LITTLE (ARTHUR D) INC CAMBRIDGE MASS

EXPERIMENTAL STUDY OF FLAME CONTROL DEVICES FOR CARGO VENTING S--ETC(U)

SEP 78 R P WILSON, D P CROWLEY

DOT-CG-42357-A AD-A063 008 UNCLASSIFIED HSCG-D-70-78 MI 10F2 AD 63008

AD AO 63008

DDC FILE COPY

LEVELY,

EXPERIMENTAL STUDY OF FLAME CONTROL
THEVICES FOR CARGO VENTING SYSTEMS

D. P. CROWLEY
R. P. WILSON, JR.

FINAL REPORT SEPTEMBER 1978

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

Prepared for

NOTICE

This document is discontinued under the sponsorriely of the Dispreparent of Transportation in the interest of interestion backungs. The United States Commercial seasons no liability for its continue or use disput.

The community of this report do not receivedly reliest the official view or policy of the Coast Guard; and they do not received a standard, appellication, or regulation.

This report, or portions thereof may not be used for infrarding or sales promotion purposes. Citation of trade names and instructions or does not constitute endorsement or approval of such products.

18)USCG **Technical Report Documentation Page** 3. Recipient's Catalog No. 2. Government Arression No. Experimental Study of Flame Control Devices for Cargo Venting Systems. Perfecting Organization Report No. R. P. Wilson, Jr. P./Crowley Arthur D. Little, Inc. Acorn Park DOT-CG-42357-A Cambridge, Mass. 02140 Type of Report and Period Covered 12. Spansoring Agency Name and Address Final Kepert. United States Coast Guard Department of Transportation 400 Seventh Street, SW, Washington, D.C. 20590 15 Supplementary Notes 14 Abstract Experiments were performed to determine the critical dimensions of flame arrestor elements which will prevent flames from traveling into bulk cargo tanks through the venting system. Based on the tests, the design criteria are more stringent than proposed by Wilson and Atallah (DOT Report CG-D-157-75). The passageway diameter apparently must be less than 40% of the published laminar-flame quenching diameter of the product (fuel) to be vented. In addition, the length of the arrestor apparently must D SUB H be greater than $1000 \, D_H^{\, 2}$, where $D_H^{\, 2}$ is the critical passageway diameter in inches. This second criterion applies to methane, acetaldehyde, toluene, methyl alcohol, gasoline, and butane flames of up to 200 ft/sec approach flame speed. For acetylene/air and ethylene/air, no available arrestor exhibited consistent quench for the present test conditions. Experiments were also performed to determine the conditions for using steam injection or a high-velocity relief valve to prevent flame passage into a vent system. 17. Key Words 18. Distribution Statement Document is available to the public Flame Control Cargo Tank Vents through the National Information Methane Service, Springfield, Virginia 22151 Ethylene 21. No. of Pages | 22. Price 19. Security Classif. (al this report) 20. Security Classif. (of this page) Unclassified Unclassified Form DOT F 1700.7 (8-72) 208 850

016

1B

	į	1.1	23i	233	**	install	1.
	1		7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	square inches square yards square miles acres	ounces pounds short lors	fluid concess pents quarts quarts gallons cubic feet cubic yards	Fahrenheit semperature programme per per per per per per per per per pe
cione from Morrie	Maltiply by LENGTH	200	. 333 0.5 AREA	0.16 1.2 7) 2.5 MASS (weight)	0.035 2.2 1.1 VOLUME	0.03 2.1 1.06 0.26 38 1.3 TEMPERATURE (exect)	2/5 (then add 22) add 22) 00 44 120
Antaxians Causains for Beis Beis B	West Yes Kee	milliameters	Miles	squere contineters squere informers squere is (10,000 m²)	prame kilograms tonnes (1000 kg)	militions liters liters cubic meters cubic meters	Celsius temperature 3 % 40 40 40 40 40 40 40 40 40 40 40 40 40
		£ 8	5	<u> ት</u> ጐ ኔ ቋ	.7.	ī?î	,
ez 	122 12 11	30 50	9 2t 9				
.		inla.	ichthat.			''''''	1 inches
	į		5 É E \$	17711	.7.	77T	°C °C
Messures	Į		Centimeters Centimeters maters kilometers	aguare centimeters aguare meters aguare inicipaters aguare kilometers hectares	grams kilograms tonnes	militiors militiors militiors militiors liters liters cubic meters cubic meters	Celsius Lemperature Lebies, see MBS Misc. P.
Approximate Conversions to Metric	Martiphy by	LENGTH	2.5 30 0.9 1.6	6.5 0.09 0.8 2.6 0.4 MASS (weight)	28 0.46 0.9 VOLUME	5 30 30 0.24 0.24 0.36 0.38	TEMPERATURE (exact) 5/9 (after subtracting 32) 32) set conventions and more detailed set 235, SD Cetalog No. C13,10286.
Appreximate Conv	P 1 1 1			square inches square feet square yards square miles acres	ounces pounds short tons (2000 lb)	transpoons third ounces capes prints quarta gallons cubic feet	F. Fahrenheit 5/9 (after Celsius emperature subcracting temperature 32) 1 in 1 254 (exactiv). For other exact conversions and more detailed tables, see NBS Misc. Publ. 286, Units of Meaghts and Measures, Price \$2.25, 50 Causing No. C13.10.286.
	j		sell	3533	**	111.1112	or 1 m s 2.54 lease: Units of Weights and

ACKNOWLEDGEMENTS

Lieutenant Michael Flessner of the Marine Safety Branch,
Division of Applied Technology, Office of Research and Development,
United States Coast Guard, contributed substantially in both the
planning and interpretation of the experiments reported herein.
The experimental tests were conducted by William Lyle of Arthur D. Little,
Inc., who also modified the test facility as necessary for various
phases of the work.

TABLE OF CONTENTS

	Uses an the Allect of Max Temperature on	PAGE
	and branches for the manner and branches	
ı.	BACKGROUND AND SUMMARY OF FINDINGS	1
	A. Background	1
	B. Summary of Findings	2
	C. Non-obstructive Device Tests	4
11.	EXPERIMENTAL METHODS	6
	A. Test Facility Description	6
	B. Fuel Vaporization System	12
	C. Control and Instrumentation	16
	D. System Characteristics	25
111.	FLAME ARRESTOR DESIGN REQUIREMENTSTEST RESULTS FOR METHANE AND ETHYLENE	30
	A. Methodology to Estimate Design Requirements	30
	B. Experimental Conditions	31
	C. Results of Methane/Air Tests	34
	D. Results of Ethylene/Air Tests	42
IV.	FLAME ARRESTOR DESIGN REQUIREMENTS-TEST RESULTS FOR TEN PRODUCTS	47
	A. Test Conditions	47
	B. Test Results and Discussion	47
	C. Acetaldehyde/Air Flame Quench Requirements	51
	D. Butane/Air Flame Quench Requirements	63
	E. Acetylene/Air Flame Quench Requirements	63
	F. Ether/Air Flame Quench Requirements	64
	G. Gasoline Vapor/Air Flame Quench Requirements	65
v.	TESTS OF NON-OBSTRUCTIVE DEVICES FOR FLAME CONTROL	67
	A. Steam Snuffing Tests	67
	B. High Velocity Valve Tests	74
APPE	NDIX ATABULATION OF TEST DATA	81
	Table A-1Data on Effect of Equivalence Ratio	82

TABLE OF CONTENTS (continued)

25 F 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7 M 7	PAGE
Table A-2Data on the Effect of Gas Temperature on Flame Speed	85
Table A-3Test Results for Methane and Ethylene	86
Table A-4Test Results for Ten Products (Fuels)	104
base of	dond A
REFERENCES	112

analy / baod lagraed more a

1. BACKGROUND AND SUMMARY OF FINDINGS

A. Background

Flammable mixtures of cargo vapor and air are expelled from cargo tank venting systems, particularly during the loading process. In order to prevent flame ingestion from an ignition source on deck, flame control devices are installed at or near the vent exits, and these devices are designed to meet Coast Guard specifications.

As part of a wide-ranging study of vent system hazards (Contract No. DOT-CG-42357-A), Arthur D. Little, Inc. has examined, through theory and experiment, how flame arrestors must be designed in order to stop flames for common hydrocarbon products. The theoretical findings were published earlier as DOT Report No. CG-D-157-75 (Wilson and Atallah (1975)), and the present report complements that work with a comprehensive set of empirical tests covering three aspects of flame control devices:

- <u>Critical design values</u> of passageway diameter and length adequate to stop flames of methane/air and ethylene/air: Arrestor types included perforated plate, parallel plate, and crimped ribbon.
- Relationship of product type to arrestor design criteria: Devices which have been proven to control flames of methane/ air or ethylene/air may not necessarily work on products having different carbon/hydrogen ratio, flame temperature, or laminar flame velocity. Tests were performed on mixtures of air with ten product fuels: ethyl ether, methyl alcohol, acetaldehyde, gasoline, toluene, carbon disulfide, butadiene, hydrogen sulfide, acetylene, and butane.
- Non-obstructive control devices: Performance tests were carried out on the high-efflux-velocity nozzle and the steam snuffer, each of which offers the advantage of minimum restrictions to the flow.

The findings of this experimental program are summarized below.

Reference should be made to two-related Arthur D. Little, Inc. studies of flame arrestors, performed for USCG as part of the present contract: First, the performance of seven (7) commercially available flame arrestors was tested for butane and gasoline flames (Wilson and Crowley (1978a)); the motivation for this work was the potential need for arrestors in gasoline vapor recovery systems. Second, measurements were made of arrestor heat-up by a flame which is stopped but stabilized (not extinguished) (Wilson and Crowley (1978a)), with a view to determining possible revisions to the design criteria to insure that arrestors can control stabilized flames for some reasonable period.

B. Summary of Findings

Test results showed that the maximum safe aperture diameter ranges from 30-70% of the published laminar-flame quenching diameter for practical flame configurations in cargo venting systems. The following values were found for the fuels tested:

Fuel	Quenching diameter*	Largest D _H which gave consistent quench	Fraction of the quenching diameter
Methane	.110"	.057"	50%
Ethylene	.060"	less than .018" le	ess than 30%
Acetaldehyde	.063"	.035"	56%
Toluene	.100"	.069"	69%
Methyl alcohol	.051"	.035"	69%
Gasoline vapor	.094"	.043"	46%
Butane	.015"	.038"	36%
Ethyl ether	.089"	(.015")	(17%)**
Carbon disulfide	.028"	.021"	75%
Hydrogen sulfide	.051"	(.015")	(30%)**
Acetylene	.028"	less than .015" le	ss than 54%
Butadiene	.059"	(.015")	(25%)**

^{*}See Wilson and Atallah (1975).

^{**}Range of D_{H} tested was limited; maximum safe D_{H} may be larger.

The finding that the limiting diameter is only a fraction of the reported quenching diameter is corroborated by many earlier investigations including Swan et al (1932), Holm (1933), Palmer (1958), Mansfield et al (1956), Scott et al (1962), and Muller-Hillebrand (1938). The implication is that the quenching diameter itself is not a reliable design guideline because all practical flame configurations are turbulent, even for very short run-up lengths. Arrestors must be designed with apertures of diameter less than about 40% of the smallest quenching diameter of the products (fuels) to be vented.

In addition, another criterion for flame quenching is required; this second criterion accounts for the deceleration of a flame and the transition from turbulent to laminar propagation. For this second criterion, the test results for methane support a correlation of the form $L/D_{\mu}^{2} > 1000 \text{ in}^{-1}$, as proposed by Wilson and Atallah. The value 1000 in^{-1} includes a safety factor and is applicable for flame speeds up to 200 ft/sec. Typical passageway dimensions which meet this design criterion are:

The actual experimentally determined borderline combinations of (L, D_{H}) were different for parallel plate and crimped ribbon:

Parallel plate
$$L/D_H^2 = 600 \text{ in}^{-1}$$

Crimped ribbon $L/D_H^2 = 300 \text{ in}^{-1}$

This is attributed to differences in the boundary layer heat transfer mechanisms. These values of critical $L/D_{\rm H}^{\ 2}$ are consistent with the boundary layer growth explanation of Wilson and Atallah (1975), which gave $L/D_{\rm H}^{\ 2}$ = .01 S_t/ ν in any units. The values of 600 and 300 in are larger than corresponding dimensions of arrestors which quenched methane/air flames according to Wolfhard and Brusak (1960), Maekawa (1975),

Hulsberg (1975), and Busch (1975); but agree with the experimental data of Loisson et al (1954).

The experimental results showed that there was no arrestor in our collection which could consistently quench ethylene/air flames, and therefore the ${\rm L/D_H}^2$ criterion could not be tested for ethylene. The arrestor of L = 1.5 in, ${\rm D_H}$ = .015 in appeared to be borderline; the ${\rm L/D_H}^2$ of this arrestor was 6700 in $^{-1}$, a factor of 20 greater than obtained for crimped ribbon/methane-air. The flame speeds were generally higher and more erratic (400 \pm 300 ft/sec) in the ethylene/air tests. Published data by Busch (1957) and Langford, Palmer, and Tonkin (1961) show that certain arrestors will quench ethylene/air flames if the flame speeds are low enough (below 20 ft/sec).

Crimped-ribbon arrestor tests for acetaldehyde, toluene, methyl alcohol, gasoline vapor, and butane support a suggested design criterion of $L/D_{\rm H}^{\ 2} > 1000$ in $^{-1}$, with observed minimum $L/D_{\rm H}^{\ 2}$ values ranging from 184 to 1040 in $^{-1}$. Limited test results showed that ethyl ether, carbon disulfide, hydrogen sulfide, and butadiene apparently require arrestors of smaller passageway diameter and larger length, with observed minimum $L/D_{\rm H}^{\ 2}$ values ranging from 1700 to 6700 in $^{-1}$. For acetylene-air mixtures, none of the arrestors showed consistent quench, down to $D_{\rm H}^{\ 2} = .015$ " and L = 1.5".

C. Non-Obstructive Device Tests

A continuous steam flow of 30 lb/hr (13.8 cfm), which was approximately two times the volumetric mixture flow through the test section, was more than adequate to quench ethylene/air flames ignited 4-1/2 feet downstream of the injector. For pulsed steam injection, up to 2.7 cu ft of steam (which exceeds the test section volume) was inadequate to quench ethylene/air flames. However, for methane/air, a pulsed injection of 0.4 cu ft of steam (approximately 1/5 the test section volume) was just sufficient to quench the flame.

A high-velocity relief valve preset for 1.5 psi was tested by igniting the vented flammable mixture downstream of the valve. The tests were designed to see whether flashback could be prevented under the most demanding operating conditions (e.g., flow rates down to 2.5 cfm, compared to nominal design flows of 100 cfm). The results showed that flame blow-off occurred for methane/air flows exceeding 6.4 cfm, and below this value, flames stabilized but did not flashback through the valve seat.

II. EXPERIMENTAL METHODS

A. Test Facility Description

1. General

The flame arrestor apparatus consists of a 6" cylindrical test section, controls and instrumentation. A controlled flow of a specified flammable gas mixture is allowed to pass through the test section (containing the flame arrestor) and is ignited at the start of the test by a spark discharge. The resulting combustion wave accelerates toward the arrestor. The performance of the arrestor is automatically recorded. A photograph and schematic of the apparatus are given in Figures 1 and 2, respectively.

2. Test Section

Referring to Figure 2, the test section consists of 6-inch diameter vertical pipe (schedule 40), 17 feet high, with a flame arrestor housing located midway up the pipe. Provisions for both mixture preparation and pressure relief are at the base of the pipe which is connected to a 6-inch "Tee." A 6-inch diameter by 6-feet-long pipe extends horizontally from the Tee and is capped with an airtight 3-mil polyethylene blow-out membrane. Its purpose is to relieve the pressure rise during combustion. The remaining leg of the Tee is connected to a compressed air supply with appropriate flow conditioning devices.

The actual flame arrestor device is located midway up the vertical pipe section, 7.75 feet up from the top of the Tee. To permit testing of special arrestor designs fabricated at ADL, a special universal arrestor mount was fabricated using a Varec 50SG arrestor housing. (See Figure 3.)

The flame run-up distance could be controlled by adjusting the ignitor location using pipe sections of various lengths above the flame arrestor. In standard configuration, the ignitor was placed 56" above the arrestor housing flange near the top of a 64" section of pipe. This

FIGURE 2. FLAME ARRESTOR TEST APPARATUS

FIGURE 3 HOUSING FOR EXPERIMENTAL FLAME ARRESTORS

arrangement put the ignitor 66-68" from the arrestor, depending on arrestor thickness. An orifice plate was attached 8" above the ignitor in order to control the expansion of burned gas and thereby control flame acceleration. For example, a 3" diameter office was used to generate high speed flames (50-500 ft/sec), whereas an open pipe was used for low speed flames (below 50 ft/sec). An 18" long pipe extension was installed above the orifice plate. An 18" diameter exhaust duct (3000-CFM capacity) was located 12" above the end of the pipe extension.

3. Fuel Injection

Cargo fuel gas or vapor was introduced at the test pipe elbow shown in Figure 2 via an injection nozzle illustrated in Figure 4. The nozzle was designed to introduce fuel gases under turbulent conditions so that adequate mixing with combustion air would occur prior to the region of the flame arrestors. The nozzle consisted of a sealed 5/8" diameter tube and having 25 holes, 0.072" diameter, drilled in line on 0.15" centers. The tube diameter was selected as a plenum whose cross-sectional area (approx 0.27 in²) was at least twice the total area of the orifices (0.10 in²), thus ensuring an even exit distribution of fuel gas. The line of holes centered in the test pipe was oriented downstream. Discharged into the turbulent wake of the nozzle, fuel gas mixed rapidly with the passing air. Tests of homogenity of the fuel/air mixture downstream of the nozzle are discussed in Section B.2.

A chromel/alumel thermocouple* was used to measure the temperature of the fuel vapor in the interior of the fuel nozzle (see Figure 4). The fuel inlet temperature and the local barometric pressure were used to obtain corrected fuel flow rates for those fuels which were vaporized from the liquid state.

Flow rates of those fuels available in high pressure cylinders were obtained using a 0.6 mm calibrated sapphire orifice and a Matheson Model 635612 pressure gage positioned immediately upstream of the orifice. A Matheson Model FM411X micro filter was placed between the pressure gage

^{*}Omega Engineering, inconel sheath type

FIGURE 4 FUEL VAPOR SUPPLY NOZZLE

and the fuel supply regulator to prevent foreign matter from obstructing the 0.6 mm orifice.

After adjusting for proper flow rate conditions, fuel vapor was introduced into the test pipe upon manual activation of the fuel supply solenoid valve. The fuel supply solenoid valve was automatically closed by a photosensor circuit upon flame passage through the arrestor, as discussed later.

Having determined the fuel flow rate, the combustion air flow rate was adjusted to achieve the desired equivalence ratio.

