Opgave 7

7.1 Variablen $\{y_i\}_{i=1}^n$ er givet i datasættet ved P. Ved at summarize denne i STATA fås resultatet:

	Percentiles	Smallest		
1%	-2.430553	-4.795269		
5%	-1.489932	-3.296987		
10%	-1.024521	-2.772429	0bs	400
25%	4647077	-2.446905	Sum of wgt.	400
50%	.0833044		Mean	.0246556
		Largest	Std. dev.	.8960014
75%	.560764	2.144853		
90%	.9931023	2.493016	Variance	.8028185
95%	1.341091	2.803209	Skewness	4588886
99%	2.099546	3.612086	Kurtosis	5.990113

For variablen P er de fire empiriske momenter givet ved følgende.

1. Den empiriske middelværdi: 0,0247

Den empiriske varians: 0,8028
 Den empiriske skævhed: - 0,4589

4. Den empiriske topstejlhed/kurtosis: 5,9901

Det forventede afkast ved denne portefølje er givet ved middelværdien, altså så det daglige afkast være 2,4%. Variansens fortolkning er afvigelsen fra middelværdien. Dette kan omregnes til standardafvigelsen, som er 0,9. Denne fortæller os, at i gennemsnit ligger værdierne i en afstand på 0.9 fra middelværdien, 0,24. Det ses, at den empiriske skævhed er negativ, derfor er datasættet venstreskæv. Den empiriske kurtosis udtrykker, hvor høj fordelingen er i forhold til bredden. (Tykkere/tyndere hale)

De individuelle momenter for de forskellige virksomheder er givet ved at summarize i STATA, og efterfølgende indtastet. Dette giver følgende resultater:

	Citigroup	Coca Cola	Universal Pictures	Walt Disney
1. moment	0,1042	0,0096	-0,0157	0,0890
2. moment	1,6876	0,8044	2,6709	1,4826
3. moment	-0,3385	-0,8931	-1,5751	-0,7919
4. moment	4,4072	9,9218	17,8287	16,2371

Det kan ses, at ved oprette en portefølje af alle aktier, opnår man et højere et forventet afkast. Samtidig sænkes variansen også for 3 af de 4 aktier ved at oprette en samlet portefølje. For alle aktier og den samlede portefølje er fordelingen venstreskæv, dog sænkes kurtosis, hvilket hænger sammen med mindre varians.

7.2

Variansen af porteføljen er fundet ved Var(P) = 0.8028.

Variansen for porteføljen er ikke givet ved

$$V(y_i) = w_{citi}^2 V(x_i^{citi}) \dots w_{walt}^2(x_i^{walt})$$

Regner man på denne måde er resultatet følgende:

$$V(y_i) = 0.1^2 \cdot 1,6876 + 0,25^2 \cdot 0,8044 + 0,35^2 \cdot 2,6709 + 0,30^2 \cdot 1,4826 = 0,5278$$

 $0,5278 \neq 0,8$

De to resultater går ikke op, da der i ovenstående formel ikke tages højde for Kovariansen. I ovenstående udregning antages kovariansen til at være lig nul. Altså antager man, at afkastene er ukorrelerede. Dette er en græl antagelse, da aktiemarkedet har en større grad af korrelation i og med går det godt i økonomien, klare majoriteten af virksomhederne sig simultant godt. Pointen er, at aktier påvirker hinanden uden nødvendigvis at være i samme branche, og disse krydseffekter skaber en positiv korrelation mellem aktier. Hermed er antagelsen ukorrelerede aktier en fantom-tanke.

7.3 a) Nedenstående viser et histogram for $\{y_i\}_{i=1}^n$ og fraktilerne for en potentiel sumkurve.

b) Nedenstående er den empiriske fordeling sammenlignet med en normalfordeling.

Sænkes intervallet, i dette eksempel er n=50, vil man få en anden fordeling. Det ses her, at antallet af "trækninger" giver forskellige fordelinger og værdier.

7.4 Vi lader variablen $\{x_i\}_{i=1}^n$ angive afkastet på *NYSE Composite*. Ved at summarize i STATA fås følgende resultater:

	Percentiles	Smallest		
1%	-2.163633	-2.314644		
5%	-1.166986	-2.294153		
10%	857777	-2.290276	0bs	400
25%	4015373	-2.244591	Sum of wgt.	400
50%	.0291816		Mean	.0110599
		Largest	Std. dev.	.722301
75%	.4385627	1.658119		
90%	.8610584	1.665479	Variance	.5217187
95%	1.243981	2.03384	Skewness	3276494
99%	1.638404	2.12855	Kurtosis	3.815653

Det ses, at middelværdien er lavere end $\{y_i\}_{i=1}^n$. Dog er variansen også lavere end før. Det er altså et trade-off mellem større risiko og afkast mellem at investere i ovenstående portefølje, kontra det at investere i *NYSE Composite*. Den sikre investering med mindre risiko, men også mindre forventet afkast er altså *NYSE Composite*.

7.5 Value-at-Risk måler hvor meget risiko, der er forbundet med en portefølje $P(Y_i \leq VaR_{\alpha}) = \alpha$

a)
Jeg har ikke rigtig nogen ide, om hvorfor dette er muligt

$$VaR_{0,1} = -1,026$$

 $VaR_{0,05} = -1,535$
 $VaR_{0.01} = -2,447$

Dette tyder på, at sandsynligheden for et negativt afkast bliver mindre og mindre, des større det negative afkast bliver.

7.6

Beregnet for variablen $\{x_i\}_{i=1}^n$ er VaR_{α} til følgende.

$$VaR_{0.1} = -0.8578$$

 $VaR_{0.05} = -1.1670$
 $VaR_{0.01} = -2.1636$

a)

Det kan ses, at værdien for α er blevet mindre ved *NYSE Composite*. Ved samme minimale sandsynligheder mister man mindre af ens afkast. Dette følger nok i tråd af, at risikoen er mindre ved *NYSE Composite* kontra porteføljen P.

b)

I og med man mister mindre ved at investere i *NYSE Composite* fremfor porteføljen P, må der stilles større reservekapitalkrav til dem med størst VaR_{α} -værdier. Dette er fordi, de potentielt skal dække et større underskud modsat dem med mindre VaR_{α} -værdier. Altså har man to banker. Bank A investerer i porteføljen P, og Bank B investerer i *NYSE Composite*, så vil der stilles størst reservekrav til Bank A, da disse påtager sig størst risiko, og kan potentielt miste mest.