Лекция 8: Погистическая регрессия. Задача классификации. Оценка качества моделей.

M

Логистическая регрессия

 Почему нельзя моделировать вероятность как непрерывный отклик с помощью линейной регрессии?

- □ Как представить категориальный отклик в виде числовой переменной?
- □ Если отклик закодирован (1=Yes, 0=No), а прогноз 1.1 или -0.4, что это означает?
- □ Если переменная имеет только два значения (или несколько), имеет ли смысл требовать постоянство дисперсии или нормальность ошибок?
- □ Вероятность ограничена, а линейная функция нет. Принимая во внимание ограниченность вероятности, можно ли предполагать линейную связь между предиктором и откликом?

Логистическая регрессия

Уравнение регрессии:

Функция связи (логит) и обратная ей (логистическая):

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \mu \Rightarrow$$

$$\Rightarrow p_i = \sigma(\mu) = \frac{1}{1 + e^{-\mu}} = \frac{1}{1 + e^{-x^T w}}$$

Основное предположение линейной логистической регрессии (линейная зависимость логита вероятности от предикторов):

меньше $\leftarrow \mu \rightarrow$ больше Ограничивает значение отклика

Функция потерь логистической регрессии

Функция потерь (логарифмическая) является аппроксимацией негладкой функции потерь sign(.):

$$L(y, x, w) = \log[1 + \exp(-yw^{T}x)] \ge$$
$$\ge \operatorname{sign}(yw^{T}x)$$

30 25 20 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 20 25 30

■ Градиент $\nabla Q(w)$ и матрица Гессе $\nabla^2 Q(w)$ для метода Ньютона-Рафсона:

$$w^{t+1}=w^t-\eta_t\;(
abla^2 Q(w^t))^{-1}
abla Q(w^t) \ rac{\partial Q(w)}{\partial w_j}=\sum_{i=1}^l (1-\sigma_i)y_ix_i, rac{\partial^2 Q(w)}{\partial w_j\partial w_k}=-\sum_{i=1}^l (1-\sigma_i)\sigma_iy_ix_ix_k$$
 где $\sigma_i=\sigmaig(y_iw^Tx_iig),\,\sigma(z)=rac{1}{1+e^{-z}}$ - сигмоидальная функция

M

IRLS для логистической регрессии

- На каждом шаге:
 - МНК линейной регрессии с взвешенными наблюдениями и модифицированными остатками, старающийся улучшить эмпирический риск на самых «сложных» примерах:

$$Q(w) = \sum_{i=1}^{l} (1 - \sigma_i) \sigma_i \left(w^T x_i - \frac{y_i}{\sigma_i} \right)^2 \to \min_{w} \quad \leftrightarrow \quad \left\| \tilde{X} - \tilde{y}w \right\|^2 \to \min_{w}$$

- где:
 - \square Взвешенная (по наблюдениям) матрица признаков $ilde{X} = W_t X$
 - □ X исходная матрица данных,
 - \square $W_t = diag((1-\sigma_i)\sigma_i)$ веса наблюдений на t-ой итерации,
 - поскольку $\sigma_i = P(y_i|x_i)$ вероятность правильной классификации x_i , то чем ближе x_i к границе 0.5, тем больше вес $(1-\sigma_i)\sigma_i$ и «сложнее» пример
 - $\widetilde{y}_i = \frac{y_i}{\sigma_i}$ модифицированные отклики, чем выше вероятность ошибки тем больше $\frac{1}{\sigma_i}$

Многоклассовая логистическая регрессия и функция softmax

```
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.inspection import DecisionBoundaryDisplay

iris = datasets.load_iris()
X = iris.data[:, :2]
Y = iris.target

logreg = LogisticRegression()
logreg.fit(X, Y)

DecisionBoundaryDisplay.from_estimator(
    logreg, X, cmap="Pastel1")
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap="Set1")
plt.show()
```


 Логистическая регрессия с двумя классами обобщается на случай К классов (многомерная логистическая функция):

$$p(y = k|x) = \frac{e^{w_k^T x}}{\sum_{j=1}^K e^{w_j^T x}}$$

- Для каждой пары классов существует своя граница - линейная разделяющая функция, где вероятности классов совпадают
- Многоклассовая логистическая регрессия также называется мультиномиальной регрессией, а многомерная логистическая функция -softmax, которая «нормализует» Кмерный вектор так, чтобы сумма координат = 1

