

Which self-maps appear as lattice endomorphisms?

Jenő Szigeti

ABSTRACT. Let $f : A \rightarrow A$ be a self-map of the set A . We give a necessary and sufficient condition for the existence of a lattice structure (A, \vee, \wedge) on A such that f becomes a lattice endomorphism with respect to this structure.

1. INTRODUCTION

A *partially ordered set (poset)* is a set P together with a reflexive, antisymmetric, and transitive (binary) relation $r \subseteq P \times P$. For $(x, y) \in r$ we write $x \leq_r y$ or simply $x \leq y$. If $r \subseteq r' \subseteq P \times P$ for the partial orders r and r' , then r' is an *extension* of r . A map $p : P \rightarrow P$ is *order-preserving* if $x \leq y$ implies $p(x) \leq p(y)$ for all $x, y \in P$. The poset (P, \leq) is a *lattice* if any two elements $x, y \in P$ have a unique least upper bound (lub) $x \vee y$ and a unique greatest lower bound (glb) $x \wedge y$ (in P). The operations \vee and \wedge are associative, commutative, and satisfy the following absorption laws: $(x \vee y) \wedge y = y$ and $(x \wedge y) \vee y = y$. Any binary operations \vee and \wedge on P having these properties define a binary relation $r = \{(x, x \vee y) : x, y \in P\} \subseteq P \times P$ on P , which is a partial order. In fact (P, \leq_r) is a lattice with lub \vee and glb \wedge . Lattices play a fundamental role in many areas of mathematics (see [1],[3]).

In the present paper we consider a self-map $f : A \rightarrow A$ of a set A . A list x_1, \dots, x_n of distinct elements from A is a *cycle* (of length n) with respect to f if $f(x_i) = x_{i+1}$ for each $1 \leq i \leq n-1$ and also $f(x_n) = x_1$. A *fixed point* of the function f is a cycle of length 1, i.e. an element $x_1 \in A$ with $f(x_1) = x_1$. A cycle that is not a fixed point is *proper*.

If (A, \vee, \wedge) is a lattice (on the set A) such that $f(x \vee y) = f(x) \vee f(y)$ and $f(x \wedge y) = f(x) \wedge f(y)$ for all $x, y \in A$, then f is a *lattice endomorphism* of (A, \vee, \wedge) . A lattice endomorphism is an order-preserving map (with respect to the order relation of the lattice), but the converse is not true in general. For a proper cycle $x_1, \dots, x_n \in A$ with respect to a lattice endomorphism f , if we put

$$p = x_1 \vee x_2 \vee \cdots \vee x_n$$

and

$$q = x_1 \wedge x_2 \wedge \cdots \wedge x_n,$$

1991 *Mathematics Subject Classification.* 06A06 and 06B05.

Key words and phrases. cycle, fixed point, lattice endomorphism.

The author was supported by OTKA K101515 and his research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project with support by the European Union, co-financed by the European Social Fund.

then $p \neq q$. The equalities

$$f(p) = f(x_1) \vee f(x_2) \vee \cdots \vee f(x_n) = x_2 \vee \cdots \vee x_n \vee x_1 = p,$$

$$f(q) = f(x_1) \wedge f(x_2) \wedge \cdots \wedge f(x_n) = x_2 \wedge \cdots \wedge x_n \wedge x_1 = q$$

show that p and q are distinct fixed points of f . It follows that any lattice endomorphism having a proper cycle must have at least two fixed points.

We prove that the above combinatorial property completely characterizes the possible lattice endomorphisms. More precisely, for a map $f : A \rightarrow A$ there exists a lattice (A, \vee, \wedge) on A such that f is a lattice endomorphism of (A, \vee, \wedge) if and only if f has no proper cycles or f has at least two fixed points.

The construction in the proof of our main result is based on the use of the maximal f -compatible extensions of an f -compatible partial order relation on A . Such extensions were completely determined in [2] and [5]. In order to make the exposition more self-contained, we present the necessary background about maximal compatible extensions.

