Lecture 04: Models and Numbers

Sierra College CSCI-12 Spring 2015 Weds 02/04/15

Announcements

Schedule

- Spring Add/Drop/Refund deadline is THIS Sunday 2/8
 - If no assignments are submitted by this deadline, I will consider this as a nocontinue decision on your part, and will instructor-drop you from the course

Past due assignments

- HW02: Canvas Intro, accepted thru Tues 2/10 @ 11pm (do ALL 3 parts!)
- LAB02: Hello World, accepted thru Tues 2/10 @ 11pm

Current assignments

HW03: Why Code, due Fri 2/6 @ 11pm

New assignments

- LAB04: Hello Again, due Tues 2/10 @ 11pm
 - We went thru this in class on Monday
 - Lab time today to complete this
 - Refactor Hello World into a more O-O structure

Lecture Topics

Last time:

- Hello World recap
- Demo on refactoring Hello World into object-oriented version

Today:

- Models
- Number systems
- Number conversions

Why Do We Care About Computers?

- Because they are absolutely pervasive in modern-day society, and central to our 21st century economy!
- Science, technology, defense, communications, utilities, commerce, finance, transportation, farming, manufacturing, education, entertainment, ...
 - Can you name a field today that DOES NOT involve computers??
- **But**, for all their importance, computers are:
 - Blindingly fast, but yet also in some sense... "stupid"
 - Only able to do what they've been instructed to do
 - Only able to understand specific instructions, expressed exclusively in patterns of 1s and 0s
 - This is programming: but, what is it??

What Is Programming?

- Programming is the science/art of describing, in very specific terms, WHAT you want done, in such terms that the computer itself can understand and execute
- To some extent, to program a computer effectively, we must have some working understanding of a computer on its own terms
- Two ways of doing this (for us):
 - Models
 - Numbers

What's a Model?

- Models are just one tool in a software developer's toolkit
- A model is an abstraction (or a simplification, or a generalization) of reality
- Models are a big-picture understanding of some system, with some details sacrificed for the larger goal of more clarity and better understanding
- Models describe general, or idealized behavior, without getting too bogged down by all the details
- Models are frequently expressed visually, via diagrams
- "Everything should be made as simple as possible, but no simpler" - often attributed to Albert Einstein

Example: Model of an Aircraft

National Aeronautics and Space Administration

Four Forces on an Airplane

Examples of Models

- Physics/engineering: free-body diagrams, circuit diagrams
- Engineering simulation: wind tunnels, anechoic chambers, shaker tables
- Chemistry: complex molecules as "balls and sticks" (atoms and bonds)
- Meteorology: weather forecasting from atmospheric models
- Economics: economic models
 - (People win Nobel prizes for this stuff!)
- Ecology: predator-prey population models
- And on and on and on...
 - <u>http://en.wikipedia.org/wiki/Model</u> (see Canvas lecture module)

Computing Models

- There are a handful of models which are most pertinent to our study of programming
- These appear at various places throughout your textbook
 - Hopefully they are familiar from CS-10
- These models are*:
 - The standard computer model
 - The layered computer model
 - The memory model
 - The black box model
 - The UML Class model

^{*} There may be multiple alternate terms for such models, but we'll use these terms

Standard Computer Model

- First off, there is no "standard" version of this!
 - This is the version shown in your textbook
 - MANY other depictions exist, see
 Canvas lecture module links for:
 - Von Neumann architecture
 - Harvard architecture
- As with any model, this is just an idealization
 - No real computer "looks" just like this
 - Tries to capture the "essence", the main elements

Typical Computer Hardware

- CPU
 - Executes the instructions of the program
- Data storage
 - Store instructions and data so program can be loaded into memory and executed
 - Traditionally, hard disk and CD-ROM
 - Nowadays, often web-based or cloud storage
- Main memory
 - Stores the program instructions and data while executing
- Input devices
 - Traditional PCs use keyboard/mouse for data input
 - Nowadays: <u>touch screens</u> for mobile devices
- Output devices
 - Used to display output from a program
 - Output screen, printer, etc.
- Other devices

