KATEDRA ELEKTRONIKI

LABORATORIUM PODSTAW ELEKTRONIKI

SPRAWDZANIE I PRAWA KIRCHHOFFA, II PRAWA KIRCHHOFFA

Cel ćwiczenia:

Doświadczalne sprawdzenie wzorów na zastępczą rezystancję rezystorów łączonych szeregowo i równolegle, sprawdzenie praw Ohma i Kirchhoffa.

1. Mieszane łączenie rezystancji:

Rys 1. Schemat pomiarowy układu

Sprawdzić w układzie połączeń jak na rysunku 1, rozpływ prądów, poziomy napięć i obliczyć rezystancję zastępczą R_{AB} i R_{Z} . Na podstawie danych podanych przez prowadzącego należy obliczyć pozostałe wielkości występujące w tabeli 1. (Przykładowe zadania do wykonania przedstawiono w tabeli 2). Następnie zmontować układ, ustawić wartości rezystorów R_{1}, R_{2}, R_{3} , podać obliczoną wartość napięcia zasilającego U_{Z} . Przyrządy powinny wskazać wartości obliczone na podstawie praw Ohma i Kirchhoffa. Wskazania przyrządów wpisujemy do tabeli 1. Oblicz również rezystancję zastępczą R_{Z} trzech rezystorów R_{1}, R_{2}, R_{3} , posługując się prawem Ohma.

Wzory przydatne do obliczeń.

$$\begin{split} R_Z &= \frac{U_Z}{I_1} = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3} \;, \quad U_{AB} = I_1 \cdot R_{AB} \;, \qquad I_1 = I_2 + I_3 \\ \frac{1}{R_{AB}} &= \frac{1}{R_2} + \frac{1}{R_3} \;, \quad R_{AB} = \frac{R_2 \cdot R_3}{R_2 + R_3} \;, \quad R_2 = \frac{U_{AB}}{I_2} \;, \quad R_3 = \frac{U_{AB}}{I_3} \;, \end{split}$$

Tabela 1.

Sposób	$U_{\rm Z}$	U_{AB}	I_1	I_2	I_3	R_1	R_2	R_3	R _{AB}	R_{Z}
połączenia										
$(R_3 // R_2) + R_3$	V	V	A	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{A}	Ω	Ω	Ω	Ω
. 3 2.										
Wpisać										
wyniki										
obliczeń										
Wpisać										
wyniki						_	_	_	_	_
wskazań										
przyrządów										

W tabeli 2 przedstawiono przykładowe dane zadań do obliczeń w ramach przygotowania do zajęć laboratoryjnych.

Tabela 2.

lp	Sposób	Uz	U_{AB}	I_1	I_2	I_3	R_1	R_2	R ₃	R _{AB}	$R_{\rm Z}$
	połączenia										
	$(R_3 /\!/ R_2) + R_1$	V	V	mA	mA	mA	Ω	Ω	Ω	Ω	Ω
1		15	6,65					200	400		
3			12			40	100	300			
9			16	100			60		$4R_2$		
13		12,2		105	80				320		
19		15		120			50		100		
21			10	150			30		$2R_2$		

W sprawozdaniu należy przedstawić sposób wyliczenia danej wielkości i wyjaśnić różnice między obliczonymi wartościami a wskazaniami przyrządów.

Przykłady rozwiązywania obwodów z wykorzystaniem PRAW KIRCHHOFFA I OHMA

Zadanie 1

Ile wynosi natężenie prądu w obwodzie przedstawionym na rysunku?

Dane:

$$\epsilon_1$$
=2V; ϵ_2 =9V; R_1 =2 Ω ; R_2 =10 Ω ; r_W =1 Ω

Oblicz: I = ?

Rozwiązanie

W obwodzie przedstawionym na rysunku siły elektromotoryczne ε_1 i ε_2 są połączone przeciwnie. O kierunku płynięcia prądu I w obwodzie zewnętrznym decyduje więc źródło o większej sile elektromotorycznej. Ponieważ $\varepsilon_2 > \varepsilon_1$, więc w obwodzie

zewnętrznym prąd płynie od bieguna dodatniego (+) do bieguna ujemnego (-) przez opór R_1 , źródło ε_1 i opór R_2 .

