We claim:

1. A compound having the structural formula:

or

or

wherein:

 R_1 = COOR₇, COR₃, lower alkyl, lower alkenyl, lower alkynyl, CONHR₄, or COR₆ and is α or β ;

 R_2 = OH or O, is a 6- or 7- substituent, and if R_2 is OH, it is α or β ;

 $X = NR_3$, CH_2 , CHY, CYY_1 , CO, O, S; SO, SO_2 , NSO_2R_3 , or $C=CX_1Y$ with the N, C, O or S atom being a member of the ring;

 $X_1 = NR_3$, CH_2 , CHY, CYY_1 CO, O, S; SO, SO_2 , or NSO_2R_3 ;

 $R_3 = H, \ (CH_2)_n C_6 H_4 Y, \ C_6 H_4 Y, \ CHCH_2, \ lower \ alkyl, \ lower \ alkenyl \ or \ lower \ alkynyl;$

Y and Y₁ = H, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)nCH₃, COCH₃, or C(CH₃)₃;

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

R₆ = morpholinyl or piperidinyl;

 $\label{eq:ar} Ar = phenyl-R_S, \ naphthyl-R_S, \ anthracenyl-R_S, \ phenanthrenyl-R_S, \ or \ diphenylmethoxy-R_S;$

R₅ = H, Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

n = 0, 1, 2, 3, 4 or 5; R₇= lower alkyl; and

when X = N, R_1 is not COR_6 .

- 2. The compound of claim 1, which is a 1-S enantiomer.
- 3. The compound of claim 1, wherein Ar is a 3α- group.
- 4. The compound of claim 1, wherein Ar is a 3β- group.
- 5. The compound of claim 1, wherein R_1 is CO_2CH_3 or COR_3 , R_2 is OH. and X is NR_3 .
- 6. The compound of claim 1, wherein IC_{50} SERT/DAT ratio of is greater than about 10, preferably greater than about 30 and more preferably 50 or more.
- 7. The compound of claim 1, having an IC_{50} at the DAT of less than about 500 nM, preferably less than 60 nM, more preferably less than about 20, and most preferably less than about 10.
- 8. The compound of claim 1 having the following structural formula:

or

or

wherein X, Ar, and R2 have the same meaning as defined above.

- 9. The compound of claim 8, wherein X is N, Ar is phenyl, substituted phenyl, diarylmethoxy or substituted diarylmethoxy.
- $10. \hspace{0.5cm} \mbox{The compound of claim 9, wherein the substituent is a halogen.}$
- 11. The compound of claim 9, wherein Ar is a mono- or dihalogen substituted phenyl.
- 12. The compound of claim 8, wherein the aryl ring can be substituted with one or more halide atoms, hydroxy groups, nitro groups, amino groups, cyano groups, lower alkyl groups having from 1-8 carbon atoms, lower alkoxy groups having from 1-8 carbon atoms, lower alkenyl groups having from 2-8 carbon atoms, or lower alkynyl groups having from 2-8 carbon atoms.

- The compound of claim 12, wherein the aryl ring can be substituted with chloride, fluoride or iodide.
- 14. The compound of claim 12, wherein the amino group is a mono- or di- alkyl substituted group having from 1-8 carbon atoms.
- 15. The compound of claim 12, wherein the aryl group has a substituent selected from the group consisting of Br, Cl, I, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, COCH₃, C(CH₃)₃, (CH₂)_nCH₃ where n= 0-6, allyl, isopropyl and isobutyl.
- 16. The compound of claim 8, wherein the aryl group has a substituent selected from the group consisting of lower alkyl, lower alkenyl and lower alkynyl.
- 17. The compound of claim 8, wherein the aryl group is substituted with a member of the group consisting of 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diOl, 3,4-diOlAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH and 3-F-4-OH.
 - 18. The compound of claim 9, wherein R2 is OH.
- 19. The compound of claim 9, selected from the group consisting of:
- a. 2-Carbomethoxy-3-(3,4-dichlorophenyl)-6 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene.
- b. 2-Carbomethoxy-3-(2-naphthyl)-6β-hydroxy-8-methyl-8azabicvcloi3.2.1loct-2-ene.
- c. 2-Carbomethoxy-3-(4-fluorophenyl)-6 β -hydroxy-8-methyl-8-azabicvclo[3.2.1loct-2-ene.

