MATA54 Estrutura de Dados e Algoritmos II - 2024.2

Count-Min Sketch

Alunos

Gustavo de Oliveira Ferreira

CONTEXTO

Tenho uma aplicação que está recebendo uma **stream** de eventos e precisamos contar fazer algumas análises

- Quais hashtags estão sendo mais usadas em uma rede social em um certo momento?
- Quais dados devo dar preferência para fazer cache?

Hash Tables?

Sempre que tiver a ocorrência de um evento posso incrementar o valor dele na tabela

Hash Tables?

Sempre que tiver a ocorrência de um evento posso incrementar o valor dele na tabela

Árvores Binárias de Busca?

Armazenar as chaves, com os valores de frequência maneira ordenada

Mas e se estiver analisando uma quantidade massiva de dados?

Hash Tables

Complexidade espacial O(n)

Árvores Binárias de Busca?

Complexidade espacial O(n)

Mas e se estiver analisando uma quantidade massiva de dados?

Hash Tables

Complexidade espacial O(n)

Árvores Binárias de Busca?

Complexidade espacial O(n)

Complexidade espacial linear

Mas e se estiver analisando uma quantidade massiva de dados?

Hash Tables

Complexidade espacial O(n)

Árvores Binárias de Busca?

Complexidade espacial O(n)

Mas e se o espaço disponível for restrito?

MOTIVAÇÃO

Motivação

Analisar stream de eventos **potencialmente** infinitos

Quantidade massiva de dados

Limitação de espaço para guardar tais dados

Análise rápida

Motivação

Analisar stream de eventos **potencialmente** infinitos

Quantidade massiva de dados

Limitação de espaço para guardar tais dados

Análise rápida

Precisamos de um estrutura de dados que possua espaço sub-linear.

Motivação

Estrutura de dados que possua espaço sub-linear.

COUNT-MIN SKETCH

Count-min Sketch

Algoritmo Probabilístico para estimativa de valores

Pode ser usado para:

- Calcular frequência simples de um evento
- Identificar elementos frequentes
- Computar quantidades

Count-min Sketch

Realiza operações usando uma matriz de contadores e uma série de funções hash.

hash 1	Mtr 11	Mtr 12	Mtr 13	 Mtr 1M
hash 1	Mtr 21	Mtr 22	Mtr 23	 Mtr 2M
hash n	Mtr M1	Mtr M2	Mtr M3	 Mtr MN

	0	1	2	3	4	5	6
H1	0	0	0	0	0	0	0
H2	0	0	0	0	0	0	0
Н3	0	0	0	0	0	0	0
H4	0	0	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	1	0	0	0	0	0
H2	0	0	0	0	0	0	0
Н3	0	0	0	0	0	0	0
H4	0	0	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	1	0	0	0	0	0
H2	0	0	0	0	0	0	1
Н3	0	0	0	0	0	0	0
H4	0	0	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	1	0	0	0	0	0
H2	0	0	0	0	0	0	1
Н3	0	0	0	1	0	0	0
H4	0	0	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	1	0	0	0	0	0
H2	0	0	0	0	0	0	1
Н3	0	0	0	1	0	0	0
H4	0	1	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	2	0	0	0	0	0
H2	0	0	0	0	0	0	1
Н3	0	0	0	1	0	0	0
H4	0	1	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	2	0	0	0	0	0
H2	0	0	1	0	0	0	1
Н3	0	0	0	1	0	0	0
H4	0	1	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	2	0	0	0	0	0
H2	0	0	1	0	0	0	1
Н3	0	0	0	1	1	0	0
H4	0	1	0	0	0	0	0

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	2	0	0	0	0	0
H2	0	0	1	0	0	0	1
Н3	0	0	0	1	1	0	0
H4	0	1	0	0	0	0	1

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	2	0	1	0	0	0
H2	0	0	1	0	1	0	1
Н3	0	1	0	1	1	0	0
H4	0	1	0	0	0	0	2

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(A) = 2$, $H3(A) = 4$, $H4(A) = 6$

$$H1(K) = 3, H2(K) = 4, H3(K) = 1, H4(K) = 6$$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	3	0	1	0	0	0
H2	0	0	1	0	1	0	2
H3	0	1	0	2	1	0	0
H4	0	2	0	0	0	0	2

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1, H2(B) = 2, H3(B) = 4, H4(B) = 6$$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	4	0	1	0	0	0
H2	0	0	1	0	1	0	3
Н3	0	1	0	3	1	0	0
H4	0	3	0	0	0	0	2

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1, H2(B) = 2, H3(B) = 4, H4(B) = 6$$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	4	0	2	0	0	0
H2	0	0	1	0	2	0	3
H3	0	2	0	3	1	0	0
H4	0	3	0	0	0	0	3

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	4	0	2	0	0	1
H2	0	0	2	0	2	0	3
Н3	0	2	0	3	2	0	0
H4	0	4	0	0	0	0	3

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	4	0	2	0	0	1
H2	0	0	2	0	2	0	3
Н3	0	2	0	3	2	0	0
H4	0	4	0	0	0	0	3

Quantas vezes A foi recebido no stream?

