

MONASH BUSINESS SCHOOL

ETC3550/ETC5550 Applied forecasting

Ch10. Dynamic regression models OTexts.org/fpp3/

Outline

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

Outline

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that ε_t was WN.
- Now we want to allow ε_t to be autocorrelated.

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that ε_t was WN.
- Now we want to allow ε_t to be autocorrelated.

Example: ARIMA(1,1,1) errors

$$y_{t} = \beta_{0} + \beta_{1}x_{1,t} + \dots + \beta_{k}x_{k,t} + \eta_{t},$$

$$(1 - \phi_{1}B)(1 - B)\eta_{t} = (1 + \theta_{1}B)\varepsilon_{t},$$

where ε_t is white noise.

Residuals and errors

Example: η_t = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$

 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$

Residuals and errors

Example: η_t = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$

 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$

- Be careful in distinguishing η_t from ε_t .
- Only the errors ε_t are assumed to be white noise.
- In ordinary regression, η_t is assumed to be white noise and so $\eta_t = \varepsilon_t$.

5

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- 2 Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- p-values for coefficients usually too small ("spurious regression").
- AIC of fitted models misleading.

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- p-values for coefficients usually too small ("spurious regression").
- AIC of fitted models misleading.
 - Minimizing $\sum \varepsilon_t^2$ avoids these problems.
 - Maximizing likelihood similar to minimizing $\sum \varepsilon_t^2$.

Model with ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$

 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$

Model with ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$

 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$

Equivalent to model with ARIMA(1,0,1) errors

$$y'_{t} = \beta_{1}x'_{1,t} + \cdots + \beta_{k}x'_{k,t} + \eta'_{t},$$

 $(1 - \phi_{1}B)\eta'_{t} = (1 + \theta_{1}B)\varepsilon_{t},$

where
$$y'_t = y_t - y_{t-1}$$
, $x'_{t,i} = x_{t,i} - x_{t-1,i}$ and $\eta'_t = \eta_t - \eta_{t-1}$.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t$$
 where $\phi(B)(1 - B)^d \eta_t = \theta(B)\varepsilon_t$

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t$$
where $\phi(B)(1 - B)^d \eta_t = \theta(B)\varepsilon_t$

After differencing all variables

$$\begin{aligned} \mathbf{y}_t' &= \beta_1 \mathbf{x}_{1,t}' + \dots + \beta_k \mathbf{x}_{k,t}' + \eta_t'. \\ \text{where } \phi(\mathbf{B}) \eta_t' &= \theta(\mathbf{B}) \varepsilon_t, \\ \mathbf{y}_t' &= (\mathbf{1} - \mathbf{B})^d \mathbf{y}_t, \mathbf{x}_{i,t}' = (\mathbf{1} - \mathbf{B})^d \mathbf{x}_{i,t}, \text{ and } \eta_t' = (\mathbf{1} - \mathbf{B})^d \eta_t \end{aligned}$$

- In R, we can specify an ARIMA(p, d, q) for the errors, and d levels of differencing will be applied to all variables $(y, x_{1,t}, ..., x_{k,t})$.
- Check that ε_t series looks like white noise.
- AICc can be calculated for final model.
- Repeat procedure for all subsets of predictors to be considered, and select model with lowest AICc value.


```
fit <- us_change %>% model(ARIMA(Consumption ~ Income))
report(fit)
## Series: Consumption
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
##
        ar1
                 mal ma2 Income intercept
## 0.707 -0.617 0.2066 0.1976
                                       0.595
## s.e. 0.107 0.122 0.0741 0.0462
                                       0.085
##
## sigma^2 estimated as 0.3113: log likelihood=-163
## ATC=338 ATCc=339 BTC=358
```

```
fit <- us_change %>% model(ARIMA(Consumption ~ Income))
report(fit)
## Series: Consumption
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
##
        ar1
                 mal ma2 Income intercept
## 0.707 -0.617 0.2066 0.1976
                                       0.595
## s.e. 0.107 0.122 0.0741 0.0462
                                       0.085
##
## sigma^2 estimated as 0.3113: log likelihood=-163
## ATC=338 ATCc=339 BTC=358
```

```
residuals(fit, type='regression') %>%
   gg_tsdisplay(.resid, plot_type = 'partial') +
   labs(title = "Regression errors")
```



```
residuals(fit, type='innovation') %>%
   gg_tsdisplay(.resid, plot_type = 'partial') +
   labs(title = "ARIMA errors")
```


