MATH-GA 2840 HW#8

Yifei(Fahy) Gao yg1753

1. (Haar wavelet) Define the discrete Haar wavelet $\mu_{2^s,p} \in \mathbb{R}^{2^n}$ at scale 2^s and position p by

$$\mu_{2^{s},p}[j] := \begin{cases} -1/\sqrt{2^{s}} & \text{if } j \in \left\{ p \cdot 2^{s}, p \cdot 2^{s} + 1, \dots, p \cdot 2^{s} + 2^{s-1} - 1 \right\} \\ 1/\sqrt{2^{s}} & \text{if } j \in \left\{ p \cdot 2^{s} + 2^{s-1}, p \cdot 2^{s} + 2^{s-1} + 1, \dots, (p+1) \cdot 2^{s} - 1 \right\} \\ 0 & \text{otherwise} \end{cases}$$

where $0 < s \le n$ and $0 \le p \le 2^{n-s} - 1$. Define the discrete Haar scaling function $\varphi_{2^s,p} \in \mathbb{R}^{2^n}$ at scale 2^s and position p by

$$\varphi_{2^s,p}[j] = \begin{cases} 1/\sqrt{2^s} & \text{if } j \in \{p \cdot 2^s, p \cdot 2^s + 1, \dots, (p+1) \cdot 2^s - 1\} \\ 0 & \text{otherwise} \end{cases}$$
 where $0 < s \le n$ and $0 \le p \le 2^{n-s} - 1$.

(a) Define $V_0:=\mathbb{R}^{2^n}$. For k>0, let $V_k\subset\mathbb{R}^{2^n}$ denote the subspace of all vectors that are constant on segments of size 2^k . That is

$$V_k := \left\{ x \in \mathbb{R}^{2^n} : x[i] = x[j] \text{ if } \left| i/2^k \right| = \left| j/2^k \right| \right\}$$

 $V_k:=\left\{x\in\mathbb{R}^{2^n}:x[i]=x[j] \text{ if } \left\lfloor i/2^k\right\rfloor=\left\lfloor j/2^k\right\rfloor\right\}$ Give an orthonormal basis for V_k (proving that it is indeed orthonormal and a basis). What is the dimension of V_k ?

Since $V_k \subset \mathbb{R}^{2^n}$, and it contains the segments of size 2^k where n > k, then there will be another 2^{n-k} segments. Now we can define V_k with 2^{n-k} orthogonal vectors that are constant on 2^k but 0 otherwise. Then the dimension of V_k will be 2^{n-k} .

By the lecture notes, we can define the basis of V_k is:

$$B := \left\{ \varphi_{2^k, p} : 0 \le p \le 2^{n-k} - 1 \right\}$$

Then

$$\left\langle \varphi_{2^{k},p}, \varphi_{2^{k},p} \right\rangle = \sum_{j=0}^{2^{n}-1} \varphi_{2^{k},p} [j]^{2} = \sum_{j=2^{k}p}^{(p+1)2^{k}-1} 1/2^{k} = \frac{(p+1)2^{k} - 1 - 2^{k}p + 1}{2^{k}}$$
$$= \frac{2^{k}}{2^{k}}$$
$$= 1$$

Then the vectors $\varphi_{2^k,p}$ are unit length vectors.

Also, assume there are p and q: $0 \le p \le q \le 2^{n-k} - 1$, then

$$\begin{split} \left\langle \varphi_{2^{k},p}, \varphi_{2^{k},q} \right\rangle &= \sum_{j=0}^{2^{n}-1} \varphi_{2^{k},p}[j] \varphi_{2^{k},q}[j] = \sum_{j=2^{k}p}^{(p+1)2^{k}-1} \varphi_{2^{k},p}[j] \varphi_{2^{k},q}[j] + \sum_{j=2^{k}q}^{(q+1)2^{k}-1} \varphi_{2^{k},p}[j] \varphi_{2^{k},q}[j] \\ &= 0 + 0 \\ &= 0 \end{split}$$

Thus B forms an orthnormal basis of V_k .

(b) Show that one can project onto V_k by averaging (explain what needs to be averaged).

