

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-065403
(43)Date of publication of application : 16.03.2001

(51)Int.Cl. F02D 45/00
B60R 16/02

(21)Application number : 11-243180 (71)Applicant : DENSO CORP
(22)Date of filing : 30.08.1999 (72)Inventor : MATSUURA YUICHIRO

(54) TROUBLE DIAGNOSIS DEVICE OF ELECTRONIC CONTROL DEVICE FOR AUTOMOBILE

(57)Abstract:

PROBLEM TO BE SOLVED: To avoid an inconvenience by a miss-detection under a high vibration environment.

SOLUTION: The engine ECU1 which is the electronic device for an automobile is arranged on an engine room or the position to which the vibration of the engine is directly applied. A printed circuit board 3 is arranged inside a frame body 2 and electronic parts for constituting ECU 1 also a G sensor 13 are mounted on the printed circuit board 3. When the signal from the G sensor 13 for detecting the engine vibration is taken in CPU 4 and it is judged that the signal stays under the vibration of a prescribed range or more, an abnormal detection treatment is prohibited.

LEGAL STATUS

- [Date of request for examination]
- [Date of sending the examiner's decision of rejection]
- [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
- [Date of final disposal for application]
- [Patent number]
- [Date of registration]
- [Number of appeal against examiner's decision of rejection]
- [Date of requesting appeal against examiner's decision of rejection]

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-65403

(P2001-65403A)

(43)公開日 平成13年3月16日(2001.3.16)

(51) Int.Cl. ⁷	識別記号	F I	マーク(参考)
F 02 D 45/00	3 7 0	F 02 D 45/00	3 7 0 C 3 G 0 8 4
B 6 0 R 16/02	6 5 0	B 6 0 R 16/02	6 5 0 J

審査請求 未請求 請求項の数 5 OL (全 5 頁)

(21)出願番号	特願平11-243180	(71)出願人	000004260 株式会社デンソー 愛知県刈谷市昭和町1丁目1番地
(22)出願日	平成11年8月30日(1999.8.30)	(72)発明者	松浦 雄一郎 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内
		(74)代理人	100068755 弁理士 恩田 博宣 (外1名) Fターム(参考) 3G084 BA33 DA27 DA28 EA07 EA11 EB06 EB22 EC01 EC03 FA00

(54)【発明の名称】自動車用電子制御装置の故障診断装置

(57)【要約】

【課題】高振動環境下での誤検出による不具合を回避することができる自動車用電子装置の故障診断装置を提供する。

【解決手段】自動車用電子装置であるエンジンECU 1はエンジルーム又はエンジンの振動が直接加わる位置に配設されている。枠体2の内部にはプリント基板3が配置され、プリント基板3にECUを構成するための電子部品が搭載されるとともにGセンサ13が搭載されている。エンジン振動を検出するGセンサ13からの信号がCPU4に取り込まれ、所定範囲以上の振動下にあると判断した際には、異常検出処理を禁止する。

【特許請求の範囲】

【請求項1】 高振動環境下に置かれる自動車用電子制御装置に適用されるものであって、自動車用電子制御装置の異常を検出する異常検出手段と、振動を検出する振動センサと、前記振動センサからの信号により所定範囲以上の振動下にあると判断した際には、前記異常検出手段による異常検出処理を禁止、又は異常検出結果を無効化する処理手段と、を備えたことを特徴とする自動車用電子制御装置の故障診断装置。

【請求項2】 自動車用電子制御装置は、エンジルーム又はエンジンの振動が直接加わる位置に配設され、エンジン制御を行うためのものであり、前記振動センサは、エンジン振動を検出するものである請求項1に記載の自動車用電子制御装置の故障診断装置。

【請求項3】 前記振動センサは、電子制御装置を構成するための電子部品が搭載されるプリント基板に搭載されていることを特徴とする請求項1又は2に記載の自動車用電子制御装置の故障診断装置。

【請求項4】 前記振動センサは、電子制御装置を構成するための電子部品がパッケージされる枠体の内部に配置されていることを特徴とする請求項1又は2に記載の自動車用電子制御装置の故障診断装置。

【請求項5】 前記電子制御装置は、エンジン吸気系の部材に配設されていることを特徴とする請求項2に記載の自動車用電子装置の故障診断装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 この発明は自動車用電子制御装置の故障診断装置に関するものである。

【0002】

【従来の技術】 従来より、自動車用電子機器である電子制御装置（ECU）への信号線（入力信号）が断線していないか故障診断をする際には、外部より乱入するノイズの影響などが考慮されてきた。その対策としては、抵抗とコンデンサーでフィルタを設けたり、信号線のモニター状態が一回のサンプリングで断線状態にあったとしてもすぐに故障判定せず、複数回続けてその状態になつたときに初めて故障判定するやり方がある。

