

UNCLASSIFIED

AD 293 871

*Reproduced
by the*

**ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA**

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

63-2-2

DASA 1313

293871

ASTIA

CLASSIFIED
AS ADVERTISING

TECHNICAL
PROGRESS REPORT

293871

DEFENSE ATOMIC SUPPORT AGENCY

WASHINGTON 25, D.C.

THE EXPOSURE OF GUINEA PIGS TO
PRESSURE-PULSES GENERATED DURING
THE END-TO-END TEST (NO. 2) OF
ATLAS MISSILE 8-D (MARCH 31, 1962)

D. R. Richmond, Ph. D.

Technical Progress Report
on
Contract No. DA-49-146-XZ-055

This work, an aspect of investigations dealing with
the Biological Effects of Blast from Bombs, was
supported by the Defense Atomic Support Agency of
the Department of Defense

(Reproduction in whole or in part is permitted for
any purpose of the United States Government)

Lovelace Foundation for Medical Education and Research
Albuquerque, New Mexico

June 26, 1962

FOREWORD

This report describes the effects on guinea pigs of the pressure-pulses emanating from a pressurized Atlas Missile ruptured during a safety test.

The data are limited to the pressure wave forms encountered and to the specific geometry of exposure. They are pertinent to military and industrial situations that involve safety measures about pressurized tanks.

This test was a small part of a continuing research program aimed at a better understanding of the human response to blast and shock phenomena.

ABSTRACT

To help determine the extent of the blast hazard to the operator of a Pressure Control Unit, an Atlas 8-D missile was pressurized to 35 psi with gaseous nitrogen and ruptured with an explosive charge. Three guinea pigs were placed on the Pressure Control Unit which was located beneath the ramp 90 ft from the missile. In addition, ten guinea pigs were placed on the surface of the simulated ramp at 30-, 35-, 75- and 94-ft ranges.

Following the burst, missile fragments littered the test area, although none were found at the Pressure Control Unit. Overpressures of only 0.3 psi were recorded in the vicinity of the Pressure Control Unit. The pressure pulse was slow rising (9-14 msec) and endured for about 25 msec. The three guinea pigs at that location were unharmed.

At the 30-ft ranges, pressures of 1.1-1.4 psi were recorded with times to peak and durations of 2-3 msec and 13-16 msec, respectively. One guinea pig's eardrum was ruptured, and one animal sustained a slight degree of lung hemorrhage. The other eight animals were unhurt. The biological results were discussed in relation to the pressure-time data.

ACKNOWLEDGMENTS

The author is indebted to the following individuals at Astronautics Division of General Dynamics, San Diego, for their cooperation during these tests:

Robert C. Armstrong, M.D., Chief of Life Sciences; William L.S. Wu, M.D., Aerospace Medical Specialist, Life Sciences; and William C. Fogg, Senior Engineer, Mechanical Systems Test.

Appreciation is also expressed to Colonel Robert H. Holmes, (MC) U.S.A., Project Officer, Defense Atomic Support Agency, Washington, D.C.; Clayton S. White, M.D., Director of Research, Lovelace Foundation for Medical Education and Research, Albuquerque, New Mexico; and Mrs. Maxine U. Thibert for editorial and secretarial aid.

TABLE OF CONTENTS

	<u>Page</u>
Foreword	i
Abstract	ii
Acknowledgments	iii
Introduction	1
Methods	2
Results and Discussion	5
Summary	11

LIST OF TABLES

No. 1 Biological Data from Guinea Pigs Exposed to the Air Blast from an Atlas Missile 8-D	6
No. 2 Summary of the Pressure-Time Parameters	9

LIST OF FIGURES

No. 1 Plan View of Test Area.	3
No. 2 Elevation View of Test Area.	4
No. 3 Pressure vs Time Recordings - Gauges 1-5	7
No. 4 Pressure vs Time Recordings - Gauges 6-10	8

INTRODUCTION

Following transport of the Atlas missile, it is necessary that it be tested for leaks before fueling by pressurization of the upper "oxygen tank" and the lower "fuel tank" with gaseous nitrogen (GN₂). If the missile ruptures during pressurization, the operator of the Pressure Control Unit (located 90 ft away and below the ramp) could be subjected to blast hazards in the form of flying debris, translation and overpressure. These tests were therefore conducted to ascertain the extent of those hazards.

Test Number 1 was carried out 16 December 1961 with the Atlas Missile 8-D. The lower fuel tank was pressurized with GN₂ to 60 psi and the upper oxygen tank to 30 psi. A 30.06-rifle bullet was fired through the oxygen tank to initiate rupture. The missile did not burst, but rather, the gas leaked from the oxygen tank through the entrance and exit bullet holes. The bulk-head between tanks failed, and the gas in the fuel tank vented to the outside via the oxygen tank and bullet holes. Except for the bullet holes in the upper tank and the ruptured bulk-head, the missile remained intact.

