-(8.5)-diäthylester $C_{17}H_{17}O_4N=$ $C_2H_5 \cdot O_2C \cdot C = CH = C \cdot CO_2 \cdot C_2H_5$ ist desmotrop mit 1-Phenyl-2.6-dioxo-1.2.3.6-tetrahydro-

 $OC \cdot N(C_6H_8) \cdot C \cdot OH$

pyridin-dicarbonsaure-(3.5)-diathylester, S. 362.

1-Phenyl-6-äthoxy-pyridon-(2)-dicarbonsäure-(3.5)-diäthylester $C_{19}H_{21}O_6N=$ $C_2H_5 \cdot O_2C \cdot C = CH - C \cdot CO_2 \cdot C_2H_5$

B. Beim Erwärmen des Silbersalzes des 1-Phenyl- $OC \cdot N(C_0H_5) \cdot C \cdot O \cdot C_3H_5$ 2.6-dioxo-1.2.3.6-tetrahydro-pyridin-dicarbonsaure-(3.5)-diathylesters mit Äthyljodid in Äther (BAND, A. 285, 119). — Nadeln (aus Ligroin). F: 115°.

b) Oxy-oxo-carbonsäuren $C_n H_{2n-11} O_6 N$.

4.6.7 - Trioxy - 2 - oxo - 1.2.3.4 - tetrahydro - chinolin -OH HO₂C carbonsaure-(5), 4.6.7-Trioxy-3.4-dihydro-carbo-HO CH. styril-carbonsäure-(5), 4.6.7-Trioxy-hydrocarbostyril-carbonsaure-(5) C₁₀H₉O₆N, s. nebenstehende Formel, bezw. desmotrope Formen.

4 - Oxy - 6.7 - dimethoxy - 2 - oxo - 1.2.8.4 - tetrahydro - chinolin - carbonsäure - (5), 4 - Oxy - 6.7 - dimethoxy - hydrocarbostyril - carbonsäure - (5) $C_{12}H_{12}O_6N =$

CH(OH) CH, B. Das Bariumsalz entsteht beim Kochen des zuge- $(\mathbf{HO_2C})(\mathbf{CH_3 \cdot O})_2\mathbf{C_6H}$ do. NHhörigen Lactons (Syst. No. 4300) mit Barytwasser (Liebermann, Kleemann, B. 19, 2297). – Das Bariumsalz geht bei der Einw. von Säuren wieder in das Lacton über. — $\operatorname{Ba}(\operatorname{C}_{12}\operatorname{H}_{12}\operatorname{O}_6\operatorname{N})_2$ $+6H_2O$. Nadeln.

c) Oxy-oxo-carbonsäuren $C_n H_{2n-13} O_6 N$.

4.5-Dioxo-2-[3.4-dioxy-phenyl]-pyrrolidin-carbonsäure-(3) $C_{11}H_{\bullet}O_{\bullet}N =$ OC——CH·CO,H bezw. desmotrope Formen. $OC \cdot NH \cdot CH \cdot C_eH_e(OH)_e$

4.5 - Dioxo - 2 - [4-oxy-8-methoxy-phenyl]-pyrrolidin-carbonsäure-(8)-äthylester OC--- $-CH \cdot CO_{\bullet} \cdot C_{\bullet}H_{\bullet}$. B. Aus Oxalessigester und Vanillin in wäßrig-OC·NH·CH·C₆H₂(OH)·O·CH₂ alkoholischem Ammoniak (SIMON, CONDUCHÉ, A. ch. [8] 12, 33; C. r. 138, 979). — Prismen mit 2 H₂O. Zersetzt sich bei 180°. — Gibt mit Eisenchlorid in Alkohol eine rote Färbung. — Ammoniumsalz. Krystalle. Zersetzt sich bei 175°. — Kaliumsalz. Nadeln (aus Alkohol). Leicht löslich in Wasser.

4. Oxy-oxo-carbonsäuren mit 7 Sauerstoffatomen.

a) Oxy-oxo-carbonsăuren $C_n H_{2n-5} O_7 N$.

1. 2.4 - Dioxy - 6 - oxo - 2.5 - dimethyl - piperidin - dicarbonsäure - (3.5), $\alpha.\gamma$ - Dioxy - α' - oxo - $\alpha.\beta'$ - lupetidin - $\beta.\beta'$ - dicarbonsäure , 2.4 - Dioxy - 2.5 - dimethyl - piperidon - (6) - dicarbonsäure - (3.5) $_{\rm C_0H_{18}O_7N} = _{\rm HO_2C\cdot(CH_3)C\cdot CH(OH)\cdot CH\cdot CO_2H}$

OC-NH-C(OH)·CH₃

2-Oxy-4-äthoxy-2.5-dimethyl-piperidon-(6)-dicarbonsäure-(3.5)-nitril-(5) (?), 2-Oxy-4-äthoxy-2.5-dimethyl-5-cyan-piperidon-(6)-carbonsäure-(3) (?) $C_{11}H_{16}O_5N_2=NC\cdot(CH_3)C\cdot CH(O\cdot C_2H_5)\cdot CH\cdot CO_2H$

OC—NH—C(OH)·CH₃ (?). Zur Konstitution vgl. Errera, Labate, G. 33 II, 161. — B. Beim Kochen des Äthylesters (s. u.) mit Natronlauge (Errera, G. 31 II, 591; B. 34, 3695). — Krystalle (aus Wasser). F: ca. 256° (Zers.) (E.). Sehr schwer löslich in heißem Alkohol, leichter in Wasser (E.). — Bleibt beim Kochen mit Wasser unverändert (E.).

2-Oxy-4-äthoxy-2.5-dimethyl-piperidon-(6)-dicarbonsäure-(8.5)-äthylester-(3)-nitril-(5)(?), 2-Oxy-4-äthoxy-2.5-dimethyl-5-cyan-piperidon-(6)-carbonsäure-(3)-äthylester(?) $C_{13}H_{20}O_5N_2 = NC \cdot (CH_3)C \cdot CH(O \cdot C_2H_5) \cdot CH \cdot CO_2 \cdot C_2H_5$ (?). Zur Konstitution

vgl. Errera, Labate, G. 33 II, 161. — B. Neben anderen Produkten bei der Einw. von α-[Äthoxymethylen]-acetessigsäure-äthylester auf α-Cyan-propionsäure-amid in Gegenwart von Natriumäthylat (Errera, G. 31 II, 589; B. 34, 3693). — Nadeln (aus Wasser oder Alkohol). F: 202—203° (E.). Fast unlöslich in Benzol, schwer löslich in Wasser, leicht in Alkohol (E.). — Liefert beim Kochen mit verd. Salzsäure 6-Oxy-2.5-dimethyl-pyridin-carbonsäure-(3)-äthylester (E.). Bei der Einw. von Methyljodid auf das Silbersalz in Methanol entsteht eine in Tafeln krystallisierende Verbindung [2-Methoxy-4-äthoxy-2.5-dimethyl-5-cyan-piperidon-(6)-carbonsäure-(3)-äthylester?], die beim Kochen mit konz. Salzsäure 6-Oxy-2.5-dimethyl-pyridin-carbonsäure-(3) liefert (E., L.). Reagiert weder mit Hydroxylamin noch mit Phenyl-hydrazin (E., L.).

2. 2.4 - Dioxy-6-oxo-2-methyl-5-äthyl-piperidin-dicarbonsäure - (3.5),
2.4 - Dioxy-2-methyl-5-äthyl-piperidon-(6)-dicarbonsäure - (3.5) $\frac{\text{HO}_2\text{C} \cdot (\text{C}_2\text{H}_5)\text{C} \cdot \text{CH}(\text{OH}) \cdot \text{CH} \cdot \text{CO}_2\text{H}}{\text{OC} - \text{NH} - \text{C}(\text{OH}) \cdot \text{CH}_3} \cdot$

2-Oxy-4- äthoxy-2-methyl-5- äthyl-piperidon-(6)-dicarbonsäure-(3.5)- äthylester-(3)-nitril-(5) (?), 2-Oxy-4- äthoxy-2-methyl-5- äthyl-5- cyan-piperidon-(6)- $\frac{\text{NC} \cdot (\text{C}_2 \text{H}_5)\text{C} \cdot \text{CH}(\text{O} \cdot \text{C}_2 \text{H}_5) \cdot \text{CH} \cdot \text{CO}_2 \cdot \text{C}_2 \text{H}_5}{\text{OC}}$ carbonsäure-(3)- äthylester(?) $\frac{\text{NC} \cdot (\text{C}_1 \text{H}_{22} \text{O}_5 \text{N}_2)}{\text{OC}} = \frac{\frac{\text{NC} \cdot (\text{C}_2 \text{H}_5) \cdot \text{CH} \cdot \text{CO}_2 \cdot \text{C}_2 \text{H}_5}{\text{OC}}}{\text{OC}}$ (?). B. Analog der vorhergehenden Verbindung (Ereer, Labate, G. 33 II, 167). — Nadeln. F: 198°. Sehr schwer löslich in Wasser und Benzol, leichter in Alkohol.

3. 2.4-Dioxy-6-oxo-2-methyl-5-propyl-piperidin-dicarbonsaure-(3.5), 2.4-Dioxy-2-methyl-5-propyl-piperidon-(6)-dicarbonsaure-(3.5) $\frac{\text{HO}_2\text{C}\cdot(\text{C}_2\text{H}_5\cdot\text{CH}_2)\text{C}\cdot\text{CH}(\text{OH})\cdot\text{CH}\cdot\text{CO}_2\text{H}}{\text{OC}-\text{NH}-\text{C}(\text{OH})\cdot\text{CH}_3}.$

2-Oxy-4-äthoxy-2-methyl-5-propyl-piperidon-(6)-dicarbonsäure-(3.5)-äthylester-(3)-nitril-(5)(?), 2-Oxy-4-äthoxy-2-methyl-5-propyl-5-cyan-piperidon-(6)-carbonsäure-(3)-äthylester(?) $C_{15}H_{24}O_5N_2=NC\cdot(C_2H_5\cdot CH_4)C\cdot CH(O\cdot C_2H_5)\cdot CH\cdot CO_2\cdot C_2H_5$ (?). B. Analog der vorhergehenden Verbin-OC—NH—C(OH)·CH₃

OC—NH—C(OH)·CH₃ dung. — Blättchen (aus verd. Alkohol). F: 205° (ERRERA, LABATE, G. 33 II, 165, 508). Schwer löslich in Wasser und Benzol, leicht in Alkohol.

b) Oxy-oxo-carbonsäuren $C_n H_{2n-13} O_7 N$.

5.7 - Dio xy - 2 - 0 x 0 - in dolin - dicarbons äure - (4.6), 5.7 - Dio xy - 0 x in dol - dicarbons äure - (4.6) $C_{10}H_7O_7N$, s. nebenstehende Formel, bezw. desmotrope Formen.

Dimethylester $C_{12}H_{11}O_7N = (CH_3 \cdot O_2C)_2(HO)_2C_6 < \frac{CH_2}{NH} > CO$. B.

Beim Behandeln von 6-Nitro-3.5-dioxy-2.4-dicarbomethoxy-phenylessigsäure-methylester mit Zinn und Salzsäure oder besser mit Aluminiumspänen in alkal. Lösung (Dootson, Soc. 77, 1201, 1202). — Krystalle (aus Alkohol oder Eisessig). F: 260—265° (Zers.).

Diäthylester $C_{14}H_{15}O_7N = (C_2H_5 \cdot O_2C)_2(HO)_2C_6 < \frac{CH_2}{NH} > CO$. B. Analog dem Dimethylester. — F: 235—236° (Zers.) (D., Soc. 77, 1202).

c) Oxy-oxo-carbonsäuren $C_n H_{2n-15} O_7 N$.

 $\begin{array}{ll} \textbf{2.6-Dioxo-4-[2-oxy-phenyl]-piperidin-dicarbons\"{a}ure-\textbf{(3.5)}} & C_{13}H_{11}O_7N = \\ HO_2C\cdot HC\cdot CH(C_6H_4\cdot OH)\cdot CH\cdot CO_2H & \text{bezw. desmotrope Formen.} \end{array}$

Dinitril, 2.6 - Dioxo - 4 - [2 - oxy - phenyl] - 3.5-dicyan - piperidin $C_{13}H_9O_3N_3 = NC \cdot HC \cdot CH(C_6H_4 \cdot OH) \cdot CH \cdot CN$ OC ——NH ——CO

B. Beim Kochen von 2-Oxy-benzal-bis-[cyanessigsäure-äthylester] mit alkoh. Ammoniak (Bechert, J. pr. [2] 50, 22). — Krystallinisch. Schmilzt nicht bei 280°. Unlöslich in Äther, Chloroform, Petroläther, Benzol und Wasser, sehr schwer löslich in Alkohol, sehr leicht in Eisessig.

d) Oxy-oxo-carbonsäuren $C_n H_{2n-17} O_7 N$.

e) Oxy-oxo-carbonsäuren $C_nH_{2n-19}O_7N$.

2 - [3.4 - Dioxy - benzoyl] - pyridin - dicarbonsäure - (3.4), 2 - [3.4 - Dioxybenzoyl] - cinchomeronsäure $\rm C_{14}H_{0}O_{7}N_{r}$ Formel I.

2-[3.4-Dimethoxy-benzoyl]pyridin - dicarbonsäure - (3.4),
2-Veratroyl - cinchomeronsäure,
Papaverinsäure C₁₆H₁₃O₇N, Formel II. Die Stellungsbezeichnung gilt
für die in diesem Handbuch gebrauchten, vom Namen "Papaverinsäure" abgeleiteten Namen. — Zur Konstitution vgl. Goldschmiedt, M. 9, 357. — B. Neben anderen Verbindungen beim Kochen von Papaverin (Bd. XXI, S. 220) mit Kaliumpermanganat in wäßr. Lösung (G., M. 6, 374, 380). — Krystalle mit 1 H₂O (aus Wasser) (G., Strache, M. 10, 692). F: 233° (Zers.) (G., M. 6, 381; vgl. a. G., Kiepal, M. 17, 494). Sehr schwer löslich in Äther, Benzol, Chloroform, Schwefelkohlenstoff, Petroläther, Aceton, absol. Alkohol und kaltem Wasser, schwer in heißem Wasser, löslich in heißem, sehr verd. Alkohol, Eisessig und salzsäurehaltigem Wasser (G., M. 6, 382). Starke Säure; elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Ostwald, Ph. Ch. 3, 398; Kiepal, M.

18, 466. Elektrolytische Dissoziationskonstante der zweiten Stufe k₂ bei 25°: 7×10⁻⁵ (aus Leitfähigkeitsmessungen ermittelt) (Wegscheider, M. 23, 631). Löst sich in kalter konzentrierter Schwefelsäure mit rotgelber Farbe und wird durch Wasser wieder gefällt (G., M. 6, 382). — Zerfällt beim Erhitzen auf den Schmelzpunkt in CO₂ und Pyropapaverinsäure (S. 378) (G., M. 6, 394; G., St., M. 10, 694). Beim Behandeln mit konz. Salpetersäure oder beim Kochen mit salpetriger Säure in Eisessig entsteht neben anderen Produkten Nitropapaverinsäure (S. 385) (G., M. 6, 391). Wird bei langem Kochen mit alkoholischer oder 10°/ojger wäßriger Kalilauge kaum angegriffen (G., M. 6, 396; G., Hönigschmid, M. 24, 697). Beim Schmelzen mit Kaliumhydroxyd entsteht Protocatechusäure (G., M. 6, 396). Beim Erhitzen von Papaverinsäure mit Methyljodid und Methanol im Rohr auf 100° bilden sich Papaverinsäure -γ · methylester, Papaverinsäure - dimethylester und Papaverinsäure - methylbetain säure -γ · methylester, M. 14, 521; vgl. G., K., M. 17, 491; W., M. 23, 388, 390; G., H., M. 24, 685, 691). Papaverinsäure mit Methyljodid in Soda-Lösung oder beim Behandeln mit Dimethylsulfat in alkal. Lösung (G., H., M. 24, 689, 692). Papaverinsäure liefert beim Kochen mit Methanol und etwas konz. Schwefelsäure Papaverinsäure-γ-methylester und etwas Papaverinsäure-dimethylester (W., M. 23, 385, 388; G., H., M. 24, 687 Anm. 2; vgl. G., K., M. 17, 495). Beim Kochen mit überschüssigem Essigsäureanhydrid entsteht Papaverinsäure-anhydrid (Syst. No. 4300) (G., St., M. 10, 159; G., Schranzhofer, M. 18, 698).

Salze: Goldschmedt, M. 6, 383. — $KC_{16}H_{12}O_7N$ (bei 100^0). Nadeln. — $K_2C_{16}H_{11}O_7N+2^1/_2H_2O$. Blättchen (aus verd. Alkohol). Sehr leicht löslich in Wasser, sehr schwer in absol. Alkohol. — $2CuC_{16}H_{11}O_7N+Cu(OH)_2+6H_2O$. Hellblaue Nadeln. Verliert bei 130^0 5 H_2O und wird dabei dunkelgrün. Unlöslich in Wasser. — $AgC_{16}H_{12}O_7N+C_{16}H_{13}O_7N+H_2O$. Gelbliche Nadeln oder gelbe Tafeln. — $Ag_2C_{16}H_{11}O_7N+2^1/_2H_2O$. Farblose Nadeln (aus Wasser). Enthält bei 100^0 noch $1/_3$ $1/_3$ 0. Schwer löslich in Wasser. — $CaC_{16}H_{11}O_7N+aq(?)$. Blättchen. Sehr schwer löslich in heißem Wasser. — $1/_3$ 0. Nadeln. In Wasser schwerer löslich in das Calciumsalz. — $1/_3$ 0. Wird beim Erwärmen auf 105^0 0 oder bei der Einw. von Alkohol zersetzt. — $1/_3$ 0. Gelbe Nadeln.

Oxim $C_{16}H_{14}O_7N_2 = NC_5H_2(CO_2H)_2C(:N\cdot OH)\cdot C_6H_3(O\cdot CH_3)_2$. Beim Erwärmen von Papaverinsäure mit salzsaurem Hydroxylamin in Kalilauge (Goldschmiedt, Strache, M. 10, 693). — Nadeln (aus Alkohol). F: 154—157°; leicht löslich in Wasser und Alkohol (G., St.). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: Bethmann, Ph. Ch. 5, 418. Die Lösung in kalter konzentrierter Schwefelsäure ist dunkelrot und wird beim Erwärmen rotgelb (G., St.).

Phenylhydrason $C_{22}H_{19}O_6N_3 = NC_5H_2(CO_2H)_2 \cdot C(:N \cdot NH \cdot C_6H_5) \cdot C_6H_3(O \cdot CH_3)_2$. Beim Erwärmen von Papaverinsäure mit salzsaurem Phenylhydrazin und Natriumacetat in verd. Alkohol (Goldschmiedt, M. 6, 973). — Hellgelbe Nadeln (aus Alkohol). F: 190° (G.). Starke Säure; elektrische Leitfähigkeit: Bethmann, Ph. Ch. 5, 418.

Papaverinsäure- β -methylester $C_{17}H_{15}O_7N$, s. nebenstehende CO₂H Formel. Zur Konstitution vgl. Goldschmiedt, Kirpal, M. 17, 496; ·CO2·CH3 WEGSCHEIDER, M. 23, 338. — B. Neben wenig Papaverinsäure-NJ·CO·C₆H₃(O·CH₈)₂ γ-methylester beim Kochen von Papaverinsäure-anhydrid mit Methanol (G., Schranzhofer, M. 13, 698; vgl. W., M. 23, 387; G., Hönigschmid, M. 24, 685). Beim Behandeln von Papaverinsäure-dimethylester mit methylalkoholischer Kalilauge, neben Papaverinsaure-y-methylester (W., M. 23, 385). — Krystalle (aus Methanol). F: 1560 (G., H., 156,5° (W., M. 23, 336, 387). Sehr schwer löslich in Wasser (KIRPAL, M. 18, 464). Löslich in Methanol (W., M. 23, 386). Starke Säure; elektrische Leitfähigkeit: W., M. 23, 336). — Lagert sich bei längerem Erhitzen auf die Schmelztemperatur in Papaverinsaure-γ-methylester um (G., H.). Wird beim Kochen mit Wasser leicht verseift (G., K.). Liefert beim Kochen mit Methanol und etwas konz. Schwefelsäure Papaverinsäure-dimethylester (G., K.). Beim Erhitzen mit Methyljodid und Methanol im Rohr auf 100° erhält man Papaverinsäure-dimethylester und ein Produkt, das beim Schütteln mit Silberoxyd in wäßr. Lösung Papaverinsäure-methylbetain liefert (G., H.).

Papaverinsäure-y-methylester C₁₇H₁₅O₇N, s. nebenstehende Formel. Zur Konstitution vgl. Goldschmiedt, Kiepal, M. 17, 496; Wegscheider, M. 23, 338. — B. Neben wenig Papaverinsäure-dimethylester beim Kochen von Papaverinsäure mit Methanol und etwas konz. Schwefelsäure (G., K., M. 17, 495; vgl. W., M. 23, 385; G., Hönigschmid, M. 24, 687 Anm. 2). Beim Erhitzen von Papaverinsäure mit Methyljodid und Methanol im Rohr auf 100°, neben Papaverinsäure-dimethylester und Papaverinsäure-methylbetain (Schranzhofer, M. 14, 521, 532; vgl. G., K.; W., M. 28, 388, 390; G., H.). Aus Papaverin-

säure-β-methylester bei längerem Erhitzen auf die Schmelztemperatur (G., H.). Neben Papaverinsäure-β-methylester beim Behandeln von Papaverinsäure-dimethylester mit methylalkoholischer Kalilauge (W., M. 23, 385, 390). In geringer Menge neben Papaverinsäure-β-methylester beim Kochen von Papaverinsäure-anhydrid mit Methanol (W., M. 23, 387; G., H.). — Nadeln (aus Wasser oder Methanol). F: 196° (Zers.) (G., K.), 195—197° (Zers.) (Sch.), 198° (Zers.) (G., H.). Löslich in Aceton, Alkohol und Essigester (Sch.), schwer löslich in Wasser (Sch.; K., M. 18, 464) und kaltem Methanol (W., M. 23, 386), unlöslich in Äther (Sch.). Elektrische Leitfähigkeit wäßr. Lösungen bei 25°: W., M. 23, 337. Fällungsreaktionen: G., K. — Wird bei anhaltendem Kochen mit Wasser verseift (G., K.; vgl. Sch.). Liefert beim Kochen mit Methanol und etwas konz. Schwefelsäure nur Spuren des Dimethylesters (G., K.). Beim Erhitzen mit Methyljodid und Methanol im Rohr auf 100° entsteht ein Produkt, das beim Schütteln mit Silberoxyd in wäßr. Lösung Papaverinsäure-methylbetain liefert; bei längerem Erhitzen bildet sich daneben etwas Papaverinsäure-dimethylester (G., H.).

Papaverinsäure-dimethylester $C_{19}H_{17}O_7N = NC_5H_2(CO_3 \cdot CH_3)_2 \cdot CO \cdot C_6H_3(O \cdot CH_3)_2$. B. Neben Papaverinsäure- γ -methylester und Papaverinsäure-methylbetain beim Erhitzen von Papaverinsäure mit Methyljodid und Methanol im Rohr auf 100° (SCHRANZHOFER, M. 14, 521, 531; vgl. Goldschmiedt, Kirpal, M. 17, 493; G., Hönigschmid, M. 24, 685). In geringer Menge neben Papaverinsäure- γ -methylester beim Kochen von Papaverinsäure mit Methanol und etwas konz. Schwefelsäure (Wegscheider, M. 23, 385; G., H.). Aus Papaverinsäure- β -methylester beim Kochen mit Methanol und etwas konz. Schwefelsäure (G., K.) oder beim Erhitzen mit Methyljodid und Methanol im Rohr auf 100° (G., H.). — Tafeln (aus Aceton). F: 121—122° (G., K.), 122—124° (SCH.). Sehr leicht löslich in kaltem Aceton und Essigester (SCH.). — Wird bei längerem Kochen mit Wasser oder wäßr. Kalilauge zu Papaverinsäure verseift (G., K.; vgl. SCH.). Beim Behandeln mit methylalkoholischer Kalilauge entstehen Papaverinsäure- β -methylester und Papaverinsäure- γ -methylester (W.).

Papavorinsäure - β - äthylester C₁₈H₁₇O₇N, s. nebenstehende
Formel. Zur Konstitution vgl. Goldschmiedt, Kirpal, M. 17,
496; K., M. 18, 464. — B. Beim Kochen von Papaverinsäure-anhydrid
mit absol. Alkohol (G., Strache, M. 10, 159; G., Schranzhoffer,
M. 18, 699). Aus Papaverinsäure beim Kochen mit Alkohol in Gegenwart von Essigsäure-anhydrid (G., St.; G., Sch.). — Nadeln. F: 187—188° (G., St.; G., Sch.). Sehr schwer löslich in Wasser (K.).

Papaverinsäure - y - äthylester C₁₈H₁₇O₇N, s. nebenstehende Formel. B. Beim Erhitzen von Papaverinsäure mit absol. Alkohol und etwas konz. Schwefelsäure unter Rückfluß (KIRPAL, M. 18, 464). — Nadeln (aus Alkohol). F: 184°. Sehr schwer löslich in Wasser.

Papaverinsäure-monoamid $C_{16}H_{14}O_6N_2 = NC_5H_2(CO_2H)(CO \cdot NH_2) \cdot CO \cdot C_6H_2(O \cdot CH_3)_2$. Beim Einleiten von Ammoniak in eine Lösung von Papaverinsäure-anhydrid in Benzol (Goldschmiedt, Strache, M. 10, 160; G., Schranzhofer, M. 13, 700). Beim Eindampfen von Papaverinsäure- β -āthylester mit Ammoniak (G., St.; G. Sch.). — $NH_4C_{16}H_{18}O_6N_2$. Nadeln. — $AgC_{16}H_{18}O_4N_2$. Nadeln. Lichtbeständig.

Papaverinsäure-monoanilid $C_{22}H_{18}O_6N_3=NC_5H_2(CO_2H)(CO\cdot NH\cdot C_6H_5)\cdot CO\cdot C_6H_3(O\cdot CH_2)_2$. B. Beim Erhitzen von Papaverinsäure-anhydrid mit Anilin (Goldschmiedt, Schranzhofer, M. 18, 700). — Anilinsalz $C_6H_7N+C_{22}H_{18}O_6N_2$. Amorph. F: 119°.

Papaverinsäure-hydroxymethylat, Ammoniumbase der Veratroylapophyllensäure $C_{17}H_{17}O_9N=(H0)(CH_2)NC_5H_2(CO_2H)_2\cdot CO\cdot C_6H_3(O\cdot CH_2)_2$. B. Das Chlorid entsteht beim Kochen von Papaverinsäure-methylbetain (s. u.) mit viel konz. Salzsäure unter Einleiten von Chlorwasserstoff (Schranzhofer, M. 14, 525; vgl. a. Goldschmiedt, Hönigschmid, M. 24, 687, 694). — Das Chlorid liefert beim Kochen mit Wasser Papaverinsäure-methylbetain zurück (Sch.; G., H.). — $C_{17}H_{16}O_7N\cdot Cl+H_2O$. Gelbe Säulen oder Tafeln. F: 182° bis 184° (Zers.) (Sch.; vgl. a. G., H.). — $C_{17}H_{16}O_7N\cdot Cl+AuCl_2+H_2O$. Gelbrote Blättchen (G., H.). — $4C_{17}H_{16}O_7N\cdot Cl+PtCl_4+8H_2O$ (G., H.; vgl. Sch.; G., Kirpal, M. 17, 503). Orangerote Krystalle (Sch.).

Anhydrid, Papaverinsäure-methylbetain, Veratroylapophyllensäure $C_{17}H_{16}O_7N$ $\stackrel{+}{\simeq} CH_2 \cdot NC_5H_2(CO_5H)(CO \cdot C) \cdot CO \cdot C_4H_3(O \cdot CH_3)_8$. Zur Konstitution vgl. Goldschmiedt, Newschmid, B. 36, 1851; M. 24, 683, 696, 704. — B. Bei der Einw. von Dimethylsulfat lef Papaverinsäure in alkal. Lösung (G., H., M. 24, 689). Beim Erwärmen von Papaverinsäure mit Methyljodid in Soda-Lösung (G., H., M. 24, 689). Neben Papaverinsäure- γ -methylester und Papaverinsäure-dimethylester beim Erhitzen von Papaverinsäure mit Methyljodid und Methanol im Rohr auf 100° (Schranzhoffer, M. 14, 521, 523; G., H., M.

24, 685). Beim Erhitzen von Papaverinsäure-β-methylester oder Papaverinsäure-y-methylester mit Methyljodid und Methanol im Rohr auf 100° und Schütteln des Reaktionsprodukts mit Silberoxyd in wäßr. Lösung (G., H., M. 24, 686, 687). — Gelbe Tafeln mit 1 H₂O (aus Wasser). F:192—194° (Zers.) (Sch.), 194° (Zers.) (G., H., M. 24, 689). Schwer löslich in Aceton; löslich in Soda-Lösung; sehr schwer löslich in heißer konzentrierter Salzsäure (Sch.). — Gibt beim Kochen mit viel konz. Salzsäure unter Einleiten von Chlorwasserstoff Papaverinsäure-chlormethylat (Sch., M. 14, 525; vgl. a. G., H., M. 24, 687, 694). Spaltet beim Kochen mit Jodwasserstoffsäure die O-Methylgruppen quantitativ, die N-Methylgruppe teilweise ab (G., H., B. 36, 1853; M. 24, 714). Liefert beim Kochen mit verd. Kalilauge oder Barytwasser Veratrumsäure und Apophyllensäure (S. 158) (G., H., M. 24, 694, 696; vgl. Sch., M. 14, 529). Beim Erhitzen mit Phenol bildet sich Pyropapaverinsäure-methylbetain (S. 378) (G., H., M. 24, 701). — AgC₁₇H₁₄O₇N (bei 100°). Krystallinisch. Zersetzt sich bei 137° (Sch., M. 14, 524). Äußerst lichtempfindlich. — Ba(C₁₇H₁₄O₇N)₂+6H₂O. Grüngelbe Prismen (Sch., M. 14, 524, 597).

x-Nitro-[2-veratroy]-cinchomeronsäure], Nitropapaverinsäure $C_{18}H_{18}O_9N_8 = NC_{19}H_4O(NO_2)(O\cdot CH_3)_2(CO_2H)_3$. B. Aus Papaverinsäure beim Behandeln mit konz. Salpetersäure oder beim Kochen mit salpetriger Säure in Eisessig (Goldschmiedt, M. 6, 391). — Hellgelbe Nadeln mit 1 H_2O (aus Wasser). F: 215° (Zers.). Leicht löslich in Alkohol, Eisessig und heißem Wasser. — $Ag_2C_{16}H_{10}O_9N_2$. Nadeln (aus Wasser).

V. Sulfonsäuren.

A. Monosulfonsäuren.

- 1. Monosulfonsäuren $C_n H_{2n+1} O_8 NS$.
- 1. Trimethylenimin- β -sulfonsäure $C_3H_7O_3NS = HN < CH_3 > CH \cdot SO_3H$. B. Durch Eindampfen von β -Brommethyl-taurin (Bd. IV, S. 532) mit Barytwasser (GABRIEL, COLMAN, B. 39, 2891). Krystalle. Sintert bei ca. 230°, schmilzt bei 245—247° und zersetzt sich bei ca. 255—263°. Sehr leicht löslich in Wasser, unlöslich in Alkohol. Gibt beim Erhitzen mit Bromwasserstoffsäure β -Brommethyl-taurin, reagiert analog mit Jodwasserstoffsäure.
- 2. Piperidin-sulfonsäure-(2), Piperidin- α -sulfonsäure $C_5H_{11}O_3NS=H_2C\cdot CH_2\cdot CH_2$. B. Beim Erhitzen von Piperidin mit Aminosulfonsäure im Rohr auf $H_2C\cdot NH\cdot CH\cdot SO_3H$. B. Beim Erhitzen von Piperidin mit Aminosulfonsäure im Rohr auf 180° (Paal, Hubaleck, B. 34, 2759). Durch Einw. von Natriumdisulfit auf salzsaures Piperidin-N-oxyd (Bd. XX, S. 80) in wäßr. Lösung (Wolffenstein, B. 26, 2992). Aus dem Bariumsalz der Piperidin-N-sulfonsäure (Bd. XX, S. 83) beim Behandeln mit Schwefelsäure (P., H., B. 34, 2763). Prismen (aus Alkohol); F: 180° (W.). Spieße (aus Wasser); F: 187° bis 188° (P., H.). Sehr leicht löslich in heißem Wasser, löslich in heißem Alkohol (P., H.). Wird beim Erhitzen mit Salzsäure nicht verändert (P., H.). Beim Schmelzen des Kaliumoder Bariumsalzes mit Ätzkali entsteht 1.2.3.4-Tetrahydro-pyridin (P., H.). Beim Erhitzen mit Silberacetat und wenig Wasser unter Zusatz von etwas Essigsäure im Rohr auf 150° entsteht Pyridin (P., H.). $KC_5H_{10}O_3NS$. Gelbliches Krystallpulver (P., H.). Sehr leicht löslich in Wasser. $AgC_5H_{10}O_3NS$. Blättchen (P., H.). $Ba(C_5H_{10}O_3NS)_2+H_2O$. Blättchen (aus Wasser) (P., H.). Ziemlich leicht löslich in Wasser, unlöslich in Alkohol.
- 3. Sulfonsäuren $C_8H_{17}O_3NS$.
- 1. 2 Propyl piperidin sulfonsäure (6), Coniin sulfonsäure (6) $H_2C \cdot CH_2 \cdot CH_2 \cdot CH_2$ B. Durch Einw. von Natriumdisulfit auf salzsaures [d-Coniin]-N-oxyd (Bd. XX, S. 117) in wäßr. Lösung (Wolffenstein, B. 28, 1463). Nadeln. F: 135°.
- 2. 2-Methyl-5-äthyl-piperidin-sulfonsäure-(6), Kopellidinsulfonsäure $C_0H_{17}O_3NS = \frac{C_2H_5\cdot HC\cdot CH_2\cdot CH_2}{HO_2S\cdot HC\cdot NH\cdot CH\cdot CH_3}$. B. Durch Einw. von Natriumdisulfit-Lösung auf salzsaures dl-Kopellidin-N-oxyd (Bd. XX, S. 122) (Levy, B. 28, 2274). F: 139°.

2. Monosulfonsäuren C_nH_{2n-5}O₃NS.

- 1. Sulfonsäuren C₅H₅O₃NS.
- 1. Pyridin-sulfonsäure-(2), Pyridin-α-sulfonsäure C₅H₅O₂NS, s. nebenstehende Formel. B. Durch Erwärmen von α-Pyridylmercaptan mit verd. Salpetersäure (Marckwald, Klemm, Trabert, B. 88, 1560). Nadeln (aus Alkohol). F: 239—240°. Leicht löslich in Wasser. AgC₅H₄O₃NS. Hellgelbe Krystalle (aus Wasser). F: 290° (Zers.). Leicht löslich in heißem Wasser. Ba(C₅H₄O₃NS)₂. Krystalle. Sehr leicht löslich in Wasser, schwer in Alkohol.

2. Pyridin-sulfonsäure-(3), Pyridin-β-sulfonsäure C₅H₅O₂NS,
s. nebenstehende Formel. B. Durch längeres Kochen von Pyridin mit überschüssiger konzentrierter Schwefelsäure oder rauchender Schwefelsäure (O. FISCHER, B. 15, 62: F., Renouf, B. 17, 763; Weidel, Murmann, M. 16, 750, 751; vgl. H. Meyer, Ritter, M. 35 [1914], 766) oder durch tagelanges Erhitzen mit überschüssiger Schwefelsäure im Rohr auf 320—330° (F.). — Nadeln oder Blättchen (F., Riemerschmid, B. 16, 1183). Sehr leicht löslich in Wasser, sehr schwer in Alkohol, unlöslich in Äther (F., Rie.). — Liefert bei der trocknen Destillation viel Pyridin neben Dipyridyl-(3.3') (Leone, Oliveri, G. 15, 275). Bei längerem Kochen mit Zinn und Salzsäure entsteht Piperidin (?) (F., Rie.). Bei der Einw. von Brom auf Pyridin-sulfonsäure-(3) in siedender wäßriger Lösung erhält man 3.5-Dibrom-4-amino-pyridin (F., Rie.; vgl. Dohrn, Diedrich, A. 494 [1932], 301; den Hertog, Wibaut, R. 51 [1932], 948). Gibt bei der Kalischmelze 3-Oxy-pyridin (F., Ren., B. 17, 763, 1896; vgl. W., M., M. 16, 753). Beim Erhitzen des Natriumsalzes mit Kaliumcyanid erhält man 3-Cyan-pyridin und Pyridin (F., B. 15, 63). — NH₄C₅H₄O₃NS. Monoklin (v. Lang, M. 16, 752; Z. Kr. 40, 640; vgl. Groth, Ch. Kr. 5, 652). — NaC₃H₄O₃NS. Monoklin (v. Lang, M. 16, 752; Z. Kr. 40, 640; vgl. Groth, Ch. Kr. 5, 652). — NaC₃H₄O₃NS. Monoklin (v. Dadeln (aus Wasser). Leicht löslich in Wasser (M.). — Ba(C₅H₄O₃NS)₂ + 4H₂O. Nadeln (aus Wasser). Leicht löslich in Wasser (M.). — Ba(C₅H₄O₃NS)₂ + 4H₂O. Nadeln (aus Wasser) (F., B. 15, 62; F., Rie., B. 16, 1183). Sehr leicht löslich in Wasser (F.).

Anhydrid des Pyridin-sulfonsäure-(3)-hydroxymethylats, Pyridin- β -sulfonsäure-methylbetain $C_6H_7O_3NS=CH_3\cdot NC_5H_4\cdot SO_2\cdot O$. B. Aus dem Kaliumsalz der Pyridin-sulfonsäure-(3) und Methyljodid durch Erhitzen auf 150° und Zersetzen des Reaktionsprodukts mit Wasser (Hantzsch, B. 19, 36) oder durch Erwärmen mit überschüssiger Soda-Lösung (H. Meyer, M. 24, 203). — Krystalle (aus Wasser). F: 130° (Zers.) (M.). Ist gegen Säuren beständig (H.). [Spaltet beim Kochen mit Kalilauge oder Barytwasser Methylamin ab (H.).

2. 2.6 - Dimethyl - pyridin - sulfonsäure - (4), α.α' - Lutidinγ-sulfonsäure C₇H₉O₈NS, s. nebenstehende Formel. B. Durch Oxydation
von 4-Mercapto-2.6-dimethyl-pyridin mit Wasserstoffperoxyd in alkal. Lösung
(MAROKWALD, KLEMM, TRABERT, B. 33, 1566). — Krystalle (aus Alkohol).
Schmilzt nicht unterhalb 300°. Leicht löslich in Wasser, schwer in kaltem Alkohol und Aceton.
— AgC₇H₈O₈NS. Nadeln (aus Wasser). Schwer löslich in Alkohol, leicht in heißem Wasser.
— Ba(C₇H₈O₈NS)₈. Krystalle (aus verd. Alkohol). Sehr leicht löslich in Wasser.

Anhydrid des 2.6 - Dimethyl - pyridin - sulfonsäure - (4) - hydroxymethylats, a.a'-Lutidin - γ - sulfonsäure - methylbetain $C_8H_{11}O_3NS = CH_3 \cdot NC_5H_2(CH_3)_3 \cdot SO_2 \cdot O$. B. Durch Einleiten von Chlor in eine wäßr. Suspension von 1.2.6-Trimethyl-thiopyridon-(4) (Bd. XXI, S. 276) (MICHAELIS, HÖLKEN, A. 331, 260). — Krystalle mit 2 (?) H_2O (aus Wasser). Verwittert an der Luft. Verkohlt, ohne zu schmelzen. Ziemlich schwer löslich in kaltem Wasser, leicht in heißem Wasser und Alkohol.

3. Monosulfonsäuren C_nH_{2n-7}O₃NS.

1. Sulfonsäuren $C_9H_{11}O_8NS$.

1. 1.2.3.4 - Tetrahydro - chinolin - sulfonsäure - (5) HO38

C₂H₁₁O₂NS, s. nebenstehende Formel. B. Bei der Reduktion von Chinolinsulfonsäure-(5) mit Zinn und heißer konzentrierter Salzsäure (Lellmann, Lange, B. 20, 3089; Claus, J. pr. [2] 55, 230). Bei der Reduktion von Halogen-chinolin-sulfonsäuren-(5) und Oxy-chinolin-sulfonsäuren-(5) s. bei diesen. — Tafeln Halogen-chinolin-sulfonsäuren-(5) und Oxy-chinolin-sulfonsäuren-(5) s. bei diesen. — Tafeln Halogen-chinolin-sulfonsäuren-(5) und Oxy-chinolin-sulfonsäuren-(5) s. bei diesen. — Tafeln Frascher monoklin prismatische Krystalle (Leppla, B. 20, 3088; vgl. Groth, Ch. Kr. 5, 785). Zersetzt sich bei ca. 315—318° (Cl.). Sehr schwer löslich in kaltem Wasser und Alkohol, unlöslich in Äther (Cl.). — Liefert bei der Einw. von Brom in Eisessig oder Chloroform oder von Brom ohne Lösungsmittel 7-Brom-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(5) (Cl.). — Gibt in wäßr. Lösung mit Eisenchlorid eine braune Färbung, die bald purpurn wird und beim Erwärmen in Grün übergeht (Le., La.). — NH₄C₂H₁₀O₂NS + H₂O. Platten oder Prismen (Cl.). Leicht löslich in heißem Wasser. Färbt sich allmählich braun. — KC₂H₁₀O₂NS (Cl., ores

GIWARTOVSKY, J. pr. [2] 54, 385). — $Cu(C_9H_{10}O_3NS)_9+3H_2O$. Braune Plättchen (CL.). — $AgC_9H_{10}O_9NS$. Krystalliner Niederschlag (CL.). Sehr lichtempfindlich. — $Ca(C_9H_{10}O_8NS)_2+2^1/_9H_2O$. Krystalle (CL.). — $Ba(C_9H_{10}O_9NS)_9+3^1/_9H_2O$. Blättchen (CL.). Mäßig löslich in Wasser. — $Pb(C_9H_{10}O_3NS)_2+2^1/_9H_2O$. Gelbrote Blättchen (CL.). — $Ni(C_9H_{10}O_3NS)_2+3^1/_9H_2O$. Hellgrüne Krystalle (CL.).

- 7 Brom 1.2.3.4 tetrahydro chinolin sulfonsäure (5)
 C₉H₁₀O₃NBrS, s. nebenstehende Formel. B. Aus 1.2.3.4-Tetrahydrochinolin-sulfonsäure-(5) bei der Einw. von Brom in Eisessig oder Chloroform oder ohne Lösungsmittel (Claus, J. pr. [2] 55, 234). Nadeln
 (aus Wasser). F: 285°. Mäßig löslich in heißem Wasser.
- 2. 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8) C₂H₁₁O₃NS, s. nebenstehende Formel. B. Bei der Reduktion von Chinolin-sulfonsäure-(8) mit Zinn und konz. Salzsäure (CLAUS, GÜNTHER, J. pr. [2] 55, 94).

 Durch Reduktion von Halogen-chinolin-sulfonsäuren-(8), s. bei diesen. HO3S

 Schuppen. Zersetzt sich bei 240—242° (CL., G.). Sehr schwer löslich in kaltem Wasser und Alkohol, unlöslich in Äther, Chloroform und Schwefelkohlenstoff (CL., G.). Liefert mit 1 Mol Brom ohne Lösungsmittel oder in Chloroform-Lösung 6-Brom-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(8) (CL., G., J. pr. [2] 55, 108). Bei der Einw. von 5 Mol Brom auf 1 Mol 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8) in Gegenwart von Wasser erhält man als Hauptprodukt 3.6.8-Tribrom-chinolin, daneben entstehen 8-Brom-chinolin, 6.8-Dibrom-chinolin und andere Produkte (CL., G., J. pr. [2] 55, 103; vgl. a. CL., CAROSELLI, J. pr. [2] 51, 489; CL., J. pr. [2] 55, 229). Beim Erhitzen mit Salzsäure (D: 1,1) im Rohr auf 270° entsteht Chinolin in geringer Menge (CL., G., J. pr. [2] 55, 101). Wird das Ammoniumsalz mit Ammoniumchlorid im Ammoniak-Strom über freier Flamme erhitzt, so entsteht 1.2.3.4-Tetrahydrochinolin (CL., G., J. pr. [2] 55, 102). Beim Erhitzen mit Kaliumhydroxyd auf 250° entsteht 8-Oxy-chinolin (CL., G., J. pr. [2] 55, 100). NH₄C₃H₁₀O₃NS. Tafeln (aus Wasser). Zersetzt sich bei ca. 235° (CL., G., J. pr. [2] 55, 97). Leicht löslich in Wasser. Cu(C₃H₁₀O₃NS)₂ + 4H₂O. Dunkelbraune Blättchen (aus verd. Alkohol) (CL., G.). AgC₃H₁₀O₃NS). Nadeln (CL., G.). Schwer löslich in kaltem Wasser, leichter in verd. Alkohol. Ca(C₃H₁₀O₃NS)₂ + 3H₂O. Krystalle (CL., G.). Ziemlich leicht löslich in Wasser. Ba(C₃H₁₀O₃NS)₂. Tafeln (aus Wasser) (CL., G.). Löslich in Wasser.
- 1-Methyl-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(8)-methylester, Kairolin-sulfonsäure-(8)-methylester $C_{11}H_{15}O_3NS = CH_3 \cdot O_3S \cdot C_6H_3 \cdot CH_2 CH_2 \cdot CH_2 CH_3 \cdot O_3S \cdot C_6H_3 \cdot CH_3 \cdot$

Anhydrid des 1 - Methyl - 1.2.3.4 - tetrahydro - chinolin - sulfonsäure - (8) - hydroxymethylats, Kairolin - sulfonsäure - (8) - methylbetain $C_{11}H_{15}O_{9}NS = O \cdot O_{2}S \cdot C_{6}H_{3} + CH_{2} + B$. Beim Behandeln des Hydrojodids des 1-Methyl-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(8)-methylesters mit heißem Wasser (Claus, Günther, J. pr. [2] 55, 100). — Prismen (aus Wasser). F: 251°.

6 - Brom - 1.2.3.4 - tetrahydro - chinolin - sulfonsäure - (8)

C₉H₁₀O₃NBrS, s. nebenstehende Formel. B. Bei der Einw. von 1 Mol
Brom auf 1 Mol 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8) in Chloroform oder ohne Lösungsmittel (Claus, Günther, J. pr. [2] 55, 108). — HO₃S

Nadeln. F: 245°. Sehr schwer löslich in kaltem Wasser und Alkohol, etwas leichter in Eisessig. — Liefert bei der Einw. von Brom in Gegenwart von Wasser 3.6.8-Tribrom-chinolin.
Beim Erhitzen mit Kaliumhydroxyd auf 250—270° entsteht 8-Oxy-chinolin. — Ammoniumsalz. Hellgelbe Säulen (aus Wasser oder Alkohol). — Kaliumsalz. Nadeln und Säulen
(aus Alkohol). Leicht löslich in Alkohol. — AgC₉H₉O₃NBrS. Krystallpulver. —
Ca(C₉H₉O₃NBrS)₂ + 4H₂O. Gelbe Säulen. Ziemlich leicht löslich in Wasser. —
Ba(C₉H₉O₃NBrS)₂ + 5H₂O. Hellgelbe Plättchen. — Co(C₈H₉O₃NBrS)₂ + 6H₂O. Rosa Krystalle. — Ni(C₉H₉O₃NBrS)₂ + 5H₂O. Grüne Krystalle.

Anhydrid des 1-Methyl-6-brom-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(8)-hydroxymethylats, 6-Brom-kairolin-sulfonsäure-(8)-methylbetain $C_{11}H_{14}O_8NBrS = \overline{O\cdot O_8S\cdot C_6H_8Br} + | B.$ Durch Erhitzen des Silbersalzes der 6-Brom-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(8) mit Methyljodid im Rohr auf 140° und Behandeln des Reaktionsprodukts mit Wasser oder Alkohol (CLAUS, GÜNTHER, $J.\ pr.\ [2]\ 55,\ 111$). — Nadeln. F: 253°. Leicht löslich in Wasser.

3. 1.2.3.4 - Tetrahydro - isochinolin - sulfonsäure - (3) C₉H₁₁O₃NS, s. nebenstehende Formel. B. Aus N-Oxy-tetrahydroisochinolin durch Einw. von Natriumdisulfit-Lösung und Salzsäure (Maass, Wolffenstein, B. 30, 2191). — Krystalle (aus Alkohol). F: 185—186°.

2. Sulfonsäuren C₁₀H₁₃O₈NS.

- 1. 6 Methyl 1.2.3.4 tetrahydro chinolin sulfon CH₂ CH₂ CH₂ säure-(8?) C₁₀H₁₃O₂NS, s. nebenstehende Formel. B. Durch Reduktion von 6-Methyl-chinolin-sulfonsäure-(8?) mit Zinn und Salzsäure (Lellmann, Ziemssen, B. 24, 2120). Nadeln mit 2H₂O (aus Wasser). (?)HO₃s
- 2. 8 Methyl 1.2.3.4 tetrahydro chinolin sulfon-sdure-(6) C₁₀H₁₈O₃NS, s. nebenstehende Formel. B. Durch Reduktion von 8-Methyl-chinolin-sulfonsäure-(6) mit Zinn und Salzsäure (Lellmann, Ziemssen, B. 24, 2120). Krystalle. Gibt mit Eisenchlorid nach einiger Zeit eine grüne Färbung.
- 3. 8-Methyl-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(x) C₁₀H₁₃O₃NS = HNC₂H₂(CH₂)·SO₃H. B. Durch Reduktion von 8-Methyl-chinolin-sulfonsäure-(x) mit Zinn und konz. Salzsäure (Lellmann, Ziemssen, B. 24, 2118). Blättchen (aus Wasser).

4. Monosulfonsäuren $C_n H_{2n-9} O_3 NS$.

1. Indoi-sulfons aure-(2) $\mathrm{C_8H_7O_3NS} = \mathrm{C_4H_4} {<}_{NH}^{CH} {>} \mathrm{C\cdot SO_3H}.$

- 1-Methyl-indol-sulfonsäure-(2) $C_9H_9O_3NS = C_6H_4 < CH_3 > C \cdot SO_3H^1$). B. Das Natriumsalz entsteht neben N-Methyl-N-phenyl-glycin beim Erwärmen von Methylanilin mit Glyoxal-Natriumdisulfit (Bd. I, S. 760) in verd. Alkohol (HINSBERG, ROSENZWEIG, B. 27, 3256). Das Natriumsalz liefert beim Kochen mit Salzsäure 1-Methyl-oxindol. NaC₉H₈O₂NS. Blätter (aus Wasser).
- 2. 2-Methyl-indol-Bz-sulfonsäure $C_9H_9O_3NS = HO_2S \cdot C_0H_3 < \frac{CH}{NH} > C \cdot CH_3$. B. Durch Einw. von rauchender Schwefelsäure auf 2-Methyl-indol unterhalb 60° (BAYER & Co., D. R. P., 137117; C. 1903 I, 109; Frdl. 7, 292). Leicht löslich in Wasser und verd. Mineralsäuren (B. & Co., D. R. P. 137117). Verwendung zur Herstellung von Azofarbstoffen: B. & Co., D. R. P. 141354; C. 1903 I, 1198; Frdl. 7, 363. Ba($C_9H_8O_3NS$)₂. Leicht löslich in heißem Wasser (B. & Co., D. R. P. 137117).
- 1.2-Dimethyl-indol-Ba-sulfonsäure $C_{10}H_{11}O_2NS = HO_2S \cdot C_0H_2 < CH_2 > C \cdot CH_2$. B. Durch Behandeln von 1.2-Dimethyl-indol mit rauchender Schwefelsäure (20% SO₃-Gehalt) (Bayer & Co., D. R. P. 137117; C. 1903 I, 109; Frdl. 7, 292). Leicht löslich in Wasser und verd. Mineralsäuren (B. & Co., D. R. P. 137117). Verwendung zur Herstellung von Azofarbstoffen: B. & Co., D. R. P. 141354; C. 1903 I, 1198; Frdl. 7, 363. NaC₁₀H₁₀O₂NS. Blättchen (aus Wasser). Schwer löslich in kaltem Wasser (B. & Co., D. R. P. 137117).

¹⁾ Zu dieser Formulierung vgl. die nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeiten von RASCHIG, B. 59, 589; R., PRAHL, B. 59, 2025; 61, 179; A. 446, 265; STELLING, Cellulosechemis 9, 100; C. 1928 II, 2718; HOOVER, HUNTER, SANKEY, J. phys. Chem. 34, 1361; BACKER, MULDER, R. 52, 454; vgl. auch SCHROETER, B. 59, 2341; 66, 1038; SCHR., SULZBACHER, B. 61, 1616, 1630.

- 3. 2.5 Dimethyl-indol-Bz-sulfonsäure $C_{10}H_{11}O_3NS=(HO_3S)(CH_3)C_0H_2<\frac{CH}{NH}>C\cdot CH_3$.

5. Monosulfonsäuren $C_n H_{2n-11} O_3 NS$.

- 1. Sulfonsäuren $C_9H_7O_8NS$.
- 1. Chinolin sulfonsäure (5) C₉H₇O₃NS, s. nebenstehende Formel. HO₃S

 B. Bei der Einw. von rauchender Schwefelsäure auf Chinolin oberhalb 120°
 (Bedall, O. Fischer, B. 15, 684; F., B. 15, 1979; 20, 731; Riemerschmied, B. 16, 721; La Coste, Valeur, B. 20, 95; Claus, J. pr. [2] 37, 258); bei 125°
 bis 130° erhält man mit 10—20°/₀ SO₃ enthaltender Schwefelsäure neben Chinolin-sulfonsäure-(5) reichliche Mengen Chinolin-sulfonsäure-(8) und wenig Chinolin-sulfonsäure-(7), oberhalb 170° nur Chinolin-sulfonsäure-(8) (Cl., J. pr. [2] 37, 260; vgl. Lellmann, B. 20, 2173). Durch Erhitzen von 3-Amino-benzol-sulfonsäure-(1) mit Nitrobenzol oder Nitrophenol, Glycerin und Schwefelsäure (Lell., Lange, B. 20, 1446). Krystalle mit 1 H₂O. Monoklin prismatisch (Leppla, B. 20, 1447; vgl. Groth, Ch. Kr. 5, 755). Leicht löslich in Wasser (F., B. 15, 1979; La C., V.). Wird durch Zinn und Salzsäure zu 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(5) reduziert (Lell., La., B. 20, 3089). Beim Eintragen einer Lösung von 1 Mol Brom in Eisessig in eine heiße Lösung von Chinolin-sulfonsäure-(5) in konz. Bromwasserstoffsäure entsteht 3-Brom-chinolin-sulfonsäure-(5) (Cl., J. pr. [2] 55, 227). Bei der Bromierung in wäßr. Lösung oder ohne Lösungsmittel entstehen 3.5.8-Tribrom-chinolin und 3.5.6.8-Tetrabrom-chinolin (Cl., J. pr. [2] 55, 228): Chinolin-sulfonsäure-(6) über (Lell., Reusch, B. 22, 1391). Liefert bei der Kalischmelze 5-Oxy-chinolin (Rie., B. 16, 721; Dissertation [München 1883], S. 18; Cl., Howitz, J. pr. [2] 47, 431) und wenig 2(?).5-Dioxy-chinolin (Lell., B. 20, 2174; vgl. Diamant, M. 16, 761). Beim Erhitzen des Natriumsalzes mit Kalium-cyanid entsteht 5-Cyan-chinolin (F., B. 20, 731; Lell., Lange, B. 20, 1449). Ca(C₉H₆O₃NS)₂ + 5H₉O. Nadeln (aus Wasser oder verd. Alkohol) (La C., V., B. 20, 98). Quecksilber-salz. Unlöslich in kaltem Wasser (La C., V., B. 20, 96).

Anhydrid des Chinolin-sulfonsäure-(5)-hydroxymethylats, Chinolin-sulfonsäure-(5)-methylbetain $C_{10}H_9O_3NS=CH_3\cdot NC_9H_8\cdot SO_2\cdot O$. B. Durch Erhitzen des Silbersalzes der Chinolin-sulfonsäure-(5) mit Methyljodid im Rohr auf 100° (CLAUS, STEINITZ, A. 282, 135). — Säulen. Zersetzt sich nicht unterhalb 360°. Sehr leicht löslich in Wasser, schwer in Alkohol, unlöslich in Äther und Benzol.

- 6 Chlor chinolin sulfonsäure (5) C₂H₆O₂NClS, s. nebenstehende HO₂S Formel. B. Bei mehrtägiger Einw. von rauchender Schwefelsäure (60°/₀ SO₃ Cl Gehalt) auf 6-Chlor-chinolin auf dem Wasserbad (CLAUS, SCHEDLER, J. pr. [2] 49, 372). Tafeln oder Würfel mit 1 H₂O (aus Wasser). Ziemlich schwer löslich in heißem Wasser. Liefert bei der Reduktion mit Zinn und konz. Salzsäure 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(5). Wird beim Einleiten von Chlor in die wäßr. Lösung unter Bildung von Chlorchinolinen und Schwefelsäure zersetzt. Einw. von Brom: CL., Sch. Beim Erhitzen mit konz. Salzsäure im Rohr auf 230—240° entsteht 6-Chlor-chinolin. KC₂H₅O₂NClS + 1¹/₂H₂O. Tafeln. Löslich in heißem Wasser.
- 8 Chlor chinolin sulfonsäure (5) C₉H₆O₃NClS, s. nebenstehende Kormel. B. Beim Erhitzen von 8-Chlor-chinolin mit rauchender Schwefelsäure (30% SO₃) auf 140% (Claus, Schöller, J. pr. [2] 48, 148). Säulen oder Nadeln mit 2 H₂O (aus Wasser). Zersetzt sich unterhalb 300% nicht. Sehr schwer löslich in kaltem Wasser. Liefert bei der Reduktion mit Zinn und Salzsäure 1.2.3.4. Cl Tetrahydro-chinolin-sulfonsäure-(5). Ammoniumsalz. Nadeln. Sehr leicht löslich in Wasser. Färbt sich am Licht rötlich. NaC₉H₅O₃NClS + 5H₂O. Nadeln. Sehr leicht löslich

in Wasser. — $\text{Cu}(C_0H_5O_3\text{NClS})_2+4H_2\text{O}$. Dunkelgrüne Nadeln und Säulen. Leicht löslich in Wasser. — $\text{AgC}_0H_5O_3\text{NClS}$. Krystalliner Niederschlag. Schwer löslich in heißem Wasser. — $\text{Ba}(C_0H_5O_3\text{NClS})_2+7H_2\text{O}$. Blättehen. Ziemlich leicht löslich in Wasser.

Äthylester $C_{11}H_{10}O_3NCIS = NC_9H_5Cl \cdot SO_3 \cdot C_2H_5$. B. Durch Erhitzen des Silbersalzes der 8-Chlor-chinolin-sulfonsäure-(5) mit Äthyljodid im Rohr auf 120° (Claus, Schöller, J. pr. [2] 48, 150). — Nadeln. F: 140°.

3-Brom-chinolin-sulfonsäure-(5) C₉H₆O₃NBrS, s. nebenstehende
Formel. B. Aus 3-Brom-chinolin beim Erhitzen mit Schwefelsäuremonohydrat auf 250—300° (CL., Schmeisser, J. pr. [2] 40, 447) oder bei längerem Erhitzen mit rauchender Schwefelsäure (30—40°/₀ SO₃-Gehalt) auf dem
Wasserbad (Cl., Sch., J. pr. [2] 40, 448). Beim Eintragen einer Lösung von 1 Mol Brom in Eisessig in eine heiße Lösung von Chinolin-sulfonsäure-(5) in konz. Bromwasserstoffsäure (Cl., J. pr. [2] 55, 227). — Nadeln und Prismen mit 1¹/₃H₂O. Zersetzt sich oberhalb 300°, ohne zu schmelzen (Cl., Sch.). Löslich in Alkohol, unföslich in Äther (Cl., Sch.). — Liefert bei der Reduktion mit Zinn und Salzsäure 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(5) (Cl., Sch.). Reagiert mit Brom erst bei längerem Kochen (Cl., Sch.). — Natriumsalz. Nadeln. Leicht löslich in Wasser (Cl., Sch.). — KC₉H₅O₃NBrS+H₂O. Monoklin prismatische(?) Krystalle (Cl., Sch.). Ziemlich leicht löslich in Wasser. — Cu(C₉H₅O₃NBrS)₂+7H₂O. Grüne Krystalle (Cl., Sch.). Sehr leicht löslich in Wasser. — Silbersalz. Pulver (Cl., Sch.). Leicht löslich in Wasser. — Ca(C₉H₅O₃NBrS)₂+7H₃O. Nadeln (Cl., Sch.). Sehr leicht löslich. — Ba(C₉H₅O₃NBrS)₂+3H₂O. Nadeln (Cl., Sch.). Leicht löslich in Wasser.

Äthylester $C_{11}H_{10}O_3NBrS = NC_9H_5Br\cdot SO_3\cdot C_9H_5$. B. Durch Einw. von Äthyljodid auf das Silbersalz der 3-Brom-chinolin-sulfonsäure-(5) (Claus, Schmeisser, J. pr. [2] 40, 453). — Nadeln (aus Äther). F: 125° (unkorr.).

Chlorid $C_9H_5O_9NClBrS = NC_9H_5Br \cdot SO_9Cl$. Nadeln (aus Chloroform), Prismen (aus Äther). F: 82° (unkorr.) (Claus, Schmeisser, J. pr. [2] 40, 452).

Amid $C_9H_7O_9N_9BrS = NC_9H_5Br \cdot SO_9 \cdot NH_9$. Nadeln. F: 255° (unkorr.) (Claus, Schmeisser, J. pr. [2] 40, 453).

- 6 Brom chinolin sulfonsäure (5) C₉H₆O₃NBrS, s. nebenstehende Formel. B. Neben 6-Brom-chinolin-sulfonsäure-(8) aus 6-Brom-chinolin bei der Einw. von warmer Pyroschwefelsäure (LA Coste, B. 15, 1910) oder beim Erhitzen mit rauchender Schwefelsäure (60% SO₅-Gehalt) auf 170—180% (Claus, Reinhard, J. pr. [2] 49, 530, 533). Krystalle mit 1 H₂O (aus Wasser) (La. C.). 1 Tl. der wasserfreien Säure löst sich bei 22% in 646 Tln. und bei Siedehitze in 36,3 Tln. Wasser (La C.). Liefert beim Erwärmen mit Brom 3.5.6-Tribrom-chinolin und 3.5.6-Tetrabrom-chinolin (Cl., R., J. pr. [2] 49, 534, 539). Ammoniumsalz. Nadeln (Cl., R.). Sehr leicht löslich in heißem Wasser. KC₉H₅O₃NBrS + 1½,0. Tafeln (aus Wasser) (La C.; Cl., R.). Sehr leicht löslich in heißem Wasser; 1 Tl. löst sich bei 22% in 5,8 Tln. Wasser. AgC₉H₅O₃NBrS. Nadeln (aus Wasser) (La C.). Mg(C₉H₅O₃NBrS)₂ + 9H₂O. Nadeln (La C.). Ca(C₉H₅O₃NBrS)₂ + 5H₂O. Krystalle (Cl., R.). Leicht löslich in siedendem Wasser. Ba(C₉H₅O₃NBrS)₂. Krystallisiert nach La Coste in Nadeln mit 2 H₂O, nach Claus, Reinhard ohne Wasser. Ziemlich schwer löslich in siedendem Wasser (La C.; Cl., R.). Zn(C₉H₅O₃NBrS)₂ + 9H₂O. Tafeln (La C.). Leicht löslich in heißem Wasser. Mn(C₉H₅O₃NBrS)₂ + 6H₂O. Tafeln (La C.).
- 8-Brom chinolin sulfonsäure (5) $C_0H_4O_3NBrS$, s. nebenstehende Formel. B. Aus 6-Brom-anilin-sulfonsäure-(3) durch Erhitzen mit 2-Nitrophenol, Glycerin und konz. Schwefelsäure auf 155—160° (Lellmann, Lange, B. 20, 3086). Nadeln oder Blättchen mit 1 H_2O . Wird von Zinn und Salzsäure zu 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(5) reduziert. $Ca(C_0H_5O_3NBrS)_2 + 6^4/2H_2O$. Nadeln. Leicht löslich in Wasser.

Br

2. Chinolin-sulfonsdure-(6) C₂H₇O₂NS, s. nebenstehende Formel.

B. Durch Erhitzen von Sulfanilsäure mit Nitrobenzol, Glycerin und Schwefelsäure (HAPP, B. 17, 192; O. FISCHEE, WILLMACK, B. 17, 440; Höchster Farbw., D. R. P. 26430; Frdl. 1, 183) oder mit Arsensäure, Glycerin und konz. Schwefelsäure (Knueppel, B. 29, 707). Durch 8-stdg. Erhitzen von Chinolin mit konz. Schwefelsäure auf 300° (v. Georgievics, M. 8, 577; vgl. BASF, D. R. P. 40901; Frdl. 1, 181). Durch mehrstündiges Erhitzen von Chinolin-sulfonsäure-(5) (Lellmann, Reusch, B. 22, 1391) oder Chinolin-sulfonsäure-(8) (v. G., M. 8, 639) mit konz. Schwefelsäure auf 300°. — Monoklin (Köchelm, M. 8, 644). Nadeln mit 1½ H₂O (H.), 2H₂O (F., W.). Schmilzt nicht unterhalb

260° (H.). Schwer löslich in kaltem Wasser und kaltem Alkohol (H.). — Liefert mit 2 Mol Brom in kalter wäßriger Lösung 3.6-Dibrom-chinolin (Claus, Küttner, B. 19, 2884), mit mehr Brom 3.6.8-Tribrom-chinolin (Cl., K.). Gibt beim Schmelzen mit Kaliumhydroxyd 6-Oxy-chinolin (H.; v. G., M. 8, 578). Beim Erhitzen des Kaliumsalzes oder Bariumsalzes mit Kaliumcyanid entsteht 6-Cyan-chinolin (F., W.; v. G., M. 8, 578). — NaC₉H₆O₃NS (120°). Spieße (H.). — KC₉H₆O₃NS (120°). Tafeln (H.). — AgC₉H₆O₃NS. Nadeln (H.). — 2AgC₉H₆O₃NS+C₉H₇O₃NS. Nadeln (H.). — Ba(C₉H₆O₃NS)₂ (120°). Blättchen (H.; v. G.).

Anhydrid des Chinolin-sulfonsäure-(6)-hydroxymethylats, Chinolin-sulfon-

säure - (6) - methylbetain $C_{10}H_9O_3NS = CH_3 \cdot NC_9H_6 \cdot SO_2 \cdot O$. B. Durch Erhitzen des Silbersalzes der Chinolin-sulfonsäure - (6) mit Methyljodid auf 100^0 (Claus, Steinitz, A. 282, 136).

Anhydrid des Chinolin - sulfonsäure - (6) - hydroxyäthylats, Chinolin - sulfon-

säure - (6) - äthylbetain $C_{11}H_{11}O_3NS = C_2H_5 \cdot NC_9H_6 \cdot SO_2 \cdot O$. B. Beim Erhitzen des Silbersalzes der Chinolin-sulfonsäure-(6) mit Äthylbromid (CLAUS, MUCHALL, B. 18, 366). — Krystalle mit 2 H_2O . Leicht löslich in Wasser. — Wird durch gelindes Erhitzen mit Wasser, Alkalien, Barytwasser oder Silberoxyd nicht verändert (CL., STEGELITZ, B. 19, 922). — $C_{11}H_{11}O_3NS + KBr + 3Br$. Goldgelbe Nadeln (CL., ST.). Wenig beständig. — $C_{11}H_{11}O_3NS + KI + 3I$. Braune Nadeln (CL., ST.). Spaltet bei 100° 1 Atom Jod ab. Wird durch Wasser zersetzt. — $C_{11}H_{11}O_3NS + HgCl_2$. Nadeln (aus Wasser). Schmilzt nicht unterhalb 250° (CL., ST.).

Anhydrid des Chinolin-sulfonsäure-(6)-hydroxybenzylats, Chinolin-sulfon-

säure-(6)-bensylbetain $C_{16}H_{13}O_3NS = C_6H_5 \cdot CH_2 \cdot \overset{+}{N}C_9H_6 \cdot SO_2 \cdot O$. B. Durch Behandeln des Silbersalzes der Chinolin-sulfonsäure-(6) mit Benzylchlorid oder -bromid auf dem Wasserbad (Claus, Stegelitz, B. 19, 920). — Krystalle mit 2 H_2O (aus Wasser). Monoklin prismatisch (Beckenkamp; vgl. Groth, Ch. Kr. 5, 772). — $C_{16}H_{13}O_3NS + KI + 3I$. Bläulich schillernde Nadeln. Spaltet bei 100° 1 Atom Jod ab.

5-Brom-chinolin-sulfonsäure-(6) C₉H₆O₃NBrS, s. nebenstehende Formel. B. In geringer Menge beim Erhitzen von 5-Brom-chinolin mit rauchender Schwefelsäure (30% SO₃-Gehalt) auf 130—140%, neben 5-Brom-chinolin-sulfonsäure-(8) (Claus, Würtz, J. pr. [2] 40, 458). — Nadeln. Leicht löslich in Wasser und Alkohol. — Einw. von Brom: Cl., W. — NaC₉H₅O₃NBrS + H₂O. Nadeln. Sehr leicht löslich in Wasser. — Ca(C₉H₅O₃NBrS)₂ + 7H₂O. Nadeln. Sehr leicht löslich in heißem Wasser. — Ba(C₉H₅O₃NBrS)₂ + 2H₂O. Nadeln. Löslich in Wasser.

Äthylester $C_{11}H_{10}O_2NBrS = NC_9H_5Br.SO_3 \cdot C_2H_5$. B. Durch Einw. von Äthyljodid auf das Silbersalz der 5-Brom-chinolin-sulfonsäure-(6) (CLAUS, WÜRTZ, J. pr. [2] **40**, 459). — Blättchen. F: 130° (unkorr.).

Chlorid $C_9H_5O_2NClBrS = NC_9H_5Br \cdot SO_2Cl$. F: 95° (unkorr.) (Claus, Würtz, J. pr. [2] 40, 459).

Amid $C_9H_7O_2N_2BrS = NC_9H_5Br \cdot SO_2 \cdot NH_2$. Krystalle. F: 195° (unkorr.) (Claus, Würtz, J. pr. [2] **40**, 459).

3. Chinolin-sulfonsäure-(7) C₉H₇O₃NS, s. nebenstehende Formel.

B. In geringer Menge bei der Einw. von rauchender Schwefelsäure (10—20%) HO₃S.

SO₃-Gehalt) auf Chinolin bei höchstens 125—130° (CLAUS, J. pr. [2] 37.

261). — Nadeln (aus Wasser). Zersetzt sich oberhalb 300°. Sehr leicht löslich in Wasser, schwerer in Alkohol. — Beim Erwärmen mit Brom in wäßr. Lösung erhält man je nach den Bedingungen 7.x-Dibrom-chinolin (F: 255°) oder 7.x.x-Tribrom-chinolin (F: 199°). — NaC₉H₆O₃NS+3H₂O. Körnig. Sehr leicht löslich in Wasser. — KC₉H₆O₃NS+1½ bis 2H₂O. Krystalle. Sehr leicht löslich in Wasser. — Cu(C₉H₆O₃NS)₂+2H₂O. Dunkelgrünes Krystall-pulver. Leicht löslich in Wasser. — Silbersalz. Nadeln. Leicht löslich. — Ca(C₉H₆O₃NS)₂+4H₂O. Nadeln. Sehr leicht löslich in Wasser. — Ba(C₉H₆O₃NS)₂+4H₂O. Krystallin. — Pb(C₉H₆O₃NS)₂. Krystallpulver. Leicht löslich in Wasser.

Chlorid $C_9H_6O_2NClS=NC_9H_6\cdot SO_2Cl.$ B. Durch Verreiben der Salze der Chinolinsulfonsäure-(7) mit Phosphorpentachlorid (CLAUS, J. pr. [2] 37, 262). — Zähe, braune Masse. Kaum löslich in Äther und Chloroform.

Amid $C_0H_6O_2N_2S = NC_0H_6 \cdot SO_2 \cdot NH_2$. Krystallpulver. F: 119° (unkorr.) (Claus, J. pr. [2] 87, 263). Leicht löslich in Alkohol, Äther und Chloroform.

Anhydrid des Chinolin-sulfonsäure-(7)-hydroxyäthylats, Chinolin-sulfonsäure-(7)-äthylbetain $C_{11}H_{11}O_3NS = C_3H_5 \cdot NC_9H_6 \cdot SO_2 \cdot O$. B. Beim Erhitzen des Silbersalzes der Chinolin-sulfonsäure-(7) mit Äthyljodid auf 140° (Claus, J. pr. [2] 37, 263). — Nadeln (aus Alkohol). F: 275° (unkorr.). Ziemlich leicht löslich in Wasser und kochendem Alkohol. — Wird durch Kochen mit Wasser nicht verändert.

4. Chinolin-sulfonsäure-(8) C₂H₇O₃NS, s. nebenstehende Formel. B. Bei der Einw. von rauchender Schwefelsäure auf Chinolin oberhalb 120° (Bedall, O. Fischer, B. 15, 684; F., B. 15, 1979; 20, 731; La Coste, Valeur, B. 20, 95; Claus, J. pr. [2] 37, 258; vgl. Lyubawin, A. 155, 313); bei 125—130° erhält Ho38 man mit 10—20°/₀ SO₃ enthaltender Schwefelsäure als Nebenprodukt Chinolin-sulfonsäure-(5) und geringe Mengen Chinolin-sulfonsäure-(7), oberhalb 170° nur Chinolin-sulfonsäure-(5) (Cl., J. pr. [2] 37, 260). Durch Erhitzen von Chinolin mit konz. Schwefelsäure auf 220—230° (v. Georgievics, M. 8, 641). — Säulen. Sehr schwer löslich in Wasser (La C., V.). — Liefert bei der trocknen Destillation Dichinolyl-(3.7′ oder 4.7′) (F: 192—193°) (Syst. No. 3491) (F., van Loo, B. 17, 1899). Gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung Chinolinsäure (F., Renouf, B. 17, 755) und 2-Amino-3-sulfo-benzoesäure (Zürcher, B. 21, 180; vgl. Sucharda, C. 1927 I, 3005). Wird durch Zinn und Salzsäure zu 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8) reduziert (Cl., Günther, J. pr. [2] 55, 94). Bei der Einw. von Brom in Gegenwart oder Abwesenheit von Wasser entstehen 3.6.8-Tribrom-chinolin und 3.5.6.8-Tetrabrom-chinolin (Claus, Heermann, J. pr. [2] 42, 331; Cl., Caroselli, J. pr. [2] 51, 484; Cl., J. pr. [2] 55, 228). Chinolin-sulfonsäure-(8) liefert beim Erhitzen mit Kalium-hydroxyd auf 190—200° 8-Oxy-chinolin (B., F., B. 15, 684; v. G., M. 8, 641). Geht beim Erhitzen mit konz. Schwefelsäure auf 300° in Chinolin-sulfonsäure-(6) über (v. G., M. 8, 639). Beim Erhitzen mit rauchender Salpetersäure auf 160° entsteht 8-Nitro-chinolin (Cl., Küttner, B. 19, 2886). Beim Erhitzen des Natriumsalzes mit Kaliumcyanid entstehen 8-Cyan-chinolin und 5-Cyan-chinolin (F., B. 15, 1980). — NH4_C₂H₆O₃NS+5H₂O. Nādeln (Cl., J. pr. [2] 37, 265). — KC₂H₆O₃NS+2H₂O. Säulen (Cl., J. pr. [2] 37, 265). — Cu(C₂H₆O₃NS)₂+2H₂O. Grüne Nadeln (Cl., J. pr. [2] 37, 265). — Cu(C₂H₆O₃NS)₂+2H₃O. Grüne Nadeln (Cl., J. pr.

Methylester $C_{10}H_0O_3NS = NC_0H_6 \cdot SO_3 \cdot CH_3$. B. Beim Erhitzen des Silbersalzes der Chinolin-sulfonsäure-(8) mit Methyljodid auf 85° (Claus, Steinitz, A. 282, 132). — Prismen. F: 96°. Leicht löslich in Alkohol und Chloroform, etwas schwerer in Äther, sehr schwer in Ligroin. — Wird durch Wasser verseift.

Äthylester C₁₁H₁₁O₃NS = NC₉H₆·SO₃·C₂H₅. B. Durch Einleiten von Chlorwasserstoff in die alkoh. Lösung von Chinolin-sulfonsäure-(8) (CLAUS, KÜTTNER, B. 19, 925). Durch Erhitzen des Silbersalzes der Chinolin-sulfonsäure-(8) mit Äthyljodid im Rohr auf 90° (CL., STEINITZ, A. 282, 133; vgl. CL., K.). — Krystalle. F: 73° (CL., ST.). Leicht löslich in Alkohol, Äther und Chloroform (CL., K.). — Wird beim Kochen mit Wasser verseift (CL., K.). Liefert beim Erhitzen mit Brom in Chloroform im Rohr auf 180° 6-Brom-chinolin-sulfonsäure-(8) (CL., J. pr. [2] 37, 266; vgl. CL., REINHARD, J. pr. [2] 49, 532; CL., J. pr. [2] 55, 226).

Bensylester $C_{16}H_{13}O_3NS = NC_9H_6 \cdot SO_3 \cdot CH_2 \cdot C_6H_5$. B. Beim Erhitzen des Silbersalzes der Chinolin-sulfonsäure-(8) mit Benzylchlorid im Rohr auf 90° (CLAUS, STEINITZ, A. 282, 133). — Tafeln und Prismen (aus Äther). F: 84°. Leicht löslich in Alkohol und Chloroform, sehr schwer in kaltem Ligroin. — Verhalten beim Erhitzen auf 200°: CL., ST.

Chlorid C₉H₆O₂NClS = NC₉H₆·SO₂Cl. B. Durch Einw. von Phosphorpentachlorid auf Chinolin-sulfonsäure-(8) oder ihre Salze (Claus, Küttner, B. 19, 926; Edinger, B. 41, 937). — Nadeln. F: 124° (Cl., K.), 122° (E.). Leicht löslich in Alkohol, Äther und Chloroform (Cl., K.).

Amid $C_9H_8O_9N_9S = NC_9H_6\cdot SO_9\cdot NH_2$. B. Durch Behandeln des Chlorids (s. o.) mit konz. Ammoniak (Hoogewerff, van Dorp, R. 8, 184). — Nadeln (aus Wasser). F: 183—184°.

Bromamid $C_9H_7O_9N_3BrS=NC_9H_6\cdot SO_3\cdot NHBr$. B. Das Kaliumsalz entsteht beim Behandeln des Amids mit Kaliumhypobromit in wäßr. Lösung bei $20-25^\circ$ (Hoogewerff, Van Dorp, R. 8, 184). — Nadeln (aus Aceton). Schmilzt unter Zersetzung zwischen 137° und 146°. — Zersetzt sich im Licht unter Abspaltung von Brom. Scheidet aus angesäuerter Kaliumjodid-Lösung Jod ab. — $KC_9H_6O_2N_3BrS+2H_3O$. Gelbliche Nadeln. Ziemlich leicht löslich in Wasser. Wird bei 65-75° wasserfrei. — $Ba(C_9H_6O_2N_3BrS)_3+2H_3O$. Krystalle.

5-Chlor-chinolin-sulfonsäure-(8) C₂H₆O₃NClS, s. nebenstehende Formel.

B. Beim Erhitzen von 5-Chlor-chinolin mit rauchender Schwefelsäure (30% SO₃-Gehalt) auf 150% (Claus, Junghanns, J. pr. [2] 48, 263). — Tafeln (aus Wasser).

Zersetzt sich gegen 350%, ohne zu schmelzen. Sehr wenig löelich in kaltem Wasser, unlöslich in Alkohol und Äther. — Wird durch Zinn und Salzsäure zu 1.2.3.4-HO₃S.

Tetrahydro-chinolin-sulfonsäure-(8) reduziert. — Ammoniumsalz. Nadeln. Leicht löslich in Wasser. — NaC₂H₅O₃NClS. Nadeln. Leicht löslich in Wasser. — KC₂H₅O₃NClS + H₂O.

Krystalle. — AgC₂H₅O₃NClS. Prismen. Sehr schwer löslich in Wasser. — Ca(C₂H₅O₃NClS)₂ (bei 110%). Nadeln. Sehr leicht löslich in Wasser.

Äthylester C₁₁H₁₀O₃NClS = NC₉H₅Cl·SO₃·C₂H₅. B. Durch Einw. von Äthyljodid auf das Silbersalz der Chinolin-sulfonsäure-(8) bei 145° (CLAUS, JUNGHANNS, J. pr. [2] 48, 266). — Säulen und Prismen (aus Äther). F: 85°. — Wird beim Kochen mit Wasser verseift.

Chlorid $C_9H_5O_9NCl_9S=NC_9H_5Cl\cdot SO_9Cl$. B. Beim Erhitzen der Alkalisalze der Chinolin-sulfonsäure-(8) mit Phosphorpentachlorid auf 110° (CLAUS, JUNGHANNS, J. pr. [2] 48, 266). — Gelbliche Schüppchen (aus Äther oder Chloroform). F: 146°.

Amid $C_0H_7O_2N_2ClS = NC_0H_5Cl\cdot SO_2\cdot NH_2$. B. Durch Einleiten von Ammoniak in eine äther. Lösung des Chlorids (Claus, Junghanns, J. pr. [2] 48, 266) — Gelbliche Blättchen. F: 178°.

6-Chlor-chinolin-sulfonsäure-(8) C₉H₆O₃NClS, s. nebenstehende Formel.

B. Beim Erhitzen von 6-Chlor-chinolin mit rauchender Schwefelsäure auf 280° bis 300° (Claus, Schedler, J. pr. [2] 49, 373). — Krystalle (aus Wasser). Sehr schwer löslich in Wasser. — Wird durch Chlor in siedender wäßriger Lösung nicht angegriffen. Einw. von Brom; Cl., Sch. — KC₉H₅O₃NClS. Säulen. Sehr schwer löslich in Wasser.

7-Chlor-chinolin-sulfonsäure-(8) C₉H₆O₃NClS, s. nebenstehende Formel.

B. Beim Erhitzen von 7-Chlor-chinolin mit rauchender Schwefelsäure (ca. 30°/₀ SO₃-Gehalt) auf 150° (CLAUS, KAYSER, J. pr. [2] 48, 283). — Nadeln. Zersetzt sich gegen 350°, ohne zu schmelzen. Sehr schwer löslich in kaltem Wasser, unlöslich in Alkohol und Äther. — Beim Erhitzen mit Zinn und rauchender Salzsäure entsteht 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8). — Ammoniumsalz. Säulen. — KC₉H₅O₃NClS. Nadeln. — AgC₉H₅O₃NClS. Gelbliche Prismen.

Chlorid $C_9H_5O_2NCl_2S = NC_9H_5Cl\cdot SO_2Cl$. B. Beim Erhitzen des Kaliumsalzes der 7-Chlor-chinolin-sulfonsäure-(8) mit Phosphorpentachlorid auf 110—120° (CLAUS, KAYSER, J. pr. [2] 48, 284). — Blättchen (aus Chloroform). F: 137°.

Amid $C_0H_7O_2N_2ClS = NC_9H_5Cl\cdot SO_2\cdot NH_2$. B. Durch Einleiten von Ammoniak in die Lösung des Chlorids (s. o.) in Chloroform (Claus, Kayser, J. pr. [2] 48, 284). — Nadeln. F: 122°. Leicht löslich in Alkohol, Äther und Chloroform.

3-Brom-chinolin-sulfonsäure-(8) C₂H₆O₃NBrS, s. nebenstehende Formel. Zur Konstitution vgl. Claus, Günther, J. pr. [2] 55, 96. — B. Bei 1-stündigem Erwärmen von 3-Brom-chinolin mit rauchender Schwefelsäure (30—40% SO₃-Gehalt) auf dem Wasserbad, neben 3-Brom-chinolin-sulfon. HO₃S säure-(5) (Cl., Schmeisser, J. pr. [2] 40, 448). — Tafeln (aus verd. Schwefelsäure). Zersetzt sich oberhalb 300% (Cl., Sch.). Ziemlich schwer löslich in kaltem Wasser, sehr schwer in heißem Alkohol, unlöslich in Äther (Cl., Sch.). — Gibt bei der Reduktion mit Zinn und Salzsäure 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8) (Cl., G.). Reagiert mit Brom schon in der Kälte (Cl., Sch.). — Natriumsalz. Nadeln. Sehr leicht löslich in Wasser (Cl., Sch.). — KC₂H₅O₃NBrS+H₂O. Nadeln (Cl., Sch.). Leicht löslich. — Cu(C₂H₅O₃NBrS)₂+2H₂O. Grünes Krystallpulver (Cl., Sch.). Schwer löslich. — Silbersalz. Nadeln (Cl., Sch.). Schwer löslich in kaltem Wasser. — Ca(C₂H₅O₃NBrS)₂+4H₂O. Nadeln (Cl., Sch.). Leicht löslich in Wasser. — Ba(C₃H₅O₃NBrS)₂+H₂O. Nadeln (Cl., Sch.). Ziemlich schwer löslich in Wasser.

Äthylester C₁₁H₁₀O₃NBrS = NC₉H₅Br·SO₃·C₂H₅. B. Durch Erhitzen des Silbersalzes der 3-Brom-chinolin-sulfonsäure-(8) mit Äthyljodid im Rohr auf 100° (Claus, Schmeisser, J. pr. [2] 40, 450). — Nadeln. F: 100° (unkorr.). — Wird durch Kochen mit Wasser verseift.

Chlorid $C_9H_5O_2NClBrS = NC_9H_5Br \cdot SO_2Cl$. Nadeln (aus Chloroform), Blättchen (aus Alkohol). F: 130° (unkorr.) (Claus, Schmeisser, J. pr. [2] 40, 450).

Amid C₂H₇O₂N₂BrS = NC₂H₅Br·SO₂·NH₂. B. Beim Einleiten von Ammoniak in die Lösung des Chlorids in Chloroform (Claus, Schmeissen, J. pr. [2] 40, 451). — Nadeln (aus Wasser). F: 213° (unkorr.). Leicht löslich in Alkohol, schwer in Äther und Chloroform.

5-Brom-chinolin-sulfonsäure-(8) C₂H₆O₂NBrS, s. nebenstehende Formel.

B. Beim Erhitzen von 5-Brom-chinolin mit rauchender Schwefelsäure (ca. 30% SO₃-Gehalt) auf 130—140% (Claus, Würtz, J. pr. [2] 40, 454; Edinger, B. 41, 942), neben wenig 5-Brom-chinolin-sulfonsäure-(6) (Cl., W.). — Nadeln oder Säulen mit 2H₂O. Zersetzt sich oberhalb 300%, ohne zu schmelzen (Cl., W.). — HO₃S Ziemlich leicht löslich in heißem Wasser, sehr schwer in Alkohol (Cl., W.). — Wird durch Zinn und Salzsäure zu 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8) reduziert (Cl., W.). — Wird durch Brom in wäßr. Lösung 3.5.8-Tribrom-chinolin und andere Produkte (Cl., W.). Liefert mit Brom in wäßr. Lösung 3.5.8-Tribrom-chinolin und andere Produkte (Cl., Heermann, J. pr. [2] 42, 339; Cl., Caroselli, J. pr. [2] 51, 489). — NaC₃H₅O₃NBrS + 2H₂O. Nadeln (Cl., W.). Leicht löslich in Wasser. — Cu(C₂H₅O₃NBrS)₂ + 5H₂O. Grüne Krystalle (Cl., W.). Leicht löslich in Wasser. — AgC₃H₅O₃NBrS. Blättchen (Cl., W.). Ziemlich leicht löslich in heißem Wasser. — Ba(C₃H₅O₃NBrS)₂ + 4H₂O. Nadeln (Cl., W.). Ziemlich schwer löslich in heißem Wasser. — Ba(C₃H₅O₃NBrS)₂ + 3H₂O. Nadeln (Cl., W.). Ziemlich schwer löslich in heißem Wasser.

Äthylester C₁₁H₁₀O₅NBrS = NC₉H₅Br·SO₃·C₂H₅. B. Durch Einw. von Äthyljodid auf das Silbersalz der 5-Brom-chinolin-sulfonsäure-(8) (Claus, Würtz, J. pr. [2] 40, 457). — Gelbe Krystalle. F: 110° (unkorr.). — Wird durch längeres Kochen mit Wasser verseift.

Chlorid $C_9H_5O_3$ NClBrS = NC₉H₅Br·SO₂Cl. Prismen (aus Äther), Blättchen (aus Alkohol). F: 125° (unkorr.) (Claus, Würtz, J. pr. [2] 40, 457), 124° (Edingel, B. 41, 942).

Amid $C_0H_7O_2N_2BrS = NC_0H_5Br \cdot SO_2 \cdot NH_2$. Nadeln. F: 205° (unkorr.) (Claus, Würtz, J. pr. [2] 40, 457). Leicht löslich in Alkohol und Äther, sehwer in Wasser.

6-Brom-chinolin-sulfonsäure-(8) C₈H₈O₃NBrS, s. nebenstehende Formel. B. Neben 6-Brom-chinolin-sulfonsäure-(5) aus 6-Brom-chinolin bei der Einw. von warmer Pyroschwefelsäure (La Coste, B. 15, 1910). Beim Erhitzen von 6-Brom-chinolin mit rauchender Schwefelsäure (ca. 30°/₀ SO₃-Gehalt) auf 120° Ho₃s bis 125° (Claus, Zuschlag, J. pr. [2] 40, 460; vgl. Cl., Heermann, J. pr. [2] 42, 333); erhitzt man 6-Brom-chinolin mit 60°/₀ SO₃ enthaltender Schwefelsäure, so erhält man neben 6-Brom-chinolin-sulfonsäure-(8) 6-Brom-chinolin-sulfonsäure-(5) (Cl.., Reinhard, J. pr. [2] 49, 530). Durch Erhitzen von Chinolin-sulfonsäure-(8)-šthylester mit Brom in Chloroform im Rohr auf 180° (Cl., J. pr. [2] 37, 266; vgl. Cl., R., J. pr. [2] 49, 532; Cl., J. pr. [2] 55, 226). — Säulen (aus Wasser). Zersetzt sich oberhalb 350° (Cl..; Cl., Cl., Z.). Schwer löslich in Wasser und Alkohol, unlöslich in Äther und Chloroform (Cl.). 1 Tl. löst sich bei 22° in 1255 Tln. Wasser, bei Siedetemperatur in 115 Tln. Wasser (La C.). — Liefert bei der Oxydation mit Kaliumpermanganat Pyridin-dicarbonsäure-(2.3) (Cl., J. pr. [2] 55, 226). Wird durch Zinn und Salzsäure zu 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(8) reduziert (Cl., Z.; Cl., R.). Gibt bei der Einw. von Brom in wäßr. Lösung 3.6.8-Tribrom-chinolin (Cl., Z.; Cl., R.). Gibt bei der Einw. von Brom in wäßr. Lösung 3.6.8-Tribrom-chinolin (Cl., Z.; Cl., R.). J. pr. [2] 37, 266). Ziemlich leicht löslich in Wasser. — KC₉H₅O₃NBrS. Nadeln (La C., B. 15, 1913; Cl., Z.). 1 Tl. löst sich in 73 Tln. Wasser von 17° und in 14,6 Tln. siedendem Wasser (La C.). — Cu(C₉H₅O₃NBrS)₂ + 2H₂O. Dunkelgrüne Prismen (Cl., J. pr. [2] 37, 267; Ziemlich schwer löslich. — AgC₉H₅O₃NBrS. Nadeln (aus Wasser) (Cl., J. pr. [2] 37, 267; Ziemlich schwer löslich in Wasser. — Ba(C₉H₅O₃NBrS)₂. Niederschlag (La C.). Schwer löslich in Wasser. — Zo(C₉H₅O₃NBrS)₂. Niederschlag (La C.). — Cu(C₉H₅O₃NBrS)₂ + 4H₂O. Grünlichgelbe Nadeln (La C.).

Äthylester $C_{11}H_{10}O_3NBrS = NC_9H_5Br \cdot SO_3 \cdot C_2H_5$. B. Aus dem Silbersalz def 6-Bromchinolin-sulfonsäure-(8) und Äthyljodid (CLAUS, J. pr. [2] 37, 268; CL., ZUSCHLAG, J. pr. [2] 40, 462). — Nadeln. F: 139° (unkorr.) (CL., Z.), 98° (unkorr.) (CL.).

Chlorid $C_9H_5O_2NClBrS = NC_9H_5Br\cdot SO_2Cl$. F: 88° (unkorr.) (CLAUS, J. pr. [2] 37, 267). Gegen Wasser ziemlich beständig.

Amid C₉H₇O₂N₂BrS = NC₉H₅Br·SO₂·NH₂. Nadeln. F: 185⁰ (unkorr.) (Claus, J. pr. [2] 37, 267). Leicht löslich in heißem Wasser, Alkohol, Äther und Chloroform.

7-Brom-chinolin-sulfonsäure-(8) C₉H₆O₃NBrS, s. nebenstehende Formel.

B. Beim Sulfurieren von 7-Brom-chinolin (CLAUS, VIS, J. pr. [2] 40, 384).—

Liefert bei der Reduktion mit Zinn und Salzsäure 1.2.3.4-Tetrahydro-chinolinsulfonsäure-(8). Beim Erhitzen mit Kaliumbromid im Rohr über 300° entsteht

7.8-Dibrom-chinolin.

5. Chinolin-sulfonsäure-(x) $C_9H_7O_3NS = NC_9H_6 \cdot SO_3H$.

2-Brom-chinolin-sulfonsäure-(x) $C_9H_6O_3NBrS=NC_9H_5Br\cdot SO_3H$. B. Beim Erhitzen von 2-Brom-chinolin mit rauchender Schwefelsäure (40% SO₃-Gehalt) auf 120—130%

(Claus, Pollitz, J. pr. [2] 41, 46). — Nadeln. F: $288-290^{\circ}$ (Zers.). Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther. — Liefert mit Brom in wäßr. Lösung 2.x.x-Tribromchinolin (F: $247-248^{\circ}$). — $KC_9H_5O_3NBrS+2H_9O$. Nadeln (aus Wasser), Blättchen (aus Alkohol). Zersetzt sich bei ca. 140° . — $AgC_9H_9O_3NBrS+H_9O$. Nadeln (aus Wasser). — Kupfersalz. Hellgrüne Blättchen (aus Wasser). Sehr leicht löslich in Wasser und Alkohol. Blaue Krystalle (aus Alkohol). — $Ba(C_9H_3O_3NBrS)_2+2^1/_2H_9O$. Nadeln. Sehr leicht löslich in Wasser.

Methylester C₁₀H₈O₃NBrS = NC₅H₅Br·SO₃·CH₂. B. Aus dem Silbersalz und Methyljodid (Claus, Pollitz, J. pr. [2] 41, 47). — Nadeln. F: 190° (unkorr.). Löslich in Äther. Äthylester C₁₁H₁₀O₃NBrS = NC₅H₅Br·SO₃·C₂H₅. F: 135° (unkorr.) (Claus, Pollitz, J. pr. [2] 41, 47).

- 6. Isochinolin sulfonsäure (5 oder 8)

 C₉H₇O₃NS, Formel I oder II. B. Bei 5-stündigem Er. I.
 hitzen von Isochinolin mit rauchender Schwefelsäure
 (50—60% SO₃-Gehalt) auf 110—115%, neben geringen

 Mengen einer Isochinolin-sulfonsäure-(x) (HOOGEWERFF, VAN DORF, R. 5, 308; CL., RAPS, J. pr. [2] 45, 243; Jeiteles, M. 15, 808; Claus, Seelemann, J. pr. [2] 52, 1). Farblose Nadeln oder gelbe Prismen mit 1H₂O (aus Wasser) (CL., S.). Monoklin prismatisch (Becken-Kamp, J. pr. [2] 52, 4; vgl. Groth, Ch. Kr. 5, 806). Ziemlich leicht löslich in Wasser (CL., S.). Liefert beim Verschmelzen mit Alkali 5 oder 8-Oxy-isochinolin (Cl., R., J. pr. [2] 45, 244; Cl., Gutzeit, J. pr. [2] 52, 9). Beim Erhitzen des Natriumsalzes mit Kaliumferrocyanid im Wasserstoff-Strom entsteht 5 oder 8-Cyan-isochinolin (J.). NH₄C₉H₆O₃NS + H₂O. Gelbe Prismen (Cl., S.). Sehr leicht löslich in Wasser. NaC₉H₆O₃NS + 3 H₂O. Nadeln (Cl., S.). Ziemlich leicht löslich in Wasser. KC₈H₆O₃NS + H₂O. Rhombisch (Becken-Kamp). Gelbe Krystalle. Verwittert an der Luft. Ca(C₉H₆O₃NS)₂ + 2H₂O. Prismen und Säulen (Cl., S.). Verwittert an der Luft. Leicht löslich in Wasser. Ba(C₉H₆O₃NS)₂ + 9H₂O. Nadeln (Cl., S.).
- 7. Isochinolin sulfonsäure (x) C₀H₇O₃NS = NC₀H₆·SO₃H. B. Neben Isochinolin-sulfonsäure-(5 oder 8) beim Erhitzen von Isochinolin mit rauchender Schwefelsäure (50—60% SO₃-Gehalt) auf 250—260% (Claus, Seelemann, J. pr. [2] **52**, 2; vgl. Hoogewerff, van Dorp, R. 5, 308; Cl., Raps, J. pr. [2] **45**, 242). Krystallpulver mit 1H₂O. Sehr leicht löslich in heißem Wasser (Cl., S.). Liefert beim Verschmelzen mit Alkali x-Oxyisochinolin (Cl., R., J. pr. [2] **45**, 246). Ba(C₀H₆O₃NS)₂+6H₂O. Krümlige Masse (Cl., S.).
- 8. Derivat einer Isochinolin sulfonsäure $C_0H_7O_3NS=NC_0H_6\cdot SO_3H$ mit unbekannter Stellung der Sulfogruppe.

x.x-Dijod-isochinolin-sulfonsäure-(x) $C_9H_8O_3NI_2S=NC_9H_4I_2\cdot SO_3H$ s. Bd. XX, S. 385.

2. Sulfonsäuren $C_{10}H_9O_3NS$.

- 1. 2-Methyl-chinolin-sulfonsäure-(5), Chinaldin-sulfon- H038
 säure-(5) C₁₀H₀O₃NS, s. nebenstehende Formel. Zur Konstitution vgl.
 Decker, Remfry, B. 38, 2775. B. Neben Chinaldin-sulfonsäure-(8) und
 wenig Chinaldin-sulfonsäure-(6) beim Erwärmen von Chinaldin mit rauchender
 Schwefelsäure auf 130° (Doebner, v. Miller, B. 17, 1703; Chem. Fabr. Schering, D. R. P.
 29819; Frdl. 1, 190). Krystalle (aus Wasser). Monoklin prismatisch (Haushofer, Z. Kr.
 8, 393; vgl. Groth, Ch. Kr. 5, 759). Schwer löslich in kaltem Wasser (D., v. M.). Liefert beim
 Verschmelzen mit Kaliumhydroxyd 5-Oxy-chinaldin (D., v. M.). Beim Erhitzen des Natriumsalzes mit Kaliumcyanid entstehen 2-Methyl-5-cyan-chinolin und Chinaldin (Richard, B.
 23, 3489).
- 2. 2-Methyl-chinolin-sulfonsäure-(6), Chinaldin-sulfon- HO₃S säure-(6) C₁₀H₂O₃NS, s. nebenstehende Formel. B. Durch Erwärmen von Sulfanilsäure mit Paraldehyd und roher Salzsäure auf dem Wasserbad (Doebner, v. Miller, B. 17, 1704). In sehr geringer Menge beim Erwärmen von Chinaldin mit rauchender Schwefelsäure auf dem Wasserbad, neben Chinaldin-sulfonsäure-(5) und Chinaldin-sulfonsäure-(8) (D., v. M., B. 17, 1703). Krystalle (aus Wasser). Monoklin prismatisch (Haushofer, Z. Kr. 8, 394; vgl. Groth, Ch. Kr. 5, 760). Sehr leicht löslich in heißem Wasser (D., v. M.). Liefert beim Verschmelzen mit Kaliumhydroxyd 6-Oxy-chinaldin (D., v. M.).

- 3. 2-Methyl-chinolin-sulfonsäure-(8), Chinaldin-sulfon-säure-(8) C₁₀H₉O₂NS, s. nebenstehende Formel. B. Beim Erwärmen von Chinaldin mit rauchender Schwefelsäure auf dem Wasserbad, neben Chinaldin-sulfonsäure-(5) und wenig Chinaldin-sulfonsäure-(6) (Doebner, v. Miller, HO₃S

 B. 17, 1703). Prismen (aus Wasser). Triklin (Haushoffer, Z. Kr. 8, 394; vgl. Groth, Ch. Kr. 5, 759). Löslich in kaltem Wasser, leicht löslich in heißem Wasser (D., v. M.). Liefert beim Verschmelzen mit Kaliumhydroxyd 8-Oxy-chinaldin (D., v. M.).
- 4. 4 Methyl chinolin sulfonsäure (6), Lepidin sulfonsäure (6) C₁₀H₉O₃NS, s. nebenstehende Formel. B. Bei ¹/₂-stdg. Erhitzen
 von Lepidin mit Schwefelsäure auf 300° (Busch, Koenigs, B. 23, 2680). —

 Nadeln mit 1 H₂O (aus Wasser). Schwer löslich in kaltem Wasser, kaum
 in Alkohol. Liefert beim Verschmelzen mit Natriumhydroxyd 6-Oxy-lepidin. —
 AgC₁₀H₈O₃NS + H₂O. Nadeln (aus Wasser). Leicht löslich in heißem Wasser.
- 5. 6-Methyl-chinolin-sulfonsäure-(5) C₁₀H₉O₃NS, s. nebenstehende Formel. B. Bei der Einw. von rauchender Schwefelsäure (25°/₀ SO₃-Gehalt) auf 6-Methyl-chinolin bei 90° (Noelting, Trautmann, B. 23, 3658 Anm.; vgl. Claus, Kaufmann, J. pr. [2] 55, 526). Liefert bei der Kalischmelze 5-Oxy-6-methyl-chinolin (N., T.).
- 6. G-Methyl-chinolin-sulfonsäure-(7) C₁₀H₉O₃NS, s. nebenstehende Formel. B. Durch Erwärmen von 4-Amino-toluol-sulfonsäure-(2), hO₃S. Nitrobenzol, Glycerin und konz. Schwefelsäure (EDINGER, BÜHLER, B. 42, 4315). Nadeln mit 1 H₂O (aus Wasser). Wird durch Chromschwefelsäure zu Chinolin-carbonsäure-(6)-sulfonsäure-(7) oxydiert. Gibt bei der Kalischmelze 7-Oxy-6-methyl-chinolin. Beim Erhitzen des Natriumsalzes mit Kaliumcyanid entsteht 6-Methyl-7-cyan-chinolin.
- 7. 6-Methyl-chinolin-sulfonsäure-(8) C₁₀H₉O₃NS, s. nebenstehende CH₃·
 Formel. B. Beim Kochen von 4-Amino-toluol-sulfonsäure-(3) mit Glycerin,
 Nitrobenzol und konz. Schwefelsäure (O. Fischer, Willmack, B. 17, 441).
 Durch Erhitzen von 6-Methyl-chinolin mit rauchender Schwefelsäure (D: 1,89)
 auf 135—140°(Herzfeld, B. 17, 905, 1552; vgl. Claus, Kaufmann, J. pr. [2] 55, 526).
 Blättohen (aus Wasser). Sehr schwer löslich in Wasser (F., W.; H., B. 17, 905, 1552).
 Wird durch Chromschwefelsäure zu Chinolin-carbonsäure-(6)-sulfonsäure-(8) oxydiert (Edinger, Bühler, B. 42, 4318). Liefert beim Verschmelzen mit Natriumhydroxyd 8-Oxy-6-methyl-chinolin (F., W.; H.).
 B. 17, 1552).
 Ba(C₁₀H₈O₃NS)₂ (bei 130°). Schwer löslich in Wasser (H., B. 17, 1552).
 Eine wahrscheinlich mit dem oben beschriebenen Präparat identische Säure wurde von Leilmann. Ziemssen (R. 24, 2119) bei der Einw. von rauchender Schwefelsäure (33%).

Eine wahrscheinlich mit dem oben beschriebenen Praparat identische Saure wurde von Lellmann, Ziemssen (B. 24, 2119) bei der Einw. von rauchender Schwefelsäure (33% SO₂) auf 6-Methyl-chinolin bei 210—220° erhalten. — Die Säure liefert bei der Reduktion mit Zinn und Salzsäure 6-Methyl-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(8?). — Zn(C₁₀H₈O₂NS)₂+4H₂O. Krystallwarzen.

- 8. 8-Methyl-chinolin-sulfonsäure-(5) C₁₀H₂O₃NS, s. nebenstehende Formel. B. Beim Kochen von 2-Amino-toluol-sulfonsäure-(4) mit Glycerin, Nitrobenzol und konz. Schwefelsäure (Herzfeld, B. 17, 904). Beim Erhitzen von 8-Methyl-chinolin mit rauchender Schwefelsäure (D: 1,89) auf 135—140° (H., B. 17, 905, 1550). Nadeln (aus Wasser). Sehr leicht löslich in Wasser (H., B. 17, 1550). Ist triboluminescent (Trautz, Ph. Ch. 53, 59). Wird durch Chromschwefelsäure zu Chinolin-carbonsäure-(8)-sulfonsäure-(5) oxydiert (Edinger, Bühler, B. 42, 4314). Gibt bei der Natronschmelze 5-Oxy-8-methyl-chinolin (H., B. 17, 1551). KC₁₀H₈O₂NS. Tafeln. Sehr leicht löslich in Wasser. (H., B. 17, 1551). Ba(C₁₀H₈O₃NS)₂ (bei 130°). Tafeln. Leicht löslich in Wasser (H., B. 17, 1551).
- 9. 8-Methyl-chinolin-sulfonsäure-(6) C₁₀H₉O₃NS, s. nebenstehende Formel. B. Durch Kochen von 6-Amino-toluol-sulfonsäure-(3) mit Glycerin, Nitrobenzol und konz. Schwefelsäure (Herzfeld, B. 17, 903). Prismen (aus Wasser). 1000 Tle. einer bei 18,8° gesättigten wäßrigen Lösung enthalten 2,024 Tle. Sulfonsäure (Lellmann, Ziemssen, B. 24, 2120). Läßt sich durch Chromschwefelsäure zu Chinolin-carbonsäure-(8)-sulfonsäure-(6) oxydieren (Edinger, Bühler, B. 42, 4318). Liefert bei der Reduktion mit Zinn und Salzsäure 8-Methyl-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(6) (L., Z.). Gibt beim Verschmelzen mit Natriumhydroxyd und wenig Wasser 6-Oxy-8-methyl-chinolin (H.). Ba(C₁₀H₈O₂NS)₂ + 5H₂O. Nadeln (L., Z.).

- 10. 8-Methyl-chinolin-sulfonsäure-(x) C₁₀H₂O₃NS = NC₂H₅(CH₃)·SO₃H (vgl. a. No. 11). B. Bei 30-stdg. Erhitzen von 8-Methyl-chinolin mit rauchender Schwefelsäure (33%) SO₃-Gehalt) auf 210—220% (Lellmann, Ziemssen, B. 24, 2117). Nadeln mit 2H₂O (aus Wasser). Eine bei 18,8% gesättigte wäßrige Lösung enthält in 1000 Tln. 2,54 Tle. Substanz; unlöslich in Alkohol. Wird durch Zinn und Salzsäure zu 8-Methyl-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(x) reduziert. Ni(C₁₀H₂O₃NS)₂ + 7½₂H₂O. Grüne Tafeln.
- 11. Derivat einer 8-Methyl-chinolin-sulfonsäure $C_{10}H_{9}O_{3}NS = NC_{9}H_{5}(CH_{3})\cdot SO_{4}H$ mit unbekannter Stellung der Sulfogruppe (vgl. a. No. 10).
- x.x-Dijod-8-methyl-chinolin-sulfonsäure-(x) $C_{10}H_7O_3NI_2S=NC_9H_3I_2(CH_3)\cdot SO_3H$. Bei der Einw. von Jod und rauchender Schwefelsäure (ca. $30^9/_0$ SO_3 -Gehalt) auf 8-Methyl-chinolin auf dem Wasserbad (Edinger, Schumacher, B. 33, 2891). Krystalle (aus Wasser). Zersetzt sich bei 270°. Unlöslich in Wasser. $Ba(C_{10}H_6O_3NI_2S)_2 + 1^1/_2H_2O$. Nadeln. Löslich in heißem Wasser.
- 12. Verbindung $C_{10}H_0O_3NS$. Über eine Verbindung dieser Zusammensetzung, in der vielleicht eine Methylchinolinsulfonsäure vorliegt, s. S. 57.

3. Sulfonsäuren $C_{11}H_{11}O_3NS$.

- 1. 4-Äthyl-chinolin-sulfonsäure-(x) $C_{11}H_{11}O_3NS = NC_9H_5(C_9H_5)\cdot SO_8H$. B. Durch Erhitzen von 4-Äthyl-chinolin mit rauchender Schwefelsäure auf 260° (Reher, B. 19, 3001). Nadeln (aus Wasser). Schmilzt nicht unterhalb 315°. Leicht löslich in heißem, schwer in kaltem Wasser, unlöslich in Alkohol.
- 2. 2.4-Dimethyl-chinolin-sulfonsäure-(x) $C_{11}H_{11}O_3NS = NC_9H_4(CH_8)_8 \cdot SO_3H$. B. Beim Erhitzen von 2.4-Dimethyl-chinolin mit rauchender Schwefelsäure auf 100—130° (Beyer, J. pr. [2] 33, 408). Tafeln oder Nadeln. Schmilzt nicht unterhalb 300°. Liefert beim Verschmelzen mit Natriumhydroxyd x-Oxy-2.4-dimethyl-chinolin.
- 3. 5.8 Dimethyl chinolin sulfonsäure (6) C₁₁H₁₁O₃NS, s. nebenstehende Formel. B. Durch 36-stdg. Erwärmen von 5.8-Dimethylchinolin mit rauchender Schwefelsäure (25%) SO₃-Gehalt) auf dem Wasserbad (NOELTING, FRÜHLING, B. 21, 3157). Durch Erhitzen von 5-Amino-p-xylolsulfonsäure-(2) mit Glycerin, Nitrobenzol und konz. Schwefelsäure (N., F.).

 KC₁₁H₁₀O₃NS. Nadeln oder Blättchen. Ba(C₁₁H₁₀O₃NS)₂+1 bezw. 2H₂O. Blättchen. Ziemlich leicht löslich.
- 4. 5.8 Dimethyl chinolin sulfonsäure (7) C₁₁H₁₁O₃NS, s. nebenstehende Formel. B. Beim Erhitzen von 6-Amino-p-xylol-sulfonsäure-(2) mit Glycerin, Nitrobenzol und konz. Schwefelsäure (Noelting, Frühling, B. 21, 3156). Prismen (aus verd. Essigsäure). Ziemlich schwer löslich in kaltem Wasser, sehr leicht in heißem Wasser und verd. Essigsäure.

 KC₁₁H₁₀O₃NS+H₂O. Sehr leicht löslich. Ba(C₁₁H₁₀O₃NS)₂+H₂O. Nadeln. Leicht löslich in heißem Wasser.
- 5. G.8-Dimethyl-chinolin-sulfonsäure(5 oder 7) C₁₁H₁₁O₃NS, Formel I oder II. B.

 Durch Erhitzen von 6.8-Dimethyl-chinolin mit I.
 rauchender Schwefelsäure auf 160—170° (BEREND,
 B. 17, 2716). Nadeln (aus Alkohol + Ligroin).

 Eth₃

 CH₃

 CH₃
- 4. 2.6.8-Trimethyl-chinolin-sulfon-säure-(5 oder 7) C₁₂H₁₂O₂NS, Formel III oder IV. B. Beim Erwärmen von 2.6.8-Trimethyl-chinolin mit Pyroschwefelsäure auf 120—130° (Panajotow, B. 20, 36).

— Gelbliche Nadeln (aus verd. Salzsäure). Schmilzt nicht unterhalb 260°. Unlöslich in kaltem Wasser und in kalter Salzsäure. — $Ba(C_{12}H_{12}O_3NS)_2 + 3H_2O$. Nadeln. Schwer löslich in kaltem Wasser.

- 5. 3.6 Dimethyl 2 äthyl chinolin sulfonsäure (x) $C_{12}H_{15}O_3NS = NC_9H_3(CH_3)_2(C_2H_5)\cdot SO_3H$. B. Beim Erwärmen von 3.6-Dimethyl-2-äthyl-chinolin mit rauchender Schwefelsäure ($20^9/_0$ SO₃-Gehalt) auf dem Wasserbad (HARZ, B. 18, 3389). Krystalle. Schmilzt nicht unterhalb 290°. Schwer löslich in kaltem Wasser, unlöslich in starkem Alkohol. Ba($C_{13}H_{14}O_3NS)_2 + H_2O$. Nadeln. Leicht löslich in Wasser. Pb($C_{13}H_{14}O_3NS)_2 + 2C_{13}H_{15}O_3NS + 6H_2O$. Gelbliche Nadeln. Leicht löslich in Wasser.
- 6. 3.6.8-Trimethyl-2-äthyl-chinnolin sulfonsäure (5 oder 7)

 C₁₄H₁₇O₃NS, Formel I oder II. B. Beim Erwärmen von 3.6.8-Trimethyl-2-äthyl-chinolin mit Pyroschwefelsäure auf dem Wasserbad (v. MILLER, B. 23, 2272). Nadeln. Schwer löslich in Wasser, leichter in heißer

Salzsäure.

6. Monosulfonsäuren C_nH_{2n-15}O₃NS.

- 1. Sulfonsäuren $C_{12}H_9O_3NS$.
- 1. 6.7-Benzo-indol-sulfonsäure-(2) (,,α-Naphthindol-sulfonsäure") C₁₂H₉O₃NS, s. nebenstehende Formel 1). B. Das Natriumsalz entsteht beim Erwärmen äquimolekularer Mengen von Glyoxal-Natriumdisulfit und α-Naphthylamin in verd. Alkohol auf dem Wasserbad (Hinsberg, B. 21, 116). Das Natriumsalz liefert beim Destillieren mit Zinkstaub α-Naphthindol (Bd. XX, S. 432) (Pschorr, Kuhtz, B. 38, 218). Beim Erwärmen des Natriumsalzes mit Salzsäure entsteht α-Naphthoxindol (Bd. XXI, S. 331) (H.). Die Salze schmecken süß (H.). NaC₁₂H₈O₃NS. Krystalle (aus Wasser) (H.). AgC₁₂H₈O₃NS. Blättchen. Zersetzt sich beim Kochen mit Wasser (H.).
- 2. 4.5-Benzo-indol-sulfonsäure-(2) (,,β-Naphthindol-sulfonsäure") C₁₂H₂O₃NS, s. nebenstehende Formel 1). B. Das Natriumsalz entsteht bei 12-stdg. Erwärmen äquimolekularer Mengen von β-Naphthylamin und Glyoxal-Natriumdisulfit in verd. Alkohol auf dem Wasserbad (Hinsberg, B. 21, 113; H., Simcoff, B. 31, 250).

 Beim Erhitzen der Salze mit oder ohne Zinkstaub entsteht β-Naphthindol (Bd. XX, S. 433) (H., S.). Das Kaliumsalz liefert beim Erwärmen mit Salzsäure oder Schwefelsäure auf 80—90° β-Naphthoxindol (Bd. XXI, S. 332) (H.). Natriumsalz. Fast unlöslich in heißem Wasser (H.). KC₁₂H₈O₃NS. Blättchen (aus Wasser). Ziemlich leicht löslich in heißem Wasser (H.).
- 1-Methyl-4.5-benzo-indol-sulfonsäure-(2) $C_{13}H_{11}O_3NS = C_{10}H_6 \underbrace{CH}_{N(CH_3)}C \cdot SO_3H$.

 B. Das Natriumsalz entsteht bei 2-tägigem Kochen von Methyl- β -naphthylamin mit Glyoxal-Natriumdisulfit in verd. Alkohol (Pschorr, Karo, B. 39, 3142). Liefert beim Kochen mit Salzsäure N-Methyl- β -naphthindol. Na $C_{13}H_{10}O_3NS$. Blättchen (aus Wasser). F: 169° (korr.).
- 1-Äthyl-4.5-benzo-indol-sulfonsäure-(2) $C_{14}H_{13}O_3NS = C_{10}H_6 \underbrace{N(C_2H_5)}C\cdot SO_3H$.

 B. Das Natriumsalz entsteht bei mehrtägigem Erwärmen äquimolekularer Mengen von Äthyl- β -naphthylamin und Glyoxal-Natriumdisulfit in verd. Alkohol auf dem Wasserbad (Hinsberg, B. 25, 2546). Das Natriumsalz liefert beim Kochen mit konz. Salzsäure N-Äthyl- β -naphthindol (H.; H., Rosenzweig, B. 27, 3255). Na $C_{14}H_{12}O_3NS$. Nadeln (aus Wasser). Schwer löslich in kaltem Wasser und Alkohol (H.). $AgC_{14}H_{12}O_3NS$. Braune Nadeln (aus Wasser). Zersetzt sich bei ca. 1200 (H., R.).
- 3. Carbazol-sulfonsäure-(3) C₁₂H₉O₃NS, s. nebenstehende Formel.

 x.x.x.x-Tetranitro-carbazol-sulfonsäure-(3?) C₁₂H₅O₁₁N₅S=

 HNC₁₂H₃(NO₂)₄·SO₃H. B. Das Kaliumsalz entsteht bei der Einw. von konz. Salpetersäure auf das Kaliumsalz der Carbazol-disulfonsäure-(3.6?) auf dem Wasserbad (Schultz, Hauenstein, J. pr. [2] 76, 344). KC₁₂H₄O₁₁N₅S (bei 150°). Hellgelbe Nadeln.

¹⁾ Zur Konstitution vgl. 8. 389 Anm.

- 4. Derivat einer Carbazol-sulfonsäure $C_{12}H_{\bullet}O_3NS = C_6H_{\bullet} \overline{NH} C_6H_3 \cdot SO_3H$ mit unbekannter Stellung der Sulfogruppe.
- 3.6 Dinitro carbazol sulfonsäure (x) C₁₃H₇O₇N₃S = HNC₁₃H₅(NO₃)₃·SO₃H. B. Neben anderen Produkten bei kurzem Erwärmen von 3.6-Dinitro-carbazol mit konz. Schwefelsäure auf 95—100° (Wirth, Schott, D. R. P. 128854; C. 1902 I, 608; Frdl. 6, 160). Ammoniumsalz. 2,16 Tle. lösen sich bei gewöhnlicher Temperatur in 100 Tln. Wasser. Die Alkali- und Erdalkalisalze sind schwer löslich.
- 2. 9.10 Dihydro acridin sulfonsäure (9) C₁₃H₁₁O₃NS, SO₃H s. nebenstehende Formel. Zur Konstitution vgl. Lehmstedt, Wirth, B. 61 [1928], 2044. B. Das Natriumsalz bildet sich beim Behandeln einer Lösung von Acridin-hydrochlorid mit Natriumsulfit; das Acridinsalz erhält man beim Ansäuern der Lösung des Natriumsalzes sowie beim Einleiten von Schwefeldioxyd in eine Lösung von Acridin-hydrochlorid (Graebe, B. 16, 2830). NaC₁₃H₁₀O₃NS. Säulen (aus Natriumdisulfit-Lösung) (G.). Sehr leicht löslich in Wasser. Beim Erhitzen einer wäßr. Lösung erhält man Acridin und das nachfolgende Salz. Acridinsalz C₁₃H₄N+C₁₃H₁₁O₃NS. Gelblichrote Nadeln (G.). Unlöslich. Ist bei 100° beständig. Wird bei längerem Kochen mit Wasser teilweise gespalten.

7. Monosulfonsäuren $C_n H_{2n-17} O_3 NS$.

1. Sulfonsäuren $C_{13}H_9O_3NS$.

1. 7.8-Benzo-chinolin-sulfonsäure-(5?) C₁₃H₉O₃NS, s. nebenstehende Formel. B. Beim Eintragen von 7.8-Benzo-chinolin oder seinem Sulfat in kalte rauchende Schwefelsäure (ca. 10%) SO₃-Gehalt) (CLAUS, IMHOFF, J. pr. [2] 57, 79). — Nadeln (aus Salzsäure). Schmilzt nicht unterhalb 300%. Unlöslich in Wasser. — Liefert beim Verschmelzen mit Alkali 5(?)-Oxy-7.8-benzo-chinolin. — Natriumsalz. Nadeln. Ziemlich schwer löslich. — AgC₁₈H₈O₃NS. Nadeln. Löslich in siedendem Wasser. — Bariumsalz. Pulver. Fast unlöslich in Wasser.

Methylester $C_{14}H_{11}O_3NS = NC_{13}H_8 \cdot SO_3 \cdot CH_3$. B. Durch Behandeln des Silbersalzes der 7.8-Benzo-chinolin-sulfonsäure-(5?) mit Methyljodid (CLAUS, IMHOFF, J. pr. [2] 57, 81). — Nadeln (aus Alkohol). F: 127°.

Chlorid C₁₃H₈O₂NClS = NC₁₃H₈·SO₂Cl. B. Beim Erhitzen des trocknen Natriumsalzes (s. o.) mit überschüssigem Phosphorpentachlorid auf 130—140° (Claus, Imhoff, J. pr. [2] 57, 81). — Gelbe Krystalle. Schmilzt gegen 116°.

Amid $C_{13}H_{10}O_2N_2S = NC_{13}H_8 \cdot SO_2 \cdot NH_2$. B. Durch Einleiten von Ammoniak in eine Lösung des Chlorids in Chloroform (Claus, Imhoff, J. pr. [2] 57, 82). — Krystalle. F: ca. 225°.

- 2. [Benzo 1'.2':7.8 chinolin] sulfonsäure (6')¹) (,,α¹.α³-Naphthochinolinsulfonsäure") C₁₂H₉O₃NS, s. nebenstehende Formel.

 B. Durch Erhitzen von 5-Amino-naphthalin-sulfonsäure-(1) mit Glycerin, HO₃S.

 Nitrobenzol und konz. Schwefelsäure (Rudolph, D. R. P. 110175; C.

 1900 II, 461; Frdl. 5, 173). Nadeln. Sehr schwer löslich. Gibt mit rauchender Schwefelsäure bei 150—160° [Benzo-1'.2':7.8-chinolin]-disulfonsäure-(6'.x) (S. 404).
- 3. [Benzo-1'.2':5.6-chinolin]-sulfonsäure-(6')¹)(,,β-Naphtho-chinolin-sulfonsäure') C₁₃H₂O₃NS, s. nebenstehende Formel. B. Durch Kochen von 7-Amino-naphthalin-sulfonsäure-(1) mit Glycerin, Nitrobenzol und konz. Schwefelsäure (Immerheiser, B. 22, 404). Gibt bei der Oxydation mit Kaliumpermanganat in neutraler Lösung 3-[6-Sulfo-2-carboxy-phenyl]-pyridin-carbonsäure-(2), in stark alkal. Lösung entsteht daneben 3'-Oxo-[indeno-2'.1':2.3-pyridin]-sulfonsäure-(7') (S. 413).

Mit dieser Verbindung ist vielleicht die Naphthochinolinsulfonsäure identisch, die Gentil (B. 18, 201) aus technischer β -Naphthylamin-sulfonsäure durch Erhitzen mit Glycerin, Nitrobenzol und konz. Schwefelsäure erhalten hat. — Wasserhaltige Nadeln (aus Wasser). Schwer löslich in Alkohol, leicht in heißem Wasser. Die wäßr. Lösung fluoresciert stark. — Gibt in der Kalischmelze ein gelbes, sublimierbares, bis 250° nicht schmelzendes Oxy-naphthochinolin. — $AgC_{13}H_8O_3NS+3.5H_2O$. Nadeln. — $Ba(C_{13}H_8O_3NS)_2+5(?)H_2O$. Krystalle.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

2. [2.4-Dimethyl-5.6-benzo-chinolin]-sulfonsäure-(x) (,,Dimethyl-

β-naphthochinolin-sulfonsäure") C₁₅H₁₃O₃NS = NC₁₃H₆(CH₃)₂·SO₃H.

a) Präparat von Reed. B. Beim Erwärmen von 2.4-Dimethyl-5.6-benzo-chinolin (von Reed) (Bd. XX, S. 476) mit rauchender Schwefelsäure (Reed, J. pr. [2] 35, 306). — Nadeln mit 1½ H₂O. Zersetzt sich beim Erhitzen, ohne zu schmelzen. Sehr schwer löslich heißem Wasser, unlöslich in kaltem Wasser und Alkohol. — Verhalten des Natriumsalzes beim Erhitzen mit Kaliumcyanid: R., J. pr. [2] 35, 311 Anm. 1.
b) Präparat von Combes. B. Aus 2.4-Dimethyl-5.6-benzo-chinolin (von Combes)

(Bd. XX, S. 476) durch Einw. von konz. Schwefelsäure bei 1000 (Combes, C. r. 106, 1537).

– Gelbe Krystalle.

8. Monosulfonsäuren $C_n H_{2n-10} O_3 NS$.

Sulfonsäuren $C_{15}H_{11}O_3NS$.

- 1. 2-[3-Sulfo-phenyl]-chinolin C₁₅H₁₁O₃NS, s. nebenstehende Formel. B. Neben 2-[4-Sulfo-phenyl]-chinolin beim Erhitzen von 2-Phenyl-chinolin mit konz. Schwefelsäure und Pyroschwefelsäure (Murmann, M. 13, 59, 64). Gelbliche Körner. Schmilzt oberhalb 300°. Liefert beim Verschwelzen mit Kaliumhydroxyd bei 240—260° 2-[3-Oxy-phenyl]-chinolin. KC₁₈H₁₀O₃NS + H₂O. Tafeln aus (Wasser). Leicht löslich in Wasser. AgC₁₈H₁₀O₃NS + 2½ H₂O. Nadeln. Ba(C₁₅H₁₀O₃NS)₂ + 1½ H₂O. Nadeln. Wird erst bei 200° wasserfrei. Leicht löslich in heißem, schwer in kaltem Wasser.
- 2. 2-[4-Sulfo-phenyl]-chinolin C₁₅H₁₁O₃NS, s. nebenstehende Formel. B. Neben 2-[3-Sulfo-phenyl]-chinolin beim Erhitzen von · C6H4 · 8O3H 2-Phenyl-chinolin mit konz. Schwefelsäure und Pyroschwefelsäure (Murmann, M. 13, 59, 60). — Blättchen mit 1 H₂O (aus Wasser). Schwer löslich in Wasser, unlöslich in Alkohol. — Liefert beim Erhitzen mit Kaliumhydroxyd auf 240—250° 2-[4-Oxyphenyl]-chinolin. — $NH_4C_{15}H_{10}O_3NS$. Blättchen. — $Ba(C_{15}H_{10}O_3NS)_2$ (bei 220°). Blättchen. Schwer löslich in kaltem Wasser.
- 3. 6-[4-Sulfo-phenyl]-chinolin C₁₅H₁₁O₃NS, s. nebenstehende HO₃S · C₆H₄ · Formel. B. Beim Behandeln von 6-Phenyl-chinolin mit kalter rauchender Schwefelsäure neben [6-Phenyl-chinolin]-sulfonsäure-(x) (LA Coste, Sorger, A. 230, 30). — Nadeln mit 2 H₂O. Färbt sich bei 300° braun, ohne zu schmelzen. Ziemlich leicht löslich in heißem, schwer in kaltem Wasser, unlöslich in Alkohol, Benzol und Schwefelkohlenstoff. — Gibt bei der Oxydation mit Kaliumpermanganat in alkal. Lösung 4-Sulfo-benzoesäure und andere Produkte. — NH₄C₁₅H₁₀O₃NS. Blättchen. Schmilzt oberhalb 310°. Leicht löslich in heißem, schwerer in kaltem Wasser, unlöslich in Alkohol. — NaC₁₅H₁₀O₂NS + H₂O. Blättchen (aus Wasser). Leicht löslich in Wasser.
- 4. [6 Phenyl chinolin] sulfonsäure (x) C₁₅H₁₁O₂NS = NC₁₅H₁₀· SO₃H. B. s. im vorangehenden Artikel. Blättchen mit 1 H₂O. Schmilzt nicht unterhalb 300° (La Coste, Sorger, A. 230, 37, 38). Leicht löslich in heißem Wasser, schwer in Alkohol. NH₄C₁₅H₁₀O₃NS. Schuppen.

9. Monosulfonsäuren $C_n H_{2n-21} O_3 NS$.

1. Sulfonsäuren $C_{16}H_{11}O_8NS$.

1. 2.3 - Benzo - carbazol - sulfonsäure - (1) $C_{16}H_{11}O_{2}NS$, s. nebenstehende Formel. B. Durch Kochen von Naphthol-(2)-sulfonsaure-(1) oder Naphthylamin-(2)-sulfonsaure-(1) mit Phenylhydrazin und Natriumdisulfit-Lösung und Behandlung des Reaktionsprodukts (vgl. FRIEDLAENDER, B. 54 [1921], 621; FUCHS, NISZEL, B. 60 [1927], 209) mit heißer Natronlauge (Bucherer, Sonnenburg, J. pr. [2] 81, 6, 27, 28). — NaC₁₆H₁₀O₃NS. Krystalle (aus verd. Natronlauge) (B., S.). Schwer löslich in Wasser. — Gibt beim Behandeln mit heißer konzentrierter Salzsäure 2.3-Benzo-carbazol (B., S.).

- 2. [Benzo 1'.2':1.2 carbazol] sulfonsäure (3') 1)
 C₁₆H₁₁O₃NS, s. nebenstehende Formel. B. Durch Kochen von
 Naphthylamin-(1)-sulfonsäure-(5) mit Phenylhydrazin und Natriumdisulfit-Lösung und Erhitzen des Reaktionsprodukts (vgl. FriedLAENDER, B. 54 [1921], 621; Fuchs, Niszel, B. 60 [1927], 209) mitstarker Salzsäure im Wasserbad (Bucherer, Sonnenburg, J. pr. [2] 81, 5, 25). NaC₁₆H₁₀O₃NS. Blättchen (aus verd.
 Natronlauge) (B., S.). Schwer löslich in Wasser und Alkohol, leichter in Natronlauge (B., S.).
 Löst sich in konz. Schwefelsäure mit gelber Farbe; die Lösung wird auf Zusatz von Salpetersäure blaugrün (B., S.).
- 3. [Benzo 1'.2':1.2 carbazol] sulfonsäure (4')¹)
 C₁₆H₁₁O₃NS, s. nebenstehende Formel. B. Durch Kochen von
 Naphthylamin-(1)-sulfonsäure-(6) mit Phenylhydrazin und Natriumdisulfit-Lösung und Erhitzen des Reaktionsprodukts (vgl. FRIEDLAENDER, B. 54 [1921], 621; FUCHS, NISZEL, B. 60 [1927], 209)
 mit konz. Salzsäure (Bucherer, Sonnenburg, J. pr. [2] 81, 27). Blättchen (aus verd. Alkohol). Schwer löslich in Wasser, leichter in Alkohol; ziemlich schwer löslich in Natronlauge (B., S.). Gibt mit konz. Schwefelsäure auf Zusatz von wenig verd. Salpetersäure eine blaugrüne Lösung (B., S.).
- 4. [Benzo-1'.2':3.4-carbazol]-sulfonsäure-(5') (?) 1) HO38. C₁₆H₁₁O₃NS, s. nebenstehende Formel. B. Durch Kochen von Naphthol-(2)-sulfonsäure-(6) mit Phenylhydrazin und Natrium-disulfit und Behandeln des Reaktionsprodukts mit heißer Natronlauge (Bucherer, Sonnenburg, J. pr. [2] 81, 30). NaC₁₆H₁₀O₃NS. Krystalle (aus verd. Alkohol). Schwer löslich in Wasser, leichter in Alkohol, leicht in Natronlauge. Die Lösung in konz. Schwefelsäure ist gelb; auf Zusatz eines Tropfens verd. Salpetersäure wird sie grün.
- 5. [3.4-Benzo-carbazol]-sulfonsäure-(x) $C_{16}H_{11}O_3NS = NC_{16}H_{10}\cdot SO_3H$. B. Beim Kochen von 3-Oxy-naphthoesäure-(2) oder β -Naphthol mit Phenylhydrazin und Natrium-disulfit in alkal. Lösung, neben anderen Produkten (Bucherer, Seyde, J. pr. [2] 77, 408, 411). Nadeln. Natriumsalz. Schwer löslich in kaltem, leicht in heißem Wasser mit blauer Fluorescenz.
- 2. 4-Styryl-chinolin-sulfonsäure-(6), ω-Benzallepidin-sulfonsäure-(6) C₁₇H₁₃O₃NS, s. nebenstehende HO₃S
 Formel. B. Beim Erhitzen von Lepidin-sulfonsäure-(6) mit Benzsldehyd, Zinkchlorid und wenig Wasser in Kohlendioxyd-Atmosphäre auf 170° (Busch, Koenigs, B. 23, 2682). Schwefelgelbe Krystalle mit 2H₂O (aus
 50°/oiger Essigsäure). Wird bei 180° wasserfrei. Liefert bei der Oxydation mit Kaliumpermanganat in neutraler Lösung Chinolin-carbonsäure-(4)-sulfonsäure-(6).

10. Monosulfonsäuren $C_n H_{2n-23} O_3 NS$.

- 1. [7 Methyl 1.2 benzo acridin] sulfonsäure (x) $C_{18}H_{13}O_{2}NS = NC_{17}H_{9}(CH_{3})\cdot SO_{2}H$. B. Durch Einw. von rauchender Schwefelsäure ($4^{9}/_{0}$ SO₃-Gehalt) auf 7-Methyl-1.2-benzo-acridin bei gewöhnlicher Temperatur (Ullmann, Naef, B. 33, 911). Mattgelbes Pulver. Unlöslich in heißem Wasser, schwer löslich in heißem Alkohol; die Lösungen in wäßrigen Alkalien sind farblos.
- 2. 9-Phenyl-9.10-dihydro-acridin-sulfonsäure-(9) $C_{10}H_{15}O_3NS=C_0H_4$ $C(C_0H_5)(SO_3H)$ C_0H_4 .
- 10 · Methyl · 9 · phenyl · 9.10 · dihydro · acridin · sulfonsäure · (9) $C_{20}H_{17}O_3NS = C_6H_4$ · $C(C_6H_5)(SO_3H)$ · C_6H_4 · B. Die Alkalisalze entstehen bei der Einw. von überschüssiger Alkalisulfit-Lösung auf 10-Methyl · 9 · phenyl · acridiniumsalze (Bd. XX, S. 515) (Hantzsch, B. 42, 79). Die Alkalisalze werden durch Wasser und Alkohol in Alkalisulfit und grünes 10-Methyl · 9 · phenyl · acridiniumsulfit gespalten. NaC₂₀H₁₆O₃NS + 7H₂O. Krystalle. Zersetzt sich bei ca. 105°. KC₂₀H₁₆O₃NS + 2 H₂O. Gibt über Phosphorpentoxyd bei gewöhnlicher Temperatur 1H₂O ab, das zweite bei ca. 130°; zersetzt sich bei ca. 160°.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

B. Disulfonsäuren.

1. Disulfonsäuren $C_n H_{2n-5} O_6 NS_2$.

Pyridin-disulfonsäure-(3.5) C₅H₅O₆NS₂, s. nebenstehende Formel.

Zur Konstitution vgl. Sell, Soc. 93, 1997. — B. Beim Erhitzen von Piperidin mit konz. Schwefelsäure auf 300° (Hoffmann, Koenigs, B. 16, 735; K., Geigy, B. 17, 592). — Nadeln (aus Essigsäure). Sehr leicht löslich in Wasser, schwer in Eisessig, fast unlöslich in Alkohol und Äther (K., G., B. 17, 593). — Einw. von Brom: K., G., B. 17, 593. Liefert beim Verschmelzen mit Kaliumhydroxyd 3.5-Dioxy-pyridin (K., G., B. 17, 1836). Beim Erhitzen des Bariumsalzes mit Phosphorpentachlorid auf 200° erhält man 3.5-Dichlor-pyridin und 2.3.5-Trichlor-pyridin (K., G., B. 17, 594, 1832). — Na₂C₅H₃O₆NS₂ + 4H₂O. Krystalle (K., G., B. 17, 593). — K₂C₅H₃O₆NS₂ + 2¹/₂ bis 3H₂O. Säulen (K., G., B. 17, 1835). Wird erst bei 200° vollständig wasserfrei. — BaC₅H₃O₆NS₂ + aq. Nadeln (H., K.). Enthält oberhalb 110° noch ¹/₂H₂O. Leicht löslich in Wasser. — PbC₅H₃O₆NS₂ + 4¹/₂H₂O. Wird erst bei 200° vollständig wasserfrei (K., G., B. 17, 593).

2. Disulfonsäuren $C_n H_{2n-11} O_6 NS_2$.

Chinolin-disulfons auren-(x.x) $C_0H_7O_6NS_2 = NC_0H_5(SO_3H)_2$.

- a) ,, α -Chinolindisulfonsäure". B. Neben ,, β -Chinolindisulfonsäure" beim Erhitzen eines Gemisches von Chinolin-sulfonsäure-(5) mit Chinolin-sulfonsäure-(8) oder beim Erhitzen von reiner Chinolin-sulfonsäure-(8) mit rauchender Schwefelsäure auf 250° (La Coste, Valeur, B. 19, 996; 20, 98; La C., D. R. P. 29920; Frdl. 1, 185). Hellgelbe Nadeln mit $3\,H_2O$. Sehr leicht löslich in Wasser, unlöslich in absol. Alkohol (La C., V., B. 19, 996). Beim Erhitzen des Kaliumsalzes mit Natriumhydroxyd auf 160° erhält man α -Oxychinolinsulfonsäure (S. 409), bei weiterem Erhitzen mit Natrium- oder Kaliumhydroxyd auf 260° ein bei 130° bis 136° schmelzendes x.x-Dioxy-chinolin (La C., V., B. 19, 997; 20, 100, 1820; La C.). Beim Erhitzen des Kaliumsalzes mit Kaliumcyanid entsteht x.x-Dioxyan-chinolin (La C., V., B. 20, 99). $K_2C_9H_5O_6NS_2+3I_2P_2O$. Blättchen. Sehr leicht löslich in kaltem Wasser (La C., V., B. 20, 99). Ba $C_9H_5O_6NS_2+3I_2P_2O$. Nadeln. Leicht löslich in heißem Wasser; 1 Tl. wasserhaltiges Salz löst sich bei 15° in 24,5 Tln. Wasser (La C., V., B. 20, 98).
- b) " β -Chinolindisulfonsäure". B. s. o. bei α -Chinolindisulfonsäure. Nadeln mit $1^1/_2H_2O$ (aus verd. Alkohol) (La Coste, Valeur, B. 19, 998; 20, 3199). Leicht löslich in Wasser, unlöslich in Alkohol, Äther, Chloroform und Benzol (La C., V., B. 20, 3199). Beim Erhitzen des Kaliumsalzes mit Kaliumhydroxyd auf 160° erhält man β -Oxychinolinsulfonsäure (S. 409), bei weiterem Erhitzen mit Kaliumhydroxyd auf 250— 255° oder mit Natriumhydroxyd auf 280° ein bei 68° schmelzendes x.x-Dioxy-chinolin (La C., V., B. 19, 998; 20, 3000). $K_2C_9H_5O_6NS_2+H_2O$. Krystalle. Leicht löslich in siedendem Wasser, schwer in kaltem Wasser, unlöslich in Alkohol (La C., V., B. 20, 3199). $BaC_9H_5O_6NS_2+2H_2O$. Amorphes Pulver (La C., V., B. 19, 998). Fast unlöslich in siedendem Wasser, schwer löslich in kaltem Wasser (La C., V., B. 20, 3199).
- c) Chinolin-disulfonsäure-(x.x). B. Beim Erhitzen von 1.2.3.4-Tetrahydro-chinolin mit konz. Schwefelsäure auf 220—330° (Hoffmann, Koenigs, B. 16, 736). $BaC_9H_5O_6NS_2$. Leicht löslich.

3. Disulfonsäuren C_n H_{2n-15} O₆ NS₂.

Disulfonsäuren $C_{12}H_9O_6NS_2$.

1. [Benzo - 1'.2':6.7 - indol] - disulfonsäure - (2.3') 1 (,,α-Naphthindoldisulfonsäure") C₁₂H₂O₆NS₂, s. nebenstehende Formel. B. Das Natriumsalz entsteht beim Kochen des Natriumsalzes der Naphthylamin-(1)-sulfonsäure - (8) mit Glyoxal-Natriumdisulfit in Wasser (PSCHORR, KUHTZ, B. 38, 219). — Beim Erhitzen

2) Zur Konstitution vgl. S. 389 Anm.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

des Natriumsalzes mit Zinkstaub entsteht α -Naphthindol. — Na₂C₁₂H₇O₆NS₂. Krystalle (aus verd. Alkohol).

2. Carbazol - disulfonsäure - (3.6?) C₁₂H₂O₆NS₂, HO₃S.

s. nebenstehende Formel. B. Beim Erwärmen von Carbazol
mit Schwefelsäure (D: 1,84), neben anderen Produkten
(Bechhold, B. 23, 2144; Schultz, Hauenstein, J. pr. [2] 76, 338). — Nadeln; verkohlt bei höherer Temperatur, ohne zu schmelzen (B.). Durchscheinende Masse; schmilzt bei ca. 56° (Sch., H.). Färbt sich oberflächlich blau (Sch., H.). Sehr leicht löslich in Wasser und den meisten organischen Lösungsmitteln, schwerer löslich in Chloroform (Sch., H.). — Beim Erhitzen des Kaliumsalzes mit Salzsäure im Rohr auf 200° entsteht Carbazol (B.). Verhalten beim Verschmelzen mit Alkali: Sch., H. Bei der Einw. von konz. Salpetersäure entsteht x.x.x.x-Tetranitro-carbazol-sulfonsäure-(3?) (S. 399) (Sch., H.). Beim Behandeln des Kaliumsalzes mit verd. Salpetersäure auf dem Wasserbad erhält man das Kaliumsalz der x-Nitro-carbazol-disulfonsäure-(3.6?) (Sch., H.). Erhitzt man das Kaliumsalz mit Kaliumcyanid oder Kaliumferrocyanid, so entsteht Carbazol (Sch., H.). Beim Verschmelzen mit Oxalsäure entsteht ein blauer, in Wasser löslicher Farbstoff (Sch., H.). Verwendung zur Darstellung von Triphenylmethan-Farbstoffen: Cassella & Co., D. R. P. 215181; C. 1909 II, 1781; Frdl. 9, 199. — Na₂C₁₂H₇O₆NS₂. Pulver (aus verd. Alkohol). Sehr leicht löslich in Wasser, unlöslich in den meisten organischen Lösungsmitteln (Sch., H.). — Ka₂C₁₂H₇O₆NS₂. Krystalle (B.; Sch., H.). Sehr leicht löslich in Wasser (Sch., H.). — BaC₁₂H₇O₆NS₂ + 3H₂O. Nadeln (aus Wasser). Schwer löslich in kaltem, sehr leicht in heißem Wasser, unlöslich in Alkohol; verliert im Exsiccator 2 Mol Wasser, das dritte entweicht bei 180—190° (Sch., H.).

Dichlorid $C_{12}H_7O_4NCl_2S_2 = NC_{12}H_7(SO_2Cl)_2$. B. Aus dem Kaliumsalz der Carbazoldisulfonsäure-(3.6?) durch Behandeln mit Phosphorpentachlorid auf dem Wasserbad (SCHULTZ, HAUENSTEIN, J. pr. [2] 76, 341). — Kaum löslich in kaltem Wasser; sehr leicht löslich in Alkohol, Äther und Aceton, etwas schwerer in Chloroform. — Wird durch heißes Wasser in Carbazol-disulfonsäure-(3.6?) übergeführt.

Diamid $C_{12}H_{11}O_4N_3S_2 = NC_{12}H_7(SO_2 \cdot NH_2)_2$. B. Durch Erhitzen des Chlorids (s. o.) mit konz. Ammoniak im Rohr auf 120—140° (Schultz, Hauenstein, J. pr. [2] 76, 342). — Nadeln (aus wäßr. Aceton). F: 220—225° (Zers.).

x-Nitro-carbasol-disulfonsäure-(3.6?) $C_{12}H_6O_8N_2S_2 = NC_{12}H_6(NO_8)(SO_3H)_2$. B. Das Kaliumsalz entsteht durch Erhitzen des Kaliumsalzes der Carbazol-disulfonsäure-(3.6?) mit verd. Salpetersäure auf dem Wasserbad (Schultz, Hauenstein, J. pr. [2] 76, 344). — Wird durch Schwefelwasserstoff in ammoniakalischer Lösung zu x-Amino-carbazol-disulfonsäure-(3.6?) reduziert. — $K_2C_{12}H_6O_8N_2S_2+3H_2O$. Hellgelbe Nadeln (aus Wasser). Sehr leicht löslich in Wasser mit hellgelber Farbe, unlöslich in den meisten organischen Lösungsmitteln.

4. Disulfonsäuren C_nH_{2n-17}O₆NS₂.

- 1. [Benzo-1'.2':7.8-chinolin]-disulfonsäure- $(6'.x)^{-1}$) $C_{18}H_{9}O_{6}NS_{2}=NC_{18}H_{7}(SO_{3}H)_{2}$. B. Durch Erhitzen von [Benzo-1'.2':7.8-chinolin]-sulfonsäure-(6') (S. 400) mit rauchender Schwefelsäure auf 150—160° (Rudolph, D. R. P. 110175; C. 1900 II, 461; Frdl. 5, 173). Leicht löslich in Wasser. Liefert beim Erhitzen mit Natriumhydroxyd und Wasser auf 200—220° 6'.x-Dioxy-[benzo-1'.2':7.8-chinolin]. Saures Natriumsalz. Nadeln.
- 2. [2.4-Dimethyl-5.6-benzo-chinolin]-disulfonsäure-(x.x) $C_{15}H_{12}O_{e}NS_{2}=NC_{13}H_{5}(CH_{2})_{2}(SO_{3}H)_{2}$. B. Beim Erhitzen von 2.4-Dimethyl-5.6-benzo-chinolin (von Reed) (Bd. XX, S. 476) mit rauchender Schwefelsäure auf 150—160° (Reed, J. pr. [2] 35, 307). Nadeln mit $4^{1/2}H_{2}O$ (aus verd. Alkohol). Zersetzt sich beim Erhitzen, ohne zu schmelzen. Sehr leicht löslich in Wasser, Alkohol und Äther. Liefert beim Verschmelzen mit Kalumhydroxyd x-Oxy-[2.4-dimethyl-5.6-benzo-chinolin]-sulfonsäure-(x). $Cu(C_{15}H_{12}O_{e}NS_{2})_{2}+5H_{2}O$. Bläuliche Nadeln. Verliert bei 130° $1H_{2}O$. $BaC_{15}H_{11}O_{e}NS_{2}+7H_{2}O$. Nadeln. Ziemlich schwer löslich in kaltem Wasser.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

803H

5. Disulfonsäuren C_n H_{2n-21} O₆ NS₂.

[Benzo-1'.2': 3.4 - carbazol] - disulfonsäure - (1.5') 1) HO38 C₁₆H₁₁O₆NS₂, s. nebenstehende Formel. B. Durch Kochen von Naphthol-(2)-disulfonsäure-(3.6) mit Phenylhydrazin und Natriumdisulfit-Lösung und Behandeln des Reaktionsprodukts mit heißer Natronlauge (Bucherer, Sonnenburg, J. pr. [2] 81, 30).—
Na₂C₁₆H₉O₆NS₂. Krystalle (aus verd. Alkohol). Leicht löslich in HO₃S
Wasser und Alkohol, unlöslich in Äther und Benzol. Löslich in Natronlauge.— Wird beim Erwärmen mit konz. Salzsäure nicht verändert. — Die gelbe Lösung in konz. Schwefelsäure wird auf Zusatz eines Tropfens verd. Salpetersäure gelbgrün.

6. Disulfonsäuren $C_n H_{2n-25} O_6 NS_2$.

[9-Phenyl-acridin]-disulfonsäure-(x.x) $C_{19}H_{13}O_6NS_2=NC_{19}H_{11}(SO_8H)_2$. B. Beim Erhitzen von 9-Phenyl-acridin mit einem Gemisch von konz. Schwefelsäure und Pyroschwefelsäure auf 140—160° (Bernthsen, A. 224, 32). — Sehr leicht löslich in Wasser mit braungelber Farbe und grüner Fluorescenz. — Verhalten bei der Kalischmelze: B. — Na₂C₁₂H₁₁O₂NS₃ (bei 100°). Nadeln. Sehr leicht löslich in Wasser, unlöslich in absol. Alkohol. Die sehr verdünnte wäßrige Lösung fluoresciert blau.

7. Disulfonsäuren $C_n H_{2n-29} O_6 NS_2$.

Disulfonsäuren $C_{21}H_{13}O_6NS_2$.

blau. — Na₂C₂₁H₁₁O₆NS₂. Nadeln (aus Wasser).

3.4; 5.6 - Dibenzo - acridin - disulfonsäure -(2.7) HOaS $C_{21}H_{13}O_6NS_2$, s. nebenstehende Formel. B. Aus naphthionsaurem Natrium durch Erhitzen mit Formaldehyd in wäßr. Lösung unter 10 Atm. Druck und Behandlung des Reaktionsprodukts mit Chromschwefelsäure (Möhlau, Haase, B. 35, 4175). — Gelbe Blättchen. Sehr leicht löslich in heißem Wasser. Stark hygroskopisch. Die gelbe wäßrige Lösung fluoresciert ebenso wie die farblose wäßrige Lösung der Salze hellblauviolett und färbt die tierische Faser citronengelb. Die gelbe Lösung in konz. Schwefelsäure fluoresciert grün-

2. [Dibenzo - 1'.2': 1.2; 1".2": 7.8 - acridin] - di-HO38. 803H sulfonsäure - (4'.5") 1) C₂₁H₁₃O₆NS₃, s. nebenstehende Formel. B. Durch tropfenweise Zugabe von Formaldehyd-Lösung zu einer siedenden Lösung von Naphthylamin-(2)-sulfonsäure-(6) in Wasser (Möhlau, Haase, B. 35, 4174).

Gelber, krystallinischer Niederschlag. Schwer löslich in Wasser. Die alkal. Lösungen fluorescieren hellblauviolett. Die gelbe Lösung in konz. Schwefelsäure zeigt grünblaue Fluorescenz. Färbt tierische Fasern hell citronengelb. — $Ag_2C_{21}H_{11}O_6NS_3$. Gelbliche Krystalle.

C. Trisulfonsäuren.

Carbazol-trisulfonsäure-(1.3.6?) C₁₂H₂O₂NS₃, HO₃S.

s. nebenstehende Formel. B. In geringer Menge beim
Erwärmen von Carbazol mit Schwefelsäure (D: 1,84) auf
70—75° (SCHULTZ, HAUENSTEIN, J. pr. [2] 76, 347). —
Verwendung zur Herstellung von Triphenylmethan-Farbstoffen: Cassella & Co., D. R. P.
215181; C. 1909 II, 1781; Frdl. 9, 199. — K₃C₁₂H₆O₂NS₃. Nadeln mit 3 H₂O (aus verd. Alkohol). Wird erst bei 190—195° völlig wasserfrei; sehr leicht löslich in Wasser, unlöslich in Organischen Lösungsmitteln (SCH. H) in organischen Lösungsmitteln (Sch., H.).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

D. Oxy-sulfonsäuren.

1. Sulfonsäuren der Monooxy-Verbindungen.

a) Sulfonsäuren der Monooxy-Verbindungen C_nH_{2n-7}ON.

8-Oxy-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(5) C₉H₁₁O₄NS, s. nebenstehende Formel. B. Durch Reduktion von 7-Brom-8-oxy-chinolin-sulfonsäure-(5) mit Zinn und heißer Salzsäure (Claus, Giwartovsky, J. pr. [2] 54, 384). — Krystalle. Schmilzt noch nicht bei 320°.

b) Sulfonsäuren der Monooxy-Verbindungen C_nH_{2n-9}ON.

1-Methyl-5-äthoxy-indol-sulfonsäure-(2) C₁₁H₁₃O₄NS, C₂H₅·O·CH s. nebenstehende Formel. B. Das Natriumsalz entsteht beim Erwärmen äquimolekularer Mengen Methyl-p-phenetidin (Bd. XIII, S. 442) und Glyoxal-Natriumdisulfit (Bd. I, S. 761) in alkoh. CH₃ Lösung (HINSBERG, B. 41, 1371). — Natriumsalz. Krystalle (aus Wasser). Schwer löslich in kaltem, mäßig in heißem Wasser. Liefert beim Kochen mit Salzsäure 1-Methyl-5-äthoxyoxindol (Bd. XXI, S. 581) und schweflige Säure.

c) Sulfonsäuren der Monooxy-Verbindungen C_nH_{2n-11}ON.

1. Sulfonsäuren der Monooxy-Verbindungen C_9H_7ON .

1. Sulfonsaure des 2-Oxy-chinolins C. H.ON (Bd. XXI, S. 77).

2-Methoxy-chinolin-sulfonsäure-(x), Carbostyrilmethyläther-sulfonsäure-(x) $C_{10}H_9O_4NS = NC_9H_8(O\cdot CH_3)\cdot SO_3H$. B. Aus dem Sulfat des Carbostyrilmethyläthers durch Einw. von rauchender Schwefelsäure (Feer, Koenigs, B. 18, 2395). — Nadeln (aus Wasser). — Liefert beim Erhitzen mit Phosphorpentachlorid im Rohr auf 200° 2.x.x-Trichlorchinolin vom Schmelzpunkt 140° (Bd. XX, S. 362).

2. Sulfonsäure des 5-Oxy-chinolins C₂H₇ON (Bd. XXI, S. 84).

5-Oxy-chinolin-sulfonsäure-(8) C₂H₇O₄NS, s. nebenstehende Formel.

B. Aus 5-Oxy-chinolin durch Einw. von rauchender Schwefelsäure (Claus, J. pr. [2] 53, 339; RIEMERSCHMIED, B. 16, 724). — Gelbe Blättchen mit 1 H₂O (aus Wasser). F: ca. 270° (R.), ca. 300° (Cl.). Leicht löslich in siedendem Wasser, sonst schwer löslich (R.; Cl.). — Das Kaliumsalz liefert bei der Einw. von Kaliumjodid, Chlorkalk und Salzsäure 6-Jod-5-oxy-chinolin-sulfonsäure-(8) (Cl., Kaufmann, J. pr. [2] 55, 533; Höchster Farbw., D. R. P. 89600; Frdl. 4, 1146). — Liefert mit Ferrichlorid eine schwarzgrüne Färbung (R.). — NaC₂H₆O₄NS+H₂O. Rote Prismen. Leicht löslich in Wasser (Cl.).

6-Jod-5-oxy-chinolin-sulfonsäure-(8), Lorenit C₉H₆O₄NIS, s. nebenstehende Formel. B. Aus dem Kaliumsalz der 5-Oxy-chinolin-sulfonsäure-(8) durch Einw. von Kaliumjodid, Chlorkalk und Salzsäure (Claus, Kaufmann, J. pr. [2] 55, 534; Höchster Farbw., D. R. P. 89600; Frdl. 4, 1146). — Gelbe Nadeln oder Blättchen. Zersetzt sich zwischen 210° und 230°. — NaC₉H₅O₄NIS HO₃S + 5(?)H₂O. Rote Blättchen. Ziemlich leicht löslich in Wasser. — Na₂C₉H₄O₄NIS + 4H₂O. Gelbes Krystallpulver. Leicht löslich in Wasser. — KC₉H₅O₄NIS + 2H₂O. Orangefarbene Krystalle. — K₂C₉H₄O₄NIS + aq(?). Gelbe Krystalle. Sehr leicht löslich in Wasser, fast unlöslich in Alkohol. — Ca(C₉H₅O₄NIS)₂ + aq. Orangerote Krystalle. Schwer löslich in Wasser. — CaC₉H₄O₄NIS + 4H₂O. Gelbe Nadeln. — Sr(C₉H₅O₄NIS)₂ (bei 140°). Rotes Krystallpulver. — Ba(C₉H₅O₄NIS)₂. Rote Krystalle. — BaC₉H₄O₄NIS. Gelblicher Niederschlag.

¹⁾ Zur Konstitution vgl. S. 389 Anm.

3. Sulfonsäure des 6-Oxy-chinolins C₉H₇ON (Bd. XXI, S. 85).

6-Oxy-chinolin-sulfonsäure-(5) C₉H₇O₄NS, s. nebenstehende Formel.

B. Aus 6-Oxy-chinolin durch Einw. von rauchender Schwefelsäure (CLAUS, Possell, J. pr. [2] 41, 159; Cl., KAUFMANN, J. pr. [2] 55, 511). — Gelbe Nadeln mit ½ H₂O (aus Wasser oder Alkohol). Zersetzt sich bei 270°. Sehr schwer löslich in kaltem Wasser, leichter in Alkohol und Essigsäure, unlöslich in Äther, Chloroform und Benzol. — Liefert bei der Reduktion mit Zinn und Salzsäure 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(5) (Cl., K.). Bei der Nitrierung mit Salpetersäure (D: 1,52) oder Salpeterschwefelsäure in der Kälte erhält man 5-Nitro-6-oxy-chinolin (Cl., K.). Bei der Einw. von Brom in der Kälte entsteht 5-Brom-6-oxy-chinolin (Cl., K.). — NaC₉H₆O₄NS + H₂O. Nadeln. Sehr leicht löslich in Wasser (Cl., P.). — Na₂C₉H₅O₄NS + 1½ H₂O. Nadeln (aus Alkohol) (Cl., K.). — KC₉H₆O₄NS + H₂O. Nadeln (aus Wasser oder Alkohol) (Cl., K.). — AgC₉H₆O₄NS. Nadeln (Cl., K.). — Ca(C₉H₆O₄NS)₂ + 2H₂O. Prismen (aus Wasser oder Alkohol) (Cl., K.). — Ba(C₉H₆O₄NS)₂ + 2H₂O. Prismen (Cl., K.). — Pb(C₉H₆O₄NS)₂ + ½ H₂O. Gelbe Nadeln (Cl., K.). — Co(C₉H₆O₄NS)₂ + ½ H₂O. Rosa Nadeln (Cl., K.).

Amid $C_9H_8O_3N_2S=NC_9H_5(OH)\cdot SO_2\cdot NH_2$. B. Durch Erhitzen des Natriumsalzes der 6-Oxy-chinolin-sulfonsäure-(5) mit Phosphorpentachlorid auf 130° und Behandeln des erhaltenen Chlorids mit Ammoniak in Chloroform (Claus, Kaufmann, J. pr. [2] 55, 517). — Nadeln (aus Äther). F: 69—70°.

4. Sulfonsäuren des 8 - Oxy - chinolins C₉H₇ON (Bd. XXI, S. 91).

8-Oxy-chinolin-sulfonsäure-(5) C₉H₇O₄NS, s. nebenstehende Formel. HO₃S B. Aus 8-Oxy-chinolin durch Einw. von rauchender Schwefelsäure in der Kälte (CLAUS, Posselt, J. pr. [2] 41, 33) oder im Rohr bei 1800 (LIPPMANN, FLEISSNER, M. 10, 798; L., Priv.-Mitt.). Aus dem Natriumsalz der 7-Jod-8-oxy-chinolinsulfonsäure-(5) durch Kochen mit Wasser (CL., BAUMANN, J. pr. [2] 55, 470). HO

— Krystalle mit 2 H₂O (aus konz. Salzsäure). F: 275° (Zers.) (L., F.); beginnt bei ca. 280° unter Zersetzung zu schmelzen (Cl., B.). Sehr schwer löslich in kaltem, leichter in heißem Wasser (Cl., B.). — Liefert bei der Reduktion mit Zinn und Salzsäure 1.2.3.4-Tetrahydrochinolin-sulfonsäure-(5) und eine Verbindung C₁₈H₁₈O₇N₂S₃ (s. u.) (Cl., Heermann, J. pr. [2] **42**, 344; Cl., Giwartovsky, J. pr. [2] **54**, 385). Gibt beim Behandeln mit Salpetersäure 5.7-Dinitro-8-oxy-chinolin (Cl., B.). Bei der Einw. von Chlor in heißer Salzsäure erhält man 7-Chlor-8-oxy-chinolin-sulfonsäure-(5) und 5.7-Dichlor-8-oxy-chinolin (CL., G., J. pr. [2] 54, 386). Beim Behandeln mit Phosphorpentachlorid entsteht je nach den Bedingungen 7-Chlor-8-oxy-chinolin-sulfonsäure-(5) oder 5-Chlor-8-oxy-chinolin (Cl., G., J. pr. [2] 54, 387, 389). Liefert bei der Einw. von Brom 5.7-Dibrom-8-oxy-chinolin und 7-Brom-8-oxychinolin-sulfonsäure-(5) (Cl., P.; Cl., G., J. pr. [2] 54, 377). Bei der Einw. von Phosphorpentabromid erhält man 5.7-Dibrom-8-oxy-chinolin und 3.5.7-Tribrom-8-oxy-chinolin (Cl., P.; Cl., H., J. pr. [2] 42, 342; Cl., G., J. pr. [2] 54, 381). Beim Behandeln des Kaliumsalzes mit Kaliumjodid, Chlorkalk und Salzsäure entsteht 7-Jod-8-oxy-chinolin-sulfonsäure-(5) (Cl., Ar. 231, 706; Cl., D. R. P. 72942; Frdl. 3, 964). — Eine verd. Lösung wird auf Zusatz von Ferrichlorid grün (Cl., P.). — NaC₉H₆O₄NS. Krystallisiert je nach den Bedingungen in farblosen Krystallen mit 1 H₂O (Cl., P.) oder in gelben Prismen mit 3 H₂O (Cl., B.). Verwittert an der Luft (CL., P.; CL., B.). Sehr leicht löslich in Wasser, schwer in Alkohol (CL., wittert an der Luit (CL., F.; CL., B.). Sehr leicht löslich in Wasser, sehwer in Alkohol (CL., P.). — $Na_2C_9H_5O_4NS + 2H_2O$. Nadeln. Leicht löslich in Wasser, unlöslich in Alkohol (CL., P.). — $KC_9H_6O_4NS + 3H_2O$. Säulen (aus Wasser). Sehr leicht löslich in Wasser, kaum in Alkohol (CL., P.). — $AgC_9H_6O_4NS$. Krystalle (L., F.). — $Ca(C_9H_6O_4NS)_2 + H_2O$. Nadeln. Schwer löslich in Wasser (CL., P.). — $Ba(C_9H_6O_4NS)_2 + H_2O$. Nadeln. Schwer löslich in Alkohol (CL., P.).

Verbindung C₁₈H₁₈O₇N₂S₂. B. Aus 8-Oxy-chinolin-sulfonsäure-(5) oder 7-Brom-8-oxy-chinolin-sulfonsäure-(5) bei der Reduktion mit Zinn und heißer Salzsäure (Claus, Heermann, J. pr. [2] 42, 345; Cl., Giwartovsky, J. pr. [2] 54, 385). — Krystallpulver. Ist bei 360° noch nicht geschmolzen (Cl., G.). Sehr schwer löslich in den gebräuchlichen Lösungsmitteln; löslich in konz. Säuren (Cl., G.). — K₂C₁₈H₁₆O₇N₂S₂ (Cl., G.).

Anhydrid des 8-Oxy-chinolin-sulfonsäure-(5)-hydroxymethylats, 8-Oxy-chinolin-sulfonsäure-(5)-methylbetain $C_{10}H_9O_4NS=CH_3\cdot NC_9H_5(OH)\cdot SO_2\cdot O$. B. Aus 8-Oxy-chinolin-sulfonsäure-(5) durch Erhitzen mit Methyljodid und konz. Salzsäure im Rohr auf 110° und Zerlegen des Reaktionsprodukts mit Natronlauge (Claus, Posselt, J. pr. [2] 41, 35). — Nadeln. Zersetzt sich bei ca. 250° .

7-Chlor-8-oxy-chinolin-sulfonsäure-(5) C₂H₆O₄NClS, s. nebenstehende Formel. B. Aus 8-Oxy-chinolin-sulfonsäure-(5) durch Einw. von Chlor in heißer Salzsäure, von Chlorkalk und Salzsäure oder von Phosphorpentachlorid (Claus, Giwartovsky, J. pr. [2] 54, 386; Cl., D. R. P. 73145; Frdl. 3, 966; vgl. Cl., Posselt, J. pr. [2] 41, 39; Cl., Heermann, J. pr. [2] 42, 346). — Nadeln und Säulen mit 1H₂O (aus Salzsäure oder wäßrig-alkoholischer Salzsäure). Schmilzt nicht bis 300° (Cl., G.). — Liefert bei der Oxydation mit Permanganat Pyridin-dicarbonsäure-(2.3) und Pyridin-carbonsäure-(3) (Cl., G.). Beim Erhitzen mit Schwefelsäure erhält man 7-Chlor-8-oxy-chinolin (Cl., G.).

7-Brom-8-oxy-chinolin-sulfonsäure-(5) C₂H₆O₄NBrS, s. nebenstehende Formel. B. Aus 8-Oxy-chinolin-sulfonsäure-(5) in siedender konzentrierter Bromwasserstoffsäure und Brom in Eigessig (CLAUS, POSSELT, J. pr. [2] 41, 36; CL., GIWARTOVSKY, J. pr. [2] 54, 377). Aus dem Kaliumsalz der 8-Oxy-chinolin-sulfonsäure-(5) in wäßriger Lösung durch Einw. von Brom in Eigessig in der Kälte (CL., G.). Aus 8-Oxy-chinolin-sulfonsäure-(5) durch Einw. von Kaliumbromid, Chlorkalk und Salzsäure (CL., G.; CL., D. R. P. 73145; Frdl. 3, 966). — Rötlichgelbe oder gelbgrüne Krystalle mit ½ H₂O (lufttrocken) (aus Wasser oder rauchender Salzsäure). Beginnt bei 280° sich zu zersetzen (CL., P.). Leicht löslich in Alkohol, ziemlich leicht in Wasser (CL., P.). — Liefert bei der Oxydation mit Permanganat oder mit verd. Salpetersäure im Rohr Pyridin-dicarbonsäure-(23) (CL., G.). Bei der Reduktion mit Zinn und heißer Salzsäure erhält man 8-Oxy-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(5), 1.2.3.4-Tetrahydro-chinolin-sulfonsäure-(5) und eine Verbindung C₁₈H₁₈O₇N₂S₂ (S. 407) (CL., G.). Beim Erhitzen mit konz. Salzsäure im Rohr oder beim Kochen mit Schwefelsäure erhält man 7-Brom-8-oxy-chinolin (CL., G.). — Über Salze vgl. CL., G., J. pr. [2] 54, 380.

7-Jod-8-oxy-chinolin-sulfonsäure-(5), Loretin C₆H₆O₄NIS, s. nebenstehende Formel. B. Aus dem Kaliumsalz der 8-Oxy-chinolin-sulfonsäure-(5)
durch Einw. von Kaliumjodid, Chlorkalk und Salzsäure (CLAUS, Ar. 231, 706;
CL., D. R. P. 72942; Frdl. 3, 964). — Gelbe Säulen oder Blättchen. Zersetzt sich
bei ca. 260°. Sehr schwer löslich in Wasser und Alkohol, fast unlöslich in Äther,
Benzol und Chloroform. Löslich in konz. Schwefelsäure. — Beim Kochen des Natriumsalzes
mit Wasser erhält man 8-Oxy-chinolin-sulfonsäure-(5) und [5-Sulfo-chinolyl-(8)]-[8(oder 7)-oxy5-sulfo-chinolyl-(7 oder 8)]-äther (8. 412) (CL., BAUMANN, J. pr. [2] 55, 470). Liefert bei der
Einw. von Salpetersäure (D: 1,52) 5.7-Dinitro-8-oxy-chinolin (CL.). Das Ammoniumsalz
bildet mit Ammoniumjodid ein in Wasser leicht lösliches Doppelsalz, das oberhalb 225°
unter Zersetzung sohmilzt (GRIESE, D. R. P. 190956; C. 1908 I, 498; Frdl. 8, 1201). —
Findet unter der Bezeichnung Yatren als Desinficiens Verwendung (Houben, Fortschritte
der Heilstoffchemie, 2. Abt., Bd. II [Berlin-Leipzig 1932], S. 628). — NaC₉H₅O₄NIS. Säulen
(CL., Ar. 231, 710, 712). — Na₂C₉H₄O₄NIS. Krystalle (CL., Ar. 231, 711, 712). — KC₉H₅O₄NIS.
Fleischfarbene Prismen (CL., Ar. 231, 710, 712). — K₂C₉H₄O₄NIS. Krystalle (CL., Ar. 231,
711, 712). — Neutrales Magnesiumsalz. Lachsfarbene Prismen (aus Wasser). Sehr leicht
löslich in Wasser (CL., B.). — MgC₉H₄O₄NIS+5H₂O. Hellgelbe Krystalle (CL., B.). —
Ca(C₉H₅O₄NIS)₂+aq. Rote Säulen und Prismen; das bei 130° entwässerte Salz ist hellgelb
und nimmt an der Luft das Krystallwasser wieder auf (CL., B.). — CaC₉H₄O₄NIS. Gelbliche
Nadeln. Zersetzt sich bei ca. 300° (CL., B.). Fast unlöslich in kaltem Wasser. — Sr(C₉H₅O₄NIS)₂
+ H₂O. Orangerote Prismen; das oberhalb 100° entwässerte Salz ist orangegelb und nimmt an
der Luft das Krystallwasser wieder auf (CL., B.). — BaC₉H₄O₄NIS)
+ aq. Grünlichgelbe Nadeln. Zersetzt sich oberhalb 300° (CL., B.). — BaC₉H₄O₄NIS)
+ aq. Grünlichgelbe

8-Oxy-chinolin-sulfonsäure-(7) C₉H₇O₄NS, s. nebenstehende Formel.

B. Durch Einw. von Schwefelsäure (D: 1,84) auf geschmolzenes 8-Oxy-chinolin (Fritzsche & Co., D. R. P. 187869; C. 1907 II, 1667; Frdl. 8, 1200). — Gelbes Krystallpulver. F: 310—313°. Sehr schwer löslich in Alkohol und kaltem Wasser, leichter in siedendem Wasser, unlöslich in Benzol. — NaC₉H₆O₄NS. Nadeln. — KC₉H₆O₄NS. Blättchen (aus Wasser). — AgC₉H₆O₄NS. Hellgelbes Pulver. Unlöslich. — Ba(C₉H₆O₄NS)₂. Gelbes Pulver. Schwer löslich. — Zn(C₉H₆O₄NS)₃. Gelbliches Pulver. Unlöslich in Alkohol und Wasser. — (HO)₂BiC₉H₆O₄NS. Gelbes Pulver. Unlöslich in Wasser und Alkohol.

8-Oxy-chinolin-disulfonsäure-(x.x) vom Zersetsungspunkt 200° $C_9H_7O_7NS_2=NC_9H_4(OH)(SO_2H)_2$. B. Durch Erhitzen von 8-Oxy-chinolin mit rauchender Schwefelsäure und wasserfreier Phosphorsäure im Rohr auf 200° (LIPPMANN, FLEISSNER, M. 10, 801). — Hygroskopische Krystalle. Zersetzt sich bei 200°. — $KC_9H_4O_7NS_2$. Krystalle (aus Wasser). Leicht löslich in heißem, sehwer in kaltem Wasser, unlöslich in Alkohol. — $K_3C_9H_4O_7NS_2$.

Krystallkörner. Spielend löslich in Wasser, sehr schwer löslich in Alkohol. — $Cu_3(C_0H_4O_7NS_2)_2 + 10H_2O$. Hellgrüne Krystalle. Schwer löslich in kaltem Wasser. — $BaC_9H_5O_7NS_2 + 3H_2O$. Gelbe Krystalle.

8-Oxy-chinolin-disulfonsäure-(x.x) vom Zersetzungspunkt 280° $C_9H_7O_7NS_2 = NC_9H_4(OH)(SO_9H)_2$. B. Aus 8-Oxy-chinolin durch Erwärmen mit rauchender Schwefelsäure auf 130° (Claus, Posselt, J. pr. [2] 41, 40). — Säulen mit 1 H₂O. Zersetzt sich bei ca. 280°. Leicht löslich in Wasser.

5. Sulfonsäuren von x-Oxy-chinolin C,H,ON.

"α-Oxychinolinsulfonsäure" $C_9H_7O_4NS = NC_9H_5(OH) \cdot SO_3H$. B. Durch Erhitzen des Kaliumsalzes der α-Chinolindisulfonsäure (S. 403) mit Natriumhydroxyd oder Kaliumhydroxyd und Wasser auf 150° (La Coste, Valeur, B. 19, 997; 20, 100; vgl. La C., D. R. P. 29920; Frdl. 1, 185). — Hellgelbe Flocken mit 1 H_2O (aus Wasser); schwer löslich in kaltem Wasser (La C., V., B. 19, 997). — Liefert bei der Oxydation mit Kaliumpermanganat in alkal. Lösung in sehr geringer Menge Pyridin-dicarbonsäure-(2.3)(?) (La C., V., B. 20, 103). — Salze: La C., V., B. 20, 101. — $KC_9H_6O_4NS + H_2O$. Rosa Krystalle. Sehr leicht löslich in Wasser, unlöslich in Alkohol. — $Cu(C_9H_6O_4NS)_2 + 4H_2O$. Grüne Nadeln. — $Ca(C_9H_6O_4NS)_2 + 6H_2O$. Graue Nadeln. — $Ca(C_9H_6O_4NS)_2 + 3H_2O$. Hellgraue Nadeln. Leicht löslich in Wasser. Verliert an der Luft allmählich das Krystallwasser. — $Ba(C_9H_6O_4NS)_2 + 3H_2O$. Rosa Nadeln. Schwer löslich in Wasser, unlöslich in Alkohol. — $BaC_9H_5O_4NS + 3H_2O$. Gelbe Nadeln. Schwer löslich in Wasser. Verändert sich rasch an der Luft.

" β -Oxychinolinsulfonsäure" $C_9H_7O_4NS=NC_9H_5(OH)\cdot SO_3H$. B. Aus dem Kaliumsalz der β -Chinolindisulfonsäure (S. 403) durch Erhitzen mit Kaliumhydroxyd auf 160° (La Coste, Valeur, B. 19, 998; 20, 3200; vgl. La C., D. R. P. 29920; Frdl. 1, 185). — Gelbe Blättchen mit 1 H_2O (La C., V., B. 19, 998). F: 270—275°; leicht löslich in heißem Wasser, sehwer in kaltem Wasser und Alkohol, sehr schwer in Chloroform und Schwefelkohlenstoff, unlöslich in Äther und Benzol (La C., V., B. 20, 3200).

2. Sulfonsäuren der Monooxy-Verbindungen $C_{10}H_9ON$.

- 1. Sulfonsdure des 4-Oxy-2-methyl-chinolins C₁₀H₉ON (Bd. XXI, S. 104).
- 4-Oxy-2-methyl-chinolin-sulfonsäure-(x), 4-Oxy-chinaldin-sulfonsäure-(x) $C_{10}H_{2}O_{4}NS = NC_{2}H_{4}(CH_{3})(OH)\cdot SO_{3}H$. B. Durch Erhitzen von 4-Oxy-chinaldin mit rauchender Schwefelsäure (10% SO₃-Gehalt) auf 110—115% (Conrad, Limpach, B. 21, 1977). Prismen mit 2H₂O (aus Wasser). F: 283% (wasserfrei). Löslich in siedendem Wasser zu ca. 1%, in Wasser von 18% zu 0,15%. Löslich in heißem Alkohol. $Ba(C_{10}H_{8}O_{4}NS)_{2}+4H_{2}O$. Prismen (aus Wasser). Das wasserfreie Salz löst sich zu ca. 0,5% in siedendem Wasser.
- 2. Sulfonsäuren des 8-Oxy-6-methyl-chinolins C₁₀H₉ON HO₃S (Bd. XXI, S. 111).

 8-Oxy-6-methyl-chinolin-sulfonsäure-(5) C₁₀H₉O₄NS, s. neben
- stehende Formel. B. Aus 8-Oxy-6-methyl-chinolin durch Einw. von rauchender Schwefelsäure (Höchster Farbw., D. R. P. 84063; Frdl. 4, 1146; Claus, Kaufmann, J. pr. [2] 55, 526). Hellgelbe Nadeln. F: 210°. Schwer löslich in Wasser.

7-Jod-8-oxy-6-methyl-chinolin-sulfonsäure-(5), Methylloretin

C₁₀H₈O₄NIS, s. nebenstehende Formel. B. Aus 8-Oxy-6-methyl-chinolin-cH₃

Sulfonsäure-(5) durch Einw. von Kaliumjodid, Chlorkalk und Salzsäure

(Höchster Farbw., D. R. P. 84063; Frdl. 4, 1146; CLAUS, KAUFMANN, J. pr. [2]

55, 526). — Gelbe Nadeln oder Blättchen mit 1 H₂O. Beginnt sich von

185° an zu zersetzen. Schwer löslich in Alkohol und kaltem Wasser, unlöslich in Äther und Benzol. — Liefert bei der Oxydation mit Permanganat Pyridin-dicarbonsäure-(2.3).

Bei der Einw. von Salpetersäure erhält man 5.7 - Dinitro - 8 - oxy - 6 - methyl-chinolin. — NH₄C₁₀H₇O₄NIS. Orangefarbene Krystalle. — NaC₁₀H₇O₄NIS. Orangegelbe Krystalle. Zersetzt sich bei 180°. — Na₂C₁₀H₂O₄NIS. Krystallpulver. Beginnt sich bei 270° zu zersetzen. Leicht löslich in Wasser. — KC₁₀H₇O₄NIS + ½ H₂O. Orangefarbene Nadeln. Das bei 130° entwässerte Salz zersetzt sich bei ca. 180°. — K₂C₁₀H₂O₄NIS + ½ H₂O. Krystallpulver. Das bei 130° entwässerte Salz beginnt sich bei 215° zu zersetzen. Sehr leicht löslich in Wasser. — Ca(C₁₀H₇O₄NIS)₂. Orangefarbene Krystalle. Beginnt sich bei 170° zu zersetzen. — CaC₁₀H₂O₄NIS. Krystallpulver. — Sr(C₁₀H₇O₄NIS)₂ + H₂O. Orangefarbenes Krystallpulver. — Sr(C₁₀H₂O₄NIS. Fast unlöslicher Niederschlag. Beginnt sich bei ca. 300° zu zersetzen. — Ba(C₁₀H₇O₄NIS)₂ + aq. Orangerote Krystalle. — BaC₁₀H₆O₄NIS. Krystalle.

3. Sulfonsäure des 2-0 x y - 3.4 - dimethyl - chinolins $\mathrm{C}_{11}\mathrm{H}_{11}\mathrm{ON}$ (Bd. XXI, 8. 116).

2-Oxy-3.4-dimethyl-chinolin-sulfonsäure-(x) $C_{11}H_{11}O_4NS = NC_9H_3(CH_9)_2(OH) \cdot SO_3H$. B. Durch Erhitzen von 2-Oxy-3.4-dimethyl-chinolin mit konz. Schwefelsäure auf 200° (Knore, A. 245, 359). — Löslich in Wasser. Schwer löslich in verd. Schwefelsäure. — $Ba(C_{11}H_{10}O_4NS)_3$. Krystalle.

d) Sulfonsäuren der Monooxy-Verbindungen C_nH_{2n-15}ON.

Schwefligsäure - mono - {3' - sulfo - [benzo - 1'.2':6.7 - in-doly1-(2)]-ester} ¹) C₁₂H₉O₆NS₂, s. nebenstehende Formel. Diese Formulierung wurde eine Zeitlang (vgl. Hinsberg, B. 41, 1368) für [Benzo-1'.2':6.7-indol]-disulfonsäure-(2.3') (S. 403) angenommen.

- e) Sulfonsäure der Monooxy-Verbindungen $C_n H_{2n-17} ON$.
- 1. Sulfonsäure des 6'-0xy-[benzo-1'.2':5.6-chinolins]¹) $C_{13}H_9ON$.
- 6'-Oxy-[benzo-1'.2':5.6-chinolin]-sulfonsäure-(4')¹), ,,Oxy-HO₃S·OH β-naphthochinolinsulfonsäure" C₁₃H₉O₄NS, s. nebenstehende Formel. B. Aus 7-Amino-naphthol-(1)-sulfonsäure-(3) (Bd. XIV, S. 828) durch Erhitzen mit Glycerin, Nitrobenzol und Schwefelsäure auf ca. 130° (Basler Chem. Fabr., D. R. P. 102157; C. 1899 I, 1261; Frdl. 5, 172).— Schwer löslich in Wasser und Säuren, leicht in Alkalien und Soda-Lösung.
- 2. Sulfonsäure des 6'-0xy-2-methyl-[benzo-1'.2':5.6-chinolins] $\mathrm{C_{14}H_{11}ON}.$
- 6' Oxy 2 methyl [benzo 1'.2':5.6 chinolin] sulfonsäure $(4')^1$), 6' Oxy [benzo 1'.2':5.6 chinaldin] sulfonsäure- $(4')^1$) $C_{14}H_{11}O_4NS$, s. nebenstehende Formel. B. Aus 7-Aminonaphthol-(1)-sulfonsäure-(3) (Bd. XIV, S. 828) durch Erwärmen mit Paraldehyd oder Acetaldehyd bezw. Aldol oder Paraldol in Wasser auf 60—70° (Froehlich, D. R. P. 93695; Frdl. 4, 618). NaC₁₄H₁₀O₄NS + 5H₂O. Blättchen. Ca($C_{14}H_{10}O_4NS)_2 + 6^1/2H_2O$. Blättchen.
- 3. Sulfonsäure eines x-0xy-[2.4-dimethyl-5.6-benzo-chinolins] $\mathrm{C_{15}H_{13}ON}.$

x-Oxy-[2.4-dimethyl-5.6-benzo-chinolin]-sulfonsäure-(x) 1), ,,0 xy-dimethyl- β -naphthochinolinsulfonsäure" $C_{15}H_{13}O_4NS = NC_{13}H_5(CH_3)_2(OH) \cdot SO_3H$. B. Aus [2.4-Dimethyl-5.6-benzo-chinolin]-disulfonsäure-(x,x) (S. 404) durch Verschmelzen mit Kaliumhydroxyd (Reed, J. pr. [2] 35, 309). — Gelbe Nadeln mit $^{1}/_{3}H_{2}O$. Zersetzt sich beim Erhitzen, ohne zu schmelzen.

f) Sulfonsäuren der Monooxy-Verbindungen $C_nH_{2n-19}ON$.