- e. 2-Carbomethoxy-3-(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3,2,1]oct-2-ene.
- f. (1S)-2-Carbomethoxy-3-(3,4-dichlorophenyl)-7β-hydroxy-8methyl-8-azabicyclo[3.2.1]oct-2-ene.
- g. (1*R*)-2-Carbomethoxy-3-(3,4-dichlorophenyl)-7β-hydroxy-8-methyl-8-azabicyclo[3,2,1]oct-2-ene.
- h. 2-Carbomethoxy-3-(2-naphthyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene.
- $i. \qquad \hbox{$2$-Carbomethoxy-$3-(4-fluorophenyl)-7$\beta-hydroxy-$8-methyl-$8-azabicyclo $[3.2.1] oct-$2-ene.}$
- j. 2-Carbomethoxy-3-phenyl-7β-hydroxy-8-methyl-8azabicvclo[3,2,1]oct-2-ene.
- k. 2β-Carbomethoxy-3β-(3,4-dichlorophenyl)-6β-hydroxy-8-methyl-8-azabicycloi3.2.1loctane.
- 2β-Carbomethoxy-3β-(2-naphthyl)-6β-hydroxy-8-methyl-8azabicvclo[3,2,1]octane.
- m. 2β -Carbomethoxy- 3β -(4-fluorophenyl)- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- n. 2β -Carbomethoxy- 3β -phenyl- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- o. 2β -Carbomethoxy-3 β -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo(3.2.1loctane.
- p. (1.S)- 2 β -Carbomethoxy-3 β -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- q. (1R)- 2 β -Carbomethoxy-3 β -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- r. 2β -Carbomethoxy-3 β -(2-naphthyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- s. 2β -Carbomethoxy- 3β -(4-fluorophenyl)- 7β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- t. 2β -Carbomethoxy- 3β -phenyl- 7β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.

- $u. \qquad 2\beta-Carbomethoxy-3\alpha-(3,4-dichlorophenyl)-6\beta-hydroxy-8-methyl-8-azabicyclo[3.2.1] octane.$
- v. 2β -Carbomethoxy- 3α -(2-naphthyl)- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- w. 2β -Carbomethoxy- 3α -(4-fluorophenyl)- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- x. 2β -Carbomethoxy- 3α -phenyl- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- y. 2β-Carbomethoxy-3α-(3,4-dichlorophenyl)-7β-hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- z. (1S)- 2 β -Carbomethoxy-3 α -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- aa. (1R)- 2β-Carbomethoxy-3α-(3,4-dichlorophenyl)-7β-hydroxy-8-methyl-8-azabicyclo[3,2,1]octane.
- $bb. \quad 2\beta\text{-Carbomethoxy-3}\alpha\text{-(2-naphthyl)-7}\beta\text{-hydroxy-8-methyl-8-}\\ azabicyclo[3.2.1]octane.$
- cc. 2β -Carbomethoxy- 3α -(4-fluorophenyl)- 7β -hydroxy-8-methyl-8-azabicyclo[3,2,1]octane.
- dd. 2 β -Carbomethoxy-3 α -phenyl-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- ee. 2β -Carbomethoxy- 3α -(3,4-dichlorophenyl)- 7α -benzoyloxy-8-methyl-8-azabicyclo[3.2.1]octane.
- ff. 2β -Carbomethoxy- 3α -(3,4-dichlorophenyl)- 6α -benzoyloxy-8-methyl-8-azabicyclo[3.2.1]octane.
- 2β-Carbomethoxy-3α-(3,4-dichlorophenyl)-7α-hydroxy-8-methyl-8-azabicyclol3.2.1loctane.
- jj. 2β -Carbomethoxy- 3α - $\{3,4$ -dichlorophenyl $\}$ - 6α -hydroxy-8-methyl-8-azabicyclo $\{3,2,1\}$ octane.
- kk. 2β-Carbomethoxy-3α-(3,4-dichlorophenyl)-8-methyl-8-azabicvclol3 2.1loct-7-one.
- 2β-Carbomethoxy-3β-(3,4-dichlorophenyl)-8-methyl-8azabicvclo[3,2,1loct-7-one.

mm. 2 β -Carbomethoxy-3 α -bis(fluorophenyl)methoxy-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.

nn. 2β -Carbomethoxy- 3α -bis(4-fluorophenyl)methoxy- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.

