Noncommutative probability for deep learning

Statistics Seminar
Department of Mathematics
The University of Mississippi

Cong Zhou October 14, 2021

Outline

- 1. Background and motivation
- 2. Connection to random matrices
- 3. Essentials of random matrix and free probability theory
- 4. Condition for fast training
- 5. Conclusions

What is deep learning?

Deep neural network

Weights
$$W^{(i)}$$
 $Z^{(1)} = W^{(1)} \overrightarrow{x}^{(0)} + b^{(1)}$ $\overrightarrow{x}^{(1)} = \phi(Z^{(1)})$

Parameter vector $\theta = (W^{(i)}, b^{(i)})$ \vdots

Activation function ϕ \vdots

Pre-activation $\overrightarrow{Z}^{(i)}$ $\overrightarrow{x}^{(i)}$ $\overrightarrow{x}^{(i)}$ $\overrightarrow{x}^{(d)} = \phi(Z^{(d)})$

Post-activation $\overrightarrow{x}^{(i)}$ $\overrightarrow{x}^{(i)}$ $\overrightarrow{x}^{(d)} = \phi(Z^{(d)})$

Input data $\overrightarrow{x} = \overrightarrow{x}^{(0)}$ $Z^{(d+1)} = W^{(d+1)} \overrightarrow{x}^{(d)} + b^{(d+1)}$ $f^{n \to m}(\overrightarrow{x}) = Z^{(d+1)}$

Targets \overrightarrow{y}

Loss function (MSE) $\overrightarrow{Error}(W, b) = \frac{1}{2m} ||f^{n \to m}(\overrightarrow{x}) - \overrightarrow{y}||^2$

 $\overrightarrow{x}^{(0)} = \overrightarrow{x}$

How to find the parameters?

Supervised learning Problem

Given examples $\{\overrightarrow{x}_{\varepsilon}\}_{\varepsilon \in \text{Examples}} \subset \mathbb{R}^n$, and labels $\{\overrightarrow{y}_{\varepsilon}\}_{\varepsilon \in \text{Examples}} \subset \mathbb{R}^m$. How to find parameters $\underline{W}^{(i)}$ and $\overrightarrow{b}^{(i)}$ so that $f^{n \to m}$ minimizes the prediction error:

$$\operatorname{Error}(W, b) = \sum_{\varepsilon \in \operatorname{Exmaples}} \|f^{n \to m}(\overrightarrow{x}_{\varepsilon}) - \overrightarrow{y}_{\varepsilon}\|^{2}$$

Supervised Learning: Solution Idea

- o. **Invent** the architecture: depth d and layer width $n_1, ..., n_{d-1}$. Set $n_0 = n$, $n_d = m$.
- 1. **Initialization**: Pick parameters \underline{W} , \overrightarrow{b} at **random**.
- 2. **Modify** parameters to **shrink** Error(W, b) by **gradient descent**.

$$\text{new}W_{j,k}^{(i)} := \text{old}W_{j,k}^{(i)} - \partial_{W_{j,k}^{(i)}} \text{Error}(W, b)$$

3. Repeat step 2 many time. **Hope** that the error is now small.

ImageNet Large Scale Visual Recognition Challenge Results

Double descent phenomenon

Empirical Issue: d large has vanishing and exploding gradients.

Random initialization: $\partial_{W_{j,k}^{(i)}} \text{Error}(W,b)$ is very large or small.

Today's story is about what happens on the initialization.

Part 2: Products of random matrices

- Connect to neural network
- Limit theories for products of random matrices.

Definition. The **Input-Output Jacobian** matrix $\underline{J} = \operatorname{Jac}\{f^{n_0 \to n_d}\}$ is the $n_d \times n_0$ matrix $J_{ij}(\overrightarrow{x}) := \partial_j f_i^{n_0 \to n_d}(\overrightarrow{x})$

Remark: $\partial_{W_{j,k}^{(i)}}$ Error(W, b) can be written in terms of \underline{J} .

$$\begin{aligned} J \text{ when } \phi(x) &= \max\{x, 0\} \\ \text{Recall } f^{n_{i-1} \to n_i}(\overrightarrow{x}) &:= \phi\left(\underline{W}^{(i)}\overrightarrow{x} + \overrightarrow{b}^{(i)}\right) \text{ and want to compute} \\ \underline{J} &= \text{Jac } \left(f^{n_{d-1} \to n_d} \circ f^{n_{d-2} \to n_{d-1}} \circ \dots \circ f^{n_1 \to n_0}\right) \end{aligned}$$

Since $\phi(x) = \max\{x,0\}$, $\phi'(x) = 1\{x > 0\}$, then the gradient of each layer is $\operatorname{Jac}(f^{n_{i-1}\to n_i}) = \operatorname{Diag}\left(1\{\underline{W}^{(i)}\overrightarrow{x} + \overrightarrow{b}^{(i)} > 0\}\right)\underline{W}^{(i)}.$

Assume all random matrices are symmetric:

$$\operatorname{Diag}\left(1\{\underline{W}^{(i)}\overrightarrow{X} + \overrightarrow{b}^{(i)} > 0\}\right) \stackrel{d}{=} \operatorname{Diag}\left(\overrightarrow{X}^{(i)}\right)$$

where $\overrightarrow{X}^{(i)} \in \mathbb{R}^n$ has i.i.d entries $X_j^{(i)} \sim \text{Bernoulli}\left(\frac{1}{2}\right)$.

