**Applicant:** National Chemicals Limited [NCL]

**CEO:** Sidhant Thalor(221055)

Inventors: C Zoliansangi(220303), Prince Yadav (200725), Kushagra Tiwari (220574), Mohit

Rajpoot(220665), Harshit Kumar (220440)

Chemical Formula: C<sub>13</sub>H<sub>19</sub>N<sub>2</sub>OBr<sub>2</sub>Cl

**Chemical Name:** Ambroxol

Process Title: Production of Ambroxol using Toluene

#### **Process Description:**

Reaction is happening in the following 3 steps:-

- Condensation: In this step, we use 2-amino-3,5-dibromo benzaldehyde and Trans-4-Aminocyclohexanol, stir in a solvent, and get Schiff bases solution.
- Reduction: In The Schiff bases solution add sodium borohydride or lithium aluminium hydride (we are using sodium borohydride) to get the Trans broncho alkaline solution.
- Salify: With the Trans broncho alkaline solution cooling that step b obtains, regulate pH value with the hydrochloric acid solution under the agitation condition, the temperature control reaction is filtered, and washes and drying gets Ambroxol HCI. The yield of the step-1 reaction is 90.16% The yield of the step-2 reaction is 71.17% The final purity is 83%.

### **Block diagram**



#### **Unit operation and operation condition**

#### 1. Solid-State Reaction (SSR Reaction):

- Unit Operation: Solid - liquid reactor ( stirred tank reactor)

#### - Operating Conditions:

- Temperature: 60 °C-65 °C

- Pressure: Atmospheric pressure.

- Catalysts: Toluene

- Input:
  - 2-Amino-3,5-dibromobenzaldehyde
  - Trans-4-Aminocyclohexanol
  - Toluene
- By-Product: None
- 2. Centrifuge (Toluene mixture)-
  - Unit Operation: Centrifugation.
  - Operating Conditions:
    - Rotation Speed: Sufficient to separate the desired product from the toluene mixture.
  - Input: Toluene mixture.
  - **By-Product**: Toluene is sold to an authorised party.
- 3. Sodium Borohydride and Water (Ambroxol stage I):
- **Unit Operation:** Reaction with sodium borohydride and water.( jacketed and agitated reactor)
  - Operating Conditions:
    - Temperature: 20 °C-30 °C
    - Reaction time -6 hr
    - Pressure: Atmospheric pressure.
  - Input:
    - Sodium borohydride
    - Water
    - Intermediate compounds
  - By-Product: None

#### 4. Centrifuge

**Unit operation** - For Separation

- **Input:** intermediate compound
- **By-Product**: Waste water sent to Effluent Treatment Plant (ETP).

#### 5. Methanol and Charcoal:

- **Unit Operation**: Reaction with methanol and charcoal. (Bubble column)
- Operating Conditions:
  - Temperature: Reaction temperature suitable for the specific chemistry involved.
  - Pressure: Atmospheric pressure.
- Input:
  - Methanol
  - Charcoal
  - Intermediate compounds
- By-product: Spent carbon (filtered charcoal).

#### 6. Concentration (Conc. HCL):

- Unit Operation: Concentration.

#### -Operating Conditions:

- Temperature: 0 °C-5 °C

-Reaction time- 2-6 hr

- Pressure: Atmospheric pressure.
- Evaporation Rate: Controlled as per concentration requirements.
- **Input**: Ambroxol HCl solution.

#### 7. **Drying**:

- Unit Operation: Drying.

- Operating Conditions:

- Temperature: Controlled temperature suitable for drying the product.

- Pressure: Atmospheric pressure.

- Input: Ambroxol HCl solution.

- **Product**: Ambroxol HCl (final product).

#### **Material Balances:**

The reaction takes place in 2 stages:

1. The yield of the step-1 reaction is 90.16% (in reference plant). For calculation, we will use 90%.

For the production of 3.44kmol/day of intermediate production with 90% actual yield, we need 3.82kmol/day of ADBA i.e.1066.4kg/day of ADBA required.

We need the 3.82 Kmol/day of TACH also, but in general industrial practices, it is taken in some extra amount, typically 1.5 times ADBA so we need 658.95kg/day of TACH.

The amount of water generated is 3.44kmol/day, i.e. 61.92 litres/day.

2. The yield of the step-2 reaction is 71.17% (in reference plant). For calculations, we will use 70%.

We need to produce 1000 kg/day of ambroxol, i.e. 2.41kmol/day with 70% actual yield we need 3.44kmol/day of intermediate.

In industrial practices, NABH<sub>4</sub> is taken 3.5-4 times stage intermediate; we are taking 3.75 times, so for our plant production, we need 12.9kmol/day of NaBH<sub>4</sub> i.e. 490.2kg/day required.

