Optimum Closure

#EX9: basic example

- 1) Understand the MCF model formulation.
- 2) Try to translate the math to the python code:
 - 1) Numpy library for matrix operations
 - 2) Scipy library for LP optimization
- 3) Use scipy.linprog to get the maximum flow
- 4) Understand the outputs
- 5) What's the minimum cut and what does it means for the optimum closure problem?
- 6) What could happen if node 5 changes its weight from -4 to -10?

Optimum Closure

#EX10: selecting between a group of facilities

A company wants to offer new routes to attract customers. The objective is to maximize the profit obtained considering that it has to decide which terminals should invest in:

Terminal	Cost	
1	200	
2	200	
3	100	
4	50	
5	50	

Route	Terminal A	Terminal B	Profit
1	1	2	50
2	2	3	200
3	3	4	50
4	1	4	100
5	4	5	150

Shortest path with time constraints

#EX11: direct LP approach

The shortest path between node s and t has to be found. Each arc has a distance but also the time that it takes to travel between its corresponding vertices.

- If a person had to travel between s and t in less than 9 hours (T). What's the shortest path? Try to solve the problem with a simple LP model.
- What if the maximum available time that this person has drops to 8 hours? What's the new shortest path? Understand the LP model outputs.
- 3) What's the first solution that comes to your mind in order to solve point 2 issues? Is it feasible in reality?

References: Distance, Time (hours)

Shortest path with time constraints

#EX12: Lagrangian Relaxation

- 1) For #EX11 and $T \le 8 \, hs$. apply the Lagrangian Relaxation method and find a solution iterating for different values of lagrangian multipliers (λ) between 0 and 1.
- 2) Plot all the objective function primal solutions for the set of lagrangian multipliers used in 1).
- 3) What should be the optimum λ related to the shortest path solution?

References: **Distance**, **Time** (hours)

Shortest path with time constraints

#EX13: Lagrangian Relaxation with Subgradient Method

1) For #EX11 and $T \le 8 \, hs$. apply the Lagrangian Relaxation method and find the shortest path iterating between several values of lagrangian multipliers using the subgradient method.

References: Distance, Time (hours)