

Consensus & Variant Calling

Dr. David Bibby, Genomics and Clinical Virology, 21st March 2024

Overview

Consensus & Variant – what are they?

How to build a consensus and define variants.

What can be done with variant analysis - examples

Features: Drug resistance, epitopes, species/strain identification

Phyletics: Linkage, Dual infections, Transmission, Quasispecies reconstruction

Technical pitfalls - examples

Virus – Laboratory – Bioinformatics

Validation, validation

- Reproducibility
- Standardised materials
- EQA schemes
- Clinical validation?

Consensus and Variant

Consensus: "The sequence of the most frequent nucleotides at each position"

Variants: "Differences between a test sequence and a reference"

- Viruses often exist in populations of related sequences, i.e. 'quasi-species'
- A consensus of a viral sequence may often contain mixed bases, incorporating the variants above a set frequency
 - e.g. 15-20% to mimic Sanger detection

How to build a consensus

Sequencer output:

- Giant file containing all sequences from all samples (and controls)
- Each read has an adapter sequence added during the sample library prep
- These enable the reads to be 'binned' according to sample ID

The bins are FASTQ files

- Paired end Forward and Reverse (often R1 & R2 files)
- Adapters usually trimmed before further analysis

Reads are e.g. Reference Mapped → SAM file

```
bwa mem my_virus_ref.fasta sample1_R1.fastq sample1_R2.fastq > sample1.sam
```

SAM files are converted to BAM files

```
samtools view -Sbhu sample1.sam | samtools sort > sample1.bam
samtools index sample1.bam
```

These can be viewed in Tablet / Genious / IGV etc.

How to build a consensus

Several tools are available to derive consensus sequences from a SAM/BAM file:

mpileup
V-Phaser
QuasiBAM

Slide along the sequence, interrogating all reads covering each position

How to build a consensus

Considerations

- Quality of bases within a read
 - Phred score exclusion thresholds (usually 30, sometimes 20)
- Quality of the read mapping
 - Map Quality exclusion thresholds
 - i.e. where the degree of homology to the reference sequence is low
 - Are these contaminants or rare sequence motif(s)?
- Handling of insertions / deletions / variants

Can be <u>very</u> dependent upon choice of mapping software lts parameters, and/or reference sequence

Variant calling – mpileup

mpileup (samtools) http://www.htslib.org/doc/samtools.html

- 1. Iterates through each position in a reference (i.e. one row per position)
- 2. Iterates through each read covering that position and adds a match type symbol...

```
. , Match to reference (forward & reverse respectively)

^ $ Start and finish of a read respectively

ACGTN, acgtn Mismatch to reference (fwd & rev respectively)

[+-] [0-9]+[ACGTNacgtn]+ Insertions / deletions
```

3. ...and a Quality symbol (Phred Score)

Variant calling – mpileup

apprize.info

Variant calling – VCF

VCF "Variant Call Format"

http://vcftools.sourceforge.net

- Developed for human genome annotations by 1,000 Genomes project
- Useful for sparse variation in long, multi-chromosome genomes
- Lists variations from a reference in a tabular format
 - One row per variant
 - (At least) 8 columns:

CHROM POS ID REF ALT QUAL FILTER INFO

CHROM = Chromosome

POS = Position

REF = Reference

ALT = Alternative (variant)

Variant calling – VCF

```
##fileformat=VCFv4.3
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                                                                                        FORMAT
               ID
                                ALT
                                        QUAL FILTER INFO
                                                                                                    NA00001
                                                                                                                   NA00002
                                                                                                                                   NA00003
              rs6054257 G
      14370
                                             PASS
                                                    NS=3;DP=14;AF=0.5;DB;H2
                                                                                        GT:GQ:DP:HQ 0|0:48:1:51.51 1|0:48:8:51.51 1/1:43:5:...
                                                                                       GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
      17330
                                             q10
                                                     NS=3:DP=11:AF=0.017
                                                                                                                                  0/0:41:3
                                                    NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20
      1110696 rs6040355 A
                                G.T
                                             PASS
                                        47
                                                    NS=3;DP=13;AA=T
20
      1230237 .
                                             PASS
                                                                                       GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
                                                    NS=3;DP=9;AA=G
                                                                                       GT:GQ:DP
                                                                                                                   0/2:17:2
      1234567 microsat1 GTC
                                G,GTCT 50
                                             PASS
                                                                                                   0/1:35:4
                                                                                                                                  1/1:40:3
```

