

Analysis of Active Learning Mechanism Applied to Language Models for Computer Assisted Short Answer Grading

September 28, 2022

Elanton Fernandes

Advisors

Prof. Dr. Paul G. Plöger, M.Sc Tim Metzler

Agenda

- 1. Motivation
- 2. Problem Statement
- 3. State of the Art
- 4. Dataset
- 5. Approach
- 6. Evaluation
- 7. Results
- 8. Summary
- 9. Future Work

Motivation

In universities with an increase in number of student every semester, the number of tests conducted also increases. This means that:

- The professor spends more time in correcting student exams than preparing for lectures.
- If students are not assigned full scores for on a test, they expect a meaningful feedback from the professor.

Motivation

Consider the following dummy scenario:

- 80 students enrolled in a class.
- Tests are conducted bi-weekly.
- Professor requires 15 minutes to evaluate one student test.
- Total time spent by the professor to evaluate all tests per week is 10 hours.

Problem Statement

- Automate the evaluation of student tests while still keeping the oracle/professor in the loop.
- Allow the assignment of meaningful feedback to student answers indicating their mistakes.

Related Work

- Wu et al. (2021) designed an system to assign feedback called ProtoTransformer for evaluating programming based questions but not for short text answers. It used limited number of examples ¹.
- Ghavidel et al. (2020) passed raw text through a transformer as input and used the output of classification model (CLS) token as feature².
- Mieskes and Pado, (2018) compared score assignment between automated and human assignment for RF, SVM, and DT classifiers across multiple datasets³.

³ M. Mieskes and U. Padó, "Work smart - reducing effort in short-answer grading," in Proceedings of the 7th workshop on NLP for Computer Assisted Language Learning, (Stockholm, Sweden), pp. 57–68, LiU Electronic Press, Nov. 2018.

M. Wu, N. Goodman, C. Piech, and C. Finn, "Prototransformer: A meta-learning approach to providing student feedback," 2021.

²H. Ghavidel., A. Zouaq., and M. Desmarais., "Using bert and xlnet for the automatic short answer grading task," in Proceedings of the 12th International Conference on Computer Supported Education - Volume 1: CSEDU, pp. 58–67, INSTICC, SciTePress, 2020.

Dataset

Dataset	Domain	No. of Question Pairs	No. of Responses
Mohler ⁴	Computer Science	81	2237
NN Exam ⁵	Neural Network & Al	40	1137
AMR Exam ⁶	Robotics	5	190

Table 1: Datasets used in score and feedback evaluation.

 $^{^6\,\}mathrm{N}.$ Hochgeschwender, "Autonomous mobile robots exam dataset," 2021.

⁴ M. Mohler, R. Bunescu, and R. Mihalcea, "Learning to grade short answer questions using semantic similarity measures and dependency graph alignments," June 2011.

⁵P. G. Plöger, "Neural network exam dataset," 2020.

Contributions

- Implement four methods to alter text for feature extraction.
- Implement feedback assignment for short text answers.
- Compare performance with five pre-trained language models and two classifiers.

Training Cycle

Prediction Cycle

Uncertainty Sampling

Uncertainty sampling 7 is a query strategy that queries the instances about which it is least certain how to label. We use uncertainty sampling variant might query the instance whose prediction is the least confident:

$$x_{LC} = argmin_x P(\hat{y}|x;\theta) \tag{1}$$

Where x is the feature, y is the class label prediction, and $\hat{y} = argmax_y P(y|x;\theta)$ is the class label that has the largest posterior probability using model θ .

B. Settles, "Computer Sciences Department Active Learning Literature Survey," 2009.

Feature Extraction: Overview

۶

⁸N. Reimers and I. Gurevych, "Sentence-bert: Sentence embeddings using siamese bert-networks," 2019.

Feature Extraction: Passage-Based Method

Feature Extraction: Sentence-Based Method

Feature Extraction: Chunk-Based Method

Feature Extraction: Resource Description Framework (RDF) Based Method

Language Models

Language Model 9	Base model	Number
		Training tuples
all-mpnet-base-v2	microsoft/mpnet-base.	1.17B
all-distilroberta-v1	distilroberta-base	1.12B
all-MiniLM-L12-v2	microsoft/MiniLM-L12-H384-uncased	1.17B
multi-qa-distilbert-cos-v1	distilbert-base	214M
all-MiniLM-L6-v2	nreimers/MiniLM-L6-H384-uncased	1.17B

Table 2: Displays pre-trained language models with their base model used in training and number of training tuples used.

⁹N. Reimers and I. Gurevych, "Sentence-bert: Sentence embeddings using siamese bert-networks," 2019.

