Interpolation — Cubic Splines CS370 – May 13, 2016

Hermite interpolation – Many points

Fit many points (given values and 1st deriv.) with *piecewise* Hermite interpolation?

Use one cubic per pair of (adjacent) points. The matching/shared derivative data at

points ensures first derivative (C^1) continuity. Value, y=p(x) $p_4(x)$ Derivative, s=p'(x) $p_5(x)$ X

Hermite interpolation – General solution

If we (instead) define the polynomial on the i^{th} interval, $p_i(x)$, as $p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$

there exist *direct* formulas for the polynomial coefficients:

$$a_{i} = y_{i}$$

$$b_{i} = s_{i}$$

$$c_{i} = \frac{3y'_{i} - 2s_{i} - s_{i+1}}{\Delta x_{i}}$$

$$d_{i} = \frac{s_{i+1} + s_{i} - 2y'_{i}}{\Delta x_{i}^{2}}$$

where we define

$$\Delta x_i = x_{i+1} - x_i$$

Spacing of points in x.

and

$$y_i' = \frac{y_{i+1} - y_i}{\Delta x_i}$$

Slopes for a piecewise *linear* fit.

Hermite interpolation – General solution

Hermite example

Same example as before but using the direct form (for just one interval).

Hermite interpolant direct form:

$$p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
 with

$$a_{i} = y_{i}$$

$$b_{i} = s_{i}$$

$$c_{i} = \frac{3y_{i}' - 2s_{i} - s_{i+1}}{\Delta x_{i}}$$

$$d_{i} = \frac{s_{i+1} + s_{i} - 2y_{i}'}{\Delta x_{i}^{2}}$$

$$\Delta x_{i} = x_{i+1} - x_{i}$$

$$y'_{i} = \frac{y_{i+1} - y_{i}}{\Delta x_{i}}$$

Consider two points: p(0) = 0, p'(0) = 1, p(1) = 3, p'(1) = 0.

Find the polynomial using the closed form above.

Under this notation, our input data is:

$$x_1 = 0, y_1 = 0, s_1 = 1, x_2 = 1, y_2 = 3, s_2 = 0.$$

Piecewise cubic (spline) interpolation

More common setting: *no derivative information* is given, just points. Can we still fit a piecewise cubic to the set of points?

Yes, but each "piece" needs data from more than just its 2 endpoints... The intervals cannot be computed independently!

Physical (Drafting) Splines

spline (n.) _ long, thin piece of wood or metal, 1756, from East Anglian dialect, of uncertain origin.

Drafting "whales" or "ducks"

Cubic Splines – Main Idea

Approach:

Fit a cubic S_i on each sub-interval, but now require matching first and second derivatives (i.e., C^2 continuity).

Require "interpolating conditions" on each interval $[x_i, x_{i+1}]$, $S_i(x_i) = y_i$, $S_i(x_{i+1}) = y_{i+1}$

Interval endpoint values match.

and "derivative conditions" at each interior point

$$S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}),$$

 $S''_{i}(x_{i+1}) = S''_{i+1}(x_{i+1})$

Interior 1st and 2nd derivatives match.

Note subscripts on S!

Counting Unknowns

Assuming n data points, how many unknowns do we have?

A cubic (4 unknowns) for each of n-1 intervals, so 4n-4 unknowns.

e.g., n = 6 points, n - 1 = 5 intervals, $\therefore 4 \times 5 = 20$ unknowns.

Counting Equations

Assuming n data points, how many equations do we have?

2 interpolating conditions per *interval*: 2(n-1) = 2n-2

$$S_i(x_i) = y_i, S_i(x_{i+1}) = y_{i+1}$$

2 derivative conditions per *interior point*:
$$2(n-2) = 2n-4$$
 $S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}), \qquad S''_{i}(x_{i+1}) = S''_{i+1}(x_{i+1})$

4n-6 equations.

- e.g., 2(5) interp. conditions +2(4) interior points
- = 18 equations.

Solve the system?

