STATS 415: Ensemble methods

Prof. Liza Levina

Department of Statistics, University of Michigan

Ensemble Classifiers

Classification trees are simple but often unstable. Solution: combine many trees

- Bagging (Breiman 1996): Fit many large trees to bootstrap resampled versions of the training data, and classify by majority vote.
- Random forests (Breiman 1999): Improvements over bagging with randomized trees.
- Boosting (Freund & Schapire 1996): Fit many large or small trees to reweighed versions of the training data. Classify by weighted majority vote.
- Generally, bagging tends to dominate a single tree, boosting tends to dominate bagging, and random forests and boosting are often comparable.

Bootstrap Samples

- Training data $(x_1, y_1), \ldots, (x_n, y_n)$.
- Randomly draw one pair; make a copy (x_1^*, y_1^*) , and put it back (sample with replacement).
- Repeat n times, obtaining $(x_1^*, y_1^*), \dots, (x_n^*, y_n^*)$. This is called a bootstrap sample.
- Repeat everything B times, obtaining B bootstrap samples, of size n each.

Bagging

Bagging (Bootstrap AGGregatING averages a given procedure over many bootstrap samples, to reduce its variance.

• If T(x) is a classifier (e.g. a classificate tree), we get a version $T^{(b)}$ by training on each of the bootstrap samples $b=1,\ldots,B$. Then bagging predicts

$$\hat{C}_{\mathrm{bag}}(x) = \mathrm{Majority\ Vote}\left\{T^{(b)}(x)
ight\}_{b=1}^{B}$$

• If T(x) is a regression method (e.g. a regression tree), we also get a version $T^{(b)}$ by training on each of the bootstrap samples $b=1,\ldots,B$, and bagging predicts

$$\hat{f}_{\text{bag}}(x) = \text{Average}\left\{T^{(b)}(x)\right\}_{b=1}^{B}$$

Schematics of Bagging

Recall Nested Spheres

- Green class: two independent standard normal inputs X_1, X_2
- Red class: conditioned on $X_1^2 + X_2^2 \ge 4.6$

A Single Tree Decision Boundary

X1

Bagging Decision Boundary:

Remarks on bagging

- Bagging can dramatically reduce variance, and does not affect bias.
- Bagging produces very flexible decision boundaries, unlike a tree.
- Bagging a good method (e.g., a decision tree) usually makes it better, but bagging a bad method (e.g., a random decision rule) does not, and can make it worse.
- Interpretable structure (e.g. splits of a tree) is lost.

Out-of-Bag Error Estimation

- Since bootstrap randomly selects a subset of observations to serve as training data, the remaining part can serve as test data.
- On average, each bagged tree makes use of around 2/3 of the observations, which leaves about 1/3 for testing.
- Test error can be estimated by averaging "out-of-bag" (OOB) errors over all *B* samples.

Variable Importance

- Bagging typically improves the accuracy over prediction using a single tree, but at the expense of interpretability.
- We now have hundreds of trees, and it is no longer clear which variables are important.
- Alternative: overall summary of the importance of each predictor using relative variable importance, aka as relative influence.

Relative Importance Plots

How do we decide which variables are most useful in predicting the response?

- · Display a score for each variable
- These scores represent the total decrease in the Gini index or RSS over all splits on a given variable, averaged over B bootstrapped trees.
- The larger the score, the more important the variable is overall; the most important is scaled to 100%.

Example: Housing Data

- "Median income" is by far the most important variable.
- "Longitude", "latitude" and "average occupancy" are the next most important.

Random forests: main idea

- Create B bootstrapped training sets as in bagging
- Grow a decision tree on each bootstrapped training data set, but consider a random subset of variables at each split. The trees are not pruned.
- Use majority vote among all the trees to classify a new object.

Why only a subset of predictors?

