LINEAGE ASSIGNMENT AND PHYLOGENETICS

Today's Agenda

Organisms acquire mutations

Mutations tell us about relationships

Phylogenetic trees reveal relationships

Genetic similarity

Phylogenetic trees

Links between positive cases

Or not

Reinfection or chronic infection?

Building a Phylogenetic Tree

Identify protein, DNA or RNA sequences of interest Fasta format file of concatenated sequences

Multiple sequence alignment ClustalX, Muscle, Mafft

Construct phylogeny PHYML, RAxML, IQ-Tree, FastTree

View and edit tree FigTree

Multiple sequence alignment (MSA)

MSA is best hypothesis of **positional homology** between bases/amino acids of different sequences

```
sel=0
ERS009884 SC contig0
ERS009906 SC contig0
                     GDVIGKYHPHGDLAVYDT
ERS009795 SC contig0
ERS009819 SC contig0
ERS009835 SC contig0
                     GDVIGKYHPHGDSAVYDT:
ERS009842 SC contig0
ERS009843 SC contig0
ERS009858 SC contig0
                        IGKYHPHGDSAVYD
ERS009869 SC contig0
                     GDVIGKYHPHGDSAVYD'
ERS008193 SC contig0
                     GDVIGKYHPHGDLAVYDTIVRMAQ
```

This is perhaps most important step!!

Crap in == Crap out!

Constructing a phylogenetic tree

Method	Data used	Tree search	Evolutionary Model
Distance	Pairwise distance	Simple algorithm	Can be complex
Parsimony	All sites	Mainly hill climbing	Simple
Maximum likelihood	All sites	Hill climbing	Can be complex
Bayesian Methods	All sites (+ other info)	MCMC	Can be very complex

Maximum likelihood phylogenetic models

Simple

JC69: all substitutions equally likely,

all bases equally frequent.

JC69+I+ Γ : as for JC69, but with additional parameters

for invariant sites and gamma distribution.

K2P: specific probabilities for transitions and transversions,

all bases equally frequent.

HKY85: specific probabilities for transitions and transversions,

specific base frequencies.

GTR: each substitution has a specific probability,

moderated by specific base frequencies.

GTR+I+ Γ : as for GTR, but with additional parameters

for invariant sites and gamma distribution.

Complex

4 equilibrium base frequency parameters and 6 substitution rate parameters and

Putting it together

Maximum likelihood phylogenetic models maximize the probability of achieving ...

these data...

... if this happens...

... over this tree

Gaining confidence: Bootstrapping

Bootstrapping is a way to produce a confidence measure in the topology relationships found in a phylogenetic analysis

X number of **bootstraps** (resampled replicates) are created of your input data (MSA)

Typically run 100 – 1,000 bootstraps for ML analysis

These are commonly used as a measure of support for these branches and are represented as a number on each tree branch

Questions?