Teorema 7.5.3

Se dice que una transformación lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ es una isometría si y sólo si la representación matricial de T es ortogonal.

Isometrías de \mathbb{R}^2

Sea T una isometría de $\mathbb{R}^2 \to \mathbb{R}^2$. Sea

$$\mathbf{u}_1 = T \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \mathbf{y} \quad \mathbf{u}_2 = T \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Entonces \mathbf{u}_1 y \mathbf{u}_2 son vectores unitarios (por la ecuación (7.5.2)) y

$$\mathbf{u}_{1} \cdot \mathbf{u}_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$$

Por tanto, \mathbf{u}_1 y \mathbf{u}_2 son ortogonales. De la ecuación 4.1.7, existe un número θ , con $0 \le \theta < 2\pi$ tal que

$$\mathbf{u}_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

Como \mathbf{u}_1 y \mathbf{u}_2 son ortogonales,

Dirección de $\mathbf{u}_1 = \text{dirección de } \mathbf{u}_1 \pm \frac{\pi}{2}$

En el primer caso

$$\mathbf{u}_2 = \begin{pmatrix} \cos\left(\theta + \frac{\pi}{2}\right) \\ \sin\left(\theta + \frac{\pi}{2}\right) \end{pmatrix} = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$$

En el segundo caso

$$\mathbf{u}_2 = \begin{pmatrix} \cos\left(\theta - \frac{\pi}{2}\right) \\ \sin\left(\theta - \frac{\pi}{2}\right) \end{pmatrix} = \begin{pmatrix} \sin\theta \\ -\cos\theta \end{pmatrix}$$

con lo que la representación matricial de T es

$$Q_{1} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \quad \text{o} \quad Q_{1} = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

Del ejemplo 7.1.8, se ve que Q_1 es la representación matricial de una transformación de rotación (un ángulo θ en el sentido contrario al de las manecillas del reloj). Es fácil verificar que

$$\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$