

National Computing Education Accreditation Council

(HC)

NCFAC

NCEAC.FORM.001-

COURSE DESCRIPTION FORM

INSTITUTION FAST – National University

PROGRAM (S) TO BE

EVALUATED

A. Course Description

National Computing Education Accreditation Council

NCFAC

NCEAC.FORM.001-

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	CS5102		
Course Title	Deep Learning		
Credit Hours	3		
Prerequisites by Course(s) and Topics	Undergraduate machine learning or artificial intelligence Undergraduate programming/Python		
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	1 Mid-term exam: 15% eachFinal exam: 40%3 Projects: 30%		
Course Coordinator			
URL (if any)	piazza.com/nu.edu.pk/fall2018/cs5102/home		
Current Catalog Description			
Textbook (or Laboratory Manual for Laboratory Courses)	Deep Learning by Ian Goodfellow, Yoshua Bengio Stanford deep learning for visual recognition http://cs231n.stanford.edu/2017/syllabus.html		
Reference Material	 Neural Networks and Deep Learning by Michael Nielsen (Dec 2014). Pattern Recognition and Machine Learning, Christopher M Bishop, Springer 2006. Deep learning for medical imaging @ Purdue https://docs.google.com/document/d/1zEL-nu_To7Olc3cD-dg5iADvWrErAQSJD8n-1CLrGGA/edit#heading=h.ml4r2vcdki0v 		
Course Goals	 Understand the fundamentals of neural networks Understand deep learning with CNNs Apply deep learning to real problems, especially in the context of vision and language processing 		
Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and one-hour lectures)	Learning overview: Introduction and motivation, biological neural network and its history, learning vs programming, learning components, supervised learning, classification vs regression Basics of Neural Networks: Perceptron, Multilayer Perceptron, Gradient Descent in MLPs, Activation functions, Back-propagation Convolutional Neural Networks: Motivation for CNNs, basics of convolution,		

2 NCEAC.FORM.001.D

NCEAC

National Computing Education Accreditation Council

NCFAC

NCEAC.FORM.001-

	distinguishing features of CNNs, What makes CNNs tick, deep learning with CNNs Deep learning - Applications: Applying CNNs: transfer learning, CNNs in computer vision, Recurrent NNs, Inception and GoogleNet, LSTMs and deep learning for NLP, Generative Adversarial Networks Practical issues: Overview of Python, GPU, Cloudbased GPU solutions, useful libraries			
Laboratory Projects/Experiments Done in the Course	Project 1: Implementation of NN backpropagation(MATLAB) Project 2: Implementation of a CNN(cats vs dogs problem) in Keras Training, testing and visualization Hyperparameter tuning: optimizer, layers, parameters etc Project 3: Implementation/modification of DL model for: a) GAN for generating skin cancer data or b) LSTM model for describing the scene of a movie			
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues
	0.9	0.9	0.9	0.3
Oral and Written Communications	Every student is required to submit at least 3 written reports of typically 5-10 pages. These reports are NOT graded for oral and verbal proficiency beyond what is expected of a technical report.			

Instructor Name	M Usman Sadiq
Instructor Signature	
Date _	
Date _	

3 NCEAC.FORM.001.D