Finding Ghosts in Your Data

Anomaly Detection Techniques with Examples in Python

Kevin Feasel

Finding Ghosts in Your Data: Anomaly Detection Techniques with Examples in Python

Kevin Feasel DURHAM, NC, USA

ISBN-13 (pbk): 978-1-4842-8869-6 ISBN-13 (electronic): 978-1-4842-8870-2

https://doi.org/10.1007/978-1-4842-8870-2

Copyright © 2022 by Kevin Feasel

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr

Acquisitions Editor: Jonathan Gennick Development Editor: Laura Berendson Coordinating Editor: Jill Balzano

Cover photo by Pawel Czerwinski on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm. com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a **Delaware** corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Table of Contents

About the Author	XV
About the Technical Reviewer	
Chapter 1: The Importance of Anomalies and Anomaly Detection	3
Defining Anomalies	
Outlier	3
Noise vs. Anomalies	4
Diagnosing an Example	5
What If We're Wrong?	7
Anomalies in the Wild	8
Finance	8
Medicine	11
Sports Analytics	11
Web Analytics	14
And Many More	15
Classes of Anomaly Detection	16
Statistical Anomaly Detection	16
Clustering Anomaly Detection	16
Model-Based Anomaly Detection	17
Building an Anomaly Detector	18
Key Goals	18
How Do Humans Handle Anomalies?	19
Known Unknowns	21
Conclusion	22

Chapter 2: Humans Are Pattern Matchers	2 3
A Primer on the Gestalt School	23
Key Findings of the Gestalt School	24
Emergence	24
Reification	25
Invariance	26
Multistability	27
Principles Implied in the Key Findings	28
Meaningfulness	28
Conciseness	29
Closure	30
Similarity	31
Good Continuation	32
Figure and Ground	34
Proximity	35
Connectedness	35
Common Region	35
Symmetry	36
Common Fate	37
Synchrony	38
Helping People Find Anomalies	39
Use Color As a Signal	39
Limit Nonmeaningful Information	40
Enable "Connecting the Dots"	40
Conclusion	41
Chapter 3: Formalizing Anomaly Detection	42
The Importance of Formalization	
•	
"I'll Know It When I See It" Isn't Enough	
Human Fallibility	
Marginal Outliers The Limits of Visualization	44 45
THE CHINGS OF ARMADIANION	Δ.

The First Formal Tool: Univariate Analysis	46
Distributions and Histograms	46
The Normal Distribution	49
Mean, Variance, and Standard Deviation	51
Additional Distributions	54
Robustness and the Mean	58
The Susceptibility of Outliers	58
The Median and "Robust" Statistics	58
Beyond the Median: Calculating Percentiles	59
Control Charts	61
Conclusion	62
Part II: Building an Anomaly Detector	63
Chapter 4: Laying Out the Framework	65
Tools of the Trade	65
Choosing a Programming Language	65
Making Plumbing Choices	66
Reducing Architectural Variables	68
Developing an Initial Framework	69
Battlespace Preparation	69
Framing the API	70
Input and Output Signatures	72
Defining a Common Signature	73
Defining an Outlier	74
Sensitivity and Fraction of Anomalies	74
Single Solution	75
Combined Arms	75
Framing the Solution	76
Containerizing the Solution	79

Chapter 5: Building a Test Suite	81
Tools of the Trade	81
Unit Test Library	82
Integration Testing	82
Writing Testable Code	83
Keep Methods Separated	83
Emphasize Use Cases	84
Functional or Clean: Your Choice	84
Creating the Initial Tests	86
Unit Tests	86
Integration Tests	90
Conclusion	94
Chapter 6: Implementing the First Methods	95
A Motivating Example	95
Ensembling As a Technique	96
Sequential Ensembling	97
Independent Ensembling	98
Choosing Between Sequential and Independent Ensembling	99
Implementing the First Checks	99
Standard Deviations from the Mean	100
Median Absolute Deviations from the Median	101
Distance from the Interquartile Range	102
Completing the run_tests() Function	103
Building a Scoreboard	104
Weighting Results	105
Determining Outliers	106
Updating Tests	109
Updating Unit Tests	109
Updating Integration Tests	114
Conclusion	116