【0003】

【発明が解決しようとする課題】 しかしながら、ECUが搭載される環境には上述の電気的ノイズばかりではなく、温度や振動も考慮すると、上記従来技術を備えた検出方法でも、誤検出する可能性がある。信号線の断線検出では、実際に断線していないてもコネクタ嵌合部の接触不良によって断線を誤検出したり、高振動環境下の動作においては接触不良だけでなく、振動によって圧力を受けた素子・基板が発するピエゾ効果によって、アナロ

グ入力信号値の異常をもたらすこともある。

【0004】 このような形で故障判定した車両が整備工場で検査を受けた場合、高振動環境ではないためほとんどの故障状態が再現せずに終わってしまう。そのため、原因不明のままユニット交換となって多大な出費を生じることが多々ある。

【0005】 また、近年のECU搭載環境に見られる傾向では、車室内空間の拡大やワイヤーハーネスの短縮化を狙ってECUをエンジルーム内に搭載したり、エンジンへ直接搭載するケースも増加しており、高温環境下でのコネクタの緩みが生じやすい。また、ECUの制御が複雑化して制御に使用するコネクタのピン数の増加が更に今後この問題を増加させる可能性がある。

【0006】 そこで、この発明の目的は、高振動環境下での誤検出による不具合を回避することができる自動車用電子制御装置の故障診断装置を提供することにある。

【0007】

【課題を解決するための手段】 請求項1、2に記載の発明によれば、処理手段によって、振動センサからの信号により所定範囲以上の振動下にあると判断した際には、異常検出手段による異常検出処理が禁止、又は異常検出結果が無効化される。よって、高振動環境下での誤検出による不具合を回避することができる。

【0008】 ここで、請求項3に記載のように、前記振動センサは、電子制御装置を構成するための電子部品が搭載されるプリント基板に搭載されているものとなり、請求項4に記載のように、前記振動センサは、電子制御装置を構成するための電子部品がパッケージされる枠体の内部に配置されているものとすると、電子制御装置に加わる振動を正確に検出できる等の効果がある。

【0009】 また、請求項5に記載のように、前記電子制御装置はエンジン吸気系の部材に配設されているものとすると、特に高い振動が加わる環境にある場合に有用なものとなる。

【0010】

【発明の実施の形態】 （第1の実施の形態） 以下、この発明を具体化した第1の実施の形態を図面に従って説明する。

【0011】 本実施形態では、自動車用電子制御装置がエンジン制御用電子制御ユニット（以下、エンジンECUという）であり、このエンジンECUはエンジルーム又はエンジンの振動が直接加わる位置（エンジン吸気系の部材等）に配設されている。このように、エンジンECUは高振動環境下に置かれる。

【0012】 本実施形態におけるエンジンECUの故障診断装置の構成を図1に示す。図1においては、エンジンECU1を上から見ており、ECU容器（パッケージ）の蓋を取り外した状態である。

【0013】 エンジンECU1の枠体2は、ECU1を構成するための電子部品をパッケージするためのもので

あり、枠体2内にはプリント基板3が配置されている。プリント基板3にはECU1を構成するための電子部品が搭載され、より具体的には、CPU4(電子部品)と入力バッファ5(電子部品)と出力バッファ6(電子部品)が搭載されている。また、枠体2にはコネクタ7aが設けられている。このコネクタ7aの相手方のコネクタ7bにはワイヤーハーネス8を介して車両センサ・スイッチ9がつながっている。このセンサ・スイッチ用コネクタ7bがECU側コネクタ7aに接続され、雄雌のコネクタの嵌合にてピン同士が接触して電気的に接続されている。そして、CPU4はセンサ・スイッチ9からの信号を入力バッファ5を介して入力する。このエンジンECU1が車両信号を入力する際、入力バッファ5によりCPU4の処理し易い状態に変換される。また、入力バッファ5には、外部より乱入するノイズを除去するためのフィルタ回路(例えばCR回路)も含まれる。このようして入力された信号に基づきCPU4は各種の演算を行い、エンジン運転状態に応じた最適燃料量等を算出する。

【0014】また、枠体2にはコネクタ10aが設けられている。このコネクタ10aの相手方のコネクタ10bにはワイヤーハーネス11を介して車両アクチュエータ12がつながっている。このアクチュエータ用コネクタ10bがECU側コネクタ10aに接続され、雄雌のコネクタの嵌合にてピン同士が接触して電気的に接続されている。そして、CPU4は前述の各種の演算結果に基づいて出力バッファ6を作動させ、車両アクチュエータ12を制御して最適なる燃料量の噴射等を行わせる。

