CS 611: Theory of Computation

Hongmin Li

Department of Computer Science California State University, East Bay

Let L_1 be language recognized by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language recognized by $G_2=(V_2,\Sigma_2,R_2,S_2)$ ls $L_1\cup L_2$ a context free language?

Let L_1 be language recognized by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language recognized by $G_2=(V_2,\Sigma_2,R_2,S_2)$ ls $L_1\cup L_2$ a context free language? Yes.

Let L_1 be language recognized by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language recognized by $G_2=(V_2,\Sigma_2,R_2,S_2)$ ls $L_1\cup L_2$ a context free language? Yes. Just add the rule $S\to S_1|S_2$

Let L_1 be language recognized by $G_1=(V_1,\Sigma_1,R_1,S_1)$ and L_2 the language recognized by $G_2=(V_2,\Sigma_2,R_2,S_2)$

Is $L_1 \cup L_2$ a context free language? Yes.

Just add the rule $S o S_1 | S_2$

But make sure that $V_1 \cap V_2 = \emptyset$ (by renaming some variables).

Let L_1 be language recognized by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language recognized by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Is $L_1 \cup L_2$ a context free language? Yes.

Just add the rule $S o S_1 | S_2$

But make sure that $V_1 \cap V_2 = \emptyset$ (by renaming some variables).

Closure of CFLs under Union

$$G = (V, \Sigma, R, S)$$
 such that $L(G) = L(G_1) \cup L(G_2)$:

- $V = V_1 \cup V_2 \cup \{S\}$ (the three sets are disjoint)
- $\Sigma = \Sigma_1 \cup \Sigma_2$
- $R = R_1 \cup R_2 \cup \{S \to S_1 | S_2\}$

Proposition

CFLs are closed under concatenation and Kleene closure

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

Concatenation:

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

• Concatenation: L_1L_2 generated by a grammar with an additional rule $S \to S_1S_2$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- Concatenation: L_1L_2 generated by a grammar with an additional rule $S o S_1S_2$
- Kleene Closure:

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- Concatenation: L_1L_2 generated by a grammar with an additional rule $S o S_1S_2$
- Kleene Closure: L_1^* generated by a grammar with an additional rule $S o S_1 S | \epsilon$

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- Concatenation: L_1L_2 generated by a grammar with an additional rule $S o S_1S_2$
- Kleene Closure: L_1^* generated by a grammar with an additional rule $S o S_1 S | \epsilon$

As before, ensure that $V_1 \cap V_2 = \emptyset$. S is a new start symbol.

Proposition

CFLs are closed under concatenation and Kleene closure

Proof.

Let L_1 be language generated by $G_1 = (V_1, \Sigma_1, R_1, S_1)$ and L_2 the language generated by $G_2 = (V_2, \Sigma_2, R_2, S_2)$

- Concatenation: L_1L_2 generated by a grammar with an additional rule $S o S_1S_2$
- Kleene Closure: L_1^* generated by a grammar with an additional rule $S o S_1 S | \epsilon$

As before, ensure that $V_1 \cap V_2 = \emptyset$. S is a new start symbol. (Exercise: Complete the Proof!)

Let L_1 and L_2 be context free languages.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

•
$$L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$$
 is a CFL

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - Generated by a grammar with rules $S \to XY$; $X \to aX | \epsilon$; $Y \to bYc | \epsilon$.

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - Generated by a grammar with rules $S \to XY$; $X \to aX | \epsilon$; $Y \to bYc | \epsilon$.
- But $L_1 \cap L_2 =$

Let L_1 and L_2 be context free languages. $L_1 \cap L_2$ is not necessarily context free!

Proposition

CFLs are not closed under intersection

- $L_1 = \{a^i b^i c^j \mid i, j \ge 0\}$ is a CFL
 - Generated by a grammar with rules $S \to XY$; $X \to aXb|\epsilon$; $Y \to cY|\epsilon$.
- $L_2 = \{a^i b^j c^j \mid i, j \ge 0\}$ is a CFL.
 - Generated by a grammar with rules $S \to XY$; $X \to aX | \epsilon$; $Y \to bYc | \epsilon$.
- But $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ is not a CFL.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

Let P be the PDA that accepts L, and let M be the DFA that accepts R. A new PDA P' will simulate P and M simultaneously on the same input and accept if both accept. Then P' accepts $L \cap R$.

• The stack of P' is the stack of P

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M)

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M): $Q_{P'} = Q_P \times Q_M$
- These determine the transition function of P'

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M
- These determine the transition function of P'
- The final states of P' are those in which both the state of P and state of M are accepting:

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

- The stack of P' is the stack of P
- The state of P' at any time is the pair (state of P, state of M): Q_{P'} = Q_P × Q_M
- These determine the transition function of P'
- The final states of P' are those in which both the state of P and state of M are accepting: $F_{P'} = F_P \times F_M$

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proposition

If L is a CFL and R is a regular language then $L \cap R$ is a CFL.

Proof.

More formally, let $M=(Q_1,\Sigma,\delta_1,q_1,F_1)$ be a DFA such that L(M)=R, and $P=(Q_2,\Sigma,\Gamma,\delta_2,q_2,F_2)$ be a PDA such that L(P)=L. Then consider $P'=(Q,\Sigma,\Gamma,\delta,q_0,F)$ such that

- $Q = Q_1 \times Q_2$
- $q_0 = (q_1, q_2)$
- $\bullet \ F = F_1 \times F_2$
- $\delta((p,q),x,a) = \{((p',q'),b) \mid p' = \delta_1(p,x) \text{ and } (q',b) \in \delta_2(q,x,a)\}.$

Complementation

Let L be a context free language. Is \overline{L} context free?

Complementation

Let L be a context free language. Is \overline{L} context free? No!

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

 \bullet $\overline{L_1}$ and $\overline{L_2}$ are CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

• $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

• $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{L_1} \cup \overline{L_2}$ is CFL.

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{L_1} \cup \overline{L_2}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{\overline{L_1} \cup \overline{L_2}}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

• L generated by a grammar with rules

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{L_1} \cup \overline{L_2}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

• L generated by a grammar with rules $X \to a|b, A \to a|XAX$, $B \to b|XBX, S \to$

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{L_1} \cup \overline{L_2}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

• L generated by a grammar with rules $X \to a|b, A \to a|XAX$, $B \to b|XBX, S \to A|B|AB|BA$

Let L be a context free language. Is \overline{L} context free? No!

Proof 1.

Suppose CFLs were closed under complementation. Then for any two CFLs L_1 , L_2 , we have

- $\overline{L_1}$ and $\overline{L_2}$ are CFL. Then, since CFLs closed under union, $\overline{L_1} \cup \overline{L_2}$ is CFL. Then, again by hypothesis, $\overline{L_1} \cup \overline{L_2}$ is CFL.
- i.e., $L_1 \cap L_2$ is a CFL

i.e., CFLs are closed under intersection. Contradiction!

Proof 2.

 $L = \{x \mid x \text{ not of the form } ww\} \text{ is a CFL.}$

• L generated by a grammar with rules $X \to a|b, A \to a|XAX$, $B \to b|XBX, S \to A|B|AB|BA$

But
$$\overline{L} = \{ww \mid w \in \{a, b\}^*\}$$
 is not a CFL! (Why?)

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proposition

If L_1 is a CFL and L_2 is a CFL then $L_1 \setminus L_2$ is not necessarily a CFL

Proof.

Because CFLs not closed under complementation, and complementation is a special case of set difference. (How?)

Proposition

If L is a CFL and R is a regular language then $L \setminus R$ is a CFL

Proof.

$$L \setminus R = L \cap \overline{R}$$

Proposition

Context free languages are closed under homomorphisms.

Proposition

Context free languages are closed under homomorphisms.

Proof.

Let $G = (V, \Sigma, R, S)$ be the grammar generating L, and let $h : \Sigma^* \to \Gamma^*$ be a homomorphism.

Proposition

Context free languages are closed under homomorphisms.

Proof.

Proposition

Context free languages are closed under homomorphisms.

Proof.

Let $G = (V, \Sigma, R, S)$ be the grammar generating L, and let $h : \Sigma^* \to \Gamma^*$ be a homomorphism. A grammar $G' = (V', \Gamma, R', S')$ for generating h(L):

• Include all variables from G (i.e., $V' \supseteq V$), and let S' = S

Proposition

Context free languages are closed under homomorphisms.

Proof.

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables.

Proposition

Context free languages are closed under homomorphisms.

Proof.

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
 - Add a new variable X_a to V'

Proposition

Context free languages are closed under homomorphisms.

Proof.

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
 - Add a new variable X_a to V'
 - In each rule of G, if a appears in the RHS, replace it by X_a

Proposition

Context free languages are closed under homomorphisms.

Proof.

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
 - Add a new variable X_a to V'
 - In each rule of G, if a appears in the RHS, replace it by X_a
- For each X_a , add the rule $X_a \rightarrow$

Proposition

Context free languages are closed under homomorphisms.

Proof.

- Include all variables from G (i.e., $V' \supseteq V$), and let S' = S
- Treat terminals in G as variables. i.e., for every $a \in \Sigma$
 - Add a new variable X_a to V'
 - In each rule of G, if a appears in the RHS, replace it by X_a
- For each X_a , add the rule $X_a \to h(a)$
- G' generates h(L). (Exercise!)

Example

```
Let G have the rules S \to 0S0|1S1|\epsilon.
```

Consider the homorphism $h:\{0,1\}^* \to \{a,b\}^*$ given by

$$h(0) = aba$$
 and $h(1) = bb$.

Rules of
$$G'$$
 s.t. $L(G') = h(L(G))$:

Example

Let G have the rules $S \to 0S0|1S1|\epsilon$.

Consider the homorphism $h: \{0,1\}^* \to \{a,b\}^*$ given by

h(0) = aba and h(1) = bb.

Rules of G' s.t. L(G') = h(L(G)):

$$S \rightarrow X_0 S X_0 | X_1 S X_1 | \epsilon$$

Example

Let G have the rules $S \to 0S0|1S1|\epsilon$.

Consider the homorphism $h: \{0,1\}^* \to \{a,b\}^*$ given by

h(0) = aba and h(1) = bb.

Rules of G' s.t. L(G') = h(L(G)):

$$S \rightarrow X_0 S X_0 |X_1 S X_1| \epsilon$$

$$X_0 \rightarrow aba$$

Example

Let *G* have the rules $S \rightarrow 0S0|1S1|\epsilon$.

Consider the homorphism $h: \{0,1\}^* \to \{a,b\}^*$ given by

h(0) = aba and h(1) = bb.

Rules of G' s.t. L(G') = h(L(G)):

$$S \rightarrow X_0 S X_0 | X_1 S X_1 | \epsilon$$

$$X_0 \rightarrow aba$$

$$X_1 \rightarrow bb$$

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

For regular language L: the DFA for $h^{-1}(L)$ on reading a symbol a, simulated the DFA for L on h(a).

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

For regular language L: the DFA for $h^{-1}(L)$ on reading a symbol a, simulated the DFA for L on h(a). Can we do the same with PDAs?

• Key idea: store h(a) in a "buffer" and process symbols from h(a) one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

- Key idea: store h(a) in a "buffer" and process symbols from h(a) one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"?

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

- Key idea: store h(a) in a "buffer" and process symbols from h(a) one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"? In the state of the new PDA!

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof Idea

- Key idea: store h(a) in a "buffer" and process symbols from h(a) one at a time (according to the transition function of the original PDA), and the next input symbol is processed only after the "buffer" has been emptied.
- Where to store this "buffer"? In the state of the new PDA!

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof.

Let $P=(Q,\Delta,\Gamma,\delta,q_0,F)$ be a PDA such that L(P)=L. Let $h:\Sigma^*\to\Delta^*$ be a homomorphism such that $n=\max_{a\in\Sigma}|h(a)|$, i.e., every symbol of Σ is mapped to a string under h of length at most n. Consider the PDA $P'=(Q',\Sigma,\Gamma,\delta',q'_0,F')$ where

- $Q' = Q \times \Delta^{\leq n}$, where $\Delta^{\leq n}$ is the collection of all strings of length at most n over Δ .
- $q_0' = (q_0, \epsilon)$
- $F' = F \times \{\epsilon\}$

Recall: For a homomorphism h, $h^{-1}(L) = \{w \mid h(w) \in L\}$

Proposition

If L is a CFL then $h^{-1}(L)$ is a CFL

Proof.

• δ' is given by $\delta'((q, v), x, a) =$

$$\begin{cases} \{((q, h(x)), \epsilon)\} & \text{if } v = a = \epsilon \\ \{((p, u), b) \mid (p, b) \in \delta(q, y, a)\} & \text{if } v = yu, x = \epsilon, \text{ and } y \in \Delta \end{cases}$$

and $\delta'(\cdot) = \emptyset$ in all other cases.