RF TEST REPORT

Report No.: 17070148-FCC-R2
Supersede Report No.: N/A

Applicant	3Dconnexion		
Product Name	CadMouse Wireless		
Main Model	3DX-600054		
Serial Model	3DX-700062		
Test Standard	FCC Part 15.249: 20	16; ANSI C63.10: 2	013
Test Date	August 05 to Decemb	per 12, 2017	
Issue Date	December 13, 2017		
Test Result	Pass Fail		
Equipment complied with the specification			
Equipment did not comply with the specification			
LOVEN LUO David Huang			
Loren Lu Test Engir		avid Huang hecked By	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108
Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report No.	17070148-FCC-R2
Page	2 of 47

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	17070148-FCC-R2
Page	3 of 47

This page has been left blank intentionally.

Test Report No.	17070148-FCC-R2
Page	4 of 47

CONTENTS

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	6
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	7
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1	ANTENNA REQUIREMENT	9
6.2	AC LINE CONDUCTED EMISSIONS	10
6.3	RADIATED SPURIOUS EMISSIONS	16
6.4	FIELD STRENGTH MEASUREMENT	24
6.5	20DB BANDWIDTH TESTING	26
6.6	BAND EDGE	28
ANI	NEX A. TEST INSTRUMENT	31
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	32
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	42
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	46
ΔΝΙ	NEX F DECLARATION OF SIMILARITY	47

Test Report No.	17070148-FCC-R2
Page	5 of 47

1. Report Revision History

Report No.	Report Version	Description	Issue Date
17070148-FCC-R2	NONE	Original	December 13, 2017

2. Customer information

Applicant Name	3Dconnexion
Applicant Add	33, Rue du Portier, 98000 Monaco
Manufacturer	3Dconnexion
Manufacturer Add	33, Rue du Portier, 98000 Monaco

Test Report No.	17070148-FCC-R2
Page	6 of 47

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	535293	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

Test Lab B:

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and
	Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	4842B-1
Test Software	EZ_EMC(ver.lcp-03A1)

Note: We just perform Radiated Spurious Emission above 18GHz in the test Lab. B.

Test Report No.	17070148-FCC-R2
Page	7 of 47

4. Equipment under Test (EUT) Information

Description of EUT: CadMouse Wireless

Main Model: 3DX-600054

Serial Model: 3DX-700062

Date EUT received: August 04, 2017

Test Date(s): August 05 to December 12, 2017

BLE: -2.72dBi Antenna Gain:

2.4G: -2.72dBi

Antenna Type: Patch antenna

Power: 113.23dBuV/m

Type of Modulation: BLE/2.4G: GFSK

RF Operating Frequency (ies): 2.4G: 2404-2477 MHz

BLE: 2402-2480 MHz

Number of Channels: 40CH

Battery:

Model: 603450

Input Power: Spec: 3.7V, 4.07Wh, 1100mAh

Voltage: 4.2V

Trade Name: 3Dconnexion

FCC ID: 2AAHQ-CMW

Test Report No.	17070148-FCC-R2
Page	8 of 47

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209,	Radiated Fundamental	O-malia a-a-
§15.249(a), §15.249(d)	/ Radiated Spurious Emissions	Compliance
§15.249(a)	Field Strength Measurement	Compliance
§15.249©	20 dB Bandwidth	Compliance
§15.249(d)	Band Edge	Compliance

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

Test Report No.	17070148-FCC-R2
Page	9 of 47

6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

6.1 Antenna Requirement

Standard Requirement:

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has 1 antenna:

A permanently attached Patch antenna for 2.4G/BLE the gain is -2.72dBi for 2.4G/BLE.

Test Result: Pass

Test Report No.	17070148-FCC-R2
Page	10 of 47

6.2 AC Line Conducted Emissions

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	December 12, 2017
Tested By:	Loren Luo

Spec	Item Requirement			Applicable	
§15.207	a)	For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.			<u><</u>
		Frequency ranges	Limit (dΒμV)	
		(MHz)	QP	Average	
		0.15 ~ 0.5	66 – 56	56 – 46	
		0.5 ~ 5	56	46	
		5 ~ 30	60	50	
Test Setup	Vertical Ground Reference Plane Test Receiver ### Add to the content of the con				
Procedure	1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.				

