There will be a title – I promise

Nathan Adelgren *

September 28, 2021

Abstract

This paper talks about some stuff.

1 Updated Notation

- 1. Return to the use of θ rather than the decomposed (ϕ, v) .
- 2. To make it more clear that the sets previously denoted as $Z_{\mathcal{B}}$, $H^i_{\mathcal{B}} \,\forall i \in \mathcal{B}$, $E_{\mathcal{B}}$, $F_{\mathcal{B}}$, and $D^i_{\mathcal{B}} \,\forall i \in \mathcal{B}$ are each subsets of \mathcal{B} and are available within any Algorithm presented herein for which \mathcal{B} is an input, we modify the notation as follows:
 - $\bullet \ \, \mathbf{Z}_{\mathcal{B}} \longrightarrow \mathcal{B}.\mathbf{Z}$
 - $H^i_{\mathcal{B}} \longrightarrow \mathcal{B}.H^i \quad \forall i \in \mathcal{B}$
 - $E_{\mathcal{B}} \longrightarrow \mathcal{B}.E$
 - $F_{\mathcal{B}} \longrightarrow \mathcal{B}.F$
 - $D^i_{\mathcal{B}} \longrightarrow \mathcal{B}.D^i \quad \forall i \in \mathcal{B}$
- 3. For each $i \in \mathcal{B}$, let

$$r_{\mathcal{B}}^{i}(\theta) = g_{\mathcal{B}} \left(Adj(G(\theta)_{\bullet \mathcal{B}}) \right)_{i \bullet} q(\theta). \tag{1}$$

4. For each distinct pair of indices $i, j \in \mathcal{B}$, let

$$l_{\mathcal{B}}^{i,j}(\theta) = g_{\mathcal{B}} \left(Adj(G(\theta)_{\bullet \mathcal{B}}) \right)_{i \bullet} G(\theta)_{\bullet \bar{\eta}}. \tag{2}$$

5. For each $i \in \mathcal{B}$, define

$$\mathcal{B}.\mathsf{P}^i:=\left\{\ell\in\mathcal{B}: degree((T_{\mathcal{B}}(\theta))_{\ell,\bar{\imath}})>0 \text{ or } (T_{\mathcal{B}}(\theta))_{\ell,\bar{\imath}} \text{ is a strictly positive constant}\right\} \qquad (3)$$

6. Given a $\theta \in \Theta$ and $\epsilon > 0$, let $B_{\epsilon}(\theta)$ denote the k-dimensional open ball of radius ϵ centered at θ .

2 Updated Theory

1. We can sometimes identify elements of F_B when solving NLP_H .

Theorem 1 Given a f.c.b. B and distinct $i, j \in \mathcal{B}$, let (λ, θ) be a feasible point of $NLP_H(\mathcal{B}, i, j)$. If $\lambda > 0$ and all inequality constraints of $NLP_H(\mathcal{B}, i, j)$ are satisfied strictly at (λ, θ) , then $i \in \mathcal{B}$.F.

^{*}Andlinger Center for Energy and the Environment, Princeton University, NJ, USA. Email: na4592@princeton.edu

Proof: Let $\lambda' = \max\{\lambda, \text{ LHS's of inequalities of } NLP_H(\mathcal{B}, i, j) \text{ at } (\lambda, \theta)\}$. Note that $\lambda' > 0$ since all inequality constraints of $NLP_H(\mathcal{B}, i, j)$ are satisfied strictly. Moreover, (λ', θ) is a feasible point to $NLP_F(\mathcal{B}, i)$ and the objective value of $NLP_F(\mathcal{B}, i)$ at this point is $\lambda' > 0$. Hence, the optimal value of $NLP_F(\mathcal{B}, i)$ must be strictly positive showing that $i \in \mathcal{B}$. F by Proposition 4.1 of [1].

