III JIFFI 20 de junio de 2018 Granada, España

La conexión afín y su papel en teorías modificadas de gravedad

Alejandro Jiménez Cano

Universidad de Granada Dpto. de Física Teórica y del Cosmos

Einstein y el problema de la gravedad de Newton

Relatividad especial (1905)

- Visión moderna de la mecánica (completa a Newton)
- ☐ Consecuencia: hay una velocidad límite

 $c = 299\,792\,458\,\mathrm{m/s}$.

Einstein y el problema de la gravedad de Newton

Relatividad especial (1905)

- Visión moderna de la mecánica (completa a Newton)
- ☐ Consecuencia: hay una velocidad límite

$$c = 299\,792\,458\,\mathrm{m/s}$$
 .

Y si el sol desapareciese (?)

$$\mathbf{F} = -G \frac{Mm}{d^2} \mathbf{e}_r \qquad \xrightarrow{M=0} \qquad \mathbf{F} = 0.$$

Einstein y el problema de la gravedad de Newton

Relatividad especial (1905)

- Visión moderna de la mecánica (completa a Newton)
- ☐ Consecuencia: hay una velocidad límite

$$c = 299792458 \,\mathrm{m/s}$$
.

Y si el sol desapareciese (?)

$$\mathbf{F} = -G \frac{Mm}{d^2} \mathbf{e}_r \qquad \xrightarrow{M=0} \qquad \mathbf{F} = 0.$$

☐ La Tierra se saldría instantáneamente de su órbita (¡más rápido que *c*!)

Gravedad de Newton ← CONFLICTO → Relatividad especial

Relatividad General: la gravedad como geometría

Una brillante idea condujo a Einstein a:

Teoría de la Relatividad General (1915)

Relatividad General: la gravedad como geometría

Una brillante idea condujo a Einstein a:

Teoría de la Relatividad General (1915)

Nueva manera de entender la gravedad:

- Las masas no se atraen, deforman el espaciotiempo (variedad).
- □ No hay fuerzas ⇒ Sigue el camino más corto en un espacio curvo (geodésicas).
 La gravedad no distingue objetos porque es una propiedad del propio espaciotiempo (curvatura).

Relatividad General: la gravedad como geometría

Una brillante idea condujo a Einstein a:

Teoría de la Relatividad General (1915)

Nueva manera de entender la gravedad:

- Las masas no se atraen, deforman el espaciotiempo (variedad).
- □ No hay fuerzas ⇒ Sigue el camino más corto en un espacio curvo (geodésicas).
 La gravedad no distingue objetos porque es una propiedad del propio espaciotiempo (curvatura).

Exactitud con las órbitas y sus anomalías (¡no explicado por la teoría de Newton!)
 y muchos otros fenómenos.

Visiones de Newton y Einstein

Los dos protagonistas: la métrica y la conexión

Vamos a equipar nuestro espaciotiempo con dos objetos:

Los dos protagonistas: la métrica y la conexión

Vamos a equipar nuestro espaciotiempo con dos objetos:

Métrica

 $g_{\mu\nu}$

Nos permite medir:

- Módulo de vectores
- Longitudes de curvas
- Volúmenes
- Ángulos
- J .

Los dos protagonistas: la métrica y la conexión

Vamos a equipar nuestro espaciotiempo con dos objetos:

Métrica

 $g_{\mu\nu}$

Nos permite medir:

- Módulo de vectores
- Longitudes de curvas
- Volúmenes
- Ángulos
- ☐ ...
- Conexión afín

 $\Gamma_{\mu\nu}^{\rho}$

Nos permite comparar vectores en diferentes puntos del espacio.

Aclaremos un poco esto de la conexión...

La conexión afín nos permite comparar vectores en diferentes puntos del espacio.

Dpto. Física Teórica y del Cosmos (UGR)

Aclaremos un poco esto de la conexión...

La conexión afín nos permite comparar vectores en diferentes puntos del espacio.

⇒La curvatura es el hecho de que el transporte DEPENDA DEL CAMINO.

Teorías métricas

☐ **Teorema.** Toda métrica induce de forma natural una conexión (conexión de Levi-Civita).

Teorías métricas

☐ **Teorema.** Toda métrica induce de forma natural una conexión (conexión de Levi-Civita).

- El objeto fundamental es la métrica.
- Rel. General, por ejemplo, se formula con la curvatura de esta conexión.
 [Funciona a grandes escalas (astrofísica, cosmología)].

 Pero a pequeña escala y altas energías (agujeros negros, universo primitivo,...) no tenemos una teoría satisfactoria de la gravedad.

 Pero a pequeña escala y altas energías (agujeros negros, universo primitivo,...) no tenemos una teoría satisfactoria de la gravedad.

¿Cuáles son los objetos fundamentales (grados de libertad) de la gravedad?

Pero a pequeña escala y altas energías (agujeros negros, universo primitivo,...) no tenemos una teoría satisfactoria de la gravedad.

¿Cuáles son los objetos fundamentales (grados de libertad) de la gravedad?

☐ ¿Por qué solo la métrica?
 ⇒ *Teoría métrico-afín*: ampliación del "saco" de objetos fundamentales que describen la gravedad con una conexión afín general.

$$g_{\mu\nu} \rightarrow g_{\mu\nu}, \Gamma_{\mu\nu}{}^{\rho} \text{ (indep.)}$$

Pero a pequeña escala y altas energías (agujeros negros, universo primitivo,...) no tenemos una teoría satisfactoria de la gravedad.

¿Cuáles son los objetos fundamentales (grados de libertad) de la gravedad?

□ ¿Por qué solo la métrica?

⇒ *Teoría métrico-afín*: ampliación del "saco" de objetos fundamentales que describen la gravedad con una conexión afín general.

$$g_{\mu\nu} \longrightarrow g_{\mu\nu}, \, \Gamma_{\mu\nu}{}^{\rho} \, \text{(indep.)}$$

La gravedad no solo se manifiesta a través de curvatura, también de nuevas estructuras (torsión y no-metricidad) que esperamos que se "activen" al subir de energía.

Mi trabajo (in progress)

Continuar la búsqueda de soluciones exactas a estas teorías (iniciada por Hehl, Tresguerres, Obukhov y otros \sim años 90's) y sus implicaciones físicas.

[Cualquier detalle que quieras conocer, no dudes en preguntarme]

Mi trabajo (in progress)

Continuar la búsqueda de soluciones exactas a estas teorías (iniciada por Hehl, Tresguerres, Obukhov y otros \sim años 90's) y sus implicaciones físicas.

[Cualquier detalle que quieras conocer, no dudes en preguntarme]

¡Gracias por vuestra atención!