Quelconques : $\mathcal{F}(D, \mathbb{C})$ Méromorphes : $\mathcal{M}(D, \mathbb{C})$ Dérivable $\forall z \in D$, sauf en des points isolés, donc il y en a au plus un infini dénombrable. • algébriquement, $\mathcal{M}(D,\mathbb{C})$ avec D connexe est le corps des fractions de l'anneau intègre Continues : $C^0(D, \mathbb{C})$ $\mathcal{H}(D,\mathbb{C})$ (càd sans diviseurs de zéro: ab=0• Intégration sur un contour implique a = 0 ou b = 0). $\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$ • Intégrales des monones sur le cercle unité : • toute fonction méromorphe f peut s'écrire f(z) = g(z)/h(z) (avec $h \neq 0$), chaque pôle de f doit coıncider avec un zéro de h. $\int_{\mathbb{U}} z^n dz = \begin{cases} i \tau, & n = -1, \\ 0, & n \neq -1. \end{cases}$ • Indépendance de la paramétrisation : Holomorphes : $\mathcal{H}(D,\mathbb{C})$ $\gamma: [a,b] \to \mathbb{C}$ et $\beta: [c,d] \to \mathbb{C}$ représentent la • Dérivable partout sur D. même courbe (lisse), càd il existe • Condition suffisante (et nécessaire) de $h: [c, d] \hookrightarrow [a, b]$ (bijective et lisse) telle que dérivabilité (et donc d'holomorphité) de $\gamma(h(t)) = \beta(t)$, alors f = u + iv $\int_{\beta} f(z) dz = \int_{c}^{d} f(\beta(s)) \beta'(s) ds$ • u(x, y) et v(x, y) ont des dérivées nartielles continues, et $=\int_a^b f(\gamma(t)) \gamma'(t) dt$ • elles satisfont les équations de $=\int_{\gamma}f(z)\,\mathrm{d}z.$ Cauchy-Riemann: • Avec $\gamma = \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_n$ une courbe lisse par morceaux $\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \cdots + \int_{\gamma_-} f(z) dz.$ Holomorphe ⇔ infiniment dérivable. • Estimation-ML Holomorphe ⇔ analytique, $\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \leq \int_{\gamma} |f(z)| \, |\, \mathrm{d}z|,$ donc développable en série de Taylor. • Avec $\overline{\partial} f = 0$: $\overline{\partial} = \frac{1}{2} (\partial_x + i \partial_y)$, et en particulier si $|f(z)| < M \text{ sur } \gamma$: $\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \leq M \cdot \mathsf{longueur}(\gamma)$ $f'(z) = \partial_x f = -i \partial_y f = \partial_{iy} f$ • $\int_{-\infty}^{\infty} f(z) dz = -\int_{-\infty}^{\infty} f(z) dz$. • f = u + i v holomorphe, alors u, vharmoniques : • longueur(γ) = $\int_a^b |\gamma'(t)| dt$. • Indépendance du chemin d'intégration. $\triangle u = 0$, $\triangle v = 0$, et harmoniques conjuguées : f continue sur D et possède une primitive sur D $\partial_x u \, \partial_x v + \partial_y u \, \partial_y v = 0.$ (càd $F'(z) = f(z), \forall z \in D$): $\int f(z) dz = F(\gamma(b)) - F(\gamma(a)), \forall \gamma : [a, b] \rightarrow D$ Holomorphes sur tout $\mathbb{C}:\mathcal{H}(\mathbb{C},\mathbb{C})$ **Transformations conformes** $f: D \to \mathbb{C}$ trans. conf. ssi $f'(z) \neq 0, \ \forall z \in D$ Injections $\mathcal{I}(D,\mathbb{C})$ | Surjections $\mathcal{S}(D,E)$ • Préserve localement les angles • Si f est anti-holomorphe, alors f conserve les angles mais inverse leur orientation. Bijections $\mathcal{B}(D, E)$ Transformations de Möbius $Aut(\widehat{\mathbb{C}})$ Théorème de l'application conforme Si $D \subset \mathbb{C}$ est non-vide, ouvert, simplement $f(z) = \frac{az+b}{cz+d}, \quad ad-bc \neq 0$ • $f: \widehat{\mathbb{C}} \twoheadrightarrow \widehat{\mathbb{C}}$ (surjective) ssi $f \in \operatorname{Aut}(\widehat{\mathbb{C}})$. • f transforme les droites et cercles en droites connexe et $D \neq \mathbb{C}$, alors il existe une fonction biholomorphe $f:D woheadrightarrow \mathbb{D}$ $z_0 = f^{-1}(0)$ • $a,b,c\in\widehat{\mathbb{C}}$ distincts, $\exists !f\in \operatorname{Aut}(\widehat{\mathbb{C}})$ telle que • $a, b, c \in \mathbb{C}$ distincts, $\exists! f \in Aut(\mathbb{C})$ telle que f(a) = 0, f(b) = 1, $f(c) = \infty$, donnée par $f(z) = \frac{z-a}{z-c} \frac{b-c}{b-a}$. • La réciproque f^{-1} est : $f^{-1}(w) = \frac{b-dw}{cw-a}$. $0 = f(z_0)$ $f^{-1}(\mathbb{D}) = \mathcal{L}$ $f(w) = \frac{1}{c w - a}.$ • f est holomorphe sur $\mathbb{C} \setminus \{-d/c\}$ et **Biholomorphes** f biholomorphe ssi f^{-1} holomorphe f^{-1} est holomorphe sur $\mathbb{C} \setminus \{a/c\}$, donc f et f^{-1} sont biholomorphes sur $\mathbb{C} \setminus \{-d/c, a/c\}.$ Rotation-homothéties • L'ensemble de toutes les TdM forme le groupe de Möbius $Aut(\widehat{\mathbb{C}})$. $z\mapsto az$ • Toute TdM peut se décomposer selon ces trois transformations élémentaires : — rotation-homothétie : $z \mapsto az$, Homothéties Rotations — translation : $z \mapsto z + b$, $z \mapsto e^{i \theta} z$ $z \mapsto \rho z$, $\rho \ge 0$ — inversion : $z \mapsto z^{-1}$. • $z_1, z_2, z_3 \in \widehat{\mathbb{C}}$ distincts et $w_1, w_2, w_3 \in \widehat{\mathbb{C}}$ distincts, $\exists ! f \in Aut(\widehat{\mathbb{C}})$ telle que **Translations** $f(z_1) = w_1$, $f(z_2) = w_2$, $f(z_3) = w_3$, donnée par $f = h^{-1} \circ g$ avec $z \mapsto z + a$ $g(z_1)=0=h(w_1),$ $g(z_2) = 1 = h(w_2),$ Inversion $g(z_3) = \infty = h(w_3).$ $z\mapsto z^{-1}$

