Advanced programming

Wanwen liu Sun He

First we upload our datasets

import pandas as pd

cars = pd.read_csv('auto-mpg.data',
delim_whitespace=True,header=None)

cars.describe()

modelyear = cars.iloc[:,6].tolist()

mpg = cars.iloc[:,0].tolist()

Second we modify our data for preparing next steps. We built a new dataset of modelyear and mpg.

mymodelyear=list(set(modelyear))

cars1=cars.iloc[:,np.r_[0,6]]

cars1.columns=["mpg","modelyear"]

cars1

	mpg	modelyear
0	18.0	70
1	15.0	70
2	18.0	70
3	16.0	70
4	17.0	70
5	15.0	70
6	14.0	70
7	14.0	70
8	14.0	70
9	15.0	70
10	15.0	70
11	14.0	70
12	15.0	70
13	14.0	70
14	24.0	70
15	22.0	70
16	18.0	70
17	21.0	70

380	36.0	82
381	36.0	82
382	34.0	82
383	38.0	82
384	32.0	82
385	38.0	82
386	25.0	82
387	38.0	82
388	26.0	82
389	22.0	82
390	32.0	82
391	36.0	82
392	27.0	82
393	27.0	82
394	44.0	82
395	32.0	82
396	28.0	82
397	31.0	82
302 n	owe v 2 co	lumne

398 rows x 2 columns

then we get a new dataset with modelyear and mpg

We build a dictionary of the dataset 'cars1', and use"get_dummies" to classify the data.

dict=cars1.set_index('modelyear').T.to_dict('list')

dict

cars2=pd.get_dummies(cars1,prefix=['myear'],columns=['modelyear']

cars2

	mpg	myear_70	myear_71	myear_72	myear_73	myear_74	myear_75	myear_76	myear_77	myear_78	myear_79	myear_80	myear_81	myear_82
0	18.0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	15.0	1	0	0	0	0	0	0	0	0	0	0	0	0
2	18.0	1	0	0	0	0	0	0	0	0	0	0	0	0
3	16.0	1	0	0	0	0	0	0	0	0	0	0	0	0
4	17.0	1	0	0	0	0	0	0	0	0	0	0	0	0
5	15.0	1	0	0	0	0	0	0	0	0	0	0	0	0
6	14.0	1	0	0	0	0	0	0	0	0	0	0	0	0
7	14.0	1	0	0	0	0	0	0	0	0	0	0	0	0
8	14.0	1	0	0	0	0	0	0	0	0	0	0	0	0
9	15.0	1	0	0	0	0	0	0	0	0	0	0	0	0
10	15.0	1	0	0	0	0	0	0	0	0	0	0	0	0
11	14.0	1	0	0	0	0	0	0	0	0	0	0	0	0
12	15.0	1	0	0	0	0	0	0	0	0	0	0	0	0
13	14.0	1	0	0	0	0	0	0	0	0	0	0	0	0
14	24.0	1	0	0	0	0	0	0	0	0	0	0	0	0
15	22.0	1	0	0	0	0	0	0	0	0	0	0	0	0
381	36.0	0	0	0	0	0	0	0	0	0	0	0	0	1
382	34.0	0	0	0	0	0	0	0	0	0	0	0	0	1
383	38.0	0	0	0	0	0	0	0	0	0	0	0	0	1
384	32.0	0	0	0	0	0	0	0	0	0	0	0	0	1
385	38.0	0	0	0	0	0	0	0	0	0	0	0	0	1
386	25.0	0	0	0	0	0	0	0	0	0	0	0	0	1
387	38.0	0	0	0	0	0	0	0	0	0	0	0	0	1
388	26.0	0	0	0	0	0	0	0	0	0	0	0	0	1
389	22.0	0	0	0	0	0	0	0	0	0	0	0	0	1
390	32.0	0	0	0	0	0	0	0	0	0	0	0	0	1
391	36.0	0	0	0	0	0	0	0	0	0	0	0	0	1
392	27.0	0	0	0	0	0	0	0	0	0	0	0	0	1
393	27.0	0	0	0	0	0	0	0	0	0	0	0	0	1
394	44.0	0	0	0	0	0	0	0	0	0	0	0	0	1
395	32.0	0	0	0	0	0	0	0	0	0	0	0	0	1
396	28.0	0	0	0	0	0	0	0	0	0	0	0	0	1
397	31.0	0	0	0	0	0	0	0	0	0	0	*		⊕ 1
398 rd	ows × 1	14 columns	;											

