• 4 entrées a₁a₀b₁b₀ : tableau de Karnaugh de s

• 4 entrées a₁a₀b₁b₀ : tableau de Karnaugh de s

• Pourquoi le codage de Gray pour les tableaux de Karnaugh?

Les codages des entrées de 2 cases voisines ont un seul bit qui les différencie

Important : la première et la dernière case de chaque ligne et de chaque colonne sont également considérées comme voisines (un seul bit différencie leur codage)

exemples

	10	11	01	00	$a_1a_0\backslash b_1b_0$
	0	0	0	0	00
	0	0	0	0	01
$s = a_1 a_0 b$	1	0	0	1	11
		0	0	-0	10

• Exemples de groupements de 8 cases voisines :

$a_1a_0\backslash b_1b_0$	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	1	1	1	1
10	0	0	0	0

$a_1a_0\backslash b_1b_0$	(0	01	11	0
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

- $s=a_0 \qquad \qquad s=\overline{b_0}$ Les groupements ne se font que par 2ⁿ cases (2, 4, 8, 16, ...)
- Exemples de groupements non valides :

$a_1a_0\backslash b_1b_0$	00	01	11	10	$a_1a_0\backslash b_1b_0$	00	01	11	10	$a_1a_0\backslash b_1b_0$	00	01	11	10
00	0	0	0	0	00	0	0	0	1	00	0	1	1	0
01	0	1	1	0	01	1	1	1	0	01	1	1	1	0
11	0	1	0	0	11	1	1	1	0	11	1	1	1	0
10	0	1	0	0	10	0	0	0	0	10	0	0	0	0

- Plus le regroupement de cases voisines est grand, plus l'équation résultante est simple
- Exemples de groupements de 4 cases voisines :

$a_1a_0\backslash b_1b_0$	00	01	11	10	$a_1a_0\backslash b_1b_1$	00	QΠ	11	10
00	0	1	0	0	00	0	0	0	0
01	0	-1	0	0	(1)	0	1	1	0
11	0	-1	0	0	1	0	1	1	0
10	0	-1	0	0	10	0	0	0	0
	3 =	$\overline{b}_{l}b_{0}$					a_0b_0	,	
	_	_			· ·				
	0)	0	11	10	a ₁ a ₀ \b	1b0 (0	01	11	10
00	0)	0	0	0	a ₁ a ₀ \b		01	11 0	1
	0	0 1 0	0	0			_	$\overline{}$	1 0
00	1	1	0	0	(0	1	0	0	1
00	0	1	0	0	(0	1 0 0	0	0	0

- Les cases contenant 1 peuvent être utilisées plusieurs fois par des groupements différents pour reconstituer l'équation de la sortie
- · Objectifs:
 - · maximiser la taille des groupements
 - minimiser le nombre de groupements
- Exemples complets:

$a_1a_0 \backslash b_1b_0$	00	01	11	10
00	0	0	0	(1)
01	0	1	1	0
11	1	1	1	0
10	0	0	0	0

$a_1a_0\backslash b_1b_0$	00	01	11	10
00	0	0	0	9
01	1	0	1	
11	1	1	1	
10	0	0	6	8