IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants

R. Fischer et al.

Serial No.

10/578,403

Filed

November 13, 2006

For

2-Halogen-6-Alkyl-Phenyl substituted Spirocyclic Tetramic

Acid Derivatives

Group Art Unit

1626

Examiner

BIANCHI, KRISTIN A

DECLARATION

Dr. Heinz Kehne hereby declares:

- that he is a chemist having studied at the University of Göttingen, Germany;
- that he received his doctor's degree in chemistry at the University of Göttingen, Germany in 1981;
- that he entered the employ of Bayer Cropscience (or the predecessor companies Hoechst, Agrevo, Aventis resp.) in 1982;
- that he has specialized in plant protection biology since 2002;

Biological Examples

1. Pre-emergence herbicidal action

Seeds of monocotyledonous and dicotyledonous weeds and/or crops are placed in sandy loam and covered with soil.

The compounds which are formulated as wettable powders or emulsifiable concentrates are dissolved and diluted with water containing adjuvant and are then applied to the surface of the covering soil at different dose rates at an application volume of 800 or 1000 litres water per ha.

After the treatment, the pots are placed in the greenhouse and kept under good growth conditions for the plants.

The herbicidal effect is assessed visually as per-cent-figure in comparison to the untreated control three to four weeks after application. 100 % efficacy refers to the complete damage of the assessed plants, 0 % efficacy refers to the appearance of the untreated control.

2. Post-emergence herbicidal action

Seeds of monocotyledonous and dicotyledonous weeds and/or crops are placed in sandy loam, covered with soil and grown under good greenhouse conditions.

The plants are treated at one-leaf-stage two to three weeks after sowing.

The compounds which are formulated as wettable powders or emulsifiable

concentrates are dissolved and diluted with water containing adjuvant and are then applied over the top of the plants at different dose rates at an application volume of 800 or 1000 litres water per ha.

After the treatment, the pots are placed in the greenhouse and kept under good growth conditions for the plants.

The herbicidal effect is assessed visually as per-cent-figure in comparison to the untreated control three to four weeks after application. 100 % efficacy refers to the complete damage of the assessed plants, 0 % efficacy refers to the appearance of the untreated control.

				estobject	Non	VEFA	OHICO	Emvi	ALAP
Structure	Substance	Test type	Dosage	Upit	A,		ш	1130	
HO BY CH,		·	250	g/ha	0	30	20		70
Ho CI CH,		VA	250	g/ha		80	50	90	90
HOH3C Br		VA		g/ha	60	10		80	0
Br CH ₃		VA		g/ha	100	90	70		100
OH CH ₃ VA = Vorauflauf (p		VA .	80	g/ha	80	70		90	100

I-1-a-11 EP 944633

I-1-a-8 EP 944633

I-1-a-3 EP 944633

I-a-1 accerding to the involution

1				3 2 3			
				0180	ALCOM	AVEE	SETW
Structure	Substance	Test type	Bosage	Unit			\neg
HO BIT CH,		:					
	· · · · ·	NA .	250	g/ha	- O	- 9	-
HONG TO CO			250	g/ha	50	0	0
		NA_	250	g/na	30		٦
Ho Ci CH ₃							
		NA	250	g/ha	50		_
HO ^P I _G C CH ₈		NA_	250) g/ha	50		
Br CH ₃		NA	320	g/ha	90	100	90
Br CH,							
NA = Nachauflauf	(a-a) =====	NA NA	8	g/ha	90	90	90

	į ·
I-1-a-11	EP 944633
I-1-a-10	EP 944633
I-1-a-8	EP 944633
I-1-a-3	EP 944633
l-a-1	according to the
l-a-1	

CH ₃ CH ₃ CH ₃ NA 250 g/ha 50 50			, ast	Dosage			Selvile
CH ₃ CH ₃ NA 250 g/ha 50 50	Structure	Samsening	aype	A SECTION AND ADDRESS OF THE PARTY OF THE PA	No. of Street		
HN TO CH ₃			NA	250	g/ha	50	50
				80	a/ba	90	90
NA = Nachauflauf (post-emergent)			NA.	80	rg/na	1 30	1 30

I-1-c-3	EP 944633
	•
1-c-1	according to the

1-1-2-11 EP 835243

La-3

Cuco-ding to the number on

				0000	/(mor)		MINNE
Structure	-Substance	Test type	Dosage	Unit		_	•
He Charles		NA	250	g/ha	95	95	70
н,с-0 ДСК,			-				
HO a CHS		ł	ļ.	l	i i		i

I-1-a-24 EP 835243

invention

					Mone	WIELD.	Juleis	ABUTH
Stateme	Substance	Test type	Dosage	init				
H ₂ CC CH ₃ H ₃ CC CH ₄ CH ₅ Br		NA	250	g/ha	50	10	Ó	
H,C, CH,								

I-1-b-10 EP 835243

HAS according to the

Calle 1 von

I-1-b-43 EP 835243

muention

ייייני							
g/ha	60	90	10	0	40	80	90
g/ha	10	100	100	_50	100	100	100

. ĖP 835243

in according to the

				itestochlos	Miles III	WIELD.	SID	SETVI	William I	CALLAP
Strateure	Substant	l Type	Dosage	ບກາເ						
re-Charles		NA	250	g/ha	70	30	D	6D	O	C
NC O BY CH			220	a flora	100	100	70	100	80	70
SCO HOOK	•	NA	320	g/ha			,,,			
ң б		NA	l 50	g/ha	100	100	50	100	50	60

-c-4 EP 835243

according to the

H-1-a-11 EP 835243

H-a-3 | cacconduling to the 1'miention

H-a-24 EP 835243

invention

-1-b-10 EP 835243

according to the invention

according to the nivertion

Structure	Substance	iest Type	Dosage	oaldojsai E	Mont	AV SFA	01688	101100	Null S	SOUTH	GALAR
se of the part of		VA	320	g/ha	90	60	50	80	90	80	36
So B Cat				·							81

EP 835243

103 according to the

	ALL PLANTS AND	Jesi			BEAVA	GALAPI
Structure	Substance	type	Dosege			
H ₂ C Br .		VA	250	g/ha	80	D
HSC ONS OF OBS		VA.	. 320	g/ha	D	. 80
M ₂ C ₀ C ₄ C ₄ C ₄ C ₄ VA = Vorauflauf (pre-e		VA	80	g/ha	D	80

1-c-4 . EP 835243

according to the

The undersigned declarant hereby declares that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

March 11, 2009

Date