

UNIDADE V – SISTEMAS DE AMORTIZAÇÃO

1. INTRODUÇÃO

Sistemas de Amortização - Constituem-se na forma pela qual empréstimos e financiamentos são devolvidos aos credores (mutuantes), pelos devedores (mutuários), por meio de pagamentos periódicos denominados prestações.

Prestação (**PMT**) - Representam a soma das parcelas referentes à amortização (A) e aos juros (J) de uma operação de empréstimo ou de financiamento, pagas periodicamente, conforme estipulado em contrato firmado entre as partes credora e devedora. Em termos matemáticos, têm-se:

$$PMT = A+J (1)$$

Amortização (A) - Refere-se à parcela da prestação (PMT) que serve para a reposição do capital emprestado, ou seja, é a devolução propriamente dita do recurso que se tomou emprestado.

Juros (**J**) - É a parcela da prestação (PMT) que representa o custo financeiro da operação para o devedor e a remuneração do capital emprestado para o credor. É calculado mediante a aplicação da taxa de juros estabelecida no contrato sobre o saldo devedor da operação.

Saldo Devedor (SD) - É a diferença, a qualquer tempo, entre o capital inicial e o valor já pago ao credor a título de amortização.

1.1 – Principais Sistemas de Amortização

Embora possa variar segundo cada contrato, os principais sistemas de amortização empregados pelo mercado financeiro são:

- Sistema de Amortização Francês (Tabela Price) SAF
- Sistema de Amortização Constante SAC
- Sistema de Amortização Misto SAM
- Sistema Americano de Amortização SAA

Variáveis - Independente do sistema sob análise, empregaremos sempre as seguintes variáveis:

PV – valor do empréstimo ou financiamento PMT – valor da prestação n – número de prestações i – taxa composta de juros

2. SISTEMA DE AMORTIZAÇÃO FRANCÊS - SAF

Também chamado de "Tabela Price", em homenagem ao inglês Richard Price, seu criador, recebe a denominação de "Sistema Francês" devido a sua ampla utilização na França no século XIX.

Talvez o sistema mais utilizado pelo mercado, caracteriza-se por representar uma série de prestações (PMT) periódicas (ocorrendo em intervalos constantes), iguais (soma da amortização mais juros com mesmo valor durante todo o contrato) e sucessivas. O SFA caracteriza-se por ser uma Série Uniforme Postecipada – SUP, estudada anteriormente.

Para melhor entender a construção dos planos de pagamentos pelo SAF, vamos resolver os exemplos que seguem.

Exemplos 01

1. Seja um financiamento de R\$ 10.000,00, à taxa de juros de 1,5% ao mês, a ser pago em 6 prestações mensais e iguais, mostrar o valor das prestações, os juros pagos, as amortizações e os saldos devedores para cada mês.

Como o valor das prestações é igual, sabemos que se trata do SAF.

1º Passo – construa a tabela conforme abaixo, colocando no mês "0", mês atual, o valor do empréstimo (R\$ 10.000,00) no saldo devedor.

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	10.000,00	-	-	-
1				
2				
3				
4				
5				
6				

A tabela será preenchida da direita para a esquerda, a partir do cálculo da prestação que terá o mesmo valor para todos os meses.

2º Passo – calcule o valor das prestações e insira na tabela. O cálculo das prestações é efetuado mediante a utilização da fórmula do valor presente (PV) de Séries Uniformes Postecipadas (SUP), onde:

$$PV = PMT \cdot FPV(i,n)$$

$$FPV(i,n) = \frac{(1+i)^n - 1}{(1+i)^n \cdot i}$$
(2)

Aplicando as relações dadas, encontra-se FPV(1,5%,6) = 5,697187 e PMT = R\$ 1.755,25.

Profa. Glauceny Medeiros 2

Preenchendo a tabela com o valor das prestações:

Mês	Saldo Devedor	Amortização (A)	Juros (J)	Prestação (PMT)
0	10.000,00	-	-	-
1				1.755,25
2				1.755,25
3				1.755,25
4				1.755,25
5				1.755,25
6				1.755,25

3º Passo – calcule os juros (J) da 1ª parcela aplicando a taxa unitária do contrato sobre o saldo devedor do período anterior.

