PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-260459

(43) Date of publication of application: 13.09.2002

(51)Int.CI.

H01B 13/00 GO1N 3/32 GO1N 33/20 H02G

1/06 HO2G 3/38

(21)Application number: 2001-057945

(71)Applicant: SUMITOMO WIRING SYST LTD

SUMITOMO ELECTRIC IND LTD

(22)Date of filing:

02.03.2001

(72)Inventor: ONOE NAOYOSHI

INOUE TAKUYA KAWAKITA ARINORI

OUCHI KOJI KAJI MIKIO

(54) METHOD FOR PREDICTING BENDING LIFE OF ELECTRIC WIRE AND THE LIKE

(57)Abstract:

PROBLEM TO BE SOLVED: To easily predict a bending life in which a conductor part of core wire disconnects, before an insulating layer which is a coating material actually cracks.

SOLUTION: A bending life, in which an electric wire or the like comprising a central conductor at least at its center comes to disconnect through bending, is predicted. Here, a correlation between the actual value of bending life and a distortion change amount of a single wire is acquired in advance, and a maximum distortion change amount of a central conductor of electric wire and the like which is to be predicted is calculated. The maximum distortion change amount is collated with the correlation to predict the bending life of the electric wire and the like. Since only a single central conductor is required to be predicted for only a bending life even if a plurality of core wires are included, a prediction process is easy.

LEGAL STATUS

[Date of request for examination]

05.08.2002

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-260459 (P2002-260459A)

(43)公開日 平成14年9月13日(2002.9.13)

(51) Int.Cl."	識別記号	FΙ	テーマコート*(参考)
H01B 13/00		H 0 1 B 13/00	C 2G055
	5 1 3		513Z 2G061
G01N 3/32		G 0 1 N 3/32	E 5G363
33/20	·	33/20	P
H02G 1/06		H 0 2 G 1/06	Q
	審查請求	未請求 請求項の数4 〇	L (全7頁) 最終頁に続く
(21)出廢番号	特顏2001-57945(P2001-57945)	(71)出顧人 000183406 住友電装約	
(22)出顧日	平成13年3月2日(2001.3.2)	三重県四日市市西末広町1番14号	

(71)出顧人 000002130 住友電気工業株式会社

大阪府大阪市中央区北浜四丁目5番33号

(72)発明者 尾上 尚好

三重県四日市市西末広町1番14号 住友電

装株式会社内

(74)代理人 100089233

弁理士 吉田 茂明 (外2名)

最終頁に続く

(54) 【発明の名称】 電線等の屈曲寿命予測方法

(57)【要約】

【課題】 特に被覆材である絶縁層にクラックが生じる 以前に芯線としての導体部が断線する場合の屈曲寿命を 容易に予測する。

【解決手段】 少なくとも中央に中心導体線を有する電 線等の屈曲による断線に至るまでの屈曲寿命を予測する 場合に、まず単線の歪み変化量と屈曲寿命の実測値との 相関関係を予め得ておき、予測対象となる電線等の中心 導体線の最大歪み変化量を算出して、この最大歪み変化 量を相関関係に照合することによって電線等の屈曲寿命 を予測する。特に複数の芯線を有する場合に、単一の中 心導体線のみの屈曲寿命のみを予測すればよいため、予 測処理が容易である。

【特許請求の範囲】

【請求項1】 少なくとも中央に中心導体線を有するとともに、当該中心導体線の周囲に撚線が撚られてなる電線の屈曲による断線に至るまでの屈曲寿命を予測する電線等の屈曲寿命予測方法であって、

前記中心導体線と同材質で形成された単線の歪み変化量 と屈曲寿命の実測値との相関関係を予め得る工程と、

予測対象となる電線の前記中心導体線の最大歪み変化量 を算出する工程と、

算出された前記中心導体線の前記最大歪み変化量を前記 10 相関関係に照合することによって前記電線の屈曲寿命を 予測する工程とを備えることを特徴とする電線等の屈曲 寿命予測方法。

