

1 VIDEO ENCODING WITH SKIPPING MOTION ESTIMATION
2 FOR SELECTED MACROBLOCKS

3 The invention relates to video encoders and in
4 particular to reducing the computational complexity
5 when encoding video.

6
7 Video encoders and decoders (CODECs) based on video
8 encoding standards such as H263 and MPEG-4 are well
9 known in the art of video compression.

10
11 The development of these standards has led to the
12 ability to send video over much smaller bandwidths
13 with only a minor reduction in quality. However,
14 decoding and, more specifically, encoding, requires
15 a significant amount of computational processing
16 resources. For mobile devices, such as personal
17 digital assistants (PDA's) or mobile telephones,
18 power usage is closely related to processor
19 utilisation and therefore relates to the life of the
20 battery charge. It is obviously desirable to reduce
21 the amount of processing in mobile devices to

1 increase the operable time of the device for each
2 battery charge. In general-purpose personal
3 computers, CODECs must share processing resources
4 with other applications. This has contributed to the
5 drive to reduce processing utilisation, and
6 therefore power drain, without compromising viewing
7 quality.

8

9 In many video applications, such as tele-
10 conferences, the majority of the area captured by
11 the camera is static. In these cases, power
12 resources or processor resources are being used
13 unnecessarily to encode areas which have not changed
14 significantly from a reference video frame.

15

16 The typical steps required to process the pictures
17 in a video by an encoder such as one that is H263 or
18 MPEG-4 Simple Profile compatible, are described as
19 an example.

20

21 The first step requires that reference pictures be
22 selected for the current picture. These reference
23 pictures are divided into non-overlapping
24 macroblocks. Each macroblock comprises four
25 luminance blocks and two chrominance blocks, each
26 block comprising 8 pixels by 8 pixels.

27

28 It is well known that the steps in the encoding
29 process that typically require the greatest
30 computational time are the motion estimation, the
31 forward discrete cosine transform (FDCT) and the
32 inverse discrete cosine transform (IDCT).

1
2 The motion estimation step looks for similarities
3 between the current picture and one or more
4 reference pictures. For each macroblock in the
5 current picture, a search is carried out to identify
6 a prediction macroblock in the reference picture
7 which best matches the current macroblock in the
8 current picture. The prediction macroblock is
9 identified by a motion vector (MV) which indicates a
10 distance offset from the current macroblock. The
11 prediction macroblock is then subtracted from the
12 current macroblock to form a prediction error (PE)
13 macroblock. This PE macroblock is then discrete
14 cosine transformed, which transforms an image from
15 the spatial domain to the frequency domain and
16 outputs a matrix of coefficients relating to the
17 spectral sub-bands. For most pictures much of the
18 signal energy is at low frequencies, which is what
19 the human eye is most sensitive to. The formed DCT
20 matrix is then quantized which involves dividing the
21 DCT coefficients by a quantizer value and then
22 rounding to the nearest integer. This has the effect
23 of reducing many of the higher frequency
24 coefficients to zeros and is the step that will
25 cause distortion to the image. Typically, the higher
26 the quantizer step size, the poorer the quality of
27 the image. The values from the matrix after the
28 quantizer step are then re-ordered by "zigzag"
29 scanning. This involves reading the values from the
30 top left-hand corner of the matrix diagonally back
31 and forward down to the bottom right-hand corner of
32 the matrix. This tends to group the zeros together

1 which allows the stream to be efficiently run-level
2 encoded (RLE) before eventually being converted into
3 a bitstream by entropy encoding. Other "header" data
4 is usually added at this point.

5

6 If the MV is equal to zero and the quantized DCT
7 coefficients are all equal to zero then there is no
8 need to include encoded data for the macroblock in
9 the encoded bitstream. Instead, header information
10 is included to indicate that the macroblock has been
11 "skipped".

12

13 US 6,192,148 discloses a method for predicting
14 whether a macroblock should be skipped prior to the
15 DCT steps of the encoding process. This method
16 decides whether to complete the steps after the
17 motion estimation if the MV has been returned as
18 zero, the mean absolute difference of the luminance
19 values of the macroblock is less than a first
20 threshold and the mean absolute difference of the
21 chrominance values of the macroblock is less than a
22 second threshold.

23

24 For the total encoding process the motion estimation
25 and the FDCT and IDCT are typically the most
26 processor intensive. The prior art only predicts
27 skipped blocks after the step of motion estimation
28 and therefore still contains a step in the process
29 that can be considered processor intensive.

