

CamData instance calibration storage

Eyes:

eye0samples[ID]

eye1samples[ID]

KNNs:

knn0

knn1

Coordinates:

xCoords[ID]

yCoords[ID]

Everything accessible by ID

CamData .getEyesImprovedRun() method:

Take picture Detect face using HAAR cascade

Crop detected FACE

Validate

Detect eyes using LBP cascade

Crop eyes

Adjust colour space

Return both eyes in Mat[] array

CamData .saveRun([x, y]) method:

determine ID

get current eyes with .getEyesImprovedRun()

save current eyes in the instance with ID

save [x, y] in the instance with ID

finish and return only TRUE

CamData .initializeKNearest() method:

Prepare saved eyes for HOG and KNN

Compute HOG Descriptors for all eyes

Prepare HOG Descriptors for KNN

Train KNN for each eye using HOG Descriptors

knn0 and knn1 trained and saved, return TRUE

CamData .getGuessRun() method:

Get current eyes with .getEyesImprovedRun() Retrieve IDs for three neighbours for both eyes **Prepare current eyes for HOG and KNN** Filter out false detected neighbours for each eye **Compute HOG Descriptors for both eyes** Interpolate neighbour coordinates for each eye **Prepare computed HOG Descriptors for KNN** Interpolate interpolated eye coordinates together Feed each HOG Descriptor to according KNN Return one resulting coordinate pair