AQM Assignment One

Ada Žiemyte, Shalva Kilasonia, Anders Riis March 2013, College of Europe

Contents

a.	ARIMA Models	1
	a.i. ARIMA model for ln_inv	1
	a.ii. ARIMA model for ln_inc	6
	a.iii. ARIMA model for $ln_consump$	12
b.	Dynamic Linear Model	14
c.	Error Correction Model	16
$\mathbf{d}.$	Model Specification	18
e.	Comparison of Models	20
f.	VAR(4) Model	20
g.	Final Model	27

a. ARIMA Models

To identity an ARIMA model we must check for stationarity, correct for stationarity and examine the graphs for the autocorrelations and partial autocorrelations.

a.i. ARIMA model for $ln_{-}inv$

As can be seen in figure 1 on the following page, the ACF decays monotonically. That the ACF decays slowly indicates that the data is non-stationary, i.e. that

 $[\]hline ^{1} http://www.polsci.wvu.edu/duval/ps791c/Notes/Stata/arimaident.html$

we have a non-stationary mean.² Stationarity is when we have a flat looking series without trend.³ The scatterplot in figure 1 also indicates that the series is non-stationary as we can see a clear trend. The PACF cuts off after one lag (see figure 1), so we probably have an AR(1) process. However, because of non-stationarity we first attempt to correct for this by taking the first difference.

Now in figure 2 on the next page we see that the scatterplot is flatter, portraying stationarity. The ACF decays in an alternating or oscillating fashion, probably portraying some sort of MA as it seems to cut off (becomes zero) after four values or after zero values (q=0). The PACF never seems to cut off (p=0), although it can be seen as decaying. Thus, we have evidence of an ARIMA(0,1,0) model:

 $^{^2} http://www.polsci.wvu.edu/duval/ps791c/Notes/Stata/arimaident.html ~^2 html ~^$

³http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm

	l	OPG				_
D.ln_inv						_
ln_inv	+ 					
_cons			3.55		.0075304	.0260623
	.044543		21.50	0.000	.0404823	.0486037

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at z

It does not make sense to do an armaroot test as we have no AR or MA parameters in the model.

Another way of interpreting the graphs in figure 2 is that we have an ARIMA(4,1,4) model, the results of which are:

. arima ln_inv, arima(4,1,4)

```
(setting optimization to BHHH)
Iteration 0:
              log likelihood = 151.19416
Iteration 1:
              log likelihood =
                                153.8349
              log likelihood = 155.72441
Iteration 2:
Iteration 3:
              log likelihood = 158.06115
Iteration 4:
              log likelihood = 158.78522
(switching optimization to BFGS)
              log likelihood = 160.42741
Iteration 5:
              log likelihood = 161.31532
Iteration 6:
Iteration 7:
              log likelihood = 161.57824
Iteration 8:
              log likelihood = 162.63005
Iteration 9:
              log likelihood = 162.99665
```

```
Iteration 11: log likelihood = 163.81731
Iteration 12: log likelihood = 164.09801
Iteration 13: log likelihood = 164.17117
Iteration 14: log likelihood = 164.23693
(switching optimization to BHHH)
Iteration 15: log likelihood = 164.28633
Iteration 16: log likelihood = 164.28633
                                       (backed up)
Iteration 17: log likelihood = 164.28633
                                      (not concave)
Iteration 18: log likelihood = 164.29517
Iteration 19: log likelihood = 164.29517
                                       (backed up)
(switching optimization to BFGS)
Iteration 20: log likelihood = 164.29519
                                      (backed up)
Iteration 21: log likelihood = 164.29682
Iteration 22: log likelihood = 164.30153
Iteration 23:
             log likelihood = 164.30185
Iteration 24: log likelihood =
                             164.3047
Iteration 25: log likelihood = 164.30508
Iteration 26: log likelihood = 164.30518
Iteration 27: log likelihood = 164.30518
ARIMA regression
Sample: 1960q2 - 1982q4
                                          Number of obs
                                                                   91
                                          Wald chi2(7)
                                                                361.32
Log likelihood = 164.3052
                                          Prob > chi2
                                                                0.0000
                         OPG
       - 1
   D.ln_inv |
               Coef. Std. Err.
                                    z P>|z| [95% Conf. Interval]
         - 1
     _cons | .0170483 .0066675 2.56 0.011
                                                 .0039803
ARMA
        ar |
        L1. |
              .250352 .3175816 0.79 0.431
                                                  -.3720964
                                                             .8728004
        L2. | -.6410894 .3055835 -2.10 0.036
                                                  -1.240022
                                                             -.0421568
       L3. | .6959524 .2326489 2.99 0.003
L4. | -.1234277 .371418 -0.33 0.740
                                                  .2399689
                                                            1.151936
                                                  -.8513935
                                                              .6045381
        L1. | -.4332859 .3581174 -1.21 0.226 -1.135183
                                                            .2686114
        L2. | .7828925 .3674864 2.13 0.033
                                                 .0626323
                                                              1.503153
        L3. | -.7487543
                                 1.53 0.125
       L4. | .5336774
                        .347815
                                                  -.1480275
    /sigma | .0387658 .0050688 7.65 0.000
                                                 .0288311
                                                            .0487004
  ______
```

Iteration 10: log likelihood = 163.47528

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at z

To test for stationarity we use the -armaroots- command to know whether the absolute value of the roots of the characteristic equation are smaller than one, which is required for stationarity. As we can see in the following table all the roots are smaller than one in absolute value:

. armaroots

Characteristic roots of AR-polynomial

+_							+
 -	Characteri	stic roots	•		•	Period	 - -
i	2762973 +				İ	3.38	i
	2762973 -	.9377075i	-	.977566		3.38	- 1
	.5804232		-	.580423			- 1
	.2225233		-	.222523			- 1

Characteristic roots of MA-polynomial

+-							-+
1	Characteristic roots			Modulus	- 1	Period	-
-			-+-		+		-
1	3382539 +	.941054i	-	.999999	- 1	3.28	-
1	3382539 -	.941054i	-	.999999	- 1	3.28	-
1	.5548968 +	.4751503i	-	.730533	- 1	8.87	-
1	.5548968 -	.4751503i		.730533	- 1	8.87	- 1
+-							-+

Graphically we can also confirm that none of the roots are larger than one in absolute value:

We now turn to the ACF and the PACF for the residuals to confirm that these have no distinct pattern:

The graph above indeed seems to confirm that the residuals are white noise. The Portmanteau statistics confirms this by yielding:

. wntestq res1

Portmanteau test for white noise ----Portmanteau (Q) statistic = 30.0852 Prob > chi2(40) = 0.8728

a.ii. ARIMA model for ln inc

We now turn to the variable ln_inc .

The graphs shown above again demonstrate that we probably have non-stationary data, so we do a first difference transformation again.

The results of this first difference transformation can be seen in the graphs above. Now the data does not portray a non-stationary mean, so we decide that d=1. Again the case is more ambiguous for the ACF and PACF. We could again conclude that the ACF never cuts off, so we have a MA(0), where q=0, and the PACF never cuts off (becomes zero), so p=0. Estimating an ARIMA(0,1,0) model gives the results:

```
. arima ln_inc, arima(0,1,0)
(setting optimization to BHHH)
Iteration 0: log likelihood = 274.34425
Iteration 1: log likelihood = 274.34425
ARIMA regression
Sample: 1960q2 - 1982q4
                                            Number of obs
                                                                     91
                                            Wald chi2(.)
Log likelihood = 274.3443
                                            Prob > chi2
                            OPG
   D.ln_inc |
                  Coef. Std. Err.
                                           P>|z|
                                                     [95% Conf. Interval]
                                                              .0219938
    _cons | .019464 .0012907
                                  15.08 0.000
                                                    .0169343
     /sigma | .0118704 .0006448 18.41 0.000 .0106066 .0131342
```

.....

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at z (1 missing value generated)
. armaroots
No AR or MA parameters in model

Another possibility is however to interpret the ACF and the PACF cuts off after three after significant values so we have an ARIMA(3,1,3) model:

. arima ln_inc, arima(3,1,3)

```
(setting optimization to BHHH)
Iteration 0: log likelihood = 270.31907
Iteration 1: log likelihood = 274.68144
Iteration 2: log likelihood = 276.35436
Iteration 3: log likelihood = 277.54725
Iteration 4: log likelihood = 278.059
(switching optimization to BFGS)
Iteration 5: log likelihood = 278.30896
Iteration 6: log likelihood = 278.77259
Iteration 7: log likelihood = 278.78656
Iteration 8: log likelihood = 279.11859
Iteration 9: log likelihood = 279.5552
Iteration 10: log likelihood = 279.5552 (backed up)
Iteration 11: log likelihood = 279.70686
                                             (backed up)
Iteration 12: log likelihood = 280.14331
Iteration 13: log likelihood = 280.39292
Iteration 14: log likelihood =
(switching optimization to BHHH)
Iteration 15: log likelihood = 280.40117
Iteration 16: log likelihood = 280.40177
                                              (backed up)
Iteration 17: log likelihood = 280.4201
Iteration 18: log likelihood = 280.42064
Iteration 19: log likelihood = 280.43726
(switching optimization to BFGS)
Iteration 20: log likelihood = 280.49572
Iteration 21: log likelihood = 280.67651
Iteration 22: log likelihood = 280.74026
Iteration 23: log likelihood =
                                  280.7466
Iteration 24: log likelihood = 281.03547
Iteration 25: log likelihood = 281.05958
Iteration 26: log likelihood = 281.06647
Iteration 27: log likelihood = 281.06818
Iteration 28: log likelihood = 281.06845
Iteration 29: log likelihood = 281.06846
ARIMA regression
Sample: 1960q2 - 1982q4
                                                 Number of obs
                                                                              91
                                                  Wald chi2(6)
                                                                            47.81
Log likelihood = 281.0685
                                                 Prob > chi2
                                                                          0.0000
______
           - 1
                              OPG
                 Coef. Std. Err. z P>|z| [95% Conf. Interval]
    D.ln_inc |
```

ln_inc						
_cons	.0193814	.0022928	8.45	0.000	.0148877	.0238752
+						
ARMA						
ar						
L1.	.3524409	.3992522	0.88	0.377	4300791	1.134961
L2.	.5973378	.1728554	3.46	0.001	.2585474	.9361281
L3.	3721901	.3633335	-1.02	0.306	-1.084311	.3399305
1						
ma						
L1.	2371601	480.2177	-0.00	1.000	-941.4465	940.9722
L2.	6004014	593.9994	-0.00	0.999	-1164.818	1163.617
L3.	.6367674	305.7404	0.00	0.998	-598.6033	599.8769
+						
/sigma	.0108757	2.61138	0.00	0.498	0	5.129086

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at z (1 missing value generated)