Chapter 7: Extending the Ensemble	117
Adding New Tests	117
Checking for Normality	118
Approaching Normality	123
A Framework for New Tests	126
Grubbs' Test for Outliers	128
Generalized ESD Test for Outliers	129
Dixon's Q Test	131
Calling the Tests	133
Updating Tests	135
Updating Unit Tests	135
Updating Integration Tests	140
Multi-peaked Data	141
A Hidden Assumption	141
The Solution: A Sneak Peek	143
Conclusion	144
Chapter 8: Visualize the Results	145
Building a Plan	145
What Do We Want to Show?	145
How Do We Want to Show It?	146
Developing a Visualization App	147
Getting Started with Streamlit	147
Building the Initial Screen	148
Displaying Results and Details	151
Conclusion	157
Part III: Multivariate Anomaly Detection	159
Chapter 9: Clustering and Anomalies	161
What Is Clustering?	161
Common Cluster Terminology	162
K-Means Clustering	163

K-Nearest Neighbors	168
When Clustering Makes Sense	170
Gaussian Mixture Modeling	171
Implementing a Univariate Version	172
Updating Tests	176
Common Problems with Clusters	179
Choosing the Correct Number of Clusters	179
Clustering Is Nondeterministic	180
Alternative Approaches	182
Tree-Based Approaches	182
The Problem with Trees	183
Conclusion	183
Chapter 10: Connectivity-Based Outlier Factor (COF)	185
Distance or Density?	
Local Outlier Factor	187
Connectivity-Based Outlier Factor	
Introducing Multivariate Support	191
Laying the Groundwork	
Implementing COF	194
Test and Website Updates	197
Unit Test Updates	
Integration Test Updates	198
Website Updates	198
Conclusion	201
Chapter 11: Local Correlation Integral (LOCI)	203
Local Correlation Integral	
Discovering the Neighborhood	
Multi-granularity Deviation Factor (MDEF)	
Multivariate Algorithm Ensembles	
Ensemble Types	
VII	

COF Combinations	207
Incorporating LOCI	210
Test and Website Updates	213
Unit Test Updates	213
Website Updates	214
Conclusion	215
Chapter 12: Copula-Based Outlier Detection (COPOD))217
Copula-Based Outlier Detection	217
What's a Copula?	217
Intuition Behind COPOD	218
Implementing COPOD	221
Test and Website Updates	223
Unit Test Updates	223
Integration Test Updates	224
Website Updates	225
Conclusion	228
Part IV: Time Series Anomaly Detection	229
Chapter 13: Time and Anomalies	231
What Is Time Series?	231
Time Series Changes Our Thinking	233
Autocorrelation	233
Smooth Movement	234
The Nature of Change	235
Data Requirements	238
Time Series Modeling	239
(Weighted) Moving Average	239
Exponential Smoothing	239
Autoregressive Models	241
What Constitutes an Outlier?	242

Behavioral Changes over Time	243
Local Non-outlier in a Global Change	243
Differences from Peer Groups	243
Common Classes of Technique	244
Conclusion	244
Chapter 14: Change Point Detection	247
What Is Change Point Detection?	247
Benefits of Change Point Detection	248
Change Point Detection with ruptures	249
Dynamic Programming	249
PELT	250
Implementing Change Point Detection	250
Test and Website Updates	255
Unit Tests	255
Integration Tests	257
Website Updates	258
Avenues of Further Improvement	260
Conclusion	261
Chapter 15: An Introduction to Multi-series Anomaly Dete	ection263
What Is Multi-series Time Series?	
Key Aspects of Multi-series Time Series	264
What Needs to Change?	
What's the Difference?	
Leading and Lagging Factors	268
Available Processes	268
Cross-Euclidean Distance	270
Cross-Correlation Coefficient	270
SameTrend (STREND)	271
Common Problems	272
Conclusion	272

Chapter 16: Standard Deviation of Differences (DIFFSTD)	275
What Is DIFFSTD?	275
Calculating DIFFSTD	275
Key Assumptions	276
Writing DIFFSTD	278
Series Processing	278
Segmentation	279
Comparing the Norm	280
Determining Outliers	283
Test and Website Updates	286
Unit Tests	286
Integration Tests	287
Website Updates	289
Conclusion	292
Chapter 17: Symbolic Aggregate Approximation (SAX)	293
What is SAX?	
Motifs and Discords	
Subsequences and Matches	
Discretizing the Data	
Implementing SAX	
Segmentation and Blocking	
Making SAX Multi-series	
Scoring Outliers	
Test and Website Updates	
Unit and Integration Tests	
Website Updates	
Conclusion	200

