29.07.03

日本国特許庁 JAPAN PATENT OFFICE

REC'D 12 SEP 2003

別紙添付の書類に記載されている事項は下記の出属書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年 8月 2日

出 願 番 号 Application Number:

人

特願2002-225636

[ST. 10/C]:

[JP2002-225636]

出 願 Applicant(s):

出光興産株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 8月28日

今井康

【書類名】

特許願

【整理番号】

IK6502

【提出日】

平成14年 8月 2日

【あて先】

特許庁長官 殿

【国際特許分類】

H05B 33/00

【発明の名称】

アントラセン誘導体及びそれを利用した有機エレクトロ

ルミネッセンス素子

【請求項の数】

10

【発明者】

【住所又は居所】 千葉県袖ケ浦市上泉1280番地

【氏名】

井戸 元久

【発明者】

【住所又は居所】 千葉県袖ケ浦市上泉1280番地

【氏名】

舟橋 正和

【発明者】

【住所又は居所】 千葉県袖ケ浦市上泉1280番地

【氏名】

東海林 弘

【特許出願人】

【識別番号】

000183646

【氏名又は名称】 出光興産株式会社

【代理人】

【識別番号】 100078732

【弁理士】

【氏名又は名称】 大谷 保

【手数料の表示】

【予納台帳番号】

003171

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

2/E

【物件名】 要約書 1

【包括委任状番号】 0000937

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】 アントラセン誘導体及びそれを利用した有機エレクトロルミネ

ッセンス素子

【特許請求の範囲】

【請求項1】 下記一般式(1)で表されるアントラセン誘導体。

【化1】

[式中、Arは、置換もしくは無置換の下記一般式(2)で表される基である。 【化2】

(式中、 L^1 及び L^2 は、それぞれ置換もしくは無置換の環構造を形成する連結 基であり、少なくともどちらかが存在する。)

Ar'は置換もしくは無置換の核炭素数6~50のアリール基である。

Xは、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置 換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数5~50のシ クロアルキル基、置換もしくは無置換の炭素数6~60のアラルキル基、置換も しくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数 5~50の芳香族複素環基、置換もしくは無置換の核原子数5~50のアリール オキシ基、又は置換もしくは無置換の核原子数5~50のアリールチオ基である

a及びbは、それぞれ0~4の整数であり、Xが複数ある場合は、Xはそれぞれ同じでも異なっていてもよい。

nは1~3の整数である。また、nが2以上の場合は、[]内の 【化3】

は、同じでも異なっていてもよい。

ただし、Arが下記一般式(3)で表わされる場合には、(Ar)は下記一般式(4)で表わされるアリール基であるか、又は(Ar)ではなく、かつ(Ar)で表わされるアリール基であるか、又は(Ar)ではなく、かつ(Ar)で表かられるアリール基であるか、又は(Ar)ではなく、かつ(Ar)で表が、置換もしくは無置換の炭素数(Ar)を回換を表数(Ar)を回換を表数(Ar)を回換を表数(Ar)を回換を表数(Ar)を回換を表数(Ar)を回換をしくは無置換の炭素数(Ar)を回換をしくは無置換の炭素数(Ar)を回換をしくは無置換の核原子数(Ar)を回換をしくは無置換の核原子数(Ar)を可能を表える。

また、Arが下記一般式(3')で表わされる場合には、Ar'は下記一般式(4)で表わされるアリール基である。

【化4】

【化5】

$$- \left(\begin{array}{c} Y \\ R \right)_{m} \end{array}$$
 (4)

(式中、Yは、置換もしくは無置換の核原子数10以上の芳香族縮合環、又は置換もしくは無置換の核原子数12以上の芳香族非縮合環である。

Rは、置換もしくは無置換の炭素数 $1\sim50$ のアルキル基、置換もしくは無置換の炭素数 $1\sim50$ のアルコキシ基、置換もしくは無置換の核炭素数 $6\sim50$ のアリール基、置換もしくは無置換の核原子数 $5\sim50$ の芳香族複素環基、置換もしくは無置換の核原子数 $5\sim50$ のアリールオキシ基、又は置換もしくは無置換の核原子数 $5\sim50$ のアリールチオ基である。

mは0~4の整数である。)]

【請求項2】 有機エレクトロルミネッセンス素子用発光材料である請求項 1に記載のアントラセン誘導体。

【請求項3】 有機エレクトロルミネッセンス素子用正孔輸送材料である請求項1に記載のアントラセン誘導体。

【請求項4】 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、請求項1に記載の一般式(1)で表されるアントラセン誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子。

【請求項5】 前記発光層が、一般式(1)で表されるアントラセン誘導体を含有する請求項4に記載の有機エレクトロルミネッセンス素子。

【請求項6】 前記発光層が、一般式(1)で表されるアントラセン誘導体を主成分として含有する請求項4に記載の有機エレクトロルミネッセンス素子。

【請求項7】 前記発光層が、さらにアリールアミン化合物を含有する請求

【請求項8】 前記発光層が、さらにスチリルアミン化合物を含有する請求 項4に記載の有機エレクトロルミネッセンス素子。

【請求項9】 前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が、請求項1に記載の一般式(1)で表されるアントラセン誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子。

【請求項10】 前記正孔輸送層が、一般式(1)で表されるアントラセン 誘導体を主成分として含有する請求項9に記載の有機エレクトロルミネッセンス 素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子に関し、さらに詳しくは、発光効率が高く、高温でも均一な発光が可能なアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子に関するものである。

[0002]

【従来の技術】

有機エレクトロルミネッセンス素子(以下エレクトロルミネッセンスをELと略記することがある)は、電界を印加することより、陽極より注入された正孔と陰極より注入された電子の再結合エネルギーにより蛍光性物質が発光する原理を利用した自発光素子である。イーストマン・コダック社のC.W.Tangらによる積層型素子による低電圧駆動有機EL素子の報告(C.W. Tang, S.A. Vanslyke,アプライドフィジックスレターズ(Applied Physics Letters),51巻、913頁、1987年等)がなされて以来、有機材料を構成材料とする有機EL素子に関する研究が盛んに行われている。Tangらは、トリス(8-ヒドロキシキノリノールアルミニウム)を発光層に、トリフェニルジアミン誘導体を正孔輸送層に用いている。積層構造の利点としては、発光層への正孔の注入効率を高めること、陰極より注入された電子をプロックして再結合により生成する励起子の生

[0003]

また、発光材料としてはトリス(8-キノリノラート)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等の発光材料が知られており、それらからは青色から赤色までの可視領域の発光が得られることが報告されており、カラー表示素子の実現が期待されている(例えば、特開平8-239655号公報、特開平7-138561号公報、特開平3-200289号公報等)。

また、有機EL素子の実用化に当たっては、長時間の駆動安定性及び車搭載などにおける高温環境下での駆動安定性や保存安定性などが求められている。その中にあって、大きな問題となっているのが、これらの環境下において構成材料が結晶化し、素子の発光均一性を損なうことである。長時間の駆動においては、素子自体の発熱による温度上昇や、外的環境変化による熱により、素子の構成材料は大きな熱変動を受けることになる。その結果、有機化合物が結晶化する現象が知られている。結晶化は、素子の短絡や欠陥を発生させ、発光面の均一性を損なうだけでなく、発光停止にいたる場合もある。このため、このような結晶化を抑える技術の研究がなされてきた。

また、発光材料としてフェニルアントラセン誘導体を用いた素子が特開平8-012600号公報に開示されている。このようなアントラセン誘導体は青色発光材料として用いられるが、素子寿命を伸ばすように薄膜の安定性が求められていた。しかしながら従来のモノアントラセン誘導体は結晶化し薄膜が破壊される場合が多く改善が求められていた。さらに、特開2002-154993号公報には、アントラセン環とフルオレン環が直接結合した化合物を用いた発光素子が開示されているが、やはり、高温下での発光の均一性を向上させるところまでは達成できていなかった。

[0004]

【発明が解決しようとする課題】

本発明は、前記の課題を解決するためなされたもので、発光効率が高く、高温でも均一な発光が可能なアントラセン誘導体及びそれを利用した有機EL素子を提供することを目的とする。

[0005]

【課題を解決するための手段】

本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、下記一般式(1)で表される特定のアントラセン誘導体が結晶化しにくい上、高ガラス転移温度であり、有機EL素子の発光材料や正孔輸送材料として用いると、発光効率が高く、高温でも均一な発光が可能であることを見出し、本発明を完成するに至った。

[0006]

すなわち、本発明は、下記一般式(1)で表されるアントラセン誘導体を提供 するものである。

【化6】

$$Ar = \begin{bmatrix} (X)_a \\ (X)_b \end{bmatrix}_n$$

[式中、Arは、置換もしくは無置換の下記一般式(2)で表される基である。

【化7】

(式中、 L^1 及び L^2 は、それぞれ置換もしくは無置換の環構造を有する連結基であり、少なくともどちらかが存在する。)

