(ONFIZ1-0401) Elementary Linear Algebra, Test 1

- 1. $\mathbf{a} = (-2, 0, -1), \mathbf{b} = (0, -3, 1)$ és $\mathbf{c} = (2, 1, 1)$. Calculate the following expressions:
 - a.) $(\mathbf{a} \mathbf{b}) \mathbf{c}$
 - b.) $(\mathbf{b} + \mathbf{c}) \times \mathbf{a}$
 - c.) (**a**, **b**, **c**)
 - d.) What is the angle of Vectors **a** and **b**?
 - e.) Are Vectors **a**, **b**, and **c** in the same plane?
 - f.) Determine a perpendicular vector to Vector **b**.

(8 point)

2. Calculate the determinant of the following matrixes:

$$\mathbf{A} = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 2 & 4 \\ -2 & 4 & 3 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 4 & 2 & -1 & 1 \\ 2 & 1 & -1 & 2 \\ 1 & 0 & 0 & 1 \\ -2 & -2 & 2 & 2 \end{pmatrix}$$

(10 point)

3. Solve the following systems of linear equations:

a.)

$$x_1 - x_2 + 2x_3 = 1$$

$$2x_1 - x_2 + x_3 = -2$$

$$3x_1 + 5x_2 + 2x_3 = 0$$

b.)

$$-x_1 + 3x_2 + x_3 = 1$$

$$x_1 + 3x_2 + x_3 = 0$$

$$4x_1 + x_2 - 3x_3 = 1$$

(12 point)

- 4. Are independent linear Vectors $\mathbf{a} = (-1, 2, 1, 3)$, $\mathbf{b} = (0, 5, -2, 2)$, and $\mathbf{c} = (1, 1, 3, 1)$? (8 point)
- 5. Is subspace on \mathbb{R}^3 the $U = \{(x_1 + x_2, -x_1 x_2, 4x_2) | x_1, x_2 \in \mathbb{R}\}$ set? (4 point)
- 6. Give the Vector $\mathbf{a} = (-1, 0, 0)$ in the (-1, 1, 1); (0, 1, 0); (1, 2, 1) basis. (8 point)

Dr. Gabor FACSKO facskog@gamma.ttk.pte.hu

Pécs, October 18, 2024