【請求項2】 中央に中心導体線をそれぞれ有する複数の電線が束ねられてなる電線束の断線に至るまでの屈曲寿命を予測する電線束の屈曲寿命予測方法であって、前記中心導体線と同材質で形成された単線の歪み変化量と屈曲寿命の実測値との相関関係を予め得る工程と、予測対象となる電線束内の複数の電線のうち、屈曲において最も曲率半径の変化が大きいと予想される単一の電 20線の前記中心導体線の最大歪み変化量を算出する工程と、

算出された前記電線の前記中心導体線の前記最大歪み変 化量を前記相関関係に照合することによって前記電線束 の屈曲寿命を予測する工程とを備えることを特徴とする 電線等の屈曲寿命予測方法。

【請求項3】 請求項1または請求項2に記載の電線等の屈曲寿命予測方法であって、

前記相関関係を得る工程は、複数の歪み変化量について 前記単線を繰り返し曲げを施して、断線に至るまでの屈 曲回数を実際に測定することにより前記相関関係を求め ることを特徴とする電線等の屈曲寿命予測方法。

【請求項4】 請求項1ないし請求項3のいずれかに記載の電線等の屈曲寿命予測方法であって、

前記最大歪み変化量を算出する工程において、前記中心 導体線の半径を r a とし、前記中心導体線の屈曲を受け る領域内で最も大きく屈曲変化する位置において最も屈 曲した状態の前記中心導体線の曲げ半径を R₁とし、最 も伸長した状態の前記中心導体線の曲げ半径を R₁とし て、次式により前記最大歪み変化量(Δε)を算出する ことを特徴とする電線等の屈曲寿命予測方法。

 $\Delta \epsilon = r a \cdot (1/R_1 - 1/R_2)$

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、導体線を絶縁層にて被覆してなる電線またはこれらの電線を複数束ねた電線束であって、自動車や産業機器およびそれらに装着される電気・電子機器の電気信号や電源からの電力を供給する電線または電線束の屈曲による断線に至るまでの屈曲寿命を予測する電線等の屈曲寿命予測方法に関す

る。 【0002】

【従来の技術】周知のように、自動車や産業機器には多くの電線が使用されている。電線または複数の電線を束ねた電線束(この明細書では、電線および電線束を総称して「電線等」と称することにする)には、例えば自動車のドア部やシート部のように屈曲を受ける位置に配置されているものもあり、このような電線等については、繰り返し曲げ変形を受けることによって断線に至ることがある。

【0003】一般に、冷温を含む低温下においては、P VC等の絶縁層(被覆材)が屈曲を繰り返すことで、そ の絶縁層が疲労破壊によりクラック(被覆割れ)が生じ やすくなる。そうすると、そのクラックが生じた部分の 導体部(芯線)に局部的な応力がかかりやすくなること から、低温下での断線は導体部を被覆する絶縁層の疲労 破壊に主として支配されることがわかっている。

【0004】そして、低温下での電線等の絶縁層のクラックについて、その絶縁層部分での歪み変化量と屈曲寿命との相関関係を予めマスターカーブとして把握しておき、このマスターカーブを用いて電線の屈曲寿命を予測する方法が、本出願人によって既に提案されている(例えば特願平11-210650号:以下「提案例」と称す)。

[0005]

【発明が解決しようとする課題】しかしながら、上記の提案例は、断線が主として絶縁層のクラックに起因する状況下での屈曲寿命を求めるものであって、絶縁層のクラックに至るまでの屈曲回数から屈曲寿命を求めており、絶縁層にクラックが発生しない状態で導体部(芯線)に断線が生じる状況下での屈曲寿命を予測することは困難である。例えば、常温においては、絶縁層にクラックが発生する以前に導体部が断線することがある。また、絶縁層としてハロゲンフリーの樹脂材料やPEを使用した場合には、低温下においても、絶縁層にクラックが発生する以前に導体部が断線することがある。