[0007]

Ar'は置換もしくは無置換の核炭素数6~50のアリール基である。

Xは、置換もしくは無置換の炭素数 $1\sim50$ のアルキル基、置換もしくは無置換の炭素数 $1\sim50$ のアルコキシ基、置換もしくは無置換の炭素数 $5\sim50$ のシクロアルキル基、置換もしくは無置換の炭素数 $6\sim60$ のアラルキル基、置換もしくは無置換の核炭素数 $6\sim50$ のアリール基、置換もしくは無置換の核原子数 $5\sim50$ の芳香族複素環基、置換もしくは無置換の核原子数 $5\sim50$ のアリールチオ基であるオキシ基、又は置換もしくは無置換の核原子数 $5\sim50$ のアリールチオ基である

a及びbは、それぞれ0~4の整数であり、Xが複数ある場合は、Xはそれぞれ同じでも異なっていてもよい。

nは1~3の整数である。また、nが2以上の場合は、[]内の 【化8】

は、同じでも異なっていてもよい。

[0008]

ただし、Arが下記一般式(3)で表わされる場合には、(Ar)は下記一般式(4)で表わされるアリール基であるか、又は(Ar)ではなく、かつ(Ar)で表わされるアリール基であるか、又は(Ar)ではなく、かつ(Ar)で表かられるアリール基であるか、又は(Ar)ではなく、かつ(Ar)で表が、置換もしくは無置換の炭素数(Ar)を置換もしくは無置換の炭素数(Ar)を回かる。 置換もしくは無置換の炭素数(Ar)を回かる。 で表わされる場合には、(Ar)である。 で表わされる場合には、(Ar)の不可以上の基本のではなく、かつ(Ar)のでは、電換もしくは無置換の炭素数(Ar)をである。 で表わされるである。

また、Arが下記一般式(3')で表わされる場合には、Ar'は下記一般式(4)で表わされるアリール基である。

【化9】

(式中、 R^1 及び R^2 は、それぞれ水素、置換もしくは無置換の炭素数 $1\sim 6$ のアルキル基、置換もしくは無置換の炭素数 $1\sim 6$ のアルコキシ基、置換もしくは無置換のフェニル基である。)

[0009]

【化10】

$$- (4)$$

$$(R)_{m}$$

(式中、Yは、置換もしくは無置換の核原子数10以上の芳香族縮合環、又は置換もしくは無置換の核原子数12以上の芳香族非縮合環である。

Rは、置換もしくは無置換の炭素数 $1\sim50$ のアルキル基、置換もしくは無置換の炭素数 $1\sim50$ のアルコキシ基、置換もしくは無置換の核炭素数 $6\sim50$ の

アリール基、置換もしくは無置換の核原子数 $5\sim5$ 0 の芳香族複素環基、置換もしくは無置換の核原子数 $5\sim5$ 0 のアリールオキシ基、又は置換もしくは無置換の核原子数 $5\sim5$ 0 のアリールチオ基である。

mは0~4の整数である。)]

[0010]

また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、請求項1に記載の一般式(1)で表されるアントラセン誘導体を単独もしくは混合物の成分として含有する有機エレクトロルミネッセンス素子を提供するものである。

[0011]

【発明の実施の形態】

本発明のアントラセン誘導体は、下記一般式(1)で表される化合物からなる ものである。

【化11】

[0012]

Arは、置換もしくは無置換の下記一般式(2)で表される基

【化12】

であり置換されていてもよく、 L^1 及び L^2 は、それぞれ置換もしくは無置換の 環構造を有する連結基であり、少なくともどちらかが存在する。

[0013]

L1 及びL2 の連結基としては、少なくとも1以上の炭素原子を介して2つのフェニル基を連結していて、しかも2つのフェニル基が非共役であるものであれば特に限定されないが、具体例としては、メチレン基、エチレン基、ジメチルメチレン基、ジフェニルメチレン基、ラクトン環、ペプチド基等の構造を有するものが挙げられ、特に、メチレン基又はエチレン基の構造を有するものが好ましい

[0014]

Arの具体例を以下に示す。これらは、それぞれ置換基を有していてもよい。

【化13】

上記式中の R^1 及び R^2 は、前記と同様である。

[0015]

A r'は置換もしくは無置換の核炭素数 6~50のアリール基であり、アリール基の例としては、フェニル基、1ーナフチル基、2ーナフチル基、1ーアントリル基、2ーアントリル基、9ーアントリル基、1ーフェナントリル基、2ーフェナントリル基、3ーフェナントリル基、3ーフェナントリル基、3ーナフタセニル基、2ーナフタセニル基、9ーナフタセニル基、1ーピレニル基、2ーピレニル基、4ーピレニル基、2ービフェニルイル基、カーダーフェニルー4ーイル基、カーターフェニルー3ーイル基、カーターフェニルー2ーイル基、mーターフェニルー2ーイル基、mーターフェニルー2ーイル基、nーチーフェニルー3ーイル基、mーターフェニルー2ーイル基、nーチーフェニルー3ーイル基、mーターフェニルー2ーイル基、nーチリル基、nートリル基、nートリル基、nーナフチル基、カードリル基、カーナフチル基、4ーメチルー1ーナフチル基、4ーメチルー1ーナフチル基、4ーメチルー1ーナフチル基、4ーメチルー1ーアントリル基、7ルオレニル

[0016]

Xは、置換もしくは無置換の炭素数1~50のアルキル基、置換もしくは無置換の炭素数1~50のアルコキシ基、置換もしくは無置換の炭素数5~50のシクロアルキル基、置換もしくは無置換の炭素数6~60のアラルキル基、置換もしくは無置換の核炭素数6~50のアリール基、置換もしくは無置換の核原子数5~50の芳香族複素環基、置換もしくは無置換の核原子数5~50のアリールオキシ基、又は置換もしくは無置換の核原子数5~50のアリールチオ基である

[0017]

Xにおける置換もしくは無置換のアルキル基の例としては、メチル基、エチル 基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基 、tーブチル基、nーペンチル基、nーヘキシル基、nーヘプチル基、nーオク チル基、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル 基、2-ヒドロキシイソブチル基、1、2-ジヒドロキシエチル基、1、3-ジ ヒドロキシイソプロピル基、2,3ージヒドロキシー t ーブチル基、1,2,3 ートリヒドロキシプロピル基、クロロメチル基、1ークロロエチル基、2ークロ ロエチル基、2-クロロイソブチル基、1,2-ジクロロエチル基、1,3-ジ クロロイソプロピル基、2,3-ジクロローt-ブチル基、1,2,3-トリク ロロプロピル基、ブロモメチル基、1-ブロモエチル基、2-ブロモエチル基、 2-ブロモイソブチル基、1,2-ジブロモエチル基、1,3-ジブロモイソプ ロピル基、2,3ージブロモーtーブチル基、1,2,3ートリブロモプロピル 基、ヨードメチル基、1-ヨードエチル基、2-ヨードエチル基、2-ヨードイ ソプチル基、1,2-ジョードエチル基、1,3-ジョードイソプロピル基、2 ,3-ジヨードーt-プチル基、1,2,3-トリヨードプロピル基、アミノメ チル基、1-アミノエチル基、2-アミノエチル基、2-アミノイソプチル基、 1, 2-ジアミノエチル基、1, 3-ジアミノイソプロピル基、2, 3-ジアミ ノーtープチル基、1,2,3ートリアミノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2-シアノイソプチル基、1,2-ジシ アノエチル基、1,3-ジシアノイソプロピル基、2,3-ジシアノー tーブチル基、1,2,3-トリシアノプロピル基、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロエチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,3-ジニトロー t ーブチル基、1,2,3-トリニトロプロピル基等が挙げられる。

[0018]

Xにおける置換もしくは無置換のアルコキシ基は、一〇Aで表される基であり 、Aの例としては、メチル基、エチル基、プロピル基、イソプロピル基、nーブ チル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘ キシル基、n-ヘプチル基、n-オクチル基、ヒドロキシメチル基、1-ヒドロ キシエチル基、2-ヒドロキシエチル基、2-ヒドロキシイソブチル基、1,2 -ジヒドロキシエチル基、1,3-ジヒドロキシイソプロピル基、2,3-ジヒ ドロキシー t ーブチル基、1,2,3-トリヒドロキシプロピル基、クロロメチ ル基、1-クロロエチル基、2-クロロエチル基、2-クロロイソプチル基、1 , 2-ジクロロエチル基、1,3-ジクロロイソプロピル基、2,3-ジクロロ - t - ブチル基、1, 2, 3 - トリクロロプロピル基、ブロモメチル基、1 - ブ ロモエチル基、2ープロモエチル基、2ープロモイソプチル基、1,2ージプロ モエチル基、1,3-ジブロモイソプロピル基、2,3-ジブロモーtーブチル 基、1,2,3-トリプロモプロピル基、ヨードメチル基、1-ヨードエチル基 、2-ヨードエチル基、2-ヨードイソブチル基、1,2-ジヨードエチル基、 1, 3-ジョードイソプロピル基、2, 3-ジョードーtーブチル基、1, 2, 3-トリヨードプロピル基、アミノメチル基、1-アミノエチル基、2-アミノ エチル基、2-アミノイソブチル基、1,2-ジアミノエチル基、1,3-ジア ミノイソプロピル基、2,3ージアミノーtープチル基、1,2,3ートリアミ ノプロピル基、シアノメチル基、1-シアノエチル基、2-シアノエチル基、2 - シアノイソブチル基、1, 2 - ジシアノエチル基、1, 3 - ジシアノイソプロ ピル基、2,3-ジシアノーt-ブチル基、1,2,3-トリシアノプロピル基 、ニトロメチル基、1-ニトロエチル基、2-ニトロエチル基、2-ニトロイソ プチル基、1,2-ジニトロエチル基、1,3-ジニトロイソプロピル基、2,