Test Report No.	17070148-FCC-R2
Page	11 of 47

	4.	All other supporting equipment were powered separately from another main supply.		
	5.	The EUT was switched on and allowed to warm up to its normal operating condition.		
	6.	A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power)		
		over the required frequency range using an EMI test receiver.		
	7.	7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the		
		selected frequencies and the necessary measurements made with a receiver		
		bandwidth setting of 10 kHz.		
	8.	Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).		
Remark				
Result	~	Pass Fail		
Test Data	Yes	N/A		
Test Plot	Yes	(See below)		

Test Report No.	17070148-FCC-R2
Page	12 of 47

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.1578	37.50	QP	10.03	47.53	65.58	-18.05
2	L1	0.1578	7.29	AVG	10.03	17.32	55.58	-38.26
3	L1	0.5283	28.35	QP	10.03	38.38	56.00	-17.62
4	L1	0.5283	16.65	AVG	10.03	26.68	46.00	-19.32
5	L1	0.9534	23.49	QP	10.03	33.52	56.00	-22.48
6	L1	0.9534	7.10	AVG	10.03	17.13	46.00	-28.87
7	L1	3.9594	19.46	QP	10.07	29.53	56.00	-26.47
8	L1	3.9594	2.16	AVG	10.07	12.23	46.00	-33.77
9	L1	9.7236	27.90	QP	10.15	38.05	60.00	-21.95
10	L1	9.7236	19.50	AVG	10.15	29.65	50.00	-20.35
11	L1	29.6175	20.03	QP	10.48	30.51	60.00	-29.49
12	L1	29.6175	15.85	AVG	10.48	26.33	50.00	-23.67

Test Report No.	17070148-FCC-R2
Page	13 of 47

Test Data

Phase Neutral Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	N	0.1578	41.18	QP	10.03	51.21	65.58	-14.37
2	N	0.1578	31.23	AVG	10.03	41.26	55.58	-14.32
3	N	0.2631	41.31	QP	10.03	51.34	61.33	-9.99
4	N	0.2631	18.48	AVG	10.03	28.51	51.33	-22.82
5	N	0.5523	27.14	QP	10.03	37.17	56.00	-18.83
6	N	0.5523	14.33	AVG	10.03	24.36	46.00	-21.64
7	N	0.8832	21.86	QP	10.03	31.89	56.00	-24.11
8	N	0.8832	6.29	AVG	10.03	16.32	46.00	-29.68
9	N	9.6846	29.38	QP	10.15	39.53	60.00	-20.47
10	N	9.6846	20.30	AVG	10.15	30.45	50.00	-19.55
11	N	12.9489	26.87	QP	10.19	37.06	60.00	-22.94
12	N	12.9489	20.75	AVG	10.19	30.94	50.00	-19.06

Test Report No.	17070148-FCC-R2
Page	14 of 47

Test Data

Phase Line Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	L1	0.5517	28.07	QP	10.03	38.10	56.00	-17.90
2	L1	0.5517	20.63	AVG	10.03	30.66	46.00	-15.34
3	L1	0.7545	25.47	QP	10.03	35.50	56.00	-20.50
4	L1	0.7545	14.04	AVG	10.03	24.07	46.00	-21.93
5	L1	1.0899	19.91	QP	10.03	29.94	56.00	-26.06
6	L1	1.0899	2.35	AVG	10.03	12.38	46.00	-33.62
7	L1	2.6694	17.37	QP	10.05	27.42	56.00	-28.58
8	L1	2.6694	0.05	AVG	10.05	10.10	46.00	-35.90
9	L1	9.9849	27.78	QP	10.15	37.93	60.00	-22.07
10	L1	9.9849	25.48	AVG	10.15	35.63	50.00	-14.37
11	L1	13.6392	26.88	QP	10.20	37.08	60.00	-22.92
12	L1	13.6392	22.37	AVG	10.20	32.57	50.00	-17.43

