DS-SF-27 Final Project

Andrew Burke

Project Problem & Hypothesis

Problem

I want to predict if a user will be retained after using our mobile app for the first time. If we are
 able to reliably predict this, we can then design features to improve retention.

Hypothesis

As users add more streams/view more articles/enable push notifications in their first session,
 the higher the probability they will be retained.

Machine Learning Model

• This is a classification problem, and the outcome of the machine learning model will be the probability that a user will be retained after their first session.

New User Flow

Launch App

Enable Notifications

Add Streams

View Articles

The Data

```
df = pd.read_csv(os.path.join('..', 'Datasets', 'BR_data.csv'))
df = df.set_index('user_identities.identity')
df
```

	articles_viewed	streams_added	sessions	greater_than_5_sessions	push_enabled
user_identities.identity					
4.32E+17	1	1	1	0	0
2.39E+18	1	5	1	0	0
5.27E+18	2	5	1	0	0
00000000000000a419698266553970235	3	3	1	0	0
0000000000000a6409315927365159953	1	8	1	0	0
ffeeaa76195841efab257d819dac7bbb	2	27	12	1	0
fff0a4ec1e7548b2a8b3245defbeabc1	15	51	9	1	0
fff16bbe71f74b06a2e0b58186be2db9	1	5	2	0	0
fff8033f52ac4d67ae61f2e70559e681	2	3	3	0	0
fffc6535ff9441ee81e321e95374ed77	2	28	6	1	1


```
df[['articles_viewed', 'streams_added', 'sessions']].plot(kind = 'box')
```

<matplotlib.axes._subplots.AxesSubplot at 0x11c470090>


```
pd.tools.plotting.scatter_matrix(df[ ['articles_viewed', 'streams_added', 'sessions'] ], s = 200,
figsize = (8, 8), c = color)
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x1250d7d10>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x1258a6dd0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1258344d0>],
       [<matplotlib.axes. subplots.AxesSubplot object at 0x125602610>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x12541f690>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125484450>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x123b2c4d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125978690>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125c5d490>]], dtype=object)
  articles_viewed
   10008
streams_added
   6000
   2000
  sessions
     50
                                                      150
                                                         200
          articles viewed
                                                    sessions
                              streams_added
```



```
Q1_sa = df.streams_added.quantile(0.25)
Q3 sa = df.streams added.quantile(0.75)
IQR sa = Q3 sa - Q1 sa
IQR sa
50.0
df.drop(df[df.streams added > Q3 sa + 1.5 * IQR sa].index, inplace = True)
df.shape[0]
23025
Q1 av = df.articles viewed.quantile(0.25)
Q3 av = df.articles viewed.quantile(0.75)
IQR_av = Q3_av - Q1_av
IQR_av
5.0
df.drop(df[df.articles_viewed > Q3_av + 1.5 * IQR_av].index, inplace = True)
df.shape[0]
21242
```



```
df[['articles_viewed', 'streams_added', 'sessions']].plot(kind = 'box')
```

<matplotlib.axes._subplots.AxesSubplot at 0x11dea2650>


```
articles_per_stream = df.articles_viewed / df.streams_added
articles per_stream
```

```
user_identities.identity
4.32E+17
                                     1.000000
2.39E+18
                                     0.200000
                                     0.400000
5.27E+18
00000000000000a419698266553970235
                                     1.000000
0000000000000a6409315927365159953
                                     0.125000
                                       . . .
ffebf65d7954494cabf9c7d932f5c916
                                     0.500000
ffeeaa76195841efab257d819dac7bbb
                                     0.074074
fff16bbe71f74b06a2e0b58186be2db9
                                     0.200000
fff8033f52ac4d67ae61f2e70559e681
                                     0.666667
fffc6535ff9441ee81e321e95374ed77
                                     0.071429
dtype: float64
```

sm.qqplot(articles_per_stream, line = 's')
pass


```
sm.qqplot(df.streams_added.apply(lambda x: np.log(1 + x)), line = 's')
#sm.qqplot(df.streams_added, line = 's')
pass
```


Next Steps

- Set up training and test sets
- Random forest and feature importance
- Run cross validation on training set for logistic regression model
- Evaluate model
- Run final model on test set

Setting up training and test sets

```
X = df[df.columns.values]
X.drop('greater_than_5_sessions', axis = 1, inplace = True)
y = df.greater_than_5_sessions

train_X, test_X, train_y, test_y = cross_validation.train_test_split(X, y, train_size = .6, random_state = 0)
```

60/40 split

```
model = linear model.LogisticRegression().\
   fit(train X, train y)
print np.exp(model.intercept )
print np.exp(model.coef )
[ 0.18468435]
model.score(train X, train y)
0.7370733621027854
y hat = model.predict(train X)
pd.crosstab(y hat,
   train y,
   rownames = ['Hypothesized Class'],
   colnames = ['True Class'])
True Class
                0
Hypothesized Class
                4203
                     1960
                1391 5191
```

