CO and NO-induced disintegration of Rh, Pd, and Pt nanoparticles on TiO₂(110): *ab initio* thermodynamics study

Bryan R. Goldsmith, Evan. D. Sanderson, Runhai Ouyang, Wei-Xue Li

University of California, Santa Barbara Dalian Institute of Chemical Physics

Increasing catalyst durability and recyclability is important

Pollution control

Alternative energy

Nanoparticle disintegration is a common phenomena

Nanoparticle disintegration can cause catalyst deactivation

McClure, S. M.; Lundwall, M. J.; Goodman, D. W. Proc. Natl. Acad. Sci. 2011, 108, 931

Or, Nanoparticle disintegration can redisperse agglomerated particles

Energetics of supported nanoparticles

Average energy of particle per atom

$$\Delta E_{NP} = \frac{3\Omega \gamma_{me}}{R}$$

What about the effect of reactants?

Reactant adsorption lowers particle surface energy

In presence of gases

Average energy of particle per atom

$$\Delta \overline{E}_{NP} = \frac{3\Omega \overline{\gamma}_{me}}{R}$$

$$\frac{1}{\gamma_{me}} = \sum_{i} f_{i} [\gamma_{i} + \Delta \gamma_{i} (T, P)]$$

Change in surface energy due to reactant adsorption

Disintegration can be modeled by the Gibbs Free Energy

$$\Delta G_{\text{disintegration}}\left(R,T,p\right) = G_{\text{adatom-complex}} - G_{\text{reactant}} - G_{\text{nanoparticle}}$$

Free energy of disintegration via adatom complex formation

Ouyang, R.; Liu, J.-X.; Li, W.-X. J. Am. Chem. Soc. 2013, 135, 1760

Disintegration can be modeled by the Gibbs Free Energy

Towards controlling nanoparticle disintegration

- Between supported Rh, Pd and Pt catalysts, which one is more susceptible to the disintegration?
- Among NO and CO, which one is more efficient for catalyst redispersion?
- How sensitive do these results depend on the particle size, temperature and pressure?

Density Functional Theory modeling using VASP

- Projector Augmented Wave method
- RPBE Functional
- Plane wave kinetic energy cutoff = 400 eV
- Forces converged to 0.03 eV/Å

(4x2) Rutile $TiO_2(110)$

Periodic model

Vacuum layer thickness of 15 Å

Modeling reduction in surface energy due to reactant adsorption

$$\overline{\gamma}_{me}(T,P) = \sum_{i} f_{i}[\gamma_{i} + \Delta \gamma_{i}(T,P)] \approx \gamma_{me}^{111} + \Delta \gamma_{me}^{111}(T,P)$$

CO binding on (111) facet

Temperature ↓, Pressure ↑, Coverage ↑

CO and NO bind strongest to Rh metal compared to Pd and Pt metals

$$\overline{\gamma}_{me}(T,P) = \sum_{i} f_{i}[\gamma_{i} + \Delta \gamma_{i}(T,P)] \approx \gamma_{me}^{111} + \Delta \gamma_{me}^{111}(T,P)$$

Effects of chemical potential and particle size on particle energy

$$\Delta \overline{E}_{NP} = \frac{3\Omega \overline{\gamma}_{(111)}}{R}$$
 contours

Adatom formation energies are large and endothermic

Formation energy =
$$E_{\rm adatom/support} - E_{\rm support} - E_{\rm bulk}$$

Reactant binding stabilizes formation of adatoms

Formation energy = 0.75 eV

-1.35 eV

Rh(CO)₂ and Rh(NO)₂ have more favorable formation energies than Rh(CO) and Rh(NO)

Formation energy = 0.75 eV

 $Rh(CO)_2$

-1.35 eV

-1.58 eV

The interaction of CO and NO with Rh adatom is greater than for Pd and Pt adatoms

Formation	Rh	Pd	Pt
energy			
Metal(CO)	0.75	0.26	0.09
Metal(CO) ₂	-1.35	-0.54	-0.69
Metal(NO)	-0.02	-0.05	-0.10
Metal(NO) ₂	-1.58	-0.67	-0.68

Exothermic formation energy promotes particle disintegration

Energies are in eV.

The interaction of CO and NO with Rh adatom is greater than for Pd and Pt adatoms

Formation	Rh	Pd	Pt
energy			
Metal(CO)	0.75	0.26	0.09
Metal(CO) ₂	-1.35	-0.54	-0.69
Metal(NO)	-0.02	-0.05	-0.10
Metal(NO) ₂	-1.58	-0.67	-0.68

Exothermic formation energy promotes particle disintegration

Energies are in eV.

Gas phase metal complexes not considered in disintegration analysis

- Higher order complexes also preferred gas phase
- These complexes not observed in experiments bound to support
- May play a role in gas phase ripening

In agreement with experiment, Rh(CO)₂ predicted to form but not Rh(CO)

Also in agreement with experiment, Rh(NO)₂ predicted to form but not Rh(NO)

Rh/TiO₂(110) more responsive to CO and NO-induced disintegration than Pd or Pt

Experimentally^[1] Rh(CO)₂, d < 60 ÅComputed Rh(CO)₂, d < 40 Å

[1] Berkó, A.; Szökő, J.; Solymosi, F. Surf. Sci. 2004, 566, 337

Disintegration can be predicted using *ab initio* thermodynamics

- Rh/TiO₂(110) most susceptible to CO and NO-induced disintegration
- NO is a more efficient reactant for particle disintegration than CO

Future work

Include gas phase disintegration, adatom translation, and particle size-dependent binding energies!

Acknowledgements

Evan D. Sanderson Dr. Runhai Ouyang Prof. Wei-Xue Li Prof. Baron Peters