4. Air Introduction

Air was introduced at the base of the test pipe elbow as shown in Figure 2. Regulated air flow was provided by an air compressor system which included appropriate moisture traps, pressure regulator, throttling valve, check valve and flow metering system. The flow metering system consisted of a Meriam Model 50MW20-1F laminar flow element with air filter and an Ellison Model 1N inclined manometer. Air temperature was measured using a grounded sheath-type thermocouple located at the exit end of the LFE flowmeter. The thermocouple was connected via a selector switch to a digital voltmeter (DVM, Dana Model 4470). A crushed ice bath was used to give a reference temperature for all thermocouples.

B. Fuel Vaporization System

Conversion of liquid cargo to vapor took place in the vapor generator shown in Figure 5. The packed column consisted of a 3-3/4" I.D. x 30" long closed stainless steel tube having a 20" long sight tube approximately centered alongside the tube. The tube was filled to approximately 20" with glass beads packed on top of a perforated plate that was positioned 1/2" up from the bottom of the tube. The column was filled with 1.8 liters of the liquid cargo under test

Omega type CAIN-116GO24

FIGURE 5 LIQUID CARGO VAPOR CONVERTER

(replenished when the level dropped to a 1.1 liter mark). A regulated flow of nitrogen gas (measured using a Fisher Model FS 1/2-27 G-10/80 flowrater) was passed vertically upward through a heated 1/2" copper tube, 28" long. The tube contained an integrally wrapped 500-watt heater, the temperature of which was automatically controlled using a solid state controller (RFL Model 72-115) and a thermistor mounted directly on the heater. A thermometer located approximately 12" downstream of the heated portion of the tubing was used to monitor N₂ gas temperature. The N₂ gas then passed vertically down a 31" long section of 1/2" pipe to a point where it entered the bottom of the vapor converter. A drain cock was also located at the bottom of the converter.

A 575-watt Briskeat heating tape Model BIH-16 was wrapped around the converter tube body. Its temperature was automatically controlled using a temperature controller (RFL Model 72-115) and a thermister mounted directly on the tube body. The converter body and all the associated plumbing were insulated with fiberglass insulation and aluminum foil. The temperature of the converter body and the interior of the ullage space above the liquid were measured using thermocouples whose output was read on the Dana DVM Model 4470.

Liquids whose vapor pressures were low (i.e., methyl alcohol and toluene) were heated using electrically controlled heating tapes to approximately 110 ± 10°F. A regulated flow of nitrogen carrier gas was introduced at the bottom of the converter where it percolated up through the liquid column. The nitrogen flow rate was adjusted using the previously described sapphire orifice and regulator system. The mixture of vapor and carrier gas, whose temperature was measured in the converter ullage space using a chromel/alumel thermocouple, was transferred via heated plumbing through a heated rotameter to the injection nozzle. The temperature of the plumbing and flowmeter were adjusted to prevent vapor condensation from taking place.

^{*}Omega Engineering, inconel sheath type.

Fisher Porter Model 1103.

Vapor flow rate was estimated based on rotameter reading, vapor pressure characteristics of the liquid cargoes, ullage temperature, fuel inlet temperature and local barometric pressure. The following expression was used:

$$\dot{Q}_{mix} = \dot{Q}_{air} \sqrt{\frac{1}{SG_{mix}} \left(\frac{P}{29.92" \text{ Hg}} \right) \left(\frac{530^{\circ} R}{T_r} \right)'}$$

where:

 $\dot{Q}_{mix} = N_2/vapor mixture flow, CFM corrected to standard condition$

Qair = uncorrected N₂/vapor mixture flow from rotameter calibration curve for air, CFM

SG = specific gravity of N₂/vapor mixture at flowmeter (see expression for SG below)

 T_r = temperature of the mixture at the rotameter, estimated as an average of $T_{
m vap}$ and the measured temperature at the nozzle

T vap = vapor mixture temperature at the converter, OR

P = local barometric pressure, in Hg

The specific gravity of the mixture was calculated from the following expression:

$$SG = \frac{P_{\text{vap}}^{i}}{1 \text{ atm}} \frac{MW_{i}}{MW_{\text{air}}} + \left(1 - \frac{P_{\text{vap}}^{i}}{1 \text{ atm}}\right) \frac{MW_{N_{2}}}{MW_{\text{air}}},$$

where p_{vap}^{1} is the vapor pressure of component i at T_{r} , and MW is molecular weight.

The preset N₂ flow rate of 0.525 SCFM was then subtracted from \mathring{Q}_{mix} to obtain the vapor flow rate in SCFM. The estimated accuracy of \mathring{Q}_{mix} was ±5% or better.

The use of nitrogen carrier gas slightly diluted the oxygen in the air. For the methyl alcohol tests which were conducted at 3 SCFM total flow rate, the use of 0.525 SCFM nitrogen reduced the oxygen concentration to about 18%. For toluene tests (8 SCFM), the oxygen concentration was reduced to about 20%. Neither reduction is considered to be significant for arrestor performance nor the flame speed is sensitive to this small oxygen change.

For liquids whose vapor pressures were relatively high, e.g., carbon disulfide, acetaldehyde, and ethyl ether, no carrier gas was used. Rather, the vapor generated by heating the liquid was allowed to flow directly to the injector nozzle. The above flow correction was applied, except that N₂ carrier gas corrections were unnecessary.

C. Controls and Instrumentation

1. Summary of Instrumentation

A summary of the instrumentation is given in Table 1.

The liquid converter tank heaters and the inline gas heaters (595-watt, Briskeat-BIH-61 tapes wrapped over an electrically insulated layer) were controlled using Variac autotransformers.

2. Ignition Controls

Ignition of the flammable gas mixtures was accomplished using a spark ignition system located 56" above the upper flange of the arrestor housing (8" down from the orifice plate flange). The spark ignitor was an Auburn Model 1-33. A side wire was welded to the ignitor so that the actual spark was discharged at the center line of the test pipe. The spark gap at the center point was approximately 0.06". Power to the ignitor was provided by a high-voltage ignition transformer (Jefferson Electric Model 638-171, 110 vac-250 ma primary, 10,000 V-23 ma secondary). The transformer was connected via a selector switch to an ignition switch.

TABLE 1
SUMMARY OF INSTRUMENTATION

Variables Measured	Measuring Instrument	Accuracy
Air flow rate	Meriam 50 MY 15-4 Flowmeter with	± 0.5%
	Meriam A844 Manometer	
Air temperature	Omega CAIN-116C-24 Thermocouple	± 2°F
Gas flow rate	Meriam 50W201F flowmeter with	± 0.5%
	Ellison IN Manometer	
Cas temperature	Omega CAIN-116G-24 Thermocouple with	± 2°F
loss apartinges of the second	Dana 4470 Digital Voltmeter	
Flame speed	ADL fabricated photodetector system with EG&G HUV 1000 B sensors - 3 units	5% of value
Flame-through event	ADL fabricated photodetector system with EG&G HUV 1000 B sensor - 1 unit	Positive detection
Test chamber pressure	Kulite XTS-190-200 pressure transducer & ADL fabricated operational circuitry	± 0.5 psi
Spark ignition event Gas Solenoid valve shut off event Photodetector event	CEC 5-125 Oscillograph Recorder, 8 channel	Unspecified
signals	ting the second of the second	60 601
Pressure transducer signals	of section a large of the passes of the con-	purdent.
Barometric pressure	National weather service - local area	Unspecified

Flame Detectors

Four optical detector systems assembled by ADL were used to detect the progress of the flame through the test pipe. The electronic circuitry for the detectors was that specified by the manufacturer of the detector (EG&G Model HUV-1000B with amplifier). The detectors were housed in a light-tight aluminum box 3" x 4" x 5" with a 7/8" dia x 3" long extension tube (see Figure 6). The extension tube, the purpose of which was to isolate the photodetector circuit from the heat of the test pipe, was slip fitted over an Auburn Type P-50 observation window that was threaded into the test pipe (1/2" NPT) in a direction normal to the pipe axis. A horizontal viewing slit in the window restricted the angle of view of the detector element in order to achieve more precise measurements of the position of the flame front.

The system was arranged so that the optical detector locations could be readily interchanged depending on whether ignition took place in the upper or lower test pipe sections. Figure 2 shows the location of the various ports for the detectors. When ignition occurred in the upper test pipe, ports 2, 3, and 4 were used for detecting flame passage, while port 3' was used for detection of flame-through at the arrestor. The optical detector in port 3' was also connected via a power amplifier to the fuel solenoid valve. In the event of flame-through, the fuel solenoid automatically shut off.

4. Pressure Measurement

The test assembly was also provided with a means of measuring the instantaneous pressure levels generated in the test pipe by the combustion of the gases. For this, a Kulite Model XTS-190-200 pressure transducer and appropriate circuitry (recommended by the manufacturer) was used. Like the optical detectors, the location of the pressure transducer could be readily changed according to the test circumstance. The transducer was mounted in 1/4" NPT elbow fitting and the elbow fitting was threaded into the test pipe (see Figure 7). In this way the transducer was located out of the path of direct radiation from the

FIGURE 6 PHOTODETECTOR ARRANGEMENT

FIGURE 7 DETAIL OF PRESSURE TRANSDUCER MOUNTING

flames. (In early tests direct radiation appeared to have an effect on the transducer signals.) The transducer was located 44" from the arrestor, at the same station as optical port 2.

5. Operating Procedure

In conducting a test, the following sequential procedure was followed:

- (1) A safety check of the test site was made which included:
 - · Access to fire extinguishers,
 - · Wearing of hard hats, glasses and ear protection,
 - Locating danger warnings and restricted area barriers,
 - Turning on flashing red lights in critical area of the test site.
- (2) A check of the optical detector and pressure detector battery condition was made.
- (3) The Main Power Switch was turned on.
- (4) The recorder power and optical, pressure detector power, switches were turned on ignition power and DVM power.
- (5) The selection of the upper ignition source was made.
- (6) The arrestor element was installed in the housing (after it had previously been prepared for testing) and the housing cover was secured.
- (7) For liquid cargoes, the fuel supply and inline heaters were activated and allowed to come to thermal equilibrium at approximately 100°F and 120°F, respectively.
- (8) The air compressor was turned on and, after allowing sufficient time to charge the air supply reservoir, it was adjusted to achieve the appropriate flow rate. Corrections to the flow rate for barometric pressure and air temperature were made, based on the manufacturer's (Meriam Instrument) operating instructions. Air was allowed to flow continuously for the entire test series during a given day.

- (9) a) Gaseous Cargoes: The gas supply tank was opened by means of the fuel solenoid valve and manual valve at the gas regulator. The fuel-adjustment valve was opened to achieve the directed fuel flow rate (corrected for barometric pressure and gas temperature).
 - b) <u>Liquid Cargoes</u>: The fuel shut-off valve and solenoid valve were opened. This was followed by a measurement of the fuel flow rate. Corrections for barometric pressure and fuel gas temperature were also made. The air flow rate was subsequently changed to achieve the appropriate equivalence ratio.
- (10) A pneumatic-horn signal was given 10 seconds before ignition.
- (11) In rapid sequence:
 - The recorder chart was turned on (generally to 16"/sec speed for adequate trace resolution).
 - The ignitor energized--followed immediately by combustion.
 - The recorder was turned off (after approximately 1 second).
- (12) The automatic switch for shutting the fuel solenoid valve was manually overridden (if it had not operated automatically) within 1 second. Otherwise, a standing flame could damage the arrestor or the instrumentation.
- (13) The manual fuel flow throttling valve was then shut off within 5 seconds of spark discharge.
- (14) The recorder trace was examined for evidence of flame-through, flame speed, and combustion pressure (see below).

6. Data Acquisition

An 8-channel recorder (CEC Model 5-124) was used to record signals from the instrumentation. The three optical detectors and the pressure detectors were connected directly to the recorder. The signal from the flame-through detector was, as mentioned above, connected to a power amplifier to shut off the fuel solenoid. This signal was also connected to the recorder so that the flame-through event could be

recorded. A signal from the ignition switch was also connected to the recorder to measure the existence and duration of the spark discharge. Figure 8 is an illustration of the typical data obtained from the recorder. The explanation of the trace is as follows:

- Trace A: The length of the 60-cycle trace indicated the time interval that the ignition source was energized.
- Trace B: The 60-cycle portion indicates that the fuel solenoid valve is open, the steady portion to the right of the 60-cycle trace indicates automatic solenoid shut-off or flame-through.
- Traces C, Flame passage traces from optical detectors 4, 3, and 2, respectively (typical). The distances between detectors is known and thus flame velocity between these points are determined (also flame acceleration).
 - Trace F: Instantaneous pressure trace--for the subject tests the peak value of the trace was converted to peak pressure by calibration.

FIGURE 8 TYPICAL TEST DATA RECORDING

D. System Characteristics

1. Effect of Downstream Flow Restriction Orifice on Flame Speed

The design of the test apparatus includes provisions for assessing the performance of arrestors through the use of orifices placed between the test pipe and pipe extension (see Figure 2) in both low flame speed and high flame speed regimes. A series of tests was performed using methane/air mixtures to establish two specific flame speed regimes at which all arrestors were to be tested. With fuel/air equivalence ratio adjusted to $\phi = 1.1$, it was found that without any constriction in the test pipe, flame speeds of approximately 5 ft/sec were measured at approximately 2 ft from the arrestor location. By using a 3" dia. orifice, flame speeds of approximately 70 ft/sec were achieved. Insofar as was possible, test conditions were adjusted for each arrestor and with each cargo to achieve flame speeds in these two regimes. Adjustments included run-up length and degree of constriction of the test pipe.

2. Mixture Homogeneity Tests

Because of the importance of ensuring good mixing of the test gas and combustion air during all tests, a check was made of the homogeneity of two test gases approximately 18" above the fuel injection nozzle and immediately beneath the flame arrestor housing. The tests were performed by substituting nitrogen gas in place of combustion air and substituting oxygen in place of fuel gas. Oxygen concentration was then measured as simulated fuel concentration. Bottled dry nitrogen was introduced upstream of the laminar-flow element normally used to measure combustion air flow rates. A regulated supply of oxygen was introduced upstream of the 0.6 mm sapphire orifice metering system. Flow rates for each gas were adjusted to be equivalent to that of methane and air mixtures at $\phi = 1.1$. An oxygen meter operated in conjunction with a gas sampling and drying system was used for determining the percent oxygen and variation in 02/N2 percentages of the mixture. Any variations in the 02/N2 ratio were detected by traverse sampling across the interior radius of the test pipe at two axial locations. The results of the gas sampling are shown below in Table 2.

TABLE 2

DETAILS OF GAS MIXTURE HOMOGENEITY TESTS

USING OXYGEN/NITROGEN MIXTURES

Location Radial Scan Position (Inches from pipe $($)	0	0	0	1	2	-5	0	0	-2	0	2
Gas Sampling Location Distance Radial Downstream Scan Pos of Fuel (Inches Nozzle from pip	18	18	18	18	18	18	18	18	06	06	06
Measured Oxygen Percentage in Mixture (%)	2.75	2.65	2.80	2.80	2.80	2.80	2.80	8.60	12.1	12.1	12.0
Percent Oxygen in Mixture (2)	2.75	2.58	2.75	2.75	2.75	2.79	2.78	8.69	12.10	12.10	12.10
Total Gas Flow Rate (SCFM)	8.28	8.30	8.28	8.28	8.28	8.24	8.21	8.74	9.10	9.10	9.10
Nitrogen Flow Rate (SCFM)	8.05	8.09	8.05	8.05	8.05	8.01	7.98	7.98	8.00	8.00	8.00
Oxygen Flow Rate (SCFM)	0.228	0.214	0.228	0.228	0.228	0.230	0.228	092.0	1.100	1.100	1.100
Gas Test No.	1	2	8	4	5	9	7	•	6	10	11

From the above table it can be seen that complete mixing of gas and air takes place well upstream of the arrestor test section.

3. Effect of Equivalence Ratio Variations on Flame Speed

To confirm the relationship between equivalence ratio and flame speed, which is expected to peak just on the rich side of stoichiometric, a series of low flame speed (5 ft/sec) tests was performed using methane/air mixtures. The data, illustrated in Figure 9, has the expected peak, with reproducibility of flame speed approximately 0.5 ft/sec or 10%. The flame speeds shown are based on V₂₃.

4. Effects of Gas Temperature on Flame Speed and Safe Arrestor Dimensions

A series of preliminary low-speed tests was conducted with mix temperatures ranging from 70 to 185°F in order to determine if the temperature of the gas mixture due to ambient temperature variations had a significant effect on flame velocity. Electric heaters were wrapped around the test pipe from the air inlet to the flame arrestor housing. The total test pipe length was in turn insulated with fiber-glass blanket insulation. In addition, an electric heater element was wrapped around the air inlet pipe and in the gas stream approximately 12" downstream of the arrestor housing were used in conjunction with electric power controllers to establish proper test temperatures.

In conducting the tests, flow conditions and temperatures were adjusted and allowed to come to steady state prior to conducting combustion tests. Test temperatures ranged from near room temperature to approximately $185^{\circ}F$ as measured downstream of the arrestor housing. The results of the tests, as illustrated in Figure 10, show that for this specific test apparatus and temperature range, the mixture temperature apparently does not have a significant effect on flame speed, within the experimental error of the system. The range of temperatures tested was too limited to show the power-law dependence of flame speed on mixture temperature expected from theory [see Wilson and Atallah (1975)]. Since this temperature range is as large as that of ambient temperature variations for venting operations, we expect no substantial change in flame speed due to ambient temperature variations. Therefore since $D_{\rm H} \sim 1/{\rm T}$, a single arrestor design should be equally safe for all temperatures.

FIGURE 9 EFFECT OF EQUIVALENCE RATIOS ON FLAME SPEED

FIGURE 10 EFFECT OF MIX TEMPERATURE ON FLAME SPEED

III. FLAME ARRESTOR DESIGN REQUIREMENTS-TEST RESULTS FOR METHANE AND ETHYLENE

A. Methodology to Estimate Design Requriements

Data on the performance of specific flame arrestors such as tube bundles, crimped ribbons and parallel plates has appeared in the literature over the last 40 years. For methane/air flames, for example, data has been published by Holm (1933), Busch (1934), Loisson (1954), Hulsberg (1957), Wolfhard (1960), and others. From a design engineer's perspective, this data does not span all practical flame configurations (approach speed, pressure drop, etc.), nor all types of flame arrestors. A device which has been shown to arrest flames in one instance may or may not arrest a flame with greater approach speed or turbulence. The only well-known common requirement of all flame arrestors is that the passageway dimension be less than the so called "quenching distance". Otherwise a flame can propagate indefinitely, no matter how long the passageway and no matter how great the approach speed of the flame (as long as the mixture is flammable). The theory describing quenching of laminar flames was briefly summarized by Wilson and Atallah (1975) and values of the quenching distance for specific fuels can be found in that reference or in other summary articles such as Potter (1960). Wilson and Atallah also attempted to facilitate the use of this criterion by using the "quenching diameter" in lieu of the "quenching distance".

