Численное интегрирование и дифференцирование

Тема 5

Формулы численного дифференцирования

Постановка задачи численного дифференцирования

«Найти производные указанных порядков функции f(x), заданной таблично »

Простейшие приближенные формулы для вычисления производной 1-го порядка могут быть получены из определения производной: $f'(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}$

- *правосторонняя* разностная производная первого порядка;

$$f'(x) \approx \frac{f(x) - f(x - \Delta x)}{\Delta x}$$

- *левосторонняя* разностная производная первого порядка.

Разностные производные первого порядка точности

Погрешность этих приближенных формул получим, воспользовавшись представлением функции в виде ряда Тейлора:

$$f(x \pm \Delta x) = f(x) \pm \frac{f'(x)}{1!} \Delta x + \frac{f''(x)}{2!} (\Delta x)^2 + \dots \pm \frac{f^{(n)}(x)}{n!} (\Delta x)^n \dots$$

Тогда
$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x) + \frac{f''(x)}{2!} \Delta x + \dots = f'_{np}(x) + O(\Delta x)$$

$$\frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) - \frac{f''(x)}{2!} \Delta x + \dots = f'_{nee}(x) + O(\Delta x)$$

Формулы точны для полиномов первой степени, т.к. для них

$$f''(x) = 0.$$

Для получения более точных формул функцию на интересующем отрезке [a,b] заменяют интерполирующей функцией P(x) (чаще полиномом) и полагают

$$\frac{df(x)}{dx} \approx \frac{dP(x)}{dx}.$$

Если известна погрешность для интерполирующей функции

$$R(x) = f(x) - P(x),$$

то погрешность производной выражается формулой

$$r(x) = \frac{df(x)}{dx} - \frac{dP(x)}{dx} = \frac{dR(x)}{dx}$$

Интерполяционный многочлен Ньютона <u>для</u> интерполирования вперед:

$$N_n^{(6)}(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + f(x_0, x_1, \dots, x_{n-1}, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1}).$$

Интерполяционный многочлен Ньютона *на равномерной* сетке с шагом $h = \Delta x = x_{i+1} - x_i$, где

$$q = \frac{x - x_0}{h}$$
, $x = x_0 + qh$, $x_i = x_0 + ih$, $x - x_i = (q - i)h$, $f(x_k) = y_k$

имеет вид

$$N_n^{(6)}(x) = y_0 + q\Delta y_0 + \frac{q(q-1)}{2!}\Delta^2 y_0 + \frac{q(q-1)(q-2)}{3!}\Delta^3 y_0 + \frac{q(q-1)(q-2)(q-3)}{4!}\Delta^4 y_0 + \dots$$
 где $\Delta^k y_0 - \kappa$ онечные разности

Конечной разностью первого порядка функции f(x) в точке x_i называется число, определяемое равенством:

$$\Delta y_i = y_{i+1} - y_i, \quad 0,1,..,n-1$$

Из конечных разностей первого порядка образуют конечные разности второго порядка:

$$\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i = y_{i+2} - 2y_{i+1} + y_i, \quad i = 0, 1, ..., n-2$$

Аналогичным образом определяются конечные разности третьего и более высоких порядков:

$$\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i, \quad i = 0, 1, ..., n-3$$

$$\Delta^{k} y_{i} = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_{i}, \quad i = 0, 1, ..., n-k$$

Пусть функция y = f(x) задана в равноотстоящих точках x_i (i=0,1,2,...n) отрезка [a,b] значениями $y_i = f(x_i)$.

Для нахождения производных функцию f(x) заменим интерполяционным полиномом Ньютона, построенном для системы узлов x_i $(i=0,1,2,...k,\ k\leq n)$.

$$f(x) \approx y_0 + q\Delta y_0 + \frac{q(q-1)}{2!} \Delta^2 y_0 + \frac{q(q-1)(q-2)}{3!} \Delta^3 y_0 + \frac{q(q-1)(q-2)(q-3)}{4!} \Delta^4 y_0 + \dots$$

Учтем, что
$$\frac{dy}{dx} = \frac{dy}{dq} \frac{dq}{dx} = \frac{1}{h} \frac{dy}{dq}.$$

В результате получим формулу для производной первого порядка:

$$\frac{df(x)}{dx} \approx \frac{1}{h} \left[\Delta y_0 + \frac{2q - 1}{2} \Delta^2 y_0 + \frac{3q^2 - 6q + 2}{6} \Delta^3 y_0 + \frac{4q^3 - 18q^2 + 22q - 6}{24} \Delta^4 y_0 + \dots \right]$$

Далее, поскольку

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dq}\left(\frac{dy}{dx}\right)\frac{dq}{dx} = \frac{1}{h}\frac{d}{dq}\left(\frac{dy}{dx}\right),$$

Получим формулу для производной второго порядка:

$$\frac{d^2 f(x)}{dx^2} \approx \frac{1}{h^2} \left[\Delta^2 y_0 + (q-1) \Delta^3 y_0 + \frac{6q^2 - 18q + 11}{12} \Delta^4 y_0 + \dots \right].$$

(Аналогично можно получить формулы и для производных более высокого порядка.)