In industrial practices, HCl is taken roughly the same quantity as stage intermediate, we need 125.56kg/day of HCl for our plant. NaBH<sub>2</sub> produced is 12.9kmol/day, i.e. 464.4kg/day. NaBH<sub>2</sub> produced is 12.9kmol/day, i.e. 464.4kg/day.

### Capital cost (only for the reactor):

| Equipment         |            |     | Design       | No. of | Cost/unit (\$ for | Total Cost (\$ |
|-------------------|------------|-----|--------------|--------|-------------------|----------------|
|                   |            |     | Capacity (L) | units  | year 2014)        | for year 2014) |
| Reactor agitated) | 1(Jacketed | and | 2500 L       | 1      | 37,700            | 37,700         |
| Reactor agitated) | 2(Jacketed | and | 2500L        | 1      | 37,700            | 37,700         |

#### **References:**

- 1. <a href="http://www.matche.com/equipcost/Reactor.html">http://www.matche.com/equipcost/Reactor.html</a>
- 2. <a href="https://patents.google.com/patent/CN103012167A/en">https://patents.google.com/patent/CN103012167A/en</a>
- 3. <a href="https://sphinxsai.com/Vol.3No.1/pharm\_jan-mar11/pdf/JM11(PT=53)%20pp%20309-3 13.pdf">https://sphinxsai.com/Vol.3No.1/pharm\_jan-mar11/pdf/JM11(PT=53)%20pp%20309-3 13.pdf</a>
- 4. http://repository-tnmgrmu.ac.in/348/1/BALAJI%20%20P.pdf
- 5. <a href="https://www.researchgate.net/publication/266742851">https://www.researchgate.net/publication/266742851</a> Formulation and Characterization of Ambroxol Hydrochloride Loaded Ethyl Cellulose Microparticles for Sustained Release
- 6. <a href="https://doktori.bibl.u-szeged.hu/id/eprint/9882/1/Disszertacio\_GYULAI%20ORSOLYA.p">https://doktori.bibl.u-szeged.hu/id/eprint/9882/1/Disszertacio\_GYULAI%20ORSOLYA.p</a> <a href="https://doktori.bibl.u-szeged.hu/id/eprint/9882/1/Disszertacio\_GYULAI%20ORSOLYA.p">https://doktori.bibl.u-szeged.hu/id/eprint/9882/1/Disszertacio\_GYULAI%20ORSOLYA.p</a>

#### List the contributions of each author:

- Kushagra has done material balance for a scaled-up process plant with a 1000 kg/day capacity.
- Prince Yadav has provided unit operation and operation conditions after getting information from the flow diagram.
- C Zoliansangi made the block diagram in accordance with the unit operation
- Mohit and Harshit calculated the design capacity of the reactor from the material balance and the capital cost.

| Name                          | Roll No | Signature       |
|-------------------------------|---------|-----------------|
| CEO - Sidhant Thalor          | 221055  | Sidhant Thalor  |
| First Author - Prince Yadav   | 200725  | Prince Yadav    |
| Second author -C Zoliansangi  | 220303  | C Zoliansangi   |
| Third author -Kushagra Tiwari | 220574  | Kushagra Tiwari |
| Fourth author -Mohit Rajpoot  | 220665  | Mohit Rajpoot   |
| Fifth author - Harshit Kumar  | 220440  | Harshit Kumar   |

#### Nature of Invention: Process design

**Applicant:** National Chemicals Limited [NCL]

**CEO:** Sidhant Thalor(221055)

Inventors: C Zoliansangi (220303), Prince Yadav (200725), Kushagra Tiwari (220574),

Harshit Kumar (220440), Mohit Rajpoot (220665)

Chemical Formula: C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>Cl

Chemical Name: Mono-Chloro Acetic Acid (MCAA)

Process Title: Preparation of MCAA using Glacial Acetic acid

#### **Process Description:**

We are adding chlorine gas to Glacial acetic in the presence of strong acid as a catalyst to form MCAA. The reaction is Endothermic.

Reaction Temperature: 105 ℃ to 110 ℃

Reaction Time: 6 to 7 hrs

Yield: 89.5%

Purity: 93.8% (in product mixture) 97.5% to 99.1% (After crystallisation and separation).

