MATH 7310 Homework 0

James Harbour

January 19, 2022

Problem 1

Let J be an infinite set, and $(t_j)_{j\in J}$ nonnegative real numbers. We define $\sum_{j\in J} t_j = \sup_F \sum_{j\in F} t_j$ where the supremum is over all finite subsets of J, and is equal to ∞ if $\left\{\sum_{j\in F} t_j : F\subseteq J \text{ is finite}\right\}$ is not bounded above.

(i) Suppose that $\sum_{j\in J} t_j < \infty$. Prove that for every $\varepsilon > 0$, there is a finite $F \subseteq J$ so that $\sum_{j\in J\setminus F} t_j < \varepsilon$.

Proof. Let $\varepsilon > 0$ an $J_0 = \{j \in J : t_j > 0\}$. By proposition 0.20, as $\sum_{j \in J} t_j < \infty$, J_0 is countably infinite. Moreover, letting $g : \mathbb{N} \to J_0$ be a bijection, proposition 0.20 gives that

$$\sum_{n=1}^{\infty} t_{g(n)} = \sum_{i \in J} t_i < \infty$$

As this sum is nonnegative and converges, there exists a $k \in \mathbb{N}$ such that

$$\sum_{n=k+1}^{\infty} t_{g(n)} < \varepsilon.$$

Letting $F = g(\{1, 2, \dots, k\})$, it follows that

$$\sum_{j \in J \setminus F} t_j = \sum_{n=k+1}^{\infty} t_{g(n)} < \varepsilon.$$

(ii) Suppose that $(\alpha_j)_{j\in J}$ are complex numbers and $\sum_{j\in J} |\alpha_j| < \infty$. Suppose further that $J_0 = \{j \in J : \alpha_j \neq 0\}$ is infinite. Suppose that $\phi : \mathbb{N} \to J_0$, $\psi : \mathbb{N} \to J_0$ are two bijections. Prove that

$$\sum_{n=1}^{\infty} \alpha_{\phi(n)} = \sum_{n=1}^{\infty} \alpha_{\psi(n)}.$$

Problem 2

It follows from Problem 1 that if $(\alpha_j)_{j\in J}$ are complex numbers and $\sum_{j\in J} |\alpha_j| < \infty$, we may define $\sum_{j\in J}$ as follows: let $J_0 = \{j : \alpha_j \neq 0\}$. If J_0 is finite, then $\sum_{j\in J} = \sum_{j\in J_0}$. If J_0 is infinite, choose a bijection $\phi: \mathbb{N} \to J_0$, and define

$$\sum_{j \in J} \alpha_j = \sum_{n=1}^{\infty} \alpha_{\phi(n)}.$$

Suppose that $(\alpha_j)_{j\in J}$ are complex numbers and $\sum_{j\in J} |\alpha_j| < \infty$. Show that $\sum_{j\in J} |\alpha_j|$ is the unique complex number s satisfying the following property. For every $\varepsilon > 0$, there is a finite set $F \subseteq J$ so that if $F \subseteq E \subseteq J$ and E is finite, then

$$\left| s - \sum_{j \in E} \alpha_j \right| < \varepsilon.$$

Problem 3

Suppose that I, J are sets, and $(a_{ij})_{i \in I} j \in J$ are nonnegative real numbers. Prove that

$$\sum_{j \in J} \left(\sum_{i \in I} a_{ij} \right) = \sum_{(i,j) \in I \times J} a_{ij} = \sum_{i \in I} \left(\sum_{j \in J} a_{ij} \right)$$