. armaroots

Characteristic roots of AR-polynomial

İ	Characteristic roots	1	Modulus	1	Period	ı
•	8551112	Ī	.855111	1		i
-	.603776 + .2659097i	- 1	.659737	- 1	15.1	- 1
-	.6037762659097i	- 1	.659737	- 1	15.1	- 1
+-						_+

Characteristic roots of MA-polynomial

+-							+
	Characteri	stic roots			•		İ
1-					т		1
	-1.000003		- 1	1	-		- 1
	.6185815 +	.5041055i		.797976	- 1	9.19	- 1
	.6185815 -	.5041055i	-	.797976	- 1	9.19	- 1
+-							+

All the significance values for moving average is however insignificant and the characteristic roots of the MA-polynomial is not smaller than one in absolute value, so we postulate an ARIMA(3,1,0):

. arima ln_inc, arima(3,1,0)

```
      (setting optimization to BHHH)

      Iteration 0:
      log likelihood = 278.89994

      Iteration 1:
      log likelihood = 278.90832

      Iteration 2:
      log likelihood = 278.91024

      Iteration 3:
      log likelihood = 278.91141

      Iteration 4:
      log likelihood = 278.91196

      (switching optimization to BFGS)

      Iteration 5:
      log likelihood = 278.91231

      Iteration 6:
      log likelihood = 278.91275

      Iteration 7:
      log likelihood = 278.91278

      Iteration 8:
      log likelihood = 278.91278
```

ARIMA regression

Sample: 1960q2 Log likelihood:	•		Wald ch	of obs = i2(3) = chi2 =	7.42	
		OPG				
_ :					[95% Conf.	Interval]
ln_inc						
_cons					.014947	
ARMA						
ar						
L1.	.0680786	.1137906	0.60	0.550	1549469	.291104
L2.	.1220981	.1069794	1.14	0.254	0875776	.3317738
L3.					.0353056	.5122626
					.0098298	.0127116

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at z (1 missing value generated)

. armaroots

Characteristic roots of AR-polynomial

+-							-+
	Characteri	stic roots	•	Modulus	•	Period	
1-	.7373076		-+-·	.737308	+ 		- 1
i	3346145 +	.5092766i	i	.609368	i	2.92	i
1	3346145 -	.5092766i	-	.609368	1	2.92	-1
+_							_+

. wntestq res1

Portmanteau test for white noise

Portmanteau (Q) statistic = 30.2217 Prob > chi2(40) = 0.8689

The Portmanteau test above indicates that the residuals are white noise. To verify this, we also produce the residuals of the ARIMA(3,1,0) model:

a.iii. ARIMA model for ln_consump

Identifying an ARIMA model for the variable $ln_consump$ we again first look at some graphs. Again we have to take the first diffference to correct for stationarity. After this is done we see in the lower pane that we have a stationary mean:

We postulate an ARIMA(2,1,2):

. arima ln_inc, arima(2,1,2)

```
(setting optimization to BHHH)

Iteration 0: log likelihood = 270.80789

Iteration 1: log likelihood = 274.91076

Iteration 3: log likelihood = 276.40311

Iteration 4: log likelihood = 276.40314 (backed up)

(switching optimization to BFGS)

Iteration 5: log likelihood = 276.40314 (backed up)

Iteration 6: log likelihood = 276.40314 (backed up)

Iteration 7: log likelihood = 276.88434

Iteration 7: log likelihood = 277.73776

Iteration 8: log likelihood = 278.36479

Iteration 9: log likelihood = 278.4605

Iteration 10: log likelihood = 278.47605

Iteration 11: log likelihood = 278.47636

Iteration 12: log likelihood = 278.47641

Iteration 13: log likelihood = 278.47642
```

ARIMA regression

Sample: 1960q2 - 1982q4 Number of obs = Wald chi2(4) =							
Log likelihood	1 = 278.4764				chi2		
I		OPG					
_ :	Coef.				= ::	. Interval]	
ln_inc							
	.0192823						
ARMA							
ar							
L1.	0365622	.2870042	-0.13	0.899	59908	.5259557	
L2. 	.7588994	. 2752277	2.76	0.006	.2194631	1.298336	
ma							
L1.	.2707034	207.4331	0.00	0.999	-406.2907	406.8321	
•	7292833				-297.2832		
•	.0112218					2.291987	

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at z (1 missing value generated)

. armaroots

 ${\tt Characteristic\ roots\ of\ AR-polynomial}$

	Characteristic roots	1	Modulus	1	Period	İ
İ	8896212 .853059	1	.889621 .853059	I		į
+			.000009	' 		ا +

 ${\tt Characteristic\ roots\ of\ MA-polynomial}$

+		+
Characteristic roots	•	•
9999923 .7292889	.999992 .729289	
wntestq res1		+
ortmanteau test for white no	oise	

Portmanteau (Q) statistic = 33.7915 Prob > chi2(40)0.7447

The ACF and the PACF of the residuals is given by:

Dynamic Linear Model b.

Formulate and estimate a dynamic linear model with four lags for $ln_consump\ with\ ln_inc\ and\ ln_inv\ as\ explanatory\ variables.$

The model can be written as

$$y_t = a_0 + a_1 y_{t-1} + a_2 y_{t-2} + a_3 y_{t-3} + a_4 y_{t-4} + b_0 ln_inc_t + c_0 ln_inv_t + u_t$$
, (1)
where y is $ln_consump$.⁴

The results of a dynamic linear model with four lags for *ln consump* are:

 $^{^4{\}rm See}$ AQM lecture notes chapter 3, p. 18.

