6.1.2 Overview

DES is a block cipher, as shown in Figure 6.1.

Figure 6.1 Encryption and decryption with DES

DES Structure

The encryption process is made of two permutations (P-boxes), which we call initial and final permutations, and sixteen Feistel rounds.

6.2.1 Initial and Final Permutations

Figure 6.3 Initial and final permutation steps in DES

Table 6.1 Initial and final permutation tables

Initial Permutation	Final Permutation					
58 50 42 34 26 18 10 02	40 08 48 16 56 24 64 32					
60 52 44 36 28 20 12 04	39 07 47 15 55 23 63 31					
62 54 46 38 30 22 14 06	38 06 46 14 54 22 62 30					
64 56 48 40 32 24 16 08	37 05 45 13 53 21 61 29					
57 49 41 33 25 17 09 01	36 04 44 12 52 20 60 28					
59 51 43 35 27 19 11 03	35 03 43 11 51 19 59 27					
61 53 45 37 29 21 13 05	34 02 42 10 50 18 58 26					
63 55 47 39 31 23 15 07	33 01 41 09 49 17 57 25					

How to read this table?

The 58^{th} bit of input x will be the first bit of output IP(x), the 50^{th} bit of x is the second bit of IP(x), etc.

The initial and final permutations are straight P-boxes that are inverses of each other. They have no cryptography significance in DES.

6.2.1 Continued

Example 6.1

Find the output of the initial permutation box when the input is given in hexadecimal as:

0x0000 0080 0000 0002

Solution

Only bit 25 and bit 64 are 1s; the other bits are 0s. In the final permutation, bit 25 becomes bit 64 and bit 63 becomes bit 15. The result is

0x0002 0000 0000 0001

6.2.2 *Rounds*

Figure 6.4

A round in DES (encryption site)

DES uses 16 rounds. Each round of **DES** is a Feistel cipher.

- Separate message block into two 32-bit halves, L_i and R_i
 - -Introduce **confusion** by using a "complex"
 - nonlinear function I

 —f has two inputs: R_i and a 48-bit round key,
 - -Introduce diffusion by "adding" L_i and the output of f

$$L_{i+1} = R_i$$

$$R_{i+1} = L_i \oplus f(R_i, K_{i+1})$$

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits to produce a 32-bit output.

Figure 6.5

DES function

Expansion P-box

Since R_{I-1} is a 32-bit input and K_I is a 48-bit key, we first need to expand R_{I-1} to 48 bits.

Figure 6.6 Expansion permutation

Although the relationship between the input and output can be defined mathematically, DES uses Table 6.2 to define this P-box.

Table 6.6 Expansion P-box table

32	01	02	03	04	05
04	05	06	07	08	09
08	09	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	31	31	32	01

Whitener (XOR)

After the expansion permutation, DES uses the XOR operation on the expanded right section and the round key. Note that both the right section and the key are 48-bits in length. Also note that the round key is used only in this operation.

S-Boxes

The S-boxes do the real mixing (confusion). DES uses 8 S-boxes, each with a 6-bit input and a 4-bit output. See Figure 6.7.

Figure 6.7 S-boxes

Figure 6.8 S-box rule

Table 6.3 shows the permutation for S-box 1. For the rest of the boxes see the textbook.

Table 6.3 *S-box 1*

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
1	00	15	07	04	14	02	13	10	03	06	12	11	09	05	03	08
2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

Example 6.3

The input to S-box 1 is 100011. What is the output?

Solution

If we write the first and the sixth bits together, we get 11 in binary, which is 3 in decimal. The remaining bits are 0001 in binary, which is 1 in decimal. We look for the value in row 3, column 1, in Table 6.3 (S-box 1). The result is 12 in decimal, which in binary is 1100. So the input 100011 yields the output 1100.

Straight Permutation

 Table 6.11
 Straight permutation table

16	07	20	21	29	12	28	17
01	15	23	26	05	18	31	10
02	08	24	14	32	27	03	09
19	13	30	06	22	11	04	25

6.2.3 Key Generation

Rounds

1, 2, 9, 16

Others

Figure 6.10

Key generation

The round-key generator creates sixteen 48-bit keys out of a 56-bit cipher key.

 Table 6.12
 Parity-bit drop table

57	49	41	33	25	17	09	01
58	50	42	34	26	18	10	02
59	51	43	35	27	19	11	03
60	52	44	36	63	55	47	39
31	23	15	07	62	54	46	38
30	22	14	06	61	53	45	37
29	21	13	05	28	20	12	04

64 □ 56

Table 6.13 Number of bits shifts

Round	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bit shifts	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

 Table 6.14
 Key-compression table

14	17	11	24	01	05	03	28
15	06	21	10	23	19	12	04
26	08	16	07	27	20	13	02
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

6.3.1 Properties

Two desired properties of a block cipher are the avalanche effect and the completeness.

Example 6.7

To check the avalanche effect in DES, let us encrypt two plaintext blocks (with the same key) that differ only in one bit and observe the differences in the number of bits in each round.

Plaintext: 0000000000000000

Ciphertext: 4789FD476E82A5F1

Ciphertext: 0A4ED5C15A63FEA3

Key: 22234512987ABB23

Key: 22234512987ABB23

Example 6.7 Continued

Although the two plaintext blocks differ only in the rightmost bit, the ciphertext blocks differ in 29 bits. This means that changing approximately 1.5 percent of the plaintext creates a change of approximately 45 percent in the ciphertext.

