

План

- RedHat: нумерация групп и закономерности в целевом признаке
- оценка эффективности менеджера: изменение распределений признаков во времени
- «причина-следствие»: операции над признаками
- чёрные дыры: удобные визуализации
- check-in: привязка к географии
- Ascott Group: группы временных рядов
- Ticketland ML Contest: просто иллюстрация результатов поиска
- Ozon: бесполезные данные
- Сбербанк: гендерные закономерности

по горизонтали – разные группы, по вертикали – дни (подряд), салатовый цвет – нет взаимодействия, красный / синий – класс 1 / 0
Что за подозрительная полоса?

Группы упорядочены так:

```
group_date2.columns[:10]

'group 1000', 'group 10006', 'group 1001',
'group 1002', 'group 10021', 'group 10025',
'group 10032', 'group 10036', 'group 1004',
...
```

это лексикографический порядок!

Теперь сделаем в обычном порядке...

```
data_train.group_1 = data_train.group_1.map(lambda x: int(x[6:]))
```


теперь понятнее... группы, видимо, идут в порядке появления последние – которые добавлялись в дни сбора выборки

Искусство визуализации, часть 4: кейсы

Каждый график – отдельная группа: как ведут себя её представители

Каждый график – отдельная группа: как ведут себя её представители

что видим?

целевой признак кусочно-константный

Причём, максимум 2 «перепада»

Обучение и контроль распределены случайно...

Нет такого...

Подобные закономерности сложно увидеть в таблице...

	people_id	activity_id	date_x	activity_category	char_1_x	char_2_x	char_3_x	char_4_x	char_5_x	char_6_x	char_7_x	char_8_x	cha
189103	ppl_99966	act2_1740163	2022- 09-23	type 2	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.9
189103	ppl_99966	act2_1882139	2022- 09-24	type 4	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.9
189103	ppl_99966	act2_3544055	2022- 09-27	type 2	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.9
189103	ppl_99966	act2_4300471	2022- 09-24	type 2	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.9
189103	ppl_99966	act2_4353827	2022- 09-24	type 2	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.9
189103	ppl_99966	act2_4367217	2022- 09-23	type 4	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.9
189103	ppl_99966	act2_4459718	2022- 09-24	type 4	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.999	-1.9

	people_id	date_x	activity_category	outcome
189103	ppl_99966	2022-09-23	type 2	1
189103	ppl_99966	2022-09-24	type 4	0
189103	ppl_99966	2022-09-27	type 2	0
189103	ppl_99966	2022-09-24	type 2	0
189103	ppl_99966	2022-09-24	type 2	0
189103	ppl_99966	2022-09-23	type 4	1
189103	ppl_99966	2022-09-24	type 4	0

убрали лишние столбцы

А так?

	people_id	date_x	activity_category	outcome
189103	ppl_99966	2022-09-23	type 2	1
189103	ppl_99966	2022-09-23	type 4	1
189103	ppl_99966	2022-09-24	type 4	0
189103	ppl_99966	2022-09-24	type 2	0
189103	ppl_99966	2022-09-24	type 2	0
189103	ppl_99966	2022-09-24	type 4	0
189103	ppl_99966	2022-09-27	type 2	0

сделали сортировку по времени

А так?

Полезные операции: группировка и сортировка!

нормировка и tiedrank

Дано: описание менеджера и клиента Целевой признак: Была ли между ними успешная сделка

В обучении: ~9500 Записей, ~22 признака

В тесте: ~4000 записей

Важно: обучение/тест разбиты по времени

Важно: почти все признаки не вещественные (время, факторы)

Функционал качества: AUC ROC

Смотрим данные – делаем гипотезы

	ID	Office_PIN	Application_Receipt_Date	Applicant_City_PIN	Applicant_Gender	Applicant_BirthDate	Applicant_Marital_Status
0	FIN1000001	842001	2007-04-16	844120	М	1971-12-19	М
1	FIN1000002	842001	2007-04-16	844111	М	1983-02-17	S
2	FIN1000003	800001	2007-04-16	844101	М	1966-01-16	М

- есть благоприятные дни для сделки?
- на сделку влияют пол менеджера/клиента?
 - посмотреть их разницу в возрасте
- посмотреть успешность/загруженность/опыт менеждера

Признак «время сделки» по горизонтали

Что интересно?

Если делать контроль CV – качество 0.65 AUC ROC Если контроль – последний кусок обучения – 0.55 AUC ROC Теперь ясно почему!

Распределение в разных кусках

Искусство визуализации, часть 4: кейсы

ПОЛ

семейное положение

род занятий

Изменение распределений признаков во времени (сделан jitter)

{nan:0, 'Self Employed':1, 'Business':2, 'Salaried':3, 'Others':4, 'Student':5}

Интересный приём:

по train1 кодировать признаки, на train2 обучать...

