# Practical examples of writing programs and proving theorems in Idris.

Donovan Crichton

January 2020

## **Preliminaries**

# Propositional Logic

- Concerned with statements of verifiable facts.
- Used daily by programmers when reasoning about Boolean values.

| Symbol            | Meaning              | Example                          |
|-------------------|----------------------|----------------------------------|
| T, F              | True, False          | Boolean values.                  |
| p, q, r,          | Propositions         | Let $p = $ "It is raining."      |
| _                 | Negation (Not)       | $\neg p$                         |
| $\wedge$          | Conjuction (And)     | $p \wedge q$                     |
| V                 | Disjunction (Or)     | $p \lor q$                       |
| $\rightarrow$     | Implication (If)     | $	extit{p}  ightarrow 	extit{q}$ |
| $\leftrightarrow$ | Bi Implication (Iff) | $p \leftrightarrow q$            |
| ≡                 | Equivalence          | $p\equiv q$                      |
| Т                 | Tautology            | $p \vee \neg p \equiv \top$      |
|                   | Contradiction        | $p \wedge  eg p \equiv ot$       |

## **Definitions of Connectives**

## Conjunction (And)

| р | q | $p \wedge q$ |
|---|---|--------------|
| Т | Т | Т            |
| Т | F | F            |
| F | Т | F            |
| F | F | F            |

## Disjunction (Or)

| р | q | $p \lor q$ |  |  |
|---|---|------------|--|--|
| Т | Т | Т          |  |  |
| Т | F | Т          |  |  |
| F | Т | Т          |  |  |
| F | F | F          |  |  |

## Negation (Not)

| ricgation (i |          |  |  |
|--------------|----------|--|--|
| p            | $\neg p$ |  |  |
| Т            | F        |  |  |
| F            | Т        |  |  |
| Г            | I        |  |  |

### Implication (If)

| p | q | p 	o q |
|---|---|--------|
| Т | Т | Т      |
| Т | F | F      |
| F | Т | T      |
| F | F | Т      |

Bi Implication (Iff)

|   | • | •                     |
|---|---|-----------------------|
| р | q | $p \leftrightarrow q$ |
| Т | Т | Т                     |
| Τ | F | F                     |
| F | Т | F                     |
| F | F | Т                     |

## Logical Equivalence

| p | q | $p \equiv q$ |  |
|---|---|--------------|--|
| T | Т | Т            |  |
| T | F | F            |  |
| F | Т | F            |  |
| F | F | Т            |  |

# **Proof Techniques**

By Exhaustion

Idea: Prove by enumerating all possible cases.

Prove:  $(\neg p \lor q) \leftrightarrow (p \rightarrow q)$ .

|   |   |          | 1) (1           | • • • • • • • • • • • • • • • • • • • • |                                             |
|---|---|----------|-----------------|-----------------------------------------|---------------------------------------------|
| p | q | $\neg p$ | $\neg p \lor q$ | p 	o q                                  | $(\lnot p \lor q) \leftrightarrow (p 	o q)$ |
| Т | Т | F        | Т               | Т                                       | Т                                           |
| Т | F | F        | F               | F                                       | T                                           |
| F | Т | Т        | Т               | Т                                       | T                                           |
| F | F | Т        | Т               | Т                                       | Т                                           |

## **Proof Techniques**

#### By Appeal to Lemma

Idea: Introduce pre-proven smaller proofs (called a Lemma) to prove a larger proof.

- ▶ Lemma 1.  $p \lor \neg p \equiv \top$ .
- ▶ Lemma 2.  $(p \equiv q) \equiv (p \leftrightarrow q)$ .

Prove: 
$$(p \leftrightarrow q) \lor \neg (p \equiv q) \leftrightarrow \top$$
.

Premise.

Lemma 2.

Lemma 1.