【0006】そこで、この発明の課題は、絶縁層にクラックが生じる以前に内部の導体部が断線する場合に効率良く屈曲寿命を予測できる電線等の屈曲寿命予測方法を提供することにある。

[0007]

50

【課題を解決するための手段】上記課題を解決すべく、 請求項1に記載の発明は、少なくとも中央に中心導体線 を有するとともに、当該中心導体線の周囲に燃線が撚ら れてなる電線の屈曲による断線に至るまでの屈曲寿命を 予測する電線等の屈曲寿命予測方法であって、単線の歪 み変化量と屈曲寿命の実測値との相関関係を予め得る工 程と、予測対象となる電線の前記中心導体線の最大歪み 変化量を算出する工程と、算出された前記中心導体線の 前記最大歪み変化量を前記相関関係に照合することによ って前記電線の屈曲寿命を予測する工程とを備える。

【0008】請求項2に記載の発明は、中央に中心導体線をそれぞれ有する複数の電線が束ねられてなる電線束の断線に至るまでの屈曲寿命を予測する電線束の屈曲寿命予測方法であって、前記中心導体線と同材質で形成された単線の歪み変化量と屈曲寿命の実測値との相関関係を予め得る工程と、予測対象となる電線束内の複数の電線のうち、屈曲において最も曲率半径の変化が大きいと予想される単一の電線の前記中心導体線の最大歪み変化量を算出する工程と、算出された前記電線の前記中心導体線の前記最大歪み変化量を前記相関関係に照合することによって前記電線束の屈曲寿命を予測する工程とを備える。

【0009】請求項3に記載の発明は、請求項1または 請求項2に記載の電線等の屈曲寿命予測方法であって、 前記相関関係を得る工程は、複数の歪み変化量について 前記単線を繰り返し曲げを施して、断線に至るまでの屈 曲回数を実際に測定することにより前記相関関係を求め る。

【0010】請求項4に記載の発明は、請求項1ないし請求項3のいずれかに記載の電線等の屈曲寿命予測方法であって、前記最大歪み変化量を算出する工程において、前記中心導体線の半径をraとし、前記中心導体線の屈曲を受ける領域内で最も大きく屈曲変化する位置において最も屈曲した状態の前記中心導体線の曲げ半径をRiとし、最も伸長した状態の前記中心導体線の曲げ半径をRiとして、次式により前記最大歪み変化量(Δε)を算出する。

 $[0011] \Delta_{\epsilon} = r a \cdot (1/R_1 - 1/R_1)$ [0012]

【発明の実施の形態】まず、本発明の基本的な考え方について説明する。本発明者等は、電線等の屈曲寿命を支配する因子について鋭意検討を行った。その結果、被覆材となる絶縁層として温度依存性の少ないハロゲンフリーの樹脂材やPE等を使用する場合や、温度依存性のあるPVC等の絶縁層を有していても例えば常温である場合においては、これらの電線等を繰り返し屈曲していくと、絶縁層の疲労破壊によりクラックが生じる以前に、内部の芯線となる導体部が断線することがある。このことから、電線等の断線は必ずしも導体部を被覆する絶縁 40層の疲労破壊に起因する場合ばかりでなく、むしろ、上記のような条件下では、電線等の屈曲寿命は、内部の各素線の屈曲寿命に等しいと考えることができる。

【0013】しかも、例えば単一の絶縁層の内部に複数の素線が配置されている場合に、断面中央に配置された素線(以下「中心導体線」と称す)と、この中心導体線の周囲の燃線のそれぞれの屈曲寿命を比較すると、燃線が略コイル状に形成されて屈曲寿命が非常に長いのに対して、直状に張られた中心導体線の屈曲寿命が短いことが解っている。また、それぞれ芯線を有する複数の電線 50