Part V: Stacking Up to the Competition	311
Chapter 18: Configuring Azure Cognitive Services Anomaly Detector	313
Gathering Market Intelligence	313
Amazon Web Services: SageMaker	313
Microsoft Azure: Cognitive Services	314
Google Cloud: Al Services	315
Configuring Azure Cognitive Services	316
Set Up an Account	316
Using the Demo Application	320
Conclusion	323
Chapter 19: Performing a Bake-Off	325
Preparing the Comparison	
Supervised vs. Unsupervised Learning	325
Choosing Datasets	326
Scoring Results	327
Performing the Bake-Off	328
Accessing Cognitive Services via Python	329
Accessing Our API via Python	331
Dataset Comparisons	334
Lessons Learned	336
Making a Better Anomaly Detector	337
Increasing Robustness	337
Extending the Ensembles	338
Training Parameter Values	338
Conclusion	339
Appendix: Bibliography	341
Indov	245

About the Author

Kevin Feasel is a Microsoft Data Platform MVP and CTO at Faregame Inc., where he specializes in data analytics with T-SQL and R, forcing Spark clusters to do his bidding, fighting with Kafka, and pulling rabbits out of hats on demand. He is the lead contributor to Curated SQL, president of the Triangle Area SQL Server Users Group, and author of *PolyBase Revealed*. A resident of Durham, North Carolina, he can be found cycling the trails along the triangle whenever the weather's nice enough.

About the Technical Reviewer

Yin-Ting (Ting) Chou is currently a Data Engineer/Full-Stack Data Scientist at ChannelAdvisor. She has been a key member on several large-scale data science projects, including demand forecasting, anomaly detection, and social network analysis. Even though she is keen on data analysis, which drove her to obtain her master's degree in statistics from the University of Minnesota, Twin Cities, she also believes that the other key to success in a machine learning project is to have an efficient and effective system to support the whole model productizing process. To create the system, she is currently diving into the fields of MLOps and containers. For more information about her, visit www.yintingchou.com.

Introduction

Welcome to this book on anomaly detection! Over the course of this book, we are going to build an anomaly detection engine in Python. In order to do that, we must first answer the question, "What is an anomaly?" Such a question has a simple answer, but in providing the simple answer, we open the door to more questions, whose answers open yet more doors. This is the joy and curse of the academic world: we can always go a little bit further down the rabbit hole.

Before we start diving into rabbit holes, however, let's level-set expectations. All of the code in this book will be in Python. This is certainly not the only language you can use for the purpose—my esteemed technical reviewer, another colleague, and I wrote an anomaly detection engine using a combination of C# and R, so nothing requires that we use Python. We do cover language and other design choices in the book, so I'll spare you the rest here. As far as your comfort level with Python goes, the purpose of this book is not to teach you the language, so I will assume some familiarity with the language. I do, of course, provide context to the code we will write and will spend extra time on concepts that are less intuitive. Furthermore, all of the code we will use in the book is available in an accompanying GitHub repository at https://github.com/Apress/finding-ghosts-in-your-data.

My goal in this book is not just to write an anomaly detection engine—it is to straddle the line between the academic and development worlds. There is a rich literature around anomaly detection, but much of the literature is dense and steeped with formal logic. I want to bring you some of the best insights from that academic literature but expose it in a way that makes sense for the large majority of developers. For this reason, each part in the book will have at least one chapter dedicated to theory. In addition, most of the code-writing chapters also start with the theory because it isn't enough simply to type out a few commands or check a project's readme for a sample method call; I want to help you understand why something is important, when an approach can work, and when the approach may fail. Furthermore, should you wish to take your own dive into the literature, the bibliography at the end of the book includes a variety of academic resources.

INTRODUCTION

Before I sign off and we jump into the book, I want to give a special thank you to my colleague and technical editor, Ting Chou. I have the utmost respect for Ting's skills, so much so that I tried to get her to coauthor the book with me! She did a lot to keep me on the right path and heavily influenced the final shape of this book, including certain choices of algorithms and parts of the tech stack that we will use. That said, any errors are, of course, mine and mine alone. Unfortunately.

If you have thoughts on the book or on anomaly detection, I'd love to hear from you. The easiest way to reach out is via email: feasel@catallaxyservices.com. In the meantime, I hope you enjoy the book.