

Using

Binarized Neural Network

to

Compress DNN

Xianda (Bryce) Xu

xxu373@wisc.edu

November 7th

Why is model compression so important?

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Figure 1. AlexNet architecture

(ImageNet Large Scale Visual Recognition Challenge)

Top-1 accuracy: 57.1%

Top-5 accuracy: 80.2%

~ 60 M Parameters !

Problem 1: Computation Cost

$$A = \sigma(X \bullet W^T + B)$$

Multiplication is energy & time consuming!

Problem 2: Memory Cost

If float-32

60 M Parameters = 240 MB Memory!

However,

The energy and memory are limited on mobile devices and embedded devices!

How can we compress DNN?

What is BNN?

In brief, it binarizes parameters and activations to +1 and -1

Why should we choose BNN?

-- Reduce memory cost

Full-precision parameter takes 32 bits Binary parameter takes 1 bit

Compress network by 32-X theoretically

-- Save energy and speed up

Full-precision multiplication: ● Binary multiplication: ⊙ (XOR)

Multiply-accumulations can be replaced by XOR and bit-count

How do we implement BNN?

Problem 1: How to binarize?

-- Stochastic Binarization

$$w_b = \begin{cases} +1 & \text{with probability } p = \sigma(w), \\ -1 & \text{with probability } 1 - p. \end{cases}$$

where σ is the "hard sigmoid" function:

$$\sigma(x) = clip(\frac{x+1}{2}, 0, 1) = \max(0, \min(1, \frac{x+1}{2}))$$

-- Deterministic Binarization (**)

$$x^b = \operatorname{Sign}(x) = \begin{cases} +1 & \text{if } x \ge 0, \\ -1 & \text{otherwise,} \end{cases}$$

Though Stochastic Binarization seems more reasonable, we prefer deterministic binarization for its efficiency.

Problem 2: When to binarize?

- -- Forward propagation
- 1. First Layer:

We do not binarize the input but binarize the Ws and As

2. Hidden Layers:

We binarize all the Ws and As

3. Output Layer:

We binarize Ws and only binarize the output in training

-- Back-propagation

We do not binarize gradients in back-propagation But we have to clip weights when we update them

How do we implement BNN?

Problem 3: How to do back-propagation?

Recall: We calculate the gradients of the loss function L with respect to I_l , the input of the l layer.

$$g_l = \frac{\partial L}{\partial I_l}$$

The layer activation gradients:

The layer weight gradients:

$$g_{W_l} = g_l I_{l-1}^T$$

But since we use Binarizing function, gradients are all zero!

Straight-Through Estimator!

Straight-Through Estimator (STE)

Yoshua Bengio etc. Estimating or propagating gradients through stochastic neurons for conditional computation (15 Aug 2013).

Adapted, for hidden layers:

For the last layer:
$$g_{a_L} = \frac{\partial C}{\partial a_L}$$

For hidden layers: (map sign(x))

$$g_{a_k} = g_{a_k^b} 1_{|a_k| \le 1} \quad \text{STE}$$

$$g_{s_k} = BN(g_{a_k})$$
 Back Batch Norm

$$g_{a_{k-1}^b} = g_{s_k} W_k^b$$
 Activation gradients

$$g_{W_k^b} = g_{s_k}^T a_{k-1}^b$$
 Weight gradients

STE = The gradient on Htanh(x)

So, we use Htanh(x) as our activation function

$$H \tanh(x) = Clip(x, -1, 1)$$

How was my experiment?

The architecture of BNN in this paper (fed by Cifar-10).

The block

In this paper:

The validation accuracy 89%

My experiment:

The training accuracy 95%

The validation accuracy 84%

```
AlexNet
    Cifar-10:32x32x3
SpatialConvolution (Weight Only) 'VALID
    32x32x3 -> 32x32x128
BatchNormalization
HardTanh
SpartialConvolution 1
    32x32x128 -> 32x32x128
MaxPooling
    32x32x128 -> 16x16x128
BatchNormalization
HardTanh
SpartialConvolution 2
    16x16x128 -> 16x16x256
BatchNormalization
HardTanh
SpartialConvolution_3
    16x16x256 -> 16x16x256
MaxPooling
    16x16x256 -> 8x8x256
BatchNormalization
HardTanh
SpartialConvolution 4
    8x8x256 -> 8x8x512
BatchNormalization
HardTanh
SpartialConvolution_5
    8x8x512 -> 8x8x512
MaxPooling
    8x8x512 -> 4x4x512
BatchNormalization
HardTanh
FC_1
    8192 -> 1024
BatchNormalization
HardTanh
FC 2
    1024 -> 1024
BatchNormalization
HardTanh
FC 3
    1024 -> 10
BatchNormalization
```

https://github.com/brycexu/BinarizedNeuralNetwork/tree/master/SecondTry

The problems about the current BNN model?

Problems 1: Robustness Issue

BNN always has larger output change which makes them more susceptible to input perturbation.

Problems 2: Stability Issue

BNN is hard to optimize due to problems such as gradient mismatch. This is because of the non-smoothness of the whole architecture.

Gradient mismatch:

The effective activation function in a fixed point network is a non-differentiable function in a discrete point network

That is why we cannot apply ReLU in BNN!

Darryl D. Lin etc. Overcoming challenges in challenges in fixed point training of deep convolutional networks. 8 Jul 2016.

The potential ways to optimize BNN model?

Robustness Issue

- 1. Adding more bits?
 - -- Ternary model (-1,0,+1)
 - -- Quantization

Research shows that having more bits at activations improve model' robustness.

- 3. Adding more weights?
 - -- WRPN

Stability Issue?

- 1. Better activation function?
- 2. Better back-propagation methods?

2. Weakening learning rate?

Research shows that higher learning rate can cause turbulence inside the model, so BNN needs finer tuning.

- 4. Modifying the architecture?
 - -- AdaBoost (BENN)
 - -- Recursively using binarization

Table 4: Comparison with state-of-the-arts on ImageNet using AlexNet (W-weights, A-activation)

Method	W	A	Top-1
Full-Precision 34, 45	32	32	56.6%
XNOR-Net [45]	1	1	44.2%
DoReFa-Net[58]	1	1	43.6%
BinaryConnect[10, 45]	1	32	35.4%
BNN[27][45]	1	1	27.9%
BENN-Bag-5 (ours)	1	1	54.56%
BENN-Boost-5 (ours)	1	1	57.28%
BENN-Bag-8 (ours)	1	1	55.81%
BENN-Boost-8 (ours)	1	1	58.34%

More bits per network?

More networks per bit?

Thank you!

xxu373@wisc.edu