## 5. LA CAPA DE RED

Al final del capítulo se tomará la prueba 2 sobre los capítulos 4 y 5

# Contenido

- 5.1 Aspectos de diseño de la capa de red
- 5.2 Algoritmos de enrutamiento
- 5.3 Algoritmos de control de congestión
- 5.4 Calidad de servicio QoS
- 5.5 Interconexión de redes
- 5.6 La capa de red de Internet



- La Capa 2 solo lleva tramas del un extremo al otro extremo del enlace P2P
- La Capa 3 lleva **paquetes** del origen al destino, aún si están en redes diferentes (extremo a extremo)
- Esto podría necesitar atravesar varios enrutadores
- La capa 3 debe conocer: la topología y el tráfico en la subred
  - La topología permite conocer las distintas rutas para alcanzar el destino
  - Conocer el tráfico permite no sobrecargar unas rutas y subutilizar otras

# 5.1 Aspectos de diseño de la capa de red

#### 5.1.1 Conmutación de paquetes, almacenamiento y reenvío



Figura 5-1. El entorno de los protocolos de la capa de red.



- H1 se conecta punto a punto a A de la empresa portadora, con un modem
- La LAN, se conecta a una red portadora a través del ruteador F y una línea alquilada
- En un ruteador de la subred, el paquete se almacena un momento hasta que llegue por completo, se compruebe errores y haya disponible una línea de salida
- El paquete se reenvía al siguiente enrutador hasta alcanzar el destino



#### 5.1.2 Servicios proporcionados a la capa de transporte

- La capa de red da un esquema de direccionamiento uniforme a la red
- Los servicios que da la capa 3 del modelo OSI son:
  - Servicio orientado a la conexión, y
  - Servicio sin conexión
- La Capa de Internet de la Arquitectura TCP/IP solo da un servicio sin conexión

#### 5.1.3 Implementación del servicio sin conexión

- Un mensaje a enviar podría ser dividido en varios paquetes
- Los paquetes se colocan en la subred y se enrutan de manera independiente
- Los paquetes se llaman datagramas
- Cada enrutador tiene una tabla de enrutamiento a cada destino final
- Estas tablas pueden crearse manualmente o dinámicamente
- Para crear tablas en forma automática se deben usar protocolos de enrutamiento como OSPF o RIP
- La información de una tabla de enrutamiento podría variar en el tiempo





Figura 5-2. Enrutamiento dentro de una red de datagramas.

#### 5.1.4 Servicio orientado a conexión

- Antes de enviar paquetes se fija un camino entre ruteadores finales o extremo a extremo
- Este camino se llama circuito virtual, simula un circuito físico exclusivo
- (En la Capa 4 se llama conexión lógica)
- Así, no se tiene que buscar una ruta para cada paquete a enviar

| Circuito | Recursos físicos de la subred                               |
|----------|-------------------------------------------------------------|
| Físico   | Dedicados, ej: llamada telefónica convencional              |
| Virtual  | Compartidos con otros circuitos virtuales de otros usuarios |



Figura 5-3. Enrutamiento dentro de una red de circuitos virtuales.



- Tabla del router A:
- La primera fila indica que el CV 1 viene de H1, se envía a C con el número CV 1
- La segunda fila indica que el CV 1 viene de H3, se envía a C con el número CV 2
- Todo el tráfico fluye por la misma ruta o conexión
- Cada paquete lleva un ID que indica a cuál circuito virtual pertenece
- Los CVs lo establecen los ruteadores extremos
- (La conexiones lógicas lo establecen los hosts extremos)

# 5.1.5 Comparación entre las subredes de circuitos virtuales y datagramas

| Asunto                          | Red de datagramas                                                        | Red de circuitos virtuales                                                      |
|---------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Configuración del circuito.     | No necesaria.                                                            | Requerida.                                                                      |
| Direccionamiento.               | Cada paquete contiene la dirección de origen y de destino completas.     | Cada paquete contiene un número de CV corto.                                    |
| Información de estado.          | Los enrutadores no contienen información de estado sobre las conexiones. | Cada CV requiere espacio de tabla del enrutador por cada conexión.              |
| Enrutamiento.                   | Cada paquete se enruta de manera independiente.                          | La ruta se elije cuando se establece el CV; todos los paquetes siguen esa ruta. |
| Efecto de fallas del enrutador. | Ninguno, excepto para paquetes perdidos durante una caída.               | Terminan todos los CVs que pasaron por el enrutador defectuoso.                 |
| Calidad del servicio.           | Difícil.                                                                 | Fácil si se pueden asignar suficientes recursos por adelantado para cada CV.    |
| Control de congestión.          | Difícil.                                                                 | Fácil si se pueden asignar suficientes recursos por adelantado para cada CV.    |

# 5.2 Algoritmos de enrutamiento



- Algoritmo de enrutamiento: Construye automáticamente y actualiza dinámicamente las rutas a cada ruteador (OSPF, RIP)
- La construcción de la tabla se realiza al iniciar el ruteador
- Reenviar: es la acción de buscar en la tabla de enrutamiento la línea de salida para una paquete (IP)
- Con datagramas, la decisión de enrutamiento se toma para cada paquete
- Los CVs se construyen con base en la información de las tablas de enrutamiento
- Con CVs, la decisión de enrutamienyo se toma una vez al establecer el CV

