Инвариантные подпространства оператора обобщенного обратного сдвига и рациональные функции

О. А. Иванова, С. Н. Мелихов, Ю. Н. Мелихов

Аннотация

Приводится полная характеризация собственных замкнутых инвариантных подпространств оператора обобщенного обратного сдвига (оператора Поммье) в пространстве Фреше всех функций, голоморфных в односвязной области Ω комплексной плоскости, содержащей начало. В случае, когда порождающая этот оператор функция не имеет нулей в Ω , все такие подпространства являются конечномерными. Если дополнительно Ω совпадает со всей комплексной плоскостью, то рассматриваемый оператор обобщенного обратного сдвига является одноклеточным. Если эта функция имеет нули в Ω , то семейство упомянутых инвариантных подпространств распадается на два класса: первый состоит из конечномерных подпространств, а второй — из бесконечномерных.

Ключевые слова: Инвариантное подпространство, пространство голоморфных функций, оператор обратного сдвига

Введение

Пусть Ω — область в \mathbb{C} , содержащая начало; $H(\Omega)$ — пространство всех голоморфных в Ω функций с топологией компактной сходимости. Фиксированная функция $g_0 \in H(\Omega)$ такая, что $g_0(0) = 1$, задает оператор обобщенного обратного сдвига (оператор Поммье) $D_{0,g_0}(f)(t) := \frac{f(t)-g_0(t)f(0)}{t}$, линейно и непрерывно действующий в $H(\Omega)$. Если $g_0 \equiv 1$, то D_{0,g_0} — обычный оператор D_0 обратного сдвига. (В общем случае D_{0,g_0} является одномерным возмущением D_0 .) Как отметил Ю. С. Линчук [18], линейный непрерывный оператор в $H(\Omega)$ является левым обратным к оператору умножения на независимую переменную тогда и только тогда, когда он совпадает с некоторым оператором D_{0,g_0} .

В настоящей работе изучаются собственные замкнутые D_{0,g_0} -инвариантные подпространства $H(\Omega)$. Исследование инвариантных подпространств линейных непрерывных операторов в локально выпуклых пространствах имеет большое значение как вследствие внутренних потребностей функционального анализа и теории функций, так и в связи с многочисленными приложениями (см. обзор Н. К. Никольского [7]). В настоящее время имеется довольно обширная литература, посвященная циклическим векторам оператора D_0 в пространствах голоморфных функций и инвариантным подпространствам D_0 в банаховых пространствах голоморфных функций.

При этом элемент x локально выпуклого пространства E называется циклическим вектором линейного непрерывного оператора A в E, если орбита $\{A^n(x) \mid n \in \mathbb{N} \cup \{0\}\}$ полна в E, т. е. замыкание ее линейной оболочки в E совпадает с E. Непосредственная связь цикличности и инвариантных подпространств заключается в следующем: элемент $x \in E$ — циклический вектор A в E тогда и только тогда, когда x не принадлежит ни одному собственному замкнутому A-инвариантному подпространству E.

Одним из первых исследований в этом направлении является, по-видимому, статья Р. Дугласа, Г. Шапиро, А. Шилдса [15], в которой была решена проблема Д. Сарасона характеризации циклических векторов и инвариантных подпространств оператора D_0 в пространстве Харди H^2 в единичном круге $\mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\}$. В [15] была обнаружена связь D_0 -нецикличности функций из H^2 с возможностью их псевдопродолжения через граничную окружность до некоторой мероморфной функции в $\{z \in \mathbb{C} \mid |z| > 1\}$ [15, теорема 2.2.1]. Работа [15] послужила толчком к интенсивному развитию соответствующей теории. К исследованию, предпринятому в настоящей статье, непосредственное отношение имеют связи циклических векторов и инвариантных подпространств D_0 с рациональной аппроксимацией (см., например, [8], [15, $\S 4|, |1|$). В связи с этим отметим следующий факт, вытекающий из результатов Γ . Ц. Тумаркина и объединяющий банахов и небанахов случаи: функция f, голоморная в некотором круге |z| < R, R > 1, не является циклическим вектором D_0 в H^2 в том и только в том случае, когда f является рациональной дробью. Для функции $f \in H(\Omega)$ ее D_0 -нецикличность в $H(\Omega)$ равносильна тому, что f — рациональная дробь. Из работ в данном направлении, относящихся к пространствам, отличным от H^2 , отметим монографию Й. Цимы и У. Росса [14], в которой исследованы циклические векторы D_0 в пространстве H^p для показателей $p \in (0, \infty)$. А. Алеман, С. Рихтер, К. Сандберг [12] исследовали (в терминах псевдопродолжения в |z| > 1) свойства элементов собственных замкнутых инвариантных подпространств оператора обратного сдвига в гильбертовых пространствах голоморфных функций с регулярной нормой. Примерами таких пространств являются пространства Харди в \mathbb{D} , весовые пространства Бергмана. По поводу других работ в этом направлении см. библиографию в [14], [12]. В статье [4] были охарактеризованы собственные замкнутые D_{0,q_0} -инвариантные подпространства пространства целых функций экспоненциального типа, реализующего посредством преобразования Фурье-Лапласа сильное сопряженное к пространству ростков функций, голоморфных на выпуклом локально замкнутом подмножестве С.

Оператор D_{0,g_0} , рассматриваемый здесь, действует в пространстве Фреше $H(\Omega)$, которое ненормируемо. Мягкость топологии в $H(\Omega)$ приводит к наличию широкого множества циклических векторов. Их описание более элементарно, чем в известных банаховых случаях, а граничное поведение нециклических функций $f \in H(\Omega)$ (если g_0 не имеет нулей в Ω) жесткое: нецикличность f равносильна голоморфному продолжению f/g_0 до мероморфной функции в расширенной комплексной плоскости, т. е. f/g_0 должна быть рациональной функцией. Это приводит к "более алгебраическому" описанию соответствующих циклических векторов и инвариантных подпространств в $H(\Omega)$. Характеризация циклических векторов оператора D_0 в $H(\Omega)$ для односвязной области Ω была получена Θ . А. Казьминым [5], для конечно-связных областей Ω — Н. Е. Линчук [6]. В случае, когда Ω — круг, ранее она была дана M. Γ . Хаплановым

[10]. Ю. С. Линчук [18] описал циклические векторы D_{0,g_0} в $H(\Omega)$ для односвязной области Ω при предположении, что g_0 не имеет нулей в Ω . Это ограничение снято в [2]. Заметим, что Ж. Годфруа и Дж. Шапиро [16] исследовали более сильное, чем цикличность, динамическое свойство – гиперцикличность – линейного непрерывного оператора в банаховом пространстве, названного ими также обобщенным обратным сдвигом. (По поводу используемой терминологии см. замечание 5.)

Главные результаты статьи — теоремы 2–4, описывающие, соответственно, случаи, когда g_0 не имеет нулей в $\Omega \neq \mathbb{C}$, имеет нули в $\Omega \neq \mathbb{C}$ (при этом область Ω односвязна) и $\Omega = \mathbb{C}$. Оказалось, что ситуации, когда g_0 не имеет нулей и имеет нули в Ω , и похожи, и существенно отличаются. В первой из них все собственные замкнутые D_{0,g_0} -инвариантные подпространства конечномерны и задаются конечным числов полюсов вне Ω и порядками соответствующих рациональных функций, а во второй к ним добавляются и бесконечномерные подпространства, определяемые нулями функции g_0 . Оператор D_{0,g_0} является одноклеточным в $H(\Omega)$ тогда и только тогда, когда $\Omega = \mathbb{C}$ и g_0 не имеет нулей в \mathbb{C} .

Основных методов, используемых в данной работе, два. Первый важен в случае, когда g_0 имеет нули и заключается в использовании "экстремальных" функций из D_{0,g_0} -инвариантных подпространств, обращающихся в нуль на заданном подмножестве нулевого множества g_0 с заданными кратностями и не равных нулю на остальной части нулевого множества g_0 . Второй — естественно возникающий метод "просеивания" рациональных функций с помощью многочленов от оператора обратного сдвига.

1 Предварительные сведения. Вспомогательные результаты

Пусть g_0 — голоморфная в начале функция такая, что $g_0(0) = 1$. Она задает оператор обобщенного обратного сдвига (оператор Поммье) D_{0,g_0} в пространстве ростков функций, голоморфных в начале:

$$D_{0,g_0}(f)(t) := \begin{cases} \frac{f(t) - g_0(t)f(0)}{t}, & t \neq 0, \\ f'(0) - g'_0(0)f(0), & t = 0. \end{cases}$$

Для произвольной области Ω в \mathbb{C} , содержащей начало, оператор D_{0,g_0} линейно и непрерывно действует в пространстве $H(\Omega)$ всех голоморфных в Ω функций с топологией компактной сходимости.

Ниже существенно используется описание циклических векторов D_{0,g_0} в $H(\Omega)$. При этом элемент x локально выпуклого пространства E называется циклическим вектором линейного непрерывного оператора $A: E \to E$, если замыкание линейной оболочки орбиты $\{A^n(x) \mid n \geq 0\}$ совпадает с E. Приведем результат из [2].

Теорема 1. Пусть Ω — односвязная область в \mathbb{C} , содержащая начало. Для $f \in H(\Omega)$ следующие утверждения равносильны:

(i)
$$f$$
 — циклический вектор D_{0,q_0} в $H(\Omega)$.

(ii) Функции f и g_0 не имеют общих нулей в Ω и не существует рациональной функции R такой, что $f = Rg_0$.