Sulfonsäuren der Monooxy-Verbindungen $C_{16}H_{13}ON$.

- 1. Sulfonsäure des 2-Methyl-4-[2-oxy-phenyl]-chinolins $C_{16}H_{13}ON$ (Bd. XXI, S. 142).
- 2-Methyl-4-[x-sulfo-2-äthoxy-phenyl]-chinolin, 4-[x-Sulfo-2-äthoxy-phenyl]-chinolin, 4-[x-Sulfo-2-äthoxy-phenyl]-chinolin C₁₈H₁₇O₄NS, s. nebenstehende Formel. B. Aus 2-Äthoxy-β-phenylimino-butyrophenon (Bd. XII, S. 223) durch Erwärmen mit Schwefelsäuremonohydrat auf 500 (Besthorn, Banzhaf, Jaeglé, B. 27, 3037; Höchster Farbw., D. R. P. 79173; Frdl. 4,

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

- 1142). Krystalle (aus Wasser). Schwer löslich in Wasser (Be., Ba., J.; H. F., D. R. P. 79173). Liefert beim Kochen mit konz. Bromwasserstoffsäure 2-Methyl-4-[2-oxy-phenyl]-chinolin (Be., Ba., J.; H. F., D. R. P. 80501; Frdl. 4, 1144). Das Natriumsalz gibt beim Erhitzen mit Benzaldehyd und Zinkchlorid im Rohr auf 200° 4-[x-Sulfo-2-äthoxy-phenyl]-2-styryl-chinolin (s. u.) (Be., Ba., J.; H. F., D. R. P. 79173).
- 2. Sulfonsäure des 2 Methyl 4 [3 oxy phenyl] chinolins $C_{16}H_{13}ON$ (Bd. XXI, S. 142).
- 2 Methyl 4 [x sulfo 3 methoxy phenyl] chinolin, 4-[x-Sulfo-3-methoxy-phenyl]-chinaldin $C_{17}H_{15}O_4NS$, s. nebenstehende Formel.

Schwerer lösliche Form. B. Aus 3-Methoxy-β-phenyliminobutyrophenon (Bd. XII, S. 223) durch Erwärmen mit konz. Schwefelsäure auf dem Wasserbad, neben der leichter löslichen Form (Besthorn, Banzhaf, Jaeglé, B. 27, 3042; Höchster Farbw., D. R. P. 79173; Frdl. 4, 1141). — Krystalle. — Liefert beim Kochen mit konz. Bromwasserstoffsäure das Hydrobromid des 2-Methyl-4-[3-oxy-phenyl]-chinolins (Be., Ba., J.; H. F., D.R.P. 80501; Frdl. 4, 1144).

Leichter lösliche Form. B. s. o. bei der schwerer löslichen Form. — Liefert beim Kochen mit konz. Bromwasserstoffsäure das Hydrobromid des 2-Methyl-4-[3-oxy-phenyl]-chinolins (H. F., D. R. P. 80501; Frdl. 4, 1144). Das Bariumsalz liefert beim Erhitzen mit Benzaldehyd in Gegenwart von Zinkchlorid im Rohr auf 160—180° 4-[x-Sulfo-3-methoxy-phenyl]-2-styryl-chinolin (S. 412) (Be., Ba., J.; H. F., D. R. P. 79173; Frdl. 4, 1141).

- 3. Sulfonsäure des 2-Methyl-4-[4-oxy-phenyl]-chinolins $C_{16}H_{13}ON$ (Bd. XXI, S. 142).
- 2 Methyl 4 [x sulfo 4 methoxy phenyl] chinolin,
 4-[x-Sulfo-4-methoxy-phenyl]-chinaldin C₁₇H₁₅O₄NS, s. nebenstehende Formel. B. Aus 4-Methoxy-β-phenylimino-butyrophenon (Bd. XII, S. 223) durch Erhitzen mit konz. Schwefelsäure auf dem Wasserbad (Besthorn, Jaeglé, B. 27, 911; Höchster Farbw., D. R. P. 79173; Frdl. 4, 1140). Nadeln. Schwer löslich in heißem Wasser, unlöslich in den meisten übrigen Lösungsmitteln (B., J.). Liefert beim Kochen mit konz. Bromwasserstoffsäure das Hydrobromid des 2-Methyl-4-[4-oxy-phenyl]-chinolins (B., J.; H. F., D. R. P. 80501; Frdl. 4, 1144). Beim Erhitzen des Bariumsalzes mit Benzaldehyd in Gegenwart von Zinkchlorid im Rohr auf 160—180° erhält man 4-[x-Sulfo-4-methoxy-phenyl]-2-styryl-chinolin (S. 412) (B., J.; H. F., D. R. P. 79173). Ba(C₁₇H₁₄O₄NS)₂ + 10 H₂O. Nadeln (B., J.).

g) Sulfonsäuren der Monooxy-Verbindungen $C_nH_{2n-25}ON$.

[9-(4-Oxy-phenyl)-acridin]-sulfonsäure-(x) $C_{19}H_{13}O_4NS = NC_{19}H_{11}(OH)\cdot SO_3H$. B. Aus 9-[4-Oxy-phenyl]-acridin (Bd. XXI, S. 157) durch Einw. von konz. Schwefelsäure bei Zimmertemperatur (Landauer, Bl. [3] 31, 1093). — Färbt in mineralsaurer Lösung Wolle, Seide, Leder und tannierte Baumwolle gelb. — $NaC_{19}H_{12}O_4NS$. Blättchen. Zersetzt sich beim Erhitzen. Löslich in Wasser, Methanol, Alkohol, Äther und Essigsäure.

h) Sulfonsäuren der Monooxy-Verbindungen $C_n H_{2n-29} ON$.

Sulfonsäuren der Monooxy-Verbindungen $\mathrm{C}_{23}\mathrm{H}_{17}\mathrm{ON}.$

- 1. Sulfonsäure des 4-[2-Oxy-phenyl]-2-styryl-chinolins C₂₃H₁₇ON.
- 4 [x Sulfo 2 äthoxy phenyl] 2 styryl chinolin

 C₂₅H₂₁O₄NS, s. nebenstehende Formel. B. Durch Erhitzen des

 Natriumsalzes des 2-Methyl-4-[x-sulfo-2-äthoxy-phenyl]-chinolins

 mit Benzaldehyd in Gegenwart von Zinkchlorid im Rohr auf 180°

 N CH: CH: CH: C₆H₅

 bis 200° (Besthorn, Banzhaf, Jaeclé, B. 27, 3039; Höchster Farbw., D. R. P. 79173;

 Frdl. 4, 1142). Gelbrote Flocken. Liefert bei der Oxydation mit Permanganat in soda
 alkalischer Lösung und nachfolgendem Kochen mit konz. Bromwasserstoffsäure 4-[2-Oxyphenyl]-chinolin-carbonsäure-(2). Natriumsalz. Blättchen. Ziemlich schwer löslich
 in kaltem Wasser.

2. Sulfonsäure des 4-[3-Oxy-phenyl]-2-styryl-chinolins C₁₂H₁₇ON.

4 - [x - Sulfo - 3 - methoxy - phenyl] - 2 - styryl - chinolin

C₂₄H₁₈O₄NS, s. nebenstehende Formel. B. Durch Erhitzen des
Bariumsalzes der leichter löslichen Form des 2-Methyl-4-[x-sulfo3-methoxy-phenyl]-chinolins mit Benzaldehyd in Gegenwart von

Zinkchlorid im Rohr auf 160—180° (Besthorn, Banzhaf, Jaeclé, B. 27, 3042; Höchster
Farbw., D. R. P. 79173; Frdl. 4, 1141). — Gelbe, schwer lösliche Flocken. Die wäßr. Lösungen
der Alkalisalze sind farblos. — Gibt durch Oxydation mit Permanganat in Soda-Lösung
und Kochen des Reaktionsprodukts mit konz. Bromwasserstoffsäure 4-[3-Oxy-phenyl]chinolin-carbonsäure-(2).

3. Sulfonsäure des 4-[4-Oxy-phenyl]-2-styryl-chinolins $C_{23}H_{17}ON$.

4 - [x - Sulfo - 4 - methoxy - phenyl] - 2 - styryl - chinolin

C₂₄H₁₉O₄NS, s. nebenstehende Formel. B. Durch Erhitzen des
Bariumsalzes des 2-Methyl-[x-sulfo-4-methoxy-phenyl]-chinolins mit

Benzaldehyd bei Gegenwart von Zinkchlorid im Rohr auf 160—1800

(Besthorn, Jaeclá, B. 27, 912; Höchster Farbw., D. R. P. 79173; Frdl. 4, 1140). — Gelbe, schwer lösliche Flocken. — Gibt durch Oxydation mit Permanganat in sodaalkalischer Lösung und Kochen des Reaktionsprodukts mit konz. Bromwasserstoffsäure 4-[4-Oxy-phenyl]-chinolin-carbonsäure-(2).

2. Sulfonsäuren der Dioxy-Verbindungen.

Sulfonsäuren der Dioxy-Verbindungen ${f C_9H_7O_2N}.$

- 1. Sulfonsäure des 2.4-Dioxy-chinolins C.H.O.N (Bd. XXI, S. 171).
- 2.4-Dioxy-chinolin-sulfonsäure-(x) C₉H₇O₅NS = NC₉H₄(OH)₂·SO₃H. B. Durch Erhitzen von 2-Amino-phenylpropiolsäure mit konz. Schwefelsäure auf 200—220° (BAEYER, BLOEM, B. 15, 2152). Ziemlich schwer löslich in kaltem, sehr leicht in heißem Wasser. Zersetzt sich nicht bis 280°.
 - 2. Sulfonsaure des 7.8-Dioxy-chinolins C.H.O.N.

[5-Sulfo-chinolyl-(8)]-[8 (oder 7)-oxy-5-sulfo-chinolyl-(7 oder 8)]-äther $C_{18}H_{12}O_8N_2S_2$, Formel I oder II. B. Aus dem Natriumsalz der 7-Jod- 8-oxy-chinolin-sulfonsäure-(5) durch Kochen mit Wasser, neben 8-Oxy-chinolin-sulfonsäure-(5) (Claus, Bau-

MANN, J. pr. [2] 55, 470, 475). — Das saure Natriumsalz gibt beim Kochen mit Wasser 8-Oxychinolin-sulfonsäure-(5). Bei der Einw. von Salpetersäure erhält man aus dem Natriumsalz 5.7-Dinitro-8-oxy-chinolin. — Saures Natriumsalz. Dunkelrote Säulen und Prismen. Zersetzt sich oberhalb 300°. — $Ba(C_{18}H_{11}O_8N_2S_3)_2 + 9H_2O$. Rote Nadeln. Sehr schwer löslich in kaltem Wasser. — $BaC_{18}H_{10}O_8N_2S_3 + aq$. Hellgelbe Blättchen. Kaum löslich in kaltem Wasser. — $Ba_3(C_{18}H_9O_8N_2S_3)_3 + aq$. Grünlichgelber, krystallinischer Niederschlag. Unlöslich in kaltem Wasser.

3. Sulfonsäuren der Trioxy-Verbindungen.

2 - [4 - Chlor - 5 - sulfo - 2.3.6 - trioxy - phenyl] - pyridin, 6 - Chlor-3- α -pyridyl-oxyhydrochinon-sulfonsäure-(5) $C_{11}H_8O_6NClS$, s. nebenstehende Formel. Diese Konstitution kommt vielleicht der Bd. XX, S. 212 aufgeführten Verbindung $C_{11}H_8O_6NClS$ zu.

4. Sulfonsäuren der Tetraoxy-Verbindungen.

Corydalinsulfonsäure $C_{22}H_{27}O_7NS = NC_{17}H_{11}(CH_3)(O \cdot CH_3)_4 \cdot SO_3H$. B. Aus d-Corydalin (Bd. XXI, S. 217) durch Einw. von konz. Schwefelsäure (Gadamer, Ar. 240, 35). — Schuppen (aus Alkohol). Schmilzt oberhalb 260°. Schwer löslich in Wasser. Ist in alkoh. Lösung rechtsdrehend.

E. Oxo-sulfonsäuren.

1. Sulfonsäuren der Monooxo-Verbindungen.

a) Sulfonsäuren der Monooxo-Verbindungen $C_n H_{2n-9} ON$.

2-Oxo-1.2.3.4-tetrahydro-chinolin-sulfonsäure-(6), Hydro-carbostyril-sulfonsäure-(6) C₉H₉O₄NS, s. nebenstehende Formel.

B. Beim Erwärmen von Hydrocarbostyril mit konz. Schwefelsäure auf dem Wasserbad (E. FISCHER, KUZEL, B. 16, 1453). — Ba(C₉H₈O₄NS)₂ (bei 125—130°). Krystalle (aus Wasser durch Alkohol und Äther). Leicht löslich in Wasser, fast unlöslich in Alkohol und Äther.

b) Sulfonsäuren der Monooxo-Verbindungen $C_n H_{2n-17}ON$.

1. Sulfonsäure des 3'-0xo-[indeno-2'.1': 2.3-pyridins] 1) $\mathrm{C_{12}H_7ON}$ (Bd. XXI, S. 335).

3' - Oxo - [indeno - 2'.1' : 2.3 - pyridin] - sulfonsäure - (7') \(^1\)), $^{\text{HO}_3\text{S}}$. $^{\text{Phenylenpyridinketonsulfonsäure}}$ $^{\text{C}_{12}\text{H}_7\text{O}_4\text{NS}}$, s. nebenstehende Formel. B. Bei der Oxydation von [Benzo-1'.2':5.6-chinolin]-sulfonsäure-(6') (S. 400) mit Kaliumpermanganat in stark alkal. Lösung (Immerheißer, B. 22, 408). — Gelbe Blättchen mit $^{\text{HE}_3\text{SE}}$, $^{\text{C}_3\text{SE}}$ Gelbe Nadeln. Ziemlich schwer löslich in kaltem Wasser, verkohlt beim Erhitzen auf dem Platinblech. Schwer löslich in kaltem Wasser, sehr schwer in Alkohol und Äther. — $^{\text{KC}_{12}\text{H}_6\text{O}_4\text{NS}} + ^{\text{H}_2\text{O}}$. Gelbe Nadeln. Ziemlich schwer löslich in kaltem Wasser. — $^{\text{AgC}_{12}\text{H}_6\text{O}_4\text{NS}} + ^{\text{H}_2\text{O}}$. Gelbe, haarförmige Krystalle. Lichtbeständig. Schwer löslich in Wasser. — $^{\text{H}_2\text{O}_4\text{NS}} + ^{\text{H}_2\text{O}}$. Gelbe Nadeln, die das Krystallwasser erst bei 200° vollständig verlieren. Leicht löslich in heißem Wasser. — $^{\text{Pb}(\text{C}_{12}\text{H}_6\text{O}_4\text{NS})_2} + ^{\text{H}_2\text{O}}$. Gelbe Nadeln (aus Wasser).

Oxim $C_{12}H_8O_4N_2S=NC_{12}H_6(:N\cdot OH)\cdot SO_3H$. B. Beim Erwärmen einer wäßr. Lösung des Kaliumsalzes der 3'-Oxo-[indeno-2'.1':2.3-pyridin]-sulfonsäure-(7') mit der berechneten Menge salzsaurem Hydroxylamin (I., B. 22, 411). — Gelbe Krystalle (aus Wasser). Zersetzt sich bei 290°. Schwer löslich in kaltem Wasser.

Phenylhydrazon $C_{18}H_{13}O_3N_3S=NC_{12}H_6(:N\cdot NH\cdot C_6H_5)\cdot SO_3H$. B. Bei der Einw. von salzsaurem Phenylhydrazin auf 3'-Oxo-[indeno-2'.1':2.3-pyridin]-sulfonsäure-(7') in heißer wäßriger Lösung (I., B. 22, 410). — Rote Nadeln (aus Essigsäure). Zersetzt sich gegen 295°. Löslich in siedender Essigsäure, schwerer löslich in Eisessig, sonst in fast allen Lösungsmitteln unlöslich.

2. Sulfonsäure des Acridons $C_{13}H_9\mathrm{ON}$ (Bd. XXI, 8. 335).

Acridon - sulfonsäure - (2) $C_{13}H_9O_4NS$, s. nebenstehende Formel. B. Bei der Einw. von konz. Schwefelsäure auf Diphenylamin-carbonsäure-(2)-sulfonsäure-(4) (Schöpff, B. 25, 1980). — Die Lösungen in Wasser und in konz. Schwefelsäure sind gelb und fluorescieren intensiv blau. — $Ba(C_{13}H_8O_4NS)_2 + 1^1/2H_2O$. Verliert das Krystallwasser bei 220°.

c) Sulfonsäuren der Monooxo-Verbindungen $C_n H_{2n-23}ON$.

Sulfonsäure des 2 - Äthyl - 4.5 (CO) - benzoylen - chinolins (?) C₁₈H₁₃O₄NS, s. nebenstehende Formel. B. Beim Kochen des Natriumsalzes der 1-Amino-anthrachinon-sulfonsäure-(5) mit Natronlauge und Methyläthylketon (BAYER & Co., D. R. P. 185548; C. 1907 II, 863; Frdl. 9, 731). — Krystalle. Die Lösung in Pyridin ist orange. Löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

d) Sulfonsäuren der Monooxo-Verbindungen $C_n H_{2n-29} ON$.

[Benzanthrono - 3'.4':2.3 - pyridin] - sulfonsäure - (2')¹) (,,\$\beta\$-Benz-anthronchinolinsulfonsäure") \$C_{20}H_{11}O_4NS\$, s. nebenstehende Formel.

B. Beim Erhitzen von 3-Amino-anthrachinon-sulfonsäure-(2) (Bd. XIV, S. 866) mit Glycerin und konz. Schwefelsäure auf 155° (BASF, D. R. P. 171939;

C. 1906 II, 573; Frdl. 8, 370). — Olivgelbes Pulver. Sehr schwer löslich in kaltem, etwas leichter in heißem Wasser mit gelber Farbe. Die Lösung in konz. Schwefelsäure ist rotbraun mit stark grüner Fluorescenz. — Kondensiert sich beim Erhitzen mit Kaliumhydroxyd auf 230—235° zum Farbstoff Indanthrendunkelblau BT C40H18O2N2 (Syst. No. 3611) (BASF, D. R. P. 172609; C. 1906 II, 646; Frdl. 8, 371; Schultz, Tab. 7. Aufl. No. 1271).

2. Sulfonsäuren der Dioxo-Verbindungen.

a) Sulfonsäuren der Dioxo-Verbindungen $C_n H_{2n-11} O_2 N$.

Sulfonsäuren der Dioxo-Verbindungen $C_8H_5O_2N$.

1. Sulfonsäure des Isatins C₈H₅O₂N (Bd. XXI, S. 432).

Isatin - sulfonsäure - (5) C₈H₅O₅NS, s. nebenstehende Formel. HO₃S — (CO Zur Konstitution vgl. Vorländer, Schubart, B. 34, 1860. — B. Beim Kochen von Indigo-disulfonsäure-(5.5') (Syst. No. 3707) mit Chromschwefelsäure (G. Schlieper, A. Schlieper, A. 120, 1). Beim Erwärmen von Isatin in rauchender Schwefelsäure auf 65—70° (Geigy & Co., D. R. P. 122233; C. 1901 II, 251; Frdl. 6, 846; vgl. Martinet, Dornier, C. r. 172 [1921], 330). Durch Behandlung der Salze der 5-Sulfo-isatinsäure mit Mineralsäuren (Sch., Sch.; vgl. M., D.). — Gelbe Krystalle mit 2H₂O; löslich in Wasser, schwerer löslich in Alkohol, unlöslich in äther und Benzol; unverändert löslich in kalter sowie heißer Schwefelsäure (Sch., Sch.). Bildet sehr beständige Salze; die Alkalisalze bleiben beim Kochen mit Salzsäure oder Salpetersäure unverändert (Sch., Sch.). — Wird von kochender Salpetersäure nicht angegriffen; Jodwasserstoffsäure bewirkt keine Reduktion; wird durch Zink und Salzsäure oder Schwefelsäure entfärbt (Sch., Sch.). Beim Kochen mit Schwefelammonium in wäßr. Lösung erhält man die Verbindungen C₁₆H₁₄O₆N₂S₂ (s. u.) und C₁₆H₁₆O₁₀N₂S₂ (S. 415) (Sch., Sch.). Bei der Einw. von Königswasser oder von Salzsäure und Kaliumchlorat entsteht Chloranil (Sch., Sch.). Beim Erwärmen mit überschüssigen Alkalihydroxyden oder -carbonaten erhält man 5-Sulfo-isatinsäure (Bd. XIV, S. 882) (Sch., Sch.; vgl. M., D.). Gibt mit aromatischen Hydrazinen gelbe Wollfarbstoffe (G. & Co.; vgl. M., D.; M., Revue genérale des matières colorantes 25 [1921], 178). — Färbt Seide und Wolle orange (Sch., Sch.). — Salze: Sch., Sch. — NH₄C₆H₄O₅NS + H₂O. Intensiv gelbe Nadeln. Leicht löslich in Wasser. — NaC₈H₄O₅NS + 2H₂O. Intensiv rote Tafeln. — KC₈H₄O₅NS + H₂O. Goldgelbe Nadeln. Schwer löslich in Alkohol, Schwer löslich in kaltem Wasser. — Ba(C₈H₄O₅NS)₂ + 4 H₂O. Scharlachrote Blättchen und Schuppen. Unlöslich in Alkohol, schwer löslich in kaltem Wasser.

Verbindung $C_{16}H_{14}O_{8}N_{8}S_{2}$ ("Hydrindindisulfonsäure"). B. Beim Kochen von Isatin-sulfonsäure-(5) mit Schwefelammonium; man filtriert vom Schwefel ab, dampft die Lösung zum Sirup ein, gibt Bariumchlorid-Lösung zu und zersetzt das isolierte Bariumsalz mit Schwefelsäure (Sch., Sch., A. 120, 20). Beim Kochen der Verbindung $C_{16}H_{12}O_{9}N_{2}S_{2}$ (s. u.) mit Schwefelammonium (Sch., Sch., A. 120, 30). — Krystalle, die sich an der Luft etwas rötlich färben. Sehr leicht löslich in Wasser, schwerer in Alkohol, unlöslich in Äther. Oxydiert sich schon an der Luft zu der Verbindung $C_{16}H_{12}O_{9}N_{2}S_{2}$ (s. u.). — Ba $C_{16}H_{12}O_{8}N_{2}S_{3}+4H_{2}O$. Schuppen. Löslich in Wasser, fast unlöslich in Bariumchlorid-Lösung.

Verbindung C₁₆H₁₂O₂N₂S₂ ("Indindisulfonsäure"²)). B. Durch Oxydation von "Hydrindindisulfonsäure" (s. o.) in saurer, neutraler oder alkalischer Lösung (G. Schlieper,

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

⁹) Nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] beschreiben Wahl, Hansen, C. r. 176, 1072; Hansen, A. ch. [10] 1, 103 eine Indindisulfonsäure, deren Salze mit den entsprechenden Salzen der Isoindigotindisulfonsäure von Wahl, Bagard, C. r. 156, 1383; Bl. [4] 15, 330, nicht aber mit denen der oben erwähnten Säure identifiziert werden konnten.

A. SCHLIEPER, A. 120, 23). — Rote Flocken (aus Alkohol + Äther). Löslich in Wasser, schwer löslich in Alkohol. Löst sich in überschüssiger Alkalilauge mit violettroter Farbe, die beim Erwärmen fast völlig verschwindet; die alkal. Lösung wird beim Versetzen mit Salzsäure sofort gelb und nimmt beim Kochen wieder die rote Farbe der Indindisulfonsäure-Lösungen an. Wird in heißer wäßriger oder wäßrig-ammoniakalischer Lösung durch Schwefelwasserstoff oder Schwefelammonium zu "Hydrindindisulfonsäure" (S. 414) reduziert. Die wäßr. Lösung färbt Wolle und Seide scharlachrot. — $K_2C_{16}H_{10}O_9N_2S_2 + 5H_2O$. Dunkelrote, metallglänzende Nadeln. Löst sich in 8—10 Tln. Wasser mit blutroter Farbe, unlöslich in Kalilauge. — $Ag_2C_{16}H_{10}O_9N_2S_2$ (bei 100°). Braunrote Nadeln. — $BaC_{16}H_{10}O_9N_2S_2 + 2H_2O$. Rotbraune Nadeln oder rote Krystalle. Löslich in Wasser, unlöslich in Alkohol. Schwer löslich in Salzsäure, Salpetersäure und Essigsäure.

Verbindung $C_{16}H_{18}O_{10}N_2S_2$ ("Leukindindisulfonsäure"). B. Beim Kochen von Isatin-sulfonsäure-(5) mit Schwefelammonium; man filtriert vom Schwefel ab, kocht mit Bariumhydroxyd und zersetzt das isolierte Bariumsalz mit Schwefelsäure (Sch., Sch., A. 120, 33). — Farblose, krystallinische Masse. Sehr leicht löslich in Wasser, schwer in Alkohol. Löslich in Alkalien. — Bleibt beim Erwärmen mit Kalilauge unverändert. Beim Eindampfen einer Lösung des Bariumsalzes in Salzsäure oder Salpetersäure erhält man indindisulfonsaures Barium (s. o.). — $BaC_{16}H_{16}O_{10}N_2S_2 + 5(?)H_2O$. Farblose Krystalle.

2. Sulfonsäure des Phthalimids C₈H₅O₄N (Bd. XXI, S. 458).

[4-Sulfo-phthalsäure]-1.2-imid C₈H₅O₅NS, s. nebenstehende HO₃S. CO Formel. B. Das Ammoniumsalz entsteht beim Erhitzen des Diammoniumsalzes der 4-Sulfo-phthalsäure (Bd. XI, S. 406) auf 190° (RÉE, A. 233, 226; Soc. 49, 518). — NH₄C₈H₄O₅NS (bei 100°). Prismen (aus verd. Alkohol). Monoklin (SORET). Schmilzt bei ca. 300° unter Bildung von Phthalimid. Leicht löslich in Wasser, schwer in Alkohol. Zersetzt sich beim Kochen mit Wasser. Liefert beim Erwärmen mit Bleiacetat auf dem Wasserbad das Bleisalz der 4-Sulfo-phthalsäure.

b) Sulfonsäuren der Dioxo-Verbindungen $C_n H_{2n-23} O_2 N$.

1'-Methyl-anthrapyridon-sulfon-säure-(4) $C_{17}H_{11}O_5$ NS, Formel I. B. Man führt die nicht näher beschriebene 4-Methylamino-anthrachinon-sulfonsäure-(1) I. durch Kochen mit Essigsäureanhydrid in 4-[Methyl-acetyl-amino]-anthrachinon-sulfonsäure-(1) über und kocht diese

mit Natronlauge (BAYER & Co., D. R. P. 199713; C. 1908 II, 363; Frdl. 9, 734). — Löst sich in Wasser und in konz. Schwefelsäure mit gelber Farbe. Färbt Wolle gelb.

1'- Methyl - anthrapyridon - sulfonsäure - (5) $C_{17}H_{11}O_5NS$, Formel Π . B. Beim Kochen von 5-[Methyl-acetyl-amino]-anthrachinon-sulfonsäure-(1) (Bd. XIV, S. 864) mit Natronlauge (BAYER & Co., D. R. P. 199713; C. 1908 II, 363; Frdl. 9, 734). — Gelbe Flocken. Löst sich in Wasser und in konz. Schwefelsäure mit gelber Farbe. Färbt ungebeizte Wolle gelb.

c) Sulfonsäuren der Dioxo-Verbindungen $C_nH_{2n-25}O_2N$.

o.p-Dimethyl-chinophthalon-sulfonsäure $C_{20}H_{15}O_5NS=C_{20}H_{14}O_2N\cdot SO_3H$. B. Beim Erhitzen von o.p-Dimethyl-chinophthalon (Bd. XXI, S. 548) mit rauchender Schwefelsäure auf 130—140° (Panajorow, B. 28, 1512). — Braungelb. Amorph. Löslich in Wasser und Alkohol mit gelber Farbe, unlöslich in Äther. Färbt Seide und Wolle goldgelb.

F. Oxy-oxo-sulfonsäuren.

1. Sulfonsäuren der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.

3'.4' - Dioxy - [anthrachinono - 2'.1': 2.3pyridin]-sulfonsäure-(6')1), " β -Alizarin-blau-sulfonsäure" $C_{17}H_{\bullet}O_{7}NS$, Formel I. B. Beim Erhitzen von 3-Amino-alizarin-sulfon-Beim Erhitzen von säure-(7) mit Glycerin und Schwefelsäure (D: 1,84) I. unter Zusatz von 3-Nitro-alizarin-sulfonsäure-(7) auf 120-130°; zur Reinigung stellt man die Disulfitverbindung dar und zersetzt diese mit Mineralsäure (BAYER & Co., D. R. P. 50708; Frdl. 2, 121). — Violettbraune Krystalle.

8'.4'-Dioxy-[anthrachinono-2'.1':2.3-pyridin]-sulfonsäure- $(7')^1$), ,, α -Alizarin-blau-sulfonsäure" $C_{17}H_9O_7NS$, Formel II. B. Beim Erhitzen von 3-Amino-alizarin-sulfonsäure-(6) mit Glycerin und Schwefelsäure (D: 1,84) in Gegenwart von 3-Nitro-alizarinsulfonsäure-(6) (oder anderen Nitro-Verbindungen wie z. B. Nitrobenzol, Nitrotoluol, Nitro-xylol, Nitrophenol usw.) auf 120—130° (BAYER & Co., D. R. P. 50164; Frdl. 2, 119). — Blauroter Niederschlag. Schwer löslich in Wasser. Löst sich in Alkalien mit gelbgrüner Farbe. Läßt sich durch Behandlung mit Disulfit in eine leicht lösliche Additionsverbindung überführen. Verwendung als Farbstoff: B. & Co. — Neutrales Natriumsalz. Tiefblauer Niederschlag.

3'.4'-Dioxy-[anthrachinono-2'.1': 2.3-pyridin]-sulfonsäure-(5' oder 8') (?) $C_{17}H_9O_7NS$, Formel III oder IV. B. Beim Erhitzen von Alizarinblau (Bd. XXI, S. 632) III. mit 5 Gewichtsteilen rauchender Schwefelsaure (23% SO₃) auf 120—130°; zur Reinigung stellt man die Disulfit-Verbindung dar und zersetzt diese mit Mineralsäure (BASF,

D. R. P. 46654; Frdl. 2, 113). — Purpurrote Krystalle. Löst sich in viel siedendem Wasser mit blaugrüner Farbe, fast unlöslich in kaltem Wasser. Löslich in Salzsäure mit roter Farbe. - Liefert mit Zinkstaub in alkal. Lösung eine rote Küpe, die an der Luft die ursprüngliche Farbe der Säure annimmt. Gibt mit Natriumdisulfit eine in Wasser leicht lösliche, krystallinische Verbindung. - Läßt sich wie Alizarinblau zum Drucken und Färben verwenden. - Die Alkalisalze sind sehr leicht löslich in Wasser mit blauer Farbe.

2. Sulfonsäuren der Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.

3'.4'.5' (oder 3'.4'.8')-Trioxy-[anthrachinono-2'.1':2.3-pyridin]-sulfonsäure- $(8' \text{oder } 5')^1$), Alisarinblaugrün $C_{17}H_0O_8NS$, Formel V oder VI. Zur Konstitution vgl. GRAEBE, B. 28, 3739; R. SCHMIDT, GATTER-MANN, J. pr. [2] 44, 106; Gr., Philips, A.

276, 32.— B. Bei mehrstündigem Behandeln

von 1 Tl. Alizarinblau mit 10 Tln. rauchender Schwefelsäure (70% SO₂) und Erwärmen des

Gemisches mit der doppelten Menge konz. Schwefelsäure (D: 1,84); zur Reinigung stellt man die Disulfit-Verbindung dar und zersetzt diese mit Salzsäure oder Schwefelsäure (BASF, D. R. P. 48654; Frdl. 2, 114; R. SCHMIDT, GATTERMANN, J. pr. [2] 44, 105). — Nadelförmige Krystalle. Löst sich in siedendem Wasser mit schwärzlich-violetter Farbe, die bei starkem Verdünnen in Blaugrün umschlägt; löslich in Alkalicarbonaten mit blauer, in Alkalilaugen mit grüner, in konz. Schwefelsäure mit roter Farbe (BASF). — Gibt beim Erhitzen mit konz. Salzsäure auf 160—170° oder mit 10 Tln. 78°/eiger Schwefelsäure auf 140—145° Oxyalizarin-

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

blau (Bd. XXI, S. 637), bei längerem Erhitzen mit konz. Schwefelsäure auf 200—210° Alizarinindigblau (Bd. XXI, S. 638) (Schm., Ga.; Gr., Ph.; BASF, D. R. P. 47252; Frdl. 2, 117). Beim Erhitzen mit 10 Tln. Schwefelsäuremonohydrat auf 120—130° erhält man den im Handel unter dem Namen Alizaringrün X, WX oder Alizaringrün S, SW (als Disulfitverbindung) vorkommenden Farbstoff [Gemisch aus 3'.4'.5'(oder 3'.4'.8')-Trioxy-[anthrachinono-2'.1':2.3pyridin]-sulfonsäure-(x) (s. u.) und wechselnden Mengen von Oxyalizarinblau, Dioxyalizarinblau (Bd. XXI, S. 637) und deren Sulfonsäuren] (BASF, D. R. P. 46654; Schultz, Tab. 7. Aufl. No. 1184; Schm., Ga.; Gr., Ph., A. 276, 32; B. 24, 2298), der durch Erhitzen mit rauchender Schwefelsäure (8—10%) SO3) auf 130—135% oder durch Behandeln mit wäßr. Ammoniak in weitere Farbstoffe übergeführt werden kann (BASF, D. R. P. 47252; BAYER & Co., D. R. P. 72204; Frdl. 3, 240). Verwendung als Farbstoff: BASF, D. R. P. 46654. — KC₁₇H₈O₈NS (bei 100°). Blaue Nadeln (Gr., Ph., A. 276, 32).

8'.4'.5' (oder 8'.4'.8')-Trioxy-[anthrachinono-2'.1':2.8-pyridin]-sulfonsäure-(x) 1) $C_{17}H_5O_8NS = (HO)_3C_{17}H_5O_2N\cdot SO_3H$. Zur Konstitution vgl. R. Schmidt, Gattermann, J. pr. [2] 44, 107; Graebe, Philips, A. 276, 32. — B. s. im vorangehenden Artikel. Zur Reinigung stellt man die Ammoniumdisulfit-Verbindung dar und zersetzt diese mit Salzsäure (SCHM., GA.). — Grauviolette Nadeln. — Liefert beim Erhitzen Oxyalizarinblau (Bd. XXI, S. 637), bei der Oxydation mit Salpetersäure (D: 1,35) Pyridin-dicarbonsäure (2.3) (Graebe, **Риплея**, *B.* **24**, 2298).

G. Sulfonsäuren der Carbonsäuren.

1. Sulfonsäuren der Monocarbonsäuren.

a) Sulfonsäuren der Monocarbonsäuren $C_n H_{2n-7} O_2 N$.

Anhydrid des 2.6 - Dimethyl - pyridin - carbonsäure - (8) - sulfonsäure-(4)-hydroxymethylats, 2.6-Dimethyl-pyridin-carbonsäure-(8)sulfonsaure - (4) - methylbetain C₀H₁₁O₅NS, s. nebenstehende Formel. B. Beim Einleiten von Chlor in die wäßr. Lösung von 1.2.6-Trimethylthiopyridon (4)-carbonsäure (3) (MICHAELIS, A. 366, 347). — Krystalle (aus Alkohol). Zersetzt sich oberhalb 200°. Leicht löslich in Wasser, schwerer in Alkohol. — Hg(C₂H₁₀O₅NS)₂. Krystallpulver (aus Wasser).

Anhydrid des 2.6 - Dimethyl - pyridin - [carbonsäure - (3) - äthylester] - sulfonsäure-(4)-hydroxymethylats, 2.6-Dimethyl-pyridin-[carbonsäure-(3)-äthylester]-

sulfonsäure-(4)-methylbetain $C_{11}H_{15}O_5NS = CH_3 \cdot NC_5H(CH_3)_3(CO_3 \cdot C_2H_5) \cdot SO_2 \cdot O$. B. Bei der Oxydation von 1.2.6 - Trimethyl-thiopyridon - (4)-carbonsaure-(3)-äthylester mit Chlor in wäßr. Lösung oder mit Wasserstoffperoxyd (MICHAELIS, A. 366, 345). Durch Umsetzung von 4-Chlor-2.6-dimethyl-pyridin-[carbonsaure-(3)-athylester]-jodmethylat mit Natriumdisulfit in wäßr. Lösung (M.). — Farblose Nadeln (aus Alkohol). Leicht löslich in Wasser, schwer in kaltem Alkohol. Wird beim Erhitzen erst rot, dann schwarz, ohne zu schmelzen.

b) Sulfonsäuren der Monocarbonsäuren $C_nH_{2n-13}O_2N$.

Sulfonsäuren der Monocarbonsäuren ${ m C_{10}H_{7}O_{2}N}$.

1. Sulfonsäuren der Chinolin-carbonsäure-(4) C₁₀H₇O₂N (S. 74). CO₂H Chinolin - carbonsäure - (4) - sulfonsäure - (6), Cinchoninsäure-sulfonsäure-(6), 6-Sulfo-cinchoninsäure $C_{10}H_7O_5NS$, s. nebenstehende HO_5S . Formel. B. Beim Erhitzen von 8-Sulfo-cinchoninsäure (S. 418) mit hochprozentiger rauchender Schwefelsäure im Rohr auf 260—270° sowie beim NErhitzen von Cinchoninsäure mit konz. Schwefelsäure und Phosphorsäureanhydrid auf 250° bis 260° (Weidel, M. 2, 565) oder nur mit konz. Schwefelsäure auf 290—300° (v. Georgievics, M. 8, 644). Bei der Oxydation von 4-Styryl-chinolin-sulfonsäure-(6) mit Kaliumpermanganat in neutraler Lösung (Busch, Koenigs, B. 23, 2683). — Nadeln mit 2H₂O (W.; v. G.) oder mit 1 H₂O (aus Wasser) (B., K.). Zersetzt sich erst bei hoher Temperatur und verbrennt, ohne zu schmelzen (W.). Leicht löslich in heißem Wasser und heißem Alkohol (W.), sehr schwer lös-

lich in Alkohol (B., K.). — Liefert bei vorsichtigem Verschmelzen mit Kaliumhydroxyd

6-Oxy-cinchoninsaure (S. 233) (W.; G.). — Schmeckt intensiv bitter (W.). — $NH_4C_{10}H_6O_5NS + 2H_2O$. Nadeln. Äußerst leicht löslich in Wasser (W.). — $BaC_{10}H_5O_5NS + 1H_2O$. Prismen, 1) Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1--3.

die erst bei 250° das Krystallwasser vollständig verlieren (W.). Kaum löslich in Wasser (W.). — $PbC_{10}H_5O_5NS+4H_2O$. Blättchen. Kaum löslich in Wasser (W.).

Chinolin-carbonsäure-(4)-sulfonsäure-(8), Cinchoninsäure-sulfonsäure-(8), 8-Sulfo-cinchoninsäure C₁₀H₇O₅NS, s. nebenstehende Formel.

B. Beim Erhitzen von Cinchoninsäure mit konz. Schwefeltrioxyd im Rohr säureanhydrid im Rohr auf 170—180° oder mit Schwefeltrioxyd im Rohr über 100° (Weidell, Cobenzl, M. 1, 845, 846). — Krystalle mit 1 H₂O (aus Ho₂8 Wasser). Triklin (asymmetrisch?) (Březina, M. 1, 847; vgl. Groth, Ch. Kr. 5, 768). Verbrennt bei sehr starkem Erhitzen unter Verkohlung, ohne vorher zu schmelzen (W., C.). Sehr schwer löslich in Wasser, unlöslich in Alkohol, Äther, Chloroform und Benzol (W., C.). Zersetzt Carbonate (W., C.). — Liefert beim Erhitzen mit konzentrierter alkoholischer Kalilauge oder bei vorsichtigem Verschmelzen mit Kaliumhydroxyd 8-Oxy-cinchoninsäure (S. 235) (W., C.). Beim Erhitzen mit hochprozentiger rauchender Schwefelsäure auf 260—270° erhält man 6-Sulfo-cinchoninsäure (S. 417) (W., M. 2, 565, 568). — Schmeckt intensiv bitter (W., C.). — (NH₄)₂C₁₀H₅O₅NS+2H₂O. Tafeln (aus Wasser). Monoklin prismatisch (B.). Sehr leicht löslich in Wasser, schwer in Alkohol (W., C.). — K₂C₁₀H₅O₅NS. Nadeln. Sehr schwer löslich in Wasser (W., C.). — CuC₁₀H₅O₅NS+1H₂O. Grüne Krystalle. Verliert das Krystallwasser bei 150—160°; kaum löslich in Wasser (W., C.). — CaC₁₀H₅O₅NS+3H₂O. Nadeln. Verliert das Krystallwasser vollständig erst bei 260—280° (W., C.). Sehr schwer löslich in Wasser (W., C.). — PbC₁₀H₅O₅NS+1H₂O. Nadeln. Verliert das Krystallwasser vollständig erst bei 260—280° (W., C.). Sehr schwer löslich in Wasser (W., C.). — PbC₁₀H₅O₅NS+1H₂O. Nadeln. Verliert das Krystallwasser vollständig erst bei 260—280° (W., C.). Sehr schwer löslich in Wasser (W., C.). — PbC₁₀H₅O₅NS+1H₂O. Nadeln. Verliert das Krystallwasser vollständig erst bei 260—280° (W., C.). Sehr schwer löslich in Wasser (W., C.). — PbC₁₀H₅O₅NS+1H₂O. Nadeln. Verliert das Krystallwasser vollständig erst bei 260—280° (W., C.).

2. Sulfonsäuren der Chinolin-carbonsäure-(6) C₁₀H₇O₂N (8. 79).

Chinolin - carbonsäure - (6) - sulfonsäure - (7) C₁₀H₇O₈NS, s. nebenstehende Formel. B. Bei der Oxydation von 6-Methyl-chinolin-sulfonsäure-(7) mit siedender Chromschwefelsäure; man reinigt über das Bariumsalz (Edinger, Bühler, B. 42, 4317). — Krystalle (aus verd. schwefelsaurer Lösung). — Liefert beim Erhitzen mit Ätzalkalien auf 275° 7.x-Dioxy-chinolin (Bd. XXI, S. 174). Gibt beim Erhitzen mit Resorein ein Produkt, das sich in Ammoniak mit blaugrüner Fluorescenz löst. — SrC₁₀H₈O₈NS + 4H₈O. Krystalle. — BaC₁₀H₅O₅NS + 3H₂O. Nadeln. Löslich in heißem Wasser.

Chinolin-carbonsaure-(8)-sulfonsaure-(8) C₁₀H₇O₅NS, s. neben-stehende Formel. B. Aus 6-Methyl-chinolin-sulfonsaure-(8) analog der vorangehenden Verbindung (E., B., B. 42, 4318). — Nadeln (aus Wasser).

HO₂C N

3. Sulfonsäuren der Chinolin-carbonsäure-(8) C₁₀H₇O₂N (S. 81).

Chinolin-carbonsäure-(8)-sulfonsäure-(5) C₁₀H₇O₅NS, s. nebenstehende Formel. B. Bei der Oxydation von 8-Methyl-chinolin-sulfonsäure-(5) in siedender Chromschwefelsäure; Reinigung über das Bariumsalz (E., B., B. 42, 4314).

— Krystalle mit 1 H₂O (aus schwefelsaurer Lösung). — CuC₁₀H₅O₅NS + 3 H₂O. Krystalle. — BaC₁₀H₅O₅NS + 2 H₂O. Krystalle.

HO₂C N

Chinolin - carbonsäure - (8) - sulfonsäure - (6) C₁₀H₇O₅NS, s. nebenstehende Formel. B. Aus 8-Methyl-chinolin-sulfonsäure - (6) analog der vorangehenden Verbindung (E., B., B. 42, 4318). — Nadeln (aus Wasser). — Das Natriumsalz liefert beim Erhitzen mit Phosphorpentachlorid auf 125—135°, Behandeln des entstandenen Sulfochlorids mit Zinnchlorür und konz. Salzsäure und Benzoylieren der erhaltenen 6-Mercapto-chinolin-carbonsäure - (8) nach Schotten-Baumann 6-Benzoylmercapto-chinolin-carbonsäure - (8) (S. 237). — BaC₁₀H₈O₈NS.

2. Sulfonsäuren der Dicarbonsäuren.

3-[6-Sulfo-2-carboxy-phenyl]-pyridin-carbonsäure-(2),
3-[6-Sulfo-2-carboxy-phenyl]-picolinsäure C₁₂H₂O₇NS, s. nebenstehende Formel. B. Bei der Oxydation von [Benzo-1'.2':5.6-chinolin]-sulfonsäure-(6') (S. 400) mit Kaliumpermanganat in neutraler Lösung (IMMERHEISER, B. 22, 405). — Krystalle (aus Wasser). Schmilzt, auf dem Platinblech erhitzt, unter starkem Aufblähen und Verkohlen. Ziemlich schwer löslich in Wasser, sehr schwer in Äther, Benzol und den üblichen Lösungsmitteln, fast unlöslich in absol. Alkohol. Gibt mit Eisenchlorid erst nach langem Aufbewahren einen schmutziggelben Niederschlag. — K₃C₁₃H₆O₇NS (bei 150°). Glasige, an der Luft zerfließliche Masse. Unlöslich in Alkohol. — Ag₃C₁₃H₆O₇NS (bei 100°). Käsiger Niederschlag. Lichtbeständig. Schwer löslich in Wasser, leicht in Ammoniak. — 2Ba₃(C₁₂H₆O₇NS)₂+C₁₃H₉O₇NS (bei 150°). Krystalle. Leicht löslich in Wasser. — Pb₃(C₁₂H₆O₇NS)₂+Pb(OH)₂ (bei 110°). Niederschlag.

VI. Amine.

A. Monoamine.

1. Monoamine $C_n H_{2n+2} N_2$.

1. Amine CaH₁₄N₂.

- 1. 3 Aminomethyl piperidin, ω Amino β pipecolin $C_6H_{14}N_2 = H_2C \cdot CH_2 \cdot CH_3 \cdot NH_3$ $H_4C \cdot NH \cdot CH_4$
- 1-Äthyl-3-aminomethyl-piperidin, N-Äthyl-ω-amino-β-pipecolin $C_8H_{18}N_2=H_2C-CH_2-CH\cdot CH_3\cdot NH_2$. B. Bei der Reduktion von 1-Äthyl-1.2.5.6-tetrahydro-pyridin-H₂C·N(C₂H₅)·CH₂ aldoxim-(3) (Bd. XXI, S. 257) mit Natrium und siedendem Alkohol (Wohl, Losanitsch, B. 40, 4726). Flüssigkeit. Kp₂₀: 105—110°. Löslich in Wasser, Alkohol und Äther. Zieht an der Luft Kohlendioxyd an. $C_8H_{18}N_2+2HCl+2AuCl_3+H_2O$. F: 184—185° (korr.). Schwer löslich in kaltem Wasser, leichter in Alkohol und heißem Wasser. $C_8H_{18}N_2+2HCl+2AuCl_3+H_2O$. F: 239° (korr.). Löslich in Wasser und verd. Alkohol, unlöslich in absol. Alkohol, Äther und Benzol.
- 2. 3-Amino-2.5-dimethyl-pyrrolidin $C_6H_{14}N_2 = \frac{H_2C CH \cdot NH_2}{CH_3 \cdot HC \cdot NH \cdot CH \cdot CH_3}$. B. Bei der Reduktion von Hexantrioxim-(2.3.5) (Bd. I, S. 808) mit Natrium und siedendem Alkohol (Morelli, Marchetti, R. A. L. [5] 17 I, 253). Pikrat $C_6H_{14}N_2 + 2C_6H_3O_7N_3$. Gelbe Prismen (aus verd. Alkohol + etwas Pikrinsäure). Färbt sich gegen 220° braun, schmilzt bei 242° unter Zersetzung. Schwer löslich in siedendem Wasser, fast unlöslich in Alkohol. Wird durch heißes Wasser leicht hydrolysiert.
- 3. α' Amino β methyl α āthyl trimethylenimin $C_6H_{14}N_2 = H_2N \cdot HC \cdot CH(CH_3) \cdot CH \cdot C_2H_5$.
- N-Phenyl- α '-benzoylanilino- β -methyl- α -äthyl-trimethylenimin $C_{35}H_{36}ON_{8}=(C_{6}H_{5}\cdot CO)(C_{6}H_{8})N\cdot HC\cdot CH(CH_{3})\cdot CH\cdot C_{2}H_{5}.$ Über eine Verbindung, der vielleicht diese $-N(C_{6}H_{5})$ -Konstitution zukommt, vgl. Bd. XII, S. 554.

2. Amine $C_7H_{16}N_2$.

- 1. $2-[\beta-Amino-athyl]-piperidin C_7H_{16}N_2=\frac{H_2C\cdot CH_2\cdot CH_2}{H_2C\cdot NH\cdot CH\cdot CH_2\cdot CH_2\cdot NH_2}$. B. Beim Erhitzen von $2-[\beta-Brom-athyl]$ -piperidin (Bd. XX, S. 106) mit alkoh. Ammoniak im Rohr auf 125° (Löffler, Kirschner, B. 38, 3336). Öl. Kp₁₀: 106—107°. Leicht löslich in Wasser, Alkohol, Ather und Chloroform. Die wäßr. Lösung reagiert alkalisch.
- 2-[β -Äthylamino-äthyl]-piperidin $C_9H_{20}N_2=HNC_5H_3\cdot CH_2\cdot CH_2\cdot NH\cdot C_9H_3$. Beim Erhitzen von 2-[β -Brom-äthyl]-piperidin mit Äthylamin in absol. Alkohol im Rohr auf 120—125° (LÖFFLER, KIRSCHNER, B. 38, 3336). Öl von charakteristischem Geruch. Kp₁₀: 95—96°. Leicht löslich in Alkohol, Äther und Chloroform. $C_9H_{20}N_2+2HCl+2AuCl_2$.

Krystallpulver. F: 186°. — Chloroplatinat. Bräunliche Nadeln. Zersetzt sich bei 196°, ohne zu schmelzen. — Pikrat. Hellgelbe Nadeln (aus Alkohol). F: 170°.

- **3**-[β -Diäthylamino-äthyl]-piperidin $C_{11}H_{24}N_2=HNC_5H_5\cdot CH_2\cdot CH_5\cdot N(C_2H_5)_2$. B. Beim Erhitzen von 2-[β -Brom-āthyl]-piperidin mit Diäthylamin in absol. Alkohol im Rohr auf 120—125° (Löffler, Kirschner, B. 38, 3335). Fischänlich riechendes Öl. Kp₁₅: 113—115°. D'': 0,8288. Sehr leicht löslich in Wasser, Alkohol, Äther und Chloroform. $C_{11}H_{24}N_2+2HCl$. Nadeln (aus Alkohol + Äther). F: 256—258°. Hydrobromid. F: 236°. Chloroaurat. Hellgelbe, mikroskopische Blätter. F: 193°. Cadmiumchlorid-Doppelsalz. F: 163°. $C_{11}H_{24}N_2+2HCl+PtCl_4$. Gelbe Blättchen, die sich bald in ein gelbes Pulver verwandeln. Zersetzt sich bei 224°, ohne zu schmelzen. Pikrat. Krystalle. F: 73°.
- 2. 4-Amino-2.6-dimethyl-piperidin $C_7H_{16}N_2 = \frac{H_2C \cdot CH(NH_2) \cdot CH_2}{CH_3 \cdot HC NH CH \cdot CH_2}$. Neben $\alpha.\alpha'$ -Lupetidin bei der Reduktion von 4-Amino-2.6-dimethyl-pyridin (S. 435) mit Natrium und Alkohol (Marckwald, B. 27, 1329). Stark alkalische Flüssigkeit von piperidin artigem Geruch. Kp: ca. 195—196°. Mischbar mit Wasser unter Wärmeentwicklung. $C_7H_{16}N_2 + 2HCl$. Krystalle. Leicht löslich in Wasser, schwer in Alkohol. $C_7H_{16}N_2 + 2HCl$. Orangerote Krystalle. Zersetzt sich gegen 250°, ohne zu schmelzen. Leicht löslich in Wasser, schwer in Alkohol. Pikrat $C_7H_{16}N_2 + 2C_8H_3O_7N_3$. Gelbe Krystalle. Zersetzt sich gegen 220°, ohne zu schmelzen. Leicht löslich in Alkohol, Äther und in heißem Wasser, schwer in kaltem Wasser.

3. Amine $C_8H_{18}N_2$.

- 1. $2 [\beta Amino propyl] piperidin, 2^2 Amino contin <math>C_8\dot{H}_{18}N_2 = H_1C \cdot CH_2 \cdot CH_2 \cdot CH_3 \cdot CH_4 \cdot CH_4 \cdot CH_4 \cdot CH_5 \cdot CH_$
- a) Aktives 2- $[\beta$ -Amino-propyl]-piperidin, 2°-Amino-l-coniin $C_8H_{18}N_8 = HNC_5H_9 \cdot CH_2 \cdot CH(NH_2) \cdot CH_3$. Sterische Einheitlichkeit fraglich. B. Beim Erhitzen von 2°-Brom-l-coniin (Bd. XX, S. 118) mit alkoh. Ammoniak im Rohr auf 130—140° (Löffler, Kibschner, B. 38, 3341). Öl. Kp_{15} : 95—99°. D^{15} : 0,9942. $[\alpha]_D$: —2,33°. Leicht löslich in Alkohol und Äther. Chloroplatinat. Goldgelbe Nadeln. Pikrat. Hellgelbe Lamellen.

Aktives 2-[β -Äthylamino-propyl]-piperidin, 2³-Äthylamino-l-coniin $C_{10}H_{22}N_3 = HNC_5H_9 \cdot CH_3 \cdot CH(NH \cdot C_2H_5) \cdot CH_3$. Sterische Einheitlichkeit fraglich. — B. Beim Erhitzen von 2³-Brom-l-coniin mit Äthylamin in absol. Alkohol im Rohr auf 120—130° (Löffler, Kirschner, B. 38, 3340). — Fischartig riechendes Öl. Kp_{16} : 105°. D^{15} : 0,9001. Leicht löslich in Alkohol und Äther. — $C_{10}H_{22}N_3 + 2HCl + 2AuCl_3$. Körniger, gelber Niederschlag (aus Wasser). F: 156—157°. Leicht löslich in Alkohol. — $C_{10}H_{22}N_2 + 2HCl + PtCl_4 + H_2O$. Rötlichgelbe Nadeln (aus Wasser). F: 221—222° (Zers.). Schwer löslich in Alkohol.

Aktives 2 - $[\beta$ - Diäthylamino - propyl] - piperidin, 2^2 - Diäthylamino - 1 - coniin $C_{12}H_{26}N_2 = HNC_5H_5 \cdot CH_2 \cdot CH[N(C_2H_5)_2] \cdot CH_3$. Sterische Einheitlichkeit fraglich. — B. Beim Erhitzen von 2^2 -Brom-1-coniin mit Diäthylamin in absol. Alkohol im Rohr auf $120-130^{\circ}$ (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂: $112-115^{\circ}$. Disconiic (Löffler, Kirsschner, B. 38, 3340). — Fischähnlich riechendes Öl. Kp₁₂

b) Derivat von inaktivem $2 - [\beta - Amino - propyl] - piperidin C_8H_{18}N_2 = HNC_5H_9 \cdot CH_2 \cdot CH(NH_2) \cdot CH_2$.

Inaktives $2 \cdot [\beta \cdot \text{Diäthylamino \cdot propyl}] \cdot \text{piperidin}$, $2^{2} \cdot \text{Diäthylamino \cdot dl \cdot coniin}$ $C_{12}H_{26}N_{2} = \text{HNC}_{5}H_{6} \cdot \text{CH}_{2} \cdot \text{CH}[N(C_{2}H_{5})_{4}] \cdot \text{CH}_{2}$. Sterische Einheitlichkeit fraglich. — B. Beim Erhitzen von 2^{2} -Brom-dl-coniin (Bd. XX, S. 119) mit Diäthylamin in absol. Alkohol im Rohr auf $130-140^{6}$ (Löffler, Kirschner, B. 38, 3338). — Fischähnlich riechendes Öl. Kp₁₄: $113-115^{6}$. D: 0,8954. Leicht löslich in Alkohol und Äther. — $C_{12}H_{26}N_{2}+2HCl+2AuCl_{3}$. Gelbe Nadeln (aus Wasser). F: $180-181^{6}$. — $C_{12}H_{26}N_{2}+2HCl+PtCl_{4}$. Blaßrote Krystallschuppen (aus Wasser). F: 208^{6} (Zers.).

- 2. **4-Amino-2.2.6-trimethyl-piperidin** $C_8H_{18}N_2 = \frac{H_2C \cdot CH(NH_2) \cdot CH_2}{CH_3 \cdot HC NH C(CH_3)_2}$ Existiert in zwei diastereoisomeren Formen.
- a) Bei 25–26° schmelzendes 4 Amino 2.2.6 trimethyl piperidin, α [4 Amino 2.2.6 trimethyl piperidin] $C_3H_{18}N_2 = \frac{H_2C \cdot CH(NH_2) \cdot CH_2}{H_2C \cdot CH(NH_2) \cdot CH_2}$
- B. Entsteht als Hauptprodukt neben geringen Mengen von β-[4-Amino-2.2.6-trimethyl]-piperidin] bei der Reduktion von 2.2.6-Trimethyl-piperidon-(4)-oxim (,,Vinyldiacetonaminoxim") (Bd. XXI, S. 247) mit Zinkstaub und wäßrig-alkoholischer Salzsäure in der Kälter man trennt die Hydrochloride der beiden Formen durch Behandeln des Gemisches mit dem doppelten Volumen absol. Alkohol und dem halben Volum absol. Äther, wodurch das Hydrochlorid der β-Form abgeschieden wird, während das der α-Form in Lösung bleibt (HARRIES, B. 29, 524; A. 294, 352). Würfel. F: 25—26°; Kp₇₋₈: 60—61°; zersetzt sich bei der Destillation unter gewöhnlichem Druck; mischbar mit Wasser, Alkohol, Äther und Benzol; zieht begierig Kohlendioxyd an (H., B. 29, 525; A. 294, 355). Wird durch längeres Erhitzen mit konz. Salzsäure im Rohr auf 200° nicht verändert (H., A. 294, 355). Bei kurzem Kochen mit Natriumnitrit und Salzsäure entstehen die beiden Formen des 4-Oxy-2.2.6-trimethyl-piperidins (,,Vinyldiacetonalkamins") (Bd. XXI, S. 9) (H., A. 294, 358). Bei der Einw. von 1 Mol Schwefelkohlenstoff erhält man in Äther die niedrigerschmelzende, in Alkohol die höherschmelzende Form der α-[2.2.6-Trimethyl-piperidyl-(4)]-dithiocarbamidsäure (s. u.) (H., A. 294, 359, 361). Hydrochlorid. Prismen. Sehr schwer löslich in absol. Alkohol (H., A. 294, 356). C₈H₁₈N₂ + 2 HBr (bei 120°). Krystalle (aus Alkohol + Äther). Leicht löslich in Wasser; 1 g löst sich in 4 cm³ siedendem Alkohol (H., B. 29, 524; A. 294, 354). C₈H₁₈N₂ + 2 HCl + AuCl₃ (bei 105°). Rote Krystalle. Schwer löslich in Wasser und Alkohol (H., B. 29, 525; A. 294, 356). Chloroplatinat. Rote Prismen. Leicht löslich (H., B. 29, 525). Pikrat. Prismen (H., B. 29, 525). Neutrales Oxalat C₈H₁₈N₁ + C₄H₂O₄ (bei 105°) (H., B. 29, 525). Saures Oxalat C₈H₁₈N₂ + 2C₂H₂O₄. Hygroskopisch (H., B. 29, 526).
- α [2.2.6 Trimethyl piperidyl (4)] dithiocarbamidsäure $C_9H_{18}N_2S_8 = H_2C \cdot CH(NH \cdot CS_2H) \cdot CH_2$. Zur Konstitution vgl. Harries, A. 417 [1918], 110; $CH_3 \cdot HC NH C(CH_3)_3$. Hess, B. 52 [1919], 966 Anm.; Orthner, A. 456 [1927], 233. Existiert in zwei isomeren Formen; Deutung dieser Isomerie: Orthner; vgl. dagegen Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1153.
- α) Niedrigerschmelzende Form, a-{α-[2.2.6-Trimethyl-piperidyl-(4)]-dithio-carbamidsäure}. B. Bei der Einw. von 1 Mol Schwefelkohlenstoff auf α-[4-Amino-2.2.6-trimethyl-piperidin] in absol. Äther unter starker Kühlung (Harries, A. 294, 359). Hygroskopisches Pulver. F: 144—145° (Zers.). Verflüchtigt sich schon bei 100° unter Bildung weißer giftiger Dämpfe (H., A. 294, 360, 371). Sehr leicht löslich in Wasser. Wandelt sich beim Kochen mit Wasser in das höherschmelzende Isomere um. Gibt in wäßr. Lösung mit Quecksilberchlorid einen hellorangefarbenen Niederschlag, der beim Kochen weiß wird.
- β) Höherschmelzende Form, b-{α-[2.2.6-Trimethyl-piperidyl-(4)]-dithiocarbamidsäure}. B. Bei der Einw. von 1 Mol Schwefelkohlenstoff auf α-[4-Amino-2.2.6-trimethyl-piperidin] in absol. Alkohol (Harries, A. 294, 361). Bei kurzem Kochen der niedrigerschmelzenden Form (s. o.) mit Wasser (H., A. 294, 361). Prismen (aus Wasser). F: 187° bis 188° (Zers.); löslich in 20 Tln. heißem Wasser, unlöslich in Alkohol (H., B. 29, 528; A. 294, 361). Gibt in wäßr. Lösung mit Quecksilberchlorid einen orangeroten Niederschlag, der beim Kochen unter Abscheidung von Quecksilbersulfid schwarz wird (Unterschied von der niedrigerschmelzenden Form); bei kurzem Kochen der wäßr.

 Lösung mit Quecksilberchlorid erhält man N.N'-Thiocarbonyl[4-amino-2.2.6-trimethyl-piperidin] (s. nebenstehende Formel; Syst.
 No. 3564) und andere Produkte (H., B. 29, 528; A. 294, 362, 364; vgl. H., A. 417 [1918], 113, 145).

b) Flüssiges 4-Amino-2.2.6-trimethyl-piperidin, β -[4-Amino-2.2.6-trimethyl-piperidin] $C_8H_{18}N_2 = H_2^{\bullet}C \cdot CH(NH_2) \cdot CH_2$. B. Neben dem α -Isomeren bei der Reduktion von 2.2.6-Trimethyl-piperidon-(4)-oxim mit Zinkstaub und wäßrigalkoholischer Salzsäure in der Kälte (Harries, A. 294, 352) oder, als Hauptprodukt, bei der Reduktion dieses Oxims mit Natrium und siedendem Amylalkohol (H., A. 294, 365; D. R. P. 99004; C. 1898 II, 1189; Frdl. 5, 783). — Flüssigkeit von stechendem Geruch. Erstarrt noch nicht bei —17°; Kp₃₂: 82—84°; bildet ein in Tafeln krystallisierendes Hydrat vom Schmelzpunkt unterhalb 20°; Kp₃₂: 91—92°; reagiert stark alkalisch (H., A. 294, 366). — Gibt bei kurzem Kochen mit Natriumnitrit und Salzsäure die β -Form des 4-Oxy-2.2.6-trimethyl-piperidins (Bd. XXI, S. 9) (H., A. 294, 368; D. R. P. 99005; C. 1898 II, 1190; Frdl. 5, 784). Geht bei der Einw. von Schwefelkohlenstoff in Äther in β -[2.2.6-Trimethyl-piperidyl-(4)]-dithiocarbamidsäure über (H., A. 294, 369). — $C_8H_{18}N_2 + 2$ HCl. Krystalle (aus Wasser durch Alkohol + Äther). Löslich in 2 Tln. Wasser von 24°; löslich in 50 Tln. siedendem absolutem Alkohol (H., A. 294, 366). — $C_8H_{18}N_2 + 2$ HBr. Krystalle (aus Wasser durch Alkohol + Äther). Löslich in ca. 2 Tln. Wasser von 24° (H., A. 294, 365). — Chloroplatinat. Blätter; viel schwerer löslich als das entsprechende Salz der α -Form (H., A. 294, 367). — Pikrat. Prismen (aus Alkohol) (H., A. 294, 367).

 $\begin{array}{lll} \beta\text{-}[4\text{-}Acetamino\text{-}2.2.6\text{-}trimethyl\text{-}piperidin}] & \text{$\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_2$} = \\ & \text{$\mathrm{H}_2\mathrm{C}\cdot\mathrm{CH}(\mathrm{NH}\cdot\mathrm{CO}\cdot\mathrm{CH}_3)\cdot\mathrm{CH}_2$} \\ & \text{$\mathrm{H}_2\mathrm{C}-\mathrm{CH}(\mathrm{NH}\cdot\mathrm{CO}\cdot\mathrm{CH}_3)\cdot\mathrm{CH}_2$} \\ & \text{$\mathrm{CH}_3\cdot\mathrm{HC}-\mathrm{NH}-\mathrm{C}(\mathrm{CH}_3)_2$} \\ & \text{$\mathrm{C}_{10}\mathrm{CH}_3\mathrm{CH}_3\mathrm{CH}_3$} \\ & \beta\text{-}[4\text{-}Amino\text{-}2.2.6\text{-}trimethyl\text{-}piperidin}] & \text{mit Essigsäureanhydrid (Harries, A. 294, 367).} \\ & \text{$\mathrm{Krystalle}$ (aus Toluol). F: $85-86°. Leicht löslich in den üblichen Lösungsmitteln, außer in Benzol, Petroläther und Ligroin; 1 g löst sich in 2 cm³ siedendem Alkohol.} \\ & \text{$\mathrm{A}_{10}\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_2$} \\ & \text{$\mathrm{C}_{2}\mathrm{H}_{4}\mathrm{O}_{2}$.} & \text{$\mathrm{Hygroskopische}\ Tafeln\ (aus Alkohol} \\ & \text{$\mathrm{A}_{10}\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_2$} \\ & \text{$\mathrm{C}_{3}\mathrm{H}_{4}\mathrm{O}_{2}$.} & \text{$\mathrm{E}_{10}\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_{2}$} \\ & \text{$\mathrm{E}_{10}\mathrm{C}_{10}\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_{2}$} \\ & \text{$\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_{2}$} \\ & \text{$\mathrm{E}_{10}\mathrm{C}_{10}\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_{2}$} \\ & \text{$\mathrm{E}_{10}\mathrm{C}_{10}\mathrm{C}_{10}\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{ON}_{2}$} \\ & \text{$\mathrm{E}_{10}\mathrm{C}_{10}$

β-[2.2.6-Trimethyl-piperidyl-(4)]-dithiocarbamidsäure $C_9H_{18}N_2S_2 = H_2C \cdot CH(NH \cdot CS_2H) \cdot CH_2$. Zur Konstitution vgl. die Angaben bei α-[2.2.6-Trimethyl-piperidyl-(4)]-dithiocarbamidsäure, 8. 421. — B. Bei der Einw. von Schwefelkohlenstoff auf β-[4-Amino-2.2.6-trimethyl-piperidin] in absol. Äther unter starker Kühlung (HARRIES, A. 294, 369). — Prismen (aus siedendem Wasser). F: 197—198°. In der wäßr. Lösung erzeugt Quecksilberchlorid einen hellorangefarbenen Niederschlag, der beim Kochen weiß wird. Verhalten beim Kochen mit Wasser: H.

3. 3-Amino-2.2.5.5-tetramethyl-pyrrolidin C₈H₁₈N₂ =

(CH₃)₂C·NH·C(CH₃)₂

B. Beim Erwärmen von 2.2.5.5-Tetramethyl-pyrrolidin-carbonsäure-(3)-amid (8. 13) mit Kaliumhypobromit in wäßr. Lösung auf 60—70° (Pauly, Rossbach, B. 32, 2005; P., A. 322, 97). Bei der Reduktion von 2.2.5.5-Tetramethyl-pyrrolidon-(3)-oxim (Bd. XXI, S. 248) mit Natrium und siedendem Amylalkohol (P., Bokhm, B. 34, 2290; P., A. 322, 120). — Hygroskopische Flüssigkeit. Kp₇₃₁: 174° (korr.); leicht löslich in organischen Lösungsmitteln, in Wasser unter beträchtlicher Erwärmung (P., A. 322, 98). — Liefert bei kurzem Kochen mit Natriumnitrit und Salzsäure 2.2.5.5-Tetramethyl-△³-pyrrolin (Bd. XX, S. 150) (P., Schaum, B. 34, 2288; P., A. 322, 102). Gibt nicht die Isonitril-Reaktion (P.). Zieht an der Luft Kohlendioxyd an unter Bildung von [2.2.5.5-Tetramethyl-pyrrolidyl-(3)]-carbamidsäure (8. 423) (P.). Gibt bei der Einw. von Schwefelkohlenstoff in Äther die niedrigerschmelzende, in Alkohol die höherschmelzende Form der [2.2.5.5-Tetramethyl-pyrrolidyl-(3)]-dithiocarbamidsäure (8. 423) (P.). — Die halogenwasserstoffsauren Salze sind hygroskopisch und außerordentlich leicht löslich in Wasser (P.). — C₈H₁₈N₂ + 2HCl + PtCl₄ + 3H₂O. Orangerote Prismen. Zersetzt sich bei 215°; ziemlich schwer löslich in kaltem, leicht in heißem Wasser (P.). — Pikrat C₈H₁₈N₂ + 2C₆H₃O₇N₃. Gelbe Nadeln (aus heißem Wasser). F: 242°; fast unlöslich in Alkohol und Äther, schwer löslich in Wasser (P.).

3-Amino -1.2.2.5.5-pentamethyl-pyrrolidin $C_9H_{90}N_2=\frac{H_2C-CH\cdot NH_2}{(CH_3)_2C\cdot N(CH_3)\cdot C(CH_3)_2}$ B. Bei der Einw. von Kaliumhypobromit auf 1.2.2.5.5-Pentamethyl-pyrrolidin-carbon-saure-(3)-amid in wäßr. Lösung (Pauly, Schaum, B. 34, 2289; P., A. 322, 108). — Krystallinisch. E: 40°. Kp₇₄₀: 190°. — Liefert mit Chloroform und alkoh. Kalilauge keine isonitrilartig riechenden Dämpfe (P.). Gibt mit Schwefelkohlenstoff in Äther die niedrigerschmelzende,

in Alkohol die höherschmelzende [1.2.2.5.5-Pentamethyl-pyrrolidyl-(3)]-dithiocarbamidsäure (P.). — Die halogenwasserstoffsauren Salze sowie die Doppelsalze mit Goldehlorid und Platinchlorid sind außerordentlich leicht löslich in Wasser und Alkohol (P.). - Pikrat $C_9H_{90}N_9+2C_9H_9O_7N_9$. Gelbe Nadeln (aus Alkohol). F: 215°; schwer löelich in heißem Alkohol (P.). — Oxalat $C_9H_{90}N_9+C_9H_9O_4$. Blättchen (aus verd. Alkohol). F: 216°; sehr leicht löslich in Wasser, schwer in Alkohol (P.).

- 8 Acetamino 2.2.5.5 tetramethyl pyrrolidin $C_{10}H_{20}ON_2$
- H_3C — $CH \cdot NH \cdot CO \cdot CH_3$. B. Beim Mischen von 3-Amino-2.2.5.5-tetramethyl-pyrrolidin $(CH_3)_2C \cdot NH \cdot C(CH_3)_2$ mit Acetanhydrid unter Kühlung (Pauly, A. 322, 100). — Kugelige, an der Luft zerfließende Aggregate. F: 70°. Kp₁₆: 155°. Leicht löslich in Wasser und organischen Lösungsmitteln. — Das Hydrochlorid gibt mit salpetriger Säure ein Nitrosamin, ohne daß Stickstoff frei wird. — Hydrochlorid. Sehr leicht löslich in Wasser. — Chloroaurat. Gelbe Tafeln. F: ca. 213° (Zers.). Schwer löslich in kaltem, leicht in heißem Wasser.
 - **3 Acetamino 1.2.2.5.5 pentamethyl pyrrolidin** $C_{11}H_{22}ON_2 =$
- H₂C _____CH·NH·CO·CH₃. B. Durch Einw. von Acetanhydrid auf 3-Amino-(CH₃)₂C·N(CH₃)·C(CH₃)₂ 1.2.2.5.5-pentamethyl-pyrrolidin bei gewöhnlicher Temperatur (P., A. 322, 110). — Krystallinische Masse. F: 87°. Kp₁₁: 145—146°. Leicht löslich in organischen Lösungsmitteln.
- 1 Acetyl 3 acetamino 2.2.5.5 tetramethyl pyrrolidin $C_{12}H_{22}O_2N_2 =$ -CH·NH·CO·CH₃. B. Beim Kochen von 3-Amino-2.2.5.5-tetramethyl- $(CH_3)_2\dot{C}\cdot N(CO\cdot CH_3)\cdot \dot{C}(CH_3)_2$ pyrrolidin mit überschüssigem Acetanhydrid (P., A. 322, 101). — Mikroskopisches Krystallpulver (aus Benzol). F: 166—167°. Leicht löslich in Alkohol und Wasser, schwerer in Aceton.
- [2.2.5.5 Tetramethyl pyrrolidyl (3)] carbamidsäure $C_9H_{18}O_2N_2 = H_9C CH \cdot NH \cdot CO_2H$. B. Beim Einleiten von Kohlendioxyd in die äther. Lösung von $(CH_a)_a \dot{C} \cdot NH \cdot \dot{C}(CH_a)_a$ 3-Amino-2.2.5.5-tetramethyl-pyrrolidin (P., A. 322, 99). — Mikroskopische Nadeln. F: 142-1450 (Zers.). Sehr leicht löslich in Wasser und Alkohol, unlöslich in Äther.
- [2.2.5.5 Tetramethyl pyrrolidyl (3)] dithiocarbamidsäure $C_9H_{18}N_2S_2$ H,C----CH·NH·CS,H Existiert in zwei isomeren Formen. Deutung dieser Isomerie: (CH₃)₂C·NH·C(CH₃)₃
 ORTHNER, A. 458 [1927], 239; vgl. dagegen Freudenberg, Stereochemie [Leipzig-Wien 1933], S. 1153.
- α) Niedrigerschmelzende Form, a-{[2.2.5.5-Tetramethyl-pyrrolidyl-(3)]-di-thiocarbamidsaure}. B. Bei der Einw. von Schwefelkohlenstoff auf 3-Amino-2.2.5.5-tetramethyl-pyrrolidin in absol. Äther unter Kühlung (P., A. 322, 106). — Nadeln. F: 142—144°. Sehr leicht löslich in Wasser und Alkohol. Zerfließlich. — Wandelt sich beim Kochen der wäßr. Lösung unter Entwicklung geringer Mengen Schwefelwasserstoff in die isomere höherschmelzende Form um. Gibt in wäßr. Lösung mit Quecksilberchlorid in der Kälte einen weißen, auch beim Kochen weiß bleibenden Niederschlag.
- β) Höherschmelzende Form, b-{[2.2.5.5-Tetramethyl-pyrrolidyl-(3)]-dithiocarbamidsaure). B. Bei der Einw. von Schwefelkohlenstoff auf 3-Amino-2.2.5.5-tetramethyl-pyrrolidin in Alkohol (P., A. 322, 106). Bei kurzem Kochen der niedrigerschmelzenden Form in wäßr. Lösung (P., A. 322, 106). — Wasserhaltige Krystalle, die das Wasser teilweise schon beim Liegen an der Luft verlieren. F: 170°. Schwer löslich in Wasser, Methanol und Alkohol. — Gibt in wäßr. Lösung mit Quecksilberchlorid einen weißen, sofort gelb werdenden flockigen Niederschlag, der beim Kochen in schwarzes Quecksilbersulfid übergeht.
- N Phenyl-N'-[1.2.2.5.5-pentamethyl-pyrrolidyl-(3)]-thioharnstoff $C_{16}H_{26}N_3S=$ $-CH \cdot NH \cdot CS \cdot NH \cdot C_6H_5$ B. Aus 3-Amino-1.2.2.5.5-pentamethyl-pyrrolidin $(CH_3)_3$ C·N(CH_3)·C(CH_3)·2 und Phenylsenföl in Methanol (P., A. 322, 111). — Nadeln (aus Methanol). F: 146°. Schwer löslich in Wasser, leicht in Alkohol und in Salzsäure.
- [1.2.2.5.5 Pentamethyl pyrrolidyl (3)] dithiocarbamidsäure $C_{10}H_{20}N_{2}S_{2} = H_{2}C$ — $CH \cdot NH \cdot CS_{2}H$ Existiert in zwei isomeren Formen; vgl. dazu die An- $(CH_2)_2$ $\dot{C} \cdot N(CH_3) \cdot \dot{C}(\underline{C}H_3)_2$ gaben bei [2.2.5.5-Tetramethyl-pyrrolidyl-(3)]-dithiocarbamidsäure.

- a) Niedrigerschmelzende Form, a-{[1.2.2.5.5-Pentamethyl-pyrrolidyl-(3)]-dithiocarbamidsäure}. B. Aus 3-Amino-1.2.2.5.5-pentamethyl-pyrrolidin und Schwefelkohlenstoff in absol. Äther unter Kühlung (P., A. 322, 112). Sehr zerfließlich und leicht veränderlich. Schmilzt, frisch dargestellt, bei 103° unter geringer Gasentwicklung. Sehr leicht löslich in Wasser und Alkohol. Gibt, frisch dargestellt, in wäßr. Lösung mit Quecksilberchlorid einen orangegelben Niederschlag, der beim Kochen Quecksilbersulfid abscheidet.
- β) Höherschmelzende Form, b-{[1.2.2.5.5-Pentamethyl-pyrrolidyl-(3)]-dithiocarbamidsäure}. B. Aus 3-Amino-1.2.2.5.5-pentamethyl-pyrrolidin und Schwefelkohlenstoff in absol. Alkohol (P., A. 322, 113). Krystalle (aus Wasser). F: 172°. Leicht löslich in heißem Wasser. Gibt mit Quecksilberchlorid in wäßr. Lösung einen weißen, beim Kochen weiß bleibenden Niederschlag.

4. Amine $C_9H_{20}N_2$.

- 1. $3 \delta Amino butylj piperidin C_0H_{20}N_2 = \frac{H_2C \cdot CH_2 \cdot CH \cdot [CH_2]_3 \cdot CH_2 \cdot NH_2}{H_2C \cdot NH \cdot CH_2}$
- 3- $[\delta$ Methylamino butyl] piperidin, Oktahydrometanicotin $C_{10}H_{22}N_2=H_2C\cdot CH_2\cdot CH\cdot [CH_2]_3\cdot CH_2\cdot NH\cdot CH_3$. Zur Konstitution vgl. Maass, Hildebrandt, B. $H_2C\cdot NH\cdot CH_2$ 39, 3697. B. Neben Hexahydronicotin (Syst. No. 3461) bei der Reduktion von Nicotin (Syst. No. 3470) mit Natrium und Alkohol (Blau, B. 26, 629). Neben Hexahydrometanicotin (S. 427) bei der Reduktion von 3- $[\delta$ -Methylamino- α -butenyl]-pyridin (Metanicotin; S. 438) mit Natrium und absol. Alkohol (Maass, Hildebrandt, B. 39, 3698, 3700; vgl. M., B. 38, 1831). Wasserhelles Öl von stechendem Geruch. Kp: 259—260° (korr.) (B.), 258,5—260° (M., H.). Flüchtig mit Wasserdampf (B.). D_3*: 0,9173; sehr leicht löslich in Wasser; wird aus der mit Alkali versetzten wäßrigen Lösung durch Äther aufgenommen; optisch inaktiv (M., H.). $C_{10}H_{22}N_2 + 2HCl$. Krystalle (aus Alkohol). F: 201—202° (B.), 202° (M., H.). Sehr leicht löslich in Wasser, löslich in Alkohol, unlöslich in Äther (B.), Aceton und Ligroin (M., H.). $C_{10}H_{22}N_2 + 2HCl + 2AuCl_3$. Gelbe Blättchen (aus alkoholhaltigem Wasser). F: 142° (B.; M., H.). Löslich in Alkohol und Äther, unlöslich in Wasser, Aceton und Ligroin (M., H.). $C_{10}H_{22}N_2 + 2HCl + 2AuCl_4$. Dunkelrote Blättchen (aus Wasser). F: 202° (Zers.) (B.), 202,5° (Zers.) (M., H.). Leicht löslich in warmem Wasser, unlöslich in Äther, Aceton und Ligroin (M., H.). Pikrat. F: ca. 285° (Zers.) (B.).
- $\begin{array}{lll} \textbf{N.N'-Dibenzoyl-oktahydrometanicotin} & C_{24}H_{30}O_2N_2 = \\ \textbf{H_{2}C---CH_{2}----CH\cdot[CH_{2}]_{3}\cdot CH_{2}\cdot N(CH_{3})\cdot CO\cdot C_{6}H_{5}} & B. & \text{Aus Oktahydrometanicotin und} \\ \textbf{H_{2}C\cdot N(CO\cdot C_{6}H_{5})\cdot CH_{2}} & B. & \text{Denzoylchlorid in Natronlauge (Oliveri, G.} & \textbf{25} \text{ I, 72}). & --- \text{Öl. Unlöslich in Wasser, leicht löslich in verd. Salzsäure.} \end{array}$
- Oktahydrometanicotin N.N'- bis carbonsäureamid $C_{12}H_{24}O_2N_4 = H_2C CH_2 CH \cdot [CH_2]_3 \cdot CH_2 \cdot N(CH_3) \cdot CO \cdot NH_2$. B. Beim Eindampfen der wäßr. $H_2C \cdot N(CO \cdot NH_2) \cdot CH_2$ Lösung von schwefelsaurem Oktahydrometanicotin mit Kaliumeyanat (Oliveri, G. 25 I, 73). $C_{12}H_{24}O_2N_4 + 2 HCl + PtCl_4$. Gelbes, amorphes Pulver. F: 171° (Zers.).
- N.N' Dibensolsulfonyl oktahydrometanicotin $C_{22}H_{30}O_4N_2S_2 = H_2C CH_2 CH \cdot [CH_2]_3 \cdot CH_2 \cdot N(CH_3) \cdot SO_2 \cdot C_6H_5$. B. Beim Schütteln von salzsaurem $H_2C \cdot N(SO_2 \cdot C_6H_5) \cdot CH_2$ Oktahydrometanicotin mit Benzolsulfochlorid und Kalilauge (Blau, B. 26, 1031; vgl. PINNER, B. 26, 768). Prismen (aus Alkohol). F: 143,5°; fast unlöslich in kaltem Alkohol (B.).
- N.N'-Dinitroso-oktahydrometanicotin $C_{10}H_{20}O_2N_4 = H_2C-CH_2-CH\cdot[CH_2]_3\cdot CH_2\cdot N(CH_2)\cdot NO$. B. Beim Behandeln von schwefelsaurem Oktahydrometanicotin in schwach schwefelsaurer Lösung mit Kaliumnitrit (Oliveri, G. 25 I, 71; vgl. Pinner, B. 26, 768; Blau, B. 26, 1030). Gelbliches Öl.

1 - Methyl - 3 - äthyl - 4 - $[\beta$ - amino - äthyl] - piperidin $C_{10}H_{22}N_2 = H_2C \cdot CH(CH_2 \cdot CH_3 \cdot NH_3) \cdot CH \cdot C_2H_5$. B. Neben anderen Produkten aus dem Oxim des $H_2C - N(CH_3) - CH_2$. B. Neben anderen Produkten aus dem Oxim des N-Methyl-cinchotintoxins (Syst. No. 3570) durch Beckmannsche Umlagerung mit Phosphorpentachlorid in Chloroform und Spaltung des Reaktionsprodukts mit siedender Salzsäure (Koenigs, Bernhart, Ibele, B. 40, 2880). — Mit Wasserdampf leicht flüchtig. Beständig gegen Kaliumpermanganat in eiskalter schwefelsaurer Lösung. — $C_{10}H_{22}N_2 + 2$ HCl + 2 AuCl₂ + H_2O . Nadeln (aus verd. Salzsäure). F: 133—135°. — Chloroplatinat. Gelbrote Nadeln (aus verd. Salzsäure). F: 250° (Zers.). — Oxalat $C_{10}H_{22}N_2 + C_2H_2O_4 + H_2O$. Nadeln oder Prismen (aus verd. Alkohol). F: 180—192° (Zers.). Verliert das Krystallwasser bei 110°; das getrocknete Salz zieht wieder Wasser an.

5. 4-Amino-2.2-dimethyl-6-isobutyl-piperidin $C_{11}H_{24}N_2=$

H₂C·CH(NH₂)·CH₂
B. Bei der Reduktion von 2.2-Dimethyl-6-isobutyl-(CH₃)₂CH·CH₂·HC—NH—C(CH₃)₂
piperidon-(4)-oxim ("Isovalerdiacetonaminoxim", Bd. XXI, S. 253) mit Natrium und siedendem Amylalkohol (Harries, D. R. P. 99004; C. 1898 II, 1190; Frdl. 5, 783).—Flüssigkeit. Kp₆₅: 147°.— Beim Erhitzen des salzsauren Salzes mit Natriumnitrit und Salzsäure zum Sieden entsteht das höherschmelzende 4-Oxy-2.2-dimethyl-6-isobutyl-piperidin (Isovalerdiacetonalkamin, Bd. XXI, S. 13) (H., D. R. P. 99005; C. 1898 II, 1190; Frdl. 5, 784).— Hydrochlorid. Nadeln.

2. Monoamine $C_n H_{2n} N_2$.

- 1. Amine $C_7H_{14}N_2$.
- 1. 2-Amino-nortropan, Norisotropylamin $C_7H_{14}N_2$, s. nebenstehende Formel.

2-Amino-tropan, Isotropylamin $C_8H_{16}N_3$, s. nebenstehende Formel. B. Beim Erwärmen von Tropan-carbonsäure-(2)-amid (S. 18) mit Kaliumhypobromit in wäßr. Lösung (Willstätter, Müller, B. 31, 2661). Durch Behandeln von Tropan-carbonsäure-(2)- H_1C —CH—CH2 hydrazid (S. 18) mit Natriumnitrit und verd. Schwefelsäure, Kochen des erhaltenen Azids mit Wasser und Erhitzen des entstandenen Diisotropylharnstoffs mit konz. Salzsäure im Rohr auf 130° (W., M., B. 31, 2665). — Krystalle. F: 8,5°. Kp: 206—207° (korr.). Mischbar mit Wasser. Zieht an der Luft Kohlendioxyd an. Gibt beim Behandeln mit Natriumnitrit und Salzsäure Tropidin (Bd. XX, S. 177). — $C_8H_{16}N_2 + 2HCl$. Tafeln. Sublimiert bei vorsichtigem Erhitzen. Sehr leicht löslich in Wasser, schwer in siedendem, fast unlöslich in kaltem Alkohol. — Quecksilberchlorid-Doppelsalz. Tafeln. Leicht löslich in warmem Wasser. — $C_8H_{16}N_2 + 2HCl + PtCl_4$. Hellorangefarbene Prismen und Tafeln. F: 261° (Zers.). Ziemlich schwer löslich in heißem, schwer in kaltem Wasser, unlöslich in Alkohol. — Pikrat $C_8H_{16}N_2 + 2C_6H_2O_7N_3$. Prismen. F: 236—237° (Zers.). Sehr schwer löslich in kaltem, ziemlich leicht in siedendem Wasser.

N-Phenyl-N'-isotropyl-thioharnstoff $C_{15}H_{21}N_3S = CH_3 \cdot NC_7H_{11} \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. Aus Isotropylamin und Phenylsenföl in Essigester (W., M., B. 31, 2663). — Prismen. F: 138—139°. Fast unlöslich in Wasser, schwer in Äther, sehr leicht in Alkohol, Aceton und Essigester.

- - a) Nortropylamin $C_7H_{14}N_2 = HNC_7H_{11} \cdot NH_2$.

Alkalilabiles 3 - Amino - tropan, Tropylamin C₈H₁₆N₂, s. H₂C—CH—CH₂ nebenstehende Formel. B. Bei der Reduktion von Tropinon-oxim | N·CH₃ CH·NH₂ (Bd. XXI, S. 259) mit Natriumamalgam und Eisessig in warmem | N·CH₃ CH·NH₂ Alkohol (WILLSTÄTTER, MÜLLER, B. 31, 1211). — Flüssigkeit. Erstarrt H₂C—CH—CH₂ noch nicht bei —20°. Kp₇₆₀: 211° (korr.); Kp₁₂: 91—92°. — Wird durch Kochen mit amyl-

¹⁾ Über die sterische Uneinheitlichkeit des Ausgangsmaterials vgl. S. 17 Anm.

alkoholischer Natriumamylat-Lösung zum Teil in Pseudotropylamin umgewandelt (W., M., B. 31, 1213). — $C_8H_{16}N_2 + 2HCl + 2AuCl_2$. Prismen und Blättchen. F: 220—221° (Zers.); sehr schwer löslich in kaltem, ziemlich leicht in heißem Wasser (W., M., B. 31, 2663 Anm.). — $C_8H_{16}N_2 + 2HCl + PtCl_4$. Rote Tafeln (aus Wasser). F: 257° (Zers.); schwer löslich in heißem Wasser (W., M., B. 31, 1212). — Pikrat $C_8H_{16}N_2 + 2C_6H_3O_7N_3$. Blättchen. F: 235° (Zers.); sehr schwer löslich in kaltem, ziemlich schwer in heißem Wasser (W., M., B. 31, 1212).

N-Phenyl-N'-tropyl-thioharnstoff C₁₅H₃₁N₂S = CH₃·NC₇H₁₁·NH·CS·NH·C₆H₅. B. Bei der Einw. von Phenylsenföl auf Tropylamin in Essigester oder in Wasser (W., M., B. 31, 1212, 2664 Anm.). — Tafeln, Prismen oder Nadeln (aus Essigester). F: 142—143°. Fast unlöslich in Wasser, schwer löslich in Äther, leicht in Aceton und heißem Essigester.

Tropyldithiocarbamidsäure C₂H₁₆N₂S₂ = CH₃·NC₇H₁₁·NH·CS₂H. B. Aus Tropylamin und Schwefelkohlenstoff (W., M., B. 31, 1212). — Mikroskopische Blättchen und Stäbchen (aus Wasser). F: 194—195° (Zers.). Schwer löslich in kaltem, löslich in ca. 20 Tln. siedendem Wasser, sehr schwer löslich in organischen Lösungsmitteln.

b) Norpseudotropylamin $C_7H_{14}N_3 = HNC_7H_{11} \cdot NH_2$.

Alkalistabiles 3-Amino-tropan, Pseudotropylamin $C_8H_{16}N_2$, H_2C —CH— CH_3 s. nebenstehende Formel. B. Bei der Reduktion von Tropinon-oxim mit Natrium und siedendem Amylalkohol (Willstätter, Müller, H_2C —CH— CH_3 salkoholischer Natriumamylat-Lösung (W., M., B. 31, 1213). — Nach Piperidin riechende Flüssigkeit. Erstartt nicht im Kältegemisch. Kp_{700} : 213° (korr.); Kp_{20} : 107° (korr.); $Kp_{17,5}$: 98° bis 100° (korr.). Mischbar mit Wasser unter Wärmeentwicklung; löslich in Alkohol und Ather. Stark basisch; fällt aus Metallsalz-Lösungen die Metallhydroxyde aus; zieht an der Luft begierig Kohlendioxyd an unter Bildung von Pseudotropylcarbamidsäure. Wird durch Kochen mit Natriumamylat-Lösung nicht verändert. Ist in verdünnter schwefelsaurer Lösung gegen Kaliumpermanganat beständig. — $C_8H_{16}N_2+2$ HCl. Hygroskopische Nadeln (aus Alkohol). Sublimierbar. Sehr leicht löslich in Wasser, fast unlöslich in kaltem, schwer in heißem Alkohol. — $C_8H_{16}N_2+2$ HCl+2 AuCl₂. Krystallisiert aus Wasser wasserfrei oder mit wechselndem Krystallwassergehalt in Blättchen, Nadeln oder Prismen. F: 223—224° (Zers.). Fast unlöslich in kaltem, ziemlich schwer löslich in heißem Wasser. — $C_8H_{16}N_2+2$ HCl+PtCl₄+2H₃O. Orangegelbe Blättchen. Wird bei 105° wasserfrei und ist dann sehr hygroskopisch. F: 257° (Zers.). Leicht löslich in heißem, schwer in kaltem Wasser, unlöslich in Alkohol. — Pikrat $C_8H_{16}N_2+2C_6H_3O_7N_2$. Gelbe Spieße. F: 236—238° (Zers.). Leicht löslich in heißem, sehr schwer in kaltem Wasser und in heißem Alkohol.

Pseudotropylcarbamidsäure $C_0H_{16}O_2N_2 = CH_3 \cdot NC_7H_{11} \cdot NH \cdot CO_2H$. B. Aus Pseudotropylamin beim Aufbewahren unter Luftzutritt oder beim Einleiten von Kohlendioxyd in die äther. Lösung (W., M., B. 81, 1209). — Sublimiert in Nadeln. Zersetzt sich bei ca. 100°.

N-Phenyl-N'-pseudotropyl-thioharnstoff $C_{15}H_{21}N_3S=CH_3\cdot NC_7H_{11}\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. B. Aus Pseudotropylamin und Phenylsenföl in Methanol (W., M., B. 31, 1210). — Nadeln und Prismen (aus Essigester). F: 172°. Sehr schwer löslich in Wasser und Äther, schwer in kaltem, leicht in heißem Essigester, sehr leicht in Alkohol und Aceton.

Pseudotropyldithiocarbamidsäure $C_9H_{10}N_9S_2=CH_3\cdot NC_7H_{11}\cdot NH\cdot CS_9H$. B. Aus Pseudotropylamin und Schwefelkohlenstoff in Alkohol oder Äther (W., M., B. 31, 1210). — Prismen oder Blättchen (aus Wasser). F: 204—205° (Zers.). Löslich in ca. 50 Tln. siedendem Wasser, sehr schwer in kaltem Wasser und den üblichen organischen Lösungsmitteln. — Gibt in wäßr. Lösung mit Quecksilberchlorid einen weißen Niederschlag, der sich beim Aufkochen nicht verändert.

2. 3-Amino-granatanin, Granatylamin und Pseudo-granatylamin $\mathrm{C_8H_{16}N_{2}},$ s. nebenstehende Formel.

H₂C — CH — OH₂ |⁵ |¹ |² | H₂O⁷ |⁵NH |⁶CH · NH₂ H₂C — CH — CH₂

- a) Granatylamin C₈H_{1e}N₂ = HNC₈H_{1s}·NH₂. B. Neben Pseudogranatylamin bei der Reduktion von Granatonin-oxim (Bd. XXI, S. 261) in alkoh. Lösung mit Natriumamalgam und Essigsäure bei 50° (PICCININI, CORTESE, G. 31 I, 566). C₈H_{1e}N₂+2HCl+2AuCl₂. Goldgelbe Krystalle. F: 238—239°. Leichter löslich in Wasser als das Chloroaurat des Pseudogranatylamins.
- 9-Methyl-granatylamin C₉H₁₈N₂ = CH₂·NC₈H₁₈·NH₂. B. Bei der Reduktion von Pseudopelletierin-oxim (Bd. XXI, S. 262) in alkoh. Lösung mit Natriumamalgam und Essigsäure bei 50° (Piccinini, Quartaroli, G. 29 II, 119). Farbloses Öl. Siedet bei 235—240°, zuletzt unter geringer Zersetzung; Kp₆₀: 160—170°. Löslich in Wasser. Absorbiert begierig Kohlendioxyd aus der Luft. Geht bei längerem Kochen mit 30°/oiger Natronlauge oder mit

amylalkoholischer Natriumamylat-Lösung in 9-Methyl-pseudogranatylamin über. — $C_9H_{10}N_2+2HCl+2AuCl_3$. Nadeln. F: 226° (geringe Zersetzung). — Chloroplatinat. Goldgelbe Blättchen. F: 260—261° (Zers.). — Pikrat $C_9H_{10}N_2+2C_6H_3O_7N_3$. Goldgelbe Blättchen (aus verd. Alkohol). F: 239—240° (Zers.). Löslich in Wasser, sehr schwer löslich in absol. Alkohol.

N - Phenyl - N' - [9-methyl - granatyl] - thioharnstoff $C_{16}H_{23}N_3S = CH_3 \cdot NC_8H_{13} \cdot NH \cdot CS \cdot NH \cdot C_8H_5$. B. Aus 9-Methyl-granatylamin und Phenylsenföl in Methanol (P., Qu., G. 29 II, 120). — Prismen (aus Essigester). F: 132—133°. Löslich in Methanol, unlöslich in Wasser, sehr leicht löslich in Alkohol und Aceton.

- b) Pseudogranatylamin $C_8H_{16}N_2 = HNC_8H_{13}\cdot NH_2$. B. Aus Granatonin-oxim bei der Reduktion mit Natrium und siedendem Amylalkohol oder, neben Granatylamin, bei der Reduktion in alkoh. Lösung mit Natriumamalgam und Essigsäure bei 50° (Piccinini, Cortese, G. 31 I, 564, 566). Prismen (aus Petroläther). F: 125°. Hygroskopisch. Zieht an der Luft begierig Kohlendioxyd an. Chloroaurat. Gelbe Prismen. F: 208° (geringe Zersetzung). Schwer löslich in Wasser. Chloroplatinat. Hellorangegelbe Prismen. F: 256°. Schwer löslich in Salzsäure. Pikrat $C_8H_{16}N_2 + 2C_6H_3O_7N_3$. Gelbe Prismen. Zersetzt sich bei 230—247°. Schwer löslich in Alkohol.
- 9-Methyl-pseudogranatylamin $C_9H_{18}N_2=CH_3\cdot NC_8H_{13}\cdot NH_2$. B. Bei der Reduktion von N-Methyl-granatonin-oxim mit Natrium und siedendem Amylalkohol (Piccinini, Quartaroli, G. 29 II, 121). Beim Kochen von 9-Methyl-granatylamin mit 30%/aiger Natronlauge oder mit amylalkoholischer Natriumamylat-Lösung (P., Qu., G. 29 II, 123). Farbloses Öl. Kp: 232—236%. Löslich in Wasser. Stark alkalisch. Absorbiert Kohlendioxyd unter Bildung einer bei 123% schmelzenden, krystallinen Verbindung. $C_9H_{18}N_2+2HCl+2AuCl_3$. Hellgelbe Nadeln (aus salzsäurehaltigem Wasser). F: 231—232% (geringe Zersetzung). Chloroplatinat. Nadeln. F: 265% (Zers.). Pikrat $C_9H_{18}N_2+2C_6H_3O_7N_3$. Mikrokrystallinisches Pulver. F: 239—240% (Zers.). Sehr schwer löslich in absol. Alkohol.

N-Phenyl-N'-[9-methyl-pseudogranatyl]-thioharnstoff $C_{16}H_{25}N_3S=CH_3\cdot NC_8H_{18}\cdot NH\cdot CS\cdot NH\cdot C_8H_5$. B. Aus 9-Methyl-pseudogranatylamin und Phenylsenföl in Methanol (P., Qu., G. 29 II, 122). — Nadeln (aus Essigester). F: 176°.

Pseudogranatylamin-N.N'-bis-thiocarbonsäureanilid $C_{22}H_{26}N_4S_2=C_6H_5\cdot NH\cdot CS\cdot NC_6H_{13}\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. B. Aus Pseudogranatylamin und Phenylsenföl in Alkohol (Piccinini, Cortese, G. 31 I, 565). — Farbloses, amorphes Pulver (aus Methanol). F: 216°.

3. Amine $C_9H_{18}N_2$.

- 1. 3-[δ -Amino- α -butenyl]-piperidin $C_9H_{18}N_2 = H_8C \cdot CH_2 \cdot CH \cdot CH \cdot CH_2 \cdot CH_2 \cdot NH_3$. H.C·NH·CH.
- 3-[δ -Methylamino- α -butenyl]-piperidin (?), Hexahydrometanicotin $C_{10}H_{20}N_3 = H_2C \cdot CH_3 \cdot CH \cdot CH : CH_2 \cdot CH_3 \cdot NH \cdot CH_3$ (?). B. Neben Oktahydrometanicotin durch $H_2C \cdot NH \cdot CH_3$ Reduktion von Metanicotin (S. 438) mit Natrium und Alkohol (MAASS, HILDEBRANDT, B. 39, 3698; vgl. M., B. 38, 1831). Wasserhelles, nach Piperidin riechendes Öl; die Dämpfe riechen stechend; Kp: 248—250°; flüchtig mit Wasserdampf; D_4^{∞} : 0,9578; optisch inaktiv; leicht löslich in Alkohol und Äther, unlöslich in Wasser (M., H.). $C_{10}H_{20}N_2 + 2HCl$. Hygroskopisches Öl. Leicht löslich in Wasser, Alkohol und Chloroform, schwer in Aceton, unlöslich in Alkohol, unlöslich in Wasser, Aceton und Ligroin (M., H.). $C_{10}H_{20}N_2 + 2HCl + 2AuCl_3$. Zähes, dunkelrotes Öl. Löslich in Alkohol, unlöslich in Wasser, Aceton und Ligroin (M., H.). $C_{10}H_{20}N_2 + 2HCl + PtCl_4$. Gelbrote Prismen (aus Wasser). F: 225° (Zers.); leicht löslich in warmem, sehr schwer in kaltem Wasser, unlöslich in Äther und Ligroin (M., H.).
- 2. $4 \beta Amino dthyll 3 vinyl piperidin C_9H_{18}N_3 = H_2C \cdot CH(CH_2 \cdot CH_3 \cdot NH_2) \cdot CH \cdot CH \cdot CH_2$ $H_2C NH CH_3$ 1 Methyl $[4 \beta amino athyl] 3 vinyl piperidin C_{10}H_{20}N_2 = H_2C \cdot CH(CH_2 \cdot CH_2 \cdot NH_2) \cdot CH \cdot CH \cdot CH_3$ B. Neben anderen Produkten aus dem Oxim des $H_2C N(CH_3) CH_3$ N-Methyl-cinchotoxins (Syst. No. 3571) durch Beckmannsche Umlagerung mit Phosphorpentachlorid in Chloroform und Zerlegung des Reaktionsprodukts mit siedender verdünnter

Salzsäure (Koenigs, Bernhart, Ibele, B. 40, 2876). — Farbloses, schwach basisch riechendes Öl. Kp₇₈₅: ca. 234°. Mit Wasserdampf flüchtig. Ziemlich leicht löslich in Wasser. Entfärbt in eiskalter verdünnter schwefelsaurer Lösung sofort Kaliumpermanganat. — $C_{10}H_{20}N_2 + 2HCl + 2AuCl_3 + H_2O$. Krystalle. F: ca. 102°. Leicht löslich in Alkohol. — Chloroplatinat. Krystallinisch. Zersetzt sich bei 240°. Ziemlich leicht löslich in Wasser, sehr schwer in Alkohol. — Pikrat. Nadeln oder Tafeln. — Oxalat $C_{10}H_{20}N_2 + C_2H_2O_4 + H_2O$. Nadeln oder Warzen (aus verd. Alkohol). F: ca. 190° (Aufschäumen). Verliert das Krystallwasser bei 110°; das getrocknete Salz ist sehr hygroskopisch; es zersetzt sich bei längererem Erhitzen auf 130°. Sehr leicht löslich in Wasser und Methanol, sehr schwer in Alkohol, fast unlöslich in Chloroform und Aceton. — Neutrales Tartrat. Krystallpulver. Sehr schwer löslich in Alkohol.

3. Monoamine $C_n H_{2n-2} N_2$.

2-Amino-pyrrol $C_4H_6N_2 = \frac{HC--CH}{HC\cdot NH\cdot C\cdot N$

2-[Carbäthoxy-amino]-pyrrol, α -Pyrryl-carbamidsäure-äthylester, α -Pyrryl-urethan $C_7H_{10}O_2N_2=\frac{CH}{HC\cdot NH\cdot C\cdot NH\cdot CO_2\cdot C_2H_5}$ ist desmotrop mit 5-[Carbäthoxy-imino]- A^2 -pyrrolin, Bd. XXI, S. 254.

4. Monoamine $C_n H_{2n-4} N_2$.

1. Amine C₅H₆N₂.

1. 2 - Amino - pyridin bezw. α - Pyridon - imid I. α - NH₂ II. eim Erhitzen mit Zinkchlorid-Ammoniak auf 220° (O. FISCHER, B. 32, 1301). Aus 2-Amino-pyridin-carbonsaure-(3) beim Erhitzen auf 310° (Philips, A. 288, 263). Beim Erhitzen von 6-Amino-pyridin-carbonsäure-(3) (MARCKWALD, B. 26, 2189; 27, 1320). Aus Picolinsäureamid beim Erwärmen mit Kaliumhypobromit-Lösung (H. MEYER, M. 15, 173; Camps, Ar. 240, 347). — Blättchen (aus Ligroin). F: 56° (Ma.; Ph.; Fi.; Mey.). Kp: 204° (Ma.), 210° (Ph.). Ist bei vorsichtigem Erhitzen sublimierbar (Mey.). Sehr leicht löslich in fast allen Lösungsmitteln außer Ligroin (MA.); schwer löslich in starken wäßrigen Alkalien (Ma., B. 27, 1320). — Liefert in konz. Salzsäure beim Behandeln mit konz. Nitrit-Lösung 2-Chlor-pyridin (Ma., B. 27, 1322). Beim Behandeln mit Natriumnitrit in schwefelsaurer Lösung in der Kälte erhält man 2-Oxy-pyridin (C.). Bei der Kondensation mit Salicylaldehyd entsteht 2-Salicylalamino-pyridin (Fi.; STEINHÄUSER, DIEPOLDER, J. pr. [2] 98 [1916], 392; FEIST, Ar. 1984, 106). Mit 4-Nitro-benzaldehyd bildet sich ein bei 148° schmelzendes Produkt (FI.). Beim Behandeln mit Benzoylchlorid in alkal. Lösung entsteht ein Dibenzoylderivat (S. 429) (Ma., B. 27, 1321; vgl. Tschitschibabin, Bylinkin, Ж. 53 [1921], 225; B. 55 [1922], 998); dasselbe Produkt erhält man beim Zusammenschmelzen mit Benzoe-225; B. 60 [1922], 998); classelve Frodukt ernatt man tenn Luszammenstamielzen mit Lenzoesäureanhydrid (C.). 2-Amino-pyridin liefert bei 10-stdg. Kochen mit Schwefelkohlenstoff
in Alkohol N.N'-Di-α-pyridyl-thioharnstoff vom Schmelzpunkt 163°; daneben bilden sich
eine Verbindung vom Schmelzpunkt 147° (N.N'-Di-α-pyridyl-thioharnstoff oder vielleicht
N.N'-Di-α-pyridyl-isothioharnstoff) (S. 430) sowie Krystalle vom Schmelzpunkt 85° (C.;
vgl. Feist, Ar. 1984, 104, 110; vgl. auch O. Fischer); Feist erhielt die bei 147°
schmelzende Verbindung auch beim Stehenlassen von 2-Amino-pyridin mit überschüssigem Schwefelkohlenstoff in Äther. — 2-Amino-pyridin schmeckt schwach bitter und wirkt Schwetelkohlenstoff in Ather. — 2-Amino-pyridin schmeckt schwach bitter und wirkt anästhesierend (C.). — Hydrochlorid. Zerfließliche Krystalle (Ma., B. 27, 1321; MEY., M. 15, 175). — 2C₅H₆N₂ + H₂SO₄. Prismen. Sehr leicht löslich in Wasser, unlöslich in Alkohol (Ma., B. 27, 1321). — C₅H₆N₂ + HNO₃. Spieße. Sehr leicht löslich in Wasser, mäßig in Alkohol (Ma., B. 27, 1321). — Chloroaurat. Granatrote Nadeln. F: 231° (MEY., M. 28, 441). Schwer löslich — 2C₅H₆N₂ + 2 HCl + PtCl₄. Orangefarbene Säulen. F: 231°; schwer löslich in Alkohol und in kaltem Wasser (Ma., B. 27, 1321). — 2C₅H₆N₂ + 2 HCl + PtCl₄ + H₂O. Bräunlichgelbe Krystalle (MEY., M. 15, 175). Triklin (asymmetrisch?) (Stengel, M. 15, 175, 189; vgl. Groth, Ch. Kr. 5, 668). F: 227—228° (unkorr.) (MEY.). — Pikrat C₅H₈N₂ + C₆H₂O₇N₃. Gelbe Nadeln. F: 216—217° (Ma., B. 27, 1321). Sehr achwer löslich 27, 1321). Sehr schwer löslich.

- Dibenzoylderivat des 2-Amino-pyridins $C_{19}H_{14}O_{2}N_{2}$, Formel I oder II. Zur Zusammensetzung und Konstitution vgl. TSCHITSCHIBABIN, BYLINKIN, \mathcal{H} . 53 [1921], 225; B.

 55 [1922], 998. B. Aus 2-Amino-pyridin beim Behandeln mit Benzoylchlorid in alkal. Lösung (MARCKWALD, B. 27, 1321). Aus 2-Amino-pyridin durch Zusammenschmelzen mit Benzoesäureanhydrid (Camps, Ar. 240, 350). Nadeln (aus Alkohol). F: 165°; unlöslich in Wasser, schwer löslich in kaltem Alkohol, leicht in Äther und Benzol (Ma.). Löst sich in starken Säuren unter Zersetzung (Ma.; vgl. TSCH., B.).
- **2-Anilino-pyridin** $C_{11}H_{10}N_2 = NC_5H_4 \cdot NH \cdot C_6H_5$. B. Beim Erhitzen von 2-Chlorpyridin mit Anilin-zinkehlorid auf 200° (O. FISCHER, B. 32, 1302). Aus 2-Chlor-pyridin beim Erhitzen mit 2-Amino-benzoesäure oder 4-Amino-benzoesäure in Gegenwart von Zinkchlorid auf 180° (F., B. 35, 3675). Blättehen. F: 108°; leicht löslich in Alkohol, Äther und Benzol, schwer in Wasser und Ligroin; flüchtig mit Wasserdampf. Salpetersäure färbt die Lösung in konz. Schwefelsäure schwach gelb (F., B. 32, 1302). Salze: F., B. 32, 1302. $C_{11}H_{10}N_2 + HCl + AuCl_3$. Rötliche Prismen (aus verd. Alkohol). F: 149°. $2C_{11}H_{10}N_2 + 2HCl + PtCl_4$. Rötliches, krystallinisches Pulver (aus verd. Alkohol). F: 202°.
- 2-Anilino-pyridin-hydroxymethylat $C_{12}H_{14}ON_2 = (HO)(CH_3)NC_5H_4\cdot NH\cdot C_6H_5$. Salze vgl. unter N-Methyl- α -pyridon-anil $CH_3\cdot NC_5H_4:N\cdot C_6H_5$ (Bd. XXI, S. 269).
- 2-α-Naphthylamino-pyridin C₁₅H₁₂N₂ = NC₅H₄·NH·C₁₀H₇. B. Beim Erhitzen von 2-Chlor-pyridin mit α-Naphthylamin und Zinkchlorid auf 200° (O. Fischer, B. 35, 3675).

 Nadeln (aus verd. Alkohol). F: 115°. Ziemlich leicht löslich in Äther, Benzol und Alkohol, schwerer in Ligroin, sehr schwer in Wasser. Die bläuliche Lösung in konz. Schwefelsäure wird bald schmutziggelb, auf Zusatz von Salpetersäure grün.
- 2- β -Naphthylamino-pyridin $C_{15}H_{12}N_2=NC_5H_4\cdot NH\cdot C_{10}H_7$. B. Aus 2-Chlor-pyridin beim Erhitzen mit β -Naphthylamin (O. FISCHER, B. 35, 3675). Blättchen (aus verd. Alkohol). F: 133°. Löst sich in konz. Schwefelsäure mit citronengelber Farbe; bei Zusatz von Salpetersäure wird die Lösung rot.
- 2-o-Anisidino-pyridin $C_{12}H_{12}ON_2 = NC_5H_4 \cdot NH \cdot C_6H_4 \cdot O \cdot CH_3$. B. Beim Erhitzen von 2-Chlor-pyridin mit o-Anisidin und Zinkchlorid auf 220—230° (O. FISCHER, B. 35, 3675). Tafeln (aus Ligroin). F: 63—64°. Löst sich in konz. Schwefelsäure mit violetter Farbe.
- 2-p-Anisidino-pyridin $C_{12}H_{12}ON_2 = NC_5H_4\cdot NH\cdot C_6H_4\cdot O\cdot CH_3$. B. Beim Erhitzen von 2-Chlor-pyridin mit p-Anisidin und Zinkehlorid auf 220—230° (O. FISCHER, B. 35, 3674). Blättchen (aus Ligroin). F: 85°. Leicht löslich in Alkohol, Äther und Benzol, schwerer in Ligroin, sehr schwer in Wasser. Löst sich in konz. Schwefelsäure mit violetter Farbe. Hydrochlorid. Krystalle. $C_{12}H_{12}ON_2 + HCl + AuCl_3$. Rote Prismen (aus verd. Alkohol). F: 150°. $2C_{12}H_{12}ON_2 + 2HCl + PtCl_4$. Gelber, krystalliner Niederschlag. F: 188°.
- **2-p-Phenetidino-pyridin** $C_{13}H_{14}ON_2 = NC_5H_4 \cdot NH \cdot C_8H_4 \cdot O \cdot C_2H_5$. B. Beim Erhitzen von 2-Chlor-pyridin mit p-Phenetidin und Zinkchlorid auf 220—230° (O. FISCHER, B. 35, 3675). Nadeln (aus verd. Alkohol). F: 94°. Leicht löslich in Alkohol, Äther und Benzol, schwerer in Ligroin. Gibt mit konz. Schwefelsäure eine violette Färbung.
- 2-Salicylalamino-pyridin $C_{12}H_{10}ON_2 = NC_5H_4 \cdot N : CH \cdot C_6H_4 \cdot OH$. B. Aus 2-Amino-pyridin und Salicylaldehyd (O. FISCHER, B. 32, 1301; STEINHÄUSER, DIEPOLDER, J. pr. [2] 93 [1916], 392; FEIST, Ar. 272 [1934], 106). Hellgelbe Nadeln (aus Alkohol). F: 65° (FEI.), 66—67° (ST., D.), 69° (FI.). Leicht löslich in Alkohol, Aceton, Äther und Chloroform, unlöslich in Wasser (FEI.).
- **2-Acetamino-pyridin** $C_7H_8ON_2 = NC_5H_4 \cdot NH \cdot CO \cdot CH_3$. B. Aus 2-Amino-pyridin beim Kochen mit Acetanhydrid (Camps, Ar. **240**, 349). Prismen (aus Ligroin + Benzol). F: 71°. Leicht löslich in Wasser und den meisten übrigen Lösungsmitteln. Schmeckt bitter und wirkt anästhesierend.
- α-Pyridyl-carbamidsäure-äthylester, α-Pyridyl-urethan $C_8H_{10}O_2N_2 = NC_5H_4 \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Aus 2-Amino-pyridin und Chlorameisensäureäthylester in Äther (CAMPS, Ar. 240, 350). Blättchen (aus Alkohol), Tafeln (aus Äther), Nadeln (aus Wasser). F: 105°. Liefert beim Erhitzen mit Anilin N-Phenyl-N'-α-pyridyl-harnstoff.
- α-Pyridyl-harnstoff $C_0H_7ON_3 = NC_5H_4 \cdot NH \cdot CO \cdot NH_2$. B. Beim Kochen von salzsaurem 2-Amino-pyridin mit Kaliumcyanat in konzentrierter wäßriger Lösung (O. FISCHER, B. 32, 1301). Prismen (aus Alkohol). F: 195°.

- N-Phenyl-N'- α -pyridyl-harnstoff $C_{12}H_{11}ON_2 = NC_5H_4 \cdot NH \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Erhitzen von α -Pyridyl-urethan mit Anilin (Camps, Ar. 240, 351). Nadeln (aus Alkohol). F: 180°.
- N.N'-Di- α -pyridyl-harnstoff $C_{11}H_{10}ON_4 = (NC_5H_4\cdot NH)_2CO$. B. Beim Erhitzen von 2-Amino-pyridin mit α -Pyridyl-urethan (CAMPS, Ar. 240, 350). Neben α -Pyridyl-urethan beim Behandeln von 2-Amino-pyridin mit Chlorameisensäureäthylester (C.). Nadeln (aus Alkohol). F: 175°. Ziemlich schwer löslich in heißem Wasser.
- N-Phenyl-N'- α -pyridyl-thioharnstoff $C_{12}H_{11}N_3S=NC_5H_4\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. B. Aus 2-Amino-pyridin und Phenylsenföl beim Erhitzen für sich (CAMPS, Ar. 240, 351) oder beim Kochen in Alkohol (MABCKWALD, B. 27, 1322). Tafeln (aus Alkohol). F: 168° (M.), 171° (C.). Schwer löslich in Wasser, Äther, kaltem Alkohol und Benzol, leicht in Eisessig (M.).
- N.N'-Di-α-pyridyl-thioharnstoff C₁₁H₁₀N₄S = (NC₅H₄·NH)₂CS.
 a) Höherschmelzende Form. B. Neben der niedrigerschmelzenden Form (s. u.) und einem bei 85° schmelzenden Produkt beim Kochen von 2-Amino-pyridin mit Schwefelkohlenstoff in Alkohol (Camps, Ar. 240, 351; Feist, Ar. 272 [1934], 110). Bei kurzem Erhitzen der niedrigerschmelzenden Form mit schwachen Säuren (Fei.). Nadeln oder Prismen (aus Alkohol). F: 163° (C.; Fei.). Sehr schwer löslich in heißem Wasser, schwer in Benzol und Äther (C.). Liefert beim Erhitzen mit konz. Salzsäure 2-Amino-pyridin, Schwefelwasserstoff und Kohlendioxyd (C.).
- b) Niedrigerschmelzende Form [vielleicht N.N'-Di- α -pyridyl-isothioharn-stoff (NC₅H₄·N:)(NC₅H₄·NH)C·SH]. B. Beim Kochen von 2-Amino-pyridin mit Schwefelkohlenstoff in Alkohol (Ö. FISCHER, B. 32, 1301; CAMPS, Ar. 240, 351; vgl. FEIST, Ar. 272 [1934], 104). Bei längerer Einw. von überschüssigem Schwefelkohlenstoff auf 2-Amino-pyridin in Äther (FEI.). Krystalle (aus Wasser oder Alkohol). F: 147° (C.; FI.; FEI.). Lagert sich bei kurzem Erhitzen mit schwachen Säuren in die höherschmelzende Form um (FEI.).
- N.N'-Di- α -pyridyl-o-phenylendiamin $C_{16}H_{14}N_4=(NC_5H_4\cdot NH)_2C_6H_4$. B. Aus 2-Chlor-pyridin beim Erhitzen mit o-Phenylendiamin und Zinkchlorid unter Druck auf 2000 (O. FISCHER, B. 35, 3675). Blättchen (aus verd. Alkohol). Färbt sich leicht rosa. F: 1660 bis 1670. Leicht löslich in Alkohol, Methanol und Benzol, schwer in Äther, sehr schwer in Ligroin und Wasser. Wird beim Behandeln mit Quecksilberchlorid violett. Die Lösung in konz. Schwefelsäure wird beim Zufügen von Salpetersäure braunrot. $C_{16}H_{14}N_4+2HCl+PtCl_4$. Gelbes, krystallines Pulver (aus verd. Alkohol).
- N.N'-Di- α -pyridyl-m-phenylendiamin $C_{1e}H_{14}N_4 = (NC_5H_4\cdot NH)_2C_6H_4$. B. Beim Erhitzen von 2-Chlor-pyridin mit m-Phenylendiamin und Zinkchlorid auf 200° (O. FISCHER, B. 35, 3676). Nadeln (aus verd. Alkohol). F: 160°.
- N.N'-Di- α -pyridyl-p-phenylendiamin $C_{16}H_{14}N_4 = (NC_5H_4 \cdot NH)_2C_6H_4$. B. Beim Erhitzen von 2-Chlor-pyridin mit p-Phenylendiamin und Zinkchlorid auf 200° (O. FISCHER, B. 35, 3676). Nadeln (aus verd. Alkohol). Färbt sich leicht violett. F: 200—201°. Die Lösung in konz. Schwefelsäure ist bläulichgrün und wird auf Zusatz von Salpetersäure blutrot. $C_{16}H_{14}N_4 + 2HCl + PtCl_4$. Gelbe, krystalline Flocken (aus Alkohol).
- 2-Phenylnitrosamino-pyridin, Phenyl- α -pyridyl-nitrosamin $C_{11}H_{\theta}ON_{\theta}=NC_{\theta}H_{4}\cdot N(NO)\cdot C_{\theta}H_{5}\cdot B$. Aus 2-Anilino-pyridin beim Behandeln mit Nitrit in essigsaurer Lösung (O. FISCHER, B. 32, 1302). Hellgelbe Prismen. F: 102°. Ziemlich leicht löslich in Alkohol, Äther, Benzol und Ligroin; löslich in verd. Salzsäure.
- N.N'- Dinitroso N.N'- di α pyridyl o phenylendiamin, o Phenylen bis-[α -pyridyl-nitrosamin] $C_{16}H_{12}O_2N_6=[NC_5H_4\cdot N(NO)]_2C_6H_4$. B. Aus N.N'-Di- α -pyridyl-o-phenylendiamin in Eisessig bei Zusatz einer wäßr. Natriumnitrit-Lösung unter Kühlung (O. FISCHER, B. 35, 3676). Hellgelbe Prismen. F: 136°.
- 3.5-Dichlor-2-amino-pyridin C₅H₄N₂Cl₂, s. nebenstehende Formel. B. Cl. Cl. Beim Erhitzen von 2.3.5-Trichlor-pyridin mit einer Mischung aus gleichen Teilen Alkohol und konzentriertem wäßrigem Ammoniak im Rohr auf 180° (Sell, Soc. 93, 2002). Aus 3.5-Dichlor-pyridin-carbonsäure-(2)-amid beim Behandeln mit Brom und Natronlauge (S.). Prismen oder Nadeln (aus verd. Alkohol). F: 84—85°. Leicht löslich in Alkohol und Aceton, sehr schwer in kaltem Wasser. Liefert beim Erwärmen mit Nitrosylschwefelsäure und Schwefelsäure und Kochen der mit Wasser verd. Lösung 3.5-Dichlor-2-oxy-pyridin. 2C₅H₄N₂Cl₂+2HCl+PtCl₄+2H₂O. Orangegelbe Prismen.

- 3.4.5-Trichlor-2-amino-pyridin C₅H₈N₂Cl₃, s. nebenstehende Formel. Zur Konstitution vgl. Sell, Dootson, Soc. 77, 771. B. Entsteht neben anderen Cl. Cl. Verbindungen durch wochenlanges Einleiten von Chlor in mit Chlorwasserstoff gesättigtes Pyridin bei 115—120° und folgende Destillation mit Soda-Lösung (S., D., Soc. 75, 982). Aus der Verbindung C₁₀HON₂Cl₉ (Bd. XX, S. 210) beim Behandeln mit überschüssiger 10%iger Natronlauge und folgenden Destillieren mit Wasserdampf oder beim Erwärmen mit 80°/oiger Schwefelsäure, im letzten Fall neben der Verbindung C₁₀HO₂N₂Cl₇ (Bd. XX, S. 211), (S., D., Soc. 79, 903). Aus 3.4.5-Trichlor-pyridin-carbonsäure-(2)-amid beim Behandeln mit Brom und Kallauge (S., Soc. 87, 804). Nadeln (aus Alkohol). F: 160—161° (unkorr.) (S.). Fast unlöslich in kaltem Wasser, schwer löslich in den meisten organischen Lösungsmitteln (S., D., Soc. 75, 982). Liefert beim Erhitzen mit Phosphorpentachlorid im Rohr auf 220—225° 3.4.5.6-Tetrachlor-2-amino-pyridin (S., D., Soc. 77, 773). Beim Behandeln mit Kaliumnitrit in schwefelsaurer Lösung und Erwärmen der Reaktionsflüssigkeit erhält man 3.4.5-Trichlor-2-oxy-pyridin (S., D., Soc. 77, 773). 2C₅H₂N₂Cl₂ + 2 HCl + PtCl₄. Goldgelbe Nadeln (S., D., Soc. 75, 983).
- 3.5.6-Trichlor-2-amino-pyridin C₅H₃N₂Cl₃, s. nebenstehende Formel. Cl. Zur Konstitution vgl. Sell, Dootson, Soc. 77, 772. B. Aus Tetrachloriso-Cl. N. NH₂ nicotinsäure beim Erhitzen mit überschüssigem Ammoniak auf 150—160° (S., D., Soc. 71, 1083). Krystalle (aus Alkohol), Nadeln (aus Äther). F: 158—160°; leicht löslich in heißem Alkohol, löslich in Aceton und heißem Eisessig, mäßig löslich in Äther, sehr schwer in Wasser (S., D., Soc. 71, 1083). Liefert beim Erhitzen mit Phosphoroxychlorid und Phosphorpentachlorid im Rohr auf 220—225° 3.4.5.6-Tetrachlor-2-amino-pyridin (S., D., Soc. 77, 774).
- 3.4.5.6-Tetrachlor-2-amino-pyridin C₅H₂N₂Cl₄, s. nebenstehende Formel.

 B. Neben 2.3.5.6-Tetrachlor-4-amino-pyridin aus Pentachlorpyridin beim Erclinitzen mit alkoh. Ammoniak auf 100—110° (Sell, Dootson, Soc. 73, 780). Aus 3.4.5-Trichlor-2-amino-pyridin beim Erhitzen mit Phosphorpentachlorid im Rohr auf 220—225° (S., D., Soc. 77, 773). Aus 3.5.6-Trichlor-2-amino-pyridin beim Erhitzen mit Phosphoroxychlorid und Phosphorpentachlorid im Rohr auf 220—225° (S., D., Soc. 77, 774). Aus β-Oxy-glutarsäurediamid beim Kochen mit Phosphorpentachlorid und Erhitzen der erhaltenen, bei 143—144° (unkorr.) schmelzenden Verbindung mit Phosphorpentachlorid im Rohr auf 220—230° (S., D., Soc. 77, 235). Beim Erhitzen von 6-Chlor-2-amino-pyridin-carbonsäure-(4) mit Phosphorpentachlorid im Rohr auf 210—220° (S., D., Soc. 77, 236). Aus 6-Amino-2-oxy-pyridin-carbonsäure-(4) beim Erhitzen mit Phosphorpentachlorid im Rohr auf 230—240° (S., D., Soc. 77, 237). Nadeln (aus Alkohol oder Wasser). F: 174—175° (unkorr.) (S., D., Soc. 73, 781). Löslich in heißem Alkohol, Äther, Benzol und Chloroform, schwer löslich in siedendem Wasser (S., D., Soc. 73, 781). Absorptionsspektrum: Purvis, C. 1909 I, 765; Soc. 95, 296.
- 5-Brom-2-amino-pyridin C₅H₅N₂Br, s. nebenstehende Formel. Zur Konstitution vgl. Tschitschibabin, Tjashelowa, Ж. 50 [1920], 483; C. 1923 III, 1021. B. Neben anderen Produkten aus Picolinsäureamid beim Behandeln mit Brom und Kalilauge (Camps, Ar. 240, 348). Krystalle (aus Benzol). F: 137° (C.; Tsch., Tja.).
- 3.5-Dibrom-2-amino-pyridin C₅H₄N₂Br₂, s. nebenstehende Formel. Zur Br. Konstitution vgl. Tschitschibabin, Tjashelowa, Ж. 50 [1920], 483; C. 1923 III, 1021. B. Neben anderen Produkten aus Picolinsäureamid beim Behandeln mit Brom und Kalilauge (Camps, Ar. 240, 349). Nadeln (aus verd. Alkohol). F: 106—107° (C.; vgl. Tsch., Tja.), 105° (Tsch., Tja.).
- 2. 3-Amino-pyridin C₅H₆N₂, s. nebenstehende Formel. B. Aus Nicotinsaureamid beim Erwärmen mit alkal. Kaliumhypobromit-Lösung auf 70°, neben anderen Produkten (Pollak, M. 16, 54; Camps, Ar. 240, 354; Philips, Ch. Z. 18, 642; A. 288, 263). Aus β-Pyridyl-urethan (S. 432) beim Kochen mit rauchender Salzsäure (Curtus, Mohr, B. 81, 2494). Aus N.N'-Di-β-pyridyl-harnstoff (S. 432) beim Erhitzen mit rauchender Salzsäure im Rohr auf 125° (Cu., M.). Aus dem Hydrochlorid der 3-Amino-pyridin-carbonsäure-(4) beim Erhitzen auf 250° (Blumenfeld, M. 16, 707; vgl. Gabriel, Colman, B. 35, 2833), ferner aus 3-Amino-pyridin-carbonsäure-(4) beim Erhitzen der mit Eisessig und Acetanhydrid (B.) sowie bei der Destillation mit Kalk (G., Co.). Blättchen (aus Benzol + Ligroin). F: 65° (Ph., A. 288, 264), 64° (unkorr.) (Po.; Ca.). Kp: 250—252° (Po.), 251° (Ca.). Sehr leicht löslich in Wasser, Alkohol, Benzol und Äther, unlöslich in Ligroin; ziemlich hygroskopisch (Po.). Liefert beim Behandeln mit Kaliumnitrit in schwefelsaurer

Lösung und folgenden Erwärmen des Reaktionsgemisches auf ca. 100° 3-Oxy-pyridin (Po.; Ca.). Bei der Destillation mit Schleimsäure entsteht N- β -Pyridyl-pyrrol (Pictet, Crépteux, B. 28, 1907; Pi., C. r. 137, 860). — Das Hydrochlorid färbt einen Fichtenspan orangegelb (Pi., Cr.). — $C_5H_6N_2+2$ HCl. Hygroskopische Tafeln. F: 175° (unkorr.; teilweise Zersetzung) (Po.; B.), 173,5—174,5° (Cu., M.). — $C_5H_6N_2+$ HCl + AuCl₃. Dunkelrote Krystalle. F: 218° (unkorr.) (Po.; B.), 223° (G., Co.). Krystallographische Untersuchung: Heberdey, M. 16, 708. — $2C_5H_6N_2+2$ HCl + PtCl₄. Orangerote Prismen oder Tafeln. F: 223° (Zers.) (Cu., M.), 225° (Zers.) (Po.; B.). Spaltet an der Luft Chlorwasserstoff ab (Cu., M.). — $2C_5H_6N_2+4$ HCl + PtCl₄. Gelbe Tafeln. F: 239° (Zers.) (Cu., M.).

- 3-[Pyrryl-(1)]-pyridin, N-β-Pyridyl-pyrrol C₉H₈N₂, s. nebenstehende Formel. B. Bei der Destillation eines Gemisches von 3-Aminopyridin und Schleimsäure (Piotet, Crépieux, B. 28, 1907; P., C. r. 137, 860).

 Hellgelbe Flüssigkeit. Erstarrt nicht bei —10°. Kp₇₃₀: 250,5—251°. D⁴: 1,1044. Sehr schwer löslich in Wasser, leicht in organischen Lösungsmitteln. Geht beim Durchleiten durch ein glühendes Rohr in 2-β-Pyridyl-pyrrol über (Syst. No. 3481). Bei Einw. von Methyljodid entsteht ein bei 241° schmelzendes Jodmethylat (Nadeln aus Alkohol; leicht löslich in Wasser, schwer in kaltem Alkohol). Färbt in alkoh. Lösung einen Fichtenspan blau. Quecksilberchlorid-Doppelsalz. Nadeln (aus Wasser). F: 189°. 2 C₉H₈N₂ + 2 HCl + PtCl₄ + 2 H₂O. Hellgelbe Tafeln. F: 190° (Zers.). Pikrat. Gelbe Nadeln (aus Alkohol oder Wasser). F: 178°.
- 8-Acetamino-pyridin C₇H₈ON₂ = NC₅H₄·NH·CO·CH₃. B. Aus 3-Amino-pyridin beim Behandeln mit Acetanhydrid (Camps, Ar. 240, 355; Pictet, Cerpieux, B. 28, 1908). Blättchen (aus Benzol oder Chloroform + Ligroin). F: 131° (P., Cr.), 133° (Ca.). Kp: 326° bis 327° (P., Cr.). Leicht löslich in Wasser, Alkohol und Chloroform, schwerer in Äther und Benzol, fast unlöslich in Ligroin (Ca.; P., Cr.). Das Hydrechlorid färbt in wäßr. Lösung einen Fichtenspan orangegelb (P., Cr.).
- β -Pyridyl-carbamidsäure-äthylester, β -Pyridyl-urethan $C_3H_{10}O_2N_2=NC_5H_4$ · $NH\cdot CO_2\cdot C_2H_3$. B. Aus 3-Amino-pyridin beim Behandeln mit Chlorameisensäureäthylester in Äther (Camps, Ar. 240, 355). Beim Kochen von Nicotinsäureazid in Äther mit Alkohol (Curtius, Mohr, B. 31, 2494). Nadeln (aus Ligroin oder Benzol + Ligroin). F: 86—870 (Cu., M.), 900 (Ca.). Krystallisiert aus Wasser in wasserhaltigen Nadeln (Ca.). Leicht löslich in Alkohol, Äther, Chloroform und Benzol, schwer in Wasser (Cu., M.). Liefert beim Kochen mit rauchender Salzsäure 3-Amino-pyridin (Cu., M.).
- N.N'-Di- β -pyridyl-harnstoff $C_{11}H_{10}ON_4=(NC_5H_4\cdot NH)_2CO$. B. Beim Zusammenschmelzen von β -Pyridyl-urethan mit 3-Amino-pyridin (Camps, Ar. 240, 356). Beim Erwärmen von Nicotinsäureazid mit Wasser (Curtius, Mohr, B. 31, 2494). Nadeln (aus verd. Alkohol), Prismen (aus absol. Alkohol). F: 217° (Zers.) (Cu., M.), 225° (Zers.) (Ca.). Schwer löslich in Äther und Benzol, leicht in den meisten anderen Lösungsmitteln (Cu., M.). Liefert beim Erhitzen mit rauchender Salzsäure im Rohr auf 125° 3-Amino-pyridin (Cu., M.).
- N-Phenyl-N'- β -pyridyl-thioharnstoff $C_{12}H_{11}N_3S = NC_5H_4 \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. Beim Zusammenschmelzen von 3-Amino-pyridin mit Phenylsenföl (Camps, Ar. 240, 356).—Blättchen (aus Alkohol). F: 164°.
- 6-Chlor-8-amino-pyridin $C_5H_5N_2Cl$, s. nebenstehende Formel. B. Aus 6-Chlor-nicotinsäureamid beim Erwärmen mit einer Lösung von Brom in Kali- Cl N lauge auf 70°, Versetzen der abgekühlten Reaktionsmischung mit Essigsäure und darauf mit Alkalilauge (Mills, Widdows, Soc. 93, 1379). Krystalle (aus Toluol). F: 82—83,5°. Sehr leicht löslich in Alkohol und Äther, schwer in kaltem Wasser und Benzol. Liefert beim Diazotieren und Kuppeln der Diazo-Lösung mit β -Naphthol einen roten Farbstoff. Beim Erhitzen mit Natriummethylat-Lösung auf 120—125° entsteht 5-Amino-2-oxypyridin. Beim Behandeln mit Nitrosobenzol in Eisessig erhält man 6-Chlor-3-benzolazopyridin.
- 2.6 (oder 4.6) Dibrom 3 amino pyridin $C_5H_4N_5Br_5$, Formel I oder II. B. Neben 3-Amino-pyridin beim Erwärmen von Nicotinsäureamid mit Brom und Kalilauge auf 70° (CAMPS, Ar. 240, 354). Rötliche Prismen (aus Benzol). F: 148°. Leicht löslich in Alkohol und Ather.

- 3. 4-Amino-pyridin¹) bezw. γ-Pyridon-imid C₅H₆N₂, NH₂
 Formel I bezw. II. B. Aus 4-Amino-pyridin-carbonsäure-(3)
 beim Erhitzen (ΚΙΚΡΑΙ, M. 23, 244). Aus Isonicotinsäureamid beim
 Erwärmen mit Brom und Kalilauge auf 70° (САМРS, Ar. 240, 362).
 Nadeln (aus Benzol). F: 154—155° (K.), 158° (C.). Leicht löslich
 in Wasser und Alkohol, schwerer in Benzol und Äther, sehr schwer in Ligroin (C.).

 Beim Kochen mit Schwefelkohlenstoff und Alkohol erhält man γ-Pyridyl thiocarbamidsäure-O-äthylester (?) (s. u.) neben goldgelben Krystallen, die bei 152° unter Zersetzung schmelzen (C.).
- 4-Anilino-pyridin-hydroxymethylat $C_{12}H_{14}ON_2 = (HO)(CH_3)NC_5H_4 \cdot NH \cdot C_6H_5$. Salze vgl. unter N-Methyl- γ -pyridon-anil $CH_3 \cdot NC_5H_4 : N \cdot C_6H_5$ (Bd. XXI, S. 270).
- **4-Acetamino-pyridin** $C_7H_8ON_2 = NC_5H_4 \cdot NH \cdot CO \cdot CH_3$. B. Aus 4-Amino-pyridin beim Behandeln mit Acetanhydrid (Camps, Ar. 240, 363). Krystallisiert aus Wasser in wasserhaltigen Nadeln, die bei 124° unter Aufschäumen schmelzen. Die bei 110° getrocknete Substanz schmilzt ebenso wie die aus Chloroform umkrystallisierte bei 150°. Die wasserfreie Verbindung löst sich leicht, die wasserhaltige ziemlich schwer in Benzol.
- γ -Pyridyl-carbamidsäure-äthylester, γ -Pyridyl-urethan $C_8H_{10}O_2N_2=NC_5H_4\cdot NH\cdot CO_2\cdot C_2H_5$. B. Aus 4-Amino-pyridin und Chlorameisensäureäthylester in Äther (Camps, Ar. 240, 364). Wasserhaltige, leicht verwitternde Nadeln (aus Wasser); Nadeln (aus Benzol), die bei 129° schmelzen. Sehr leicht löslich in kaltem Alkohol und Äther, schwerer in Benzol, Ligroin und Wasser.
- N.N'-Di- γ -pyridyl-harnstoff $C_{11}H_{10}ON_4 = (NC_5H_4\cdot NH)_2CO$. B. Beim Zusammenschmelzen von γ -Pyridyl-urethan mit 4-Amino-pyridin (Camps, Ar. 240, 364). Nadeln (aus verd. Alkohol). F: 208° (Zers.).
- γ -Pyridyl-thiocarbamidsäure-O-äthylester (?) $\rm C_8H_{10}ON_2S=NC_5H_4\cdot NH\cdot CS\cdot O\cdot C_2H_5$ (?). B. Beim Kochen von 4-Amino-pyridin mit Schwefelkohlenstoff und Alkohol (Camps, Ar. 240, 365). Wasserhaltige Nadeln (aus Wasser) vom Schmelzpunkt 92—93°; Nadeln (aus verd. Alkohol) vom Schmelzpunkt 110°; benzolhaltige Nadeln (aus Benzol), die leicht unter Benzolverlust verwittern.
- N-Phenyl-N'- γ -pyridyl-thioharnstoff $C_{12}H_{11}N_3S = NC_5H_4 \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. Beim Zusammenschmelzen von 4-Amino-pyridin mit Phenylsenföl (Camps, Ar. 240, 364). Blättchen (aus Alkohol). F: 148°.
- 2.3.5 Trichlor 4 amino pyridin $C_5H_2N_2Cl_3$, s. nebenstehende Formel.

 B. Aus 2.3.4.5-Tetrachlor-pyridin beim Erwärmen mit wäßrigem oder alkoholischem Ammoniak auf 130—140° (Sell, Dootson, Soc. 77, 3).—Nadeln (aus verd. Alkohol). F: 153—153,5° (unkorr.). Flüchtig mit Wasserdampf. Sublimiert beim Erhitzen. Unlöslich in kaltem Wasser, löslich in den üblichen organischen Lösungsmitteln.

 Mäßig löslich in verd. Mineralsäuren. Quecksilberchlorid-Doppelsalz. Nadeln (aus verd. Alkohol). F: 213—214° (unkorr.). 2C₅H₃N₂Cl₃ + 2HCl + PtCl₄ + 3H₃O. Goldgelbe Nadeln.
- 2.3.6-Trichlor-4-amino-pyridin C₅H₃N₂Cl₃, s. nebenstehende Formel. Zur Konstitution vgl. Sell, Dootson, Soc. 77, 2. B. Neben anderen Produkten beim Erhitzen von Glutazin (S. 511) mit Phosphoroxychlorid und Phosphorpentachlorid (Stokes, v. Pechmann, B. 19, 2711) Nadeln (aus Wasser). F: 157,5°; sublimiert unzersetzt; sehr leicht löslich in Alkohol; leicht löslich in verd. Salzsäure (St., v. P.). Die verd. Lösung liefert beim Behandeln mit Bromwasser eine aus Alkohol in Nadeln krystallisierende, sublimierbare Verbindung vom Schmelzpunkt 223° (unlöslich in Wasser, Säuren und Alkalien) (St., v. P.).
- 2.3.5.6-Tetrachlor-4-amino-pyridin C₅H₂N₂Cl₄, s. nebenstehende Formel.

 B. Aus Pentachlorpyridin beim Erhitzen mit alkoh. Ammoniak im Rohr auf 100° Cl. Cl. Cl bis 110° (Sell, Dootson, Soc. 78, 780). Aus 2.3.5-Triehlor-4-amino-pyridin beim Erhitzen mit überschüssigem Phosphorpentachlorid im Rohr auf 220° Cl. N Cl bis 230° (Sell, D., Soc. 77, 4). Beim Erhitzen von 3.5.6-Trichlor-4-amino-2-oxy-pyridin mit Phosphorpentachlorid auf 150° (Stokes, v. Pechmann, B. 19, 2712). Neben anderen Produkten beim Erhitzen von Glutazin (S. 511) mit Phosphorpentachlorid in Gegenwart

¹⁾ Die Salze, die Blumenfeld (M. 16, 718) beschreibt, leiten sich nicht vom 4-Aminopyridin ab (Koenigs, Kinne, Weiss, B. 57 [1924], 1175).

von Phosphoroxychlorid (St., v. P., B. 19, 2711, 2713). — Blättchen oder Würfel (aus Alkohol). F: 212° (St., v. P.), 214—215° (unkorr.) (Sell, D., Soc. 77, 4). Ziemlich leicht löslich in Äther, Benzol und heißem Alkohol, unlöslich in Wasser (Sell, D., Soc. 78, 781; St., v. P.). Unlöslich in verd. Säuren und Alkalien, löslich in konz. Schwefelsäure (St., v. P.). Absorptionsspektrum: Purvis, C. 1909 I, 765; Soc. 95, 296. — Einw. von Jodwasserstoffsäure bei 200° und von Jodwasserstoffsäure und rotem Phosphor bei 300—350°: St., v. P. Liefert beim Kochen mit überschüssigem Natriumäthylat in Alkohol 3.5.6-Trichlor-4-amino-2-äthoxy-pyridin (St., v. P.; Sell, D., Soc. 77, 4). Beim Erhitzen mit überschüssigem Natriumäthylat und Alkohol auf 190° erhält man 3.5-Dichlor-4-amino-2-oxy-6-äthoxy-pyridin und 3.5-Dichlor-4-amino-2.6-diäthoxy-pyridin (St., v. P.).

3.5-Dibrom-4-amino-pyridin C₅H₄N₂Br₂, s. nebenstehende Formel. Zur Konstitution vgl. Dohrn, Diedrich, A. 494 [1932], 301; den Hertog, Wibaut, R. 51 [1932], 944, 948. — B. Beim Zufügen von Brom zu der siedenden wäßrigen Lösung von Pyridin-sulfonsäure-(3) (O. FISCHER, RIEMERSCHMID, B. 16, 1184).

Neben 4-Amino-pyridin aus Isonicotinsäureamid beim Erwärmen mit Brom und Kalilauge auf 70° (Camps, Ar. 240, 362). — Nadeln (aus Wasser oder Benzol). F: 164—165° (F., R.), 167° (C.). Sublimiert langsam bei 80° (F., R.). Leicht löslich in Methanol, Alkohol, Äther und Benzol, schwer in Ligroin und kaltem Wasser (F., R.). — Chloroplatinat. Rotgelbe Nadeln (F., R.).

2. Amine $C_7H_{10}N_2$.

1. 2-[β-Amino-āthyl]-pyridin C₇H₁₀N₂, s. nebenstehende Formel. B. Neben β.β'-Di-α-pyridyl-diāthylamin aus 2-[β-Brom-āthyl]-pyridin beim Erhitzen mit überschüssigem alkoholischem Ammoniak im Rohr auf 125° (Löffler, B. 37, 170). — Flüssigkeit. Kp₁₂: 92—93°. Leicht löslich in Wasser, Alkohol und Chloroform, löslich in Äther. — Bildet mit Salzsäure Nebel. — C₇H₁₀N₂ + HBr. Blättchen (aus Alkohol). F: 129°. Hygroskopisch; leicht löslich in Alkohol. — C₇H₁₀N₂ + 2 HCl + PtCl₄ + 2 H₂O. Krystalle (aus Wasser). Das Krystallwasser entweicht bei 110°. F: 232—233° (Zers.). — Pikrat C₇H₁₀N₂ + 2 C₆H₃O₇N₃. Gelbe Nadeln (aus Alkohol). F: 215—216°. Leicht löslich in siedendem Alkohol.

2-[\$\beta\$-Methylamino-\text{\text{athyl}}-pyridin \$C_8H_{12}N_2 = NC_5H_4\cdot CH_2\cdot CH_2\cdot NH\cdot CH_3\cdot B\$. Aus 2-[\$\beta\$-Brom-\text{\text{\text{athyl}}}-pyridin beim Erhitzen mit alkoh. Methylamin-L\text{\text{csung}} im Rohr auf 100° (L\text{\text{\text{CFFLER}}}, \$B. 37, 169). — Fl\text{\text{Ussigkeit}}. \$Kp_{30}: 113\text{\$-114}^o\$. L\text{\text{cslich}} in Wasser, Alkohol, \text{\text{\text{Ather}}} und Chloroform. — Liefert mit Natriumnitrit in salzsaurer L\text{\text{\text{Csung}}} ein \text{\text{\text{clight}}} s Nitrosoderivat. — \$C_8H_{12}N_2 + 2HCl + 2AuCl_3\cdot \text{Gelbe Nadeln.} \$F: 205^o\$ (Zers.). — \$C_8H_{12}N_2 + 2HCl + PtCl_4 + 2H_2\text{\text{0}}. Orangerote Krystalle. — \$Pikrate: \$C_8H_{12}N_2 + C_6H_3\text{\text{0}}_7N_3\cdot \text{Prismen.} \$F: 137\text{\$-138}^o\$. — \$C_8H_{12}N_2 + 2C_6H_3\text{\text{0}}_7N_3\cdot \text{Nadeln}\$ (aus Alkohol). \$F: 193\text{\$-194}^o\$. Leicht l\text{\text{\text{Cslich}}} in Alkohol, schwer in Wasser und \text{\text{\text{\text{Cs}}}}.

2-[β -Diäthylamino-äthyl]-pyridin $C_{11}H_{16}N_2 = NC_5H_4 \cdot CH_2 \cdot CH_2 \cdot N(C_2H_5)_2$. B. Aus 2-[β -Brom-äthyl]-pyridin beim Erhitzen mit alkoh. Diäthylamin im Rohr auf 100° (Löffler, B. 37, 167). — Flüssigkeit von nicotinartigem Geruch. Kp₁₃: 115—116°; Kp: 229—232° (unkorr.). Leicht löslich in Wasser, Alkohol, Chloroform und Äther. — Hydrochlorid. Zerfließliches Pulver (aus Alkohol + Äther). F: 172—173°. — $C_{11}H_{18}N_2 + 2HCl + 2AuCl_3$. Gelbe Krystalle. F: 184°. — Quecksilberchlorid - Doppelsalz. F: 103—104°. — $C_{11}H_{18}N_2 + 2HCl + PtCl_4$. Orangegelbe Blättchen. F: 226° (Zers.). — Pikrate: $C_{11}H_{18}N_2 + C_6H_3O_7N_3$. Blättchen. F: 163—164°. Leicht löslich in Wasser, Alkohol und Äther.

2-[β -(α -Pipecolino)-äthyl]-pyridin, N-[β -(α -Pyridyl)-äthyl]- α -pipecolin $C_{13}H_{20}N_2$, s. nebenstehende Formel. B. Beim Erhitzen von 2-[β -Brom-äthyl]-pyridin mit dl- α -Pipecolin in Alkohol auf 100° (Löffler, Kirschner, B. 38, 3329). — Dickflüssiges Öl. Kp₁₅: 152°. D¹⁵: 1,0105. Leicht löslich in Alkohol, Äther und Chloroform, schwerer in Wasser. Die wäßr. Lösung reagiert stark basisch. — $C_{13}H_{20}N_2 + 2$ HCl. Nadeln (aus Alkohol + Äther). F: 175°. — $C_{13}H_{20}N_2 + 2$ HCl+2 AuCl₃. Hellgelbe Nadeln. F: 190° (Zers.). — Quecksilberchlorid-Doppelsalz. Nadeln. F: 118°. — $C_{13}H_{20}N_2 + 2$ HCl+PtCl₄. Lichtgelbe Blättchen. Zersetzt sich bei 230—232°. — Pikrat. F: 131—132°.

2-[β -Acetamino-äthyl]-pyridin C_{θ}H₁₂ON₂ = NC_{δ}H₄·CH₂·CH₂·NH·CO·CH₃. *B.* Aus 2-[β -Amino-äthyl]-pyridin beim Behandeln mit Acetanhydrid (Löffler, *B.* 37, 172). — Öl. Kp: 175°. Sehr leicht löslich in Wasser und Alkohol.

- Bis [β (α pyridyl) äthyl] amin, β.β' Di α pyridyl diäthylamin $C_{14}H_{17}N_{8} = [NC_{5}H_{4} \cdot CH_{2} \cdot CH_{2}]_{2}NH$. B. Neben 2-[β-Amino-āthyl]-pyridin aus 2-[β-Brom-āthyl]-pyridin beim Erhitzen mit überschüssigem alkoholischem Ammoniak im Rohr auf 125° (Löffler, B. 37, 170, 172). Gelbliche, dicke Flüssigkeit. Kp₆: 192°. Löslich in Wasser, Alkohol und Chloroform, mäßig löslich in Äther. Bildet mit Salzsäure Nebel. Hydrochlorid. Nadeln (aus Alkohol). Sehr leicht löslich in Wasser. Quecksilberchlorid-Doppelsalz. Blättchen (aus Wasser). F: 121—122°. 2 $C_{14}H_{17}N_{3} + 6HCl + 3PtCl_{4} + 2H_{2}O$. Orangegelbe Nadeln (aus Wasser). Leicht löslich in siedendem Wasser. Pikrat $C_{14}H_{17}N_{3} + 3C_{6}H_{3}O_{7}N_{3}$. Gelbe Nadeln (aus verd. Alkohol). F: 182—183°.
- N-Nitroso-{bis- $[\beta$ -(α -pyridyl)-äthyl]-amin}, Bis- $[\beta$ -(α -pyridyl)-äthyl]-nitrosamin $C_{14}H_{16}ON_4 = [NC_5H_4\cdot CH_2\cdot CH_2]_2N\cdot NO$. B. Bei der Einw. von Natriumnitrit auf β . β '-Di- α -pyridyl-diāthylamin in salzsaurer Lösung (Löffler, B. 37, 173). Öl. $C_{14}H_{16}ON_4 + HCl + PtCl_4$. Orangerote Nadeln.
- 2. 4-Amino-2.6-dimethyl-pyridin, γ -Amino- α . α' -lutidin C₇H₁₀N₂, s. nebenstehende Formel. B. Aus 4-Amino-2.6-dimethyl-pyridin-dicarbonsāure-(3.5) beim Erhitzen (MARCKWALD, B. 27, 1325). Nadeln (aus Wasser). F: 186°. Kp: 246°. Ziemlich leicht löslich in kaltem Wasser, leicht in Alkohol und Aceton, schwer in Äther und in kaltem Benzol. Liefert bei der Reduktion mit Natrium in Alkohol α . α' -Lupetidin (Bd. XX, S. 108) und 4-Amino-2.6-dimethyl-piperidin (S. 420). Bei Einw. von salpetriger Säure in salzsaurer Lösung entsteht 4-Chlor-2.6-dimethyl-pyridin. Diazotiert man in konz. Schwefelsäure und gießt das Reaktionsgemisch in absol. Alkohol, so erhält man 4-Äthoxy-2.6-dimethyl-pyridin. C₇H₁₀N₂ + HCl. Nadeln. Leicht löslich in Wasser, mäßig in Alkohol. 2C₇H₁₀N₂ + H₂SO₄. Krystalle. Leicht löslich in Wasser, sehr schwer in Alkohol. 2C₇H₁₀N₂ + 2 HCl + PtCl₄. Rotgelbe Prismen. Zersetzt sich gegen 250°. Fast unlöslich in Alkohol, sehr schwer in heißem Wasser. Pikrat C₇H₁₀N₂ + C₆H₃O₇N₃. Gelbe Nadeln. F: 194—195°. Schwer löslich in kaltem Wasser und Alkohol.
- 4-Anilino-2.6-dimethyl-pyridin C₁₃H₁₄N₂ = NC₅H₂(CH₃)₃·NH·C₆H₅. B. Aus 4-Chlor-2.6-dimethyl-pyridin beim Erhitzen mit Anilin im Rohr auf 195° (CONRAD, EPSTEIN, B. 20, 165). Aus 4-Chlor-2.6-dimethyl-pyridin-carbonsäure·(3)-äthylester beim Erhitzen mit Anilin im Rohr auf 180° (MICHAELIS, HANISCH, B. 35, 3158). Beim Erhitzen von 4-Oxy-2.6-dimethyl-pyridin mit Phenylisocyanat in Benzol auf 150° (GOLDSCHMIDT, MEISSLER, B. 23, 274). Aus dem Hydrojodid des 1.2.6-Trimethyl-pyridon·(4)-anils (Bd. XXI, S. 275) beim Erhitzen (MI., HILLMANN, A. 354, 95). Krystalle (aus Benzol). F: 150° (C., E.; MI., HA.; MI., HI.). Kp: 335—338° (C., E.). Leicht löslich in Alkohol und Äther; leicht löslich in verd. Säuren (C., E.). Liefert bei Einw. von Methyljodid das Hydrojodid des 1.2.6-Trimethyl-pyridon·(4)-anils (MI., HI.). Beim Zufügen von wenig Salpetersäure zu der Lösung in konz. Schwefelsäure tritt eine blutrote Färbung auf (C., E.). Hydrochlorid. Krystalle. F: 265° (MI., HA.). Chloroplatinat. Hellgelbe Nadeln. F: 209° (Zers.) (C., E.).
- 4 Anilino 2.6 dimethyl pyridin hydroxymethylat $C_{14}H_{18}ON_2 = (HO)(CH_3)NC_5H_4(CH_3)_2\cdot NH\cdot C_6H_5$. Eine Verbindung, der vielleicht diese Konstitution zukommt, ist bei 1.2.6-Trimethyl-pyridon-(4)-anil (Bd. XXI, S. 275) als Hydrat abgehandelt. Salze s. ebenfalls bei 1.2.6-Trimethyl-pyridon-(4)-anil.
- 4-Methylanilino-2.6-dimethyl-pyridin $C_{14}H_{16}N_2 = NC_8H_2(CH_8)_2 \cdot N(CH_8) \cdot C_6H_5$. B. Aus 4-Methylanilino-1.2.6-trimethyl-pyridiniumchlorid beim Erhitzen im Vakuum (MICHAELIS, HILLMANN, A. 354, 99). Öl. Kp: 263—265°. Geht beim Zusatz von Wasser sowie beim Aufbewahren an der Luft in das Hydrat $C_{14}H_{16}N_2 + H_2O$ über. Das Hydrat bildet eine krystalline Masse vom Schmelzpunkt 75°; es ist leicht löslich in Alkohol und Chloroform, schwer in Wasser, unlöslich in Äther; es reagiert stark alkalisch; im Exsiccator verflüssigt es sich unter Abspaltung von Wasser. $C_{14}H_{16}N_2 + HCl + H_2O$. F: 214°. $C_{24}H_{16}N_2 + HCl + AuCl_3$. Rötliche Krystalle. F: 118°. $C_{14}H_{16}N_2 + HCl$. Plättchen (aus Wasser). F: 126°. $2C_{14}H_{16}N_2 + 2HCl + PtCl_4$. Gelbrote Nadeln. F: 208°. Rhodanid $C_{14}H_{16}N_2 + HCNS$. Nadeln (aus Alkohol + Äther). F: 145°. Pikrat $C_{14}H_{16}N_3 + C_6H_3O_7N_3$.
- 4-Methylanilino-2.6-dimethyl-pyridin-hydroxymethylat, 4-Methylanilino-1.2.6-trimethyl-pyridiniumhydroxyd $C_{15}H_{20}ON_2 = (HO)(CH_8)NC_5H_4(CH_8)\cdot N(CH_8)\cdot C_6H_5$. B. Das Jodid entsteht aus dem Hydrat des 1.2.6-Trimethyl-pyridon-(4)-anils (Bd. XXI, 8. 275) beim Kochen mit Methyljodid in Alkohol (MICHAELIS, HILLMANN, A. 354, 98). Beim Erhitzen des Chlorids im Vakuum erhält man 4-Methylanilino-2.6-dimethyl-pyridin. Chlorid, Krystalline hygroskopische Masse. Jodid $C_{15}H_{19}N_2\cdot I$. Blättchen (aus Alkohol + Äther). F: 166°. Leicht löslich in Alkohol und Wasser.

- 4-Acetamino-2.6-dimethyl-pyridin $C_9H_{18}ON_9 = NC_6H_{1}(CH_9)_2 \cdot NH \cdot CO \cdot CH_3$. B. Aus 4-Amino-2.6-dimethyl-pyridin beim Erwärmen mit Acetanhydrid (MARCHWALD, B. 27, 1326). Krystalle; F: 113°. Wasserhaltige Nadeln (aus Wasser); F: 78°. Die wasserhaltige Substanz spaltet einen Teil des Wassers im Exsiccator ab und verwandelt sich in einen Sirup, der bei längerem Erhitzen auf 150° das wasserfreie Produkt liefert. $2C_9H_{12}ON_2 + 2HCl + PtCl_4$. Gelbe Nadeln. F: 235° (Zers.). Schwer löslich in heißem Wasser und Alkohol. Pikrat $C_9H_{12}ON_2 + C_6H_3O_7N_3$. Gelbe Krystalle. F: 97—98°. Schwer löslich in kaltem Wasser.
- 3-Brom-4-amino-2.6-dimethyl-pyridin C₇H₉N₂Br, s. nebenstehende Formel. B. Beim Behandeln einer salzsauren Lösung von 4-Amino-2.6-dimethyl-pyridin mit 1 Mol Brom in Wasser (MARCKWALD, B. 27, 1331).

 Nadeln mit 1 H₂O (aus Wasser). F: 89°. Schmilzt wasserfrei bei 129°. Destilliert unzersetzt. Leicht löslich in Alkohol, ziemlich leicht in Äther und heißem Wasser. C₇H₉N₂Br + HCl. Krystalle. Schwer löslich in kaltem Wasser. 2C₇H₉N₂Br + 2 HCl + PtCl₄. Gelbe Nadeln. F: 220°. Sehr schwer löslich in kaltem Wasser. Pikrat C₇H₉N₂Br + C₆H₃O₇N₃. Gelbe Krystalle. F: 197—198°. Schwer löslich in siedendem Wasser.
- 3.5-Dibrom 4-amino 2.6-dimethyl-pyridin C₇H₈N₂Br₂, s. nebenstehende Formel. B. Das Hydrobromid entsteht beim Behandeln von 4-Amino-2.6-dimethyl-pyridin-dicarbonsäure-(3.5) oder 4-Amino-2.6-dimethyl-pyridin mit überschüssigem Bromwasser in siedender wäßriger Lösung; das Perbromid (s. u.) erhält man beim Zusatz von überschüssigem Bromwasser zu einer wäßrigen oder salzsauren Lösung von 4-Amino-2.6-dimethyl-pyridin in der Kälte (MARCKWALD, B. 27, 1332, 1333). Nadeln (aus verd. Alkohol). F: 152°. Siedet unzersetzt. Schwer löslich in heißem Wasser, leicht in Alkohol, Äther, Aceton und Benzol. Liefert beim Diazotieren in schwefelsaurer Lösung und Zersetzen des Reaktionsprodukts durch Wasser 3.5-Dibrom-4-oxy-2.6-dimethyl-pyridin. C₇H₈N₂Br₂ + HCl. Krystalle. Leicht löslich in heißem Wasser. C₇H₈N₂Br₃ + HBr. Krystalle. Schwer löslich in kaltem Wasser .— C₇H₈N₃Pr₂ + HBr + 2Br. Orangegelbe Nadeln. F: 193°. Geht beim Kochen mit Wasser in das Hydrobromid (s. o.) über. 2C₇H₈N₂Br₃ + 2HCl + PtCl₄. Hellorangefarbene Nadeln. Ist bei 270° noch nicht geschmolzen. Fast unlöslich in siedendem Wasser und Alkohol. Pikrat C₇H₈N₂Br₂ + C₆H₂O₇N₃. Hellgelbe Krystalle. F: ca. 255° (Zers.). Sehr schwer löslich.

3. Amine $C_8H_{12}N_2$.

- 1. 2-[β-Amino-propyl]-pyridin C₈H₁₂N₂, s. nebenstehende Formel. B. Aus 2-[β-Brom-propyl]-pyridin beim Erhitzen mit alkoh.
 Ammoniak im Rohr auf 125° (Löffler, Kirschner, B. 38, 3334).

 Öl. Kp₁₃: 103—104°. D¹⁵: 1,004. Leicht löslich in Äther, Alkohol und Wasser. C₈H₁₂N₂ + 2HCl+2AuCl₃. Gelbe Blätter. F: 216° (Zers.). Quecksilberchlorid-Doppelsalz. Krystalle. F: 122°. C₈H₁₂N₂+2HCl+PtCl₄. Orangerote Krystalle (aus Wasser). F: 239° (Zers.). Pikrat. Gelbe Nadeln (aus Wasser). F: 210—211°.
- 2-[β -Äthylamino-propyl]-pyridin $C_{10}H_{16}N_2=NC_8H_4\cdot CH_2\cdot CH(CH_2)\cdot NH\cdot C_8H_8$. B. Aus 2-[β -Brom-propyl]-pyridin beim Erhitzen mit Äthylamin in Alkohol im Rohr auf 125° (Löffler, Kirschner, B. 38, 3333). Hygroskopische Flüssigkeit. Kp₁₈: 108—109°. D: 0,953. Leicht löslich in Alkohol, Äther und Chloroform. Liefert beim Behandeln mit Natriumnitrit in salzsaurer Lösung ein öliges, in Äther leicht lösliches Nitrosamin, dessen Chloroplatinat aus Wasser in orangegelben Nadeln vom Schmelzpunkt 198° krystallisiert. $C_{10}H_{16}N_2 + 2HCl + 2AuCl_3$. Gelbe Nadeln (aus Wasser). F: 204°. Quecksilberchlorid-Doppelsalz. Tafeln. F: 146°. Chloroplatinat. Granatrote Prismen (aus Wasser). F: 225° (Zers.). Pikrat. Gelbe Krystalle. F: 178°.
- 2-[β -Diäthylamino-propyl]-pyridin $C_{12}H_{20}N_2=NC_5H_4\cdot CH_2\cdot CH(CH_3)\cdot N(C_2H_5)_2$. B. Aus 2-[β -Brom-propyl]-pyridin beim Erhitzen mit Diäthylamin und Alkohol im Rohr auf 120—125° (Löffler, Kirschner, B. 38, 3332). Gelbliches, dickflüssiges Öl. Zeigt Fischgeruch. Kp₁₂: 122°. Leicht löslich in Wasser, Alkohol, Äther und Chloroform. Chloroaurat. Hellgelbe Nadeln. F: 160°. Quecksilberchlorid-Doppelsalz. Nadeln. F: 110°. $C_{12}H_{20}N_2+2HCl+PtCl_4$. Orangegelbe Nadeln. F: 190°. Pikrat $C_{12}H_{20}N_2+2C_6H_3O_7N_3$. Gelbe Nadeln (aus Alkohol). F: 108°.
- 2. 5^1 -Amino-2-methyl-5-äthyl-pyridin, 2-Methyl- $CH_3 \cdot CH(NH_2) \cdot CH_3 \cdot C$
- 2-Methyl-5-[α -methylamino-äthyl]-pyridin $C_9H_{14}N_2=NC_5H_3(CH_3)\cdot CH(CH_3)\cdot NH\cdot CH_3$. B. Aus 2-Methyl-5-[α -brom-äthyl]-pyridin beim Erhitzen mit alkoh. Methylamin-Lösung im Rohr auf 100° (Knudsen, B. 28, 1760). Flüssigkeit von stechendem Geruch.

- Kp: 223—225°. Leicht löslich in Wasser. Physiologisch dem Nicotin sehr ähnlich (Fröhner). C₉H₁₄N₂ + 2 HCl. Nadeln (aus Alkohol + Äther). F: 177°. C₉H₁₄N₂ + 2 HCl + PtCl₄. Prismen. F: 243°.
- **2-Methyl-5-**[α -dimethylamino-äthyl]-pyridin $C_{10}H_{16}N_2=NC_5H_5(CH_3)\cdot CH(CH_3)\cdot N(CH_3)_2$. B. Neben α -Picolin- β '-[α -acrylsäure] bei schwachem Erwärmen von α -Picolin- β '-[α -brom- α -propionsäure] mit Dimethylamin-Lösung (Knudsen, B. 28, 1771). Flüchtig mit Wasserdampf. $C_{10}H_{16}N_2+2HCl+2AuCl_3$. Gelbe Stäbchen. F: 168°.
- 2-Methyl-5-[α -anilino-äthyl]-pyridin $C_{14}H_{16}N_2=NC_5H_3(CH_3)\cdot CH(CH_3)\cdot NH\cdot C_6H_5$. B. Aus 2-Methyl-5-[α -brom-äthyl]-pyridin beim Kochen mit Anilin in Alkohol (KNUDSEN, B. 28, 1761). Prismen (aus verd. Alkohol). F: 145—146° (unkorr.). $C_{14}H_{16}N_2+2HCl+H_2O$. Nadeln. F: 201—202°. $C_{14}H_{16}N_2+2HCl+PtCl_4$. Prismen. Verkohlt oberhalb 300°, ohne zu schmelzen.
 - 2 Methyl 5 [α piperidino α pyridin $C_{13}H_{20}N_2$
- $NC_5H_3(CH_3)\cdot CH(CH_3)\cdot N < CH_2\cdot CH_3 > CH_2$. B. Aus 2-Methyl-5-[\alpha-brom-\text{\text{\text{a}}} + CH_1 + CH_2 > CH_2 \) Entity B. Aus 2-Methyl-5-[\alpha-brom-\text{\text{\text{a}}} + CH_2 + CH_3 + CH_2 +
- 2-Methyl-5-[α -coniino-äthyl]-pyridin, H₂C $\langle CH_2 CH(CH_2 C_2H_5) \rangle$ N·CH(CH₃)·CH₃N-CH₃CH₂CH₃P₃N₃. s. nebenstehende Formel. B. Aus 2-Methyl-5-[α -brom-äthyl]-pyridin beim Behandeln mit Coniin (Bd. XX, S. 110) (KNUDSEN, WOLFFENSTEIN, B. 28, 2276). C₁₆H₂₆N₂+2HCl+PtCl₄. Rote Prismen. F: 244—245° (Zers.). Schwer löslich in Wasser.
- 2-Methyl-5-[α -acetylanilino-äthyl]-pyridin $C_{16}H_{18}ON_3=NC_5H_3(CH_3)\cdot CH(CH_3)\cdot N(C_6H_6)\cdot CO\cdot CH_3$. B. Aus 2-Methyl-5-[α -anilino-äthyl]-pyridin beim Kochen mit Acetanhydrid (Knudsen, B. 28, 1761). Krystalle. F: 100°. Unlöslich in Wasser.
- **2-Methyl 5 -** $[\alpha$ methylnitrosamino äthyl] pyridin $C_9H_{12}ON_3 = NC_9H_3(CH_3) \cdot CH(CH_3) \cdot N(CH_3) \cdot NO$. B. Aus 2-Methyl-5- $[\alpha$ -methylamino-äthyl]-pyridin bei Einw. von Natriumnitrit auf das Hydrochlorid in wäßr. Lösung (Knudsen, B. 28, 1761). Gelbes Öl. Siedet auch im Vakuum nicht unzersetzt. Kaum löslich in Wasser und in verd. Salzsäure.
- 4. $3 [\delta A \min o b u t y l] p y r i d in <math>C_0H_{14}N_2$, s. neben- ch_cH_2·CH_2·CH_2·CH_2·CH_2·NH_2 stehende Formel.
- 3-[δ -Methylamino-butyl]-pyridin, Dihydrometanicotin $C_{10}H_{16}N_8=NC_5H_4\cdot CH_3\cdot CH_3\cdot CH_3\cdot CH_3\cdot CH_3\cdot NH\cdot CH_3$. B. Aus Metanicotin (S. 438) beim Erhitzen mit rauchender Jodwasserstoffsäure und rotem Phosphor im Rohr auf 100° und Behandeln des Reaktionsprodukts mit Zinkstaub und Salzsäure (Löffler, Kober, B. 42, 3434). Kp: 258—259°. D!*: 0,959. Leicht löslich in Wasser, Alkohol, Aceton und Chloroform, schwerer in Äther. Behandelt man die Base mit Natriumhypobromit unter starker Kühlung, versetzt dann das Reaktionsprodukt vorsichtig mit konz. Schwefelsäure bei Zimmertemperatur und erwärmt zuletzt auf dem Wasserbad, so erhält man Nicotin. $C_{10}H_{16}N_3+2HCl+2AuCl_3$. Nadeln (aus Wasser). F: 138°. $C_{10}H_{16}N_3+2HCl+PtCl_4$. Rote Prismen. F: 198—199° (Zers.). Pikrat $C_{10}H_{16}N_3+C_6H_3O_7N_3$. Hellgelbe Nadeln (aus Aceton + Wasser). F: 161—162°. Fast unlöslich in Äther, schwer löslich in Alkohol, ziemlich leicht in Aceton.
- 3 [α Chlor δ (methyl-beneoyl-amino) butyl] pyridin (Benzoylchlorid-Nicotin) $C_{17}H_{19}ON_2Cl = NC_5H_4 \cdot CHCl \cdot CH_2 \cdot CH_2 \cdot N(CH_3) \cdot CO \cdot C_6H_8$. B. Beim Erwärmen von Nicotin mit 2 Mol Benzoylchlorid auf dem Wasserbad (PINNER, WOLFFENSTEIN, B. 24, 1376; P., B. 27, 2865; Ar. 231, 388; 233, 586). Viscose Flüssigkeit. Unlöslich in Wasser, schwer löslich in Äther und in verd. Essigsäure, leicht in Alkohol; löslich in Mineralsäuren (P., B. 27, 2865; Ar. 233, 586). α_0 : —4,7° (Alkohol; c = 10) (P., B 27, 2865; Ar. 233, 586). Liefert beim Erhitzen mit konz. Salzsäure im Rohr Nicotin und Benzoesäure (P., B. 27, 2865; Ar. 233, 586). Beim Kochen mit Natriumäthylat erhält man N-Benzoyl-metanicotin (S. 438) (P., B. 27, 2865; Ar. 233, 587). Pikrat $C_{17}H_{19}ON_2Cl + C_6H_2O_7N_3$. Gelbe Prismen. F: 139° (P., W.; P., Ar. 231, 389). Schwer löslich in kaltem Wasser.
- 3-[α . β -Dibrom- δ -methylamino-butyl]-pyridin, Metanicotindibromid $C_{10}H_{14}N_2Br_2$ = $NC_5H_4\cdot CHBr\cdot CH_3\cdot CH_2\cdot CH_2\cdot NH\cdot CH_3$. B. Das Perbromid (s. u.) entsteht beim Behandeln von Metanicotin (S. 438) mit Brom in Eisessig (Pinner, B. 27, 2867; Ar. 238, 595). Liefert beim Behandeln mit schwefliger Säure und darauf mit Zink und Salzsäure Metanicotin. Bei Einw. von Natronlauge auf die Lösung des Hydrobromids entsteht 3-[β -Brom- δ -methylamino- α -butenyl]-pyridin. $C_{10}H_{14}N_2Br_2+2HBr$. Sehr leicht löslich. $C_{10}H_{14}N_2Br_2+2HBr+2Br$. Gelbrote Nadeln. F: 170°. Schwer löslich in Wasser.

5. Monoamine $C_n H_{2n-6} N_2$.

1. Amine $C_8H_{10}N_2$.

1. 5-Amino-1.3-dihydro-isoindol, 5-Amino-isoindolin $C_8H_{10}N_2$, s. nebenstehende Formel. B. Bei der Reduktion von schwefelsaurem 5-Nitro-isoindolin (Bd. XX, S. 261) mit Zinnehlorür und verd. Salzsäure auf dem Wasserbad (Fränkel, B. 33, 2811). — Pikrat $C_8H_{10}N_2+C_6H_2O_7N_3$. Gelbe Nadeln. Bräunt sich bei 185° und schmilzt bei 203—204°.

2. Amin C₈H₁₀N₂, Formel I.
Verbindung C₁₄H₁₂O₄N₄ (,,5-Nitro3.2 - methylenimidobenzyl - p-nitranilin"), Formel II. Die von Meyer, Stillich, CH₂·NH₂ CH₂·NH·C₆H₄·NO₂
B. 35, 744 so formulierte Verbindung ist auf Grund von Maffei, G. 58 [1928], 261 und einer Privatmitteilung von Maffei bei 4-Nitro-anilin (Bd. XII, S. 714) als Umwandlungsprodukt gebracht worden.

2. Amine $C_9H_{12}N_2$.

- 1. 3-[δ-Amino-α-butenyl]-pyridin C₉H₁₂N₂, s. nebenstehende Formel.
- **3**- $[\delta$ -Methylamino- α -butenyl]-pyridin, Metanicotin \frown CH: CH \cdot CH₂ \cdot CH₂ \cdot NH \cdot CH₃ $C_{10}H_{14}N_2$, s. nebenstehende Formel. B. Bei längerem Erhitzen von 1 Tl. N-Benzoyl-metanicotin (s. u.) mit 4 Tln. $25^{\circ}/_{\circ}$ iger Salzsäure im Rohr auf 100° (Pinner, B. 27, 1058, 2866; Ar. 233, 589; vgl. Maass, Hilde-BRANDT, B. 39, 3698; LÖFFLER, KOBER, B. 42, 3434). — Ol. Riecht schwach nach Nicotin; Kp: 275—278° (unkorr.) (P., B. 27, 1059; Ar. 233, 590), 275° (M., H.). Ist mit Wasserdampf sehr sohwer flüchtig (P., B. 27, 1058; Ar. 233, 589). D_4^{15} : 1,006 (L., K.); $D_4^{19.7}$: 1,0017 (BRÜHL, Ph. Ch. 16, 218). $n_{\alpha}^{19.7}$: 1,5491; $n_{\gamma}^{19.7}$: 1,5551; $n_{\gamma}^{19.7}$: 1,5847 (Br.). Sehr leicht lößlich in Wasser, schwer in Ather, sehr schwer in konz. Natronlauge (P., B. 27, 1059; Ar. 238, 590). — Liefert bei der Reduktion mit Natrium und Alkohol Hexahydrometanicotin (S. 427) und Oktahydrometanicotin (S. 424) (Maass, B. 38, 1831; M., Hildebrandt, B. 39, 3698). Bei längerem Erhitzen mit rauchender Jodwasserstoffsäure und rotem Phosphor im Rohr auf 100° und Behandeln des Reaktionsprodukts mit Zinkstaub und Salzsaure entsteht Dihydrometanicotin (S. 437) (L., K.). Gibt bei der Einw. von Brom in Eisessig das Perbromid des Metanicotindibromids (S. 437) (P., B. 27, 2867; Ar. 233, 595). Beim Erhitzen mit Barytwasser auf 170° entstehen Methylamin und eine schwach basische Verbindung (C, H, N), (?), deren Pikrat bei 151° schmilzt (P., B. 27, 2866; Ar. 233, 601). — Metanicotindampf reizt zum Husten (P., B. 27, 1059). Physiologische Wirkung: P., Ar. 233, 604. — Salze: P., B. 27, 1059; Ar. 238, 590. — $C_{10}H_{14}N_2 + 2HCl$. Hygroskopische Krystallmasse (aus Alkohol + Äther). Sehr leicht löslich in Wasser, leicht in Alkohol, unlöslich in Äther (P.). — $C_{10}H_{14}N_2 + 2HCl + 2AuCl_3$. Gelbe Prismen. F: 160°. Zersetzt sich bei 175—185°. Schwer löslich in kalkom Wasser (P.) in kaltem Wasser (P.). — $C_{10}H_{14}N_3 + 2HCl + PtCl_4$. Gelbrote Prismen. Zersetzt sich bei ca. 255°. Schwer löslich in Wasser (P.). — Pikrat $C_{10}H_{14}N_2 + 2C_6H_3O_7N_3 + H_2O$. Krystalle. Schmilzt wasserfrei bei 163° (P.; L., K.).
- [3-(δ -Dimethylamino- α -butenyl)-pyridin]-bis-hydroxymethylat, [N-Methylmetanicotin]-bis-hydroxymethylat $C_{13}H_{24}O_2N_2 = (HO)(CH_3)NC_5H_4\cdot CH:CH\cdot CH_2\cdot CH_2\cdot N(CH_3)_3\cdot OH.$ Dijodid $C_{13}H_{22}N_2I_3$. B. Aus Metanicotin und Methyljodid in Methanol' bei mehrtägiger Einw. oder bei 24-stdg. Erhitzen im Rohr auf 100° (Pinner, B. 28, 464; Ar. 233, 594). Nadeln (aus Alkohol). F: 189°. Sehr leicht löslich in Wasser, ziemlich schwer in kaltem Alkohol, unlöslich in Äther.
- 3 [δ (Methyl acetyl-amino) α butenyl] pyridin, N Acetyl metanicotin $C_{12}H_{16}ON_3 = NC_5H_4 \cdot CH : CH \cdot CH_2 \cdot CH_2 \cdot N(CH_3) \cdot CO \cdot CH_3$. B. Bei 10—12-stdg. Erhitzen von 1 Tl. Nicotin (Syst. No. 3470) mit 5 Tln. Essigsäureanhydrid auf 170° (Pinner, B. 27, 2865; Ar. 233, 574, 585; vgl. Étard, C.r. 117, 172; Bl. [3] 11, 109). Gelbe, honigartige Masse. Wurde nicht rein erhalten. Schwer löslich in Äther.
- 8-[δ -(Methyl-benzoyl-amino)- α -butenyl]-pyridin, N-Benzoyl-metanicotin $C_{17}H_{18}ON_2=NC_5H_4\cdot CH\cdot CH\cdot CH_2\cdot CH_2\cdot N(CH_3)\cdot CO\cdot C_5H_5$. B. Beim Kochen von 1 Tl. Nicotin (Syst. No. 3470) mit 2 Tln. Benzoylchlorid (Pinner, B. 27, 1057; Ar. 233, 587; ÉTARD, C. r. 117, 279; Bl. [3] 11, 110). Aus Benzoylchlorid-Nicotin (S. 437) beim Kochen mit Natriumäthylat-Lösung (P., B. 27, 2865; Ar. 233, 587). Nadeln (aus Äther). F: 83°

(Löffler, Kober, B. 42, 3433). Zersetzt sich bei der Destillation im Vakuum (P., Ar. 233, 589). Sehr leicht löslich in Alkohol und Aceton, schwer in Äther, kaum in Wasser (P., B. 27, 1058). — $2C_{17}H_{18}ON_2 + 2HCl + PtCl_4$. Gelber, krystallinischer Niederschlag (É.). — Pikrat $C_{17}H_{18}ON_2 + C_6H_3O_7N_3$. Prismen (aus verd. Alkohol). F: 128°. Ziemlich leicht löslich in Alkohol, sehr schwer in heißem Wasser (P., B. 27, 1058; Ar. 233, 589).