2. PRELIMINARY DEFINITIONS AND RESULTS

Let $f : A \rightarrow A$ be a function, and define the equivalence relation \sim_f as follows: for $x, y \in A$, let $x \sim_f y$ if $f^k(x) = f^l(y)$ for some integers $k \geq 0$ and $l \geq 0$. The equivalence class $[x]_f$ of an element $x \in A$ is the f -component of x . We note that $[x]_f$ is closed with respect to the action of f and hence contains the f -orbit of x :

$$\{x, f(x), \dots, f^k(x), \dots\} \subseteq [x]_f .$$

An element $c \in A$ is *cyclic* with respect to f if $f^m(c) = c$ for some integer $m \geq 1$. The *period* of a cyclic element c , written as $n(c)$, is defined by

$$n(c) = \min\{m : m \geq 1 \text{ and } f^m(c) = c\},$$

and $f^k(c) = f^l(c)$ holds if and only if $k - l$ is divisible by n . The *full cycle* of a cyclic element c is the f -orbit $\{c, f(c), \dots, f^{n(c)-1}(c)\}$. The f -orbit of x is finite if and only if $[x]_f$ contains a cyclic element. If $c_1, c_2 \in [x]_f$ are cyclic elements, then $n(c_1) = n(c_2) = n(x)$, and this number is the *period* of x . If the f -orbit of x is infinite, then put $n(x) = \infty$. Clearly, $x \sim_f y$ implies $n(x) = n(y)$. We note that the presence of a cyclic element in $[x]_f$ does not imply that $[x]_f$ is finite. The function f has a proper cycle if there exists a cyclic element $c \in A$ with respect to f such that $n(c) \geq 2$.

2.1. Theorem (see [4]). *Let r be an order relation on the set A , and let $f : A \rightarrow A$ be an order-preserving map with respect to r . If there is no proper cycle of f , then there exists a linear extension R of r such that f is order-preserving with respect to R .*

2.2. Corollary. *If $f : A \rightarrow A$ is a function with no proper cycles, then there exists a distributive lattice (A, \vee, \wedge) on A such that f is a lattice endomorphism of (A, \vee, \wedge) .*

The following definitions appear in [2]. A pair $(x, y) \in A \times A$ is f -prohibited if there exist integers k, l , and n with $k \geq 0$, $l \geq 0$, and $n \geq 2$ such that n is not a divisor of $k - l$, the elements $f^k(x), f^{k+1}(x), \dots, f^{k+n-1}(x)$ are distinct and $f^{k+n}(x) = f^k(x) = f^l(y)$. For an f -prohibited pair (x, y) and integers k and n as

above, $f^k(x)$ is a cyclic element in $[x]_f = [y]_f$ of period n . The *distance* $d(y, c)$ between an element $y \in [x]_f$ and a given cyclic element $c \in [x]_f$ (of period $n \geq 1$) is defined by

$$d(y, c) = \min\{t : t \geq 0 \text{ and } f^t(y) = c\}.$$

Clearly, $f^t(y) = c$ holds if and only if $t \geq d(y, c)$ and $t - d(y, c)$ is divisible by n . We note that $d(f(c), c) = n - 1$, and for $y \neq c$ we have $d(f(y), c) = d(y, c) - 1$. It is straightforward to see that (x, y) is f -prohibited if and only if $d(x, c) - d(y, c)$ is not divisible by n .

2.3. Proposition (see [2]). *Let r be an order relation on the set A and $f : A \rightarrow A$ be an order-preserving map with respect to r . If $(x, y) \in A \times A$ is an f -prohibited pair, then x and y are incomparable with respect to r .*

2.4. Lemma (see [2]). *Let $f : A \rightarrow A$ be a self-map on a set A . Let c be a cyclic element, with $c \in [x]_f$ for some $x \in A$. If r is an order relation on A , and f is order-preserving with respect to r , then there exists an order relation ρ on $[x]_f$ with the following properties:*

1. ρ is an extension of r (on $[x]_f$): $r \cap ([x]_f \times [x]_f) \subseteq \rho$,
2. f is order-preserving with respect to ρ ,
3. $[x]_f$ is the disjoint union of sets E_0, \dots, E_{n-1} and each

$$E_i = \{u \in [x]_f : d(u, c) - i \text{ is divisible by } n(c)\}, \quad 0 \leq i \leq n - 1$$

is a chain with respect to ρ ,

4. $f(E_0) \subseteq E_{n-1}$ and $f(E_i) \subseteq E_{i-1}$ for $1 \leq i \leq n - 1$,
5. any element $(u, v) \in E_i \times E_j$ with $i \neq j$ is an f -prohibited pair, and the set $\{u, v\}$ has no upper and lower bounds in $[x]_f$ with respect to ρ .

