4 Obligatorisk øvelse uke 6

4.1 Arbeid og kinetisk energi

En liten kloss med masse m=0.0900 kg er festet til en snor som går gjennom et hull i en friksjonsfri, horisontal plate som vist på figuren under. Klossen roterer med en distanse på 0.40 m fra hullet med en fart på 0.70 m/s. Snoren blir deretter trukket nedenfra slik at radiusen for omdreiningen kortes ned til 0.10 m. Ved denne nye omdreiningsradiusen, er farten til klossen 2.80 m/s.

- (a) Hva var snorkraften i det første tilfellet da farten til klossen var 0,70 m/s?
- (b) Hva er snorkraften nå når klossen har en fart på 2,80 m/s?
- (c) Hvor stort arbeid ble utført av personen som trakk i snoren?

4.2 Bevaring av mekanisk energi

Et legeme blir skutt opp fra jordoverflaten. Regn ut utskytningsfarten legemet må ha for å løsrive seg fra jordens gravitasjonsfelt.

4.3 Bevaring av mekanisk energi

En liten kloss med masse m = 0,0500 kg sklir friksjonsfritt i en vertikal sirkulær bane med radius R = 0,800 m. Ved bunnen av banen, er normalkraften fra banen på klossen 3,40 N. Hvor stor er normalkraften fra banen på klossen når klossen er på toppen av banen?

4.4 Bevaring av mekanisk energi

En spesiell fjær som ikke følger Hookes lov, utøver en kraft $F_x(x) = -\alpha x - \beta x^2$ når den blir strukket ut eller komprimert. $\alpha = 60.0 \text{ N/m}$ og $\beta = 18.0 \text{ N/m}^2$. Vi ser bort fra massen til fjæren.

- (a) Uttrykk funksjonen for den potensielle energien, U(x), for denne fjæren. La U=0 når x=0.
- (b) Et legeme med masse 0,900 kg på et friksjonsfritt underlag, er festet til denne fjæren. Legemet blir trukket 1,00 m i positiv x-retning og strekker fjæren, før det blir sluppet. Hva er farten til legemet ved posisjonen x = 0,500 m?