Temporal Fuzzy Association Rules Mining Based on Fuzzy Information Granulation

Zebang Li, Fan Bu, Fusheng Yu

Beijing Normal University School of Mathematical Science

zebang@mail.bnu.edu.cn

July 28, 2017

Contents

- Introduction
- Prerequisites
- Temporal Fuzzy Association Rule
- Experimental Study
- Conclusion

Introduction

Work Flow of Our Work

Introduction

Work Flow of Our Work

Fuzzy Information Granulation

Temporal Fuzzy Association Rule Mining

Fuzzy C-means for granular series

Association Rule

Association Rule Mining forms an important research area in the field of data mining.

Association Rule $A \rightarrow B$: If A occurred then B will occur.

Temporal Association Rule $A \xrightarrow{T} B$: If A occurred then B will occur after T.

Fuzzy Association Rule: A and B are fuzzy items.

Fuzzy Information Granule

Gaussian Fuzzy Information Granule

$$f(x; \mu, \sigma) = \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

where μ and σ represent the center(core) and spread of this fuzzy number.

Linear Gaussian Fuzzy Information Granule

$$f(x; kt + b, \sigma) = \exp\left(-\frac{\left(x - (kt + b)\right)^2}{2\sigma^2}\right), \qquad t \in [0, T],$$

where $\mu(t) = kt + b$ is a time-dependent core line, $k, b \in \mathbf{R}$ represent the slope and intercept of the core line respectively.

Fuzzy C-Means for Granular Time Series

A finite collection of N Granulars is described as $T = \{t_1, t_2, t_3, \cdots, t_N\}$ and collection of m cluster centers is denoted $Y = \{y_1, y_2, \cdots, y_m\}$.

The fuzzy partition matrix is U,

where $u_{ij} = t_i(y_j)$ is the membership degree of granule t_i to cluster y_j , $i \in \{1,2,\dots,N\}$, $j \in \{1,2,\dots,m\}$.

Support Rate of Fuzzy Association Rule

Table: Salary Database and Fuzzy Clustering

Salary	Fuzzy Cluster			
Salary	High	Middle	Low	
S1=5000	0.21	0.29	0.50	
S2=15000	0.41	0.41	0.18	
S3=10000	0.26	0.48	0.26	
S4=20000	0.52	0.41	0.07	
S5=2000	0.08	0.17	0.75	

 $T = \{S1, S2, S3, S4, S5\}$ is a transaction set of salary.

 $Y = \{"High", "Middle", "Low"\}$ is the fuzzy cluster.

For any sub set of $Y, Y' = \{y_1, y_2, \dots, y_p\}$, $y_i \in Y$, the fuzzy support rate of Y' is defined as

$$sup(Y') = \frac{\sum_{j=1}^{n} \prod_{m=1}^{p} t_{j}(y_{m})}{n},$$

where n and p are the number of elements in transaction set T and item set Y'.

Support Rate of Fuzzy Association Rule

Table: Salary Database and Fuzzy Clustering

Salany	Fuzzy Cluster			
Salary	High	Middle	Low	
S1=5000	0.21	0.29	0.50	
S2=15000	0.41	0.41	0.18	
S3=10000	0.26	0.48	0.26	
S4=20000	0.52	0.41	0.07	
S5=2000	0.08	0.17	0.75	

Then fuzzy support rate of association rule $Y_1 \rightarrow Y_2$ is,

$$sup(Y_1 \to Y_2) = \frac{\sum_{j=1}^n \prod_{m=1}^{p+q} t_j(y_m)}{n}$$

In this case, n = 5 and p = 3.

Support Rate of Fuzzy Association Rule

Table: Temporal Salary Database and Fuzzy Clustering

Salary	Fuzzy Cluster			
Salaly	High	Middle	Low	
T1=5000	0.21	0.29	0.50	
T2=15000	0.41	0.41	0.18	
T3=10000	0.26	0.48	0.26	
T4 =20000	0.52	0.41	0.07	
T5=2000	0.08	0.17	0.75	

In most studies, fuzzy association rules are not focused on time sequences.

Traditional association rules are no longer applicable to temporal data.

Now, for time series, each row of Table is not independent any more. The order of rows in Table represents the order of time.

In this section

We extended the definition of fuzzy association rule from none-sequential to sequential.

We showed that our definition has a very low computation complexity.

