

Loi de Zipf - Analyse de Brown Corpus

UFR de sociologie et d'informatique pour les sciences humaines

Programmation de Modèles Linguistiques (I) 2020-21

Carlos González et Gaël Lejeune

Chargement de bibliothèques

```
In [1]:
```

```
from nltk.corpus import brown
from functools import reduce
import matplotlib.pyplot as pyplot
import re
```

Définition des fonctions

```
In [2]:
```

```
def load brown corpus():
   p = re.compile('\W')
    texte = [token.lower() for token in brown.words()]
    texte = [token for token in texte if not p.match(token)]
    return texte
def texte to dict(texte):
    texte dict = {}
    for token in texte:
        if token in texte dict:
            texte dict[token] += 1
        else:
            texte dict[token] = 1
    return texte dict
def dict to list(texte dict):
    texte list=[]
    for mot in texte_dict.keys():
        texte list.append([texte dict[mot], mot])
    texte list.sort(reverse=True)
    return texte list
def afficher n(texte list, n):
    cumul = 0
    print("rang\tmot\tfrequence\tfrequence(Zipf)")
    print("-"*50)
    for in range(n):
        cumul += texte list[ ][0]
        print("{}\t{}\t{}\t\t\:..of}\".format( +1, texte list[ ][1], texte list[ ]
[0], texte_list[0][0]/(_+1)))
    total = reduce(lambda x, y: x+y, [_[0] for _ in texte_list])
    prop = cumul/total*100
    print("-"*50)
    print("Ces {} mots représentent le {:0.2f}% du corpus".format(n, prop))
def plot zipf(texte list, log=False):
    pyplot.rcParams['figure.figsize'] = [15, 10]
    y = [_[0] for _ in texte_list]
    y_ = []
    for _ in range(len(texte_list)):
        y_.append(int(texte_list[0][0]/(_+1)))
    pyplot.plot(y, "-", label="Réelle")
    pyplot.plot(y , "--", label="Approximation (Zipf)")
```

```
if log:
    pyplot.yscale("log")
    pyplot.xscale("log")

pyplot.legend()
pyplot.title("Loi de Zipf (Brown Corpus)")
pyplot.xlabel("Rang")
pyplot.ylabel("Fréquence")
pyplot.show()
```

Analyse du corpus

```
In [3]:
texte = load brown corpus()
print("Quantité des mots (tokens) :", len(texte))
print("Quantité des mots differentes (types) :", len(set(texte)))
Quantité des mots (tokens) : 1012528
Quantité des mots differentes (types) : 49398
In [4]:
print(texte[:50])
['the', 'fulton', 'county', 'grand', 'jury', 'said', 'friday', 'an',
'investigation', 'of', "atlanta's", 'recent', 'primary', 'election',
'produced', 'no', 'evidence', 'that', 'any', 'irregularities', 'too k', 'place', 'the', 'jury', 'further', 'said', 'in', 'term-end', 'pr
esentments', 'that', 'the', 'city', 'executive', 'committee', 'whic
h', 'had', 'over-all', 'charge', 'of', 'the', 'election', 'deserve
s', 'the', 'praise', 'and', 'thanks', 'of', 'the', 'city', 'of']
In [5]:
texte dict = texte to dict(texte)
In [6]:
mots = ["the", "of", "and", "i"]
print("mot\tfrequence")
for mot in mots:
    print("{}\t{}".format(mot, texte_dict[mot]))
mot
         frequence
the
         69971
of
         36412
         28853
and
         5164
In [7]:
texte list = dict to list(texte dict)
```

In [8]:

afficher_n(texte_list, 20)

rang	mot	frequence	frequence(Zipf)
1	the	69971	69971
2	of	36412	34986
3	and	28853	23324
4	to	26158	17493
5	a	23195	13994
6	in	21337	11662
7	that	10594	9996
8	is	10109	8746
9	was	9815	7775
10	he	9548	6997
11	for	9489	6361
12	it	8760	5831
13	with	7289	5382
14	as	7253	4998
15	his	6996	4665
16	on	6741	4373
17	be	6377	4116
18	at	5372	3887
19	by	5306	3683
20	i	5164	3499

Ces 20 mots représentent le 31.08% du corpus

In [9]:

plot_zipf(texte_list[:135], log=False)