[0019]

Xにおける置換もしくは無置換のシクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、4-メチルシクロヘキシル、アダマンチル基、ノルボルニル基等が挙げられる。

[0020]

Xにおける置換もしくは無置換のアラルキル基の例としては、ベンジル基、1 -フェニルエチル基、2-フェニルエチル基、1-フェニルイソプロピル基、2 -フェニルイソプロピル基、フェニル-t-ブチル基、α-ナフチルメチル基、 $1-\alpha-$ ナフチルエチル基、 $2-\alpha-$ ナフチルエチル基、 $1-\alpha-$ ナフチルイソ プロピル基、 $2-\alpha-$ ナフチルイソプロピル基、 $\beta-$ ナフチルメチル基、 $1-\beta$ -ナフチルエチル基、 $2-\beta-$ ナフチルエチル基、 $1-\beta-$ ナフチルイソプロピ ル基、 $2-\beta$ ーナフチルイソプロピル基、1-ピロリルメチル基、2-(1-ピ ロリル) エチル基、p-メチルベンジル基、m-メチルベンジル基、o-メチル ベンジル基、pークロロベンジル基、mークロロベンジル基、oークロロベンジ ル基、p-ブロモベンジル基、m-ブロモベンジル基、o-ブロモベンジル基、 p-ヨードベンジル基、m-ヨードベンジル基、o-ヨードベンジル基、p-ヒ ドロキシベンジル基、mーヒドロキシベンジル基、oーヒドロキシベンジル基、 p-アミノベンジル基、m-アミノベンジル基、o-アミノベンジル基、p-ニ トロベンジル基、m-ニトロベンジル基、o-ニトロベンジル基、p-シアノベ ンジル基、m-シアノベンジル基、 o -シアノベンジル基、 1 - ヒドロキシー 2 ーフェニルイソプロピル基、1ークロロー2ーフェニルイソプロピル基、トリチ ル基等が挙げられる。

[0021]

Xにおける置換もしくは無置換のアリール基の例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-ナフタセニル基、2-

ナフタセニル基、9ーナフタセニル基、1ーピレニル基、2ーピレニル基、4ーピレニル基、2ービフェニルイル基、3ービフェニルイル基、4ービフェニルイル基、pーターフェニルー3ーイル基、pーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー3ーイル基、mーターフェニルー2ーイル基、oートリル基、mートリル基、pートリル基、pートリル基、pートリル基、pートリル基、pートリル基、pートリル基、pートリル基、pートリル基、pー(2ーフェニルプロピル)フェニル基、3ーメチルー2ーナフチル基、4ーメチルー1ーナフチル基、4ーメチルー1ーアントリル基、4・メチルビフェニルイル基、4・インチルーフェニルー4ーイル基等が挙げられる。

[0022]

Xにおける置換もしくは無置換の芳香族複素環基の例としては、1-ピロリル 基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、1-インドリル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インドリル基、6-インドリル基、7-インドリル基、1-イソインドリル基、2-イソインドリル基、3-イソインド リル基、4-イソインドリル基、5-イソインドリル基、6-イソインドリル基 、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフラニル基 、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル基、6-ベンゾフラニル基、7ーベンゾフラニル基、1-イソベンゾフラニル基、3-イ ソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラニル基、 6-イソベンゾフラニル基、7-イソベンゾフラニル基、キノリル基、3-キノ リル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、 8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル 基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソ キノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニ ル基、1ーカルバゾリル基、2ーカルバゾリル基、3ーカルバゾリル基、4ーカ ルバゾリル基、9-カルバゾリル基、1-フェナンスリジニル基、2-フェナン スリジニル基、3-フェナンスリジニル基、4-フェナンスリジニル基、6-フ ェナンスリジニル基、7-フェナンスリジニル基、8-フェナンスリジニル基、

9-フェナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基 、2-アクリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリ ジニル基、1, 7-フェナンスロリン-2-イル基、1, 7-フェナンスロリン - 3 - イル基、1, 7 - フェナンスロリン- 4 - イル基、1, 7 - フェナンスロ リンー5-イル基、1、7-フェナンスロリンー6-イル基、1、7-フェナン スロリン-8-イル基、1,7-フェナンスロリン-9-イル基、1,7-フェ ナンスロリンー10-イル基、1、8-フェナンスロリンー2-イル基、1、8 -フェナンスロリン-3-イル基、1,8-フェナンスロリン-4-イル基、1 , 8-フェナンスロリン-5-イル基、1, 8-フェナンスロリン-6-イル基 、1,8-フェナンスロリンー7-イル基、1,8-フェナンスロリンー9-イ ル基、1,8-フェナンスロリン-10-イル基、1,9-フェナンスロリン-2-イル基、1,9-フェナンスロリン-3-イル基、1,9-フェナンスロリ ン-4-イル基、1,9-フェナンスロリン-5-イル基、1,9-フェナンス ロリン-6-イル基、1,9-フェナンスロリン-7-イル基、1,9-フェナ ンスロリンー8ーイル基、1、9ーフェナンスロリンー10ーイル基、1、10 -フェナンスロリン-2-イル基、1,10-フェナンスロリン-3-イル基、 1.10-フェナンスロリンー4-イル基、1,10-フェナンスロリンー5-イル基、2,9-フェナンスロリン-1-イル基、2,9-フェナンスロリン-3-イル基、2,9-フェナンスロリン-4-イル基、2,9-フェナンスロリ ン-5-イル基、2,9-フェナンスロリン-6-イル基、2,9-フェナンス ロリン-7-イル基、2,9-フェナンスロリン-8-イル基、2,9-フェナ ンスロリン-10-イル基、2,8-フェナンスロリン-1-イル基、2,8-フェナンスロリン-3-イル基、2,8-フェナンスロリン-4-イル基、2, 8-フェナンスロリン-5-イル基、2,8-フェナンスロリン-6-イル基、 2.8-フェナンスロリン-7-イル基、2,8-フェナンスロリン-9-イル 基、2,8-フェナンスロリン-10-イル基、2,7-フェナンスロリン-1 - イル基、2, 7-フェナンスロリン-3-イル基、2, 7-フェナンスロリン - 4 - イル基、2, 7 - フェナンスロリン-5 - イル基、2, 7 - フェナンスロ リンー6ーイル基、2, 7ーフェナンスロリンー8ーイル基、2, 7ーフェナン スロリン-9-イル基、2,7-フェナンスロリン-10-イル基、1-フェナ ジニル基、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニ ル基、3-フェノチアジニル基、4-フェノチアジニル基、10-フェノチアジ ニル基、1-フェノキサジニル基、2-フェノキサジニル基、3-フェノキサジ ニル基、4-フェノキサジニル基、10-フェノキサジニル基、2-オキサゾリ ル基、4-オキサゾリル基、5-オキサゾリル基、2-オキサジアゾリル基、5 - オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、 2-メチルピロール-1-イル基、2-メチルピロール-3-イル基、2-メチ ルピロールー4ーイル基、2ーメチルピロールー5ーイル基、3ーメチルピロー ルー1-イル基、3-メチルピロール-2-イル基、3-メチルピロール-4-イル基、3-メチルピロール-5-イル基、2-t-ブチルピロール-4-イル 基、3-(2-フェニルプロピル)ピロール-1-イル基、2-メチル-1-イ ンドリル基、4-メチル-1-インドリル基、2-メチル-3-インドリル基、 4ーメチルー3ーインドリル基、2ーtーブチル1ーインドリル基、4ーtーブ チル1-インドリル基、2-t-ブチル3-インドリル基、4-t-ブチル3-インドリル基等が挙げられる。

[0023]

