FEEL THE BERNOULLI

Jacob Helwig, Jack Si, Xinyu Xie

TABLE OF CONTENTS

01	INTRODUCTION
	Background and motive

- O2 GOALS

 Model capabilities and defining questions
- O3 METHODS

 Procedure and methods
- O4 RESULTS

 Results and implications

- Power providers and operators rely on consumption predictions to balance electricity supply and demand
- Accurate predictions act as the foundation for safe and reliable operation on the power grid
- Accurate predictions can help policymakers cut costs and prepare for future events

GOALS

PREDICTIVE MODEL
USING WEATHER
AND WATER DATA
Primary

An analysis of solar usage

Secondary

DATA DESCRIPTION

The mean daily electricity usage is **28.79** kWh per household.

METHODOLOGY

Predictive Modelling

- LASSO regression for feature selection
- Principal Component Analysis (PCA) for dimension reduction
- K-Nearest Neighbours (KNN)
- Support Vector Machine (SVM)

Unsupervised Data Exploration

Principal Component Analysis (PCA) for relation extraction

DATA EXPLORATION IN DEPTH

 Households use less electricity during winter

 In January, 83.8% households used at most 1 kwh an hour

MODEL COMPARISON:

Training Data	Model	Mean Absolute Error (MAE)	
January	Average over all household's electricity usage	0.36635	
October - March (winter)	Lasso feature selection + principal component analysis (PC = 2) + KNN (K = 10)	0.34943	
January	Lasso feature selection + principal component analysis (PC = 4) + KNN (K = 5)	0.33658	
January	Lasso feature selection + principal component analysis (PC = 4) + support vector regression (kernel = 'rbf', C = 1000, gamma = 1)	0.29815	

LOWER ENERGY DEMAND CORRESPONDS TO ...

- Pressure level between 3020 to 3030
- Wind bearing between 200 300
- Lower humidity

- When temperature is too low → power outage
- When the weather is good → solar energy compensates

PRINCIPAL COMPONENT ANALYSIS

	PC1	PC2	PC3	PC4
cloud cover	0.516	-0.123	0.291	-0.603
humidity	0.588	-0.203	-0.130	-0.165
apparent temperature	0.158	0.712	0.186	0.034
pressure	-0.389	-0.571	0.195	-0.196
wind bearing	-0.084	0.094	-0.881	-0.376
hourly solar kWh	-0.452	0.319	0.223	-0.654

This figure displays hourly solar kWh aggregated by month and averaged

Hourly solar kWh aggregated by hour of day and averaged; summer (April-September) versus winter (October-March)

SUMMARY

ADAPTIVE
SUPPORT VECTOR
MACHINE MODEL
FOR PREDICTION

SOLAR ENERGY
GENERATION IS
DEPENDENT ON
SEASONALITY

FUTURE DIRECTIONS

ADAPTIVE MODEL
TO EACH MONTH

BEHAVIORAL STUDIES OF SOLAR CONSUMERS ELECTRICITY USAGE AMONG SOLAR CONSUMERS AND NONCONSUMERS

REFERENCES

- "Steinbuks, Jevgenijs; de Wit, Joeri; Kochnakyan, Artur; Foster, Vivien. 2017.
 Forecasting Electricity Demand: An Aid for Practitioners. Live Wire; 2017/73.
 World Bank, Washington, DC. © World Bank.
 https://openknowledge.worldbank.org/handle/10986/26189 License: CC BY 3.0 IGO."
- Gately, D, (1980), Individual Discount Rates and the Purchase and Utilization of Energy Using Durables: Comment, Bell Journal of Economics, 11, issue 1, p. 373-374
- Wolske, Kimberly & Stern, Paul & Dietz, Thomas. (2017). Explaining interest in adopting residential solar photovoltaic systems in the United States:
 Toward an integration of behavioral theories. Energy Research & Social Science. 25. 134-151. 10.1016/j.erss.2016.12.023.
- Sigrin, Ben. Going Solar. Consumer Investment Behavior for Residential Photovoltaic Installations. Sustainability on the UT Campus: A Symposium.

REFERENCES

- Tso, Geoffrey & Yau, Kelvin. (2007). Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy. 32. 1761-1768. 10.1016/j.energy.2006.11.010.
- Shapi, Mel & Ramli, Nor Azuana & Awalin, Lilik. (2020). Energy Consumption Prediction by using Machine Learning for Smart Building: Case Study in Malaysia. Developments in the Built Environment. 5. 100037. 10.1016/j.dibe.2020.100037.
- Phd, Patrick & Abd Rahman, Shapiee & Labadin, J. (2015). Predicting Electricity Consumption: A Comparative Analysis of the Accuracy of Various Computational Techniques. 10.1109/CITA.2015.7349819.
- Kalimoldayev, Maksat & Drozdenko, Aleksey & Koplyk, Igor & Marinich, T. & Abdildayeva, Assel & Zhukabayeva, Tamara. (2020). Analysis of modern approaches for the prediction of electric energy consumption. Open Engineering. 10. 350-361. 10.1515/eng-2020-0028.