Para a primeira parcela (mês 1) o saldo devedor do período anterior (0) é igual a R\$ 10.000,00. Como a taxa contratada foi de 1,5%, o juro (J) será igual a 0,015 x 10.000,00 = 150,00. Preenchendo a tabela com o valor dos juros da 1ª parcela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	10.000,00	-	-	-
1			150,00	1.755,25
2				1.755,25
3				1.755,25
4				1.755,25
5				1.755,25
6				1.755,25

4º Passo – Defina o valor da amortização da primeira parcela.

Dado que a prestação (PMT) é definida como a soma da amortização (A) mais juros (J), então a amortização é obtida fazendo: A = PMT - J.

Dado que no exemplo: PMT = 1.755,25 e os juros (J) da 1ª parcela são iguais a 150, então:

$$A = 1.755,25 - 150 = 1.605,25$$

Preenchendo a tabela com o valor da amortização da 1ª parcela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	10.000,00	-	-	-
1		1.605,25	150,00	1.755,25
2				1.755,25
3				1.755,25
4				1.755,25
5				1.755,25
6				1.755,25

3

5º Passo – Encontre o saldo devedor após o pagamento da primeira parcela.

Por definição, o saldo devedor (SD) em um momento qualquer "t" será o saldo devedor do período anterior "t-1" subtraído da parcela de amortização (A) que, em última análise, representa a devolução de uma parte do capital emprestado. Assim:

$$SD_{t} = SD_{t-1} - A \tag{3}$$

Preenchendo a tabela com o valor do saldo devedor após o pagamento da 1ª parcela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	10.000,00	-	-	-
1	8.394,75	1.605,25	150,00	1.755,25
2				1.755,25
3				1.755,25
4				1.755,25
5				1.755,25
6				1.755,25

6º Passo - Preencha o restante da tabela repetindo do 3º ao 5º passo para as demais prestações, lembrando que:

$$J_{t} = i \cdot SD_{t-1}$$

$$A_{t} = PMT - J_{t}$$

$$SD_{t} = SD_{t-1} - A_{t}$$
(4)

 $\begin{cases} J_t = \text{juros para o período "}t" \\ SD_{t-1} = \text{saldo devedor do período anterior a "}t" \\ A_t = \text{amortização do período "}t" \\ SD_t = \text{saldo devedor do período "}t" \end{cases}$

Efetuando-se o cálculo para as demais parcelas encontraremos a seguinte tabela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	10.000,00	-	-	-
1	8.394,75	1.605,25	150,00	1.755,25
2	6.765,42	1.629,33	125,92	1.755,25
3	5.111,65	1.653,77	101,48	1.755,25
4	3.433,07	1.678,58	76,67	1.755,25
5	1.729,32	1,703,75	51,50	1.755,25
6	0,01	1.729,31	25,94	1.755,25

Observação: O resíduo de R\$ 0,01 no saldo devedor, após o pagamento da última parcela, decorre do arredondamento do valor das prestações. No mercado, este resíduo é geralmente acrescentado ao valor da última parcela.

Conforme podemos verificar, o SAF caracteriza-se por juros (J) decrescentes e amortizações (A) crescentes no decorrer do contrato.

2. Uma pessoa realiza um financiamento de R\$ 12.000,00 à taxa de juros de 2% ao mês, para ser pago em 4 prestações mensais, com dois meses de carência para o primeiro pagamento. Com base nestas informações calcule: a) o valor das prestações; b) o saldo devedor após o pagamento da segunda parcela; c) os juros pagos na terceira parcela, e d) o valor da amortização da quarta parcela.

Dado que o financiamento possui **carência de dois meses**, ou seja, não há pagamento de prestações, os juros devidos para estes períodos é incorporado ao capital e o cálculo das prestações se dá sobre o saldo devedor do período anterior ao pagamento da primeira parcela, no exemplo: R\$ 12.484,80.

Visualizando na tabela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	12.000,00	-	-	-
1	12.240,00	-	-	-
2	12.484,80	-	-	-
3				
4				
5				
6				

Lembre-se que a variável "n" refere-se ao número de parcelas (4) e não ao prazo da operação (6).

