Wyznaczanie stanów dwuelektronowych metodą czasu urojonego i Hartree-Focka

A. Mreńca-Kolasińska

17 marca 2023; ostatnia aktualizacja 26 marca 2024

1 Wstęp

Tematem zadania jest obliczenie stanów opisujących dwa elektrony uwięzione w quasi-jednowymiarowej kropce kwantowej. Problem rozwiążemy metodą czasu urojonego, uwzględniając oddziaływanie w sposób dokładny, a także metodą Hartree-Focka (HF), w której oddziaływanie jest przybliżone przez uśrednione pole od pozostałych elektronów.

Rozważamy podłużną (np. zdefiniowaną w drucie kwantowym) kropkę kwantową o potencjale uwięzienia nieskończonej studni kwantowej w kierunku x, natomiast w kierunku poprzecznym niejawnie zakładamy, takie uwięzienie, że potencjał oddziaływania elektron-elektron ma postać

$$V_{int}(x_1 - x_2) = \frac{\kappa}{\sqrt{(x_1 - x_2)^2 + l^2}},\tag{1}$$

gdzie $\kappa = \frac{e^2}{4\pi\varepsilon_0\varepsilon_r}$, ε_r jest stałą dielektryczną, materiału, l to grubość drutu w kierunku poprzecznym, a x_1 , x_2 to współrzędne pierwszego i drugiego elektronu. Wzór (1) jest jednym z przybliżeń na potencjał kulombowski w podłużnej kropce np. w drucie kwantowym¹.

Rozwiążemy równanie Schrödingera

$$\hat{H}\Psi(x_1, x_2) = E\Psi(\vec{r})$$

dla hamiltonianu (wyrażonego w jednostkach atomowych)

$$\hat{H} = -\frac{1}{2m^*} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) + V_{int}(x_1 - x_2). \tag{2}$$

W hamiltonianie (2) nie występuje jawnie potencjał, ponieważ kierunku x przyjmiemy potencjał nieskończonej studni kwantowej, co uwzględnimy w warunkach brzegowych. m^* to masa efektywna elektronu. Ponadto, w jednostkach atomowych $\kappa = \frac{1}{\varepsilon_r}$.

1.1 Metoda czasu urojonego

Układ jest jednowymiarowy, możliwe jest zatem rozwiązanie problemu oddziałujących dwóch cząstek bez przybliżeń. Dwa elektrony opisuje dwuwymiarowa funkcja falowa $\Psi(x_1,x_2)$, którą obliczymy metodą czasu urojonego. Polega ona na iteracyjnym wyliczaniu funkcji falowej operatora \hat{H} . W równaniu Schrödingera zależnym od czasu $\hat{H}\Psi=i\frac{\partial}{\partial t}\Psi$ podstawiamy zmienną $t=-i\tau$ i przybliżamy pochodną ilorazem różnicowym $\partial/\partial\tau\approx (\Psi^{(k+1)}-\Psi^{(k)})/\Delta\tau$. Otrzymujemy wzór iteracyjny

$$\Psi^{(k+1)} = \left(1 - \Delta \tau \hat{H}\right) \Psi^{(k)},\tag{3}$$

gdzie k numeruje kolejne iteracje. W tym schemacie iteracyjnym norma nie jest zachowana, dlatego w każdym kroku normujemy funkcję falową.

Problem rozwiążemy na dyskretnej siatce o $n \times n$ węzłach o współrzędnych $x_{1,i} = -a + i \cdot \Delta x, x_{2,j} = -a + j \cdot \Delta x,$ $i, j = 0, \dots, n-1, \ \Delta x = 2a/(n-1)$. Wartości funkcji falowej na poszczególnych węzłach $\Psi(x_{1,i}, x_{2,j}) = \Psi_{i,j}$. Pochodną przestrzenną w hamiltonianie rozpiszemy w postaci ilorazu różnicowego. Otrzymujemy

$$\hat{H}\Psi_{i,j} \approx -\frac{1}{2m^*} \frac{\Psi_{i+1,j} + \Psi_{i-1,j} + \Psi_{i,j+1} + \Psi_{i,j-1} - 4\Psi_{i,j}}{\Delta x^2} + V_{int}(x_{1,i} - x_{2,j})\Psi_{i,j}, \quad i, j = 1, \dots, n-2.$$
 (4)

¹Więcej można dowiedzieć się np. z pracy: S. Bednarek, B. Szafran, T. Chwiej, J. Adamowski *Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures*, Phys. Rev. B 68, 045328 (2003).

