Délka humeru podle přežití vrabců

Vojtěch Tóth, Cuphead, Mugman

2022-12-08

```
K = 4
L = 4
M = ((K+L)*47)\%11+1.
```

[1] 3

Úloha 1

(1) Načtěte datový soubor a rozdělte sledovanou proměnnou na příslušné dvě pozorované skupiny. Stručně popište data a zkoumaný problém. Pro každu skupinu zvlášť odhadněte střední hodnotu, rozptyl a medián příslušného rozdělení.

Dataset, který budeme v tomto úkolu zpracovávat, je case0201. Tento dataset obsahuje 59 záznamů dvou proměnných

- Humerus délka kosti pažní vrabců (v palcích)
- Status zda vrabec přežil ("survived"), či zahynul ("Perished")

Data nasbíral H. Bumpus. Zkoumal, zda uhynulí vrabci postrádají některé fyzické vlastnosti oproti těm, kteří přežili a tím chtěl podpořit teorii přirozeného výběru.

Proměnnou Humerus rozdělíme do dvou skupin podle stavu a transformujeme, aby byly ve správných jednotkách.

```
library(Sleuth2)
perished <- subset(case0201, Status=="Perished")$Humerus
survived <- subset(case0201, Status=="Survived")$Humerus

perished <- perished/1000
survived <- survived/1000</pre>
```

Ve skupině Uhynulích máme 24 hodnot, ve skupině přeživších 35.

```
str(perished)
```

```
## num [1:24] 0.659 0.689 0.703 0.702 0.709 0.713 0.72 0.729 0.726 0.726 ...
```

str(survived)

num [1:35] 0.687 0.703 0.709 0.715 0.728 0.721 0.729 0.723 0.728 0.723 ...

Vzorce pro výběrový průměr, rozptyl a pro medián jsou popořadě

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

,

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

,

$$\operatorname{med}(X) = \begin{cases} a_{\lfloor \frac{n}{2} \rfloor} & \text{pokud } n\%2 = 1\\ \frac{a_{\lfloor \frac{n}{2} \rfloor} + a_{\lceil \frac{n}{2} \rceil}}{2} & \text{pokud } n\%2 = 0 \end{cases}$$

,

my použijeme následující funkce.

```
mean_per <- mean(perished)
var_per <- var(perished)
med_per <- median(perished)

mean_sur <- mean(survived)
var_sur <- var(survived)
med_sur <- median(survived)</pre>
```

Výsledné hodnoty jsou v této tabulce.

	Přeživší	Uhynulí
Výběrový průměr Výběrový rozptyl	$\begin{array}{c} 0.7279167 \\ 5.5425362 \times 10^{-4} \end{array}$	$0.738 \\ 3.9358824 \times 10^{-4}$
Medián	0.7335	0.736

Úloha 2

(1b) Pro každou skupinu zvlášť odhadněte hustotu a distribuční funkci pomocí histogramu a empirické distribuční funkce.

Empirická distribuční funkce je definována jako

$$F_n(x) = F_n(x, X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le x\}}$$

Tedy pro reálnou proměnnou x zjistíme počet hodnot x_i , které jsou menší nebo rovny x a podělíme je počtem všech záznamů n dané skupiny. V jazyce R se pro výpočet hodnot používá funkce ecdf, výstup vykreslí funkce plot.

Histogram je sloupcový graf, kde každý sloupec má zvolenou nějakou vhodnou šířku. Výška daných sloupců se získá ze vztahu

$$\frac{m_i}{n \cdot h} = \frac{\text{počet hodnot uvnitř sloupce}}{\text{počet všech hodnot} \cdot \text{šířka sloupce}}$$

Funkce hist z daných hodnot zvládne odhadnout nejlepší šířku sloupce a rovnou histogram vykreslí.

plot(ecdf(perished), main = "Empirická distribuční funkce délky humeru uhynulích vrabců")

Empirická distribucní funkce délky humeru uhynulích vrabcu

hist(perished, freq = FALSE, main = "Histogram délky humeru uhynulých vrabců")

Histogram délky humeru uhynulých vrabcu

Lze tvrdit, že délka humeru uhynulých vrabců se řídí normálním rozdělením.

Empirická distribuční funkce a histogram skupiny přeživších

plot(ecdf(survived), main = "Empirická distribuční funkce délky humeru přeživších vrabců")

Empirická distribucní funkce délky humeru preživších vrabcu

hist(survived, freq = FALSE, main = "Histogram délky humeru přeživších vrabců")

Histogram délky humeru preživších vrabcu

Lze tvrdit, že i délka humeru přeživších vrabců se řídí normálním rozdělením.