For original time series $T = \{x_1, x_2, x_3, \dots, x_N\}$, the granular time series $T' = \{t_1, t_2, t_3, \dots, t_{N-l}\}$ is obtained by equal size granulation of LFIG.

Granular time series $T' = \{t_1, t_2, t_3, \dots, t_{N-l}\}$ is clustered by fuzzy c-means. Based on FCM clustering, partition matrix U is obtained.

Definition 3: For $Y' = \{y_{i_1}, y_{i_2}, \dots, y_{i_p}\}$, fuzzy support rate of Y' is defined as:

$$sup(Y) = \frac{\sum_{k=0}^{n-p} \prod_{j=1}^{j=p} u_{j+k,i_j}}{n-p},$$

where n is total number of granules, $u_{ij} = t_i(y_j)$ is membership degree of granule t_i to cluster y_j .

Association rule learning typically does not consider the order of clusters either within a transaction or across transactions. For time series, each row of the partition matrix *U* is not independent any more. The order of rows in matrix *U* represents the order of time. So in our definition, multiplications of memberships are carried out of each row by time order.

Example - Traditional

Price	Fuzzy Attribute			
	High	Middle	Low	
S1=5000	0.21	0.29	0.50	
S2=15000	0.41	0.41	0.18	
S3=10000	0.26	0.48	0.26	
S4=20000	0.52	0.41	0.07	
S5=2000	0.08	0.17	0.75	

 $T = \{S_1, S_2, S_3, S_4, S_5\}$ is none-sequential dataset.

 $Y = \{"High", "Middle", "Low"\}$ is fuzzy cluster.

Fuzzy support rate of $Y' = \{y_1, y_2, \dots, y_p\}$, $y_i \in Y$, defined as:

$$sup(Y') = \frac{\sum_{j=1}^{n} \prod_{m=1}^{p} S_j(y_m)}{n}$$

Example - Traditional

Price	Fuzzy Attribute			
	High	Middle	Low	
S1=5000	0.21—	<u> </u>	0.50	
S2=15000	0.41	0.41	0.18	
S3=10000	0.26	0.48	0.26	
S4=20000	0.52	 0.41	0.07	
S5=2000	0.08	 0.17	0.75	

Support rate of $Y' = \{High, Middle\}$ is

$$sup(Y') = \frac{0.21*0.29+0.41*0.41+...+0.08*0.17}{5}$$

Example - Temporal

Price	Fuzzy Attribute			
	High	Middle	Low	
T1=5000	0.21	0.29	0.50	
T2=15000	0.41	0.41	0.18	
T3=10000	0.26	0.48	0.26	
T4 =20000	0.52	0.41	0.07	
T5 =2000	0.08	0.17	0.75	

Fuzzy pattern $Y' = \{High, Middle\}$ means:

The first 'day' is High and the second 'day' is Middle.

Example - Temporal

Price	Fuzzy Attribute			
PIICE	High	Middle	Low	
T1=5000	=5000 0.21 0.29		0.50	
T2=15000	0.41	0.41	0.18	
T3=10000	0.26	0.48	0.26	
T4 =20000	0.52	0.41	0.07	
T5=2000	0.08	0.17	0.75	

$$Y' = \{High, Middle\}$$
, fuzzy support rate is

$$sup(Y') = \frac{0.21*0.41+0.41*0.48+...+0.52*0.17}{5}$$

Example - Temporal

$$Y' = \{High, Middle\}$$
, fuzzy support rate is

$$sup(Y') = \frac{0.21*0.41+0.41*0.48+...+0.52*0.17}{5}$$

Discontinuous Temporal Fuzzy Item Set

Discontinuous temporal fuzzy item set $DY = \{Y_1 \xrightarrow{T_1} Y_2 \xrightarrow{T_2} Y_3 \xrightarrow{T_3} \cdots \xrightarrow{T_{c-1}} Y_c\}, T_i \neq 0, i \in \{1, \dots, c-1\}, \text{ where}$

