MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

Análise Multivariada $Y_{n \times p} = (Y_{ii}) \in \Re^{n \times p}$

$$Y_{n\times p} = (Y_{ij}) \in \Re^{n\times p}$$

- ✓ Estatísticas descritivas multivariadas, Episóides de Concentração, Boxplot Bivariado
- ✓ Distribuição N_D, Distribuições Amostrais (T² e W_D)

Decomposições: SS_Te Y_{nxp}

 \checkmark N_D(μ_{α} ; Σ_{α}): Inferências sobre μ_{α} (T², MANOVA, ICS, Correções para Múltiplos testes

Técnicas Multivariadas:

Redução de dimensionalidade Vizualização de dados

- ✓ Análise de Componentes Principais (CP) $Y_{n \times p} \Rightarrow S_{p \times p}$, $R_{p \times p}$
- \checkmark Escalonamento Multidimensional (CoP) $Y_{n \times p} \Rightarrow D_{n \times n}$
- ✓ Análise de Correspondência $Y_{n \times n} \Rightarrow [0,1]^{l \times J}$
- Análise Fatorial
- Análise Discriminante (MANOVA)
- Análise de Agrupamento
- Análise de Correlação Canônica

V1 1

20 25 30

Análise Multivariada

Dados (hipotéticos): Variáveis avaliadas em atletas

V0 (no basal), V1 e V2 (antes e depois de uma intervenção) e o Genótipo

de um Gene n = 95 p = (5+1)

Dad	los					
	V0	Gene	V1_1	V1_2	V2_1	V2_2
1	73.0	1	210	260	27.133	31.398
2	78.0	1	260	320	23.841	26.950
3	70.0	3	220	320	23.755	28.937
94	95.0	2	175	260	25.120	28.605
95	71.0	2	220	330	25.452	29.029

Vetor centróide

V0 V1_1 V1_2 V2_1 V2_2 75.97 261.79 337.58 25.48 29.13

Matriz de Covariância (superior) e Correlação (inferior)

	VO	V1_1	V1_2	V2_1	V2_2
V0	155.24	317.53	303.47	20.80	$19.\overline{37}$
V1_1	0.40	4032.93	3815.02	70.70	59.41
V1_2	0.36	0.88	4640.35	71.05	65.73
V2_1	0.41	0.27	0.26	16.40	17.10
V2_2	0.35	0.21	0.22	0.95	19.85

Análise Multivariada – Observações Atípicas

Box-plot bivariado: observações atípicas (p=2)

Distância de Mahalanobis (p=5)

$$\chi^2(p=5, 90\%) = 9.24$$

A distância de Mahalanobis é invariante por padronização dos dados!

Esc	ore Z	(Atletas	atípicos	Segundo	dm2)	
	dm2	VO	V1_1	V1_2	V2_1	V2_2
82	10.42	2.17	2.81	$2.\overline{24}$	2.01	1.80
76	13.25	-0.14	-0.82	0.48	2.08	1.95
51	14.06	0.73	0.76	0.77	0.41	1.48
29	14.16	0.32	-0.03	0.48	-1.03	0.07
34	15.06	3.45	1.07	1.50	2.11	1.60
71	24.54	4.26	0.44	1.36	2.07	2.08

Análise Multivariada – Observações e Variáveis

Exemplo Hipotético

Indivíduos

Variáveis

Componentes Principais 55%

Exemplo Hipotético: Análise dos Dados originais (S)

Autovalores (importância dos CP):

```
PC1 PC2 PC3 PC4 PC5
Standard deviation 90.4980 22.61788 11.56229 5.36349 0.9289
Proportion of Variance 0.9239 0.05771 0.01508 0.00325 0.0001
Cumulative Proportion 0.9239 0.98158 0.99666 0.99990 1.0000
```

Autovetores (cargas)

	PC1	PC2	PC3	PC4	PC5
VO	0.05	0.07	0.97	-0.20	0.01
V1_1	0.68	0.73	-0.09	0.00	0.01
V1_2	0.73	-0.68	0.01	-0.01	0.00
V2_1	0.01	0.01	0.14	0.64	-0.75
V2_2	0.01	0.00	0.14	0.74	0.66

Biplot: representação simultânea dos atletas e das variáveis

As variáveis V1_1 e V1_2 são as que mais contribuem para a redução de dimensionalidade.

Componentes Principais

Exemplo Hipotético: Análise dos Dados Normalizados (R)

Autovalores (importância dos CP):

```
PC1 PC2 PC3 PC4 PC5 Standard deviation 1.6524 1.1983 0.8173 0.34393 0.21785 Proportion of Variance 0.5461 0.2872 0.1336 0.02366 0.00949 Cumulative Proportion 0.5461 0.8333 0.9668 0.99051 1.00000
```

Autovetores (cargas)

	PC1	PC2	PC3	PC4	PC5
V0	0.40	0.02	0.91	-0.05	0.04
V1_1	0.45	0.51	-0.18	0.70	0.12
V1_2	0.44	0.51	-0.25	-0.69	-0.09
V2_1	0.48	-0.47	-0.16	0.11	-0.71
V2_2	0.46	-0.51	-0.22	-0.10	0.69

Biplot: representação dos atletas e das variáveis

Todas as variáveis contribuem para a redução de dimensionalidade

Coordenadas Principais-Escalonamento Multidimensional

Exemplo Hipotético: Matriz de Distância Euclidiana (De_{95x95})

de	1	2	3	4	95
1	0.00	78.46	61.04	122.22	70.80
2	78.46	0.00	40.84	44.83	41.90
3	61.04	40.84	0.00	72.65	10.19
4	122.22	44.83	72.65	0.00	67.51
• • •	•				
95	70.80	41.90	10.19	67.51	0.00

```
Coordenadas Principais
[,1] [,2]
1 -92.09 14.75
2 -14.04 10.77
3 -41.55 -18.99
4 28.92 -1.76
...
94 -114.66 -9.23
95 -34.14 -25.70
```


