

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C07D 315/00	A1	(11) International Publication Number: WO 99/35139 (43) International Publication Date: 15 July 1999 (15.07.99)
(21) International Application Number: PCT/EP99/00003		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 4 January 1999 (04.01.99)		
(30) Priority Data: MI98A000021 9 January 1998 (09.01.98) IT		
(71) Applicant (<i>for all designated States except US</i>): LONZA S.P.A. [IT/IT]; Via Vittor Pisani, 31, I-20124 Mailand (IT).		
(72) Inventors; and		
(75) Inventors/Applicants (<i>for US only</i>): CASTIGLIONI, Gian, Luca [IT/IT]; Via Roseto, 15, I-47036 Riccione (IT). FUMAGALLI, Carlo [IT/IT]; Via C. Albani, 2/a, I-24061 Albano S. Alessandro (IT).		
(74) Agents: RAUBER, Beat et al.; Lonza AG, Patentabteilung, Postfach, CH-4002 Basel (CH).		
(54) Title: PROCESS FOR THE PRODUCTION OF GAMMA-BUTYROLACTONE		
(57) Abstract		
		A new process for the production of gamma-Butyrolactone is described. Starting from maleic and/or succinic anhydride the conversion takes place in the presence of a catalyst composed of copper oxide and zinc oxide.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon			PT	Portugal		
CN	China	KR	Republic of Korea	RO	Romania		
CU	Cuba	KZ	Kazakhstan	RU	Russian Federation		
CZ	Czech Republic	LC	Saint Lucia	SD	Sudan		
DE	Germany	LI	Liechtenstein	SE	Sweden		
DK	Denmark	LK	Sri Lanka	SG	Singapore		
EE	Estonia	LR	Liberia				

Process for the Production of gamma-Butyrolactone

The present invention relates to a process for selective hydrogenation of maleic or succinic anhydride to gamma-butyrolactone (GBL) in the vapour phase using
5 a catalyst comprising a mixed oxide of copper and zinc

GBL represents an example of a small volume commodity of great industrial interest, because of its increasing demand.

The main use of GBL is as intermediate for the synthesis of solvents with lower
10 environmental impact than chlorinated ones, like pyrrolidone and N-methylpyrrolidone. It is also the raw material for the production of N-vinylpyrrolidone, of herbicides, pharmaceuticals and rubber additives.

The first works on GBL synthesis appeared in the 1940's, due to the start up of
the Reppe process from acetylene and formaldehyde to give 1,4 butanediol
15 (BDO) and then GBL by dehydrogenation. The drawbacks of this process are connected with the fluctuating prices of the raw materials and, mainly, with the hazard and the environmental impact of the use of both acetylene and formaldehyde.

During the second half of this century, other technologies have been studied
20 and the number of patents about GBL production processes alternative to the Reppe process constantly increased.

The availability of maleic anhydride on industrial scale led to the development
of new technologies for producing GBL, tetrahydrofuran (THF) or BDO by
hydrogenation of maleic anhydride or of maleic anhydride derivatives like
25 maleic acid diesters or succinic anhydride.

The liquid phase hydrogenation of maleic anhydride to GBL has been employed in commercial production, but never reached great industrial importance.

Many patents describe the vapour phase hydrogenation of maleic anhydride or its esters, but mainly for the production of BDO; for instance WO 86/03189 describe the vapour phase hydrogenation of diethyl maleate to BDO.

WO 86/07358 describes a similar process for GBL production.

- 5 From a technological and economical point of view the esters of maleic acid or other maleic acid and/or succinic acid derivatives are less desirable raw materials compared with maleic anhydride.

Many patents describe the direct vapour phase hydrogenation of maleic anhydride to GBL, but none of the processes disclosed are completely satisfactory.

- 10 Some of these patents claim the use of copper chromites as catalysts (e.g. US Patent 3 065 243) but with unsatisfactory conversion and selectivity. Similar systems were claimed in US Patent 3 580 930 or in EP 332 140 (Cu/Zn/Cr/Al), but none of them are completely satisfactory in terms of GBL yield, productivity, 15 by-products formation and catalyst durability.

Moreover chromium containing catalysts should not be the choice because of the negative environment impact of chromium, due to the toxicity of its compounds.

- 20 The WO 91/16132 disclose a process for the GBL production from maleic anhydride using a Cu/Zn/Al catalyst calcined at 400 - 525 °C. Such a high temperature is a draw-back in terms of plant design and operation.

Different catalytic systems, based on noble metal catalysts such as Cu/Pd and Cu/Pt have been described in e.g. US Patent 4 105 674. The cost of the noble metal is the draw back of these catalysts.

- 25 The object of the present invention is to provide a new and environmentally friendly process for the production of GBL by vapour phase hydrogenation of maleic anhydride and / or succinic anhydride with essentially quantitative conversion of the starting material, very high selectivity and using a commercial chromium-free catalyst.

