# **REINFORCE versus A2C**

**Shusen Wang** 

# **Policy and Value Networks**



# **A2C** with Multi-Step TD Target

## Advantage Actor-Critic (A2C)

- Observing a transition  $(s_t, a_t, r_t, s_{t+1})$ .
- TD target:  $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$ .
- TD error:  $\delta_t = v(s_t; \mathbf{w}) y_t$ .
- Update the policy network (actor) by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a}_t \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

## Advantage Actor-Critic (A2C)

- Observing a transition  $(s_t, a_t, r_t, s_{t+1})$ .
- TD target:  $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$ . Use multi-step TD target instead.

- TD error:  $\delta_t = v(s_t; \mathbf{w}) y_t$ .
- Update the policy network (actor) by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}.$$

## One-Step VS Multi-Step Target

- Observing a transition  $(s_t, a_t, r_t, s_{t+1})$
- One-step TD target:

$$y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w}).$$

## One-Step VS Multi-Step Target

- Observing a transition  $(s_t, a_t, r_t, s_{t+1})$
- One-step TD target:

$$y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w}).$$

- Observing m transitions:  $\{(s_{t+i}, a_{t+i}, r_{t+i}, s_{t+i+1})\}_{i=0}^{m-1}$ .
- *m*-step TD target:

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot v(s_{t+m}; \mathbf{w}).$$

# A2C with Multi-Step TD Target

- Observing a trajectory from time t to n.
- TD target:  $y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot v(s_{t+m}; \mathbf{w}).$
- TD error:  $\delta_t = v(s_t; \mathbf{w}) y_t$ .
- Update the policy network (actor) by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

• Observing a trajectory from time t to n.

• Return: 
$$u_t = \sum_{i=t}^T \gamma^{i-t} \cdot r_i$$
.

• Error: 
$$\delta_t = v(s_t; \mathbf{w}) - u_t$$
.

• Observing a trajectory from time t to n.

• Return: 
$$u_t = \sum_{i=t}^T \gamma^{i-t} \cdot r_i$$
.

• Error: 
$$\delta_t = v(s_t; \mathbf{w}) - u_t$$
.

Update the policy network by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a_t} \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}$$

Update the value network by:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

• Observing a trajectory from time t to n.

• Return: 
$$u_t = \sum_{i=t}^T \gamma^{i-t} \cdot r_i$$
.

• Error: 
$$\delta_t = v(s_t; \mathbf{w}) - u_t$$
.

Update the policy network (actor) by:

$$\mathbf{\theta} \leftarrow \mathbf{\theta} - \beta \cdot \delta_t \cdot \frac{\partial \ln \pi(\mathbf{a}_t \mid s_t; \mathbf{\theta})}{\partial \mathbf{\theta}}.$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \cdot \delta_t \cdot \frac{\partial v(s_t; \mathbf{w})}{\partial \mathbf{w}}$$
.

### **A2C versus REINFORCE**

### TD Target versus Return

A2C with m-step TD target:  $y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot v(s_{t+m}; \mathbf{w})$ .

### TD Target versus Return

A2C with one-step TD target:  $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$ .



A2C with m-step TD target:  $y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot v(s_{t+m}; \mathbf{w})$ .

## TD Target versus Return

A2C with one-step TD target:  $y_t = r_t + \gamma \cdot v(s_{t+1}; \mathbf{w})$ .



A2C with m-step TD target:  $y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot v(s_{t+m}; \mathbf{w}).$ 



**REINFORCE**:  $y_t$  becomes  $u_t = \sum_{i=t}^n \gamma^{i-t} \cdot r_i$ .

#### **A2C versus REINFORCE**

• A2C uses m-step TD target (with bootstrapping):

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot v(s_{t+m}; \mathbf{w}).$$

REINFORCE uses the return (without bootstrapping):

$$u_t = \sum_{i=0}^{n-t} \gamma^i \cdot r_{t+i}.$$

•  $u_t$  is a special case of  $y_t$ .

Thank you!