Narzucamy warunki brzegowe $\Psi_{0,j} = \Psi_{n-1,j} = \Psi_{i,0} = \Psi_{i,n-1} = 0$. Wartości na brzegach nie zmieniamy przez cały proces iteracyjny.

Algorytm obliczeń przedstawia Rys. 1

Rysunek 1: Proces iteracyjny dla metody czasu urojonego.

1.2 Metoda Hartree-Focka

Z założenia w metodzie HF funkcja falowa opisująca n_e elektronów ma postać wyznacznika zbudowanego z n_e spinorbitali, stąd otrzymujemy układ n_e równań Hartree-Focka. Ponieważ zajmujemy się problemem dwóch elektronów, równania te nieco się uproszczą.

Przyjmujemy tu konwencję, że indeksy i,j numerują współrzędne, a indeksy p,q – orbitale. Po wyprowadzeniach opisanych w wykładzie, otrzymujemy układ n/2 równań Hartree-Focka

$$\hat{F}(x_i)\psi_p(x_i) = \varepsilon_p \psi_p(x_i), \tag{5}$$

gdzie występuje operator Focka

$$\hat{F}(x_i) = \hat{h}(x_i) + \sum_{q=1}^{n_e/2} \left[2\hat{J}_q(x_i) - \hat{K}_q(x_i) \right].$$
 (6)

Operator kulombowski $\hat{J}_q(x_i)$ i operator wymiany $\hat{K}_q(x_i)$ zdefiniowane są

$$\hat{J}_q(x_i)\psi_p(x_i) = \left[\int dx_j \psi_q^*(x_j) V_{int}(x_i - x_j) \psi_q(x_j)\right] \psi_p(x_i),$$

$$\hat{K}_q(x_i)\psi_p(x_i) = \left[\int dx_j \psi_q^*(x_j) V_{int}(x_i - x_j) \psi_p(x_j)\right] \psi_q(x_i),$$

a $\hat{h}(x_i) = -\frac{1}{2m^*} \frac{\partial^2}{\partial x_i^2}$ jest hamiltonianem jednoelektronowym. W naszym wypadku $n_e = 2$, a więc w przypadku układu zamkniętopowłokowego potrzebny jest tylko 1 orbital ψ_1 . Suma w (6) ma tylko 1 element oraz q = 1,

zatem $\hat{J}_1\psi_1 \equiv \hat{K}_1\psi_1$. Otrzymujemy

$$\hat{F}(x_i)\psi_1(x_i) = \hat{h}(x_i)\psi_1(x_i) + \hat{J}_1(x_i)\psi_1(x_i). \tag{7}$$

W zapisie dyskretnym na siatce o n węzłach $x_i = -a + i\Delta x$, $\psi_1(x_i) = \psi_{1i}$ oraz

$$\hat{h}\psi_{1i} = -\frac{1}{2m^*} \frac{\psi_{1i+1} + \psi_{1i-1} - 2\psi_{1i}}{\Delta x^2}, \quad i = 1, \dots n - 2.$$
(8)

$$\hat{h}\psi_{1i} = -\frac{1}{2m^*} \frac{\psi_{1i+1} + \psi_{1i-1} - 2\psi_{1i}}{\Delta x^2}, \quad i = 1, \dots n - 2.$$

$$\hat{J}_1\psi_{1i} = \left[\sum_{j=0}^{n-1} V_{int}(x_i - x_j) |\psi_{1j}|^2 \Delta x \right] \psi_{1i}, \quad i = 1, \dots n - 2.$$
(8)

W powyższych równaniach założono, że $\psi_{1,j=0}=\psi_{1,j=n-1}=0$, dlatego indeksy i,j pomijają brzegi. Problem rozwiązywany jest w sposób samouzgodniony, jak przedstawiono na Rys. 2 Przy rozwiązywaniu

Rysunek 2: Proces iteracyjny dla metody Hartree-Focka dla dwóch elektronów.

równania Focka (5) zastosujemy ponownie metodę czasu urojonego, analogicznie do schematu na Rys. 1, lecz z tą różnicą, że za $\hat{H}\Psi_{ij}^{(k)}$ podstawiamy $\hat{F}(x_i)\psi_1(x_i)$ według wzorów (7 - 9), a funkcja falowa jest jednowymiarowa.

1.3 Zadania do wykonania

Obliczymy energie 2 elektronów uwięzionych w 1-wymiarowej nieskończonej studni potencjału. Przyjmujemy $n=41,\,l=10$ nm oraz parametry materiałowe dla GaAs: $m^*=0.067,\,\varepsilon_r=12.5.$ Na początek proszę przyjąć a = 30 nm.

1. Do metody czasu urojonego stworzymy siatkę $n \times n$ równoodległych węzłów o położeniach w przedziale $x_1,x_2\in[-a,a]$. Odległości między węzłami $\Delta x=\frac{2a}{n-1}$. Proszę rozwiązać problem według schematu na Rys. 1. Generując początkowe pseudolosowe wartości funkcji $\Psi_{i,j}^{(0)}$ proszę przyjąć rozkład jednorodny wartości w zakresie (-1,1), np. jeśli generator zwraca liczby $a_k \in (0,1)$, to $\Psi_{i,j}^{(0)} = 2(a_k - 0.5)$. Narzucamy

- warunki brzegowe $\Psi_{0,j} = \Psi_{n-1,j} = \Psi_{i,0} = \Psi_{i,n-1} = 0$ oraz $f_{0,j} = f_{n-1,j} = f_{i,0} = f_{i,n-1} = 0$. Tych wartości nie zmieniamy przez cały proces iteracyjny. Proszę przyjąć $\Delta \tau = m^* \Delta x^2 \cdot 0.4$ (lub dobrać tak, by obliczenia były stabilne) oraz parametr iteracji $tol = 10^{-9}$. Proszę wykonać wykres energii $E^{(k+1)}$ w funkcji liczby iteracji (zapis do pliku co 100 iteracji).
- 2. Następnie sprawdzimy, jak energia zależy od rozmiaru kropki. Proszę wykonać obliczenia dla a w zakresie [30,60] nm co 5 nm. Wykres energii w funkcji a wykonamy razem z wynikami metody Hartree-Focka w kolejnym zadaniu.
- 3. Sprawdzimy, jak elektrony zachowują się w zależności od wielkości kropki. Proszę utworzyć mapę kwadratu modułu funkcji falowej $|\Psi(x_1, x_2)|^2$, dla dwóch wielkości kropek a=30 nm i a=60 nm.
- 4. Przechodzimy do metody Hartree-Focka. Orbital ψ_1 jest opisany na jednowymiarowej siatce n=41 węzłów. Proszę zaimplementować metodę według schematu 2 i opisu w punkcie 1.2. Warunki brzegowe dla orbitala $\psi_{1,i=0} = \psi_{1,i=n-1} = 0$ przez cały czas trwania iteracji. Przyjmujemy tu $\Delta \tau = m^* \Delta x^2 \cdot 0.4$ (lub dobrać tak, by obliczenia były stabilne), a także tolerancje dla iteracji w metodzie czasu urojonego: $tol = 10^{-9}$ i w metodzie HF $tol_{HF} = 10^{-9}$. Proszę wykonać obliczenia dla a w zakresie [30, 60] nm co 5 nm i wyniki przedstawić na jednym wykresie z energiami uzyskanymi w zadaniu 2. Wyjaśnij, dlaczego energia uzyskana metodą pola średniego (Hartree-Focka) jest wyższa niż uzyskana w zadaniu 2.