Universidade de Brasília – Departamento de Engenharia Elétrica

Disciplina: DISPOSITIVOS E CIRCUITOS ELETRÔNICOS, período 2015.1

Professor: Antônio Padilha L. Bó

Plano de Ensino

1. Metodologia de ensino

O curso é composto de aulas teóricas e em laboratório. Este plano de ensino trata sobretudo das aulas teóricas, que serão ministradas em períodos de 1h50, sem intervalo.

Aulas teóricas - Sala AT-19

Segundas e quartas, 14:00 - 15:50.

Material relacionado ao curso, includindo slides de aulas e listas de exercícios, está disponível no *moodle* da disciplina: http://www.ead.unb.br/aprender2013/course/view.php?id=218. O acesso ao moodle é feito por meio da senha dce2015-1.

2. Ementa

Tópicos principais:

- Introdução à eletrônica e ao projeto de circuitos eletrônicos;
- Diodos de junção;
- Transistores de junção bipolar;
- Transistores de efeito de campo;
- Amplificadores operacionais.

3. Laboratório

As atividades de laboratório serão organizadas pela Profa. Flávia Maria Guerra de Sousa Aranha Oliveira.

4. Avaliação

Serão aplicadas duas (02) provas (PT1, PT2). A avaliação será individual, sem consulta a nenhum outro documento (impresso ou digital) além da prova. O uso de calculadoras com funções básicas (sem comunicação com outros dispositivos) será permitido. O aluno que perder uma prova poderá fazer a prova substitutiva ao final do semestre. O assunto de cada prova é o acumulado desde o início do curso.

Além das provas teóricas, comporão a M_T (média obtida na parte teórica) as notas obtidas em listas de exercícios e simulações realizadas ao longo do curso. M_T será dada por

$$M_T = 0.85 M_P + 0.15 M_X$$
,

em que M_P é a média aritmética das provas teóricas. O montante M_X diz respeito à pontuação adicional, obtida em listas de exercício entregues até o início de cada prova teórica (50%) e atividades extras (50%), como trabalhos em sala e outros.

Universidade de Brasília - Departamento de Engenharia Elétrica

Disciplina: DISPOSITIVOS E CIRCUITOS ELETRÔNICOS, período 2015.1

Professor: Antônio Padilha L. Bó

As provas serão aplicadas nas seguintes datas:

Avaliação	Data prevista
P_{TI}	06/05/2015
P_{T2}	22/06/2015
P_{Tsubs}	29/06/2015

O cálculo da média numérica final da disciplina, M_F dependerá então de duas médias: M_T e M_L . Para alcançar aprovação no curso, o aluno necessita obter aprovação em ambas médias M_T e M_L . O processo de avaliação das aulas de laboratório, que conferirá uma nota M_L , será apresentado pela professora responsável pelas aulas de laboratório.

Juntamente com $\,M_T\,$ e $\,M_L\,$, um outro parâmetro que é considerado no cálculo da média final é o percentual de faltas ($\,P_F\,$). $\,P_F\,$ é dado pelo número de aulas com faltas registradas dividido pelo número de aulas ministradas.

O cálculo da média final $\,M_{\scriptscriptstyle F}\,\,$ e a aprovação seguem as seguintes regras:

- 1. Se $M_T \geqslant 5$ e $M_L \geqslant 5$, o aluno estará aprovado. A menção final será determinada a partir de $M_F = 0.7\,M_T + 0.3\,M_L$, conforme as normas da Universidade.
- 2. Se M_T <5 ou M_L <5 , o aluno será considerado reprovado por não ter obtido desempenho satisfatório. Nesse caso, a menção final também será determinada a partir de M_F =0.7 M_T +0.3 M_L , conforme as normas da Universidade, a não ser que M_F \geqslant 5 , situação na qual a menção final será MI.
- 3. Se $P_F > 0.25$, então o aluno será considerado reprovado por falta. A menção final será SR.

5. Bibliografia

Embora um livro texto seja seguido, outras referências poderão ser usadas na preparação das aulas. Eventualmente, para aquele conteúdo que não estiver sendo abordado nos livros citados aqui, o instrutor deverá disponibilizar uma outra fonte (i.e., manuais de componentes, artigos científicos, etc).

Bibliografia principal

- [1] R. L. Boylestad e L. Nashelsky, "Dispositivos Eletrônicos e Teoria de Circuitos", 11ª edição, Pearson Education, 2013
- [2] A. S. Sedra e K. Smith, "Microeletrônica", 5ª edição, Makron Books, 2007.
- [3] A. S. Sedra e K. Smith, "Microeletrônica", 4ª edição, Makron Books, 1999.

Bibliografia complementar

- [4] P. Horowitz e W. Hill, "The art of electronics", 2nd edition, Cambridge University Press, 1989.
- [5] T. L. Floyd, "Electronic Devices", 7th edition, Pearson Prentice Hall, 2005.