Introduction to Electrical and Computer Engineering

Feedback Control (hidden principle/technology)

Gyro Boy

Segue

Booster Vehicle during Ascent

Balancing a Stick

Questions

- Which sticks harder to balance?
 - Smaller lengths
- What did the "Balancer" watch?
 - Stick angle
- Did the "Balancer's" position change?
 - Yes

"Balancer's Principal Parts

- Visual system measure stick angle
- Hand provides restoring force
- Brain computes the necessary hand commands

Balancer in Feedback with Stick

Gyro Boy's Principal Parts

- Gyros measure imbalance
- Motors provide restoring force (wheels)
- Computer computes the necessary motor commands

Gyro Boy's Gyros

Gyros

Gyro Boy's Servo Motors

Motors (servo motors)

Gyro Boy's Computer

Microcontroller (ARM family)

Gyro Boy's Feedback Loop

Feedback Loop Jargon

Feedback Loop Jargon (more)

- plant input = ?"force" produced by motors
- plant output = ? gyro boy's "tilt angle"

Example: Home Heating System

plant = house

actuator

= furnace

- plant input = ?
 "heat" produced and distributed by furnace
- plant output = ? house's temperature

controller + sensor

= thermostat

Example: Electric Grid

- plant input = ?
 "electric power"
 produced by
 generators
- plant output = ?
 "electric power"
 carried by grid &
 delivered to users

Example: Blood Oxygen

plant = red blood cell pool

- plant input = new red blood cells
- plant output = total blood hemoglobin

Example: Kidney Failure

plant = red blood cell pool

Standard Feedback Loop Block Diagram

Challenge: Express "Feedback Amplifier" as a Standard Feedback Loop

Adding Feedback to the OpAmp

- Providing a sample of output voltage of the OpAmp, back to its input, is a way that it can be controlled to keep it from reaching its extremes
- This is what is called feedback control, and is the topic of next week's module.

- feedback occurs when you connect part of the output back to the input
- positive feedback is when the return path reinforces the input signal
- negative feedback is when the return path partially cancels the input signal

Basic Op Amp Rules

- There are two basic rules for working with Op Amps when feedback is used
- 1.) Voltage V⁺ = V⁻
- 2.) Current $I_1 = I_2$

The reasons why these two rules exist, requires some in-depth analysis. This analysis is not part of this course. For now, just assume that these two rules govern the behavior of the Op Amp

Standard Feedback Loop Block Diagram

C.V. Hollot (2019-2020) 19

ENGIN 112 55 ... Hollot (2019-2022) 20

Systems Blocks

Example: Blocks are Amplifiers

Basic Feedback Loop Equation

Closed Loop Equations

$$y = Gp*u$$

$$s = Gs*y$$

$$c = Gc*s$$

$$u = Ga*c$$

Feedback Loop – Balancing a Stick

Feedback Loop - Balancing a Stick

Feedback Loop - Balancing a Stick - Simplify

Modelling the plant

Modelling the plant

Motions (rotational & translational)

Newton's Laws of Motion

$$Ma = \sum forces;$$
 translational

$$Ia = \sum torques;$$
 rotational

Law of Motion as Differential Equation (D.E.)

$$Ma = \sum forces$$

$$a = \frac{\Delta \text{ velocity}}{\Delta t}$$

$$= \frac{d}{dt} \text{ velocity}$$

$$= \frac{d}{dt} \frac{\Delta \text{ position}}{\Delta t}$$

$$= \frac{d}{dt} \frac{d}{dt} \text{ position}$$

$$= \frac{d}{dt} \frac{d}{dt} \text{ position}$$

$$= \frac{d^2}{dt^2} x$$

$$= \ddot{x}$$

$$M\ddot{x} = \sum forces$$

Newtons Law of Motion

$$Ma = \sum forces;$$
 translational

$$Ia = \sum torques;$$
 rotational

D.E. for the Hand-Stick

$$\ddot{\theta} - \frac{g}{\ell}\theta = \frac{1}{m\ell}f$$

$$\ddot{x} - \frac{g}{\ell} \ddot{x} = \ddot{f} - \frac{2g}{\ell} f$$

g = gravitational acceleration

D.E. Model of the plant

D.E. Solution

$$\ddot{\theta} - \frac{g}{\ell}\theta = \frac{1}{m\ell}f$$

take
$$f = 0$$

$$\ddot{\theta}(t) - \frac{g}{\ell}\theta(t) = 0; \quad \theta(0) \neq 0$$

$$\theta(t) = \frac{\theta(0)}{2} \left(e^{-\sqrt{g/\ell} t} + e^{\sqrt{g/\ell} t} \right)$$