Evaluation

Score

Pearsons Correlation

$$\rho(y, \hat{y}) = \frac{cov(\vec{y}, \hat{\vec{y}})}{\sigma_y \sigma_{\hat{y}}} \tag{2}$$

RMSE Score

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\vec{y_i}} - \vec{y_i})^2}$$
 (3)

Where \vec{y} represents actual grade and $\hat{\vec{y}}$ represents predicted grade with σ_y and $\sigma_{\hat{y}}$ computed as the standard deviation of \vec{y} and $\hat{\vec{y}}$

Evaluation

Feedback

Question	What is a variable?		
Reference Answer	A location in memory that can store a value.		
Student Answer	A value/word that can assume any of a set of values		
Feedback A	Correct		
Feedback B	Missing keywords: Location in memory		
Feedback C	A variable is a location in memory that stores a value		

Table 3: Presented survey to participants.

$$Agreement\ Score = \tfrac{Model\ generated\ most\ rated\ feedback}{Total\ Number\ of\ Participants} \times 100$$

Notations

Method	Notation
Passage-based Methods	M1
Sentence-based Method	M2
Chunk-based Method	М3
RDF-based Method	M4

Language Model	Notation
all-mpnet-base-v2	LM1
all-distilroberta-v1	LM2
all-MiniLM-L12-v2	LM3
multi-qa-distilbert-cos-v1	LM4
all-MiniLM-L6-v2	LM5

Score: Pearson Correlation (Methods)

Dataset	M1	M2	МЗ	M4
Mohler	0.826	0.791	0.816	0.782
NN Exam	0.941	0.828	0.561	0.846
AMR Exam	0.658	0.458	0.640	0.428

(a)

Dataset	M1	M2	МЗ	M4
Mohler	0.689	0.627	0.687	0.792
NN Exam	0.889	0.791	0.638	0.664
AMR Exam	0.622	0.474	0.593	0.428

Table 4: Comparison of Pearson Correlation between Random Forest (a) and AdaBoost (b) classifiers. Where M1: Passage-based, M2: Sentence-based, M3:Chunk-based, and M4: RDF-based method.

Score: Pearson Correlation (Language Models)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler	0.802	0.797	0.796	0.796	0.789
NN Exam	0.732	0.670	0.705	0.755	0.760
AMR Exam	0.453	0.518	0.525	0.523	0.503

(a)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler	0.659	0.673	0.211	0.544	0.499
NN Exam	0.614	0.653	0.704	0.698	0.605
AMR Exam	0.502	0.440	0.430	0.508	0.467

Table 5: Comparison of Pearson Correlation between Random Forest (a) and AdaBoost (b) classifiers with language models (LM).

Score: Root Mean Square Error (Methods)

Dataset	M1	M2	МЗ	M4
Mohler	0.893	0.949	0.920	0.942
NN Exam	0.296	0.520	0.433	0.522
AMR Exam	0.596	0.716	0.596	0.736

(a)

Dataset	M1	M2	МЗ	M4
Mohler	1.218	1.226	1.169	0.920
NN Exam	0.405	0.571	0.495	0.741
AMR Exam	0.616	0.707	0.630	0.741

Table 6: Comparison of RMSE score between Random Forest (a) and AdaBoost (b) classifiers with methods (M).

Score: Root Mean Square Error (Language Models)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler	0.931	0.941	0.941	0.941	0.956
NN Exam	0.484	0.591	0.558	0.490	0.492
AMR Exam	0.735	0.680	0.676	0.684	0.698

(a)

Dataset	LM1	LM2	LM3	LM4	LM5
Mohler	1.182	1.163	1.667	1.278	1.363
NN Exam	0.632	0.582	0.587	0.587	0.650
AMR Exam	0.692	0.748	0.718	0.682	0.736

Table 7: Comparison of RMSE score between Random Forest (a) and AdaBoost (b) classifiers with language models (LM).

Feedback: Survey Results

Question	What is a variable?
Reference Answer	A location in memory
	that can store a value.
Student Answer	A value/word that can
	assume any of a set of values
Feedback A	Correct
Feedback B	Missing keywords:
	Location in memory
Feedback C	A variable is a location
	in memory that stores a value

Feedback: Agreement Scores (Methods)

Classifier	Methods			
	M1	M2	M3	M4
Random Forest	60.00	22.73	31.82	35.91
AdaBoost	60.00	22.73	31.82	35.91

Table 8: Mean agreement scores for Random Forest (a) and AdaBoost classifier (b) with methods.

