Chapitre 8. Solutions des Exercices

Chaînes à temps continu. (voir également chapitre 4).

Chapitre 4.

Ex1 : cf. série TD Ex2 :

Ex 4. Variante 1: chaque ligne de 8 kbits forme un système M/M/1 indépendant avec $\lambda=2, \mu=4$ (on a précisé dans l'énoncé capacité illimitée). $\overline{V}=\frac{1}{\lambda-\mu}=\frac{1}{4-2}=0.5$ sec ondes ou 500 ms. Variante 2.Un accès multiple à une même ligne de 64 kbits forme une file M/M/1 avec $\lambda=16, \mu=32$; $\overline{V}=\frac{1}{32-16}=0.0625$ sec ondes ou 62.5 ms qui est évidemment plus avantageux.

Ex 9. (i) c'est un M/M/1/ ∞ /3 (capacité illimitée, source finie). La chaîne de Markov associée étant finie, le système est toujours stable : $\rho = \lambda / \mu = (1/9)/(1/2) = 2/9 = 0.2222$.

Probabilités stationnaires : $\pi_1 = \left(\frac{2}{9}\right) \times \frac{3!}{2!} \pi_0 = \frac{2}{3} \pi_0$; $\pi_2 = \left(\frac{2}{9}\right)^2 \times \frac{3!}{1!} \pi_0 = \frac{8}{27} \pi_0$;

 $\pi_3 = \left(\frac{2}{9}\right)^3 \times \frac{3!}{0!}\pi_0 = \frac{16}{243}\pi_0$; La condition de normalisation $\pi_0 + \pi_1 + \pi_2 + \pi_3 = 1$ donne

 $\pi_0 = \frac{243}{493} = 0.493;$ $\pi_1 = \frac{162}{493} = 0.328;$ $\pi_2 = \frac{72}{493} = 0.146;$ $\pi_3 = \frac{16}{493} = 0.0324.$ Nombre

moyen de machines en panne : $\overline{N}=0.329+2\times0.146+3\times0.0324=0.7182$ (on peut utiliser également la table $\overline{N}=L-\left(1-\pi_0\right)/\rho$). Probabilité d'oisiveté du réparateur= $\pi_0=0.493$ soit 49.3% du temps. Débit absolu : $A=(1-\pi_0)\pi=0.507\times0.5=0.2535$; c'est le nombre moyen de machines réparées par unité de temps qu'on peut interpréter comme la productivité du réparateur. Productivité de l'atelier (le système) := $(3-\overline{N})\times 5=11.4$ articles. Temps moyen

d'immobilisation d'une machine : $\overline{V} = \frac{\overline{N}}{\overline{\lambda}} = \frac{0.7182}{0.03} \approx 24.7$ (car le débit réel ou effectif

 $\overline{\lambda} = \lambda (L - \overline{N}) = \frac{1}{9} (3 - 0.7182) = 0.03$). (ii) On a ici un M/M/1 ($\lambda = 3/9 = 1/3$) et

 $\mu = 1/2$. Système stable car $\rho = (3/9)/(1/2) = 2/3 < 1$. $\pi_0 = \frac{2}{3} = 0.666$;

 $\pi_1 = \left(\frac{2}{3}\right)^1 \times \frac{2}{3} = 0.4444 \; ; \\ \pi_2 = \left(\frac{2}{3}\right)^2 \times \frac{2}{3} = 0.1975 \; ; \\ \pi_3 = \left(\frac{2}{9}\right)^3 \times \frac{2}{3} = 0.1316 \; .$

 $\overline{N} = \frac{1}{\mu - \lambda} = 6.$ (iii) $m = 1, \ \overline{N} = 2.0, \ \overline{C}(1) = 10 \times 1 + 20 \times 2.0 = 50.0 ;$

$$m = 2$$
, $\overline{N} = 0.75$, $\overline{C}(2) = 10 \times 2 + 20 \times 0.75 = 35.0$;
 $m = 3$, $\overline{N} = 0.675958$, $\overline{C}(3) = 10 \times 3 + 20 \times 0.675958 = 43.5192$. D'où m*=2.