- 3-[β -Brom- δ -methylamino- α -butenyl]-pyridin, Brommetanicotin $C_{10}H_{13}N_2Br=NC_5H_4\cdot CH:CBr\cdot CH_2\cdot CH_2\cdot NH\cdot CH_3$. B. Beim Versetzen von bromwasserstoffsaurem Metanicotindibromid mit Natronlauge (PINNER, B. 27, 2868; Ar. 233, 597). Gibt beim Erwärmen mit Zinkstaub und Salzsäure Metanicotin. Pikrat $C_{10}H_{13}N_2Br+2C_6H_3O_7N_3$. Prismen (aus Wasser). F: 190° (Zers.). Leicht löslich in Alkohol, ziemlich leicht in heißem Wasser.
- 2. 6-Amino-1.2.3.4-tetrahydro-chinolin C₉H₁₂N₂, s. neben-tehende Formel. B. Bei der Reduktion von 6-Nitroso-1.2.3.4-tetra-tehende Formel. hydro-chinolin (Bd. XXI, S. 290) oder von 6-Amino-chinolin (S. 447)
 mit Zinn und Salzsäure (Ziegler, B. 21, 863). Bei der Reduktion von [Benzol-sulfonsäure-(1)](4 azo 6)-[1.2.3.4-tetrahydro-chinolin] (Syst. No. 3448) mit Zinnchlorür und Salzsäure
 (Bamberger, A. 257, 25). — Krystalle (aus Benzol). F: 97° (Z.; B.). Ist im Vakuum destillierbar (Z.). Leicht löslich in Wasser (Z.). — Die wäßr. Lösung gibt mit Eisenchlorid eine rotviolette Färbung, die auf Zusstz von Salzsäure smaragdgrün wird (Z.; B.). Weitere Farbreaktionen: Bamberger, Zumbro, B. 26, 1291. — C₉H₁₂N₂ + 2 HCl. Hygroskopische Nadeln.
 F: 244—246° (Z.). — C₉H₁₂N₂ + 2 HCl + PtCl₄ (bei 110°). Gelber, krystallinischer Niederschlag (Z.). — Oxalat. Nadeln. F: 168° (Z.). — Pikrat. Grüne Krystalle. F: 176° (Z.).
- 1 Methyl 6 dimethylamino 1.2.8.4 tetrahydro-chinolin, 6 Dimethylamino kairolin $C_{12}H_{18}N_2$, s. nebenstehende Formel. B. Beim Behandeln von 6-Dimethylamino-chinolin mit Zinn und Salzsäure und Erhitzen des Reaktionsprodukts mit methylakoholischer Salzsäure im Rohr auf 180° (OSTERMAYER, B. 18, 597). $C_{12}H_{18}N_2 + HCl$. Hygroskopische Nadeln (aus Alkohol). F: 220°. $C_{12}H_{18}N_2 + HCl + ClI$. Gelbe Krystalle. F: 127°.
- [1-Methyl-6-dimethylamino-1.2.3.4-tetrahydro-chinolin]-bis-hydroxymethylat, [6-Dimethylamino-kairolin]-bis-hydroxymethylat $C_{14}H_{26}O_2N_2=$ (HO)(CH₃)₃N·C₆H₃ CH_2 —CH₂. B. Beim Kochen von 6-Amino-1.2.3.4-tetrahydro-like (HO)(CH₃)₂OH)·CH₂ chinolin mit überschüssigem Methyljodid in Methanol (ZIEGLER, B. 21, 865). — Krystalle (aus Methanol). F: 1710.

"Tetrahydrochinolin - dimethylanilinthiosulfonsäure - indamin" ${
m C_{17}H_{19}O_3N_3S_2},$ Formel I. Vgl. das Indamin C₁₇H₁₉O₃N₃S₂, Bd. XX, S. 264.

$$I. \xrightarrow{(CH_3)_2N} : \underbrace{\overset{+}{:}}_{:N \cdot C_6H_3} \underbrace{\overset{CH_2 \cdot CH_2}{\circ}}_{NH - \overset{+}{CH_2}} \qquad II. \xrightarrow{(CH_3)_2N} : \underbrace{\overset{+}{:}}_{:N \cdot C_6H_3} \underbrace{\overset{CH_2 - CH_2}{\circ}}_{N(CH_3) \cdot \overset{+}{CH_2}}$$

- "N Methyl tetrahydrochinolin dimethylanilinthiosulfonsäure indamin" $C_{18}H_{21}O_3N_3S_2$, Formel II. Vgl. das Indamin $C_{18}H_{21}O_3N_3S_2$, Bd. XX, S. 265.
- 1 Acetyl 6 acetamino 1.2.3.4 tetrahydro chinolin $C_{13}H_{16}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3 \cdot CH_2 CH_2 \cdot B$. Aus 6-Amino-1.2.3.4-tetrahydro-chinolin und Einerin (Zenzenze R. 2013) CH_3 . H. Arge Eisessig (Ziegler, B. 21, 865). — Nadeln. F: 172°.
 - 3. 7-Amino-1.2.3.4-tetrahydro-chinolin C₉H₁₂N₂, Formel III.
- 1-Methyl-7-amino-1.2.3.4tetrahydro-chinolin, 7-Amino- III.
 kairolin C₁₀H₁₄N₂, Formel IV. B.
 Bei der Reduktion von 7-Nitro-kairolin (Bd. XX, S. 274) mit Zinnehlorür und konz. Salzsäure (Feer, Koenigs, B. 18, 2391; v. Braun, Grabowski, Rawicz, B. 46 [1913], 3178). —
 Amorph. F: 60°; Kp₁₅: 195°; ziemlich leicht löslich in Wasser, löslich in Äther (v. B., G., R.). Färbt sich beim Aufbewahren an der Luft grünlichgelb (v. B., G., R.). Gibt mit Natriumnitrit in 10°/oiger Schwefelsäure 6-Nitroso-7-amino-kairolin (Bd. XXI, S. 430) (F., K.). —
 C₁₀H₁₄N₂ + 2 HCl + PtCl₄. Krystalle. Schwer löslich.

1-Methyl-6-nitroso-7-amino-1.2.8.4-tetrahydro-chinolin, I.
6-Nitroso-7-amino-kairolin
C₁₀H₁₃ON₃, Formel I, ist desmotrop mit 1-Methyl-1.2.3.4-tetrahydro-chinolinchinon-(6.7)-imid-(7)-oxim-(6), Formel II, Bd. XXI, S. 430.

4. 8-Amino-1.2.3.4-tetrahydro-chinolin C, H₁₂N₂, Formel III.

6-Brom-8-amino-1.2.3.4-tetrahydro-chinolin C₂H₁₁N₂Br, Formel IV. B. Bei der Reduktion von 6-Brom-8-nitro-tetrahydrochinolin (Bd. XX, S. 274) mit Zinnchlorür-Lösung (Kunckell, Ber. Disch. pharm. Ges. 20, 198, 215; C. 1910 II, 94). — Nadeln (aus

$$III. \begin{picture}(t){\begin$$

Ligroin). F: 85—86°. — Reduziert Platinchlorid-Lösung unter Schwärzung. Gibt beim Kochen mit Acetanhydrid oder Eisessig 5-Brom-2-methyl-1.7-trimethylen-benzimidazol (Formel V; Syst. No. 3483). — Hydrochlorid. Blättchen. F: 184°. Zersetzt sich an der Luft. — $2C_0H_{11}N_2Br+2HCl+SnCl_2+2H_3O$. Nadeln (aus salpetersäurehaltigem, verdünntem Alkohol). F: 158—160° (Zers.).

1-Acetyl-6-brom-8-amino-1.2.3.4-tetrahydro-chinolin C₁₁H₁₃ON₂Br, s. nebenstehende Formel. B. Das Zinnchlorür-doppelsalz entsteht bei der Reduktion von 1-Acetyl-6-brom-8-nitro-tetrahydrochinolin (Bd. XX, S. 274) mit Zinnchlorür und Salzsäure (Kunckell, C. 1910 II, 94). — Die salzsaure Lösung der Base liefert beim Versetzen mit Natronlauge unter Kühlung 5-Brom-2-methyl-1.7-trimethylen-benzimidazol (Formel V; Syst. No. 3483). — 2C₁₁H₁₃ON₂Br+2HCl+SnCl₂. Krystalle. F: oberhalb 270°.

5. 5-Amino-2-methyl-2.3-dihydro-indol, 5-Amino-H₂N CH₂
2-methyl-indolin C₉H₁₂N₂, s. nebenstehende Formel. B. Bei
der Reduktion von [Benzol-sulfonsäure-(1)]-(4 azo 5)-[2-methyl-indolin] (Syst. No. 3448) mit Zinnchlorür und heißer Salzsäure (Bamberger, Zumbro, B.
26, 1290). — Nadeln (aus Benzol). F: 93,5°. Sehr leicht löslich in den gebräuchlichen organischen Lösungsmitteln, ziemlich leicht in Wasser, löslich in Ligroin. Die wäßr. Lösung des Hydrochlorids gibt mit Eisenchlorid eine rotviolette Farbe, die auf Zusatz von konz. Salzsäure smaragdgrün wird. Weitere Farbreaktionen: B., Z. — Hydrochlorid. Krystalle.

6. 5-Aminomethyl-1.3-dihydro-isoindol, 5-Amino- $^{\rm H_2N\cdot CH_2\cdot}$ NH methyl-isoindolin $C_9H_{12}N_2$, s. nebenstehende Formel.

2-Phenyl-5-anilinomethyl-isoindolin $C_{21}H_{20}N_2 = C_6H_5\cdot NH\cdot CH_2\cdot C_6H_3 < \frac{CH_2}{CH_2} > N\cdot C_6H_5$. B. Das Hydrobromid entsteht bei 4-stdg. Kochen von 1 Mol 1\frac{1}.2\frac{1}.4\frac{1}{1}\text{Tribrom-pseudocumol (Bd. V, S. 403) mit 4 Mol Anilin in Alkohol (Ciusa, G. 36 II, 92). — Krystalle (aus Ligroin). F: 128\frac{0}{2}. — $C_{21}H_{20}N_2 + HBr$. Krystalle (aus Ligroin). F: 132\frac{0}{2}. Schwer löslich in Wasser und organischen Lösungsmitteln.

3. Amine $C_{10}H_{14}N_2$.

1. 8-Amino-6-methyl-1.2.3.4tetrahydro - chinolin C₁₀H₁₄N₂, VI.
Formel VI. B. Bei der Reduktion von
[Benzol-sulfonsäure-(1)]-(4azo 8)-[6-methyl-1.2.3.4-tetrahydro-chinolin] (Syst. No. 3448) mit Zinkstaub in siedender verdünnter
Natronlauge (Bamberger, Wulz, B. 24, 2070). — Beim Kochen des Hydrochlorids mit
Eisessig-Essigsäureanhydrid in Gegenwart von entwässertem Natriumacetat entsteht 2.5-Dimethyl-1.7-trimethylen-benzimidazol (Formel VII; Syst. No. 3484). — Gibt mit Eisenchlorid
oder Kaliumdichromat eine bordeauxrote Färbung. Weitere Farbreaktionen: B., W. —
C₁₀H₁₄N₂ + 2 HCl. Prismen. Zersetzt sich bei 216°.

- 2. 6 Amino 8 methyl 1.2.3.4 tetrahydro chinolin C₁₀H₁₄N₂, s. nebenstehende Formel. B. Bei der Reduktion von 6-Nitroso-8-methyl-1.2.3.4 tetrahydro-chinolin (Bd. XXI, S. 292) mit Zinn und Salzsäure (Ziegler, B. 21, 866) oder von [Benzol-sulfonsäure-(1)] CH₃ (4 azo 6) [8-methyl-1.2.3.4 tetrahydro-chinolin] (Syst. No. 3448) mit Zinnchlorür und konz. Salzsäure (Bamberger, Wulz, B. 24, 2065). C₁₀H₁₄N₂ + 2 HCl. Monoklin prismatisch (B., W.; vgl. Groth, Ch. Kr. 5, 786). Schmilzt oberhalb 310° (B., W.). Gibt mit Eisenchlorid eine smaragdgrüne Färbung (B., W.). Weitere Farbreaktionen: B., W.
- 4. $2-[3-Amino-\beta-phenäthyl]-piperidin, <math>\alpha-[3-Amino-phenyl]-\beta-[\alpha-piperidyl]-äthan, 3'-Amino-<math>\alpha$ -stilbazolin $C_{13}H_{20}N_2=$ H₂C·CH₂·CH₂ H₂C·UH₂·UH₂·UH₂·UH₂·UH₂·UH₂·UH₃·UH₄

6. Monoamine $C_n H_{2n-8} N_2$.

- 1. 2-Amino-indol $\mathrm{C_8H_8N_2} = \mathrm{C_6H_4} < \stackrel{CH}{\sim} \mathrm{C\cdot NH_2}.$
- 2 [Carbäthoxy amino] indol, [Indolyl (2)] carbamidsäure äthylester, $[\textbf{Indolyl-(2)}]\textbf{-urethan} \quad C_{11}H_{12}O_2N_2 = C_6H_4 < \begin{matrix} CH\\NH \end{matrix} > C\cdot NH\cdot CO_2\cdot C_2H_5 \quad \text{ist} \quad desmotrop \quad mit$ 2-[Carbathoxy-imino]-indolin (Bd. XXI, S. 283).
- 2. Amine $C_9H_{10}N_2$.
- 1. 3-Amino-2-methyl-indol $C_9H_{10}N_2 = C_6H_4 < \frac{C(NH_2)}{NH} > C \cdot CH_3$. B. Aus 3-Benzolazo-2-methyl-indol (Bd. XXI, S. 312) beim Erwärmen mit Zinn und konz. Salzsäure in Alkohol auf dem Wassserbad (Wagner, A. 242, 385). — Blättchen. F: 112—113°; schwer löslich in kaltem Wasser, leicht in Alkohol, Äther, Chloroform und Ligroin (W.). — Wird an der Luft anfangs rosa, später dunkelrot (W.). Das Hydrochlorid liefert beim Erwärmen mit Ferrichlorid in Wasser auf 50—60° eine Verbindung C₉H₇ON (s. u.) und ein in Alkohol leicht lösliches Produkt (W.). Bei längerem Erwärmen von 3-Amino-2-methyl-indol mit Zinkstaub und Salzsäure erhält man 2-Methyl-indolin (W.). Bei Einw. von Natriumnitrit in essigsaurer Lösung entsteht 3-Diazo-2-methyl-indol (s. u.) (Castellana, D'Angelo, R. A. L. [5] 14 II, 150; G. 36 II, 62). — $C_9H_{10}N_2 + HCl$. Prismen (aus Wasser), Krystalle (aus Alkohol + Äther). Wird an der Luft gelb bis rot (W.). Leicht löslich in heißem Wasser.
- 3-Diazo-2-methyl-indol C₉H₇N₃, I. C_6H_4 N_3 $C \cdot CH_3$ II. C_6H_4 $C(:N_3)$ $C \cdot CH_3$ Formel I oder II. B. Aus 3-Amino-2-methyl-indol bei Einw. von Natriumnitrit in essigsaurer Lösung (Castellana, d'Angelo, N. R.A. L. [5] 14 II, 150; G. 36 II, 62). — Dunkelgelbe Krystalle (aus Petroläther). F: 94°. Verändert sich am Licht. — C₉H₇N₃ + 2 HCl. Brauner, krystalliner Niederschlag. Zersetzt sich bei ca. 100°. — C₉H₇N₃ + 2I. Braune Krystalle. Zersetzt sich bei ca. 80°. Explodiert beim Erhitzen. — Pikrat C₉H₇N₃ + C₆H₃O₇N₃. Gelbe Nadeln (aus Alkohol). F: 172°. Verbindung C₉H₇ON. B. Aus 3-Amino-2-methyl-indol-hydrochlorid beim Erwärmen mit Ferrichlorid in Wasser auf 50—60° (Wagner, A. 242, 387). — Goldgelbe Blättchen

(aus Benzol). F: 225° (teilweise Zers.). Schwer löslich in Alkohol und Äther, leichter in heißem Aceton, unlöslich in Wasser und in verd. Säuren.

- 1-Äthyl-3-amino-2-methyl-indol $C_{11}H_{14}N_2=C_6H_4 < \frac{C(NH_2)}{N(C_2H_5)} > C \cdot CH_3$. B. Aus 1-Äthyl-3-nitro-2-methyl-indol beim Kochen mit Zinn und Salzsäure in Alkohol (Castellana, D'ANGELO, R. A. L. [5] 14 II, 150; G. 36 II, 62). — Pikrat $C_{11}H_{14}N_2 + C_6H_3O_7N_3$. Krystalle (aus Alkohol). F: 180-182°.
- 2. 6-Amino-2-methyl-indol CoH₁₀N₂, s. nebenstehende Formel. B. Aus 6-Amino-2-methyl-indol-carbonsaure-(3)-athylester beim Erhitzen mit Alkohol und Salzsäure im Rohr oder beim

$$\begin{array}{c|c} \mathbf{CH} & \mathbf{CH} \\ \mathbf{NH} & \mathbf{C} \cdot \mathbf{CH_3} \end{array}$$

Erwärmen mit Schwefelsäure auf 40° (Reissert, Heller, B. 37, 4368, 4376). Aus [α -(2.4-Diamino-phenyl)-acetoacetyl]-[α -(2.4-diamino-phenyl)-acetessigsäure]-äthylester (Bd. XIV, S. 657) beim Erhitzen mit konz. Salzsäure auf 130° (R., H.). — Unbeständig; wurde nicht ganz rein erhalten. Blättchen (aus Alkohol). F: 82°. Löslich in heißem Wasser. — Pikrat $C_9H_{10}N_3+C_6H_3O_7N_3$. Dunkelgelbe Blättchen (aus Alkohol). F: 192°. Löslich in den gebräuchlichen Lösungsmitteln.

- 6-Acetamino-2-methyl-indol (?) $C_{11}H_{12}ON_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3 < CH_5 \cdot CCH_3$ (?).
- B. Aus 6-Acetamino-2-methyl-indol-carbonsäure-(3)-äthylester (?) beim Erwärmen mit 90°/eiger Schwefelsäure auf 40° (Reissert, Heller, B. 37, 4377). Blättchen (aus verd. Alkohol). F: 180,5°. Leicht löslich in Eisessig und Methanol, schwer in Benzol, unlöslich in Ligroin. Liefert beim Kochen mit konz. Salzsäure 6-Amino-2-methyl-indol.
- 6-Benzamino-2-methyl-indol (?) $C_{16}H_{14}ON_2 = C_6H_5 \cdot CO \cdot NH \cdot C_6H_3 < NH > C \cdot CH_3$ (?).

 B. Aus 6-Amino-2-methyl-indol beim Behandeln mit Benzoylchlorid in alkal. Lösung (Reissert, Heller, B. 37, 4377). Blättchen (aus Alkohol). F: 209°. Ziemlich leicht löslich in Methanol und Alkohol, schwer in Benzol und Ligroin.
- 1-[α-(2.4-Diamino-phenyl)-acetoacetyl]6-amino-2-methyl-indol (?) C₁₉H₂₀O₂N₄, s. nebenstehende Formel. B. Aus [α-(2.4-Diamino-phenyl)-acetoacetyl]-[α-(2.4-diamino-phenyl)-acetoacetyl]-[α-(2.4-diamino-phenyl)-acetossigsäure]äthylester (Bd. XIV, S. 657) beim Erhitzen mit 30% iger Natronlauge im Rohr auf 100% (Reissert, Heller, B. 37, 4368, 4374). Hellgelbe Krystalle (aus Eisessig + Äther). Wird an der Luft sofort blau und zersetzt sich heftig bei 142,5%. Unlöslich in Ligroin, Äther und Benzol, leicht löslich in Methanol, Alkohol, Aceton und Eisessig. Löslich in Alkalien. Gibt beim Kochen mit Aceton ein Produkt vom Schmelzpunkt 211%. Beim Behandeln mit Benzoylchlorid in alkal. Lösung erhält man ein Tribenzoylderivat C₄₀H₃₂O₅N₄ (Krystalle; zersetzt sich bei 138%; leicht löslich in Methanol und Alkohol, schwer in Benzol, unlöslich in Ligroin).
- 3. Bz-Amino-2-methyl-indol $C_9H_{10}N_2 = H_2N \cdot C_6H_3 < CH_>C \cdot CH_3$. B. Aus Bz-Nitro-2-methyl-indol (Bd. XX, S. 314) durch Reduktion mit Zinn und Salzsäure (v. Walther, Clemen, J. pr. [2] 61, 286). Voluminöses Pulver (aus Benzol + Petroläther). F: 137°. Schwer löslich in Wasser, leicht in Alkohol, Äther, Chloroform, Benzol und Xylol.

Bs-Acetamino-2-methyl-indol $C_{11}H_{12}ON_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3 < {CH \atop NH} > C \cdot CH_3$. B. Aus Bz-Amino-2-methyl-indol beim Erhitzen mit Acetylchlorid auf dem Wasserbad (v. Walther, Clemen, J. pr. [2] 61, 287). — Amorphes Pulver (aus Benzol + Petroläther). F: 188°. Schwer löslich in heißem Wasser, leicht in Alkohol, Äther, Chloroform und Benzol.

Bs - [ω - Phenyl - ureido] - 2 - methyl - indol $C_{16}H_{15}ON_3 = C_6H_5 \cdot NH \cdot CO \cdot NH \cdot C_6H_3 < CH_5 \cdot CCH_3$. B. Aus Bz-Amino-2-methyl-indol beim Behandeln mit Phenylisocyanat in Benzol auf dem Wasserbad (v. Walther, Clemen, J. pr. [2] 61, 288). — Amorph (aus Alkohol + Äther durch Petroläther gefällt). F: 194°. Leicht löslich in Alkohol, schwer in Wasser, Äther, Chloroform und Benzol, unlöslich in Petroläther.

Bz - [ω - Phenyl - thioureido] - 2 - methyl - indol $C_{16}H_{15}N_3S = C_6H_5\cdot NH\cdot CS\cdot NH\cdot C_6H_3< \frac{CH}{NH}>C\cdot CH_3$. B. Aus Bz-Amino-2-methyl-indol bei Einw. von Phenylsenföl in Alkohol (v. Walther, Clemen, J. pr. [2] 61, 288). — Amorphes Pulver (aus Äther + Petroläther). F: 162°. Unlöslich in Petroläther, fast unlöslich in Wasser, schwer löslich in Äther, Chloroform und Benzol, leicht in Alkohol.

3. 6 - Amino - 1.2.3.4.3'.4'.5'.6' - oktahydro - [benzo - 1'.2':7.8 - chinolin] ¹), 6 - Amino - 7.8 - tetramethylen - 1.2.3.4 - tetrahydro - chinolin (,,p - Amino-ar. - oktahydro - α - naphthochinolin") C₁₂H₁₆N₂, s. nebenstehende Formel. B. Aus [Benzol-sulfonsäure-(1)]-⟨4 azo 6⟩-[1.2.3.4.3'.4'.5'.6'-oktahydro-(benzo-1'.2':7.8 - chinolin)] beim Kochen mit Zinnehlorür und Salzsäure (Bamberger, Stettenheimer, B. 24, H₂C CH₂ 2491). — Prismen (aus Äther). F: 97°. Sehr leicht löslich in Alkohol und Chloroform, leicht in Äther, schwer in kaltem Ligroin und Wasser. — Gibt in wäßr. Lösung mit Ferrichlorid eine blaßgelbe, mit Kaliumdichromat eine braungelbe Färbung. — Hydrochlorid. Nadeln. Leicht löslich in Wasser.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

7. Monoamine $C_nH_{2n-10}N_2$.

1. Amine C₉H₈N₂.

- 2-Amino-chinolin bezw. a-Chinolonimid C₉H₈N₂, Formel I bezw. II. B. Aus 2-Chlor-chinolin beim Erhitzen mit Ammoniak und Am-I. monium carbonat im Rohr auf 200—210° (CLAUS, SCHALLER, J. pr. [2] 56, 206). Aus 2-Hydrazino-chinolin beim Kochen mit Zinkstaub in salzsaurer Lösung (Marckwald, Meyer, B. 33, 1894). Beim Erhitzen von 2-Phenylhydrazinochinolin mit Jodwasserstoffsäure (D: 1,7) und rotem Phosphor im Rohr auf 180° (EPHRAIM, B. 24, 2819). Aus 2-Amino-zimtsäure-nitril sowie aus 2-Acetamino-zimtsäure-nitril beim Kochen mit alkoh. Natriumäthylat-Lösung (Pschore, B. 31, 1297). — Blättchen (aus Wasser). F: 125° (CL., Sch.), 129° (korr.) (Psch.). Sublimiert in Blättchen (CL., Sch.; Psch.). Sehr leicht löslich in heißem Wasser (CL., Sch.), leicht in Alkohol, Äther, Aceton, Eisessig, Essigester und Chloroform, schwer in kaltem Benzol, Toluol und Ligroin (Psch.; vgl. a. Cl., Sch.). — Liefert beim Behandeln mit konz. Alkalilaugen sowie beim Erhitzen mit verd. Laugen oder mit Säuren 2-Oxy-chinolin (CL., Sch.). Beim Behandeln mit Methyljodid erhält man das Hydrojodid des N-Methyl-a-chinolon-imids (Bd. XXI, S. 305) (Cl., Sch.). — Hydrochlorid. Sehr leicht löslich in Wasser (Psch.). — Sulfat. Krystalle. Schwer löslich in kalter verdünnter Schwefelsäure (PSCH.). — Nitrat. Nadeln (PSCH.). — C₀H₈N₂ + HCl + AuCl₃. Gelbe Krystalle. F: 263° (M., M.). Schwer löslich. — 2C₀H₈N₂ + 2HCl + PtCl₄ + 2H.O. Orangegelbe Nadeln (aus konz. Salzsäure) (Cl., Sch.; vgl. a. Psch.). Schwer löslich in siedendem Wasser, löslich in heißer konzentrierter Salzsäure (CL., Sch.). — Pikrat $C_9H_8N_2+C_8H_3O_7N_8$. Krystalle. Zersetzt sich bei 250—253° (korr.) (Psch.; vgl. a. E.). Schwer löslich in Alkohol (Psch.).
- 2-Amino-chinolin-hydroxymethylat $C_{10}H_{12}ON_2=(HO)(CH_3)NC_9H_6\cdot NH_2$. Salze vgl. unter N-Methyl- α -chinolon-imid (Bd. XXI, S. 305).
- 2-Methylamino-chinolin-hydroxymethylat $C_{11}H_{14}ON_2 = (HO)(CH_3)NC_9H_6 \cdot NH \cdot CH_3$.

 Salze vgl. unter N-Methyl- α -chinolon-methylimid (Bd. XXI, S. 305).
- 2-Dimethylamino-chinolin-hydroxymethylat, 1-Methyl-2-dimethylamino-chinoliniumhydroxyd $C_{12}H_{16}ON_2 = (HO)(CH_3)NC_9H_6\cdot N(CH_3)_2$. B. Das Jodid entsteht aus dem Hydrojodid des N-Methyl- α -chinolon-methylimids (Bd. XXI, S. 305) beim Behandeln mit Natronlauge und Versetzen des entstandenen Öls mit Methyljodid in Äther (Roser, A. 282, 384). Das Jodid bildet sich auch aus 2-Jod-chinolin-jodmethylat beim Behandeln mit Dimethylamin (R.). Das Jodid liefert beim Kochen mit Natronlauge Dimethylamin und N-Methyl- α -chinolon. $C_{12}H_{15}N_2\cdot Cl$. Krystalle (aus Alkohol). $C_{12}H_{15}N_2\cdot I + H_2O$. Nadeln. F: 197°. Leicht löslich in heißem Wasser und heißem Alkohol. $2C_{12}H_{15}N_2\cdot Cl + PtCl_4$.
- **2-Amino-chinolin-hydroxyäthylat** $C_{11}H_{14}ON_2 = (HO)(C_2H_5)NC_9H_6\cdot NH_2$. Jodid vgl. unter N-Äthyl- α -chinolon-imid (Bd. XXI, S. 306).
- 2-Anilino-chinolin C₁₅H₁₂N₂ = NC₉H₆·NH·C₆H₅. B. Beim Erhitzen von 2-Chlorchinolin mit Anilin auf 200° (FRIEDLAENDER, WEINBERG, B. 18, 1532). Aus N.N'-Diphenyl-N-[chinolyl-(2)]-harnstoff beim Erhitzen mit konz. Salzsäure auf 200° (Goldschmidt, Meissler, B. 23, 277). Blättchen (aus Alkohol). F: 98° (F., W.; G., M.). Destilliert fast unzersetzt oberhalb 360° (F., W.). Leicht löslich in verd. Mineralsäuren (F., W.). Wird am Licht und an der Luft braun (F., W.). Chloroplatinat. Krystallin (F., W.).
- **2-[4-Brom-anilino]-chinolin** $C_{15}H_{11}N_{2}Br = NC_{9}H_{6}\cdot NH\cdot C_{8}H_{4}Br$. B. Beim Erhitzen von 2-Chlor-chinolin mit 4-Brom-anilin (Friedlaender, Weinberg, B. 18, 1533). Schüppchen (aus verd. Alkohol). F: 146°.
- **2-Anilino-chinolin-hydroxymethylat** $C_{16}H_{16}ON_3 = (HO)(CH_3)NC_9H_6 \cdot NH \cdot C_6H_5$. Salze vgl. unter N-Methyl- α -chinolon-anil (Bd. XXI, S. 305).
- 2-[1.2.3.4-Tetrahydro-chinolyl-(1)]-chinolin, 1-[Chinolyl-(2)]-1.2.3.4-tetrahydro-chinolin C₁₈H₁₈N₂, s. nebenstehende Formel. B. Aus 2-Chlor-chinolin beim Erhitzen mit 1.2.3.4-Tetrahydro-chinolin (FRIEDLAENDER, WEINBERG, B. 18, 1533).— Krystalle (aus Chloroform). F: 118°. Destilliert unzersetzt bei hoher Temperatur. Unlöslich in Wasser, schwer löslich in Ligroin, leicht in anderen Lösungsmitteln.

2-Acetamino-chinolin-hydroxymethylat $C_{12}H_{14}O_2N_2 = (HO)(CH_3)NC_9H_6\cdot NH\cdot CO\cdot CH_2$. — Jodid vgl. unter N-Methyl- α -chinolon-acetimid (Bd. XXI, S. 306).

Löst sich in Mineralsäuren mit intensiv gelber Farbe.

2-Bensamino-chinolin-hydroxymethylat $C_{17}H_{16}O_2N_2 = (HO)(CH_3)NC_9H_6\cdot NH\cdot CO\cdot C_6H_6$. — Salze vgl. unter N-Methyl- α -chinolon-benzimid (Bd. XXI, S. 306).

N.N'-Diphenyl-N-[chinolyl-(2)]-harnstoff $C_{22}H_{17}ON_3 = NC_9H_6 \cdot N(C_6H_5) \cdot CO \cdot NH \cdot C_6H_5$. B. Beim Erhitzen von 2-Oxy-chinolin mit Phenylisocyanat in Benzol auf 220° (GOLD-SCHMIDT, MEISSLER B. 23, 276). — Nadeln (aus Benzol). F: 150°. — Wird beim Erhitzen mit konz. Salzsäure auf 200° in 2-Anilino-chinolin, Anilin und Kohlendioxyd gespalten.

6-Chlor-2-amino-chinolin C₂H₇N₂Cl, s. nebenstehende Formel. B. Cl. Beim Erhitzen von 2.6-Dichlor-chinolin mit Zinkchlorid-Ammoniak auf 200° (O. FISCHER, B. 35, 3683). — Nadeln (aus verd. Alkohol). F: 152°.

2. 4-Amino-chinolin bezw. γ-Chinolon-imid
C₉H₈N₉, Formel I bezw. II. B. Aus Cinchoninsäureamid
beim Erwärmen mit Brom und Kalilauge (Hoogewerff,
van Dorp, R. 10, 145; Claus, Howitz, J. pr. [2] 50, 237;
Cl., Frobenius, J. pr. [2] 56, 181; Wenzel, M. 15, 457).

Neben anderen Produkten aus den Oximen des N-Methyl-cinchotoxins (Syst. No. 3571) und des N-Methyl-cinchotintoxins (Syst. No. 3570) beim Behandeln mit Phosphorpentachlorid in Chloroform und Erwärmen des Reaktionsprodukts mit wäßrig-methylalkoholischer Natronlauge oder mit verd. Salzsäure (Koenigs, B. 40, 650, 2876, 2880). — Nadeln mit 1 H₂O (aus Wasser, Alkohol, Chloroform oder Benzol); F: 70° (Hoo., v. D.; Cl., How.; Cl., Fr.). Wasserfreie Blättchen (aus Benzol); Krystalle (aus Äther); F: 152—154° (Hoo., v. D.), 154° (CL., Fr.; W.), 154—155° (K.). Leicht löslich in Alkohol, Chloroform, heißem Benzol und Ather, löslich in kaltem Wasser, sehr schwer löslich in Ligroin und Schwefelkohlenstoff (Hoo., v. D.; vgl. a. Cl., How.). — Die zugehörige Diazo-Verbindung läßt sich nur beim Diazotieren in konz. Schwefelsäure in Form einer roter Lösung gewinnen; beim Eintragen dieser Lösung in Wasser erhält man 4-Oxy-chinolin, beim Eintragen in Kupferbromür-Lösung 4-Brom-chinolin (CL., How.; vgl. CL., Fr., J. pr. [2] 56, 194); diazotiert man in salzsaurer Lösung, so erhält man unmittelbar 4-Chlor-chinolin (W.; CL., How.), in bromwasserstoffsaurer Lösung 4-Brom-chinolin und 3-Brom-4-amino-chinolin (CL., How.; CL., Fr., J. pr. [2] 56, 192), in jodwasserstoffsaurer Lösung 3-Jod-4-amino-chinolin (CL., Fr.). 4-Aminochinolin liefert bei der Einw. von Brom in Chloroform oder Eisessig 3-Brom-4-amino-chinolin (CL., How.). Beim Behandeln mit Salpeterschwefelsäure erhält man je nach den Bedingungen 4-Nitramino-chinolin (S. 593) und 6-Nitro-4-amino-chinolin (S. 445) oder 6-Nitro-4-nitraminochinolin (S. 593) und eine Verbindung $C_{18}H_{10}O_7N_7$ oder $C_{18}H_{12}O_7N_7$ (s. u.) (Cl., Fr., J. pr. [2] 56, 197; TSCHITSCHIBABIN, WITKOWSKI, LAPSCHIN, \mathcal{H} . 57 [1925], 306; B. 58 [1925], 803). Beim Erwarmen mit Methyljodid auf 50—60° bildet sich das Hydrojodid des N-Methyl- γ -chinolon-imids (Bd. XXI, S. 304) (CL., Fr., J. pr. [2] 56, 184); reagiert analog mit Athyljodid bei 100° (CL., Fr.).

 $C_0H_8N_2 + HCl + H_9O$. Blättchen (Koenigs, B. 40, 652; vgl. a. Claus, Frobenius, J. pr. [2] 56, 182). Sehr leicht löslich in Wasser (Cl., Fr.). — $C_9H_8N_2 + HNO_3 + H_9O$. Blättchen oder Nadeln. F: ca. 212° (Zers.) (K., B. 40, 652), 214° (Cl., Fr., J. pr. [2] 56, 183). — $2C_9H_8N_2 + H_9Cr_2O_7$. Gelbe bezw. rote Nadeln (aus Wasser). Zersetzt sich bei 207° (Cl., Fr., J. pr. [2] 56, 184), bei 210° (K., B. 40, 652). Schwer löslich in Wasser (Hoogewerff, van Dorf, R. 10, 147). — $2C_9H_8N_2 + AgNO_3$. Nadeln (Hoo., v. D.). — $2C_9H_8N_2 + 2HCl + PtCl_4 + 2H_9O$. Orangegelbe Nadeln (aus Konz. Salzsäure). F: 266—270° (Zers.) (Hoo., v. D.); zersetzt sich bei 307° (K., B. 40, 652). Fast unlöslich in Wasser (Hoo., v. D.; Cl., Fr., J. pr. [2] 56, 183). — Pikrat. Nadeln (aus Wasser). F: 274° (K., B. 40, 651). — Verbindung mit Kohlendioxyd. Krystallines Pulver. F: 90° (Zers.) (K., B. 40, 652). 96° (Zers.) (Hoo., v. D.).

652), 96° (Zers.) (Hoo., v. D.).

Verbindung C₁₈H₁₀O₇N₇ oder C₁₈H₁₈O₇N₇. B. In geringer Menge beim Behandeln von 4-Amino-chinolin mit Salpeterschwefelsäure (Claus, Frobenius, J. pr. [2] 56, 197, 200). — Krystalle (aus verd. Alkohol). Zersetzt sich bei 285°. Ziemlich leicht löslich in Wasser und Alkohol. Sehr schwer löslich in verd. Salzsäure, sehr leicht in verd. Alkalien mit roter Farbe; aus konzentrierten alkalischen Lösungen scheiden sich allmählich dunkelgelbe Nadeln aus.

4-Amino-chinolin-hydroxymethylat $C_{10}H_{10}ON_3=(HO)(CH_3)NC_9H_6\cdot NH_2$. — Salze vgl. unter N-Methyl- γ -chinolon-imid (Bd. XXI, S. 304).

4-Amino-chinolin-hydroxyäthylat $C_{11}H_{14}ON_2 = (HO)(C_2H_5)NC_9H_6 \cdot NH_2$. — Jodid vgl. unter N-Äthyl- γ -chinolon-imid (Bd. XXI, S. 304).

4-Anilino-chinolin $C_{15}H_{12}N_2 = NC_9H_6 \cdot NH \cdot C_6H_5$. B. Das Hydrochlorid entsteht beim Erhitzen von 4-Chlor-chinolin mit Anilin auf 120° (EPHRAIM, B. 26, 2229). — Nadeln. F: 198°.

- $C_{15}H_{19}N_3 + HCl$. Gelbe Säulen (aus Alkohol). F: 244°. Fast unlöslich in kaltem, löslich in heißem Wasser, leicht löslich in absol. Alkohol.
- **4-Acetamino-chinolin** $C_{11}H_{10}ON_2 = NC_0H_6 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von **4.**Amino-chinolin mit überschüssigem Acetanhydrid in Eisessig (CLAUS, FROBENIUS, J. pr. [2] **56**, 190). Nadeln mit 1 H_2O (aus Wasser). F: 176°. Sublimiert unzersetzt. Liefert beim Erhitzen mit Methyljodid im Rohr auf 120° das Hydrojodid des N-Methyl- γ -chinolonacetimids (Bd. XXI, S. 304).
- 4-Acetamino-chinolin-hydroxymethylat $C_{12}H_{14}O_2N_2 = (HO)(CH_3)NC_9H_6\cdot NH\cdot CO\cdot CH_3$. Jodid vgl. unter N-Methyl- γ -chinolon-acetimid (Bd. XXI, S. 304).
- 2-Chlor-4-anilino-chinolin C₁₈H₁₁N₂Cl, s. nebenstehende Formel.

 B. Aus 2-Oxy-4-anilino-chinolin beim Erhitzen mit Phosphorpentachlorid auf ca. 100—120° und Kochen des Reaktionsgemisches mit Phosphoroxy-chlorid (Niementowski, B. 40, 4290). Nadeln (aus Alkohol). F: 156°.

 Sehr leicht löslich in Alkohol und Aceton, sehr schwer in Benzol und Tetrachlorkohlenstoff, unlöslich in Wasser. Liefert beim Erhitzen mit Anilin 2.4-Dianilino-chinolin. Hydro-chlorid. Gelbe Blättchen. F: ca. 247°. Schwer löslich in kaltem Wasser.
- 3-Brom-4-amino-chinolin C₉H₇N₂Br, s. nebenstehende Formel. B. NH₂
 Neben 4-Amino-chinolin aus Chinolin-carbonsäure-(4)-amid beim Behandeln
 mit Brom und Kalilauge (Claus, Howitz, J. pr. [2] 50, 237; Wenzel, M.
 15, 457). Aus 4-Amino-chinolin beim Behandeln mit Brom in Chloroform oder
 Eisessig (Cl., H.) oder mit Bromwasserstoffsäure in Gegenwart von Natriumnitrit (Cl., H.;
 Cl., Frobenius, J. pr. [2] 56, 192). Nadeln (aus Alkohol oder Benzol). F: 199° (W.),
 203° (Cl., H.). Sublimierbar (Cl., H.; W.). Leicht löslich in Äther und Alkohol (Cl., H.).
 Läßt sich durch Diazotieren in Schwefelsäuremonohydrat und Verkochen mit Alkohol
 in 3-Brom-chinolin überführen (Cl., H.).
- **3-Jod-4-amino-chinolin** $C_0H_7N_2I$, s. nebenstehende Formel. B. Aus 4-Amino-chinolin beim Behandeln mit Jodwasserstoffsäure und Natriumnitrit (CLAUS, FROBENIUS, J. pr. [2] 50, 193). Nadeln mit $1 H_2O$ (aus Wasser). F: 197°.
- 3 Nitro 4 amino chinolin C₂H₇O₂N₃, s. nebenstehende Formel.

 Die von Claus, Frobenius (*J. pr.* [2] 56, 202) unter dieser Formel beschriebene Verbindung ist von Tschitschibabin, Witkowski, Lapschin (*B.* 58 [1925], 804; Ж. 57 [1925], 307) als 4-Nitramino-chinolin (S. 593) erkannt worden.
- 6-Nitro-4-amino-chinolin C₉H₇O₂N₃, s. nebenstehende Formel. B.

 Durch Einw. von konz. Schwefelsäure auf 4-Nitramino-chinolin (S. 593)
 oder, neben diesem, aus 4-Amino-chinolin beim Behandeln mit Salpeterschwefelsäure in der Kälte (Tschitschibabin, Witkowski, Lapschin,
 B. 58 [1925], 807; Ж. 57 [1925], 312). Gelbe Nadeln (aus Alkohol). F: 272° (Zers.). Leicht
 löslich in verd. Mineralsäuren, unlöslich in Alkalien. Liefert bei der Oxydation mit Permanganat 5-Nitro-2-amino-benzoesäure.
- **ж.ж-Dinitro-4-amino-chinolin** $C_9H_6O_4N_4=NC_9H_4(NO_2)_2\cdot NH_2$. Die von Claus, **Frobenius** (*J. pr.* [2] **56**, 197) unter dieser Formel beschriebene Verbindung ist von Tschitschibabin, Witkowski, Lapschin (*B.* **58** [1925], 804; Ж. **57** [1925], 307) als 6-Nitro-4-nitramino-chinolin (S. 593) erkannt worden.
- 3. 5-Amino-chinolin C₉H₈N₂, s. nebenstehende Formel. B. Aus 5-Nitrochinolin durch Reduktion mit Zinnchlorür und Salzsäure (Dufton, Soc. 61, 785; Claus, Setzer, J. pr. [2] 53, 399) oder mit Eisenpulver und Salzsäure (Cl., S.). Beim Erhitzen von 5-Oxy-chinolin mit Zinkchlorid-Ammoniak auf 300° (Riemerschmed, B. 16, 725). Blättchen (aus Äther), Nadeln (aus Alkohol oder Wasser). F: 109° bis 110° (R.), 110° (Cl., S.). Kp: 310° (Cl., S.). Sublimiert bei raschem Erhitzen fast unzersetzt (R.). Leicht löslich in Methanol, Alkohol und Äther, löslich in Benzol, schwer löslich in kaltem Wasser, fast unlöslich in Ligroin (R.). Liefert beim Behandeln mit Brom in Chloroform oder Eisessig 6.8-Dibrom-5-amino-chinolin (Cl., S., J. pr. [2] 53, 407). Beim Erhitzen mit Nitrobenzol, Glycerin und Schwefelsäure erhält man Phenanthrolin (Syst. No. 3487) (Seraup, M. 5, 532). Pikrat. Rote Nadeln (aus Alkohol). Fast unlöslich in Äther (R.).
- 5-[2.4-Dinitro-anilino]-chinolin $C_{18}H_{10}O_4N_4 = NC_9H_6 \cdot NH \cdot C_6H_3(NO_3)_3$. B. Aus 5-Amino-chinolin und 4-Chlor-1.3-dinitro-benzol beim Zusammenschmelzen oder beim Erhitzen in Gegenwart von wenig Alkohol auf 120° (Meigen, J. pr. [2] 77, 484). Gelbrote

- Nadeln (aus Xylol). F: 211°. Löslich in Nitrobenzol und Xylol, schwer löslich in niedrigsiedenden Lösungsmitteln; unlöslich in verd. Säuren. Liefert bei der Reduktion mit Schwefelammonium in Alkohol 5-[4-Nitro-2-amino-anilino]-chinolin, beim Erwärmen mit Eisenpulver und verd. Salzsäure 5-[2.4-Diamino-anilino]-chinolin. $C_{15}H_{10}O_4N_4 + HCl$. Gelbe Nadeln. $2C_{15}H_{10}O_4N_4 + 2HCl + PtCl_4$. Dunkelgelbe Krystalle.
- 5-[2.4-Dinitro-anilino]-chinolin-hydroxymethylat $C_{16}H_{14}O_5N_4=(HO)(CH_3)NC_9H_6$ · $NH\cdot C_6H_3(NO_2)_2$. Jodid $C_{16}H_{13}O_4N_4\cdot I$. B. Das Jodid entsteht aus der vorangehenden Verbindung beim Erhitzen mit Methyljodid im Rohr auf 100° (Meigen, J. pr. [2] 77, 485). Gelbe Nadeln (aus Wasser). F: 164° ; färbt sich bei 150° dunkel. Bei der Einw. von verd. Alkali bilden sich violette Krystalle, die mit Jodwassersteffsäure das Jodid regenerieren.
- 5-Acetamino-chinolin $C_{11}H_{10}ON_2 = NC_9H_6 \cdot NH \cdot CO \cdot CH_3$. B. Aus 5-Amino-chinolin beim Kochen mit Acetanhydrid und Eisessig oder beim Behandeln mit Acetanhydrid in Benzol (Claus, Setzer, J. pr. [2] 53, 410). Nadeln. F: 178°. Liefert beim Behandeln mit Brom in Eisessig 8-Brom-5-acetamino-chinolin.
- 5-[4-Nitro-2-amino-anilino]-chinolin $C_{15}H_{12}O_2N_4 = NC_9H_6 \cdot NH \cdot C_8H_3(NO_2) \cdot NH_2$. B. Aus 5-[2.4-Dinitro-anilino]-chinolin durch Reduktion mit Schwefelammonium in Alkohol (Meigen, J. pr. [2] 77, 486). Braune Nadeln (aus Xylol). F: 232°. Schwer löslich in Xylol, Nitrobenzol, Chloroform und Ather, leichter in Alkohol, sehr leicht in Eisessig und Aceton. Liefert beim Behandeln mit Natriumnitrit und verd. Salzsäure 1-[Chinolyl-(5)]-5-nitrobenztriazol (Syst. No. 3803). $2C_{15}H_{12}O_2N_4 + 2HCl + PtCl_4$. Bräunliche Blättchen. F: 276°.
- 5-[4-Nitro-2-acetamino-anilino]-chinolin $C_{17}H_{14}O_3N_4 = NC_9H_6\cdot NH\cdot C_6H_8(NO_2)\cdot NH\cdot CO\cdot CH_3$. B. Aus 5-[4-Nitro-2-amino-anilino]-chinolin beim Kochen mit Acetanhydrid und Eisessig (Meigen, J. pr. [2] 77, 486). Hellgelbe Krystalle (aus wäßr. Aceton oder verd. Alkohol). F: 215°.
- 5-[2.4-Diamino-anilino]-chinolin $C_{15}H_{14}N_4 = NC_9H_6 \cdot NH \cdot C_6H_3(NH_2)_2$. B. Aus 5-[2.4-Dinitro-anilino]-chinolin beim Erwärmen mit Eisenpulver und verd. Salzsäure (Meigen, J. pr. [2] 77, 487). Gelbgrüne Nadeln mit 1 H_2O (aus verd. Alkohol). F: 191°.
- 6-Chlor-5-amino-chinolin C₉H₇N₂Cl, s. nebenstehende Formel. B. Aus 6-Chlor-5-nitro-chinolin beim Behandeln mit Zinnchlorür in Salzsäure oder bei tagelangem Kochen mit Jod, rotem Phosphor und Wasser (Claus, Schedler, J. pr. [2] 49, 363). Hellgelbe Nadeln mit 1 H₂O (aus Wasser oder verd. Alkohol). Schmilzt bei ca. 115—119° unter Abgabe des Krystallwassers; das wasserfreie Produkt schmilzt zwischen 132° und 136°. Gibt beim Diazotieren in verd. Schwefelsäure und Umsetzen mit Kupferchlorür 6-Chlor-5-oxy-chinolin, beim Diazotieren in Salzsäure und Umsetzen mit Kupferpulver 5.6-Dichlor-chinolin. C₉H₇N₂Cl + HCl. Rote Tafeln. F: 215—220°. Leicht löslich in Wasser und Alkohol. 2C₉H₇N₂Cl + 2HCl + PtCl₄ + 2H₂O. Braune Nadeln (aus alkoh. Salzsäure). F: 250° (Zers.).
- 8-Chlor-5-amino-chinolin C₉H₇N₂Cl, s. nebenstehende Formel. B. Aus 8-Chlor-5-nitro-chinolin durch Kochen mit Zinnchlorür in alkoh. Salzsäure (Claus, Schöller, J. pr. [2] 48, 146). Farblose Nadeln (aus Alkohol oder Ather). Färbt sich rasch gelblich bis rötlich. F: 152°. Leicht löslich in Alkohol und Ather, fast unlöslich in kaltem Wasser. C₂H₇N₂Cl+HCl. Rote Krystalle. F: 275°. 2C₉H₇N₂Cl+2HCl+PtCl₄+2H₂O. Rote Nadeln (aus Salzsäure).
- 3-Brom-5-amino-chimolin C₂H₇N₂Br, s. nebenstehende Formel. B. Aus H₂N 3-Brom-5-nitro-chinolin durch Reduktion mit Zinnchlorür in alkoh. Salzsäure (Claus, Decker, J. pr. [2] 39, 311; Cl., Setzer, J. pr. [2] 53, 413). Fast farblose Nadeln mit ½ H₂O (aus Wasser). F: 135° (unkorr.). Sublimiert in Blättchen. Leicht löslich in den gebräuchlichen Lösungsmitteln. Löst sich in verd. Säuren mit roter Farbe, in konz. Säuren farblos. Wird bei Einw. von Chromsäure schwarz.
- 3-Brom-5-acetamino-chinolin $C_{11}H_9ON_2Br = NC_9H_5Br\cdot NH\cdot CO\cdot CH_3$. B. Aus 3-Brom-5-amino-chinolin beim Kochen mit Acetanhydrid und Natriumacetat (CLAUS, DECKER, J. pr. [2] 39, 311). Nadeln (aus Wasser oder verd. Alkohol). F: 212° (unkorr.).
- 6-Brom-5-amino-chinolin C₂H₇N₂Br, s. nebenstehende Formel. B. Aus
 6-Brom-5-nitro-chinolin beim Erwärmen mit Zinnchlorür in alkoh. Salzsäure
 (LA Cosre, B. 15, 1920). Nadeln mit 1 H₂O (aus Wasser), Prismen (aus Ather).
 F: 164°; verflüchtigt sich bei weiterem Erhitzen unter teilweiser Zersetzung.
 Leicht löslich in Alkohol. Hydrochlorid. Wasserhaltige, rote Prismen. Sehr leicht löslich.
 C₂H₇N₂Br + HNO₃. Goldgelbe Nadeln. Verpufft beim Erhitzen. Sehr leicht löslich in heißem Wasser. 2C₂H₇N₂Br + 2 HCl + PtCl₄. Orangegelbe Nadeln. Löslich in heißem Wasser.

- 6-Brom-5-acetamino-chinolin C₁₁H₉ON₂Br = NC₉H₅Br·NH·CO·CH₃. B. Aus 6-Brom-5-amino-chinolin beim Erhitzen mit Acetanhydrid im Rohr auf 140—150° (La Coste, B. 15, 1921). Blättchen (aus Wasser). F: 104—105°. Wird durch verd. Salzsäure leicht verseift.
- 8-Brom-5-amino-chinolin C₉H₇N₂Br, s. nebenstehende Formel. B. Aus H₂N 8-Brom-5-nitro-chinolin durch Reduktion mit Zinnchlorür in salzsaurer Lösung (CLaus, Howitz, J. pr. [2] 48, 154). Aus 8-Brom-5-acetamino-chinolin (s. u.) durch Erhitzen mit konz. Salzsäure im Rohr auf 150° (CL., Setzer, J. pr. [2] 53, 411). Gelbliche Nadeln (aus Alkohol). F: 136° (CL., S.). Sublimierbar Br (CL., H.). Leicht löslich in Alkohol, Äther und Chloroform; löslich in Säuren mit roter Farbe (CL., H.). 2C₉H₇N₂Br + 2HCl + PtCl₄. Orangerote Nadeln. Zersetzt sich oberhalb 260°.
- 8-Brom-5-acetamino-chinolin $C_{11}H_0ON_2Br = NC_0H_5Br\cdot NH\cdot CO\cdot CH_3$. B. Aus 5-Acetamino-chinolin beim Behandeln mit Brom in Eisessig unter Kühlung (CLAUS, SETZER, J. pr. [2] 53, 411). Graugelbe Krystalle (aus Alkohol). F: 250°.
- 6.8-Dibrom-5-amino-chinolin C₉H₆N₂Br₂, s. nebenstehende Formel.

 B. Aus 6.8-Dibrom-5-nitro-chinolin durch Reduktion mit Zinnehlorür und Salzsäure (Claus, Geisler, J. pr. [2] 40, 379; Cl., Caroselli, J. pr. [2] 51, 479).

 Aus 5-Amino-chinolin beim Behandeln mit Brom in Eisessig (Cl., Setzer, J. pr. [2] 53, 408). Aus 6-Brom-5-amino-chinolin bei Einw. von Brom (Cl., C.).

 Br
 Blättchen oder Prismen (aus Alkohol). F: 179° (Cl., S.), 184° (unkorr.) (Cl., G.).

 Liefert beim Behandeln mit Methyljoidi ein in gelben Nadeln krystallisierendes Jodmethylat vom Schmelzpunkt 238° (Cl., C.).

 C₉H₆N₂Br₂ + HCl. Rubinrote Krystalle. Zersetzt sich gegen 216°, ohne zu schmelzen (Cl., C.). Wird durch kaltes Wasser hydrolysiert.

 C₉H₆N₂Br₂ + HBr. Rötlichgelbe Krystalle. F: 235° (Zers.) (Cl., S.).

 Dunkelrote Nadeln. F: 325—330° (Zers.) (Cl., C.).

 C₉H₆N₂Br₂ + 2 HCl + PtCl₄. Orangeroter Niederschlag. Schwärzt sich bei 275° (Cl., C.).
- 3.6.8-Tribrom-5-amino-chinolin C₉H₅N₂Br₃, s. nebenstehende Formel. B. Aus 3.6.8-Tribrom-5-nitro-chinolin durch Reduktion mit Zinn-chlorür und alkoh. Salzsäure in Chloroform (Claus, Welter, J. pr. [2] 42, 244; Cl., Caroselli, J. pr. [2] 51, 485). Gelbe Nadeln (aus Alkohol). F: 196°. Leicht löslich in Alkohol, Äther und Chloroform, kaum löslich in heißem Wasser (Cl., W.). Hydrochlorid. Rote Prismen. Zersetzt sich beim Erhitzen sowie bei der Einw. von Wasser oder Alkohol (Cl., W.). Chloroplatinat. Gelbe bis rote Prismen oder Tafeln. Wird durch Wasser oder Alkohol sofort zersetzt (Cl., W.).
- 4. 6-Amino-chinolin C₉H₈N₂, s. nebenstehende Formel. B. Aus H₂N-6-Nitro-chinolin durch Reduktion mit Zinn in salzsaurer Lösung (La Coste, B. 16, 670), mit Eisenpulver und Essigsäure (CLAUS, SCHNELL, J. pr. [2] 53, 119) oder (neben 6.6'-Azochinolin) mit Eisenpulver in alkoh. Lösung bei Gegenwart von Calciumchlorid (KNUEPPEL, A. 310, 76). Aus 6-Oxy-chinolin durch Erhitzen mit Zinkchlorid-Ammoniak im Rohr auf 270—280° (ZIELER, B. 21, 863). Aus salzsaurem 6-Nitroso-1.2.3.4-tetrahydro-chinolin (Bd. XXI, S. 290) beim Erwärmen mit Wasser (Z., B. 21, 866). stalle mit 2H₂O (aus Wasser); das Krystallwasser entweicht über Schwefelsäure (La C.). F: 114° (La C.; Cl., Sch.; Z.). Sublimierbar (La C.; Cl., Sch.). Destilliert unzersetzt (Z.). Leicht löslich in Alkohol und Ather, schwerer in Ligroin und Wasser (La C.). — Liefert beim Behandeln mit alkal. Natriumhypobromit-Lösung in Chloroform die Verbindung der nebenstehenden Formel (Syst. No. 4031) (MEIGEN, Notteвонм, B. 39, 746). Wird durch Zinn und Salzsäure zu 6-Amino-1.2.3.4-tetrahydro-chinolin reduziert (Z.). Gibt beim Behandeln mit 1 Mol Brom in Eisessig 5-Brom-6-amino-chinolin, mit mehr Brom 5.x-Dibrom-6-amino-chinolin (Cl., Sch.; vgl. Meigen, J. pr. [2] 73, 248). Beim Erhitzen mit Glycerin, Arsensäure und konz. Schwefelsäure auf ca. 150° erhält man Pseudophenanthrolin (Syst. No. 3487) (Kaufmann, Radošević, B. 42, 2613). Liefert beim Erwärmen mit dem Natriumsalz der Glyoxal-di-schwefligsäure in Wasser auf 100° $\alpha.\beta$ -Bis-[chinolyl-(6)-amino]-āthan- $\alpha.\beta$ -disulfonsāure (S. 449) (Hinsberg, B. 41, 1372). Gibt beim Behandeln mit Acetanhydrid in Eisessig 6-Acetamino-chinolin (S. 448) (Kn., A. 310, 80), in Benzol eine bei 75° schmelzende Verbindung (6-Diacetylaminochinolin?) (CL., Sch., J. pr. [2] 53, 120; Decker, Kaufmann, J. pr. [2] 84 [1911], 441). — C₉H₈N₂ + HCl. Goldgelbe Nadeln (aus Alkohol). F: 109° (Kn., A. 310, 78). Leicht löslich in Eisessig. — C₉H₈N₂ + 2HCl. Prismen. F: 250° (Kn.). Löst sich sehr leicht in Wasser mit intensiv gelber Farbe (La C.), unlöslich in Alkohol (Kn.). — C₉H₈N₂ + SO₂. Kanariengelbes Krystallpulver. F: 124° (Kn.). Sehr leicht löslich in Wasser, löslich in heißem Alkohol,

unlöslich in Benzol und Äther. — $2C_9H_9N_9+2HCl+PtCl_4+2H_9O$. Gelber, krystelliner Niederschlag (LA C.). — Pikrat $C_9H_9N_9+2C_9H_9O_7N_9$. Nadeln (LA C.).

- 6-Amino-chinolin-hydroxymethylat $C_{10}H_{12}ON_2 = (HO)(CH_2)NC_0H_6 \cdot NH_2$. Jodid $C_{10}H_{11}N_3 \cdot I$. B. Aus 6-Amino-chinolin beim Erhitzen mit Methyljodid im Rohr auf 100° (CLAUS, SCHNELL, J. pr. [2] 53, 119). Gelber, krystalliner Niederschlag (aus Alkohol + Äther). F: 199°. Sehr leicht löslich in Wasser und Alkohol.
- 6-Dimethylamino-chinolin $C_{11}H_{12}N_2 = NC_9H_6 \cdot N(CH_3)_2$. B. Aus p-Amino-dimethylanilin beim Kochen mit Glycerin und Schwefelsäure in Gegenwart von Nitrobenzol (La Coste, B. 16, 672) oder Arsensäure (Knueppel, B. 29, 706). Gelbliche, krystalline Masse. F: 54—56° (La C.), 56—58° (Ostermayer, B. 18, 596). Kp: ca. 335° (La C.). Leicht löslich in Alkohol, Äther und Benzol; löst sich in verd. Säuren mit gelbroter Farbe (La C.). Wird an der Luft dunkel (La C.). Liefert beim Behandeln mit Zinn und Salzsäure 6-Dimethylamino-1.2.3.4-tetrahydro-chinolin (O.). Pikrat $C_{11}H_{12}N_2 + C_6H_3O_7N_3$. Rotgelbe Nadeln (aus Wasser). F: 215° (Zers.) (La C.). Schwer löslich in den üblichen Lösungsmitteln.
- 6-Dimethylamino-chinolin-hydroxymethylat, 1-Methyl-6-dimethylamino-chinoliniumhydroxyd $C_{12}H_{16}ON_2 = (HO)(CH_3)NC_9H_6\cdot N(CH_3)_2$. B. Das Chlorid entsteht aus 6-Dimethylamino-chinolin beim Erhitzen mit Methanol und Salzsäure auf 180° (OSTERMAYER, B. 18, 596). Das Jodid erhält man beim Erhitzen von 6-Dimethylamino-chinolin mit Methyljodid (LA Coste, B. 16, 673). Chlorid $C_{12}H_{15}N_2\cdot Cl + H_2O$. Rote Nadeln (aus Alkohol). F: 244° (O.). Hygroskopisch. Löslich in Wasser mit gelber Farbe. Jodid $C_{12}H_{15}N_2\cdot I$. Rote Nadeln (aus Wasser) (LA C.). Chloroplatinat $2C_{12}H_{16}N_2\cdot Cl + PtCl_4$. Gelber, krystalliner Niederschlag (LA C.).
- 6-[2.4-Dinitro-anilino]-chinolin $C_{15}H_{10}O_4N_4=NC_9H_6\cdot NH\cdot C_6H_3(NO_9)_9$. B. Beim Kochen von 6-Amino-chinolin mit 4-Chlor-1.3-dinitro-benzol und Natriumacetat in Alkohol (Meigen, J. pr. [2] 77, 481). Rote Nadeln (aus Xylol). F: 217°. Leicht löslich in Eisessig, Aceton und Nitrobenzol, schwer in kaltem Xylol. Liefert beim Erwärmen mit Schwefelammonium in Alkohol 6-[4-Nitro-2-amino-anilino]-chinolin; bei der Reduktion mit Zinn-chlorür und Salzsäure oder Eisenpulver und Salzsäure erhält man 6-[2.4-Diamino-anilino]-chinolin. $2C_{15}H_{10}O_4N_4+2HCl+PtCl_4$. Gelbe Blättchen.
- 6-Acetamino-chinolin $C_{11}H_{10}ON_2 = NC_9H_6 \cdot NH \cdot CO \cdot CH_3$. B. Aus 6-Amino-chinolin beim Behandeln mit Acetanhydrid in Eisessig (KNUEPPEL, A. 310, 80). Nadeln (aus Wasser). F: 138°. Leicht löslich in Alkohol und heißem Wasser, ziemlich leicht in heißem Benzol, schwer in Äther. $C_{11}H_{10}ON_2 + HCl$. Nadeln. Sehr leicht löslich in Wasser, unlöslich in Alkohol. Tartrat $3C_{11}H_{10}ON_2 + 4C_4H_6O_6$. Nadeln. F: 226°. Ziemlich leicht löslich in kaltem Wasser, schwer in Alkohol. Salicylat $C_{11}H_{10}ON_2 + C_7H_6O_3$. Nadeln (aus Wasser). F: 140°. Schwer löslich in kaltem Wasser, leicht in Alkohol.

Ein von Claus, Schnell (J. pr. [2] 53, 120) als 6-Acetamino-chinolin bezeichnetes Produkt vom Schmelzpunkt 75°, das beim Behandeln von 6-Amino-chinolin mit Acetanhydrid in Benzol entsteht, ist vielleicht das entsprechende Diacetyl-Derivat (Decker, Kaufmann, J. pr. [2] 84 [1911], 441); es liefert beim Behandeln mit Brom in Eisessig oder Chloroform 5-Brom-6-acetamino-chinolin (?) (Cl., Sch., J. pr. [2] 53, 124; vgl. Meigen, J. pr. [2] 78, 248).

- 6-Acetamino-chinolin-hydroxymethylat $C_{12}H_{14}O_2N_2 = (HO)(CH_3)NC_0H_6\cdot NH\cdot CO\cdot CH_3$. Jodid $C_{12}H_{13}ON_2\cdot I$. B. Aus 6-Acetamino-chinolin beim Erhitzen mit Methyljodid und Methanol im Rohr auf 100° oder beim Behandeln mit Methyljodid in siedendem Benzol (KNUEPPEL, A. 310, 81). Gelbe Nadeln. F: 268°. Leicht löslich in heißem Wasser, schwer in Alkohol und Benzol.
- 6-Benzamino-chinolin $C_{16}H_{12}ON_2 = NC_9H_6\cdot NH\cdot CO\cdot C_6H_5$. B. Aus 6-Amino-chinolin in Äther beim Behandeln mit Benzoylchlorid und Natronlauge (KNUEPPEL, A. 310, 82; vgl. CLAUS, SCHNELL, J. pr. [2] 53, 120). Gelbliche Nadeln (aus verd. Alkohol), F: 169° (KN.); farblose Blättchen (aus Alkohol), F: 130° (CL., SCH.). Schwer löslich in Wasser, leicht in Alkohol (KN.; Cl., SCH.). Liefert beim Behandeln mit überschüssigem Brom in Eisessig 5.x-Dibrom-6-benzamino-chinolin (S. 449) (Cl., SCH., J. pr. [2] 53, 126). Hydrochlorid. Nadeln. Leicht löslich in Wasser (KN.). Sulfat. Gelbliche Nadeln (aus verd. Alkohol) (KN.). Nitrat. Bräunlichgelbe Krystalle. Ziemlich schwer löslich in Wasser (KN.).
- [Chinolyl-(6)]-carbamidsäure-äthylester, [Chinolyl-(6)]-urethan $C_{12}H_{12}O_2N_2 = NC_2H_6 \cdot NH \cdot CO_2 \cdot C_2H_5$. B. Bei Einw. von Chlorameisensäureäthylester auf 6-Amino-chinolin in Eisessig bei Gegenwart von Natriumacetat (KNUEPPEL, A. 310, 79). Tafeln (aus Alkohol). F: 168°. Schwer löslich in Wasser, löslich in Äther, leicht löslich in heißem Alkohol und Benzol. Hydrochlorid. Nadeln (aus Alkohol). Leicht löslich in Wasser.
- 6-[4-Nitro-2-amino-anilino]-chinolin $C_{15}H_{19}O_2N_4 = NC_9H_6\cdot NH\cdot C_9H_8(NO_2)\cdot NH_9$. B. Aus 6-[2.4-Dinitro-anilino]-chinolin durch Erwärmen mit Schwefelammonium in Alkohol (Meigen, J. pr. [2] 77, 482). Braunrotes Pulver. F: 215°. Löslich in Eisessig, sehr schwer

löslich in den meisten übrigen Lösungsmitteln. Leicht löslich in verd. Schwefelsäure, sehr schwer in verd. Salzsäure. — Liefert beim Behandeln mit Natriumnitrit in verd. Salzsäure 1-[Chinolyl-(6)]-5-nitro-benztriazol (Syst. No. 3803).

- 6-[2.4-Diamino-anilino]-chinolin $C_{15}H_{14}N_4 = NC_9H_6 \cdot NH \cdot C_9H_8(NH_9)_2$. B. Aus 6-[2.4-Dinitro-anilino]-chinolin durch Reduktion mit Zinnchlorür und Salzsäure oder besser mit Eisenpulver und Salzsäure (MEIGEN, J. pr. [2] 77, 483). Silbergraue Nadeln (aus verd. Alkohol). F: 173°. Leicht löslich in Alkohol, schwerer in Ather.
- $\alpha.\beta$ Bis [chinolyl (6) amino] äthan HO₂8-HC CH · SO₂H $\alpha.\beta$ disulfonsäure $C_{20}H_{10}O_0N_0N_0$, s. nebenstehende Formel. B. Aus 6-Amino-chinolin beim Erwärmen mit dem Natriumselz der Glyoxaldi-schwefligsäure in Wasser auf dem Wasserbad (HINSBERG, B. 41, 1372). Gelbes, krystallines

Pulver. Verkohlt beim Erhitzen. Sehr schwer löslich in Wasser, Alkohol und Benzol. Löslich in Alkalien. — Liefert beim Erwärmen mit verd. Salzsäure 6-Amino-chinolin, Glyoxal und schweflige Säure.

[Chinolyl-(6)]-thionamidsäure $C_9H_8O_2N_2S=NC_9H_6\cdot NH\cdot SO_2H$. Als solche ist vielleicht die Verbindung $C_9H_8N_2+SO_2$ (S. 447, bei 6-Amino-chinolin) aufzufassen.

- 6-Thionylamino-chinolin $C_9H_6ON_2S=NC_9H_6\cdot N:SO.$ B. Aus 6-Amino-chinolin beim Erwärmen mit Thionylchlorid in Benzol (Knueppel, A. 310, 76). Schwefelgelbe Nadeln (aus Petroläther). F: 64—65°. Zersetzt sich beim Erwärmen mit Wasser.
- 3-Brom-6-amino-chinolin C₉H₇N₂Br, s. nebenstehende Formel.

 B. Aus 3-Brom-6-nitro-chinolin durch Reduktion mit Zinnchlorür und Salzsäure oder besser mit Eisenpulver in Essigsäure (CLAUS, SCHNELL, J. pr.

 [2] 53, 112). Nadeln (aus Wasser oder Alkohol). F: 106°. Sublimiert in Nadeln. Leicht löslich in Alkohol und in heißem Wasser. Liefert beim Behandeln mit Brom in Eisessig oder Chloroform unter Kühlung 3.5-Dibrom-6-amino-chinolin.
- 5-Brom-6-amino-chinolin C₉H₇N₂Br, s. nebenstehende Formel.

 B. Aus 6-Amino-chinolin beim Behandeln mit 1 Mol Brom in Eisessig (CLAUS, H₂N. SCHNELL, J. pr. [2] 53, 120; MEIGEN, J. pr. [2] 73, 249). Aus 5-Brom-6-nitro-chinolin durch Reduktion mit Eisen und Essigsäure (M.). Blättchen mit 2H₂O. Schmilzt wasserhaltig bei 83°, wasserfrei bei 127° (M.). Reagiert mit Brom in Eisessig unter Bildung von 5.x-Dibrom-6-amino-chinolin (s. u.) (CL., SCH.). Liefert beim Behandeln mit alkal. Natriumhypobromit-Lösung die Verbindung der nebenstehenden Formel (Syst. No. 4031) (M., NOTTEBOHM, B. 39, 747).

 Läßt sich durch aufeinanderfolgendes Diazotieren, Reduzieren und Kochen mit Kupfersulfat und Natriumacetat in 5-Brom-chinolin überführen (M.). C₉H₇N₂Br + HBr. Gelber, krystalliner Niederschlag. Schmilzt gegen 230° (CL., SCH.).
- 5-Brom-6-acetamino-chinolin (?) $C_{11}H_0ON_0Br = NC_0H_0Br \cdot NH \cdot CO \cdot CH_0$ (?). Zur Konstitution vgl. Meigen, J. pr. [2] 73, 248. B. Aus dem bei 75° schmelzenden Acetylderivat des 6-Amino-chinolins (s. bei 6-Acetamino-chinolin, S. 448) beim Behandeln mit Brom in Eisessig oder Chloroform (Claus, Schnell, J. pr. [2] 53, 124). Bronzeglänzende Blättchen (aus Wasser). F: 165°. $C_{11}H_0ON_0Br + HBr$. Gelber, krystalliner Niederschlag. F: 241°.
- 8.5-Dibrom-6-amino-chinolin C₉H₆N₂Br₂, s. nebenstehende Formel.

 B. Aus 3-Brom-6-amino-chinolin beim Behandeln mit Brom in Eisessig oder Chloroform unter Kühlung (Claus, Schnell, J. pr. [2] 53, 115). Nadeln (aus Alkohol). F: 146°. Sublimiert in Nadeln. Die diazotierte Verbindung läßt sich durch Verkochen mit Alkohol in 3.5-Dibrom-chinolin, durch Verkochen mit Kupferbromür in 3.5.6-Tribrom-chinolin überführen. C₉H₆N₂Br₂ + HBr. Gelbes Krystallpulver. F: 210°.
- 5.8-Dibrom-6-amino-chinolin C₉H₆N₂Br₃, s. nebenstehende Formel.

 B. Aus 5.8-Dibrom-6-nitro-chinolin durch Reduktion mit Zinnehlorür und Salzsäure in Alkohol (Claus, Geisler, J. pr. [2] 40, 377; Cl., Wolf, J. pr. [2] 51, 491). Nadeln. F: 162°; leicht löslich in Alkohol, Äther, Chloroform und Benzol (Cl., W.). Hydrochlorid. Gelbrote Blättchen (Cl., W.). Br

 2C₂H₂N₂Br₂ + 2HCl + PtCl₄. Gelber, krystalliner Niederschlag (Cl., W.).

5.x-Dibrom-6-amino-chinolin C₂H₆N₂Br₂ = NC₂H₄Br₂·NH₂. Zur Konstitution vgl. MRIGEN, J. pr. [2] 73, 248. — B. Aus 6-Amino-chinolin oder aus 5-Brom-6-amino-chinolin

¹⁾ Zur Konstitution vgl. S. 389 Anm.

beim Behandeln mit überschüssigem Brom in Eisessig (Claus, Schnell, J. pr. [2] 53, 125). — Krystalle (aus Alkohol). F: 170° (Cl., Sch.).

- 5.x-Dibrom-6-bensamino-chinolin $C_{16}H_{10}ON_2Br_2 = NC_9H_4Br_2 \cdot NH \cdot CO \cdot C_6H_5$. Zur Konstitution vgl. Meigen, J. pr. [2] 73, 248. B. Aus 6-Benzamino-chinolin (F: 130°) beim Behandeln mit überschüssigem Brom in Eisessig (Claus, Schnell, J. pr. [2] 53, 126). Krystalle (aus Alkohol). F: 159° (Cl., Schn.).
- 5. 7-Amino-chinolin C₉H₈N₂, s. nebenstehende Formel. B. Aus 7-Nitro-chinolin durch Reduktion mit Zinnchlorür und Salzsäure in alkoh. H₂N. Lösung (Claus, Stiebel, B. 20, 3096; Cl., Massau, J. pr. [2] 48, 174). Nadeln. Schmilzt wasserhaltig bei 73,5°, wasserfrei bei 93,5—94° (Hamer, Soc. 119 [1921], 1436). 2C₉H₈N₂ + 2HCl + PtCl₄. Goldgelber, krystalliner Niederschlag. F: ca. 225° (Zers.) (Cl., M.).
- 7(P)-Dimethylamino-chinolin $C_{11}H_{12}N_2 = NC_9H_6 \cdot N(CH_3)_2$. B. Beim Erhitzen von m-Amino-dimethylanilin mit Glycerin, Schwefelsäure und Arsensäure zum Sieden (KNUEPPEL, B. 29, 707). Gelbes Öl. Kp: 310°. Wird beim Aufbewahren dunkelgrün. Färbt sich auch in verdünnter alkoholischer oder ätherischer Lösung gelbgrün.
- 7-[2.4-Dinitro-anilino]-chinolin $C_{15}H_{10}O_4N_4 = NC_0H_6 \cdot NH \cdot C_0H_3(NO_2)_2$. B. Aus 7-Amino-chinolin beim Erwärmen mit 4-Chlor-1.3-dinitro-benzol und Natriumacetat auf dem Wasserbad (Meigen, J. pr. [2] 77, 480). Braungelbe Krystalle (aus Xylol). F: 204°.
- 7-[4-Nitro-2-amino-anilino]-chinolin $C_{15}H_{12}O_2N_4=NC_9H_4\cdot NH\cdot C_8H_3(NO_2)\cdot NH_2$. B. Aus 7-[2.4-Dinitro-anilino]-chinolin durch Kochen mit alkoh. Schwefelammonium-Lösung (Meigen, J. pr. [2] 77, 480). Dunkelrote Nadeln. F: 215°. Löslich in Alkohol und Aceton, unlöslich in den meisten anderen Lösungsmitteln. Liefert bei Einw. von Natriumnitrit in salzsaurer Lösung 1-[Chinolyl-(7)]-5-nitro-benztriazol (Syst. No. 3803).
- 6. 8-Amino-chinolin C, H, N, s. nebenstehende Formel. B. Neben anderen Produkten aus 8-Nitro-chinolin durch Reduktion mit Zinn oder Zinn-chlorür und Salzsäure (Koenics, B. 12, 450; Claus, Kramer, B. 18, 1245; vgl. Dikshoorn, R. 48 [1929], 151; Howitz, Fraenkel, Schroeder, A. 396 [1913], 54). Beim Kochen von 8-Nitro-chinolin mit Eisenpulver und Salzsäure (Cl., Setzer, J. pr. [2] 53, 400). Aus 8-Oxy-chinolin beim Erhitzen mit überschüssigem Zinkchlorid-Ammoniak auf 180° (Bedall, O. Fischer, B. 14, 2573). Krystalle (aus Ligroin). F: 65° (D.), 66—67° (B., F.), 70° (unkorr.) (Cl., S.). Flüchtig mit Wasserdampf (Koe.; Cl., Kr.). Liefert beim Behandeln mit 2 Mol Brom in Eisessig unter Kühlung 5.7-Dibrom-8-amino-chinolin (Cl., S.). Mit Kaliumdichromat in schwefelsaurer Lösung entsteht ein blutroter Farbstoff (B., F.).
- 8-[2.4-Dinitro-anilino]-chinolin $C_{15}H_{10}O_4N_4 = NC_9H_6 \cdot NH \cdot C_6H_3(NO_2)_2$. B. Aus 8-Amino-chinolin beim Kochen mit 4-Chlor-1.3-dinitro-benzol in Alkohol oder besser beim Zusammenschmelzen von 2 Mol 8-Amino-chinolin mit 1 Mol 4-Chlor-1.3-dinitro-benzol (Meigen, J. pr. [2] 77, 475). Orangerote Nadeln (aus Xylol). F: 266°. Sehr leicht löslich in Nitrobenzol und Xylol, sehr schwer in Alkohol, Ligroin und Wasser. Liefert beim Erwärmen mit alkoh. Schwefelammonium-Lösung 8-[4-Nitro-2-amino-anilino]-chinolin, bei der Reduktion mit Zinnchlorür und Salzsäure 8-[2.4-Diamino-anilino]-chinolin. $2C_{15}H_{10}O_4N_4 + 2HCl + PtCl_4$. Bräunlichgelbe Nadeln. Schmilzt oberhalb 280°. Zersetzt sich beim Kochen mit Wasser.
- Methyl-{ α -[chinolyl-(8)-amino]-isopropyl}-ketoxim, Trimethyläthylennitrol-[8-amino-chinolin], Amylennitrol-[8-amino-chinolin] $C_{14}H_{17}ON_3 = NC_9H_6 \cdot NH \cdot C(CH_9)_3 \cdot C(:N \cdot OH) \cdot CH_3$. B. Aus 8-Amino-chinolin beim Erwärmen mit Bis-trimethyläthylennitrosat (Bd. I, S. 391) (Wallach, A. 262, 339). Rötliche Blättchen. F: 153—154°. Schwer löslich in kaltem Alkohol, leicht in Äther.
- 8-Acetamino-chinolin $C_{11}H_{10}ON_3 = NC_9H_4\cdot NH\cdot CO\cdot CH_3$. B. Aus 8-Amino-chinolin beim Behandeln mit Acetanhydrid in Benzol (Claus, Setzer, J. pr. [2] 53, 404). Nadeln (aus Alkohol). F: 103°. Liefert beim Behandeln mit 1 Mol Brom in Eisessig unter Kühlung 5-Brom-8-acetamino-chinolin.
- 8-[4-Nitro-2-amino-anilino]-chinolin $C_{18}H_{12}O_2N_4=NC_9H_6\cdot NH\cdot C_6H_3(NO_2)\cdot NH_2$. B. Aus 8-[2.4-Dinitro-anilino]-chinolin beim Erwärmen mit alkoh. Schwefelammonium-Lösung (Meigen, J. pr. [2] 77, 477). Braune Nadeln (aus Xylol). F: 231°. Löslich in Xylol, schwer löslich in niedrigsiedenden Lösungsmitteln. Liefert beim Behandeln mit Natriumnitrit in salzsaurer Lösung 1-[Chinolyl-(8)]-5-nitro-benztriazol (Syst. No. 3803). $C_{15}H_{12}O_2N_4$ + HCl. Grünlichgelbe Nadeln. $2C_{15}H_{12}O_2N_4$ + 2 HCl + PtCl₄. Braungelbe Krystalle (aus verd. Salzsäure). F: 276°.

8-[4-Nitro-2-acetamino-anilino]-chinolin $C_{17}H_{14}O_3N_4=NC_9H_6\cdot NH\cdot C_6H_3(NO_3)\cdot NH\cdot CO\cdot CH_3$. B. Aus 8-[4-Nitro-2-amino-anilino]-chinolin beim Kochen mit Acetanhydrid und Eisessig (Meigen, J. pr. [2] 77, 478). — Gelbliche Nadeln (aus verd. Alkohol). F: 172°.

8-[2.4-Diamino-anilino]-chinolin $C_{15}H_{14}N_4 = NC_9H_6 \cdot NH \cdot C_8H_3(NH_2)_2$. B. Aus 8-[2.4-Dinitro-anilino]-chinolin beim Erwärmen mit Zinnchlorür in salzsaurer Lösung (Meigen, J. pr. [2] 77, 479). — Gelbgrüne Nadeln mit 1 H_2O (aus verd. Alkohol). F: 129°.

5-Chlor-8-amino-chinolin C₉H₇N₂Cl, s. nebenstehende Formel. Zur Konstitution vgl. Fourneau, Trefouel, Trefouel, Wancolle, Bl. [4] 47 [1930], 749. — B. Aus 5-Chlor-8-nitro-chinolin durch Erwärmen mit Zinnchlorür und Salzsäure (Claus, Kayser, J. pr. [2] 48, 277; vgl. Howitz, Fraenkel, Schboeder, A. 396 [1913], 63). — Nadeln (aus Alkohol). F: 75° (H., Fr., Schb.).

CI N N

6-Chlor-8-amino-chinolin C₀H₇N₂Cl, s. nebenstehende Formel. B. Aus 6-Chlor-8-nitro-chinolin durch Reduktion mit Zinnchlorür und Salzsäure (CLAUS, Schedler, J. pr. [2] 49, 368). — Nadeln (aus Alkohol oder Petroläther); sublimiert in Nadeln. F: 73°. Mit Wasserdampf flüchtig. — C₀H₇N₂Cl+HCl. H₂N Gelbe Nadeln (aus Wasser). F: 208°. Sublimiert bei 120—130°. — C₉H₇N₂Cl+2 HCl(?). Rote Krystalle. Ist bei ca. 228° geschmolzen. — Zinnchlorid-Doppelsalz. Gelbe Nadeln. F: 284°. — 2C₈H₇N₂Cl+2HCl+PtCl₄. Braune Krystalle. Zersetzt sich bei 212—213°.

6-Chlor-8-amino-chinolin-hydroxymethylat C₁₀H₁₁ON₂Cl = (HO)(CH₃)NC₉H₅Cl·NH₃. — Jodid C₁₀H₁₀ClN₂·I. B. Aus 6-Chlor-8-amino-chinolin beim Erhitzen mit Methyljodid im Rohr auf 100° (CLAUS, SCHEDLER, J. pr. [2] 49, 370). Orangegelbe Nadeln (aus Wasser oder Alkohol). F: 178°.

7-Chlor-8-amino-chinolin C₉H₇N₂Cl, s. nebenstehende Formel. Zur Konstitution vgl. Fourneau, Tréfouel, Tréfouel, Wancolle, Bl. [4] 47 [1930], 751. — B. Aus 7-Chlor-8-nitro-chinolin durch Erwärmen mit Zinn-chlorür in salzsaurer Lösung (Claus, Junghanns, J. pr. [2] 48, 258). — Nadeln (aus Alkohol); sublimiert in Nadeln. F: 69°; leicht flüchtig mit Wasserdampf; leicht löslich in Alkohol, Äther und Chloroform, sehr schwer in Wasser; löslich in Salzsäure mit roter Farbe (Cl., J.). — C₉H₇N₂Cl+HCl. Gelbliche Krystalle. F: 115—116° (Cl., J.). — Zinnchlorid-Doppelsalz. Gelbrote Krystalle. Zersetzt sich gegen 198° (Cl., J.). — 2C₉H₇N₂Cl+2HCl+PtCl₄. Orangegelbe Nadeln. F: 160° (Zers.) (Cl., J.).

5.7-Dichlor-8-amino-chinolin $C_9H_6N_3Cl_2$, s. nebenstehende Formel. B. Aus 5.7-Dichlor-8-nitro-chinolin beim Erwärmen mit Zinkstaub und Essigsäure auf 100° (CLAUS, AMMELBURG, J. pr. [2] 51, 419). — Säulen (aus Äther). F: 125°. Flüchtig mit Wasserdampf. Leicht löslich in Alkohol, Äther und Chloroform, fast unlöslich in kaltem Wasser. Löslich in verd. Mineralsäuren mit roter Farbe. — Liefert beim Erhitzen mit Methyljodid im Rohr auf 95—100° ein bei 154° schmelzendes Jodmethylat (gelbe Nadeln). — $C_9H_6N_3Cl_2+HCl$. Rote Nadeln. F: 183° (Zers.). Wird durch Wasser oder Alkohol zersetzt. — $2C_9H_6N_3Cl_2+2HCl+PtCl_4$. Gelbrote Nadeln. Beginnt bei 230° sich zu zersetzen. Schwer löslich.

3-Brom-8-amino-chinolin C₉H₇N₂Br, s. nebenstehende Formel. B. Aus 3-Brom-8-nitro-chinolin beim Kochen mit Zinnchlorür in alkoh. Salzsäure (CLAUS, Howrtz, J. pr. [2] 48, 158; 50, 239). — Gelbliche Nadeln (aus Wasser oder Alkohol); sublimiert in Nadeln. F: 107—108°. Sehr leicht löslich in Alkohol mit rötlichgelber Farbe. — Liefert beim Diazotieren und Kochen mit Kupferbromür 3.8-Dibrom-chinolin. — Hydrochlorid. Nadeln. F: 252° (Zers.). Sehr schwer löslich in konz. Salzsäure.

5-Brom-8-amino-chinolin C₀H₇N₂Br, s. nebenstehende Formel. B. Aus 5-Brom-8-nitro-chinolin durch Reduktion mit Zinnchlorür in salzsaurer Lösung (CLAUS, VIS, J. pr. [2] 40, 386; 48, 269). Aus 5-Brom-8-acetamino-chinolin beim Erhitzen mit konz. Salzsäure (CL., Setzer, J. pr. [2] 53, 405). — Nadeln (aus Alkohol). F: 105° (unkorr.); schwer löslich in heißem Wasser, leicht in Werd. Säuren mit roter Farbe (CL., V., J. pr. [2] 40, 386). — 2C₀H₇N₂Br+2HCl+PtCl₄. Rötliche Nadeln. Beginnt bei 195° sich zu schwärzen; ist bei 260° zersetzt (CL., V., J. pr. [2] 40, 386).

5-Brom-8-acetamino-chinolin C₁₁H₉ON₂Br = NC₂H₅Br·NH·CO·CH₃. B. Aus 8-Acetamino-chinolin beim Behandeln mit 1 Mol Brom in Eisessig unter Kühlung (Claus, Setzer, J. pr. [2] 53, 404). — Nadeln (aus Alkohol). F: 140°.

6-Brom-8-amino-chinolin $C_9H_7N_2Br$, s. nebenstehende Formel. B. Aus Br. 6-Brom-8-nitro-chinolin durch Reduktion mit Zinnchlorür und Salzsäure (CLAUS, REINHARD, J. pr. [2] 49, 529). — Nadeln (aus Alkohol). F: 76—77°. Mit Wasserdampf flüchtig. Löslich in heißem Wasser. — $C_9H_7N_2Br + HCl + 2H_2O$. Gelb-

rote Krystalle. F: 236—237°. — 2C₉H₇N₂Br+2HCl+PtCl₄. Orangerote Krystalle (aus Salzsāure). Verkohlt bei 235°.

7-Brom-8-amino-chinolin C₂H₇N₂Br, s. nebenstehende Formel. B. Aus 7-Brom-8-nitro-chinolin durch Reduktion mit Zinnchlorür und Salzsäure in alkoh. Lösung (Claus, Vis, J. pr. [2] 38, 391; 40, 382). — Nadeln (aus Alkohol). F: 62° (unkorr.). Leicht löslich in Alkohol, Äther und Chloroform, löslich in siedendem Wasser (Cl., V., J. pr. [2] 40, 382). — 2C₂H₇N₂Br + 2HCl + PtCl₄. Gelbrote Nadeln (aus Salzsäure). Zersetzt sich bei 180° (Cl., V., J. pr. [2] 40, 383).

- 5.7-Dibrom-8-amino-chinolin C₂H₄N₂Br₂, s. nebenstehende Formel.

 B. Aus 5.7-Dibrom-8-nitro-chinolin beim Erwärmen mit Zinnchlorür und Salzsäure auf dem Wasserbad (CLAUS, AMMELBURG, J. pr. [2] 50, 34) oder beim Erhitzen mit alkoh. Ammoniak auf 230° (KUNGERLL, C. 1910 II, 95). Aus 8-Amino-chinolin beim Behandeln mit 2 Mol Brom in Eisessig unter Kühlung (CL., SETZER, J. pr. [2] 53, 401). Nadeln (aus Alkohol). F: 127° (CL., A.; CL., S.; K.). Sublimierbar; flüchtig mit Wasserdampf (CL., A.; CL., S.). Leicht löslich in Alkohol, Äther und Chloroform, fast unlöslich in kaltem Wasser (CL., A.). C₂H₆N₂Br₂+HCl. Rote Nadeln. F: 191° (CL., A.). Wird durch Wasser oder Alkohol sofort zersetzt. Hydrobromid. Krystalle. F: 265° (CL., S.). Unlöslich in kaltem Eisessig. 2C₂H₆N₂Br₂+2HCl+PtCl₆. Gelbe Nadeln. Beginnt bei 230° sich zu zersetzen (CL., A.).
- 5.7-Dibrom-8-acetamino-chinolin $C_{11}H_8ON_2Br_2=NC_9H_4Br_2\cdot NH\cdot CO\cdot CH_3$. Blattchen (aus Alkohol). F: 172° (Kuncrell, C. 1910 II, 95).
- 5.7-Dibrom-8-benzamino-chinolin $C_{16}H_{10}ON_2Br_2 = NC_9H_4Br_2\cdot NH\cdot CO\cdot C_6H_8$. Gelbliche Blättchen (aus 50%-jeem Alkohol). F: 155—156% (KUNCKELL, C. 1910 II, 95).
- 6-Nitro-8-amino-chinolin C₉H₇O₂N₃, s. nebenstehende Formel. B. O₂N Aus 6.8-Dinitro-chinolin bei der Reduktion mit Schwefelammonium in siedendem Alkohol (Claus, Habtmann, J. pr. [2] 53, 206; vgl. a. Kaufmann, Hüssy, B. 41, 1740). Rote Krystalle (aus Alkohol). F: 194° (Cl., Ha.; K., Hü.). 2C₉H₇O₂N₃+2HCl+PtCl₄. Dunkelrote Krystalle. Zersetzt sich bei 180° (Cl., Ha.). Wird durch verd. Säuren zersetzt.
- 6-Nitro-8-amino-chinolin-hydroxymethylat $C_{10}H_{11}O_3N_3=(HO)(CH_3)NC_0H_5(NO_3)\cdot NH_2$. Jodid $C_{10}H_{10}O_2N_3\cdot I$. B. Aus 6-Nitro-8-amino-chinolin beim Erhitzen mit Methyljodid im Rohr auf 130° (Claus, Hartmann, J. pr. [2] 53, 207). Rote Nadeln. F: 176° (Cl., Ha.; vgl. a. Kaufmann, Hüssy, B. 41, 1740). Schwer löslich in kaltem Wasser, leicht in heißem Alkohol (Cl., Ha.).
- 6-Nitro-8-acetamino-chinolin $C_{11}H_9O_3N_3 = NC_9H_5(NO_2)\cdot NH\cdot CO\cdot CH_8$. B. Aus 6-Nitro-8-amino-chinolin durch Kochen mit Acetanhydrid und Eisessig (Claus, Hartmann, J. pr. [2] 53, 208; vgl. a. Kaufmann, Hüssy, B. 41, 1740). Sublimiert in hellgelben Nadeln. F: 224° (Cl., Ha.; K., Hü.). Schwer löslich in Wasser und Alkohol (Cl., Ha.).
- 5.7-Dinitro-8-amino-chinolin C₂H₆O₄N₄, s. nebenstehende Formel.

 B. Aus 5.7-Dinitro-8-oxy-chinolin beim Erhitzen mit konz. Ammoniak und wenig Alkohol im Rohr auf 180° (CLAUS, DEWITZ, J. pr. [2] 53, 546).—Hell-gelbe Nadeln (aus Benzol). F: 187—188°. Löslich in Alkohol, Äther, Chloroform und Ligroin, unlöslich in Wasser. Wird aus der Lösung in konz. Salzsäure durch Wasser unverändert abgeschieden. Liefert bei der Reduktion mit Zinnchlorür und Salzsäure 5.7.8-Triamino-chinolin.
- 7. 5(oder 8)-Amino-isochinolin C₂H₂N₂, Formel I der II. B. Aus 5(oder 8)-Nitro-isochinolin durch Reduktion I. mit Zinn und Salzsäure (Claus, Hoffmann, J. pr. [2] 47, 261; Cl., Gutzeit, J. pr. [2] 52, 18) oder besser mit Zinn-chlorür in salzsaurer Lösung (Fortner, M. 14, 159). Nadeln (aus Petroläther oder Äther + Petroläther). Sublimiert in Nadeln oder Blättchen (Cl., G.). F: 128° (Cl., H.; Cl., G.). Liefert beim Erhitzen mit rauchender Salzsäure auf 275—280° 5(oder 8)-Oxy-isochinolin (Cl., G., J. pr. [2] 52, 10). C₂H₂N₂ + HCl. Nadeln. F: 220° (Zers.) (Cl., H.); zersetzt sich bei 200° (F.). 2C₂H₂N₂ + 2HCl + PtCl₄. Gelber, krystalliner Niederschlag. Zersetzt sich bei 200° (Cl., H.); beginnt bei ca. 300° sich zu bräunen (F.). Pikrat. Gelber Niederschlag. Zersetzt sich oberhalb 200° (F.).

Hydroxymethylat $C_{10}H_{12}ON_2 = (HO)(CH_2)NC_0H_6 \cdot NH_2$. B. Das Jodid entsteht aus 5(oder 8)-Amino-isochinolin beim Erwärmen mit Methyljodid auf 75° (CLAUS, GUTZEIT, J. pr. [2] 52, 19). — Einw. von Silberoxyd und von Alkalien auf das Jodid: CL., G. — Chlorid

 $C_{10}H_{11}N_2 \cdot Cl.$ Gelbe Nadeln (aus Wasser). F: 288° (Zers.). — Jodid $C_{10}H_{11}N_2 \cdot I$. Goldgelbe Nadeln (aus Alkohol). F: 228°. — Nitrat. Dunkelgelbe Nadeln (aus Alkohol + Äther). F: 203°. — Methylschwefelsaures Salz. Dunkelgelbe Nadeln (aus Alkohol + Äther). F: 230° (Zers.).

Hydroxyäthylat $C_{11}H_{14}ON_2 = (HO)(C_2H_8)NC_9H_6 \cdot NH_2$. B. Das Bromid entsteht aus 5(oder 8)-Amino-isochinolin beim Erhitzen mit Äthylbromid im Rohr auf 120—130°; das Jodid bildet sich aus 5(oder 8)-Amino-isochinolin und Äthyljodid im Rohr bei 120° (CLAUS, GUTZEIT, J. pr. [2] 52, 20). — Bromid $C_{11}H_{13}N_2 \cdot Br$. Bernsteingelbe Tafeln. F: 257°. — Jodid $C_{11}H_{13}N_2 \cdot I$. Goldgelbe Nadeln. F: 216°.

Hydroxybenzylat $C_{16}H_{16}ON_9 = (HO)(C_6H_5 \cdot CH_2)NC_9H_6 \cdot NH_2$. — Chlorid $C_{16}H_{15}N_2 \cdot Cl$ -B. Aus 5(oder 8)-Amino-isochinolin beim Erhitzen mit Benzylchlorid im Rohr auf 120° (CLAUS, GUTZEIT, J. pr. [2] 52, 20). Orangegelbe bis orangerote Nadeln mit 2 H₂O (aus Wasser oder Alkohol). Schmilzt im Krystallwasser bei etwa 88°, wird dann wieder fest und schmilzt erneut bei 218°.

- 4-Brom-5(oder 8) amino isochinolin C₈H₇N₂Br,
 Formel I oder II. B. Aus 4-Brom-5(oder 8)-nitro-isochinolin durch Reduktion mit Zinnchlorür in alkoh. Salzsāure auf dem Wasserbad (EDINGER, BOSSUNG, J. pr. [2]
 43, 198). F: 136°. Sublimiert unzersetzt. Löslich in
 heißem Wasser, Alkohol, Äther, Chloroform und Eisessig. Löslich in Mineralsäuren mit
 roter Farbe. 2C₈H₇N₂Br + 2HCl + PtCl₄ + 2,5H₂O. Gelbe bis rote Prismen. Löslich in
 kaltem Wasser.
- **4 Brom 5(oder 8) amino isochinolin hydroxymethylat** $C_{10}H_{11}ON_2Br = (HO)(CH_2)NC_9H_6Br\cdot NH_2$. Jodid $C_{10}H_{10}BrN_2\cdot I$. B. Aus der vorangehenden Verbindung beim Erhitzen mit Methyljodid im Rohr auf 120° (Edinger, Bossung, J. pr. [2] 43, 199). Rote Nadeln (aus Alkohol). F: 243°. Ziemlich leicht löslich in kaltem Wasser.

2. Amine $C_{10}H_{10}N_2$.

- 1. 3-Amino-2-methyl-chinolin, 3-Amino-chinaldin C₁₀H₁₀N₂, NH₁ s. nebenstehende Formel. B. Beim Erhitzen des Oxims des 2-Methyl-3-acetyl-chinolins mit konz. Schwefelsäure auf 170—180° (STARK, B. 40, 3428). Blaßgelbe Nadeln (aus Äther). F: 159—160°. Kp₇₅₃: 278° (geringe Zersetzung); Kp₁₆: 198° (ST., B. 40, 3426). Leicht löslich in Alkohol, Benzol und Chloroform, schwerer in Äther und heißem Ligroin, fast unlöslich in kaltem Wasser (ST.). Die Lösungen in verd. Säuren zeigen Fluorescenz (ST., B. 40, 3434). Liefert bei der Oxydation mit Kaliumpermanganat N-Acetyl-anthranilsäure (ST.). C₁₀H₁₀N₂ + HCl. Blaßgelb. Schwer löslich in kalter verdünnter Salzsäure (ST., Hoffmann, B. 42, 719). C₁₀H₁₀N₂ + 2 HCl. Gelbliches Krystall-pulver (ST.). 2C₁₀H₁₀N₂ + 2 HCl + PtCl₄ + 2 H₂O. Goldglänzende Nadeln. Verfärbt sich bei 220—230° und zersetzt sich bei höherem Erhitzen, ohne zu schmelzen (ST.). Pikrat C₁₀H₁₀N₂ + C₆H₂O₇N₂. Nadeln (aus Wasser). Zersetzt sich gegen 235° (ST.).
- 3 Acetamino 2 methyl chinolin, 3 Acetamino chinaldin $C_{12}H_{12}ON_2 = NC_2H_3(CH_3)\cdot NH\cdot CO\cdot CH_3$. B. Beim Kochen von 3-Amino-2-methyl-chinolin mit Eisessig und Acetanhydrid (STARK, B. 40, 3430). Aus dem Oxim des 2-Methyl-3-acetyl-chinolins beim Erwärmen mit Phosphoroxychlorid und Phosphorpentachlorid auf dem Wasserbad und Behandeln des Reaktionsprodukts mit Wasser (ST.). Nadeln (aus Äther). F: 164°.
- 2. 4-Amino-2-methyl-chinolin, 4-Amino-chinaldin C_{1e}H_{1e}N₃, NH₂
 s. nebenstehende Formel. B. Beim Behandeln von 2-Methyl-chinolin-carbonsăure-(4)-amid mit Alkalihypobromit-Lōsung (H. Meyer, M. 28, 52). Aus
 4-[β-Phenyl-hydrazino]-2-methyl-chinolin durch Reduktion mit Zinkstaub
 und Salzsāure (Ephram, B. 26, 2228). Nadeln (aus Benzol + Ligroin). F: 168°
 (E.), 164° (Mey.), 162—163° (Marckwald, A. 279, 18). Kp: 333°; leicht löslich in
 Alkohol, Äther, Aceton und heißem Benzol, sehr schwer in Ligroin und Wasser (Ma.).
 Liefert beim Kochen mit Glycerin, Nitrobenzol (oder 2-Nitro-phenol) und konz. Schwefelsäure 2-Methyl-[pyridino-3'.2':3.4-chinolin] (Ma.). Beim Erwärmen mit Paraldehyd und
 konz. Salzsäure auf dem Wasserbad entsteht 2.6'-Dimethyl-[pyridino-3'.2':3.4-chinolin]
 (Ma.). C₁₀H₁₀N₂ + HCl. Leicht löslich in Wasser und konz. Salzsäure, schwer in verd.
 Salzsäure und Alkohol (Ma.). 2C₁₀H₁₀N₂ + H₂SO₄. Krystallpulver. Sehr leicht löslich in
 Wasser, schwer in Alkohol (Ma.). 2C₁₀H₁₀N₂ + H₂Cr₂O₇. Gelbe Nadeln (aus Wasser) (Ma.).
 2C₁₀H₁₀N₂ + 2HCl + PtCl₄. Orangefarbenes Krystallpulver. F: 223° (Zers.) (Ma.), 228°
 (E.). Pikrat C₁₀H₁₀N₂ + C₆H₂O₇N₃. Gelbes Krystallpulver. F: 197—199° (Ma.). Schwer
 löslich in Alkohol und Wasser.

- 4-Anilino-2-methyl-chinolin, 4-Anilino-chinaldin C₁₆H₁₄N₂ = NC₉H₅(CH₃)·NH·C₆H₅. B. Beim Erhitzen äquimolekularer Mengen von 4-Chlor-2-methyl-chinolin und Anilin im Rohr auf 190° (Conbad, Limpach, B. 20, 953).— Prismen. F: 150—151°. Schwer löslich in Ather, leicht in Alkohol und in siedendem Benzol.—Hydrochlorid. Krystalle. Leicht löslich in heißem Wasser, unlöslich in Äther.
- 3-Nitro-4-amino-2-methyl-chinolin, 3-Nitro-4-amino-chinaldin C₁₀H₂O₂N₃, s. nebenstehende Formel. B. Man sättigt eine Lösung von 4-Chlor-3-nitro-2-methyl-chinolin in Benzol mit Ammoniak, versetzt mit einer geringen Menge von konzentriertem alkoholischem Ammoniak und erhitzt das Reaktionsgemisch im Rohr auf 180—200° (CONRAD, LIMPACH, B. 21, 1982). Hellgelbe Nadeln (aus Alkohol). F: 201°. Sublimierbar. Löslich in Äther.
- 3. 5-Amino-2-methyl-chinolin, 5-Amino-chinaldin C₁₀H₁₀N₂, H₂N s. nebenstehende Formel. Zur Konstitution vgl. Decker, Remfry, B. 38, 2775. B. Durch Reduktion von 5-Nitro-2-methyl-chinolin mit Zinn und konz. Salzsäure (Doebner, v. Miller, B. 17, 1702; Gerdeissen, B. 22, 246). Grünlich schillernde Blättchen oder Nadeln mit 1 H₂O (aus Wasser). Schmilzt wasserfrei bei 117—118° (Hamer, Soc. 119 [1921], 1435). Leicht löslich in heißem Wasser, Alkohol und Benzol, löslich in Ligroin, schwer löslich in Ather; die äther. Lösung fluoresciert blaugrün (Doe., v. M.). Liefert beim Diazotieren und Umsetzen der Diazo-Lösung mit Cuprocyanid eine sehr geringe Menge 5-Cyan-chinaldin (Rist, B. 23, 3485). Beim Kochen mit Glycerin, 2-Nitro-phenol und konz. Schwefelsäure erhält man 2-Methyl-1.5-phenanthrolin (Syst. No. 3487) neben einer geringen Menge der Verbindung C₁₃H₁₀N₂ (s. u.) (G.). C₁₀H₁₀N₂ + HCl. Zinnoberrote Nadeln (aus Alkohol). Löslich in Wasser mit gelbroter Farbe (Doe., v. M.).

Verbindung C₁₈H₁₀N₂. B. s. im vorangehenden Artikel (GERDEISSEN, B. 22, 249; vgl. a. Marckwald, A. 274, 340; Decker, Remfry, B. 38, 2775). — Nadeln mit 4 H₂O (aus verd. Alkohol). Schmilzt wasserhaltig bei 81—82°, wasserfrei bei 108—109°; leicht löslich in heißem Benzol, unlöslich in kaltem Äther und Petroläther (G.).

- 4. 7 Amino 2 methyl chinolin, 7 Amino chinaldin C₁₀H₁₀N₂, s. nebenstehende Formel. B. Durch Reduktion von 2.4-Dinitrobenzylaceton mit Zinnchlorür und heißer konzentrierter Salzsäure (Alber, J. pr. [2] 71, 47). Nadeln (aus Wasser). F: 148°. Destilliert ohne Zersetzung. Ist mit Wasserdampf leicht flüchtig. Leicht löslich in heißem Wasser, löslich in Äther mit violettblauer Fluorescenz. Färbt sich beim Aufbewahren an der Luft grün. Gibt beim Diazotieren und Kuppeln der Diazo-Lösung mit alkal. β-Naphthol-Lösung einen dunkel bordeauxroten Azofarbstoff. Färbt bei Gegenwart von konz. Salzsäure einen Fichtenspan carminrot. C₁₀H₁₀N₂ + HCl. Gelbe Nadeln (aus Wasser). Ist sublimierbar. Die konzentrierte wäßrige Lösung ist gelb; sie wird beim Verdünnen farblos und zeigt dann grüne Fluorescenz. Auch die alkoh. Lösung fluoresciert grün. Die gelben Krystalle werden beim Übergießen mit konz. Salzsäure farblos. Pikrat. Gelbe, schwach bläulich glänzende Nadeln (aus Alkohol). F: 213—214° (Zers.) (A., J. pr. [2] 71, 53). Ziemlich schwer löslich in Alkohol mit gelber Farbe; die Lösung in stark verdünntem Alkohol fluoresciert grün.
- 7-Acetamino-2-methyl-chinolin, 7-Acetamino-chinaldin $C_{12}H_{12}ON_2 = NC_2H_5(CH_2)\cdot NH\cdot CO\cdot CH_3$. B. Beim Erwärmen von 7-Amino-chinaldin mit Acetanhydrid und Natriumacetat (A., J. pr. [2] 71, 52). Gelbe Nadeln (aus Essigester oder aus Alkohol + Äther). F: 192°. Schwer löslich in Äther, Benzol und Ligroin, leicht in Alkohol; löslich in Säuren mit blauer Fluorescenz, die auf Zusatz von Alkalien verschwindet.
- 7 Benzamino 2 methyl chinolin, 7 Benzamino chinaldin $C_{17}H_{14}ON_2 = NC_2H_3(CH_2)\cdot NH\cdot CO\cdot C_6H_5$. B. Aus 7-Amino-chinaldin beim Schütteln mit Benzoylchlorid und Natronlauge unter Kühlung (A., J. pr. [2] 71, 51). Nadeln mit 1 H_2O (aus verd. Alkohol). F: 172—173°. Die salzsaure Lösung fluoresciert violettblau.
- 5. 8 Amino 2 methyl chinolin.
 8 Amino chinaldin C₁₀H_{1c}N₂, Formel I.
 B. Durch Reduktion von 8-Nitro-chinaldin I.
 mit Zinn und konz. Salzsäure unterhalb 50°
 (Doebner, v. Miller, B. 17, 1701). Prismen (aus Ligroin). F: 56° (D., v. M.). Mit Wasserdampf flüchtig (D., v. M.). Schwer löslich in Wasser, sehr leicht in Alkohol, Äther und heißem Ligroin (D., v. M.). Liefert bei Reduktion mit Zinn und Salzsäure und Behandlung des Reaktionsprodukts mit Acetanhydrid und Natriumacetat in Eisessig die Verbindung der Formel II (Syst. No. 3484) (Bamberger, Wulz, B. 24, 2051). C₁₀H₁₀N₂ + HCl. Goldgelbe Nadeln (aus Alkohol). Löslich in Wasser mit gelber Farbe (D., v. M.).

- 6. 2-Amino-4-methyl-chinolin, 2-Amino-lepidin C₁₀H₁₀N₂, CH₃
 s. nebenstehende Formel. B. Beim Kochen von 2-[β-Phenyl-hydrazino]4-methyl-chinolin mit Jodwasserstoffsäure (D: 1,67) und rotem Phosphor (Ephraim, B. 25, 2707). Entsteht in schlechter Ausbeute beim Erhitzen von 2-Chlor-4-methyl-chinolin mit alkoh. Ammoniak auf 200—230° (Klotz, A. 245, 382). —
 Krystallpulver (aus Benzol). F: 130—131° (Kl.), 133° (E.). Kp: 320° (Marckwald, A. 279, 18). Ist nicht flüchtig mit Wasserdampf; leicht löslich in Chloroform, Alkohol, Äther, Eisessig und heißem Benzol, schwer in heißem Wasser (Kl.). C₁₀H₁₀N₂ + HCl. Gelbliche Krystalle (aus Wasser). Schwer löslich in kaltem Wasser und verd. Salzsäure, leichter in konz. Salzsäure (M.). Sulfat. Nadeln (aus verd. Schwefelsäure). F: 155° (Kl.). 2C₁₀H₁₀N₂ + H₂Cr₂O₇. Gelbe Krystalle. Schwer löslich (M.). 2C₁₀H₁₀N₂ + 2HCl + PtCl₄. Orangefarbene Nadeln. F: 230° (Kl.). Pikrat C₁₀H₁₀N₂ + C₆H₃O₇N₃. Gelbe Nadeln. F: ca. 250° (Kl.).
- 2-Anilino-4-methyl-chinolin, 2-Anilino-lepidin $C_{18}H_{14}N_2=NC_9H_5(CH_3)\cdot NH\cdot C_9H_5$. B. Beim Erhitzen äquimolekularer Mengen von 2-Chlor-4-methyl-chinolin und Anilin bis nahe zum Sieden (Knorr, A. 236, 103). Blättchen (aus Alkohol). F: 129—130°. Nicht flüchtig mit Wasserdampf. Chloroplatinat. Gelbe Nadeln. F: 235°. Unlöslich in Salzsäure.

Lactam der N-[4-Methyl-chinolyl-(2)]-anthranilsäure (?),
"Le pidylanthranil" C₁₇H₁₂ON₂, s. nebenstehende Formel. Zur
Konstitution vgl. Backeberg, Soc. 1933, 390. — B. Beim Erwärmen
äquimolekularer Mengen von 2-Chlor-lepidin und Anthranilsäure
(ÉPHRAIM, B. 25, 2710). — Krystalle (aus Benzol). F: 213°. Löslich in Salzsäure, unlöslich in Ammoniak. — Einw. von siedender alkoholischer Kalilauge: E. — Pikrat.
F: 217°.

- 7. 6-Amino-4-methyl-chinolin, 6-Amino-lepidin C₁₀H₁₀N₂, s. nebenstehende Formel. B. Beim Erhitzen von 6-Oxy-lepidin mit Zink-chlorid-Ammoniak und Ammoniumchlorid im Rohr auf 200° (Busch, Koenigs, B. 23, 2685). Aus Oxycinchen C₁₉H₂₀ON₂ (Syst. No. 3514) beim Erhitzen mit Zinkchlorid-Ammoniak und Ammoniumchlorid im Rohr auf 200—210° (K., B. 23, 2671). Nadeln (aus Wasser). F: 169—170° (B., K.). Leicht löslich in Alkohol und Chloroform, löslich in Äther und heißem Wasser; die Lösung in Äther fluoresciert blau (K.). Beim Lösen in einer geringen Menge Mineralsäure entsteht eine gelbe, grünlich fluorescierende Lösung, die beim Versetzen mit überschüssiger Säure farblos wird (K.; B., K.). Liefert beim Behandeln mit Natriumnitrit und verd. Salzsäure und nachfolgenden Versetzen mit alkal. Zinnehlorür-Lösung Lepidin (K.). Chloroplatinat. Krystallinisch. Schmilzt nicht bis 300° (B., K.).
- 8. 7 Amino 4 methyl chinolin, CH3
 7-Amino-lepidin C₁₀H₁₀N₂, s. Formel I.

 2 Chlor 7 amino 4 methyl chinolin
 C₁₀H₂N₂Cl, Formel II. B. Beim Kochen von salzsaurem 7-Amino-2-oxy-4-methyl-chinolin mit Phosphoroxychlorid und Behandeln des
 Reaktionsprodukts mit warmer Salzsäure (Besthorn, Byvanck, B. 31, 799). Hellgelbe
 Krystalle (aus Benzol). F: 142—143°. Sehr schwer löslich in siedendem Wasser, leicht in
 den üblichen organischen Lösungsmitteln mit starker Fluorescenz. Liefert beim Diazotieren, Reduzieren des Reaktionsprodukts mit salzsaurer Zinnenlorür-Lösung und Kochen
 des entstandenen Hydrazins mit Kupfersulfat-Lösung 2-Chlor-lepidin. Die Salze mit
 Mineralsäuren sind gelb; sie fluorescieren in stark verdünnter wäßriger Lösung grün.
- 9. 5-Amino-6-methyl-chinolin C₁₀H₁₀N₂, s. nebenstehende Formel.

 B. Aus 5-Nitro-6-methyl-chinolin durch Kochen mit Eisenpulver und Essigsäure (Noelting, Trautmann, B. 23, 3657) oder durch elektrolytische Reduktion in alkal. Lösung (Elbs, Z. El. Ch. 10, 579). Blaßgelbe Nadeln (aus Wasser). F: 145° (N., T.). Sublimiert und destilliert unzersetzt (N., T.). Leicht löslich in den üblichen organischen Lösungsmitteln, sehr schwer in kaltem Wasser (N., T.).
- 5-Acetamino-6-methyl-chinolin $C_{12}H_{12}ON_2 = NC_9H_5(CH_3)\cdot NH\cdot CO\cdot CH_3$. B. Beim Erwärmen von 5-Amino-6-methyl-chinolin mit Eisessig und Acetanhydrid (N., T., B. 23, 3658).— Nadeln (aus Wasser). F: 160°. Leicht löslich in den gebräuchlichen Lösungsmitteln, schwer in siedendem Wasser.

- 10. 8-Amino-6-methyl-chinolin C₁₀H₁₀N₂, s. nebenstehende Formel.

 B. Beim Kochen von 8-Nitro-6-methyl-chinolin mit alkoh. SchwefelammoniumLösung (Noelting, Trautmann, B. 23, 3670). Nadeln. F: 62—64°. Sublimiert unzersetzt. Ist ziemlich leicht flüchtig mit Wasserdampf. Leicht löslich in organischen Lösungsmitteln, löslich in Wasser. Hydrochlorid. Orangefarbene Nadeln.

 Ziemlich schwer löslich.
- 8-Acetamino-6-methyl-chinolin $C_{12}H_{12}ON_2 = NC_9H_5(CH_9) \cdot NH \cdot CO \cdot CH_8$. B. Aus 8-Amino-6-methyl-chinolin durch Behandlung mit Acetanhydrid und Eisessig bei Zimmertemperatur (N., T., B. 23, 3670). Blätter (aus verd. Alkohol). F: 91—92°.
- 5-Chlor-8-amino-6-methyl-chinolin C₁₀H₂N₂Cl, s. nebenstehende Formel. B. Beim Erhitzen von 8-Nitro-6-methyl-chinolin mit salzsaurer Zinn-chlorür-Lösung, neben 8-Amino-6-methyl-chinolin (Noelting, Trautmann, B. 23, 3671). Nadeln (aus Alkohol). F: 129—130°. Ist flüchtig mit Wasserdampf. Ziemlich leicht löslich in organischen Lösungsmitteln, sehr schwer in siedendem Wasser. Hydrochlorid. Orangegelb. Schwer löslich.

- 5-Chlor-8-acetamino-6-methyl-chinolin $C_{12}H_{11}ON_2Cl = NC_0H_4Cl(CH_2)\cdot NH\cdot CO\cdot CH_3$. B. Aus 5-Chlor-8-amino-6-methyl-chinolin durch Behandlung mit Acetanhydrid und Eisesig (N., T., B. 23, 3672). Nadeln (aus verd. Alkohol). F: 136—137°.
- 11. 2-Amino-8-methyl-chinolin $C_{10}H_{10}N_2$, s. nebenstehende Formel. B. Durch 4—5-stündiges Erhitzen von 2-Chlor-8-methyl-chinolin mit Zink-chlorid-Ammoniak auf 200° (O. FISCHER, B. 35, 3679). Hellgelbe Nadeln (aus Wasser).

- 12. 5-Amino-8-methyl-chinolin $C_{10}H_{10}N_2$, s. nebenstehende Formel. B. $H_{2}N$ Durch Kochen von 5-Nitro-8-methyl-chinolin mit Eisenpulver und Essigsäure (NOELTING, TRAUTMANN, B. 23, 3674). Gelbliche Nadeln (aus Wasser oder verd. Alkohol). F: 143° (N., Tr.). Liefert beim Erhitzen mit Glycerin, konz. Schwefelsäure und Pikrinsäure 10-Methyl-1.5-phenanthrolin (N., Tr.). Liefert ein rotes Monohydrochlorid und ein gelbes Dihydrochlorid (N., Tr.). Verbindung mit 1.3.5-Trinitro-benzol $C_{10}H_{10}N_2+C_0H_3O_6N_3$. Schwarze Nadeln (N., Sommerhoff, B. 39, 77).
- **5-Acetamino-8-methyl-chinolin** $C_{12}H_{12}ON_2 = NC_9H_5(CH_3) \cdot NH \cdot CO \cdot CH_3$. B. Aus **5-Amino-8-methyl-chinolin** beim Behandeln mit Acetanhydrid und Eisessig (N., Tr., B. **28**, **3675**). Nadeln (aus Wasser). F: 187°.
- 13. 7-Amino-8-methyl-chinolin $C_{10}H_{10}N_2$, s. nebenstehende Formel.

 B. Beim Erhitzen von 7-Amino-8-methyl-chinolin-carbonsäure-(5) (Marck-Wald, A. 274, 360). Prismen (aus verd. Alkohol). F: 129°. Kp: 304°. Leicht löslich in Alkohol, Äther, Aceton und Benzol, sehr schwer in Ligroin und Wasser.

 $2C_{10}H_{10}N_2 + H_2Cr_2O_7$. Rotgelb. Schwer löslich. $2C_{10}H_{10}N_2 + 2HCl + PtCl_4$. Rotgelb. Schwer löslich. Pikrat $C_{10}H_{10}N_2 + C_8H_3O_7N_3$. Rotgelb. Schwer löslich.
- 14. Aminoderivat des 8-Methyl-chinolins $C_{10}H_{10}N_2=NC_9H_5(CH_3)\cdot NH_2$ mit unbekannter Stellung der Aminogruppe.
- **2-Chlor-x-amino-8-methyl-chinolin** $C_{10}H_0N_0Cl = NC_0H_4Cl(CH_3)\cdot NH_2$. B. Durch Reduktion von 2-Chlor-x-nitro-8-methyl-chinolin (Bd. XX, S. 403) mit Zinnchlorür und Salzsäure (O. Fischer, B. 35, 3679). Hellgelbe Prismen (aus Ligroin). F: 148°. Ziemlich leicht löslich in Alkohol, Benzol und heißem Wasser. Die gelben Lösungen der Salze fluorescieren rot.
- 3. Amine $C_{11}H_{12}N_2$.
- 1. 7(?)-Amino-2.4-dimethyl-chinolin C₁₁H₁₂N₂, s. nebenstehende Formel. Zur Konstitution vgl. Roberts, Turner, Soc.

 1927, 1834. B. Aus m-Phenylen-bis-[acetylaceton-monoimid]
 (Bd. XIII, S. 44) beim Erwärmen mit konz. Schwefelsäure auf 100° (?) H₂N CH₃ oder beim Kochen mit Eisessig (MARCKWALD, A. 274, 369). Beim Kochen äquimolekularer Mengen von m-Phenylendiamin und Acetylaceton in Eisessig (M.). Nadeln (aus Ligroin). Schmilzt unscharf zwischen 94° und 100° (M.). Ist äußerst hygroskopisch, zerfließt an der Luft und erstarrt wieder nach Aufnahme von 2H₂O zu gelben Nadeln (M.). Siedet

oberhalb 300° unter geringer Zersetzung (M.). — Salze: M. — $C_{11}H_{12}N_2 + HCl$. Krystallinisch. — $2C_{11}H_{12}N_2 + H_2Cr_2O_7$. Orangefarbene Nadeln (aus Essigsäure). — $C_{11}H_{12}N_2 + HNO_3$. Gelbe Nadeln. Ziemlich schwer löslich in kaltem Wasser. — $2C_{11}H_{12}N_2 + 2HCl + PtCl_4$. Rote Nadeln. Schwer löslich. — Pikrat $C_{11}H_{12}N_2 + C_4H_3O_7N_3$. Gelbe Nadeln. F: 215—217°. 7(P)-Acetamino-2.4-dimethyl-chinolin $C_{13}H_{14}ON_2 = NC_9H_4(CH_2)_2 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von 7(?)-Amino-2.4-dimethyl-chinolin mit Acetanhydrid (M., A. 274, 371). — Nadeln (aus verd. Alkohol). F: 212°. — $2C_{13}H_{14}ON_2 + H_3Cr_3O_7$. Rote Nadeln.

N - Phenyl - N' - [2.4 - dimethyl - chinolyl - (7?)] - thioharnstoff $C_{18}H_{17}N_3S = NC_9H_4(CH_3)_9 \cdot NH \cdot CS \cdot NH \cdot C_9H_5$. B. Beim Kochen äquimolekularer Mengen von 7(?)-Amino-2.4-dimethyl-chinolin und Phenylsenföl in Alkohol (M., A. 274, 372). — Gelbes Krystallpulver. F: 173-174°. Leicht löslich in Äther und heißem Alkohol, unlöslich in Wasser.

N-p-Tolyl-N'-[2.4-dimethyl-chinolyl-(7?)]-thioharnstoff $C_{19}H_{19}N_3S = NC_9H_4(CH_3)_2$. NH·CS·NH·C₆H₄·CH₃. B. Analog der vorangehenden Verbindung (M., A. 274, 372). F: 142°.

2. 7-Amino-2.8-dimethyl-chinolin C₁₁H₁₂N₂, s. nebenstehende Formel. B. Durch trockne Destillation von 7-Amino-2.8-dimethylchinolin-carbonsaure-(5) (MARCKWALD, A. 274, 363). — Krystalle (aus Wasser). F: 104°. Schwer löslich in kaltem Wasser, leicht in den meisten organischen Lösungsmitteln. — 2C₁₁H₁₂N₂+H₂Cr₂O₇. Gelbe Krystalle. Leicht löslich in heißem Wasser. — 2C₁₁H₁₂N₂+2HCl+PtCl₄. Gelbe Krystalle. Leicht löslich in heißem Wasser.

H2N.

6-Amino-5.8-dimethyl-chinolin C₁₁H₁₂N₂, s. nebenstehende Formel. B. Beim Kochen von schwefelsaurem 2.5-Diamino-p-xylol mit H2N Glycerin, Nitrobenzol und konz. Schwefelsäure (MARCKWALD, B. 23, 1021). -Schwach aromatisch riechende, gelbe Nadeln (aus Alkohol). F:175°. Sublimiert unzersetzt. Siedet weit oberhalb 300°. Ist sehr schwer flüchtig mit Wasser-

dampf. Fast unlöslich in heißem Wasser und Ligroin, schwer in kaltem Alkohol, leichter löslich in Chloroform, Äther, Aceton und Benzol. — Die Salze färben in sehr verd. Lösung einen Fichtenspan rotgelb. — C₁₁H₁₂N₂ + 2 HCl. — C₁₁H₁₂N₂ + 2 HCl + PtCl₄. Orangefarbene Nadeln. Sehr schwer löslich in kaltem Wasser und Alkohol. — Pikrat C₁₁H₁₂N₂ + 2 C₆H₃O₇N₃. Orangerote Nadeln. Sintert bei 182º (Zers.). Schwer löslich in heißem Alkohol.

6-Acetamino-5.8-dimethyl-chinolin $C_{13}H_{14}ON_3 = NC_0H_4(CH_3)_3 \cdot NH \cdot CO \cdot CH_3$. Beim Erwärmen von 6-Amino-5.8-dimethyl-chinolin mit Acetanhydrid (M., B. 23, 1024). Nadeln. F: 212°. Sublimiert unzersetzt. Leicht löslich in Alkohol, löslich in Chloroform, schwer löslich in Ligroin, Äther und Benzol, unlöslich in Wasser; leicht löslich in verd. Säuren. Pikrat C₁₃H₁₄ON₂ + C₆H₃O₇N₃. Gelb. F: 223—224°. Schwer löslich in Wasser und kaltem Alkohol.

N-Phenyl-N'-[5.8-dimethyl-chinolyl-(6)]-thioharnstoff $C_{18}H_{17}N_3S=NC_9H_4(CH_3)_9\cdot NH\cdot CS\cdot NH\cdot C_9H_8$. Beim Erhitzen äquimolekularer Mengen von 6-Amino-5.8-dimethylchinolin und Phenylsenföl (M., B. 23, 1025). — Gelbliches Krystallpulver (aus Alkohol). F: 157-159°. Leicht löslich in heißem Alkohol und Benzol, schwerer in Äther, unlöslich in Ligroin und Wasser; leicht löslich in Mineralsäuren. — 2C₁₈H₁₇N₈S + 2HCl + PtCl₄. Gelbes Krystallpulver.

4. 5-Amino-6.8-dimethyl-chinolin $C_{11}H_{12}N_2$, s. nebenstehende Formel. B. Aus 5-Nitro-6.8-dimethyl-chinolin durch Reduktion mit Eisen- H_2N pulver und Essigsäure, mit Zinnchlorur und Salzsäure (Noelting, Trautmann, B. 23, 3683) oder durch elektrolytische Reduktion in alkal. Lösung (Elbs, Z. El. Ch. 10, 579). — Gelbliche Nadeln (aus verd. Alkohol). F: 91°; schwer löslich in siedendem Wasser, ziemlich leicht in den üblichen organischen Lösungsmitteln (N., Th.). — Liefert beim Diazotieren mit Natriumnitrit und Salzsaure und Erhitzen der Diazo-Lösung 5-Oxy-6.8-dimethyl-chinolin (N., Tr.).

5 - Acetamino - 6.8 - dimethyl - chinolin $C_{13}H_{14}ON_2 = NC_9H_4(CH_3)_3 \cdot NH \cdot CO \cdot CH_3$. B. Aus 5-Amino-6.8-dimethyl-chinolin durch Einw. von Acetanhydrid und Eisessig bei Zimmertemperatur (Noelting, Trautmann, B. 23, 3683). — Nadeln (aus Wasser). F: 201°. Leicht löslich in Alkohol, schwer in kaltem Wasser.

4. Amine $C_{12}H_{14}N_2$.

1. 7-Amino-4-methyl-3-äthyl-chinolin C₁₂H₁₄N₂, s. nebenstehende Formel. B. Beim Kochen von 2-Chlor-7-amino-4-methyl-CH₃ C2H5 3-āthyl-chinolin mit Jodwasserstoffsäure (D: 1,7), Kaliumjodid und rotem Phosphor (BYVANCE, B. 31, 2147). — Prismen (aus Ather + Ligroin). F: 84°. Leicht löslich in Chloroform, Methanol, Alkohol, Äther und Benzol, schwer in Ligroin; löslich in Wasser mit grüner Fluorescenz. — Liefert beim Erwärmen mit rauchender Schwefelsäure (14% SO₃-Gehalt) auf dem Wasserbad 7-Amino-4-methyl-3-äthyl-chinolinsulfonsäure-(x). Gibt beim Diazotieren und Reduzieren des Reaktionsprodukts mit Zinnchlorür und Salzsäure das entsprechende Hydrazin, aus dem beim Erwärmen mit Kupfersulfat-Lösung auf dem Wasserbad 4-Methyl-3-äthyl-chinolin entsteht. — Gibt in verd. Schwefelsäure mit Kaliumdichromat eine dunkelrote Färbung. — $C_{12}H_{14}N_2 + HI$. Hellgelbe Nadeln (aus Wasser). Zersetzt sieh von 260° ab; F: 276°.

- 2-Chlor-7-amino-4-methyl-3-äthyl-chinolin C₁₂H₁₂N₃Cl,
 s. nebenstehende Formel. B. Beim Erhitzen von salzsaurem 7-Amino2-oxy-4-methyl-3-šthyl-chinolin mit Phosphoroxychlorid auf 135—140°
 und Behandeln des Reaktionsprodukts mit heißer konzentrierter Salzsäure (Byvanok, B. 31, 2146). Nadeln (aus Ligroin). F: 138°. Sehr leicht löslich in Methanol,
 Alkohol, Äther und Benzol mit blauer Fluorescenz. Reduziert Goldchlorid-Lösung beim
 Erwärmen. Liefert beim Kochen mit Jodwasserstoffsäure (D: 1,7), Kaliumjodid und rotem
 Phosphor 7-Amino-4-methyl-3-äthyl-chinolin. Die mineralsauren Salze sind leicht löslich;
 die Lösungen zeigen blaue Fluorescenz.
- 2. 7(?) Amino 2.4.6(?) trimethyl chinolin $C_{12}H_{14}N_2$, s. nebenstehende Formel. B. Man erwärmt 2.4-Diamino-toluol mit Acetylaceton auf 100° und erwärmt das Reaktionsprodukt mit Schwefelsäure auf dem Wasserbad (Combes, C. r. 108, 1254). Nadeln. F: 191° . Unlöslich in Wasser. $C_{12}H_{14}N_2 + HCl$. Gelb. Schwer löslich in Wasser. $2C_{12}H_{14}N_2 + 2HCl + PtCl_4$. Orangegelbe Krystallmasse.
- 3. 5(oder 7) Amino 2.6.8 trimethyl-chinolin $C_{12}H_{14}N_2$, Formel I oder II.

 B. Bei der Reduktion von 5(oder 7)-Nitro2.6.8 trimethyl chinolin mit saurer Zinnchlorür-Lösung (Panajorow, B. 20, 36). —
 Gelbliche Blättchen (aus Alkohol). Zersetzt sich an der Luft.
- 5. x Amino 3.6 dimethyl 2 äthyl chinolin $C_{18}H_{16}N_8 = NC_9H_3(CH_9)_3(C_9H_5)$. NH₂. B. Beim Kochen von x-Nitro-3.6-dimethyl-2-äthyl-chinolin mit salzsaurer Zinn-chlorür-Lösung (Harz, B. 18, 3392). Nadeln (aus Ligroin). F: 148—149°. Sehr leicht löslich in Alkohol, schwerer in Äther und Ligroin. Hydrochlorid. Fast farblose Krystalle. Sehr leicht löslich in Wasser mit gelbroter Farbe, schwer in konz. Salzsäure. Beim Erhitzen auf 100° entsteht ein rotes Produkt mit geringerem Chlorwasserstoff-Gehalt.
- 6. 5(oder 7) Amino 3 n amyl 2 n hexyl chinolin $C_{30}H_{30}N_2$, Formel III oder IV. B. Beim Erwärmen von 5(oder 7)-Nitro-3-n-amyl-2-n-hexyl-chinolin mit Zinnchlorür und

wäßrig-alkoholischer Salzsäure auf dem Wasserbad (v. MILLER, B. 24, 1738). — Fast farblose Krystallmasse (aus Petroläther). F: 68—69°. Leicht löslich in Chloroform, Alkohol, Äther und Benzol, schwer in Ligroin. — Liefert beim Kochen mit Onanthol und alkoh. Salzsäure 3.7-Di-n-amyl-2.6-di-n-hexyl-1.5-phenanthrolin (s. nebenstehende Formel; Syst. No. 3487). — 2C₂₀H₂₀N₂+2HCl+PtCl₄+4H₂O. Orangerote Blättchen. C₅H₁₁ C₆H₁₃ Verwittert an der Luft. — Pikrat. Gelbe Nadeln (aus Alkohol). Sintert bei 180° und schmilzt bei 194° (Zers.).

8. Monoamine $C_n H_{2n-12} N_2$.

1. $2-[4-A\min o-phenyl]-pyridin C_{11}H_{10}N_2$, s. nebenstehende Formel. B. Bei der Reduktion von 2-[4-Nitro-phenyl]-pyridin mit Zinn und 25% gier Salzsäure (Kühling, B. 29, 167; vgl. Forsyth, Pyman, Soc. 1926, 2915). — Farblose Blättchen (aus verd. Alkohol), die schnell rot werden (K.). F: 97°

bis 98° (korr.) (F., P.). — $C_{11}H_{10}N_2+2HCl$. Krystallpulver (aus Alkohol + Äther). Die Lösung in Alkohol ist gelb. Die Lösung in konz. Salzsäure ist farblos und wird beim Versetzen mit Wasser gelb (K.). — Pikrat. Gelbe Krystalle (aus Alkohol). F: 218—219° (korr.; Zers.).

2. Amine $C_{13}H_{14}N_2$.

- 1. $2-[3-Amino-\beta-phenäthyl]-pyridin, \alpha-[3-Amino-phenyl]-\beta-[\alpha-pyridyl]-äthan, 3'-Amino-dihydro-\alpha-stilb-azol <math>C_{13}H_{14}N_{2}$, s. nebenstehende Formel.
- $\alpha.\beta$ -Dibrom α [3 amino phenyl] β [α pyridyl] äthan, 3'-Amino α -stilbazol-dibromid $C_{13}H_{12}N_3Br_2 = NC_5H_4\cdot CHBr\cdot C_6H_4\cdot NH_2$. B. Beim Behandeln von salzsaurem 3'-Amino α -stilbazol mit etwas mehr als 1 Mol Brom in Alkohol (Feist, Ar. 240, 254). Nadeln (aus Äther). Sintert bei 86° und zersetzt sich bei 96°. $C_{13}H_{12}N_2Br_2 + HCl$. Tafeln.
- 2. $4-[2-Amino-\beta-phenäthyl]-pyridin$, $\alpha-[2-Amino-phenyl]-\beta-[\gamma-pyridyl]-äthan, 2'-Amino-dihydro-\gamma-stilbazol C₁₃H₁₄N₄, s. nebenstehende Formel. B. Beim Erhitzen von 2'-Nitro-<math>\gamma$ -stilbazol mit rauchender Jodwasserstoffsäure und rotem Phosphor im Rohr auf 150° (Löwensohn, B. 40, 4861). Nadeln (aus Ather). F: 76°. Unlöslich in Wasser, löslich in Alkohol, Ather und Chloroform. C₁₃H₁₄N₂ + 2 HCl. F: 247°. Pikrat C₁₃H₁₄N₂ + C₆H₃O₇N₃. Krystalle (aus verd. Alkohol). Schmilzt oberhalb 300°.
- 3. 4-[3-Amino-β-phenāthyl]-pyridin, α-[3-Amino-phenyl]-β-[γ-pyridyl]-āthan, 3'-Amino-dihydro-γ-stilb-azol C₁₃H₁₄N₂, s. nebenstehende Formel. B. Aus 3'-Nitro-γ-stilbazol beim Erhitzen mit rauchender Jodwasserstoffsäure und rotem Phosphor im Rohr auf 135—150° oder beim Reduzieren mit Zinn und Salzsäure (FRIEDLAENDER, B. 38, 2840). Fast farblose Nadeln (aus verd. Alkohol). F: 127—129°.
- 4. 2.6 Dimethyl 4 [3 amino phenyl] pyridin C₁₃H₁₄N₂, S. nebenstehende Formel. B. Beim Glühen des Calciumsalzes der 2.6-Dimethyl 4-[3-amino-phenyl] pyridin-dicarbonsäure-(3.5) (Lepent, G. 17, 471). Krystalle (aus Alkohol). F: 110°. Löslich in Äther und Benzol, leicht löslich in Alkohol und in Säuren. Verbindung mit Quecksilberchlorid. Nadeln (aus Wasser). Zersetzt sich gegen 160°. C₁₃H₁₄N₂ + 2 HCl + PtCl₄. Nadeln.
- 2.6-Dimethyl-4-[3-acetamino-phenyl]-pyridin $C_{15}H_{16}ON_2 = NC_5H_3(CH_3)_2 \cdot C_6H_4 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von 2.6-Dimethyl-4-[3-amino-phenyl]-pyridin mit Acetanhydrid (L., G. 17, 472). Nadeln mit 2 H_2O (aus Alkohol). F: 76°.
- 5. 6 Amino 1.2.3.4 tetrahydro 7.8 benzo chinolin (,,p-Amino-tetrahydro-α-naphthochinolin") C₁₃H₁₄N₂, s. nebenstehende Formel. B. Beim Reduzieren von [Benzol-sulfonsäure-(1)]- (4 azo 6)-[1.2.3.4-tetrahydro-7.8-benzo-chinolin] mit Zinnchlorür und Salzsäure (Bamberger, Stettenheimer, B. 24, 2479). Flockiger Niederschlag. Leicht löslich in Alkohol und Äther. Unbeständig. Beim Verschmelzen des Hydrochlorids mit salzsaurem Anilin, Anilin und 4-Amino-azobenzol entsteht eine violettrote Schmelze, die sich mit violetter Farbe und rotvioletter Fluorescenz in Alkohol löst. Gibt mit Ferrichlorid eine braunrote Färbung. C₁₃H₁₄N₂+2HCl. Nadeln. Schmilzt nicht bis 300°. Leicht löslich in Wasser und verd. Alkohol, sehr schwer in konz. Salzsäure.
- α.β-Dibrom-α-[4-amino-phenyl]-β-[4-methyl-pyridyl-(2)]-äthan, 4'-Amino-4-methyl-α-stilbazol-dibromid $C_{14}H_{14}N_2Br_2=NC_5H_3(CH_3)\cdot CHBr\cdot CHBr\cdot C_6H_4\cdot NH_2$. B. Aus 4'-Amino-4-methyl-α-stilbazol und Brom (Knick, B. 35, 2793). Kryställchen (aus Alkohol). Zersetzt sich bei 157°.

9. Monoamine $C_n H_{2n-14} N_2$.

1. Amine $C_{12}H_{10}N_2$.

1. 2-Amino-carbazol C₁₂H₁₀N₂, s. nebenstehende Formel.

B. Beim Überleiten von 2.4'-Diamino-diphenyl über schwach glühenden Kalk (Blank, B. 24, 306). — Nadeln (aus Wasser). F: 238°.

- 2. 3-Amino-carbazol C₁₃H₁₀N₂, s. nebenstehende Formel.

 B. Aus 3-Nitroso-carbazol (Bd. XX, S. 437) durch Reduktion mit Schwefelammonium in Alkohol (Schott, D. R. P. 134983; C.

 1902 II, 1165; Frdl. 6, 61). Beim Erwärmen von 3-Nitro-carbazol mit Zinn und Salzsäure (MAZZARA, LEONARDI, G. 21 II, 380) oder mit Na₂S₂O₄ in alkoh. Kalilauge (Ziersch, B. 42, 3798). Durch Reduktion von 9-Nitroso-3-nitro-carbazol mit Zinn und verd. Salzsäure (Ruff, Stein, B. 34, 1679). Aus 1-Phenyl-5-amino-benztriazol beim Destillieren (Ullmann, B. 31, 1697) oder beim Erhitzen mit Paraffinöl auf 320—330° (Delétra, Ullmann, C. 1904 I, 1570; U., A. 382, 99). Krystalle (aus Alkohol, Xylol oder Anilin). F: 246—248° (Zers.) (M., L.), 254° (D., U.; U., A. 382, 100); wird bei 240° schwarz und schmilzt bei 259° (korr.; Zers.) (R., St.). Leicht löslich in Eisessig, löslich in Alkohol, schwer löslich in Ligroin, Äther und Benzol (D., U.; M., L.). Die Lösungen in Äther und Alkohol fluorescieren violett (D., U.). Wird am Licht rasch dunkel (Z.; M., L.). Überführung in Azofarbstoffe: Z.; R., St. Gibt mit konz. Schwefelsäure eine blaue Färbung, die durch Zusatz von Salpetersäure in Purpurrot übergeht (D., U.; U.). Das salzsaure Salz gibt mit Ligninsubstanz eine rote Färbung (R., St.). C₁₂H₁₀N₂ + HCl. Farbloses Krystallpulver. Zersetzt sich langsam am Tageslicht (R., St.). Sehr leicht löslich in Alkohol, löslich in Wasser, unlöslich in konz. Salzsäure (R., St.). 2C₁₂H₁₀N₂ + 2 HCl + SnCl₄. Gelbliche Blättchen (aus verd. Salzsäure) (M., L.). Pikrat C₁₂H₁₀N₂ + C₃H₂O₇N₃. Krystalle. Wird bei 100° gelb und schmilzt bei 220° (Zers.) (D., U.). Löslich in Alkohol, sehr schwer löslich in Benzol.
- 8-Bensalamino-carbasol $C_{19}H_{14}N_2 = HNC_{12}H_7 \cdot N : CH \cdot C_6H_5$. B. Beim Erhitzen von 3-Amino-carbazol mit Benzaldehyd auf 120—140° (MAZZARA, LEONARDI, G. 21 II, 383). Grünlichgelbe Schuppen (aus Alkohol). F: 209—210°. Leicht löslich in Benzol, schwer in Äther und Petroläther.
- **8-Acetamino-carbasol** $C_{14}H_{12}ON_2 = HNC_{12}H_7 \cdot NH \cdot CO \cdot CH_3$. B. Beim Behandeln von 3-Amino-carbazol mit Acetanhydrid (Mazzara, Leonardi, G. 21 II, 385; Delétra, Ullmann, C. 1904 I, 1570; U., A. 332, 101). Blättchen (aus Alkohol). F: 213—214° (M., L.), 217° (D., U.; U.). Leicht löslich in Alkohol und Eisessig, schwer in kalter verdünnter Essigsäure, sehr schwer in kaltem Äther und Benzol, unlöslich in Wasser (M., L.; D., U.; U.).
- 9-Acetyl-3-acetamino-carbazol oder 3-Diacetylamino-carbazol $C_{16}H_{14}O_2N_2 = CH_2 \cdot CO \cdot NC_{12}H_7 \cdot NH \cdot CO \cdot CH_2$ oder $HNC_{12}H_7 \cdot N(CO \cdot CH_3)_2$. B. Entsteht neben 9-Acetyl-3-diacetylamino-carbazol beim Erhitzen von 3-Amino-carbazol mit Acetanhydrid auf 180° (RUFF, STEIN, B. 34, 1684). Nadeln (aus Alkohol). F: 199,5° (korr.).
- 9-Acetyl-3-diacetylamino-carbazol $C_{18}H_{16}O_3N_2=CH_3\cdot CO\cdot NC_{19}H_7\cdot N(CO\cdot CH_3)_3$. B. s. im vorangehenden Artikel. Nadeln (aus Alkohol). F: 174,5° (korr.) (R., St., B. 34, 1684). Schwerer löslich in Äther als die Diacetylverbindung.
- 3-Benzamino-carbazol $C_{10}H_{14}ON_2 = HNC_{12}H_7 \cdot NH \cdot CO \cdot C_6H_5$. B. Beim Erhitzen äquimolekularer Mengen von 3-Amino-carbazol und Benzoesäureanhydrid auf 160—200° (MAZZARA, LEONARDI, G. 21 II, 384). Tafeln (aus Eisessig). F: 250—251°.
- 9-Nitroso-3-acetamino-carbazol $C_{14}H_{11}O_2N_3=ON\cdot NC_{12}H_7\cdot NH\cdot CO\cdot CH_2$. B. Durch Einw. von Kaliumnitrit auf 3-Acetamino-carbazol in $50^{\circ}/_{\circ}$ iger Essigsäure bei $70-80^{\circ}$ (Mazzara, Leonard, G. 21 II, 386). Gelbes Krystallpulver (aus Alkohol). F: $162-164^{\circ}$ (Zers.). Löslich in Eisessig, sehr schwer löslich in Petroläther, Benzol und verd. Essigsäure. Liefert beim Behandeln mit salzsaurer Zinnchlorür-Lösung 3-Acetamino-carbazol. Ist mit grüner Farbe löslich in konz. Schwefelsäure.
- 9-Acetyl-x-nitro-3-acetamino-carbazol oder x-Nitro-3-diacetylamino-carbazol $C_{16}H_{13}O_4N_3 = CH_3 \cdot CO \cdot NC_{12}H_6(NO_2) \cdot NH \cdot CO \cdot CH_3$ oder $HNC_{12}H_6(NO_2) \cdot N(CO \cdot CH_3)_2$. B. Aus 9-Acetyl-3-diacetylamino-carbazol beim Behandeln mit konz. Salpetersäure in Eisessig (Ruff, Stein, B. 34, 1684). Gelbe Nadeln (aus Alkohol). F: 199,5° (korr.).

2. Amine $C_{13}H_{12}N_2$.

- 1. 2-[2-Amino-styryl]-pyridin, $\alpha-[2-Amino-phenyl]-\beta-[\alpha-pyridyl]-athylen$, $2'-Amino-\alpha-stilbazol$ $C_{12}H_{12}N_2$.

 s. nebenstehende Formel. B. Durch Reduktion von 2'-Nitro- α -stilbazol mit Zink und Salzsäure (Feist, Ar. 240, 256). $C_{12}H_{12}N_2+2$ HCl. Nadeln (aus salzsäurehaltigem Alkohol). F: 250—254°. Leicht löslich in Wasser.
- 2. 2-[3-Amino-styryl]-pyridin, α-[3-Amino-phenyl]β-[α-pyridyl]-āthylen, 3'.-Amino-α-stilbazol C₁₃H₁₂N₂, s. nebenstehende Formel. B. Durch Reduktion von 3'-Nitro-α-stilbazol mit Zink und Salzsäure (Feist, Ar. 240, 254) oder mit Eisen und Salzsäure (Schuffan, B. 23, 2717). — Wasserhaltige Nadeln. F: 85°; leicht löslich in Chloroform, Alkohol und Ather, sehr schwer in kaltem Wasser (Sch.). — Liefert bei der Reduktion mit Natrium und Alkohol 3'-Amino-α-stilbazolin (Sch.). — C₁₃H₁₂N₂ + 2HCl + 2H₂O. Krystalle (aus Wasser). F: 240°; wird an der Luft allmählich rot (F.). — C₁₃H₁₂N₂ + 2HCl + PtCl₄ + H₂O. Rötlichgelbe Nadeln. Sehr leicht löslich in verd. Salzsäure (Sch.).
- 3. 2-[4-Amino-styryl]-pyridin, $\alpha-[4-Amino-phenyl]-\beta-[\alpha-pyridyl]-athylen$, $4'-Amino-\alpha-stilbazol$ $C_{13}H_{12}N_2$, N-CH:CH:CH:CH:CH:CH:NH2 s. nebenstehende Formel. B. Durch Reduktion von 4'-Nitro- α -stilbazol mit Zink und Salzsäure (Feist, Ar. 240, 251) oder mit Zinn und Salzsäure (Baumeet, B. 39, 2972). Hellgelbe Nadeln (aus verd. Alkohol). F: 138—139°; unlöslich in Wasser, leicht löslich in Alkohol, Ather und Chloroform (B.). $C_{13}H_{12}N_3+2$ HCl. Krystalle (aus verd. Salzsäure). Schmilzt nicht bis 260° (F.). $C_{13}H_{12}N_3+2$ HCl+2SnCl₂. Krystalle. F: 198—199° (B.). $C_{13}H_{12}N_3+2$ HCl+PtCl₄. Gelbe Nadeln (B.).
- 4'-Acetamino- α -stilbazol C₁₅H₁₄ON₂ = NC₅H₄·CH:CH:C₅H₄·NH·CO·CH₅. B. Aus 4'-Amino- α -stilbazol bei Behandlung mit Essigsäureanhydrid und Wasser (BAUMERT, B. 39, 2973). Nadeln (aus verd. Alkohol). F: 170—171°.
- N.N'-Di-[α -stilbasyl-(4')]-thioharnstoff $C_{27}H_{22}N_4S = (NC_5H_4\cdot CH: CH: C_6H_4\cdot NH)_2CS$. B. Aus 4'-Amino- α -stilbazol und Schwefelkohlenstoff in alkoh. Kalilauge (BAUMERT, B. 39, 2972). Krystalle (aus verd. Alkohol). F: 180—181°. $C_{27}H_{22}N_4S + 2HCl + PtCl_4$. Gelbe Flocken.
- 4. 4-[2-Amino-styryl]-pyridin, $\alpha-[2-Amino-phenyl]-$ CH: CH: CH: CH: CH: NH: $\beta-[\gamma-pyridyl]-athylen$, $2'-Amino-\gamma-stilbazol$ C₁₈H₁₂N₂, s. nebenstehende Formel. B. Beim Kochen von 2'-Nitro- γ -stilbazol mit Zinn und verd. Salzsäure (Löwensohn, B. 40, 4861). Die aus den Salzen in Freiheit gesetzte Base geht an der Luft sofort in die Verbindung mit Kohlendioxyd über. C₁₃H₁₂N₂+2HCl. Nadeln. F: 205°. C₁₃H₁₂N₂+H₂SO₄. Krystalle (aus Wasser). F: 140°. C₁₃H₁₂N₂+2HCl+2SnCl₂. Krystalle (aus Wasser). F: 155°. C₁₃H₁₂N₂+2HCl+PtCl₄. F: 238°. Verbindung mit Kohlendioxyd $2C_{13}H_{12}N_2+CO_2+H_2O$. F: 76°.
- 5. 4-[4-Amino-styryl]-pyridin, $\alpha-[4-Amino-phenyl]-$ CH:CH·C₆H₄·NH₂ $\beta-[\gamma-pyridyl] \alpha thylen$, $4'-Amino-\gamma-stilbazol$ C₁₂H₁₂N₂, s. nebenstehende Formel. B. Aus 4'-Nitro- γ -stilbazol durch Reduktion mit Zinn und Salzsäure (BAUMERT, B. 39, 2973). F: 138—139°. Fast unlöslich in Wasser, leicht löslich in Alkohol, Äther und Chloroform. C₁₂H₁₂N₂ + 2 HCl. Krystalle (aus alkoh. Salzsäure). F: 257—258° (Zers.). C₁₃H₁₂N₂ + 2 HCl + 2 SnCl₂. F: 198—199°. C₁₃H₁₂N₂ + 2 HCl + PtCl₄. Schmilzt oberhalb 300°.
- N.N'-Di-[y-stilbazyl-(4')]-thioharnstoff $C_{27}H_{22}N_4S = (NC_5H_4\cdot CH:CH:CH\cdot C_6H_4\cdot NH)_2CS$. B. Aus 4'-Amino-y-stilbazol beim Behandeln mit Schwefelkohlenstoff und alkoh. Kalilauge (Baumert, B. 39, 2973). — F: 195—196'. — $C_{27}H_{22}N_4S + 2HCl + PtCl_4$. Schmilzt über 300'.

3. Amine $C_{14}H_{14}N_{2}$.

1. 4-Methyl-2-[4-amino-styryl]-pyridin, α-[4-Amino-CH₃
phenyl]-β-[4-methyl-pyridyl-(2)]-āthylen, 4'-Amino4-methyl-α-stilbazol C₁₄H₁₄N₂, s. nebenstehende Formel. B.

Durch Reduktion von 4'-Nitro-4-methyl-α-stilbazol mit Zinn und
Salzsäure (Knick, B. 35, 2793). — Hellgelbe Krystalle. F: 119°. Löslich in Alkohol, Äther und Chloroform, schwerer löslich in Schwefelkohlenstoff. — C₁₄H₁₄N₂ + HCl. Blättchen.
Zersetzt sich bei 208°. — C₁₄H₁₄N₃ + HCl + HgCl₂. Gelbe Nadeln. Zersetzt sich bei 176°.
— 2C₁₄H₁₄N₂ + 2HCl + PtCl₄. Rötlichgelbe Nadeln. Bräunt sich bei 280°, ohne zu schmelzen.

- 2. 2 Methyl 6 [2 amino styryl] pyridin, α [2 Amino phenyl] β [6 methyl pyridyl (2)] āthylen, 2 Amino 6 methyl α stilbazol $C_{14}H_{14}N_2$, s. nebenstehende Formel. B. Durch Reduktion von 2'-Nitro-6-methyl- α -stilbazol mit Zinn und Salzsäure (Ahrens, Luther, B. 40, 3403). Gelbe Nadeln. F: 136—137°. Leicht löslich in Alkohol, Äther und Benzol, fast unlöslich in Wasser. $C_{14}H_{14}N_2 + 2HCl$. Gelbliche Blättehen. F: 234—235°. $C_{14}H_{14}N_2 + 2HCl + 2HgCl_2$. Orangefarbene Nadeln (aus Wasser). F: 164°. $C_{14}H_{14}N_2 + 2HCl + 2SnCl_2$. Orangefarbene Nadeln. F: 278°. $C_{14}H_{14}N_3 + 2HCl + PtCl_4$. Flockiger Niederschlag. Läßt sich nicht umkrystallisieren. Verbindung mit Kohlendioxyd $2C_{14}H_{14}N_2 + CO_2 + H_2O$.
- 3. 2 Methyl 6 [4 amino styryl] pyridin, α [4 Amino phenyl] β -[6-methyl-pyridyl-(2)]-āthylen, 4'-Amino-6-methyl- α -stilbazol $C_{16}H_{14}N_2$, s. nebenstehende Formel. B. Durch Reduktion von 4'-Nitro-6-methyl- α -stilbazol mit Zinn und Salzsäure (Ahrens, Luther, B. 40, 3404). Hellbraune Nadeln. F: 139—140°. $C_{14}H_{14}N_2$ + 2 HCl. Gelbbraune Nadeln. Zersetzt sich bei 265°. $C_{14}H_{14}N_2$ + 2 HCl + 2 HCl + 2 HCl + 2 Rotbraune Nadeln. F: 260° (Zers.). $C_{14}H_{14}N_2$ + 2 HCl + 2 SnCl g. Braune Nadeln. F: 188° bis 189°. $C_{14}H_{14}N_2$ + 2 HCl + PtCl 4. Gelbbrauner Niederschlag.
- 4. $2 [3 A \min 0 p \ln n y l] 1.2.3.4 t e trahydro-chinolin <math>C_{15}H_{16}N_3 = C_{14} \cdot CH_2 \cdot CH_3$. B. Durch Reduktion von $2 [3 Nitro-phenyl] 1.2.3.4 tetrahydro-chinolin oder von <math>2 [3 A \min 0 phenyl] chinolin mit Zinn und konz. Salzsäure (v. Miller, Kinkelin, B. 18, 1906, 1907). Dicker Sirup. Reduziert ammoniakalische Silber-Lösung, dagegen nicht Fehlingsche Lösung. Einw. von salpetriger Säure: v. M., K. <math>C_{15}H_{16}N_2 + 2$ HCl. Tafeln. Sehr leicht löslich in Wasser, schwer in kalter Salzsäure.
- 5. 3-Methyl-2-[3-amino-phenyl]-1.2.3.4-tetrahydro-chinolin $C_{16}H_{18}N_{2}=C_{16}H_{16}\cdot CH\cdot CH_{3}$ $C_{16}H_{16}\cdot CH\cdot CH_{3}$ $C_{16}H_{16}\cdot CH\cdot C_{16}H_{16}\cdot NH_{16}$ EBeim Erwärmen von 3-Methyl-2-[3-amino-phenyl]-chinolin mit Zinn und konz. Salzsäure auf dem Wasserbad (v. Miller, Kinkelin, B. 19, 535). Weder die freie Base noch ihre Salze konnten krystallinisch erhalten werden.

10. Monoamine $C_n H_{2n-16} N_2$.

1. Amine $C_{13}H_{10}N_2$.

1. 2 - Amino - acridin $C_{13}H_{10}N_2$, s. nebenstehende Formel. B. Durch Reduktion von 2-Nitro-acridin (Bd. XX, S. 462) mit Zinn und Salzsäure (Anschütz, B. 17, 437). — Nadeln (aus Wasser). F: 209°. Leicht löslich in Alkohol und Äther mit grüner Fluorescenz. — Pikrat. Dunkelrote Prismen (aus Alkohol).

2. 3-Amino-acridin $C_{13}H_{10}N_2$, s. nebenstehende Formel.

8-Diäthylamino-acridin $C_{17}H_{18}N_2 = NC_{13}H_8 \cdot N(C_3H_5)_2$. B. Beim Erhitzen von 2-Amino-benzylalkohol mit 3-Diäthylamino-phenol im Kohlendioxyd-Strom auf 210° (ULLMANN, BAEZNER, B. 35, 2672). — Gelb. Leicht löslich in Äther und Benzol mit orangegelber Farbe und grüner Fluorescenz. — Löslich in konz. Schwefelsäure mit gelber Farbe, die beim Verdünnen mit Wasser in Rot übergeht. — Pikrat $C_{17}H_{18}N_2 + C_6H_3O_7N_3$. Orangefarbene Nadeln.

3-Anilino-acridin C₁₉H₁₄N₂ = NC₁₃H₈·NH·C₆H₅. B. Bei 4—5-stündigem Erhitzen von N.N'-Diphenyl-m-phenylendiamin mit 90% jeer Ameisensäure und Zinkchlorid im Rohr auf 250% (Besthorn, Curtman, B. 24, 2042). — Braunrote Nadeln (aus Toluol). F: 175%

bis 176°. Ziemlich leicht löslich in Alkohol, schwerer in Äther und Benzol. Die Lösungen fluorescieren grün. — Liefert beim Erhitzen mit 20°/oiger Salzsäure im Rohr auf 250° 3-Oxyacridin. — Die Salze sind rot. Sie sind leicht löslich in Alkohol, schwerer in Wasser, fast unlöslich in konz. Säuren. Ihre Lösungen fluorescieren nicht.

- 3. 4-Amino-acridin C₁₃H₁₀N₂, s. nebenstehende Formel. B. Bei der Reduktion von 4-Amino-acridon mit Natrium in siedendem Amylalkohol (Ullmann, Maag, B. 40, 2522). Gelbbraune Nadeln. Sehr leicht löslich in Alkohol mit gelber Farbe und grüner Fluorescenz; leicht löslich in Äther und Benzol, schwer in Ligroin; löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz, löslich in verd. Salzsäure mit rotvioletter Farbe. Pikrat C₁₃H₁₀N₂+C₆H₃O₇N₃. Violette Blättchen. F: 206° (Zers.). Sehr schwer löslich in Äther, schwer in Alkohol, leicht in Aceton und Nitrobenzol.
- 4. 9-Amino-acridin C₁₃H₁₀N₂, s. nebenstehende Formel.

 9-Anilino-acridin-hydroxymethylat C₂₀H₁₈ON₂ = (HO)(CH₂)NC₁₃H₈·
 NH·C₆H₅. Salze vgl. unter N-Methyl-acridon-anil (Bd. XXI, S. 336).
- 9- β -Naphthylamino-acridin-hydroxymethylat $C_{24}H_{20}ON_2 = (HO)(CH_2)NC_{13}H_8 \cdot NH \cdot C_{10}H_7$. Salze vgl. unter N-Methyl-acridon- β -naphthylimid (Bd. XXI, S. 336).
- 5. x' Amino [benzo 1'.2': 7.8 chinolin] vom Schmelzpunkt 151°, ,,Amino -α-naphthochinolin" vom Schmelzpunkt 151° C₁₃H₁₀N₂ = NC₁₃H₈·NH₂. B. Bei der Reduktion von x'-Nitro-[benzo-1'.2': 7.8-chinolin] vom Schmelzpunkt 230° (Bd. XX, S. 463) mit Zinnchlorür und konz. Salzsäure auf dem Wasserbad (HAID, M. 27, 330). Farblose Blättchen oder Tafeln (aus verd. Alkohol). F: 151°. Sehr leicht löslich in Äther und Alkohol mit gelber Farbe. Reagiert gegen Lackmus neutral. Liefert beim Oxydieren mit Kaliumpermanganat in Wasser Chinolin-dicarbonsäure-(7.8). Hydrochlorid. Farblose Prismen. Beginnt bei 215° sich zu zersetzen. Sehr leicht löslich in Wasser mit blutroter Farbe; leicht löslich in Salzsäure.
- 6. x' Amino [benzo 1'.2': 7.8 chinolin] 1) vom Schmelzpunkt 175°, "Amino a naphthochinolin" vom Schmelzpunkt 175° C₁₃H₁₀N₂=NC₁₃H₆·NH₈. B. Bei der Reduktion von x'-Nitro-[benzo-1'.2': 7.8-chinolin] vom Schmelzpunkt 175° (Bd. XX, S. 464) mit Zinnchlorür und konz. Salzsäure auf dem Wasserbad (HAID, M. 27, 332). Gelbe Krystalle (aus verd. Alkohol). F: 175°. Liefert beim Oxydieren mit Kaliumpermanganat in Wasser Chinolin-dicarbonsäure-(7.8). Hydrochlorid. Farblose Nadeln. Verfärbt sich bei 230°, zersetzt sich teilweise bei 270°. Leicht löslich in Wasser mit blutroter Farbe; schwer löslich in verd. Salzsäure.
- 7. 3' Amino [benzo 1'.2': 5.6 chinolin] 1), "Amino β -naphthochinolin" $C_{13}H_{10}N_2$, s. nebenstehende Formel. B. Durch Reduktion von 3'-Nitro-[benzo-1'.2': 5.6-chinolin] mit Zinnchlorür und Salzsäure auf dem Wasserbad (Claus, Besseller, J. pr. [2] 57, 65). Gelbe Krystalle (aus Äther). F: 158°. Löslich in überschüssigen Säuren mit roter Farbe. $C_{13}H_{10}N_2 + HCl$. Hellgelbe Nadeln (aus verd. Salzsäure).

Hydroxymethylat $C_{14}H_{14}ON_3 = (HO)(CH_3)NC_{13}H_6 \cdot NH_4$. B. Das Jodid entsteht beim Erwärmen äquimolekularer Mengen von 3'-Amino-[benzo-1'.2':5.6-chinolin] und Methyljodid im Rohr auf dem Wasserbad (CL., B., J. pr. [2] 57, 66). — $C_{14}H_{13}N_2 \cdot Cl + 2H_2O$. Rote Krystalle. F: 256°. — $C_{14}H_{13}N_2 \cdot I + 2H_2O$. Dunkelrote Säuler und Prismen (aus Wasser). F: 237°.

2. Amine C₁₄H₁₂N₂.

1. 3-Amino-2-phenyl-indol C₁₆H₁₂N₂ = C₆H₄ C(NH₂) C·C₆H₅. B. Durch Reduktion von 3-Oximino-2-phenyl-indolenin mit Zinkstaub und alkoh. Salzsäure (E. FISCHER, SCHMITT, B. 21, 1074; vgl. a. Castellana, D'Angelo, R. A. L. [5] 14 II, 147; G. 36 II, 59). Aus 3-Oximino-2-phenyl-indolenin-1-oxyd beim Behandeln mit Zinkstaub und alkoh. Essigsäure, beim Kochen mit Zinkstaub und Ammoniumchlorid in Alkohol oder beim Kochen mit

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Schwefelammonium in Ammoniak (Angeli, Angelico, R. A. L. [5] 15 II, 764; vgl. a. A., A., R. A. L. [5] 13 I, 256). — Nadeln (aus Benzol). F: 180° (Zers.) (C., D'A.; A., A., R. A. L. [5] 15 II, 765), 174° (unkorr.) (F., Sch.). Ziemlich leicht löslich in Alkohol, Äther und heißem Benzol, fast unlöslich in Wasser (F., Sch.). — Färbt sich in feuchtem Zustand an der Luft violett (F., Sch.). Reduziert Fehlingsche Lösung beim Kochen (F., Sch.). Liefert beim Behandeln mit 1 Mol Natriumnitrit in Essigsäure 3-Diazo-2-phenyl-indol (s. u.) (Angeli, D'A., R. A. L. [5] 13 I, 259; C., D'A., R. A. L. [5] 14 II, 148; G. 36 II, 60). — Färbt einen Fichtenspan orange (F., Sch.).

3-Diazo-2-phenyl-indol C₁₄H₉N₃, C Formel I oder II. B. Beim Behandeln von 3-Amino-2-phenyl-indol mit 1 Mol I. C₆H₄ N₂ C·C₆H₅ II. C₆H₄ C(:N₂) C·C₆H₅ Natriumnitrit in Essigsäure (Angell, Natriumnitrit, R. A. L. [5] 16 II, 790; Angello, R. A. L. [5] 17 II, 655; G. 39 II, 60; vgl. a. Angell, Marchetti, R. A. L. [5] 16 II, 790; Angello, R. A. L. [5] 17 II, 655; G. 39 II, 134). — Orangegelbe Prismen (aus Petroläther). F: 115° (Zers.) (A., D'A.); Ca., D'A.). — Ist sehr veränderlich am Licht (Ca., D'A.). Liefert bei der Reduktion mit Aluminiumamalgam in Äther oder Alkali 2-Phenyl-indol (Ca., D'A.). Beim Kochen mit 25°/eiger Schwefelsäure entsteht "Azophenylindol" (Bd. XX, S. 347) (Ca., D'A.). — C₁₄H₉N₃ + HO.; Gelbe Nadeln. F: 175° (Ca., D'A.). — C₁₄H₉N₃ + CrO₃. Gelbe Krystalle (aus Wasser). F: ca. 255° (Ca., D'A.). — C₁₄H₉N₃ + HNO₃. Gelbes Krystallpulver. Zersetzt sich bei 164—165° (Ca., D'A.). — Pikrat. Gelbe Nadeln (aus Alkohol). F: 155° (Zers.) (Ca., D'A.).

- 1-Äthyl-3-amino-2-phenyl-indol $C_{16}H_{16}N_2=C_6H_4 < \frac{C(NH_2)}{N(C_2H_5)} > C \cdot C_6H_8$. B. Bei der Reduktion von 1-Äthyl-3-nitro-2-phenyl-indol mit Zink und alkoh. Essigsäure (Castellana, D'Angelo, R. A. L. [5] 14 II, 148; G. 36 II, 60). Pikrat $C_{16}H_{16}N_2 + C_6H_2O_7N_3$. Dunkelgrüne Nadeln (aus Alkohol). F: 173°.
- 2. 6-Amino-2-phenyl-indol C₁₄H₁₂N₂, s. nebenstehende Formel. B. Durch Reduktion von Phenyl-[2.4-dinitro-benzyl]keton mit Zinnchlorür in einer Lösung von Chlorwasserstoff in Eisessig (Borsche, B. 42, 611). — Krystalle (aus Essigester). F: 240°. Schwer löslich in Äther. — Ist sehr unbeständig. — Hydrochlorid. Blättchen (aus Salzsäure). Zersetzt sich rasch an der Luft unter Grünfärbung.
- 3. 3-Amino-9-methyl-acridin C₁₆H₁₈N₂, s. nebenstehende CH₃ Formel.

 3-Anilino-9-methyl-acridin C₂₀H₁₆N₃ = NC₁₃H₇(CH₃)·NH·C₆H₅.

 B. Bei 5—6-stdg. Erhitzen von N.N'-Diphenyl-N.N'-diacetyl-m-phenylen-diamin mit Zinkchlorid auf 250° (Besthorn, Curtman, B. 24, 2044). Braunrote Krystalle (aus Toluol). F: 215—216°. Leicht löslich in Alkohol und Methanol, schwerer in Äther und Benzol. Liefert beim Erhitzen mit 20°/0iger Salzsäure im Rohr auf 250° 3-Oxy-9-methylacridin.
- 4. 2-Amino-4-methyl-5.6-benzo-chinolin, 2-Amino-5.6-benzo-lepidin C₁₄H₁₂N₂, s. nebenstehende Formel.

 2-Anilino-4-methyl-5.6-benzo-chinolin, 2-Anilino-5.6-benzo-lepidin C₂₀H₁₆N₂ = NC₁₃H₇(CH₃)·NH·C₅H₅. B. Beim Erwärmen von 1 Mol 2-Chlor-5.6-benzo-lepidin mit 2 Mol Anilin (EPHRAIM, B. 25, 2708).

 NH₂

 NH₃
- 3. 3-Amino-2.7-dimethyl-acridin C₁₅H₁₄N₂, s. nebenstehende Formel. B. Beim Erhitzen von 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenylmethan mit p-Toluidin und salzsaurem p-Toluidin auf 160—170° unter Luftzutritt (ULLMANN, B. 36, 1025; vgl. a. Höchster Farbw., D. R. P. 107517; C. 1900 I, 1054; Frdl. 5, 380). Über die Bildung von 3-Amino-2.7-dimethyl-acridin aus 4.6.6'-Triamino-3.3'-dimethyl-diphenylmethan durch Abspaltung von Ammoniak und gleichzeitige Oxydation vgl. H. F., D. R. P. 107626; C. 1900 I, 1179; Frdl. 5, 378. Gelbbraune Krystalle (aus Toluol). F: 244° (U.), ca. 245° (H. F., D. R. P. 107517). Leicht löslich in Alkohol und Ather, löslich in verd. Essigsäure und Wasser, schwer in Benzol; die Lösungen

sind gelb und fluorescieren grün (U.; H. F., D. R. P. 107517). — Färbt tannierte Baumwolle orangegelb (U.; H. F., D. R. P. 107517). — $C_{15}H_{14}N_1 + HCl$. Rote Nadeln (aus Alkohol). Leicht löslich in warmem Wasser mit orangegelber Farbe (U.).

Hydroxymethylat, 3 - Amino -2.7.10- trimethyl - aeridiniumhydroxyd $C_{18}H_{18}ON_2$ bezw. 3-Amino-9-oxy-2.7.10-trimethyl-9.10-dihydro-aeridin $C_{16}H_{18}ON_2$ bezw. 3-Imino-2.7.10-trimethyl-8.10-dihydro-aeridin $C_{16}H_{16}N_2$, Formel I bezw. II bezw. III. Die Konstitution der Salze entspricht der Formel I, die der Carbinolbase der Formel II, die der Anhydrobase der Formel III. — B. Die Carbinolbase entsteht, wenn man 3-Acetamino-2.7.10-trimethyl-aeridiniumjodid (s. u.) mit verd. Ammoniak behandelt, den entstandenen

Niederschlag mit 25%-eiger Schwefelsäure kocht und das Reaktionsgemisch in Ammoniak eingießt (Fox, Hewitt, Soc. 85, 532). — Rötliche Nadeln (aus Aceton + Benzol). Schmilzt bei 210% unter Abgabe von Wasser. Leicht löslich in Alkohol und Aceton, unlöslich in Petroläther; die Lösungen werden bei Zusatz von Säuren dunkel. — Färbt sich beim Aufbewahren dunkel. Beim Erhitzen der Lösung in Nitrobenzol bis nahe zum Sieden entsteht die Anhydrobase (s. u.). Beim Eindampfen mit überschüssiger Salzsäure auf dem Wasserbad erhält man das Chlorid. — Chlorid C₁₆H₁₇N₂·Cl. Dunkelrote Krystalle. Leicht löslich in Wasser mit dunkelroter Farbe.

Anhydrobase C₁₆H₁₆N₂ (vgl. o. Formel III). B. s. im vorangehenden Artikel. — Dunkelroter Niederschlag (aus Nitrobenzol mit Petroläther gefällt). Schmilzt nicht bis 250° (F., H., Soc. 85, 533). Unlöslich in Aceton und Benzol; löslich in Säuren.

3-Acetamino - 2.7 - dimethyl - acridin $C_{17}H_{16}ON_3 = NC_{12}H_{6}(CH_3)_2 \cdot NH \cdot CO \cdot CH_3$. Beim Kochen von 3-Amino-2.7 - dimethyl-acridin mit Acetanhydrid und Natriumacetat (Ullmann, B. 36, 1026). — Gelbliches Krystallpulver (aus Benzol). F: 258°. Leicht löslich in Eisessig mit gelber Farbe und grüner Fluorescenz, schwer in Alkohol.

Hydroxymethylat, 3 - Acetamino - 2.7.10 - trimethyl - acridiniumhydroxyd $C_{12}H_{20}O_3N_3 = (HO)(CH_2)NC_{12}H_4(CH_3)_2\cdot NH\cdot CO\cdot CH_3$. — Jodid $C_{12}H_{12}ON_3\cdot I$. B. Beim Erhitzen von 3-Acetamino-2.7-dimethyl-acridin mit Methyljodid in Methanol im Rohr auf 110° bis 120° (Fox, Hewrr, Soc. 85, 532). Sehr dunkle Nadeln, die keinen bestimmten Schmelzpunkt haben. Löslich in Wasser. Beim Behandeln mit Ammoniak, nachfolgenden Kochen mit 25°/eiger Schwefelsäure und Eingießen des erhaltenen Reaktionsgemisches in Ammoniak entsteht 3-Amino-2.7.10-trimethyl-acridiniumhydroxyd (s. o.).

11. Monoamine $C_nH_{2n-18}N_2$.

1. Amine $C_{15}H_{12}N_{2}$.

1. 7-Amino-2-phenyl-chinolin C₁₅H₁₂N₂, s. nebenstehende H₂N C₆H₅

7(?)-Dimethylamino-2-phenyl-chinolin $C_{17}H_{16}N_2=NC_9H_5(C_6H_5)\cdot N(CH_2)_2$. B. Bei der Destillation von 7(?)-Dimethylamino-2-phenyl-chinolin-carbonsaure-(4) (Syst. No. 3439) (DOBBNER, FERBER, A. 281, 23). — Brauner Sirup. Löslich in Alkohol. — $2C_{17}H_{16}N_2+H_4Cr_3O_7$. Roter Niederschlag. Zersetzt sich beim Erhitzen auf 100° . — $2C_{17}H_{16}N_2+2HCl+PtCl_4+1^3/_9H_2O$. Rote, mikroskopische Krystalle. — Pikrat $C_{17}H_{16}N_2+C_6H_3O_7N_3$. Hellrote, mikroskopische Krystalle (aus Alkohol). F: 180°.

2. 2-[3-Amino-phenyl]-chinolin C₁₅H₁₂N₂, s. nebenstehende Formel. B. Bei der Einw. von Zinn und konz. Salzsäure auf 2-[3-Nitro-phenyl]-chinolin in Alkohol auf dem Wasserbad (v. MILLEB, KINKELIN, B. 18, 1904). — Nadeln (aus Wasser oder verd. Alkohol). F: 120°. Leicht löslich in Äther, Benzol und Methanol, schwer in Ligroin, sehr schwer in kaltem Wasser. Bildet basische, intensiv gelbe und neutrale, farblose Salze. — Gibt beim Kochen mit Zinn und konz. Salzsäure in Gegenwart von Alkohol 2-[3-Amino-phenyl]-1.2.3.4-tetrahydro-chinolin. Beim Erhitzen mit Glycerin und c-Nitro-phenol in konz. Schwefelsäure erhält man die beiden isomeren Dichinolyle-(2.5' oder 2.7') von den Schmelzpunkten 159° bezw. 115° (Syst. No. 3491). — C₁₅H₁₂N₂ + H₂SO₄ + 2H₂O. Prismen (aus verd. Schwefelsäure). Unlöslich in Alkohol, leicht

löslich in heißer, sohwer in kalter verdünnter Schwefelsäure, löslich in Wasser mit gelber Farbe unter teilweiser Hydrolyse. Wird beim Erhitzen auf 100° unter Abgabe des Krystallwassers hochrot. — $\rm C_{15}H_{12}N_2+2\,HCl+PtCl_4$ (bei 100°). Dunkelgelbe Krystalle.

3. 2-f4-Amino-phenyl]-chinolin C₁₅H₁₂N₂, s. nebenstehende Formel. B. Bei der Einw. von Anilin auf Chinolin-hydrochlorid bei 180° N. C₅H₄·NH₂ bis 200° (Jellinek, M. 7, 351; vgl. Claus, B. 14, 1940) oder bei 160° bis 180° unter Durchleiten von Sauerstoff in Gegenwart von platiniertem Asbest, neben Dichinolyl-(2.6') (Weidel, M. 8, 123, 139). — Nadeln (aus Wasser). F: 136,5° (unkorr.) (J.), 138° (unkorr.) (W.). Destilliert unzersetzt; leicht löslich Benzol, Xylol, Äther, Alkohol und Chloroform, löslich in siedendem Wasser (J.). — Liefert beim Diazotieren mit Kalumnitrit in salzsaurer Lösung und nachfolgenden Aufkochen der Diazo-Lösung 2-[4-Oxy-phenyl]-chinolin (Bd. XXI, S. 138), 2-[3-Nitro-4-oxy-phenyl]-chinolin und x-Oxy-[2-(4-oxy-phenyl)-chinolin] (Bd. XXI, S. 190) (W.). Beim Erhitzen mit Glycerin und Nitrobenzol in konz. Schwefelsäure auf 180° erhält man Dichinolyl-(2.6') (W.). — C₁₅H₁₂N₂ + 2HCl. Gelb. Färbt Seide (W.). — C₁₅H₁₂N₂ + 2HCl. Farblose Nadeln (J.). — C₁₅H₁₂N₂ + 2HCl + PtCl₄ (bei 120°). Gelbliche Plättchen (J.).

Hydroxymethylat $C_{16}H_{16}ON_2 = (HO)(CH_2)NC_9H_6 \cdot C_6H_4 \cdot NH_2 \cdot -$ Jodid $C_{16}H_{15}N_3 \cdot I$. B. Aus 2-[4-Amino-phenyl]-chinolin und Methyljodid bei 100° (Jellinek, M. 7, 355). Rotgelbe, mikroskopische Nadeln. F: 220° (Zers.). Schwer löslich in Wasser, leichter in Alkohol.

Monoacetylderivat $C_{17}H_{14}ON_2 = NC_9H_6 \cdot C_8H_4 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von 2-[4-Amino-phenyl]-chinolin mit Acetanhydrid (Weidel, M. 8, 126). — Blättchen (aus Alkohol). F: 189° (unkorr.).

- 4. 2-Amino-3-phenyl-chinolin C₁₅H₁₂N₂, s. nebenstehende Formel.

 B. Bei kurzem Kochen von 2-Acetamino-benzaldehyd (Bd. XIV, S. 26)
 mit Benzylcyanid und Natriumāthylat-Lösung (Pschorr, B. 31, 1293).

 Durch Reduktion von 2-Nitro-α-phenyl-zimtsāure-nitril (Bd. IX, S. 695) mit Zinn und Salzsāure (P., Wolffes, B. 32, 3402). Krystalle (aus Alkohol). F: 155—156° (korr.); siedet oberhalb 360° fast unzersetzt; leicht löslich in warmem Alkohol, kaltem Aceton, Essigester, Benzol, Chloroform, Äther und Eisessig, schwer in Ligroin und heißem Wasser (P.). Liefert beim Diazotieren mit Natriumnitrit und verd. Essigsäure und nachfolgenden Erwärmen auf dem Wasserbad 3-Phenyl-carbostyril (Bd. XXI, S. 138) (P.). Pikrat. Nadeln (aus Alkohol). F: 234° (P.).
- 2-Amino-3-[4-nitro-phenyl]-chinolin $C_{15}H_{11}O_2N_3=NC_9H_5(C_6H_4\cdot NO_3)\cdot NH_2$. B. Man behandelt eine alkoh. Lösung von 2-Acetamino- α -[4-nitro-phenyl]-zimtsäure-nitril (Bd. XIV, S. 545) mit 11%-jeger Natronlauge in der Wärme (Pschorr, B. 31, 1292) oder mit rauchender Salzsäure bei 100% (P., Wolfes, B. 32, 3403). Gelbe Krystalle (aus Alkohol). F: 258% (korr.). Löslich in etwa 200 Tln. heißem Alkohol, ziemlich leicht in der Wärme in den gebräuchlichen organischen Lösungsmitteln, fast unlöslich in Ligroin und in heißem Wasser (P.). $C_{15}H_{11}O_2N_3+HCl$. Schwer löslich in warmen verdünnten Säuren (P.). Pikrat. Nadeln. F: 279% (korr.) (P., W.).
- 2-Acetamino-8-[4-nitro-phenyl]-chinolin $C_{17}H_{13}O_3N_3=NC_9H_5(C_8H_4\cdot NO_2)\cdot NH\cdot CO\cdot CH_3$. B. Man versetzt eine Suspension von 2-Acetamino- α -[4-nitro-phenyl]-zimtsäurenitril (Bd. XIV, S. 545) in Alkohol mit 11% (Bd. XIV, S.
- 5. 6-Amino-4-phenyl-chinolin C₁₈H₁₂N₂, s. nebenstehende Formel.

 B. Beim Kochen von 6-Nitroso-4-phenyl-1.2.3.4-tetrahydro-chinolin (Bd. XXI, S. 343) mit 10% iger Salzsäure (Koenigs, Memberg, B. 28, 1044; Höchster Farbw., D. R. P. 79385; Frdl. 4, 1143). Nadeln (aus Chloroform). F: 205°. Löslich in Äther mit blauer, in Alkohol mit blaugrüner Fluorescenz. C₁₅H₁₂N₂+2HCl+PtCl₄+H₂O. Orangegelbe Nadeln (aus Salzsäure). Ist bei 260° noch nicht geschmolzen. Pikrat. Dunkelgelbe Nadeln. F: 233—234°. Schwer löslich in Wasser und Alkohol.
- 6. 4-[3-Amino-phenyl]-chinolin C₁₅H₁₂N₂, s. nebenstehende Formel. Zur Konstitution vgl. Besthorn, Banzhaf, Jaeglé, B. 27, 3043.

 B. Bei der Reduktion von 4-[3-Nitro-phenyl]-chinolin mit Zinnehlorür und konz. Salzsäure (Koenigs, Nef, B. 20, 628). Prismen (aus Alkohol).

