Introduction

本次期末專題使用心率變異分析(Heart Rate Variability),一種量測連續心跳 速率變化程度的方法,來分析自律神律調節的狀態。自律神經分為交感以及 副交感神經,運動開始會使副交感神經活動下降,因此 HRV 可當作運動前與 運動過程的指標。

Flowchart

ECG

ICG

Protocol

- 1. 使用 LabVIEW 讀取實驗數據、並使用 waveform graph 繪製結果
 - 將數據拉成一長條,取前10000個數值呈現
 - X 軸更正為 timepoint, Y 軸為振幅

左側 WD,右側 YY,隨著訓練增量實驗階段增加,負荷越來越重,心跳也越來越快

2. 雜訊處理

- **帶通濾波器**: 萃取 0.04~50 Hz 的訊號。参考文獻[1]得知 P 波為 5-30 Hz ,QRS 為 8-50 Hz ,又計算 LF 最低會使用到 0.04 Hz,因此取聯集為 0.04-50Hz。
- 濾波前的 Power Spectrum 沒有顯示電壓 60Hz 訊號,因此不需要再用 notch filter 去除。
- 3. 計算 ECG 的 R-R interval, 使用 waveform graph 繪製結果 RRI series
- 初步篩選:根據不同 stage 使用 peak detector 的振幅閾值,過濾振幅過小的資料點,並記錄二次微分數值。WD 運動時的 R 值普遍相較於 YY 更小,因此設置的閾值較 YY 低。

WD	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
振幅閾值	0.9	0.8	0.8	0.6	0.8
YY	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
振幅閾值	0.9	0.9	0.9	0.9	0.9

● **偵測 R 值**: 用二次微分數值當作擷取 R 值的指標。使用 peak detector 觀察到振幅最大的位置 R peak 二次微分後會比其他值大四到五倍,能夠萃取乾淨的 R peak。WD 的凹下性比 YY 大。

WD	-0.003~ -0.006
YY	-0.002~ -0.005

● 去除 RRI 離群值:任何小於 RRI 0.2 秒都會認為是雜訊且被去除[2],根據不同的 stage 同樣設置不同的標準去除離群值,確保 RRI series 的Power spectrum 落在正常的範圍內。由於在 stage3, 4 有些 P 的振幅與 R 值類似,P 也被偵測為 R 值,因此設置去除 RRI 離群值,把可能為非 RRI的值去除,否則會影響後續 Power 計算。

心率計算方式為 RRI 個數除以三分鐘,WD 與 YY 的 HR 都有上升的趨勢,兩者共同點在於,觀察到 baseline 都在休息情況的正常範圍 60~100 以內, 假設兩個人都是 25 歲,則落在輕強度運動 110~130 的心跳區間(BPM),呼應 stagel~4 為較輕的增量實驗。

WD和YY的差異在於WD心率較YY高,而平時有運動習慣的人會比沒有運動低,YY有可能為有運動習慣的人。然而WD的RRI series 幅度落在0.35~0.7秒,比YY的幅度0.35~1秒還要小,因此WD可能為有運動習慣的人[3]。

WD	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
RRI	296	230	364	264	372
個數					
HR	98. 6	76. 7	121.3	88	124
YY	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
RRI	240	269	303	337	352
個數					
HR	80	89. 6	103	112.3	117.3

RRI series (x: 心跳次數,y: RRI 數值)

- 4. & 5. 使用傅立葉轉換(Fourier Transform, FT)將 RRI series 轉換成頻譜 訊號,繪製出 power spectrum
- 頻譜 X 軸為頻率, Y 軸為 PSD, 計算方式如下 y= abs(FFT(RRI_series)) PSD=(1/FFT_size)* (y²)

6&7. 利用 Power spectrum 計算出心臟總功率(Total power), LF/HF 指標;

LF/HF 比例是自主神經的平衡的指標,也就是交感神經(SNS)系統與副交感神經系統(PNS)的消長狀態,與心血管健康有很高的關聯性[4]。

LF/HF 在 WD 基準值太高,猜測是 RRI 雜訊過多的原因造成高頻的值沒有正確取出,正常的 LF/HF 介於 1.5~2 之間,因為抑制副交感神經的關係運動會稍高一些,在運動期間則呈現開低走高的趨勢,有研究指出運動強度與比例呈正相關[5],雖然沒有與本次結果完全符合,但還是有相似之處。

WD	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
TP	107. 503	95. 017	87. 445	77. 949	40. 216
LF	0.08296	0. 02235	0. 01515	0.007147	0.01233
HF	0.00454	0.01300	0.005847	0.002064	0.00524
LF/HF	18. 4231	1. 7187	2. 5921	3. 4616	2. 3504

YY	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
TP	134. 278	118. 484	102.075	80. 934	61. 932
LF	0. 32165	0.12190	0.03512	0.00752	0.00098
HF	0.05612	0.04162	0.01631	0.00250	0.00029
LF/HF	5. 7305	2. 9282	2. 1526	2. 9978	3. 4034

8. 抓取心輸出量(ICG)數值 C 點位置並計算 SV

● 切除前 2s 不穩定訊號

● 找 C 點最大值:由於 ICG 已經進行 dz/dt,因此不用再作微分

• 計算 Impedance change = "the value of Y-axis" /2×1000

● 偵測 B 值 X 值: 用 peak detector 的二次微分範圍尋找

● 去除距離過近的值:刪除小於 0.1s 的非 B-X 雜訊 ,

● 去除離群值:選擇在 0.1s ~0.6s 之間的 B-X

研究指出運動員的心搏輸出量(SV)相較於非運動員更高,運動時的變化也更大,且隨著 HR 上升而上升[6]。因為規律體能運動能夠增進左心室的厚度,收縮力量會增強有利於血液循環作用。

WD 和 YY 兩者的 SV 都偏高, WD 休息的 SV 比 YY 小,因此 WD 較可能有運動習慣,因為長期運動會使休息時的心輸出量較高。

WD	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
Cmax	1.50653	2. 72622	2. 70696	3. 04248	2. 63715
Tlve	0. 281229	0. 219547	0. 26448	0. 316449	0. 32073
SV	93. 1261	131.56	157. 365	211.624	185. 913
YY	baseline	Stimuli1	Stimuli2	Stimuli3	Stimuli4
Cmax	1. 38538	3. 22547	4. 02459	4.70024	5. 7073
Tlve	0. 250159	0. 240116	0. 223667	0. 250456	0. 248142
SV	81.0142	181.047	210. 426	275. 187	331.061

Conclusion

整體而言,我認為WD為接受過運動訓練,而YY沒有。WD有 RRI 穩定,休息時的SV較高的特性。由於LF/HF 比例與運動階段的SV都異常的高,不能夠當作指標與以往文獻數值比較,並進行推論,只用RRI穩定性與SV 基準值作為判斷依據。

Reference

- [1] <u>Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human Emotional State Classification Using Discrete Wavelet Transform (DWT)</u>
- [2] R-Peak Detection Algorithm for Ecg using Double Difference And RR Interval Processing
- [3] Assessing Dynamic Atrioventricular Conduction Time to RR-interval Coupling in Athletes and Sedentary Subjects

- [4] An Overview of Heart Rate Variability Metrics and Norms
- [5] Autonomic and cardio-respiratory responses to exercise in Brugada Syndrome patients
- [6] https://physiologicalresponsestotraining.weebly.com/stroke-volume-and-cardiac-output.html