%Expl: 0.9815757

Coordenadas Principais—Componentes Principais

Exemplo Hipotético – Análise dos Dados Originais

Análises Equivalentes (Solução Métrica) Mesma representação

Coordenadas Principais (nxn): Matriz de Distância: **De**_{95x95}

Componentes Principais (pxp): Matriz de Distância: **S**_{5x5}

Coordenadas Principais—Componentes Principais

Exemplo Hipotético – Análise dos Dados Padronizados

Análises Equivalentes (Solução Métrica) Mesma representação

Coordenadas Principais (nxn): Matriz de Distância: **Dp**_{95x95}

Componentes Principais (pxp): Matriz de Distância: **R**_{5x5}

Coordenadas Principais-Escalonamento Multidimensional

Exemplo Hipotético – Análise dos Dados Originais Soluções Não-Métricas

Análise de Correspondência

Considere o Biplot (de S) e a Categorização das observações em cada quadrante de acordo com o Genótipo do Gene sob estudo

Distribuição dos atletas								
	1=XX	2=RX	3=RR					
P11	1	9	9					
P12	7	14	4					
P21	3	13	8					
P22	6	14	7					

Análise de Correspondência

Considere o Biplot (de R) e a Categorização das observações em cada quadrante de acordo com o Genótipo do Gene sob estudo

Distribuição dos atletas								
	1=XX	2=RX	3=RR					
P11	6	14	8					
P12	4	11	8					
P21	3	10	9					
P22	4	15	3					

Análise de Fatores (Análise Fatorial)

(Análise de Fatores Comuns e Específicos)

Análise de CP e Análise Fatorial (Exploratória)

Como obter as variáveis originais Y a partir das componentes principais Z?

$$Y_{n \times p} \; ; \quad Y_{i} \overset{iid}{\sim} \left(\mu; \Sigma \right); \quad \Sigma_{p \times p} = V \Lambda V' \; ; \quad V = \left(v_{jk} \right); \quad V' = \left(v_{kj} \right)$$

$$Z_{ik} = V_{k}' \; Y_{i} = v_{1k} Y_{i1} + v_{2k} Y_{i2} + \ldots + v_{pk} Y_{ip} \; \overset{k\text{-\'esimo CP}}{\text{(k-\'esima coluna de V)}}$$

$$V' = \left(v_{kj} \right)$$

$$V_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{1p} \right)$$

$$V_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$v_{p \times p} = \left(v_{11} \quad v_{12} \quad \ldots \quad v_{2p} \right)$$

$$Z_{ik}=V_k^{'}Y_i=
u_{1k}Y_{i1}+
u_{2k}Y_{i2}+...+
u_{pk}Y_{ip}^{k}$$
 (k-ésima coluna de V)

$$V_{p \times p} = \begin{pmatrix} V_{1} & V_{2} & V_{p} \\ V_{11} & V_{12} & \dots & V_{1p} \\ V_{21} & V_{22} & \dots & V_{2p} \\ & & \dots & \\ V_{p1} & V_{p2} & \dots & V_{pp} \end{pmatrix}$$

$$Z_{i p \times 1} = V' Y_i$$
 \iff $V Z_i = V V' Y_i = Y_i$ \implies $Y_{i p \times 1} = V Z_i$

$$Y_{ij} = \boldsymbol{\nu}_{j1} Z_{i1} + \boldsymbol{\nu}_{j2} Z_{i2} + \ldots + \boldsymbol{\nu}_{jp} Z_{ip} \quad \text{j-ésima linha de V}$$

 $Y_{ij} \cong v_{j1}\sqrt{\lambda_1} \frac{|Z_{i1}|}{|\sqrt{\lambda_1}|} + v_{j2}\sqrt{\lambda_2} \frac{|Z_{i2}|}{|\sqrt{\lambda_2}|} + ... + v_{jp}\sqrt{\lambda_m} \frac{|Z_{im}|}{|\sqrt{\lambda_m}|} \text{ Sistema de equações das possible sis$ F₁

dos objetivos da Análise Fatorial Exploratória.

Análise de Fatores

$$Y_{n\times p}$$
; $Y_i \sim (\mu; \Sigma)$

			Vari	áveis	
Unidades Amostrais	1	2		j	 р
1	Y ₁₁	Y ₁₂		Y _{1j}	Y _{1p}
2	Y ₂₁	Y ₂₂		Y_{2j}	Y_{2p}
i	 Y _{i1}	 Y _{i2}		Y_{ij}	Y_{ip}
 n	 Y _{n1}	 Y _{n2}		 Y _{nj}	 Y_{np}

Objetivos:

Obter Fatores Comuns às "p" variáveis que expliquem a covariância entre elas. Isso equivale a decompor a matriz de covariância (ou correlação) tal que:

 $\Sigma \cong$ fatores comuns + fatores específicos

Análise Fatorial Exploratória ⇒ obter fatores comuns (constructos, variáveis latentes) e específicos na modelagem de Σ

Análise Fatorial Confirmatória ⇒ verificar se uma estrutura conhecida (diagrama de caminhos ou grafo) se ajusta aos dados (à matriz de correlações)

Motivação

Exemplo 1: É possível explicar o desempenho escolar por meio de 2 constructos (habilidades dos estudantes)?

	Geografia	Inglês	História	Aritmética	Algebra	Geometria
	1 0,439	0,439 1	0,41 0,351	0,288 0,354	0,329 0,32	0,248 0,329
R =	0,41	0,351	1	0,164	0,19	0,181
	0,288	0,354	0,164	1	0,595	0,47
	0,329	0,32	0,19	0,595	1	0,464
	0,248	0,329	0,181	0,47	0,464	1

Exemplo 2: A Síndrome Metabólica é uma doença multifatorial caracterizada pela ocorrência de pelo menos três fatores de risco dentre hipertensão, alteração nos componentes do colesterol, hiperglicemia, alto IMC, elevada circunferência abdominal. Estas variáveis foram avaliadas em 80 pacientes. É possível obter variáveis latentes para mensurar esta doença multifatorial?

Notação!