3. MAKING f A LATTICE ENDOMORPHISM

3.1. Theorem. *Let r be an order relation on the set A , and let $f : A \rightarrow A$ be an order-preserving map with respect to r having distinct fixed points $p, q \in A$. If x and y are r -incomparable for all $x, y \in A$ such that $[x]_f \neq [y]_f$ and $2 \leq n(x) \neq \infty$, then there exists an extension R of r such that (A, \leq_R) is a lattice and f is a lattice endomorphism of (A, \leq_R) .*

Proof. Let

$$A_0 = \{x \in A : [x]_f \text{ contains a proper cycle}\} = \{x \in A : 2 \leq n(x) \neq \infty\}$$

The set A_0 is the f -cyclic part of A . Let

$$A_* = A \setminus A_0 = \{x \in A : [x]_f \text{ has no proper cycle}\} = \{x \in A : n(x) = 1 \text{ or } n(x) = \infty\}$$

The set A_* is the f -acyclic part of A . We have either $[x]_f \subseteq A_0$ or $[x]_f \subseteq A_*$ for all $x \in A$. Clearly, both A_0 and A_* are closed with respect to the action of f , i.e. $f(A_0) \subseteq A_0$ and $f(A_*) \subseteq A_*$. Since $f : A_* \rightarrow A_*$ has no proper cycle (in A_*), Theorem 2.1 ensures the existence of a linear extension R_* of $r \cap (A_* \times A_*)$ (on A_*) such that f is order-preserving with respect to R_* . In view of $p, q \in A_*$, we may assume $p \leq_{R_*} q$.

For an appropriate subset $\{x_t : t \in T\}$ of A_0 , where the indices are taken from an index set T , we have $\{[x]_f : x \in A_0\} = \{[x_t]_f : t \in T\}$, and $[x_t]_f \neq [x_s]_f$ for

all $t, s \in T$ with $t \neq s$. Such a subset $\{x_t : t \in T\} \subseteq A_0$ is an *irredundant set of representatives* of the equivalence classes of \sim_f (in A_0). That is

$$A_0 = \bigcup_{t \in T} [x_t]_f \text{ and } [x_t]_f \cap [x_s]_f = \emptyset \text{ for all } t, s \in T \text{ with } t \neq s.$$

Call two elements of A *concurrent* if some power of f maps them to the same element. Concurrency is an equivalence relation finer than \sim_f . For $t \in T$, the \sim_f -class of x_t is partitioned into $n(x_t)$ concurrency classes:

$$[x_t]_f = E_0^{(t)} \cup E_1^{(t)} \cup \dots \cup E_{n(x_t)-1}^{(t)}, \text{ where}$$

$$E_i^{(t)} = \{u \in [x_t]_f : d(u, c) - i \text{ is divisible by } n(x_t)\}$$

for some fixed cyclic element $c \in [x_t]_f$. Application of Lemma 2.4 gives the existence of a partial order extension ρ_t of r on $[x_t]_f$ ($r \cap ([x_t]_f \times [x_t]_f) \subseteq \rho_t$ holds) such that f preserves ρ_t and each $E_i^{(t)}$ is a chain with respect to ρ_t .

Take the following subsets of $A \times A$:

$$P = \{(a, x) : a \in A_*, x \in A_0 \text{ and } a \leq_{R_*} p\} \text{ and } Q = \{(y, b) : b \in A_*, y \in A_0 \text{ and } q \leq_{R_*} b\}.$$

Let

$$R = R_* \cup (\bigcup_{t \in T} \rho_t) \cup P \cup Q.$$

We claim that R is an extension of r that is a lattice and that f is a lattice endomorphism of $(A, \leq_R, \vee, \wedge)$. The proof consists of the following straightforward steps.

Notice that $R_* \subseteq A_* \times A_*$, $\rho_t \subseteq [x_t]_f \times [x_t]_f \subseteq A_0 \times A_0$, $P \subseteq A_* \times A_0$, and $Q \subseteq A_0 \times A_*$. Also the direct products $A_* \times A_*$, $A_* \times A_0$, $A_0 \times A_*$, and $[x_t]_f \times [x_t]_f$ (for $t \in T$) are pairwise disjoint.

In order to see $r \subseteq R$, take $(u, v) \in r$.

- (1) If $(u, v) \in A_* \times A_*$, then $r \cap (A_* \times A_*) \subseteq R_*$ implies $(u, v) \in R$.
- (2) If $(u, v) \in A_* \times A_0$, then $[u]_f \neq [v]_f$ and $2 \leq n(v) \neq \infty$ contradicts $(u, v) \in r$.
- (3) $(u, v) \in A_0 \times A_*$ is also impossible.
- (4) If $(u, v) \in A_0 \times A_0$, then $(u, v) \in [x_t]_f \times [x_s]_f$ for some $t, s \in T$. Clearly, $t \neq s$ would imply $[u]_f \neq [v]_f$, and then $2 \leq n(u) \neq \infty$ contradicts $(u, v) \in r$. Thus $t = s$, and $r \cap ([x_t]_f \times [x_t]_f) \subseteq \rho_t$ yields $(u, v) \in R$.

