Limiti

Tabella dei contenuti

alcolo infinitesimale									
Limite finito				 					
$Dimostrazione \dots \dots \dots$				 					
Limite infinito				 					
Limite inesistente				 					
$Dimostrazione \dots \dots \dots$									
Teorema di algebra dei limiti				 					
Dimostrazione									
Teorema di monotonia				 					
$Dimostrazione \dots \dots \dots$				 					
Teorema del confronto (o carabinieri)				 					
Dimostrazione				 					
Successione				 					

Calcolo infinitesimale

La definizione di limite è fondamentale per l'analisi matematica.

Limite finito

Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ con A non limitato superiormente, e sia L un numero reale. Si dice che il limite di f per x tendente a $+\infty$ equivale ad L (oppure che f tende ad L per x che tende a $+\infty$), quando:

$$\forall \varepsilon > 0, \ \exists K > 0 \ \text{t.c.} \ \forall x \in A \ \text{con} \ x \geq K,$$

$$L - \varepsilon \leq f(x) \leq L + \varepsilon$$

Dimostrazione

Data una $f: \mathbb{N} \setminus \{0\} \to \mathbb{R}$ come $f(n) = \frac{1}{n} \ \forall n \in \mathbb{N} \setminus \{0\}$, vogliamo dimostrare che $\lim_{n \to +\infty} f(n) = 0$.

Limite finito

Occorre fissare una $\varepsilon>0$ **arbitrario**, di conseguenza sappiamo che deve esistere un $K\in\mathbb{N}\,$ t.c. $0<\frac{1}{\varepsilon}\leq K$ (per il postulato di Eudosso-Archimede).

Quindi fissiamo una $n \in \mathbb{N}$ t.c. $n \geq K$:

$$\begin{cases} \frac{1}{n} \leq \frac{1}{K} \leq \varepsilon = 0 + \varepsilon \\ \frac{1}{n} \geq 0 \geq -\varepsilon = 0 - \varepsilon \end{cases} \square$$

Perciò abbiamo verificato che $L-\varepsilon \leq f(n) \leq L+\varepsilon$ con L=0 e possiamo scrivere:

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

Nota bene

Questa scrittura è equivalente a $\frac{1}{n} \to 0$ per $n \to +\infty$.

Limite infinito

Sia $f: A \subseteq \mathbb{R} \to \mathbb{R}$ con A non limitato superiormente. Si dice che il limite di f per x tendente a $+\infty$ equivale a $+\infty$ (oppure che f tende a $+\infty$ per x che tende a $+\infty$), quando:

$$\forall M > 0, \ \exists K > 0 \ \text{t.c.} \ \forall x \in A \ \text{con} \ \geq K, f(x) \geq M$$

Similmente si dice che il limite di una funzione equivale a $-\infty$ quando:

$$\forall M > 0, \ \exists K > 0 \ \text{t.c.} \ \forall x \in A \ \text{con} \ \geq K, f(x) \leq -M$$

Limite infinito

Esempio Data $f: \mathbb{N} \to \mathbb{R}$, $f(n) = n^2 + 1 \ \forall n \in \mathbb{N}$, dimostriamo $\lim_{n \to +\infty} = (n^2 + 1) = +\infty$.

Svolgimento: Fissiamo M>0 arbitrario, per il quale, dal postulato di Eudosso-Archimede, sappiamo che esiste $K\in\mathbb{N}$ t.c. $K\geq M$. Infine consideriamo $n\in\mathbb{N}$ con $n\geq K$:

$$f(n) = n^2 + 1 \ge K^2 + 1 \ge K \ge M$$

Nota bene

La disequazione di secondo grado $K^2+1 \geq K$ è rispettata per qualsiasi K reale.

Limite inesistente

Data $f: \mathbb{N} \to \mathbb{R}$, $f(n) := (-1)^n$, vale a dire:

$$f(n) \coloneqq \begin{cases} +1 & \text{n pari} \\ -1 & \text{n dispari} \end{cases}$$

Il cui grafico è il seguente:

Limite inesistente

È evidente come il $\lim_{n\to+\infty} f(n)$ non esista.

Dimostrazione

Supponiamo per assurdo che una funzione $f:A\to\mathbb{R}$ possieda due limiti L ed L' quando x tende a $+\infty$. Supponendo che entrambi siano valori **finiti**, prendiamo una $\varepsilon>0$ molto piccola, perciò siamo certi che $0<\varepsilon<\frac{|L-L'|}{2}$. Ora, per valori di x molto grandi, la funzione deve essere compresa tra le rette orizzontali $y=L+\varepsilon, y=L-\varepsilon$ e contemporaneamente anche tra le rette orizzontali $y=L'+\varepsilon, y=L'-\varepsilon$ il che è una contraddizione, dal momento che la funzione dovrebbe associare allo stesso valore di x due immagini.