Análise Fatorial Exploratória

Variáveis observadas Y podem ser modeladas em função de um conjunto de variáveis latentes F (não observáveis, constructos)?

$$\mathbf{Y}_{i_{p \times 1}} \overset{iid}{\sim} \left(\mu; \Sigma \right) \quad \Longrightarrow \quad Y_{ij} = \mu_j + \phi_{j1} F_{1i} + \phi_{j2} F_{2i} + \dots + \phi_{jm} F_{mi} + e_{ij}$$

Diferentemente de CP e CoP:

Modelo de equações estruturais é adotado aos dados Y:

$$\begin{pmatrix} Y_{i1} - \mu_1 = \phi_{11}F_{1i} + \phi_{12}F_{2i} + \dots + \phi_{1m}F_{mi} + e_{1i} \\ Y_{i2} - \mu_2 = \phi_{21}F_{1i} + \phi_{22}F_{2i} + \dots + \phi_{2m}F_{mi} + e_{2i} \\ \dots \\ Y_{ip} - \mu_p = \phi_{p1}F_{1i} + \phi_{p2}F_{2i} + \dots + \phi_{pm}F_{mi} + e_{pi} \end{pmatrix}$$

Modelo de Fatores Notação Matricial:

$$Y_i - \mu = \Phi_{p \times m} \mathbf{f}_{i m \times 1} + e_{i p \times 1}$$

$$\mathfrak{R}^p \to \mathfrak{R}^m$$

$$\mathbf{f} = (F_1, ..., F_m)'$$
: fatores comuns (var. latentes) $e = (e_1, ..., e_p)'$: fatores específicos (erros) $\Phi = (\phi_{ij})$: cargas fatoriais

Como obter
$$\begin{cases} \Phi_{p \times m} & ? \\ \mathbf{f}_{i \ m \times 1} & \end{cases}$$

Pacote computacional: factanal-R

Análise Fatorial Confirmatória

$$Y_i \Rightarrow Y_i - \mu = \Phi \mathbf{f}_i + e_i$$
 Equações de mensuração mensuração

Diagrama de Caminhos (Grafo) de um modelo de Análise Fatorial ortogonal

Var. Observadas: retângulos

Var. Latentes (constructo): círculos

Erros: sem representação gráfica

As setas (direcionadas) partem de uma variável independente e atingem uma variável dependente

Se existirem correlações (entre os fatores comuns *F* ou entre os específicos *e*), estas devem ser representadas por arcos

Um particular Grafo (que define um Modelo de Equações Estruturais - MEE), se ajusta aos dados?

MEE (Bollen, 1989): modelos gerais envolvendo equações estruturais para as variáveis observadas (equações de mensuração) bem como equações estruturais para as variáveis latentes
 Pacotes computacionais: LISREL, Lavaan-R, (fa-R)

Análise Fatorial

- Modelo estrutural: $Y_i \mu = \Phi \mathbf{f}_i + e_i$
- Suposições do modelo fatorial (**f** e *e* são variáveis aleatórias):

$$\mathbf{f}_{i_{m\times 1}} = \begin{bmatrix} F_{1i} \\ \dots \\ F_{mi} \end{bmatrix}^{iid} (0; I_m); \quad e_{i_{p\times 1}} \sim (0; \Psi = diag(\psi_1, \dots, \psi_p)); \quad Cov(\mathbf{f}, e) = 0$$

Matriz de Covariância (marginal) de Y:

Decomposição muito particular da matriz Σ !

$$Cov(Y_i) = \Sigma_{p \times p} = Cov(\Phi \mathbf{f}_i + e_i) \implies \Sigma = \Phi \Phi' + \Psi$$

componente de covariâncias componente de variâncias devido ao fator comum

devido ao fator específico (matriz diagonal)

$$Var(Y_{ij}) = \phi_{j1}^2 + \phi_{j2}^2 + ... + \phi_{jm}^2 + \psi_j = h_j^2 + \psi_j$$

$$comunalidade$$

$$da variável Y_{ij}$$

$$especificidade$$

$$de Y_{ij}$$

Análise Fatorial

resultados!

$$Y_i \in \Re^p$$
; $Y_i - \mu = \Phi \mathbf{f}_i + e_i \Leftrightarrow \Sigma = \Phi \Phi' + \Psi$

$$Var(Y_{ij}) = \phi_{j1}^2 + \phi_{j2}^2 + \dots + \phi_{jm}^2 + \psi_j = h_j^2 + \psi_j$$

$$\overline{h}_{j}^{2} = \frac{h_{j}^{2}}{Var(Y_{ij})}$$

% da $Var(Y_{ii})$ explicada pelo conjunto dos m fatores comuns

$$\overline{h}_{j}^{2} = \frac{h_{j}^{2}}{Var(Y_{ij})} \qquad H^{2} = \frac{\sum_{j=1}^{p} h_{j}^{2}}{\sum_{j=1}^{p} Var(Y_{ij})}$$

% da Variância Total de Y explicada pelo conjunto dos m fatores comuns

$$H_{F_k}^2 = rac{\displaystyle\sum_{j=1}^r \phi_{jk}^2}{\displaystyle\sum_{i=1}^p Var(Y_{ij})}$$

% da Variância Total explicada pelo fator comum Fk

$$Cov(Y_{ij},Y_{ij'})=\phi_{j1}\phi_{j'1}+\phi_{j2}\phi_{j'2}+...+\phi_{jm}\phi_{j'm}\Rightarrow$$
 depende somente de fatores comuns

$$Cov(Y_{ij}, F_{ki}) = Cov(\phi_{j1}F_{1i} + ... + \phi_{jk}F_{ki} + ... + \phi_{jm}F_{mi}; F_{ki}) = Cov(\phi_{jk}F_{ki}; F_{ki}) = \phi_{jk}$$

$$Corr(Y_{ij}, F_{ki}) = \phi_{jk} / \sqrt{Var(Y_{ij})} = \phi_{jk} / \sqrt{h_j^2 + \psi_j}$$

