Métodos Numéricos Introducción

Daniel Barragán 1

¹Escuela de Ingeniería de Sistemas y Computación Universidad del Valle

February 8, 2015

Agenda

- Modelado Matemático
 - Ecuación General
 - Caso de Estudio
 - Solución Analítica
- Métodos Numéricos
 - Método de Euler
 - Solución analítica Vs Solución Aproximada
- Métodos Numéricos en Ingeniería
 - Métodos Numéricos
 - Algunas Aplicaciones

Ecuación General.

 Un modelo matemático es una ecuación que expresa las características esenciales de un proceso

$$vd = f(vi, params, ie)$$

Donde:

vd = variable dependiente
 vi = variables independientes
 params = parámetros
 ie = influencias externas

Caso de Estudio.

Segunda Ley de Newton

$$F = ma$$

Donde:

```
F = fuerza actuando sobre el cuerpo (N ó kg\frac{m}{s^2}) m = masa del objeto (N a = aceleración (N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N a = N A a = N a = N a = N a = N a = N a = N
```

Caso de Estudio.

Despejando la aceleración

$$a = \frac{F}{m}$$

Donde:

 \rightarrow a = variable dependiente

 $\searrow F$ = influencia externa

 $\rightarrow m$ = parámetro

Caso de Estudio.

- La formula anterior:
 - Describe un proceso natural en términos matemáticos
 - Simplifica la realidad
 - Permite realizar una predicción

Fricción Resistencia del aire Estructura del objeto

Caso de Estudio.

 Segunda Ley de Newton para calcular la velocidad terminal de un objeto en caída libre

$$\frac{dv}{dt} = \frac{F}{m}$$

- La aceleración aumenta si la fuerza es positiva
- La aceleración disminuye si la fuerza es negativa
- La velocidad es constante si la fuerza es cero

Caso de Estudio.

 Es posible expresar F en términos de dos fuerzas opuestas

$$F = F_D + F_U$$

$$F_D = mg$$

$$F_U = -c_d V$$

Donde:

$$g = 9.81 \frac{m}{s^2}$$

 c_d = coeficiente de arrastre $(\frac{kg}{s})$

Caso de Estudio.

Combinando las ecuaciones

$$\frac{dv}{dt} = \frac{F}{m}$$
$$F = F_D + F_U$$

Se tiene:

$$\frac{\frac{dv}{dt} = \frac{F_D + F_U}{m}}{\frac{dv}{dt} = \frac{mg - c_d v}{m}}$$
$$\frac{\frac{dv}{dt} = g - \frac{c_d v}{m}}{\frac{dv}{m}}$$

Solución Analítica.

 Problema: Obtenga una solución por medio del cálculo para la ecuación diferencial:

$$\frac{dv}{dt} = g - \frac{c_d v}{m} \qquad \underbrace{9 - c_d v}_{m} = \frac{dv}{dt}$$

Integral:

$$\int \frac{1}{a - bx} dx = \frac{-1}{b} \ln|a - bx| \frac{\partial v}{\partial - c\partial v} = \frac{1}{m} dt$$

$$\frac{dv}{g-cdv} = \frac{1}{m}dt$$

$$\int \frac{dv}{g-cdv} = \int \frac{1}{m}dt$$

$$-\frac{1}{cd} |n(|g-cdv|) = \frac{t}{m} + C$$

Solución Analítica.

Solución:

$$\frac{dv}{dt} = g - \frac{Cdv}{m}$$

$$\frac{dv}{dt} = g - kv$$

$$\frac{1}{cd} \frac{1}{cd} \frac$$

$$3m-cdv = e^{-\frac{cd}{mt}}e^{c}$$

$$V = e^{-\frac{cd}{mt}}e^{c} - gm$$

$$V = e^{-\frac{cd}{mt}}e^{c} - gm$$

$$V = e^{-\frac{cd}{mt}}gm - \frac{cd}{cd}$$

$$V = e^{-\frac{cd}{mt}}gm - \frac{cd}{cd}$$

V= 9m (1-e-rd+)

Solución Analítica.

• Considerando que el objeto en t = 0, está en reposo v = 0

$$|g-0| = e^{-0}e^{-kB}$$
 $\forall z \forall o$

Reemplazando

$$g - kv = e^{-kt}g$$

$$-kv = e^{-kt}g - g$$

$$-kv = g(e^{-kt} - 1)$$

$$v = \frac{g}{-k}(e^{-kt} - 1)$$

$$v = \frac{gm}{c}(1 - e^{-(\frac{c_d}{m})t})$$

Solución Analítica.

Note que la ecuación resultante está en la forma general

$$v = \frac{gm}{c_d}(1 - e^{-(\frac{c_d}{m})t})$$

Donde:

v = variable dependiente t = variable independiente m y c_d = parámetros q = influencia externa

Solución Analítica.