Эта теорема применяется далее в контексте следующего утверждения: собственное замкнутое D_{0,g_0} -инвариантное подпространство S пространства $H(\Omega)$ не содержит ни одного циклического вектора D_{0,g_0} в $H(\Omega)$.

Далее до конца § 1 Ω — область в \mathbb{C} , содержащая начало. Для $h \in H(\Omega)$, $Q \subset H(\Omega)$ полагаем $hQ := \{hf \mid f \in Q\}$. Пусть $\mathbb{C}[z]$ — кольцо всех многочленов над полем \mathbb{C} , $\mathbb{C}[z]_n$, $n \geq 0$, — множество всех многочленов над \mathbb{C} степени не выше n, $\mathbb{C}(z)$ — кольцо всех рациональных функций над полем \mathbb{C} ; \mathcal{Z}_0 — множество всех функций из $H(\Omega)$, имеющих хотя бы один общий нуль с g_0 ; $\mathbb{C}_{\Omega}^-(z)$ — множество всех правильных рациональных дробей, голоморфных в Ω . Если $\Omega = \mathbb{C}$, то $\mathbb{C}_{\Omega}^-(z) = \{0\}$. Из теоремы 1 вытекает, что все собственные замкнутые D_{0,g_0} -инвариантные подпространства $H(\Omega)$ содержатся в $\mathcal{Z}_0 \cup (g_0\mathbb{C}(z))$.

Отметим, что $\mathbb{C}_{\Omega}^-(z) = \operatorname{span} \{q_{\lambda,n} \mid \lambda \in \mathbb{C} \setminus \Omega, n \in \mathbb{N}\}$, где $q_{\lambda,n}(t) := \frac{1}{(t-\lambda)^n}, \lambda \in \mathbb{C}, n \in \mathbb{N}$. При этом для множества Q в линейном пространстве L символ span Q обозначает линейную оболочку Q в L.

Ниже будем использовать следующую терминологию из [13, гл. 3, § 5]. Кратным многообразием в Ω называется конечная или бесконечная последовательность W пар (λ_k, m_k) , где $Z(W) := \{\lambda_k\}$ — дискретное подмножество Ω и $m_k \in \mathbb{N}$ для любого k. Для непустого кратного многообразия $W = \{(\lambda_k, m_k)\}$ в Ω введем множество

$$S(W) := \{ f \in H(\Omega) \mid f^{(j)}(\lambda_k) = 0, \ 0 \le j \le m_k - 1 \$$
для любого $k \};$

S(W) — собственное замкнутое подпространство $H(\Omega)$. Множества S(W) — это в точности все собственные замкнутые идеалы в топологической алгебре $H(\Omega)$ с операцией обычного умножения функций; они играют важную роль и при описании D_{0,g_0} -инвариантных подпространств $H(\Omega)$, если g_0 имеет нули в Ω .

Для удобства будем записывать кратное многообразие в Ω и так: $W = \{(\lambda, m_{\lambda}) \mid \lambda \in \Lambda\}$, где Λ — конечное или счетное дискретное подмножество Ω , $m_{\lambda} \in \mathbb{N}$.

Для функции $h \in H(\Omega)$ символ Z(h) обозначает множество всех нулей h в Ω , $m(\lambda,h)$ — кратность нуля $\lambda \in Z(h)$, а W(h) — нулевое многообразие h, т. е. множество всех пар $(\lambda,m(\lambda,h)), \, \lambda \in Z(h)$. Если $\lambda \in \mathbb{C}$ не является нулем h, то полагаем $m(\lambda,h):=0$. Для множества $S \subset H(\Omega), \, S \neq \{0\}$, через Z(S) обозначим множество всех общих нулей функций из $S\colon Z(S):=\bigcap_{h\in S} Z(h)$. В случае $Z(S)\neq\emptyset$ кратным многообразием S назовем множество W(S) пар $(\lambda,m(\lambda,S)), \, \lambda \in Z(S), \, \mu$ положим $m(\lambda,S):=\min\{m(\lambda,h)\,|\, h\in S\}$. Если $Z(S)=\emptyset$, то считаем, что $W(S)=\emptyset$. Ясно, что всегда $S\subset S(W(S))$ (считаем, что $S(\emptyset):=H(\Omega)$). Для $\lambda \in \mathbb{C}\backslash Z(S)$ полагаем $m(\lambda,S):=0$.

Замечание 1. Отметим следующее важное свойство "расщепляемости" D_{0,g_0} : если $g_0=hv,\ f=hu,\ h,v,u\in H(\Omega),\ v(0)=1,\ {\rm тo}\ D^n_{0,g_0}(f)=hD^n_{0,v}(u)$ для любого $n\in\mathbb{N}$ (см. [4, лемма 2]). Отсюда следует, что для любого многочлена $P(z)=\sum\limits_{j=0}^N a_j z^j$

выполняется равенство $P(D_{0,g_0})(f)=hP(D_{0,v})(u)$. Здесь, как обычно, $P(D_{0,g_0})=\sum\limits_{i=0}^N a_iD_{0,g_0}^i$.

1.1 Экстремальные функции

Всюду далее g_0 — некоторая голоморфная в Ω функция, для которой $g_0(0) = 1$. Нам понадобятся функции из подпространств $H(\Omega)$, которые на заданном подмножестве $Z(g_0)$ обращаются в 0 с нужной кратностью, а на остальной части $Z(g_0)$ не равны 0.

Лемма 1. Пусть G — пространство Фреше, непрерывно вложенное в $H(\Omega)$; $(\lambda_j)_j$ u $(\mu_k)_k$ — дискретные последовательности попарно различных точек Ω такие, что $\lambda_j \neq \mu_k$ для любых j,k; $m_k \in \mathbb{N}$. Предположим, что для любого j существует функция $f_j \in G$ такая, что $f_j(\lambda_j) \neq 0$, а для любого k найдется функция $h_k \in G$, для которой μ_k — нуль кратности m_k , причем μ_k — нуль кратности не меньше m_k для любой функции $f \in G$. Тогда существует функция $w \in G$, для которой $w(\lambda_j) \neq 0$ для любого j w w — ее нуль кратности w для каждого w.

Доказательство. Пусть $\{p_n \mid n \in \mathbb{N}\}$ — фундаментальная последовательность непрерывных преднорм в G (т.е. множества $\{x \in G \mid p_n(x) < \varepsilon\}$, $\varepsilon > 0$, $n \in \mathbb{N}$, образуют базис окрестностей начала в G); $p_n \leq p_{n+1}$, $n \in \mathbb{N}$. Положим $c_1 := \frac{1}{2(p_1(f_1)+1)}$ и $A_1 := c_1 f_1(\lambda_1)$. Если $c_j, A_j \in \mathbb{C}$ для $1 \leq j \leq n$ для некоторого $n \in \mathbb{N}$ уже определены, то определим $c_{n+1} \neq 0$, для которого

$$|c_{n+1}| \le \frac{1}{2^{n+1}(p_{n+1}(f_{n+1})+1)},$$
 (1.1)

$$|c_{n+1}| < \frac{1}{2^{n+1}} \min \left\{ \frac{|A_j|}{|f_{n+1}(\lambda_j)| + 1} \, | \, 1 \le j \le n \right\},$$
 (1.2)

И

$$A_{n+1} := \sum_{s=1}^{n+1} c_s f_s(\lambda_{n+1}) \neq 0.$$
 (1.3)

Из (1.1) следует, что ряд $\sum_j c_j f_j$ (возможно, конечный) абсолютно сходится в G к некоторой функции f. Из условий (1.2) и (1.3) вытекает, что $f(\lambda_j) \neq 0$ для любого j. Аналогично построим функцию $h \in S$, исчезающую в точках μ_k с кратностями m_k . Пусть $h_k(z) = (z - \mu_j)^{m_j} u_{k,j}(z), \ u_{k,j} \in H(\Omega), \ u_{k,k}(\mu_k) \neq 0$. Полагаем $d_1 := \frac{1}{2(p_1(h_1)+1)}, \ B_1 := d_1 u_{1,1}(\mu_1)$. Если числа $d_j, \ B_j, \ 1 \leq j \leq n$, для некоторого n уже выбраны, то выбираем d_{n+1} такое, что

$$|d_{n+1}| \le \frac{1}{2^{n+1}(p_{n+1}(h_{n+1})+1)};$$

$$|d_{n+1}| < \frac{1}{2^{n+1}} \min \left\{ \frac{|B_s|}{|u_{n+1,s}(\mu_s)|+1} \mid 1 \le s \le n \right\};$$

$$B_{n+1} := \sum_{s=1}^{n+1} d_s u_{s,n+1}(\mu_{n+1}) \ne 0.$$

Ряд $\sum_{k} d_k h_k$ (возможно, конечный) сходится абсолютно в G к некоторой функции $h \in G$. При этом μ_k для любого k — нуль функции h кратности m_k .

Пусть $f(z) = (z - \mu_k)^{m_k} v_k(z)$, $h(z) = (z - \mu_k)^{m_k} w_k(z)$, $v_k, w_k \in H(\Omega)$, $w_k(\mu_k) \neq 0$. Требуемая функция w может быть найдена в виде $w = f + \beta h$, $\beta \in \mathbb{C}$. При этом нужно выбрать $\beta \in \mathbb{C}$ такое, что для любых j,k

$$f(\lambda_j) + \beta h(\lambda_j) \neq 0;$$

$$v_k(\mu_k) + \beta w_k(\mu_k) \neq 0,$$

т. е. β нужно выбирать вне не более чем счетного множества.

