Lecture 10

Relational Algebra

Week 5

Overview

- Relational algebra as a query language
- Selection, projection, cross product
- Union / intersection / set difference
- Attribute renaming
- Join
 - join
 - equijoin and natural join
- Division
- Simplifying relational algebra expressions

Relational algebra as a query language

- *Objects*: relations (sets of tuples)
- Operations on relations result relations
- Relational algebra expressions can be evaluated, and the result is always a relation
- We can assign the result to a temporary relation

Selection

C R
select tuples from relation R
where each tuple satisfies condition C

Evaluates to a relation which is a subset of Employee, those employees who earn >70,000

Employee

 $\sigma_{\text{salary} > 70000}$ Employee

Properties of selection

• number of tuples:

$$|\sigma_{\rm C} R| \le |R|$$

• number of attributes:

degree
$$(\sigma_C R) = \text{degree}(R)$$

commutative

$$\sigma_{\rm C} \ \sigma_{\rm D} R = \sigma_{\rm D} \ \sigma_{\rm C} R \ (= \sigma_{\rm C and D} R)$$

Projection

 $\Pi_{L}R$

take a subset of the attributes of a relation R, where $L \subseteq R$; and then eliminate duplicates

Example: $\Pi_{\text{name, salary}}$ Employee

Evaluates to a relation with Employee names and salaries in it

Employee

$\Pi_{\text{name, salary}}$ Employee

ssn	name	salary	name	salary
				Sarary
a	John	20000	Iohn	20000
b	Mary	20000		20000
С	John	20000		20000
d	Mary	20000		20090
			 Iviaiy	2000
'	'			

Employee

$\Pi_{\text{name, salary}}$ Employee

Properties of projection

• number of tuples:

$$|\prod_{L} R| \le |R|$$

• number of attributes:

degree
$$(\Pi_L R) \leq \text{degree}(R)$$

• not commutative

$$\Pi_L \Pi_S R \neq \Pi_S \Pi_L R$$
 (Note: $L \subseteq S$, but $S \not\subseteq L$)

•
$$\Pi_L \Pi_S R = \Pi_L R$$
 if $L \subseteq S$

Note on constraint notation

• Remember the notation we used to describe foreign key constraints, e.g.

$$E(\underline{\mathbf{k}},\mathbf{c})$$

$$A(\underline{k},a)$$
 fk: k is k in E

meaning that every k-value in A must be an actual k-value in E.

• We could have used relational algebra and logic to represent this constraint, i.e.

could have been written as

$$\Pi_k A \subseteq \Pi_k E$$

Set operations

 $A \cup B$ Union

A \cap B Intersection

A \ B Difference

A × B Cartesian product

For union, intersection, and difference relations A and B must be *union compatible*:

- degree (A) = degree (B) operands have the same degree
- domain (A_i) = domain (B_i)
 (i.e. corresponding attributes must have the same value domain)

13

Example

"Employees who work for department 5 and have salary >70000"

$$\sigma_{\text{DNO}=5}$$
 Employee $\cap \sigma_{\text{SALARY}>70000}$ Employee

Properties of union, intersection, difference

• number of tuples in intersection:

$$|A \cap B| \leq Min(|A|, |B|)$$

• number of tuples in union:

$$|A \cup B| \le |A| + |B|$$

• number of tuples in difference:

$$|A \setminus B| \le |A|$$

• degree (A op B) = degree (A) = degree (B)

Note that not all operations are necessary:

$$A \cap B = A \setminus (A \setminus B)$$

• I.e. \cup and \setminus is enough (or \cap and \setminus)

Cartesian product

$$A \times B$$

concatenate the attributes of all tuples in A and B in *every possible way*

Properties of cartesian product

number of tuples in product:

$$|A \times B| = |A| * |B|$$

I.e. every possible combination is produced

• degree $(A \times B) = degree(A) + degree(B)$

Unary and binary operations

• Unary operations bind more strongly than binary ones, hence paratheses can be omitted

$$(\sigma_{dno=5} \text{ Employee}) \cap (\sigma_{salary>70000} R) = \sigma_{dno=5} \text{ Employee} \cap \sigma_{salary>70000} R$$

Attribute renaming

• Sometimes we need to store the result of an expression and give the attributes a different name

Result(sssn, sname)
$$\leftarrow \Pi_{ssn, name}$$
 Employee

The end