samtools.github.io

Variant calling – V-phaser

V-Phaser & V-Phaser 2

- Developed by the Broad Institute
- Considers read position, strand bias, quality scores, dinucleotide frequency, forward & reverse read, and phasing (linkage)
- Reports variant frequency and absolute read numbers by forward & reverse read
- Similar to VCF, but for viral populations
 - One row per variant
 - Seven columns:

Ref_Pos Var Cons Strd_bias_pval Type Var_perc SNP_or_LP_Profile

Macalalad AR *et al.* PLoS Computational Biology 2012 8(3):e1002417 Yang X, *et al.* BMC Genomics 2013 14:674

Variant calling – V-phaser

#Ref_Pos	Var	Cons	Strd_bias_	Туре	Var_perc	SNP_or_L	P_Profile		
‡									
1448	G	С	0.2919	snp	7.477	C:53:46	G:2:6		
1462	Т	А	1	snp	6.604	A:49:47	G:1:2	T:4:3	
1476	С	Т	1	snp	7.273	A:0:1	C:4:4	T:50:51	
1480	T	С	0.6589	snp	11.21	A:0:1	C:45:47	G:1:1	T:7:5
1481	А	G	1	snp	7.273	A:4:4	C:1:1	G:49:51	
1488	С	T	0.8233	snp	9.91	C:5:6	G:3:0	T:46:51	
1568	T	С	1	snp	7.865	C:37:45	T:4:3		
1872	А	G	1	snp	8.14	A:3:4	G:37:42		
3473	Α	G	1	snp	2.857	A:2:1	G:56:46		
3481	Т	С	1	snp	2.913	C:56:44	T:2:1		
3511	С	Т	1	snp	2.885	C:2:1	T:52:49		
3514	Т	С	1	snp	2.83	A:0:1	C:52:50	T:2:1	
3527	Α	Т	1	snp	3.061	A:2:1	T:49:46		
3530	G	Α	1	snp	3.125	A:46:47	G:2:1		
3532	С	Т	1	snp	3.125	C:2:1	T:46:47		
3559	G	С	1	snp	3.75	C:34:43	G:2:1		
3570	С	Α	1.127	snp	4.878	A:35:43	C:2:2		
3574	T	С	1.127	snp	4.762	A:0:1	C:36:43	T:2:2	
3577	С	Т	1.127	snp	4.878	C:2:2	T:37:41		
3592	Т	С	1.127	snp	4.819	C:40:39	T:2:2		
3601	А	G	1	snp	3.614	A:1:2	G:39:41		
3605	С	Α	1	snp	3.704	A:37:41	C:1:2		
3616	G	Α	0.9257	snp	14.29	A:31:35	G:6:5		
6583	Т	С	0.2925	snp	8.654	C:51:44	T:7:2		
6882	Т	А	0.8081	snp	21.21	A:32:46	T:8:13		
6895	G	А	0.7799	snp	39.81	A:24:37	G:17:24	T:0:1	
7150	Т	С	1.004	snp	9.639	C:31:42	G:2:0	T:5:3	
7387	G	А	0.5027	snp	10.71	A:35:40	G:6:3		
9176	А	G	0.7282	snp	24.29	A:5:12	G:18:35		
‡									
summar	LPV: 0								

Variant calling – QuasiBAM

- QuasiBAM (UKHSA)
- Produces a table of nucleotide & codon frequencies for an entire reference
- One row per nucleotide position, i.e. more like mpileup
- 14 Columns:

```
    1-3 Position, Reference nucleotide, Depth
    4-9 A / C / G / T / Gap / Insertion frequencies
    10 Insertion sequences and their frequencies
    11-12 Reference Amino Acid, Depth
    13-14 Codon / Amino Acid frequencies
```

