

Design for testability Lab Manual

SILICON

SILICON

SILICON

www.maven-silicon.com

Table of Contents

Lab Instructions		3
Lab - 1: Memory BIST		4
Lab - 2: Clock and DRC		6
Lab - 3: Boundary scan		8
Lab - 4: Scan chain insertion		
Lab - 5: IJTAG Implementation		12
Lab - 6: EDT IP creation	40.0	13

Lab Instructions

- 1. The recommended editor is vi or gvim editor.
- 2. Mentor Graphics Tessent tool is used to insert DFT logic & Questasim is used to run the test pattern simulation. [Mentor Graphics, Tessent & Questa are the registered trademark of Mentor Graphics]
- 3. The following directory structure is followed for all the lab exercises:

libs/ - contains design, cell & simulation libraries

design/ - contains the source either as RTL or gate-level netlist

tsdb/ - contains sub-directories, files related to DFT flow

simulation_outdir/ - contains simulation log files

- 4. We use the dofile.do script to implement the DFT flow.
- 5. For any technical support to do the lab exercises, please reach out to us on tech_support@maven-silicon.com

Lab - 1: Memory BIST

Objective: Understand the DFT flow for inserting MBIST.

Introduction : There is a blockB which is a single level of hierarchy which has a memory instance i.e memA. clkb is the functional clock for blockB.

Working Directory: Tessent_labs/Lab1/

Dofile script: dofile.do

Instructions: The following instructions have been included in the script as comments. Refer to the comments in the script and understand the script.

- ✓ Set the context to DFT
 - This is done to set the primary context to DFT as DFT instrument has to be inserted i.e MBIST.
- ✓ Create the TSDB directory
 - This directory is created automatically during DFT flow.
- ✓ Read the cell library files
 - The I/O cell library needs to be read.
- ✓ Read the design source codes & memory files
 - The RTL & memory files needs to be read.
- ✓ Elaborate the design top
 - The design files top has to be elaborated to make sure that the lower sub-modules are instantiated and integrated to the top module.
- ✓ Set the design level to sub-block level
 - The memory block to which MBIST is inserted is a sub-block.
- ✓ Specify the DFT requirement
 - Here the MBIST needs to be turned on and a clock needs to be added for the MBIST.
- ✓ Verify the DFT requirement
 - DRC i.e design rule check is performed to validate the DFT requirements.
- ✓ Create & report the DFT specification
 - After a successful DRC run, create DFT specification & report the same on the Tessent shell.
- ✓ Display the DFT specification
 - This is going to open the GUI interface of the DFT visualizer and you will see the specification as IJTAG network & MBIST.
- ✓ Insert the DFT instruments

VLSI Training Services

Setting standards in VLSI Design

- This is going to insert the DFT components and a modified RTL file is created inside the TSDB directory.
- ✓ Display the visualizer
 - This will display the added DFT components using the DFT visualizer.
- ✓ Extract the ICL
 - This will generate the .icl(Instrument connectivity language), .pdl(procedural description language), .sdc(synopsys design constraint) files.
- ✓ Create & report the pattern specification
 - This will create the pattern specification & report the same.
- ✓ Process the patterns
 - This will generate the patterns needed for simulation.
- ✓ Set up the simulation library
 - This will set the simulation libraries needed for testbench simulations.
- ✓ Run & check the simulation
 - This will validate the IJTAG & MBIST insertions.

DFT implementation process:

- ✓ Go to the directory: cd Tessent_labs/Lab1
- Run the dofile script.
- ✓ Observe the output

Learning outcomes:

To insert the MBIST at sub-block level using Tessent DFT flow.

Lab - 2: Clock and DRC

Objective: *Understand what could be DRC violations for MBIST.*

Introduction: There is a physical block that contains two instances of blockA and one instance of blockB. The physical block also includes a clock divider, a clock mux and clock gaters. As you go through the flow, there will be DRC violations that will need to be fixed.

Working Directory: Tessent_labs/Lab2/

Dofile script: dofile.do

Instructions: The following instructions have been included in the script as comments. Refer to the comments in the script and understand the script.

