Машинное обучение: Линейный модели классификации и регрессии

MADE academy Эмели Драль

Алгоритмы машинного обучения

- 1. Обучение с учителем: линейные модели
- 2. Обучение с учителем: модели на основе деревьев и композиции
- 3. Обучение с учителем: нейросетевые модели
- 4. Обучение без учителя: обзор методов
- 5. (optional) Рекомендательные системы
- 6. (optional) Обучение с подкреплением

План занятия

- 1. Линейные модели: интуиция
- 2. Формализация линейной модели
- 3. Построение линейной модели
- 4. Часто используемые линейные модели

Линейные модели: интуиция

Линейная модель

Линейные модели: интуиция

Стоит ли занимать очередь в банке?

Признаки (1/0)

Вы свободны в данный момент

Вы голодны

Вам хочется спать

Признаки (1/0)

Вы свободны в данный момент

Вы голодны

Вам хочется спать

Признаки (1/0)

Вы свободны в данный момент

Вам хочется спать

Вы голодны

Признаки (1/0)

Вы свободны в данный момент

Вам хочется спать

Вы голодны

Признаки (1/0)

Вы свободны в данный момент

Вам хочется спать

Вы голодны

Линейные модели

Пример: занимать ли очередь в банке?

Порог для решающего правила: 0 Если сумма больше 0 – занимаем очередь!

Формализуем модель

Линейные модели: интуиция

$$a(x) = egin{cases} \mathbf{1}, ext{ecли } f(x) \geq \mathbf{0} \ -\mathbf{1}, ext{ecли } f(x) < \mathbf{0} \end{cases}$$

$$f(x) = w_0 + w_1 x_1 + \dots + w_n x_n$$

Линейные модели: интуиция

Формализуем модель

$$a(x) = egin{cases} \mathbf{1}, \operatorname{если} f(x) \geq \mathbf{0} \ -\mathbf{1}, \operatorname{если} f(x) < \mathbf{0} \end{cases}$$

$$f(x) = w_0 + w_1x_1 + \cdots + w_nx_n = < w,x > + w_0$$

Введём фиктивный признак х₀, равный 1 на всех объектах

$$f(x) = \langle w, x \rangle$$

Показатель	Диапазон значений
Возраст заёмщика	До 35 лет
	От 35 до 45 лет
	От 45 и старше
Образование	Высшее
	Среднее специальное
	Среднее
Состоит ли в браке	Да
	Нет
Наличие кредита в прошлом	Да
	Нет
Стаж работы	До 1 года
	От 1 до 3 лет
	От 3 до 6 лет
	Свыше 6 лет
Наличие автомобиля	Да
	Нет

Показатель	Диапазон значений	Скоринг-балл
Возраст заёмщика	До 35 лет	7,60
	От 35 до 45 лет	29,68
	От 45 и старше	15,87
Образование	Высшее	29,82
	Среднее специальное	20,85
	Среднее	22,71
Состоит ли в браке	Да	29,46
	Нет	9,38
Наличие кредита в прошлом	Да	40,55
	Нет	13,91
Стаж работы	До 1 года	15,00
	От 1 до 3 лет	18,14
	От 3 до 6 лет	19,85
	Свыше 6 лет	23,74
Наличие автомобиля	Да	51,69
	Нет	15,93

Почему нельзя продолжать так же?

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных, уточнение (калибровка) весов

Почему нельзя продолжать так же?

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных, уточнение (калибровка) весов

Решение

Автоматизируем подбор параметров: придумаем функцию от параметров, которую надо минимизировать, и используем методы численной оптимизации

Почему нельзя продолжать так же?

- Сложно настраивать вручную
- Требуется эксперт в области
- Требуется проверка на данных, уточнение (калибровка) весов

Решение

Автоматизируем подбор параметров: придумаем функцию от параметров – Q(a), которую надо минимизировать Q(a)->min, и используем методы численной оптимизации

Формализация линейной модели

Линейная регрессия

$$a(x) = \langle w, x \rangle + w_0$$

Линейные модели: формализация

Линейная регрессия

$$a(x) = \langle w, x \rangle + w_0$$

Линейные модели: формализация

А как получить ответ в задаче классификации?

