$\mathcal{Q}(14 \text{ points})$ For the following data.

y	-16.55	-19.62	-17.25	-12.80	-8.00	-19.75	-6.83	-12.02	-11.91	-19.93	-1.33	-20.00	-28.00	-15.00
x	2.29	2.79	2.42	1.74	1.35	2.87	1.03	1.79	1.68	2.74	0.09	1.70	4.00	4.30

Apply SAS to work on the following, code and output and explanation all requested.

- 1. (2 points) plot the scatter plot y vs x, and specify suspect outliers and/or influential points on the
- 2. (2 points) detect any outliers with respect to x using the leverage value.
- 3. (2 points) detect any outliers with respect to y using the R student. Use the criterion $t_{0.025}^{(n-k-1)}$.
- 4. (1 points) Is there any points, x_i , which would substantially change the point prediction \hat{y}_i if it is removed from the data set? Use the larger criterion 2.
- (3 points) detect any influential points using Cook's distance measure.
- 6. (1 points) Is there any points which would substantially change the β_1 if it is removed from the data set? Use the larger criterion 2.
- 7. (3 points) Is there any points which would significantly damage or enhance the precision of the least square estimates?