CLASSIFICATI

EXAMPLES

- Binary Classification
 - o Is email spam or not?
 - Is credit card transaction fraudulent?
 - Is a user male or female?
- Multi-level classification
 - Safety standard of a car.
 - Activity is associated with acceleration
 - What kind of flower is shown in a picture

THE CLASSIFICATION

- Given
 - $\circ \; X = (X_1, \dots, X_p)^T$ random *input* variables
 - Output variable G, taking values in set \mathcal{G} with $1, 2, \ldots, K$.
- Task
 - \circ Given a training set $(g_i, x_i), i = 1, \dots, N$
 - \circ Find a good approximation for $G(x)=\mathrm{E}(G)$
 - \circ Usually among the lines of maximizing $\sum_i \log \theta$ where θ are model parameters.

DECISION BOUND

Decision boundaries are hypersuri

$$\{x\,|{
m Pr}(G=k|X=x)={
m Pr}(G=$$

LINEAR CLASSIFIC

The classification problem is linear if the decision two classes k, l,

$$\{x\,|\mathrm{Pr}(G=k|X=x)=\mathrm{Pr}(G=x)\}$$

are *linear* in x.

DISCRIMINANT FUI

- Popular approach.
- ullet Define discriminant functions $\delta_k(x)$
- ullet Classify to $G(x) = \operatorname{argmax}_k \delta_k(x)$
 - \circ Could e.g. model $\Pr(G=k|X|)$
- Decision boundaries are *linear* in x
- ullet The same holds true for $\Pr(G=k)$

EXAMPLE: MULTIN NORMAL

$$f(x) = rac{\expig(-rac{1}{2}(x-\mu_l)^T\Sigma^{-1}ig)}{\sqrt{(2\pi)^d|\Sigma|}}$$

DENSITIES

probability density contour li

LINEAR BOUND

ACTUALLY.

... it's enough to have

$$\{x \mid f(\Pr[G=k|X=x]) = f(\Pr[G=k|X=x]) = f(\Pr[G=k|X=x])$$

linear in x / a hyperplane / affine space for

EXAMPLE

$$\logigg(rac{\Pr[G=k|X=x]}{\Pr[G=l|X=x]}igg)= heta$$

VARIABLES

- ullet Of course we can still have $X_i=X_j^2$ or X_j^2
- Decision boundaries can still be seen as li

CATEGORICAL INP

- Naïve approach: Convert to numeric.
 - o Generally bad idea.
 - Defining a metric on categoricals tricky.
- Usual approach: One-hot encoding.
 - \circ For a K-level categorical, introduce K-1

$$x_i = \left\{ egin{array}{ll} 1 & ext{if } g_i = \ 0 & ext{else} \end{array}
ight.$$

 \circ Effect of k-th variable is the effect of having

TRAINING DA

- Need to make sure all classes are re
- What if one (or more) classes are over
 - Oifferent priors?
 - o Data collection artifact?
 - Re-balance training data?

ORDERED TAR

- What if we have ordered cate
- Sometimes a bit of a moving

RED WINE QUA

CATEGORICAL OI

- Pros
 - Don't have to think (too much) about metric.
 - Don't have to think (too much) about subject
- Cons
 - Using e.g. linear regression, you can answer
 - How many quality points per additional per
 - Information about order is lost.
 - Sometimes gives less variance.

METHODS

LINEAR REGRES

ullet Write an indicator variable Y=(

$$\circ \; Y_l = \left\{ egin{array}{ll} 1 & ext{if } G = l \,, \ 0 & ext{else.} \end{array}
ight.$$

• Fit a linear model

$$\hat{f}_l = \hat{ heta}_{0,l} + \hat{ heta}_l x^T$$
.

to each Y_l

- ullet Classify $\hat{G}(x) = \operatorname{argmax}_{k \in \mathcal{G}} \hat{f}_k$
- Can have disastrous results.