2. We can sometimes determine the dimension of $\mathcal{IR}_{\mathcal{B}}$ upon finding an element i of \mathcal{B} .F.

Theorem 2 Let a f.c.b. \mathcal{B} and an $i \in \mathcal{B}$. F be given. If \mathcal{B} . Hⁱ = \emptyset and there exists a point (λ, θ) that is feasible to $NLP_F(\mathcal{B}, i)$ and for which $\lambda > 0$, then $dim(\mathcal{IR}_{\mathcal{B}}) = k$.

Proof: Since $\mathcal{B}.H^i = \emptyset$, from the structure of $NLP_F(\mathcal{B},i)$ we know that all defining inequalities of $\mathcal{IR}_{\mathcal{B}}$ except the one associate with $i \in \mathcal{B}$ and those whose LHS's are identically zero are satisfied strictly at θ . Hence, there exists $\epsilon > 0$ such that these same defining inequalities of $\mathcal{IR}_{\mathcal{B}}$ are all satisfied strictly at all points in $B_{\epsilon}(\theta)$. Clearly, the intersection of $B_{\epsilon}(\theta)$ with the half-space $r_{\mathcal{B}}^i(\theta) \geq 0$ is contained within $\mathcal{IR}_{\mathcal{B}}$ and has dimension k.

3. There exists an alternate NLP to $NLP_A(\mathcal{B}, i, j)$ that can be used to determine the adjacency of $\mathcal{IR}_{\mathcal{B}}$ and $\mathcal{IR}_{\mathcal{B}'}$ along $\mathcal{H}_{\mathcal{B}}^i$.

Theorem 3 Let a f.c.b. \mathcal{B} and $i \in \mathcal{B}$ be given such that $\dim(\mathcal{IR}_{\mathcal{B}}) \geq k-1$ and $\dim(\mathcal{IR}_{\mathcal{B}} \cap \mathcal{h}_{\mathcal{B}}^i) = k-1$. For any f.c.b. $\mathcal{B}' \neq \mathcal{B}$ such that $|\mathcal{B} \cap \mathcal{B}'| \geq k-2$, $\mathcal{IR}_{\mathcal{B}}$ and $\mathcal{IR}_{\mathcal{B}'}$ are adjacent along $\mathcal{h}_{\mathcal{B}}^i$ if and only if one of the following conditions holds:

- (a) $\mathcal{B}' = (\mathcal{B} \setminus \{i\}) \cup \{\bar{\imath}\} \text{ and } (T_{\mathcal{B}}(\theta))_{i,\bar{\imath}} \not\equiv 0.$
- (b) $\mathcal{B}' = (\mathcal{B} \setminus \{i, j\}) \cup \{\bar{\imath}, \bar{\jmath}\}, (T_{\mathcal{B}}(\theta))_{i,\bar{\imath}} \equiv 0$, and the following NLP has a strictly positive optimal value:

$$\begin{split} NLP_{A'}(\mathcal{B},i,j) := & \max_{\substack{\lambda,\theta \\ s.t.}} \quad \lambda \\ s.t. & l_{\mathcal{B}}^{j,i}(\theta) \geq \lambda \\ & r_{\mathcal{B}}^{\xi}(\theta) \geq \lambda \\ & r_{\mathcal{B}}^{i}(\theta) = 0 \\ & l_{\mathcal{B}}^{j,i}(\theta)r_{\mathcal{B}}^{\xi}(\theta) - l_{\mathcal{B}}^{\xi,i}(\theta)r_{\mathcal{B}}^{j}(\theta) \geq \lambda \\ & \theta \in \Theta \end{split} \qquad \forall \, \xi \in \left(\mathcal{B} \setminus \left(\mathcal{B}.\mathbf{Z} \cup \mathcal{B}.\mathbf{H}^{i} \cup \{i\}\right)\right) \\ \forall \, \xi \in \left(\mathcal{B}.\mathbf{P}^{i} \setminus \{j\}\right) \end{split}$$