- Random forests makes the trees less correlated
- Suppose we have one very strong predictor in the data set; then in the collection of bagged trees, most or all of them will use the very strong predictor for the first split.
- All bagged trees will look similar, and predictions from the bagged trees will be highly correlated.
- Averaging many highly correlated quantities does not lead to a large variance reduction, and thus random forests "de-correlates" the bagged trees leading to more reduction in variance.

Remarks on random forests

- Random forests are considered one of the most competitive classifiers and are popular
- · Random selection of variables controls overfitting
- For most data sets results seem not too sensitive to m, the number of variables used for splitting
- While there is no interpretation, variables can be ranked by importance
- However, importance rankings can be much more variable that the classification results themselves

Boosting: main idea

- Give sample points weights (initially all equal) that measure how much the point affects the classifier
- Fit a classifier and adjust weights to give more weight to the points that were misclassified
- Repeat M times
- Take a weighted vote of the resulting M classifiers, with more weight given to better classifiers

Schematics of Boosting

AdaBoost

- 1 Initialize the observation weights $w_i = 1/n, i = 1, 2, ..., n$.
- 2 For m = 1 to M repeat steps (a)-(d):
 - (a) Fit a classifier $T_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$\operatorname{err}_m = \frac{\sum_{i=1}^n w_i \mathbb{I}(y_i \neq T_m(x_i))}{\sum_{i=1}^n w_i}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Update weights for i = 1, ..., n:

$$w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot \mathbb{I}(y_i \neq T_m(x_i))]$$

and renormalize w_i to sum to 1.

3 Output $\hat{C}(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m T_m(x)\right]$.

Boosting Stumps

2000 points from nested spheres in \mathbb{R}^{10} . A stump is a two-leaf tree, after a single split. Boosting stumps works remarkably well on the nested-sphere problem.

Bagging and Boosting

Boosting ten-node trees and Bagging.

AdaBoost: Stagewise Modeling

AdaBoost builds an additive model

$$f(x) = \sum_{m=1}^{M} \alpha_m T_m(x)$$

by stagewise fitting using the loss function

$$L(y, f(x)) = \exp(-yf(x)).$$

Goal:

$$\min_{f} \sum_{i=1}^{n} \exp(-y_i f(x_i))$$

- After m-1 steps, suppose we have the model $f_{m-1}(x)$.
- At the *m*th step we solve

$$\min_{\alpha,T} \sum_{i=1}^{n} \exp\left[-y_i(f_{m-1}(x_i) + \alpha T(x_i))\right]$$

where $T(x) \in \{-1,1\}$ is a tree classifier and α is a coefficient.

- Thus the solution $\alpha_m T_m(x)$ is added to $f_{m-1}(x)$ to get $f_m(x)$.
- We can show that this leads to the AdaBoost algorithm.

Why Exponential Loss?

- $e^{-yf(x)}$ is a monotone, smooth upper bound of misclassification loss.
- Leads to a simple reweighting scheme.
- Other loss functions can be used too

Iris data example

General Stagewise Algorithm

We can do the same for general loss functions, not only exponential loss.

- 1 Initialize $f_0(x)$.
- **2** For m = 1 to M:
 - (a) Compute

$$(\alpha_m, T_m) = \arg\min_{\alpha, T} \sum_{i=1}^n L(y_i, f_{m-1}(x_i) + \alpha T(x_i))$$

(b) Set
$$f_m(x) = f_{m-1}(x) + \alpha_m T_m(x)$$
.

MART

- Multiple Additive Regression Trees (Friedman, 2001)
- 2002 ACM Data Mining Lifetime Innovation Award: Friedman
- General boosting algorithm that works with a variety of different loss functions.
- MART inherits the good features of trees (variable selection, missing data, mixed predictors), and improves on the weak features, such as prediction performance.

Remarks on boosting

- Boosting works well with trees, but can in principle be applied to any classifier
- Boosting can overfit, so it is important to limit M (the total number of iterations) and the maximum allowed depth of each tree
- Interpretable structure is also lost
- Multi-class extensions are available