Визуализация данных - задача «причина-следствие»

Метод: «ручная деформация пространств»

алгебраические выражения над признаками

Визуализация данных - задача «причина-следствие»

А теперь надо «уголками откусывать классы»:

Какие функции «откусывают уголками»

$$z = \min(|y|, |x|)$$

Визуализация данных – задача «причина-следствие»

И здесь мы видим разделяемость синих и голубых!

Визуализация данных – задача про чёрные дыры

Какая связь между рисунками?

Визуализация данных – задача про чёрные дыры

Ответ: «Плотность» и её сглаженный аналог.

Средний профиль плотности(красный):

и методы его приближения

Визуализация данных – задача про чёрные дыры

Трудности большого числа дыр

Главное – выбор эффективной визуализации – переход к линиям уровня

Визуализация данных – по какому принципу упорядочены данные?

	merchant_id	latitude	longitude	transaction_time	record_time
5824	28477	0.000000	0.000000	2017-01-15 13:02:27	2017-01-15 13:02:20
5825	28477	0.000000	0.000000	2017-01-15 15:44:29	2017-01-15 15:54:15
5826	28477	0.000000	0.00000	2017-01-15 21:33:27	2017-01-15 21:38:17
5827	28477	0.000000	0.000000	2017-01-15 21:33:27	2017-01-15 21:39:21
5828	28477	55.211551	35.773620	2017-01-15 12:02:51	2017-01-15 11:59:56
5829	28477	52.593124	39.561907	2017-01-15 15:48:41	2017-01-15 15:49:49
5830	28477	51.178900	-1.826400	2017-01-15 17:05:51	2017-01-15 17:01:15
5831	28477	55.697067	37.553810	2017-01-15 16:14:25	2017-01-15 16:19:34
5832	28477	51.716180	39.175545	2017-01-15 17:08:23	2017-01-15 17:10:35
5833	28477	55.612360	37.607125	2017-01-15 14:00:34	2017-01-15 14:00:17
5834	28477	51.717860	39.177682	2017-01-15 16:00:21	2017-01-15 16:07:10
5835	28477	55.750347	37.623851	2017-01-15 18:11:40	2017-01-15 18:03:50
5836	28477	51.712188	39.174119	2017-01-15 18:34:36	2017-01-15 18:40:54
5837	28477	55.697067	37.553810	2017-01-15 22:14:20	2017-01-15 22:16:25
5838	28477	51.717669	39.178541	2017-01-15 20:30:28	2017-01-15 20:28:13
5839	28477	51.717268	39.177014	2017-01-15 22:57:16	2017-01-15 22:52:35
5840	28477	51.717867	39.177927	2017-01-15 19:34:17	2017-01-15 19:41:22
5841	28477	0.000000	0.000000	2017-01-15 15:44:29	2017-01-15 15:52:38
5842	28477	51.655555	39.153889	2017-01-15 10:57:44	2017-01-15 10:51:54
5843	28477	0.000000	0.000000	2017-01-15 18:02:27	2017-01-15 18:02:06

Визуализация данных – по какому принципу упорядочены данные?

	merchant_id	latitude	longitude	transaction_time	record_time
5824	28477	0.000000	0.000000	2017-01-15 13:02:27	2017-01-15 13:02:20
5825	28477	0.000000	0.000000	2017-01-15 15:44:29	2017-01-15 15:54:15
5826	28477	0.000000	0.000000	2017-01-15 21:33:27	2017-01-15 21:38:17
5827	28477	0.000000	0.000000	2017-01-15 21:33:27	2017-01-15 21:39:21
5828	28477	55.211551	35.773620	2017-01-15 12:02:51	2017-01-15 11:59:56
5829	28477	52.593124	39.561907	2017-01-15 15:48:41	2017-01-15 15:49:49
5830	28477	51.178900	-1.826400	2017-01-15 17:05:51	2017-01-15 17:01:15
5831	28477	55.697067	37.553810	2017-01-15 16:14:25	2017-01-15 16:19:34
5832	28477	51.716180	39.175545	2017-01-15 17:08:23	2017-01-15 17:10:35
5833	28477	55.612360	37.607125	2017-01-15 14:00:34	2017-01-15 14:00:17
5834	28477	51.717860	39.177682	2017-01-15 16:00:21	2017-01-15 16:07:10
5835	28477	55.750347	37.623851	2017-01-15 18:11:40	2017-01-15 18:03:50
5836	28477	51.712188	39.174119	2017-01-15 18:34:36	2017-01-15 18:40:54
5837	28477	55.697067	37.553810	2017-01-15 22:14:20	2017-01-15 22:16:25
5838	28477	51.717669	39.178541	2017-01-15 20:30:28	2017-01-15 20:28:13
5839	28477	51.717268	39.177014	2017-01-15 22:57:16	2017-01-15 22:52:35
5840	28477	51.717867	39.177927	2017-01-15 19:34:17	2017-01-15 19:41:22
5841	28477	0.000000	0.000000	2017-01-15 15:44:29	2017-01-15 15:52:38
5842	28477	51.655555	39.153889	2017-01-15 10:57:44	2017-01-15 10:51:54
5843	28477	0.000000	0.000000	2017-01-15 18:02:27	2017-01-15 18:02:06