Xにおける置換もしくは無置換のアリールオキシ基は、一〇Zと表され、Zの例としてはフェニル基、1ーナフチル基、2ーナフチル基、1ーアントリル基、2ーアントリル基、9ーアントリル基、1ーフェナントリル基、2ーフェナントリル基、3ーフェナントリル基、4ーフェナントリル基、9ーフェナントリル基、1ーナフタセニル基、2ーナフタセニル基、9ーナフタセニル基、1ーピレニル基、2ーピレニル基、4ーピレニル基、2ービフェニルイル基、3ービフェニルイル基、4ーピフェニルイル基、p-ターフェニルー4ーイル基、p-ターフェニルー1ーイル基、m-ターフェニルー4ーイル基、m-ターフェニルー3ーイル基、m-ターフェニルー3ーイル基、m-ターフェニルー3ーイル基、m-ターフェニルー3ーイル基、m-ターフェニルー3ーイル基、m-ターフェニルー3ーイル基、m-ターフェニルー3ーイル基、0ートリル基、m-ターフェニルー2ーイル基、0ートリル基、m-トリル基、9ートリル基、9ートリル基、9ートリル基、9ートリル基、9ー・フェニルプロピル)フェニル基、3ーメチルー2ーナフチル基、4ーメチルー1ーナフチル基、4ーメチルー1ーアントリル基、4・ーメチルビフェニルイル

基、4"-t-ブチル-p-ターフェニル-4-イル基、2-ピロリル基、3-ピロリル基、ピラジニル基、2-ピリジニル基、3-ピリジニル基、4-ピリジ ニル基、2-インドリル基、3-インドリル基、4-インドリル基、5-インド リル基、6-インドリル基、7-インドリル基、1-イソインドリル基、3-イ ソインドリル基、4-イソインドリル基、5-イソインドリル基、6-イソイン ドリル基、7-イソインドリル基、2-フリル基、3-フリル基、2-ベンゾフ ラニル基、3-ベンゾフラニル基、4-ベンゾフラニル基、5-ベンゾフラニル 基、6-ベンゾフラニル基、7-ベンゾフラニル基、1-イソベンゾフラニル基 、3-イソベンゾフラニル基、4-イソベンゾフラニル基、5-イソベンゾフラ ニル基、6-イソベンゾフラニル基、7-イソベンゾフラニル基、2-キノリル 基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル 基、8-イソキノリル基、2-キノキサリニル基、5-キノキサリニル基、6-キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリ ル基、4-カルバゾリル基、1-フェナンスリジニル基、2-フェナンスリジニ ル基、3-フェナンスリジニル基、4-フェナンスリジニル基、6-フェナンス リジニル基、7-フェナンスリジニル基、8-フェナンスリジニル基、9-フェ ナンスリジニル基、10-フェナンスリジニル基、1-アクリジニル基、2-ア クリジニル基、3-アクリジニル基、4-アクリジニル基、9-アクリジニル基 、1,7-フェナンスロリン-2-イル基、1,7-フェナンスロリン-3-イ ル基、1,7-フェナンスロリン-4-イル基、1,7-フェナンスロリン-5 ーイル基、1,7-フェナンスロリン-6-イル基、1,7-フェナンスロリン -8-イル基、1,7-フェナンスロリン-9-イル基、1,7-フェナンスロ リン-10-イル基、1,8-フェナンスロリン-2-イル基、1,8-フェナ ンスロリン-3-イル基、1,8-フェナンスロリン-4-イル基、1,8-フ ェナンスロリン-5-イル基、1,8-フェナンスロリン-6-イル基、1,8 ーフェナンスロリンー7ーイル基、1,8-フェナンスロリン-9-イル基、1 , 8-フェナンスロリン-10-イル基、1, 9-フェナンスロリン-2-イル 基、1、9-フェナンスロリン-3-イル基、1、9-フェナンスロリン-4-イル基、1,9-フェナンスロリン-5-イル基、1,9-フェナンスロリン-6-イル基、1,9-フェナンスロリン-7-イル基、1,9-フェナンスロリ ン-8-イル基、1,9-フェナンスロリン-10-イル基、1,10-フェナ ンスロリン-2-イル基、1,10-フェナンスロリン-3-イル基、1,10 -フェナンスロリン-4-イル基、1,10-フェナンスロリン-5-イル基、 2, 9-フェナンスロリン-1-イル基、2, 9-フェナンスロリン-3-イル 基、2、9-フェナンスロリン-4-イル基、2、9-フェナンスロリン-5-イル基、2,9-フェナンスロリン-6-イル基、2,9-フェナンスロリンー 7-イル基、2,9-フェナンスロリン-8-イル基、2,9-フェナンスロリ ン-10-イル基、2,8-フェナンスロリン-1-イル基、2,8-フェナン スロリン-3-イル基、2,8-フェナンスロリン-4-イル基、2,8-フェ ナンスロリン-5-イル基、2,8-フェナンスロリン-6-イル基、2,8-フェナンスロリン-7-イル基、2,8-フェナンスロリン-9-イル基、2, 8-フェナンスロリン-10-イル基、2,7-フェナンスロリン-1-イル基 、2,7-フェナンスロリン-3-イル基、2,7-フェナンスロリン-4-イ ル基、2, 7-フェナンスロリン-5-イル基、2, 7-フェナンスロリン-6 -イル基、2, 7-フェナンスロリン-8-イル基、2, 7-フェナンスロリン -9-イル基、2, 7-フェナンスロリン-10-イル基、1-フェナジニル基 、2-フェナジニル基、1-フェノチアジニル基、2-フェノチアジニル基、3 -フェノチアジニル基、4-フェノチアジニル基、1-フェノキサジニル基、2 -フェノキサジニル基、3-フェノキサジニル基、4-フェノキサジニル基、2 ーオキサゾリル基、4ーオキサゾリル基、5ーオキサゾリル基、2ーオキサジア ゾリル基、5-オキサジアゾリル基、3-フラザニル基、2-チエニル基、3-チエニル基、2-メチルピロール-1-イル基、2-メチルピロール-3-イル 基、2-メチルピロール-4-イル基、2-メチルピロール-5-イル基、3-メチルピロールー1ーイル基、3ーメチルピロールー2ーイル基、3ーメチルピ ロールー4ーイル基、3ーメチルピロールー5ーイル基、2ーtーブチルピロー ルー4ーイル基、3ー(2ーフェニルプロピル)ピロールー1ーイル基、2ーメ チルー1ーインドリル基、4ーメチルー1ーインドリル基、2ーメチルー3ーインドリル基、4ーメチルー3ーインドリル基、2ーtーブチル1ーインドリル基、4ーtーブチル1ーインドリル基、2ーtーブチル3ーインドリル基、4ーtーブチル3ーインドリル基等が挙げられる。

[0024]

Xにおける置換もしくは無置換のアリールチオ基は、-SZと表され、Zの例としては前記アリールオキシ基のZと同様のものが挙げられる。

一般式 (1) において、a及びbは、それぞれ $0\sim4$ の整数であり、 $0\sim1$ であると好ましい。Xが複数ある場合は、それぞれ同じでも異なっていてもよい。

nは1~3の整数である。また、nが2以上の場合は、[]内の

【化14】

は、同じでも異なっていてもよい。

[0025]

一般に、アントラセン誘導体は結晶性が高く、有機EL素子用発光材料として 用いた場合には、発光の均一性や素子の歩留まり低下を招く恐れがある。

このため、本発明のアントラセン誘導体においては、一般式(1)で、Arが下記一般式(3)で表わされる場合には、①Ar'は下記一般式(4)で表わされるアリール基であるか、又は②aとbが同時に0ではなく、かつXが、置換もしくは無置換の炭素数4~50のアルキル基、置換もしくは無置換の炭素数5~50のシクロアルキル基、置換もしくは無置換の炭素数5~50のシクロアルキル基、置換もしくは無置換の炭素数6~60のアラルキル基、置換もしくは無置換の核炭素数10~50のアリール基、置換もしくは無置換の核原子数10~50の芳香族複素環基、置換もしくは無置換の核原子数5~50のアリールオキシ基、

また、Arが下記一般式 (3) で表わされる場合には、Ar は下記一般式 (4) で表わされるアリール基である。

【化15】

一般式(3) 及び(3')中、 R^1 及び R^2 は、それぞれ水素、置換もしくは無置換の炭素数 $1\sim6$ のアルキル基、置換もしくは無置換の炭素数 $1\sim6$ のアルコキシ基、置換もしくは無置換のフェニル基である。

[0026]

【化16】

一般式(4)中、Yは、置換もしくは無置換の核原子数10以上の芳香族縮合環、又は置換もしくは無置換の核原子数12以上の芳香族非縮合環である。

[0027]

Yにおける置換もしくは無置換の芳香族縮合環の例としては、ナフタレン、フルオランテン、ペリレン、ペンタセン、フェナンスレン、クリセン、ベンズアントラセン、ピレン等が挙げられる。

