- (a) **Answer B:** $\Omega = \{ \text{ Tom's phone calls } \}$. Events W, G, S, B, and L all describe attributes of individual phone calls, so Ω must be a set of phone calls. (2)
- (b) The first statement is $\mathbb{P}(W) = 0.2$ (given). The other four are:
 - (i) $\mathbb{P}(G) = 0.5$.
 - (ii) $\mathbb{P}(S) = 1 0.5 0.2 = 0.3$.
 - (iii) $\mathbb{P}(B) = 0.3$.
 - (iv) $\mathbb{P}(L) = 0.1$. (4)
- (c) Say whether or not the following sets form a partition of Ω :
 - (i) W, G, and S: yes. They don't overlap, and their probabilities sum to 1 overall.
 - (ii) B and L: **no**. Their probabilities don't sum to 1. (2)
- (d) For each of the following statements, say whether they are **true** or **false**:
 - (i) B = S: false. Despite $\mathbb{P}(B) = \mathbb{P}(S)$, the events B and S are not the same.
 - (ii) $W \subseteq \Omega$: **true.** All events are subsets of the sample space.
 - (iii) $W \cup S = \overline{G}$: true. This is because events W, S, and G are a partition of Ω .
 - (iv) $W \cap G = \emptyset$: true.
 - (v) $W \cup G \cup S = \Omega$: true. Events W, S, and G are a partition of Ω .
 - (vi) $B \cup L = \Omega$: false. Their probabilities do not sum to 1. (6)
- (e) Information given: $\mathbb{P}(B \cup W) = 0.4$. Information wanted: $\mathbb{P}(B \cap W)$.

$$\mathbb{P}(B \cup W) = 0.4 = \mathbb{P}(B) + \mathbb{P}(W) - \mathbb{P}(B \cap W)$$
$$0.4 = 0.3 + 0.2 - \mathbb{P}(B \cap W)$$
$$\Rightarrow \mathbb{P}(B \cap W) = 0.1.$$

(4)

(f) Want to find $\mathbb{P}(B \cap \overline{W})$. By the Partition Theorem:

$$\begin{array}{rcl} \mathbb{P}(B) & = & \mathbb{P}(B \cap W) + \mathbb{P}(B \cap \overline{W}) \\ 0.3 & = & 0.1 + \mathbb{P}(B \cap \overline{W}) \\ \Rightarrow & \mathbb{P}(B \cap \overline{W}) & = & 0.2. \end{array}$$

The probability that a call has bad interference and is **not** a wrong number is 0.2. (3)

(g) Tom's claim is that $B \cap S = S$, so that all calls involving sellers also have bad interference. (Another way of putting it is that $S \subseteq B$.) This would mean that $\mathbb{P}(B \cap S) = \mathbb{P}(S) = 0.3$. Consider

$$\begin{array}{rcl} \mathbb{P}(B) & = & \mathbb{P}(B\cap W) + \mathbb{P}(B\cap G) + \mathbb{P}(B\cap S) \\ 0.3 & = & 0.1 + \mathbb{P}(B\cap G) + \mathbb{P}(B\cap S). \end{array}$$

Thus, it is **not** possible that $\mathbb{P}(B \cap S) = 0.3$, because this would mean that $\mathbb{P}(B \cap G)$ would have to be negative! Tom's claim can **not** be correct. (3)