Определение 1. Пусть S — собственное замкнутое подпространство $H(\Omega)$; одно из множеств Z(S) и $Z(g_0)$ непусто. Всякую функцию $v \in S$ такую, что любое $\lambda \in Z(S)$ — нуль кратности $m(\lambda, S)$ функции v и v в точках $Z(g_0) \backslash Z(S)$ в нуль не обращается, будем называть g_0 -экстремальной функцией (для) S.

Лемма 1 показывает, что всякое собственное замкнутое подпространство $H(\Omega)$, если одно из множеств Z(S) и Z(W) непусто, содержит g_0 -экстремальную функцию.

Лемма 2. Пусть одно из множеств Z(S) и $Z(g_0)$ непусто, $v - g_0$ -экстремальная функция для S. Тогда для любого $f \in S$ существует $\alpha \in \mathbb{C} \setminus \{0\}$ такое, что $f + \alpha v - m$ оже g_0 -экстремальная функция для S.

Доказательство. Пусть $W(S) = \{(\lambda_k, m_k)\}$. Для любого k функция v представляется в виде $v(z) = (z - \lambda_k)^{m_k} v_k(z)$, где $v_k \in H(\Omega)$, $v_k(\lambda_k) \neq 0$, а функция f имеет вид $f(z) = (z - \lambda_k)^{m_k} f_k(z)$, $f_k \in H(\Omega)$. Так как $Z(g_0)$ не более чем счетно, то найдется $\alpha \in \mathbb{C} \setminus \{0\}$, для которого $f(\lambda) + \alpha v(\lambda) \neq 0$ для любого $\lambda \in Z(g_0) \setminus Z(S)$ и $f_k(\lambda_k) + \alpha v_k(\lambda_k) \neq 0$ для любого k. (Если W(S) пусто, то последние ограничения на α отсутствуют.)

Далее для кратных многообразий $W = \{(\lambda, n_{\lambda})\}$ и $V = \{(\nu, m_{\nu})\}$ в Ω будем писать $W \prec V$, если $Z(W) \subset Z(V)$ и $n_{\lambda} \leq m_{\lambda}$ для любого $\lambda \in Z(W)$.

Ниже символ $\mathcal{D}(g_0)$ обозначает множество всех многочленов p таких, что p(0) = 1, функция g_0/p голоморфна в Ω и p не имеет корней в $\mathbb{C}\backslash\Omega$. Если $g_0 \equiv 1$, то $\mathcal{D}(g_0) = \{g_0\}$.

Лемма 3. Предположим, что функция g_0 имеет нули в Ω .

- (i) Если S собственное замкнутое D_{0,g_0} -инвариантное подпространство $H(\Omega)$ такое, что $S\setminus (g_0\mathbb{C}(z))\neq\emptyset$, то множество Z(S) непусто.
- (ii) Пусть S собственное замкнутое D_{0,g_0} -инвариантное подпространство $H(\Omega)$ и множество Z(S) непусто. Тогда $W(S) \prec W(g_0)$.
- (iii) Если $Z(g_0)$ бесконечно, то для любого собственного замкнутого D_{0,g_0} -инвариантного подпространства S пространства $H(\Omega)$ множество Z(S) непусто.

(iv) Пусть S — собственное замкнутое D_{0,g_0} -инвариантное подпространство $H(\Omega)$, содержащееся в $g_0\mathbb{C}(z)$. Тогда множество всех $\lambda \in Z(g_0)$ таких, что $m(\lambda,S) < m(\lambda,g_0)$, конечно или пусто.

Доказательство. (i): Предположим, что $Z(S)=\emptyset$. Тогда для любого $\lambda\in Z(g_0)$ найдется функция $f_\lambda\in S$ такая, что $f_\lambda(\lambda)\neq 0$. По лемме 1 существует g_0 -экстремальная функция $w\in S$ для S, для которой $w(\lambda)\neq 0$ для любого $\lambda\in Z(g_0)$. Так как w не является циклическим вектором D_{0,g_0} в $H(\Omega)$, то $w\in g_0\mathbb{C}(z)$ по теореме 1. Зафиксируем $f\in S\backslash (g_0\mathbb{C}(z))$. По лемме 2 найдется ненулевое $\alpha\in \mathbb{C}$ такое, что $w_0:=f+\alpha w\in S$ тоже g_0 -экстремальная функция S, т. е. $w_0(\lambda)\neq 0$ для любого $\lambda\in Z(g_0)$. Кроме того, $w_0\notin g_0\mathbb{C}(z)$. Значит, по теореме 1, w_0 — циклический вектор D_{0,g_0} в $H(\Omega)$. Получили противоречие.

(ii): Предположим, что существует $\lambda \in Z(S) \backslash Z(g_0)$. Пусть $\lambda \neq 0$. Из равенства $0 = D_{0,g_0}(f)(\lambda) = \frac{f(\lambda) - g_0(\lambda)f(0)}{\lambda} = -\frac{f(0)g_0(\lambda)}{\lambda}$ следует, что f(0) = 0 для любой функции $f \in S$. Поэтому $D_{0,g_0}^n(f)(0) = 0$ для любых функции $f \in S$ и целого $n \geq 0$. Согласно [18, лемма 2, доказательство леммы 3] (см. также [3, лемма 7, замечание 10]) последовательность функционалов $\varphi_n : f \mapsto D_{0,g_0}^n(f)(0), n \geq 0$, полна в сопряженном $H(\Omega)'$, наделенном слабой топологией $\sigma(H(\Omega)', H(\Omega))$. Значит, всякая функция $f \in S$ является тождественным нулем. Противоречие. Пусть $\lambda = 0$. Тогда $f(t)/t^n \in S$, т. е. $f^{(n)}(0) = 0$ для всех $f \in S$ и целых $n \geq 0$. Поэтому $S = \{0\}$ и снова получаем противоречие.

Возьмем $\lambda \in Z(S)$. Предположим, что $m(\lambda,S) > m(\lambda,g_0)$. Так как $\lambda \neq 0$, то $D_{0,g_0}(f)(\lambda) = \frac{f(\lambda) - g_0(\lambda)f(0)}{\lambda}$. Поскольку λ — нуль кратности не меньше $m(\lambda,S)$ функции $D_{0,g_0}(f)$ для всех $f \in S$, то f(0) = 0, если $f \in S$. Поэтому $D_{0,g_0}^n(f)(0) = 0$ для любой функции $f \in S$ и любого целого $n \geq 0$. Противоречие.

(iii): Пусть $Z(g_0) = \{\lambda_k \mid k \in \mathbb{N}\}$. Предположим, что Z(S) пусто. Тогда для любого $k \in \mathbb{N}$ найдется функция $f_k \in S$ такая, что $f_k(\lambda_k) \neq 0$. По лемме 1 существует g_0 -экстремальная функция $w \in S$ для S, для которой $w(\lambda_k) \neq 0$ для любого $k \in \mathbb{N}$. Отсюда следует, что $w \notin \mathcal{Z}_0 \cup (g_0\mathbb{C}[z])$. Теорема 1 влечет, что w — циклический вектор D_{0,g_0} в $H(\Omega)$. Противоречие.

(iv): Предположим противное. Тогда все нули λ функции g_0 , для которых $m(\lambda,S) < m(\lambda,g_0)$, образуют последовательность $\{\lambda_j \mid j \in \mathbb{N}\}$ различных точек. Положим $k_j := m(\lambda_j,g_0) - m(\lambda_j,S), \ j \in \mathbb{N}$. Существует голоморфная в Ω функция u с нулевым многообразием $\{(\lambda_j,k_j)\mid j\in \mathbb{N}\}$ и такая, что u(0)=1. Пусть $v-g_0$ -экстремальная функция S. Тогда функция $h_0:=\frac{uv}{g_0}$ голоморфна в Ω . При этом $D^n_{0,g_0}(v)=\frac{g_0}{u}D^n_{0,u}(h_0)$ для любого целого $n\geq 0$. Функции u и h_0 не имеют общих нулей. Кроме того, не существует рациональной функции R такой, что $h_0=Ru$, т. е. $\frac{v}{g_0}=R$. Действительно, каждая точка $\lambda_j,\ j\in \mathbb{N}$, является полюсом $\frac{v}{g_0}$ в Ω . Из теоремы 1 следует, что $\frac{g_0}{v}H(\Omega)\subset S$. Получено противоречие с вложением $S\subset g_0\mathbb{C}(z)$.

Из леммы 3 (iv) вытекает

Следствие 1. Для любого собственного замкнутого D_{0,g_0} -инвариантного подпространства S пространства $H(\Omega)$, содержащегося в $g_0\mathbb{C}(z)$, существует единственный многочлен $p_S \in \mathcal{D}(g_0)$ такой, что $W(S) = W(g_0/p_S)$.

Замечание 2. Если множество нулей функции g_0 конечно, то существуют собственные замкнутые D_{0,g_0} -инвариантные подпространства $H(\Omega)$ с пустым множеством общих нулей. Пусть $g_0 = qg_1$, где q — многочлен степени не меньше 1, q(0) = 1, функция $g_1 \in H(\Omega)$ не имеет нулей в Ω и $g_1(0) = 1$. Как будет показано далее (см. теоремы 3, 4), для любого $n \ge \deg(q) - 1$ множество $S = g_1\mathbb{C}[z]_n$ является собственным замкнутым D_{0,g_0} -инвариантным подпространством $H(\Omega)$. При этом $Z(S) = \emptyset$.