Unfortunately, this criterion on passageway aperture size is too easily satisfied to be of much practical utility to the designer. It is well known that wire mesh screens which satisfy the quenching distance criterion will fail if exposed to a turbulent flame of about 5 ft/sec or greater. Recognizing the need for additional design guidelines, and based on a review of the literature, Wilson and Atallah (1975)

proposed an additional criterion for a minimum passageway length:

$$L \ge KS_t D_H^2, \tag{3-1}$$

where S_t is the turbulent flame speed at the arrestor and K is a coefficient which must be fit from empirical data. This $L/D_H^{\ 2}$ correlation had been suggested by Palmer, and Wilson and Atallah found that a value of $K=.02~{\rm sec/cm}^2$ seemed to fit the results of a number of investigations on propane/air flame arrestors. Furthermore, the form of eqn. (3-1) could be explained in terms of laminar boundary layer growth within the passageway (which gave $K=.01~v^{-1}$, where v is the kinematic viscosity). The Reynolds analogy of relating heat extraction to momentum extraction also is consistent with an $L/D_H^{\ 2} \sim S_t$ criterion, which suggests that the pressure drop is a measure of flame arrestor effectiveness. Cohen (1960) raised this possibility in a discussion of Palmer's work on flame arrestors, and Palmer at that time confirmed that an L/D^2 correlation for pressure drop would probably be appropriate but would be difficult to apply to packed bed arrestors.

The purpose of the present test series was to test this proposed criterion for methane by systematically varying the passageway length and diameter. The value of the constant K was to be empirically determined for methane/air flames, and additional tests were to be run on ethylene to see if K was larger than for methane, as expected. Finally, several types of arrestors (passageway geometries) were tested in order to check the applicability of eqn. (3-1) for various arrestors.

B. Experimental Conditions

Four types of arrestors were evaluated during this test series:

- Screen
- Perforated plate (stacked)
- · Parallel plate
- Crimped ribbon

The passageway dimensions of the arrestors are listed in Table 3. The arrestor mounting base was modified slightly to permit testing of the various arrestor elements using a Varec Model 50SG arrestor housing. The modifications were mainly concerned with securing the arrestor elements to the mounting base in a manner that prevented flame passage through gaps at the circumference of the test arrestor.

For perforated plate arrestors, the hydraulic diameter of the passageways is simply the diameter of the circular perforations. For screens, plates, and crimped ribbon, the hydraulic diameters were determined using the relationship

$$D_{H} = \frac{4A}{P},$$

where

A = cross-sectional area of the aperture, and

P = perimeter of the aperture

Examples of the determination of the D_{H} are given as follows. The crimped ribbon arrestors fabricated by Ferrotherm Corporation consisted of half-hexagonal shaped arrestor cells. Accordingly, the effective hydraulic diameter was determined using the following relationships:

$$A = 1/2 (H - t) (\ell + B)$$

$$B = \ell + 2\ell \cos 60^{\circ} = 2\ell$$

$$D_H = 4A/P = 4(1/2) (H - t) 3l/5l$$

TABLE 3

PASSAGEWAY DIMENSIONS OF ARRESTORS TESTED

Arrestor	Mesh	D _H (in)	L (in)	Remarks Wire Diameter (in)		
Screens	38	0.018	_	0.0085	M.S. Tyler, Inc.	
Screens	30	0.021		0.012	mo. lyler, luc.	
				0.011		
	26	0.027				
	22	0.032	-	0.0135		
	20	0.032	•	0.016		
	18	0.041	-	0.015		
	16	0.049	-	0.0135		
	14	0.055	-	0.016		
	12	0.060		0.023		
	11	0.068	-	0.023		
	10	0.080	-	0.020		
	8	0.105		0.020		
Perforated	-	0.020	0.018	Single layer	ERDLE Perforating	
Plates	-	0.062	0.048		Company	
	-	0.072	0.048	.,		
	-	0.107	0.062	"		
		0.072	0.26	Stacked plates		
		0.072	0.40	"		
	TO THE MAN			**		
		0.107	0.56	••		
	-	0.062	0.18			
Parallel	_	0.015	0.25	0.045" thick	Fabricated at ADL	
Plates	DENT SA	0.015	1.50	" plates		
. Tates		0.021	0.50	" Places		
	-	0.023	0.25	"		
		0.023	0.50			
	-	0.028	1.50	"		
	-	0.031	1.06			
	-	0.035	0.50			
	19 4 1000	0.035	1.06	11		
		0.035	1.56	•		
	-	0.035	2.00			
		0.045	0.50			
			1.00			
	A SECOND	0.045				
		0.056	2.00			
	-0.1	0.071	0.50			
	- 1	0.071	1.06	"		
	-	0.071	2.00			
	-	0.112	1.02	"		
Celmod		0.015*	0.75	_	Ferrotherm Mfg, SST	
Crimped						
Ribbon		0.015*	1.50		material, half hex	
	5 THE 15	0.016	0.25		crimp	
	-	0.016	0.375	•		
	-	0.021	0.75			
	-	0.035	0.25	•	*Commercially available	
		0.035	0.375		from Amal Ltd.	
	_	0.035	0.50			
		0.038*	1.50			
	-	0.050	0.75			
	•	0.054	1.50			
	-	0.054	2.00			
	-	0.069	0.88			
		0.069	1.25			
	-	0.069	2.00			
	-	0.069	2.62	•		
		0.078	1.00	-		

Effective hydraulic diameters for the Amal arrestors, which have triangular passageways, were determined using the following relationships:

B = 2 H

A = 1/2BH

 $P = B + (2) H \sqrt{2}$

$$D_{H} = 4 (1/2) BH/(B + 2 \sqrt{2} H) = 4 H^{2}/2H (1 + \sqrt{2}) = 2H/(1 + \sqrt{2}) = .83 H$$

Methane/air and ethylene/air mixtures were used during this test series. Fuel/air ratios were ϕ = 1.1 for all tests. Mixture velocities were adjusted to 0.5 ft/sec through the 6" diameter test section. Ignition was always downstream of the arrestor. The run-up length and pipe constriction area were adjusted to produce flame speeds of 5-25 ft/sec for "low speed" tests and 50-200 ft/sec for "high speed" tests.

C. Results of Methane/Air Tests

A series of tests at low flame speed (5 ft/sec) was performed with single-layer screens and perforated sheets, searching for the largest mesh size which would arrest a methane-air flame. The results are given in Figure 11, and show that the critical screen size is between 14 and 12 mesh. Accounting for the finite wire diameter, the aperture size which is critical apparently lies between .055 and .061 inch, or about 50% of the theoretical quenching diameter for methane/air (.11 inches). This finding is consistent with other investigators' findings. For example, Muller-Hillebrand (1938) noted that the maximum allowable aperture for acetylene/air was only 40% of the theoretical quenching diameter.

FIGURE 11 FLAME QUENCH DATA FOR LOW SPEED METHANE/AIR FLAMES

The implication from these tests is that the diameter criterion is not adequate to design flame screens against even the lowest conceivable flame speeds. In all practical situations, the laminar flame speed (30 cm/sec for CH₄) is greatly exceeded by the actual flame speed, and therefore some additional criterion accounting for flame deceleration is required.

As shown in Chapter IV, the maximum allowable diameter was found to be 40--60% of the theoretical quenching diameter for a wide range of fuels. The methane results are entirely consistent with this data.

For high-speed methane/air flames (approach speeds ranging from 50 to 200 ft/sec), the data is presented in Figure 12 for parallel plate and crimped ribbon. The first observation is that the maximum allowable aperture dimension $D_{\rm H}$ was 40-50% lower than the theoretical quenching diameter (.11 in). This finding is consistent with the results discussed above for 5 ft/sec flame speeds.

The second observation is that based on Figure 12, the minimum passageway length required for quenching increases with diameter D_H consistent with an $L/D_H^{\ 2}$ correlation. The solid lines in Figure 12 shows the boundaries for parallel plate and crimped ribbon represented by $L/D_u^{\ 2}$ correlations with the following values:

• Parallel plate : $L/D_{H}^{2} = 600 \text{ in}^{-1}$

• Crimped ribbon : $L/D_H^2 = 300 \text{ in}^{-1}$

There is no obvious reason why the value of critical $L/D_{\rm H}^{\ 2}$ for parallel plates should be twice that of crimped ribbon. Presumably, differences in the heat transfer rate within the boundary layer for the two geometries account for this difference. If so, the Reynolds analogy would predict that the pressure drop of a given length of parallel plate should be less than that of crimped ribbon. This was, however, not evaluated in this program. Another possible explanation is that the use of hydraulic diameter to apply the $L/D_{\rm H}^{\ 2}$ correlation universally to arrestors of different geometry is quite arbitrary and may introduce some error for certain arrestor geometries. For example, Berlad and Potter (1954) indicate that the critical quenching dimension for parallel

FIGURE 12 FLAME QUENCH DATA FOR METHANE/AIR FLAMES

plates is a factor of 0.613 of the tube diameter, whereas Wilson and Atallah (1975) suggested a factor of 0.710. Applying Berlad and Potter's formula to the present data, the equivalent value of $L/D_{\rm H}^{\ 2}$ for parallel plates would be $L/D_{\rm H}^{\ 2} = 445$ in instead of 600 in . The discrepancy between parallel plate and crimped ribbon would therefore be reduced.

The final analysis on this set of tests has to do with $L/D_{\rm H}^{-2}$ values of 300 to 600 in 1 (118 to 236 cm 1) for methane/air. The flame speeds in our experiments were approximately 2040 cm/sec (67 ft/sec); substituting this value of S_t into eqn. (3-1) along with the observed values of $L/D_{\rm H}^{-2}$ results in a range of values of K = .058-.116 sec/cm 2. Knowing the value of K enables the criterion to be applied to any flame speed. This value of K compares favorably with the laminar boundary layer growth theory which gave K = .01/v = .07 sec/cm 2. This can also be compared with the propane/air data which Wilson and Atallah (1975) correlated by a value of K = $L/S_{\rm L}^{-2}D_{\rm H}^{-2}$ = .02 sec/cm 2. Therefore, the K value reported for these experiments is larger than the K value which correlated earlier experiments on propane/air flames. Possible reasons for this difference include the uncertainty in flame speed during acceleration, the difference in fuels, and differences in the experimental conditions (pressure rise, pipe diameter, etc.)

Based on the above discussion, for practical purposes, a criterion that $L/D_{\rm H}^{\ 2} \ge 1000~{\rm in}^{-1}$ would provide a conservative design guideline for methane/air arrestors. This value leaves a margin of safety and is applicable for flame speeds up to at least 200 ft/sec. Typical dimensions which meet this design criterion are:

$$L = 1.0 \text{ in, } D_{H} = .032 \text{ in.}$$

The results for stacked perforated plates are not comprehensive enough over the (L, D_H) domain to provide a test of the L/D_H^2 theory. As shown in Figure 13, the largest- D_H arrestor with consistent quench was of dimensions $D_H = .072$ in, L = 0.4 in. This corresponds to a value of $L/D_H^2 = .77$ in $^{-1}$, which is much lower than the values determined for crimped ribbon and parallel plates. Some misalignment of the stacked plates, giving a smaller effective D_H than the actual hole diameter, was observed on 80-90% of the holes found on a given stack.

FIGURE 13 QUENCHING CHARACTERISTICS OF PERFORATED PLATE ARRESTORS IN METHANE/AIR MIXTURE FLAMES

2.1

. . .

This was possibly a partial cause for the abnormally low value of $L/D_{\rm H}^{\ 2}$. Again, the lower required $L/D_{\rm H}^{\ 2}$ would be consistent with a higher pressure drop for perforated plates than for crimped ribbon (for a given length), and different heat transfer rates per unit length of boundary layer according to the Reynolds analogy.

The published data on methane/air quench experiments are more or less consistent with the results found in these tests. Table 4 shows that the effective critical L/D_{μ}^{2} determined from these experiments is somewhat greater than most published data. Wolfhard and Brusak (1960) found that single cylindrical tubes of length 0.6 and 2.0 cm were just adequate to quench methane/air explosions for channel diameters of 0.2 cm and 0.3 cm, respectively $(L/D_H^2 = 15 \text{ and } 22 \text{ cm}^{-1})$. The approach speed of the flame was not reported in these experiments, but schlieren photos suggest that the flame did not propagate through the arrestor; rather, the hot products of combustion formed a jet which ignited the mixture on the other side of the flame arrestor channel. Maekawa (1975) performed flame-quench experiments using parallel slits of various lengths and gap spacings and found that 0.2 cm spacing (.28 cm D_{u}) was the maximum safe dimension of the aperture for all slit lengths exceeding 4.0 cm. Below 4 cm length, Maekawa's data could be fitted with an L/D_H^2 correlation of about $L/D_H^2 = 50$ cm⁻¹; Maekawa chose instead to use a correlation of the form $D_{\mu} = A L e^{-kL}$.

Further evidence on methane/air quenching is available from Komamiya (1969), who needed five layers of 16 mesh screen (.11 cm D_{H}) to quench methane/air flames with 50 cm run-up in a closed tube. The first 2 screens suffered melting and distortion in these tests. It is not possible to derive values of $\mathrm{L/D}_{\mathrm{H}}^{2}$ from the Komaniya tests since screens were used; the same holds for the results of Holm (1933). The latter results support the notion that $\mathrm{D}_{\mathrm{H}}^{\mathrm{S}}_{\mathrm{t}}$ = constant, but this was not systematically tested.

The results of Loisson et al (1954) agreed very closely with our experiments on parallel plates ($L/D_{\rm H}^2=255~{\rm vs}~236~{\rm cm}^{-1}$, respectively). The run-up length used by Loisson was much greater than our tests, and he used a 10-inch diameter pipe. The results of Hulsberg (1957) are

TABLE 4

PUBLISHED QUENCH DATA ON METHANE/AIR FLAMES

Author	Maximum Di D _H (cm)	mensions L (cm)	Arrestor Type	L/D _H ² (cm ⁻¹)	Remarks
Wolfhard and Brusak (1960)	0.20	0.6	Single tube	15	
(1700)	0.30	2.0	11 11	22	
Maekawa (1975)	0.28	4.0	Multiple slit	50	
Komamiya (1969)	0.11 (5	layers)	Multiple screens	Jan Jan Holls	High pressure
Holm (1933) as reported by	0.50		Screen	Salay carent	3 ft/sec flame speed
Scott et al	0.08	nu ⁷ ni 16	Screen	976 11973	20 ft/sec flame speed
(1962)	0.05	-	Screen	-	30 ft/sec flame speed
Loisson et al (1954)	.14	5.0	Parallel plates	255	25-cm diam. pipes; 1000-cm run up lengt
Hulsberg (1957)	.12 (2	layers)	Packed .6 cm spheres	83	Assume D _H = 1/5 sphere diameter
THE MALE THE	.18 (5	i layers)	Packed .9 cm spheres	140	97 3378a 66 00061
Busch (1957), as reported by	.26	1.0	Single slit	15	No pressure rise
Rozlovskii and Zakaznov (1971)	.1213	3 1.0	Single slit	60-100	With pressure
Current Experiments	See Fig. 12 .15	1.0	Parallel plate	236	L/D _H cri- teria relates
	.11	1.0	Crimped ribbon	118	L and D _H

somewhat difficult to interpret because the L and D_H of a passageway through packed spheres is not uniquely defined. Making the assumption that D_H = 1/5 of the sphere diameter and L equals the sphere diameter, we get values for L/D_H^2 ranging from 83-140 cm⁻¹ from his experimental results, a range which is not far out of line with the present experimental data.

D. Results of Ethylene/Air Tests

A series of tests was conducted with wire mesh screens at relatively low flame speed (10-100 ft/sec, with most runs between 20 and 40 ft/sec). None of the screens which were tested was able to quench ethylene/air flames, down to 38 mesh (D_H = .018"). In some cases, the screen buckled and opened up along the edge. The published quenching diameter for ethylene/air is .060" (Simon et al (1953)); which means that these test results show that the flames could not be quenched by passageways 70% less than the theoretical quenching diameter. This finding corroborates the conclusion reached for methane/air, namely that the quenching distance criterion is inadequate as a design guide because all practical flame configurations are turbulent and not laminar, even for very short runup lengths.

A second series of tests was conducted with parallel plate and crimped ribbon arrestors at higher flame speeds. The results of these runs are given in Figure 14. None of the arrestors was able to consistently quench ethylene/air flames. The crimped ribbon arrestors of $D_H = .015$ " showed partial effectiveness, in that the 3/4" long arrestor quenched 1 out of 3 and the 1-1/2" long arrestor quenched 5 out of 19 tests. The latter arrestor corresponds to an $L/D_H^2 = 6700 \text{ in}^{-1}$, which is about factor of ten higher than the value of L/D_H^2 which was found adequate for quenching methane/air.

One problem experienced during these tests which might affect the results was the irreproducibility of the flame speed. An examination of the detailed results in Table A-3 shows that the average flame speed V_{23} varied from 12 to 714 ft/sec for the parallel plate tests and from

FIGURE 14 QUENCHING CHARACTERISTICS FOR ETHYLENE/AIR FLAMES

18 to 1000 ft/sec for the crimped ribbon tests. Pressure rises varied from 2 to 30 psi. There was no discernible correlation between flame speed and tendency to quench. For example, the five flames which were quenched by the $D_{\rm H}$ = .015", L = 1.5" arrestor had flame speeds, V_{24} , of 98, 41, 360, 325, and 361 ft/sec.

The published data on ethylene/air flames includes results by Busch (1957), Wilson (1959), Langford, Palmer and Tonkin (1961), Rogowski (1974), and Davies, Palmer, and Rogowski (1973). Wilson found that the critical D_{μ} for tubes was .17 cm (.067 in) for laminar flames; this agrees with the quenching diameter of .060 in. The critical slit width for ethylene/air flames with no pressure rise was found to be .11 cm (.043") by Busch (1957). Busch found that for flames with pressure rise the maximum safe slit width decreased to .03-.07 cm (.012-.028 in); this corresponds to a critical hydraulic diameter of .017-.039 in. This range includes the .018" D_{μ} which was found to fail in our experiments on screens. Langford, Palmer and Tonkin (1961) tested perforated sheet and block arrestors and found that perforated sheet arrestors with .055 cm diameter holes would quench flames of speeds less than or equal to 700 cm/sec (23 ft/sec). This corresponds to a D_{μ} = .021 in; for comparison our results indicate that screens of .018" were not reliable for 20-40 ft/sec flames. Langford et al also found that perforated block arrestors of 3 cm length, .175 cm (.069 in) aperture would quench flames up to 500 cm/sec (16.4 ft/sec). This is $L/D_{H}^{2} = 98 \text{ cm}^{-1}$ which is relatively low. These results are not necessarily inconsistent with our data which was taken at higher flame speed. Rogowski (1974) found that an accelerating ethylene/air flame travelling at an average speed of about 1-ft/sec (30 msec for a run up length of 1 cm) would pass through a 1.0-in long slit of .030-in height. This corresponds to a hydraulic diameter of about .042 in, and therefore Rogowski's results and the results of Busch (1957) both indicate that the maximum experimental safe D_{μ} is just under .040" for ethylene/air flames with pressure rise.