20. The compound of claim 1 having the following structural formula:

R₂

where X is N_3 , R_3 is CH_2CH_3 , R_2 is OH or O in the 6- or 7- position, Ar is phenyl or naphthyl either of which can be substituted with halogen, alkenyl having 2-8 carbon atoms or alkynyl having 2-8 carbon atoms.

or

- 21. The compound of claim 20, wherein Ar is substituted with 4-Cl, 4-F, 4-Br, 4-I, 3,4-Cl₂, ethenyl, propenyl, butenyl, propynyl or butynyl.
 - 22. The compound of claim 20, wherein R2 is OH.

- 23. The compound of claim 20 selected from the group consisting of:
- a. $1-[3\alpha-(3,4-Dichlorophenyl)-7\beta-hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]propan-1-one.$
- b. $1-[3\beta-(3,4-Dichlorophenyl)-7\beta-hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]propan-1-one.$
- 24. The compound of claim 1 selected from the group consisting of:
- a. 2-Carbomethoxy-3-(3,4-dichlorophenyl)-6 β -hydroxy-8-methyl-8-azabicvclo[3,2,1]oct-2-ene.
- b. 2-Carbomethoxy, 3-(2-naphthyl)-6β-hydroxy-8-methyl-8azabicyclo[3.2.1]oct-2-ene.
- c. 2-Carbomethoxy-3-(4-fluorophenyl)-6 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene.
- d. 2-Carbomethoxy-3-phenyl-6 β -hydroxy-8-methyl-8-azabicvclo[3.2.1]oct-2-ene.
- e. 2-Carbomethoxy-3-(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene.
- $f. \qquad (1S]-2-Carbomethoxy-3-(3,4-dichlorophenyl)-7\beta-hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene. \\$
- g. (1R)-2-Carbomethoxy-3-(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene.
- $h. \qquad \hbox{$2$-Carbomethoxy-$3-(2-naphthyl)-7$\beta-hydroxy-$8-methyl-$8-azabicyclo[3.2.1]oct-$2-ene.}$
- i. 2-Carbomethoxy-3-(4-fluorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene.
- $j. \qquad \hbox{$2$-Carbomethoxy-$3$-phenyl-$7$$\beta$-hydroxy-$8$-methyl-$8$-azabicyclo[3.2.1]oct-$2$-ene.}$
- k. 2β -Carbomethoxy-3 β -(3,4-dichlorophenyl)-6 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.

- 1. 2β -Carbomethoxy- 3β -(2-naphthyl)- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- m. 2β -Carbomethoxy- 3β -(4-fluorophenyl)- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- n. 2β -Carbomethoxy- 3β -phenyl- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- ο. 2β-Carbomethoxy-3β-(3,4-dichlorophenyl)-7β-hydroxy-8methyl-8-azabicyclo[3.2.1]octane.
- p. (1S)- 2 β -Carbomethoxy-3 β -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3,2,1]octane.
- q. (1R)- 2 β -Carbomethoxy-3 β -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo(3.2.1]octane.
- r. 2β -Carbomethoxy-3 β -(2-naphthyl)-7 β -hydroxy-8-methyl-8-azabicyclo/3.2.1]octane.
- s. 2β -Carbomethoxy- 3β -(4-fluorophenyl)- 7β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- t. 2β -Carbomethoxy- 3β -phenyl- 7β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- u. 2β -Carbomethoxy- 3α -(3,4-dichlorophenyl)- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- $v. \qquad 2\beta\text{-Carbomethoxy-3}\alpha\text{-(2-naphthyl)-6}\beta\text{-hydroxy-8-methyl-8-}\\ azabicyclo[3.2.1]octane.$
- w. 2β -Carbomethoxy- 3α -(4-fluorophenyl)- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- x. 2β -Carbomethoxy- 3α -phenyl- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- y. 2 β -Carbomethoxy-3 α -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- z. (1S)- 2 β -Carbomethoxy-3 α -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- aa. (1R)- 2 β -Carbomethoxy-3 α -(3,4-dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.