- Can be parameterized
 - Strandedness
 - Gap-masking
 - Primer-mediated error filtering

Variant calling – QuasiBAM

Pos	Ref_N	Depth	Α	С	G	T	Gap	Ins	I_Desc	Ref_AA	AA_depth	Cod	AA
4492	С	23097	0	99.753	0	0	0			Р	22244	CCC:21813:98.062 CCT:295:1.326	P:22120:99.443
4493	С	23048	0	99.683	0	0	0			P	22465	CCT:22064:98.215 CTT:302:1.344	P:22081:98.291 L:302:1.344
4494	С	23623	0	98.650	0	1.300	0			L	22991	CTG:22574:98.186 TTG:306:1.331	L:22963:99.878
4495	T	23607	0	0	0	99.924	0			С	22904	TGC:22744:99.301	C:22796:99.528
4496	G	23547	0	0	99.643	0	0			Α	22876	GCT:22701:99.235	A:22729:99.357
4497	С	23323	0	99.734	0	0	0			L	22800	CTT:22587:99.066	L:22708:99.596
4498	Т	23511	0	0	0	99.860	0			L	22928	TTA:22635:98.722	L:22671:98.879
4499	T	23515	0	0	0	99.468	0			*	22688	TAA:1 9794:87.244 TAG:2636:11.618	*:22442: 98.916
4500	Α	23389	99.376	0	0	0	0			κ	22584	AAG:19401:85.906 AGG:2630:11.645 AA-:278:1.231	K:19526:86.459 R:2637:11.676 X:395:1.749
4501	Α	23320	87.414	0	12.543	0	0			R	22621	AGG:19329:85.447 GGG:2820:12.466 A-G:269:1.189	R:19369:85.624 G:2824:12.484 X:275:1.216
4502	G	24246	0	0	98.189	0	(1.192)		G	23482	GGG:22955:97.756 -GG:276:1.175	G:22998:97.939 X:281:1.197
4503	G	24131	0	0	99.731	0	0			G	23371	GGG:23209:99.307	G:23264:99.542
4504	G	24352	0	0	99.782	0	0			G	23454	GGG:23275:99.237	G:23339:99.51
4505	G	24122	0	0	99.718	0	0			G	23214	GGG:22957:98.893	G:23083:99.436
4506	G	24106	0	0	99.722	0	0			G	22025	GGA:21713:98.583	G:21853:99.219
4507	G	23894	0	0	99.456	0	0			E	21459	GAA:21207:98.826	E:21208:98.83
4508	Α	22601	99.345	0	0	0	0			κ	21422	AAG:21237:99.136	K:21261:99.248
4509	Α	22591	99.708	0	0	0	0			R	21844	AGG:17994:82.375 AGA:3758:17.204	R:21762:99.625
4510	G	22841		0	99.764	0	0			G	21640	GGC:17818:82.338 GAC:3733:17.25	G:17845:82.463 D:3736:17.264
4511	G	22795	17.043	0	82.843	0	0			Α	21368	GCA:17613:82.427 ACA:3698:17.306	A:17618:82.45 T:3698:17.306
4512	С	22402	0	99.853	0	0	0			Н	21443	CAC:21350:99.566	H:21399:99.795
4513	Α	22367	99.978	0	0	0	0			Т	21502	ACC:21381:99.437	T:21443:99.726
4514	С	22774	0	99.750	0	0	0			Р	21968	CCT:21806:99.263	P:21851:99.467
4515	С	22582	0	99.703	0	0	0			L	21981	CTC:21824:99.286	L:21871:99.5
4516	T	22841	0	0	0	99.781	0			S	22318	TCA:22131:99.162	S:22220:99.561
4517	С	22753	0	99.780	0	0	0			н	21775	CAT:21427:98.402	H:21430:98.416
4518	Α	22928	99.603	0	0	0	0 (1.396	T:320:1.396	1	21820	ATT:21364:97.91	I:21521:98.63
4519	T	22553	0	0	0	99.056	0			F	22155	TTT:21779:98.303	F:21786:98.334
4520	Т	22721	0	0	0	99.080	0			F	22039	TTT:21816:98.988	F:21829:99.047
4521	Т	22804	0	0	0	99.961	0			F	22041	TTT:21893:99.329	F:22011:99.864
4522	Т	22430	0	0	0	99.911	0			F	21689	TTT:21545:99.336	F:21547:99.345
4523	Т	22551	0	0	0	99.463	0			L	21655	TTG:21466:99.127	L:21636:99.912
4524	T	22159	0	0	0	99.973	0			c	21555	TGC:21400:99.281	C:21480:99.652

