Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 7 zur Homologischen Algebra I

Aufgabe 1. Funktorialität der langen exakten Sequenz

Sei ein kommutatives Diagramm von Komplexen und Komplexmorphismen gegeben, dessen Zeilen exakte Sequenzen sind:

Bekanntlich induzieren die beiden kurzen exakten Sequenzen dann lange exakte Sequenzen in Kohomologie. Zeige, dass diese folgendes Diagramm kommutieren lassen:

$$\cdots \longrightarrow H^{n}(A^{\bullet}) \longrightarrow H^{n}(B^{\bullet}) \longrightarrow H^{n}(C^{\bullet}) \longrightarrow H^{n+1}(A^{\bullet}) \longrightarrow \cdots$$

$$\downarrow H^{n}(f^{\bullet}) \downarrow \qquad \qquad H^{n}(g^{\bullet}) \downarrow \qquad \qquad H^{n}(h^{\bullet}) \downarrow \qquad \qquad H^{n+1}(h^{\bullet}) \downarrow$$

$$\cdots \longrightarrow H^{n}(\widetilde{A}^{\bullet}) \longrightarrow H^{n}(\widetilde{B}^{\bullet}) \longrightarrow H^{n}(\widetilde{C}^{\bullet}) \longrightarrow H^{n+1}(\widetilde{A}^{\bullet}) \longrightarrow \cdots$$

Wenn du schon weißt, was ein Funktor ist, dann erkläre den Titel der Aufgabe!

Aufgabe 2. Degenerierte Ketten

Sei A eine simpliziale abelsche Gruppe und CA_{\bullet} der zugehörige Komplex abelscher Gruppen mit $CA_n = A_n$ und Differential $d = \sum_i (-1)^n A(\partial^i)$. Sei $DA_{\bullet} \hookrightarrow CA_{\bullet}$ der Unterkomplex der degenerierten Ketten.

a) Zeige: Das Differential $d: CA_n \to CA_{n-1}$ bildet die Elemente aus DA_n auf Elemente aus DA_{n-1} ab.

Mit den Einschränkungen von d wird damit DA_{\bullet} zu einem Komplex und die kanonischen Injektionen $DA_{\bullet} \to NA_{\bullet}$ werden zu einem Komplexmorphismus.

- b) Zeige: $H_n(CA_{\bullet}) \cong H_n(CA_{\bullet}/NA_{\bullet})$, auf kanonische Art und Weise.
- c) Sei nun X eine simpliziale Menge, sodass Ränder nichtdegenerierter Simplizes wieder nichtdegeneriert sind (vgl. Blatt 2, Aufgabe 2). Erinnere dich, dass $A_n := \mathbb{Z}\langle X_n \rangle$ (freie abelsche Gruppe auf den Elementen von X_n) zu einer simplizialen abelschen Gruppe wird. Sei $\widetilde{A}_n := \mathbb{Z}\langle X_{(n)} \rangle$ die freie abelsche Gruppe auf den nichtdegenerierten n-Simplizes.

Überlege zunächst, wie \widetilde{A} zu einer simplizialen abelschen Gruppe wird. Zeige dann: $H_n(C\widetilde{A}) \cong H_n(CA)$. Damit ist also gerechtfertigt, dass man sich bei Berechnung von Homologie auf die nichtdegenerierten Simplizes einschränken darf.

Auf der Rückseite wird ein ausführlicher Tipp folgen.

$$DA_n := \sum_{i=0}^{n-1} \operatorname{im}(A(\sigma^i) : A_{n-1} \to A_n) \subseteq CA_n.$$

Mit dem Summensymbol ist die Summe von Untergruppen gemeint.