Análise Fatorial Exploratória

$$Y_{i} \in \Re^{p}; \quad Y_{i} - \mu = \Phi \mathbf{f}_{i} + e_{i}$$

$$\Leftrightarrow \quad \Sigma = \Phi \Phi' + \Psi$$

$$Y_{i} - \mu_{1} = \phi_{11}F_{1i} + \phi_{12}F_{2i} + \dots + \phi_{1m}F_{mi} + e_{1i}$$

$$Y_{2i} - \mu_{2} = \phi_{21}F_{1i} + \phi_{22}F_{2i} + \dots + \phi_{2m}F_{mi} + e_{2i}$$

$$\dots$$

$$Y_{pi} - \mu_{p} = \phi_{p1}F_{1i} + \phi_{p2}F_{2i} + \dots + \phi_{pm}F_{mi} + e_{pi}$$

Como obter: Matriz de Coeficientes ou Cargas (Φ)

Componentes Específicos (Ψ) Escores Fatoriais ($\mathbf{f} = (\mathbf{F}_{ki})$)

Soluções:

- Via Componentes Principais
- Via Máxima Verossimilhança

E ainda, para qualquer matriz orthogonal Γ , tem-se:

Não unicidade das cargas

$$\Phi^* = \Phi_{p \times m} \Gamma_{m \times m}; \quad \Gamma \Gamma' = I_m \quad \Longrightarrow \Phi * \Phi *' + \Psi = \Phi \Gamma \Gamma' \Phi + \Psi = \Sigma$$

(φ) e possibilidade de rotacionar soluções

Análise Fatorial via Componentes Principais

$$Y_i \in \Re^p$$
; $Y_i - \mu = \Phi \mathbf{f}_i + e_i \Leftrightarrow \Sigma = \Phi \Phi' + \Psi$

$$\begin{split} \Sigma &= V \Lambda V' \quad \Longrightarrow \quad \Sigma = \lambda_1 V_1 V_1' + \ldots + \lambda_m V_m V_m' + \ldots + \lambda_p V_p V_p' \\ \Re^{\mathsf{p}} &\to \; \mathsf{R}^{\mathsf{m}} \quad \Longrightarrow \quad \Sigma \approx \lambda_1 V_1 V_1' + \ldots + \lambda_m V_m V_m' = \Phi \Phi' \end{split}$$

Aproximação de Σ usando $m \ \mathsf{CP} \Rightarrow$ define as cargas dos fatores comuns!

$$\Phi = (\phi_1, ..., \phi_m) = (\sqrt{\lambda_1} V_1, ..., \sqrt{\lambda_m} V_m) \implies \phi_{jk} = \sqrt{\lambda_k} \ v_{jk}$$
 Carga do fator F_k à variável Y_j

$$\Psi = diag\left(\sigma_1^2 - h_1^2, ..., \sigma_p^2 - h_p^2\right) \implies \psi_j^{\prime} = \sigma_{jj} - \sum_{k=1}^m \phi_{jk}^2 \quad \text{Componente específico da variável } Y_j$$

Qual o valor do escore factorial?

$$Y_{i \ (p imes 1)}; \qquad Y_i - \mu = \Phi \ \mathbf{f}_i + e_i \quad \Rightarrow \quad \hat{\mathbf{f}}_{i \ p imes 1} = Z_i D_{\lambda_j}^{-1/2}$$
 Os escores fatoriais são componentes principais padronizados

Análise Fatorial via Componentes Principais

Obtenção do modelo de fatores comuns e específicos

$$Y_{i} \in \mathbb{R}^{p}; \quad Y_{i} - \mu = \Phi \mathbf{f}_{i} + e_{i} \quad \Leftrightarrow \quad \Sigma_{p \times p} = \Phi_{p \times m} \Phi'_{m \times p} + \Psi_{p \times p}$$
$$\Sigma \approx \lambda_{1} V_{1} V'_{1} + \dots + \lambda_{m} V_{m} V'_{m} = \Phi \Phi'$$

$$\Phi = (\phi_{jk}) = (\sqrt{\lambda_j} v_{jk}) \qquad \Psi = diag(\sigma_{jj} - h_j^2)$$

$$R_{res} = \Sigma - (\Phi \Phi' + \Psi)$$

Matriz residual

Sob a solução via CP os elementos da diagonal de Σ estão bem aproximados (por construção), já para os elementos fora da diagonal de Σ a aproximação pode não ser boa!!

Critério de bondade de ajuste do modelo fatorial:

SQ dos componentes de
$$R_{res} \leq \left(\lambda_{m+1}^2 + \lambda_{m+2}^2 + \ldots + \lambda_p^2\right)$$

Análise Fatorial

Dados de Nutrição (n=27 e p=5)

Análise com m=2:

$$R_{5\times5} \approx \Phi_{5\times2} \Phi'_{2\times5} + \Psi_{5\times5}$$

Matriz de Correlação (R)

	energia	proteina	gordura	calcio	ferro
energia	1.00	0.17	0.99	-0.32	-0.10
proteina	0.17	1.00	0.02	-0.09	-0.17
gordura	0.99	0.02	1.00	-0.31	-0.06
calcio	-0.32	-0.09	-0.31	1.00	0.04
ferro	-0.10	-0.17	-0.06	0.04	1.00

Decomposição Espectral de R:

Autovalores (Λ :diag)

2.20 1.14 0.85 0.81 0.00

Autovetores (V)

	V1	V2	V3	V4	V5
Y1	-0.65	0.09	-0.15	0.20	0.71
Y2	-0.15	-0.69	0.46	0.52	-0.10
Y3	-0.64	0.20	-0.22	0.13	-0.70
Y4	0.35	-0.01	-0.65	0.67	0.00
Y5	0.12	0.69	0.54	0.47	0.01

$$\Phi = \left(\phi_{jk}\right) = \left(\sqrt{\lambda_j} \ \nu_{jk}\right)$$

Matriz de Cargas: Φ

V1n V2n Y1 -0.97 0.09 Y2 -0.22 -0.74 Y3 -0.95 0.22 Y4 0.53 -0.01 Y5 0.18 0.74

Matriz de especificidades:

 Ψ =diag(0.052 0.404 0.055 0.724 0.424)

 $1 - (-0.97^2 + 0.09^2)$

	energia	proteina	gordura	calcio	ferro	Z1	Z 2	F1	F2
[1,]	340	20	28	9	2.6	-239.75	23.25	-161.72	21.73
[2,]	245	21	17	9	2.7	-170.73	12.11	-115.17	11.32
[3,]	420	15	39	7	2.0	-299.12	35.50	-201.77	33.19
[4,]	375	19	32	9	2.5	-265.06	27.73	-178.79	25.92
[5 ,]	180	22	10	17	3.7	-120.94	4.98	-81.58	4.65
[6 ,]	115	20	3	8	1.4	-77.13	-2.26	-52.03	-2.11
[7 ,]	170	25	7	12	1.5	-114.98	-0.06	-77.56	-0.05
[8,]	160	26	5	14	5.9	-106.07	0.99	-71.55	0.93
[9,]	265	20	20	9	2.6	-185.59	15.09	-125.19	14.10
[10,]	300	18	25	9	2.3	-211.41	20.32	-142.60	19.00
[11,]	340	20	28	9	2.5	-239.76	23.18	-161.73	21.67
[12,]	340	19	29	9	2.5	-240.25	24.07	-162.06	22.50
[13,]	355	19	30	9	2.4	-250.71	25.51	-169.11	23.85
[14,]	205	18	14	7	2.5	-142.94	9.96	-96.42	9.32
[15,]	185	23	9	9	2.7	-126.69	3.88	-85.45	3.63
[16,]	135	22	4	25	0.6	-85.22	-2.35	-57.49	-2.20
[17,]	70	11	1	82	6.0	-18.26	2.33	-12.32	2.18
[18,]	45	7	1	74	5.4	-4.22	2.55	-2.85	2.38
[19,]	90	14	2	38	0.8	-48.67	-1.10	-32.83	-1.03
[20,]	135	16	5	15	0.5	-88.51	1.99	-59.71	1.86
[21,]	200	19	13	5	1.0	-140.07	7.61	-94.48	7.12
[22,]	155	16	9	157	1.8	-53.63	4.54	-36.18	4.24
[23,]	195	16	11	14	1.3	-131.84	9.00	-88.93	8.41
[24,]	120	17	5	159	0.7	-27.76	-0.78	-18.73	-0.73
[25,]	180	22	9	367	2.5	3.68	1.73	2.48	1.62
[26,]	170	25	7	7	1.2	-116.79	-0.23	-78.78	-0.22
[27,]	110	23	1	98	2.6	-40.97	-4.91	-27.64	-4.59

Os
escores
fatoriais
são os
escores
dos CP
padronizados!

Análise dos dados nutricionais com 2 Fatores Comuns

Matriz R	esidual:	Res= Σ -	- (ФФ′ +	Ψ)	
	energia	proteina	gordura	calcio	ferro
energia	0.000	0.026	0.048	0.190	0.007
proteina	0.026	0.000	-0.028	0.028	0.410
gordura	0.048	-0.028	0.000	0.192	-0.048
calcio	0.190	0.028	0.192	0.000	-0.046
ferro	0.007	0.410	-0.048	-0.046	0.000

Análise dos dados nutricionais com 3 Fatores Comuns

```
Matriz Residual:Res= Σ - (ΦΦ' + Ψ)energiaproteina gorduracalcio ferroenergia0.0000.0840.0210.1070.075proteina0.0840.0000.0570.2840.198gordura0.0210.0570.0000.0720.050calcio0.1070.2840.0720.0000.253ferro0.0750.1980.0500.2530.000
```

Análise Fatorial via Máxima Verossimilhança

Suponha que os fatores comuns F e os específicos e seguem distribuição Normal, tal que, a distribuição marginal de Y_i é :

$$\mathbf{Y}_{ip\times 1} \stackrel{iid}{\sim} N_p \left(\mathbf{\mu}_{p\times 1}; \mathbf{\Sigma}_{p\times p} = \Phi \Phi' + \Psi\right)$$

Para uma amostra de n vetores independentes de Y_i a função de verossimilhança é:

$$L(\mu, \Phi, \Psi \mid \mathbf{Y}) = \frac{1}{(2\pi)^{np/2} |\mathbf{\Sigma}|^{n/2}} e^{-\frac{1}{2} \sum_{i=1}^{n} (Y_i - \mu)' \mathbf{\Sigma}^{-1} (Y_i - \mu)}$$

sendo $\Sigma = \Phi \Phi' + \Psi$. Para $\hat{\mu} = \overline{Y}$ temos (exceto por constantes):

$$\ln L(\Phi, \Psi \mid S, \hat{\mu}) = -\frac{n}{2} \left(\ln \left| \Sigma \right| + tr(\Sigma^{-1}S) \right)$$
 (Everitt, 2004; Johson and Whichern, 1992)

Maximizar InL em Φ e Ψ é equivalente a minimizar a função D (com S e p, constantes):

$$D(\Phi, \Psi \mid S; \hat{\mu}) = \ln |\Sigma| - \ln |S| + tr(\Sigma^{-1}S) - p = tr(\Sigma^{-1}S) - \ln |\Sigma^{-1}S| - p$$

É necessário usar métodos numéricos para obter os estimadores de Φ e Ψ que minimizem a função D. Na solução da Análise Fatorial via MVS é preciso avaliar também a **identificabilidade** do *modelo reduzido* proposto.

Análise Fatorial via Máxima Verossimilhança

E interessante avaliar situações em que o modelo fatorial (um modelo reduzido) oferece uma interpretação mais simplificada (em uma dimensão mais baixa) para Y.

Como o vetor de parâmetros de locação µ não é de interesse na análise, usamos uma estimativa e podemos avaliar a aproximação da matriz de covariância amostral por meio do seguinte sistema de equações:

$$S_{p \times p} \cong \hat{\Phi}_{p \times m} \hat{\Phi}'_{m \times p} + \hat{\Psi}_{p \times p} \implies \operatorname{Re} S = S - (\hat{\Phi} \hat{\Phi}' + \hat{\Psi})$$

com a restrição de unicidade: $(\Phi' \Psi^{-1} \Phi)$ é matriz diagonal.

