Software Prototyping

9/22/98

Click here to start

Table of Contents

Software Prototyping

Objectives

Topics covered

Uses of system prototypes

Prototyping benefits

Prototyping process

Prototyping objectives

Approaches to prototyping

Evolutionary prototyping

Evolutionary prototyping

Evol. prototyping problems

Throw-away prototyping

Throw-away prototyping

Prototypes as specifications

Incremental development

Incremental development process

Prototyping techniques

Executable specification languages

Problems with this approach

Very high-level languages

Prototyping languages

Page 1

Smalltalk

Fourth-generation languages

4GLs

Prototyping with reuse

Reusable component composition

User interface prototyping

User interface management system

Key points

Key points

Software Prototyping

◆ Animating and demonstrating system requirements

(WEN 3231

FORMAL METHOD

Objectives

- ◆ To describe the use of prototypes in requirements validation
- ◆ To discuss evolutionary and throw-away prototyping
- ♦ To introduce rapid prototyping techniques
- ◆ To explain the need for user interface prototyping

(WEH 3231

FORMAL METHODS

Stille

Topics covered

- ◆ Prototyping in the software process
- ♦ Prototyping techniques
- ♦ User interface prototyping

(WEN 32)1 FORMAL METHODS

Uses of system prototypes

- ◆ The principal use is to help customers and developers understand the requirements for the system
- ◆ The prototype may be used for user training before a final system is delivered
- ◆ The prototype may be used for back-to-back testing

1WEF 3231

FORMAL METHODS

طنته

Prototyping benefits

- Misunderstandings between software users and developers are exposed
- Missing services may be detected
- Confusing services may be identified
- A working system is available early in the process
- The prototype may serve as a basis for deriving a system specification

(WEN 5231

FORMAL METHODS

. طنا

Prototyping process

1WEF 1231

FORMAL METHODS

ETIMES (

Prototyping objectives

- ◆ The objective of evolutionary prototyping is to deliver a working system to end-users. The development starts with those requirements which are best understood.
- ◆ The objective of throw-away prototyping is to validate or derive the system requirements. The prototyping process starts with those requirements which are poorly understood

#WEH 5231

FORMAL METHOD

23h 7

Approaches to prototyping

EWEH 323 1

FORMAL METHODS

Oils 8

Evolutionary prototyping

- ♦ Must be used for systems where the specification cannot be developed in advance e.g. AI systems and user interface systems
- ♦ Based on techniques which allow rapid system iterations
- Verification is impossible as there is no specification. Validation means demonstrating the adequacy of the system

1 (21 TOTAL

FORMAL METRODS

Cia s

Evolutionary prototyping

#WEN 3231

FORMAL METHODS

23h 10

Evol. prototyping problems

- ◆ Existing management processes assume a waterfall model of development
- ◆ Continual change tends to corrupt system structure so long-term maintenance is expensive
- ◆ Specialist skills are required which may not be available in all development teams
- Organisations must accept that the lifetime of systems developed this way will inevitably be short

(WEN)23]

FORMAL METHODS

ar 1

Throw-away prototyping

- Used to reduce requirements risk
- The prototype is developed from an initial specification, delivered for experiment then discarded
- ◆ The throw-away prototype should NOT be considered as a final system
 - Some system characteristics may have been left out
 - There is no specification for long-term maintenance
 - The system will be poorly structured and difficult to maintain

(WEH 32)1

FORMAL METHODS

13 L

Throw-away prototyping

1W23 3231

FORMAL METHODS

Dile 13

Prototypes as specifications

- ◆ Some parts of the requirements (e.g. safetycritical functions) may be impossible to prototype and so don't appear in the specification
- ◆ An implementation has no legal standing as a contract
- Non-functional requirements cannot be adequately tested in a system prototype

1WEH 3231

FORMAL METHOD

Incremental development

- System is developed and delivered in increments after establishing an overall architecture
- Users may experiment with delivered increments while others are being developed, therefore, these serve as a form of prototype system
- ◆ Intended to combine some of the advantages of prototyping but with a more manageable process and better system structure

1WEN 1231

FORMAL METROD

Ø2- 1

Incremental development process

CEC RESWE-

FORMAL METHODS

siih 16

Prototyping techniques

- ◆ Executable specification languages
- Very high-level languages
- ◆ Application generators and 4GLs
- ♦ Composition of reusable components

1WEH 3231

FORMAL METHODS

AB 17

Executable specification languages

- ♦ The system is specified in a formal language
- ◆ This specification is processed and an executable system is automatically generated
- ◆ At the end of the process, the specification may serve as a basis for a re-implementation of the system

(WEE J231

FORMAL METRODS

18 ملتک

Problems with this approach

- ◆ Graphical user interfaces cannot be prototyped
- ◆ Formal specification development is not a rapid process
- ◆ The executable system is usually slow and inefficient
- ◆ Executable specifications only allow functional requirements to be prototyped

1 C2C 1CEW 3

POLMAL METHODS

19 19

Very high-level languages

- Languages which include powerful data management facilities
- ◆ Need a large run-time support system. Not normally used for large system development
- ♦ Some languages offer excellent UI development facilities
- ◆ Some languages have an integrated support environment whose facilities may be used in the prototype

(WEST J231

POLMAL METHODS

Side 2

Prototyping languages

Language	Туре	Application domain
Smalltalk LOOPS Prolog Lisp Miranda SETL APL 4GLs CASE tools	Object-oriented Wide spectrum Logic List-based Functional Set-based Mathematical Database Graphical	Interactive systems Interactive systems Symbolic processing Symbolic processing Symbolic processing Symbolic processing Symbolic processing Symbolic processing Scientific systems Business DP Business DP

1 WEST 3231

POLMAL METROD

200 Z

Smalltalk

- Very powerful system for prototyping interactive systems
- Object-oriented language so systems are resilient to change
- ◆ The Smalltalk environment objects are available to the prototype developer
- ◆ The system incldues support software such as graphical user interface generation tools

(WES J2)1

FORMAL METHODS

双油 22

Fourth-generation languages

- Domain specific languages for business systems based around a database management system
- Normally include a database query language, a screen generator, a report generator and a spreadsheet
- ♦ May be integrated with a CASE toolset
- ◆ Cost-effective for small to medium sized business systems

(WE) 3231

FORMAL METHODS

Alle E

4GLs

EWIEN 3231

FORMAL METHODS

200 P

Prototyping with reuse

- ◆ The system is prototyped by 'gluing' together existing components
- ◆ Likely to become more widely used as libraries of objects become available
- ◆ Needs a composition language such as a Unix shell language
- Visual Basic is largely based on this approach

(WE) 3231

FORMAL METHODS

Dilla 1

Reusable component composition

(WE) J231

POLHAL METHOD

AUL 46

User interface prototyping

- ◆ It is impossible to pre-specify the look and feel of a user interface in an effective way. prototyping is essential
- UI development consumes an increasing part of overall system development costs
- Prototyping may use very high loevel languages such as Smalltalk or Lisp
- User interface generators may be used to 'draw' the interface and simulate its functionality

1WEN 1231

FORMAL METHODS

23h 1

User interface management system

(12) t

FORMAL METHODS

200a 26

Key points

- ◆ A prototype can be used to give end-users a concrete impression of the system's capabilities
- Prototyping may be evolutionary prototyping or throw-away prototyping
- Rapid development is essential for prototype systems
- ◆ Prototype structures become corrupted by constant change. Hence, long-term evolution is difficult

#WEST 3231

FORMAL METHOD:

03h 2

Key points

- ◆ In a throw-away prototype start with the least well-understood parts; in an evolutionary prototype, start with the best understood parts
- ◆ Prototyping methods include the use of executable specification languages, very high-level languages, fourth-generation languages and prototype construction from reusable components
- Prototyping is essential for parts of the system such as the user interface which cannot be effectively pre-specified

:WEF 3231

FORMAL METRODA

Sib M