Decision Tree and Feature Importance

```
model = tree.DecisionTreeRegressor(random state = 0).\
    fit(train X, train y)
train y hat = model.predict(train X)
print np.sqrt(metrics.mean squared error(train y, train y hat))
0.401564754718
sorted(zip(model.feature importances , X.columns.values), reverse = True)
[(0.68213475116320976, 'streams added'),
 (0.31786524883679018, 'articles viewed')]
cross validation.cross val score(model, train X, train y, cv = 10).mean()
0.23622385776101601
```

```
model = linear model.LogisticRegression().\
    fit(train X, train y)
print np.exp(model.intercept )
print np.exp(model.coef )
[ 0.460203281
[[ 1.04642719]]
model.score(train X, train y)
0.69776382895253042
y hat = model.predict(train X)
pd.crosstab(y hat,
    train y,
    rownames = ['Hypothesized Class'],
    colnames = ['True Class'])
True Class
                 0
Hypothesized Class
                  4255 2513
0
```

1339 4638

```
sm.qqplot(df.streams_added.apply(lambda x: np.log(1 + x)), line = 's')
#sm.qqplot(df.streams_added, line = 's')
pass
```



```
model = linear model.LogisticRegression().\
    fit(train X, train y)
print np.exp(model.intercept )
print np.exp(model.coef )
[ 0.01530738]
[[ 3.95730089 2.5831387 1]
model.score(train X, train y)
0.74225186347587291
y hat = model.predict(train X)
pd.crosstab(y hat,
   train y,
    rownames = ['Hypothesized Class'],
    colnames = ['True Class'])
True Class
                 0
Hypothesized Class
                 3783 1474
```

1811 5677

Running on the Testing Set

```
model.score(test_X, test_y)

0.73331764152053669

print 'training misclassification =', 1 - model.score(train_X, train_y)
print 'testing misclassification =', 1 - model.score(test_X, test_y)

training misclassification = 0.257748136524
testing misclassification = 0.266682358479
```

Playing with Predictions and Probabilities predict_1 = [[0,1]]

```
print model.predict(predict 1)
print model.predict proba(predict 1)
[[ 0.96196294  0.03803706]]
predict 2 = [ [0,2] ]
print model.predict(predict 2)
print model.predict proba(predict 2)
[[ 0.90732565  0.09267435]]
predict 3 = [ [0,3] ]
print model.predict(predict 3)
print model.predict proba(predict 3)
[[ 0.79123809  0.20876191]]
predict 4 = [ [0,4] ]
print model.predict(predict 4)
print model.predict proba(predict 4)
101
[[ 0.5946927
             0.4053073]
```

```
v hat = model.predict(X)
p hat = model.predict proba(X)[:,1]
new df = X.join(pd.DataFrame({'y': y, 'y hat': y hat, 'p hat': p hat}))
new df['cl'] = new df.y.map({0: 'black', 1: 'red'})
new df['c2'] = new df.y hat.map({0: 'black', 1: 'red'})
new df
                                  articles viewed streams added p hat
                                                                         y y hat c1
                                                                                       c2
user identities.identity
                                                 0.693147
                                                                0.071216 0 0
4.32E+17
                                  0.693147
                                                                                  black black
2.39E+18
                                  0.693147
                                                 1.791759
                                                                0.178644 0 0
                                                                                  black black
5.27E+18
                                  1.098612
                                                 1.791759
                                                                0.275315 0 0
                                                                                  black black
00000000000000a419698266553970235
                                  1.386294
                                                 1.386294
                                                                0.277502 0 0
                                                                                  black black
                                                 2.197225
                                                                0.242178 0 0
000000000000a6409315927365159953 | 0.693147
                                                                                  black black
                                                                                        ...
ffedae157fae4875b0325db40c81ec81
                                  1.791759
                                                 3.850148
                                                                0.874250 1 1
                                                                                  red
                                                                                        red
                                                 3.332205
                                                                0.621064 1 1
ffeeaa76195841efab257d819dac7bbb
                                  1.098612
                                                                                  red
                                                                                        red
fff16bbe71f74b06a2e0b58186be2db9
                                                 1.791759
                                                                0.178644 0 0
                                  0.693147
                                                                                  black
                                                                                       black
                                                 1.386294
                                                                0.205444 0 0
fff8033f52ac4d67ae61f2e70559e681
                                  1.098612
                                                                                  black
                                                                                       black
fffc6535ff9441ee81e321e95374ed77
                                  1.098612
                                                 3.367296
                                                                0.628870 1 1
                                                                                  red
                                                                                       red
```

new_df.plot(x = 'articles_viewed', y = 'p_hat', kind = 'scatter', c = new_df.cl)

<matplotlib.axes._subplots.AxesSubplot at 0x24ee4860>

new_df.plot(x = 'streams_added', y = 'p_hat', kind = 'scatter', c = new_df.cl)

<matplotlib.axes._subplots.AxesSubplot at 0x11cbf710>

Conclusions

- Streams added explain more of the variance in retained users, but articles viewed is somewhat important too
- Probability that user will be retained goes up as a user adds more streams / views more articles
- The model gets more accurate as a user adds > ~8 streams
- Assuming these are reliable conclusions, we can design features to encourage new users to add at least 8 streams

- Need to acquire and clean more data -> push_enabled issues
- Can't screw up training and test sets in future analyses

Next Steps

- Acquire more data
- More cleaning → test accounts
- Expand list of features (time per session, time between sessions, push notification counts, etc.)
- Re-run models
- Design in-app experiments see if model holds true