по дням... просто даты настоящих дней забиты «2017-01-15»

Визуализация данных – самый частый check-in

55.75034704 37.62385111 5321

Визуализация данных – check-in

Визуализация данных – check-in

Визуализация данных – check-in

Визуализация данных – продажи Ascott Group

агрегаты продаж по разным каналам... Белым показаны зоны, которые отстоят от зоны прогнозы на год, два и т.д.

Визуализация данных – продажи Ascott Group

принципиально разные каналы!

Визуализация данных – продажи Ascott Group

тренды и выбросы

Визуализация данных – Ticketland ML Contest

вероятность коррелирует с популярностью

Визуализация данных – Ticketland ML Contest

Справа – клиенты, которые наиболее активны

Визуализация данных – Ticketland ML Contest

Возраст: статистика по всем клиентам есть артефакты (<0)

На первую выдачу чаще кликают!

Визуализация данных – Ticketland ML Contest

82000 показов, СТР 6.5%

53000 показов, СТР 16%

16400 показов, СТР 91%

1900 показов, СТР 85%

8500 показов, СТР 83%

50000 показов, СТР 27.5%

47000 показов, CTR 6%

20000 показов, СТР 77%

1100 показов, СТР 76%

часто показываемые баннеры

наиболее «кликабельные» баннеры

Распределение значений целевого признака

Предсказать ожидаемые продажи клиентов Озон за год после регистрации по их открытым данным в социальных сетях

Распределение значений логарифма целевого признака

Отношение к алкоголю

Проблема – большинство значений неизвестно и так почти у всех признаков

Число значений признака по полу

Следовательно, пол «не указывают» в основном мужчины

HasPhone	HasSkype	HasTwitter	count	mean
-2	-2	-2	97362	2.937212
0	0	0	253128	2.994881
0	0	1	1312	2.807146
0	1	0	16811	2.872637
0	1	1	1589	2.796710
1	0	0	11847	2.460538
1	0	1	246	2.337781
1	1	0	6959	2.276721
1	1	1	746	2.445111

Наличие телефона, скайпа и твиттера

чем больше человек указывает информации в соцсети, тем он более плохой покупатель...

Разным цветом – положительность NetSales

MobileUsageAndroid – доля входов в аккаунт с устройств Android

MobileUsageIphone – доля входов в аккаунт с устройств IPhone

Понятно, что сумма долей не может быть > 1

Интересно, что есть пользователи, которые пользуются Android и IPhone (в самых разных пропорциях!)

Опять же... для 64.8% пользователей ничего не известно...

Два самых важных признака... AUC ~ 0.6

AverageFriendsRegMonthDelta – средняя разница между текущей датой и датой регистрации всех друзей человека в соцсетях

YearsSinceMinRegDate - количество лет, прошедших с даты регистрации первого аккаунта в социальной сети

Не было признака «возраст», возможно, он самый важный!

качество упирается в порог 62% есть волшебные признаки (возрастные) признаки интересов бесполезны очень много неизвестных признаков

(видимо, из-за некачественного парсинга соцсетей)

значения некоторых признаков некорректны если бы все значения признаков были известны, качество превышало бы 65% для решения лучше использовать Light GBM

• по данным соцсетей можно делать косвенные выводы

(для решения нашей задачи это бесполезно)

Задача: определить пол по истории транзакций

В целом соответствует «естественному трудовому дню»...

Было кодовое время «00:00:00»

Провал 11 дней идентифицирует начало года

Есть провалы на майские праздники 7-дневная цикличность

Логарифм разницы между начислениями и снятиями Мужчины снимают всё!

mcc_code	ж	М	mcc_description	
5967	5	289	Прямой маркетинг — входящий телемаркетинг	
5931	335	39	Магазины second hand, магазины б/у товаров, ко	
1731	8	65	Подрядчики по электричеству	0.78
7995	2431	15650	Транзакции по азартным играм	0.73
7994	1164	7404	Галереи/учреждения видеоигр	0.728
9211	43	7	Судовые выплаты, включая алименты и детскую по	0.72
6211	133	776	Ц енные бумаги: брокеры/дилеры	0.71
7512	22	123	Прокат автомобилей	0.697
5965	106	19	Прямой маркетинг — комбинированный каталог и т	0.696
7993	106	591	Принадлежности для видеоигр	0.6958

суммы были изменены Неужели есть «Женские суммы трат»?!

Итог

увидели полезность приёмов визуализации, которые обсуждали в основных лекциях