C6H5

F: 1980; unzersetzt flüchtig (K., N.). Sehr schwer löslich in Äther mit blauvioletter Fluorescenz, schwer in Alkohol und Benzol, ziemlich leicht in Chloroform (K., N.). - Gibt beim Erhitzen mit Glycerin und konz. Schwefelsäure unter Zusatz von Nitrobenzol auf 170-190º Dichinolyl-(4.5' oder 4.7') (Syst. No. 3491) (K., N.). — Die neutralen Salze sind farblos; die basischen Salze sind intensiv gelb und färben Wolle (K., N.).

7. 4-[4-Amino-phenyl]-chinolin C₁₅H₁₂N₂, s. nebenstehende Formel. Zur Konstitution vgl. Besthorn, Jaeglé, B. 27, 909. — B. Bei der Reduktion von 4-[4-Nitro-phenyl]-chinolin mit Zinnchlorür und konz. CoH4 · NH2 Salzsäure (Koenigs, Nef. B. 20, 627). — Blättchen (aus Alkohol). F: 150°; unzersetzt flüchtig (K., N.). Schwer löslich in Äther, sehr leicht in heißem Alkohol, Benzol und Chloroform; die äther. Lösung fluoresciert blauviolett (K., N.). Die basischen Salze sind intensiv gelb, die neutralen farblos (K., N.). — Liefert beim Erhitzen mit Glycerin und konz. Schwefelsäure unter Zusatz von Nitrobenzol auf 170-190° Dichinolyl-(4.6') (Syst. No. 3491) (K., N.).

8. 6-[x-Amino-phenyl]-chinolin $C_{15}H_{12}N_2$, s. nebenstehende $H_2N\cdot C_6H_4$ · Formel. B. Entsteht neben 6-Oxy-2-[4-amino-phenyl]-chinolin beim Einleiten von Sauerstoff in ein Gemisch von 6-Oxy-chinolin-hydrochlorid, Anilin, Anilin-hydrochlorid und platiniertem Asbest bei 220—230° (Weidel, v. Georgievics, M. 9, 139). — Blättchen (aus Alkohol). Monoklin prismatisch (v. Lang; vgl. Groth, Ch. Kr. 5, 771). F: 182°. Fast unzersetzt flüchtig. Leicht löslich in Ather, Alkohol, Benzol, Aceton und Chloroform, unlöslich in Wasser. — Liefert in schwefelsaurer Lösung bei der Einw. von Permanganat in der Siedehitze in geringer Menge 2-Oxy-pyridin-carbonsaure-(3) (S. 214) und Chinolin-carbonsaure-(6) (S. 79). Die Lösung in konz. Schwefelsaure farbt sich nach Zusatz von Salpetersäure tief violett.

- 9. 1-Amino-3-phenyl-isochinolin C₁₅H₁₂N₂, s. nebenstehende
- 1-Anilino-3-phenyl-isochinolin $C_{21}H_{16}N_2 = NC_9H_5(C_6H_5) \cdot NH \cdot C_6H_5$.

 B. Beim Erhitzen von 1-Chlor-3-phenyl-isochinolin mit Anilin (EPHRAM,

 B. 25, 2709). Nadeln (aus Alkohol). F: 126°. Pikrat $C_{21}H_{16}N_2 + C_6H_3O_7N_3$. NH2
- F: 2020.
- 10. 4-Amino-3-phenyl-isochinolin C₁₆H₁₂N₂, s. nebenstehende Formel. B. Beim Kochen von 1-Chlor-4-nitro-3-phenyl-isochinolin (Bd. XX, NH2 C₆H₅ S. 485) mit Jodwasserstoffsäure (GABRIEL, B. 19, 834). — Gelbliche Blättchen oder Nadeln (aus Petroläther). Schmilzt etwas oberhalb 100°. Mäßig löslich in Ather und Ligroin, leicht in den übrigen organischen Lösungsmitteln. — C15H12N2+HI. Gelbe Krystalle (aus Alkohol).

2. Amine $C_{16}H_{14}N_2$.

1. 3-Amino-2.4-diphenyl-pyrrol, Bisanhydrophenacylamin $C_{16}H_{14}N_1 =$ $C_6H_5 \cdot C - C \cdot NH_2$

B. Aus Anhydrobisphenacylamin (Bd. XIV, S. 175) beim Erwärmen HC·NH·C·C₄H₅ für sich oder in verd. Salzsäure (Gabriel, B. 41, 1138). — Tafeln (aus Alkohol). F: 178—179°. Liefert beim Kochen mit Jodwasserstoffsäure (Kp: 127°) in Gegenwart von rotem Phosphor das Hydrojodid der Verbindung C_{1e}H₁₅ON (s. u.). Verbindet sich mit Benzaldehyd zu 3-Benzalamino-2.4-diphenyl-pyrrol (S. 468). Beim Erwärmen mit Benzaldehyd unter gleichzeitigem Durchleiten von Luft entsteht die Verbindung C_{4e}H₂₄N₄ (S. 468). — C_{1e}H₁₄N₂ + HI. Nadeln (aus Alkohol). Schmilzt gegen 220° unter Rotgelbfärbung. — Nitrat. Nadeln. Zersetzt sich bei 182—183°. — 2C_{1e}H₁₄N₂ + 2HCl + PtCl₄. Orangerote Nadeln. Färbt sich bei 200° dunkler und ist bei 230° noch nicht geschmolzen. dunkler und ist bei 230° noch nicht geschmolzen.

HC·NH·CH·C₆H₅ Oder H₂C·NH·C·C₆H₅ bezw. H₂C·NH·CH·C₆H₅ B. Das Hydrojodid entsteht beim Kochen von Bisanhydrophenacylamin mit Jodwasserstoffsäure (Kp: 127°) in Gegenwart von rotem Phosphor (Gabriel, B. 41, 1140). — $C_{16}H_{15}ON + HI$. Nadeln oder Blätter (aus Alkohol). F: 175° (Zers.). 8-Bensalamino-2.4-diphenyl-pyrrol $C_{22}H_{18}N_2 = \frac{C_6H_5 \cdot C - C \cdot N \cdot CH \cdot C_6H_6}{C_6H_6}$

8-Benzalamino-2.4-diphenyl-pyrrol C₂₂H₁₈N₂ = HC·NH·C·C₂H₄

Aus Bisanhydrophenacylamin und Benzaldehyd (GABRIEL, B. 41, 1141). — Gelbe Prismen (aus Methanol). F: 144—145°. Leicht löslich in Benzol, Essigester und Chloroform, löslich in Methanol und Alkohol, fast unlöslich in Ligroin. — Oxydiert sich leicht, besonders in

Gegenwart von Benzaldehyd, zu der Verbindung C44H24N4 (s. u.).

Verbindung C_{4e}H₂₄N₄. B. Aus 3-Benzalamino-2.4-diphenyl-pyrrol durch Oxydation an der Luft in Gegenwart von Benzaldehyd (GABRIEL, B. 41, 1142). Beim Durchleiten von Luft durch ein Gemisch von Benzaldehyd und Bisanhydrophenacylamin auf dem Wasserbad (G.). — Rotbraune, metallisch reflektierende Nadeln (aus Nitrobenzol). Wird bei 300° blauviolett und schmilzt bei 310°. Löslich in siedendem Nitrobenzol mit indigoblauer Farbe; die Lösung in Eisessig ist grün und wird beim Verdünnen mit Wasser indigoblau, auf Zusatz von Alkali entsteht eine bronzefarbene Fällung; die Lösung in Salzsäure ist indigoblau.

8-Salicylalamino-2.4-diphenyl-pyrrol $C_{22}H_{18}ON_2 = \frac{C_6H_5 \cdot C - C \cdot N \cdot CH \cdot C_6H_4 \cdot OH}{HC \cdot NH \cdot C \cdot CH}$

- B. Aus Bisanhydrophenacylamin und Salicylaldehyd auf dem Wasserbad (GABRIEL, B. 41, 1141). — Gelbgrüne Prismen (aus Alkohol). F: 143°.
 - $\textbf{3-Bensamino-2.4-diphenyl-pyrrol (P)} \quad C_{22}H_{18}ON_2 = \frac{C_0H_5\cdot C C\cdot NH\cdot CO\cdot C_0H_5}{HC\cdot NH\cdot C\cdot C_0H_5} (?).$
- B. Man schüttelt Bisanhydrophenacylamin in Benzol mit Benzoylchlorid und 17% iger Kalilauge (Gabriel, B. 41, 1139). Nadeln oder Prismen (aus Alkohol). F: 218—219°. Gelbe Tafeln mit 1 Mol C. H. NO. (aus Nitrobenzol).
- HC——C·NH₂ . B. Man redu-2. 3-Amino-2.5-diphenyl-pyrrol $C_{16}H_{14}N_2 = \frac{1}{C_6H_5 \cdot C \cdot NH \cdot C \cdot C_6H_5}$ ziert 3-Nitroso-2.5-diphenyl-pyrrol (Bd. XXI, S. 355) mit Zinkstaub in heißer alkoholischessignaurer Lösung (Angulico, R. A. L. [5] 14 II, 168). — Gelbliche Schuppen (aus Benzol). F: 187—188°. — Gibt beim Diazotieren in essigsaurer Lösung 3-Diazo-2.5-diphenyl-pyrrol (s. u.).

3-Diazo-2.5-diphenyl-pyrrol C₁₆H₁₁N₂, Formel I oder II. Zur Konstitution vgl. Angelico, I.

R. A. L. [5] 14 II, 169; Angeli, Marchetti, R. A. L. [5] 16 II, 790. — B. Man diazotiert

3-Amino-2.5-diphenyl-pyrrol mit Natriumnitrit in essignaurer Lösung (Angelico, R. A. L. [5] 14 II, 170). — Rotbraune Nadeln (aus Benzol). F: 122—123° (Zers.) (Angelico). — Hydrochlorid. Gelbliches Pulver; zersetzt sich gegen 173° (Angelico).

3. 2-[4-Amino-3-methyl-phenyl]-chinolin, "Pseudo-flavanilin" C₁₆H₁₄N₂, s. nebenstehende Formel. B. Beim Einleiten von Sauerstoff in ein Gemisch aus Chinolin und salzsaurem o-Toluidin in Gegenwart von platiniertem Asbest bei 180—205° (Weidell, Bamberger, M. 9, 99). — Krystalle (aus Wasser). F: 112° (unkorr.). Im Vakuum destillierbar. Sehr schwer löslich in siedendem Wasser, sehr leicht in Alkohol, Ather, Aceton, Chloroform und Benzol. — Gibt beim Diazotieren mit Kaliumnitrit und konz. Salzsäure und nachfolgenden Kochen 2-[4-Oxy-3-methyl-phenyl]-chinolin (Bd. XXI, S. 141), x-Oxy-[2-(4-oxy-3-methyl-phenyl)-chinolin] (Bd. XXI, S. 191) und 2-[5-Nitro-4-oxy-3-methyl-phenyl]-chinolin (Bd. XXI, S. 142). — C₁₆H₁₄N₂ + 2 HCl. Nadeln. Wird durch Wasser in das Monohydrochlorid übergeführt. — C₁₆H₁₄N₂ + 2 HCl. + PtCl. + 3 H₂O. Hellorangerote Nadeln. $-C_{16}H_{14}N_2+2HCl+PtCl_4+3H_2O$. Hellorangerote Nadeln.

Monoacetylderivat $C_{18}H_{16}ON_2 = NC_9H_6 \cdot C_9H_2(CH_2) \cdot NH \cdot CO \cdot CH_2$. B. Beim Erwärmen von 2-[4-Amino-3-methyl-phenyl]-chinolin mit Acetanhydrid (Weidel, Bamberger, M. 9, 103). — Blättchen (aus Alkohol). F: 176—177° (unkorr.). Leicht löslich in Chloroform, Ather, Benzol und in siedendem Alkohol.

4. 3 - Methyl - 2 - [3 - amino - phenyl] - chinolin $C_{16}H_{14}N_3$, s. nebenstehende Formel. B. Man reduziert 3-Methyl-2-[3-nitro-phenyl]-CH₃ · CaH4·NH2 chinolin (Bd. XX, S. 487) mit Zinn und konz. Salzsäure auf dem Wasserbad (v. MILLER, KINKELIN, B. 19, 533). — Prismen (aus verd. Alkohol). F: 115°. Sehr leicht löslich in Alkohol und Benzol, ziemlich leicht in Äther. Die basischen Salze sind gelb, die

neutralen farblos. — Gibt bei der Reduktion mit Zinn und konz. Salzsäure auf dem Wasserbad 3-Methyl-2-[3-amino-phenyl]-1.2.3.4-tetrahydro-chinolin (8. 462). — $C_{14}H_{14}N_2 + 2HCl + 2H_2O$. Prismen. Leicht löslich in Wasser. — $C_{16}H_{14}N_2 + 2HCl + PtCl_4$. Hellgelbe Blättchen. — $C_{16}H_{14}N_2 + 2HCl + PtCl_4 + 2H_2O$. Orangefarbene Tafeln.

- 5. 6-Amino-2-methyl-4-phenyl-chinolin, 6-Amino4-phenyl-chinaldin C₁₀H₁₀N₂, a. nebenstehende Formel. B. Durch
 mehrstündiges Kochen von 6-Nitroso-2-methyl-4-phenyl-1.2.3.4-tetrahydro-chinolin (Bd. XXI, S. 344) mit 10% giger Salzsäure (Höchster Farbw.,
 D. R. P. 79385; Frdl. 4, 1143). Gelbliche Nadeln (aus Alkohol). F: 183°. Unlöslich in
 Wasser, leicht löslich in Alkohol und Chloroform.
- 6. 4-Methyl-2-[2-amino-phenyl]-chinolin, 2-[2-Amino-phenyl] lepidin, "Isoflavanilin" $C_{16}H_{14}N_2$, s. nebenstehende Formel. B. Das Monoformylderivat (s. u.) entsteht bei mehrstündigem Kochen von 2-Amino-acetophenon mit Ameisensäure; man spaltet das Formylderivat durch Erwärmen mit konz. Salzsäure (BISCHLER, BURKART, B. 26, 1352). Beim Erhitzen von 2 Mol 2-Amino-acetophenon mit 1 Mol wäßrig-alkoholischer Natronlauge (CAMPS, B. 32, 3231; Ar. 287, 670). Entsteht in geringer Menge bei der Destillation von 2-Amino-acetophenon (C.). Gelbe Nadeln (aus Ligroin oder Alkohol). F: 83—84° (C.). Leicht löslich in Alkohol, Äther, Benzol, Chloroform und Aceton, schwer in Wasser (C.). $C_{16}H_{16}N_2 + 2$ HCl. Krystallpulver. Zersetzt sich beim Erhitzen, ohne zu schmelzen; leicht löslich mit intensiv gelber Farbe in kaltem Wasser und Alkohol, unlöslich in Äther, Benzol und Chloroform (BI., Bu.).

Monoformylderivat $C_{17}H_{14}ON_2 = NC_9H_4(CH_2) \cdot C_9H_4 \cdot NH \cdot CHO$. B. s. im vorangehenden Artikel. Entsteht ferner aus Isoflavanilin und Ameisensäure (Camps, B. 32, 3232; Ar. 237, 672). — Chamoisgelbe Nadeln (aus Alkohol). F: 107°; leicht löslich in kaltem Benzol und Chloroform, fast unlöslich in Äther und Ligroin (Bischler, Burkart, B. 26, 1352). — Gibt beim Erwärmen mit konz. Salzsäure Isoflavanilin (Bl., Bu.).

Monoacetylderivat $C_{18}H_{16}ON_2 = NC_9H_5(CH_3) \cdot C_9H_4 \cdot NH \cdot CO \cdot CH_2$. B. In geringer Ausbeute neben Isoflavanilin und anderen Produkten beim Erhitzen von 2-Acetamino-acetophenon mit wäßrig-alkoholischer Natronlauge (Camps, B. 32, 3230; Ar. 237, 664, 669). Aus Isoflavanilin und Acetanhydrid (C.). — Nadeln (aus Alkohol). F: 138°. Schwer löslich in kaltem Alkohol. — Ist gegen Natronlauge beständig. Liefert beim Kochen mit konz. Salzsäure Isoflavanilin.

Monopropionylderivat $C_{19}H_{18}ON_9 = NC_9H_6(CH_9) \cdot C_9H_4 \cdot NH \cdot CO \cdot C_9H_8$. B. Neben anderen Produkten in sehr geringer Ausbeute beim Kochen von 2-Propionylamino-acetophenon mit wäßrig-alkoholischer Natronlauge (Camps, Ar. 237, 676). Bei der Einw. von Propionsäureanhydrid auf Isoflavanilin (C.). — Gelbliche Nadeln. F: 137°. Leicht löslich in Benzol. — Wird von Natronlauge in alkoh. Lösung nicht verändert. Beim Kochen mit Salzsäure erhält man Isoflavanilin.

Monobutyrylderivat $C_{20}H_{20}ON_8 = NC_9H_6(CH_2) \cdot C_9H_4 \cdot NH \cdot CO \cdot CH_2 \cdot C_2H_8$. B. In geringer Ausbeute neben anderen Produkten beim Kochen von 2-Butyrylamino-acetophenon mit wäßrig-alkoholischer Natronlauge (CAMPS, Ar. 237, 680). Aus Isoflavanilin und Buttersäureanhydrid (C.). — F: 104°. — Wird beim Erhitzen mit Salzsäure verseift.

Monoisobutyrylderivat $C_{20}H_{20}ON_3 = NC_9H_5(CH_2) \cdot C_9H_4 \cdot NH \cdot CO \cdot CH(CH_2)_3$. B. Neben anderen Produkten durch mehrstündiges Kochen von 2-Isobutyrylamino-acetophenon mit wäßrig-alkoholischer Natronlauge (CAMPS, Ar. 239, 594). Aus Isoflavanilin und Isobuttersäureanhydrid (C.). — Gelbliche Nadeln (aus Alkohol). F: 117°. — Wird beim Erhitzen mit verd. Salzsäure verseift.

Monobensoylderivat $C_{28}H_{18}ON_8 = NC_9H_8(CH_9) \cdot C_9H_4 \cdot NH \cdot CO \cdot C_9H_8$. B. Neben anderen Produkten in geringer Ausbeute durch mehrstündiges Kochen von 2-Bensamino-acetophenon mit wäßrig-alkoholischer Natronlauge (Camps, Ar. 239, 597). Durch Zusammenschmelzen von Isoflavanilin mit Benzoesäureanhydrid (C.). — Gelbliche Nadeln (aus Alkohol). F: 150°. Wird beim Erhitzen mit Salzsäure verseift.

7. 4-Methyl-2-[4-amino-phenyl]-chinolin, 2-[4-Amino-phenyl]-lepidin, "Flavanilin" C₁₆H₁₄N₂, s. nebenstehende Formel.

B. Beim Erhitzen von Acetanilid und Zinkchlorid auf 250—270° (O. FISCHER, RUDOLPH, B. 15, 1500; vgl. Höchster Farbw., D. R. P. 19766;

Frdl. 1, 164). Bei der Einw. von Acetylchlorid auf Anilinsulfat oder auf Acetanilid in Gegenwart von Zinkchlorid bei 100° (Besthorn, F., B. 16, 74). Beim Erhitzen von salzsaurem Anilin mit Acetanhydrid auf 180—200° (BAUM, D. R. P. 27948; Frdl. 1, 165). Beim Erhitzen von

N.N'-Diphenyl-acetamidin (Bd. XII, S. 248) mit Acetylchlorid und Zinkchlorid auf 260° bis 270° (Majert, D. R. P. 28323; Frdl. 1, 165). Man erhitzt 2-Amino-acetophenon mit Zinkchlorid auf etwa 250° oder besser ein Gemisch von 2-Amino-acetophenon und 4-Amino-acetophenon mit Zinkchlorid auf 90—100° (Be., F., B. 16, 73; F., B. 19, 1038). Aus Acetophenon-oxim und überschüssigem Phosphorpentoxyd bei 60° (Goldschmidt, Ch. Z. 27, 279). Bei der Reduktion von 4-Methyl-2-[4-nitro-phenyl]-chinolin mit Zink in Eisessig (Be., F., B. 16, 69). — Prismen (aus Benzol). F: 97°; unzersetzt flüchtig; sehr schwer löslich in Wasser, leicht in Alkohol (F., R.). — Wird von Zinn oder Zink in saurer Lösung nicht reduziert (F., R.). Die neutrale Lösung des einfach-salzsauren Salzes gibt mit Natriumnitrit einen gelbroten Niederschlag, die Lösung in überschüssiger Salzsäure liefert beim Behandeln mit Nitrit und Kochen der Lösung Flavenol (Bd. XXI, S. 143) (F., R.; Be., F.). Beim Erhitzen mit Äthyljodid in Alkohol auf 110° erhält mad das Hydrojodid des 4-Methyl-2-[4-āthyl-amino-phenyl]-chinolins (F., R.). — C16H14N2+HCl+1½H2O. Gelbrote Prismen (aus Wasser). Löslich in Wasser mit gelber Farbe und moosgrüner Fluorescenz (F., R.; F., Sitzungsber. math.-phys. Cl. Akad. Wiss. München 15 [1885], 331). — C16H14N2+2HCl. Farblose Nadeln. Schwer löslich in konz. Salzsäure, leicht in Wasser unter Dissoziation zum einfachsauren Salz (F., R.). — C16H14N2+2HCl+PtCl4 (bei 100°). Schwer löslicher, gelblicher, krystalliner Niederschlag (F., R.).

4-Methyl-2-[4-äthylamino-phenyl]-chinolin, 2-[4-Äthylamino-phenyl]-lepidin $C_{18}H_{18}N_2=NC_0H_5(CH_2)\cdot C_0H_4\cdot NH\cdot C_2H_5$. B. Das Hydrojodid entsteht aus 4-Methyl-2-[4-amino-phenyl]-chinolin und Äthyljodid in Alkohol im Rohr bei 110° (O. FISCHER, RUDOLPH, B. 15, 1502). — Farbloses Harz. Die Salze färben Seide orange. — $C_{18}H_{18}N_2+HI$. Rote Nadeln (aus sehr verd. Jodwesserstoffsäure).

4-Methyl-2-[4-acetamino-phenyl]-chinolin, 2-[4-Acetamino-phenyl]-lepidin $C_{18}H_{16}ON_3 = NC_9H_{5}(CH_3)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Aus 2-[4-Amino-phenyl]-lepidin und Acetanhydrid (O. Fischer, Sitzungsber. math.-phys. Cl. Akad. Wiss. München 15 [1885], 332). — Prismen (aus verd. Alkohol). F: $162-163^{\circ}$.

8. 4-[4-Amino-benzyl]-isochinolin C_{1e}H₁₄N₂, s. nebenstehende Formel. B. Man reduziert 4-[4-Nitro-benzyl]-isochinolin (Bd. XX, S. 490) mit Zinn und konz. Salzsäure (Rüghemer, Friling, A. 326, 277). — Nadeln (aus verd. Alkohol). F: 160—161°. 0,1 g löst sich in ca. 120 g Wasser bei gewöhnlicher Temperatur; unlöslich in Ligroin, löslich in warmem Benzol, leicht löslich in Alkohol, Chloroform und Aceton. — Bei der Einw. von Permanganat-Lösung auf die Suspension in heißem Wasser entsteht Pyridin-tricarbonsäure-(3.4.5) (R., F., A. 326, 267). — C_{1e}H₁₄N₂+2HCl+PtCl₄+4H₂O. Gelbe Nadeln. Das krystallwasserfreie Salz verfärbt sich oberhalb von 240° und ist bei 260° noch nicht geschmolzen.

Monoacetylderivat $C_{18}H_{16}ON_g = NC_9H_6 \cdot CH_2 \cdot C_9H_4 \cdot NH \cdot CO \cdot CH_3$. B. Beim Kochen von 4-[4-Amino-benzyl]-isochinolin mit Acetanhydrid in Eisessig (RÜGHEIMER, FRILING, A. 326, 279). — Nadeln (aus Wasser). F: 181—182°. Leicht löslich in Alkohol, sehr schwer in kaltem Benzol. — Liefert beim Aufbewahren in einem Gemisch aus gleichen Teilen rauchender Salpetersäure und Eisessig 4-[3-Nitro-4-acetamino-benzyl]-isochinolin.

4-[3-Nitro-4-amino-benzyl]-isochinolin $C_{18}H_{13}O_2N_3 = NC_9H_6 \cdot CH_3 \cdot C_6H_6(NO_3) \cdot NH_2$. B. Man erhitzt 4-[3-Nitro-4-acetamino-benzyl]-isochinolin mit alkoh. Kalilauge (RÜGHEMER, FRILING, A. 326, 281). — Rote Nadeln (aus Alkohol). F: 231—232°. Schwer löslich in heißem Alkohol. — Liefert bei der Reduktion mit heißer salzsaurer Zinnchlorür-Lösung nicht näher beschriebenes 4-[3.4-Diamino-benzyl]-isochinolin [Hydrochlorid: Nadeln; liefert beim Behandeln mit Ammoniumrhodanid einen Thioharnstoff, der durch heiße alkal. Blei-Lösung nicht entschwefelt wird].

4-[8-Nitro-4-acetamino-bensyl]-isochinolin $C_{18}H_{15}O_{2}N_{3} = NC_{8}H_{6} \cdot CH_{2} \cdot C_{6}H_{5}(NO_{2}) \cdot NH \cdot CO \cdot CH_{3}$. B. Aus 4-[4-Acetamino-benzyl]-isochinolin durch Einw. eines Gemisches aus gleichen Teilen Eisessig und rauchender Salpetersäure bei gewöhnlicher Temperatur (R., F., A. 326, 280). — Gelbe Nadeln mit 3H₂O (aus verd. Alkohol). Schmilzt wasserfrei bei 144—145°. — Nitrat. Nadeln (aus Alkohol). F: 200—201°.

9. 2-Methyl-3-[4-amino-benzal]-indolenin C₁₆H₁₄N₂, C:CH·C₆H₄·NH₂
s. nebenstehende Formel.

2 - Methyl - 3 - [4 - dimethylamino - bensal] - indolenin C₁₈H₁₆N₂ =

C-CH·C₆H₄·N(CH₃)₂
C·CH₃

B. Man sättigt eine Lösung von äquimolekularen Mengen

2-Methyl-indol (Bd. XX, S. 311) und 4-Dimethylamino-benzaldehyd in absol. Alkohol mit

Chlorwasserstoff (FREUND, LEBACH, B. 36, 309; 38, 2644). — Bräunlichviolettes Pulver (aus Aceton + Wasser). F: 305°; leicht löslich in Aceton, Chloroform und Benzol, schwer in Alkohol, unlöslich in Ather und Ligroin (F., L., B. 38, 2644). — Liefert beim Erwärmen mit Chloranil und alkoh. Salzsäure in Aceton einen Farbstoff (dunkelbraunes Pulver; schwer löslich in heißem Wasser, leicht in Alkohol, zieht violettstichig blau auf) (F., L., B. 38, 2645).

2 - Methyl - 3 - [2 - chlor - 4 - dimethylamino - benzal] - indolenin $C_{18}H_{17}N_{2}Cl =$ CCH, C, H, Cl. N(CH,), C. CH, B. Man sättigt eine Lösung von äquimolekularen Mengen

2-Methyl-indol (Bd. XX, S. 311) und 2-Chlor-4-dimethylamino-benzaldehyd in absol. Alkohol mit Chlorwasserstoff (Freund, Lebach, B. 36, 309; 38, 2645). — Gelblichbraune Masse (aus Aceton + Wasser). F: ca. 282°; leicht löslich in Aceton und Chloroform, schwer in Alkohol, sehr schwer in Ather (F., L., B. 38, 2646). — Der bei der Oxydation mit Chloranil entstehende Farbstoff färbt die Faser blauviolett (F., L., B. 38, 2646).

3. Amine $C_{17}H_{16}N_{2}$.

- 1. 5-Amino-2- β -phenäthyl-chinolin, α -Phenyl- H_2N β -[5-amino-chinolyl-(2)]-äthan $C_{17}H_{16}N_{27}$, s. nebenstehende Formel. B. Man reduziert 5-Nitro-2-styryl-chinolin (Bd. XX, NJ.CH2.CH2.C6H5 S. 497) mit Zinn und konz. Salzsäure (SCHMIDT, B. 38, 3720). — NORTHE UNIT CHE CHES CHIEF CHIEF CHES CHIEF CHIEF CHES CHIEF CHES CHIEF CHIEF CHES CHIEF CH Schwefelkohlenstoff und Chloroform, unlöslich in Wasser. — $C_{17}H_{16}N_2 + 2HCl$. Hellrote Nadeln. Zersetzt sich von 229° ab und schmilzt bei 251°. Löslich in Alkohol und Wasser. — $2C_{17}H_{16}N_2 + 2HCl + PtCl_4$. Gelbbraune Nadeln. Schwärzt sich bei 262°. Sehr schwer löslich in Alkohol, unlöslich in Wasser und Äther.
- 6-Amino-2-β-phenäthyl-chinolin, α-Phenyl-H2N· β -[6-amino-chinolyl-(2)]-āthan $C_{17}H_{16}N_2$, s. neben-N CH2 · CH2 · C6H5 stehende Formel. B. Man reduziert 6-Nitro-2-styryl-chinolin (Bd. XX, S. 497) mit Zinn und konz. Salzsäure (Schmidt, B. 38, 3723). — Hellgelbe Nadeln (aus Alkohol). F: 204°. Unlöslich in Wasser, löslich in Alkohol, Ather, Schwefelkohlenstoff, Chloroform, Benzol und Aceton. — C₁₇H₁₆N₂+2HCl. Hellgelbe Nadeln. Färbt sich bei ca. 140° rot und schmilzt unscharf bei 253°. Löslich in Alkohol. Mit Wasser färbt es sich rot und löst sich in der Hitze mit gelber Farbe. — $C_{17}H_{18}N_2 + 2HCl + HgCl_2$. Goldgelbe Nadeln. Zersetzt sich oberhalb 150°. Schwer löslich in Alkohol, unlöslich in Wasser und Äther. — $2C_{17}H_{18}N_2 + 2HCl + PtCl_4$. Hellgelbe Nadeln. Färbt sich bei ca. 240° dunkel und ist bei 290° noch nicht geschmolzen. Schwer löslich in Alkohol, unlöslich in Äther und Wasser.
- 3. 8 Amino 2 β phenäthyl chinolin, α Phenyl- β -[8-amino-chinolyl-(2)]-āthan $C_{17}H_{16}N_2$, s. nebenstehende Formel. B. Man reduziert 8-Nitro-2-styryl-chinolin (Bd. XX, N CH2 CH2 CH5 S. 497) durch Einleiten von Schwefelwasserstoff in die alkoholischammoniakalische Lösung oder besser mit Zinn und konz. Salzsäure auf dem Wasserbad (Schmidt, B. 38, 3716). — Gelbe Nadeln (aus verd. Alkohol). F: 122°. Unlöslich in Wasser, leicht löslich in Alkohol, Schwefelkohlenstoff, Chloroform, Aceton und Benzol. — C₁₇H₁₆N₂ + 2HCl. Carminrote Nadeln. Zersetzt sich bei 199° und schmiltzt unscharf bei 211°. Löslich in Alkohol mit dunkelroter Farbe. Durch Wasser wird das Salz hydrolysiert. — 2C₁₇H₁₆N₂ + 2HCl + PtCl₄. Amorphes, braunrotes Pulver. Verkohlt bei 220°. Schwer löslich in Alkohol.

4. Amine $C_{18}H_{18}N_{2}$.

- 5 Amino 2 $[\beta p tolyl athyl]$ chinolin, $H_{2}N$ α -p-Tolyl- β -[5-amino-chinolyl-(2)]-äthan $C_{18}H_{18}N_2$, s. nebenstehende Formel. B. Bei der Reduktion von 5-Nitro-N J. CH2. CH2. C6H4. CH3 2-[4-methyl-styryl]-chinolin (Bd. XX, S. 500) mit Zinn und konz. Salzsäure (Schmidt, B. 38, 3721). — Gelbe Nadeln (aus Alkohol). F: 173°. Unlöslich in Wasser, löslich in Ather, Schwefelkohlenstoff, Chloroform und Aceton, leicht löslich in Alkohol. — C₁₈H₁₈N₂+2HCl. Tiefgelbe Nadeln. F: 243°. Leicht löslich in Alkohol und Wasser.
- 2. 8 Amino 2 $[\beta p tolyl athyl]$ chinolin, α -p-Tolyl- β -[8-amino-chinolyl-(2)]-athan $C_{18}H_{18}N_2$, s. nebenstehende Formel. B. Bei der Reduktion von 8-Nitro-2-[4-methyl-styryl]-chinolin (Bd. XX, S. 500) mit Zinn und

· CH2 · CH2 · C6H4 · CH3

konz. Salzsäure (Schmidt, B. 38, 3718). — Gelbe Nadeln. F: 161°. Unlöslich in Wasser, löslich in Äther, Alkohol, Schwefelkohlenstoff, Chloroform und Aceton. — $C_{18}H_{18}N_3+2HCl$. Carminrote Nadeln. Schmilzt undeutlich bei 222°. Löslich in Alkohol. Wird durch Wasser hydrolysiert. — $2C_{18}H_{18}N_2+2HCl+PtCl_4$. Rotgelbe Nadeln. Verkohlt bei 230°. Unlöslich in Wasser und Äther, schwer löslich in Alkohol.

12. Monoamine $C_n H_{2n-20} N_2$.

1. Amine $C_{17}H_{14}N_2$.

- 1. 2-[3-Amino-styryl]-chinolin, [3-Amino-benzal]-chinaldin, α-[3-Amino-phenyl]-β-[chinolyl-(2)]-Δthylen C₁, H₁₄N₂, s. nebenstehende Formel. B. Beim Erwärmen von 2-[3-Nitro-styryl]-chinolin (Bd. XX, S. 498) mit Zinnchlorür in wäßrig-alkoholischer Salzsäure (Wartanian, B. 23, 3648; vgl. a. Taylor, Woodhouse, Soc. 1926, 2971). Nadeln (aus verd. Alkohol); orangerote Blättchen (aus Benzol + Ligroin). F: 158—1590 (W.). Leicht löslich in heißem Alkohol, Benzol und Chloroform, löslich in Äther, schwer löslich in Ligroin, sehr schwer in siedendem Wasser. Liefert beim Kochen mit Glycerin und konz. Schwefelsäure in Gegenwart von 2-Nitro-phenol α-[Chinolyl-(2)]-β-[chinolyl-(5 oder 7)]-āthylen (Syst. No. 3492). Beim Erhitzen mit Paraldehyd in konz. Salzsäure auf 1500 erhält man α-[Chinolyl-(2)]-β-[2-methyl-chinolyl-(5 oder 7)]-āthylen (Syst. No. 3492).
- 2. 2-[4-Amino-styryl]-chinolin, [4-Amino-benzal]-chinaldin, α-[4-Amino-phenyl]-β-[chinolyl-(2)]-dthylen C₁₇H₁₄N₂, s. nebenstehende Formel. B. Bei der Reduktion von α-[4-Nitro-phenyl]-β-[chinolyl-(2)]-āthylen (Bd. XX, S. 498) oder von α-Oxy-α-[4-nitro-phenyl]-β-[chinolyl-(2)]-āthan (Bd. XXI, S. 145) mit Zinn und Salzsäure (Bulach, B. 22, 285). Aus 4-Amino-benzaldehyd und Chinaldin (Noellting, Witte, B. 39, 2751). Gelbe Nadeln (aus verd. Alkohol). F: 171—173° (B.), 154° (N., W.). Rötet sich beim Aufbewahren an der Luft (B.; N., W.). Beim Erhitzen mit Glycerin, konz. Schwefelsäure und 2-Nitro-phenol bildet sich α-[Chinolyl-(2)]-β-[chinolyl-(6)]-āthylen (Syst. No. 3492), beim Erhitzen mit Paraldehyd und konz. Salzsäure auf 150°α-[Chinolyl-(2)]-β-[2-methyl-chinolyl-(6)]-āthylen (Syst. No. 3492) (B.). Die Diazoverbindung liefert beim Kochen mit Wasser [4-Oxybenzal]-chinaldin, beim Kuppeln mit β-Naphthol-disulfonsäure einen Farbstoff, der Seide kupferrot färbt (B.). Das Hydrochlorid färbt tannierte Baumwolle rot, Wolle und Seide orange (N., W.). Hydrochlorid. Hellrote Nadeln. F: 273° (N., W.).
- 2-[4-Dimethylamino-styryl]-chinolin, [4-Dimethyl-amino-benzal]-chinaldin $C_{19}H_{19}N_3 = NC_9H_6 \cdot CH \cdot CH \cdot C_9H_4 \cdot N(CH_3)_2$. B. Aus Chinaldin und 4-Dimethylamino-benzaldehyd bei 150° (Noelting, Witte, B. 39, 2750). Hellgelbe Blättchen (aus Alkohol), braungelbe Nadeln (aus Benzol). F: 177°. Löslich in Alkohol, Eisessig und Benzol; löslich in verd. Säuren mit bordeauxroter Farbe. $2C_{19}H_{19}N_2 + 2HCl + PtCl_4$. Rotbraun. Pikrat $C_{19}H_{19}N_3 + C_9H_3O_7N_3$. Braunrote Blättchen.
- 2-[4-Acetamino-styryl]-chinolin, [4-Acetamino-bensal]-chinaldin $C_{19}H_{16}ON_{2} = NC_{9}H_{16}\cdot CH:CH\cdot C_{6}H_{4}\cdot NH\cdot CO\cdot CH_{2}$. B. Aus [4-Amino-benzal]-chinaldin beim Kochen mit Essigsäureanhydrid (BULACH, B. 22, 287). Tafeln (aus Alkohol). F: 194°. Leicht löslich in Alkohol und Ligroin.
- 3. 4-[3-Amino-styryl]-chinolin, [3-Amino-benzal]lepidin, α-[3-Amino-phenyl]-β-[chinolyl-(4)]-āthylen
 C₁₇H₁₄N₂, s. nebenstehende Formel. B. Beim Kochen von 4-[3-Nitrostyryl]-chinolin mit Zinnehlorür in wäßrig-alkoholischer Salzsäure
 (Heymann, Koenigs, B. 21, 2169). Goldglänzende Nadeln oder Blättchen (aus Alkohol).
 F: 141°. Leicht löalich in warmem absolutem Alkohol.
- 4. 6 Amino 9.10 dihydro 1.2 benzo acridin $C_{17}H_{14}N_1$, s. nebenstehende Formel.
- 6 Dimethylamino 9.10 dihydro 1.2 benso acridin $C_{19}H_{18}N_2 = C_{10}H_6 < \frac{CH_8}{NH} > C_6H_3 \cdot N(CH_3)_2. \quad B. \quad \text{Neben 6-Dimethyl-}$ amino-1.2-benzo-acridin beim Erhitzen von 2.2'-Diamino-4.4'-bis-dimethylamino-diphenyl-

methan (Bd. XIII, S. 340) mit β -Naphthol an der Luft auf 180—200° (Ullmann, Marić, B. 34, 4318). Neben 6-Dimethylamino-1.2-benzo-acridin beim Kochen von m-Amino-dimethyl-

anilin mit Formaldehyd in verd. Alkohol und Erhitzen des entstandenen Kondensationsprodukts mit β -Naphthol an der Luft auf 200° (U., M.). — Blättchen (aus Benzol). F: 202° bis 207°. Fast unlöslich in Alkohol und Äther. — Bei der Einw. von Ferrichlorid auf die salzsäurehaltige Lösung in Alkohol erhält man 6-Dimethylamino-1.2-benzo-acridin (S. 474).

2. Amine CasHasNa

- 1. 6-Methyl-2-[3-amino-styryl]-chinolin,
 α-[3-Amino-phenyl]-β-[6-methyl-chinolyl-(2)]āthylen C₁₅H₁₆N₂, s. nebenstehende Formel. B. Beim
 Kochen von 6-Methyl-2-[3-nitro-styryl]-chinolin (Bd. XX, S. 500) mit Zinnchlorür, Salzsäure und Eisessig (Porai-Koschitz, C. 1907 II, 1528). Gelbliche Nadeln (aus verd. Alkohol).
 F: 160,5°. Leicht löslich in organischen Lösungsmitteln, fast unlöslich in Wasser. Die Salze färben Wolle, Seide und tannierte Baumwolle hellgelb. C₁₈H₁₆N₂+2HCl. Braungelbe Nadeln. Sulfat. Orangebraune Nadeln.
- 2. 6-Methyl-2-[4-amino-styryl]-chinolin, CH₂.

 a-[4-Amino-phenyl]-6-[6-methyl-chinolyl-(2)]
 äthylen C₁₈H₁₆N₂, s. nebenstehende Formel. B. Aus

 6-Methyl-2-[4-nitro-styryl]-chinolin (Bd. XX, S. 501) durch Reduktion mit Zinnchlorür und Salzsäure (Poral-Koschitz, C. 1907 II, 1528).—Hellgelbe Blättchen (aus verd. Alkohol).

 F: 173°. Leicht löslich in Alkohol und Äther. Das Hydrochlorid färbt Wolle, Seide und tannierte Baumwolle orangerot. C₁₈H₁₆N₂ + HCl. Purpurroter Niederschlag. Leicht löslich in Wasser.
- 6-Methyl-2-[4-dimethylamino-styryl]-chinolin $C_{20}H_{20}N_2 = NC_9H_8(CH_2)\cdot CH: CH\cdot C_9H_4\cdot N(CH_2)_2$. B. Beim Erhitzen von 4-Dimethylamino-benzaldehyd mit 2.6-Dimethyl-chinolin in Gegenwart von Zinkchlorid auf 130—140° (Porai-Koschitz, C. 1907 II, 1528). Gelbliche Nadeln (aus Pyridin). F: 198°. Leicht löslich in den gebräuchlichen Lösungsmitteln. Das Hydrochlorid färbt Wolle, Seide und tannierte Baumwolle dunkelrosa. $C_{20}H_{20}N_2+HCl$. Purpurfarbiger, krystallinischer Niederschlag.

6-Methyl-2-[4-bengamino-styryl]-chinolin $C_{25}H_{20}ON_8 = NC_9H_5(CH_2)\cdot CH:CH\cdot C_9H_4\cdot NH\cdot CO\cdot C_9H_5$. Orangefarbene Krystalle (aus Alkohol). F: 224° (Porai-Koschitz, C. 1907 II, 1528).

3. 6-Amino-7-methyl-9.10-dihydro-1.2-benzo-acridin C₁₈H₁₆N₂, s. nebenstehende Formel. B. Neben 6-Amino-7-methyl-1.2-benzo-acridin (S. 475) beim Erhitzen eines Gemisches von 2.4-Diamino-toluol und salzsaurem 2.4-Diamino-toluol mit 2.2'-Dioxy-[di-naphthyl-(1)-methan] (Bd. VI, S. 1053) zuerst auf 160°, schließlich kurze Zeit auf 200° (ULIMANN, NAEF, B. 38, 912; U., D. R. P. 104748; C. 1899 II, 1008; Frdl. 5, 385). Neben 6-Amino-7-methyl-1.2-benzo-acridin bei der Einw. von Formaldehyd auf 2.4-Diamino-toluol in alkoh. Kalilauge und Umsetzung des Kondensationsprodukts mit β-Naphthol erst bei 150°, dann bei 200° (U., D. R. P. 130721; C. 1902 I, 1139; Frdl. 6, 469). Neben anderen Produkten beim Erhitzen von polymerem (?) Methylen-m-toluylendiamin (Bd. XIII, S. 132) mit β-Naphthol und Natriumacetat auf 160—180° (U., N., B. 33, 916; U., D. R. P. 130943; C. 1902 I, 1184; Frdl. 6, 469). — Darst. Durch Eintragen von 4.64'.6'-Tetraamino-3.3'-dimethyl-diphenylmethan (Bd. XIII, S. 342) in die gleiche Gewichtsmenge β-Naphthol bei 150° und nachfolgendes Erhitzen auf 180—200°; man verdünnt die auf ca. 100° abgekühlte Masse mit Alkohol und erhitzt zum Sieden (U., N., B. 38, 917; U., D. R. P. 104667; C. 1899 II, 1008; Frdl. 5, 382). — Blättchen (aus Benzol oder Eisessig). F: 195—198°; fast unlöslich in warmem Alkohol und Åther, leicht löslich in siedendem Benzol und Eisessig (U., N., B. 33, 917). — Geht schon an der Luft, rascher bei der Einw. von Ferrichlorid in verd. Salzsäure in 6-Amino-7-methyl-1.2-benzo-acridin (S. 475) über (U., N., B. 33, 917; U., D. R. P. 104667).

13. Monoamine $C_n H_{2n-22} N_2$.

1. Amine C₁₇H₁₂N₂.

1. 6-Amino-1.2-benzo-acridin $C_{17}H_{18}N_{9}$, s. nebenstehende Formel. B. Beim Erhitzen von 2.4-Dinitro-benzylchlorid mit β -Naphthol, Zinnchlorür und wäßrig-alkoholischer Salzsäure (Baezner, B. 37, 3082; Bae., Gueorguieff, B. 39, 2438). Aus salzsaurem 2.4-Diaminotoluol, β -Naphthol und Schwefel bei 180—190° (Geigy & Co., D. R. P.

130360; C. 1902 I, 1032; Frdl. 6, 483; Ullmann, Bühler, C. 1906 I, 58). Aus der hochschmelzenden Form des Bis-[2-oxy-naphthyl-(1)]-sulfids (Bd. VI, S. 976), β-Naphthol und salzsaurem 2.4-Diamino-toluol bei 180—190° (U., Bü.). Beim Erhitzen von m-Phenylendiamin und β-Naphthol mit Polyoxymethylen oder mit Bis-[2-oxy-naphthyl-(1)]-methan (Bd. VI, S. 1053) (U., Bü.). — Gelbe Nadeln (aus Toluol oder verd. Alkohol); F: 270° (Bae.). Löslich in Wasser, Alkohol und Äther (Geigy); löslich in verd. Säuren und in konz. Schwefelsäure; die Lösungen sind gelb bis orange und fluorescieren grün (Bae.). — Liefert beim Erhitzen mit 10°/oiger Schwefelsäure im Rohr auf 200—210° 6-Oxy-1.2-benzo-acridin (Bae., G.). — Das Hydrochlorid färbt tannierte Baumwolle orangegelb (Geigy). — C₁₇H₁₂N₂ + HCl. Rote Nadeln; löslich in Alkohol, Wasser und verd. Säuren mit orangeroter Farbe und grüner Fluorescenz (Bae.). — C₁₇H₁₂N₂ + H₃CrO₄. Braunrot, unlöslich (Bae., G.). — C₁₇H₁₂N₂ + HNO₃. Rote Nadeln (U., Bü.). — 2C₁₇H₁₂N₂ + 2HCl + ZnCl₂. Rote Nadeln; leicht löslich in Alkohol und Wasser mit orangegelber Farbe und grüner Fluorescenz (Bae., G.). — 2C₁₇H₁₂N₂ + 2HCl + PtCl₄. Braunrot. Löslich in heißem Alkohol unt orangeroter Farbe und grüner Fluorescenz (Bae., G.). — 2C₁₇H₁₂N₂ + 2HCl + PtCl₄. Braunrot. Löslich in heißem Alkohol unt orangeroter Farbe und grüner Fluorescenz (Bae., G.). — Pikrat. Gelbrote Nadeln. Unlöslich in Äther und Benzol, löslich in Anilin und Nitrobenzol (Bae.).

6-Dimethylamino-1.2-benzo-acridin C₁₉H₁₆N₃ = NC₁₇H₁₀·N(CH₃)₃. B. Neben 6-Dimethylamino-9.10-dihydro-1.2-benzo-acridin (S. 472) beim Erhitzen von 2.2'-Diamino-4.4'-bisdimethylamino-diphenylmethan (Bd. XIII, S. 340) mit β-Naphthol an der Luft auf 180—200° (ULIMANN, MARIĆ, B. 34, 4318). Neben 6-Dimethylamino-9.10-dihydro-1.2-benzo-acridin beim Kochen von m-Amino-dimethylanilin mit Formaldehyd in verd. Alkohol und Erhitzen des entstandenen Kondensationsprodukts mit β-Naphthol an der Luft auf 200° (U., M.). Aus 6-Dimethylamino-9.10-dihydro-1.2-benzo-acridin i.. salzsäurehaltigem Alkohol bei der Einw. von Ferrichlorid-Lösung (U., M.). Beim Erhitzen von m-Amino-dimethylanilin mit m-Amino-dimethylanilin-hydrochlorid und 2.2'-Dioxy-[di-naphthyl-(1)-methan] auf 110° bis 200° (U., M.). Bei der Einw. von Polyoxymethylen auf m-Amino-dimethylanilin und β-Naphthol bei 150—200° (U., M.). — Gelbrote Nadeln oder Tafeln (aus Benzol + Ligroin). F: 185,5° (korr.). Löslich in Alkohol mit orangegelber Farbe und grüner Fluorescenz, in Äther und Benzol mit gelbe. Farbe und blaugrüner Fluorescenz; löslich in Essigsäure mit roter Farbe, löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz. — C₁₉H₁₆N₃ + Hcl. Dunkelrotbraune Nadeln (aus Alkohol). Leicht löslich in Wasser und Alkohol mit oranger roter Farbe. Die Lösung in Alkohol fluoresciert grün. — 2C₁₉H₁₆N₃ + H₂C₇O₇. Dunkelrotes Pulver. Unlöslich in Wasser und Alkohol. — C₁₉H₁₆N₃ + HNO₃. Rote Nadeln. Leicht löslich in heißem Alkohol, schwer in kaltem Wasser. — Pikrat C₁₉H₁₆N₃ + C₆H₃O₇N₃. Rote Blättchen (aus Anilin). Unlöslich in Alkohol, Äther und Benzol.

6-Dimethylamino-1.2-benso-acridin-hydroxymethylat, 10-Methyl-6-dimethylamino-1.2-benso-acridiniumhydroxyd $C_{20}H_{20}ON_2 = (HO)(CH_3)NC_{17}H_{10}\cdot N(CH_3)_2$. B. Das methylschwefelsaure Salz bildet sich beim Kochen von 6-Dimethylamino-1.2-benzo-acridin mit Dimethylaulfat in Xylol (Ullmann, Marić, B. 84, 4321). — Chlorid $C_{20}H_{10}N_3$ ·Cl. Rote Nadeln (aus Alkohol). Löslich in Wasser und Alkohol mit roter Farbe und grüner Fluorescenz. Die wäßr. Lösung schmeckt intensiv bitter; sie wird durch Ammoniak, Natriumcarbonat oder Natronlauge nicht verändert. Löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz. — Dichromat $(C_{20}H_{10}N_3)_2Cr_2O_7$. Rote Krystalle. Unlöslich in Alkohol und Wasser, leicht löslich in Eisessig. — Methylschwefelsaures Salz. Rote Krystalle. Löslich in Wasser.

8-Acetamino-1.2-benso-acridin $C_{19}H_{14}ON_2 = NC_{17}H_{10} \cdot NH \cdot CO \cdot CH_3$. Gelbe Nadeln (aus Nitrobenzol + wenig Toluol). F: 267° (BAEZNER, GUEORGUIEFF, B. 39, 2438). Unlöslich in Benzol, Toluol, Äther und Wasser, leicht löslich in Alkohol und Essigsäure; die orangegelbe alkoholische Lösung fluoresciert stark violettblau. Leicht löslich in verd. Mineralsäuren. — Hydrochlorid. 'Gelb. Löslich in Alkohol, Wasser und in verd. Säuren mit gelber Farbe und grüner Fluorescenz.

2. 7-Amino-1.2-benzo-acridin $C_{17}H_{12}N_3$, s. nebenstehende Formel. B. Man verschmilzt β -Naphthol mit dem aus N-Acetyl-p-phenylendiamin und Formaldehyd in Wasser entstehenden Kondensationsprodukt bei 150—180° und verseift das so erhaltene Acetylderivat (Ullmann, D. R. P. 123260; C. 1901 II. 568; Frdl. 6, 464). — Gelbe Nadeln (aus Alkohol). F: 238°.

7-Acetamino-1.2-benzo-acridin $C_{19}H_{14}ON_{2} = NC_{17}H_{10} \cdot NH \cdot CO \cdot CH_{2}$. B. s. oben bei 7-Amino-1.2-benzo-acridin. — Gelbliche Nadeln (aus Alkohol). F: 255° (U., D. R. P. 123260), 275° (SAFTIEN, B. 58 [1925], 1960).

7 - Acetamino - 1.2 - benzo - acridin - hydroxyäthylat, 10 - Äthyl - 7 - acetamino - 1.2 - benzo - acridiniumhydroxyd $C_{21}H_{20}O_2N_2 = (HO)(C_2H_5)NC_{17}H_{10}\cdot NH\cdot CO\cdot CH_3$. — Bromid $C_{21}H_{19}ON_2\cdot Br$. B. Beim Erhitzen von 7-Acetamino-1.2-benzo-acridin mit Åthyl-

bromid in Chloroform oder Benzol auf 140—150° (ULLMANN, D. R. P. 118439; C. 1901 I, 654; Frdl. 6, 471). Leicht löslich in Wasser mit gelber Farbe. Gibt mit Natronlauge einen rötlichen, in Äther fast uniöslichen Niederschlag. Das beim Verseifen mit verd. Säuren entstehende Produkt bildet Salze, die in Wasser mit roter Farbe leicht löslich sind. Färbt tannierte Baumwolle gelb.

- 3. 5'- Amino [benzo-1'.2': 1.2 acridin] 1) C₁₇H₁₂N₂, s. neben-H₂N stehende Formel.
- 5'-[2-Oxymethyl-anilino]-[benzo-1'.2':1.2-acridin] (?) $C_{24}H_{16}ON_2 = NC_{17}H_{10}\cdot NH\cdot C_6H_4\cdot CH_2\cdot OH$ (?). B. Neben anderen Produkten beim Behandeln von 2 Mol 2-Nitro-benzylchlorid und 1 Mol 2.7-Dioxy-naphthalin mit Zinnchlorür und konz. Salzsäure (BAEZNER, B. 39, 2652). Gelbe Nadeln. F: 123—125°. Löslich in Xylol; löslich in konz. Schwefelsäure mit grüner Fluorescenz.
- 2. 6-Amino-7-methyl-1.2-benzo-acridin $C_{18}H_{14}N_2$, s. nebenstehende Formel. B. Neben 6-Amino-7-methyl-9.10-dihydro-1.2-benzo-acridin (S. 473) beim Erhitzen eines Gemisches von 2.4-Di-CH₂ amino-toluol und salzsaurem 2.4-Diamino-toluol mit 2.2'-Dioxy-[di-NH: naphthyl (1)-methan] (Bd. VI, S. 1053) zuerst auf 160°, schließlich kurze Zeit auf 200° (Ullmann, Naef, B. 83, 912; U., D. R. P. 104748; C. 1899 II, 1008; Frdl. 5, 385). Neben 6-Amino-7-methyl-9.10-dihydro-acridin bei der Einw. von Formaldehyd auf 2.4-Diamino-toluol in alkoh. Kalilauge und Umsetzung des Kondensationsprodukts mit β-Naphthol erst bei 150°, dann bei 200° (U., D. R. P. 130721; C. 1902 I, 1139; Frdl. 6, 469). Beim Eintragen von Polyoxymethylen in eine auf 150° erhitzte Mischung von 2.4-Diamino-toluol und β -Naphthol und kurzen Erhitzen des Gemisches auf 200° (U., N., B. 33, 912). Neben anderen Produkten beim Erhitzen von polymerem (?) Methylen-m-toluylendiamin (Bd. XIII, S. 132) mit β -Naphthol und Natriumscetat auf 160—180° (U., N., B. 33, 916; U., D. R. P. 130943; C. 1902 I, 1184; Frdl. 6, 469). Durch Oxydation von 6-Amino-7-methyl-9.10-dihydro-1.2-benzo-acridin in verd. Salzsäure mit Luft oder mit Eisenchlorid (U., N., B. 83, 917; U., D. R. P. 104667; C. 1899 II, 1008; Frdl. 5, 382). — Gelbe Nadeln oder gelbbraune, xylolhaltige Krystalle (aus Xylol). F: 244° (korr.); leicht löslich in heißem Alkohol mit orangegelber Farbe und gelbgrüner Fluorescenz, schwer in Äther, Benzol und Toluol mit gelber Farbe und blaugrüner Fluorescenz (U., N., B. 33, 917), sehr schwer löslich in Wasser (Ü., D. R. P. 104667); löslich in Eisessig mit orangegelber, in konz. Schwefelsäure mit grüngelber Farbe und grüner Fluorescenz; gibt mit Mineralsäuren rote, in Wasser lösliche Salze, die tannierte Baumwolle orangegelb färben (U., N., B. 33, 918). — Bei der Einw. von Dimethylsulfat in siedendem Nitrobenzol entsteht das methylschwefelsaure Salz des 6-Amino-7.10-dimethyl-1.2-benzo-acridiniumhydroxyds (U., N., B. 38, 2473); beim Erhitzen mit Methanol und konz. Salzsäure auf 160—170° oder mit Äthylbromid und Alkohol auf 180° erfolgt Alkylierung an der Aminogruppe unter Bildung von Farbstoffen, die tannierte Baumwolle orangegelb färben (AGFA, D. R. P. 117065; C. 1901 I, 211; Frdl. 6, 472; vgl. U., N., B. 33, 2470). — $C_{18}H_{14}N_3 + HCl$. Rote Nadeln (aus Alkohol); löslich in Alkohol mit orangeroter Farbe und grüner Fluorescenz, in Wasser mit orangegelber Farbe (U., N., B. 33, 918).
- 6-Amino-7-methyl-1.2-benzo-acridin-hydroxymethylat, 6-Amino-7.10-dimethyl-1.2-benzo-acridiniumhydroxyd $C_{19}H_{18}ON_2 = (HO)(CH_2)NC_{17}H_9(CH_3)\cdot NH_2$. B. Das methylschwefelsaure Salz entsteht bei der Einw. von Dimethylsulfat auf 6-Amino-7-methyl-1.2-benzo-acridin in siedendem Nitrobenzol oder beim Kochen des methylschwefelsauren Salzes des 6-Acetamino-7.10-dimethyl-1.2-benzo-acridiniumhydroxyds (S. 476) mit verd. Salzsäure (Ullmann, Naef, B. 33, 2473). Dichromat $(C_{19}H_{17}N_2)_2C_{12}O_7$. Rote Krystalle; fast unlöslich in heißem Wasser. Nitrat $C_{19}H_{17}N_2\cdot NO_3$. Rote, bitter schmeckende Krystalle (aus Alkohol). F: 286—290° (Zers.). Schwer löslich in Alkohol mit gelbroter Farbe und gelbgrüner Fluorescenz, leicht in Wasser mit orangegelber Farbe und schwacher, gelber Fluorescenz; löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz. Die wäßr. Lösung wird von Ammoniak oder Natriumcarbonat nicht verändert, auf Zusatz von Natronlauge erfolgt schwache Rötung. Methylschwefelsaures Salz $C_{19}H_{17}N_2\cdot O\cdot SO_2\cdot O\cdot CH_3$. Rote Nadeln (aus Alkohol).
- 6-Amino-7-methyl-1.2-benso-acridin-hydroxyäthylat, 10-Äthyl-6-amino-7-methyl-1.2-benso-acridiniumhydroxyd $C_{20}H_{20}ON_2 = (HO)(C_2H_5)NC_{17}H_p(CH_2)\cdot NH_2$. B. Das Bromid entsteht beim Kochen von 6-Acetamino-7-methyl-1.2-benzo-acridin-bromäthylat

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

- mit verd. Bromwasserstoffsäure (ULLMANN, NAEF, B. 33, 2475; U., D. R. P. 118439; C. 1901 I, 654; Frdl. 6, 471). Die freie Base ist rot und löst sich leicht in Äther mit roter Farbe und grüner Fluorescenz (U.). Bromid $C_{20}H_{12}N_2 \cdot Br$. Rote Blättehen (aus Alkohol). F: 298° (Zers.) (U., N.). Leicht löslich in Wasser mit orangeroter Farbe (U.).
- 6-Acetamino-7-methyl-1.2-benzo-acridin $C_{20}H_{16}ON_2 = NC_{17}H_{2}(CH_3) \cdot NH \cdot CO \cdot CH_3$ B. Aus 6-Amino-7-methyl-1.2-benzo-acridin beim Kochen mit Acetanhydrid in Gegenwart von Natriumacetat (Ullmann, D. R. P. 104667; C. 1899 II, 1008; Frdl. 5, 382; U., Naef, B. 33, 918). Prismen (aus Nitrobenzol). F: 320—321° (korr.); fast unlöslich in siedendem Alkohol, Äther und Benzol, leicht löslich in heißem Nitrobenzol; löslich in Eisessig und in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz (U., N.). Wird durch Kochen mit verd. Salzsäure verseift (U., N.).
- 6-Acetamino-7-methyl-1.2-benso-acridin-hydroxymethylat, 6-Acetamino-7.10-dimethyl-1.2-benso-acridiniumhydroxyd $C_{21}H_{20}O_2N_2 = (HO)(CH_2)NC_{17}H_0(CH_2)$. NH·CO·CH₃. B. Die entsprechenden Salze entstehen aus 6-Acetamino-7-methyl-1.2-benso-acridin beim Erhitzen mit Methyljodid und Chloroform im Rohr auf 140—150° oder bei der Einw. von Dimethylsulfat in Nitrobenzol bei 160° (Ullmann, Naef, B. 38, 2472). Die bitter schmeckenden Salze sind leicht löslich in Wasser, sehr schwer in Alkohol mit gelber Farbe und grüner Fluorescenz; aus den wäßr. Lösungen werden durch überschüssige Natronlauge rote Flocken gefällt, die sich in Äther mit rotvioletter, allmählich verblassender Farbe üben. Jodid. Gelbe Nadeln. Methylschwefelsaures Salz $C_{21}H_{19}ON_2 \cdot O \cdot SO_2 \cdot O \cdot CH_3$. Gelbe Nadeln (aus Alkohol). Löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz.
- 6-Acetamino-7-methyl-1.2-benso-acridin-hydroxyäthylat, 10-Äthyl-6-acetamino-7-methyl-1.2-benso-acridiniumhydroxyd C₂₂H₂₂O₂N₂ = (HO)(C₂H₃)NC₁₇H₉(CH₂)·NH·CO·CH₃. B. Das Bromid entsteht beim Erhitzen von 6-Acetamino-7-methyl-1.2-benso-acridin mit Äthylbromid in Chloroform im Rohr auf 150° (Ullmann, Naef, B. 33, 2475; U., D. R. P. 118439; C. 1901 I, 654; Frdl. 6, 471). Das p-Toluolsulfonat erhält man beim Kochen von 6-Acetamino-7-methyl-1.2-benso-acridin mit p-Toluolsulfonsäure-äthylester in Nitrobenzol (U., Wenner, A. 327, 122). Roter Niederschlag. Schwer löslich in Äther mit rotvioletter Farbe (U.). Bromid C₂₂H₂₁ON₂·Br. Gelbe Nadeln (aus Alkohol). F: 265° bis 269° (U., N.). Sehr schwer löslich in Alkohol, leicht in Wasser (U.). p-Toluolsulfonsaures Salz C₂₂H₂₁ON₂·O·SO₂·C₆H₄·CH₂. Gelbe Blättchen. Schwer löslich in Alkohol mit gelber Farbe und grüner Fluorescenz (U., W.).
- 3. 9 A mino 9 phenyl 9.10 dihydro a cridin $C_{10}H_{16}N_3=C_0H_4 \xrightarrow{C(C_0H_5)(NH_5)} C_0H_4$.

10 - Methyl - 9 - [4 - dimethylamino - anilino] - 9 - phenyl - 9.10 - dihydro - acridin $C_{28}H_{27}N_3 = C_0H_4 - \frac{C(C_0H_5)[NH\cdot C_0H_4\cdot N(CH_3)_2]}{N(CH_3)} - C_0H_4$. B. Aus 9-Phenyl-acridin-hydroxymethylat und 4-Amino-dimethylanilin in trocknem Äther (Gadamer, Ar. 243, 45; vgl. Ga., J. pr. [2] 84 [1911], 819). — Gelbliche Krystalle. F: 188—189°; sehr schwer löslich in Äther, leicht in Benzol unter Zersetzung(?) (Ga., Ar. 243, 45).

14. Monoamine C_nH_{2n-24} N₂.

1. Amine $C_{19}H_{14}N_{2}$.

1. 2-Amino-9-phenyl-acridin C₁₈H₁₄N₂, s. nebenstehende Formel. B. Man erhitzt 1 Mol 4-Amino-diphenylamin mit 2 Mol Benzoesäure in Gegenwart von Zinkchlorid auf 220—250° (Hess, Bernthsen, B. 18, 692). Bei der Reduktion von 2-Nitro-9-phenyl-acridin in siedendem Alkohol mit Zinnchlorür und konz. Salzsäure (Ullmann, Ernst, B. 39, 302). Durch Erhitzen von 2-Benzamino-9-phenyl-acridin mit 60°/oiger Schwefelsäure auf 150—200° (Kehrmann, Stépanoff, B. 41, 4136). — Citronengelbe Nadeln (aus Alkohol). F: 200° (U., E.), 204° (K., St.). Leicht löslich in Äther und Chloroform, ziemlich schwer in Alkohol, schwer in siedendem Ligroin, unlöslich in kaltem Wasser; die Lösungen sind gelb und fluorescieren grün; löslich in Eisessig mit roter Farbe, in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz (U., E.). Die Lösungen der einsäurigen Salze sind blutrot, die Lösungen der zweisäurigen Salze goldgelb (K., St.). — Liefert beim Erhitzen mit konz. Salzsäure im

C6H5

NH2

Rohr auf 200—220° 2-Oxy-9-phenyl-acridin (Bd. XXI, S. 155) (H., B.). — C., H₁₄N₂ + HCl. Bronzeglänzende Nadeln (aus Wasser); die Lösung in siedendem Wasser ist gelbstichig weinrot und färbt sich mit konz. Salzsäure gelb; die Lösungen in Alkohol und Eisessig sind orangerot; die alkoh. Lösung fluoresciert stark grün (U., E.).

- 2-Amino-9-phenyl-acridin-hydroxymethylat, 10-Methyl-2-amino-9-phenyl-acridiniumhydroxyd $C_{20}H_{18}ON_2=(HO)(CH_3)NC_{18}H_7(C_0H_5)\cdot NH_2$. B. Das Nitrat erhält man beim Erwärmen von 2-Acetamino-9-phenyl-acridin-chlormethylat mit Salzsäure und nachfolgendes Umsetzen des neutralisierten Reaktionsprodukts mit Natriumnitrat (KEHR-MANN, STEPANOFF, B. 41, 4137). — Die wäßrige oder alkoholische Lösung des Nitrats gibt mit Natronlauge pfirsichblütenrote Flocken, die sich in Äther mit gelber Farbe und grüner Fluorescenz lösen. — Nitrat C₂₀H₁₇N₂·NO₃ (bei 110°). Schwarzrote, bitter schmeckende Nadeln (aus Wasser). Leicht löslich in Alkohol und Wasser mit blutroter Farbe; die gelbe Lösung in konz. Schwefelsäure fluoreseiert grün. — Chloroplatinat $2C_{20}H_{17}N_2\cdot Cl +$ PtCl₄ (bei 120-130°). Dunkelrote Krystalle; unlöslich in Wasser.
- 2-Acetamino-9-phenyl-acridin $C_{21}H_{16}ON_2 = NC_{13}H_{7}(C_6H_8)\cdot NH\cdot CO\cdot CH_8$. B. Aus 2-Amino-9-phenyl-acridin beim Kochen mit Essigsäureanhydrid und Natriumacetat (ULLmann, Ernst, B. 39, 303). — Gelbe Krystalle (aus Benzol). F: 256°; schwer löslich in Alkohol und Benzol, leicht löslich beim Erwärmen mit schwach gelber Farbe und blauer Fluorescenz, schwer in Äther, unlöslich in Ligroin; die eitronengelbe Lösung in Eisessig fluoresciert grün (U., E.); leicht löslich in verd. Mineralsäuren mit gelber Farbe und grüner Fluorescenz (Kehrmann, Stépanoff, *B.* 41, 4137).
- 2-Acetamino-9-phenyl-acridin-hydroxymethylat, 10-Methyl-2-acetamino-9-phenyl-acridiniumhydroxyd $C_{22}H_{20}O_2N_2=(HO)(CH_2)NC_{13}H_7(C_6H_5)\cdot NH\cdot CO\cdot CH_2$. B. Das methylschwefelsaure Salz entsteht beim Erhitzen von 2-Acetamino-9-phenyl-acridin mit Dimethylsulfat in Nitrobenzol (KEHRMANN, STÉPANOFF, B. 41, 4137). — Die wäßr. Lösung des Chlorids gibt mit Natronlauge einen rötlichgrauen Niederschlag, dessen fast farblose äther. Lösung violette Fluorescenz zeigt. — Chlorid C23H19ON3·Cl. Orangegelbe Krystalle. Leicht löslich in Wasser mit goldgelber Farbe. Die Lösung schmeckt stark bitter und fluoresciert gelblich; die gelbe Lösung in konz. Schwefelsäure fluoresciert grün. — Chloroplatinat. $2C_{22}H_{10}ON_2 \cdot Cl + PtCl_4$ (bei 120—130°). Goldgelber, krystallinischer Niederschlag; unlöslich in Wasser.
- 2-Benzamino-9-phenyl-acridin $C_{26}H_{18}ON_2 = NC_{13}H_7(C_6H_5) \cdot NH \cdot CO \cdot C_8H_5$. B. Neben anderen Produkten bei 12-stdg. Erhitzen von 4-Benzamino-diphenylamin mit Benzoesäure und Zinkchlorid auf 215—220° (Kehrmann, Stépanoff, B. 41, 4135). Hellgelbe Prismen (aus Alkohol). F: 246°. Unlösingen Hohoser, löslich in Alkohol und Benzol. Die Lösungen fluorescieren blau. $C_{26}H_{18}ON_2 + HCl$. Ziemlich leicht löslich in heißem Alkohol und Eister in der Stepanoff der essig mit gelber Farbe und grüner Fluorescenz, sehr schwer in kaltem Wasser, löslich in siedendem, schwach angesäuertem Wasser; löslich in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz.
- C₆H₅ 7-Nitro-2-amino-9-phenyl-acridin $C_{19}H_{18}O_2N_3$, s. nebenstehende Formel. B. Beim Erhitzen von 6-Chlor-3-nitro-benzo-NH2 phenon mit p-Phenylendiamin im Kohlensäurestrom auf 2000 (ULL-MANN, ERNST, B. 39, 305). — Granatrote Nadeln (aus Benzol). Schmilzt unscharf bei 181°. Leicht löslich in Chloroform, siedendem Benzol und siedendem Alkohol, schwer in Äther, sehr schwer in Ligroin. Die Lösungen sind gelb bis gelbbraun; die Lösung in Eisessig ist trübe orangegelb. — $C_{19}H_{13}O_{2}N_{3} + HCl$. Gelbbraune Nadeln. Löslich in Alkohol und Eisessig mit trüber, gelber Farbe. Löst sich teilweise in siedendem Wasser; auf Zusatz geringer Mengen Salzsäure entsteht eine klare gelbe Lösung.
- stehende Formel. B. Beim Erwärmen von 3.5-Dinitro-2-[4-amino-NH₂ anilino]-benzophenon (Bd. XIV, S. 80) mit konz. Schwefelsäure auf 90—100° (ULLMANN, BROIDO, B. 39, 366). — Rotviolette Nadeln (aus Anilin). F: oberhalb 360°. Unlöslich in Äther, Ligroin O₂N und Alkohol, schwer in siedendem Toluol mit gelber, trüber Farbe; die rotviolette Lösung in siedendem Eisessig und die gelbe Lösung in konz. Schwefelsäure trüben sich auf Zusatz von Wasser.
- C6H5 2. 3-Amino-9-phenyl-acridin C₁₉H₁₄N₂, s. nebenstehende Formel.
- **3-Anilino-9-phenyl-acridin** $C_{26}H_{18}N_2=NC_{13}H_7(C_6H_5)\cdot NH\cdot C_6H_5$. Aus N.N'-Diphenyl-N.N'-dibenzoyl-m-phenylendiamin (Bd. XIII,

5.7-Dinitro-2-amino-9-phenyl-acridin $C_{19}H_{12}O_4N_4$, s. neben-

S. 47) beim Erhitzen mit Zinkchlorid auf 250° (Besthorn, Curtman, B. 24, 2045). — Braunrote Nadeln (aus Toluol). F: 196—197°. Ziemlich leicht löslich in Alkohol, Äther und Benzol. Die äther. Lösung fluoresciert grünlich. Die Salze mit Mineralsäuren lösen sich in Wasser kaum, in Alkohol mit roter Farbe. — Beim Erhitzen mit 20°/eiger Salzsäure auf 270—280° entsteht 3-Oxy-9-phenyl-acridin (Bd. XXI, S. 156). — Zinkchlorid-Doppelsalz. Rubinrote, metallisch glänzende Krystalle (aus Alkohol).

3. 9-[4-Amino-phenyl]-acridin C₁₉H₁₄N₂, s. nebenstehende Formel.

C6H4·NH2

9-[4-Dimethylamino-phenyl]-acridin C₂₁H₁₈N₂ = NC₁₈H₈·C₆H₄· N(CH₃)₂. B. Aus Acridon und Dimethylanilin in Gegenwart von Phosphoroxychlorid auf dem Wasserbad (Ullmann, Bader, Labhardt, B. 40, 4796).

— Gelbe Nadeln (aus Amylalkohol). Sintert bei 275°, schmilzt bei 279°. Sehr schwer löslich in Ligroin, schwer in Alkohol mit gelber Farbe und grüner Fluorescenz, löslich in Benzol mit blaugrüner Fluorescenz, leicht löslich in siedendem Amylalkohol; löslich in Eisessig mit violettroter Farbe, in verd. Mineralsäuren und in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz.

- 9-[4-Diäthylamino-phenyl]-acridin $C_{23}H_{32}N_2=NC_{13}H_3\cdot C_6H_4\cdot N(C_2H_5)_2$. B. Aus Acridon und Diäthylanilin in Gegenwart von Phosphoroxychlorid auf dem Wasserbad (Ullmann, Bader, Labhardt, B. 40, 4796). Gelbbraune Prismen (aus Ligroin). F: 197°. Schwer löslich in Äther, löslich in siedendem Alkohol, leicht löslich in siedendem Benzol mit gelber Farbe; die violettrote Lösung in Eisessig wird beim Verdünnen mit Wasser gelb und fluoresciert grün.
- 2-Nitro-9-[4-dimethylamino-phenyl]-acridin $C_{21}H_{17}O_{2}N_{3}$, s. nebenstehende Formel. B. Aus 2-Nitro-acridon und Dimethylanilin in Gegenwart von Phosphoroxychlorid auf dem Wasserbad (ULLMANN, BADER, LABHARDT, B. 40, 4797). Granatrote Tafeln (aus Benzol + Ligroin). F: 225° (LEHMSTEDT, B. 60 [1927], 1371). Löslich in Toluol mit orangegelber Farbe, sehr schwer löslich in siedendem Alkohol mit gelbroter Farbe, sehr schwer in Äther und Ligroin; die Lösungen in Toluol, Alkohol und in verd. Mineralsäuren fluorescieren schwach grün (U., B., La.).
- 2.4-Dinitro-9-[4-dimethylamino-phenyl]-acridin C₂₁H₁₆O₄N₄, C₆H₄·N(CH₃)₂ s. nebenstehende Formel. B. Aus 2.4-Dinitro-acridon und Dimethylanilin in Gegenwart von Phosphoroxychlorid auf dem Wasserbad (ULLMANN, BADER, LABHARDT, B. 40, 4799). Dunkelgefärbte Blättehen (aus Toluol oder aus Salzsäure), violette Nadeln (aus Essigsäure). Löslich in siedendem Toluol mit roter, schwach blaustichiger Farbe, sehr schwer löslich in Alkohol mit weinroter Farbe, die auf Zusatz von Salzsäure in Gelb umschlägt; löslich in konz. Schwefelsäure mit orangegelber Farbe und grüner Fluorescenz.

4. 2-[4-Amino-phenyl]-5.6-benzo-chinolin C₁₉H₁₄N₂, s. nebenstehende Formel.

2-[4-Dimethylamino-phenyl]-5.6-benzo-chinolin (,, α -[p-Dimethylamino-phenyl]- β -naphthochinolin") $C_{21}H_{18}N_2 = NC_{13}H_3\cdot C_6H_4\cdot N(CH_3)_2$. B. Beim Erhitzen von 2-[4-Dimethyl-amino-phenyl]-5.6-benzo-chinolin-carbonsäure-(4) auf 300—310° (Sachs, Steiner, B. 37, 1743). — Bräunliche Nadeln (aus Nitrobenzol). F: 245°. Schwer löslich in heißem Eisessig und Nitrobenzol, sehr schwer in heißem Chloroform. Die Lösung in Eisessig ist tiefrot.

2. Amine $C_{21}H_{18}N_2$.

1. 2.7-Dimethyl-9-[3-amino-phenyl]-acridin C₂₁H₁₈N₂, C₂H₄·NH₂ s. nebenstehende Formel. B. Neben 2.7-Dimethyl-9-[3-nitro-phenyl]-CH₃ cridin (Bd. XX, S. 524) beim Erhitzen von [3-Nitro-benzal]-p-toluidin oder 3"-Nitro-6.6'-diamino-3.3'-dimethyl-triphenylmethan (Bd. XIII, S. 285) mit p-Toluidin und salzsaurem p-Toluidin auf 200—210° (ULLMANN, B. 36, 1024). — Gelbe Nadeln. F: 273°.

Monoacetylderivat C₃₃H₅₀ON₂ = NC₁₃H₆(CH₃)₂·C₃H₄·NH·CO·CH₃. B. Beim Kochen der vorangehenden Verbindung mit Acetanhydrid und Natriumacetat (U., B. 36, 1024). — Gelbliche Nadeln (aus Alkohol). F: 280°. Unlöslich in Äther, löslich in siedendem Alkohol, löslich in Eisessig mit gelber Farbe.

2. 2.7-Dimethyl-9-[4-amino-phenyl]-acridin C₂₁H₁₈N₂, C₆H₄·NH₂ s. nebenstehende Formel. B. Analog 2.7-Dimethyl-9-[3-amino-cH₃ cH₃) phenyl]-acridin (S. 478) (Ullmann, B. 36, 1023). — Gelbe Nadeln (aus Benzol). F: 268°. Löslich in Alkohol und siedendem Benzol mit gelber, in Eisessig mit roter Farbe; löslich in Äther mit gelber Farbe und grüner Fluorescenz. Die Lösungen in verd. Mineralsäuren sind orangegelb. — Färbt tannierte Baumwolle schwach

15. Monoamine $C_n H_{2n-26} N_2$.

1. Amine $C_{21}H_{16}N_{2}$.

- 1. 9-[3-Amino-styryl]-acridin C₂₁H₁₆N₂, s. nebenstehende Formel. B. Bei der Reduktion von 9-[3-Nitro-styryl]-acridin mit Zinnchlorür, Salzsäure und Eisessig (PORAI-KOSCHITZ, C. 1907 II, 1528). Gelbliche Nadeln (aus Pyridin). F: 232—234°. Unlöslich in Wasser, schwer löslich in Alkonöllich elber February auf den Schaffen der Krystallpulver. Löslich in Wasser mit grünlichgelber Farbe.
- 2. 9-[4-Amino-styryl]-acridin $C_{21}H_{16}N_2$, s. nebenstehende Formel. B. Bei der Reduktion von 9-[4-Nitro-styryl]-acridin mit CH:CH·C6H4·NH2 Zinnchlorür und Salzsäure (Porai-Koschitz, C. 1907 II, 1528). Durch Zusammenschmelzen von 9-Methyl-acridin mit 4-Aminobenzaldehyd und Zinkchlorid (P.-K.). — Braungelbes Krystallpulver (aus Alkohol). F: 209°. Unlöslich in Wasser, leicht löslich in Alkohol und Äther. — Färbt Wolle und Seide in saurer Lösung violett, tannierte Baumwolle braunviolett.
- 9-[4-Dimethylamino-styryl]-acridin $C_{23}H_{20}N_2 = NC_{13}H_8 \cdot CH : CH \cdot C_8H_4 \cdot N(CH_3)_2$. Beim Erhitzen von 4-Dimethylamino-benzaldehyd mit 9-Methyl-acridin auf 135° (PORAI-Koschitz, C. 1907 II, 1528). — Orangefarbene Krystalle (aus Alkohol). F: 238—239,5°. Löslich in den meisten organischen Lösungsmitteln. — Das Hydrochlorid färbt Wolle und Seide indigblau, tannierte Baumwolle grünlichblau. — $C_{23}H_{20}N_2 + HCl$. Dunkelblaue Krystalle.
- 2. 4-Amino-2.3.5-triphenyl-pyrrol $C_{22}H_{18}N_2=\frac{H_2N\cdot C-C\cdot C_8H_5}{C_8H_5\cdot C\cdot NH\cdot C\cdot C_8H_5}$. B. Beim Kochen von 4-Nitroso-2.3.5-triphenyl-pyrrol (Bd. XXI, S. 365) mit Hydroxylamin in wäßrig-

alkoholischer Alkalilauge oder mit Zinkstaub in alkoholisch-wäßriger Essigsäure (Angelico, R. A. L. [5] 14 I, 703; II, 168). — Nadeln (aus Benzol). F: 183—184° (Zers.). — Gibt beim Diazotieren mit Natriumnitrit in Essigsäure 4-Diazo-2.3.5-triphenyl-pyrrol (s. u.) (A., R. A. L. [5] 14 II, 169).

4-Diazo-2.3.5-triphenyl-pyrrol C₂₂H₁₅N₃, Formel I oder II. Zur Konstitution vgl. a. Angeli, Marchetti, R. A. L. [5] 16 II, 790. — B. Man diazotiert 4-Amino-2.3.5-triphenyl-pyrrol mit Natriumnitrit in essigsaurer Lösung (Angelico, R. A. L. [5]

14 II, 169). — Rotbraune Nadeln (aus Benzol oder Alkohol). F: 158—1590 (Zers.) (Angelico, 14 II, 169). — Rotbraune Nadeln (aus Benzol oder Alkonol). F: 158—159° (Zers.) (ANGELICO, R. A. L. [5] 14 II, 169). Sehr leicht löslich Benzol (ANGELICO, LABISI, G. 40 I, 416). — Liefert bei 36-stdg. Erhitzen mit 25°/0 iger Schwefelsäure die Verbindung der Formel III (Syst. No. 3819) (ANGELICO, G. 39 II, 139; R. A. L. [5] 17 II, 659). Bei der Umsetzung mit Äthylmagnesiumjodid in Äther entsteht eine Verbindung C₂₄H₂₁N₃ (gelbe Krystalle; F: 120°) (A., L.). — C₂₃H₁₅N₃ + HCl. Gelbliches Pulver. Zersetzt sich gegen 160° (ANGELICO, R. A. L. [5] 14 II, 170). — C₂₂H₁₅N₃ + H₂SO₄. Hellgrüne Nadeln. F: 190° (Zers.) (A., L.). — C₂₂H₁₅N₃ + HNO₃. Braunroter Niederschlag (aus Essigsäure). F: 175° (Zers.); verändert sich am Licht (A., L.). — Pikrat C₂₂H₁₅N₃ + C₆H₃O₇N₃. Braune Nadeln. F: 206° (Zers.)

4-Benzamino-2.3.5-triphenyl-pyrrol (?) $C_{29}H_{22}ON_2 = \frac{C_6H_5 \cdot CO \cdot NH \cdot C - C \cdot C_6H_5}{C_6H_5 \cdot C \cdot NH \cdot C \cdot C_6H_5}$ (?).

B. Aus 4-Amino-2.3.5-triphenyl-pyrrol und Benzoylchlorid in Pyridin (Angelico, R. A. L.

[5] 14 I, 703). — Krystalle (aus Benzol). F: 1236 (Zers.).

[2.4.5-Triphenyl-pyrryl-(3)]-harnstoff $C_{23}H_{19}ON_3 = \frac{H_2N \cdot CO \cdot NH \cdot C - C \cdot C_6H_5}{C_6H_5 \cdot C \cdot NH \cdot C \cdot C_6H_5}$ B. Aus 4-Amino-2.3.5-triphenyl-pyrrol und Kaliumcyanat (Angelico, R. A. L. [5] 14 I, 703). — Krystalle (aus Alkohol). F: 238° (Zers.).

16. Monoamine $C_n H_{2n-28} N_2$.

- 1. 6-Amino-9-phenyl-9.10-dihydro-1.2-benzo-acridin $C_{23}H_{18}N_3$, s. nebenstehende Formel.
- 6-Dimethylamino-9-phenyl-9.10-dihydro-1.2-benzoNH NH NH2

 acridin C₂₅H₂₂N₂ = C₁₀H₆ CH(C₆H₅) C₆H₃·N(CH₂)₂. B. Aus m-Amino-dimethylanilin,
 Benzaldehyd und β-Naphthol bei 170—180° (Ullmann, Rozenband, Mühlhauser, Grether,
 B. 35, 326). Krystallpulver (aus Benzol). F: ca. 230°. Leicht löslich in siedendem
 Benzol und Eisessig, schwer in Alkohol und Äther. Wird beim Durchleiten von Luft durch
 die essigsaure Lösung langsam, rascher beim Erhitzen seiner Lösung in salzsäurehaltigem
 Alkohol mit Ferrichlorid zu 6-Dimethylamino-9-phenyl-1.2-benzo-acridin oxydiert.
- 2. 6 A mino 7 methyl 9 phenyl 9.10 dihydro 1.2 benzo acridin C₂₄H₂₀N₃, s. nebenstehende Formel. B.

 Man erhitzt 1 Mol 2.4-Diamino-toluol mit 1 Mol Benzaldehyd auf
 110° und steigert die Temperatur nach Zugabe von 1½ Mol

 β-Naphthol allmählich auf 200—205° (Ullmann, Racovitza, Rozenband, B. 35, 319; U.,
 D. R. P. 127586; C. 1902 I, 340; Frdl. 6, 466). Aus 4.6.4′.6′-Tetraamino-3.3′-dimethyl-triphenylmethan (Bd. XIII, S. 343) und β-Naphthol bei 190° (U., R., R.; U., D. R. P. 108273;
 C. 1900 I, 1080; Frdl. 5, 384). Krystalle (aus Anilin). F: 271° (unscharf); löslich in siedendem Aceton, Benzol und Anilin, fast unlöslich in Alkohol und Ather (U., R., R.). Geht an der Luft, rascher beim Kochen seiner Lösung in salzsäurehaltigem Alkohol mit Ferrichlorid in 6-Amino-7-methyl-9-phenyl-1.2-benzo-acridin über (U., R., R.; U.).
- 6-Methylamino-7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin $C_{25}H_{22}N_2=C_{10}H_8$ $C_{10}H_8$ $C_{10}H_8$
- 6-Dimethylamino-7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin $C_{20}H_{24}N_{2}=C_{10}H_{6}$ $C_{10}H_{6}$ $C_{10}H_{20}C_{6}H_{2}(CH_{3})\cdot N(CH_{3})_{2}$. B. Durch Erhitzen des Kondensationsprodukts aus 4-Amino-2-dimethylamino-toluol und Benzaldehyd mit β -Naphthol auf 220° (Ullmann, Rozenband, Mühlhauseb, Gretheb, B. 35, 333). Krystalle (aus Benzol). F: ca. 238°. Löslich in siedendem Alkohol und siedendem Benzol mit gelblicher Farbe und blauer Fluorescenz. Liefert bei der Oxydation mit Ferrichlorid in alkoh. Essigsäure 6-Dimethylamino-7-methyl-9-phenyl-1.2-benzo-acridin.
- 6-Äthylamino-7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin $C_{26}H_{24}N_{3}=C_{10}H_{6}$ $C_{10}H_{6}$ $C_{10}H_{6}$ $C_{10}H_{10}$
- 6-Diäthylamino-7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin $C_{26}H_{26}N_2=C_{10}H_6$ $C_{10}H_6$ $C_{10}H_2$ $C_{10}H_2$ $C_{10}H_3$ $C_{10}H_4$ $C_{10}H_3$ $C_{10}H_4$ $C_{10}H_$

 C_6H_5

17. Monoamine $C_n H_{2n-30} N_2$.

1. Amine $C_{23}H_{16}N_2$.

- 1. 7 Amino 9 phenyl 3.4 benzo acridin C₂₃H₁₆N₂, s. nebenstehende Formel. B. Bei der Reduktion von 7-Nitro-9-phenyl-3.4-benzo-acridin (Bd. XX, S. 533) mit Zinnchlorür und Salzsäure in Alkohol (Ullmann, Ernst, B. 39, 305). Braune Nadeln. F: 224°. Schwer löslich in kaltem Alkohol, reichlich löslich beim Erwärmen mit citronengelber Farbe und grüner Fluorescenz; leicht löslich in Benzol und Chloroform mit gelber Farbe und blaugrüner Fluorescenz. Die Lösung in Essigsäure ist trübe orangegelb. Die gelbe, grün fluorescierende Lösung in konz. Schwefelsäure bleibt auf Zusatz von Wasser gelb. C₂₃H₁₆N₂ + HCl. Rote Nadeln. Die orangerote Lösung in Alkohol fluoresciert grün. Wird beim Kochen mit Wasser teilweise hydrolysiert.
- 2. **6-Amino-9-phenyl-1.2-benzo-acridin** $C_{23}H_{16}N_2$, s. nebenstehende Formel.
- 6-Dimethylamino-9-phenyl-1.2-benzo-acridin $C_{25}H_{20}N_2 = NC_{17}H_9(C_6H_5)\cdot N(CH_3)_2$. B. Bei der Oxydation von 6-Dimethylamino-9-phenyl-9.10-dihydro-1.2-benzo-acridin mit Ferrichlorid in salzsäure-haltigem Alkohol (Ullmann, Rozenband, Mühlhauser, Grether, B. 35, 327). Orangegelbe Nadeln (aus Benzol). F: 216°. Löslich in Alkohol mit orangegelber Farbe und grüner Fluorescenz, in Benzol mit gelber Farbe und blaugrüner Fluorescenz, in Eisessig mit roter Farbe und grüner Fluorescenz. Das Hydrochlorid färbt tannierte Baumwolle blaustichig rot. $C_{25}H_{20}N_2 + HCl$. Ziegelrote Nadeln (aus Essigsäure). Löslich in Alkohol mit orangegelber Farbe und grüner Fluorescenz; leicht löslich in sehr verd. Essigsäure mit blaustichig roter Farbe, löslich in siedendem Wasser unter teilweiser Hydrolyse. $2C_{25}H_{20}N_2 + H_2Cr_2O_2$. Rotes Pulver. Unlöslich in Wasser.
- 6-Äthylamino-9-phenyl-1.2-benzo-acridin $C_{25}H_{20}N_2=NC_{17}H_9(C_8H_5)\cdot NH\cdot C_2H_5$. B. Neben einem (nicht näher untersuchten) schwach basischen Produkt bei der Kondensation von N-Äthyl-m-phenylendiamin mit Benzaldehyd und β-Naphthol und nachfolgenden Oxydation (Ullmann, Rozenband, Mühlhauser, Grether, B. 35, 327). Gelbbraune Krystalle (aus Benzol). F: 220—221°. Die Lösungen in Alkohol und Benzol sind gelbstichiger als die des entsprechenden Dimethylaminoderivats; die Lösung in Benzol fluoresciert blaugrün.
- 6-β-Naphthylamino -9-phenyl-1.2-benzo-acridin $C_{33}H_{22}N_2=NC_{17}H_9(C_6H_5)\cdot NH\cdot C_{10}H_7$. B. Neben N.N'-Di-β-naphthyl-N.N'-dibenzoyl-m-phenylendiamin (Bd. XIII, S. 47) beim Erhitzen von N.N'-Di-β-naphthyl-m-phenylendiamin mit Benzoylchlorid auf 120° (O. FISCHER, SCHÜTTE, B. 26, 3087). Man erhitzt N.N'-Di-β-naphthyl-N.N'-dibenzoyl-m-phenylendiamin cder ein Gemisch von N.N'-Di-β-naphthyl-m-phenylendiamin und Benzoesäure mit Zinkchlorid auf 240° (F., Sch.). Gelbe Nadeln (aus Benzol). F: 244°. Ziemlich leicht löslich mit gelbgrüner Fluorescenz in Alkohol, Äther, Eisessig und Benzol, sehr schwer in Ligroin, unlöslich in Wasser. Bildet rote, gut färbende Salze, die keine ausgesprochene Fluorescenz besitzen.
- 3. 7-Amino-9-phenyl-1.2-benzo-acridin C₂₃H₁₆N₂, s. nebenstehende Formel. B. Bei der Reduktion von 7-Nitro-9-phenyl-1.2-benzoacridin mit Zinnchlorür und konz. Salzsäure in siedendem Alkohol (ULIMANN, ERNST, B. 39, 304). Dunkelgelbe Prismen (aus Alkohol). F: 282°. Schwer löslich in Äther und Ligroin, leicht in siedendem Chloroform und siedendem Alkohol; die Lösungen sind gelb und fluorescieren grün bis blaugrün. Die orangefarbene essigsaure Lösung bleibt auf Zusatz von Wasser klar. C₂₃H₁₆N₂ + HCl. Bordeauxrote Nadeln. Leicht löslich in Alkohol und Essigsäure mit orangegelber Farbe. Färbt sich beim Kochen mit Wasser gelb.
- 2. 6 Amino 7 methyl 9 phenyl 1.2 benzo acridin $C_{24}H_{13}N_3$, s. nebenstehende Formel. B. Beim Kochen von 6-Amino 7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin mit Ferrichlorid in salzsäurehaltigem Alkohol (Ullmann, Racovitza, Rozenband, B. 35, 320; U., D. R. P. 108273, 127586; C. 1900 I, 1080; 1902 I, 340; Frdl.

5, 384; 6, 466). — Citronengelbe Nadeln (aus Anilin). F: 276°; schwer löslich in Alkohol mit gelber Farbe und grüner Fluorescenz, löslich in siedendem Benzol und Toluol mit gelblicher Farbe und grünblauer Fluorescenz; konz. Schwefelsäure löst mit gelber Farbe und grüner Fluorescenz (U., R., R.). — Geht durch Erhitzen mit 10°/0 iger Schwefelsäure unter Druck auf 200—210° in 6-0xy-7-methyl-9-phenyl-1.2-benzo-acridin (Bd. XXI, S. 159) über (U., FITZENKAM, B. 38, 3789). — C24H18N2 + HCl. Rubinrote Krystalle; löslich in Alkohol, sehr schwer löslich in siedendem Wasser; löslich in heißer Essigsäure; die Lösungen sind orangegelb und fluorescieren grün (U., R., R.).

Hydroxymethylat, 6-Amino-7.10-dimethyl-9-phenyl-1.2-benzo-acridinium-hydroxyd C₂₅H₂₂ON₂ = (HO)(CH₂)NC₁₇H₃(CH₃)(C₆H₅)·NH₂. B. Die entsprechenden Salze entstehen bei der Einw. von Dimethylsulfat auf 6-Amino-7-methyl-9-phenyl-1.2-benzo-acridin in Nitrobenzol bei 150° oder beim Kochen von 6-Acetamino-7.10-dimethyl-9-phenyl-1.2-benzo-acridiniumchlorid in Wasser oder Alkohol mit konz. Salzsäure (ULLMANN, RACO-VITZA, ROZENBAND, B. 35, 324). — Bei der Einw. von Natronlauge auf das Nitrat entsteht ein blauvioletter Niederschlag, der sich in Äther sehr schwer mit der gleichen Farbe löst. — Chlorid C₃₅H₂₁N₂·Cl. Rote Nadeln. Leicht löslich in siedendem Wasser mit orangeroter Farbe. — Dichromat (C₂₅H₂₁N₂)₂Cr₂O₇. Dunkelrotes, krystallinisches Pulver. Unlöslich in Alkohol und Wasser. — Nitrat C₂₅H₂₁N₃·NO₃. Rote Krystalle. Schwerer löslich in Wasser als das Chlorid; löslich in Alkohol mit orangegelber Farbe; löslich in konz. Schwefelsäure mit gelber Farbe; die Lösungen fluorescieren grün. — Chloroplatinat 2C₂₅H₂₁N₂·Cl+PtCl₄. Orangefarbene Krystalle.

- 6 Methylamino 7 methyl 9 phenyl 1.2 benzo acridin $C_{25}H_{20}N_2 = NC_{17}H_8$ (CH₃)(C₆H₅)·NH·CH₃. B. Beim Erwärmen von 6-Methylamino-7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin mit Ferrichlorid in alkoholisch essigsaurer Lösung (Ullmann, Rozenband, Mühlhauseb, Gretheb, B. 35, 329). Gelbe Blättchen (aus Benzol). F: 270°; unlöslich in Ligroin, leicht löslich in siedendem Alkohol und Benzol mit gelber Farbe und grüner Fluorescenz (U., R., M., G.). Das Hydrochlorid färbt tannierte Baumwolle orange (U., D. R. P. 128754; C. 1902 I, 610; Frdl. 6, 468). $C_{25}H_{20}N_2 + HCl$. Orangerote Nadeln (aus verd. Essigsäure); sehr schwer löslich in siedendem Wasser, leichter in Alkohol mit orangegelber Farbe (U., R., M., G.; U.).
- 6 Dimethylamino 7 methyl 9 phenyl 1.2 benzo acridin $C_{26}H_{22}N_2 = NC_{17}H_8(CH_3)(C_6H_5)\cdot N(CH_3)_2$. B. Bei der Oxydation von 6-Dimethylamino-7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin mit Ferrichlorid in alkoholisch-essigsaurer Lösung in der Wärme (Ullmann, Rozenband, Mühlhauser, Grether, B. 35, 333). Orangegelbe Nadeln (aus Benzol + Ligroin); F: 210°; löslich in siedendem Alkohol mit gelber Farbe und grüner Fluorescenz; löslich in Eisessig mit orangeroter, in konz. Schwefelsäure mit gelber Farbe (U., R., M., G.). Das Hydrochlorid färbt tannierte Baumwolle orangerot (U., D. R. P. 128754; C. 1902 I, 610; Frdl. 6, 468). $C_{36}H_{22}N_2 + HCl$. Rote Nadeln. Löslich in Alkohol mit gelbstichig roter Farbe und grüner Fluorescenz, in heißer Essigsäure mit orangeroter Farbe; löslich in siedendem Wasser unter teilweiser Hydrolyse; die Lösung in konz. Salzsäure ist gelb (U., R., M., G.; U.). $C_{36}H_{22}N_2 + HNO_3$. Rote Blättchen. Sehr schwer löslich in heißem Wasser mit orangeroter Farbe und grüner Fluorescenz (U., R., M., G.).
- 6 Äthylamino 7 methyl 9 phenyl 1.2 benzo acridin $C_{26}H_{22}N_2 = NC_{17}H_8(CH_3)(C_6H_5)\cdot NH\cdot C_2H_5$. B. Bei der Oxydation von 6-Äthylamino-7-methyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin mit Ferrichlorid in einem mit etwas konz. Salzsäure versetzten Gemisch von Alkohol und Eisessig (Ullmann, Rozenband, Mühlhauser, Grether, B. 35, 330; U., D. R. P. 128754; C. 1902 I, 610; Frdl. 6, 468). Gelbe Nadeln (aus Benzol + Ligroin). F: 258°; löslich in Alkohol und Benzol mit gelber Farbe und grüner bezw. blaugrüner Fluorescenz, löslich in Eisessig mit orangegelber Farbe; die gelbe Lösung in konz. Schwefelsäure färbt sich beim Verdünnen mit Wasser rot unter Abscheidung des schwer löslichen, krystallisierten Sulfats (U., R., M., G.). Das Hydrochlorid färbt tannierte Baumwolle orange (U.). $C_{26}H_{22}N_2 + HCl$. Rote Nadeln (aus wäßrig-alkoholischer Essigsäure). Fast unlöslich in kaltem Wasser; die Lösungen in Alkohol und in heißer verdünnter Essigsäure sind gelb bezw. orange und fluorescieren grün; beim Kochen mit Wasser erfolgt Hydrolyse (U., R., M., G.; U.). $C_{26}H_{22}N_2 + HNO_3$. Hellrote Blättchen. Löslich in siedendem Alkohol mit orangegelber Farbe und grüner Fluorescenz (U., R., M., G.).
- 6 Diäthylamino 7 methyl 9 phenyl 1.2 benzo acridin $C_{28}H_{26}N_2 = NC_{17}H_8$ (CH₃)(C₆H₅)·N(C₂H₅)₂. B. Bei der Oxydation von 6 Diäthylamino 7 methyl 9 phenyl 9.10-dihydro 1.2 benzo acridin mit Ferrichlorid in alkoholisch essigsaurer Lösung in der Wärme oder mit Brom in Benzol (Ullmann, Rozenband, Mühlhauser, Grether, B. 35, 336). Gelbe Nadeln (aus Benzol + Ligroin). F: 200—201°. Leicht löslich in Alkohol, Äther

und Benzol mit gelber Farbe und grüner Fluorescenz; die orangerote Lösung in Essigsäure und die gelbe Lösung in konz. Schwefelsäure fluorescieren ebenfalls grün. — Das Hydrobromid färbt tannierte Baumwolle orangerot. — $C_{28}H_{26}N_2 + HBr$. Rote Blättchen (aus bromwasserstoffsäurehaltigem Alkohol). Leicht löslich in warmem Alkohol und warmer verdünnter Essigsäure mit roter bezw. orangeroter Farbe und grüner Fluorescenz; sehr schwer löslich in Wasser unter teilweiser Hydrolyse.

- 6 Benzylamino 7 methyl 9 phenyl 1.2 benzo acridin $C_{31}H_{24}N_2 = NC_{17}H_8$ (CH₃)(C₆H₅)·NH·CH₂·C₆H₅. B. Man erwärmt 4 Amino 2 benzylamino toluol mit Benzaldehyd auf 70—80°, erhitzt nach Zusatz von β-Naphthol weiter auf 180° und oxydiert die entstandene Leukobase mit Ferrichlorid in alkoh. Essigsäure oder mit Brom in Tetrachlorkohlenstoff (Ullmann, Rozenband, Mühlhauser, Grether, B. 35, 339). Hellgelbe Nadeln (aus Toluol). F: ca. 302°; leicht löslich in Anilin, Nitrobenzol und Eisessig, löslich in siedendem Benzol und Toluol, sehr schwer löslich in Alkohol mit gelber Farbe und grüner Fluorescenz; löslich in konz. Schwefelsäure mit gelber Farbe; beim Verdünnen mit Wasser krystallisiert das Sulfat aus (U., R., M., G.). Das Hydrochlorid färbt tannierte Baumwolle in essigsaurem Bad orangegelb (U., R., M., G.; U., D. R. P. 128754; C. 1902 I, 610; Frdl. 6, 468). $C_{31}H_{24}N_2 + HCl$. Rote Prismen oder Nadeln (aus Alkohol). Löslich in Alkohol und in heißer Essigsäure mit orangegelber Farbe und grüner Fluorescenz; sehr schwer löslich in siedendem Wasser unter Hydrolyse (U., R., M., G.; U.). $C_{31}H_{24}N_2 + HBr$. Dunkelrote Krystalle (aus Alkohol). Schwerer löslich als das Hydrochlorid (U., R., M., G.).
- 6 Acetamino 7 methyl 9 phenyl 1.2 benzo acridin $C_{26}H_{20}ON_3 = NC_{17}H_8$ (CH_3)(C_6H_8)·NH·CO·CH₃. B. Beim Erwärmen von salzsaurem 6 Amino 7 methyl 9-phenyl-1.2-benzo-acridin mit Acetanhydrid in Gegenwart von Natriumacetat (Ullmann, Racovitza, Rozenband, B. 35, 322; vgl. U., D. R. P. 118439; C. 1901 I, 654; Frdl. 6, 471). Gelbe Nadeln (aus Alkohol). F: 265°; leicht löslich in Alkohol und Benzol mit gelber Farbe und blauer Fluorescenz; unlöslich in Ligroin und Wasser (U., R., R.). Bei der Einw. von Dimethylsulfat in Nitrobenzol bei 150° entsteht das methylschwefelsaure Salz des 6-Acetamino-7.10-dimethyl-9-phenyl-1.2-benzo-acridiniumhydroxyds (s. u.) (U., R., R.), beim Behandeln mit Athylbromid bei 160—170° erhält man (nicht näher beschriebenes) 6-Acetamino-7-methyl-10-äthyl-9-phenyl-1.2-benzo-acridiniumbromid (U.).
- 6-Acetamino-7-methyl-9-phenyl-1.2-benzo-acridin-hydroxymethylat, 6-Acetamino-7.10-dimethyl-9-phenyl-1.2-benzo-acridiniumhydroxyd bezw. 6-Acetamino-9-oxy-7.10-dimethyl-9-phenyl-9.10-dihydro-1.2-benzo-acridin $C_{27}H_{24}O_2N_2$, Formel I bezw. II. Die Konstitution der Salze entspricht der Formel I, die der Carbinolbase der

I.
$$\begin{array}{c} C_6H_5 \\ CH_3 \\ NH \cdot CO \cdot CH_3 \\ \end{array}$$
 II.
$$\begin{array}{c} C(C_6H_5)(OH) \\ N(CH_3) \\ \end{array} \cdot NH \cdot CO \cdot CH_3 \\ \end{array}$$

Formel II. — B. Das methylschwefelsaure Salz entsteht bei der Einw. von Dimethylsulfat auf 6-Acetamino-7-methyl-9-phenyl-1.2-benzo-acridin in Nitrobenzol bei 150°; man führt es mit Natriumchlorid in wäßr. Lösung in das Chlorid über und gewinnt durch Einw. von Ammoniak in alkoh. Lösung daraus die Carbinolbase (Ullmann, Racovitza, Rozenband, B. 35, 322). — Blaßrosa Blättchen (aus Xylol). F: 210° (Zers.). Leicht löslich in heißem Anilin und Nitrobenzol, unlöslich in Alkohol und Äther; löslich in Eisessig mit gelber Farbe. — Die gelbe Lösung in Toluol oder Xylol wird beim Erhitzen rot bis violettrot und nimmt beim Erkalten wieder die ursprüngliche Färbung an. Die alkoh. Lösung des Chlorids färbt sich auf Zusatz von Natronlauge rot und entfärbt sich dann unter Bildung eines krystallinischen weißen Niederschlags. — Chlorid C₂₇H₂₃ON₂·Cl. Orangegelbe Krystalle. Die wäßr. Lösung schmeckt bitter. Mit orangegelber Farbe und grüner Fluorescenz löslich in heißem Wasser und sehr leicht in Alkohol. — Die hromat (C₂₇H₂₃ON₂·Cl + PtCl₄. Gelbe Krystalle. Unlöslich in Wasser und Alkohol. — Chloroplatinat 2C₂₇H₂₃ON₂·Cl + PtCl₄. Gelbe Krystalle. Unlöslich in Wasser und Alkohol.

B. Diamine.

1. Diamine $C_n H_{2n+3} N_3$.

 $\alpha.\alpha'$ - Diamino - äthylenimin $C_2H_7N_3 = H_2N \cdot HC - CH \cdot NH_2$.

N-Phenyl- $\alpha\alpha'$ -dianilino-äthylenimin $C_{20}H_{10}N_3 = C_6H_5 \cdot NH \cdot HC \frac{N(C_6H_5)}{N(C_6H_5)} \cdot CH \cdot NH \cdot C_6H_5$. Eine unter dieser Formel beschriebene Verbindung wurde von Ruggli, Marszak (*Helv.* 11 [1928], 180) als Anilinoessigsäure-[N.N'-diphenyl-amidin] (Bd. XII, S. 557) erkannt.

N-p-Tolyl- $\alpha.\alpha'$ -di-p-toluidino-äthylenimin $C_{23}H_{25}N_3=CH_3\cdot C_6H_4\cdot NH\cdot HC N(C_6H_4\cdot CH_3)$ CH·NH· $C_6H_4\cdot CH_3$. Eine unter dieser Formel beschriebene Verbindung wurde von Ruggli, Marszak (*Helv.* 11 [1928], 180) als p-Toluidinoessigsäure-[N.N'-di-p-tolyl-amidin] (Bd. XII, S. 980) erkannt.

2. Diamine $C_n H_{2n+1} N_3$.

Diamin $C_2H_5N_3 = H_2N \cdot HC C \cdot NH_2$.

Verbindung $C_{10}H_{21}N_3 = (C_2H_5)_2N \cdot HC C \cdot N(C_2H_5)_2$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Bd. IV, S. 99.

3. Diamine $C_n H_{2n-1} N_3$.

- 1. 2.5-Diamino-pyrrol (Succinimidin) $C_4H_7N_3 = \frac{HC_--CH}{H_2N \cdot C \cdot NH \cdot C \cdot NH \cdot C \cdot NH_2}$ ist desmotrop mit 2.5-Diimino-pyrrolidin, Bd. XXI, S. 372.
- 2.5-Bis-methylamino-pyrrol (Dimethylauccinimidin) $C_6H_{11}N_3 = HC CH$ $CH_3 \cdot NH \cdot C \cdot NH \cdot CH_3$ ist desmotrop mit 2.5-Bis-methylimino-pyrrolidin, Bd. XXI,
- 2.5-Bis-diäthylamino-pyrrol, Tetraäthylsuccinimidin $C_{12}H_{23}N_3 = HC CH$ HC - CH $(C_2H_5)_2N \cdot C \cdot NH \cdot C \cdot N(C_2H_5)_2$ B. Bei mehrtägigem Aufbewahren von salzsaurem Bernstein-säure-bis-iminoäthyläther mit Diäthylamin in alkoh. Lösung (Pinner, B. 23, 2930). — $2C_{12}H_{23}N_3 + 2HCl + PtCl_4$. Gelbrote Prismen. F: 202°. Sehr schwer löslich in kaltem Wasser.
- 2.5 Bis dipropylamino pyrrol, Tetra propylsuccinimidin $C_{16}H_{31}N_8 = HC CH$ $(C_2H_5 \cdot CH_2)_2N \cdot \overset{\circ}{C} \cdot NH \cdot \overset{\circ}{C} \cdot N(CH_2 \cdot C_2H_5)_2$ B. Analog der vorangehenden Verbindung (Pinner, B. 23, 2931). $C_{16}H_{31}N_3 + 2HNO_3$. Prismen. F: 53°. Leicht löslich in Wasser, schwer in Salpetersäure. $2C_{16}H_{31}N_3 + 2HCl + PtCl_4$. Hellgelbe Spieße (aus Wasser). F: 174°. Sehr schwer löslich in Wasser.
- 2. 2.6-Diamino-1.4(oder 3.4)-dihydro-pyridin (Glutarimidin) $C_3H_9N_3 = HC \cdot CH_2 \cdot CH$ $HC \cdot CH_2 \cdot CH_3$ $H_2N \cdot \overset{\circ}{C} \cdot NH \cdot \overset{\circ}{C} \cdot NH_3$ oder $H_2N \cdot \overset{\circ}{C} N = \overset{\circ}{C} \cdot NH_2$.
- 2.6-Bis-dimethylamino-1.4(oder 8.4)-dihydro-pyridin, Tetramethylglutarimidin $C_9H_{17}N_8=NC_8H_8[N(CH_8)_8]_8$. Bei mehrtägigem Aufbewahren von salzsaurem Glutarsäure-bis-iminoisobutyläther mit Dimethylamin in alkoh. Lösung (Pinner, B. 28, 2946; vgl. a. P., Die Imidoäther [Berlin 1892], S. 147). $2C_9H_{17}N_8+2HCl+PtCl_4$. Dunkelrote Würfel. F: 210^0 (Zers.). Leicht löslich in heißem, schwer in kaltem Wasser.

- **2.6-Bis-äthylamino-1.4** (oder **3.4)** dihydro-pyridin (Diāthylglutarimidin) $C_9H_{17}N_3 = NC_5H_5(NH\cdot C_2H_5)_2$ ist desmotrop mit 2.6-Bis-äthylimino-piperidin, Bd. XXI, S. 382.
- **2.6** Bis diäthylamino 1.4 (oder 3.4) dihydro pyridin, Tetra äthylglutarimidin $C_{13}H_{25}N_3 = NC_5H_5[N(C_2H_5)_2]_2$. B. Beim Aufbewahren von salzsaurem Glutarsäurebis-iminoisobutyläther mit Diäthylamin in alkoh. Lösung (PINNER, B. 23, 2946). $2C_{13}H_{25}N_3 + 2HCl + PtCl_4$. Dunkelrote Nadeln. F: 141°.
- 2.6 Bis dipropylamino 1.4 (oder 3.4) dihydro-pyridin, Tetra propylg lutarimidin $C_{17}H_{23}N_3 = NC_5H_5[N(CH_2\cdot C_2H_5)_2]_2$. B. Analog der vorangehenden Verbindung (Pinner, B. 23, 2946). $C_{17}H_{23}N_3 + HBr + 2Br$. Rötlichgelbe Nadeln. F: 86°. Sehr schwer löslich in Wasser, leicht in heißem Alkohol. $2C_{17}H_{33}N_3 + 2HCl + PtCl_4$. Rötlichgelbe Krystalle. F: 178°.

4. Diamine $C_n H_{2n-3} N_3$.

1. Diamine $C_5H_7N_3$.

- 1. 2.4-Diamino-pyridin $C_5H_7N_3$, Formel I. NH2 NH2

 8.5.6-Trichlor-2.4-diamino-pyridin $C_5H_4N_3Cl_3$, I. Tormel II. B. Beim Erhitzen von Pentachlor-pyridin, 2.3.5.6-Tetrachlor-4-amino-pyridin oder 3.4.5.6-Tetrachlor-2-amino-pyridin mit alkoholisch-wäßrigem Ammoniak im Rohr auf 170—180° (Sell., Dootson, Soc. 73, 780; 77, 772). Schuppen oder Nadeln (aus Alkohol). F: 206—207°. Leicht löslich in Alkohol, Äther, Aceton und heißem Benzol, mäßig löslich in heißem, unlöslich in kaltem Wasser. Löslich in verd. Säuren, unlöslich in Alkalien. $2C_5H_4N_3Cl_3 + 2HCl + PtCl_4$. Nadeln mit ca. $3H_2O$.
- 2. 3.5 Diamino 2.6 dimethyl pyridin, $\beta.\beta'$ Diamino $\alpha.\alpha'$ lutidin $C_7H_{11}N_3$, s. nebenstehende Formel. B. Beim Erhitzen von 3.5-Bis-carbäthoxyamino-2.6-dimethyl-pyridin mit rauchender Salzsäure im Rohr auf 100—120° (Mohr, B. 33, 1118). Gelbliche Prismen (aus Benzol). F: 169—170°. Leicht löslich in kaltem Wasser, 100 g siedendes Benzol lösen ca. 2,1 g. Leicht löslich in verd. Alkalien. $C_7H_{11}N_3 + HCl + H_2O$. B. Durch Umkrystallisieren des neutralen Hydrochlorids (s. u.) aus siedendem Wasser (M.). Nadeln. Wird bei 275° dunkelbraun, bei 280° schwarz und ist bei 290° völlig zersetzt. $C_7H_{11}N_3 + 2HCl + H_2O$. Prismen oder Tafeln (aus rauchender Salzsäure). Verliert bei 110° das Krystallwasser und 1 HCl. F: 270—280° (Zers.).
- 8.5 Bis-carbäthexyamino 2.6 dimethyl pyridin $C_{19}H_{19}O_4N_3 = NC_5H(CH_3)_5(NH\cdot CO_2\cdot C_2H_3)_2$. B. Bei gelindem Erwärmen von 2.6-Dimethyl-pyridin-dicarbonsäure-(3.5)-diazid mit Alkohol (Mohr, B. 88, 1118). Prismen. F: 157°. Leicht löslich in siedendem Alkohol.

5. Diamine $C_n H_{2n-9} N_3$.

1. Diamine $C_9H_9N_3$.

1. 2.4-Diamino-chinolin $C_{9}H_{9}N_{3}$, s. nebenstehende Formel.

2.4-Dianilino-chinolin $C_{21}H_{17}N_{3} = NC_{9}H_{5}(NH\cdot C_{6}H_{5})_{2}$. B. Beim Erhitzen von 2.4-Dichlor-chinolin mit Anilin auf 130° (Ephraim, B. 26, 2230).

Beim Erhitzen von 2-Chlor-4-anilino-chinolin mit Anilin bis nahe zum Sieden (Niementowski, B. 40, 4291). — Krystalle (aus Alkohol). F: 145° (N.), 149° (E.). Sehr leicht löslich in Alkohol, Aceton und verd. Essigsäure, schwer in Benzol und Tetrachlor-kohlenstoff (N.). — Hydrochlorid. Blättehen. Sehr schwer löslich in Wasser (N.).

- 2. 5.7-Diamino-chinolin C₉H₉N₃, s. nebenstehende Formel. B. Beim Behandeln von 5.7-Dinitro-chinolin (Bd. XX, S. 378) mit Zinnchlorür und konz. Salzsäure (Claus, Kramer, B. 18, 1247; vgl. Kaufmann, Hüssy, B. 41, 1736). Bei 3—4-stündigem Kochen von salzsaurem 5.7-Diamino-8-oxy-chinolin mit verd. Jodwasserstoffsäure und etwas Phosphor (Claus, Dewitz, J. pr. [2] 53, 544). Gelbliche Nadeln. F: 156° (unkorr.) (Cl., K.). Ist mit Wasserdampf nicht flüchtig (Cl., K.). Sehr leicht löslich in Alkohol (Cl., K.). C₉H₉N₃ + 2 HI. Rote Nadeln. F: 215—216° (Cl., D.). Löslich in Wasser und Alkohol. 2C₉H₉N₃ + 2 HCl + PtCl₄. Dunkelrote Nadeln (Cl., K.). C₉H₉N₃ + 2 HCl + PtCl₄. Dunkelrote Nadeln (Cl., K.).
- 3. 6.8 Diamino chinolin C_pH_pN_s, s. nebenstehende Formel. B. H₂N. Bei der Reduktion von 6.8-Dinitro-chinolin (Bd. XX, S. 379) mit Zinnchlorür und konz. Salzsäure (Claus, Kramer, B. 18, 1249). Gelbe Nadeln oder Blättchen (aus Alkohol). F: 162—163° (unkorr.). Ist nicht sublimierbar. Verflüchtigt sich nicht mit Wasserdampf. Leicht löslich in Wasser und Alkchol, schwerer in Äther und Benzol, sehr schwer in Chloroform und Ligroin. 2C₂H_pN₃ + 2 HCl + PtCl₄. Hellgelbes Krystallpulver. Zersetzt sich von 120° an. Wird durch Wasser zerlegt.
- 2. 3.4 Diamino 2 methyl chinolin, 3.4 Diamino chinaldin C₁₀H₁₁N₃, s. nebenstehende Formel. B. Beim Behandeln von 3-Nitro-4-amino-chinaldin mit Zinn und Salzsäure (Conrad, Limpach, B. 21, 1983). C₁₀H₁₁N₃ · CH₃ + HCl. Krystalle.

6. Diamine $C_n H_{2n-13} N_3$.

1. Diamine $C_{12}H_{11}N_3$.

- 1. 2.7 Diamino carbazol C₁₂H₁₁N₃, s. nebenstehende Formel. B. Beim Erhitzen von 2.4.2'.4'-Tetraamino-diphenyl mit 18% jeger Salzsäure im Rohr auf 180—190° (Täuber, B. 23, 3267; D. R. P. 58165; Frdl. 3, 33; Elbs, Kopp, Z. El. Ch. 5, 111). Nadeln (aus Alkohol). Zersetzt sich von 200° an (T., B. 23, 3267). Verwendung zur Erzeugung von Azofarbstoffen auf der Faser: Höchster Farbw., D. R. P. 98432, 162625; C. 1898 II, 1110; 1905 II, 1058; Frdl. 5, 484; 8, 855. C₁₂H₁₁N₃ + H₂SO₄. Nadeln. Fast unlöslich in siedendem Wasser (T., B. 23, 3267).
- 2. 3.6-Diamino-carbazol C₁₂H₁₁N₃, s. nebenstehende H₂N.

 Formel. B. Beim Erhitzen von 2.5.2'.5'-Tetraamino-diphenyl mit 15—20% jeer Salzsäure im Rohr auf 180—190% (Täuber, B.

 25, 131). Beim Behandeln von 3.6-Dinitro-carbazol mit Zinkstaub und Natronlauge, mit Na₂S₂O₄ oder mit anderen Reduktionsmitteln (BASF, D. R. P. 46438; Frdl. 2, 448; Ziersch, B. 42, 3799; vgl. Wirth, D. R. P. 139568; C. 1903 I, 746; Frdl. 7, 71). Blättchen (aus Alkohol). Wird bei 260% dunkel, ist bei 290% noch nicht geschmolzen (T.). Ist sehr lichtempfindlich (Z.). Unlöslich in Äther, schwer löslich in heißem Wasser, in Alkohol und Benzol (T.). Verwendung zur Darstellung von Azofarbstoffen: BASF; Schultz, Tab. [7. Aufl.], No. 531; Höchster Farbw., D. R. P. 98432; C. 1898 II, 1110; Frdl. 5, 485. Hydrochlorid. Nadeln. Ziemlich leicht löslich in Wasser, fast unlöslich in kalter 10% jeer Salzsäure (BASF; T.). C₁₂H₁₁N₃ + H₂SO₄. Nadeln. Sehr schwer löslich in Wasser, leicht in sehr verd. Salzsäure (BASF; T.).
- 3.6 Bis benzamino carbazol $C_{26}H_{19}O_2N_3 = HNC_{12}H_6(NH\cdot CO\cdot C_6H_5)_2$. B. Beim Schütteln von 3.6-Diamino-carbazol mit Benzoylchlorid und Natronlauge (Ziersch, B. 42, 3799). Blättchen (aus Eisessig). F: 270°.
- 1.8-Dichlor-3.6-diamino-carbazol $C_{12}H_0N_2Cl_2$, s. nebenstehende Formel. B. Bei der Reduktion von 1.8-Dichlor-3.6-dinitro-carbazol mit $Na_2S_2O_4$ in alkoh. Natronlauge (ZIERSCH, B. 42, 3799). Gelbliche Flocken. Sulfat. Nadeln. F: Cl Cl 320° (Zers.).
- 2. $2 \cdot [3.4 Diamino styryl] pyridin, <math>\alpha \cdot [3.4 Diamino phenyl] \beta \cdot [\alpha pyridyl] athylen, 3'.4' Diamino <math>\alpha \cdot stilbazol$ $C_{13}H_{13}N_3$, s. nebenstehende Formel. B. Bei der Reduktion von [Benzol-sulfonsäure-(1)]- $\langle 4$ azo $3' \rangle \cdot [4' amino \alpha \cdot stilbazol]$ (S. 589) mit Zinn-chlorür und Salzsäure (Ahrens, Luther, B. 40, 3406). Gelbe Nadeln. F: 126—127°.

Leicht löslich in Alkohol, Äther und Benzol, unlöslich in Wasser. — $C_{13}H_{13}N_3 + 3$ HCl. Gelbrote Nadeln. — $C_{13}H_{13}N_3 + 3$ HCl + 3 HCl + 3 HCl + 3 SnCl₂. Rote Nadeln. F: 240—241°.

3. Diamine $C_{14}H_{15}N_3$.

- 1. 2-Methyl-6-[2.5-diamino-styry!]-pyridin, α -[2.5-Diamino-phenyl]- β -[6-methyl-pyridyl-(2)]-āthylen, 2'.5'-Diamino-6-methyl- α -stilbazol $C_{14}H_{15}N_3$, s. nebenstehende Formel. B. Beim Behandeln von [Benzol-sulfonsäure-(1)]- $\langle 4$ azo 5'>-[2'-amino-6-methyl- α -stilbazol ($H_{2}N$)₂ $C_{6}H_{3}$ ·CH:CH·N) CH₃ azol] (S. 589) mit Zinnchlorür und Salzsäure (Ahrens, Luther, B. 40, 3405). Nadeln (aus verd. Alkohol). F; 148—149°. $C_{14}H_{15}N_3$ +3HCl. Nadeln. F: 249—250° (Zers.). $C_{14}H_{15}N_3$ +3HCl+3HgCl₂. Gelbe Nadeln. F: 179—180°. $C_{14}H_{15}N_3$ +3HCl+3 SnCl₂. Gelbbraune Nadeln. F: 245—246° (Zers.). $2C_{14}H_{15}N_3$ +6HCl+3 PtCl₄. Flockiger Niederschlag.
- 2. 2.7-Diamino-3.6-dimethyl-carbazol C₁₄H₁₅N₃, CH₃
 s. nebenstehende Formel. B. Beim Erhitzen von 4.6.4'.6' Tetraamino-3.3'-dimethyl-diphenyl mit 20% giger Salzsäure im Rohr
 auf 190—200% (Täuber, Loewenherz, B. 24, 1033; T., D. R. P. 58165; Frdl. 3, 33). —
 Nadeln (aus Alkohol). F: 271% (T., L.). Fast unlöslich in Wasser, schwer löslich in Alkohol,
 Äther und Benzol in der Kälte, etwas leichter in der Hitze (T., L.). Ist in feuchtem Zustand
 luftempfindlich. Verwendung zur Darstellung von Azofarbstoffen: Höchster Farbw.,
 D. R. P. 103723; C. 1899 II, 688; Frdl. 5, 485.
- 2.7-Bis-acetamino-3.6-dimethyl-carbazol $C_{18}H_{19}O_2N_3 = HNC_{12}H_4(CH_3)_2(NH\cdot CO\cdot CH_3)_2$. B. Beim Kochen der vorangehenden Verbindung mit Eisessig (Täuber, Loewenherz, B. 24, 1034). Nadeln (aus Eisessig). Schmilzt oberhalb 300°.

7. Diamine $C_n H_{2n-15} N_3$.

1. Diamine $C_{13}H_{11}N_3$.

- 1. 3.6-Diamino-acridin C₁₃H₁₁N₃, s. nebenstehende Formel.

 B. Beim Erhitzen von 2.4.2'.4'-Tetraamino-diphenylmethan mit konz. Salzsäure auf 170° (Gram, Dissertation [Jena 1892], S. 32).

 Bei der Reduktion von 3.6-Diamino-acridon (S. 525) in alkoh. Lösung mit Natriumamalgam (Schöfff, B. 27, 2320). Beim Behandeln von 2.2'-Azo-4.4'-diamino-diphenylmethan H₂N·C₆H₃·N·N·N·C₆H₃·NH₂ (Syst. No. 3747) mit Zinkstaub und verd. Kalilauge und kurzen Kochen der angesäuerten Reaktionsflüssigkeit (Duval, C. r. 142, 342; Bl. [4] 7 [1910], 534). Gelbliche Nadeln (aus Alkohol). F: 281° (Sch.), 284° (D.). Leicht löslich in Alkohol, schwer in Benzol (Sch.). Die Lösung in verd. Salzsäure ist gelb und fluoresciert grün, die Lösung in konz. Salzsäure ist orangerot (Sch.). Die Salze sind rot, löslich in Wasser und sehr schwer löslich in Säuren (D.). Hydrochlorid. Rote Nadeln (D.).
- 3.6-Bis-dimethylamino-acridin, Base des Acridinorange $C_{17}H_{10}N_3 = NC_{13}H_7[N(CH_3)_2]_2$. B. Beim Erhitzen von m-Amino-dimethylanilin mit Glycerin, Zinkchlorid und Oxalsäure auf ca. 150° oder mit Ameisensäure (D: 1,2) und Zinkchlorid auf 150—160° (Leon-Hardt & Co., D. R. P. 67126; Frdl. 3, 292). Beim Erhitzen von 2.2′-Diamino-4.4′-bis-dimethylamino-diphenylmethan (Bd. XIII, S. 340) mit Salzsäure im Rohr auf ca. 140° und Oxydation des Reaktionsprodukts mit Eisenchlorid oder Luft (Biehringer, J. pr. [2] 54, 243; L. & Co., D. R. P. 59179; Frdl. 3, 290). Beim Erwärmen von 2.2′-Azo-4.4′-bis-dimethylamino-diphenylmethan (CH₃)₂N·C₆H₃<N·C(H₃)₂ (Syst. No. 3747) mit Zinkstaub und alkoh. Natronlauge und kurzen Kochen der angesäuerten Reaktions-Lösung (Duval, Bl. [4] 7 [1910], 538). Gelbe Nadeln (aus verd. Alkohol). F: 180—181° (D.), 181—182° (B.). Leicht löslich in Wasser mit orangegelber Farbe, leicht in Alkohol, Aceton und heißem Benzol, schwer in Petroläther mit gelber Farbe und grüner Fluorescenz (B.). Löslich in verd. Säuren mit roter, in konz. Schwefelsäure mit gelbicher Farbe und bläulichgrüner Fluorescenz (B.). Wird in Form von Salzen als Farbstoff (Acridinorange 2 G) verwendet (vgl. Schultz, Tab. [7. Aufl.], No. 902). $C_{17}H_{19}N_3 + HCl$. Nadeln (B.). $2C_{17}H_{19}N_3 + 2HCl + PtCl_4$. Rotbraune Nadeln (B.).

Hydroxymethylat, 10-Methyl-3.6-bis-dimethylamino-acridiniumhydroxyd $C_{18}H_{32}ON_3 = (HO)(CH_3)NC_{12}H_7[N(CH_2)_2]_2$. — Nitrat $C_{18}H_{22}N_3 \cdot NO_3$. B. Man behandelt 3.6-Bis-dimethylamino-acridin mit Dimethylsulfat in heißem Toluol und setzt das entstandene Sulfat in wäßr. Lösung mit Kaliumnitrat um (Ullmann, Marić, B. 34, 4315). Dunkelrote Nadeln (aus Alkohol). Löslich in Wasser und Alkohol mit orangeroter Farbe und grüner Fluorescenz. Die Lösung in verd. Schwefelsäure ist orangerot, die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grün. Färbt tannierte Baumwolle an.

2. x'.x'- Diamino - [benzo - 1'.2':5.6 - chinolin] 1) ("Diamino - β-naphthochinolin") $C_{13}H_{11}N_3 = NC_{13}H_{7}(NH_3)_2$. B. Beim Erhitzen von x'.x'-Dinitro-[benzo-1'.2':5.6-chinolin] mit Zinnchlorür und Salzsäure (D: 1,18) auf dem Wasserbad (Hepner, M. 27. 1055). — Gelbe, mikroskopische Nadeln oder Blättchen (aus verd. Alkohol). F: 249°. Sehr schwer löslich in Wasser, Alkohol und Äther. Leicht löslich in verd. Salzsäure und in konz. Schwefelsäure, sehr schwer in verd. Schwefelsäure und in verd. Alkalien. — Liefert bei der Oxydation mit verd. Permanganat-Lösung oder mit verd. Chromschwefelsäure Chinolindicarbonsäure-(5.6). — $C_{13}H_{11}N_3 + 2$ HCl. Dunkelrote Nadeln (aus verd. Salzsäure). Verkohlt oberhalb 300°. Leicht löslich in Wasser, schwer in Alkohol und Äther. — $C_{13}H_{11}N_3 + H_2O_4 + H_2O$. Rotgelbe, mikroskopische Krystalle. Verkohlt beim Erhitzen. Sehr schwer Closlich in Wasser und verd. Schwefelsäure, ziemlich leicht in warmer konz. Schwefelsäure. — $C_{13}H_{11}N_3 + 2$ HNO₃. Rotgelbe Nadeln. Zersetzt sich bei ca. 200°. — $C_{13}H_{11}N_3 + 2$ HCl + 2 SnCl₂. Ziegelrote Nadeln (aus sehr verd. Salzsäure). Leicht löslich in warmer Wasser. Leicht löslich in warmer verdünnter Salzsäure, fast unlöslich in konz. Salzsäure. Wird durch siedendes Wasser zerlegt.

2. 3.6 - Diamino - 2.7 - dimethyl-acridin, Base des CH₃ Acridingelbs C₁₈H₁₅N₈, s. nebenstehende Formel. B. Beim Er-NH2 hitzen von 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenylmethan mit Salzsäure unter Druck auf ca. 150° und nachfolgenden Oxydieren mit Eisenchlorid (LEON-HARDT & Co., D. R. P. 52324; Frdl. 2, 109; Ullmann, Marić, B. 34, 4308; Haase, B. 36, 589; vgl. Schultz, Tab. [7. Aufl.], No. 901). — Gelbe Nadeln (aus Anilin) oder Tafeln (aus verd. Alkohol). Schmilzt oberhalb 3000 (H.). Fast unlöslich in Wasser (U., M.), Benzol und Ligroin (U., M.; H.), schwer löslich in Alkohol mit gelber Farbe und blaugrüner Fluorescenz, leicht in Eisessig mit gelber Farbe (U., M.), leicht in Nitrobenzol, Anilin (Ü., M.) und Pyridin (H.). Löslich in verd. Schwefelsäure mit orangegelber, in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz (U., M.; H.). Absorptionsspektrum im Violett und Ultraviolett: Valenta, Photogr. Korrespondenz 40, 484; C. 1903 II, 929. — Liefert beim Erhitzen mit 10% iger Schwefelsäure auf 180° 6-Amino-3-oxy-2.7-dimethyl-aeridin (S. 506), beim Erhitzen mit ca. 40% iger Schwefelsäure unter Druck auf ca. 220° 3.6-Dioxy-2.7-dimethylaeridin (Bd. XXI, S. 186) (Cassella & Co., D. R. P. 121686; C. 1901 II, 78; Frdl. 6, 487). Beim Einleiten von nitrosen Gasen in die schwefelsaure Lösung bei 10° und Eintragen der Lösung in siedenden Alkohol erhält man 2.7-Dimethyl-acridin (H.). Überführung in Farbstoffe von tieferer Nuance durch Erhitzen mit Methanol und rauchender Salzsäure auf 180° bis 190°: Ges. f. chem. Ind. Basel, D. R. P. 79703; Frdl. 4, 1044; durch Erhitzen mit Glycerin auf 150—180°: BASF, D. R. P. 151 206; C. 1904 I, 1383; Frdl. 7, 321; mit Formaldehyd bezw. Acetaldehyd und Salzsäure, gegebenenfalls nach vorangegangener Alkylierung: Cassella & Co., D. R. P. 135771; C. 1902 II, 1233; Frdl. 6, 489; LEONHARDT & Co., D. R. P. 144092; C. 1903 II, 813; Frdl. 7, 323; Höchster Farbw., D. R. P. 152662; C. 1904 II, 273; Frdl. 7, 321; durch Erhitzen mit Chloressigsäure bezw. deren Estern und Wasser: Höchster Farbw., D. R. P. 133788, 136729; C. 1902 II, 616, 1396; Frdl. 6, 475; 7, 319; durch gleichzeitige Einw. von Formaldehyd und aromatischen Aminen: Cassella & Co., D. R. P. 131365, 132116; C. 1902 I, 1288; II, 172; Frdl. 6, 488. — Zur Anwendung als Farbstoff in Form der Salze vgl. Schultz, Tab. [7. Aufl.], No. 901; ferner BAYER & Co., D. R. P. 140848; C. 1903 I, 1010; Frdl. 7, 324. — Hydrochlorid (Acridingelb) C₁₅H₁₅N₃ + HCl. Rotes Krystallpulver. Leicht löslich in heißem Wasser mit orangegelber Farbe und grüner Fluorescenz, schwer in Alkohol mit gelber Farbe und grüner Fluorescenz (ULLMANN, MARIĆ, B. 84, 4309). — $2C_{15}H_{15}N_3$ +2HCl+PtCl₄. Orangefarbenes Krystallpulver. Unlöslich in Wasser (U., M.).

Hydroxymethylat, 3.6 - Diamino - 2.7.10 - trimethyl - acridiniumhydroxyd $C_{16}H_{19}ON_3 = (HO)(CH_3)NC_{13}H_6(CH_3)_2(NH_2)_2$. B. Das Chlorid erhält man beim Behandeln von 3.6-Diamino-2.7-dimethyl-acridin (s. o.) mit Dimethylsulfat in siedendem Nitrobenzol und Umsetzen des Reaktionsprodukts mit Natriumchlorid (Ullmann, Marić, B. 34, 4313).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Beim Kochen von 3.6 · Bis · acetamino · 2.7.10 · trimethyl · acridiniummethylsulfat (s. u.) mit Salzsäure (U., M., B. 34, 4312). — Chlorid $C_{16}H_{18}N_3 \cdot Cl$. Rote Nadeln (aus salzsäurehaltigem Alkohol). Leicht löslich in Wasser mit orangeroter Farbe und grüner Fluorescenz (U., M.). Die Lösung in verd. Schwefelsäure ist orangerot, die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grün (U., M.). Überführung in einen Farbstoff durch Alkylierung: Leonhardt & Co., D. R. P. 131289; C. 1902 I, 1287; Frdl. 6, 485. — Dichromat ($C_{16}H_{18}N_3$) $_2Cr_2O_7$. Orangerotes Pulver. Unlöslich in Wasser und Alkohol (U., M.). — Nitrat $C_{16}H_{18}N_3 \cdot NO_3$. Rote Nadeln (aus Alkohol). Leicht löslich in Wasser, schwer in Alkohol (U., M.).

- 3.6 Bis benzylamino 2.7 dimethyl aeridin $C_{20}H_{27}N_3 = NC_{13}H_5(CH_3)_2(NH \cdot CH_2 \cdot C_6H_5)_2$. B. Beim Erhitzen von 6.6'-Diamino-4.4'-bis-benzylamino-3.3'-dimethyl-diphenylmethan mit 25% (aiger Schwefelsäure unter Druck auf ca. 160% (Bayer & Co., D. R. P. 141297; C. 1903 I, 1163; Frdl. 7, 318). Rote Krystalle. Liefert bei Einw. von rauchender Schwefelsäure einen gelben Farbstoff.
- 3.6-Bis-acetamino-2.7-dimethyl-acridin $C_{19}H_{19}O_2N_3=NC_{13}H_5(CH_3)_2(NH\cdot CO\cdot CH_3)_2$. Beim Kochen von 3.6-Diamino-2.7-dimethyl-acridin mit Acetanhydrid und Natrium-acetat (Ullmann, Marić, B. 34, 4310). Gelbliche Nadeln (aus Anilin). Sehr schwer löslich in Alkohol, sehr leicht in Eisessig mit gelber Farbe. Die Lösung in konz. Schwefelsäure ist orangegelb und fluoresciert blaugrün. Wird durch Kochen mit Säuren verseift.

Hydroxymethylat, 3.6-Bis-acetamino-2.7.10-trimethyl-acridiniumhydroxyd $C_{20}H_{23}O_3N_3=(HO)(CH_3)NC_{13}H_5(CH_2)_2(NH\cdot CO\cdot CH_3)_2$. B. Das Methylsulfat entsteht beim Behandeln von 3.6-Bis-acetamino-2.7-dimethyl-acridin mit Dimethylsulfat in Nitrobenzol bei 190°; beim Umsetzen des Methylsulfats mit Natriumehlorid in verd. Salzsäure erhält man das Chlorid (Ullmann, Marić, B. 34, 4311). — Chlorid $C_{20}H_{22}O_2N_3\cdot Cl$. Gelbe Nadeln (aus Alkohol). Sehr schwer löslich in Alkohol. — Dichromat $(C_{20}H_{22}O_2N_3\cdot Cl, Gelbe$ Krystalle (aus Eisessig). Unlöslich in Wasser. — Nitrat $C_{20}H_{22}O_2N_3\cdot NO_3$. Orangegelbes Krystallpulver. Leicht löslich in Wasser, sehr schwer in Alkohol. — Methylsulfat $C_{20}H_{22}O_2N_3\cdot O\cdot SO_2\cdot O\cdot CH_3$. Rotgelbe Krystalle. Sehr leicht löslich in Wasser, sehr schwer in Alkohol mit gelber Farbe. Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grün.

8. Diamine $C_n H_{2n-17} N_3$.

2-Amino-3-[4-amino-phenyl]-chinolin $C_{15}H_{13}N_3$, s. nebenstehende Formel. B. Bei der Reduktion von 2-Nitro- α -[4-nitro-phenyl]-zimtsäurenitril mit Zinn und Salzsäure (FREUND, B. 34, 3108). — $C_{15}H_{12}N_3+2HCl+H_2O$. Graue Nadeln (aus wenig Wasser). Zersetzt sich gegen 250°.

9. Diamine $C_n H_{2n-19} N_3$.

- 1. 2.6 Bis [x amino phenyl] pyridin C₁₇H₁₅N₃, s. nebenstehende Formel. B. Beim Kochen des bei 210—220° schmelzenden 2.6-Bis-[x-nitro-phenyl]-pyridins (Bd. XX, S. 496) mit Zinn und wäßrig-alkoholischer Salzsäure (Paal, Demeler, B. 30, 1501). Nadeln (aus Wasser). F: 75—76°. Leicht löslich in den meisten organischen Lösungsmitteln. Leicht löslich in verd. Mineralsäuren. Liefert bei der Oxydation mit alkal. Permanganat-Lösung Pyridin-dicarbonsäure-(2.6). C₁₇H₁₅N₃ + 3 HCl. Nadeln (aus Wasser). F: 300° (Zers.). Löslich in Wasser mit gelber Farbe, sehr schwer löslich in heißem Alkohol.
- 2. 3.5 Bis [4 amino benzyi] pyridin C₁₉H₁₉N₃, H₂N·C₆H₄·CH₂·C₆H₄·NH₂ s. nebenstehende Formel. B. Beim Kochen von 3.5-Bis-[4-nitro-benzyl]-pyridin (Bd. XX, S. 502) mit Zinnchlorür und wäßrig-alkoholischer Salzsäure (Rügheimer, A. 280, 57). Nadeln (aus Alkohol). F: 155—157°. Leicht löslich in Alkohol und Benzol, schwer in Äther, unlöslich in Ligroin. Bei der Oxydation mit Kaliumpermanganat entsteht Pyridin-dicarbonsäure-(3.5). C₁₉H₁₉N₃ + 3 HCl. Nadeln und Säulen. Ist bei 250° noch nicht geschmolzen. Unlöslich in absol. Alkohol, Äther und Benzol, löslich in heißem verdünntem Alkohol.

10. Diamine $C_n H_{2n-21} N_3$.

1. 6.5'- Diamino - [benzo-1'.2':1.2-acridin] 1) C₁₇H₁₂N₃,
s. nebenstehende Formel. B. Beim Erhitzen von 2.4-Dinitro-benzylchlorid mit 7-Acetamino-naphthol-(2), Zinnchlorür und Salzsäure (Baezner, Gueorgueff, B. 39, 2444). — Hellbraune Nädelchen (aus Nitrobenzol + Toluol). F: 180°. Sehr leicht löslich in Eisessig mit weinroter, schwer in Alkohol mit braunroter Farbe und grüner Fluorescenz. — Die Salze sind intensiv rot und färben tannierte Baumwolle braunrot.

2. 3.6 - Diamino - 2.7 - dimethyl - 9 - phenyl9.10 - dihydro - acridin $C_{21}H_{21}N_3$, s. nebenstehende
Formel. B. Beim Erhitzen von 4.6.4'.6'-Tetraamino3.3'-dimethyl-triphenylmethan mit Salzsäure (D: 1,07) unter Druck auf 160° (Oehler, D. R. P. 43714, 43720; Frdl. 1, 167, 168; 2, 104, 106; R. Meyer, Gross, B. 32, 2359). —
Ist, auch in Form der Salze, äußerst leicht zu Benzoflavin (S. 493) oxydierbar. — Hydrochlorid. Rötliche Nadeln.

11. Diamine $C_n H_{2n-23} N_3$.

1. Diamine $C_{19}H_{15}N_3$.

1. 2.4-Diamino-9-phenyl-acridin C₁₉H₁₅N₃, s. nebenstehende Formel. B. Bei der Reduktion von 2.4-Dinitro-9-phenyl-acridin mit Zinnchlorür und konz. Salzsäure (Ullmann, Brodo, B. 39, 362). — Orangegelbe bis braune Krystalle (aus Benzol + Ligroin). F: 159°. Leicht löslich in Alkohol und Äther mit orangegelber, in Benzol mit gelber NH₂ Farbe und grüner Fluorescenz, löslich in Eisessig mit roter Farbe, schwer löslich in Ligroin. Löslich in konz. Salzsäure mit orangegelber, in verd. Salzsäure mit rötlicher Farbe. Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grün. — C₁₉H₁₈N₃ + HNO₃. Braune Krystalle (aus verd. Essigsäure). Schwer löslich in siedendem Wasser, leicht in siedendem Alkohol mit gelbbrauner Farbe und grüner Fluorescenz.

2.4-Bis-acetamino-9-phenyl-acridin $C_{23}H_{19}O_2N_3=NC_{13}H_6(C_6H_5)(NH\cdot CO\cdot CH_3)_2$. Beim Behandeln von 2.4-Diamino-9-phenyl-acridin mit Acetanhydrid (Ullmann, Broido, B. 39, 364). — Gelbbraune Nädelchen. F: 232—233°. Sehr schwer löslich in Alkohol und Ather, löslich in Eisessig mit orangegelber Farbe. Löslich in konz. Salzsäure mit orangegelber Farbe. Die gelbe Lösung in konz. Schwefelsäure fluoresciert grün.

2. 2.7-Diamino-9-phenyl-acridin $C_{19}H_{18}N_3$, s. nebenstehende Formel. B. Bei der Reduktion von 7-Nitro-2-amino-9-phenyl-acridin mit Zinnchlorür und wäßrig-alkoholischer Salzsäure (Ullmann, Ernst, B. 39, 306). — Citronengelbe Blättchen (aus Benzol). Leicht löslich in Alkohol, Äther und Benzol mit gelber Farbe und grüner Fluorescenz, löslich in Essigsäure mit orangeroter Farbe, schwer löslich in Ligroin. Löslich in salzsäurehaltigem Alkohol mit blauroter Farbe. Die Lösung in konz. Schwefelsäure ist gelb, fluoresciert grün und wird beim Verdünnen mit Wasser orange. — Pikrat $C_{19}H_{18}N_3 + C_6H_3O_7N_3$. Purpurrote Nadeln (aus Anilin). Sehr schwer löslich in Alkohol.

3. 3.6-Diamino-9-phenyl-acridin C₁₉H₁₅N₃, s. nebenstehende Formel.

3.6-Bis-dimethylamino-9-phenyl-acridin C₂₂H₂₃N₃ = H₂N.

NC₁₃H₆(C₆H₅)[N(CH₃)₂]₂. B. Durch Kondensation von Benzaldehyd mit 2 Mol m-Amino-dimethylanilin bei Gegenwart von wäßrig-alkoholischer Salzsäure und Erhitzen des Reaktionsprodukts mit Schwefelsäure (Leonhardt & Co., D. R. P. 68908; Frdl. 3, 293). Das Hydrochlorid findet unter dem Namen Acridinorange R als Farbstoff Verwendung (Schultz, Tab. [7. Aufl.], No. 908).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

4. x.x-Diamino-9-phenyl-acridin C₁₉H₁₆N₃ = NC₁₈H₆(C₆H₅)(NH₂)₂. B. Bei der Reduktion von x.x-Dinitro-9-phenyl-acridin (Bd. XX, S. 519) mit Zinnehlorür und wäßrigalkoholischer Salzsäure auf dem Wasserbad (Dunstan, Oakley, B. 89, 978). — Krystallwarzen (aus Alkohol + Toluol). — Zur Acetylierung vgl. D., Oa., B. 39, 979. — $2C_{19}H_{15}N_3 + H_2Cr_2O_7$. Gelber Niederschlag. — $C_{19}H_{15}N_3 + 2HCl + PtCl_4$. Brauner, amorpher Niederschlag. — Pikrat $C_{19}H_{15}N_3 + 3C_6H_3O_7N_3$. Mikrokrystallinisch.

5. 3-Amino-9-[4-amino-phenyl]-acridin, Chrysanilin
C₁₉H₁₅N₃, s. nebenstehende Formel. B. Entsteht als Nebenprodukt
bei der Fabrikation des Fuchsins (Bd. XIII, S. 763) (A. W. HOFMANN,
C. r. 55, 817; J. 1862, 346; vgl. Graebe, B. 12, 2241; O. Fischeb,
Körner, A. 226, 178). Chrysanilin erhält man beim Erhitzen von salzsaurem 2.4'.4"-Triamino-triphenylmethan mit Arsensäure auf 150°, zum Schluß auf 180° (O. FISCHER, KÖRNER, B. 17, 208; A. 226, 189). — Reinigung über das Nitrat: F., K., A. 226, 178; vgl. TRILLAT, DE RACZKOWSKI, C. r. 114, 1024; B. 25 Ref., 503; DUNTAN, HEWIT, Soc. 89, 483. — Goldgelbe Blättchen mit 1 C₆H₆ (aus Benzol), goldgelbe Nadeln oder Spieße mit 2 H₂O (aus 50% igem Alkohol). F: 265% (unkorr.) (D., He., Soc. 89, 483), 267—270% (F., K.). Die benzolhaltige Verbindung schmilzt beim Eintragen in ein auf 150—160% erhitztes Bad (F., K.). Ist in kleinen Mengen unzersetzt destillierbar (F., K.). Ziemlich schwer löslich in Alkohol (F., K.), sehr schwer in Wasser (Ho.). Absorptionsspektrum der alkoh. Lösung im ultravioletten Gebiet: Krüss, Ph. Ch. 51, 285. — Wird von Kaliumpermanganat zu Oxalsäure oxydiert (Anschütz, B. 17, 436). Bei der Oxydation mit verd. Chromschwefelsäure erhält man neben anderen Produkten geringe Mengen Acridin (A.). Chrysanilin gibt beim Erhitzen mit konz. Salzsäure unter Druck auf 160-180° Chrysophenol (S. 509) (F., K.; D., HE., Soc. 89, 1473). Liefert beim Diazotieren und Zersetzen der Diazoverbindung mit Alkohol 9-Phenylacridin (F., K.). Beim Erhitzen mit Methyljodid und Methanol auf 100° entsteht das Bishydrojodid des Trimethylchrysanilins (S. 492) (Ho., B. 2, 379; vgl. T., DE R.). Beim Erhitzen mit Essigsäureanhydrid erhält man N.N'-Diacetyl-chrysanilin und N.N.N'.N'-Tetraacetylchrysanilin (A.; D., HE., Soc. 89, 484). Beim Umsetzen mit dem Kaliumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) in Essigsäure bildet sich die Verbindung C₃₉H₂₃O₄N₃ (S. 492) (Šachs, Berthold, Ztschr. f. Farbenindustrie 6, 142; C. 1907 I, 1750). — Über die Verwendung als Farbstoff in Form des Nitrats (,, Phosphin") vgl. Schultz, Tab. [7. Auß], No. 910. —C₁₉H₁₅N₃ + HCl. B. Bei langem Erhitzen des nachfolgenden Salzes auf 160—180° (Ho., C. r. 55, 819; J. 1862, 346). Gelbes Krystallpulver. Löslich in Wasser. — $C_{10}H_{15}N_3 + 2$ HCl. Schuppen. Krystallisiert auch mit 1 H₂O (Ho.). Leicht löslich in Wasser, schwerer in Alkohol, fast unlöslich in Ather. $C_{19}H_{15}N_3 + HI + 2I$. B. Bei Einw. von Jod-Kaliumjodid-Lösung auf eine Lösung von salzsaurem Chrysanilin (Pelet, Gillièron, C. 1907 I, 1259). Dunkler Niederschlag. Fast unlöslich in Benzol, schwer löslich in Wasser und Schwefelkohlenstoff, etwas leichter in Aceton, Alkohol und Chloroform. Ziemlich leicht löslich in Mineralsäuren und Alkalien. — $C_{19}H_{15}N_3 + H_2CrO_4$ (D., He., Soc. 89, 484). — $C_{19}H_{15}N_3 + HNO_3$. Rubinrote Nadeln. Sehr schwer löslich in Wasser (Ho.). — $C_{19}H_{15}N_3 + 2HNO_3$. Dem Kaliumferrievanid ähnliche Krystalle. Wird durch Wasser hydrolysiert (Ho.). — Pikrat $C_{19}H_{15}N_3 + 2C_6H_3O_7N_3$. Rubinrote Nadeln mit 1 H₂O (Ho., B. 2, 379 Anm.).

 $\label{eq:Hydroxymethylat} \textbf{Hydroxymethylat,} \quad \textbf{10-Methyl-3-amino-9-[4-amino-phenyl]-acridiniumhydroxyd} \quad \textbf{C}_{20}\textbf{H}_{19}\textbf{ON}_3 \quad \text{bezw.} \quad \textbf{10-Methyl-3-imino-9-[4-amino-phenyl]-3.10-dihydro-acridin} \\ \textbf{C}_{20}\textbf{H}_{17}\textbf{N}_3 \quad \text{bezw.} \quad \textbf{10-Methyl-3-amino-9-[4-imino-cyclohexadien-(2.5)-yliden]-9.10-di-dimensional content of the property of the prop$

hydro-acridin C₂₀H₁₇N₂. Die Konstitution der Salze entspricht der Formel I, die der Anhydrobase der Formel II oder III.

Anhydrobase C₂₀H₁₇N₂, Formel II oder III. B. Beim Fällen einer Lösung des Chlorids

(s. u.) mit Ammoniak (Dunstan, Hewitt, Soc. 89, 485). Krystalle (aus absol. Alkohol). Chlorid C₂₀H₁₈N₃·Cl. B. Man erhitzt N.N'-Diacetyl-chrysanilin mit Methyljodid und Methanol oder mit Dimethylsulfat unter Druck auf 120°, gießt die alkoh. Lösung des Reaktionsprodukts in Ammoniak und kocht den entstandenen roten Niederschlag mit Salzsäure

(D., H.). Grünschimmernde dunkle Nadeln. — Chloroplatinat $2C_{20}H_{18}N_3 \cdot Cl + PtCl_4$.

Brauner, amorpher Niederschlag (D., H.).

3-Dimethylamino-9-[4-methylamino-phenyl]-acridin oder 3-Methylamino-9-[4-dimethylamino-phenyl]-acridin, Trimethylchrysanilin $C_{22}H_{21}N_2 = NC_{19}H_{11}(NH \cdot CH_3) \cdot N(CH_3)_2$. B. Das Bis-hydrojodid entsteht beim Erhitzen von Chrysanilin mit Methyljodid und Methanol im Rohr auf 100°; man zerlegt es mit Silberoxyd (A. W. HOFMANN, B. 2, 379; vgl. Trillat, de Raczkowski, C. r. 114, 1026). — Braungelbes, amorphes Pulver. Unlöslich in Wasser, löslich in Alkohol (Ho.). — $C_{22}H_{21}N_3 + HI$. B. Aus dem Bis-hydrojodid durch Einw. von wäßr. Ammoniak (Ho.). Gelbe Nadeln. — $C_{22}H_{21}N_3 + 2HI$. Rote Nadeln (aus Wasser). Die wäßr. Lösung färbt Wolle und Seide tief orangerot (Ho.). — $2C_{22}H_{21}N_3 + 2HCl + PtCl_4$. Nadeln (Ho.).

8-Diäthylamino-9-[4-äthylamino-phenyl]-acridin oder 8-Äthylamino-9-[4-diäthylamino-phenyl] - acridin, Triäthylchrysanilin $C_{35}H_{27}N_3=NC_{19}H_{11}(NH\cdot C_2H_5)\cdot N(C_2H_5)_2$. B. Analog der vorangehenden Verbindung (A. W. Hofmann, B. 2, 380; vgl. Trillat, de Raczkowski, C. r. 114, 1026). — $C_{25}H_{27}N_3+2HI+1^1/2H_2O$. Krystalle (aus Wasser) (Ho.). — $C_{25}H_{27}N_3+2HCl+PtCl_4$. Nadeln. Schwer löslich in Wasser (Ho.).

Verbindung C₃₉H₂₅O₄N₃, Formel I bezw. II. B. Beim Umsetzen von Chrysanilin mit dem Kaliumsalz der Naphthochinon-(1.2)-sulfonsäure-(4) in

ca. 50% iger Essigsaure (Sachs, Berthold, Ztschr. f. Farbenindustrie 6, 142; C. 1907 I, 1750).

— Dunkelzinnoberrotes Pulver (aus Nitrobenzol). Wird bei ca. 260% braunschwarz, ohne zu schmelzen. Löslich in Aceton + Methanol, schwer löslich in anderen organischen Lösungsmitteln.

- 3-Acetamino-9-[4-acetamino-phenyl]-acridin, N.N'-Diacetyl-chrysanilin $C_{23}H_{19}O_2N_3=NC_{19}H_{11}(NH\cdot CO\cdot CH_3)_2$. B. Aus Chrysanilin durch Erhitzen mit Acetanhydrid im Rohr auf 140—160° (Anschütz, B. 17, 433). Neben Tetraacetylchrysanilin beim Kochen von Chrysanilin mit Essigsäureanhydrid und Natriumacetat (Dunstan, Hewitt, Soc. 89, 484). Mikroskopische Nadeln (aus verd. Alkohol). F: 200° (Zers.) (D., H.). Fast unlöslich in Wasser, löslich in Alkohol mit blauer Fluorescenz (A.). Liefert beim Erhitzen mit Methylpidid und Methanol im Rohr auf 120° ein (nicht näher beschriebenes) Jodmethylat (dunkle Nadeln; sehr leicht löslich in Alkohol) (D., H.). $C_{23}H_{19}O_2N_3 + HCl$. Gelbe, mikroskopische Nadeln. Leicht löslich in heißem Wasser, schwerer in verd. Salzsäure (A.). Färbt Wolle und Seide hellgelb (A.). $2C_{23}H_{19}O_2N_3 + H_2CrO_4$. Schwer löslich (D., H.). $C_{23}H_{19}O_2N_3 + HNO_2$. Krystalle (aus Wasser). Schwer löslich in Wasser (A.).
- 3-Diacetylamino-9-[4-diacetylamino-phenyl]-acridin, N.N.N'.N'-Tetraacetylchrysanilin $C_{27}H_{23}O_4N_3=NC_{19}H_{11}[N(CO\cdot CH_3)_3]_2$. B. Neben Diacetylchrysanilin beim Kochen von Chrysanilin mit Essigsäureanhydrid und Natriumacetat (Dunstan, Hewitt, Soc. 89, 484). Gelbbraune Nadeln (aus Essigsäureanhydrid).
- 2. 6 Amino 2 methyl 9 [4 amino phenyl] acridin C₂₀H₁₇N₃, s. nebenstehende Formel. B. Beim Erhitzen von salzsaurem p-Toluidin mit p-Toluidin, Eisenchlorür und m-Nitranilin auf höchstens 220° und Kochen der Schmelze mit verd. Salzsäure

(Höchster Farbw., D. R. P. 65985; Frdl. 3, 295); an Stelle von m-Nitranilin können auch m-Nitro-phenol (H. F., D. R. P. 78377; Frdl. 4, 1036), m-Nitro-anisol, m-Nitro-phenotol (H. F., D. R. P. 79263; Frdl. 4, 1037) und andere m-Substitutionsprodukte des Nitrobenzols dienen (H. F., D. R. P. 81048; Frdl. 4, 1040). — Hellgelbe Krystalle (aus Äther). F: 230° (H. F., D. R. P. 65985). Fast unlöslich in Wasser, löslich in Alkohol, Äther und Benzol mit gelber Farbe und grüner Fluorescenz. — Zur Verwendung als Farbstoff in Form des Nitrats vgl. Schultz, Tab. [7. Aufl.], No. 912. — C₂₀H₁₇N₃ + HNO₃. Granatrote, metallisch glänzende Prismen. Leicht löslich in Wasser mit goldgelber Farbe (H. F., D. R. P. 65985).

- 6 Methylamino 2 methyl 9 [4 amino phenyl] acridin C₂₁H₁₂N₂ = NC₁₂H₆ (CH₂)(NH·CH₂)·C₆H₄·NH₂. B. Analog der vorangehenden Verbindung aus salzsaurem p-Toluidin, p-Toluidin und N-Methyl-3-nitro-anilin bei Gegenwart von Eisenchlorür (H. F., D. R. P. 79877; Frdl. 4, 1038). F: 228°.
- 6 Dimethylamino 2 methyl 9 [4 amino phenyl] acridin $C_{22}H_{21}N_3 = NC_{13}H_6(CH_3)[N(CH_3)_2]\cdot C_6H_4\cdot NH_2$. B. Analog den vorangehenden Verbindungen aus salzsaurem p-Toluidin, p-Toluidin und N.N-Dimethyl-3-nitro-anilin bei Gegenwart von Eisenchlorür (H. F., D. R. P. 79877; Frdl. 4, 1038). F: 230°.

- 6-Äthylamino 2- methyl 9 [4- amino phenyl] acridin $C_{22}H_{21}N_3 = NC_{13}H_6$ (CH₃)(NH·C₂H₅)·C₆H₄·NH₂. B. Analog den vorangehenden Verbindungen aus salzsaurem p-Toluidin, p-Toluidin und N-Äthyl-3-nitro-anilin bei Gegenwart von Eisenchlorür (H. F., D. R. P. 79877; Frdl. 4, 1038). F: 62°.
- 6 Diäthylamino 2 methyl 9 [4 amino phenyl] aeridin $C_{24}H_{25}N_3 = NC_{13}H_6$ (CH₃)[N(C₂H₅)₂]·C₆H₄·NH₂. B. Analog den vorangehenden Verbindungen aus salzsaurem p-Toluidin, p-Toluidin und N.N-Diäthyl-3-nitro-anilin bei Gegenwart von Eisenchlorür (H. F., D. R. P. 79877; Frdl. 4, 1038). F: 82°.

3. Diamine $C_{21}H_{19}N_3$.

- 1. 2.6 Bis [4 amino styryl] pyridin, Bis-[4-amino-benzal] $\alpha.\alpha'$ -lutidin $C_{21}H_{19}N_3$, $H_{2}N\cdot C_{6}H_{4}\cdot CH:CH\cdot C_{11}$. S. nebenstehende Formel. B. Bei der Reduktion von 2.6-Bis-[4-nitro-styryl]-pyridin mit Zinn und Salzsäure (Werner, B. 36, 1688). Krystalle (aus Alkohol). F: 146°. $C_{21}H_{19}N_3 + HCl + HgCl_2$. Gelbe Nadeln (aus verd. Alkohol). Schwärzt sich bei 220°, schmilzt bei 243°. $2C_{21}H_{19}N_3 + 2HCl + PtCl_4$. Rotbraune Nädelchen (aus stark verdünntem Alkohol). Bräunt sich bei 250°, ist aber bei 275° noch nicht geschmolzen.
- 2. 8-Amino-2.5-dimethyl-9-[4-amino-phenyl]-acridin $^{\rm H_2N}$ $^{\rm C_6H_4\ NH_2}$ $^{\rm C_{21}H_{19}N_3}$, s. nebenstehende Formel.
- 8-Dimethylamino-2.5-dimethyl-9-[4-amino-phenyl]-acridin(?)

 C₂₃H₂₃N₃ = NC₁₃H₅(CH₃)₂(C₆H₄·NH₂)·N(CH₃)₂(?). B. Man fügt zu einer Schmelze aus p-Toluidin, salzsaurem p-Toluidin und Eisenchlorür bei einer 220° nicht übersteigenden Temperatur 2-Nitro-4-dimethylamino-toluol und kocht das Reaktionsprodukt mit Salzsäure (Höchster Farbw., D. R. P. 79877; Frdl. 4, 1038). F: 238°.
- C₆H₅ 3. 3.6 - Diamino - 2.7 - dimethyl - 9 - phenyl - acridin, Benzoflavin C₂₁H₁₂N₃, s. nebenstehende Formel. B. Bei der CH₃ Oxydation von 3.6-Diamino-2.7-dimethyl-9-phenyl-9.10-dihydroacridin (S. 490) mit Eisenchlorid (OEHLER, D. R. P. 43714, 43720; Frdl. 1, 167, 168; 2, 105, 106; R. MEYER, GROSS, B. 32, 2360). — Braungelbe Nadeln (aus Alkohol, Äther oder Aceton) oder Säulen (aus Chloroform). Ist bei 300° noch nicht geschmolzen (M., G.). Sehr schwer löslich in kaltem Wasser, schwer in Ligroin und Benzol, löslich in Methanol, Alkohol, Ather, Aceton, Chloroform und Essigester mit gelbgrüner Fluorescenz (M., G.; vgl. OE.). Die Fluorescenz verschwindet auf Zusatz von verd. Säuren (M., G.; OE.). — Liefert beim Erhitzen mit 30% iger Schwefelsäure im Rohr auf 180° 3.6-Dioxy-2.7-dimethyl-9-phenyl-acridin (Bd. XXI, S. 194) (Dunstan, Cleaverley, Soc. 91, 1621). Gibt beim Behandeln mit nitrosen Gasen in konz. Schwefelsäure und Kochen der entstandenen Diazo-Lösung mit Alkohol 2.7-Dimethyl-9-phenyl-acridin (M., G.). Überführung in einen orangegelben Farbstoff durch Erhitzen mit Methanol und konz. Salzsäure oder Schwefelsäure unter Druck: Ges. f. chem. Ind., D. R. P. 79703; Frdl. 4, 1045; durch Erhitzen mit Glycerin auf 150—180°: BASF, D. R. P. 151206; C. 1904 I, 1383; Frdl. 7, 322. — Überführung in leicht lösliche fettsaure Salze: BAYER & Co., D. R. P. 142453; C. 1903 II, 84; Frdl. 7, 325. Zur Verwendung als Farbstoff vgl. Schultz, Tab. [7. Aufl.], No. 909. — Benzoflavin löst sich in konz. Schwefelsäure mit gelblicher Farbe und starker grüner Fluorescenz (OE., D. R. P. 43714). — C₂₁H₁₉N₃ + 2HCl. Wasserhaltige(?), rotbraune Tafeln oder Nadeln (aus konz. Salzsäure bezw. Alkohol). Die alkoh. Lösung fluoresciert grün (M., G., B. 32, 2356). — C₂₁H₁₉N₃ + HBr. Braunrote Nadeln (aus Eisessig) oder Pyramiden (aus Alkohol). Sehr leicht löslich in Alkohol und Eisessig mit grüner Fluorescenz (M., G.). — C₂₁H₁₉N₃ + HI. Braungelbe Tafeln (aus Alkohol) oder Nadeln. Löslich in Alkohol mit grüner Fluorescenz (M., G.). — Sulfat. Pote Säuler (M., G.) (M., G.). — Sulfat. Rote Säulen (M., G.).

Hydroxymethylat, 8.6-Diamino-2.7.10-trimethyl-9-phenyl-acridiniumhydroxyd $C_{22}H_{23}ON_3$, Formel I, bezw. 8-Imino-6-amino-2.7.10-trimethyl-9-phenyl-3.10-dihydro-C₄H₅

acridin C₂₂H₂₁N₃, Formel II. Die Konstitution der Salze entspricht der Formel I, die der Anhydrobase der Formel II.

B. Das Sulfat (s. u.) erhält man beim Kochen von 3-Imino-6-acetamino-2.7.10-trimethyl-9-phenyl-3.10-dihydro-acridin (s. u.) mit 33% iger Schwefelsäure; beim Behandeln des Sulfats mit Ammoniak entsteht die Anhydrobase (s. u.) (Hewitt, Fox, Soc. 87, 1061). — Chlorid C₂₂H₂₂N₃·Cl. Grünschimmernde Krystalle. — Sulfat (C₂₂H₂₂N₃)₂SO₄. Dunkelrote Krystalle.

Anhydrobase C₂₂H₂₁N₂, s. Formel II auf S. 493. B. s. o. — Grünschimmernde Nadeln (aus Alkohol oder Chloroform). F: 232—233° (korr.) (H., F.). Die Lösungen fluorescieren grün.

- 3.6-Bis-methylamino-2.7-dimethyl-9-phenyl-acridin, N.N'-Dimethyl-benzoflavin $C_{23}H_{23}N_3=NC_{13}H_4(CH_3)_2(C_6H_5)(NH\cdot CH_3)_2$. B. Man kondensiert Benzaldehyd mit 2 Mol 4-Amino-2-methylamino-toluol, erhitzt das Reaktionsprodukt mit $10^0/_0$ iger Salzsäure auf 140^0 oder mit $60^0/_0$ iger Schwefelsäure zum Kochen und oxydiert die entstandene Leukoverbindung mit Eisenchlorid (Leonhardt & Co., D. R. P. 71362; Frdl. 3, 294).— Löslich in Wasser und Alkohol mit grüner Fluorescenz. Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grün.
- 3.6-Bis-dimethylamino-2.7-dimethyl-9-phenyl-acridin, N.N.N'.N'-Tetramethylbenzoflavin $C_{25}H_{27}N_3 = NC_{13}H_4(CH_3)_2(C_6H_5)[N(CH_3)_2]_2$. B. Durch Kondensation von Benzaldehyd mit 2 Mol 4-Amino-2-dimethylamino-toluol bei Gegenwart von alkoh. Schwefelsäure, Erhitzen des Reaktionsprodukts mit $10^0/_0$ iger Salzsäure oder Schwefelsäure auf 130^0 und nachfolgende Oxydation mit Eisenchlorid (Leonhardt & Co., D. R. P. 68908; Frdl. 3, 293). Fluoresciert in Lösung schwach. Färbt die Faser orangerot.
- 3 Amino 6 acetamino 2.7.10 trimethyl 9 phenyl acridiniumhydroxyd, N-Acetyl-benzofiavin-hydroxymethylat $C_{24}H_{25}O_3N_3$, Formel I.

$$I. \begin{array}{c} C_{0}H_{5} \\ CH_{3} \cdot CO \cdot NH \cdot \\ HO \end{array} \begin{array}{c} CH_{3} \\ NH_{2} \\ \end{array} \begin{array}{c} CH_{3} \cdot CO \cdot NH \cdot \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3} \\ \\ CH_{3} \cdot CO \cdot NH \cdot \\ \end{array} \begin{array}{c} CH_{3$$

Anhydrobase, 3-Imino-6-acetamino-2.7.10-trimethyl-9-phenyl-3.10-dihydro-acridin C₂₄H₂₃ON₃, Formel II. B. Beim Behandeln einer alkoh. Lösung von N.N'-Diacetyl-benzoflavin-jodmethylat mit Ammoniak (Hewitt, Fox, Soc. 87, 1061). — Krystalle (aus Alkohol). — Liefert beim Kochen mit verd. Schwefelsäure 3.6-Diamino-2.7.10-trimethyl-9-phenyl-acridiniumsulfat (s. o.).

3.6-Bis-acetamino-2.7-dimethyl-9-phenyl-acridin, N.N'-Diacetyl-benzoflavin $C_{25}H_{23}O_2N_3=NC_{13}H_4(CH_5)_2(C_6H_5)(NH\cdot CO\cdot CH_3)_2$. B. Neben der Tetraacetylverbindung (s. u.) beim Kochen von Benzoflavin mit Essigsäureanhydrid und Natriumacetat (Hewitt, Fox, Soc. 87, 1059). — Gelbe Nadeln (aus Nitrobenzol). Ist bei 280° noch nicht geschmolzen. Löslich in Pyridin und Essigester, sehr schwer löslich in anderen Lösungsmitteln.

Hydroxymethylat, 3.6 - Bis - acetamino - 2.7.10 - trimethyl - 9 - phenyl - acridiniumhydroxyd $C_{26}H_{27}O_3N_3 = (HO)(CH_3)NC_{13}H_4(CH_3)_2(C_6H_5)(NH\cdot CO\cdot CH_3)_2$. — Jodid $C_{26}H_{26}O_3N_3\cdot I$. B. Beim Erhitzen von N.N'-Diacetyl-benzoflavin mit Methyljodid und Methanol auf 130° (Hewitt, Fox, Soc. 87, 1060). Krystalle (aus Alkohol). Sehr schwer löslich in Wasser mit gelber Farbe und schwacher Fluorescenz. Liefert beim Behandeln mit alkoh. Ammoniak 3-Imino-6-acetamino-2.7.10-trimethyl-9-phenyl-3.10-dihydro-acridin (s. o.).

- 3.6-Bis-diacetylamino-2.7-dimethyl-9-phenyl-acridin, N.N.N'.N'-Tetraacetylbenzoflavin $C_{29}H_{27}O_4N_3=NC_{18}H_4(CH_3)_2(C_6H_5)[N(CO\cdot CH_3)_2]_s$. B. Neben der Diacetylverbindung (s. o.) beim Kochen von Benzoflavin mit Essigsäureanhydrid und Natriumacetat (Hewitt, Fox, Soc. 87, 1060). Gelbe Tafeln. F: 273° (korr.).
- 4. 3 Amino 2.7 dimethyl 9 [4 amino phenyl] acridin C₉₁H₁₉N₃, s. nebenstehende Formel. B. Man fügt 4-Nitro-2-amino-toluol oder 2-Nitro-4-amino-toluol bei einer 220° nicht übersteigenden Temperatur zu einer Schmelze aus p-Toluidin, salzsaurem p-Toluidin und Eisenchlorür und kocht das Reaktionsprodukt mit Salzsaure (Höchster Farbw., D. R. P. 79585; Frdl. 4, 1037). F: 212°. Die äther. Lösung fluoresciert grün. Eigenschaften als Farbstoff: H. F.
- 3 Methylamino 2.7 dimethyl 9 [4 amino phenyl] acridin $C_{22}H_{21}N_3 = NC_{13}H_5(CH_3)_2(NH\cdot CH_3)\cdot C_6H_4\cdot NH_2$. B. Analog der vorangehenden Verbindung aus p-Toluidin,

dessen Hydrochlorid und 4-Nitro-2-methylamino-toluol (Höchster Farbw., D. R. P. 79877; Frdl. 4, 1038). — F: 83°.

3 - Dimethylamino - 2.7 - dimethyl - 9 - [4 - amino - phenyl] - acridin $C_{23}H_{23}N_3 = NC_{13}H_5(CH_3)_2(C_6H_4\cdot NH_2)\cdot N(CH_3)_2$. B. Analog den vorangehenden Verbindungen aus p-Toluidin, dessen Hydrochlorid und 4-Nitro-2-dimethylamino-toluol (H. F., D. R. P. 79877; Frdl. 4, 1038). — F: 70°.

4. 3.6 - Diamino - 2.7 - dimethyl - 9 - p - tolyl - acridin,
p - Methyl - benzoflavin C₂₂H₂₁N₃, s. nebenstehende Formel.
B. Durch Erhitzen von 4.6.4.6'. Tetraamino - 3.3'. 4''-trimethyl-triphenylmethan mit 16°/oiger Salzsäure unter Druck auf 160° und Oxydation des Reaktionsprodukts mit Eisenchlorid (Oehler, D. R. P. 45294; Frdl. 2, 106).
— Gelbrotes Pulver. Schwer löslich in Wasser, leicht in Alkohol mit gelbgrüner Fluorescenz. Die wäßr. Lösung wird durch Zinkstaub und Salzsäure entfärbt.

12. Diamine $C_n H_{2n-25} N_3$.

Diamine C₂₂H₁₉N₃.

- 1. 6 [4.4' Diamino benzhydryl] chinolin, Bis- (H₂N·C₆H₄)₂CH [4 amino phenyl] [chinolyl (6)] methan C₂₂H₁₆N₃, s. nebenstehende Formel.
- 6-[4.4'-Bis-dimethylamino-benzhydryl]-chinolin, Bis-[4-dimethylamino-phenyl]-[chinolyl-(6)]-methan $C_{26}H_{27}N_3 = NC_9H_6 \cdot CH[C_6H_4 \cdot N(CH_3)_2]_2$. B. Beim Erhitzen von 4-Amino-4'.4''-bis-dimethylamino-triphenylmethan mit Glycerin, Nitrobenzol und konz. Schwefelsäure auf 140—150° (Noelting, B. 24, 3141). Nadeln (aus Alkohol). F: 165°. Löslich in Alkohol, Äther und Benzol, unlöslich in Wasser und Ligroin. Wird an der Luft grünlich. $C_{26}H_{27}N_3 + 3$ HCl. Sehr leicht löslich.
- 2. 8 [4.4' Diamino benzhydryl] chinolin, Bis [4-amino-phenyl]-[chinolyl-(8)]-methan $C_{22}H_{10}N_3$, s. nebenstehende Formel. (H₂N·C₆H₄)₂CH

8 - [4.4' - Bis - dimethylamino - benzhydryl] - chinolin, Bis - [4 - dimethylamino-phenyl] - [chinolyl - (8)] - methan $C_{3e}H_{47}N_3 = NC_9H_6$ · $CH[C_0H_4 \cdot N(CH_3)_2]_8$. B. Beim Erhitzen von Chinolin-aldehyd - (8) mit Dimethylanilin und Zinkchlorid auf dem Wasserbad (Howitz, Schwenk, B. 38, 1283). — Nadeln (aus Alkohol). F: 179—180°. — Gibt bei der Oxydation mit Bleidioxyd einen intensiv grünen Farbstoff.

13. Diamine $C_nH_{2n-27}N_3$.

6 - Amino - 7 - methyl - 9 - [4 - amino - phenyl] - 9.10 - dihydro - 1.2 - benzo - acridin $C_{24}H_{21}N_3$, s. nebenstehende Formel.

6-Amino-7-methyl-9-[4-acetamino-phenyl]-9.10-dihydro-1.2-benzo-acridin $C_{26}H_{23}ON_3=C_{10}H_6$ $CH(C_0H_4\cdot NH\cdot CO\cdot CH_3)$ $C_6H_2(CH_3)\cdot NH_2$. B. Beim Erhitzen von 4.6.4'.6'- Tetraamino - 4''- acetamino - 3.3'-dimethyl-triphenylmethan (oder von 4-Acetamino-benzaldehyd und asymm. m-Toluylendiamin) mit β -Naphthol auf 180—200°, neben 6-Amino-7-methyl-9-[4-acetamino-phenyl]-1.2-benzo-acridin (S. 496) (Ullmann, Grether, Zischr. f. Farben- u. Textilchemie 2, 90; C. 1908 I, 883). — Sehr schwer löslich in Alkohol und Benzol, leicht in siedendem Anilin und Nitrobenzol. Die Lösungen fluorescieren blau. — Wird durch Eisenchlorid zum entsprechenden Acridin (S. 496) oxydiert.

14. Diamine $C_n H_{2n-29} N_3$.

6-Amino-7-methyl-9-[4-amino-phenyl]-1.2-benzo-C₆H₄·NH₂ acridin $C_{24}H_{19}N_3$, s. nebenstehende Formel. B. Beim Erhitzen von 4.6.4′.6′.4″-Pentaamino-3.3′-dimethyl-triphenylmethan mit β -Naphthol auf 200° (Ullmann, Grether, Zischr. f. Farben-u. Textilchemie 2, 92; C. 1903 I, 884). Bei kurzem Erwärmen der nachfolgenden Verbindung mit Salzsäure oder Schwefelsäure (U., G.). — Gelbe Krystalle (aus Nitrobenzol + Äther). F: 318°. Schwer löslich in Alkohol und Benzol, leicht in heißem Anilin und Nitrobenzol. Löslich in Eisessig mit orangegelber Farbe, in konz. Schwefelsäure mit gelber Farbe und grüner Fluorescenz. — $C_{24}H_{19}N_3 + 2$ HCl. Rote Nadeln. Schwer löslich in Wasser und Alkohol mit orangeroter Farbe. — $C_{24}H_{19}N_3 + HNO_3$. Rote Blättchen. Sehr schwer löslich in Wasser mit orangeroter Farbe, etwas leichter in Alkohol und verd. Essigsäure in der Wärme.

6-Amino-7-methyl-9-[4-acetamino-phenyl]-1.2-benzo-acridin $C_{26}H_{21}ON_3=NC_{17}H_8(CH_3)(NH_2)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Neben 6-Amino-7-methyl-9-[4-acetamino-phenyl]-9.10-dihydro-1.2-benzo-acridin (S. 495) beim Erhitzen von 4-Acetamino-benzaldehyd mit asymm. m-Toluylendiamin und β -Naphthol auf 200° oder von 4-6.4'.6'-Tetraamino-4''-acetamino-3.3'-dimethyl-triphenylmethan mit β -Naphthol auf 180° (ULLMANN, GRETHER, Ztschr. f. Farben- u. Textilchemie 2, 90; C. 1903 I, 883). — Gelbe Nadeln. F: 313°. Leicht löslich in heißem Alkohol, löslich in Eisessig mit gelber Farbe und grüner Fluorescenz. — $C_{26}H_{21}ON_3$ + HCl. Rote Blättchen. Sehr schwer löslich in Wasser, leichter in verd. Essigsäure mit rotgelber Farbe. — $C_{26}H_{21}ON_3$ + HNO3. Rote Nadeln. Die alkoh. Lösung ist orangerot und fluoresciert grün.

6-Acetamino-7-methyl-9-[4-acetamino-phenyl]-1.2-benzo-acridin $C_{23}H_{23}O_2N_3 = NC_{17}H_8(CH_3)(NH\cdot CO\cdot CH_3)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Beim Erhitzen der vorangehenden Verbindung mit Essigsäureanhydrid und Natriumacetat (U., G., Ztschr. f. Farben- u. Textilchemie 2, 91; C. 1903 I, 884). — Fast farblose Blättchen. F: 354°. Leicht löslich in Eisessig, Anilin und Nitrobenzol, schwer in siedendem Alkohol, Äther und Benzol. Die Lösung in Eisessig ist orangegelb.

C. Triamine.

1. Triamine $C_n H_{2n-8} N_4$.

5.7.8-Triamino-chinolin $C_0H_{10}N_4$, s. nebenstehende Formel. B. Beim Behandeln von 5.7-Dinitro-8-amino-chinolin mit Zinnchlorür und Salzsäure (Claus, Dewitz, J. pr. [2] 53, 547). — Rotbraune bis schwarze Krystalle (aus Chloroform + Petroläther). Ist bei 350° noch nicht geschmolzen. — $C_0H_{10}N_4+3$ HCl. Fast schwarze Krystalle. Leicht löslich in Wasser.

2. Triamine $C_n H_{2n-20} N_4$.

3.6 - Diamino - 2.7 - dimethyl - 9 - [4-amino - CH₃ CH₂ CH₃ CH₄ · NH₂) - CH₃ phenyl] - 9.10 - dihydro-acridin C₂₁H₂₂N₄, s. nebenstehende Formel. B. Beim Erhitzen von 4.6.4'.6'.4"-Pentaamino-3.3'-dimethyl-triphenylmethan mit 16°/oiger Salzsäure unter Druck auf 160° (Oehler, D. R. P. 45294; Frdl. 2, 107). — Gelbliche Flocken. — Gibt bei der Oxydation mit Eisenchlorid 3.6-Diamino-2.7-dimethyl-9-[4-amino-phenyl]-acridin (S. 497). — Hydrochlorid. Orangefarbenes Krystallpulver.