https://github.com/LaurentValade/taxonomie-analyse-complexe

 $\partial_{\mathsf{x}} u = \partial_{\mathsf{v}} \mathsf{v},$

 $\partial_{\mathbf{v}} \mathbf{u} = -\partial_{\mathbf{x}} \mathbf{v}.$

Entières

Théorème des résidus

Soient $f: D \to \mathbb{C}$ holomorphe (D simplement connexe) sauf en les singularités isolées z_1, \dots, z_n , et γ une courbe simple fermée (orientée trigonométriquement) dans D ; alors

$$\oint_{\gamma} f(z) \, dz = i \tau \sum_{k=1}^{n} \operatorname{Res} (f, z_{k}).$$

• Soit $f: A_{0,R}(z_0) \to \mathbb{C}$ holomorphe avec une singularité isolée en z₀, alors elle possède une série de Laurent, et son résidu en z_0 est Res $(f, z_0) = a_{-1}$ (le coefficient du terme $1/(z - z_0)$. Si on intègre f sur un contour $\gamma \in A_{0,R}(z_0)$:

$$\oint_{\gamma} f(z) dz = \sum_{k=-\infty}^{+\infty} a_k \int_{\gamma} (z - z_0)^k dz = a_{-1} \int_{\gamma} \frac{dz}{z - z_0} = i \tau a_{-1}$$
• Calcul d'un résidu à un pôle simple (càd $a_{-1} \neq 0$ et $a_k = 0$

| Calculus and the pour k < -1):
| Res $(f, z_0) = a_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$.

$$\operatorname{Res}(t, z_0) = a_{-1} = \lim_{z \to z_0} (z - z_0) t(z)$$

• Calcul d'un résidu à un pôle simple d'ordre n (càd $a_{-n} \neq 0$ et $a_{-n} = 0$ pour k < -n) :

Res
$$(f, z_0) = a_{-n}$$
 = $\frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} ((z-z_0)^n f(z)).$

• Si $f(z) = \frac{g(z)}{h(z)}$ avec g et h holomorphes au voisinage de z_0 , et h possède un pôle simple en z_0 , alors Res $(f, z_0) = g(z_0)/h'(z_0)$.