Feedback: Agreement Scores (Models)

Classifier	Language Models				
	LM1 LM2 LM3 LM4 LM5				
Random Forest	25.11	26.82	24.66	37.05	21.25
AdaBoost	25.11	26.82	24.66	37.05	21.25

Table 9: Mean agreement scores for Random Forest and AdaBoost classifier with Language Models.

Summary: Scores

Dataset	Method	Model	Classifier
Mohler	M1	LM1	Random Forest
NN Exam	M1	LM5	Random Forest
AMR Exam	M1	LM3	Random Forest

(a)

Dataset	Method	Model	Classifier
Mohler	M1	LM1	Random Forest
NN Exam	M1	LM1	Random Forest
AMR Exam	M1& M3	LM3	Random Forest

Table 10: Performance summary Pearson correlation (a) and RMSE score (b)

Feedback

Dataset	Method	Model	Method-Model	Classifier
Mohler	M1	LM4	M1-LM4	Random Forest

Table 11: Results of feedback evaluation

Summary

- Four methods implemented to alter student answer text.
- Designed system that keeps oracle in training loop.
- System allows assignment of feedback.
- Pearson correlation and RMSE score used as score evaluation metrics.
- Survey created and used in the evaluation of the feedback assigned by the model.

Future Work

- RDF-based method did not give good RDF triplets. Fine tune model for better results.
- Fine tune language models similar to multi-qa-distilbert-cos-v1 to create embeddings.
- Chunk-based Method took 41 sec per prediction. This time needs to be reduced.

Foundation

Cosine Similarity

If x and y are two sentences and e_x and e_y are embeddings of these sentences. Then the cosine similarity is given by:

$$S_{cosine}(\boldsymbol{e_x}, \boldsymbol{e_y}) = \frac{\boldsymbol{e_x} \cdot \boldsymbol{e_y}}{\|\boldsymbol{e_x}\| \|\boldsymbol{e_y}\|} \tag{4}$$

Foundation

Active Learning

Foundation

Chunking

Symbol	Meaning	Symbol	Meaning
NP	Noun Phrase	VP	Verb phrase
NN	Noun	DT	zero or one determiner
JJ	One or more adjectives	PRP	Preposition

Approach: Example

Feature Extraction: Passage-based method

Approach

Feature Extraction: Sentence-based method

Approach

Feature Extraction: Chunk-based method

Approach

Feature Extraction: RDF-based method

Question	What stages of the software lifecycle are influenced by the testing stage	
Reference Answer	The testing stage can influence both the coding stage (phase 5) and the	
	solution refinement stage (phase 7)	
Student Answer	All stages are influenced except setting the program requirements. If a test	
	fails it can change the whole design implementation etc of a program	
	as well as the final outcome.	
Feedback A	The testing phase affects the coding/production phase and the refinement/maintenance phase	
Feedback B	Correct	
Feedback C	Missing keywords: Refinement stage, Coding phase	

Question	What are the main advantages associated with object oriented programming?	
Reference Answer	Abstraction and reusability.	
Student Answer	Re-usability and ease of maintenance	
Feedback A	Missing keywords: Reusability, Abstraction	
Feedback B	Correct	
Feedback C	The main advantages of OOP are abstraction and reusability	
Feedback D	Encapsulation is similar to abstraction but not the same and second advantage is reusability.	

Question	What is a variable?
Reference Answer	A location in memory
	that can store a value.
Student Answer	a value/word that can
	assume any of a set of values
Feedback A	correct
Feedback B	missing keywords:
	location in memory
Feedback C	A variable is a location
	in memory that stores a value

Question	What is the difference between a constructor and a function?
Reference Answer	A constructor is called whenever an object is created
	whereas a function needs to be called explicitly.
	Constructors do not have return type but functions have
	to indicate a return type.
Student Answer	Constructors don't have a return type.
Feedback A	Missing point: A constructor is called whenever
	an object is created whereas a function needs
	to be called explicitly.
Feedback B	Correct
Feedback C	Missing point: Constructors do not have return
	type but functions have to indicate a return type.
Feedback D Answer not explained properly. Information on	
	function/ constructor calling and their return type missing.

Question	When does C++ create a default constructor?
Reference Answer	If no constructor is provided the compiler
	provides one by default. If a constructor is
	defined for a class the compiler does not
	create a default constructor.
Student Answer	When non are provided
Feedback A	If no constructor is defined then a default
	constructor is created during compilation.
Feedback B	Missing keywords: during compilation
Feedback C	Correct

Prediction Time

Method	Avg. Prediction Time (sec)
Passage-Based	0.0344
Sentence-Based	0.0749
Chunk-Based	41.3039
RDF-Based	5.8424

Table 12: Shows average prediction time (in seconds) per response for each method.

