

VITMO

CEMUHAP 2

Раздел 1. Электростатика

Расчет напряженности непрерывного распределения заряда в вакууме, на основе теоремы Гаусса

Прямая нить длиной 21 заряжена равномерно с линейной плотностью λ .

Найти напряженность электростатического поля E на произвольном расстоянии x от нити двумя способами (ДИ и теорема Гаусса).

Ombem:
$$E = \frac{q/2l}{4\pi\epsilon_0 x} 2 \frac{l}{\sqrt{l^2 + x^2}} = \frac{1}{4\pi\epsilon_0} \frac{q}{x\sqrt{l^2 + x^2}}$$
.

Рассчитать напряженность равномерно

заряженной бесконечн

бесконечной плоскости

поверхностной плотностью зарядов σ .

Ombem: $E = \sigma/2\varepsilon_0$

Рис. 2.2

Рассчитать поле двух бесконечно заряженных плоскостей, с поверхностной плотностью $+\sigma$ и $-\sigma$ соответственно.

Ombem: $E = \sigma/\varepsilon_0$

Рис. 2.3

Pассчитать напряженность заряженного шара с объемной плотностью ρ и радиусам R.

Ombem: $ecnu \ r \ge R$, $mo \ E = \sigma R / \varepsilon_0 r^2$; $ecnu \ r < R$, $mo \ E = qr / 4\pi \varepsilon_0 R^3$

Рис. 2.4

Внутри шара, равномерно заряженного с объемной плотностью + ρ , сделана сферическая полость, центр которой смещен относительно центра шара на вектор **a**. Найти напряженность поля внутри полости.

Ombem:
$$E = \frac{\rho}{3\epsilon_0}a$$

Поле создано двумя равномерно заряженными концентрическими сферами с радиусами $R_1 = 5$ см и $R_2 = 8$ см. Заряды сфер соответственно равны $q_1 = 2$ нКл и $q_2 = -1$ нКл. Определить напряженность электрического поля в точках, лежащих от центра сфер на расстоянии: 1) $r_1 = 3$ см; 2) $r_2 = 6$ см; 3) $r_3 = 10$ см.

Ответ:

$$E_1 = 0; \quad E_2 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1}{r_2^2} = 5 \text{ kB/m};$$

$$E_3 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 + q_2}{r_3^2} = 0.9 \text{ kB/m}.$$