Grazie a questo ragionamento si prova che sono assurdi anche i casi L finito, $L' = \pm \infty$ ed $L = \pm \infty, L' = \mp \infty$.

Teorema di algebra dei limiti

Siano $f,g:A\subseteq\mathbb{R}\to\mathbb{R}$ con A non limitato superiormente. Supponiamo che i seguenti limiti:

$$F \coloneqq \lim_{x \to +\infty} f(x), \ G \coloneqq \lim_{x \to +\infty} g(x)$$

Esistano e siano finiti, allora possiamo affermare che:

$$\lim_{x \to +\infty} (f(x) + g(x)) = F + G$$

$$\lim_{x \to +\infty} (f(x) - g(x)) = F - G$$

$$\lim_{x \to +\infty} f(x) g(x) = FG$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{F}{G}$$

Purché nell'ultimo caso $G \neq 0$.

Il teorema viene esteso parzialmente, in alcuni casi dove F oppure G sono infiniti:

$$F + \infty = +\infty \quad \forall F \in \mathbb{R},$$

$$F - \infty = -\infty \quad \forall F \in \mathbb{R},$$

$$+\infty + \infty = +\infty,$$

$$-\infty - \infty = -\infty,$$

$$\infty \cdot \infty = \infty,$$

$$\frac{F}{\infty} = 0 \quad \forall F \in \mathbb{R},$$

$$\frac{F}{0} = \infty \quad \forall F \in \mathbb{R} \setminus \{0\},$$

$$\frac{0}{\infty} = 0,$$

$$\frac{\infty}{0} = \infty,$$

Il segno dei prodotti e dei rapporti viene determinato secodo le regole usuali. $Nota\ bene$

Il teorema **non** si può applicare con le *forme indeterminate*:

$$+\infty-\infty$$
, $0\cdot\infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$

Dimostrazione

Considerando il caso $\lim_{x\to+\infty}(f(x)+g(x))$ nel caso in cui i due limiti F,G siano entrambi finiti.

Fissiamo quindi $\varepsilon > 0$, e per definizione di limite sappiamo che esiste $K_f > 0$ t.c. $\forall x \in A$ con $x \geq K_f$:

$$F - \frac{\varepsilon}{2} \le f(x) \le F + \frac{\varepsilon}{2}$$

Allo stesso modo, esiste $K_g > 0$ t.c. $\forall x \in A \text{ con } x \geq K_g$:

$$G - \frac{\varepsilon}{2} \le g(x) \le G + \frac{\varepsilon}{2}$$

Definiamo $K := \max(K_f, K_g)$ e prendiamo un qualsiasi $x \in A$ con x > K, allora:

$$f(x) + g(x) \le (F + \frac{\varepsilon}{2}) + (G + \frac{\varepsilon}{2}) = F + G + \varepsilon$$
$$f(x) + g(x) \ge (F - \frac{\varepsilon}{2}) + (G - \frac{\varepsilon}{2}) = F + G - \varepsilon$$

$$F + G - \varepsilon \le f(x) + g(x) \ge F + G + \varepsilon$$

Esempio Dato il limite $\lim_{x\to +\infty} (2+\frac{1}{x})$, vogliamo calcolarne il valore.

Svolgimento:

$$\lim_{x \to +\infty} (2 + \frac{1}{x}) = \lim_{x \to +\infty} 2 + \lim_{x \to +\infty} \frac{1}{x}$$
$$= \lim_{x \to +\infty} 2 + 0 = 2 + 0 = 2$$

Grazie al teorema di algebra dei limiti possiamo separare il limite della somma nella somma dei limiti. Successivamente otteniamo il limite di $\frac{1}{x}$ con x tendente ad infinito, e sempre grazie al teorema di algebra dei limiti possiamo affermare che è zero. Infine il limite della funzione costante equivale a due, perciò otteniamo la somma tra due e zero.

Esercizio Dato il limite $\lim_{x\to +\infty} (x^2+1)^2$, vogliamo calcolarne il valore.

Svolgimento:

$$\lim_{x \to +\infty} (x^2 + 1)^2 = \lim_{x \to +\infty} (x^2 + 1) \cdot \lim_{x \to +\infty} (x^2 + 1)$$
$$= (+\infty) \cdot (+\infty) = +\infty$$

Grazie al teorema di algebra dei limiti possiamo separare il limite del prodotto, nel prodotto dei limiti. Successivamente risolviamo i due limiti che valgono entrambi $+\infty$. Infine, sempre grazie al teorema di algebra dei limiti moltiplichiamo tra loro i due infiniti applicando le regole del segno.

