Support Vector Machines

Aarti Singh

Machine Learning 10-601 Nov 17, 2011

At Pittsburgh G-20 summit ...

Linear classifiers – which line is better?

Pick the one with the largest margin!

Parameterizing the decision boundary

Maximizing the margin

Distance of closest examples from the line/hyperplane

margin =
$$\gamma = a/\|\mathbf{w}\|$$

Maximizing the margin

Support Vector Machines

Support Vectors

Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

How many support vectors in linearly separable case, given d dimensions?

What if data is not linearly separable?

Use features of features

$$x_1^2, x_2^2, x_1x_2,, exp(x_1)$$

But run risk of overfitting!

What if data is not linearly separable?

Allow "error" in classification

min
$$\mathbf{w}.\mathbf{w} + C$$
 #mistakes s.t. $(\mathbf{w}.\mathbf{x}_i+b)$ $y_i \ge 1$ $\forall j$

Maximize margin and minimize # mistakes on training data

C - tradeoff parameter

Not QP ⊗

0/1 loss (doesn't distinguish between near miss and bad mistake)

What if data is not linearly separable?

Allow "error" in classification

Soft margin approach

$$\min_{\mathbf{w},b,\xi} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

$$\xi_{j} \ge 0 \quad \forall j$$

 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Soft-margin SVM

Soften the constraints:

$$(\mathbf{w}.\mathbf{x}_{j}+b) \mathbf{y}_{j} \ge 1-\xi_{j} \quad \forall \mathbf{j}$$
$$\xi_{j} \ge 0 \quad \forall \mathbf{j}$$

Penalty for misclassifying:

$$C \xi_i$$

How do we recover hard margin SVM?

Soft-margin SVM

Support Vectors

Slack variables – Hinge loss

Regularized loss function

$$\xi_j = \operatorname{loss}(f(x_j), y_j)$$

$$f(x_j) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x_j} + \mathbf{b})$$

Regularization loss

$$\min_{\mathbf{w},b,\xi} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

$$\xi_{i} \ge 0 \quad \forall j$$

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Hinge loss

SVM vs. Logistic Regression

SVM: **Hinge loss**

$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Logistic Regression: Log loss (-ve log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

What about multiple classes?

One against rest

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - -0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs

SVMs reminder

Soft margin approach

Regularization Hinge loss

min
$$\mathbf{w}.\mathbf{w} + C \Sigma \xi_j$$
 \mathbf{w},b,ξ

s.t. $(\mathbf{w}.\mathbf{x}_j+b) \ \mathbf{y}_j \geq 1-\xi_j \ \forall j$
 $\xi_j \geq 0 \ \forall j$

Essentially a constrained optimization problem!

Constrained Optimization

$$\min_x \ x^2$$
 s.t. $x \ge b$

Constrained Optimization

Primal problem:

$$\min_x x^2$$

s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

 α = 0 constraint is ineffective α > 0 constraint is effective

Dual problem:
$$\max_{\alpha} d(\alpha) \longrightarrow \min_{x} L(x,\alpha)$$
 s.t. $\alpha > 0$

• Primal problem: minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$

w - weights on features

• Lagrangian:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \geq 0, \ \forall j$$

$$\alpha - \text{weights on training pts}$$

 $\alpha_j = 0$ constraint is ineffective $(w.x_j+b)y_j > 1$ (not a support vector) $\alpha_j > 0$ constraint is effective $(w.x_j+b)y_j = 1$ (point j is a support vector)

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for α s (dual problem), then we have a solution for \mathbf{w} ,b (primal problem)

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

$$\alpha_{j} \ge 0, \ \forall j$$

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j} \qquad \sum_{j} \alpha_{j} y_{j} = 0$$

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

$$\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$

 $w.x_k+b=y_k$ (w.x_k+b)y_k = 1 (Dise support vectors to compute b

Dual SVM Interpretation: Sparsity

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_j s can be non-zero : where constraint is tight

$$(\mathbf{w}.\mathbf{x}_i + \mathbf{b})\mathbf{y}_i = 1$$

Support vectors – training points j whose α_i s are non-zero

Dual SVM – non-separable case

Primal problem:

minimize_{w,b}
$$\frac{1}{2}$$
w.w + $C \sum_{j} \xi_{j}$ $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j$ $\xi_{j} \geq 0, \ \forall j$

 $\begin{bmatrix} \alpha_j \\ \mu_j \end{bmatrix}$

Dual problem:

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha,\mu) \\ s.t.\alpha_j &\geq 0 \quad \forall j \\ \mu_j &\geq 0 \quad \forall j \end{aligned}$$

Dual SVM – non-separable case

$$\begin{aligned} & \max \mathsf{imize}_{\alpha} \quad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned} \\ & \mathsf{comes from} \quad \frac{\partial L}{\partial \mu} = \mathbf{0} \quad \begin{aligned} & \underbrace{\mathbf{Intuition:}}_{\mathsf{Earlier - If constraint violated, } \alpha_{i} \neq \infty} \\ & \mathsf{Now - If constraint violated, } \alpha_{i} \leq \mathbf{C} \end{aligned}$$

Dual problem is also QP Solution gives α_i s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

 There are some quadratic programming algorithms that can solve the dual faster than the primal, specially in high dimensions m>>n

• But, more importantly, the "kernel trick"!!!