M3/4/5P12 Problem sheet #3

Rebecca Bellovin

- 1. Let $M \in GL_d(\mathbf{C})$ be a matrix such that $M^n = \mathbf{1}$. Prove that the eigenvalues of M are nth roots of 1. Prove that M can be diagonalized. *Hint*: You can either consider the Jordan normal form, or you can consider $g \mapsto M$ as a representation of the finite cyclic group $C_n = \langle g : g^n = e \rangle$.
- 2. Let (V, ρ) be the unique irreducible 2-dimensional representation of D_8 , and consider the 4-dimensional representation $(V \otimes V, \rho_{V \otimes V})$. We have previously seen that irreducible representations of D_8 have dimension 1 or 2, so this representation is reducible. Write down its irreducible components.
- 3. Let (V, ρ_V) and (W, ρ_W) be representations of G. Construct a G-linear isomorphism between $V \otimes W$ and $W \otimes V$ by choosing bases for V and W. Without choosing bases, construct a G-linear isomorphism between $\text{Hom}(V^*, W)$ and $\text{Hom}(W^*, V)$.
- 4. Let G be a finite group. Prove that the regular representation V_{reg} is isomorphic to its dual V_{reg}^* .
- 5. Let $(V_{\text{reg}}, \rho_{\text{reg}})$ be the regular representation of a finite group G. What is the character χ_{reg} associated to this representation? If (W, ρ_W) is an irreducible representation of G, compute the inner product $\langle \chi_{\text{reg}}, \chi_W \rangle$.
- 6. Let (V, ρ_V) and (W, ρ_W) be representations of a finite group G, with dim V = 1. Prove that W is irreducible if and only if $V \otimes W$ is irreducible.
- 7. Write down all the characters of representations of D_8 . Note: You need to find the conjugacy classes of D_8 .
- 8. Let X be a finite set with an action $G \times X \to X$ of a finite group G. Let (V, ρ_V) be the associated representation of G.
 - (a) Show that $\chi_V(g) = |\{x \in X | g \cdot x = x\}|.$
 - (b) Show that the function $\xi: G \to \mathbf{C}$ with $\xi(g) := \chi_V(g) 1$ is also a character of G.
- 9. Let (V, ρ_V) be a representation of a finite group G.
 - (a) Define $f: V \otimes V \to V \otimes V$ by setting $f(v_1 \otimes v_2) = v_2 \otimes v_1$ for $v_1, v_2 \in V$. Show that f is G-linear.
 - (b) Define $S^2V := \ker(\mathbf{1} f) = \{v \in V \otimes V | f(v) = f\}$. Define $\wedge^2V := \ker(\mathbf{1} + f) = \{v \in V \otimes V | f(v) = -v\}$. Show that S^2V and \wedge^2V are complementary subrepresentations of $V \otimes V$. Note: You need to check that they are subrepresentations in the first place.
 - (c) Prove that $\frac{1}{2}(\mathbf{1}+f)$ is a projection with image S^2V , and prove that $\frac{1}{2}(\mathbf{1}-f)$ is a projection with image \wedge^2V .
 - (d) If (v_1, \ldots, v_d) is a basis for V, write down bases for S^2V and \wedge^2V . What are the dimensions of these vector spaces?
 - (e) Suppose the eigenvalues of $\rho_V(g)$ are $\lambda_1, \ldots, \lambda_d$. Show that the eigenvalues of $\rho_{\wedge^2 V}(g)$ are $\{\lambda_i \lambda_j | i < j\}$.
 - (f) Show that the characters $\chi_{\wedge^2 V}$ and $\chi_{S^2 V}$ are given by

$$\chi_{\wedge^2 V}(g) = \frac{\chi_V(g)^2 - \chi_V(g^2)}{2}$$
 $\chi_{S^2 V}(g) = \frac{\chi_V(g)^2 + \chi_V(g^2)}{2}$

10. Prove that if $g \in G$ is not the identity, there is some irreducible character χ of G so that $\chi(x) \neq \chi(1)$.