Complex analysis

Mike Antonenko Based on lectures by Sergey Kislyakov

Typeset on March 20, 2021

Contents

Notation	4
Introduction	4
Differential forms	5
A reminder	5
Integral of a form along a path	6
Antiderivatives	7
Connectivity	11
Closed forms and balanced regions	13
Change of basis	13
Cauchy's theorem on closedness	15
The case of continuous derivative	15
Indices	16
The conclusion	16

On correctible singularities	17
The minor integral formula of Cauchy	18
Cauchy's theorem on analyticity	18
Morera's theorem	20
The mean value theorem	20
Maximum modulus principle	20
Liouville's theorem	21
Principal theorem of algebra	21
Harmonic functions	22
Integrals of closed forms	23
Homotopies	24
Laurent series	25
Singularities	26
Sokhotsky's theorem	27
Orders of zeroes	27
Residues	28
Indices	28
The residue theorem	29
Change of variables for non-smooth paths	30
Logarithms	31
Jordan's curve theorem	33

The argument principle	33
The theorem of Rouché	34
The Riemann sphere	34
Another theorem on residues	35
Univalent functions	35
Conformal maps	36
Automorphisms	37
Automorphisms	. 37
Automorphisms of $\widehat{\mathbb{C}}$. 38
Disk automorphisms	. 38
Examples of conformal maps	40
Convergence of analytic functions	41
Normal families	42
Analytic continuation	43

Notation

For the rest of this course, \mathbb{N} contains 0.

Introduction

Definition. Unless stated otherwise, $G \subseteq \mathbb{C}$ and $H \subseteq \mathbb{R}^n$ are arbitrary domains.

Definition. A function $f: G \to \mathbb{C}$ is *analytic*, if for any $z_0 \in G$ there exists r > 0 such that $D_r(z_0) \subseteq G$, and

$$f(z) = \sum_{n \in \mathbb{N}_0} a_n (z - z_0)^n$$

for some $\{a_n\}$ and every $z \in \mathbb{D}_r(z_0)$.

Definition. $\varphi \colon G \to \mathbb{C}$ is *holomorphic* at z_0 , iff exists

$$\varphi'(z_0) = \lim_{h \to 0} \frac{\varphi(z_0 + h) - \varphi(z_0)}{h}.$$

Here $h \in \mathbb{C}$. If a function f is holomorphic at every point of $E \subseteq \mathbb{C}$, we write $f \in \operatorname{Hol} E$.

Definition. A function $f \in \text{Hol } \mathbb{C}$ is called *entire*.

Theorem (Cauchy-Riemann equations). $f: G \to \mathbb{C}$ is holomorphic at z_0 iff

$$\frac{\partial u}{\partial x} = -\frac{\partial v}{\partial y}, xxx$$

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$$

4

at (x_0, y_0) , where u(x, y) + iv(x, y) = f(x + iy) and $z_0 = x_0 + iy_0$.

That is, the Jacobi matrix of $u \times v$ is in the image of the standard embedding of \mathbb{C} into $M_2(\mathbb{R})$:

$$a+ib \mapsto \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$$

Has been proven in semester II..

Lemma. If $f: G \to \mathbb{C}$ is analytic, then it is holomorphic.

Proof. The series for f(z) can be differentiated.

Theorem (Cauchy). Let $f: G \to \mathbb{C}$ be holomorphic. Then it is analytic at every $x_0 \in G$, with the radius of convergence r being equal to $r = \operatorname{dist}(x_0, \mathbb{C} \setminus G)$.

The proof will be given shortly.

Differential forms

A reminder

Definition. If we have a form

$$\omega(h) = \sum_I \omega_I \cdot h^I,$$

its integral (also a form) is defined as

$$\int \omega = \int \sum_{I} \omega_{I} \circ x \cdot D_{I},$$

where D_I is the determinant of the rows I of the Jacobi matrix dx.

Integral of a form along a path

Definition (integral along a curve). Let $\gamma \colon [a,b] \to \mathbb{R}^n$ be a C^1 function. If $\varphi = f_1 \, \mathrm{d} x_1 + \cdots + f_n \, \mathrm{d} x_n$, where f_i are continuous complex functions on G, then

$$\int\limits_{\gamma} \varphi := \sum_{j=1}^n \int\limits_{t=a}^b f_j \big(\gamma(t) \big) \gamma_j'(t).$$

Evidently, the integral over a one-dimensional submanifold does not depend on parametrisation. We will further use that to write integrals over subsets of \mathbb{C} , not curves.

Remark. We may only require that γ is rectifiable. In this case, the integral will be in the sense of Stieltjes:

$$\int_{\gamma} \Phi = \sum_{j=1}^{n} \int_{t=a}^{b} f_{j}(\gamma(t)) d\gamma_{j}.$$

We will not need this during this course.

Lemma. Integral of differential forms along a path is linear with respect to the form.

Proof. Evident. ■

Lemma (change of variables). Let $\alpha \colon [c,d] \to [a,b]$ be a C^1 -homeomorphism, and $\widetilde{\gamma} = \gamma \circ \alpha$. Then

$$\int_{\widetilde{\gamma}} \varphi = \pm \sum_{j=1}^{n} \int_{t=c}^{d} f_{j} \circ \gamma \circ \alpha(s) \cdot \gamma'_{j} \circ \alpha(s) \cdot \alpha'(s).$$

The sign here depends on whether α is increasing or decreasing.

Proof. Follows from the change-of-variables formula for the Riemann integral.

Definition. Let α , β be C^1 -paths. Their *concatenation* $\alpha\beta$ is defined as

$$\gamma(t) = \begin{cases} \alpha(t), & t \in [a, b], \\ \beta \circ \varphi(t), & t \in [b, c], \end{cases}$$

where $\varphi \colon [b,c] \to [a',b']$ is a homeomorphism.

Definition. A path γ is *piecewise smooth*, iff it is a finite concatenation of smooth paths.

Definition. The integral of a form along a piecewise smooth path is the sum of integrals over its components.

Definition. If $\varphi = \sum \varphi_i dx_i$ is a differential form, we denote

$$\|\varphi\| = \sqrt{\sum_{j=1}^n \varphi_j^2}.$$

Differential 1-forms are simply functions between Euclidean spaces.

Theorem (principal estimate). If γ is piecewise smooth and φ is a continuous differential 1-form in a neighbourhood of im γ , then

$$\left| \int_{\gamma} \varphi \right| \leq l(\gamma) \cdot \sup_{x \in \operatorname{im} \gamma} \|\varphi(x)\|.$$

Idea for a proof. CBS.

Antiderivatives

Definition. Let ω be be a differential 1-form in G. Its *derivative* is the form

$$d\omega = \sum_{j=1}^{n} \frac{\partial \omega_j}{\partial x} dx_j.$$

Definition. Let $G \subseteq \mathbb{R}^n$ be a differential form. $F: G \to \mathbb{C}$ is called the *antiderivative* of Φ , iff $dF = \Phi$.

Definition. A differential form ω is

- 1. exact, iff it has an antiderivative;
- 2. *closed*, iff every point $x \in G$ has a neighbourhood where ω is exact.

Observe that this definition differs from the one given in the semester III. This one is more general: the previous one depended on smoothness.

Lemma. Suppose ω is a C^1 differential 1-form in G. Then ω is closed iff

$$\partial_i \omega_j = \partial_j \omega_i$$

for all $i, j \in \{1, ..., n\}$.

