

Python和科学计算基础

黄书剑

SciPy生态系统

 SciPy (pronounced "Sigh Pie") is a Python-based ecosystem of open-source software for mathematics, science, and engineering.

NumPy
Base N-dimensional array package

SciPy library
Fundamental library for
scientific computing

Matplotlib
Comprehensive 2-D
plotting

IPython
Enhanced interactive
console

SymPy
Symbolic mathematics

pandas

Data structures & analysis

IPython

 IPython provides a rich architecture for interactive computing with:

- A powerful interactive shell.
- A kernel for Jupyter.
- Support for interactive data visualization and use of GUI toolkits.
- Flexible, embeddable interpreters to load into your own projects.
- Easy to use, high performance tools for parallel computing.

NumPy

- NumPy is the fundamental package for scientific computing in Python.
 - a multidimensional array object
 - various derived objects (such as masked arrays and matrices)
 - an assortment of routines for fast operations on arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much more.

SciPy

 The SciPy library is one of the core packages that make up the SciPy stack. It provides many user-friendly and efficient numerical routines:

- numerical integration
- interpolation
- optimization
- linear algebra
- statistics.

Subpackage	Description
cluster	Clustering algorithms
constants	Physical and mathematical constants
fftpack	Fast Fourier Transform routines
integrate	Integration and ordinary differential equation solvers
interpolate	Interpolation and smoothing splines
io	Input and Output
linalg	Linear algebra
ndimage	N-dimensional image processing
odr	Orthogonal distance regression
optimize	Optimization and root-finding routines

signal Sparse matrices and associated routines sparse Spatial data structures and algorithms spatial **Special functions** special Statistical distributions and functions stats

Signal processing

Matplotlib

Matplotlib: Visualization with Python

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Matplotlib makes easy things easy and hard things possible.

Pandas

 pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

SymPy

- SymPy is a Python library for symbolic mathematics.
- It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible.

SymPy:

$$\exp (x)/(1+\exp (2*x))$$

$$\frac{e^x}{e^{2x}+1}$$

SymPy:

 $23\pi + 10011942420479998 \approx 1.00119424204801 \cdot 10^{16}$

IPYTHON环境

IPython环境

・ 启动IPython控制台

```
(base) iMacS2:~ huangshujian$ ipython
Python 3.7.4 (default, Aug 13 2019, 15:17:50)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.8.0 -- An enhanced Interactive Python. Type '?' for
help.
In [1]:
```

主要特点

- ・ 输入输出缓存 In Out
- 增强交互辅助功能
 - 语法高亮、自动补全
- ・ 系统命令交互!
- Magic functions %
- ・调试器、并行计算扩展等

带编号的输入输出

・用于记录和输出

```
In [1]: 3 * 3
Out[1]: 9

In [2]: In[1]
Out[2]: '3 * 3'

In [3]: print('Hello World')
Hello World

In [4]: x = 5
```

带编号的输入输出

- · 所有历史输入被组织为一个列表 In
- · 所有历史输出被组织为一个字典 Out

```
In [5]: In
Out[5]: ['', '3 * 3', 'In[1]', "print('Hello World')", 'x = 5', 'In']

In [6]: Out
Out[6]:
{1: 9,
    2: '3 * 3',
    5: ['', '3 * 3', 'In[1]', "print('Hello World')", 'x = 5', 'In',
'Out']}
```

增强交互辅助功能

- 定义复合语句时,自动提示输入后续内容
- 语法高亮,自动补全等

获取帮助

• 快速了解主要功能和查阅文档

command	description
?	Introduction and overview of IPython's features.
%quickref	Quick reference.
help	Python's own help system.
object?	Details about 'object', use 'object??' for extra details.

• 查看对象的文档注释

Init signature: list(iterable=(), /)

In [13]: list?

```
Docstring:
Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.

Type: type
Subclasses: _HashedSeq, StackSummary, SList, _ImmutableLineList,
FormattedText, NodeList, _ExplodedList, Stack, _Accumulator
```

与系统shell交互

Documents

·!开头的命令将被解析为调用系统shell

```
In [24]: !pwd
/Users/huangshujian
In [26]: !ls
Applications My Cloud gensim-data
Desktop Overall nltk_data
```

PaperWithCitations

opt

17

与系统shell交互

· 将系统命令结果赋值给python 变量

```
In [28]: file = !ls
In [29]: file
Out[29]:
['Applications',
  'Desktop',
  'Documents',
  'Downloads',
  'Library',
```

・ 将系统命令结果赋值给python ・ 使用python变量执行系统命令

```
In [30]: filename = "Working"
In [36]: !ls
$filename
Icon? mactex-20200407.pkg screen
erhan10a.pdf python 名单.txt
```

Magic functions

- · 一系列%开头的辅助命令,用于控制IPython环境和系统行为等
 - %开头为单行命令(line magic)
 - %%开头为多行命令 (cell magic)
- The magic function system provides a series of functions which allow you to control the behavior of IPython itself, plus a lot of system-type features.

