Part III Category Theory

Based on lectures by Prof P.T. Johnstone

Michaelmas 2016 University of Cambridge

Contents

1 Definitions and Examples

1

1 Definitions and Examples

Definition (Category). A category C consists of

- a. a collection ob C of objects A, B, C, \ldots
- b. a collection mor C of morphisms f, g, h, \ldots
- c. two operations dom, cod from morphisms to objects. We write $f:A\to B$ or $A\xrightarrow{f} B$ to mean 'f is a morphism and dom f=A and cod f=B'
- d. an operation assigning to each object A a morphism $1_A:A\to A$
- e. a partial binary operation $(f,g) \mapsto gf$, s.t. gf is defined \iff dom g =cod f, and then gf: dom $f \to$ cod g

Definition (Functor). Let C and D be categories. A functor $C \to D$ consists of

- a. a mapping $A \to FA$ from ob C to ob D
- b. a mapping $f \to Ff$ from $\operatorname{mor} \mathcal{C}$ to $\operatorname{mor} \mathcal{D}$

satisfying dom Ff = Fdom f, cod Ff = Fcod f for all f, $F(1_A) = 1_{FA}$ for all A, and F(gf) = (Fg)(Ff) whenever gf is defined.

Definition. By a contravariant functor $\mathcal{C} \to \mathcal{D}$ we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or equivalently $\mathcal{C}^{op} \to \mathcal{D}$). A functor $\mathcal{C} \to \mathcal{D}$ is sometimes said to be **covariant**.

Definition (Natural transformation). Let C and D be two categories and F,G: $C \Rightarrow D$ two functors. A **natural transformation** $\alpha : F \to G$ assigns to each $A \in \text{ob } C$ a morphism $\alpha_A : FA \to GA$ in D, such that

$$FA \xrightarrow{Ff} FB$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_B}$$

$$GA \xrightarrow{Gf} GB$$

commutes.