Théorème intégral de Cauchy

D simplement connexe, $f:D\to\mathbb{C}$ holomorphe et $\gamma: [a,b] \to D$ un lacet LPM :

$$\oint_{\mathcal{L}} f(z) \, \mathrm{d}z = 0$$

Corollaire (intégral de Cauchy) Soient β et γ deux lacets simples (ne s'intersectant pas)

trigo-orientés, γ à l'intérieur de β . Si f est holomorphe sur D et que D contient γ , β et la région entre les deux, alors

$$\int_{\beta} f(z) dz = \int_{\gamma} f(z) dz, \operatorname{car} \int_{\Gamma} f(z) dz = 0.$$

Formule intégrale de Cauchy

Soient D simplement connexe contouré par γ LPM et f

holomorphe sur
$$U \supseteq \widehat{D} = D \cup \gamma$$
:
$$f(z) = \frac{1}{i\tau} \oint_{\gamma} \frac{f(w)}{w - z} dw,$$

$$f^{(k)}(z) = \frac{k!}{i\,\tau} \oint_{\gamma} \frac{f(w)}{(w-z)^{k+1}} \,\mathrm{d}w, \quad k \ge 0.$$

Théorème de l'estimation de Cauchy Soient f holomorphe sur un ouvert contenant

 $\widehat{B_r(z_0)}$, et une constante m telle que $|f(z)| \leq m$ pour tout $z \in \partial B_r(z_0)$, alors : $\left| f^{(k)}(z_0) \right| \leq \frac{k! \, m}{r^k}.$

$$\left|f^{(k)}(z_0)\right| \leq \frac{k! \, m}{r^k}.$$

Théorème Liouville

Si f est entière et bornée $(\exists m : |f(z)| \le m)$ alors f est constante.

Soit f = u + iv entière avec $u(z) \le 0$ pour tout $z \in \mathbb{C}$, alors (en considérant $g(z) = \exp(f(z))$ qui est entière aussi) f est constante.

Théorème du principe du maximum Soient f holomorphe sur D et $z_0 \in D$ tel que

 $f(z) \le f(z_0)$ pour tout $z \in D$, alors f est constante sur D.

Soient $D \subset \mathbb{C}$ borné, et f continue sur \widehat{D} et holomorphe sur D, alors |f| atteint son maximum sur

> Théorème fondamental de l'algèbre Tout polynome $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ (avec $a_0, ..., a_n \in \mathbb{C}$, $n \ge 1$ et $a_n \ne 0$) possède un zéro sur \mathbb{C} , càd $\exists w : p(w) = 0$.

Séries de Laurent et singularités

 $f: D \to \mathbb{C}$ holomorphe avec $A_{r,R}(z_0) = \{r < |z - z_0| < R\}$ possède un développement en série de Laurent

$$f(z) = \sum_{k=-\infty}^{+\infty} a_k (z - z_0)^k,$$

$$avec: a_k = \frac{1}{-1} \int \frac{f(z)}{(z-z_0)^{k+1}} dz,$$

avec: $a_k = \frac{1}{i\tau} \int_{\gamma} \frac{f(z)}{(z-z_0)^{k+1}} dz$,

 $=\underbrace{\cdots\frac{\mathsf{a}_{-2}}{(z-z_0)^2}+\frac{\mathsf{a}_{-1}}{z-z_0}}_{\text{partie principale}}+\underbrace{\frac{\mathsf{a}_0+\mathsf{a}_1(z-z_0)+\mathsf{a}_2(z-z_0)^2+\cdots}_{\text{partie analytique / holomorphe}}}_{\text{partie analytique / holomorphe}}$ et avec $\gamma\in A_{r,R}(z_0)$, converge partout dans $A_{r,R}(z_0)$, et

converge absolument et uniformément sur chaque sous-couronne A_s $\varsigma(z_0)$ avec r < s < S < R.