Além disso, a diferença no número de parâmetros envolvidos é:

 δ <0: sistema com mais parâmetros do que bem definido aos dados

 δ =0: soluções exatas são possíveis mas o modelo fatorial não oferece simplificação δ>0: a simplificação/redução é possível por meio do modelo fatorial

Análise Fatorial – Escores Fatoriais

Os coeficientes na matriz Φ e os elementos da diagonal da matriz Ψ podem ser obtidos via CP ou MVS! Mas, e o escore dos fatores comuns?

Escore Fatorial: valor de cada indivíduo nos fatores comuns

Para o indivíduo i:

$$Y_{i(p\times 1)} \Rightarrow Y_i - \mu = \Phi \mathbf{f}_i + e_i$$

$$Y_{i(p\times 1)} \Rightarrow Y_i - \mu = \Phi \mathbf{f}_i + e_i \begin{cases} Y_{1i} - \mu_1 = \phi_{11} F_{1i} + \phi_{12} F_{2i} + \dots + \phi_{1m} F_{mi} + e_{1i} \\ Y_{2i} - \mu_2 = \phi_{21} F_{1i} + \phi_{22} F_{2i} + \dots + \phi_{2m} F_{mi} + e_{2i} \\ \dots \\ Y_{pi} - \mu_p = \phi_{p1} F_{1i} + \phi_{p2} F_{2i} + \dots + \phi_{pm} F_{mi} + e_{pi} \end{cases}$$

Como obter o valor de \mathbf{f}_i ? i = 1, 2, ..., n

$$i = 1, 2, ..., n$$

Análise Fatorial – Escores Fatoriais

Qual o valor de \mathbf{f}_i , ? i = 1, 2, ..., n

$$i = 1, 2, ..., n$$

Método de Componentes Principais:

m primeiros componentes principais padronizados

$$Y_{i(p\times 1)} \Longrightarrow$$

$$Y_{i(p \times 1)} \Rightarrow Y_i - \mu = \Phi \mathbf{f}_i + e_i \Rightarrow \mathbf{f}_i = Z_i D_{\lambda_j}^{-1/2}$$

$$\mathbf{f}_i = Z_i D_{\lambda_j}^{-1/2}$$

Método de Mínimos Quadrados Ponderados (Bartlett):

Supondo μ , $\Phi \in \Psi$ conhecidos \Rightarrow o modelo factorial pode ser formulado como um *modelo de regressão linear heterocedástico* nas variáveis preditoras Φ.

O estimador (preditor) de \mathbf{f}_{i} é dado por:

$$\hat{\mathbf{f}}_{i} = (\Phi' \Psi^{-1} \Phi)^{-1} \Phi' \Psi^{-1} (Y_{i} - \mu)$$
(mxp) (px1)

Coeficiente do fator

Análise Fatorial – Escores Fatoriais

$$Y_{i(p\times 1)} \Rightarrow Y_i - \mu = \Phi \mathbf{f}_i + e_i$$
 Qual o valor de \mathbf{f}_i , ? $i = 1, 2, ..., n$

Método da Regressão: (μ , Φ e ψ são assumidos conhecidos)

$$\mathbf{f}_{i} \sim N_{m}(0, I_{m}) \quad e_{i} \sim N_{p}(0, \Psi) \quad \Rightarrow \quad \begin{pmatrix} e_{i} \\ \mathbf{f}_{i} \end{pmatrix} \sim N_{p+m} \begin{pmatrix} 0, \begin{pmatrix} \Psi & 0 \\ 0 & I_{m} \end{pmatrix} \end{pmatrix}$$

$$Y_{i} - \mu = \Phi \mathbf{f}_{i} + e_{i} \sim N_{p} \left(0, \Sigma = \Phi \Phi' + \Psi \right) \Rightarrow \begin{pmatrix} Y_{i} - \mu \\ \mathbf{f}_{i} \end{pmatrix} \sim N_{p+m} \begin{pmatrix} 0, \begin{pmatrix} \Sigma & \Phi \\ \Phi' & I_{m} \end{pmatrix} \end{pmatrix}$$

$$\mathbf{f}_i/Y_i \sim N_m \left(\Phi' \Sigma^{-1} (Y_i - \mu) ; I_m - \Phi' \Sigma^{-1} \Phi \right)$$

Esperança condicional dos fatores

O preditor de
$$\mathbf{f_i}$$
 é dado por:
$$\hat{\mathbf{f}_i} = \Phi' \Sigma^{-1} (Y_i - \mu) = \underline{\Phi' (\Phi \Phi' + \Psi)^{-1}} (Y_i - \mu)$$
 (mxp)

Coeficiente do fator

Análise Fatorial – Rotação dos Fatores

Para qualquer matriz orthogonal Γ , tem-se:

$$\Phi^* = \Phi\Gamma$$
; $\Gamma\Gamma' = I \implies \Phi^*\Phi^{*'} + \Psi = \Phi\Gamma\Gamma'\Phi + \Psi = \Sigma$

Logo, não existe uma solução única para representar as cargas dos fatores comuns Φ. As comunalidades Soluções rotacionadas podem ser mais interpretáveis. são invariantes!

Métodos de Rotação Ortogonal:

- Rotação Varimax: simplifica as colunas da matriz de cargas Φ
- Rotação Quartimax: simplifica as linhas da matriz de cargas Φ
- Rotação Equimax: é um compromisso entre as duas outras técnicas

Existem ainda as rotações oblíguas. Neste caso, as comunalidades variam.