On Test Number 2, the same missile 8-D was employed. The bullet holes were patched, but not the bulk-head; consequently, the missile was essentially a single tank. The plans were to pressurize the entire missile to 35 psi with GN₂ which would provide the same gaseous content as with Test Number 1. Rupture was to be initiated by a sheet of plastic explosive (Dupont Sheet Explosive EL 506 A4) that had an explosive yield equivalent to 1 lb of TNT. The explosive was on the north side of the missile at the level of the bulk-head.

On Test Number 2, it was decided that personnel from the Lovelace Foundation (with the approval of Colonel Robert H. Holmes, Project Officer, Defense Atomic Support Agency, Department of Defense -- Contract DA-49-146-XZ-055) would place guinea pigs at various distances from the missile in the Pressure Control Unit room to supplement the pressure-time gauges. In the past, experimental animals have been employed with great advantage in assessing the total environment near explosive phenomena¹⁻³.

METHODS

A total of 15 guinea pigs of both sexes and with an average body weight of 258.7 grams (234.4-298.6) were employed. Ten animals were exposed at ground level, three were placed on the Pressure Control Unit and two were kept for controls. During the test, all animals were held in place by 3-1/2 x 8-in. cylindrical cages made of "chicken wire." The cages and animals were all secured side-on with respect to the missile. Animals could turn end-for-end in their cages.

The general layout of the animal placement can be seen in Figures 1 and 2. Guinea pigs numbered "1", "2", "3" and "4" were respectively on the west, north, east and south sides of the missile--all at the 30-ft range. Also, to the south were animals numbered "5" and "6" at 35 ft; "7" and "8" at 75 ft; and "9" and "10" at the 94-ft ranges. Below the ramp, animal "11" was on top of the Pressure Control Unit, while animals "12" and "13" were on the operator's side of this unit.

The locations of the eleven pressure transducers (Wiancko Model P-1409) can be seen in Figures 1 and 2. Gauges (Boss) numbered 1 through 5 were in the Pressure Control Unit room beneath the ramp; gauge 6 was on the simulated ramp; and gauges 7 through 10 were on the surface 30 ft from the missile's center--one to the south, north, east and west, respectively. Gauge 31 was located on the missile.

PLAN VIEW
OF TEST AREA
SHOWING BOSS LOCATIONS
AND TEST SPECIMEN

2

Boss 10

ANIMALS
MISSILE
PLCS.
TYP.
30-0

Diagram illustrating the locations of the four bosses and the missile relative to the Instrumentation Station (Animal 5). The Instrumentation Station is at the top right. Boss 1 is to its left. Boss 2 is below the Instrumentation Station. Boss 3 is to the left of Boss 2. Boss 4 is to the left of Boss 3. The missile is located below the Instrumentation Station, to the right of Boss 2.

DIRECTION TEST TIME OF FEELING WIMMELIAG.

PLAN VIEW NOT TO SCALE

NOT TO SCALE

A hand-drawn diagram of a game map, likely from Super Mario Bros. 3. The map shows a level layout with various entities labeled. Key features include:

- RAMP WALL:** A horizontal line labeled "RAMP WALL" at the top.
- RAMP ROOF:** A line labeled "RAMP ROOF" on the left.
- BOSS 4 (BOSS ROOF):** A small circle labeled "BOSS 4 (BOSS ROOF)" near the top center.
- BOSS 5:** A small circle labeled "BOSS 5" near the center.
- BOSS 6:** A small circle labeled "BOSS 6" near the bottom center.
- BOSS 7:** A small circle labeled "BOSS 7" near the bottom center.
- BOSS 8:** A small circle labeled "BOSS 8" near the bottom center.
- BOSS 9:** A small circle labeled "BOSS 9" near the bottom center.
- ANIMAL 1 (low score):** A small circle labeled "ANIMAL 1 (low score)" near the bottom center.
- ANIMAL 2 (low score):** A small circle labeled "ANIMAL 2 (low score)" near the bottom center.
- ANIMAL 3 (low score):** A small circle labeled "ANIMAL 3 (low score)" near the bottom center.
- ANIMAL 4 (low score):** A small circle labeled "ANIMAL 4 (low score)" near the bottom center.
- ANIMAL 5 (low score):** A small circle labeled "ANIMAL 5 (low score)" near the bottom center.
- ANIMAL 6 (low score):** A small circle labeled "ANIMAL 6 (low score)" near the bottom center.
- ANIMAL 7 (low score):** A small circle labeled "ANIMAL 7 (low score)" near the bottom center.
- ANIMAL 8 (low score):** A small circle labeled "ANIMAL 8 (low score)" near the bottom center.
- ANIMAL 9 (low score):** A small circle labeled "ANIMAL 9 (low score)" near the bottom center.
- ANIMAL 10 (low score):** A small circle labeled "ANIMAL 10 (low score)" near the top center.
- ANIMAL 11 (low score):** A small circle labeled "ANIMAL 11 (low score)" near the bottom center.
- ANIMAL 12 (low score):** A small circle labeled "ANIMAL 12 (low score)" near the top center.
- DUMMY 3:** A small circle labeled "DUMMY 3" near the center.
- DUMMY 4:** A small circle labeled "DUMMY 4" near the center.
- DUMMY 5:** A small circle labeled "DUMMY 5" near the center.
- DUMMY 6:** A small circle labeled "DUMMY 6" near the center.
- DUMMY 7:** A small circle labeled "DUMMY 7" near the center.
- DUMMY 8:** A small circle labeled "DUMMY 8" near the center.
- DUMMY 9:** A small circle labeled "DUMMY 9" near the center.
- DUMMY 10:** A small circle labeled "DUMMY 10" near the center.
- DUMMY 11:** A small circle labeled "DUMMY 11" near the center.
- DUMMY 12:** A small circle labeled "DUMMY 12" near the center.
- DUMMY 13:** A small circle labeled "DUMMY 13" near the center.