. reg ln_consump L(1/4).ln_consump ln_inc ln_inv

Source	SS	df		MS		Number of obs = 88 F(6, 81) =55970.25
Model Residual	22.3174282	81	.000	066456		Prob > F = 0.0000 R-squared = 0.9998 Adj R-squared = 0.9997
Total	22.3228112	87	. 256	584037		Root MSE = .00815
ln_consump	Coef.					[95% Conf. Interval]
ln_consump						
L1.	.4046597	.1056	179	3.83	0.000	.1945131 .6148062
L2.	.2783657	.1128	595	2.47	0.016	.0538107 .5029207
L3.	.1180614	.111	389	1.06	0.292	1035678 .3396905
L4.	1543535	.0870	547	-1.77	0.080	327565 .0188579
<pre>ln_inc </pre>	.3326671	.0489	638	6.79	0.000	.2352445 .4300897
ln_inv	.009699	.0120	582	0.80	0.424	0142931 .0336911
_cons	.0492794	.0134	815 	3.66	0.000	.0224554 .0761033

Mis-specification tests are:

Ramsey RESET test using powers of the fitted values of $ln_consump$

Ho: model has no omitted variables F(3, 78) = 6.02

Prob > F = 0.0010

 ${\tt Breusch-Pagan} \ / \ {\tt Cook-Weisberg} \ {\tt test} \ {\tt for} \ {\tt heteroskedasticity}$

Ho: Constant variance

Variables: fitted values of ln_consump

chi2(1) = 1.10 Prob > chi2 = 0.2944

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(27) = 30.03Prob > chi2 = 0.3130

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	30.03 6.37 4.75	27 6 1	0.3130 0.3831 0.0294
Total	41.14	34 	0.1863

(n = 88)	D-H	P-value	asy.	P-value
+				
Residuals	6.1568	0.0460	3.6067	0.1647

Breusch-Godfrey LM test for autocorrelation

lags(p)	df	Prob > chi2
1	1	

HO: no serial correlation

LM test for autoregressive conditional heteroskedasticity (ARCH)

0 1		df	Prob > chi2
		1	0.2120

HO: no ARCH effects vs. H1: ARCH(p) disturbance

Error Correction Model c.

Reformulate the model in b. as an error correction model; store the log-likelihood value using the command -estimates store llu-; and subject the model to mis-specification testing.

Writing equation 1 on page 14 as an error correction model yields:

 $\Delta y_t = a_0 + \alpha_1 \Delta y_{t-1} + \alpha_2 \Delta y_{t-2} + \alpha \Delta_3 y_{t-3} + \beta_0 \Delta ln _inc_t + \gamma_0 \Delta ln _inv_t + ay_{t-1} + u_t,$ again where y is $ln_consump.^5$ Running the regression gives:

Source	SS	df	MS		Number of obs	=	88
+-					F(6, 81)	=	11.06
Model	.004719858	6	.000786643		Prob > F	=	0.0000
Residual	.005759951	81	.000071111		R-squared	=	0.4504
+-					Adj R-squared	=	0.4097
Total	.010479809	87	.000120458		Root MSE	=	.00843
dln_consump	Coef.	Std. E	Err. t	P> t	[95% Conf.	In	terval]
+-							
dln_consump							
L1.	2673194	.0877	38 -3.05	0.003	4418905		0927483
L2.	.1660194	.08433	1.97	0.052	0017792		.333818
L3.	.2591583	.08654	52 2.99	0.004	.0869605		4313562
1							
dln_inc	.4554999	.08159	85 5.58	0.000	.2931446		6178553
dln_inv	.062451	.02026	3.08	0.003	.0221265		1027754

⁵See answer to assignment 4, IQM, p. 13.

The results of mis-specification tests are:

Ramsey RESET test using powers of the fitted values of dln_consump

Ho: model has no omitted variables

F(3, 78) = 1.19Prob > F = 0.3193

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of dln_consump

chi2(1) = 0.47Prob > chi2 = 0.4911

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: L.dln_consump L2.dln_consump L3.dln_consump dln_inc dln_inv L.ln_consump

chi2(6) = 7.60Prob > chi2 = 0.2686

White's test for Ho: homoskedasticity

 ${\tt against\ Ha:\ unrestricted\ heterosked asticity}$

chi2(27) = 38.39Prob > chi2 = 0.0719

Cameron & Trivedi's decomposition of IM-test

Source	 .+	chi2	df	p
Heteroskedasticity Skewness Kurtosis	I	38.39 9.38 0.65	27 6 1	0.0719 0.1532 0.4218
Total		48.42	34	0.0519

(n = 88)		•	P-value
Residuals	0.2732	2.4639	0.2917

Breusch-Godfrey LM test for autocorrelation

lags(p) | chi2 df Prob > chi2

1	- 1	4.266	1	0.0389
2	1	8.164	2	0.0169
3	1	9.789	3	0.0205
4	- 1	10.731	4	0.0298

HO: no serial correlation

LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p))	chi2	df	Prob > chi2
 	+			
1	ĺ	3.184	1	0.0743
2	- 1	8.175	2	0.0168
3	1	1.331	3	0.7217
4	- 1	0.949	4	0.9175

HO: no ARCH effects vs. H1: ARCH(p) disturbance

The Ramsey RESET test and the two Breusch-Pagan tests for heteroskedasticity do not reveal any problems as we have p-values comfortably above, say, a 10% significance level. However, the White's test for homoskedasticity is rejected at a 10% significance level. Moreover, the Breusch-Godfrey LM test for autocorrelation shows some problems as the null hypothesis of no serial correlation is rejected for all the lags at the 5% significance level.

d. Model Specification

Reduce the model in successive steps by dropping insignificant variables (subjecting each step to mis-specification testing) in order to obtain a parsimonious model.