«Балансировка» выборки

- Варианты борьбы с дисбалансом:
 - □ Разные **веса у наблюдений** в функции потерь (обратно пропорционально общему числу наблюдений класса)
 - □ Сдвиг границы принятия решения в дискриминантной функции в сторону редкого класса пропорционально отношению размеров
 - □ «Балансировка» oversampling с помощью некой стратегии генерируем случайные наблюдения для выборки, увеличиваем маленький класс (например, SMOTE алгоритм):

 «Балансировка» undersampling – с помощью случайной выборки уменьшаем большой класс

۳

Корректировка логистической регрессии после undersamplig

- Два способа корректировки:
 - Включить параметр «сдвига» в уравнение модели

$$g(x)^{\mathrm{adj}} = g(x)_{logit} + b$$

$$\log \left(\frac{\pi_0 \rho_1}{\pi_1 \rho_0}\right) \left\{ \frac{\pi_0 \rho_1}{\pi_1 \rho_0} \right\}$$

Скорректировать вероятности на выходе модели:

$$p_1^{adj} = \frac{p_1 \pi_1 \rho_0}{p_1 \pi_1 \rho_0 + (1 - p_1) \pi_0 \rho_1}$$

 π_1,π_0 - до undersampling $ho_1,
ho_0$ - после undersampling

Оценка «силы» ассоциации между предиктором и бинарным откликом

■ **Шанс** (это не вероятность) — отношение вероятностей события к не событию:

$$Odds = \frac{p_{event}}{p_{nonevent}}$$

• Отношение шансов (тоже не вероятность) показывает насколько вероятнее в терминах шансов появления события в группе А (соответствующей набору значений предикторов) по сравнению с другой группой В:

$$Odds_{ratio} = \frac{odds(A)}{odds(B)}$$

Нет зависимости

Группа в знаменателе имеет более высокие шансы наступления события

Группа в **числителе** имеет более высокие шансы

	3a6		
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Всего Заболел Без прививки

Всего исходов Без прививки

Вероятность Заболел <u>Без прививки</u> =90÷100=0.9

	3a6		
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

Вероятность Заболел Без прививки =0.90

•

Вероятность Не заболел Без прививки =0.10

<u>Шанс</u> Заболеть Без прививки = 0.90÷0.10=9

Без прививки шанс заболеть в 9 раз выше чем с прививкой

Сравнение вероятностей и шансов

	3a6		
	Да	Нет	Total
Прививка	60	20	80
Без прививки	90	10	100
Total	150	30	180

<u>Шанс</u> Заболеть с прививкой=3

<u>Шанс</u>Заболеть Безпрививки=9

Отношение шансов $= 3 \div 9 = 0.3333$

Шансов заболеть с прививкой в 3 раза меньше чем без

Отношение шансов в логистической регрессии

 Используется для оценки влияния переменной на отклик и показывает как изменятся шансы при изменении і-ой переменной на 1 (равно ехр от коэффициента):

$$\log \operatorname{it}(p) = \log(\operatorname{odds}) = w_0 + w_i x_i + \sum_{j \neq i} w_j x_j \Rightarrow$$

$$\operatorname{odds} = \exp(w_0 + w_i x_i + \sum_{j \neq i} w_j x_j)$$

$$\log \operatorname{it}(p) = \log(\operatorname{odds}) = w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j \Rightarrow$$

$$\operatorname{odds} = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

$$\operatorname{odds} = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

$$\operatorname{odds} = \exp(w_0 + w_i (x_i + 1) + \sum_{j \neq i} w_j x_j)$$

 Если больше 1 – шансы увеличиваются, если меньше, то уменьшаются, интерпретация как в пуассоновской регрессии

Отношение шансов и важность переменных

	Odds Ratio Estimates						
	Effect	Point Estimate	95% Wald Confidence Limits				
	Invoice	1.000	1.000	1.000			
	Engine Size	0.295	0.094	0.931			
	Horsepower	1.016	1.003	1.029			
N	Length	1.100	1.044	1.160			
	Weight	1.005	1.004	1.007			
//	Cylinders	0.696	0.376	1.289			
/	Wheelbase	0.757	0.676	0.849			
	MPG_City	1.270	0.929	1.736			
	MPG_Highway	1.295	1.036	1.618			
exp(.)							