Линейная классификация

$$a(x) = \langle w, x \rangle + w_0$$

А как получить ответ в задаче классификации?

- Выберем метки класса 1 и -1 для удобства
- Формализуем пороговое решающее правило

$$a(x) = sign(\langle w, x \rangle + w_0)$$

Если скалярное произведение неотрицательное – класс 1, в противном случае класс -1

Интерпретация

$$a(x) = \langle w, x \rangle + w_0$$

- Абсолютные значения весов $w_1, ... w_n$ можно интерпретировать как важность признаков
- Знак можно интерпретировать как класс, за который "голосует" признак

*для данной интерпретации признаки должны быть откалиброваны или бинаризованы, об этом позднее

Геометрическая интерпретация

 $a(x) = \langle w, x \rangle + w_0$

Веса задают гиперплоскость, разделяющую классы

Линейные модели: формализация

$$a(x) = \begin{cases} 1, \text{если } f(x) > 0 \\ -1, \text{если } f(x) \le 0 \end{cases}$$

Геометрическая интерпретация

$$a(x) = \langle w, x \rangle + w_0$$

Веса задают гиперплоскость, разделяющую классы.

Геометрическая интерпретация

$$a(x) = \langle w, x \rangle + w_0$$

Веса задают гиперплоскость, разделяющую классы.

$$\langle w, x \rangle = \|w\| \|x\| \cos \alpha = 0$$
, Значит, если оба вектора не нулевые: $\cos \alpha = 0$ $\alpha = 90^\circ$

Геометрическая интерпретация

$$a(x) = \langle w, x \rangle + w_0$$

Веса задают гиперплоскость, разделяющую классы.

Геометрическая интерпретация

$$a(x) = \langle w, x \rangle + w_0$$

Веса задают гиперплоскость, разделяющую классы.

Геометрическая интерпретация

$$a(x) = \langle w, x \rangle + w_0$$

Веса задают гиперплоскость, разделяющую классы.

- Если объект "над" гиперплоскостью, то его вектор и вектор w смотрят в одну сторону, скалярное произведение положительное
- Если объект с другой стороны от гиперплоскости скалярное произведение отрицательное

Понятие отступа (margin)

Отступом алгоритма a(x) = sign(f(x)) на объекте x_i называется величина

$$M_i = y_i f(x_i)$$

 $(y_i$ - класс, к которому относится $x_i)$

$$M_i \le 0 \Leftrightarrow y_i \ne a(x_i)$$

 $M_i > 0 \Leftrightarrow y_i = a(x_i)$

Понятие отступа (margin)

Отступом алгоритма a(x) = sign(f(x)) на объекте x_i называется величина

$$M_i = y_i f(x_i)$$

 $(y_i$ - класс, к которому относится x_i)

$$M_i \le 0 \Leftrightarrow y_i \ne a(x_i)$$

 $M_i > 0 \Leftrightarrow y_i = a(x_i)$

Чем больше M_i – тем увереннее классификация

Зная отступы, оценим потери

$$Q(a(w)) = \sum_{i=1}^{n} [M_i(w) < 0]$$

Зная отступы, оценим потери

$$Q(a(w)) = \sum_{i=1}^{n} [M_i(w) < 0]$$

- Q(a(w)) эмпирические риск
- хотелось бы найти такие w, чтобы Q(a(w)) -> min

Зная отступы, оценим потери

$$Q(a(w)) = \sum_{i=1}^{n} [M_i(w) < 0] \le \tilde{Q}(a(w)) = \sum_{i=1}^{n} L_i(M(w)) \to min$$

Линейные модели: формализация

- -Q(a(w)) эмпирические риск
- $\tilde{Q}(a(w))$ функция потерь

Зная отступы, оценим потери

$$Q(a(w)) = \sum_{i=1}^{n} [M_i(w) < 0] \le \tilde{Q}(a(w)) = \sum_{i=1}^{n} L_i(M(w)) \to min$$

Линейные модели: формализация

- Q(a(w)) эмпирические риск
- $\tilde{Q}(a(w))$ функция потерь

Теперь вместо задачи дискретной оптимизации мы решаем задачу непрерывной оптимизации! А значит можем использовать удобный аппарат для оптимизации (т.е. для обучения модели).