Uses of variant analysis

Features

- Typing
- Resistance
- Epitopes

Quasispecies reconstruction

- Linkage
- Dual infections
- Transmission

Uses of variant analysis - Features

Here, the consensus can be submitted to 'conventional' tools for interpretation

geno2pheno[ngs-freq]

Phylogenetic Assignment of Named Global Outbreak LINeages

 Use the variant calling tool(s) to produce consensuses at different mixed-base thresholds to interrogate minority variants.

Validation, validation

- Each read derives from an individual virus genome molecule
- Linkage of variants on reads enables binning of haplotypes
- Examine all reads that map across a short, specified region of the genome:

Local data can be expanded to generate longer haplotypes

Haploclique https://github.com/cbg-ethz/haploclique

QuasiRecomb https://github.com/cbg-ethz/QuasiRecomb

QuRe https://sourceforge.net/projects/qure

PredictHaplo http://bmda.cs.unibas.ch/software.html

Efficiency of reconstruction is "varied"!

Beerenwinkel N et al. Front Microbiol. 2012 3:329

Prosperi MCF et al. Sci Rep. 2013 3:2837

Correlate mutation frequencies across the genome

Mathew Beale

Correlate mutation frequencies across the genome

Mathew Beale

Correlate mutation frequencies across the genome

Mathew Beale

de Azevedo SSD et al. Retrovirology 2017 14:29

Wymant C et al. Mol Biol Evol 2017

- Three patients MP1, 2 & 3
- Who infected whom?
- MP1 is independent from the cluster
- MP2 (red) → MP3 (blue)?
- Or vice versa?

Romero-Severson EO et al. Genetics 2017 207(3):1089

Transmission						
MSM	х3					
HET	x5					
MtCT	x2					

Subty	Subtype						
В	x5						
С	x2						
G, 01, 02	x1 each						

	A → B		$A \leftarrow \rightarrow B$ $B \rightarrow A$			A?B Transmission &		Expected
Pair	● —②→●	•	•==•	- -?→●	•	○ <··?}··>●	sampling patter	n result
1			2		8		MSM 1	•
2			3	6		1	HET 2	•
3	10						HET 1	•
4	1	6	1	1		1	HET 3	?
5				5	5		HET 3	?
6	3		5		2		MSM 2	•
7	3		6	1			MSM 2	•
8	4					6	HET 3	?
9			10				MtCT 1	•
10	6	3	1				MtCT 1	•
ble 1. Summary of tree topologies from 10 most populous tiles for the ten linked pairs. Colours describe the relationship with known / unknown transmission histories:								

Bibby DF et al. HIV Dynamics & Evolution 2017

Technical pitfalls

Frequency of minor variant detection limited by experimental noise Many sources of error:

- 1. Sequencing
- 2. Amplicon-based sequencing
- 3. Nucleotide content
- 4. Hexamer priming
- 5. Product degradation
- 6. Contamination
- 7. Bioinformatics

Technical pitfalls – Sequencing

Technical pitfalls - Sequencing

Substitutions

xGG motif
GGG = CGG > AGG > TGG

Technical pitfalls – Sequencing

<u>Indels</u>

Homopolymeric tracts **AAA** > CCC = GGG = TTT

High Quality Scores

Technical pitfalls – Amplicons

Table 1. Error rate of *Taq* DNA polymerase.

