Fisica

UniShare

Davide Cozzi @dlcgold

Indice

Capitolo 1

Introduzione

Questi appunti sono presi a lezione. Per quanto sia stata fatta una revisione è altamente probabile (praticamente certo) che possano contenere errori, sia di stampa che di vero e proprio contenuto. Per eventuali proposte di correzione effettuare una pull request. Link: https://github.com/dlcgold/Appunti.

Grazie mille e buono studio!

Capitolo 2

Meccanica

Si comincia con la Meccanica, la branca della fisica classica che studia il moto dei corpi, esprimendolo con leggi quantitative. Si ha la seguente divisione:

- Cinematica, dove si studia il moto e le sue caratteristiche indipendentemente dalle cause
- Dinamica, dove si studia l'influenza delle forze nel moto

Si utilizzano i cosiddetti *punti materiali* per semplificare lo studio dei fenomeni. Un punto materiale infatti non ha estensione e se dotato di massa, tale massa è concentrata in quel punto. In pratica ha dimensioni trascurabili rispetto allo spazio nel quale si muove.

Un altro strumento essenziale per lo studio dei fenomeni è il sistema di riferimento mediante gli assi ortogonali:

e si hanno le seguenti formule:

$$R = \sqrt{X^2 + Y^2}$$

$$sin\vartheta = \frac{Y}{R}$$

$$cos\vartheta = \frac{X}{R}$$

$$tan\vartheta = \frac{Y}{X}$$

$$\vartheta = arctan\frac{Y}{X}$$

e per gli angoli si usano i *radianti* in quanto adimensionali. L'angolo in radianti infatti è:

$$\vartheta_{rad} = \frac{Lunghezza_arco}{raggio}$$

dove le due unità di misura esprimenti una lunghezza vengono "semplificate". Si ricordano inoltre le basi del calcolo vettoriale. Tra due vettori posso fare somme e sottrazioni La somma non è altro che la diagonale maggiore del parallelogramma che si forma tra i due vettori. Inoltre se $\vec{A}=(a_x,a_y)$ e $\vec{B}=(b_x,b_y)$ si ha:

$$\vec{C} = \vec{A} + \vec{B} = (a_x + b_x, a_y + b_y)$$

la sottrazione è la diagonale minore e:

$$\vec{C} = \vec{A} - \vec{B} = (a_x - b_x, a_y - b_y)$$

2.1 Cinematica

Innanzitutto qualche definizione:

- Moto: posizione in funzione del tempo in un dato sistema di riferimento
- Traiettoria: luogo dei punti attraversati dal punto materiale in movimento
- Velocità: variazione della posizione
- Accelerazione: variazione della velocità
- Quiete: assenza di movimento in un certo sistema di riferimento

Come grandezze fondamentali del movimento si hanno quindi posizione, velocità e accelerazione, tutte e tre funzioni del tempo.

2.1.1 Moto Rettilineo

Rappresentando su un piano cartesiano avente la posizione come ordinata e il tempo come ascisse e rappresentando vari momenti del moto si ottiene una curva. Questa curva rappresenta la legge oraria.

Si ha la traiettoria più semplice, una retta. Il moto del punto quindi è esprimibile come funzione solo di

$$\vec{x}(t)$$

che sarà la nostra equazione del moto.

Si passa quindi da un sistema di riferimento a 3 assi:

ad uno mono-dimensionale:

La scelta dell'origine della coordinata spaziale (x = 0) e di quella temporale (t = 0) sono arbitrari.

Si definisce la **distanza** come una quantità scalare che definisce la lunghezza del tratto percorso da un punto per cambiare posizione.

Velocità

Per ottenere la velocità di un punto materiale ne misuro la posizione in due diversi istanti di tempo. Si ha:

- Spostamento: $\Delta \vec{x} = x(t_2) x(t_1) = x_2 x_1$ è un vettore che descrive la differenza di posizione tra due punti. Viene misurato in *Metri* (m) secondo il Sistema Internazionale (SI). Il metro è definito come la distanza percorsa dalla luce in $\frac{1}{299792458}s$
- Intervallo di Tempo: $\Delta t = t_2 t_1$ che viene misurato in Secondi (s) secondo il Sistema Internazionale (SI). Il secondo è definito come la durata di 9192631770 periodi della radiazione corrispondente alla transizione tra 2 livelli iperfini dello stato fondamentale dell'atomo di Cesio-133

Possiamo quindi definire la Velocità Media:

$$v_m = \frac{\Delta \vec{x}}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\vec{v_2} - \vec{v_1}}{2}$$