1.2 Оператор, сопряженный к D_0

Будем писать D_0 вместо D_{0,g_0} , если функция g_0 тождественно равна 1. Заметим, что $D_{0,g_0}=D_0-A_0$, где $A_0(f)=f(0)g_1=\delta_0(f)g_1$ и $g_1(t)=\frac{g_0(t)-1}{t}$, если $t\neq 0$. При этом $\delta_0(f)=f(0)$. Именно в таком виде оператор D_{0,g_0} был исследован Ю.С. Линчуком [18]. Если рассматривать естественную двойственность между $H(\Omega)$ и $H(\Omega)'$, сопряженный оператор D'_{0,g_0} имеет следующий вид: $D'_{0,g_0}=D'_0-A'_0$, где $A'_0(\varphi)=\varphi(g_1)\delta_0$, $\varphi\in H(\Omega)'$.

Пусть $H_0 := H(\{0\})$ — пространство ростков всех функций, голоморфных в начале. Оно наделяется естественной топологией индуктивного предела (см., например, $[9, \S 1]$).

По теореме Силва-Кете-Гротендика о двойственности пространств аналитических функций [17] (см. также [9, $\S 2$]) преобразование Коши

$$\varphi \mapsto \varphi(q_{\lambda,1}), \ \lambda \neq 0, \ \varphi \in H'_0,$$

является топологическим изоморфизмом сильного сопряженного к H_0 на пространство Фреше $H_0(\overline{\mathbb{C}}\setminus\{0\})$ всех функций, голоморфных в $\overline{\mathbb{C}}\setminus\{0\}$ и равных 0 в ∞ . Возникающая при таком изоморфизме билинейная форма

$$\langle f, h \rangle := -\frac{1}{2\pi i} \int_{|t|=\varepsilon} f(t)h(t)dt, \ f \in H_0, \ h \in H_0(\overline{\mathbb{C}} \setminus \{0\}),$$

задает двойственность между H_0 и $H_0(\overline{\mathbb{C}}\setminus\{0\})$ ($\varepsilon>0$ выбирается так, чтобы f была голоморфна в некоторой области, содержащей круг $|t| \leq \varepsilon$, а окружность $|t| = \varepsilon$ обходится против часовой стрелки). Отметим, что

$$\langle q_{\lambda,k}, h \rangle = \frac{h^{(k-1)}(\lambda)}{(k-1)!}, \ \lambda \neq 0, \ k \in \mathbb{N}, \ h \in H_0(\overline{\mathbb{C}} \setminus \{0\}). \tag{1.4}$$

Для линейного непрерывного оператора $A: H_0 \to H_0$ символом A' обозначим сопряженный к A (относительно дуальной системы $(H_0, H_0(\mathbb{C}\setminus\{0\}))$) оператор из $H_0(\mathbb{C}\setminus\{0\})$ в $H_0(\mathbb{C}\setminus\{0\})$.

Из равенства $\langle D_0(f), h \rangle = \langle f, D_0'(h) \rangle$, $f \in H_0$, $h \in H_0(\overline{\mathbb{C}} \setminus \{0\})$, для функций $f(t) = \frac{1}{t-\lambda}$ следует, что $D_0'(h)(\lambda) = \frac{1}{\lambda}h(\lambda)$ для $\lambda \neq 0$. Данная двойственность является удобным средством изучения оператора D_0 (см. далее замечание 3).

Обозначим через $\mathbb{C}[D_{0,g_0}]$ множество всех операторов $P(D_{0,g_0}), P \in \mathbb{C}[z]$, символом I — тождественный оператор. Для $\lambda \in \mathbb{C} \setminus \{0\}, k \in \mathbb{N}$ положим

$$Q(\lambda, k) := \operatorname{span} \{q_{\lambda, j} \mid 1 \le j \le k\}.$$

Замечание 3. Отметим простые факты о действии оператора D_0 в H_0 , в частности, о его действии на простейшие дроби.

- 1) $\operatorname{Ker} D_0^n = \mathbb{C}[z]_{n-1}$ для любого $n \in \mathbb{N}$.
- 2) Если $\lambda \neq 0$, то $1/\lambda$ собственное значение $D_0: H_0 \to H_0$, а собственными векторами оператора D_0 , соответствующими $1/\lambda$, являются функции $\frac{C}{t-\lambda}$, $C \in \mathbb{C} \setminus \{0\}$, и только они.

Следующие свойства связаны с "просеиванием" рациональных дробей с помощью операторов из $\mathbb{C}[D_0]$.

3) Для любых $\lambda, \mu \in \mathbb{C} \setminus \{0\}$, $k \in \mathbb{N}$ существуют числа $\alpha_j, 1 \leq j \leq k$, такие, что

$$\left(D_0 - \frac{1}{\mu}I\right)(q_{\lambda,k}) = \sum_{j=1}^k \alpha_j q_{\lambda,j}.$$

При этом $\alpha_k \neq 0$ в случае $\mu \neq \lambda$.

- 4) $\left(D_0 \frac{1}{\mu}I\right)(Q(\lambda, k)) \subset Q(\lambda, k)$ для любых $\lambda, \mu \in \mathbb{C} \setminus \{0\}, k \in \mathbb{N}$. Если при этом $\lambda \neq \mu$, $f \in Q(\lambda, k)$, $f \neq 0$, то $\left(D_0 - \frac{1}{\mu}I\right)(f) \neq 0$.
- 5) $\left(D_0 \frac{1}{\lambda}I\right)^n(q_{\lambda,n}) = 0$ для любых $\lambda \neq 0, n \in \mathbb{N}$. 6) Для любых $\lambda \neq 0, k, m \in \mathbb{N}$ таких, что $1 \leq m \leq k$, любых $b_r \in \mathbb{C}, 1 \leq r \leq k, b_k \neq 0$, для функции $R(t) = \sum_{r=1}^{\kappa} b_r q_{\lambda,r}$ существует оператор $A = \sum_{j=0}^{\kappa} a_j D_0^j \in \mathbb{C}[D_0]$ такой, что $A(R) = q_{\lambda,m}$.

Доказательство. 3): Для любого $h \in H_0(\overline{\mathbb{C}} \setminus \{0\})$, любого $\varepsilon \in (0, |\lambda|)$

$$\left\langle \left(D_0 - \frac{1}{\mu} I \right) (q_{\lambda,k}), h \right\rangle = \left\langle q_{\lambda,k}(t), \left(\frac{1}{t} - \frac{1}{\mu} \right) h(t) \right\rangle =$$

$$\left\langle q_{\lambda,k}(t), \frac{h(t)}{t} \right\rangle - \frac{1}{\mu} \left\langle q_{\lambda,k}, h \right\rangle = \frac{1}{(k-1)!} h_1^{(k-1)}(\lambda) - \frac{1}{\mu} \left\langle q_{\lambda,k}, h \right\rangle,$$

где $h_1(t) = h(t)/t$. Поскольку

$$h_1^{(k-1)}(\lambda) = \sum_{j=0}^{k-1} C_{k-1}^j h^{(j)}(\lambda) \frac{(-1)^{k-1-j}(k-1-j)!}{\lambda^{k-j}},$$

то, с учетом (1.4), получим:

$$\left\langle \left(D_0 - \frac{1}{\mu} I \right) (q_{\lambda,k}), h \right\rangle = \frac{1}{(k-1)!} \sum_{j=0}^{k-1} C_{k-1}^j \frac{(-1)^{k-1-j} (k-1-j)!}{\lambda^{k-j}} h^{(j)}(\lambda) - \frac{1}{\mu} \langle q_{\lambda,k}, h \rangle = \frac{1}{(k-1)!} \sum_{j=0}^{k-1} C_{k-1}^j \frac{(-1)^{k-1-j} (k-1-j)! j!}{\lambda^{k-j}} \langle q_{\lambda,j-1}, h \rangle - \frac{1}{\mu} \langle q_{\lambda,k}, h \rangle.$$

Отсюда следует, что $\left(D_0 - \frac{1}{\mu}I\right)(q_{\lambda,k}) = \sum_{j=1}^k \alpha_j q_{\lambda,j}$, где $\alpha_k = \frac{1}{\lambda} - \frac{1}{\mu} \neq 0$, если $\lambda \neq \mu$, и $\alpha_j = \frac{(-1)^{k-j}}{\lambda^{k-j+1}}$, $1 \leq j \leq k-1$ (для $k \geq 2$).

Утверждение 4) следует из 3).

