Table 1: Table: Summary Statistics by 30-Day Complication Status

Variable	No Complication $N = 927^1$	Complication $N = 73^1$	$\overline{\mathbf{p}}$ -value ²
Age	59.22 (14.06)	65.99 (12.11)	< 0.001
BMI	27.00 (4.69)	27.49 (5.11)	0.6
Surgery_Duration_Minutes	95.95 (39.79)	$113.55 \ (47.64)$	0.001
${\bf Estimated_Blood_Loss}$	126.47 (98.13)	143.85 (107.14)	0.2

 $^{^{1}}$ Mean (SD)

Complication Risk Model: SDSC Analytic Pitch

Walker Blackston, MSPH

2025-04-04

Background

To demonstrate how I think through surgical outcome prediction and statistical problems, I built a prototype risk model for 30-day complications based on simulated surgical data.

In this hypothetical dataset of 1,000 patients, we sought to compare predictors of complications at 30-days follow up from surgery. We simulated a variety of demographic and clinical variables based on seeds of real-world data and expected distributions in a random sample of patients. The following brief will highlight steps in the analysis, modeling and interpretation of findings. A full printout of code used to generate data and this document are available in the Github provided in my pitch.

²Wilcoxon rank sum test

Table 2: Table: Procedure Type Distribution by 30-Day Complication Status

Procedure Type	No Complication $N = 927^1$	Complication $N = 73^1$	p-value ²
Procedure_Type			0.2
Appendectomy	128 (14%)	13 (18%)	
Colectomy	242 (26%)	13 (18%)	
Gastrectomy	80 (8.6%)	10 (14%)	
Hernia Repair	183 (20%)	18 (25%)	
Lap Chole	$294\ (32\%)$	19 (26%)	
Intraoperative_Events	138 (15%)	21 (29%)	0.002
ASA_Class	` '	,	0.039
1	83 (9.0%)	8 (11%)	
2	290 (31%)	18(25%)	
3	352(38%)	22 (30%)	
4	159 (17%)	16 (22%)	
5	$43\ (4.6\%)$	9 (12%)	

¹n (%)

Data Summary

Exploring the data

²Pearson's Chi-squared test; Fisher's exact test

Predictive Modeling

Logistic Model

Machine Learning Model (Random Forest)

Results

The model achieved an AUC (Logistic): 0.61 and AUC(RandomForest): 0.6, respectively with higher odds of complication associated only with:

- Advanced age
- Intra-operative events

Accuracy and Interpretation

Table 3: Confusion Matrix (Logistic Regression)

Prediction \ Reference	No Complication	Complication
No Complication	185	14
Complication	0	0

Table 4: Overall Performance Metrics (Logistic Regression)

Accuracy	Kanna	AccuracyLower	AccuracyUnner	AccuracyNull	AccuracyPValue	McnemarPValue
riccuracy	rappa	11ccuracy Lower	riccuracy oppor	riccuracyrvan	riccuracy i varue	Wichellan value

0.02	0	0.00	0.06	0.02	0.57	0
0.93	U	0.88	0.96	0.93	0.57	U

Table 5: Class-Specific Performance Metrics (Logistic Regression)

Sensitivity	Specificity	Pos Pred Value	Neg Pred Value	Precision	Recall	F1	Prevalence	Detection Rate	Ι
1	0	0.93	NaN	0.93	1	0.96	0.93	0.93	

Table 6: Confusion Matrix (Random Forest)

${\bf Prediction} \ \backslash \ {\bf Reference}$	No Complication	Complication
No Complication	185	14
Complication	0	0

Table 7: Overall Performance Metrics (Random Forest)

Accuracy	Kappa	AccuracyLower	${\bf Accuracy Upper}$	AccuracyNull	AccuracyPValue	${\bf Mcnemar PV alue}$
0.93	0	0.88	0.96	0.93	0.57	0

Table 8: Class-Specific Performance Metrics (Random Forest)

Sensitivity	Specificity	Pos Pred Value	Neg Pred Value	Precision	Recall	F1	Prevalence	Detection Rate]
1	0	0.93	NaN	0.93	1	0.96	0.93	0.93	

Next Steps

This model demonstrates early potential to extract explainable risk signals from surgical outcomes data. If advanced with real-world video and procedural metadata, the insights could power a live surgeon feedback loop or benchmark dashboard.