

Sharing Bike Demand Prediction

Jiatao Yuan Data Science Initiative

Brown University

GitHub: https://github.com/Francis958/Data1030-Final-Project

December 9, 2021

Recap

Intro

- The purpose of this project is to predict the demand for sharing bike per hour
- Regression methods were used
- Good sharing bike demand prediction can ease the traffic congestion and reduce the cost of the company
- Obtained from the UCI
 Machine Learning repository

Dataset Recap

datetime	season	year	month	hour	holiday	weekday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0 2011-01-01	1	2011	1	0	0	6	0	1	0.24	0.2879	0.81	0.0	3	13	16
1 2011-01-01	1	2011	1	1	0	6	0	1	0.22	0.2727	0.80	0.0	8	32	40
2 2011-01-01	1	2011	1	2	0	6	0	1	0.22	0.2727	0.80	0.0	5	27	32
3 2011-01-01	1	2011	1	3	0	6	0	1	0.24	0.2879	0.75	0.0	3	10	13
4 2011-01-01	1	2011	1	4	0	6	0	1	0.24	0.2879	0.75	0.0	0	1	1

Preprocessing And Exploratory Data Analysis

(Figure of Correlation Matrix)

 Preprocessing: Casual, Registered and target variable(High correlations good or not?)

8.0

- 0.6

- 0.4

- 0.0

-0.2

- EDA: Wind Speed and target variable(Low correlation bad or not?
- Business insights: Causal and Registered users with different hour slot

Preprocessing And Exploratory Data Analysis

4

Preprocessing And Exploratory Data Analysis

Cross Validation

Split the data:

- 1. Since I add the 6-hour time lags for the dataset, now the data is i.i.d.
- 2. I split the data into train, validation, test sets. Test set took up 20% of the whole dataset. Train and validation set took 80% and split into 5-Folds process.

CV Pipeline

- R² is the score
- Ridge regression: Standard Scaler, One Hot Encoder, drop features of high collinearity, 5 folds,
 GridSearch and 5 random states
- Random Forest, XGBoost, GradientBoost: One Hot Encoder, 5 folds, GridSearch and 5 random states

Hyperparameters Tuning

- Ridge Regression : L2 regularization term alpha is tuned
- Random Forest: max_depth and max_features are tuned
- XGBoost: alpha, max_depth, lambda, learning rate are tuned
- GradientBoost: learning rate and max_depth are tuned

Results

Model Performance

Model	Test Score				
Ridge Regression	0.882+ - 0.005				
Random Forest	0.958+- 0.001				
GradientBoost	0.959+-0.001				
XGBOOST	0.940+ - 0.002				

Baseline Model

$$R^2 = 1 - rac{RSS}{TSS}$$

Become Zero when the RSS equal to TSS

Scatter Plot of y_true vs y_prediction

XGBoost

Global Feature Importance for XGBoost

Global Feature Importance of Weights

Global Feature Importance of Cover

Most Important Features: Hour, time-lag of 1,2,6 hour(Count1,2,6), weather3(Light Snow, Rain), Holiday, temperatures

Local Feature Importance for XGBoost

• Data Point 900

Most important Features: Count1,temperature,hour

Least important feature: count6

Outlook

- For models:
 - Tune parameters more precisely and have a better range
 - Collect more recent data points to make the predictions
- For features:
 - Consider more interactions between features
 - Collect more features including the volume of rainfalls, etc and see their feature importance.

Questions

Any Questions?