Billiards

Jonathan Allen, John Wang

Massachusetts Institute of Technology

November 22nd, 2013

Introduction

• Frictionless, massless, point-sized billiard ball bouncing in a square.

Basic Notation

Definition

A table $T \subset \mathbb{R}^2$ is the unit square. Vertical sides are labelled with a v. Horizontal sides are labelled with an h.

vvvhvvvv vhv

vvvhvvvvvhv vv

vvvhvvvvhvvv vhv

Resulting Sequence

vvvhvvvvhvvvvhv

Presentation Outline

- Introduction
- 2 Tiling
- Theorems
- Future Research

Problem Statement

Problem: Given a sequence of v and h collisions, determine if it is a valid collision sequence.

Basic Notation

Definition

v collision: when the ball collides with a v side

Definition

h collision: when the ball collides with an h side

Definition

Collision sequence (α): a sequence of v and h collisions which starts and ends with an h collision.

Introduction

- 2 Tiling
- Theorems

4 Future Research

Representing Collision Sequences

- Tile the table in the plane for a more powerful representation of the problem
- Tiling will reflect the table about each side
- After tiling, we only need to deal with straight line trajectories in a tiled plane

Introduction

2 Tiling

Theorems

4 Future Research

Indexing Definitions

$$I(A, b)_k$$
: index of k^{TH} b in A
 β_i : # of v's between i^{TH} and $(i+1)^{TH}$ collisions $([I(\alpha, h)]_{i+1} - [I(\alpha, h)]_i)$

Theorem

$$\beta_i \geq 1 \quad i \in \{0, \ldots, length(I(\alpha, h)) - 2\}$$

Introduction

2 Tiling

- Theorems
- Future Research

Extensions to Cubes

- Assign x, y, and z as the opposite pairs of faces of a cube.
- Characterize sequences of x, y, and z collisions.

Intuition

- Examine collisions in xy, yz, and xz planes.
- Movement in each plane is independent.
- Combine xy, yz, and xz collision sequences to get final sequence.

Example

xy sequence: xxyyxx yz sequence: zzyzyz xz sequence: xxzzzx