#### Propiedades de un algoritmo de enrutamiento

- 1. Exactitud. Permite alcanzar el destino deseado y no otro
- 2. Sencillez. Trabaja usando el mínimo de recursos y en forma rápida
- 3. Robustez. Soportar fallas de hosts, ruteadores y líneas de comunicación
- 4. Estabilidad. Determina las rutas para todas las posibles topologías
- 5. Equidad. Permitir enviar a todos los hosts conectados a la red
- 6. Optimización. Usa al máximo de capacidad de transmisión de la red

#### Clases principales de algoritmos de enrutamiento

- No adaptativos o estáticos. Las tablas de enrutamiento se determinan *a priori*. Estas no se adaptan a variaciones de tráfico y topología de la red
- 2. Adaptativos o dinámicos. Las tablas varían dinámicamente según variaciones de topología y tráfico
  - Esta información se toma de los ruteadores vecinos o de todos ellos



#### 5.2.1 Principio de optimización

- Si el router J está en la ruta óptima de los routers I al K, entonces la ruta óptima de J a K también está en la ruta óptima
- Las mejores rutas desde un origen a todos los destinos forman un árbol sumidero con raíz el origen



#### Árbol generador. Algoritmo PRIM (Robert C. Prim) Árbol de peso mínimo









Robert C. Prim 1921 - 2021



- Algoritmos de enrutamiento estático:
  - Enrutamiento por la ruta más corta
  - Enrutamiento por inundación

### 5.2.2 Enrutamiento por la ruta más corta

- Se arma un grafo de la subred
  - Cada nodo es un router
  - Cada línea del grafo representa una línea de comunicación
- La mejor ruta entre dos routers es la distancia más corta que indica el grafo
  - Menor número de saltos
  - Menor distancia geográfica en km
- También hay otras métricas: retardo, ancho de banda, tráfico medio, costo de comunicación. El algoritmo podría combinar estos criterios

#### Algoritmo de la ruta más corta de Dijkstra

- Diseñado por el holandés Edsger Wybe Dijkstra en 1959
- El algoritmo calcula distancias y caminos más cortos desde un nodo origen a todos los demás nodos de un grafo
- Cada nodo se rotula con su distancia más corta al origen, y el nombre del nodo anterior
- Al inicio, cada etiqueta puede ser sólo tentativa
- La ponderación en cada enlace es, por ejemplo, distancia



1930 - 2002



Ing. Raúl Ortiz Gaona



- Para un nodo definitivo (negro) analizamos las distancias de los adyacentes
- Escogemos el nodo adyacente con menor distancia. Este es definitivo (negro)
- El proceso se repite hasta llegar al nodo destino



26



#### 5.2.3 Inundación

- Cada paquete que llega se envía por todas las líneas, excepto por la que llegó
- La inundación genera grandes cantidades de paquetes duplicados
- Para limitarlo se pone un contador de saltos en el encabezado de cada paquete
- El contador se inicializa con un cierto valor máximo
- El contador se disminuye con cada salto
- El paquete se descarta si el contador llega a cero



- Una variación de la inundación es la inundación selectiva
- Los enrutadores no envían cada paquete por todas las líneas, sino solo por las salidas que se supone apuntan en la dirección correcta
- Los algoritmos estáticos no toman en cuenta la carga actual de la red



- Algoritmos de enrutamiento dinámicos:
  - Enrutamiento por vector de distancia
  - Enrutamiento por estado del enlace



#### 5.2.4 Enrutamiento por vector de distancia

- Enrutamiento usado en el protocolo RIP Routing Information Protocol
- Se inició el desarrollo en 1957
- Cada router tiene un vector con la mejor distancia y línea de salida a cada destino
- RIP actualiza el vector cada 30" intercambiando información con los vecinos
- "Vector de distancia" fue el primer algoritmo de enrutamiento de ARPANET
- Se lo utilizó hasta 1979



Cada columna es el *Vector de Distancia* de cada routeador









Calcular las distancias y la ruta desde J a los destinos A, B, C y D



for J



- La métrica usada es el número de paquetes en cola a lo largo de la ruta
- Desventaja del enrutamiento por vector de distancia:
  - Lentitud
  - No toma en cuenta el ancho de banda de los enlaces

## 5.2.5 Enrutamiento por estado del enlace

- El protocolo OSPF Open Shortest Path First utiliza este enrutamiento
- OSPF se usa en las redes dorsales de Internet
- Pasos en los que se basa este enrutamiento
  - Descubre las direcciones de sus vecinos
  - 2. Mide el retardo a cada uno de sus vecinos
  - 3. Construye un paquete con esta información
  - 4. Comparte este paquete con todos los demás enrutadores
  - 5. Determina el *Ruta Más Corta* a todos los destinos

## 1. Conocer a sus vecinos

- Se envía un paquete HELLO por cada línea a sus enrutadores vecinos
- Cada vecino se identifica respondiendo con su dirección

### 2. Medir el retardo a cada vecino

- Se envía un mensaje echo request, (ping) y esperando un mensaje echo replay del protocolo ICMP Internet Control Message Protocol
- Ping está disponible en varios sistemas operativos: IOS CISCO, WINDOWS



## 3. Construcción de los paquetes de estado del enlace

- El paquete contiene:
  - Dirección del emisor
  - 2. Número de secuencia
  - 3. Edad
- Estos son generados periódicamente, o cuando ocurre una caída/reactivación de línea o vecino