が束ねられた電線束の場合には、最も屈曲した状態と最も伸長した状態との間で歪み変化量の最も大きないずれか一本の電線の芯線(中心導体線)の屈曲寿命が最も短いことが解っている。そして、この最も短い屈曲寿命を有する中心導体線のみの寿命予測をするだけで、その電線等全体の屈曲寿命を予測できることを究明した。すなわち、電線等の内部のいずれか単一の中心導体線のみの最大歪み変化量と、電線等の全体としての屈曲寿命との間に強い相関関係が存在するという知見を得たのである。

【0014】従って、その中心導体線の歪み変化量とそ の中心導体線の屈曲寿命との間の相関関係を予め実験的 に求めておけば、様々な製品条件下の中心導体線につい てその最大歪み変化量を解析するだけで電線等の全体と しての屈曲寿命を予測することができることとなる。本 発明は、かかる知見に基づいて完成されたものである。 【0015】尚、この電線等の屈曲寿命予測方法では、 以下に述べるように、複数の導体線 (素線または芯線) を有する構造において、最も屈曲寿命の短いと推測され るいずれか一本の中心導体線の屈曲寿命を予測すること で、全体的な電線等(電線または電線束)の屈曲寿命を 予測するが、電線束などのように複数の導体線を有する ような構造の対象物については、この実施の形態でいう 屈曲寿命が電線または電線束の全ての導体線の完全断線 を予測することを意味しない。電線または電線束内のい ずれかの導体線(中心導体線を含む)が断線したとして も、その他の導体線が同時期に断線するとは限らず、こ のため電線または電線束の全ての電線の完全断線はかな り時間が経過した時点に発生するものである。しかしな がら、いずれかの導体線(即ち、最も屈曲寿命の短い中 心導体線)が断線するということは、その電線または電 線束の機能品質に大きな変化を伴うことから、この実施 の形態では、完全断線には至らないものの、いずれか一 本の導体線が断線するまでの寿命をもって、屈曲寿命と 称することにする。

【0016】 {第1の実施の形態} 以下、具体的な屈曲 寿命予測方法のうち、第1の実施の形態として、中心導 体線1の周囲に撚線2が撚られてなる電線(図5参照) の屈曲寿命予測方法について説明する。

【0017】図1は、この屈曲寿命予測方法の手順を示すフローチャートである。

【0018】まず事前工程としてのステップS1で、単一の電線の屈曲寿命と歪み変化量との相関関係を示すマスターカーブを予め取得する。マスターカーブは、実際に使用される中心導体線と同一材料の、例えば銅製の単品としての素線1について、図2のように所定の治具21、Z2を用いるなどして繰り返し曲げを施し(図2の例では治具Z2を治具Z1に対して矢示方向に往復移動させる)、その歪み変化量を例えばCAE解析等によって解析し、様々な歪み変化量について、屈曲寿命(断線

5

に至るまでの屈曲回数) を実際に測定することによって . 取得される。

【0019】図3は、電線の歪み変化量について説明するための図である。電線中の絶縁層の内部の導体線(単線)1の半径をraとする。導体線1は曲げ変形を受けており、その曲げ半径をRとすると、曲率KはK=1/Rで表される。このときに導体線1の表面に生じている歪み ϵ は次の(1)式のように表される。

[0020]

$$\varepsilon = 2 \pi (R + r a) / 2 \pi R - 1$$

= $(R + r a) / R - 1 \cdots (1)$

ここで、ドア部やシート部等の屈曲を受ける位置に配置

$$\Delta \epsilon = (R_1 + r a) / R_1 - (R_2 + r a) / R_2$$

$$= r a \cdot (1 / R_1 - 1 / R_2)$$

$$= r a \cdot \Delta K \qquad \cdots \qquad (2)$$

なお、(2)式において Δ Kは導体線1に繰り返し曲げを施したときの曲率の変化量であり、繰り返し曲げ時の導体線1の形状変化から有限要素法を用いたコンピュータ解析(いわゆるCAE解析(computer-aided engineering))によって算出することができる。その算出された Δ Kを、導体線1の各部位についてリストアップし、最も値の大きい Δ Kを採用して、(2)式から導体線1の表面の最大歪み変化量 Δ Eを求めることができる。