Amplicon	Substitution rate	Deletion rate	Insertion rate	Total error rate	Total bases
		Sanger (dideoxy)	,	
LacZ-1	1.2 × 10 ⁻⁴ (98.8%)	1.6 × 10 ⁻⁶ (1.2%)	- (0.0%)	1.3 × 10 ⁻⁴	323,802
		Pacific Bios	ciences RSII		
LacZ-1	1.7 × 10 ⁻⁴ (97.3%)	$4.7 \times 10^{-6} (2.6\%)$	1.8 × 10 ⁻⁷ (0.1%)	1.8 × 10 ⁻⁴	35,879,784
LacZ-2	1.7 × 10 ⁻⁴ (96.1%)	5.1 × 10 ⁻⁶ (2.9%)	1.8 × 10 ⁻⁶ (1.0%)	1.8 × 10 ⁻⁴	15,857,446
DNA-1	1.4 × 10 ⁻⁴ (97.2%)	$3.9 \times 10^{-6} (2.8\%)$	$1.2 \times 10^{-7} (0.1\%)$	1.4 × 10 ⁻⁴	18,680,811
DNA-2	1.4 × 10 ⁻⁴ (97.5%)	$3.4 \times 10^{-6} (2.4\%)$	1.5 × 10 ⁻⁷ (0.1%)	1.4 × 10 ⁻⁴	27,978,748

Reported error rates are per base per doubling as detailed in Materials and Methods. Numbers in parentheses are percentages of the total error rate.

Table 6. PCR-meditated recombination rate by *Taq* DNA polymerase.

Template pair	N _{re} ^a	N _{total} ^b	Recombination rate ^c
DNA-1:DNA-1x	19,943	77,725,936	9.6 × 10 ⁻⁵
DNA-2:DNA-2x	14,687	44,271,304	1.3 × 10 ⁻⁴

^a Number of recombination events.

Potapov V et al. PLoS One 2017 12(1): e0169774

Strands with at least 1 recombination event 23% 28%

1kb, 16x cycles

^b Total number of analyzed sequenced bases.

^c Recombination rate is per base per doubling. Recombination rate is doubled to account for "cryptic" recombination events.

Technical pitfalls – Amplicons

Technical pitfalls – Nucleotide content

Karamitros T et al. PLoS One 2016 11(6):e0157600

Technical pitfalls – Nucleotide content

Technical pitfalls – Hexamer priming

The position of the minority variant nucleotide (red line) is evenly distributed along the read lengths (as is the majority variant in blue)

100% of the minority variants are within 7% (10nt) of a read terminus – artefact from insert-priming

Technical pitfalls – Product degradation

Technical pitfalls – Product degradation

Technical pitfalls – Product degradation

Much investigation revealed context-specific conversion of dinucleotides

The frequency of converted bases is proportional to the time spent at 4°C

Technical pitfalls – Contamination

"Sequences not belonging to that sample present in the FASTQ set"

- Index-switching
 - Occurs during library prep / sequencing
- Laboratory contamination
 - Similar to PCR
 - Spatial and temporal separation of work areas
 - Rotation of adapters
 - Robotics
 - Rotation of control positions
 - Alternation of template types

Technical pitfalls – Bioinformatics

- Synthetic FASTQ datasets
 - HIV quasi-species generation
 Adapted from Pandit A & de Boer R, Retrovirology 2014 11(1):56
 - FASTQ generation using empirical error profiles / quality scores
 ART Huang W, et al. Bioinformatics 2012 28(4):593-4
- Two pre-production pipelines tested

Technical pitfalls – Bioinformatics

Validation

Validation – How low can you go?

- For HIV & HCV, Sanger at 15-20% == resistant
 - What does 10% mean?
 - 5%?
- Reproducibility, repeatability, accuracy and precision is critical
 - Validating against Sanger is relatively straightforward, both clinically and technically
 - Validating lower frequencies is quite the opposite
- Clinical utility of lower frequency variants unproven

Cut-offs vary considerably between assays

Validation – How low can you go?