Proof: We focus only on condition (b) as the result is proved for condition (a) in [1]. (\Leftarrow) :

We establish the desired result by showing that there exists a (k-1)-dimensional set $\Theta' \subseteq \Theta$ such that for all $\theta' \in \Theta'$: (I) $\mathcal{C}_{\mathcal{B}}(\theta')$ and $\mathcal{C}_{\mathcal{B}'}(\theta')$ are adjacent along $cone\left(G(\theta')_{\bullet(\mathcal{B}\setminus\{i\})}\right)$, (II) $q(\theta')$ lies in $\mathcal{C}_{\mathcal{B}}(\theta')$, and (III) $q(\theta')$ lies in $\mathcal{C}_{\mathcal{B}'}(\theta')$.

Let (λ^*, θ^*) be a point feasible to $NLP_{A'}(\mathcal{B}, i, j)$ for which $\lambda^* > 0$. Then there must exist an $\epsilon > 0$ such that for all $\theta' \in B_{\epsilon}(\theta^*)$: (i) $l_{\mathcal{B}}^{j,i}(\theta') > 0$, (ii) $r_{\mathcal{B}}^{\xi}(\theta') > 0$ for all $\xi \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.H^i \cup \{i\}))$, and (iii) $l_{\mathcal{B}}^{j,i}(\theta')r_{\mathcal{B}}^{\xi}(\theta') - l_{\mathcal{B}}^{\xi,i}(\theta')r_{\mathcal{B}}^{g}(\theta') > 0$ for all $\xi \in (\mathcal{B}.P^i \setminus \{j\})$. Define

$$\Theta' = B_{\epsilon}(\theta^*) \cap h_{\mathcal{B}}^i \tag{5}$$

and recognize from (??) and (1) that because $r_{\mathcal{B}}^{i}(\theta') = 0$, we have $\theta^{*} \in relint(\Theta')$. Thus, $dim(\Theta') = dim(h_{\mathcal{B}}^{i}) = k - 1$.

We now establish claim (I). From (??) and (2) we see that because $l_{\mathcal{B}}^{j,i}(\theta') > 0$ for all $\theta' \in B_{\epsilon}(\theta^*)$, we have that $(T_{\mathcal{B}}(\theta'))_{j,\bar{\imath}} > 0$ for all $\theta' \in \Theta'$. Therefore, by Proposition 4.4 of [1] we have that $C_{\mathcal{B}}(\theta')$ and $C_{\mathcal{B}'}(\theta')$ are adjacent along $cone(G(\theta')_{\bullet(\mathcal{B}\setminus\{i\})})$ for all $\theta' \in \Theta'$.

Next, we establish claim (II). From (??), (??), (1), and (5) we see that because $r_{\mathcal{B}}^{\xi}(\theta') > 0$ for all $\xi \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.H^i \cup \{i\}))$ and all $\theta' \in \Theta'$, we have that $\theta' \in relint(\mathcal{IR}_{\mathcal{B}} \cap \mathcal{h}_{\mathcal{B}}^i)$ for all $\theta' \in \Theta'$. Thus, from Observation 2.4 and Definition 2.15 of [1], we have $q(\theta') \in \mathcal{C}_{\mathcal{B}}(\theta')$ for all $\theta' \in \Theta'$.

Finally, we establish claim (III). Recognize that $q(\theta')$ lies in $\mathcal{C}_{\mathcal{B}'}(\theta')$ for all $\theta' \in \Theta'$ if and only if for each $\theta' \in \Theta'$, $q(\theta')$ can be represented as a conic combination of the columns of $G(\theta')_{\bullet,\mathcal{B}'}$, i.e., if and only if for each $\theta' \in \Theta'$, there exists $\alpha(\theta') \in \mathbb{R}^h$ such that $\alpha(\theta')_{\ell} \geq 0$ for all $\ell \in \{1, \ldots, h\}$ and

$$q(\theta') = G(\theta')_{\cdot \mathcal{B}'} \alpha(\theta'). \tag{6}$$

Recognize that because \mathcal{B} is a f.c.b., $\alpha(\theta')$ satisfies (6) if and only if it also satisfies

$$G(\theta')^{-1}_{\mathcal{A}}q(\theta') = G(\theta')^{-1}_{\mathcal{A}}G(\theta')_{\mathcal{A}}G(\theta'). \tag{7}$$