Invoice		•	
EngineSize	•		
Horsepower		H	
Length		⊢•	
Weight		•	
Cylinders	-	•	_
Wheelbase			
MPG_City		<u> </u>	•
² G_Highway		+	•
0.0	0.5	1.0	1.5

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept	1	-10.7686	4.6784	5.2983	0.0213		
Invoice	1	-0.00013	0.000028	21.9445	<.0001		
Engino Sizo	1	1 2200	0.5050	4 2285	0.0272		
Horsepower	1	0.0156	0.00666	5.4867	0.0192		
Length	1	0.0957	0.0270	12.6148	0.0004		
Weight	1	0.00529	0.000908	33.9767	<.0001		
Cylinders	1	-0.3625	0.3146	1.3275	0.2493		
Wheelbase	1	-0.2778	0.0580	22.9685	<.0001		
MPG_City	1	0.2389	0.1595	2.2421	0.1343		
MPG Highway	1	0.2584	0.1136	5.1710	0.0230		

- Можно найти не только точечную оценку ОШ (OR), но и доверительный интервал
- □ Если он содержит 1, то доверительный интервал коэффициента содержит 0,т.е. предиктор не значимый
- Не учитывается разброс переменной

м

Категориальные предикторы

- Схемы кодировки:
 - □ Effect coding (относительно «среднего»)

<u>Переменная</u>	<u>Значение</u>	<u>Обозначение</u>	<u>1</u>	<u>2</u>
IncLevel	1	Low Income	1	0
	2	Medium Income	0	1
	3	High Income	-1	-1

□ Reference coding (относительно «базового»)

<u>Переменная</u>	<u>Значение</u>	<u>Обозначение</u>	<u>1</u>	<u>2</u>
IncLevel	1	Low Income	1	0
	2	Medium Income	0	1
	3	High Income	0	0

٠

Effect coding: Пример

$$logit(p) = w_0 + w_1 * D_{Low income} + w_2 * D_{Medium income}$$

 w_0 = Общий логарифм от шанса по всем категориям

 w_1 = разница между логарифмом шанса Low income и w_0

 w_2 = разница между логарифмом шанса Medium income и общим

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept		1	-0.5363	0.1015	27.9143			
IncLevel	1	1	-0.2259	0.1481	2.3247	0.1273		
IncLevel	2	1	-0.2200	0.1447	2.3111	0.1285		

٠

Reference coding: Пример

$$logit(p) = w_0 + w_1 * D_{Low income} + w_2 * D_{Medium income}$$

 w_0 = Логарифм шанса для High

 w_1 = Разница между логарифмами шанса Low и High

w₂ = Разница между логарифмами шанса между Medium и High

Analysis of Maximum Likelihood Estimates								
				Standard	Wald			
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq		
Intercept		1	-0.0904	0.1608	0.3159	0.5741		
IncLevel	1	1	-0.6717	0.2465	7.4242	0.0064		
IncLevel	2	1	-0.6659	0.2404	7.6722	0.0056		

Задача классификации

- Переменная отклика является категориальной, например:
 - □ *Бинарная классификация:* почтовое сообщение может принадлежать одному из следующих классов Y = (spam; ham)
 - □ *Многоклассовая классификация:* изображение цифры принадлежит одному из классов $Y = \{0, ..., 9\}$
- Цели:

 \square Построить классификатор $a: X \to Y$, который связывает метку

класса с неразмеченным x

- □ Понимание роли различных предикторов $x = (x_1, ..., x_p)$
- Оценка достижимого качества классификации

