Contraintes continues

Marie Pelleau

marie.pelleau@univ-cotedazur.fr

Problèmes continus

- Les variables sont réelles
 - On ne peut pas représenter les réels ⇒ nombres flottants
 - Approxime les réels par un intervalle à bornes flottantes

• Il peut y avoir des problèmes de précision

Arithmétique des intervalles

Opérations arithmétiques

- [a,b] + [c,d] = [a+c,b+d]
- [a, b] [c, d] = [a d, b c]
- $[a, b] \times [c, d] = [\min(ac, ad, bc, bd), \max(ac, ad, bc, bd)]$
- $[a, b] \div [c, d] = \left[\min\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right), \max\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right)\right] \text{ si } 0 \notin [c, d]$

Exemple

- [-2,3] + [2,4] = [0,7]
- [-2,3] [2,4] = [-6,1]
- $[-2,3] \times [2,4] = [-8,12]$
- $\bullet \ [-2,3] \div [2,4] = [-1,1.5]$

Marie Pelleau Problèmes continus 2020-2021 3/13

Arithmétique des intervalles

Opérations arithmétiques

- [a, b] + [c, d] = [a + c, b + d]
- [a, b] [c, d] = [a d, b c]
- $[a, b] \times [c, d] = [\min(ac, ad, bc, bd), \max(ac, ad, bc, bd)]$
- $[a, b] \div [c, d] = \left[\min\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right), \max\left(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}\right)\right] \text{ si } 0 \notin [c, d]$

Exercice

- [-5,5] + [2,4] = [-3,9]
- $[-2,5] \times [-2,4] = [-10,20]$
- $[1,3] \times [-2,5] [2,4] = [-10,13]$
- $[-10,9] + [-2,3] \times [-5,3] [-1,6] = [-31,20]$

Marie Pelleau Problèmes continus 2020-2021 3/13

Évaluer une contrainte

$$x \in [-2,5]$$

 $y \in [-3,7]$
 $2x - y = 0$
 $2 \times [-2,5] - [-3,7] = 0$
 $[-4,10] - [-3,7] = 0$
 $[-11,13] = 0$

 $0 \in a$ l'intervalle résultat \Rightarrow II existe **peut-être** une solution $0 \notin a$ l'intervalle résultat $a \mapsto a$ Pas de solution

Marie Pelleau Problèmes continus 2020-2021 4 / 13

Évaluer une contrainte

Exercice

$$x \in [-2, 5]$$

 $y \in [-3, 7]$

$$z \in [4, 9]$$

Les contraintes suivantes ont-elles des solutions ?

- $x + y z = 5 \rightarrow 5 \in [-14, 8] \Rightarrow$ peut-être une solution
- $3z \le 10 \rightarrow 10 < [12, 27] \Rightarrow$ pas de solution
- $x + y + z \ge 10 \rightarrow 10 \in [-1, 21] \Rightarrow$ peut-être une solution
- $x \times y + y \times z \neq 0 \rightarrow [0,0] \neq [-42,98] \Rightarrow$ peut-être une solution

Marie Pelleau Problèmes continus 2020-2021 4 / 13

Limites

$$x \in [-2,5]$$

$$x \times x = [-2,5] \times [-2,5]$$

$$= [-10,25]$$

$$x - x = [-2,5] - [-2,5]$$

$$= [-7,7]$$

Plus de corrélation entre les différentes occurrences d'une variable

$$x^{2} - x = [0, 25] - [-2, 5]$$

$$= [-5, 27]$$

$$x(x - 1) = [-2, 5] \times [-3, 4]$$

$$= [-15, 20]$$

Dépend de l'écriture (valeur réelle [-0.25, 20])

Marie Pelleau Problèmes continus 2020-2021 5 / 13

Consistance

Opérateurs ensemblistes

- $\bullet \ [a,b] \cap [c,d] = [\max(a,c),\min(b,d)]$
- $\bullet \ [a,b] \cup [c,d] = [\min(a,c),\max(b,d)]$

Opérateurs inverses

On considère 3 intervalles u, v et r

- u + v = r
 - $\Rightarrow u = u \cap r v$
 - $\Rightarrow v = v \cap r u$
- u v = r
 - $\Rightarrow u = u \cap r + v$
 - $\Rightarrow v = v \cap u r$

Marie Pelleau Problèmes continus 2020-2021 6/13

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$
$$y \in [-2, 5]$$
$$2y + x \le 2$$

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$
$$y \in [-2, 5]$$
$$2y + x \le 2$$

Montée : opérateurs arithmétiques

Pour une contrainte

Revisiting Hull and Box Consistency [Benhamou et al., 1999]

$$x \in [-2, 5]$$
$$y \in [-2, 2]$$
$$2y + x \le 2$$

Descente : opérateurs inverses

Pour une contrainte

Exercice

$$x \in [-2, 5]$$

$$y \in [-3, 7]$$

$$z \in [4, 9]$$

Quel est le résultat de la consistance pour chacune des contraintes ?

•
$$x + y - z = 5 \rightarrow x \in [2, 5], y \in [4, 7], z \in [4, 7]$$

•
$$y + z \ge 10 \rightarrow x \in [-2, 5], y \in [1, 7], z \in [4, 9]$$

•
$$x + 2y \le 5 \rightarrow x \in [-2, 5], y \in [-3, 3.5], z \in [4, 9]$$

Marie Pelleau Problèmes continus 2020-2021 8 / 13

Pour plusieurs contraintes

HC4 est généralement rapide mais ne donne pas forcément la plus petite boîte

Marie Pelleau Problèmes continus 2020-2021 9 / 13

HC4

Exercice

- $V = \{x, y\}$
- $D_x = [-2, 5]$ $D_y = [-3, 3]$
- $C_1: x 2y \le 2$ $C_2: x + 2y \le 2$

Solution

- $C_1: x 2y \le 2$ $\Rightarrow D_x = [-2, 5], D_y = [-2, 3]$
- $C_2: x + 2y \le 2$ $\Rightarrow D_x = [-2, 5], D_y = [-2, 2]$
- $C_1: x 2y \le 2$ $\Rightarrow D_x = [-2, 5], D_y = [-2, 2]$

HC4

Exercice

- $V = \{x, y\}$
- $D_x = [0, 8]$ $D_{\rm v} = [-1, 3]$
- $C_1: x + 4y = 8$ $C_2: x + 2y = 6$

Solution

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [0, 8], D_y = [0, 2]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [2, 6], D_y = [0, 2]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [2, 6], D_v = [0.5, 1.5]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3, 5], D_v = [0.5, 1.5]$

Solution

- $C_1: x + 4y = 8$ $\Rightarrow D_x = [3, 5], D_v = [0.75, 1.25]$
- $C_2: x + 2y = 6$ $\Rightarrow D_x = [3.5, 4.5], D_y = [0.75, 1.25]$
- $C_1: x + 4y = 8$ $\Rightarrow D_x = [3.5, 4.5], D_v = [0.875, 1.125]$

Shaving

Consistency Techniques for Numeric CSPs [Lhomme, 1993]

Marie Pelleau Problèmes continus 2020-2021 12 / 13

Résolution

Marie Pelleau Problèmes continus 2020-2021 13 / 13

Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J.-F. (1999).

Revisiting hull and box consistency.

In Proceedings of the 16th International Conference on Logic Programming, pages 230-244.

Lhomme, O. (1993).

Consistency techniques for numeric csps.

In Proceedings of the 12th International Joint Conference on Artificial intelligence (IJCAl'93), pages 232–238.