Разностные производные первого порядка точности

Используя только 2 смежных узла (*n*=1, линейная интерполяция) получим те же простейшие приближенные формулы *первого порядка точности* для разностной производной первого порядка:

$$f'(x_0) = \frac{y_1 - y_0}{h} - \frac{f''(\xi)}{2}h = y_0' + O(h)$$

$$f'(x_1) = \frac{y_1 - y_0}{h} + \frac{f''(\zeta)}{2}h = y_0' + O(h)$$

Разностные производные второго порядка точности

На основе квадратичной интерполяции (n=2) получаем mpu формулы для вычисления производной nepsozo nopsdka, использующие значения функции в 3 смежных

$$f'(x_0) \approx y_0' = \frac{-3y_0 + 4y_1 - y_2}{2h}$$

$$f'(x_1) \approx y_1' = \frac{y_2 - y_0}{2h}$$

$$f'(x_2) \approx y_2' = \frac{y_0 - 4y_1 + 3y_2}{2h}$$

Эти формулы имеют второй порядок точности: $r = O(h^2)$

Используя 4 смежных узла (*n*=3, кубическая интерполяция) получим приближенные формулы для разностной производной первого порядка:

$$f'(x_0) \approx y_0' = \frac{1}{6h} \left(-11y_0 + 18y_1 - 9y_2 + 2y_3 \right)$$

$$f'(x_1) \approx y_1' = \frac{1}{6h} \left(-2y_0 - 3y_1 + 6y_2 - y_3 \right)$$

$$f'(x_2) \approx y_2' = \frac{1}{6h} \left(y_0 - 6y_1 + 3y_2 + 2y_3 \right)$$

$$f'(x_0) \approx y_3' = \frac{1}{6h} \left(2y_0 - 9y_1 + 18y_2 - 11y_3 \right)$$

Формулы точны для полиномов третьей степени: $f^{IV}(x) = 0$

Простейшая симметричная разностная производная

Формула
$$f'(x_1) \approx y_1' = \frac{y_2 - y_0}{2h}$$

называется симметричной разностной производной второго порядка точности.

Погрешность этой приближенной формулы находим, используя представление функции в виде ряда Тейлора:

$$f'(x) \approx \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} \approx y' + \frac{f'''(x)}{3!} (\Delta x)^2 + \dots = y' + O((\Delta x)^2)$$
$$r(x) = O((\Delta x)^2) = O(h^2)$$

Формула точна для полиномов второй степени, т.к.

для них производные порядка 3 и выше равны нулю: $f'''(x) \equiv 0$

Симметричная разностная производная второго порядка

Для вычисления производной второго порядка простейшую формулу получают, использовав 1 слагаемое в

выражении
$$\frac{d^2y(x)}{dx^2} = \frac{1}{h^2} \left[\Delta^2 y_0 + (q-1)\Delta^3 y_0 + \frac{6q^2 - 18q + 11}{12} \Delta^4 y_0 + \dots \right].$$

$$f''(x_1) \approx \Delta^2 y_0 = \frac{y_2 - 2y_1 + y_0}{h^2} = y''$$

Погрешность этой формулы:

$$f''(x) = y'' + \frac{f^{IV}(\xi)}{12}(h)^2 = y'' + O(h^2)$$

Формула точна для полиномов третьей степени, т.к. для них

$$f^{IV}(x) \equiv 0$$

Разностные производные и их погрешность

Количество узлов	Производная	Погрешность
	$f'(x_0) \approx \frac{1}{2h}(-3y_0 + 4y_1 - y_2)$	$\frac{1}{3}h^2y^{(3)}(\xi)$
3	$f'(x_1) \approx \frac{1}{2h}(-y_0 + y_2)$	$-\frac{1}{6}h^2y^{(3)}(\xi)$
	$f'(x_2) \approx \frac{1}{2h}(y_0 - 4y_1 + 3y_2)$	$\frac{1}{3}h^2y^{(3)}(\xi)$
	$f''(x_1) \approx \frac{1}{h^2} (y_0 - 2y_1 + y_2)$	$-\frac{1}{12}h^2y^{(4)}(\xi)$
	$f'(x_0) \approx \frac{1}{12h}(-25y_0 + 48y_1 - 36y_2 + 16y_3 - 3y_4)$	$\frac{1}{5}h^4y^{(5)}(\xi)$
	$f'(x_1) \approx \frac{1}{12h}(-3y_0 - 10y_1 + 18y_2 - 6y_3 + y_4)$	$-\frac{1}{20}h^4y^{(5)}(\xi)$
	$f'(x_2) \approx \frac{1}{12h}(y_0 - 8y_1 + 8y_3 - y_4)$	$\frac{1}{30}h^4y^{(5)}(\xi)$
5	$f'(x_3) \approx \frac{1}{12h}(-y_0 + 6y_1 - 18y_2 + 10y_3 + 3y_4)$	$-\frac{1}{20}h^4y^{(5)}(\xi)$
	$f'(x_4) \approx \frac{1}{12h} (3y_0 - 16y_1 + 36y_2 - 48y_3 + 25y_4)$	$\frac{1}{4}h^4y^{(5)}(\xi)$
	$f''(x_2) \approx \frac{1}{12h^2} (-y_0 + 16y_1 - 30y_2 + 16y_3 - y_4)$	$-\frac{1}{90}h^4y^{(4)}(\xi)$
	$f'''(x_2) \approx \frac{1}{2h^3}(-y_0 + 2y_1 - 2y_3 + y_4)$	$-\frac{1}{4}h^2y^{(5)}(\xi)$

i	x	у
0	0	0
1	0,1	0,01
2	0,2	0,04
3	0,3	0,09
4	0,4	0,16
5	0,5	0,25
6	0,6	0,36
7	0,7	0,49
8	0,8	0,64
9	0,9	0,81
10	1	1

Пример

Рассмотрим функцию y=f(x), заданную на интервале [0;1] и протабулированную с шагом 0,1.

Найдем первую производную этой функции.

Мы вывели для этого три различные формулы (1), (2) и (3).

$$y_i' = \frac{y_{i+1} - y_i}{h}$$

$$y_i' = \frac{y_i - y_{i-1}}{h}$$

$$y_i' = \frac{y_{i+1} - y_{i-1}}{2h}$$

i	х	у	у'(левая)	у'(правая)	у'(центральная)
0	0	0		0,1	
1	0,1	0,01	0,1	0,3	0,2
2	0,2	0,04	0,3	0,5	0,4
3	0,3	0,09	0,5	0,7	0,6
4	0,4	0,16	0,7	0,9	0,8
5	0,5	0,25	0,9	1,1	1
6	0,6	0,36	1,1	1,3	1,2
7	0,7	0,49	1,3	1,5	1,4
8	0,8	0,64	1,5	1,7	1,6
9	0,9	0,81	1,7	1,9	1,8
10	1	1	1,9		

$$y_i' = \frac{y_{i+1} - y_i}{h}$$

$$y_i' = \frac{y_i - y_{i-1}}{h}$$

$$y_i' = \frac{y_{i+1} - y_{i-1}}{2h}$$

i	х	у	у'(левая)	у'(правая)	у (центральная)	γ,
0	0	0			8	
1	0,1	0,01				
2	0,2	0,04				
3	0,3	0,09	0,5	0,7	0,6	0,6
4	0,4	0,16				
5	0,5	0,25				
6	0,6	0,36				
7	0,7	0,49				
8	0,8	0,64				
9	0,9	0,81				
10	1	1				

 $y = x^2$ y' = 2x

ì	x	у	yes
0	0	0	
1	0,1	0,01 🔪	
2	0,2	0,04	2
3	0,3	0,09	
4	0,4	0,16	
5	0,5	0,25	
6	0,6	0,36	
7	0,7	0,49	
8	0,8	0,64	
9	0,9	0,81	
10	1	1	

$$f''(x_i) = \frac{1}{h^2} (y_{i+1} - 2y_i + y_{i-1})$$

$$y'' = \frac{0.09 - 2 \cdot 0.04 + 0.01}{0.1^2} = \frac{0.02}{0.01} = 2$$

В формулах численного дифференцирования с постоянным шагом значения функции \mathcal{Y}_i делятся на h^m , где m – порядок вычисляемой производной. Поэтому при малом h неустранимые погрешности в значениях функции оказывают сильное влияние на результат численного дифференцирования. Поэтому операцию вычисления разностных отношений называют некорректной. Оказывается, что погрешность, возникающая при вычислении разностных отношений, намного превышает погрешность в задании значений функции и даже может неограниченно возрастать при стремлении шага h сетки к нулю.

можно сделать вывод: даже если функция задана хорошо составленной таблицей на довольно подробной сетке, то практически численным дифференцированием можно хорошо определить первую и вторую производные, а третью и четвёртую — лишь удовлетворительно. Более высокие производные редко удаётся вычислить с приемлемой точностью.