1 ARIMA(Consumption ~ Income) 5.54

0.595

```
us_change_future <- new_data(us_change, 8) %>%
mutate(Income = mean(us_change$Income))
forecast(fit, new_data = us_change_future) %>%
   autoplot(us_change) +
   labs(x = "Year", y = "Percentage change",
        title = "Forecasts from regression with ARIMA(1,0,2) errors")
```


Forecasting

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- Some predictors are known into the future (e.g., time, dummies).
- Separate forecasting models may be needed for other predictors.
- Forecast intervals ignore the uncertainty in forecasting the predictors.

Model daily electricity demand as a function of temperature using quadratic regression with ARMA errors.

```
vic_elec_daily %>%
  ggplot(aes(x = Temperature, y = Demand, colour = Day_Type)) +
  geom_point() +
  labs(x = "Maximum temperature", y = "Electricity demand (GW)")
```



```
vic_elec_daily %>%
  pivot_longer(c(Demand, Temperature)) %>%
  ggplot(aes(x = Date, y = value)) + geom_line() +
  facet_grid(name ~ ., scales = "free_y") + ylab("")
```


AIC=2432 AICc=2433 BIC=2471

```
fit <- vic_elec_daily %>%
  model(ARIMA(Demand ~ Temperature + I(Temperature^2) +
               (Day Type=="Weekday")))
report(fit)
## Series: Demand
## Model: LM w/ ARIMA(2,1,2)(2,0,0)[7] errors
##
## Coefficients:
##
            ar1
                   ar2
                       ma1
                                    ma2 sar1 sar2 Temperature
       -0.1093 0.7226 -0.0182 -0.9381 0.1958 0.417 -7.614
##
## s.e. 0.0779 0.0739 0.0494 0.0493 0.0525 0.057 0.448
        I(Temperature^2) Day_Type == "Weekday"TRUE
##
##
                 0.1810
                                            30.40
                                             1.33
## s.e.
                 0.0085
##
## sigma^2 estimated as 44.91: log likelihood=-1206
```


.resid

Forecast one day ahead

1 "ARIMA(Demand ~ Temperature ~ 2015-01-01 N(161, 45) 161.

26 Holiday

```
vic_elec_future <- new_data(vic_elec_daily, 14) %>%
 mutate(
    Temperature = 26,
    Holiday = c(TRUE, rep(FALSE, 13)),
    Day_Type = case_when(
      Holiday ~ "Holiday",
      wday(Date) %in% 2:6 ~ "Weekday".
      TRUE ~ "Weekend"
```

```
forecast(fit, new_data = vic_elec_future) %>%
autoplot(vic_elec_daily) + labs(y="GW")
```


Outline

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARMA process.

Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARMA process.

Stochastic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARIMA process with $d \geq 1$.

Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARMA process.

Stochastic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARIMA process with $d \geq 1$.

Difference both sides until η_t is stationary:

$$\mathbf{y}_t' = \beta_1 + \eta_t'$$

where η'_t is ARMA process.