### **Block Diagram**



#### **Unit operations and process conditions**

#### 1. Chlorination Reaction:

- Unit Operation: Reactor operation (liquid-phase reactor)
- Operating Conditions:
  - **-Temperature:** Not explicitly provided, but typically within the range suitable for liquid phase reactions.
  - Pressure: 3-5 bar
  - Chlorine gas saturation in the liquid phase, under waterless conditions.
  - Endothermic reaction.
- Type of Reactor: Liquid-phase reactor

#### 2. Stripping:

- Unit Operation: Stripping tower operation
- Operating Conditions:
  - Temperature: Not explicitly provided, but typically between 120 and 180°C.
  - Pressure: Between 1 and 7 bar
- Type of Reactor: Scrubber

#### 3. Cooling:

- Unit Operation: Cooling process
- Operating Conditions:
- **Temperature**: Cooling to a temperature between 10 and 60°C (preferably around 35°C)
  - Type of Equipment: Cooling system or heat exchanger

#### 4. Absorption:

- Unit Operation: Absorption tower operation
- Operating Conditions:
- **Temperature:** Operating at the cooled temperature of the gaseous HCl stream.
  - Type of Reactor: Absorption tower

#### 5. Crystallization:

- Unit Operation: Crystallisation process
- Operating Conditions:
  - **Temperature**: Dynamic behaviour analysis indicates a temperature of 273 K (0°C) as optimal.
- Type of Equipment: Crystallisation vessel or crystallizer

#### **Specific Operating Conditions:**

- The chlorination reaction occurs in a liquid-phase reactor under pressure, with chlorine gas saturation in the liquid phase, typically at temperatures suitable for liquid-phase reactions.
- Stripping of the liquid phase occurs at elevated temperatures and pressures to separate MCAA and DCAA.
- Cooling of the gaseous HCl stream occurs between 10 and 60°C before absorption.
- HCl gas is absorbed at the cooled temperature of the gaseous HCl stream.
- Crystallisation is carried out at a temperature of 273 K (0°C) for optimal separation of MCAA from the mother liquor.

#### **Material Balances:**

Yield: 89.5%

For 1000kg/day production of Mono chloro acetic acid production, i.e. 10.58kmol/day production, we need (10.58/0.895=11.82) 11.82 Kmol/day (709.2kg/day) of Acetic acid with 89.5% yield.

We need 11.82kmol/day (839.22kg/day) of Chlorine gas also, in this process, 431.43kg/day of HCl is produced.

#### Capital cost (only for the reactor):

| Equipment             | Design       | No. of | Cost/unit (\$ for | Total Cost (\$ |
|-----------------------|--------------|--------|-------------------|----------------|
|                       | Capacity (L) | units  | year 2014)        | for year 2014) |
| Decetord              | 10501        | 4      | 44.000            | 44.000         |
| Reactor 1             | 1850 L       |        | 44,900            | 44,900         |
| Jacketed and          |              |        |                   |                |
| Agitated(Liquid-phase |              |        |                   |                |
| reactor)              |              |        |                   |                |
|                       |              |        |                   |                |
|                       |              |        |                   |                |

#### Note:

1. Design capacity is calculated by converting the mass required of the reactants into volume by using the density.

Density of liquid Acetone = 784 kg / m3

Density of saturated liquid chlorine = 1467 kg / m3

#### References:

- 1. <a href="http://www.matche.com/equipcost/Reactor.html">http://www.matche.com/equipcost/Reactor.html</a>
- 2. US Patent for Method of industrially producing monochloroacetic acid Patent (Patent # 10,494,325): <a href="https://patents.justia.com/patent/10494325">https://patents.justia.com/patent/10494325</a>
- 3. Mechanism of chlorination process: From acetic acid to monochloroacetic acid and byproducts using acetic anhydride as catalyst: http://web.icf.ro/rrch/
- 4. www.researchgate.net/publication/289269184\_New\_method\_for\_synthesizing\_m ono chloroacetic\_acid Process for the preparation of monochloroacetic acid
- 5. https://patents.google.com/patent/US7135597B2/en
- 6. https://www.sciencemadness.org/smwiki/index.php/Chloroacetic\_acid
- 7. <a href="https://chemcess.com/chloroacetic-acid/">https://chemcess.com/chloroacetic-acid/</a>
- 8. <a href="https://pubchem.ncbi.nlm.nih.gov/compound/Chloroacetic-acid#section=Pharma">https://pubchem.ncbi.nlm.nih.gov/compound/Chloroacetic-acid#section=Pharma</a> cology-andBiochemistry
- 9. https://application.wiley-vch.de/books/sample/3527334777\_c01.pdf

#### List the contributions of each author:

- Prince Yadav has provided information for unit operation and process conditions.
- C Zoliansangi made the block diagram in reference to the unit operation.
- Kushagra and Mohit has done material balance for a scaled-up process plant with a 1000 kg/day capacity.
- Mohit and Harshit calculated the design capacity of the reactor from the material balance and calculated the capital cost.

| Name            | Roll No | Signature       |
|-----------------|---------|-----------------|
| CEO Name        | 221055  | Sidhant Thalor  |
| Prince Yadav    | 200725  | Prince Yadav    |
| Mohit Rajpoot   | 220665  | Mohit Rajpoot   |
| Harshit Kumar   | 220440  | Harshit Kumar   |
| Kushagra Tiwari | 220574  | Kushagra Tiwari |
| C Zoliansangi   | 220303  | C Zoliansangi   |