MIS-637 Completed Project Proposal

1. Introduction

Project Title

· "Data Analysis and Prediction of Diabetes Using Machine Learning"

Project Context

 This college project focuses on analyzing a diabetes dataset to predict the onset of diabetes using various machine learning algorithms. The project aims to explore the effectiveness of these algorithms in a healthcare context, emphasizing predictive precision.

Project Goals

- To conduct in-depth data analysis and exploratory data visualization.
- To preprocess and prepare the dataset for modeling.
- To apply and evaluate multiple machine learning algorithms, with a particular focus on the CatBoost algorithm.
- To address challenges such as imbalanced data to ensure model reliability.

2. Dataset and Preprocessing

Dataset Overview

• The dataset comprises medical records, including health metrics relevant to diabetes.

Preprocessing Activities

- · Cleaning data and handling missing values.
- · Normalizing and scaling features.
- Feature selection and engineering for optimal model performance.

3. Exploratory Data Analysis (EDA)

Approach

- Using Python libraries (e.g., Seaborn, Pandas) for visualization and statistical analysis.
- Identifying patterns, correlations, and anomalies in the dataset.

Expected Insights

 Comprehensive understanding of the dataset's characteristics and how they may influence model development.

4. Model Development and Evaluation

Machine Learning Algorithms

- Linear Regression: A fundamental approach for understanding relationships between variables.
- Logistic Regression: Ideal for binary classification problems like diabetes prediction.
- K-Nearest Neighbors (KNN): A non-parametric method used for classification and regression.
- Decision Trees and Random Forest: Effective for capturing non-linear relationships in data.
- Gradient Boost and XGBoost: Advanced techniques that combine simple models into a strong learner.
- CatBoost: An algorithm known for its efficiency with categorical data and has shown promising results.
- Artificial Neural Networks: Complex models capable of capturing intricate patterns in data.

Evaluation Metrics

- Precision and Recall: Critical in medical diagnosis to minimize false positives and negatives.
- F1 Score: A harmonic mean of precision and recall.
- Cross-validation: Employed to ensure the robustness and generalizability of the models.

Handling Imbalanced Data

 Application of techniques like oversampling, undersampling, or SMOTE to balance the dataset and enhance model accuracy.