By the chain rule, we shall expect

$$\underline{J} \stackrel{?}{=} \operatorname{Diag}\left(\overrightarrow{X}^{(d)}\right) W^{(d)} \dots \operatorname{Diag}\left(\overrightarrow{X}^{(1)}\right) W^{(1)}$$

Could show $\underline{\underline{M}} \stackrel{d}{=} J$ up to conjugation by random ± 1 Bernoulli's.

Dan-Virgil Voiculescu

Hari Bercovici

Spectral density

Let $(A_n)_{n=1}^{\infty}$ be a sequence of $n \times n$ matrix. The empirical spectral density of $\frac{1}{\sqrt{n}}A_n$ is:

$$\mu_{\frac{1}{\sqrt{n}}A_n}(\lambda) = \frac{1}{n} \sum_{j=1}^n \delta(\lambda - \lambda_j(A_n)).$$

For a sequence of matrices with increasing size, $(A_n)_{n=1}^{\infty}$, the limiting spectral density is:

$$\mu(\lambda) = \lim_{n \to \infty} \mu_{\frac{1}{\sqrt{n}} A_n}(\lambda).$$

For $z \in \mathbb{C} \setminus \text{supp}(\mu)$ the Cauchy transform is defined as:

$$G(z) = \sum_{n=1}^{\infty} \frac{m_n}{z^{n+1}}, \qquad m_n = \int_{\text{supp}(\mu)} t^n d\mu(t)$$

The moment generating function, M(z), defined by a functional equation,

$$M(z) = \sum_{n=1}^{\infty} m_n z^n$$

The spectral density can be recovered from G using the Stieltjes inversion formula,

$$\mu(\lambda) = -rac{1}{\pi}\lim_{arepsilon o 0^+} \Im G(\lambda + iarepsilon).$$

The Cauchy transform G relates to the R-transform, R, defined by the functional equation,

$$1+R(G(z))=zG(z).$$

The moment series M and R-transform has the following relationship:

$$R(z(1+M(z)))=M(z).$$

and the S-transform,

$$S(zG(z) - 1) = \frac{G(z)}{zG(z) - 1}$$

If a and b are **free independent**, then the distribution of sum a + b can be computed using the R-transform:

$$\mu_{a}(\lambda)
ightarrow G_{a}(z)
ightarrow R_{a}$$
 $R_{a}+R_{b}=R_{a+b}
ightarrow G_{a+b}(z)
ightarrow \mu_{a+b}(\lambda)$ $\mu_{b}(\lambda)
ightarrow G_{b}(z)
ightarrow R_{b}$

S-transfrom:

$$\mu_a(\lambda) o G_a(z) o S_a$$

$$S_aS_b=S_{ab} o G_{ab}(z) o \mu_{ab}(\lambda)$$
 $\mu_b(\lambda) o G_b(z) o S_b$

Classical independence	Free independence
X, Y are independent if one has	X, Y are freely independent if
$\mathbf{E} f(X) g(Y) = 0$	$\tau(f_1(X)g_1(Y)\ldots f_k(X)g_k(Y))=0$
whenever f and g are such that	whenever f_i and g_i are such that
$\mathbf{E}f(X)=0$	$\tau(f_i(X))=0$
$\mathbf{E}g(Y)=0$	$\tau(g_i(Y))=0$
	\mid *-free is $\{X, X^*\}$ and $\{Y, Y^*\}$ are free.

Define the $n_d \times n_0$ product random matrix \underline{M}

$$\underline{M} = \operatorname{Diag}\left(\overrightarrow{X}^{(d)}\right) W^{(d)} \dots \operatorname{Diag}\left(\overrightarrow{X}^{(1)}\right) W^{(1)}$$

where $\overrightarrow{X}^{(i)} \in \mathbb{R}^n$ has i.i.d entries $X_j^{(i)} \sim \text{Bernoulli}\left(\frac{1}{2}\right)$.

W and Diag (\overrightarrow{X}) are asymptotically free [Yang '19].

Conditions for trainability

The back-propagated signals (error signals) should not explode/vanish with depth.

Along the critical line, the gradient norms are well-behaved on average:

$$\delta^{1} = \epsilon^{T}J, \qquad \epsilon = \delta^{d} \text{ (error signal)}$$

$$\underline{J} = \operatorname{Diag}\left(\overrightarrow{X}^{(d)}\right)W^{(d)}...\operatorname{Diag}\left(\overrightarrow{X}^{(1)}\right)W^{(1)}$$

$$\mathbb{E}_{\epsilon}[\|\delta^{1}\|^{2}] = \mathbb{E}_{\epsilon}[\epsilon^{T}JJ^{T}\epsilon] = tr[JJ^{T}] = \sum_{i=1}^{n}\sigma_{i}^{2}$$

$$\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}^{2} = 1 \Leftarrow \text{trainable}$$

$$\underline{J} = \operatorname{Diag}\left(\overrightarrow{X}^{(d)}\right) W^{(d)} \dots \operatorname{Diag}\left(\overrightarrow{X}^{(1)}\right) W^{(1)}$$

Jacobian spectra for large depth

Implications for training speed

Conclusion:

Free probability and random matrix theory provides powerful tools for studying deep learning:

- Jacobian (showed how to equilibrate the distribution of singular values of the input-output Jacobian for faster training).
- Hessian

Thank you!