MNI Mathematik, Naturwissenschaften und Informatik

Inhaltsverzeichnis

- 1. Projektbeschreibung und Aufgabenstellung
- Training von Objekterkennungsmodell
- 3. Entwicklungsprozess
 - 3.1. Datensatz & Labeling
 - 3.2. Namens & Objekterkennung
 - 3.3. Auswertung & Exportierung
 - 3.4. Mobile-App
- 4. App Demo
- 5. Ausblick
 - 5.1. Probleme
 - 5.2. Verbesserungsmöglichkeiten
 - 5.3. Fazit
- 6. Quellenverzeichnis

Projektbeschreibung

- Anwendung die Kaffeelisten automatisch auswertet und exportiert
- Nutzer macht Bild von Kaffeeliste und erhält Excel Sheet
- Auswertung geschieht durch trainiertes Machine Learning Modell
- Technische Anforderungen und Lösungen:
 - Namenserkennung (via Tesseract Library)
 - Objekterkennung (durch selbst trainiertes Modell)
 - Exportierung (mit Pandas Library)
 - GUI (durch Kivy Library)

Training von Objekterkennungsmodell (Research)

- Informationen über Objekterkennung & Modelle gesammelt
 - TF2 Detection Model Zoo & YOLO Modelle
 - Two-stage detectors (z.B. R-CNN Netzwerke) vs One-stage detectors (z.B. SSD)
 - Schnelligkeit vs Präzision
- Simples Projekt mit nur Bilderkennung und Fokus auf Mobile
 - → YOLO, SSD oder RetinaNet
 - Entscheidung für SSD MobileNet 640x640 (ausbalanciert und geeignet für mobile)

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01691-8#Sec12

Training von Objekterkennungsmodell (Prozess)

- Setup und Installierung von diversen Bibliotheken in venv
 - Tensorflow Object Detection API
 - TF2 Model Zoo Models
 - CUDA + cuDNN von NVIDIA
- 6 verschiedene Modelle trainiert
 - Solide Erkennung von Blöcken (meist mit 100% Confidence)
 - Erkennung von einzelnen Strichen schwach
 - Datensatz mit jedem Training angepasst
 - Inkorrekte und ungenaue Labels verbessert

Seite

Training von Objekterkennungsmodell (Prozess)

Training von finalem Modell

Entwicklungsprozess I – Datensatz

- Anlegen von eigenen Datensätzen mit möglichst vielen Variablen:
 - Papiere
 - Stifte
 - Hintergründe
 - Winkel
 - Beleuchtung
- Papiere mit möglichst vielen Strichen befüllen
- Unterschiedliche Größen und Ausrichtungen
- Verschiedene Entfernungen zueinander

Beispiel Datensatz für Einzelstriche

Entwicklungsprozess I – Labeling

- Verwendung von Label Studio f
 ür labeling
- Zwei verschiedene Labels
 - Single (Einzelne Striche)
 - Block (5er Blöcke)
- Export als Pascal VOC XML
 - Beliebtes Format für Objekterkennung und Bildsegmentierung

Beispiel labeled Datensatz

Entwicklungsprozess II – Namenserkennung

- Simple erkennung durch Tesseract Library
- Unterstützt keine Handschrift
- Viele überflüssige Daten
 - Begrenzung auf Alphabet & Leertaste
 - Confidence Rate
 - Durchschnittliche Position der Namen
- Exportierung der übrigen Daten in Liste
 - [Name, x, y, width, height, stroke count]
 - Vor & Nachname zusammengefügt (via y-Position)
 - Für spätere Verwendung bei Auswertung

Seite

Entwicklungsprozess II – Objekterkennung

- Importieren von trainierten Modell
 - config
 - label_map
 - aktuellster checkpoint

- @tf.function

 def detect_fn(image):
 image, shapes = detection_model.preprocess(image)
 prediction_dict = detection_model.predict(image, shapes)
 detections = detection_model.postprocess(prediction_dict, shapes)
 return detections
- Simple Objekterkennung durch Hilfsmethode von Tensorflow
- Gibt bounding boxes, labels & confidence Wert zurück
- Erstellen von Objektliste mit ähnlicher Struktur wie Namensliste
 - [Label, x, y, width, height]

Entwicklungsprozess III – Auswertung & Exportierung

Auswertung

- Durch gleiche Struktur von Objekt- & Namenslisten sehr simpel
- Iterieren über alle Namen und vergleichen von y-Koordinaten
 - Objekt in Buffer Bereich von Name?
 - Objekt rechts von Name?
- Erhöhe stroke count in namensliste und gebe liste zurück