Proof of \Rightarrow . Locally, we have an antiderivative Ω , so $\partial_i \Omega = \omega_i$. Then

$$\partial_i \omega_i = \partial_i \partial_i \Omega = \partial_i \partial_i \Omega = \partial_i \omega_i.$$

Proof of \Leftarrow . We know from semester III that every differential form ω such that $d\omega = 0$ is exact. But this is true of ω .

Lemma. Let γ be a piecewise smooth path with im $\gamma \subseteq G$ and ends A, B. Then

$$\int_{\gamma} dF = F(B) - F(A). \tag{1}$$

Proof. From the Newton-Leibniz formula.

Theorem. Every two points in *G* can be connected by piecewise linear path.

A well-known fact.

Definition. Let Φ be a differential form in a region $H \subseteq \mathbb{R}^n$. We call H a Φ -balance d^1 region, iff $\int_{\gamma} \Phi = 0$ for every closed curve γ with im $\gamma \subseteq H$.

Theorem (reformulations of 'exact'). Let Φ be a differential form in $H \subseteq \mathbb{R}^n$ with continuous coefficients. Equivalent are:

- 1. $\int_{\gamma} \Phi$ depends on *A* and *B* only.
- 2. H is Φ -balanced.
- 3. Φ is exact.

Proof of $3 \Rightarrow 2$. See (1).

Proof of $2 \Rightarrow 1$. Concatenate paths between two points and get a closed path. But the integral (which is zero by hypothesis) splits into two. Next we use that it depends on the direction of the path.

¹My own term.

Proof of $1 \Rightarrow 3$. Fix $A_0 \in G$. For any $x \in H$, let γ be a piecewise linear path $A_0 \rightsquigarrow x$. Define

$$F(x) = \int_{\mathcal{X}} \Phi.$$

Since the integral depends only on x, this is correctly defined function We assert that F is an antiderivative for Φ ; that is, the partial derivatives of F are components of Φ . To see this, consider the path

$$A_0 \sim_{\gamma} x \sim_{\beta} x + te_i$$

where the last part β is linear. Then

$$\frac{F(x+te_j) - F(x)}{t} = \frac{\int_{\gamma} \Phi + \int_{\beta} \Phi - \int_{\gamma} \Phi}{t}$$

$$= \frac{1}{t} \int_{\beta} \Phi$$

$$= \frac{1}{t} \sum_{k=1}^{n} \int_{\tau=0}^{t} f_k (x + \tau e_j) \beta'_k(\tau)$$

$$= \frac{1}{t} \int_{\tau=0}^{t} f_j (x + \tau e_j)$$

$$\xrightarrow[t \to 0]{} f_j(x).$$

Definition. We call a region $H \subseteq \mathbb{R}^2$ rectangle-astroid², iff there exists $x_0 \in H$ such that for every $x \in H$ the 2-dimensional rectangle with sides parallel to the axes, having x_0 and x as diametral points, lies in H together with its closure. The rectangle in this context is called *central*.

This definition is long, but it highlights what we need to use to prove the following proposition for circles.

Lemma (addition to the theorem). Let $H \subseteq \mathbb{R}^2$ be a rectangle-astroid region. Then H being Φ -balanced is also equivalent to

$$\int_{\Omega} \Phi = 0$$

for every 1-dimensional central rectangle Q.

²My own term.

Idea for a proof. The integral over this rectangle is equal to zero, since it is closed. Conversely, we can find an antiderivative like in the proof of the theorem.

Theorem (Cauchy, Morera). Let γ be a closed continuous curve with im $\gamma \subseteq G$. Then a function $f: G \to \mathbb{C}$ is holomorphic iff

$$\int_{\gamma} f = 0.$$

Connectivity

Lemma. Every two points of a domain $H \subseteq \mathbb{R}^n$ can be connected by a piecewise-linear path.

Proof. Fix $x_0 \in H$ and put A to be the set of all points reachable from x_0 by a piecewise-linear path over H. A is open, since H is: every point in A is the centre of a ball in H, and balls are convex. The complement $H \setminus A$ is open for the same reasons: take any point x from there, there is a ball $B \subseteq H$ around it; if there was a point of A in this B, we could connect it to x. Therefore, A is open and closed; but it is not empty either, so A = H by connectedness of the domain H.

Recall the theorem on equivalence of linear connectivity and connectedness for locally linearly connected spaces. The proof is almost the same.

Theorem. Every two points of a domain $H \subseteq \mathbb{R}^n$ can be connected by a C^{∞} path.

We need to recall some stuff about convolutions for the proof.

Definition. A family $\{\varphi_s\}_{s>0}$ of infinitely smooth functions $\mathbb{R}^n \to \mathbb{R}$ with compact support and such that

$$\int \varphi_s = 1, \qquad \varphi_s(x) = \frac{\varphi_1(x/s)}{s^n}$$

for all s > 0 and $x \in \mathbb{R}^n$ is called a *standard approximative unit* or a *mollifier*.

Theorem.

- 1. A family $\{\varphi_{\square}\}$ exists.
- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Then the functions $\varphi_s * f$ converge to f uniformly with $s \to 0$ and are infinitely smooth.

The *proof* was given in the third semester. Now we start with the main theorem.

Proof. Let $\gamma:[a,b]\to H$ be a continuous path $A\leadsto B$. Continue γ to a continuous path $\mathbb{R}\to H$ by setting

$$\gamma(t) = \begin{cases} \gamma(a), & t < a, \\ \gamma(b), & t > b, \\ \gamma(t), & t \in [a, b]. \end{cases}$$

Let φ_{\square} be a standard approximative unit for functions on \mathbb{R} , and put for all s>0

$$\widehat{\gamma}_{s}(x) = (\varphi_{s} * \gamma)(x),$$

where * denotes component-wise convolution. Fix $\epsilon > 0$, $a_2 < a$, and $b_2 > b$. By the theorem on approximating with units, if s is small enough, we have $|\widehat{\gamma}_s(t) - \gamma(t)| < \epsilon$ for all $t \in [a_2, b_2]$. This ϵ can be chosen in such a way that the path $\widehat{\gamma}_s$ does not leave the domain H. Further, choose a_2, b_2 such that

$$\widehat{\gamma}_s(a_2) = \gamma(a),$$
 $\widehat{\gamma}_s(b_2) = \gamma(b).$

GAP

This ensures $\widehat{\gamma}|_{\left[a_2,b_2\right]}$ is indeed the path we need.

Closed forms and balanced regions

Theorem (reformulations of 'closed'). Let Φ be a differential form in $H \subseteq \mathbb{R}^n$ with continuous coefficients f_j . The following are equivalent:

- 1. Φ is closed.
- 2. Every $x \in H$ has a Φ -balanced neighbourhood $U \subseteq H$.

In case n = 2, two more reformulations are true:

- 3. For every $x \in H$, there exists a rectangle-astroid region $B \ni x$ such that $\int_Q \Phi = 0$ for any central rectangle Q.
- 4. $\int_O \Phi = 0$ for any rectangle Q such that $Cl Q \subseteq H$.

Proof of $3 \Rightarrow 4$. Split the rectangle Q into equal four, $\{Q_i\}$. Then the integral over Q is equal to the sum of integrals over $\{Q_i\}$. Cover the compact $Cl\ Q$ with 'good' rectangle-astroid regions which lie in H completely (they exist by hypothesis). Let $\delta > 0$ be the Lebesgue number of this cover. Continue to split the rectangles into four until each of them is less than δ in diameter. Now it is clear that the integral over Q is zero itself.

Proof of $4 \Rightarrow 3$. G is open.

