Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03 October 2022
Team ID	PNT2022TMID14753
Project Name	A Novel Method for Handwritten Digit Recognition
	System
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Image Data	Handwritten digit recognition refers to a computer's capacity to identify human handwritten digits from a variety of sources, such as photographs, documents, touch screens, etc., and categorise them into ten established classifications (0-9). In the realm of deep learning, this has been the subject of countless studies.
FR-2	Digit Classifier Model	To train a convolutional network to predict the digit from an image, use the MNIST database of handwritten digits. get the training and validation data first
FR-3	Cloud	The cloud offers a range of IT services, including virtual storage, networking, servers, databases, and applications. In plain English, cloud computing is described as a virtual platform that enables unlimited storage and access to your data over the internet
FR-4	Website	Web hosting makes the code, graphics, and other items that make up a website accessible online. A server hosts every website you've ever visited. The type of hosting determines how much space is allotted to a website on a server. Shared, dedicated, VPS, and reseller hosting are the four basic varieties
FR-5	Modified Dataset	The abbreviation MNIST stands for the MNIST dataset. It is a collection of 60,000 tiny square grayscale photographs, each measuring 28 by 28, comprising handwritten single digits between 0 and 9.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	One of the very significant problems in pattern
		recognition applications is the recognition of
		handwritten characters. Applications for digit

		recognition include filling out forms, processing
		bank checks, and sorting mail.
NFR-2	Security	1) The system generates a thorough description of
		the instantiation parameters, which might reveal
		information like the writing style, in addition to a
		categorization of the digit.
		2) The generative models are capable of
		segmentation driven by recognition.
		3) The procedure uses a relatively.
NFR-3	Reliability	The samples are used by the neural network to
		automatically deduce rules for reading handwritten
		digits. Furthermore, the network may learn more
		about handwriting and hence enhance its accuracy
		by increasing the quantity of training instances.
		Numerous techniques and algorithms, such as Deep
		Learning/CNN, SVM, Gaussian Naive Bayes, KNN,
		Decision Trees, Random Forests, etc., can be used to
		recognise handwritten numbers
NFR-4	Performance	With typed text in high -quality photos, optical
		character recognition (OCR) technology offers
		accuracy rates of greater than 99%. However,
		variances in spacing, abnormalities in handwriting,
		and the variety of human writing styles result in less
		precise character identification.
NFR-5	Availability	There are some limitations in the handwritten digit
		string dataset for acquiring the data for prediction
		model.