NOTE: INDICATES PRESSURE TRANSDUCER (BLAST) WITH ARROW INDICATING DIRECTION TRANSDUCER FACES.

 INDICATES PRESSURE TRANSDUCER (BLAST) FACING OUT OF PAGE.

 INDICATES A GUINEA PIG.

Figure 1

RESULTS AND DISCUSSION

Recovery of the guinea pigs began about five minutes after the missile ruptured. All cages and animals were found intact; although some narrowly missed being struck with falling missile debris that was found in close proximity to the cages at the 30- and 35-ft ranges. All animals survived the test and externally appeared alert and uninjured.

At thirty minutes following the test, autopsy of the experimental animals was undertaken. They were sacrificed with intraperitoneal injections of Nembutal. Table 1 lists the findings at autopsy. Except for the eardrum rupture in animal "2" (which was located 30 ft to the north of the missile) and a slight degree of lung hemorrhage sustained by animal "6" (at the 35-ft range), the findings were negative.

That the pressure-pulse from the bursting missile was not intense enough to cause significant animal injury or lethality was substantiated by the pressure-time records which are illustrated in Figures 3 and 4. The significant pressure-time parameters were picked from these records and appear in Table 2.

According to the records in Figure 3, the pressure-time pattern in the Pressure Control Unit room was merely a compression wave and not a shock wave. The pressures from the record of gauge 3 appeared low compared to the other four gauges in the Pressure Control Unit, which showed a P_{max} of 0.33 to 0.35 psi with rise times of from 10.2 to 14.3 msec, with minimum pressures during the negative phase of -0.33 to -0.50 psi.

It is of interest to note from the four pressure-time records shown in Figure 4, taken with gauges at the 30-ft ranges, that the pressure disturbance arrived at the gauge to the north of the missile about 2.5 msec before it arrived at those located to the east and west, and about 4.5 msec before it reached the gauge placed 30 ft to the south. Apparently, the shock wave from the high-explosive detonation reached these gauges just before the main pulse from the rupturing missile. In addition, the rupture was initiated along the north side of the missile on which the explosive was attached. Gauge 31, located on the missile, showed that the pressure in the tank started to decay 8 msec after detonation and reached zero pressure in the next 9 msec.

The pressure-time record taken with the gauge on the top of the ramp at the 94-ft range showed a P_{max} of 0.81 psi and a duration of 12.9 msec. The time to P_{max} was about 1 msec. Unfortunately, because of the relatively slow frequency response of the gauges and recording system, one cannot tell whether or not there was a shock front present at the leading edge of the pulse.

TABLE 1

BIOLOGICAL DATA FROM GUINEA PIGS EXPOSED
TO THE AIR BLAST FROM ATLAS MISSILE 8-D

Animal Number	Approximate Range* ft	Body Weight, gm	Lung Weight, gm	% of Body Weight	Lung Weight, % of Body Weight	Remarks
1	30	298.6	2.2	0.74		
2		243.8	2.0	0.82		
3		290.0	2.2	0.76		
4		234.4	1.9	0.81		
	Average		2.1		0.78	
5	35	275.9	2.2	0.80		
6		250.0	2.2	0.88		
	Average		2.2		0.84	
7	75	259.0	1.9	0.73		
8		275.5	2.0	0.72		
	Average		2.0		0.72	
9 _a	94	235.9	1.9	0.80		
10		293.4	2.2	0.75		
	Average		2.0		0.78	
11	89	245.0	1.8	0.73		
12		198.2	1.5	0.76		
13		285.1	2.0	0.70		
	Average		1.8		0.73	
Control:						
A		257.5	1.8	0.70		
B		237.9	2.0	0.84		
	Average		1.9		0.77	

*Measured to the center of the missile (ground range).

Figure 3

Figure 4

TABLE 2
SUMMARY OF THE PRESSURE-TIME PARAMETERS

Gauge No.	Location	P _{max} , psi	Time to P _{max} , msec	Duration Positive Phase, msec	Minimum Negative Pressure, psi	Time to Minimum Negative Pressure, msec
1	Top of PCU	0.33	13.8	25.1	-0.47	13.4
2	Back of PCU, opposite dummy	0.33	10.2	27.7	-0.50	13.1
3	Left side of PCU	0.17	9.1	25.1	-0.22	14.8
4	Wall back of dummy	0.33	11.9	22.8	-0.33	9.8
5	Wall to the right of the dummy	0.35	14.3	25.3	-0.33	12.6
6	On the top of the simulated ramp	0.81	1.3	12.9	-0.40	16.3
7	30 ft to the south of the missile	1.1	2.9	13.1	-0.80	15.4
8	30 ft to the west of the missile	1.4	2.2	16.1	-0.70	8.6
9	30 ft to the north of the missile	1.4	2.3	15.0	-0.80	11.0
10	30 ft to the east of the missile	1.1	3.2	16.1	-0.60	10.8

*Measured from the end of the positive phase.