Let $proj_{V_k}u$ be the projection of u onto V_k , then:

$$proj_{V_k}u = \sum_{p=0}^{2^{n-k}-1} \left\langle u, \varphi_{2^k, p} \right\rangle \varphi_{2^k, p}$$

And since basis of V_k only contains non-overlapping support, then $proj_{V_k}u[j] = \left\langle u, \varphi_{2^k,q} \right\rangle \varphi_{2^k,q}[j]$

$$proj_{V_k}u[j] = \langle u, \varphi_{2^k,q} \rangle \varphi_{2^k,q}[j]$$

Then based on the question condition,

$$= 1/\sqrt{2^k} \sum_{j=2^k q}^{(q+1)2^k - 1} u[j] (1/\sqrt{2^k}) = (1/2^k) \sum_{j=2^k q}^{(q+1)2^k - 1} u[j]$$

Thus we now can say $\operatorname{proj}_{V_k}u$ is the average of the elements u[j] for $2^kq \leq j \leq (q+1)2^k-1$, which means that elements of $proj_{V_k}u[j]$ are the average value of u on the same 2^k length segment.

(c) Show that $V_{k+1} \subset V_k$

If we want to show V_{k+1} is the subset of V_k then we can try to prove the basis of V_{k+1} is also nested inside the basis of V_k .

We know:

$$\frac{1}{\sqrt{2}} \varphi_{2^k, 2p}[j] = \begin{cases} 1/\sqrt{2^{k+1}} & \text{if } j \in [2p2^k, (2p+1)2^k - 1] \\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1/\sqrt{2^{k+1}} & \text{if } j \in [p2^{k+1}, (2p+1)2^k - 1] \\ 0 & \text{otherwise} \end{cases}$$

and A

$$\begin{split} \frac{1}{\sqrt{2}} \varphi_{2^k,2p+1}[j] &= \left\{ \begin{array}{ll} 1/\sqrt{2^{k+1}} & \text{if } j \in \left[(2p+1)2^k, (2p+2)2^k - 1 \right], \\ 0 & \text{otherwise} \end{array} \right. \\ &= \left\{ \begin{array}{ll} 1/\sqrt{2^{k+1}} & \text{if } j \in \left[(2p+1)2^k, (p+1)2^{k+1} - 1 \right], \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Then,

$$\frac{1}{\sqrt{2}} \left((\varphi_{2^k, 2p}) + (\varphi_{2^k, 2p+1}) \right) [j] = \begin{cases} 1/\sqrt{2^{k+1}} & \text{if } j \in [p2^{k+1}, (p+1)2^{k+1} - 1] \\ 0 & \text{otherwise} \end{cases},$$

Which is exactly the function definiton of $\varphi_{2^{k+1},p}[j]$. Also $|B_{V_{k+1}}|=2^{n-k-1}<|B_{V_k}|$. Then, $V_{k+1}\subset V_k$.

(d) Fix $0 \le k < n$. Consider the set

$$W_{k+1} = \{x \in V_k : \langle x, y \rangle = 0 \text{ for all } y \in V_{k+1}\}$$

the orthogonal complement of V_{k+1} in V_k , so that $V_k = V_{k+1} \oplus W_{k+1}$. Give an orthonormal basis for W_{k+1} (proving that it is indeed orthonormal and a basis).

Since V_k and V_{k+1} have the dimensions 2^{n-k} and 2^{n-k-1} , and we need to locate the condition of W_{k+1} that $2^{n-k}-2^{n-k-1}=2^{n-k-1}$. Then let us assume:

$$B_W := \left\{ \psi_{2^{k+1}, p} : 0 \le p \le 2^{n-k-1} \right\}$$

Then

$$\begin{split} \left\langle \varphi_{2^{k+1},p}, \psi_{2^{k+1},p} \right\rangle &= \sum_{j=0}^{2^n-1} \psi_{2^{k+1},p}[j] \varphi_{2^{k+1},p}[j] \\ &= -\sum_{j=2^{k+1}p}^{p2^{k+1}+2^k-1} \frac{1}{\sqrt{2^{k+1}}} + \sum_{j=2^{k+1}p+2^k}^{(p+1)2^{k+1}-1} \frac{1}{\sqrt{2^{k+1}}} \\ &= \frac{2^k}{\sqrt{2^{k+1}}} (-1+1) \\ &= 0 \end{split}$$

$$\left\langle \varphi_{2^{k+1},p}, \psi_{2^{k+1},q} \right\rangle = \sum_{j=0}^{2^n - 1} \psi_{2^{k+1},p}[j] \varphi_{2^{k+1},q}[j]$$

$$= 0$$

So both are results of non-overlapping support.

