Chương 3: Dữ liệu và một số thao tác tiền xử lý dữ liệu

3.1 Phép toán, hàm tính toán và những tính toán đơn giản

round(x, digits = k): Tính số làm tròn đến k chữ số thập phân(Bảng đầy đủ trang 24)

3.2 Ma trận và phép toán trên ma trận

matrix(data, nrow, ncol)

data: vector phần tử

nrow: số dòng ncol: số cột

3.3 Vector dữ liệu

3.3.1 Nhập dữ liệu

3.3.2 Biên tập dữ liệu

3.3.3 Truy cập dữ liệu

Lệnh	Cộng dụng
length(x)	Số phần tử
x[-i]	Đưa ra mọi phần tử trừ phần tử thứ i
x[i:j]	Đưa ra phần tử từ vị trí thứ i đến vị trí thứ j
x[c(i,j,k)]	Đưa ra phần tử ở vị trí i, j , k
x[x>a]	Đưa ra phần tử lớn hơn a
sum(x > a)	Tính số phần tử lớn hơn a
which(x == a)	Đưa ra những vị trí có giá trị bằng a
subset(x, subset)	Đưa ra tập con với điều kiện trong subset

3.3.4 Loại bỏ dữ liệu trống

 $> x = \mathbf{na.omit}(x)$

3.3.5 Chuyển dữ liệu số thành dữ liệu định danh

$$> x = c(2, 3, 0, 5, 1, 0, 7, 0, 2, 7)$$

$$>$$
pl = x;

$$>pl[x < 2] = "it"$$

$$>$$
pl[x >= 2 & x <= 5] = "bt"

$$>$$
pl[x $>$ 5] = "nhieu"

3.3.6 Biến đổi vector định danh thành vector nhân tố

3.4 Bảng dữ liệu

3.4.1 Nhập dữ liệu dạng bảng

3.4.2 Biên tập dữ liệu

- > dulieu = **edit**(dulieu)
- > #Hoặc
- > **fix**(dulieu)

3.4.3 Truy cập dữ liệu

A[i, j] A[c(i, j, k),] (Bảng đầy đủ dễ nhớ trang 37)

3.4.4 Loại bỏ dữ liệu trống

> dulieu = na.omit(dulieu)

```
3.5 Lưu dữ liệu
save(dulieu, file = "DuLieu.rda")
3.6 Tạo dữ liệu
      3.6.1 Tạo dãy số cách đều hàm seq
      seq(from, to, by)
      seq(length, from, by)
      seq(length, from, to)
      3.6.2 Tạo dãy lặp lại bằng hàm rep
      rep(x, time)
      x: vector lặp
      time: số lần lặp / vector chỉ số lần lặp của mỗi phần tử trong x
      3.6.3 Tạo dãy thứ bậc bằng hàm gl
      gl(n, k ,length, labels )
      n: Số chỉ số bậc
      k: Số lần lặp lại của mỗi bậc
      lengh: Chiều dài kết quả
      labels: vector nhãn gán
3.7 Đọc dữ liệu có sẵn
3.8 Chọn mẫu ngẫu nhiên
sample(x, size, replace , prob )
x: vector gồn những thành phần chọn ngẫu nhiện
```

size: số phần tử lấy ra

replace: TRUE/ FALSE (Có hoàn lại / Không hoàn lại)

prop: vector cho biết xác suất được chọn của những phần tử trong x

Chương 4: Tóm tắt dữ liệu

• Hàm tính tần số, tần suất

Hàm	Công dụng	
table(x)	Tính tần số của các phần tử trong x	
<pre>prop.table(table(x), margin)</pre>	Tính tần suất của các phần tử trong x	
cumsum(table(x))	Tần số tích lũy	
<pre>cumsum(prop.table(table(x), margin))</pre>	Tần suất tích lũy	

• Hàm phân tổ dữ liệu

cut(x, breaks, labels, right, include.lowest, dig.lab)

x: vector dữ liệu dạng số

breaks: vector số (ít nhất 2) gồm các điểm chia hoặc là một số nguyên dương (>= 2) chỉ số tổ

labels: nhãn của các tổ (mặc định NULL), các nhãn được xây dựng dưới dạng (a, b]

right: dạng logic, right = TRUE thì tổ có dạng (a, b] hoặc ngược lại [a, b), mặc định là right = TRUE

include.lowest: dạng logic, bằng TRUE thì tổ đầu chứa giá trị nhỏ nhất của các điểm chia (khi right = TRUE) hoặc tổ cuối chứa giá trị lớn nhất của các điểm chia (khi right = FALSE), mặc định bằng FALSE.

dig.lab: số nguyên dương chỉ số chữ số trong điểm chia (trong trường hợp không gán nhãn cho các khoảng chia) mặc định bằng 3.

Chương 6: Biến ngẫu nhiên

Hàm	Công dụng
mean(x)	Tính trung bình
median(x)	Tính trung vị
quantile(x)	Tính tứ phân vị
quantile(x, 0.8)	Tính phân vị thứ 80
sd(x)	Tính độ lệch chuẩn
var(x)	Tính phương sai

$$var(x) = sd(x)^2$$

Giá trị tới hạn Zα của phân phối chuẩn hóa

$$z(\alpha) = qnorm(1-\alpha)$$

Giá trị tới hạn t
(n, α) của phân phối Student

$$t(n, \alpha) = qt(1-\alpha, n)$$

Chương 7: Khoảng tin cậy cho tham số một tổng thể

7.1 Khoảng tin cậy cho trung bình một tổng thể

Khoảng tin cậy cho trung bình μ

• Phân phối chuẩn, phương sai σ đã biết, khoảng tin cậy $100(1-\alpha)\%$ cho μ là :

$$mean(x) - z(\alpha/2)$$
. $\sigma/ sqrt(n) < \mu < mean(x) + z(\alpha/2)$. $\sigma/ sqrt(n)$

• Phân phối chuẩn, phương sai σ chưa biết, khoảng tin cậy $100(1-\alpha)\%$ cho μ là :

$$mean(x) - t(n-1,\alpha/2)$$
. $S(x)/ sqrt(n) < \mu < mean(x) + t(n-1,\alpha/2)$. $S(x)/ sqrt(n)$

S(x): Phương sai mẫu

- Khoảng tin cậy cho trung bình tổng thể
 - O Phương sai đã biết (sigma.x: Độ lệch chuẩn tổng thể)

■ Dữ liệu sơ cấp: **z.test**(x, sigma.x, conf.level)

■ Dữ liệu thứ cấp: **zsum.test**(mean.x, sigma.x, n.x, conf.level)

O Phương sai chưa biết (Biết s.x là độ lệch chuẩn của mẫu)

■ Dữ liệu sơ cấp: **t.test**(x, conf.level)

■ Dữ liệu thứ cấp: **tsum.test**(mean.x, s.x, n.x, conf.level)

7.2 Khoảng tin cây cho tỉ lệ tổng thể

prop.test(x, n, conf.level, correct)

x: số lần thành công

n: Số lần thử

conf.level: số thuộc [0,1] chỉ số tin cậy của khoảng ước lượng

correct: tham số logic, có hay không sự điều chỉnh liên tục Yate (True)

Chương 8: Kiểm định tham số

Bước làm bài kiểm định tham số

Bước 1: Thiết lập Ho H1

Bước 2: Xác định hàm kiểm định

Bước 3: Thực hiện kiểm định

Bước 4: Đọc kết quả và đưa ra kết luận

Kết luận: So sánh p-value với mức ý nghĩa α

- p-value < α : Bác bỏ Ho

- p-value \geq = α : Không bác bỏ Ho

8.1 Kiểm định giả thuyết về tham số một tổng thể

8.1.1 Kiểm định giả thuyết về trung bình *một* tổng thể

o Gía trị thống kê

• Phương sai đã biết: $z = (mean(x) - mu_o) / sigma.x / sqrt(n)$

• Phương sai chưa biết: $t = (mean(x) - mu_o)/ s.x / sqrt(n)$

Но	Bác bỏ Ho	
mu >= mu_o	$z > z\alpha$	$t > t(n-1,\alpha)$
mu <= mu_o	$z < z\alpha$	$t < t(n-1,\alpha)$
mu == mu_o	$ z > z(\alpha/2)$	$ t > t(n-1,\alpha/2)$

Chú ý: library(BSDA)

Kiểm định trung bình một tổng thể

• Biết phương sai tổng thể

o Dữ liệu sơ cấp : **z.test**(x, sigma.x, mu, alt)

o Dữ liệu thứ cấp : **zsum.test**(mean.x, sigma.x, n.x, mu, alt)

Không biết phương sai tổng thể

o Dữ liệu sơ cấp: **t.test**(x, mu, alt)

o Dữ liệu thứ cấp: **tsum.test**(mean.x, s.x, n.x, mu, alt)

8.1.2 Kiểm định giả thuyết về tỉ lệ một tổng thể prop.test(x, n, p, alt, correct)

x: số lần thành công

n: số lần thử

p: xác suất thành công

correct: có sự điều chỉnh liên tục Yate không, mặc định TRUE

8.2 Kiểm định giả thuyết về tham số hai tổng thể

Kiểm định trung bình hai tổng thể

- Trọn mẫu **độc lập**
 - o Đã biết phương sai
 - Dữ liệu sơ cấp: **z.test**(x, y, sigma.x, sigma.y, mu, alt)
 - Dữ liệu thứ cấp: zsum.test(mean.x, sigma.x, n.x, mean.y, sigma.y, n.y, mu, alt)
 - **o** Chưa biết phương sai
 - Có giả thuyết phương sai bằng nhau
 - Dữ liệu sơ cấp: **t.test**(x, y, mu, alt, var.equal = TRUE)
 - Dữ liệu thứ cấp: **tsum.test**(mean.x, s.x, n.x, mean.y, s.y, n.y, mu,alt,var.equal=TRUE)
 - Không có giả thuyết phương sai bằng nhau:
 - Thay "var.equal = FALSE"
- Trọng mẫu **ghép cặp**
 - **o** Dữ liệu sơ cấp: **t.test**(x, y, mu, alt, paired = TRUE)
 - **o** Dữ liệu thứ cấp: **tsum.test**(mean.x, s.x, n.x, mean.y, s.y, n.y, mu, alt, paired =TRUE)

Kiểm định giả thuyết về tỉ lệ hai tổng thể

prop.test(x, n, alt, correct)

x: vector chỉ số lần thành công trong mỗi mẫu

n: vector chỉ soosl ần thử trong mỗi mẫu

alt, correct

Kiểm định giả thuyết về phương sai hai tổng thể

var.test(x, y, ratio, alt)

x: vector chỉ số lần thành công trong mỗi mẫu

n: vector chỉ soosl ần thử trong mỗi mẫu

ratio: tỉ số được giả thuyết của phương sai 2 tổng thể (mặc định là 1)

alt

Chương 9: Phân tích phương sai

9.1 Phân tích phương sai một nhân tố

oneway.test(formula, data, var.equal)

formula: Công thức dạng y ~ g, y là vector dữ liệu biến định lượng, g là

vector dữ liệu biến định tính

data: Bảng dữ liệu 2 biến y, g

var.equal: Phương sai có bằng nhau hau không

(ví dụ trang 179)

Hàm khác phân tích phương sai cho kết quả chi tiết hơn anova

anova ($lm(y \sim g)$, data) (anova = aov)

Chú thích:

Df: bậc tự di ở tử và mẫu của thống kê F

Sum Sq: Tổng các bình phương

Mean Sq: Bình phương trung bình

F value: tỷ số F

Pr (>F): p-value

9.2 Phân tích sâu

TukeyHSD(aov(y~g, data), which, ordered, conf.level)

y,g: Như oneway.test

which: vector xâu lý tự gồm tên những biến nguyên nhân

ordered: tham số logic điều chỉnh thứ tự các cặp trung bình được so sánh

conf.level: độ tin cậy

Chú thích:

diff: : chênh lệch giữa các trung bình mẫu

lwr, npr: cận dưới và cận trên của khoảng tin cậy cho số hiệu từng cặp trung bình

p adj: p-value

(Ví dụ trang 181)

Chương 10 Kiểm định phi tham số

Kiểm định phi tham số

- Kiểm định trung vị một tổng thể
 - **o** wilcox.test(x, mu, alt, exact, correct, conf.int, conf.level)
- Kiểm định trung vị hai tổng thể
 - **o** wilcox.test(x, y, mu, alt, exact, paired, correct, conf.int, conf.level)

Trong đó:

x: vector dữ liệu mẫu thứ nhất

y: vector dữ liệu mẫu thứ hai

mu, alt

exact: tham số dạng logic xét xem p-value có được tính chính xác không

paired: tham số logic, có ghép cặp hay không

correct: tham số dạng logic xét xem khi tính p-value bằng cách xấp xỉ phân

phối chuẩn cáp áp dụng điều chỉnh liên tục không

conf.int: tham số dạng logic xét xem có đưa ra khoảng tin cậy cho trung vị

tổng thể không

conf.level: độ tin cậy của khoảng ước lượng

Kiểm định trung vị nhiều tỏng thể

Kruskal.test(x, g)

x: vector dữ liệu

g: vector thứ bậc phân loại các phần tử trong x

Chương 11 Kiểm định khi-bình phương

11.1 Kiểm chứng tính độc lập

chisq.test(A)

A: ma trận dữ liệu

11.2 Kiểm chứng mức phù hợp của một phân phối

chisq.test(x, p)

x: vector dữ liệu

p: vector cùng chiều dài với x chỉ xác suất của phân phối cần kiểm chứng