FPGA Lab 4 with Nios II Eclipse

DE10-Lite FPGA မှာပါတဲ့ 7 segment display တွေကိုအသုံးပြုပြီးတော့ "HELLO" ဆိုတဲ့ စာလုံးကို Nios II Eclipse ကိုသုံးပြုထုတ်စမ်းမှာဖြစ်ပါတယ်။ ဒီသင်ခန်းစာမှာသိစေချင်တာကတော့ Quartus Prime ကနေ Nios II Eclipse နဲ့ ဘယ်ချိတ်ပြီးခေါ် တယ်ဆိုတာသိစေချင်လို့ ဖြစ်ပါတယ်။

> This PC > DATA (D:) > fpgaLab > lab4			
;	Name	Date modified	Туре
,	.qsys_edit	11/7/2018 2:59 AM	File folder
	db	11/7/2018 3:02 AM	File folder
	DE10_LITE_Qsys	11/7/2018 2:59 AM	File folder
	demo_batch	11/7/2018 2:59 AM	File folder
	incremental_db	11/7/2018 2:59 AM	File folder
3	output_files	11/7/2018 2:59 AM	File folder
1	software	11/7/2018 2:59 AM	File folder
	DE10_LITE_Qsys.qsys	6/12/2017 6:33 AM	QSYS File
w	DE10_LTTE_Cove_concinfo	6/12/2017 6:42 AM	SOPCINFO File
	DE10_LITE_SDRAM_Nios_Test	6/1/2016 12:03 AM	Chrome HTML Doc
	DE10_LITE_SDRAM_Nios_Test	6/1/2016 12:03 AM	QPF File
(C:)	DE10_LITE_SDRAM_Nios_Test.gsf	11/6/2018 5:43 PM	QSF File
()	DE10_LITE_SDRAM_NIOS_Test.sdc	10/20/2016 2:42 AM	SDC File
->	DE10_LITE_SDRAM_Nios_Test	6/12/2017 6:41 AM	V File
F:) OPPO Driver	DE10_LITE_SDRAM_Nios_Test.v.bak	6/1/2016 12:03 AM	BAK File
) OPPO Driver	DE10_LITE_SDRAM_Nios_Test_assignment	10/20/2016 2:42 AM	QDF File
	PLLJ_PLLSPE_INFO	6/1/2016 12:03 AM	Text Document

fpagLab ထဲက lab4 ထဲက DE10_LITE_SDRAM_Nios_Test ဆိုတဲ့ project ဖိုင်ကိုဗွင့်ပါမယ်။

Project ပွင့်လာတာကိုအထက်ပါပုံအတိုင်းမြင်ရမှာဖြစ်ပါတယ်။ Start Compilation ဆိုတဲ့ စလုတ် ကိုနှိပ်ပြီးတော့ compilation ပြုလုပ်ပေးရပါမယ်။

ပြီးရင်တော့ output_files ဆိုတဲ့ဖိုဒါထဲက .sof ဖိုင်ကိုရွေးပြီးတော့ board ကိုထည့်ပါမယ်။

Successful ဖြစ်သွားရင်တော့ အောက်ပါပုံအတိုင်း "OpenCore Plus Status" ဆိုတဲ့ dialog ကိုမြင်တွေ့ ရမှာဖြစ်ပါတယ်။ အဲ့ဒီ dialog box ကိုမပိတ်လိုက်ပါနဲ့ ။

"Tools" Menu ထဲက Nios II Software Build Tools for Eclipse ကိုနှိပ်ပြီးတော့ Eclipse ကိုဖွင့်လိုက်ပါ မယ်။

Eclipse ပွင့်လာပါပြီ၊ ပြီးရင်တော့-

Workspace နေရာမှာ lab4 ဖိုဒါထဲက eclipse projet ဖိုင်တွေရှိနေတဲ့ software ဆိုတဲ့ ရွေးပြီးတော့ OK ကိုနှိပ်လိုက်ပါ။

"hello_sseg_bsp" ဆိုတဲ့ဖိုဒါပေါ် ကို R-Click ထောက်ပြီးတော့ "Nios II" ထဲက "Generate BSP" ဆိုတဲ့