- z₀ est une *singularité isolée* de f si f est holomorphe sur un disque pointé $A_{0,r}(z_0) = \{0 < |z - z_0| < r\}$ centré en z_0 . • Si f possède une singularité isolée en z₀, alors elle y possède
- une série de Laurent. • Une singularité isolée est :
- effaçable (apparente) ssi $a_k = 0$ pour tout k < 0 (càd la série de Laurent ne possède pas de partie principale).
- un pôle ss'il existe n > 0 tel que $a_{-n} \neq 0$ et $a_k = 0$ pour tout k < -n (càd la partie principale est finie).
- essentielle ssi $a_k \neq 0$ pour une infinité de k < 0 (càd la partie principale est infinie).
- Théorème de Riemann z₀ une singularité isolée de f est effacable ssi f est bornée au voisinage de z₀. • z₀ une singularité isolée de f est un pôle (si et ?) seulement
- si $\lim_{z\to z_0} |f(z)| = \infty$. • Si f possède un pôle en z_0 , alors 1/f(z) possède une
- singularité apparente en z_0 ; et vice-versa.
- Théorème de Casorati-Weierstraß Si f possède une singularité essentielle en Z, alors $\forall W \in \mathbb{C}$ il existe une suite $\{z_k\}_k$ avec $z_k \to Z$ telle que $f(z_k) \to W$ quand $z_k \to Z$.
- Théorème de Picard Si f possède une singularité essentielle en Z, alors pour tout $W \in \mathbb{C}$ avec au plus une exception, il existe une suite $\{z_k\}_k$ avec $z_k \to Z$ telle que

Dérivabilité f dévivable en z_0 ssi $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ existe, *i.e.*:

la limite est finie :

• la limite est la même quelque soit le chemin emprunté par z pour tendre vers z₀, pex si z suit les axes réels / imaginaire.

$$\partial_x f = \partial_{iy} f = -i \partial_y f = f'(z),$$

d'où les équations de Cauchy–Riemann.

Déterminations locales et globales

Soit $f: D \to \mathbb{C}$ holomorphe, alors f(z) est entièrement

• la valeur de toutes ses dérivées en $z_0 \in D$ via sa série de *Taylor* (car f est analytique sur D) dans le disque $B_r(z_0) \subseteq D$

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 avec : $a_k = \frac{f(k)(z_0)}{k!}$

• ses valeurs sur un lacet autour de $z_0 \in D$ via la formule

$$f(z) = \frac{1}{i\tau} \oint_{\gamma} \frac{f(w)}{w - z} dw.$$

Rayon de convergence

Il existe $0 \le R \le \infty$ tel que $\sum_{k=0}^{\infty} a_k (z-z_0)^k$ converge absolument dans $B_R(z_0) = \{|z - z_0| < R\},\$

diverge ou converge sur $\{|z - z_0| = R\}$, diverge grossièrement dans $\{|z - z_0| > R\}$.

• La convergence est normale, donc uniform dans tout compact inclus dans $B_R(z_0)$.

• Formules donnant R si la limite existe.

• Formules donnant R si la limite existe, ∞ est une limite valable : $R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|, \qquad \frac{1}{R} = \lim_{k \to \infty} \sqrt[k]{|a_k|}.$ Cauchy–Hadamard : $\frac{1}{R} = \limsup_{k \to \infty} \sqrt[k]{|a_k|} \le \limsup_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|.$ • $f: D \to \mathbb{C}$ holomorphe possède une série de Taylor telle que

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k, \quad a_k = \frac{f^{(k)}(z_0)}{k!}, \quad \forall z \in B_r(z_0) \subseteq D,$$

dont le rayon de convergence est $R \ge r$ • Si f et g holomorphes sur $B_r(z_0)$, et si $f^{(k)}(z_0) = g^{(k)}(z_0)$ pour tout $k \ge 0$, alors f(z) = g(z) partout sur $B_r(z_0)$.

Nomenclature

- $\tau = 2 \pi$: rapport de la circonférence du cercle à son rayon
- $D, E \subseteq \mathbb{C}$: un ouvert du plan complexe
- $z, w \in D, \mathbb{C}, \widehat{\mathbb{C}}$: variables complexes
- $a, b, c, d, z_0, w_0 \in D$: constantes complexes
- $x, y \in \mathbb{R}$: parties réelle et imaginaire : z = x + iy• $f, g, h \in \mathcal{F}(D, \mathbb{C})$: fonctions complexes d'une variable

- $\mathbb{U} = \{|z| = 1\}$: nombres complexes unitaires (cercle unité)
- $B_R(z_0) = \{|z z_0| < R\}$: disque (boule) ouvert de rayon R centré en zo
- rayons r < R

- $k \in \mathbb{Z}$: variable entière (indice de sommes)
- $n \in \mathbb{N}$: constante entière positive
- ∂D : frontière de D

Formulaire

- Forme cartésienne : $z = x + \mathrm{i} y = \rho(\cos \theta + \mathrm{i} \sin \theta)$ Forme polaire : $z = \rho \mathrm{e}^{\mathrm{i} \theta}$