## Paquetes de estado de enlace construidos por cada enrutador



Estos paquetes se envían a todos los enrutadores de la red

## 4. Distribución de paquetes de estado del enlace

- Con estos paquetes los ruteadores construyen la topología de la red
- El paquete se distribuye por inundación
- Los routers podrían estar usando versiones diferentes de la topología
- Cada paquete tiene el ruteador origen y un número secuencial
- Si es duplicado se descarta



Construya la topología de la red con base en los mensajes recibidos desde todos los ruteadores



## Problemas de los paquetes de estado de enlace

### Problema 1

- Cuando el número de secuencia vuelve a cero
- Solución: usar un número de secuencia de 32 bits
- Con un paquete por segundo, el tiempo para volver a empezar será de 136 años

#### Problema 2

■ Si falla el router el secuencial vuelve a 0, el paquete con este número será rechazado

#### Problema 3

Si se daña un bit y en vez de 000000000000100 se tiene
 100000000000100 el siguiente paquete con secuencial 5 será rechazado por obsoleto

## 5. Cálculo de las nuevas rutas

- Con todos los paquetes de estado del enlace, el router construye el grafo
- Se usa Dijkstra para construir la Ruta Más Corta a los demás routers

- Este algoritmo funciona bien en la práctica
- Es muy usado en redes actuales

### Resumen

- Enrutamiento estático:
  - Tablas de enrutamiento creadas a mano y a priori
  - Inundación
- Enrutamiento dinámico:
  - Vector distancia: RIP
  - Estado del enlace: OSPF
- Aparte del ruteo estático o dinámico, hay otros tipos de enrutamiento
  - Jerárquico
  - Por difusión
  - Host migrante
  - Redes Ad-hoc

## 5.2.6 Enrutamiento jerárquico

- En redes grandes un router no puede tener información a todos los destinos
- Se usa enrutamiento jerárquico, similar a la red telefónica
- Redes grandes se organizan en regiones, closters, zonas, grupos, etc.
- El enrutamiento jerárquico reduce el tamaño de las tablas de enrutamiento
- Un enrutador conoce la topología de su región
- Un enrutador no conoce la topología de otras regiones



(a)

Full table for 1A

| Dest. | Line | Hops |
|-------|------|------|
| 1A    | ı    | _    |
| 1B    | 1B   | 1    |
| 1C    | 1C   | 1    |
| 2A    | 1B   | 2    |
| 2B    | 1B   | 3    |
| 2C    | 1B   | 3    |
| 2D    | 1B   | 4    |
| ЗА    | 1C   | 3    |
| 3B    | 1C   | 2    |
| 4A    | 1C   | 3    |
| 4B    | 1C   | 4    |
| 4C    | 1C   | 4    |
| 5A    | 1C   | 4    |
| 5B    | 1C   | 5    |
| 5C    | 1B   | 5    |
| 5D    | 1C   | 6    |
| 5E    | 1C   | 5    |
|       | (b)  |      |

Hierarchical table for 1A

| est. | Line | Hops |
|------|------|------|
| 1A   | _    | _    |
| 1B   | 1B   | 1    |
| 1C   | 1C   | 1    |
| 2    | 1B   | 2    |
| 3    | 1C   | 2    |
| 4    | 1C   | 3    |
| 5    | 1C   | 4    |

(c)

## 5.2.7 Enrutamiento por difusión

- A veces, los hosts necesitan enviar mensajes a varios o a todos los hosts
- Este envío simultáneo se llama difusión
- Hay dos métodos
  - Método de enrutamiento multidestino
  - Método de inundación



- Método de enrutamiento multidestino
  - Cada paquete contiene una lista con los destinos deseados
  - El enrutador revisa los destinos y determina las líneas de salida
  - El enrutador genera una copia del paquete para cada línea de salida. Otra forma:
  - El origen envía un paquete distinto a cada uno los destinos
  - Desperdicia ancho de banda
  - Requiere que el origen tenga una listas de los destinos



- Método de inundación
  - Se reenvía un paquete por todos los enlaces de salida
  - Genera demasiados paquetes
  - Desperdicia ancho de banda

## 5.2.9 Enrutamiento para hosts migrantes y ambulantes

- Tipos de hosts
  - Estacionarios (PCs)
    - Se conectan a una red cableada
  - Migratorios (laptops)
    - Se mueven de un lugar fijo a otro fijo para trabajar en forma estacionaria
    - Se conectan a una red cableada o inalámbricamente
  - Ambulantes (Laptops y dispositivos móviles)
    - Dispositivos que trabajan en movimiento
    - Laptops se conectan a la red celular a través del teléfono, o con módem 4G/5G
    - Dispositivos móviles. Smart phones, lector de tarjetas de crédito, dispositivo para control de inventarios. Se conectan al WiFi

### Hosts migrantes que trabajan estacionariamente

- Para enviar un paquete a un portátil, la red primero tiene que localizar a dónde migró
- Los hosts migratorios tienen localidad base y dirección base que no cambian



Figura 5-18. WAN a la que están conectadas LANs, MANs y celdas inalámbricas.