Равенство в 5) следует из того, что для любого $h \in H_0(\overline{\mathbb{C}} \setminus \{0\})$

$$\left\langle \left(D_0 - \frac{1}{\lambda} I \right)^n (q_{\lambda,n}), h \right\rangle = \left\langle q_{\lambda,n}, \left(\left(D_0 - \frac{1}{\lambda} I \right)' \right)^n (h) \right\rangle =$$

$$\left\langle q_{\lambda,n}(t), \left(\frac{1}{t} - \frac{1}{\lambda} \right)^n h(t) \right\rangle = \frac{(-1)^{n+1}}{2\pi i \lambda^n} \int_{|t| = \varepsilon} \frac{h(t)}{t^n} dt = 0.$$

6): Равенство $A(R) = q_{\lambda,m}$ равносильно тому, что $\langle A(R), h \rangle = \frac{h^{(m-1)}(\lambda)}{(m-1)!}$ для каждой функции $h \in H_0(\overline{\mathbb{C}} \setminus \{0\})$, т. е. тому, что для любой функции $h \in H_0(\overline{\mathbb{C}} \setminus \{0\})$

$$\sum_{r=1}^{k} b_r \langle A(q_{\lambda,r}), h \rangle = \frac{h^{(m-1)}(\lambda)}{(m-1)!}.$$
(1.5)

Равенство (1.5) для функции $w(t) = \sum\limits_{j=0}^k rac{a_j}{t^j}$ можно переписать так:

$$\sum_{r=1}^{k} \frac{b_r}{(r-1)!} (wh)^{(r-1)} (\lambda) = \frac{h^{(m-1)}(\lambda)}{(m-1)!},$$

а значит, в виде

$$\sum_{s=0}^{k-1} h^{(s)}(\lambda) \sum_{r=0}^{k-s-1} \frac{b_{r+s+1}}{(r+s)!} C_{r+s}^s w^{(r)}(\lambda) = \frac{h^{(m-1)}(\lambda)}{(m-1)!}.$$

Приравняем множитель (слева) при $h^{(m-1)}(\lambda)$ к 1/(m-1)!, при $h^{(s)}(\lambda)$, $0 \le s \le k-1$, $s \ne m-1-$ к 0. Получим систему линейных уравнений с k неизвестными $w^{(r)}(\lambda)$, $0 \le r \le k-1$, с верхнетреугольной матрицей. Диагональные элементы $\frac{b_k}{(k-1)!}C_{k-1}^s$, $0 \le s \le k-1$, этой матрицы отличны от 0. Следовательно, эта система имеет ненулевое решение, по которому определим коэффициенты a_j , $0 \le j \le k$.

1.3 Вспомогательные результаты для инвариантных подпространств, содержащихся в $g_0\mathbb{C}(z)$

Лемма 4. Пусть $\Omega \neq \mathbb{C}$, $f = \frac{g_0}{p}r + g_0h$, где $p \in \mathcal{D}(g_0)$, r — ненулевой многочлен u $h \in \mathbb{C}^-_{\Omega}(z)$. Тогда существует оператор $A \in \mathbb{C}[D_{0,g_0}]$ такой, что $A(f) = \frac{g_0}{p}\widetilde{r}$, где \widetilde{r} — многочлен степени $\max\{\deg(r); \deg(p) - 1\}$.

Доказательство. Разложим h на простейшие дроби: $h = \sum_{j=1}^{m} \sum_{k=1}^{k_j} a_{j,k} q_{\lambda_j,k}$, где λ_j — различные точки в $\mathbb{C} \setminus \Omega$, $k_j \in \mathbb{N}$, $1 \leq j \leq m$. Вследствие замечания 3,5) для оператора

$$B := \left(D_{0,g_0} - \frac{1}{\lambda_1}I\right)^{k_1} \left(D_{0,g_0} - \frac{1}{\lambda_2}I\right)^{k_2} \cdots \left(D_{0,g_0} - \frac{1}{\lambda_m}I\right)^{k_m}$$

выполняется равенство $B(g_0h) = 0$. Поэтому $B(f) = B\left(\frac{g_0}{p}r\right)$.

Отметим, что для $\mu, t \in \mathbb{C} \setminus \{0\}$

$$(D_{0,g_0} - \mu I) \left(\frac{g_0}{p}r\right)(t) = \frac{g_0(t)}{p(t)} (D_{0,p} - \mu I) (r)(t) = \frac{g_0(t)}{p(t)} \left(\frac{r(t) - p(t)r(0)}{t} - \mu r(t)\right) = \frac{g_0(t)}{p(t)} \frac{r(t) - \mu t r(t) - p(t)r(0)}{t} = \frac{g_0(t)}{p(t)} r_1(t),$$

$$(1.6)$$

где $r_1(t):=\frac{r(t)-\mu t r(t)-p(t)r(0)}{t}$. Положим $n:=\deg(r)$. Если $n\geq \deg(p)$, то $\deg(r_1)=n$. Поэтому $B(f)=\frac{g_0}{p}\widetilde{r}$, где \widetilde{r} — многочлен степени n. В этом случае A=B.

Пусть теперь $n \leq \deg(p) - 1$. Вследствие (1.6) $B(f) = \frac{g_0}{p} r_2$, где r_2 — многочлен степени не большей, чем $\deg(p) - 1$. Если $\deg(r_2) = \deg(p) - 1$, то лемма доказана (и A = B).

Пусть $\deg(r_2) < \deg(p) - 1$. Вначале покажем, что многочлен r_2 ненулевой. Предположим противное. Тогда существуют $j \in \{1,...,m\}$ и ненулевой многочлен q такие, что функция $\left(D_{0,g_0} - \frac{1}{\lambda_j}I\right)\left(\frac{g_0}{p}q\right)$ является тождественным нулем. Вследствие равенства (1.6) (для q и $1/\lambda_j$ вместо r и μ соответственно) для любого $t \in \Omega$

$$\left(1 - \frac{t}{\lambda_j}\right)q(t) = q(0)p(t).$$

Поэтому $q(0) \neq 0$, а значит, $p(\lambda_j) = 0$. Получено противоречие с тем, что p не имеет нулей в $\mathbb{C}\backslash\Omega$.

Подействуем на B(f) оператором D_{0,q_0} :

$$D_{0,g_0}(B(f))(t) = \frac{g_0(t)}{p(t)} \frac{r_2(t) - p(t)r_2(0)}{t}.$$

Положим $r_3(t):=\frac{r_2(t)-p(t)r_2(0)}{t}$. Если $r_2(0)\neq 0$, то $\deg(r_3)=\deg(p)-1$. В этом случае $A=D_{0,g_0}B,\ \widetilde{r}=r_3$. Пусть $r_2(t)=t^sr_0(t)$, где $s\in\mathbb{N}$ и r_0 — многочлен такой, что $r_0(0)\neq 0$. Тогда $D^s_{0,g_0}(B(f))=\frac{g_0}{p}r_0,\ t\neq 0$, и

$$D_{0,g_0}^{s+1}(B(f))(t) = \frac{g_0(t)}{p(t)} \frac{r_0(t) - p(t)r_0(0)}{t}.$$

Степень многочлена $\widetilde{r}(t) = \frac{r_0(t) - p(t)r_0(0)}{t}$ равна $\deg(p) - 1$. В этой ситуации $A = D_{0,g_0}^{s+1} B$.

Лемма 5. Пусть S — собственное замкнутое D_{0,g_0} -инвариантное подпространство $H(\Omega)$, содержащееся в $g_0\mathbb{C}(z)$; $p_S\in\mathcal{D}(g_0)$ — многочлен такой, что $W(S)=W(g_0/p_S)$ (см. следствие 1).

(i) Для любой ненулевой функции $f \in S$ найдутся многочлены r = r(f), u = u(f), v = v(f) такие, что $\deg(u) < \deg(v)$, v унитарный (т. е. старший коэффициент v равен 1), v не имеет корней в Ω , многочлены u u v не имеют общих корней u

 $f = \frac{g_0}{p_S} r + g_0 \frac{u}{v}. (1.7)$

(ii) В представлении (1.7) многочлены r, u, v определены однозначно.

Доказательство. (i): Пусть $p:=p_S$. Возьмем $f\in S$. Тогда для некоторых многочленов r_1,u_1,v_1 таких, что $\deg(u_1)<\deg(v_1)$ и u_1 и v_1 не имеют общих корней, выполняется равенство $f=g_0\left(r_1+\frac{u_1}{v_1}\right)$. Факторизуем v_1 в виде $v_1=qv$, где $q\in\mathcal{D}(g_0)$, а унитарный многочлен v не имеет корней в Ω . Тогда

$$f = g_0 \left(r_1 + \frac{u_1}{qv} \right) = \frac{g_0}{p} p r_1 + g_0 \frac{u_1}{qv}. \tag{1.8}$$

Правильную дробь $\frac{u_1}{qv}$ представим в виде $\frac{u_1}{qv} = \frac{q_1}{q} + \frac{u}{v}$, где q_1, u — многочлены, для которых $\deg(q_1) < \deg(q)$ и $\deg(u) < \deg(v)$. Получим, что

$$f = \frac{g_0}{p}pr_1 + g_0\left(\frac{q_1}{q} + \frac{u}{v}\right) = \frac{g_0}{p}\left(pr_1 + \frac{pq_1}{q}\right) + g_0\frac{u}{v}.$$

При этом многочлен p делится на q. Действительно, функция $\frac{pf}{g_0}$ голоморфна в Ω . Из (1.8) следует, что в Ω голоморфна функция $pr_1 + \frac{pu_1}{qv}$, а значит, и $\frac{pu_1}{qv}$. Поскольку u_1 и q не имеют общих корней, то p делится на q. Поэтому $r := pr_1 + \frac{pq_1}{q}$ — многочлен.

(ii): Докажем единственность представления (1.7). Пусть для многочленов r_1 , u_1 , v_1 и r_2 , u_2 , v_2 , как в (i), в Ω выполняется равенство

$$\frac{g_0}{p}r_1 + g_0 \frac{u_1}{v_1} = \frac{g_0}{p}r_2 + g_0 \frac{u_2}{v_2}.$$

Тогда в Ω

$$\frac{r_1v_1 + pu_1}{v_1} = \frac{r_2v_2 + pu_2}{v_2},$$

причем числитель и знаменатель в обеих дробях не имеют общих корней. Это влечет, что $v_1=v_2=:\widetilde{v}$. Поэтому $(r_1-r_2)\widetilde{v}=p(u_2-u_1)$. Так как многочлены p и \widetilde{v} взаимно простые, то u_2-u_1 делится на \widetilde{v} , а значит, $u_1=u_2$. Тогда и $r_1=r_2$.