We now drop the first lag of $ln_consump$ in the error correction model above. This gives us the following result:

Source	SS	df		MS		Number of obs F(5, 82)		88 13.42
Model				0094329		Prob > F	=	0.0000
Residual						R-squared		0.4501
+						Adj R-squared	=	0.4165
Total	.010479809	87	.000)120458		Root MSE	=	.00838
-	Coef.					[95% Conf.	In	 terval]
dln_consump								
L1.	2657825	.0869	475	-3.06	0.003	4387488		0928161
L2.	.1683854	.083	152	2.03	0.046	.0029696		3338012
L3.	.2603634	.0858	671	3.03	0.003	.0895463		4311805
1								
dln_inc	.4581345	.0802	364	5.71	0.000	.2985187		6177503
dln_inv	.0626535	.0201	277	3.11	0.003	.022613		.102694
_cons	.0054381	.0028	747	1.89	0.062	0002807		0111569

Now we see that we do not have insignificant variables.

The mis-specification tests of this model are:

Ramsey RESET test using powers of the fitted values of dln_consump

Ho: model has no omitted variables

F(3, 79) = 1.20Prob > F = 0.3151

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of dln_consump

chi2(1) = 0.57Prob > chi2 = 0.4492

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: L.dln_consump L2.dln_consump L3.dln_consump dln_inc dln_inv

chi2(5) = 4.26Prob > chi2 = 0.5122

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(20) = 25.95 Prob > chi2 = 0.1675

Cameron & Trivedi's decomposition of ${\tt IM-test}$

Source	 _	chi2	df	p
Heteroskedasticity Skewness Kurtosis	I	25.95 9.69 0.62	20 5 1	0.1675 0.0846 0.4322
Total		36.25	26	0.0871

(n = 88)	D-H		•	P-value
Residuals		0.2539	2.6979	0.2595

Breusch-Godfrey LM test for autocorrelation

lags(p)	- 1	chi2	df	Prob > chi2
 	,	4 000		
1	- 1	4.309	1	0.0379
2	- 1	8.027	2	0.0181
3	- 1	9.487	3	0.0235

4	10.267	4	0.0362
	HO: no seria	l correlation	

LM test for autoregressive conditional heteroskedasticity (ARCH)

_					
	lags(p)		chi2	df	Prob > chi2
-	1 2 3 4	 	3.173 8.125 1.381 0.998	1 2 3 4	0.0748 0.0172 0.7100 0.9101

HO: no ARCH effects vs. H1: ARCH(p) disturbance

We now test whether we can exclude the last lag, but the -testparm- command does lead to rejection, so we keep the third lag.

```
( 1) L3.dln_consump = 0

F( 1, 82) = 9.19

Prob > F = 0.0032
```

e. Comparison of Models

Save the log-likelihood value of the parsimonious model (-estimates store llr-) and perform a likelihood ratio test comparing the model in c. with the model in d. (-lrtest llu llr-). You may wish to save the log-likelihood value at each step of the reduction using different names with the estimates command at each step.

```
. lrtest llu llr
```

```
Likelihood-ratio test LR chi2(1) = 0.05 (Assumption: llr nested in llu) Prob > chi2 = 0.8195
```

We cannot reject that the restricted and the unrestricted models are different.

f. VAR(4) Model

Estimate a VAR(4) for the three variables dln_consump, dln_inc, and dln_inv, that is, for the first difference of ln_inv, ln_inc, and ln_consump. Then determine the minimum number of lags required for the VAR, and subject it to mis-specification testing.

First we start with a VAR(4) model using the small sample correction command -dfk-:

. var dln_consump dln_inc dln_inv, lags(1/4) dfk

Vector autoregression

Sample: 1961c Log likelihood FPE Det(Sigma_ml)	q2 - 1982q4 d = 738.3533 = 2.11e-11 = 8.53e-12			No. o AIC HQIC SBIC	=	= 87 = -16.07709 = -15.63197 = -14.97168
Equation	Parms	RMSE	R-sq	chi2	P>chi2	
dln_consump	13	.009863	0.3108	33.37069	0.0008	
dln_inc	13	.011582	0.1728	15.4603	0.2172	
dln_inv	13	.043414	0.1950	17.92655	0.1179	
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
dln_consump						
dln_consump						
L1.	4186234	.1462402	-2.86	0.004	7052489	1319979
L2.	1654575	.1601944	-1.03	0.302	4794328	.1485178
L3.	.0699281	.148281	0.47	0.637	2206974	.3605536
L4.	.025482	.1316879	0.19	0.847	2326216	. 2835856
dln_inc						
L1.		.1203449	2.47	0.014	.0612505	.5329937
L2.	.3767172	.1288433	2.92	0.003	.1241891	.6292454
L3.	.2181382	.1315844	1.66	0.097	0397625	.4760389
L4.	.0940014	.1226229	0.77	0.443	1463351	.3343378
dln_inv						
L1.	.0043691	.0261169	0.17	0.867	0468191	.0555573
L2.	.0395284	.0274742	1.44	0.150	01432	.0933769
L3.	.0087278	.0281372	0.31	0.756	0464201	.0638758
L4.	025073	.0268227	-0.93	0.350	0776445	.0274986
_cons	.0076971	.0039049	1.97	0.049	.0000436	.0153507
dln_inc						
dln_consump						
L1.	.1913047	.1717152	1.11	0.265	145251	.5278603
L2.	0049856	.1881002	-0.03	0.979	3736552	.3636841
L3.	0085702	.1741116	-0.05	0.961	3498226	.3326822
L4.	.0246611	.154628	0.16	0.873	2784042	.3277263
dln_inc						
L1.		. 1413089	-0.51	0.609	3492113	.2047094
L2.		.1512877	0.25	0.801	2584682	.3345688
L3.		.1545064	1.12	0.262	1293983	.4762557
L4.		.1439838	-0.37	0.712	3353757	.2290303
dln_inv						
L1.		.0306665	1.57	0.117	0120328	.1081776
L1. L2.		.0322602	1.80	0.117	0120328	.1214397
L2. L3.		.0322602	0.49	0.626	005018	.0808498
LO.	.010095	.0330387	0.49	0.020	0400597	.0000498

