Basics of Internet Security

ECE 50863 – Computer Network Systems

Security Services

Assume A is sending data to B across a network What security properties are desirable to preserve?

Key Security Services

- Confidentiality
 - Keep information from all except authorized
- Data Integrity
 - Detect unauthorized alteration of data
- Authentication
 - Confirms identity of peer entity during communication
- Non-repudiation
 - Prevent entities from denying previous actions

What we will discuss

- Classes of cryptographic functions
 - Symmetric Key
 - Public/Private Key
 - One-way Hash
- Pros and cons of each class
- Use in SSL

Symmetric Key Cryptography

Discussion Points

- Secret Algorithm Vs. Secret Key
 - Algorithm known widely
 - Key is known only to sender and receiver

$$Y = E_K(X), X = D_K(Y)$$

- Requirements:
 - Secure channel to distribute key
 - "Strong" Encryption Algorithm

Characterizing good cryptosystems

Unconditionally secure

- No matter how much computer power is available, the cipher cannot be broken
- Not practically achievable.

Computationally secure

Time required to break cipher exceeds life-time of encrypted information

Example: Caesar Cipher

- Caesar Cipher (Substitution-based)
 - Algorithm: "letter shift"
 - Key: "Amount of shift".
 - Example:
 - $C_i = E(p_i) = (p_i + 3) \mod 26$
 - $p_i = D(C_i) = (C_i 3) \mod 26$
 - PlainText: A B C D ..
 - CipherText: defg...
 - Raw Message: TREATY
 - Encrypted Message: WUHDWB

Example: Monoalphabetic Cipher

- Caesar Cipher: Easy to do brute force search
 - Try all possible 26 keys
- Monoaphabetic cipher: Each plaintext letter maps to a different random ciphertext letter

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

- Possible Keys: 26!
 - Brute force search harder

Brute Force Search

- Always possible to simply try every key
- Most basic attack, proportional to key size
- Assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/µs	Time required at 106 encryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2\times 10^{26}~\mu \rm s = 6.4\times 10^{12}~years$	6.4×10^6 years

Breaking monoalphabetic cipher

Exploit differences in frequencies of letters

Other simple examples

- Transposition or permutation ciphers
 - Permute "characters of the original text"
- E.g. Columnar transposition
 - Plain text: Just two more weeks of classes!

```
J WES A
UOWOS
SME F S
TO EC E
TR K L S
```

Encrypted Text: JWESAUOWOSSMEFSTOECETRKLS

Real-world symmetric key crypto systems

- Data Encryption Standard (DES) and 3DES
 - Implementable in gigabits/sec in hardware
 - Popular in the past; now decrypted owing to attacks.
- Confusion/Diffusion:
 - "Dissipate" statistical structure of plaintext
 - 1 bit input change must affect many op bits
 - Every cipher bit affected by several input bits
 - Cycles of substitutions and permutations
- More secure schemes:
 - AES (Advanced Encryption Standard)

Achieving Security Services

- Symmetric cryptography may be used to achieve...
 - Confidentiality ? Yes!
 - Authentication ? Yes!
 - Data Integrity ? Yes!
 - Non-repudiation ???

Non-Repudiation

- A sends B a message
 - (e.g. ordering equipment)
- A refuses to accept this at a later point.
- How does B prove to a judge C that A indeed placed the order?

Cannot be achieved with symmetric key systems.

Another issue with Symm key

- Assume a set of N people
- Assume every pair wants to communicate
- Number of symmetric keys needed:
 - -N*(N-1)/2.

Public-key Cryptography and Hash Functions

ECE 50863 – Computer Network Systems

Limitations of symmetric key cryptosystems

- Cannot achieve non-repudiation
 - B must prove to a neutral party that A sent a message
- Requires O(N²) keys for N participants.

Public-Key Cryptography

Public-Key Cryptography (2)

- Two keys
 - Public key: globally known
 - Anyone can send by encrypting using public
 - Private-key: known only to the recipient
 - Only recipient can decrypt messages
- is **asymmetric** because
 - those who encrypt messages cannot decrypt messages

Public-Key Characteristics

- Computationally infeasible to find decryption key knowing only algorithm & encryption key
- Computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known

RSA (Rivest, Shamir, Adleman)

- The most popular one.
- Support both public key encryption and digital signature.
- Assumption/theoretical basis:
 - Factoring a big number is hard.
- Variable key length (usually 512 bits).

Other public-key cryptosystems

- Many other public-key cryptosystems
 - Diffie Hellman
 - DSS
 - ECC (Elliptic Curve)

Non-Repudiation (2)

- Feasible with public-key.
- "Digital Signatures".

Dual use of public key systems

- A sends data to B
 - Encrypt with B's pub key
 - Sign with A's private key
- On receiving data:
 - B decrypts with its private key
 - Verifies signature with A's public key
- Clarification:
 - RSA allow both encryption/signatures
 - Some public-key systems allow only one or the other

Another win with public-key

- Assume N nodes
- Every pair communicates
 - Symmetric key: (N * (N-1)) / 2 keys
 - Public key: 2*N keys

Question

Why use symmetric key at all?

Question (2)

- Why use symmetric key at all?
- Public key systems are much slower.
- Public key crypto & Symmetric Crypto combined in practice (e.g., SSH)

Hash Functions

- Given a message M of any size, produce a fixed-length output h(m) (much smaller)
- One way property: "Hard to invert"
 - Given h(m), hard to find m (or alternate m1)
 - Given m, easy to find h(m)
- Hash function algorithms public
- Popular Example : SHA-3
 - MD5 popular but now not considered secure.

Hash Functions & Digital Signatures

- Signature of entire message using public-key difficult
- Produces "hash" of message m
- Sign the hash using sender's private key

Requirements for Hash Functions

- 1. Given h is infeasible to find x s.t. H(x)=h
 - One-way property
- 2. given x is infeasible to find y s.t. H(y)=H(x)
 - Weak collision resistance
- 3. is infeasible to find any x,y s.t. H(y)=H(x)
 - Strong collision resistance

Why is collision resistance important?

- "Man in the Middle" could substitute M with M' such that H(M') = H(M) without collision resistance
- Fool receiver into believing A signed message M'

Secure data transfer with TLS/SSL

ECE 50863 – Computer Network Systems

Review and Discussion

- Symmetric Key
 - Fast, but cannot allow for "signatures"
 - How do two parties agree on symmetric key?
- Public/Private Key
 - Supports signatures, but slow
- One-way Hash
 - Digest of messages.
- How is all this combined in TLS/SSL?
 - Transport Layer Security/ Secure Sockets Layer
 - Invoked with https:// (instead of http://)

Combining public & symmetric key cryptosystems

- Assume C wants to talk to S
 - C uses S's public key to encrypt "secret key" used for the session.
 - "Secret key" used to encrypt actual data using symmetric key cryptography
- How does C get S's public key?

Obtaining a Certificate

- Server obtains "certificate" for public key
 - Certificate "attests" this is the right public key for the server
- Issued by one of certificate authorities (CA)
 - Signed with private key of CA.
- Key of CA must be present in client browser
 - Typically browsers shipped with keys of popular CAs.

Centificate Sonver Client Authority (CA) (5) (CC) Centificate certificate "S has public key Spub"
"Signed with CAprt. [sec] Spub Verify with CApub key encryption

Steps

Offline (prior to transaction):

- 1. Client browser preinstalled with CA's public key
- 2. Server obtains certificate from CA.

Online (during transaction)

- 1. Server sends certificate to client
- 2. Client verifies certificate using public key of CA. Obtains public key of server.
- 3. Client generates "secret key". Sends it to server, encrypted with server public key
- 4. Server sends data to client encrypted with secret key (symmetric cryptography).