30

1 The present invention discloses a method to predict
2 skipped macroblocks that requires no motion
3 estimation or DCT steps.

4

5 According to the present invention there is provided
6 a method of encoding video pictures comprising the
7 steps of:

8 dividing the picture into regions;
9 predicting whether each region requires
10 processing through further steps, said predicting
11 step comprising comparing one or more statistical
12 measures with one or more threshold values for each
13 region.

14

15 Hence, the invention avoids unnecessary use of
16 resources by avoiding processor intensive operations
17 where possible.

18

19 The further steps preferably include motion
20 estimation and/or transform processing steps.

21

22 Preferably the transform processing step is a
23 discrete cosine transform processing step.

24

25 A region is preferably a non-overlapping macroblock.

26

27 A macroblock is preferably a sixteen by sixteen
28 matrix of pixels.

29

30 Preferably, one of the statistical measures is
31 whether an estimate of the energy of some or all
32 pixel values of the macroblock, optionally divided

1 by the quantizer step size, is less than a
2 predetermined threshold value.

3

4 Alternatively or further preferably, one of the
5 statistical measures is whether an estimate of the
6 values of certain discrete cosine transform
7 coefficients for one or more sub-blocks of the
8 macroblock, is less than a second threshold value.

9

10 Alternatively, one of the statistical measures is
11 whether an estimate of the distortion due to
12 skipping the macroblock is less than a predetermined
13 threshold value.

14

15 Preferably, the estimate of distortion is calculated
16 by deriving one or more statistical measures from
17 some or all pixel values of one or more previously
18 coded macroblocks with respect to the macroblock.

19

20 The estimate of distortion may be calculated by
21 subtracting an estimate of the sum of absolute
22 differences of luminance values of a coded
23 macroblock with respect to a previously coded
24 macroblock (SAE_{noskip}) from the sum of absolute
25 differences of luminance values of a skipped
26 macroblock with respect to a previously coded
27 macroblock (SAE_{skip}).

28

29 SAE_{noskip} may be estimated by a constant value K or,
30 in a more accurate method, by the sum of absolute
31 differences of luminance values of a previously

1 coded macroblock and if there is no previously coded
2 macroblock by a constant value K.

3

4 Further preferably, the method of encoding pictures
5 may be performed by a computer program embodied on a
6 computer usable medium.

7

8 Further preferably, the method of encoding pictures
9 may be performed by electronic circuitry.

10

11 The estimate of the values of certain discrete
12 cosine transform coefficients may involve:
13 dividing the sub-blocks into four equal regions;
14 calculating the sum of absolute differences of the
15 residual pixel values for each region of the sub-
16 block, where the residual pixel value is a
17 corresponding reference (previously coded) pixel
18 luminance value subtracted from the current pixel
19 luminance value;
20 estimating the low frequency discrete cosine
21 transform coefficients for each region of the sub-
22 blocks, such that:

$$Y_{01} = \text{abs}(A + C - B - D)$$

$$Y_{10} = \text{abs}(A + B - C - D)$$

$$Y_{11} = \text{abs}(A + D - B - C)$$

24 where Y_{01} , Y_{10} and Y_{11} represent the estimations
25 of three low frequency discrete cosine transform
26 coefficients and A, B, C and D represent the sum of
27 absolute differences of each of the regions of the
28 sub-block where A is the top left hand corner, B is
29 the top right hand corner, C is the bottom left hand
30 corner and D is the bottom right hand corner; and

1 selecting the maximum value of the estimate of
2 the discrete cosine transform coefficients from all
3 the estimates calculated.

4

5 It should be appreciated that, in the art, referring
6 to pixel values refers to any of the three
7 components that make up a colour pixel, namely, a
8 luminance value and two chrominance values. In some
9 instances, "sample" value is used instead of pixel
10 value to refer to one of the three component values
11 and this should be considered interchangeable with
12 pixel value.

13

14 It also should be appreciated that a macroblock can
15 be any region of pixels, of a particular size,
16 within the frame of interest.