Линейные модели: построение

Задача оптимизации

$$Q(a(w)) = \sum_{i=1}^{n} L(M_i(w)) \to min$$

$$Q(a(w)) = \sum_{i=1}^{n} L(y_i, a_i) \to min$$

Общий вид задачи оптимизации задан, остается несколько степеней свободы:

- функция потерь (L)
- метод оптимизации
- дополнительные ограничения

Функция потерь

Задача оптимизации

$$Q(a(w)) = \sum_{i=1}^{n} L(M_i(w)) \to min$$

$$Q(a(w)) = \sum_{i=1}^{n} L(y_i, a_i) \to min$$

Общий вид задачи оптимизации задан, остается несколько степеней свободы:

- функция потерь (L)
- метод оптимизации
- дополнительные ограничения

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

Решение задачи оптимизации

Матричная запись

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_l \end{pmatrix} \approx \begin{pmatrix} \widehat{y_1} \\ \widehat{y_2} \\ \dots \\ \widehat{y_l} \end{pmatrix} = \begin{pmatrix} x_1^T \\ x_2^T \\ \dots \\ x_l^T \end{pmatrix} w$$

$$y \approx \widehat{y} = Fw$$

$$w = \underset{w}{\operatorname{argmin}} \|y - \widehat{y}\|^2$$

Решение задачи оптимизации

$$\frac{\partial (Fw - y)^2}{\partial w} = 2F^T(Fw - y) = 0$$
$$F^T F w = F^T y$$

$$w = (F^T F)^{-1} F^T y$$

Нюансы:

- обращение матриц вычислительно тяжелая операция
- более того, может не получиться: плохо обусловленная матрица, коррелирующие признаки

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) + \gamma V(w) \to \min_{w}$$

Гребневая регрессия (Ridge regression):

$$V(w) = ||w||_{l2}^2 = \sum_{n=1}^d w_n^2$$

LASSO (least absolute shrinkage and selection operator):

$$V(w) = ||w||_{l1} = \sum_{n=1}^{a} |w_n|$$

Решение задачи оптимизации

Если добавить ℓ_2 регуляризацию

$$\frac{\partial (Fw - y)^2 + \gamma w^2}{\partial w} = 2F^T(Fw - y) + 2\gamma w = 0$$
$$(F^T F + \gamma I)w = F^T y$$
$$w = (F^T F + \gamma I)^{-1} F^T y$$

Решение задачи оптимизации

Если добавить ℓ_2 регуляризацию

$$\frac{\partial (Fw - y)^2 + \gamma w^2}{\partial w} = 2F^T(Fw - y) + 2\gamma w = 0$$
$$(F^T F + \gamma I)w = F^T y$$
$$w = (F^T F + \gamma I)^{-1} F^T y$$

Но вычислительно задача всё равно сложная

Решение задачи оптимизации

Численное решение возможно с помощью градиентного спуска (GD, Gradient Decent)

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$x_{k+1} = x_{k} - \gamma_{k} \nabla F(x_{k})$$

$$\nabla_{w} \tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$M_i = y_i \langle w, x_i \rangle \implies \frac{\partial M_i}{\partial w} = y_i x_i$$

$$\nabla_{w}\tilde{Q} = \sum_{i=1}^{l} \nabla L(M_{i}) = \sum_{i=1}^{l} L'(M_{i}) \frac{\partial M_{i}}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$M_i = y_i \langle w, x_i \rangle \implies \frac{\partial M_i}{\partial w} = y_i x_i$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$\nabla_w \tilde{Q} = \sum_{i=1}^l \nabla L(M_i) = \sum_{i=1}^l L'(M_i) \frac{\partial M_i}{\partial w}$$

$$x_{k+1} = x_k - \gamma_k \nabla F(x_k)$$

$$M_{i} = y_{i} \langle w, x_{i} \rangle \Longrightarrow \frac{\partial M_{i}}{\partial w} = y_{i} x_{i}$$

$$\nabla \tilde{Q} = \sum_{i=1}^{l} y_{i} x_{i} L'(M_{i})$$

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

Стохастический градиент (SGD)

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^l y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)$$

 x_i — случайный элемент обучающей выборки

Стохастический градиент (SGD)

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^l y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)$$

 x_i — случайный элемент обучающей выборки

Почему это вообще работает?

