System I

Computational Operations & Units

Bo Feng, Lei Wu, Rui Chang Zhejiang University

Disclaimer

• Many images and resources used in this lecture are collected from the Internet, and they are used only for the educational purpose. The copyright belong to the original owners, respectively.

Part of slides credit to

- David Money Harris and Sarah L. Harris. Digital Design and Computer Architecture, 2nd Edition.
- Morris R. Mano, Charles R. Kime and Tom Martin. Logic & Computer Design Fundamentals, Fifth Edition.
- EECC 341, Prof. Muhammad Shaaban @ Rochester Institute of Technology

Overview

- Basic computational units
- Fixed number operations
 - Addition & Subtraction
- Arithmetic logic unit (ALU)
- Fixed number operations
 - Multiplication & Division

Overview

- Basic computational units
- Fixed number operations
 - Addition & Subtraction
- Arithmetic logic unit (ALU)
- Fixed number operations
 - Multiplication & Division

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$

 $C_{out} = AB$

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Multibit Carry Propagate Adders (CPA)

- Types of CPA
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - Prefix (faster)
- Carry-lookahead and prefix adders faster for large adders but require more hardware

Symbol

Ripple-Carry Adder (RCA)

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

$$t_{ripple} = Nt_{FA}$$

 t_{FA} : delay of a 1-bit full adder

Carry-Lookahead Adder (CLA)

• E.g., a 4-bit adder

$$\begin{split} C_1 &= A_0 B_0 + (A_0 + B_0) \ C_0 \\ C_2 &= A_1 B_1 + (A_1 + B_1) \ C_1 \\ &= A_1 B_1 + (A_1 + B_1) \ A_0 B_0 + (A_1 + B_1) (A_0 + B_0) \ C_0 \\ C_3 &= A_2 B_2 + (A_2 + B_2) \ C_2 \\ &= A_2 B_2 + (A_2 + B_2) \ A_1 B_1 + (A_2 + B_2) (A_1 + B_1) A_0 B_0 + (A_2 + B_2) (A_1 + B_1) (A_0 + B_0) \ C_0 \\ C_4 &= A_3 B_3 + (A_3 + B_3) \ C_3 \\ &= A_3 B_3 + (A_3 + B_3) \ A_2 B_2 + (A_3 + B_3) (A_2 + B_2) A_1 B_1 + (A_3 + B_3) \ (A_2 + B_2) (A_1 + B_1) A_0 B_0 + (A_3 + B_3) (A_2 + B_2) (A_1 + B_1) (A_0 + B_0) \ C_0 \end{split}$$

Carry-Lookahead Adder: Bit Level

- Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
- Generate (G_i) and propagate (P_i) signals for each column:
 - Column i will generate a carry out if A_i AND B_i are both 1 $G_i = A_i B_i$
 - Column i will propagate a carry in to the carry out if A_i OR B_i is 1 $P_i = A_i + B_i$
 - The carry out of column i+1 (C_{i+1}) is:

$$C_{i+1} = A_i B_i + (A_i + B_i) C_i$$
$$= G_i + P_i C_i$$

• The sum of column $i(S_i)$ is:

$$S_i = A_i \oplus B_i \oplus C_i = P_i \oplus C_i$$

Revisit the 4-Bit Adder

Compute carry out (C_{out}) for 4-bit blocks using generate and propagate signals

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1$$

= $G_1 + P_1 (G_0 + P_0C_0)$
= $G_1 + P_1G_0 + P_1 P_0C_0$

$$C_3 = G_2 + P_2C_2$$

$$= G_2 + P_2 (G_1 + P_1G_0 + P_1P_0C_0)$$

$$= G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

$$\begin{split} C_4 &= G_3 + P_3 C_3 \\ &= G_3 + P_3 \left(G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \right) \\ &= G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \end{split}$$

4-Bit CLA

Carry-Lookahead Addition: Block/Group Level

- The 4-bit CLA could be extended to more than four bits, however, in practice, due to limited gate fan-in, such extension is not feasible.
- Instead, the concept is extended another level by considering group generate (G_{3-0}) and group propagate (P_{3-0}) functions:
 - $G_{3:0} = G_3 + P_3(G_2 + P_2(G_1 + P_1G_0))$
 - $P_{3:0} = P_3 P_2 P_1 P_0$
- Using these two equations:

$$C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0 C_0$$

$$= G_{3:0} + P_{3:0}C_0$$

■ Thus, it is possible to have four 4-bit adders use one of the same carry lookahead circuit to speed up 16-bit addition.