3. Triamine $C_n H_{2n-22} N_4$.

1. 3.6-Diamino-9-[4-amino-phenyl]-acridin $C_{10}H_{16}N_4$, $C_{0}H_4 \cdot NH_2$ s. nebenstehende Formel.

8-Amino-6-dimethylamino-9-[4-dimethylamino-phenyl]-acridin $C_{23}H_{24}N_4 = NC_{13}H_6(NH_2)[N(CH_3)_2] \cdot C_6H_4 \cdot N(CH_3)_2 \cdot B$. Beim

Erhitzen von 4.4'-Bis-dimethylamino-benzophenon mit einem Gemisch von freiem und salzsaurem m-Phenylendiamin auf 195—210° (BASF, D. R. P. 82989; Frdl. 4, 174; vgl. Grandmougin, Lang, B. 42, 3634). — Braunes Pulver. Löslich in Wasser mit braungelber Farbe und grüner Fluorescenz. Findet als Farbstoff Verwendung unter dem Namen Rheonin A (Schultz, Tab. No. 607). — Gibt ein leicht lösliches Hydrochlorid.

3.6-Bis-dimethylamino-9-[4-dimethylamino-phenyl]-acridin $C_{25}H_{28}N_4 = NC_{13}H_4$ [N(CH₃)₂]₂·C₆H₄·N(CH₃)₂. B. Beim Erhitzen von N-[3-Dimethylamino-phenyl]-auramin (Bd. XIV, S. 96) mit Zinkehlorid auf 200—210° (Grandmougin, Lang, B. 42, 3634). — Braune Krystalle (aus Alkohol). F: 285°. Löslich in Alkohol, Aceton und Chloroform, unlöslich in Benzol und Äther. Löslich in Essigsäure und in Mineralsäuren mit tiefroter Farbe. Absorptionsspektrum in saurer Lösung: G., L. — Die Lösung in konz. Schwefelsäure ist gelb und fluoresciert grün. — $C_{25}H_{28}N_4 + 2HCl + ZnCl_2 + 3H_2O$. Grünschimmernde, braune Nadeln.

- 2. 3.6 Diamino 2.7 dimethyl 9 [4 amino phenyl] C₆H₄·NH₂ acridin, p Amino benzoflavin C₂₁H₂₀N₄, s. nebenstehende Formel. B. Bei der Oxydation der entsprechenden Dihydroverbindung (S. 496) mit Eisenchlorid in verd. Salzsäure bei H₂N·NH Gegenwart von Zinkchlorid (OEHLER, D. R. P. 45294; Frdl. 2, 108).
- 3.6-Bis-dimethylamino-2.7-dimethyl-9-[4-amino-phenyl]-acridin $C_{25}H_{18}N_4=NC_{12}H_4(CH_2)_2[N(CH_2)_2]_2\cdot C_5H_4\cdot NH_2$. B. Beim Erhitzen von (nicht näher beschriebenem) 6.6.4"-Triamino-4.4'-bis-dimethylamino-3.3'-dimethyl-triphenylmethan mit verd. Schwefelsäure unter Druck auf 120—130° und Behandeln des Reaktionsprodukts mit Eisenchlorid (Leonhardt & Co., D. R. P. 70065; Frdl. 3, 293). Gelbe Flocken. Löslich in Äther mit grünlicher Fluorescenz. Zinkchlorid-Doppelsalz. Löslich in Wasser und Alkohol mit orangeroter Farbe. Die Lösung in konz. Schwefelsäure ist gelb, fluoresciert grün und wird auf Zusatz von Wasser rot.

D. Tetraamine.

Tetraamino-carbazole C₁₂H₁₃N₅. Vgl. darüber Escales, B. 37, 3597.

E. Oxy-amine.

- 1. Aminoderivate der Monooxy-Verbindungen.
- a) Aminoderivate der Monooxy-Verbindungen C_n H_{2n-5} ON.
- 1. Aminoderivate der Monooxy-Verbindungen $\mathrm{C_5H_5ON}.$
 - 1. Aminoderivate des 2-Oxy-pyridins C₅H₅ON (Bd. XXI, S. 43).
- 3.5.6-Trichlor-4-amino-2-oxy-pyridin C₅H₂ON₂Cl₃, s. nebenstehende Formel, bezw. desmotrope Formen. B. Neben anderen Produkten aus Glutazin (S. 511) beim Erhitzen mit Phosphorpentachlorid in Gegenwart von Phosphoroxychlorid (Stokes, v. Pechmann, B. 19, 2711, 2712). In geringer Menge beim Erhitzen von β-Oxy-β-amino-glutarsäure-äthylester-amid (Bd. III, S. 793) mit Phosphorpentachlorid (St., v. P.). Nadeln (aus Alkohol). F: 282°. Sublimiert bei vorsichtigem Erhitzen. Unlöslich in Ligroin, schwer löslich in Alkohol, Äther und heißem Benzol, sehr leicht in heißem Wasser. Löslich in konz. Salzsäure und in konz. Schwefelsäure. Liefert beim Erhitzen mit Phosphorpentachlorid auf 150° 2.3.5.6-Tetrachlor-4-amino-pyridin. Beim Erhitzen mit Natriumäthylat in Alkohol auf 190° erhält man 3.5-Dichlor-4-amino-2-oxy-6-āthoxy-pyridin. NaC₃H₂ON₃Cl₃. Krystallwasserhaltige Nadeln; wasserfreie Krystalle (aus Alkohol). Mäßig löslich in kaltem Wasser, schwer in Alkohol.
- 8.5.6-Trichlor-4-amino-2-äthoxy-pyridin C₇H₇ON₂Cl₃ = NC₅Cl₃(O·C₂H₅)·NH₂.

 B. Beim Erhitzen des wasserfreien Natriumsalzes des 3.5.6-Trichlor-4-amino-2-oxy-pyridins
 BEILSTEINS Handbuch. 4. Aufl. XXII.

 32

mit Äthyljodid und Alkohol auf 120° (STOKES, v. PECHMANN, B. 19, 2715). Aus 2.3.5.6-Tetrachlor-4-amino-pyridin beim Kochen mit überschüssigem Natriumäthylat in Alkohol (St., v. P.; Sell, Dootson, Soc. 77, 4). — Nadeln (aus verd. Alkohol). F: 83°; sublimierbar; flüchtig mit Wasserdampf; sehr leicht löslich in Alkohol, Äther, Chloroform und Benzol, löslich in Ligroin, unlöslich in Wasser (St., v. P.). — Liefert beim Erhitzen mit verd. Salzsäure (D: 1,15) im Rohr auf etwas über 100° 3.5.6-Trichlor-4-amino-2-oxy-pyridin und Äthylchlorid (St., v. P.).

5 - Amino - 2 - oxy - pyridin bezw. 5 - Amino-pyridon-(2) $C_5H_6ON_2$, Formel I bezw. II. B. Aus 6-Chlor-3-amino-pyridin beim Erhitzen mit Natriummethylat in Methanol auf 120—125° (Mills, Widdows, Soc. 93, 1382). Aus N.N'-Bis-[6-oxy-pyridyl-(3)]-harnstoff beim Erhitzen mit konz. Salzsäure auf 125° (M., W.). Bei der Reduktion von 5-Benzolazo-2-oxy-pyridin mit Na $_2S_2O_4$ in siedendem Alkohol (M., W.). — Geht in alkal. Lösung in ein tiefrotes Produkt über. — Hydrochlorid. Krystalline Masse.

5-Benzamino-2-benzoyloxy-pyridin C₁₉H₁₄O₃N₂=NC₅H₃(O·CO·C₆H₅)·NH·CO·C₆H₅.

B. Aus dem Hydrochlorid des 5-Amino-2-oxy-pyridins beim Behandeln mit Benzoylchlorid in Soda-Lösung oder Pyridin (Mills, Widdows, Soc. 93, 1383). — Nadeln (aus Alkohol). F: 212,5°. Unlöslich in Wasser, schwer löslich in Äther, löslich in Benzol und Alkohol, leicht löslich in Chloroform. — Liefert beim Behandeln mit alkoh. Kalilauge eine Verbindung vom Schmelzpunkt 252—253° (Krystalle; schwer löslich in Äther und Benzol, leicht in Alkohol und Wasser; wahrscheinlich 5-Benzamino-2-oxy-pyridin).

[6-Oxy-pyridyl-(3)]-carbamidsäure-äthylester, [6-Oxy-pyridyl-(3)]-urethan $C_8H_{10}O_3N_2=NC_5H_3(OH)\cdot NH\cdot CO_2\cdot C_2H_5$. B. Aus 6-Oxy-nicotinsäure-azid beim Kochen mit absol. Alkohol (MILLS, WIDDOWS, Soc. 93, 1382). — Krystalle (aus Aceton). F: 219° bis 222°.

N.N'-Bis-[6-oxy-pyridyl-(3)]-harnstoff $C_{11}H_{10}O_3N_4=[NC_5H_3(OH)\cdot NH]_2CO$. B. Aus 6-Oxy-nicotinsäure-azid beim Kochen mit Wasser (MILLS, WIDDOWS, Soc. 93, 1382). — Krystalle (aus Wasser). Färbt sich bei ca. 270° dunkel und zersetzt sich bei ca. 302°. Leicht löslich in heißem Wasser sowie in Methanol und Alkohol, schwer in den meisten anderen Lösungsmitteln.

2. Aminoderivat eines Oxy-pyridins $C_5H_5\mathrm{ON}$ mit unbekannter Stellung der OH-Gruppe.

x-Amino-x-oxy-pyridin $C_5H_6ON_2=NC_5H_3(OH)\cdot NH_2$. B. Aus Oxykomazin (S. 252) beim Erwärmen mit Zinn und Salzsäure auf dem Wasserbad (Krippendorff, J. pr. [2] 32, 162). — Pyramiden mit 1H₂O (aus Wasser); scheint aus Alkohol + Äther wasserfrei zu krystallisieren. F: ca. 214°. Sublimiert teilweise in Nadeln; nicht flüchtig mit Wasserdampf. Sehr leicht löslich in Wasser, löslich in Alkohol, unlöslich in Äther, Benzol und Chloroform. — Beim Erhitzen mit Salpetersäure entsteht Oxalsäure. — Mit Ferrichlorid in Gegenwart von wenig Säure tritt eine rotviolette Färbung auf, die auf Zusatz von mehr Säure wieder verschwindet. — $C_5H_6ON_2+HCl$. Krystalle. F: 150°. Leicht löslich in Wasser und Alkohol, ziemlich schwer in konz. Salzsäure. — $2C_5H_6ON_2+2HCl+PtCl_4$. Hellorangerote Prismen. F: 213°; zersetzt sich bei 217°. Ziemlich schwer löslich in Alkohol und in kaltem Wasser. Wird durch siedendes Wasser zersetzt.

2. Aminoderivat des 4- oder des 6-0xy-2-methyl-pyridins C_6H_7ON .

6(oder 4) - Amino - 4(oder 6) - oxy - 2 - methyl - pyridin $C_6H_8ON_2$, Formel III oder IV. Über eine Verbindung, der vielleicht Formel III oder Formel IV zuzuschreiben ist, vgl. Bd. III, S. 655.

3. Aminoderivate der Monooxy-Verbindungen C7H2ON.

1. Aminoderivate des 6-Oxy-2.4-dimethyl-pyridins C,H,ON (Bd. XXI, S. 51).

5-Amino-6-oxy-2.4-dimethyl-pyridin bezw.
5-Amino-2.4-dimethyl-pyridon-(6) C₇H₁₀ON₂,
Formel V bezw. VI. B. Aus 5-Nitro-6-oxy-2.4-di-V. H₂N VI. O: N CH₃

methyl-pyridin durch Reduktion mit Zinn und Salzsäure (Collie, Tiokle, Soc. 73, 232). Aus 5-Amino-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(3) beim Erhitzen auf den Schmelzpunkt (C., T.).

Nadeln (aus Wasser). F: 205° (korr.). Löslich in heißem Wasser. — Bräunt sich beim Erwärmen auf 100°; zersetzt sich beim Erhitzen in wäßriger, schneller in alkal. Lösung. Reduziert Silbernitrat-Lösung in der Kälte. — $C_7H_{10}ON_2+HCl$. Nadeln. Zersetzt sich bei 235° bis 240°. — $2C_7H_{10}ON_2+2HCl+PtCl_4$. Geht beim Umlösen aus verd. Salzsäure in ein Salz $3C_7H_{10}ON_2+4HCl+2PtCl_4$ über.

N-Monoacetylderivat $C_9H_{12}O_2N_2 = NC_5H(CH_3)_3(OH)\cdot NH\cdot CO\cdot CH_3$. B. Aus 5-Amino-6-oxy-2.4-dimethyl-pyridin beim Erhitzen mit Acetanhydrid auf dem Wasserbad (COLLIE, TICKLE, Soc. 78, 233). — Nadeln (aus Wasser oder Alkohol). F: 255° (korr.). Leicht löslich in heißem Wasser, ziemlich schwer in Äther, Aceton und Essigester.

2. Aminoderivat des 4-Oxy-2.6-dimethyl-pyridins C,H₂ON (Bd. XXI, S. 53).

3-Amino-4-oxy-2.6-dimethyl-pyridin bezw.
3-Amino-2.6-dimethyl-pyridon-(4) C₇H₁₀ON₂,
Formel I bezw. II. B. Aus 3-Nitro-4-oxy-2.6-dimethyl-pyridin beim Behandeln mit Zinn und Salzsäure (Hall, Collie, Soc. 73, 238). — Nadeln mit 1H₂O (aus Wasser). — Reduziert Silbernitrat-Lösung. Wird bei längerem Kochen mit Soda-Lösung zersetzt unter Bildung von Essigsäure und einer Verbindung C₅H₁₀ON₂. Beim Erwärmen des Chloroplatinats mit verd. Salzsäure entsteht das Chloroplatinat einer Verbindung C₃H₆N₂ (α.β-Diamino-propylen?) C₃H₆N₂ + 2 HCl + PtCl₄. — C₇H₁₀ON₂ + HCl. Krystalle (aus Alkohol). F: 186° (korr.). Zersetzt sich bei längerem Erhitzen auf 100°. — C₇H₁₀ON₂ + 2 HCl + 2 H₂O. Krystalle (aus verd. Salzsäure). F: ca. 275—280° (unter Abspaltung von Chlorwasserstoff). — C₇H₁₀ON₃ + 2 HCl + PtCl₄ + 3 H₂O. Krystalle. Sehr leicht löslich. Zersetzt sich beim Erwärmen mit Wasser.

b) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-7}ON$.

1. Aminoderivat einer Monooxy-Verbindung C_7H_7ON .

Verbindung C₇H₈ON₂, s. nebenstehende Formel. Eine Verbindung, der vielleicht diese Konstitution zukommt, und das entsprechende Diacetyl-Derivat s. Bd. VII, S. 265.

2. Aminoderivat des 5-Äthyl-2-[β -oxy- β -phenyl-äthyl]-piperidins $C_{18}H_{28}ON$.

5-Äthyl-2-[β -oxy- β -(2-amino-phenyl)-äthyl]-piperidin, α -Oxy- α -[2-amino-phenyl]- β -[5-äthyl-piperidyl-(2)]-äthan $C_{15}H_{24}ON_2=C_2H_5\cdot HC\cdot CH_2\cdot CH_2$

H₂C·NH·CH·CH₂·CH(OH)·C₆H₄·NH₂

B. Aus α-Oxy-α-[2-nitro-phenyl]-β-[5-āthyl-pyridyl-(2)]-āthan durch Reduktion mit Natrium in Alkohol (Castner, B. 34, 1899). — Gelbes Ol. — C₁₅H₂₄ON₂ + HCl + AuCl₃. Dunkelgelb. Leicht löslich in Alkohol und in verd. Salzsäure. — 2C₁₅H₂₄ON₂ + 2HCl + HgCl₂. Gelber Niederschlag. Zersetzt sich beim Schmelzen. Leicht löslich in Alkohol und heißem Wasser. — 2C₁₅H₂₄ON₂ + 2HCl + PtCl₄. Krystalle (aus verd. Salzsäure). F: 126° (Zers.). Leicht löslich in Alkohol.

c) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-9} ON$.

5 - Oxy - 3 - [β - dimethylamino - äthyl] - indol Ho

C₁₂H₁₆ON₂, s. nebenstehende Formel. Diese Konstitution
kommt nach Wieland, Konz, Mittasch (A. 513 [1934], 1;

vgl. a. Wie., Hesse, Mi., B. 64 [1931], 2099) dem von Phisalix, Bertrand (C. r. 135, 46) im Hautsekret der gemeinen Kröte (Bufo vulgaris L.) neben anderen Produkten pharmakologisch nachgewiesenen Bufotenin zu.

d) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-11}ON$.

1. Aminoderivate der Monooxy-Verbindungen C₂H₇ON.

- 1. Aminoderivate des 2-Oxy-chinolins C₂H₇ON (Bd. XXI, S. 77).
- 4-Anilino-2-oxy-chinolin, 4-Anilino-carbostyril $C_{15}H_{12}ON_2$, NH-C₆H₅ s. nebenstehende Formel, bezw. desmotrope Formen. B. Neben anderen Produkten beim Erhitzen von 2 Mol Anthranilsäure mit 1 Mol Benzoylessigsäure-äthylester auf ca. 170° (Niementowski, B. 38, 2045; 40, 4286). Tafeln (aus Aceton). F: 318°. Krystallisiert aus Methanol oder Eisessig mit je 1 Mol Krystall-Lösungsmittel: auch aus Acetanhydrid erhält man mitunter Krystalle mit 1 Mol Krystall-Eisessig (N., B. 40, 4286). Ziemlich leicht löslich in Eisessig, Acetanhydrid und Anilin, schwer in Methanol und Aceton, sehr schwer in Alkohol, unlöslich in Benzol, Tetrachlorkohlenstoff und Wasser; unlöslich in Alkalien und Ammoniak, löslich in konz. Säuren (N., B. 40, 4287). Liefert bei der Destillation mit Zinkstaub im Vakuum 4-Anilinochinolin (N., B. 40, 4289). Beim Schmelzen mit Atzalkalien sowie beim Erhitzen mit Salzsäure im Rohr auf 180—200° erhält man Anilin und 2.4-Dioxy-chinolin (N., B. 40, 4287). Beim Erhitzen mit Phosphorpentachlorid und Phosphoroxychlorid entsteht 2-Chlor4-anilino-chinolin (N., B. 40, 4290). $C_{15}H_{12}ON_2+HCl$. Nadeln. F: 160—165° (Zers.) (N., B. 40, 4287).
- 4-Anilino-2-äthoxy-chinolin, 4-Anilino-carbostyril-äthyläther $C_{17}H_{16}ON_{2} = NC_{9}H_{5}(O \cdot C_{2}H_{5}) \cdot NH \cdot C_{6}H_{5}$. B. Beim Behandeln von 4-Chlor-2-äthoxy-chinolin mit Anilin (EPHEAIM, B. 26, 2230). Nadeln (aus Alkohol). Ist bei 270° noch nicht geschmolzen.
- 5-Amino-2-oxy-chinolin bezw. 5-Amino-chinolon-(2) C₉H₈ON₂, Formel I bezw. II, 5-Amino-carbostyril. B. Aus 5-Nitro-carbostyril beim Kochen mit Zinnchlorür und Salzsäure (Claus, Setzer, J. pr. [2] 53, 396). Nadeln. F: 250°. Löslich in siedendem Wasser.

- 6-Amino-2-oxy-chinolin bezw. 6-Amino-chinolon-(2) C₉H₈ON₂, Formel III bezw. IV, 6-Amino-carbostyril. B. Aus 6-Nitro-carbostyril. B. Aus
- 6-Amino-2-methoxy-chinolin, 6-Amino-carbostyril-methyläther $C_{10}H_{10}ON_2 = NC_0H_5(O\cdot CH_3)\cdot NH_2$. B. Aus 6-Nitro-carbostyril-methyläther beim Erwärmen mit Zinn-chlorür in salzsaurer Lösung (Feer, Koenigs, B. 18, 2397). Blättchen (aus verd. Alkohol). F: 103°. Löslich in heißem Wasser, sehr leicht löslich in den meisten übrigen Lösungsmitteln. Wird durch Kaliumpermanganat in wäßr. Lösung zu 6-Methoxy-pyridin-dicarbonsäure-(2.3) oxydiert. Liefert beim Erhitzen mit verd. Salzsäure auf 120° 6-Amino-carbostyril.
- 7-Amino-2-oxy-chinolin bezw. 7-Amino-chinolon-(2) C₉H₈ON₂, Formel V bezw. VI, V. 7-Amino-carbostyril. B. A 1:2.4-Dinitro-zimtsäure beim Erwärmen mit Zinnchlorür und Zinn in rauchender Salzsäure (FRIEDLAENDER, FRITSCH, M. 23, 538). Nadeln (aus Wasser oder verd. Alkohol), die allmählich rötlich werden. Schmilzt oberhalb 250°. Leicht löslich in Alkohol, Eisessig und heißem Wasser.
 - 2. Aminoderivate des 5-Oxy-chinolins C₂H₇ON (Bd. XXI, S. 84).

Chinolinchinon - (5.6) - [5 - oxy - chinolyl - (6) - imid] - (6) (?) O HO C₁₈H₁₁O₂N₃, s. nebenstehende Formel. — C₁₈H₁₁O₂N₃ + NH₃ (Thalleiochinolin). B. Aus salzsaurem 5.5-Dichlor-6-oxo-5.6-dihydrochinolin (Bd. XXI, S. 303) bei Zusatz von überschüssigem Ammoniak zur wäßrig-alkoholischen Lösung (Fühner, Ar. 244, 617). Zur Bildung aus salzsaurem 5.6-Dioxo-5.6-dihydro-chinolin vgl. F., Ar. 244, 621. Dunkelblaues, amorphes, hygroskopisches Pulver. Sehr schwer löslich in Alkohol, fast unlöslich in Äther, Chloroform,

Essigester, Petroläther und Wasser. Löst sich in Mineralsäuren mit carminroter bis rotbrauner Farbe. Wird in ammoniakalischer Suspension durch Schwefelwasserstoff zu einem braunen, an der Luft sich grün färbenden Produkt reduziert. Reagiert mit Benzoylchlorid in Gegenwart von Natronlauge, desgl. in Eisessig-Lösung mit Anilin.

8-Amino-5-oxy-chinolin C₂H₈ON₂, s. nebenstehende Formel. B. Aus 8-Nitro-chinolin durch Elektrolyse der Lösung in konz. Schwefelsäure (GATTER-MANN, B. 27, 1940; BAYER & Co., D. R. P. 80978; Frdl. 4, 57). — Krystalle, die an der Luft bald grünlich werden. Zersetzt sich beim Erhitzen. — Beim Stehenlassen der alkal. Lösung erhält man ein blaugrünes Produkt. — C₂H₈ON₂+ H₂N H₂SO₄. Hellgelbe Nadeln (aus verd. Schwefelsäure).

8-Acetamino-5-acetoxy-chinolin C₁₂H₁₂O₂N₂ = NC₂H₅(O·CO·CH₃)·NH·CO·CH₃. B. Aus 8-Amino-5-oxy-chinolin beim Behandeln mit Acetanhydrid (Gattermann. B. 27, 1940; Bayer & Co., D. R. P. 80978; Frdl. 4, 57). — Nadeln (aus verd. Alkohol). F: 153—154°.

8-Benzamino-5-benzoyloxy-chinolin $C_{23}H_{16}O_3N_2 = NC_9H_5(O \cdot CO \cdot C_6H_5) \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 8-Amino-5-oxy-chinolin beim Behandeln mit Benzoylchlorid in alkal. Lösung (Gattermann, B. 27, 1940; Bayer & Co., D. R. P. 80978; Frdl. 4, 57). — Prismen (aus Eisessig). F: 180°.

3. Aminoderivate des 6-Oxy-chinolins C₂H₇ON (Bd. XXI, S. 85).

4-Amino-6-methoxy-chinolin $C_{10}H_{10}ON_2$, s. nebenstehende Formel.

B. Beim Behandeln von Chininsäureamid mit Kaliumhypobromit-Lösung (Hirsch, M. 17, 333). — Nadeln (aus Benzol). F: 120° . — $C_{10}H_{10}ON_2 + HCl$ (bei 100°). Schuppen. F: 249° (teilweise Zersetzung). Leicht löslich in Wasser und Alkohol. — $2C_{10}H_{10}ON_2 + 2HCl + PtCl_4$. Orangerote Plättchen. F: 230° (Zers.).

5-Amino-6-oxy-chinolin C₂H₂ON₂, s. nebenstehende Formel. B. Durch Reduktion von 5-Nitroso-6-oxy-chinolin (Bd. XXI, S. 519) mit Zinnchlorür und konz. Salzsäure (Matheus, B. 21, 1886) oder von 5-Nitro-6-oxy-chinolin mit wäßr. Ammoniumsulfid-Lösung (Altschul, B. 21, 2255). Aus [Benzol-sulfon-säure-(1)]-(4 azo 5)-[6-oxy chinolin] (Syst. No. 3448) durch Reduktion mit Zinnchlorür und Salzsäure (Matheus, B. 21, 1645; Zinche, Wiederhold, A. 290, 364). — Nadeln mit 2 H₂O (aus Wasser). Geht bei 100° unter Verlust des Krystallwassers in eine grüne Substanz über, die bei 185° schmilzt; leicht löslich in Alkohol, löslich in heißem Wasser, schwer löslich in Ather. Benzol und Chloroform; löslich in verd. Säuren mit roter, in Alkalien mit grünlicher Farbe (M., B. 21, 1646; A.). — Liefert bei der Oxydation mit Ferrichlorid in schwefelsaurer Lösung 5.6-Dioxo-5.6-dihydro-chinolin (M., B. 21, 1887). Beim Behandeln mit Chlor in Eisessig erhält man 7.8-Dichlor-chinolinchinon-(5.6) (Z., W.). — Hydrochlorid. Rote Prismen (M., B. 21, 1646), rotgelbe Krystalle (Z., W.). Leicht löslich in Wasser mit roter Farbe (M.). — C₉H₈ON₂ + H₈SO₄. Rötlichgelbe Prismen (aus Wasser) (M., B. 21, 1646).

5-Amino-6-äthoxy-chinolin C₁₁H₁₂ON₂ = NC₂H₅(O·C₂H₅)·NH₂. B. Aus 5-Nitro-6-äthoxy-chinolin durch Reduktion mit Zinn oder Zinnchlorür und Salzsäure oder mit Eisenfeile und Salzsäure oder Essigsäure (Vis, J. pr. [2] 48, 29; Dahl & Co., D. R. P. 69035; Frdl. 3, 961; Grimaux, Bl. [3] 15, 25). — Gelbe Nadeln mit 1 H₂O (aus Wasser). Die wasserhaltige Verbindung schmilzt bei 76° (V.); die wasserfreie Verbindung schmilzt bei 110° (Gr.), 115—116° (V.; D. & Co.). — Leicht löslich in heißem Alkohol, sehr schwer in kaltem Wasser (V.; D. & Co.).

5-Acetamino-6-äthoxy-chinolin $C_{19}H_{14}O_2N_3=NC_9H_5(O\cdot C_2H_5)\cdot NH\cdot CO\cdot CH_3$. B. Aus 5-Amino-6-äthoxy-chinolin beim Behandeln mit Eisessig oder mit Acetanhydrid und Eisessig (VIS, J. pr. [2] 48, 30; Dahl & Co., D. R. P. 69035; Frdl. 3, 962). — Blättchen. F: 163° bis 163,5°. Schwer löslich in kaltem Wasser, leicht in Alkohol.

5-Bensamino-6-äthoxy-chinolin $C_{18}H_{16}O_2N_2 = NC_9H_6(O \cdot C_9H_8) \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 5-Amino-6-šthoxy-chinolin beim Behandeln mit Benzoylchlorid in alkal. Lösung (Vis, J. pr. [2] 48, 30; Dahl & Co., D. R. P. 69035; Frdl. 3, 962). — Krystalle (aus Alkohol). F: 144°. Ziemlich leicht löslich in Alkohol.

5-Chlor-8-anilino-6-oxy-chinolin C₁₅H₁₁ON₂Cl, s. nebenstehende Formel. B. Aus 5.5-Dichlor-6-oxo-5.6-dihydro-chinolin beim Behandeln mit Anilin in Alkohol bei 50° (FÜHNER, Ar. 244, 615). — Gelbe oder braune Nadeln (aus Alkohol). F: 127—128°. — Das Hydrochlorid und das Sulfat bilden zinnoberrote Krystalle, die durch heißes Wasser zersetzt werden.

C₆H₅·HN

- 5.7-Dichlor-8-anilino-6-oxy-chinolin $C_{18}H_{10}ON_2Cl_2$, s. nebenstehende Formel. B. Aus 5.5.7-Trichlor-6-oxo-5.6-dihydro-chinolin beim Behandeln mit überschüssigem Anilin in Alkohol (ZINCKE, A. 264, 206, 219). Aus 5.5.7-Trichlor-8-anilino-6-oxo-5.6-dihydro-chinolin (Bd. XXI, S. 507) bei Einw. von Zinnchlorür in essigsaurer Lösung (Z., A. 264, 224). Krystallisiert aus C_6H_5 ·HN Alkohol in farblosen Nadeln, die allmählich in orangefarbene bis dunkelgranatrote Würfel übergehen; beim Auskrystallisieren der Würfel aus Alkohol erhält man zunächst wieder die farblosen Nadeln. Leicht löslich in Alkohol, Eisessig und Benzol, schwer in Benzin. $C_{15}H_{10}ON_2Cl_2+HCl$. Bräunliche Prismen.
- 5.7-Dichlor-8-anilino-6-acetoxy-chinolin $C_{17}H_{12}O_2N_2Cl_3 = NC_9H_3Cl_2(O\cdot CO\cdot CH_3)\cdot NH\cdot C_6H_5$. B. Aus 5.7-Dichlor-8-anilino-6-oxy-chinolin beim Behandeln mit Acetanhydrid und Natriumacetat (ZINCKE, A. 264, 220). Gelbe Blättchen (aus Alkohol). F: 170°. Schwer löslich in kaltem Alkohol.
 - 4. Aminoderivate des 8-Oxy-chinolins C₂H₇ON (Bd. XXI, S. 91).
- **2-Amino-8-methoxy-chinolin** $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Aus 2-Chlor-8-methoxy-chinolin beim Erhitzen mit alkoh. Ammoniak auf 180—200° (O. FISCHER, B. 35, 3681). — Nadeln (aus Wasser). F: 156°. — $C_{10}H_{10}ON_2 + HCl + AuCl_3$. Rotbraune Nadeln (aus Alkohol).
- **2-Methylamino-8-methoxy-chinolin** $C_{11}H_{12}ON_2 = NC_9H_5(O \cdot CH_3) \cdot NH \cdot CH_3$. B. Aus 2-Chlor-8-methoxy-chinolin beim Erhitzen mit Methylamin in Alkohol auf 180—190° (O. FISCHER, B. 35, 3681). Prismen (aus Ligroin). F: 151°. Liefert beim Behandeln mit Nitrit in kalter verdünnter Salzsäure ein bei 180° schmelzendes Nitrosamin.
- 5-Amino-8-oxy-chinolin C₉H₈ON₂, s. nebenstehende Formel. B. Aus H₂N 5-Nitro-chinolin durch elektrolytische Reduktion in schwefelsaurer Lösung (Gattermann, B. 27, 1939; Bayer & Co., D. R. P. 80978; Frdl. 4, 57). Aus dem Hydrochlorid des 5-Nitroso-8-oxy-chinolins (Bd. XXI, S. 518) beim Behandeln mit Zinnchlorür in Salzsäure (Lippmann, Fleissner, M. 10, 796; v. Kostanecki, Ho B. 24, 153). Entsteht beim Erwärmen von [Benzol-sulfonsäure-(1)]-\(\lambda\) azo 5\(\cdot\)-[8-oxy-chinolin] mit Zinnchlorür und konz. Salzsäure (O. Fischer, Renouf, B. 17, 1643). Nadeln (aus Benzol). F: 143° (v. K.; G.; B. & Co.). Liefert bei Einw. von Kaliumdichromat in schwefelsaurer Lösung Chinolinchinon-(5.8) (F., R.). Zersetzt sich beim Erwärmen mit Wasser oder Alkohol (F., R.). C₉H₈ON₂ + 2 HCl. Nadeln. Leicht löslich in Wasser (F., R.; L., Fl.). C₉H₈ON₂ + 2 H₂O. Nadeln (aus Alkohol) (v. K.; G.). Zinnchlorid-Doppelsalz. Gelbe Krystalle. Sehr schwer löslich in konz. Salzsäure (F., R.).
- 5-Amino-8-methoxy-chinolin $C_{10}H_{10}ON_2=NC_9H_5(O\cdot CH_9)\cdot NH_9$. B. Aus 5-Nitro-8-methoxy-chinolin durch Reduktion mit Zinn oder Zinnchlorür und Salzsäure oder mit Eisenfeile und Salzsäure (Vis, J. pr. [2] 48, 26; Dahl & Co., D. R. P. 65110; Frdl. 3, 961). Scheidet sich aus Wasser mit $1\,H_2O$ ab; F: 76° (V.). Bildet wasserfrei gelbe Nadeln vom Schmelzpunkt $155-156^{\circ}$ (V.).
- 5-Amino-8-äthoxy-chinolin $C_{11}H_{12}ON_2 = NC_9H_5(O\cdot C_2H_5)\cdot NH_2$. B. Aus 5-Nitro-8-äthoxy-chinolin durch Reduktion mit Zinn oder Zinnchlorür und Salzsäure (Vis, J. pr. [2] 45, 541; D. R. P. 60308; Frdl. 3, 958). Gelbe Blättchen mit 1 H_2O (aus Wasser). F: 70°. Schmilzt wasserfrei bei 114°. Leicht löslich in Alkohol, schwer in kaltem Wasser und in Äther, sehr schwer in Benzol, fast unlöslich in Petroläther. Monohydrochlorid. Blättchen. F: 235°. Löslich in Wasser mit roter Farbe. Bishydrochlorid. Gelbliches Krystall-pulver. Geht beim Erhitzen sowie beim Behandeln mit Wasser in das Monohydrochlorid über. Zinnchlorid-Doppelsalz. Gelbe Nadeln. Schwer löslich. $2C_{11}H_{12}ON_2 + 2HCl + PtCl_4 + 3,5H_2O$. Gelbes Pulver. Zersetzt sich von 255° an.
- 5-Benzalamino-8-oxy-chinolin $C_{16}H_{12}ON_2 = NC_0H_5(OH)\cdot N:CH\cdot C_0H_5$. B. Aus 5-Amino-8-oxy-chinolin-sulfat bei Einw. von Benzaldehyd in Wasser (GATTERMANN, B. 27, 1939). Grünlichgelbe Krystalle (aus Alkohol). Zersetzt sich beim Erhitzen, ohne zu sehmelzen.
- 5-Acetamino-8-methoxy-chinolin $C_{12}H_{12}O_2N_2 = NC_2H_5(O \cdot CH_3) \cdot NH \cdot CO \cdot CH_2$. B. Aus 5-Amino-8-methoxy-chinolin bei Einw. von Eisessig oder aus dem Hydrochlorid des 5-Amino-8-methoxy-chinolins beim Behandeln mit Eisessig und Acetanhydrid in Gegenwart von Natriumacetat (Vis, J. pr. [2] 48, 26; Dahl & Co., D. R. P. 65110; Fral. 3, 961). Krystalle mit 1 H₂O (aus Wasser). Krystalle (aus Alkohol). F: 179°. Sehr schwer löslich in kaltem Wasser. Über die physiologische Wirksamkeit vgl. Dahl & Co.; Freyss, Paira, C. 1903 I, 36.

- 5-Acetamino-8-äthoxy-chinolin $C_{13}H_{14}O_2N_2=NC_9H_5(O\cdot C_8H_5)\cdot NH\cdot CO\cdot CH_3$. B. Aus dem Hydrochlorid oder dem Zinnchlorid Doppelsalz des 5-Amino-8-äthoxy-chinolins beim Behandeln mit Eisessig, Acetanhydrid und Natriumacetat oder aus freiem 5-Amino-8-äthoxy-chinolin beim Kochen mit Eisessig und Acetanhydrid (Vis, J. pr. [2] 45, 542; D. R. P. 60308; Frdl. 3, 958). Nadeln (aus Wasser). F: 155°. In 1 l Wasser lösen sich bei Zimmertemperatur ca. 7 g. Physiologische Wirkung: V., J. pr. [2] 45, 544. Wirkt antineuralgisch und antipyretisch (V.; D. & Co.). $2C_{13}H_{14}O_2N_2+2HCl+PtCl_4+2,5H_2O$. Nadeln oder Prismen. Zersetzt sich bei 225°.
- **5-Acetamino-8-acetoxy-chinolin** $C_{13}H_{12}O_3N_2 = NC_9H_5(O \cdot CO \cdot CH_3) \cdot NH \cdot CO \cdot CH_3$. Gelbe Nadeln (aus Alkohol). F: 206—207° (Gattermann, B. 27, 1939; Bayer & Co., D. R. P. 80978; Frdl. 4, 57).
- 5-Benzamino-8-methoxy-chinolin $C_{17}H_{14}O_2N_2 = NC_9H_5(O \cdot CH_3) \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 5-Amino-8-methoxy-chinolin beim Behandeln mit Benzoylchlorid und Soda-Lösung (VIS, J. pr. [2] 48, 27). Nadeln (aus Alkohol). F: 268—269°. Fast unlöslich in kaltem Alkohol.
- 5-Benzamino-8-äthoxy-chinolin $C_{18}H_{16}O_2N_2 = NC_9H_5(O\cdot C_2H_5)\cdot NH\cdot CO\cdot C_8H_5$. B. Aus 5-Amino-8-äthoxy-chinolin beim Behandeln mit Benzoylchlorid in alkal. Lösung in der Kälte oder beim Kochen mit Benzoylchlorid (VIS, J. pr. [2] 48, 25; Dahl & Co., D. R. P. 65111; Frdl. 3, 959). Krystalle (aus Alkohol). F: 206° (D. & Co.). Ziemlich leicht löslich in heißem Alkohol, unlöslich in Wasser (V.; D. & Co.). Besitzt antipyretische und antineuralgische Eigenschaften (V.; D. & Co.).
- 5-Benzamino-8-benzoyloxy-chinolin $C_{23}H_{16}O_3N_2=NC_9H_5(O\cdot CO\cdot C_6H_5)\cdot NH\cdot CO\cdot C_9H_5$. B. Aus 5-Amino-8-oxy-chinolin beim Behandeln mit Benzoylchlorid in alkal. Lösung (Gattermann, B. 27, 1939; Bayer & Co., D. R. P. 80978; Frdl. 4, 57). Blättchen (aus Alkohol). F: 204° (B. & Co.), 205° (G.).
- x.x-Dichlor-5-amino-8-oxy-chinolin C₀H₆ON₂Cl₂ = NC₀H₃Cl₂(OH)·NH₂. B. Aus 5-Nitroso-8-oxy-chinolin (Bd. XXI, S. 518) beim Behandeln mit Zinn in salzsaurer Lösung (Lippmann, Fleisner, M. 10, 796). Nadeln. Zersetzt sich bei 160°. Ziemlich leicht löslich in heißem Alkohol, Benzol und Chloroform.
- 5.7 Diamino 8 oxy chinolin $C_9H_9ON_3$, s. nebenstehende Formel. B. Aus 5.7-Dinitro-8-oxy-chinolin durch Reduktion mit Zinnchlorür und konz. Salzsäure (Claus, Dewitz, J. pr. [2] 53, 538). Hellrotes Krystall-pulver (aus Chloroform + Petroläther). $C_9H_9ON_3 + 2$ HCl. Rote Krystalle. $C_9H_9ON_3 + 3$ HCl. Braune Nadeln. Spaltet bei 80° 1 Mol Salzsäure ab. $C_9H_9ON_3 + 2$ HCl + PtCl₄ + $H_2O(?)$. Dunkelrotes bis braunviolettes Pulver.

- 5.7-Bis-acetamino-8-oxy-chinolin $C_{13}H_{13}O_3N_3 = NC_9H_4(OH)(NH \cdot CO \cdot CH_3)_2$. B. Aus 5.7-Diamino-8-oxy-chinolin beim Kochen mit Acetanhydrid oder aus dem Hydrochlorid des 5.7-Diamino-8-oxy-chinolins beim Behandeln mit Acetanhydrid und Natriumacetat (Claus, Dewitz, J. pr. [2] 53, 543). Nadeln (aus Alkohol). F: 240° (Zers.).
- 5.7-Bis-benzamino-8-oxy-chinolin $C_{23}H_{17}O_3N_3 = NC_9H_4(OH)(NH\cdot CO\cdot C_9H_5)_2$. B. Aus dem Hydrochlorid des 5.7-Diamino-8-oxy-chinolins in Wasser beim Behandeln mit Benzoylchlorid in alkal. Lösung (Claus, Dewitz, J. pr. [2] 53, 543). Gelbe Nadeln (aus Alkohol). F: 263—264°. Sublimierbar.

2. Aminoderivate der Monooxy-Verbindungen $C_{10}H_{0}ON$.

1. Aminoderivat des 4-Oxy-2-methyl-chinolins C₁₀H₉ON (Bd. XXI, S. 104).

3-Amino-4-oxy-2-methyl-chinolin, 3-Amino-4-oxy-chinaldin bezw. 3-Amino-2-methyl-chinolon-(4), 3-Amino-chinaldon C₁₀H₁₀ON₂, Formel I I.

bezw. II. B. Aus 3-Nitro-4-oxy-chinaldin durch
Reduktion mit Zinn und Salzsäure (Conrad), LimPach, B. 20, 950; Stark, B. 40, 3432). Aus [Benzol-sulfonsäure-(1)]-(4 azo 3)-[4-oxy-chinaldin] beim Erwärmen mit Zinnchlorür und Salzsäure (C., L., B. 21, 1970). — Prismen.
Zersetzt sich zwischen 253° und 257° (St., B. 40, 3433; vgl. C., L., B. 21, 1971). Fast unlöslich in Äther, leicht löslich in Alkohol und siedendem Wasser; die verdünnte wäßrige Lösung fluoresciert bläulich (C., L., B. 20, 951). Die Lösungen in verd. Säuren und in verd. Alkalien zeigen Fluorescenz (St., B. 40, 3434). — Liefert bei der Oxydation mit Kaliumpermanganat in Wasser N-Acetyl-anthranilsäure (C., L., B. 20, 951). Beim Erhitzen mit einer bei 0° gesättigten Lösung von Jodwasserstoff in Eisessig auf 195° erhält man Chinaldin (St., B. 40, 3433). — C₁₀H₁₀ON₂ + HCl + H₂O. Krystalle. Zersetzt sich etwas beim Erhitzen auf 100° (C., L., B. 20, 950).

(BE., BY.).

2. Aminoderivat des 2-Oxy-4-methyl-chinolins $C_{10}H_{9}ON$ (Bd. XXI, S. 107). CH₃

7-Amino-2-oxy-lepidin bezw. 7-Amino-4-methyl-chinolon-(2), 7-Amino-lepidon I. C₁₀H₁₀ON, Formel I bezw. II. B. Beim Erhitzen von m-Phenylendiamin mit Acetessig- $\mathbf{H_2N} \cdot$ ester auf 130° (Besthorn, Byvanck, B. 31, 798). Aus 7-Amino-2-oxy-chinolin-essigsäure-(4) beim Erhitzen auf 300° (Be., Garben, B. 33, 3451). — Prismen (aus Alkohol), Nadeln (aus Wasser). F: 270° (Be., By.; Be., G.). Ziemlich seinlich in siedendem Wasser, schwer in den üblichen organischen Lösungsmitteln; die Lösungen fluorescieren bläulich (BE., By.). - Liefert beim Kochen mit Phosphoroxychlorid und Behandeln des Reaktionsprodukts mit warmer Salzsäure 2-Chlor-7-amino-4-methyl-chinolin (BE., By.). Beim Diazotieren in schwefelsaurer Lösung und Verkochen der Diazoniumsalz-Lösung erhält man 2.7-Dioxy-lepidin

3. Aminoderivat des 8-Oxy-5-methyl-chinolins C₁₀H₂ON (Bd. XXI, S. 110).

7-Amino-8-oxy-5-methyl-chinolin $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Aus 7-Nitroso-8-oxy-5-methyl-chinolin (Bd. XXI, S. 519) durch Reduktion mit Zinn und Salzsäure oder besser mit Ammoniumsulfid (Ganelin, v. Kosta-NECKI, B. 24, 3979). Durch Reduktion von 7-Benzolazo-8-oxy-5-methylchinolin mit Zinn und Salzsäure (G., v. K.). - Krystalle (aus Benzol). F: 139°. - $C_{10}H_{10}ON_2 + HCl$. Rote Prismen (aus Wasser).

7-Amino-2-oxy-4-methyl-chinolin,

4. Aminoderivat des 8-Oxy-6-methyl-chinolins C₁₀H₂ON (Bd. XXI, S. 111).

5-Amino-8-oxy-6-methyl-chinolin $C_{10}H_{10}ON_2$, s. nebenstehende Formel. B. Aus 5-Nitro-6-methyl-chinolin durch elektrolytische Reduktion in konzentrierter schwefelsaurer Lösung (GATTERMANN, B. 27, 1941; BAYER & Co., D. R. P. 80978; Frdl. 4, 57). — Bräunlichgelbe Nadeln und gelbe Tafeln (aus Wasser). F: 123°. — Sulfat. Schwefelgelbe Krystalle (G.).

5. Aminoderivate des 8-Oxy-5(oder 7)-methyl-chinolins $C_{10}H_9ON$.

8-Oxy-5(oder 7)-benzaminomethyl-chinolin $C_{17}H_{14}O_2N_2$, Formel III oder IV. B. Aus 8-Oxy-chinolin beim Behandeln mit N-Methyl-benzamid in konz. Schwefelsäure (EINHORN,

> $C_6H_5 \cdot CO \cdot NH \cdot CH_2$ IV. $C_6H_5 \cdot CO \cdot NH \cdot CH_2 \cdot$ ПІ.

A. 343, 251). — Krystalle (aus Alkohol). F: 186°. Leicht löslich in Essigester, ziemlich leicht in Alkohol und Benzol, sehr schwer in Wasser. — Hydrochlorid. Citronengelbe Prismen (aus Wasser). F: 151° (Zers.).

8 • Oxy • 5(oder 7) • piperidinomethyl • chinolin $C_{15}H_{18}ON_2 =$ NC₉H₅(OH)·CH₂·N<CH₂·CH₂·CH₂. B. Aus 8-Oxy-chinolin beim Kochen mit Formaldehyd und Piperidin in Alkohol (BARYER & Co., D. R. P. 92309; Frdl. 4, 104). — Krystalle (aus Ligroin). F: 117°.

6. Aminoderivat des 6-Oxy-8-methyl-chinolins C₁₀H₂ON (Bd. XXI, S. 113).

5-Amino-**6-oxy-8-methyl-chinolin** $C_{10}H_{10}ON_2 = NC_9H_4(CH_3)(OH) \cdot NH_2$. B. Bei der elektrolytischen Reduktion von 5-Nitro-8-methyl-chinolin in konzentrierter schwefelsaurer Lösung (BAYER & Co., D. R. P. 80978; Frdl. 4, 57). — Gelbliche Krystalle. Zersetzt sich bei 230°. Die alkal. Lösung wird schnell dunkelgrün. — Sulfat. Gelbe Krystalle (aus Alkohol). Löst sich in Wasser mit tiefroter Farbe.

3. Aminoderivat des 2-0xy-4.6-dimethyl-chinolins $\mathrm{C_{11}H_{11}ON}$ (Bd. XXI,

7-Amino-2-oxy-4.6-dimethyl-chinolin CH₃ CH₃ bezw. 7-Amino-4.6-dimethyl-chinolon-(2) C₁₁H₁₂ON₂, Formel V bezw. VI. B. Beim Er. V. CH₃-hitzen von asymm. m-Toluylendiamin mit H₂N-VI. CH₃. H₂N· Acetessigsäureäthylester auf 130° (Besthorn,

BYVANCE, B. 31, 798). — Gelbe Krystallmasse. Schmilzt oberhalb 300°. Schwer löslich in heißem Alkohol und Wasser; die Lösungen fluorescieren blau. — Hydrochlorid. Gelbe Krystalle. Wird durch Wasser zersetzt.

4. A minoderivat des 2-0 xy-4-methyl-3-äthyl-chinolins $\mathrm{C_{12}H_{13}ON}$ (Bd. XXI, S. 120).

7-Amino-2-oxy-4-methyl-3-äthylchinolin bezw. 7-Amino-4-methyl3-äthyl-chinolon-(2) C₁₂H₁₄ON₂, Formell I.
bezw. II. B. Aus m-Phenylendiamin beim H₂N OH H₂N OH

Erhitzen mit α-Äthyl-acetessigester im
Rohr auf 165—170° (BYVANCK, B. 31, 2145). — Nadeln (aus Alkohol). F: 284°; beginnt schon bei 277° sich zu zersetzen. Sehr schwer löslich in Benzol und Äther, leichter in Methanol und Alkohol mit blauer Fluorescenz. — Gibt mit Ferrichlorid eine braune Färbung. — Salze: B.

- e) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-13}ON$.
- 1. Aminoderivate des 2- $[\beta$ -Oxy- β -phenyl-äthyl]-pyridins $C_{13}H_{13}ON$ (Bd. XXI, S. 124).
- 2-[β -Oxy- β -(2-amino-phenyl)-äthyl]-pyridin, α -Oxy- α -[2-amino-phenyl]- β -[α -pyridyl]-äthan, [2-Amino-phenyl]- α -picolyl-carbinol, [o-Amino-phenyl]- α -picolyl-alkin $C_{13}H_{14}ON_2$, s. nebenstehende Formel. B. Aus [2-Nitro-phenyl]- α -picolyl-carbinol durch Reduktion mit Eisen oder Zink in salzsaurer Lösung (Roth, B. 33, 3477). Kry-N-CH2-CH(OH)-C6H4-NH2 stalle (aus Alkohol). F: 97—98°. Unlöslich in kaltem Wasser, leicht löslich in Alkohol, Ather, Chloroform und Benzol. Pikrat $C_{13}H_{14}ON_2+C_6H_3O_7N_3+H_2O$.
- 2-[β -Oxy- β -(4-amino-phenyl)-äthyl]-pyridin, α -Oxy- α -[4-amino-phenyl]- β -[α -pyridyl]-äthan, [4-Amino-phenyl]- α -picolyl-carbinol, [p-Amino-phenyl]- α -picolyl-alkin $C_{13}H_{14}ON_3=NC_5H_4\cdot CH_2\cdot CH(OH)\cdot C_6H_4\cdot NH_2$. B. Aus [4-Nitro-phenyl]- α -picolyl-carbinol durch Reduktion mit Eisen und Salzsäure (KNICK, B. 35, 1164). Gelbe Krystalle (aus Alkohol). F: 135°. Sehr leicht löslich in Alkohol und Chloroform, unlöslich in Ather, Ligroin, Benzol, Aceton und Wasser. Wird an der Luft dunkelrot. Zersetzt sich beim Kochen mit Wasser. $C_{13}H_{14}ON_2 + HCl$. Gelbe Nadeln (aus Wasser). Zersetzt sich bei 190°. Wird an der Luft langsam rot. $C_{13}H_{14}ON_2 + HCl + HgCl_2$. Braungelbe Blättchen (aus Wasser). Sintert von 171° an und verkohlt dann. Chloroplatinat. Rotgelber Niederschlag. Zersetzt sich bei 195°. Pikrat $C_{13}H_{14}ON_2 + C_6H_3O_7N_3$. Dunkelgelb. F: 198°; zersetzt sich bei 202°.
- 2. Aminoderivat des 4-Methyl-2- $[\beta$ -oxy- β -phenyl-äthyl]-pyridins $C_{14}H_{15}ON$ (Bd. XXI, S. 126).

4-Methyl-2-[β -oxy- β -(4-amino-phenyl)-āthyl]-pyridin, CH₃ α -Oxy- α -[4-amino-phenyl]- β -[4-methyl-pyridyl-(2)]-āthan C₁₄H₁₆ON₂, s. nebenstehende Formel. B. Aus α -Oxy- α -[4-nitro-phenyl]- β -[4-methyl-pyridyl-(2)]-āthan durch Reduktion mit Zinn und Salzsäure auf dem Wasserbad (KNICK, B. 35, 2792). — Krystalle (aus verd. Alkohol). F: 130°. Leicht löslich in Alkohol, Äther und Chloroform, fast unlöslich in Wasser. — C₁₄H₁₆ON₂ + HCl+2HgCl₂. Nadeln. F: 236°. — 2C₁₄H₁₆ON₂+2HCl+PtCl₄. Orangerote Nadeln. F: 222° (Zers.).

3. Aminoderivat des 5-Äthyl-2-[β -oxy- β -phenyl-äthyl]-pyridins $C_{18}H_{17}ON$ (Bd. XXI, S. 127).

5-Äthyl-2-[β -oxy- β -(2-amino-phenyl)-äthyl]-pyridin, α -Oxy- α -[2-amino-phenyl]- β -[5-äthyl-pyridyl-(2)]-äthan $C_{15}H_{18}ON_2$, s. nebenstehende Formel. B. Aus α -Oxy- α -[2-nitro-phenyl]- β -[5-äthyl-pyridyl-(2)]-äthan durch Reduktion mit Zinn oder Eisen in salzsaurer Lösung auf dem Wasserbad (Castner, B. 34, 1898). — Gelbe Nadeln (aus verd. Alkohol). F: 76°. Leicht löslich in Aceton, Alkohol und Äther, unlöslich in Wasser.

 $-C_{18}H_{18}ON_2+HCl.$ Krystalliner Niederschlag (aus Alkohol + Äther). F: 85°. Leicht löslich in Alkohol, schwerer in Wasser, unlöslich in Äther. Wird bei längerem Aufbewahren an der Luft braun. $-C_{15}H_{18}ON_2+HCl+AuCl_3$. Rote Krystalle. F: 117°. Leicht löslich in Alkohol und in verd. Salzsäure. $-2C_{18}H_{18}ON_2+2HCl+PtCl_4$. Orangerote Krystalle. F: 134°.

f) Aminoderivate der Monooxy-Verbindungen $C_nH_{2n-15}ON$.

- 1. Aminoderivat des 4-[2-0xy-styryl]-pyridins C₁₈H₁₁ON (Bd. XXI, S. 129).
- 4-[5-Amino-2-oxy-styryl]-pyridin, 5'-Amino-2'-oxyy-stilbazol C₁₈H₁₂ON₂, s. nebenstehende Formel. B. Aus 3'-Nitroy-stilbazol durch elektrolytische Reduktion in konz. Schwefelsäure (FRIEDLAENDER, B. 38, 2839). — Krystalle (aus Aceton). F: 123°.
- 2. Aminoderivate der Monooxy-Verbindungen $C_{15}H_{15}ON$.
- 1. Aminoderivat des 6 Oxy 2 phenyl 1.2.3.4 tetrahydro chinolins $C_{15}H_{15}ON$.
- 6 Methoxy 2 [3 amino phenyl] 1.2.3.4 tetra- $_{\text{CH}_3 \cdot \text{O}}$ $_{\text{CH}_2}$ hydro-chinolin $_{\text{Li}_6}$ $_{\text{H}_18}$ $_{\text{ON}_2}$, s. nebenstehende Formel. B. Aus 6-Methoxy-2-[3-amino-phenyl]-chinolin beim Erhitzen mit Zinn und Salzsäure (v. Miller, Kinkelin, B. 20, 1921). Krystalle. F: 87°. Gibt mit Ferrichlorid in saurer Lösung eine erst rotbraune, dann dunkelgrüne Färbung. $_{\text{C}_{16}\text{H}_{18}\text{ON}_2}$ + 2 HCl. Tafeln. Ziemlich leicht löslich in Wasser, sehr schwer in verd. Salzsäure.
 - 2. Aminoderivat des 9-0xy-2.7-dimethyl-9.10-dihydro-acridins C₁₅H₁₅ON.
- 3-Amino-9-oxy-2.7.10-trimethyl-9.10-dihydro-acridin $C_{16}H_{18}ON_2$, s. nebenstehende Formel. Vgl. 3-Amino-2.7.10-trimethyl-acridiniumhydroxyd, S. 465.
 - g) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-17} ON$.
- 1. Aminoderivat des 2-0xy-4-methyl-7.8-benzo-chinolins $C_{14}H_{11}ON$.

6'-Amino-2-oxy-4-methyl-[benzo-1'.2':7.8-chinolin] ¹) ("5-Amino-Py-α-oxy-y-methyl-1-naphthochinolin") bezw. 6'-Amino-4-methyl-[benzo-1'.2':7.8-chinolon-(2)] ¹) C₁₄H₁₂ON₂, Formel I bezw. II. B. Aus N.N'-Bis-[acetoacetyl]-naphthylendiamin-(1.5) (Bd. XIII, S. 204) beim Erhitzen mit konz. Schwefelsäure auf 160° (FINGER, SPITZ, J. pr. [2] 79, 447). — Gelbliche Krystalle (aus Amylalkohol). Ist bei 300° noch nicht geschmolzen.

2. Aminoderivat des 3-0xy-2.7-dimethyl-acridins $C_{16}H_{18}ON$.

6-Amino-3-oxy-2.7-dimethyl-acridin $C_{15}H_{14}ON_2$, s. nebenstehende Formel. B. Aus 4.6.4'.6'-Tetraamino-3.3'-dimethyl-diphenylmethan oder aus 3.6-Diamino-2.7-dimethyl-acridin beim Erhitzen mit 10°/oiger Schwefelsäure oder mit verd. Salzsäure im Autoklaven auf 180—200° (Cassella & Co., D. R. P. 121686; C. 1901 II, 78; Frdl. 6, 487). — Gelbbraune Nadeln. Leicht löslich in Alkohol mit gelbbrauner Farbe und dunkelgrüner Fluorescenz, in heißen verdünnten Mineralsäuren mit gelbbrauner Farbe und schwach grüner Fluorescenz, in verd. Natronlauge mit gelber Farbe. — Färbt tanningebeizte Baumwolle und Leder grünlichgelb.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

h) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-19} ON$.

1. Aminoderivate der Monooxy-Verbindungen $C_{16}H_{11}ON$.

- 1. Aminoderivate des 6-Oxy-2-phenyl-chinolins C₁₈H₁₁ON (Bd. XXI, S. 137).
- 6-Methoxy-2-[3-amino-phenyl]-chinolin $C_{16}H_{14}ON_2$, $CH_3 \cdot O \cdot ON_1$. S. nebenstehende Formel. B. Aus 6-Methoxy-2-[3-nitro-phenyl]-chinolin durch Reduktion mit Zinnchlorür und warmer alkoholischer Salzsäure (v. MILLER, KINKELIN, B. 20, 1920). Nadeln (aus verd. Alkohol). F: 127°. Leicht löslich in starkem Alkohol, ziemlich leicht in Äther und Benzol, schwer in heißem Wasser. Liefert beim Erhitzen mit Zinn und Salzsäure 6-Methoxy-2-[3-amino-phenyl]-1.2.3.4-tetrahydro-chinolin. Beim Behandeln mit Natriumnitrit in verd. Schwefelsäure und Verkochen der Diazoniumsulfat-Lösung erhält man 6-Methoxy-2-[3-oxy-phenyl]-chinolin. $C_{16}H_{14}ON_2 + 2HCl + H_2O$. Gelbe Prismen (aus verd. Salzsäure). Verliert bei 120° das Krystallwasser, bei höherer Temperatur auch Salzsäure. $C_{16}H_{14}ON_2 + H_2SO_4 + 2H_2O$. Gelbe Nadeln. Schwer löslich in Wasser, sehr schwer in verd. Schwefelsäure. $C_{16}H_{14}ON_2 + H_2SO_4 + 2H_2O$. Gelbe Nadeln. Schwer löslich in Wasser, sehr schwer in verd. Schwefelsäure. $C_{16}H_{14}ON_2 + H_2SO_4 + 2H_2O$. Prismen.
- 6-Oxy-2-[4-amino-phenyl]-chinolin $C_{15}H_{12}ON_2$, s. nebenstehende Formel. B. Neben 6-[x-Amino-phenyl]-chinolin beim Einleiten von Sauerstoff in ein auf 220° erhitztes Gemisch von salzsaurem 6-Oxy-chinolin, Anilin-hydrochlorid, Anilin und Platinasbest und Steigern der Temperatur auf 230—235° (Weidel, v. Georgievics, M. 9, 139, 146). Gelbe Nadeln. Wird beim Erhitzen erst rötlichgelb, dann braun und schmilzt schließlich nach starker Zersetzung bei ca. 294° (unkorr.). Unlöslich in Wasser, sehr schwer löslich in siedendem Äther, Benzol und Xylol, etwas leichter in Amylalkohol. Leicht löslich in verd. Säuren und Alkalien. Liefert beim Behandeln mit Kaliumnitrit in konzentierter überschüssiger Salzsäure unter Kühlung und folgenden Aufkochen des Reaktionsgemisches 6-Oxy-2-[4-oxy-phenyl]-chinolin. $C_{15}H_{12}ON_2 + HCl + 0.5H_2O$. Dunkelrote Krystallkörner (aus Wasser). Ziemlich schwer löslich in Wasser. Besitzt großes Färbevermögen für Seide und Wolle. $2C_{15}H_{12}ON_2 + H_2SO_4 + 1.5H_2O$. Rote Nadeln (aus Wasser). F: 265° (unkorr.). Sehr schwer löslich in siedendem Wasser.
- 6-Acetoxy-2-[4-acetamino-phenyl]-chinolin $C_{19}H_{16}O_{2}N_{2}=NC_{9}H_{5}(O\cdot CO\cdot CH_{3})\cdot C_{6}H_{4}\cdot NH\cdot CO\cdot CH_{3}$. B. Aus 6-Oxy-2-[4-amino-phenyl]-chinolin beim Erhitzen mit Acetanhydrid (Weidel, v. Georgievics, M. 9, 149). Blättchen (aus Alkohol). Leicht löslich in siedendem Alkohol. Wird bei längerem Kochen mit verd. Kalilauge zersetzt.

2. Aminoderivat des 3-[4-Oxy-phenyl]-chinolins $C_{15}H_{11}ON$.

2-Amino-3-[4-methoxy-phenyl]-chinolin C₁₆H₁₄ON₂, s. nebenstehende Formel. B. Aus 2-Nitro-α-[4-methoxy-phenyl]-zimtsäure-nitril beim Erwärmen mit Zinn und rauchender Salzsäure in Alkohol (Pschorr, Wolffer, B. 32, 3401). — Nadeln (aus Alkohol). F: 151—152° (korr.). Löslich in ca. 35 Tln. siedendem Alkohol, etwas leichter in Toluol und Nitrobenzol, schwerer in Aceton, Chloroform und Äther, sehr schwer in Ligroin und Wasser. — Hydrochlorid. Nadeln. F: 226°. Schwer löslich in Wasser. — Nitrat. Nadeln. F: 207° (korr.). Schwer löslich in Wasser. — Chloroplatinat. Gelbe Nadeln. Zersetzt sich bei 240° (korr.). Sehr schwer löslich in Wasser. — Pikrat. Gelbe Nadeln. Zersetzt sich bei 256° (korr.).

3. Aminoderivat des 1-Oxy-3-phenyl-isochinolins C₁₅H₁₁ON (Bd. XXI, S. 140).

4-Amino-1-oxy-3-phenyl-isochinolin bezw. 4-Amino-3-phenyl-isochinolon-(1) C₁₅H₁₂ON₂, Formel I bezw. II, 4-Amino-3-phenyl-isocarbostyril. B. Aus 4-Nitro-1-oxy-3-phenyl-isochinolin durch Kochen mit Jod-wasserstoffsäure (Kp: 127°) und rotem Phosphor (GABRIEL, B. 19, 833). — Gelbe Nadeln (aus Alkohol). F: ca. 190°. Leicht löelich in Eisessig und heißem Alkohol, mäßig in heißem Benzol, schwer in Chloroform und Äther, sehr schwer in Ligroin und Schwefelkohlenstoff. Löst sich in siedender verdünnter Natronlauge mit gelber Farbe.

NH2

2. Aminoderivat des 2-0xy-4-methyl-6-phenyl-chinolins $C_{16}H_{18}ON$.

2-Oxy-4-methyl-6-[4-amino-phenyl]-chinolin, 2-Oxy-6-[4-amino-phenyl]lepidin bezw. 4 - Methyl - 6 - [4 - amino - phenyl] - chinolon - (2), 6 - [4 - Amino - phenyl] lepidon C₁₆H₁₄ON₂, Formel I bezw. II. B. Aus N-Acetoscetyl-benzidin II. H2N · C6H4 · beim Behandeln mit konz. Schwefel- I. H₂N·C₆H₄ II. H₂N·C₆H₄ II. H₂N·C₆H₄ OH Krystalle (aus Essigsäure). Sehr schwer löslich in Alkohol, Äther und Benzol, leicht in Eisessig. — Gibt mit Ferrichlorid eine violette Färbung.

3. Aminoderivate des 4-[2-0xy-3.4-diäthyl-phenyl]-chinolins $C_{19}H_{19}ON$ (Bd. XXI, S. 147).

C2H5 6-Amino-4-[2-oxy-3.4-diathyl-phenyl]-chinolin, Aminoapocinchen vom Schmelzpunkt 229—230° 1) C₁₉H₂₀ON₂, s. nebenstehende Formel. B. Aus Apochinen (Bd. XXI, S. 192) beim Erhitzen mit Zinkchlorid-Ammoniak und Ammoniumchlorid im Rohr · C2H5 · OH auf 240—250° (KOENIGS, B. 27, 903; J. pr. [2] 61, 42). — Krystalle (aus Alkohol). F: 229—230° (K., J. pr. [2] 61, 42). — Liefert beim Behandeln mit Natriumnitrit und konz. Schwefelsäure in Alkohol, H₂N Eintragen von Kupferpulver in das Reaktionsgemisch und folgenden Erwärmen auf dem Wasserbad Apocinchen (Bd. XXI, S. 147) (K., B. 27, 903; J. pr. [2] 61, 43). — Hydrochlorid. Goldgelbe Krystalle (aus verd. Salzsäure) (K., J. pr. [2] 61, 42).

Äthyläther $C_{s1}H_{24}ON_s = NC_9H_5(NH_2)\cdot C_6H_2(C_2H_5)_2\cdot O\cdot C_2H_5$. B. Aus Aminoapocinchen vom Schmelzpunkt 229—230° beim Kochen mit Äthyljodid und alkoh. Kalilauge (KOENIGS, J. pr. [2] 61, 43). — Krystalle (aus verd. Alkohol). F: 148—150°. Leicht löslich in Alkohol, Äther, Benzol, Chloroform und Essigester, schwer in Ligroin. Löslich in verd. Säuren mit gelber Farbe, unlöslich in Natronlauge.

C₂H₅ 4-[5(?)-Amino-2-oxy-3.4-diathyl-phenyl]-chinolin, Aminoapocinchen vom Schmelzpunkt 220°¹) C₁₉H₂₀ON₂, s. nebenstehende (?) H₂N Formel. B. Aus höherschmelzendem Nitroapocinchen (Bd. XXI, S. 148) durch Erwärmen mit Zinnchlorür und Konzo Salzsäure (Koenigs, J. pr. [2] · C2H5 ОН 61, 19). — Nadeln (aus Alkohol). F: 220°. Wird von Chromschwefelsäure zu Cinchoninsäure oxydiert. — Einw. von Bleidioxyd: K.

i) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-23}ON$.

1. Aminoderivate der Monooxy-Verbindungen $C_{17}H_{11}ON$.

1. Aminoderivate des 4-Oxy-1.2-benzo-acridins C₁,H₁₁ON.

6-Amino-4-methoxy-1.2-benzo-acridin $C_{18}H_{14}ON_2$, s. nebenstehende Formel. B. Aus 2-Oxy-3-methoxy-naphthalin beim Erwärmen mit 2.4-Dinitro-benzylchlorid und salzsaurer Zinnchlorür-Lösung (BAEZNER, GUEORGUIEFF, B. 39, 2446). — Gelb. F: 137°. Löst sich in Benzol mit orangeroter, in Toluol mit hellgrüner Farbe, CHa · O schwer löslich in Äther, löslich in heißem Alkohol mit hellgrüner Fluorescenz. Die Lösung in konz. Schwefelsäure ist braun und fluoresciert grün. — Hydrochlorid. F: 212°.

6-Acetamino-4-methoxy-1.2-benzo-acridin $C_{30}H_{16}O_2N_2=NC_{17}H_9(O\cdot CH_8)\cdot NH\cdot CO\cdot CH_3$. F: 187° (Baezner, Gueorguieff, B. 39, 2446).

2. Aminoderivate des 4'-Oxy-[benzo-1'.2': 1.2-acridins] C,,H,,ON (Bd. XXI, S. 152).

¹⁾ S. die Fußnote auf S. 244.

6 - Amino - 4'- oxy - [benzo - 1'.2':1.2-acridin] 1) $C_{17}H_{12}ON_2$, s. nebenstehende Formel. B. Beim Behandeln von 2.6-Dioxy-naphthalin und 2.4-Dinitro-benzylchlorid in warmer alkoholischer Lösung mit Zinnchlorür und konz. Salzsäure (BAEZNER, GUEOR-

GUIEFF, B. 39, 2445). — Gelbbraune Nadeln (aus Nitrobenzol). F: 218—220°. — C₁₇H₁₂ON₂ + HCl. F: 168°. Leicht löslich in Wasser und Alkohol mit roter Farbe, ziemlich schwer in Eisessig.

6-Acetamino-4'-oxy-[benzo-1'.2':1.2-acridin] 1) $C_{19}H_{14}O_2N_2 = NC_{17}H_9(OH)\cdot NH\cdot M_{14}O_2N_2 = NC_{17}H_9(OH)\cdot M_{14}O_2N_2 = NC_{17}H_9(OH)\cdot NH\cdot M_{14}O_2N_2 = NC_{17}H_9(OH)\cdot CO·CH₂. Krystalle (aus Benzol). F: 263°.

- Aminoderivate des 5'-Oxy-[benzo-1'.2':1.2-acridins] C₁₇H₁₁ON (Bd. XXI, S. 152).
- 6-Amino 5' 0xy [benzo 1'.2':1.2 acridin] 1) $C_{17}H_{12}ON_2$, s. nebenstehende Formel. B. Beim Erhitzen von 2.7-Dioxy-naphthalin mit 2.4-Dinitro-benzylchlorid und salzsaurer Zinnchlorür-Lösung; das entstandene Zinnchlorid-Doppelsalz zersetzt man durch siedendes Wasser (BAEZNER, GUEORGUIEFF, B. 39, 2441). — Orangegelbe Nadeln (aus Nitrobenzol). F: 180°. Leicht löslich in Anilin und Nitrobenzol, schwer in heißem Wasser; schwer löslich in Alkohol mit orangeroter Farbe und grüner Fluorescenz, in Benzol und Toluol mit gelber Farbe und blaugrüner Fluorescenz. — C₁₇H₁₂ON₂ + HCl. Rot. Löslich in Wasser, Alkohol und Eisessig mit orangeroter Farbe und gelbgrüner Fluorescenz. Färbt tannierte Baumwolle orangebraun. — Zinnchlorid-Doppelsalz. Rot.
- 6-Acetamino-5'-oxy-[benzo-1'.2':1.2-acridin] 1) $C_{19}H_{14}O_2N_2 = NC_{17}H_9(OH)\cdot NH\cdot CO\cdot CH_3$. B. Aus 6-Amino-5'-oxy-[benzo-1'.2':1.2-acridin] beim Kochen mit Acetanhydrid und Natriumacetat (BAEZNER, GUEORGUIEFF, B. 39, 2442). — Gelbe Nadeln (aus Nitrobenzol). F: 283—285°. Leicht löslich in Alkohol mit orangeroter Farbe und grüner Fluorescenz, löslich in Nitrobenzol, unlöslich in Äther, Ligroin, Benzol und Toluol. Löslich in Alkalien; die Lösungen in Mineralsäuren sind gelb und werden beim Kochen infolge von Verseifung rot.
- 6-Benzamino-5'-benzoyloxy-[benzo-1'.2':1.2-acridin]¹) $C_{31}H_{30}O_3N_2 = NC_{17}H_0(O \cdot CO \cdot C_6H_5) \cdot NH \cdot CO \cdot C_6H_5$. B. Aus 6-Amino-5'-oxy-[benzo-1'.2':1.2-acridin] beim Behandeln mit Benzoylchlorid in alkal. Lösung (BAEZNER, GUEORGUIEFF, B. 39, 2443). Broncegelbe Nadeln (aus Nitrobenzol). F: 212—215°. Schwer löslich in Alkohol und Methanol mit orangeroter Farbe und grüner Fluorescenz, in Benzol und Toluol mit gelber Farbe und blauvioletter Fluorescenz. Die dunkelbraune Lösung in konz. Schwefelsäure fluoresciert grün; beim Verdünnen scheidet sich ein roter Niederschlag ab. Die Lösungen in konz. Salzsäure und konz. Salpetersäure sind blaßgelb.
- Aminoderivat des 6-0xy-2-methyl-9-phenyl-9.10-dihydroacridins $C_{20}H_{17}ON$.
- 3-Amino-6-oxy-2-methyl-9-phenyl-9.10-dihydro-acridin C6H5 C₂₀H₁₈ON₂, s. nebenstehende Formel. B. Neben 3-Amino-6-oxy-2-methyl-9-phenyl-acridin (S. 510) beim Erhitzen von 4.6.4'.6'-Tetra-CH · CH₃ · NH2 amino-3.3'-dimethyl-triphenylmethan mit Resorcin anfangs auf 1650, HO. dann kurz auf 180—185° (ÜLLMANN, FITZENKAM, B. 38, 3792). — H Fast farbloses Pulver. F: 305—311°. Unlöslich in Wasser und Benzol, sehr schwer löslich in Alkohol. — Liefert beim Behandeln mit Ferrichlorid in verdünnter alkoholisch-salzsaurer Lösung 3-Amino-6-oxy-2-methyl-9-phenyl-acridin.

k) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-25} ON$.

1. Aminoderivate des 3-0xy-9-phenyl-acridins $C_{10}H_{13}ON$ (Bd. XXI, S. 156). C6H4·NH2 3-Oxy-9-[4-amino-phenyl]-acridin, Chrysophenol $C_{19}H_{14}ON_2$, s. nebenstehende Formel. B. Aus Chrysanilin (S. 491) beim Erhitzen mit konz. Salzsäure im Rohr auf 160-180° (O. FISCHER, KÖRNER, A. 226, 181; DUNSTAN, HEWITT, Soc. 89, 1473). — Braune Nadeln (aus verd. NAlkohol). F: 1150 (D., H.). Krystallisiert nach Fischer, Körner aus verd. Alkohol mit

2 H₂O, die bei 120° entweichen. Schwer löslich in Wasser, Ather und Benzol, leicht in Alkohol und Aceton (F., K.; D., H.). — Löst sich in konz. Schwefelsäure mit tiefgrüner Fluorescenz (D., H.). — Monohydrochlorid. Hellgelbe Krystalle (F., K.). — Bishydrochlorid. Gelbrote Nadeln (F., K.). — C₁₉H₁₄ON₂ + H₂CrO₄. Gelbliches Krystallpulver. Schmilzt nicht unterhalb 250° (D., H.): — 2C₁₉H₁₄ON₂ + 2HCl + PtCl₄. Braunes Pulver (D., H.; vgl. F., K.).

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Hydroxymethylat, 10-Methyl-3-oxy-9-[4-amino-phenyl]-acridiniumhydroxyd $C_{20}H_{18}O_2N_2$, Formel I, bezw. 3-Oxy-9-[4-amino-phenyl]-acridin-methylbetain bezw. 10-Methyl-3-oxo-9-[4-amino-phenyl]-3.10-dihydro-acridin bezw. 10-Methyl-3-oxy-9-[4-imino-cyclohexadien-(2.5)-yliden]-9.10-dihydro-acridin $C_{20}H_{16}ON_2$, Formel II bezw. III bezw. IV.

Die Konstitution der Salze entspricht der Formel I, die der Anhydrobase der Formel II, III oder IV. — B. Die Anhydrobase entsteht aus O.N-Diacetyl-chrysophenol beim Erhitzen mit überschüssigem Dimethylsulfat und Kochen des Reaktionsprodukts mit verd. Schwefelsäure (Dunstan, Hewitt, Soc. 89, 1477). — Anhydrobase. Tiefrotes, krystallines Pulver (aus verd. Alkohol). Unlöslich in Äther, löslich in Aceton und Alkohol. — $C_{20}H_{17}ON_2 \cdot Cl$. Dunkelrot. — $(C_{20}H_{17}ON_2)_C Cr_2 O_7$. Gelber, krystalliner Niederschlag. — $2C_{20}H_{17}ON_2 \cdot Cl + PtCl_4$. Gelber, krystalliner Niederschlag.

O.N-Diacetyl-chrysophenol $C_{23}H_{18}O_3N_2=NC_{13}H_{7}(O\cdot CO\cdot CH_3)\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Aus Chrysophenol beim Kochen mit Acetanhydrid und Natriumacetat (Dunstan, Hewitt, Soc. 89, 1476). — Orangefarbene Krystalle (aus Alkohol). Schmilzt nicht unterhalb 250°. — $2C_{23}H_{18}O_3N_2+H_2CrO_4$. Gelber, krystalliner Niederschlag. Schmilzt nicht unterhalb 250°. — $2C_{23}H_{18}O_3N_2+2HCl+PtCl_4$. Braungelbes, krystallines Pulver. — Acetat $C_{23}H_{18}O_3N_2+C_2H_4O_2$. Dunkelbraune Nadeln (aus Eisessig). Schmilzt nicht unterhalb 250°. Löslich in konz. Schwefelsäure mit grünlichblauer Fluorescenz.

O.N-Dibenzoyl-chrysophenol $C_{33}H_{22}O_3N_2 = NC_{13}H_7(O \cdot CO \cdot C_6H_6) \cdot C_6H_4 \cdot NH \cdot CO \cdot C_6H_5$. B. Aus Chrysophenol beim Behandeln mit Benzoylchlorid in Natronlauge (Dunstan, Hewitt, Soc. 89, 1477). — $2C_{33}H_{22}O_3N_2 + H_2CrO_4$. Hellgelber Niederschlag.

2. Aminoderivat des 6-0xy-2-methyl-9-phenyl-acridins $C_{20}H_{15}ON$.

3-Amino-6-oxy-2-methyl-9-phenyl-acridin C₂₀H₁₆ON₂,
s. nebenstehende Formel. B. Neben 3-Amino-6-oxy-2-methyl9-phenyl-9.10-dihydro-acridin aus 4.6.4'.6'-Tetraamino-3.3'-dimethyltriphenylmethan beim Erhitzen mit Resorcin anfangs auf 165°,
dann auf 180—185° (ULLMANN, FITZENKAM, B. 38, 3793). Das Hydrochlorid entsteht aus
3-Amino-6-oxy-2-methyl-9-phenyl-9.10-dihydro-acridin beim Behandeln mit Ferrichlorid
in verdünnter alkoholisch-salzsaurer Lösung (U., F.). — Orangegelbe Nadeln (aus Anilin
oder Alkohol). F: 368—373°. Löslich in siedendem Anilin, fast unlöslich in Äther und Benzol,
unlöslich in Wasser. — Die Lösungen in verd. Natronlauge und in Säuren sind gelb und fluorescieren grün. — C₂₀H₁₆ON₂ + HCl. Gelbe bis gelbbraune Krystalle. Leicht löslich in
Alkohol und Eisessig. Wird durch Wasser teilweise zersetzt. — Acetat C₂₀H₁₆ON₂ + C₂H₄O₂.
Orangegelbe Nadeln. F: 187—193° (Zers.). Hygroskopisch. Löslich in Wasser mit gelber
Farbe und grüner Fluorescenz. Färbt tannierte Baumwolle gelb.

1) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-27}ON$.

Aminoderivate der Monooxy-Verbindungen $C_{28}H_{19}ON$.

1. Aminoderivat des Diphenyl-[8-oxy-5-methyl-chinolyl-(6)]-methans $C_{22}H_{18}ON$.

Bis-[4-dimethylamino-phenyl]-[8-methoxy-5-methyl-chinolyl-(6)]-methan C₂₈H₃₁ON₃, s. nebenstehende Formel. B. [(CH₃)₂N·C₆H₄]₂CH Aus 4-Amino-4'.4"-bis-dimethylamino-5-methoxy-2-methyl-triphenylmethan beim Erhitzen mit Glycerin, konz. Schwefelsäure und Pikrinsäure auf 140—150° (Noelting, B. 24, 3143). — CH₃·O Nadeln (aus Benzol + Ligroin). F: 183°. — Liefert bei der Oxydation mit Chloranil oder Bleidioxyd einen grünen Farbstoff.

2. Aminoderivat des Diphenyl - [2 - methyl - chinolyl - (6)] - carbinols $C_{23}H_{19}ON$.

Bis - [4 - (γ - oxy- butylidenamino) - [CH₃ · CH(OH) · CH₂ · CH: N·C₆H₄]₂C(OH) · [CH₂ · CH₃ · CH₄] - [CH₃ · CH₄]₂C(OH) · [CH₄ · CH₄]₂C(OH) · [CH

m) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-29} ON$.

6-Acetamino-9-oxy-7.10-dimethyl-9-phenyl-9.10 - dihydro - 1.2 - benzo - acridin C₂₇H₂₄O₂N₂, s. nebenstehende Formel. Vgl. 6-Acetamino-7.10-dimethyl-9-phenyl-1.2-benzo-acridiniumhydroxyd, S. 483.

n) Aminoderivate der Monooxy-Verbindungen $C_n H_{2n-37} ON$.

6- Amino-7-methyl-9-[2-oxy-naphthyl-(1)]-1.2-benzo-acridin C₂₈H₂₀ON₂, s. nebenstehende Formel. B. Durch Verschmelzen von 2.4-Diamino-toluol mit 2-Oxy-naphthaldehyd-(1) und β-Naphthol und Oxydation des Reaktionsprodukts mit Ferrichlorid (ULLMANN, D. R. P. 127586; C. 1902 I, 340; Frdl. 6, 466). — Gelbe Nadeln (aus Eisessig).

F: 220° (unkorr.). — Bei Einw. von rauchender Schwefelsäure entsteht eine in orangeroten Nadeln krystallisierende Sulfonsäure. — Löst sich in verd. Natronlauge mit gelber Farbe. Die Lösung in Eisessig ist orangegelb und wird beim Zufügen von Ferrichlorid schmutzigblaugrün. Färbt tannierte Baumwolle gelb.

2. Aminoderivate der Dioxy-Verbindungen.

a) Aminoderivate der Dioxy-Verbindungen $C_n H_{2n-3} O_2 N$.

b) Aminoderivate der Dioxy-Verbindungen $C_n H_{2n-5} O_2 N$.

1. Aminoderivate des 2.6-Dioxy-pyridins C₅H₅O₂N (Bd. XXI, S. 161).

4-Amino-2.6-dioxy-pyridin bezw. 4-Imino2.6-dioxo-piperidin C₅H₆O₂N₂, Formel I bezw. II, bezw.
weitere desmotrope Formen, Glutazin. B. Aus β-Oxyβ-amino-glutarsāure-āthylester-amid (Bd. III, S. 793)
beim Kochen mit Soda-Lösung (Stokes, v. Pechmann, B. 19, 2696). Beim Erhitzen von
2.4.6-Trioxy-pyridin mit überschüssigem Ammoniumacetat auf 120—140° (St., v. P., B.
19, 2705). Aus Glutazincarbonsāureāthylester (S. 556) beim Erhitzen mit konz. Kalilauge
(Baron, Remfry, Thorpe, Soc. 85, 1742). — Tafeln (aus Wasser). F: ca. 300° (Zers.) (St.,
v. P.; B., R., Th.). Schwer löslich in heißem Wasser, fast unlöslich in Alkohol, unlöslich
in Eisessig und den meisten anderen Lösungsmitteln (St., v. P.). — Liefert beim Behandeln
mit überschüssigem Bromwasser in verd. Salzsäure Pentabrom-acetessigsäure-amid (St.,
v. P.). Beim Erhitzen mit Phosphoroxychlorid und Phosphorpentachlorid erhält man 2.3.6-Trichlor-4-amino-pyridin, 2.3.5.6-Tetrachlor-4-amino-pyridin, 3.5.6-Trichlor-4-amino-2-oxy-pyridin und 3.5-Dichlor-4-amino-2.6-dioxy-pyridin (St., v. P.). Leitet man in eine kalte wäßrige
Lösung von Glutazin nitrose Gase ein, so bilden sich Nitroglutazin (S. 512) und Dinitroglutazin
(S. 512); beim Behandeln mit Natriumnitrit in schwach saurer Lösung liefert Glutazin 3-Nitro2.6-dioxo-4-nitrosimino-piperidin (Nitrosonitroglutazin) (S. 591) und 3.5-Dinitro-2.6-dioxo4-nitrosimino-piperidin (Nitrosonitroglutazin) (V. Pechmann, B. 20, 2656). Beim

Kochen mit konz. Salzsäure entsteht 2.4.6-Trioxy-pyridin (St., v. P.; B., R., Th.). Bei Einw. von siedender 10% jer Schwefelsäure bildet sich Bis-[2.6-dioxy-pyridyl-(4)]-äther (St., v. P.). Glutazin liefert beim Kochen mit überschüssigem Hydroxylamin-hydrochlorid in Wasser 4-Hydroxylamin-2.6-dioxy-pyridin (S. 562) (St., v. P.). Reagiert mit Acetylchlorid bei 100—120% unter Bildung von Acetylglutazin (s. u.) (St., v. P.). Bei Einw. von überschüssigem Benzoylchlorid auf dem Wasserbad entsteht 1-Benzoyl-2.6-dioxo-4-benzimino-piperidin (Dibenzoylglutazin) (Bd. XXI, S. 556) (v. P.). — Glutazin gibt mit Ferrichlorid in wäßr. Lösung eine tiefrote Färbung, die beim Erwärmen in Dunkelgrün übergeht (St., v. P.; B., R., Th.). — AgC₅H₆O₂N₂+aq. Blättchen. Wird am Licht sowie beim Erhitzen dunkel (St., v. P.). — C₅H₆O₂N₂+HCl+H₂O. Prismen. Leicht löslich in Alkohol (St., v. P.). Wird durch Wasser zersetzt.

4-Acetamino-2.6-dioxy-pyridin (4-Acetimino-2.6-dioxo-piperidin) $C_7H_8O_3N_2 = NC_5H_2(OH)_2 \cdot NH \cdot CO \cdot CH_3$ bezw. desmotrope Formen, Acetylglutaxin. B. Beim Erhitzen von Glutazin mit Acetylchlorid auf 100—120° (STOKES, v. PECHMANN, B. 19, 2700). — Tafeln (aus Wasser). F: 285—290°. Ziemlich schwer löslich in Wasser, löslich in Alkohol. Schwer löslich in Säuren, leicht in Alkalien. — Gibt beim Erhitzen mit Ferrichlorid eine violette Färbung. — $NH_4C_7H_7O_3N_2 + H_2O$. Tafeln. Schwer löslich in kaltem Wasser, unlöslich in Alkohol. Zersetzt sich bei schwachem Erwärmen. — $C_7H_8O_3N_2 + HCl$. Krystalle. Leicht löslich in Alkohol. Wird durch Wasser zersetzt.

Dibenzoylglutazin $C_{19}H_{14}O_4N_2 = C_6H_5 \cdot CO \cdot NC_5H_4O_2 : N \cdot CO \cdot C_6H_5$ s. Bd. XXI, S. 556.

- 3.5 Dichlor 4 amino 2.6 dioxy pyridin (3.5 Dichlor 4 imino-2.6 dioxo piperidin) C₅H₄O₅N₂Cl₅, s. nebenstehende Formel, bezw. desmotrope Formen, Dichlorglutagin. B. Neben anderen Produkten aus Glutazin beim Erhitzen mit Phosphorpentachlorid in Gegenwart von Phosphoroxychlorid (STOKES, v. PECHMANN, B. 19, 2711). Nadeln (aus Wasser). F: 241,5° (Zers.). Schwer löslich in heißem Wasser und Alkohol.
- 3.5-Dichlor-4-amino-2-oxy-6-äthoxy-pyridin C₇H₈O₂N₂Cl₂ = NC₅Cl₂(OH)(O·C₂H₅)·NH₂ bezw. desmotrope Formen. B. Neben 3.5-Dichlor-4-amino-2.6-diäthoxy-pryidin beim Erhitzen von 2.3.5.6-Tetrachlor-4-amino-pyridin mit Natriumäthylat und Alkohol auf 190° (Stokes, v. Peohmann, B. 19, 2715). Bei Einw. von Natriumäthylat in Alkohol bei 190° auf 3.5.6-Trichlor-4-amino-2-oxy-pyridin sowie auf 3.5-Dichlor-4-amino-2.6-diäthoxy-pyridin (St., v. P.). Nadeln (aus verd. Alkohol). F: 161,5°. Nicht flüchtig mit Wasserdampf. Sublimierbar. Schwer löslich in heißem Wasser, leicht in Alkohol und Äther. Unlöslich in verd. Säuren. Liefert bei Einw. von Phosphorpentachlorid ein bei 175° schmelzendes Produkt. Natriumsalz. Tafeln. Ziemlich schwer löslich in kaltem Wasser.
- 3.5-Dichlor-4-amino-2.6-diäthoxy-pyridin $C_0H_{10}O_2N_2Cl_2 = NC_6Cl_2(O\cdot C_2H_5)_2\cdot NH_2$. B. Neben 3.5-Dichlor-4-amino-2-oxy-6-äthoxy-pyridin aus 2.3.5.6-Tetrachlor-4-amino-pyridin beim Erhitzen mit überschüssigem Natriumäthylat und Alkohol auf 190° (Stokes, v. Pechmann, B. 19, 2715). Nadeln (aus verd. Alkohol). F: 98°. Sublimierbar; flüchtig mit Wasserdampf. Sehr leicht löslich in Alkohol und Äther, unlöslich in Wasser; unlöslich in verd. Säuren und Alkalien. Liefert beim Behandeln mit Natriumäthylat in Alkohol bei 190° 3.5-Dichlor-4-amino-2-oxy-6-äthoxy-pyridin.
- 3-Nitro-4-amino-2.6-dioxy-pyridin (8-Nitro-4-imino-2.6-dioxo-piperidin) $C_5H_5O_4N_3$, s. nebenstehende Formel, bezw. desmotrope Formen, Nitroglutazin. B. Neben Dinitroglutazin aus Glutazin beim Behandeln mit nitrosen Gasen in Wasser in der Kälte (v. Pechmann, B. 20, 2656). Orangegelbe Blättchen (aus Wasser). Zersetzt sich zwischen 170—180°, ohne zu schmelzen.
- 3-Nitro-4-nitrosamino-2.6-dioxy-pyridin $C_5H_4O_5N_4=NC_5H(NO_3)(OH)_3\cdot NH\cdot NO$ ist desmotrop mit 3-Nitro-4-diazo-2.6-dioxy-pyridin, S. 591.
- 3.5 Dinitro 4 amino 2.6 dioxy pyridin (3.5 Dinitro 4 imino-2.6 dioxo piperidin) C₅H₄O₆N₄, s. nebenstehende Formel, bezw. desmotrope Formen, Dinitroglutazin. B. Neben Nitroglutazin beim Einleiten von nitrosen Gasen in eine wäßr. Lösung von Glutazin in der Kälte (v. Pechmann, B. 20, 2656). Gelbe Blättchen (aus Wasser). Zersetzt sich beim Erhitzen, ohne zu schmelzen.
- 3.5-Dinitro-4-nitrosamino-2.6-dioxy-pyridin $C_5H_2O_7N_5 = NC_5(NO_2)_6(OH)_2 \cdot NH \cdot NO$ ist desmotrop mit 3.5-Dinitro-4-diazo-2.6-dioxy-pyridin, S. 591.

2. Aminoderivate der Dioxy-Verbindungen CaH,O2N.

1. Aminoderivat des 4.6-Dioxy-2-methyl-pyridins C₆H₇O₂N (Bd. XXI, S. 163).

5-Amino-4.6-dioxy-2-methyl-pyridin bezw. 5-Imino-4.6-dioxo-2-methyl-piperidin C₈H₈O₂N₂, Formel I bezw. II, bezw. weitere desmotrope Formen. B. Aus 5-Nitro-4.6-dioxy-2-methyl-pyridin beim Behandeln mit Zinn und Salzsäure unter Kühlung (Lapworth, Collie, Soc. 71, 841). — Nadeln mit 3H₂O; bei 100° werden 2H₂O abgespalten. Schwer löslich in kaltem Wasser, Aceton und Alkohol, unlöslich in Benzol und Chloroform. Löslich in verd. Salzsäure, in Alkalien und in Soda-Lösung. — Liefert bei kurzem Kochen mit Wasser eine Verbindung C₁₂H₁₂O₄N₃ (s. u.); dieselbe Verbindung entsteht auch beim Behandeln des Hydrochlorids mit der Hälfte der zur Neutralisation berechneten Menge Soda-Lösung und Kochen des Reaktionsgemisches; bei Anwendung der berechneten Menge Soda-Lösung erhält man 4.5.6-Trioxv-2-methyl-pyridin. — Farbreaktionen mit Oxydationsmitteln: L. C. — C-H₂O₂N₂ 5 - Amino - 4.6 - dioxy - 2 - methyl - pyridin 4.5.6-Trioxy-2-methyl-pyridin. — Farbreaktionen mit Oxydationsmitteln: L., C. — C. H.O.N. + HCl + H.O. Tafeln oder Nadeln. Fast unlöslich in den meisten organischen Lösungs-

Verbindung C₁₂H₁₃O₄N₂. B. Aus 5-Amino-4.6-dioxy-2-methyl-pyridin bei kurzem Kochen mit Wasser (Lapworth, Collie, Soc. 71, 843). Aus dem Hydrochlorid des 5-Amino-4.6-dioxy-2-methyl-pyridins beim Kochen mit der Hälfte der zur Neutralisation berechneten Menge Soda-Lösung (L., C.). — Mikroskopische Nadeln. Unlöslich in den meisten Lösungsmitteln. Löslich in Alkalien; die alkal. Lösung wird an der Luft blau bis blaugrün. — Liefert bei längerem Kochen mit Salzsäure 4.5.6-Trioxy-2-methyl-pyridin.

2. Aminoderivate des 2.6-Dioxy-3-methyl-pyridins C_eH₇O₂N (Bd. XXI, S. 165).

4-Amino-2.6-dioxy-3-methyl-pyridin bezw. 4-Imino-2.6-dioxo-3-methyl-piperidin
C₆H₈O₂N₂, Formel III bezw. IV, bezw. weitere
desmotrope Formen, Methylglutarin. B. Aus
β-Imino-α-methyl-α'-cyan-glutarsaure-diathylester (Bd. III, S. 855) beim Kochen mit verd.
Schwefelsaure oder verd. Salzsaure (Baron, Remfrey, Thorre, Soc. 85, 1751). Aus Methylglutazin-carbonsaureathylester beim Erhitzen mit Natronlauge (B., R., Th., Soc. 85, 1750).
Hellrote Nadeln (aus Wasser). F: ca. 260°. — Liefert beim Bahandeln mit Natronlauge Hellrote Nadeln (aus Wasser). F: ca. 260°. — Liefert beim Behandeln mit Natriumnitrit in Natronlauge 2.6-Dioxo-4-imino-5-oximino-3-methyl-piperidin (Bd. XXI, S. 572). — Gibt mit Ferrichlorid in wäßr. Lösung eine vorübergehende rote Färbung. — Hydrochlorid. Nadeln. Wird durch Wasser zersetzt.

Dibensoylmethylglutasin $C_{20}H_{16}O_4N_2 = C_6H_5 \cdot CO \cdot NC_5H_2O_2(CH_2): N \cdot CO \cdot C_6H_5$ 8. Bd. XXI, S. 558.

5-Nitroso-4-amino-2.6-dioxy-8-methyl-pyridin $C_6H_7O_2N_2$, s. nebenstehende Formel, ist desmotrop mit 2.6-Dioxo-4-imino-5-oximino-3-methylpiperidin, Bd. XXI, S. 572.

3. Aminoderivate der Dioxy-Verbindungen $C_7H_9O_2N$.

Aminoderivate des 2.6-Dioxy-3-äthyl-pyridins C,H,O,N (Bd. XXI, S. 165).

4-Amino-2.6-dioxy-3-äthyl-pyridin bezw. 4 - Imino - 2.6 - dioxo - 3 - äthyl - piperidin C₇H₁₀O₂N₂, Formel V bezw. VI, bezw. weitere desmotrope Formen, Äthylglutasin. B. Aus Äthylglutasin konz. Kalilauge (Baron, Remfry, Thorpe, Soc. 85, 1760). — Gelbe Platten (aus Wasser). F: ca. 260°. — Gibt mit Ferrichlorid in wäßr. Lösung eine rote Färbung.

Dibensoyläthylglutasin $C_{21}H_{18}O_4N_2 = C_6H_5 \cdot CO \cdot NC_5H_2O_2(C_2H_5) : N \cdot CO \cdot C_6H_5$ 8. Bd. XXI, S. 560.

5-Nitroso-4-amino-2.6-dioxy-3-äthyl-pyridin C,H,O,N, s. neben-stehende Formel, ist desmotrop mit 2.6-Dioxo-4-imino-5-oximino-3-äthyl-HO N OH

BEILSTEINs Handbuch. 4. Aufl. XXII.

2. Aminoderivat des 2.6-Dioxy-3.5-dimethyl-pyridins C₇H₉O₂N.

4-Amino-2.6-dioxy-3.5-dimethyl-pyridin bezw. 4-Imino-2.6-dioxo-3.5-dimethyl-piperidin $C_7H_{10}O_2N_2$, Formel I bezw. II, bezw. weitere desmotrope Formen, Dimethyl-glutasin. B. Aus β-Imino-α.α'-dimethyl-α-oyan-glutarsäure-diäthylester (Bd. III, S. 857) bei längerem Kochen mit verd. Mineralsäuren I. CH_3 NH CH_3 II. CH_3 HC C CH CH_3 (Babon, Remery, Thorpe, Soc. 85, 1755). HO N OH N OC N

beim Erhitzen mit starker Kalilauge (B., R., Th., Soc. 85, 1754). — Gelbe Platten (aus Wasser). — Liefert beim Behandeln mit Natriumnitrit und Essigsäure 2.4.6-Trioxy-3.5-dimethylpyridin. — Gibt mit Ferrichlorid in wäßr. Lösung eine rote Färbung.

Dibenzoyldimethylglutasin $C_{21}H_{18}O_4N_2=C_6H_5\cdot CO\cdot NC_5H_2O_2(CH_3)_2:N\cdot CO\cdot C_6H_5$ s. Bd. XXI, S. 560.

c) Aminoderivate der Dioxy-Verbindungen $C_n H_{2n-11} O_2 N$.

3 • Amino • 4 • oxy • 2 • [4 • methoxy • phenyl] • pyrrol $C_{11}H_{12}O_2N_2 = HO \cdot C - C \cdot NH_2$

bezw. desmotrope Formen. B. Aus 3-Nitro-4-oxy-2-[4-methoxy-phenyl]-pyrrol durch Reduktion mit Zinnchlorür und Salzsäure (Wieland, Bloch, A. 340, 80). — Krystalle. F: 97°. Leicht löslich in heißem Wasser. Mit Wasserdampf flüchtig. — $C_{11}H_{12}O_2N_2 + HCl$. F: 214°; wird von 190° an dunkel. Die Schmelze ist rotbraun.

3. Aminoderivate der Trioxy-Verbindungen.

4-Amino-1-oxy-6.7-dimethoxy-isoindolenin $C_{10}H_{12}O_3N_2$, s. nebenstehende Formel, ist desmotrop mit 4-Amino-6.7-dimethoxy-phthalimidin, S. 540.

4 - Acetamino - 6.7 - dimethoxy - 1 - acetoxy - isoindolenin CH₃ o $C_{14}H_{16}O_5N_2 = (CH_3 \cdot CO \cdot NH)(CH_3 \cdot O)_3C_6H \xrightarrow{C(O \cdot CO \cdot CH_3)} N$. B. Aus 4-Amino-6.7-dimethoxy-phthalimidin (S. 540) bei Einw. von Acetanhydrid und Natriumacetat (BISTRZYCKI, FINK, B. 31, 935). — Nadeln (aus verd. Alkohol). Zersetzt sich bei 242°.

4. Aminoderivate der Tetraoxy-Verbindungen.

a) Aminoderivate der Tetraoxy-Verbindungen C_n H_{2n-15} O₄N.

2-Methyl-6.7-dimethoxy-1-[6-amino-8.4-dimethoxy-benzyl]-1.2.3.4-tetrahydro-isochinolin, CH₃·O·CH₂·CH₂
N-Methyl-amino-Py * tetrahydro-papaverin, CH₃·O·

b) Aminoderivate der Tetraoxy-Verbindungen $C_nH_{2n-19}O_4N$.

6.7 - Dimethoxy - 1 - [6 - amino - 3.4 - dimethoxy-CH3·O· benzyl]-isochinolin, Aminopapaverin $C_{20}H_{22}O_4N_2$, s. nebenstehende Formel. B. Bei der Reduktion von Nitropapaverin (Bd. XXI, S. 228) mit Zinnchlorür + CH3·O· $CH_2 \cdot C_6H_2(O \cdot CH_3)_2(NH_2)$ konz. Salzsäure in Alkohol (Pschorr, Stählin, Silber-BACH, B. 37, 1933). — Nadeln mit 1C₂H₆O (aus Alkohol). Die alkoholhaltige Verbindung sintert bei ca. 105° und schmilzt bei 116°; die durch Trocknen über Schwefelsäure oder Erhitzen auf 100° erhaltene alkoholfreie Verbindung beginnt bei 130° zu sintern und schmilzt bei 143° (korr.). — Durch Behandeln mit Natriumnitrit in verd. Schwefelsäure unter Kühlung und Erwärmen der Diazoniumsalz-Lösung auf Zimmertemperatur entsteht 5.6-Dimethoxy-3-[6.7-dimethoxy-isochinolyl-(1)]-indazol (Diazopapaverin) (Syst. No. 3868).

Aminopapaverin-hydroxymethylat $C_{21}H_{26}O_5N_2$, $CH_3 \cdot O$ s. nebenstehende Formel. B. Das salzsaure Chlorid entsteht bei der Reduktion von Nitropapaverin-chlormethylat mit Zinn + konz. Salzsäure (Pschorr, Stählin, Silberbach, B. 37, 1940). — $C_{21}H_{25}O_4N_2 \cdot Cl$. Nadeln (aus Wasser). F: 147° (korr.). — $C_{21}H_{25}O_4N_2 \cdot Cl + HCl$. Tafeln (aus verd. Salzsäure). F: 200° (korr.).

Acetaminopapaverin $C_{92}H_{24}O_5N_9 = NC_9H_4(O\cdot CH_3)_2\cdot CH_2\cdot C_6H_2(O\cdot CH_3)_2(NH\cdot CO\cdot CH_3)$. Beim Erhitzen von Aminopapaverin mit Acetanhydrid im Wasserbad (Pschorr, Stählin, Silberbach, B. 37, 1934). — Krystalle mit $1C_6H_6$ (aus Benzol). Schmilzt benzolhaltig bei 125°, benzolfrei bei 162° (korr.).

6.7-Dimethoxy-1-[α -amino-3.4-dimethoxy-benzyl]- $CH_3 \cdot O$ isochinolin, Papaveraldylamin C₂₀H₂₂O₄N₂, s. nebenstehende CH₃·O

Formel. B. Bei der Reduktion des bei 235° schmelzenden H2N·CH·C6H3(O·CH3)2 Papaveraldinoxims (Bd. XXI, S. 635) in absolut-alkoholischer, durch Zusatz von Eisessig stets sauer gehaltener Lösung mit Natriumamalgam (Hirsch, M. 16, 847). — Gelbbraune Masse. Schmilzt bei 80—85° unter Aufschäumen. Leicht löslich in absol. Alkohol und Äther. — C₂₀H₂₂O₄N₂ + HCl (im Vakuum). Weißer Niederschlag. Leicht löslich in Wasser und absol. Alkohol.

F. Oxo-amine.

1. Aminoderivate der Monooxo-Verbindungen.

a) Aminoderivate der Monooxo-Verbindungen $C_n H_{2n-1}ON$.

1. Aminoderivat des Piperidons-(2) C₈H₉ON (Bd. XXI, S. 238).

 $\textbf{3-Amino-piperidon-(2)} \quad C_5H_{10}ON_2 = \frac{H_2C \cdot CH_2 \cdot CH \cdot NH_2}{H_2C \cdot NH \cdot CO}. \quad \textit{B.} \quad \text{Durch Sättigen einer}$ Lösung von dl-Ornithin (Bd. IV, S. 424) in Methanol mit Chlorwasserstoff und Behandeln des in Wasser gelösten Reaktionsprodukts mit Silberoxyd (E. FISCHER, ZEMPLÉN, B. 42, des in Wasser gelosten Reaktionsprodukts mit Silberoxyd (E. FISCHER, ZEMPLEN, B. 42, 4886). — Krystalle. Sehr leicht löslich in Wasser, leicht in Alkohol, schwerer in Essigester, sehr schwer in Äther. — Liefert beim Erhitzen mit $20^{\circ}/_{\circ}$ iger Salzsäure auf 100° dl-Ornithin. — $C_5H_{10}ON_2+HCl$. Prismen (aus Alkohol). Sintert von 220° an, ist bei 250° unter Zersetzung geschmolzen. — $2C_5H_{10}ON_2+2HCl+PtCl_4+H_2O$. Blaßorangegelbe Nadeln (aus verd. Alkohol). Zersetzt sich bei $200-205^{\circ}$. — Pikrat. Gelbes Krystallpulver. F: $160-162^{\circ}$ (korr.).

2. Aminoderivate des 2.2.4-Trimethyl-pyrrolidons-(5) $C_2H_{13}ON$.

4 - Amino - 1.2.2.4 - tetramethyl - pyrrolidon - (5) $C_8H_{16}ON_2 =$ -CH₂ $(\mathbf{H_2N})(\mathbf{CH_2})\mathbf{C}$. B. Durch Umsetzung von N-Methyl-diacetonamin (Bd. IV, $OC \cdot N(CH_2) \cdot C(CH_3)_2$

S. 323) mit Ammoniumchlorid und Kaliumcyanid in Wasser bei 60° und Eindampfen des

Reaktionsprodukts mit konz. Salzsäure (Kohn, M. 29, 501). — Flüssig. Kp₁₇: 140—143°; Kp₂₂: 154—157°. Löslich in Wasser unter Erwärmung, leicht löslich in Äther. Gibt an der Luft ein festes Carbamat.

- 4 Methylamino 1.2.2.4 tetramethyl pyrrolidon (5) $C_9H_{18}ON_2 = (CH_2 \cdot NH)(CH_3)C$
- OC·N(CH₃)·C(CH₃); B. Durch Umsetzung von N-Methyl-diacetonamin mit Methylamin-hydrochlorid und Kaliumovanid in Wasser und Eindampfen des Reaktionsprodukts mit konz. Salzsäure (Kohn, M. 29, 503; K., Bum, M. 30, 734). Krystalle. F: ca. 32° (K., B.). Kp₁₁: 121—122° (K., B.); Kp₁₅₋₁₆: 128—130° (K.).
- 4 Dimethylamino 1.2.2.4 tetramethyl pyrrolidon (5) $C_{10}H_{20}ON_2 = [(CH_2)_2N](CH_3)C$

OC·N(CH₃)·C(CH₃). B. Durch Umsetzung von N-Methyl-diacetonamin mit OC·N(CH₃)·C(CH₃). B. Durch Umsetzung von N-Methyl-diacetonamin mit Dimethylamin-hydrochlorid und Kaliumcyanid in verd. Alkohol und Eindampfen des Reaktionsprodukts mit konz. Salzsäure (Kohn, M. 29, 505). — Siedet unter 13 mm bei 130—140°. Gibt an der Luft ein festes Carbamat. — $2C_{10}H_{20}ON_2 + 2HCl + PtCl_4$ (bei 110°). Schuppen. Schwer löslich in Alkohol.

 $\begin{array}{c} \textbf{Hydroxymethylat} \quad \textbf{C}_{11}\textbf{H}_{24}\textbf{O}_{2}\textbf{N}_{2} = \\ & \textbf{OC} \cdot \textbf{N}(\textbf{CH}_{3})_{2}\textbf{N} \\ \textbf{Iddid entsteht aus der vorangehenden Verbindung und Methyljodid bei gewöhnlicher Temperatur (Kohn, <math>M$. 29, 506). — $\textbf{C}_{11}\textbf{H}_{23}\textbf{ON}_{3} \cdot \textbf{Cl} + \textbf{HCl} + 2\,\textbf{AuCl}_{2}. \quad \textbf{Gelb.} \quad \textbf{C}_{11}\textbf{H}_{23}\textbf{ON}_{3} \cdot \textbf{Cl} \\ + \,\textbf{HCl} + \,\textbf{PtCl}_{4}. \quad \textbf{Gelbroter, krystallinischer Niederschlag.} \quad \textbf{Schwer löslich.} \end{array}$

- 1 Äthyl 4 äthylamino 2.2.4 trimethyl pyrrolidon (5) $C_{11}H_{22}ON_2 = (C_2H_5\cdot NH)(CH_3)C$ CH₂ $OC\cdot N(C_2H_5)\cdot C(CH_3).$ B. Durch Umsetzung von N-Äthyl-diacetonamin (Bd. IV, S. 324) mit Äthylamin-hydrochlorid und Kaliumcyanid in Wasser und Eindampfen des Reaktionsprodukts mit konz. Salzsäure (Kohn, Bum, M. 80, 736). Dickes Öl. Kp₁₉₋₁₄: 127—132°.
- 4-[Methyl-(β -oxy-äthyl)-amino]-1.2.2.4-tetramethyl-pyrrolidon-(5) $C_{11}H_{22}O_2N_2 = [(HO \cdot CH_2 \cdot CH_3)(CH_2)N](CH_2)C$ CH_3 $C(CH_3) \cdot C(CH_3)$. B. Aus 4-Methylamino-1.2.2.4-tetramethyl-

pyrrolidon-(5) und Äthylenoxyd in Wasser bei gewöhnlicher Temperatur (Kohn, Bum, M. 80, 734). — Pulver. — $C_{11}H_{22}O_2N_2 + 2HCl + 2AuCl_2 + H_2O$. Gelbe Krystalle (aus verd. Salzsäure). Zersetzt sich bei ca. 167°.

 $\begin{array}{l} \textbf{HydroxymethylatC}_{12}\textbf{H}_{26}\textbf{O}_{3}\textbf{N}_{2} = \\ & \textbf{OC} \cdot \textbf{N}(\textbf{CH}_{2}) \cdot \textbf{CH}_{2} \textbf{)}(\textbf{CH}_{3})_{2}\textbf{N}(\textbf{OH}) \textbf{]}(\textbf{CH}_{3})\textbf{C} - \textbf{CH}_{2} \\ \textbf{OC} \cdot \textbf{N}(\textbf{CH}_{2}) \cdot \textbf{C}(\textbf{CH}_{2})_{2} \\ \textbf{B. Das Jodid entsteht aus der vorangehenden Verbindung und Methyljodid bei gewöhnlicher Temperatur (Kohn, Bum, M. 80, 736). \\ & \textbf{C}_{12}\textbf{H}_{25}\textbf{O}_{2}\textbf{N}_{2} \cdot \textbf{Cl} + \textbf{HCl} + \textbf{PtCl}_{4}. \quad \textbf{Orangefarbene Krystalle.} \end{array}$

Hydroxymethylat $C_{14}H_{20}O_2N_3 = [(HO \cdot CH_2 \cdot CH_2)(C_2H_5)(CH_2)N(OH)](CH_2)C$ ——CH₂ $OC \cdot N(C_2H_5) \cdot C(CH_2)_2 \cdot B. \quad Das \ Jodid \ enteteht \ aus$ der vorangehenden Verbindung und Methyljodid bei gewöhnlicher Temperatur (Kohn, Bum, M. 80, 737). — $C_{14}H_{29}O_2N_2 \cdot Cl + HCl + PtCl_4$. Rötlichgelbes Pulver.

4 - [Methyl - acetyl - amino] - 1.2.2.4 - tetramethyl - pyrrolidon - (5) $C_{11}H_{20}O_2N_2 = [(CH_3 \cdot CO)(CH_2)N](CF_3)C$ CH₂
OC·N(CH₂)·C(CH₂)₂
B. Aus 4-Methylamino-1.2.2.4-tetramethyl-pyrrolidon-(5) und siedendem Acetanhydrid (Kohn, M. 29, 504). — Tafeln (aus Benzol + Ligroin). F: 123—125,5°. Ziemlich leicht löslich in Wasser mit schwach alkalischer Reaktion.

- 4. [ω . Phenyl. thioureido] 1.2.2.4 tetramethyl. pyrrolidon (5) $C_{15}H_{21}ON_3S =$ OC·N(CH₃)·C(CH₃)₂

 B. Aus 4-Amino-1.2.2.4-tetramethyl-pyrroiföl in Ather (Koyy) M. OC. lidon-(5) und Phenylsenföl in Ather (Kohn, M. 29, 503). — Krystalle (aus Alkohol). F: 180°
- 4 [N Methyl N' phenyl thioureido] 1.2.2.4 tetramethyl pyrrolidon (5) $C_{16}H_{23}ON_3S = \begin{bmatrix} C_6H_5 \cdot NH \cdot CS \cdot N(CH_3)](CH_3)C CH_2 \\ C_{16}H_{23}ON_3S CH_2 \end{bmatrix} . B. \text{Aus 4-Methylamino.}$ $OC \cdot N(CH_3) \cdot C(CH_3)_2$ 1.2.2.4-tetramethyl-pyrrolidon-(5) und Phenylsenföl in Ather (Kohn, M. 29, 504). Krystalle (aus Alkohol). F: 132—135°.
- 3. Aminoderivate des 3-Propyl-piperidons-(2) C₈H₁₅ON (Bd. XXI, S. 246).
- 8-[y-Amino-propyl]-piperidon-(2) $C_8H_{16}ON_2 = \frac{H_2C \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_2 \cdot NH_2}{H_2C \cdot NH \cdot CO}$ B. Das Carbonat entsteht neben 1.2.3.4.5.6.7.10-Oktahydro-1.8-naphthyridin (Syst. No. 3468) bei der Destillation von carbonathaltiger Bis-[y-amino-propyl]-essigsäure (Reisser, B. 27, 980). — Öl. Ziemlich leicht löslich in Wasser. — Gibt bei der Destillation Oktahydro1.8-naphthyridin. — C₈H₁₆ON₂ + HCl. Krystallwarzen (aus Alkohol + Äther). F: 159.50
 (unkorr.). Leicht löslich in Wasser, schwere in absol. Alkohol, schwer in Äther. — 2C₈H₁₆ON₂ +2HCl+PtCl₄. Hellgelbe Prismen (aus verd. Salzsäure). F: 220° (unkorr.). — Pikrat C₈H₁₆ON₂+C₆H₃O₇N₃. Gelbe Nadeln (aus Alkohol). F: 207° (unkorr.). Schwer löslich in Wasser, Alkohol und Benzol, leichter in Chloroform und Eisessig.
- 8 $[\gamma$ Bensamino propyl] piperidon (2) $C_{15}H_{20}O_2N_2 =$ $\mathbf{H_3C \cdot CH_3 \cdot CH \cdot CH_3 \cdot CH_2 \cdot CH_2 \cdot NH \cdot CO \cdot C_6H_5}$
- B. Aus 3-[\gamma-Amino-propyl]-piperidon-(2) und H.C.NH.CO

Benzoylchlorid in verd. Natronlauge (R., B. 27, 981). — Nadeln (aus Wasser). F: 151°. Leicht löslich in Alkohol, Chloroform und Eisessig, schwer in Wasser und Benzol, fast unlöslich in Ather und Ligroin.

- b) Aminoderivate der Monooxo-Verbindungen $C_n H_{2n-3}ON$.
- 1. Aminoderivat des Δ^1 -Pyrrolons-(5) C_4H_5ON .
- 2-Anilino- Δ^1 -pyrrolon-(5) $C_{10}H_{10}ON_2 = \frac{H_2C CH_2}{OC \cdot N \cdot C \cdot NH \cdot C_6H_5}$ ist desmotrop mit 5-Oxo-2-phenylimino-pyrrolidin, Bd. XXI, S. 372.
- 2. Aminoderivate des 6-0xo-2.2.4-trimethyl-1.2.3.6-tetrahydro-pyridins C.H.,ON (Bd. XXI, S. 260).
- 5-Amino-6-oxo-2.2.4-trimethyl-1.2.3.6-tetrahydro-pyridin $C_8H_{14}ON_8 =$ $\mathbf{H_2N} \cdot \mathbf{C} : \mathbf{C}(\mathbf{CH_3}) \cdot \mathbf{CH_3}$ OC-NH-C(CH₂)₂ ist desmotrop mit 5-Imino-6-oxo-2.2.4-trimethyl-piperidin, Bd. XXI,
- S. 395. **5-A**mino-6-oxo-1.2.2.4-tetramethyl-1.2.3.6-tetrahydro-pyridin $C_9H_{10}ON_9=$ $\mathbf{H_2N \cdot C} : \mathbf{C}(\mathbf{CH_3}) \cdot \mathbf{CH_2}$

ist desmotrop mit 5-Imino-6-oxo-1.2.2.4-tetramethyl-piperidin, $OC \cdot N(CH_3) \cdot C(CH_3)_2$ Bd. XXI, S. 395.

- c) Aminoderivate der Monooxo-Verbindungen $C_n H_{2n-5}ON$.
- 1. Aminoderivat des Pyridons-(2) C_bH_bON (Bd. XXI, S. 268).
- 5-Amino-pyridon-(2) $C_5H_6ON_2 = \frac{\dot{HC}: CH \cdot C \cdot NH_2}{OC \cdot NH \cdot \dot{C}H}$ ist desmotrop mit 5-Amino-2-oxypyridin, S. 498.

- 2. Aminoderivat des 2-Acetyl-pyrrols C₆H₇ON (Bd. XXI, S. 271).
- $\begin{array}{lll} \textbf{4-Amino-2-acetyl-pyrrol} & C_0H_0ON_2 = & \begin{matrix} H_2N\cdot C & CH \\ HC\cdot NH\cdot C\cdot CO\cdot CH_3 \end{matrix} . & B. & Durch Reduktion \\ & & & & \\ Von & 4-Nitro-2-acetyl-pyrrol (Bd. XXI, S. 272) & mit Zinn und Salzsäure (Ciamician, Silber, G. 15, 321; B. 18, 1460). & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$
- 3. Aminoderivate der Monooxo-Verbindungen C_7H_0ON .
- 1. Aminoderivat des 2.4-Dimethyl-pyridons-(6) C_7H_9ON (Bd. XXI, S. 274). 5-Amino-2.4-dimethyl-pyridon-(6) $C_7H_{10}ON_2 = \frac{H_2N \cdot C : C(CH_3) \cdot CH}{OC-NH-C \cdot CH_3}$ ist desmotrop mit 5-Amino-6-oxy-2.4-dimethyl-pyridin, S. 498.
- 2. Aminoderivat des 2.6-Dimethyl-pyridons-(4) C_7H_5ON (Bd. XXI, S. 275).

 3-Amino-2.6-dimethyl-pyridon-(4) $C_7H_{10}ON_2 = \frac{HC \cdot CO \cdot C \cdot NH_2}{CH_3 \cdot C \cdot NH \cdot C \cdot CH_3}$ ist desmotrop mit 3-Amino-4-oxy-2.6-dimethyl-pyridin, S. 499.
- 4. Aminoderivat des 2-Methylen-tropinons $C_8H_{11}ON$.
- 2-Anilinomethylen-tropinon C₁₈H₁₈ON₂, s. nebenstehende Formel, ist desmotrop mit 2-Phenyliminomethyl-tropinon, Bd. XXI, S. 415.

 H₂C-CH----C:CH·NH·C₆H₅

 N·CH₃ CO

 H₂C-CH-----C:H₂
 - d) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-p}ON$.
- 1. Aminoderivate der Monooxo-Verbindungen C_RH_2ON .
 - 1. Aminoderivate des Oxindols C₈H₇ON (Bd. XXI, S. 282).
- 8-Amino-oxindol $C_8H_8ON_2=C_8H_4$ CH(NH₂) CO. B. Durch Reduktion von Isatin- β -oxim mit Zinn und Salzsäure (BAEYER, KNOP, A. 140, 37). Liefert bei der Oxydation mit Eisenchlorid, Kupferchlorid oder salpetriger Säure Isatin (B., B. 11, 1228). $C_8H_8ON_2+HCl$. Krystallwarzen. Gibt bei 80° Salzsäure ab, zersetzt sich bei 170°, ohne zu schmelzen (B., K.). Wird durch Wasser zersetzt.
- 6-Amino-oxindol C₂H₂ON₂, s. nebenstehende Formel. B. Bei der Reduktion von 2.4-Dinitro-phenylessigsäure mit Zinn und Salzsäure (Gabriel, Meyer, B. 14, 832). Nadeln (aus Wasser).

 F: ca. 200° (unter starker Dunkelfärbung). Leicht löslich in heißem Wasser, Alkohol und Äther, schwerer in Benzol und Schwefelkohlenstoff. Liefert mit Amylnitrit und Salzsäure bei Gegenwart von Alkohol und Äther 3-Oximino-oxindol-diazoniumchlorid-(6) (S. 592) (G., M., B. 14, 832, 2332).
- 4 Brom 6 amino oxindol C₂H₇ON₂Br, s. nebenstehende
 Formel. B. Durch Reduktion von 3.6(oder 5.6)-Dibrom-2.4-dinitrophenylmalonsäure-diäthylester mit Zinn und wäßrig-alkoholischer
 Salzsäure in Gegenwart von Platin bei 50—70° (JACKSON, BANGBOFT,

 Am. 12, 301). Mikroskopische Nadeln. F: ca. 212° (Zers.). Leicht löslich in heißem Eisesig, löslich in heißem Alkohol, schwer löslich in Benzol, unlöslich oder fast unlöslich in Ather, Chloroform und kaltem Wasser. Löslich in Natronlauge. Zersetzt sich beim Aufbewahren. C₂H₇ON₂Br+HCl+H₂O. Nadeln oder Prismen (aus Wasser). Wird bei 135° noch nicht wasserfrei. Schwer löslich in kaltem Wasser, Benzol, Chloroform und Eisessig, fast unlöslich in Äther, sehr leicht löslich in Schwefelkohlenstoff.
- 8.8-Diamino-oxindol $C_8H_9ON_8 = C_6H_4 < \frac{C(NH_9)_8}{NH} < CO$. Derivate hiervon s. bei den Derivaten des Isatins, Bd. XXI, S. 442, 443, 446, 451, 454.

2. Aminoderivat des Lactams der 6 - Amino - 3 - methyl - benzoesäure C.H.ON.

Lactam oder Azlacton der 4.6-Bis-acetamino-3-methyl-benzoesäure C₁₂H₁₂O₃N₂, Formel I oder II, wird nach Formel II (Syst. No. 4383) abgehandelt.

$$I. \begin{array}{c} CH_3 \cdot CO \cdot NH \cdot \\ -N \cdot CO \cdot CH_3 \end{array} \qquad II. \begin{array}{c} CH_3 \cdot CO \cdot NH \cdot \\ -N \cdot CO \cdot CH_3 \end{array}$$

- 2. Aminoderivate der Monooxo-Verbindungen C_0H_0ON .
- 1. Aminoderivate des 2-Oxo-1.2.3.4-tetrahydro-chinolins CoHoON (Bd. XXI, S. 288).
- 3 Anilino 2 oxo 1.2.3.4 tetrahydro chinolin, 3 Anilino hydrocarbostyril $C_{15}H_{14}ON_2 = C_6H_4 \\ \begin{array}{c} CH_2 \cdot CH \cdot NH \cdot C_6H_5 \\ NH \cdot CO \end{array}. \quad \textit{B. Durch Erwärmen von 3-Anilino-hydrocarbo-}$ styril-carbonsäure-(3)-methylester mit alkoh. Natronlauge (Conrad, Reinbach, B. 35, 517). - Krystalle. F: 178°. Schwer löslich in heißem Wasser, leichter in siedendem Alkohol, sehr leicht in heißem Eisessig sowie in konz. Salzsäure.
- 7-Amino-2-oxo-1.2.3.4-tetrahydro-chinolin, 7-Amino-hydro-carbostyril $C_9H_{10}ON_2$, s. nebenstehende Formel. B. Bei der Reduktion von 2.4-Dinitro-hydrozimtsäure mit Zinn und Salzsäure (GABRIEL, NH CO ZIMMERMANN, B. 12, 602). — Nadeln oder Prismen. F: 211°. Leicht löslich in heißem Wasser, Alkohol und Eisessig, schwerer in Äther, Chloroform und Benzol, unlöslich in Schwefelkohlenstoff. — C₉H₁₀ON₂ + HCl. Nadeln. — Chloroplatinat. Gelbe Blättchen.
- x Brom 7 amino 2 oxo 1.2.3.4 tetrahydro-chinolin, x-Brom-7-amino-hydrocarbostyril $C_0H_0ON_2Br = HNC_0H_0Br(:O)\cdot NH_2$. B. Neben x.x-Dibrom-7-amino-hydrocarbostyril (s. u.) aus 7-Amino-hydrocarbostyril und Brom in heißem Eisessig (G., Z., B. 12, 603). — Gelbliche Nadeln (aus verd. Essigsaure). F: 218—219°. Ziemlich leicht löslich in Eisessig und Alkohol, schwer in Ather, Chloroform und Benzol.
- x.x-Dibrom-7-amino-2-oxo-1.2.3.4-tetrahydro-chinolin, x.x-Dibrom-7-aminohydrocarbostyril C₉H₈ON₂Br₂ = HNC₉H₅Br₂(:O)·NH₂. B. s. im vorangehenden Artikel. — Nadeln (aus verd. Essigsäure). F: 179° (G., Z., B. 12, 603). Leicht löslich in Chloroform, ziemlich leicht in heißem Alkohol, Eisessig und Benzol.
 - 2. Aminoderivate des 5-Methyl-oxindols C₉H₉ON (Bd. XXI, S. 291).
- 3-p-Toluidino-5-methyl-oxindol C₁₆H₁₆ON₂, s. CH₃.

 nebenstehende Formel. B. Beim Erhitzen von 1 Mol
 Dichloressigsäure mit 4 Mol p-Toluidin (Duisberg, B.

 18, 191; vgl. Bayer & Co., D. R. P. 27979; Frdl. 1, 149; P. J. Meyer, B. 16, 2262; D. R. P.
 25136; Frdl. 1, 148). Nadeln (aus Alkohol oder Benzol). F: 166—167° (D.). Leicht löslich in organischen Lösungsmitteln aßler Lösung lauge mit roter Farbe (D.). Die alkoh. Lösung schmeckt beißend (D.). — Beim Einleiten von Luft in die alkoh. Lösung entsteht 5-Methyl-isatin-p-tolylimid-(3) (Bd. XXI, S. 510) (D.; B. & Co.). Reduziert ammoniakalisch-alkoholische Silber-Lösung unter Spiegelbildung (D.). Gibt bei der Zinkstaub-Destillation 5-Methyl-indol und p-Toluidin; auch bei der Einw. von Natriumamalgam wird p-Toluidin abgespalten (D.). — $C_{16}H_{16}ON_2 + HCl$. Krystallpulver. Leicht löslich in heißem Wasser und Alkohol, sehr schwer in konz. Salzsäure (D.).
- 1 Acetyl 3 [acetyl p toluidino] 5 methyl oxindol $C_{20}H_{20}O_3N_2 = CH_3 \cdot C_6H_3 \cdot C_6H_4 \cdot CH_3$ CO. B. Aus 3-p-Toluidino-5-methyl-oxindol und siedendem Acetanhydrid in Wasserstoff-Atmosphäre (Duisberg, B. 18, 193). — Nadeln (aus verd. Alkohol). F: 147°. Leicht löslich in Benzol, Chloroform und Eisessig, schwerer in Alkohol und Ather, unlöslich in Wasser und in Natronlauge.
- 3-p-Tolylnitrosamino-5-methyl-oxindol oder 1-Nitroso-3-p-toluidino-5-methyloxindol $C_{16}H_{15}O_2N_3 = CH_3 \cdot C_6H_3 \cdot CH[N(NO) \cdot C_6H_4 \cdot CH_3] \cdot CO$ oder $CH_3 \cdot C_6H_3 \cdot CH(NH \cdot C_6H_4 \cdot CH_3) \cdot CO. \quad B. \quad \text{Aus 3-p-Toluidino-5-methyl-oxindol und Kalium-N(NO)} \cdot CO. \quad CO. \quad B. \quad \text{Aus 3-p-Toluidino-5-methyl-oxindol und Kalium-N(NO)} \cdot CO. \quad
- nitrit in wäßrig-alkoholischer Salzsäure (Dußberg, B. 18, 193). Hellgelbe Nadeln (aus

Alkohol). Schmilzt oberhalb 220° unter Zersetzung. Schwer löslich in Wasser, Ligroin und Benzol, leichter in Alkohol, Ather und Chloroform. — Gibt die Liebermannsche Nitrosoreaktion.

3. Aminoderivate der Monooxo-Verbindungen $\mathrm{C_{10}H_{11}ON}.$

1. Aminoderivat des 2 - Oxo - 3 - methyl - 1.2.3.4 - tetrahydro - chinolins $C_{10}H_{11}ON$.

7-Amino-2-oxo-8-methyl-1.2.3.4-tetrahydro-chinolin, CH2 CH · CH3 7-Amino-3-methyl-hydrocarbostyril $C_{10}H_{12}ON_2$, s. neben-H₂N· stehende Formel. B. Aus β -[2-Nitro-4-amino-phenyl]-isobuttersäure bei 2-stdg. Kochen mit Schwefelammonium-Lösung (EDELEANU, Soc. 53, 560). — Nadeln (aus Wasser). F: 216°. Sehr schwer löslich in Alkohol und Ligroin.

2. Aminoderivat des 2 - Oxo - 4 - methyl - 1.2.3.4 - tetrahydro - chinolins

 $C_{10}H_{11}ON.$

1 - Oxy - 7 - amino - 2 - oxo - 4 - methyl - 1.2.3.4 - tetrahydrochinolin, 1-Oxy-7-amino-4-methyl-hydrocarbostyril C₁₀H₁₂O₂N₂, s. nebenstehende Formel. B. Durch Reduktion von β-[2.4-Dinitro-phenyl]-buttersäure mit Schwefelammonium bei 55-60° (Schroeter, B. 40, 1597). — Krystalle (aus verd. Alkohol). F: 177°. Löslich in Säuren und Alkalien.

3. Aminoderivat des 4.6-Dimethyl-oxindols $C_{10}H_{11}ON$.

8 - [symm. - m - Xylidino] - 4.6 - dimethyl - oxindol $C_{18}H_{20}ON_2$, s. nebenstehende Formel. B. Aus 2 Mol symm. CH₃ m-Xylidin und 1 Mol dichloressigsaurem Kalium bei CH·NH Gegenwart von Natriumacetat in heißem Wasser (Heller, A. 358, 367). — Nadeln (aus Athylenbromid). F: 250°. Schwer löslich in den gebräuchlichen Lösungsmitteln. -- Liefert bei der Oxydation mit Jod in Eisessig 4.6-Dimethyl-isatin.

4. Aminoderivate des 5.7-Dimethyl-oxindols C₁₀H₁₁ON (Bd. XXI, S. 294).

8 - [asymm. - m - Xylidino]-5.7-dimethyl-oxindol $C_{18}H_{20}ON_2$, s. nebenstehende Formel. B. Aus 1 Mol dichloressigsaurem Kalium und 2 Mol asymm. m-Xylidin bei Gegenwart von Natriumacetat in heißem Wasser (HELLER, A. 358, 363). — Nadeln (aus Toluol).

F: ca. 234°. Sehr schwer löslich in den meisten Lösungsmitteln. Löslich in konz. Salzsäure. - Färbt sich rasch an der Luft. Die alkoh. Lösung reduziert ammoniakalische Silbernitrat-Lösung unter Spiegelbildung. Gibt mit Brom in kaltem Eisessig 3-Brom-3-[asymm.-mxylidino]-5.7-dimethyl-oxindol (Bd. XXI, S. 516), das beim Erhitzen der Reaktions-Lösung in 5.7-Dimethyl-isatin übergeht.

4. Aminoderivat des 4-Methyl-2-phenyl-pyrrolidons-(5) $C_{11}H_{18}ON$.

4-Methylamino-1.4-dimethyl-2-phenyl-pyrrolidon-(5) $C_{13}H_{18}ON_2 =$

OC·N(CH₃)·CH·C₆H₅. B. Durch Umsetzung von Benzalaceton mit 33°/oiger wäßr. Methylamin-Lösung, Behandlung der entstandenen Lösung von Methylamino-benzylaceton mit Kaliumcyanid und Methylamin-hydrochlorid in verd. Alkohol bei 60° und Verseifung des Reaktionsprodukts mit konz. Salzsäure (Kohn, M. 29, 507). — Sehr zähe Flüssigkeit. Kp₁₈: 181°. Leicht löslich in Wasser. Gibt an der Luft ein Carbamat.

5. Aminoderivate des 2.2-Dimethyl-6-phenyl-piperidons-(4) $\mathbf{C}_{12}\mathbf{H}_{17}\mathbf{ON}$ (Bd. XXI, S. 299).

2.2-Dimethyl-6-[8-amino-phenyl]-piperidon-(4), m-Amino-benzaldiacetonamin H₂C·CO·CH₂ $\begin{array}{l} \textbf{C}_{13}\textbf{H}_{18}\textbf{ON}_{2} = \frac{\textbf{H}_{2}\textbf{C}\cdot\textbf{CO}\cdot\textbf{CH}_{2}}{\textbf{H}_{2}\textbf{N}\cdot\textbf{C}_{4}\textbf{H}_{4}\cdot\textbf{H}\textbf{C}\cdot\textbf{N}\textbf{H}\cdot\textbf{C}(\textbf{CH}_{3})_{2}}. \quad B. \text{ Durch Reduktion von m-Nitro-benzaldiaceton-amin (Bd. XXI, S. 300) mit Zinnehlorür in konz. Salzsäure (ANTRICK, A. 227, 378). — Gelbliches, dickflüssiges Öl. Leicht löslich in Alkohol, Äther, Schwefelkohlenstoff und Chloroform, ziemlich leicht in heißem Wasser, schwer in Ligroin. — Oxalat <math>\textbf{C}_{13}\textbf{H}_{18}\textbf{ON}_{2} + \textbf{C}_{2}\textbf{H}_{2}\textbf{O}_{4}.$ Krystalle. F: 113° (Zers.). Sehr leicht löslich in Wasser.

 $_{\mathrm{CH}}$

2.2-Dimethyl-6-[4-amino-phenyl]-piperidon-(4), p-Amino-benzaldiacetonamin $C_{12}H_{12}ON_2 = H_2 \cdot CO \cdot CH_2$ $H_2 \cdot CO \cdot CH_2 \cdot B. \quad \text{Analog} \quad \text{der} \quad \text{vorangehenden} \quad \text{Verbindung} \quad \text{(Antrior, A. 227, 380).} \quad \text{Gelbliches Ol. Leicht löslich in Ather, Alkohol, Chloroform, Benzol und heißem Wasser.} \quad \text{Oxalat $C_{13}H_{12}ON_2 + C_2H_2O_4$.} \quad \text{Krystallinisch. Leicht löslich in Wasser und Alkohol, unlöslich in Ather.}$

- e) Aminoderivate der Monooxo-Verbindungen $C_n H_{2n-11} ON$.
- 1. Aminoderivate der Monooxy-Verbindungen C_8H_5ON .
 - 1. Aminoderivat des 3-Oxo-7-aza-indens¹) C₈H₅ON (Bd. XXI, S. 301).
- 2-Chlor-1-anilino-8-oxo-7-aza-inden 1) C₁₄H₉ON₂Cl, s. nebenstehende Formel, ist desmotrop mit 2-Chlor-3-phenylimino-1-oxo-4-aza-hydrinden, Bd. XXI, S. 431.
 - 2. Aminoderivate des 3-Oxo-indolenins C₈H₅ON (Bd. XXI, S. 301).
- **2-Anilino-3-oxo-indolenin** $C_{14}H_{10}ON_2 = C_6H_4 < {}^{CO}_N > C \cdot NH \cdot C_6H_5$ ist desmotrop mit Isatin- α -anil, Bd. XXI, S. 439.
- 2-Toluidino-3-oxo-indolenine $C_{15}H_{12}ON_2 = C_6H_4 < \stackrel{CO}{\sim} C \cdot NH \cdot C_6H_4 \cdot CH_3$ sind desmotrop mit Isatin- α -tolylimiden, Bd. XXI, S. 440.
- 2-[4-Dimethylamino-anilino]-3-oxo-indolenin $C_{16}H_{15}ON_3 = C_6H_4 < {^{CO}_{N}} > C \cdot NH \cdot C_6H_4 \cdot N(CH_3)_2$ ist desmotrop mit Isatin- α -[4-dimethylamino-anil], Bd. XXI, S. 440.
- 5.7-Dibrom-2-äthylamino-3-oxo-indolenin C₁₀H₈ON₂Br₂, s. nebenstehende Formel, ist desmotrop mit 5.7-Dibrom-isatin-äthylimid-(2), Bd. XXI, S. 455.
- 2. Aminoderivate der Monooxo-Verbindungen C₂H₇ON.
- 1. Aminoderivat des 6-Oxo-5.6-dihydro-chinolins C₉H₇ON (Bd. XXI, S. 303).

 5.5.7-Trichlor-8-anilino-6-oxo-5.6-dihydro-chinolin C₁₅H₉ON₂Cl₃, s. nebenstehende Formel, ist desmotrop mit 5.5.7-Trichlor-8-phenylimino-6-oxo-5.6.7.8-tetrahydro-chinolin, Bd. XXI, S. 507.
 - 2. Aminoderivate des Chinolons-(2) C₂H₇ON (Bd. XXI, S. 304). H₂N

5-Amino-chinolon-(2) (5-Amino-carbostyril) C₉H₈ON₂, s. nebenstehende Formel, ist desmotrop mit 5-Amino-2-oxy-chinolin, S. 500.

1-Methyl-5-amino-chinolon-(2), 1-Methyl-5-amino-carbostyril $C_{10}H_{10}ON_2 = H_2N \cdot C_0H_3 \cdot CO$. B. Durch Reduktion von 1-Methyl-5-nitro-chinolon-(2) mit Schwefelammonium (Decker, Engler, B. 42, 1736). — Hellgelbe Krystalle (aus Benzol). F: 213°. Leicht löslich in Wasser und Alkohol. — $C_{10}H_{10}ON_2 + HCl$. Gelbe Nadeln. F: 221°.

1-Äthyl-5-amino-chinolon-(2), 1-Äthyl-5-amino-carbostyril $C_{11}H_{12}ON_2 = H_2N \cdot C_6H_2 CH CH CO$. B. Durch Reduktion von 1-Äthyl-5-nitro-chinolon-(2) mit Schwefelammonium (D., E., B. 42, 1737). — Blättchen (aus Benzol), Krystalle mit 1 H_2O (aus Wasser). F: 177—178°. — $C_{11}H_{12}ON_2 + HCl + 2H_2O$. Hellgelbe Nadeln (aus Wasser). F: 235° (Zers.).

¹⁾ Über den Gebrauch des Präfixes "Aza" vgl. STELZNER, Literatur-Register der Organischen Chemie, Bd. V. S. IX—XV.

- 1 Methyl 5 acetamino chinolon (2), 1 Methyl 5 acetamino carbostyril $C_{19}H_{18}O_{2}N_{2} = CH_{3} \cdot CO \cdot NH \cdot C_{6}H_{3} \cdot CO \cdot NH \cdot C_{6}$
- 6 Amino chinolon (2) (6 Amino carbostyril) C₉H₈ON₉, s. nebenstehende Formel, ist desmotrop mit 6-Amino-2-oxy-chinolin, S. 500.
- 1-Methyl-6-amino-chinolon-(2), 1-Methyl-6-amino-carbostyril $C_{16}H_{10}ON_2 = H_2N \cdot C_6H_2 \cdot CH = CH \\ N(CH_2) \cdot CO$. B. Durch Reduktion von 1-Methyl-6-nitro-chinolon-(2) mit Schwefelammonium in Alkohol (Decker, Engler, B. 36, 1173). Gelbe Krystalle (aus Benzol). Riecht charakteristisch. F: 165°. Mit Wasserdampf flüchtig. Sehr leicht löslich in Wasser, ziemlich leicht in Alkohol, schwerer in anderen Lösungsmitteln. Saures Hydrochlorid. Schwach rötliche Nadeln. F: 277°. Sehr leicht löslich.
- 1 Methyl 6 acetamino chinolon (2), 1 Methyl 6 acetamino carbostyril $C_{12}H_{12}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3 \cdot CO \cdot NH \cdot C$
- 7 Amino chinolon (2) (7 Amino carbostyril) C₉H₉ON₉, s. nebenstehende Formel, ist desmotrop mit 7-Amino-2-oxy-chinolin, S. 500.
- 1-Methyl-7-amino-chinolon-(2), 1-Methyl-7-amino-carbostyril $C_{10}H_{10}ON_2 = H_2N \cdot C_6H_3$ CH—CH

 N(CH₃)·CO

 B. Durch Reduktion von 1-Methyl-7-nitro-chinolon-(2) mit

 Schwefelammonium (Decker, Engler, B. 42, 1738). Nadeln (durch Sublimation), wasser-haltige Krystalle (aus der salzsauren Lösung durch Ammoniak). F: 185°. $C_{10}H_{10}ON_2 + HCl + H_2O$. Goldgelbe Nadeln. F: 244° (Zers.).
- 1 Methyl 7 acetamino chinolon (2) , 1 Methyl 7 acetamino carbostyril $C_{13}H_{12}O_2N_2 = CH_3 \cdot CO \cdot NH \cdot C_6H_3 \cdot CO \cdot NH \cdot CO$
- 1-Methyl-8-amino-chinolon-(2), 1-Methyl-8-amino-carbostyril $C_{10}H_{10}ON_3$, s. nebenstehende Formel. B. Durch Reduktion von 1-Methyl-8-nitro-chinolon-(2) mit Schwefelammonium (D., E., B. 42, 1738). Gelbliche Krystalle (aus Benzol). F: 180°. Leicht löslich in Wasser und Alkohol. H_2N CH_3 Oxydiert sich an der Luft leicht unter Dunkelfärbung.
- 1-Methyl-8-formamino-chinolon-(2), 1-Methyl-8-formamino-carbostyril $C_{11}H_{10}O_2N_2=OHC\cdot NH\cdot C_6H_3$ CH—CH N(CH₃)·CO B. Aus 1-Methyl-8-amino-chinolon-(2) und konz. Ameisensäure auf dem Wasserbad (D., E., B. 42, 1738). Wasserhaltige Nadeln (aus verd. Alkohol). Schmilzt bei 88°, gibt bei 120° das Krystallwasser ab, wird wieder fest und zersetzt sich bei 185—190°, ohne zu schmelzen.
- 1 Methyl 8 acetamino chinolon (2), 1 Methyl 8 acetamino carbostyril $C_{12}H_{12}O_2N_2 = CH_2 \cdot CO \cdot NH \cdot C_6H_3 \cdot CO \cdot NH \cdot C$
- 3. Aminoderivate der Monooxo-Verbindungen $C_{10}H_{2}ON$.
- 1. Aminoderivat des 2-Methyl-chinolons-(4) $C_{10}H_{0}ON$ (Bd. XXI, S. 314). 8 - Amino - 2 - methyl - chinolon - (4), 8 - Amino - chinaldon $C_{10}H_{10}ON_{2} = C_{0}H_{4} < CO \cdot C \cdot NH_{2}$ ist desmotrop mit 3-Amino-4-oxy-2-methyl-chinolin, S. 503.

blauen Niederschlag.

2. Aminoderivat des 4-Methyl-chinolons-(2) C₁₀H₀ON (Bd. XXI, S. 314).

7 - Amino - 4 - methyl - chinolon - (2), 7 - Amino - lepidon $C_{10}H_{10}ON_2$, s. nebenstehende Formel, ist desmotrop mit 7-Amino-2-oxy-4-methyl-chinolin, S. 504.

- 4. Aminoderivate der Monooxo-Verbindungen $C_{11}H_{11}ON$.
 - 1. Aminoderivat des 4.6-Dimethyl-chinolons-(2) C₁₁H₁₁0N.

7-Amino-4.6-dimethyl-chinolon-(2) $C_{11}H_{12}ON_2$, s. nebenstehende Formel, ist desmotrop mit 7-Amino-2-oxy-4.6-dimethylchinolin, S. 504.

2. Aminoderivate des 2-Methyl-3-acetyl-indols C₁₁H₁₁ON (Bd. XXI, S. 317).

2-Methyl-3-aminoacetyl-indol, α-Methyl-β-glycyl-indol
C₁₁H₁₂ON₂, s. nebenstehende Formel. B. Beim Erhitzen von
α-Methyl-β-hippuryl-indol (s. u.) mit Eisessig-Chlorwasserstoff
im Rohr auf 100° (E. FISCHER, KAAS, B. 39, 1277). — Krystalle (aus Wasser). F: 176° (korr.;
Zers.). Ziemlich leicht löslich in warmem Wasser, schwer in heißem Benzol und Toluol. Leicht löslich in verd. Säuren. — Sehr empfindlich gegen Oxydationsmittel. Färbt sich in feuchtem Zustand, namentlich in Gegenwart von Ammoniak, an der Luft rot und nimmt den Geruch des 2-Methyl-indols an. Die wäßr. Lösung gibt mit Fehlingscher Lösung einen dunkel-

2 - Methyl - 3 - benzaminoacetyl - indol, α - Methyl - β - hippuryl - indol $C_{18}H_{16}O_{2}N_{2} = C_{0}\cdot CH_{2}\cdot NH\cdot CO\cdot C_{6}H_{5}$. B. Aus 2-Methyl - indol und Hippurylchlorid bei Gegen-

wart von Magnesiumoxyd in Benzol bei $60-70^{\circ}$ (F., K., B. 39, 1277). — Nadeln (aus Eisessig oder Alkohol). F: 269° (korr.; Zers.). Löslich in ca. 30 Tln. Eisessig von 100° , ziemlich schwer löslich in siedendem Alkohol, sehr schwer in anderen Lösungsmitteln. — Liefert beim Erhitzen mit Eisessig-Chlorwasserstoff α -Methyl- β -glycyl-indol und eine gelbe, bei 190° schmelzende Substanz.

5. Aminoderivat des 4-Methyl-3-äthyl-chinolons-(2) $C_{12}H_{18}ON$.

7-Amino-4-methyl-3-äthyl-chinolon-(2) $C_{12}H_{14}ON_2$, s. nebenstehende Formel, ist desmotrop mit 7-Amino-2-oxy-4-methyl-3-äthyl-chinolin, S. 505.

- f) Aminoderivate der Monooxo-Verbindungen $C_n H_{2n-13} ON$.
- 1. Aminoderivat des 2-Phenyl-4-äthyliden- Δ^2 -pyrrolons-(5) $C_{12}H_{11}ON$.

1.2 - Diphenyl - 4 - [α - anilino - äthyliden] - Δ^2 - pyrrolon - (5) $C_{24}H_{20}ON_2 = CH_3 \cdot C(NH \cdot C_6H_5) : C$ — CH ist desmotrop mit 1.2-Diphenyl-4-[α -phenylimino-äthyl]- Δ^2 -pyrrolon-(5), Bd. XXI, S. 522.

2. Aminoderivat einer Monooxo-Verbindung $C_{19}H_{25}ON$.

α.β.γ-Tribrom-η-οχο-γ-brommethyl-δ-[β-dimethylamino-äthyl]-η-[chinolyl-(4)]heptan oder α.β-Dibrom-η-οχο-γ-dimethylaminomethyl-δ-[α.β-dibrom-äthyl]-η[chinolyl-(4)]-heptan C₂₁H₂₆ON₂Br₄, Formel I oder II, des-Dimethylcinchotoxin-tetrabromid. B. Das Dihydrobromid entsteht aus salzsaurem des-Dimethylcinchotoxin (S. 525) und Brom
in Chloroform (ComanDucci, D'Onghia, Boll.
chim. farm. 48, 752; C.
1909 II, 2086). — C₂₁H₂₆
ON₂Br₄ + 2 HBr. Ziemlich

hygroskopisch. Löslich in Wasser mit saurer Reaktion. — C21H26ON2Br4 + 2HCl + 2AuCl2.

Gelbrotes Pulver. F: 85°. — $C_{21}H_{26}ON_2Br_4 + 2HCl + PtCl_4$. Dunkelgelbes Krystallpulver. F: 230°. — Hydrobromid-Pikrat $C_{21}H_{26}ON_2Br_4 + HBr + C_6H_2O_7N_3$. Gelbes Pulver. F: 143—145°. Sohwer löslich in Wasser und Alkohol.

g) Aminoderivate der Monooxo-Verbindungen C_nH_{2n-15}ON.

1. Aminoderivate des Naphthostyrils C₁₁H₇ON (Bd. XXI, 8. 328).

Lactam der 5.8-Diamino-naphthoesäure-(1), Aminonaphthostyril

C₁₁H₈ON₂, s. nebenstehende Formel. B. Bei der Reduktion von 5.8-Dinitronaphthoesäure-(1) (Bd. IX, S. 654) (ERSTRAND, J. pr. [2] 38, 269) oder von Nitronaphthostyril (Bd. XXI, S. 330) (E., J. pr. [2] 38, 181) mit Zinn und Salzsäure.

Rote Nadeln (aus Alkohol). F: 239—240°. Leicht löslich in Alkohol, löslich in
heißem Wasser. — Liefert beim Behandeln mit Kaliumnitrit und Kupferchlorür in salzsaurer Lösung Chlornaphthostyril (Bd. XXI, S. 329). — C₁₁H₈ON₂+HCl. Gelbe Nadeln.
Schmilzt oberhalb 290°.

Lactam der 8-Amino-5-acetamino-naphthoesäure-(1), Acetaminonaphthostyril $C_{13}H_{10}O_{2}N_{2}=CH_{3}\cdot CO\cdot NH\cdot C_{10}H_{5}<\frac{1}{CO}$. B. Durch Reduktion von 8-Nitro-5-acetaminonaphthoesäure-(1) mit Ferrosulfat und Ammoniak und Kochen des Reaktionsprodukts mit Alkohol (Eestrand, Of. Sv. 1889, 617). — Gelbe Nadeln (aus Alkohol). F: 280°.

Nitroacetaminonaphthostyril $C_{13}H_{\bullet}O_{4}N_{3} = CH_{3} \cdot CO \cdot NH \cdot C_{10}H_{\bullet}(NO_{3}) \stackrel{NH}{\subset} O$. B. Beim Erwärmen von Acetaminonaphthostyril mit Salpetersäure (D: 1,42) (EESTRAND, Of. Sv. 1889, 618). — Goldgelbe Nadeln. F: 250° (Zers.).

2. Aminoderivat des 3-Benzoyl-pyridins C18H,ON (Bd. XXI, 8. 331).

2-Amino-8-benzoyl-pyridin $C_{12}H_{10}ON_2$, s. nebenstehende Formel. B. Durch Behandlung von 3-Benzoyl-picolinsäure-amid mit alkal. Natriumhypobromit-Lösung (KIRPAL, M. 27, 375). — Krystalle (aus Wasser). F: 145°.

h) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-17}ON$.

1. Aminoderivate der Monooxo-Verbindungen $C_{12}H_7ON$.

1. Aminoderivat des 3-0x0-6.7-benzo-indolenins $C_{12}H_7ON$.

n-2),

2-Anilino-8-oxo-6.7-benso-indolenin $C_{18}H_{19}ON_{9}$, s. nebenstehende Formel, ist desmotrop mit 6.7-Benzo-isatin-anil-(2), Bd. XXI, S. 524.

2. Aminoderivat des 3-Oxo-4.5-benzo-indolenins $C_{12}H_7ON$.

2-Anilino-8-oxo-4.5-benzo-indolenin $C_{18}H_{12}ON_3$, s. nebenstehende Formel, ist desmotrop mit 4.5-Benzo-isatin-anil-(2), Bd. XXI, S. 525.

2. Aminoderivate des Acridons C18H,ON (Bd. XXI, S. 335).

1-Amino-acridon C₁₃H₁₀ON₂, s. nebenstehende Formel. B. Durch Reduktion von 1-Nitro-acridon mit Zinnchlorür und konz. Salzsäure unter Zusatz von etwas Alkohol (Ullmann, A. 355, 333). Durch Erhitzen von 3'-Amino-diphenylamin-carbonsäure-(2) mit konz. Schwefelsäure auf 100° NH (U.). — Gelbe Nadeln (aus Alkohol). F: 285°. Unlöslich in Ligroin, sohwer löslich in Äther und Benzol, leicht in Alkohol und Eisessig. Die alkoh. Lösung fluoresciert nach Zusatz von Salzsäure grün; die gelbe Lösung in konz. Schwefelsäure fluoresciert blaugrün.

- **2-Amino-acridon** $C_{13}H_{10}ON_2$, s. nebenstehende Formel. B. Beim NH_2 Erhitzen von 4'-Amino-diphenylamin-carbonsäure-(2) mit konz. Schwefelsäure auf 100° (ULLMANN, A. 355, 335). — Gelbe Nadeln (aus Alkohol). F: ca. 298°. Unlöslich in Wasser und Ligroin, sehr schwer löslich in Benzol, leicht in siedendem Alkohol und siedendem Acton mit gelber Farbe und grüner Fluorescenz, die auf Zusatz von Salzsäure verschwindet. Die blaßgelbe Lösung in konz. Schwefelsäure fluoresciert blaugrün.
- **4-Amino-acridon** $C_{13}H_{10}ON_2$, s. nebenstehende Formel. B. Durch Reduktion von 4-Nitro-acridon mit Natriumsulfid in siedendem Alkohol (ULLMANN, A. 355, 329). — Dunkelgelbe Nadeln (aus Alkohol). F: 355° (Zers.) (U.). Sehr schwer löslich in Ligroin, schwer in Alkohol, Äther und Benzol, sehr leicht in Eisessig, Anilin und Nitrobenzol in der Siedehitze (U.). — Gibt bei der Reduktion mit Natrium und Amylalkohol 4-Amino-acridin (U., MAAG, B. 40, 2522). — Löslich in konz. Schwefelsäure mit gelbgrüner Farbe und blauer Fluorescenz (U.).
- 2.4 Diamino acridon C₁₃H₁₁ON₃, s. nebenstehende Formel.

 B. Durch Reduktion von 2'.4'-Dinitro-diphenylamin-carbonsäure-(2) · NH₂ mit Zinn und alkoh. Salzsäure (Jourdan, B. 18, 1450). — Nadeln oder Prismen (aus Alkohol). F: 222-2230; zersetzt sich beim Erhitzen auf höhere Temperatur. Sehr schwer löslich in Äther, Benzol und Ligroin, leichter in siedendem Wasser, leicht in heißem Alkohol. — Einw. von konz. Schwefelsäure: J. — C₁₃H₁₁ON₃ + HCl. Nadeln. Schwer löslich in kaltem Wasser.
- 7-Chlor-2.4-diamino-acridon $C_{13}H_{10}ON_3Cl$, s. nebenstehende Formel. B. Durch Reduktion von 4-Chlor-2'.4'-dinitro-diphenylamin-carbonsäure-(2) mit Zinnehlorür und alkoh. Salzsäure (Jour-DAN, B. 18, 1452). — Krystalle (aus Alkohol). F: ca. 230°; zersetzt sich beim Erhitzen auf höhere Temperatur. Fast unlöslich in Äther, Ligroin, Benzol und kaltem Wasser.
- **3.6-Diamino-acridon** $C_{13}H_{11}ON_3$, s. nebenstehende Formel. B. Durch Reduktion von 2.4.2'.4'. Tetranitro-benzophenon mit Zinnchlorür und konz. Salzsäure in Gegenwart von etwas Alkohol (Schöpff, B. 27, 2318). — Nadeln. Schmilzt oberhalb 350°. Sehr schwer löslich oder unlöslich in Benzol, Chloroform, Ligroin und Essigester, löslich in Alkohol mit blauvioletter Fluorescenz, sehr leicht löslich in Phenol mit gelber Farbe und grüner Fluorescenz. Leicht löslich in Säuren mit grüner Fluorescenz. — Liefert bei der Reduktion mit Natriumamalgam und Alkohol 3.6-Diamino-acridin. — $C_{13}H_{11}ON_3 + HCl + 4H_2O$. Gelbliche Nadeln. Löslich in Wasser mit gelber Farbe und bläulichgrüner Fluorescenz. — $2C_{13}H_{11}ON_3 + 2HCl + PtCl_4$. Orangefarbene mikroskopische Nadeln.

3. Aminoderivat des 4-Methyl-7.8-benzo-chinolons-(2) $C_{14}H_{11}ON$.

6' - Amino - 4 - methyl - [benzo - 1'.2':7.8 - chinolon - (2)] 1) C₁₄H₁₂ON₂, s. nebenstehende Formel, ist desmotrop mit 6'-Amino-2-oxy-4-methyl-[benzo-1'.2':7.8-chinolin], S. 506.

Sehr leicht löslich in Alkohol,

Äther und Chloroform, unlöslich

4. Aminoderivat einer Monooxo-Verbindung $C_{19}H_{21}ON$.

 η -Oxo- δ -[β -dimethylamino-äthyl]- γ -methylen- η -[chinolyl-(4)]- α -heptylen oder η -Oxo- γ -dimethylaminomethyl- δ -vinyl- η -[chinolyl-(4)]- α -heptylen $C_{21}H_{26}ON_2$, Formel I oder II, des-Dimethylcinchotoxin (,,Dimethylcinchonin"). B. Beim Kochen von Methylcinchotoxin- $\textbf{CO} \cdot \textbf{CH}_2 \cdot \textbf{CH}_2 \cdot \textbf{CH}_2 \cdot \textbf{CH}_2 \cdot \textbf{CH}_2 \cdot \textbf{N} \\ (\textbf{CH}_3)_2] \cdot \textbf{C} \\ (:\textbf{CH}_2) \cdot \textbf{CH} \\ :\textbf{CH}_2$ jodmethylat (Syst. No. 3571) mit starker Kalilauge (FREUND, Rosenstein, A. 277, 280). — Öl.

CO·CH₂·CH₂·CH(CH:CH₂)·CH[CH₂·N(CH₃)₂]·CH:CH₂

Säuren, unlöslich in Alkalien (F., R.). — Liefert bei der Oxydation mit Kaliumpermanganat in kalter schwefelsaurer Lösung

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

Dimethylcinchotenin (S. 558) und Ameisensäure (Comanducci, D'Onghia, C. 1909 II, 2085). Bei der Oxydation mit Chromschwefelsäure erhält man Cinchoninsäure (F., R., A. 277, 288). Gibt mit Brom in Chloroform des-Dimethyleinchotoxin-tetrabromid (S. 523) (C.,

D'O.). — Physiologische Wirkung: Rosenstein, C. r. 130, 753.

Salze: Freund, Rosenstein, A. 277, 281. — C₂₁H₂₆ON₂ + HCl. Krystalle (aus Wasser), Prismen (aus Alkohol). Schmeckt bitter und adstringierend. F: 124—125°. Löslich in Chloroform und Aceton, ziemlich schwer in kaltem Wasser und Alkohol, unlöslich in Äther, Benzol und Ligroin. $[\alpha]_0^{3c}$: $+5,4^{\circ}$ (ca. 0,5 n-Salzsäure; c=10). — $C_{21}H_{26}ON_2+HBr$. Blättchen (aus Ather + Alkohol), Tafeln (aus Wasser). F: 120° . — $C_{21}H_{26}ON_2+HI$. Krystalle (aus Alkohol). F: 74° . Sehr leicht löslich in Alkohol, sehr schwer in kaltem Wasser, unlöslich in Ather. — $C_{21}H_{26}ON_2 + HCl + ZnCl_2$. Krystalle (aus verd. Alkohol). F: 220°. — $C_{21}H_{26}ON_2 + HCl + HgCl_2$. Platten (aus verd. Alkohol). F: 222°. Fast unlöslich in kaltem Wasser. — $C_{21}H_{26}ON_2 + 2HCl + PtCl_4 + 2H_2O$. Gelber krystallinischer Niederschlag. — Pikrat $C_{21}H_{26}ON_2 + 2C_6H_2O$, Gelbe Nadeln (aus verd. Alkohol). F: 160°. Löslich in heißem Alkohol und siedendem Chloroform, unlöslich in Äther, Benzol und Ligroin.

Phenylhydrason $C_{27}H_{22}N_4 = NC_9H_6 \cdot C(:N \cdot NH \cdot C_6H_5) \cdot C_9H_{14} \cdot N(CH_8)_2$. B. Aus des-Dimethyleinchotoxin-hydrochlorid und Phenylhydrazin in ersigsaurer Lösung (Comanducci, D'Onghia, Boll. chim. farm. 48, 752; C. 1909 II, 2086). — Gelbe Krystalle (aus Methanol).

Hydroxymethylat $C_{22}H_{20}O_2N_2 = NC_0H_0 \cdot CO \cdot C_2H_{14} \cdot N(CH_2)_3 \cdot OH$. B. Das Jodid entsteht aus des-Dimethylcinchotoxin und überschüssigem Methyljodid in Äther (Freund, Rosenstein, A. 277, 286). — Das Chlorid gibt beim Kochen mit Natronlauge η -Oxo- δ -vinyl- γ -methylen- η -[chinolyl-(4)]- α -heptylen (Bd. XXI, S. 353) und Trimethylamin. — Jodid $C_{22}H_{20}ON_2 \cdot I$. Nadeln (aus Alkohol + Äther). F: 175—177°. Leicht löslich in Alkohol und heißem Wasser, unlöslich in Benzol, Ligroin und Äther.

Hydroxyäthylat $C_{23}H_{23}O_2N_2 = NC_9H_6 \cdot CO \cdot C_9H_{14} \cdot N(CH_8)_9(C_8H_5) \cdot OH$. — Jodid $C_{23}H_{31}ON_3 \cdot I$. B. Aus des-Dimethylcinchotoxin und Athyljodid in Ather (F., R., A. 277, 286). F: 138°. Leicht löslich in Alkohol und heißem Wasser, unlöslich in Ather, Benzol und Ligroin.

Hydroxybensylat $C_{28}H_{34}O_2N_2 = NC_9H_6 \cdot CO \cdot C_9H_{14} \cdot N(CH_2)_2(CH_2 \cdot C_8H_5) \cdot OH.$ Chlorid $C_{28}H_{35}ON_2 \cdot Cl.$ B. Aus des-Dimethylcinchotoxin und Benzylchlorid in Ather (F., R., A. 277, 287). Wasserhaltige Prismen (aus Wasser). Leicht löslich in Alkohol und in heißem Wasser, unlöslich in Äther, Benzol und Ligroin.

- i) Aminoderivate der Monooxo-Verbindungen $C_n H_{2n-19} ON$.
- 1. Aminoderivate der Monooxo-Verbindungen $C_{16}H_{11}ON$.
- 1. Aminoderivat des 3-Phenyl-isochinolons-(1) C₁₁H₁₁ON (Bd. XXI, S. 349). 4 - Amino - 3 - phenyl - isochinolon - (1), (4 - Amino - 3 - phenyl - isocarbostyril) $C_{15}H_{12}ON_3 = C_6H_4$ C_{0} $C_{15}H_{12}ON_3 = C_6H_4$ C_{0} $C_{15}H_{12}ON_3 = C_6H_4$ $C_{15}H_4$ $C_{15}H_5$ C_{1 8. 507.
 - 2. Aminoderivate des 2-Benzal-indoxyls C₁₈H₁₁ON (Bd. XXI, S. 349).

2-[4-Amino-bensal]-indoxyl, 4-Amino-bensaldehyd-indogenid 1) $C_{15}H_{15}ON_2 =$ $C_0H_4<_{NH}^{CO}>C:CH\cdot C_0H_4\cdot NH_2$. Rotbraune Nadeln. Leicht löslich in Alkohol (Noelting, C. 1908 I, 34). — Färbt Seide und tannierte Baumwolle lachsfarben.

2-[4-Dimethylamino-bensal]-indoxyl, 4-Dimethylamino-bensaldehyd-indogenid 1) $C_{17}H_{16}ON_2 = C_6H_4 < \frac{CO}{NH} > C: CH \cdot C_6H_4 \cdot N(CH_3)_2$. Rotbraune Nadeln. F: 226—227° (N., C. 1903 I, 34). Leicht löslich in organischen Lösungsmitteln. — Färbt Seide und tannierte Baumwolle rot.

¹⁾ Zur Bezeichnung "Indogenid" vgl. BARYER, B. 16, 2204.

3. Aminoderivate des 3-Benzal-oxindols C₁₈H₁₁ON (Bd. XXI, S. 349).

3-[2-Amino-bensal]-oxindol, 2-Amino-bensaldehyd-isoindogenid 1) $C_{16}H_{19}ON_2 =$ $= \mathbf{CH} \cdot \mathbf{C_6H_4} \cdot \mathbf{NH_2}$ B. Bei der Reduktion von 2-Nitro-α-[2-nitro-phenyl]-zimtsäure CO

mit Ferrosulfat und Ammoniak (PSCHORR, B. 39, 3121). — Gelbe Platten (aus verd. Alkohol). F: 233—234º (korr.). — Liefert beim Diazotieren in schwefelsaurer Lösung und Behandeln mit Kupferpulver das Lactam der 8-Amino-phenanthren-carbonsäure-(9) (Bd. XXI, S. 354).

8-[4-Dimethylamino-bensal]-oxindol, 4-Dimethylamino-bensaldehyd-isoindo-

CH·C₀H₄·N(CH₃)₂ genid¹) $C_{17}H_{16}ON_{2} = C_{6}H_{4}$ NH B. Aus Oxindol und 4-Dimethyl-

amino-benzaldehyd in Gegenwart von etwas Piperidin in siedendem Alkohol (WAHL, BAGARD, C. r. 149, 133; Bl. [4] 5, 1037). — Orangegelbe Nadeln. F: 194—195°. Löslich in Mineralsäuren mit gelber Farbe. — Färbt Wolle und Seide gelb.

2. Aminoderivat des 4-Methyl-6-phenyl-chinolons-(2) $C_{16}H_{18}ON$.

4 - Methyl - 6 - [4 - amino - phenyl] - chinolon - (2), $H_{2N} \cdot C_{6H_{4}}$ C(CH₈)= 6-[4-Amino-phenyl]-lepidon C₁₆H₁₄ON₂, s. nebenstehende Formel, ist desmotrop mit 2-Oxy-4-methyl-6-[4-amino-phenyl]chinolin, S. 508.

k) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-23}ON$.

7-Amino-2.3-benzo-acridon C₁₇H₁₂ON₂, s. nebenstehende H₂N.

Formel. B. Durch Erhitzen von 3-[4-Amino-anilino]-naphthoe-säure-(2) mit konz. Salzsäure im Rohr auf 140° (WILKE, Dissert.

[Rostock 1895], S. 24). — Roter Niederschlag. Schmilzt nicht bis 380°. Sehr schwer löslich in Alkohol, Äther, Eisessig und Benzol.

- 1) Aminoderivate der Monooxo-Verbindungen $C_nH_{2n-25}ON$.
- 1. Aminoderivate des 3-0xo-9-phenyl-3.10-dihydro-acridins bezw. des 9-[4-0xo-cyclohexadien-(2.5)-yliden]-9.10-dihydro-acridins C, H. ON.

10-Methyl-3-oxo-9-[4-amino-phenyl]-3.10-dihydro-acridin C₂₀H₁₆ON₂, Formel I, bezw. desmotrope Formen. Vgl. bei 10-Methyl-3-oxy-9-[4-amino-phenyl]-acridiniumhydroxyd (Chrysophenol-hydroxymethylat), S. 510.

10-Methyl-8-imino-9-[4-amino-phenyl]-8.10-dihydro-acridin bezw. 10-Methyl-8 - amino - 9 - [4 - imino - cyclohexadien - (2.5) - yliden] - 9.10 - dihydro-acridin $C_{po}H_{12}N_{2}$, Formel II beaw. III. Vgl. bei 10-Methyl-3-amino-9-[4-amino-phenyl]-acridiniumhydroxyd (Chrysanilin-hydroxymethylat), S. 491.

2. Aminoderivate des 3.3-Diphenyl-oxindols $C_{20}H_{15}ON$.

8.8-Bis-[4-dimethylamino-phenyl]-oxindol, Dimethylanilinisatin $C_{24}H_{25}ON_{2}=$ C.H. C[C.H. N(CH.)] CO. B. Aus Isatin und Dimethylanilin in Gegenwart von Zinkchlorid (BARYER, LAZARUS, B. 18, 2642) oder Aluminiumchlorid (HALLER, GUYOT, C. r. 144,

¹⁾ Zur Bezeichnung "Isoindogenid" vgl. CZAPLICKI, V. KOSTANECKI, LAMPE, B. 42, 835; WAHL, BAGARD, Bl. [4] 5, 1035.

950) auf dem Wasserbad. — Prismen (aus Alkohol). F: 234° (B., L.; H., G.). Unlöslich in Wasser, schwer löslich in Alkohol, Äther und Ligroin; leicht löslich in verd. Säuren (B., L.). — Liefert bei der Oxydation mit Bleidioxyd und Essigsäure das essigsaure Farbsalz des 2-Amino-4'.4"-bis-dimethylamino-4-oxy-triphenylcarbinols (Bd. XIII, S. 822) (Danalla, C. 7. 149, 794).

1-Acetyl-8.3-bis-[4-dimethylamino-phenyl]-oxindol, Acetyl-dimethylanilinisatin $C_{26}H_{27}O_2N_3 = C_6H_4 C[C_6H_4 \cdot N(CH_3)_2]_2 CO$. B. Aus 3.3-Bis-[4-dimethylamino-phenyl]-oxindol, Acetanhydrid und Natriumacetat (Danalla, C. r. 149, 794). — Krystalle (aus Alkohol + Benzol). F: 179—180°.

3. Aminoderivate des 3-0x0-2.7-dimethyl-9-phenyl-3.10-dihydro-acridins $C_{21}H_{17}ON$.

6 - Amino - 3 - imino - 2.7.10 - trimethyl - 9 - phenyl - 3.10-dihydro-acridin C₂₂H₂₁N₃, s. nebenstehende Formel (R = H). Vgl. bei 3.6 - Diamino - 2.7.10 - trimethyl - 9 - phenyl - acridinium hydroxyd, S. 493.

6-Acetamino-3-imino-2.7.10-trimethyl-9-phenyl-3.10-dihydro-acridin $C_{24}H_{23}ON_3$, s. obenstehende Formel (R = $CH_3 \cdot CO$). Vgl. bei 3-Amino-6-acetamino-2.7.10-trimethyl-9-phenyl-acridiniumhydroxyd, S. 494.

m) Aminoderivate der Monooxo-Verbindungen C_nH_{2n-29}ON.

2 - p - Toluidino - 7 - methyl - 1 (CO).9 - benzoylen - acridin, 4 - p - Toluidino - 14 - methyl - cöramidonin C₂₈H₂₀ON₂, s. nebenstehende Formel. B. Durch Erhitzen von 1.4-Di-p-toluidino-anthrachinon mit 70% iger Schwefelsäure auf 140—150% (BAYER & Co., D. R. P. 126444; C. CH₃· 1902 I, 78; Frdl. 6, 420). — Dunkelrote Krystalle mit grünem Metallglanz (aus Pyridin). Löslich in Pyridin mit orangeroter, in Eisessig oder konz. Schwefelsäure mit kirschroter Farbe.

3-Brom-2-amino-7-methyl-1(CO).9-benzoylen-acridin, 3-Brom-4-amino-14-methyl-cöramidonin $C_{21}H_{13}ON_2Br$, s. nebenstehende Formel. B. Durch Erhitzen von 2-Brom-1-amino-4-p-toluidino-anthrachinon mit $70^{\circ}/_{\circ}$ iger Schwefelsäure auf 150° bis 160° (B. & Co., D. R. P. 126444; C. 1902 I, 78; Frdl. 6, 421). — Dunkelstahlblaue Prismen oder braunrote Blättehen (aus Pyridin). Die Lösung in Pyridin ist orangegelb, die Lösungen in Eisessig und konz. Schwefelsäure sind orange.

2. Aminoderivate der Dioxo-Verbindungen.

- a) Aminoderivate der Dioxo-Verbindungen $C_n H_{2n-3} O_2 N$.
- 1. Aminoderivate der Dioxo-Verbindungen $C_4H_5O_2N$.
- 1. Aminoderivate des 2.4-Dioxo-pyrrolidins C4H5O2N (Bd. XXI, S. 369).

1-Phenyl-3-anilino-2.4-dioxo-pyrrolidin $C_{16}H_{14}O_2N_2 = {OC - CH \cdot NH \cdot C_6H_5 \over H_2C \cdot N(C_6H_5) \cdot CO}$ Eine Verbindung, die vielleicht diese Konstitution besitzt, s. Bd. XII, S. 471.

8-Bensamino-2.4-dioxo-pyrrolidin $C_{11}H_{10}O_3N_3 = \frac{OC - CH \cdot NH \cdot CO \cdot C_6H_5}{H_2C \cdot NH \cdot CO}$. Eine

Verbindung, die vielleicht diese Konstitution besitzt, s. Bd. IX, S. 231. 1-Bensoyl-8-bensamino-2.4-dioxo-pyrrolidin $C_{16}H_{14}O_4N_8 = OC$ CH·NH·CO· C_6H_8

 $H_sC \cdot N(CO \cdot C_0H_s) \cdot CO$ Eine Verbindung, die vielleicht diese Konstitution besitzt, s. Bd. IX, S. 231.

2. Aminoderivate des Bernsteinsäureimids C₄H₅O₅N (Bd. XXI, S. 369).

 $\label{eq:constraint} \begin{array}{lll} \textbf{Methylaminobernsteins \"aure-imid}, & \textbf{[N-Methyl-asparagins \"aure]-imid} & \textbf{C}_5\textbf{H}_8\textbf{O}_2\textbf{N}_2 = \\ \textbf{H}_2\textbf{C} & \textbf{CH} \cdot \textbf{NH} \cdot \textbf{CH}_3 & \textbf{Die von K\"orner, Menozzi, } \textit{G. 19, 427 so formulierte Verbindung} \\ \textbf{OC} \cdot \textbf{NH} \cdot \textbf{CO} & \textbf{SOC} \cdot \textbf{NH}_2\textbf{CO} \cdot \textbf{NH}_2\textbf{N}_3 & \textbf{Syst. No. 3699 eingeordnet.} \\ \textbf{CH}_3 \cdot \textbf{N} < \textbf{CH}(\textbf{CH}_2 \cdot \textbf{CO} \cdot \textbf{NH}_2\textbf{CO} \cdot \textbf{NH}_2\textbf{CO} \cdot \textbf{NH}_2\textbf{N}_2\textbf{CO} \cdot \textbf{NH}_2\textbf{N}_2\textbf{CO} \cdot \textbf{NH}_2\textbf{N}_2\textbf{N}_3 & \textbf{No. 3699 eingeordnet.} \\ \end{array}$

Inakt. Anilinobernsteinsäure-imid, inakt. [N-Phenyl-asparaginsäure]-imid H_1C ——CH·NH·C₆H₅. B. Beim Erhitzen von Brombernsteinsäure-imid (Bd. XXI, S. 381) mit überschüssigem Anilin auf 100° (Kusserow, A. 252, 161). — Gelbe Blättehen (aus Alkohol). F: 158°. Leicht löslich in Alkohol und Eisessig, schwerer in siedendem Wasser, in Äther und Benzol. Reagiert sauer. Löslich in Mineralsäuren, schwieriger in Alkalien. — Spaltet beim Behandeln mit konz. Salzsäure oder Eindampfen mit verd. Salzsäure Anilin ab. Beim Behandeln mit nitrosen Gasen in Alkohol oder mit Kaliumnitrit in Eisessig entsteht inakt. [N-Nitroso-N-phenyl-asparaginsäure]-imid (S. 530). Beim Erhitzen mit Essigsäureanhydrid auf 100° erhält man inakt. [N-Phenyl-N-acetyl-asparaginsäure]-imid (S. 530). — $Hg(C_{10}H_{2}O_{3}N_{3})_{3}$. Hellgelbes Krystallpulver. Unlöslich in Wasser und Alkohol. — $C_{10}H_{10}O_{2}N_{2}+HCl+H_{2}O$. Strahlige Masse. Ziemlich leicht löslich in Wasser. Unbeständig.

 $\begin{array}{ll} \textbf{Inakt. Anilinobernsteins \"aure-anil,} & \textbf{inakt. [N-Phenyl-asparagins \"aure]-anil} \\ \textbf{C}_{16}\textbf{H}_{14}\textbf{O}_{2}\textbf{N}_{3} = \begin{array}{l} \textbf{H}_{2}\textbf{C} & \textbf{CH} \cdot \textbf{NH} \cdot \textbf{C}_{6}\textbf{H}_{5} \\ \textbf{OC} \cdot \textbf{N}(\textbf{C}_{6}\textbf{H}_{5}) \cdot \textbf{CO} \end{array}. & \textbf{\textit{B}}. & \textbf{Beim Erhitzen von dl-Brombernsteins \"aure} \end{array}$

(Bd. II, S. 621) mit überschüssigem Anilin (Kusserow, A. 252, 165) oder von dl-Brombernsteinsäure-diäthylester mit 3 Mol Anilin auf ca. 110° (Hell, Poliakow, B. 25, 651). Beim Erhitzen von Maleinsäure mit Anilin und Wasser (Anschütz, Wirtz, A. 239, 154, 155; Bischoff, Walden, A. 279, 131; vgl. Perkin, B. 14, 2547; Michael, B. 19, 1373; Am. 9, 183), von Maleinsäure (Bd. XII, S. 306) mit Anilin auf 100° (Tingle, Bates, Am. Soc. 31, 1239), von Maleinsäureanhydrid (Bd. XVII, S. 432) mit Anilin (An., Wi., A. 239, 142, 154), von Maleinanil (Bd. XXI, S. 400) mit Anilin auf 100° (An., Wi., A. 239, 160). Beim Erhitzen von Fumarsäure mit Anilin auf 160—170° (Ti., Ba., Am. Soc. 31, 1238) oder von Fumaranilsäure (Bd. XII, S. 305) mit Anilin auf 100° (Ti., Ba., Am. Soc. 31, 1239). — Nadeln (aus Alkohol). F: 211° (K.; An., Wi.). Sehr schwer lösich in Wasser, in kaltem Alkohol, in Äther, Chloroform und Benzol, schwer in siedendem Alkohol, leicht in Eisessig (K.; vgl. Bi., Wa.). — Gibt mit Kaliumnitrit in Eisessig inakt. [N-Nitroso-N-phenyl-asparaginsäure]-anil (S. 530) (K.). Wird durch Erhitzen mit alkoh. Kalilauge im Rohr auf 100° oder mit rauchender Salzsäure auf 100° in inakt. N-Phenyl-asparaginsäure und Anilin zerlegt (An., Wi.). — C₁₈H₁₄O₂N₂ + HCl. Niederschlag. Wird durch Wasser zersetzt (van Dorp, van Haarst, R. 19, 314 Anm.).

Aktives (?) Anilinobernsteinsäure-anil, aktives (?) [N-Phenyl-asparaginsäure]anil $C_{16}H_{16}O_{2}N_{3} = \frac{H_{2}C_{----}CH\cdot NH\cdot C_{6}H_{5}}{OC\cdot N(C_{6}H_{5})\cdot CO}$.

a) Präparat aus Äpfelsäure. B. Bei der Destillation von Äpfelsäure (Bd. III, S. 419)

a) Prāparat aus Apfelsāure. B. Bei der Destillation von Apfelsāure (Bd. III, S. 419) mit Anilin (Tingle, Bates, Am. Soc. 31, 1239) oder von saurem āpfelsaurem Anilin (Bd. XII, S. 119) (Anschütz, Wirtz, A. 239, 140, 154) unter vermindertem Druck. Bei der Einw. von Phosphorpentachlorid auf Malanilid (Bd. XII, S. 509) in Benzol (Bischoff, Walden, A. 279, 130). — Nadeln (aus Alkohol). F: 211° (An., Wi.), 210—212° (Bi., Wa.). Leicht löslich in Chloroform und Aceton, in heißem Benzol und Eisessig, schwer in heißem Alkohol, sehr schwer in kaltem Benzol und Eisessig, fast unlöslich in Wasser, Ather, Ligroin und Schwefelkohlenstoff (Bi., Wa.).

b) Praparat aus l-Asparagin. B. Beim Kochen von l-Asparagin (Bd. IV, S. 476) mit Anilin (Piutti, G. 14, 474; P., Priv.-Mitt.). — Nadeln (aus Alkohol). F: 209°.

Aktives Anilinobernsteinsäure-anil, aktives [N-Phenyl-asparaginsäure]-anil $\begin{array}{l} C_{16}H_{14}O_2N_3 = \begin{array}{l} H_2C & \text{CH}\cdot NH\cdot C_6H_5 \\ OC\cdot N(C_6H_5)\cdot CO \end{array}. \quad B. \quad \text{Beim Erhitzen des (aus l-Brombernsteinsäure und Anilin erhaltenen) Anilinsalzes der in saurer Lösung rechtsdrehenden N-Phenyl-asparaginsäure (Bd. XII, S. 508) auf 147—155° (Lutz, X. 41, 1564; C. 1910 I, 908). — Nadeln (aus Alkohol). F: 212°. [<math>\alpha$]_D: —10,3° (Pyridin oder Aceton; c=1,5).

verd. Säuren. Gibt in alkoh. Lösung mit Quecksilberoxyd eine Quecksilberverbindung.