Air transport passengers Australia

```
aus_airpassengers %>%
autoplot(Passengers) +
labs(y = "Passengers (millions)",
    title = "Total air passengers")
```


Deterministic trend

```
fit_deterministic <- aus_airpassengers %>%
 model(ARIMA(Passengers ~ 1 + trend() + pdg(d = 0)))
report(fit deterministic)
## Series: Passengers
## Model: LM w/ ARIMA(1,0,0) errors
##
## Coefficients:
##
  ar1 trend() intercept
## 0.9564 1.415 0.901
## s.e. 0.0362 0.197 7.075
##
## sigma^2 estimated as 4.343: log likelihood=-101
## ATC=210 ATCc=211 BTC=217
```

Deterministic trend

```
fit_deterministic <- aus_airpassengers %>%
 model(ARIMA(Passengers ~ 1 + trend() + pdg(d = 0)))
report(fit deterministic)
## Series: Passengers
## Model: LM w/ ARIMA(1,0,0) errors
##
## Coefficients:
##
  arl trend() intercept
## 0.9564 1.415 0.901
## s.e. 0.0362 0.197 7.075
##
## sigma^2 estimated as 4.343: log likelihood=-101
## ATC=210 ATCc=211
                      BTC=217
                            y_t = 0.901 + 1.415t + \eta_t
```

 $\eta_t = 0.956 \eta_{t-1} + \varepsilon_t$

Stochastic trend

```
fit_stochastic <- aus_airpassengers %>%
  model(ARIMA(Passengers ~ pdg(d = 1)))
report(fit stochastic)
## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
##
        constant
##
   1.419
## s.e. 0.301
##
## sigma^2 estimated as 4.271: log likelihood=-98.2
## ATC=200 ATCc=201
                       BTC=204
```

Stochastic trend

```
fit_stochastic <- aus_airpassengers %>%
  model(ARIMA(Passengers ~ pdg(d = 1)))
report(fit stochastic)
## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
##
         constant
##
   1.419
## s.e. 0.301
##
## sigma^2 estimated as 4.271: log likelihood=-98.2
## ATC=200
           ATCc=201
                         BTC=204
                             y_t - y_{t-1} = 1.419 + \varepsilon_t.
```

 $y_t = y_0 + 1.419t + \eta_t$

```
aus_airpassengers %>%
  autoplot(Passengers) +
  autolayer(fit_stochastic %>% forecast(h = 20),
    colour = "#0072B2", level = 95) +
  autolayer(fit_deterministic %>% forecast(h = 20),
    colour = "#D55E00", alpha = 0.65, level = 95) +
  labs(y = "Air passengers (millions)",
    title = "Forecasts from trend models")
```


Forecasting with trend

- Point forecasts are almost identical, but prediction intervals differ.
- Stochastic trends have much wider prediction intervals because the errors are non-stationary.
- Be careful of forecasting with deterministic trends too far ahead.

Outline

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

Dynamic harmonic regression

Combine Fourier terms with ARIMA errors

Advantages

- it allows any length seasonality;
- for data with more than one seasonal period, you can include Fourier terms of different frequencies;
- the seasonal pattern is smooth for small values of K (but more wiggly seasonality can be handled by increasing K);
- the short-term dynamics are easily handled with a simple ARMA error.

Disadvantages

seasonality is assumed to be fixed

```
aus_cafe <- aus_retail %>% filter(
    Industry == "Cafes, restaurants and takeaway food services",
    year(Month) %in% 2004:2018
) %>% summarise(Turnover = sum(Turnover))
aus_cafe %>% autoplot(Turnover)
```



```
fit <- aus_cafe %>% model(
    `K = 1` = ARIMA(log(Turnover) ~ fourier(K = 1) + PDQ(0,0,0)),
    `K = 2` = ARIMA(log(Turnover) ~ fourier(K = 2) + PDQ(0,0,0)),
    `K = 3` = ARIMA(log(Turnover) ~ fourier(K = 3) + PDQ(0,0,0)),
    `K = 4` = ARIMA(log(Turnover) ~ fourier(K = 4) + PDQ(0,0,0)),
    `K = 5` = ARIMA(log(Turnover) ~ fourier(K = 5) + PDQ(0,0,0)),
    `K = 6` = ARIMA(log(Turnover) ~ fourier(K = 6) + PDQ(0,0,0)))
glance(fit)
```