Recognize that (7) represents a system of h equations. Assuming that the elements of $\alpha(\theta')$ and the individual equations of (7) are indexed by the elements of \mathcal{B} , we see that for each $\ell \in \mathcal{B}$, the ℓ^{th} equation of (7) is given by

$$\left(G(\theta')_{\bullet \mathcal{B}}^{-1} q(\theta')\right)_{\ell} = \sum_{n \in \mathcal{B}} \alpha_n(\theta') \left(G(\theta')_{\bullet \mathcal{B}}^{-1} G(\theta')_{\bullet \mathcal{B}'}\right)_{\ell n}.$$
 (8)

Since $\mathcal{B}' = (\mathcal{B} \setminus \{i, j\}) \cup \{\bar{\imath}, \bar{\jmath}\}$, notice that: (i) when $n = \ell$, we have $(G(\theta')_{\bullet \mathcal{B}}^{-1} G(\theta')_{\bullet \mathcal{B}'})_{\ell n} = 1$, and (ii) when $n \neq \ell$ and $n \notin \{i, j\}$, we have $(G(\theta')_{\bullet \mathcal{B}}^{-1} G(\theta')_{\bullet \mathcal{B}'})_{\ell n} = 0$. Thus, equation (8) can be expressed as

$$\left(G(\theta')_{\bullet,\mathcal{B}}^{-1}q(\theta')\right)_{\ell} = \alpha_{\ell}(\theta') + \alpha_{i}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')_{\bullet,\mathcal{B}'}\right)_{\ell i} + \alpha_{j}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')_{\bullet,\mathcal{B}'}\right)_{\ell j}. \tag{9}$$

Additionally, note that for any $n \in \mathcal{B} \cap \mathcal{B}'$, we have $\left(G(\theta')^{-1}_{\bullet \mathcal{B}}G(\theta')_{\bullet \mathcal{B}'}\right)_{\ell n} = \left(G(\theta')^{-1}_{\bullet \mathcal{B}}G(\theta')\right)_{\ell \overline{n}}$ and, as a result, equation (9) can be written as

$$\begin{aligned}
& \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}q(\theta')\right)_{\ell} = \begin{cases}
\alpha_{i}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')\right)_{i\bar{i}} + \alpha_{j}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')\right)_{i\bar{j}} & \text{if } \ell = i \\
\alpha_{i}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')\right)_{j\bar{i}} + \alpha_{j}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')\right)_{j\bar{j}} & \text{if } \ell = j \\
\alpha_{\ell}(\theta') + \alpha_{i}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')\right)_{\ell\bar{i}} + \alpha_{j}(\theta') \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}G(\theta')\right)_{\ell\bar{j}} & \text{otherwise}
\end{aligned} \\
&= \begin{cases}
\alpha_{i}(\theta') \left(T_{\mathcal{B}}(\theta')\right)_{i,\bar{i}} + \alpha_{j}(\theta') \left(T_{\mathcal{B}}(\theta')\right)_{i,\bar{j}} & \text{if } \ell = i \\
\alpha_{i}(\theta') \left(T_{\mathcal{B}}(\theta')\right)_{j,\bar{i}} + \alpha_{j}(\theta') \left(T_{\mathcal{B}}(\theta')\right)_{j,\bar{j}} & \text{if } \ell = j \\
\alpha_{\ell}(\theta') + \alpha_{\ell}(\theta') \left(T_{\mathcal{B}}(\theta')\right)_{\ell,\bar{i}} + \alpha_{j}(\theta') \left(T_{\mathcal{B}}(\theta')\right)_{\ell,\bar{i}} & \text{otherwise}
\end{aligned} \tag{11}$$