Test Report No.	17070148-FCC-R2
Page	15 of 47

Test Data

Phase Neutral Plot at 240Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBµV)	Detector	Corrected (dB)	Result (dBµV)	Limit (dBµV)	Margin (dB)
1	N	0.1695	42.91	QP	10.02	52.93	64.98	-12.05
2	N	0.1695	29.21	AVG	10.02	39.23	54.98	-15.75
3	Ν	0.2397	33.54	QP	10.02	43.56	62.11	-18.55
4	Ν	0.2397	25.68	AVG	10.02	35.70	52.11	-16.41
5	Ν	0.6102	29.88	QP	10.02	39.90	56.00	-16.10
6	Ν	0.6102	19.76	AVG	10.02	29.78	46.00	-16.22
7	N	0.9417	28.68	QP	10.03	38.71	56.00	-17.29
8	Ν	0.9417	14.96	AVG	10.03	24.99	46.00	-21.01
9	Ν	1.6125	23.60	QP	10.04	33.64	56.00	-22.36
10	N	1.6125	9.90	AVG	10.04	19.94	46.00	-26.06
11	N	13.1439	26.23	QP	10.18	36.41	60.00	-23.59
12	N	13.1439	20.82	AVG	10.18	31.00	50.00	-19.00

Test Report No.	17070148-FCC-R2
Page	16 of 47

6.3 Radiated Spurious Emissions

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	December 12, 2017
Tested By:	Loren Luo

Requirement(s):

Spec	Requirement						Applicable
	The emissions from the Low-power radio-frequency devices shall not exceed						
	the field strength levels specified in the following table and the level of any						
	unwa	anted emissions sh	nall not exceed the	e level of	the fundamental emission	on.	
	The	tighter limit applies	at the band edge	es.			
	The	field strength of en	nissions from inte	ntional ra	adiators operated within		
	these	e frequency bands	shall comply with	the follo	wing:	,	
		- -undamental	Field streng	th of	Field strength of		
			fundamen	tal	harmonics		
		frequency	(millivolts/meter)		(microvolts/meter)		
	9	902- 928 MHz	50		500		
§15.209,	240	00- 2483.5 MHz	50		500		
§15.205,	57	725– 5875 MHz	50		500		~
§15.249(a) &	24	1.0- 24.25 GHz	250		2500		
§15.249(d)	(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.						
		Frequency r	ange (MHz)	Fie	ld Strength (μV/m)		
		0.009~	0.490	2400/F(KHz)			
		0.490~	1.705	24000/F(KHz)			
		1.705 [,]	~30.0	30			
		30 –	88	100			
		88 –	216	150			
		216	960		200		
		Above	960		500		

Test Report No.	17070148-FCC-R2
Page	17 of 47

- Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function
- For emission frequencies measured below 1GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1GHZ, a pre-scan also be performed with a meter measuring distance before final test.

Procedure

- For emission frequencies measured below and above 1GHz, set the spectrum analyzer on a 100kHz and 1MHz resolution bandwidth respectively for each frequency measured in step 2.
- The search antenna is to be raised and lowered over a range from 1 to 4m in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, the change the orientation of EUT on the test table over a range from 0 to 360°. With a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer.

Test Report No.	17070148-FCC-R2
Page	18 of 47

	Vary the an	tenna position again and record the highest value as a final reading.
	- Repeat ster	4 until all frequencies need to be measured was complete.
	- Repeat ster	5 with search antenna in vertical polarized orientations.
Remark		
Result	Pass	Fail
Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	N/A

Test Report No.	17070148-FCC-R2
Page	19 of 47

Test Result:

Test Mode: Transmitting Mode

Frequency range: 9KHz - 30MHz

Freq.	Detection	Factor	Reading	Result	Limit@3m	Margin
(MHz)	value	(dB/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
						>20
						>20

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Test Report No.	17070148-FCC-R2
Page	20 of 47

30MHz -1GHz

Vertical Polarity Plot @3m

No.	P/L	Frequency	Reading	Detect	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
		(MHz)	(dBuV/m)	or	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	Н	102.0014	33.45	peak	10.75	22.32	1.13	23.01	43.50	-20.49	100	97
2	Н	67.4382	34.88	peak	7.67	22.39	0.93	21.09	40.00	-18.91	100	145
3	Н	233.3487	38.48	peak	11.63	22.32	1.65	29.44	46.00	-16.56	100	317
4	Н	193.7728	36.59	peak	11.76	22.34	1.54	27.55	43.50	-15.95	100	277
5	Н	400.4319	32.42	peak	15.71	22.01	2.01	28.13	46.00	-17.87	100	359
6	Н	323.3204	33.73	peak	14.09	22.22	1.91	27.51	46.00	-18.49	100	45

