Clustering validation

Is there any real clustering? How good is it?

- Book: Chapter 6.9
- External material: Halkidi et al. (2002): Cluster Validity Methods: Part I. ACM SIGMOD Record 31(2): 40–45. https://doi.org/10.1145/565117.565124

Three similar problems

- 1. Clustering tendency: is there any clustering in data presented with certain features?
- 2. Determining number of clusters (or other parameters)
- 3. Evaluating goodness of clustering
 - compare different methods
 - compare against classification

All three depend on the clustering objective!

- assumptions on clusters (e.g., compactness, shape)
- separation between clusters

Evaluating goodness of clustering

1. Internal criteria

- validity indices, similar to objective functions
- do not work, if clustering had a different objective!
- can be used to i) evaluate a single clustering or ii) compare clusterings (as relative indices)

2. External criteria

- compare clustering to a predefined classification
- classes may not reflect natural clusters

3. Statistical hypothesis testing

 maybe the most sound approach, but computationally demanding

Internal validity indices

- indices assume some clustering objective → reward methods with the same objective
 - even a good clustering can get a bad score if a different objective!
 - many indices assume/favor spherical or convex clusters
- best for comparing similar algorithms and tuning parameters
- Some popular indices:
 - Average silhouette
 - Calinski-Harabasz index
 - Davies-Bouldin index

Silhouette index

Silhouette of a point x is

$$S(\mathbf{x}) = \begin{cases} 0 & \text{if } \mathbf{x} \text{ a cluster of its own} \\ \frac{b-a}{\max\{a,b\}} & \text{otherwise} \end{cases}$$

$$a = avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C\}$$

$$b = \min_{q} avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C_q, C \neq C_q\}$$

 \approx how closely x matches its own cluster and how loosely the neighbouring cluster

- $S(\mathbf{x}) \in [-1, 1]$, high values good
- Average silhouette describes goodness of entire clustering
- flexible: any distance function *d*

Example: Silhouette of points

What negative values mean?

$$S(\mathbf{x}) = \begin{cases} 0 & \text{if singleton} \\ \frac{b-a}{\max\{a,b\}} & \text{otherwise} \end{cases}$$

$$\begin{aligned} a &= avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C\} \\ b &= \min_{q} avg\{d(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in C, \mathbf{y} \in C\} \\ C_q, C \neq C_q \} \end{aligned}$$

image source http://www.sthda.com/
english/wiki/wiki.php?id_contents=7952

Calinski-Harabasz index

$$S_{CH} = \frac{(n-K)B}{(K-1)W}$$

- between-cluster variance $B = \sum_{i=1}^{K} |C_i| L_2^2(\mathbf{c}_i, \mathbf{m})$, where \mathbf{m} is the mean of the whole data
- within-cluster variance $W = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} L_2^2(\mathbf{x}, \mathbf{c}_i)$
- requires $K \ge 2$
- range $[0, \infty[$, high values good
- When could you get value 0?

Calinski-Harabasz index (cont'd)

$$S_{CH} = \frac{(n-K)B}{(K-1)W} = \frac{(n-K)\sum_{i=1}^{K} |C_i| L_2^2(\mathbf{c}_i, \mathbf{m})}{(K-1)\sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} L_2^2(\mathbf{x}, \mathbf{c}_i)}$$

Note: $W = SSE(\mathbf{C})$. K-means criterion minimizes $W \Rightarrow$ maximizes B, because

$$\sum_{\mathbf{x} \in \mathcal{D}} L_2^2(\mathbf{x}, \mathbf{m}) = \sum_{i=1}^K \sum_{\mathbf{x} \in C_i} L_2^2(\mathbf{x}, \mathbf{c}_i)^2 + \sum_{i=1}^K |C_i| L_2^2(\mathbf{c}_i, \mathbf{m})$$

 \Rightarrow S_{CH} favours especially K-means!

Important: need to use L_2 in clustering!

Davies-Bouldin index

$$S_{DB} = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \frac{S_i + S_j}{D_{ij}} \quad \text{, where}$$

- $S_i = \left(\frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} L_p^q(\mathbf{x}, \mathbf{c}_i)\right)^{\frac{1}{q}}$ measures dispersion of C_i
 - usually q = 2 (stdev of distances)
 - if q = 1, average distances
- $D_{ij} = L_p(\mathbf{c}_i, \mathbf{c}_j)$ measures separation between C_i and C_j
- max: for each C_i , evaluate relation to most problematic C_j
- possible to take avg instead of max

Important: use the same L_p as the clustering algorithm!

Davies-Bouldin index (cont'd)

$$S_{DB} = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \frac{S_i + S_j}{D_{ij}}$$
, where

$$S_i = \left(\frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} L_p^q(\mathbf{x}, \mathbf{c}_i)\right)^{\frac{1}{q}} \text{ and } D_{ij} = L_p(\mathbf{c}_i, \mathbf{c}_j)$$

- range $[0, \infty[$, small values good
- When could you get value 0?

Possible strategies when S_{DB} used to determine K:

- restrict number of singletons (e.g., 0 or a few)
- define $S_i = a$ for some large a, when $|C_i| = 1$

External validation: Compare clustering against predefined classification

A confusion matrix: clustering vs. classification

	Class 1	Class 2	Class 3	
Cluster 1	n_{11}	n ₁₂	n ₁₃	m_1
Cluster 2	n ₂₁	n ₂₂	n ₂₃	m_2
Cluster 3	n ₃₁	n ₃₂	n ₃₃	m_3
	c_1	c ₂	<i>c</i> ₃	n

image source Cunnigham https://slideplayer.com/slide/14318989/

External validation

Given clustering C_1, \ldots, C_K and classification D_1, \ldots, D_q . Many validation indices! E.g.,

purity

$$Pur(C) = \frac{1}{n} \sum_{i=1}^{K} \max_{j} |C_i \cap D_j|$$

- be careful! (increases with K)
- normalized mutual information NMI (robust, independent of K)
- Rand index

Normalized mutual information

Normalized mutual information by Strehl and Ghosh (2003):

$$NMI = \frac{I(C, D)}{\sqrt{H(C)H(D)}}$$

mutual information $I = \sum_{C_i \in C} \sum_{D_j \in D} P(C_i, D_j) \log \frac{P(C_i, D_j)}{P(C_i)P(D_j)}$ entropy $H(C) = -\sum_{C_i \in C} P(C_i) \log P(C_i)$

- + does not depend on the number of clusters
- many singleton clusters can cause problems

Note: Also other variants of normalized mutual information, give always equation and/or reference what you use!

Statistical hypothesis testing: motivation

SI can be pretty good even for random data!

- each feature generated independently from uniform distribution
- 100 randomizations
- K-means repeated 100 times \rightarrow best result for each K

Experiment by Georgy Ananov for MDM 2023

Statistical hypothesis testing

Procedure:

- 1. decide a null hypothesis H_0 to test
 - describes the state where there isn't any clustering
 - e.g., H_0 : All sets of n locations in certain region are equally likely.
- 2. decide a test statistic *T*
 - may be a validity index
- 3. What is the probability to obtain at least as good test statistic values as in data (where T = t) if H_0 was true?

Statistical hypothesis testing

Assume that large T value good

Idea: If $P(T \ge t)$ very small \Rightarrow unlikely that the observed clustering had occurred by chance

• $P(T \ge t)$ is the **p-value** that can be used as a significance measure

Statistical hypothesis testing

Problem: How to evaluate p-value? (T's distribution seldom known!)

- often by Monte Carlo experiments (randomization tests):
 - generate random data sets fulfilling H_0 , cluster them and evaluate T
 - p-value \approx proportion of random sets that obtained $T \ge t$ (if large T good)
- computationally demanding (a lot of simulations!)
- many alternatives for H_0 s and Ts

Other evaluation: What the clustering reveals?

- Look at cluster sizes (e.g., C_1 : n-2 data points and C_2 : 2 points likely outliers!)
- How do the clusters differ? (selected and external features)
 - e.g., rats clustered by body measurements (weight, tail and body length, organ weights)
 - 2 clusters: big and small rats
 - vs. 3 clusters: C_1 : young or sick rats, C_2 : pregnant or nursing females, C_3 : other adults
- Are all clusters clear? (e.g., C_1 and C_3 intermingled, C_2 separate)

Summary

- Remember validation, but be cautious!
 - even random data can produce clusterings, but they seldom pass validation
 - problem: indices biased or do not reflect the underlying clustering
 - try always more than one validation technique
- Objective, distance measure, clustering method and validation should match!

Sources and further reading

- Halkidi et al. (2001): On clustering validation techniques, Journal of Intelligent Information Systems 17: 107–145. https://www.researchgate.net/ publication/2500099_On_Clustering_Validation_ Techniques
- Jain and Dubes (1988): Algorithms for clustering data,
 Ch 4.
- Gan, Ma, Wu (2007): Data clustering theory, algorithms, and applications, Ch 17, https://www.researchgate.net/publication/ 220694937_Data_Clustering_Theory_Algorithms_and _Applications

Sources and further reading

 Vargha, Bergman, Takacs: Performing Cluster Analysis Within a Person-Oriented Context: Some Methods for Evaluating the Quality of Cluster Solutions. Journal of Person-Oriented Research, 2: 78-86, 2016.