Importante! Poderíamos encontrar os resultados das questões de "a" a "d" construindo passo a passo a tabela, conforme visto anteriormente, ou efetuar o cálculo dos valores aplicando as fórmulas para cada variável, conforme veremos a seguir.

2.1 - Fórmulas de Cálculo do SAF

Ao invés de construirmos a tabela passo a passo, poderemos utilizar as seguintes equações para a solução de problemas envolvendo a Tabela Price:

- a) Cálculo do valor das prestações: $PMT = \frac{PV}{FPV(i,n)}$, onde $FPV(i,n) = \frac{(1+i)^n 1}{(1+i)^n \cdot i}$.
- b) Cálculo do valor da amortização na t-ésima prestação: $A_t = A_1 \cdot (1+i)^{t-1}$.
- c) Cálculo do saldo devedor na t-ésima prestação: $SD_t = PMT \cdot FPV(i, n-t)$.
- d) Cálculo da parcela de juros na t-ésima prestação: $J_t = i \cdot SD_{t-1}$.

3. SISTEMA DE AMORTIZAÇÃO CONSTANTE – SAC

O Sistema de Amortização Constante – SAC, como o próprio nome indica, caracteriza-se por parcelas de amortização iguais (constantes) para todo o prazo da operação.

Dessa maneira, calcula-se o valor das amortizações (A) dividindo-se o valor do empréstimo ou financiamento (PV) pelo número de prestações do contrato (n), ou seja:

$$A = \frac{PV}{n} \tag{5}$$

Calculada as amortizações, utilizamos os conceitos apresentados na módulo anterior para a elaboração do plano de pagamentos, onde:

$$SD_{t} = SD_{t-1} - A_{t}$$

$$J_{t} = i \cdot SD_{t-1}$$

$$PMT = A_{t} + J_{t}$$
(6)

Exemplos 02

1. Determine o plano de pagamento de um empréstimo de 5.000,00, realizado pelo SAC, a uma taxa de juros de 2,5% ao mês, em 4 prestações mensais.

1º Passo: Calcule o valor das amortizações e preencha a tabela:

$$A = \frac{PV}{D} \Rightarrow A = \frac{5000}{4} \Rightarrow A = 1.250,00$$

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	5.000,00	-	-	-
1		1.250,00		
2		1.250,00		
3		1.250,00		
4		1.250,00		

2º Passo: Conhecido o valor das amortizações, calcule o saldo devedor para cada período, incluindo os valores na tabela:

$$SD_{t} = SD_{t-1} - A_{t}$$

Na tabela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	5.000,00	-	-	-
1	3.750,00	1.250,00		
2	2.500,00	1.250,00		
3	1.250,00	1.250,00		
4	0,00	1.250,00		

3º Passo: A partir do valor dos saldos devedores, determine os juros pagos em cada prestação, colocando-os na tabela:

$$J_{t} = i \cdot SD_{t-1}$$

Na tabela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	5.000,00	-	-	-
1	3.750,00	1.250,00	125,00	
2	2.500,00	1.250,00	93,75	
3	1.250,00	1.250,00	62,50	
4	0,00	1.250,00	31,25	

4º Passo: Conhecidos os valores da amortização (A) e dos juros (J), determine os valores referentes às prestações, finalizando a construção da tabela:

$$PMT = A_t + J_t$$

Finalizando a tabela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	5.000,00	-	-	-
1	3.750,00	1.250,00	125,00	1.375,00
2	2.500,00	1.250,00	93,75	1.343,75
3	1.250,00	1.250,00	62,50	1.312,50
4	0,00	1.250,00	31,25	1.281,25

2. Uma pessoa realiza um financiamento de R\$ 3.000,00 à taxa de juros de 5% ao mês, para ser pago em 5 prestações mensais, com dois meses de carência para o primeiro pagamento. Com base nestas informações calcule: a) o valor das amortizações; b) o saldo devedor após o pagamento da segunda parcela; c) os juros pagos na terceira parcela; e d) o valor da quarta parcela.

Dado que o financiamento possui carência de dois meses, ou seja, não há pagamento de prestações, os juros devidos para estes períodos é incorporado ao capital e o cálculo das prestações se dá sobre o saldo devedor do período anterior ao pagamento da primeira parcela, no exemplo: R\$ 3.307,50.