Test Report No.	17070148-FCC-R2
Page	21 of 47

30MHz -1GHz

Test Data

Horizontal Polarity Plot @3m

N	P/	Frequency	Reading	Detect	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr
О.	L			or								ee
		(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	()
1	٧	55.4147	39.70	peak	7.80	22.40	0.78	25.88	40.00	-14.12	100	257
2	٧	166.0680	32.88	peak	12.11	22.26	1.37	24.10	43.50	-19.40	100	85
3	٧	323.3204	35.54	peak	14.09	22.22	1.91	29.32	46.00	-16.68	100	250
4	<	232.5318	35.61	peak	11.64	22.32	1.64	26.57	46.00	-19.43	100	77
5	٧	131.7577	31.63	peak	13.14	22.39	1.21	23.59	43.50	-19.91	100	339
6	V	95.7622	32.46	peak	9.38	22.32	1.01	20.53	43.50	-22.97	200	325

Test Report No.	17070148-FCC-R2
Page	22 of 47

Above 1GHz

Test Mode: 2.4G Mode

Low Channel (2404 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4808	38.17	AV	V	33.39	7.22	48.46	30.32	54	-23.68
4808	37.66	AV	Н	33.39	7.22	48.46	29.81	54	-24.19
4808	46.82	PK	V	33.39	7.22	48.46	38.97	74	-35.03
4808	46.44	PK	Н	33.39	7.22	48.46	38.59	74	-35.41
6348	23.77	AV	V	35.52	7.83	48.71	18.41	54	-35.59
6348	25.11	AV	Н	35.52	7.83	48.71	19.75	54	-34.25
6348	42.18	PK	V	35.52	7.83	48.71	36.82	74	-37.18
6348	41.69	PK	Н	35.52	7.83	48.71	36.33	74	-37.67

Middle Channel (2442 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4884	38.08	AV	V	33.62	7.53	48.36	30.87	54	-23.13
4884	38.77	AV	Н	33.62	7.53	48.36	31.56	54	-22.44
4884	47.08	PK	V	33.62	7.53	48.36	39.87	74	-34.13
4884	46.57	PK	Н	33.62	7.53	48.36	39.36	74	-34.64
10912	24.32	AV	V	39.57	10.98	47.08	27.79	54	-26.21
10912	25.51	AV	Н	39.57	10.98	47.08	28.98	54	-25.02
10912	42.64	PK	V	39.57	10.98	47.08	46.11	74	-27.89
10912	40.48	PK	Н	39.57	10.98	47.08	43.95	74	-30.05

Test Report No.	17070148-FCC-R2
Page	23 of 47

High Channel (2477 MHz)

Frequency (MHz)	S.A. Reading (dBµV)	Detector (PK/AV)	Polarity (H/V)	Ant. Factor (dB/m)	Cable Loss (dB)	Pre- Amp. Gain (dB)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4954	36.79	AV	V	33.89	7.86	48.31	30.23	54	-23.77
4954	38.15	AV	Н	33.89	7.86	48.31	31.59	54	-22.41
4954	47.9	PK	V	33.89	7.86	48.31	41.34	74	-32.66
4954	46.96	PK	Н	33.89	7.86	48.31	40.4	74	-33.6
17804	24.75	AV	V	41.99	17.02	46.02	37.74	54	-16.26
17804	24.56	AV	Н	41.99	17.02	46.02	37.55	54	-16.45
17804	41.44	PK	V	41.99	17.02	46.02	54.43	74	-19.57
17804	41.06	PK	Н	41.99	17.02	46.02	54.05	74	-19.95

Note:

- 1, The testing has been conformed to 10*2477MHz=24,770MHz
- 2, All other emissions more than 30 dB below the limit
- 3, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.
- 4, The radiated spurious test above 18GHz is subcontracted to SIEMIC (Nanjing-China) Laboratories. and found 30dB below the limit at least.