【0022】一方、屈曲寿命については、導体線1に繰り返し曲げを施して、断線に至るまでの屈曲回数を実際に測定することによって求める。常温下における電線等の全体的として断線は、その内部の各導体線1の金属疲労破壊に主として支配されているものであるが、屈曲寿命には温度依存性がある場合には、屈曲寿命の測定について必要な温度ごとに行うことが望ましい。

【0023】尚、マスターカーブの決定のために使用す なくる導体線1としては、実際の予測対象の電線等に使用さ またれている導体線及び絶縁材と同一の材料のものである必 30 る。 要があるが、その径については、必ずしも予測対象の電 場等に使用されているものと同一である必要がない。これは、導体線の径が異なる試料でマスターカーブを求め ておいても、予測対象となる導体線1の径に拘わらず当 該マスターカーブを適用できるという知見を、本願出願 して人による実験の結果得られたからである。 的続

【0024】図4は、得られたマスターカーブの一例を示す図である。同図の横軸は導体線1の表面の歪み変化量を示し、縦軸は屈曲寿命(断線に至るまでの屈曲回数)を示している。

【0025】図1に戻り、マスターカーブを取得した後、ステップS2に進み、屈曲寿命を予測する対象としている電線等の中心導体線の最大歪み変化量Δεを算出する。予測対象としている電線等の中心導体線の最大歪み変化量Δεは、コンピュータを用いた形状シミュレーションによって算出され、その電線等の取り付け状態、取り付け形状および取り付け後に受ける曲げ変形の態様

される導体線 1 において、その屈曲を受ける位置で最も屈曲した状態の導体線 1 の曲げ半径を R_1 とし、最も伸長した状態の導体線 1 の曲げ半径を R_2 として、この最も屈曲した状態と最も伸長した状態との間で導体線 1 に繰り返し曲げを施したときの当該導体線 1 の表面の歪み変化量を Δ ϵ とすると、 Δ ϵ は次の(2)式にて表される。

[0021]

等に基づいて、有限要素法を用いたCAE解析により算出する。なお、ここで算出する中心導体線の最大歪み変化量Δεは、マスターカーブを取得したときと同様の工程により求める。

【0026】具体的に、予測対象としている電線等の中心導体線の最大歪み変化量 Δ ϵ は、例えばまず電線等の初期形状を有限要素モデルとして仮想的にコンピュータ内に再現し、また実際の電線等の屈曲状況を設置される場所の動き(例えばドアの開閉動作等)をシミュレーションし、中心導体線について最も曲率半径の変化(1/ R_1 -1/ R_2)が大きい点について、上記(2)式に基づいて、その部分の最大歪み変化量 Δ ϵ を求める。尚、このような有限要素法によるコンピュータ解析の工程においては、電線等の実際の状況を有限要素モデルに再現することが重要であるため、内部の中心導体線1だけでなく、被覆材となる絶縁層の厚み、曲げ弾性等のさまざまな物性をも考慮して曲げ半径(曲率半径)Rを考慮する.

【0027】例えば、導体部の金属材料の曲げ弾性係数と、被覆層の絶縁材料の曲げ弾性係数を、その断面積比率によって重み付け平均し、導体部の金属材料と被覆層の絶縁材料とを平均化した仮想的な材料を想定する。そして、かかる仮想的な材料を1本の線部材(以下「仮想的線部材」と称す)として、その仮想的線部材の半径及びその曲げ半径を想定して形状を決定する。

【0028】このような工程を経た後、この実施の形態では、図3のように、電線等の中心導体線1のみについ 40 ての曲率半径R(すなわち、(2)式におけるR₁

R₁)を求めて最大歪み変化量 Δ ϵ を求める。このようにして、図5のように、中心導体線1の周囲に撚線2が撚られてなる電線の場合には、その内部の単一の中心導体線1のみを考慮して伸屈動作におけるそれぞれの曲率半径(R₁, R₂)を求める。

