Science des données II: tp2

 $\operatorname{Git} \,\&\, \operatorname{GitHub}$

Matrice de distance

Guyliann Engels & Philippe Grosjean

Université de Mons, Belgique Laboratoire d'Écologie numérique des Milieux aquatiques

http://biodatascience-course.sciviews.org sdd@sciviews.org

Git et GitHub

La gestion de version est un outil indispensable dans votre recherche La présentation se trouve dans :

moodle -> Les nouveaux outils de la science des données -> Git et GitHub

Les mots essentiels sont :

- Git
- GitHub
- GitHub Desktop

- Commit
- Push
- Pull
- Fork
- Branch
- Merge

Analyse multivariée : matrice de distance

En partant d'un tableau de type Espèce/Station, quelles sont les stations les plus similaires ? Ce type de questions nécessite l'utilisation d'outils liés à l'analyse multivariée.

	espece_1	espece_2	${\rm espece}_3$	espece_4
station_1	5	0	0	$\overline{}$
$station_2$	2	2	3	0
$station_3$	0	0	1	10
station_4	0	3	4	3
_				

Le point de départ de nombreuses analyses multivariées est la matrice de distance.

Les différents indices

Différents indices de similarité et de disimilarité sont employés pour composer la matrice de distance.

- Similarité
 - \blacksquare Bray-Curtis : $S_{jk}=1-\sum_{i=1}^p\frac{|y_{ij}-y_{jk}|}{\sum_{i=1}^p(y_{ij}+y_{jk})}$
 - \blacksquare Canberra : $S_{jk}=1-\frac{1}{NZ}\sum_{i=1}^{p}\frac{|y_{ij}-y_{jk}|}{(y_{ij}+y_{jk})}$

Ces deux indices sont à privilégier lors de dénombrements d'espèces

- Dissimilarité
 - Distance euclidienne : $D_{ij} = \sqrt{\sum_{i=1}^{p} (y_{ij} y_{jk})^2}$
 - Manhattan : $D_{ij} = \sum_{i=1}^{p} |y_{ij} y_{jk}|$

Ces deux indices sont à privilégier lors de mesures environnementales

Calcul de matrices de distances

Calculez les matrices de dissimilarité entre les stations suivantes avec la distance euclidienne et l'indice de Bray-Curtis

	${\rm espece}_1$	espece_2	$espece_3$	espece_4
station_1	5	0	0	2
$station_2$	2	2	3	0
$station_3$	0	0	1	10
$station_4$	0	3	4	3

Quels sont les deux stations les plus proches ? Selon Bray-Curtis ? Selon la distance euclidienne ?

Marphy & Marbio

Transect entre Nice et Calvi

- Etude sur 68 stations
 - Marphy comprend les mesures de température, de salinité, de fluorescence et de densité.
 - Marbio comprend le dénombrement de différents groupes au sein du zooplancton.

Les données se trouvent dans le package pastecs Réaliser un projet afin d'étudier ce transect

Employer la fonction $\mathsf{vegdist}()$ du package vegan afin de calculer vos matrices de distances sur les données proposées :

- marphy,
- marbio

