第五次作业

U08M11002 Spring 2022

提交截止日期: 北京时间 2022 年 4 月 20 日

提交作业方式: 具体提交方式请以 QQ 群里助教的通知为准。

1. 为了你自己复习需要,建议上交前自行扫描备份。

题目 1. 求下列函数的 F(jw):

(1)
$$f(t) = \frac{\sin 2\pi (t-2)}{\pi (t-2)}, -\infty < t < \infty;$$

(2)
$$f(t) = \frac{2a}{a^2 + t^2}$$
, $-\infty < t < \infty$, $a > 0$;

(3)
$$f(t) = \left(\frac{\sin 2\pi t}{2\pi t}\right)^2, -\infty < t < \infty;$$

题目 2. 已知
$$f(t) = \frac{\sin t}{t}$$
,求其 $F(jw)$,并证明 $\int_{-\infty}^{\infty} \frac{\sin t}{t} dt = \pi$ 。

题目 3. 应用直接积分与傅里叶变换性质两种方法,求下图中所示余弦脉冲信号的傅里叶变换 F(jw)。

题目 4. 已知 f(t) 的傅里叶变换 F(jw), 设 $y(t) = f(\frac{t}{2} + 3) * \cos 4t$, 试求 y(t) 的傅里叶变换 Y(jw)。

题目 5. 已知 $f(t) \Leftrightarrow F(jw)$, 求下列信号的傅里叶变换:

(1)
$$y_1(t) = \frac{1}{2}f(t+1) + \frac{1}{2}f(t-1);$$

(2)
$$y_2(t) = f(-\frac{1}{2}t+1) + f(\frac{1}{2}t-1);$$

$$(3) y_3(t) = f(t) \cdot \cos(\pi t);$$

(4)
$$y_4(t) = \frac{\sin 3t}{t} * f(t);$$

(5)
$$y_5(t) = \frac{\mathrm{d}}{\mathrm{d}t} [f(-\frac{1}{4}t - 1)];$$

题目 6. 求下列频谱函数的傅里叶逆变换:

(1)
$$F_1(jw) = 2\cos w$$
;

(2)
$$F_2(jw) = \frac{e^{j2w}}{jw+1}$$
;

(3)
$$F_3(jw) = \frac{e^{-jw}}{6 - w^2 + 5jw};$$

题目 7. 已知 $f(t) \Leftrightarrow F(jw)$, 若 $f_2(t) = \int_{-\infty}^{t} (t-2)f(4-2t)dt$, 求 $f_2(t)$ 的

题目 8. 若已知 $f(t) \Leftrightarrow F(jw)$, 试求下列函数的频谱:

$$(1) \ tf(2t);$$

(1)
$$tf(2t)$$
; (2) $(t-2)f(t)$; (3) $t\frac{df(t)}{dt}$;

(3)
$$t \frac{\mathrm{df(t)}}{\mathrm{dt}}$$

(4)
$$f(1-t)$$
:

(4)
$$f(1-t)$$
; (5) $(1-t)f(1-t)$; (6) $f(2t-5)$;

(6)
$$f(2t-5)$$
;

(7)
$$\int_{-\infty}^{1-\frac{1}{2}t} f(\tau) d\tau;$$
 (8) $e^{jt} f(3-2t);$ (9) $\frac{df(t)}{dt} * \frac{1}{\pi t};$

(8)
$$e^{jt}f(3-2t)$$
;

$$(9) \frac{\mathrm{df(t)}}{\mathrm{dt}} * \frac{1}{\pi t};$$

题目 9. 利用能量等式 $\int_{-\infty}^{\infty} f^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(jw)|^2 dw$,计算下列积分 的值:

$$(1) \int_{-\infty}^{\infty} (\frac{\sin t}{t})^2 dt;$$

$$(2) \int_{-\infty}^{\infty} \frac{\mathrm{dx}}{(1+x^2)^2};$$

题目 10. 已知信号 f(t) 的频谱函数 $F(jw) = 4Sa(w) \cos 2w$, 求信号 f(t)。