【0015】さらに、エンジンECU1は故障診断機能を有しており、CPU4はエンジンECU1への信号線(入力信号)が断線していないか等の異常を検出する。また、プリント基板3には、エンジン振動を検出する振動センサとしてGセンサ13が搭載(実装)されている。つまり、本システムは車両からの入力信号が疑わしいことを判断するのが目的であるため、振動を検出するセンサ(Gセンサ)13はECU1に内蔵されている。そして、このGセンサ13の値(センサ出力信号)はアナログ信号として直接CPU4に取り込まれる。

【0016】次に、故障を検出する処理方法について、図2のフローチャートで説明する。CPU4は16ms每に信号を取り込み、通常の制御を実行している。これと並行して図2の処理を実行する。

【0017】ステップ100、102~105の処理を先に説明する。CPU4は16ms每にステップ100で信号(例えばヒータ信号)を読み取る。そして、CPU4は、ステップ102で、その読み取り値が正常範囲内であるかを判断する。これが仮故障判定である。

【0018】正常範囲である場合は、CPU4はそのままステップ100に戻って同じことを繰り返す。CPU4は読み取り値が正常範囲内でない場合、つまり仮故障

と判定された場合は、ステップ103に移行して、用意されたカウンタのカウント値を「1」インクリメントし、その疑わしさのレベルを上げる。

【0019】その後、CPU4はステップ104では、そのカウンタの値が所定値を超えたかどうかで故障判定する。そして、CPU4はステップ104でカウント値が所定値を越えていなければ、ステップ100に戻り、越えていた場合には仮故障ではないとして故障処理ステップ105に移る。つまり、例えば、信号レベルから断線有りとの仮判定が4回連続した場合には最終的に故障であると判定する。

【0020】このステップ105の処理には、故障コードの記憶やユーザーへの故障表示、入力データのフェールセーフ値への置き換えなどが含まれる。これが、故障検出フローの一連の処理である。

【0021】ここまででは、故障診断として一般的に行われている故障検出方法である。さらに、図2のフローチャートにおいては、ステップ102の処理よりも前のステップ101において、CPU4はGセンサ13の値が所定範囲内であるかを判断する。つまり、エンジンECU1が受ける振動として一定値以上の大きな振動がかかっているか否か判定する。

【0022】なお、ステップ100での信号読取りはGセンサ13の値を読み取ることも含まれる。ここで、Gセンサ13の値が所定範囲内、つまり振動が小さいときは外部から入力される信号の値に対する信頼性も高いものとして、ステップ102以降の故障判定処理を実行する。

【0023】しかし、Gセンサ13の値が高く、高振動環境であると判定した場合は、ステップ100に戻って、その後の故障判定処理(故障診断)を禁止する。特に、エンジンECU1をエンジン吸気系部材に取り付けたときには、エンジンECU1にかかる振動が約20G近くになることもあり(単にエンジンルーム内の振動環境というだけでは4G~5G)、この場合にコネクタの一時的な接触不良などが発生しやすくダイアグコードを記憶し、異常があったエンジンECUとして整備工場などに返品されると再現しない不具合が大量に発生することも考えられるが、本装置においては高G環境下に使われるエンジンECUにGセンサを取り付けて、高Gがかかっている時には故障診断(断線検出)が行われない。

【0024】また、Gセンサ13はエンジンECU1に内蔵されているため、他の外部から入力される信号よりは信頼性が高い、つまり、プリント基板3に搭載され、直接CPU4に接続されているので(ハーネスやコネクタを介さずにECU1に接続されているので)、信頼性が高く、かつ、振動を直接検出できる。

【0025】このように本実施の形態は、下記の特徴を有する。

(イ) 処理手段としてのCPU4は図2の処理を実行す

ることにより、Gセンサ（振動センサ）13からの信号により所定範囲以上の振動下にあると判断した際には異常検出処理を禁止した。これにより、エンジンECU1が受ける振動を検出してある一定値以上の大きな振動がかかっている最中は故障診断が止められるので、高振動環境下での誤検出による不具合を回避することができる。

【0026】詳しくは、エンジンECU1をエンジンルーム内もしくはエンジンへ直接搭載する場合に、ECU1への入力信号が断線していないか故障診断をする際、高振動環境下の動作においてはコネクタ嵌合部の接触不良によって断線を誤検出するだけでなく、振動によって圧力を受けた素子・基板が発するビエゾ効果によって、アナログ入力信号値の異常をもたらすこともあり、故障判定した車両が整備工場で検査を受けた場合、高振動環境ではないため故障状態が再現できずに原因不明のままユニット交換となってしまうが、本実施形態においては、高振動時には異常検出処理が禁止されるので断線の誤検出を防止して無用なユニット交換が行われることがない。