4n-6 equations, 4n-4 unknowns; can we solve the system?

No, 4n - 6 < 4n - 4. Not enough equations to solve for all the coefficients!

Need 2 more constraints at the *domain endpoints*, called **boundary conditions** or **end conditions**.

Several choices exist...

Boundary conditions — Free/natural/variational

Free boundary condition: Second derivatives set to zero.

$$S''(x_1) = 0, \qquad S''(x_n) = 0$$

If both boundaries are free, called a natural cubic spline.

"Curvature" goes to zero at the end points, so the curve "straightens out".

(Technically not true geometric curvature, but does measure roughly how curved the function is.)

Boundary conditions – Clamped/complete

Clamped boundary conditions: Slope is set to specified value.

$$S'(x_1) = specified, S'(x_n) = specified.$$

If both boundaries clamped, it is a complete or clamped spline.

Here, $S'(x_1) = S'(x_n) = 0$.

i.e., the slope is prescribed to be zero, as so the curve ends become **horizontal**.

Aside: Boundary conditions & physical splines

The names "free" and "clamped" BC come from the analogy with physical splines.

Clamped BC are analogous to physically clamping the end of the rod in a particular direction.

The free condition is what you get if you don't constrain the end. It is "free" to take on the most relaxed (uncurved) state.

Other boundary condition choices

- Periodic boundary conditions:
 - $S_1'(x) = S_n'(x), S_1''(x) = S_n''(x).$
 - Endpoint derivatives match each other.
 - Gives a "wrap-around" behaviour.

- "Not-a-knot" boundary conditions:
 - $S_1'''(x) = S_2'''(x), S_{n-1}'''(x) = S_n'''(x).$
 - Last two segments on the end become the same polynomial.
 - Since there's no "switch" between polys, it's "not a knot".

Hermite interpolant v.s. cubic splines

How do the linear systems differ in size between Hermite case (given values+slopes), and cubic spline case (given only values)?

Hermite interpolation – each interpolant can be found independently.

• Solve n-1 independent systems of size 4×4 (i.e. small).

Cubic spline – must solve for all polynomials together at once!

• Solve one large system of size 4(n-1).

•

Physical Splines & Energy

spline (n.) _ long, thin piece of wood or metal, 1756, from East Anglian dialect, of uncertain origin.

Drafting "whales" or "ducks"

Spline Energy

There is an analogy between physical splines and cubic splines.

Bending a spline by placing the "drafting ducks" introduces some stored potential energy (the *bending* energy).

Real Spline Energy

What can we say about the shape that a physical spline will take on?

It finds the minimum (potential) energy configuration. i.e., "least bent" smooth shape.

Our mathematical cubic splines likewise minimize an "energy".

Cubic Spline Energy

If d(x) is the displacement of the curve from flat state, cubic splines minimize the integral ("energy")

$$\int d''(x)^2$$

over all possible functions matching the interpolation points.

[See section 2.6 of the course notes for proof that the resulting curve has the lowest energy.]

Outcome – Are we actually better off?

A cubic spline for the same (Runge) function from before,

$$f(x) = \frac{1}{1 + 25x^2}$$

fit to the same 11 points.

Visually, the curves are nearly superimposed.

We've successfully avoided the extreme oscillations from before!

Recap – Piecewise Polynomial Interpolation

• To circumvent "Runge's phenomenon" (large oscillation for high degree polynomial fits to many points), we used *piecewise* polynomials.

• Hermite interpolation lets us fit piecewise cubics to data, given function values and derivatives.

• Cubic spline interpolation lets us fit piecewise cubics such that 1st and 2nd derivatives are continuous, given only the values.

Next Time: Smarter Solution Procedure?

So far, we have a linear system with 4n-4 equations for n points, i.e., Ax=b.

We'll see later that solving general linear systems has complexity $O(N^3)$ for N unknowns (e.g. Gaussian elimination.)

Next class, we'll consider a more efficient approach to find a solution for cubic splines, using Hermite interpolation.