Úloha 3

(3b) Pro každou skupinu zvlášť najděte nejbližší rozdělení: Odhadněte parametry normálního, exponenciálního a rovnoměrného rozdělení. Zaneste příslušné hustoty s odhadnutými parametry do grafů histogramu. Diskutujte, které z rozdělení odpovídá pozorovaným datům nejlépe.

Pro odhad parametrů lze použít balíček EnvStats.

Normální rozdělení

Exponenciální rozdělení

Exponenciální rozdělení je takové rozdělení, při kterém události mají nezávislé exponenciální časy mezi sebou. Pro hustotu platí

$$f_n(x) = \begin{cases} \lambda e^{-\lambda x} & \text{pro } x \in (0, \infty) \\ 0 & \text{jinde} \end{cases}$$

Hledáme tedy odhad parametru λ . Použijeme funkce eexp, u které zvolíme momentovou metodu a metodu maximální věrohodnosti. Získané parametry jsou prvky pole parameters, λ na indexu 1.

```
library(EnvStats, warn.conflicts=F, quietly=T)
exp_perished <- eexp(perished, method="mle/mme")$parameters
exp_survived <- eexp(survived, method="mle/mme")$parameters

lambda_per <- exp_perished[1]
lambda_sur <- exp_survived[1]</pre>
```

Výsledné odhady:

	Přeživší	Uhynulí
$\overline{\lambda}$	1.3550136	1.3737836

Rovnoměrné rozdělení

Rovnoměrné rozdělení je takové rozdělnení, které má v nějakém intervalu (a, b) konstatní pravděpodobnost, mimo něj je pravděpodobnost rovna 0. Pro hustotu platí

$$f_n(x) = \begin{cases} \frac{1}{b-a} & \text{pro } x \in (a,b) \\ 0 & \text{pro } x \notin (a,b) \end{cases}$$

Hledáme tedy odhad parametrů a a b. Použijeme funkci eunif u které zvolíme momentovou metodu. Získané parametry jsou prvky pole parameters, a na indexu 1, b na indexu 2.

```
unif_perished <- eunif( perished, method="mme")$parameters
unif_survived <- eunif( survived, method="mme")$parameters

a_per <- unif_perished[1]
b_per <- unif_perished[2]

a_sur <- unif_survived[1]
b_sur <- unif_survived[2]</pre>
```

Výsledné odhady:

	Přeživší	Uhynulí
a L	0.7041322	0.6879983
b	0.7718678	0.7678351

```
hist(survived, freq = FALSE, main = "Histogram a odhady (survived)")
min <- min(survived)
max <- max(survived)
x <- c( min, a_sur, a_sur, b_sur, b_sur, max )
p <- dunif(a_sur, min=a_sur, max=b_sur)
y <- c( 0, 0, p, p, 0, 0)
lines(x, y, col="red", lwd=3)

x <- survived
curve(dexp(x, rate = lambda_sur), lwd= 3, col = "blue", add = TRUE)

curve(dnorm(x, mean = mean_sur, sd = sqrt(var_sur)), col="green", add = TRUE, lwd=3)</pre>
```

Histogram a odhady (survived)


```
min <- min(perished)
max <- max(perished)
hist(perished, freq = FALSE, main = "Histogram a odhady (perished)")
x <- c( min , a_per, a_per, b_per, b_per, max )
p <- dunif(a_per, min=a_per, max=b_per)
y <- c(0, 0, p, p, 0, 0 )
lines(x, y, col="red", lwd=3)

x <- perished
curve(dexp(x, rate = lambda_per), lwd= 3, col = "blue", add = TRUE)

curve(dnorm(x, mean = mean_per, sd = sqrt(var_per)), col="green", add = TRUE, lwd=3)</pre>
```

Histogram a odhady (perished)

Úloha 4

(1b) Pro každou skupinu zvlášť vygenerujte náhodný výběr o 100 hodnotách z rozdělení, které jste zvolili jako nejbližší, s parametry odhadnutými v předchozím bodě. Porovnejte histogram simulovaných hodnot s pozorovanými daty.

Úloha 5

(1b) Pro každou skupinu zvlášť spočítejte oboustranný 95% konfidenční interval pro střední hodnotu.

Úloha 6

(1b) Pro každou skupinu zvlášť otestujte na hladině významnosti 5 % hypotézu, zda je střední hodnota rovná hodnotě K (parametr úlohy), proti oboustranné alternativě. Můžete použít buď výsledek z předešlého bodu, nebo výstup z příslušné vestavěné funkce vašeho softwaru.

Úloha 7

(2b) Na hladině významnosti 5 % otestujte, jestli mají pozorované skupiny stejnou střední hodnotu. Typ testu a alternativy stanovte tak, aby vaše volba nejlépe korespondovala s povahou zkoumaného problému.