POWER AMPLIFIER

$$\eta\% = \frac{P_{OUT}}{P_{DC}} \times 100$$

dimana

 $\eta\%$ - adalah efficiency.

Pout - Daya output amplifiers pada beban.

Pdc - Daya DC dari power supply.

Klasifikasi Amplifier

- Tipe dari amplifier ditentukan oleh daya
- Klas A

 Transistor beroperasi pada daerah aktive region
- Klas B

 Transistor beroperasi hanya pada setengah sinyal input positif

0

 $+V_p$

 $-V_p$

 $+V_p$

0

Input Signal

Input

Signal

Input

Signal

Class AB Sinyal Output

Pembagian klas pada Power Amplifier

Class	А	В	С	АВ
Conduction Angle	Arus kolektor (Ic) bekerja selama 360° pada siklus ac	Arus kolektor (Ic) bekerja selama 180° pada ½ siklus ac	Arus kolektor (Ic) bekerja kurang dari 90°	Arus kolektor (Ic) bekerja antara 180 - 360°
Posisi titik Q	Tengah garis beban	Pada sumbu X (pada posisi cut off)	Dibawah sumbu X	Berada antara sumbu X dan tengah garis beban
Efficiency	rendah, 25 - 30%	baik, 70 - 80%	Lebih tinggi 80%	Lebih baik dari class A tetapi dibawah class B 50 - 70%
Distorsi sinyal	Tidak ada jika pembiasannya tepat	Pada sumbu X Terdapat titik Crossover	besar	kecil

Klas A

1. Rangkaian Single-ended Amplifier

DC power

Power Gain:

$$A_{P} = \frac{P_{L}}{P_{in}}$$

Power:

$$P = \frac{V^2}{R}$$

$$A_{\rm P} = A_{\rm V}^2 \frac{R_{\rm in}}{R_{\rm L}}$$

a) Power DC

 Power dissipation dari amplifier tanpa sinyal input (V_{in}=0) yang berasal dari titik Q-point current & voltage:

$$P_{(DQ)} = V_{CEQ} I_{CQ}$$

- Arus pada power supply , $I_{CC} = I_{CQ}$ dan supply voltage $Vcc = 2V_{CEQ}$

$$P_{DC} = I_{CC}V_{CC} = 2I_{CQ}V_{CEQ}$$

b) Output power, (power pada beban /load)

$$V_{C(\max)} = I_{CQ}R_C$$
 ; Nilai rms : $0.707V_{C(\max)}$

$$I_{C(\mathrm{max})} = \frac{V_{CEQ}}{R_C}$$
 ; Nilai rms : $0.707 I_{C(\mathrm{max})}$

Maximum power output pada class A amp:

$$P_{out(max)} = (0.707I_C)(0.707V_C)$$

 $P_{out(max)} = 0.5I_{CQ}V_{CEQ}$

Efficiency

$$P_{DC} = I_{CC}V_{CC} = 2I_{CQ}V_{CEQ}$$

$$P_{out(max)} = 0.5I_{CQ}V_{CEQ}$$

•Maximum efficiency untuk class A amplifier

$$\% \eta(\text{max}) = \frac{P_{out}}{P_{DC}} = \frac{0.5I_{CQ}V_{CEQ}}{2I_{CQ}V_{CEQ}} = 0.25 = 25\%$$

Contoh

Hitung input power $[P_i(dc)]$, output power $[P_o(ac)]$, dan efficiency $[\eta]$ dari amplifier untuk tegangan input yang dihasilkan oleh arus basis sebesar 10mA peak.

$$I_{BQ} = \frac{V_{CC} - V_{BE}}{R_B} = \frac{20V - 0.7V}{1k\Omega} = 19.3mA$$

$$I_{CQ} = \beta I_B = 25(19.3mA) = 482.5mA \approx 0.48A$$

$$V_{CEQ} = V_{CC} - I_C R_C = 20V - (0.48A)(20\Omega) = 10.4V$$

$$I_{c(sat)} = \frac{V_{CC}}{R_C} = \frac{20V}{20\Omega} = 1000mA = 1A$$

$$V_{CE(cutoff)} = V_{CC} = 20V$$

$$I_{C(peak)} = \beta I_{b(peak)} = 25(10mA peak) = 250mA peak$$

$$P_{o(ac)} = \frac{I_{C(peak)}^2}{2} R_C = \frac{(250 \times 10^{-3} A)^2}{2} (20\Omega) = 0.625W$$

$$P_{i(dc)} = V_{CC}I_{CQ} = (20V)(0.48A) = 9.6W$$

$$\eta = \frac{P_{o(ac)}}{P_{i(dc)}} \times 100\% = 6.5\%$$

Operasi Klas B

- Untuk klas B, titik Q berada pada titik cutoff (I_{CQ}=0 and V_{CEQ}=V_{CE cutoff}) sehingga transistor tidak konduksi tanpa aplikasi sinyal ac
- Ketika sinyal ac diaplikasikan transistor menjadi konduksi pada setengah siklus sinyal ac

