

Learning-based Lossless Point Cloud Geometry Coding using Sparse Tensors

Dat Thanh Nguyen and André Kaup

October 16, 2022

1. Point Cloud and Point Cloud Compression

- ❖ Point Cloud: a set of points representing 3D scenes (Human bodies, objects, 3D maps,...).
- **Each** point represented by:
 - Geometry coordinates: x,y,z
 - Attributes: RGB, reflectance, etc.
- ❖ Our work focuses on geometry compression

Point cloud in the video: https://www.mpeg.org/

1. Point Cloud and Point Cloud Compression

[1] Choy, C., Gwak, J., & Savarese, S. (2019). 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3075-3084).

LEARNING-BASED LOSSLESS POINT CLOUD GEOMETRY CODING

USING SPARSE TENSORS

- \diamond Arithmetic coder: Based on the probability density function p of each source symbol s to be encoded
 - Average bit per symbol: $L = \sum_{s \in S} p(s)l(s)$
 - Shannon theorem: $L \ge H(p) = \sum_{s \in S} p(s) \log(p(s))$ [2]
- p is unknown, how do we learn the probability density estimation \hat{p} ?
- → Factorize the joint distribution p(S) as a product of conditional distributions [3]

$$p(S) = \prod_{i=1}^{n} p(s_i|s_{i-1}, \dots, s_1, s_0)$$

[2] Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
[3] Van den Oord, Aaron, et al. "Conditional image generation with pixelcnn decoders." Advances in neural information processing systems 29 (2016).

❖ Factorize the joint occupancy probability of a voxel block *v*

$$p(v) = \prod_{i=1}^{d^3} p(v_i|v_{i-1}, v_{i-2}, \dots, v_1)$$

- \rightarrow Sub-optimal lower bound of bitrate: $\tilde{L} = \sum_{v_i \in S} p(v_i) \log(\hat{p}(v_i))$

A voxel block v

To enforce the causality constraint, we employ two sparse masks inspired by [4]

1	1	1
1	0	0
0	0	0

Type A mask

1	1	1
1	1	0
0	0	0

Type B mask

[4] Nguyen, Dat Thanh, et al. "Lossless coding of point cloud geometry using a deep generative model." IEEE Transactions on Circuits and Systems for Video Technology 31.12 (2021): 4617-4629.

Training Dataset:

Dataset	8i	CAT1	Owlii	MVUB	
Content	Dynamic full human bodies, dense	Static, culture heritage, sparse	Dynamic human mesh sequences, dense	Dynamic upper bodies, dense	Total
No blocks 64	235.369	2499	358.834	317763	914.465

MPEG 8i: http://plenodb.jpeg.org/pc/onaus

MPEG CAT1: https://mpegfs.int-evry.fr/mpegcontent

MPEG Owlii: https://mpeg-pcc.org/index.php/pcc-content-database/owlii-dynamic-human-textured-mesh-sequence-dataset/

MVUB: http://plenodb.jpeg.org/pc/microsoft

- **Encoder:**
- > PC are first partitioned in to blocks of size 64
- Encode voxel by voxel using SparseVoxelDNN context model

- * Bpov: bit per occupied voxel/bit per point
- ❖ GPCC v14: PCC method from MPEG
- ❖ VoxelDNN: Deep generative based method [4]
- ❖ Test PCs from four widely used datasets

		G-PCC	VoxelDNN		SparseVoxelDNN	
	Point Cloud	bpov	bpov	Gain over	bpov	Gain over
				G-PCC		G-PCC
MVUB	Phil	1.15	0.82	-28%	0.40	-66%
	Ricardo	1.07	0.75	-29%	0.35	-67%
Z	Average	1.11	0.79	-28.5%	0.37	-66.4%
8i	Redandblack	1.09	0.70	-36%	0.30	-64%
	Loot	0.95	0.61	-36%	0.33	-65%
	Thaidancer	1.00	0.66	-34%	0.32	-68%
	Boxer	0.95	0.59	-38%	0.30	-68%
	Average	1.00	0.64	-36.0%	0.34	-66.5%
CAT1	Frog	1.92	1.70	-10%	1.23	-36%
	Arco Valentino	4.85	4.99	+3%	3.03	-38%
	Shiva	3.67	3.50	-4%	2.66	-28%
	Average	3.48	3.40	-3.8%	2.31	-33.6%
USP	BumbaMeuBoi	5.41	5.07	-6%	1.81	-67%
	RomanOiLight	1.86	1.62	-12%	1.98	+6%
	Average	3.64	3.49	-9.5%	1.90	-30.5%

[4] Nguyen, Dat Thanh, et al. "Lossless coding of point cloud geometry using a deep generative model." IEEE Transactions on Circuits and Systems for Video Technology 31.12 (2021): 4617-4629.

- Computational complexity
 - Encoder 50 times faster than VoxelDNN
 - Encoder 4.7 times slower than G-PCC (v14)
 - Long decoding time

	G-PCC	VoxelDNN	SparseVoxelDNN
(Enc)	1.6	355	7.2
(Dec)	1.1	330	229

3. Conclusions

Conclusions

- Representing the point cloud using both octree, voxel and point representation
- Estimating voxel occupancy using point-based neural network with 3D sparse convolution masks
- Average rate saving of 50% over G-PCC while avoiding expensive computation

Question?