Aby wyliczyć szukane natężenie prądu, skorzystamy z II prawa Kirchhoffa. Wystartujemy z dowolnego punktu obwodu (np. z A) i przejdziemy cały obwód zgodnie z kierunkiem prądu, aż do chwili, gdy znów znajdziemy się w punkcie wyjścia. Po drodze będziemy notować skoki napięcia na poszczególnych elementach obwodu (oporniki zmniejszają napięcie, podobnie jak siły elektromotoryczne "przeciwnie zwrócone" do kierunku prądu).

Zgodnie z II prawem Kirchhoffa suma tych skoków napięcia jest równa zeru.

$$\begin{split} \varepsilon_2 - Ir_W - IR_1 - \varepsilon_1 - Ir_w - IR_2 &= 0 \\ V_A + \varepsilon_2 - Ir_W - IR_1 - \varepsilon_1 - Ir_w - IR_2 &= V_A \end{split}$$

Oczywiście dwa powyższe zapisy są równoznaczne, drugi jest bardziej elegancki. ;-) Z tego wzoru możemy wyliczyć teraz szukane natężenie prądu:

$$\begin{split} \varepsilon_2 - Ir_W - IR_1 - \varepsilon_1 - Ir_W - IR_2 &= 0 \\ Ir_W + IR_1 + Ir_W + IR_2 &= \varepsilon_2 - \varepsilon_1 \\ I\left(r_W + R_1 + r_W + R_2\right) &= \varepsilon_2 - \varepsilon_1 \\ I &= \frac{\varepsilon_2 - \varepsilon_1}{2r_W + R_1 + R_2} \\ I &= \frac{9 - 2}{2 \cdot 1 + 2 + 10} \\ I &= 0.5[A] \end{split}$$

Zadanie 2

Oblicz prądy płynące w obwodzie jak na rysunku, dla danych: $R_1=1\Omega$; $R_2=2\Omega$; $R_3=3\Omega$. $E_1=2V$; $E_2=4V$

Rozwiązanie

Z I prawa Kirchhoffa (prawo zachowania ładunku)

$$\mathbf{I}_1 = \mathbf{I}_2 + \mathbf{I}_3 \tag{1}$$

Z II prawa Kirchhoffa (prawo zachowania energii)

$$E_1 - I_1 R_1 - I_2 R_2 = 0 (2)$$

$$E_2 - I_3 R_3 - I_2 R_2 = 0 (3)$$

Podstawiając (1) do wzoru (2) otrzymamy

$$E_1 - I_2 R_1 - I_3 R_1 - I_2 R_2 = 0 (4)$$

$$E_2 - I_3 R_3 - I_2 R_2 = 0 (5)$$

 $Z \ r\'ownania \ (4) \qquad \qquad I_3 R_1 = \ E_1 - I_2 R_1 - \ I_2 R_2 = \ E_1 - I_2 (R_1 + R_2 \)$

$$I_3 = \frac{E_1 - I_2(R_1 + R_2)}{R_1}$$

podstawiamy do równania (5) otrzymamy

$$E_2 - [E_1 - I_2(R_1 + R_2)] \frac{R_3}{R_1} - I_2 R_2 = 0$$

Po podstawieniu danych otrzymamy

$$4 - 2 - I_2 \cdot 3 \cdot \frac{3}{1} - 2I_2 = 0$$

$$2 - 7I_2 = 0$$

stąd
$$I_2 = \frac{2}{7}A$$

Z równania (5)

$$I_3 = \frac{E_2 - I_2 R_2}{R_3} = \frac{4 - \frac{2}{7} \cdot 2}{3} = \frac{8}{7}A$$

$$I_1 = I_2 + I_3 = \frac{8}{7} + \frac{2}{7} = \frac{10}{7}A$$