

Learning Privacy-preserving Optics For Human Pose Estimation

Carlos Hinojosa¹, Juan Carlos Niebles², Henry Arguello¹ ¹Universidad Industrial de Santander ²Stanford University

Motivation

Cameras are everywhere! How to develop privacy-preserving vision systems?

carlos.hinojosa@saber.uis.edu.co

We want to prevent the camera from obtaining detailed visual data that may contain private information, desirably at the hardware level.

Prior work on Privacy-preserving vision

Low-resolution

- Lose information.
- Pose estimation fails.

De-focusing Susceptible to reverse

Depth cameras Bright sunlight degrades depth estimation quality.

Our key idea: instead of fixed/manually define optics, we'll design optical distortion in a way that doesn't degrade the vision algorithm performance.

Traditional Deep-optics-based Computational Cameras

- The concept of Deep Optics refers to the joint design of optics and algorithms to boost the performance of the final task.
- All Deep Optics methods rely on the same approach: to remove the aberrations from the lens to obtain high-quality reconstructed images.

Model and Approach

- We rely on the converse approach of deep optics: We add aberrations to the lens to obtain privacy protection and jointly perform HPE.
- Our optimization process has two parts: an optical encoder, which provides hardware-level privacy protection by degrading the image quality, and a CNN decoder that learns features from the highly degraded images to perform HPE.

End-to-end Optimization

Formally, we formulate our optimization problem by combining the two goals: to acquire privacy-preserving images and to perform HPE with high accuracy.

 $\alpha^*, h^* = \arg\min L_T(h) + L_P(\alpha).$

Lens Parametrization (α)

We parameterize the surface profile of the lens with To perform HPE, we adopted the Zernike polynomials, where each one describes a

Human Pose Estimation Network (h) Keypoint detection

- OpenPose (OPPS) network.
- We separate the face and body keypoints.
- We seek a network that accurately detects the body points while ignoring the face points.

Qualitative Results on Example COCO Images

Experiments: Ablation Studies

Datasets and Metrics

Dataset

We train our proposed end-to-end approach on the COCO 2017 keypoints dataset and evaluate our approach on the val2017 set.

Metrics

HPE		Face Recognition	Image Quality	
the	standard	COCO We implement the ArcFace network	To measure image degrada	

the standard COCO We implement the **ArcFace** network To measure image degradation, we evaluation metric: Object Keypoint to measure privacy. We train use the peak-signal-to-noise ratio Similarity (OKS). To make a fair ArcFace on three face recognition (PSNR) and the structural similarity comparison, we sightly modify the datasets. We measure its index measure (**SSIM**). We expect to COCO evaluation script to not performance in terms of the area achieve lower PSNR and SSIM under the curve (AUC) of the ROC. values. consider the face keypoints.

Quantitative Experiments: Comparison with Prior Works

Method	PSNR	SSIM	AP	AR
OPPS (Upper Bound)	_	_	0.421	0.506
Defocus Lens	16.614	0.598	0.197	0.256
Low-Resolution	18.54	0.476	0.067	0.106
PP-OPPS (Ours)	14.851	0.567	0.302	0.363

We compare our method two traditional privacy-preserving approaches: Defocus and Low-resolution cameras. OPPS stands for the original OpenPose network. The PP prefix stands for our proposed approach.