Chapitre 1: Groupes

I Loi de composition interne

Définition : Soit E un ensemble. Une **loi de composition interne** sur E est une application $*: E \times E \to E$ qui à tout couple $(x,y) \in E \times E$ associe un élément $x*y \in E$.

Propriété: Associativité

* est associative si $\forall x, y, z \in E, (x * y) * z = x * (y * z).$

Propriété : Elément neutre

On dit que $e \in E$ est un élément neutre si $\forall x \in E, e * x = x * e = x$.

1 Remarque : L'élément neutre est unique. La démonstration découle du fait que si on prend deux éléments neutres e et e', on a e*e'=e et e*e'=e', donc e=e'.

Propriété : Symétrique

Soient $a,b \in E$. On dit que b est symétrique (ou inverse, ou opposé) de a si a*b=b*a=e, où e est l'élément neutre.

Propriété: Commutativité

* est commutative si $\forall x,y \in E, x*y = y*x$.

 \bigcirc Vocabulaire: Notations typiques pour les lois de composition interne: $+, \times, \cdot, \circ$, etc.

Il Notions de groupe

A Généralités

Définition : Soit G un ensemble muni d'une loi de composition interne *. On dit que (G,*) est un **groupe** si les trois propriétés suivantes sont vérifiées :

- * est associative.
- Il existe un élément neutre $e \in G$.
- Tout élément de G possède un symétrique dans G.

Si * est en plus commutative, on dit que (G,*) est un **groupe abélien**.

Exemple: Exemples de groupes :

- $(\mathbb{Z},+)$: l'ensemble des entiers avec l'addition.
- $(\mathbb{R}^*, \times), (\mathbb{Q}^*, \times), (\mathbb{C}^*, \times)$: l'ensemble des réels, rationnels et complexes non nuls avec la multiplication.
- $(\{\text{bijections }X \to X \mid X \text{ est un ensemble}\}, \circ)$: l'ensemble des bijections d'un ensemble X dans lui-même avec la composition.

Contre-exemples de groupes :

(N,+): l'ensemble des entiers naturels avec l'addition (pas d'élément neutre dans N).

Vocabulaire : Systèmes de notations pour les groupes :

- Système additif: on note le groupe (G,+), l'élément neutre est noté 0 et le symétrique de x est noté -x.
- Système multiplicatif : on note le groupe (G, \times) ou (G, \cdot) , l'élément neutre est noté 1 et le symétrique de x est noté x^{-1} .

Propriété: Produit de lois (admise)

Soient $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes. On définit une loi de composition interne sur $G_1 \times G_2$ par *:

$$(g_1, g_2) * (h_1, h_2) \mapsto (g_1 *_1 h_1, g_2 *_2 h_2)$$

pour tout $(x_1,y_1),(x_2,y_2)\in G_1\times G_2$. Alors $(G_1\times G_2,*)$ est un groupe.

Proposition: Produit cartésien

Soient $(G_1, *_1)$ et $(G_2, *_2)$ deux groupes. On définit une loi de composition interne sur $G_1 \times G_2$ par * comme susdit. Alors l'ensemble $(G_1 \times G_2, *)$ est un groupe, appelé le **groupe produit** de $(G_1, *_1)$ et $(G_2, *_2)$.

Preuve:

• Associativité : Soient $(g_1, g_2), (h_1, h_2), (k_1, k_2) \in G_1 \times G_2$.

$$\begin{split} ((g_1,g_2)*(h_1,h_2))*(k_1,k_2) &= (g_1*_1h_1,g_2*_2h_2)*(k_1,k_2) \\ &= ((g_1*_1h_1)*_1k_1,(g_2*_2h_2)*_2k_2) \\ &= (g_1*_1(h_1*_1k_1),g_2*_2(h_2*_2k_2)) \quad \text{(par associativit\'e dans G_1 et G_2)} \\ &= (g_1,g_2)*(h_1*_1k_1,h_2*_2k_2) \\ &= (g_1,g_2)*((h_1,h_2)*(k_1,k_2)) \end{split}$$