Change of basis

Let z = x + iy. Then

$$dz = dx + i dy$$
 $d\overline{z} = dx + i dy$,

SO

$$dx = \frac{dz + d\overline{z}}{2}, \qquad dy = \frac{dz - d\overline{z}}{2}.$$

Now let $\varphi = u \, dx + v \, dy$ be a 1-form, defined in $H \subseteq \mathbb{R}^2$. Then, if $\varphi = d\Phi$ for a function $\Phi \colon H \to \mathbb{C}$, we have

$$\Phi = \frac{\partial_1 \Phi - \partial_2 \Phi}{2} dz + \frac{\partial_1 \Phi - \partial_2 \Phi}{2} d\overline{z}$$

by direct computation. By analogy, we define

Definition.

$$\partial_z \Phi := \frac{\partial_1 \Phi - i \partial_2 \Phi}{2}$$
 $\qquad \qquad \partial_{\overline{z}} \Phi := \frac{\partial_1 \Phi + i \partial_2 \Phi}{2}.$

Let $\Phi = p + iq$. It then can be derived that

$$\partial_{\overline{z}}\Phi = \frac{\partial_1 p - \partial_2 q}{2} + i \frac{\partial_1 q + \partial_2 p}{2}.$$

Therefore,

$$\partial_{\overline{z}}\Phi = 0 \iff \begin{cases} \partial_1 p = \partial_2 q, \\ \partial_1 q = -\partial_2 p. \end{cases}$$

These are the Cauchy-Riemann equations. Therefore,

Lemma. A function $\Phi: G \to \mathbb{C}$ is holomorphic iff $d\Phi = \partial_z \Phi dz$.

We can also prove the following:

Lemma. Let α dz be a form in G. It is exact iff there exists a holomorphic function $A \colon G \to \mathbb{C}$ such that $A' = \alpha$.

Proof of \Rightarrow . Let A be the antiderivative. $\alpha dz = \alpha dx + i\alpha dy$. Then $\partial_1 A = \alpha$, $\partial_2 A = i\alpha$, so

$$A' = \partial_z A = \frac{\partial_1 A - i \partial_2 A}{2} = \alpha, \qquad \qquad \partial_{\overline{z}} A = \frac{\partial_1 A + i \partial_2 A}{2} = 0.$$

Lemma (a variation of the principal estimate). Let $\alpha \colon G \to \mathbb{C}$ be a function, $\gamma \colon [a,b] \to G$ a C^1 path. Then

$$\left| \int_{\gamma} \alpha \, \mathrm{d}z \right| \leq l(\gamma) \cdot \sup_{z \in \mathrm{im}\, \gamma} |\alpha(z)|.$$

Idea for a proof. Use the principal estimate and the identity $\gamma' = \gamma'_1 + i\gamma'_2$.

Cauchy's theorem on closedness

Theorem (Cauchy, on closedness). If $f: G \to \mathbb{C}$ is holomorphic, then the form $f \, \mathrm{d} z$ is closed.

That is, locally, it has antiderivatives. The proof spans the several following pages and requires a few lemmas.

The case of continuous derivative

Lemma. Suppose f' is continuous. Then the form f dz is closed.

While this might seem to give a hint of our further course of action, we won't be so blunt as to prove the continuity of f' directly.

Idea for a proof. Indeed, as we know, the closedness is then equivalent to the equality

$$\frac{\partial f}{\partial v} = i \frac{\partial f}{\partial x}.$$

This is straightforward to show using Cauchy-Riemann equations.

Example. The form dz/z is closed and not exact. $f' = -1/z^2$ in this case is a continuous function. By the previous lemma, f is closed (in fact, its antiderivatives are logarithms). Now consider the unit circle \mathbb{S}^1 . By parametrising with $e^{i\Box}$, we can easily check that

$$\int_{\mathbb{S}^1} \frac{\mathrm{d}z}{z} = 2\pi i.$$

But this means we have found a non-balanced region of \mathbb{C} , so dz/z is not exact.

Indices

Lemma. Let $C = z_0 + r\mathbb{S}^1$ for some r > 0. Then

$$\int_{C} \frac{\mathrm{d}z}{z - z_{1}} = \begin{cases} 0, & |z_{1} - z_{0}| > r, \\ 2\pi i, & |z_{1} - z_{0}| < r. \end{cases}$$
 (2)

Proof. Consider the case $|z_1 - z_0| > r$. Luckily, the form $\frac{dz}{z - z_1}$ is closed in $H = \mathbb{C} \setminus \{z_1\}$. This H contains a rectangle around the square C. Every closed form is exact within this rectangle by a theorem from semester 3.

Suppose, for now, $|z_1 - z_0| < r$. We reduce this to the case $z_0 = z_1$, which has been considered in the example on page 15. Then

$$\int_{C} \frac{dz}{z - z_{1}} = \int_{C} \frac{dz}{(z - z_{0}) - (z_{1} - z_{0})}$$

$$= \int_{C} \frac{dz}{z - z_{0}} \cdot \frac{1}{1 - \frac{z_{1} - z_{0}}{z - z_{0}}}$$

$$= \int_{C} \frac{dz}{z - z_{0}} \cdot \sum_{k \in \mathbb{N}} \left(\frac{z_{1} - z_{0}}{z - z_{0}}\right)^{k}$$

$$= 2\pi i + \sum_{k \in \mathbb{N} \setminus 0} \int_{C} \frac{dz}{z - z_{0}} \left(\frac{z_{1} - z_{0}}{z - z_{0}}\right)^{k}$$

$$= 2\pi i.$$

The conclusion

Theorem (Cauchy, on closedness). If $f: G \to \mathbb{C}$ is holomorphic, then the form f dz is closed.

Proof. Suppose otherwise: there exists a 2-dimensional rectangle $P \subseteq G$ with $I := \int_{\partial P} f \neq 0$.

Subdivide it into four $\{Q_i\}$ such that

$$I = \sum_{i} \int_{\partial O_i} f.$$

For one of them, Q_j , the modulus of the integral is at least one fourth the |I|. Denote $P_1 = Q_j$. Continuing this sequence, we get diminishing $\{P_j\}$ with a single point z_0 in their intersection. The function f is holomorphic at z_0 , so we may write

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \varphi(z),$$

where $\varphi(z) = o(z - z_0)$ with $z \to z_0$. Select k such that $|\varphi(z)| < \varepsilon |z - z_0|$ for all $z \in P_k$. Then we have

$$\left| \frac{I}{4^k} \right| \le \left| \int_{\partial P_k} f \right|$$

$$= \left| \int_{z \in \partial P_k} \underbrace{\left(f(z_0) + f'(z_0)(z - z_0) + \varphi(z) \right)}_{\text{these guys are exact in } P_k} + \varphi(z) \right|$$

$$= \left| \int_{z \in \partial P_k} \varphi(z) \right|$$

$$\le \epsilon \cdot \left(\text{Diam } P_k \right) \cdot S_1(\partial P_k)$$

$$= \epsilon \cdot \frac{\left(\text{Diam } P \right) \cdot S_1(\partial P)}{4^k}.$$

But we thought that $I \neq 0$.

On correctible singularities

Lemma (on correctible singularities). Let $a \in G$. Suppose the form $\omega = f dx + g dy$ is closed in $G \setminus \{a\}$, and the coefficients f and g are continuous in G. Then ω is closed in G.

Idea for a proof. Approximate integrals with smaller rectangles.