 Problema: Un paracaidista de masa 68.1kg salta de un globo estacionario. Encuentre su velocidad antes de abrir el paracaídas. El coeficiente de arrastre es igual a 12.5kg/s

el paracaídas. El coeficiente de arrastre es igual a
$$12.5\frac{Ng}{s}$$

$$V = \frac{9m}{cd} \left(1 - e^{-\left(\frac{cd}{m}\right) + 1\right)}$$

$$V = \frac{9.8 \frac{m}{s^2} \times 6.8 \frac{m}{s}}{12.5 \frac{m}{s}} \left(1 - e^{-\left(\frac{12.5 \frac{m}{s}}{m}\right) \times 10.5}\right) = 44.87 \frac{m}{s}$$

Solución Analítica.

Solución

$$v(t) = \frac{9.8(68.1)}{12.5}(1 - e^{-(\frac{12.5}{68.1})t})$$

Solución Analítica.

Instrucciones Scilab

```
t = 0:2:12;

v = ((9.8*68.1)/(12.5))*(1-exp(-(12.5/68.1)*t));

plot(t,v)
```

Solución Analítica.

v en $\frac{m}{s}$
0.00
16.40
27.77
35.64
41.10
44.87
47.49
53.39

Solución Analítica.

- La ecuación anterior es llamada una solución exacta o analítica por que satisface exactamente la ecuación diferencial original
- Hay muchos modelos matemáticos que no pueden ser solucionados exactamente. En la mayoría de casos la única alternativa es encontrar una solución empleando métodos numericos que sea aproximada

Métodos Numéricos. Método de Euler.

 En los métodos numericos el modelo matemático es reformulado para que pueda solucionarse por medio de operaciones aritméticas

Métodos Numéricos. Método de Euler.

<u>dx</u> - ;

 El cambio de velocidad respecto al tiempo en la Segunda Ley de Newton puede ser aproximado por

$$\frac{dv}{dt} \cong \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

 Esta ecuación es llamada una aproximación por diferencias finitas en el tiempo t_i

Métodos Numéricos.

Método de Euler.

Igualando las ecuaciones;

$$\frac{dv}{dt} \cong \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i}$$

$$\left(\frac{\partial v}{\partial t}\right) = g - \frac{c_d v(t_i)}{m}$$

Se tiene:

$$\frac{\frac{v(t_{i+1})-v(t_i)}{t_{i+1}-t_i}=g-\frac{c_dv(t_i)}{m}}{v(t_{i+1})=v(t_i)+\left[g-\frac{c_dv(t_i)}{m}\right](t_{i+1}-t_i)}$$

Métodos Numéricos. Método de Euler.

 La ecuación diferencial se ha transformado en una ecuación que permite conocer la velocidad en el instante t_{i+1} a partir de valores previos de t y v

Métodos Numéricos. Método de Euler.

 Problema: Un paracaidista de masa 68.1kg salta de un globo estacionario. El coeficiente de arrastre es igual a 12.5 kg/s. Emplee el método de Euler con intervalos de tiempo de 2 segundos para encontrar su velocidad antes de abrir el paracaídas.

Métodos Numéricos.

Método de Euler.

• Solución
$$v(t_{1}) = v(t_{0}) + \left[g - \frac{c_{d}}{m}v(t_{0})\right](t_{1} - t_{0})$$

$$+ 2 \qquad v(t_{1}) \neq 0 + \left[9.8 - \frac{12.5}{68.1}(0)\right](2 - 0) = 19.60 \frac{m}{s}$$

$$v(t_{2}) = v(t_{1}) + \left[g - \frac{c_{d}}{m}v(t_{1})\right](t_{2} - t_{1})$$

$$v(t_{2}) = 19.60 + \left[9.8 - \frac{12.5}{68.1}(19.60)\right](4 - 2) = 32.00 \frac{m}{s}$$

Métodos Numéricos. Método de Euler.

Instrucciones Scilab

```
\begin{split} t &= 0.2.12; \\ v(1) &= 0; \\ //v &= zeros(1,length(t)); \\ for &i = 1.length(t)-1 \\ v(i+1) &= v(i) + (9.81-(12.5/68.1)*v(i))*(t(i+1)-t(i)); \\ end \\ plot(t,v,'color','red','marker','>'); \end{split}
```

Métodos Numéricos. Método de Euler.

t en seg	v en $\frac{m}{2}$
0	0.00
2	19.60
4	32.00
6	39.85
8	44.82
10	47.97
12	49.96
∞	53.39

Métodos Numéricos.

Solución analítica Vs Solución Aproximada.

Métodos Numéricos en Ingeniería. Métodos Numéricos.

Métodos Numéricos en Ingeniería. Algunas Aplicaciones.

 Las leyes de conservación son importantes en Ingenieria por que permiten predecir cambios con respecto al tiempo

cambios = incrementos - decrementos

Métodos Numéricos en Ingeniería. Algunas Aplicaciones.