Davies et al (1973) performed experiments on higher speed ethylene/air flames using metal foam arrestors. Flames up to 1400 ft/sec approach speed could be quenched, depending on the grade of the arrestor—see table below. The minimum $L/D_{\rm H}^{\ 2}$ values were 8400 and 1600 in for the Grade 45 and 20 arrestors, respectively, based on twice the geometric length of the metal foam plug. These values of $L/D_{\rm H}^{\ 2}$ are of the same order of magnitude as that of the crimped ribbon arrestor shown to be marginal in the present program (6700 in 1).

Estimated path * length	L/D _H ²	Estimated average cell **	Type of foam	Pressure drop for 5.8 ft/sec air	Maximum flame speed quenched (ethylene/air)
1.0	1600 in ⁻¹	.025"	Grade 20	5 mm H ₂ O	230 ft/sec
1.0	8400 in ⁻¹	.011"	Grade 45	13 mm H ₂ O	1400 ft/sec

^{*}Estimated at twice the geometric length of the foam plug.

In summary, our results backed up with other published data show that there is no arrestor available which can consistently quench ethylene/air flames of speed greater than about 20 ft/sec. Below 20 ft/sec flame speed, screens are not reliable down to 38 mesh, but crimped ribbon or perforated block arrestors of certain dimensions have been shown to be effective.

Because of the scarcity of "quench" data points, it was not possible to test the $L/D_{\rm H}^{\ 2}$ criterion.

^{**} The cell diameter in inches is approximately 50% of the inverse of the grade of the foam.

IV. FLAME ARRESTOR DESIGN REQUIREMENTS--TEST RESULTS FOR TEN PRODUCTS

A. Test Conditions

Tests were performed to bracket the critical dimensions of arrestor passageways just sufficient for quenching flames of various products (fuels) in air. Crimped ribbon arrestors were used for those flame tests. Various sized restrictions were used at the ignition end of the test pipe in order to achieve approach flame velocities of approximately 50-200 ft/sec. (Actual approach speeds are listed in Appendix A-4). For liquid cargoes, it was necessary to conduct a series of preliminary tests in order to establish the proper fuel/air ratio conditions for achieving the flame velocities in this range. Selected tests were also carried out using screens with low flame approach speeds of approximately 5 ft/sec.

B. Test Results and Discussion

The results of this series of tests on ten fuels are summarized in Table 5. The results of tests using gasoline/air and butane/air mixtures were also reported in Wilson and Crowley (1978) and are repeated here to facilitate comparison with other fuels.

The first observation from Table 5 is that the experimentally determined maximum passageway diameter which will quench a flame is consistently lower than the laminar quenching diameter, ranging from a 32 to 62% reduction for the first five fuels. For the last five fuels in Table 5, the maximum safe diameter was 70-85% lower than the laminar quenching diameter, but the choice of crimped ribbon sizes was not wide enough to reliably isolate the "borderline" diameter dimension. Recall from Chapter III that for methane/air, the crimped ribbon data showed that the maximum $\mathbf{D}_{\mathbf{H}}$ arrestor which would consistently quench was of dimensions $D_{H} = .069$ in, L = 2.0 in (see Figure 12).

TABLE 5

SUMMARY OF FLAME ARRESTOR TESTS
FOR TEN FUELS

Fuel	Laminar Quenching Diameter** (in)	Maximum Safe D _H , According to Experiments*** w/Crimped Ribbon (in)	Minimum Safe L, Corresponding to listed D _H (in)	Apparent Minimum L/DH ² (in ⁻¹)
Acetaldehyde	.063	.035	.375	306
Toluene	(.100) ††	.069	.875	184
Methyl alcohol	.051	.035	.375	306
Gasoline vapor	.094	.043	1.380	746
Butane	.105	.038	1.500	1040
Ethyl ether	.089	.015	.750	3300
Carbon Disulfide	.028	.021	.750	1700
Hydrogen sulfide	.051	.015	1.500	6700
Acetylene	.028		available D _H	
Butadiene	.059	.015	1.500	6700

- * All tests conducted in air at 1 atm initial pressure.
- ** Based on 1.4 times the published parallel-plate quenching distance [See Wilson and Atallah (1975)].
- *** Hydraulic diameter D_H determined from crimp geometry by taking four times cross-sectional area divided by perimeter. Actual crimp heights given in Table A-4.
 - $\mbox{\scriptsize These}$ values are deemed to be conservative because of the limited number of (L, $\mbox{\scriptsize D}_{\mbox{\scriptsize H}})$ combinations tested.
- tt Estimate.

This maximum D_H is 38% below the laminar quenching diameter (.11 inches), and was tested with a relatively long passageway (2 inches). Another borderline dimension for crimped ribbon tests of methane-air flames was D_H = .050 in, L = .75 in; for this length the critical diameter was 55% lower than the laminar quenching diameter. Even for low speed (5 ft/sec) methane/air flames, Figure 11 showed that the maximum safe diameter was about 50% lower than the laminar quenching diameter. In summary, all of our test results suggest that arrestors should be designed with passageway diameters no more than 40-60% of the theoretical quenching diameter. This corroborates the findings of Swan et al (1932), Holm (1933), Palmer (1958), Mansfied (1956) and Scott et al (1962), as discussed in Wilson and Atallah (1975), p. 30.

The second observation from Table 5 is that the minimum values of $L/D_{\rm H}^{\ 2}$ determined experimentally for the first five fuels ranged from 184 to 1040 in $^{-1}$, which are in the same range as the values of $L/D_{\rm H}^{\ 2}$ for methane/air taken from Figure 12 for crimped ribbon. For crimped ribbon and parallel-plate arrestors, the minimum $L/D_{\rm H}^{\ 2}$ was 300 in $^{-1}$ and 600 in $^{-1}$, respectively for methane/air. In short, the experimental results seem to support a minimum value of $L/D_{\rm H}^{\ 2}$ for common hydrocarbon fuels, which for design purposes should be taken at $L/D_{\rm H}^{\ 2}$ = 1000 in $^{-1}$, to be conservative.

This design criteria would \underline{not} safely apply to the last five fuels in Table 5:

- · Ethyl ether
- · Carbon disulfide
- · Hydrogen sulfide
- Acetylene
- Butadiene

These fuels apparently require arrestors of smaller passageway diameter and longer length. This result is understandable for acetylene and hydrogen sulfide, which have very low theoretical quenching diameters (high flame speeds). However, the result is somewhat surprising for fuels such as ethyl ether and butadiene which have flame speeds lower than methyl alcohol which appears to obey the $L/D_{\rm H}^{\ 2}$ = 1000 in criterion. In the case of ethyl ether, whenever the flame was not stopped by the (.035", .375") arrestor, the flame speed, V_{34} , appeared to be excessive (300-600 ft/sec for runs 102677-03,-04 and -06; see Table A-4). For butadiene, no comparable explanation could be found. Clearly the range of crimped ribbon arrestors was too limited to explore this anomaly within the current program.

In summary, if the two criteria for flame-arrestor design suggested by Wilson and Atallah (1975) are applied to the test results, the passageway dimensions are as follows:

1st criterion: Effective passageway diameter D_H not to exceed 40% of theoretical quenching diameter, 60 α/S_{ℓ} , where α is the thermal diffusivity (cm²/sec) and S_{ℓ} is the laminar flame speed.

2nd criterion: Effective L/D_H^2 of passageway must be at least 1000 in^{-1} for acetaldehyde, toluene, methyl alcohol, gasoline vapor, butane, and methane. L/D_H^2 must exceed 3000 in for carbon disulfide, hydrogen sulfide, and acetylene. More experiments are needed to resolve the minimum L/D_H^2 for butadiene and ethyl ether.

As a practical matter, of the ten fuels tested, the first five listed in Table 5 could be controlled with an arrestor of dimensions L > 1.00", $p_{_{\rm H}} < 0.030$ "

This assumes that excessive heating of the arrestor due to prolonged exposure to flames has not occurred.

For acetylene/air mixtures, none of the arrestor designs available to us ($D_{\rm H}$ down to .015") could consistently quench high-speed flames, and substantial pressure rise was seen. This was also the case for ethylene/air flames (see Figure 14).

Table 6 compares the test results of safe dimensions for ten products with the critical parameters of commercially available arrestors. These arrestors were tested during a previous phase of the program (Wilson and Crowley, 1978). It can be seen that except for certain Amal arrestors and except for toluene, methyl alcohol, and acetaldehyde, the $\rm D_H$ required to consistently quench flames from the various products (fuels) are smaller than the $\rm D_H$ values available with the commercial arrestors. However the lengths of certain commercial arrestors (Varec and Shand and Jurs) exceed the range of arrestor lengths tested in the current program. Since actual tests were not performed using the commercially available arrestors on the various products, additional tests would have to be performed before the adequacy of these arrestors can be verified. If the $\rm L/D_H^{\ 2}$ correlation holds, then these arrestors would be expected to be adequate.

Discussions of the current test data in light of earlier published results for specific fuels follow in the next sections. The detailed test data is presented in Figures 15-24.

C. Acetaldehyde/Air Flame Quench Requirements

The present experiments (Figure 18) indicate that arrestors of $D_{\rm H}$ < .035 in and $L/D_{\rm H}^{2}$ > 306 in $^{-1}$ are adequate to quench acetaldehyde/air flames. The approach speed of the flame in these tests was 50 to 120 ft/sec, except for one run (see Table A-4 for complete data). For comparison, Langford, Palmer and Tonkin (1961) tested acetaldehyde/air flames with three perforated-plate arrestors of .022, .039 and .069 inch cylindrical apertures. The passageway "length" (simply the plate thickness) was less than the aperture size. The results were expressed in terms of the maximum flame velocity which could be quenched; both the .022 in and the .039 in apertures could quench flames moving at

TABLE 6
DIMENSIONS OF COMMERCIALLY AVAILABLE ARRESTORS
COMPARED TO TEST DATA ON SAFE DIMENSIONS

FIGURE 15 QUENCHING CHARACTERISTICS FOR ETHYL ETHER/AIR FLAMES

FIGURE 16 QUENCHING CHARACTERISTICS FOR ETHYL ETHER/AIR FLAMES

FIGURE 17 QUENCHING CHARACTERISTICS FOR METHYL ALCOHOL/AIR FLAMES

FIGURE 18 QUENCHING CHARACTERISTICS FOR ACETALDEHYDE/AIR FLAMES

FIGURE 19 QUENCHING CHARACTERISTICS TOLUENE/AIR FLAMES

FIGURE 20 QUENCHING CHARACTERISTICS FOR CARBON DISULFIDE/AIR FLAMES

FIGURE 21 QUENCHING CHARACTERISTICS FOR BUTADIENE/AIR FLAMES

FIGURE 22 QUENCHING CHARACTERISTICS FOR HYDROGEN SULFIDE/AIR FLAMES

FIGURE 23 QUENCH CHARACTERISTICS FOR BUTANE/AIR FLAMES

FIGURE 24 QUENCH CHARACTERISTICS FOR GASOLINE VAPOR/ AIR FLAMES

25 ft/sec or less; the .069 in apertures could not stop flames of any speed down to 4 ft/sec. Therefore, the results of Langford et al. corroborate our findings that the minimum $D_{\rm H}$ is approximately .035 in; however, the flame speeds were too low and arrestors too thin to test the $L/D_{\rm H}^{\ \ 2}$ criterion.

D. Butane/Air Flame Quench Requirements

The present experiments (Figure 23) indicate that arrestors of $D_{\rm H} < .038$ in and $L/D_{\rm H}^{-2} > 1000$ in $^{-1}$ are adequate to quench butane/ air flames. The approach speeds of the flame for these tests ranged from 60 to 300 ft/sec, with a few isolated tests conducted at 420 ft/sec (see Wilson and Crowley, 1978).

The unpublished results of Broschka and Will (1976) are the only available comparison point for these butane/air data. The experimental conditions for their tests were such that detonation was likely, as evidenced by the observed pressure rises of several atmospheres. It was found that an arrestor of D_H \simeq .049-in. was not effective but that an arrestor of D_H \simeq .037-in. was effective under certain conditions. Both arrestors had passageways of very long length, easily satisfying our suggested L/D_H 2 > 1000 in. $^{-1}$ criteria. In general, the results of Broschka and Will corroborate our findings of a maximum passageway diameter of about 0.038 in, since their tests at D_H = .037 in. were borderline for much more severe flame strength.

E. Acetylene/Air Flame Quench Requirements

The present experiments suggest that there is no commercially available arrestor of the crimped-ribbon type which can reliably quench acetylene/air flames. Of the 6 tests with the Amal arrestor of dimensions $D_{\rm H}$ = .015 in, L = 1.50 in, two resulted in flame quench, and this indicates that this particular arrestor is of "borderline" dimensions. It has an L/D $_{\rm H}^2$ of 6700 in $^{-1}$. Flame speeds for these tests were large (400 ft/sec), but detonation was not encountered. The pressure rises were 5-14 psi which is comparatively low.

Muller-Hillebrand (1938) tested for the single-gap thickness which would quench acetylene/air explosions of 140 psi and found the maximum gap to be .008 in, which is consistent with our result. Miller and Penny (1960) reported that Schmidt and Haberl (1955) have developed a wetted Raschig-ring arrestor of 48" length (1" ring size) which was effective against acetylene/air detonation of 5700 ft/sec. Supposing that the Raschig rings nest in such a way to produce an effective gap of .01 in, certainly this arrestor would satisfy any ${\rm L/D}_{\rm H}^{\ 2}$ criterion of the magnitude shown in Table 5. Miller and Penny also make reference to a 1" thick steel wool arrestor for acetylene detonation.

A reticulated metal foam has been reported by Barton, Carver and Roberts (1975) to quench acetylene/oxygen detonations. The foam is 1.58-in. thick and is formed by compressing a foam of 80 pores/in. (pore size = .0125 in. minus wall thickness) by a factor of five in density. The resulting pore size was presumably less than .008 in. (the Muller-Hillebrand value of critical aperture). Based on $D_{\rm H}$ = .008 in., the $L/D_{\rm H}^2$ for this arrestor was 24,500 in. a factor of four greater than the "borderline" value of the present experiments. The difficulty of arresting acetylene explosions has prompted Linde to use a hydraulic arrestor (see Sutherland and Wegert, 1973).

In summary, the design requirements for acetylene arrestors appear to be D $_{\rm H}$ < .008 in. and L/D $_{\rm H}^2$ > 10,000 to 20,000 in. $^{-1}$ (value uncertain).

F. Ether/Air Flame Quench Requirements

The present experiments indicated a value of $\rm D_H^{~<}$.015 in. for ethyl ether flames, a value which is almost certainly more conservative than necessary since very few $\rm D_H^{~}$ values were tested (see Figure 16). Arrestors of $\rm D_H^{~}$ = .035 in. appeared to be borderline (quenching the flame in 1 out of 4 tests), however, in all three tests which were "no quench" the flame accelerated to relatively high approach speeds ($\rm V_{34}^{~}$ = 232, 312, 625 ft/sec; see Table A-4 for data). Therefore, more experimental work is needed to better define the maximum safe $\rm D_H^{~}$, which on the basis of fuels with comparable laminar flame speed would be expected to be no less than $\rm D_H^{~}$ = .03 in.

By way of comparison, Genkin (1967) tested layers of gravel and obtained 0% quench probability for 0.59-0.71 in. gravel size, 56% quench probability for 0.35-0.47 in. gravel size, and 100% quench probability for 0.31-0.35 in. gravel size. All beds were 8" in height. For a packed bed of spheres, $D_{\rm H}$ = .102 times the sphere diameter, therefore, Genkins' results correspond to a maximum safe diameter of

 $D_{\mu} < .03$ in.

The length of the bed corresponded to $L/D_{\rm H}^2 = 8300 \text{ in}^{-1}$ which is probably well above the minimum necessary length criterion.

Langford, Palmer, and Tonkin (1961) also tested ether/air flames using perforated plates. It was found that arrestors of .022 in. aperture could quench flames up to 34 ft/sec and arrestors of .039 in. aperture could quench flames up to 15 ft/sec.

In summary, the present experimental result is that $D_{\rm H}$ = .035 in appears borderline for flames in the 230-625 ft/sec range. This is consistent with Genkin's result that $D_{\rm H}$ < .031 in for 100% quench and Langford et al.'s result that an arrestor of very short length and .039 in passageway diameter is marginal. The $L/D_{\rm H}^{\ 2}$ minimum is yet to be determined but appears to be greater than for the ether/air value of 326 in⁻¹ corresponding to $D_{\rm H}$ = .035 in, L = 0.4 in, but less than the value of 3300 in⁻¹ reported in Table 5.

G. Gasoline Vapor/Air Flame Quench Requirements

The present experiments which were reported by Wilson and Crowley (1978), Figure 24, are very limited on gasoline/air but indicate that the Protectoseal arrestor ($D_{\rm H}$ = .043 in, L = 1.38 in) quenches consistently. Flame speeds on these tests were comparable to methane/air (24-62 ft/sec). However, the tests were run with <u>upstream</u> ignition which is more severe than the conditions for other fuels which have been discussed. It is well known that a major component of gasoline vapor is butane, and therefore the quench requirements of gasoline are expected to be comparable to butane ($D_{\rm H}$ < .038 in and $L/D_{\rm H}^{\ 2}$ > 1000 in for butane, according to our tests). This comparison holds up well since these butane quench requirements are slightly more stringent than the Protectoseal dimension can satisfy.

Earlier published results for gasoline air include those of (a) Clothier (1956), who found that a crimped ribbon of .021 in height, .049 in base, and 1.00 length ($D_{\rm H} \simeq .022$ in, L = 1.00 in) could arrest petrol/air, (b) Swan et al. (1932), who found that minimum requirements were $D_{\rm H} < .047$ in for L = 0.8 in and $D_{\rm H} < .059$ in for L = 2 in (L/ $D_{\rm H}^2$ = 362 in and 474 in 1, respectively) and (c) Schampel and Steen (1975), who recommend $D_{\rm H} < .028$ in and L > 0.4 in for explosion arrestors.

V. TESTS OF NON-OBSTRUCTIVE DEVICES FOR FLAME CONTROL

A. Steam Snuffing Tests

1. Modifications to Test Apparatus

The flame arrestor test apparatus was modified to allow the injection of steam so that critical steam flows required to arrest flames of methane/air and ethylene/air mixtures could be measured. Provisions were incorporated to introduce both transient and continuous steam flow. The modification consisted of installing a steam injection nozzle,* centered in the test pipe, coincident with the upper flange of the Varec arrestor housing, as shown schematically in Figure 25. The nozzle was connected to a steam supply using insulated 3/4" NPT piping that extended through the wall of the arrestor housing. As shown in Figure 25, the steam system consisted of a steam regulator, a primary flow control valve, a system pressure gage, a snuffer solenoid valve, a steam by-pass solenoid valve, and a by-pass flow control valve. The by-pass line allowed steam to be directed into the exhaust system until the start of the injection test.