Teorema di monotonia

Sia $f:A\subseteq\mathbb{R}\to\mathbb{R}$ con A non limitato superiormente ed f monotona. Allora il limite per $x\to+\infty$ di f esiste ed è:

$$\lim_{x \to +\infty} f(x) = \begin{cases} \sup \{ f(x) : x \in A \} & \text{se } f \text{ cresce} \\ \inf \{ f(x) : x \in A \} & \text{se } f \text{ descresce} \end{cases}$$

Dimostrazione

Considerando f non decrescente, sia:

$$L \coloneqq \sup \{ f(x) : x \in A \}$$

In base all'insieme A, il valore L potrebbe essere un valore finito o meno. Supponendo che sia finito, allora fissiamo $\varepsilon > 0$ arbitrario. Per definizione L è il **minimo dei maggioranti** di $\{f(x): x \in A\}$, dunque $L - \varepsilon < L$ **non** è a sua volta un maggiorante, questo significa che esiste $K \in A$ t.c. $f(K) \geq L - \varepsilon$.

Prendiamo ora un qualsiasi $x \in A$ con $x \ge K$, poiché in questo caso abbiamo considerato f non decrescente, otteniamo:

$$f(x) \ge f(K) \ge L - \varepsilon$$

Nello stesso momento però, L è maggiorante di $\{f(x): x \in A\}$, pertanto:

$$f(x) \le L < L - \varepsilon$$

Per cui il teorema di monotonia è dimostrato \square .

Esempio Dato il limite $\lim_{x\to+\infty} \log x$, dimostrare che il suo valore è $+\infty$.

Svolgimento:

$$\begin{aligned} \{\log x : x > 0\} &\supseteq \{\log \left(e^n\right) : n \in \mathbb{N}, n \ge 1\} \\ &= \{n \log e : n \in \mathbb{N}, n \ge 1\} \\ &= \{n : n \in \mathbb{N}, n \ge 1\} \end{aligned}$$

Dimostrando sup $\{\log x : x > 0\} = +\infty$, dimostriamo che l'insieme dei valori assunti dal logaritmo è **illimitato superiormente**, e allora grazie al teorema di monotonia segue che $\log x \to +\infty$ per $x \to +\infty$.

Infatti, l'ultimo insieme $\{n: n \in \mathbb{N}, n \geq 1\}$ è non limitato superiormente per il postulato di Eudosso-Archimede, pertanto neppure $\{\log x: x > 0\}$ lo è \square .

Teorema del confronto (o carabinieri)

Siano $f, g, h : A \subseteq \mathbb{R} \to \mathbb{R}$, supponiamo che $f(x) \leq g(x) \leq h(x) \ \forall x \in A$ e che i limiti esistano e siano uguali fra loro, cioè:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = L$$

Allora anche possiamo certamente affermare che $\lim_{x\to +\infty} g(x) = L$.

Dimostrazione

Successione

Una funzione che ha come dominio \mathbb{N} (oppure $\mathbb{N}\setminus 0$) e codominio l'insieme dei reali, viene chiamata successione di numeri reali.

Tradizionalmente, al posto di scrivere $a: \mathbb{N} \to \mathbb{R}, \ a(n) \coloneqq n^2 + 1 \ \forall n$, è di uso comune la notazione:

$$\{a_n\}_{n\in\mathbb{N}},\ a_n:=n^2+1\ \forall n$$

Si dice che una successione $\{a_n\}$ è:

Esempio Dato un numero reale k > 0, definiamo la successione $a_n := k^n, \forall n \in \mathbb{N}$, abbiamo:

- 1. Se k=1, allora $a_n=1 \ \forall n \in \mathbb{N}$ e quindi $a_n \to 1$ per $n \to +\infty$
- 2. Se k>1, allora $\lim_{x\to +\infty}a_n=\sup\{k^n:n\in\mathbb{N}\}=+\infty$ e quindi a_n è strettamente crescente
- 3. Se 0 < k < 1, allora $\lim_{n \to +\infty} a_n = \inf\{k^n : n \in \mathbb{N}\} = -\infty$ e quindi a_n è strettamente decrescente.

Esercizi aggiuntivi

Esercizio Dati un numero reale k < 0, e la successione $a_n := k^n$, $\forall n \in \mathbb{N}$, determinare se questa è convergente, infinitesima, divergente od osccillante.

Svolgimento:

$$\lim_{n\to+\infty} (-k)^n$$
 non esiste

Perciò la successione è oscillante come per la funzione $f: \mathbb{N} \to \mathbb{R}, \ f(n) := (-1)^n$.