Then, for $\psi_{2^{k+1},p}$ in B_W

$$\langle \psi_{2^{k+1},p}, \psi_{2^{k+1},p} \rangle = \sum_{j=0}^{2^{n}-1} \psi_{2^{k+1},p}[j]^{2}$$

$$= \sum_{j=p^{k+1}}^{p2^{k+1}+2^{k}-1} \psi_{2^{k+1},p}[j]^{2} + \sum_{j=p2^{k+1}+2^{k}}^{(p+1)2^{k+1}-1} \psi_{2^{k+1},p}[j]^{2}$$

$$= \sum_{j=p2^{k+1}}^{p2^{k+1}+2^{k}-1} \frac{1}{2^{k+1}} + \sum_{j=p2^{k+1}+2^{k}}^{(p+1)2^{k+1}-1} \frac{1}{2^{k+1}}$$

$$= \frac{(p+1)2^{k+1} - 1 - p2^{k+1} + 1}{2^{k+1}}$$

And, for $\psi_{2^{k+1},p},\psi_{2^{k+1},q}$ in B_W

$$\begin{split} \left\langle \psi_{2^{k+1},p}, \psi 2^{k+1}, q \right\rangle &= \sum_{j=0}^{2^{n}-1} \psi_{2^{k+1},p}[j] \psi_{2^{k+1},q}[j] \\ &= \sum_{j=p2^{k+1}}^{(p+1)2^{k+1}-1} \psi_{2^{k+1},p}[j] \psi_{2^{k+1},q}[j] + \sum_{j=q2^{k+1}}^{(q+1)2^{k+1}-1} \psi_{2^{k+1},p}[j] \psi 2^{k+1}, q[j] \\ &= 0 \end{split}$$

Therefore B_W is an orthnormal basis.

(e) For $1 \le k \le n$ give an orthonormal basis for the set

$$W_{\leq k} = \left\{ x \in \mathbb{R}^{2^n} : \langle x, y \rangle = 0 \text{ for all } y \in V_k \right\}$$

 $W_{\leq k} = \left\{x \in \mathbb{R}^{2^n} : \langle x,y \rangle = 0 \text{ for all } y \in V_k\right\}$ the orthogonal complement of V_k in \mathbb{R}^{2^n} , so that $\mathbb{R}^{2^n} = V_k \oplus W_{\leq k}$. Give an orthonormal basis for $W_{< k}$ (proving that it is indeed orthonormal and a basis).

We can define $W_{\leq k}$ to be $\bigoplus_{i=1}^k W_i = W_k \oplus W_{k-1} \oplus W_{k-2} \oplus W_1$, then:

Basis of $B_{W_{>k}}$ will be: $\bigcup_{i=1}^k B_{W_i}$,

and B_W from d part we know it has 2^{n-j} orthonormal vectors. Then we can assume that there are $u \in V_m$ and $v \in V_n$. If m=n-1, then from part d

$$u \in V_n$$
 and $\langle u, v \rangle = 0$

Else based on part c, $V_{n-1} \subset V_m$ and $\langle u, v \rangle = 0$ again.

Thus, $B_{W_{< k}}$ has all orthonormal vectors.

And for the dimension of $B_{W_{< k}}$:

$$|B_{W_{\leq k}}| = \sum_{j=1}^{k} |B_{W_j}| = \sum_{j=1}^{k} 2^{n-j} = 2^n - 2^{n-k}$$

Thus,

$$B_{W_{\leq k}}$$

has $2^n - 2^{n-k}$ orthonormal vectors.

In []: