11/29/2018 Prutor

Practice Arena

Practice problems aimed to improve your coding skills.

- PRACTICE-02 SCAN-PRINT
- ► PRACTICE-03_TYPES
- LAB-PRAC-02 SCAN-PRINT
- LAB-PRAC-01
- PRACTICE-04 COND
- **BONUS-PRAC-02**
- LAB-PRAC-03 TYPES
- PRACTICE-05 COND-LOOPS
- LAB-PRAC-04 COND
- LAB-PRAC-05 CONDLOOPS
- PRACTICE-07_LOOPS-ARR
 - Supersized Sum
 - 2 Degree of Compositionality
 - 2 Reverse the Stream
 - The Better Cricketer
 - Palindromes
- LAB-PRAC-06 LOOPS
- LAB-PRAC-07_LOOPS-ARR
- **►** LABEXAM-PRAC-01_MIDSEM
- PRACTICE-09_PTR-MAT
- LAB-PRAC-08 ARR-STR
- PRACTICE-10_MAT-FUN
- LAB-PRAC-09_PTR-MAT
- LAB-PRAC-10 MAT-FUN
- PRACTICE-11_FUN-PTR
- LAB-PRAC-11_FUN-PTR
- LAB-PRAC-12 FUN-STRUC
- **►** LABEXAM-PRAC-02_ENDSEM
- **☎** LAB-PRAC-13_STRUC-NUM
- LAB-PRAC-14_SORT-MISC

11/29/2018 Prutor

Supersized Sum PRACTICE-07_LOOPS-ARR

This question does not require the use of arrays. Try solving it without using arrays.

In the first line, you will be given two strictly positive long numbers M and N. After that, you will be given N long integers, say x1, x2, ... xN. All these integers will be strictly positive. You have to output the value of (x1 + x2 + ... + xN) % M.

This question seems deceptively simple since you might think all you need to do is to maintain a running sum and then take the remainder with M. However, here is the twist. Even though the final output will definitely fit inside a long variable (since the final output is definitely less than M since it is a remainder with M which is itself a long variable), the sum of all the N numbers may not fit inside a long variable at all - it may be much bigger than the limit of long variables!

Hint Use the following property of remainders. For any three strictly positive integers (or longs) p, q, r, we always have (p + q) % r = ((p % r) + (q % r)) % r

¥¶ Start Solving! (/editor/practice/6105)