 Pada kondisi cutoff maka operasi transistor hanya menghasilkan setengah siklus ac dan tidak ada pergeseran fase saat konduksi

Klas B Push-Pull Amplifiers

- Untuk membuat amplifier satu gelombang penuh (Full cycle) dua amplifier klas B dihubungkan bersama dalam Konfigurasi push-pull.
- Setiap transistor konduksi setengah siklus untuk menjadikan output yang satu gelombang penuh (Full cycle)

Klas B Push-Pull Amplifiers

 Dua metode menggunakan push-pull amplifier

- i. Transformer Coupling
- ii. Complementary Symmetry Transistor

Transformer-Coupled Push-Pull Class B Amplifier

- Transformator center-tapped pada input menghasilkan polaritas yang berlawanan pada kedua input transistor
- Transformator center-tapped transformer pada output mengkombinasi dua sinyal setengah gelombang bersama- sama menjadi satu gelombang penuh

Efisiensi Klas B

Arus pada beban $I_{PL} = (N_p/N_S)I_P$

Dimana N_p/N_S = rasio antara 1/2 lititan primer dan lilitan sekunder pada trafo

Tegangan peak pada beban $V_{PL} = (N_p/N_S)V_P$

Karena teganan dan arus beban adalah sinusoidal, maka rata-rata daya yang sampai ke beban:

$$P_{L} = \frac{V_{PL}I_{PL}}{2} = \frac{(N_{p}/N_{S})V_{P}(N_{p}/N_{S})I_{P}}{2} = \frac{V_{P}I_{P}}{2}$$

Arus pada power supply merupakan gelombang dari full wave rectifier dengan nilai peak IP. Sehingga arus DC Atau rata-rata adalah : $2I_{p}/\pi$

Sehingga daya pada power supply adalah

$$P_{dc} = \frac{2I_p V_{CC}}{\pi}$$

Efisiensi:
$$\eta = \frac{P_L}{P_{dc}} x 100\%$$

$$\eta = \frac{P_L}{P_{dc}} \times 100\%
= \frac{(V_P I_P)/2}{(2I_P V_{CC})/\pi} = \frac{\pi V_P}{4V_{CC}}$$

Pada kondisi maksimum $V_p = V_{CC}$, sehingga

$$\eta(\text{max}) = \frac{\pi}{4} x 100\% = 78,5\%$$

→Nilai efisiensi pada klas B Push-pull lebih tinggi dibandingkan klas A

Daya Dissipasi:

$$P_d = \frac{2I_p V_{CC}}{\pi} - \frac{V_P I_P}{2}$$

Nilai Pd akan maksimum ketika Vp=2Vcc/ π =0,636 Vcc

Contoh:

Penguat klas B puss-pull yang dicoupled oleh transformator memiliki Vcc=20 V dan RL=10 Ω . Jumlah lilitan primer adalah 100 dan lilitan sekunder adalah 50. Asumsikan bahwa transformator memiliki Resistansi nol.

Tentukan:

- a. Daya maksimum yang dapat sampai ke beban
- b. Power dissipasi pada setiap transistor ketika daya maksimum sampai ke beban.
- Tentukan daya yang sampai ke beban dan daya pada setiap transistor ketika daya dissipasi transistor maksimum
- d. Efisiensi

Complementary Symmetry Transistors untuk Push-Pull Class B

 Metode Komplementari menggunakan transistor npn dan pnp yang akan konduksi pada siklus input berlawanan.

Kerugian of Class B Push-Pull Amplifiers

- Ketika input dc=0 V, kedua transistor off, sinyal input akan mencapai junction voltage (V_{BF}) sebelum transistor konduksi
- Sehingga, terdapat interval waktu antara +ve& -ve dari input

Kasus ini menimbulkan crossover distortion pada sinyal output

Kerugian Class B Push-Pull Amplifiers

Rangkaian Class B Amplifier Crossover Distortion

- Jika transistors Q1 dan Q2 off atau off pada saat yang bersamaan akan menghasilkan gap pada tegangan output.
- Masalah ini dapat diatasi menggunakan penguat klas AB .