Yにおける置換もしくは無置換の芳香族非縮合環の例としては、ビフェニル、 ターフェニル、クォーターフェニル等が挙げられる。

[0028]

Rは、置換もしくは無置換の炭素数 $1\sim50$ のアルキル基、置換もしくは無置換の炭素数 $1\sim50$ のアルコキシ基、置換もしくは無置換の核炭素数 $6\sim50$ のアリール基、置換もしくは無置換の核原子数 $5\sim50$ の芳香族複素環基、置換も

mは0~4の整数である。

[0029]

前記X、Ar、Ar'、 R^1 、 R^2 、Y及URが示す基における置換基としては、ハロゲン原子、ヒドロキシル基、ニトロ基、シアノ基、アルキル基、アリール基、シクロアルキル基、アルコキシ基、芳香族複素環基、アラルキル基、アリールオキシ基、アリールチオ基、アルコキシカルボニル基、又はカルボキシル基などが挙げられる。

[0030]

本発明の一般式(1)で表されるアントラセン誘導体の具体例を以下に示すが 、これら例示化合物に限定されるものではない。

【化17】

[0031]

【化18】

[0032]

【化19】

[0033]

【化20】

[0034]

【化21】

[0035]

本発明のアントラセン誘導体は、有機EL素子用発光材料及び正孔輸送材料として用いると好ましい。

本発明の有機EL素子は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも1層が、前記一般式(1)で表されるアントラセン誘導体を単独もしくは混合物の成分として含有する。

前記発光層が、一般式 (1) で表されるアントラセン誘導体を含有すると好ま しく、特に発光層が、主成分として含有すると好ましい。

[0036]

また、本発明の有機EL素子は、前記発光層が、さらにアリールアミン化合物 及び/又はスチリルアミン化合物を含有すると好ましい。

スチリルアミン化合物としては、下記一般式 (A) で表されるものが好ましい

【化22】

$$Ar_2 \leftarrow \begin{pmatrix} N & Ar_3 \\ Ar_4 & m \end{pmatrix}_m$$
 (A)

[0037]

(式中、 Ar_2 は、フェニル基、ビフェニル基、ターフェニル基、スチルベン基、ジスチリルアリール基から選ばれる基であり、 Ar_3 及び Ar_4 は、それぞれ水素原子又は炭素数が $6\sim2$ 0の芳香族基であり、 Ar_2 、 Ar_3 及び Ar_4 は置換されいてもよい。mは $1\sim4$ の整数である。さらに好ましくは Ar_3 又は Ar_4 の少なくとも一方はスチリル基で置換されている。)

ここで、炭素数が6~20の芳香族基としては、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ターフェニル基等が挙げられる。

[0038]

アリールアミン化合物としては、下記一般式(B)で表されるものが好ましい

【化23】

$$Ar_{5} \leftarrow \begin{pmatrix} Ar_{6} \\ Ar_{7} \end{pmatrix}_{p}$$
 (B)

(式中、 $Ar_5 \sim Ar_7$ は、置換もしくは無置換の核炭素数 $5 \sim 40$ のアリール基である。pは $1 \sim 4$ の整数である。)

[0039]

ここで、核炭素数が5~40のアリール基としては、例えば、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ピレニル基、コロニル基、ビフェニル基、ターフェニル基、ピローリル基、フラニル基、チオフェニル基、ベンゾチオフェニル基、オキサジアゾリル基、ジフェニルアントラニル基、インドリル基、カルバゾリル基、ピリジル基、ベンゾキノリル基、フルオランテニル基、アセナフトフルオランテニル基、スチルベン基等が挙げられる。なお、このアリール基の好ましい置換基としては、炭素数1~6のアルキル基(エチル基、メチ

ル基、i-プロピル基、n-プロピル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基等)、炭素数1~6のアルコキシ基(エトキシ基、メトキシ基、i-プロポキシ基、n-プロポキシ基、s-ブトキシ基、t-ブトキシ基、ペントキシ基、ヘキシルオキシ基、シクロペントキシ基、シクロヘキシルオキシ基等)、核原子数5~40のアリール基、核原子数5~40のアリール基で置換されたアミノ基、核原子数5~40のアリール基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子等が挙げられる。

[0040]

前記有機薄膜層が正孔輸送層を有し、該正孔輸送層が、一般式(1)で表されるアントラセン誘導体を単独もしくは混合物の成分として含有してもよく、特に 主成分として含有すると好ましい。

[0041]

以下、本発明の有機EL素子の素子構成について説明する。 本発明の有機EL素子の代表的な素子構成としては、

- (1)陽極/発光層/陰極
- (2)陽極/正孔注入層/発光層/陰極
- (3) 陽極/発光層/電子注入層/陰極
- (4)陽極/正孔注入層/発光層/電子注入層/陰極
- (5)陽極/有機半導体層/発光層/陰極
- (6)陽極/有機半導体層/電子障壁層/発光層/陰極
- (7)陽極/有機半導体層/発光層/付着改善層/陰極
- (8)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
- (9)陽極/絶縁層/発光層/絶縁層/陰極
- (10)陽極/無機半導体層/絶縁層/発光層/絶縁層/陰極
- (11) 陽極/有機半導体層/絶縁層/発光層/絶縁層/陰極
- (12) 陽極/絶縁層/正孔注入層/正孔輸送層/発光層/絶縁層/陰極
- (13)陽極/絶縁層/正孔注入層/正孔輸送層/発光層/電子注入層/陰極などの構造を挙げることができる。

この有機EL素子は、通常透光性の基板上に作製する。この透光性基板は有機EL素子を支持する基板であり、その透光性については、400~700nmの可視領域の光の透過率が50%以上であるものが望ましく、さらに平滑な基板を用いるのが好ましい。

[0042]

このような透光性基板としては、例えば、ガラス板、合成樹脂板などが好適に 用いられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英などで成形された板が挙げられる。また、合成樹脂板としては、ポリカーボネート樹脂、アクリル樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルサルファイド樹脂、ポリサルフォン樹脂などの板か挙げられる。

次に、上記の陽極としては、仕事関数の大きい(4 e V以上)金属、合金、電気伝導性化合物又はこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Auなどの金属,CuI,ITO(インジウムチンオキシド), SnO_2 ,ZnO,In-Zn-Oなどの導電性材料が挙げられる。この陽極を形成するには、これらの電極物質を、蒸着法やスパッタリング法等の方法で薄膜を形成させることができる。この陽極は、上記発光層からの発光を陽極から取り出す場合、陽極の発光に対する透過率が10%より大きくなるような特性を有していることが望ましい。また、陽極のシート抵抗は、数百 Ω/\square 以下のものが好ましい。さらに、陽極の膜厚は、材料にもよるが通常10nm ~ 1 μ m、好ましくは $10\sim 200$ nmの範囲で選択される。

[0043]

次に、陰極としては、仕事関数の小さい(4 e V以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム,ナトリウムーカリウム合金、マグネシウム,リチウム,マグネシウム・銀合金、アルミニウム/酸化アルミニウム,Al

/L i_2 O, A 1/L i O₂ , A 1/L i F, アルミニウム・リチウム合金、インジウム、希土類金属などが挙げられる。

この陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。

ここで、発光層からの発光を陰極から取り出す場合、陰極の発光に対する透過率は10%より大きくすることが好ましい。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、さらに、膜厚は通常10nm~1μm、好ましくは50~200nmである。

[0044]

本発明の有機EL素子においては、このようにして作製された一対の電極の少なくとも一方の表面に、カルコゲナイド層、ハロゲン化金属層又は金属酸化物層(以下、これらを表面層ということがある。)を配置するのが好ましい。具体的には、発光層側の陽極表面にケイ素やアルミニウムなどの金属のカルコゲナイド(酸化物を含む)層を、また、発光層側の陰極表面にハロゲン化金属層又は金属酸化物層を配置するのがよい。これにより、駆動の安定化を図ることができる。

[0045]

上記カルコゲナイドとしては、例えばSiOx ($1 \le X \le 2$), AlOx ($1 \le X \le 1.5$), SiON, SiAlONなどが好ましく挙げられ、ハロゲン化金属としては、例えばLiF, MgF_2 , CaF_2 , フッ化希土類金属などが好ましく挙げられ、金属酸化物としては、例えば Cs_2O , Li_2O , MgO, SrO, BaO, CaOなどが好ましく挙げられる。

[0046]

さらに、本発明の有機EL素子においては、このようにして作製された一対の電極の少なくとも一方の表面に電子伝達化合物と還元性ドーパントの混合領域又は正孔伝達化合物と酸化性ドーパントの混合領域を配置するのも好ましい。このようにすると、電子伝達化合物が還元され、アニオンとなり混合領域がより発光層に電子を注入、伝達しやすくなる。また、正孔伝達化合物は酸化され、カチオンとなり混合領域がより発光層に正孔を注入、伝達しやすくなる。好ましい酸化性ドーパントとしては、各種ルイス酸やアクセプター化合物がある。好ましい還