The present invention provides a process for the vapour phase hydrogenation of maleic and / or succinic anhydride to GBL over a catalyst comprising a mixed oxide of copper and zinc.

The content of Copper as CuO is 50 - 90 wt% and Zinc as ZnO is 10 - 50 wt%.

5 Preferably the mixed oxide contains 60 - 80 wt% CuO and 20 - 40 % wt ZnO.

The catalyst composition may further contain inert components, such as tabletting aids or inert fillers.

Preferred catalysts are commercially available e.g. from Süd Chemie, Germany.

In the active state, the catalytically active oxide material may include some

10 metallic components (like metallic copper) formed in the activation step or during the hydrogenation.

The mixed oxide catalyst is commonly subjected to an activation treatment comprising gradually increasing its temperature from room temperature to 200 - 380 °C, preferably from room temperature to 250 - 300 °C in the presence 15 of a hydrogen-containing gas.

The hydrogen-containing gas in the activation treatment may be a mixture of hydrogen and nitrogen. After the activation treatment the catalyst is ready for use. Activation requires a time usually varying from about 8 to 48 h, depending on reactor size and design.

20 The activation of the catalyst is exothermic. In case the reactor does not provide an efficient heat removal the hydrogen-containing gas must be suitably diluted or the space velocity must be increased to control exothermic peaks.

Hydrogen dilution results in longer time for the exothermic phase of activation.

Large adiabatic reactors usually requires the longest activation times.

25 During operation molten maleic anhydride or succinic anhydride or a mixture thereof is expediently vaporised in an hot hydrogen stream in a mixing section; the mixture can then be fed into the reactor packed with the above described activated catalyst. Optionally the catalyst can be packed between two layers of an essentially inert support material, possibly with the same size and shape of 30 the catalyst. Suitable examples of essentially inert support materials include

silica, alumina, silica-alumina compound (e.g. mullite), silicon carbide, steatite and titania.

The reaction pressure is preferably between about 1 and 100 bar, more preferably between about 1 and 30 bar.

- 5 The molar ratio of hydrogen to the anhydride in the feed is between 10:1 and 300:1 and more preferably between 40:1 and 200:1. Lower hydrogen to anhydride ratios usually result in tar formation and short catalyst life, higher ratios tend to penalise the productivity of the catalyst.

The reaction temperature is preferably between about 150 and 350 °C, and
10 more preferably between 200 and 300 °C.

As it is well known by those skilled in the art, temperature and pressure range in the hydrogenation reaction depend on the desired product mixture.

Increasing temperature will result in the mix containing more THF, while increasing pressure will yield substantial amounts of BDO.

15

The following examples illustrate this invention in more detail.

Example 1: (laboratory scale reactor)

- 350 g of g of a commercial Cu/Zn catalyst, T-4322 from Süd Chemie AG (64 % CuO, 23.5 % ZnO), were packed in a 1 inch (2.54 cm) internal diameter tubular reactor; the resulting height of the bed was 0.7m.
- The reactor was provided with an external jacket electrically heated to assure isothermicity all over the reactor length and with an axial thermowell with a movable thermocouple which was used to control and regulate the temperature in the catalyst bed.
- 10 The catalyst was activated in situ according to the following procedure: The temperature of the reactor was adjusted to 150 °C by means of the external jacket; a mixture of H₂/N₂ was passed over the catalyst. To avoid hot spots the activation was performed gradually: the hydrogen content was gradually increased from 0 up to 8 % vol and the temperature was risen to 250 °C. During the procedure the bed temperature was checked by means of the axial thermocouple. The increase of temperature and hydrogen content was controlled in order not to exceed 20 - 25 °C as hot spot all along the catalytic bed. After reaching 250 °C the hydrogen content in the gas stream was gradually increased up to 100%. After 20 5 hours at 250 °C in hydrogen, the activation was stopped.
- After catalyst activation a mixture of hydrogen and maleic anhydride was fed to the catalyst bed at ambient pressure. Hydrogenation conditions and performances are summarised in table 1.
- The maleic anhydride (MA) conversion was complete all over the tests. The 25 yield of GBL was constantly over 95 % molar after the first 48 hours.

Table 1

T.O.S. (h)	MA feed (g/h)	H ₂ /MA (molar ratio)	T (°C)	Molar Yields (%)			
				GBL	SA	THF	Others
48	14	141	228	95,6	0,5	0,4	3,5
140	11	175	229	95,3	0,0	0,6	4,1
150	12	165	228	97,7	0,0	0,3	2,3
177	18	109	237	97,6	0,1	0,2	2,1
209	8	236	233	96,2	0,0	0,5	3,3
272	12	158	259	95,1	0,7	0,1	4,1

GBL = γ -butyrolactone; SA = succinic anhydride;
THF = tetrahydrofuran; Others = mainly C₂-C₄ alcohols and acids.

