1. Impulse response

Impulse response

The impulse response of a discrete-time system T is the response of that system to a unit impulse, $\delta[n]$:

$$h[n] = T(\delta[n])$$

1.1 Signals as linear combination of impulses

Any DT signal can be represented as a sum of scaled and shifted unit impulses.

ex.

$$x[n] = sin(\frac{\pi}{4}n)(u[n] - u[n-8])$$

It's obvious to see that when $n \ge 8$, x[n] = 0. So we just have to write down every value of x[n] when $n \le 7$.

In this way, we can respresent x[n] as

$$x[n] = \frac{\sqrt{2}}{2}\delta[n-1] + \delta[n-2] + \frac{\sqrt{2}}{2}\delta[n-3] - \frac{\sqrt{2}}{2}\delta[n-5] - \delta[n-6] - \frac{\sqrt{2}}{2}\delta[n-7]$$

In general we can the then write any x[n] as

$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

1.2 System response for LTI systems

Suppose we have an LTI system T with impulse response h[n] that receives an input x[n], our output y[n] will be

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k], orall n.$$

This eqn is known as the convolution between x[n] and h[n].

Relationships of fundamental importance

A system's output can only be defined by a convolution iff it is LTI. A system is fully defined by its impulse response iff it is LTI. (Fully defined means we know the system's output for any given input signal)

2. Convolution

The convolution between two DT signals x[n] and h[n]:

$$x[n]*h[n] = \sum_{k=-\infty}^\infty x[k]h[n-k] = \sum_{k=-\infty}^\infty h[k]x[n-k] = h[n]*x[n].$$

Notice that the convolution operator is *commutative*: the order of convolution doesn't matter.

2.1 Properties of convolution and impulse response

• Commutativity.

$$x[n]*h_1[n]*h_2[n]=x[n]*h_2[n]*h_1[n]=h_1[n]*h_2[n]*x[n]$$

Associativity.

$$(x[n]*h_1[n])*h_2[n] = x[n]*(h_1[n]*h_2[n])$$

Distributive property.

$$x[n]*(h_1[n]+h_2[n])=x[n]*h_1[n]+x[n]*h_2[n]$$

• Identity.

$$x[n] * \delta[n] = x[n]$$

• Causality.

An LTI system with impulse response h[n] is causal if

$$h[n] = 0 for \, n < 0$$

• Stability.

An LTI system with impulse response h[n] is BIBO stabel if

$$\sum_{n=-\infty}^{\infty}|h[n]|<\infty$$

• Start\End points and length.

For

Signal x[n] of length N, starting at index n_s , and ending at index n_e . Signal h[n] of length M, starting at index m_s , and ending at index m_e . If

$$y[n] = x[n] * h[n]$$

Then

$$y_s = n_s + m_s \ y_e = n_e + m_e \ Y = N + M - 1$$