Ex 10. C'est une modèle à capacité finie M/M/1/K. $\lambda = 125$ paquets par seconde ; $\mu = 1/0.002 = 500$ paquets par seconde ; K = 8. (i) l'espace des états étant fini, le régime stationnaire existe toujours ; le système est toujours stable. Rappelons les formules connues

pour ce système :
$$\pi_k = \rho^k \pi_0, k = 0, 1, ..., K$$
; $\pi_0 = 0, k > K$. et $\pi_0 = \left[\sum_{j=0}^K \rho^j\right]^{-1} = \frac{1 - \rho^{K+1}}{1 - \rho}$

Dans notre cas $\rho = \frac{125}{500} = \frac{1}{4} = 0.25$. (ii) Charge du système : si on comprend par là la

proportion de serveurs occupés Charge= $1-\pi_0 \approx 0.25$. Tous les autres résultats peuvent être ramenés à la précision voulue.(iii) Probabilité de perte (ou de refus)=

 $\pi_8 = 0.000011444135452787219$; (iv) Taux d'arrivées

réel= $\lambda(1-\pi_8) \approx 124.9985694830684$

k	π_k	Approximation à 10 ⁻⁵
0	$\pi_0 = 0.7500028610338632$	≈ 0.750000
1	$\pi_1 = 0.1875007152584658$	≈ 0.18750
2	0.04687517881461645	≈ 0.04687
3	0.011718794703654112	≈ 0.01171
4	0.002929698675913528	≈ 0.00292
5	0.000732424668978382	≈0.00073
6	0.0001831061672445955	≈0.00018
7	0.000045776541811148874	≈0.00004
8	$\pi_8 = 0.000011444135452787219$	≈ 0.00001

(v) Taux de perte= $\lambda - \lambda_{r\acute{e}el} = 125-124.9985694830684 \approx 0.00008940698847936801$, (vi) Débit relatif=A= $(1 - \pi_8) \approx 0.9999992847440922$, Débit absolu= $\lambda(1 - \pi_8) \approx 124.9985694830684$ (= $\lambda_{r\acute{e}el}$ car système stable); (= $\mu(1 - \pi_0)$), (vii) $\overline{V} = E(V) = 0.0026664225223163194$, (viii) On peut résoudre l'inégalité trouver K tel que

$$\pi_K = \frac{\rho^K}{K!} \times \frac{1 - \rho}{1 - \rho^{K+1}} < \varepsilon$$
, $\varepsilon = 10^{-4}$

ici, assez compliqué. Il est plus simple de le faire numériquement en faisant varier la taille de la capacité d'attente

··		
	K	π_K
	2	$\pi_2 = 0.047619047619047616 > \varepsilon = 10^{-4}$
	3	$\pi_3 = 0.011764705882352941 > 10^{-4}$

4	$\pi_4 = 0.002932551319648094 > 10^{-4}$
5	$\pi_5 = 0.0007326007326007326 > 10^{-4}$
6	$\pi_6 = 0.00018311664530305805 < 10^{-4}$

Pour le modèle M/M/1, $K = \infty$., (i)La condition de stabilité ici est

$$\rho = \frac{125}{500} = \frac{1}{4} = 0.25 < 1 \text{ qui est satisfaite. (ii) charge} = \pi_0 = 1 - \rho = 0.75, \text{ (iii) probabilité}$$

de perte=0 (on a vu précédemment qu'à partir de K=6, la probabilité de refus est inférieure à $\varepsilon = 10^{-4}$, (iv) taux d'arrivées réel= $\lambda = 125$, (v) taux de perte =0, (vi) débit relatif=1; débit absolu= $\lambda = 125$, (vi)

Conclusion: Les caractéristiques des modèles M/M/1 (capacité infinie) et M/M/1/8 (capacité finie) ne différent pas. La Question (viii) montre que pour la ,probabilité de refus la différence n'est pas significative pour une capacité d'attente $K \ge 6$. Par conséquent pour les valeurs de K supérieures à 6 il est préférable d'utiliser le modèle M/M/1 pour lequel les mesures de performance peuvent être calculées manuellement. Pour K petit <6, les formules sont plus « complexes calculatoirement » .

Ex11. (a) système M/M/1 avec $\lambda = 96/24 = 4$ arrivées/heure, $\mu = 60/12 = 5$ sorties/heure, $\rho = 4/5 = 0.8 < 1$ système stable, il existe un régime stationnaire unique, $\pi_5 = (1-0.8) \times (0.8)^5 \approx 0.07$, $\overline{N} = E(N) = 4$ malades, $\overline{Q} = 3.2$, $\lambda_{eff} = \lambda = 4$ malades/heure, débit relatif A' = 1, $\overline{V} = \frac{1}{\mu - \lambda} = 1$ heure, $\overline{W} = \frac{\overline{Q}}{\lambda} = 48$ min utes, $\pi_0 = 0.2$ (serveur oisif

20% du temps), Pour que $\overline{Q} = \frac{\rho^2}{1-\rho} \le 1/2$, il faut que $\mu \ge 2\lambda$, d'où $\mu = 2\lambda = 8$, $P(W>2) = 0.8e^{-(8-4)\times 2} \approx 0.000168$; (b) M/M/m, condition de stabilité $\varphi = \lambda/m\mu = 4/5m < 1$ donc m > 4/5, m au moins égal à 1. Il faut trouver la première valeur de m pour laquelle $\overline{Q} \le 1/2$ (le code annexe C donne la valeur).