Building an index

from sklearn.preprocessing import OneHotEncoder

ohc=OneHotEncoder()

ohe=ohc.fit_transform(cars1.modelyear.values.reshape(1,1)).toarray()

a=cars2.columns

Calculating the sum of the numbers and the whole number of data ,modify them

dfOneHot=pd.DataFrame(ohe,columns=a[1:])

dfOneHot

dfh1=pd.concat([cars1,dfOneHot],axis=1)

dfh1

colnum=dfh1.apply(lambda x: x.sum())

```
colnum=dfh1.apply(lambda x: x.sum())
colnum
              9358.8
mpg
modelyear
             30252.0
myear_70
                29.0
myear_71
                28.0
myear_72
                28.0
myear_73
                40.0
myear_74
                27.0
myear_75
                30.0
myear_76
                34.0
                28.0
myear_77
myear_78
                36.0
myear_79
                29.0
                29.0
myear_80
myear_81
                29.0
myear_82
                31.0
dtype: float64
```

Using a while to multipy every column in the dataset with mpg. So that ,we can replace number of "year" to the mpg of them.

```
i=2
while i<15:
```

dfh1.iloc[:,i]=dfh1.iloc[:,i]*mpg

i=i+1;

dfh1

	mpg	modelyear	myear_70	myear_71	myear_72	myear_73	myear_74	myear_75	myear_76	myear_77	myear_78	myear_79	myear_80	myear_81	m
0	18.0	70	18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	15.0	70	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	18.0	70	18.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	16.0	70	16.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	17.0	70	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5	15.0	70	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
6	14.0	70	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7	14.0	70	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
8	14.0	70	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
9	15.0	70	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
10	15.0	70	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
11	14.0	70	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
12	15.0	70	15.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
13	14.0	70	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

34.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34.0
38.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.0
32.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32.0
38.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.0
25.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.0
38.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.0
26.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26.0
22.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.0
32.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32.0
36.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.0
27.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.0
27.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.0
44.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.0
32.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32.0
28.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.0
31.0	82	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31.0

ows × 15 columns

Calculate the sum of each column and average

colsum=dfh1.apply(lambda x: x.sum())

average=colsum/colnum

average=average[2:]

Using a for loop to replace every column to mpg.

for i in mymodelyear:

dict[i]=average[i-70]

dict

cars1['y']=cars1.modelyear.map(dict)

cars1

	mpg	modelyear	у	313	30.0	02	31.703077
0	18.0	70	17.689655	380	36.0	82	31.709677
1	15.0	70	17.689655	381	36.0	82	31.709677
2	18.0	70	17.689655	382	34.0	82	31.709677
3	16.0	70	17.689655	383	38.0	82	31.709677
4	17.0	70	17.689655	384	32.0	82	31.709677
5	15.0	70	17.689655	385	38.0	82	31.709677
6	14.0	70	17.689655	386	25.0	82	31.709677
7	14.0	70	17.689655	387	38.0	82	31.709677
8	14.0	70	17.689655	388	26.0	82	31.709677
9	15.0	70	17.689655	389	22.0	82	31.709677
10	15.0	70	17.689655	390	32.0	82	31.709677
11	14.0	70	17.689655	391	36.0	82	31.709677
12	15.0	70	17.689655	392	27.0	82	31.709677
13	14.0	70	17.689655	393	27.0	82	31.709677
14	24.0	70	17.689655	394	44.0	82	31.709677
15	22.0	70	17.689655	395	32.0	82	31.709677
				396	28.0	82	31.709677
16	18.0	70	17.689655	397	31.0	82	31.709677
17	21.0	70	17.689655				
18	27.0	70	17.689655	398 r	ows × 3	columns	