

Университет ИТМО. Отчет по лабораторной работе номер 4 по дисциплине «Функциональная схемотехника»

Выполнил: Дробыш Дмитрий Александрович

Группа: Р33082

Преподаватель: Кустарев Павел Валерьевич

Цель работы.

Получить навыки разработки встроенных схем тестирования (BIST) для цифровых устройств, реализованных на базе программируемых логических интегральных схем.

Задание.

В	Вариант	Формула	Lfsr1	Lfsr2	8 CRC
	5	$3a + 2 \cdot b^{\frac{1}{3}}$	$1 + x + x^6 + x^7 + x^8$	$1 + x^4 + x^6 + x^7 + x^8$	$1 + x^4 + x^5 + x^6 + x^8$

Таблица 1. Вариант на лабораторную работу 4.

Схемы модулей.

LFSR1:

Рис. 1. Модуль LFSR.

LFSR2:

Рис.2. Модуль LFSR2.

BIST:

Рис. 3. Модуль BIST

Плотность распределения значений LFSR

График с плотностью распределения значений операндов, которые перебираются в режиме самотестирования, с указанием области допустимых значений:

График 1.LFSR2

График 2. LFSR1

ОДЗ : X \in [0; 255] (8 bit) Процент значений, попавших в ОДЗ - 100%

Результат тестирования блока в icarus Verilog test bench:

Рис. 4. Тестирование модуля bist.

Подробно:

VCD info: dumpfile bist.vcd opened for output.

usermode check
Pressed RST: 0
Pressed RST: 0
Pressed START: 0
Answer is 3

test check

Pressed RST: Unressed RST: 0 Pressed TEST: 89 Unpressed TEST: Pressed TEST: Unpressed TEST: Pressed TEST: 89 Unpressed TEST: Pressed TEST: 0 Unpressed TEST: 0 Pressed TEST: 89 Unpressed TEST: 89

Answer is 89

test to start check
Pressed RST: 89
Unpressed RST: 89
Pressed TEST: 0
Pressed START: 0
Unpressed START: 0
Unpressed TEST: 0

Pressed TEST: 89
Unpressed TEST: 89
Pressed START: 89
Unpressed START: 89
Pressed TEST: 0
Unpressed TEST: 0
Answer is 0

bist_tb.v:27: \$finish called at 121000200000 (1ps)

Время работы алгоритма составляет : 526.62 mcs.

Верификация работы алгоритма.

Для верификации работы модуля был написан соответствующий тестовый код на языке программирования С. Программа сравнивает результаты работы схемы с теоретическими данными.

Code snippet:

```
#include <stdint.h>
#include <stdio.h>
#include <math.h>
uint8_t crc_my(uint8_t sum, uint8_t in){
     uint8 t shift = sum:
     for(uint8_t i = 0; i < 8; i++){
          shift ^= in;
          if(shift & 0b10000000){
               shift = (shift << 1);</pre>
               shift ^= 0b01110001;
          }else{
               shift = (shift << 1);</pre>
          }
     return shift;
}
int main(void){
     uint8 t lfsra[255];
     uint8 t lfsrb[255];
     printf("{");
     for(uint64_t i = 0; i < 255; i++){</pre>
```

printf("%#02x, ", 3*lfsra[i] + 2 *

((uint8 t)cbrt((double)lfsrb[i])));

```
printf("}\n");
    uint16 t testarr[256];
    uint8 t crcval = 0xB8;
     for(u\bar{i}nt64 t i = 0; i < 256; i++){
         crcval = crc_my(crcval, (uint8_t)testarr[i]);
         crcval = crc my(crcval, *((uint8 t*)(testarr+i)
+1));
         printf("%d\n", crcval);
     }
    uint8_t arr_verilog[256];
    for(uint64 t i = 0; i < 255; i++){
         if(arr test[i] == arr_verilog[i]){
              printf("%ld - 0K, v:\%\#02x, t:\%\#02x\n", i,
arr_verilog[i], arr_test[i]);
         }else{
              printf("!!! %ld - FAIL, v:%#02x, t:%#02x\n", i,
arr_verilog[i], arr_test[i]);
    }
}
```

Результаты работы:

```
0 - OK, v:0xb8, t:0xb8
1 - OK, v:0xc1, t:0xc1
2 - OK, v:0xe6, t:0xe6
3 - OK, v:0xb9, t:0xb9
4 - OK, v:0x67, t:0x67
5 - OK, v:0x2c, t:0x2c
6 - OK, v:0x75, t:0x75
7 - OK, v:0x97, t:0x97
8 - OK, v:0xdd, t:0xdd
9 - OK, v:0xa1, t:0xa1
10 - OK, v:0x22, t:0x22
11 - OK, v:0xd9, t:0xd9
12 - OK, v:0x57, t:0x57
13 - OK, v:0x53, t:0x53
14 - OK, v:0xcc, t:0xcc
15 - OK, v:0x86, t:0x86
16 - OK, v:0x8e, t:0x8e
17 - OK, v:0xe7, t:0xe7
18 - OK, v:0x17, t:0x17
19 - OK, v:0xcf, t:0xcf
20 - OK, v:0x59, t:0x59
```

...

Ref Name	Used	Functional Category
FDRE	261	Flop & Latch
LUT5	143	LUT
LUT6	98	LUT
LUT3	64	LUT
LUT4	55	LUT
LUT2	24	LUT
IBUF	21	Ю
CARRY4	20	CarryLogic
OBUF	19	Ю
MUXF7	17	MuxFx
LUT1	6	LUT
FDSE	4	Flop & Latch
OBUFT	1	Ю
MUXF8	1	MuxFx
BUFG	1	Clock

Таблица 2. Primitives

Site Type	Used	Fixed	Available	Util%
BUFGCTRL	1	0	32	3.13

Таблица 3. Clocking.

Site Type	Used	Fixed	Available	Util%
LUT as Logic	336	0	63400	0.53
Register as Flip Flop	265	0	126800	0.21
F7 Muxes	17	0	31700	0.05
F8 Muxes	1	0	15850	<0.01

Таблица 4. Slice Logic.

Вывод:

В ходе выполнения лабораторной работы была доработана схема арифметического блока, а также реализованы: регистр сдвига с линейной обратной связью, алгоритм циклического избыточного кода, а также built-in-self-test механизм. В процессе работы возникли трудности, в частности с разделением панели вывода между компонентами системы и проблема наложения реакций на нажатие разных кнопок устройства. Для повышения доверия к качеству блоков были реализованы тесты на языке программирования С.