We prove that R is a partial order.

Antisymmetry: Let $(u, v) \in R$ and $(v, u) \in R$.

- (1) If $(u, v), (v, u) \in R_*$, then $u = v$ follows from the antisymmetric property of R_* .
- (2) If $(u, v) \in \rho_t$ and $(v, u) \in \rho_s$, then $t = s$, and $u = v$ follows from the antisymmetric property of ρ_t .
- (3) If $(u, v) \in P$ and $(v, u) \in Q$, then $u \leq_{R_*} p$ and $q \leq_{R_*} u$ imply $q \leq_{R_*} p$, contradicting with $p \leq_{R_*} q$ and $p \neq q$.
- (4) If $(u, v) \in Q$ and $(v, u) \in P$, then interchanging the roles of u and v leads to a similar contradiction as in case (3).

Transitivity: Let $(u, v) \in R$ and $(v, w) \in R$.

- (1) If $(u, v), (v, w) \in R_*$, then $(u, w) \in R_*$ follows from the transitivity of R_* .
- (2) If $(u, v) \in R_*$ and $(v, w) \in P$, then $u \leq_{R_*} v \leq_{R_*} p$ and $w \in A_0$ imply $(u, w) \in P$.
- (3) If $(u, v) \in \rho_t$ and $(v, w) \in \rho_s$, then we have $t = s$, and $(u, w) \in \rho_t$ follows from the transitivity of ρ_t .
- (4) If $(u, v) \in \rho_t$ and $(v, w) \in Q$, then $u, v \in A_0$, $w \in A_*$, and $q \leq_{R_*} w$. It follows that $(u, w) \in Q$.

(5) If $(u, v) \in P$ and $(v, w) \in \rho_t$, then $v, w \in A_0$, $u \in A_*$, and $u \leq_{R_*} p$. It follows that $(u, w) \in P$.

(6) If $(u, v) \in P$ and $(v, w) \in Q$, then $u \leq_{R_*} p \leq_{R_*} q \leq_{R_*} w$, from which $(u, w) \in R_*$ follows.

(7) If $(u, v) \in Q$ and $(v, w) \in R_*$, then $u \in A_0$ and $q \leq_{R_*} v \leq_{R_*} w$ imply $(u, w) \in P$.

(8) If $(u, v) \in Q$ and $(v, w) \in P$, then $q \leq_{R_*} v \leq_{R_*} p$ contradicts $p \leq_{R_*} q$ and $p \neq q$.

We note that f is order-preserving with respect to (A_*, \leq_{R_*}) , and $([x_t]_f, \rho_t)$ for $t \in T$. In order to check the order-preserving property of f with respect to (A, \leq_R) , it is enough to see that $(a, x) \in P$ implies $(f(a), f(x)) \in P$ and $(y, b) \in Q$ implies $(f(y), f(b)) \in Q$. Obviously, $a \in A_*$, $x \in A_0$, and $a \leq_{R_*} p$ imply $f(a) \in A_*$, $f(x) \in A_0$, and $f(a) \leq_{R_*} f(p) = p$. Similarly, $b \in A_*$, $y \in A_0$, and $q \leq_{R_*} b$ imply $f(b) \in A_*$, $f(y) \in A_0$, and $q = f(q) \leq_{R_*} f(b)$.

If $u, v \in A$ are comparable elements with respect to R , then the existence of the supremum $u \vee v$ and the infimum $u \wedge v$ in (A, \leq_R) is evident; moreover, the order-preserving property of f ensures that

$$f(u \vee v) = f(u) \vee f(v) \text{ and } f(u \wedge v) = f(u) \wedge f(v).$$

If $u, v \in A$ are incomparable elements with respect to R , then we have the following possibilities.

(1) If $u \in A_*$ and $v \in A_0$, then $(u, v) \notin P$, $(v, u) \notin Q$, and the linearity of R_* imply $p \leq_{R_*} u \leq_{R_*} q$, from which $u \vee v = q$ and $u \wedge v = p$ follow in (A, \leq_R) . Since $f(u) \in A_*$, $f(v) \in A_0$, and $p = f(p) \leq_{R_*} f(u) \leq_{R_*} f(q) = q$, we deduce that

$$f(u \vee v) = f(q) = q = f(u) \vee f(v) \text{ and } f(u \wedge v) = f(p) = p = f(u) \wedge f(v).$$

(2) If $u \in A_0$ and $v \in A_*$, then interchanging the roles of u and v leads to the same result as in case (1).