- $bb. \quad 2\beta-Carbomethoxy-3\alpha-(2-naphthyl)-7\beta-hydroxy-8-methyl-8-azabicvclo[3.2.1] octane.$
- cc. 2β -Carbomethoxy- 3α -(4-fluorophenyl)- 7β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- dd. 2 β -Carbomethoxy-3 α -phenyl-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- ee. 2β -Carbomethoxy- 3α -(3,4-dichlorophenyl)- 7α -benzoyloxy-8-methyl-8-azabicyclo(3,2,1)octane.
- ff. 2β -Carbomethoxy- 3α -(3,4-dichlorophenyl)- 6α -benzoyloxy-8-methyl-8-azabicyclo[3.2.1]octane.
- gg. 2β -Carbomethoxy-3 α -(3,4-dichlorophenyl)-7 α -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- hh. 2β -Carbomethoxy- 3α -(3,4-dichlorophenyl)- 6α -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- ii. 2β -Carbomethoxy- 3α -(3,4-dichlorophenyl)-8-methyl-8-azabicyclo[3.2.1]oct-7-one.
- jj. 2β -Carbomethoxy- 3β -(3,4-dichlorophenyl)-8-methyl-8-azabicyclo[3.2.1]oct-7-one.
- kk. 2 β -Carbomethoxy-3 α -bis(fluorophenyl)methoxy-7 β -hydroxy-8-methyl-8-azabicyclo[3,2,1]octane.
- ll. 2β -Carbomethoxy- 3α -bis(4-fluorophenyl)methoxy- 6β -hydroxy-8-methyl-8-azabicyclo[3.2.1]octane.
- mm. 1-[3 α -(3,4-Dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]propan-1-one.
- nn. 1-[3 β -(3,4-Dichlorophenyl)-7 β -hydroxy-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]propan-1-one.
- 25. A method for inhibiting 5-hydroxytryptamine reuptake of a monoamine transporter comprising contacting the monoamine transporter with a compound of claim 1.

- 26. The method of claim 25, wherein the monoamine transporter is selected from the group consisting of a dopamine transporter, a serotonin transporter and a norepinephrine transporter.
- 27. A method for inhibiting 5-hydroxytryptamine reuptake of a monoamine transporter in a mammal comprising administering to the mammal a 5-hydroxytryptamine reuptake inhibiting amount of a compound of claim 1.
- 28. A method for inhibiting dopamine reuptake of a dopamine transporter in a mammal comprising administering to the mammal a dopamine reuptake inhibiting amount of a compound of claim 1.
- A pharmaceutical composition comprising a therapeutically effective amount of the compound of claim 1 and a pharmaceutically acceptable carrier.
- 30. A method for treating a mammal having a disorder selected from neurodegenerative disease, psychiatric dysfunction, dopamine dysfunction, cocaine abuse and clinical dysfunction comprising administering to the mammal an effective amount of a compound of claim 1, wherein the Ar is a 3α -group.
- 31. A method for treating a mammal having a disorder selected from neurodegenerative disease, psychiatric dysfunction, dopamine dysfunction, cocaine abuse and clinical dysfunction comprising administering to the mammal an effective amount of a compound of claim 1.
- 32. A method for treating a neurodegenerative disease in a mammal comprising administering to the mammal an effective amount of a boat tropane having the formula of claim 1.