元性ドーパントとしては、アルカリ金属, アルカリ金属化合物, アルカリ土類金属, 希土類金属及びこれらの化合物がある。

本発明の有機EL素子においては、発光層は、

①注入機能;電界印加時に陽極又は正孔注入層より正孔を注入することができ、 陰極又は電子注入層より電子を注入することができる機能

②輸送機能;注入した電荷(電子と正孔)を電界の力で移動させる機能

③発光機能;電子と正孔の再結合の場を提供し、これを発光につなげる機能 を有する。

[0047]

この発光層を形成する方法としては、例えば蒸着法、スピンコート法、LB法等の公知の方法を適用することができる。発光層は、特に分子堆積膜であることが好ましい。ここで分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態または液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。

また、特開昭57-51781号公報に開示されているように、樹脂等の結着 剤と材料化合物とを溶剤に溶かして溶液とした後、これをスピンコート法等によ り薄膜化することによっても、発光層を形成することができる。

[0048]

本発明においては、本発明の目的が損なわれない範囲で、所望により、発光層に、本発明のアントラセン誘導体からなる発光材料以外の他の公知の発光材料を含有させてもよく、また、本発明のアントラセン誘導体からなる発光材料を含む発光層に、他の公知の発光材料を含む発光層を積層してもよい。

次に、正孔注入・輸送層は、発光層への正孔注入を助け、発光領域まで輸送する層であって、正孔移動度が大きく、イオン化エネルギーが通常 $5.5\,\mathrm{e}\,\mathrm{V}$ 以下と小さい。このような正孔注入・輸送層としてはより低い電界強度で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば $10^4 \sim 10^6\,\mathrm{V}$ / $\mathrm{c}\,\mathrm{m}$ の電界印加時に、少なくとも $10^{-6}\,\mathrm{c}\,\mathrm{m}^2$ / $\mathrm{V}\cdot$ 秒であるものが好ましい

。このような正孔輸送材料としては、本発明のアントラセン誘導体が有用であり、こり他、従来、光導伝材料において正孔の電荷輸送材料として慣用されているものや、有機EL素子の正孔注入層に使用されている公知のものの中から任意のものを選択して用いることができる。

そして、この正孔注入・輸送層を形成するには、正孔注入・輸送材料を、例えば真空蒸着法、スピンコート法、キャスト法、LB法等の公知の方法により薄膜化すればよい。この場合、正孔注入・輸送層としての膜厚は、特に制限はないが、通常は $5\,n\,m\sim5\,\mu\,m$ である。

[0049]

次に、電子注入層・輸送層は、発光層への電子の注入を助け、発光領域まで輸送する層であって、電子移動度が大きく、また付着改善層は、この電子注入層の中で特に陰極との付着が良い材料からなる層である。電子注入層に用いられる材料としては、8-ヒドロキシキノリンまたはその誘導体の金属錯体が好適である。上記8-ヒドロキシキノリンまたはその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを電子注入材料として用いることができる。

[0050]

また、一般的に有機EL素子は、超薄膜に電界を印可するために、リークやショートによる画素欠陥が生じやすい。これを防止するために、一対の電極間に絶縁性の薄膜層を挿入しても良い。

絶縁層に用いられる材料としては、例えば、酸化アルミニウム、弗化リチウム、酸化リチウム、弗化セシウム、酸化セシウム、酸化マグネシウム、弗化マグネシウム、酸化カルシウム、弗化カルシウム、窒化アルミニウム、酸化チタン、酸化珪素、酸化ゲルマニウム、窒化珪素、窒化ホウ素、酸化モリブデン、酸化ルテニウム、酸化バナジウム等が挙げられる。これらの混合物や積層物を用いてもよい。

[0051]

次に、本発明の有機EL素子を作製する方法については、例えば上記の材料及

[0052]

以下、透光性基板上に、陽極/正孔注入層/発光層/電子注入層/陰極が順次 設けられた構成の有機EL素子の作製例について説明する。

まず、適当な透光性基板上に、陽極材料からなる薄膜を1μm以下、好ましくは10~200nmの範囲の膜厚になるように、蒸着法あるいはスパッタリング法により形成し、陽極とする。次に、この陽極上に正孔注入層を設ける。正孔注入層の形成は、前述したように真空蒸着法、スピンコート法、キャスト法、LB法等の方法により行うことができるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により正孔注入層を形成する場合、その蒸着条件は使用する化合物(正孔注入層の材料)、目的とする正孔注入層の結晶構造や再結合構造等により異なるが、一般に蒸着源温度50~450℃、真空度10-7~10-3torr、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚5nm~5μmの範囲で適宜選択することが好ましい。

[0053]

次に、この正孔注入層上に発光層を設ける。この発光層の形成も、本発明に係る発光材料を用いて真空蒸着法、スパッタリング、スピンコート法、キャスト法等の方法により、発光材料を薄膜化することにより形成できるが、均質な膜が得られやすく、かつピンホールが発生しにくい等の点から真空蒸着法により形成することが好ましい。真空蒸着法により発光層を形成する場合、その蒸着条件は使用する化合物により異なるが、一般的に正孔注入層の形成と同様な条件範囲の中から選択することができる。膜厚は10~40nmの範囲が好ましい。

[0054]

次に、この発光層上に電子注入層を設ける。この場合にも正孔注入層、発光層と同様、均質な膜を得る必要から真空蒸着法により形成することが好ましい。蒸着条件は正孔注入層、発光層と同様の条件範囲から選択することができる。

以上の有機EL素子の作製は、一回の真空引きで、一貫して陽極から陰極まで 作製することが好ましい。

[0055]

この有機EL素子に直流電圧を印加する場合、陽極を+、陰極を-の極性にして、3~40 Vの電圧を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れず、発光は全く生じない。さらに、交流電圧を印加した場合には、陽極が+、陰極が-の極性になった時のみ均一な発光が観測される。この場合、印加する交流の波形は任意でよい。

[0056]

【実施例】

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例 によってなんら限定されるものではない。

実施例1 (化合物 (AN1) の合成)

(1) 4,5,9,10- テトラヒドロ-2- ブロモ- ピレンの合成

オートクレーブにピレン195g(広島和光社製)とデカリン(広島和光社製) 1 リットルと 5%パラジウムーカーボン78g (広島和光社製)を入れ、水素圧70kg /cm 2 、160 %にて21時間反応した。

反応後冷却し、触媒を濾別し、クロロホルム 3 リットルで洗浄した。次いでクロロホルムを減圧留去し、残渣のデカリン溶液を氷冷し、析出した結晶を濾取し、エタノール洗浄後、乾燥したところ、130gの結晶を得た。

このうち126gを精製水6.3 リットルに懸濁し、塩化第二鉄・1水和物2g(広島和光社製)を添加した。次いで臭素30ミリリットル/精製水3リットルの水溶液を4時間かけて室温で滴下した。その後室温で12時間反応した。

析出晶を濾取、水洗、エタノール洗浄後、クロロホルム3リットルに溶解し、 炭酸水素ナトリウム水溶液で洗浄し、水洗し、無水硫酸マグネシウムで乾燥後、 溶媒留去した。

ヘキサン1.5 リットルを加え、析出した結晶を濾取したところ、71.5g を得た

この化合物のFD-MS (フィールドディソープションマス分析)は、C16H13Br= 285 に対し、m/z =286 、284 が得られたことから、この化合物を4,5,9,10- テ トラヒドロ-2- ブロモ- ピレンと同定した(収率41%)。

[0057]

(2) 化合物 (AN1) の合成

Ar雰囲気下、(1)で得られた4,5,9,10- テトラヒドロ-2- ブロモ- ピレン2g を無水THF8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ド ライアイス/メタノール浴で - 20℃に冷却した。これにn-ブチルリチウム/ヘキ サン溶液 5 ミリリットル (1.6mol/リットル、広島和光社製) を加え、-20 ℃で 1時間攪拌した。これに9,10- アントラキノン0.62g (東京化成社製)を加え、 室温で4時間攪拌して室温で12時間放置した。

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。この化合物をカラムクロマトグラフィーにて精製し、1. 6gの淡黄色固体を得た。

この化合物のFD-MS は $C_{46}H_{34}=586$ に対し、m/z=586 が得られたことから、 この化合物をAN1と同定した(収率94%)。

[0058]

実施例2 (化合物 (AN2) の合成)

Ar雰囲気下、(1)で得られた4,5,9,10-テトラヒドロ-2- プロモ-ピレン2g を無水THF8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ド ライアイス/メタノール浴で - 20℃に冷却した。これにn-プチルリチウム/ヘキ サン溶液 5 ミリリットル (1.6mol/リットル、広島和光社製) を加え、-20 ℃で 1 時間攪拌した。これに2-t-ブチルアントラキノン0.8g(東京化成社製)を加え 、室温で4時間攪拌して室温で12時間放置した。