Layered Computer Model

- Depicts a computer as various "layers"
 - Each layer only interacts with adjacent layers
 - Each layer only knows about the adjacent layers
 - Increased detail going DOWN
 - Increased simplification going UP
- Hardware
 - Microprocessor
 - Ultimately, only understands binary 1's and 0's
- Operating system (OS)
 - A "wrapper" around the hardware (CPU)
 - Provides a uniform interface for all services an application may need
 - Examples: Windows, Mac OS, Linux/UNIX, iOS, Android
- Applications
 - Run upon the stable foundation provided by the OS
 - Generally speaking, shouldn't know or care about the underlying hardware

Roles of the Operating System (OS)

- OS boots when computer is turned on, and runs continuously
- Controls the peripheral devices (disks, keyboard, mouse, etc.)
- Supports multitasking (multiple applications executing simultaneously)
- Allocates memory to each application
- Prevents one application from damaging another application

Memory Model

- For programming purposes, we abstract memory as a linear array of memory cells
 - Each cell has a unique address
 - The addresses are commonly symbolicallynamed (variables)
 - Content is binary bits (1s and 0s)
 - All memory content is one of two things:
 - program instructions
 - · program data
 - Without knowing some <u>context</u>, it is impossible to differentiate the two

Main Memory

Memory Storage

- Memory consists of cells that hold one bit
 - Bit → Binary Digit
- A bit's value can only be 0 or 1
- A byte is (typically) 8 binary digits (bits)
- Storage capacity is expressed using byte prefixes:

```
- Kilobytes [KB] (2^{10} = 1,024 \text{ bytes, or } \sim 1 \text{ thousand})
```

- Megabytes [MB] $(2^{20} = 1,048,576 \text{ bytes, or } \sim 1 \text{ million})$
- Gigabytes [GB] $(2^{30} = 1,073,741,824 \text{ bytes, or } ^1 \text{ billion})$
- Terabytes [TB] $(2^{40} = 1.09951 \times 10^{12} \text{ bytes, or } \sim 1 \text{ trillion})$

Black Box Model

- For programming purposes, we often view individual methods as black boxes
 - Provide specified Inputs
 - Actions are taken upon and/or using those inputs
 - Outputs are returned
 - No visibility into the internal details
- From a user or application standpoint:
 - We don't know or care about internal details if we just want to <u>use</u> this
 - We only care about the internal details if we have to implement them
 - Focused on the <u>what</u>, not the <u>how</u>
 - Want the results to be accurate, repeatable, and delivered in a reasonable time
- If the interface (the inputs/outputs) is clearly specified:
 - The software implementation shell neatly follows
 - We can then focus on the details of the implementation

Black Box Model Example

- We need the sine of an angle
 - I'll give you the angle [degrees]
 - You give me the sine of that angle
- We don't know (or care) how this gets done internally
 - Trig table lookup?
 - Power series expansion?
 - Database query?
 - Google search?
 - Web service?
 - Flying monkeys with an abacus?
- We can easily set up the Java method interface from a black box depiction
 - Set up the shell of the code first
 - Supply the details later


```
public double calculateSine (double x) {
    double sineOfX;

    // the actual implementation details are TBD...

return sineOfX;
}_
```

UML

- UML → Unified Modeling Language
 - "A general-purpose modeling language in the field of software engineering, which is designed to provide a standard way to visualize the design of a system" (Wikipedia)
 - Synthesized others' work in the mid-1990s
 - Became an approved international ISO standard in 2000.
- There are ~15 UML diagram types, but we will only concern ourselves with one particular diagram
 - The UML Class diagram, used to show the structure of software objects

UML Class Diagram

- We have already encountered this model:
 - First lecture, when we talked about software "building blocks"
 - LAB04: Hello Again, where we refactored our code into a "Hello" class
- UML Class Diagrams are used to show the structure of new Java classes
- Three distinct sections
 - Class name
 - Instance variables → data (what is "is")
 - Methods → operations (what it "does")
 - (Formal Java terms → layman's terms)

Numbering Systems: Base 10

```
<u>10<sup>1</sup></u>
                            We are familiar with this numbering system from early school days
                            Also called the decimal system
            2
            3
            4
                            The base is 10
                            There are 10 unique digits [0-9]
            6
            7
            8
                            Each column position, right to left, represents an increasing power (0 to
                            N) of the base 10:
1
            0
                                    (base)^{exponent} \rightarrow (10)^{exponent}
            1
                            Column place values increase <u>right to left</u> by powers of the base (10):
1
                                    10^0 = 1, 10^1 = 10, 10^2 = 100, 10^3 = 1000, ...
            4
1
            5
            6
1
```

and so on...

