1. Amendments to the Claims:

A listing of the entire set of pending claims (including amendments to the claims, if any) is submitted herewith per 37 CFR 1.121. This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- (Previously Presented) An organic electroluminescent component having a layer composite, which comprises
 - a) a substrate layer,
 - b) a first transparent electrode layer,
 - c) a mixing layer having
 - c1) a matrix of a hole conductive organic material with one or more singlet states and one or more triplet states, selected from the group: p-conductive and n-conductive materials.
 - c2) in this matrix, a light-emitting material which comprises a metalloorganic complex compound with an emissive triplet state, and
 - d) a second electrode, wherein the lowest-energy triplet state of the conductive organic material is higher than the emissive triplet state of the metallo-organic complex compound by an energy difference E_t.
- 2. (Previously Presented) An organic electroluminescent component as claimed in claim 1, wherein the energy difference is $E_t \ge 2000 \text{ cm}^{-1}$.
- 3. (Previously Presented) An organic electroluminescent component as claimed in claim
- 1, wherein the conductive organic material comprises a structural element which is a benzene ring substituted with an organic substituent R- in the meta position.

Application Serial Number 10/538,219 Response to Office Action Dated October 16, 2008

- 4. (Previously Presented) An organic electroluminescent component as claimed in claim 1, wherein the conductive organic material comprises a structural element which is a biphenyl substituted with an organic substituent R- in a meta position.
- (Currently Amended) An organic electroluminescent component as claimed in claim 4, wherein the structural element is a biphenyl multiply substituted in one or more meta positions.
- 6. (Previously Presented) An organic electroluminescent component as claimed in claim 1, wherein that the conductive organic material is selected from the group consisting of: molecularly doped organic polymers, semiconducting conjugated polymers, intrinsically conductive organic polymers, oligomers, and conductive organic monomers, and mixtures thereof.
- 7. (Previously Presented) An organic electroluminescent component as claimed in claim 3, wherein the substituent R- is selected from the group consisting of organic substituents: phenyl and derivatives, arylamine and derivatives, oxadiazole and derivatives, triazole and derivatives, triazole and derivatives, triazoles and derivatives, oxadiazoles and derivatives, triazoles and derivatives, triazoles and derivatives, fluorenes and derivatives, hexaphenylbenzene and derivatives, phenanthroline and derivatives, pyridine and derivatives.
- 8. (Previously Presented) An organic electroluminescent component as claimed in claims 4, wherein the substituent R- is selected from the group consisting of organic substituents: phenyl and derivatives, arylamine and derivatives, oxadiazole and derivatives, triazole and derivatives, triphenylamine and derivatives, carbazole and derivatives, oxadiazoles and derivatives, triazoles and derivatives, triazines and derivatives, fluorenes and derivatives, hexaphenylbenzene and derivatives, phenanthroline and derivatives, pyridine and derivatives.

9. (Currently Amended) An organic electroluminescent component, comprising:

a mixing layer, comprising: a matrix of a hole conductive organic material, comprising: a light-emitting material having a metallo-organic complex compound with one or more singlet states and one or more triplet states, wherein a lowest-energy triplet state of the <u>hole</u> conductive organic material is higher in energy than the emissive triplet state of the metallo-organic complex compound by an energy difference E_t.

10. -11. (Cancelled).

12. (Currently Amended) An organic electroluminescent component as claimed in claim [[11]]12, wherein the energy difference is E₁ ≥ 2000 cm⁻¹.

13. (Previously Presented) An organic electroluminescent component as claimed in claim 9, wherein the conductive organic material comprises a structural element comprising a benzene ring substituted with an organic substituted R- in a meta position.

14. (Previously Presented) An organic electroluminescent component as claimed in claim 9, wherein the conductive organic material comprises a structural element comprising a biphenyl substituted with an organic substituted R- in one or more meta positions.

15. (Previously Presented) An organic electroluminescent component as claimed in claim 14, wherein the structural element is a biphenyl substituted at multiple meta positions.

16. (Previously Presented) An organic electroluminescent component as claimed in claim 9, wherein that the conductive organic material is selected from the group consisting of: molecularly doped organic polymers, semiconducting conjugated polymers, intrinsically conductive organic polymers, oligomers, and conductive organic monomers, and mixtures thereof.

Application Serial Number 10/538,219 Response to Office Action Dated October 16, 2008

17. (Previously Presented) An organic electroluminescent component as claimed in claim 13, wherein the substituent R- is selected from the group consisting of organic substituents: phenyl and derivatives, arylamine and derivatives, oxadiazole and derivatives, triazole and derivatives, triazole and derivatives, triazoles and derivatives, triazoles and derivatives, triazoles and derivatives, fluorenes and derivatives, hexaphenylbenzene and derivatives, phenanthroline and derivatives, pyridine and derivatives.

18. (Previously Presented) An organic electroluminescent component as claimed in claim 14, wherein the substituent R- is selected from the group consisting of organic substituents: phenyl and derivatives, arylamine and derivatives, oxadiazole and derivatives, triazole and derivatives, triazole and derivatives, triazoles and derivatives, oxadiazoles and derivatives, triazoles and derivatives, fluorenes and derivatives, hexaphenylbenzene and derivatives, phenanthroline and derivatives, pyridine and derivatives.