L4.	0028715	.0314952	-0.09	0.927	0646011	.058858
_cons	 .011433 +	.0045852	2.49	0.013	.0024462	.0204198
dln_inv	I					
dln_consump	l					
L1.	.4213112	.6436848	0.65	0.513	8402878	1.68291
L2.	.4410982	.7051051	0.63	0.532	9408823	1.823079
L3.	0088644	.6526676	-0.01	0.989	-1.288069	1.270341
L4.	5482858	.5796322	-0.95	0.344	-1.684344	.5877724
	l					
dln_inc	l					
L1.	.4098625	.5297049	0.77	0.439	6283401	1.448065
L2.	1649085	.5671112	-0.29	0.771	-1.276426	.946609
L3.	.0542709	.5791765	0.09	0.925	-1.080894	1.189436
L4.	2581422	.5397318	-0.48	0.632	-1.315997	.7997127
	l					
dln_inv	l					
L1.	2678892	.1149551	-2.33	0.020	4931972	0425813
L2.	0702267	.1209292	-0.58	0.561	3072437	.1667902
L3.	.1621356	.1238476	1.31	0.190	0806013	.4048725
L4.	.3186896	.1180618	2.70	0.007	.0872927	.5500865
	l					
_cons	.0071406	.0171878	0.42	0.678	0265469	.0408281

. varsoc

Endogenous: dln_consump dln_inc dln_inv

Exogenous: _cons

Althout fourth lag of *ln inv* is significant, we proceed with three lags:

. var dln_consump dln_inc dln_inv, lags(1/3) dfk

Vector autoregression

 Sample: 1961q1 - 1982q4
 No. of obs
 = 88

 Log likelihood = 737.5558
 AIC
 = -16.08081

 FPE
 = 2.09e-11
 HQIC
 = -15.74057

 Det(Sigma_ml) = 1.05e-11
 SBIC
 = -15.23627

Equation	Parms	RMSE	R-sq	chi2	P>chi2
dln_consump	10	.00973	0.2953	32.68978	0.0002
dln_inc	10	.011309	0.1800	17.12733	0.0468

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
dln_consump						
dln_consump						
L1.		.1385722	-2.84	0.005	6646753	1214823
L2.		.1441055	-0.89	0.374	4105431	. 15434
L3.	.1015717	.1278624	0.79	0.427	149034	.3521773
dln_inc						
L1.	.2940007	.1174905	2.50	0.012	.0637236	.5242778
L2.	.3438497	.1205479	2.85	0.004	.1075802	.5801192
L3.	.1810283	.1187276	1.52	0.127	0516734	.4137301
dln_inv						
L1.		.0256856	0.13	0.893	0468826	.0538031
L2.		.0264529	1.66	0.098	0080512	.0956423
L3.	.0168297	.0263789	0.64	0.523	034872	.0685314
_cons	.0091472	.0034369	2.66	0.008	.0024111	.0158833
dln_inc						
dln_consump						
L1.		.161054	1.19	0.232	1233148	.5080055
L2.		.167485	-0.20	0.232	3621824	.294347
L3.		.1486067	-0.29	0.770	33475	.2477776
dln_inc						
L1.		.136552	-0.60	0.550	3492222	.186052
L2. I		.1401055	0.45	0.656	212121	.3370824
L3.		.1379898	1.44	0.150	07197	.4689402
ا dln_inv						
L1.		.0298528	1.60	0.111	0108808	.1061401
L2.	.0598946	.0307446	1.95	0.051	0003637	.1201529
L3.	.0155151	.0306586	0.51	0.613	0445747	.0756048
_cons	.011234	.0039945	2.81	0.005	.003405	.019063
dln_inv						
dln_consump						
L1.	.4585587	.644436	0.71	0.477	8045127	1.72163
L2.	.4443132	.6701688	0.66	0.507	8691936	1.75782
L3.	199181	.5946297	-0.33	0.738	-1.364634	.9662718
 dln_inc						
L1.		.5463946	0.68	0.497	6997597	1.442068
L2.	.2534399	.5606132	0.45	0.651	8453418	1.352222
L3.	.3569366	.5521478	0.65	0.518	7252532	1.439126
dln_inv						
L1.	2598316	.1194521	-2.18	0.030	4939533	0257098
L2.	1253296	.1230204	-1.02	0.308	3664451	.115786
L3.	.0466697	.1226763	0.38	0.704	1937714	.2871107

Endogenous: dln_consump dln_inc dln_inv

Exogenous: _cons

The -varsoc- command shows us that we can drop the third lag, so we try with two lags:

. dln_consump dln_inc dln_inv, lags(1/2) dfk

Vector autoregression

Sample: 1960q4 -	1982q4	No. of obs	=	89
Log likelihood =	742.2131	AIC	=	-16.20704
FPE =	1.84e-11	HQIC	=	-15.97035
Det(Sigma_ml) =	1.15e-11	SBIC	=	-15.61983

Equation	Parms	RMSE	R-sq	chi2	P>chi2
<pre>dln_consump dln_inc dln_inv</pre>	7	.009938	0.2400	25.88962	0.0002
	7	.011224	0.1514	14.62996	0.0233
	7	.044295	0.1051	9.633771	0.1409

!	Coef.	Std. Err.			[95% Conf.	Interval]
dln_consump						
dln_consump						
L1.	2845172	.1274068	-2.23	0.026	5342299	0348044
L2.	1159776	.1270233	-0.91	0.361	3649386	.1329834
I						
dln_inc						
L1.	.2893204	.112313	2.58	0.010	.069191	.5094497
L2.	.3664341	.1089872	3.36	0.001	.1528231	.5800451
I						
dln_inv						
L1.	.0027381	.0255556	0.11	0.915	0473499	.0528261
L2.	.0497402	.025462	1.95	0.051	0001644	.0996447
I						
_cons	.0123795	.0029602	4.18	0.000	.0065776	.0181813
+						
dln_inc						

dln_consump	I					
L1.	.3050571	. 1438994	2.12	0.034	.0230195	.5870947
L2.	.0490208	.1434662	0.34	0.733	2321677	.3302094
	1					
dln_inc	[
L1.	1232543	.1268517	-0.97	0.331	371879	.1253704
L2.	.0209769	.1230954	0.17	0.865	2202857	.2622394
	[
dln_inv	I					
L1.	.0433473	.0288637	1.50	0.133	0132244	.0999191
L2.	.0616319	.028758	2.14	0.032	.0052673	.1179965
	1					
_cons	.0125949	.0033434	3.77	0.000	.006042	.0191478
	+					
dln_inv	1					
dln_consump	1					
L1.				0.251		
L2.	.5980687	.566179	1.06	0.291	5116217	1.707759
	1					
dln_inc						
L1.			0.67			
L2.	1 .1827302	.4857871	0.38	0.707	7693951	1.134855
	!					
dln_inv						
L1.			-2.39			
L2.	1340503	.1134912	-1.18	0.238	3564891	.0883884
_cons	0099191	.0131944	-0.75	0.452	0357798	.0159415

. varsoc

Selection-order criteria

-	e: 1960q4					Number of	obs :		9 _+
lag	LL	LR	df	p	FPE	AIC	HQIC	SBIC	1
0 1	712.092 728.167	32.15	9	0.000	2.4e-11 2.1e-11	-15.9346 -16.0936 -16.207*	-15.9008 -15.9584	-15.8508* -15.7581	i I

Endogenous: dln_consump dln_inc dln_inv
Exogenous: _cons

. varlmar

Lagrange-multiplier test

+						-+
1 :	lag	Τ	chi2	df	Prob > chi2	-
		+				-
1	1		8.8693	9	0.44942	- 1
1	2	1	10.9722	9	0.27762	-
+						-+

 $\ensuremath{\text{\textsc{H0}}}\xspace:$ no autocorrelation at lag order

. varnorm

Jarque-Bera test

+-----+ | Equation | chi2 df Prob > chi2 |

	-+			
dln_consump	10.245	2	0.00596	- 1
dln_inc	1.145	2	0.56398	
dln_inv	7.029	2	0.02976	- 1
l ALL	18.419	6	0.00527	- 1

Skewness test

Equation Skewness chi2 df Prob > chi2	+					+
dln_consump 73238						
dln_inv .32757 1.592 1 0.20709	dln_consump	73238	7.956	1	0.00479	
	·					!
ALL 9.697 3 0.02133	·					1
	ALL	I	9.697	3	0.02133	ı

Kurtosis test

	Equation Kurt				
					1
1	dln_consump 3.7	855 2.288	1	0.13036	ı
1	dln_inc 2.4	816 0.997	1	0.31810	-
	dln_inv 4.2	2109 5.437	1	0.01971	-
1	ALL	8.722	3	0.03322	1
+					+

dfk estimator used in computations

. varwle

Equation: dln_consump

+					+
	lag			Prob > chi2	
	+-				
-	1	7.675739	3	0.053	- 1
1	2	17.32727	3	0.001	- 1
_					_

Equation: dln_inc

+				+
lag			Prob > chi:	
1 1 1	9.628048 5.914459	3 3	0.022 0.116	
+				+

Equation: dln_inv

1:	ag	I	chi2	df	Prob > chi	2
	1	Ī	7.873887 2.993971	3 3	0.049 0.393	i
_						_

Equation: All

-	+-				 						+
	I	lag	I	chi2	df	F	rob	>	chi	2	١
	١.		+		 . – – -						1

```
| 1 | 44.06615 9 0.000 |
| 2 | 28.28163 9 0.001 |
```

g. Final Model

Finally, drop individual variables from each of the three equations until you end up with a parsimonious model.