နှိပ်လိုက်ပါ။ "Generating BSP..." ဆိုတဲ့ dialog box မှာ **B**oard **S**upport **Package(BSP)** ကိုထုတ် ပေးနေတာကိုမြင်ရမှာဖြစ်ပါတယ်။

"Console" မှာအောက်ပါအတိုင်းပေါ် ရင်အဆင်ပြေပါပြီ။

```
🥋 Problems 🔑 Tasks 📮 Console 🛭 🔲 Properties
Nios II Software Build Tools
                        INFO: Searching for BSP components with category: software package element
INFO: No memory regions found in BSP Settings File. Default memory regions generated.
INFO: Loading drivers from ensemble report.
INFO: Finished loading drivers from ensemble report.
INFO: Generating BSP files in "D:\fpgaLab\lab4\software\hello sseg bsp"
INFO: Default memory regions will not be persisted in BSP Settings File.
INFO: Generated file "D:\fpgaLab\lab4\software\hello_sseg_bsp\settings.bsp"
INFO: Generated file "D:\fpgaLab\lab4\software\hello_sseg_bsp\summary.html"
INFO: Generated file "D:\fpgaLab\lab4\software\hello sseg bsp\mem init.mk"
INFO: Generated file "D:\fpgaLab\lab4\software\hello_sseg_bsp\public.mk"
INFO: Generated file "D:\fpgaLab\lab4\software\hello sseg bsp\system.h"
INFO: Generated file "D:\fpgaLab\lab4\software\hello_sseg_bsp\Makefile"
INFO: Finished generating BSP files. Total time taken = 3 seconds
INFO: BSP files generated in "D:\fpgaLab\lab4\software\hello sseg bsp"
```

"hello_sseg" ဆိုတဲ့ ဖိုဒါပေါ် မှာ R-click ထောက်ပြီးတော့ "Build Project" ကိုနှိပ်ပါ။

နှိပ်လိုက်ရင် Building project... ဆိုပြီးတော့မြင်ရမှာဖြစ်ပါတယ်။

အားလုံးအဆင်ပြေသွားရင် "Build Finished" ဆိုပြီးတော့ console မှာမြင်ရမှာဖြစ်ပါတယ်။

Run Configurations

Create, manage, and run configurations

The expected Stdout device name does not match the selected target byte stream device name.

Х

"Target Connection" မှာ USB-Blaster ဖြစ်နေရပါမယ်။ ပြီးရင် RUN ကိုနိပ်ပါ။

```
Problems Tasks Console Nios II Console Properties

<terminated>hello_sseg [Nios II Hardware] nios2-download (11/7/18, 3:20 AM)

Reading System ID at address 0x00011080:
    ID value verified
    Timestamp value was not verified: value was not specified Initializing CPU cache (if present)

OK

Downloading 00000000 ( 0%)
Downloading 00004070 (65%)
Downloaded 17KB in 0.2s (85.0KB/s)

Verifying 00000000 ( 0%)
Verifying 00004070 (65%)
Verified OK
Starting processor at address 0x00000244
```

Console မှာအထက်ပါပုံအတိုင်းပေါ် ရင်တော့ အားလုံး OK သွားပါပြီ။

Reg and wire

wire ဆိုတဲ့ keyword က hardware element တွေကြား အကောင်အထည်ရှိတဲ့ ချိတ်ဆက်မှု ဖြစ်ပါတယ်။ ချိတ်ဆက်မှု, connection ဟာ wire တစ်ခုတည်းလည်းဖြစ်နိုင်တယ်၊ တစ်ခုထက်ပိုတဲ့ wire အုပ်စုလည်းဖြစ်နိုင်တယ်။ ဘာဘဲဖြစ်ဖြစ် အဲဒီနှစ်မျိုးစလုံးကို net လို့ခေါ်ပါတယ်။ logic gate တစ်ခုရဲ့ output ကို wire အဖြစ်ကြေညာသတ်မှတ်ပြီးတော့ driver တစ်ခုနဲ့ net အဖြစ်သတ်မှတ်နိုင်ပါတယ်။

reg အမျိုးအစားတွေကတော့ တန်ဖိုးတစ်ခုကို သိုလှောင်သိမ်းဆည်းထားတဲ့ registers တွေ ဖြစ်ကြပါတယ်။