М

Задача классификации

- Дано: множество «размеченных» примеров :
 - □ обучающая выборка или тренировочный набор:

$$Z = \{(x_i, y_i)\}_{i=1}^l$$

- $y_i \in Y = \{C_1, ..., C_k\}$: известный **категориальный** отклик и его множество значений мощности K
- Основные определения:
 - □ Постановка задачи: найти алгоритм (или гипотезу, или модель)

$$a_Z: X \to Y$$

 □ Естественная функция потерь – несовпадение прогноза (неудобно - не дифференцируема):

$$L(x,y) = [y \neq a(x)]$$

w

Дискриминантные функции

■ Во многих случаях удобно пользоваться дискриминантными функциями для каждого класса с: $g_c: X \to G \subset \mathbb{R}$, такими что:

$$a^*(x) = \operatorname*{argmax}_{C} g_c(x)$$

Частный (и частый) случай байесовский классификатор:

$$g_c(x) = P(y = c|x), G = [0,1]$$

■ Граница между классами i и j:

$$\{x \in X | g_i(x) = g_j(x)\}$$

Отступ оценивает «гладкое» качество классификации:

$$M(x,y) = g_y(x) - \max_{c \neq y} g_c(x)$$

Линейный классификатор:

$$g_c(x) = \langle w_c, x \rangle$$
, где вектор $x = [x_1, ..., x_p, 1]$

Примеры методов классификации

- KNN (не линейный):
 - □ Взвешенные, kernel и др.
 - □ Прогноз голосование соседей по окрестности
 - □ Дискр. ф-ция усреднение голосов
 - □ Обучения нет, вместо него поиск
- Логистическая регрессия (линейная):
 - □ GLM с распределением Бернулли
 - Прогноз вероятность целевого отклика
 - \square Дискр. ф-ция линейная $w^T x$
 - Обучение методы оптимизации 1 или 2 порядка
- Линейные гиперплоскости (персептроны):
 - □ Разделяющие гиперплоскости
 - □ Прогноз знак в уравнении гиперплоскости
 - □ Дискр. ф-ция расстояние до гиперплоскости
 - □ Обучение например, SGD, разные функции потерь

Бинарный классификатор

- Два класса |Y| = 2
 - \square например $Y = \{0,1\}, Y = \{-,+\}, Y = \{no, yes\}$
 - □ один класс целевой, или класс «событие», обычно 1, +, yes
 - □ другой класс не целевой или «не событие», обычно 0, -, no
- Дискриминантная функция, отступ и модель, примеры:
 - □ Разделяющая гиперплоскость:

$$Y = \{-1, +1\}, g(x) = g_{+}(x) - g_{-}(x),$$

 $M(x, y) = yg(x),$
 $a(x) = sign(g(x))$

□ Вероятностная модель:

$$Y = \{0,1\}, g(x) = p(y = 1|x),$$

 $M(x,y) = p(y = 1|x) - p(y = 0|x) =$
 $= 2p(y = 1|x) - 1,$
 $a(x) = [M(x)]_{+}$

Оценка качества бинарного классификатора

ЧУВСВИТЕЛЬНОСТЬ (true positive rate (TPR), hit rate, recall) **TPR = R = SE = TP / (TP+FN)**

F-MEPA(гарм. среднее) $F_b = (1-b^2)*P*R/(b^2*(P+R))$

СПЕЦИФИЧНОСТЬ (true negative rate (TNR)) SPC = TN / (FP + TN)

УРОВЕНЬ ОШИБОКERR = 1-ACC

«АККУРАТНОСТЬ» ACC= (TN+TP) / (FP + FN+TP+TN)

TOЧНОСТЬ (Precision)
P= TP / (TP+FP)

 X_2

 X_1

57

18

.96

.76

Матрица выигрыша-проигрыша:

Правило Байеса: Решение 1 если

$$P > \frac{1}{1 + \left(\frac{\delta_{\mathrm{TP}} - \delta_{\mathrm{FN}}}{\delta_{\mathrm{TN}} - \delta_{\mathrm{FP}}}\right)}$$

Графические средства сравнения моделей: Response (отклик)

Процедура построения:

- Сортируем (например, слева направо) набор по убыванию дискриминантной функции
- □ Идем порогом отсечения по отсортированному набору (слева направо) с некоторым диапазоном (как правило кратно 5%)
- Для каждого положения диапазона считаем отношение числа положительных примеров к числу всех примеров внутри диапазона
- □ Ставим точку на графике
- Агрегированный отклик (cumulative response):
 - □ Диапазон всегда с 0

Графические средства сравнения моделей: Lift (подъем)

Процедура построения:

- Сортируем (например, слева направо) набор по убыванию дискриминантной функции
- □ Идем порогом отсечения по отсортированному набору (слева направо) с некоторым диапазоном (как правило кратно 5%)
- □ Для каждого положения диапазона считаем отношение числа положительных примеров к числу положительных примеров, которые могли бы быть выбраны «случайно» без модели
- □ Ставим точку на графике
- Агрегированный подъем(cumulative lift):
 - □ Диапазон всегда с 0

ROC кривая

Процедура построения:

- Сортируем набор по убыванию дискриминантной функции
- Идем порогом отсечения по отсортированному набору
- Для каждого положения порога считаем:
- отношение числа положительных примеров «слева» от порога к числу всех положительных примеров – true positive rate
- 2. отношение числа отрицательных примеров «слева» от порога к числу всех отрицательных примеров false positive rate
- Ставим точку на графике

Оценка на основе согласованности всевозможных пар наблюдений (правильной упорядоченности наблюдений в паре), принадлежащих разным классам.

AUC – мера согласованности

- Дано:
 - \Box бинарная задача классификации в постановке $Y = \{-1, +1\}$
 - $\ \square\ x_{(1)}, \dots, x_{(l)}$ упорядочены по $g(x_{(i)}) \leq g(x_{(i+1)})$
- Поскольку:

$$TPR_k = \frac{1}{l_+} \sum_{i=k}^{l} [y_{(i)} = +1], FPR_k = \frac{1}{l} \sum_{i=k}^{l} [y_{(i)} = -1]$$

- Получаем AUC:
 - вероятность правильно упорядочить пары наблюдений из разных классов (формула трапеции вычисления интеграла):

$$AUC = \sum_{k=1}^{l-1} \frac{TPR_{k+1} + TPR_k}{2} (FPR_k - FPR_{k+1}) =$$

$$= \frac{1}{l_- l_+} \sum_{k=1}^{l-1} \sum_{i=k+1}^{l} [y_{(i)} = +1] [y_{(k)} = -1] = \frac{1}{l_- l_+} \sum_{k < i} [y_{(i)} > y_{(k)}]$$

 не все однозначно с «ничьими», обычно их берут с весом 0.5, но есть разные подходы (в том числе 0 – считать ничьи несогласованными, 1 – считать ничьи согласованными)

м

Максимизация AUC напрямую с помощью линейной модели

- Дано:
 - □ бинарная задача классификации в постановке $Y = \{-1, +1\}$
 - \square Модель классификации в классе a(x,w) = sign(g(x,w))
- Поскольку AUC доля правильно упорядоченных пар из разных классов, то:

$$AUC(w) = \frac{1}{l_{-}l_{+}} \sum_{i,j} [y_{i} < y_{j}] (g(x_{i}, w) - g(x_{j}, w)) \to \max_{w}$$

Эмпирический риск (функция потерь ранжирования):

$$1 - AUC(w) \le Q(w) = \frac{1}{l_{-}l_{+}} \sum_{i,j:y_{i} < y_{j}} L(g(x_{i}, w) - g(x_{j}, w)) \to \min_{w}$$

Отступ для пары x_i, x_j :

Алгоритм – например, SGD

 $M(x_i, x_j, w)$

Логистическая функция потерь для оценки качества вероятностных моделей

- AUC инвариантна к монотонному преобразованию отклика не лучший вариант для вероятностных классификаторов
- Поэтому используют логарифмическое правдоподобие для распределения Бернулли
- Если $Y = \{0,1\}, Z = \{(x_i, y_i)\}_{i=1}^l$, $p(x) = a(x) = \underset{y \in Y}{\operatorname{argmax}} P(y|x)$: $logloss(Z, p(x)) = -\frac{1}{l} \sum_{i=1}^l \left[y_i \log(p(x_i)) + (1 y_i) \log(1 p(x_i)) \right]$
- Ключевой недостаток:
 - □ чувствительность к «грубым» ошибкам
 - □ неограниченный рост потерь
 - □ делают «пороги толерантности»
- Многоклассовое (С классов) обобщение:

$$logloss(Z,p(x)) = -rac{1}{lC} \sum_{i=1}^l \sum_{j=1}^C y_{ij} \log \Big(p_j(x_i) \Big)$$
 y_{ij} - бинарный OneHotEncoding метки класса

