Project Report

Missy Gaddy, Zheming Gao

November 26, 2017

1 Max Cut problem

The max cut problem can be reformulate as the following form

$$\max_{\substack{i \\ \text{s.t.}}} \frac{1}{4} L \bullet X$$

$$\text{s.t.} \quad A_j \bullet X \qquad \leq 0$$

$$j = 1, \dots, n$$
(1)

2 Results

ϵ	0.1	0.01	0.001	0.0001
η	0.1054	0.0101	0.0010	0.0001
δ	0.1	0.01	0.001	0.0001
# of rounds	19	633	7230	73228
$ X - X^* _2$	8.9298	8.9171	8.9169	8.9168
$ b^* - b $	1.9107	0.1908	0.0204	0.0011

Table 1: 10 nodes example

ϵ	0.1	0.01	0.001	0.0001
η	0.1054	0.0101	0.0010	0.0001
δ	0.1	0.01	0.001	0.0001
# of rounds	2777	49971		
$ b^* - b $	3.2430	0.7318		

Table 2: 100 nodes example