- ✓ Set the context to DFT
 - This is done to set the primary context to DFT as DRCs are checked in the DFT flow.
- ✓ Read the cell library files
 - The I/O cell library needs to be read.
- ✓ Read the design source codes
 - The RTL files needs to be read.
- ✓ Read the TSDBs of the sub-blocks
 - The TSDBs of the sub-blocks to be opened.
- ✓ Elaborate the design top
 - The design files top has to be elaborated to make sure that the lower sub-modules are instantiated and integrated to the top module.
- ✓ Source the PDL file of the clock divider
 - The .pdl file won't be automatically elaborated unlike the .icl file, hence needs to be sourced.
- ✓ Report the open tsdb directories

VLSI Training Services

Setting standards in VLSI Design

- This will display the list of tsdb directories.
- ✓ Report the name & location of the tsdb directories
 - This will display the location of tsdb directories.
- Report IJTAG instances that are included in this design
 - This will display the ijtag instances.
- ✓ Report all the ICL modules
 - This will display the .icl modules loaded into the design.
- ✓ Report the identified clock enables
 - It will report the clock enable point of the clock gaters.
- ✓ Set the design level to physical block level
 - The memory blocks are part of a core block now.
- ✓ Specify the DFT requirements
 - Here the MBIST needs to be turned on without adding clock so that the DRC violations will be observed.
- ✓ Verify the DFT requirements
 - DRC i.e design rule check is performed to validate the DFT requirements.
- ✓ Report a specific DRC violation
 - DRC violation errors about a specific violation can be reported.
- ✓ Analyze the violation using schematic viewer
 - DRC violation errors can be viewed in GUI mode using DFT visualizer.
- ✓ Fixing the violation DFT_C1-1
 - DRC violations are fixed.
- ✓ Run the DRC
 - DRC i.e design rule check is performed to validate the DFT requirements.
- ✓ The above process is repeated till all the violations are fixed.
- ✓ Report the clocks
 - All the clocks will be defined now.

DFT implementation process:

FILICON

- ✓ Go to the directory: cd Tessent_labs/Lab2
- ✓ Run the dofile script.
- ✓ Observe the output

Learning outcomes:

To fix DRC violations at physical block level in a MBIST environment.

Lab - 3: Boundary scan

Objective: Understand how to insert Boundary scan at chip level.

Introduction : There is a gate level circuit and few DFFs for which boundary scan needs to be implemented at chip level.

Working Directory: Tessent_labs/Lab3/

Dofile script: dofile.do

Instructions: The following instructions have been included in the script as comments. Refer to the comments in the script and understand the script.

- ✓ Set the context to DFT
 - This is done to set the primary context to DFT as DFT instrument has to be inserted i.e Boundary scan.
- ✓ Create the TSDB directory
 - This directory is created automatically during DFT flow.
- ✓ Read the cell library files
 - The I/O cell library needs to be read.
- ✓ Read the design source codes
 - The RTL files needs to be read.
- ✓ Elaborate the design top
 - The design files top has to be elaborated to make sure that the lower sub-modules are instantiated and integrated to the top module.
- ✓ Set the design level to chip level
 - The boundary scan is always inserted at chip level.
- ✓ Specify the DFT requirement
 - Here the boundary scan needs to be turned on.
- ✓ Set attributes for the TAP controller pins
 - Here the attributes for the TAP controller pins (i.e) TDI,TCK, TMS,TRST,TDO are specified.
- ✓ Run the DRC
 - DRC i.e design rule check is performed to validate the DFT requirements.
- Create & report the DFT specification
 - After a successful DRC run, create DFT specification & report the same on the Tessent shell.
- ✓ Insert the DFT instruments
 - This is going to insert the DFT components and a modified RTL file is created inside the TSDB directory.

- ✓ Display the visualizer
 - This will display the added DFT components using the DFT visualizer.

DFT implementation process:

- ✓ Go to the directory: cd Tessent_labs/Lab3
- ✓ Run the dofile script.
- ✓ Observe the output

Learning outcomes:

To insert Boundary scan using Tessent shell at chip level.

Lab - 4: Scan chain insertion

Objective: *Understand how to insert scan chain into a design.*

Introduction: In this lab we have used a block level design called tracking_channel that has a single instance of a sub-module called code_gen.

Both tracking_channel and code_gen are RTL designs that have gone through previous DFT insertion steps to insert EDT into the RTL. The RTL for both of these designs was synthesized into a single file gate design with all the sequential elements mapped to scan equivalent cells.

Working Directory: Tessent_labs/Lab4/

Dofile script: dofile.do

Instructions: The following instructions have been included in the script as comments. Refer to the comments in the script and understand the script.

- ✓ Set the context to DFT with the sub-context to scan
 - This is done to set the primary context to DFT & sub-context to scan as DFT instrument has to be inserted i.e scan cells.
- ✓ Create the TSDB directory
 - This directory is created automatically during DFT flow.
- ✓ Read the TSDBs of the sub-blocks
 - The TSDBs of the sub-blocks to be opened.
- ✓ Read the cell library files
 - The I/O cell library needs to be read.
- ✓ Read the synthesized design
 - The gate-level netlist file needs to be read.
- ✓ Load design files from the tsdb directory.
- ✓ Elaborate the design top
 - The design files top has to be elaborated to make sure that the lower sub-modules are instantiated and integrated to the top module.
- ✓ Run the DRC
 - DRC i.e design rule check is performed to validate the DFT requirements.
- ✓ Set a chain constraint for scan chain
 - It is going to set the scan chain as per the count given and FFs will be distributed depending upon the no of chains.
- ✓ Distribute the scan elements to chain
 - This will distribute the FFs on the chain.
- ✓ Report the distribution prior to insertion
 - Reports the scan chain & cells.
- ✓ Modify the Netlist
 - Insert the test logic.
- ✓ Review the report files.