【0029】そして、(2)式に示したR₁(最も屈曲した状態の仮想的線部材の曲げ半径)及びR₁(最も伸

10

20

長した状態の仮想的線部材の曲げ半径)を考慮して、中 . 心導体線1の最大歪み変化量((2)式中のΔε)を算 出する。

【0030】次に、算出された予測対象となる導体線1 の最大歪み変化量を上記のマスターカーブ(図4)に照 合することによって、その電線等の全体としての屈曲寿 命を予測する (ステップS3)。既述したように、電線 等の屈曲寿命と、その中心導体線1の最大歪み変化量と の間の相関関係自体は、電線等及び中心導体線1の形状 に依存しない。従って、中心導体線1の最大歪み変化量 10 を算出することができれば、電線の径の如何によらず、 その屈曲寿命を正確に予測することができるのである。 なお、このことは本発明にかかる電線の屈曲寿命予測方 法が電線の径を全く考慮していないことを意味している のではなく、予測対象としている電線の最大歪み変化量 を(2)式を用いて算出する段階においてそれを考慮し ている。

【0031】このようにすれば、電線の径等の製品条件 によらず、その屈曲寿命を正確に予測することができる ため、ワイヤーハーネスの設計等にその予測結果を反映 20. することによって事前に机上検討が可能となり、最適設 計、開発期間の短縮を図ることができる。

【0032】尚、図6はマスターカーブと実験結果とを 比較する図である。尚、実験では、様々な径の導体部 (芯線)を有する電線を対象としている。この図6のよ うに中心導体線の最大歪み変化量と屈曲寿命との相関を プロットした結果、1本の単線での屈曲試験に基づいて 得られたマスターカープ上に、導体部の径に拘わらず、 実際の電線等の寿命がほぼ一致していることが解る。

【0033】 {第2の実施の形態} 上記第1の実施の形 30 態では、図5のように、撚線2の中心に中心導体線1が 形成されてなる電線の屈曲寿命予測方法について説明し たが、第2の実施の形態では、図7のように、それぞれ に芯線(中心導体線) 31を有する複数の電線33が束 ねられてなる電線束32の屈曲寿命予測方法について説 明する。尚、この実施の形態の屈曲寿命予測方法は、大 部分について第1の実施の形態と同様であるため、この 第1の実施の形態と異なる部分を中心に説明する。

【0034】まず、屈曲寿命予測の対象が電線束32の 場合は、複数の電線33が平行に配置されており、この 複数の電線33を電線束32としてまとめて屈曲させる 場合は、その曲げ半径において最も内周に位置する一本 の電線33aにおいて、最も曲率半径の変化(1/R) -1/R.) が大きいものとなる。したがって、この最 も曲率半径の変化が大きくなる一本の電線33aの中心 導体線31のみを屈曲寿命予測の対象とすることで、容 易に電線束の屈曲寿命予測を行うことができる。

【0035】まず、図1のステップS1のマスターカー ブの取得においては、第1の実施の形態で説明した方法 と何ら変化ない。

【0036】次に、ステップS2においては、屈曲寿命 予測の対象が図7のような電線束32である場合には、 全ての電線33の各(芯線)及び絶縁層の曲げ弾性係数 を、その各断面積比率によって重み付け平均し、導体部 の金属材料と被覆層の絶縁材料とを総合的に平均化した 仮想的な材料を想定して、電線東32全体としての形状 (屈曲形状及び伸長形状) を決定する。

【0037】そして、このように決定された電線束32 全体の形状中において、この電線束32内の複数の電線 33の芯線のうち、曲率半径の最も内側に位置して最も 曲率半径の変化が大きくなると予想される単一の電線3 3 a について、その電線33 a の中心導体線1のみの曲 率半径R(すなわち、(2)式におけるR, R,)の変 化を求める。

【0038】そして、かかる曲率半径R(すなわち、

(2) 式におけるR, R, について、当該電線33a の中心導体線31の径をraとして(2)式に代入し、 当該中心導体線 3 1 の表面の最大歪み変化量 Δ ε を算出 する。

【0039】そして、ステップS3において、その最大 歪み変化量Δεをマスターカープに当てはめ、これによ り電線等全体としての屈曲寿命を予測する。

【0040】尚、電線束32内の電線33が互いに撚ら れて配置される場合は、いずれの電線33の曲率半径の 変化が最も大きくなるか予測できない場合もあり得る。 この場合は、各電線33のそれぞれについて屈曲寿命予 測を行い、最も屈曲寿命の短いと予測された電線33の 屈曲寿命を、電線束32全体の屈曲寿命として予測すれ

【0041】このように、極めて容易に電線束32の屈 曲寿命予測を行うことができ、コンピュータの解析処理 にかかる負荷を大幅に低減し、且つ比較的正確に屈曲寿 命を予測できる。

【0042】以上この発明の各実施の形態について説明 したが、この発明の範囲は上記実施例に限られるもので はなく、添付された請求の範囲によって規定される。

[0043]

【発明の効果】請求項1ないし請求項4に記載の発明に よれば、少なくとも中央に中心導体線を有する電線また は電線束の屈曲による断線に至るまでの屈曲寿命を予測 する場合に、まず単線の最大歪み変化量と屈曲寿命の実 測値との相関関係を予め得ておき、予測対象となる電線 または電線束の中心導体線の最大歪み変化量を算出し て、この最大歪み変化量を相関関係に照合することによ って電線または電線束の屈曲寿命を予測するようにして いるので、特に被覆材である絶縁層にクラックが生じる 以前に芯線としての導体部が断線する場合の屈曲寿命を 容易に予測することができる。

【0044】この場合、複数の芯線を有する電線または 50 電線束の場合であっても、全ての芯線についての屈曲寿

10

命を予測せずに、いずれか単一の中心導体線の屈曲寿命 のみを予測するので、例えば有限要素法を用いたコンピュータ解析処理等で屈曲寿命の予測を行うような場合 に、有限要素モデルの設定及び最大歪み変化量の計算等 のコンピュータの計算処理負荷を大幅に低減することが 可能となる。

【図面の簡単な説明】

【図1】この発明の一の実施の形態に係る電線等の屈曲 寿命予測方法を示すフローチャートである。

【図2】マスターカーブを得るために行われる単線の屈 10 曲試験を示す図である。

【図3】中心導体線を示す図である。

【図4】マスターカーブを示す図である。

【図5】電線中に中心導体線が含まれる状態を示す図である。

【図 6 】マスターカーブに対して実験結果のデータをプロットした状態を示す図である。

【図7】電線束が屈曲した状態を示す図である。

【符号の説明】

- 1,31 中心導体線
- 3 絶縁層
- 2 芯線
 - 32 電線束
- 33 電線

【図1】

【図3】

【図2】

【図4】

【図5】

【図6】

【図7】

フロントページの続き

(51) Int. Cl. 7

識別記号

H 0 2 G 3/38

(72)発明者 井上 拓也

三重県四日市市西末広町1番14号 住友電

装株式会社内

(72)発明者 川北 有紀

三重県四日市市西末広町1番14号 住友電

装株式会社内

FI

テーマコード(参考)

H 0 2 G 3/28

F

(72)発明者 大内 孝司

大阪市此花区島屋1丁目1番3号 住友電

気工業株式会社大阪製作所内

(72)発明者 鍜治 幹雄

大阪市此花区島屋1丁目1番3号 住友電

気工業株式会社大阪製作所内

Fターム(参考) 2G055 AA13 BA11 EA01 EA08 FA01

2G061 AA07 AB05 AC03 BA15 CA03

CB05 EA02 EA04 EC02

5G363 AA20 BA02 DC03