Enyia Esther - Workshop 7

Theoretical Task T7.1 Solution

Given Data:

X_1	X_2	Y
1	1	1
1	1	1
1	1	2
1	0	3
0	0	2
0	0	3

Step 1: Calculate Initial Entropy H(Y)

Class frequencies:

•
$$P(Y = 1) = \frac{2}{6}$$

• $P(Y = 2) = \frac{2}{6}$

•
$$P(Y=2) = \frac{3}{6}$$

•
$$P(Y=3) = \frac{2}{6}$$

$$H(Y) = -\sum_{i=1}^{3} P(Y=i) \log_2 P(Y=i) = -\left(\frac{2}{6}\log_2 \frac{2}{6} + \frac{2}{6}\log_2 \frac{2}{6} + \frac{2}{6}\log_2 \frac{2}{6}\right) = \log_2 3 \approx 1.585 \text{ bits}$$

Step 2: Information Gain for X_1

Split on X_1 :

$$1.X_1 = 1$$
 branch (4 instances):

$$\circ Y = 1:2, Y = 2:1, Y = 3:1$$

•
$$H(Y|X_1 = 1) = -\left(\frac{2}{4}\log_2\frac{2}{4} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) = 1.5 \text{ bits}$$

 $2.X_1 = 0$ branch (2 instances):

$$Y = 2:1, Y = 3:1$$

•
$$H(Y|X_1 = 0) = -\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}\right) = 1$$
 bit

Weighted average entropy:

$$H(Y|X_1) = \frac{4}{6} \times 1.5 + \frac{2}{6} \times 1 = 1.\overline{3}$$
 bits

Information Gain:

$$IG(X_1) = H(Y) - H(Y|X_1) = 1.585 - 1.333 = 0.252$$
 bits

Step 3: Information Gain for X_2

Split on X_2 :

 $1.X_2 = 1$ branch (3 instances):

$$Y = 1: 2. Y = 2: 1$$

•
$$H(Y|X_2 = 1) = -\left(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}\right) \approx 0.918 \text{ bits}$$

 $2.X_2 = 0$ branch (3 instances):

$$Y = 2:1, Y = 3:2$$

•
$$H(Y|X_2 = 0) = -\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right) \approx 0.918 \text{ bits}$$

Weighted average entropy:

$$H(Y|X_2) = \frac{3}{6} \times 0.918 + \frac{3}{6} \times 0.918 = 0.918$$
 bits

Information Gain:

$$IG(X_2) = H(Y) - H(Y|X_2) = 1.585 - 0.918 = 0.667$$
 bits

Step 4: Comparison

•
$$IG(X_1) = 0.252$$
 bits

• $IG(X_2) = 0.667$ bits

 X_2 provides higher information gain \rightarrow Better split

Step 5: Decision Tree Structure

Leaf predictions:

- $X_2 = 1$ branch: Predict Y = 1 (majority class: 2/3 instances)
- $X_2 = 0$ branch: Predict Y = 3 (majority class: 2/3 instances)