As shown in Figure 25, modifications to the test apparatus also included a flame detection and steam control system. The system was designed to permit either a transient injection of a fixed quantity of steam synchronized with a travelling flame front, or a continuous supply of steam. Shown in Figure 25, the flame detection system consisted of an optical detector installed 10-3/4" below the uppermost spark igniter (Optical Port No. 1 shown in Figure 25). A second detector located at Optical Port No. 2 (Figure 25) was used to confirm the development of a moving flame front. Another detector at Port 3' was used to record the passage or absence of flames upstream of the arrestor housing indicating non-quenching or quenching, respectively, of the flames by the steam. In Pulsed Mode, approximately 0.3 sec prior to ignition,

^{*}Bete Model TF14FC

FIGURE 25 TEST APPARATUS ARRANGED FOR STEAM SNUFFER TESTS

the operation was arranged so that it diverted the steam flow from the by-pass to the test section for a preset time. In Continuous Mode, steam was initiated 20 sec prior to ignition and injected continuously into the apparatus.

2. Test Procedure

Prior to conducting tests, the by-pass control valve was adjusted to achieve the same flow through the by-pass system as in the snuffer system. Steam flows were measured using the Bete-nozzle pressure drop as calibrated by the manufacturer. The Bete-nozzle, Model TF14FC, is designed to distribute a "solid-cone" spray of steam within a 120° cone.

For all tests, steam was allowed to flow continuously through the by-pass line for a period of approximately 5 minutes prior to the start of a flame test. This was done to permit the plumbing components to reach a temperature sufficiently high to avoid steam condensation as much as possible.

For Pulsed Mode tests, after the 5-minute steam pre-heat period, a regulated flow of gas and air was established in the apparatus. The gas/air flow was allowed to continue for 2 minutes to purge the apparatus of air and combustion products from preceeding tests. To initiate a test, steam was injected into the apparatus 0.3 to 0.5 sec before the activation of the spark igniter. The timer limited the quantity of steam that was injected in each test. In each test, flame development was confirmed by detection at Optical Port No. 2 (Figure 25). Tests were conducted at constant steam pressure drop (flow), but the injection time period was adjusted to achieve a minimum quantity of steam for quenching.

For Continuous Mode tests, after the 5-minute steam pre-heat period, a regulated flow of gas and air was established in the apparatus. As in Pulsed Mode procedures, a gas/air flow was allowed to stabilize for 2 minutes. At the end of 2 minutes, a known flow rate of steam was introduced into the apparatus and permitted to flow for a period of approximately 20 sec before ignition. This period was sufficient to insure that the test pipe had been completely penetrated by the steam/

fuel/air mixture. Approximately 20 sec after steam was initiated, the spark igniter was discharged. In this way, ignition of the gas/air mixtures was achieved.

3. Test Results and Discussion

The results of the Pulsed Mode tests are listed in Table 7. The minimum quantity of steam for quenching flames using the pulsed method was found to be .0144 pounds. On a volumetric basis, the test section is approximately 2.0 cubic feet, and the minimum amount of steam was .40 cubic feet. This is not unreasonable, considering that the steam jet must undergo mixing in order to quench the flame. The success of quenching in Pulsed Mode depends on the time-dependent fluid mechanics of establishing a steam jet which covers the entire cross section of the 6" pipe. We also caution that the Pulsed Mode test data is probably unique to this particular nozzle and 6" pipe arrangement. To illustrate the significance of mixing, note that the injection rates required to quench ethylene flames were less than 30 lb/hr for continuous injection, whereas up to 71 lb/hr in Pulsed Mode would not quench the flame.

Attempts to quench flames of ethylene/air mixtures using Pulsed Mode steam injection were not successful for up to 0.099 lb (2.7 cubic feet) of steam. However, it was noted that during test No. 25 (0.1639 lb or 4.55 cubic feet) flame-through did not occur until after steam injection had been shut off.

Ethylene/air flames were quenched using Continuous Mode injection at 30-60 lb/hr of steam. For comparison, the air flow rate was 26 lb/hr and the fuel rate was 1.8 lb/hr. Therefore, the dilution of the mixture by 30 lb/hr of steam was about 1:1 on a mass basis. The adiabatic flame temperature would be reduced substantially by this much steam; certainly below 2000°F.

The current results indicate that a ratio of steam to fuel of 16.7 is more than adequate to prevent propagation of ethylene/air flames. This agrees with the results of Gerstein, Carlson, and Hill (1954), who found that 16.7 lb water/lb fuel could prevent detonation of methane/air mixtures in a double injection ring arrangement, 1 ft apart. For two injection rings 5 ft apart, the required water-fuel ratio was reduced to 6.8. Initial pressures in the Gerstein experiments were .33-.40 atm.

TABLE 7 STEAM SNUFFER TEST RESULTS

PULSED MODE OPERATION

TEST CONDITIONS:

Fuel - Methane \$\phi = 1.1\$ Mixture Velocity - 0.5 Ft/Sec Orifice Diameter - 3 in.

Test No.	Steam Flow Rate Lb/Hr	Steam Injection Time Period (Sec)	Total Steam Injected (1b)	Pre-Fire Steam Injection Period (Sec)	Quench Yes No	Remarks
1	0	0	0	0	Baseline	V ₂₃ = 44 ft/sec
2	69.3	1.0	0.0192	0.56	x	
3	69.3	0.50	0.0096	0.50	x	
4	69.3	0.50	0.0096	0.52	x	
5	69.3	0.75	0.0144	0.38	x	
6	71.2	0.75	0.0144	0.28	x	
7	71.2	0.75	0.0144	0.51	x	
8	71.2	0.65	0.0128	0.42	x	
9	71.2	0.65	0.0128	0.45	x	
10	71.2	0.65	0.0128	0.36	x	
11	71.2	0.70	0.0138	0.44	x	Approx. 3 sec delay before flame-through
12	70.1	0.70	0.0136	0.50	x	
13	71.2	0.70	0.0138	0.44	x	Approx. 3 sec delay before flame-through

Table 7 (Continued)

PULSED MODE OPERATION

Fuel - Ethylene φ = 1.1 TEST CONDITIONS:

Mixture Velocity ft/sec		Steam Injection Time Period (Sec)	Total Steam Injected (1b)	Pre-Fire Steam Injection Period (Sec)	Orifice Dia (in)	Quench Yes No	Remarks
0.5	71.2	1.0	0.0198	0.68	4.0	x	
0.5	70.0	1.0	0.0194	3.0	4.0	x	
0.5	71.2	1.0	0.0198	3.0	4.0	x	
0.5	71.2	5.0	0.0990	5.0	4.0	x	
0.5	71.2	5.0	0.0990	5.0	6.0	x	
0.25	71.2	5.0	0.0990	5.0	6.0	x	
0.50	52.0	5.0	0.0722	0.0	6.0	x	
0.50	50.0	5.0	0.0694	0.83	6.0	x	
0.50	60.0	5.0	0.0833	0.50	6.0	x	
0.50	58.0	5.0	0.0806	1.0	6.0	x	
0.50	58.0	5.0	0.0806	2.0	6.0	x	
0.50	59.0	10.0	0.1639	2.0	6.0	x	Flame- through occurred after steam
	Velocity ft/sec 0.5 0.5 0.5 0.5 0.5 0.50 0.50 0.50 0.5	Mixture Velocity ft/sec Lb/Hr 0.5 71.2 0.5 70.0 0.5 71.2	Mixture Velocity ft/sec Steam Flow Time Rate Lb/Hr Injection Time Period (Sec) 0.5 71.2 1.0 0.5 70.0 1.0 0.5 71.2 1.0 0.5 71.2 1.0 0.5 71.2 5.0 0.5 71.2 5.0 0.5 71.2 5.0 0.50 52.0 5.0 0.50 50.0 5.0 0.50 58.0 5.0 0.50 58.0 5.0 0.50 58.0 5.0	Mixture Velocity ft/sec Steam Rate Lb/Hr Injection Total Time Steam Injected (Sec) Total Steam Injected Injected (Ib) 0.5 71.2 1.0 0.0198 0.5 70.0 1.0 0.0194 0.5 71.2 1.0 0.0198 0.5 71.2 1.0 0.0198 0.5 71.2 5.0 0.0990 0.5 71.2 5.0 0.0990 0.5 71.2 5.0 0.0990 0.50 52.0 5.0 0.0722 0.50 50.0 5.0 0.0694 0.50 58.0 5.0 0.0806 0.50 58.0 5.0 0.0806	Mixture Velocity ft/sec Steam Injection Total Steam Injection Time Period (1b) Steam Injection Total Steam Injection Injected (1b) Steam Injection Period (1b) 0.5 71.2 1.0 0.0198 0.68 0.5 70.0 1.0 0.0194 3.0 0.5 71.2 1.0 0.0198 3.0 0.5 71.2 1.0 0.0198 3.0 0.5 71.2 5.0 0.0990 5.0 0.5 71.2 5.0 0.0990 5.0 0.5 71.2 5.0 0.0990 5.0 0.5 71.2 5.0 0.0990 5.0 0.5 52.0 5.0 0.0990 5.0 0.5 52.0 5.0 0.0722 0.0 0.5 50.0 5.0 0.0833 0.50 0.5 58.0 5.0 0.0806 1.0 0.5 58.0 5.0 0.0806 2.0	Mixture Velocity fixes Steam Injection Time Rate Period Lb/Hr Time (Sec) Total Injection Injection (Injected (In	Mixture Velocity ft/sec Steam Lange Lb/Hr Injection Total Steam Injection (Sec) Steam Injection Injection Period (Sec) Orifice Period (Injection (Sec) Ves No 0.5 71.2 1.0 0.0198 0.68 4.0 x 0.5 70.0 1.0 0.0194 3.0 4.0 x 0.5 71.2 1.0 0.0198 3.0 4.0 x 0.5 71.2 1.0 0.0198 3.0 4.0 x 0.5 71.2 5.0 0.0990 5.0 4.0 x 0.5 71.2 5.0 0.0990 5.0 6.0 x 0.5 71.2 5.0 0.0990 5.0 6.0 x 0.5 71.2 5.0 0.0990 5.0 6.0 x 0.5 52.0 5.0 0.0722 0.0 6.0 x 0.5 50.0 5.0 0.0833 0.50 6.0 x 0.5 58.0 5.0 0.0806

Table 7 (Continued)

CONTINUOUS MODE OPERATION

TEST C	ONDITIONS:	φ = : Mixture Orifice Ethylene Steam Flo	l.l Velocit Diamete flow r	y - 0 er - 4	.5 Ft/Sec in. 1.81 1b/hr				
Test No.	Steam Flow Rate (lb/hr)	Period Before Firing (Sec)	Quer Yes			Remai	rks		
1	0	0			$v_{23} = 49$	ft/sec	2		
2	59.0	28	х		Momentary	fire	at	pipe	exit
3	50.2	20	x		11	11	**	"	"
4	40.7	20	x		"	"	"	"	"
5	30.0	23	x		***	11	**	**	"

Muller-Dethlefs and Schlader (1976) showed that a steam/fuel ratio of 7/1 reduces the laminar burning velocity of propane/air from 40 to 28 cm/sec and reduces the flame temperature from 2180°K to 1890°K, a difference of 290°K = 522°F. This reduction is less than would be expected by steam acting as a pure heat sink, because there is an exothermic shift in the water-gas equilibrium.

B. High Velocity Valve Tests

1. Apparatus Description

A Pres-Vac High Velocity Relief Valve,* Type HS6-M (shown in Figure 26), was tested for operation using both methane/air and ethylene/air mixtures on the flame arrestor apparatus. The relief valve was preset at the factory to relieve on a nominal pressure load of 1-1/2 psig. At this relief pressure, it is designed to accommodate the gas displaced by a liquid loading rate of approximately 11,000 barrels per hour, assuming a 6" pipe vent. This pressure drop corresponds to a velocity at the "throat" of the valve of 430 ft/sec, against which the flame must propagate.

The flame arrestor test apparatus was arranged to accommodate the relief valve by removing the upper section of the test apparatus including the Varec arrestor housing and all the components above it. A 3-foot flanged pipe section (6" dia, schedule 40) was fixed to the test apparatus in place of the upper test section and the relief valve was installed on top of the 3-foot section. A spark igniter (the same used for flame arrestor tests) was placed in the region of the valve exit stream. A mercury manometer was installed in the test pipe to measure pipe pressure during tests. The relief valve tests were

^{*}The valve was made available to Arthur D. Little, Inc., by the Waukesha Bearings Corp., Waukesha, Wisconsin, for evaluation during this program.

All dimensions are in inches. B.C. designates Bolt Circle.

a (dia.)	b (dia.)	d (dia.)	A (dia.)	Н	В	D (dia.)	P (B.C.)	Holes (qtydia.)
6	7-1/4	9	16-1/8	31-5/16	17-1/2	14-9/16	12-13/16	(8) - 7/8

Source: Catalogue W-16, Relief Valve, Ullage Covers, Flame Arrestors, Waukesha Pres-Vac.

FIGURE 26 TYPE HS HIGH VELOCITY RELIEF VALVE

designed to see whether flashback could be prevented by the valve under the most demanding operating conditions, e.g., low gas/air mixture flow rates (6 CFM) and equivalence ratios of ϕ = 1.1. Additional tests were performed with ϕ variations.

2. Test Procedure

For both methane/air and ethylene/air mixtures, the ϕ = 1.1 tests involved flowing gas/air mixtures (adjusted for ϕ = 1.1) through the relief valve at rates ranging from approximately 10 CFM to 2.5 CFM and igniting the vented mixture with a spark igniter and/or propane torch. The point of ignition is shown as an arrow marked X in Figure 26. Observations were made to see if the flame was sustained at the valve, blown off, or passed through the valve. In the normal recommended range of valve operation (approximately 1,000 CFM), the flame was blown off. The rich mixture tests involved flowing a mix (initially at ϕ = 1.1) at approximately 10 CFM through the valve and, in approximately 2-minute intervals, reducing the air flow progressively while holding the fuel flow constant in an attempt to generate ever increasingly rich mixtures. The same observations were made as in the ϕ = 1.1 tests.

3. Test Results and Discussion

Figure 27 illustrates the pressure/flow characteristics measured during non-combustion tests of the system. As can be seen, pressure began to fall below 1.4 psi when the flow dropped to about 4 CFM. No attempt was made to investigate pressure characteristics below this flow level.

Test results for methane/air mixtures at ϕ = 1.1 are listed in Table 8. As can be seen, at mixture flow rates above 0.54 ft/sec (6.4 CFM), no sustained flame occurred. Evidence of a flammable mixture was shown by observing a luminous flame upon application of the propane torch where it impinged upon the relief valve float cone in the vicinity marked X in Figure 26. At flow rates progressively lower than 6.4 CFM, sustained

FIGURE 27 RELIEF PRESSURE CHARACTERISTICS AT LOW FLOW

TABLE 8

HIGH VELOCITY RELIEF VALVE TEST RESULTS

Relief Valve: Pres-Vac Model HS6M

Stoichiometric Tests

Test No.	Test Mixture No. Fuel \$\phi\$ Velocity (ft/sec)	Φ.	Mixture Velocity (ft/sec)	Test Observations
1	Methane	1.0	0.87	Evidence of mixture flammability using propane torch @ "x" (Figure 26)
2	=	1.0	0.75	
3	=	1.0	0.65	
4	=	1.0	0.54	Weak sustained burning around conetorch ignited
2	=	1.0	0.44	" " "spark ignited
9	=	1.0	0.33	Very weak " " " " "
7	=	1.0	0.22	Small flame ringlet at exit gap around base of cone
80	Ethylene	1.0	0.84	Evidence of mixture flammability using propane torch @ "x" (Figure 26)
6	=	1.1	0.72	
10		1.0	0.62	
11		1.0	0.53	Momentary sustained burning around conetorch ignited
12		1.0	0.42	Weak sustained burning around conespark ignited
13		1.0	0.32	
14	:	1.0	0.21	Small flame ringlet at exit gap around base of cone

Table 8 (Continued)

Fuel-Rich Tests

Test No.	Test Mixture No. Fuel \$\phi\$ Velocity (ft/sec)	•	Mixture Velocity (ft/sec)	Test Observations	
15	Methane	1.0	0.87	Evidence of mixture flammability using propane torch ("x" (Figure 26)	re 26)
16		1.0	92.0		=
17		1.2	19.0		=
18		1.4	0.58	Weak sustained burning around conetorch ignited	
19		1.7	0.48	Sustained burning around coneincreased volumetorch ignited	
50		2.1	0.38		
21	= ,	2.8	0.28		
22	Ethylene	1.0	0.84	Evidence of mixture flammability using propane torch @ "x" (Figure 26)	re 26)
23		1.2	0.73		
24		1.3	79.0	Sustained burning around conetorch ignited	
25		1.6	0.55	" " "-spark ignited	
56		1.9	0.45	Increased burning around coneyellow flames	
27	=	2.4	0.35		

burning existed around the periphery of the cone in the form of a small blue ring at the exit annulus. At the lowest flow rate, the height of the flame ring was approximately 1/8" high. No flashback occurred.

The results of the ethylene/air tests using Continuous Mode procedures are also listed in Table 8. The flame characteristics of the ethylene/air flame were similar to those for methane/air flames except that they were more luminous (blue). No flashback occurred.

In tests performed with rich methane/air and ethylene/air mixtures, it was observed that enrichened mixtures at very low velocities resulted in sustained burning around the top of the valve. The continued burning heated the relief valve cone for the duration of the tests (up to 30 seconds). However, no flashback occurred during any of the tests. The extent of the continuous burning on the valve cone, the cone temperature, and the effect of these factors on flashback potential was not investigated.

