

ROYAL INSTITUTE OF TECHNOLOGY

BEAMFORMING UTILIZING CHANNEL NORM FEEDBACK IN MULTIUSER MIMO SYSTEMS

Emil Björnson, David Hammarwall and Björn Ottersten School of Electrical Engineering Royal Institute of Technology (KTH) Stockholm, Sweden

- This motivates beamforming communication with channel norm feedback.

Spatial Correlation, example

- Elevated base station, n_T antennas.
- Multiple users, n_R antennas.
- Partial channel information at base station.

Some directions are more favorable to a user:

Consider two real-valued Gaussian distributed variables $v_i \in \mathcal{N}(0,\sigma_i^2), \quad i=1,2.$

What information is gained of v_i if the norm $\|(v_1,v_2)\|^2=v_1^2+v_2^2$ is observed?

Figure 1:

The shaded area shows how the probability mass is distributed over the circle, representing a given norm. The inner arrows indicate the standard deviation. Observe that the probability mass is more focused for larger norms.

System Model

Channel model:

Rayleigh fading MIMO channel to user k:

$$\mathbf{H}_k = [\mathbf{h}_{k,1},...,\mathbf{h}_{k,n_R}]^H$$

with independent $\mathbf{h}_{k,i} \in \mathcal{CN}(\mathbf{0},\mathbf{R}_k)$.

The received vector (user k):

$$\mathbf{y}_k(t) = \mathbf{H}_k \mathbf{w}_{T_k} s_k(t) + \mathbf{n}_k(t),$$

with beamforming vector \mathbf{w}_{T_k} , symbol $s_k(t)$ and AWGN $\mathbf{n}_k(t) \in \mathcal{CN}(\mathbf{0}, \sigma_k^2\mathbf{I})$.

Limited Feedback Strategy

A strategy is needed to determine:

- ullet The beamforming vector for user k.
- The corresponding SNR (and supported rate).

Opportunistic beamforming:

- The beamformer is chosen at random.
- Each user feeds back its SNR.
- Advantage: Knowledge of the SNR,
 Disadvantage: Neglects spatial information.

Channel norm supported eigenbeamforming:

- ullet Each user feeds back its channel norm ho_k .
- The beamformer is determined using conditional channel statistics.
- Advantage: Exploits spatial information,
 Disadvantage: Requires SNR estimation.
- This strategy is analyzed in the paper.

Channel information:

New channel realization

Only \mathbf{R}_k and $\rho_k = \max_i ||\mathbf{h}_{k,i}||^2$, for each user k, is known to the base station.

Antenna Selection

- Only the strongest receive antenna is used.
- The channel norm is ρ_k .

MMSE estimation of SNR:

$$E\{\operatorname{SNR}_{k} | \rho_{k}\} = E\left\{\frac{\left|\mathbf{h}_{k, \text{strongest}}^{H} \mathbf{w}_{T_{k}}\right|^{2}}{\sigma_{k}^{2}} | \rho_{k}\right\} = \frac{\mathbf{w}_{T_{k}}^{H} \widehat{\mathbf{R}}(\rho_{k}) \mathbf{w}_{T_{k}}}{\sigma_{k}^{2}}$$
$$V\{\operatorname{SNR}_{k} | \rho_{k}\} = \frac{E\{\left|\mathbf{h}^{H} \mathbf{w}_{T}\right|^{4} | \rho_{k}\right\} - (\mathbf{w}_{T}^{H} \widehat{\mathbf{R}}(\rho_{k}) \mathbf{w}_{T})^{2}}{\sigma_{k}^{4}}$$

Closed-form expressions for $\widehat{\mathbf{R}}(\rho_k)$ and $E\{\left|\mathbf{h}^H\mathbf{w}_T\right|^4\middle|\rho_k\}$ are previously known.

Receive Beamforming

- The antennas are combined to maximize the SNR.
- ullet The norm of the strongest receive channel is ho_k .
- The other channel norms are known to be smaller.

MMSE estimation of SNR:

$$E\{\widetilde{SNR}_{k} | \rho_{k}\} = \frac{\mathbf{w}_{T_{k}}^{H} \widehat{\mathbf{R}}(\rho_{k}) \mathbf{w}_{T_{k}}}{\sigma_{k}^{2}} + (n_{R} - 1) \frac{\mathbf{w}_{T_{k}}^{H} \widehat{\mathbf{R}}(0 \le \rho \le \rho_{k}) \mathbf{w}_{T_{k}}}{\sigma_{k}^{2}}$$
$$V\{\widetilde{SNR}_{k} | \rho_{k}\} = V\{SNR_{k} | \rho_{k}\} + (n_{R} - 1)V\{\widetilde{SNR}_{k} | 0 \le \rho \le \rho_{k}\}$$

Closed-form expressions for $\widehat{\mathbf{R}}(0 \le \rho \le \rho_k)$ and $V\{\widetilde{\mathrm{SNR}}_k | 0 \le \rho \le \rho_k\}$ are derived.

Simulation Results

- Proportional fair scheduling.
- Rich scattering around the users.

Capacity estimation based on:

$$E\{\operatorname{SNR}_k | \rho_k\} - \alpha \sqrt{V\{\operatorname{SNR}_k | \rho_k\}},$$

with α chosen to achieve outage probability 5%.

Figure 2: The CDF (over scenarios) of the cell throughput in a system with a transmitting eight-antenna UCA and four receive antennas per user. *Opportunistic beamforming* is compared to the proposed *Feedback supported eigenbeamforming* for different receive strategies: antenna selection and receive beamforming (increasing performance). The angular spread is 15 degrees.

Figure 3: The mean cell throughput for different angular spreads. The proposed channel norm supported eigenbeamforming with antenna selection (circles) and receive beamforming (diamonds) is compared to the corresponding opportunistic beamforming.

- The channel norm provides substantial spatial information.
- Two simple channel norm feedback strategies are proposed that outperform opportunistic beamforming with the same amount of feedback.