Test Report No.	17070148-FCC-R2
Page	24 of 47

6.4 Field Strength Measurement

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	December 12, 2017
Tested By :	Loren Luo

Requirement(s):

Spec	Requirement			Applicable
§15.249(a)	Fundamental frequency	Field strength of fundamental (millivolts/ meter)	Field strength of harmonics (microvolts/ meter)	>
	902–928 MHz 2400–2483.5 MHz 5725–5875 MHz 24.0–24.25 GHz	50 50 50 250	500 500 500 2500	
Test Setup	Spectrum Analyzer EUT			
	Emissions radiated outside of the specified frequency bands, except for			
Test	harmonics, shall be attenuated by at least 50 dB below the level of the			
Procedure	fundamental or to the general radiated emission limits in § 15.209,			
	whichever is the lesser attenuation.			
Remark				
Result	Pass Fail			

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	17070148-FCC-R2
Page	25 of 47

Field Strength Measurement

P/L	Frequency	Reading Level	Correct Factor	Measureme nt	Limit	Over	Detector
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB/m)	(dB)	
Н	2404	112.73	-18.04	94.69	114	-19.31	peak
Н	2404	94.36	-18.04	76.32	94	-17.68	AVG
V	2404	106.85	-18.04	88.81	114	-25.19	peak
V	2404	94.21	-18.04	76.17	94	-17.83	AVG
Н	2442	113.23	-18.06	95.17	114	-18.83	peak
Н	2442	95.37	-18.06	77.31	94	-16.69	AVG
V	2442	107.98	-18.06	89.92	114	-24.08	peak
V	2442	94.15	-18.06	76.09	94	-17.91	AVG
Н	2477	107.38	-18.02	89.36	114	-24.64	peak
Н	2477	94.54	-18.02	76.52	94	-17.48	AVG
V	2477	109.8	-18.02	91.78	114	-22.22	peak
V	2477	94.01	-18.02	75.99	94	-18.01	AVG

Test Report No.	17070148-FCC-R2
Page	26 of 47

6.5 20dB Bandwidth Testing

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1015mbar
Test date :	December 07, 2017
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable	
§15.215(c)	a)	Radiated Emissions Measurement Uncertainty All test measurements carried out are traceable to		
		national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz – 1GHz (3m & 10m) & 1GHz above (3m) is +5.6/-4.5dB.		
Test Setup		Spectrum Analyzer EUT		
Test Procedure	-	-Check the calibration of the measuring instrument using internal calibrator or a known signal from an external ger Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to convenient frequency within its operating range. Set a relevel on the measuring instrument equal to the highest publication of two frequencies that attenuated 20 dB from the reference level. Record the fred difference as the emission bandwidth. Repeat above procedures until all frequencies measured complete.	nerator. o any one ference eak value. t were equency	
Remark				

Test Report No.	17070148-FCC-R2
Page	27 of 47

Resul	t Pass	Fail
Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

20dB Bandwidth measurement result

СН	Fundamental Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2404	0.482	Pass
Middle	2442	0.359	Pass
High	2477	0.464	Pass

Test Plots

20dB Bandwidth measurement result

Test Report No.	17070148-FCC-R2
Page	28 of 47

6.6 Band Edge

Temperature	25°C
Relative Humidity	53%
Atmospheric Pressure	1010mbar
Test date :	December 12, 2017
Tested By :	Loren Luo

Spec	Item	Requirement	Applicable
§15.249(d)	a)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.	>
Test Setup		Spectrum Analyzer EUT	
Test Procedure		Check the calibration of the measuring instrument using eith internal calibrator or a known signal from an external general Position the EUT without connection to measurement instrument on the Rotated table and turn on the EUT and make it operator transmitting mode. Then set it to Low Channel and High Chaits operating range, and make sure the instrument is operator range. Set both RBW and VBW of spectrum analyzer to 1MHz. Measure the highest amplitude appearing on spectral displace as a reference level. Plot the graph with marking the highest edge frequency. Repeat above procedures until all measured frequencies we	tor. ment. Put it te in annel within ed in its linear ay and set it point and
Remark			
Result	Pas	ss Fail	

Test Report No.	17070148-FCC-R2
Page	29 of 47

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	□ _{N/A}

Test Report No.	17070148-FCC-R2
Page	30 of 47

Test Plots Band Edge measurement result

Note: Both Horizontal and vertical polarities were investigated.