APPENDIX A

TABULATION OF TEST DATA

Data obtained from individual tests performed during the program are listed in Tables A-1 through A-4 according to the following key:

Data on Effect of Equivalence Ratio on Flame Speed	A-1
Data on the Effect of Gas Temperature on Flame Speed	A-2
Tests Results for Methane and Ethylene	A-3
Tests Results for Ten Products (Fuels)	A-4

Table A-1

Data on Effect of Equivalence Ratio on Flame Speed

REMARKS	<pre>p variation</pre>	check " - No Fire	a variation	check " - No Fire " " \$\phi\$ variation	check No Fire variation	cneck " No Fire variation check	" - No Fire
$\begin{array}{ccc} & & & \\ V_2^* & & \\ V_2^* & & \\ & & \\ (\frac{ft}{sec}) & Y & N \end{array}$	4.2 4	2.9 / 0	0000	3.0	2.5 / 0 = 3.8 /	2.3 /	. 0
FLOW RESTRICTION Orifice dia. (in)	9 :	:::	on the	a septific o			
MIXTURE CHARACTERISTICS Fuel \$\phi\$ Mixture Flow Rate (SCFM)	Methane 1.10 5.94		1.48 6.14 1.45 6.11 1.40 6.08 1.30 6.01		1.28 5.99 1.3 6.01 1.28 6.00	.83 5.74 .72 5.68 .62 5.62 .83 5.75	1.24 5.75
L/D _H	.055 Met	11	1111	111	111		1 1
ARRESTOR CHARACTERISTICS Type Opening D _H L (in) (in)	Single 14 mesh x . screen .016 wire					" " 12 mesh x020 wire	
Test Number	070103		070108 070109 070110		070114 070201 070202	070203 070204 070205 070206	070701

 $^{\star V}_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

Table A-1 (continued)

Number	Type	e Opening D _H L	DH		L/D _H	. CH	CTER	STICS	r LOW KE	V* Quench	
			(in)	(in)		Fuel	4	Mixture Flow Rate (SCFM)	dia. (in)	(ft sec) Y N	
070901	Single	14 mesh x	.055	,	,	Methane	1.1	5.92	9	4.44 /	All tests w/o
	screen	.016 wire									orifice, w/18"
070902	:	" No september	=	!	ı	=	1.1	5.91		5.26 /	extension, C
070903	:		=	1	1		1.2	5.97	:	4.17 /	spark & 90 sec.
070904	:		=	ı	1		1.2	5.97		>	firing delay
070905	:		:	1	1	:	1.2	5.97		4.44 /	
906010	:	=	=	1	1		1.0	5.83		4.08 /	
070907	:	H. C. S. S. S. S.	=	1	į		1.0	5.83		7 00.7	
070908	:		=	1	1	:	1.3	6.01	:	3.39 4	
606020	:		=	1	1		1.3	6.01		2.22 /	
070910	:		=	1	1	:	6.0	5.76		2.82 /	
070911	:	-	=	1	1	:	6.0	5.76		2.99 /	
070912	:		=	1	1	:	1.4	6.07		, 85 /	
070913	:		=	1	1		1.4	6.07	•	/ 86.	
070914	:	=	=	1	1	:	8.0	5.70		1.90 /	
070915	:		=	1	1	=	8.0	5.70		1.96 /	
071202		12 mesh x	.063	ı	1	=	1.1	5.76	=	4.44 /	
		.020 wire									
071203	:		=	1	1		1.1	5.76	= :	4.65	
071204	:		=	1	1		0.8	5.57	= :	1.9 4	
071205	:		=	1	1	=	1,1	5.76	=	2.0	
071206	:		=	1	1		1,4	5.95	•	.92 /	
071207	:	10 mesh x	80.	1	1		1.4	5.95	:	1.2 /	
		.020 wire						TASCAND TO THE			
071208	:		=	1	1	=	1.1	5.77		4.54	
071209	=	16 mesh x									
		.02 wire	.08	1	1		0.65	5.51		1.85 /	
071301	:	8 mesh x	.10	1	1		1.4	6.03		2.44	
	-	00									

 $\star v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

Table A-1 (continued)

			firm			_			_		-						_				_			_				
REMARKS			Purpose: confirm	<pre> variation effects</pre>	=	=	=	=		=	=			=	:	=						ed o						
			Purpo	<pre>p varia effects</pre>		=	=	=		<u>.</u>	<u>.</u>			=	=	:	=					Changed						
ULTS Quench	N	`												`	`													
SES	(ft sec Y	2	`		`	`	1	>		>	>	`				`	`		1	1	>	`	•	`		`	>	>
V* 1	S(F)	1.72	1.3		1.3	2.0	1.5	1.3		1.3	1.8	1.7		1.5	1.3	2.3	2.7		5.0	4.2	4.4	4.4	5.2	5.6		4.3	4.7	4.9
TION																												
RESTRIC Orifice dia.	(in)	9	=		=	=	:	=		=	:	:		=	=	=	=		:	=	=	=	=	:		=	=	
FLOW RESTRICTION Orifice dia.																												
Flow						_				_					_													
E ISTICS Mixture Flow	(SCFM)	5.65	5.79		5.79	91.9	6.16	5.77		5.77	6.14	6.14		5.75	5.75	6.14	6.14		5.84	5.84	5.84	5.82	5.82	5.82		5.82	2.96	2.94
MIXTURE CHARACTERISTICS 1 \$\phi\$ Mixtur					∞			8				4							1.13	1.13						1,10	1.10	1.10
MI Y		е 0.8	0.8		0.8	1.4	1.4	0.8		0.8	1.4	1.4		0.8	0.8	1.4	1.4		i	i.	1.	1,	1.	1.		1.	1.	i.
CI Fue I		Methane	:		:	=	=	=		=	=	=		=	=	:	=		=	=	=	=	=	=		=	=	=
H _{Q/T}		1	1		1	1	ı	1		1	,	,		1	ı	,	1		ı	,		ı	,	,		,	1	1
-		i	ı		•	1	1	1		1	1	1		1	1	1	1		1	1	1	1	,	1		1	1	1
ARRESTOR CHARACTERISTICS of Opening D _H L (in) (in)		.10	.063			=		.08				=		.11	=				640.	=		=	=	.055		=	=	=
Opening		X d	x ye	re				×	re				1 X	ire				mesh x						mesh x	ire			
Ope		8 mesh x	12 mesh x	.020 wire				10 mes	.020 wire				mesh x	.020 wire				16 mes	1					14 mes	.016 wire			
ARRE				•	•	:	:	1	•	=	=	=	80	•	=	:	=	1	•	=	:	=	=	1	-	=	=	=
F		Single	=		:	=	:	:_		=	=	:	=		:	:	=	:		:	:	:	=	:		:_	=_	:
Test Number		071302	071501		071502	071503	071504	071505		071506	071507	071508	071509		071510	071511	071512	063001		063002	063003	063004	063005	900890		063007	070101	070102

 $*v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

Table A-2

Data on the Effect of Gas Temperature on Flame Speed

REMARKS								1/8" dia. hole	in screen	Effects of Mix-	ture Temperature	:	:	:				=		:	:	:	:	:	:			:	=	:		
TS	Onench		Z					`		>		`			`	>					`								1	`		
RESULTS	V* 0.	ft)	sec' Y	4.1 /			3.8	4.4		5.6		6.9	2.0 /	2.2 /	4.5	6.4	3.1 /	2.8 /		2.9	2.2	2.4 /	2.5 /	, "	3.1 /		2.2 /	3.2 /	2.7	2.4		
FLOW	RESTRICTION	dia.	(in)	0.9		:	:					:	:		:	:		:			=	:	:	:	:			:				
ICS	Mix.	(°F)		187		149	150	66		113		112	146	149	151	153	155	158		151	156	159	156	157	157		152	154	157	=		
MIXTURE CHARACTERISTICS	Mixture Flow	(SCFM)		5.89			5.90	5.93		5.90			2.67	=	5.85	=	6.01				5.67		5.66		00.9				5.66	5 W		
XTURE (. Mi			1.1		=	=	:	*	=		=	8.0	=	1.1	=	1.35	=		=	8.0		=	:	1.35		=	=	8.0	=		
	Fuel			Meth-	ane	=	=	:		=		=	=	=	:	=	=	=		=	=	=	=	=	=		=	=	=	=		
	L/DH			ı		1	1	1		1		1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	1	1		
TICS	L L	(in)		1		1	1	1		1		1	1	1	1	1	1	1		1	1	1	1	1	1		1	1	1	1		
TERIS	НС	(in)		.055		=	=	=		.063		=	=	=	=	=	:	80.		=	=	=	=	=	=		.105	=	=	=		
REST	Openins			14 mesh x	.016 wire	ii .				12 mesh x	.020 wire	=						10 mesh x	.020 wire	=				•		8 mesh x	.020 wire					
¥F	Type			Single	screen		=	:		=		:	:	:	:	:	:	=		:	=	:	:	:	=	=		:	=	:		
.est	Year			070705		902020	070707	070801		070802		070803	070807	070808	070808	070818	070811	070812		070813	070814	070815	070816	070817	070818	070819		070820	070821	070822		

*V23 is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor,

respectively.

Table A-3

Test Results for Methane and Ethylene

REMARKS	No Fire - 2 Attempts
$\begin{array}{ccc} & & & & \\ V_2^{\star} & & \text{Quench} \\ V_2^{\star} & & \text{Quench} \\ & & & \text{Sec.} & \text{Y} & \text{N} \end{array}$	4.5 3.92 1.78 3.86 3.72 0.0 2.18 4.65 2.40 4.65 1.53
FLOW RESTRICTION Orifice dia. (in)	• : : : : : : : : : : : : : : : : : : :
CHARACTERISTICS Fuel \$\phi\$ Mixture Flow Rate (SCFM)	Methane 1.10 6.03 " 1.1055 5.91 " 0.80 5.71 " 0.80 5.71 " 1.25 5.98 " 1.25 5.97 " 1.25 5.97 " 1.25 5.97 " 1.25 5.97 " 0.80 5.68 " 1.25 5.97 " 0.80 5.68 " 1.25 5.97 " 0.8 5.73 " 0.8 5.73
ARRESTOR CHARACTERISTICS Opening D _H L L/D _H (in) (in)	
ARRESTOR CHAR Type Opening	Single 8 mesh x screen .020 wire .02 wire02 wire
Test Number	061807 070601 070603 070603 070604 070606 070606 070609 070611 070612 070611 070612 070611

 $^{\star}v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

REMARKS				Section of the sectio											Screen buckled -	openings at side		Screen buckled -	openings at side				
RESULTS 3 Quench c C Y N	,	1	,	`	`	,	`	`	`		`	`	`	`	`	`	,	. `	`	` `	`		`
$\frac{\text{RES}}{\text{V23}}$ $\frac{\text{RES}}{\text{sec}}$	100.	80.	20.	15.	32.	,,,	53	19.	13.		40.	22.	29.	10.	26.	100.	5	100.	10	.70	1		31.
FLOW RESTRICTION Orifice dia. (in)	9	Ε		=	=	=		=	=			-	:		=	:	=		=				
RE RISTICS Mixture Flow Rate (SCFM)	5.80	5.77	5.77	5.17	5.17	77 5	5.77	5.66	5.89		5.76	5.75	5.75	5.64	5.87	5.74	77. 5	5.74	5.62	5,85	5.73		5.73
MIXTURE CHARACTERISTICS Fuel \$\phi\$ Mixtur Rate (SCF)	Ethylene 1.1		1.1	" 1.4	" 1.1		1.1	8.0	" 1.4		" 1.1	" 1.1	" 1.1	. 0.8	" 1.4	" 1.1	. 1.1	" 1.1	0.8	" 1.4	" 1.1		" 1.1
H _{Q/T}	1	1	1 1	,	1		1	1	1		1	,	1	1	,	1	,	1	,	1	ı		ı
L L (in)	1	1	1 1	1	1	1	1	1	1		ı	1	,	1	1	1	,	1	1	1	1		1
D _H (in)	.055			=	.041		:		:		.032		=	=		027				:	021		
ARRESTOR CHARACTERISTICS of Opening D _H L (in) (in)	14 mesh x	217M 070.	: :		~	.015 wire	=			22 mesh x	5 wire	=		=		26 mesh x .027	.011 wire	=	=		30 mesh x .021	.012 wire	
Type Type	Single		: :	2	=	:	:	=	=	=		:	=	=	=	=	:		:	=	=		
Test Number	080201	080202	080203	080205	080206	080707	080208	080209	080210	080211		080212	080213	080214	080215	080216	080217	080218	080219	080220	082005		087006

 $*v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

88

-	-			3				1	TECH MESTIVATION		217	NEFFERENCE
Number	Type	Opening	H _Q	1	L/DH	Fue 1	CHARACTERISTICS	ISTICS Mixture Flow	Orifice dia.	V23 Q	Quench	
			(1n)	(1n)				Rate (SCFM)	(in)	(ft sec) Y	Z	
082007	Single	30 mesh x	.021	ı	ı	Ethylene	1.1	5.73	9	36.	^	
800080	screen	38 moch w										
00700		0085 min	010	,		:		7.3		3,5	,	
082009	=		070.		1	=	1.1	5.73		38.	>>	
082010	:		=	1	1	:	1:1	5.72	=	40.	. `	
110301	:	:	=	1	1	:	1.1	5.84	:	25.	. >	
110302	:	=	=	1	1	:	1.1	5.84		25.	. >	
110303	:		=	1	1		1.1	5.84	-	25.	. >	
061701		ZO mesh x	.034	,	,	Methane	1.11	76.5	=	4.6 1		
061702	=	" "	:	1	1	:	111	5 97	=	, , ,		
061703	:	=	=	1	1	:	111	5 07		4.4		
061704	:	=	:	,	1	:	1,11	5.97		2.00		
061705	:	16 mach v	670	1	,	:	1 11	5 97	=	/ 4		
		.0135 wire					11.1	16.6		· ·		
061706	=	E	=	•	1	:	1.11	5.97	=	4.8	`	3 sec. delay be-
												tore screen
061707	:	=	=	ı	,	:	1.11	5.97	=	7 8 7		ratten
061708	:	=	=	ı	. 1	:	1.11	5.97	:	7 6 7		
061801	:	12 mesh x	090.	ı	1		1.10	6.03		4.3	`	
		.023 wire										
061802	:		=	ı	1	=	1.10	6.03		4.7	>	
061803	:		=	ı	1	:	1.10	6.03		. 7	. `	
061804	:	=	=	,	,		1.10	6.03		9.7	. >	
061805	:		:	1	1		1.10	6.03		7.7	. >	
061806	:	8 mesh x								:		
		.020 wire	.105	1	1	=	1 10	6 03	=	4 7	,	

 $*v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

REMARKS	No pipe extension used """"""""""""""""""""""""""""""""""""
RESULTS V23 Quench (ft) sec Y N	2 018
V* 1	4.2 4.0 4.1 4.3 4.7 12.9 16.7 7.4 200 1.2 11
FLOW RESTRICTION Orifice dia. (in)	4.0 6.0 3.0 1.0 1.0 1.0
MIXTURE CHARACTERISTICS 1	5.83
MIXTURE RACTERIS	I
Fue	Methane ::::::::::::::::::::::::::::::::::::
H _{Q/T}	1 111111111
_	
D _H	7 ::::::::::
ARRESTOR CHARACTERISTICS oe Opening D _H L (in) (in)	8 mesh x .02" wire
Type Type	Screen
Test	071303 071304 071305 071306 071308 071309 071401 071402 071404 071405 071406

 $*v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

Table A-3 (continued)

1	नः।	EARAC		TICS	Plantage		MIXTURE	MIXTURE	FLOW	#X	RESULTS	REMARKS
	Opening	H (in)	2	H _{U/7}	blockage (%)	Fue	AKACIER	Mixture Flow	Orifice	v23	o neucu	
								(SCFM)	d12. (in)	(sec	Y N	
Single		.02	1	,	74	Methane	1.1	6.05	3.0	50.0	`	
Ħ	Perforat- holes											
										•		
	:	:	1	1	,	=	:	6.04		9 99	>	
	.062" dia.	.062	1	1	59	:	=	=	:	=	`	
	holes											
	-	=	i	1	1	:	=	=	=	=	`	
	.072" dia.	.072	1	1	54	=	=	=	=	:	`	
	holes											
	=	=	ı	1	1	:	=	6.03	:	:	`	
	.107" dia.	.107	ı	,	55	:	=	=		=	`	
	holes											
	.02" dia.	.02	ı	1.	14	=	=	90.9	=	6.4	`	
	holes						:				,	
			ı	1	ı	:				2.6	,	
	.062" dia.	.062	ŧ	1	29	=	=	=	=	5.4	`	
	holes	=				:	=	0			,	
	072" 412	070		1 1	۲, ۲	:	=	01.0	=	4 u	`	
	holes	710.			5					t.		
	=	=	ı	1	1	:	=	=	:	4.7	/	
0	Stacked "	.072	0.26	3.67	54	Methane	1.1	6.07	3.0	9.99	^	
127	Perforat-											
			•									
Plates "	=	=	=	:	=	=	=	=			`	
	=	=	0	2		:	=	=	=	6.70	,	Wales Jones
			0.40	2.30						41.0	-	Holes don't
												Tille up exact-
												4.7

speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor,

REMARKS	Holes don't line up exact- ly										
Quench	`	`	`	`							
V* RE: V* (£t)	57.1	100.0	62.5	80.0							
FLOW RESTRICTION Orifice dia. (in)	3.0		•	•	1 (Jev. 1)	- Wil					
E Flow	6.07	:	:	80.9	4 7	8 3					5 9 10 10
MIXTURE CHARACTERISTICS 1	1.1					107					
CH.	Methane	=	•	:							
lockage (%)	54	55		59			h-•				
CS 1/DH B	5.50	5.27	:	2.84							
ERISTI L I (in)	0.40	0.56	:	.062 0.18							
D _H (in)	.072	.107		.062							
ARRESTUR CHARACTERISTICS Opening D _H L L/D _H Blockage (in) (in)	.072" dia072 holes	.107" dia107	serou	holes							
Type	_ 4	riaces "	::						Classic State	1000	
Test Number	090204	090205	090206	102060	983	7045	1000				

 $*v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor,

respectively.

Table A-3 (continued)

Type	e Opening D _H L	8 DH	L	H _{Q/T}	Fue 1	MIXTURE CHARACTERISTICS 1 \$ Mixtur	E ISTICS Mixture Flow	FLOW RE	V [*] 23 Quen	Quench	REMARKS
							Rate (SCFM)	(1n)	(ft sec Y	Z	
Parallel	g " 080.	gap .112	2 2.0		17.9 Methane	1.1	5.94	2.0	33.3	`	
plate (steel)											
(133	:	=	=	=	:	1.4	6.15		1.2 1		
	=	-	:	=	:	=	=	•	1.5 /		
	:	•	:	=	:	8.0	5.73	•	2.0 /		
	:	=	=	=	:	=	•	•	1,9 /		
	:	•	:	=	:	=	:		2.2 /		
	:	=	:	=	:	1.1	5.91		28.6	`	
	:		=	=	:	=	5.89		28.6	>	
	:	=	:	=	:	=	=	=	33.3	`	
		=	:	=	:	1.4	6.07	•	2.0 /		
	:	-		=	:	=			1.1 /		
		=	:	=	:	:	90.9	•	1.3 /		
	:	-	:	=	:	1.1	5.76		42.6	`	
		-	:	:	. 33	6.0	5.63	. 50.0	2.6 /		
		-	:	=	:	1.0	5.70		8.3	`	
	:	=	=	=	:	1.2	5.81		1	>	
	:	•	=	:	:	=	5.80		5.5	`	
					:	1.1	5.74	•	5.1	>	
	:	=	=	=	:	1.4	5.93		1.5 /		
	0.051" ×	кар .071	.1 "	28.2	:	1.1	5.85	3.0	57.1	- `	
		-	=	=	:	=			100.0	>	
	.04	.056	. 9	35.7	:	:	0.9		9.99	`	
		=	:	=	:		6.07		25.0	`	
		=	:	=	:	=			62.5	- `	
		=	:	:	:	=	90.9		50.0	>	
	:025	.035	51	57.1	:	:	5.85	•	62.5 /	_	
	=	=	=	=	:	:			28.5 /		

*V₂₃ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

	22222	
REMARKS	Questionable run	A STANSON
Quench (c) Y N		
V* (£t)	57.1 66.5 66.6 66.6 66.6 66.6 66.6 66.6 66	
FLOW RESTRICTION Orifice dia. (in)	3.0	WAST TO THE TABLE OF THE TABLE
e Flow	5.86 5.90 5.98 6.03 6.01 5.97 5.97	MANUAL PROPERTY OF THE PROPERT
MIXTURE CHARACTERISTICS 1 \$\phi\$ Mixtur Rat. (SCF)	3	
Fue 1	Methane	
H _{Q/T}	57.1 14.3 14.3 14.3 14.3	
L (in)	0.50 1.56 1.063	
DH (in)	.035 2.0	
ARRESTOR CHARACTERISTICS Type Opening D _H L (in) (in)	.025" gap	
Type	Parallel plate (steel)	
Test Number	081003 081601 081601 081602 081803 081803 081909 081910 082401 082404 082404	

*V23 is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor,

respectively.