Análise Fatorial via MVS

Dados de Nutrição (n=27 e p=5)

Matriz de Correlação (R)

	energia	proteina	gordura	calcio	ferro
energia	1.00	0.17	0.99	-0.32	-0.10
proteina	0.17	1.00	0.02	-0.09	-0.17
gordura	0.99	0.02	1.00	-0.31	-0.06
calcio	-0.32	-0.09	-0.31	1.00	0.04
ferro	-0.10	-0.17	-0.06	0.04	1.00

Especificidades (Diagonal da matriz Ψ)

energia	proteina	gordura	calcio	ferro
0.005	0.005	0.005	0.897	0.965

Coeficientes (cargas) dos Fatores comuns (matriz Φ)

	Factor1	Factor2
energia	0.998	
proteina	0.197	0.978
gordura	0.983	-0.172
calcio	-0.319	
ferro		-0.160

F1: explica 0.9982 da var. de energia e somente (-0.319)2 da var. de cálcio

	Factor1	Factor2
Var	2.113	1.013
Proportion Var	0.423	0.203
Cumulative Var	0.423	(0.625)

R não está bem estruturada por 2 fatores comuns!

Test of the hypothesis that 2 factors are sufficient:

The chi square statistic is 10.67 on 1 degree of freedom (p-value=(0.00109))

Análise Fatorial

Matriz de Correlação Observada (R)

	energia	proteina	gordura	calcio	ferro
energia	1.0000	0.1738	0.9871	-0.3204	-0.0998
proteina	0.1738	1.0000	0.0249	-0.0851	-0.1746
gordura	0.9871	0.0249	1.0000	-0.3081	-0.0606
calcio	-0.3204	-0.0851	-0.3081	1.0000	0.0443
ferro	-0.0998	-0.1746	-0.0606	0.0443	1.0000

Modelo ajustado: a matriz R está estruturada por 2 fatores comuns além da especificidade:

$$\widehat{R}_{5\times5} \approx \Phi_{5\times2} \Phi'_{2\times5} + \Psi_{5\times5}$$

Matriz de Correlação Ajustada via AF-MVS

	energia	proteina	gordura	calcio	ferro
energia	1.0017	0.1736	0.9854	-0.3183	-0.0928
proteina	0.1736	1.0000	0.0251	-0.0854	-0.1757
gordura	0.9854	0.0251	1.0016	-0.3102	-0.0675
calcio	-0.3183	-0.0854	-0.3102	1.0000	0.0346
ferro	-0.0928	-0.1757	-0.0675	0.0346	1.0000

Matriz Residual energia proteina gordura calc

energia proteina gordura calcio ferro energia -0.0017 0.0002 0.0016 -0.0021 -0.0070 proteina 0.0002 0.0000 -0.0002 0.0003 0.0011 gordura 0.0016 -0.0002 -0.0016 0.0020 0.0069 calcio -0.0021 0.0003 0.0020 0.0000 0.0097 ferro -0.0070 0.0011 0.0069 0.0097 0.0000

Com base na matriz residual, de forma descritiva, 2 fatores comuns sugerem uma boa aproximação!

Dados de Nutrição e Escores (calculados por Bartlet) dos 2 primeiros fatores comuns:

energia proteina gordura calcio ferro Factor1 Factor2 [1,] 340 20 28 9 2.6 1.31 -0.02 [2,] 245 21 17 9 2.7 0.38 0.40 [3,] 420 15 39 7 2.0 2.06 -1.37 [4,] 375 19 32 9 2.5 1.63 -0.32 [5,] 180 22 10 17 3.7 -0.22 0.76 [6,] 115 20 3 8 1.4 -0.89 0.42 [7,] 170 25 7 12 1.5 -0.33 1.50 [8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50 [27,] 110 23 1 98 2.6 -0.93 1.14									
[2,] 245 21 17 9 2.7 0.38 0.40 [3,] 420 15 39 7 2.0 2.06 -1.37 [4,] 375 19 32 9 2.5 1.63 -0.32 [5,] 180 22 10 17 3.7 -0.22 0.76 [6,] 115 20 3 8 1.4 -0.89 0.42 [7,] 170 25 7 12 1.5 -0.33 1.50 [8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -		energia	proteina	gordura	calcio	ferro	Factor1	Factor2	
[3,] 420 15 39 7 2.0 2.06 -1.37 [4,] 375 19 32 9 2.5 1.63 -0.32 [5,] 180 22 10 17 3.7 -0.22 0.76 [6,] 115 20 3 8 1.4 -0.89 0.42 [7,] 170 25 7 12 1.5 -0.33 1.50 [8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[1,]	340	20	28	9	2.6	1.31	-0.02	
[4,] 375 19 32 9 2.5 1.63 -0.32 [5,] 180 22 10 17 3.7 -0.22 0.76 [6,] 115 20 3 8 1.4 -0.89 0.42 [7,] 170 25 7 12 1.5 -0.33 1.50 [8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 <	[2,]	245	21	17	9	2.7	0.38	0.40	
[5,] 180 22 10 17 3.7 -0.22 0.76 [6,] 115 20 3 8 1.4 -0.89 0.42 [7,] 170 25 7 12 1.5 -0.33 1.50 [8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[3,]	420	15	39	7	2.0	2.06	-1.37	
[6,] 115 20 3 8 1.4 -0.89 0.42 [7,] 170 25 7 12 1.5 -0.33 1.50 [8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[4,]	375	19	32	9	2.5	1.63	-0.32	
[7,] 170 25 7 12 1.5 -0.33 1.50 [8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[5 ,]	180	22	10	17	3.7	-0.22	0.76	
[8,] 160 26 5 14 5.9 -0.44 1.76 [9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[6,]	115	20	3	8	1.4	-0.89	0.42	
[9,] 265 20 20 9 2.6 0.59 0.12 [10,] 300 18 25 9 2.3 0.93 -0.43 [11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[7,]	170	25	7	12	1.5	-0.33	1.50	
[10,] 300	[8,]	160	26	5	14	5.9	-0.44	1.76	
[11,] 340 20 28 9 2.5 1.31 -0.02 [12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[9,]	265	20	20	9	2.6	0.59	0.12	
[12,] 340 19 29 9 2.5 1.33 -0.27 [13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 <td>[10,]</td> <td>300</td> <td>18</td> <td>25</td> <td>9</td> <td>2.3</td> <td>0.93</td> <td>-0.43</td> <td></td>	[10,]	300	18	25	9	2.3	0.93	-0.43	
[13,] 355 19 30 9 2.4 1.44 -0.29 [14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85<	[11,]	340	20	28	9	2.5	1.31	-0.02	
[14,] 205 18 14 7 2.5 -0.01 -0.24 [15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.2	[12,]	340	19	29	9	2.5	1.33	-0.27	
[15,] 185 23 9 9 2.7 -0.21 1.00 [16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33<	[13,]	355	19	30	9	2.4	1.44	-0.29	
[16,] 135 22 4 25 0.6 -0.70 0.86 [17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[14,]	205	18	14	7	2.5	-0.01	-0.24	
[17,] 70 11 1 82 6.0 -1.40 -1.63 [18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[15,]	185	23	9	9	2.7	-0.21	1.00	
[18,] 45 7 1 74 5.4 -1.62 -2.55 [19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[16,]	135	22	4	25	0.6	-0.70	0.86	
[19,] 90 14 2 38 0.8 -1.19 -0.95 [20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[17,]	70	11	1	82	6.0	-1.40	-1.63	
[20,] 135 16 5 15 0.5 -0.79 -0.55 [21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[18,]	45	7	1	74	5.4	-1.62	-2.55	
[21,] 200 19 13 5 1.0 -0.06 0.01 [22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[19 ,]	90	14	2	38	0.8	-1.19	-0.95	
[22,] 155 16 9 157 1.8 -0.52 -0.61 [23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[20,]	135	16	5	15	0.5	-0.79	-0.55	
[23,] 195 16 11 14 1.3 -0.24 -0.65 [24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[21,]	200	19	13	5	1.0	-0.06	0.01	
[24,] 120 17 5 159 0.7 -0.85 -0.31 [25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[22,]	155	16	9	157	1.8	-0.52	-0.61	
[25,] 180 22 9 367 2.5 -0.26 0.77 [26,] 170 25 7 7 1.2 -0.33 1.50	[23,]	195	16	11	14	1.3	-0.24	-0.65	
[26,] 170 25 7 7 1.2 -0.33 1.50	[24,]	120	17	5	159	0.7	-0.85	-0.31	
	[25,]	180	22	9	367	2.5	-0.26	0.77	
[27,] 110 23 1 98 2.6 -0.93 1.14	[26,]	170	25	7	7	1.2	-0.33	1.50	
	[27,]	110	23	1	98	2.6	-0.93	1.14	