17

18 The invention will now be described, by way of
19 example, with reference to the figures of the
20 drawings in which:

21

22 Figure 1 shows a flow diagram of a video picture
23 encoding process.

24

25 Figure 2 shows a flow diagram of a macroblock
26 encoding process

27

28 Figure 3 shows a flow diagram of a prediction
29 decision process

30

31 Figure 4 shows a flow diagram of an alternative
32 prediction decision process

1

2 With reference to Figure 1, a first step 102 reads a
3 picture frame in a video sequence and divides it
4 into non-overlapping macroblocks (MBs). Each MB
5 comprises four luminance blocks and two chrominance
6 blocks, each block comprising 8 pixels by 8 pixels.
7 Step 104 encodes the MB as shown in Figure 2.

8

9 With reference to Figure 2, a MB encoding process is
10 shown 104, where a decision step 202 is performed
11 before any other step.

12

13 The current H263 encoding process currently teaches
14 that each MB in the video encoding process typically
15 goes through the steps 204 to 226 or equivalent
16 processes, in the order shown in Figure 2 or in a
17 different order. Motion estimation step 204
18 identifies one or more prediction MB(s) each of
19 which is defined by a MV indicating a distance
20 offset from the current MB and a selection of a
21 reference picture. Motion compensation step 206
22 subtracts the prediction MB from the current MB to
23 form a Prediction Error (PE) MB. If the value of MV
24 requires to be encoded (step 208), then MV is
25 entropy encoded (step 210) optionally with reference
26 to a predicted MV.

27

28 Each block of the PE MB is then forward discrete
29 cosine transformed (FDCT) 212 which outputs a block
30 of coefficients representing the spectral sub-bands
31 of each of the PE blocks. The coefficients of the
32 FDCT block are then quantized (for example through

1 division by a quantizer step size) 214 and then
2 rounded to the nearest integer. This has the effect
3 of reducing many of the coefficients to zero. If
4 there are any non-zero quantized coefficients
5 (Qcoeff) 216 then the resulting block is entropy
6 encoded by steps 218 to 222.

7

8 In order to form a reconstructed picture for further
9 predictions, the quantized coefficients (Qcoeff) are
10 re-scaled (for example by multiplication by a
11 quantizer step size) 224 and transformed with an
12 inverse discrete cosine transform (IDCT) 226. After
13 the IDCT the reconstructed PE MB is added to the
14 reference MB and stored for further prediction.

15

16 The decision step 228 looks at the output of the
17 prior processes and if the MV is equal to zero and
18 all the Qcoeffs are zero then the encoded
19 information is not written to the bitstream but a
20 skip MB indication is written instead. This means
21 that all the processing time that has been used to
22 encode the MB has not been necessary because the MB
23 is regarded as similar to or the same as the
24 previous MB.

25

26 As one embodiment of the invention, in Figure 2
27 decision step 202 predicts whether the current MB is
28 likely to be skipped, that is that after the process
29 steps 202 - 226, the MB is not coded but a skip
30 indication is written instead. If the Decision step
31 202 does predict that the MB would be skipped the MB
32 is not passed on to the step 204 and the following

1 process steps but skip information is passed
2 directly to step 232.

3

4 With reference to Figure 3, a flow diagram is shown
5 of the decision to skip the MB 202.

6 MBs that are skipped have zero MV and QCoeff. Both
7 of these conditions are likely to be met if there is
8 a strong similarity between the current MB and the
9 same MB position in the reference frame. The energy
10 of a residual MB formed by subtracting the reference
11 MB, without motion compensation, from the current MB
12 is approximated by the sum of absolute differences
13 for the luminance part of the MB with zero
14 displacement (SAD_{MB}) given by:

15 $SAD_{MB} = \sum_{i=0}^{15} \sum_{j=0}^{15} |C_c(i,j) - C_p(i,j)|$ **Equation 1**

16 $C_c(i,j)$ and $C_p(i,j)$ are luminance samples from an MB
17 in the current frame and in the same position in
18 the reference frame, respectively.

19

20 The relationship between SAD_{MB} and the probability
21 that the MB will be skipped also depends on the
22 quantizer step size, since a higher step size
23 typically results in an increased proportion of
24 skipped MBs.