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。この化合物をカラムクロマトグラフィーにて精製し、1. 8gの淡黄色固体を得た。

[0059]

実施例3(化合物(AN3)の合成)

(1) 2.6-ジフェニル-9,10-アントラキノンの合成

4-プロモフタル酸無水物130g(東京化成社製)と炭酸ナトリウム243gと水1.3 リットルを3リットルのフラスコに入れ、60℃まで加熱し溶解した。溶解後室温 まで冷却し、フェニルボロン酸84.5g (東京化成社製)と酢酸パラジウム3.9g(東京化成社製)を加え攪拌した。その後室温にて12時間反応した。

反応後水を追加・加熱し、析出晶を溶解し、触媒を濾別し、濃塩酸にて酸出させ、析出晶を濾取、水洗した。これを酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥し、濃縮乾仔させ、145gの固体を得た。

これを無水酢酸500 ミリリットル (広島和光社製) に入れ、80℃にて3時間反応させ、その後減圧下で無水酢酸を留去し、乾固させ135gの酸無水物を得た。

次にビフェニル85.3g (広島和光社製) を1,2-ジクロロエタン670 ミリリットルに溶解し、無水塩化アルミニウム162.7gを加え若干冷却した。

これに上述の酸無水物124gを発熱に注意しながら添加し、40℃にて2 時間反応後、氷水に注加し、クロロホルムで抽出し、水洗した。これを無水硫酸マグネシウムで乾燥後濃縮し、ヘキサンを加え、析出物を濾取した。

次にポリりん酸 2 リットルを150 ℃に加熱し、攪拌下、上述の析出物を少量ず つ添加し、同温で 3 時間攪拌した。

反応液を氷中に注加し、析出晶を濾取、水洗後、クロロホルムに溶解し、無水 硫酸マグネシウムで乾燥後、カラム精製した。

目的留分を濃縮し、ヘキサンを加え、析出した結晶98.7g を濾取した。

この化合物のFD-MS は $C_{26}H_{16}O_2=360$ に対し、m/z=360 が得られたことから、この化合物を2,6-ジフェニル-9,10-アントラキノンと同定した(収率48%)。

[0060]

(2) 化合物 (AN3) の合成

Ar雰囲気下、実施例1の(1)で得られた4,5,9,10-テトラヒドロ-2-プロモ

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。この化合物をカラムクロマトグラフィーにて精製し、2. 0gの淡黄色固体を得た。

この化合物のFD-MS は C_{58} H $_{42}$ =738 に対し、m/z =738 が得られたことから、この化合物をAN3と同定した(収率89%)。

[0061]

実施例4 (化合物 (AN4) の合成)

Ar雰囲気下、実施例1の(1)で得られた4,5,9,10- テトラヒドロ-2- ブロモーピレン2gを無水THF 8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ドライアイス/メタノール浴で - 20 \mathbb{C} に冷却した。これにn-ブチルリチウム/ヘキサン溶液 5 ミリリットル(1.6 \mathbb{C} \mathbb{C} で 1 時間攪拌した。ビアンスロン1.2 \mathbb{C} を加え、室温で \mathbb{C} 4 時間攪拌して室温で \mathbb{C} \mathbb{C}

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、メタノールで洗浄した。この化合物をカラムクロマトグラフィーにて精製し、2.2gの淡黄色固体を得た。

この化合物のFD-MS は C_{60} H $_{42}$ =762 に対し、m/z=763 が得られたことから、この化合物をAN4と同定した(収率92%)。

[0062]

実施例5 (化合物 (AN5) の合成)

(1) 9,9 '- ジメチル-2- プロモフルオレンの合成

Ar雰囲気下、無水THF300ミリリットルに35%水素化カリウム28g (広島和光社製)を入れ、次いでフルオレン16g を添加した。その後ヨードメタン20g (広島和光社製)を添加し、その後還流温度で72時間反応した。

反応混合物に水を加え、希塩酸を加え、クロロホルムで抽出した。これを無水 硫酸マグネシウムで乾燥し、溶媒を減圧留去し、生じた固体を濾別し、メタノー ルで洗浄した。

このうち5gを精製水300 ミリリットルに懸濁し、塩化第二鉄・1水和物0.1g(広島和光社製)を添加した。次いで臭素1ミリリットル/精製水100 ミリリットルの水溶液を1時間かけて室温で滴下した。その後室温で12時間反応した。

析出晶を濾取、水洗、エタノール洗浄後、クロロホルム200 ミリリットルに溶解し、炭酸水素ナトリウム水溶液で洗浄し、水洗し、無水硫酸マグネシウムで乾燥後、溶媒留去した。

ヘキサン100 ミリリットルを加え、析出した結晶を濾取したところ、5.4gを得た。

この化合物のFD-MS は $C_{15}H_{16}Br=276$ に対し、m/z=277、275 が得られたことから、この化合物を9,9 ' – ジメチル-2- ブロモフルオレンと同定した(収率 20%)。

[0063]

(2) 化合物 (AN5) の合成

Ar雰囲気下、(1)で得られた9,9 '- ジメチル-2- ブロモフルオレン1.9gを 無水THF 8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ドライアイス/メタノール浴で - 20℃に冷却した。これにn-ブチルリチウム/ヘキサン溶液5ミリリットル(1.6mol/リットル、広島和光社製)を加え、-20 ℃で1時間攪拌した。アントラキノン1.4gを加え、室温で4時間攪拌して室温で12時間放置した。

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。

次に2-プロモターフェニル2.5gを無水THF 8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ドライアイス/メタノール浴で - 20 \mathbb{C} に冷却した。これにn-ブチルリチウム/ヘキサン溶液5ミリリットル(1.6 mol/リットル、広島和光社製)を加え、-20 \mathbb{C} \mathbb{C}

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。この化合物をカラムクロマトグラフィーにて精製し、1. 1gの淡黄色固体を得た。

この化合物のFD-MS は $C_{47}H_{34}=598$ に対し、m/z=598 が得られたことから、この化合物をAN5と同定した(収率27%)。

[0064]

実施例6 (化合物 (AN7) の合成)

Ar雰囲気下、マグネシウム0.6gに2-ブロモビフェニル5g(ランカスター社製)を無水THF 50ミリリットルに溶解させたものを少量滴下し、ヨウ素を0.1g添加した後、加熱した。反応が開始したら55~60 $^{\circ}$ にて2時間攪拌した。

Ar雰囲気下、2-ブロモフルオレノン 6 g をTHF 50ミリリットルに溶解し、塩化ビス(トリフェニルホスフィン)パラジウム(II)0.2 g(アルドリッチ社製)、1M-水素化ジイソブチルアルミニウム/トルエン溶液0.6 ミリリットル(アルドリッチ社製)を加え、攪拌後、上記にて調整したグリニャール試薬を10分で滴下し、65℃にて一晩反応した。

反応後、THF を留去し、析出した結晶を濾取した。これをトルエンで再結晶し、4.9gの淡黄色粉末を得た。

Ar雰囲気下、この淡黄色粉末 4 g を無水THF8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ドライアイス/ メタノール浴で - 20 \mathbb{C} に冷却した。これにn-ブチルリチウム/ヘキサン溶液10ミリリットル(1.6 mol/ リットル、広島和光社製)を加え、-20 \mathbb{C} で1時間攪拌した。これに9,10- アントラキノン1.0 10 100 1

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。

次に2-プロモナフタレン2.1gを無水THF8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ドライアイス/メタノール浴で - 20 \mathbb{C} に冷却した。これにn-プチルリチウム/ヘキサン溶液10ミリリットル(1.6mol/リットル、広島和光社製)を加え、-20 \mathbb{C} で1時間攪拌した。これに上述のメタノール洗浄後

、乾燥させた固体を加え、室温で4時間攪拌して室温で12時間放置した。

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。この化合物をカラムクロマトグラフィーにて精製し、1. lgの淡黄色固体を得た。

この化合物のFD-MS は $C_{49}H_{30}=618$ に対し、m/z=618 が得られたことから、この化合物をAN7と同定した(収率37%)。

[0065]

実施例7 (化合物 (AN11) の合成)

Ar雰囲気下、マグネシウム3gに2-ブロモビフェニル25g (ランカスター社製)を無水THF 50ミリリットルに溶解させたものを少量滴下し、ヨウ素を0.1g添加した後、加熱した。反応が開始したら $55\sim60$ $^{\circ}$ にて2 時間攪拌した。

Ar雰囲気下、シクロヘキサノン11.5g をTHF50 ミリリットルに溶解し、塩化ビス (トリフェニルホスフィン) パラジウム (II) 0.2g (アルドリッチ社製)、1M - 水素化ジイソブチルアルミニウム/トルエン溶液 3 ミリリットル (アルドリッチ社製) を加え、攪拌後、上記にて調整したグリニャール試薬を10分で滴下し、65℃にて一晩反応した。