- Una red se divide en áreas
- Área: es una LAN, una WLAN o una celda inalámbrica
- Cada área tiene un agente de base y un agente foráneo
- Agente de base: registra los hosts que pertenecen a su área base
- Agente foráneo: registra los hosts migrantes que visitan el área foránea
- Una laptop entra en un área foránea, debe registrarse con el agente foráneo



- 1. Periódicamente el *agente foráneo* difunde un paquete con su dirección
- 2. Cuando llega uno de esos paquetes, La laptop envía su dirección base al agente foráneo
- 3. El agente foráneo se comunica con el *agente de base* de la laptop para informar que esa laptop, con tal dirección, ha llegado a la red foránea
- 4. El agente de base, confirma que la laptop sí pertenece a su *área de base* y le pide que acepte a la laptop
- 5. El agente foráneo registra la laptop





Figura 5-19. Enrutamiento de paquetes para *hosts* móviles.

- El emisor en Seattle, envía un paquete a la red base de la laptop en NY
- El agente base en NY sabe que la ubicación temporal del portátil es LA
- El agente base reenvía el paquete en un túnel al agente foráneo en LA
  - Túnel: paquete con IP destino dirección base, encapsulado dentro de otro paquete con otra IP destino dirección del agente foráneo
- El agente foráneo en LA reenvía el paquete al host migratorio
- El agente base en NY indica al emisor en Seattle que en el futuro envíe paquetes directo al agente foráneo en LA
- El emisor envía directamente los paquetes en un túnel al agente foráneo

### 5.2.10 Enrutamiento en redes *ad hoc*

- Es utilizado por laptops y dispositivos móviles
- Los hosts hacen las funciones de enrutadores
- Situaciones en las que son necesarias las redes ad-hoc:
  - Trabajadores en un área de desastre
  - Vehículos militares en un campo de batalla
  - Flota de barcos en el mar
  - Reunión de personas con laptops en un área sin infraestructura 802.11



- La topología de la red cambia todo el tiempo
- Las rutas cambian todo el tiempo
- Algoritmo de enrutamiento AODV Ad hoc On-Demand Distance Vector
- Se define una ruta a un destino sólo cuando alguien desea enviar un paquete
- Dos nodos se conectan si se pueden comunicar directamente
- Si uno de los dos tiene un emisor más potente, A puede alcanzar a B pero B no puede alcanzar a A





Los nodos que reciben el broadcast crean una ruta que apunta al nodo A







- A desea enviar un paquete a I
- AODV mantiene una tabla en cada nodo
- A busca en su tabla pero no encuentra una entrada para I
- Ahora debe descubrir la ruta a I
- A difunde un paquete de solicitud de ruta
- El paquete llega a B y D





- B y D lo vuelven a difundir
- Cada nodo que recibe la difusión crea una ruta que apunta a A
- El paquete de solicitud de ruta alcanza a I
- I crea un paquete de respuesta de ruta
- Este paquete sólo se envía al nodo del cual vino la solicitud





### Mantenimiento de rutas en redes ad-hoc

- Es posible mover y apagar nodos
- La topología puede cambiar
- El algoritmo necesita manejar estas situaciones
- Cada nodo difunde de manera periódica un mensaje de saludo (Hello)
- Cada vecino próximo responde al saludo
- Si un vecino no responde, sabe que este ya no está conectado a él
- Esta información se usa para eliminar rutas que ya no funcionan

66

# 5.3 Algoritmos de control de congestión







- Si hay demasiados paquetes, la subred disminuye su desempeño
- Esto se llama congestión
- Hay algoritmos de enrutamiento que trabajan en función de la congestión en la red

## Causas de la congestión





- Llegan a la red muchos paquetes por diferentes líneas de entrada pidiendo la misma línea de salida
- 2. Insuficiente memoria en ruteadores
- Insuficiente capacidad de procesador
- Insuficiente capacidad de transmisión de las líneas de salida
- Actualizar solo una parte mueve el cuello de botella a otra parte
- Solución: Se deben equilibrar todas las partes del sistema



## Control de congestión y control de flujo

- El control de congestión es un asunto global
  - Procura que la subred sea capaz de transportar el tráfico requerido
- El control de flujo se relaciona con el tráfico entre un emisor y un receptor
  - Implica realimentación del receptor al emisor
- Algunos algoritmos de control de congestión retroalimentan a varios emisores pidiéndoles reducir la velocidad de transmisión
- Un host puede recibir un mensaje de reducir velocidad porque el receptor es lento o porque la red está congestionada



## 5.3.1 Principios generales del control de congestión

- El control se divide en dos grupos las soluciones:
  - Soluciones de ciclo abierto: se resuelve con un buen diseño de la red
  - Soluciones de ciclo cerrado: se basa en retroalimentación
    - Monitorear la erd para detectar posible congestión
    - Informar a los a los hosts que inyectan tráfico a la red para que actúen



#### Métricas para monitorear la subred en busca de congestión

- Porcentaje de paquetes descartados en los routers
- Promedio de la longitud las colas
- Cantidad de paquetes que venció su tiempo de vida y que se tienen que volver a transmitir
- Retardo promedio de paquetes desde el origen al destino

#### Información de la congestión



- Routers monitorean la red con envío periódico de paquetes de sondeo de congestión
  - Esta información permite desviar tráfico fuera del área congestionada
- Si se detecta congestión el ruter envía un paquete informando el problema al origen u orígenes del tráfico
  - Estos paquetes aumentan la congestión



 La retroalimentación no debe hacerse apenas se inicia la congestión, ni tampoco mucho tiempo después de iniciada la congestión