$$Y_{1} = \{x_{1}^{1}, x_{2}^{1}, \dots, x_{p_{1}}^{1}\},\$$

$$Y_{2} = \{x_{1}^{2}, x_{2}^{2}, \dots, x_{p_{2}}^{2}\},\$$

$$\dots,\$$

$$Y_{c} = \{x_{1}^{c}, x_{2}^{c}, \dots, x_{p_{c}}^{c}\},\$$

are all consecutive item sets, $x_i^j \in Y = \{y_1, y_2, \dots, y_m\}.$

Definition 5: For discontinues temporal fuzzy item set DY =

 $\{Y_1 \xrightarrow{T_1} Y_2 \xrightarrow{T_2} Y_3 \xrightarrow{T_3} \cdots \xrightarrow{T_{c-1}} Y_c\}$, the fuzzy support rate of *DY* is defined as:

$$sup(DY) = \frac{\sum_{k=0}^{n-(p_1+p_2+\cdots p_c)} \max_{0 \le t_i \le T_i, 1 \le i \le c-1} (\prod_{i=1}^c \prod_{j=1}^{p_i} u)}{n - (p_1 + p_2 + \cdots + p_c)},$$

$$u = t_{k+(t_1+p_1)+\cdots+(t_{i-1}+p_{i-1})+j}(x_j^i).$$

where $t_i(x_j^i) = u_{ij}$ is the membership degree of granule t_i to cluster $x_i^j \in Y = \{y_1, y_2, \dots, y_m\}$.

Discontinuous Temporal Fuzzy Item Set

Example – Discontinuous Rules

Complexity

Compute support rate in such definition is a Dynamic Programming.

- a) So that for a given $Y' = \{y_{i_1}, y_{i_2}, \dots, y_{i_k}\}$ and position p, we only need do 1 multiply operation to figure out $Fsup[y_{i_1}y_{i_2}\cdots y_{i_k}][p]$.
- b) Accordingly, for a given $Y = \{y_{i_1}, y_{i_2}, \dots, y_{i_k}\}$, we only need do $n i_k \approx n$ multiply operations to figure out $\sup (y_{i_1} y_{i_2} \dots y_{i_k})$.
- c) Then, for discontinues item set $DY = \{Y_1 \xrightarrow{T_1} Y_2 \xrightarrow{T_2} Y_3 \xrightarrow{T_3} \cdots \xrightarrow{T_{c-1}} Y_c\}$, we only need do $n \cdot T_1 \cdot T_2 \cdots T_{c-1}$ multiply operations to figure out sup(DY).

The Mean Daily Temperature,

Fisher River near Dallas, Jan 01, 1988 to Dec 31, 1991

Four Clusters Based on LFIG

- (a) the 1-st center A1
- (b) the 2-nd center A2
- (c) the 3-rd center A3
- (d) the 4-th center A4

Rules with Consecutive Sets

Rule		fuzzy association rules			
		antecedent	consequent	Support	Confidence
1		$A_4A_2A_3A_1$	A_4	0.1583	0.9796
2		$A_2A_3A_1$	A_4	0.1682	0.9792
3		A_3A_1	A_4	0.2059	0.9790
4		$A_4A_2A_3$	A_1	0.1659	0.9790
5		$A_1A_4A_2A_3$	A_1	0.1591	0.9760
6		A_2A_3	A_1	0.2215	0.9759
7		A_3A_1	A_1A_4	0.2213	0.9750
8		$A_1A_4A_2$	A_3	0.2036	0.9657

Rules with Discontinues Sets

Rule		fuzzy association rules			
		antecedent	consequent	Support	Confidence
1		$A_1 \xrightarrow{T \le 276} A_3$	A_1A_4	0.2135	0.9656
2		$A_1 \xrightarrow{T \le 184} A_4$	A_2	0.2319	0.9154
3		$A_1 \xrightarrow{T \le 184} A_2$	A_3	0.1987	0.9471
4		$A_3 \xrightarrow{T \le 184} A_4$	A_2	0.2285	0.9540
5		$A_3 \xrightarrow{T \le 184} A_4$	A_2A_3	0.2275	0.9530
6		$A_4 \xrightarrow{T \le 184} A_3$	A_1	0.2136	0.9854
7		$A_4 \xrightarrow{T \le 184} A_3 A_1$	A_4A_2	0.1977	0.9357
8		$A_2 \xrightarrow{T \le 184} A_1$	A_4A_2	0.2163	0.9983

Visualization of Association Rules

Rule $A4-A2-A3-A1 \stackrel{T}{\Rightarrow} A4$

Rule $A4-A3-A1 \stackrel{T}{\Rightarrow} A4-A2$