- When counting, upon running out of digits in one column, we:
 - "roll over"/increment the next column position
 - "zero out" the lower column position
 - continue counting

Base 10 Expanded Notation

- To write a base 10 number in expanded notation:
 - Working from <u>right</u> to <u>left</u>, determine the maximum place value needed, starting from 10⁰
 - Working from <u>left</u> to <u>right</u>, express each decimal digit as the product of that digit times its place value: $a_i * 10^i$
 - Expanded notation is simply the <u>sum</u> of those terms
- Example: convert 2485 to expanded notation
 - Maximum place value needed is 1000, or 10³

2485 =
$$(2 * 10^3) + (4 * 10^2) + (8 * 10^1) + (5 * 10^0) \leftarrow$$
 this is fine
2485 = $(2 * 1000) + (4 * 100) + (8 * 10) + (5 * 1)$
2485 = 2000 + 400 + 80 + 5

Why Not Base 10?

- Base 10 (decimal) is very natural for us humans
- But for computers, "natural" is only two opposite states:
 - true/false
 - high/low
 - on/off
 - yes/no
 - black/white
- This necessitates a whole new bi-state numbering system, based upon solely 0 & 1

Numbering Systems: Base 2

2 ⁴	2 ³	2 ²	2 ¹	2 ⁰				
				0	•	Now we consider a more PC-friendly numbering system, base 2		
				1	• A	Also called binary		
			1	0	• B	Base 2 is used exclusively inside of computers		
			1	1				
		1	0	0	• T	he base is now 2		
		1	0	1	• T	here are only 2 unique bits [0, 1] bit → bi nary digi t		
		1	1	0		<u> </u>		
		1	1	1	• E	ach column position, right to left, represents an increasing power (0		
	1	0	0	0		o N) of the base 2:		
	1	0	0	1		$(base)^{exponent} \rightarrow (2)^{exponent}$		
	1	0	1	0	• 0	Column place values increase <u>right to left</u> by powers of the base (2):		
	1	0	1	1		$2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$,		
	1	1	0	0				
	1	1	0	1	• V	When counting, upon running out of bits in one column, we:		
	1	1	1	0		 – "roll over"/increment the next column position – "zero out" the lower column position 		
	1	1	1	1				
1	0	0	0	0		 continue counting 		
and so on								

- To clearly specify base 2, we often use a 2 subscript:
 - Example: 1101₂

Powers of 2

	<u>Decim</u>	<u>al</u>	<u>Decimal</u>
2 ⁰	1	2 ⁸	256
2 ¹	2	2 ⁹	512
2 ²	4	2 ¹⁰	1,024
2 ³	8	2 ¹¹	2,048
24	16	2 ¹²	4,096
2 ⁵	32	2 ¹³	8,192
2 ⁶	64	2 ¹⁴	16,384
2 ⁷	128	2 ¹⁵	32,768

Binary/Decimal Equivalents

<u>Decimal</u>	<u>Binary</u>
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000

"There are only 10 types of people in the world: Those who understand binary, and those who don't"

Base 2 Expanded Notation

- To write a base 2 number in expanded notation:
 - Working from <u>right</u> to <u>left</u>, determine the maximum place value needed, starting from 2⁰
 - Working from <u>left</u> to <u>right</u>, express each decimal digit as the product of that digit times its place value: $a_i * 2^i$
 - Expanded notation is simply the <u>sum</u> of those terms
- Example: convert 1101 to expanded notation
 - Maximum place value needed is 2³, or 8

1101 =
$$(1 * 2^3) + (1 * 2^2) + (0 * 2^1) + (1 * 2^0) \leftarrow$$
 this is fine
1101 = $(1 * 8) + (1 * 4) + (0 * 2) + (1 * 1)$
1101 = $8 + 4 + 0 + 1 = 13$

Problems With Base 2

- Do you see a problem looming with base 2??
- Binary numbers grow very large, very quickly
 - Computers have no problems with this
 - But humans are very error-prone
 - Long sequences of 1s and 0s are very difficult for us to absorb without making mistakes
 - Here's an arbitrary 32-bit memory address, can you accurately repeat this?