Пусть S — собственное замкнутое D_{0,g_0} -инвариантное подпространство $H(\Omega)$, содержащееся в $g_0\mathbb{C}(z)$. Символом $\mathcal{P}(S)$ обозначим множество всех корней многочленов $v(f), f \in S \setminus \{0\}$, как в (1.7), т.е.

$$\mathcal{P}(S) := \{ \lambda \in \mathbb{C} \setminus \Omega \mid \exists f \in S \setminus \{0\} : v(f)(\lambda) = 0 \}.$$

Далее **1** обозначает функцию, тождественно равную 1. Считаем, что r(f) = u(f) = 0 и $v(f) = \mathbf{1}$, если f = 0.

Пусть Υ — конечное кратное многообразие в $\mathbb{C}\backslash\Omega$, т. е. $\Upsilon=\{(\lambda,n_\lambda)\,|\,\lambda\in\Lambda\}$, где $n_\lambda\in\mathbb{N},\,\Lambda$ — конечное подмножество $\mathbb{C}\backslash\Omega$. Положим

$$\mathbb{C}_{\Upsilon}^{-}(z) := \operatorname{span} \left\{ q_{\lambda,k} \, | \, \lambda \in \Lambda, \, 1 \le k \le n_{\lambda} \right\}.$$

Если Υ пусто, т. е. Λ — пустое множество, то для удобства считаем, что $\mathbb{C}_{\Upsilon}^{-}(z) = \{0\}$. Полагаем $\mathbb{C}[z]_{-\infty} := \{0\}$.

Замечание 4. Ниже (теоремы 2-4) будет показано, что семейство пространств

$$S(p, n, \Upsilon) := \frac{g_0}{p} \mathbb{C}[z]_n + g_0 \mathbb{C}_{\Upsilon}^-(z),$$

где $n \in \mathbb{N} \bigcup \{-\infty, 0\}$, $p \in \mathcal{D}(g_0)$, Υ — конечное или пустое кратное многообразие в $\mathbb{C} \setminus \Omega$, содержит все собственные замкнутые D_{0,g_0} -инвариантные подпространства $H(\Omega)$, вложенные в $g_0\mathbb{C}(z)$.

Отметим, что $S(n, p, \Upsilon)$ однозначно определяется тройкой (n, p, Υ) , т. е. пространства $S(p_1, n_1, \Upsilon_1)$ и $S(p_2, n_2, \Upsilon_2)$ совпадают тогда и только тогда, когда $n_1 = n_2$, $p_1 = p_2$, $\Upsilon_1 = \Upsilon_2$.

Лемма 6. Пусть собственное замкнутое D_{0,g_0} -инвариантное подпространство S пространства $H(\Omega)$ содержится в $g_0\mathbb{C}(z)$; $p_S \in \mathcal{D}(g_0)$ — многочлен, для которого $W(S) = W(g_0/p_S)$; для $f \in S \setminus \{0\}$ многочлены r(f), u(f), v(f) такие, как в равенстве (1.7). Тогда

(i) $n(S) := \sup_{f \in S} \deg(r(f)) < +\infty \ u \frac{g_0}{p_S} \mathbb{C}[z]_{n(S)} \subset S.$

При этом $n(S) \ge \deg(p) - 1$, если $n(S) \ne -\infty$.

- (ii) $\mathcal{P}(S)$ конечно или пусто.
- (iii) $n_{\lambda}(S) := \sup_{f \in S} m(\lambda, v(f)) < +\infty$ для любого $\lambda \in \mathcal{P}(S)$.

Доказательство. (i): Положим $p := p_S$. Предположим, что S содержит функцию f, для которой r := r(f) — ненулевой многочлен. В силу леммы 4 подпространство S содержит и функцию $\widetilde{f} = \frac{g_0}{p}\widetilde{r}$, где многочлен \widetilde{r} имеет степень $m \ge \deg(p) - 1$. Поскольку $W(g_0/p) \prec W(\widetilde{f})$, то многочлен \widetilde{r} не имеет общих корней с p, а следовательно, взаимно прост с p.

Пусть $k:=\deg(p)\geq 1$. По [4, лемма 6] система $\left\{D_{0,p}^{j}(\widetilde{r})\,|\,1\leq j\leq k\right\}$ линейно независима в $H(\Omega)$. Если m=k-1, то $\left\{D_{0,p}^{j}(\widetilde{r})\,|\,1\leq j\leq k\right\}$ — базис в $\mathbb{C}[z]_m$. Если m=k, то $\left\{D_{0,p}^{j}(\widetilde{r})\,|\,0\leq j\leq k\right\}$ — базис в $\mathbb{C}[z]_m$.

Пусть теперь m>k. В этом случае $\deg\left(D_{0,p}^j(\widetilde{r})\right)=m-j,\ 0\leq j\leq m-k$. Поскольку по [4, лемма 4] многочлены $D_{0,p}^{m-k}(\widetilde{r})$ и p взаимно простые, то система $\{D_{0,p}^j(\widetilde{r})=D_{0,p}^{j-m+k}(D_{0,p}^{m-k}(\widetilde{r}))\,|\,m-k+1\leq j\leq m\}$, которая содержится в $\mathbb{C}[z]_{k-1}$,

линейно независима в $H(\Omega)$. Отсюда следует, что $\{D_{0,p}^j(\widetilde{r}) \mid 0 \leq j \leq m\}$ — базис в $\mathbb{C}[z]_m$ и в случае m > k. Поскольку для любого $j \in \mathbb{N}$ выполняется равенство $D_{0,g_0}^j(\widetilde{f}) = \frac{g_0}{p} D_{0,p}^j(\widetilde{r})$, то $\frac{g_0}{p} \mathbb{C}[z]_m \subset S$. Если $\deg(p) = 0$, т.е. $p \equiv 1$, то $D_{0,g_0}^j\left(\frac{g_0}{p}\widetilde{r}\right) = g_0 D_0^j(\widetilde{r})$, $j \in \mathbb{N}$. Поскольку $\deg(D_0^j(\widetilde{r}) = m - j$, $0 \leq j \leq m$, то также $\frac{g_0}{p} \mathbb{C}[z]_m \subset S$.

Предположим, что $\sup_{f \in S} \deg(r(f)) = +\infty$. Тогда существуют функции $f_n \in S, n \in \mathbb{N}$, такие, что $m_n := \deg(r(f_n)) \to +\infty$. Без ограничения общности $m_n \geq k-1$ для любого $n \in \mathbb{N}$. По доказанному выше $\frac{g_0}{p}\mathbb{C}[z]_{m_n} \subset S$ для всех $n \in \mathbb{N}$, а значит, $\frac{g_0}{p}\mathbb{C}[z] \subset S$. Так как область Ω односвязная, то по теореме Рунге $\mathbb{C}[z]$ плотно в $H(\Omega)$. Поэтому $\frac{g_0}{p}H(\Omega) \subset S$ вследствие замкнутости S. Это противоречит вложению $S \subset g_0\mathbb{C}(z)$. Итак, $n(S) = \sup \deg(r(f)) < +\infty$.

Вложение $\frac{g_0}{p}\mathbb{C}[z]_{n(S)}\subset S$ в случае $n(S)=-\infty$ очевидно. Если $n(S)\geq 0$, то, как доказано выше, $n(S)\geq \deg(p)-1$ и $\frac{g_0}{p}\mathbb{C}[z]_{n(S)}\subset S$.

(іі): Зафиксируем $\lambda \in \mathcal{P}(S)$ и возьмем функцию $f \in S$, для которой $v(f)(\lambda) = 0$ (многочлены r(f), u(f), v(f) такие, как в (1.7)). Вследствие (і) $\frac{g_0}{p}r(f) \in S$, а значит, $g_0\frac{u(f)}{v(f)} \in S$. Пусть $\lambda, \lambda_1, ..., \lambda_s$ — все различные корни v(f). Вследствие замечаний 1 и 3, 4), 5) для некоторого $n \in \mathbb{N}$ функция $f_1 = \left(D_{0,g_0} - \frac{1}{\lambda_1}I\right)^m \cdots \left(D_{0,g_0} - \frac{1}{\lambda_s}I\right)^m \left(g_0\frac{u(f)}{v(f)}\right)$ имеет вид $f_1 = g_0h$, где h — ненулевая дробь из $Q(\lambda, k)$. Применяя замечание 3, 6), найдем оператор $A = \mathbb{C}[D_{0,g_0}]$ такой, что $A(R_2) = g_0q_{\lambda,1}$. Значит, все функции $q_{\lambda,1}$, $\lambda \in \mathcal{P}(S)$, содержатся в S.

Предположим, что $\mathcal{P}(S)$ бесконечно. Тогда $\mathcal{P}(S)$ имеет предельную точку в $\overline{\mathbb{C}} \backslash \Omega$, и следовательно, множество $\{q_{\lambda,1} \mid \lambda \in \mathcal{P}(S)\}$ полно в $H(\Omega)$. Это влечет, что $g_0H(\Omega) \subset S$. Противоречие.

(ііі): Если $\mathcal{P}(S)$ пусто, то v(f)=1 для всех $f\in S$. Пусть $\mathcal{P}(S)$ непусто, а значит, вследствие (іі), конечно. Предположим, что $\sup_{f\in S} \deg(v(f)) = +\infty$. Тогда существуют $\lambda\in\mathcal{P}(S)$, неограниченная возрастающая последовательность чисел $k_n\in\mathbb{N}$, для которых $g_0q_{\lambda,k_n}\in S$ для любого $n\in\mathbb{N}$. Замечание 3, 6) влечет тогда, что все функции $g_0q_{\lambda,k},\,k\in\mathbb{N}$, содержатся в S. Поскольку множество $\{q_{\lambda,k}\,|\,k\in\mathbb{N}\}$ полно в $H(\Omega)$ и S замкнуто, то $g_0H(\Omega)\subset S$. Противоречие.