- Élément neutre : Soient e_1 et e_2 les éléments neutres de G_1 et G_2 respectivement. Alors (e_1,e_2) est l'élément neutre de $G_1 \times G_2$ car pour tout $(g_1,g_2) \in G_1 \times G_2$, $(e_1,e_2)*(g_1,g_2) = (e_1*_1g_1,e_2*_2g_2) = (g_1,g_2)$ et $(g_1,g_2)*(e_1,e_2) = (g_1*_1e_1,g_2*_2e_2) = (g_1,g_2)$.
- Symétrique : Soit $(g_1,g_2) \in G_1 \times G_2$. Comme G_1 et G_2 sont des groupes, il existe $g_1^{-1} \in G_1$ et $g_2^{-1} \in G_2$ tels que $g_1 *_1 g_1^{-1} = e_1$ et $g_2 *_2 g_2^{-1} = e_2$. Alors le symétrique de (g_1,g_2) dans $G_1 \times G_2$ est (g_1^{-1},g_2^{-1}) car :

Propriété : Produit cartésien et commutativité (admise)

Si $(G_1, *_1)$ et $(G_2, *_2)$ sont des groupes abéliens, alors leur produit cartésien $(G_1 \times G_2, *)$ est aussi un groupe abélien.

🚯 Remarque : On pourrait prendre plus de deux groupes et faire le produit cartésien de plusieurs groupes.

B Sous-groupes

Définition : Soit (G,\cdot) un groupe *(on utilise la notation multiplicative, mais cela fonctionne aussi en notation additive).* Un **sous-groupe** de G est un sous-ensemble $H\subseteq G$ tel que (H,\cdot) est lui-même un groupe.

Propriété : Lien entre sous-groupe et groupe (admise)

Un sous-groupe est lui-même un groupe pour la même loi de composition interne que le groupe dont il est issu.

Example: (Z,+) est un sous-groupe de $(\mathbb{R},+)$.

Proposition: Sous-groupe

Soit (H, \cdot) un sous-groupe de $(G, \cdot) \Leftrightarrow$

- *H* ≠ ∅ : 1
- $\forall h, h' \in H, h \cdot h' \in H$ (stabilité par la loi) : 2
- $\forall h \in H, \exists h^{-1} \in H$ (stabilité par l'inverse) : 3

Preuve:

- \Rightarrow / : Si H est un sous-groupe de G, alors par définition de groupe, H satisfait 1, 2 et 3.
- \Leftarrow /: Supposons que H vérifie les trois conditions. Nous devons montrer que (H, \cdot) est un groupe.
 - Associativité : La loi de composition interne sur H est la même que celle sur G, donc elle est associative.
 - Élément neutre : Soit e l'élément neutre de G. Comme H est non vide, $\exists h_0 \in H$ et par la condition 3, $h_0^{-1} \in H$. Par la définition de l'élément neutre dans G, on a $h_0 \cdot h_0^{-1} = e$. Donc $e \in H$.
 - Symétrique : Par la condition 3, pour tout $h \in H$, son inverse h^{-1} appartient à H.

Ainsi, toutes les propriétés d'un groupe sont satisfaites pour H, donc H est un sous-groupe de G.

© Exemple :

- (G,\cdot) est un sous-groupe de lui-même.
- $\{1\}$ est un sous-groupe de G.
- (Z,+) est un sous-groupe de $(\mathbb{R},+)$.

Proposition: Intersection

Soit $(H_i)_{i\in I}$ une famille de sous-groupes de (G,\cdot) . Alors l'intersection $H=\bigcap_{i\in I}H_i$ est un sous-groupe de G.

Preuve:

Corollaire : Sous-groupe engendré

Soit $X\subseteq G$. Considérons $H=\bigcap_{i\in I}H_i$. C'est un sous-groupe de G engendré par X.

Définition : Soit $g \in G$.

On a posé pour $n \in \mathbb{Z}, g^n = \underbrace{g \cdot g \cdot \ldots \cdot g}_{n \text{ fois}}$ si $n > 0, g^0 = e$ (élément neutre) et $g^n = \underbrace{g^{-1} \cdot g^{-1} \cdot \ldots \cdot g^{-1}}_{-n \text{ fois}}$ si n < 0.

On pose $g^{\mathbb{Z}} = \{g^n \mid n \in \mathbb{Z}\}$: c'est **l'ensemble des itérés** de G.

Proposition: Sous-groupe engendré

On a que $g^{\mathbb{Z}}$ est un sous-groupe de G engendré par g.

Preuve:

1 Remarque: En notation additive, l'ensemble des itérés de g est noté $\mathbb{Z}g = \{ng \mid n \in \mathbb{Z}\}.$

Définition : Si $G = g^{\mathbb{Z}}$, on dit que G est monogène et que g est un générateur de G.

© Exemple : \mathbb{Z} est monogène et engendré par 1.

Définition : Si le sous-groupe engendré par X est G, on dit que X est un système de générateurs de G.