The pressure required to rupture 50 percent of guinea pig eardrums has been reported to be 7.4 psi³. Thus, one may expect an occasional eardrum to fail at the 1.4-psi level as experienced on this test. On the other hand, it is doubtful that the slight degree of lung hemorrhage sustained by animal "6" was caused by the magnitude of overpressure encountered. Shock tube studies with guinea pigs in the 400 to 500 gram weight range suggest the threshold for pulmonary hemorrhage to be near 15 psi⁴. The lung injury may have been caused by debris striking the animal. There were no missile fragments found in the vicinity of the Pressure Control Unit.

Data on the gas temperature in the missile, the acceleration measurements taken on the anthropomorphic dummy seated at the Pressure Control Unit, sound-intensity levels and the like may be found in the main test report⁵.

SUMMARY

1. This test was undertaken to assess the blast hazards in the vicinity of a man stationed at a Pressure Control Unit located beneath the ramp approximately 90 ft from an Atlas 8-D missile during its pressurization check-out prior to fueling.
2. The Atlas Missile 8-D, without the bulk-head between its liquid oxygen and fuel tanks, was pressurized to 35 psi with gaseous nitrogen and ruptured with a small, high-explosive charge.
3. To supplement pressure-time gauges, thirteen guinea pigs were exposed to the pressure-pulse produced by the bursting missile. Three animals were placed on the Pressure Control Unit. On the ramp, four animals were located at 30 ft, and 2 each at 35-, 75- and 94-ft ranges.
4. All animals survived the test. Except for a ruptured eardrum in one of the four animals at the 30-ft range and a slight degree of lung hemorrhage in a guinea pig at the 35-ft range, the findings at autopsy were negative.
5. The maximum overpressure recorded in the vicinity of the Pressure Control Unit was 0.35 psi. The pressure was slow rising with a time to peak of 14 msec, and the duration of the positive phase was 25 msec.
6. On the simulated ramp at the 30-ft range, overpressures of 1.1-1.4 psi were recorded. The pressures peaked in 2-3 msec and endured for 13-16 msec at that distance from the missile.
7. The biological results were discussed briefly in connection with the pressure-time data.

REFERENCES

1. Richmond, D. R., C.S. White, R. T. Sanchez and F. Sherping: The internal environment of underground structures subjected to nuclear blast. II. Effects on mice located in heavy concrete shelters. Operation Plumbbob, Report WT-1507. AEC Civil Effects Test Group, Office of Technical Services, Department of Commerce, Washington 25, D. C. May 31, 1960.
2. White, C.S., T.L. Chiffelle, D.R. Richmond, W. H. Lockyear, I. G. Bowen, V. C. Goldizen, H. W. Merideth, D. E. Kilgore, B. B. Longwell, J. T. Parker, F. Sherping and M. E. Cribb: The biological effects of pressure phenomena occurring inside protective shelters following nuclear detonation. Operation Teapot, Report WT-1179. AEC Civil Effects Test Group, Office of Technical Services, Department of Commerce, Washington 25, D. C. October 28, 1957.
3. Richmond, D. R., R. V. Taborelli, I. G. Bowen, T. L. Chiffelle, F. G. Hirsch, B. B. Longwell, J. G. Riley, C. S. White, F. Sherping, V. C. Goldizen, J. D. Ward, M. B. Wetherbe, V. R. Clare, M. L. Kuhn and R. T. Sanchez: Blast Biology - A study of the primary and tertiary effects of blast in open underground protective shelters. Operation Plumbbob, Report WT-1467, AEC Civil Effects Test Group, Office of Technical Services, Department of Commerce, Washington 25, D. C. June 30, 1959.
4. Richmond, D. R., V. C. Goldizen, V. R. Clare, D. E. Pratt, F. Sherping, R. T. Sanchez, C. C. Fischer and C. S. White: Mortality in small animals exposed in a shock tube to "sharp"-rising overpressures of 3-4 msec duration. Submitted as a Progress Report, dated June 15, 1961, to the Defense Atomic Support Agency on Contract No. DA-49-146-XZ-055. Subsequently published as DASA Report No. 1242. Also appeared under the title: The biologic response of overpressure. III. Mortality in small animals exposed in a shock tube to sharp-rising overpressures of 3 to 4 msec duration, in Aerospace Med., 33: 1-27, 1962.
5. Lynch, J. F.: AMR "F" series end to end test. General Dynamics Astronautics. Report No. 27B 1417-1. April 23, 1962.

