## Grundlagen von Datenbanken

4. Übung: Algebraische Optimierung





## Algebraische Optimierung

#### Ziel

- Effiziente Ausführung eines algebraischen Ausdrucks
- Minimierung der Größe von Zwischenergebnissen (das Endergebnis soll gleich bleiben!)

## Algebraische Optimierung

#### Ziel

- Effiziente Ausführung eines algebraischen Ausdrucks
- Minimierung der Größe von Zwischenergebnissen (das Endergebnis soll gleich bleiben!)

#### Voraussetzung

Abschätzung der Größe von Zwischenergebnissen

# Algebraische Optimierung

#### Ziel

- Effiziente Ausführung eines algebraischen Ausdrucks
- Minimierung der Größe von Zwischenergebnissen (das Endergebnis soll gleich bleiben!)

#### Voraussetzung

Abschätzung der Größe von Zwischenergebnissen

#### Verwendete Daten

- Anzahl der Tupel in einer Relation R: Card(R)
- Anzahl der unterschiedlichen Werte eines Attributes A<sub>i</sub>: j<sub>i</sub>
- Vertauschungsregeln f
   ür Operationen (siehe Skript) z. B.:  $\sigma_{P_1}(\sigma_{P_2}(R)) = \sigma_{P_1 \wedge P_2}(R)$



### Algebraische Optimierung: Operatorenbaum

 $\sigma_{\textit{Nachname}=\text{``M\"{u}ller''}}(\mathsf{Studenten} \underset{\textit{Fach}=\textit{FID}}{\bowtie} \mathsf{F\"{a}cher})$ 



# Algebraische Optimierung: Operatorenbaum

$$\sigma_{\textit{Nachname}=\text{``M\"{u}ller''}}(\mathsf{Studenten}\underset{\textit{Fach}=\textit{FID}}{\bowtie}\mathsf{F\"{a}cher})$$

### Annahme für das Beispiel

Card(Studenten) = 40000,

Card(Fächer) = 80

Anzahl unterschiedlicher Namen: 250

(bekannt aus dem Data-Dictionary)



# Algebraische Optimierung: Operatorenbaum

$$\sigma_{\textit{Nachname}=\text{``M\"{u}ller''}}(\mathsf{Studenten} \underset{\textit{Fach}=\textit{FID}}{\bowtie} \mathsf{F\"{a}cher})$$

### Annahme für das Beispiel

Card(Studenten) = 40000,

Card(Fächer) = 80

Anzahl unterschiedlicher Namen: 250 (bekannt aus dem Data-Dictionary)

#### Gesucht

Kardinalitäten beliebiger Operationen, z. B.:  $Card(\sigma_{...}(Studenten \bowtie Fächer))$ 



### Selektivitätsfaktor

#### Motivation

- beschreibt Erwartungswert für die Anzahl der Tupel, die ein Prädikat erfüllen
- basiert auf statistischen Werten
- Annahmen
  - Gleichverteilung der Attributwerte eines Attributes
  - stochastische Unabhängigkeit verschiedener Attribute

### Eigenschaften

- $0 \le SF \le 1$
- $Card(\sigma_P(R)) = SF(P) \cdot Card(R)$



### Berechnung des Selektivitätsfaktors

#### Prädikate bezüglich eines Attributes

- $SF(A_i = x_i) = \frac{1}{i}$ , falls Anzahl der Werte  $j_i$  für  $A_i$  bekannt
- $SF(A_i \ge x_i \land A_i \le x_j) = \frac{x_j x_i}{max min}$ , falls bekannt
- ... (siehe Skript)

### Zusammengesetzte Prädikate

- $SF(p(A) \wedge p(B)) = SF(p(A)) \cdot SF(p(B))$
- $SF(p(A) \lor p(B)) = SF(p(A)) + SF(p(B)) (SF(p(A)) \cdot SF(p(B)))$
- $SF(\neg p(A)) = 1 SF(p(A))$

## Kardinalitätsberechnung beim Verbund

#### Situation

in der Regel n:1-Verbund zwischen zwei Tabellen:

- TabelleA(PriA,  $A_1, \ldots, A_n$ , Fremd)
- TabelleB(PriB,  $B_1, \ldots, B_n$ )
- Referenz: TabelleA.Fremd → TabelleB.PriB

## Kardinalitätsberechnung beim Verbund

#### Situation

in der Regel n:1-Verbund zwischen zwei Tabellen:

- TabelleA( $\underline{PriA}$ ,  $A_1$ , ...,  $A_n$ ,  $\underline{Fremd}$ )
- TabelleB( $\underline{PriB}$ ,  $B_1$ , ...,  $B_n$ )
- ullet Referenz: TabelleA.Fremd o TabelleB.PriB

#### Verbund über alle Daten

$$\mathit{Card}(\mathsf{TabelleA}\underset{\mathit{Fremd} = \mathit{PriB}}{\bowtie} \mathsf{TabelleB}) = \mathit{Card}(\mathsf{TabelleA})$$

