

Band Diagram Cont'd

For conduction electron

P.E. = -qV

V, electrostatic potential

 $V = P.E./(-q) = (E_C-E_{ref})/(-q)$

 $\mathcal{E} = -\nabla V$

In 1D

$$\delta = -\frac{dV}{dx} = \frac{1}{a}\frac{dE_C}{dx} = \frac{1}{a}\frac{dE_V}{dx} = \frac{1}{a}\frac{dE_i}{dx}$$

 \mathbf{E}_{C} , \mathbf{E}_{V} , \mathbf{E}_{i} differ only by a constant, and are always parallel with each other in the band diagram

Bao Ve320 S12

Diffusion

Carriers flow from higher to lower concentration

Electron diffusion -

Equilibrium

Bao Ve320 S12

18

Fick's Law

$$J = \left[\frac{ql}{2}\left(\frac{p(0)+p(0)-\frac{dp}{dx}l}{2}\right) - \frac{ql}{2}\left(\frac{p(0)+p(0)+\frac{dp}{dx}l}{2}\right)\right] / \frac{l}{v_{th}}$$

$$= -q \frac{lv_{th}}{2} \frac{dp}{dx} = -qD \frac{dp}{dx}$$

Bao Ve320 S12

Diffusion Current

Diffusion process described by

- · Fick's law: flux given by *F*=-D⊽ղ
- · Diffusion constant, D
- · Diffusion process dependent on material properties

Diffusion current given by diffusion constant and concentration gradient

Bao Ve320 S12

20

Example

$$n = n_i e^{(E_F - E_i)/k_B T}$$

$$p = n_i e^{(E_i - E_F)/k_B T}$$

Based on the band diagram above, fill in the blank with "<", ">", "+":

Region 1: $J_{D,n} = 0$ $J_{D,p} = 0$

Region 2: $J_{D,n}_{0} = 0$

Region 3: J_{D,n}___0 J_{D,p}___0

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Einstein Relationship

At equilibrium,
$$J_n = 0$$
 and $J_p = 0$, and $\frac{dE_f}{dx} = 0$ at equilibrium

$$J_n = q\mu_n n \mathcal{S} + qD_n \frac{dn}{dx} = 0 \qquad n = n_i \exp\left(\frac{E_f - E_i}{kT}\right)$$

$$n = n_i \exp\left(\frac{E_f - E_i}{kT}\right)$$

$$q\mu_n n_i \exp\left(\frac{E_f - E_i}{kT}\right) \frac{1}{q} \frac{dE_i}{dx} = -\frac{q}{kT} D_n n_i \exp\left(\frac{E_f - E_i}{kT}\right) \left(\frac{dE_f}{dx} - \frac{dE_i}{dx}\right)$$

Constants for diffusion and drift related (can calculate diffusion constants from μ)

$$\frac{D_n}{\mu_n} = \frac{kT}{q}$$

$$\frac{D_p}{\mu_p} = \frac{kT}{q}$$

University of Michigan – Shanghai Jiao Tong University Joint Institute Center of Optics and Optoelectronics

Bao Ve320 S12

22

Summary

Total current in a semiconductor:

$$J_{N} = J_{N|drift} + J_{N|diff} = qn\mu_{n} \mathcal{E} + qD_{N} \frac{dn}{dx}$$

$$J_{P} = J_{P|drift} + J_{P|diff} = qn\mu_{p} \mathcal{E} - qD_{p} \frac{dp}{dx}$$

$$J_{P} = J_{P|drift} + J_{P|diff} = qn\mu_{p} \mathcal{E} - qD_{p} \frac{dp}{dx}$$

$$J = J_N + J_P$$

Center of Optics and Optoelectronics

Bao Ve320 S12