Older Control of the	Test	ARR	ARRESTOR CHARACTERISTICS	RACTE	RISTIC			è	MIXTURE	RE STETTOS	FLOW	*	RESULTS	LTS	O. o. o.	REMARKS	KKS
SGFP() (fin) CSCP() (fin) CSCPP() (fin) CSCPP() (fin) CSCPP() (fin) CSCPP() (fin) CSCPPP() (fin) CSCPPPP() (fin) CSCPPPP() (fin) CSCPPPP() (fin) CSCPPPP() (fin) CSCPPPP() (fin) CSCPPPP() (fin) CSCPPPPP() (fin) CSCPPPPPPP() (fin) CSCPPPPPPPPP() (fin) CSCPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	1 a Gillio	ad šī	орепти				H	Fue 1	\$	Mixture Flow	2	²³		, 54	Y N		
Parallel .022" gap .031 1.06 34.2 Ethylene 1.1 5.70 6.0 6.0 7 6.0 6.0 6.0 6.0 6.0 7 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0										Rate (SCFM)	dia. (in)						
1 29 83 38 7 1 1 1 1 1 1 1 1 1	0677-01	Parallel	.022" ga				4.2 E	thylene	1.1	5.70	0.9		20		1		
Selection		plate	,														
	60	(steel)	=	-	:		=	:	:	•	:	00	00	30	,		
7.77 5.0 32 43 35 7 7 8.0 12 12 12 12 12 12 12 12 12 12 12 12 12	-03	:	:	•	:		-	=	=	=	:	20	60 %	9 8	,	S CATTO	
	0777-01	:	:	•			:	=	=	5.77	5.0	32	43	35	`		
1	-05	:	:	•			:	=	=	5.89	=	12	12	12	,		
1	-03	:	:	•			:		=	5.94	:	28	42	33	,		
	-04	:	:	•						5.93	4.0	57	625	88	`		
	-05	:		· STEER!			:	=	=		=	48	208	89	1	Press	00
19	10-2260	:	.011" ga		5 1.	5 10	0		:	5.23	0.9	69	35	20	`	=	
29 29 29 29 4 14 45 64 51 7 1 18 19 19 19 19 19 19 19 19 19 19 19 19 19	-05	:	=		:		:	=	=		:	50	42	47	`	:	
	-03	:	:	•			:	=	=			29	29	29	`	:	
	-04	:	:	-			=	=	=	•	=	45	79	51	`	:	
	-05	:	:	-		E TO	=	=	=		:	41	42	41		•	
	1277-03	:	:	=			:	=	=		:	22	21	22	. `	:	
	-04	:	:	•			:	:	=	•	:	17	16	16	. `		
The state of the s																	
The state of the s																	
		9															
The state of the s		D. Lalies															
The state of the s																	
											772						
											THE PERSON NAMED IN					STATE OF THE PARTY	

 $^*v_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite side of the arrestor. Likewise, v_{24} is the flame speed based on point 2 (41") and point 4 (2") from the opposite side of the arrestor.

REMARKS															and the second				250 ft/sec.vel at upper pipe level		REPART
Quench	`	>>	. `	``	. `	``	``	<u> </u>	7	. `	``	`	`	-	``	1	`	`	C E	10 mm	SEE STA
$\frac{\text{RES}}{\sqrt{23}}$ $\frac{\text{(ft.)}}{\text{sec.}}$	9.5	4.5	3.6	4.9	6.9	9.09	2.99	62.5	700	717	250	25	24.4	25	30.8	667	400	714	714		12
Orifice dia. (in)	3.0	0.9	:	::	•	3.0	= :	: :		=		6.0	=	=	::	3.0			(600)		CTAM NALSTON
e Flow e M)	5.88	5.91	5.90	5.91	:	6.03	: :	5 83		-	•	5.79	5.87	5.79	::	5.83	B 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		States and the states	S STATE OF S	STATES AND STATES
MIXIURE CHARACTERISTICS Fuel \$\phi\$ Mixtur Rat. (SCF)	Methane 1.1		:		:	:	= :	: :	Ethylene "	=	:	:	:	Methane "	::	Ethylene "			:		
H _{Q/T}	23.9	15.0	:	7.0	:	10.9	::	10.87	=	:	:	:	:	9	: :	6.0	:	:	:		
. ^	ı.	1.06 15.0	=	.50	=	.0	::		=	=	=	=		S	= =	.25 10	=	•	:		
D _H (in)	.021	.071	:	: :	=	.023	::	: :	=	=	=	=	=	.028	= =	.023	=	:	:		
ARCESTOR CHARACTERISTICS OPENING D _H L (in) (in)	.015" gap	.051		: :		9	. :		-			:			: :	9					
Type	Parallel plate	(Tage)	:	= =	•	:	: :	: :	-	:	:				• •	-					9
Number	092101	101301	101303	101501	101503	102604	102605	102901	102902	102902	102904	10101	110103	110401	110402	106701	102902	102903	102904		daug

*V23 is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

REMARKS	Low speed test arrestor was found to be damaged from	above tests				Disk is
N. Quench (ft) Y N N		**				
23 /* R	25	24.4		20 10 10 10	G. St. W.	
FLOW RESTRICTION Orifice dia. (in)	6.0	E =				
STICS ixture Flow Rate (SCFM)	5.79	5.87	2 (2 (6))			
Fue	Ethylene 1.1	::	10 mm		3 3 5 .	
TCS L L/D _H (in)	.25 10.9					
RACTERIST B D _H (in)	.023	••				
ARRESTOR CHARACTERISTICS oe Opening D _H L (in) (in)	.016					
Type	Parallel plate (steel)					
Test Number	110101	110102 110103				

*V₂₃ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively.

97

REMARKS											A PATRICIPATION OF THE PARTY OF	A DESCRIPTION OF THE PROPERTY			THE STATE OF THE S	
Quench Y N	`	,,	· > >	. `	``	`	``	. > .	. >	. `	`					
V 24	42	69	3 % 9	29	62	39	10	17.	53	3 5	94					
V ₃₄ V ₂	20	104	385	32	94	34	20	56	27	20	20					
V**	39	57	34	28 0	80	45	8 50	17	2 5	22	44					
FLOW RESTRICTION Orifice dia. (in)	3.0		2.5	:	1.5	: :	: :	= :			:			(a.)		
CHARACTERISTICS 1 \$\phi\$ Mixture Flow Rate (SCFM)	5.88	::				. :	: :	. :		:			Concrete	Series Manie		
MIXIURE ARACTERI	1:1	::	::	=	=	= :	: :	= :	: :	=	:					
Fue 1	22.2 Methane	::		:	:	: :	: :	: :		=	:					
H _{Q/T}	22.2			:	=	::	: :	16.7	: :	:	:					
~	1.0	::		:	=	::	: =	.25	: :	:	:					
D _H (in)	.045	::	::	:	=	::		.015		:	:					
e Opening D _H L (in) (in	.032" gap				:	. :		.011" gap		:						
Type	Parallel plate	" "	::	:	:	: :	: :	= :	: :	:	:					
Number	11-777-17	-18	110977-01	-03	-04	-05	9 9	80	6 6	-1-	-12					

 $^{*V}_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively. Similarly $_{34}$ is the flame speed based on point 3 (17") and point 4 (2") from the opposite side of the arrestor. Likewise, $_{V24}$ is the flame speed based on point 2 (41") and point 4 (2") from the opposite side of the arrestor.

Table A-3 (continued)

REMARKS	Plastic plates were more flex- ible than steel plates. Data too sparce to be conclusive.	10101
V* Quench (ft)	62.5 / 57.1 / 66.6 / 57.1 / 66.6 /	face of the arre
FLOW RESTRICTION Orifice dia. (in)	3.0	and 17" from the opposite face of the arrector
MIXTURE CHARACTERISTICS 1	1 6.13 " 6.08 "	stad 41" and 17"
CHARAC CHARAC Fue 1 \$\phi\$	28.67 Methane 1.1	2 and 3 located 1,111
L/D _H		nointe
Dh L (in) (in)	0.035 1.0	ad hottoor
ARRESTOR CHARACTERISTICS of Opening D _H L (in) (in)	.025 " gap	is the amorage flame enough between
AR Type	Plastic .025 " parallel plates " " " " " "	he avera
Test Number	083101 083102 083103 083105	*V 1c +

73 is the averespectively.

99

REMARKS					Arrestor damaged Arrestor damaged - re	
Quench Y N	•	11.		,	, ,	, , , ,
RESULTS V34 V24	9					
v* v23	55.5	62.5	19.0	66.6	36.3	14.6
FLOW RESTRICTION Orifice dia. (in)	3.0					111.68
e Flow e M)	5.99	= = 0	6.05 6.04 6.02	6.03 5.98 6.13	6.06	5.97
MIXTURE CHARACTERISTICS 1 \$\phi\$ Mixtur Rat (SCF)	1:1					
CHAJ Fue J	17.96 Methane					
H _{Q/T}	17.96		12.64	37.72	7.12	22.94
TICS L (in)	1.25			2.625	0.25	.0164 0.375
D _H (in)	.070 1.25	:::		.035		.0164
ARRESTOR CHARACTERISTICS e Opening D _H L (in) (in	.063 crimp height			"". .0313" crimp	height "	" " .0156" crimp
ARRE:	Crimped Ribbon Ferro-					
Test Number	081604	081605 081606	081901 081902 081903 081904	081905 081906 082001 090901	090902 090903 090904 090905	091001 091002 091003 091301

 $^*V_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively. Similarly V_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite side of the arrestor. Likewise, V_{24} is the flame speed based on point 2(41") and point 4 (2") from the opposite side of the arrestor.

100

Table A-3 (continued)

REMARKS	Flame speed not recorded
Quench Y N	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
RESULTS V34 V24	
V**	66.6 62.5 117.6 62.5 66.6 66.6 66.7 66.7 66.7 66.7 66.7 66
FLOW Orifice dia. (in)	3.0
e Flow e M)	6.04 6.03 6.03 6.00 6.10 6.10 6.06 6.06 6.07 6.08 6.08 6.07
MIXTURE CHARACTERISTICS 1	7
Fue 1	22.94Methane 15.29 10.68 11.12 11.12 11.12 11.12 11.13
T/DH	
1	.0164 0.375
D _H (in)	.035
ARRESTOR CHARACTERISTICS of Opening D _H L (in) (in	.0156" crimp height " .0313" crimp height " " .062" crimp height " " " " " " " " " " " " " " " " " " "
Type	Crimped Ribbon Ferro- therm
Test Number	091302 091303 091304 091305 091306 091307 091310 091310 092301 092301 092302 092302 092303 092404 092406 092406 092406

 $^{*}V_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively. Similarly V_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite side of the arrestor. Likewise, V_{24} is the flame speed based on point 2(41") and point 4 (2") from the opposite side of the arrestor.

REMARKS			SS	" =21psi Press=2psi	
Quench Y N	,		,	>>>>	
V ₂ 4			6	30 22 38	4 40
V34 V			250	89 27 25 25	4 04
V ₂ 3	4.6	3.9 4.0 66.7 60.6 66.7	. 26 59	105 2 23 18	5
FLOW RESTRICTION Orifice dia. (in)	0.9	3.0	0.9		9.0
STICS ixture Flow Rate (SCFM)	5.91	6.02	5.93		88.
MIXTURE RACTERI	1.1		:		
CHA Fue 1	12.6 Methane		1.0dEthylene		27.7 Methane " " " " " " " " " " " " " " " " " " "
r/D _H	12.6	£1	1.00		11.4
. ^	.75		1.5		10 11
D _H (in)	.050		.015		.054
ARRESTOK CHARACTERISTICS e Opening D _H L (in) (in)	.047" crimp height		.018" crimp height "		.047" crimp height " .078" crimp height " "
ARRE Type	Crimped Ribbon Ferro- therm		Crimped Ribbon Amal		Crimped Ribbon Ferro- therm "
Test Number	101504	101505 101506 102601 102602 102603	090777-06 Crimped Ribbon Amal 090877-01 "	-02 -03 091277-05 -06 -07	110777-12 Crimped Ribbon Ferro- therm -13 " -14 " -15 "

respectively. Similarly v_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite side of the arrestor. Likewise, v_{24} is the flame speed based on point 2(41") and point 4 (2") from the opposite side of the $^*V_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, arrestor.

<u>REMARKS</u>		No record ob- tained				191
Quench Y N	*	**	**	***		No.
<u>TS</u> V ₂ 4		! !				
V34 V	587	1.1				
v* v23	16	1 38	33	51 35 34	V = 2 = 2	
FLOW RESTRICTION Orifice dia. (in)	3.0	::				
e Flow e M)	5.88	:::			esas a	
MIXTURE CHARACTERISTICS 1 \$\phi\$ Mixtur Rate (SCF)	1.1	::	::			
CHA Fue 1	37.0 Methane			:::		
H _{Q/T}	37.0		29	27.8		
	2			1.5		
D _H (in)	.054		.069	.054		
ARRESTOR CHARACTERISTICS oe Opening D _H L (in) (in)	.047" crimp height	==	".062" crimp	height "		
ARRE Type	Crimped Ribbon Ferro-					
Test Number	110777-05 Crimped Ribbon Ferro-	90-	-07 (repeat) -08	-09 -10 -11		

Table A-4

Test Results for Ten Products (Fuels)

	+		_	-	-	_	-		_			_		-	-		_	ir.	_	77	_	_	_	_	_	_	
l not	l psi	1 "	2 .	2	12 '	21 '	. 7	717	3	21 '	3	. 9	2	5		, 87	- 80	orde		0	3	. 9	3	3	. 7		
REMARKS	ı				1	7		7		2			7	2	2	7	7	rec	a	3 =17					-		
REM	Press	:	:	:	:	:	:	=	:	:	:	:	=	:	=	:	=	Lost recorder	trace	Press	=	:	:	:	:	=	
nch N		>	>								>	>				>	>	>		>			>		>	>	
Quench Y N	-			>	>	>	>	`	`	`			>	>	>						>	>		>			
V24	œ	11	00	10	203	163	18	112	45	162	26	69	250	228	81	535	99	•		57	97	135	34	361	72	31	
RESULTS V34 V2	80	10	10	6	416	312	19	104	96	250	83	125	625	416	113	625	38	1		57	20	73	94	625	113	38	
v* v23	∞	11	9	11	154	133	17	118	34	133	20	54	181	153	83	200	80	1		57	43	286	29	285	59	27	
FLOW Orifice dia. (in)	4.0	:	:	:	3.0	•	3.5	:	:	2	:	:	:		:	:		=			:	=	:	:	:		
STICS ixture Flow Rate (SCFM)	6.25	97.9	6.57	6.30	97.9	6.57		6.25	6.19			•	6.02	=		5.97	00.9	=		6.01	6.02	=	6.03	6.04	=	:	
MIXTURE LARACTERI	1.1	:	=	=	:	=	=	=		=	=	=	=	=	=	=	=	=		=	:	=	=	=	=	:	
Fue 1	Buta- diene		:	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=		=	=	=	=	=	=	:	
L/D _H	100	=	=	:	:	:	:	=	:	:	:	=	:	=	=	39.5	=	:		=	:		:	20	:	:	
-	1.5	=	=	=	=	:	=	=	=	=	=	=	=	=	=	=	=	=		=	=	=	=	.75	=	:	
D _H (in)	.015	=	=	=	=	=	=	=	:	:	=	=	=	:	=	.038	=	=		=	=	=	=	.015	:	:	
ARRESTOR CHARACTERISTICS of Opening D _H L (in) (in)		neignt		:	:		:			•	:	:		:	:	.045				=	:			.018		:	
Type	Crimped Ribbon	Amal.	:	:	:		:	:	:		:	:	:	:	:	:	:	:		:	:	:	:	:			
Test Number	091577-01 Crimped Ribbon	-02	-03	70-	-05	90-	-07	80-	091677-01	-02	-03	70-	091977-01	-02	-03	092977-04	-05	90-		-07	-08	-00	-10	-11	-12	-13	

REMARKS	Lost recorder trace Press = 9 psi	22/25/25
Quench Y N		Page
TS V24	1802 BEG ERASE ARAS A	
RESULTS V34 V	3 11 11 12 13 14 14 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
V23	2 2 3 3 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FLOW RESTRICTION Orifice dia. (in)	3.0	800 TO 100 W
STICS ixture Flow Rate (SCFM)	2.74 2.74 2.36 1.96 1.95 3.23 3.23 3.23 3.23 3.23 3.39 6.14 6.14	3.4
MIXTURE RACTERI	1.1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
CHA Fue 1	Methyl Alcohol	18
H _{Q/7}	05	
TICS L (in)	25.	
S DH (in)	0.015	
ARRESTON CHARACTERISTICS of Opening D _H L (in) (in	crimp height	
ARRE Type	Crimped Ribbon Amal. """" """" """" """" """" """" """ ""	
Test Number	101177-01 -02 -03 -04 -07 -08 -09 -10 101277-01 101277-01 -02 -03 -04 -05 -06 -06	