- да, траектория спуска будет со скачками
- шаги не такие качественные как в GD, но очень быстрые! Значит можно быстро сделать много шагов

Стохастический градиент (SGD)

$$w_{k+1} = w_k - \gamma_k \sum_{i=1}^{l} y_i x_i L'(M_i)$$

$$w_{k+1} = w_k - \gamma_k y_i x_i L'(M_i)$$

 x_i — случайный элемент обучающей выборки

Ускорение оптимизации:

- выбор начального приближения
- адаптивный шаг
- порядок предъявления объектов
- расчет градиента (например, с инерцией и пр.)

Задача оптимизации

$$Q(a(w)) = \sum_{i=1}^{n} L(M_i(w)) \to min$$

$$Q(a(w)) = \sum_{i=1}^{n} L(y_i, a_i) \to min$$

Общий вид задачи оптимизации задан, остается несколько степеней свободы:

- функция потерь (L)
- метод оптимизации
- дополнительные ограничения

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

Задача оптимизации

$$a(x) = \langle w, x \rangle + w_0$$

$$Q = \sum_{i=1}^{l} L(y_i, a(x_i)) \to \min_{w}$$

$$V(w) = \|w\|_{l2}^2 = \sum_{n=1}^d w_n^2$$
 $V(w) = \|w\|_{l1} = \sum_{n=1}^d |w_n|$ ℓ 2-регуляризация ℓ 1-регуляризация

Регуляризация

Регуляризация – способ наложить дополнительные ограничения на веса линейной модели

Регуляризация

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{n=1}^{d} |w_n| \le \tau \end{cases}$$

€1-регуляризация

$$\begin{cases} \tilde{Q} = \sum_{i=1}^{l} L(M_i) \to min \\ \sum_{n=1}^{d} w_n^2 \le \tau \end{cases}$$

ℓ2-регуляризация

Регуляризация

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min \qquad \sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

Регуляризация

$$\sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} |w_n| \to min \qquad \sum_{i=1}^{l} L(M_i) + \gamma \sum_{n=1}^{d} w_n^2 \to min$$

- Разреженность *ℓ*1-регуляризация делает вектор весов более разреженным (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации
- **ℓ**2-регуляризация приводит к получению вектора с весами, меньшими по модулю

Регуляризация

- Разреженность *ℓ*1-регуляризация приводит к получению более разреженного вектора весов (содержащим больше нулей)
- В случае линейной классификации это означает отбор признаков: признаки с нулевыми весами не используются в классификации
- **ℓ2-регуляризация** приводит к получению вектора с весами, меньшими по модулю

Часто используемые линейные модели

Конструирование линейных моделей

16		D
Классификатор	Функция потерь	Регуляризатор
SVM (Support vector machine, метод опорных векторов)	$L(M) = \max\{0, 1 - M\} = $ $= (1 - M)_{+}$	$\sum_{k=1}^{m} w_k^2$
Логистическая регрессия	$L(M) = \log(1 + e^{-M})$	$\sum_{k=1}^{m} w_k^2 / \sum_{k=1}^{m} w_k $

SVM: линейно разделимые выборки

SVM: линейно разделимые выборки

$$a(x) = \langle w, x \rangle + w_0$$

При умножении весов на с > 0 модель не изменится (знак скалярных произведений сохранится)

Нормируем веса модели:

$$\min_{x \in X} |\langle w, x \rangle + w_o| = 1$$

Строим а(х) так, чтобы расстояния от разделяющей плоскости до объектов было как можно больше:

$$\rho(x,a) = \frac{|< w, x > +w_0|}{||w||}$$

SVM: линейно разделимые выборки

Чему равно расстояние от плоскости до ближайшего объекта?

$$\min_{x \in X} \rho(x, a) = \min_{x \in X} \frac{|\langle w, x \rangle + w_0|}{||w||} = \frac{1}{||w||} * 1$$