Table 6.17 Number of bit differences for Example 6.7

Rounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bit differences	1	6	20	29	30	33	32	29	32	39	33	28	30	31	30	29

Completeness effect

Completeness effect means that each bit of the ciphertext needs to depend on many bits on the plaintext.

6.3.2 Design Criteria

S-Boxes

The design provides confusion and diffusion of bits from each round to the next.

P-Boxes

They provide diffusion of bits.

Number of Rounds

DES uses sixteen rounds of Feistel ciphers. the ciphertext is thoroughly a random function of plaintext and ciphertext.

6.3.3 DES Weaknesses

During the last few years critics have found some weaknesses in DES.

Weaknesses in Cipher Design

1. Weaknesses in S-boxes

• Two specifically chosen inputs to an S-box can create same output

2. Weaknesses in P-boxes

- initial and final permutations have no security benefits
- the first and fourth bits of every 4-bit series are repeated

3. Weaknesses in Key

- Weak keys create same 16 round keys
- Semi-weak keys create 2 different round keys
- Possible weak keys create 4 distinct round keys
- Key complement

6.3.3 DES Weaknesses

- There are four weak keys.
- After parity drop operation, a key consists either of all 0s, all 1s, or half 0s and half 1s.
- Weak keys create same 16 round keys.

 Table 6.18
 Weak keys

Keys before parities drop (64 bits)	Actual key (56 bits)
0101 0101 0101 0101	0000000 0000000
1F1F 1F1F 0E0E 0E0E	0000000 FFFFFFF
E0E0 E0E0 F1F1 F1F1	FFFFFF 000000
FEFE FEFE FEFE	FFFFFFF FFFFFFF

Example 6.8

Let us try the first weak key in Table 6.18 to encrypt a block two times. After two encryptions with the same key the original plaintext block is created. Note that we have used the encryption algorithm two times, not one encryption followed by another decryption.

Key: 0x0101010101010101

Plaintext: 0x1234567887654321

Key: 0x0101010101010101

Plaintext: 0x814FE938589154F7

Ciphertext: 0x814FE938589154F7

Ciphertext: 0x1234567887654321

Figure 6.11 Double encryption and decryption with a weak key

$$E_k(E_k(P)) = P$$

Semi-weak keys create only 2 different round keys; k1, k2

 Table 6.19
 Semi-weak keys

First key in the pair	Second key in the pair
01FE 01FE 01FE	FE01 FE01 FE01
1FE0 1FE0 0EF1 0EF1	E01F E01F F10E F10E
01E0 01E1 01F1 01F1	E001 E001 F101 F101
1FFE 1FFE OEFE OEFE	FE1F FE1F FE0E FE0E
011F 011F 010E 010E	1F01 1F01 0E01 0E01
EOFE EOFE F1FE F1FE	FEEO FEEO FEF1 FEF1

Round key 1	9153E54319BD	6EAC1ABCE642
Round key 2	6EAC1ABCE642	9153E54319BD
Round key 3	6EAC1ABCE642	9153E54319BD
Round key 4	6EAC1ABCE642	9153E54319BD
Round key 5	6EAC1ABCE642	9153E54319BD
Round key 6	6EAC1ABCE642	9153E54319BD
Round key 7	6EAC1ABCE642	9153E54319BD
Round key 8	6EAC1ABCE642	9153E54319BD
Round key 9	9153E54319BD	6EAC1ABCE642
Round key 10	9153E54319BD	6EAC1ABCE642
Round key 11	9153E54319BD	6EAC1ABCE642
Round key 12	9153E54319BD	6EAC1ABCE642
Round key 13	9153E54319BD	6EAC1ABCE642
Round key 14	9153E54319BD	6EAC1ABCE642
Round key 15	9153E54319BD	6EAC1ABCE642
Round key 16	6EAC1ABCE642	9153E54319BD

Semi-week keys create 2 different round keys

Figure 6.12 A pair of semi-weak keys in encryption and decryption

Example 6.9

What is the probability of randomly selecting a weak, a semi-weak, or a possible weak key?

Solution

DES has a key domain of 2^{56} . The total number of the above keys are 64 (4 + 12 + 48). The probability of choosing one of these keys is 8.8×10^{-16} , almost impossible.

Key Complement In the key domain (2^{56}) , definitely half of the keys are complement of the other half. A **key complement** can be made by inverting (changing 0 to 1 or 1 to 0) each bit in the key. Does a key complement simplify the job of the cryptanalysis? It happens that it does. Eve can only half of the possible keys (2^{55}) to perform brute-force attack. This is because

$$C = E(K, P) \rightarrow \overline{C} = E(\overline{K}, \overline{P})$$

In other words, if we encrypt the complement of plaintext with the complement of the key, we get the complement of the ciphertext. Eve does not have to test all 2^{56} possible keys, she can test only half of them and then complement the result.

Example 6.10

Let us test the claim about the complement keys. We have used an arbitrary key and plaintext to find the corresponding ciphertext. If we have the key complement and the plaintext, we can obtain the complement of the previous ciphertext (Table 6.20).

Table 6.20 Results for Example 6.10

	Original	Complement
Key	1234123412341234	EDCBEDCBEDCB
Plaintext	12345678ABCDEF12	EDCBA987543210ED
Ciphertext	E112BE1DEFC7A367	1EED41E210385C98