Sum of Squares in Lean

Using Lean 3.0

Made by Gal Lebel and Alex Baucke (and Flo, TBH) on July 25th, 2023

> Contents

Theorem Definition

 Introducing the statement to be proved.

Proof

Proving the equivalence

- \bigcirc \rightarrow
- \Diamond \leftarrow

Propositional Logic

- A simple example
- Contraposition
- Logical fallacies

Example in ©

Contraposing the statement in G

Theorem Definition

[1/2] Statement

The two statements are equivalent:

- a) If a sum of squares is $\mathbf{0}$, then all the elements of that sum are $\mathbf{0}$.
- b) -1 is not a sum of squares in R

Notation: List = Set, but allows multiplicity

Note: We do not want to show that a) or b) is actually true!

[2/2] Statement

So now we would like to formalize the statements using mathematical notations

a) If a sum of squares is $\mathbf{0}$, then all the elements of that sum are $\mathbf{0}$.

$$\forall L : List \mathbb{R}, x_i \subseteq L : \sum_{i...n} x_i^2 = 0 \Rightarrow x_i = 0 \ \forall x_i \subseteq L$$

b) -1 is not a sum of squares in R

$$\forall L : \text{List } \mathbb{R}, x_i \subseteq L : \sum_{i=1}^n x_i^2 \neq -1$$

And we can write those together in an equivalence relation $a \mapsto b$ as follows:

$$\forall L : List \mathbb{R}, x_i \subseteq L : \sum_{i...n} x_i^2 = 0 \Rightarrow x_i = 0 \forall x_i \subseteq L \leftrightarrow \sum_{i...n} x_i^2 \neq -1$$

Propositional Logic - Example

[1/1] Propositional Logic - Example

Given the following statements

• The weather is nice

P: I'm at the zoo

We can express the relation between **Q** and **P** like this:

 \bigcirc \rightarrow P (If the weather is nice, I'm at the zoo)

The **contraposition** of this would be:

 $\mathbb{Q} \to \mathbb{P} = \neg \mathbb{P} \to \neg \mathbb{Q}$ (If I'm not at the zoo, the weather is bad)

(And not $\mathbb{Q} \to \mathbb{P} = \neg \mathbb{Q} \to \neg \mathbb{P}$ (If the weather is bad, I'm not at the zoo)

Proof of the Sum of Squares Theorem

[1/4] Proof

We will start the proof of a) \leftrightarrow b) by proving the ' \rightarrow ' - direction: b) \rightarrow a). We do a proof by contraposition, meaning we show that \neg a) \rightarrow \neg b) is true.

First, let's negate the two statements:

```
a) \neg ( \forall L: List \mathbb{R}, x_i \in L: \sum_{i...n} x_i^2 = 0 \rightarrow \forall x_i \in L: x_i = 0

\exists L: List \mathbb{R}, x_i \in L: \sum_{i...n} x_i^2 = 0 \rightarrow \exists x_i \in L: x_i \neq 0 = \neg a

b) \neg ( \forall L: List \mathbb{R}, x_i \in L: \sum_{i...n} x_i^2 \neq -1)

\exists L: List \mathbb{R}, x_i \in L: \sum_{i...n} x_i^2 = -1 = \neg b)
```

[2/4] Proof

We show $\neg a$ $\rightarrow \neg b$:

Assume ¬a].

Let **L** be a list over \mathbb{R} whose sum of squares is equal to \mathbb{O} and without loss of generality, let $\mathbf{x}_1 \neq \mathbb{O}$. Then:

$$\sum_{i=1}^{n} x^2 = x_1^2 + x_2^2 + \dots + x_n^2 = 0$$

We can now divide all the terms by x_1^2 and continue with the equality, because division of 0 by any number is still equal to zero.

[3/4] Proof

So now we have:

$$\frac{\sum_{i=1}^{n} x^{2}}{x_{1}^{2}} = \frac{x_{1}^{2}}{x_{1}^{2}} + \frac{x_{2}^{2}}{x_{1}^{2}} + \dots + \frac{x_{n}^{2}}{x_{1}^{2}}$$

$$= 1 + \frac{x_{2}^{2}}{x_{1}^{2}} + \dots + \frac{x_{n}^{2}}{x_{1}^{2}} = 0$$

By adding (-1) to both sides, we get:

$$\frac{x_2^2}{x_1^2} + \dots + \frac{x_n^2}{x_1^2} = -1$$

Which confirms our initial assumption ¬a)

Thus we have proven b) → a)

[4/4] Proof

We will now proceed to show the ' \leftarrow ' - direction : a) \rightarrow b) of a) \leftrightarrow b).

$$\exists L: List \mathbb{R}, x_i \subseteq L: \sum_{i=1}^n x_i^2 = 0 \rightarrow \exists x_i \subseteq L, x_i \neq 0 = \neg a$$

$$\exists L: List \mathbb{R}, x_i \subseteq L: \sum_{i...n} x_i^2 = -1 = \neg b)$$

We will prove the contraposition $\neg b$ $\rightarrow \neg a$.

Assuming ¬b), we want to show ¬a).

From our assumption of ¬b), let L be that list.

By appending 1 to L, the sum of squares of {1:: L} must be now 0.

Example in **©**

[1/1] Example in ©

The lean proof of the equivalence holds for any field with decidable equalities. Since © is such a field, we can show that the equivalence still holds:

$$\neg a$$
) \leftrightarrow $\neg b$)

$$\exists \ L : \text{List } \mathbb{R}, \ x_i \in L : \ \sum_{i = n} x_i^2 = 0 \ \rightarrow \ \exists \ x_i \in L : \ x_i \neq 0 \ \leftrightarrow \ \exists \ L : \text{List } \mathbb{R}, \ x_i \in L : \ \sum_{i = n} x_i^2 = -1$$

To show $\neg b$), we can choose $L := \{i\}, \{-i\}, \{1/i\}, \text{ or } \{1/-i\}, \text{ giving us a sum of squares } = -1$. Since $\neg a$) must hold as well, we construct $L2 := \{1 :: L\}$ i.e. 1 appended to L.

Since $1 \subseteq L2$ and the sum of squares of L2 is 0 by construction, we have found a list that satisfies $\neg a$ as well.

Therefore, a) \leftrightarrow b) remains (negatively) equivalent in \mathbb{G}

Ty for your time 🤡

Any Questions?

Resources for further reading:

https://leanprover-community.github.io/mathlib_docs/