J Antimicrob Chemother 2023; **78**: 656–664 https://doi.org/10.1093/jac/dkac430 Advance Access publication 4 February 2023 Journal of Antimicrobial Chemotherapy

Frequency matters: comparison of drug resistance mutation detection by Sanger and next-generation sequencing in HIV-1

Suraj Balakrishna^{1,2*}, Tom Loosli^{1,2}, Maryam Zaheri^{2,3}, Paul Frischknecht¹, Michael Huber^{2,3}, Katharina Kusejko (1) ^{1,2}, Sabine Yerly⁴, Karoline Leuzinger⁵, Matthieu Perreau⁶, Alban Ramette (1) ⁷, Chris Wymant (1) ⁸, Christophe Fraser^{8,9}, Paul Kellam¹⁰, Astrid Gall¹¹, Hans H. Hirsch (1) ¹², Marcel Stoeckle¹², Andri Rauch¹³, Matthias Cavassini (1) ¹⁴, Enos Bernasconi¹⁵, Julia Notter¹⁶, Alexandra Calmy¹⁷, Huldrych F. Günthard (1) ^{1,2}, Karin J. Metzner^{1,2} and Roger D. Kouyos (1) ^{1,2}

Conclusions: We found high concordance between SS and NGS but also a substantial number of low-abundance HIV-DRMs detected only by NGS at lower variant-calling thresholds. Our findings suggest that a substantial fraction of the low-abundance HIV-DRMs detected at thresholds <3% may represent sequencing errors and hence should not be overinterpreted in clinical practice.

How reliable is a variant frequency call?

- When the depth of coverage (i.e. reads covering that position) is high/low?
- What levels constitute 'high' and 'low' depths for PCR, sequence capture and metagenomic approaches?

Sample: A Domain: PR/RT Position: 847 Consensus: R

How reliable is a variant frequency call?

When the depth of coverage (i.e. reads covering that position) is high/low?

What levels constitute 'high' and 'low' depths for PCR, sequence capture and metagenomic

approaches?

How reliable is a variant frequency call?

- PCR produces large amounts of material
- How representative of the starting population is the amplicon mix?
 - Depth is not correlated with reliability!
- If the starting virus copy number is 100,000 copies per library, 10% = 10,000
 - But at 1,000 copies, how reliable is 5% (50 viruses)?
 - Reverse transcription (to generate cDNA) is notoriously inefficient and error-prone how many viruses are represented?
 - There are multiple PCR cycles in the library prep too...
- Often, the amount of starting material / viral load is unknown

Perspective

Fact and Fiction about 1%: Next Generation Sequencing and the Detection of Minor Drug Resistant Variants in HIV-1 Populations with and without Unique Molecular Identifiers

Shuntai Zhou 1,* and Ronald Swanstrom 1,2

Viruses (2020) 12(8): 850

Validation – Standardised materials

Sample – haplotypes mixed at precise frequencies (e.g. 1, 2, 5, 10 & 20%)

DNA / RNA extract

PCR product

Library – storage issues

FASTQ datasets - artificial quasispecies and synthetic FASTQs

Consensus sequences – to test interpretation mechanisms

Summary

Consensus & variant calling

- Many tools for mapping (BWA, Bowtie, smalt, Tanoti)
- Several tools for variant calling (QuasiBAM, V-Phaser)

Choice of reference & user-defined parameters is CRITICAL

Using the consensus

- Submit to usual tools
- Different mixed-base thresholds to incorporate minority variants

BEWARE – Interpretations may not be validated on NGS-derived data...

Phyletic analysis is coming

Summary

Technical pitfalls

- Experimental approach influences the result in unpredictable ways
 - Low-frequency variation can arise through diverse processes
- Reproducibility experiments are essential
 - Across a range of conditions and samples

Validation

ESSENTIAL – especially when detecting 'new' data, e.g. <20% minority

- All components of the assay need independent investigation
- Look at <u>all</u> the <u>data</u>
- ESPECIALLY THE BIOINFORMATICS!