Code description:

The computeAbsorptionTime program calculates the absorption time t in a 2D periodic system of size L in subcritical and supercritical regimes.

To measure the evolution of the absorption time, the program varies the system size and performs N simulations, first in subcritical regime ($\rho = \rho_c - 0.05$), then in supercritical regime ($\rho = \rho_c + 0.005$).

For each configuration, Nabsorption times are thus calculated. The results are saved in the files Lxx_subcritical.txt and Lxx_supercritical.txt ('xx' corresponding to the system size).

Input parameters:

Parameter	Variable name	Data type
Save folder	save_folder	string
System size L	L	integer
Critical density ρ_c	rho_c	double
Number of simulations	N	integer

Post process:

The post_process.py script retrieves all the values from the files Lxx_subcritical.txt and Lxx_supercritical.txt. It then plots the median absorption time as a function of the system size.