使用%magic 查看magic function的相关说明

Magic functions

- · 一系列%开头的辅助命令,用于控制IPython环境和系统行为等
 - %开头为单行命令(line magic)
 - %%开头为多行命令 (cell magic)
- · 关于代码控制:
 - %run, %edit, %save, %macro, %recall, etc.
- ・ 关于文件系统:
 - %ls, %pwd, %cd, %cp, %less, %writefile
- 关于缓存:
 - %load, %paste
- •

• 通过? 和?? 查看不同详细程度的文档资料

```
In [17]: %lsmagic?
Docstring: List currently available magic functions.
           ~/opt/anaconda3/lib/python3.7/site-
File:
packages/IPython/core/magics/basic.py
In [18]: %lsmagic??
Source:
   @line magic
    def lsmagic(self, parameter_s=''):
        """List currently available magic functions."""
        return MagicsDisplay(self.shell.magics_manager, ignore=[])
File: ~/opt/anaconda3/lib/python3.7/site-
packages/IPython/core/magics/basic.py
                                                                21
```

In [16]: %lsmagic

Out[**16**]:

Available line magics:

Available cell magics:


```
In [39]: %automagic
Automagic is ON, % prefix IS NOT needed for line magics.
In [40]: pwd
Out[40]: '/Users/huangshujian'
In [41]: cd
/Users/huangshujian
In [42]: cd Working/python
/Users/huangshujian/Working/python
```



```
In [43]: %%writefile fib.py
    ...: def fib(N):
              11 11 11
    • • • •
              Return a list of the first N Fibonacci numbers.
          f0, f1 = 0, 1
         f = [1] * N
              for n in range(1, N):
    . . . .
                  f[n] = f0 + f1
    . . . .
                  f0, f1 = f1, f[n]
    . . . .
           return f
    . . . .
    ...: print(fib(10))
    . . . .
    • • • •
```

Writing fib.py


```
In [44]: !python fib.py
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
```

In [45]: run fib.py
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In [46]: fib(6)

Out[46]: [1, 1, 2, 3, 5, 8]

可以通过系统命令执行

可以通过magic执行

magic执行过后,相当于导入了该脚本,脚本中的变量名可以在后续代码中使用

代码性能分析

- %timeit
 - 多次运行给定语句,并给出平均运行时间
- %time和%%time
 - 对给定的line或cell进行运行计时
- %prun
 - 分析运行过程中不同部分的执行频率和时间
 - 利用profiler进行性能分析

更多性能分析内容参见: https://docs.python.org/3/library/profile.html


```
In [47]: %timeit fib(100)
9.71 \mus \pm 15.4 ns per loop (mean \pm std. dev. of 7 runs, 100000
loops each)
In [48]: %time fib(100)
CPU times: user 14 μs, sys: 0 ns, total: 14 μs
Wall time: 14.8 μs
Out[48]:
[1,
 1,
 2,
 3,
 5,
8,
```

```
def improve(update, close, guess = 1):
    while not close(guess):
        guess = update(guess)
        print(guess)
    return guess

def appr_equal(x, y, epsilon = 1e-10):
    return abs(x - y) < epsilon</pre>
```



```
def improve(update, close, guess = 1):
    while not close(guess):
        guess = update(guess)
        print(guess)
    return guess
de def my_sqrt(x):
      def sqrt_update(guess):
          mid = average(guess)
           if mid * mid > x:
               return guess[0], mid
          else:
               return mid, guess[1]
      def average(tup):
           return (tup[0] + tup[1]) / 2
      def sqrt_accurate(guess):
           mid = average(guess)
           return appr_equal(mid * mid, x)
       return average(improve(sqrt_update, sqrt_accurate, (0, x)))
```


%prun print(my_sqrt(2))

214 function calls in 0.000 seconds

Ordered by: internal time

```
ncalls tottime
                                  percall filename:lineno(function)
                percall
                         cumtime
                                     0.000 {built-in method builtins.print}
    30
         0.000
                  0.000
                            0.000
    30
         0.000
                0.000
                           0.000
                                    0.000 <ipython-input-54-9121da0881e4>:10(sqrt accurate)
                                     0.000 {built-in method builtins.exec}
     1
         0.000
                0.000
                           0.000
     1
         0.000
                0.000
                           0.000
                                    0.000 <ipython-input-53-56a84c2e6d1e>:1(improve)
    29
         0.000
                  0.000
                           0.000
                                     0.000 <ipython-input-54-9121da0881e4>:2(sqrt update)
    30
                                     0.000 <ipython-input-53-56a84c2e6d1e>:6(appr equal)
         0.000
                 0.000
                           0.000
    60
         0.000
                  0.000
                           0.000
                                     0.000 <ipython-input-54-9121da0881e4>:8(average)
                                    0.000 {built-in method builtins.abs}
    30
         0.000
                  0.000
                           0.000
         0.000
                  0.000
                           0.000
                                     0.000 <ipython-input-54-9121da0881e4>:1(my sqrt)
     1
          0.000
                  0.000
                           0.000
                                     0.000 {method 'disable' of 'lsprof.Profiler' objects}
     1
                                     0.000 <string>:1(<module>)
     1
          0.000
                   0.000
                            0.000
```

%debug my sqrt(2)

Jupyter Notebook

- · 基于Client-Server模式的交互式运行环境
 - 以cell的形式组织和运行代码
 - 将控制台运行结果通过网页进行更好的呈现
 - 方便编辑修改代码并查看运行结果
 - 支持markdown、latex等编辑功能
 - 可以显示图片等多媒体资源
 - 支持代码和运行结果保存和导出
 - html、pdf等

https://jupyter-notebook.readthedocs.io/en/latest/notebook.html#introduction 31

Jupyter testNotebook Last Checkpoint: 3 hours ago (autosaved)

基础运行环境配置

利用conda系统管理运行环境

- ・ 本部分内容需要安装的包: ipython, notebook
- ・ 后续部分根据进程依次需要安装: numpy, scipy, matplotlib等
- · 如果完全安装anaconda, 上述基础包应该已经安装在环境中
- · 如果安装的是miniconda等原因,无上述包,可以利用conda 方便的进行环境配置
 - conda upate conda
 - conda create --name scipy-basic
 - conda activate scipy-basic
 - conda install PACKAGENAME

https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

```
(base) MBP2SJ:~ huangshujian$ conda update conda 更新condo环境
## Package Plan ##
 environment location: /Users/huangshujian/miniforge3
 added / updated specs:
   - conda
                                               提示下载的package
The following packages will be downloaded:
                                       build
   package
   conda-package-handling-1.7.3 py39h5161555_0 1.5 MB conda-forge
   cryptography-3.4.7 py39h73257c9_0 792 KB conda-forge
                                               提示更新的package
The following packages will be UPDATED:
                                  1.7.2-py39h51e6412_0 --> 1.7.3-py39h5161555_0
 conda-package-han~
 cryptography
                                  3.4.4-py39h6e07874_0 --> 3.4.7-py39h73257c9 0
. . .
Proceed ([y]/n)?
```


此处显示当前正在使用的环境,默认为base

(base) MBP2SJ:~ huangshujian\$ conda env list 查看系统中所有环境


```
(base) MBP2SJ:~ huangshujian$ conda create --name scipy-basic
Collecting package metadata (current_repodata.json): done
Solving environment: done
                                                      创建一个新环境 scipy-basic
## Package Plan ##
  environment location: /Users/huangshujian/miniforge3/envs/scipy-basic
Proceed ([y]/n)?
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
 To activate this environment, use
     $ conda activate scipy-basic
#
#
 To deactivate an active environment, use
#
     $ conda deactivate
```



```
(base) MBP2SJ:~ huangshujian$ conda activate scipy-basic 切换至环境scipy-basic (scipy-basic) MBP2SJ:~ huangshujian$ conda list 查看当前环境中的包列表 # packages in environment at /Users/huangshujian/miniforge3/envs/scipy-basic: # Wersion Build Channel 此处显示当前正在使用的环境,已切换至scipy-basic
```



```
(scipy-basic) MBP2SJ:~ huangshujian$ conda install ipython 安装ipython包...

(scipy-basic) MBP2SJ:~ huangshujian$ ipython 启动ipython交互环境...
```

```
(scipy-basic) MBP2SJ:~ huangshujian$ conda install notebook 安装notebook包...

(scipy-basic) MBP2SJ:~ huangshujian$ jupyter notebook 启动jupyter notebook...
```

回顾

· Python科学计算环境

IPython环境、NumPy、SciPy、matplotlib、SymPy、Pandas

• IPython环境使用

- magic functions
- 代码性能分析
- jupyter notebook

· 部分内容参考: 《Python科学计算和数据科学应用》

NUMPY

multi-dimensional array

https://numpy.org/doc/stable/user/absolute_beginners.html

4 .min() = 1