Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection

Yisroel Mirsky, Tomer Doitshman, Y uval Elovici and Asaf Shabtai NDSS 2018

Background

A common security system used to secure networks is a network intrusion detection system(NIDS).

One popular approach is to use an artificial neural network (ANN) to perform the network traffic inspection.

- 1) Have an expert collect a dataset containing both normal traffic and network attacks.
- 2) Train the ANN to classify the difference between normal and attack traffic, using a strong CPU or GPU.
- 3) Transfer a copy of the trained model to the network/organization's NIDS.
- 4) Have the NIDS execute the trained model on the observed network traffic

A distributed deployment strategy+ NIDSs directly into inexpensive routers

Offline Processing

Supervised Learning

High Complexity

Kitsune Overview

Kitsune has **an ensemble of small neural networks (autoencoders),** which are trained to mimic (reconstruct) network traffic patterns, and whose performance incrementally improves overtime.

Kitsune Framework

Kitsune NIDS

Kitsune Feature Extractor (FE)

FE uses damped incremental statistics to efficiently

Objective: Compute the stats $(\mu, \delta,...)$ over the recent history of S, given limited memory and non-uniform sample rates (timestamps)

Algorithm 3: The algorithm for inserting a new value into a damped incremental statistic.

procedure: update $(IS_{i,\lambda},x_{cur},t_{cur},r_j)$

- 1 $\gamma \leftarrow d_{\lambda}(t_{cur} t_{last})$ \triangleright Compute decay factor
- 2 $IS_{i,\lambda} \leftarrow (\gamma w, \gamma LS, \gamma SS, \gamma SR, T_{cur}) \triangleright \text{Process decay}$
- $S_{i,\lambda} \leftarrow (w+1, LS+x_{cur}, SS+x_i^2, SR_{ij}+r_ir_j, T_{cur})$ ▷ Insert value
- 4 return $IS_{i,\lambda}$

tuple *IS* := (*N*, *LS*, *SS*)

Type	Statistic	Notation	Calculation			
1D	Weight	w	w			
	Mean	μ_{S_i}	LS/w			
	Std.	σ_{S_i}	$\sqrt{ SS/w - (LS/w)^2 }$			
	Magnitude	$ S_i, S_j $	$\sqrt{\mu_{S_i}^2 + \mu_{S_j}^2}$			
	Radius	R_{S_i,S_j}	$\sqrt{\left(\sigma_{S_i}^2\right)^2 + \left(\sigma_{S_j}^2\right)^2}$			
2D	Approx. Covariance	Cov_{S_i,S_j}	$\frac{SR_{ij}}{w_i + w_j}$			
	Correlation Coefficient	P_{S_i,S_j}	$\frac{Cov_{S_i,S_j}}{\sigma_{S_i}\sigma_{S_j}}$			

Kitsune Feature Extractor (FE)

	The packet's	Statistics	Aggregated by	# Features	Description of the Statistics
	size	μ_i, σ_i	SrcMAC-IP, SrcIP, Channel, Socket	8	Bandwidth of the outbound traffic
Sou	size	$ S_i, S_j , R_{S_i,S_j}, Cov_{S_i,S_j}, P_{S_i,S_j}$	Channel, Socket	8	Bandwidth of the outbound and inbound traffic together
	count	w_i	SrcMAC-IP, SrcIP, Channel, Socket	4	Packet rate of the outbound traffic
200	jitter	w_i, μ_i, σ_i	Channel	3	Inter-packet delays of the outbound traffic

from an IP [3]

 $x \in \mathbb{R} \mathcal{I}23$

 $\times 5 = 115$

Kitsune NIDS

The KitNET Anomaly Detector

Anomaly Detection with an Autoencoder

- > An Autoencoder is a NN which is trained to reproduce its input after compression
- > There are two phases: train+ Execute

$$h_{\theta}(\vec{x}) \approx \vec{x}$$

Reconstruction Error

RMSE
$$(\vec{x}, \vec{y}) = \sqrt{\frac{\sum_{i=1}^{n} (x_i - y_i)^2}{n}}$$

Low value: x is normal

High value: x is abnormal

Idnas not fit known concents!

- 1) **Training Phase:** Train an autoencoder on clean (normal) data. For each instance x_i in the training set X:
 - a) Execute: $s = \text{RMSE}(\vec{x}, h_{\theta}(\vec{x}))$
 - b) Update: if $(s \ge \phi)$ then $\phi \leftarrow s$
 - c) Train: Update θ by learning from x_i
- 2) Execution Phase:

When an unseen instance \vec{x} arrives:

- a) Execute: $s = \text{RMSE}(\vec{x}, h_{\theta}(\vec{x}))$
- b) Verdict: if $(s \ge \phi \beta)$ then Alert

The KitNET Anomaly Detector Our Solution:

Why not one massive deep autoencoder?

- Curse of dimensionality!
- > Train/Execute Complexity

$$d_{cor}(u,v) = 1 - \frac{(u-\bar{u})\cdot(v-\bar{v})}{\|(u-\bar{u})\|_2\|(v-\bar{v})\|_2}$$

For the first N observations (x), incrementally update a correlation distance matrix
D=[Dlij]=1-(xli-xli)·(xlj-xlj)/||(xli-xli)||l2 ||(xlj-xlj)||l2

Networks:

- Surveillance
- > IoT

Algorithms:

- Signature-based: Suricata with over 13,465 emerging threat rules
- Anomaly-based:
 - **Batch**: GMM, Isolation Forest
 - > Online: pcStream & iGMM

TABLE III: The datasets used to evaluate Kitsune.

Attack Type	Attack Name	Tool	Description: The attacker	Violation	Vector	# Packets	Train [min.]	Execute [min.]
Recon.	OS Scan	Nmap	scans the network for hosts, and their operating systems, to reveal possible vulnerabilities.	C	1	1,697,851	33.3	18.9
	Fuzzing	SFuzz	searches for vulnerabilities in the camera's web servers by sending random commands to their cgis.	С	3	2,244,139	33.3	52.2
Man in the Middle	Video Injection	Video Jack	injects a recorded video clip into a live video stream.	C, I	1	2,472,401	14.2	19.2
	ARP MitM	Ettercap	intercepts all LAN traffic via an ARP poisoning attack.	С	1	2,504,267	8.05	20.1
	Active Wiretap	Raspberry PI 3B	intercepts all LAN traffic via active wiretap (network bridge) covertly installed on an exposed cable.	C	2	4,554,925	20.8	74.8
Denial of Service	SSDP Flood	Saddam	overloads the DVR by causing cameras to spam the server with UPnP advertisements.	A	1	4,077,266	14.4	26.4
	SYN DoS	Hping3	disables a camera's video stream by overloading its web server.	A	1	2,771,276	18.7	34.1
	SSL Renegotiation	THC	disables a camera's video stream by sending many SSL renegotiation packets to the camera.	A	1	6,084,492	10.7	54.9
Botnet Malware	Mirai	Telnet	infects IoT with the Mirai malware by exploiting default credentials, and then scans for new vulnerable victims network.	C, I	х	764,137	52.0	66.9

Conclusion

- In the past, NNs on NIDS were used for the task of classification
- > We propose using NNs for the task of anomaly detection
 - > Eliminates the need for labeling data (endless traffic & unknown threats)
 - Enables plug-and-play
- Kitsune Achieves this by
 - > Efficient feature extraction
 - Efficient anomaly detection (KitNET)

adversarial machine learning