Ex 14. (I) (1) M/M/1 (le taux de réparation (service) se réfère à celui de toute l'équipe et non pas à celle d'une personne de l'équipe), $\lambda=4$, $\mu=6$. (2) $\rho=\frac{4}{6}=\frac{2}{3}=0.666667<1$, le système est stable et il existe un régime stationnaire.(3) $\overline{N}=\frac{\rho}{1-\rho}=\frac{2/3}{1-2/3}=2$ machines (en moyenne);(4) $\overline{Q}=\overline{N}-\rho=\frac{4}{3}=1.333333$ machines (en moyenne);

 $\overline{W} = \overline{Q} / \lambda = 1/3 \approx 0.333333 \; ; \quad (5): \qquad C_S = 2 \times 1000 \times 30 \times 8 = 480 \; 000 \; D.A. \; ; \quad (6) \qquad : \\ C_f = \overline{Q} \times 1000 \times 30 \times 8 = 320 \; 000 \; D.A. \; ; \quad (7) \qquad \pi_0 = 1 - \rho = \frac{1}{3} = 0.33333 \; \text{(l'équipe est oisive 33% du temps)}.$

(II) Scénario 1: (1) C'est toujours un M/M/1, λ =4, mais de paramètre μ =7 (toujours celui de l'équipe).; (2) $\rho = 4/7$; (3) $\overline{N} = \frac{4}{3} \approx 1.333333$ clients (en moyenne);(4)

 $\overline{Q} = \frac{16}{21} \approx 0.761905$ clients; $\overline{W} = 4/21 \approx 0.190476 (11 \text{min utes } 25 \text{ sec ondes})$; (5)

 $C_S^1 = 320\ 000\ D.A.$; (6) $C_f^1 = 182\ 857\ D.A.$; (7) Economie: 160 000 D.A.; (8)

 $\pi_0 = \frac{3}{7} = 0.428571$ (l'équipe est oisive 42,85% du temps).

Scénario 2: (1) Ici, c'est un M/M/2, λ =4, μ =6, m=2; (2) ρ =4/2×6=1/3; (; 3)

 $\overline{N} = \frac{3}{4} = 0.75$ machines; (4) $\overline{Q} = \frac{1}{12} \approx 0.083333$ machines

 $W = 1/48 \approx 0.020833$ (1 min utes 15 sec ondes); (5) $C_s^2 = 180~000~D.A.$; (6)

 $C_f^2 = 20$ 000 D.A.; (7) Economie: 480 000-180 000-50 000=250 000 D.A.; (8)

 $\pi_{\scriptscriptstyle 0} = 0.5$ (les équipes sont inactives 50% du temps).

Scénario 3 : Ici, on a deux files indépendantes M/M/1 ; a)(1) M/M/1(homme) avec un taux

d'arrivées $\lambda_1 = \lambda \times 0.25 = 1$, $\mu_1 = 8$, $m_1 = 1$; (2) $\rho_1 = \frac{1}{8} = 0.125 < 1$ (file

stable). ;(3) $\overline{N} = \frac{1}{7} = 0.142257$;(4) $\overline{Q} = \frac{1}{56} = 0.0178571$;

 $\overline{W} = \frac{1}{56} = 1 \text{ min } ute \ 42 \text{ sec } onde \ ; \ (5) \qquad C_s^{3(1)} = 34285.7 \ ; \ (6) \qquad C_f^{3(1)} = 4285.76 \ ; \ (7)$

 $\pi_0 = \frac{7}{8} = 0.875$ (inactif 85% du temps).

(b) M/M/1(femme) avec un taux d'arrivées $\lambda_2 = \lambda \times 0.75 = 3$, $\mu_2 = 8$, $m_2 = 1$;(2)

 $\rho_2 = \frac{3}{8} = 0.375 < 1$ (file stable).; (3) $\overline{N} = \frac{3}{5} = 0.6$; (4)

 $\overline{Q} = \frac{9}{40} = 0.225$; $\overline{W} = \frac{3}{40} = 4.5 \text{ min } utes (5)$ $C_s^{3(2)} = 144 \ 000 (6)$ $C_f^{3(1)} = 54 \ 000$; (7)

 $p_0 = \frac{5}{8} = 0.625$ (inactif 62 .5% du temps). ; Economie : 480 000-178285.7-50000=251 715

Discussion: Ainsi, on a répondu à la question de l'intérêt économique pur (la réduction de l'attente des machines entraîne des gains); en revanche les équipes ont plus de temps libre; c'est intéressant de leur point de vue, mais du point de vue de l'entreprise faut-il les affecter à d'autres tâches? Mais ceci est une autre histoire. Notons également que ceci représente le

temps des deux équipes simultanément. Il faut tenir compte que chaque équipe à un temps supplémentaire d'oisiveté.