where in (11) follows from (??). We now show that for each $\ell \in \mathcal{B}$, $\alpha_{\ell}(\theta') > 0$ follows from (11) and the fact that each $\theta' \in \Theta'$ satisfies: (i) $l_{\mathcal{B}}^{j,i}(\theta') > 0$, (ii) $r_{\mathcal{B}}^{\xi}(\theta') > 0$ for all $\xi \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.H^{i} \cup \{i\}))$, and (iii) $l_{\mathcal{B}}^{j,i}(\theta')r_{\mathcal{B}}^{\xi}(\theta') - l_{\mathcal{B}}^{\xi,i}(\theta')r_{\mathcal{B}}^{j}(\theta') > 0$ for all $\xi \in (\mathcal{B}.P^{i} \setminus \{j\})$. To begin, recall that $(T_{\mathcal{B}}(\theta))_{i,\bar{\imath}} \equiv 0$. Next, notice from (??), (??), (1), and (5) that $(G(\theta')_{\bullet,\mathcal{B}}^{-1}q(\theta'))_{i} = 0$ for all $\theta' \in \Theta'$. Thus, from (11) we have that for every $\theta' \in \Theta'$,

$$\alpha_{j}(\theta') \left(T_{\mathcal{B}}(\theta') \right)_{i,\bar{j}} = 0$$

$$\implies \alpha_{j}(\theta') = 0. \tag{12}$$

Furthermore, equations (11) and (12) show that for each $\theta' \in \Theta'$,

$$\alpha_{i}(\theta') \left(T_{\mathcal{B}}(\theta') \right)_{j,\bar{i}} = \left(G(\theta')_{\bullet \mathcal{B}}^{-1} q(\theta') \right)_{j}$$

$$\implies \alpha_{i}(\theta') = \frac{\left(G(\theta')_{\bullet \mathcal{B}}^{-1} q(\theta') \right)_{j}}{\left(T_{\mathcal{B}}(\theta') \right)_{j,\bar{i}}}.$$
(13)

As we discussed when we established claim (I), the fact that $l_{\mathcal{B}}^{j,i}(\theta') > 0$ for all $\theta' \in \Theta'$ implies that $(T_{\mathcal{B}}(\theta'))_{j,\bar{\imath}} > 0$ for all $\theta' \in \Theta'$. Additionally, from (1) and the facts that $j \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.H^i \cup \{i\}))$ and $r_{\mathcal{B}}^{\xi}(\theta') > 0$ for all $\xi \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.H^i \cup \{i\}))$ and all $\theta' \in \Theta'$, we have that $(G(\theta')_{\bullet \mathcal{B}}^{-1}q(\theta'))_j > 0$ for all $\theta' \in \Theta'$. Hence, equation (13) shows that $\alpha_i(\theta') > 0$ for all $\theta' \in \Theta'$. Finally, from (12) and (13) we see that for any $\ell \in \mathcal{B} \setminus \{i, j\}$, equation (11) can be written as

$$\alpha_{\ell} + \frac{\left(G(\theta')_{\bullet,\mathcal{B}}^{-1}q(\theta')\right)_{j}}{\left(T_{\mathcal{B}}(\theta')\right)_{j,\bar{\imath}}} \left(T_{\mathcal{B}}(\theta')\right)_{\ell,\bar{\imath}} = \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}q(\theta')\right)_{\ell}$$

$$\implies \alpha_{\ell}(\theta') = \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}q(\theta')\right)_{\ell} - \left(G(\theta')_{\bullet,\mathcal{B}}^{-1}q(\theta')\right)_{j} \frac{\left(T_{\mathcal{B}}(\theta')\right)_{\ell,\bar{\imath}}}{\left(T_{\mathcal{B}}(\theta')\right)_{j,\bar{\imath}}}.$$
(14)

