Ex 116 p 234

a.

$$5x^2 \ge 2x \iff 5x^2 - 2x \ge 0$$
$$\iff x \times (5x - 2) \ge 0$$

Le 2x est passé de l'autre côté (pour avoir 0 à droite).

Nous allons donc étudier le signe des deux facteurs : x et (5x - 2) .

X	$-\infty$	0		$\frac{2}{5}$	$+\infty$
x	_	0	+		+
5x - 2	_		_	0	+
$5x^2 - 2x = x \times (5x - 2)$	+	Ô	_	0	+

Donc, l'ensemble des solutions s'écrit : $S = \left] - \infty; 0 \right] \cup \left[\frac{2}{5}, + \infty \right[$

b.

$$-8x^{2} > 2x \iff -8x^{2} - 2x > 0$$

$$\iff -2x \times (4x + 1) > 0$$

x	$-\infty$	$-\frac{1}{4}$		0	$+\infty$
-2x	+		+	0	_
4x + 1	_	0	+		+
$-8x^2 - 2x = -2x \times (4x+1)$	_	0	+	0	_

Nous allons donc étudier le signe des deux facteurs : -2x et (4x + 1) .

$$S = \left| \frac{-1}{4}; 0 \right|$$