Aktives (P) Phthalimidobernsteinsäure-anil, aktives (P) Phthalylasparaginsäure-anil $C_{18}H_{18}O_4N_2=\frac{H_2C-CH\cdot N(CO)_2C_6H_4}{OC\cdot N(C_6H_5)\cdot CO}$. B. Beim Erhitzen von Phthalylasparaginsäure (Bd. XXI, S. 487) mit Anilin (Piutti, G. 16, 7; P., Priv.-Mitt.). — Nadeln (aus Eisessig). F: 263—264°. Sehr schwer löslich in Alkohol, Äther und Benzol. — Spaltet bei starkem Erhitzen Phthalimid ab. Wird durch Erhitzen mit 3-Amino-benzoesäure in Phthalylasparaginsäure-[3-carboxy-anil] übergeführt.

Aktives (P) Phthalimidobernsteinsäure-[8-carboxy-anil], aktives (P) Phthalylasparaginsäure-[8-carboxy-anil] $C_{19}H_{12}O_6N_2=\frac{H_2C}{OC\cdot N(C_6H_4\cdot CO_2H)\cdot CO}$. Beim Erhitzen von aktivem (?) Phthalylasparaginsäure-anil mit 3-Amino-benzoesäure auf 200° (Piutti, G. 16, 7; P., Priv.-Mitt.). — AgC₁₉H₁₁O₆N₂.

Inakt. Phenylnitrosaminobernsteinsäure-anil, inakt. [N-Nitroso-N-phenylasparaginsäure]-anil $C_{16}H_{18}O_3N_3= \begin{matrix} H_1C & CH\cdot N(NO)\cdot C_6H_5 \\ OC\cdot N(C_6H_5)\cdot CO \end{matrix}$. B. Bei der Einw. von Kaliumnitrit auf inakt. [N-Phenyl-asparaginsäure]-anil in Eisessig (Kusserow, A. 252, 166). — Gelbe Blättchen (aus Alkohol). F: 180°. Ziemlich leicht löslich in Alkohol und Äther, schwer in Chloroform und Benzol, unlöslich in Wasser und in kalten verdünnten Säuren und Alkalien. — Wird durch Kochen mit Wasser zersetzt. Gibt mit Phenol und Schwefelsäure die Liebermannsche Reaktion.

2. Aminoderivate des Methylbernsteinsäure-imids ${\rm C_5H_7O_2N}$ (Bd. XXI, S. 384).

α-Amino-α-methyl-bernsteinsäure-imid, β-Amino-brensweinsäure-imid, Homo-asparaginsäure-imid $C_5H_5O_2N_2=\frac{H_2C-C(CH_3)\cdot NH_2}{OC\cdot NH\cdot CO}$. Zur Formulierung vgl. Stosius, Philippi, M. 45 [1924], 458. — B. Beim Erhitzen von Mesaconsäurediäthylester (Bd. II, S. 766) oder Itaconsäurediäthylester (Bd. II, S. 762) mit alkoh. Ammoniak im Rohr auf 105° (Körner, Menozzi, R. A. L. [5] 2 II, 369, 371, 372; B. 27 Ref., 122). — Nadeln (aus verd. Alkohol). F: 195°; ziemlich leicht löslich in Wasser, schwer in kaltem, leicht in warmem Alkohol (K., M.). — Liefert beim Verseifen mit Barytwasser dl-C-Methyl-asparaginsäure (Bd. IV, S. 494) (K., M.).

 $\beta\text{-Anilino-brenzweins\"{a}ure-imid} \text{ (von Schroeter, Kirnberger, } B. 35, 2079 \text{ als } \\ \alpha\text{-Anilido-brenzweins\"{a}ure-imid bezeichnet)} \text{ } C_{11}H_{12}O_2N_2 = \frac{H_2C - C(CH_3)\cdot NH\cdot C_0H_5}{OC\cdot NH\cdot CO}$

B. Aus β-Anilino-brenzweinsäure-äthylester-amid (Bd. XII, S. 509) beim Erwärmen mit Mineralsäuren oder verd. Alkalilaugen oder bei längerem Erhitzen mit Wasser, Alkohol oder Ammoniak (Schiller-Wechsler, B. 18, 1040; vgl. Schroeter, Kirnberger, B. 35, 2079). Beim Behandeln von β-Anilino-β-cyan-buttersäure-äthylester (Bd. XII, S. 510) mit konz. Schwefelsäure ohne Kühlung (Schi.-W., B. 18, 1041; Sche., K.; vgl. v. Miller, Plöchl, Strauss, B. 25, 2068). — Prismen (aus Wasser). F: 167° (Sche., K.). Schwer löslich in kaltem,

leichter in heißem Wasser, in Alkohol, Chloroform und Benzol, schwerer löslich in Äther, unlöslich in Ligroin (Schu.-W.). Verbindet sich mit Basen und Säuren; die Silberverbindung scheidet beim Erhitzen Silber ab (Schi.-W.). — Geht in salzsaurer Lösung beim Behandeln mit Natriumnitrit in β -Phenylnitrosamino-brenzweinsäure-imid (S. 532) über (Schi.-W.). Wird durch Kochen mit Kalilauge zu β -Anilino-brenzweinsäure (Bd. XII, S. 509) verseift (Schi.-W.). Liefert beim Kochen mit Salzsäure Citraconanil (Bd. XXI, S. 407) und eine Verbindung vom Schmelzpunkt 145° (Schroeper, B. 38, 3186). Beim Kochen mit Kalilauge hydroxyd und Methyljodid in Methanol entsteht β -Anilino-brenzweinsäure-methylimid (s. under the state of the (Schi.-W.). Beim Kochen mit Essigsäureanhydrid wird β -Acetylanilino-brenzweinsäure-imid (S. 532) gebildet (Sch.-W.). — $C_{11}H_{12}O_2N_2 + HCl$. Nadeln (aus konz. Salzsäure) (Schi., K.).

 β -Anilino-brensweinsäure-methylimid $C_{12}H_{14}O_2N_2 = \frac{H_2C}{OC \cdot N(CH_2) \cdot CO}$

B. Beim Kochen von β-Anilino-brenzweinsäure-imid mit Kaliumhydroxyd und Methyljodid in Methanol (Schiller-Wechsler, B. 18, 1043). — Prismen (aus Wasser). F: 103°. Schwer löslich in kaltem Wasser, leichter in Chloroform und Ligroin, leicht in Alkohol, Äther und Benzol. Löslich in Säuren; wird aus den sauren Lösungen durch Alkali abgeschieden; durch Zusatz überschüssiger Alkalilauge erfolgt wieder Lösung. — Gibt mit Natriumnitrit und Salzsäure β -Phenylnitrosamino-brenzweinsäure-methylimid. Verbindet sich mit Methyljodid.

β-Anilino-brenzweinsäure-anil $C_{17}H_{16}O_2N_3 = \frac{H_2C_{C(CH_2)}\cdot NH\cdot C_6H_5}{OC\cdot N(C_6H_5)\cdot CO}$. Zur Konstitution vgl. Anschütz, A. 261, 140. — B. Aus β-Anilino-brenzweinsäure (Bd. XII, 8. 509) beim Erhitzen auf 170—180° (REISSERT, B. 21, 1385; vgl. A., A. 261, 140) oder besser mit Anilin auf 160—180° (A., A. 261, 143). — Prismen (aus Alkohol), Tafeln (aus Alkohol), Monellin prismetisch (Foor R. 21, 1385; Investur A. 261, 144), vgl. (Leth. Ch. Ke. 5, 268) Monoklin prismatisch (Fock, B. 21, 1386; Jenssen, A. 261, 143; vgl. Groth, Ch. Kr. 5, 268). F: 135° (R., B. 21, 1386; A.). Unlöslich in Wasser und Ligroin, schwer löslich in Äther, ziemlich leicht in siedendem Alkohol und Benzol (R., B. 21, 1387). — Gibt beim Erhitzen mit Phosphorpentachlorid in Gegenwart von etwas Phosphoroxychlorid β -[4-Chlor-anilino]-brenzweinsäure-[4-chlor-anil], beim Behandeln mit Brom in Chloroform β -[4-Brom-anilino]-brenzweinsäure-anil oder β -Anilino-brenzweinsäure-[4-brom-anil] (s. u.) und geringe Mengen β -[4-Brom-anilino]-brenzweinsäure-[4-brom-anil] (R., B. 23, 546, 552). Beim Kochen mit Natronlauge entsteht β -Anilino-brenzweinsäure-monoanilid (Bd. XII, S. 560) (R., B. 21, 1387). Geht beim Erhitzen mit Acetylchlorid im Rohr auf 100° in β -Acetylanilino-brenzweinsăure-anil (S. 532) über (A.).

 β -[4-Chlor-anilino]-brensweinsäure-[4-chlor-anil] $C_{17}H_{14}O_2N_2Cl_2 = H_2C - C(CH_3)\cdot NH\cdot C_0H_4Cl$. Zur Konstitution vgl. Anschütz, A. 261, 138. — OC·N(C₄H₄Cl)·CO

B. Beim Erhitzen von β -Anilino-brenzweinsäure-anil mit 3 Mol Phosphorpentachlorid in Gegenwart von etwas Phosphoroxychlorid (REISSERT, B. 23, 552). — Blättchen (aus Alkohol oder Essigsäure). F: 138°; leicht löslich in Ather, Benzol und Eisessig (R.). — Geht beim Kochen mit Natronlauge in β-[4-Chlor-anilino]-brenzweinsäure-mono-[4-chlor-anilid] (Bd. XII, 8. 618) über (R.).

 $\begin{array}{ll} \beta \cdot [\mathbf{4} \cdot \mathbf{Brom} \cdot \mathbf{anilino}] \cdot \mathbf{brensweins\"{a}ure} \cdot \mathbf{anil} & C_{17} H_{15} O_{2} N_{3} Br = \\ H_{2} C & C(CH_{3}) \cdot \mathbf{NH} \cdot C_{6} H_{4} Br & \text{oder} \quad \beta \cdot \mathbf{Anilino} \cdot \mathbf{brensweins\"{a}ure} \cdot [\mathbf{4} \cdot \mathbf{brom} \cdot \mathbf{anil}] \\ OC \cdot \mathbf{N}(C_{6} H_{5}) \cdot \dot{\mathbf{CO}} & C(CH_{3}) \cdot \mathbf{NH} \cdot C_{6} H_{5} \\ C_{17} H_{15} O_{2} N_{2} Br = & H_{2} C & C(CH_{3}) \cdot \mathbf{NH} \cdot C_{6} H_{5} \\ OC \cdot \mathbf{N}(C_{6} H_{4} Br) \cdot \dot{\mathbf{CO}} & \mathbf{Zur} \quad \mathbf{Konstitution} \quad \mathbf{vgl.} \quad \mathbf{Ansch\"{u}tz}, \\ \mathbf{Ennsel}, \quad A. 948, \quad 273 \cdot \mathbf{A}, \quad A. 961, \quad 138 \quad B. \quad \mathbf{Raim} \quad \mathbf{Rehandeln} \quad \mathbf{von} \quad \beta \cdot \mathbf{Anilino} \cdot \mathbf{brensweins\"{a}ure}. \end{array}$

Ernsel, A. 248, 273; A., A. 261, 138. — B. Beim Behandeln von β -Anilino-brenzweinsäureanil mit Brom in Chloroform unter Kühlung (Reissert, B. 23, 546). — Nadeln (aus verd. Alkohol). F: 141°; unlöslich in Wasser und Ligroin, leicht löslich in Alkohol, Äther, Chloroform, Benzol und Eisessig (R.). — Gibt mit Natriumnitrit ein Nitrosoderivat (S. 532) (R.). Bei der Einw. von heißer Natronlauge entsteht β -[4-Brom-anilino]-brenzweinsäure-monoanilid oder β -Anilino-brenzweinsäure-mono-[4-brom-anilid] (Bd. XII, S. 648) (R.). — $C_{17}H_{18}O_{2}N_{2}Br$ + HBr+CHCl₂. Krystalle. Verliert bei 100° das Chloroform und ist dann leicht löslich in Wasser anglet heim Kochen mit Wasser Bromwaggestoff als (P.) Alkohol, unlössich in Wasser; spaltet beim Kochen mit Wasser Bromwasserstoff ab (R.).

 β - [4 - Brom - anilino] - brensweinsäure - [4 - brom - anil] $C_{17}H_{14}O_2N_2Br_2 = H_2C - C(CH_2) \cdot NH \cdot C_6H_4Br$. Zur Konstitution vgl. Anschütz, Hensel, A. 248, $OC \cdot N(C_0H_4Br) \cdot CO$

273; A., A. 261, 138. — B. Entsteht in geringer Menge beim Behandeln von β -Anilino-brenzweinsäure-anil mit Brom in Chloroform (Reissert, B. 28, 549). — Blättchen (aus Alkohol). F: 134° (R.).

 $\beta\text{-o-Toluidino-brenzweinsäure-imid }C_{12}H_{14}O_2N_2=\frac{H_2C-C(CH_3)\cdot NH\cdot C_6H_4\cdot CH_3}{OC\cdot NH\cdot CO}.$

B. Man erhitzt Acetessigsäure-äthylester-cyanhydrin (Bd. III, S. 444) in äther. Lösung mit o-Toluidin im Rohr auf 90°, trägt den entstandenen, nicht näher beschriebenen β -o-Toluidino- β -cyan-buttersäure-äthylester in konz. Schwefelsäure ein, fällt die mit Wasser verdünnte schwefelsaure Lösung mit Soda und löst das ausgeschiedene Ol in konz. Salzsäure (SCHILLER-WECHSLER, B. 18, 1050). — Nadeln. F: 181°. Unlöslich in kaltem Wasser und Ligroin, schwer löslich in heißem Wasser und Äther, leicht in Alkohol, Chloroform und Benzol. Verbindet sich mit Säuren und Basen.

 $\begin{array}{ll} \beta\text{-Acetylanilino-brenzweinsäure-imid} & C_{13}H_{14}O_{3}N_{2} = \\ H_{2}C & C(CH_{3}) \cdot N(C_{8}H_{5}) \cdot CO \cdot CH_{3} \\ & \beta \cdot N(C_{$

mit Essigsäureanhydrid (Schiller-Wechsler, B. 18, 1041). — Nadeln. F: 235°. Leicht löslich in heißem Wasser, Alkohol und Benzol, fast unlöslich in Ligroin.

 $\begin{array}{ll} \beta\text{-Acetylanilino-brenzweinsäure-anil} & C_{19}H_{18}O_{3}N_{2} = \\ H_{2}C & C(CH_{3})\cdot N(C_{6}H_{5})\cdot CO\cdot CH_{3} \\ & B. & Beim Kochen von \beta\text{-Acetylanilino-brenzwein-} \end{array}$ $OC \cdot N(C_6H_8) \cdot CO$

säure-monoanilid (Bd. XII, S. 560) mit Acetylchlorid (Anschütz, A. 261, 150). Beim Erhitzen von β-Anilino-brenzweinsäure-anil mit Acetylchlorid im Rohr auf 100° (A., A. 261, 145). — Tafeln (aus Aceton + Ather). Triklin (JENSSEN, A. 261, 150). F: 168—169°. Leicht löslich in Alkohol und Aceton, schwer in Äther, unlöslich in Wasser.

 β -Bensoylanilino-brensweinsäure-imid $C_{18}H_{16}O_3N_2=H_2C$ — $C(CH_3)\cdot N(C_6H_5)\cdot CO\cdot C_6H_5$. B. Beim Erhitzen von β -Anilino-brenzweinsäure-imid

mit Benzoylchlorid (SCHILLER-WECHSLER, B. 18, 1042). — Nadeln (aus verdünntem Alkohol). Schmelzpunkt: 190°. Schwer löslich in heißem Wasser, löslich in Alkohol, Äther, Chloroform und Benzol, unlöslich in Ligroin.

 β - Phenylnitrosamino - brenzweinsäure - imid $C_{11}H_{11}O_3N_3 = H_2C - C(CH_3) \cdot N(NO) \cdot C_6H_5$. Bei der Einw. von Natriumnitrit auf β -Anilino-brenz-

weinsäure imid in salzsaurer Lösung (Schiller - Wechsler, B. 18, 1043). — Hellgelbe Nadeln (aus Wasser). F: 173°. Löslich in heißem Wasser, Alkohol, Ather, Chloroform und Benzol, unlöslich in Ligroin. Schwer löslich in Säuren, leicht in Alkalien. Konz. Schwefel-

 $OC \cdot N(CH_2) \cdot CO$

saurer Lösung und Natriumnitrit (Schiller-Wechsler, B. 18, 1044). — Nadeln (aus sehr verd. Alkohol). F: 147°. Schwer löslich in Wasser, leicht in Alkohol, heißem Chloroform und heißem Benzol, schwer in Ather, unlöslich in Ligroin; unlöslich in Alkalien und verd. Mineralsäuren.

Alkohol). F: 199,5°.

 $\alpha\text{-Anilino-brenzweinsäure-anil}\quad C_{17}H_{16}O_2N_2=\frac{C_6H_5\cdot NH\cdot HC-CH\cdot CH_3}{OC\cdot N(C_6H_5)\cdot CO}.\quad B.$ Entsteht in zwei stereoisomeren Formen bei der Reduktion von α -Anilino-citraconsäure-nil (Pd. VYI S. 557) von α -Anilino-citraconsaure-nil (Pd. VYI S.

anil (Bd. XXI, S. 557) mit Aluminiumamalgam in Äther (FICHTER, PREISWERK, B. 35, 1627). — a) Höherschmelzende Form. Nadeln (aus Alkohol). F: 186,5—187°. Schwer löslich in kaltem Alkohol. — b) Niedrigerschmelzende Form. Nadeln. F: 134°. Leichter löslich in Alkohol als die höherschmelzende Form.

- Nadeln (aus Alkohol). F: 200°.

3. Aminoderivat des α.α'-Dimethyl-bernsteinsäure-imids C_eH₂O₂N (Bd. XXI,

citraconsaure-p-tolylimid mit Aluminiumamalgam in Ather (FICHTER, J. pr. [2] 74, 300).

α-Amino-α.α'-dimethyl-bernsteinsäure-imid C₆H₁₀O₂N₂ = CH₃·HC——C(CH₃)·NH₂. B. Beim Erhitzen von Pyrocinchonsäure-dimethylester oder OC·NH·CO
-diāthylester (Bd. II, S. 780) mit alkoh. Ammoniak im Rohr auf 100—106° (MOLINARI, B. 83, 1411, 1412). — Prismen (aus Alkohol), Nadeln (aus Wasser). F: 168°. Sehr leicht löslich in Wasser, schwerer in Methanol und Athylalkohol, fast unlöslich in Äther.

b) Aminoderivate der Dioxo-Verbindungen $C_n H_{2n-5} O_2 N$.

1. Aminoderivate des Maleinsäureimids C₄H₃O₂N (Bd. XXI, S. 399).

Aminomaleinsäure-imid $C_4H_4O_2N_2=\frac{HC_1-C\cdot NH_2}{OC\cdot NH\cdot CO}$. Derivate, die sich von der desmotropen Form $H_2C_1-C:NH$ (Iminobernsteinsäure-imid) ableiten lassen, sind auf Grund dieser Formulierung Bd. XXI, S. 553—555 abgehandelt.

B. Aus 1-Phenyl-3.4.5.5-tetrachlor-\$\tilde{A}^2\$-pyrrolon-(2) (Bd. XXI, S. 255) durch Erhitzen mit Methylanilin in Chloroform auf 100° und Behandeln des Reaktionsprodukts mit verd. Salzsäure (Anschütz, Beavis, A. 295, 37). Aus Dichlormaleinsäure-anil (Bd. XXI, S. 402) durch Einw. von Methylanilin in Chloroform bei 100° (A., B., A. 295, 38). — Gelbbraune Krystalle (aus Aceton). F: 189—190°.

Piperidinochlormaleinsäure-p-tolylimid $C_{18}H_{17}O_2N_2Cl =$

ClC————C·NC₅H₁₀. B. Aus Dichlormaleinsäure-p-tolylimid (Bd. XXI, S. 403) OC·N(C₆H₄·CH₂)·CO und Piperidin in Benzol im Rohr bei 100° (Anschütz, Guenther, A. 295, 49). — Gelbe Blättchen (aus Aceton). F: 130°.

 $\begin{array}{lll} \textbf{Monoanil des Anilinobrommaleins \"{a}ure-anils} & C_{22}H_{16}ON_3Br = \\ BrC & & & & & C\cdot NH\cdot C_6H_5 \\ \hline OC\cdot N(C_6H_5)\cdot C:N\cdot C_6H_5 & & & & & C_6H_5\cdot N:C\cdot N(C_6H_5)\cdot CO \\ leicht eine dieser Formeln zukommt, s. Bd. XII, S. 134. \end{array}$

- 2. Aminoderivate der Dioxo-Verbindungen $C_5H_5O_2N$.
 - 1. Aminoderivat des Glutaconsäureimids $C_5H_5O_2N$ (Bd. XXI, S. 406).

 $\beta\text{-Anilino-glutacons\"{a}ure-anil} \quad C_{17}H_{14}O_{3}N_{2} = \frac{H_{3}C\cdot C(NH\cdot C_{6}H_{5}):CH}{OC-N(C_{6}H_{5})-CO}. \quad \text{Diese Konstitution kommt vielleicht dem [Aceton-$\alpha.$\alpha'-dicarbons\"{a}ure]-dianil, Bd. XII, S. 534, zu.}$

2. Amino-derivat des Methylmaleinsäure-imids $C_5H_5O_2N$ (Bd. XXI, S. 406). α' -Amino- α -methyl-maleinsäure-imid, α -Amino-citraconsäure-imid $C_5H_6O_2N_2 = H_2N \cdot C = C \cdot CH_2$ ist desmotrop mit α -Imino-brenzweinsäure-imid, Bd. XXI, S. 556. $OC \cdot NH \cdot CO$

- 3. Aminoderivate der Dioxo-Verbindungen $C_6H_7O_2N$.
- 1. Aminoderivat des Äthylmaleinsäure-imids C₆H₇O₂N (Bd. XXI, S. 412).

 H₂N·C=C·C₂H₅

 $\alpha'\text{-}\underline{\mathbf{Amino}}\text{-}\alpha\text{-}\overline{\mathbf{a}}\text{thyl-maleins}\overline{\mathbf{a}}\text{ure-imid} \ C_6H_8O_2N_2 = \frac{H_2N\cdot C}{OC\cdot NH\cdot CO} \text{ ist desmotrop}$ mit $\alpha'\text{-}\mathrm{Imino}\text{-}\alpha\text{-}\overline{\mathbf{a}}\text{thyl-bernsteins}\overline{\mathbf{a}}\text{ure-imid}, \ Bd. \ XXI, \ S. \ 559.$

2. Aminoderivat des Äthylidenbernsteinsäure-imids C₅H₇O₂N.

 $[\alpha\text{-}\Delta\text{mino-\ddot{a}thyliden]-bernsteins \ddot{a}ure-imid} \ C_{6}H_{8}O_{2}N_{2} = \begin{matrix} H_{2}C ----C:C(NH_{2})\cdot CH_{3} \\ OC\cdot NH\cdot CO \\ \hline \\ oc\cdot NH\cdot CO \\ \end{matrix}$ ist desmotrop mit [\$\alpha\$-Imino-\$\ddot{a}\$thyl]-bernsteins \(\ddot{a}ure-imid, Bd. XXI, S. 559. \end{matrix}

c) Aminoderivate der Dioxo-Verbindungen $C_n H_{2n-11} O_2 N$.

[3-Amino-phthalsäure]-imid C₃H₆O₂N₂, s. nebenstehende Formel. B. H₂N Beim Verschmelzen von 3-Nitro-phthalsäure mit Ammoniumrhodanid bei 170—180° (KAUFFMANN, BEISSWENGER, B. 36, 2497). Neben überwiegenden Mengen [3-Nitro-phthalsäure]-imid beim Leiten von Ammoniak über geschmolzene 3-Nitro-phthalsäure (K., Bei., B. 36, 2496). Durch Reduktion von [3-Nitro-phthalsäure]-imid mit Zinn und Salzsäure (K., Bei., B. 36, 2496) oder besser mit Zinnchlorür und Salzsäure (Boger, Jouard, Am. Soc. 31, 488). Aus dem sauren Ammoniumsalz der 3-Amino-phthalsäure durch längeres Erhitzen auf 110° oder Kochen mit Eisessig und Behandeln der Reaktionsprodukte mit Ammoniak (K., Bei., B. 36, 2496). — Gelbe, schwach grünlich fluoresceierende Nadeln (aus Wasser oder Alkohol). F: 256—257° (K., Bei.), 266—267° (korr.) (Bo., J.). Schwer löslich in den meisten Lösungsmittels grüne, blaue oder violette Fluorescenz (K., Bei., B. 36, 2496; 37, 2613; Ph. Ch. 50, 351; K., B. 41, 4401, 4402). — Hydrochlorid. Körnig. F: 268° (korr.; Zers.) bei raschem Erhitzen (Bo., J.). Wird durch Wasser hydrolysiert. — KC₈H₅O₂N₂. Cremefarbiger Niederschlag. Wird durch Wasser hydrolysiert (Bo., J.).

[3-Amino-phthalsäure]-anil C₁₄H₁₀O₂N₂ = H₂N·C₈H₃O₂N·C₆H₅. B. Durch Reduktion von [3-Nitro-phthalsäure]-anil mit Eisenpulver in siedendem Eisessig (Kauffmann, Beisswenger, B. 37, 2611). Durch Erhitzen von 3-Amino-phthalsäure, [3-Amino-phthalsäure]-anhydrid oder [3-Amino-phthalsäure]-imid mit Anilin (Boger, Jouard, Am. Soc. 31, 489). — Gelbliche Nadeln (aus Alkohol), Krystalle (aus Benzol). F: 186—188° (korr.) (Bo., J.), 185—187° (K., Bei.). Leicht löslich in Eisessig, löslich in Alkohol, schwer löslich in Benzol und Ligroin, fast unlöslich in Wasser; die Lösungen fluorescieren je nach Natur des Lösungsmittels grün bis blauviolett (K., Bei., B. 37, 2611, 2614; K., B. 41, 4401, 4402).

[3-Acetamino-phthalsäure]-imid $C_{10}H_8O_3N_2 = CH_3 \cdot CO \cdot NH \cdot C_8H_4O_2N$. B. Aus [3-Amino-phthalsäure]-imid und Essigsäureanhydrid (Bogert, Jouard, Am. Soc. 31, 488). — Krystalikörner (aus Alkohol oder Essigester), Nadeln (aus Wasser). F: 242° (korr.) (B., J.). — Gibt beim Kochen mit $5^0/_0$ iger Kalilauge und nachfolgenden Ansäuern 2-Methylchinazolon-(4)-carbonsäure-(5) (Syst. No. 3696) (B., J.; vgl. dazu Moore, Marrack, Proud, Soc. 119 [1921], 1787).

[3-Acetamino-phthalsäure]-anil C₁₆H₁₈O₃N₂ = CH₃·CO·NH·C₆H₅O₂N·C₆H₅. B. Durch Erhitzen von 3-Acetamino-phthalsäure-dimethylester mit Anilin (BOGERT, JOUARD, Am. Soc. 31, 489). Aus [3-Amino-phthalsäure]-anil und Acetanhydrid (Kauffmann, Beisswenger, B. 37, 2611). — Nadeln (aus Alkohol). F: 191° (K., Bei.), 195,5° (korr.) (Bo., J.). Die Lösungen fluorescieren nicht (K., Bei.).

[3 - Acetamino - phthalsäure] - o - tolylimid $C_{17}H_{14}O_8N_9 = CH_8 \cdot CO \cdot NH \cdot C_8H_8O_8N \cdot C_8H_4 \cdot CH_3$. B. Durch Erhitzen von 3-Acetamino-phthalsäure-dimethylester mit o-Toluidin (Bogert, Jouard, Am. Soc. 31, 489). — Gelbliche Prismen (aus Methanol) oder Nadeln (aus wäßr. Aceton). F: 214—215° (korr.).

[8-Diacetylamino-phthalsäure]-imid $C_{13}H_{10}O_4N_3=(CH_3\cdot CO)_2N\cdot C_3H_4O_2N$. B. Aus [3-Amino-phthalsäure]-imid beim Kochen mit überschüssigem Essigsäureanhydrid (B., J., Am. Soc. 81, 488). — Prismen (aus Alkohol). F: 152—154° (korr.). — Wird durch siedendes Wasser teilweise in [3-Acetamino-phthalsäure]-imid übergeführt.

[3-(ω -Phenylureido)-phthalsäure]-imid $C_{15}H_{11}O_3N_3 = C_6H_5 \cdot NH \cdot CO \cdot NH \cdot C_8H_4O_2N$. B. Aus [3-Amino-phthalsäure]-imid und Phenylisocyanat (B., J., Am. Soc. 31, 488). — Schuppen (aus verd. Alkohol). Sintert bei ca. 260°, schmilzt unter Dunkelfärbung bei ca. 335° (korr.).

N-Phenyl-N'.N'-[3-amino-phthalyl]-hydraxin, $\beta.\beta$ -[3-Amino-phthalyl]-phenyl-hydraxin $C_{14}H_{11}O_2N_3=H_2N\cdot C_8H_2O_2N\cdot NH\cdot C_6H_5$. B. Durch Erhitzen von [3-Amino-phthalsäure]-imid mit Phenylhydrazin (B., J., Am. Soc. 31, 489). — Gelbe Schuppen (aus verd. Alkohol). F: 284—285° (korr.; Zers.). — Reagiert mit Acetanhydrid unter Bildung eines bei 223—224° (korr.) schmelzenden Produkts (gelbe Nadeln).

[4-Amino-phthalsäure]-imid C₈H₆O₃N₂, s. nebenstehende Formel. H₂N CO NH

B. Durch Reduktion von [4-Nitro-phthalsäure]-imid mit Zinnchlorür und Salzsäure (Bogert, Renshaw, Am. Soc. 30, 1141). — Goldgelbe

Nadeln (aus Wasser). F: 294° (korr.). Sublimiert von 277° an. Leicht löslich in Alkohol und Aceton, sehr schwer in kaltem Wasser, Äther und Chloroform, unlöslich in Petroläther. — Hydrochlorid. Graue Krystalle.

[4-Amino-phthalsäure]-methylimid $C_0H_8O_2N_3=H_2N\cdot C_0H_3O_2N\cdot CH_3$. B. Beim Erhitzen von 4-Amino-phthalsäure-dimethylester mit konzentriertem wäßrigem Ammoniak auf 280—290° (B., R., Am. Soc. 30, 1141). Durch Reduktion von [4-Nitro-phthalsäure]-methylimid mit Zinnchlorür und Salzsäure (B., R., Am. Soc. 30, 1142). — Gelbe Krystalle (aus sehr verd. Ammoniak). F: 242—243° (korr.). Leicht löslich in Alkohol, Aceton und heißem Essigester, löslich in siedendem Wasser, Äther und Benzol, unlöslich in Petroläther. — Gibt beim Erhitzen mit Kalilauge 4-Amino-phthalsäure und Methylamin. — Hydro-chlorid. Tafeln. Wird durch Wasser hydrolysiert.

[4-Amino-phthalsäure]-anil C₁₄H₁₀O₂N₂ = H₂N·C₈H₃O₂N·C₆H₅. B. Durch Einw. von siedendem Anilin auf 4-Amino-phthalsäure (B., R., Am. Soc. 30, 1138, 1142) oder auf 4-Amino-phthalsäure-dimethylester (B., R., Am. Soc. 28, 624). — Gelbliche Nadeln (aus Alkohol oder Eisessig). F: 205,5° (korr.). Löslich in heißem Alkohol, Chloroform, Essigester und Benzol, schwer löslich in heißem Wasser, sehr schwer in Äther und Aceton.

d) Aminoderivate der Dioxo-Verbindungen $C_n H_{2n-13} O_2 N$.

1. Aminoderivate des Chinolinchinons-(5.8) C₂H₅O₂N (Bd. XXI, S. 518).

7-Chlor-6-anilino - chinolinchinon - (5.8) - anil - (8) C₂₁H₁₄ON₃Cl, s. nebenstehende Formel. B. Aus 5.5.7.8-Tetrachlor-6-oxo-5.6-dihydrochinolin (Bd. XXI, S. 303) und überschüssigem Anilin in siedendem Alkohol (ZINCKE, A. 264, 225). Aus 5.5.7-Trichlor-6-oxo-8-phenylimino-5.6.7.8-tetrahydro-chinolin (Bd. XXI, S. 507) und 3 Tln. Anilin bei gewöhnlicher Temperatur (Z.; Z., WINZHEIMER, A. 290, 334). — Dunkelgranatrote, metallglänzende Blättchen oder Nadeln (aus Alkohol oder Eisessig). F: 180° (Zers.) (Z.). Schwer löslich in Alkohol, leichter in Eisessig und Benzol (Z.). — Gibt beim Kochen mit wäßrig-alkoholischer Salzsäure 7-Chlor-6-oxy-chinolinchinon-(5.8) (Bd. XXI, S. 610) (Z.; Z., W.), beim Kochen mit verd. Natronlauge und etwas Alkohol 7-Chlor-6-oxy-chinolinchinon-(5.8)-anil-(8) (Z.).

7-Anilino-chinolinchinon-(5.8)-anil-(5)

bezw. 5 - Anilino - chinolinchinon - (7.8) anil-(7) C₃₁H₁₅ON₃, Formel I bezw. II. B. I.
Aus salzsaurem 5.7.7-Trichlor-8-0x0-7.8-dihydro-chinolin (Bd. XXI, S. 303) und überschüssigem Anilin in kaltem Alkohol (Hebebband, B. 21, 2986). — Rote, goldglänzende
Nadeln (aus Eisessig + Alkohol). F: 222°. Unlöslich in Wasser, schwer löslich in Alkohol,
leichter in Eisessig. Löslich in verd. Säuren mit blauvioletter Farbe. — Spaltet beim Erhitzen
mit Salzsäure Anilin ab. — Die Salze werden durch Wasser hydrolysiert. — Hydrochlorid.
Goldglänzende Nadeln. — Pikrat. Kupferfarbene Nadeln. — Acetat. Bronzefarbene
Nadeln. F: 199°.

6(oder 7) - Anilino - chinolinchi
non-(5.8) C₁₅H₁₀O₂N₂, Formel I oder II.

B. Aus Chinolinchinon-(5.8) und Anilin
in siedendem Alkohol (O. FISCHER,
RENOUF, B. 17, 1644). Beim Aufbe
O

O

II.

C₆H₅·NH.

O

N

wahren einer alkoh. Lösung von 5.8-Dioxy-chinolin und Anilin an der Luft (F., R., B. 17, 1645). — Kupferrote Blättchen mit grünem Oberflächenglanz (aus verd. Alkohol). F: ca. 190°. Löslich in verd. Mineralsäuren mit violetter Farbe. — Gibt bei der Reduktion mit Zinn und Salzsäure 5.8-Dioxy-chinolin und Anilin.

2. Aminoderivate des Phenylmaleinsäure-imids $C_{10}H_7O_2N$.

 $\alpha'\text{-}\mathbf{Amino}\text{-}\alpha\text{-}\mathbf{phenyl}\text{-}\mathbf{maleins\"{a}ure}\text{-}\mathbf{imid}\ \ C_{10}H_{8}O_{2}N_{2} = \frac{H_{2}N\cdot C}{OC\cdot NH\cdot CO} \overset{C\cdot C_{6}H_{5}}{\text{otherwise}} \ \ \text{ist desmotion}$ trop mit $\alpha'\text{-}\mathbf{Imino}\text{-}\alpha\text{-}\mathbf{phenyl}\text{-}\mathbf{bernsteins\"{a}ure}\text{-}\mathbf{imid},\ Bd.\ XXI,\ S.\ 566.$

α'-Piperidino-α-phenyl-maleinsäure-imid $C_{15}H_{16}O_2N_2=\frac{C_5H_{10}N\cdot C-C\cdot C_6H_5}{OC\cdot NH\cdot CO}$. B. Aus α'-Äthoxy-α-phenyl-maleinsäure-imid (Bd. XXI, S. 611) und Piperidin (Volhard, Henke, A. 282, 81). — Orangefarbene Nadeln (aus verd. Alkohol). F: 155—156,5°.

e) Aminoderivate der Dioxo-Verbindungen $C_n H_{2n-19} O_2 N$.

[4 - Anilino - benzol] - [indol - (2)] - indigo 1, [Diphenylamin - (4)] - [indol - (2)] - indigo 1 C₆H₅·NH·C<CH·CO_{CH·CH}CC = CNH

C₃₀H₁₄O₂N₂, s. nebenstehende Formel. B. Aus Isatinchlorid und 3-Oxy-diphenylamin in Benzol (Friedlaender, Schuloff, M. 29, 391). —
Violette Nadeln (aus Alkohol). Sublimiert beim Erhitzen unter geringer Zersetzung in violetten Rhomben; der Dampf ist orangerot. Löslich in den gebräuchlichen Lösungsmitteln mit blauvioletter Farbe. — Die alkoh. Lösung färbt sich auf Zusatz von etwas Salzsäure oder Schwefelsäure blau. Die Lösung in konz. Schwefelsäure ist kirschrot und wird auf Zusatz von etwas Wasser blau. Bildet eine gelbliche Hydrosulfit-Küpe.

f) Aminoderivate der Dioxo-Verbindungen $C_n H_{2n-23} O_2 N$.

1'-Methyl-4-amino-anthrapyridon C₁₇H₁₂O₂N₂, s. nebenstehende Formel. B. Beim Kochen von 1-Amino-4-[acetylmethylamino]-anthrachinon (Bd. XIV, S. 201) mit Natronlauge (BAYER & Co., D. R. P. 194253; C. 1908 I, 1013; Frdl. 9, 758; vgl. D. R. P. 192201; C. 1908 I, 571; Frdl. 9, 732). Durch Erhitzen von 1'-Methyl-4-brom-anthrapyridon (Bd. XXI, S. 540) mit Ammoniak auf 150° unter Druck (B. & Co., D. R. P. 201904; C. 1908 II, 1307; Frdl. 9, 736). — Grünschimmernde Blättchen. Löslich in Pyridin mit orangeroter Farbe und grünlichgelber Fluorescenz, in konz. Schwefelsäure mit gelblicher Farbe und grüner Fluorescenz (B. & Co., D. R. P. 194253).

- 1'-Methyl-4-methylamino-anthrapyridon $C_{18}H_{14}O_2N_2=CH_3\cdot NC_{16}H_7O_2\cdot NH\cdot CH_3$. B. Aus 1'-Methyl-4-brom-anthrapyridon und Methylamin in Pyridin bei 120° (BAYER & Co., D. R. P. 201904; C. 1908 II, 1307; Frdl. 9, 736). Rote Krystalle. Löslich in Chloroform mit roter Farbe und gelber Fluorescenz. Die schwach gelbliche Lösung in konz. Schwefelsäure nimmt auf Zusatz von Borsäure intensiv gelbgrüne Fluorescenz an.
- 1'- Methyl-4-dimethylamino-anthrapyridon $C_{10}H_{16}O_2N_2 = CH_3 \cdot NC_{16}H_7O_2 \cdot N(CH_3)_2$. B. Beim Kochen von 1-Dimethylamino-4-[acetylmethylamino]-anthrachinon mit Natriummethylat-Lösung (Bayer & Co., D. R. P. 192201; C. 1908 I, 571; Frdl. 9, 732). Hydrochlorid. Gelbbraune Prismen. Löslich in Pyridin mit roter Farbe. Die gelbe Lösung in konz. Schwefelsäure zeigt nach Zusatz von Borsäure gelbe Fluorescenz. Färbt ungebeizte Wolle und tannierte Baumwolle violettrot.
- 1'-Methyl-4-p-toluidino-anthrapyridon $C_{24}H_{18}O_{2}N_{2} = CH_{3} \cdot NC_{16}H_{7}O_{2} \cdot NH \cdot C_{6}H_{4} \cdot CH_{3}$.

 Beim Kochen von 1-p-Toluidino-4-[acetylmethylamino]-anthrachinon mit Natrium-

¹⁾ Zur Nomenklatur der Indigoide vgl. JACOBSON bei FRIEDLAENDEB. B. 41, 773.

methylat-Lösung (Bayer & Co., D. R. P. 192201; C. 1908 I, 571; Frdl. 9, 732). Durch Erhitzen von 1'-Methyl-4-brom-anthrapyridon mit p-Toluidin und Natriumacetat auf 160—170° (B. & Co., D. R. P. 201904; C. 1908 II, 1307; Frdl. 9, 736). Beim Kochen von 1'-Methyl-4-methoxy-anthrapyridon mit p-Toluidin (B. & Co., D. R. P. 201904). — Dunkelrote, bronzeglänzende Krystalle. Löslich in Pyridin und in konz. Schwefelsäure mit violettroter Farbe; die Lösung in konz. Schwefelsäure wird auf Zusatz von Borsäure kupferrot.

1'- Methyl- 4 - [anthrachinonyl - (1) - amino] - anthrapyridon C₃₁ H₁₈ O₄ N₂, Formel I. B. Aus 1'-Methyl-4-brom-anthrapyridon und I. 1-Amino-anthrachinon bei Gegenwart von Kupferchlorid und Natriumacetat in siedendem Naphthalin (BAYER & Co.,

D. R. P. 194253; C. 1908 I, 1013; Frdl. 9, 758). — Dunkelbraune Prismen. Löslich in heißem Chinolin mit roter Farbe, in konz. Schwefelsäure mit violetter, auf Zusatz von Borsäure in ein schmutziges Blau übergehender Farbe.

1'- Methyl-4-[anthrachinonyl-(2)-amino]-anthrapyridon C₃₁H₁₈O₄N₂, Formel II. B. Aus 1'-Methyl-4-brom-anthrapyridon und 2-Amino-anthrachinon oder aus 1'-Methyl-4-amino-anthrapyridon und 2-Chlor-anthrachinon (Bayer & Co., D. R. P. 194253; C. 1908 I, 1013; Frdl. 9, 758). — Braunes Krystallpulver. Löslich in heißem Chinolin mit carminroter Farbe, in konz. Schwefelsäure mit violetter, auf Zusatz von Borsäure in Kupferrot übergehender Farbe. — Ist ein roter Küpenfarbstoff (Algolrot BTK; vgl. Schultz, Tab. 7. Aufl., No. 1261).

1'- Methyl -4- [4- oxy-anthrachinonyl - (1) - amino] - anthrapyridon C₃₁H₁₈O₅N₂, Formel III. B. Aus 1'-Methyl-4-brom-anthrapyridon und 4-Amino-1-oxy-anthrachinon (BAYER & Co., D. R. P. 194253; C. 1908I, 1013; Frdl. 9, 758).—Dunkelblaues Krystallpulver. Löslich in heißem Chinolin mit blauer, in konz. Schwefelsäure mit grünlichblauer, auf Zusatz von Borsäure in Grün übergehender Farbe.

Bis - [1' - methyl - anthrapyridonyl - (4)] - amin C₃₄H₂₁O₄N₃, Formel IV. B. Aus 1'-Methyl-4-amino-anthrapyridon und 1'-Methyl-4-brom-anthrapyridon bei Gegenwart von Kupferchlorid und Natriumacetat in siedendem Naphthalin (Bayer & Co., D. R. P. 194253; C. 1908 I, 1013; Frdl. 9, 758). — Dunkelviolette Nadeln. Löslich in heißem Chinolin mit violetter, in konz. Schwefelsäure mit blaugrüner, bei Zusatz von Borsäure in Grün übergehender Farbe.

1'- Methyl - 5 - amino - anthrapyridon $C_{17}H_{13}O_2N_2$, Formel V. B. Aus 1-Amino 5 - [acetylmethylamino] - anthrachinon durch Einw. von Alkalien (BAYER & Co., D. R. P. 194253; C. 1908 I, 1013; Frdl. 9, 758). — Braune Krystalle. Löslich in Pyridin mit orangegelber, in konz. Schwefelsäure mit bräunlichgelber Farbe.

$$V. \qquad \begin{array}{c} \text{HC} & \text{N} \cdot \text{CH}_3 \\ \text{V}. & \begin{array}{c} \text{CO} & \text{N} \cdot \text{CH}_3 \\ \text{CO} & \text{NH} \end{array} \end{array}$$

1'- Methyl-5-[anthrachinonyl-(3)-amino]-anthrapyridon C₃₁H₁₈O₄N₃, Formel VI. B. Aus 1'-Methyl-5-amino-anthrapyridon und 2-Chlor-anthrachinon bei Gegenwart von Kupferchlorid und Natriumacetat in siedendem Naphthalin (BAYER & Co., D. R. P. 194253; C. 1908 I, 1013; Frdl. 9, 758). — Braune Krystalle. Die Lösung in heißem Chinolin ist orange, die Lösung in konz. Schwefelsäure ist grün und wird auf Zusatz von Borsäure blau.

g) Aminoderivate der Dioxo-Verbindungen C_nH_{2n-25}O₂N.

- [4 Acetamino naphthalin (2)] [indol (2)] indigo 1)
 C₂₀H₁₄O₂N₂, s. nebenstehende Formel. B. Aus 4-Acetaminonaphthol-(1) und Isatin-α-anil in heißem Acetanhydrid (Bezdeik,
 FRIEDLAENDER, M. 80, 277). Wird durch Natronlauge
 NH·CO·CH₃
- [5 Acetamino naphthalin (2)] [indol (2)]indigo¹) C₂₀H₁₄O₂N₂, s. nebenstehende Formel. B. Aus
 5-Amino-naphthol-(1) und Isatin-α-anil in heißem Acetanhydrid (Bezdzik, Friedlaender, M. 30, 276). —
 Kupferglänzende Nadeln (aus Eisessig). Ziemlich leicht
 löslich in siedendem Eisessig und Solventnaphtha mit blauer Farbe. Wird durch Natronlauge zersetzt.

3. Aminoderivate der Tetraoxo-Verbindungen.

5-Amino-2.3.4.6-tetraoxo-piperidin (?) $C_5H_4O_4N_2=\frac{H_2N\cdot HC\cdot CO\cdot CO}{OC\cdot NH\cdot CO}$ (?) bezw. desmotrope Formen. B. Durch Reduktion von 5-Nitro-2.3.4.6-tetraoxo-piperidin (?) (Bd. XXI, S. 571) mit Zinkstaub und Essigsäure (Sell, Easterfield, Soc. 65, 833). — Gelbe Rhomboeder mit 2H₂O (aus verd. Salzsäure). Löslich in Alkalien mit tief violettroter Farbe, die auf Zusatz von Mineralsäuren verschwindet.

G. Oxy-oxo-amine.

1. Aminoderivate der Oxy-oxo-Verbindungen mit 2 Sauerstoffatomen.

a) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-3} O_2 N$.

1 - Phenyl - 4 - anilino - 8 - oxy - Δ^2 - pyrrolon - (5) $C_{16}H_{14}O_2N_2 = C_6H_5 \cdot NH \cdot HC$ Fine Verbindung der vielleicht diese Konstitution

 $OC \cdot N(C_6H_5) \cdot CH$. Eine Verbindung, der vielleicht diese Konstitution zukommt, s. Bd. XII, S. 471.

 $\begin{array}{lll} \textbf{1-Benzoyl-4-benzamino-8-oxy-} \varDelta^2\textbf{-pyrrolon-(5)-hydrat, 1-Benzoyl-4-benzamino-8-5-trioxy-} \varDelta^2\textbf{-pyrrolin} & C_{18}H_{16}O_5N_2 = & C_6H_5\cdot CO\cdot NH\cdot HC & C\cdot OH \\ & & (HO)_2\dot{C}\cdot N(CO\cdot C_6H_5)\cdot \dot{C}H \\ & \text{bindung, die vielleicht diese Konstitution besitzt, s. Bd. IX, S. 231.} \end{array} . \end{array}$

b) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-11} O_2 N$.

3 - Amino - 2 - [4 - methoxy - phenyl] - \triangle^2 - pyrrolon - (4) $C_{11}H_{12}O_2N_2 = OC - C \cdot NH_2$ $H_2C \cdot NH \cdot C \cdot C_0H_4 \cdot O \cdot CH_3$ ist desmotrop mit 3-Amino-4-oxy-2-[4-methoxy-phenyl]-pyrrol, S. 514.

c) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-17} O_2 N$.

4.7 - Dichlor - 3 - oxy - 3 - [4 - dimethylamino-phenyl] - phthalimidin $C_{19}H_{14}O_2N_2Cl_3$, s. nebenstehende Formel, s. bei 3.6-Dichlor-2-[4-dimethylamino-benzoyl]-benzamid, Bd. XIV, S. 663.

¹⁾ Zur Nomenklatur der Indigoide vgl. JACOBSON bei FRIEDLAENDER, B. 41, 773.

d) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-19} O_2 N$.

3-Oxo-2-[4-anilino-2-oxy-phenyl]-indolenin $C_{20}H_{14}O_2N_3$, Formel I. Als desmotrope Form hiervon kann vielleicht der indigoide Farbstoff der Formel II (S. 536) angesehen werden.

e) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-23} O_2 N$.

1. Aminoderivat des Anthrapyridons C₁₆H₉O₂N (Bd. XXI, S. 596).

2-Brom-4-p-toluidino-anthrapyridon (?) C₂₂H₁₈O₂N₂Br, s. nebenstehende Formel, bezw. desmotrope Form. B. Beim Erhitzen von 2.4-Dibrom-anthrapyridon (Bd. XXI, S. 597) mit p-Toluidin auf 150° (BAYER & Co., D. R. P. 201904; C. 1908 II, 1307; Frdl. 9, 736). — Krystalle (aus Nitrobenzol). Löst sich in organischen Lösungsmitteln und in konz. Schwefelsäure mit roter Farbe.

2. Aminoderivate des 2-Methyl-anthrapyridons C₁₇H₁₁O₂N (Bd. XXI, S. 597).

4-Amino-2-methyl-anthrapyridon C₁₇H₁₉O₂N₂, s. nebenstehende Formel, bezw. desmotrope Form. B. Aus 4-Chlor-2-methyl-anthrapyridon durch Erhitzen mit wäßrigem oder alkoholischem Ammoniak unter Druck (BASF, D. R. P. 217395; C. 1910 I, 395; Frdl. 9, 772). Beim Erhitzen von 4-Chlor-1-acetamino-2-methyl-anthrachinon mit Ammoniak unter Druck (BASF). — Roter Küpenfarbstoff. — Liefert beim Erhitzen mit 2-Chlor-anthrachinon, Nitrobenzol, wasserfreiem Natriumacetat und Kupferchlorür 4-[Anthrachinonyl-(2)-amino]-2-methyl-anthrapyridon (s. u.).

- 4-p-Toluidino-2-methyl-anthrapyridon $C_{24}H_{18}O_2N_3 = NC_{17}H_0(:0)(OH)\cdot NH\cdot C_0H_4\cdot CH_3$ bezw. desmotrope Form. B. Beim Kochen von 4-Chlor-2-methyl-anthrapyridon mit p-Toluidin und wasserfreiem Natriumacetat (BASF, D. R. P. 205095; C. 1909 I, 483; Frdl. 9, 739). Rotbraune Krystalle. Beim Sulfurieren mit Schwefelsäuremonohydrat bei $40-50^\circ$ entsteht ein roter Wollfarbstoff.
- 4 [Anthrachinonyl (2) amino] 2 methyl anthrapyridon $C_{21}H_{18}O_4N_2 = NC_{17}H_9(:0)(OH)\cdot NH\cdot C_6H_3 < {}^{CO}_{C_0} > C_6H_4$ bezw. desmotrope Form. B. Beim Erhitzen von 4 Chlor 2 methyl anthrapyridon (Bd. XXI, S. 598) mit 2-Amino-anthrachinon in Gegenwart von Natriumacetat und Wasser auf 230—240° oder in Gegenwart von wasserfreiem Natriumacetat und Chinolin auf Siedetemperatur (BASF, D. R. P. 217396; C. 1910 I, 396; Frdl. 9, 772). Beim Erhitzen von 4-Amino-2-methyl-anthrapyridon (s. o.) mit 2-Chloranthrachinon, Nitrobenzol, wasserfreiem Natriumacetat und Kupferchlorür (BASF, D. R. P. 217395; C. 1910 I, 395; Frdl. 9, 772). Krystalle (aus hochsiedenden Lösungsmitteln oder durch Einblasen von Luft in die Lösung in alkal. Hydrosulfit-Lösung). Roter Küpenfarbstoff.
- 2.6 Bis [2-methyl-anthrapyridonyl-(4)-amino] anthrachinon C₄₈H₂₈O₄N₄, s. nebenstehende Formel, bezw. desmotrope Form. B. Beim Erhitzen von 2.6-Diamino-anthrachinon mit 4-Chlor-2-methyl-anthrapyridon in Gegenwart von entwässertem Natriumacetat und Phenol im Druckgefäß auf 230—240° (BASF, D. R. P. 217396; C. 1910 I, 396; Frdl. 9, 772). Beim Erhitzen von 4-Amino-2-methyl-anthrapyridon (s. o.) mit 2.6-Dichlor-anthrachinon, Nitrobenzol, wasser-

2.6-Dichlor-anthrachinon, Nitrobenzol, wasserfreiem Natriumacetat und Kupferchlorür (BASF, D. R. P. 217395; C. 1910 I, 395; Frdl. 9, 772). — Roter Küpenfarbstoff. 2.7-Bis-[2-methyl-anthrapyridonyl-(4)-amino] - anthrachinon $C_{48}H_{28}O_4N_4$, s. nebenstehende Formel, bezw. desmotrope Form. B. Beim Kochen von 2.7-Diamino-anthrachinon mit 4-Chlor-2-methyl-anthrapyridon in Gegenwart von entwässertem Natriumacetat und Methyldiphenyl-amin (BASF, D. R. P. 217396; C. 1910 I, 396; Frdl. 9, 772). — Roter Küpenfarbstoff.

- f) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-25} O_2 N$.
- 1. Aminoderivate des 3-0x0-2-[1-0xy-naphthyl-(2)]-indolenins $C_{18}H_{11}O_{2}N$.

3-Oxo-2-[5-acetamino-1-oxy-naphthyl-(2)]-indolenin $\rm C_{20}H_{14}O_3N_2$, Formel III. Als desmotrope Form hiervon kann vielleicht der indigoide Farbstoff der Formel IV (S. 538) angesehen werden.

III.
$$c_{eH_4} < co > c$$
 $v_{eH_4} < co > c$
 $v_$

2. Aminoderivate des 6-0xy-3.3-diphenyl-phthalimidins $C_{20}H_{16}O_{2}N$.

6-Äthoxy-3.3-bis-[4-dimethylamino-phenyl]- C₂H₅·O· CO
phthalimidin C₂₆H₂₉O₂N₃, s. nebenstehende Formel.

B. Aus 4'.4"-Bis-dimethylamino-4-āthoxy-triphenylmethan-carbonsāure-(2)-amid (Bd. XIV, S. 633) durch Oxydation mit Bleidioxyd und verd.
Salzsāure in der Kālte (Fritsch, A. 329, 77). — Blättchen (aus Alkohol), Tafeln (aus Benzol
+ Ligroin) oder Nadeln (aus Chloroform + Benzol), die an der Luft trübe werden und zerfallen. F: 242—244°. Leicht löslich in Aceton, Chloroform und Essigester, schwerer in Alkohol
und Benzol, schwer in Äther, Petroläther und Ligroin. — Wird in essigsaurer Lösung durch
Zinkstaub nicht reduziert, durch Bleidioxyd gelb gefärbt.

2-Methyl-6-äthoxy-8.3-bis-[4-dimethylamino-phenyl]-phthalimidin $C_{27}H_{31}O_2N_3=C_2H_5\cdot O\cdot C_6H_3$ $C[C_6H_4\cdot N(CH_3)_2]_2$ $N\cdot CH_3$. B. Aus 4'.4"-Bis-dimethylamino-4-äthoxy-triphenylmethan-carbonsäure-(2)-methylamid durch Oxydation mit Bleidioxyd und verd. Salzsäure in der Kälte (Fritsch, A. 329, 78). — Prismatische Blättchen (aus Alkohol). F: 181°. Leicht löslich in Aceton, Chloroform, Essigester, Benzol, Alkohol und Äther, schwer in Petroläther und Benzin. — Wird in essigsaurer Lösung durch Zinkstaub nicht reduziert, durch Bleidioxyd schwach gelb gefärbt.

2. Aminoderivate der Oxy-oxo-Verbindungen mit 3 Sauerstoffatomen.

a) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-9} O_3 N$.

4-Amino-6.7-dimethoxy-phthalimidin
$$C_{10}H_{19}O_3N_2$$
, s. nebenstehende Formel. B. Bei der Reduktion der Verbindung $CH_3 \cdot O_3C_6H(NO_2)$ $CH_3 \cdot O_3C_6H(NO_2)$ $CH_3 \cdot O_3C_6H(NO_2)$ $CO_3C_6H(NO_2)$ CO_3

3638) mit Zinn und Salzsäure (BISTRZYCKI, FINK, B. 81, 935). — Prismen (aus verd. Alkohol). Schmilzt bei 223—224° unter Zersetzung. Ziemlich schwer löslich in heißem Wasser. — Liefert mit Essigsäureanhydrid und Natriumacetat 4-Acetamino-6.7-dimethoxy-1-acetoxy-isoindolenin (S. 514). — $C_{10}H_{12}O_3N_2 + HCl$. Nadeln (aus verd. Alkohol). Leicht löslich in Wasser.

b) Aminoderivate der Oxy-oxo-Verbindungen $C_n H_{2n-25} O_3 N$.

4'(oder 3') - Amino - 3'(oder 4') - oxy - [anthrachinono-2'.1':2.8-pyridin]¹) C₁₇H₁₀O₃N₂, Formel I oder II, Amid des Alizarinblaus. B. Beim Erwärmen von 25 g Alizarinblau (Bd. XXI, S. 632) mit I. 25 cm³ Ammoniak (D: 0,93) auf 160⁰ (Graebe, Phi-LIPS, A. 276, 24; vgl. G., A. 201, 342). — Dunkelblaue Nadeln (aus Benzol). F: 255°; schwer löslich in kaltem Benzol und Äther, sehr schwer in Alkohol;

löst sich nicht in kochenden Alkalien (G.). — Wird beim Kochen mit verd. Schwefelsäure in Ammoniak und Alizarinblau zerlegt (G.). Beim Diazotieren und nachfolgenden Verkochen mit Alkohol erhält man 4'(oder 3')-Oxy-[anthrachinono-2'.1':2.3-pyridin] (Bd. XXI, S. 618) (G., PH.).

3. Aminoderivate der Oxy-oxo-Verbindungen mit 4 Sauerstoffatomen.

 $\textbf{5-Amino-4.6-dioxy-2.3-dioxo-2.8-dihydro-pyridin} \ \, C_5H_4O_4N_2 \ = \ \, \frac{H_2N \cdot C : C(OH) \cdot CO}{HO \cdot C = N - CO}$ ist desmotrop mit 5-Amino-2.3.4.6-tetraoxo-piperidin, S. 538.

4. Aminoderivate der Oxy-oxo-Verbindungen mit 5 Sauerstoffatomen.

6.7 - Dimethoxy-1-[6-amino-3.4-dimethoxy - benzoyl]isochinolin, Aminopapaveraldin $C_{20}H_{20}O_5N_2$, s. nebenstehende Formel. B. Aus Nitropapaveraldin (Bd. XXI, S. 636) durch Kochen mit alkoh. Schwefelammonium-Lösung oder (neben 5.6-Dimethoxy-3-[6.7-dimethoxy-isochinolyl-(1)]-anthranil; Syst. No. 4540) durch Erwärmen mit Zinnchlorür und Salz-

säure (Pschore, B. 37, 1937). — Hellgelbe Nadeln (aus Alkohol). F: 171—1720 (korr.). Leicht löslich außer in Wasser. Gibt mit sehr verd. Säuren intensiv rote, mit konz. Säuren gelbgrüne Lösungen, die sich auf Wasserzusatz rot färben. — Liefert bei der Diazotierung in verd. Schwefelsäure Papaveraldin-diazoniumsulfat (S. 592).

H. Amino-carbonsäuren.

1. Aminoderivate der Monocarbonsäuren.

a) Aminoderivate der Monocarbonsäuren C_nH_{2n-7}O₂N.

1. Aminoderivate der Monocarbonsäuren $\mathrm{C_6H_5O_2N}$.

1. Aminoderivat der Pyridin-carbonsäure-(2) C_tH₅O₂N (S. 33).

3-Amino-pyridin-carbonsäure-(2), 3-Amino-picolinsäure C₃H₆O₂N₂, s. nebenstehende Formel. B. Beim Erwärmen von Chinolinsäure-β-amid (S. 152) mit Natriumhypobromit-Lösung (Kibpal, M. 29, 228). — Krystalle (aus Wasser). F: 210° (Zers.). — Beim Erhitzen auf den Schmelzpunkt entsteht 3-Amino-pyridin. — Kupfersalz. Graue Nadeln.

¹⁾ Zur Stellungsbezeichnung in diesem Namen vgl. Bd. XVII, S. 1-3.

2. Aminoderivate der Pyridin-carbonsäure-(3) C₆H₅O₂N (S. 38).

2-Amino-pyridin-carbonsäure-(3), 2-Amino-nicotinsäure C₈H₈O₂N₂,
s. nebenstehende Formel. B. Beim Erwärmen von Chinolinsäure-α-amid (8. 151)
NH₂
NH₃
NH₄ · COaH mit Natriumhypobromit-Lösung auf dem Wasserbad (Phillips, B. 27, 840; A. 288, 259). — Prismen (aus Wasser). F: 310° (Zers.). Schwer löslich in kaltem Wasser. Leicht löslich in Alkalilaugen, Alkalicarbonaten und warmen verd. Mineralsäuren. Löst sich in konz. Schwefelsäure und alkoh. Ammoniak mit schwach blauer Fluorescenz. — Beim Schmelzen entsteht 2-Amino-pyridin (S. 428). Gibt mit Salpeterschwefelsäure 5-Nitro-2-amino-nicotinsäure. Bei Einw. von Essigsäureanhydrid bildet sich kein Acetylderivat.

Methylester $C_7H_8O_2N_2 = NC_5H_3(NH_2)\cdot CO_3\cdot CH_8$. B. Aus 2-Amino-nicotinsäure und Methanol in Gegenwart von Chlorwasserstoff (Kirpal, M. 21, 962). — Nadeln (aus Wasser und Alkohol). F: 85°. Leicht löslich in Alkohol, Äther und Benzol.

Amid $C_6H_7ON_3 = NC_5H_3(NH_2) \cdot CO \cdot NH_2$. B. Aus 2-Amino-nicotins are-methylester (s. o.) und konz. Ammoniak in Gegenwart von etwas Methanol (K., M. 21, 962). — Nadeln (aus Wasser). F: 195°.

- -C(C6H5) 2 - Anilino - pyridin - carbonsäure - (8) (?), 2 - Anilino - nicotinsäure (?) $C_{12}H_{10}O_2N_2 = NC_5H_3(NH \cdot C_6H_5) \cdot CO_2H$ (?). B. Neben anderen Verbindungen bei der Oxydation des Hydrojodids der Verbindung C18H13N3 (s. nebenstehende Formel; Syst. No. 3812) mit Permanganat in verd. Schwefelsäure (Obtoleva, R. A. L. [5] 16 I, 876, 883; G. 37 II, 73, 80). — Krystalle (aus Chloroform + Benzin). F: 114-115° (Zers.) (auch 104-105° wurde beobachtet).
- 5(?) Nitro 2 amino pyridin carbonsäure (8), 5(?) Nitro -(?) O2N·; · CO2H 2-amino-nicotinsäure C₆H₅O₄N₃, s. nebenstehende Formel. B. Bei der ·NH2 Einw. von Salpetersäure (D: 1,4) auf 2-Amino-pyridin-carbonsäure-(3) in konz. Schwefelsäure (Philips, A. 288, 262). — Farblose Nadeln (Ph.). Zersetzt sich beim Erhitzen unter Schwarzfärbung. Sehr schwer löslich in Wasser und den meisten organischen Lösungsmitteln.
- 4-Amino-pyridin-carbonsäure-(3), 4-Amino-nicotinsäure $C_6H_6O_2N_2$, s. nebenstehende Formel. B. Aus Cinchomeronsäure- γ -amid (S. 157) und Natrium-hypobromit-Lösung auf dem Wasserbad (KIRPAL, M. 23, 243). — Prismen (aus Wasser). — Zersetzt sich gegen 340° unter Bildung von 4-Amino-pyridin (S. 433) N (K.). Verbraucht bei der Titration mit 0,1 n-Kalilauge gegen Phenolphthalein weniger als 1 Mol Kalilauge; die Menge des verbrauchten Alkalis steigt mit der Temperatur (H. MEYER, M. 23, 945). Liefert beim Diazotieren in konz. Schwefelsäure und Gießen der Flüssigkeit auf Eis 4-Oxy-nicotinsäure (S. 214) (K.). — $C_0H_0O_2N_2 + HCl$. Nadeln. Zersetzt sich bei 270° (K.). — $2C_0H_0O_2N_2 + H_2SO_4$. Nadeln (aus Wasser) (K.). — $2C_0H_0O_2N_2 + 2HCl + PtCl_4$. Orangefarbene Prismen (aus verd. Salzsäure). Zersetzt sich bei ca. 250° (K.).

Methylester $C_7H_8O_2N_2=NC_5H_3(NH_2)\cdot CO_2\cdot CH_3$. Spieße (aus Wasser). F: 173° (K., M. 23, 245). Leicht löslich in Alkohol und heißem Chloroform, löslich in Äther.

- 6 Amino pyridin carbonsäure (3), 6 Amino nicotinsäure $C_6H_6O_2N_2$, s. nebenstehende Formel. B. Bei 6—8-stündigem Erhitzen von 6-Chlor-nicotinsäure mit überschüssigem konzentriertem Ammoniak auf 1700 H_2N . CO₂H (Marchwald, B. 26, 2188; 27, 1319). — Krystalle (aus verd. Essigsäure). Schmilzt oberhalb 300° (M.). Sehr schwer löslich in den meisten Lösungsmitteln (M.). — Zerfällt beim Erhitzen in 2-Amino-pyridin und Kohlendioxyd (M.). Liefert beim Behandeln mit Natriumnitrit in konz. Schwefelsäure und Gießen der Lösung auf Eis 6-Oxy-nicotinsäure (M., B. 27, 1323). Gibt bei Behandlung mit Salpeterschwefelsäure in der Kälte 6-Nitramino-nicotinsäure, die beim Erwärmen mit konz. Schwefelsäure auf 100° in 5-Nitro-6-amino-nicotinsäure übergeht (M., B. 26, 2189; 27, 1334; vgl. Räth, Prange, A. 467 [1928], 2, 6). — Salze: M., B. 27, 1319. — KC₆H₅O₂N₂. Krystalle. Sehr leicht löslich in Wasser, unlöslich in Alkohol. — Ca(C₆H₅O₂N₃)₂. Prismen. Sehr schwer löslich. — C₆H₆O₂N₃ + HCl. Nadeln. Schwer löslich in Alkohol, leicht in Wasser; schwer löslich in Salzsäure. — C₆H₆O₂N₃ + HNO₃. F: 242° (Zers.) (Räth, Prange, A. 467 [1928], 6). Sehr leicht löslich in klem Wasser (R., Pr.; vgl. M.). — 2C₆H₆O₂N₂ + 2HCl + PtCl₄. Orangerote Krystalle. Leicht löslich in Wasser, schwer in Alkohol. — Pikrat C₆H₆O₂N₂ + C₆H₃O₇N₃. Gelbe Nadeln. F: 248°. Sehr schwer löslich.
- 5-Nitro-6-amino-pyridin-carbonsäure-(3), 5-Nitro-6-amino-nicotinsäure $C_6H_8O_4N_3$, s. nebenstehende Formel. B. Beim Behandeln von 6-Amino-nicotinsäure mit Salpeterschwefelsäure in der Kälte und Erwärmen der entstandenen 6-Nitramino-nicotinsäure mit konz. Schwefelsäure auf 100° (MARCHWALD, B. 26, 2189; 27, 1334; vgl. Räth, Prance, A. 467 [1928], 2, 7). — Gelbe mikroskopische Nadeln (aus verd. Mineralsäuren). F: ca. 280° (M., B. 27, 1334), 296—301° (Rath, Prange,

A. 467, 8). Sublimiert unter teilweiser Zersetzung (M., B. 27, 1334). Schwer löslich in fast allen Lösungsmitteln; ziemlich leicht löslich in starken Säuren (M., B. 27, 1334). — Liefert beim Diazotieren in konz. Schwefelsäure und Gießen der Flüssigkeit auf Eis 5-Nitro-6-oxynicotinsäure (S. 216) (M., B. 27, 1335). — NaC₆H₄O₄N₃. Gelbe Nadeln. Mäßig löslich in kaltem Wasser, sehr schwer in Alkohol (M., B. 27, 1334). — KC₆H₄O₄N₃. Rotgelbe Nadeln. Leicht löslich in Wasser, kaum löslich in Alkohol (M., B. 27, 1334). — Ba(C₆H₄O₄N₃)₂. Gelbe mikroskopische Blättchen. Sehr schwer löslich (M., B. 27, 1335).

5.6-Diamino-pyridin-carbonsäure-(3), 5.6-Diamino-nicotinsäure $C_0H_7O_2N_3$, s. nebenstehende Formel. B. Bei der Reduktion von 5-Nitro-6-amino-nicotinsäure (S. 542) mit Ammoniumsulfid oder besser mit Zinn und Salzsäure (Marckwald, B. 27, 1336). — Krystalle mit $1H_2O$ (aus sehr verd. Essigsäure). Schmilzt noch nicht bei 300°. Sehr schwer löslich in den gebräuchlichen Lösungsmitteln. — Liefert in salzsaurer Lösung mit Natriumnitrit die Verbindung $C_0H_4O_2N_4$ der nebenstehenden Formel (Syst. No. 4173). — $C_0H_7O_2N_3 + HCl$. Leicht löslich in Wasser und Alkohol. — $2C_0H_7O_2N_3 + H_2SO_4$. Mikroskopische Nadeln. Schwer löslich in Alkohol und kaltem Wasser. — Pikrat $C_0H_7O_2N_3 + C_0H_3O_7N_3$. Gelbe Krystalle. Zersetzt sich gegen 245°, ohne zu schmelzen. Sehr schwer löslich.

3. Aminoderivate der Pyridin-carbonsäure-(4) C₆H₅O₂N (S. 45).

6-Chlor-2-amino-pyridin-carbonsäure-(4), 6-Chlor-2-amino-iso-nicotinsäure C₈H₅O₂N₂Cl, s. nebenstehende Formel. B. Beim Erhitzen von 2.6-Dichlor-pyridin-carbonsäure-(4) mit wäßr. Ammoniak auf 200° oder beim Erhitzen des Kaliumsalzes der Säure mit Kaliumcyanid-Lösung auf 200—210° Cl. N. NH2 (SELL, Dootson, Soc. 71, 1075). — Gelbliche Nadeln (aus Wasser). Unlöslich in Äther, schwer löslich in Wasser, Aceton und Alkohol mit blauer Fluorescenz, die durch Säuren aufgehoben wird (S., D., Soc. 71, 1076). — Liefert beim Erhitzen mit Phosphorpentachlorid auf 210—220° 3.4.5.6-Tetrachlor-2-amino-pyridin (S., D., Soc. 77, 236).

3-Amino-pyridin-carbonsäure -(4),
3-Amino-isonicotinsäure C₆H₆O₂N₂,
Formel I. B. Bei Einw. von Brom und
Kalilauge auf Cinchomeronsäure - diamid
(S. 157), neben einer Verbindung C₇H₆O₂N₃
der Formel II (Syst. No. 3888) (Gabriel, Colman, B. 35, 2844, 3847; vgl. BlumenFELD, M. 16, 702). Aus Cinchomeronsüure β-amid (S. 157) (Kirpal, M. 23, 935) oder
Cinchomeronsüure imid (Syst. No. 3594) (G. C. R. 35, 2832) beim Erwärmen mit alkal

der Formel II (Syst. No. 3888) (GABRIEL, COLMAN, B. 35, 2844, 3847; vgl. Blumenfeld, M. 16, 702). Aus Cinchomeronsäure-β-amid (S. 157) (KIRPAL, M. 23, 935) oder Cinchomeronsäure-imid (Syst. No. 3591) (G., C., B. 35, 2832) beim Erwärmen mit alkal. Brom-Lösung. Beim Erhitzen der Verbindung C₇H₈O₂N₃ (Formel II) mit konz. Salzsäure auf 180—190° (B., M. 16, 715; vgl. G., C., B. 35, 2845). — Prismen (aus Wasser). Schmilzt je nach der Schnelligkeit des Erhitzens zwischen 306° und 310°; ist sublimierbar (G., C., B. 35, 2833). Löslich in siedendem Wasser und Alkohol (B., M. 16, 704). Leicht löslich in Säuren und Basen (G., C., B. 35, 2833). Verbraucht bei der Titration mit 0,1n-Kalilauge gegen Phenolphthalein genau 1 Mol Kalilauge (H. Meyer, M. 23, 944). — Beim Erhitzen über den Schmelzpunkt oder besser beim Destillieren mit Kalk entsteht 3-Amino-pyridin (B., M. 16, 707; G., C., B. 35, 2833). Liefert bei Behandlung mit Natriumnitrit in sehr verd. Schwefelsäure und Erwärmen der Lösung 3-Oxy-isonicotinsäure (S. 217) (K.). Gibt beim Erhitzen mit Formamid auf 170° eine Verbindung C₇H₅O₈N₃ (Formel III; Syst. No. 3876), beim Erhitzen mit Harnstoff auf 170° die Verbindung C₇H₅O₈N₃ (Formel III; Syst. No. 3876), beim Erhitzen mit Harnstoff auf 170° die Verbindung C₇H₅O₈N₃ (Formel III) (G., C., B. 35, 2836). — C₆H₆O₃N₂ + HCl. Monoklin prismatisch (Heberder, M. 16, 704; vgl. Groth, Ch. Kr. 5, 688). F: 238° bis 240° (Zers.) (B.), 244—245° (Zers.) (G., C., B. 35, 2833). — C₆H₆O₂N₂ + HNO₂. Gelbliche Nadeln. F: 182—184° (B., M. 16, 706), 196—197° (Zers.) (G., C., B. 35, 2833). Leicht löslich in Wasser und Alkohol (B.). — 2C₆H₆O₄N₂ + 2 HCl + PtCl₄. Triklin pinakoidale Prismen (Heberder, M. 16, 706; vgl. Groth, Ch. Kr. 5, 689). Ziemelich leicht löslich in Wasser (B.).

Methylester $C_7H_8O_2N_2 = NC_5H_3(NH_2) \cdot CO_3 \cdot CH_3$. Gelbliche Nadeln (aus Ligroin). F: 86—87° (Gabriel, Colman, B. 35, 2834). Leicht löslich in den üblichen Mitteln. Krystallisiert aus lauwarmem Wasser in Nadeln mit 1 H_2O die, rasch erhitzt, bei ca. 50° schmelzen, bei langsamem Erhitzen zunächst wasserfrei werden und dann bei 86—87° schmelzen. — Goldsalz. Gelbe Nadeln.

8-Carboxymethylamino-pyridin-carbonsäure-(4), N-[4-Carboxymethylamino-pyridin-carbonsäure-(4), N-[4-Carboxymethylamino-pyridin-carboxymethylamino-

1 H₂O (aus Wasser). F: ca. 160° (unter Aufschäumen). — $AgC_8H_7O_4N_2 + H_2O$. Gelbe Nadeln. — $Ba(C_8H_7O_4N_2)_2 + H_2O$. Gelbes Krystallpulver.

2.6-Dianilino-pyridin-carbonsäure-(4), 2.6-Dianilino-iso-nicotinsäure $C_{18}H_{15}O_{2}N_{3}$, s. nebenstehende Formel. B. Aus dem Anilid (s. u.) durch Lösen in konz. Schwefelsäure und Versetzen der Lösung mit Wasser oder durch Kochen mit konz. Salzsäure und Eisessig (Bittiner, B. 35, 2934). Eine weitere Bildung s. beim Anilid. — Hellgelbe mikroskopische Nadeln (aus Alkohol). Schmilzt noch nicht bei 300°. Löst sich langsam in verd. Soda-Lösung.

Methylester $C_{19}H_{17}O_2N_3 = NC_5H_2(NH \cdot C_6H_5)_2 \cdot CO_2 \cdot CH_3$. Nadeln (aus Alkohol). F: 142° (B., B. 35, 2934).

Anilid $C_{34}H_{20}ON_4 = NC_5H_2(NH\cdot C_6H_5)_2\cdot CO\cdot NH\cdot C_6H_5$. B. Beim Kochen von 2.6-Dichlor-isonicotinsäure mit 4—5 Tln. Anilin, neben der freien Säure (s. o.) (B., B. 35, 2933). — Grüne Blätter (aus Alkohol). F: 140—141°. Leicht löslich in Alkohol, schwer in Äther.

2. Aminoderivate der Monocarbonsäuren $C_RH_9O_2N$.

1. Aminoderivate der 2.4-Dimethyl-pyridin-carbonsäure-(3) $C_8H_9O_2N$ (8. 51).

6-Amino-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril, α'-Amino-β-cyan-α.γ-lutidin C₈H₉N₃, s. nebenstehende Formel. B. Bei Einw. von Acetylchlorid auf Diacetonitril (Bd. III, S. 660) und Behandeln der entstandenen Verbindung mit Wasser (Holtzwart, J. pr. [2] 39, 236; vgl. v. Meyer, J. pr. [2] 78, 515; C. 1908 II, 593). Aus Diacetonitril beim Kochen mit Äthylenbromid oder beim Behandeln einer Lösung in Alkohol + Benzol mit Chlorwasserstoff und Erhitzen des Reaktionsprodukts mit Wasser und Ammoniak oder bei Einw. von Chlorameisensäureester oder Phosgen und Erhitzen der Reaktionsprodukte mit Kalilauge (v. M., J. pr. [2] 52, 86, 88). Beim Erhitzen von Diacetonitril mit Zinkchloridammoniak (Moir, Soc. 81, 111). Aus 6-Chlor-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril beim Erhitzen mit alkoh. Ammoniak auf 180° (v. M., J. pr. [2] 78, 518). — Nadeln (aus Wasser). F: 222—223° (H.). Sehr schwer löslich in Wasser, Äther und Benzol, leichter in Alkohol (v. M., J. pr. [2] 52, 87). — Gibt mit Natriumnitrit in verd. Schwefelsäure 6-Oxy-2.4-dimethyl-pyridin-carbonsäure-(3)-nitril (S. 219) (v. M., J. pr. [2] 52, 89; 78, 517; C. 1908 II, 593). — 2C₈H₉N₃ + 2HCl + PtCl₄. Hellgelbe Prismen (v. M., J. pr. [2] 52, 87).

Acetylderivat $C_{10}H_{11}ON_8 = NC_8H(CH_8)_8(NH\cdot CO\cdot CH_8)\cdot CN$. Krystalle (aus Alkohol) F: 250°; schwer löslich in Alkohol (v. M., J. pr. [2] 52, 87).

6-Ureido-2.4-dimethyl-pyridin-carbonsäure-(8)-nitril(?), [4.6-Dimethyl-5-cyan-pyridyl-(2)]-harnstoff(?) $C_9H_{10}ON_4 = NC_8H(CH_9)_9(NH\cdot CO\cdot NH_9)\cdot CN(?)$. B. Beim Erwärmen von Diacetonitril mit wäßr. Cyanamid-Lösung (v. M., J. pr. [2] 52, 92; vgl. Moir, Soc. 81, 112). — Nadeln. F: ca. 145° (Zers.) (v. M.). — Zerfällt beim Kochen mit Wasser in Kohlendioxyd, Ammoniak und 2.4-Dimethyl-3-cyan-pyridon-(6)(?) (S. 219) (v. M.).

2. Aminoderivate der 2.6-Dimethyl-pyridin-carbonsdure-(3) $C_8H_9O_8N$ (8. 52).

4-Anilino-2.6-dimethyl-pyridin-carbonsäure-(3), 4-Anilino-2.6-dimethyl- nicotinsäure, γ - Anilino - $\alpha.\alpha'$ - lutidin - β - carbonsäure $C_{14}H_{14}O_{2}N_{3}$, s. nebenstehende Formel. B. Entsteht neben ihrem Äthylester beim Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-āthylester mit 2 Mol Anilin (Michaelis, A. 366, 354). Der Äthylester wird am besten durch Erwärmen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-āthylester mit Dimethylsulfat auf dem Wasserbad und Behandeln des Reaktionsprodukts mit Anilin gewonnen; man verseift den Ester durch Kochen mit alkoh. Natronlauge (M.). — Nadeln mit 1 H₂O (aus Wasser). Verliert das Krystallwasser schon beim Aufbewahren an der Luft. F: 244°. Ziemlich schwer löslich in Wasser, leichter in Alkohol, unlöslich in Äther. — Liefert beim Erhitzen über den Schmelzpunkt 4-Anilino-2.6-dimethyl-pyridin. — $AgC_{14}H_{18}O_{2}N_{2}$. Amorphes Pulver.

Äthylester $C_{16}H_{18}O_{2}N_{2}=NC_{5}H(CH_{3})_{2}(NH\cdot C_{6}H_{5})\cdot CO_{2}\cdot C_{3}H_{5}$. B. s. bei der Säure. — Nadeln mit 1 $H_{2}O$. F: 80° (M., A. 366, 353). Verliert im Vakuum über Schwefelsäure das Krystallwasser und wird flüssig. Kp₁₅: 164°. Ist mit Wasserdampf etwas flüchtig. Leicht löslich in Alkohol und Äther, schwer in Wasser. — Das Hydrojodid zerfällt beim Erhitzen im Vakuum in 4-Anilino-2.6-dimethyl-pyridin, Äthyljodid und Kohlendioxyd. — $C_{16}H_{16}O_{2}N_{2}$ + HCl. Prismen (aus Alkohol). F: 168—169°. Leicht löslich in Wasser, schwerer in Alkohol.

— $C_{16}H_{16}O_3N_2 + HI$. Nadeln (aus Wasser). F: 187°. Schwer löslich in Wasser und Alkohol. — $2C_{16}H_{16}O_3N_2 + 2HCl + PtCl_4$. Rote Blättchen (aus HCl-haltigem Wasser). F: 194° (Zers.).

4-Anilino-2.6-dimethyl-pyridin-carbonsäure-(3)-hydroxymethylat, 4-Anilino-2.6-dimethyl-nicotinsäure-hydroxymethylat $C_{15}H_{15}O_{2}N_{2}=(HO)(CH_{2})NC_{5}H(CH_{2})_{5}(NH-C_{6}H_{5})\cdot CO_{2}H$. — Salze vgl. unter Anil der 1.2.6-Trimethyl-pyridon-(4)-carbonsäure-(3), S. 302.

4-[3-Carboxy-anilino]-2.6-dimethyl-pyridin-carbonsäure-(3) $C_{18}H_{14}O_4N_2=NC_8H(CH_2)_9(NH\cdot C_8H_4\cdot CO_2H)\cdot CO_2H$. B. Aus 3-Amino-benzoesäure und 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester (Michaelis, A. 366, 372). — Nadeln mit 2 H_2O (aus Wasser). Verliert bei 105° das Krystallwasser. F: 234°. Leicht löslich in Wasser und Alkohol.

b) Aminoderivate der Monocarbonsäuren C_nH_{2n-9}O₂N.

 β -Amino- β -[α -pyridyl] - acrylsäure - äthylester $C_{10}H_{12}O_2N_3=NC_5H_4\cdot C(NH_2)$: CH· $CO_2\cdot C_2H_5$ ist desmotrop mit β -Imino- β -[α -pyridyl]-propionsäure-äthylester, S. 305.

c) Aminoderivate der Monocarbonsäuren C_nH_{2n-11}O₂N.

1. Aminoderivat der Indol-carbonsäure-(2) oder der Indol-carbonsäure-(3) $C_0H_2O_2N$ (8. 61 bezw. S. 65).

1-Methyl-3-amino-indol-carbonsäure-(2) oder 1-Methyl-2-amino-indol-carbonsäure-(3) $C_{10}H_{10}O_3N_3$, Formel I oder II, bezw. desmotrope Formen. B. Aus der Verbindung der Formel III oder IV (Syst. No. 4566) und $5^0/_0$ iger Natronlauge bei 50—60 0 (Reif, B. 42, 3044). — Nadeln (aus Aceton). F: 65—69 0 (korr.; Zers.) bei langsamem Erhitzen. Leicht

löslich in Alkohol und Aceton, schwerer in Chloroform, Benzol, Äther und Petroläther. — Sehr unbeständig. Färbt sich an der Luft rasch gelb. Zersetzt sich beim Kochen mit Wasser. Gibt mit Eisenchlorid in Alkohol eine dunkelblaue Färbung. Gibt mit 4-Dimethylaminobenzaldehyd in Alkohol ein rotes Additionsprodukt.

2. Aminoderivate der 2-Methyl-indol-carbonsaure-(3) $C_{10}H_9O_2N$ (S. 67).

6-Amino-2-methyl-indol-carbonsäure-(3)-äthylester C₁₂H₁₄O₂N₂, s. nebenstehende Formel. B. Bei der Reduktion von α-[2.4-Dinitro-phenyl]-acetessigsäure-äthylester mit Zinn-chlorür, Zinn und konz. Salzsäure in Alkohol (Reisser, Heller, B. 37, 4369, 4375). Aus [α-(2.4-Diamino-phenyl)-acetoacetyl]-[α-(2.4-diamino-phenyl)-acetessigsäure]-äthylester (Bd. XIV, S. 657) beim Erhitzen auf 230—240° (R., H.). — Blättchen (aus Alkohol). F: 185°. Leicht löslich in heißem Alkohol und in Äther, fast unlöslich in Benzol und Ligroin. Leicht löslich in stark verd. Salzsäure. — Gibt beim Behandeln mit starker Schwefelsäure 6-Amino-2-methyl-indol. Durch Diazotieren, Reduktion und Behandeln des entstandenen Hydrazins mit Kupfersulfat-Lösung erhält man 2-Methyl-indol-carbonsäure-(3)-äthylester. — C₁₂H₁₄O₂N₂ + HCl. Blättchen (aus Alkohol oder verd. Salzsäure). — 2C₁₂H₁₄O₂N₂ + 2 HCl + SnCl₂. Hellgelbe Blättchen. Leicht löslich in Wasser und Alkohol, schwer in Salzsäure.

6 - Acetamino - 2 - methyl - indol - carbonsäure - (3) - äthylester (?) $C_{14}H_{16}O_3N_3 = HNC_4H_4(CH_2)(NH \cdot CO \cdot CH_2) \cdot CO_2 \cdot C_2H_5$ (?). B. Aus der vorangehenden Verbindung und siedendem Acetanhydrid (R., H., B. 37, 4376). — Krystalle (aus Nitrobenzol). Sublimiert unzersetzt bei 340°. Ziemlich leicht löslich in siedendem Nitrobenzol, unlöslich in anderen Lösungsmitteln. — Gibt beim Erwärmen mit 90°/eiger Schwefelsäure auf 40° 6-Acetamino-2-methyl-indol(?).

3. Aminoderivate der β - [Indoly! - (3)] - propionsäure $C_{11}H_{11}O_2N$ (S. 69).

α-Amino-β-[indolyl-(3)]-propionsäure, β-[β-Indolyl]-alanin, Tryptophan (Proteinochromogen) $C_{11}H_{12}O_2N_2$, s. nebenstehende Formel.

a) In Wasser linksdrehendes Tryptophan, l-Tryptophan¹) $C_{11}H_{12}O_2N_2 = HNC_9H_8 \cdot CH_2 \cdot CH(NH_2) \cdot CO_2H$. Zur Konstitution vgl. Ellinger, Flamand, B. 40, 3029; H. 55, 12.

Vorkommen und Bildung.

1-Tryptophan findet sich in Keimpflanzen von Lupinus albus und Vicia sativa (SCHULZE, WINTERSTEIN, H. 45, 57, 58). — 1-Tryptophan entsteht bei der enzymatischen Hydrolyse zahlreicher pflanzlicher und tierischer Eiweißstoffe. Es findet sich unter den Produkten der tryptischen Verdauung von Hordein (Osborne, Clapp, C. 1907 II, 1799), von Gliadin aus Weizen (Abderhalden, Samuely, H. 44, 282; vgl. O., Cl., C. 1907 I, 485) und aus Roggen (O., Cl., C. 1908 I, 189), von alkaliösischen Protein aus Mais (O., Cl., C. 1908 I, 189), von alkaliösischen Protein aus 1188), von verschiedenen Leguminosen-Proteinen (Legumin, Phaseolin, Glycinin, Vicilin, Vignin, Legumelin, Conglutin) (O., Cl., C. 1908 I, 50, 1187; O., HEYL, C. 1908 II, 1188, 1368, 1937; A., HERBICK, H. 45, 480), von Amandin (aus Mandeln) (O., Cl., C. 1908 I, 1188), von Edestin verschiedener Herkunft (A., H. 37, 503; A., Rostoski, H. 44, 273), von pflanzlichen Globulinen verschiedener Herkunft (A., TERUUCHI, H. 45, 477; O., CL., C. 1908 I, 50) und von Excelsin (aus der Paranuß) (O., Cl., C. 1907 II, 1799). l-Tryptophan entsteht außerdem bei der tryptischen Verdauung von Casein (HOPKINS, COLE, J. Physiology 27 [1901], 420; 29 [1903], 451; C. 1903 II, 1011), von Fibrin (Neuberg, Popowsky, \hat{Bio} , Z. 2, 368), von Oxyhamoglobin und von krystallisiertem Serumalbumin aus Pferdeblut (A., H. 37, 491, 497), von Eieralbumin (Ho., Co., J. Physiology 27 [1901], 418; LEVENE, BEATTY, Bio. Z. 4, 301; O., JONES, LEAVENWORTH, C. 1909 II, 39) und von Vitellin (O., J., C. 1909 I, 1766), ferner bei der tryptischen Verdauung der koagulierbaren Eiweißstoffe aus Rinder-Colostrum (WINTERSTEIN, STRICKLER, H. 47, 66), des Hühnerfleischs (O., HEYL, C. 1908 II, 1368), des Muskelfleischs vom Heilbutt (Hippoglossus vulgaris) (O., HEYL, C. 1909 I, 92) und des Muskelfleischs der Muschel (Pectens irradians) (O., J., C. 1909 I, 1770). Bei der Hydrolyse von Eiweißstoffen (z. B. Serumprotein, Eieralbumin) mit verd. Schwefelsäure wird Tryptophan in bedeutend geringerer Ausbeute erhalten als bei der tryptischen Verdauung (Ho., Co., J. Physiology 27 [1901], 426). Im Zein aus Mais (O., Harris, Am. Soc. 25, 853; O., Cl., C. 1908 I, 1188) und im Leim (Ho., Co., J. Physiology 29 [1903], 456; vgl. a. Nencki, B. 7, 1598; Maly, M. 10, 26; Jeanneret, J. pr. [2] 15, 353; Weyl, H. 1, 339; Rohde, H. 44, 167) ist Tryptophan nicht enthalten. Ältere Angaben über die durch Farbreaktionen mit Chlorwasser oder Bromwasser nachgewiesene Bildung von Tryptophan bei der tryptischen Verdauung und bei der Fäulnis von Eiweißstoffen: F. TIEDEMANN, L. GMELIN, Die Verdauung, Bd. I [Heidelberg-Leipzig 1826], S. 277, 358, 379; BERNARD [1856], zit. bei Neuberg, Popowsky, Bio. Z. 2, 358; Kruckenberg [1884], zit. bei Neub., P., Bio. Z. 2, 359; Kühne, Chittenden, Z. B. 20, 46; Neumeister, Z. B. 26, 329 Anm. 3; Stadelmann, Z. B. 26, 499; Nencki, B. 28, 560; Beitler, B. 31, 1605; Winternitz, H. 16, 460; Kurajeff, H. 26, 503, 511; Klug, C. 1901 II, 646; Erdmann, Winternitz, C. 1903 II, 135. — Zusammenstellung von Angaben über das Vorkommen von Tryptophan als Bestandteil von Proteinen: F. Hoppe-Seyler, H. Thierfelder, Physiologisch- und pathologisch-chemische Analyse, 9. Aufl. [Berlin 1924], S. 596, 598; Abderhalden, Biochemisches Handlexikon, Bd. IV [Berlin 1911], S. 703; Bd. IX [1915], S. 148; Bd. XI [1924], S. 184; Bd. XII [1930], S. 693; vgl. a. Osborne, Harris, Am. Soc. 25, 853.

Darstellung.

Man behandelt Casein in verd. Soda-Lösung unter Zusatz von Natriumfluorid und Chloroform oder Thymol oder Toluol bei 35° mit Trypsin, bis die bei Zusatz von Bromwasser auftretende Rotviolettfärbung ihre größte Stärke erreicht hat, fällt in schwefelsaurer Lösung mit Quecksilbersulfat, filtriert, wäscht den Niederschlag mit verd. Schwefelsäure, bis die Waschflüssigkeit nicht mehr die Millonsche Reaktion zeigt, zerlegt den Niederschlag nach Zusatz von Barytwasser bis zur alkal. Reaktion mit Schwefelwasserstoff, fällt nochmals mit Quecksilbersulfat und zerlegt wieder mit Schwefelwasserstoff; die so erhaltene Lösung befreit man mit Bariumhydroxyd von Schwefelsäure, dampft unter Zusatz von etwas Alkohol unter vermindertem Druck ein und krystallisiert das ausgeschiedene Tryptophan unter Zusatz von Tierkohle aus verd. Alkohol um; Ausbeute 5—10 g aus 1 kg Casein (Hofkins, Cole, J. Physiology 27 [1901], 420; 29 [1903], 453; Abderhalden, Kempe, H. 52, 208; A., B. 42, 2333; F. Hoffensele, H. Thierfelder, Physiologisch- und pathologisch-chemische Analyse, 9. Aufl. [Berlin 1924], S. 313). Nach Dakin (Biochem. J. 12 [1918], 302) nimmt man die Quecksilbersulfat-Fällung und Zerlegung des Niederschlages nur einmal vor und extrahiert die erhaltene Lösung mit Butylalkohol (vgl. Organic Syntheses 10 [New York 1930], S. 100).

¹⁾ Wurde früher auch als d. Tryptophan bezeichnet; zur Bezeichnung 1. Tryptophan vgl. H. FISCHEB, H. 55, 76; ARDERHALDEN, BAUMANN, H. 55, 415; B. 41, 2858.

Physikalische Eigenschaften.

Tafeln oder Blättchen (aus verd. Alkohol). F: 252° (Zers.) (Hopkins, Cole, J. Physiology 27 [1901], 423), 264—266° (Zers.) bei langsamem Erhitzen (Ellinger, Flamand, B. 40, 3033; H. 55, 21), 265—267° (Zers.) (H. Fischer, H. 55, 74), 273° (Neuberg, Popowsky, Bio. Z. 2, 368), 289° (korr.) bei raschem Erhitzen (Abderhalden, Kempe, H. 52, 211; A., Baumann, H. 55, 415). Ziemlich schwer löslich in kaltem, leicht in siedendem Wasser mit deutlich saurer Reaktion, schwer in absolutem, leichter in wäßrigem Alkohol (H., C.); in reinem Zustand sehr schwer löslich in Wasser (N., P.); unlöslich in Chloroform (Rohde, H. 44, 168). l-Tryptophan ist in wäßr. Lösung linksdrehend; die spezifische Drehung schwankt zwischen -30° und -40° (F., H. 55, 75; A., B., H. 55, 414). $[\alpha]_{\rm D}^{\infty}$: $+6,1^{\circ}$ (1n-Natronlauge; p = 21), $+6,3^{\circ}$ (0,5n-Natronlauge; p = 26) (A., K., H. 52, 210); $[\alpha]_{\rm D}$: $+5,7^{\circ}$ (1n-Natronlauge; c = 2) (F.), $[\alpha]_{\rm D}$: $-13,6^{\circ}$ (wäßr. Lösung des Hydrochlorids; c = 3) (F.); $[\alpha]_{\rm D}^{\infty}$: $+1,3^{\circ}$ (1n-Salzsäure; p = 6,2) (A., K.; vgl. F.).

Chemisches und biochemisches Verhalten.

1-Tryptophan wird beim Erhitzen mit 25% jeger Salzsäure auf 170° racemisiert (Neuberg, Bio. Z. 6, 281). Nach Abderhalden, Baumann (H. 55, 413) wirkt Pyridin sehr stark racemisierend (vgl. dagegen Ellinger, Matsuoka, H. 91 [1914], 47). Tryptophan gibt bei der Oxydation mit Eisenchlorid-Lösung auf dem Wasserbad β-Indolaldehyd (Hopkins, Cole, J. Physiology 29 [1903], 464; C. 1903 II, 1012; E., B. 39, 2516, 2518) und Harman (Syst. No. 3486) (Ho., C.; vgl. Perkin, Robinson, Soc. 115 [1919], 967). Über die Einw. von Ozon vgl. Harries, Langheld, H. 51, 381. Tryptophan gibt mit Bromwasser eine rotviolette Färbung (Ho., C., J. Physiology 27 [1901], 423); hierbei entstehen eine rote Verbindung C₁₁H₁₁O₂N₂Br (amorph; zersetzt sich zwischen 270° und 280°; löslich in Äther; mit roter Farbe löslich in Alkalien) und eine gelbe Verbindung C₁₁H₁₁O₂N₂Br₃ oder C₁₁H₂O₂N₃Br₃ (amorph; beginnt bei 75° sich zu zersetzen; unlöslich in Äther) (Neu., Popowsky, Bio. Z. 2, 369; Neu., Bio. Z. 6, 278; vgl. Levene, Rouiller, Bio. Z. 4, 322); auf analoge Weise erhält man bei der Einw. von Chlorwasser, ebenfalls unter Rotviolettfärbung, eine rote Verbindung C₁₁H₁₁O₂N₃Cl (amorph; zersetzt sich bei ca. 280°) und eine gelbe Verbindung C₁₁H₁₁O₂N₃Cl₃ oder C₁₁H₂O₃N₃Cl₃ (zersetzt sich bei ca. 100°) (Neu., P.; Neu.). Ältere Angaben über diese Farbreaktion s. S. 546; vgl. a. Stadelmann, Z. B. 26, 500, 516; Nencki, B. 28, 564; Beitler, B. 31, 1606, 1609; Kurajeff, H. 26, 506; Klug, C. 1901 II, 646. Einw. von Jod in alkalischer oder sodaalkalischer Lösung: Rodhe, H. 44, 168; Neu., Bio. Z. 6, 277. Tryptophan gibt bei der Kalischmelze Skatol, Oxalsäure, Glyoxylsäure und Ammoniak (Hopeins, Cole, J. Physiology 29 [1903], 463; C. 1903 II, 1012).

Tryptophan liefert bei der Einw. von Fäulnisbakterien Indolyl-(3)-essigsäure, Indol und geringe Mengen Skatol (Hopkins, Cole, J. Physiology 29 [1903], 455; C. 1903 II, 1011); bei streng anaerober Kultur erzeugen Bacterium coli und Rauschbrandbacillen β -[Indolyl-(3)]-propionsäure (H., C.; vgl. Ellinger, B. 38, 2884). Übergang von Tryptophan in Indol im Dickdarm des Kaninchens: E., Gentzen, B. Ph. P. 4 [1904], 173. Tryptophan geht im Organismus des Hundes und des Kaninchens in Kynurensäure (S. 230) über (E., B. 37, 1807; H. 43, 326, 329).

Analytisches.

Farbreaktionen des Tryptophans mit Chlorwasser und Bromwasser s. o. Tryptophan gibt mit Salpetersäure die Xanthoprotein-Reaktion (gelbe, auf Zusatz von Natronlauge in Orange übergehende Färbung) (Rohde, H. 44, 170). Gibt mit Formaldehyd und Salzsäure oder Schwefelsäure in Gegenwart von Alkalinitrit eine violette Färbung (Voisenet, Bl. [3] 33, 1198; vgl. Rosenheim, Biochem. J. 1 [1906], 235; C. 1907 I, 1809; Acree, Am. 37, 608; Fürth, Nobel, Bio. Z. 109 [1920], 106), mit Benzaldehyd und Salzsäure oder Schwefelsäure in Gegenwart von Ferrisalzen eine blaue Färbung (Cole, C. 1904 I, 383; vgl. Reichl, M. 10, 317; 11, 155), mit 4-Nitro-benzaldehyd und konz. Schwefelsäure eine grüne Färbung (Rohde, H. 44, 163, 166), mit Vanillin und Salzsäure eine violette Färbung (Rosenthaler, C. 1907 II, 946), mit Vanillin und konz. Schwefelsäure eine rote Färbung (Rohde), mit wäßr. Glyoxylsäure-Lösung und konz. Schwefelsäure (Hopkins, Cole, Pr. Roy. Soc. 68 [1901], 29; J. Physiology 27 [1901], 423; vgl. Adamkiewicz, Pflügers Arch. Physiol. 9 [1874], 157) oder mit äther. Glyoxylsäure-Lösung und Salzsäure (C., C. 1904 I, 383; vgl. Liebermann, J. Th. 17 [1887], 8) eine rotviolette Färbung. Gibt mit 4-Dimethylamino-benzaldehyd und konz. Schwefelsäure eine rotviolette Färbung; Empfindlichkeit dieser Reaktion: Rohde, H. 44, 163, 166, 169. Gibt beim Erhitzen mit Rohrzucker oder Furfurol und konz. Salzsäure eine rote Färbung (C., C. 1904 I, 383). Lichtabsorption der bei einigen Farbreaktionen des Tryptophans auftretenden Farbstoffe: Bardachzi, H. 48, 145. Colorimetrische Bestimmung von Tryptophan mit Hilfe der Bromreaktion: Levene,

ROUILLEE, J. biol. Chem. 2, 481; C. 1907 I, 1461. Über Nachweis und Bestimmung von Tryptophan vgl. a. F. HOPPE-SEYLEE, H. THIERFELDER, Physiologisch- und pathologisch- chemische Analyse, 9. Aufl. [Berlin 1924], S. 316, 591; H. MAHN in E. ABDERHALDEN, Biochemisches Handlexikon Bd. XII [Berlin 1930], S. 699.

Salze des i-Tryptophans.

Cu(C₁₁H₁₁O₂N₂)₂ (bei 100°). Graublaues, amorphes Pulver. Schwer löslich in organischen Lösungsmitteln und in verd. Mineralsäuren (Abderhalden, Kempe, H. 52, 213). — AgC₁₁H₁₁O₂N₂. Niederschlag. Löslich in Salpetersäure und Ammoniak (Neuberg, Bio. Z. 6, 279). — C₁₁H₁₂O₂N₂ + HCl. Nadeln (aus Methanol) (Hopkins, Cole, J. Physiology 29 [1903], 461). F: 251° (Zers.) (H. Fischer, H. 55, 74). Drehungsvermögen s. S. 547. — Pikrat C₁₁H₁₂O₂N₂ + C₆H₂O₇N₃. Carminrote Nadeln und Tafeln. F: 195—196° (unter geringer Zersetzung) (Mayeda, H. 51, 261, 262). Leicht löslich in Alkohol; bei gewöhnlicher Temperatur lösen 100 cm² Wasser 0,9 g, 100 cm² Åther 1 g. — Pikrolonat s. Syst. No. 3561.

[1-Tryptophan]-methylester $C_{12}H_{14}O_2N_3=HNC_8H_5\cdot CH_2\cdot CH(NH_2)\cdot CO_2\cdot CH_3$. B. Durch Einleiten von Chlorwasserstoff in eine kalte methylalkoholische Suspension von l-Tryptophan (Abderhalden, Kempe, H. 52, 214). Aus [1-Tryptophan]-chlorid und Methanol (A., K., H. 52, 218). — Tafeln (aus Äther). F: 89,5° (korr.). Leicht löslich in Methanol, schwerer in Essigester und Äther, sehr schwer in Petroläther. — $C_{12}H_{14}O_2N_2 + HCl$. Mikroskopische Nadeln (aus Methanol + Essigester). F: 214° (korr.; Zers.). Leicht löslich in Wasser und Alkohol, schwer in Essigester und Äther.

[1-Tryptophan]-chlorid, [1-Tryptophyl]-chlorid $C_{11}H_{11}ON_{2}Cl = HNC_{2}H_{3} \cdot CH_{2} \cdot CH(NH_{2}) \cdot COCl.$ B. Durch Einw. von Phosphorpentachlorid auf in Acetylchlorid suspendiertes l-Tryptophan (Abderhalden, Kempe, H. 52, 217). — $C_{11}H_{11}ON_{2}Cl + HCl.$ Verfärbt sich bei 172°, sintert bei 208°; F: 228° (korr.; Zers.). Löst sich in Wasser unter Bildung von l-Tryptophan, in Methanol unter Bildung von [l-Tryptophan]-methylester.

N-[1-Tryptophyl]-glycin $C_{13}H_{16}O_3N_3 = HNC_8H_5 \cdot CH_3 \cdot CH(NH_2) \cdot CO \cdot NH \cdot CH_2 \cdot CO_2H$. B. Durch Umsetzung von salzsaurem [1-Tryptophan]-chlorid mit Glycinäthylester in Chloroform bei -10° und Verseifung des entstandenen Äthylesters mit kalter 1n-Natronlauge (ABDERHALDEN, KEMPE, B. 40, 2741). — Mikroskopische Nadeln (aus Alkohol + Äther). F: 180° (korr.). Sehr leicht löslich in Wasser und verd. Alkohol, ziemlich leicht in heißem absolutem Alkohol, schwer in Essigester, Aceton und Äther. [α]²⁰: $+78,7^\circ$ (Wasser; p = 4). Schmeckt bitter.

N-[1-Tryptophyl]-d-glutaminsäure $C_{16}H_{19}O_5N_3 = HNC_6H_5 \cdot CH_3 \cdot CH(NH_3) \cdot CO \cdot NH \cdot CH(CO_3H) \cdot CH_2 \cdot CO_3H$. B. Durch Umsetzung von salzsaurem [1-Tryptophyl]-chlorid mit d-Glutaminsäure-diäthylester in kaltem Chloroform und Verseifung des entstandenen Diäthylesters mit kalter 2n-Natronlauge (ABDERHALDEN, B. 42, 2333). — Nadeln (aus verd. Alkohol). F: 173° (korr; Zers.). Ziemlich leicht löslich in Wasser, schwer in Alkohol. [α] $^{\text{in}}$: + 34,4° (Wasser; p = 4,5). — Fällungsreaktionen: A.

Chloracetyl-1-tryptophan $C_{13}H_{13}O_3N_3Cl = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot CO \cdot CH_2Cl.$ B. Aus 1-Tryptophan und Chloracetylchlorid in 1n-Natronlauge (Abderhalden, Kempe, B. 40, 2743). — Blättchen (aus Wasser). F: 159° (korr.) (A., K.). Leicht löslich in Alkohol, Essigester, Äther und heißem Wasser, sohwer in Chloroform und Petroläther (A., K.). $[\alpha]_0^m$: + 32,9° (Alkohol; p = 7) (A., Baumann, B. 41, 2858).

Jodacetyl-1-tryptophan $C_{18}H_{18}O_3N_2I = HNC_8H_8\cdot CH_8\cdot CH(CO_2H)\cdot NH\cdot CO\cdot CH_2I$. B. Aus 1-Tryptophan und Jodacetylchlorid in n-Natronlauge (ABDERHALDEN, BAUMANN, B. 41, 2857). — Nadeln (aus verd. Alkohol). Färbt sich gegen 152° braun, zersetzt sich bei 175° bis 176°. Leicht löslich in Alkohol, Aceton und Essigester, schwer in Wasser, Chloroform und Äther, unlöslich in Benzol und Petroläther. [α] $_{0}^{\infty}$: +31,3° (Alkohol; p=5).

[d- α -Brom-propionyl]-l-tryptophan $C_{14}H_{18}O_{5}N_{8}Br = HNC_{5}H_{5}\cdot CH_{6}\cdot CH(CO_{5}H)\cdot NH\cdot CO\cdot CHBr\cdot CH_{3}$. B. Aus l-Tryptophan und d- α -Brom-propionylchlorid in 1n-Natronlauge (Abderhalden, Kempe, B. 40, 2745). — Amorph. Schmilzt bei 65—72°. Leicht löslich in organischen Lösungsmitteln, ziemlich leicht in heißem Wasser.

[dl- α -Jod-propionyl]-l-tryptophan-methylester $C_{18}H_{17}O_3N_2I = HNC_8H_5 \cdot CH_2 \cdot CH(CO_3 \cdot CH_3) \cdot NH \cdot CO \cdot CHI \cdot CH_3$. B. Aus salzsaurem [l-Tryptophan]-methylester und dl- α -Jod-propionylchlorid in Chloroform bei Gegenwart von Natronlauge und Natrium-carbonat (ABDERHALDEN, BAUMANN, B. 41, 2859). — Nadeln (aus Benzol). F: ca. 145—146°

(bei raschem Erhitzen). Löslich in warmem Chloroform, Alkohol, Aceton und Essigester, unlöslich in Petroläther und Wasser. Zeigt keine wahrnehmbare Drehung. — Liefert mit methylalkoholischem Ammoniak [dl-Alanyl]-l-tryptophan-anhydrid (s. nebenstehende Formel; Syst. No. 3888).

[d- α -Brom-isocaproyl]-l-tryptophan $C_{17}H_{21}O_3N_2Br = HNC_8H_8\cdot CH_2\cdot CH(CO_2H)\cdot NH\cdot CO\cdot CHBr\cdot CH_2\cdot CH(CH_3)_2$. B. Aus l-Tryptophan und d- α -Brom-isocaproylchlorid in 1n-Natronlauge (Abderhalden, Kempe, B. 40, 2747). — Nadeln (aus verd. Methanol). F: 118° (korr.). Leicht löslich in organischen Lösungsmitteln außer Petroläther, schwer in kaltem Alkohol. [α] $_{0}^{m}$: +27,1° (Alkohol; p=11).

[d- α -Brom-isocaproyl]-[l-tryptophyl]-d-glutaminsäure $C_{22}H_{28}O_6N_3Br = HNC_8H_5 \cdot CH_2 \cdot CH[CO \cdot NH \cdot CH(CO_2H) \cdot CH_2 \cdot CH_2 \cdot CO_2H] \cdot NH \cdot CO \cdot CHBr \cdot CH_2 \cdot CH(CH_3)_2$. B. Aus N-[l-Tryptophyl]-d-glutaminsäure und d- α -Brom-isocaproylchlorid in 1n-Natronlauge (Abderhalden, B. 42, 2335). — Erweicht beim Erhitzen allmählich. Leicht löslich in Alkohol, Essigester und Aceton, schwerer in Äther und Benzol, schwer löslich in Wasser und Petroläther. Zerfließt an der Luft.

Anilinoformyl -1 - tryptophan $C_{18}H_{17}O_3N_3 = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot CO \cdot NH \cdot C_6H_5$. B. Aus l-Tryptophan und Phenylisocyanat in 1n-Natronlauge (ABDERHALDEN, KEMPE, H. 52, 216). — Nadeln (aus verd. Methanol). F: 166° (korr.). Leicht löslich in Alkohol, Essigester und Aceton, schwer in kaltem Wasser. — Sehr lichtempfindlich. Färbt sich im Sonnenlicht rot. Ein im hellen Tageslicht umkrystallisiertes Präparat schmolz bei 132°, nach nochmaligem Umkrystallisieren unter Lichtabschluß wieder bei 166°.

α-Naphthylaminoformyl-1-tryptophan $C_{22}H_{10}O_3N_3 = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot CO \cdot NH \cdot C_{10}H_7$. B. Aus 1-Tryptophan und α-Naphthylisocyanat in 1n-Natronlauge (Neuberg, Rosenberg, Bio. Z. 5, 458; Ellinger, Flamand, H. 55, 24). — Nadeln (aus Alkohol), Krystalle (aus wäßr. Aceton). F: 159—160° (N., R.), 158° (E., F.). — Sehr lichtempfindlich (E., F.).

Glycyl-1-tryptophan $C_{13}H_{16}O_3N_3 = HNC_2H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot CO \cdot CH_2 \cdot NH_2$. B. Durch Einw. von wäßr. Ammoniak auf Chloracetyl-1-tryptophan (Abderhalden, Kempe, B. 40, 2743) oder auf Jodacetyl-1-tryptophan (A., Baumann, B. 41, 2858). — Blättchen (aus Wasser). F: ca. 302° (korr.) (A., K.). Leicht löslich in heißem Wasser, unlöslich in Alkohol (A., K.). [α] $_{0}^{m}$: +21,6° (1n-Salzsäure; p = 9) (A., K.). — Schmeckt nach Abderhalden, Kempe (B. 40, 2744) bitter, nach H. Fischer (B. 48 [1910], 1963 Anm. 4) süß.

[d - α - Brom - isocaproyl] - glycyl - l - tryptophan $C_{19}H_{24}O_4N_3Br = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot CO \cdot CH_3 \cdot NH \cdot CO \cdot CHBr \cdot CH_2 \cdot CH(CH_3)_3$. B. Aus Glycyl-l-tryptophan und d- α -Brom-isocaproylchlorid in 1n-Natronlauge (Abderhalden, Kempe, B. 40, 2749). — Flocken (aus Chloroform + Petroläther). Sintert bei 60°, schmilzt bei 90—98°. Leicht löslich in Alkohol, Äther, Essigester, Aceton, Chloroform und heißem Wasser, schwer in Petroläther. [α] $_{10}^{\infty}$: +54,5° (Alkohol; p = 11,5).

[1-Leucyl]-glycyl-1-tryptophan $C_{19}H_{26}O_4N_4 = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot CO \cdot CH_2 \cdot NH \cdot CO \cdot CH(NH_2) \cdot CH_3 \cdot B$. Aus [d- α -Brom-isocaproyl]-glycyl-1-tryptophan und wäßr. Ammoniak bei 36° (ABDERHALDEN, KEMPE, B. 40, 2749). — Amorph. Zersetzt sich bei ca. 234° (korr.). Ziemlich schwer löslich in heißem Wasser, unlöslich in Alkohol. [α] $_0^{\infty}$: + 32,3° (1n-Salzsäure; p = 8).

[d-Alanyl]-1-tryptophan $C_{14}H_{17}O_3N_3 = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot CO \cdot CH(NH_2) \cdot CH_3$. B. Aus [d- α -Brom-propionyl]-1-tryptophan und wäßr. Ammoniak bei 36° (ABDER-HALDEN, KEMPE, B. 40, 2745). — Amorph. Geht bei 125—150° in eine schaumige Masse über. Sehr leicht löslich in Wasser, leicht in verd. Alkohol, schwer in kaltem Alkohol. $[\alpha]_{11}^{10}:+18,7°$ (Wasser; p = 6). Schmeckt bitter. — $CuC_{14}H_{15}O_3N_3+2^1/_2H_2O$. Hellblaue Blättchen (aus verd. Alkohol), violette Prismen (aus Wasser). Leicht löslich in Wasser, schwer in Alkohol.

[d-Leucyl]-l-tryptophan $C_{17}H_{23}O_8N_3 = HNC_8H_5 \cdot CH_2 \cdot CH(CO_4H) \cdot NH \cdot CO \cdot CH(NH_2) \cdot CH_3 \cdot CH(CH_4)_2$. B. Durch Umsetzung von l-Tryptophan mit l- α -Brom-isocaproylchlorid und Behandlung des Reaktionsprodukts mit $25^{\circ}/_{0}$ igem Ammoniak bei 37° (H. FISCHER, B. 42, 4320). — Nadeln (aus verd. Alkohol + Äther). Schmilzt bei 189° (korr.) (F.), 195° (korr.) (ABDERHALDEN, GEDDERT, H. 74 [1911], 401), erstarrt wieder und schmilzt erneut bei $225-230^{\circ}$ (F.), ca. 235° (A., G.); an manchen aus Wasser, Alkohol oder Äther umkrystallisierten Präparaten ließ sich nur der höhere Schmelzpunkt [ca. 243° (F.), ca. 235° (A., G.)] feststellen. Löslich in heißem Wasser, sehr schwer löslich in Alkohol (F.). [α] $_{0}^{\infty}$: $-73,3^{\circ}$ (1n-Salzsäure) (F.), $-74,5^{\circ}$ (1n-Salzsäure; p = 4,5) (A., G.). — Schmeckt süß (F.). Die

von H. Fischer (B. 42, 4321; 43 [1910], 1963) beobachtete geringfügige Spaltung durch Pankreatin, Leberbrei oder Hefeextrakt in Leucin und Tryptophan ist nach Abderhalden, Geddert (H. 74, 394, 401; vgl. a. A., Schuler, B. 43 [1910], 907) auf das Vorhandensein von [l-Leucyl]-l-tryptophan im Versuchsmaterial zurückzuführen.

[l-Leucyl]-l-tryptophan $C_{17}H_{22}O_3N_3 = HNC_8H_8\cdot CH_2\cdot CH(CO_2H)\cdot NH\cdot CO\cdot CH(NH_3)\cdot CH_2\cdot CH(CH_3)_2\cdot B$. Aus [d- α -Brom-isocaproyl]-l-tryptophan und wäßr. Ammoniak bei 36° (Abderhalden, Kempe, B. 40, 2748). — Nadeln mit 1 H_2O (aus Alkohol + Äther). Sintert bei 130°, F: 148° (korr.; Zers.). Schwer löslich in absol. Alkohol, leicht in wasserhaltigem Alkohol und in heißem Wasser. [α] $_0^m$: +4,5° (1n-Salzsäure; p = 7). Schmeckt bitter mit süßlichem Nachgeschmack.

[1-Leucyl]-[1-tryptophyl]-d-glutaminsäure $C_{22}H_{30}O_6N_4=HNC_3H_5\cdot CH_2\cdot CH[CO\cdot NH\cdot CH(CO_2H)\cdot CH_2\cdot CH_2\cdot CO_2H]\cdot NH\cdot CO\cdot CH(NH_2)\cdot CH_2\cdot CH(CH_3)_2$. B. Aus [d- α -Bromisocaproyl]-[1-tryptophyl]-d-glutaminsäure und $25^0/_0$ igem Ammoniak bei 37^0 (ABDERHALDEN, B. 42, 2335). — Nadeln oder Blättchen (aus Wasser). F: 230^0 (korr.; Zers.). Schwer löslich in kaltem Wasser. [α] $_0^{n}$: $+17.4^0$ (1n-Salzsäure; p = 4). — Farb- und Fällungsreaktionen: A.

Benzolsulfonyl-1-tryptophan $C_{17}H_{16}O_4N_2S = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot SO_2 \cdot C_6H_5$. B. Aus l-Tryptophan und Benzolsulfochlorid in 1n-Natronlauge (Ellinger, Flamand, H. 55, 22). — Krystalle (aus verd. Alkohol). F: 185° (Zers.). — Gibt ein ziemlich schwer lösliches Natriumsalz.

β-Naphthalinsulfonyl-1-tryptophan $C_{31}H_{18}O_4N_2S=HNC_8H_5\cdot CH_2\cdot CH(CO_2H)\cdot NH\cdot SO_2\cdot C_{10}H_7$. B. Durch Schütteln einer Lösung von 1-Tryptophan in 1n-Natronlauge mit einer äther. Lösung von β-Naphthalinsulfochlorid (Abderhalden, Kempe, H. 52, 217; Ellinger, Flamand, H. 55, 23). — Krystalle (aus verd. Alkohol). F: 180° (E., F.). — NaC₂₁H₁₇O₄N₂S (bei 125°). Nadeln (aus Wasser). F: 304° (korr.) (A., K.).

b) Inaktives Tryptophan. dl-Tryptophan C₁₁H₁₂O₂N₂ = HNC₈H₅·CH₂·CH(NH₂)·CO₂H. B. Man reduziert α-Benzamino-β-[indolyl-(3)]-acrylsäure (S. 313) mit Natrium und siedendem absolutem Alkohol und verseift das entstandene Benzoyl-dl-tryptophan durch Verdünnen der Reaktions-Lösung mit Wasser und nachfolgendes Kochen (Ellinger, Flamand, B. 40, 3032; H. 55, 19). Allers (Bio. Z. 6, 273; C. 1907 II, 1914) erhielt dl-Tryptophan bei der tryptischen Verdauung von Casein infolge einer im Verlauf der Isolierung eingetretenen Racemisierung (vgl. dazu Abderhalden, Baumann, H. 55, 414). — Blättchen (aus verd. Alkohol). F: 264—2660 (Zers.) bei langsamem Erhitzen (E., F.). Schmeckt schwach süß (E., F.; All.), etwas brennend (All.).

Benzolsulfonyl - dl - tryptophan $C_{17}H_{16}O_4N_2S = HNC_8H_5\cdot CH_2\cdot CH(CO_2H)\cdot NH\cdot SO_2\cdot C_6H_5$. B. Aus dl-Tryptophan und Benzolsulfochlorid in 1n-Natronlauge (E., F., H. 55, 23). — F: 185° (Zers.).

\beta-Naphthalinsulfonyl-dl-tryptophan $C_{21}H_{18}O_4N_2S = HNC_8H_5 \cdot CH_2 \cdot CH(CO_2H) \cdot NH \cdot SO_2 \cdot C_{18}H_7$. F: 180° (E., F., H. 55, 24).

d) Aminoderivate der Monocarbonsäuren $C_n H_{2n-13} O_2 N$.

1. Aminoderivat der Chinolin-carbonsäure-(4) C10H7O2N (8.74).

5 - Amino - chinolin - carbonsäure - (4), 5 - Amino - cinchoninsäure H₂N CO₂H C₁₀H₈O₂N₂, s. nebenstehende Formel. B. Das Ammoniumsalz entsteht bei der Reduktion von 5-Nitro-cinchoninsäure mit Schwefelammonium, das Bariumsalz beim Kochen des zugehörigen Lactams (Syst. No. 3570) mit Barytwasser; man gewinnt die freie Säure durch Zersetzen des Silbersalzes mit Schwefelwasserstoff (Koenigs, Lossow, B. 82, 719). — Rubinrote Nadeln (aus Wasser). — AgC₁₀H₇O₂N₂. Gelbe Flocken. — Bariumsalz. Gelblicher, krystallinischer Niederschlag.

2. Aminoderivate der Monocarbonsäuren $C_{11}H_9O_2N$.

1. Aminoderivate der 2-Methyl-chinolin-carbonsäure-(3) C₁₁H₂O₂N (S. 83). 5-Amino-2-methyl-chinolin-carbonsäure-(3), 5-Amino-chinal-H₂N din-carbonsäure-(3) C₁₁H₁₀O₂N₂, s. nebenstehende Formel. B. Der Äthylester entsteht bei der Reduktion von 5-Nitro-chinaldin-carbonsäure-(3)-äthylester mit Eisen und Essigsäure; man verseift den Ester durch Erwärmen mit

Salzsäure auf dem Wasserbad (CLAUS, MOMBERGER, J. pr. [2] 56, 386). — Orangegelbe Blättchen. Schmilzt bei 275° unter Zersetzung. Unlöslich in Wasser und Petroläther, schwer löslich in Äther, Benzol und Chloroform, leicht in Alkohol.

Äthylester $C_{19}H_{14}O_{2}N_{2}=NC_{9}H_{4}(CH_{3})(NH_{2})\cdot CO_{2}\cdot C_{2}H_{5}$. B. s. S. 550 bei der Säure. — Nadeln (aus Alkohol). F: 110° (CL., M.). — $2C_{13}H_{14}O_{2}N_{2}+2HCl+PtCl_{4}+2H_{2}O$. Rote Nadeln (aus Salzsäure). Zersetzt sich völlig bei 224° .

- 5-Amino-2-methyl-chinolin-[carbonsäure-(3)-äthylester]-hydroxymethylat $C_{14}H_{18}O_3N_2=(HO)(CH_3)NC_9H_4(CH_3)(NH_2)\cdot CO_2\cdot C_2H_5$. Jodid $C_{14}H_{17}O_2N_2\cdot I$. B. Beim Erhitzen des Äthylesters mit Methyljodid auf 70—80° (CL., M.). Rote Nadeln. Schmilzt unter völliger Zersetzung bei 198—200°.
- 8-Amino-2-methyl-chinolin-carbonsäure-(3), 8-Amino-chinal-din-carbonsäure-(3) $C_{11}H_{10}O_2N_2$, s. nebenstehende Formel. B. Bei der Reduktion von 8-Nitro-chinaldin-carbonsäure-(3) mit Zinnchlorür und Salzsäure (Claus, Momberger, J. pr. [2] 56, 381). Beim Erhitzen des Äthylesters (s. u.) mit Salzsäure im Rohr auf 150° (Cl., M.). Gelbe Nädelchen oder Säulen (aus Alkohol). Schmilzt bei 230° unter Zersetzung. Unlöslich in Wasser und Petroläther, leicht löslich in Alkohol, schwerer in Benzol. $AgC_{11}H_9O_2N_2$. Farbloser Niederschlag. Unlöslich in Wasser.

Äthylester $C_{13}H_{14}O_2N_2 = NC_0H_4(CH_3)(NH_2)\cdot CO_2\cdot C_2H_5$. B. Bei der Reduktion von 8-Nitro-chinaldin-carbonsäure-(3)-äthylester mit Eisen und Essigsäure (Claus, Momberger, J. pr. [2] 56, 380). Durch Erhitzen des Silbersalzes der Säure (s. o.) mit Äthyljodid im Rohr auf 70—75° (Cl., M.). — Nadeln (aus Alkohol). F: 99°. — $2C_{13}H_{14}O_2N_2 + 2HCl + PtCl_4 + 2H_2O$. Gelbrote Nädelchen (aus Salzsäure). Zersetzt sich bei 190°.

8-Amino-2-methyl-chinolin-[carbonsäure-(3)-äthylester]-hydroxymethylat $C_{14}H_{18}O_3N_2=(HO)(CH_3)NC_9H_4(CH_3)(NH_2)\cdot CO_2\cdot C_2H_5$. — Jodid $C_{14}H_{17}O_2N_2\cdot I$. B. Beim Erhitzen des Äthylesters mit Methyljodid auf 70—80° (CL., M.). Gelbe bis blaßrote Nadeln. Zersetzt sich bei 170°.

2. Aminoderivat der 3-Methyl-chinolin-carbonsäure-(4) $C_{11}H_{\bullet}O_{\bullet}N$ (S. 87).

2-Anilino-3-methyl-chinolin-carbonsäure-(4)-anilid, 2-Anilino-3-methyl-cinchoninsäure-anilid C₂₅H₁₉ON₃, s. nebenstehende Formel.

B. Durch Erhitzen von 2-Chlor-3-methyl-cinchoninsäure-chlorid mit Anilin auf 200° (Ornstein, B. 40, 1095). — Krystallpulver (aus Eisessig).

F: 322—323°. Löslich in viel heißem Eisessig, sonst sehr schwer löslich.

3. Aminoderivate der 8-Methyl-chinolin-carbonsäure-(5) C₁₁H₀O₂N (S. 88).

7-Amino-8-methyl-chinolin-carbonsäure-(5) $C_{11}H_{10}O_2N_2$, s. nebenstehende Formel. B. Bei gelindem Kochen eines Gemisches aus 3.5-Diamino-4-methyl-benzoesäure, Glycerin, Nitrobenzol und konz. Schwefelsäure (Marckwald, A. 274, 357). — Schwefelgelbe Krystalle mit $1^1/_2H_2O$ (aus Wasser oder verd. Essigsäure). Zersetzt sich, ohne zu schmelzen, gegen 270°. Sehr schwer löslich in kaltem Wasser und Alkohol, leicht in Eisessig. — Liefert beim Erhitzen 7-Amino-8-methyl-chinolin. — $AgC_{11}H_9O_2N_2$. Krystallinisch. — $C_{11}H_{10}O_2N_2 + HCl + aq$. Hellgelbe Krystalle (aus Wasser). Unlöslich in Alkohol. — $2C_{11}H_{10}O_2N_2 + H_2SO_4$. Braune Krystalle. — $2C_{11}H_{10}O_2N_2 + H_2Cr_2O_7$. Bräunlichgelbe Krystalle. Sehr schwer löslich in heißem Wasser. — $2C_{11}H_{10}O_2N_2 + 2HCl + PtCl_4$. Gelbe Nadeln. Schwer löslich in heißem Wasser. — Pikrat $C_{11}H_{10}O_2N_2 + C_6H_3O_7N_3$. Hellgelbe Nadeln. Sehr schwer löslich.

Monoacetylderivat $C_{19}H_{19}O_3N_2 = NC_9H_4(CH_3)(NH\cdot CO\cdot CH_3)\cdot CO_2H$. B. Bei kurzem Kochen von 7-Amino-8-methyl-chinolin-carbonsäure-(5) mit Essigsäureanhydrid (M.). — Krystalle. Schmilzt nicht bei 300°. Äußerst schwer löslich. — $AgC_{13}H_{11}O_3N_2$. Niederschlag.

4. Aminoderivat der β -[Indolyl-(3)]-acrylsäure $C_{11}H_{\bullet}O_{2}N$.

 α - Benzamino - β - [indolyl - (3)] - acrylsäure $C_{18}H_{16}O_{2}N_{2}$, s. nebenstehende Formel, ist desmotrop mit α -Benzimino- β -[indolyl-(3)]-propionsäure, S. 313.

3. Aminoderivate der 2.8-Dimethyl-chinolin-carbonsäure-(5) $C_{12}H_{11}O_{2}N$.

7-Amino-2.8-dimethyl-chinolin-carbonsäure-(5) $C_{12}H_{12}O_2N_2$, s. nebenstehende Formel. B. Beim Erwärmen von 3.5-Diamino-4-methylbenzoesäure mit Paraldehyd und konz. Salzsäure auf dem Wasserbad (MARCKWALD, A. 274, 361). — Goldgelbe Krystalle (aus verd. Essigsäure). Schwer löslich in Wasser, Alkohol, Äther und Benzol, leicht in Eisessig. — CH₃ Crfällt beim Erhitzen in 7-Amino-2.8-dimethyl-chinolin und Kohlendioxyd. — AgC₁₃H₁₁O₂N₂. Krystallinischer Niederschlag. — $C_{12}H_{12}O_2N_2 + HCl$. Rötlichgelbe Nadeln. Leicht löslich in Wasser, unlöslich in Alkohol. — $2C_{12}H_{12}O_2N_2 + H_2SO_4$. Gelbe Nadeln. — $2C_{12}H_{12}O_3N_2 + H_2Cr_2O_7$. Orangefarbene Prismen. Schwer löslich. — $2C_{12}H_{12}O_2N_2 + 2HCl + PtCl_4$. Ziegelrote Krystalle. Schwer löslich. — Pikrat $C_{12}H_{12}O_2N_2 + C_6H_3O_7N_3$. Goldgelbe Nadeln. Sohwer löslich.

Monoacetylderivat $C_{14}H_{14}O_3N_2 = NC_9H_3(CH_3)_2(NH\cdot CO\cdot CH_2)\cdot CO_2H$. B. Beim Lösen von 7-Amino-2.8-dimethyl-chinolin-carbonsäure-(5) in siedendem Acetanhydrid (M.). — Nädelchen. Ziemlich leicht löslich in siedendem Eisessig, sonst schwer löslich. — $AgC_{14}H_{13}O_3N_2$. Niederschlag.

e) Aminoderivate der Monocarbonsäuren C_n H_{2n-21} O₂ N.

7(?)-Dimethylamino-2-phenyl-chinolin-carbonsäure-(4), 7(P)-Dimethylamino-2-phenyl-cinchoninsäure $C_{18}H_{16}O_2N_2$, s. nebenstehende Formel. B. Bei 2-stündigem Kochen von 10 g m-Amino-dimethylanilin mit 7 g Brenztraubensäure, 9 g Benzaldehyd und absol. Alkohol (Doebner, Ferber, A. 281, 21). — Rotgelbe Nadeln (aus verd. Alkohol). Schmilzt bei 275° unter Zersetzung. Unlöslich in Äther, Chloroform, Benzol, Schwefelkohlenstoff und kaltem Wasser. — Liefert bei der Destillation 7(?)-Dimethylamino-2-phenyl-chinolin. — $Cu(C_{18}H_{15}O_2N_2)_2 + H_2O$. Gelbrote Krystalle. — $AgC_{18}H_{16}O_2N_2$. Orangefarbener Niederschlag. Unlöslich in heißem Wasser, löslich in Alkohol. — $Zn(C_{18}H_{16}O_2N_2)_2 + 2^1/2H_2O$. Dunkelroter Niederschlag. — $Pb(C_{18}H_{15}O_2N_2)_2 + H_2O$. Roter Niederschlag.

f) Aminoderivate der Monocarbonsäuren $C_n H_{2n-27} O_2 N$.

Aminoderivate der Monocarbonsäuren C₂₀H₁₃O₂N.

1. Aminoderivate der 2-[Acridyl-(9)]-benzoesdure C₂₀H₁₃O₂N (S. 111).

2-[3-Anilino-acridyl-(9)]-benzoesäure C₂₆H₁₈O₂N₂, s. nebenstehende Formel. B. Beim Erhitzen von N.N'-Diphenyl-m-phenylendiamin mit Phthalsäureanhydrid auf 250° (Besthorn, Curtman, B. 24, 2047). — Rote Krystalle. Schmilzt oberhalb 300°. Fast unlöslich in allen Lösungsmitteln außer Eisessig. — Liefert beim Erhitzen mit 20°/0 iger Salzsäure auf 250° 2-[3-Oxy-acridyl-(9)]-benzoesäure.

2 - [3.6 - Diamino - acridyl - (9)] - benzoesäure, Flaveosin

C₂₀H₁₅O₂N₂, s. nebenstehende Formel. B. Durch 8-stündiges Erhitzen

von Fluorescein mit wäßr. Ammoniak auf 180—200° (R. Meyer,
Offelt, B. 21, 3377; Mey., B. 24, 1413; BASF, D. R. P. 73334,

75933; Frdl. 3, 295; 4, 1041; Mey., Gross, B. 32, 2365). — Rotgelbe Tafeln und Prismen.

Monoklin (MUTHMANN, B. 24, 1414). Unlöslich in Wasser (BASF, D. R. P. 73334). Unlöslich in Ammoniak und Soda-Lösung, leicht löslich in verd. Natronlauge (Mey., C; Mey.,
Gr.). Die Lösung in konz. Schwefelsäure fluoresciert gelbgrün (Mey., Gr.). — Gibt beim

Diazotieren in schwefelsaurer Lösung und nachfolgenden Verkochen 2-[Acridyl-(9)]-benzoesäure (BASF, D. R. P. 73334; Mey., Gr., B. 32, 2369). — Färbt Wolle gelb (Mey., O.). —

Hydrochlorid. Rotgelbe Prismen (Mey., O.). Die alkoh. Lösung fluoresciert gelbgrün (Mey., Gr.).

Äthylester $C_{22}H_{19}O_2N_3 = NC_{12}H_4(NH_2)_3 \cdot C_6H_4 \cdot CO_2 \cdot C_2H_5$. B. Beim Einleiten von Chlorwasserstoff in ein unter Rückfluß erhitztes Gemisch aus 2-[3.6-Diamino-acridyl-(9)]-benzoesäure und Alkohol, beim Erhitzen der Säure mit alkoh. Salzsäure im Autoklaven auf 120° oder beim Kochen mit Alkohol und Schwefelsäure (BASF, D. R. P. 73334, 75933;

- Frdl. 8, 295; 4, 1041). Beim Erhitzen des salzsauren Salzes der 2-[3.6-Diamino-acridyl-(9)]-benzoesaure in alkoh. Lösung mit Äthylchlorid (BASF, D. R. P. 73334). Nadeln oder Tafeln (aus 50%)eigem Alkohol). F: 247—248° (R. Meyer, Gross, B. 32, 2367). Wird durch Natronlauge leicht verseift (BASF; M., G.). C₂₂H₁₉O₂N₃ + 2 HCl. Rote Nadeln. Löslich in Alkohol oder Eisessig mit rotgelber Farbe und grüner Fluorescenz (M., G.).
- 2-[3.6-Bis-dimethylamino-acridyl-(9)]-benzoesäure, N.N.N'.N'-Tetramethyl-flaveosin $C_{24}H_{25}O_2N_3=NC_{18}H_6[N(CH_2)_2]_2\cdot C_6H_4\cdot CO_2H$. B. Beim Erhitzen von N.N-Dimethyl-N'-acetyl-m-phenylendiamin mit Phthalsäureanhydrid und Acetanhydrid auf 150° und nachfolgenden Kochen des Reaktionsprodukts mit 20°/ $_0$ iger Salzsäure (Grandmougin, Lang, B. 42, 4017). Orangefarbene Krystalle (aus Eisessig), gelbe Blättchen (aus Essigsäure). F: oberhalb 360°. Löslich in warmem Eisessig. Gibt mit Brom in Eisessig ein Tetrabromderivat (s. u.). Färbt aus essigsaurer Lösung Seide gelb mit grüner Fluorescenz. Pikrat. Rotbraune Krystalle mit grünem Reflex. F: 285°.

Äthylester $C_{24}H_{27}O_2N_3 = NC_{18}H_6[N(CH_3)_2]_3 \cdot C_6H_4 \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von N.N.N'.N'-Tetramethyl-flaveosin mit alkoh. Salzsäure (Grandmougin, Lang, B. 42, 4018). — Rotbraune Nadeln (aus Alkohol). Schmilzt bei raschem Erhitzen gegen 350°.

- N.N.N'.N'- Tetramethyl-flaveosin-äthylester-hydroxymethylat, 10-Methyl-3.6-bis-dimethylamino-9-[2-carbäthoxy-phenyl]-acridiniumhydroxyd $C_{27}H_{31}O_3N_3=(HO)(CH_3)NC_{18}H_6[N(CH_3)_2]_2\cdot C_6H_4\cdot CO_3\cdot C_2H_5$. Salz der Methylschwefelsäure $C_{27}H_{30}O_2N_2\cdot O\cdot SO_2\cdot O\cdot CH_3$. B. Aus N.N.N'.N'-Tetramethyl-flaveosin-äthylester und Dimethylsulfat in Nitrobenzol (Grandmougin, Lang, B. 42, 4018). Braunviolette Nadeln mit grünem Reflex (aus Benzol + Alkohol). F: 268°.
- 2-[3.6 Bis diäthylamino acridyl (9)] bensoesäure, N.N.N'.N' Tetraäthylflaveosin $C_{12}H_{21}O_{2}N_{3} = NC_{13}H_{6}[N(C_{2}H_{5})_{2}]_{3} \cdot C_{6}H_{6} \cdot CO_{2}H$. B. Beim Kochen von 3.3-Bis-[4-diāthylamino-2-acetamino-phenyl]-phthalid (Bd. XVIII, S. 619) mit $20^{9}/_{0}$ iger Salzsäure (Höchster Farbw., D. R. P. 49850; Frdl. 2, 110; Grandmougin, Lang, B. 42, 4015). Orangegelbe Nadeln (aus Alkohol). F: ca. 333°; leicht löslich in Methanol, Alkohol, Eisessig und Aceton mit orangeroter Farbe und grüner Fluorescenz, schwerer in Benzol, Chloroform, Tetrachlorkohlenstoff und Essigester, unlöslich in Åther und Ligroin (G., L.). Löst sich, frisch gefällt, in verd. Natronlauge; die hellgelbe, blaugrün fluorescierende Lösung in konz. Schwefelsäure wird beim Verdünnen mit Wasser erst tiefrot, dann orangegelb mit grüner Fluorescenz (G., L.). Löslich in mäßig verdünnten Mineralsäuren mit tiefroter Farbe (G., L.). Färbt Seide goldgelb mit grüngelber Fluorescenz, Wolle und tannierte Baumwolle rotgelb; war früher unter der Bezeichnung Flaveosin als Farbstoff im Handel (H., F.; vgl. Schultz, Tab. [7. Aufl.], No. 913). Die Salze bilden meist rote Krystalle mit grünem Reflex (G., L.). $C_{28}H_{31}O_{2}N_{3} + C_{8}H_{30}O_{7}N_{3}$. F: 268°.

Äthylester $C_{30}H_{35}O_3N_3 = NC_{13}H_6[N(C_2H_5)_2]_2 \cdot C_6H_4 \cdot CO_2 \cdot C_2H_5$. B. Beim Erhitzen von N.N.N'.N'-Tetraäthyl-flaveosin mit alkoh. Salzsäure (Grandmougin, Lang, B. 42, 4016). — Orangegelbe Nadeln (aus Alkohol + Benzol). F: 248°. Leicht löslich in Methanol, Alkohol, Eisessig und Aceton, schwerer in Benzol. — Gibt mit Brom in Alkohol ein Tetrabromderivat (s. u.). — Pikrat. Orangerote Krystalle. F: 227°.

- 2 [x.x.x.x Tetrabrom 3.6 bis dimethylamino acridyl (9)] benzoesäure (?) $C_{24}H_{19}O_2N_3Br_4 = NC_{13}H_2Br_4[N(CH_3)_2]_2 \cdot C_6H_4 \cdot CO_2H$ (?). B. Aus N.N.N'.N'-Tetramethyl-flaveosin und Brom in Eisessig (Grandmoughn, Lang, B. 42, 4018). Rotbraune Krystalle (aus Alkohol). Schmilzt oberhalb 360°. Löslich in Carbonaten.
- 2-[x.x.x.x-Tetrabrom-8.6-bis-diäthylamino-acridyl-(9)]-benzoesäure-äthylester (?) $C_{20}H_{21}O_2N_3Br_4=NC_{13}H_2Br_4[N(C_2H_5)_2]_2\cdot C_6H_4\cdot CO_2\cdot C_2H_5$ (?). B. Aus N.N.N'.N'-Tetraäthyl-flaveosin-äthylester und Brom in Alkohol (Grandmoughn, Lang, B. 42, 4017). Rote Nadeln (aus Alkohol). F: 167°.
- 2. Aminoderivate der 2-Phenyl-5.6-benzo-chinolin-carbonsäure-(4) $C_{20}H_{12}O_2N$ (8. 113).
- 2 [4 Dimethylamino phenyl] 5.6 benso chinolin-carbonsäure (4), 2-[4-Dimethylamino-phenyl]-5.6-benso-cinchoninsäure (,, α -p-Dimethylamino-phenyl- β -naphthocinchoninsäure") $C_{28}H_{18}O_2N_2$, s. nebenstehende Formel. B. Beim Kochen von p-Dimethylamino-benzaldehyd mit β -Naphthylamin und Brenztraubensäure in absol. Alkohol (Sachs, Steinert, B. 37, 1742). F: 293° bis 295°. Liefert beim Erhitzen auf 300—310° 2-[4-Dimethylamino-phenyl]-5.6-benzo-chinolin,

Dinitroderivat $C_{22}H_{16}O_6N_4$. B. Beim Eintragen der vorangehenden Verbindung in rauchende Salpetersäure bei gewöhnlicher Temperatur (Sachs, Steinert, B. 37, 1743). — Krystalle (aus Eisessig). F: 260—263° (sintert bei 210°).

2. Aminoderivate der Dicarbonsäuren.

a) Aminoderivate der Dicarbonsäuren C_nH_{2n-9}O₄N.

4-Amino-2.6-dimethyl-pyridin-dicarbonsäure-(3.5), 4-Amino-2.6-dimethyl-dinicotinsäure, γ-Amino-α.α'-lutidin-β.β'-dicarbonsäure C₉H₁₀O₄N₂, s. nebenstehende Formel. B. Das saure Ammoniumsalz entsteht bei mehrstündigem Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-dicarbonsäure-(3.5) mit Ammoniak auf 130° (MARCKWALD, B. 27, 1323). — Nadeln (aus Wasser). Schmilzt bei 263° unter Abspaltung von Kohlendioxyd; leicht löslich in heißem Wasser, sohwer in kaltem Wasser und in den meisten übrigen Lösungsmitteln (Ma.). Verbraucht zur Neutralisation mehr als 1, aber weniger als 2 Mol Kalilauge; die Menge verbrauchten Alkalis steigt mit der Temperatur (H. MEYER, M. 23, 945; vgl. Ma.). — Liefert beim Erhitzen 4-Amino-2.6-dimethyl-pyridin (Ma.). Bei der Einw. von Bromwasser auf die siedende wäßrige Lösung entsteht 3.5-Dibrom-4-amino-2.6-dimethyl-pyridin (Ma.). — NH₄C₉H₉O₄N₂. Krystalle. Sehr leicht löslich in Wasser, unlöslich in Alkohol (Ma.). — K₂C₉H₈O₄N₃. Krystalle. Leicht löslich in Wasser, fast unlöslich in Alkohol (Ma.). — K₂C₉H₈O₄N₃. Krystalle. Leicht löslich in Wasser, schwer in Alkohol (Ma.). — CuC₉H₈O₄N₂. Hellblaue Krystalle. Sehr schwer löslich (Ma.). — C₉H₁₀O₄N₂. + HCl. Krystalle. Ziemlich leicht löslich in Wasser unter geringer Zersetzung, fast unlöslich in Alkohol (Ma.). — C₉H₁₀O₄N₂ + HNO₃. Krystalle. Sehr schwer löslich in kaltem, leichter in heißem Wasser (Ma.). — C₉H₁₀O₄N₂ + HNO₃. Krystalle. Sehr schwer löslich in kaltem, leichter in heißem Wasser (Ma.).

b) Aminoderivate der Dicarbonsäuren C_n H_{2n-17}O₄N.

2.6-Dimethyl-4-[8-amino-phenyl]-pyridin-dicarbonsäure-(8.5), 2.6-Dimethyl-4-[3-amino-phenyl]-dinicotinsäure, γ -[3-Amino-phenyl]- α . α' -lutidin- β . β' -dicarbonsäure $C_{15}H_{14}O_4N_2$, s. nebenstehende Formel. B. Beim Verseifen des Äthylesters mit absolut-alkoholischer Kalilauge (Lepetit, G. 17, 469). — Mikroskopische Nadeln (aus verd. Alkohol). Schmilzt unter Zersetzung bei 238°. Schwer löslich in Wasser, Alkohol und Äther; äußerst leicht löslich in Säuren und Alkalien. — Das Calciumsalz liefert bei der Destillation 2.6-Dimethyl-4-[3-amino-phenyl]-pyridin. — Ba($C_{15}H_{18}O_4N_2$) + 3 H_2O . Nadeln. Sehr leicht löslich in Wasser.

Diäthylester $C_{19}H_{22}O_4N_2=NC_5(CH_3)_2(CO_2\cdot C_2H_5)_2\cdot C_6H_4\cdot NH_2$. B. Beim Erwärmen von 2.6-Dimethyl-4-[3-nitro-phenyl]-pyridin-dicarbonsäure-(3.5)-diäthylester mit Zinn und Salzsäure (Lepetit, B. 20, 1340; G. 17, 462; Höchster Farbw., D. R. P. 42295; Frdl. 1, 195). — Prismen (aus Äther). F: 109—110°; leicht löslich in Alkohol, Chloroform und Aceton, schwer in Ligroin, fast unlöslich in Wasser; leicht löslich in verd. Säuren (L.). — Zinnchlorid-Doppelsalz. · Krystalle (aus Wasser). F: 235—237° (Zers.) (L.). — $C_{19}H_{22}O_4N_2+2HCl+PtCl_4+2H_2O$. Mikroskopische Nadeln. Zersetzt sich oberhalb 260°, ohne zu schmelzen (L.).

2.6 - Dimethyl - 4 - [3 - acetamino - phenyl] - pyridin - dicarbonsäure - (3.5) - diäthylester $C_{21}H_{24}O_5N_5=NC_5(CH_3)_2(CO_3\cdot C_2H_5)_2\cdot C_6H_4\cdot NH\cdot CO\cdot CH_3$. B. Beim Kochen des Diäthylesters mit Essigsäureanhydrid (LEPETIT, G. 17, 464). — Nadeln oder Prismen mit 1 H_2O (aus verd. Alkohol). F: 131°. Leicht löslich in Alkohol, Äther und Chloroform.

3. Aminoderivate der Tricarbonsäuren.

 $\begin{array}{l} [5\text{-}Amino\text{-}3\text{-}carbäthoxy\text{-}\Delta^5\text{-}pyrrolinyliden\text{-}(2)]\text{-}oyanessigsäure\text{-}äthylester} \\ C_{12}H_{15}O_4N_3 = \begin{array}{l} H_2C - CH \cdot CO_2 \cdot C_2H_5 \\ H_2N \cdot C \colon N \cdot C \colon C(CN) \cdot CO_2 \cdot C_2H_5 \end{array} & \text{ist} & \text{desmotrop} & \text{mit} & [5\text{-}Imino\text{-}3\text{-}carbåthoxy-pyrrolidyliden\text{-}(2)]\text{-}oyanessigsäure\text{-}äthylester,} \\ S. & 367. \end{array}$

J. Amino-oxy-carbonsäuren.

1. Aminoderivate der Oxy-carbonsäuren mit 3 Sauerstoffatomen.

- a) Aminoderivate der Oxy-carbonsäuren C_nH_{2n-7}O₃N.
- Aminoderivat der 2 0xy pyridin carbonsäure (4) C_aH_sO₂N (S. 216).

6-Amino-2-oxy-pyridin-carbonsäure-(4), 6-Amino-2-oxy-isonicotinsäure $C_6H_6O_3N_2$, s. nebenstehende Formel, bezw. desmotrope Formen. CO₂H B. Beim Erhitzen von 6-Chlor-2-oxy-pyridin-carbonsäure-(4) mit konz.

Ammoniak im Rohr auf 170—180° (Sell, Dootson, Soc. 77, 237). — Verkohlt beim Erhitzen, ohne zu schmelzen. Schwer löslich in den meisten organischen Lösungsmitteln und in Wasser. — Liefert beim Erhitzen mit Phosphorpentachlorid auf 230—240° 3.4.5.6-Tetrachlor-2-amino-pyridin. — Silbersalz. Gelbliche Nadeln. — Calcium. und Bariumsalz sind leicht löslich.

2. Aminoderivat der 6-0xy-2.4-dimethyl-pyridin-carbonsäure-(3) $C_8H_9O_3N$ (S. 219).

5-Amino-6-oxy-2.4-dimethyl-pyridin-carbonsäure-(8), 5-Amino-CHa 6-oxy-2.4-dimethyl-nicotinsäure, β' -Amino- α' -oxy- $\alpha.\gamma$ -lutidin- $_{H_2N}$ β -carbonsäure $C_8H_{10}O_9N_2$, s. nebenstehende Formel. B. Bei der Reduktion von 5-Nitro-6-oxy-2.4-dimethyl-pyridin-carbonsaure-(3) mit Zinn und Salzsäure (Collie, Tickle, Soc. 78, 234). — Prismen oder Nadeln mit 1 H₂O. F: 275° (korr.; Zers.). Sehr schwer löslich in Wasser, unlöslich in Ather, Aceton und Chloroform. — Ist ziemlich unbeständig. Geht beim Erhitzen auf den Schmelzpunkt in 5-Amino-6-oxy-2.4-dimethyl-pyridin über. Wirkt stark reduzierend. — Gibt mit Eisenchlorid eine grüne Färbung, die schnell über Rot nach Tiefblau umschlägt. — $C_8H_{10}O_3N_2 + HCl + 2H_2O$. Nadeln (aus Salzsäure). Wird durch Wasser zerlegt.

- b) Aminoderivate der Oxy-carbonsäuren $C_nH_{2n-13}O_3N$.
- 1. Aminoderivat der 8-0xy-chinolin-carbonsäure-(7) $m C_{10}H_{2}O_{2}N$ (S. 236).

5 - Amino - 8 - oxy - chinolin - carbonsäure - (7) - methylester $C_{11}H_{10}O_3N_2$, s. nebenstehende Formel. B. Bei der Reduktion von 5-Nitro-8-oxy-chinolin-carbonsäure-(7)-methylester mit Zinnchlorür und Salzsäure + Eisessig (EINHORN, A. 311, 65). — Nadeln (aus Benzol). F: 120° bis 121°. Die wäßr. Lösung gibt mit Eisenchlorid eine braungelbe Färbung.

2. Aminoderivate der [2-0xy-chinolyl-(4)]-essigsäure $C_{11}H_{\bullet}O_{2}N$ (S. 238).

CH2·CO2H [7-Amino-2-oxy-chinolyl-(4)]-essigsäure, 7-Amino-carbostyrii-essigsäure-(4) $C_{11}H_{10}O_3N_4$, s. nebenstehende Formel. B. Der Athylester entsteht beim Erhitzen von m-Phenylendiamin mit 1 Mol Acetondicarbonsäureester im Rohr auf 100°; man verseift ihn durch Kochen mit 20% iger Salzsäure (Besthorn, Garben, B. 33, 3450). — Nadeln (aus Wasser). Schmilzt gegen 271° unter Bräunung. Schwer löslich in Wasser mit blauer Fluorescenz, schwer in organischen Lösungsmitteln. Leicht löslich in kalter Soda-Lösung mit blauer Fluorescenz. — Liefert beim Erhitzen auf 300° 7-Amino-2-oxy-4-methyl-chinolin. — Ca(C₁₁H₂O₂N₂)₂+5H₂O. Tafeln. Schwer löslich in kaltem Wasser.

Äthylester $C_{13}H_{14}O_3N_2 = NC_9H_4(OH)(NH_2)\cdot CH_2\cdot CO_2\cdot C_2H_5$. B. s. im vorangehenden Artikel. Beim Einleiten von Chlorwasserstoff in die alkoh. Suspension des Hydrochlorids der Säure (B., G.). - Nadeln (aus Alkohol). F: 197-198°. Ziemlich schwer löslich in Äther und Benzol, sehr schwer in kaltem Wasser.

2. Aminoderivate der Oxy-carbonsäuren mit 4 Sauerstoffatomen.

Aminoderivate der Oxy-carbonsäuren C_nH_{2n-7}O₄N.

1. Aminoderivate der 2.6-Dioxy-pyridin-carbonsäure-(3) C₄H₅O₄N (S. 253).

- 4-Amino-2.6-dioxy-pyridin-carbonsäure-(3)-äthylester, 4-Amino-2.6-dioxy-nicotinsäure-äthylester bezw. 4-Imino-2.6-dioxo-piperidin-carbonsäure-(3)-äthylester C₂H₁₀O₄N₂, Formel I oder II, bezw.

 weitere desmotrope Formen, Glut-asincarbonsäureäthylester. B. Aus I.
 β-Imino-α-cyan-glutarsäure-monoäthylester durch Erhitzen auf 145° (BARON, Remfry, Thorppe, Soc. 85, 1746) oder, neben Malonsäureester und α-Cyan-aceton-α-α'-dicarbonsäure-diäthylester, beim Auflösen in alkoh. Schwefelsäure (B., R., Th., Soc. 85, 1737). Aus β-Imino-α-cyan-glutarsäure-diäthylester durch Auflösen in kalter konzentrierter Schwefelsäure (B., R., Th., Soc. 85, 1740) oder, neben β-Oxo-α-cyan-glutarsäure-monoäthylester und β-Imino-α-cyan-glutarsäure-monoäthylester, beim Kochen mit konz. Salzsäure (B., R., Th., Soc. 85, 1743). Beim Auflösen von β-Imino-α-cyan-glutarsäure-äthylester-amid in kalter konzentrierter Schwefelsäure (B., R., Th., Soc. 85, 1744). Tafeln (aus Eisessig). Schmilzt nicht beim Erhitzen (B., R., Th., Soc. 85, 1740). Schwer löslich in heißem Wasser. Gibt beim Kochen mit konz. Kalilauge 4-Amino-2.6-dioxy-pyridin. Liefert beim Behandeln mit Natriumnitrit in Essigsäure 2.6-Dioxo-4-imino-5-oximino-piperidin-carbonsäure-(3)-äthylester (S. 360). Beim Kochen mit Benzoylchlerid erhält man Dibenzoyl-glutazin-carbon-säure-äthylester (S. 342). Die wäßr. Löeung gibt mit Eisenchlorid eine tiefrote Färbung. C₂H₁₀O₄N₂ + HCl. Prismen (aus konz. Salzsäure). Leicht löslich in Wasser. Wird durch Wasser hydrolysiert.
- 4-Amino-2.6-dioxy-pyridin-carbonsäure-(3)-nitril (4-Imino-2.6-dioxo-3-cyan-piperidin) $C_8H_5O_2N_3=NC_5H(OH)_8(NH_2)\cdot CN$ bezw. desmotrope Formen, Glutagin-carbonsäurenitril, Cyanglutagin. B. Beim Kochen von β-Imino-α-cyan-glutagsäure-äthylester-amid mit Soda-Lösung, neben β-Imino-α-cyan-buttersäureester (Baron, Remfry, Thorpe, Soc. 85, 1745). Nadeln (aus Wasser). Löslich in konz. Schwefelsäure, unlöslich in konz. Salzsäure. Gibt beim Erhitzen mit konz. Salzsäure auf 180° 2.4.6-Trioxy-pyridin. Verhält sich gegen salpetrige Säure und gegen Benzoylchlorid analog der vorangehenden Verbindung. Die wäßr. Lösung gibt mit Eisenchlorid eine rötlichviolette Färbung.

Dibensoylglutaxin - carbonsäureäthylester $C_{22}H_{18}O_6N_2 = C_6H_5\cdot CO\cdot NC_5H_3O_2(CO_2\cdot C_2H_5):N\cdot CO\cdot C_6H_5$ s. S. 342.

Dibensoylglutazin-carbonsäurenitril, Dibensoylcyanglutazin $C_{50}H_{13}O_4N_3 = C_6H_5 \cdot CO \cdot NC_5H_3O_2(CN) : N \cdot CO \cdot C_6H_5$ s. S. 342.

5-Nitroso-4-amino-2.6-dioxy-pyridin-carbonsäure-(3)-äthylester, Nitrosoglutaxin-carbonsäureäthylester $C_8H_9O_8N_8$, s. nebenstehende Formel, ist desmotrop mit 2.6-Dioxo-4-imino-5-oximino-piperidin-carbonsäure-(3)-äthylester, S. 360.

2. Aminoderivate der Oxy-carbonsäuren $C_7H_7O_4N$.

1. Aminoderivat der [2.6-Dioxy-pyridyl-(3)]-essigsäure C,H,O,N.

[4 - Amino - 2.6 - dioxy - pyri-dyl-(3)]-essigsäure bezw. [4-Imino-2.6 - dioxo - piperidyl-(3)]-essigsäure III.

C₇H₈O₄N₂, Formel III bezw. IV, bezw.

weitere desmotrope Formen, Glutazin-essigsäure.

B. Man kocht das Lactam der [4-Amino-2.6-dioxy-5-carbāthoxy-pyridyl-(3)]-essigsäure (Syst. No. 3703) mit 30°/oiger Kalilauge (Best, Thorpe, Soc. 95, 1528). — Gelbliche Tafeln (aus Wasser). F: ca. 270° (Zers.) (bei schnellem Erhitzen). Leicht löslich in heißem Wasser. — Liefert beim Kochen mit 10°/oiger Schwefelsäure [2.4.6-Trioxy-pyridyl-(3)]-essigsäure. — Die wäßr. Lösung gibt mit Eisenchlorid eine rote Färbung, die beim Kochen in Grün umschlägt.

2. Aminoderivate der 2.6-Dioxy-5-methyl-pyridin-carbonsäure-(3) C,H,O,N.

4-Amino-2.6-dioxy-5-methyl-pyridin-carbonsäure-(3)-äthylester bezw. 4-Imino-2.6-dioxo-5-methyl-piperidin-carbonsäure-(3)-äthylester $C_9H_{12}O_4N_2$, Formel I oder Π , bezw. weitere desmotrope Formen,

säure - monoäthylester auf 147° (Baron, Remfrey, Thorpe, Soc. 85, 1749). Beim Auflösen von β-Imino-α-methyl-α'-cyanglutarsäure-diäthylester in kalter konzentrierter Schwefelsäure (B., R., Th.). — Nadeln (aus Eisessig). F: 213⁶ (Zers.). Sehr leicht löslich in Mineralsäuren, schwer in Alkalien in der Kälte, leicht in der Wärme. — Liefert beim Kochen mit Natronlauge 4-Amino-2.6-dioxy-3-methylpyridin. Bei der Einw. von Natriumnitrit + Essigsäure erhält man 2.4.6-Trioxy-5-methylpyridin-carbonsäure-(3)-äthylester. Beim Kochen mit Benzoylchlorid entsteht 1-Benzoylch-dioxo-4-benzimino-5-methyl-piperidin-carbonsäure-(3)-äthylester (S. 343). — Die Lösung Reicht aus der Greiche der Greic in verd. Alkohol gibt mit Eisenchlorid eine purpurrote Färbung, die beim Erhitzen ver-

Dibenzoyl - methyl - glutazin - carbonsäure - äthylester $C_{23}H_{20}O_6N_2=C_6H_5\cdot CO\cdot NC_5H_2O_2(CH_3)(CO_2\cdot C_2H_5):N\cdot CO\cdot C_6H_5$ s. S. 343.

3. Aminoderivate der 2.6-Dioxy-5-äthyl-pyridin-carbonsäure-(3) $C_8H_9O_4N$.

4-Amino-2.6-dioxy-5-äthyl-pyridin-carbonsäure-(3)-äthylester bezw. 4-Imino-2.6-dioxo-5-äthyl-piperidin-carbonsäure-(3)-äthylester $C_{10}H_{14}O_4N_2$, Formel III oder IV, bezw. weitere desmotrope Formen, Äthylglutazin-carbonsäureäthylester. B. Beim Erhitzen von β -Imino- α -äthyl- α' -cyan-glutarsäure-monoäthylester auf 155° (Baron, Remfry, Thorpe, Soc. 85, 1760). Neben β -Imino- α -äthyl-glutarsäure-monoäthylester beim Auflösen von β -Imino- α -āthyl- α -cyan-glutarsäure-diāthylester in konz. Schwefelsäure (B., R., Th., Soc.

85, 1758). — Prismen (aus Eisessig). F: 212°. Löslich in kalter Kalilauge und in heißer konzentrierter Salzsäure. — Gibt beim Kochen mit konz. Kalilauge 4-Amino-2.6-dioxy-3-äthyl-pyridin. Liefert bei Einw. von Natriumnitrit + Essigsäure 2.4.6-Trioxy-5-āthylpyridin-carbonsäure-(3)-äthylester. Gibt beim Kochen mit Benzoylchlorid 1-Benzoyl-2.6-dioxo-4-benzimino-5-äthyl-piperidin-carbonsäure-(3)-äthylester (8. 344). — Die alkoh. Lösung gibt mit Eisenchlorid eine grünlichblaue Färbung. — Hydrochlorid. Prismen.

 $\label{eq:Dibenzoyl-athyl-glutazin-carbons} \textbf{Dibenzoyl-athyl-glutazin-carbons} \\ \textbf{aure-athylester} \ \ \textbf{C}_{24}\textbf{H}_{22}\textbf{O}_{6}\textbf{N}_{2} \\ = \textbf{C}_{6}\textbf{H}_{5} \cdot \textbf{CO} \cdot \textbf{NC}_{5}\textbf{H}_{2}\textbf{O}_{2} \\ \textbf{(C}_{2}\textbf{H}_{5})(\textbf{CO}_{2} \cdot \textbf{C}_{2}\textbf{H}_{5}) : \textbf{N} \cdot \textbf{CO} \cdot \textbf{C}_{6}\textbf{H}_{5} \ \ \textbf{s.} \ \ \textbf{S.} \ \ \textbf{344}.$

3. Aminoderivate der Oxy-carbonsäuren mit 6 Sauerstoffatomen.

4 - Amino - 2.6 - dioxy - pyridin - [carbonsäure - (3) - äthyl ester]-essigsäure-(5) C₁₀H₁₂O₆N₂, s. nebenstehende Formel, bezw.
desmotrope Formen, Glutazin - carbonsäureäthylester - essig säure R Mon kocht des Leetem der [4 Amino 2 6 diovy.]
OH säure. B. Man kocht das Lactam der [4-Amino-2.6-dioxy-5-carbāthoxy-pyridyl-(3)]-essigsāure (Syst. No. 3703) mit Soda-Lösung (Best, Thorpe, Soc. 95, 1527). — Fest. Löslich in Soda-Lösung. — Liefert beim Kochen mit Wasser das Ausgangsmaterial zurück. Gibt bei Einw. von Natriut + Essigsäure das Lacton der Lossing (Syst. No. 3703) mit Soda-Lösung (Best, Thorpe, Soc. 95, 1527). — Fest. Löslich in Soda-Lösung. — Liefert beim Kochen mit Wasser das Lacton der Lacton [2.4.6-Trioxy-5-carbathoxy-pyridyl-(3)]-essigsaure (Syst. No. 4331). — Die wäßr. Lösung gibt mit Eisenchlorid eine rote Färbung.

K. Amino-oxo-carbonsäuren.

1. Aminoderivate der Oxo-carbonsäuren mit 3 Sauerstoffatomen.

a) Aminoderivate der Oxo-carbonsäuren C_nH_{2n-7}O₃N.

1-Äthyl-6 (oder 2)-äthylamino-pyridon-(2 oder 6)-carbonsäure-(3) $C_{10}H_{14}O_3N_2 = HC - CH - C \cdot CO_2H$ oder $C \cdot CO_2H - C \cdot CO_2H -$

b) Aminoderivate der Oxo-carbonsäuren C_nH_{2n-11}O₃N.

3-Anilino-2-oxo-1.2.3.4-tetrahydro-chinolin-carbonsäure-(3)-methylester, 3-Anilino-hydrocarbostyril-carbonsäure-(3)-methylester $C_{17}H_{16}O_3N_2=CH_2\cdot C(NH\cdot C_6H_5)\cdot CO_2\cdot CH_3$. B. Bei der Reduktion von 2-Nitro- α -anilino-benzyl-malonsäure-dimethylester (Bd. XIV, S. 562) mit Zinkstaub in Eisessig + konz. Salzsäure (Conrad, Reinbach, B. 35, 516). — Krystalle (aus Benzol + Petroläther). F: 171°. Löslich in Methanol und Alkohol in der Wärme. Löslich in konz. Salzsäure. — Liefert beim Erhitzen mit alkoh. Natronlauge 3-Anilino-hydrocarbostyril.

c) Aminoderivate der Oxo-carbonsäuren C_nH_{2n-15}O₃N.

α-Brom - ε- ο xο - α- [brom-methyl] - β- [β-dimethylamino-äthyl] - ε-[chinolyl-(4)]-n-capron-säure oder ε- O xο - α-[dimethyl-aminomethyl] - β- [αβ-dibrom-äthyl] - ε-[chinolyl-(4)]-n-capron-säure $C_{20}H_{24}O_3N_2Br_2$, Formel I oder II, Dimethyl-cinchotenin-dibromid. B. Beim Behandeln von Dimethylcinchotenin (s. u.) in wäßr. Lösung mit Brom (Comanducci, d'Onghia, C. 1909 II, 2086). — Rotbraun. Ist bei 250° noch nicht geschmolzen.

d) Aminoderivate der Oxo-carbonsäuren C_n H_{2n-17}O₃N.

 ε - Oxo - β - [β - dimethylamino - äthyl] - α - methylen- ε -[chinolyl-(4)]- n - capronsäure oder ε - Oxo - α - dimethylaminomethyl - β - vinyl- ε -[chinolyl-(4)]-n-capronsäure C₂₀H₂₄O₃N₂, Formel III oder IV, Dimethylcinchotenin. B. Beim Behandeln von "Dimethylcinchonin" (S. 525) in schwefelsaurer Lösung bei 0—2° mit sehr verd. Kaliumpermanganat-Lösung (Comanducci, D'Onghia, C. 1909 II, 2086). — Schmilzt oberhalb 250°.

2. Aminoderivate der Oxo-carbonsäuren mit 4 Sauerstoffatomen.

Aminoderivate der Oxo-carbonsäuren $C_n H_{2n-5} O_4 N$.

- 1. Aminoderivat einer 0 xo-carbonsäure $C_6H_5 \cdot HN$ $NH \cdot CO \cdot C_6H_5$ $C_4H_3O_4N$. Eine Säure $C_{30}H_{24}O_5N_4$, der vielleicht nebenstehende Formel zukommt, s. Bd. IX, S. 233.
- 2. Aminoderivate der [2.5-Dioxo-pyrrolidyl-(3)]-essigsäure $C_6H_7O_4N$ (S. 325).
- [3-Anilino-2.5-dioxo-pyrrolidyl-(3)]-essigsäure, β -Anilino-tricarballylsäure- α . β -imid $C_{12}H_{12}O_4N_2$, s. nebenstehende Formel. B. H₂C C CH₂·CO₂H Aus β -Anilino-tricarballylsäure- α . α' -diäthylester- β -amid (Bd. XII, OC·NH·CO S. 514) oder β -Anilino-tricarballylsäure- α' -äthylester- α . β -imid (s. u.) durch Behandeln mit Natriumäthylat-Lösung oder mit nicht zuviel überschüssiger Natronlauge (SCHROETER, KIRNBERGER, B. 35, 2083). Krystalle (aus Wasser). Beginnt bei 57° zu sintern; schmilzt unscharf gegen 100°. Na₂C₁₂H₁₀O₄N₂. Sehr hygroskopisch. Sehr leicht löslich in Wasser, unlöslich in Alkohol. Die wäßr. Lösung reagiert alkalisch. Ag₂C₁₂H₁₀O₄N₂ + HNO₃ oder AgC₁₂H₁₁O₄N₂ + AgNO₃. Weißer Niederschlag.
- [3-Anilino 2.5 dioxo-pyrrolidyl-(3)] -essigsäure-äthylester, β Anilino tricarballylsäure α äthylester α . β imid $C_{14}H_{16}O_4N_2$, s. nebenstehende Formel. B. Bei Einw. von konz. Schwefelsäure auf β -Anilino-tricarballylsäure- α . α diäthylester- β amid bezw. -nitril (Bd. XII. S. 514) (Schroeter, Kirnberger, B. 35, 2082). Krystallpulver (aus Alkohol). F: 1670 (Sch., K.). Löslich in konz. Säuren (Sch., K.). Liefert beim Kochen mit 120/giger Natronlauge β -Anilino-tricarballylsäure (Bd. XII, S. 514) (Sch., B. 38, 3183). Wird beim Kochen mit 2n-Salzsäure in Anilin und Aconitimidsäure (S. 330) gespalten (Sch.).
- [3-Anilino-5-oxy-5-äthoxy-2-oxo-pyrrolidyl-(3)]-essigsäure-äthylester $C_{16}H_{22}O_5N_2$, s. nebenstehende Formel, s. β -Anilino-tricarballylsäure- α . α' -diäthylester- C_{2H_5} -O)(HO)C·NH·CO β -amid, Bd. XII, S. 514.
- [1-Äthyl-3-anilino-2.5-dioxo-pyrrolidyl-(3)]-essigsäure-äthylester, β -Anilino-tricarballylsäure- α' -äthylester- $\alpha.\beta$ -äthylimid $C_{16}H_{20}O_4N_2$, s. nebenstehende Formel.

 B. Beim Kochen von β -Anilino-tricarballylsäure- $\alpha.\alpha'$ -diäthylester- β -amid (Bd. XII, S. 514) oder β -Anilino-tricarballylsäure- α' -äthylester- $\alpha.\beta$ -imid (s. o.) in alkoh. Lösung mit Äthyljodid unter langsamem Zufügen von Natriumäthylat-Lösung (Schroeter, Kirnberger, B. 35, 2082). Krystalle (aus Alkohol). F: 68°. Unlöslich in Natronlauge und Ammoniak.
- [3-o-Toluidino-2.5-dioxo-pyrrolidyl-(3)]-essigsäure-äthylester, β -o-Toluidino-tricarballylsäure- α '-äthylester- α . β -imid $C_{15}H_{18}O_4N_2$, s. nebenstehende Formel. B. Bei längerer och h_2 CO h_2 CO h_3 CO h_4 CO Einw. von konz. Schwefelsäure auf β -o-Toluidino-tricarballylsäure- α . α '-diäthylester- β -amid (Bd. XII, S. 822) (Schroeter, B. 38, 3189). F: 90,5—91,5°.
- [3-m-Toluidino-2.5-dioxo-pyrrolidyl-(3)]-essigsäureäthylester, β -m-Toluidino-tricarballylsäure- α '-äthylester- $\alpha.\beta$ -imid $C_{15}H_{18}O_4N_2$, s. nebenstehende Formel. B. Bei Einw. von konz. Schwefelsäure auf β -m-Toluidino-tricarballylsäure- $\alpha.\alpha$ '-diäthylester- β -amid (Bd. XII, S. 867) (SCHROETER, B. 38, 3189). F: 135—136°. Wird beim Kochen mit Salzsäure in m-Toluidin und Aconitimidsäure (S. 330) gespalten.
- [3-p-Toluidino-2.5-dioxo-pyrrolidyl-(3)]-essigsäure-äthylester, β -p-Toluidino-tricarballylsäure- α -äthylester- α - β -imid $C_{15}H_{18}O_4N_2$, s. nebenstehende Formel. B. Bei Einw. von konz. Schwefelsäure auf β -p-Toluidino-tricarballylsäure- α . α -diäthylester- β -amid (Bd. XII, S. 968) (Schrofter, B. 38, 3189). F: 208—209°.

- [3 p Phenetidino 2.5 dioxo pyrrolidyl (3)] essig-säure, β p Phenetidino tricarballylsäure $\alpha.\beta$ imid $C_{14}H_{16}O_{2}N_{2}$, s. nebenstehende Formel. B. Beim Behandeln von $C_{14}H_{16}O_{2}N_{2}$, s. nebenstehende Formel. B. Beim Behandeln von $C_{14}H_{16}O_{2}N_{2}$, s. nebenstehende Formel. B. Beim Behandeln von $C_{14}H_{16}O_{2}N_{2}$, s. nebenstehende Formel. B. Beim Behandeln von $C_{14}H_{16}O_{2}N_{2}$, s. nebenstehende Formel. B. Beim Behandeln von $C_{14}H_{16}O_{2}N_{2}$, where $C_{14}H_{16}O_{2}N_{2}$, s. nebenstehende Formel. B. Beim Behandeln von $C_{14}H_{16}O_{2}N_{2}$, where $C_{14}H_{16}O_{2}N_{2}$ is a statistical form of the same $C_{14}H_{16}O_{2}N_{2}$. Unlöslich in Alkohol.
- [8 p Phenetidino 2.5 dioxo pyrrolidyl (3)] essig-säure äthylester, β p Phenetidino tricarballylsäure- α '-äthylester- α -imid $C_{16}H_{20}O_5N_2$, s. nebenstehende Formel. OC NH· CO Bei mehrtägigem Aufbewahren von β -p-Phenetidino-tricarballylsäure- α -äthylester- β -nitril (Bd. XIII, S. 495) in konz. Schwefelsäure (Schroeter, B. 38, 3187). Krystalle (aus Alkohol). F: 133—134°. Leicht löslich in Chloroform und Aceton, schwer in Ather, Benzol, Alkohol und Wasser. Liefert beim Kochen mit Natronlauge β -p-Phenetidino-tricarballylsäure. Wird beim Kochen mit verd. Salzsäure in p-Phenetidin und Aconitimidsäure (S. 330) gespalten.
- [3-Acetylanilino-2.5-dioxo-pyrrolidyl-(3)]-essigsäureäthylester, β Acetylanilino-tricarballylsäure- α' -äthylester- $\alpha.\beta$ -imid $C_{16}H_{18}O_5N_2$, s. nebenstehende Formel. B. Beim OC-NH-CO Kochen von β -Anilino-tricarballylsäure- $\alpha.\alpha'$ -diäthylester- β -amid (Bd. XII, S. 514) oder von β -Anilino-tricarballylsäure- $\alpha.\beta$ -imid (S. 559) mit Acetylchlorid (SCHROETER, KIRNBERGER, B. 35, 2082). Krystalle (aus Alkohol). F: 178°. Leicht löslich in Natronlauge, Soda-Lösung und Ammoniak.

3. Aminoderivate der Oxo-carbonsäuren mit 5 Sauerstoffatomen.

1 - Äthyl - 6 - äthylamino - pyridon - (2) - dicarbonsäure - (3.5) $C_{11}H_{14}O_{5}N_{2} = HO_{2}C \cdot C - CH = C \cdot CO_{2}H$ ist desmotrop mit 1-Äthyl-6-oxo-2-äthylimino-1.2.3.6-tetra-hydro-pyridin-dicarbonsäure-(3.5), S. 361.

4. Aminoderivate der Oxo-carbonsäuren mit 7 Sauerstoffatomen.

4-Brom-8-amino-pyrrolidon-(5)-carbonsäure-(4)-brommalonsäure-(2), Mono-lactam der $\alpha.\alpha'$ -Dibrom- $\beta.\beta'$ -diamino-adipinsäure- $\alpha.\alpha'$ -dicarbonsäure $C_8H_8O_7N_8Br_8 = HO_2C \cdot BrC$ ——CH·NH₂

R Bei Finw von Brom auf $\beta.\beta'$ Diamino $\alpha.\alpha'$ dicarbons

OC·NH·CH·CBr(CO₂H)₂. B. Bei Einw. von Brom auf β.β'-Diamino-α.α'-dicarboxy-adipinsäure (Bd. IV, S. 502) in wäßr. Lösung (W. Traube, B. 35, 4126). — Nadeln (aus Alkohol). Ziemlich leicht löslich in heißem Alkohol. — Liefert beim Kochen mit verd. Salzsäure das Dilactam der α.α'-Dibrom-β.β'-diamino-adipinsäure (Syst. No. 3588).

L. Amino-oxy-oxo-carbonsauren.

 $\begin{array}{lll} 5 - Anilino - 6 - oxy - 2 - oxo - 3 - phenylimino - 2.3 - dihydro - pyridin - carbonsäure - (4) - \\ amid & C_{18}H_{14}O_3N_4 = & C_6H_5 \cdot N : C \cdot C(CO \cdot NH_2) : C \cdot NH \cdot C_8H_5 \\ & OC - N - C \cdot OH \\ & 3.5 - bis - phenylimino - piperidin - carbonsäure - (4) - amid, & S. & 360. \end{array}$ ist desmotrop mit 2.6 - Dioxo-

M. Amino-sulfonsäuren.

1. Aminoderivate der Monosulfonsäuren.

Aminoderivate der Monosulfonsäuren C_nH_{2n-11}O₃NS.

1. Aminoderivat der 8-Methyl-chinolin-sulfonsäure-(5) $C_{10}H_{9}O_{8}NS$ (S. 397).

7-Amino-8-methyl-chinolin-sulfonsäure-(5) $C_{10}H_{10}O_3N_2S$, s. nebenstehende Formel. B. Bei mehrstündigem gelindem Kochen von 2.6-Diaminotoluol-sulfonsäure-(4) mit Nitrobenzol, Glycerin und konz. Schwefelsäure (MARCKWALD, A. 274, 352). — Gelbrote Nadeln mit 1 H₂O (aus Wasser). Wird an der Luft bei 130° rot. Schwer löslich in kaltem Wasser, leicht in CH₃ heißem, unlöslich in den meisten anderen Lösungsmitteln. — Die wäßr. Lösung gibt in der Hitze mit Eisenchlorid eine braune Färbung. — NaC₁₀H₉O₃N₂S. Hellgelbe Nadeln. Leicht löslich in kaltem Wasser, schwer in Alkohol. — Cu(C₁₀H₉O₃N₂S)₂ + H₂O. Hellgelbe Nadeln. Löslich in heißem Wasser. — AgC₁₀H₉O₃N₂S. Gelbe Krystalle. Schwer löslich in kaltem Wasser. Wird durch heißes Wasser zersetzt. — Ca(C₁₀H₉O₃N₂S)₂. Gelbe Nadeln. Leicht löslich in Wasser. — Ba(C₁₀H₉O₃N₂S)₂ + 2 H₂O. Lehmfarbene Krystalle (aus Wasser). Leicht löslich in Wasser.

2. Aminoderivat der 2.8-Dimetyl-chinolin-sulfonsäure-(5) $C_{11}H_{11}O_{2}NS$.

7-Amino-2.8-dimethyl-chinolin-sulfonsäure-(5) C₁₁H₁₂O₃N₂S, s. nebenstehende Formel. B. Beim Erhitzen von 2.6-Diamino-toluol-sulfonsäure-(4) mit Paraldehyd und Salzsäure (D: 1,12) auf dem Wasserbad (Marckwald, A. 274, 354). — Hellgelbe Nadeln mit 2 H₂O (aus Wasser). Schwer löslich in kaltem Wasser und in den meisten anderen Lösungsmitteln. — Die heiße wäßrige Lösung gibt mit Eisenchlorid eine braune Färbung. — NaC₁₁H₁₁O₃N₂S. Hellgelbe Prismen. Leicht löslich in Wasser. — KC₁₁H₁₁O₃N₂S. Gelbbraune Nadeln. Leicht löslich in Wasser, unlöslich in Alkohol. — Cu(C₁₁H₁₁O₃N₂S)₂ + H₂O. Grünliche Blättchen. Schwer löslich in heißem Wasser. — AgC₁₁H₁₁O₃N₂S)₂. Hellgelbe Nadeln. Ziemlich leicht löslich in heißem Wasser. — Ca(C₁₁H₁₁O₃N₂S)₂. Tafeln. Schwer löslich in Wasser. — Ba(C₁₁H₁₁O₃N₂S)₂ + 4 H₂O. Nadeln. Sehr schwer löslich in Wasser. — Pb(C₁₁H₁₁O₃N₂S)₂. Hellgelbe Prismen. Schwer löslich in heißem Wasser.

3. Aminoderivat einer 4-Methyl-3-äthyl-chinolin-sulfonsäure $\rm C_{12}H_{18}O_3NS$ mit unbekannter Stellung der Sulfogruppe.

7 - Amino - 4 - methyl - 3 - äthyl - chinolin - sulfonsäure - (x) $C_{12}H_{14}O_3N_2S = NC_9H_3(CH_3)(C_2H_5)(NH_2)\cdot SO_3H$. B. Beim Erwärmen von 7-Amino-4-methyl-3-åthyl-chinolin mit rauchender Schwefelsäure $(14^0/_0\ SO_3$ -Gehalt) auf dem Wasserbad (Byvanck, B. 31, 2149). — Gelbe Nadeln (aus Wasser). Schmilzt oberhalb 300°. Die verdünnte wäßrige Lösung fluoresciert hellblau, die Lösung in Alkohol oder Eisessig grün. — Beim Behandeln mit alkal. Kaliumpermanganat-Lösung entsteht eine in Nadeln krystallisierende Säure.