Carry-Lookahead Addition: Block/Group Level (cont'd)

- **Step 1**: compute G_i and P_i for all columns
- Step 2: compute G and P for k-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate block
- E.g., 4-bit blocks $(G_{3:0} \text{ and } P_{3:0})$:

$$G_{3:0} = G_3 + P_3(G_2 + P_2(G_1 + P_1G_0))$$

 $P_{3:0} = P_3P_2P_1P_0$

Generally, for 4-bit blocks

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_j))$$

$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$

$$C_{j+1} = G_{i:j} + P_{i:j} C_j$$

Carry-Lookahead Addition: Block/Group Level (cont'd)

- **Step 1**: compute G_i and P_i for all columns
- Step 2: compute G and P for k-bit blocks
- **Step 3**: C_{in} propagates through each k-bit propagate/generate block
- Generally, for 4-bit blocks

$$G_{i:j} = G_i + P_i (G_{i-1} + P_{i-1} (G_{i-2} + P_{i-2}G_j))$$

$$P_{i:j} = P_i P_{i-1} P_{i-2} P_j$$

$$C_{j+1} = G_{i:j} + P_{i:j} C_j$$

- $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0 = G_{3:0} + P_{3:0}C_0$
- $C_8 = G_7 + P_7G_6 + P_7P_6G_5 + P_7P_6P_5G_4 + P_7P_6P_5P_4C_4 = G_{7:4} + P_{7:4}C_4$
- $C_{12} = G_{11} + P_{11}G_{10} + P_{11}P_{10}G_9 + P_{11}P_{10}P_9G_8 + P_{11}P_{10}P_9P_8C_8 = G_{11:8} + P_{11:8}C_8$
- $C_{16} = C_{15} + P_{15}C_{14} + P_{15}P_{14}C_{13} + P_{15}P_{14}P_{13}C_{12} + P_{15}P_{14}P_{13}P_{12}C_{12} = C_{15:12} + P_{15:12}C_{12}$

4-Bit Adder vs. 16-Bit Adder

4-bit Adder

$$\mathbf{C}_1 = \mathbf{G}_0 + \mathbf{P}_0 \mathbf{C}_0$$

$$C_2 = G_1 + P_1C_1$$

$$C_3 = G_2 + P_2C_2$$

$$C_4 = G_3 + P_3C_3$$

16-bit Adder

$$\mathbf{C}_4 = \mathbf{G}_{3:0} + \mathbf{P}_{3:0} \mathbf{C}_0$$

$$\mathbf{C}_8 = \mathbf{G}_{7:4} + \mathbf{P}_{7:4} \mathbf{C}_4$$

$$\mathbf{C}_{12} = \mathbf{G}_{11:8} + \mathbf{P}_{11:8} \mathbf{C}_{8}$$

$$\mathbf{C}_{16} = \mathbf{G}_{15:12} + \mathbf{P}_{15:12} \mathbf{C}_{12}$$

Exactly the same structure. So CLA could be used to generate Group Carry.