.model	sigma2	log_lik	AIC	AICc	BIC
K = 1	0.002	317	-616	-615	-588
K = 2	0.001	362	-700	-698	-661
K = 3	0.001	394	-763	-761	-725
K = 4	0.001	427	-822	-818	-771
K = 5	0.000	474	-919	-917	-875

Example: weekly gasoline products

```
fit <- us_gasoline %>%
 model(ARIMA(Barrels \sim fourier(K = 13) + PDO(0.0.0)))
report(fit)
## Series: Barrels
## Model: LM w/ ARIMA(0.1.1) errors
##
## Coefficients:
##
            ma1 fourier(K = 13)C1 52 fourier(K = 13)S1 52
##
   -0.8934
                           -0.1121
                                                 -0.2300
## s.e. 0.0132 0.0123
                                                  0.0122
        fourier(K = 13)C2 52 fourier(K = 13)S2 52
##
##
                     0.0420
                                          0.0317
## s.e.
                     0.0099
                                          0.0099
##
        fourier(K = 13)C3 52 fourier(K = 13)S3 52
##
                     0.0832
                                        0.0346
## s.e.
                     0.0094
                                         0.0094
        fourier(K = 13)C4_52 fourier(K = 13)S4_52
##
##
                     0.0185
                                        0.0398
## s.e.
                     0.0092
                                         0.0092
        fourier(K = 13)C5 52 fourier(K = 13)S5 52
##
##
                     -0.0315
                                          0.0009
```

Example: weekly gasoline products

```
forecast(fit, h = "3 years") %>%
autoplot(us_gasoline)
```



```
(calls <- readr::read_tsv("http://robjhyndman.com/data/callcenter.txt") %>%
    rename(time = `...1`) %>%
    pivot_longer(-time, names_to = "date", values_to = "volume") %>%
    mutate(
        date = as.Date(date, format = "%d/%m/%Y"),
        datetime = as_datetime(date) + time
) %>%
    as_tsibble(index = datetime))
```

```
## # A tsibble: 27,716 x 4 [5m] <UTC>
##
     time date volume datetime
   <time> <date> <dbl> <dttm>
##
   1 07:00 2003-03-03 111 2003-03-03 07:00:00
##
##
   2 07:05 2003-03-03 113 2003-03-03 07:05:00
   3 07:10 2003-03-03 76 2003-03-03 07:10:00
##
   4 07:15 2003-03-03 82 2003-03-03 07:15:00
##
   5 07:20 2003-03-03
                         91 2003-03-03 07:20:00
##
## 6 07:25 2003-03-03
                         87 2003-03-03 07:25:00
```

calls %>% fill_gaps() %>% autoplot(volume)


```
calls %>% fill_gaps() %>%

gg_season(volume, period = "day", alpha = 0.1) +
guides(colour = FALSE)
```



```
library(sugrrants)
calls %>% filter(month(date, label = TRUE) == "Apr") %>%
    ggplot(aes(x = time, y = volume)) +
    geom_line() + facet_calendar(date)
```



```
calls_mdl <- calls %>%
  mutate(idx = row_number()) %>%
  update_tsibble(index = idx)
fit <- calls_mdl %>%
  model(ARIMA(volume ~ fourier(169, K = 10) + pdq(d=0) + PDQ(0,0,0)))
report(fit)

## Series: volume
## Model: LM w/ ARIMA(1,0,3) errors
##
## Coefficients:
```



```
fit %>% forecast(h = 1690) %>%
  autoplot(calls_mdl)
```



```
fit %>% forecast(h = 1690) %>%
  autoplot(filter(calls_mdl, idx > 25000))
```


Outline

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

Sometimes a change in x_t does not affect y_t instantaneously

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \mathbf{x}_t is often a leading indicator.
- There can be multiple predictors.

The model include present and past values of predictor:

$$X_t, X_{t-1}, X_{t-2}, \ldots$$

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

The model include present and past values of predictor:

$$x_t, x_{t-1}, x_{t-2}, \ldots$$

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

Rewrite model as

$$y_t = a + (\gamma_0 + \gamma_1 B + \gamma_2 B^2 + \dots + \gamma_k B^k) x_t + \eta_t$$

= $a + \gamma(B) x_t + \eta_t$.