## Kardinalitätsberechnung beim Verbund

#### Situation

in der Regel n:1-Verbund zwischen zwei Tabellen:

- TabelleA(PriA,  $A_1, \ldots, A_n$ , Fremd)
- TabelleB(PriB,  $B_1, \ldots, B_n$ )
- Referenz: TabelleA.Fremd → TabelleB.PriB

#### Verbund über alle Daten

 $Card(TabelleA \bowtie_{Fremd = PriB} TabelleB) = Card(TabelleA)$ 

### Verbund über eine Teilmenge der Daten

$$\mathit{Card}\left(\sigma_{P_A}(\mathsf{TabelleA})\underset{\mathit{Fremd}=\mathit{PriB}}{\bowtie}\sigma_{P_B}(\mathsf{TabelleB})\right)$$

$$= SF(P_A) \cdot SF(P_B) \cdot Card(TabelleA)$$



$$\sigma_{\textit{Nachname}=\text{``M\"uller''}}\big(\mathsf{Studenten} \underset{\textit{Fach}=\textit{FID}}{\bowtie} \mathsf{F\"{a}cher}\big)$$



$$\sigma_{\textit{Nachname}=\text{``M\"{u}ller''}}(\mathsf{Studenten} \underset{\textit{Fach}=\textit{FID}}{\bowtie} \mathsf{F\"{a}cher})$$

### Berechnung des Verbundes

$$Card$$
 (Studenten  $\bowtie_{Fach=FID}$  Fächer) =  $Card$  (Studenten) = 40.000



$$\sigma_{\textit{Nachname}=\text{``M\"{u}ller''}}(\mathsf{Studenten} \underset{\textit{Fach}=\textit{FID}}{\bowtie} \mathsf{F\"{a}cher})$$

### Berechnung des Verbundes

$$Card$$
 (Studenten  $\bowtie_{Fach=FID}$  Fächer) =  $Card$  (Studenten) =  $40.000$ 

### Berechnung der Selektion

$$\mathsf{SF}(\mathit{Nachname} = \mathsf{``M\"{u}ller"}) = \frac{1}{250}$$



Übungen zu GDB

$$\sigma_{\textit{Nachname}=\text{``M\"{u}ller''}}(\mathsf{Studenten} \underset{\textit{Fach}=\textit{FID}}{\bowtie} \mathsf{F\"{a}cher})$$

### Berechnung des Verbundes

$$Card$$
 (Studenten  $\bowtie_{Fach=FID}$  Fächer) =  $Card$  (Studenten) =  $40.000$ 

### Berechnung der Selektion

$$\mathsf{SF}(\mathit{Nachname} = \mathsf{``M\"{u}ller''}) = \frac{1}{250}$$



$$\sigma_{Nachname = \text{``M\"{u}ller''}}(Studenten \underset{Fach = FID}{\bowtie} F\"{a}cher)$$

### Berechnung des Verbundes

$$Card$$
 (Studenten  $\bowtie_{Fach=FID}$  Fächer) =  $Card$  (Studenten) = 40.000

### Berechnung der Selektion

$$SF(Nachname = "M\"uller") = \frac{1}{250}$$

### Spezialfall: natürlicher Join

Join-Attribute sind nur einfach im Ergebnis erhalten



$$\sigma_{\textit{Nachname}=\text{``M\"{u}ller''}}(\mathsf{Studenten} \underset{\textit{Fach}=\textit{FID}}{\bowtie} \mathsf{F\"{a}cher})$$

### Berechnung des Verbundes

$$Card$$
 (Studenten  $\bowtie_{Fach=FID}$  Fächer) =  $Card$  (Studenten) = 40.000

### Berechnung der Selektion

$$SF(Nachname = "M\"uller") = \frac{1}{250}$$

### Spezialfall: natürlicher Join

Join-Attribute sind nur einfach im Ergebnis erhalten

160 Tupel 5 4 Attribute

σNachname="Müller"

40.000 Tupel

5 4 Attribute



40.000 Tupel 3 Attribute

Studenten

80 Tupel 2 Attribute

Fächer



## Heuristische Regeln zur Optimierung

- Führe Selektion so früh wie möglich aus
- Pühre Projektion so früh wie möglich aus
- (Verknüpfe Folgen von unären Operatoren (soweit möglich))
- Fasse einfache Selektionen auf einer Relation zusammen
- Verknüpfe bestimmte Selektionen mit einem vorausgehenden Kartesischen Produkt zu einem Verbund
- (Berechne gemeinsame Teilbäume nur einmal)
- Bestimme die Verbundreihenfolge so, dass die Anzahl und Größe der Zwischenobjekte minimiert wird
- Verknüpfe bei Mengenoperationen immer zuerst die kleinsten Relationen



# Optimierung des Beispiels