Далее для собственного замкнутого D_{0,g_0} -инвариантного подпространства S пространства $H(\Omega)$, содержащегося в $g_0\mathbb{C}(z)$, введем его конечное или пустое сингулярное кратное многообразие

$$\Upsilon(S) := \{ (\lambda, n_{\lambda}(S)) \, | \, \lambda \in \mathcal{P}(S) \},\,$$

где $n_{\lambda}(S)$ такие, как в лемме 6 (iii).

Лемма 7. (i) $D_{0,p}(\mathbb{C}[z]_n) \subset \mathbb{C}[z]_n$ для любых целого $n \geq 0$, многочлена $p \in \mathcal{D}(g_0)$ такого, что p(0) = 1 и $n \geq \deg(p) - 1$.

(ii) $D_{0,g_0}\left(g_0\mathbb{C}_{\Upsilon}^-(z)\right)\subset g_0\mathbb{C}_{\Upsilon}^-(z)$ для любого конечного множества $\Lambda\subset\mathbb{C}\backslash\Omega$, любых $n_\lambda\in\mathbb{N}$ (здесь $\Upsilon:=\{(\lambda,n_\lambda)\,|\,\lambda\in\Lambda\}$).

Доказательство. (i): Если $f \in \mathbb{C}[z]_n$, то $D_{0,p}(f)(t) = \frac{f(t)-p(t)f(0)}{t}$ также многочлен степени не выше n.

(ii): Вытекает из замечания 3, 4), поскольку для любых $\lambda \in \mathbb{C} \backslash \Omega$, $k \in \mathbb{N}$ выполняется равенство $D_{0,q_0}(g_0q_{\lambda,k}) = g_0D_0(q_{\lambda,k})$.

Замечание 5. Термин обобщенный обратный сдвиг был введен Ж. Годфруа и Дж. Шапиро [16, § 3]. Так в [16] назван линейный непрерывный оператор в банаховом пространстве X, ядро которого одномерно, а объединение ядер всех его целых неотрицательных степеней плотно в X. Для $n \in \mathbb{N}$ ядро D_{0,g_0}^n в (ненормируемом) пространстве Фреше $H(\Omega)$ совпадает с $g_0\mathbb{C}[z]_{n-1}$ (см. замечание 3, 1)). Поэтому $\bigcup_{n\geq 0} \operatorname{Ker}(D_{0,g_0}^n) = g_0\mathbb{C}[z]$ и замыканием этого множества в $H(\Omega)$ является $g_0H(\Omega)$. Значит, второе условие в определении обобщенного обратного сдвига в смысле [16] для названного нами так же оператора D_{0,g_0} выполняется тогда и только тогда, когда g_0 не имеет нулей в Ω .

2 Основные результаты

Ситуация, когда g_0 не имеет нулей в Ω , сводится к случаю $g_0 \equiv 1$ с помощью следующего простого соображения.

Лемма 8. Пусть функция g_0 не имеет нулей в Ω . Множество $S \subset H(\Omega)$ является собственным замкнутым D_{0,g_0} -инвариантным подпространством $H(\Omega)$ тогда и только тогда, когда $\frac{1}{g_0}S$ является собственным замкнутым D_0 -инвариантным подпространством $H(\Omega)$.

Доказательство. Данное утверждение вытекает из равенства $D_{0,g_0}(f) = g_0 D_0 (f/g_0)$, $f \in H(\Omega)$, и того, что отображение $f \mapsto g_0 f$, $f \in H(\Omega)$, является линейным топологическим изоморфизмом $H(\Omega)$ на себя.

Для подмножеств M_1, M_2 линейного пространства L через $M_1 + M_2$, как обычно, обозначим их сумму: $M_1 + M_2 := \{a + b \mid a \in M_1, b \in M_2\}.$

2.1 Случай области, отличной от комплексной плоскости

Теорема 2. Пусть Ω — односвязная область в \mathbb{C} , содержащая начало, $\Omega \neq \mathbb{C}$ и функция g_0 не имеет нулей в Ω .

- (i) Для любого $n \in \mathbb{N} \cup \{-\infty, 0\}$, конечного или пустого множества $\Lambda \subset \mathbb{C} \setminus \Omega$, кратного многообразия $\Upsilon = \{(\lambda, n_{\lambda}) \mid \lambda \in \Lambda\}$ в $\mathbb{C} \setminus \Omega$ множество $g_0(\mathbb{C}[z]_n + \mathbb{C}_{\Upsilon}^-(z))$ является замкнутым D_{0,g_0} -инвариантным подпространством $H(\Omega)$. При этом оно является собственным тогда и только тогда, когда $n \neq -\infty$ или Λ непусто.
- (ii) Любое собственное замкнутое D_{0,g_0} -инвариантное подпространство S пространства $H(\Omega)$ содержится в $g_0\mathbb{C}(z)$ и выполняется равенство

$$S = g_0 \left(\mathbb{C}[z]_{n(S)} + \mathbb{C}^-_{\Upsilon(S)}(z) \right).$$

Доказательство. Воспользуемся леммой 8, сводящей задачу к рассмотрению функции 1 (вместо g_0).

- (i): D_0 -инвариантность собственных подпространств $\mathbb{C}[z]_n$ и $\mathbb{C}_{\Upsilon}^-(z)$ доказана в лемме 7. Их замкнутость следует из их конечномерности.
- (ii): Пусть S собственное замкнутое D_0 -инвариантное подпространство $H(\Omega)$. Поскольку функция $\mathbf{1}$ не имеет нулей, то $S \subset \mathbb{C}(z)$. Пусть n = n(S) максимальная степень многочленов $r(f), f \in S \setminus \{0\}$, в представлении (1.7), а $\Upsilon = \Upsilon(S) = \{(\lambda, n_{\lambda}(S)) \mid \lambda \in \mathcal{P}(S)\}$ сингулярное кратное многообразие S. Покажем, что $S = \mathbb{C}[z]_n + \mathbb{C}_{\Upsilon}^-(z)$. Ясно, что $S \subset \mathbb{C}[z]_n + \mathbb{C}_{\Upsilon}^-(z)$. По лемме $S \subset \mathbb{C}[z]_n \subset S$.

Зафиксируем теперь $\lambda \in \mathcal{P}(S)$, если $\mathcal{P}(S) \neq \emptyset$. Поскольку $\mathbb{C}[z]_n \subset S$, то подпространство S содержит некоторую функцию $f = \sum\limits_{j=1}^{n_\lambda} \alpha_j q_{\lambda,j} + \sum\limits_{\nu \in \mathcal{P}(S), \nu \neq \lambda} \sum\limits_{k=1}^{n_\nu} \beta_{\nu,k} q_{\nu,k}$ $(\alpha_j, \beta_{\nu,k} \in \mathbb{C}), \ \alpha_{n_\lambda} \neq 0$. Из замечаний 3, 3), 5), 6) вытекает, что все функции $q_{\lambda,k}, \lambda \in \mathcal{P}(S), 1 \leq k \leq n_\lambda$, принадлежат S. Так как система $\{q_{\lambda,k} \mid \lambda \in \mathcal{P}(S), 1 \leq k \leq n_\lambda\}$ образует базис в пространстве $\mathbb{C}^-_{\Upsilon}(z)$, то $\mathbb{C}^-_{\Upsilon}(z) \subset S$. Таким образом, $S = \mathbb{C}[z]_n + \mathbb{C}^-_{\Upsilon}(z)$. \square

Теорема 3. Пусть Ω — односвязная область в \mathbb{C} , содержащая начало, $\Omega \neq \mathbb{C}$ и функция g_0 имеет нули в Ω .

- (i) Для любого непустого кратного многообразия $W \prec W(g_0)$ в Ω множество S(W) является собственным замкнутым D_{0,g_0} -инвариантным подпространством $H(\Omega)$.
- (ii) Для любого многочлена $p \in \mathcal{D}(g_0)$, любых целого $n \geq 0$ такого, что $n \geq \deg(p) 1$, или $n = -\infty$, конечного или пустого кратного многообразия $\Upsilon = \{(\lambda, n_\lambda) \mid \lambda \in \Lambda\}$ в $\mathbb{C}\setminus\Omega$ множество $\frac{g_0}{p}\mathbb{C}[z]_n + g_0\mathbb{C}_{\Upsilon}^-(z)$ является замкнутым D_{0,g_0} -инвариантным подпространством $H(\Omega)$.

При этом оно собственное тогда и только тогда, когда $n \neq -\infty$ или Υ непусто.

(iii) Для любого собственного замкнутого D_{0,g_0} -инвариантного подпространства S пространства $H(\Omega)$ либо S = S(W(S)), либо $S \subset g_0\mathbb{C}(z)$ и выполняется равенство $S = \frac{g_0}{p_S}\mathbb{C}[z]_{n(S)} + g_0\mathbb{C}^-_{\Upsilon(S)}(z)$.