32-bit CLA with 4-bit Blocks

Carry-Lookahead Adder Delay

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1) t_{AND_OR} + kt_{FA}$$

 t_{pg} : delay to generate all P_iG_i

 t_{pg_block} : delay of generate all $P_{i:j}$, $G_{i:j}$

 $t_{AND\ OR}$: delay from C_{in} to C_{out} of final AND/OR gate in k-bit CLA

block

Delay: RCA vs. CLA

- Gate levels of C_i and S_i
 - RCA (2 and 1) vs. CLA (3 and 4)
- Different metric types
 - Only gate levels
 - All gates share the same cost
 - With specs
 - Delay of typical gate X # of gate levels
 - E.g.,
 - Carry propagation delay: 12 ns
 - Sum propagation delay: 15 ns
- An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

Prefix Adder

• Computes carry in (C_{i-1}) for each column, then computes sum:

$$S_i = (A_i \oplus B_i) \oplus C_{i-1}$$

Computes G and P for 1-, 2-, 4-, 8-bit blocks, etc.
 until all G_i (carry in) known

log₂N stages

Prefix Adder (cont'd)

- Carry in either generated in a column or propagated from a previous column.
- Column -1 holds C_{in}, so

$$G_{-1} = C_{in}, P_{-1} = 0$$

• Carry in to column i == carry out of column i-1:

$$C_{i-1} = G_{i-1:-1}$$

G_{i-1:-1}: generate signal spanning columns i-1 to -1

Sum equation:

$$S_i = (A_i \oplus B_i) \oplus G_{i-1:-1}$$

• **Goal**: Quickly compute $G_{0:-1}$, $G_{1:-1}$, $G_{2:-1}$, $G_{3:-1}$, $G_{4:-1}$, $G_{5:-1}$, ... (called *prefixes*)

Prefix Adder (cont'd)

Generate and propagate signals for a block spanning bits i:j:

$$\mathbf{G}_{i:j} = \mathbf{G}_{i:k} + \mathbf{P}_{i:k} \mathbf{G}_{k-1:j}$$
$$\mathbf{P}_{i:j} = \mathbf{P}_{i:k} \mathbf{P}_{k-1:j}$$

- In words:
 - Generate: block i:j will generate a carry if:
 - upper part (i:k) generates a carry or
 - upper part propagates a carry generated in lower part (k-1:j)
 - **Propagate**: block i:j will propagate a carry if *both* the upper and lower parts propagate the carry

Prefix Adder Schematic

Prefix Adder Delay

$$t_{PA} = t_{pg} + log_2 N(t_{pg_prefix}) + t_{XOR}$$

 t_{pg} : delay to produce P_iG_i (AND or OR gate)

 $t_{pg\ prefix}$: delay of black prefix cell (AND-OR gate)

Half Subtractor

- Subtracting a single-bit binary value Y from anther X (i.e., X-Y) produces a difference bit D and a borrow out bit B-out.
- This operation is called half subtraction and the circuit to realize it is called a half subtractor.

Half Subtractor Truth Table

Inputs		Outputs		
X	Y	D	B -out	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

$$\begin{array}{c|c}
X \rightarrow & & & \\
Y \rightarrow & & & \\
Subtractor & & \\
\end{array} \rightarrow \begin{array}{c}
D \\
\rightarrow B-OUT
\end{array}$$

$$\mathbf{D} = \mathbf{X'Y} + \mathbf{XY'}$$
$$= \mathbf{X} \oplus \mathbf{Y}$$

$$B$$
-out = X ' Y

Full Subtractor

Subtracting two single-bit binary values, Y, B-in from a single-bit value X produces a difference bit D and a borrow out B-out bit. This is called full subtraction.

Full Subtractor Truth Table

Inputs		Outputs		
X	Y	B-in	D	B-out
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$D(X,Y, B_{in}) = \Sigma (1,2,4,7)$$

 $B_{out}(X, Y, B_{in}) = \Sigma (1,2,3,7)$

$$D = X'Y'(B_{in}) + XY'(B_{in})' + XY'(B_{in})' + XY(B_{in})$$

$$D = X \oplus Y \oplus (B_{in})$$

Full Subtractor Circuit Using AND-OR

Circuit Using XOR

Implementation of N-bit Subtractors

- An n-bit subtractor used to subtract an n-bit number Y from another n-bit number X (i.e., X-Y) can be built in one of two ways:
 - By using n full subtractors and connecting them in series, creating a borrow ripple subtractor:
 - Each borrow out B-out from a full subtractor at position j is connected to the borrow in B-in of the full subtractor at the higher position j+1.
 - By using an n-bit adder and n inverters:
 - Find 2's complement of Y by:
 - Inverting all the bits of Y using the n inverters.
 - Adding 1 by setting the carry in of the least significant position to 1
 - The original subtraction (X Y) now becomes an addition of X to two's complement of Y using the n-bit adder.