(3) If $u, v \in A_0$ and $[u]_f \neq [v]_f$, then $u \vee v = q$ and $u \wedge v = p$ in (A, \leq_R) follow directly from the definition of R . Since $f(u), f(v) \in A_0$, and $[f(u)]_f = [u]_f \neq [v]_f = [f(v)]_f$, we deduce

$$f(u \vee v) = f(q) = q = f(u) \vee f(v) \text{ and } f(u \wedge v) = f(p) = p = f(u) \wedge f(v).$$

(4) If $u, v \in A_0$ and $[u]_f = [v]_f = [x_t]_f$ for some unique $t \in T$, then $(u, v) \notin \rho_t$ implies $(u, v) \in E_i^{(t)} \times E_j^{(t)}$ for some unique $0 \leq i, j \leq n(x_t) - 1$ with $i \neq j$. In view of $E_i^{(t)} \cap E_j^{(t)} = \emptyset$ and (5) of Lemma 2.4, we conclude that the set $\{u, v\}$ has no upper and lower bounds in $([x_t]_f, \rho_t)$. It follows that $u \vee v = q$ and $u \wedge v = p$ in (A, \leq_R) .

Since $f(E_i) \subseteq E_{i-1}$ implies $(f(u), f(v)) \in E_{i-1}^{(t)} \times E_{j-1}^{(t)}$ (notice that $E_{-1}^{(t)} = E_{n(x_t)-1}^{(t)}$), we deduce in a similar way

$$f(u) \vee f(v) = q = f(q) = f(u \vee v) \text{ and } f(u) \wedge f(v) = p = f(p) = f(u \wedge v). \square$$

3.2. Corollary. *If the number of fixed points of the function $f : A \rightarrow A$ is at least 2, then there exists a lattice structure (A, \vee, \wedge) on A such that f is a lattice endomorphism of (A, \vee, \wedge) .*

Proof. Let p and q be distinct fixed points of f . The application of Theorem 3.1 yields a partial order extension R of the identity partial order $\{(x, x) : x \in A\}$ such that $(A, \leq_R, \vee, \wedge)$ is a lattice and f is a lattice endomorphism of $(A, \leq_R, \vee, \wedge)$. \square

The combination of Corollaries 2.2 and 3.2 provides the complete answer (formulated in the introduction) to the question in the title of the paper. We pose a further problem.

3.3. Problem. Consider an arbitrary function $f : A \rightarrow A$. Find necessary and sufficient conditions for the existence of a modular (or distributive) lattice structure (A, \vee, \wedge) on A such that f becomes a lattice endomorphism of (A, \vee, \wedge) . The similar question seems to be interesting for other algebraic structures such as (Abelian) groups, rings and modules.

3.4. Example. Let $A = \{p, q, x_1, x_2, \dots, x_n\}$, where $n \geq 3$, and let $f : A \rightarrow A$ be a function with $f(p) = p$, $f(q) = q$, $f(x_n) = x_1$, and $f(x_i) = x_{i+1}$ for $1 \leq i \leq n-1$. If f is an endomorphism of some lattice (A, \leq, \vee, \wedge) , then f is order-preserving with respect to (A, \leq) , and Proposition 2.3 ensures that the proper cycle $\{x_1, \dots, x_n\}$ of f is an antichain in (A, \leq) . Since $x_1 \vee \dots \vee x_n$ and $x_1 \wedge \dots \wedge x_n$ are distinct fixed points of f , one of $x_1 \vee \dots \vee x_n$ and $x_1 \wedge \dots \wedge x_n$ is p and the other is q . Thus (A, \leq, \vee, \wedge) is isomorphic to the lattice M_n in both cases. It follows that there is no distributive lattice structure on A making f a lattice endomorphism (even though f has two fixed points).

REFERENCES

- [1] Birkhoff, G. *Lattice Theory*, Colloquium Publications, Vol. 25, AMS Providence (Third Edition, 1995)
- [2] Foldes, S.; Szigeti, J. *Maximal compatible extensions of partial orders*, J. Australian Math. Soc. 81 (2006), 245-252.
- [3] Gratzer, G. *General Lattice Theory*, Birkhauser Verlag, Basel-Boston-Berlin (2003)
- [4] Szigeti, J., Nagy, B. *Linear extensions of partial orders preserving monotonicity*, Order 4 (1987), 31-35.
- [5] Szilágyi, Sz. *A characterization and the intersection of the maximal compatible extensions of a partial order*, Order Vol. 25, 4 (2008), 321-334.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF MISKOLC, MISKOLC, HUNGARY 3515
E-mail address: matjeno@uni-miskolc.hu