Test Report No.	17070148-FCC-R2
Page	31 of 47

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted					
EMI test receiver	ESCS30	8471241027	09/15/2017	09/14/2018	>
Line Impedance	LI-125A	191106	09/23/2017	09/22/2018	~
Line Impedance	LI-125A	191107	09/23/2017	09/22/2018	~
ISN	ISN T800	34373	09/23/2017	09/22/2018	~
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/22/2017	09/21/2018	V
Transient Limiter	LIT-153	531118	08/30/2017	08/29/2018	>
RF conducted test					
Agilent ESA-E SERIES	E4407B	MY45108319	09/15/2017	09/14/2018	>
Power Splitter	1#	1#	08/30/2017	08/29/2018	~
DC Power Supply	E3640A	MY40004013	09/15/2017	09/14/2018	~
Radiated Emissions			ı		
EMI test receiver	ESL6	100262	09/15/2017	09/14/2018	~
Positioning Controller	UC3000	MF780208282	11/17/2017	11/16/2018	~
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/30/2017	08/29/2018	V
Active Antenna (9kHz-30MHz)	AL-130	121031	10/12/2017	10/11/2018	>
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/23/2017	03/22/2018	\
Active Antenna (9kHz-30MHz)	AL-130	121031	10/12/2017	10/11/2018	V
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/19/2017	09/18/2018	>
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/22/2017	09/21/2018	T
Universal Radio Communication Tester	CMU200	121393	09/23/2017	09/22/2018	×

Test Report No.	17070148-FCC-R2
Page	32 of 47

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

EUT - Front View

EUT - Front

Test Report No.	17070148-FCC-R2
Page	33 of 47

EUT - Rear View

EUT - Top View

Test Report No.	17070148-FCC-R2
Page	34 of 47

EUT - Bottom View

EUT - Left View

Test Report No.	17070148-FCC-R2
Page	35 of 47

EUT - Right View

Test Report No.	17070148-FCC-R2	
Page	36 of 47	

Annex B.ii. Photograph: EUT Internal Photo

Cover Off - Top View

Connected Mainboard - Front View

Test Report No.	17070148-FCC-R2	
Page	37 of 47	

Connected Mainboard - Rear View

Mainboard - Front View

Test Report No.	17070148-FCC-R2	
Page	38 of 47	

Mainboard - Rear View

Pulley board - Front View

Test Report No.	17070148-FCC-R2
Page	39 of 47

Pulley board - Rear View

Battery - Front View

Test Report No.	17070148-FCC-R2	
Page	40 of 47	

Battery - Rear View

BT – Antenna View

Test Report No.	17070148-FCC-R2	
Page	41 of 47	

Annex B.iii. Photograph: Test Setup Photo

Conducted Emissions Test Setup Front View

Conducted Emissions Test Setup Side View

Radiated Spurious Emissions Test Setup Below 1GHz

Radiated Spurious Emissions Test Setup Above 1GHz

Test Report No.	17070148-FCC-R2
Page	42 of 47

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Test Report No.	17070148-FCC-R2
Page	43 of 47

Block Configuration Diagram for Radiated Emissions (Below 1GHz).

Test Report No.	17070148-FCC-R2	
Page	44 of 47	

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Test Report No.	17070148-FCC-R2
Page	45 of 47

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
Lenovo	Laptop	E40	LR-1EHRX
GOLDWEB	Router	R102	1202032094
Lenovo	AC Adapter	42T4416	21D9JU
HP	Printer	VCVRA-1003	CN36M19JWX
DELL	Mouse	E100	912NMTUT41481
BULL	Socket	GN-403	GN201203

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	2m	N/A
USB Cable	Un-shielding	No	2m	N/A
RJ45 Cable	Un-shielding	No	2m	N/A
Router Power cable	Un-shielding	No	2m	N/A
Printer Power cable	Un-shielding	No	2m	N/A
Power Cable	Un-shielding	No	0.8m	N/A

Test Report No.	17070148-FCC-R2
Page	46 of 47

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Test Report No.	17070148-FCC-R2
Page	47 of 47

Annex E. DECLARATION OF SIMILARITY

3D Connexion

To: SIEMIC

Declaration Letter

Dear Sir,

For our business issue and marketing requirement, we would like to list serial model numbers on The CE reports, as following:

Model No: 3DX-600054
Serial Model No: 3DX-700062
Trade Name: 3Dconnexion

We declare that: 3DX-600054, 3DX-700062 all models the same PCB and Appearance shape, accessories, the difference of these is listed as below:

Main Model No	Serial Model No	Difference
3DX-600054	3DX-700062	3DX-600054 is Product model 3DX-700062 is Market model

Thank you!

Sincerely,

The state of the s

Client's signature :

Client's name: Xiaobing. lin

Title: Manager Date:10/27/2017

Contact information : 3Dconnexion Address : 33,Rue du Portier,9800 Monaco.