Now recall that $l_{\mathcal{B}}^{j,i}(\theta')r_{\mathcal{B}}^{\xi}(\theta') - l_{\mathcal{B}}^{\xi,i}(\theta')r_{\mathcal{B}}^{j}(\theta') > 0$ for all $\xi \in (\mathcal{B}.P^{i} \setminus \{j\})$ and all $\theta' \in \Theta'$. Using the fact that $l_{\mathcal{B}}^{j,i}(\theta') > 0$ for all $\theta' \in \Theta'$, this can be rewritten as $r_{\mathcal{B}}^{\xi}(\theta') - r_{\mathcal{B}}^{j}(\theta')\frac{l_{\mathcal{B}}^{\xi,i}(\theta')}{l_{\mathcal{B}}^{j,i}(\theta')} > 0$ for all $\xi \in (\mathcal{B}.P^{i} \setminus \{j\})$ and all $\theta' \in \Theta'$. By substituting from (1) and (2) and simplifying, we have

$$g_{\mathcal{B}}\left(Adj(G(\theta')_{\bullet\mathcal{B}})\right)_{\xi_{\bullet}}q(\theta') - g_{\mathcal{B}}\left(Adj(G(\theta')_{\bullet\mathcal{B}})\right)_{j_{\bullet}}q(\theta')\frac{g_{\mathcal{B}}\left(Adj(G(\theta')_{\bullet\mathcal{B}})\right)_{\xi_{\bullet}}G(\theta')_{\bullet\bar{\imath}}}{g_{\mathcal{B}}\left(Adj(G(\theta')_{\bullet\mathcal{B}})\right)_{j_{\bullet}}G(\theta')_{\bullet\bar{\imath}}} > 0$$

$$\text{for all } \xi \in \left(\mathcal{B}.P^{i} \setminus \{j\}\right) \text{ and all } \theta' \in \Theta'$$

$$\iff \frac{(Adj(G(\theta')_{\bullet\mathcal{B}}))_{\xi_{\bullet}}}{\det\left(G(\theta')_{\bullet\mathcal{B}}\right)}q(\theta') - \frac{(Adj(G(\theta')_{\bullet\mathcal{B}}))_{j_{\bullet}}}{\det\left(G(\theta')_{\bullet\mathcal{B}}\right)}q(\theta') \frac{(Adj(G(\theta')_{\bullet\mathcal{B}}))_{\xi_{\bullet}}G(\theta')_{\bullet\bar{\imath}}}{(Adj(G(\theta')_{\bullet\mathcal{B}}))_{j_{\bullet}}G(\theta')_{\bullet\bar{\imath}}} > 0$$

$$\text{for all } \xi \in \left(\mathcal{B}.P^{i} \setminus \{j\}\right) \text{ and all } \theta' \in \Theta'$$

$$\iff \left(G(\theta')_{\bullet\mathcal{B}}^{-1}\right)_{\xi_{\bullet}}q(\theta') - \left(G(\theta')_{\bullet\mathcal{B}}^{-1}\right)_{j_{\bullet}}q(\theta') \frac{(G(\theta')_{\bullet\mathcal{B}}^{-1})}{(G(\theta')_{\bullet\mathcal{B}}))_{j_{\bullet}}G(\theta')_{\bullet\bar{\imath}}} > 0$$

$$\text{for all } \xi \in \left(\mathcal{B}.P^{i} \setminus \{j\}\right) \text{ and all } \theta' \in \Theta'$$

$$\iff \left(G(\theta')_{\bullet\mathcal{B}}^{-1}\right)q(\theta')_{\xi_{\bullet}} - \left(G(\theta')_{\bullet\mathcal{B}}^{-1}\right)q(\theta')_{j_{\bullet}} \frac{(T_{\mathcal{B}}(\theta'))_{\xi_{\bar{\imath}}}}{(T_{\mathcal{B}}(\theta'))_{j_{\bar{\imath}}}} > 0$$