DISTRIBUTION

ARMY AGENCIES

Dep Chief of Staff for Mil Ops., DA, Washington 25, DC Attn: Dir of SW&R	1
Chief of Research & Develop, DA, Washington 25, DC Attn: Atomic Division	1
Assistant Chief of Staff, Intelligence, DA, Washington 25, DC	1
Chief Chemical Officer DA, Washington 25, DC	2
Chief of Engineers DA, Washington 25, DC ATTN: ENGNB	1
Chief of Engineers DA, Washington 25, DC Attn: ENGEB	1
Chief of Engineers DA, Washington 25, DC Attn: ENGTB	1
Chief of Ordnance, DA, Washington 25, DC Attn: ORDTN	2
Chief Signal Officer, DA, Comb Dev & Ops Div Washington 25, DC Attn: SIGCO-4	1
Chief of Transportation, DA, Office of Planning & Intel. Washington 25, DC	1
The Surgeon General, DA, Washington 25, DC Attn: MEDNE	2
Commander-in-Chief, U.S. Army Europe, APO 403, New York, N.Y. Attn: OPOT Div, Weapons Branch	1

Commanding General U.S. Continental Army Command Ft. Monroe, Va.	3
Director of Special Weapons Development Office, HQ CONARC, Ft. Bliss, Texas Attn: Capt Chester I. Peterson	1
President U.S. Army Artillery Board Ft. Sill, Okla	1
President U.S. Army Aviation Board Ft. Rucker, Alabama Attn: ATBG-DG	1
Commandant U.S. Army C&GS College Ft. Leavenworth, Kansas Attn: Archives	1
Commandant U.S. Army Air Defense School Ft. Bliss, Texas Attn: Command & Staff Dept	1
Commandant U.S. Army Armored School Ft. Knox, Kentucky	1
Commandant U.S. Army Arty & Missile Sch Ft. Sill, Oklahoma Attn: Combat Dev Dept	1
Commandant U.S. Army Infantry School Ft. Benning, Ga. Attn: C.D.S.	1
Commandant Quartermaster School, US Army Ft. Lee, Va. Attn: Ch, QM Library	1
Commanding General Chemical Corps Training Comd Ft. McClellan, Ala.	1

Commandant
US Army Chemical Corps CBR
Weapons School
Dugway Proving Ground
Dugway, Utah 1

Commandant
US Army Signal School
Ft. Monmouth, N. J. 1

Commandant
US Army Transport School
Ft. Eustis, Va.
Attn: Security & Info Off. 1

Commanding General
The Engineer Center
Ft. Belvoir, Va.
Attn: Asst. Cmdt Engr School 1

Commanding General
Army Medical Service School
Brooke Army Medical Center
Ft. Sam Houston, Texas 1

Commanding Officer
9th Hospital Center
APO 180, New York, N.Y.
Attn: CO, US Army Nuclear
Medicine Research Det, Europe 1

Director
Armed Forces Institute of Path.
Walter Reed Army Med. Center
625 16th St. NW
Washington 25, D.C. 1

Commanding Officer
Army Medical Research Lab.
Ft. Knox, Ky 1

Commandant,
Walter Reed Army Inst of Res.
Walter Reed Army Med Center
Washington 25, D.C. 1

Commanding General
QM R&D Comd,
QM R&D Center
Natick, Mass.
Attn: CBR Liaison Officer 2

Commanding General
QM Research & Engr. Comd, USA
Natick, Mass
(For reports from Opn HARDTACK
only)

1

Commanding General
US Army Chemical Corps
Research & Development Comd.
Washington 25, DC

2

Commanding Officer
Chemical Warfare Lab
Army Chemical Center, Md.
Attn: Tech Library

2

Commanding General
Engineer Research & Dev Lab
Ft. Belvoir, Va.
Attn: Ch, Tech Support Branch

1

Director
Waterways Experiment Station
PO Box 631
Vicksburg, Miss.
Attn: Library

1

Commanding General
Aberdeen Proving Ground
Aberdeen Proving Ground, Md.
Attn: Ballistic Research Lab,
Dir. BRL

2

Commander
Army Ballistic Missile Agency
Redstone Arsenal, Alabama
Attn: ORDAB-HT

1

Commanding General
US Army Electronic Proving
Ground
Ft. Huachuca, Arizona
Attn: Tech Library

1

Director
Operations Research Office
Johns Hopkins University
6935 Arlington Road
Bethesda 14, Md.