The minor integral formula of Cauchy

Theorem (Cauchy, minor integral formula). Let $f: G \to \mathbb{C}$ be holomorphic, $z_0, z_1 \in G$, $C = z_0 + r\mathbb{S}^1$, $|z_1 - z_0| < r$. Then

$$f(z_1) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_1} dz.$$

'Probably the most important formula in complex analysis.' — S.K.

The 'greater' integral formula gives the same result for *C* not necessarily a circle.

Proof. Fix $z_0 \in G$. Consider

$$h(z) = \begin{cases} \frac{f(z) - f(z_1)}{z - z_1}, & z \neq z_1 \\ f'(z_1), & z = z_1. \end{cases}$$

h is continuous in G and holomorphic in $G \setminus \{z_0\}$. By Cauchy's theorem on closedness (page 16), the form h dz is closed in $G \setminus \{z_1\}$. By the lemma on correctible singularities (page 17), it is also closed in all of G. Let \widehat{C} be a ball of slightly greater radius $r + \delta$, but still lying in G. Every closed form in \widehat{C} is exact, so

$$\int_C h \, \mathrm{d}z = 0.$$

Rewriting this yields

$$f(z_1) \int_{C} \frac{\mathrm{d}z}{z - z_1} = \int_{C} \frac{f(z)}{z - z_1} \, \mathrm{d}z.$$

Cauchy's theorem on analyticity

Theorem (Cauchy, on analyticity). Let f be holomorphic in G, $z_0 \in G$, $R = \text{dist}(z_0, \partial G)$. For all $k \in \mathbb{N}$, define

$$c_k = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{k+1}} dz.$$

Then

$$f(z) = \sum_{k \in \mathbb{N}} c_k (z - z_0)^k$$

for all z such that $|z - z_0| < R$. In particular, f is analytic in G.

Proof. Let C be a circle around z_0 of radius r < R. By Cauchy's minor integral formula from page 18, for any z inside of C we have

$$f(z_{1}) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{1}} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - z_{0}) - (z_{1} - z_{0})} dz$$

$$= \frac{1}{2\pi i} \int_{C} \frac{1}{z - z_{0}} \cdot \frac{f(z)}{1 - \frac{z_{1} - z_{0}}{z - z_{0}}} dz$$

$$= \sum_{k \in \mathbb{N}} \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - z_{0}} \cdot \left(\frac{z_{1} - z_{0}}{z - z_{0}}\right)^{k} dz$$

$$= \sum_{k \in \mathbb{N}} (z_{1} - z_{0})^{k} \cdot \left(\frac{1}{2\pi i} \int_{C} \frac{f(z)}{(z - z_{0})^{k+1}} dz\right),$$

which is desired. Transposing the sum with the integral is legit, since the series for geometric progression converges uniformly for all z.

Remark. In the analyticity theorem,

$$c_k = \frac{f^{(k)}(z_0)}{k!}.$$

In particular,

$$f'(z) = \frac{1}{2\pi i} \int_{\partial R} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta.$$

Morera's theorem

Corollary (Morera's theorem). Let $f: G \to \mathbb{C}$ be a continuous function. The following conditions are equivalent:

- 1. f is analytic.
- 2. *f* is holomorphic.
- 3. f dz is closed.

Proof. $1 \Rightarrow 2$ follows by differentiating the series, $2 \Rightarrow 3$ is the Cauchy's theorem on closedness from page 16. We now give a proof of $3 \Rightarrow 1$. By definition, the form f dz locally has an antiderivative Φ . Then Φ is holomorphic, and $\Phi' = f$. By the analyticity theorem, Φ is holomorphic, which implies that f is, too (simply differentiate the series).

The mean value theorem

Lemma (mean value theorem). If $f \in \text{Hol } G$ and $z \in G$, then

$$f(z) = \frac{1}{2\pi} \int_{t=0}^{2\pi} f\left(z + re^{it}\right)$$

for all $0 < r < \operatorname{dist}(z, \partial G)$.

Idea for a proof. Follows from the Cauchy's minor integral formula (page 18).

Maximum modulus principle

Theorem (maximum modulus principle). Let $f: G \to \mathbb{C}$ be holomorphic. Then |f| has no strict maximum in G.

Proof. Suppose f has a non-strict maximum in G. Then

$$|f(a)| = \frac{1}{2\pi} \left| \int_{C} f(z) dz \right|$$

$$\leq \frac{1}{2\pi} \int_{C} |f(z)| dz$$

$$\leq |f(a)|.$$

Here every inequality must be an equality. Then |f(z)| = |f(a)| for all z in some disk D around a.

Suppose $f'(a) \neq 0$. Then f is a local homeomorphism around a, which means it must map a ball in \mathbb{C} into a ball in \mathbb{C} . But in any ball there are points with varying modulus.

Therefore, f is constant, what completes the proof.

Liouville's theorem

Theorem (Liouville). A bounded entire function is constant.

A powerful theorem.

Proof. From principal estimate and the formula for f':

$$|f'(z)| \le \frac{M}{2\pi} \int_{C} \frac{r}{(r - |z|)} dt$$

$$= \frac{Mr}{(r - |z|)^{2}}$$

$$\underset{r \to \infty}{\longleftarrow} 0.$$

Principal theorem of algebra

Corollary (principal theorem of algebra). $\mathbb C$ is algebraically closed.

Proof. Suppose $p:\mathbb{C}\to\mathbb{C}$ of $\deg p>0$ has no roots: $|p|>\delta$ for some $\delta>0$. Then 1/p is an entire function, and, as such, is either unbounded or constant. It is not constant, so it must be unbounded; but $1/|p|<1/\delta$ — a contradiction.

Harmonic functions

Definition. A function $f: G \to \mathbb{R}$ is *harmonic*, iff there exists a holomorphic $g: G \to \mathbb{C}$ such that $\operatorname{Re} g = f$. If $\widetilde{f} = \operatorname{Im} g$, f and \widetilde{f} are said to be *harmonic conjugates*.

Lemma (Laplace's equations). If $u + iv \in \text{Hol } G$, then

$$u'_{xx} + v'_{yy} = 0.$$

Proof. From Cauchy-Riemann equations.

Definition. The differential operator

$$\Delta = \sum_{j=1}^{n} \left(\frac{\partial}{\partial x_j} \right)^2$$

is called the *Laplace operator*.

Definition. A function $f: H \to \mathbb{R}$ is called *harmonic*, iff

$$\Delta f = 0$$
.

Theorem. If $u \in C^2(G)$ and $\Delta u = 0$, then every $a \in G$ has a neighbourhood U_a such that $u|_{U_a}$ is harmonic.

Proof. Let $\varphi = \frac{\partial u}{\partial x}$ and $\psi = -\frac{\partial u}{\partial y}$. We have

$$\frac{\partial \psi}{\partial x} = \frac{\partial \varphi}{\partial y},$$

so there exists a function v such that $\frac{\partial v}{\partial y} = \varphi$ and $\frac{\partial v}{\partial x} = \psi$. This v is harmonically conjugate to u, since the Cauchy-Riemann equations are satisfied.

Integrals of closed forms

Lemma. Suppose $\varphi = d\Phi$ in G. Then

$$\int_{\gamma} \varphi = \Phi(\gamma(b)) - \Phi(\gamma(a))$$

for every path $\gamma: [a, b] \to G$.

Proof. By the theorem on exact forms.

Definition. A continuous function $F: [a,b] \to \mathbb{C}$ is called the *antiderivative along a path* $\gamma: [a,b] \to G$ of a 1-form φ , iff for every $t \in [a,b]$ exists an antiderivative Φ in some neighbourhood $V_t \ni \gamma(t)$ such that $F(t) = \Phi \circ \gamma(t)$ for all $t \in V_t$.

