Contrôle 1 - Lundi 15 mars 2021 Durée : 1h30

Les matériels électroniques et les documents ne sont pas autorisés pendant la composition. Le soin apporté à la précision des justifications et à la rédaction sera un critère important d'évaluation.

Exercice 1 Noté sur 6 points (2 points par question)

On effectue 5 tirages successifs d'une pièce, qui tombe sur pile ou face avec probabilité 1/2.

- 1. Décrire l'univers Ω modélisant cette expérience. Quel est son cardinal? $\Omega = \{P, F\}^5$, et Card $\Omega = 2^5 = 32$.
- 2. Quelle est la probabilité d'obtenir exactement 2 fois pile au cours des 5 tirages? Soit X le nombre de piles obtenus. On a $\mathbb{P}(X=2) = \binom{5}{2}/2^5 = 10/32 = 5/16$.
- 3. Quelle est la probabilité d'obtenir au moins 1 fois pile ? $\mathbb{P}(X \geq 1) = 1 \mathbb{P}(X = 0) = 1 1/32 = 31/32$

Exercice 2 Noté sur 4 points (1+2+1)

On se donne un univers Ω , muni d'une probabilité \mathbb{P} , et on considère deux événements A et B.

- 1. Rappeler la définition de : A et B sont indépendants. A et B sont indépendants si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$.
- 2. Montrer que si A et B sont indépendants, alors A et \overline{B} aussi. Pour tous événements A et B, on a $\mathbb{P}(A) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap \overline{B})$, donc $\mathbb{P}(A \cap \overline{B}) = \mathbb{P}(A) - \mathbb{P}(A \cap B)$. Si A et B sont indépendants, on en déduit que

$$\mathbb{P}(A \cap \overline{B}) = \mathbb{P}(A) - \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(A) \cdot (1 - \mathbb{P}(B)) = \mathbb{P}(A) \cdot \mathbb{P}(\overline{B}).$$

Il en découle que A et \overline{B} sont indépendants.

3. En déduire que si A et B sont indépendants, alors \overline{A} et \overline{B} aussi. D'après le résultat ci-dessus, si A et B sont indépendants, alors A et \overline{B} aussi. En appliquant à nouveau ce résultat à $A' = \overline{B}$ et B' = A, on en déduit que $A' = \overline{B}$ et $\overline{B'} = \overline{A}$ sont indépendants (on pouvait aussi reproduire la démarche de la question précédente).

Exercice 3 Noté sur 4.5 points (1.5 points par question : 1 point pour le résultat + 0.5 pour la justification)

- 1. Combien existe-t-il de nombres à 5 chiffres, contenant exactement une fois chacun des chiffres 1, 2, 3, 4 et 5?
 - On compte le nombre de permutations de $\{1, 2, 3, 4, 5\}$. La réponse est donc 5! = 120.
- 2. Combien existe-t-il de nombres à 5 chiffres, dont tous les chiffres sont non nuls et deux à deux distincts?
 - On compte le nombre d'arrangements de 5 éléments de $\{1, 2, \dots, 9\}$. La réponse est donc $9!/(9-5)! = 9 \times 8 \times 7 \times 6 \times 5$.
- 3. Pour constituer une main au poker, on vous donne un ensemble de 5 cartes tirées d'un jeu de 52 cartes. Combien y a-t-il de mains possibles?
 - On compte le nombre de combinaisons (sous-ensembles non-ordonnés) de 5 éléments de $\{1, 2, \dots, 52\}$. La réponse est donc $\binom{52}{5} = 52!/(47!5!)$.

Exercice 4 Noté sur 9.5 points ((1+1)+(1+2)+(1+1+1+1.5))

Une urne contient 10 boules indiscernables au toucher, 7 sont rouges et 3 sont noires.

- 1. On tire au hasard simultanément 3 boules de l'urne. Déterminer :
 - (a) la probabilité de tirer les 3 boules noires, La réponse est $\binom{3}{3}/\binom{10}{3}=1/\binom{10}{3}$ ou encore $\frac{3}{10}\times\frac{2}{9}\times\frac{1}{8}$.
 - (b) la probabilité de tirer 3 boules de la même couleur. La réponse est $\frac{\binom{3}{3}+\binom{7}{3}}{\binom{10}{3}}$ ou encore $\frac{3}{10}\times\frac{2}{9}\times\frac{1}{8}+\frac{7}{10}\times\frac{6}{9}\times\frac{5}{8}$.
- 2. On tire au hasard une boule dans l'urne, on note sa couleur, on la remet dans l'urne; on procède ainsi à 5 tirages successifs et deux à deux indépendants. Déterminer :
 - (a) la probabilité d'obtenir 5 fois une boule noire, La réponse est $(3/10)^5$
 - (b) la probabilité d'obtenir un total de 2 boules noires et 3 boules rouges. La réponse est $\binom{5}{2} \cdot (\frac{3}{10})^2 \cdot (\frac{7}{10})^3 = 10 \cdot (\frac{3}{10})^2 \cdot (\frac{7}{10})^3$ (il ne fallait pas oublier le coefficient binomial!)
- 3. On tire successivement et sans remise deux boules dans cette urne. On note :
 - R_1 l'événement : "la première boule tirée est rouge"
 - N_1 l'événement : "la première boule tirée est noire"
 - R_2 l'événement : "la deuxième boule tirée est rouge"
 - N_2 l'événement : "la deuxième boule tirée est noire".

Déterminer :

- (a) la probabilité conditionnelle $\mathbb{P}(R_2|R_1)$, On peut écrire directement $\mathbb{P}(R_2|R_1) = 6/9$.
- (b) la probabilité de l'événement $R_1 \cap R_2$, On a : $\mathbb{P}(R_1 \cap R_2) = \mathbb{P}(R_1) \cdot \mathbb{P}(R_2 \mid R_1) = \frac{7}{10} \times \frac{6}{9}$.
- (c) la probabilité de tirer une boule rouge au deuxième tirage, On a :

$$\mathbb{P}(R_2) = \mathbb{P}(R_1 \cap R_2) + \mathbb{P}(N_1 \cap R_2)$$

$$= \mathbb{P}(R_1) \cdot \mathbb{P}(R_2 \mid R_1) + \mathbb{P}(N_1) \cdot \mathbb{P}(R_2 \mid N_1)$$

$$= \frac{7}{10} \times \frac{6}{9} + \frac{3}{10} \times \frac{7}{9} = \frac{7}{10}.$$

(d) la probabilité d'avoir tiré une boule rouge au premier tirage, sachant qu'on a obtenu une boule noire au second tirage.

On a:

$$\mathbb{P}(R_1|N_2) = \frac{\mathbb{P}(R_1 \cap N_2)}{\mathbb{P}(N_2)}$$

$$= \frac{\mathbb{P}(R_1) \cdot \mathbb{P}(N_2|R_1)}{\mathbb{P}(R_1) \cdot \mathbb{P}(N_2|R_1) + \mathbb{P}(N_1) \cdot \mathbb{P}(N_2|N_1)}$$

$$= \frac{\frac{7}{10} \times \frac{3}{9}}{\frac{7}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{2}{9}} = 7/9.$$