4-bit Borrow Ripple Subtractor

Subtracts two 4-bit numbers:

$$Y = Y3$$
 $Y2$ $Y1$ $Y0$ from $X = X3$ $X2$ $X1$ $X0$

producing the difference D = D3 D2D1 D0, $B_{out} = B4$ from the most significant position j=3

Difference Output D

Data inputs to be subtracted

4-bit Subtractor Using 4-bit Adder

Inputs to be subtracted

Difference Output

Overview

- Basic computational units
- Fixed number operations
 - Addition & Subtraction
- Arithmetic logic unit (ALU)
- Fixed number operations
 - Multiplication & Division

4-Bit Binary Adder-Subtractors

- When S=0: Addition (A+B)
- When S=1: Subtraction (A+2's complement of B)
- Can be used to add/subtract unsigned numbers and signed 2's complement numbers

Addition/Subtraction

- Both can be handled by using 2's complement representation
- Can achieve a unified implementation
 - Addition vs. subtraction
 - Unsigned vs. signed

- Corner cases shall be considered
 - Some important flags

Carry & Overflow

- Carry is important when...
 - Adding or subtracting unsigned integers
 - Indicates that the unsigned sum is out of range
 - Either < 0 or > maximum unsigned n-bit value
- Overflow is important when...
 - Adding or subtracting signed integers
 - Indicates that the signed sum is out of range

Overflow occurs when?

Signed Overflow

- With two's complement and a 4-bit adder, for example, the largest representable decimal number is +7, and the smallest is -8.
- What if you try to compute 4 + 5, or (-4) + (-5)?

- We cannot just include the carry out to produce a five-digit result, as for unsigned addition. If we did, (-4) + (-5) would result in +23!
- Also, unlike the case with unsigned numbers, the carry out cannot be used to detect overflow, by itself
 - In the example on the left, the carry out is 0 but there is overflow.
 - Conversely, there are situations where the carry out is 1 but there is no overflow.

How to Detect Signed Overflow?

The impact of carry and overflow

Expression	Result	Carry?	Overflow?	Correct Result?
0100(+4)+0010(+2)	0110(+6)	No	No	Yes
0100(+4)+0110(+6)	1010(-6)	No	Yes	No
1100(-4)+1110(-2)	1010(-6)	Yes	No	Yes
1100(-4)+1010(-6)	0110(+6)	Yes	Yes	No

Examples of four *signed* additions

The easiest way to detect signed overflow is to look at all the sign bits.

Detecting Signed Overflow

- Overflow occurs only in the two situations:
 - Adding two positive numbers and the sum is negative
 - Adding two negative numbers and the sum is positive
 - Can happen because of the fixed number of sum bits
- Overflow cannot occur if you add a positive number to a negative number. Do you see why?
- In two's complement addition/subtraction
 - If the two numbers have the same sign bit and the sum/difference has a different sign bit, then overflow
 - Or, if the carry out flags of the sign bit and the highest value bit are different

Important Flags

- Zero flag (ZF)
 - \bullet ZF = 1 means the result is 0
 - Valid for both unsigned and signed operations
- Sign flag (SF/NF)
 - The sign of the result, i.e., S_{n-1}
 - Valid for signed operations
- Carry/borrow flag (CF)
 - If CF = 1
 - Carry for addition, i.e., C_{out}
 - Borrow for subtraction, i.e., ~C_{out}
 - Valid for unsigned operations
- Overflow flag (OF)
 - Valid for signed operations

Adders with Flags

ZF, SF, CF and OF