Theorem.

- 1. The antiderivative F exists.
- 2. If F_1 and F_2 are two antiderivatives, there exists $c \in \mathbb{C}$ such that $F_1 = F_2 + c$.

Proof of uniqueness. It follows from the definition that *F* is locally constant.

Proof of existence. Split [a,b] into small subintervals (small enough for the form φ to have an antiderivative on the γ -image of each). Choose constants in their intersections in such a way that they make an actual function (antiderivatives differ by a constant).

Remark. This can be used as an alternative definition of the integral along a path:

$$\int_{\gamma} \varphi := F(b) - F(a).$$

Homotopies

Definition. A *homotopy* is a continuous map $h: [\alpha, \beta] \times [a, b] \to G$ (usually $\alpha = 0, \beta = 1$).

Definition. A *loop* is a closed path; i.e. a γ : $[a,b] \to \mathbb{C}$ that can be continued to an (b-a)-periodic one. A loop is *contractible*, iff it is homotopic to a constant path. G is *simply-connected*, iff every loop in G is contractible.

Example. All astroid domains are simply-connected.

Definition. Let φ be a 1-form in G, $S = [0,1] \times [a,b]$, $h: S\omega G$ a homotopy. A continuous $F: S \to G$ is an *antiderivative* of φ along h, iff for every $(t,s) \in S$ there exists a ball $B \subseteq G$ with the centre at $h_t(s)$ and an antiderivative U for φ in B.

Theorem. Such F always exists in case of a closed φ .

Proof. h(S) is compact. By closedness of φ , take balls such that there exists an antiderivative. By continuity of h and Lebesgue's lemma, there exists $\delta > 0$ such that h(e) lies completely in one of these balls for every e of diameter less than δ . Extract a finite subcover, and make them agree on intersections.

Theorem. Let γ_t be a homotopy in G, and all paths γ_t are closed. Let φ be a closed 1-form in G, then

$$\int_{\gamma_0} \varphi = \int_{\gamma_1} \varphi.$$

Proof. Define $g(t) = \int_{\gamma_t} \varphi$. We assert this function is locally constant. Fix $t \in [a, b]$. Then

$$\int_{\gamma_t} \varphi = F(\gamma_t(b)) - F(\gamma_t(a)) \equiv \text{const}$$

for some antiderivative F along γ_t .

Corollary. In a simply-connected set, every closed form is exact.

Proof. Because the integral over any closed path equals that over a constant one.

Laurent series

Definition. A *Laurent series* is one of the form

$$\sum_{k\in\mathbb{Z}}c_k(z-z_0)^k$$

for some $z, z_0, c_k \in \mathbb{C}$. It is said to *converge* at z, iff both

$$\sum_{k\geq 0} c_k (z - z_0)^k, \qquad \sum_{k<0} c_k (z - z_0)^k$$

converge at z. The first of these is the regular part; the other one — principal.

Theorem. Let

$$A = \left\{ z \in \mathbb{C} \mid r < |z - z_0| < R \right\}$$

(anneau) for some 0 < r < R. If $f: A \to \mathbb{C}$ is holomorphic, then f decomposes uniquely into a Laurent series at any $z_0 \in A$.

Idea for a proof. Consider integrals over the inner c and outer C components of the boundary of the ring A. For every $z \in Z$,

$$\int_{c} \frac{f(w) - f(z)}{w - z} dw = \int_{C} \frac{f(w) - f(z)}{w - z} dw.$$

From this we get an expression for $2\pi i f(z)$ as a sum of integrals of two geometric series.

Singularities

Definition. Let $f: G \setminus \{a\} \to \mathbb{C}$ be holomorphic, $a \in G$.

- *a* is *removable*, iff *f* is bounded in a neighbourhood of *a*.
- a is a pole, iff $f(z) \to \infty$ when $z \to a$.
- a is essential, iff it is not removable or a pole; i.e. f has no limit at a.

Lemma. Let a be a correctible singularity of $f: G \setminus \{a\} \to \mathbb{C}$. Then f can be continued to an analytic function $f: G \to \mathbb{C}$.

Proof. We assert every coefficient of the principal part is zero. Indeed,

$$c_k = \frac{1}{2\pi i} \int_{a+rS^1} f(\zeta) (\zeta - a)^{-j-1} d\zeta,$$

$$\left|c_{k}\right| \leq \frac{A|r|^{z} - j - 12\pi r}{2\pi}$$

$$\xrightarrow[r \to 0]{} 0.$$

Lemma. a is a pole iff the number of nonzero coefficients c_k at a with k < 0 is nonzero and finite. a is essential, iff it is infinite.

Idea for a proof. If $f \to \infty$, then a is c removable for 1/f.

Sokhotsky's theorem

Theorem (Sokhotsky). Let $f \in \text{Hol } G$, and a an essential singularity of f. Then, for every $\epsilon > 0$, the set $f(B_{\epsilon}(a))$ is dense in \mathbb{C} .

Proof. Suppose otherwise: let $b \in \mathbb{C}$ be such that

$$|f(z) - b| \ge \delta$$

for all $z \in B := B_{\epsilon}(a)$ for some $\epsilon > 0$. The function

$$h(z) \coloneqq \frac{1}{f(z) - b}$$

is analytic at a and bounded. Then h has a removable singularity at a, which allows us to think it is defined in the whole of B. Hence

$$f(z) = \frac{1}{h(z)} + b$$

has a finite number of negative powers in the Laurent decomposition, which is false.

Orders of zeroes

Definition. Let $a \in G$. Every holomorphic $f: G \setminus \{a\} \to \mathbb{C}$ can be presented as

$$f(z) = (z - a)^k g(z),$$

where $k \in \mathbb{Z}$, $g \in \text{Hol } G$, $g(a) \neq 0$. This k is called the *order* of a in f, and denoted

$$\operatorname{ord}_a f := k$$
.

Lemma. The following are equivalent:

1.
$$\operatorname{ord}_a f = k$$
.

2.
$$f(a) = f'(a) = \cdots = f^{(k-1)}(a) = 0, f^{(k)}(a) \neq 0.$$

Proof. Since $c_k = \frac{f^{(k)}(z_0)}{k!}$.

Residues

Definition. Let $a \in G$ be an isolated singularity of f,

$$f(z) = \sum_{j \in \mathbb{Z}} c_j (z - a)^j$$

in a ball of radius r > 0 around a. The *residue* of f at a is the number

Res_a
$$f := c_{-1} = \frac{1}{2\pi i} \int_{a+rS^1} f(z) dz$$
.

Lemma. If $-m = \operatorname{ord}_a f$ and m > 0, then

Res_a
$$f = \frac{1}{(m-1)!} \lim_{z \to a} ((z-a)^m f(z))^{(m-1)}$$

Proof. Exercise.

Lemma. If f = g/h and ord_a h = 1, then

$$\operatorname{Res}_{a} f = \frac{g(a)}{h'(a)}.$$

Proof. Follows from the previous one.

Indices

Definition. Let $\gamma: [0,1] \to \mathbb{C}$ be a closed path. If $a \notin \operatorname{im} \gamma$, then the *index* of γ relative to a is the number

$$\operatorname{Ind}_{a} \gamma := \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - a}.$$

Full-blown representation theory.

Lemma.