1

DISTRIBUTION

NAVY AGENCIES

Chief of Naval Operations D/N, Washington 25, D.C. ATTN: OPO3EG	1
Chief of Naval Operations D/N, Washington 25, D.C. ATTN: OP-75	1
Chief of Naval Operations D/N, Washington 25, D.C. ATTN: OP-922G2	1
Chief of Naval Operations D/N, Washington 25, D.C. ATTN: OP-91	1
Chief of Naval Personnel D/n, Washington 25, D.C.	1
Chief of Naval Research D/N, Washington 25, D.C. ATTN: Code 811	2
Chief Bureau of Medicine & Surgery D/N, Washington 25, D.C. ATTN: Special Wpns Def Div	1
Chief, Bureau of Ships D/N, Washington 25, D.C. ATTN: Code 423	1
Chief Bureau of Yards & Docks D/N, Washington 25, D.C. ATTN: D-440	1
Director U.S. Naval Research Laboratory Washington 25, D.C. ATTN: Mrs. Katherine H. Cass	1
Commander U.S. Naval Ordnance Lab White Oak, Silver Spring, Maryland	2
Director Material Laboratory (Code 900) New York Naval Shipyard Brooklyn 1, N.Y.	1

Commanding Officer U.S. Naval Mine Defense Lab Panama City, Fla	1
Commanding Officer U.S. Naval Radiological Defense Laboratory, San Francisco California, ATTN: Tech Info Div	4
Commanding Officer & Director U.S. Naval Civil Engineering Lab., Port Hueneme, California ATTN: Code L31	1
Commanding Officer, U.S. Naval Schools Command, U.S. Naval Station, Treasure Island, San Francisco, California	1
Superintendent U.S. Naval Postgraduate School Monterey, California	1
Commanding Officer, Nuclear Weapons Training Center, Atlantic, U.S. Naval Base, Norfolk 11, Va., ATTN: Nuclear Warfare Dept	1
Commanding Officer, Nuclear Weapons Training Center, Pacific, Naval Station, San Diego, California	1
Commanding Officer, U.S. Naval Damage Control Tng Center, Naval Base, Philadelphia 12, Pa ATTN: ABC Defense Course	1
Commanding Officer U.S. Naval Air Development Center, Johnsville, Pa ATTN: NAS, Librarian	1
Commanding Officer, U.S. Naval Medical Research Institute, National Naval Medical Center, Bethesda, Maryland	1

Officer in Charge, U.S. Naval
Supply Research & Development
Facility, Naval Supply Center,
Bayonne, New Jersey 1

Commandant
U.S. Marine Corps
Washington 25, D.C.
ATTN: Code AO3H 1

DISTRIBUTION

AIR FORCE AGENCIES

Air Force Technical Application
Center, Hq USAF,
Washington 25, D.C. 1

Hq USAF, ATTN: Operations
Analysis Office, Vice
Chief of Staff,
Washington 25, D.C. 1

Air Force Intelligence Center
Hq USAF, ACS/1 (AFOIN-3VI)
Washington 25, D.C. 2

Assistant Chief of Staff
Intelligence, HQ USAFE, APO
633, New York, N.Y. ATTN:
Directorate of Air Targets 1

Director of Research &
Development, DCS/D, Hq USAF,
Washington 25, D.C.
ATTN: Guidance & Weapons
Division 1

Commander
Tactical Air Command
Langley AFB, Virginia
ATTN: Doc Security Branch 1

The Surgeon General
Hq USAF, Washington 25, D.C.
ATTN: Bio-Def Pre Med Div 1

Commander Tactical Air Command Langley AFB, Virginia ATTN: Doc Security Branch	1
Commander Air Defense Command Ent AFB, Colorado, ATTN: Assistant for Atomic Energy, ADLDC-A	1
Commander, HQ Air Research & Development Command, Andrews AFB, Washington 25, D.C. ATTN: RDRWA	1
Commander, Air Force Ballistic Missile Division Hq ARDC, Air Force Unit Post Office, Los Angeles 45, California ATTN: WDSOT	1
Commander-in-Chief, Pacific Air Forces, APO 953, San Francisco, California, ATTN: PFCIE-MB, Base Recovery	1
Commander, AF Cambridge Research Center, L.G. Hanscom Field, Bedford, Massachusetts, ATTN: CRQST-2	2
Commander, Air Force Special Weapons Center, Kirtland AFB, Albuquerque, New Mexico, ATTN: Tech Info & Intel Div	5
Directory Air University Library Maxwell AFB, Alabama	2
Commander Lowry AFB, Denver, Colorado Attn: Dept of Sp Wpns Tng	1
Commandant, School of Aviation Medicine, USAF Aerospace Med- ical Center (ATC) Brooks AFB Tex ATTN: Col Gerrit L. Hekhuis	2

Commander
1009th Sp Wpns Squadron
Hq USAF, Washington 25, D.C. 1

Commander
Wright Air Development Center
Wright-Patterson AFB, Ohio
ATTN: WCOSI 2

Director, USAF Project Rand,
VIA:US Air Force Liaison Office
The Rand Corporation, 1700
Main Street, Santa Monica,
California 2

Commander, Air Defense Systems
Integration Division, L.G.
Hanscom Field, Bedford, Mass
ATTN: SIDE-S 1

Commander, Air Technical Intelligence Center, USAF, Wright-Patterson Air Force Base, Ohio
ATTN: AFCIN-4Bla, Library 1

DISTRIBUTION

OTHER AGENCIES

Director of Defense Research
and Engineering,
Washington 25, D.C.
ATTN: Tech Library 1

Director, Weapons Systems
Evaluation Group, Room IE880
The Pentagon
Washington 25, D.C. 1

U.S. Documents Officer
Office of the United States
National Military Representative-SHAPE APO 55, NY., N.Y. 1