Visualizando na tabela:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	3.000,00	-	-	-
1	3.150,00	-	-	-
2	3.307,50	-	-	-
3		R\$ 661,50		
4	R\$ 1.984,50	R\$ 661,50		
5		R\$ 661,50	R\$ 99,23	
6		R\$ 661,50		R\$ 727,50
7		R\$ 661,50		

3.1 - Fórmulas de Cálculo do SAC

Os valores das variáveis A, SD, J e PMT, também podem ser encontrados mediante a aplicação das seguintes equações genéricas:

- a) Cálculo das amortizações: $A = \frac{PV}{n}$.
- b) Cálculo do saldo devedor na t-ésima prestação: $SD_t = \frac{PV}{n}(n-t)$.
- c) Cálculo da parcela de juros na t-ésima prestação: $J_t = \frac{PV}{n} \cdot (n-t+1) \cdot i$
- d) Cálculo do valor da prestação na t-ésima prestação: $PMT_t = \frac{PV}{n} \cdot \left[1 + (n-t+1) \cdot i\right]$

4. SISTEMA DE AMORTIZAÇÃO MISTO (SAM)

Desenvolvido originalmente para as operações de financiamento do Sistema Financeiro de Habitação – SFH, constitui-se da média aritmética entre o Sistema Francês (SFA) e o Sistema de Amortização Constante (SAC).

Para a elaboração do plano de pagamentos, devemos somar os valores obtidos pelo SAF e SAC e dividir o resultado por dois.

Exemplos 03

1. Suponha um empréstimo no valor de R\$ 1.500,00 realizado a uma taxa de juros de 3% ao mês, em quatro parcelas.

1 º Passo: Construir a tabela pelo SFA e pelo SAC, onde:

Pelo SFA:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	1.500,00	-	-	-
1	1.141,46	358,54	45,00	403,54
2	772,16	369,30	34,24	403,54
3	391,78	380,38	23,16	403,54
4	-0,01	391,79	11,75	403,54

Observação! O resíduo de -0,01, decorrente do arredondamento das parcelas, geralmente é abatido na última prestação.

Pelo SAC:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	1.500,00	-	-	-
1	1.125,00	375,00	45,00	420,00
2	750,00	375,00	33,75	408,75
3	375,00	375,00	22,50	397,50
4	0,00	375,00	11,25	386,25

2º Passo: Dado que o SAM constitui-se na média aritmética do SAF e SAC, se pegarmos cada uma das células das tabelas dos dois sistemas, somarmos e dividirmos por dois encontraremos a tabela do SAM, onde:

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	1.500,00	-	-	-
1	1.133,23	366,77	45,00	411,77
2	761,08	372,15	34,00	406,15
3	383,39	377,69	22,83	400,52
4	-0,01	383,40	11,50	394,90

Profa. Glauceny Medeiros

5. SISTEMA AMERICANO DE AMORTIZAÇÃO – SAA

Neste sistema a devolução do capital emprestado é efetuada somente ao final da operação (na última parcela) e de uma só vez.

Como característica básica, o Sistema Americano de Amortização não prevê amortizações intermediárias. Durante o período do empréstimo, apenas os juros são pagos periodicamente.

Exemplos 04

1. Construa o plano de pagamento de um empréstimo no valor de R\$ 8.000,00 realizado a uma taxa de juros de 4% ao mês, em quatro parcelas, sabendo que o sistema de amortização utilizado é o SAA.

Mês	Saldo Devedor	Amortização	Juros	Prestação
0	8.000,00	-	-	-
1	8.000,00	-	320,00	320,00
2	8.000,00	-	320,00	320,00
3	8.000,00	-	320,00	320,00
4	0,00	8.000,00	320,00	8.320,00

Conforme podemos verificar na tabela acima, durante a vigência da operação o devedor realiza o pagamento periódico apenas dos juros gerados pelo contrato que, no exemplo, é de 4% sobre os R\$ 8.000,00. Na última parcela, além dos juros do período (R\$ 320,00) é feita a liquidação do principal, no caso R\$ 8.000,00, que, somados, irão resultar numa parcela de R\$ 8,320,00.

Profa. Glauceny Medeiros 10