Mã ẩn

Xét một dãy nhị phân A gồm n phần tử, phần tử A_i $(1 \le i \le n)$ chỉ nhận giá trị 0 hoặc 1. Vì lí do bảo mật, ban đầu tất cả các phần tử của dãy A đều được ẩn giá trị và chỉ biết trong dãy A có chính xác k giá trị 0 $(0 \le k \le n)$. Thời điểm 0 là thời điểm bắt đầu xác định dãy A. Có m thông tin về mối quan hệ giữa các cặp phần tử trong dãy A sẽ lần lượt xuất hiện, thông tin thứ t $(1 \le t \le m)$ xuất hiện tại thời điểm t. Cấu trúc của thông tin thứ t được mô tả thông qua ba giá trị u_t, c_t, v_t . Trong đó, u_t, v_t tương ứng với chỉ số của hai phần tử trong dãy A $(1 \le u_t < v_t \le n)$ và c_t là một trong các kí tự >, < hoặc = để biểu diễn mối quan hệ giữa A_{u_t} và A_{v_t} . Nếu c_t là kí tự > thì $A_{u_t} > A_{v_t}$, nếu c_t là kí tự < thì $A_{u_t} < A_{v_t}$, còn c_t là kí tự = thì $A_{u_t} = A_{v_t}$. Các thông tin đều bảo đảm tính chính xác, hợp lí trên dãy A.

Cần tìm thời điểm s $(0 \le s \le m)$ nhỏ nhất để xác định duy nhất một cách gán giá trị cho tất cả n phần tử của dãy A sao cho có chính xác k giá trị 0 và thỏa mãn s thông tin đầu tiên.

Yêu cầu: Cho các thông tin về dãy A, hãy đưa ra thời điểm s nhỏ nhất sao cho dãy A được xác định duy nhất. Trong trường hợp sử dụng tất cả m thông tin mà vẫn có nhiều hơn một cách gán giá trị cho tất cả n phần tử của dãy A thì đưa ra -1.

Input

- Dòng đầu tiên chứa một số nguyên dương q là số lượng bộ dữ liệu;
- Tiếp theo gồm q nhóm dòng, mỗi nhóm mô tả một bộ dữ liệu theo khuôn dạng sau:
 - 0 Dòng thứ nhất chứa ba số nguyên n, m và k cách nhau bởi dấu cách $(1 \le m \le 4 \times 10^5; 0 \le k \le n);$
 - O Dòng thứ t trong số m dòng tiếp theo $(1 \le t \le m)$ chứa ba giá trị u_t, c_t, v_t mô tả thông tin xuất hiện tại thời điểm t. Các giá trị cách nhau đúng một dấu cách.

Dữ liệu vào đảm bảo tồn tại ít nhất một dãy A có chính xác k giá trị 0 thỏa mãn tất cả m thông tin. Tổng các số m trong q bộ dữ liệu không quá 2×10^6 .

Output

Mỗi dòng chứa một số nguyên s tương ứng với thời điểm nhỏ nhất để xác định duy nhất một cách gán giá trị cho tất cả n phần tử của dãy A trong dữ liệu vào tương ứng. Nếu không tìm được thời điểm s thoả mãn thì ghi ra −1.

Gọi N là tổng các số n trong q bộ dữ liệu.

Subtask 1: $1 \le n \le 2 \times 10^3 \text{ và } N \le 10^4$;

Subtask 2: $1 \le n \le 2 \times 10^4 \text{ và } N \le 10^5$;

Dữ liệu	Kết quả	Giải thích
3	5	Trong dãy thứ nhất, tại thời điểm $s=5$ xác định duy nhất dãy
6 6 3	0	{1, 0, 1, 0, 1, 0} thỏa mãn các thông tin tính đến thời điểm
1 > 2	-1	5. Với thời điểm $t = 4$ có thêm ít nhất một dãy $\{1, 0, 0, 1,$
3 = 5		0, 1} thỏa mãn các thông tin tính đến thời điểm 4.
4 = 6		Trong dãy thứ hai, không cần xét đến các thông tin bổ sung mà
1 > 2		vẫn xác định dãy duy nhất $\{0, 0, 0, 0\}$. Do đó, đưa ra s bằng
2 = 4		0.
1 = 3		Trong dãy thứ ba, mặc dù sử dụng hết 2 thông tin nhưng vẫn có
4 2 4		ít nhất hai dãy thỏa mãn tất cả 2 thông tin là: {0, 0, 1, 1}
1 = 2		và {1, 1, 0, 0}. Do đó, đưa ra -1.
3 = 4		
4 2 2		
1 = 2		
3 = 4		