1	WHAT IS CLAIMED IS:		
2			
3	1.	A pro	ocess for oligomerizing the olefins present in a Fischer-Tropsch
4		deriv	red condensate containing a mixture of olefins and oxygenates
5		whic	h comprises:
6			
7		(a)	reducing significantly the oxygenates present in the
8			Fischer-Tropsch condensate;
9			
10		(b)	contacting the Fischer-Tropsch derived condensate having
11			significantly reduced oxygenates with an ionic liquid catalyst in
12			an oligomerization zone under oligomerization reaction
13			conditions; and
14			
15		(c)	recovering from the oligomerization zone a Fischer-Tropsch
16			derived product having molecules characterized by a higher
17			average molecular weight and increased branching as
18			compared to the Fischer-Tropsch derived condensate.
19			
20	2.	The	process of claim 1 wherein substantially all of the oxygenates
21		pres	ent in the Fischer-Tropsch derived condensate are removed.
22			
23	3.	The	process of claim 1 wherein the Fischer-Tropsch derived
24		cond	lensate contains not more than about 200 ppmw elemental
25		oxyg	en.
26			·
27	4.	The	process of claim 3 wherein the Fischer-Tropsch derived.
28		cond	lensate contains not more than about 100 ppmw elemental
29		oxyg	en.
30			
31	5.	The	process of claim 1 wherein the oxygenates are removed by
32		cont	acting the Fischer-Tropsch derived condensate with an adsorber

which is effective for removing the oxygenates.

33

1	6.	The p	process of claim 5 wherein the adsorbent is a molecular sieve
2		havir	ng low silica to alumina ratio.
3			
4	7.	The	process of claim 6 wherein the molecular sieve is a large pore
5		zeolit	te.
6			
7	8.	The	process of claim 6 wherein the molecular sieve has an FAU type
8		frame	ework.
9			
10	9.	The p	process of claim 7 wherein the molecular sieve is an X zeolite.
11			
12	10.	The	process of claim 7 wherein the molecular steve is a 13X molecular
13	_	sieve) .
14			
15	11.	A pro	ocess for preparing a Fischer-Tropsch derived product by the
16		oligo	merization of the olefins in a Fischer-Tropsch derived concentrate
17		which	n contains olefins and oxygenates which comprises:
18			
19		(a)	dehydrating the Fischer-Tropsch derived concentrate in a
20			dehydration zone under dehydration conditions and recovering a
21			dehydrated Fischer-Tropsch derived condensate from the
22	•		dehydration zone;
23			
24		(b)	contacting the dehydrated Fischer-Tropsch derived condensate
25			with a molecular sieve capable of adsorbing the oxygenates
26			remaining in the dehydrated Fischer-Tropsch derived
27			condensate and recovering a Fischer-Tropsch derived
28			condensate intermediate containing significantly reduced
29			oxygenates;
30			
31		(c)	contacting the Fischer-Tropsch derived condensate intermediate
32			in an oligomerization zone with an effective oligomerizing
22			amount of a Lewis acid ionic liquid oligomerization catalyst while

1		maintaining said Hischer-Tropsch derived condensate
2		intermediate and said oligomerization catalyst under preselected
3		oligomerization conditions for a sufficient time to oligomerize the
4		olefins present; and
5		
6		(d) recovering from the oligomerization zone a Fischer-Tropsch
7		derived product having molecules characterized by a higher
8		average molecular weight and increased branching as
9		compared to the Fischer-Tropsch derived condensate.
10		
11	12.	The process of claim 11 wherein substantially all of the oxygenates
12		present in the dehydrated Fischer-Tropsch derived condensate are
13		removed.
14		
15	13.	The process of claim 11 wherein the dehydrated Fischer-Tropsch
16		derived condensate contains not more than about 200 ppmw elementa
17		oxygen.
18		
19	14.	The process of claim 13 wherein the dehydrated Fischer-Tropsch
20		derived condensate contains not more than about 100 ppmw elementa
21		oxygen.
22		
23	15.	The process of claim 11 wherein the adsorbent of step (b) is a
24		molecular sieve having low silica to alumina ratio.
25		
26	16.	The process of claim 15 wherein the molecular sieve of step (b) has an
27		FAU type framework.
28		
29	17.	The process of claim 16 wherein the molecular sieve is an X zeolite.
30		
31	18.	The process of claim 16 wherein the molecular sieve of step (b) is a
32		13X molecular sieve

1	19.	The process of claim 11 wherein the Lewis acid ionic oligomerization
2		catalyst comprises a first component and a second component, said
3		first corresponent comprising a compound selected from the group
4		consisting of aluminum halide, alkyl aluminum halide, gallium halide,
5		and allow gallium halide, and said second component is quaternary
6		ammoทน์นm or quaternary phosporium salt.
7		
8	20.	. The process of claim 19 wherein said first component is aluminum
9		ha lidiæ o r alkyl aluminum halide.
10		•
11	21.	The process of claim 20 wherein said first component is aluminum
12		trichloride.
13		
14	22.	The prosess of claim 19 wherein said second component is selected
15		from come or more of hydrocarbyl substituted ammonium halide,
16		hydrocarbyl substituted imidazolium halide, hydrocarbyl substituted
17		pyridinium halide, alkylene substituted pyridinium dihalide, or
18		hydrocarbyl substituted phosphonium halide.
19		
20	23.	The process of claim 22 wherein the second component is an alkyl
21		substituted quaternary ammonium halide containing one or more alky
22	•	moieties having from 1 to about 9 carbon atoms.
23		
24	24.	The process of claim 23 wherein the second component comprises at
25		le ast titimethylamine hydrochloride.
26		
27	25.	The process of claim 22 wherein the second component is an alkyl
28		substituted imidazolium halide.
29		
30	26.	The process of claim 25 wherein the second component comprises at
31		least∷t⊱ethyl-3-methyl-imidazolium chloride.

1	2 7.	The process of claim 22 wherein the ratio of first component to the
2		second component of the oligomerization catalyst is within the range of
3		from about 1:1 to about 5:1.
4		,
5	28.	The process of claim 19 wherein the ratio of the first component to the
6		second component is within the range of from about 1:1 to about 2:1.
7		
8	29.	The process of claim 1 including the additional step of hydrogenating
9		the unsaturated double bonds present in the Fischer-Tropsch derived
10		product.
11		
12	30.	The process of claim 29 wherein the Fischer-Tropsch derived product
13		includes lubricating base oil.
14	*	
15	31.	The process of claim 29 wherein the Fischer-Tropsch derived product
16		includes a diesel product.