- 33. A method for treating a neurodegenerative disease in a mammal comprising administering to the mammal an effective amount of a compound of claim 1.
- 34. The method of claim 33, wherein the neurodegenerative disease is selected from Parkinson's disease and Alzheimer's disease.
- 35. A method for treating psychiatric dysfunction in a mammal comprising administering to the mammal an effective amount of a compound of claim 1.
- 36. A method for treating psychiatric dysfunction in a mammal comprising administering to the mammal an effective amount of a boat tropane having the structure of claim 1.
- The method according to claim 35, wherein the psychiatric disorder comprises depression.
- 38. A method for treating dopamine related dysfunction in a mammal comprising administering to the mammal a dopamine reuptake inhibiting amount of a boat tropane having the formula of the compounds of claim.
- 39. A method for treating dopamine related dysfunction in a mammal comprising administering to the mammal a dopamine reuptake inhibiting amount of a compound of claim 1.
- 40. The method according to claim 39, wherein the dopamine related dysfunction comprises Attention deficit disorder.
- 41. A method for treating cocaine abuse in a mammal comprising administering to the mammal an effective amount of a compound of claim 1.

- 42. A method for treating clinical dysfunction in a mammal comprising administering to the mammal an effective amount of a compound of claim 1.
- 43. The method of claim 42, wherein the clinical dysfunction comprises migraine.
 - 44. A compound having the structural formula:

or R₇N R₂

wherein:

 $R_1 = COOR_7, COR_3, lower alkyl, lower alkenyl, lower alkynyl, \\ CONHR_4, CON(R_7)OR_7 or COR_6 and is \alpha or \beta;$

R₂ = OR₉ and is a 6- or 7- substituent;

 $R_3 = H, \, (CH_2)_n C_6 H_4 Y, \, C_6 H_4 Y, \, CHCH_2, \, lower \, alkyl, \, lower \, alkenyl \, or \, lower \, alkynyl;$

 $R_4 = CH_3$, CH_2CH_3 , or CH_3SO_2 ;

R6 = morpholinyl or piperidinyl;

 R_8 = camphanoyl, phenyl- R_5 , naphthyl- R_5 , anthracenyl- R_5 , phenanthrenyl- R_5 , or diphenylmethoxy- R_5 ;

R₅ = H, Br, Cl, 1, F, OH, OCH₃, CF₃, NO₂, NH₂, CN, NHCOCH₃, N(CH₃)₂, (CH₂)nCH₃, COCH₃, C(CH₃)₃ where n= 0-6, 4-F, 4-Cl, 4-I, 2-F, 2-Cl, 2-I, 3-F, 3-Cl, 3-I, 3,4-diCl, 3,4-diOH, 3,4-diOAc, 3,4-diOCH₃, 3-OH-4-Cl, 3-OH-4-F, 3-Cl-4-OH, 3-F-4-OH, lower alkyl, lower alkoxy, lower alkenyl, lower alkynyl, CO(lower alkyl), or CO(lower alkoxy);

n = 0, 1, 2, 3, 4 or 5;

R7= lower alkyl; and

R9 = a protecting group.

- 45. The compound of claim 44 selected from the group consisting of:
- a) 2β -Carbo-N-methoxy-N-methylamino- 3α - $\{3,4$ -dichlorophenyl}- 7β -methoxymethoxy-8-methyl-8-azabicyclo $\{3,2,1\}$ octane;
- b) 2β-Carbo-N-methoxy-N-methylamine-3β-(3,4-dichlorophenyl)-7β-methoxymethoxy-8-methyl-8-azabicyclo[3.2.1]octane;
- d) 1-[3β-(3,4-Dichlorophenyl)-7β-methoxymethoxy-8-methyl-8azabicyclo[3.2.1]oct-2-yl]propan-1-one;
- e) (1R)-2-Carbomethoxy-3-(1'S)-camphanyl-7β-methoxymethoxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene;
- $f) \qquad (1R) 7\beta methoxymethoxy-2 methoxycarbonyl-8 methyl-3-oxo-8-azabicyclo[3.2.1] octane;$
- g) (1 S)-2-Carbomethoxy-3-(3,4-dichlorophenyl)-7 β -(1'S)-camphanyloxy-8-methyl-8-azabicyclo[3.2.1]oct-2-ene; and
- h) (1R)-2-Carbomethoxy-3-(3,4-dichlorophenyl)-7 β -camphanoyl-8-methyl-8-azabicyclo[3.2.1]oct-2-ene.