- Algoritmos de ciclo cerrado se dividen en dos:
  - Retroalimentación explícita: regresan paquetes desde el punto de congestión para avisar al origen
  - Retroalimentación implícita: el host emisor deduce que hay congestión según el tiempo para recibir ACKs

# Soluciones frente a la congestión

- Reducir la carga
  - Negar el servicio a algunos usuarios
  - Degradar el servicio
- Aumentar recursos
- Distribuir el tráfico entre varias rutas



## 5.4 Calidad de Servicio QoS



- En redes multimedia, el control de congestión no es suficiente
- Se necesita controlar la calidad de servicio
- No todas las aplicaciones de red requieren la misma calidad de servicio
- Hay maneras para dar QoS ajustadas a las necesidades de las aplicaciones

## 5.4.1 Requerimientos

- Flujo: Conjunto de paquetes que van desde un origen a un destino
- Los paquetes de un flujo pueden ir en datagramas o en varios circuitos Vs.
- El flujo se caracteriza según 4 parámetros:
  - Ancho de banda
  - Retardo
  - Fluctuación del retardo
  - Confiabilidad: pérdida de paquetes
- Cada uno de estos parámetros son requeridos según cada aplicación de red



| Aplicación               | Ancho de banda | Retardo | Variación del retardo | Pérdida |
|--------------------------|----------------|---------|-----------------------|---------|
| Correo electrónico.      | Bajo           | Bajo    | Baja                  | Media   |
| Compartir archivos.      | Alto           | Bajo    | Baja                  | Media   |
| Acceso a Web.            | Medio          | Medio   | Baja                  | Media   |
| Inicio de sesión remoto. | Bajo           | Medio   | Media                 | Media   |
| Audio bajo demanda.      | Bajo           | Bajo    | Alta                  | Baja    |
| Video bajo demanda.      | Alto           | Bajo    | Alta                  | Baja    |
| Telefonía.               | Bajo           | Alto    | Alta                  | Baja    |
| Videoconferencias.       | Alto           | Alto    | Alta                  | Baja    |

Figura 5-27. Nivel de los requerimientos de calidad del servicio de la aplicación.

**Bajo**: parámetro bajamente requerido **Alto**: parámetro altamente requerido

#### Variación de retardo o fluctuación

- Si la fluctuación de video a través de la red es entre 1 y 2 segundos, el resultado es terrible
- En audio, una fluctuación de unos cuantos mseg. es claramente audible

### Confiabilidad: pérdida de paquetes

- Aplicaciones que necesitan tener un flujo sin pérdida ni errores
- Se alcanza con: Checksum o Cyclic Redundancy Check, y ACK
- Aplicaciones en tiempo real no chequean pérdida ni errores

#### 5.4.2 Técnicas para alcanzar QoS

- Hay muchas maneras de dar el servicio con calidad
- Ninguna técnica por sí sola proporciona QoS de una manera total
- Con frecuencia se combinan varias técnicas



#### Algunas de las técnicas son:

- 1. Sobredimensionamiento
- 2. Almacenamiento en búfer
- 3. Modelado de tráfico
- 4. Algoritmo de cubeta con goteo
- 5. Algoritmo de cubeta con *tokens*
- 6. Reservación de recursos
- 7. Control de admisión
- 8. Enrutamiento proporcional, y
- Calendarización de paquetes

#### 1/9. Sobredimensionamiento

- Para que los paquetes fluyan con facilidad, la solución fácil es dar suficiente: capacidad de CPU; memoria; ancho de banda; y, número de líneas
- Pero, esta solución es costosa
- ¿Cuánto es suficiente?. Esta técnica es práctica cuando se tiene experiencia
- Una comparación con el sistema telefónico convencional: siempre hay tono
- Con el sistema celular: siempre comienza a timbrar en el otro móvil

#### 2/9. Almacenamiento en búfer

- Los flujos pueden almacenarse en el receptor (destino final) antes de ser desplegados al usuario
- Esto no afecta la confiabilidad o el ancho de banda
- Esta técnica atenúa la fluctuación
- Para video (VOD) o audio bajo demanda esta técnica es muy útil
- Usado por empresas de streaming: YouTube, Netflix, Prime Video, . . .



Figura 5-31. Refinamiento del flujo de paquetes almacenándolos en el búfer.

Tiempo (seg)



 Sitios web comerciales con transmisión continua de video o audio usan reproductores que almacenan en el búfer por aproximadamente 10 segundos antes de comenzar a reproducir

#### 3/9 Modelado de tráfico

- Los servidores pueden generar diferentes tipos de tráfico
- Servidores que usan tecnología streaming como Netflix o YouTube manejan muchos flujos al mismo tiempo, y permitiendo avance y retroceso
- Servidores de videoconferencia como Zoom, Google Meet, no almacenan el flujo en búfer porque la transmisión es en tiempo real
- Surge entonces la necesidad de modelar el tráfico
- El proveedor de contenido le dice al ISP el patrón de tráfico que va a generar
- Si el ISP lo puede manejar se llega a un acuerdo de servicio
- Entonces se establece la conexión
- Las partes deben cumplir lo acordado



- El ISP supervisa el tráfico generado por el cliente que cumpla con del acuerdo
- La supervisión es más fácil hacerlo con circuitos virtuales que con datagramas
- No se necesita que un servidor de archivos firme un acuerdo el ISP
- Sí se necesita que servidores de streaming y de tiempo real firmen acuerdos

#### 4/9 Algoritmo de cubeta con goteo



Figura 5-32. (a) Una cubeta con goteo, llena de agua. (b) Cubeta con goteo, llena de paquetes.