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

min [4, 3, 3, 4] => 3 vezes

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

	0	1	2	3	4	5	6
H1	0	4	0	2	0	0	1
H2	0	0	2	0	2	0	3
Н3	0	2	0	3	2	0	0
H4	0	4	0	0	0	0	3

Quantas vezes \$ foi recebido no stream?

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

Valores

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

Tabela CMS - Colisão

	0	1	2	3	4	5	6
H1	0	4	0	2	0	0	2
H2	1	0	2	0	2	0	3
H3	1	2	0	3	2	0	0
H4	0	4	1	0	0	0	3

Mas e se nós adicionarmos um novo valor a stream, que a função hash incremente a posição do menor valor de outro elemento?

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

min [2, 2, 2, 4] => No máximo 2 vezes

Adicionando E ao stream

$$H1(A) = 1$$
, $H2(A) = 6$, $H3(A) = 3$, $H4(A) = 1$

$$H1(B) = 1$$
, $H2(B) = 2$, $H3(B) = 4$, $H4(B) = 6$

$$H1(K) = 3$$
, $H2(K) = 4$, $H3(K) = 1$, $H4(K) = 6$

$$H1(S) = 6$$
, $H2(S) = 2$, $H3(S) = 4$, $H4(S) = 1$

$$H1(E) = 6$$
, $H2(E) = 0$, $H3(E) = 0$, $H4(E) = 2$

Count-min Sketch Pseudocódigo

```
procedure CountMinSketch(depth, width)
2:
        function add(item)
             while counter < depth do
3:
                 buckets ←getHashBuckets(item,depth,width)
4:
                 M tr[counter][buckets[counter]] \leftarrow +1
5:
                 counter \leftarrow +1
             end while
7:
8:
        end function
```

Count-min Sketch Pseudocódigo

```
procedure CountMinSketch(depth, width)
9:
        function estimateCount(item)
10:
             r \leftarrow MAXVALUE
             while counter < depth do
11:
                 val ← M tr[counter][buckets[counter]]
12:
13:
                 r \leftarrow Min(r, val)
                  counter \leftarrow +1
14:
15:
             end while
16:
        return r
17:
         end function
```

TEORIA

O CMS é uma estrutura com parâmetros (ϵ, δ) representada por uma matriz bi-dimensional.

E representa o fator de erro na estimativa de frequência (precisão da estrutura de dados)

δ representa a probabilidade de erro (a chance de que a estimativa exceda o erro especificado por ε)

A matriz é formada por duas listas com largura **w** e profundidade **d**.

Dados os parâmetros (ε, δ) , temos que:

A matriz é formada por duas listas com largura **w** e profundidade **d**.

Dados os parâmetros (ε, δ) , temos que:

largura $w = \Gamma e/ε1$ profundidade $w = \Gamma \ln 1/δ1$

Dado:

- **m** elementos adicionados
- **â** estimativa de ocorrência de um elemento x
- a quantidade real de ocorrência de x

Temos que:

$$Pr(\hat{a} \le a + \epsilon * m) > = 1 - \delta$$

Dado:

- **m** elementos adicionados
- **â** estimativa de ocorrência de um elemento x
- a quantidade real de ocorrência de x

Temos que:

$$Pr(\hat{a} \le a + \epsilon * m) > = 1 - \delta$$

ANÁLISE PRÁTICA

Referências

CORMODE, G.; MUTHUKRISHNAN, S. **An improved data stream summary: the count-min sketch and its applications**. Journal of Algorithms, v. 55, n. 1, p. 58–75, abr. 2005.

CORMODE, G.; MUTHUKRISHNAN, S. What's hot and what's not: tracking most frequent items dynamically. ACM Transactions on Database Systems, v. 30, n. 1, p. 249–278, mar. 2005.

SCHWARZ, K. **Count-Min Sketches**. Disponível em: https://web.stanford.edu/class/archive/cs/cs166/cs166.1206/lectures/10/Slides10.pdf>. Acesso em: 20 jan. 2025.

Obrigado!