Chief
Defense Atomic Support Agency
Washington 25, D.C.
ATTN: Document Library
Reduce to 3 cys for all FWE reports 4

Commander, Field Command DASA, Sandia Base, Albuquerque, New Mexico	1
Commander, Field Command DASA, Sandia Base Albuquerque, New Mexico ATTN: FCTG	1
Commander, Field Command DASA, Sandia Base Albuquerque, New Mexico ATTN: FCWT	2
Administrator, National Aeronautics & Space Adminis- tration, 1520 "H" Street N.W. Washington 25, D.C., ATTN: Mr. R.V. Rhode	1
Commander-in-Chief Strategic Air Command Offutt AFB, Nebraska ATTN: QAWS	1
Commandant U.S. Coast Guard 1300 E. Street, NW Washington 25, D.C. ATTN: (OIN)	1

SPECIAL DISTRIBUTION

U.S. Atomic Energy Commission Washington 25, D.C. ATTN: Chief, Civil Effects Branch Division of Biology and Medicine	450
Aberdeen Proving Ground, Md. Ballistic Research Laboratories Terminal Ballistics Attn: Mr. Robert O. Clark, Physicist Mr. William J. Taylor, Physicist	2

Airborne Instruments Laboratory
Department of Medicine and Biological Physics
Deer Park, Long Island, New York
Attn: Mr. W. J. Carberry 1

Air Force Special Weapons Center
Kirtland Air Force Base
Albuquerque, N.M
Attn: Mr. R. R. Birukoff, Research Engineer 1

Air Research & Development Command Hqs.
Andrews Air Force Base
Washington 25, D.C.
Attn: Brig. Gen. Benjamin Strickland
Deputy Director of Life Sciences 1

AiResearch Manufacturing Company
9851-9951 Sepulveda Blvd.
Los Angeles 25, California
Attn: Mr. Frederick H. Green, Assistant Chief,
Preliminary Design
Dr. James N. Waggoner, Medical Director 2

AeResearch Manufacturing Company
Sky Harbor Airport
402 South 36th Street
Phoenix, Arizona
Attn: Delano Debaryshe
Leighton S. King 2

American Airlines, Inc.
Medical Services Division
La Guardia Airport Station
Flushing 71, N.Y.
Attn: Dr. Kenneth L. Stratton, Medical Director 1

Brooks Air Force Base
United States Air Force Aerospace Medical Center (ATC)
School of Aviation Medicine
Brooks Air Force Base, Texas
Attn: Brig. Gen. Theodore C. Bedwell, Jr., Commandant
Col. Paul A. Campbell, Chief, Space Medicine
Dr. Hubertus Strughold, Advisor for Research & 3
Professor of Space Medicine

The Boeing Company 3
P. O. Box 3707
Seattle 24, Washington
Attn: Dr. Thrift G. Hanks, Director of Health & Safety
Dr. Romney H. Lowry, Manager, Space Medicine Branch

Dr. F. Werner, Jr., Space Medicine Section
P.O. Box 3915

Chance Vought Astronautics 5
P. O. Box 5907
Dallas 22, Texas
Attn: Dr. Charles F. Gell, chief Life Sciences
Dr. Lathan
Mr. Ramon McKinney, Life Sciences Section
Mr. C. O. Miller
Mr. A. I. Sibila, Manager Space Sciences

Chemical Corps Research & Development Command 2
Chemical Research & Development Laboratories
Army Chemical Center, Md.
Attn: Dr. Fred W. Stemler
Dr. R. S. Anderson

Civil Aeromedical Research Institute 1
Oklahoma City, Oklahoma
Attn: Director of Research

Convair Division, General Dynamics Corp. 2
Fort Worth, Texas
Attn: Mr. H. A. Bodely
Mr. Schreiber

Convair - General Dynamics Corporation 8
Mail Zone 1-713
P. O. Box 1950
San Diego 12, California
Attn: Dr. R. C. Armstrong, Chief Physician
Dr. J. C. Clark, Assistant To Vice-President Engineering
Mr. James Dempsey
Dr. L. L. Lowry, Chief Staff Systems Evaluation Group
Mr. M. H. Thiel, Design Specialist

Dr. R. A. Nau (Mail Zone 6-104)

Mr. W. F. Rector, III (Mail Zone 580-40), P.O. Box 1128

Mr. R. C. Sebold, Vice-President Engineering
Convair General Offices

Defense Atomic Support Agency
Department of Defense
Field Command
Sandia Base, New Mexico
Attn: Col. S. W. Cavender, Surgeon

1

The Dikewood Corporation
4805 Menaul Blvd., N.E.
Albuquerque, New Mexico

1

Douglas Aircraft Company, Inc.
El Segundo Division
El Segundo, California
Attn: Mr. Harvey Glassner
Dr. E. B. Konecci

2

Federal Aviation Agency
Washington 25, D.C.
Attn: Dr. James L. Goddard, Civil Air Surgeon

1

Goodyear Aircraft Corporation
Department 475, Plant H
1210 Massillon Road
Akron 15, Ohio
Attn: Dr. A. J. Cacioppo

1

Harvard School of Public Health
Harvard University
695 Huntington Avenue
Boston 15, Mass.
Attn: Dr. Ross A. McFarland, Associate Professor
of Industrial Hygiene

1

Mr. Kenneth Kaplan
Physicist
Broadview Research Corporation
1811 Trousdale Drive
Burlingame, Calif.