- Suponga un balde de agua con un agujero en el fondo
- Sin importar la rapidez con la que entra agua al balde, el flujo de salida ρ es constante cuando hay agua en el balde
- Si el balde está vacío, ρ = 0
- Puede aplicarse el mismo concepto a los paquetes
- Es un sistema de cola de un servidor con un tiempo de servicio constante
- Esta técnica convierte un flujo desigual de paquetes de usuario dentro del host en un flujo continuo hacia la red
- De esta manera se moderan las ráfagas y se reduce la congestión

#### 5/9 Algoritmo de cubeta con tokens

- En ocasiones es necesario permitir ráfagas de tráfico
- Aplicaciones que generan ráfagas son transferencia de archivos y VoD (streaming) que ajustan la calidad según el ancho de banda disponible
- El algoritmo de cubeta con goteo no lo permite
- Entonces se requiere un algoritmo más flexible
- Éste es el algoritmo de cubeta con tokens



Figura 3-34. Algoritmo de cubeta con tokens. (a) Antes. (b) Después.



- El balde contiene tokens generados por un reloj a razón de uno cada ΔΤ
- Para transmitir un paquete, se toma un token y se destruye
- Se permite que un host acumule n tokens hasta que se llene el balde
- Así se pueden enviar ráfagas de hasta n paquetes
- Una variante es que un token da el derecho a transmitir k bytes
- Se envía un paquete si hay suficientes tokens que cubran su longitud en bytes
- Algoritmos de cubeta con goteo y con tokens regulan el tráfico de hosts y Routers

#### 6/9 Reservación de recursos

- Para reservar recursos es necesario que los paquetes de un mismo flujo sigan la misma ruta
- Se necesitan circuitos virtuales
- Un flujo de paquetes necesita: memoria, tiempo de CPU y ancho de banda
- Reservando recursos se logra no sobrecargar la red

#### 7/9 Control de admisión

- Si el flujo entrante en routers está bien modelado y sigue una misma ruta
- Entonces se puede solicitar a la red reservar recursos
- El ruteador analiza la solicitud con base en:
  - La capacidad de sus recursos
  - y los compromisos adquiridos con otros flujos
- Entonces admite o rechaza un nuevo flujo
- Las partes en la negociación son: emisor, receptor y ruteadores de la red



- Aunque hay aplicaciones que conocen sobre los requerimientos de ancho de banda, saben poco sobre búferes o tiempos de CPU
- Se necesita otra forma de describir los flujos

| Parámetro                       | Unidad    |  |
|---------------------------------|-----------|--|
| Tasa de la cubeta con tokens.   | Bytes/seg |  |
| Tamaño de la cubeta con tokens. | Bytes     |  |
| Tasa pico de datos.             | Bytes/seg |  |
| Tamaño mínimo de paquete.       | Bytes     |  |
| Tamaño máximo de paquete.       | Bytes     |  |

#### 8/9 Enrutamiento proporcional

- La mayoría de protocolos de enrutamiento envían todo el tráfico por la mejor ruta al destino
- Para dar QoS se debe dividir el tráfico a cada destino por diferentes rutas
- Un modo de hacerlo es dividir el tráfico:
  - en fracciones iguales, o
  - en proporción de la capacidad de los enlaces salientes

#### 9/9 Calendarización de paquetes

- Hay flujos que acaparan la capacidad del router, limitando a los otros flujos
- Para evitar esto, existe el algoritmo encolamiento justo
- Con este algoritmo los routers tienen una cola para cada flujo
- El enrutador explora las diferentes colas de manera circular
- Problema: este algoritmo da más tiempo a los flujos que tiene paquetes más grandes
- Un mejora es hacer la exploración circular por bytes y no por paquetes



Figura 5-36. (a) Un enrutador con cinco paquetes encolados en la línea O. (b) Tiempos de terminación de los cinco paquetes.



- Un problema con este algoritmo es que da la misma prioridad a todos los flujos
- Una solución es dar un peso diferente a cada flujo



## 5.5 Interconexión de redes



- Hasta ahora hemos considerado una sola red en donde cada máquina usa el mismo protocolo en cada capa
- Pero existe una variedad de redes que usan diferentes protocolos en cada capa que son incompatibles entre sí
- Estas redes pueden ser: PAN, LAN, WLAN, WAN, telefónica móvil, . . .
- Sin embargo, estas redes se pueden interconectar entre sí

#### Diferencias entre redes

- Capa Física: Diferentes esquemas de representación de los bits
- Capa de Enlace: Formato de tramas
- Capa de Red
  - Tipo de servicio: sin conexión y orientado a conexión
  - Multidifusión o no
  - Tamaños máximos de paquetes
  - Oferta de diferentes QoS
- Capa de Aplicación: niveles de seguridad
- Diferentes criterios de facturación
- Hay que conciliar estas diferencias para lograr la interconexión de redes

