SemCluster:

Semantic Clustering of Programming Assignments

David Perry, Dohyeong Kim, Roopsha Samanta, Xiangyu Zhang

It seems like Everyone wants to be a programmer

Programming for Everybody (Getting Started with Python) WILLIAM MICHIGAN	657,068
An Introduction to Interactive Programming in Python RICE	581,043
Introduction to Computer Science UDACITY	515,476
Learn to Programming: The Fundamentals UNIVERSITY OF TORONTO	198,566
Introduction to Computer Science and Programming Massachusetts Institute of Technology	157,431

Current State-of-the-art

Solution analysis, Feedback/repair generation, grading

- Existing solutions from PL and SE communities
 - Clara
 - OverCode

Problem: Syntax-based clustering

```
1 while(x < 10) {
2   if(y < 5) {
3     //do stuff
4   break;
5  }
6 }</pre>
1 while(x < 10) {
2   if(y < 5 && bool == 1) {
3     //do stuff
4   bool = 0;
5  }
6 }
```


Problem: Only clusters correct programs

Program semantics vector representation

Large scale evaluation with excellent results

Program semantics vector representation

Large scale evaluation with excellent results

Perform program comparisons with Euclidean distance

Use existing machine learning techniques for clustering

Program semantics vector representation

Large scale evaluation with excellent results

```
1 while(x < 10) {
2    if(y < 5 && bool == 1) {
3       //do stuff
4    bool = 0;
5    }
6 }</pre>
```

Control Flow Features (CFF)

Encapsulates programmer's control flow decisions

- Number of inputs that trigger a specific path
 - path → SMT formula
 - Calculated using Model Counting

One feature is calculated per test case

Control Flow Features

Bounds:	0 ≤ x ≤ 99		
Inputs:	X == 25	X == 75	
CFFs:	30	70	

Data Flow Features (DFF)

• Encapsulates programmer's data flow decisions

Measures number of "value changes" during an execution

Multiple features are calculated for each test case

```
1. int x, y, z;
3. x = 3;
4. y = 3;
6. x++;
7. y = x * 2;
```



```
1. int x, y, z;
3. x = 3; 4. y = 3;
6. x++;
7. y = x * 2;
```

1 -> 3	
2	

```
1. int x, y, z;
3. x = 3;
4. y = 3;
6. x++;
7. y = x * 2;
```

1 -> 3	3 → 4	
2	1	

```
1. int x, y, z;
3. x = 3;
4. y = 3;
  X++;
7. y = x * 2;
```

1 -> 3	3 → 4	3 → 8
2	1	1

```
1. int x, y, z;
3. x = 3;
4. y = 3;
6. x++;
7. y++;
```



```
1. int x, y, z;
3. x = 3; 4. y = 3;
6. X++;
7. y++;
```

1 -> 3	
2	

```
1. int x, y, z;
3. x = 3;
4. y = 3;
```

1 -> 3	3 → 4	
2	2	

```
1. int x, y, z;
3. x = 3;
4. y = 3;
6. x++;
7. y++;
```

1 → 3	3 → 4	3 → 8
2	2	0

Program Feature Vector (PFV)

Concatenate Data Flow and Control Flow features

Normalize weight of feature in the vector

Program semantics vector representation

Large scale evaluation with excellent results

Neural Network Approach

Problem	Avg. LOC	# Subs	Clara	OverCode	DPE	SemCluster
COINS	38	1033	89	101	10	8
PRIME1	59	920	120	125	9	10
LAPIN	65	175	62	62	9	8
LCM	15	806	99	103	12	13
FibSum	14	1030	30	32	12	15

Problem	SemCluster		DPE	
	In Cluster	Out Cluster	In Cluster	Out Cluster
COINS	83.2	9.4	85.2	7.3
PRIME1	80.9	12.5	77.2	14.2
LAPIN	87.7	11.3	88.9	10.8
LCM	79.1	18.2	77.4	20.2
FibSum	87.9	5.2	77.2	9.1

Technique	Small Cluster Size	High Accuracy	No Training Requirement
DPE			
SemCluster			

Program semantics vector representation

Large scale evaluation with excellent results

Future Work

Questions?