- 1. Index does not change upon homotopies that do not contain a in their image.
- 2. Index is an integer.
- 3. Index is constant on every connected component of $\mathbb{C} \setminus \operatorname{im} \gamma$.

The residue theorem

Definition. Let $\Gamma := \{\gamma_1, \dots, \gamma_n\}$ be closed paths in $G \subseteq \mathbb{C}$. γ_{\square} is a *proper path system*, iff for every $f \in \operatorname{Hol} G$ we have

$$\int_{\Gamma} f(z) dz := \left(\int_{\gamma_1} + \cdots + \int_{\gamma_n} \right) f(z) dz = 0.$$

Theorem (on residues). Let $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ be a proper path system in G,

$$f \in \operatorname{Hol} G \setminus \{z_1, \ldots, z_k\},\$$

where $z_j \notin \gamma$ for every j and some path $\gamma : [0,1] \to G$. Then

$$\frac{1}{2\pi i} \int_{\Gamma} f(z) dz = \sum_{z \in G} \operatorname{Res}_{z}(f) \operatorname{Ind}_{z}(\Gamma).$$

Proof. Let g_1, \ldots, g_k be principal parts of Laurent series of f around $\{z_j\}$. Then

$$g_j(z) = \sum_{s=1}^{\infty} \frac{c_s}{(z - z_j)^s}$$

If s > 1,

$$g_s(z) = \frac{c_{-1}}{z - z_i} + h_s(z),$$

where h_s has an antiderivative in G. Integrating this, we get exactly

$$\int_{\gamma_j} f(z) dz = \int_{\gamma_j} \underbrace{\left(f(z) - g_j(z) \right)}_{\text{has no singularity in } z_j} dz + \operatorname{Res}_{z_j}(f) \cdot 2\pi i \operatorname{Ind}_{z_j}(\gamma_j).$$

Summing this over j and using properness of Γ , we get the desired.

Remark. This theorem still holds true, if f has an infinite number of singularities $\{z_j\}$, but with discrete induced topology.

Change of variables for non-smooth paths

Lemma. Let *F* be an antiderivative of f dz along γ . Then $F \circ h$ is antiderivative of the same form along $\gamma \circ h$.

Proof. Exercise.

Lemma. Let $G_1, G_2 \subseteq \mathbb{C}$ be domains, $g: G_1 \to G_2$ a holomorphic function. Let $f \in \operatorname{Hol} G_2$, and let γ be a path in G_1 . Then

$$\int_{g \circ \gamma} f(z) dz = \int_{\gamma} f(g(z)) \cdot g'(z) dz.$$

Proof. If γ is piecewise smooth, this follows from the change of variables formula. Otherwise, let F be an antiderivative of f dz along $g \circ \gamma$. Differentiating any local antiderivative, we see that it is also an antiderivative of $(f \circ g) \cdot g'$ along γ .

Lemma. Index $\operatorname{Ind}_{z_0}(\gamma)$ of a continuous γ is locally constant with respect to z_0 .

Proof. From the previous lemma.

Lemma. If z_0 is in an unbounded component of $\mathbb{C} \setminus \operatorname{im} \gamma$, then $\operatorname{Ind}_{z_0}(\gamma) = 0$.

Proof.

$$\operatorname{Ind}_{z_0} \gamma = \frac{1}{2\pi i} \int_{\gamma - z} \frac{\mathrm{d}w}{w}.$$

With $|z_0| \to \infty$, $\operatorname{im}(\gamma - z_0)$ is within a half-plane.

Logarithms

Definition. A continuous $\varphi \colon G \to \mathbb{C}$ is a *branch of a logarithm* in G, iff $e^{\varphi(z)} = z$ for all $z \in G$.

Lemma. Let $\varphi \colon G \to \mathbb{C}$ be a logarithm branch.

- 1. $0 \notin G$.
- 2. $\varphi'(z) = 1/z$. In particular, φ is holomorphic.

Proof.

- 1. Obvious.
- 2. From the inverse function theorem.

Definition. A continuous $\varphi \colon G \to \mathbb{C}$ is a *branch of a logarithm of* $F \colon G \to \mathbb{C}$ in G, iff $e^{\varphi(z)} = F(z)$ for all $z \in G$.

Theorem. If *G* is simply-connected, and $F \in \text{Hol } G$, $F \neq 0$, then there exists a branch of the logarithm of *F* in *G*.

Proof. There exists an antiderivative H for F'/F. Differentiating $\left(e^H/F\right)'$, we get $e^H=cF$ for some $c\in\mathbb{C}$. Then $F=e^{H-\operatorname{Arg} c}$.

Definition. We know that

$$F(z) = e^{\Phi(z)}.$$

There is φ such that

$$\Phi(z) = \log |F(z)| + i\varphi(z),$$

where φ is some continuous $G \to \mathbb{C}$. This φ is called a *branch of the argument of F*.

Definition. A continuous $u: [0,1] \to \mathbb{C}$ is a *branch of a logarithm* along $\gamma[0,1] \to \mathbb{C}$, iff $u \circ \gamma(t)$ is a logarithm of $F \circ \gamma(t)$. Likewise for *argument*.

Theorem. In the conditions of the definition, there exists a logarithm branch of F, and any two such differ by $2\pi ik$ for some $k \in \mathbb{Z}$.

Proof. Uniqueness: $u_1 - u_2$ is a continuous function $[0,1] \to 2\pi i \mathbb{Z}$. Existence follows from local existence.

Lemma. There exists a continuous argument branch.

Proof. We can find one knowing a continuous logarithm branch.

Lemma. Index is an integer.

Proof. Choose a continuous logarithm branch and use uniqueness locally.

Jordan's curve theorem

Theorem. Let $\gamma: [0,1] \to \mathbb{C}$ be a simple closed path. Then $\mathbb{C} \setminus \operatorname{im} \gamma$ consists of two connected components.

Proof.

The argument principle

Definition. Let γ be a simple closed path in G such that $\mathbb{C} \setminus \operatorname{im} \gamma$ splits into two connected components. The bounded of these two is called *Jordan*.

Theorem. Let f be holomorphic in a neighbourhood of a γ -Jordan Cl G, except a finite number of poles which are not in im γ . Then

$$\frac{1}{2\pi}\operatorname{Arg}\circ f\circ\gamma\bigg|_0^1=\sum_{z\in G}\operatorname{ord}_z(f).$$

Proof. On the left we have

$$\Delta = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$$

$$= \sum_{z \in G} \operatorname{Res}_{z} \left(\frac{f'}{f}\right) \operatorname{Ind}_{z}(\gamma)$$

$$= \sum_{z \in G} \operatorname{Res}_{z} \left(\frac{f'}{f}\right)$$

$$= \sum_{z \in G} \operatorname{ord}_{z} \left(\frac{f'}{f}\right).$$

The last equality is easy to check directly.

The theorem of Rouché

Theorem (Rouché). Let G be a γ -Jordan domain. Let f, g be holomorphic in a neighbourhood of Cl G. Suppose that

$$\forall z \in \operatorname{im} \gamma : |f(z)| > |g(z)|.$$

Then f and f + g have the same number of zeroes in G.

Idea for a proof. Use the previous theorem to compute the difference in sums of multiplicities as an integral of some f'/f. The condition on modules is needed to divide through f, and compute $\operatorname{Ind}_0 \varphi \circ \gamma$, where $\varphi(z) = 1 + g(z)/f(z)$.