#### Ejemplo de dos redes incompatibles

- Capa Física
  - Cable de par trenzado vs enlace inalámbrico
- Capa de Enlace de Datos
  - 802.3 Ethernet vs 802.11 WiFi
- Capa de Red
  - X.25 orientado a conexión de OSI vs IP
  - CLNP sin conexión de OSI vs IP
- Capa de Transporte
  - TP4 de OSI vs TCP
- Capa de aplicación
  - X.400 de OSI vs SMTP de TCP/IP



- Con routers/gateways, que son routers multiprotocolo que traducen los paquetes de la una red en paquetes de la otra red
- 2. Gateways de aplicaciones incompatibles: SMTP a X.400; HTTPS a HTTP; FTP a SFTP; . . .
- 3. Con una capa común sobre las otras capas inferiores de cada red para ocultar las diferencias de las redes. Esta capa común es IP
- 4. Túnel para conectar dos redes compatibles a través de una red incompatible

#### Capa Común IP



Dirección de red o subred 3



- La interconexión de redes frecuentemente se logra cuando hay una capa de red común
- IP es el protocolo de red universal. Hay otros pero son obsoletos: IPX de Novell Netwere, SNA de IBM, AppleTalk, . . .
- IP se usa en redes de computadoras, telefonía móvil y red de sensores, cámaras de video-vigilancia, . . .
- IP ha dado lugar a IPv4 e IPv6 que son incompatibles



- Hubs son de capa física y solo transfieren bits desde una cable a otro
- Switches interconectan PCs con diferentes velocidades 10, 100, 1.000 y 10.000 Mbps
- Routers son capa 3 que interconectan distintos tipos de redes
- Las tramas en cada tipo de red tienen diferentes tamaños máximos, así que habrá que fragmentar en tramas más pequeñas

#### Tunelización

- Llamado también encapsulación
- Se lo hace si los hosts origen y destino tienen el mismo tipo de red con una red diferente en el medio



Figura 5-40. Tunelización de un paquete de París a Londres.



- Para hacer tunelización se requiere que los enrutadores sean multiprotocolo a nivel de capa de red: IPv4 e IPv6
- Analogía, el Eurotúnel:



Figura 5-41. Tunelización de un auto de Francia a Inglaterra.



- La tunelización se usa para conectar redes aisladas a través de otras redes
- La tunelización se usa también para crear redes VPN Virtual Private Networks
- Una VPN se usa para dar seguridad
- Los paquetes IP se encriptan y se encapsulan en otros paquetes IP, que tiene la dirección IP del servidor VPN y la dirección IP del cliente VPN.

#### Problemas de enrutamiento entre redes

- Cada una de las redes interconectadas pueden utilizar diferentes protocolos de enrutamiento
- Una red podría usar enrutamiento por estado de enlace y la otra enrutamiento por vector distancia
- Esto dificulta la determinación de rutas más cortas
- Los operadores de las redes pueden tener diferentes criterios de mejor ruta: la que tiene menos saltos, menos retardos, mayor ancho de banda, la más económica, . . .



- Por otro lado, un operador puede que no quiera dar a conocer sus rutas por diferentes motivos
- 1. Privacidad y seguridad para evitar ataques y proteger a los sus clientes
- Ventaja competitiva, par evitar que sus competidores redirijan el tráfico por otras redes, reduciendo la demanda de sus servicios
- 3. Tráfico no deseado proveniente de redes externas que podrían congestionar la red



- Todo esto conducen a un algoritmo de enrutamiento de dos niveles:
  - Dentro de cada red se usa un protocolo intradominio
  - En la interred se usa un protocolo interdominio
- En Internet el protocolo interdominio es BGP Border Gateway Protocol a ser usado entre las operadoras de las redes
- A nivel mundial, las grandes operadoras de redes son AT&T, Verizon,
  Vodafone, Telefónica
- En Ecuador, las operadoras de las redes son CNT, Claro, Movistar, Tuenti,
  Netlife, que son reguladas por ARCOTEL

## Fragmentación de paquetes

- Reducir el tamaño máximo de paquetes tiene varias razones:
- 1. El hardware (por ejemplo el tamaño de una trama ethernet: 1518 bytes)
- Los búfers del sistema operativo tienen el tamaño de 512 bytes
- 3. Reducir retransmisiones de paquetes grandes debido a pérdida o errores
- 4. Evitar que un paquete use por demasiado tiempo el canal



- Las cargas útiles máximas para:
- Ethernet es 1500 bytes
- 802.11 es 2272 bytes
- IP es 65515 bytes
- Los host prefieren transmitir paquetes grandes para ahorrar bytes de los encabezados. Problemas: tarea de fragmentar y ensamblar fragmentos
- El tamaño máximo de paquetes para llegar a un destino se llama MTU de ruta Path Maximum Transmission Unit
- Conocer MTU es útil si la fuente conoce de antemano la ruta

# Fragmentación de paquetes. Dos maneras:



Todos los fragmentos de un mismo paquete siguen la misma ruta



Figura 5-42. (a) Fragmentación transparente. (b) Fragmentación no transparente.

Los fragmentos de un mismo paquete podrían seguir diferentes rutas

#### Fragmentación sucesiva a lo largo de una ruta



Figura 5-43. La fragmentación cuando el tamaño de datos elemental es de 1 byte. (a) El paquete original que contiene 10 bytes de datos. (b) Los fragmentos después de pasar por una red con un tamaño máximo de paquete de 8 bytes de carga útil más encabezado (c) Fragmentos después de pasar a través de una puerta de enlace de tamaño 5.