	,						_	_						-				_		_		
		psi	=	=				7	ps1	=	=	=	=	=			=	=	=	-	:	
KS		9	٥	o m				-	1 m	3	21	4	24	3				100	2	18	12	
REMARKS	8 8 8 5 8	Press =	:	:				-	ress			:	:				:		:	L	:	
n N												7								-	`	
Quench Y N	-	`	>	· >			> `	-	· >	1	1		1	1			7	. >	. `			
V ₂ 4	35	86	52	46			:	46	20	52	162	92	120	14			6	089	2	86	108	
V34 V	20 3.	83	44	45	re E	re Fe	13	44	6 6	42	312	113	104	96				100	73	18	113	
v* 23	- w (2)	111	59	67	No Fire	No Fire	14	47	10	62	125	13	133	99			20	07	23	III	105	
FLOW RESTRICTION Orifice dia. (in)	.62	1.0	: :		:		: :		:	n.	3.5	:		1.0			:	:				
e Flow M)	5.12	5.38	6.14	5.33	5.16	5.19	4.75	4.73	4.73	2.85	6.24	31. 7	0:13	2.91			, 63	2 70	2.89	6.48	6.44	
MIXTURE CHARACTERISTICS 1 \$\phi\$ Mixtur Ratur (SCF)	1:1	1.0	.87	.60	.71	.77	.71	88.	16.	.98	1.1		1:0	1.2			:		1.3	1.1	:	
CHA Fue 1	Methyl Alcohol		= =	•	:	= :	: :	: =		=	Buta-	diene	=	10.7 Methyl	Alcohol		=	10.0	:	Buta-	diene "	
H _{Q/T}	50	:	: :		:	= :	: :	: :	:	=		=	:	10.7			=	:	:	=	:	
_	.75		: :	:	:		: :	: :	:	=		:		.375			:	:	:		:	
DH (in)	.015	:	: :		:	= :	: :	: :	:	=		:	=	.035			:	=	:	=	:	
ARRESTOR CHARACTERISTICS of Opening D _H L (in) (in)		height "	::		:	= :	: :	: :	:	=			:	.032"								
Type	Crimped Ribbon	Amal "	::	•	:		: :	::		:	=	:		Crimped	Ribbon	Ferro-	therm "				:	
Test Number	101277-10 Crimped	101377-01	-02	20-	-05	90-	-07	80-	9 -	-14	101877-01		-03	101977-01 Crimped			5	10 271001	1021//-01	102477-01	-03	3

Virmhar	7	Orania of	o lent	3 -	4	2	MINIORE	Caroc	FLOW	*:	KESULIS	2 2	dono	REMARKS	KKS
Jagun,	adái	Opening	u (in)	(in)	H _{Q/J}	Fue 1	CHARACTERISTICS	Mixture Flow Rate (SCFM)	Orifice dia.	23	34	^24	y N		
102477-03 Crimped	Crimped	.032"	.035	.375	10.7	10.7Buta-	1.1	6.45	1.0	142	416	190	,	Press =35	=35 pst
	Ribbon	crimp				diene								Inspection	tion
	Ferro-	height												showed arres- tor destroyed	Stroy
102577-01		.790.	690.	-	5.4	5.4Methyl	1.3	2.95		20	96	19		Press =12 psi	1 71=
-05	•		•	:	:	TOWN	•	3.04	:	16	20	69	`	:	18
-03	:	:	:	:	:		:	3.01	:	11	42	28	`	:	18
102677-01		=	-	-	-	Ethy1	1.2	5.22	.62	154	156	155	,		21
-05		:	:	:	:		:		:	105	69	88	`	:	22
-03		.032"	.035	:	10.7	=	:	5.17				232	`	:	39
111877-01	Crimped Ribbon	.8IO.	can:	5/:	R	Acetal- dehyde	1:1	2.00	1.5	154	136	155		100	9
	Amal														
-05		:	=	:	:		=	:	:	200	208	203	`		14
-03		:	=	=	:		=	:	3.0	22	125	72	`	:	15
-04		:		=	:		=		:	62	104	74	`	:	13
-05		:	=	=	:	:	=			26	178	9/	`	:	13
112177-01 Crimped	Crimped	.032"	.035	.88	25	•	:			53	125	69	`	:	2
	Ribbon														
	Ferro-														
	therm													_	
-02		:	:	:	:		=			19	156	62	`		œ
-03	:		=	=	:		:			=======================================	83	92	`	=	15
-04		.062"	690.	:	12.7	=	=			118	74	96	,	:	10
102677-04	-	.032"	.035	.375	9	10. /Ethyl	1.2	5.22	79.	53	312	79	1		
						Ether			No. of Control Control				Contract	禧	

REMARKS	Press = 3 psi	14	: :		Press = 9 psi						Lower spark	" "									2245110
Quench Y N	,	`				`	•	`	`	`	`	`			`			-			`
		`	`	•	>				_				•			`	`				
V24	15	83	180	72	65	•		2	80	9	19	33	12		17	w	6	180			120
V ₃₄ V	15	139	179	178	96	16		00	12	10	27	78	14		14	00	6	250			139
v* 23	15	51	181	53	54			4	9	2	16	25	7		20	7	∞	153			11
FLOW RESTRICTION Orifice dia. (in)	2.0	.62	1, 9		:	0.9		•				:			:			3.0			:
e Flow e M)	5.22	5.20	5.17	5.09	5.08	•		=		•		:					:	5.0		Section Street	•
MIXTURE CHARACTERISTICS 1	1.2			:	=	:		:	=	:	=		:		=	=	:	1.1			:
Fue	5.4 Ethyl Ether	::	:	•				:	:	:	:	•	•		:	:		Acetal-	dehyde		:
H _{Q/T}	5.4	10.7	5.0	:	:	,		1	•	1	ı	,	1		•	1	•	12.7			
_	.375	::	.75		:	1			•	1					•	1		.88			
D _H (in)	690.	.035	.015	:	:	.031		=	:	=	=	:	.022		=	:	=	690			
ARRESTOR CHARACTERISTICS The Opening DH L (in) (in)	.062" crimp height	.032"	.018"		:		.013" wire	=	:	:				.011"wire		:	:	.062"	crimp	height	
Type Type	Crimped Ribbon Ferro-		Crimped Ribbon	Ama I		Single	Screen	:	:	:	:	:	:		:		:	Crimped	Ribbon	Ferro-	therm
Test Number	102677-1A Crimped Ribbon Ferro-	102677-05	102777-01 Crimped Ribbon	-05	-03	103177-01 Single		-05	-03	70-	110277-01	-05	110477-01		-05	-03	-04	112177-05 Crimped			90-

V	1	1	-		1/2	110	TUJUUT	OT THOTO	TO THE TANK	*		=	O.c.a.k		
Tagent.	adái	Opening	H (di)	(i.i.)	H _{a/a}	Fue 1	\$	1 \$ Mixture Flow	Orifice	^v 23	v34 v	^ 24	v v		
								Rate (SCFM)	dia.						
2177-07	112177-07 Crimped	.032"	.035	.375	10.7	10.7 Acetal-	17	5.0	3.0	100	104	101	-	Press =	9 pst
	Ribbon	crimo				dehyde									
	Ferro-	height				•								_	
	therm														
-08		:	=	:	:	=				28	21	25	`	:	3
60-	:	:	=	=	:	=	=	•	•	77	99	20	`	:	3
-10			=	=	:	=	=	•	:	26	104	89	`	:	3 "
112377-05		=	=	=	=	Toluene	=	7.97	1.5	10		20	-	=	3 "
90-		:	=	=	:	=	=	7.91	:=	3.7		2	`		
-07			=	=	:	=	=	7.92	=	3.5			`	_	
-08	:	:	=	=	:	=	=	=	:	25	10	15	`		
-09	:		=	=	:		=	7.93	•	7			`		
-10			:	=	:	=	=	7.94	1.0	6			`		
-11	:		=	=	:	=	=	7.93	=	37	83	47	`	Press =	3 psi
-12	:		:	:	:		=	•	:	42	69	67	`	:	3 .
-13	:	:	=	=	:		:	7.92	=	51	24	36	`	:	3 "
112877-01	:	.062"	690.	=	5.4	=	1.4	7.94	•	4	11	5	,		
-02	:		=		:	=	=	•	:	39	114	52	`	Press =	3 psi
-03	:		=		:		=		:	62	104	74	>	:	. 5
-04	:	:	=	=	:	:	=		•	54	125	69	`	:	. 5
-05		:	=	.875	12.7	=	=		:	62	32	94	`	:	3
90-			=	=	:		=	:	•	11	99	69	`		
-07	:		=	=	:	:	=	=		59	96	69	`		
-10	:	.093"	.106	.75	7.1	=	=	=	•	19	78	11	`		
-11	•	•	=	:	:		:		•	62	78	89	`		
								AND THE STATE	00022300						
10000					1000				MENTALS OF STANS				The second		
									N. 12.025						

REMARKS				Press = 14 psi				Arrestor			THE PROPERTY OF PARTY OF			-										Press = 13 pst		" 29 "				A TOTAL COLUMN	Press = 15 psi	
F	Quench			1	_	_	-	`		`	`,	>	_		_				_		>	=	-	-	`	-	F			-		=
1	Que v	-					`						`	`	`	>				`		>					>				`	
I.S.	V ₂ 4			11			71		7		4	16	52	13	14	24				13	86	65	9/	28	102	88						
RESULTS	V ₃₄		50	312			59	taine	4	,	t	19	62	21	24	27				27	114	14	96	24	125	114	12.5				78	
i	V ₂₃			53			80	Not obtained	2		7	14	94	10	11	22				10	74	09	29	31	100	11	5.1			5.3	14	
-	Orifice	dia.	(1n)	0.9			=		3.0			1.5		:	:	•				•	:		:	:	:		0.9				3.0	
	CHARACTERISTICS	Rate	(SCFM)	3.18			3.20	3.07	2.64	,,,,	70.7	2.66	2.63		=	2.68				2.61	2.67	2.68	2.74	2.68	2.75	=	6.73	AND A CHARLES OF THE		6.52	8.34	
MIXTURE	RACTER			1.0			=	=	1.1	=		•	1.2	=	=	:				1.1	1.2	:	=	:	=	:	1.0			1.3	1.1	
	Fue			Acety-	lene	1	:	=	Hydrogen	sullide			:	:	=	=				:	:	:	:	:		:	Carbon	Disul-	fide	:	=	
	L/D _H			100			=	:	50	:			100	=	=	14.2				=	=	=	=	7.2	=	=	100			=	=	
TICS	1	(1U)		1.5			=	=	.75	:		•	1.5	=	=	0.5				=	:	:	=	:	:	=	1.5			=	=	
RACTERIS		(11)		.015			=		=	:	:		:	=	=	.035				:	=	=	=	690.	=		.015			=	=	
ARRESTOR CHARACTERISTICS	Opening		8	.018"	crimp	height	=		=				:	:	=	.032				:	=	:	=	.062	:	=	.018			=		
AREES	ed.(1			Crimped	Ribbon	Amal.	:		=					:	:	Crimped	Ribbon	Ferro-	therm	:	:	:			:		Crimped	Ribbon	Ama1.	•		
Test	Number			010578-01			-05	011278-01	011678-01		70-	-63	70-	-05	011678-06	011778-01				-05	-03	-04	-05	011978-01	-05	-03	012478-01			-05	-03	

 $^*V_{23}$ is the average flame speed between points 2 and 3 located 41" and 17" from the opposite face of the arrestor, respectively. Similarly V_{34} is the flame speed based on point 3 (17") and point 4 (2") from the opposite side of the arrestor. Likewise, V_{24} is the flame speed based on point 2(41") and point 4 (2") from the opposite side of the arrestor.

Table A-4 (contirued)

Test Number	ARRE Type	ARRESTON CHARACTERISTICS Pening D _H L (in) (in)	D _H (in)	STICS L (in)	H _{Q/T}	Fue 1	MIXTURE CHARACTERISTICS 1 \$ Mixtur Rate (SCF)	E. I.STICS Mixture Flow Rate (SCFM)	FLOW RESTRICTION Orifice dia. (in)	v* v23	V34 V	24	Quench Y N	REMARKS	RKS	
012478-04 Crimped Ribbon	Crimped Ribbon		.015	1.5	100	Carbon Disul-	1.0	8.36	3.0	67	88		`	Press	Press = 15 psi	pst
99		.024	.021	. 25.	35.7		0.99	8.33	1 1 2	9 1	33		**	Poor 1	" 2 " Poor recorder	der
696		 		• • •			1.0	6.19 5.96 5.98	Post III	11 142 18	27 69 12		***	Press		2 psi 5 "
012578-01		.032	.035	.50	5 (69)	, Main Al ", so	1.3	6.02	1 5019 76 79	32	36		46 74	: 	•	=
7777			88	0	14.2		1.1 1.4 0.95 0.95	7.22 7.41 7.22 7.11 7.11		64 61 61 61	69 125 139 83			••••	81133	Tritt
012778-01	Crimped Ribbon	.018	.015	1.5	100	Acety- lene	1000	3.05	0.9	16	417	120	-	:	5	=
90		erican derivation of the control of	I I	THE THOUSE S.	F. F. (1) (1) (1)	• • • • • • • • • • • • • • • • • • •	tion in Co.	3.07	er, K. C	74	438		(82.1)		∞ ∞	11
	n noute	oligas.	a Lucius	ee is	/8(6	edet b	el sui	ere yo	inio. T	9.		59 1 13 6				

REFERENCES

(Listed Alphabetically by First Author)

- Barton, R. R., Carver, F. W. S., and Roberts, T.A., "The Use of Reticulated Metal Foam as Flash-Back Arrestor Elements," RARDE, London, 1975.
- Broschka, G. L. and Will, R. G., Amoco Oil Company, private communication, May 1976.
- Busch, H., Explosivtoffe, 5, 135 (1957).
- Clothier, W. C., Communication to Proc I Mech E., 1956, Vol. 170, p. 851.
- Cohen, Discussion of paper by Palmer at Symposium on Chemical Process Hazards, Institute of Chemical Engineers, 1960, p. 80.
- Davies, J. P., Palmer, K. N., and Rogowski, Z. W., "Performance of Metallic Foam as Flame Arrestors," Fire Prevention Science and Technology, No. 5, London, 1973.
- Genkin, J. R. and Sarnev, S. P., "The Flame-Quenching Properties of Flame Traps," SMRE Translation No. 5482, Safety in Mines Research Establ. (1967).
- Gerstein, M., Carlson, E. R., and Hill, F. U., "Natural Gas-Air Explosions at Reduced Pressure," Ind. Eng. Chem. 46, p. 2558, (1954).
- Holm, J. M., Phil. Mag. 14, 18-56 (1932); ibid. 15, 329-359 (1933).
- Hulsberg, F., "Research on Capacity of Layers of Granulated Material to Prevent Propagation of Flames of Explosive Gaseous Mixtures," Reuve de L' Industrie Minerale, Vol. 39 (1957), pp. 373-376.
- Komamiya, K., "The Quenching Ability of Flame Arrestors for n-hexane,"
 Research Institute of Industrial Safety, Japan RR-17-4, March 1969.
- Langford, B., Palmer, K. N., and Tonkin, P. S., "The Performance of Flame Arrestors Against Flames Propagating in Various Fuel/Air Mixtures," Fire Research Note No. 486, Fire Research Station, Boreham Wood, Herts, England (1961).
- Loison, R., Chaineaux, L., and Delclaux, J., "Study of Some Safety Problems in Fire Damp Drainage," Eighth International Conference of Directors of Safety in Mines Research, Paper No. 37 (1954).

60

REFERENCES (continued)

- Maekawa, M., "Flame Quenching by Rectangular Channels as a Function of Channel Length for Methane-Air Mixture," Comb. Sci. Tech. 11 p. 141, 1975.
- Mansfield, W., "Crankcase Explosions: Development of New Protective Devices," Proceedings of the Institution of Mechanical Engineers, Vol. 170 (1956), pp. 825-844.
- Mayer, E., Comb. and Flame 1, 438-52 (1957).
- Miller, S. A. and Penny, E., Institute of Chemical Engineers, 1960, p. 92. See also "German Techniques for Handling Acetylene," FIAT Tech. Rep. #720, London, Her Majesty's Stationary Office.
- Müller-Dethlefs, K. and Schlader, A. F., "The Effect of Steam on Flame Temperature, Burning Velocity, and Carbon Formation in Hydrocarbon Flames," Combustion and Flame 27, p. 205 (1976).
- Müller-Hillebrand, Elecktroteck Z 59, p. 116 (1938).
- Palmer, K., "Flame Arrestors for Gas or Vapour Explosions," Engineering, Vol. 185 (1958), p. 438.
- Potter, A. E., Jr., "Flame Quenching," in <u>Progress in Combustion</u> Science and Technology, Vol. I, p. 145, Pergamon Press, N.Y. (1960).
- Rashbash, D. J. and Rogowski, Z. W., "Relief of Explosions in Duct Systems," Instn. Chemical Engineers, 1960, p. 59.
- Rogowski, Z. and Ames, S., "Performance of Metal Foam as a Flame Arrestor When Fitted to Gas-Explosion-Relief Vents," Fire Research Note No. 931, Fire Research Station (Borehamwood, England), 1972.
- Rogowski, Z. W., "The Transmission of Explosion of Flammable Gas/Air Mixtures Through a Flame Gap on a Vented Vessel," Fire Research Note #1018, Fire Research Station (Borehamwood, England), 1974.
- Rozlovskii, A. and Zakaznov, V., "Effect of Gas Expansion During Combustion on the Possibility of Using Flame Arrestors," Combustion and Flame, Vol. 17 (1971), pp. 215-221.
- Schampel, K. and Steen, H., "Flame Arresting High Velocity Valves on Cargo Tanks of Tankers for Inflammable Liquids," p. 441, Fourth International Symposium on Transport of Hazardous Cargoes by Sea and Inland Waterway, DOT Report CG-D-24-76, AD-A023505, October 1975.

- REFERENCES (continued)
- Schmidt, H. and Haberl, K., Tech. Überwach. 1955, No. 12, p. 423.
- Scott, G., Perlee, H., Martindill, G., and Zabetakis, M., "Review of Fire and Explosion Hazards of Flight Vehicle Components," ASD Technical Report 61-278, (Supplement 1), U.S. Bureau of Mines (1972).
- Simon, D. M., Belles, F. E., and Spakowski, A. E., IVth Symposium (Inter'1) on Combustion, p. 126. The Combustion Institute: Pittsburgh (1953).
- Sutherland, M. E. and Wegert, H. W., Chem. Eng. Prog. 69, p. 48, April 1973.
- Swan, A., Helmore, W., and Clothier, W. C., "Experiments on Reduction of Fire Risk by Means of Induction Pipe Flame Traps," U.K. Aero Res. Council Reports and Memoranda No. 1484, August 1932.
- Wilson, C. A., Ind. Engineering Chemical, 51, 560 (1959).
- Wilson, R. P. and Atallah, S., "Design Criteria for Flame Control Devices for Cargo Venting Systems," Final Report, DOT-CG-157-75, August 1975.
- Wilson, R. P. and Crowley, D. P., "Performance of Commercially Available Flame Arrestors for Butane/Air and Gasoline/Air Mixtures," DOT-CG-42357A, ADL 77396-13-14, Office of Research and Development, USCG, 400 Seventh Street, S.W., Washington, D.C. 20590, March 1978.
- Wilson, R. P. and Crowley, D. P., "Flame-Arrestor Design Requirements for Prolonged Exposure to Methane/Air, Butane/Air, and Gasoline Air Flames," DOT-CG-42357A, ADL-77396-15, Office of Research and Development, USCG, 400 Seventh Street, S.W., Washington, D.C. 20590, February 1978.
- Wolfhard, H. G., and Bruszak, A. E., "The Passage of Explosions Through Narrow Cylindrical Channels," Comb. and Flame 4, 149 (1960).