01101001101011001100100111001001

- These issues motivate a new numbering system
 - Retain the underlying binary numbering
 - But consolidate the bits by groups of 4 (shorthand)
 - Better human readability
 - Provides a "compromise" middle ground between binary and base 10

Numbering Systems: Base 16

<u>16¹</u>	16 ⁰ 0 1 2	 Finally, we consider a middle-ground numbering system, base 16 Also called hexadecimal, or just hex Hex is for human visualization of binary, computers still use binary internally
	3 4 5 6	 The base is now 16 There are 16 unique digits [0-9, A-F] Upper or lower case letters are OK, but upper case preferred
	7 8 9 A B C	 Each column position, right to left, represents an increasing power (0 to N) of the base 16: (base)^{exponent} → (16)^{exponent} Column place values increase right to left by powers of the base (16):
1 1 1 and so on	E F O 1 2	 16⁰ = 1, 16¹ = 16, 16² = 256, 16³ = 4096, 16⁴ = 65536, When counting, upon running out of bits in one column, we: "roll over"/increment the next column position "zero out" the lower column position continue counting
		 To clearly specify base 16, we often use either a 16 subscript or a 0x prefix:

Examples: 3F8A₁₆ or 0x3F8A

Powers of 16

	<u>Decimal</u>	<u>Binary</u>
16 ⁰	1	2 ⁰
16 ¹	16	24
16 ²	256	2 ⁸
16 ³	4096	2 ¹²
16 ⁴	65,536	2 ¹⁶

Hex/Decimal/Binary Equivalents

Dec	Hex	Binary	Dec	Hex	Binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	Α	1010
3	3	0011	11	В	1011
4	4	0100	12	C	1100
5	5	0101	13	D	1101
6	6	0110	14	Ε	1110
7	7	0111	15	F	1111

Base 16 Expanded Notation

- To write a base 16 number in expanded notation:
 - Working from <u>right</u> to <u>left</u>, determine the maximum place value needed, starting from 16⁰
 - Working from <u>left</u> to <u>right</u>, express each decimal digit as the product of that digit times its place value: $\mathbf{a_i} * \mathbf{16^i}$
 - Expanded notation is simply the <u>sum</u> of those terms
- Example: convert 0x3F8A to expanded notation
 - Maximum place value needed is 16³, or 4096

0x3F8A = **(3 * 16³) + (F * 16²) + (8 * 16¹) + (A * 16⁰)** ← this is fine
$$0x3F8A = (3 * 4096) + (15 * 256) + (8 * 16) + (10 * 1)$$

0x3F8A = **12,288** + **3840** + **128** + **10** = **16266**

Number Conversions

 Different numbering systems are just different ways of representing the same numerical quantity

$$12 = 12_{10} = 1100_2 = 0x0C = twelve = one dozen$$

 Depending upon the situation, we need to be able to make all the following conversions:

Converting Between Numbering Systems

- Useful to have these at hand first:
 - Decimal/binary/hex patterns out to 16
 - Powers of 2
 - Powers of 16
- Use <u>simple pattern substitution</u> for:
 - binary to hex
 - hex to binary
- Use <u>expanded notation</u> for:
 - binary to decimal
 - hex to decimal
- Use <u>conversion algorithms</u> for:
 - decimal to binary
 - decimal to hex

Binary/Hex Conversions

- These are very straightforward:
 - For binary numbers, <u>left</u>-pad with 0s if needed, and break the number into 4-bit chunks, <u>from right to left</u>
 - Perform straight binary ← → hex <u>pattern substitutions</u> using simple table lookups

