CLAIMS

- 1. A method for measuring a flow rate (v) or a mass flow of a fluid (3), in particular for measuring water supply in the private, public industrial sector, in which the fluid (3) guided over a sensor element (1), which has a heating means (1a) for inducing temperature changes and a sensor means (1b) for determining its temperature, wherein at least from time to time the heating means (1a) is operated with a heating power (P) in the form of heating pulses and a flow-dependent threshold value time (t_s) is measured at the sensor means (1b) until a preset temperature threshold value (T_S) is reached, characterised in that during at least some of the heating pulses (7) a non-constant heating power a substantially sublinear build-up dynamics (P(t)) as a function of time selected in order to at least partially compensate a nonlinear behaviour of the threshold value time (t_s) as a function of the flow rate (v).
- 2. The method as claimed in claim 1, characterised in that the build-up dynamics (P(t)) as a function of the time (t) and, if required, of the flow rate (v) to be measured is varied itself such that the threshold value time (t_s) is a linear function of the flow rate (v) at least on discrete flow rate values (v_i) .
- 3. The method as claimed in any one of the preceding claims, characterised in that the build-up dynamics (P(t)) is selected to be proportional to t^m, wherein m=an exponent dependent on a Reynolds number of the fluid (3) which is lower than 1, in particular m≤0.5 and particularly preferred

m=0.466 for a Reynolds number of the fluid (3) between 40 and 4000.

- The method as claimed in any one of the preceding 4. claims, characterised in that the build-up dynamics (P(t)) is selected to be proportional to a time-independent amplitude factor $(1+R_S/R_I)^{-1}$, wherein R_s is a first thermal transfer resistance between the heating means (1a) and a surface (10) of the sensor element (1) and $R_{I}=(h \cdot A)^{-1}$ is a second thermal transfer resistance between the surface (10) of the sensor element (1) and the fluid (3), wherein h is a flow-dependent heat transfer coefficient between the sensor element (1) and the fluid (3) and A is a contact surface between the sensor element (1) and the fluid (3).
- 5. The method claimed claims as in 3 and characterised in that a cylindrical sensor element (1), against which the fluid (3) is transversely flown, is selected with a heat transfer coefficient h proportional to v^m and with a second thermal transfer resistance $R_I = \gamma \bullet v^{-m}$, γ being a constant.
- The method as claimed in claims 3 and 4, characterised in that
 - a) in a first step discrete values of the flow rate (v_i) are selected and corresponding build-up dynamics $P_i(t)$ of the heating power are determined, wherein $i=1,\ 2,\ 3,\ ...$ is an index,
 - b) in a second step a set of calibration curves (8) of the threshold value time (t_s) as a function of the flow rate (v) is determined for the build-up dynamics $(P_i(t))$ and

- c) in a third step, on account of a previously measured flow rate or based on a-priori information about the presumed flow rate, a preferred calibration curve (8) is selected according to a desired measuring precision for the flow rate (v) and according to a desired measuring duration (t_s), and is used to determine the flow rate (v), or
- d) in а third step, starting from the calibration curve (8) associated with the lowest flow rate value $(v_{i=1})$ and rising successively to higher flow rate values $(v_{i>1})$ by estimating in a single step, preferred calibration curve (8) is determined according to a desired measuring precision for the flow rate (v) and according to a desired measuring duration (t_s), and is used to determine the flow rate (v).
- 7. The method as claimed in claim 6, characterised in that a number and distribution of the calibration curves (8) are selected according to a desired measuring resolution and to a desired measuring range of the flow rate (v).
- 8. method as claimed inclaims 3 and characterised in that $R_S/R_I<1$, preferably $R_S/R_I<0.1$ particularly preferred $R_{\rm S}/R_{\rm T}<0.01$, heating power factor P_0 are selected and the threshold value time (t_s) is calculated as exact linear function of the flow rate (v) according to an equation $t_S(v) = (T_S - T_F)^{1/m} \bullet (P_0 \bullet \gamma)^{-1/m} \bullet v,$ wherein γ is a constant and T_{F} is an undisturbed fluid temperature.

- A device for carrying out the method as claimed in 9. any one of the preceding claims, comprising a sensor element (1) with a heating means (1a) and a sensor means (1b) for thermal measuring in a fluid and a control and evaluating processor unit with a heating control (2a) for generating heating pulses (7) for the heating means (1a) and a measuring device (2b) for evaluating the thermal measurement and for determining a flow rate (v) or a mass flow from a flow-dependent threshold value time (t) until a preset temperature threshold value (T_S) at the sensor means (1b) is reached, characterised in that
 - a) the heating control (2b) comprises means for generating a non-constant heating power (P) with a substantially sublinear build-up dynamics (P(t)) as a function of the time (t), and
 - b) the control and evaluating processor unit (2) has means for at least partial compensation of a nonlinear behaviour of the threshold value time (t_s) as a function of the flow rate (v).
- 10. The device as claimed in claim 9, characterised in that
 - a) the control and evaluating processor unit (2) comprises hardware and/or software generating a build-up dynamics (P(t)) t^m proportional to and/or to a independent amplitude $(1+R_{\rm S}/R_{\rm I})^{-1}$, factor wherein t is a time variable, is m exponent dependent on a Reynolds number of the fluid (3), R_S is a first thermal transfer resistance between the heating means (1b) and a surface (1a) of the sensor element (1), $R_T = (h \bullet A)^{-1}$ is a second thermal transfer

resistance between a surface (10) of the sensor element (1) and the fluid (3), h is a flow-dependent heat transfer coefficient between the sensor element (1) and the fluid (3) and A is a contact surface between the sensor element (1) and the fluid (3) is and/or

- b) the control and evaluating processor unit (2) comprises calibration means (2c) for carrying out the first and second step as claimed in Claim 6.
- 11. The device as claimed in any one of claims 9 to 10, characterised in that
 - a) the sensor element (1) has an electric heating wire (1a, 1b) with a temperature-dependent resistance, which can be operated simultaneously as heating means (1a) and as sensor means (1b) and/or
 - b) the sensor element (1) has a heat capacity C_S and a first thermal transfer resistance R_S between the heating means (1b) and a surface (10) of the sensor element (1), wherein the threshold value time or measuring duration is $t_S > C_S \cdot R_S$, in particular $t_S > 10 \cdot C_S \cdot R_S$, and/or
 - c) the sensor element (1) has a cylindrical shape with a diameter (d) and which has, when the fluid (3) flows laterally against it with the flow rate (v), has by approximation a flow-dependent heat transfer coefficient $h=\lambda/d \cdot 1.11 \cdot C \cdot Pr^{0.31} \cdot Re^{m}$, wherein λ is a heat conductivity of the fluid (3), C parameter and m is an exponent, which depend on a Reynolds number Re of the fluid (3), and Pr is a Prandtl number of the fluid (3).