PATENT ABSTRACTS OF JAPAN

(11)Publication numb r:

05-096744

(43) Date of publication of application: 20.04.1993

(51)Int.CI.

B41J 2/175

(21)Application number: 03-285746

(71)Applicant: FUJI XEROX CO LTD

(22)Date of filing:

(72)Inventor: KATAOKA MASAKI

KOIKE TAKAO

FUJIMURA YOSHIHIKO

MORITA NAOKI

HIRATSUKA MASASHI

TAKAO NOBUYUKI

(54) INK SUPPLY MECHANISM FOR INK JET PRINTER

05.10.1991

(57)Abstract:

PURPOSE: To provide an ink supply mechanism for ink jet printer in which availability of ink in an ink cartridge is high and residual quantity of ink can be detected easily.

CONSTITUTION: A head cartridge section 1 comprises first and second chambers 11, 15 communicated each other through a capillary tube 14. The second chamber 15 is provided with a porous member 16 whereas the first chamber 11 is provided with an atmosphere conduction hole 12 and two communication paths 18. When an ink cartridge 3 is fixed to the head cartridge section 1, air is fed into the cartridge through the communication path 18 and ink is fed into the first chamber 11. When the ink level exceeds over the end part of the communication path, ink supply is stopped due to pressure balance. When ink is consumed due to printing, ink is fed from the porous member 16 to the recording head 2 and the porous member 16 is fed with ink from the first chamber 11.

LEGAL STATUS

[Date of request for examination]

19.08.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2929804

Searching PAJ Page 2 of 2

[Date of registration]

21.05.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The ink feeder style of the ink jet printer with which the ink cartridge was constituted by the head cartlidge section possible [separation] characterized by providing the following. The aforementioned ink cartridge is the structure of storing ink in the sealed container, and the aforementioned head cartlidge section is the joint section with the aforementioned ink cartridge. The 1st loculus which are prepared near [the joint section] this and have opening with the atmosphere, these 1st loculus -- open for free passage -- porosity -- a member

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] this invention relates to the ink feeder style of the ink jet printer with which the head cartlidge section and the ink cartridge were separated.
[0002]

[Description of the Prior Art] In the ink jet printer using the ink cartridge, the ink oil level of an ink cartridge is higher than the nozzle side of a recording head, and there is a bird clapper on printer composition. In such a case, the water head differential pressure by difference of height joins the nozzle side of a recording head, and ink flows out from a nozzle. In order to prevent this, the method of giving negative pressure is used in the inside of an ink tank, and the negative pressure generating means was needed.

[0003] As a method of holding ink in the ink cartridge, into the ink tank, porous members, such as sponge, are arranged, and the method of making ink hold using the vas-capillare force is common, and is widely used as indicated by JP,63-87242,A and JP,32-34349,A.

[0004] However, by this method, sponge cannot be completely filled up with ink, but there is a problem that ink enters about 70% of the capacity of an ink cartridge, moreover, some ink with which sponge was filled up remains to sponge, and it has the problem that it is used about 80% of the ink with which it filled up. For this reason, there was use efficiency of the capacity of an ink cartridge only about 50 to 60%, and since the use efficiency of about [that the miniaturization of a cartridge is difficult] and ink was bad, it had checked low-pricing of a running cost. Moreover, since sponge is filled up with ink, the problem of being difficult also has residue detection of ink.

[0005] Moreover, although the method of preparing a pressure regulating valve between an ink tank and a recording head was also proposed as indicated by JP,62-231759,A, since this method produced an ink leak from an ink tank when it is easy to produce failure of a pressure regulating valve and breaks down by plugging by breakage, dust, etc. of a valve etc., it was not suitable for actual use.

[Problem(s) to be Solved by the Invention] this invention was made in view of the situation mentioned above, and its use efficiency of the ink in an ink cartridge is high, and it aims at offering the ink feeder style of the ink jet printer which can make residue detection easy.

[Means for Solving the Problem] In the ink feeder style of the ink jet printer with which this invention was constituted by the head cartlidge section possible [separation of an ink cartridge] the aforementioned ink cartridge It is the structure of storing ink in the sealed container. the aforementioned head cartlidge section The joint section with the aforementioned ink cartridge, and the 1st loculus which are prepared near [the joint section] this and have opening with the atmosphere, It has the 2nd loculus which are open for free passage to these 1st loculus, and have a porous member, and the aforementioned joint section is characterized by the bird clapper from two or more free passage ways where the height of opening by the side of the loculus of the above 1st differs.

[0008] A filter can be prepared in the connection way from [from the 2nd loculus of the above] the inside of the connection way to a head, or the 1st loculus of the above. between the 1st loculus and the 2nd loculus -- a

capillary or porosity -- vasa capillare, such as a member, are made to intervene and you may make it hold ink by the capillary force

[0009]

[Function] The ink stored in the ink cartridge is supplied to the 1st loculus through the joint section. The inside of an ink cartridge is sealed and air opening of the 1st loculus is carried out. The joint of an ink cartridge and the 1st loculus is carried out on two or more free passage ways, and, as for the opening edge by the side of the 1st [of these two or more free passage ways] loculus, the difference of elevation is prepared. Therefore, since air is supplied through a free passage way from the 1st loculus when there is no ink in the 1st loculus, ink is supplied to the 1st loculus by gravity through a free passage way. If the ink level of the 1st loculus arrives at the opening edge of all free passage ways, air will no longer be supplied to an ink cartridge, and supply of the ink to the 1st loculus will stop by the negative pressure in an ink cartridge, and the equilibrium of an ink weight. [0010] The ink controlled by the 1st loculus by fixed level is supplied to the 2nd loculus. between the 1st loculus and the 2nd loculus -- a capillary or porosity -- vasa capillare, such as a member, can be made to be able to intervene and the ink of a free passage way can be held according to the vas-capillare force In the 2nd loculus, ink is held by the porous member and moderate negative pressure is given to the recording head. If ink is consumed by printing and ink is sent to a recording head from the porous member of the 2nd loculus, the negative pressure of the 2nd loculus will become large and ink will be supplied to the 2nd loculus from the 1st loculus.

[0011] If the ink level in the 1st loculus becomes lower than an opening edge with a higher free passage way, air will be supplied to an ink cartridge and ink will be supplied to the 1st loculus from an ink cartridge. The ink level of the 1st loculus will rise, will be in the equilibrium mentioned above, and supply of the ink from an ink cartridge stops.

[0012]

[Example] Drawing 1 is the cross section showing the outline of the 1st example of the ink feeder style of this invention. the inside of drawing, and 1 -- the head cartlidge section and 2 -- a recording head and 3 -- an ink cartridge and 4 -- a heat sink and 5 -- a manifold and 11 -- the 1st loculus and 12 -- an air free passage -- a hole and 14 -- a capillary tube and 15 -- for the joint section and 18, as for a filter and 20, a free passage way and 19 are [the 2nd loculus and 16 / a porous member and 17 / ink and 25] elastic bodies It is constituted by the head cartlidge section 1 and the ink cartridge 3 possible [separation], and casing of an ink cartridge 3 is guided and positioned by the housing guide which was formed in housing of the head cartlidge section 1 and which is not illustrated.

[0013] The heat sink 4 with which the recording head 2 was attached in the head cartlidge section 1, the printedcircuit board which supplies an electrical signal to a recording head (not shown), the 1st loculus 11 which two free passage ways 18 for connection with the manifold 5 and ink cartridge which supply ink to a recording head are formed, and store ink, and porosity -- the 2nd loculus 15 which have a member 16, and the vas capillare 14 which connects the 1st loculus and 2nd loculus are formed in one the 1st loculus 11 -- an air free passage -- a hole 12 is formed and the 1st loculus 11 are kept always equal to atmospheric pressure. The air run through-hole 12 serves as a detailed hole, in order to prevent that ink flows out, porosity -- as a member 16, the urethane foam whose average boa size is 200 micrometers was used in this example Many nozzles (not shown) are formed in the recording head 2 by high density. In this example, 128 nozzles are formed by the high density of 300spi(s). Each nozzle is made to generate a foam by energization, and the heating element (not shown) for injecting an ink drop is prepared in it. In drawing 1, injection of an ink drop is performed sideways. [0014] An ink cartridge 3 consists of the loculus and the elastic body 25 which store ink 20. An elastic body 25 is for making easy connection with the head cartlidge section 1, and after ink had remained, when an ink cartridge 3 is removed, it does not have ink leakage. In order for the case of an ink cartridge 3 to have rigidity and to enable long-term ink maintenance, a good material of ink-proof nature is chosen. [0015] Operation is explained. First, the case where an ink cartridge 3 is attached in the head cartlidge section 1 is explained. Two free passage ways 18 where the nose of cam attached in the head cartlidge section 1 is sharp when an ink cartridge 3 is positioned according to the housing guide which was formed in housing of the head cartlidge section 1, and which is not illustrated penetrate the elastic body 25 of an ink cartridge 3, and arrive at

an ink room. Since the 1st loculus 11 are wide opened by the atmosphere at this time, air is inhaled from the

free passage way 18 in the ink interior of a room of an ink cartridge 3, and ink is supplied to the 1st loculus 11 in the head cartlidge section 1 by gravity through the free passage way 18. If the ink level in the 1st loculus 11 arrives at the edge of the free passage way 18 whose number is two, supply of the air into an ink cartridge 3 will be stopped. Then, if the ink of a particle is supplied to the head cartlidge section 1, the inside of an ink cartridge 3 will be in a negative pressure state. When this negative pressure and the weight of the ink residue in an ink cartridge 3 balance, ink supply in the head cartlidge section 1 is stopped. Thus, the ink level in the 1st loculus 11 in the head cartlidge section 1 is controlled uniformly.

[0016] The ink in the 1st loculus 11 is supplied to the 2nd loculus 15 through a vas capillare 14. the 2nd loculus 15 -- porosity -- ink is held by the member 16 the ink pressure committed to a recording head 2 at this time -- the difference of elevation of the 1st loculus 11 and a recording head 2 and the capillary force of a vas capillare 14, and porosity -- the capillary force of a member 16 is determined mostly this ink pressure becomes the value suitable for printing, for example, -20 - -130mmH2 O, -- as -- the size of the head cartlidge section 1, and a row -- porosity -- the quality of the material of a member 16 and boa size are selected

[0017] The time of printing operation is explained. if ink is consumed by printing -- the porosity of the 2nd loculus 15 -- the ink with which the member 16 is filled up is sent to a recording head 2 The pressure of the 2nd loculus 15 declines and, as for the 2nd loculus 15, ink is supplied by this from the 1st loculus 11 through a vas capillare 14. Thus, the ink of the almost same amount as the amount of ink consumed by printing is supplied to the 2nd loculus 15 from the 1st loculus 11.

[0018] When the ink level in the 1st loculus became lower than the opening edge of the higher one of the free passage way 18, as it mentioned above by consumption of ink, air is supplied to an ink cartridge 3 and ink is supplied to the 1st loculus 11 from an ink cartridge 3. The ink level of the 1st loculus 11 will rise, will be in the equilibrium mentioned above, and supply of the ink from an ink cartridge 3 stops. after the ink of an ink cartridge 3 was lost and all the ink of the 1st loculus 11 was consumed -- the porosity in the 2nd loculus 15 -- since the ink of a constant rate is held at the member 16, there are few possibilities of carrying out the empty regurgitation

[0019] It is formed by the transparent and translucent member, or the inspection hole (not shown) etc. is prepared, and the case of an ink cartridge 3 has composition which can get to know an ink residue easily visually.

[0020] In order that two free passage ways 18 may prevent the inflow of rapid ink, size with sufficient passage resistance is chosen. however -- the case where the ink consumption in a recording head becomes great -- the porosity in the 2nd loculus 15 -- since the ink of a constant rate is stocked by the member 16, there is no possibility of performing the empty regurgitation

[0021] <u>Drawing 2</u> is the cross section showing the outline of the 2nd example of the ink feeder style of this invention. Among drawing, the same sign is given to the same portion as <u>drawing 1</u>, and explanation is omitted. 6 -- a lever and 7 -- air and 8 -- a guide member and 13 -- a film -- it is a member Clear separation is not made but the 1st loculus 11 and 2nd loculus 15 are mostly connected with this example to the straight. supply of the ink from the 1st loculus 11 to the 2nd loculus 15 -- porosity -- since the capillary force of a member 16 is used -- porosity -- the soffit section of a member 16 is installed in the low position rather than the ink level in the 1st loculus 11 According to this example, the structure of the head cartlidge section 1 becomes simple to the 1st example, and while a miniaturization is easy, early ink restoration is easy and reliability's over mixing of a foam improves.

[0022] a film -- a member 13 -- an air free passage -- the film which was not prepared in order that ink might prevent the leakage by the exterior from a hole 12, and does not let through and ink pass only for air -- it is a member a guide -- a member 8 is what used the flat-spring-like elastic body, and is prepared in the object for positioning and the object for vibration isolation of an ink cartridge 3 Moreover, the lever 6 is formed in order to make easy removal of the ink cartridge 3 from the head cartlidge section 1. An ink cartridge 3 can be pushed up upwards by rotating a lever 6 around supporter 6a.

[0023] Drawing 3 is the cross section showing the outline of the 3rd example of the ink feeder style of this invention. Among drawing, the same sign is given to the same portion as drawing 2, and explanation is omitted. In this example, the free passage way 18 from an ink cartridge 3 to the 1st loculus 15 is formed by one double pipe, and it is a thing. Thereby, the miniaturization of a joint portion with an ink cartridge 3 can be

attained.

[0024] Drawing 4 is the cross section of the portion of the communicating tube in the 4th example of the ink feeder style of this invention. Two free passage ways are formed of one metal double pipe like the 3rd example. the inside of drawing, and 1 -- the head cartlidge section and 3 -- for ink and 22, as for an electrode and 24, a contact terminal and 23 are [an ink cartridge and 18 / a free passage way and 20 / an end-connection child and 25] elastic members According to this composition, the ink level in the head cartlidge section 1 is controlled in the soffit section of the outer tube of the free passage way 18. Moreover, in this example, conductive ink is used as ink 20. By equipping the head cartlidge section 1 with an ink cartridge 3, a contact terminal 22 and an electrode 23 contact and circuit connection is made. Since the electrode 23 is exposed in an ink cartridge 3, when there is an ink residue, since the circuit of the contact terminal 22-electrode 23-ink 20-free passage way 18 is completed, it is possible by connecting the end-connection child 24 to a printer side to sense electrically the type conformity of an ink residue and the installation existence of an ink cartridge, and a cartridge by the printer side.

[0025] Drawing 5 is the cross section showing the outline of the 5th example of the ink feeder style of this invention. Among drawing, the same sign is given to the same portion as drawing 2, and explanation is omitted. In this example, a recording head 2 carries out the regurgitation of the ink drop to above [of drawing]. 26 is the ink drop injected by the recording head 2. An ink cartridge 3 is attached in the head cartlidge section 1 from a longitudinal direction. the air free passage by which the 1st loculus 11 are not illustrated -- it is wide opened by atmospheric pressure with the hole In this example, it is formed so that moderate passage resistance and the moderate amount of supply may be obtained because the free passage way 18 ties up many vasa capillare (not shown) into a knot.

[0026] Drawing 6 is the cross section showing the outline of the 6th example of the ink feeder style of this invention. Among drawing, the same sign is given to the same portion as drawing 2, and explanation is omitted. 9 -- the 2nd air free passage -- as for a hole and 10, the 2nd film member and 21 are the 2nd filter In this example, a recording head 2 carries out the regurgitation of the ink drop to down [of drawing]. Since the thing of a printer for which the 1st loculus 11 are arranged in an upper position from a recording head 2 is difficult constitutionally when performing downward printing, it becomes impossible thus, to set ink ** to a recording head 2 as a proper value according to the composition shown in each example mentioned above, then, the air free passage for opening the 1st loculus 11 to the atmosphere in this example -- the free passage way to which the 1st loculus 11 and 2nd loculus 15 are connected while preparing a hole (not shown) -- once -- the upper part -- taking about -- the interior -- porosity -- a member 16 -- being filled up -- the 1st loculus 11 -- the upper part -- the 2nd film -- the 2nd air free passage equipped with the member 10 -- the hole 9 was formed therefore, ink ** to a recording head 2 -- porosity -- it is mostly determined by ***** of a member 16, and the optimal pressure for printing which was mentioned above can be set up in this case, porosity -- ***** of a member 16 -- the ink level of the 1st loculus 11, and the 2nd air free passage -- a thing with ***** more than the difference of elevation with the position of a hole 9 chooses -- having -- moreover, an air free passage -- a hole -- it is the nine neighborhood and it is desirable to choose the member from which making a porous member discontinuous and/or ***** differ the 2nd filter 21 -- porosity -- mixing of the dust from a member 16 side to the 1st loculus 11 etc. can be prevented, and adjustment of ink level can be realized with high reliability [0027] In addition, this invention is not limited to the above-mentioned example, and includes all the composition included in a claim. For example, it is possible to make the inside of an ink cartridge into the film material of the non-permeability as an ink attaching part and two rooms of the air chamber section etc.

[Effect of the Invention] Since the differential pressure by the difference of elevation of an ink tank and a recording head is intercepted in the joint section with an ink cartridge according to this invention so that clearly from the above explanation, it does not need to be filled up with porous members, such as sponge, into an ink tank. Therefore, by forming the case of an ink cartridge by the transparent and translucent member, or preparing an inspection hole etc., the residue of ink can be detected visually and small and low-cost-ization can be performed compared with the cartridge of the ink of the amount of said.

[0029] Moreover, ink cannot remain to a porous member, about 100% of ink can be used for printing, and since the ink cartridge itself is made to simplicity and low cost structure, it is further effective in the ability to also

1		•		. 1	
TAMIIAA	•	running	MART	CTROOT	3.7
1 Cauce	и	1 ullilling	COSL	great	ιy.
		U		U	_

Japan Patent Office is not responsible for any damages caused by the us of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL FIELD

[Industrial Application] this invention relates to the ink feeder style of the ink jet printer with which the head cartlidge section and the ink cartridge were separated.

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] In the ink jet printer using the ink cartridge, the ink oil level of an ink cartridge is higher than the nozzle side of a recording head, and there is a bird clapper on printer composition. In such a case, the water head differential pressure by difference of height joins the nozzle side of a recording head, and ink flows out from a nozzle. In order to prevent this, the method of giving negative pressure is used in the inside of an ink tank, and the negative pressure generating means was needed.

[0003] As a method of holding ink in the ink cartridge, into the ink tank, porous members, such as sponge, are arranged, and the method of making ink hold using the capillary tube force is common, and is widely used as indicated by JP,63-87242,A and JP,32-34349,A.

[0004] However, by this method, sponge cannot be completely filled up with ink, but there is a problem that ink enters about 70% of the capacity of an ink cartridge, moreover, some ink with which sponge was filled up remains to sponge, and it has the problem that it is used about 80% of the ink with which it filled up. For this reason, there was use efficiency of the capacity of an ink cartridge only about 50 to 60%, and since the use efficiency of about [that the miniaturization of a cartridge is difficult] and ink was bad, it had checked low-pricing of a running cost. Moreover, since sponge is filled up with ink, the problem of being difficult also has residue detection of ink.

[0005] Moreover, although the method of preparing a pressure regulating valve between an ink tank and a recording head was also proposed as indicated by JP,62-231759,A, since this method produced an ink leak from an ink tank when it is easy to produce failure of a pressure regulating valve and breaks down by plugging by breakage, dust, etc. of a valve etc., it was not suitable for actual use.

Japan Patent Office is not responsible for any damages caus d by th use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] Since the differential pressure by the difference of elevation of an ink tank and a recording head is intercepted in the joint section with an ink cartridge according to this invention so that clearly from the above explanation, it does not need to be filled up with porous members, such as sponge, into an ink tank. Therefore, by forming the case of an ink cartridge by the transparent and translucent member, or preparing an inspection hole etc., the residue of ink can be detected visually and small and low-cost-ization can be performed compared with the cartridge of the ink of the amount of said.

[0029] Moreover, ink cannot remain to a porous member, about 100% of ink can be used for printing, and since the ink cartridge itself is made to simplicity and low cost structure, it is further effective in the ability to also reduce a running cost greatly.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-96744

(43)公開日 平成5年(1993)4月20日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FI			技術表示箇所	
B 4 1 J	2/175		8306-2C	B 4 1 J	3/04	102 2	Z

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号	特顧平3-285746	(71)出願人 000005496
		富士ゼロツクス株式会社
(22)出願日	平成3年(1991)10月5日	東京都港区赤坂三丁目3番5号
		(72)発明者 片岡 雅樹
		神奈川県海老名市本郷2274番地 富士ゼロ
		ツクス株式会社海老名事業所内
		(72)発明者 小池 孝雄
		神奈川県海老名市本郷2274番地 富士ゼロ
		ツクス株式会社海老名事業所内
		(72) 発明者 藤村 義彦
		神奈川県海老名市本郷2274番地 富士ゼロ
		ツクス株式会社海老名事業所内
		(74)代理人 弁理士 石井 康夫
		最終頁に続く

(54) 【発明の名称】 インクジエツトプリンタのインク供給機構

(57)【要約】

【目的】 インクカートリッジ内のインクの利用効率が 高く、かつ、残量検知を容易にすることができるインク ジェットプリンタのインク供給機構を提供する。

【構成】 ヘッドカートリッジ部1は、第1の室11と 第2の室15を有し、毛細管14で連結されている。第 2の室15には多孔性部材16が設けられている。第1 の室11は、大気連通孔12と2本の連通路18が設け られている。インクカートリッジ3をヘッドカートリッ ジ部1に取り付けると、連通路18からカートリッジ内 にエアーが供給され、インクが第1の室11に供給され る。インクレベルが連通路の端部を超えると、圧力平衡 によりインク供給が停止される。印字によってインクが 消費されると、多孔性部材16からインクが記録ヘッド 2に送られ、多孔性部材16へは、第1の室11からイ ンクが供給される。

1

【特許請求の範囲】

【請求項1】 ヘッドカートリッジ部にインクカートリッジが分離可能に構成されたインクジェットプリンタのインク供給機構において、前記インクカートリッジは、密閉された容器内にインクを貯蔵する構造であり、前記ヘッドカートリッジ部は、前記インクカートリッジとのジョイント部と、該ジョイント部近傍に設けられ大気との開口を有する第1の室と、該第1の室に連通し多孔性部材を有する第2の室を有し、前記ジョイント部は前記第1の室側の開口の高さが異なる2つ以上の連通路から 10 なることを特徴とするインクジェットプリンタのインク供給機構。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ヘッドカートリッジ部とインクカートリッジとが分離されたインクジェットプリンタのインク供給機構に関するものである。

[0002]

【従来の技術】インクカートリッジを用いたインクジェットプリンタにおいては、プリンタ構成上、インクカー 20トリッジのインク液面が記録ヘッドのノズル面より高くなることがある。このような場合には、記録ヘッドのノズル面には高さの相違による水頭差圧が加わり、ノズルよりインクが流出する。これを防止するために、インクタンク内を負圧を与える方法が用いられており、負圧発生手段を必要とした。

【0003】インクカートリッジ内にインクを収容しておく方法としては、特開昭63-87242号公報や、特開平32-34349号公報に記載されているように、インクタンク内にスポンジなどの多孔性部材を配置 30し、その毛細管力を利用してインクを保持させる方法が一般的であり、広く用いられている。

【0004】しかしながら、この方法では、スポンジにインクを完全に充填することができず、インクカートリッジの容積の70%程度しかインクが入らないという問題があり、しかも、スポンジに充填されたインクの一部はスポンジに残留してしまい、充填されたインクの80%程度しか使用されないという問題がある。このため、インクカートリッジの容積の利用効率は、50~60%程度しかなく、カートリッジの小型化が困難であるばか40りか、インクの利用効率が悪いため、ランニングコストの低価格化を阻害していた。また、インクがスポンジに充填されているため、インクの残量検知が困難であるという問題もある。

【0005】また、特開昭62-231759号公報に 記載されているように、インクタンクと記録ヘッド間に 圧力調整弁を設ける方法も提案されているが、この方法 は、弁の破損やゴミ等による詰まりなどにより、圧力調 窓弁の故障が生じやすく、故障した場合にインクタンク からインクもれを生じるため、実際の使用に適さなかっ 50

た。

[0006]

【発明が解決しようとする課題】本発明は、上述した事情に鑑みてなされたもので、インクカートリッジ内のインクの利用効率が高く、かつ、残量検知を容易にすることができるインクジェットプリンタのインク供給機構を提供することを目的とするものである。

2

[0007]

【課題を解決するための手段】本発明は、ヘッドカートリッジ部にインクカートリッジが分離可能に構成されたインクジェットプリンタのインク供給機構において、前記インクカートリッジは、密閉された容器内にインクを貯蔵する構造であり、前記ヘッドカートリッジ部は、前記インクカートリッジとのジョイント部と、該ジョイント部近傍に設けられ大気との開口を有する第1の室と、該第1の室に連通し多孔性部材を有する第2の室を有し、前記ジョイント部は前記第1の室側の開口の高さが異なる2つ以上の連通路からなることを特徴とするものである。

【0008】前記第2の室からヘッドへの接続路内、または、前記第1の室からの接続路内に、フィルターを設けておくことができる。第1の室と第2の室との間に、細管または多孔性部材等の毛細管を介在させ、その毛管力によってインクを保持するようにしてもよい。

[0009]

【作用】インクカートリッジに蓄えられたインクは、ジョイント部を介して第1の室に供給される。インクカートリッジ内は密閉されており、第1の室は大気開放されている。インクカートリッジと第1の室とは2つ以上の連通路でジョイントされており、この2つ以上の連通路の第1の室側での開口端は、高低差が設けられている。したがって、第1の室にインクが無い場合は、第1の室より連通路を介してエアーが供給されるので、インクは重力によって第1の室に連通路を介して供給される。第1の室のインクレベルがすべての連通路の開口端に達すると、インクカートリッジ内の負圧とインク重量の平衡状態で第1の室へのインクの供給が停止する。

【0010】第1の室で一定レベルに制御されたインクは、第2の室に供給される。第1の室と第2の室との間に、細管または多孔性部材等の毛細管を介在させ、その毛細管力によって、連通路のインクが保持することができる。第2の室では、多孔性部材によりインクが保持され、記録ヘッドに対して適度な負圧が与えられている。印字によってインクが消費され、第2の室の多孔性部材から記録ヘッドにインクが送られると第2の室の負圧が大きくなり、第1の室から第2の室へインクが供給される。

【0011】第1の室におけるインクレベルが、連通路 の高い方の開口端より低くなると、インクカートリッジ

にエアーが供給され、インクカートリッジから、第1の 室へインクが供給される。第1の室のインクレベルが上 昇して、上述した平衡状態となって、インクカートリッ ジからのインクの供給が停止する。

[0012]

【実施例】図1は、本発明のインク供給機構の第1の実 施例の概略を示す断面図である。図中、1はヘッドカー トリッジ部、2は記録ヘッド、3はインクカートリッ ジ、4はヒートシンク、5はマニホルド、11は第1の 室、12は大気連通孔、14は毛細管、15は第2の 10 ると、インクカートリッジ3内は負圧状態となる。この 室、16は多孔性部材、17はジョイント部、18は連 通路、19はフィルタ、20はインク、25は弾性体で ある。ヘッドカートリッジ部1とインクカートリッジ3 とは分離可能に構成されており、インクカートリッジ3 のケーシングが、ヘッドカートリッジ部1のハウジング に形成された図示しないハウジングガイドに案内されて 位置決めされる。

【0013】ヘッドカートリッジ部1には、記録ヘッド 2が取り付けられたヒートシンク4、記録ヘッドに電気 ッドにインクを供給するマニホルド5、インクカートリ ッジとの接続のための2つの連通路18が設けられ、イ ンクを貯蔵する第1の室11と、多孔性部材16を有す る第2の室15と、第1の室と第2の室を連結する毛細 管14とが一体に形成されている。第1の室11には、 大気連通孔12が設けられ、第1の室11が常時大気圧 に等しく保たれている。大気連通孔12は、インクが流 出するのを防止するために、微細穴となっている。多孔 性部材16としては、この実施例では、平均ボアサイズ が 200μ mのウレタンフォームを用いた。記録ヘッド 30 2には、多数のノズル(図示せず)が高密度で形成され ている。この実施例では、128個のノズルが300s piの高密度で形成されている。各ノズルには、通電に よって気泡を発生させ、インク滴を噴射するための発熱 体(図示せず)が設けられている。図1において、イン ク滴の噴射は横向きに行なわれる。

【0014】インクカートリッジ3は、インク20を貯 蔵する室と弾性体25からなる。弾性体25は、ヘッド カートリッジ部1との接続を容易にするためのものであ り、インクが残った状態でインクカートリッジ3を取り 40 外した場合も、インク漏れがないようになっている。イ ンクカートリッジ3の筺体は、剛性を持ち、長期のイン ク保持を可能にするため、耐インク性の良い材料が選択 される。

【0015】動作について説明する。まず、インクカー トリッジ3をヘッドカートリッジ部1に取り付けた場合 について説明する。インクカートリッジ3をヘッドカー トリッジ部1のハウジングに形成された図示しないハウ ジングガイドにしたがって位置決めすると、ヘッドカー トリッジ部1に取り付けられた先端の鋭利な2つの連通 50 を防止するために、十分な流路抵抗をもつサイズが選ば

路18は、インクカートリッジ3の弾性体25を貫通し てインク室に達する。このとき、第1の室11は大気に 開放されているので、連通路18からインクカートリッ ジ3のインク室内にエアーが吸入され、インクは連通路 18を介して、重力によりヘッドカートリッジ部1内の 第1の室11へ供給される。第1の室11内のインクレ ベルが2つの連通路18の端部に達すると、インクカー トリッジ3内へのエアーの供給が停止される。この後、 極小量のインクが、ヘッドカートリッジ部1に供給され 負圧とインクカートリッジ3内のインク残量の重量とが 平衡した時点で、ヘッドカートリッジ部1へのインク供 給が停止される。このようにして、ヘッドカートリッジ 部1内の第1の室11におけるインクレベルが一定にコ ントロールされる。

【0016】第1の室11内のインクは、第2の室15 へ毛細管14を介して供給される。第2の室15では、 多孔性部材16によりインクが保持される。このとき、 記録ヘッド2に働くインク圧力は、第1の室11と記録 信号を供給するプリント配線基板(図示せず)、記録へ 20 ヘッド2の高低差、および、毛細管14の毛管力と多孔 性部材16の毛管力とによりほぼ決定される。このイン ク圧力は、印字に適した値、例えば、-20~-130 mmH2 Oとなるように、ヘッドカートリッジ部1の寸 法、ならびに、多孔性部材16の材質、ポアサイズが選 定される。

> 【0017】印字動作時について説明する。印字によっ てインクが消費されると、第2の室15の多孔性部材1 6に充填されているインクが記録ヘッド2に送られる。 これによって第2の室15の圧力が低下し、毛細管14 を介して第1の室11から第2の室15はインクが供給 される。このようにして、印字によって消費したインク 量とほぼ同じ量のインクが、第1の室11から第2の室 15へ供給される。

> 【0018】インクの消費により、第1の室におけるイ ンクレベルが、連通路18の高い方の開口端より低くな ると、上述したように、インクカートリッジ3にエアー が供給され、インクカートリッジ3から、第1の室11 ヘインクが供給される。第1の室11のインクレベルが 上昇して、上述した平衡状態となって、インクカートリ ッジ3からのインクの供給が停止する。インクカートリ ッジ3のインクが無くなり、第1の室11のインクがす べて消費された後も、第2の室15内の多孔性部材16 に一定量のインクが保持されているので、空吐出をする 恐れが少ない。

【0019】インクカートリッジ3の筐体は、透明、半 透明の部材で形成されているか、または覗き窓(図示せ ず)等が設けられており、目視で容易にインク残量を知 ることが可能な構成となっている。

【0020】2つの連通路18は、急激なインクの流入

れる。しかし、記録ヘッドでのインク消費量が多大とな る場合でも、第2の室15内の多孔性部材16に一定量 のインクがストックされているため、空吐出を行なう恐 れはない。

【0021】図2は、本発明のインク供給機構の第2の 実施例の概略を示す断面図である。図中、図1と同様な 部分には同じ符号を付して説明を省略する。6はレバ 一、7はエアー、8はガイド部材、13はフィルム部材 である。この実施例では、第1の室11と第2の室15 ばれている。第1の室11から第2の室15へのインク の供給を、多孔性部材16の毛管力を利用しているた め、多孔性部材16の下端部は、第1の室11内のイン クレベルよりも低い位置に設置されている。この実施例 によれば、第1の実施例に対して、ヘッドカートリッジ 部1の構造が単純になり、小型化が容易であるととも に、初期のインク充填が容易であり、気泡の混入に対す る信頼性も向上する。

【0022】フィルム部材13は、大気連通孔12から インクが外部への漏れを防止するために設けられたもの 20 で、空気のみを通し、インクを通さない膜部材である。 ガイド部材8は、板パネ状の弾性体を用いたもので、イ ンクカートリッジ3の位置決め用および振動防止用に設 けたものである。また、ヘッドカートリッジ部1からの インクカートリッジ3の取り外しを容易にするために、 レバー6が設けられている。支持部6aの周りにレバー 6を回動させることによりインクカートリッジ3を上に 押し上げることができる。

【0023】図3は、本発明のインク供給機構の第3の 部分には同じ符号を付して説明を省略する。この実施例 では、インクカートリッジ3から第1の室15への連通 路18を、1本の二重管によって形成しものである。こ れにより、インクカートリッジ3とのジョイント部分の 小型化を図ることができる。

【0024】図4は、本発明のインク供給機構の第4の 実施例における連通管の部分の断面図である。第3の実 施例と同様に、2つの連通路が一本の金属製の二重管に よって形成されたものである。図中、1はヘッドカート リッジ部、3はインクカートリッジ、18は連通路、2 40 0はインク、22は接触端子、23は電極、24は接続 端子、25は弾性部材である。この構成によれば、ヘッ ドカートリッジ部1におけるインクレベルは、連通路1 8の外管の下端部でコントロールされる。また、この実 施例では、インク20として導電性のインクを用いるも のである。インクカートリッジ3をヘッドカートリッジ 部1に装着することにより、接触端子22と電極23と が接触し、回路接続がなされる。電極23がインクカー トリッジ3内に露出しているから、インク残量がある場

8の回路が完成するから、接続端子24をプリンタ側に

接続することにより、インク残量およびインクカートリ ッジの取り付け有無とカートリッジのタイプ適合性をプ リンタ側で電気的に感知することが可能である。

【0025】図5は、本発明のインク供給機構の第5の 実施例の概略を示す断面図である。図中、図2と同様な 部分には同じ符号を付して説明を省略する。この実施例 では、記録ヘッド2は、図の上方向ヘインク滴を吐出す る。26は記録ヘッド2により噴射されたインク滴であ は、明確な分離がなされておらず、ほぼストレートに結 10 る。インクカートリッジ3は、横方向よりヘッドカート リッジ部1に取り付けられる。第1の室11は、図示さ れない大気連通孔によって、大気圧に開放されている。 本実施例では、連通路18が多くの毛細管(図示せず) を束ねることで適度な流路抵抗と供給量を得るように形 成されている。

【0026】図6は、本発明のインク供給機構の第6の 実施例の概略を示す断面図である。図中、図2と同様な 部分には同じ符号を付して説明を省略する。9は第2の 大気連通孔、10は第2のフィルム部材、21は第2の フィルタである。この実施例では、記録ヘッド2は、図 の下方向ヘインク滴を吐出する。このように下向き印字 を行なう場合は、プリンタの構成上、第1の室11を記 録ヘッド2より上方の位置に配置することは難しいた め、上述した各実施例に示した構成によると、記録ヘッ ド2へのインク圧を、適正な値に設定することができな くなってくる。そこで、この実施例では、第1の室11 を大気に開放するための大気連通孔(図示せず)を設け るとともに、第1の室11と第2の室15を結ぶ連通路 を、一旦上方に引き回し、その内部に多孔性部材16を 実施例の概略を示す断面図である。図中、図2と同様な 30 充填し、第1の室11より上方で、第2のフィルム部材 10を備えた第2の大気連通孔9を設けた。したがっ て、記録ヘッド2へのインク圧は、多孔性部材16の保 持圧でほぼ決定され、上述したような印字に最適な圧力 を設定できる。この場合、多孔性部材16の保持圧は、 第1の室11のインクレベルと第2の大気連通孔9の位 置との高低差以上の保持圧を持つものが選択され、ま た、大気連通孔9付近で、多孔性部材を不連続にするこ と及び/又は保持圧の異なる部材を選択することが望ま しい。第2フィルタ21は、多孔性部材16側から第1 の室11へのゴミ等の混入を防止し、インクレベルの調 整を高い信頼性をもって実現することができるものであ

> 【0027】なお、本発明は、上記実施例に限定される ものではなく、特許請求の範囲に含まれるすべての構成 を含むものである。例えば、インクカートリッジ内をイ ンク保持部としての非通気性のフィルム材と、空気室部 の2室にすることなども可能である。

[0028]

【発明の効果】以上の説明から明らかなように、本発明 合は、接触端子22-電極23-インク20-連通路1 50 によれば、インクタンクと記録ヘッドの高低差による差

圧を、インクカートリッジとのジョイント部で遮断して いるので、インクタンク中にスポンジ等の多孔性部材を 充填する必要がない。したがって、インクカートリッジ の筺体を、透明、半透明の部材で形成されているか、ま たは覗き窓等を設けることにより、インクの残量を目視 で検知することができ、また同量のインクのカートリッ ジに比べ小型、低コスト化ができる。

【0029】また、多孔性部材にインクが残留すること がなく、ほぼ100%のインクを印字に使用することが ストな構造にできるから、ランニングコストも大きく低 減できるという効果がある。

【図面の簡単な説明】

【図1】 本発明のインク供給機構の第1の実施例の断 面図である。

【図2】 本発明のインク供給機構の第2の実施例の断 面図である。

【図3】 本発明のインク供給機構の第3の実施例の断

面図である。

【図4】 本発明のインク供給機構の第4の実施例の連 通路の断面図である。

【凶5】 本発明のインク供給機構の第5の実施例の断 面図である。

【図6】 本発明のインク供給機構の第6の実施例の断 面図である。

【符号の説明】

1 ヘッドカートリッジ部、2 記録ヘッド、3 イン でき、さらに、インクカートリッジ自体は、簡単、低コ 10 クカートリッジ、4ヒートシンク、5 マニホルド、6 レパー、7 エアー、8 ガイド部材、9第2の大気 連通孔、10 第2のフィルム部材、11 第1の室、 12 大気連通孔、13 フィルム部材、14 毛細 管、15 第2の室、16 多孔性部材、17 ジョイ ント部、18 連通路、19 フィルタ、20 イン ク、21第2のフィルタ、22 接触端子、23 電 極、24 接続端子、25 弾性部材、26 インク

> 【図1】 【図2】 [図4]

10 9 3 20 16 15 25 21 11 18 20

【図6】

フロントページの続き

(72)発明者 森田 直己 神奈川県海老名市本郷2274番地 富士ゼロ ツクス株式会社海老名事業所内

(72)発明者 平塚 昌史 神奈川県海老名市本郷2274番地 富士ゼロ ツクス株式会社海老名事業所内 (72)発明者 高尾 信之 神奈川県海老名市本郷2274番地 富士ゼロ ツクス株式会社海老名事業所内