The model include present and past values of predictor:

$$X_t, X_{t-1}, X_{t-2}, \ldots$$

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

Rewrite model as

$$y_t = a + (\gamma_0 + \gamma_1 B + \gamma_2 B^2 + \dots + \gamma_k B^k) x_t + \eta_t$$

= $a + \gamma(B) x_t + \eta_t$.

 $\gamma(B)$ is called a *transfer function* since it describes how change in x_t is transferred to v_t .

```
insurance %>%
pivot_longer(Quotes:TVadverts) %>%
ggplot(aes(x = Month, y = value)) + geom_line() +
facet_grid(vars(name), scales = "free_y") +
labs(y = NULL, title = "Insurance advertising and quotations")
```

Insurance advertising and quotations


```
fit <- insurance %>%
  # Restrict data so models use same fitting period
  mutate(Quotes = c(NA,NA,NA,Quotes[4:40])) %>%
  # Fstimate models
  model(
    ARIMA(Ouotes ~ pdg(d = 0) + TVadverts).
    ARIMA(Quotes ~ pdq(d = 0) + TVadverts + lag(TVadverts)),
    ARIMA(Quotes ~ pdq(d = 0) + TVadverts + lag(TVadverts) +
            lag(TVadverts, 2)),
    ARIMA(Quotes ~ pdg(d = 0) + TVadverts + lag(TVadverts) +
            lag(TVadverts, 2) + lag(TVadverts, 3))
```

glance(fit)

Lag order	sigma2	log_lik	AIC	AICc	BIC
0	0.265	-28.3	66.6	68.3	75.0
1	0.209	-24.0	58.1	59.9	66.5
2	0.215	-24.0	60.0	62.6	70.2
3	0.206	-22.2	60.3	65.0	73.8

```
fit best <- insurance %>%
 model(ARIMA(Quotes ~ pdq(d=0) + TVadverts + lag(TVadverts)))
report(fit best)
## Series: Ouotes
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
                ma1 ma2 TVadverts lag(TVadverts) intercept
##
         ar1
##
    0.512 0.917 0.459
                             1.2527
                                           0.1464
                                                        2.16
## s.e. 0.185 0.205 0.190 0.0588 0.0531
                                                        0.86
##
## sigma^2 estimated as 0.2166: log likelihood=-23.9
## ATC=61.9 ATCc=65.4
                       BTC=73.7
```

```
fit best <- insurance %>%
 model(ARIMA(Quotes ~ pdq(d=0) + TVadverts + lag(TVadverts)))
report(fit best)
## Series: Ouotes
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
##
           ar1
                  mal ma2 TVadverts lag(TVadverts) intercept
##
   0.512 0.917 0.459 1.2527
                                                 0.1464
                                                                2.16
## s.e. 0.185 0.205 0.190 0.0588 0.0531
                                                                0.86
##
## sigma^2 estimated as 0.2166: log likelihood=-23.9
## ATC=61.9 ATCc=65.4
                          BTC=73.7
                                v_t = 2.155 + 1.253x_t + 0.146x_{t-1} + n_t
                               n_t = 0.512 n_{t-1} + \varepsilon_t + 0.917 \varepsilon_{t-1} + 0.459 \varepsilon_{t-2}
```

```
advert_a <- new_data(insurance, 20) %>%
  mutate(TVadverts = 10)
forecast(fit_best, advert_a) %>% autoplot(insurance)
```



```
advert_b <- new_data(insurance, 20) %>%
  mutate(TVadverts = 8)
forecast(fit_best, advert_b) %>% autoplot(insurance)
```



```
advert_c <- new_data(insurance, 20) %>%
  mutate(TVadverts = 6)
forecast(fit_best, advert_c) %>% autoplot(insurance)
```