Class AB Push-Pull Amplifiers

- Untuk menghindari adanya distortion pada amplifier klas B, transistors dapat langsung dibias diatas V_{BE}
- Amplifier jenis ini disebut sebagai Klas AB amplifier.
- Voltage divider dan diode digunakan disini.

Class AB Push-Pull Amplifiers

- Ketika karakteristik dioda D1 & D2 sesuai dengan transistor base-emitter junction, arus pada dioda dan arus pada transistor akan sama yang disebut current mirror.
- Asumsikan kedua diode dan transistor adalah identik :

$$>V_{D1}=V_{BE(Q1)}$$
 & $V_{D2}=V_{BE(Q2)}$

$$> I_D = I_{CQ}$$

$$I_{CQ} = \frac{V_{CC} - 0.7V}{R_1}$$
 $I_{c(sat)} = \frac{V_{CC}}{R_L}$ $V_{out(peak)} \cong V_{CEQ} \cong V_{CC}$

Contoh

Tentukan tegangan output ideal maximum peak dan arus yang ditunjukkan dibawah ini . (Jawab 20V, 1.25A)

Single-Supply Push-Pull Amplifiers

- Rangkaian beroperasi sama dengan operasi pada double supply.
- Tegangan output emitor diset menjadi Vcc/2

Contoh:

Tentukann tegangan output ideal maximum peak dan arus yang ditunjukkan dibawah ini . (Jawab 10V, 625 mA)

Maximum Output Power

$$\begin{split} P_{out} &= I_{out(rms)} V_{out(rms)} \\ I_{out(rms)} &= 0.707 I_{out(peak)} = 0.707 I_{c(sat)} \\ V_{out(rms)} &= 0.707 V_{out(peak)} = 0.707 V_{CEQ} \\ P_{out} &= 0.5 I_{c(sat)} V_{CEQ} \\ V_{CEQ} &= \frac{V_{CC}}{2} \\ P_{out} &= 0.25 I_{c(sat)} V_{CC} \end{split}$$

DC Input Power

$$P_{DC} = I_{CC}V_{CC}$$

$$I_{CC} = \frac{I_{c(sat)}}{\pi}$$

$$P_{DC} = \frac{I_{c(sat)}V_{CC}}{\pi}$$

Efficiency

efficiency,
$$\eta = \frac{P_{out}}{P_{DC}}$$

$$\eta_{\text{max}} = \frac{P_{out}}{P_{DC}}$$

$$= \frac{0.25I_{c(sat)}V_{CC}}{I_{c(sat)}V_{CC}/\pi} = 0.25\pi$$

$$\eta_{\text{max}} = 0.79 = 79\%$$

Input Resistance

$$egin{aligned} R_{in} &= eta_{ac} \left(r'_e + R_E
ight) \ R_E &= R_L \ R_{in} &= eta_{ac} \left(r'_e + R_L
ight) \end{aligned}$$

Contoh:

Tentukan maksimum daya output ac dan daya input dc dari amplifier berikut. Tentukan juga resistansi input jika ßac=50 dan re'=6 Ω (Jawab: 6.25W, 7.96W, 700 Ω)

Pararel Emitter Klas AB Push-Pull Amplifiers

Arus peak beban

$$I_{PL} = \frac{V_p}{R_L + R_E}$$

Daya ac pada beban : $P_L = \frac{I^2_{PL}R_L}{2} = \frac{V^2_{p}R_L}{2(R_L + R_E)^2}$

Rata-rata arus pada supply : $I_{dc}(avg) = \frac{V_p}{\pi(R_L + R_F)}$

Rata-rata daya dari supply : $P_{dc} = V_{CC}I_{dc}(avg) = \frac{V_{CC}V_P}{\pi(R_L + R_E)}$

Effisiensi

$$\eta = \frac{P_L}{P_{dc}} x 100\%$$

$$= \frac{\pi}{2} \left(\frac{R_L}{R_L + R_E} \right) \left(\frac{V_p}{V_{CC}} \right) x 100\%$$

Efisiensi maksimum ketika Vp=Vcc/2

$$\eta(\text{max}) = \frac{\pi}{2} \left(\frac{R_L}{R_L + R_E} \right) \left(\frac{V_{CC}/2}{V_{CC}} \right) x 100\%$$
$$= \frac{\pi}{4} \left(\frac{R_L}{R_L + R_E} \right) x 100\%$$

Effisiensi akan bertambah jika RE bertambah. Jika RE =0, efisiensi maksimum yang muncul adalah 78,5 %