2. Aminoderivate der Disulfonsäuren.

x-Amino-carbazol-disulfonsäure-(3.6 ?) $C_{12}H_{10}O_6N_2S_2 = HNC_{12}H_6(NH_2)(SO_3H)_2$. B. Bei der Reduktion von x-Nitro-carbazol-disulfonsäure-(3.6?) mit Ammoniumsulfid in wäßr. Lösung (Schultz, Hauenstein, J. pr. [2] 76, 346). — $KC_{12}H_6O_6N_2S_2 + 3H_2O$. Nadeln (aus Wasser). Schwer löslich in Wasser, fast unlöslich in organischen Lösungsmitteln. — Überführung in Azofarbstoffe: Sch., H.

N. Amino-oxo-sulfonsäuren.

1'-Methyl-4-methylamino-anthrapyridon-sulfonsäure-(5) C₁₈H₁₄O₅N₂S, s. nebenstehende Formel. B. Beim Erhitzen von (nicht näher beschriebener) 8-Methylamino-5-acetylmethylamino-anthrachinon-sulfonsäure-(1) mit Natronlauge (BAYER & Co., D. R. P. 199713; C. 1908 II, 363; Frdl. 9, 734). — Die Lösung in Wasser ist blaustichig rot, die Lösung in konz. Schwefelsäure orangegelb.

VII. Hydroxylamine.

A. Hydroxylaminoderivate der Stammkerne.

9-Hydroxylamino-9-phenyl-9.10-dihydro-acridin $C_{19}H_{16}ON_3$, s. nebenstehende Formel.

10 - Methyl - 9 - hydroxylamino - 9 - phenyl - 9.10-dihydro-acridin $C_{20}H_{18}ON_2 = CH_3 \cdot NC_{13}H_8(C_8H_8) \cdot NH \cdot OH$. B. Aus 9-Phenyl-acridin-hydroxymethylat (Bd. XX, S. 515) und Hydroxylamin in trocknem Ather (GADAMER, Ar. 243, 46; vgl. J. pr. [2] 84 [1911], 819). — Nicht rein erhalten. Nadeln. Hat keinen scharfen Schmelzpunkt (G., Ar. 243, 46).

B. Oxy-hydroxylamine.

4-Hydroxylamino-2.6-dioxy-pyridin bezw. NH-OH

4-Oximino-2.6-dioxo-piperidin C₅H₆O₂N₂, Formel I
bezw. II. B. Beim Erwärmen von 2.4.6-Trioxypyridin mit salzsaurem Hydroxylamin (STOKES,
v. PECHMANN, B. 19, 2703). Beim Kochen von 4-Amino2.6-dioxy-pyridin (Glutazin) mit einer wäßr. Lösung von überschüssigem salzsaurem Hydroxylamin (St., v. P.). — Sechsseitige Tafeln mit 1 H₂O (aus Wasser). F: 194—196° (Zers.). Schwer löslich in kaltem Wasser und Alkohol, unlöslich in Ather und Chloroform. Leicht beim Aufblewahren gelbrot und dann beim Erwärmen intensiv purpurrot. Die Lösung in konz. Natriumcarbonat-Lösung wird beim Aufbewahren blau und dann beim Erwärmen rot. — Zerfällt beim Kochen mit konz. Salzsäure in Hydroxylamin und 2.4.6-Trioxy-pyridin. — C₅H₆O₂N₂ + HCl. Platten. Löslich in Alkohol; unlöslich in konz. Salzsäure; wird durch Wasser sofort zersetzt.

C. Hydroxylamino-carbonsäuren.

4.6-Bis-hydroxylamino-2-methyl-pyridin-carbonsäure-(5)-äthylester, $\gamma.\alpha'$ -Bis-hydroxylamino- α -picolin- β' -carbonsäure-äthylester bezw. 4.6-Dioximino-2-methyl-1.4.5.6-tetrahydro-pyridin-carbon- NH·OH NOH Säure - (5)-äthylester, $\gamma.\alpha'$ -Dioximino-N. $\gamma.\alpha'$. β' -tetrahydro- α -picolin- III. $C_2H_5\cdot O_2C$ IV. $C_2H_5\cdot O_2C\cdot HC$ CH β' -carbonsäure-äthylester $C_2H_{13}O_3N_3$, HO·NH·N·CH3 HO·N:C NH·C·CH3 Formel III bezw. IV, bezw. weitere desmotrope Formen. B. Beim Erhitzen von 4.6-Dioxy-2-methyl-pyridin-carbonsäure-(5)-äthylester mit überschüssigem Hydroxylamin in wäßrig-alkoholischer Lösung (Knoevenagel, Fries, B. 31, 771).— Krystalle (aus Alkohol). Verkohlt bei 245—255°, ohne zu schmelzen. Unlöslich in Äther, Chloroform und Benzol, schwer löslich in heißem Alkohol und kaltem Eisessig.

VIII. Hydrazine.

A. Hydrazinoderivate der Stammkerne.

1. Monohydrazine $C_n H_{2n-3} N_3$.

1. 3-Hydrazino-pyridin, β -Pyridylhydrazin $C_5H_7N_3$, s. nebenstehende Formel.

Benzal - β - pyridylhydrazin, Benzaldehyd - β - pyridylhydrazon $C_{12}H_{11}N_3=NC_5H_4\cdot NH\cdot N$: $CH\cdot C_6H_5$. B. Man diazotiert 3-Amino-pyridin, behandelt mit Natriumsulfit und reduziert die erhaltene Diazosulfonsäure mit Zinkstaub und Eisessig; das mit Hilfe von Salzsäure abgespaltene salzsaure Pyridylhydrazin schüttelt man mit Benzaldehyd in Gegenwart von Natriumacetat (Mohr, B. 31, 2496). — Terrakotta- bis fleischfarbene Nadeln (aus verd. Alkohol). F: 163—164°.

- 2. 4-Hydrazino-2.6-dimethyl-pyridin, γ -Hydrazino-NH·NH₂ $\alpha.\alpha'$ -lutidin, [2.6-Dimethyl-pyridyl-(4)]-hydrazin $C_7H_{11}N_3$, s. nebenstehende Formel. B. Durch 2-stdg. Erhitzen von 4-Chlor-2.6-di-CH₃ CH₃ methyl-pyridin mit der dreifachen Menge Hydrazinhydrat auf 150° (MARCK-WALD, IFFLAND, B. 31, 2497). Krystalle (aus Benzol). F: 115—116°; leicht löslich in Alkohol und heißem Wasser, schwer in Ather, Ligroin und kaltem Benzol (M., I.). $C_7H_{11}N_3$ + HCl. Ziemlich schwer löslich in kaltem Wasser (M., Rudzik, B. 36, 1117). $C_7H_{11}N_3$ + H_2SO_4 . Krystalle. Leicht löslich in Wasser, schwer in Alkohol (M., R.). Pikrat $C_7H_{11}N_3$ + $C_6H_3O_7N_3$. Gelbe Krystalle. F: 211°. Sehr schwer löslich (M., R.).
- 4 Phenylhydrazino 2.6 dimethyl pyridin, N Phenyl N' [2.6 dimethyl-pyridyl-(4)]-hydrazin $C_{13}H_{15}N_3 = NC_5H_2(CH_3)_2 \cdot NH \cdot NH \cdot C_6H_5$. B. Aus 4-Chlor-2.6-dimethyl-pyridin und Phenylhydrazin bei 150° (Marckwald, Rudzik, B. 36, 1118). Krystalle (aus Chloroform), die bei 160° sintern und bei 172—180° schmelzen. Leicht löslich in Alkohol, Aceton und heißem Chloroform, schwer in Benzol. Wird durch Kochen in alkoh. Lösung mit gelbem Quecksilberoxyd in 4-Benzolazo-2.6-dimethyl-pyridin übergeführt. Bleibt beim Kochen mit Zinkstaub in salzsaurer Lösung fast unverändert. Wird von siedender Jodwasserstoffsäure in Anilin und 4-Amino-2.6-dimethyl-pyridin gespalten. $C_{13}H_{16}N_3 + HCl$. Krystalle (aus Alkohol). F: 262°. Ziemlich löslich in Wasser, sehr schwer in kaltem Alkohol und in Salzsäure. $2C_{13}H_{16}N_3 + 2HCl + PtCl_4$. Hellgelber, krystallinischer Niederschlag. Sehr schwer löslich in Wasser und Alkohol.

2.6-Dimethyl-pyridon-(4)-phenylhydrazon, Lutidon-phenylhydrazon C₁₃H₁₅N₃, s. nebenstehende Formel, s. Bd. XXI, S. 275.

Benzal - [2.6 - dimethyl - pyridyl - (4)] - hydrazin, Benzaldehyd-[2.6 - dimethyl-pyridyl - (4) - hydrazon] $C_{14}H_{15}N_3 = NC_5H_3(CH_3)_5 \cdot NH$. N:CH·C₆H₅. B. Aus [2.6-Dimethyl-pyridyl-(4)]-hydrazin und Benzaldehyd (Marckwald, Rudzik, B. 36, 1117). — Krystalle (aus Benzol), die gegen 213° sintern und bei 220—224° unter Zersetzung schmelzen. Leicht löslich in Alkohol, schwer in Wasser, Äther und kaltem Benzol. — $C_{14}H_{15}N_3 + HCl$. Krystalle. Leicht löslich in heißem Wasser und Alkohol. — $C_{14}H_{15}N_3 + HNO_3$. F: 232°. Sehr schwer löslich in verd. Salpetersäure.

1-[2.6-Dimethyl-pyridyl-(4)]-semicarbasid $C_8H_{12}ON_4 = NC_5H_2(CH_3)_2 \cdot NH \cdot NH \cdot CO \cdot NH_2$. B. Aus salzsaurem [2.6-Dimethyl-pyridyl-(4)]-hydrazin und Kaliumeyanat in wäßr. Lösung (M., R., B. 36, 1117). — Krystalle. F: 268—269° (Zers.). Schwer löslich in kaltem Wasser. — $2C_8H_{12}ON_4 + 2HCl + PtCl_4$. Gelber Niederschlag. Schwer löslich.

4-Phenyl-1-[2.6-dimethyl-pyridyl-(4)]-thiosemicarbasid $C_{14}H_{16}N_4S=NC_5H_2(CH_2)_2$ · NH·NH·CS·NH·C₆H₅. B. Aus [2.6-Dimethyl-pyridyl-(4)]-hydrazin und Phenylsenföl in Alkohol (M., R., B. 36, 1117). — Krystalle. F: 199°. Leicht löslich in heißem Alkohol. — Pikrat $C_{14}H_{16}N_4S+C_6H_3O_7N_3$. Gelbe Krystalle. Sehr schwer löslich.

2. Monohydrazine $C_n H_{2n-9} N_3$.

1. Hydrazine $C_9H_9N_3$.

1. 2 - Hydrazino - chinolin, [Chinolyl - (2)] - hydrazin

C₉H₉N₃, s. nebenstehende Formel. B. Neben 2.2'-Hydrazochinolin durch
6-stündiges Erhitzen von 2-Chlor-chinolin mit der 4-fachen Menge Hydrazinhydrat auf 140° (MARCEWALD, MEYER, B. 33, 1885). — Krystalle (aus Benzol). F: 134° bis 135°. Leicht löslich in Alkchol, schwer in Äther und Ligroin. — Beim Kochen mit wasserfreier Ameisensäure entsteht Naphtriazol (Formel I;
Syst. No. 3811). Wird von salpetriger Säure in Naphtetrazol (Formel II; Syst. No. 4024) übergeführt.

— 2C₉H₉N₃ + 2 HCl + PtCl₄. Krystallinischer Niederschlag. F: 170° (Zers.). — Pikrat C₉H₉N₃ + C₆H₃O₇N₃.

F: 187° (Zers.). Sehr schwer löslich.

2-Phenylhydrasino-chinolin, N-Phenyl-N'-[chinolyl-(2)]-hydrasin $C_{15}H_{15}N_3 = NC_9H_6\cdot NH\cdot NH\cdot C_6H_5$. B. Beim Erhitzen von 2-Chlor-chinolin mit Phenylhydrazin (EPHRAIM, B. 24, 2818). — Nadeln (aus Alkohol). Unbeständig. F: 191°. Fast unlöslich in Äther, schwer löslich in Alkohol, leicht in Chloroform und Eisessig. — Geht bei der Oxydation mit Eisenchlorid in Eisessig in 2-Benzolazo-chinolin über. Liefert beim Erhitzen mit Jodwasserstoffsäure und rotem Phosphor auf 180° 2-Amino-chinolin und Anilin.

2-Phenylhydrasino-chinolin-hydroxymethylat $C_{16}H_{17}ON_3 = (HO)(CH_3)NC_9H_6 \cdot NH \cdot NH \cdot C_9H_5 \cdot Salze s.$ unter N-Methyl- α -chinolon-phenylhydrazon, Bd. XXI, S. 306.

Benzal-[chinolyl-(2)]-hydrazin, Benzaldehyd-[chinolyl-(2)-hydrazon] $C_{16}H_{18}N_3=NC_9H_6\cdot NH\cdot N:CH\cdot C_6H_5$. B. Beim Erwärmen von [Chinolyl-(2)]-hydrazin und Benzaldehyd in wenig Alkohol (MARCEWALD, MEYER, B. 33, 1886). — Gelbe Krystalle (aus Alkohol). F: 151°. Leicht löslich. — $2C_{16}H_{18}N_3+H_2Cr_2O_7$. Grünlichgelber, krystallinischer Niederschlag. F: 220° (Zers.). — $2C_{16}H_{18}N_3+2HCl+PtCl_4$. Krystalle. F: 185—186°. Schwer löslich. — Pikrat $C_{16}H_{18}N_3+C_9H_9O_7N_3$. F: 198°.

Oxalsäure-äthylester- $\{\beta$ -[chinolyl-(2)]-hydraxid $\}$, N-Äthoxalyl-N'-[chinolyl-(2)]-hydraxin $C_{13}H_{13}O_3N_3=NC_9H_6\cdot NH\cdot NH\cdot CO\cdot CO_3\cdot C_3H_5$. B. Beim Aufbewahren eines Gemisches von [Chinolyl-(2)]-hydrazin und Oxalsäurediäthylester mit Alkohol in der Kälte (Ma., Mey., B. 83, 1886). — Krystalle. F: 174—175°. Leicht löslich in heißem Alkohol.

Oxalsäure-bis- $\{\beta$ -[chinolyl-(2)]-hydrazid $\}$ $C_{20}H_{16}O_{2}N_{6}=[NC_{9}H_{6}\cdot NH\cdot NH\cdot CO-]_{2}$. B. Durch Erhitzen von [Chinolyl-(2)]-hydrazin mit Oxalsäure-diäthylester auf 150° (Ma., Mey., B. 33, 1887). — Krystallinisches Pulver. F: 251°. Schwer löslich.

1-[Chinolyl-(2)]-semicarbasid $C_{10}H_{10}ON_4 = NC_9H_6 \cdot NH \cdot NH \cdot CO \cdot NH_9$. B. Bei kurzem Erwärmen von salzsaurem [Chinolyl-(2)]-hydrazin und Kaliumcyanat in Wasser (Ma., Mey., B. 33, 1887). — Krystalle (aus Wasser). F: 202°. Löslich in heißem Wasser. — $2C_{10}H_{10}ON_4 + 2HCl + PtCl_4$. Dunkelgelber, krystallinischer Niederschlag. — Pikrat $C_{10}H_{10}ON_4 + C_6H_9O_7N_9$. F: 189°. Schwer löslich.

4-Phenyl-1-[chinolyl-(2)]-thiosemicarbasid C₁₆H₁₄N₄S = NC₆H₆·NH·NH·CS·NH·C₆H₈. B. Die wasserhaltige Verbindung entsteht aus [Chinolyl-(2)]-hydrazin und Phenylsenföl in Alkohol, die wasserfreie in trocknem Benzol (Ma., Mey., B. 33, 1887). — Blaßgelbe Krystalle mit 1 H₂O (aus Alkohol) vom Schmelzpunkt 106°; dunkelgelbe, wasserfreie Krystalle (aus trocknem Benzol), die bei 144° unscharf schmelzen. Die wasserhaltige Verbindung verliert bei 100° das Wasser, geht aber beim Aufbewahren an der Luft oder beim Umkrystallisieren aus 95% gigem Alkohol wieder in das Hydrat über. Das Hydrat ist leicht löslich in Alkohol. — Spaltet beim Erhitzen auf 150° Anilin ab und geht in Naphtriazolylmercaptan (s. nebenstehende Formel; Syst. No. 3878) über. — Pikrat C₁₆H₁₆N₄S + C₆H₂O₇N₃. Gelbe Krystalle. F: 168—169°. Schwer löslich in Wasser und Alkohol.

N.N'-Di-[chinolyl-(2)]-hydrazin, 2.2'-Hydrazochinolin $C_{18}H_{14}N_4=[NC_9H_6\cdot NH-]_2$. B. Neben [Chinolyl-(2)]-hydrazin beim Erhitzen von 2-Chlor-chinolin mit Hydrazin auf 140° (Ma., Mey., B. 33, 1894). Durch Reduktion von 2.2'-Azochinolin mit Zinkstaub und Essigsäure (Ma., Mey.). — Gelbe Krystalle (aus Essigsäure). F: 229°. — Liefert beim Kochen der salzsauren Lösung mit Zinkstaub 2-Amino-chinolin. Wird beim Einleiten von nitrosen Gasen in die essigsaure Lösung zu 2.2'-Azochinolin oxydiert. — $C_{18}H_{14}N_4+2C_6H_3O_7N_3$. Gelbe Krystalle. F: 244° (Zers.).

2. **5-Hydrazino-chinolin**, [Chinolyl-(5)]-hydrazin C₉H₉N₃, s. H₂N·NH nebenstehende Formel. B. Man diazotiert 5-Amino-chinolin in Salzsäure und reduziert sodann mit Zinnchlorür und Salzsäure (Duffon, Soc. 61, 785). — Gelbe Nadeln (aus Wasser). F: 150—151°. Unlöslich in Petroläther, schwer löslich in Benzol, leicht in Alkohol. — Bis-hydrochlorid. Gelbe Nadeln. Bräunt sich bei 225° und schmilzt bei 248°.

Isopropyliden-[chinolyl-(5)]-hydrazin, Aceton-[chinolyl-(5)-hydrazon] $C_{13}H_{13}N_3 = NC_9H_6 \cdot NH \cdot N : C(CH_3)_2$. B. Aus [Chinolyl-(5)]-hydrazin und Aceton (D., Soc. 61, 787). — Gelbbraune Prismen (aus Alkohol). F: 138—140°.

Benzal-[chinolyl-(5)]-hydrazin, Benzaldehyd-[chinolyl-(5)-hydrazon] $C_{16}H_{18}N_3 = NC_0H_6\cdot NH\cdot N:CH\cdot C_6H_5$. B. Aus [Chinolyl-(5)]-hydrazin und Benzaldehyd (D., Soc. 61, 788). — Braune Würfel (aus Alkohol). F: 194°.

1-[Chinolyl-(5)]-semicarbazid $C_{10}H_{10}ON_4=NC_9H_6\cdot NH\cdot NH\cdot CO\cdot NH_2$. B. Aus [Chinolyl-(5)]-hydrazin und Kaliumcyanat in Wasser (D., Soc. 61, 786). — Prismen mit 1H_2O (aus Alkohol). Verliert bei $^1OO^0$ das Krystallwasser. Zersetzt sich bei $^1OO^0$.

Brenztraubensäure - [chinolyl-(5)-hydrazon] C₁₂H₁₁O₂N₃ = NC₀H₆·NH·N:C(CH₃)·CO₂H. B. Aus [Chinolyl-(5)]-hydrazin und Brenztraubensäure in Wasser Ho₂C·C—NH (D., Soc. 61, 786). — Hellrote, wasserhaltige Krystalle, die unter Wasserverlust gelb werden. F: 185°. — Liefert beim Kochen mit konz. Salzsäure die Verbindung der nebenstehenden Formel (Syst. No. 3649).

3. 6-Hydrazino-chinolin. [Chinolyl-(6)]-hydrazin C₉H₉N₃, H₂N·NH·S. nebenstehende Formel. B. Bei der Reduktion der aus 6-Amino-chinolin erhältlichen Diazoverbindung mit Zinnehlorür und Salzsäure (KNUEPPEL, A. 310, 82). — Das freie Hydrazin krystallisiert nicht und verharzt leicht. — C₉H₉N₃ + HCl. Krystalle (aus verd. Alkohol).

Bensal-[chinolyl-(6)]-hydrazin, Bensaldehyd-[chinolyl-(6)-hydrazon] $C_{16}H_{13}N_3 = NC_0H_6 \cdot NH \cdot N : CH \cdot C_6H_5$. B. Aus salzsaurem [Chinolyl-(6)]-hydrazin, Benzaldehyd und Natriumacetat in wäßriger Lösung (Kn., A. 310, 83).— Gelbrote Nadeln (aus Wasser), rubinrote, würfelförmige Krystalle (aus Alkohol). F: 203°.

1-[Chinolyl-(6)]-semicarbasid $C_{10}H_{10}ON_4 = NC_9H_6\cdot NH\cdot NH\cdot CO\cdot NH_2$. B. Aus salz-saurem [Chinolyl-(6)]-hydrazin und Kaliumcyanat in wäßr. Lösung (Kn., A. 310, 83). — Nadeln (aus Alkohol). F: 234°.

Brenstraubensäure -[chinolyl-(6) - hydrazon] $C_{13}H_{11}O_2N_3 = NC_0H_6 \cdot NH \cdot N : C(CH_3) \cdot CO_2H$. B. Aus salzsaurem [Chinolyl-(6)]-hydrazin und Brenztraubensäure bei Gegenwart von Natriumacetat in wäßr. Lösung (Kn., A. 310, 84). — Hellgelbes Krystallpulver. F: 189°. Unlöslich in Wasser und Alkohol. — $C_{12}H_{11}O_2N_3 + HCl$. Orangerote Nadeln (aus Alkohol). F: 201°.

4. 8-Hydrazino-chinolin, [Chinolyl-(8)]-hydrazin C₉H₉N₃, s. nebenstehende Formel. B. Beim Behandeln von diazotiertem 8-Amino-chinolin mit Zinnehlorür und Salzsäure (Dufton, Soc. 59, 757). — Nadeln. F: 64°. — H₂N·NH C₉H₉N₃ + 2HCl. Gelbe Prismen.

1-[Chinolyl-(8)]-semicarbaxid $C_{10}H_{10}ON_4 = NC_9H_6\cdot NH\cdot NH\cdot CO\cdot NH_9$. B. Durch Fällen von salzsaurem [Chinolyl-(8)]-hydrazin mit Kaliumcyanat in wäßr. Lösung (D., Soc. 59, 758). — Blättchen (aus Alkohol). F: 235° (Zers.).

Brenstraubensäure-[chinolyl-(8)-hydrason] $C_{12}H_{11}O_2N_3 = NC_9H_4\cdot NH\cdot N:C(CH_3)\cdot CO_9H$. B. Das Hydrochlorid scheidet sich beim Vermischen einer wäßr. Lösung von salzsaurem [Chinolyl-(8)]-hydrazin mit Brenztraubensäure aus; man zerlegt es durch Natriumacetat (D., Soc. 59, 758). — Hellgelb. F: 174°. Liefert beim Kochen mit konz. Salzsäure die Verbindung nebenstehender Formel (Syst. No. 3649).

2. Hydrazine $C_{10}H_{11}N_3$.

- 1. 4-Hydrazino-2-methyl-chinolin, 4-Hydrazino-chinaldin, [2-Methyl-chinolyl-(4)]-hydrazin C₁₀H₁₁N₃, s. nebenstehende Formel¹). B. Durch 5-stündiges Erhitzen von 4-Chlor-chinaldin mit dem 3-fachen Gewicht Hydrazinhydrat auf 150° (MARCKWALD, CHAIN, B. 33, 1898). Sternförmige Aggregate (aus Wasser). F: 117—118°. Leicht löslich in Alkohol, Äther und heißem Benzol. C₁₀H₁₁N₃ + HCl. B. Durch Eindampfen einer salzsauren Lösung von 4-Hydrazino-chinaldin (M., CH.). Krystalle. C₁₀H₁₁N₃ + 2 HCl. B. Durch Fällen einer alkoh. Lösung des Hydrazins mit konz. Salzsäure (M., CH.). Krystalle. Geht bei 100° sofort, beim Aufbewahren über Kali langsam in das HCl-ärmere Salz über.
- 4-Phenylhydrazino-2-methyl-chinolin, N-Phenyl-N'-[2-methyl-chinolyl-(4)]-hydrazin $C_{16}H_{15}N_3 = NC_9H_5(CH_3)\cdot NH\cdot NH\cdot C_6H_5$. B. Beim Erhitzen von 4-Chlor-chinaldin mit Phenylhydrazin auf 115° (EPHRAIM, B. 26, 2227). Krystalle (aus Benzol). F: 134° bis 135°. Wird von Zinkstaub und Salzsäure in Anilin und 4-Amino-chinaldin gespalten.

Benzal-[2-methyl-chinolyl-(4)]-hydrazin, Benzaldehyd-[2-methyl-chinolyl-(4)-hydrazon] $C_{17}H_{15}N_3 = NC_9H_5(CH_3)\cdot NH\cdot N:CH\cdot C_6H_5$. B. Aus [2-Methyl-chinolyl-(4)]-hydrazin und Benzaldehyd in Alkohol (Marckwald, Chain, B. 33, 1899). — Gelbliche Krystelle. F: 161—162°. Leicht löslich in heißem Alkohol. — Pikrat $C_{17}H_{15}N_3+C_6H_3O_7N_3$. F: 130°.

4-Phenyl-1-[2-methyl-chinolyl-(4)]-thiosemicarbazid $C_{17}H_{16}N_4S = NC_9H_5(CH_3)$ · $NH \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Aus [2-Methyl-chinolyl-(4)]-hydrazin und Phenylsenföl in Alkohol (M., Ch., B. 33, 1899). — F: 139°. Leicht löslich in heißem Alkohol.

Brenztraubensäure-[2-methyl-chinolyl-(4)-hydrazon] $C_{13}H_{13}O_{2}N_{3} = NC_{9}H_{5}(CH_{3})\cdot NH\cdot N:C(CH_{3})\cdot CO_{2}H$. B. Aus essigsaurem [2-Methyl-chinolyl-(4)]-hydrazin und Brenztraubensäure in wäßr. Lösung (M., Ch., B. 33, 1899). — Gelbliche Krystalle. F: 197°. Leicht löslich in heißem Alkohol.

- 2. 2 Hydrazino 4 methyl chinolin, 2 Hydrazino CH3
 lepidin, [4-Methyl-chinolyl-(2)]-hydrazin C₁₀H₁₁N₃, s. nebenstehende Formel. B. Durch 5-stündiges Erhitzen von 2-Chlor-lepidin mit der 5-fachen Menge Hydrazinhydrat auf 150° (MARCKWALD, CHAIN, B.

 33, 1895). Krystalle (aus Wasser). F: 145—147°. Sehr leicht löslich in heißem Alkohol und Benzol. C₁₀H₁₁N₃ + HCl. Krystalle. Schwer löslich in kaltem Wasser und konz. Salzsäure. 2C₁₀H₁₁N₃ + 2HCl + PtCl₄. Gelbe Krystalle.
- 2-Phenylhydragino-4-methyl-chinolin, N-Phenyl-N'-[4-methyl-chinolyl-(2)]-hydragin $C_{1e}H_{1e}N_3 = NC_eH_6(CH_g)\cdot NH\cdot NH\cdot C_eH_5$. B. Beim Erhitzen von 2-Chlor-lepidin mit Phenylhydrazin (EPHRAIM, B. 25, 2706). Nadeln (aus Alkohol). F: 1970. Zerfällt beim Kochen mit Jodwasserstoffsäure und Phosphor in 2-Amino-lepidin und Anilin.

Benzal-[4-methyl-chinolyl-(2)]-hydrazin, Benzaldehyd-[4-methyl-chinolyl-(2)-hydrazon] $C_{17}H_{16}N_3=NC_9H_6(CH_2)\cdot NH\cdot N:CH\cdot C_6H_5$. B. Aus [4-Methyl-chinolyl-(2)]-hydrazin und Benzaldehyd in Alkohol (Marckwald, Chain, B. 33, 1896). — Krystalle. F: 150°. Leicht löslich in heißem Alkohol. — $2C_{17}H_{16}N_3+H_2Cr_2O_7$. Gelbe Krystalle.

- 1-[4-Methyl-chinolyl-(2)]-semicarbasid $C_{11}H_{12}ON_4 = NC_9H_5(CH_3)\cdot NH\cdot NH\cdot CO\cdot NH_2$. B. Aus salzsaurem [4-Methyl-chinolyl-(2)]-hydrazin und Kaliumcyanat in Wasser (M., Ch., B. 33, 1896). Gelbe Krystalle (aus viel Alkohol). F: 215°. Sehr schwer löslich.
- 4-Phenyl-1-[4-methyl-chinolyl-(2)]-thiosemicarbasid $C_{17}H_{16}N_4S=NC_9H_5(CH_3)\cdot NH\cdot NH\cdot CS\cdot NH\cdot C_6H_5$. B. Aus [4-Methyl-chinolyl-(2)]-hydrazin und Phenylsenföl in Alkohol (M., Ch., B. 33, 1896). Gelbe Krystalle. Leicht löslich in heißem Alkohol und Benzol. Spaltet beim Erhitzen auf 180° Anilin ab unter Bildung von Methylnaphtriazolylmercaptan (s. nebenstehende Formel; Syst. No. 3878).

Brenstraubensäure-[4-methyl-chinolyl-(2)-hydrason] $C_{13}H_{13}O_2N_3 = NC_0H_5(CH_0)\cdot NH\cdot N:C(CH_0)\cdot CO_2H$. B. Aus [4-Methyl-chinolyl-(2)]-hydrazin und Brenstraubensäure in sehr verd. Essigsäure (M., Ch., B. 33, 1896). — Krystalle mit $3H_0$ 0 (aus Essigsäure), die bei 105^0 wasserfrei werden und dann bei 215^0 schmelzen. Leicht löslich in heißem Alkohol.

N.N'-Bis-[4-methyl-chinolyl-(2)]-hydrasin, 4.4'-Dimethyl-[2.2'-hydrasochinolin], 2.2'-Hydrasolepidin $C_{20}H_{18}N_4=[NC_9H_5(CH_3)\cdot NH-]_2$. B. Durch Erhitzen von 2-Chlor-lepidin mit Hydrazinhydrat oder [4-Methyl-chinolyl-(2)]-hydrazin (MARCKWALD,

¹⁾ Koenigs, v. Loesch, J. pr. [2] 143 [1935], 59 halten diese Verbindung für ein Diaminochinaldin.

Chain, B. 83, 1897). Durch Kochen von 2.2'-Azolepidin mit Salzsäure (M., Ch.). — Gelbe Krystalle (aus sehr verd. Essigsäure). F: 265—270°. Sehr schwer löslich. — Liefert bei Behandlung mit Zinkstaub und Salzsäure 2-Amino-lepidin. Wird von nitrosen Gasen zu 2.2'-Azolepidin oxydiert. — $C_{20}H_{18}N_4+2HCl$. Nadeln. Schwer löslich in kaltem Wasser unter teilweiser Hydrolyse.

3. Monohydrazine $C_n H_{2n-13} N_3$.

3-Hydrazino-carbazol, [Carbazolyl-(3)]-hydrazin \bigcap_{NH} \bigcap_{NH}

N-[Carbazolyl-(3)]-hydrazin-N'-sulfonsäure $C_{12}H_{11}O_3N_3S=NC_{12}H_8\cdot NH\cdot NH\cdot SO_3H$. B. Man erhält das Natriumsalz durch Reduktion des entsprechenden carbazoldiazosulfonsauren Salzes mit Natriumamalgam bei höchstens 30° (Ruff, Stein, B. 34, 1682). — Na $C_{12}H_{10}O_3N_3S$. Gelbe Krystalle (aus Wasser). Schwer löslich in Wasser, unlöslich in Alkohol.

4. Monohydrazine $C_n H_{2n-15} N_3$.

2-Hydrazino-4-methyl-5.6-benzo-chinolin, 2-Hydrazino-5.6-benzo-lepidin $C_{14}H_{13}N_3$, s. nebenstehende Formel.

2-Phenylhydrazino-4-methyl-5.6-benzo-chinolin (,, Naphthophenylhydrazochinaldin") $C_{20}H_{17}N_3 = NC_{13}H_7(CH_3)\cdot NH\cdot NH\cdot C_6H_5$. B. Beim Erhitzen von 2-Chlor-5.6-benzo-lepidin (Bd. XXI, S. 472) mit Phenylhydrazin (Éphraim, B. 25, 2708). — Blaßgelbe, unbeständige Krystalle (aus Benzol). F: 189°.

5. Monohydrazine $C_n H_{2n-17} N_3$.

1-Hydrazino-3-phenyl-isochinolin $C_{15}H_{13}N_3$, s. nebenstehende Formel.

1-Phenylhydrazino-3-phenyl-isochinolin $C_{21}H_{17}N_3 = NC_9H_5(C_6H_5)$:

NH·NH·C₆H₅. B. Beim Erhitzen von 1-Chlor-3-phenyl-isochinolin mit

Phenylhydrazin auf 140° (ЕРНГАІМ, B. 25, 2709). — Nadeln (aus Alkohol). F: 185°.

B. Oxy-hydrazine.

1. Hydrazinoderivate der Monooxy-Verbindungen.

4 - Phenylhydrazino - 6 - oxy - 2 - methyl - pyridin, γ - Phenylhydrazino- α' -oxy- α -picolin $C_{12}H_{13}ON_3$, s. nebenstehende Formel, bezw. desmotrope Formen. B. Beim Erwärmen von 4.6-Dioxy-2-methylpyridin mit Phenylhydrazin im Rohr (Sedgwick, Collie, Soc. 67, 411).

— Krystalle (aus Alkohol).

2. Hydrazinoderivate der Dioxy-Verbindungen.

4 - Phenylhydrazino - 2.6 - dioxy - pyri - NH·NH·C₆H₅

din bezw. 4 - Phenylhydrazono - 2.6 - dioxo - piperidin C₁₁H₁₁O₂N₃, Formel I bezw. II. I.

B. Bei der Einw. von Phenylhydrazin auf HO·N·OH OC NH·CO

2.4.6-Trioxy-pyridin (Stokes, v. Pechmann,

B. 19, 2705). Man kocht 4-Amino-2.6-dioxy-pyridin (Glutazin) mit Salzsäure und versetzt

sodann mit einer Lösung von Phenylhydrazin in Essigsäure und mit Natriumacetat (STOKES, v. PECHMANN, B. 19, 2705). — Tafeln (aus Alkohol). Schmilzt bei 230° unter Gasentwicklung. Schwer löslich in heißem Wasser und in kaltem Alkohol, leicht in heißem Alkohol; sehr schwer löslich in verd. Säuren.

C. Oxo-hydrazine.

D. Hydrazino-carbonsäuren.

Hydrazinoderivate der Monocarbonsäuren $C_n H_{2n-7} O_2 N$.

1. Hydrazinoderivate der Pyridin-carbonsäure-(3) $C_6H_5O_2N$ (S. 38).

6 - Hydrazino - pyridin - carbonsäure-(3), 6 - Hydrazino-nicotinsäure $C_6H_7O_2N_3$, Formel I. B. Durch Kochen ihres Hydrazids (s. u.) mit $25^0/_0$ iger Salzsäure (Marchald, Rudzik, B. 36, 1113). Eine weitere Bildung s. bei dem Hydrazid. — Krystalle (aus verd.

Essigsäure). F: 283°. Schwer löslich. — Liefert beim Erhitzen mit Salzsäure auf 150° 6-Oxynicotinsäure. Beim Kochen mit Ameisensäure entsteht die Verbindung der Formel II (Syst. No. 3902). Wird von salpetriger Säure in die Verbindung der Formel III (Syst. No. 4173) übergeführt. — 2C₆H₇O₂N₃+H₂SO₄. Ziemlich schwer löslich in Wasser.

Hydrasid $C_6H_9ON_5=NC_5H_3(CO\cdot NH\cdot NH_2)\cdot NH\cdot NH_2$. B. Durch Erhitzen von 6-Chlor-nicotinsäure mit $50^9/_0$ igem wäßr. Hydrazinhydrat auf $120-125^9$, neben kleinen Mengen der freien Säure (M., R., B. 36, 1111). — Krystalle mit 1 H_2O (aus verd. Essigsäure). F: 217—218°. Sehr schwer löslich. Wird nur schwer wasserfrei. — $C_6H_9ON_5+2HCl$. Krystalle. Leicht löslich in Wasser, schwer in Salzsäure und Alkohol. — Pikrat $C_6H_9ON_5+2C_6H_3O_7N_3$. Krystalle. F: 192—193° (Zers.). Schwer löslich in Alkohol und kaltem Wasser.

6-Benzalhydrazino-pyridin-carbonsäure-(3), 6-Benzalhydrazino-nicotinsäure $C_{13}H_{11}O_2N_3=NC_5H_3(CO_2H)\cdot NH\cdot N:CH\cdot C_6H_5.$ B. Aus 6-Hydrazino-nicotinsäure und Benzaldehyd (M., R., B. 36, 1114). — Gelb. F: 281° (Zers.). Schwer löslich.

Benzalhydrazid $C_{20}H_{17}ON_5 = NC_5H_3(CO \cdot NH \cdot N : CH \cdot C_6H_5) \cdot NH \cdot N : CH \cdot C_6H_5$. B. Beim Schütteln des Hydrazids mit Benzaldehyd in essigsaurer Lösung (M., R., B. 36, 1112). — Gelbe Krystalle. Schmilzt gegen 313°. Schwer löslich.

6-Cinnamalhydrazino-pyridin-carbonsäure-(3), 6-Cinnamalhydrazino-nicotinsäure $C_{15}H_{13}O_2N_3=NC_5H_3(CO_2H)\cdot NH\cdot N:CH\cdot CH:CH:CH\cdot C_6H_5$. B. Aus 6-Hydrazino-nicotinsäure und Zimtaldehyd (M., R., B. 36, 1114). — F: 263—264°.

Cinnamalhydrasid $C_{24}H_{21}ON_5 = NC_5H_3(CO \cdot NH \cdot N : CH \cdot CH : CH \cdot C_6H_5) \cdot NH \cdot N : CH \cdot CH : CH \cdot C_6H_5$. B. Aus dem Hydrazid und Zimtaldehyd in essigsaurer Lösung (M., R., B. 36, 1113). — F: 265°.

- 6 Semicarbazino pyridin carbonsäure (3), 6 Semicarbazino nicotinsäure $C_7H_8O_3N_4=NC_8H_8(CO_2H)\cdot NH\cdot NH\cdot CO\cdot NH_2$. B. Aus salzsaurer 6-Hydrazino-nicotinsäure und Kaliumcyanat in Wasser (M., R., B. 36, 1114). Krystalle. F: 277—278°. Schwer löslich in Wasser, leicht in heißem Alkohol. $C_7H_8O_3N_4+HCl$. Leicht löslich in Wasser, schwer in Alkohol und verd. Salzsäure.
- 6-[4-Phenyl-thiosemicarbasino]-pyridin-carbonsäure-(3)-[β -anilinothioformyl-hydrasid] $C_{50}H_{10}ON_7S_3 = NC_5H_3(CO \cdot NH \cdot NH \cdot CS \cdot NH \cdot C_6H_5) \cdot NH \cdot NH \cdot CS \cdot NH \cdot C_6H_5$. B. Durch Erwärmen einer Eisessig-Lösung von 6-Hydrazino-nicotinsäure-hydrazid mit Phenyl-

senföl (M., R., B. 36, 1113). — Gelbe Krystalle (aus verd. Essigsäure). F: 170—171°. Schwer löslich. — Pikrat C₂₀H₁₉ON₇S₂+C₆H₂O₇N₂. Krystalle (aus Essigsaure). F: 160—161°. Ziemlich leicht löslich in heißem Wasser und Alkohol.

2. Hydrazinoderivat der 2.6-Dimethyl-pyridin-carbonsäure-(3) C.H.O.N (S. 52).

 $NH \cdot NH_2$ 4 - Hydrazino -2.6 - dimethyl - pyridin - [carbonsäure - (3) - äthylester]-hydroxymethylat, γ -Hydrasino- $\alpha.\alpha'$ -lutidin- $[\beta$ -carbonsäure-äthylester] - hydroxymethylat $C_{11}H_{19}O_3N_3$, s. nebenstehende Formel. Das jodwasserstoffsaure Salz s. unter dem Hydrazon des 1.2.6-Tri-CH₃ methyl-pyridon-(4)-carbonsäure-(3)-äthylesters, S. 302. HO CH3

carbonsäure-(3), γ -Phenylhydrazino- α . α' -lutidin- β -carbonsäure bezw. Phenylhydrazon der 2.6 - Dimethyl - pyridon - (4) - carbonsäure - (3) $C_{14}H_{15}O_{2}N_{3}$, Formel I bezw. II. B. Beim Erhitzen 2.6-Dimethyl-pyridon-(4)-carbonsäure-(3)

C₁₄H₁₅O₂N₃, Formel I bezw. II. B. Beim Erhitzen

von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3) mit Phenylhydrazin (MICHAELIS. v. AREND, B. 36, 517) oder des Athylesters dieser Säure mit Phenylhydrazin (M., v. A.; M., A. 366, 359) in Alkohol auf 150° (M.) und Behandeln des Reaktionsprodukts mit heißem Wasser (M., v. A.). — Gelbes, krystallinisches Pulver (aus Alkohol), gelbe Nädelchen (aus alkal. Lösung + Essigsäure). F: 176—177° (Aufschäumen) (M., v. A.). Schwer löslich in Chloroform, Benzol, Eisessig und kaltem Wasser, leichter in Alkohol (M., v. A.). — Liefert bei längerem Erhitzen auf 130—140° die Verbindung der Formel III (Syst. No. 3875) (M., v. A.; M., A. 366. 360). Gibt beim Erhitzen mit Phosphoroxychlorid auf 120° die Verbindung der Formel IV

$$III. \underbrace{\begin{array}{c} HN-N\cdot C_6H_5 \\ CO \\ CH_3\cdot N \cdot CH_3 \end{array}}_{CH_3} \underbrace{\begin{array}{c} N-N\cdot C_6H_5 \\ V\cdot CH_3 \cdot N \cdot CH_3 \end{array}}_{CH_3\cdot N \cdot CH_3} \underbrace{\begin{array}{c} CH_3\cdot N\cdot -N\cdot C_6H_5 \\ V\cdot CH_3 \cdot N \cdot CH_3 \end{array}}_{CH_3\cdot N \cdot CH_3}$$

(Syst. No. 3805) (M., v. A.). Liefert beim Erhitzen mit Dimethylsulfat und Fällen der wäßr. Lösung des Reaktionsprodukts mit Natronlauge oder auch beim Aufbewahren mit Methyljodid in stark alkal. Lösung die Verbindung der Formel V (Syst. No. 3875) (M., A. 366, 387); beim Erhitzen mit überschüssigem Methyljodid auf dem Wasserbad oder auf 150° oder beim Erhitzen mit Dimethylsulfat und Behandeln des Reaktionsprodukts mit Kaliumjodid entsteht eine gelbe, bei 288° schmelzende Verbindung (Jodmethylat?) (M., A. 366. 362), die in wäßr. Lösung auf Zusatz von Natronlauge gleichfalls die Verbindung der Formel V liefert (M., A. 366, 387). — $C_{14}H_{15}O_2N_3 + HCl$. Braune Blättchen (aus Salzsäure). Schmilzt nicht bei 360°; schwer löslich in Wasser, leichter in verd. Alkohol (M., v. A.). — $2C_{14}H_{15}O_2N_3$ +2HCl+PtCl₄. Hellgelbe Nadeln. Zersetzt sich bei hoher Temperatur, ohne zu schmelzen (M., A. 366, 361).

Jodäthylat $C_{16}H_{20}O_2N_3I=C_{14}H_{15}O_2N_3+C_2H_5\cdot I.$ B. Beim Erhitzen von γ -Phenylhydrazino- $\alpha.\alpha'$ -lutidin- β -carbonsäure mit Äthyljodid auf dem Wasserbad (MICHAELIS, A. 366, 363). — Hellgelbe Nadeln (aus Alkohol + Äther). F: 218°. — Beim Fällen der wäßr. Lösung mit Natronlauge entsteht die Verbindung nebenstehender Formel (Syst.

 $\label{eq:Jodpropylat} \begin{array}{ll} \mbox{Jodpropylat C_{17}H$}_{22}\mbox{O}_2\mbox{N}_3\mbox{I} = \mbox{C}_{14}\mbox{H}_{15}\mbox{O}_2\mbox{N}_3 + \mbox{C}_3\mbox{H}_7\mbox{I}. \ B. \ \mbox{Analog dem Jodäthylat}\,(M.). - \mbox{Gelbe Nadeln. } \mbox{F: } 207^{\circ}. \end{array}$

Chlorbenzylat $C_{21}H_{22}O_2N_3Cl = C_{14}H_{15}O_2N_3 + C_7H_7Cl$. B. Analog dem Jodäthylat (M.). — Blättehen. F: 252°. Leicht löslich in Wasser und Alkohol.

Bromphenacylat $C_{22}H_{22}O_3N_3Br = C_{14}H_{15}O_2N_3 + C_6H_5 \cdot CO \cdot CH_2Br$. B. Beim Erhitzen von γ -Phenylhydrazino- α -d'-lutidin- β -carbonsäure mit Phenacylbromid in Alkohol auf dem Wasserbad (M., A. 366, 364). — Prismen (aus Wasser und Alkohol). F: 288°. Leicht löslich in Wasser und Alkohol.

4-Phenylhydrazino-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester, γ -Phenylhydrazino- $\alpha.\alpha'$ -lutidin- β -carbonsäure-äthylester $C_{16}H_{19}O_2N_3=NC_5H(CH_3)_2(CO_2\cdot C_2H_5)\cdot NH\cdot NH\cdot C_6H_5$. B. Bei 3—4-stdg. Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester mit Phenylhydrazin auf dem Wasserbad (Michaells, A. 366, 361). — Prismen (aus Äther). F: 141°. Leicht löslich in Alkohol und warmem Äther. — Beim Erwärmen der alkoh. Lösung mit gelbem Quecksilberoxyd entsteht γ -Benzolazo- $\alpha.\alpha'$ -lutidin-carbonsäure-äthylester. äthylester.

4-Phenylhydrazino-2.6- dimethyl - pyridin - [carbonsäure-(3)äthylester]-hydroxymethylat, γ-Phenylhydrasino-α.α'-lutidin-[β-carbonsäure-äthylester]-hydroxymethylat C₁₇H₂₂O₃N₃, s. neben-stehende Formel. Das jodwasserstoffsaure Salz s. unter dem Phenylhydrazon des 1.2.6 - Trimethyl - pyridon - (4) - carbonsäure - (3) - äthylesters, S. 302.

4-0-Tolylhydrasino-2.6-dimethyl-pyridin-carbonsäure-(8)-äthylester, γ -0-Tolylhydrasino- α . α' -lutidin- β -carbonsäure-äthylester $C_{17}H_{21}O_2N_3 = NC_5H(CH_3)_2(CO_2 \cdot C_2H_5)$. NH·NH· $C_6H_4 \cdot CH_3$. B. Beim Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester mit o-Tolylhydrazin (MICHAELIS, A. 366, 375). — Blättehen (aus verd. Alkohol). F: 108°. Unlöslich in Wasser, löslich in Alkohol. — Leitet man in die durch Verseifung des Esters mit Alkali erhaltene Lösung
Kohlendioxyd, so entsteht die Verbindung der Formel I (Syst. No. 3875). I.

Liefert beim Erhitzen mit Phosphoroxy
CH3

HN—N·C6H4·CH3

N—N·C6H4·CH3

II.

CH3

CH3

CH3 chlorid auf 150° die Verbindung der Formel II (Syst. No. 3805) (M., A. 366, 405).

4-p-Tolylhydrazino-2.6-dimethyl-pyridin-carbonsäure-(3), γ -p-Tolylhydrazino- $\alpha.\alpha'$ -lutidin - β - carbonsäure $C_{16}H_{17}O_2N_3 = NC_6H(CH_3)_2(CO_2H)\cdot NH\cdot NH\cdot C_6H_4\cdot CH_3$. Beim Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester mit p-Tolyl-hydrazin und Behandeln des Reaktionsprodukts mit Wasser (M., A. 366, 372). — Gelbes Warntellander (M., A. 366, 372). Krystallpulver (aus Alkohol oder aus Natronlauge durch Essigsaure). F: 283°. Unlöslich Phosphoroxychlorid die Verbindung nebenstehender Formel (Syst. No. 3805) (M., A. 386, 401). — Silbersalz. Hellgelber Niederschlag. — $C_{15}H_{17}O_2N_3 + HCl + H_2O$. Blaßgelbe Nadeln. F: 270°. Leicht C_{H_3} CH₃ löslich in Wasser und Alkohol; schwer löslich in Salzsäure. — $C_{15}H_{17}O_2N_3 + HgCl_2$. Nadeln. F: 131°. — $2C_{15}H_{17}O_2N_3 + 2HCl + PtCl_4$. Gelbbraune Nadeln (aus verd. Salzsäure). Zersetzt sich bei hoher Temperatur, ohne zu schmelzen. in Wasser, löslich in heißem Alkohol. — Liefert beim Erhitzen mit

Jodmethylat $C_{18}H_{20}O_2N_3I=C_{15}H_{17}O_2N_3+CH_3I$. B. Beim Erhitzen der obigen Säure mit überschüssigem Methyljodid auf dem Wasserbad (M., A. 366, 374). — Hellgelbe Blättchen (aus Alkohol + Ather). F: 236°. Leicht löslich in Alkohol, etwas schwerer in Wasser. — Liefert beim Behandeln mit Natronlauge die Verbindung nebenstehender Formel CH3 (Syst. No. 3875) (M., A. 366, 395).

- 4-p-Tolylhydrazino-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester, γ -p-Tolylhydrazino- $\alpha.\alpha'$ -lutidin- β -carbonsäure-äthylester C_1 , $H_{21}O_2N_3=NC_3H(CH_3)_2(CO_2\cdot C_2H_5)$. NH·NH· $C_6H_4\cdot CH_3$. B. Beim Erhitzen des Silbersalzes der γ -p-Tolylhydrazino- $\alpha.\alpha'$ -lutidin- β -carbonsäure mit Äthyljodid auf 100° (M., A. 366, 373). — Blaßgelbe Nadeln (aus verd. Alkohol). F: 154°. Unlöslich in Wasser.
- 4- β -Naphthylhydrazino-2.6-dimethyl-pyridin-carbonsäure-(3), γ -Naphthylhydrazino- $\alpha\alpha'$ -lutidin- β -carbonsäure- $C_{18}H_{17}O_3N_3=NC_5H(CH_3)_2(CO_2H)\cdot NH\cdot NH\cdot C_{16}H_7$. B. Beim Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester mit β -Naphthylhydrazin und Behandeln des Reaktionsprodukts mit Wasser (M., A. 366, 377). — Gelbe Nadeln mit 1C₂H₆O (aus Alkohol). F: 288°. — Liefert beim Erhitzen mit Phosphoroxychlorid auf 120° die Verbindung nebenstehender Formel (Syst. No. 3805) (M., A. 366, 396, 406). — C₁₈H₁₇O₂N₃

 CH₃

 CH₃

 CH₃ + HCl. Schwer löslich in verd. Salzsäure.
- 4-[β -(2-Carboxy-phenyl)-hydraxino]-2.6-dimethyl-pyridin-carbonsäure-(3), γ -[β -(2-Carboxy-phenyl)-hydraxino]- α . α' -lutidin- β -carbonsäure $C_{18}H_{18}O_4N_3=NC_5H(CH_3)_8(CO_2H)\cdot NH\cdot NH\cdot C_6H_4\cdot CO_3H$. B. Beim Kochen der Verbindung nebenstehender Formel (Syst. No. 3888) mit 10^0 /oiger Natronlauge (M., A. 366, 368). Gelbe Nadeln (aus Wasser). Schmilzt bei 285^0 unter Übergang in die Ausgangsverbindung. Schwer löslich in Wasser, unlöslich in Alkohol und Ather. $NaC_{15}H_{14}O_4N_3+2H_2O$. Hellgelbe Nadeln. Leicht löslich in Wasser, schwer in Alkohol. $AgC_{15}H_{14}O_4N_3$. Blaßgelber, unlöslicher Niederschlag. $Ba(C_{15}H_{14}O_4N_3)_2$. Gelbe Nadeln (aus Wasser). $C_{15}H_{15}O_4N_3+HCl$. Hellgraue Nadeln. Leicht löslich in Wasser, schwer in Alkohol. $2C_{15}H_{15}O_4N_3+2HCl+PtCl_4$. Goldgelbe Blättchen. Leicht löslich in Alkohol, schwer in Wasser. **4** - [β - (**2** - Carboxy - phenyl) - hydrazino] - **2**.6 - dimethyl - pyridin-carbonsäure-(**3**), schwer in Wasser.

Jod methylat $C_{16}H_{18}O_4N_3I=C_{15}H_{15}O_4N_3+CH_3I$. B. Beim Erhitzen der obigen Säure mit Methyljodid auf 100° (M., A. 366, 370). — Nadeln (aus Alkohol). F: 211°. Sehr leicht löslich in Wasser, schwer in Alkohol.

4 - [β - (2 - Carbäthoxy - phenyl) - hydrazino] - 2.6 - dimethyl - pyridin - carbon-säure - (3), γ - [β - (2 - Carbäthoxy - phenyl) - hydrazino] - α . α' - lutidin - β - carbonsäure $C_{17}H_{19}O_4N_3 = NC_5H(CH_3)_2(CO_2H)\cdot NH\cdot NH\cdot C_6H_4\cdot CO_2\cdot C_2H_5$. B. Aus dem Silbersalz der γ - [β - (2 - Carboxy - phenyl) - hydrazino] - α . α' - lutidin- β -carbonsäure und Äthyljodid (Michaelis, A. 366, 369). — Gelbe Nädelchen (aus verd. Alkohol). Schmilzt bei 285° unter Bildung der Verbindung nebenstehender Formel (Syst. No. 3888). Schwer löslich in Alkohol.

4-[β -(2-Carboxy-phenyl)-hydrazino]-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester, γ -[β -(2-Carboxy-phenyl)-hydrazino]- α . α' -lutidin- β -carbonsäure-äthylester $C_{17}H_{18}O_4N_3=NC_5H(CH_3)_2(CO_2\cdot C_2H_5)\cdot NH\cdot NH\cdot C_6H_4\cdot CO_2H$.

B. Neben der Verbindung nebenstehender Formel beim Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester mit 2-Hydrazino-benzoesäure auf 200° (M., A. 366, 365). — Orangefarbene Nadeln (aus Wasser). Sintert bei 280° und schmilzt bei 285° unter Übergang in die obengenannte Anhydroverbindung. — NH $_4$ C $_{17}H_{18}O_4$ N $_3$. Rotgelbes, krystallinisches Pulver (aus Wasser). Schmilzt bei 189—190° unter Abgabe von Ammoniah

4-[β -(3-Carboxy-phenyl)-hydrazino]-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester, γ -[β -(3-Carboxy-phenyl)-hydrazino]- α . α' -lutidin- β -carbonsäure-äthylester $C_{17}H_{19}O_4N_3=NC_5H(CH_3)_3(CO_2\cdot C_2H_5)\cdot NH\cdot NH\cdot C_6H_4\cdot CO_2H$. B. Beim Erhitzen von 4-Chlor-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester mit 3-Hydrazino-benzoesäure auf 160° und Behandeln des Reaktionsprodukts mit Wasser (M., A. 366, 370). — Gelbes, krystallinisches Pulver. Schmilzt oberhalb 300° unter Zersetzung. Unlöslich in fast allen Lösungsmitteln. — Liefert beim Erhitzen mit Phosphoroxychlorid auf 120° die Verthalb 300° unter Zersetzung. Unlöslich in fast allen Lösungsmitteln. — Liefert beim Erhitzen mit Phosphoroxychlorid auf 120° die Verthalb 300° unter Zersetzung. Unlöslich in fast allen Lösungsmitteln. — CCI No. 3805) (M., A. 366, 399).

IX. Azo-Verbindungen.

(Verbindungen, die vom Typus R·N:NH ableitbar sind; vgl. dazu "Leitsätze", Bd. I, S. 10—11, § 12a.)

Zur Nomenklatur vgl. Bd. XVI, S. 1-6.

A. Mono-azo-derivate der Stammkerne.

1. Verbindungen $C_n H_{2n-3} N_3 = NC_n H_{2n-4} \cdot N : NH$.

1. α -Pyrryldiimid $C_4H_5N_3=\frac{HC---CH}{HC\cdot NH\cdot C\cdot N:NH}$

 $\begin{aligned} &\textbf{Phenyl-}\alpha\textbf{-pyrryl-diimid,} &\textbf{2-Bensolazo-pyrrol} & C_{10}H_{9}N_{8} = \frac{HC - CH}{HC \cdot NH \cdot C \cdot N : N \cdot C_{6}H_{5}} \\ &\textbf{Vgl. hierzu 2-Phenylhydrazono-pyrrolenin} & \frac{HC - CH}{HC : N \cdot C : N \cdot NH \cdot C_{6}H_{5}}, & \textbf{Bd. XXI, 8. 267.} \end{aligned}$

- 2-Benzolazo-1-methyl-pyrrol $C_{11}H_{11}N_3 = \frac{HC}{HC \cdot N(CH_3) \cdot C \cdot N \cdot N \cdot C_6H_5}$. B. Beim Koehen von 2-Benzolazo-pyrrol mit überschüssigem Methyljodid und konz. Kalilauge (Plancher, Soncini, G. 32 II, 464). Rötliche Flüssigkeit von durchdringendem Geruch. Kp₃₁: 140°. Liefert bei der Reduktion mit Zinn und Salzsäure Anilin. Pikrat $C_{11}H_{11}N_3 + C_6H_3O_7N_3$. Krystalle (aus Alkohol). F: 151°.
- 2-Bensolaso-1-phenyl-pyrrol $C_{16}H_{18}N_3 = \frac{HC-CH}{HC\cdot N(C_6H_6)\cdot C\cdot N:N\cdot C_6H_5}$. Die von O. Fischer, Hepp (B. 19, 2256) mit dieser Formel beschriebene Verbindung ist von Plancher, Ghigi, G. 55 [1925], 49, 757 als 5-Benzolazo-2-phenyl-pyrrol bezw. 5-Phenyl-hydrazono-2-phenyl-pyrrolenin erkannt worden und dementsprechend Bd. XXI, S. 322 eingeordnet.

 $\begin{array}{lll} & \textbf{p-Tolyl-\alpha-pyrryl-diimid,} & \textbf{2-p-Toluolaso-pyrrol} & C_{11}H_{11}N_3 = \\ & \textbf{HC} & \textbf{CH} & \textbf{Vgl.} & \textbf{hierzu} & \textbf{2-p-Tolylhydrazono-pyrrolenin} \\ & \textbf{HC} & \textbf{CH} & \textbf{HC} & \textbf{CH}_3 & \textbf{Bd.} & \textbf{XXI,} & \textbf{S.} & \textbf{267.} \\ \end{array}$

 $\begin{array}{lll} \beta \text{ - Naphthyl - } \alpha \text{ - pyrryl - diimid,} & 2 \text{ - } \beta \text{ - Naphthalinaso - pyrrol} & C_{14}H_{11}N_3 = \\ HC & CH & HC & CH & HC & CH \\ HC \cdot NH \cdot C \cdot N : N \cdot C_{10}H_7 & Vgl. \text{ hierzu } 2 \text{-} \beta \text{- Naphthylhydrazono-pyrrolenin} & HC : N \cdot C : N \cdot NH \cdot C_{10}H_7 \\ Bd. XXI, S. 267. & & & & & & & & \\ \end{array}$

2- β -Naphthalinazo-1-äthyl-pyrrol $C_{16}H_{15}N_3=\frac{HC-CH}{HC\cdot N(C_2H_3)\cdot C\cdot N:N\cdot C_{10}H_7}$. B. Aus 1-Äthyl-pyrrol und β -Naphthalindiazoniumchlorid in Alkohol bei Gegenwart von Natriumacetat (Ö. Fischer, Hepp, B. 19, 2258). — Rote Tafeln. F: 74°. Löslich in konz. Schwefelsäure mit dunkelrotgelber Farbe. Ziemlich schwer löslich in verd. Salzsäure.

[N.N-Dimethyl-anilin] - $\langle 4$ azo 2 \rangle -pyrrol, Pyrrol - $\langle 2$ azo 4 \rangle -[N.N-dimethyl-anilin] $C_{12}H_{14}N_4 = HC - CH - HC \cdot N1 \cdot N \cdot C_3H_4 \cdot N(CH_3)_3$. B. Aus diazotiertem N.N-Dimethyl-p-phenylendiamin und überschüssigem Pyrrol in sehr verd. Natronlauge und etwas Alkohol (O. FISCHER, HEPP, B. 19, 2257). — Grünschillernde Blättchen (aus verd. Alkohol). F: 159°. Löst sich in sehr verd. Salzsäure mit grasgrüner, in konz. Salzsäure mit grünlichgelber Farbe.

Diphenyl - 4.4' - bis - [\langle azo 2 \rangle - 1-phenyl - pyrrol] $C_{33}H_{34}N_6=\begin{bmatrix}HC&CH\\HC.N(C_6H_5)\cdot C\cdot N:N\cdot C_6H_4-\end{bmatrix}_3$. B. Durch Kuppeln von N-Phenyl-pyrrol mit Diphenyl-bis-diazoniumchlorid-(4.4') (Khotinsky, Soloweitschik, B. 42, 2511). — Ziegelrote Substanz. F: 178°. Unlöslich in Wasser, sohwer löslich in Alkohol und Äther, löslich in Benzol und Chloroform, leicht löslich in Essigsäure.

3.3' - Dimethyl - diphenyl - 4.4' - bis - [$\langle azo \ 2 \rangle$ - 1 - phenyl - pyrrol] $C_{34}H_{38}N_6 = \begin{bmatrix} HC & CH \\ HC & N(C_6H_5) & C \cdot N : N \cdot C_6H_3(CH_3) - \end{bmatrix}_s$. B. Durch Kuppeln von N-Phenyl-pyrrol mit 3.3'-Dimethyl-diphenyl-bis-diazoniumchlorid-(4.4') (Khotinsky, Soloweitschik, B. 42, 2512). — Dunkelrote Substanz. Verkohlt oberhalb 115°. Unlöslich in Wasser, schwer löslich in Alkohol und Äther, löslich in Essigsäure und Chloroform. Verharzt beim Erwärmen in Essigsäure oder in Chloroform.

2. Verbindungen C₆H₉N₃.

1. [3.5-Dimethyl-pyrryl-(2)]-diimid $C_6H_9N_3 = \frac{CH_3 \cdot C}{HN : N \cdot C \cdot NH \cdot C \cdot CH_2} \cdot \frac{CH_3 \cdot C - CH}{HN : N \cdot C \cdot NH \cdot C \cdot CH_3} \cdot \frac{CH_3 \cdot C - CH}{C_6H_5 \cdot N : N \cdot C \cdot NH \cdot C \cdot CH_3} \cdot Vgl. \text{ hierzu}$ 5-Phenylhydrazono-2.4-dimethyl-pyrrolenin $\frac{CH_3 \cdot C - CH}{C_6H_5 \cdot HN \cdot N : C \cdot N : C \cdot CH_3}, \text{ Bd. XXI, S. 273.}$

 $\begin{array}{ll} \textbf{2. } & \textbf{\textit{[2.5-Dimethyl-pyrryl-(3)]-diimid}} & \textbf{\textit{C}}_{6}\textbf{\textit{H}}_{9}\textbf{\textit{N}}_{3} = \frac{\textbf{\textit{HC}} - \textbf{\textit{C}} \cdot \textbf{\textit{N}} : \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}}{\textbf{\textit{CH}}_{3} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{NH}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}} & \\ \textbf{\textit{3-Benzolazo-2.5-dimethyl-pyrrol}} & \textbf{\textit{C}}_{12}\textbf{\textit{H}}_{13}\textbf{\textit{N}}_{3} = \frac{\textbf{\textit{HC}} - \textbf{\textit{C}} \cdot \textbf{\textit{N}} : \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}}{\textbf{\textit{CH}}_{3} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{NH}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}} & \textbf{\textit{Vgl. hierzu}} \\ \textbf{\textit{HC}} - \textbf{\textit{C}} : \textbf{\textit{N}} \cdot \textbf{\textit{NH}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}} & \textbf{\textit{HC}} + \textbf{\textit{C}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}} & \\ \textbf{\textit{CH}}_{3} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}} & \textbf{\textit{Bd. XXI, S. 274.}} & \textbf{\textit{S. 274.}} \\ \textbf{\textit{CH}}_{3} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{N}} : \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}} & \textbf{\textit{A}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{CH}}_{3}} & \textbf{\textit{C}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{N}}_{3}} & \textbf{\textit{C}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3} & \textbf{\textit{C}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3}} & \textbf{\textit{C}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3} & \textbf{\textit{C}} \cdot \textbf{\textit{N}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3} & \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3} & \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3} & \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3} & \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}} \cdot \textbf{\textit{C}}_{3} & \textbf{\textit{C}} \cdot \textbf{\textit$

2. Verbindungen $C_n H_{2n-5} N_3 = NC_n H_{2n-6} \cdot N : NH$.

1. β-Pyridyldiimid C₅H₅N₃, Formel I.

Pyridin - ⟨8 azo 4⟩ - resorcin C₁₁H₅O₂N₃,
Formel II. B. Beim Kuppeln von diazotiertem

3-Amino-pyridin mit Resorcin in alkal. Lösung (Mohr, B. 31, 2495). — Braune Tafeln und Prismen (aus 25°/oiger Essigsäure). F: 218° (Zers.). Leicht löslich in Alkohol, schwer in Äther, Chloroform und Benzol, unlöslich in Wasser. Löslich in verd. Salzsäure mit gelb- bis olivbrauner Farbe, in verd. Natronlauge oder Ammoniak mit dunkelrotbrauner Farbe. — Färbt Wolle und Seide in saurer und alkalischer Lösung gelbbraun.

3-Benzolazo-6-chlor-pyridin C₁₁H₈N₃Cl, s. nebenstehende Formel.

B. Beim Aufbewahren von 6-Chlor-3-amino-pyridin (S. 432) mit Nitroso-Cl.

benzol in Eisessig (Mills, Widdows, Soc. 93, 1380). Beim Erhitzen von 5-Benzolazo-2-oxy-pyridin (S. 583) mit Phosphorpentachlorid bei Gegenwart von wenig Phosphoroxychlorid auf 115° (M., W.). — Orangefarbene Prismen (aus Alkohol). F: 108° bis 109°. Schwer löslich in Wasser, Äther, Alkohol und Aceton, leicht in Benzol. Ist mit Wasserdampf flüchtig. — Gibt beim Erhitzen mit Natriummethylat-Lösung im Rohr auf 100° 5-Benzolazo-2-oxy-pyridin.

2. [2.6 - Dimethyl-pyridyl-(4)] - diimid N:NH N:N·C₆H_δ C₇H₉N₃, Formel III.

4-Benzolazo-2.6-dimethyl-pyridin, γ-Benzolazo-α.α'-lutidin C_{cr}H₋N. Formal IV. P. P--
CH₃ V. CH₃ CH

4-Benzolazo-2.6-dimethyl-pyridin, γ-Benzolazo-α.α'-lutidin $C_{13}H_{13}N_3$, Formel IV. B. Beim Kochen von 4-Phenylhydrazino-2.6-dimethyl-pyridin (S. 563) mit gelbem Quecksilberoxyd in Alkohol (Marckwald, Rudzik, B. 36, 1119). — Tiefrote Krystalle (aus Ligroin). F: 62° bis 63°. Leicht löslich in den meisten Lösungsmitteln außer in Wasser. — Gibt mit Reduktionsmitteln, wie Schwefelwasserstoff oder Zinkstaub und Essigsäure wieder 4-Phenylhydrazino-2.6-dimethyl-pyridin. — $2C_{13}H_{13}N_3 + H_2C_2O_7$. Dunkelorangerote Nadeln. — $2C_{13}H_{13}N_3 + 2HCl + PtCl_4$. Rote Krystalle. Sehr schwer löslich in Wasser und Alkohol. — Pikrat $C_{13}H_{13}N_3 + C_6H_3O_7N_3$. Dunkelorangefarbene Blättchen. F: 200°. Ziemlich leicht löslich in siedendem Alkohol.

3. Verbindungen $C_n H_{2n-7} N_3 = NC_n H_{2n-8} \cdot N : NH$.

1. Verbindungen $C_9H_{11}N_3$.

1. [1.2.3.4-Tetrahydro-chinolyl-(6)]-diimid C₉H₁₁N₃, HN:N CH₂ CH₃ s. nebenstehende Formel.

[Benzol-sulfonsäure-(1)]- $\langle 4$ azo 6 \rangle -[1.2.3.4-tetra-hydro-chinolin] $C_{15}H_{15}O_5N_5S$, ϵ . nebenstehende Formel.

B. Aus 1.2.3.4-Tetrahydro-chinolin-hydrochlorid und p-Diazobenzolsulfonsäure in Wasser (Bamberger, A. 257, 24). — Dunkelblaue Nadeln (aus Wasser). Löslich in Wasser mit roter Farbe. — Liefert bei der Reduktion mit Zinnchlorür in salzsaurer Lösung 6-Amino-1.2.3.4-tetrahydro-chinolin (S. 439).

2. [2-Methyl-indolinyl-(5)]-diimid $C_9H_{11}N_3$, s. nebenstehende Formel.

[Benzol-sulfonsäure-(1)]- $\langle 4$ aso 5 \rangle -[2-methyl-indolin] $C_{15}H_{15}O_2N_3S$, s. nebenstehende Formel.

HN:N CH2

NH CH CH3

NH CH-CH3

Violette Form. B. Aus 1 Tl. 2-Methyl-indolin und 1,35 Tln. p-Diazobenzolsulfonsäure in 7 Tln. Wasser unter Kühlung, neben geringen Mengen der grünen Form (Bamberger, Zumbro, B. 26, 1288). — Dunkelviolette Nadeln (aus Alkohol). Schmilzt nicht bis 260°. Löslich in Alkohol mit orangeroter Farbe, schwer löslich in kaltem Wasser, unlöslich in Ather, Ligroin und Benzol. — Gibt bei der Reduktion mit Zinnehlorür in heißer Salzsäure 5-Amino-2-methyl-indolin (S. 440) und Sulfanilsäure. Färbt Wolle und Seide in saurem Bade hellrot.

Grüne Form. B. Aus 1 Tl. 2-Methyl-indolin und 1,37 Tln. p-Diazobenzolsulfonsäure in 1 Tl. 40% jeger Salzsäure und 30 Tln. Wasser, neben geringen Mengen der violetten Form (Bamberger, Zumbro, B. 26, 1289). — Krystallinisch, grünglänzend. Wird beim Kochen

mit Alkohol braunrot, beim Stehenlassen an der Luft wieder grün. Leicht löslich in Wasser, unlöslich in den übrigen Lösungsmitteln. — Bei der Reduktion mit Zinnchlorür und Salzsäure bilden sich 5-Amino-2-methyl-indolin und Sulfanilsäure.

2. Verbindungen $C_{10}H_{13}N_3$.

[Benzol - sulfonsäure - (1)] - $\langle 4$ azo 8 \rangle - [6 - methyl - 1.2.3.4 - tetrahydro - chinolin] $C_{16}H_{17}O_3N_3S$, Formel II. B. Aus 6-Methyl-1.2.3.4-tetrahydro-chinolin-hydrochlorid und p-Diazobenzolsulfonsäure in verd. Salzsäure (Bamberger, Wulz, B. 24, 2069). — Dunkel-violettes Krystallpulver. Ziemlich leicht löslich in Alkohol, unlöslich in Äther. Schwer löslich in Wasser mit roter Farbe, die auf Zusatz von Mineralsäuren in Violett umschlägt. Löst sich in konz. Schwefelsäure und in Alkalien mit roter Farbe. — Liefert bei der Reduktion mit Zinkstaub in siedender verdünnter Natronlauge 8-Amino-6-methyl-1.2.3.4-tetrahydrochinolin (S. 440). — Färbt Wolle und Seide in saurem Bade bordeauxrot.

2. $[8-Methyl-1.2.3.4-tetrahydro-chinolyl-(6)]-diimid C_{10}H_{18}N_3$, Formel III. $[Benzol-sulfons\"{a}ure-(1)]-\langle 4~azo~6\rangle-[8-methyl-1.2.3.4-tetrahydro-chinolin]C_{16}H_{17}O_3N_3S$, Formel IV. B. Aus 8-Methyl-1.2.3.4-tetrahydro-chinolin-hydrochlorid und p-Diazobenzolsulfons\"{a}ure in Wasser (Bamberger, Wulz, B. 24, 2064). — Dunkelviolette

Nadeln (aus alkal. Lösung durch Salzsäure). Ziemlich schwer löslich in Alkohol mit fuchsinroter, schwer in heißem Wasser mit orangeroter Farbe. Leicht löslich in Alkalien. — Gibt bei der Reduktion mit Zinnchlorür in Salzsäure 6-Amino-8-methyl-1.2.3.4-tetrahydro-chinolin (S. 441). — Färbt Seide und Wolle in saurem Bade orangegelb.

3. [2.3.3-Trimethyl-indolinyl-(5)]-diimid $C_{11}H_{15}N_3$, Formel V.

5 - Benzolazo - 1.2.3.3 - tetramethyl - indolin $C_{18}H_{21}N_3$, Formel VI. B. Aus 1.2.3.3 - Tetramethyl - indolin (Bd. XX, S. 295) und Benzoldiazoniumchlorid in salzsaurer

Lösung (ZATTI, FERRATINI, G. 21 II, 324). — Öl. Löslich in Äther. — Pikrat $C_{18}H_{21}N_3 + C_0H_3O_7N_3$. Rotviolette Tafeln (aus Alkohol). F: 170° (Zers.).

4. Verbindungen $C_n H_{2n-\theta} N_3 = NC_n H_{2n-10} \cdot N : NH$.

1. [2-Methyl-indolyl-(3)]-diimid C₂H₂N₃, Formel VII.

3-Benzolazo-2-methyl-indol, Benzolazo-methylketol $C_{15}H_{13}N_3$, Formel VIII. Vgl. hierzu 3-Phenylhydrazono-2-methyl-indolenin, Formel IX, Bd. XXI, S. 312.

$$VII. \bigcirc \begin{matrix} C \cdot N : NH \\ U \cdot C \cdot CH_3 \end{matrix} \qquad VIII. \bigcirc \begin{matrix} C \cdot N : N \cdot C_6H_5 \\ NH & C \cdot CH_3 \end{matrix} \qquad IX. \bigcirc \begin{matrix} C : N \cdot NH \cdot C_6H_5 \\ N & C \cdot CH_3 \end{matrix}$$

2. [3.3-Dimethyl-2-methylen-indolinyl-(5)]-diimid $C_{11}H_{13}N_3$, Formel X.

5-Benzolazo-1.3.3-trimethyl-2-methylen-indolin $C_{18}H_{19}N_3$, Formel XI. B. Aus 1.3.3-Trimethyl-2-methylen-indolin (Bd. XX, S. 324) und Benzoldiazoniumchlorid in Essig-

X.
$$HN: N \cdot \bigcirc C(CH_3)_2$$
 XI. $C_6H_5 \cdot N: N \cdot \bigcirc C(CH_3)_2$ $C: CH_2$

säure bei Gegenwart von Natriumacetat (FERBATINI, G. 24 II, 195). — Unbeständig. — Pikrat C₁₈H₁₉N₂ + C₆H₂O₇N₃. Rote Nadeln (aus Alkohol). F: 208—209° (Zers.).

3. Verbindung $C_{13}H_{17}N_3$, Formel I.

[Benzol - sulfonsäure - (1)]- $\langle 4$ azo 6 \rangle -[1.2.3.4.3'.4'.5'.6' - oktahydro - (benzo - 1'.2': 7.8 - chinolin)], [Benzol - sulfonsäure - (1)] - $\langle 4$ azo 6 \rangle -[7.8-tetramethylen-1.2.8.4-tetrahydro-chinolin] (,,0 k ta h y d ro-naph thoch in olin-azobenzols ulfons äure") $C_{19}H_{21}O_3N_3S$, Formel II. B. Aus 1.2.3.4.3'.4'.5'.6'-Oktahydro-[benzo-1'.2':7.8-chinolin]

(Bd. XX, S. 335) und p-Diazobenzolsulfonsäure in schwach saurer Lösung (Bamberger, Stettenheimer, B. 24, 2490). — Violette Nadeln (aus Wasser). Ziemlich schwer löslich in Wasser und Alkohol. Löslich in konz. Schwefelsäure mit violetter, in Alkalien mit dunkelroter Farbe. — Liefert beim Kochen mit Zinnchlorür und Salzsäure 6-Amino-1.2.3.4.3'.4'.5'.6'-okta-hydro-[benzo-1'.2':7.8-chinolin] (S. 442). — Färbt Wolle und Seide in saurem Bade hellrot.

4. Verbindung $C_{14}H_{19}N_{2}$, Formel III.

8 - Benzolazo - 2 - methyl - 1.2.3.4.3'.4'.5'.6' - oktahydro - [benzo - 1'.2':5.6 - chinolin], 8 - Benzolazo- III. 5.6 - tetramethylen - 1.2.3.4 - tetrahydro - chinaldin ("Phenylazo-oktahydro-naphthochinaldin")
C₂₀H₂₅N₂, Formel IV. B. Aus 2-Methyl-1.2.3.4.3′.4′.5′.6′oktahydro-[benzo-1′.2′:5.6-chinolin]-hydrochlorid und Benzoldiazoniumnitrat in verd. Alkohol

(BAMBERGER, STRASSER, B. 24, 2666). — Dunkelrubinrote Prismen. Sehr leicht löslich in Ather, Chloroform und Eisessig, löslich in siedendem Alkohol mit roter Farbe, unlöslich in Wasser. Die rote Lösung in konz. Schwefelsäure wird auf Zusatz von wenig Wasser grün.

[Bensol - sulfonsäure - (1)] - $\langle 4$ azo 8 \rangle - [2 - methyl - 1.2.3.4.3'.4'.5'.6' - oktahydro-(benso - 1'.2':5.6 - chinolin)], [Bensol-sulfonsäure-(1)]- $\langle 4$ azo 8 \rangle -[5.6-tetramethylen-1.2.3.4-tetrahydro-chinaldin] (,,Sulfophenylazo-oktahydro-naphthochinaldin'') $C_{20}H_{23}O_{3}N_{3}S$, Formel V. B. Aus 2-Methyl-1.2.3.4.3'.4'.5'.6'-oktahydro-[benzo-1'.2':5.6-chino-

lin] und p-Diazobenzolsulfonsäure in Wasser und wenig Salzsäure (Bamberger, Strasser, B. 24, 2667). — Grünschwarzes Krystallpulver. Schwer löslich in Wasser und Alkohol mit tief himbeerroter, löslich in Alkalien mit dunkelbordeauxroter Farbe. — Liefert beim Kochen mit Zinkstaub in alkal. Lösung nicht näher beschriebenes 8-Amino-H₂C CH₂ 2-methyl-1.2.3.4.3'.4'.5'.6' - oktahydro - [benzo - 1'.2'; 5.6 - chino-H₂C lin], das beim Erhitzen mit Eisessig und Essigsäureanhydrid in Gegenwart von wenig Natriumacetat a-Methyl-ar-oktahydro-CH CH3 β -naphthochinaldimidazol (s. nebenstehende Formel; Syst. No. 3485) gibt.

5. Verbindungen $C_n H_{2n-11} N_3 = NC_n H_{2n-12} \cdot N : NH$.

1. Verbindungen $C_9H_7N_8$.

1. [Chinolyl-(2)]-diimid C₂H₇N₂, Formel VI.

Phenyl-[chinolyl-(2)]-diimid, 2-Ben-zolazo-chinolin C₁₅H₁₁N₂, Formel VII. B. VI. N:NH VII. Aus 2-Phenylhydrazino-chinolin (S. 564) und überschüssigem Ferrichlorid in Eisessig (EPHRAIM, B. 24, 2819). — Rote Nadeln. F: 93°. Leicht löslich in Alkohol, Äther und Eisessig.

Di - [chinolyl - (2)] - diimid, 2.2' - Asochinolin C₁₈H₁₂N₄, s. nebenstehende Formel. B. Beim Einleiten von nitrosen Gasen in eine Lösung von 2.2'-Hydrazochinolin (S. 565) in 50°/eiger Essigsäure (MARCKWALD, MEYER, B. 38, 1894). — Ziegelrote Blättchen. F: 230—231°; ist unzersetzt sublimierbar (MA., MEY.). Löslich in heißem Alkohol mit tiefroter Farbe, sohwer löslich in Essigsäure, löslich in Mineralsäuren mit roter Farbe (MA., MEY.). — Ist beständig gegen kochende Salzsäure (MA., CHAIN, B. 33, 1898). Wird von Zinkstaub und Essigsäure zu 2.2'-Hydrazochinolin reduziert (MA., MEY.). — $2C_{18}H_{12}N_4 + H_2Cr_2O_7$. Braunroter, krystallinischer Niederschlag. Zersetzt sich gegen 300° (MA., MEY.). — $C_{18}H_{12}N_4 + 2HCl + PtCl_4$. Gelbe Krystalle. Zersetzt sich beim Erhitzen (MA., MEY.).

2. [Chinolyl-(6)]-diimid C₂H₂N₂, Formel I.

Chinolin - (6 azo 4) - [N.N - di-methyl-anilin] C₁₇H₁₆N₄, Formel II. I. B. Aus diazotiertem 6-Amino-chinolin und der berechneten Menge Dimethylanilin in Eisessig (Knueppel, A. 310, 87). — Gelbbrauner Niederschlag. Verharzt rasch. — C₁₇H₁₆N₄ + 2HCl. Stahlblaue Nadeln (aus Alkohol). Unlöslich in Wasser, löslich in Alkohol, Eisessig und verd. Salzsäure mit carminroter Farbe.

Di-[chinolyl-(6)]-diimid, 6.6'-Azochinolin C₁₈H₁₂N₄, s. nebenstehende Formel. B. Neben 6-Amino-chinolin bei der Reduktion von 6-Nitro-chinolin mit Eisenpulver in Gegenwart von Calcium-chlorid in siedendem 70% alkohol (KNUEPPEL, A. 310, 75, 84). — Orangerote Nadeln (aus Alkohol oder Benzol). F: 248°. Leicht löslich in verd. Säuren mit gelbroter Farbe.

2. Verbindungen C₁₀H₂N₂.

1. [5-Phenyl-pyrryl-(2)]-diimid $C_{10}H_{9}N_{3} = \frac{HC-CH}{HN:N\cdot\dot{C}\cdot NH\cdot\dot{C}\cdot C_{6}H_{5}}$ 5-Benzolazo-2-phenyl-pyrrol $C_{16}H_{13}N_{3} = \frac{HC-CH}{C_{6}H_{5}\cdot N:N\cdot\dot{C}\cdot NH\cdot\dot{C}\cdot C_{6}H_{5}}$. Vgl. hierzu 5-Phenylhydrazono-2-phenyl-pyrrolenin $C_{6}H_{5}\cdot HN\cdot N:\dot{C}\cdot N:\dot{C}\cdot C_{6}H_{5}$, Bd. XXI, 8. 322.

2. [4-Methyl-chinolyl-(2)]-diimid C₁₀H₂N₃, Formel III.

2 - Benzolazo - 4 - methyl - chinolin,
2-Benzolazo-lepidin C₁₆H₁₃N₃, Formel IV.

B. Bei der Oxydation von 2-Phenylhydrazino-4-methyl-chinolin (S. 566) mit Ferrichlorid in Eisessig (Ephram, B. 25, 2706). — Orangerote Nadeln. F: 98°.

4.4'-Dimethyl-[2.2'-asochinolin], 2.2'-Asolepidin $C_{80}H_{16}N_4$, CH_3 s. nebenstehende Formel. B. Beim Einleiten von nitrosen Gasen in die essigsaure Lösung von 4.4'-Dimethyl-[2.2'-hydrazochinolin] (Marckwald, Chain, B. 33, 1898). — Ziegelrote Blättchen (aus Alkohol). F: 235°. Schwer löslich in den meisten Lösungsmitteln. Löslich in verd. Mineralsäuren. — Beim Kochen mit Salzsäure bildet sich unter Entwicklung von Chlor 4.4'-Dimethyl-[2.2'-hydrazochinolin]. — Pikrat $C_{20}H_{16}N_4 + C_6H_2O_7N_2$. Rote Krystalle.

3. [8-Methyl-chinolyl-(5)]-diimid C₁₀H₂N₃, Formel V.

8.8' - Dimethyl - [5.5' - agochinolin]

C₂₀H₁₆N₄, Formel VI. B. Neben anderen Produkten aus 5-Nitro-8-methyl-chinolin bei der Reduktion mit Eisenfeile und Salzsäure (Noel-Ting, Trautmann, B. 23, 3677) oder bei der elektrolytischen Reduktion in alkal. Lösung (Elbs, Z. El. Ch. 10, 579). — Orangefarbene Nadeln (aus Eisessig). F: 260°; unlöslich in Wasser, schwer löslich in siedendem Alkohol, Chloroform, Benzol und kaltem Eisessig (N., T.).

3. [2 (oder 5) - Methyl - 5 (oder 2) - phenyl - pyrryl - (3)] - diimid $C_{11}H_{11}N_3 = \frac{HC - C \cdot N : NH}{C_6H_5 \cdot C \cdot NH \cdot C \cdot CH_3}$ oder $\frac{HN : N \cdot C - CH}{C_6H_5 \cdot C \cdot NH \cdot C \cdot CH_3}$.

 $\begin{array}{lll} \textbf{3(oder 4) - Benzolazo - 2 - methyl - 5 - phenyl - pyrrol} & C_{17}H_{15}N_3 = \\ \textbf{HC} & \textbf{C} \cdot \textbf{N} : \textbf{N} \cdot \textbf{C}_{6}H_{5} & \textbf{C}_{6}H_{5} \cdot \textbf{N} : \textbf{N} \cdot \textbf{C} & \textbf{CH} \\ \textbf{C}_{6}H_{5} \cdot \overset{"}{\textbf{C}} \cdot \textbf{NH} \cdot \overset{"}{\textbf{C}} \cdot \textbf{CH}_{3} & \textbf{C}_{6}H_{5} \cdot \overset{"}{\textbf{C}} \cdot \textbf{NH} \cdot \overset{"}{\textbf{C}} \cdot \textbf{CH}_{3} & \textbf{Vgl. hierzu 3(oder 4)-Phenylhydr-} \\ \textbf{EC} & \textbf{C}_{6}H_{5} \cdot \overset{"}{\textbf{C}} \cdot \textbf{NH} \cdot \overset{"}{\textbf{C}} \cdot \textbf{CH}_{3} & \textbf{oder} \\ \textbf{C}_{6}H_{5} \cdot \overset{"}{\textbf{C}} \cdot \textbf{NH} \cdot \textbf{N:} \overset{"}{\textbf{C}} \cdot \textbf{CH}_{3} & \textbf{oder} \\ \textbf{C}_{6}H_{5} \cdot \overset{"}{\textbf{C}} : \textbf{N} \cdot \overset{"}{\textbf{C}} \cdot \textbf{CH}_{3} & \textbf{Bd. XXI, S. 324.} \\ \textbf{C}_{6}H_{5} \cdot \overset{"}{\textbf{C}} : \textbf{N} \cdot \overset{"}{\textbf{C}} \cdot \textbf{CH}_{3} & \textbf{Bd. XXI, S. 324.} \\ \end{array}$

6. Verbindungen $C_n H_{2n-13} N_3 = NC_n H_{2n-14} \cdot N : NH$.

Verbindung C₁₃H₁₃N₃, Formel I.

6-Benzolazo-1.2.3.4-tetrahydro - 7.8 - benzo - chinolin ("Phenylazo-tetrahydronaphthochinolin") C₁₉H₁₇N₃, Formel II. B. Aus 1.2.3.4-Tetra-

hydro-7.8-benzo-chinolin und Benzoldiazoniumchlorid bei Gegenwart von Natriumacetat in Wasser (Bamberger, Stettenheimer, B. 24, 2478). — Kirschrote Nadeln (aus verd. Alkohol). Löslich in organischen Lösungsmitteln mit tief orangeroter, in konz. Schwefelsäure mit blauer Farbe. — $2C_{19}H_{17}N_3 + H_2SO_4$. Olivgrüne Prismen.

[Benzol-sulfonsäure - (1)] - (4 azo 6) - [1.2.3.4 - tetra-hydro-7.8-benzo-chinolin] (,,Sulfophenylazo-tetra-hydro-naphthochinolin") C₁₉H₁₇O₃N₃S, s. nebenzehende
Formel. B. Aus 1.2.3.4-Tetrahydro-7.8-benzo-chinolin-hydrochlorid und p-Diazobenzolsulfonsäure in Wasser (BAM-BERGER. STETTENHEIMER. B. 24. 2478). — Dunkelviolettrotes Krystallpulver. Schwer

BERGER, STETTENHEIMER, B. 24, 2478). — Dunkelviolettrotes Krystallpulver. Schwer löslich in kaltem Wasser und Alkohol mit roter Farbe.

7. Verbindungen $C_n H_{2n-15} N_3 = NC_n H_{2n-16} \cdot N : NH$.

1. [Carbazolyi-(3)]-diimid C12H2N2, Formel III.

Carbazol - $\langle 8$ azo 5 \rangle - [2.4 - diamino - toluol] $C_{19}H_{17}N_5$, Formel IV. B. Das Acetat bildet sich durch Kuppeln von Carbazol-diazoniumchlorid-(3) (8. 590) mit 2.4-Diamino-toluol

in essigsaurer Lösung (RUFF, STEIN, B. 34, 1680). — Acetat $C_{19}H_{17}N_5+C_2H_4O_2$. Körner (aus Alkohol). — Färbt Wolle violett; zieht direkt auf Baumwolle.

N-[Carbazolyl-(3)]-diimid-N'-sulfonsäure, Carbazoldiasosulfonsäure-(3) C₁₂H₂O₂N₃S, s. nebenstehende Formel.

B. Das Natriumsalz bildet sich beim Versetzen von Carbazoldiazoniumchlorid-(3)-Lösung mit überschüssiger, mit Natriumcarbonat gesättigter Natriumsulfit-Lösung und Aufkochen der Mischung (Ruff, Stein, B. 34, 1681). — NH₄C₁₂H₂O₂N₂S.

B. Aus der Lösung des Natriumsalzes und Ammoniumsulfat (R., St.). Gelb. — NaC₁₂H₂O₃N₂S.

Gelbe Krystalle (aus Wasser). Löslich in heißem Wasser. Ist stark lichtempfindlich und ist zur Herstellung photographischer Kopien vorgeschlagen worden (Diazotypie-Papiere; vgl. z. B. Ullmann, Enzyklopädie der technischen Chemie, 2. Aufl., Bd. VIII [Berlin 1931], S. 467).

2. Verbindungen $C_{13}H_{11}N_3$.

1. $[\alpha-Stilbazyl-(4')]$ -diimid $C_{13}H_{11}N_3$, Formel I.

 α -Stilbazol- \langle 4' azo 1 \rangle -naphthol- \langle 2) C₂₃H₁₇ON₃, Formel II. B. Aus diazotiertem 4'-Amino- α -stilbazol (S. 461) und β -Naphthol in Natronlauge (BAUMERT, B. 39, 2974). —

I.
$$\binom{N}{N}$$
 CH; CH; CH; $\binom{N}{N}$ CH; CH; CH; $\binom{N}{N}$

 $\rm C_{33}H_{17}ON_3 + HCl.$ Rotbraune Blättchen (aus $90^{\circ}/_{0}$ igem Alkohol). F: 252—253°. Schwer löslich in heißem Wasser, leichter in Alkohol; unlöslich in Alkalien. Färbt Seide, Wolle und gebeizte Baumwolle rot.

α-Stilbazol - $\langle 4'$ ago $4 \rangle$ -resorcin $C_{19}H_{15}O_2N_3$, s. nebenstehende Formel. B. Aus diazotiertem 4'-Amino-α-stilbazol und Resorcin in Natronlauge (BAUMERT, B. 39, 2975). — $C_{19}H_{15}O_2N_3 + HCl$. Braunes Pulver (aus OH verd. Alkohol). Schwer löslich in heißem Wasser, leicht in Alkohol mit gelbbrauner, in Natronlauge mit roter Farbe. Färbt Seide und Baumwolle gelbbraun, Wolle und gebeizte Baumwolle kaffeebraun.

α-Stilbazol - $\langle 4'$ azo 1 \rangle - [naphthol - $\langle 2\rangle$ - sulfon - säure-(6)] $C_{23}H_{17}O_4N_3S$, s. nebenstehende Formel. B. Aus diazotiertem 4'-Amino-α-stilbazol und Naphthol-(2)-sulfonsäure-(6) in überschüssiger Natronlauge (BAUMERT, B. 39, 2975). — Na $C_{23}H_{16}O_4N_3S$. Grüne Blättchen (aus 90%/gigem Alkohol). Schwer löslich in siedendem Wasser, leichter in Alkohol. Färbt Seide, Wolle und Baumwolle hellrot.

α-Stilbazol - (4' azo 1) - [naphthol - (2) - disulfonsäure-(3.6)] C₂₃H₁₇O₇N₃S₂, s. nebenstehende Formel. B.

Aus diazotiertem 4'-Amino-α-stilbazol und Naphthol-(2)-disulfonsäure-(3.6) in Natronlauge (BAUMERT, B. 39, 2976). — Na₂C₂₃H₁₅O₇N₃S₂. Braunrote Blättchen (aus verd. Alkohol). Löslich in Wasser mit violetter Farbe, sehr schwer in Alkohol. Färbt Seide, Wolle und Baumwolle rot, gebeizte Baumwolle violett.

2. $[\gamma-Stilbazyl-(2')]-diimid$ CH:CH:CH:OH γ -Stilbazol- $\langle 2'$ azo 1>-naphthol- $\langle 2\rangle$ C₂₂H₁₇ON₃, Formel IV. B. Aus diazotiertem 2'-Amino- γ -stilbazol und β -Naphthol in alkal. Lösung (Löwensohn, B. 40, 4862). — C₂₃H₁₇ON₃ + HCl. Rote Krystalle (aus Alkohol). Färbt Seide, Wolle und Baumwolle rot.

y-Stilbazol-(2' azo 2)-[4-nitro-naphthol-(1)] C₃₂H₁₆O₃N₄, s. CH:CH·OH nebenstehende Formel. B. Aus diazotiertem 2'-Amino-y-stilbazol und 4-Nitro-naphthol-(1) in Natronlauge (Löwensohn, B. 40, 4862).

— NaC₃₃H₁₅O₃N₄. Färbt Seide gelb, Wolle und Baumwolle dunkelgelb.

γ-Stilbazol - (2' azo 4) - naphthol - (1) C₂₃H₁₇ON₃, s. nebenstehende Formel. B. Aus der Diazoniumsalz-Lösung des 2'-Aminoγ-stilbazols und α-Naphthol in Natronlauge (Löwensohn, B. 40, 4863). — NaC₂₃H₁₆ON₃. Blättchen. Färbt Seide und Wolle N:N:N OH hellgelb.

γ - Stilbazol - ⟨2' azo 4⟩ - resorcin $C_{19}H_{15}O_3N_3$, s. nebenstehende Formel. B. Aus der Diazoniumsalz-Lösung des 2'-Aminoγ-stilbazols und Resorcin in alkal. Lösung (Löwensohn, B. 40, 4862). — $C_{19}H_{15}O_2N_3 + HCl$. Krystalle (aus verd. Alkohol). Löslich in Wasser. Färbt Seide gelb, Wolle und Baumwolle gelbbraun.

 γ - Stilbasol - $\langle 2'$ aso $2 \rangle$ - [naphthol - (1) - sulfonsäure - (4)] CH:CH. HO C. H., O.N.S, s. nebenstehende Formel. B. Aus der Diazoniumsalz-Lösung des 2'-Amino-y-stilbazols und Naphthol-(1)-sulfonsäure-(4) in Natronlauge (Löwensohn, B. 40, 4863). — NaC₂₂H₁₆O₄N₂S. Gelber Farbstoff. HO₃S

 γ - Stilbasol - $\langle 2'$ aso 1> - [naphthol - (2) - sulfonsaure - (6)] C₂₂H₁₇O₄N₂S, s. nebenstehende Formel. B. Aus diazotiertem 2'-Aminoy-stilbazol und Naphthol-(2)-sulfonsäure-(6) in alkal. Lösung (Löwensohn, B. 40, 4863). — NaC₂₃H₁₆O₄N₃S. Rote Krystalle (aus Alkohol). Färbt Seide, Wolle und gebeizte Baumwolle gelbbraun.

 γ -Stilbasol- $\langle 2'$ aso 1 \rangle -[naphthol- $\langle 2\rangle$ -disulfonsäure- $\langle 6.8\rangle$] $C_{22}H_{17}O_7N_3S_2$, s. nebenstehende Formel. B. Durch Kuppeln von CH:CH diazotiertem 2'-Amino-γ-stilbazol mit Naphthol-(2)-disulfonsaure-(6.8) (LÖWENSOHN, B. 40, 4862). — Na₃C₂₃H₁₅O₇N₃S₃. Dunkelroter Farbstoff. Färbt Seide, Wolle und Baumwolle dunkelrot. 80₂H

3. f_{γ} -Stilbazyl-(3')]-diimid $C_{12}H_{11}N_{2}$, Formel I.

Di-[γ -stilbazyl-(8')]-diimid, γ -Stilbazol-(3' azo 3')- γ -stilbazol, Azo- γ -stilbazol C₂₈H₂₀N₄, Formel II. B. Beim Erwärmen von 3'-Nitro- γ -stilbazol mit Zinnchlorür in stark

$$I. \bigcirc_{N}^{CH:CH} \bigcirc_{N:NH} \qquad II. \bigcirc_{N}^{CH:CH} \bigcirc_{N=N}^{CH:CH}$$

alkal. Lösung auf dem Wasserbad (Friedlaender, B. 38, 2839). — Rote Krystalle (aus Benzol). F: 220—221°.

4. $[\gamma - Stilbazyl-(4')] - di-imid C_{12}H_{11}N_3$, Formel III.

 γ -Stilbasol- $\langle 4'$ aso 1 \rangle -naphthol- $\langle 2\rangle$ C₂₈H₁₇ON₃, Formel IV. B. Aus diazotiertem 4'-Amino- γ -stilbazol und β -Naphthol in Natronlauge (BAUMERT, B. 39, 2975). — $C_{33}H_{17}ON_3 + HCl.$ F: 257—258°.

 γ -Stilbazol- $\langle 4'$ aso $4\rangle$ -resorcin $C_{10}H_{18}O_2N_3$, s. nebenstehende Formel. B. Aus diazotiertem 4'-Amino- γ -stilbazol und Resorcin in Natronlauge (BAUMERT, B. 39, 2975). — $C_{19}H_{15}O_2N_3 + HCl$. Besitzt ähnliche Eigenschaften wie α -Stilbazol- $\langle 4'$ azo $4\rangle$ -resorcin-hydrochlorid (S. 579).

γ-Stilbasol-(4' aso 1)-[naphthol-(2)-sulfonsäure-(6)] C₂₂H₁₇O₄N₂S, s. nebenstehende Formel. B. Aus diazotiertem 4'-Amino-γ-stilbazol und Naphthol-(2)-sulfonsäure-(6) in Natronlauge (BAUMERT, B. 39, 2976). — NaC₂₂H₁₆O₄N₂S. Besitzt die gleichen Eigenschaften wie das Natriussalz der α-Stilbazol- $\langle 4' \text{ azo } 1 \rangle$ -[naphthol-(2)-sulfonsäure-(6)] (8. 579).

 γ - Stilbasol - $\langle 4'$ aso 1 \rangle - [naphthol - (2) - disulfonsäure-(3.6)] $C_{23}H_{17}O_7N_3S_2$, s. nebenstehende Formel. B. Aus diazotiertem 4'-Amino- γ -stilbazol und Naphthol-(2)-disulfonsäure-(3.6) in Natronlauge (BAUMERT, B. 39, 2976). — Na₂C₂H₁₅O₂N₃S₂. Krystalle (aus Wasser). Besitzt ähnliche Eigenschaften wie α -Stilbazol- $\langle 4'$ azo 1 \rangle - [naphthol- $\langle 2\rangle$ - disulfonsäure-(3.6)].

3. Verbindungen C₁₄H₁₈N₂.

1. [6-Methyl-a-stilbazyl-(2')]-diimid $C_{14}H_{19}N_2$, Formel I.

[6-Methyl- α -stilbasol]- $\langle 2'$ aso 1 \rangle -naphthol-(2) $C_{24}H_{19}ON_3$, Formel II. B. Aus diazotiertem 2'-Amino-6-methyl- α -stilbazol und β -Naphthol in Kalilauge (Ahrens, Luther,

I.
$$CH_3 \cdot \bigcap_{N} \cdot CH : CH \cdot \bigcirc_{N:N} \cdot CH : CH \cdot \bigcirc_{N:N} \cdot \bigcirc_{N:N$$

B. 40, 3404). — $KC_{24}H_{18}ON_3$. Rote Blättchen (aus Alkohol). F: 157—158°. Färbt Seide und Wolle rot.

2. [6-Methyl-α-stilbazyl-(4')]-diimid C₁₄H₁₃N₂, Formel III.

[6 - Methyl - α - stilbasol] - $\langle 4'$ aso 1 \rangle - naphthol - (2) $C_{24}H_{19}ON_3$, Formel IV. B. Aus diazotiertem 4'-Amino-6-methyl- α -stilbazol und β -Naphthol in Natronlauge (Ahbens, Luther,

III.
$$CH_3 \cdot {\stackrel{\frown}{N}} \cdot CH : CH \cdot {\stackrel{\frown}{N}} \cdot N : NH$$
 IV. $CH_3 \cdot {\stackrel{\frown}{N}} \cdot CH : CH \cdot {\stackrel{\frown}{N}} \cdot N : N \cdot {\stackrel{\bigodot}{N}}$

B. 40, 3404). — $NaC_{34}H_{18}ON_3$. Dunkelrotbraune Blätter. F: 248—249°. Färbt Wolle, Seide und Baumwolle rot.

8. Verbindungen $C_n H_{2n-17} N_3 = NC_n H_{2n-18} \cdot N : NH$.

Verbindungen $C_{14}H_{11}N_3$.

1. [2-Phenyl-indolyl-(3)]-diimid C₁₄H₁₁N₃, Formel V.

3-Bensolaso-2-phenyl-indol $C_{20}H_{16}N_2$, Formel VI. Vgl. hierzu 3-Phenylhydrazono-2-phenyl-indolenin, Formel VII, Bd. XXI, S. 346.

 $\begin{tabular}{ll} \textbf{[2.6-Dibrom-phenol]-(4 aso 3)-[2-phenyl-indol]} & $C_{20}H_{13}ON_3Br_2$, Formel VIII. Vgl. hierzu 3-[3.5-Dibrom-4-oxy-phenylhydrazono]-2-phenyl-indolenin, Formel IX, Bd. XXI, S. 346. \\ \end{tabular}$

[Bensol-sulfonsäure-(1)]- $\langle 4$ aso 3>-[2-phenyl-indol] $C_{s0}H_{1s}O_{s}N_{s}S$, Formel X. Vgl. hierzu 3-[4-Sulfo-phenylhydrazono]-2-phenyl-indolenin, Formel XI, Bd. XXI, S. 347.

$$X. \qquad C \cdot N : N \cdot SO_3H \qquad XI. \qquad C \cdot C_6H_5 \cdot SO_3H$$

2. [Acridyl-(9)-methyl]-diimid C₁₄H₁₁N₃, Formel XII.

Bensolazo - [acridyl - (9)] - methan $C_{20}H_{15}N_3$, Formel XIII. Vgl. hierzu Acridin-aldehyd-(9)-phenylhydrazon, Formel XIV, Bd. XXI, S. 348.

B. Bis-azo-derivate der Stammkerne.

1. Verbindungen $C_n H_{2n-3} N_5 = NC_n H_{2n-5} (N: NH_2)$.

 $\mbox{Verbindung } C_4H_5N_5 = \frac{HC---CH}{HN\!:\!N\!\cdot\!\overset{\parallel}{C}\!\cdot\!NH\!\cdot\!\overset{\parallel}{C}\!\cdot\!N\!:\!NH} \,.$

 $\begin{array}{c} \textbf{2.5-Bis-benzolazo-pyrrol} \quad C_{16}H_{13}N_5 = \frac{HC---CH}{C_6H_5\cdot N:N\cdot \overset{\parallel}{C}\cdot NH\cdot \overset{\parallel}{C}\cdot N:N\cdot C_6H_5}. \quad Vgl. \ \ \, \text{hierzu} \\ \textbf{5-Benzolazo-2-phenylhydrazono-pyrrolenin} \\ C_6H_5\cdot N:N\cdot \overset{\parallel}{C}:N\cdot \overset{\parallel}{C}:N\cdot NH\cdot C_6H_5}, \quad S. \quad 586. \end{array}$

2.5-Bis-benzolazo-1-methyl-pyrrol $C_{17}H_{15}N_5 = \frac{10^{-10}}{C_6H_5 \cdot N : N \cdot C \cdot N(CH_3) \cdot C \cdot N : N \cdot C_6H_5}$ B. Beim Kochen von 2.5-Bis-benzolazo-pyrrol mit überschüssigem Methyljodid in alkoh. Natronlauge (O. Fischer, Hepp, B. 19, 2253). — Rote Blättchen (aus Alkohol). F: 196°.

 $\begin{array}{c} \textbf{2.5-Bis-p-toluolazo-pyrrol} \quad C_{18}H_{17}N_{5} = \\ CH_{3}\cdot C_{6}H_{4}\cdot N:N\cdot \overset{\parallel}{C}\cdot NH\cdot \overset{\parallel}{C}\cdot N:N\cdot C_{6}H_{4}\cdot CH_{3} \\ \end{array} . \\ \text{Vgl. hierzu 5-p-Toluolazo-2-p-tolylhydrazono-pyrrolenin} \\ \quad \qquad \qquad \qquad HC \\ \begin{array}{c} CH \\ CH_{3}\cdot C_{6}H_{4}\cdot N:N\cdot \overset{\parallel}{C}:N\cdot NH\cdot C_{6}H_{4}\cdot CH_{3} \\ \end{array} . \\ \text{S. 586.} \\ \end{array}$

HC———CH $CH_3 \cdot C_6H_4 \cdot N : N \cdot C \cdot N(C_2H_5) \cdot C \cdot N : N \cdot C_6H_4 \cdot CH_3$ azo-pyrrol mit Äthyljodid in alkoh. Natronlauge (O. Fischer, Hepp, B. 19, 2254). Aus 2-p-Toluolazo-1-āthyl-pyrrol (S. 572) und p-Toluoldiazoniumchlorid bei Gegenwart von Natriumacetat in Alkohol (O. Fischer, Hepp, B. 19, 2258). — Stahlblaue Nadeln. F: 180°. Schwer löslich in Alkohol mit rotgelber Farbe.

2. Verbindungen $C_n H_{2n-15} N_5 = NC_n H_{2n-17} (N:NH)_2$.

Verbindung $C_{14}H_{13}N_5$, Formel I.

6-Methyl-α-stilbazol-2'.5'-bis-[⟨azo 1⟩-naphthol-(2)],
[Naphthol - (2)] - ⟨1 azo 2'⟩ - [6 - methyl - α - stilbazol](5' azo 1⟩-naphthol-(2) $C_{24}H_{25}O_2N_5$, Formel II. B. Aus
diazotiertem 2'.5'-Diamino-6-methyl-α-stilbazol (S. 487) und β-Naphthol in Natronlauge (Анвеня, Luther, B. 40, 3405). — $Na_2C_{24}H_{23}O_2N_5$. Hellrote Blättchen (aus Alkohol). F: 180° bis 181°.

6-Methyl- α -stilbazol-2'.5'-bis-[\langle azo 1 \rangle -naphthol-(2)-disulfonsäure-(3.6)], [Naphthol-(2)-disulfonsäure-(3.6)]- \langle 1 azo 2' \rangle -[6-methyl- α -stilbazol]- \langle 5'azo 1 \rangle -[naphthol-(2)-disulfonsäure-(3.6)] $C_{34}H_{25}O_{14}N_{5}S_{4}$, Formel III auf S. 582. B. Aus diazotiertem 2'.5'-Diamino-6-methyl- α -stilbazol und Naphthol-(2)-disulfonsäure-(3.6) in Natronlauge (Ahrens, Luther, B. 40, 3405). — Na $_{4}C_{34}H_{21}O_{14}N_{5}S_{4}$. Braunrote Blätter (aus Wasser).

C. Azoderivate der Oxy-Verbindungen.

- 1. Azoderivate der Monooxy-Verbindungen.
- a) Azoderivate der Monooxy-Verbindungen $C_n H_{2n-5}ON$.

Azoderivate der Monooxy-Verbindungen C_5H_5ON .

- 1. Azoderivat des 2-Oxy-pyridins C₅H₅ON (Bd. XXI, S. 43).
- 5-Benzolazo-2-oxy-pyridin (5-Benzolazo-pyridon-(2)) C₀H₅·N·N· OH C₁₁H₆ON₃, s. nebenstehende Formel, bezw. desmotrope Formen. B. Bei Einw. von Benzoldiazoniumehlorid auf 2-Oxy-pyridin in 1n-Natronlauge (MILLS, WIDDOWS, Soc. 93, 1377). Beim Erhitzen von 3-Benzolazo-6-chlor-pyridin mit Natriummethylat-Lösung im Rohr auf 100° (M., W., Soc. 93, 1381). Hellgelbe Nadeln (aus Toluol). F: 210—212°. Schwer löslich in Wasser und Äther, löslich in Chloroform, Aceton und Benzol, leicht in Alkohol und Eisessig. Die Lösung in konz. Salzsäure ist tief orangerot. Liefert bei der Reduktion mit hydroschwefligsaurem Natrium Na₂S₂O₄ in verd. Alkohol Anilin und 5-Amino-2-oxy-pyridin. Beim Erhitzen mit Phosphorpenta-chlorid in Gegenwart von Phosphoroxychlorid auf 115° entsteht 3-Benzolazo-6-chlor-pyridin.
 - 2. Azoderivat des 3-Oxy-pyridins C₅H₅ON (Bd. XXI, S. 46).
- 6(?) Benzolazo 3 oxy pyridin C₁₁H₆ON₃, s. nebenstehende Formel. B. Beim Eintragen einer Benzoldiazoniumchlorid-Lösung in eine eiskalte Lösung von 3 Oxy pyridin in verd. Natronlauge (Mills, Widdens, Soc. 93, 1378). Rotbraune Tafeln (aus verd. Alkohol). F: 167—169°. Leicht löslich in Äther und Alkohol, schwer in Toluol und Chloroform. Die Lösung in Natronlauge ist rotbraun.

b) Azoderivate der Monooxy-Verbindungen $C_n H_{2n-9} ON$.

2 - Benzolazo - 3-oxy - indol, 2 - Benzolazo - indoxyl bezw. 2 - Phenylhydrazono3-oxo - indolin, Isatin - α - phenylhydrazon C₁₄H₁₁ON₃, Formel I bezw. II. B. Aus Indoxyl (Bd. XXI, S. 69) und
Benzoldiazoniumchlorid in wäßr. I. COH
Lösung (Baeyer, B. 16, 2190).

Aus Isatin - α - anil (Bd. XXI, S. 439) und Phenylhydrazin in Benzol (Geigy & Co., D. R. P. 113981; C. 1900 II, 929; Frdl. 6, 580; Sandmeyer, Ztschr. f. Farben- u. Textilchemie 2, 130; vgl. Heller, B. 40, 1298; Auwers, Boennecke, A. 381 [1911], 307). Aus O-Methylisatin C₆H₄ < CO CO+CH₃ (Bd. XXI, S. 583) und Phenylhydrazin in Benzol (Heller, B. 40, 1298).

Heumann, Bachofen, B. 26, 226), 236° (Zers.) (Baey.), 239° (Zers.) (Hell., B. 40, 1298), 242,5° (korr.) (Bamberger, Elger, B. 36, 1625). Löslich in Alkohol, schwerer löslich in Chloroform und Benzol (Hell., B. 40, 1298). Die Lösung in warmer Natronlauge ist rotbraun; wird aus der alkal. Lösung durch Kohlendioxyd wieder ausgefällt (Baey.). — Die alkal. Lösung wird durch Zinkstaub entfärbt und scheidet dann an der Luft Indigo ab (Baey.). Liefert mit Phenylhydrazin bei 125—130° Isatinosazon (Bd. XXI, S. 445) (Hell., B. 42, 479). Isatin-β-phenylhydrazon s. Bd. XXI, S. 444.

c) Azoderivate der Monooxy-Verbindungen $C_n H_{2n-11} ON$.

1. Azoderivate der Monooxy-Verbindungen C_0H_7ON .

1. Azoderivate des 6-Oxy-chinolins C.H.ON (Bd. XXI, S. 85).

5-Benzolazo-6-oxy-chinolin C₁₅H₁₁ON₃, s. nebenstehende Formel. C₆H₅ N:N B. Beim Eintragen von Benzoldiazoniumehlorid in die alkal. Lösung von 6-Oxy-chinolin (MATHEUS, B. 21, 1642). — Orangerote Nadeln (aus absol. Alkohol). Löslich in Alkohol, Äther und Benzol, unlöslich in Wasser (MA.). — Liefert auf Wolle einen orangefarbenen Chromlack (Möhlau, Steimmig, Ztschr. f. Farben-u. Textilindustrie 3, 363; C. 1904 II, 1352; vgl. Ganelin, v. Kostanecki, B. 24, 3980).

[4-Brom-benzol] - $\langle 1$ azo 5 \rangle - [6-oxy-chinolin] $C_{15}H_{10}ON_3Br$, s. nebenstehende Formel. B. Beim Eintragen von 4-Brom-benzoldiazoniumchlorid in die alkal. Lösung von 6-Oxy-chinolin (MATHEUS, B. 21, 1643). - Hellrote Nadeln (aus Chloroform). Leicht löslich in Chloroform, schwer in Alkohol, unlöslich in Wasser.

C6H4Br · N: N

5-p-Toluolazo-6-oxy-chinolin $C_{16}H_{13}ON_3$, s. nebenstehende $CH_3 \cdot C_6H_4 \cdot N : N$ Formel. B. Beim Eintragen von p-Toluoldiazoniumchlorid in die alkal. Lösung von 6-Oxy-chinolin (M., B. 21, 1643). — Rote Nadeln (aus absol. Alkohol). Löslich in Alkohol, Ather und Benzol, unlöslich in Wasser.

ЯO

5-\beta-Naphthalinazo-6-oxy-chinolin $C_{19}H_{13}ON_3$, s. nebenstehende Formel. B. Beim Eintragen von β -Naphthalindiazoniumchlorid in die alkal. Lösung von 6-Oxy-chinolin (M., B. 21, 1643). — Dunkelrote Nadeln (aus absol. Alkohol). Unlöslich in Wasser, löslich in Alkohol.

C10H2 N: N

[Benzol - sulfonsäure - (1)] - $\langle 4$ azo 5 \rangle - [6 - oxy - chinolin] $C_{15}H_{11}O_{4}N_{3}S$, s. nebenstehende Formel. B. Beim Eintragen von p-Diazobenzolsulfonsäure in die alkal. Lösung von 6-Oxy-chinolin (M., B. 21, 1642). — Orangerote Nadeln. Leicht löslich in heißem

HO3S·C6H4·N:N

Wasser, unlöslich in Alkohol, Ather und Chloroform (M.). — Wird von salzsaurer Zinnchlorur-Lösung in Sulfanilsäure und 5-Amino-6-oxy-chinolin zerlegt (M.; ZINCKE, WIEDERноць, А. 290, 364).

2. Azoderivate des 8-Oxy-chinolins C₉H₇ON (Bd. XXI, S. 91).

5-Benzolazo-8-oxy-chinolin C₁₈H₁₁ON₃, s. nebenstehende Formel. C₆H₅ N.N B. Beim Eintragen von Benzoldiazoniumchlorid in eine alkal. Lösung von 8-Oxy-chinolin (Mathitus, B. 21, 1644). — Bräunlichgelbe Nadeln (aus Alkohol). Unlöslich in Wasser, löslich in Alkohol, Äther und Chloroform.

[4-Brom-benzol]- $\langle 1 \text{ aso } 5 \rangle$ -[8-oxy-chinolin] $C_{15}H_{10}ON_3Br$, Formel I. \boldsymbol{B} . [4-Brom-benzol]-\(\langle 1 azo 5\rangle -[6-oxy-chinolin] (M., B. 21, 1645). — Gelbbrauner Niederschlag. Löslich in absol. Alkohol und Ather, unlöslich in Wasser.

5-p-Toluolazo-8-oxy-chinolin $C_{16}H_{13}ON_3$, Formel II. B. Analog 5-p-Toluolazo-6-oxy-chinolin (M., B. 21, 1644). — Gelbbraune Blättchen (aus Chloroform). Unlöslich in Wasser, löslich in Alkohol, Äther, Benzol und Chloroform.

5- β -Naphthalinazo-8-oxy-chinolin $C_{19}H_{18}ON_3$, Formel III. B. Analog 5- β -Naphthalinazo-6-oxy-chinolin (M., B. 21, 1645). — Rötlichbraune Nadeln (aus Chloroform). Unlöslich in Wasser, löslich in Alkohol, Äther und Chloroform.

[Benzol-sulfonsäure-(1)]-4 aso 5>-[8-oxy-chinolin] C₁₈H₁₁O₄N₅S, Formel IV. B. Bei Einw. von p-Diazobenzolsulfonsäure auf 8-Oxy-chinolin (O. Fischer, Renour, B. 17, 1642). — Orangefarbene Nadeln (aus verd. Alkohol). — Wird durch Kochen mit salzsaurer Zinnehlorür-Lösung in Sulfanilsäure und 5-Amino-8-oxy-chinolin zerlegt.

2. Azoderivate der Monooxy-Verbindungen $C_{10}H_{9}ON$.

1. Azoderivat des 4-Oxy-2-methyl-chinolins C₁₀H₉ON (Bd. XXI, S. 104). [Bensol-sulfonsäure-(1)]-(4 aso 3)-[4-oxy-2-methyl-OH ohinolin], [Bensol-sulfonsäure-(1)]-(4 aso 3)-[4-oxy-chinaldin] C₁₆H₁₃O₄N₃S, s. nebenstehende Formel. B. Das Natriumsalz entsteht bei Einw. von p-diazobenzolsulfonsaurem

Natrium auf 4-Oxy-chinaldin in alkal. Lösung (Conrad, Limpach, B. 21, 1970). — Natrium-salz. Orangerote Nadeln (aus Wasser). Bei der Reduktion mit Zinnchlorür und Salzsäure entstehen 3-Amino-4-oxy-chinaldin und Sulfanilsäure.

2. Azoderivat des 8-Oxy-5-methyl-chinolins C₁₀H₃ON (Bd. XXI, S. 110).

7-Bensolaso-8-oxy-5-methyl-chinolin C₁₆H₁₃ON₂, s. nebenstehende Formel. B. Bei Einw. von Benzoldiazoniumchlorid auf 8-Oxy-5-methyl-chinolin (Ganelin, v. Kostanecki, B. 24, 3978). — Carminrote Nadeln (aus Essigsäure). F: 120°. — Bei der Reduktion mit Zinn und Salzsäure entstehen 7-Amino-8-oxy-5-methyl-chinolin und Anilin.

Färbt auf Tonerdebeize gelbrot, auf Eisenbeize dunkelbraun.

2. Azoderivate der Dioxy-Verbindungen.

a) Azoderivate der Dioxy-Verbindungen $C_n H_{2n-5} O_2 N$.

5 - Bensolaso - 2.6 - dioxy - 3 - methyl - pyridin, β' - Bensolaso - C₆H₅ N:N CH₃ α.α'-dioxy-β-picolin C₁₈H₁₁O₂N₃, s. nebenstehende Formel, bezw. desmotrope Formen. B. Beim Eintragen von Phenylhydrazin in die alkoh.

Lösung von 5.5-Dibrom-2.6-dioxo-3-methyl-1.2.5.6-tetrahydro-pyridin (Bd. XXI, S. 411) (Ruhemann, B. 27, 1272). — Gelbrote Nadeln. Zersetzt sich bei 240°. Schwer löslich in Alkohol, leicht in heißem Eisessig. — Beim Kochen mit Kalilauge entsteht 6-Oxo-5-methyl-1-phenyl-pyridazin-dihydrid-(1.6)-carbonsäure-(3) (Syst. No. 3696).

b) Azoderivate der Dioxy-Verbindungen $C_n H_{2n-11} O_2 N$.

Azoderivate der Dioxy-Verbindungen $\mathrm{C_9H_7O_2N}.$

1. Azoderivat des 2.4 - Dioxy - chinolins $C_9H_7O_2N$ OH HO (Bd. XXI, S. 171).

2.4.2'.4' - Tetraoxy - [3.3' - aso - chinolin] $C_{18}H_{12}O_4N_4$, s. nebenstehende Formel. Über eine Verbindung $C_{18}H_{12}O_4N_4$, der vielleicht diese Konstitution zukommt, vgl. den Artikel 2.4-Dioxo-3-oximino-1.2.3.4-tetrahydro-chinolin (Bd. XXI, S. 565).

2. Azoderivat des 1.3-Dioxy-isochinolins C,H,O,N (Bd. XXI, S. 176).

4-Bensolaso-1.8-dioxy-isochinolin bezw.

4-Phenylhydrasono-1.8-dioxo-1.2.3.4-tetra-hydro-isochinolin, α-Bensolaso-homo-I.

phthalsäure-imid C₁₅H₁₁O₂N₃, Formel I
bezw. II, bezw. weitere desmotrope Formen. B.

OH
Beim Eingießen einer alkal. Lösung von Homophthalimid (Bd. XXI, S. 176) in Benzoldiazoniumchlorid-Lösung (Gabriel, B. 20, 1205). — Orangegelbe Nadeln (aus Eisessig). F: 258° bis 260°.

3. Azoderivate der Trioxy-Verbindungen.

[4 - Nitro - benzol] - $\langle 1$ aso 3 \rangle - [2.4.6 - trioxy - pyridin] $C_{11}H_8O_5N_4$, s. nebenstehende Formel. Eine Verbindung, die vielleicht diese bezw. eine desmotrope Formel besitzt, s. Bd. XV, S. 485.

D. Azoderivate der Oxo-Verbindungen.

1. Azoderivate der Monooxo-Verbindungen.

a) Azoderivate der Monooxo-Verbindungen $C_nH_{2n-3}ON$.

2.4-Bis-benzolazo-3-oxo-tropan, 2.4-Bis-benzolazo- tropinon $C_{20}H_{21}ON_5$, s. nebenstehende Formel. Vgl. hierzu das 2.4-Bis-phenylhydrazon des Tropantrions-(2.3.4), Bd. XXI, S. 563.

b) Azoderivate der Monooxo-Verbindungen $C_n H_{2n-5}ON$.

1. Azoderivate des 2-0xo-pyrrolenins C₄H₃ON (Bd. XXI, S. 267).

5-Benzolazo-2-phenylhydrazono-pyrrolenin bezw. 2.5-Bis-benzolazo-pyrrol HC—CH HC—CH

C₁₆H₁₃N₅ = C₆H₅·N:N·C:N·C:N·C:N·NH·C₆H₅

C₆H₅·N:N·C:N·C:N·C:N·C:N·NH·C₆H₅

allmählichen Eintragen von 2 Mol Benzoldiazoniumchlorid in ein Gemisch aus 1 Mol Pyrrol, verd. Natronlauge und etwas Alkohol unter Kühlung (O. Fischer, Hepp, B. 19, 2253). Aus Pyrrol-α-carbonsäure (S. 23) und Benzoldiazoniumchlorid in alkal. Lösung in der Kälte (F., H., B. 19, 2258). — Rote Krystalle (aus Alkohol). F: 131°. Sublimiert bei höherer Temperatur teilweise unzersetzt. Leicht löslich in Benzol, löslich in Äther und Alkohol, fast unlöslich in Wasser. Die Lösung in konz. Schwefelsäure ist blau. Die alkoh. Lösung wird auf Zusatz von etwas Alkalilauge fuchsinrot. — Beim Kochen mit überschüssigem Methyljodid in alkoh. Natronlauge entsteht 2.5-Bis-benzolazo-1-methyl-pyrrol (S. 582).

 $\begin{array}{c} \textbf{5-p-Toluolazo-2-p-tolylhydrazono-pyrrolenin} & \text{bezw.} & \textbf{2.5-Bis-p-toluolazo-pyrrolenin} \\ \textbf{C}_{18}\textbf{H}_{17}\textbf{N}_{5} = & \textbf{CH}_{3}\cdot\textbf{C}_{6}\textbf{H}_{4}\cdot\textbf{N}:\textbf{N}\cdot\textbf{C}:\textbf{N}\cdot\textbf{C}:\textbf{N}\cdot\textbf{C}:\textbf{N}\cdot\textbf{C}:\textbf{N}\cdot\textbf{C}:\textbf{M}\cdot\textbf{C}+\textbf{A}_{3} \\ \textbf{HC} & \textbf{CH} & \textbf{CH}_{3} & \textbf{C}_{5}\textbf{Bis-p-toluolazo-pyrrolenin} \\ \textbf{HC} & \textbf{CH} & \textbf{CH}_{3} & \textbf{C}_{5}\textbf{Bis-p-toluolazo-pyrrolenin} \\ \textbf{CH}_{3} & \textbf{C}_{5}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} & \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18} \\ \textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18}\textbf{C}_{18$

CH₃·C₆H₄·N:N·C·NH·C·N:N·C₆H₄·CH₃
B. Analog 2.5-Bis-benzolazo-pyrrol (F., H., B. 19, 2254, 2258). — Rote Prismen mit stahlblauem Reflex. F: 179°. Sehr schwer löslich in siedendem Alkohol. Die Lösung in konz. Schwefelsäure ist blau.

B. Bei Einw. von β -Naphthalindiazoniumsalz auf 2-Benzol- $C_{10}H_7\cdot N:N\cdot C\cdot NH\cdot C\cdot N:N\cdot C_6H_5$ azo-pyrrol in Alkohol bei Gegenwart von Soda (F., H., B. 19, 2256). Entsteht in analoger Weise auch aus Benzoldiazoniumchlorid und 2- β -Naphthalinazo-pyrrol (F., H.). — Ziegelrote Blättchen mit bläulichem Reflex. F: 151°. Schwer löslich in Alkohol.

 $\begin{array}{c} \textbf{5-}\beta\textbf{-Naphthalinaso}\textbf{-2-}\beta\textbf{-naphthylhydrasono-pyrrolenin} \ \ \text{bezw.} \ \textbf{2.5-Bis-}\beta\textbf{-naph-}\\ \textbf{+C---CH} \\ \textbf{thalinaso-pyrrol} \ \ C_{\textbf{24}}H_{\textbf{17}}N_{\textbf{5}} = \\ C_{\textbf{10}}H_{\textbf{7}}\cdot N \cdot \dot{C} : N \cdot \dot{C} : N \cdot \dot{C} : N \cdot N \cdot \dot{C}_{\textbf{10}}H_{\textbf{7}} \\ \end{array} \right) \text{bezw.}$

HU——UH $C_{10}H_7\cdot N:N\cdot C\cdot NH\cdot C\cdot N:N\cdot C_{10}H_7$ Bronzefarbene Blättchen. F: 228°; ziemlich schwer löslich in Alkohol; die Lösung in konz. Schwefelsäure ist blau, wird aber bald schmutzig dunkelbraun (F., H., B. 19, 2255).

2. Azoderivat des Pyridons-(2) C_6H_8ON (Bd. XXI, S. 268).

5-Benzolazo-2-oxo-1.2-dihydro-pyridin, 5-Benzolazo-pyridon-(2) $C_{11}H_0ON_3 = HC: CH \cdot C \cdot N: N \cdot C_0H_5$ ist desmotrop mit 5-Benzolazo-2-oxy-pyridin, S. 583.

c) Azoderivate der Monooxo-Verbindungen $C_n H_{2n-9} ON$.

3-Benzolazo-2-oxo-indolin, 3-Benzolazo-oxindol $C_{14}H_{11}ON_3$, s. nebenstehende Formel. Vgl. hierzu Isatin- β -phenylhydrazon $C_6H_4 < C > CO > N \cdot NH \cdot C_6H_5$, Bd. XXI, S. 444.

d) Azoderivate der Monooxo-Verbindungen $C_n H_{2n-15}ON$.

Azoderivate der Monooxo-Verbindungen $C_{12}H_9ON$.

- 1. Azoderivat des 2-Oxo-6.7-benzo-indolins C₁₈H₉ON (Bd. XXI, S. 331).
- 3 Benzolazo 2 oxo 6.7 benzo indolin, 3 Benzolazo 6.7 benzo oxindol $C_{18}H_{18}ON_3$, s. nebenstehende Formel. Vgl. hierzu 6.7 Benzo isatin phenylhydrazon (3) $C_{10}H_6 < C > C_{10}N \cdot NH \cdot C_6H_6$, Bd. XXI, S. 525.
 - 2. Azoderivat des 2-Oxo-4.5-benzo-indolins C₁₂H₂ON (Bd. XXI, S. 332).

2. Azoderivate der Dioxo-Verbindungen.

- 4-Benzolazo-1.3-dioxo-1.2.3.4-tetrahydro-isochinolin, α -Benzolazo-homophthalsäure-imid $C_{15}H_{11}O_2N_3$, Formel I, ist desmotrop mit 4-Benzolazo-1.3-dioxy-isochinolin, S. 585.
- 4-Benzolazo-2-äthyl-1.3-dioxo-1.2.3.4-tetrahydro-isochinolin, α -Benzolazo-homophthalsäure-äthylimid $C_{17}H_{16}O_2N_3$, Formel II. Vgl. hierzu 2-Äthyl-1.3-dioxo-4-phenylhydrazono-1.2.3.4-tetrahydro-isochinolin C_6H_4 C_0 $N \cdot NH \cdot C_6H_5 \cdot C_0$ $N \cdot C_2H_5$, Bd. XXI, S. 566.

3. Azoderivate der Trioxo-Verbindungen.

 $\begin{array}{ll} \textbf{[4-Nitro-benzol]-\langle 1\,aso\,3\rangle-[2.4.6-trioxo-piperidin]}} & C_{11}H_8O_5N_4 = \\ H_2C\cdot CO\cdot CH\cdot N:N\cdot C_6H_4\cdot NO_2\\ OC\cdot NH\cdot CO & . & . & . & . & . & . \\ Eine & Verbindung, die vielleicht diese bezw. eine desmotrope Formel besitzt, s. Bd. XV, S. 485. & . & . & . \\ \end{array}$

E. Azoderivate der Oxy-oxo-Verbindungen.

[4.5 - Dimethoxy - 1.3 - dioxo - isoindolin] - $\langle 7$ azo 7 \rangle - [4.5 - dimethoxy - 1.3 - dioxo-isoindolin], 6.7.6'.7'-Tetramethoxy - 1.3.1'.3'-tetraoxo-[4.4'-azoisoindolin], Diimid der 4.5.4'.5' - Tetramethoxy - azobenzol - tetracarbonsäure- (2.3.2'.3'), Azohemipinsäure-diimid $C_{20}H_{16}O_8N_4$, s. nebenstehende Formel. B. Bei längerem Kochen von 1 Mol Azoopiansäure (Bd. XVI, S. 266) mit 2 Mol Hydroxylaminhydrochlorid in 90°/0 igem Alkohol (Claus, Predari, J. pr. [2] 55, 181). — Gelbes Krystallpulver. F: 250° (Zers.). Sehr schwer löslich.

F. Azoderivate der Carbonsäuren.

1. Azoderivate der Monocarbonsäuren.

4-Benzolaso-2.6-dimethyl-pyridin-carbonsäure-(8)-äthylester, N:N·C₆H₅
4-Benzolaso-2.6-dimethyl-nicotinsäure-äthylester, γ -Benzolaso- $\alpha.\alpha$ '-lutidin- β -carbonsäure-äthylester $C_{16}H_{17}O_{2}N_{3}$, s. nebenstehende Formel. B. Beim Erwärmen der alkoh. Lösung von 4-Phenylhydrazino-2.6-dimethyl-pyridin-carbonsäure-(3)-äthylester (S. 569) mit gelbem Quecksilberoxyd (MICHAELIS, A. 366, 362). — Dunkelrote Nadeln (aus Äther). F: 78°.

2. Azoderivate der Dicarbonsäuren.

{1-[2.6-Dimethyl-3.5-dicarbäthoxy-pyridyl-(4)]-benzol}-(3 azo 1)-naphthol-(2) $C_{20}H_{27}O_5N_3$, s. nebenstehende Formel. B. Aus diazotiertem 2.6-Dimethyl-4-[3-amino-phenyl]-pyridin-dicarbonsäure-(3.5)-diāthylester und β-Naphthol in alkal. Lösung (Lepetit, G. 17, 468).— Rote Nadeln (aus Eisessig). F: 151°. Ziemlich schwer löslich in Alkohol, Äther und Chloroform, leicht in heißem Eisessig. Unlöslich in Säuren und Alkalilaugen.

{1-[2.6-Dimethyl-8.5-dicarboxy-pyridyl-(4)]-benzol}- $\langle 3$ aso 4>-[N.N-dimethyl-anilin] $C_{23}H_{23}O_4N_4$, s. nebenstehende Formel. B. Aus diazotierter 2.6-Dimethyl-4-[3-aminophenyl]-pyridin-dicarbonsäure-(3.5) und Dimethylanilin (L., G. 17, 470). — Rotbraun. Zersetzt sich bei 170°, ohne zu schmelzen. Ziemlich leicht löslich in Wasser; leicht löslich in Säuren und Alkalilaugen.

G. Azoderivate der Oxy-carbonsäuren.

3-Bensolaso-2.6-dioxy-pyridin-carbonsäure-(4), 3-Bensolaso-CO₂H 2.6 - dioxy - isonicotinsäure, Bensolasocitrasinsäure $C_{12}H_0O_4N_3$, s. nebenstehende Formel, bezw. desmotrope Formen. B. Bei Einw. von Benzoldiazoniumchlorid auf 2.6-Dioxy-pyridin-carbonsäure-(4) (S. 254) in alkal. Lösung (Sell, Easterfield, Soc. 63, 1042). — Gelblichrote Flocken. Verkohlt bei 230°, ohne zu schmelzen. — $NaC_{12}H_0O_4N_3 + 6H_2O$. Hellgelber Niederschlag.

3-Bensolaso-5-chlor-2.6-dioxy-pyridin-carbonsäure-(4)-amid,
3-Bensolaso-5-chlor-2.6-dioxy-isonicotinsäure-amid, Bensolaso-chlorcitrasinsäure-amid C₁₂H₂O₂N₄Cl, s. nebenstehende Formel, bezw. desmotrope Formen. B. Bei Einw. von Phenylhydrazin auf Trichlorcitrazinsäure-amid (8. 330) in Alkohol (Ruhemann, Allhusen, B. 27, 579). — Gelbrote Blättchen. Schwer löslich in Alkohol. — Beim Erhitzen mit konz. Salzsäure entsteht 1-Phenylpyrazolon-(5)-carbonsäure-(3) (Syst. No. 3696). Unverändert löslich in kalter Kalilauge mit dunkelroter Farbe; beim Kochen mit konz. Kalilauge erhält man Dioxalessigsäure-monophenylhydrazon (Bd. XV, S. 387).

H. Azoderivate der Amine.

Azoderivate der Monoamine $C_n H_{2n-14} N_2$.

1. Azoderivat des 4'-Amino- α -stilbazols $C_{18}H_{18}N_{2}$ (8. 461).

• [Benzol - sulfonsäure - (1)] - $\langle 4 \text{ azo } 3' \rangle$ - [4' - amino- $\overbrace{N}^{\bullet} \cdot CH : CH \cdot \overbrace{ }^{\bullet} \cdot N : N \cdot C_{0}H_{4} \cdot SO_{3}H$ α -stilbasol] $C_{19}H_{16}O_3N_4S$, s. nebenstehende Formel. B. Aus diazotierter Sulfanilsäure und 4'-Amino- α -stilbazol (S. 461) in alkal. Lösung (Ahrens, Luther, B. 40, 3405). — KC₁₉H₁₅O₃N₄S. Gelber Farbstoff. — Die Einw. von Zinnchlorür und Salzsäure führt zu Sulfanilsäure und 3'.4'-Diamino-α-stilbazol.

2. Azoderivate der Monoamine $C_{14}H_{14}N_2$.

1. Azoderivat des 2'-Amino-6-methyl-α-stilbazols C₁₄H₁₄N₂ (S. 462).

[Benzol-sulfonsäure - (1)] - (4 azo 5') - [2'-amino-6-methyl-α-stilbazol] C₂₀H₁₈O₃N₄S, s. nebenstehende
Formel. B. Aus diazotierter Sulfanilsäure und 2'-Amino-6-methyl-α-stilbazol in alkal. Lösung (Ahrens, Luther, B.
40, 3404). — NaC₂₀H₁₇O₃N₄S. Gelbbraune Krystalle (aus
Alkohol). — Bei der Reduktion mit Zinnchlorür und Salzsäure entstehen Sulfanilsäure und 2'.5'-Diamino-6-methyl-a-stilbazol.

2. Azoderivat des 4'-Amino-6-methyl- α -stilbazols $C_{14}H_{14}N_{\bullet}$ (8.462).

[4'-amino-6-methyl-α-stilbazol] C₂₀H₁₈O₃N₄S, cH₃. CH₃·N: N·C₆H₄·SO₃H s. nebenstehende Formel. B. Aus diazotierter Sulfanilsäure und d'Amino β mathematical surface and d'Ami anilsäure und 4'-Amino-6-methyl-a-stilbazol in alkal. Lösung (A., L., B. 40, 3405). -NaC₂₀H₁₇O₃N₄S. Gelbbraune Blätter (aus Alkohol). Färbt Seide, Wolle und Baumwolle gelb.

J. Azoderivate der Hydrazine.

2(bezw. 3) - Benzolazo - 3(bezw. 2) - phenylhydrazino - indol $C_{20}H_{12}N_{\delta}=$ $C_{6}H_{4} \underbrace{C(NH \cdot NH \cdot C_{6}H_{5})}_{NH} \underbrace{C \cdot N : N \cdot C_{6}H_{5}}_{C \cdot N} \underbrace{bezw. \ C_{6}H_{4}}_{C(N:N \cdot C_{6}H_{5})} \underbrace{C \cdot NH \cdot NH \cdot C_{6}H_{5}}_{NH}. \ Vgl.$ hierzu Isatinosazon C_0H_4 $C(:N\cdot NH\cdot C_0H_5)$ $C:N\cdot NH\cdot C_0H_5$, Bd. XXI, S. 445.

X. Diazo-Verbindungen.

(Vgl. die Einleitung zu isocyclischen Diazo-Verbindungen, Bd. XVI, S. 426.)

A. Diazoderivate der Stammkerne.

1. Monodiazo-Verbindungen $C_n H_{2n-9} ON_3$.

2 - Methyl-indol-diazoniumhydroxyd-(3) $C_9H_9ON_3$, $C_9H_9ON_3$, $C_9H_9ON_3$, $C_9H_9ON_3$ s. nebenstehende Formel. 3-Diago-2-methyl-indol $C_9H_7N_3 = C_0H_4$ $\stackrel{C}{N_2}$ $C \cdot CH_3$ oder $C_6H_4 \stackrel{C(:N_2)}{\sim} C \cdot CH_3$, s.

bei 3-Amino-2-methyl-indol, S. 441.

2. Monodiazo-Verbindungen $C_n H_{2n-15} ON_3$.

Carbazol-diazonium hydroxyd-(3) C₁₂H₉ON₃, s. nebenstehende Formel. B. Das Chlorid entsteht beim Diazotieren von 3-Amino-carbazol mit verd. Salzsäure und Natriumnitrit-Lösung (Ruff, Stein, B. 34, 1668, 1680). — Nur in Lösung bekannt. Zersetzt sich rasch am Licht. Wurde wegen der hohen Lichtempfindlichkeit (ebenso wie die weiter unten angeführten Doppelsalze) zur Herstellung photographischer Kopien vorgeschlagen. Liefert mit Phenolen und Aminen substantive, zum Teil sehr lichtechte Farbstoffe. — Zinkchlorid-Doppelsalz. Krystalle. Leicht löslich in Wasser. — $C_{12}H_8N_3 \cdot Cl + HgCl_2$. Krystalle. Sehr schwer löslich in Wasser. in Wasser.

Carbazol - diazosulfonsäure - (3) $C_{12}H_9O_3N_3S$ der nebenstehenden Formel s. S. 578.

3. Monodiazo-Verbindungen $C_n H_{2n-17} ON_3$.

2-Phenyl-indol-diazonium hydroxyd-(3) $C_{14}H_{11}ON_3$, $C_{NH} = \frac{C \cdot N(N) \cdot OH}{C \cdot C_0H_5}$ s. nebenstehende Formel.

3-Diazo-2-phenyl-indol $C_{14}H_8N_3=C_6H_4$ $\stackrel{C}{\stackrel{\cdot}{N_3}}C\cdot C_6H_5$ oder C_6H_4 $\stackrel{C(:N_2)}{\stackrel{\cdot}{N_2}}C\cdot C_6H_5$

s. bei 3-Amino-2-phenyl-indol, S. 464.

4. Monodiazo-Verbindungen $C_n H_{2n-19} ON_3$.

2.5 - Diphenyl - pyrrol - diazonium hydroxyd - (3) $C_{16}H_{13}ON_3 = HC - C \cdot N(:N) \cdot OH$

 $C_6H_6 \cdot C \cdot NH \cdot C \cdot C_6H_5$ 3 - Diazo - 2.5 - diphenyl -pyrrol $C_{16}H_{11}N_3$, Formel I oder II, s. bei 3-Amino-2.5-diphenyl-pyrrol,

5. Monodiazo-Verbindungen $C_n H_{2n-27} ON_3$.

2.3.5 - Triphenyl - pyrrol - diazonium hydroxyd - (4) $C_{aa}H_{17}ON_{8}=HO\cdot(N:)N\cdot C_{ab}-C_{c}\cdot C_{6}H_{5}$

$$C_6H_5 \cdot \ddot{C} \cdot NH \cdot \ddot{C} \cdot C_6H_5$$

$$\begin{array}{c|c} \mathbf{C} & \mathbf{C} \cdot \mathbf{C_6} \mathbf{H_5} \\ \hline \mathbf{N_2} & \mathbf{II.} & \mathbf{N_2} : \mathbf{C} - \mathbf{C} \cdot \mathbf{C_6} \mathbf{H_5} \\ \hline \mathbf{C_6} \mathbf{H_5} \cdot \mathbf{C} \cdot \mathbf{N} \cdot \mathbf{C} \cdot \mathbf{C_6} \mathbf{H_5} & \mathbf{II.} & \mathbf{C_6} \mathbf{H_5} \cdot \mathbf{C} : \mathbf{N} \cdot \mathbf{C} \cdot \mathbf{C_6} \mathbf{H_5} \end{array}$$

B. Diazoderivate der Oxy-Verbindungen.

1. Diazoderivate der Monooxy-Verbindungen.

4-Oxy-2-methyl-chinolin-diazoniumhydroxyd-(3), 4-Oxy-chinaldin-diazoniumhydroxyd-(3) $C_{10}H_{\bullet}O_{3}N_{3}$, s. nehenstehende Formel.—Chlorid $C_{10}H_{\delta}ON_{3}$ ·Cl. B. Beim Versetzen einer äther. Lösung · N(; N) · OH von Anhydro-[4-oxy-2-methyl-chinolin-diazohydroxyd-(3)] (s. u.) mit alkoh. Salzsäure (Conrad, Limpach, B. 21, 1979). Rötliche Krystalle.

Anhydro-[4-oxy-2-methyl-chinolin-diasohydroxyd-(8)], 3-Diaso-4-oxychinaldin 1) C₁₀H₇ON₃. B. Man versetzt eine Lösung von 3-Amino-4-oxy-chinaldin in verd. Schwefelsäure mit Natriumnitrit; nach etwa 10 Min. wird die Säure mit Natriumdicarbonat abgestumpft und die Lösung mit Äther ausgeschüttelt (CONBAD, LIMPACH, B. 21, 1978). — Gelbe Nadeln (aus Äther und Benzol). F: 129—131° (Zers.). Liefert beim Behandeln mit Zinn und konz. Salzsäure 3-Amino-4-oxy-chinaldin.

2. Diazoderivate der Dioxy-Verbindungen.

3-Nitro-4-diago-2.6-dioxy-pyridin bezw.
3-Nitro-2.6-dioxo-4-nitrosimino-piperidin $C_5H_4O_5N_4$, Formel III bezw. IV, bezw. weitere desmotrope Formen, Nitrosonitroglutasin. B. Das Natriumsalz entsteht beim Varsetzen einen I sauer 1 saue Natriumsalz entsteht beim Versetzen einer Lösung von Glutazin in verd. Natronlauge mit Natriumnitrit und Eintragen der mit Wasser verdünnten Flüssigkeit in verd. Essigsäure (v. Pechmann, B. 20, 2657; Baron, Remfry, Thorpe, Soc. 85, 1732). — Die Lösung des Natriumsalzes gibt mit den Salzen der Erdalkalien und der Schwertalle meist gelbe, schwer Natriumsalzes gibt mit den Salzen der Erdalkalien und der Schwertalle meist gelbe, schwertalle in den Schwertalle meist gelbe, schwertalle der Berlichen der Berliche Middle Berlichen der Berliche Berlichen der Berliche der Berlichen der Berliche der B lösliche, krystallinische Niederschläge, zeigt die Liebermannsche Nitroso-Reaktion und gibt mit Eisenchlorid eine grüne Färbung; beim Erwärmen mit verd. Schwefelsäure wird salpetrige Säure abgespalten (v. P.). — $NaC_5H_3O_5N_4$ (bei 100°). Rotviolette Nadeln (v. P.).

8.5-Dinitro-4-diago-2.6-dioxy-pyridin bezw. 8.5-Dinitro-2.6-dioxo-4-nitros-imino-piperidin $C_5H_2O_7N_5$, Formel V bezw. VI, bezw. weitere desmotrope Formen, Nitroso-dinitroglutasin. B. Das Natriumsalz ent-N:N-OH N-NO steht beim Erwärmen des Natriumsalzes des Nitrosonitroglutazins in essigsaurer Lösung mit überschüssigem Natriumnitrit (v. Pechmann, B. 20, 2657). — Das Natriumsalz spaltet beim Erwärmen mit verd. Säuren salpetrige Säure ab und gibt mit Metallsalz-Lösungen unlösliche, gelbe Niederschläge. — NaC₅H₂O₇N₅. Zinnoberrotes Krystallpulver. Schwer löslich in Wasser, leicht in Alkalien. — Ca₃(C₅O₇N₅)₂. Krystalle.

¹⁾ Zur Konstitution vgl. die Angaben in Bd. XVI, S. 520.

3. Diazoderivate der Tetraoxy-Verbindungen.

Diazopapaverin C₂₀H₁₉O₄N₃ CH₃·O N
der nebenstehenden Formel und
seine Derivate s. Syst. No. 3868.

C. Diazoderivate der Oxo-Verbindungen.

1. Diazoderivate der Monooxo-Verbindungen.

2-Oxo-1.2.3.4-tetrahydro-chinolin-diasoniumhydr-oxyd-(7), Hydrocarbostyril-diasoniumhydroxyd-(7)
C₉H₉O₂N₃, s. nebenstehende Formel. — Chlorid C₉H₈ON₃·Cl. B.
Beim Versetzen einer Lösung von 7-Amino-2-oxo-1.2.3.4-tetrahydro-chinolin in alkoh. Salzsäure mit einer alkoh. Athylnitrit-Lösung und Versetzen der Lösung mit Äther (GABRIEL, B. 14, 2332 Anm.). Gelbe bis gelbbraune Blättchen. Verpufft beim Erhitzen. Liefert bei der Zersetzung mit Alkohol Hydrocarbostyril.

2. Diazoderivate der Dioxo-Verbindungen.

2-Oxo-3-oximino-indolin-diazoniumhydroxyd-(6),
3-Oximino-oxindol-diazoniumhydroxyd-(6) C₈H₆O₃N₄,
s. nebenstehende Formel. — Chlorid C₈H₅O₂N₄·Cl. B. Beim
Eintragen von Amylnitrit in eine Lösung von salzsaurem 6-Amino-oxindol (S. 518) in alkoh.
Salzsäure (Gabriel, R. Meyer, B. 14, 832, 2332). Gelbe Nadeln. Verpufft beim Erhitzen.
Wird beim Kochen mit Alkohol nur langsam zersetzt. Liefert beim Kochen mit Alkohol und Salzsäure 3-Oximino-oxindol (Bd. XXI, S. 443).

D. Diazoderivate der Oxy-oxo-Verbindungen.

Papaveraldin - diazoniumhydroxyd $C_{30}H_{19}O_{6}N_{3}$, s. nebenstehende Formel. — Sulfat $C_{30}H_{18}O_{5}N_{3}\cdot O\cdot SO_{3}H$. B. Beim Diazotieren von Aminopapaveraldin (8. 541) mit Nitrit-Lösung und verd. Schwefelsäure (Pschore, Stählin, Silber-Bach, B. 37, 1939). Orangegelbe Nadeln (aus Wasser). Färbt sich bei ca. 120° dunkel und schmilzt bei 225° (korr.) zu einer dunkelgrünen Flüssigkeit. Beim Erwärmen der schwefelsauren Lösung über 60° erfolgt eine lebhafte Gasentwicklung und Ausscheidung nadelförmiger Krystalle.

XI. Azoxy-Verbindungen.

(Vgl. die Einleitung zu isocyclischen Azoxy-Verbindungen, Bd. XVI, S. 620.)

8.8'-Dimethyl-[5.5'-azoxychinolin] C₂₀H₁₆ON₄, s. nebenstehende Formel. B. Neben 5-Amino-8-methyl-chinolin und 8.8'-Dimethyl-[5.5'-azochinolin] (S. 577) bei der Reduktion von 5-Nitro-8-methyl-chinolin mit Eisenfeile und Salzsäure (Noel-Ting, Trautmann, B. 23, 3679). Neben 8.8'-Dimethyl-[5.5'-azochinolin] bei der elektrolytischen Reduktion von 5-Nitro-8-methyl-chinolin in alkal. Lösung an einer Nickelkathode (Elbs, Z. El. Ch. 10, 579). — Gelbe Nadeln (aus Alkohol). F: 201°; ziemlich leicht löslich in Eisessig, Alkohol und den übrigen gebräuchlichen Lösungsmitteln (N., T.).

1.1' - Diäthyl - 3.3' - dinitro2.2'-diphenyl-[5.5'(?)-asoxyindol] oder 1.1'-Diäthyl-5.5'(?) - dinitro2.2' - diphenyl - [3.3'-asoxyindol] $C_{22}H_{26}O_5N_6$, Formel I oder II. B. Beim Kochen von 1-Åthyl-3.5(?)-dinitro-2-phenyl-indol (Bd. XX, S. 469) mit überschüssiger alkoholischer Kalilauge (Angell, Angello, G. 30 II,

282). — Braune Krystalle, die bis 285° nicht schmelzen und in allen Lösungsmitteln unlöslich sind.

XII. Nitramine.

4-Nitramino-chinolin, [Chinolyl-(4)]
NH NO2

N:N(:0) OH

nitramin C₉H₇O₂N₃, Formel III bezw. IV. Zur III.

Konstitution vgl. Tschitschibabin, Witkowski,

Lapschin, Ж. 57 [1925/26], 306; B. 58 [1925],

804. — B. Beim Eintragen von schwefelsaurem 4-Amino-chinolin in gekühlte rauchende
Salpetersäure (Claus, Frobenius, J. pr. [2] 56, 202). — Gelbe, stark lichtbrechende Nadeln

mit 1H₂O (aus Wasser), die bei 120° das Krystallwasser verlieren und sich bei 207° zersctzen

(Cl., Fr.). Löslich in Alkohol und in heißem Wasser; leicht löslich in Alkalien (Cl., Fr.). —

NaC₉H₆O₂N₃. Leicht löslich in Wasser (Cl., Fr.). — 2C₉H₇O₂N₃ + 2HCl + PtCl₄. Orangerote

Krystalle. Zersetzt sich bei 210°; wird durch Wasser hydrolysiert (Cl., Fr.).

6-Nitro-4-nitramino-chinolin, NH·NO2 N: N(:0) OH [6-Nitro-chinolyl-(4)]-nitramin O2N bezw. O2N bezw. O2N Stitution vgl. Tschitschibabin, Witkowski, N bezw. O2N bezw. O2N N: N(:0) OH LAPSCHIN, JK. 57 [1925/26], 308; B. 58 [1925], 804. — B. Beim Eintragen von Salpeterschwefelsäure in eine gekühlte Lösung von 4-Amino-chinolin in Schwefelsäuremonohydrat (Claus, Frobenius, J. pr. [2] 56, 197). — Goldgelbe Nadeln (aus 50% jegem Alkohol). Zersetzt sich bei 2030 (CL., Fr.). Sehr leicht löslich in verd. Alkalilaugen unter Bildung der entsprechenden Salze; löst sich in verd. Säuren erst in der Siedehitze und scheidet sich aus diesen Lösungen beim Erkalten wieder säurefrei aus (CL., Fr.). — 2C9H6O4N4+2HCl+PtCl4. Orangegelbe Plättchen und Säulen (aus konzentrierter salzsaurer Lösung). Zersetzt sich bei 218°; wird durch Wasser leicht hydrolysiert (CL., Fr.).

XIII. Triazene.

1.8 - Di - β - pyridyl - triasen, 3.3'-Diazoamino-pyridin $C_{10}H_8N_5$, s. nebenstehende Formel. B. Man versetzt eine gut gekühlte verdünnte Lösung von 2 Mol salzsaurem 3-Amino-pyridin mit 1 Mol Natriumnitrit und fällt mit Natriumacetat-Lösung (Mohr, B. 31, 2495). — Hellgelbe Nadeln oder Prismen mit violettem Reflex (aus Benzol). F: 173—174° (Zers.). Löslich in kaltem Alkohol, schwer löslich in siedendem Äther und Ligroin.

1 - Phenyl - 3 - [chinolyl - (6)] - triamen, 6 - Benzoldiazoamino-chinolin $C_{15}H_{12}N_4$, s. nebenstehende Formel. B. Das Hydrochlorid entsteht aus Benzoldiazoniumchlorid und der berechneten Menge 6-Aminochinolin in stark verdünnter alkoholischer Lösung; die freie Base fällt man mit Natriumacetat (Knumppel, A. 310, 87). — Orangegelbe Nadeln (aus verd. Alkohol). F: 142°. Sehr leicht löslich in Alkohol und Benzol, löslich in Ather, unlöslich in Wasser. — $C_{15}H_{12}N_4 + HCl$. Rote Nadeln (aus Alkohol). In wäßr. Lösung wenig beständig.

Hydroxymethylat $C_{16}H_{16}ON_4 = (HO)(CH_3)NC_9H_6 \cdot N_3H \cdot C_6H_5$. — Jodid $C_{16}H_{18}N_4 \cdot I$. B. Beim Erhitzen einer methylalkoholischen Lösung von 6-Benzoldiazoamino-chinolin mit Methyljodid im Rohr auf dem Wasserbad (Knueppel, A. 310, 88). Tiefrotbraune Nadeln (aus Wasser). F: 220°. Leicht löslich in heißem Wasser, schwer in Alkohol.

XIV. C-Magnesium-Verbindungen.

 $\begin{array}{l} \alpha \text{ - Pyrrolm agnesium hydroxyd}, \quad \alpha \text{ - Pyrrylm agnesium hydroxyd} \\ C_4H_5ONMg = \frac{HC - CH}{HC \cdot NH \cdot C \cdot Mg \cdot OH}. \quad \text{Diesem Hydroxyd entsprechen vielleicht die Bd. XX,} \\ \text{S. 163 abgehandelten Verbindungen.} \end{array}$

Register für den zweiundzwanzigsten Band.

Vorbemerkungen s. Bd. I, S. 939, 941.

A.

Acet- s. auch Aceto- und Aces tyl-.

Acetaminoacetaminophenylacridin 492.

Acetaminoacetoxy- s. Acetoxyacetamino-.

Acetaminoacetyl-carbazol 460. — tetrahydrochinolin 439.

Acetaminoathoxy- s. Äthoxyacetamino-.

Acetamino-āthylbenzoacridiniumhydroxyd 474.

äthylpyridin 434.benzalchinaldin 472.

— benzoacridin 474.

benzoacridinhydroxyäthyslat 474.

 benzoylpseudoekgoning methylester 208.

— carbazol 460.

chinaldin 453, 454.

chinolin 445, 446, 448, 450.chinolinhydroxymethylat

448. Acetaminodimethyl-acridin 465.

benzoacridiniumhydroxyd
 476.

— chinolin 457.

 phenylbenzoacridiniums hydroxyd 483.

- pyridin 436.

Acetaminodioxy- s. Dioxyacetamino-.

Acetaminoisophthalsäure, Lactam 307.

Acetaminomethoxy- s. Methoxyacetamino-.

Acetaminomethyl-acetaminophenylbenzoacridin 496.

— āthylbenzoacridiniumhydrsoxyd 476.

— äthylphenylbenzoacridinis umbromid 483.

- benzoacridin 476.

 benzoacridinhydroxyāthys lat 476.

 benzoacridinhydroxymes thylat 476. Acetaminomethyl-carbostyril 522.

- chinolin 453, 454, 455, 456.

- chinolon 522.

indol 442.

— indolcarbonsäureäthyls

ester 545. Acetaminomethylphenylacridiniumhydroxyd 477.

— benzoacridin 483.

 benzoacridinhydroxymes thylat 483.

Acetamino-naphthalinindols indigo 538.

— naphthostyril 524.

— nitrophenylchinolin 466.

Acetaminooxy- s. Oxyacets amino-.

Acetamino-papaverin 515.

— pentamethylpyrrolidin423.

— phenylacridin 477.

— phenylacridinhydroxys methylat 477.

 phenylhydrazonomalonyls bisaminodimethylpyrrols dicarbonsäurediäthyls ester 145.

— phenyllepidin 470 (s. auch 469).

- phthalsäureanil 534.

— phthalsäureimid 534.

— phthalsäuretolylimid 534.

pseudococain 208.
pyridin 429, 432, 433.

- stilbazol 461.

- styrylchinolin 472.

— terephthalsäure, Lactam 307.

tetramethylacetylpyrrolisdin 423.

— tetramethylpyrrolidin 423.

trimethylacridiniumhydrsoxyd 465.

— trimethylpiperidin 421, 422.

Acetessigsäureäthylestertolylshydrazon 70.

Acetiminodioxo- s. Dioxoacets imino-.

Aceto- s. auch Acet- und Aces tyl-. Acetonchinolylhydrazon 565. Acetoxyacetamino-chinolin

501, 503. — phenylchinolin 507.

Acetoxyacetylindol-carbonsaure 230.

— carbonsäureäthylester 229.

— carbonsäuremethylester

Acetoxyindol-carbonsāure 63, 227.

— carbonsäureäthylester 228.

— carbonsäuremethylester

Acetoxypentamethylpiperis dincarbonsäuremethylsester 194.

Acetyl- s. auch Acet- und Aceto-.

Acetylamino- s. Acetamino-Acetylanilino-bernsteinsäures imid 530.

brenzweinsäureanil 532.

brenzweinsäureimid 532.

tricarballylsäureäthylestersimid 560.

Acetyl-anthranilsäurecarbons säure, Lactam 307.

 benzoflavinhydroxymes thylat 494.

 benzooxindolchinoncars bonsäureäthylester 350, 379.

cincholoipon 12.

cincholoiponsäure 129 (s. auch 127, 130).

 dihydrokollidincarbons säureäthylester 305.

— dimethylanilinisatin 528.

— glutazin 512. — guvacin 17.

– indoxylsäure 227.

indoxylsäureäthylester
 228, 229.

— indoxylsäuremethylester 227, 229.

— merochinen 20.

metanicotin 438.

- nicotenylamidoxim 41.

nicotinsaure 306.

Acetyl-oxoiminocarbathoxy pyrrolinylbernsteinsäure: diathylester 369.

pseudoekgoninnitril 209. - pyrrolcarbonsäure 301.

 tetrahydrochinolinearbons säure 58 (s. auch 57).

tetrahydrocinchoninsäure

tetrahydropyridincarbon= säure 17.

 toluidinomethylacetyls oxindol 519.

Aconit-anilsäure 331.

- imidsäure 330.

Aconitsäure-anil 331.

— imid 330.

toluididtolylimid 331. Acridincarbonsäure 101.

Acridin-gelb 488; Base 488.

orange, Base 487.orange 2 G 487.

— orange R 490.

Acridinsäure 169.

Acridolcarbonsäure 244, 320. Acridon-carbonsäure 320.

sulfonsäure 413.

Acridyl-acrylsäure 105. - benzoesäure 111.

Acridylbenzoesäure-äthyl= esterhydroxymethylat 112.

hydroxymethylat 112.

methylesterhydroxyme= thylat 112.

Acridylpropionsäure 101. Acridylpropionsäure-hydroxy methylat 102

methylesterhydroxy= methylat 102.

Äthenyl- s. Vinyl-.

Äthoxalylchinolylhydrazin **564**.

Äthoxyacetaminochinolin 501, 5Ò3.

Athoxyacetoxy-dinicotinsaus reäthylester 276.

pyridindicarbonsäure. äthylester 276.

Athoxyathylcarboxyphenyl= chinolin 249.

Äthoxyäthylpyridondicarbons säure äthylester 379.

diathylester 380.

Athoxy-aminochinolin 501, 5Ŏ2.

anilinochinolin 500.

- benzaminochinolin 501,

 bisdimethylaminophenyl= phthalimidin 540.

carboxyphenylchinolin 244.

chinolinearbonsaure 232, **233**.

Äthoxy-chinolinearbonsäures äthylester 233.

chinolylphthalsäure 273. — cinchoninsäure 233.

 cinchoninsäureäthylester 233

dimethylpyridincarbons säure 221.

— indolcarbonsäure 227.

 indolcarbonsäureäthyls ester 228.

methylbisdimethylaminos phenylphthalimidin 540.

methylindolsulfonsäure

nicotinsäure 215.

oxobenzyldihydrochinolins carbonsaure 374.

phenylpyridondicarbon= säurediäthylester 380.

pyridincarbonsäure 215.

Äthoxysulfophenyl-chinaldin

styrylchinolin 411.

Äthyläther-apocinchensäure

homapocinchensäure 244.

— indoxylsäure 227.

 indoxylsäureäthylester **22**8.

Äthylaminoäthylpiperidin 419. Äthylaminoäthylpyridon-car= bonsäure 558

dicarbonsäure 361.

 dicarbonsäureäthylester 361.

Åthylamino-coniin 420.

diäthylaminophenylacri: din 492.

methylaminophenylacris din 493.

 methylphenylbenzoacridin 482.

--- methylphenyldihydrobens zoacridin 480.

phenylbenzoacridin 481.

 phenyllepidin 470. - propylpiperidin 420.

propylpyridin 436.

trimethyläthylpyrrolidon

Äthyl-benzochinolincarbon= säure 102.

benzocinchoninsäure 102. benzoindolsulfonsäure 399.

benzooxindolchinoncar= bonsäureäthylester 350.

benzoylenchinolin, Sulfons saure 413.

carbostyrilcarbonsäure **241**, **3**10.

carboxymethylenphthal. imidin 312.

chinaldinsäure 93.

Äthylchinolin-carbonsäure 93.

carbonsäurehydroxyme= thylat, Anhydrid 93.

dicarbonsaure 171.

sulfonsäure 398. Athyl-chinoloncarbonsäure

310.

cincholoiponsăure 127, 129. cinchoninsäure 93.

cinchoninsäuremethyl= betain 93.

Athylcyan-carbostyril 310.

chinolon 310.

dihydrochinolin 66.

isocarbostyril 241.

isochinolon 314.

tetrahydropyridin 17.

Äthyl-dibenzoylglutazincar: bonsäureäthylester 344.

dibromathylpiperidylessig= säureäthylester 12.

dicyanglutaconsäureimid

dihydrocarbostyrilcarbon= säureäthylester 309.

dihvdrocinchoninsäure: nitril 66.

dinicotinsaure 162.

diphenylpiperidondicar: bonsäurediäthylester 352.

Äthyldiphenylpyridon-dicar= bonsäure 353.

dicarbonsäurediäthylester 353.

Äthylenbis-dimethyldicyan: glutarsäureimid 355.

dioxodimethyldicyanpipe: ridin 355.

methylphenylpyrrolcar: bonsäure 91.

oxotrimethylcyantetra= hydropyridin 297.

oxotrimethyltetrahydros pyridincarbonsāurenitril 297.

Athyl-glutazin 513.

glutazincarbonsäureäthyl= ester 557.

heptylbenzochinolincars bonsäure 103.

heptylbenzocinchonins säure 103.

hydrocarbostyrilcarbon* säureäthylester 309.

Athyliden-cinchoxinsäure 310. piperidylessigsäure 634.

Äthyl-indolcarbonsäure 62. isocarbostyrilcarbonsäure

isocarbostyrilcarbonsäures

nitril 241. isochinoloncarbonsäure 311.

isonicotinsaure 51.

komenaminsäure 329.

REGISTER 597

Äthyl-merochinen 20. merochinenäthylesterdis bromid 12. merochinennitrilhydroxy: methylat 20. — naphthocinchoninsäure 102. - nicotinsäure 51. nipecotinsäure 9. — oxyāthylaminotrimethyl= äthylpyrrolidon 516. Äthyloxyaminophenyläthylpiperidin 499. - pyridin 505. Athylphenyl-cyandihydro acridin 111. dihydroacridincarbons säurenitril 111. Athyl-piperidincarbonsaure 9. piperidylessigsäure 11. propylcyclopropantetra= carbonsaureimid, Dinitril Athylpropyldicyan-cyclopros pandicarbonsaureimid 364. - glutarsäureimid 358. Athylpyridin-carbonsäure 51. dicarbonsaure 162. Äthyl-pyridoncarbonsäure 298. pyridylacrylsäure 57. – pyridylmilchsäure 223. Äthylpyrrol-carbonsäure 24. - carbonsäureäthylamid 24. – dicarbonsäure 131. Äthylpyrrylendibenzoesäure 178. Äthyltetrahydro-chinolinears bonsäure 58, 59. - nicotinsāure 17. — nicotinsäurenitril 17. - pyridincarbonsäure 17. pyridincarbonsäurenitril Alanyltryptophan 549. Aldehydo- s. Formyl-. Algolrot BTK 537. Alizarin-blau, Amid 541. - blaugrün 416. — blausulfonsäure 416. - grün S, SW 417. - grün X, WX 417. Allocinnamylcocain 201. Allomerochinen 19, 20 (vgl. 634). Allyl-dimethyldicarbathoxys pyrrylthioharnstoff 142. - indolcarbonsaure 62. thioureidodimethylpyrrols dicarbonsaurediathylester 142. Amine 419.

Amine. Azoderivate 589.

Aminoacetamino-naphthoes säure, Lactam 524. trimethylphenylacridis niumhydroxyd 494. Amino-acetylpyrrol 518. — acridin 462, 463. – acridon 524, 525. – adipinsäure, Lactam 286. Aminoäthoxy- s. Athoxy= amino-. Aminoäthyl-carbostyril 521. - chinolon 521. phenylindol 464. pipecolin 419. piperidin 419. pyridin 434. Amino-aminophenylacridin aminophenylchinolin 489. amylhexylchinolin 458. apocinchen 508. benzalchinaldin 472. Aminobenzaldehyd-indogenid isoindogenid 527. Aminobenzal-diacetonamin **520, 521**. indoxyl 526. lepidin 472. — oxindol 527. Aminobenzo-acridin 473, 474. acridon 527. chinolin 463. — flavin 497. Aminobenzovl-ekgonin= methylester 202. pseudoekgoninmethylester pseudoekgoninmethylester= hydroxymethylat 210. pyridin 524. Amino-benzylisochinolin 470. bicycloheptancarbonsäure= essigsäure, Lactam 304. brenzweinsäureimid 530. butenamidsäureäthylester butendiamid 117. butendisäureäthylester 117. carbathoxypyrrolinyliden: cyanessigsäureäthylester 554. carbazol 460. carbazoldisulfonsäure 561. Aminocarbonsäuren 541. Amino-carbostyril 500. carbostyrilessigsaure 555. carbostyrilmethyläther chinaldin 453, 454. chinaldinearbonsaure 550, **551.** chinaldon 503.

Amino-chinolin 443, 444, 445, 447, 450. chinolinearbonsaure 550. - chinolinhydroxymethylat chinolon 500. cinchoninsäure 550. cocain 202. coniin 420. cyanlutidin 544. Aminoderivate der Dicarbonsäuren 554. der Dioxoverbindungen **528**. der Dioxyverbindungen 511. der Disulfonsäuren 561. – der Monocarbonsäuren 541. der Monooxoverbindungen 515. der Monooxyverbindungen 497 der Monosulfonsäuren 561. der Oxocarbonsäuren 558. der Oxycarbonsäuren 555. der Oxyoxocarbonsäuren 560. der Oxyoxoverbindungen der Tetraoxyverbindungen der Tricarbonsäuren 554. — der Trioxyverbindungen 514. Aminodihydro-isoindol 438. stilbazol 459. Aminodimethyl-acridin 464. äthylchinolin 458. Aminodimethylamino-dime= thylaminophenylacridin 496. phenylacridin 494. Aminodimethyl-benzoacridi= niumhydroxyd 475. bernsteinsäureimid 533. chinolin 456, 457. chinolinearbonsaure 552. chinolinsulfonsäure 561. chinolon 504. dinicotinsaure 554. isobutylpiperidin 425. phenylbenzoacridinium= hydroxyd 482. piperidin 420. pyridin 435. pyridincarbonsäurenitril 544. pyridindicarbonsäure 554. pyridon 498, 499. pyrrolcarbonsäureäthyl= ester 30. pyrroldicarbonsaure 139. pyrroldicarbonsäuredis äthylester 140.

pyrrolidin 419.

Aminodiphenylpyrrol 467, 468. Aminoformylamino- s. Ureis

Amino-glutarsäure, Lactam 284, 285.

- granatanin 426. - hydrocarbostyril 519.

— indolcarbonsäuremethyl= ester 64.

— indolylpropionsäure 545 bis 546 (s. auch 550). - isochinolin 452.

isoindolin 438.

- isonicotinsäure 543.

- kairolin 439.

- laudanosin 514.

– lepidin 455.

— lepidon 504.

— lutidin 435.

— lutidindicarbonsäure 554.

- maleinsäureimid 533.

— malonsäurebisdimethyldis carbathoxypyrrylamid 145.

 malonylbisaminodimethyls pyrroldicarbonsäuredi= åthylester 145.

- menthandicarbonsäure,

Lactam 297. menthenylcyanessigsäure, Lactam 305.

Aminomethoxy- s. Methoxy= amino-.

Aminomethoxyphenyl-chinos lin 507.

pyrrolon 538.

Aminomethylacetaminophe= nyl-benzoacridin 496.

dihydrobenzoacridin 495. Aminomethyläthyl-benzoacris diniumhydroxyd 475.

chinolin 457.

chinolinsulfonsäure 561.

- chinolon 505.

- indol 441.

piperidin 419.

Aminomethylaminophenylacridin 492.

acridiniumhydroxyd 491.

- benzoacridin 496.

Aminomethyl-anthrapyridon 536, 537, 539.

benzoacridin 475.

 benzoacridinhydroxyäthys lat 475.

- benzoacridinhydroxymes thylat 475.

benzochinolon 506.

bernsteinsäureimid 530.

– carbostyril 521, 522.

- chinolin 453, 454, 455, 456.

Aminomethylchinolinearbonsaure 550, 551.

Aminodioxy- s. Dioxyamino-. | Aminomethylchinolin-carbonsäureäthylesterhydroxy: methylat 551.

sulfonsäure 561.

Aminomethyl-chinolon 503, 504, 521, 522.

diaminophenylacetoacetyls indol 442.

dihydrobenzoacridin 473.

— dihydroindol 440. — hydrocarbostyril 520.

— iminocyclohexadienyliden • dihydroacridin 491.

indol 441, 442.

— indolcarbonsäure 545.

indolcarbonsäureäthvls ester 545.

indolin 440.

– maleinsäureimid 533.

oxynaphthylbenzoacridin 511.

Aminomethylphenyl-acridinis umhydroxyd 477.

benzoacridin 481.

chinolin 468, 469.

– dihydrobenzoacridin 480. Aminomethyl-stilbazol 461, 462.

stilbazoldibromid 459.

tetrahydrochinolin 439, 440, 441.

tetrahydropapaverin 514. Amino-naphthalinazobenzoyl= pseudoekgoninmethyl=

ester 208. - naphthochinolin 463.

— naphthostyril 524. nicotinsăure 542.

nitrophenylchinolin 466.

oktahydrobenzochinolin

oktahydronaphthochinolin

oxindol 518.

Aminooxo- s. Oxoamino-. Aminooxo-carbonsäuren 558.

sulfonsäuren 561.

Aminooxy- s. Oxyamino-. Aminooxycarbonsäuren 555. Aminooxydiäthylphenyl=

chinolin 508. Aminooxyoxocarbonsäuren 560.

Amino-papaveraldin 541.

papaverin 515.

papaverinhydroxymethy: lat 515.

pentamethylpyrrolidin 422.

Aminophenäthyl-chinolin 471.

- piperidin 441.

pyridin 459.

Aminophenyl-acridin 476. acridinhydroxymethylat 477.

Aminophenyl-benzoacridin 481.

- chinaldin 469.

— chinolin 465, 466, 467.

- chinolyläthylen 472.

— indol 463, 464. - isocarbostyril 507.

- isochinolin 467.

— isochinolon 507. lepidin 469.

— lepidon 508.

— lutidindicarbonsaure 554.

— methylchinolyläthylen 473. methylpyridyläthylen 461,

462.

- picolylalkin 505.

picolylcarbinol 505.

--- piperidyläthan 441.

pvridin 458.

pyridyläthan 459.

pyridyläthylen 461.

tetrahydrochinolin 462.

Amino-phthalsäureanil 534,

– phthalsäureimid 534, 535.

phthalsäuremethylimid

— phthalylphenylhydrazin 535.

picolinsäure 541.

piperidon 515.

propylpiperidin 420.

propylpiperidon 517.

— propylpyridin 436. — pseudococain 208.

pseudococainhydroxys

methylat 210. pyridin 428, 431, 433; Di-

benzoylderivat 429. - pyridincarbonsäure 541,

542, 543. - pyridon 498.

— pyridylacrylsäureäthyl= ester 305.

stilbazol 461.

stilbazoldibromid 459.

stilbazolin 441.

— stilbendicarbonsäure, Lac= tam 321.

styrylacridin 479.

styrylchinolin 472. styrylpyridin 461.

sulfonsäuren 561. tetrahydrobenzochinolin

tetrahydrochinolin 439.

— tetrahydronaphthochino= lin 459.

tetramethylentetrahydro: chinolin 442.

- tetramethylpyrrolidin 422.

tetramethylpyrrolidon

tolyläthylchinolin 471.

Aminotrimethyl-acridinium= hydroxyd 465.

chinolin 458.

— cyclobutanisobernsteins säure, Lactam 297.

– pentandicarbonsāure, Lacs tam 294.

piperidin 421, 422. Amino-triphenylpyrrol 479. - tropan 425, 426.

Ammonchelidonsäure 268. Amylbenzo-chinolinearbons

säure 102.

- cinchoninsäure 102. Amylen-nitrolaminochinolin

450. tricarbonsaureanil 334.

— tricarbonsāureimid 333. Amvl-hexylchinolinearbons saure 96.

- naphthocinchoninsäure **1**02.

Anhydroekgonin 31 (vgl. 634). Anhydroekgonin-äthylester

 āthylesterhydroxymethys lat 32

- dibromid 19.

hydroxymethylat 32.

— methylbetain 32; Ammos niumbase 32.

— methylesterhydroxymes thylat 32.

Anhydrooxymethylchinolins diazohydroxyd 591.

Anilidobrenzweinsäureimid

Anilino-aconitsäurediäthyl= ester, Lactam 343.

- acridin 462.

- acridylbenzoesäure 552. Anilinoäthoxy- s. Athoxyanilino-

Anilino-äthylentricarbon= säuremethylesteranil 342.

benzolazobenzoylpseudo: ekgoninmethylester 208.

benzolepidin 464.

 benzolindolindigo 536. - bernsteinsäureanil 529.

– bernsteinsäureimid 529.

Anilinobrenzweinsäure-anil 531, 532.

bromanil 531.

– imid **53**0.

– methylimid 531.

Anilino-brommaleinsäureanil, Anil 533.

carbostyril 500.

- carbostyriläthyläther 500.

– chinaldin 454.

- chinolin 443, 444.

- chinolinchinon 536.

- chinolinchinonanil **53**5.

Anilinodimethyl-nicotinsäure 544.

nicotinsäurehydroxy: methylat 545.

pyridin 435.

Anilinodimethylpyridincarbonsaure 544; Hydroxymethylat 302

hydroxymethylat 435. Anilinodimethylpyrrol-dis carbonsăure 139.

dicarbonsäurediäthylester

Anilino-dioxypiperidintetras carbonsauretetraathylester 284.

diphenylpyrroldicarbons **säur**e 179.

Anilinoformylamino- s. Phenylureido-.

Anilinoformyloxy-pentamethylpiperidincarbonsäuremethylester 194.

prolin 191. Anilino-formyltryptophan

549. glutaconsăureanil 533.

hydrocarbostyril 519. hydrocarbostyrilcarbons säuremethylester 558.

lepidin 455.

- lutidincarbonsäure 544. Anilinomethyl-acridin 464.

benzochinolin 464. chinolin 454, 455.

chinolinearbonsaure. anilid 551.

--- cinchoninsăureanilid 551.

phenylisoindolin 440. Anilinonicotinsäure 542. Anilinooxo- s. Oxoanilino-. Anilinooxy- s. Oxyanilino-. Anilino-phenylacridin 477.

phenylisochinolin 467.

pyridin 429.

pyridincarbonsäure 542. pyrrolidoncarbonsäure

— pyrrolon 517. Anilinotricarballylsäureäthylesteräthylimid 559.

äthylesterimid 559.

- imid 559.

Aniluvitoninsäure 85. Anisidinopyridin 429. Anisoyl-ekgonin 198.

ekgoninmethylester 202.

Anisyl-cocain 202. naphthocinchoninsäure

250.

Anthrachinonylaminomethyl= anthrapyridon 537, 539. Apocinchen 244 Anm.

Apophyllensäure 158; Ams moniumbase 158.

Arecaidin 15.

Arecaidin-äthylester 16.

hydroxymethylat, Anhydrid 16.

methylbetain 16.

Arecolin 15.

Arecolinhydroxymethylat 16. Asarylnaphthocinchonin=

säure 274. Atophan 103.

Aza (Prăfix) 336 Anm.

Azo-chinolin 576, 577.

hemipinsäurediimid 587. - lepidin 577.

Azoncarbonsaure 345.

Azostilbazol 580. Azoverbindungen 572.

Azoxyverbindungen 592.

B.

Benz- s. auch Benzo-. Benzal- s. auch Benzyliden-. Benzalamino-carbazol 460.

dimethylpyrroldicarbons säurediäthylester 140.

diphenylpyrrol 468.

Benzalaminooxy s. Oxybens zalamino.

Benzal-chinaldincarbonsäure 10**9.** 110.

chinolylhydrazin 564, 565. Benzaldehyd-chinolylhydr= azon 564, 565.

dimethylpyridylhydrazon

methylchinolylhydrazon 566

pyridylhydrazon 563.

pyrroylhydrazon 24. Benzal-diacetonamincyans hydrin 226.

dihydrokollidindicarbon= säurediäthylester 176.

dimethylpyridylhydrazin

hydrazinonicotinsäure 568.

hydrazinopyridincarbons säure 568.

kollidindicarbonsaure 176. lepidinsulfonsäure 402.

methylchinolylhydrazin

pyridylhydrazin 563.

tropinsäure 169.

Benzaminoäthoxy- s. Athoxybenzamino-.

Benzaminobenzoyloxy- s. Benzoyloxybenzamino..

Benzamino-benzoylpseudoeks goninmethylester 208.

carbazol 460. - chinaldin 454.

- chinolin 448.

Benzamino-dimethylpyrrols dicarbonsäure 139.

dimethylpyrroldicarbons
 säurediäthylester 141.

— diphenylpyrrol 468. — indolylacrylsäure 313.

Benzaminomethoxy- s. Methoxybenzamino-.

Benzamino-methylchinolin 454.

- methylindol 442.

- phenylacridin 477.

— propylpiperidon 517.

- pseudococain 208.

— triphenylpyrrol 479. Benzanthronchinolinsulfo

Benzanthronchinolinsulfons säure 414.

Benzanthronopyridinsulfonsaure 414.

Benziminoindolylpropionsäure 313.

Benzocarbazol-carbonsäure 109.

- disulfonsäure 405.

— sulfonsäure 401, 402.

Benzochinaldinsäure 101. Benzochinolin-carbonsäure 101.

- dicarbonsäure 177.

- disulfonsäure 404.

- sulfonsäure 400.

Benzoflavin 493.

Benzoindol-carbonsäure 99.

disulfonsäure 403.sulfonsäure 399.

Benzo-indoxylcarbonsäures äthylester 243.

— indoxylsäureäthylester 243.

Benzolazo-benzooxindol 587.

chinolin 576.
 Benzolazochlor-citrazinsäures
 amid 588.

 — dioxyisonicotinsäureamid 588.

dioxypyridincarbonsäures
 amid 588.

— pyridin 574.