(ロ) 特に、振動センサ13は、エンジンECU1での枠体2の内部のプリント基板3に搭載したので、エンジンECU1に加わる振動を正確に検出でき、又、コネクタを使わずにCPU4にその信号を送るので、断線やコネクタ外れに強い。

(ハ) ECU1はエンジン吸気系の部材に配設され、特に高い振動が加わる環境にあるので有用である。例えば、吸気系モジュール（エアクリーナ、インテークマニホールド、燃料配管系それぞれのモジュール構成が集合体となり、例えばエンジン直上にマウントされるもの）にECUを取り付ける場合に適用すると、特に有用である。

【0027】なお、前述した例ではECU1内に振動センサ13を設けたが、ECU1外に振動センサ13があつてもよい。但し、この場合には振動によるコネクタ嵌合部の接触不良により振動センサ信号が誤入力されるのを防止すべく、振動センサ値をデジタル変換したデータを取込んだ方が望ましい。また、ECU1と同じ振動環境下にある他のECU内に振動センサがあり、この他のECUにて検出した振動センサデータを通信によりECU1に取込むようにしてもよい。

(第2の実施形態) 次に、第2の実施の形態を、第1の実施の形態との相違点を中心に説明する。

【0028】図3には第2の実施の形態の処理を示す。CPU4はステップ200で信号読取りを行った後、ステップ201でGセンサ13による振動が所定範囲以内であればステップ202～205の一連の故障検出処理を実行する。これは、図2のステップ102～105と同じなので説明は省略する。

【0029】一方、ステップ201において、振動が所

定値より大きい場合には、CPU4はステップ206以降に移行して仮故障判定を実行する。詳しくは、まず、ステップ206で、その読取った値が正常範囲内であるかを判断する（仮故障判定）。正常範囲である場合は、CPU4はそのままステップ200に戻って同じことを繰り返し、正常範囲でない場合（仮故障と判定された場合）は、ステップ207に移行して、カウンタのカウント値を「1」インクリメントし、ステップ208においてそのカウンタの値が所定値を超えたかどうかで故障判定する。越えていなければ、ステップ200に戻り、越えていた場合には仮故障ではないとして故障処理ステップ209に移る。この故障処理ステップ209において、記憶される故障データに高振動環境であるデータも記憶させる。つまり、ダイアグコードに高Gであるというサブ情報を付け、検出した故障判定値を従来の故障判定情報と区別する。

【0030】このように、本実施形態では、第1の実施の形態とは異なり、高振動環境下においても故障判定処理を禁止せずに、ステップ206で故障判定処理を継続するとともに、ステップ209では、記憶される故障データに高振動環境であることを付随させ、車両整備時におけるサービス性を向上させている。

【0031】つまり、図2の実施形態では疑わしい故障情報を最初から記憶しないようにしたものであり、図3は記憶した故障情報を疑わしいものであるか判別可能な状態にしたものである。

【0032】以上の作用によって、再現性の乏しい故障診断結果を低減させることができるとなる。このように本実施の形態は、下記の特徴を有する。

(イ) 処理手段としてのCPU4は図3の処理を実行することにより、Gセンサ（振動センサ）13からの信号により所定範囲以上の振動下にあると判断した際には異常検出結果に高Gであるというサブ情報を付けることにより異常検出結果を無効化した。このように、エンジンECU1が受ける振動を検出してある一定値以上の大きな振動がかかっている最中は検出した故障判定値を従来の故障判定情報と区別することにより、高振動環境下での誤検出による不具合を回避することができる。

【0033】なお、所定範囲以上の振動下にあると判断した際には異常検出結果に高Gであるというサブ情報を付けることにより異常検出結果を無効化したが、他にも、所定範囲以上の振動下にあると判断した際には異常検出結果を完全にキャンセルしてもよい。

【0034】以下、別例を説明する。これまでの説明においては電子制御装置はエンジン制御を行うためのECUであったが、これに限ることなく、車両制御用のECUやボディ制御用のECU等に適用してもよい。

【0035】また、電子制御装置の配置箇所に関して、車両ボディ系（例えばサスペンション等）にECUを配設する場合に適用してもよく、この場合には振動センサ

にて車両ボディ系の振動を検出する。

【図面の簡単な説明】

【図1】 実施の形態におけるエンジンECUの故障診断装置の構成を示す平面図。

【図2】 第1の実施の形態における作用を説明するためのフローチャート。

【図3】 第2の実施の形態における作用を説明するためのフローチャート。

【符号の説明】

2…枠体、3…プリント基板、4…CPU、13…Gセンサ。

【図1】

【図2】

【図3】