D.E. Solution
$$\theta(t) = \frac{\theta(0)}{2} \left(e^{-\sqrt{g/\ell} t} + e^{\sqrt{g/\ell} t} \right)$$

Simulation

$$\ddot{\theta}(t) - \frac{g}{\ell}\theta(t) = 0; \quad \theta(0) \neq 0$$

Stabilizing the stick

The Chip That Changed the World

The Intel 4004 microprocessor, 1971.

Photo: Getty Images

Intel 4044
2.3K transistors
92K operations/sec

Apple M1 Max 57B transistors 10.4T flops

Stabilizing the stick

Stabilizing the stick

Bang-Bang Controller

force =
$$\begin{cases} -F, & \text{if } \theta > 0 \\ +F, & \text{if } \theta < 0 \end{cases}$$
$$F = \text{given value}$$

Secret Sauce #1

Secret Sauce #1 (the closed-loop DE)

$$\ddot{\theta} - \frac{g}{\ell}\theta = \frac{1}{m\ell}f$$

$$= -\frac{1}{m\ell}F(\theta)$$

$$\ddot{\theta} - \frac{g}{\ell}\theta + \frac{1}{m\ell}F(\theta) = 0; \quad \theta(0) \neq 0$$

Secret Sauce #2 (rule of positive coefficients)

$$\ddot{\theta} - \frac{g}{\ell}\theta + \frac{1}{m\ell}F(\theta) = 0; \quad \theta(0) \neq 0$$

Feedback system is stable, if the coefficients of

$$\theta$$
, $\dot{\theta}$ and $\ddot{\theta}$

are strictly positive.

$$\theta \to 0$$
 as $t \to \infty$

stick returns to 12'oclock

Stabilization of Hand-Stick (PD Control) -1

$$\ddot{\theta} - \frac{g}{\ell}\theta + \frac{1}{m\ell}F(\theta) = 0; \quad \theta(0) \neq 0$$

PD control:
$$F(\theta) = K_p \theta + K_d \dot{\theta}$$

$$\ddot{\theta} + \frac{K_d}{m\ell}\dot{\theta} + (\frac{K_p}{m\ell} - \frac{g}{\ell})\theta = 0; \quad \theta(0) \neq 0$$

The hand-stick system is stabilized, if both:

$$\frac{K_p}{m\ell} - \frac{g}{\ell} > 0$$

$$\frac{K_d}{m\ell} > 0$$

Examples

Suppose K_p and K_d are chosen so that the closed-loop D.E. are:

Closed-loop D.E.	Hand-stick system stable?
$\ddot{\theta} - \dot{\theta} + \theta = 0; \theta(0) \neq 0$	No, unstable
$\ddot{\theta} + \dot{\theta} + \theta = 0; \theta(0) \neq 0$	Yes, stable
$\ddot{\theta} + \dot{\theta} = 0; \theta(0) \neq 0$	No, unstable
$\ddot{\theta} + \dot{\theta} - \theta = 0; \theta(0) \neq 0$	No, unstable

Stabilization using PD control

$$\ddot{\theta} + \frac{K_d}{m\ell}\dot{\theta} + (\frac{K_p}{m\ell} - \frac{g}{\ell})\theta = 0; \quad \theta(0) \neq 0$$

The hand-stick system is stabilized when:

 K_p is positive enough K_d is positive

Stabilization of Hand-Stick (PD Control) - 2

D.E. for the Hand-Stick

$$\ddot{\theta} - \frac{g}{\ell}\theta = \frac{1}{m\ell}f$$

$$\ddot{x} - \frac{g}{\ell} \ddot{x} = \ddot{f} - \frac{2g}{\ell} f$$

g = gravitational acceleration

Stabilization of Hand-Stick (PD Control) - 3

Gyro Boy

Copyright 1990-2015 The MathWorks, Inc.

Self-Balancing Robot (Principles of Feedback Control)

- 1. Provided examples of feedback control systems and identified their principal parts (plant, sensor, controller and actuator)
- 2. Modeled the hand-stick system with a D.E.
- 3. Stabilized the hand-stick system with a PD controller