Punktgruppen und Kristalle

Naoki Pross, Tim Tönz

Hochschule für Technik OST, Rapperswil

10. Mai 2021

Einleitung

Geometrische Symmetrien

Algebraische Symmetrien

Kristalle

Anwendungen

Einleitung

Geometrische Symmetrien

Algebraische Symmetrien

$$\mathbf{1} \cdot i = i$$
$$i \cdot i = -\mathbf{1}$$

$$-\mathbf{1} \cdot i = -i$$

$$-i \cdot i = \mathbf{1}$$

$$\mathbf{1} \cdot i = i \\
i \cdot i = -\mathbf{1} \\
-\mathbf{1} \cdot i = -i$$

$$-i \cdot i = \mathbf{1}$$

Gruppe

$$G = \{\mathbf{1}, i, -\mathbf{1}, -i\}$$

= $\{\mathbf{1}, i, i^2, i^3\}$

$$= \{\mathbf{1}, i, i^2, i^3\}$$

$$Z_4 = \{1, r, r^2, r^3\}$$

$$\mathbf{1} \cdot i = i \\
i \cdot i = -\mathbf{1}$$

$$\phi:Z_4\to G$$

$$-\mathbf{1} \cdot i = -i$$
$$-i \cdot i = \mathbf{1}$$

$$\phi(\mathbb{1})=\mathtt{1}$$
 $\phi(r^2)=i^2$ $\phi(r)=i$ $\phi(r^3)=i^3$

Gruppe

$$G = \{1, i, -1, -i\}$$

= $\{1, i, i^2, i^3\}$
 $Z_4 = \{1, r, r^2, r^3\}$

Produkt mit
$$i$$

$$\mathbf{1} \cdot i = i$$
$$i \cdot i = -\mathbf{1}$$

$$-\mathbf{1} \cdot i = -i$$
$$-i \cdot i = \mathbf{1}$$

Gruppe

$$G = \{\mathbf{1}, i, -\mathbf{1}, -i\}$$

= $\{\mathbf{1}, i, i^2, i^3\}$
 $Z_4 = \{1, r, r^2, r^3\}$

Darstellung

$$\phi:Z_4\to G$$

$$\phi(\mathbb{1})=\mathtt{1} \qquad \qquad \phi(r^2)=i^2 \ \phi(r)=i \qquad \qquad \phi(r^3)=i^3$$

Homomorphismus

$$\phi(r \circ 1) = \phi(r) \cdot \phi(1)$$

$$= i \cdot 1$$

$$\mathbf{1} \cdot i = i$$
$$i \cdot i = -\mathbf{1}$$

$$-\mathbf{1} \cdot i = -i$$
$$-i \cdot i = \mathbf{1}$$

Gruppe

$$G = \{1, i, -1, -i\}$$
$$= \{1, i, i^2, i^3\}$$

$$Z_4 = \{1, r, r^2, r^3\}$$

Darstellung

$$\phi: Z_4 \to G$$

$$\phi(\mathbb{1}) = \mathbf{1}$$
 $\phi(r^2) = i^2$ $\phi(r) = i$ $\phi(r^3) = i^3$

Homomorphismus

$$\phi(r \circ 1) = \phi(r) \cdot \phi(1)$$
$$= i \cdot 1$$

$$\phi$$
 ist bijektiv $\implies Z_4 \cong G$

Kristalle

Anwendungen