反応後、THF を留去し、析出した結晶を濾取した。これをトルエンで再結晶し、13g の白色粉末を得た。

このうち10g を精製水500 ミリリットルに懸濁し、塩化第二鉄・1水和物0.1g (広島和光社製)を添加した。次いで臭素2.5 ミリリットル/精製水 200ミリリットルの水溶液を1時間かけて室温で滴下した。その後室温で12時間反応した。

析出晶を濾取、水洗、エタノール洗浄後、クロロホルム 500ミリリットルに溶解し、炭酸水素ナトリウム水溶液で洗浄し、水洗し、無水硫酸マグネシウムで乾燥後、溶媒留去した。

ヘキサンを加え、析出した結晶を濾取したところ、10g の粉末を得た。

Ar雰囲気下、この粉末5gを無水THF8ミリリットル、無水トルエン8ミリリットルの混合溶媒に溶解し、ドライアイス/メタノール浴で-20℃に冷却した。これにn-プチルリチウム/ヘキサン溶液12ミリリットル(1.6mol/リットル、広島和

光社製) を加え、-20 ℃で1時間攪拌した。これに9,10- アントラキノン1.2gを加え、室温で4 時間攪拌して室温で12時間放置した。

反応混合物を飽和塩化アンモニウム水溶液で失活させ、生じた固体を濾別し、 メタノールで洗浄した。この化合物をカラムクロマトグラフィーにて精製し、2. 4gの淡黄色固体を得た。

この化合物のFD-MS は C_{50} H $_{42}$ =642 に対し、m/z=642 が得られたことから、この化合物をAN11と同定した(収率65%)。

[0066]

実施例8 (有機EL素子の製造)

25mm×75mm×1. 1mm厚のITO透明電極付きガラス基板(ジオマ ティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、 UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を 真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側 の面上に前記透明電極を覆うようにして膜厚60 nmの下記N. N'ービス (N , N'ージフェニルー4ーアミノフェニル)-N, Nージフェニルー4, 4'ー ジアミノー1, 1'ービフェニル膜(以下、TPD232膜)を成膜した。この TPD232膜は、正孔注入層として機能する。続いて、このTPD232膜上 に膜厚20nmの下記N, N', N'-テトラ(4-ビフェニル)ージアミ ノビフェニレン層(以下、TBDB層)を成膜した。この膜は正孔輸送層として 機能する。さらにTBDB膜上に、発光材料として膜厚40mmのAN1を蒸着 し成膜した。同時に発光分子として、下記のスチリル基を有するアミン化合物D 1をAN1に対し、重量比でAN1:D1=40:2で蒸着した。この膜は、発 光層として機能する。この膜上に膜厚1 0 n m の A l q 膜を成膜した。これは、 電子注入層として機能する。この後、還元性ドーパントであるLi(Li源:サ エスゲッター社製)とAlgを二元蒸着させ、電子注入層(陰極)としてAlg :Li膜(膜厚10n m)を形成した。このAlq:Li膜上に金属Alを蒸着 させ金属陰極を形成し有機EL素子を形成した。

得られた有機EL素子について、電流密度が10mA/cm²を流した時の発光効率 を測定し、さらに保存温度120℃にて500時間保存した後に、通電した際の 発光面の状態を観察した。これらの結果を表1に示す。

[0067]

【化24】

[0068]

実施例9 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりにAN2を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表1に示す。

実施例10 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりにAN3を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表1に示す。

実施例11 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりにAN4を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表1に示す。

[0069]

実施例12 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりにAN5を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表1に示す。

実施例13 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりにAN7を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表1に示す。

実施例14 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりにAN11を用いたこと 以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表1に示す。

[0070]

比較例1 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりに下記an1を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の 状態を観察した。これらの結果を表1に示す。

【化25】

[0071]

比較例 2 (有機 E L 素子の製造)

実施例8において、発光材料として、AN1の代わりに下記an2を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の 状態を観察した。これらの結果を表1に示す。 【化26】

[0072]

比較例3 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりに下記an3を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表1に示す。

【化27】

[0073]

比較例 4 (有機 E L 素子の製造)

実施例 8 において、発光材料として、AN 1 の代わりに下記 a n 4 を用いたこと以外は同様にして有機 E L 素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。これらの結果を表 1 に示す。

【化28】

[0074]

比較例5 (有機EL素子の製造)

実施例8において、発光材料として、AN1の代わりに下記an5を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の 状態を観察した。これらの結果を表1に示す。

化合物 a n 5 の蒸着時、蒸着ボートの温度は 4 0 0 ℃以上となり、熱分解しながら蒸着されていた。これは真空槽内に付設している質量分析装置においても低分子量のピークが観測されたことから推量した。

得られた有機EL素子は、青色発光は得られず、熱分解に伴う不純物の混入の 影響により白味青色発光であった。

【化29】

[0075]

【表1】

表 1

発光層の化	発光効率	120℃500時間保存後の
合物	(cd/A)	発光面の状態
AN1/D1	9.7	青色均一発光
AN2/D1	11.0	青色均一発光
AN3/D1	10.1	青色均一発光
AN4/D1	10.5	青色均一発光
AN5/D1	9.6	青色均一発光
AN7/D1	10.2	青色均一発光
AN11/D1	10.7	青色均一発光
an1/D1	9.0	結晶欠落による輝点が発生
an2/D1	8.8	結晶欠落による輝点が発生
an3/D1	9.8	結晶欠落による輝点が発生
an4/D1	9.0	結晶欠落による輝点が発生
an5 ∕ D1	8.2	白味青色発光
	合物 AN1/D1 AN2/D1 AN3/D1 AN4/D1 AN5/D1 AN7/D1 AN11/D1 an1/D1 an2/D1 an3/D1 an4/D1	AN1/D1 9.7 AN2/D1 11.0 AN3/D1 10.1 AN4/D1 10.5 AN5/D1 9.6 AN7/D1 10.2 AN11/D1 10.7 an1/D1 9.0 an2/D1 8.8 an3/D1 9.8 an4/D1 9.0

[0076]

表1に示したように、実施例8~14の有機EL素子は、比較例1~5に対して、発光効率が高く、高温下で長時間駆動しても青色均一発光が可能である。

一方、比較例 $1\sim3$ の a n $1\sim3$ 、は対称性の高い化合物であるため結晶化が生じた。

比較例4のan4はアントラセン環に置換基が導入されているため対称性は相対的に低くなっているが、それでも不十分であり結晶化が生じた。結晶化を防止するためには少なくとも炭素数4以上の置換基が必要であると判明した。

比較例5のan5はきわめて嵩高い置換基であるスピロフルオレン基を有するために、対称性が高くても結晶化が防止できている。しかしながらスピロフルオレニル基は分子量がきわめて大きいため、2ヵ所にこの置換基を有したアントラセン誘導体は蒸着温度が高くなり、熱分解を生じた。このためスピロフルオレニル基を2ヵ所以上有するアントラセン誘導体は少なくとも蒸着法による有機EL素子には適していなかった。

また、実施例13のAN7は、分子量の大きいスピロフルオレニル基を有しているが1ヵ所だけなので、比較例5の場合のように熱分解することなく、蒸着温度400℃以下で蒸着できた。したがって青色均一発光が得られ、発光効率も比較例5よりも高かった。

実施例14のAN11はスピロ骨格を有しているが、スピロフルオレニル基よりも分子量が小さいので2ヵ所にスピロ骨格を有する置換基があっても比較例5の場合のように熱分解することなく、蒸着温度400℃以下で蒸着できた。したがって青色均一発光が得られ、発光効率も比較例5よりも高かった。

[0077]

実施例 1 5

実施例8において、発光材料として、D1の代わりに下記D2を用いたこと以外は同様にして有機EL素子を製造し、同様に発光効率を測定し、発光面の状態を観察した。

・発光効率は5.0 c d / A であったが、純青色発光であり、120℃500時間保存後の発光面は均一発光を保っていた。

【化30】

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

[0078]

【発明の効果】

以上、詳細に説明したように、本発明のアントラセン誘導体を利用した有機E L素子は、発光効率が高く、高温で長時間駆動しても均一な発光が可能であり、 高温下で使用できる素子として有用である。

【要約】

【課題】 発光効率が高く、高温でも均一な発光が可能なアントラセン誘導体 及びそれを利用した有機EL素子を提供する。

【解決手段】 特定構造を有するアントラセン誘導体、並びに陰極と陽極間に 少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有 機EL素子において、該有機薄膜層の少なくとも1層が、前記アントラセン誘導 体を単独もしくは混合物の成分として含有する有機EL素子である。

【選択図】 なし

特願2002-225636

出願人履歴情報

識別番号

[000183646]

1. 変更年月日 [変更理由] 1990年 8月 8日

住 所

新規登録

氏 名

東京都千代田区丸の内3丁目1番1号

出光興産株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.