0x02 - Digital Arithmetic

ENGR 3410: Computer Architecture

Jon Tse

Fall 2020

Housekeeping

- HW1 was due last night, solution on Canvas.
- HW2 live now, due next Monday

- Lab 1, Part 0 due last night
- Lab 1, Parts 1 & 2 due next Monday (9/21)

Feedback - Understanding

How are you feeling about your current level of understanding of the topics we've seen so far? ²⁵ responses

Feedback - Pacing

How's the lecture pace?

25 responses

Feedback - Workload

What's your workload like this week? 25 responses

Feedback - More, Plz

I wish we spent more time on...

24 responses

I radix R

Review

Radix to Decimal

$$x_{r} -> x_{10}$$

$$x = \sum_{i=0}^{n-1} r^i d_i$$
 do

$$\Gamma = \frac{1}{2}$$

$$2^{2}(0) + 2'(1) + 2^{0}(0)$$

Decimal to Radix

$$i = 0;$$
while $(x > 0):$
 $d[i] = x \% r$
 $x = x / r$
 $i++$
 $f = [0] [6]$

Subtraction via R's Complement

Want to solve:
$$\frac{203}{x-y} = ?$$
 $\frac{203}{x} = \frac{23}{x} = \frac{23}{x}$

Example Inputs, R = 10: x = 203, y = 23Recall that x-y = x+y' y = 277 y = 277 y = 277

Review

Two's Complement (R=2)

Allows us to use Adders for everything

$$A - B = A + B'$$
 $A - B = A + B'$
 $A - B = A$

Today

Wrap up Subtraction

Multiply and Divide

Intro to Fixed- and Floating-point numbers

Big Takeaway
2's Complement turns stuff into addition
(mostly)

Overflows in Two's Complement

Add two positive numbers to get a negative number or two negative numbers to get a positive number

Overflow Detection in 2's Complement

(Unsigned)

Multiplication

Mdy. + xudyr

How to handle negative?

- Sign-Magnitude
- Sign-Extend
- Booth's Algorithm
- Many more...

Two's Complement Multiplication

Two's Complement Multiplication

Multiplier Hardware (Unsigned)

		b_2	b_1	b _o
X		a_2	a_1	a ₀
		a ₀ b ₂	a ₀ b ₁	a _o b _o
	$a_1^{}b_2^{}$	$a_1^{}b_1^{}$	$a_1^{}b_0^{}$	
$a_2^{}b_2^{}$	$a_2^{}b_1^{}$	$a_2^{}b_0^{}$		01)
				* 010
				000
				011

Carry Save Adder

AB Cin	Cout S	ABC AB
000000000000000000000000000000000000000	0 0 1 0 1 0 0 0 1	FA JHA S Coat S LIII HOLD

Carry Save Array Multiplier (3-bit Unsigned)

 a_0b_2 a_0b_1 a_0b_0

 a_1b_2 a_1b_1 a_1b_0

 a_2b_2 a_2b_1 a_2b_0

Carry Save Multiplier (3-bit Unsigned)

Division

```
1001 11011
-1001
-1001
```

Fixed Point Numbers

Integer scaled by a fixed factor.

Fixed # of digits before/after the radix point 0101.1100

$$x = \sum_i r^i d_i$$
 المان المان

$$\frac{2}{2} \cdot \left[+2^{0} \right] + 2^{-1} \cdot \left[+2^{-2} \cdot \right]$$

$$4 + 1 + 0.5 + 0.25$$

$$5.75$$

Fixed Point Numbers

IQ Notation

I4Q2 Signed, 4 bits before, 2 bits after xxxx.xx

U2Q5 Unsigned, 2 before, 5 after xx.xxxxx