We now drop individual variables from each equation until we end up with the following parsimonious model with eight constraints:

. var dln_consump dln_inc dln_inv, lags(1/2) dfk constraint (1 2 3 4 5 6 7 8) Estimating VAR coefficients

```
Iteration 1:     tolerance = .08076175
Iteration 2:     tolerance = .00197295
Iteration 3:     tolerance = .0000493
Iteration 4:     tolerance = 1.529e-06
Iteration 5:     tolerance = 5.099e-08
```

Vector autoregression

```
Sample: 1960q4 - 1982q4 No. of obs = 89
Log likelihood = 739.5869 AIC = -16.14802
FPE = 2.18e-15 HQIC = -15.91133
Det(Sigma_ml) = 1.63e-15 SBIC = -15.56081
```

Equation	Parms	RMSE	R-sq	chi2	P>chi2
dln_consump dln_inc dln_inv	5	.009606	0.2292	37.83738	0.0000
	4	.01085	0.1394	15.67358	0.0013
	4	.042994	0.0849	9.673415	0.0216

- (1) [dln_consump]L.dln_inv = 0
- $(2) [dln_inc]L2.dln_inc = 0$
- $(3) [dln_inv]L2.dln_inc = 0$
- (4) [dln_inc]L2.dln_consump = 0
- (5) [dln_inv]L.dln_inc = 0
- (6) [dln_inc]L.dln_inc = 0
 (7) [dln_inv]L2.dln_inv = 0
- (8) [dln_consump]L2.dln_consump = 0

	· 					
	Coef.	Std. Err.	z	P> z		Interval]
dln_consump dln_consump						
L1.	2560975	.1075375	-2.38	0.017	4668671	0453279
L2.	2.70e-18 	1.79e-17	0.15	0.880	-3.24e-17	3.78e-17
dln_inc						
L1.	. 2899923	.0825004	3.52	0.000	.1282945	.4516901

L2.	. 286996	.0723422	3.97	0.000	.1452079	.4287841
dln_inv						
L1.		5.57e-18	0.02	0.984	-1.08e-17	1.10e-17
L1.		.0226578	2.27	0.023	.0071221	.095939
LZ.	.0010000	.0220070	2.21	0.025	.0071221	.030303
_cons	.0112223	.0024842	4.52	0.000	.0063534	.0160913
dln_inc						
dln_consump						
L1.	.235463	.1110663	2.12	0.034	.0177771	.4531489
L2.	-3.32e-17	2.73e-17	-1.22	0.224	-8.67e-17	2.03e-17
dln_inc	l					
L1.	-3.35e-17	2.71e-17	-1.24	0.215	-8.66e-17	1.95e-17
L2.	-1.73e-17	1.61e-17	-1.07	0.282	-4.88e-17	1.42e-17
dln_inv					0001540	
L1.		.0230169	2.05	0.040	.0021546	
L2.	.0629894	.0263325	2.39	0.017	.0113786	.1146003
_cons	.0127585	.0024014	5.31	0.000	.0080519	.0174651
dln_inv	+ I					
dln_consump]					
L1.		.4463473	1.99	0.046	.0146459	1.764295
L1.		.4187462	1.80	0.072	0674953	1.573959
ц2.	.7002021 	.4107402	1.00	0.012	0074333	1.070303
dln_inc	İ					
L1.	-8.84e-17	1.10e-16	-0.80	0.421	-3.04e-16	1.27e-16
L2.	-8.48e-17	2.14e-16	-0.40	0.692	-5.05e-16	3.35e-16
dln_inv	İ					
L1.		.1045915	-2.45	0.014	4612356	0512443
L1.		2.54e-17	-1.04	0.300	-7.62e-17	2.35e-17
ш.	2.000-17	2.040-11	-1.01	3.000	7.020-17	2.000-17
_cons	0097218	.0125614	-0.77	0.439	0343416	.014898
. noi lrtest l						
. noi irtest .	LIUZ IITZ					

Likelihood-ratio test
(Assumption: 11r2 nested in 11u2)

LR chi2(8) = 8.54 Prob > chi2 = 0.3821

. varlmar

Lagrange-multiplier test

+					-+
lag	1	chi2	df	Prob > chi2	1
	-+-				-
1		-7.1e+02	9	1.00000	- 1
1 2	-	-7.2e+02	9	1.00000	-1
+					-+

 $\ensuremath{\text{\textsc{H0}}}\xspace:$ no autocorrelation at lag order

. varnorm

Jarque-Bera test

	-+				
dln_consump	11	1.036 2	0.0	0401 I	
dln_inc	(0.869 2	0.6	4764	l
dln_inv	12	2.553 2	0.0	0188	
ALL	1 24	4.457 6	0.0	0043	
L				1	

Skewness test

+					-+
	Equation Skewness				
1	dln_consump 74579			0.00407	
i	dln_inc 17547			0.49915	i
1	dln_inv .42156	2.636	1	0.10446	- 1
1	ALL	11.343	3	0.01001	-
_					4.

Kurtosis test

+							-
į		I	Kurtosis	chi2	df	Prob > chi2	İ
							•
1	${\tt dln_consump}$	1	3.8666	2.785	1	0.09514	
1	dln_inc	I	2.6666	0.412	1	0.52091	I
1	dln_inv	I	4.6353	9.917	1	0.00164	1
1	ALL	I		13.114	3	0.00440	1
+							+

dfk estimator used in computations

. varstable, graph

Eigenvalue stability condition

++								
Eigenvalue	Modulus							
.6289397	.62894							
4992968	.499297							
3415027 + .3613781i	.49721							
34150273613781i	.49721							
.02051253 + .4183026i	.418805							
.020512534183026i	.418805							
+	+							

All the eigenvalues lie inside the unit circle. $\ensuremath{\mathtt{VAR}}$ satisfies stability condition.

The likelihood-ratio test above shows us however that we cannot reject that the unrestricted model from section f. on page 20 is different from the restricted model just estimated. The mis-specification tests however portrays some problems as we for instance cannot reject that we have no autocorrelation. Finally, the last part shows the stability analysis, which concludes that all the eigenvalues lie inside the unit circle:

