Finer control over statistics

We fit a series of univariate regressions

```
income_table <- tbl_uv</pre>
     nlsy,
 y = income,
 4 include = c(
 sex_cat, race_eth_
 6 eyesight_cat, income

 7 ),
 8 \quad \text{method} = 1 \text{m}
10 income table
```

			95% CI		
Characteristic	N	Beta	1	p-value	
sex_cat	10,195				
Male		<u> </u>	_		
Female		-358	-844, 128	0.15	
race_eth_cat	10,195				
Hispanic		_	_		
Black		-1,747	-2,507, -988	<0.001	
Non-Black, Non-Hispanic		3,863	3,195, 4,530	<0.001	
eyesight_cat	6,789				
Excellent		_	_		
Very good		-578	-1,319, 162	0.13	
Good		-1,863	-2,719, -1,006	<0.001	
Fair		-4,674	-5,910, -3,439	<0.001	
Poor		-6,647	-9,154,	<0.001	
CI = Confidence Interval					

Characteristic	N	Beta	95% CI	p-value		
			-4,140			
age_bir	4,773	595	538, 652	<0.001		
1						
CI = Confidence Interval						

But a table is a limited form of output

We might want to dig in a little more to those regressions

- One helpful option from {gtsummary} is to extract data from the table directly
- This can be reported in a manuscript (rather than copying and pasting from the table)

```
1 inline_text(income_table, variable = "age_bir")
[1] "595 (95% CI 538, 652; p<0.001)"</pre>
```

We'll look at this again later!

What if we want *all* the numbers, say to create a figure?

- Under the hood, {gtsummary} is using the {broom} package to extract the statistics from the various models
- We can also use that package directly!

Statistical models in R can be messy

```
1 mod_sex_cat <- lm(income ~ sex_cat, data = nlsy)</pre>
```

We could look at the model summary:

```
1 summary(mod sex cat)
Call:
lm(formula = income ~ sex cat, data = nlsy)
Residuals:
  Min 10 Median 30 Max
-14880 -8880 -3943 5477 60478
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 14880.3
                     172.6 86.237 <2e-16 ***
sex catFemale -357.8 247.8 -1.444 0.149
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12510 on 10193 degrees of freedom
  (2491 observations deleted due to missingness)
```

Statistical models in R can be messy

If we want to do something with the various values, we could extract each statistic individually:

```
1 coef(mod sex cat)
  (Intercept) sex catFemale
  14880.3152
               -357.8029
            1 confint(mod sex cat)
               2.5 %
                       97.5 %
(Intercept)
            14542.079 15218.5512
sex catFemale -843.608
                     128.0022
               summary(mod sex cat)$r.squared
[1] 0.0002044429
               summary(mod sex cat)$coefficients
              Estimate Std. Error t value Pr(>|t|)
          14880.3152 172.5521 86.236672 0.0000000
(Intercept)
sex catFemale -357.8029 247.8349 -1.443715 0.1488499
```

{broom} has three main functions: augment(), glance(), tidy()

augment() adds fitted values, residuals, and other statistics to the original data

```
library(broom)
                augment(mod sex cat)
# A tibble: 10,195 × 9
  .rownames income sex cat .fitted .resid .hat .sigma
                                                            .cooksd .std.resid
            <dbl> <fct>
                            <dbl> <dbl>
                                             <dbl> <dbl>
                                                                        <dbl>
  <chr>
                                                            <dbl>
                           14523. 15477. 0.000202 12506.
                                                           1.55e-4
1 1
             30000 Female
                                                                        1.24
2. 2.
                           14523. 5477. 0.000202 12507.
                                                           1.94e-5
                                                                        0.438
             20000 Female
3 3
                                                           4.01e-5
             22390 Female
                           14523. 7867. 0.000202 12507.
                                                                        0.629
                                    7867. 0.000202 12507.
                                                           4.01e-5
                                                                        0.629
             22390 Female
                           14523.
                                   21120. 0.000190 12505.
                                                           2.72e-4
                                                                        1.69
             36000 Male
                           14880.
6 6
                           14880. 20120. 0.000190 12505.
                                                           2.46e-4
                                                                        1.61
             35000 Male
 7 7
              8502 Male
                           14880. -6378. 0.000190 12507.
                                                           2.48e-5
                                                                       -0.510
8 8
                                                           3.44e-5
                                                                       -0.583
                           14523. -7296. 0.000202 12507.
             7227 Female
9 9
            17000 Male
                          14880. 2120. 0.000190 12507.
                                                           2.74e-6
                                                                       0.170
10 10
                          14523. -10975. 0.000202 12506.
                                                           7.79e-5
                                                                       -0.878
              3548 Female
 i 10,185 more rows
```

{broom} has three main functions: augment(), glance(), tidy()

glance() creates a table of statistics that pertain to the entire model

```
1 glance(mod_sex_cat)
```

{broom} has three main functions: augment(), glance(), tidy()

tidy() is the most useful to me and probably you!

It extracts coefficients and confidence intervals from models

tidy() works on over 100 statistical methods in R!

Anova, ARIMA, Cox, factor analysis, fixed effects, GAM, GEE, IV, kappa, kmeans, multinomial, proportional odds, principal components, survey methods, ...

- See the full list here
- All the output shares column names
- This makes it really easy to work with the output and reuse code across analyses

Some models have additional arguments

For example, we might want exponentiated coefficients:

```
logistic model <- glm(glasses ~ eyesight cat + sex cat +</pre>
                                          data = nlsy, family = binomial())
            3 tidy(logistic model, conf.int = TRUE, exponentiate = TRUE)
# A tibble: 7 \times 7
                     estimate std.error statistic p.value conf.low conf.high
 term
 <chr>
                       <dbl>
                                <dbl>
                                         <dbl>
                                                 <dbl>
                                                         <dbl>
                                                                  <dbl>
1 (Intercept)
                       0.499
                              5.96e-2
                                       -11.7
                                              1.74e-31
                                                         0.444
                                                                  0.560
2 eyesight catVery good
                              5.96e-2 -1.39 1.64e- 1
                                                        0.819
                                                                  1.03
                       0.920
3 eyesight catGood
                       0.916
                              6.91e-2 -1.27 2.04e- 1
                                                        0.800
                                                                  1.05
4 eyesight catFair
                       0.802
                              1.00e-1 -2.20 2.77e- 2
                                                         0.658
                                                                  0.976
5 eyesight catPoor
                              2.01e-1 0.147 8.83e- 1
                                                         0.694
                       1.03
                                                                  1.53
6 sex catFemale
                       2.04
                              5.00e-2
                                      14.2 5.46e-46
                                                         1.85
                                                                  2.25
                              1.93e-6 7.49 6.95e-14
                                                         1.00
                       1.00
                                                                  1.00
7 income
```

We can also combine the results of lots of regressions

```
# we already made mod_sex_cat

2 mod_race_eth_cat <- lm(income ~ race_eth_cat, data = nlsy)

3 mod_eyesight_cat <- lm(income ~ eyesight_cat, data = nlsy)

4 mod_age_bir <- lm(income ~ age_bir, data = nlsy)

5

6 tidy_sex_cat <- tidy(mod_sex_cat, conf.int = TRUE)

7 tidy_race_eth_cat <- tidy(mod_race_eth_cat, conf.int = TRUE)

8 tidy_eyesight_cat <- tidy(mod_eyesight_cat, conf.int = TRUE)

9 tidy_age_bir <- tidy(mod_age_bir, conf.int = TRUE)</pre>
```

With a little finagling, we have the same data as in the original univartiate regression table...

```
dplyr::bind_rows(
    sex_cat = tidy_sex_cat,
    race_eth_cat = tidy_race_eth_cat,
    eyesight_cat = tidy_eyesight_cat,
    age_bir = tidy_age_bir, .id = "model") |>
    dplyr::mutate(
    term = stringr::str_remove(term, model),
    term = ifelse(term == "", model, term))
```

With a little finagling, we have the same data as in the original univartiate regression table...

```
# A tibble: 12 × 8
                  estimate std.error statistic p.value conf.low conf.high
  model
           term
  <chr> <chr>
                   <dbl>
                            <dbl>
                                    <dbl> <dbl> <dbl>
                                                          <dbl>
                            173.
                                    86.2 0 14542.
1 sex cat (Inter... 14880.
                                                         15219.
2 sex cat Female
                   -358. 248.
                                    -1.44 1.49e- 1 -844. 128.
                   12867. 302.
3 race eth cat (Inter...
                                    42.7 0 12276. 13459.
4 race eth cat Black
                    -1747.
                            387.
                                    -4.51 6.58e- 6
                                                 -2507.
                                                         -988.
                            341.
5 race eth cat Non-Bl...
                   3863.
                                    11.3 1.20e-29
                                                 3195. 4530.
6 eyesight cat (Inter...
                   17683.
                            270.
                                    65.6 0
                                                 17155.
                                                         18212.
                   -578. 378.
7 eyesight cat Very q...
                                                         162.
                                    -1.53 1.26e- 1
                                                 -1319.
8 eyesight cat Good -1863. 437.
                                    -4.26 2.05e- 5
                                                  -2719.
                                                         -1006.
9 eyesight cat Fair -4674.
                           630.
                                    -7.42 1.35e-13
                                                 -5910.
                                                        -3439.
10 eyesight cat Poor -6647. 1279.
                                    -5.20 2.07e- 7
                                                 -9154.
                                                        -4140.
                                                   270.
11 age bir (Inter... 1707.
                            733.
                                    2.33 1.99e- 2
                                                        3143.
12 age bir age bir 595.
                             29.1
                                    20.4 3.71e-89
                                                   538. 652.
```

Even easier cleanup!

We could instead clean up the names and add reference rows with the {tidycat} package:

```
tidy(logistic model, conf.int = TRUE, exponentiate = TRUE
                   tidycat::tidy categorical(logistic model, exponentiate
                   dplyr::select(-c(3:5))
# A tibble: 9 \times 8
                    estimate conf.low conf.high variable level effect reference
 term
 <chr>
                               <dbl>
                                         <dbl> <chr> <fct> <chr> <chr>
                       <dbl>
 (Intercept)
                       0.499
                               0.444
                                         0.560 (Interc... (Int... main
                                                                     Non-Base...
                                               eyesigh... Exce... main
                                                                    Baseline...
2 <NA>
                                         1.03 eyesigh... Very... main
3 eyesight catVery ...
                       0.920
                               0.819
                                                                    Non-Base...
4 eyesight catGood
                                         1.05 eyesigh... Good main
                       0.916
                               0.800
                                                                    Non-Base...
5 eyesight catFair
                       0.802
                               0.658
                                         0.976 eyesigh... Fair
                                                              main
                                                                     Non-Base...
6 eyesight catPoor
                       1.03
                               0.694
                                         1.53 eyesigh... Poor main
                                                                    Non-Base...
                                               sex cat Male main
                                                                    Baseline...
7 <NA>
8 sex catFemale
                       2.04
                                1.85
                                         2.25 sex cat Fema... main
                                                                     Non-Base...
9 income
                                         1.00 income
                                                        inco... main
                       1.00
                                1.00
                                                                     Non-Base...
```

This makes it easy to make forest plots, for example

```
library(ggplot2)
2 tidy(logistic model, conf.int = TRUE, exponentiate = TRUE
     tidycat::tidy categorical(logistic model, exponentiate
     dplyr::slice(-1) |> # remove intercept
     ggplot(mapping = aes(x = level, y = estimate,
                          ymin = conf.low, ymax = conf.high)
 6
     geom point() +
     geom errorbar() +
     facet grid(cols = vars(variable), scales = "free", space
     scale y log10()
10
```

This makes it easy to make forest plots, for example

Exercises

- 1. Open the script with these examples.
- 2. Run it.
- 3. Teach yourself to use broom::tidy() to extract the results of the Poisson regression with robust standard errors and combine them with the results of the logbinomial regression.
- 4. Start creating some tables for your final project!