T.O.S. = Time on Stream

5

Example 2: (pilot reactor)

A tubular reactor with an internal diameter of 1 inch (2.54 cm) was packed with 1700 g of the same catalyst described in example 1; the resulting height of the bed was 3 m.

The reactor was provided with an external jacket with a circulation of diathermic oil and was equipped with an axial thermowell and a multipoint thermocouple.

The catalyst was in-situ activated following the same procedure described in example 1.

After catalyst activation a mixture of hydrogen and maleic anhydride was fed to the catalyst bed at a pressure of 5 bar. Hydrogenation conditions and performances are summarised in table 2.

The MA conversion was complete all over the tests. The yield of GBL was always over 92 % molar and after the first 300 hours has constantly been over 95 % molar.

Table 2

T.O.S. (h)	MA feed (g/h)	H ₂ /MA (molar ratio)	T (°C)	Molar Yields (%)			
				GBL	SA	THF	Others
28	118	136	234	92,6	1,2	4,0	2,2
158	126	126	235	93,0	2,0	3,0	1,8
272	137	102	239	94,1	0,5	3,2	2,1
372	157	102	245	96,5	0,1	1,3	2,2
539	170	94	248	95,5	0,1	2,3	1,7
645	208	70	270	94,9	0,6	1,8	3,3
692	219	67	270	95,5	0,3	1,3	3,0
765	222	61	264	96,6	0,4	1,0	1,8

GBL = γ -butyrolactone; SA = succinic anhydride;
THF = tetrahydrofuran; Others = mainly C₂-C₄ alcohols and acids.

T.O.S. = Time on Stream

Claims:

1. A process for the production of gamma-butyrolactone comprising catalytically hydrogenating maleic anhydride and / or succinic anhydride in a vaporous mixture with a hydrogen containing gas in contact with a catalyst comprising a catalytically active oxide material and optionally an inert support, wherein the catalytically active oxide material comprises a mixed oxide of copper and zinc, said mixed oxides being composed of 50 to 90 wt% copper oxide and 10 to 50 wt% zinc oxide.
5
- 10 2. A process according to claim 1 wherein said mixed oxides are composed of 60 to 80 wt% copper oxide and 20 to 40 wt% zinc oxide.
- 15 3. A process according to claim 1 or 2 wherein the molar ratio of hydrogen to anhydride in the vaporous mixture of the hydrogen containing gas and the maleic anhydride and / or succinic anhydride is between 10 to 1 and 300 to 1.
- 20 4. A process according to any one of claims 1 to 3 wherein the hydrogenation is conducted at a temperature of about 150 °C and 350 °C.
5. A process according to any one of claims 1 to 4 wherein the hydrogenation is conducted at a pressure of about 1 to 100 bar.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 99/00003

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C07D315/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>CHEMICAL ABSTRACTS, vol. 70, no. 23, 1969 Columbus, Ohio, US; abstract no. 77355x, page 283; XP002103357 see abstract & JP 06 814463 A (JAPAN GAS-CHEMICAL) 19 May 1968</p> <p>---</p> <p style="text-align: center;">-/--</p>	1-5

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

^a Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

21 May 1999

Date of mailing of the international search report

04/06/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Francois, J

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 99/00003

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	CHEMICAL ABSTRACTS, vol. 119, no. 27, 1993 Columbus, Ohio, US; abstract no. 225800m, page 997; XP002103358 see abstract & PL 157 851 A (INSTYTUT CHEMII PRZEMYSLOWEJ) 31 July 1992 ---	1-5
Y	US 5 122 495 A (PAUL D. TAYLOR) 16 June 1992 see column 1 - column 9 ---	1-5
Y	US 5 698 713 A (ROSA LANCIA ET AL.) 16 December 1997 see column 1 - column 5 ---	1-5
Y	WO 91 16132 A (ISP INVESTMENTS) 31 October 1991 see claims -----	1-5

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/00003

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 5122495	A 16-06-1992	NONE			
US 5698713	A 16-12-1997	IT 1273320	B 08-07-1997		
		AU 1809995	A 04-09-1995		
		DE 69503761	D 03-09-1998		
		DE 69503761	T 01-04-1999		
		EP 0746553	A 11-12-1996		
		JP 9508918	T 09-09-1997		
		AT 169013	T 15-08-1998		
		WO 9522539	A 24-08-1995		
		ES 2119400	T 01-10-1998		
WO 9116132	A 31-10-1991	US 5347021	A 13-09-1994		
		AT 135938	T 15-04-1996		
		AU 642250	B 14-10-1993		
		AU 7657691	A 11-11-1991		
		CA 2080123	A 17-10-1991		
		DE 69118404	D 02-05-1996		
		DE 69118404	T 19-09-1996		
		DK 593458	T 08-07-1996		
		EP 0593458	A 27-04-1994		
		ES 2085992	T 16-06-1994		