Benzolazocitrazinsäure 588. Benzolazodimethyl-dicarbäth

oxypyrrylbenzoylbrenztraubensäureäthylester 136.

— nicotinsäureäthylester 588.

— pyridin 574.

pyridincarbonsāureāthylsester 588.

Benzolazodioxo-āthyltetras hydroisochinolin 587.

tetrahydroisochinolin 587.
 Benzolazodioxy-isochinolin 585.

- isonicotinsäure 588.

- methylpyridin 585.

— picolin 585.

Benzolazo-dioxypyridinscarbonsaure 588.

-- homophthalsäureimid 585.

— indoxyl 583.

— lepidin 577.

— lutidin 574.

lutidincarbonsäureäthylsester 588.

Benzolazomethyl-chinolin 577.

 oktahydrobenzochinolin 576.

- pyrrol 572.

Benzolazo-naphthalinazopyrrol 586.

naphthylhydrazonopyrroslenin 586.

— oxindol 587.

Benzolazooxo-benzoindolin 587.

- dihydropyridin 586.

— indolin 587.

Benzolazooxy-chinolin 584.

--- indol 583.

— methylchinolin 585.

— pyridin 583.

Benzolazo-phenylhydrazinos indol 589.

— phenylhydrazonopyrrolenin 586.

phenylpyrrol 572.

— pyridon 583.

— tetrahydrobenzochinolin

— tetramethylentetrahydroschinaldin 576.

- tetramethylindolin 575.

trimethylmethylenindolin 575.

Benzoldiazoaminochinolin593.
Benzolsulfamino-benzoyls

pseudoekgoninmethylsester 208.

-- pseudococain 208.

Benzolsulfonsäureazo-aminomethylstilbazol 589.

— aminostilbazol 589.

— methylindolin 574.

--- methyloktahydrobenzos chinolin 576.

— methyltetrahydrochinolin 575.

— oktahydrobenzochinolin 576

— oxychinaldin 585.

- oxychinolin 584.

oxymethylchinolin 585.phenylpyrrol 573.

 tetrahydrobenzochinolin 578.

- tetrahydrochinolin 574.

— tetramethylentetrahydros chinaldin 576.

Benzolsulfonsäureazotetra: methylentetrahydro: chinolin 576.

Benzolsulfonylamino- s. Benzolsulfamino-.

Benzolsulfonyltryptophan550. Benzoylanilino-brenzweins

säureimid 532. — methyläthylphenyltrimes thylenimin 419.

Benzoylbenzo-chinolinearbon = säure 324.

- cinchoninsäure 324.

Benzoylchlorid-Nicotin 437.

Benzoyleyandihydro-chinolin 65.

- isochinolin 66.

Benzoyldihydro-chinaldinsäurenitril 65.

— isochinaldinsäurenitril 66.

kollidincarbonsäureäthyle ester 317.

Benzoylekgonin 197, 211. Benzoylekgonin-äthylester 202, 212.

- bromäthylester 203.

- isobutylester 203.

— methylester 198, 212.

— methylesterhydroxycyanmethylat 204.

— methylesterhydroxymes thylat 204, 212.

— nitril 203.

propylester 203.

Benzoylen-chinolylessigsäure 323.

- lutidinsäure 351.

— pyridindicarbonsäure 351.

Benzoyl-indol 321.

— indolcarbonsäure 321.

— indolincarbonsäure 56. — indoxylsäure 227.

 indoxylsäureäthylester 228, 229.

— indoxylsäuremethylester 228.

- isonicotinsaure 319.

 kollidincarbonsäureäthyl= ester 320.

Benzoylmercaptochinolinears bonsäure 237.

Benzoyl-metanicotin 438.

— naphthocinchoninsäure 324.

— nicotenylamidoxim 41. — nicotinsäure 319.

— norekgonin 196.

- norpseudoekgonin 205.

 norpseudoekgoninäthyl= ester 205.

Benzoyloxybenzamino-benzosacridin 509.

— chinolin 501, 503.

— pyridin 498.

Benzoyloxy-dimethylphenyl piperidincarbonsauremethylester 226. dioxopyrrolidylessigsäures äthylester 374.

indolcarbonsäure 64, 227. Benzoyloxyindolcarbonsäureäthylester 228.

methylester 228.

Benzoyloxypentamethylpis peridin-carbonsaure 193. carbonsaureathylester 195.

- carbonsäuremethylester

Benzoyloxytetramethyl-athyl= piperidincarbonsaures

äthvlester 195. äthylpiperidincarbonsäures methylester 195.

allylpiperidincarbonsäures methylester 195.

– piperidincarbonsäure 193. piperidincarbonsäuremes

thylester 192, 193. propylpiperidincarbon= säuremethylester 195.

Benzoyloxytrimethyl-phenyls piperidincarbonsaureme= thylester 226.

piperidincarbonsaureme= thylester 192.

Benzoylpicolinsäure 318. Benzoylpicolinsäure-äthyl= ester 318.

amid 319.

— chlorid 319. — methylester 318.

Benzoylpseudoekgonin 206. Benzoylpseudoekgonin-äthyl= ester 209.

isoamylester 209.

- isobutylester 209.

— methylester 206, 211.

— nitril 209.

propylester 209.

Benzoylpyridincarbonsäure 318, 319.

Benzoylpyridyl-hydracryl= saure 217.

- hydracrylsäuremethylester

- milchsäure 218.

 milchsäuremethylester 218. Benzylaminomethylphenylbenzoacridin 483.

Benzylanilinopyrrylen-dibens

zoesāure 179. dibenzoesäurediäthylester 179.

Benzyl-benzooxindolchinons carbonsaureathylester

- carbostyrilcarbonsäure 310.

Benzylchinoloncarbonsäure **3**10.

Benzyliden- s. auch Benzal-. Benzyliden-chininoxinsäure

cinchoxinsäure 310. Benzylindol-carbonsäure 63.

carbonsäureäthylester 101. Benzyl-nicotenylamidoxim 41.

oxydimethylpyridondicars. bonsäurediäthylester 347.

Berberonsäure 185. Bi- s. Bis- und Di-.

Biliverdinsäure 333.

Bis- s. auch Di-.

Bisacetaminodimethylacridin 489.

carbazol 487.

– phenylacridin 494.

Bisacetaminomethylbenzoes säure, Lactam oder Azlacton 519.

Bisacetaminooxy- s. Oxybis= acetamino-

Bisacetamino-phenylacridin 490.

trimethylacridiniumhydr= oxyd 489.

trimethylphenylacridi= niumhydroxyd 494.

Bis-athylaminodihydropyris din 485.

aminobenzallutidin 493.

aminobenzylpyridin 489. — aminophenylpyridin 489.

aminostyrylpyridin 493. anhydrophenacylamin 467.

benzaminocarbazol 486. Bisbenzolazo-methylpyrrol 582.

- oxotropan 586.

 pyrrol 586. tropinon 586.

Bis-benzylaminodimethyl= acridin 489.

carbathoxyaminodime= thylpyridin 485.

Biscarboxybenzoyl-carbazol 367.

- pyridin 366.

Bis-carboxyphenylpyrrol 178. chinolylaminoathandisul=

fonsäure 449. diacetylaminodimethyl= phenylacridin 494.

Bisdiathylamino-acridyl= benzoesaure 553.

dihydropyridin 485. pyrrol 484.

Bisdimethylamino-acridin 487.

acridylbenzoesäure 553.

benzhydrylchinolin 495.

Bisdimethylamino-dihydros pyridin 484.

dimethylaminophenyl: acridin 497.

dimethylphenylacridin494.

-- methylacridiniumhydr= oxyd 488.

methylcarbathoxyphenyl= acridiniumhydroxyd 553. Bisdimethylaminophenyl-aces

tyloxindol 528.

acridin 490. chinolylmethan 495.

methoxymethylchinolyls methan 510.

oxindol 527.

Bisdimethyldicarbathoxypyr= ryl-diphensäure 138.

isosuccinamid 142.

— oxamid 142.

- succinamid 142.

Bisdimethyldicarboxypyrryl= diphensaure 138.

Bisdipropylamino-dihydro pyridin 485.

pyrrol 484.

Bishydroxylamino-methylpys ridincarbonsäureäthyl= ester 562

picolincarbonsäureäthyl= ester 562.

Bismethylamino-dimethyl= phenylacridin 494. pyrrol 484.

Bismethylanthrapyridonylamin 537.

aminoanthrachinon 539, **54**0.

Bis-methylchinolylhydrazin 566.

naphthalinazopyrrol 586.

- naphthyliminophenylnaphthylpyrrolidincar: bonsäureäthylester 338.

oxypyridylharnstoff 498. phenylhydrazinodioxo:

pyrrolin 568.

Bispyridyläthyl-amin 435. - nitrosamin 435.

Bistoluolazo-äthylpyrrol 582. pyrrol 586.

Brenztraubensäure-chinolyl= hydrazon 565.

indogenid 313.

methylchinolylhydrazon 566.

Brom-acetaminochinolin 446, 447, 449, 451.

aconitsäurebenzylimid 332. Bromamino-acetyltetrahydro= chinolin 440.

chinolin 445, 446, 447, 449, **451**, **452**.

Bromamino-dimethylpyridin 436.

- hydrocarbostyril 519.

- isochinolin 453.

isochinolinhydroxymethyslat 453.

— methylbenzoylenacridin 528.

— methylcöramidonin 528.

— oxindol 518.

- pyridin 431.

pyridoncarbonsäure 299.

 pyridoncarbonsäuremes thylester 299.

pyrrolidoncarbonsäures
 brommalonsäure 560.

— tetrahydrochinolin 440.

Bromanilino-brenzweinsäures anil 531.

- brenzweinsäurebromanil 531.

- chinolin 443.

— maleinsäureanil, Anil 533.

Bromapophyllensäure 159. Brombenzalaminopyridoncarbonsäure 299.

 carbonsäuremethylester 300.

Brom-benzolazooxychinolin 584.

- chinolinearbonsäure 79, 82.

- chinolinsäure 152.

- chinolinsulfonsäure 391, 392, 394, 395.

chinolylpropionsäure 92.

— cinchomeronsäure 159.

cinchomeronsäurehydrsoxymethylat 159.

 dimethyldicarbäthoxypyrrylpyridoncarbonsäuremethylester 300.

dioxobenzylpyrrolidylidensessigsäure 332.

Bromdioxymethyl-nicotins saureathylester 258.

pyridincarbonsäureäthylsester 258.

— pyridincarbonsāurenitril 259.

Bromdioxy-nicotinsäure 254.
— nicotinsäureäthylester 254.

— picolincarbonsäureäthylsester 258.

- pyridincarbonsäure 254.

pyridincarbonsäureäthylsester 254.

Brom-indoxylsäureäthylester 229.

— isaphensäure 248.

— isocapronylprolin 3, 6.

Bromisocaproyl-glycyltryptophan 549.

- prolin 3, 6.

- tryptophan 549.

Brom-isocaproyltryptophyls glutaminsäure 549.

kairolinsulfonsäuremethylsbetain 389.

- metanicotin 439.

methoxyindolcarbonsäure
 65.

Brommethoxymethyl-cyans pyridon 371.

— pyridoncarbonsäurenitril 371.

Brommethylaminobutenyls pyridin 439.

Brommethyl-pyridylpropions saure 54.

— pyrrolcarbonsāure 25.

pyrrolcarbonsäuremethyls amid 26.

 tetrahydrochinolinsulfons säurehydroxymethylat, Anhydrid 389.

Bromnicotinsaure 44.

Bromoxo-aminotetrahydroschinolin 519.

 brommethyldimethylamis noäthylchinolylcaprons säure 558.

Bromoxy-chinolinearbonsăure 237.

chinolinsulfonsäure 408.
cyanlutidin 220, 222.

Bromoxydimethyl-nicotins saureathylester 220, 221.

— pyridincarbonsäureäthylsester 220, 221.

— pyridincarbonsāurenitril 220, 222.

Bromoxy-lutidincarbonsäures äthylester 220, 221.

— nicotinsāure 216.

phenylchinolincarbonsäure 248.

pyridincarbonsäure 216.
 Bromphenyl-acetoxypentamesthylpiperidincarbonsäuresmethylester 194.

 nitrosaminobrenzweins säureanil 532.

pyridoncarbonsäuremes
 thylester 299.

Brompropionyltryptophan 548.

Brompyridin-carbonsaure 44.

dicarbonsäure 152, 159.
dicarbonsäurehydroxys

methylat 159. Brom-pyridoncarbonsäure 216.

- pyridylpropionsäure 51.

- ricinin 371.

tetrahydrochinolinsulfonsäure 388.

— toluidinoanthrapyridon 539.

trioxypicolinsäure 266.

Brom-trioxypyridincarbons saure 266.

- tropancarbonsaure 18.

— ureidopyridoncarbonsaure 299.

- ureidopyridoncarbonsäures methylester 300.

Bufotenin 499.

C.

Camphoronsäureimid 328. Cantharidinimid 304.

Capryl- s. Octyl-.

Carbathoxyaminobenzoyl-eks goninmethylester 202.

pseudoekgoninmethylester 208.

Carbathoxynicotenylamidsoxim 41.

Carbāthoxyphenylhydrazinodimethylpyridincarbons säure 571.

— lutidincarbonsäure 571.

Carbazol-azodiaminotoluol 578.

— carbonsaure 99.

— diazoniumhydroxyd 590.

— diazosulfonsaure 578.

— disulfonsäure 404. — trisulfonsäure 405.

Carbazolyl-diimidsulfonsäure

— hydrazinsulfonsäure 567.

Carbo-cinchomeronsaure 182, 186.

dinicotinsăure 184.

Carbonsäuren s. Monocarbonsäuren, Dicarbonsäuren usw.

Carbonsäuresulfonsäuren 417. Carbopyrrolsäure 22, 27.

Carbostyril-carbonsaure 232. — essigsaure 238.

-- methyläthersulfonsäure 406.

Carboxyäthyliden-indoxyl 313.

- phthalimidin 314.

Carboxy-anilinodimethyls pyridincarbonsaure 545.

benzaloxindol 321.

Carboxybenzoyl-naphthalins dicarbonsaureimid 353.

— naphthalsäureimid 353.

— picolinsäure 350.

- pyridin 318.

— pyridincarbonsäure 350.

— pyrrol 316.

Carboxybenzylhomophthals säureimid 265.

REGISTER 603

Carboxy-methylaminopyris dincarbonsaure 543. methylenphthalimidin 311. Carboxyphenylhydrazinodimethylpyridincarbons säure 570. — dimethylpyridincarbons säureäthylester 571. - lutidincarbonsäure 570. — lutidincarbonsäureäthyls ester 571 Carboxyphenylhydrazonos malonylbisaminos dimethylpyrroldicarbons säurediäthylester 144, Carboxyphenyl-isocarbostyril **24**8. – nicotinsäure 174. — .picolinsäure 174. pyridincarbonsäure 174. - pyridincarbonsäureamid 174. Carboxypyridyl-benzoesäure 174. - glycerinsäure 278. glycin 543. Carboxypyrrylglyoxylsäure 346. Chelidamsäure 268. Chinaldin-acrylsäure 97, 98. carbonsäure 83, 85, 86, 87. — carbonsäureessigsäure 171. – carbonsäuremethyl: betain 84; Ammonium base 84. – dicarbonsäure 171. - oxalester 317. — oxalsäure 316. — oxalylsäure 316. Chinaldinsäure 71. Chinaldinsäure-amid 73. chlorid 72. — desylester 72. - methylester 72. – nitril 73. -- oxyd 73. Chinaldinsulfonsaure 396, 397. Chinaldyl-essigsäure 92. glyoxylsäure 316. Chinaldyliden-essigsäure 96. glykolsäure 316. Chininsäure 234. Chininsäure-benzylbetain 235; Ammoniumbase 235. methylbetain 235; Ammos niumbase 235. Chinolin-azodimethylanilin 577. - carbonsäure 71, 74, 78, 79, 81. Chinolinearbonsäure-äthyls ester 79 (s. auch 75). amid 80 (s. auch 73, 76).

– amidhydroxyäthylat 81.

Chinolinearbonsaure-amids oxim 80. amidoximacetat 80. - amidoximäthyläther 80. --- amidoximearbonsāure: äthylester 80. diäthylaminoäthylester 80. – essigsäure 171. nitril 80 (s. auch 73, 76, 79, oxymethylamid 80. — piperidinomethylamid 80. – sulfonsäure 417, 418. – ureidoxim 80. Chinolinearboyl-anthranils säure 73. benzoin 72. Chinolinchinonoxychinolylimid 500. Chinolin-dicarbonsăure 169, dicarbonsäurenitril 170. – disulfonsäure 403. Chinolinsäure 150. Chinolinsäure-äthylester 151. äthylesterchlorid 151. - äthylestermethylbetain 152. — amid 151, 152. — amidmethylbetain 152. — diäthylester 151. diamid 152. — dimethylester 151. - hydroxymethylat 152. methylbetain 152; Ammos niumbase 152. methylester 150, 151. methylesteräthylester 151. methylesterchlorid 151. methylestermethylbetain 152. Chinolinsulfonsaure 390, 391, 392, 393. Chinolinsulfonsäure-äthyl= betain 392, 393. benzylbetain 392. hydroxyäthylat, Anhydrid **392, 393**. hydroxybenzylat, Anhydrid 392. hydroxymethylat, Anhydrid 390, 392. methylbetain 390, 392. Chinolintricarbonsaure 187. Chinolon-carbonsäure 230,232. imid 443, 444. Chinolsäure 75. Chinolyl-acetophenoncarbons saure 322; Oxim 322. acetophenoncarbonsäure:

äthylester 322.

317.

acrylsäure 96, 97.

brenztraubensäure 316,

Chinolyl-carbamidsaureathylester 448. cyanid 73, 76, 79, 80, 81. essigsäure 82. essigsäurenitril 82. formazyl 73. glycerinsäure 264. hydracrylsäure 240. hydrazin 564, 565. milchsäure 241. nitramin 593. propionsäure 92, 93. semicarbazid 564, 565. totrahydrochinolin 443. thionamidsaure 449. urethan 448. Chlor-acetaminomethyl. chinolin 456. acetyltryptophan 548. Chloralchinaldinacrylsäure 243. Chloramino-chinolin 444, 446, 451. chinolinhydroxymethylat isonicotinsaure 543. methyläthylchinolin 458. methylchinolin 455, 456. pyridin 432. pyridincarbonsaure 543. Chloranilino-brenzweinsäures chloranil 531. chinolin 445. chinolinchinonanil 535. Chloranilinooxy- s. Chloroxyanilino-. Chlorbenzolazo-citrazinsăures amid 588. dioxyisonicotinsäureamid dioxypyridincarbonsaures amid 588. pyridin 574. Chlorbenzoyl-ekgoninmethyl= ester 201. pseudoekgoninmethyls ester 207. Chlor-chinaldincarbonsäure chinolinearbonsäure 74, 78. chinolinsulfonsäure 390, cinchoninsäure 78. Chlorcinchoninsaure-amid 78. - anilid 78. chlorid 78. methylester 78. Chlor-cocain 201. cyanpiperidin 9. diaminoacridon 525. dichloracetylpicolinsäure Chlordimethyl-cyanpyridin

dinicotinsaure 164.

Chlordimethylnicotinsäure **52**, **53**. Chlordimethylpyridincarbonsaure 52, 53. - carbonsäureäthylester 52, — carbonsäureäthylester= hydroxymethylat 53. - carbonsäurenitril 52. – dicarbonsäure 164. Chlordioxophenylhydrazono: tetrahydropyridin= carbonsäure, Phenylshydrazinsalz 330. Chlordioxybenzolazo-isonico= tinsäureamid 588. pyridincarbonsäureamid 588. Chlor-isaphensäure 105. --- kyaminsäure 252. — lepidinsäure 161. Chlorlutidin-carbonsäure 52, 53. – dicarbonsäure 164. Chlormethoxymethyl-cyan= pyridon 371. pyridoncarbonsäurenitril 371. Chlormethyläthyl-chinolins säure 164. pyridindicarbonsäure 164. Chlormethyl-anilinomalein= säureanil 533. benzoylaminobutylpyridin 437. — chinolinearbonsaure 85, 88. - chinolinsäure 161. - cinchoninsäure 88. - isonicotinsäure 49. picolinsäure 49, 50. Chlormethylpyridin-carbons säure 49, 50. dicarbonsaure 161. Chlornicotinsäure 43. Chloroxy-anilinochinolin 501. - chinolinsulfonsäure 408. dimethoxydihydrochino: linearbonsaure 271. - isonicotinsäure 216. — nicotinsäure 216. — picolinsäure 213, 214. pyridincarbonsaure 213, **214, 216**. Chlorphenyl-acetoxypentames thylpiperidincarbon. säuremethylester 194. - chinolinearbonsaure 104, - cinchoninsäure 104, 105. Chlor-picolincarbonsaure 49,

5Ō.

- picolinsäure 37.

- piperidincarbonsäurenitril

Chlor-piperidinomaleinsäures tolylimid 533. pseudococain 207. Chlorpyridin-carbonsaure 37, — dicarbonsäure 155. - tricarbonsäure 184. - tricarbonsäureäthylester Chlor-pyridoncarbonsäure 213, 214, 216. --- pyridyloxyhydrochinon= sulfonsäure 412. – pyrrolcarbonsäure 25. -- ricinin 371. — sulfotrioxyphenylpyridin 412. – tetrahydropicolinsäure 14. tetrahydropyridincarbon= säure 14. trioxysulfophenylpyridin 412. Chrysanilin 491. Chrysophenol 509. Cincholoipon 11. Cincholoiponäthylester 11. Cincholoiponsäure 126, 127, 128, 130. Cinchomeronsäure 155. Cinchomeronsäure-äthylbes tain 159; Ammoniumbase 159. - äthylester 157. — amid 157. - bisphenylhydrazid 158. diäthylester 157. — diāthylesterhydroxyāthy= lat 159. diamid 157. - dianilid 158. dimethylester 156. hydroxyäthylat 159. — hydroxymethylat 158. — methylbetain 158. — methylester 156. methylesterchlorid 157. methylesterhydroxy= methylat 158, 159. methylestermethylbetain 159; Ammoniumbase 158, 159. Cinchoninsäure 74. Cinchoninsäure-äthylbetain 77; Ammoniumbase 77. äthylester 75. äthylesterhydroxymethys lat 77. - amid 76. amidhydroxymethylat 77. — benzylbetain 77; Ammos niumbase 77. — chlorid 76. — hydroxyāthylat 77. hydroxybenzylat 77. hydroxymethylat 76.

Cinchoninsaure-hydroxypropylat 77. methylbetain 76; Ammos niumbase 76. methylester 75. - methylesterhydroxymes thylat 76. nitril 76. - sulfonsäure 417, 418. Cinnamalhydrazino-nicotins saure 568. pyridincarbonsäure 568. Cinnamenyl- s. auch Styryl-. Cinnamenylnaphthocincho: ninsäure 114, 115. Cinnamoyl-ekgonin 197. ekgoninmethylester 201. Cinnamoyloxypentamethyl: piperidincarbonsaure: methylester 194. Cinnamoyl-pseudoekgonin206. pseudoekgoninmethylester 207. Cinnamylcocain 201. Cinnamyliden- s. Cinnamal-. Citralnaphthocinchoninsäure 111. Citranilsäure 374. Citranilsäureanilid 375. Citrazinsäure 254; Halogen= derivate 257. Citrazinsäure-äthylester 257. — amid 257. methylester 257. Citrimidsaure 374. Citronellalnaphthocinchonins sāure 109. Citronensäure-anil 374. - anilid 375. - anilidanil 375. benzylimid 375. imid 374. - naphthylamidnaphthylimid 376. toluididtolylimid 375. – tolylimid **37**5. trimethylanilidtrimethyls anil 375. Citryldiphenylhydrazid 376. Cocain 198, 206, 211, 212. Cocain-hydroxycyanmethylat 204. hydroxymethylat 204, 212. urethan 202. Cocamin 202. Cocayloxyessigsäure 195. Coffearin 43. Coniinsulfonsäure 386. Corvdalinsulfonsāure 412. Corydilinsäure 283. Corydilinsäuretrimethylester, Hydroxymethylat 283. Corydilsäure 283. Corydinsaure 282.

Corydinsäuredimethylester 282.

Corydsäure 282.

Crotonylnaphthocinchoninsäure 108.

Cumyl- s. Isopropylphenyl-. Cyan-aminocarbäthoxypyrros linylidenessigsäureäthyls ester 554.

- carbostyril 232.

— chinaldin 83, 87.

chinaldinearbonsäure 171.chinolin 73, 76, 79, 80, 81.

— cinchoninsäure 170.

— glutazin 556.

— iminocarbäthoxypyrrolis dylidenessigsäureäthyls ester 367.

iminopyrrolidylidenessig = säureäthylester 343.

— isochinolin 82.

— lutidin 52.

Cyanoxo-carbāthoxypyrrolis dylidenessigsäureāthyls ester 367.

— methylcarbäthoxypyrrolis dylidenessigsäureäthyls ester 368.

— methylpyrrolidylidenessigs säureäthylester 344.

 pyrrolidylidenessigsäures äthylester 343.

Cyan-piperidylessigsäure 127. — pyridin 36, 41, 46.

— tetrahydropyridin 15.

— tropin 203 (s. auch 212). Cytisolinsäure 240.

D.

Decyl-benzochinolinearbons säure 103.

benzoeinchoninsäure 103.

- naphthocinchoninsäure 103.

Dehydracetsäuredimethyldiscarbäthoxypyrrylimid 145.

des-Dimethyl-cinchotoxin 525.
— cinchotoxintetrabromid

523.

Di- s. auch Bis-.
Diacet- s. auch Diacetyl-.
Diacetamino- s. BisacetaminoDiacetoxy-dinicotinsäurediäthylester 277.

— isonicotinsaure 257.

pyridincarbonsäure 257.
 pyridindicarbonsäuredis

äthylester 277. Diacetyl- s. auch Diacet-. Diacetylamino-acetylcarbazol 460.

— carbazol 460.

— diacetylaminophenyl= acridin 492.

— phthalsäureimid 534. Diacetyl-benzoflavin 494.

- chrysanilin 492.

chrysophenol 510.citrazinsäure 257.

- indoxylcarbonsäure 230.

— indoxylsäureäthylester 229.

 indoxylsäuremethylester 229.

Diäthoxy-picolinsäure 253.

— pyridincarbonsäure 253.

Diäthylamino-acridin 462.

— äthylaminophenylacridin

- äthylpiperidin 420.

— äthylpyridin 434.

— coniin 420.

— methylaminophenyls acridin 493.

methylphenylbenzos acridin 482.

— methylphenyldihydros benzoacridin 480.

phenylacridin 478.
propylpiperidin 420.
propylpyridin 436.

Diathyl-cyanindolenin 71.
— cyclopropantetracarbon=

säureimid, Dinitril 364.

— dicyancyclopropandicars
bonsäureimid 364.

dicyanglutarsäureimid 357.
indolenincarbonsäure 71.

Diamine 484.

Diamino-acridin 487.
— acridon 525.

— acridylbenzoesäure 552.

anilinochinolin 446, 449,
 451.

- benzoacridin 490.

benzochinolin 488.benzylisochinolin 470.

bernsteinsäureimid 117.
carbazol 486.

— chinaldin 486, 566 Anm.

— chinolin 486. Diaminodimethyl-acridin 488.

aminophenylacridin 497.aminophenyldihydros

acridin 496.

— carbazol 487.

— phenylacridin 493.

- phenyldihydroacridin 490.

— pyridin 485. — tolylacridin 495.

Diamino-lutidin 485.
— methylchinolin 486.

Diamino-methylstilbazol 487.
— naphthochinolin 488.

- naphthoesäure, Lactam 524.

- nicotinsäure 543.

- oxindol 518.

Diaminooxy- s. Oxydiamino-. Diaminophenyl-acridin 490,

- methylpyridyläthylen 487.

— pyridyläthylen 486. Diamino-propylen 499.

— pyridincarbonsäure 543.

— pyrrol 484.

- stilbazol 486.

- styrylpyridin 486.

trimethylacridiniums
 hydroxyd 488.

trimethylphenylacridisniumhydroxyd 493.

Dianilino-chinolin 485.

— isonicotinsäure 544.

— phenyläthylenimin 484. — pyridincarbonsäure 544.

Diazoaminopyridin 593. Diazo-diphenylpyrrol 468.

— methylindol 441.

oxychinaldin 591.papaverin 592.

— papaverni 392. — phenylindol 464.

— triphenylpyrrol 479. Diazoverbindungen 590.

Diazoveromungen 390.
Dibenzamino- s. Bisbenze
amino- bzw. Dibenzoyle
amino-

Dibenzocaridindisulfoneäure 405.

Dibenzolsulfonyloktahydrometanicotin 424. Dibenzoylaminodimethyl-

pyrroldicarbonsäures diäthylester 141.

Dibenzoyl-chrysophenol 510. — cyanglutazin 342.

— glutazincarbonsäureäthylsester 342.

 glutazincarbonsäurenitril 556.

oktahydrometanicotin 424.
 Dibrom-acetaminochinolin 452.

acetylpyrrolcarbonsäures methylester 301.

äthylpropyldicyanglutars
 säureimid 358.

Dibromamino-chinolin 447, 449, 452.

- dimethylpyridin 436.

— hydrocarbostyril 519. — phenylmethylpyridyl=

äthan 459. --- phenylpyridyläthan 459.

-- phenylpyridylathan 453 -- pyridin 431, 432, 434. Dibrom-benzaminochinolin 450, 452.

 carboxyphenylpyridincarbonsäure 174.

— chelidamsäure 269.

 diäthyldicyanglutarsäures imid 357.

 diaminoadipinsäures dicarbonsäure, Lactam 560.

Dibromdimethyldicyans glutarsäure-äthylimid 355.

- imid 355.

- methylimid 355.

Dibromdioxoathylpropyldicyanpiperidin 358.

piperidindicarbonsäures dinitril 358.

Dibromdioxobisdihydros pyridyldicarbonsäures dimethylester 300.

Dibromdioxodiäthyl-dicyans piperidin 357.

 piperidindicarbonsäures dinitril 357.

Dibromdioxodimethyl-athyl-dicyanpiperidin 355, 356.

— dicyanpiperidin 355.

 piperidindicarbonsäures dinitril 355.

Dibromdioxodipropyl-dicyans piperidin 359.

 piperidindicarbonsäures dinitril 359.

Dibromdioxomethyläthyldicyanpiperidin 356.

 piperidindicarbonsäures dinitril 356.

Dibromdioxomethylbutyldicyanpiperidin 358.

— piperidindicarbonsäuredinitril 358.

Dibromdioxomethyldiäthyladicyanpiperidin 356.
Dibromdioxomethylhexyl-

dicyanpiperidin 359. — piperidindicarbonsäures dinitril 359.

Dibromdioxomethylisopropyldicyanpiperidin 357.

— piperidindicarbonsäures dinitril 357.

Dibromdioxomethylphensäthyl-dicyanpiperidin 366.

 piperidindicarbonsäures dinitril 366.

Dibromdioxomethylpropyldicyanpiperidin 357.

piperidindicarbonsäures dinitril 357.

Dibrom-dioxotrimethyladicyanpiperidin 355.

dipropyldicyanglutars
 säureimid 359.

Dibrommethyläthyldicyans glutarsäure-äthylimid 356.

- imid 356.

— methylimid 356.

Dibrommethylaminobutylapyridin 437.

Dibrommethyl-butyldicyans glutarsäureimid 358.

 hexyldicyanglutarsäures imid 359.

isopropyldicyanglutars
 säureimid 357.

phenäthyldicyanglutars
 säureimid 366.

 propyldicyanglutarsäures imid 357.

— pyridondicarbonsaure 346.

pyrrolcarbonsäure 26.
 pyrrolcarbonsäuremethylamid 26.

— pyrrylglyoxylsäure 301. Dibromoxo-äthylaminos indolenin 521.

- aminotetrahydrochinolin 519.

 dimethylaminomethyls dibromäthylchinolyls heptan 523.

 trimethyltetrahydros pyridincarbonsäure 295, 296.

Dibromoxy-dipicolinsäure 269.

— pyridindicarbonsäure 269. Dibrom-pyridintricarbons

säure 186.

pyridylpropionsäure 51.
pyrrolcarbonsäure 26.

pyrroldicarbonsäure 132.

— tropancarbonsäure 19. Dicarbonsäuren,

Aminoderivate 554.

- Azoderivate 588.

- Sulfonsäuren 418.

Dicarbonsäuren

 $C_n H_{2n-8} O_4 N$ 117. - $C_n H_{2n-7} O_4 N$ 131.

 $-C_nH_{2n-9}O_4N$ 150.

 $\begin{array}{l} - C_n H_{2n-11} O_4 N & 167. \\ - C_n H_{2n-13} O_4 N & 168. \end{array}$

 $\begin{array}{l} - C_n H_{2n-15} O_4 N & 169. \\ - C_n H_{2n-17} O_4 N & 174. \end{array}$

 $\begin{array}{l} - C_n H_{2n-19} O_4 N 176. \\ - C_n H_{2n-21} O_4 N 177. \end{array}$

 $- C_{n}H_{2n-28}O_{4}N 177.$ $- C_{n}H_{2n-28}O_{4}N 177.$

 $\begin{array}{lll} - & C_{n}H_{2n-25}O_{4}N & 180. \\ - & C_{n}H_{2n-27}O_{4}N & 180. \end{array}$

 $- C_n H_{2n-29} O_4 N 181.$

Dicarbonsäuren

 $C_n H_{2n-31} O_4 N$ 181. $C_n H_{2n-33} O_4 N$ 182.

Dicarboxydiphenylenbisdimethylpyrrol-discarbonsäure 138.

— dicarbonsäurediäthylester 138.

Dicarboxymethylenoxindol, Dinitril 348 bis 349. Dichinolyl-diimid 576, 577.

— hydrazin 565.

Dichlor-acetoxyanilinoschinolin 502.

— acetylpicolinsäure 306. — aminochinolin 451.

Dichloraminodiäthoxy- s.
Dichlordiäthoxyamino-.

Dichloraminodioxy- s.
Dichlordioxyamino-.

Dichloroxyamino-.

Dichloraminooxyäthoxy- s. Dichloroxyäthoxyamino-.

Dichloranilinoacetoxy- s.

Dichloracetoxyanilino..

Dichloranilinooxy- s. Dichloracyoxyanilino-.

Dichlor-chelidamsäure 268.

— diathoxyaminopyridin 512.

diaminocarbazol 486.
diaminopyridin 485.

— dinicotinsäure 160.

— dioxoiminopiperidin 512.

 dioxophenyltetrahydropyridincarbonsäure 329.
 Dichlordioxy-aminopyridin

Dichlordioxy-aminopyridin 512.

nicotinsäureäthylester 254.
oxidodipyridyl 257.

— oxidodipyridyi 257. — pyridincarbonsäureäthyl=

ester 254.

Dichlor-glutazin 512.

— hemimellitsäureimid 336. — isonicotinsäure 47.

 methoxyphenylpyridoncarbonsäuremethylester 370.

— nicotinsäure 44.

Dichloroxy-āthoxyaminopyrisdin 512.

- aminochinolin 503.

- anilinochinolin 502.

dihydrocitrazinsäureamid
 374.

 dioxopiperidincarbonsăures amid 374.

dipicolinsäure 268.

 ketopyrhydrindencars bonsäure 372.

 oxoazahydrindencarbons säure 372. Dichloroxy-phenylpyridons carbonsaure 370.

— picolinsäure 214.

— pyridincarbonsäure 214. — pyridindicarbonsäure 268.

Dichlor-picolinsäure 37.

— pyridincarbonsäure 37, 44,
47.

pyridindicarbonsäure 160.
pyridoncarbonsäure 214.

pyrrolearbonsäuremethylester 25.

- vinylnicotinsaure 56.

— vinylpyridincarbonsäure 56.

Dicyan-bisacetessigesterlacetam 365.

- chinolin 170.

-- cyanessigesteracetessige esterlactam 368.

— dihydrokollidin 148. — dihydrolutidin 146.

— kollidin 165.

Dicyanmalon-acet bernsteinsäureesterlactam 369.

- acetessigesterlactam 368.

— benzoylessigesterlactam 369.

- esteracetylacetonlactam 365.

— methylacetessigesterlacs tam 368.

Dicyan-methylenoxindol 349.

— pyridin 160.

Dihydro-acridinsulfonsäure
400.

- acridylbenzoesäure 111.

arecaidin 9.arecolin 9.

- arecolinhydroxymethylat 9.

Dihydrocarbostyril-carbonsaure 307, 308.

 essigsäure 308.
 Dihydrokollidin-carbonsäures äthylester 33.

— dicarbonsäurediäthylester

dicarbonsāuredimethylsester 147.

Dihydrolutidin-carbonsäure 30.

 dicarbonsäurediäthylester 146.

— dicarbonsăuredinitril 146. Dihydro-metanicotin 437.

— stilbazolcarbonsäure 98. Dihydroxyanhydro-ekgonin 250.

- ekgoninmethylbetain 251; Ammoniumbase 251.

Dijod-chelidamsäure 269.
— isochinolinsulfonsäure 396.

Dijod-isonicotinsaure 48.

 methylchinolinsulfonsäure 398.

— oxydipicolinsāure 269.

— oxypyridindicarbonsäure 269.

pyridincarbonsāure 48.
 Dimercapto-isonicotinsāure 258.

— pyridincarbonsäure 258. Dimethoxy-acetaminophthal

Dimethoxy-acetaminophthals saure, Lactam 377.

 acetoxyacetaminoisoindos lenin 514.

— aminophthalimidin 540.

 aminophthalsäure, Lactam 377.

Dimethoxybenzoyl- s. auch Veratroyl-.

Dimethoxybenzoylpyridincarbonsäure 378.

— dicarbonsäure 382.

Dimethoxydimethoxyaminobenzoylisochinolin 541.

benzylisochinolin 515.
 Dimethoxy-dioxoisoindolinsazodimethoxydioxoisosindolin 587.

— isochinolinearbonsäure 263.

Dimethoxymethyl-cyantetrashydroisochinolin 262.

dimethoxyaminobenzyls
 tetrahydroisochinolin 514.

tetrahydroisochinolinears bonsäurenitril 262.

Dimethoxy-phenyldicyans glutaconsäureimid 283. — propionylaminophthals

saure, Lactam 377.
Dimethylacetaminomethylaphenylpyrroldicarbonasaurediathylester 136, 137.

Dimethylacetaminophenylpyridin 459.

pyridindicarbonsäuredisäthylester 554.

Dimethylacetyl-phenylpyrrols dicarbonsäurediäthyls ester 135.

pyridondicarbonsäuredisäthylester 347.

atnylester 347.

— pyrrolearbonsäure 304.

Dimethyläthoxyphenylpyrrols dicarbonsäurediäthylester 135.

Dimethyläthyl-chinolinears bonsäure 96.

chinolinsulfonsäure 399.cyanpyridon 303.

 dihydrodinicotinsäuredis äthylester 148. Dimethyläthyl-dihydropyris dindicarbonsäurediäthyls ester 148.

— dinicotinsaure 166.

Dimethyläthyleniminessigs säure 10.

Dimethyläthyl-indolsulfons säure 390.

phenylpiperidindicarbonsäurediäthylester 167.

— pyridindicarbonsäure 166.

— pyridoncarbonsäurenitril 303.

pyrrolcarbonsäure 30.

pyrrolcarbonsāureāthylsester 33.

Dimethylallyl-cyanpyridon 304.

— pyridoncarbonsäurenitril 304.

Dimethylamino-anilinomes thylphenyldihydroacris din 476.

benzalchinaldin 472.

— benzaldehydindogenid 526.

— benzaldehydisoindogenid 527.

benzalindoxyl 526.

- benzaloxindol 527.

- benzoacridin 474.

 benzoacridinhydroxymes thylat 474.

 benzolazobenzoylpseudos ekgoninmethylester 208.

 butenylpyridinbishydroxys methylat 438.

— chinolin 448, 450.

- chinolinhydroxymethylat 443, 448.

dihydrobenzoacridin 472.
 dimethylaminophenyls

acridin 493, 495. — kairolin 439.

 kairolinbishydroxymethys lat 439.

Dimethylaminomethyl-aminophenylacridin 492.

— anthrapyridon 536.

 benzoacridiniumhydroxyd 474.

- chinoliniumhydroxyd 443, 448.

Dimethylaminomethylphenylbenzoacridin 482.

— dihydrobenzoacridin 480. — pyrroldicarbonsäure 137.

pyrroldicarbonsaure 13
 pyrroldicarbonsauredis

åthylester 137.

Dimethylaminomethyltetrashydro-chinolin 439.

 chinolinbishydroxymethys lat 439. Dimethylaminophenyl-acridin | Dimethylchlorphenyl-dihys **478, 479.**

benzoacridin 481.

benzochinolin 478.

benzochinolinearbonsäure 553.

- benzocinchoninsäure 553.

- chinolin 465.

- chinolinearbonsäure 552.

– cinchoninsäure 552.

— dihydrobenzoacridin 480.

– dinicotinsäure 554.

- naphthochinolin 478.

- naphthocinchoninsäure **553**.

- piperidon 520, 521.

- pyridin 459.

 pyridindicarbonsaure 554. Dimethylamino-styrylacridin 479.

styrylchinolin 472.

 tetramethylpyrrolidon 516. Dimethylanilin-azopyrrol 573.

isatin 527.

Dimethyl-azochinolin 577.

azoxychinolin 592.

 benzochinolindisulfonsäure 404.

- benzochinolinsulfonsäure 401.

- benzoflavin 494.

 benzoyldihydropyridon• carbonsäureäthylester 340.

Dimethylbenzyldihydro-dinis cotinsäurediäthylester 173.

pyridindicarbonsauredis äthylester 173.

Dimethylbutantricarbons säure-amidimid 328.

- imid **32**8.

Dimethyl-butylpyrrolcarbons säure 30.

camphylpyrroldicarbons saure 134.

carbostyrilcarbonsäure 312.

Dimethylcarboxy-phenylpicos linsäure 175.

phenylpyridincarbonsäure

175. pyridylbenzoesäure 175.

Dimethylchinaldinsäure 94. Dimethylchinolin-carbonsäure 93, 94.

dicarbonsăure 171.

sulfonsaure 398.

Dimethyl-chinoloncarbons säure 312.

- chinolylaerylsäure 98.

- chinophthalonsulfonsaure 415.

dropyridindicarbonsaures diathylester 173.

pyridindicarbonsaure 176.

Dimethyl-cinchonin 525. cinchoninsaure 93, 94.

cinchotenin 558.

cinchotenindibromid 558.

cinchotoxin 525.

cinchotoxintetra bromid 523.

citrazinsäure 260.

Dimethylcvan-carbostyril 312, 313.

- chinolon 312, 313.

– dihydrochinolin 69.

glutaconsăureimid 260.

glutaconsauremethylimid 333.

- indolenin 70.

isocarbostyril 313.

isochinolon 313.

pyridon 219, 302.

pyridylharnstoff 544. Dimethyl-cyclopropantetras carbonsäureimid. Dini=

tril 362. dibenzoylglutazincarbons säureäthylester 344.

Dimethyldicarbathoxypyris dylbenzolazo-dimethylanilin 588.

- naphthol 588.

Dimethyldicarbathoxypyrrylallylthioharnstoff 142.

benzolazobenzoylbrenz. traubensäureäthylester

benzoylbrenztraubensäureathylester 136.

Dimethyldicarbathoxypyrryldimethylcarbathoxyaminoformylpyrryldiphensäurediamid 138.

- anilinoformylpyrryldiphens säuredianilid 138

chlorformylpyrryldiphensäuredichlorid 138.

Dimethyldicarbathoxypyrryldiphensaure 136.

harnstoff 142.

- methylbarnstoff 143.

methylphenylthioharns stoff 143.

methylthioharnstoff 142. naphthylthioharnstoff 143.

oxamidsäurephenylhydrazid 141.

phenylthioharnstoff 143.

Dimethyldicarboxydipheny. lylpyrroldicarbonsaure 136.

Dimethyldicarboxydiphenys lylpyrroldicarbonsaures diathylester 136.

Dimethyldicarboxypyridylbenzolazodimethylanilin 588.

Dimethyldicarboxypyrryldiphensaure 136.

harnstoff 139.

methylharnstoff 139.

Dimethyldicyancyclopropandicarbonsaure-athylimid 363.

- imid **362**.

methylimid 362.

Dimethyldicyanglutarsaureāthylimid 354.

benzylimid 355.

imid 354.

methylimid 354.

Dimethyldicyanpyridin 163. Dimethyldihydro-cinchonins saurenitril 69.

dinicotinsaurediathylester

dinicotinsauredinitril 146.

nicotinsaure 30.

Dimethyldihydropyridincarbonsaure 30.

dicarbonsaurediathylester 146.

dicarbonsăuredinitril 146. Dimethyl-dimethylpyrroylpyrrolcarbonsäure 29.

dinicotinsaure 162. diphenylbisazophenyls

pyrrol 573. diphenyldihydropyridin-

dicarbonsaure 172. glutazin 514.

glutazincarbonsaureäthylester 344.

heptadienylbenzochinolin= carbonsaure 111.

heptadienylbenzocins choninsaure 111. heptenylbenzochinolins

carbonsăure 109. heptenylbenzocinchonin.

saure 109. hexahydrodinicotinsäures diathylester 130.

Dimethylhexyl-dihydrodini cotinsaurediathylester 149.

dihydropyridindicarbon. säurediäthylester 149.

dinicotinsaure 167.

70.

pyridindicarbonsaure 167. Dimethyl-hydrazochinolin

566. indolcarbonsaure 67, 68, Dimethyl-indolcarbonsaureathylester 70.

— indolenincarbonsāurenitril 70.

— indolsulfonsaure 389.

indolylessigsäure 70.
 Dimethylisobutyl-dihydrodiniootinsäurediäthyleester 149.

dihydropyridindicarbons
 säurediäthylester 149.

— dinicotinsaure 166.

— pyridindicarbonsäure 166. Dimethylisochinoloncarbons

sāurenitril 313.

Dimethylisopropyldihydrodinicotinsäurediäthylester 149.

- indolcarbonsaure 60.

— pyridindicarbonsäures diåthylester 149.

Dimethylisopropyliden-hexashydroindolcarbonsaure 55.

tetrahydroindolcarbons
 säure 60.

Dimethylmethoxyphenyldicyandihydropyridin 272.

dihydropyridindicarbons
 sauredinitril 272.

Dimethylmethylen- s. Isopropyliden-.

Dimethyl-naphthochinolinsulfonsaure 401.

naphthylpyrroldicarbons
 säure 135.

— nicotinsaure 51, 52.

— nitrophenyldihydropyridindicarbonsäurediäthylester 173.

 nitrophenylpyridindis carbonsäurediäthylester 176.

oxyäthylpyrroldicarbonsäurediäthylester 135.

Dimethyloxyphenyl-dicyans dihydropyridin 272. — dihydropyridindicarbons

säuredinitril 272.
— dinicotinsäurediäthylester

273.

 pyridindicarbonsäures diäthylester 273.
 Dimethylphenylacetyl-dis

hydropyridincarbons saureathylester 318.

— pyridincarbonsäureäthylester 320.

Dimethylphenyldioyandihydropyridin 172. Dimethylphenyldihydro-

nethylphenyldihydropyridindicarbonsäurediäthylester 172. Dimethylphenyldihydros pyridindicarbonsaures dinitril 172.

Dimethylphenyl-dinicotins säure 175.

hexahydrodinicotinsāure
 167.

Dimethylphenylhydrazonos malonylbisaminodis methylpyrroldicarbons säurediäthylester 144.

Dimethylphenyl-nicotinsaure 98.

— nicotinsäuremethylbetain 98.

— piperidindicarbonsāure 167.

Dimethylphenylpyridincarbonsäure 98.

 carbonsäureäthylesterhydroxymethylat 98.

— carbonsaurehydroxymethylat, Anhydrid 98.

 dicarbonsăure 175.
 Dimethylphenylpyridoncarbonsăure 303.

- carbonsauremethylester 303.

dicarbonsäure 347.

 dicarbonsäurediäthylester 347.

Dimethylphenylpyrrolcarbonsäure 30.

carbonsäureäthylester 89.
dicarbonsäure 134.

Dimethylphenylthiopyridons dicarbonsäurediathyls ester 347.

Dimethylphenyltolyldihydropyridindicarbonsäureäthylester 172.

— diathylester 172. Dimethyl-picolinsaure 52, 53.

 piperidindicarbonsë ures diäthylester 130.
 Dimethylpropyl-dihydros

Dimethylpropyl-dihydrodinicotinsäurediäthylester 148 bis 149.

 dihydropyridindicarbons săurediăthylester 148 bis 149.

— dinicotinsaure 166.

— pyridindicarbonsäure 166. Dimethylpyridin-carbonsäure

51, 52, 53. — carbonsäureäthylester 51, 52.

Dimethylpyridincarbonsäures šthylestersulfonsäurehydroxymethylat, Anhydrid 417. — methylbetain 417. Dimethylpyridincarbonsaureamid 51.

- nitril 52.

Dimethylpyridincarbonsäures sulfonsäure-hydroxys methylat, Anhydrid 417.

methylbetain 417.
 Dimethylpyridindicarbons
 säure 162.

Dimethylpyridindicarbons saure-athylester 163.

bisbenzalhydrazid 164.

bisisopropylidenhydrazid
 164.

— diäthylester 163.

— diazid 164.

— dihydrazid 163.

— dinitril 163.

Dimethylpyridin-sulfonsäure 387.

sulfonsäurehydroxys
 methylat, Anhydrid 387.
 tricarbonsäure 187.

Dimethylpyridon-carbons saure 302, 303; Phenylshydrazon 569.

— carbonsäurenitril 302; Imid 302.

— dicarbonsäure 346.

 dicarbonsāurediāthylestercarbonsāurehydrazid 347.

Dimethylpyridyl-hydrazin 563.

— semicarbazid 563.

Dimethylpyrrol-carbonsaure 28, 29.

— carbonsäureessigsäure 146. — dicarbonsäure 132, 133.

Dimethylpyrroldicarbonsaureathylester 132, 133.

äthylesteranilid 133.anilid 133.

— diathylester 133.

— diathylesteressigsaure 136.

-- dianilid 133. -- essigsāure 135.

Dimethyl-pyrrolinearbonsaure 17.

pyrroloncarbonsāureāthylsester 294, 295.

ester 294, 295.
Dimethylstyryl-dihydros
dinicotinsäurediäthylsester 178.

dihydropyridindicarbons
 säurediäthylester 176.

dinicotinsäure 176.
pyridindicarbonsäure 176.

Dimethyltetramethylphenylpyridoncarbonsaure 303.

Dimethyltolyldihydro-dinicotinsäurediäthylester 173.

 pyridindicarbonsäures diäthylester 173. Dimethyl-tolylpyrroldicarsbonsaure 134, 135.

tricarballylsäureimid 328.
 Dimethyltridecyl-dihydrodinicotinsäurediäthylsester 149.

dihydropyridindicarbons
 sāurediāthylester 149.

- dinicotinsaure 167.

— pyridindicarbonsäure 167. Dimethyl-trimethylenimins

carbonsaure 10.

triphenyldihydropyridinscarbonsäureäthylester
 115.

Dinaphthalinsulfonyloxyproslin 192.

Dinicotinsaure 160.

Dinitroaminochinolin 445, 452. Dinitroaminodioxy- s. Dinis

trodioxyamino-.
Dinitro-aminophenylacridin

— anilinochinolin 445, 448, 450.

— anilinochinolinhydroxys methylat 446.

— carbazolsulfonsäure 400.

— citrazinsāure 258.

 — diāthyldiphenylazoxyindol 593.

— diazodioxypyridin 591.

dimethylaminophenylacridin 478.

Dinitrodioxo-iminopiperidin 512.

nitrosiminopiperidin 591.
 Dinitrodioxy-aminopyridin 512.

— diazopyridin 591.

— isonicotinsaure 258.

— nitrosaminopyridin 512.

— pyridincarbonsāure 258. Dinitroglutazin 512.

Dinitroiminodioxo- s. Dinitros dioxoimino-.

Dinitropyrrolearbonsäures methylester 27.

Dinitroso-dipyridylphenylens diamin 430.

oktahydrometanicotin 424.
 Dioximino-methyltetrahydropyridincarbonsäureäthyleester 562.

 tetrahydropicolincarbons säureäthylester 562.

Dioxindolcarbonsaurenitril 373.

Dioxo-acetiminopiperidin 512.
— acetylanilinopyrrolidylsessigsäureäthylester 560.

Dioxoāthyleyanpyrrolidin 324.

Dioxoathyl-propyldicyans piperidin 358.

propylpiperidindicarbons
 sauredinitril 358.

pyrrolidincarbonsäures
 nitril 324.

Dioxoāthyltetrahydropyridincarbonsāure 329.

dicarbonsäureäthylester
 361.

 dicarbonsäureäthylesters amid 362.

 dicarbonsäurediäthylester 361.

Dioxo-allylphenylpyrrolidins carbonsäureäthylester 337.

anilinoäthylpyrrolidylsessigsäureäthylester 559.

— anilinophenylpyrrolidin 528.

Dioxoanilinopyrrolidyl-essigs säure 559.

— essigsäureäthylester 559.

 essigsäurephenylhydrazid 325.

Dioxoazahydrindencarbonsauremethylester 336.

Dioxobenzamino-benzoylpyrsrolidin 528.

— pyrrolidin 528.

Dioxobenzimino-āthylbens zoylpiperidincarbonsāures āthylester 344.

 benzoylpiperidincarbons säureäthylester 342.

benzoylpiperidincarbons
 saurenitril 342.

 dimethylbenzoylpiperidins carbonsäureäthylester 344.

 methylbenzoylpiperidins carbonsäureäthylester 343.

Dioxobenzolazo-äthyltetrahydroisochinolin 587.

— tetrahydroisochinolin 587. Dioxo-benzoylanilinopyrrolidylessigsäurephenylbenzoylhydrazid 325.

benzylpyrrolidylidenbromsessigsäure 332.

Dioxobis-dimethylphenylsiminopiperidincarbons säureamid 360.

phenyliminopiperidincars
 bonsäureamid 360.

tolyliminopiperidincarbons
 säureamid 360.

Dioxo-carboxybenzoyltetrahydroisochinolin 352. — carboxybenzyltetrahydro-

isochinolin 265. – cyanpyrrolidin 324. Dioxodiäthyl-dicyanpiperidin 357.

piperidindicarbonsäures dinitril 357.

Dioxodimethyl-āthylcyanstetrahydropyridin 334.

— āthyldicyanpiperidin 354, 355.

äthyltetrahydropyridins carbonsäurenitril 334.

benzyldicyanpiperidin 355.

butyldicyanpiperidin 358.cyantetrahydropyridin

332. — dicyanpiperidin 354.

— phenäthyldicyanpiperis

 piperidindicarbonsăures dinitril 354.

propyldicyanpiperidin 356.

— pyrrolidylessigsäure 328.

 tetrahydroisochinolins carbonsäure 339.

— tetrahydropyridincarbons säurenitril 332.

Dioxodiphenyl-piperidincarbonsäureäthylester 339.

pyrrolidincarbonsäures äthylester 337.

Dioxodipropyl-dicyanpiperidin 358.

— piperidindicarbonsāures dinitril 358.

Dioxo-hexylpyrrolidincarbons säureäthylester 328.

hydrindylchinolinearbons
 säure 341.

 hydrindylcinchoninsäure 341.

Dioxoimino-āthylpiperidin 513.

äthylpiperidincarbonsäures
 äthylester 557.

cyanpiperidin 556.
dimethylpiperidin

— dimethylpiperidin 514. — dimethylpiperidincarbons

 dimetnylpiperidincarbo săureăthylester 344.
 methylpiperidin 513.

methylpiperidincarbons
 säureäthylester 557.

Dioxoiminooximino-cyanpipes ridin 360.

 piperidincarbonsäures äthylester 360.

 piperidincarbonsāurenitril 360.

Dioxoimino-piperidin 511.

piperidincarbonsäureäthylsester 556.

— piperidylessigsäure 556.

Dioxo-indolinearbonsaure 336.
— isoindolinearbonsaure 336.

Dioxomethoxyphenylpyrrolidincarbonsaureathylester 378.

Dioxomethyläthyl-allyldis cyanpiperidin 356.

cyantetrahydropyridin 332, **3**34.

- dicyanpiperidin 355.

- piperidindicarbonsauredinitril 355.

tetrahydropyridincarbons săurenitril 332.

Dioxomethylallyl-cyantetras hydropyridin 332.

tetrahydropyridincarbonsăurenitril 332.

Dioxomethylbutyl-dicyans piperidin 357.

piperidindicarbonsaure. dinitril 357.

Dioxomethyl-carboxybenzyls tetrahydroisochinolin 341.

cyantetrahydropyridin **33**0, **332**.

diathyldicyanpiperidin356.

 dicyantetrahydropyridin 362.

Dioxomethylhexyl-dicyanpis peridin 359.

piperidindicarbonsaures dinitril 359.

Dioxomethylisobutyl-dicyans piperidin 358.

piperidindicarbonsaures dînitril 358.

Dioxomethylisohexyl-dicyan: piperidin 359.

piperidindicarbonsaure. dinitril 359.

Dioxomethylisopropyl-dicyanpiperidin 357.

piperidindicarbonsaures dinitril 357.

Dioxomethylmethylpentenyldicyanpiperidin 364.

piperidindicarbonsauredinitril 364.

Dioxomethylnonyl-dicyans piperidin 359.

piperidindicarbonsaure. dinitril 359.

Dioxomethylphenäthyl-dis cyanpiperidin 365.

piperidindicarbonsaure. dinitril 365.

Dioxomethylphenyl-acetyls piperidincarbonsaure 340.

dicyanpiperidin 365. piperidindicarbonsaures

dinitril 365. pyrrolidincarbonsaure 326.

pyrrolidincarbonsaures åthylester 337.

Dioxomethyl-phenylpyrros linylpropionsaure 334.

propyldicyanpiperidin 356.

propylpiperidindicarbon. sauredinitril 356.

pyrrolidincarbonsäureathylester 327.

pyrrolidylpropionsaure **327.**

pyrrolinylpropionsaure

tetrahydropyridincarbonsaure 332.

tetrahydropyridincarbon-säurenitril 330.

tolylpyrrolidincarbon* säureäthylester 327.

Dioxonitrophenylpyrrolidins carbonsäureäthylester

Dioxooximino-methyltetras hydropyridincarbonsäures athylester 346.

piperidin 562.

tetrahydropyridincarbonsaure 345.

Dioxooxymethoxyphenyl* pyrrolidincarbonsaure. äthylester 380.

Dioxooxyphenyl-dicyanpipes ridin 382.

piperidindicarbonsaures dinitril 382.

pyrrolidincarbonsäure= athylester 377.

Dioxophenetidinopyrrolidylessigsaure 560.

essigsäureäthylester 560. Dioxophenyl-benzolazophes nylpyrrolidincarbonsäureäthylester 339.

benzylpyrrolidincarbons saureathylester 338.

carboxyphenylpyrrolidin. carbonsäureäthylester 338.

Dioxophenylhydrazonodimethyldicarbathoxy. pyrrylphenylbuttersäures äthylester 136.

piperidin 567.

tetrahydroisochinolin 585.

tetrahydropyridincarbonsaure 345.

Dioxophenyl-nitrophenylpyrrolidincarbonsaures athylester 338, 339.

piperidincarbonsaureathylester 339.

pyrrolidincarbonsäures äthylester 336, 339.

Dioxophenyl-pyrrolidindicars bonsäurediäthylester 275.

pyrrolidindicarbonsaures dimethylester 275.

pyrrolidylessigsäure 325.

pyrrolidylidenessigsaure 331.

pyrrolinylessigsäure 331. tetrahydropyridincarbon.

saure 329.

tetrahydropyridindicarbonsäureäthylesteramid 362

tetrahydropyridindicarbonsäurediäthylester 362.

tolylpyrrolidincarbonsaure. äthylester 338.

Dioxopiperidindicarbonsaures diathylester 354.

Dioxopyrrolidincarbonsaureamid 324.

eesigsäurediamid 354.

malonsăuretriamid 369. nitril 324.

Dioxo-pyrrolidylessigsäure-

amid 325. pyrrolidylidenessigsäure 330.

pyrrolinylessigsäure 330. tetrahydroisochinolin=

carboylbenzoesäure 352.

tetrahydropyridincarbon. saure 328, 329, 330.

toluidinopyrrolidylessig. säureäthylester 559.

Dioxotolyl-pyrrolidindicarboneäurediäthylester 275.

pyrrolidylessigsäure 325. pyrrolidylidenessigsaure-

toluidid 331.

pyrrolinylessigsäuretoluidid 331.

Dioxotrimethyl-cyantetrahydropyridin 333.

dicyanpiperidin 354. tetrahydropyridincarbon-

säurenitril 333. Dioxoverbindungen,

Aminoderivate 528. Azoderivate 587

Diazoderivate 592.

Hydrazinoderivate 568.

Sulfonsäuren 414

Dioxy-acetaminopyridin 512. athoxyisochinolinearbon-

säureäthylester 271. äthyldicyanpyridin 279.

athylpyridindicarbonsauredinitril 279.

Dioxyamino-āthylpyridin 513.

äthylpyridincarbonsäureäthylester 557.

dimethylpyridin 514.

Dioxyamino-methylpyridin 513.

methylpyridincarbons
 saureathylester 557.

nicotinsäureäthylester 556.

— pyridin 511.

Dioxyaminopyridincarbonsaure-athylester 556.

äthylesteressigsäure 557.
essigsäure, Äthylester 557.

— nitril 556.

Dioxy-aminopyridylessigsaure 556.

— anhydroekgonin 250.

- anhydroekgoninmethylbetain 251; Ammoniumbase 251.

— anilinopiperidintetras carbonsāuretetraāthyls ester 284.

- anthrachinonopyridinsulfonsäure 416.

- benzaminopyrrol 511.

- benzaminopyrrolenin 511.

Dioxybenzolazo-isochinolin 585.

- isonicotinsaure 588.

— methylpyridin 585.

— picolin 585.

— pyridincarbonsaure 588.

Dioxycarbocinchomeronsäuretriäthylester 282.

Dioxycarboxy-athylnicotins saure 278.

āthylpyridincarbonsāure
 278.

— benzoylisochinolin 379.

— benzylisochinolin 265.

pyridylpropionsäure 278.
 Dioxychinolin-carbonsäure

äthylester 263. — sulfonsäure 412.

Dioxychinolyl-essigsäure 263.

— propionsäure 264.

Dioxycinchomeronsäureäthylester 275.

— diäthylester 275.

Dioxycyan-lutidin 260.

— nicotinsäureamid 277. — picolin 258.

Dioxy-dicyanpicolin 278.

— dicyanpyridin 277.

— dihydropyridindicarbonsaurediäthylester 275.

Dioxydimethoxyphonyldicyanpyridin 283.

pyridindicarbonsāuredinitril 283.

Dioxydimethyl-isonicotins saure 260.

- nicotinsäureäthylester 260.

Dioxydimethylpyridincarbonsaure 260.

carbonsäureäthylester 260.

— carbonsäurenitril 260. Dioxydinicotinsäure-äthyl-

ester 276. — äthylesteramid 277.

— amid 277.

diäthyleeter 276.

— diamid 277.

- dianilid 277.

Dioxydioxo-aminodihydropyridin 541.

pyridin 541. — dihydropyridincarbons säureamid 379.

Dioxydioxyphenyl-dicyans pyridin 283.

 pyridindicarbonsāures dinitril 283.

Dioxyformyl-isonicotinsaure 376.

pyridincarbonsäure 376.
 Dioxyhexyl-dicyanpyridin 279.

 pyridindicarbonsāures dinitril 279.

Dioxyhydroxylaminopyridin 562.

Dioxyisobutyl-dicyanpyridin 279.

 pyridindicarbonsāures dinitril 279.

Dioxyisochinolin-carbonsāure 263.

carbonsäureäthylester 263.
carbonsäuremethylester

263.

— carboylbenzoesäure 379. Dioxyisonicotinsäure 254.

Dioxyisopropylphenyldicyanpyridin 281.

 pyridindicarbonsauredinitril 281.

Dioxylutidin-carbonsaure 260.
— carbonsaureathylester 260.

Dioxymethoxy-isochinolincarbonsäuremethylester 271.

— methyldihydrochinolincarbonsäure 271.

— methyltetrahydrochinolincarbonsäure 270.

— phenyldicyanpyridin 281.— phenylpyridindicarbons

säuredinitril 281. Dioxymethyläthyl-cyans

pyridin 261.

— nicotinsäureäthylester 261.

modulisativastiylester 201
 pyridincarbonsāureāthylsester 261.

pyridincarbonsäurenitril
 261.

Di- siehe auch Bis-

Dioxymethyl-allyleyans pyridin 262.

allylpyridinearbonsäures
 nitril 262.

— benzylcyanpyridin 265.

benzylnicotinsäurenitril
 265.

benzylpyridincarbons
 saurenitril 265.

— butyleyanpyridin 262.

— butylpyridincarbonsäures nitril 262.

— cinchomeronsäurediäthylester 278.

— cyanpyridylessigsäure 278.

dihydrochinolinearbons
 saure 225.

— isobutyleyanpyridin 262.

- isobutylpyridincarbons saurenitril 262.

isochinolinearbonsäuremethylester 264.

- isonicotinsaure 259.

- nicotinsäureäthylester 258.

— propylcyanpyridin 261.

— propylpyridincarbons saurenitril 261.

— pyridincarbonsäure 259.

Dioxymethylpyridin-carbons saureathylester 258 (s. auch 259).

carbonsāureessigsāure,
 Nitril 278.

— carbonsāurenitril 258.

— carbonsāurenitrilessigs sāure 278.

— dicarbonsäurediäthylester 278.

— dicarbonsāuredinitril 278. Dioxy-nicotinsāure 253, 254.

 nicotinsäureamid 254.
 Dioxynitrophenyl-dicyanpyridin 280.

 pyridindicarbonsāures dinitril 280.

Dioxyoxindoldicarbonsaurediathylester 382.

— dimethylester 382.

Dioxyoxoindolindicarbons saure-diathylester 382.

 dimethylester 382.
 Dioxyoxomethylpyridincarbonsaure 376.

Dioxyoxymethoxyphenyldicyanpyridin 283.

— pyridindicarbonsauredinitril 283.

Dioxyphenathyl-dicyanpyridin 281.

pyridindicarbonsaure dinitril 281.
 Dioxyphenylcyanpyridin 264.

Dioxyphenyldicyan-glutaconsaureimid 283. pyridin 280. Dioxyphenylhydrazinos pyridin 567.

Dioxyphenylnicotinsäureathylester 264.

- nitril 264.

Dioxyphenylpyridin-carbonsäureäthylester 264. carbonsäurenitril 264.

– dicarbonsäuredinitril 280.

Dioxyphenylpyrroldicarbons saure-diathylester 275.

dimethylester 275.

Dioxypicolin-carbonsaure 259. carbonsaureathylester 258 (s. auch 259).

 dicarbonsäurediäthylester **2**78.

Dioxy-picolinsaure 251, 253. picolinsäureäthylester 253.

Dioxypropyl-dicyanpyridin 279.

pyridindicarbonsaures dinitril 279.

Dioxypyridincarbonsaure 251, **253**, 254.

Dioxypyridincarbonsaureathylester 253, 257 auch 254).

- **a**mid 254, 257. methylester 257.

Dioxypyridindicarbonsäureathylester 275, 276.

athylesteramid 277.

– amid 277.

- amidnitril 277.

diathylester 275, 276.

diamid 277.

- dianilid 277. dinitril 277.

Dioxy-pyridintricarbonsaures triäthylester 282.

pyridylbuttersaure 260.

— tetraoxotetrahydrodipys ridyl 256.

Dioxytolyl-dicyanpyridin 280. pyridindicarbonsauredinis

tril 280. pyrroldicarbonsāuredis athylester 275.

Dioxytropan-carbonsäure 250. carbonsaurehydroxyme:

thylat 251. carbonsauremethylester

250. carbonsauremethylesterhydroxymethylat 251.

Dioxyureidopiperidintetracarbonsauretetraathylester 284.

Dioxyverbindungen. Aminoderivate 511.

Azoderivate 585.

- Diazoderivate 591.

 Hydrazinoderivate 567. Hydroxylaminoderivate

562. Sulfonsäuren 412.

Diphenylaminindolindigo 536. Diphenyl-benzochinolin-

carbonsäure 116.

benzocinchoninsäure 116.

bisazophenylpyrrol 573.

chinolinearbonsaure 114.

chinolinsäure 180.

chinolylformazan 73. — chinolylharnstoff 444.

cinchoninsäure 114. cyanstilbazol 116.

dicyandihydropyridin 180.

Diphenyldihydro-isonicotin= saure 108.

pyridincarbonsaure 108.

pyridindicarbonsaure: dinitril 180.

Diphenyldimethylphenylpyr: rolcarbonsaure 106.

Diphenylenbismethylphenyls pyrrolcarbonsaureathyl: ester 91.

Diphenyl-formazylchinolin 73.

isonicotinsaure 109. – isonipecotinsäure 100.

methoxyphenylcyanpyris din 250.

methoxyphenylpyridins carbonsăurenitril 250.

naphthocinchoninsaure 116.

naphthylpyrrolcarbon* säure 107.

nitrophenyldicyandihydros pyridin 181.

nitrophenyldihydropyris dindicarbonsauredinitril 181.

oxyphenylpyrrolcarbons saure 107.

piperidincarbonsaure 100. Diphenylpiperidondicarbons

saure-diathylester 351. dimethylester 351.

Diphenyl-pyridincarbonsäure 109.

pyridindicarbonsaure 180. pyridondicarbonsaure 353.

pyrrolcarbonsaure 106. pyrroldicarbonsauredis

äthylester 179. pyrrolidoncarbonsaure 308.

pyrrolidondicarbonsäure 348.

pyrroylpropionsäure 322.

Diphenyl-stilbazolcarbon săurenitril 116.

styrylnicotinsäurenitril 116.

styrylpyridincarbonsäure: nitril 116.

Diphenyltolyl-cyanpyridin 116.

nicotinsăurenitril 116. pyridincarbonsäurenitril

116. pyrrolcarbonsäure 106.

Dipicolinsaure 154. Dipropyldicyanglutarsaure= imid 358.

Dipyridyl-diāthylamin 435.

harnstoff 430, 432, 433.

isothioharnstoff 430. phenylendiamin 430.

thioharnstoff 430.

triazen 593.

Distilbazyl-diimid 580.

thioharnstoff 461. Disulfhydryl- s. Dimercapto-.

Disulfonsäuren 403.

Aminoderivate 561. Ditoluidinotolyläthylenimin **484**.

E.

Ekgonidin 31 (vgl. 634). Ekgonidin-äthylester 32.

äthylesterhydroxymethy. lat 32.

dibromid 19.

hydroxymethylat 32.

— methylbetain 32.

methylesterhydroxy= methylat 32.

Ekgonin 196, 204, 205, 210, 211.

Ekgonin-äthylbetain 204; Ams moniumbase 204.

äthylesterhydroxymethy= lat 204.

amid 203.

amidhydroxymethylat 204. hydroxyäthylat 204.

hydroxymethylat 203, 212.

methylbetain 204; Ammor niumbase 203.

methylester 198, 211.

methylesterhydroxyme= thylat 212.

nitril 203, 212.

Ekgoninsäure 287.

Essigsaure-acetoxyindolcars bonsäureanhydrid 64.

pyrrolcarbonsaureanhy: drid 23.

Eucain (α-Eucain, Eucain A) 194.

F.

Flavanilin 469. Flaveosin 552, 553. Formaminodimethylpyrrols dicarbonsaure-athylester - diäthylester 141. Formaminomethyl-carbosty. ril 522. chinolon 522. Formylamino- s. Formamino-. Formyl-chinolinearbonsaure, Oxim 316. cinchoninsaure, Oxim 316.

G.

— citrazinsāure 376.

Glutaminsaure, Lactam 284, Glutazin 511. Glutazincarbonsaure-athyl= ester 556. – āthylesteressigsāure 557. – essigsäure, Äthylester 557. nitril 556. Glutazinessigsäure 556. Glycyltryptophan 549. Granatsäure 126. Granatylamin 426. Guvacin 14. Gynesin 43.

H. Hāmatinsāure, Anil der dreis

basischen 334. Imid der dreibasischen 333. Hāmotricarbonsāureimid 327. Hemimellitsäureimid 336. Heptyl-benzochinolincarbons saure 103. benzoeinchoninsäure 103. naphthocinchoninsäure 103. Hexahydro-chinolinsaure 120. - cinchomeronsäure 122, 123. dipicolinsaure 121. - isonicotinsaure 10. - metanicotin 427. — nicotinsaure 8. - picolinsäure 7 (s. auch 8). Hexaoxydipyridyl 256. Hexyl-benzochinolinearbons säure 102. - benzocinchoninsäure 102. — dicyanglutaconsāureimid 279.

- naphthocinchoninsaure

- pyrrylcaprylsäure 33.

Homapocinchensäure 244.

102.

hydrocinchoninsäure 57. nicotinsaure 50. tropinsäure 126. Hydrazine 563. Azoderivate 589. Hydrazino-carbonsäuren 568. chinaldin 566. — chinolin 564, 565. — dimethylpyridin 563. dimethylpyridincarbons saureathylesterhydroxy. methylat 302. – lepidin 566. - lutidin 563. lutidincarbonsăureăthyls esterhydroxymethylat methylchinolin 566. nicotinsaure 568. pyridincarbonsaure 568. Hydrazo-chinolin 565. lepidin 566. Hydrazonomalonylbisaminos dimethylpyrroldicarbons saurediathylester 143. Hydrindindisulfonsäure 414. Hydrocarbostyril-carbons sāure 307, 308. diazoniumhydroxyd 592. - essigsäure 308. sulfonsaure 413. Hydro-cyanisatin 373. ekgonidin 17. isaphensäure 321. Hydroxylamine 562. Hydroxylamino-dioxypyridin **562**. methylphenyldihydroacridin 562. Hygrinsäure 5. Hygrinsäure-äthylester 5. athylesterhydroxy: methylat 6. - hydroxymethylat 3, 5. - methylamid 5. - methylbetain 6. methylesterhydroxys methylat 6. I. Imino-acetaminotrimethyl= phenyldihydroacridin **494.**

aminotrimethylphenyldihydroacridin 493. Iminobernsteinsäure-äthyls ester 117. athylesteramid 117.

– diamid 117.

Iminocarbathoxypyrrolidys lidencyanessigsaureäthylester 367.

Homo-asparaginsāureimid530. Iminodioxo- s. Dioxoimino-. Iminomethyl-acetylpyrroleninylacetessigsäureäthylester 348. aminophenyldihydroacridin 491. indolincarbonsaure 307. Imino-pyridylpropionsäures athylester 305. pyrrolidylidencyanessigs säureäthylester 343. succinamid 117. – succinamidsäureäthyl= ester 117. trimethyldihydroacridin 465. Indigoid (Bezeichnung) 536 Anm. Indindisulfonsaure 414. Indogenid (Bezeichnung) 526 Anm. Indogensäure 226. Indol-carbonsaure 61, 65. - dicarbonsäure 168. Indolyl-alanin 545 bis 546 (s. auch 550). carbamidsäureäthylester 441. - essigsäure 66. propionsaure 69. propionsäureäthylester 69. Indoxanthinsäureäthylester 372. Indoxin 63. Indoxylcarbonsäure 226. Indoxylsaure 226. Indoxylsaure-athylester 228; Carbanilsäureester 228. anilid 228. essigsäure 229. - methylester 227. Isaphensäure 247, 321. Isatin-carbonsaure 336. cyanhydrin 373. phenylhydrazon 583. sulfonsäure 414. Isatogensäureäthylester 309. Isatomalonitril 349. Isatropyl-cocain 201, 202. ekgonin 198. Isoamyl-indolcarbonsaure 62. pyrrolcarbonsäureisos amylamid 24. Isobutenyl- s. Methylpropenyl-. Isobutyl-benzochinolins carbonsaure 102.

benzocinchoninsäure 102.

chinolinearbonsaure 96.

cyanisocarbostyril 242.

- indolcarbonsäure 62.

dicyanglutaconsaureimid

— cinchoninsäure 96.

279.

Isobutyl-isocarbostyrilearbons säurepitril 242.

 naphthocinchoninsäure 102.

Isobutyryldihydro-chinolylsisobuttersäure 71.

— pyridylisobuttersäure 33. Isocarbostyrilearbonsäure

237, 238. Isochinaldinsäure 82.

Isochinolin-carbonsaure 82.

— sulfonsäure 396.

Iso-chinolonearbonsāure 237, 238.

— cinchomeronsāure 153.

-- cocain 206.

— cocamin 201.

-- ekgonin 205.

— flavanilin 469.

 indigotindisulfonsäure 414 Anm.

— indogenid (Bezeichnung) 527 Anm.

— nicotinsäure 45.

Isonicotinsäure-äthylbetain 47.

- äthylester 46.

— amid 46.

— chlorid 46.

- hydroxymethylat 46.

— methylbetain 46, 47; Ammoniumbase 46.

— methylester 46.

— methylesterhydroxys methylat 47.

— nitril 46.

Isonipecotinsaure 10.
Isonitroso- s. auch Oximino-.
Isonitroso-chinolylacetophenoncarbonsaure 341.

— tropinonoxalsaure 348.

Isopropyl-benzochinolinscarbonsäure 102.

— benzoeinchoninsäure 102.

— chinaldinsäure 94.

— chinolinearbonsaure 94, 95.

— cinchoninsäure 95.

cyanisocarbostyril 242.

- cyanisochinolon 315.

Isopropyliden-aminodimethyls pyrroldicarbonsäures diäthylester 140.

— chinolylhydrazin 565. Isopropyl-indolcarbonsäure

62.
— isocarbostyrilcarbonsäures

nitril 242.

- naphthocinchoninsäure 102.

Isopropylphenyl-benzos chinolinearbonsäure 114. — benzoeinchoninsäure 114.

-- chinolinearbonsäure 108.

-- cinchoninsäure 108.

Isopropylphenyldicyanglutas consaureimid 281.

Isosuccinylbisaminodimethylpyrroldicarbonsaurediathylester 142.

Isotropylamin 425. Isovaleryl-ekgoninmethyl-

ester 198.

pseudoekgonin 206.

pseudoekgoninmethyleester 206.

J.

Jod-acetyltryptophan 548.

— aminochinolin 445.

dimethylpyridincarbons
 säureäthylesterhydroxysmethylat 53.

— oxychinolinsulfonsäure

406, 408.

oxymethylchinolinsulfonsäure 409.

— propionyltryptophanmethylester 548.

Joniregentricarbonsăureimid 339.

K.

Kairolin-carbonsāure 58, 59.
— sulfonsāuremethylbetain

 sulfonsäuremethylester 388.

Keto- s. Oxo-.

Kollidin-carbonsaure 54.

carbonsāuremethylbetain
 55; Ammoniumbase 55.

— dicarbonsäure 164. Komenaminsäure 251.

Komenaminsaure 251. Kopellidinsulfonsäure 386.

Kresyl- s. Tolyl-.

Kynurensäure 230.

L.

Lepidin-acrylsaure 97.

- carbonsaure 85, 88.

— oxalester 317.

— oxalsāure 317.

— oxalylsäure 317.

- säure 161.

- sulfonsäure 397.

Lepidyl-anthranil 455.

- essigsaure 93.

— glyoxylsäure 317.

Lepidyliden-essigsäure 97.
— glykolsäure 317.

Leucyl-glycyltryptophan 549. — tryptophan 549, 550.

- tryptophylglutaminsäure 550.

Leukindindisulfonsäure 415. Loiponsäure 122.

Lorenit 406.

Loretin 408.

Lupetidindicarbonsäurediäthylester 130.

Lutidin-carbonsäure 51, 52, 53.

dicarbonsăure 162.

– säure 153.

— sulfonsäure 387.

sulfonsäuremethylbetain
 387.

- tricarbonsaure 187.

M.

Magnesiumverbindungen 594. Malonsäurebisdimethyldicarbathoxypyrrylamid 142.

Malonylbisaminodimethylpyrroldicarbonsäuredisäthylester 142.

Merochinen 19.

Merochinen-äthylester 19.

— methylester 19.

— nitril 19.

Mesitylsäure 293.

Mesoxalsäurebisdimethyldiscarbäthoxypyrrylamidacetaminophenylhydrazon 145.

— carboxyphenylhydrazon 144, 145.

dimethylphenylhydrazon
 144.

- hydrazon 143.

— naphthylhydrazon 144.

nitrosophenylhydrazon 145.

— oxim 143.

- phenylhydrazon 144.

sulfonaphthylhydrazon
 145.

— sulfopbenylhydrazon 145.

- tolylhydrazon 144.

Mesoxalsaure-bisdimethyldis carboxypyrrylamidphes nylhydrazon 140.

- isoindogenid, Dinitril 348

bis 349.

— methylesterdimethyldis carbäthoxypyrrylamids tolylhydrazon 143.

Meta-nicotin 438.

— nicotindibromid 437. Methoäthyl- s. Isopropyl-. Methobutyl- s. Isoamyl-.

Methopropyl- s. Isobutyl-. Methoxyacetamino-benzoacri

din 508. — chinolin 502.

Methoxyacetoxyacetaminos phthalsäure, Lactam 377.

Methoxyathylcarboxyphenylchinolin 248.

Methoxyamino-benzoacridin 508.

-- chinolin 500, 501, 502.

phenylchinolin 507.

phenyltetrahydrochinolin
 506.

Methoxybenzaminochinolin 503.

Methoxybenzoyl- s. Anisoyl-.

Methoxybenzyl- s. such Anisoyl-.

Methoxy-benzylcarbostyrilcarbonsäure 373.

 benzylchinolonearbonsäure 373.

- chinaldinsäure 231.

— chinolinearbonsăure 231, 232, 233, 234.

Methoxychinolinearbonsäurehydroxyäthylat 235.

- hydroxybenzylat 235.

hydroxymethylat 235.hydroxypropylat 235.

— methylester 233 (s. auch 234).

Methoxy-chinolinsaure 267. — chinolinsulfonsaure 406.

— cinchoninsäure 233, 234.
— cinchoninsäuremethylester

cinchoninsäuremethylester
 233 (s. auch 234).

— cyanlutidin 219.

Methoxydimethylpyridincarbonsaure 220.

— carbonsäureäthylester 220. — carbonsäurenitril 219.

Methoxydiphenylpyridin-discarbonsaure 273.

— dicarbonsāurediāthylester 274.

Methoxyindol-carbonsaure 63.

carbonsäureamid 64.
carbonsäurechlorid 64.

- carbonsaureeniond 04.
- carbonsauremethylester

Methoxymethyl-aminochinoslin 502.

— carbostyrilcarbonsäure373.

chinolonearbonsaure 373.
cvanpyridon 371.

- cyanpyridon 371.

— pyridoncarbonsāurenitril 371.

Methoxy-nicotinsaure 215.

nicotinsauremethylester
 215.

 pentamethylpiperidincarbonsäuremethylester 194.
 Methoxyphenyl-benzochino-

linearbonsāure 250.
— benzocinchoninsāure 250.

— chinolinearbonsaure 246, 247.

- chinolinearbonsaure athylester 246.

Methoxyphenylchinolinearbonsäure-hydroxymethylat 246.

— methylester 246.

Methoxyphenyleinchonins saure 246, 247.

Methoxyphenylcinchoninsäure-äthylester 246.

— methylbetain 246; Ams moniumbase 246.

— methylester 246.

Methoxyphenyldicyanglutas consaureimid 281.

Methoxypyridin-carbonsaure 215.

carbonsāuremethylester
 215.

— dicarbonsāure 267.

Methoxy-sulfophenylchinals din 411.

sulfophenylstyrylchinolin
 412.

tetrahydrochinolincarbons
 saure 224.

Methylacetaminophenyl-acetyltetrahydrochinolin 462.

— chinolin 470 (s. auch 469).
Methylacetyl-aminobutenyls

pyridin 438.

— aminotetramethylpyrrolisdon 516.

— anilinoāthylpyridin 437.

pyridin, Cyanhydrin 223.
 pyrroloncarbonsā ureāthylsester 295.

— tetrahydrochinolinearbons saure 59, 60.

Methylätherapocinchensäure 248.

Methyläthoxysulfophenylchis nolin 410.

Methyläthyl-aminoäthylpiperidin 425.

- aminophenylchinolin 470.

benzoindolchinoncarbonsäureäthylamid 340.

chinolinearbonsaure 95.cinchoninsaure 95.

Methyläthylcyan-glutaconsäureimid 261.

— glutaconsäuremethylimid 334.

- isocarbostyril 315.

— isochinolon 315.

— pyrrolidon 288.

Methyläthyloyolopropantetra s carbonsaureimid, Dinitril 363.

Methyläthyldicyancyclopropandicarbonsäure-äthylimid 363.

— imid 363.

— methylimid 363.

Methyläthyldicyanglutarsäure-äthylimid 356.

— allylimid 356.

– imid 355.

— methylimid 355.

Methyläthyl-indolcarbonsäure

 isochinolonearbonsäures nitril 315.

 naphthindolchinoncarbons säureäthylamid 340.

- picolinsäure 54.

— piperidinsulfonsäure 386.

— piperidylpropionsäure 14.

 piperidylpropionsäures äthylester 14.

— pyridincarbonsäure 54.

pyrrolidoncarbonsäure 288.
pyrrolidonthiocarbonsäures

amid 292.

pyrroloncarbonsäureäthylsester 294.

Methylal- s. Formyl-.

Methylallyl-cyanglutacon-

säureimid 262. — indolcarbonsäure 68.

— phenylpyrrolcarbonsäure 89.

Methylamino-acetylindol 523.

- äthylpyridin 434.

— athylvinylpiperidin 427.

bernsteinsäureimid 529.
butenylpiperidin 427.

— butenylpyridin 438.

butylpiperidin 424.butylpyridin 437.

Methylaminodimethyl-aminophenylacridin 492, 494.

phenylpyrrolidon 520.

pyrroldicarbonsäure 139.
 Methylaminoformylaminodimethylpyrrol-dicarbonsäure 139.

 dicarbonsäurediäthylester 143.

Methylaminomethoxy- s. Methoxymethylamino-.

Methylaminomethyl-aminophenylacridin 492.

anthrapyridon 536.

- anthrapyridonsulfonsäure 561.

phenylbenzoacridin 482.
 phenyldihydrobenzoacrisdin 480.

Methylaminophenyl-chinolin 468, 469.

— chinolon 508.

— tetra hydrochinolin 462. Methylamino-styrylchinolin 473.

- styrylpyridin 461, 462.

— tetramethylpyrrolidon 516.

Methylanilino-āthylpyridin **4**37.

chlormaleinsäureanil 533.

– dimethylpyridin 435.

dimethylpyridinhydroxys methylat 435.

- dimethylpyrroldicarbon**sā**ure 139.

pyrrylendibenzoesäure 179.

pyrrylendibenzoesäurediathylester 179.

 thioformylaminodimethylpyrroldicarbonsaurediathylester 143.

- trimethylpyridinium-hydroxyd 435.

Methyl-anthrapyridonsulfons saure 415.

asparaginsăureimid 529. benzalaminodimethyls pyrroldicarbonsaurediathylester 140.

- benzaminoacetylindol 523.

benzaminostyrylchinolin **473**.

Methylbenzo-acridinsulfonsaure 402.

- chinolincarbonsăure 101.

- cinchoninsaure 101.

- flavin 495.

indolsulfonsaure 399. indolylessigsäure 100.

Methyl-benzoylaminobutenyls pyridin 438.

benzylcyanglutaconsaureimid 265.

- benzylcyanpyrrolidon 290.

— benzylpyrrolidoncarbons săurenitril 290.

berberonsäure 186.

 bornylenopyrrolcarbons säure 60.

Methylbromphenylpyrrolidoncarbonsaure 288.

- carbonsăureamid 289.

carbonsauremethylester

Methylbutantricarbonsäures imid 328.

Methylbutyl-cyanglutacons săureimid 262.

 cyclopropantetracarbons saureimid, Dinitril 364.

 dicyancyclopropan* dicarbonsaureimid 364.

Methylbutyldicyanglutarsaure-imid 357.

- methylimid 358. Methyl-camphenpyrrols carbonsaure 60.

camphenpyrrolinearbon= saure 55.

carbathoxyphenylpyrros lidoncarbonsäureamid 292.

Methylcarbaminyl-s. Methyl-| Methylchlordimethylaminoaminoformyl-.

Methyl-carbazolcarbonsaure 100.

carbomethoxybenzyls homophthalsauremethylimid 341.

carbomethoxyphenylpyrrolidoncarbonsaure: amid 292.

carbostyrilcarbonsaure 239, 240, 309.

Methylcarboxybenzoyl-indol 321.

pyrrol 317.

Methylcarboxybenzylhomophthalsaure-imid 341.

methylimid 341.

Methylcarboxymethylen= phthalimidin 312.

Methylcarboxyphenylpicolinsaure 175.

pyridincarbonsaure 175.

pyrrolidoncarbonsaure 292.

Methylcarboxy-pyridyl= benzoesaure 175.

pyrrolidylzimtsäure 169.

Methyl-chinaldinsaure 83, 85.

chinolinearbonsaure 83, 85, 86, 87, 88.

Methylchinolincarbonsäureathylesterhydroxy. äthylat 84.

- äthylesterhydroxy: methylat 84.

benzylesterhydroxy: methylat 84.

essigsäure 171.

- hydroxymethylat 84.

methylesterhydroxy: äthylat 84.

methylesterhydroxys methylat 84.

nitril 88, 89 (s. auch 83,

propylesterhydroxy. methylat 84.

Methyl-chinolindicarbons saure 171.

chinolindicarbonsăures nitril 171.

chinolinsăure 161.

chinolinsulfonsäure 396, **397, 398**.

- chinoloncarbonsaure 309. Methylchinolyl-acrylsäure

97, 98. aminoisopropylketoxim

anthranilsäure, Lactam 455.

- hydrazin 566.

— semicarbazid 566.

benzalindolenin 471.

Methylchlorphenylpyrrolidoncarbonsaure 288.

carbonsăureamid 289.

carbonsäuremethylester

Methylcincholoipon-hydroxymethylat 12.

nitril 12.

nitrilhydroxymethylat 12. Methylcincholoiponsaure-

athylesterhydroxy. methylat 129.

diathylesterhydroxy= methylat 126, 129.

hydroxymethylat 129. Methyl-cinchoninsäure 85, 87; Phthalon 341.

citrazinsaure 259.

coniinoäthylpyridin 437.

Methylcyan-benzylhomophthalsäuremethylimid 341.

carbostyril 239, 310.

chinolin 88, 89 (s. auch 83, 87).

chinolon 310.

cinchoninsaure 171.

Methylcyandihydro-acridin 100.

chinolin 65.

phenanthridin 100.

Methyleyanglutaconeäureathylimid 332.

allylimid 332.

imid 258.

— methylimid 332.

Methylcyan-isocarbostyril **24**0.

isochinolon 313.

pyrrolidon 288.

tetrahydroisochinolin 59. tetrahydropyridin 16.

Methyl-diaminostyrylpyridin

dibenzoylglutazincarbons säureäthylester 343.

dibenzyltricarbonsäures imid 341.

dicarbokollidylium: dehydrid 335.

dicyanglutaconsaureimid 278.

Methyldihydro-acridins carbonsäurenitril 100.

bornylenopyrrolcarbons säure 55.

cinchoninsäure 66.

- cinchoninsăurenitril 65.

phenanthridincarbons säurenitril 100.

Methyldimethoxycarboxy. phenylpyridindicarbon. säure 283.

Methyldimethylamino-athylpyridin 437.

— benzalindolenin 470.

— styrylchinolin 473.

Methyldimethyldicarbäthoxys

pyrryl-harnstoff 143.

— thioharnstoff 142.

Methyldimethyldicarboxypyrrylharnstoff 139.

Methyldimethylphenyl-cyanpyrrolidon 290, 291.

— pyrrolidoncarbonsaure 290, 291.

— pyrrolidonthiocarbons säureamid 292.

Methyldinicotinsaure 161, 162.

Methyldiphenyl-acetyldihydropyridincarbongäureäthylester 323.

— cyanpyridin 110.

— dicyandihydropyridin 180.

 dihydrodinicotinsäures diäthylester 180.

dihydropyridindicarbons
 säurediäthylester 180.

dihydropyridindicarbons
 säuredinitril 180.

--- nicotinsaure 110.

 piperidondicarbonsāurediāthylester 352.

pyridincarbonsāure 110.
pyridondicarbonsāure 353.

 pyridondicarbonsäures diäthylester 353.

— pyrrolcarbonsaure 89, 92.

pyrrolcarbonsäureäthylsester 108.

Methylen-chininoxinsaure 373.

— cinchoxinsaure 309. Methyl-glutazin 513.

— glutazinoarbonsāureāthylsester 557.

-- glycylindol 523.

- granatsäure 126.

--- granatsäuredimethyls esterhydroxymethylat 126.

— granatylamin 426. — guvacin 15.

Methylhexahydro-cinchomeronsäure 123.

— dipicolinsaure 121.

Methylhexahydrodipicolinsaure-dimethylester 122.

- dimethylesterhydroxys methylat 122.

Methylhexyl-cyclopropantetracarbonsaureimid, Dinitril 364.

 dicyancyclopropandicarbonsaureimid 364.

— dicyanglutarsāureimid 359. Methyl-hippurylindol 523.

homocincholoipon 14.
homocincholoiponāthyls

ester 14.

— homomerochinenmethylsester 22.

Methylindol-carbonsaure 62,

67, 68. — carboylbenzoesäure 321.

— dicarbonsāure 168. Methylindoldicarbonsāure-

athylester 168

- athylesteramid 168.

— amid 168.

— diathylester 168.

— diamid 168. — dichlorid 168.

Methylindoleninyliden

glykolsäure 313. Methylindol-oxalsäure 313.

oxalylsāure 313.sulfonsāure 389.

Methyl-indolylessigsaure 67,

69.

— indolylglyoxylsäure 313.

indoxylcarbonsāureāthylsester 230.

Methylindoxylsäure-äthylsester 230.

— methylester 229. Methylisoamylpyrroloncarbonsäureäthylester

Methylisobutyl-cyanglutacons saureimid 262.

— dicyanglutarsäureimid
 358.

— pyrroloncarbonsäures äthylester 294.

Methyl-isobutyryldihydrochinolylisobuttersäure 71.

— isocarbostyrilearbonsaure 311.

— isocarbostyrilcarbons saurenitril 240.

isochinolonearbonsäure
 311.

— isohexyldicyanglutarsaureimid 359.

 isonicotinsăure 49.
 Methylisopropyl-cyanisocarbostyril 315.

— cyanisochinolon 315.

cyclopropantetracarbonsaureimid, Dinitril 363.

 dicyancyclopropandis carbonsaureimid 363.

— dicyanglutarsäureimid 357.

 isochinolonearbonsäures nitril 315.

Methyljodphenylpyrrolidoncarbonsäure 288.

 carbonsäureamid 289.
 carbonsäuremethylester 289. | Methylloretin 409. | Methylmercaptodimethylpyrisdincarbonsaure-athylsesterhydroxymethylat

esterhydroxymethylat 221

— hydroxymethylat 221. Methyl-merochinen 19.

— merochinennitrilhydroxymethylat 20.

— metanicotinbishydroxys methylat 438.

— methoxysulfophenylchinolin 411.

— methylaminoāthylpyridin 436.

— methylnitrosaminoāthylpyridin 437.

— naphthindolessigsaure 100.

naphthocinchoninsäure
 101.

Methylnaphthyl-cyanpyrrolidon 291, 292.

- pyrrolidoncarbonsaure 291.

— pyrrolidonthiocarbons săureamid 293.

Methyl-nicotinsaure 49, 50.
— nipecotinsaure 9, 10, 11.

— nipecotinsauremethylester

- nipecotinsauremethylester

hydroxymethylat 9. — nonyldicyanglutarsäures

imid 359.
— norekgonin-196.

— norpseudoekgonin 205.

 oxolminocarbāthoxypyrrolinylacetessigsāureāthylester 368.

 oxyāthylaminotetras methylpyrrolidon 516.

— oxyaminophenyläthyls pyridin 505. — oxyprolin 190, 191.

phenacetylaminodimethylapyrroldicarbonsäurediathylester 141.

Methylphenäthyl-cyclopropantetracarbonsäureimid, Dinitril 366.

 dicyancyclopropandis carbonsäureimid 366.

dicyanglutarsäureimid 365.
 dicyanglutarsäuremethyls

imid 366. Methylphenyl-aminophenylpyrrolcarbonsäureäthyl-

ester 91.
— benzochinolinearbonsäure

114.

benzocinchoninsäure 114.
benzolazophenylpyrrols

carbonsäure 91.
— benzylchinolincarbonsäure

115. — benzylcinchoninsäure 115. Methylphenylcarboxyphenyls pyrrol-carbonsäure 91. — carbonsäureäthylester 91.

Methylphenyl-carboxyvinylpyrrolidincarbonsaure 169.

chinolinearbonsăure 107, 108.

— chinolinsaure 175.

cinchoninsäure 107, 108.cyandihydroacridin 111.

— dicyanglutarsäureimid 365.

— dihydroscridincarbons
 säurenitril 111.

 — dihydroacridinsulfonsäure 402.

 dimethyldicarbāthoxypyrs rylthioharnstoff 143.

— methoxyphenylcyanpyris din 249.

 methoxyphenylpyridincarbonsāurenitril 249.

- naphthocinchoninsäure 114.

naphthylpyrrolcarbons
 säure 90.

nitrophenylpyrrolcarbons
 säureäthylester 90.

pyridindicarbonsāure 175.
pyridondicarbonsāure 346.

— pyridondicarbonsaure 346 Methylphenylpyrrol-carbons säure 89, 92.

carbonsäureäthylestersessigsäure 90.

— carbonsäureessigsäure 90. Methylphenylpyrrolidon-carbonsäure 288.

— carbonsăureamid 289.

— carbonsāureanilid 289. — thiocarbonsāureamid 292.

Methylphenyl-pyrroloncarbons saure 314.

--- thioureidotetramethyls pyrrolidon 517.

Methylphenyltolyl-cyanpyridin 110.

— nicotinsäurenitril 110. — pyridincarbonsäurenitr

- pyridincarbonsāurenitril 110.

— pyrrolcarbonsäure 90. Methyl-phthalimidinessigs säure 308.

— picolinsäure 48, 49. Methylpipecolinsäure-äthylsesterhydroxymethylat 8.

 hydroxymethylat 7.
 Methylpiperidincarbonsäure 9, 10, 11.

Methylpiperidincarbonsäureäthylesterhydroxymethylat 8.

— essigsäure 126.

— hydroxymethylat 7. — methylester 9. Methylpiperidincarbonsaures methylesterhydroxys methylat 9.

Methylpiperidindicarbonsāure 121, 123.

Methylpiperidindicarbons säure-dimethylester 122.

dimethylesterhydroxysmethylat 122.

Methyl-piperidinoāthylpyridin 437.

— piperidoncarbonsāure 293. — prolin 5.

Methylprolin-athylesterhydroxymethylat 6.

- hydroxymethylat 3, 5.

— methylbetain 6.

— methylesterhydroxys methylat 6.

Methylpropenylbenzo-chinolincarbonsaure 108.

— cinchoninsaure 108.

Methylpropyl-cyanglutacons

säureimid 261.
— cyclopropantetracarbons

saureimid, Dinitril 363.
— dicyancyclopropandis
carbonsaureimid 363.

Methylpropyldicyanglutars saure-imid 356.

— methylimid 356.

Methyl-propylpyrroloncarbons säureäthylester 294.

 pseudogranatylamin 427.
 Methylpyridin-carbonsäure 48, 49, 50.

carbonsäureäthylester 50.
carbonsäurechlorid 50.

- carboylessigsäurei, hylsester 307.

— dicarbonsaure 161, 162.

— tetracarbonsaure 189.

— tricarbonsāure 186, 187. Methyl-pyridoncarbonsāure

298. — pyridondicarbonsäure 345, 346.

pyridoylessigsäureäthylsester 307.

Methylpyridyl-acrylsaure 56.

— äthylconiin 437. — milchsäure 222.

Methylpyrrolcarbonsäure 24,

Methylpyrrolcarbonsäureåthylesteressigsäureäthylsester 132.

essigsäurediäthylester 132.

— methylamid 24.

Methylpyrrolidin-carbonsaures essigsaure 123 (s. auch 124).

— dicarbonsăure 119, 125.

Methylpyrrolidindicarbons saure-athylestermethyls amid 118.

bismethylamid 118.

— diäthylester 118.

 diathylesterhydroxymethylat 119.

— dimethylester 119.

— dimethylesterhydroxymethylat 119.

— methylamid 118.

Methylpyrrolidintetracarbonsäuretetrakismethylamid 188.

Methylpyrrolidon-carbons säureamid 288.

— carbonsäureamidoxim 288.

— carbonsăurenitril 288.

— essigsāure 287.

— thiocarbonsäureamid 292.

Methylpyrroloncarbonsäureäthylester 294.

- amid 294.

Methyl-pyrroltricarbonsaures triathylester 182.

— pyrroylbenzoesäure 317.

— pyrrylendibenzoesäure 178.

— pyrrylessigsäure 28. — pyrrylglyoxylsäure 301.

— pyrryigiyoxyisaure 301 — skatolcarbonsäure 67.

Methylstilbazol-azonaphthol 581.

— bisazonaphthol 582.

 bisazonaphtholdisulfons säure 583.

Methylsulfo-äthoxyphenylschinolin 410.

methoxyphenylchinolin411.

Methyltetrahydrochinolincarbonsäure 58, 59 (s. auch 57).

- sulfonsäure 389.

 sulfonsäurehydroxymethylat, Anhydrid 388.

sulfonsäuremethylester 388.

Methyltetrahydro-cinchonins säure 57.

— cinchoninsäureanhydrid 57.

— isochinaldinsäurenitril 59.

— nicotinsäure 15.

Methyltetrahydronicoting säure-äthylester 16.

— methylbetain 16. — methylester 15.

— methylesterhydroxys methylat 16.

— nitril 16.

Methyltetrahydropyridincarbonsäure 15.

carbonsäureäthylsester 16.

Methyltetrahydropyridincar N. Nicotinsäure-allylamid 40. bonsaure-hydroxymethy: - **a**mid 40. Naphthalinazo-äthylpyrrol amidoxim 41. lat, Anhydrid 16. methylester 15. 573. amidoximacetat 41. amidoximbenzoat 41. methylesterhydroxys naphthylhydrazonopyrromethylat 16. lenin 586. amidoximbenzyläther 41. - nitril 16. oxychinolin 584. amidoximcarbonsăurephenylhydrazonopyrroäthylester 41. Methylthio- s. Methyl= lenin 586. anilid 40. mercapto-. Naphthalinsulfonyl-oxyprolin azid 42. Methylthioureidodimethylbenzalhydrazid 42. pyrroldicarbonsauredis prolin 4. chlorid 40. athylester 142. tryptophan 550. hydrazid 41. Methyltolyl-cyanpyrrolidon Naphthindol-carbonsaure 99. hydroxyathylat 43. 289, 290. hydroxymethylat 42. disulfonsăure 403. pyrrolidoncarbonsāure 289, – sulfonsāure 399. isoamylamid 40. **29**0. Naphthindoxylsäureäthylisoamylester 40. pyrrolidonthiocarbonester 243. methylallylamid 40. säureamid 292. Naphtho- s. auch Benzo-. methylamid 40. Methyl-triacetonamincyans Naphthochinolin-carbonsaure methylamidhydroxy. hydrin 195. 101. methylat 43. vinylpiperidylpropions dicarbonsaure 177. methylbetain 42; Ammosauremethylester 22. sulfonsäure 400. niumbase 42. Monoamine 419. Naphthol-azomethylstilbazols methylester 39. Monocarbonsäuren. azonaphthol 582. methylesterhydroxy. Aminoderivate 541. disulfonsaureazomethylmethylat 43. Azoderivate 588. stilbazolazonaphtholdis nitril 41. - Hydrazinoderivate 568. sulfonsäure 583. phenylureidoxim 41. Naphtho-lutidinsaure 177. propylester 40. Hydroxylaminoderivate 562. phenylhydrazochinaldin toluidid 41. — Sulfonsäuren 417. 567. Nipecotinsaure 8. picolinsaure 101. Nitramine 593. Monocarbonsäuren Naphthylamino-formyltryps Nitraminochinolin 593. $C_nH_{2n-1}O_2N$ 1. tophan 549. Nitroacetamino-acetylcarb $C_n H_{2n-8} O_2 N$ 14. phenylbenzoacridin 481. azol 460. $-C_{n}H_{2n-5}O_{2}N$ 22. pyridin 429. anilinochinolin 446, 451. $-C_nH_{2n-7}O_2N$ 33. Naphthylcarbaminyl-s. Naphs - benzylisochinolin 470. $- C_n H_{2n-9} O_2 N 55.$ thylaminoformyl-. chinolin 452 $- C_n H_{2n-11} O_2 N 61.$ Naphthyldimethyldicarbaths naphthostyril 524. $- C_n H_{2n-18} O_2 N 71.$ oxypyrrylthioharnstoff 143. Nitroamino-anilinochinolin $- C_n H_{2n-15} O_2 N 96.$ 446, 448, 450. $-C_nH_{2n-17}O_2N$ 99. Naphthylhydrazino-dimebenzylisochinolin 470. $- C_n H_{2n-19} O_2 N 101.$ - Cn H_{2n-21}O₂N 101. - Cn H_{2n-21}O₂N 103. - Cn H_{2n-25}O₂N 109. - Cn H_{2n-25}O₂N 111. - Cn H_{2n-27}O₂N 111. - Cn H_{2n-29}O₂N 114. chinaldin 454. thylpyridincarboneaure chinolin 445, 452. - lutidincarbon**s**ăure 570. chinolinhydroxymethylat Naphthylhydrazono-benzols 452. azopyrrolenin 586. Nitroaminodioxy- s. Nitrodimalonylbisaminodimethyl- $-C_nH_{2n-31}O_2N$ 116. oxyaminopyrroldicarbonsauredi-Nitroamino-methylchinolin $-C_nH_{2n-33}O_2N$ 116. äthylester 144. 454. $-C_nH_{2n-85}O_2N$ 116. naphthalinazopyrrolenin nicotinsaure 542 Monohydrazine 563. **586.** - phenylacridin 477. Monoo xoverbindungen. Naphthyl-pyrrolidoncarbonpyridincarbonsaure 542. Aminoderivate 515. saure 286. Nitrobenzolazo-trioxopiperis Azoderivate 586. pyrryldiimid 572, 573. din 587. - Diazoderivate 592. trioxypyridin 585. thioureidodimethylpyrrol-– Sulfonsäuren 413. Nitrobenzoyl-ekgoninmethyldicarbonsaurediathyl-Monooxyverbindungen, ester 201. ester 143. Aminoderivate 497. prolin 2, 7. Nicotenylamidoxim 41. Azoderivate 583. pseudoekgoninmethyl-Nicotinsaure 38. - Diazoderivate 591. Nicotinsaure-athylbetain 43; ester 207. Hydrazinoderivate 567.

Ammoniumbase 43.

- äthylesterhydroxyäthylat

äthylester 39.

43.

- Sulfonsäuren 406.

Monosulfonsäuren 386.

- Aminoderivate 561.

Nitro-carbazoldisulfonsäure

- chinaldinsaure 73, 74.

chinaldincarbonsaure 85.

404.

REGISTER 621

- Nitro-chinolinearbonsaure 73, 74, 78, 82.
- chinolylnitramin 593.
- cinchoninsaure 75 Anm., 78.
- cocain 201.
- diacetylaminocarbazol 460.
- diazodioxypyridin 591.
- dimethylaminophenylacris din 478.
- dioxoiminopiperidin 512.
- dioxonitrosiminopiperidin
 591.
- dioxyaminopyridin 512.
- dioxydiazopyridin 591.
- dioxynitrosaminopyridin
 512.
- glutazin 512.
- -- hydrocarbostyrilessigsäure 309.
- Nitroiminodioxo- s. Nitrodisoxoimino-.
- oxomino-. Nitro-indolcarbonsäure 64, 65.
- methylchinolinearbons säure 85.
- methylenimidobenzylnitranilin 438.
- methyleniminobenzylnitrs
 anilin 438.
- nitraminochinolin 593.
 Nitrooxy-chinolinearbons
 säure 237.
- cyanlutidin 220, 222.
- dimethylchinaldincarbons säure 241.
- dimethylnicotinsäure 220, 222.
- dimethylpyridincarbons säure 220, 222.
- lutidincarbonsaure 220, 222.
- nicotinsaure 216.
- pyridincarbonsaure 216.
- trimethylchinolincarbons saure 241.
- Nitro-papaverinsäure 385.
- phenylbenzochinolins carbonsäure 114.
- phenylcyanisocarbostyril 248.
- phenyldicyanglutacons
 sāureimid 280.
- pseudococain 207.
- pyridonoarbonsaure 216.
- pyrrolearbonsäure 27.
- Nitroso- s. auch Isonitrosound Oximino-.
- Nitroso-acetaminocarbazol 460.
- benzoylnorekgoninäthylsester 204.
- bispyridyläthylamin 435.
- chinolylacetophenons
 carbonsăure 322.
- cincholoipon 12.

- Nitroso-cincholoiponsäure 130 (s. auch 127).
- citrazinsaure 255, 345.
- dimethylphenylpiperidins dicarbonsäure 167.
- dinitroglutazin 591.
- dioxyaminoäthylpyridin
 513.
- dioxyaminomethyls pyridin 513.
- dioxyaminopyridin= carbonsäureäthylester 556.
- glutazincarbonsāureāthyl= ester 556.
- guvacin 17.
- indolylpropionsäure 69.
- indoxanthinsäureäthyl= ester 373.
- isonipecotinsăure 10.
- merochinen 20.
- nipecotinsäure 9.
- nitroglutazin 591.
- norpseudoekgoninäthyl= ester 210.
- oxytetrahydrochinolins carbonsäure 225.
- Nitrosophenylamino- s. Phenylnitrosamino-.
- Nitrosophenylasparaginsaure-anil 530.
 - imid 530.
- Nitroso-phenylhydrazonos malonylbisaminos dimethylpyrroldicarbons säurediäthylester 145.
- pipecolinsäure 8, 9, 10.
- pipecolinsäuremethylsester 8.
- piperidincarbonsaure 8, 9, 10.
- piperidincarbonsäures methylester 8.
- -- pyrrylendibenzoesäure 178.
- skatolessigsäure 69.
- Nitrosotetrahydro-chinolinscarbonsäure 58, 59.
- chinolylpropionsäure 60.
- cinchoninsäure 58.
- pyridincarbonsäure 17.
 Nitroso-tetramethylpyrrolis dincarbonsäureamid 14.
- tetramethylpyrrolins
 carbonsäureamid 22.
- toluidinomethyloxindol
 519.
- Nitroveratroyleinchomerons säure, 385.
- Nomenklatur:
 - Aza (Präfix) 336 Anm.
 - Indigoid 536 Anm.
- Indogenid 526 Anm.

Nomenklatur:

- Isoindogenid 527 Anm.
 Nonyl-benzochinolinearbons
 säure 103.
- benzocinchoninsäure 103.
- naphthocinchoninsäure 103.
- Nor-ekgonin 195, 205.
- pseudoekgonin 205.
- pseudoekgoninäthylester 205.
- pseudoekgoninmethylester
 205
- tropanolcarbonsäure 195.

0.

- Oct- s. auch Okt.
- Octyl-benzochinolincarbons
 saure 103.
- benzocinchoninsäure 103.
- naphthocinchoninsäure 103.
- Önanth- s. Hept-. Okt- s. auch Oct-.
- Oktahydro-metanicotin 424.
- metanicotinbiscarbons
 saureamid 424.
- naphthochinolinazos
 benzolsulfonsäure 576.
- Oxalsaure-athylesterchinolyls
- hydrazid 564.

 bischinolylhydrazid 564.
- Oxalylbisaminodimethylpyrroldicarbonsaure-
- diäthylester 142.
 Oximino- s. auch Isonitroso-.
 Oximino-benzylpicolinsäure
- 318. malonsäuremethylesters
- bromid 132.

 malonylbisaminodimethyl
- pyrroldicarbonsäures diäthylester 143.
- methylcinchoninsäure 316.
- oxindoldiazoniumhydroxyd 592.
- tropinonoxalylsäure 348. Oxindolcarbonsäure 307.
- Oxoāthyliminoāthyltetrashydropyridin-carbonsaure 329.
 - dicarbonsäure 361.
- dicarbonsäureäthylester
 361.
- Oxoathyl-phenylchinolinscarbonsaure 322.
- pyridincarbonsäure 306.
- pyrrolcarbonsäure 301.
- tetrahydrochinolins carbonsäureäthylester 309.

622

Oxoamine 515. Oxoamino-methyltetrahydros chinolin 520. tetrahydrochinolin 519. Oxoanilino-benzoindolenin — indolenin 521. — tetrahydrochinolin 519. — tetrahydrochinolincarbons säuremethylester 558. Oxobenzolazo-benzoindolin 587. — dihydropyridin 586. indolin 587. Oxobisbenzolazotropan 586. Oxobutyl-benzochinolins carbonsäure 322. benzocinchoninsäure 322. — naphthocinchoninsäure **322**. Oxocarbäthoxypyrrolidyliden= cyanessigsäureäthylester 367. Oxocarbonsäuren, Aminos derivate 558. Oxocarbonsäuren $-C_{n}H_{2n-8}O_{3}N$ 284. $C_nH_{2n-5}O_3N$ 294. $- C_n H_{2n-5} O_4 N 324.$ $- C_n H_{2n-7} O_8 N 298.$ $- C_n H_{2n-7} O_4 N 328.$ -- C_nH_{2n-7}O₅N 342. $- C_n H_{2n-7} O_6 N$ 353. $-C_nH_{2n-9}O_3N$ 305. $-- C_n H_{2n-9} O_4 N 335.$ $\begin{array}{l} - C_n H_{2n-9} O_5 N & 345. \\ - C_n H_{2n-9} O_6 N & 360. \end{array}$ $-C_nH_{2n-9}O_7N$ 367. $\begin{array}{l} - C_n H_{2n-9} O_8 N & 369. \\ - C_n H_{2n-11} O_3 N & 307. \\ - C_n H_{2n-11} O_5 N & 348. \end{array}$ $-C_nH_{2n-11}O_6N$ 365. $-C_nH_{2n-11}O_7N$ 368. $- C_n H_{2n-18} O_3 N 309.$ $- C_n H_{2n-18} O_4 N 336.$ $- C_n H_{2n-13} O_5 N 348.$ $- C_n H_{2n-18} O_9 N 369.$ $-C_nH_{2n-15}O_3N$ 316. $-- C_n H_{2n-15} O_4 N 340.$ $-C_nH_{2n-15}O_5N$ 348. $- C_n H_{2n-15} O_6 N 365.$ $\begin{array}{l} - C_n H_{2n-17} O_3 N & 318. \\ - C_n H_{2n-17} O_6 N & 366. \end{array}$ $-C_nH_{2n-19}O_3N$ 320. $-C_nH_{2n-19}O_4N$ 340. $-C_nH_{2n-19}O_5N$ 350. $- C_n H_{2n-19} O_7 N 369.$ $- C_n H_{2n-21} O_3 N 321.$ $- C_n H_{2n-21} O_4 N 340.$ $-C_nH_{2n-21}O_5N$ 351. $- C_n H_{2n-28} O_3 N 322.$ $- C_n H_{2n-28} O_5 N 352.$ $- C_n H_{2n-25} O_3 N 323.$ - C_nH_{2n-25}O₄N 341. $-C_nH_{2n-25}O_5N$ 353.

REGISTER Oxocarbonsäuren $C_n H_{2n-27} O_3 N$ 323. $C_n H_{2n-27} O_4 N$ 341. $C_n H_{2n-29} O_3 N$ 324. $C_nH_{2n-29}O_5N$ 353. $\begin{array}{c} C_n H_{2n-29} O_6 N & 366. \\ C_n H_{2n-37} O_3 N & 324. \\ C_n H_{2n-37} O_3 N & 324. \\ \end{array}$ säure 320. chinolinearbonsäure 230, 231, 232. isochinolincarbonsäure 237, 238. 303. pyridincarbonsäure 213, **214, 215**. **268**, **269**. Oxodimethyläthyl-phenyl äthylester 320. säure 558. heptylen 525. anilinoindolenin 521.

Oxoiminodiacetylmethylpyrrolincarbonsäureäthvlester 365. pyrrolincarbonsäurenitril 365. Oxoiminopyrrolincarbonsäureäthylesteracetessigsäure= äthylester 368. äthylesterbenzoylessig= säureäthylester 369. nitrilacetessigsäureäthyls ester 368. Oxoindenopyridin-dicarbon= säure 351. sulfonsăure 413.

Oxoindolenin-carbonsăures

äthylesteroxyd 309. carbonsäureoxyd, Athyls ester 309.

oxydcarbonsäureäthylester **3**09.

Oxoindolinearbonsäure 226, 307.

Oxoindolinyliden-malonsäure, Dinitril 348 bis 349.

phenylessigsäure 321. - propionsäure 313.

Oxoisoindolinyliden-essigsäure 311.

- propionsăure 314.

Oxomethyl-äthyldiphenyldis hydropyridincarbonsäure: athylester 323.

aminophenyldihydroacris din 510.

carbathoxypyrrolidylidens cyanessigsäureäthylester 368.

dihydropyridindicarbon. säure 346.

isopropylphenylpiperidein. carbonsäureäthylester

Oxomethylisopropylphenyls tetrahydropyridin-cars bonsäureäthylester 315.

dicarbonsaureathylestermethylcarbathoxyvinyl= amid 349.

Oxomethylphenyl-piperidein= carbonsaure 315.

pyrrolincarbonsäure 314.

Oxomethylphenyltetrahydros pyridin-carbonsaure 315. carbonsäureäthylester 295.

- dicarbonsäureäthylester: methylcarbathoxyvinyls amid 349.

dicarbonsäurediäthylester

Oxomethyl-piperidincarbons säure 293.

pyridylpropionsäureäthyls ester 307.

 $C_n H_{2n-39} O_6 N$ 367.

Oxochinolylpropionsäure 316,

Oxodihydro-acridincarbon=

lutidincarbonsaure 302,

- lutidindicarbonsäure 346. picolindicarbonsaure 346.

pyridindicarbonsäure 267,

pyridintetracarbonsäure: tetraäthylester 283 bis

dihydropyridincarbon= säureäthylester 318.

phenylpyridincarbonsaures

pyrrolcarbonsäure 304. Oxodimethylamino-athyl:

methylenchinolylcapron=

äthylmethylenchinolyl.

- methyldibromäthylchino: lylcapronsäure 558.

methylvinylchinolyls capronsaure 558.

methylvinylchinolylhepty :

Oxodimethyldihydropyridincarbonsaure 302, 303.

dicarbonsäure 346.

Oxodimethyltetrahydropyris dindicarbonsaure-athyl= estermethylcarbathoxy. vinylamid 345.

diathylester 344.

Oxodiphenyl-dihydropyridin= dicarbonsaure 353.

pyrrylbuttersäure 322.

Oxohydrazine 568.

Oxoimino-acetylpyrrolinyl= acetessigsäureäthylester 365.

cyanpyrrolinylacetessig= säureäthylester 368.

diacetylmethylcyans pyrrolin 365.

REGISTER 623

- Oxomethyl-pyrrolidyliden= cyanessigsäureäthylester
- tetrahydropyridincarbon= säureäthylester 295.

Oxooximino-carboxyphenyl= chinolyläthan 341.

- diphenylpyrrolidincarbons säureäthylester 338.
- indolindiazoniumhydroxyd
- phenylpyrrolidincarbon= säureäthylester 337.
- Oxooxy-acetaminonaphthyl= indolenin 540.
- anilinophenylindolenin539. Oxophenylhydrazono-diphe= nylpyrrolidincarbonsäure= äthylester 338.
- indolin 583.
- methylphenylpyrrolidin= carbonsäureäthylester 326.
- methyltolylpyrrolidincar= bonsäureäthylester 327.
- phenylpyrrolidincarbons säureäthylester 337.
- Oxophenyliminomethylphe: nylpyrrolidincarbonsäureäthylester 326.
- allylester 327.
- isoamylester 326.
- Oxophenyliminopyrryl-butter= saure 335.
- buttersäureäthylester 335. Oxophenyl-indenopyridin= carbonsäure 323.
- tetrahydrochinolinearbon= säure 321.
- tetrahydropicolindicarbon= säurediäthylester 349.

Oxo-pipecolincarbonsaure 293.

- pipecolinsäure 286.
- piperidincarbonsäure 286. — propylphenylpiperolidin*
- carbonsäure 316.
- pyridylisobuttersäures äthylester 307.
- pyridylpropionsäureäthyls ester 305, 306.
- pyrrolidincarbonsäure 284 (s. auch 285).
- pyrrolidylidencyanessig= säureäthylester 343.
- pyrrolinylmalonsäures äthylesternitril 343.
- pyrrylessigsäure 301. Oxosulfonsäuren 413.
- Aminoderivate 561. Oxotetrahydrochinolin-
- carbonsaure 307, 308. – diazoniumhydroxyd 592.
- sulfonsäure 413.
- Oxotetra hydrochinolylessig saure 308.

Oxotetrahydro-cinchonin= säure 308.

- lutidindicarbonsäure= diäthylester 344.
- picolincarbonsäureäthyls ester 295.
- Oxotetramethyl-cyantetras hydropyridin 296.
- tetrahydropyridincarbons säure 296.
- Oxotoluidinoindolenin 521.
- Oxotolyliminomethyltolyl pyrrolidincarbonsaureäthylester 327.
- isoamylester 327.
- Oxotolyliminophenyltolyl= pyrrolidincarbonsaure= äthylester 338.
- Oxotrimethyl-äthyldihydros pyridincarbonsäureäthyl= ester 305.
- allylcyantetrahydropyri: din 297.
- allyltetrahydropyridin= carbonsäurenitril 297.
- benzylcyantetrahydro= pyridin 297.
- benzyltetrahydropyridin= carbonsäurenitril 297.
- camphylcyantetrahydros pyridin 297.
- camphyltetrahydropyri= dincarbonsaurenitril 297.
- cyantetrahydropyridin296.
- pyrrolidincarbonsäure 293, ž94.
- tetrahydropyridincarbon= säure 295, 296.
- Oxoverbindungen, Aminoderi= vate 515.
- Oxoverbindungen s. Monooxoverbindungen, Dioxovers bindungen usw.
- Oxyacetamino-benzoacridin 509.
- dimethylphenyldihydro: benzoacridin 483.
- Oxvacetylindolcarbonsäureäthylester 229.
- methylester 229.
- Oxy-acridincarbonsaure 244. acridylbenzoesäure 249.
- athoxychinolinearbons säureäthylester 263.
- Oxyathoxydimethylcyanpipes
- ridon carbonsaure 381. carbonsäureäthylester 381.
- Oxyathoxydimethylpiperidons dicarbonsaure-athylester= nitril 381.
- nitril 381.
- Oxyathoxy-dinicotinsaure 276.
- dinicotinsäureäthylester 276.

Oxyathoxy-dinicotinsaures diäthylester 277.

- isocarbostyrilcarbonsäure: äthylester 271.
- Oxyathoxymethyl-athylcyan= piperidoncarbonsaureäthylester 381.
- äthylpiperidondicarbon≠ säureäthylesternitril 381.
- phthalimidincarbonsaure
- propylcyanpiperidoncars bonsäureäthylester 381.
- propylpiperidondicarbon= säureäthylesternitril 381.
- Oxyathoxy-nicotinsaureathyl= ester 254.
- oxoanilinopyrrolidylessig= säureäthylester 559.
- Oxyathoxypyridin-carbon= säureäthylester 254.
- dicarbonsaure 276.
- dicarbonsäureäthylester
- dicarbonsäurediäthylester
- Oxyathyl-chinolinearbonsaure 241.
- cinchoninsäure 241.
- isochinolincarbonsäure= nitril 241.
- piperidylessigsäure 192. - pyridoncarbonsäure 329.
- Oxyathylpyridondicarbon= säure-äthylester 361.
- äthylesteramid 362.
- diäthylester 361.
- Oxyathyl-pyridylpropion= säure 223.
- tetrahydrochinolincarbon= säure 225.
- Oxyamine 497.
- Oxyamino-anthrachinono= pyridin 541.
- benzoacridin 509.
- chinaldin 503.
- chinolin 500, 501, 502.
- chinolinearbonsäures methylester 555.
- chinolylessigsäure 555. - diäthylphenylchinolin 508.
- Oxyaminodimethyl-acridin 506.
 - chinolin 504.
 - nicotinsäure 555.
- pyridin 498, 499.
- pyridincarbonsäure 555. Oxyamino-isonicotinsă ure 555.
- lepidin 504.
 - lutidincarbonsāure 555.
- methoxyphenylpyrrol 514. Oxyaminomethyl-athylchinos
- lin 505. benzochinolin 506.
- chinolin 503, 504.

Oxyaminomethyl-hydros

carbostyril 520.

- naphthochinolin 506.

-- phenylacridin 510. - phenyldihydroacridin 509. – pyridin 498. Oxyaminophenyl-acridin 509. - acridinmethylbetain 510. – äthylpiperidyläthan 499. - äthylpyridin 505. — äthylpyridyläthan 505. — chinolin 507. --- isochinolin 507. — lepidin 508. methylpyridyläthan 505. — pyridyläthan 505. Oxyamino-pyridin 498. pyridincarbonsäure 555. — stilbazol 506. — styrylpyridin 506. - trimethyldihydroacridin 465. Oxyanilino-chinolin 500. - formyloxyphenylpyrroldi= carbonsäurediäthylester – formylprolin 191. phenylpyrrolon 538. Oxyanthrachinonylamino: methylanthrapyridon 537. Oxybenzal- s. auch Salicylal-. Oxybenzalamino-chinolin 502. - dimethylpyrroldicarbon= säurediäthylester 141. Oxybenzamino-benzoylpyr rolonhydrat 538. — methylchinolin 504. - pyridin 498. Oxybenzo-chinaldinsulfon= säure 410. - chinolinsulfonsāure 410. — indolcarbonsäureäthyl= ester 243. Oxybenzolazo-chinolin 584. indol 583. — methylchinolin 585. - pyridin 58**3**. Oxybenzoyl-ekgoninmethyl= ester 202. indolcarbonsäureäthyl= ester 229. pseudoekgoninmethyl= ester 207. Oxybenzyliden - s. Salicylal -. Oxybis-acetaminochinolin 503. benzaminochinolin 503. Oxycarbonsäuren. Aminoderivate 555. Azoderivate 588. Oxycarbonsäuren $C_nH_{2n-1}O_3N$ 190. $-C_{n}H_{2n-3}O_{3}N$ 195. $-C_{n}H_{2n-3}O_{4}N$ 250. $- C_n H_{2n-7} O_3 N 212.$

| Oxycarbonsäuren $-C_{n}H_{2n-7}O_{4}N$ 251. $C_nH_{2n-7}O_5N$ 266. $C_nH_{2n-7}O_6N$ 274. $-- C_{n}H_{2n-7}O_{10}N 284.$ $C_nH_{2n-9}O_3N$ 224. $C_n H_{2n-9} O_4 N$ 262. $C_n H_{2n-9} O_5 N$ 267. C_nH_{2n-9}O₆N 275. C_nH_{2n-11}O₈N 226. C_nH_{2n-11}O₄N 262. C_nH_{2n-11}O₅N 271. $C_nH_{2n-11}O_8N$ 282. $-C_nH_{2n-13}O_3N$ 230. $- C_n H_{2n-13} O_4 N 263.$ $-- C_n H_{2n-13} O_5 N 271.$ $-C_nH_{2n-13}O_9N$ 283. $-- C_n H_{2n-15} O_3 N 242.$ $- C_n H_{2n-15} O_4 N 264.$ $-C_{n}H_{2n-15}O_{5}N$ 272. $- C_n H_{2n-17} O_3 N 243.$ 272. $-C_{n}H_{2n-17}O_{5}N$ $-C_{n}H_{2n-17}O_{6}N$ **280**. $-C_{n}H_{2n-17}O_{7}N$ **281**. $-C_{n}H_{2n-17}O_{8}N$ 282. $- C_n H_{2n-19} O_3 N 244.$ $- C_n H_{2n-19} O_8 N 283.$ $-C_nH_{2n-21}O_3N$ 244. $-C_nH_{2n-21}O_4N$ 265. $- C_n H_{2n-23} O_3 N 249.$ $-C_nH_{2n-23}O_5N$ 273. $- C_n H_{2n-25} O_5 N 273.$ $C_nH_{2n-27}O_3N$ 249. $C_nH_{2n-27}O_4N$ 265. $C_nH_{2n-27}O_5N$ 274. $C_nH_{2n-31}O_3N$ 250. Oxycarbostyril-carbonsäures äthylester 263. essigsäure 263. Oxycarboxy-benzalpyrrolenin 242. benzylisocarbostyril 265. — carboxymethylpyridinium; hydroxyd, Anhydrid 214, 217. — methylcarboxypyridiniums hydroxyd, Anhydrid 214, phenylchinolin 244. phenylisochinolin 248. Oxychinaldin-carbonsäure 238, diazoniumhydroxyd 591. säure 230. – sulfonsäure 409. Oxychinolinearbonsaure 230, 232, 233, 235, 236. Oxychinolincarbonsäureäthylester 233. amid 233. hydroxymethylat 235. methylester 232, 233 (s. Oxydimethylpyridondis auch 237). – nitril 232.

Oxychinolin-disulfonsaure 408, — dithiocarbonsäure 237. - säure 267. - sulfonsäure 406, 407, 408, sulfonsäurehydroxymethylat, Anhydrid 407. sulfonsäuremethylbetain Oxychinolyl-acrylsäure 316, 317. – benzoesäure 244. — essigsäure 238. propionsäure 240, 241. Oxycinchoninsäure 232, 233, 235. Oxycinchoninsäure-äthylester 233. — amid 233. — methylbetain 235; Ammoniumbase 235. methylester 233. Oxycocain 202. Oxycyan-lepidin 239. – lutidin 219, 221, 222. picolincarbonsäureäthyl= ester 270. Oxy-diathylphenylchinolin 244 Anm. diaminochinolin 503. - diazochinaldin 591. - dihydromerochinen 192. Oxydimethoxy-aminoisoindos lenin 514. — hydrocarbostyrilcarbon= säure 380. oxotetrahydrochinolin= carbonsäure 380. Oxydimethyl-aminoathylindol benzochinolinsulfonsäure 410. chinolinearbonsaure 241. – chinolinsulfonsäure 410. cyanpyrrolidon 370. dinicotinsaure 270. naphthochinolinsulfon: säure 410. – nicotinsäure 219, 220, 221. phenylpiperidincarbon= säure 225. phenylpiperidincarbon= säurenitril 226. piperidoncarbonsăure, Oxim 293. Oxydimethylpyridin-carbons saure 219, 220, 221. carbonsäureäthylester 220, 221 (s. auch 219, 222). carbonsäurenitril 219, 221 (s. auch 222). dicarbonsaure 270.

carbonsaure 347.

Oxydimethyl-pyrrolcarbons säure 30.

pyrroldicarbonsäureäthyls ester 139.

pyrroldicarbonsäuredi= äthylester 139.

pyrrolidoncarbonsaure: nitril 370.

Oxy-dinaphthalinsulfonyls prolin 192.

dinicotinsäure 269.

Oxydioxo-acetyldihydrobenzo: indolcarbonsaureathyls ester 379.

anilinopyrrolidylessigsäurephenylhydrazid 376.

 benzylpyrrolidylessigsäure 375.

naphthylpyrrolidylessig= säurenaphthylamid 376.

phenylpyrrolidylessigsäure

--- phenylpyrrolidylessigsäureanilid 375.

pyrrolidylessigsäure 374.

- tolylpyrrolidylessigsäure 375.

 tolylpyrrolidylessigsäure; toluidid 375.

 trimethylphenylpyrrolidyls essigsäuretrimethylanilid

Oxydiphenyl-dinicotinsäure

 nicotinsäureäthylester 249. — pyridincarbonsäureäthyl=

ester 249. pyridindicarbonsäure 273.

pyridindicarbonsäuredis äthylester 274.

- pyrrolin 467. Oxydipicolinsaure 268. Oxyhydrazine 567.

Oxyhydroxylamine 562.

Oxyindol-carbonsaure 63, 226.

- carbonsäureäthylester 64. --- carbonsäuremethylester 64.

Oxy-isobutylisochinolins carbonsäurenitril 242.

- isocapro(n)ylprolinamid 3, 7.

Oxyisocarbostyrilcarbonsäureäthylester 263.

methylester 263.

Oxy-isochinolinearbonsaure **237, 23**8.

isochinolylbenzoesäure 248. isocinchomeronsaure 267.

- isonicotinsāure 217.

- isonicotinsāurebetain 217.

- isopropylisochinolinearbons săurenitril 242.

komazin 252.

- komenaminsaure 266.

BEILSTEINS Handbuch. 4. Aufl. XXII.

Oxy-lepidincarbonsaure **24**0.

lepidinsäure 269.

– lutidincarbonsaure 219, 220, 221.

lutidindicarbonsaure 270.

Oxymethoxy-acetamino= phthalsäure, Lactam 377.

aminophthalsäure, Lactam 377.

isocarbostyrilcarbonsäures

methylester 271. methylchinolinearbon=

saure 264. phenylbenzochinolin: carbonsaure 265.

phenylbenzocinchonins säure 265.

phenyldicyanglutacon= säureimid 283.

picolinsäuremethylester

pyridincarbonsauremethylester 252.

Oxymethyläthyl-nicotinsäure

- pyridincarbonsäure 223.

Oxymethylaminophenyl-

acridiniumhydroxyd 510. chinolin 508.

Oxymethyl-anilinobenzos acridin 475.

benzochinolincarbonsäure 244.

benzochinolinsulfonsäure 410.

- benzocinchoninsäure 244.

Oxymethylchinolin-carbons säure 238, 239, 240.

carbonsäurecarboxy= anilid 238.

carboylanthranilsäure 238.

— diazoniumhydroxyd 591.

– säure 269.

- sulfonsäure 409.

Oxymethyl-cinchoninsäure 239.

cyannicotinsäureäthyl= ester 270.

eyanpyridon 371.

dinicotinsaure 269.

- hexylcyanpyridin 224.

hexylpyridincarbonsäures nitril 224.

iminocyclohexadienylidens dihydroacridin 510.

Oxymethylindol-carbon= säure 68.

carbonsaureathylester 230.

carbonsauremethylester

Oxymethylisocarbostyrilcarbonsauremethylester 264.

239, Oxymethyl-isochinolinearbons săurenitril 240.

> naphthocinchoninsäure **244**.

Oxymethylphenyl-chinolins carbonsaure 248.

chinolincarbonsäureäthyl: ester 248.

cyannicotinsaureathyl: ester 273.

cyanpyridin 243.

dihydropyridindicarbons säure 272.

nicotinsaure 242.

- nicotinsäurenitril 243.

Oxymethylphenylpyridincarbonsäure 242.

carbonsăurenitril 243.

dicarbonsäureäthylester: nitril 273.

Oxymethyl-phthalimidin= essigsäure 373.

picolinsaure 217. prolin 190, 191.

propylnicotinsäure 223.

propylpyridincarbonsäure 223.

Oxymethylpyridin-carbon= säure 217.

carbonsäureessigsäure 270.

dicarbonsaure 269.

dicarbonsäureäthylester 269.

dicarbonsäureäthylester: nitril 270.

dicarbonsăureamid 270.

Oxymethyl-pyridoncarbon= säurenitril 371.

pyridylessigsäure 218.

pyridylpropionitril 223. pyridylpropionsäure 222.

tetrahydrochinolin: carbonsäure 225.

Oxynaphthalin-azochinolin 584.

sulfonylprolin 191.

Oxynaphtho-chinolin 400. chinolinsulfonsaure 410.

Oxynicotinsäure 214, 215.

Oxynicotinsăure-ăthylester 215.

azid 216.

betain 214.

hydrazid 215.

methylester 215.

Oxy-nitrophenylisochinolin= carbonsăurenitril 248.

nortropancarbonsaure

Oxyoxoamine 538.

Oxyoxoaminomethyltetra: hydrochinolin 520.

Oxyoxocarbonsauren, Aminoderivate 560.

Oxyoxocarbonsäuren $C_nH_{2n-3}O_4N$ 370. $C_nH_{2n-5}O_5N$ 374. $\begin{array}{lll} & - & C_nH_{2n-5}O_7N & 381. \\ & - & C_nH_{2n-7}O_4N & 370. \end{array}$ $-C_{n}H_{2n-9}O_{5}N$ 376. $-C_nH_{2n-9}O_6N$ 379. $\begin{array}{l} - C_n H_{2n-11} O_4 N & 372. \\ - C_n H_{2n-11} O_5 N & 377. \\ - C_n H_{2n-11} O_6 N & 380. \end{array}$ $\begin{array}{l} - C_n H_{2n-13} O_4 N & 373. \\ - C_n H_{2n-13} O_5 N & 377. \end{array}$ $- C_n H_{2n-13} O_6 N 380.$ $-C_nH_{2n-13}O_7N$ 382. $- C_n H_{2n-15} O_7 N 382.$ $- C_n H_{2n-17} O_5 N 378.$ $-C_nH_{2n-17}O_7N$ 382. $\begin{array}{l} - C_n H_{2n-19} O_5 N & 379. \\ - C_n H_{2n-19} O_7 N & 382. \end{array}$ $- C_n H_{2n-21} O_4 N 374.$ $-C_nH_{2n-23}O_5N$ 379. Oxyoxo-cyanindolin 373. - dihydropyridincarbon= säure 251, 370, 371, 372. — indolenincarbonsäure 336. -- indolincarbonsäurenitril 373. — isoindolinylidenacetessig= säureäthylesteroxim 340. - phenylhydrazonodihydros pyridincarbonsäure 376. - phenyliminoanilino= dihydropyridincarbon* säureamid 560. - phenylpyrrolincarbon= säureäthylester 336. Oxyoxosulfonsäuren 416. Oxyoxoverbindungen, Oxypseudococain 207. Aminoderivate 538. Oxypyridin-carbonsäure Azoderivate 587. - Diazoderivate 592. - Sulfonsäuren 416. Oxypentamethylcyanpiperis — carbonsäurehydrazid 215. din 195. Oxypentamethylpiperidincarbonsäure 193. carbonsäuremethylester 193. - tetracarbonsäuretetra: -- carbonsäurenitril 195. Oxyphenyl-acridinsulfon= Oxypyridoncarbonsäure säure 411. - benzochinolinearbonsäure Oxypyridyl-carbamidsäure= 249. - benzocinchoninsäure 249. - chinaldinsäure 245. - chinolinearbonsaure 245, 246, 247. Oxypyrrolidincarbonsäure 190 — chinolinearbonsäure= hydroxymethylat 246. Oxysulfonsäuren 406. --- chinolinearbonsäure= Oxytetrahydrochinolin-cars methylester 246 (s. auch 247). - cinchoninsäure 245, 246, Oxytetramethylcyanpiperis

247.

REGISTER Oxyphenyl-cinchoninsäure= methylbetain 246; Ammos niumbase 246. cinchoninsauremethyl: ester 246 (s. auch 247). Oxyphenylhydrazino-methyl= pyridin 567. - picolin 567. Oxyphenyl-isochinolin= carbonsäurenitril 248. — naphthocinchoninsäure $2\bar{4}9.$ Oxyphenylpyridon-carbon= säure 329. dicarbonsäureäthylester= amid 362. dicarbonsäurediäthylester 362. Oxyphenyl-pyrroldicarbons säure 342. pyrroloncarbonsäure: äthylester 336. Oxypicolin-carbonsaureessig= säure 270. dicarbonsäure 269. -- essigsäure 218. - säure 212, 213. Oxy-picolylphthalid 319. piperidinomethylchinolin 504. prolin 190, 191. Oxypropyl-benzochinolincarbonsäure 244. benzocinchoninsäure 244. isochinolincarbonsäure nitril 242. naphthocinchoninsäure 244.

213, 214, 215, 217.

carbonsauremethylester

äthylester 283 bis 284.

298, 370, 371, 372.

propionyltropein 218.

bonsäure 224, 225.

äthylester 498.

propionsäure 217.

(s. auch 191).

sulfonsäure 406.

din 193.

- urethan 498.

– carbonsäureazid 216.

215.

269.

- dicarbonsäure

carbonsäureäthylester 215.

268.

267,

Oxytetramethyl-cyanpyrros lidin 192. piperidincarbonsaure 192. Oxytetramethylpiperidincar: bonsäure-äthylester 193. iminoäthyläther 193. -- iminomethyläther 193. — methylester 193. --- nitril 193. Oxytetramethylpyridincarbonsäure 223. carbonsaurehydroxy= methylat, Anhydrid 224. carbonsäuremethylbetain Oxytetramethylpyrrolidins carbonsäure 192. Oxy-toluolazochinolin 584. tolylisochinolinearbon= säurenitril 248. Oxytrimethyl-cyanpiperidin cyanpyridin 223. piperidincarbonsäure 192. - piperidincarbonsäurenitril 192. pyridincarbonsäurenitril 223.Oxytropancarbonsäure 211 (s. auch 196). Oxyverbindungen s. Monooxy: verbindungen, Dioxyvers bindungen usw.

P.

Papaveraldindiazoniumhydr: oxyd 592. Papaveraldylamin 515. Papaverinsäure 382. Papaverinsäure-äthylester 384. amid 384. anilid 384. dimethylester 384. hydroxymethylat 384. — methylbetain 384. methylester 383. Pentacarbonsäuren $C_nH_{2n-15}O_{10}N$ 190. Pentamethylpyrrolidincarbon= säure 13. Pentamethylpyrrolidincarbons säure-äthylester 13. amid 13. amidhydroxymethylat 14. - methylamid 14. methylester 13. Pentamethyl-pyrrolidyldis thiocarbamidsaure 423 bis 424.

pyrrolincarbonsäureamid

22.

Pentamethylpyrrolinearbon= säuremethylamid 22.

Pentantricarbonsäureimid327. Pentyl- s. Amyl-.

Peribenzanthronopyridinsul= fonsäure vgl. Benzanthronopyridinsulfonsaure.

Phenacetaminodimethylpyr= rol-dicarbonsaure 139.

dicarbonsäurediäthylester 141.

Phenacetoxypentamethyl= piperidincarbonsaure= methylester 194.

Phenacetyl-ekgoninmethyl= ester 201.

- nicotinsäure 319.

pyridincarbonsäure 319.

Phenäthyl-dicyanglutacon= säureimid 281.

- nicotinsaure 98.

pyridincarbonsäure 98. Phenetidino-pyridin 429.

tricarballylsäureäthylester= imid 560.

tricarballylsäureimid 560. Phenyl-acetylasparaginsäures imid 530.

acetylcinchoninsäure 322.

acridincarbonsaure 113.

— acridindisulfonsäure 405.

-- acridinsäure 177.

Phenyläthyl- s. Phenäthyl-. Phenylamino-s. auch Anilino-. Phenyl-aminochinolyläthan 471.

aminophthalylhydrazin

asparaginsäureanil 529. - asparaginsäureimid 529.

Phonylazo-oktahydronaphthos chinaldin 576.

tetrahydronaphthochinolin 578.

Phenylbenzo-chinolinearbons säure 113, 114.

-- chinolindicarbonsaure 181. -- cinchoninsäure 113, 114.

Phenylbenzoylbenzo-chinolin= carbonsäure 324.

cinchoninsäure 324

Phenyl-benzoylenpyridins carbonsäure 323.

— benzoylnaphthocinchonins säure 324.

Phenylbenzyl-benzochinolins carbonsaure 117.

benzocinchoninsäure 117. chinolinearbonsäure 115.

— cinchoninsäure 115.

— naphthocinchoninsäure 117.

Phenylbromacetoxypenta: methylpiperidincarbons säuremethylester 194.

Phenylcarbaminyl- s. Anilino: | Phenylenbis-diphenylpyrrol: formyl-.

Phenyl-carbostyrilcarbon= säure 247.

carboxyphenylcincho= meronsäure 188.

carboxyphenylpyridindi= carbonsäure 188.

chinaldinsäure 103.

--- chininsäure 246.

--- chinolincarbonsäure 103, 105.

Phenylchinolincarbonsäureäthylester 104.

amid 104 (s. auch 105).

— hydroxymethylat 104.

- methylester 104 (s. auch 105).

methylesterhydroxy: methylat 104.

Phenylchinolin-dicarbonsäures 177, 178.

sulfonsäure 401.

Phenylchinolyl-diimid 576.

hydrazin 564.

thiosemicarbazid 564.

triazen 593.

Phenyl-cinchoninsäure 103, 105.

— cinchoninsäuremethyl= betain 104; Ammonium= base 104.

Phenylchloracetoxypenta= methylpiperidincarbon= säuremethylester 194.

Phenylcyan-glutaconsäure imid 264.

isocarbostyril 248. isochinolon 321.

Phenyldicyanglutaconsäure= imid 280.

Phenyldihydro-benzochinolin= dicarbonsäurediäthylester

-- carbostyrilcarbonsäure321.

naphthochinolindicarbon= säurediäthylester 180. naphthocinchomeronsaure=

diäthylester 180. Phenyldimethyl-chinolylthio:

harnstoff 457. dicarbäthoxypyrrylthio:

harnstoff 143. — pyridylhydrazin 563.

pyridylthiosemicarbazid 564.

Phenyldinicotinsäure 175. Phenylditolyl-dicyandihydros

pyridin 182. dihydropyridindicarbon= säuredinitril 182.

Phenylenbisdimethylpyrrol: dicarbonsäurediäthyl= ester 136.

carbonsaure 107.

methylphenylpyrrolcar= bonsäureäthylester 91.

pyridylnitrosamin 430. Phenylenpyridinketon-di-

carbonsäure 351. sulfonsäure 413.

Phenylglykoloyloxypentame: thylpiperidincarbonsaure: methylester 194.

Phenylhydrazino-benzolazo= indol 589.

chinolin 564.

— dimethylpyridin 563.

Phenylhydrazinodimethylpy= ridin-carbonsaure 569.

carbonsäureäthylester 569.

--- carbonsäureäthylester: hydroxymethylat 302.

Phenylhydrazino-dioxypyri= din 567.

--- lutidincarbonsäure 569.

— lutidincarbonsäureäthyl= ester 569.

 lutidincarbonsäureäthyl= esterhydroxymethylat

methylbenzochinolin 567.

— methylchinolin 566.

--- oxymethylpyridin 567.

oxypicolin 567.

phenylisochinolin 567.

Phenylhydrazono-benzolazo= pyrrolenin 586.

malonylbisaminodime= thylpyrroldicarbonsäure 140.

malonylbisaminodime= thylpyrroldicarbonsäure: diathylester 144.

naphthalinazopyrrolenin **586**.

pyridylpropionsäureäthyl= ester 305, 306.

Phenyl-hydrocarbostyril carbonsäure 321.

iminoäthantricarbonsäure = methylesteranil 342. indolcarbonsaure 62.

isocarbostyrilcarbonsäure 311.

isocarbostyrilcarbonsäure: nitril 248.

isochinoloncarbonsäure

isotropylthioharnstoff 425. komenaminsäure 329.

Phenylmethoxyphenyltolylcyanpyridin 250.

pyridincarbonsäurenitril **250**.

Phenylmethylchinolylhydrazin 566.

Phenylmethyl-chinolylthio semicarbazid 566.

granatylthioharnstoff 427.

— pseudogranatylthioharn= stoff 427.

Phenylnaphtho-chinolindia carbonsaure 181.

- cinchomeronsaure 181.

-- cinchonin**sä**ure 113, 114. Phenylnitrophenylbenzochi= nolinearbonsäure 116.

Phenylnitrosamino-bernstein= săureanil 530.

bernsteinsäureimid 530.

 brenzweinsäurebromanil 532.

- brenzweinsäureimid 532.

— brenzweinsäuremethylimid **532**.

— pyridin 430.

Phenyloxo-diphenylpyrroliny: lidenbuttersäureanilid **323**.

indolinylidenessigsäure **321**.

Phenyl-pentamethylpyrrolis dylthioharnstoff 423.

picolinsăure 96.

pseudotropylthioharnstoff 426.

Phenylpyridin-carbonsäure

dicarbonsaure 175.

- tetracarbonsăure 189.

Phenylpyridon-carbonsäure 299

– dicarbonsäure 345.

Phenylpyridyl-acrylsäure 99.

harnstoff 430.

– nitrosamin 430.

thioharnstoff 430, 432, 433.

Phenylpyrrol-carbonsaure 25. carbonsaureessigsauredi= methylester 171.

dicarbonsaure 131, 170.

Phenylpyrrolidindicarbon: saure 119.

Phenylpyrrolidindicarbons säure-anilid 120.

diathylester 120.

- dimethylester 120.

Phenyl-pyrrolidoncarbonsaure 285, 286.

pyrrolondicarbonsäure 342.

pyrryldiimid 572.

pyrrylendibenzoesäure 178.

pyrrylpropionsäure 94.

 tetrahydrobenzochinolins carbonsaure 110.

 tetrahydrobenzocins choninsaure 110.

-- thiosemicarbazinopyridincarbonsaureanilinothioformylhydrazid 568.

Phenylthioureido-benzoyls pseudoekgoninmethyl= ester 208.

-- dimethylpyrroldicarbon= säurediäthylester 143.

-- methylindol 442.

 tetramethylpyrrolidon 517. Phenyltolyl-cyanstilbazol 116.

stilbazolcarbonsäurenitril

-- styrylnicotinsäurenitril 116.

– styrylpyridincarbonsäure: nitril 116. Phenyltropylthioharnstoff

426.

Phenylureido-methylindol 442.

-- phthalsäureimid 535. Phosphin 491.

Phthalidyliden s. Phthalyl. Phthalimidobernsteinsäureanil 530.

-- carboxyanil 530.

Phthalimidyl-essigsäure 311.

propionsaure 314.

Phthaloximacetessigesteroxim

Phthalylasparaginsäure-anil **53**0.

– carboxyanil 530.

Phthalylbis-ekgoninmethyls ester 201.

pseudoekgonin 206.

pseudoekgoninmethylester 207.

Picolin-acrylsäure 56.

brompropionsäure 54.

carbonsaure 48, 49, 50. dicarbonsaure 161, 162.

săure 33.

Picolinsaure-athylbetain 36; Ammoniumbase 36.

äthylester 35.

äthylesterhydroxyäthylat 36.

amid 35.

anilid 35. chlorid 35.

hydroxyäthylat 36.

hydroxymethylat 36.

isoamylester 35.

isobutylester 35.

methylbetain 36; Ammos niumbase 36.

methylester 34. — nitril 36.

propylester 35.

toluidid 35.

Picolin-tetracarbonsaure 189.

tricarbonsaure 186, 187. Picolinursaure 35. Picolylessigsaure 50. Picolylidenessigsaure 55.

Pinencarbonsăurepseudoxim 297.

Pipecolincarbonsaure 10, 11. Pipecolinoäthylpyridin 434. Pipecolinsaure 7, 8.

Pipecolylessigsäure 11.

Piperideincarbonsaure 14. Piperidin-carbonsaure 7, 8, 10.

carbonsäureamidessigsäure

--- carbonsäuressigsäure 126 (s. auch 127, 128, 130).

dicarbonsaure 120, 121, 122, 123.

Piperidino-chlormaleinsäure= tolylimid 533.

phenylmaleinsäureimid 536.

Piperidinsulfonsäure 386. Piperidoncarbonsaure 286.

Piperidyl-essigsäure 10, 11. propionsaure 11.

Prolin 1, 2, 4.

Prolin-äthylester 4.

- carbonsäureanilid 7. Prolyl-alanin 4.

chlorid 2.

phenylalanin 2, 3. Propenylbenzo-chinolin=

carbonsäure 108. cinchoninsäure 108.

Propionyl-indoxylsäure 227.

oxyindolcarbonsaure 227. Propyl-carboxymethylens

phthalimidin 312. chinolinearbonsaure 94.

--- cinchoninsäure 94.

– cyanisocarbostyril 242.

- dicyanglutaconsaureimid 279.

indolcarbonsaure 62.

- isocarbostyrilcarbonsäures nitril 242.

phenylpiperolidoncarbons säure 316.

piperidinsulfonsäure 386. Proteinochromogen 545 bis

546 (s. auch 550). Pseudococain 206, 211.

Pseudococainazo-dimethyl: anilin 208.

diphenylamin 208.

-- naphthylamin 208. Pseudoekgonin 205, 210.

Pseudoekgonin-äthylester 208. äthylesterhydroxymethy:

lat 210. --- amid 209.

amidhydroxymethylat 210.

— isoamylester 209.

— isobutylester 209. — methylester 206, 210.

methylesterhydroxymes thylat 210, 211.

Pseudo-ekgoninpropylester 209. — flavanilin 468. - granatylamin 426, 427.

--- granatylaminbisthiocar= bonsaureanilid 427. – itaconanilsäure 285.

Pseudotropyl-amin 426.

carbamidsäure 426.

dithiocarbamidsäure 426. Pyridin-azoresorcin 574.

carbonsäure 33, 38, 45. carbonsäureessigsäure 160.

Pyridincarboyl-benzoesäure 318.

essigsäureäthylester 305, **3**06.

glycin 35.

propionsäureäthylester 307.

Pyridin-dicarbonsäure 150, 153, 154, 155, 160.

— disulfonsāure 403. - pentacarbonsäure 190.

— sulfonsäure 386, 387.

--- sulfonsäurehydroxymethy: lat, Anhydrid 387.

sulfonsäuremethylbetain 387.

- tetracarbonsäure 188, 189. -- tricarbonsäure 182, 184, 185, 186.

Pyridintricarbonsäure-amid 184.

– amidimid 184.

— carboxyanilid 185.

— diäthylester 184. — diamid 184.

- dimethylester 183.

– hydroxymethylat, Anhy= drid 184.

-- methylbetain 184.

— methylester 183. - triäthylester 184 (s. auch

186). trimethylester 183.

Pyridinursäure 35.

Pyridoncarbonsaure 213, 214,

Pyridoncarbonsäure-äthyl= ester 215.

- azid 216.

-- hydrazid 215. methylester 215.

- essigsäure 214.

Pyridon-dicarbonsaure 267, **268**, **269**.

– imid **428, 43**3.

 tetracarbonsāuretetras athylester 283 bis 284. Pyridoyl-eseigsäureäthylester

305, 306 essigsäureäthylesterphes nylhydrazon 305, 306. Pyridoylpropionsäureäthyl= ester 307.

Pyridyl-acetophenoncarbon= säure 319.

acrylsäure 55.

Pyridylacrylsäure-äthylester 56.

— hydroxymethylat 56. methylester 56.

Pyridyl-äthylbenzoesäure 98. äthylpipecolin 434.

-- benzoesäure 96.

--- carbamidsäureäthylester

429, 432, 433. cyanid 36, 41, 46.

harnstoff 429.

hydracrylsäure 217.

--- hydracrylsäureäthylester

 hydracrylsäuremethylester 217.

--- milchsäure 217.

milchsäuremethylester 218.

--- milchsäuretropylester 218. — propionsäure 50.

pyrrol 432.

thiocarbamidsäureäthyl= ester 433.

- urethan 429, 432, 433. Pyrindandioncarbonsäure:

methylester 336. Pyro-glutamid 284, 285.

glutaminsäure 284. - papaverinsäure 378.

Pyropapaverinsäure-hydroxy=

methylat 378. methylbetain 378; Ammos

niumbase 378. Pyrrol-azodimethylanilin 573. carbonsaure 22, 27.

Pyrrolcarbonsäure-äthylester 23.

amid 23.

azid 24.

benzalhydrazid 24.

- hydrazid 24.

— methylester 23 (s. auch 28). – oxalylsäure 346.

Pyrrol-dicarbonsäure 131.

dicarbonsaurediessig= säure 188.

Pyrrolidin-carbonsäure 1, 2, 4. dicarbonsäurediamid 118. Pyrrolidon-carbonsäure 284,

285. essigsäureamid 287.

Pyrrolon-carbonsäureäthyl= estercyanessigsäureäthyl: ester 367.

cyanessigsäureäthylester 343.

cyanessigsäureäthylester: carbonsaureathylester 367.

Pyrrolonmalonsäureäthyl: esternitril 343.

Pyrroyl-ameisensäure 301.

- benzoesäure 316.

— brenztraubensäureäthyl= ester 335; Anil 335.

brenztraubensäureanil 335.

- hydrazin 24.

pyrrol 24.

Pyrrylcarbamidsäureäthyl: ester 428.

Pyrrylen-dibenzoesäure 178. dipropionsäure 148.

Pyrryl-glyoxylsäure 301.

— pyridin 432.

R.

Rheonin A 497. Ricinin 371. Ricininsäure 330.

S.

Salicylalamino - diphenylpyr= rol 468.

pyridin 429.

Schwefligsäuresulfobenzo: indolylester 410.

Semicarbazino-nicotinsäure

pyridincarbonsäure 568. Skatol-carbonsäure 66, 67.

essigsäure 69.

Stachydrin 6; Ammonium= base 3, 5.

Stammkerne, Aminoderivate siehe Amine, Monoamine. Diamine usw.

Azoderivate s. Azoverbindungen.

Diazoderivate s. Diazoverbindungen.

Hydrazinoderivate siehe Hydrazine.

Hydroxylaminoderivate s. Hydroxylamine. Stilbazolazo-naphthol 579,

naphtholdisulfonsäure 579, 580.

naphtholsulfonsäure 579, **580**.

nitronaphthol 579.

- resorcin 579, 580. --- stilbazol 580.

Styryl- s. auch Cinnamenyl-. Styryl-benzochinolinearbons

säure 114, 115. --- benzocinchoninsaure 114.

chinolinearbonsaure 109, 110.

Styryl-chinolinsulfonsäure 402. cinchoninsäure 109. Succinylbisaminodimethyl= pyrroldicarbonsäurediåthylester 142. Sulfoäthoxyphenyl-chinaldin

--- styrylchinolin 411. Sulfocarbonsäuren 417. Sulfocarboxyphenyl-picolin= säure 418.

pyridincarbonsäure 418. Sulfo-chinolyloxysulfochino= lyläther 412.

chinolylsulfooxychinolyl= äther 412.

-- cinchoninsäure 417, 418. methoxyphenylchinaldin 411.

methoxyphenylstyryl= chinolin 412.

- naphthylhydrazonomalo: nylbisaminodimethylpyr roldicarbonsäurediäthyl= ester 145.

Sulfonsäurecarbonsäuren 417. Sulfonsäuren 386.

Aminoderivate 561.

Sulfonsäuren

der Carbonsäuren 417.

der Dicarbonsäuren 418. der Dioxoverbindungen

414. der Dioxyverbindungen 412.

der Monocarbonsäuren

- der Monooxoverbindungen

-- der Monooxyverbindungen

 der Oxyoxoverbindungen 416.

-- der Tetraoxyverbindungen 412.

der Trioxyverbindungen 412.

Sulfo-phenylazooktahydro naphthochinaldin 576.

phenylazotetrahydronaphthochinolin 578. phenylchinolin 401.

- phenylhydrazonomalonylbisaminodimethylpyrrol= dicarbonsäurediäthylester

--- phthalsäureimid 415.

T.

Tetraacetyl-benzoflavin 494. chrysanilin 492. Tetraäthyl-flaveosin 553. – glutarimidin 485.

Tetraamine 497.

Tetraaminocarbazol 497. Tetrabrombis-diathylamino=

acridylbenzoesäureäthvl: ester 553.

dimethylaminoacridyl= benzoesäure 553.

Tetracarbonsäuren

 $\begin{array}{c} C_nH_{2n-7}O_8N \ 188. \\ C_nH_{2n-11}O_8N \ 188. \\ C_nH_{2n-13}O_8N \ 188. \end{array}$

 $C_nH_{2n-21}O_8N$ 189.

Tetrachlor-aminopyridin 431, 433.

isonicotinsäure 48.

— oxvkvnurin 231.

Tetrahydro-acridincarbon= säure 99.

carbazolcarbonsäure 95.

chininsäure 224.

chinolinearbonsäure 57, 58,

chinolinsulfonsaure 387, 388.

chinolylchinolin 443. chinolylpropionsäure 60.

cinchoninsäure 57.

isochinolinsulfonsäure 389.

— nicotinsäure 14.

phenylnaphthochinolin= carbonsäure 110.

propylphenylazindoncar= bonsäure 316.

pyridincarbonsäure 14. Tetramethoxy-azobenzoltetra= carbonsäure, Diimid 587.

tetraoxoazoisoindolin 587. ${f Tetramethyl-acetylpyrrolin}$ carbonsaureamid 22.

benzoflavin 494.

benzoyldihydropyridin= carbonsäureäthylester 317.

eyanpyridon 304.

- dihydropyridindicarbon= säurediäthylester 148.

dipyrryltetracarbonsäure 140.

– dipyrryltetracarbonsäure≈ tetraäthylester 143.

-- flaveosin 553.

flaveosinäthylesterhydr= oxymethylat 553.

glutarimidin 484.

pyridoncarbonsäurenitril 304.

pyrrolidincarbonsäure 12. pyrrolidylcarbamidsäure 423.

pyrrolidyldithiocarbamid= säure 423.

pyrrolincarbonsäure 21. Tetranitrocarbazolsulfonsäure 299.

Tetraäthylsuccinimidin 484. | Tetraoxo-aminopiperidin 538. - piperidincarbonsäureamid **36**0.

Tetraoxoverbindungen, Aminoderivate 538.

Tetraoxyazochinolin 585. Tetraoxyverbindungen,

Aminoderivate 514.

Diazoderivate 592. Sulfonsäuren 412.

Tetrapropyl-glutarimidin 485.

succinimidin 484.

Thalleiochinolin 500.

Thiocarbonylbisaminobenzoe: säurecarbomethoxytro= pylester 208.

Thionylaminochinolin 449.

Toluidinobrenzweinsäure-imid 532.

tolylimid 533.

Toluidinomethyl-anthrapyris don 536, 539.

benzovlenacridin 528.

cöramidonin 528.

oxindol 519.

Toluidinotricarballylsäure: äthylesterimid 559.

Toluolazo-äthylpyrrol 572.

oxychinolin 584.

tolylhydrazonopyrrolenin

Toluylenbisdimethylpyrroldi: carbonsäure 137, 138.

Toluyloxy-pentamethylpiperidincarbonsauremethyl= ester 194.

tetramethylpiperidincar= bonsäuremethylester 192.

Toluyl-picolinsäure 320. pyridincarbonsäure 320.

Tolyl-aminochinolyläthan 471. benzooxindolchinoncarbon:

säuretoluidid 350.

cyanisocarbostyril 248. cyanisochinolon 321.

dicyanglutaconsäureimid

dimethylchinolylthioharnstoff 457.

Tolylhydrazino-dimethylpyris dincarbonsaure 570.

-- dimethylpyridincarbon= säureäthylester 570.

- lutidincarbonsaure 570.

— lutidincarbonsäureäthyl= ester 570.

Tolylhydrazono-malonylbis: aminodimethylpyrroldicarbonsäurediäthylester 144.

- toluolazopyrrolenin 586. Tolylisocarbostyrilcarbon= säurenitril 248.

REGISTER 631

- Tolyl-nitrosaminomethyl= oxindol 519.
- oxophenyltolylpyrro= linylidenbuttersäure= anilid 323.
- pyrrolidoncarbonsäure 286.
- -- pyrryldiimid 572.
- pyrrylendibenzoesäure 178. Triacetonamincyanhydrin 193. Triäthylchrysanilin 492.

Triamine 496.

Triaminochinolin 496.

Triazene 593.

Tribrom-äthylpyrrolcarbonsäureäthylamid 27.

- aminochinolin 447.
- citrazinsäure 330.
- dioxotetrahydropyridin= carbonsäure 330.
- methylpyrrolcarbons säure 26.
- methylpyrrolcarbonsäures methylamid 26.
- oxobrommethyldimethyl= aminoathylchinolyl= heptan 523.
- oxyoxodihydropyridin= carbonsaure 372.
- pyrrolcarbonsäure 26. Tricarballyl-anilsäure 325.
- diphenylhydrazid 325. Tricarballylsäure-amidimid 325.
- anil 325.
- tolylimid 325.
- Tricarbonsäuren, Aminoderis vate 554.

Tricarbonsäuren

- $C_n H_{2n-9} O_6 N$ 182.
- $\begin{array}{l} C_n H_{2n-11} O_6 N & 182. \\ C_n H_{2n-17} O_6 N & 187. \end{array}$
- $C_nH_{2n-27}O_6N$ 188.
- Trichlor-acetylpicolinsäure
- äthoxyaminopyridin 497. Trichloraminoathoxy- s. Trichloräthoxyamino-.
- Trichloraminooxy- s. Trichlor= oxyamino-.
- Trichlor-aminopyridin 431. 433.
- citrazinsäure 330.
- diaminopyridin 485.
- -- dioxotetrahydropyridin= carbonsaure 330.
- isonicotinsäure 48.
- methylpyridoncarbonsäure 298.
- oxyaminopyridin 497.
- oxyoxodihydropyridin= carbonsäure 372.
- oxypropylchinolylacryl= saure 243.
- phenylpyridoncarbonsäure

Trichlor-picolinsäure 38.

- pyridin 39.
- pyridincarbonsäure 38, 48.
- pyridylessigsäure 48.
- pyridylmalonsäurediäthyl= ester 160.
- pyrrolcarbonsäure 25.
- vinylnicotinsäure 56.
- vinylpyridincarbonsäure
- Trigonellin 42; Ammonium= base 42.
- Trimesitinsäure 185.
- Trimethoxyphenylbenzo-chi= nolincarbonsaure 274.
- cinchoninsäure 274.
- Trimethyl-acetyldihydropyris dincarbonsäureäthylester 305
- acetylpyridoncarbonsäure = äthylester 335.
- äthylchinolinsulfonsäure 399.
- äthylennitrolaminochino= lin 450.
- benzoyldihydropyridin= carbonsäureäthylester 317.
- benzoylpyridincarbon= säureäthylester 320.
- chinolinsäure 164.
- -- chinolinsulfonsäure 398.
- chrysanilin 492.
- cyanindolenin 70.
- cyanpyridon 302, 303. cyclopentenylbenzochino=
- lincarbonsaure 110. cyclopentenylbenzocin=
- choninsäure 110. Trimethyldihydro-dinicotin=
- säurediäthylester 147.
- -- dinicotinsäuredimethyl= ester 147.
- nicotinsäureäthylester 33. Trimethyldihydropyridin-
- carbonsaureathylester 33.
- dicarbonsäurediäthylester 147.
- -- dicarbonsäuredimethyl= ester 147.
- dicarbonsäuredinitril 148. Trimethyldinicotinsäure 164. Trimethyleniminsulfonsäure
- 386. Trimethyl-indolenincarbon= säureamidoxim 70.
- indolenincarbonsäurenitril
- nicotinsäure 54. nipecotinsäure 12.
- oxymethylnicotinsäure 223.
- oxymethylnicotinsäure: hydroxymethylat, Anhydrid 224.

- Trimethyl-phenylpiperidindir= carbonsäuredimethyleste
- piperidincarbonsaure 12.
- piperidyldithiocarbamid= säure 421, 422.
- pyridincarbonsäure 54.
- Trimethylpyridincarbonsäureäthylester 54.
- äthylesterhydroxymethy= lat 55.
- hydroxymethylat 55.
- Trimethylpyridindicarbon= säure 164.
- Trimethylpyridindicarbon= säure-äthylester 165.
- diäthylester 165.
- -- diäthylesterhydroxy= methylat 165.
- dimethylester 165.
- dinitril 165.
- Trimethylpyridon-carbon= säure, Anil 302.
- carbonsäureäthylester. Hydrazon 302, Phenyls hydrazon 302.
- carbonsäurenitril 302, 303.
- dicarbonsäure 347.
- dicarbonsäurediäthylester 347.
- Trimethylpyrrol-carbonsäure 29.
- carbonsäureäthylester 31.
- carbonsäuremethylester31.
- dicarbonsäure 134.
- Trimethyl-pyrrolidoncarbon= säure 293, 294.
- thiopyridoncarbonsaure 303.
- Trinitroacridincarbonsäure 101.
- Trioxo-äthylpiperidincarbonsäure 344.
- methylpiperidincarbon: säure 343.
 - nipecotinsäure 342.
 - pipecolinearbonsaure 343.
- piperidinearbonsaure 342.
- tetrahydropyridincarbon= säure 345.
- Trioxy-äthylnicotinsäure= äthylester 267.
- äthylpyridincarbonsäure: äthylester 267.
- anthrachinonopyridinsul= fonsäure 416, 417.
- benzaminobenzoylpyrrolin **538**.
- chinaldincarbonsäure: äthylester 272.
- methylchinolinearbon= säureäthylester 272.
- methylnicotinsäureäthyl= ester 266 bis 267.

Trioxy-methylpyridincarbons	Tropinsaure-dimethylester	Verbindung CoH,ON 441.
säureäthylester 266 bis	124, 125.	— C ₂ H ₃ ONBr ₄ 231.
267.	- dimethylesterhydroxy:	- C.H.O.NCl. 231.
- nicotinsäureäthylester 266.	methylat 124, 125.	- C ₉ H ₁₂ O ₃ N ₂ Br ₂ 24.
picolincarbonsaureathyl=	— dipropylesterhydroxy:	- C ₁₀ H ₄ O ₆ N ₂ 256.
ester 266 bis 267.	methylat 125.	$-C_{10}H_{6}O_{6}N_{3}$ 256.
picolinsäure 266.	- methylesterhydroxymethy:	$-C_{10}^{10}H_6O_6N_4^{2}$ 256.
— pyridincarbonsäure 266.	lat 124, 125.	$-C_{10}H_8O_6N_3$ 256.
pyridincarbonsäureäthyl=	Tropyl-amin 425.	$-C_{10}^{10}H_{9}O_{3}^{10}N_{3}^{10}$ 64.
ester 266.	— dithiocarbamidsäure 426.	$-C_{10}^{10}H_{15}O_3N$ 129.
pyridylessigsäure 266.	Truxillin 201, 202.	$-C_{10}^{10}H_{16}^{18}O_{4}^{3}N_{2}$ 297.
	Truxillsäurebiscarbomethoxy:	- CH.O.N.Cl. 257
Trioxyverbindungen, Aminoderivate 514.	tropylester 202.	$\begin{array}{lll} & - & C_{10}H_4O_3N_3Cl_2 & 257. \\ & - & C_{10}H_6O_{10}N_3S_3 & 257. \end{array}$
- Azoderivate 585.	Truxinsäurebis-carbometh=	$-C_{10}^{10}H_{9}^{2}O_{3}^{10}NS_{57}^{57}$, 398.
- Sulfonsäuren 412.	oxytropylester 201.	$-C_{11}H_{18}N_2$ 54.
471 1 1 1 1 1 1 A A A	— carboxytropylester 198.	$-C_{11}^{11}H_{11}^{18}O_4N$ 225.
Triphenyl-cyanpyridin 116.	Tryptophan 545, 546, 550.	$-C_{11}H_{13}ON_{13}ON_{13}$
— dicyandihydropyridin 181.	Tryptophan-chlorid 548.	$-C_{11}^{11}H_{13}O_{2}N$ 57.
— dicyanpyridin 182.	— methylester 548.	$-C_{11}^{11}H_{9}O_{2}N_{2}Cl_{3}$ 547.
— dihydropyridindicarbons	Tryptophyl-chlorid 548.	- C ₁₁ H ₂ O ₂ N ₂ Br ₃ 547.
säuredinitril 181.	— glutaminsäure 548.	$-C_{11}H_{11}O_{2}N_{2}Cl$ 547.
— dinicotinsäurediäthylester	— glycin 548.	$-C_{11}H_{11}O_{2}N_{2}Cl_{3}$ 547.
182.		$-C_{11}H_{11}O_{2}N_{2}Br$ 547.
— nicotinsäurenitril 116.		$-C_{11}H_{11}O_{2}N_{2}Br_{3}$ 547.
— piperidondicarbonsauredis		$-C_{19}H_4O_{10}N_4$ 256.
äthylester 352.	U.	$-C_{12}H_{10}O_6N_8$ 256.
— pyridincarbonsaurenitril		$- C_{12}H_{13}O_4N_3 513.$
116.	Ureido-benzoylpseudoekgo-	$-C_{12}H_{13}O_{6}N^{3}$ 375.
— pyridindicarbonsäuredis	ninmethylester 208.	$- C_{12}H_{15}O_{2}N 57.$
athylester 182.	- dimethylpyridincarbon	$ \begin{array}{c} - C_{12}H_{15}C_{2}N & 57. \\ - C_{12}H_{17}C_{3}N & 57. \end{array} $
— pyridindicarbonsäuredini-	säurenitril 544.	$- C_{12}^{12}H_{18}O_{2}N_{2} 54.$
tril 182.	- dimethylpyrroldicarbon	$- C_{12}^{12}H_{16}^{18}O_{2}^{2}NI 57.$
— pyrrolcarbonsä ure 106.	säure 139.	$- C_{13}H_{10}N_{2} 454.$
— pyrrylharnstoff 480.	- dimethylpyrroldicarbon	$- C_{13}H_{14}ON_{2} 230.$
Trisulfonsäuren 405.	säurediäthylester 142.	C H ON 61
Tropancarbonsäure 17.	Ureidodioxy- s. Dioxyureido	$\begin{array}{l} - C_{13}H_{21}ON 61. \\ - C_{14}H_{10}O_{8}N_{2} 256. \end{array}$
Tropancarbonsäure-äthyl=	Urorosein 67.	$- C_{14}H_{12}O_{4}N_{4} 438.$
ester 18.	Uvitoninsäure 161.	$- C_{14}H_{8}O_{5}N_{2}Cl_{2} 257.$
— äthylesterhydroxymethy*		$- C_{14}H_{14}O_{4}NCl_{7} 148.$
lat 18.		- C ₁₄ H ₁₇ O ₄ NBr ₄ 148.
— amid 18.	v.	$-C_{14}H_{19}O_4NBr_4$ 148.
— hydrazid 18.		C H O N 243
- hydroxymethylat 18.	Vanillylnaphthocinchonin=	$-C_{15}H_{11}O_4N$ 243.
Tropandiolcarbonsäure 250.	säure 265.	- C ₁₆ H ₁₆ N ₂ 465.
Tropandiolcarbonsäure-hydr=	Veratroyl-apophyllensäure	$\begin{array}{l} - C_{16}H_{26}N_2 \ 147. \\ - C_{16}H_{13}O_6N \ 281. \end{array}$
oxymethylat 251.	384; Ammoniumbase 384.	C H O N 51
— methylester 250.	- cinchomeronsäure 382.	$\begin{array}{c} - C_{16}H_{14}O_4N_2 \ 51. \\ - C_{16}H_{15}ON \ 467. \end{array}$
- methylesterhydroxys	— isonicotinsaure 378.	$- C_{16}H_{17}O_6N 282.$
methylat 251.	Verbindung C ₃ H ₈ N ₂ 499.	- C H O N S 414
Tropandionoxalylsäure, Oxim	- C ₄ H ₄ O ₄ NBr 132.	$\begin{array}{lll} & C_{16}H_{12}O_{9}N_{2}S_{2} & 414. \\ & C_{16}H_{13}O_{3}NBr_{2} & 56. \end{array}$
348.	$-C_5H_{10}ON_2$ 499.	$- C_{16}^{16}H_{14}O_{8}N_{2}S_{2} 414.$
Tropanolcarbonsäure 211 (s.	$-C_0H_4O_5N_2$ 255.	$-C_{16}^{16114}O_{10}^{812}N_{2}^{2}S_{2}^{2}$ 415.
auch 196).	$-C_0H_6ON_2$ 40.	- C ₁₇ H ₁₃ O ₄ N 176 bis 177.
Tropanon-dioxalylsäuredi=	- C ₇ H ₁₃ N 16.	- C'H'ON 203
äthylester 368.	$-C_7H_{15}N$ 10.	$\begin{array}{l} - C_{17}H_{21}O_4N \ 293. \\ - C_{18}H_{10}O_7N_7 \ 444. \end{array}$
— oxalylsäure 334.	$\begin{array}{c} - C_7 H_{15} N_{12} S_{12} \\ - C_7 H_6 O_2 N_2 259. \end{array}$	$- C_{18}H_{12}O_{4}N_{2} 63.$
Tropencarbonsäure 31 (vgl.	- C.H.ON. 499	$-C_{18}H_{12}O_{7}N_{7} 444.$
634).	— C ₇ H ₈ ON ₂ 499. — C ₇ H ₈ O ₃ N ₂ Br ₂ 24.	$- C_{18}^{18} H_{16}^{12} O_5 N_6 325.$
Tropinon-cyanhydrin 212.	- C ₈ H ₆ N ₉ 219.	- CHO-N-S- 407
— dioxalylsäurediäthylester	$-C_8H_6O_3N_3$ 184.	$\begin{array}{l} - C_{18}H_{18}O_7N_2S_2 & 407. \\ - C_{19}H_{11}O_2N & 109. \end{array}$
368.	- C ₈ H ₆ O ₆ N ₈ 266.	- C.H. ON. 73
oxalsäure 334.	- C ₈ H ₇ O ₂ N 253.	$\begin{array}{l} - C_{19}H_{12}ON_{2} 73. \\ - C_{19}H_{14}O_{2}N_{2} 429. \end{array}$
Tropinsäure 123, 124.	$ C_8H_6ON_2$ 219.	- C.H. N. 83
Tropinsaurediäthylester 124,	- C ₈ H ₈ O ₄ NCl 252.	$\begin{array}{lll} & - & C_{20}H_{16}N_2 & 83. \\ & - & C_{20}H_{17}N_3 & 491. \end{array}$
125.	(C,H,N), 438.	- C ₂₂ H ₂₁ N ₃ 494.
• • • • • • • • • • • • • • • • • • • •	Charles 1/2 mone	-22-21-19

Verbindung C ₃₂ H ₁₆ O ₃ N ₂ 76.	Verbindung C ₃₂ H ₂₆ O ₆ N ₄ 376.	X.
$\begin{array}{lll} & - & C_{22}H_{18}O_{2}N_{4} & 228. \\ & - & C_{22}H_{20}O_{7}N_{2} & 372. \end{array}$	- C ₃₄ H ₂₃ ON ₃ 66. - C ₃₈ H ₂₂ O ₁₀ N ₂ 256.	Xanthochinsäure 233.
$- C_{22}H_{22}O_6N_4 376.$	- C ₃₉ H ₂₃ O ₄ N ₃ 492.	Xylidinodimethyloxindol 520.
$-C_{22}H_{24}O_5N_3$ 312.	$-C_{40}H_{32}O_5N_4$ 442.	Xylyl- s. Dimethyl-
— C _M H ₃₁ N ₈ 479.	- C ₄₆ H ₃₄ N ₄ 468.	phenyl
- C ₉₄ H ₁₄ O ₉ N ₉ 174.	$-C_{52}H_{32}O_{12}N_{2}$ 257.	
$-C_{34}H_{12}O_{5}N_{2}Cl_{2}$ 257.	$-C_{57}H_{51}O_{15}N_{5}$ 138.	
$-C_{25}H_{15}O_4N_3$ 362.	Vinyl-diacetonamineyan=	v
$-C_{25}H_{28}O_5N_3$ 312.	hydrin 192.	I.
$\begin{array}{lll} & - & C_{28}H_{28}O_{5}N_{2}Cl_{2} & 97. \\ & - & C_{32}H_{85}O_{7}N_{5} & 376. \end{array}$	— piperidylessigsäure 19 (vgl. 634).	Yatren 408.

Berichtigungen, Verbesserungen, Zusätze.

(Siehe auch die Verzeichnisse in den früheren Bänden.)

Zu Band I.

Seite 774 Zeile 26 v. u. in der Formel statt: "C₆H₇<" lies: "C₆H₄<". " 811 ., 9 v. u. Die beiden dort aufgeführten Formeln sind identisch.

Zu Band VII.

Seite 472 Textzeile 23 v. u. statt: "3077" lies: "3236".

Zu Band X.

Seite 609 Zeile 3 v. o. statt: "auf dem Sandbade" lies: "im Rohr auf 1500". 681 ,, 27 v. o. statt: ") oder von Piperidin (E. v. M., "lies: "; C. 1908 II, 594; ".

Zu Band XIII.

Seite 593 Textzeile 26 v. u. statt: "Koch" lies: "Kolb".

Zu Band XIV.

23 Zeile 28-27 v. u. und Zeile 13-12 v. u. sind zu streichen. 23 ,. 18-17 v. u. streiche: "Bei der Reduktion C. r. 136, 371)."

Zu Band XXI.

Seite 322 Zeile 1 v. u. statt: "8-Oxymethyl-chinolin beim" lies: "8-Brommethyl-chinolin bei Einw. von alkoh. Kalilauge und nachfolgendem".

418

14 v. u. statt: ,,3-Oximino-oxindol-diazoniumchlorid-(5)" lies: ,,3-Oximinooxindol-diazoniumchlorid-(6)".

14 v. u. und Zeile 9 v. u. hinter: "Benzol" füge ein: "und nachfolgenden 490 Erhitzen mit verd. Salzsäure".

16 v. u. statt: "Syst. No. 3371" lies: "Syst. No. 3367".

17 v. o. statt: "(S. 632)" lies: "(S. 637)".

Zu Band XXII.

Seite 20 Zeile 7 v. u. hinter: "Allomerochinen C. H. 1502N." schalte ein: "Allomerochinen ist auf Grund der nach dem Literatur-Schlußtermin der 4. Aufl. dieses Handbuchs [1. I. 1910] erschienenen Arbeit von Leger, C. r. 166, 256; Bl. [4] 23, 143; A. ch. [9] 14, 181 über Konstitution des Allocinchonins als [3-Athvliden-piperidyl-(4)]-essigsäure $\mathbf{H_2C \cdot CH(CH_2 \cdot CO_2H) \cdot C : CH \cdot CH_3}$

H₂C —— NH —— CH₂
Seite 31 Zeile 23 v. o. statt: "Bormer, A. 422 [1920]" lies: "Bormer, A. 422 [1921]".

	-	

Indian Agricultural Research Institute (Pusa) LIBRARY, NEW DELHI-110012

his book can be issued on or before		
Return Date	Return Date	