Bayesian Modeling for Socio-Environmental Data

N. Thompson Hobbs

July 20, 2016

Bayesian Modeling for Socio-Environmental Data

N. Thompson Hobbs

July 20, 2016

Today

- ▶ A high elevation view of approaches for statistical inference
- Some motivation for learning
- Laws of probability
- Basic distribution theory

What sets statements of scientists apart from statements made by journalists, lawyers, and logicians?

Goals

Exercise

Write out the definition of a frequentist, 95% confidence interval on a parameter of interest, θ .

Some notation

- y data
- lacktriangledown heta a parameter or other unknown quantity of interest
- lackbox[y| heta] The probability distribution of y conditional on heta
- $lackbox{ } [heta|y]$ The probability distribution of heta conditional on y
- ▶ $P(y|\theta) = p(y|\theta) = [y|\theta] = f(y|\theta)$, different notation that means the same thing.

Board work on confidence envelopes

- ▶ We divide the world into things that are observed (y) and things that unobserved (θ) .
- ▶ The unobserved quantities (θ) are random variables. The data are random variables before they are observed and fixed after they have been observed.
- ▶ We seek to understand the probability distribution of θ using fixed observations, i.e., $[\theta|y]$.
- ▶ Those distributions quantify our uncertainty about θ .

An unobserved quanity (θ)

You can understand it.

	KEY TO STATISTICAL METHODS			
	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
1 variable 1 sample	Examination of a single sample	Procedure for grouping a frequency distribution, Box 2.1; stem and leaf display, Section 2.5; testing for outliers, Section 13.4 Companing median of frequency distribution, Box 4.1 Companing arthmetic means. Foundation of the section of the sect		Confidence limits for a percentage, Section 17.1 Runs test for randomness in sichotomized data, Box 18.3
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodiness of fit tests, parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis. Box 17.2 Kolmogorro-Senitron test of goodness of fit, Box 17.3 Graphic Tests for normality: large sample sizes, Box 6.3, small sample sizes translate test), Box 6.4 Test of sample statistic against expected value, Box 7.4.		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
1 variable ≥2 samples	Single classification	Single classification arrows: unequal sample sizes, Box 9.1: equal sample sizes, Box 9.4 Planned congentron of means in arrow, Box 9.8: Planned congentron of means in arrow, Box 9.8: Planned congentron of means. Tendento, equal sample sizes, Box 9.9: T. G.T.2: and Turkey-Kramer, unequal sample sizes, Box 9.9: T. G.T.2: and Turkey-Kramer, unequal sample sizes, Box 9.9: T. and G.T.2: Box 9.1: amilipie confidence limits. Section 14.10 Estimate variance components. Section of the confidence intents to a variance component, Box 9.3 Secting confidence limits to a variance component, Box 9.1 Tests of homogeneity of variances, Box 13.1 Tests of equality of means when variances are heterogeneous, Box 13.2	Kruskal-Wallis test, Box 13.5 Unplanned comparison of mean by a nonparametric STP, Box 17.5	Great for homogeneity of percentages, Boxes 17:3 and 17.8 Comparison of several samples with an expected frequency distribution, Box 17:4 unplanned analysis of replicated teas of goodness of fit, Box 17:5
	Nested classification	Two-level nested anova: equal sample sizes, Box 10.1; unequal sample sizes, Box 10.4 Three-level nested anova: equal sample sizes, Box 10.3; unequal sample sizes, Box 10.5		
	Two way or multi-way classification	Tax way anova with replication, Box 11.1; without replication, Box 11.2; unequal by Irroportional subclass sizes, Box 11.4; with a single missing observation, Box 11.2. Three way anova, Box 12.1 More than three way classification, Section 12.3 and Box 12.2 Test for nonauditivity in a two way anova, Box 13.4	Friedman's method for randomized blocks, Box 13.9	Three way log linear model, Box 17.9 Randomized blocks for frequency data (repeated testing of the same individuals) Box 17.11

You can understand it.

Praloe:

History that show, the libely had to morbe that show is the same as that a value is the same as another

Confidence Interval— Shows A range of values that we have a certain level of confidence our value of interest falls in.

Definition of Pushe The probability of the tignificant difference between measured (cherryed) value 8 other nearwed values

3) What is confidence Interval?

The range of measured (chserved)

take population mean
can occur within it

You can understand it.

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - Factoring joint probabilities
- Distribution theory
- Markov chain Monte Carlo

One approach applies to many problems

- An unobservable state of interest, z
- ▶ A deterministic model of a process, $g(\theta,x)$, controlling the state.
- ► A model of the data
- Models of parameters