Exportierung

- Einfache Umsetzung durch Pandas
 - DataFrame von names array erstellt
 - Unnötige Daten entfernt (x, y, width, height)
 - Zu Excel exportiert

Entwicklungsprozess IV – Mobile-App

- Möglichkeiten für Entwicklung:
 - App in anderer Sprache entwickeln mithilfe von TFLite
 - Python Backend Server hosten
 - GUI per Python entwickeln
- Entscheidung für GUI via Python
 - Code stand bereits vollständig in Python
 - GUI steht nicht im Fokus, also eher simple Lösung suchen
- Kivy Library als Lösung (erlaubt Desktop + Mobile App Export)
 - Kamera Stream eingebaut um Bilder zu machen
 - Bestätigung des Bildes zum auswerten
 - Export als Excel Sheet, welches lokal gespeichert wird

App Demo

4	Α	В	С
1		Names	Coffee count
2	0	Lucas Weißmann	12
3	1	Lennart Zinn	6
4	2	Barack Obama	1
5	3	Joe Biden	14
6	4	Angela Merkel	23
7	5	Donald Trump	0
8	6	Emmanuel Macron	40
9	7	Justin Trudeau	5
10	8	Xi Jinping	3
11	9	Olaf Scholz	4
12	10	Mario Draghi	11
13	11	Helmut Kohl	17
4.4			

Ausblick I - Probleme

- Tesseract unterstützt keine Handschrift
 - Lösung: User muss Computer gedruckte Namen verwenden
- Installation von Libraries, TF, CUDA, cuDNN war schwierig, erstes Training lief auf CPU, weil GPU lange nicht erkannt wurde
 - Lösung: Langes rumprobieren und neues aufsetzen von Virtual Environment
- Erkennung von einzelnen Strichen war mangelhaft
 - Lösung: Datensatz verbessert (false positives entfernt), aber noch unzufrieden
- Mobile Export hat lange zeit nicht geklappt wegen Windows, Libraries etc.
 - Lösung: WSL, Object Detection API in Projekt inkludiert, Dateien reduziert
- Probleme mit schlechten Inputs (Verschwommen/ungewöhnliche Einträge)
 - Lösung: Datensatz verbessern

Ausblick II – Verbesserungsmöglichkeiten

- Erkennung einzelner Striche
 - Eventuell waren Daten zu Abwechslungsreich, aber dafür zu wenig
 - Mehr konsistente & "saubere" Datensätze
 - False Positives wurden vielleicht nicht alle entdeckt beim prüfen
- App-Design
 - App nochmal in anderer Sprache entwickeln
 - Komplett das Design überarbeiten
- Mehr Optionen bieten
 - Export zu verschiedenen Tabellentypen bieten
 - Bildupload & Aufnahme anbieten

Ausblick III - Fazit

- Projekt war relativ gut gelungen, aber brauch noch sehr viel Arbeit am Datensatz & Design
- Größte Hürde war das aufsetzen der Libraries und das Modell zu trainieren
- Bei nächsten Projekten wird Training leichter und Zeit kann mehr auf Datensatz & Code konzentriert werden
- Viel gelernt über das trainieren von Modellen, wie viel nur kleine Fehler im Datensatz ausmachen und viel mehr
- Nächstes mal GUI nicht in Python programmieren, da das sehr limitiert ist
- Mit bisschen mehr Arbeit wäre die App jedoch nützlich, momentan noch nicht

Quellenverzeichnis

- Github Projekt
 - https://github.com/lwsm99/Coffeelist
- Datensatz & Labeling
 - https://labelstud.io/quide/
 - https://keymakr.com/blog/what-are-bounding-boxes/
 - https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/
- Objecterkennung
 - https://tesseract-ocr.github.io/tessdoc/
 - https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01691-8#Sec12
 - https://arxiv.org/ftp/arxiv/papers/1003/1003.5893.pdf
 - https://github.com/tensorflow/models/tree/master/research/object_detection
 - https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/
 - https://github.com/nicknochnack/TFODCourse
 - https://viso.ai/deep-learning/object-detection/
- Daten Exportierung
 - https://pandas.pydata.org/docs/
 - https://www.delftstack.com/de/howto/python-pandas/export-pandas-dataframe-to-excel-file/
- Mobile-App
 - https://realpython.com/mobile-app-kivy-python/
 - https://kivy.org/doc/stable/api-kivy.html