RF Circuit Design

Prof. Salvatore Levantino

Available time: 1 hour May 3rd, 2017

Mid-term Test

The XOR gate has CMOS levels 0 and V_{DD} = 1.8 V and zero output impedance. Let x(t) be a squarewave with frequency f_x = 50 MHz, the frequency-division factor M = 45, and the VCO frequency linearly increase in the range between 2245 and 2265 MHz with V_{tune} between 0 to V_{DD} . Let C_1 = 150 pF, C_3 = 1 nF, and V_B = 0.45 V. Let the OpAmp be ideal with infinte gain.

- a) Set the **value of** R_I , R_2 , and R_3 to get (i) crossover frequency of the loop gain at 200 kHz, (ii) phase margin of 60 degree, (iii) phase noise (\mathcal{L}) of y(t) at 100 kHz equal to -131 dBc/Hz, considering for simplicity **only** the thermal noise of R_I .
- b) Being $V_B = 0.45$ V, calculate the **time delay** between x(t) and d(t), the **average value of** V_{tune} , and the **level (in dBc) and frequency of the dominant spur** in the spectrum of y(t).
- c) Let us assume that the PLL is used as the local oscillator of an RF receiver, whose input is given by a wanted signal at 1800 MHz with -100dBm power of over a bandwidth of 1 MHz and an interferer at 1825 MHz with -30dBm power. Calculate the **phase noise** (*L*) required to the PLL to guarantee SNR = 20 dB at the receiver output. **Considering the thermal noise of** *R*₁, *R*₂, and *R*₃, **evaluate** whether the PLL designed in a) fulfills the phase noise specification.

[Sol. a) $R_1 = 1.8 \text{k}\Omega$, $R_2 = 2.8 \text{k}\Omega$, $R_3 = 1.16 \text{k}\Omega$; b) $t_e = 2.5 \text{ns}$, $V_{tune} = 0.45 \text{V}$, $\mathcal{L}(100 \text{MHz})$ = -68.5dBc; c) $\mathcal{L}(25 \text{MHz}) = -150 \text{dBc/Hz}$ (specification), -176dBc/Hz (PLL).]