Questa grandezza però non fornisce nessuna indicazione sulle caratteristiche effettive del moto. Provo a spezzare il moto in più intervalli temporali al fine di studiarne ogni variazione. Si ottiene quindi la **Velocità Istantanea**:

$$v = \lim_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}(t)}{dt}$$

La velocità istantanea rappresenta la rapidità di variazione temporale della posizione nell'istante t considerata. Il segno della velocità indica la direzione del moto sull'asse delle ascisse. La velocità è a sua volta funzione del tempo:

$$v(t) = \frac{d\vec{x}(t)}{dt}$$

che è ben rappresentata dai seguenti grafici:

Se v è costante si parla di Moto Rettilineo Uniforme. Si ha quindi:

$$\Delta x = v \Delta t \to x - x_0 = v(t - t_0) \to x = x_0 + v(t - t_0)$$

che vale anche per v non costante ma per intervalli di tempo approssimati 0, infatti tra brevi istanti di tempo si può approssimare la velocità istantanea $v(t)=\frac{dx}{dt}$ come una velocità costante. Disegniamo ora un grafico velocità tempo con la curva rappresentante la legge oraria, indicando velocità e tempo in due momenti del moto:

calcolare l'area sottesa alla curva implica calcolare la differenza di posizione. Approssimo la curva ad una retta e procedo col banale calcolo del trapezio sottostante:

$$A = (t_1 - t_0)(\frac{\vec{v_1} - \vec{v_0}}{2}) + (t_1 - t_0)\vec{v_0} = (\frac{\vec{v_1} - \vec{v_0}}{2})\Delta t + \vec{v_0}\Delta t$$
$$A = \frac{\Delta t}{2}(\vec{v_1} - \vec{v_0} + 2\vec{v_0}) = \frac{\Delta t}{2}(\vec{v_0} + \vec{v_1}) = \Delta t v_{med}$$

Nota quindi l'equazione del moto

$$\vec{x}(t)$$

possiamo ricavare v(t) derivando, infatti la posizione si ottiene, partendo dal grafico sopra, riducendo al massimo gli intervalli di tempo e calcolando la somma delle aree dei vari rettangolini .

Si può procedere anche al calcolo di

$$\vec{x}(t)$$

avendo nota $\vec{v}(t)$. Sappiamo che lo spostamento totale è: $\Delta \vec{x} = \sum_{i=1}^{n} \Delta \vec{x}_i = \sum_{i=1}^{n} v_{m_i} \Delta t$ e che, per intervalli infinitesimi $dx = \vec{v}(t)dt$. Si ha quindi:

$$\Delta x = \underbrace{\int_{x_0}^x dx}_{\vec{x}(t) - x_0} = \int_{t_0}^t \vec{v}(t)dt$$

$$\vec{x}(t) = x_0 + \int_{t_0}^t \vec{v}(t)dt$$

che è l'equazione del moto rettilineo per una velocità qualunque.

Possiamo ora anche riscrivere la forma completa della velocità media, essendo $x-x_0=\int_{t_0}^t \vec{v}(t)dt$ si ha:

$$v_m = \frac{1}{t - t_0} \int_{t_0}^t \vec{v}(t)dt$$

Possiamo analizzare ora il moto rettilineo uniforme con v costante. Essendo v costante, e non più dipendente dal tempo, può essere portata fuori dall'integrale:

$$\vec{x}(t) = x_0 + v \int_{t_0}^t dt = x_0 + v(t - t_0)$$

che è l'equazione generale del moto rettilineo uniforme dove lo spostamento varia linearmente col tempo.

La velocità di esprime in metri al secondo $(\frac{m}{s} \text{ o } m/s)$ o in kilometri all'ora $\frac{km}{h}$ o km/h). Per passare da km/h a m/s divido la grandezza in km/h per 3,6, per passare da m/s a km/h moltiplico la grandezza in m/s per 3,6.

Accelerazione

Si ha che in due istanti di tempo diversi abbiamo due diverse velocità: $\vec{v}(t_1) = \vec{v_1}$ e $\vec{v}(t_2) = \vec{v_2}$. Si definisce l'**Accelerazione Media:**

$$a_m = \frac{\vec{v_2} - \vec{v_1}}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Procediamo come per la velocità, con un grafico accelerazione-tempo e la legge del moto, calcolando l'area sottostante ottengo la differenza di posizione. Si ha una situazione più semplice ancora perché avendo a costante (e quindi $\overline{a}(t) = a_{med} = \frac{\Delta v}{\Delta t}$ e quindi $v_1 = v_0 + a(t_1 - t_0)$) essa può essere rappresentata come una retta l'area sottostante, che questa volta è letteralmente un trapezio senza approssimazioni, è lo spostamento.