# First Order (or Predicate) Logic

Extends propositional logic from reasoning about propositions to reasoning about sets.

| Symbol                           | Meaning                | Example                  |  |
|----------------------------------|------------------------|--------------------------|--|
| X, Y, Z,                         | Set Variables          | Let $Y = \{2, 3, 4\}$ .  |  |
| <i>x</i> , <i>y</i> , <i>z</i> , | Member Variables       | Let $z=2$ .              |  |
| $P(x), Q(y), \dots$              | Predicate Variables    | Let $Q(y) = y > 1$ .     |  |
| $\forall x \in X, P(x)$          | Universal Quantifier   | $\forall y \in Y, Q(y)$  |  |
| $\exists x \in X, P(x)$          | Existential Quantifier | $\exists z \in Y, z = 2$ |  |

## **Proof Techniques**

#### Induction

- Allows us to prove that a property P(x) holds  $\forall x \in X$ . Provided X is well-founded.
- Informally well-founded means "no infinite decreasing chains".

Prove:  $\forall n \in \mathbb{N} (\exists y \in \mathbb{N}, y = n + 1)$ 

$$y=0+1$$
 Base Case.  $n=0$   $=1$ 

$$y = (k+1)+1$$
 Inductive Step.  $n = k+1$   
=  $k+2$ 

# Why should I care?

- Types are just sets with flavour!
- **▶ Bool** = { *True*, *False*}
- ▶ Int =  $\{-\infty, ..., -2, -1, 0, 1, 2, 3, ..., \infty\}$
- Mixing of flavours is not allowed!
- ► { True, -2," Hello", 1} Can really only be said to be a "thing" flavoured set.

# Propositions as Types. Proofs as Programs

- ► The Curry-Howard-Lambeck correspondence is well known amongst Haskell programmers for the correspondence between categories and programming.
- ▶ The correspondence with logic is less often discussed.
- Holds for any language that is based on a typed lambda calculus.

Idea: A type is a propostion.

## What is Truth?

Propositional Logic and Predicate Logic consider truth to be the Boolean value "True". These logics also have a notion of vacuous truth.

| p | q | p 	o q |
|---|---|--------|
| Т | Т | T      |
| Т | F | F      |
| F | Т | T      |
| F | F | Т      |

In Predicate Logic:  $\forall x \in \{\}P(x)$  is also true.

- If a type is a proposition, what does it mean for it to be true?
- A type is true iff it is inhabited with a value.

# Curry-Howard in Idris

| Logic Term  | Logic Symbol                      | Idris Symbol     | Idris Type     |
|-------------|-----------------------------------|------------------|----------------|
| Implication | $p\Rightarrowq$                   | p -> q           | Arrow          |
| Conjunction | p ∧ q                             | (p, q)           | Pair (Product) |
| Disjunction | p∨q                               | Either p q       | Enum (Sum)     |
| Negation    | ¬ p                               | p -> Void        | Void Type      |
| IFF/Eq      | $p \Leftrightarrow q, p \equiv q$ | (p -> q, q -> p) | Pair Arrows    |
| Universal   | ∀ x. P x                          | р -> Туре        | П Туре         |
| Existential | ∃ x. P x                          | (x ** P x)       | Σ Type         |
| =           | =                                 | p = q            | Type Equality  |
| Т           | True                              | ()               | Unit Type      |
| $\perp$     | False                             | Void             | Uninhabited    |

## **Natural Numbers**

Let  $\mathbb N$  denote the set of natural numbers where:

- 1. Zero (0) is a natural number.
- 2. If k is a natural number, then the successor of k is also a natural number.

```
data Nat : Type where
  Z : Nat
  S : (k : Nat) -> Nat
```

- Nat : Type is the type constructor.
- **S** and **K** are the value constructors.

# Proving commutativity on addition in Idris

```
(+) : Nat -> Nat -> Nat
Z + y = Z
(S k) + y = S (k + y)
\forall x, y \in \mathbb{N}.x + y = y + x
plusIsCommutative : (x, y : Nat) \rightarrow x + y = y + x
plusIsCommutative x y = ?what \frac{x,y:Nat}{what:x+v=v+x}
plusIsCommutative : (x, y : Nat) \rightarrow x + y = y + x
plusIsCommutative Z y = ?t1 \frac{x,y:Nat}{t1:v=v+7}
plusIsCommutative (S k) y = ?t2 \frac{x,y:Nat}{t?:S(k+v)=v+(S,k)}
```