$$\text{for all } \xi \in \left(\mathcal{B}.P^{i} \setminus \{j\}\right) \text{ and all } \theta' \in \Theta'$$

$$\iff \left(G(\theta')_{\bullet\mathcal{B}}^{-1}\right)q(\theta')_{\xi_{\bullet}} - \left(G(\theta')_{\bullet\mathcal{B}}^{-1}\right)q(\theta')_{j_{\bullet}} \frac{(T_{\mathcal{B}}(\theta'))_{\xi_{\bar{\imath}}}}{(T_{\mathcal{B}}(\theta'))_{j_{\bar{\imath}}}} > 0$$

$$\text{for all } \xi \in \left(\mathcal{B}.P^{i} \setminus \{j\}\right) \text{ and all } \theta' \in \Theta'$$

From (14) and (15), it is clear that $\alpha_{\ell}(\theta') > 0$ for all $\theta' \in \Theta'$ whenever $\ell \in \mathcal{B}.P^i \setminus \{i,j\}$. Now suppose $\ell \notin (\mathcal{B}.P^i \cup \{i,j\})$. From (3) we see that in this case $(T_{\mathcal{B}}(\theta'))_{\ell,\bar{\imath}}$ must be a nonpositive constant. Furthermore, we have already established that $(T_{\mathcal{B}}(\theta'))_{j,\bar{\imath}} > 0$ and $(G(\theta')^{-1}_{\bullet \mathcal{B}}q(\theta'))_j > 0$ for all $\theta' \in \Theta'$. Also notice from (??), (??), and (1) that for each $\ell \in \mathcal{B} \setminus \{i,j\}$, we have that $(G(\theta')^{-1}_{\bullet \mathcal{B}}q(\theta'))_{\ell} \geq 0$ for all $\theta' \in \Theta'$ since $r_{\mathcal{B}}^{\xi}(\theta') > 0$ for all $\xi \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.H^i \cup \{i\}))$ and all $\theta' \in \Theta'$. From these facts and (14), we see that $\alpha_{\ell}(\theta') \geq 0$ even when $\ell \notin (\mathcal{B}.P^i \cup \{i,j\})$. We have now proved that for each $\theta' \in \Theta'$ there exists $\alpha(\theta') \in \mathbb{R}^h$ such that $\alpha(\theta')_{\ell} \geq 0$ for all $\ell \in \{1,\ldots,h\}$ and $q(\theta') = G(\theta')_{\bullet \mathcal{B}'}\alpha(\theta')$ and hence, claim (III) above is proved. (\Rightarrow) :

The forward direction of the proof is straightforward as $\mathcal{IR}_{\mathcal{B}}$ and $\mathcal{IR}_{\mathcal{B}'}$ can only be adjacent along $\hat{h}_{\mathcal{B}}^i$ if $\dim \left(\mathcal{IR}_{\mathcal{B}} \cap \mathcal{IR}_{\mathcal{B}'} \cap \hat{h}_{\mathcal{B}}^i\right) = k - 1$. Then, by selecting $\theta' \in relint \left(\mathcal{IR}_{\mathcal{B}} \cap \mathcal{IR}_{\mathcal{B}'} \cap \hat{h}_{\mathcal{B}}^i\right)$, the logic of the reverse direction of this proof can be reversed to show that the equality constraint of $NLP'_A(\mathcal{B}, i, j)$ is satisfied at θ' and, moreover, all inequality constraints of $NLP'_A(\mathcal{B}, i, j)$ are satisfied strictly at $(\lambda, \theta) = (0, \theta')$. This strict satisfaction of the inequalities of $NLP'_A(\mathcal{B}, i, j)$ when

 $\lambda = 0$ implies that there must exist an $\epsilon > 0$ such that for all $\lambda' \in B_{\epsilon}(0)$, all the inequalities of $NLP'_A(\mathcal{B}, i, j)$ are satisfied strictly at (λ', θ') . As $B_{\epsilon}(0) \cap \{\lambda : \lambda > 0\} \neq \emptyset$, this completes the proof.

