	HW2
1.	Ya: (a v -a)
	Godel's Incompleteness theorem says we can't have complete a consistent.
	this is complete, so the system must be inconsistent.
-	a complete system means that everything is true or falce
	a must be true or false
	a must be a or 1 a
-	thus, a vaq is true for all a.
0	A complete system is one that expresses everything, and allows all
۷.	true propositions to be provide from axioms.
-	If our gion is aza, then we can easily prove this.
	If 9=9, then 79=79.
-	Therefore, the system is complete because all true propositions are provable
3.	nen
_	N is countably infinite
-	since the set goes until (xn), it continues countably infinitely
-	therefore, the set is countably infinite.
	we have the set of proof systems p such that (p., P2, P3Pn), where n 6 N
۲.	we have the set of proof systemy sound that \(\lambda \) 2 3 1)
-	we can index these (like an array) such that: <1, 2, 3 n>
-	since N is countably infinite, n is countably infinite.
-	therefore, the set of all proof systems is countably infinite.
	Gödel showed that a system is either inconsistent or incomplete.
5.	if there is an undecidable proposition, a system is incomplete and consistent.
-	if there is an undecidable proposition, a system is complete and inconsistent. once the undecidable prop is added as an axiom, a system is complete and inconsistent.
-	to make the system consistent again, it must become incomplete.
-	to make the system consistent agent recursively incomplete. Thiefore, consistent proof systems are recursively incomplete.
0-	Theretore, consistent grow and
-	