• La conjugaison : $\overline{z} = x - iy = \rho e^{-i\theta}$ est un automorphisme involutif de corps, donc : $\overline{ab+c} = \overline{ab} + \overline{c}$, et aussi :

rps, donc:
$$ab + c = ab + c$$
, et $z\overline{z} = |z|^2 \Leftrightarrow \frac{1}{z} = \frac{\overline{z}}{|z|^2}$

- Module: $|z| = \sqrt{x^2 + y^2} = \rho$, |z| = |z| |w|, $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$
- Argument : $\arg z = \{ \operatorname{Arg}(z) + k \, \tau, k \in \mathbb{Z} \}$, avec Arg

$$\operatorname{Arg}(z) = 2 \arctan \frac{\Im(z)}{|z| + \Re(z)}.$$

- arg z w = arg z + arg w,
 arg z^k = k arg z, ∀k ∈ Z.
- Polaire vers cartésien :
- Cartésien vers polaire : $\begin{cases} \rho = \sqrt{x^2 + y^2} \\ \theta = 2 \arctan \frac{y}{\rho + x} \end{cases}$

Topologie dans le plan (complexe) • $z \in D$ est intérieur ssi $\exists r > 0 : B_r(z) \subseteq D$.

• z est un point frontière de D ssi tout disque autour de z con-

tient un point en D et un point hors D. On note ∂D l'ensemble des points frontière de D

- D est ouvert ssi tout $z \in D$ est interérieur.
- D est fermé ssi il contient toute sa frontière. • L'adhérence (fermeture) de D est $\widehat{D} = D \cup \partial D$,
- \widehat{D} est aussi le plus petit fermé qui contient D.
- L'intérieur de D, noté D, est l'ensemble des points intérieur de D.
- Deux ensembles $X,Y\subset\mathbb{C}$ sont *séparés* s'il existe deux ouverts disjoints $U, V \in \mathbb{C}$ tels que $X \subset Y$ et $Y \subset V$.
- Un ensemble $W \in \mathbb{C}$ est *connexe* s'il est impossible de trouver deux ensembles séparés non-vides dont l'union est égale à
- ullet Un ouvert $G\subset \mathbb{C}$ est *connexe* si et seulement si tout couple de points dans G peuvent être joints par une succession de seg-
- $A \subset \mathbb{C}$ est borné s'il existe R > 0 tel que $A \subset B_R(0)$

$$\sum_{k=0}^{\infty} w_k = w_0 + w_1 + \dots + w_k + \dots, \quad w_k \in \mathbb{C}$$
• converge vers S ssi la suite de ses sommes partielles $\{S_n\}_n$ converge vers S :
$$S_n = \sum_{k=0}^n w_k = w_0 + w_1 + \dots + w_n.$$
• $S_n = 1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$ converge ssi $|z| < 1$:

$$S_n = \sum_{k=0}^{\infty} w_k = w_0 + w_1 + \dots + w_n.$$

$$1 - z^{n+1}$$

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}.$$

- $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}.$ $\bullet \ \sum_{k=0}^{\infty} w_k \ converge \ absolument \ ssi \ \sum_{k=0}^{\infty} |w_k| \ converge.$ $\bullet \ Si \ \sum_{k=0}^{\infty} w_k \ converge \ absolument, \ alors \ elle \ converge \ et$ $|\sum_{k=0}^{\infty} w_k| \le \sum_{k=0}^{\infty} |w_k|.$
- Série de Taylor centrée en $z_0 : \sum_{k=0}^{\infty} a_k (z z_0)^k$.

- $u, v \in \mathcal{F}(\mathbb{R}^2, \mathbb{R})$: parties réelle et imaginaire : f = u + i v
- $\mathbb{D} = \{|z| < 1\}$: disque ouvert unité
- $A_{r,R}(z_0) = \{r < |z z_0| < R\}$: couronne centrée en z_0 de
- $I \subseteq \mathbb{R}$: un intervalle quelconque de \mathbb{R}
- $\gamma: [a, b] \to \mathbb{C}$: une courbe (ouverte, càd $\gamma(a) \neq \gamma(b)$) ou un lacet (càd $\gamma(a) = \gamma(b)$) rectifiable (càd de longueur finie)
- LPM : lisse par morceaux
- \mathring{D} : intérieur de D : l'ensemble des points intérieur de D• $\widehat{D} = D \cup \partial D$: adhérence (cloture) de D