

制約付きナップサック問題に対する BDD-Constrained Searchの省メモリ化

竹内文登¹、安田宜仁²、西野正彬²、湊真一¹(北大¹、NTT²)

本発表の概要

- BDD-Constrained Search(BCS) [1] は「論理制約を伴う組合せ最適化問題」 を解く
- 実験的にBCSは空間計算量がネックでスケーラビリティが低かった
- 提案法はBCSと同じ時間計算量で空間計算量を削減
- 実験より、2倍を超えない計算時間で大幅な省メモリ化に成功した
- ・これまでBCSでは解けなかったサイズの問題も解けるようになった

制約付きナップサック問題

- 入力
- N個のアイテム(価値 v_i 、重さ w_i)
- ナップサックの容量 C
- 論理関数 f(x)
- 出力
 - 価値 v_i の和が最大となるアイテムの組合せx
- ただし、重さ w_i の和がCを超えない
- $\dot{5}$ $\dot{5}$ $\dot{5}$ $\dot{5}$ $\dot{5}$ $\dot{5}$ $\dot{5}$ $\dot{5}$ $\dot{5}$ $\dot{5}$

Maximize: $\sum_{i=1}^{N} x_i v_i$

s.t. $\sum_{i=1}^{n} x_i w_i \leq C$

f(x) = 1

 $x \in \{0, 1\}^N$

BDD-Constrained Search (BCS) [1] とは?

+ 論理制約

- 対象とする問題:「論理制約を伴う組合せ最適化」
- ナップサック問題
- 編集距離計算
 - ビタビ経路探索問題
- 最長共通部分列問題 etc.
- 取長共進部分列问題 etc
- · 入力
 - 動的計画法により得られるDAG(有向非巡回グラフ)
 - 論理制約を表現するBinary decision diagram (BDD)

価値	重さ	N,W	0	1	2	3	4	5
-	-	-	o/					
3	2	1			, 			
4	2	2	· o /		4		7	
6	3	3	Ŏ		4	6	7	10

- アルゴリズム
- DAG上の各頂点を幅優先的に操作
 - 各頂点で(以降の論理制約、その頂点までの最短路長)のペアを記憶
 - 「以降の論理制約」が等しいペアが存在する場合は、「その頂点までの 最短路長」が小さいペアのみを記憶
 - 経路復元のため、更新があるときは前のペア状態も記憶
- バックトラックで経路を復元し最短路を得る

価値	重さ	N,W	0	1	2	3	4	5
-	-	-	$(n_0, 0)$					
3	2	1	$(n_1, 0)$		$(n_2,3)$			
4	3	2	(1,0)		$(n_3, 3)$		(T, 7)	
6	5	3			(工, 3) (T, 4)		(T, 7)	(T, 10)

- ・ 時間計算量:O(E imes W) $(E:\mathsf{DAG}$ の辺数、 $W:\mathsf{BDD}$ の幅)
- 空間計算量: $O(E \times W)$
- ・ ナップサック問題の場合は、時間、空間計算量ともに $O(N \times C \times W)$

ナップサック問題に対する省メモリDP解法 [2]

- 省メモリ化の基本的なアイディア
 - DPの遷移に必要な**前の行の情報以外を忘れる**(スコア計算のみ可能)
- 経路復元のためのアルゴリズム
- 最適経路が通る中間頂点を求める
- 始点から中間頂点に対応するナップサック問題を再帰的に解く
- 中間頂点から終点に対応するナップサック問題を再帰的に解く
- 結果をマージ、解を出力

N,W	0	1	2	3	4	5	6	7	8	9	10
-											
1											
2											
3											
4	0		4	4	7	8/		11	10	13	14
5	0		4	4	→ 7	8	8	11	10	13 [†]	14 [†]

- 時間計算量
 - $NC + \frac{NC}{2} + \frac{NC}{4} + ... + \frac{NC}{2\log N} = O(N \times C)$
- 空間計算量
- 常に2行しか持たないのでO(C)

制約付きナップサック問題に対する省メモリBCS

- 制約ナップサック問題に対するBCSに、[2]のアイディアを利用
 - 「中間地点のペアを求める」を再帰的に解く
 - 各行ではO(C×W)個の要素を記憶
- 時間計算量
 - $NCW + \frac{NCW}{2} + \frac{NCW}{4} + \dots + \frac{NCW}{2^{\log N}} = O(N \times C \times W)$
- 空間計算量
 - 常に2行しか持たないのでO(C×W)
- BCSと同じ時間計算量でアイテム数に依存しない空間計算量を実現

<u>実験</u>

- 目的:BCSと提案法の使用メモリと計算時間の比較
- アイテム数:1000
 - 価値、重さ:[1,100] ランダム
- 制約:排他制約(2つのアイテムを同時に含んではいけない) 10ペア
- ナップサック容量:100,200,500,1000,2000,5000,10000,20000,50000
- 実験環境:intel Core i5、メモリ32G(Memory Out=30G)

		BCS		省メモリ版BCS			
容量C	メモリ(KB)	時間(s)	#MemOut	メモリ(KB)	時間(s)	#MemOut	
100	42,048	0.045	0	1,740	0.045	0	
200	131,938	0.210	0	2,446	0.175	0	
500	266,028	0.415	0	3,512	0.495	0	
1,000	885,800	1.810	0	9,452	1.810	0	
2,000	2,544,116	5.605	0	29,648	7.055	0	
5,000	7,098,258	15.174	1	70,408	18.965	0	
10,000	12,229,797	26.533	5	126,388	34.633	0	
20,000	17,089,428	34.646	28	157,593	48.682	0	
50,000	21,533,188	36.279	57	181,317	62.501	0	

参考文献

- [1] Nishino, M.; Yasuda, N.; Minato, S.; and Nagata, BDD-constrained search: A unified approach to constrained shortest path problems. 2015, In *Proc. of AAAI*, 1219–1225.
- [2] Pferschy, U. Dynamic Programming Revisited: Improving Knapsack Algorithms. 1999. In Journal of Computing, vol. 63, Issue 4, 419–430
- [3] Hirschberg, D. S. A Linear Space Algorithm for Computing Maximal Common Subsequences. 1975. In Journal of Commun. ACM, vol. 18, 341–343