Escores de Bartlet

Gráfico dos escores das observações em \Re^2 . Os escores fatoriais podem ser usados para análise de agrupamento de observações bem como para análise de diagnóstico de observações atípicas (o que também pode ser feito com os escores dos Componentes Principais e com a distância de Mahalanobis).

Dados de Nutrição: Matrizes de cargas (Φ) rotacionadas

Matriz de cargas (loadings) para estruturar a matriz R:

E	Factor2	
energia	0.998	
proteina	0.197	0.978
gordura	0.983	-0.172
calcio	-0.319	
ferro		-0.160

	Factor1	Factor2
SS loadings	2.113	1.013
Proportion Var	0.423	0.203
Cumulative Var	0.423	0.625

Matriz de cargas rotacionada (Varimax):

Factor 1 Factor 2 Pace por soluções

Cargas mudam mas

%Var permanence
constante!

Busca por soluções Factor1 Factor2 canônicas 0.983 0.176 | energia Factor1 Factor2 proteina | 0.998 2.061 SS loadings 1.065 gordura 0.998 Proportion Var 0.412 0.213 calcio 1-0.308 Cumulative Var 0.412 0.625ferro -0.176

Dados de Nutrição:

Diferentes Escores para a redução de dimensionalidade:

 $\mathfrak{R}^5 o \mathfrak{R}^2$

Em cada caso, qual é o critério de otimalidade adotado?

Componentes Principais x Análise Fatorial

- Ambas buscam uma Redução de Dimensionalidade
- CONTUDO, os critérios de otimaização usados em cada caso são diferentes:
- ⇒ Análise Fatorial é ótima no sentido de obter uma boa aproximação das covariâncias (e correlações) por meio de fatores latentes comuns e específicos.
- ⇒ Análise de CP tem o compromisso de maxomizar a variância total das variáveis.
- ⇒ Na análise de CP se o número de componentes retidos aumenta, isto NÃO altera os anteriores, mas isto pode não acontecer na Análise Fatorial sob a solução de MVS.
- ⇒ Cálculo dos escores das observações nos CPs tem solução única. No caso de Análise fatorial (via MVS) existem diferentes procedimentos inferenciais propostos.

Componentes Principais x Análise Fatorial

 \Rightarrow As análises de CPs via matriz de covariância (Σ =Cov(Y)) ou de correlação (R=Cov(Y*)) são diferentes, e não é possível relacioná-las. Na Análise Fatorial via MVS, a solução obtida é para a modelagem da matriz de correlação, mas a correspondente solução modelando a matriz de covariância é dada por:

$$\Phi = D_{s_{jj}}^{1/2} \Phi^*, \quad \Psi = D_{s_{jj}}^{1/2} \Psi^* D_{s_{jj}}^{1/2}$$

⇒ Teste (assintótico) da adequação do Modelo Fatorial:

$$H_0: \Sigma = \Phi \Phi' + \Psi$$
 $H_1: \Sigma$ com estrutura geral

A estatística da razão de verossimilhanças (sob normalidade) é:

$$-2\ln\frac{L_0}{L_1} = n\ln\left(\frac{\left|\hat{\Phi}\hat{\Phi}' + \hat{\Psi}\right|}{\left|S_n\right|}\right)$$

Usando a correção de Bartlett, rejeita-se H0 a um nível de significância α se:

$$(n-1-(2p+4m+5)/6)\ln\left(\frac{|\hat{\Phi}\hat{\Phi}'+\hat{\Psi}|}{|S_n|}\right) > \chi^2_{[(p-m)^2-p-m]/2}(\alpha)$$