Выпишем задачу оптимизации, замети что min||w|| можно заменить на $min||w||^2$:

$$\begin{cases} ||w||^2 \to \min_w \\ y_i(\langle w, x \rangle + w_0) \ge 1 \end{cases}$$

Неравенство обеспечивает минимальное расстояние до объектов > 1 и верную классификацию

SVM: неразделимые выборки

Адаптируем для неразделимой выборки:

$$\begin{cases} ||w||^{2} + c \sum_{i=1}^{l} \xi_{i} \to \min_{w,\xi} \\ y_{i}(< w, x > +w_{0}) \ge 1 - \xi_{i} \\ \xi_{i} > 0 \end{cases}$$

таким образом мы разрешаем делать ошибки, но не большие

SVM: неразделимые выборки

Выпишем безусловную задачу:

мы минимизируем ξ_i и для них есть 2 ограничения снизу. Возьмём максимальное из них

$$||w||^2 + c \sum_{i=1}^{l} \max(0, 1 - y_i (< w, x_i >, w_0)) \to \min_{w}$$

Сравним с задачей для SVM:

$$\sum_{i=1}^{l} \max(0, 1 - M_i) + c||w||^2 \to \min_{w}$$

Линейные модели: лог. регрессия

Логистическая регрессия

Предположим, что данные имеют вероятностную природу

$$p(y=1 \mid x)$$

А модель выдает оценку вероятности а(x) = р

Запишем правдоподобие выборки

$$\prod_{i=1}^{l} a(x_i)^{[y_i=1]} (1 - a(x_i))^{[y_i=-1]} \to max$$

Прологарифмируем

$$-\sum_{i=1}^{l} ([y=1] \log a(x_i) + [y=-1] \log (1 - a(x_i))) \to min$$

Линейные модели: лог. регрессия

Логистическая регрессия

$$-\sum_{i=1}^{l} ([y=1] \log a(x_i) + [y=-1] \log (1 - a(x_i))) \to min$$

Видно, что функция потерь

$$L(y, a) = -[y = 1] \log a(x) - [y = -1] \log(1 - a(x))$$

Выберем а(х) с областью значений [0;1]

$$a(w,x) = \sigma(< w, x >) = \frac{1}{1 + e^{-< w, x >}}$$

Остается подставить a(x) в функцию потерь L(y,a) и оценить потери модели Q(a)

Линейные модели: лог. регрессия

Логистическая регрессия

$$-\sum_{i=1}^{l} \left([y=1] \log \frac{1}{1 + e^{-\langle w, x \rangle}} + [y=-1] \log (1 - \frac{1}{1 + e^{-\langle w, x \rangle}}) \right) \to min$$

преобразуем второй логарифм

$$-\sum_{i=1}^{l} \left([y=1] \log \frac{1}{1 + e^{-\langle w, x \rangle}} + [y=-1] \log \left(\frac{1}{1 + e^{\langle w, x \rangle}} \right) \right) \to min$$

перепишем более компактно

$$-\sum_{i=1}^{l} \log \frac{1}{1 + e^{-y_i < w, x_i >}} \to min$$

это и есть логистическая регрессия, полученная из вероятностных соображений

$$-\sum_{i=1}^{l} \log(1 + e^{-y_i < w, x_i >}) \to min$$

Многоклассовые модели

Многоклассовые модели

В случае нескольких классов задача сводится к обучению n классификаторов one-vs-all и выбору max

$$a(x) = arg \max_{y \in Y} (\langle w_y, x \rangle)$$

Для вероятностной классификации применяется функция SoftMax для расчета вероятностей

$$p(y|x,w) = \frac{e^{\langle w_y, x \rangle}}{\sum_z^Y e^{\langle w_z, x \rangle}} = \text{SoftMax} \langle w_y, x \rangle$$

To take away:

Линейные модели имеют ряд преимуществ:

- Простота реализации
- Скорость работы
- Легкое обновление, переобучение в production
- Обучение на больших данных, множество адаптаций
- Хорошее качество, когда много признаков
- Приемлемое качество, когда данных мало

Особенности применения:

- Модель может оказаться слишком простой для задачи
- Требуется бороться с переобучением: **регуляризация, масштабирование признаков**

Машинное обучение: линейные модели классификации и регрессии

Спасибо! Эмели Драль