A E > 4 E > E In OQC

Problemas I

$$\frac{9f}{9h} = 3 - \frac{W}{69 A}$$

$$\int \frac{1}{a - bx} \, \mathrm{d}x = \frac{-1}{b} \ln|a - bx|$$

• Problema: Un primer paracaidista tiene una masa de 70kg y un coeficiente de arrastre de 12kg/s. Un segundo paracaidista tiene una masa de 80kg y un coeficiente de arrastre de 15kg/s. ¿Cuanto tiempo le tardará al segundo paracaidista alcanzar la misma velocidad que el primer paracaidista alcanza en 9 segundos?

$$V = \frac{9m}{Cd} (1 - e^{-\frac{Cd}{m}t})$$

$$V = \frac{9.8 \times 70}{12} (1 - e^{-\frac{Cd}{m}t})$$

$$V = \frac{9.8 \times 70}{12} \left(1 - e^{-\frac{12}{70}(9)}\right) = 44.98$$

Problemas I

Problema: En lugar de emplear una relación lineal para el coeficiente de arrastre, se recomienda modelar la fuerza $\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} \frac{$

$$Q = \sqrt{\frac{9m}{60}}$$

- Obtenga la solución analítica para el caso donde el paracaidista esta inicialmente en reposo
- Realice una tabla con las velocidades para un paracaidista de masa 68.1kg, coeficiente de arrastre de 0.225kg/m, para un tiempo desde t=0s a t=12s. Realice una gráfica con los datos

$$\frac{dv}{dt} = \frac{f_0 + f_0}{m} = \frac{m_0 - C_0 v^2}{m}$$

$$\frac{dv}{C_0 d} = \frac{f_0}{dt} = \frac{m_0 - C_0 v^2}{m}$$

$$\frac{dv}{C_0 d} = \frac{f_0}{dt} = \frac{m_0 - C_0 v^2}{m}$$

$$\frac{dv}{C_0 d} = \frac{dv}{dt} = \frac{dv}{dt}$$

$$\frac{dv}{dt} = \frac{dv}{dt}$$

$$\frac{dv}$$

$$\frac{V(t_{i+1})-V(t_i)}{\Delta t} = \frac{mg-cd(V(t_k))^2}{m}$$

Problemas I

 Problema: Un paracaidista de masa 68.1kg salta de un globo estacionario. El coeficiente de arrastre es igual a 0.225 kg/m. Emplee el método de Euler con intervalos de tiempo de 2 segundos para encontrar su velocidad antes de abrir el paracaídas.

Integrales I

$$\int \frac{1}{a - bx} dx = \frac{-1}{b} \ln|a - bx|$$
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{a} \tanh^{-1} \frac{x}{a}$$

Bibliografía I

S. Chapra.

Applied Numerical Methods with MATLAB For Engineers and Scientists, Sixth Edition.

Mac Graw Hill, 2010.

Obtener solución análitica y por método de Euler. Con paso øe 2)obtener los valores de t desde 0 hasta 6.

$$\frac{dT}{dt} = k(T-60)$$

$$\int_{-\infty}^{\infty} \frac{1}{x+\alpha} \frac{|o(|x+\alpha|)| + C}{|a| \in |R|}$$

$$\frac{\int T_{x+a} = \ln(|x+a|) + C}{a \in \mathbb{R}}$$

$$\frac{\int T_{x+a} = \ln(|x+a|) + C}{a \in \mathbb{R}}$$

$$\frac{dT}{(T-60)} = kt + c \rightarrow T-60 = e^{kt} e^{c}$$

$$\ln(|T-60|) = kt + c \rightarrow T-60 = e^{kt}$$

80=0-0.356) x ec + 60 Cc = 50 T = 50 x e 0.35t + 60

 $\frac{dT}{dt} = k(T-60) \rightarrow \frac{T(t_{i+1})-T(t_i)}{\Lambda t} = k(T(t_i)-60)$

t | T | 80 | 66 | 618

T(+,+1)= 2(-0.35(T(+,)-60)) + T(+,)

+ T 0 80 2 69.93 4 69.932

T(0) = 80

1=0 kt, ec +60

$$\int \frac{1}{x+a} = \ln(|x+a|) + C$$

$$\frac{dT}{(T-60)} = kdt$$

$$\ln(|T-60|) = kd + C \rightarrow T-60 = e^{hd} e^{c}$$

$$\frac{dx}{dt} = t(1+x) \qquad x_0 = |00| \quad t = 0 \quad x \ge 0$$

$$\frac{dx}{1+x} = t dt \rightarrow \ln(|1+x|) = \frac{t^2}{2} + C$$

$$1+x = e^{\frac{t^2}{2}} \times e^{C}$$

$$x = e^{\frac{t^2}{2}} \times e^{C} - 1 \quad |00 = e^{C} - 1|$$

$$x = 101 e^{\frac{t^2}{2}} - 1$$

$$t \qquad x \qquad 0 \quad 100$$

$$2 \quad 745.3$$

$$4 \quad 301 0 = 5.75$$

$$6 \quad 6631656.86$$

$$\frac{dx}{dt} = t(1+x) \qquad x(t;+1) - x(t;) = t; (1+x(t;))$$

$$\frac{dx}{dt} = t(1+x) \qquad x(t;+1) - x(t;) = t; (1+x(t;))$$

$$\frac{dx}{dt} = t (1+x) \qquad x(t;+1) - x(t;)$$

$$\frac{dx}{dt} = t (1+x) \qquad x(t;+1) + x(t;+1) + x(t;+1)$$