LINEAR DISCRIMINAN

Use Bayes' theorem

$$egin{aligned} \Pr(G = l | X = x) &= rac{\Pr(X = x | G = x)}{\Pr(X)} \ &= rac{f_l(x) \pi_l}{\sum_m f_m(x) \pi_m} \end{aligned}$$

HOW TO MODEL TH DISTRIBUTION

The choice of f_l determines whether LD

LDA

$$f_l(x) \propto \expigg(-rac{1}{2}(x-\mu_l)^T \Sigma^{-1}$$

QDA

$$f_l(x) \propto \expigg(-rac{1}{2}(x-\mu_l)^T \Sigma_l^{-1}$$

COMPUTING L

$$egin{aligned} \hat{\pi}_l &= rac{N_l}{N} \ \hat{\mu}_l &= rac{1}{N_l} \sum_{i,g_i = l} x_i \ \hat{\Sigma} &= rac{1}{N-K} \sum_{l} \sum_{i,g_i = l} (x_i - \hat{\mu}_l) \ \hat{\Sigma}_l &= rac{1}{N_l - 1} \sum_{i,g_i = l} (x_i - \hat{\mu}_l) (x_i - \hat{\mu}_l) \end{aligned}$$

DISCRIMINANT FUNCTION

One can now use

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - rac{1}{2} \mu_k^T \Sigma^{-1} \mu_k$$

or

$$\delta_k(x) = -rac{1}{2} \mathrm{log} \left| \Sigma_k
ight| - rac{1}{2} (x - \mu_k)^T \Sigma_k^-$$

to classify

$$G(x) = \operatorname{argmax}_k \, \delta_k(x)$$

SOME WORDS O

- ullet Using Σ_l does **not** yield linear decision bound
- ullet What if we have one class l, such that $X_i=0$
- Won't be able to compute Σ_l^{-1} !
- Has many more parameters
 - \circ LDA (K-1)(p+1)
 - \circ QDA (K-1)(p(p+3)//2+1)

REGULARIZED DISC ANALYSIS

In some cases (one example: incomplete rank of use

$$\hat{\Sigma}_k(lpha) = lpha \hat{\Sigma}_k + (1-lpha) \hat{\Sigma}, \quad 0$$

The regularization

$$\hat{\Sigma}(\gamma) = \gamma \hat{\Sigma} + (1 - \gamma)\sigma$$

is also sometimes used

WHY SHOULD YOU PROS

- Simple.
- Fast.
- Powerful.
- Stable.

CONS

- No confidence intervals.
- More work to get predictor im

LOGISTIC REGRE

Model posteriors via linear func

$$egin{split} \logigg(rac{\Pr[G=1|X=x]}{\Pr[G=K|X=x]}igg) &= heta_1 \ \logigg(rac{\Pr[G=2|X=x]}{\Pr[G=K|X=x]}igg) &= heta_2 \end{split}$$

$$\logigg(rac{\Pr[G=K-1|X=x]}{\Pr[G=K|X=x]}igg)= heta_0$$

LOGISTIC REGRE

This gives us

$$ext{Pr}(G = k | X = x) = rac{\expig(heta_{k0} + heta_k^T xig)}{1 + \sum_{l=1}^{K-1} \expig(heta_{l0} + heta_l^T xig)} \ ext{Pr}(G = K | X = x) = rac{1}{1 + \sum_{l=1}^{K-1} \expig(heta_{l0} + heta_l^T xig)}$$

HOW TO EXTRACT THE PA

Maximum likelihood estimation

$$l(heta) = \sum_{i=1}^N \log \Pr(G = g_i | X = 0)$$

Find θ using

$$heta = rgmax_{ heta} l(heta)$$

via e.g. the Newton-Rhapson

$$heta_{ ext{new}} = heta_{ ext{old}} - \left(rac{\partial^2 l(heta)}{\partial heta \partial heta^T}
ight)^{-1}$$

EVALUATION OF E CLASSIFIER

- True positive (TP)
 - Predicted 1, actually
- True negative (TN)
 - Predicted 0, actually
- False positive (FP)
 - Predicted 1, actually
- False negative (FN)
 - Predicted 0, actually

OBJECTIVE

Sensitivity (true positive rate, hit rate

$$\circ TPR = TP/P = TP/(TP + 1)$$

- Want to optimize e.g. for tests for
- \circ Similarly: FPR=FP/N=FR
- Specicifity (true negative rate)

$$\circ \ TNR = TN/N = TN/(TN - TN)$$

- Want to optimize e.g. in credit ris
- Precision (positive predictive value)

$$\circ \ PPV = TP/(TP+FP)$$

Want to optimize this e.g. for cred

ROC

The receiver operating characteristic plot

AUC

The area under the (ROC) curve (AUC) is a scalar model quality (for some value o