SG7

5302 Final Project Report

Student Performance Factors

Austin Steel

Sarah Starkey Lanham

Mahender Bandi

Sai Bhargav Reddy Kanuparthy

Problem Statement

Educators are always searching for ways to help their students improve on tests. However, there are so many different factors to consider, often Educators do not even know how to help their students. This is why collecting data about students can be very helpful in directing Educators on what makes students pass or fail tests.

To answer this question, we looked at a dataset titled "Student Performance Factors". This dataset includes a wide variety of information about students, and their performance on a test. The goal of this analysis will be to see if any specific factors or combinations of factors effect students passing or failing the test, and to create a model which we can use to predict if students will pass or fail the test.

Suggestion

Data Preprocessing

Before we can begin our analysis of the dataset, we had to preprocess the data. Initially there were less than 1% of values missing from the data. These missing values were random and did not seem to have any correlations. Therefore, we decided to remove any entries with missing values. Next, we considered the categorical variables with string entries. These variables all had two or three unique entries such as *High*, *Medium*, *Low* or *Positive*, *Neutral*, *Negative* or *Male*, *Female*. We replaced all of these with numerical values (1, 2, 3 or 0, 1, etc.). We also added a column *Score_Difference* because we were given *Previous_Exam_Scores* and *Exam_Score*, so we could consider student improvement as well.

For our model we want to be able to predict if a student will pass or fail the test. Therefore, we needed to convert the <code>Exam_Score</code> column into a binary option, <code>Pass</code> or <code>Fail</code>. We used the standard cutoff of 70% as our pass/fail line and set passing as 1 and failing as 0. Since we want to keep the original <code>Exam_Score</code> column still, we added this variable and called it <code>Exam_Score_Rating</code>. We also added a column called <code>Previous_Exam_Rating</code> by applying the same algorithm to the <code>Previous_Exam_Scores</code> variable.

Exploratory Data Analysis (Descriptive Analysis)

After we preprocessed our data, we were left with 23 columns and 6378 row entries. Each student is a row entry, and each column is a factor about them. These variables give us a wide range of factors.

Indo	v: 6379 onthics 0 to 6606							
Index: 6378 entries, 0 to 6606 Data columns (total 23 columns):								
#	Column	Non-Null Count	Dtype					
		Mon Mail Counc	осурс					
0	Hours Studied	6378 non-null	int64					
1	Attendance	6378 non-null	int64					
2	Parental_Involvement	6378 non-null	int64					
3	Access to Resources	6378 non-null	int64					
4	Extracurricular_Activities	6378 non-null	int64					
5	Sleep Hours	6378 non-null	int64					
6	Previous_Scores	6378 non-null	int64					
7	Motivation Level	6378 non-null	int64					
8	Internet Access	6378 non-null	int64					
9	Tutoring_Sessions	6378 non-null	int64					
10	Family Income	6378 non-null	int64					
11	Teacher_Quality	6378 non-null	int64					
12	School_Type	6378 non-null	int64					
13	Peer_Influence	6378 non-null	int64					
14	Physical_Activity	6378 non-null	int64					
15	Learning_Disabilities	6378 non-null	int64					
16	Parental_Education_Level	6378 non-null	int64					
17	Distance from Home	6378 non-null	int64					
18	Gender	6378 non-null	int64					
19	Exam Score	6378 non-null	int64					
20	Diff_in_Scores	6378 non-null	int64					
21	Exam Score Rating	6378 non-null	int64					
22	Previous_Scores_Rating	6378 non-null	int64					
dtypes: int64(23)								

The variables *Hours_Studied*, *Attendance*, *Sleep_Hours*, and *Tutoring_Sessions* and *Physical_Activity* are the only variables which were originally numerical, and we did not convert from strings to numerical. For *Hours_Studied* we see a large range from 1 to 44 hours, with an average of about 20 hours. *Attendance* averaged at 80% and ranged from 60% to 100%. *Sleep Hours* varied from 4 to 10 with the mean of about 7 hours.

Tutoring_Sessions is a count of how many sessions the students attended outside of class and ranged from 0 to 8 with an average of approximately 1.5. *Physical_Activity* is a measure of how many hours the students spend doing physical activities each day and ranged from 0 to 6 with a mean of approximately 3 hours.

					, -		
	Hours_Studied	Attendance	Sleep_Hours	Previous_Scores	Tutoring_Sessions	Physical_Activity	Exam_Score
count	6378.000000	6378.000000	6378.000000	6378.000000	6378.000000	6378.000000	6378.000000
mean	19.977109	80.020853	7.034964	75.066165	1.495296	2.972719	67.252117
std	5.985460	11.550723	1.468033	14.400389	1.233984	1.028926	3.914217
min	1.000000	60.000000	4.000000	50.000000	0.000000	0.000000	55.000000
25%	16.000000	70.000000	6.000000	63.000000	1.000000	2.000000	65.000000
50%	20.000000	80.000000	7.000000	75.000000	1.000000	3.000000	67.000000
75%	24.000000	90.000000	8.000000	88.000000	2.000000	4.000000	69.000000
max	44.000000	100.000000	10.000000	100.000000	8.000000	6.000000	101.000000
40	88 Hours_Stu	rdied	10	Sleep_Hours	Physical_Activity	Tutoring_Session	pons
30		-	100			00000000 000000 00000 00000 00000 00000 0000	
10			80			χχασος α	
0			70			_8_	o
-20			60 -				
-30 -40						88	
-40	•	N.	50		-		

Attendance

Previous_Scores

Exam_Score

Diff_in_Scores

These boxplots show us the distribution of these variables we did not convert. For the variables we converted to numerical entries the distributions are shown in histograms below.

Our target variable is *Exam_Score* and the column we added *Exam_Score_Rating*. For our *Exam_Score* we range from 55 to 101 with an average of 67.23. The average is below the cutoff for passing. When we look specifically at the *Exam_Score_Rating* variable we added, we notice most of the students did not pass the test. Approximately 75.2% of all students failed the test, and only 24.8% of students passed the test.

Distribution of Exam Score Rating

This is a problem for the model we want to build because the data is imbalanced. To resolve this problem, we used the SMOTE method to oversample the data to balance the dataset. After we did this, our new dataset had 9,594 entries and the distribution of Exam_Score_Rating is now 50:50.

We also normalized the data and then created a correlation heatmap to see what factors were most correlated to our target variables.

The two factors that had the biggest positive impact on our target variable (*Exam_Score_Rating*) were *Hours_Studied* and *Attendance* with correlations of 0.42 and 0.58 respectively. This makes sense since if students do not study the material or go to class, they typically don't pass tests. These two are much higher than any other factors with the next highest being *Access_to_Resources* at 0.19, followed by *Previous_Exam_Scores* (0.16), and then *Parental_Involvement* and *Tutoring_Sessions* at 0.14 both. The largest negative impacts come from *Learning_Disabilities* and *Distance_from_Home*, although both of these have very low correlations close to 0.

There are some interesting observations about these correlations. The first two, Hours Studied, and Attendance, are much higher than all the rest. The correlation between Previous_Scores_Rating and Exam_Score_Rating is only 0.14, which is very low, and we would have expected it to be higher. This means many of the students who passed the test were not the ones who passed the previous test, and vice versa. Also, we would have expected several of the other variables to have higher correlations than we observe. For example, *Sleep Hours, Motivation Level, Teacher Quality*, and

School_Type, are normally factors believed to be very important in student performance. However, the data tells us they all seem to have very little effect.

We created scatterplots of the two highest correlated factors, *Attendance* and *Hours_Studied*. From these scatterplots, we can confirm the positive relationship between these variables and *Exam Score*.

Model

After our exploratory data analysis, we discovered the most important factors in student performance on tests. Most of the variables had very low correlations, but they did have some impact on test scores. Therefore, we still wanted to build a model to be able to predict whether a student will pass or fail based off the data collected about the student. To build a model for our data, we first split the data into training and testing sets at a 80/20 ratio. We used the KNN classifier to fit the data and then make predictions.

The model produced a Training Accuracy of 90.2% and a Testing Accuracy of 85.3%.

	precision	recall	f1-score	support		
0 1	0.90 0.81	0.79 0.91	0.84 0.86	970 949		
accuracy macro avg weighted avg	0.86 0.86	0.85 0.85	0.85 0.85 0.85	1919 1919 1919		
AUC: 0.9271718466535583						

The AUC score of the model is 0.93. The ROC curve is plotted below and compares the True Positive Rate to the False Positive Rate. We see this curve is pretty far above the Random Guess line and shows us that our model is pretty good.

The Confusion Matrix of both the Training and Testing group also provides us with another great visualization of this model. We can see the accuracies are relatively similar.

Overall, our model had high accuracy and precision rates. The training set is slightly more accurate but not by enough to be considered overfitted.

Conclusion and Insights

We began our project by asking what makes students pass or fail on tests, and if we can build a model to accurately predict whether or not students will pass or fail.

Throughout our exploratory analysis, we saw the most important factors in student success on tests are *Attendance* and *Hours Studied*. These two factors historically are considered the most important in the field of Education and were to be expected. It was unexpected how much higher the correlations of these two variables with passing the exam were, however. We saw the next most important factors were *Access to Resources, Parental Involvement,* and *Tutoring Sessions*. It was also observed that *Learning Disabilities,* and *Distance from Home* had the strongest negative correlations with our target variable.

These insights are valuable to educators and give educators something else they can focus on to try to help student performance. Parental Involvement, Access to Resources, and Tutoring Sessions are typically outside of a Teacher's control and only something a Parent can fix. But when Teachers have data backing the effectiveness of these factors on student performance, it is much easier to get parents on board with getting their students what they need to pass the test.

After we concluded our exploratory analysis, we built a model splitting our data into training and testing sets and using the KNN classifier. This model gave us a Training accuracy of 90.2% and a Testing accuracy of 85.3%. We felt our model was very accurate and did a good job of predicting whether students will pass or fail the test. Having a model like this would be helpful for Educators because when they get new students they could survey the student, input the data into the model, and get a very accurate idea of whether or not this student will pass the test.

References

Dataset: Student Performance Factors