DFT implementation process:

- ✓ Go to the directory: cd Tessent labs/Lab4
- ✓ Run the dofile script.
- ✓ Observe the output

Learning outcomes:

To insert the scan chain in a single mode for a given design.

www.maven-silicon.com

tech_support@maven-silicon.com

Lab - 5: IJTAG Implementation

Objective: Understand how to create ICL & PDL files.

Introduction : In this lab we have used a PLL design file for which .icl file will be created & .pdl file for the .icl file will be generated.

Working Directory: Tessent_labs/Lab5/

Dofile script: dofile.do

Instructions: The following instructions have been included in the script as comments. Refer to the comments in the script and understand the script.

- ✓ Set the context to DFT
 - This is done to set the primary context to DFT as .icl files are elaborated with the set_current_design.
- ✓ Read the design source codes
 - This reads the design source code.
- ✓ Elaborate the design top
 - The design files top has to be elaborated to make sure that the lower sub-modules are instantiated and integrated to the top module.
- ✓ Create .icl file as per the syntax given:
 - <func>Port <port_name> ; where <func> describes the function of the port such a DataInPort and <port_name> is the logical name you are assigning to the port.
- ✓ Read the .icl file with a switch -force
 - This is going to read the .icl file such that tessent shell is aware of this file.
- ✓ Elaborate the design top
 - The design file top has to be elaborated to make sure that the .icl file gets elaborated.
- ✓ Create the .pdl file
- ✓ Set the context to patterns
 - The primary context should be set to patterns and sub-context should be set to ijtag.
- Set the design level to chip
- ✓ Verify the ICL ports
 - The Tessent shell will recognize the ICL ports.
- ✓ Run DRC
- ✓ Create a PDL pattern set
 - The pattern set will define how the ports are driven with values.

DFT implementation process:

- ✓ Go to the directory: cd Tessent_labs/Lab5
- ✓ Run the dofile script.
- ✓ Observe the output

Learning outcomes:

To create .icl & .pdl files for a design.

Lab - 6: EDT IP creation

Objective: Understand how to insert EDT IP core using Tessent Test-kompress.

Introduction: In this lab you start with a gate level Netlist, a non-scan Netlist, insert scan chains using Tessent scan, create Tessent Test-kompress EDT IP core.

Working Directory : Tessent_labs/Lab6/
Dofile script : dofile.do, edt_ip.do

Instructions: The following instructions have been included in the script **dofile.do** as comments. Refer to the comments in the script and understand the script.

- ✓ Set the context to DFT scan mode
 - This is done to set the primary context to DFT & sub-context to scan mode for scan insertion.
- ✓ Read the cell library files
 - The I/O cell library needs to be read.
- ✓ Read the synthesized design
 - The gate-level netlist file needs to be read.
- ✓ Set the current design for elaboration process.
 - The design files top has to be elaborated to make sure that the lower sub-modules are instantiated and integrated to the top module.
 - If any module descriptions are missing, design elaboration will identify them by adding add_black_boxes -auto.
- ✓ Identify and define control signals.
- ✓ Run DRC
- ✓ Set the scan chains count to 2
- ✓ Insert the scan logic
- ✓ Report scan chains and new test logic
- ✓ Write the scan inserted netlist
 - It creates the scan chain netlist inside the netlist directory.
- ✓ Write out atpg dofile and testproc file

The following instructions have been included in the script **edt_ip.do** as comments. Refer to the comments in the script and understand the script.

- ✓ Set the context to DFT edt mode
 - This is done to set the primary context to DFT & sub-context to edt mode for EDT ip insertion.
- ✓ Read the scan chain netlist
- ✓ Read the cell library files
 - The I/O cell library needs to be read.
- Set the current design for elaboration process.
 - The design files top has to be elaborated to make sure that the lower sub-modules are instantiated and integrated to the top module.
- ✓ Define scan chains & control signals
- ✓ Used to run the TCL procedure from the atpg.do
- ✓ Specify parameters for EDT logic
- ✓ Report EDT channels & pins

- ✓ Run DRC
- ✓ Report configuration of EDT logic
- ✓ Report required lock-up cells
- ✓ Write the EDT modified RTL

DFT implementation process:

- ✓ Go to the directory: cd Tessent_labs/Lab6
- ✓ Run first the dofile.do script followed by edt_ip.do script.
- ✓ Observe the output

Learning outcomes:

To insert an EDT IP core into a scan stitched netlist.