- Para evitar la fragmentación en la red, se fragmenta en el host origen
- Se envía los paquetes indicando en el encabezado que no se fragmenten
- Si un router recibe un paquete demasiado grande, lo descarta y avisa al origen indicando cuál es el tamaño máximo
- Cuando el origen recibe el aviso, fragmenta el paquete y lo vuelve a enviar
- Si otro router más adelante tiene un MTU aun más pequeño, se repite el proceso
- La desventaja del MTU de ruta es que puede haber retardos al inicio





Figura 5-44. Descubrimiento de MTU de la ruta.



# 5.6 La capa de red de Internet

## Principios de diseño de la capa de red de Internet

- 1. El diseño debe funcionar en la práctica
- 2. Debe ser simple. "si *tiene duda use la solución más simple*". Si una característica del diseño no es esencial, descártela
- 3. Si hay varias maneras para realizar una tarea, elija solo una
- 4. Diseñe modularmente
- 5. Haga un solo diseño flexible a diferentes tipos de hardware, redes y aplicaciones
- 6. Incluir parámetros si son inevitables
- 7. No diseñar contemplando hasta los casos más extraños y raros



- 8. Diseño estricto en el cumplimento de estándares cuando se envíen paquetes y tolerante si llegan paquetes que no los cumplen
- 9. Diseño escalable para millones de hosts
- 10. Diseño que permite un desempeño eficiente de la red





Figura 5-45. Internet es una colección interconectada de muchas redes.



- IP logra interconectar todas las redes que forman Internet
- IP fue diseñado con este propósito
- Los paquetes IP pueden ser de hasta 64 KB (65536 bytes)
- En la práctica no sobrepasan los 1500 bytes, capacidad de Ethernet
- Hay muchas rutas posibles entre dos hosts
- IP tiene la tarea de decidir qué ruta seguir

#### El protocolo IPv4

- Un datagrama tiene dos partes: encabezado y carga útil
- El encabezado tiene una parte fija de 20 bytes y una parte opcional de longitud variable
- Los bits se transmiten de izquierda a derecha y de arriba abajo



Figura 5-46. El encabezado de IPv4 (Protocolo de Internet).



- Versión de IP. La que hoy domina Internet es IPv4
- IPv5 fue experimental para tiempo real que no tuvo éxito
- IPv6 definida ya hace muchos años, aun se usa poco
- IHL indica la longitud variable del encabezado expresada en palabras de 32 bits. Lo mínimo es 5 = 20 bytes = 160 bits
- ¿Cuál es el tamaño máximo del encabezado?
- $2^4 \times 32 = 512 \ bits = 64 \ bytes$
- Servicios diferenciados. Para voz digital, rápido es más importante que preciso. Para envío de archivos, preciso es más importante que rápido
- Longitud total del datagrama. La longitud máxima es  $2^{16} 1 = 65535$



- Identificación. Indica a qué paquete pertenece un fragmento
- Bit sin uso
- DF. Don't fragment, es una orden para los enrutadores
- MF. More fragments, Todos los fragmentos excepto el último tienen este bit=1
- Desplazamiento del fragmento. Indica a qué parte del paquete pertenece el fragmento
- Tiempo de vida. TTL, Cuenta saltos de un paquete en la red para que no vague sin fin si se corrompen las tablas de ruteo
- Protocolo. de transporte: TCP o UDP
- Suma de verificación del encabezado. Checksum



- Dirección de origen y dirección del destino
- Opciones. Creado pensando en las versiones futuras de IP para que lo puedan utilizar. Actualmente no se usan ni se usarán. Estas son:

| Opción                                 | Descripción                                                           |
|----------------------------------------|-----------------------------------------------------------------------|
| Seguridad.                             | Especifica qué tan secreto es el datagrama.                           |
| Enrutamiento estricto desde el origen. | Proporciona la ruta completa a seguir.                                |
| Enrutamiento libre desde el origen.    | Proporciona una lista de enrutadores que no se deben omitir.          |
| Registrar ruta.                        | Hace que cada enrutador adjunte su dirección IP.                      |
| Estampa de tiempo.                     | Hace que cada enrutador adjunte su dirección y su etiqueta de tiempo. |

Figura 5-47. Algunas de las opciones del protocolo IP.

#### **Direcciones IP**

- Una dirección IP no se refiere a un host sino una interfaz de red
- Un host tiene una interfaz de red; un router tiene varia
- A diferencia de direcciones ethernet, direcciones IP son jerárquicas: porciones de red y de host
- Direcciones jerárquicas tienen ventajas y desventajas
- Ventaja: Ruteando con base en la porción de red, las tablas son pequeñas
- Desventajas:
  - La dirección IP de un host depende de su ubicación en la red. Una dirección ethernet puede usarse en cualquier parte del mundo
  - Un sistema jerárquico desperdicia direcciones

#### Direcciones de red

- Para evitar conflictos, los números de red se administran a través de una empresa sin fines de lucro: ICANN
- ICANN ha delegado parte de las direcciones a varias autoridades regionales, las cuales reparten las direcciones a los ISPs
- Una misma dirección de red internamente puede ser utilizada entre varias subredes, y actuar como una sola red ante Internet



Figura 5-49. División de un prefijo IP en redes separadas mediante el uso de subredes.