3 Updated Algorithms

```
Algorithm 1 Partition\Theta(\mathcal{B}_0) – Partition the parameter space \Theta.
Input: An initial f.c.b. \mathcal{B}_0 such that dim(\mathcal{IR}_{\mathcal{B}_0}) = k.
Output: A partition of \Theta, denoted \mathcal{P}.
  1: Let S = \{\mathcal{B}_0\} and \mathcal{P} = \{\mathcal{IR}_{\mathcal{B}_0}\}.
  2: while S \neq \emptyset do select \mathcal{B} from S.
            \mathcal{B}.F = BUILDF(\mathcal{B})
  3:
            for i \in \mathcal{F}_{\mathcal{B}} do
  4:
                  Let (S', \mathcal{B}) = \text{GetAdjacentRegionsAcross}(\mathcal{B}, i, \mathcal{B}) and set S = S \cup S'.
  5:
                  for \mathcal{B}' \in \mathcal{S}' do set \mathcal{P} = \mathcal{P} \cup \mathcal{IR}_{\mathcal{B}'}.
  7: Return \mathcal{P}.
Algorithm 2 BuildF(\mathcal{B}) – Build \mathcal{B}.F.
Input: A f.c.b. \mathcal{B} such that dim(\mathcal{IR}_{\mathcal{B}}) = k.
Output: The set \mathcal{B}.F.
  1: for i \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.E \cup \mathcal{B}.F)) do solve NLP_F(\mathcal{B},i) to find an optimal solution (\lambda^*, \theta^*).
            if \lambda^* > 0 then add (i \cup \mathcal{B}.H^i) to \mathcal{B}.F.
 3: Return \mathcal{B}.F.
Algorithm 3 BUILDZEH(\mathcal{B}) – Build \mathcal{B}.Z, \mathcal{B}.E, and \mathcal{B}.H^i for each i \in \mathcal{B}.
Input: A f.c.b. \mathcal{B} such that dim(\mathcal{IR}_{\mathcal{B}}) \geq k-1.
Output: The sets \mathcal{B}.Z, \mathcal{B}.E, \mathcal{B}.F, and \mathcal{B}.H^i for each i \in \mathcal{B}.
  1: Let \mathcal{B}.Z = \mathcal{B}.E = \mathcal{B}.F = \emptyset.
  2: Let \mathcal{B}.H^{\ell} = \emptyset for each \ell \in \mathcal{B}.
  3: for i \in \mathcal{B} do
            if r_{\mathcal{B}}^{i}(\theta) \equiv 0 then add i to \mathcal{B}.Z.
  5: for i \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.E)) do
             for j \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \mathcal{B}.E \cup \{i\})) do
  6:
                   if j \notin \mathcal{B}.H^i then solve NLP_H(\mathcal{B},i,j) to obtain an optimal solution (\lambda^*,\theta^*).
  7:
                         if \lambda^* = 0 then add (j \cup \mathcal{B}.H^j) to \mathcal{B}.H^i.
  8:
 9:
                         else if \lambda^* < 0 then add i to \mathcal{B}. E and exit the for loop beginning on Line 6.
                         else if r_{\mathcal{B}}^{\ell}(\theta^*) > 0 for all \ell \in (\mathcal{B} \setminus (\mathcal{B}.Z \cup \{i,j\})) then add i to \mathcal{B}.F.
10:
11: Return \mathcal{B}.Z, \mathcal{B}.E, \mathcal{B}.F, and \mathcal{B}.H^{\ell} for each \ell \in \mathcal{B}.
```

References

[1] Nathan Adelgren. Advancing Parametric Optimization. Springer, 01 2021. ISBN 978-3-030-61820-9. doi: 10.1007/978-3-030-61821-6.