Доказательство. (i): Множество S(W) является собственным замкнутым подпространством $H(\Omega)$. Пусть $W = \{(\lambda_k, m_k)\}$. Возьмем $f \in S(W)$. Зафиксируем k. Тогда $f(t) = (t - \lambda_k)^{m_k} f_k(t), \ g_0(t) = (t - \lambda_k)^{m_k} h(t), \ t \in \Omega$, где $f_k, h \in H(\Omega)$. Поэтому для функции

$$D_{0,g_0}(f)(t) = (t - \lambda_k)^{m_k} \frac{f_1(t) - h(t)f(0)}{t}$$

 λ_k — нуль кратности не меньше m_k . Значит, $D_{0,g_0}(f) \in S(W)$.

(ii): Пусть S такое, как в (ii). Тогда S — замкнутое подпространство $H(\Omega)$. Инвариантность S относительно D_{0,g_0} следует из леммы 7. При этом подпространство $\frac{g_0}{p}\mathbb{C}[z]_n+g_0\mathbb{C}_{\Upsilon}^-(z)$ не является собственным тогда и только тогда, когда оно тривиально. Это равносильно тому, что $n=-\infty$ и Υ пусто.

(ііі): Предположим, что $S \setminus (g_0\mathbb{C}(z)) \neq \emptyset$. По лемме 3 множество Z(S) общих нулей функций из S в Ω непусто и $W \prec W(g_0)$. Отсюда следует, что $0 \notin Z(S)$. Пусть $v - g_0$ -экстремальная функция S. По теореме Вейерштрасса [13, теорема 3.3.1] существует голоморфная в Ω функция u с нулевым многообразием W(S) и такая, что u(0) = 1. Тогда $g_0/u, v/u \in H(\Omega)$ и $S(W(S)) = uH(\Omega)$. Вследствие свойства расщепляемости (замечание 1)

$$D_{0,g_0}^n(v) = u D_{0,g_0/u}^n\left(\frac{v}{u}\right), \ n \ge 0.$$
 (2.1)

Рассмотрим случай, когда $v \notin g_0\mathbb{C}(z)$. Тогда $\frac{v}{u} \notin \frac{g_0}{u}\mathbb{C}(z)$. При этом v/u и g_0/u не имеют общих нулей в Ω . По теореме 1 функция v/u — циклический вектор $D_{0,g_0/u}$ в $H(\Omega)$. Следовательно, в силу (2.1), $uH(\Omega) \subset S$, а значит, S = S(W(S)).

Если же $v \in g_0\mathbb{C}(z)$, то возьмем $f \in S \setminus (g_0\mathbb{C}(z))$. По лемме 2 найдется $\alpha \in \mathbb{C} \setminus \{0\}$, для которого $v_0 = f + \alpha v$ — тоже g_0 -экстремальная функция S. При этом $v_0 \notin g_0\mathbb{C}(z)$. Отсюда, как выше (для функции v_0 вместо v), следует, что S = S(W(S)).

Пусть $S \subset g_0\mathbb{C}(z)$. Применяя рассуждения, аналогичные приведенным при доказательстве теоремы 2 (ii) (они используют лемму 6 (i), замечания 3, 3), 5), 6) и равенство $D_{0,g_0}(g_0h) = g_0D_0(h), h \in H(\Omega)$), получим, что $S = \frac{g_0}{p}\mathbb{C}[z]_{n(S)} + g_0\mathbb{C}^-_{\Upsilon(S)}(z)$.

$\mathbf{2.2}$ Случай $\Omega = \mathbb{C}$

Выделим отдельно случай, когда Ω совпадает со всей комплексной плоскостью. В этой ситуации $\mathbb{C}\backslash\Omega=\emptyset$. Поэтому вследствие доказательств теорем 2, 3 имеют место следующие утверждения.

Теорема 4. Пусть g_0 — целая функция такая, что $g_0(0) = 1$.

- (I) Предположим, что g_0 не имеет нулей в \mathbb{C} .
 - (i) Для любого целого $n \geq 0$ множество $g_0\mathbb{C}[z]_n$ является собственным замкнутым D_{0,q_0} -инвариантным подпространством $H(\mathbb{C})$.
 - (ii) Любое собственное замкнутое D_{0,g_0} -инвариантное подпространство S пространства $H(\mathbb{C})$ вложено в $g_0\mathbb{C}[z]$, и выполняется равенство $S = g_0\mathbb{C}[z]_{n(S)}$.
- (II) Предположим, что g_0 имеет нули в \mathbb{C} .
- (iii) Для любого непустого кратного многообразия $W \prec W(g_0)$ в \mathbb{C} множество S(W) является собственным замкнутым D_{0,g_0} -инвариантным подпространством $H(\mathbb{C})$.
- (iv) Для любых многочлена $p \in \mathcal{D}(g_0)$, целого $n \geq 0$ такого, что $n \geq \deg(p) 1$, множество $\frac{g_0}{p}\mathbb{C}[z]_n$ является собственным замкнутым D_{0,g_0} -инвариантным подпространством $H(\mathbb{C})$.
- (v) Для любого собственного замкнутого D_{0,g_0} -инвариантного подпространства S пространства $H(\mathbb{C})$ либо S = S(W(S)), либо $S \subset g_0\mathbb{C}[z]$ и выполняется равенство $S = \frac{g_0}{p_S}\mathbb{C}[z]_{n(S)}$.

Из теорем 2–4 вытекает

Следствие 2. Пусть Ω — односвязная область в \mathbb{C} , содержащая начало. Оператор D_{0,g_0} является одноклеточным в $H(\Omega)$ тогда и только тогда, когда $\Omega = \mathbb{C}$ и g_0 не имеет нулей в \mathbb{C} .

Если это так, то собственными замкнутыми D_{0,g_0} -инвариантными подпространствами $H(\Omega)$ являются $g_0\mathbb{C}[z]_n$, $n \geq 0$, и только они.

Список литературы

- [1] Грибов М.Б., Никольский Н.К., Инвариантные подпространства и рациональная аппроксимация, Зап. научн. сем. ЛОМИ. **92** (1979), 103—114.
- [2] Иванова О.А., Мелихов С.Н., Об орбитах аналитических функций относительно оператора типа Поммье, Уфимский матем. ж. 7 (2015), № 4, 75-79.
- [3] Иванова О.А., Мелихов С.Н., Об операторах, перестановочных с оператором типа Поммые в весовых пространствах целых функций, Алгебра и анализ. 2 (2016), вып. 2, 114–137.
- [4] Иванова О.А., Мелихов С.Н., Об инвариантных подпространствах оператора Поммье в пространствах целых функций экспоненциального типа, Комплексный анализ, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз. 2017, вып. 142. ВИНИТИ РАН, М., 111–120.
- [5] Казьмин Ю.А., *О последовательных остатках ряда Тейлора*, Вестн. МГУ. Сер. 1, Математика, Механика. 1963, № 5, 35–46.
- [6] Линчук Н.Е., *Представление коммутантов оператора Поммъе и их приложения*, Матем. заметки. **44** (1988), № 6, 794–802.
- [7] Никольский Н.К., Инвариантные подпространства в теории операторов и теории функций, Итоги науки и техн. Сер. Мат. анал. **12** (1974), 199—412.
- [8] Тумаркин Г.Ц., Описание класса функций, допускающих приближение дробями с фиксированными полюсами, Изв. АН Армянской ССР. Сер. математика. 1 (1966), № 2, 89–105.
- [9] Хавин В.П., Пространства аналитических функций, Итоги науки. Сер. Математика. Мат. анал. 1964, 1966, 76—164.
- [10] Хапланов М.Г., *О полноте некоторых систем аналитических функций*, Уч. зап. Ростовск. гос. пед. ин-та: Сб статей. Ростов-на-Дону. 1955, вып. 3, 53–58.
- [11] Хермандер Л., Введение в теорию функций нескольких комплексных переменных, Мир, М., 1968.
- [12] Aleman A., Richter S., Sundberg C., Invariant subspaces for the backward shift on Hilbert space of analytic functions with regular norm, Bergman Spaces and Related Topics in Complex Analysis: Proceedings of a Conference in Honor of Boris

Korenblum's 80th Birthday November 20–22, 2003, Barcelona, Spain. Borichev A., Hedenmalm H., Zhu K. Editors. AMS, Contemporary Mathematics. **404** (2006), 1–26.

- [13] Berenstein C.A., Gay R., Complex Variables: An Introduction (Graduate Texts in Mathematics), Springer, 1991.
- [14] Cima J.A., Ross W.T., The Backward Shift on the Hardy Space, AMS, 2000.
- [15] Douglas R.G., Shapiro H.S., Shields A.L., Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble). 20 (1970), № 1, 37–76.
- [16] Godefroy G., Shapiro J.H., Operators with Dense, Invariant, Cyclic Vector Manifolds,
 J. Func. Anal. 98 (1991), 229–269.
- [17] Köthe G., Dualität in der Funktionentheorie, J. Reine Angew. Math. **191** (1953), Nº 1-2, 30-49.
- [18] Linchuk Yu.S., Cyclical elements of operators which are left-inverses to multiplication by an independent variable, Methods of Functional Analysis and Topology. 12 (2006), № 4, 384–388.

О. А. Иванова

Южный федеральный университет,

Институт математики, механики и компьютерных наук им. И. И. Воровича,

Ростов-на-Дону, Россия

E-mail: neo_ivolga@mail.ru

С. Н. Мелихов

Южный федеральный университет,

Институт математики, механики и компьютерных наук им. И. И. Воровича, Ростов-на-Дону, Россия;

Южный математический институт Владикавказского научного центра РАН,

Владикавказ, Россия

E-mail: snmelihov@yandex.ru, melih@math.rsu.ru

Ю. Н. Мелихов

Военная академия ВКО им. Г. К. Жукова,

Тверь, Россия

E-mail: melikhow@mail.ru