Binary number: 0001 1010 1111 1001

Hex equivalent: 1 A F 9

Hex number: B 3 B E

Binary equivalent: 1011 0011 1011 1110

Binary/Hex to Decimal Conversions

 To convert from binary to decimal, or hex to decimal, simply use expanded notation, then fully evaluate:

$$100110_{2} = 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$= 1 \times 32 + 0 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1$$

$$= 32 + 0 + 0 + 4 + 2 + 0$$

$$= 38$$

$$0x14BD = 1 \times 16^{3} + 4 \times 16^{2} + 8 \times 16^{1} + 0 \times 16^{0}$$

$$= 1 \times 4096 + 4 \times 256 + 11 \times 16 + 13 \times 1$$

$$= 4096 + 1024 + 176 + 13$$

$$= 5309$$

Decimal to Binary Conversion Algorithm

- 1) For the decimal number, find the largest power of 2 that is smaller than or equal to the original decimal number
- Subtract that power of 2 from the decimal number, to obtain a remainder
- 3) Find the largest power of 2 that is smaller than or equal to the remainder, and subtract to get a <u>new</u> remainder
- 4) Repeat step 3 until the remainder has been driven to 0
- 5) Express the resulting sum as powers-of-2 terms
- 6) For the resulting sum of power-of-2 terms:
 - a) use a 1 for the coefficient of each power-of-2 term that is present
 - b) use a 0 for the coefficient of each missing power-of-2 term

This is a mouthful! Best seen by an example (next slide)...

Decimal to Binary Conversion Example

```
47 = 32 + 15 left over (and 16 won't fit into 15)
   = 32 + 8 + 7 left over
   = 32 + 8 + 4 + 3 left over
   = 32 + 8 + 4 + 2 + 1 left over
   = 32 + 8 + 4 + 2 + 1 (remainder = 0)
   = 2^5 + 2^3 + 2^2 + 2^1 + 2^0
   = 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ = 101111_2 (answer)
       2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>
```

Note that we have one missing (0) coefficient in this example

Decimal to Hex Conversion Algorithm

- Find the largest power of 16 that is smaller than or equal to the original decimal number
- 2) Divide by that power of 16; then, how many <u>whole</u> <u>times</u> will it go into the original decimal number?
- 3) Subtract [(# whole times) x (power of 16)] from the original decimal number, to get a <u>remainder</u>
- 4) Use the hex digit for (# whole times) for the coefficient of the step 1 (power of 16)
- Repeat steps 1-4, applied to the new <u>remainder</u>, until you have driven the remainder to 0.

This is a mouthful! Best seen by an example (next slide)...

Decimal to Hex Conversion Example

Convert 500 from decimal to hex:

256=16² is the largest power of 16, divides 500 by **1** time $500 - (1 \times 256) = 244$, the new remainder so **1** is the coefficient for $256=16^2$

16=16¹ is the largest power of 16, divides 244 by 15 times 244 – (15 x 16) = 4, the new remainder so 15=F is the coefficient for $16=16^1$

 $1=16^{\circ}$ is the largest power of 16, divides 4 by 4 times $4 - (4 \times 1) = 0$, the new remainder, so we are done so 4 is the coefficient for $1=16^{\circ}$

Final Answer is: **0x01F4**

(Note: By convention, we often left-pad hex numbers with 0s, so that there are an even number (pairs) of hex digits)

What Is This Number?

How can I tell what this number represents??

100

- Is it...
 - decimal 100? (as in, pennies to the dollar)
 - binary 4?
 - hex 256?
- We need to know some context:
 - If it's a base-10 number: $100_{10} = 100$
 - If it's a base-2 number: $100_2 = 4$
 - If it's a base-16 number: $0x100 \text{ or } 100_{16} = 256$

What Is (Or Isn't) This Number?

10010010

- Could be any one of binary, decimal, OR hex
- 1's and 0's are <u>common</u> to binary, decimal, AND hex

10017010

- Could ONLY be decimal or hex
- Cannot be binary (because of the 7 digit)

1001C010

- Can ONLY be hex
- Cannot be binary or decimal (because of the C digit)

For Next Time

Lecture Prep

Text readings and lecture notes

Assignments

See slide 2 for new/current/past due assignments