The Riemann sphere

Definition. $\widehat{\mathbb{C}} := \mathbb{C} \sqcup \{\infty\}$. A basis of nbhds of ∞ is formed by

$$\left\{\left\{z\mid |z|>R\right\}\mid R\in\mathbb{R}\right\}.$$

Definition. Let f be defined in a neighbourhood of ∞ . f is holomorphic at ∞ , iff f(1/z) is holomorphic in a neighbourhood of 0.

Definition. Let f be holomorphic at ∞ . Then

$$\begin{split} & \underset{\sim}{\operatorname{Ind}}(\gamma) \coloneqq \underset{0}{\operatorname{Ind}}(1/\gamma), \\ & \underset{\sim}{\operatorname{Res}}(f) \coloneqq -\underset{z \to 0}{\operatorname{Res}} \frac{f(1/z)}{z^2}. \end{split}$$

The basis for this definition is the fact that

$$\operatorname{Res}_{\infty}(f) \operatorname{Ind}_{\infty}(\gamma) = \int_{1/\gamma} -\frac{f(1/z)}{z^2} dz = \int_{\gamma} f(z) dz$$

for any γ not through zero.

Another theorem on residues

Theorem. If $f \in \text{Hol } \mathbb{C} \setminus \{z_1, \dots, z_k\}$, then

$$\sum_{z \in \mathbb{C}} \operatorname{Res}_{z}(f) = 0.$$

Proof. Observe that, if γ is the circle around 0 of sufficiently large radius, $1/\gamma$ is passed in the opposite direction. Then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \operatorname{Res}_{\infty}(f) \operatorname{Ind}_{0} \frac{1}{\gamma}$$
$$= -\operatorname{Res}_{\infty}(f).$$

Univalent functions

Definition. A function is *univalent*, iff it is holomorphic and injective.

Theorem. Let $f: G \to \mathbb{C}$ be univalent. Then f' is nowhere zero.

Remark. The converse is not true even for holomorphic functions.

Proof. Suppose $f'(z_0) = 0$.

$$f(z) = f(z_0) + (z - z_0)^k g(z),$$

where k > 1, $g(z_0) \neq 0$. In a sufficiently small ball $B \ni z_0$, g is nonzero and there is a logarithm $h: B \to \mathbb{C}$ of g:

$$g(z) = e^{h(z)}.$$

Then

$$f(z) = f(z_0) + ((z - z_0)\widetilde{g}(z))^k,$$

where

$$\widetilde{q}(z) = e^{\frac{h(z)}{k}}$$
.

The function $\varphi(z) = (z - z_0)g(z)$ is univalent in a neighbourhood of z_0 by a theorem from real analysis:

$$\varphi'(z) = g(z) + (z - z_0)g'(z_0) \neq 0$$
 when $z = z_0$.

This means that, if z_1 is sufficiently close to $f(z_0)$, φ is injective, and the equation

$$(\varphi(z))^k = z_1 - f(z_0)$$

has k solutions in z. This contradicts univalence of f:

$$f(z) = (\varphi(z))^k.$$

Lemma. If $f: G \to \mathbb{C}$ is univalent, then f is open.

Proof. Maps with non-degenerate differentials are open.

Conformal maps

Definition. We say a map $f: G \to \mathbb{C}$ is conformal, iff

$$\operatorname{Arg}(\overline{z_1}z_2) = \operatorname{Arg}\left(\overline{f'(z_0)z_1} \cdot f'(z_0)z_2\right)$$

for all $z_0, z_1, z_2 \in G$. That is, conformal maps preserve angles between tangent vectors. In fact, this is (easy to see) equivalent to univalence.

Theorem (Riemann). The following conditions are equivalent:

- 1. *G* is simply-connected and $\mathbb{C} \neq G$.
- 2. Exists an univalent map $G \to \operatorname{Int} \mathbb{D}$.
- ←. From Liouville's theorem.
- ⇒. In April.

Automorphisms

Automorphisms

Definition. Any univalent $f: G \to G$ we'll call an *automorphism* of G.

Theorem. Any automorphism of \mathbb{C} is an affine map

$$z \mapsto az + b$$
.

The converse is trivially true.

Proof. Let $f \in \operatorname{Aut} \mathbb{C}$. If infinitely many coefficients in the Taylor expansion are nonzero, ∞ is an essential singularity for f. By Sokhotsky's theorem, for any ball $B \ni 0$ we have

$$f(B) \cap f(\mathbb{C} \setminus B) \neq \emptyset$$
.

Hence f is a polynomial. But f' is nowhere zero by one of the previous theorems, which means f is affine.

Automorphisms of $\widehat{\mathbb{C}}$

Definition. A *Möbius transform* is a function of form

$$f \colon z \mapsto \frac{az+b}{cz+d},$$

where $ad \neq bc$.

As we can see, $f(-d/c) = \infty$ and $f(\infty) = a/c$.

Lemma. Möbius transforms form a group with respect to composition.

Proof. Routine check.

Lemma. Let *G* be acting on a set *X*. Let $H \le G$ be acting transitively. Suppose $H \supseteq \operatorname{Stab}_G(x)$ for some $x \in X$. Then H = G.

Proof. Let $g \in G$. Since the action of H is transitive, there exists $h \in H$ such that hgx = x. Then $hg \in \operatorname{Stab}_G(x) \subseteq H$, and so $h^{-1} \cdot hg = g \in H$.

Theorem. The group of Möbius transforms is not smaller than Aut $\widehat{\mathbb{C}}$.

Proof. Let M be the group of Möbius transforms, and let $S \leq \operatorname{Aut} \widehat{\mathbb{C}}$ be the stabiliser of ∞ . It is easy to see that M acts transitively. $S \leq M$, since every $s \in S$ also leaves in place the \mathbb{C} , and so must be an affine function (page 37).

Disk automorphisms

Let $D := \operatorname{Int} \mathbb{D}^2$.

Definition. Let N be the set of maps of form

$$f_{a,c}: z \mapsto c \cdot \frac{z+a}{\overline{a}z+1},$$

where |a| < 1 and |c| = 1.

Lemma. $f_{a,c}(D) \subseteq D$.

Proof. Ultimately, it follows from the maximum modulus principle.

Lemma. *N* is a group.

Proof.

- 1. For the identity map, put a = 0 and c = 1.
- 2. The inverse is of the same form (routine algebra).
- 3. The composition too (same).

Lemma (Schwartz). Let $f: D \to D$ be an analytic function, f(0) = 0. Then $|f(z)| \le |z|$ for all $z \in D$. If the equality is reached for some $z \ne 0$, then exists $\alpha \in D$ such that $f(z) = \alpha z$ for all z.

In particular, $N \ge \operatorname{Stab}_{\operatorname{Aut} D}(0)$.

Proof. Suppose f is analytic in some ball of radius R > 1 with centre at 0. Let g(z) := f(z)/z. g is holomorphic with |z| < R and $z \ne 0$. g can be continued to an analytic function in the ball of radius R around 0 (including 0). If |z| = 1, then, by passage to the limit,

$$|g(z)| = |f(z)|/|z| = |f(z)| \le 1.$$

By the maximum modulus principle, the conclusion holds.

In the general case, consider $f_r(z) := f(rz)$. f_r is defined and holomorphic with |rz| < 1; that is, when |z| < 1/r =: R. For sure, R > 1. By the case already considered, $|f_r(z)| \le |z|$ for all $z \in D$, and so $|f(rz)| \le |z|$ for all z with |z| < 1.

Suppose now, the equality is reached for some $z \in D \setminus \{0\}$. Since z is internal for D, g must be constant by the maximum modulus principle.

Theorem. $N = \operatorname{Aut} D$.

Proof. We show that N contains the stabiliser of zero. Let $\varphi \in \operatorname{Aut} D$, $\varphi(0) = 0$. By the Schwartz's lemma, $|\varphi(z)| \leq |z|$ for all $z \in D$. By symmetry, $|\varphi^{-1}(z)| \leq |z|$ for all $z \in D$. Then $|z| = |\varphi^{-1} \circ \varphi(z)| \leq |\varphi(z)|$, so $\varphi(z) = |z|$ everywhere in D.

To see that N acts transitively, observe that f(a) = 0 and f(0) = -ca for every $f \in N$. Now we can apply the lemma from page 38.

Examples of conformal maps

Lemma. Let
$$\Pi_-=\left\{z\in\mathbb{C}\mid \operatorname{Re}(z)<0\right\}, \psi\colon z\mapsto \frac{z-a}{z+\overline{a}},\operatorname{Re} a<0.$$
 Then
$$\psi(\Pi_-)=D.$$

Proof. It is straightforward to show that $\psi(\Pi_{-}) \subseteq \mathbb{D}$. Likewise, $1/\psi(\Pi_{+}) \subseteq D$. Hence $\varphi(\Pi_{-}) \subseteq D$, $\varphi(\Pi_{+}) \subseteq \widehat{\mathbb{C}} \setminus \mathbb{D}$, $\varphi(i\mathbb{R}) \subseteq \mathbb{S}^{1}$. Since φ is an automorphism, this implies the desired.

Lemma. All Möbius transforms map circles on the Riemann sphere into circles.

Proof. The maps z + a, az, 1/z generate Aut $\widehat{\mathbb{C}}$ — for them it is obvious.

Lemma. A Möbius transform is uniquely determined by images of three points.

Proof.

$$\frac{\frac{z-z_1}{z-z_2}}{\frac{z_3-z_1}{z_3-z_2}} = \frac{\frac{w-w_1}{w-w_2}}{\frac{w_3-w_1}{w_3-w_2}}.$$

Convergence of analytic functions

Definition. We say that a sequence $\{f_n\} \subseteq \operatorname{Hol} G$ converges compactly to $f: G \to \mathbb{C}$, iff, for every compact $K \subseteq G$,

$$f_n|_K \Rightarrow f|_K$$
.

Example. Let $G = \{z \mid |z| < 1\}$. The sequence $f_n = \frac{1}{n} \cdot \frac{1}{1-z^2}$ converges pointwise, but not uniformly; hence does not converge in the above sense.

Theorem (1st of Weierstrass). If $f_n \to f$ compactly, then f is holomorphic in G.

Proof. By Stokes-Seidel theorem, f is continuous. We show that the integral over the boundary B of any rectangle in G is zero; then the theorem follows from the Cauchy's theorem on closedness, page 16. Observe that

$$\left| \int_{B} f(z) dz - \int_{B} f_{n}(z) dz \right| \leq \max_{z \in B} \left| f(z) - f_{n}(z) \right| \cdot \text{const}$$

$$\xrightarrow[n \to \infty]{} 0.$$

But the integral over any f_n is zero (they are analytic in G).

Theorem (2nd of Weierstrass). If $f_n \to f$ compactly, then $f'_n \to f'$ compactly.

Proof. Let K be a closed ball of radius r with centre at some z_0 , $\overline{K} \subseteq G$, $\gamma := \partial K$.

$$f'_n(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta) \, \mathrm{d}\zeta}{(\zeta - z)^2}.$$

When $z \in \overline{K}$, the denominator is nonzero, so $f'_n \Rightarrow f'$ on K.

If *K* is a general compact set, we can cover it with a finite number of balls and do the same.

Normal families

Definition. Let G be a domain, F a set of functions on G. F is normal, iff

$$\forall \operatorname{compact} K \subseteq G \ \exists c > 0 \ \forall f \in F : |f|_K| < c.$$

Lemma. If *F* is normal, then $F' := \{f' \mid f \in F\}$ is normal.

Proof. Repeats the proof of the second theorem of Weierstrass.

Theorem (Montel). Equivalent are:

- 1. *F* is normal.
- 2. Any sequence $\{f_n\}$ with $f_n \in F$ has a compactly convergent subsequence.
- $2 \Rightarrow 1$. Suppose otherwise: on some compact the functions f_n are not uniformly bounded; i.e., there is a diverging (in this sense) sequence of functions. But they have
- $1 \Rightarrow 2$. For every $f \in F$, $z_1, z_2 \in G$,

$$|f(z_2) - f(z_1)| \le \sup_{\xi \in [z_1, z_2]} |f'(\xi)| \cdot |z_2 - z_1| \le c|z_2 - z_1|$$

for some c>0, since the set $T_\delta:=\{z\in G\mid \mathrm{dist}(z,E)\leq \delta\}$ is compact, and we can bound F' on T_δ by its normality and the previous lemma. Therefore, F is uniformly equicontinuous. The Arcela–Askoli theorem states it must be uniformly bounded.

Now we apply the diagonal process. Let $E_1 \subseteq E_2 \subseteq \ldots$ be an exhausting sequence of compacts for G (that is, $E_j \subseteq \operatorname{Int} E_{j+1}$ and $\bigcup E_j = G$). Let $\{f_n^m\}$ be a family of sequences such that $\{f_n^{m+1}\}$

is a subsequence of $\{f_n^m\}$ that converges on E_m . Then the diagonal sequence $\{f_n^n\}_n$ converges on every of E_{\square} .

Analytic continuation

Let $f: G \to \mathbb{C}$ be analytic. How easy is it continue outwards of G?

Definition. Let $G_1, G_2 \subseteq \mathbb{C}$ be domains such that $G_1 \cap G_2$ is also connected. Let $f_i \in \operatorname{Hol} G_i$ for $i \in \{1, 2\}$. f_2 is said to be a *direct continuation* of f_1 onto G_2 , iff $f_1 = f_2$ on $G_1 \cap G_2$.

Definition. G is said to be a *natural domain* for $f \in \operatorname{Hol} G$, iff f does not admit a direct continuation onto a larger domain $G' \supset G$.

Theorem (Hadamard). The unit disk $D := \operatorname{Int} \mathbb{D}^2$ is the natural domain of

$$f: z \mapsto \sum_{n=1}^{\infty} z^{n!}$$
.

Proof. This series indeed converges in D. If f can be continued to something larger, let G, this G contains $z_0 \in \mathbb{S}^1$. Let $\zeta := e^{2\pi i \alpha}$ be lying on $\mathbb{S}^1 \cap G \ni$, with $\alpha =: p/q \in \mathbb{Q}$. Exists $\lim_{r \to 1^-} f(r\zeta)$. But then $f(r\zeta) \xrightarrow[r \to 1^-]{} \infty$ (the addends become large from the qth one).

Definition. A pair (G, f), where $f \in \text{Hol } G$ and G is a ball with centre at some z_0 , is called an *element* of an analytic function. If the radius of r is maximal, the element is called *natural*.

Of course, G may not be the natural domain for f.

Definition. Let (D_1, f_1) , (D_2, f_2) be elements. The second of the them is the *continuation* of the first one along some path γ , iff exists $\varphi \colon [0,1] \to \mathbb{C}$ such that for every $t \in [a,b]$ there exists an element (D_t, f_t) of an analytic function, with D_t having the centre at $\gamma(t)$, such that $\varphi(s) = f_t(\gamma(s))$ for all $s \in \gamma^{-1}(D_t)$.

The function φ is as smooth as the path γ .