1

Lockheed Aircraft Company
Suite 302, First National Bank Bldg.
Burbank, California
Attn: Dr. Charles Barron

1

Lockheed Aircraft Corporation
Lockheed Missile and Space Division
Space Physics Department (53-23)
Sunnyvale, California
Attn: Dr. W. Kellogg, Scientific Assistant to
Director of Research
Dr. Heinrich Rose

3

Lockheed Aircraft Corporation
1122 Jagels Road
Palo Alto, California
Attn: Dr. L. Eugene Root, Missile Systems Director

Lovelace Foundation for Medical Education and Research
4800 Gibson Blvd., SE
Albuquerque, N.M.
Attn: Dr. Clayton S. White, Director of Research

50

The Martin Company
Denver, Colorado
Attn: Dr. James G. Gaume, Chief, Space Medicine

1

McDonnel Aircraft Company
Lambert Field
St. Louis, Missouri
Attn: Mr. Henry F. Creel, Chief Airborne Equipment
Systems Engineer
Mr. Bert North

National Aeronautics and Space Administration
1520 "H" Street, N.W.
Washington 25, D.C.
Attn: Brig. Gen. Charles H. Roadman, Acting Director,
Life Sciences Program

1

Naval Medical Research Institute
Bethesda, Md.
Attn: Dr. David E. Goldman, MSC, Commander

1

Department of the Navy
Bureau of Medicine & Surgery
Washington 25, D.C.
Attn: Capt. G. J. Duffner, Director, Submarine Medical Division

North American Aviation 4
International Airport
Los Angeles 45, Calif.
Attn: Scott Crossfield
Dr. Toby Freedman, Flight Surgeon
Mr. Fred A. Payne, Manager Space Planning,
Development Planning
Mr. Harrison A. Storms

Office of the Director of Defense Research & Engineering 1
Pentagon
Washington 25, D.C.
Attn: Col. John M. Talbot, Chief, Medical Services Division,
Room 3D1050 Office of Science

The Ohio State University 2
410 West 10th Avenue
Columbus 10, Ohio
Attn: Dr. William F. Ashe, Chairman, Department of
Preventive Medicine
Dean Richard L. Meiling

The RAND Corporation 2
1700 Main Street
Santa Monica, Calif.
Attn: Dr. H. H. Mitchell, Physics Division
Dr. Harold L. Brode

Republic Aviation Corporation 3
Applied Research & Development
Farmingdale, Long Island, N.Y.
Attn: Dr. Alden R. Crawford, Vice-President
Life Sciences Division
Dr. William H. Helvey, Chief, Life Sciences Division
Dr. William J. O'Donnell, Life Sciences Division

Sandia Corporation 5
P. O. Box 5800
Albuquerque, New Mexico
Attn: Dr. C. F. Quate, Director of Research
Dr. S. P. Bliss, Medical Director
Dr. T. B. Cook, Manager, Department 5110
Dr. M. L. Merritt, Manager, Department 5130
Mr. L. J. Vortman, 5112

System Development Corporation 1
Santa Monica, California
Attn: Dr. C. J. Roach

United Aircraft Company Denver, Colorado Attn: Dr. George J. Kidera, Medical Director	1
Laboratory of Nuclear Medicine & Radiation Biology School of Medicine University of California, Los Angeles 900 Veteran Avenue Los Angeles 24, California Attn: Dr. G. M. McDonnel, Associate Professor Dr. Benedict Cassen	2
University of Illinois Chicago Professional Colleges 840 Wood Street Chicago 12, Illinois Attn: Dr. John P. Marbarger, Director, Aeromedical Laboratory	1
University of Kentucky School of Medicine Lexington, Kentucky Attn: Dr. Loren D. Carlson, Professor of Physiology & Biophysics	1
University of New Mexico Albuquerque, New Mexico Attn: Library	1
U. S. Naval Ordnance Laboratory White Oak, Maryland Attn: Capt. Richard H. Lee, MSC Mr. James F. Moulton	2
U. S. Naval School of Aviation Medicine U. S. Naval Aviation Medical Center Pensacola, Florida Attn: Capt. Ashton Graybiel, Director of Research	1
Dr. Shields Warren Cancer Research Institute New England Deaconess Hospital 194 Pilgrim Road Boston 15, Mass.	1
Wright Air Development Center Aeromedical Laboratory Wright-Patterson Air Force Base, Ohio Attn: Commanding Officer Dr. Henning E. vonGierke, Chief, Biodynamics Laboratory	2

Dr. Eugene Zwoyer
Director, Shock Tube Laboratory
P. O. Box 188
University Station
Albuquerque, New Mexico

1

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

20

Commanding Officer
U. S. Naval Weapons Laboratory
Dahlgren, Virginia

1