25

26 A comparison of the calculation SAD_{MB} (optionally
27 divided by the quantizer step size (Q)) 302 to a
28 first threshold value gives a first comparison step
29 304. If the calculated value is greater than a first
30 threshold value then the MB is passed to step 204
31 and enters a normal encoding process. If the

12

1 calculated value is less than a first threshold
 2 value then a second calculation is performed 306.
 3

4 Step 306 performs additional calculations on the
 5 residual MB. Each 8x8 luminance block is divided
 6 into four 4x4 blocks. A, B, C and D (Equation 2) are
 7 the SAD values of each 4x4 block and R(i, j) are the
 8 residual pixel values without motion compensation.
 9

$$10 \quad A = \sum_{i=0}^3 \sum_{j=0}^3 |R(i, j)| \quad B = \sum_{i=0}^3 \sum_{j=3}^7 |R(i, j)|$$

11 *Equation 2*

$$12 \quad C = \sum_{i=4}^7 \sum_{j=0}^3 |R(i, j)| \quad D = \sum_{i=4}^7 \sum_{j=4}^7 |R(i, j)|$$

13

14 Y₀₁, Y₁₀ and Y₁₁ (Equation 3) provide a low-complexity
 15 estimate of the magnitudes of the three low
 16 frequency DCT coefficients coeff(0,1), coeff(1,0)
 17 and coeff(1,1) respectively. If any of these
 18 coefficients is large then there is a high
 19 probability that the MB should not be skipped.
 20 Y_{4x4block} (Equation 4) is therefore used to predict
 21 whether each block may be skipped. The maximum for
 22 the luminance part of a macroblock is calculated
 23 using Equation 5.

24

$$25 \quad Y_{01} = abs(A + C - B - D) \quad Y_{10} = abs(A + B - C - D)$$

$$26 \quad Y_{11} = abs(A + D - B - C)$$

27 *Equation 3*

28

1 $Y4 \times 4_{block} = MAX(Y_{01}, Y_{10}, Y_{11})$

2 **Equation 4**

3

4 $Y4 \times 4_{max} = MAX(Y4 \times 4_{block1}, Y4 \times 4_{block2}, Y4 \times 4_{block3}, Y4 \times 4_{block4})$

5 **Equation 5**

6

7 The calculated value of $Y4 \times 4_{max}$ is compared with a
8 second threshold 308. If the calculated value is
9 less than a second threshold then the MB is skipped
10 and the next step in the process is 232. If the
11 calculated value is greater than a second threshold
12 then the MB is passed to step 204 and the subsequent
13 steps for encoding.

14

15 These steps typically have very little impact on
16 computational complexity. $SAD0_{MB}$ is normally computed
17 in the first step of any motion estimation algorithm
18 and so there is no extra calculation required.
19 Furthermore, the SAD values of each 4x4 block (A, B,
20 C and D in Equation 2) may be calculated without
21 penalty if $SAD0_{MB}$ is calculated by adding together
22 the values of SAD for each 4x4-sample sub-block in
23 the MB.

24

25 The additional computational requirements of the
26 classification algorithm are the operations in
27 Equations 3, 4 and 5 and these are typically not
28 computationally intensive.

29

30 With reference to Figure 4, a flow diagram is shown
31 in which a further embodiment of the decision to
32 skip the MB 202 is described.

1

2 In the previous embodiment (Fig. 3), the decision to
3 skip the MB 202 was based on the luminance of the
4 current MB compared to the reference MB. In the
5 present embodiment, the decision to skip the MB 202
6 is based on the estimated distortion that would be
7 caused due to skipping the MB.

8

9 When a decoder decodes a MB, the coded residual data
10 is decoded and added to motion-compensated reference
11 frame samples to produce a decoded MB. The
12 distortion of a decoded MB relative to the original,
13 uncompressed MB data can be approximated by Mean
14 Squared Error (MSE). MSE for the luminance samples
15 a_{ij} of a decoded MB, compared with the original
16 luminance samples b_{ij} , is given by:

17

$$18 \quad MSE_{MB} = \frac{1}{16 \cdot 16} \sum_{i,j} (a_{ij} - b_{ij})^2$$

19 *Equation 6*

20

21 Define MSE_{noskip} as the luminance MSE for a macroblock
22 that is coded and transmitted and define MSE_{skip} as
23 the luminance MSE for a MB that is skipped (not
24 coded). When a MB is skipped, the MB data in the
25 same position in the reference frame is inserted in
26 that position by the decoder. For a particular MB
27 position, an encoder may choose to code the MB or to
28 skip it. The difference in distortion, MSE_{diff} ,
29 between skipping or coding the MB is defined as:

30

1 $MSE_{diff} = MSE_{skip} - MSE_{noskip}$

2 **Equation 7**

3

4 If MSE_{diff} is zero or has a low value, then there is
5 little or no "benefit" in coding the MB since a very
6 similar reconstructed result will be obtained if the
7 MB is skipped. A low value of MSE_{diff} will include
8 MBs with a low value of MSE_{skip} where the MB in the
9 same position in the reference frame is a good match
10 for the current MB. A low value of MSE_{diff} will also
11 include MBs with a high value of MSE_{noskip} where the
12 decoded, reconstructed MB is significantly different
13 from the original due to quantization distortion.

