

GeoData Science Track HPC FOR BIG DATA

Frédéric RAIMBAULT, Nicolas COURTY
University of South Brittany, France
IRISA laboratory, OBELIX team

Overview

The problem: Big Data

- Data is growing exponentially
 - Hardware performance doesn't scale as quickly
- How to get business value out of this data

The (computer scientist) solution: HPC

- High Performance Computing
 - Parallel computers (hardware)
 - Cluster of machines with multiple processors containing multiple cores,
 GPU farms...
 - Distributed systems (software)
 - For storage (distributed FS) and processing (programming frameworks)

Course Objectives

1) Understand some issues

- Complexity of managing datasets due to their Volume,
 Velocity and Variety (3V)
- Distributed infrastructure is difficult to use

2) Become familiar with existing tools

- Hadoop technology stack
- GPGPU Cuda framework

3) Practice on real (big) data

- AIS signals dataset from AIS-UBS
- The Copernicus datasets

Programming Languages and Tools

Python

- Version > 3.
- Libraries: snakebite, mrjob, PySpark, Numba,...
- Programming Environment : Anaconda, Spyder, Jupyter Notebook

Shell

 Command Line Interface (text) to read commands and run programs (and connect to remote machines)

AWS EMR

MapReduce tools from the Amazon Cloud computing resources

Resources

Computing environment

- Locally host server of 40 cores + 1 Titan-X GPU: dmis
- Virtual/cloud servers hosted in Amazon EC2
- Remote access using "ssh" (a remote CLI)
- OS (Operating system) : Linux (a Unix alternative)

Datasets

- AIS-UBS: https://ais.univ-ubs.fr
- Copernicus: www.copernicus.eu/en/access-data/conventional-data-access-hubs

Online material

 ENT "Big GeoData", enrollment key: CDE https://moodle.univ-ubs.fr/course/view.php?id=5920

Evaluation

 Several tests on theoretical and practical exercises during the semester.

Lecture Plan

- 1) Introduction (1 session)
 - Big Data issues and HPC principles
 - 2) GPU-based processing (3 sessions)
 - 3) Hadoop Stack (6 sessions)
 - HDFS
 - MapReduce
 - Spark