ovvero:

$$A = x - x_0 = t_1 - v_0 + \frac{t_1(v_1 - v_0)}{2} = t_1 \frac{v_1 + v_0}{2}$$

e quindi

$$v_1 = v_0 + at_1$$

unendo con $v_1 = v_0 + a(t_1 - t_0)$ si ottiene:

$$x - x_0 = \frac{t_1}{2}(v_0 + at_1 + v_0) = \frac{t_1}{2}(2v_0 + at_1) = v_0t_1 + \frac{a}{2}t_1^2$$

$$\downarrow$$

$$x = x_0 + v_0t_1 + \frac{a}{2}t_1^2$$

Ora, come per la velocità, analizziamo intervalli di tempo infinitesimi ricordando che anche l'accelerazione è una funzione del tempo:

$$a(t) = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

ovvero la derivata seconda della posizione rispetto al tempo e si ha che:

- a = 0 implica un moto rettilineo uniforme (si deriva una costante, v, e si ottiene 0)
- a > 0 implica una velocità crescente
- a < 0 implica una velocità decrescente

Proviamo ora a risalire a $\vec{v}(t)$ conoscendo a(t). Sappiamo che $a = \frac{dv}{dt} \rightarrow dv = a(t)dt$. Risolviamo quindi l'equazione differenziale :

$$\int_{\vec{v_0}}^{v} dv = \int_{t_0}^{t} a(t)dt \to \vec{v}(t) = \vec{v_0} + \int_{t_0}^{t} a(t)dt$$

che è l'equazione generale per la velocità, dove, nel caso di $a \neq 0$, ovvero di accelerazione costante, si ha:

$$\vec{v}(t) = \vec{v_0} + a \int_{t_0}^t dt = \vec{v_0} + a(t - t_0)$$

dove si nota come la velocità sia una funzione lineare del tempo se $t_0 = 0$, ottenendo $\vec{v}(t) = \vec{v_0} + at$.

Cerchiamo ora l'equazione del moto in caso di *moto rettilineo uniformemente* accelerato. si ha che:

$$\vec{x}(t) = x_0 + \int_{t_0}^t \vec{v}(t)dt = x_0 + \int_{t_0}^t [\vec{v_0} + a(t - t_0)]dt$$

$$\downarrow \qquad \qquad \downarrow \\ \vec{x}(t) = x_0 + \int_{t_0}^t \vec{v_0}dt + \int_{t_0}^t a(t - t_0)dt$$

$$porto fuori le due costanti, \vec{v_0} e a$$

$$\downarrow \qquad \qquad \downarrow \\ \vec{x}(t) = x_0 + \vec{v_0} \int_{t_0}^t dt + a \int_{t_0}^t (t - t_0)dt$$

$$\downarrow \qquad \qquad \downarrow$$

$$\vec{x}(t) = x_0 + \vec{v_0}(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

$$dove, se si ha $t_0 = 0$, si ottiene:
$$\vec{x}(t) = x_0 + \vec{v_0}(t - t_0) + \frac{1}{2}at^2$$$$

Si ha che $\overline{x}(t)$ con accelerazione costante è una parabola. Ricapitolando si ha.

- $v = v_0 + at$
- $x = x_0 + vt + \frac{1}{2}at^2$

Possiamo usare le due formule combinandole. Per esempio dalla prima prendo

$$t = \frac{v - v_0}{a}$$

e lo metto nella seconda formula:

$$x = x_0 + v \frac{v - v_0}{a} + \frac{1}{2}a \left(\frac{v - v_0}{a}\right)^2 = x_0 + \frac{v_0}{a}(v - v_0) + \frac{1}{2a}(v - v_0)^2$$

$$= x_0 + \frac{1}{a}(v_0v - v_0^2 + \frac{1}{2a}(v^2 + v_0^2 - 2vv_0)) = x_0 + \frac{1}{2a}(2v_0v - 2v_0^2 + v^2 + v_0^2 - 2v_0v)$$

$$x = x_0 + \frac{v^2 - v_0^2}{2a} \to v^2 - v_0^2 = 2a(x - x_0)$$

Si nota come sia il termine at nel caso di $\vec{v}(t)$ che il termine $\frac{1}{2}at^2$ nel caso di a(t) non dipendono dalle condizioni iniziali.

L'accelerazione si esprime in metri al secondo quadrato $(\frac{m}{s^2}, \, m/s^2 \, {\rm o} \, \, ms^-2)$