14

15 The purpose of selectively skipping MBs is to save
16 computation. MSE is not typically calculated in an
17 encoder and so an additional computational cost
18 would be required to calculate Equation 7. Sum of
19 Absolute Errors (SAE) for the luminance samples of a
20 decoded MB is given by:

21

22 $SAE_{MB} = \sum_{i,j} |a_{ij} - b_{ij}|$

23 **Equation 8**

24

25 SAE is approximately monotonically increasing with
26 MSE and so is a suitable alternative measure of
27 distortion to MSE. Therefore $SAEdiff$ is used, the
28 difference in SAE between a skipped MB and a coded
29 MB, as an estimate of the increase in distortion due
30 to skipping a MB:

1

$$2 \quad SAE_{diff} = SAE_{skip} - SAE_{noskip}$$

3 **Equation 9**

4

5 SAE_{skip} is the sum of absolute errors between the
6 uncoded MB and the luminance data in the same
7 position in the reference frame. This is typically
8 calculated as the first step of a motion estimation
9 algorithm in the encoder and is usually termed SAE_{00} .
10 Therefore, SAE_{skip} is readily available at an early
11 stage of processing of each MB.

12

13 SAE_{noskip} is the SAE of a decoded MB, compared with
14 the original uncoded MB, and is not normally
15 calculated during coding or decoding. Furthermore,
16 SAE_{noskip} cannot be calculated if the MB is actually
17 skipped. A model for SAE_{noskip} is therefore required
18 in order to calculate Equation 9.

19

20 A first model is as follows:

21

$$22 \quad SAE_{noskip} = K \text{ (where } K \text{ is a constant).}$$

23

24 Which follows that SAE_{diff} is calculated as:

25

$$26 \quad SAE_{diff} = SAE_{skip} - K$$

27 **Equation 10**

28

29 This model is computationally simple but is unlikely
30 to be accurate because there are many MBs that do
31 not fit a simple linear trend.

1
2 An alternative model is as follows:
3
4 $SAE_{noskip}(i, n) = SAE_{noskip}(i, n-1)$
5 Where i is the current MB number, n is the current
6 frame and $n-1$ is the previous coded frame.
7
8 This model requires the encoder to compute SAE_{noskip} ,
9 a single calculation of Equation 8 for each coded
10 MB, but provides a more accurate estimate of SAE_{noskip}
11 for the current MB. If $MB(i, n-1)$ is a MB that was
12 skipped, then $SAE_{noskip}(i, n-1)$ cannot be calculated
13 and it is necessary to revert to first model.
14
15 Based on Equation 9 and using the models described
16 above, two algorithms for selectively skipping and
17 therefore not processing MBs are as follows:
18
19 Algorithm (1):
20 if $(SAE_{00} - K) < T$
21 skip current MB
22 else
23 code current MB
24
25 Algorithm (1) uses a simple approximation for
26 SAE_{noskip} but is straightforward to implement.
27
28 Algorithm (2):
29 if $(MB(i, n-1)$ has been coded)
30 $SAE_{noskip}\{\text{estimate}\} = SAE_{noskip}(i, n-1)$
31 else
32 $SAE_{noskip}\{\text{estimate}\} = K$

1 if (SAE₀₀ - SAE_{noskip}{estimate}) < T
2 skip current MB
3 else
4 code current MB
5
6 Algorithm (2) provides a more accurate estimate of
7 SAE_{noskip} but requires calculation and storage of
8 SAE_{noskip} after coding of each non-skipped MB. In both
9 algorithms, a threshold parameter T controls the
10 proportion of skipped MBs. A higher value of T
11 should result in an increased number of skipped MBs
12 but also in an increased distortion due to
13 incorrectly skipped MBs.
14
15 Improvements and modifications to the method of
16 prediction may be incorporated in the foregoing
17 without departing from the scope of the present
18 invention.
19
20 For example, SAE_{noskip} could be estimated by a
21 combination or even a weighted combination of the
22 sum of absolute differences of luminance values of
23 one or more previously coded macroblocks. In
24 addition, SAE_{noskip} could be estimated by another
25 statistical measure such as sum of squared errors or
26 variance.