Here's a **comprehensive list of chloride compounds**, categorized by element type, with key examples and applications:

1. Alkali Metal Chlorides

Compound	Formula	Key Uses
Sodium chloride	NaCl	Table salt, food preservation, deicing roads
Potassium chloride	KCl	Fertilizer, medical IV fluids
Lithium chloride	LiCl	Air dehumidifiers, battery electrolytes

2. Alkaline Earth Metal Chlorides

Formula	Key Uses
MgCl ₂	Dust control, tofu coagulant, supplement
$CaCl_2$	De-icing, food additive, concrete accelerator
BaCl ₂	Laboratory reagent, fireworks (green flame)
	MgCl ₂ CaCl ₂

3. Transition Metal Chlorides

Compound	Formula	Key Uses
Iron(II) chloride	FeCl ₂	Water treatment, dye production
Iron(III) chloride	FeCl₃	PCB etching, wastewater treatment
Copper(II) chloride	$CuCl_2$	Pigments, wood preservative
Zinc chloride	$ZnCl_2$	Soldering flux, disinfectant

4. Post-Transition Metal Chlorides

Compound	Formula	Key Uses
Aluminum chloride	AlCl ₃	Petroleum refining (catalyst), antiperspirant
Lead(II) chloride	$PbCl_2$	Lead refining, mineral specimen
Tin(II) chloride	$SnCl_2$	Electroplating, food preservative (rare)

5. Non-Metal Chlorides

Compound	Formula	Key Uses
Hydrogen chloride	HCl	Industrial acid, PVC production
Ammonium chloride	NH ₄ Cl	Fertilizer, dry cell batteries
Phosphorus trichloride	PCl ₃	Pesticides, plasticizers

6. Rare Earth & Actinide Chlorides

Compound	Formula	Key Uses
Lanthanum chloride	LaCl₃	Optical glass, catalysts
Uranyl chloride	UO ₂ Cl ₂	Nuclear fuel processing

7. Organic Chlorides

Compound	Formula	Key Uses
Chloroform	CHCl ₃	Former anesthetic, solvent
Methylene chloride	CH ₂ Cl ₂	Paint stripper, decaffeination

Key Properties & Safety Notes

- **Solubility**: Most chlorides are water-soluble (except AgCl, PbCl₂).
- Toxicity: Heavy metal chlorides (e.g., PbCl2, CdCl2) are toxic.

• **Hygroscopic**: Many absorb moisture (e.g., CaCl₂ for dehumidification).

Need details on **specific reactions** or **industrial processes**? Let me know!

Here's a **comprehensive list of all known chloride compounds**, organized by element groups, with their chemical formulas and primary applications:

1. Alkali Metal Chlorides

Compound	Formula	Key Uses
Lithium chloride	LiCl	Air dehumidifiers, lithium extraction
Sodium chloride	NaCl	Table salt, road de-icing, food preservation
Potassium chloride	KCl	Fertilizer, medical IV fluids
Rubidium chloride	RbCl	Spectroscopy, research
Cesium chloride	CsCl	Density gradient centrifugation, optics

2. Alkaline Earth Metal Chlorides

Formula	Key Uses
BeCl ₂	Catalyst in organic synthesis
$MgCl_2$	Dust control, tofu coagulant
$CaCl_2$	De-icing, food additive, concrete accelerator
$SrCl_2$	Toothpaste for sensitive teeth
BaCl ₂	Laboratory reagent, green fireworks
RaCl ₂	Historical radiotherapy (now obsolete)
	BeCl ₂ MgCl ₂ CaCl ₂ SrCl ₂ BaCl ₂

3. Transition Metal Chlorides

Compound	Formula	Key Uses
Titanium(III) chloride	TiCl₃	Polypropylene catalyst
Titanium(IV) chloride	TiCl ₄	TiO ₂ production, smoke screens
Vanadium(II/ III/IV) chloride	VCl ₂ /VCl ₃ / VCl ₄	Redox catalysts, battery research
Chromium(II/ III) chloride	CrCl ₂ / CrCl ₃	Metal plating, dye mordant
Manganese(II) chloride	$MnCl_2$	Fertilizer, dry cell batteries
Iron(II/III) chloride	FeCl ₂ / FeCl ₃	Water treatment, PCB etching
Cobalt(II) chloride	$CoCl_2$	Humidity indicator (color- changing silica gel)
Nickel(II) chloride	$NiCl_2$	Electroplating, catalysts
Copper(I/II) chloride	CuCl/ CuCl ₂	Pigments, wood preservative
Zinc chloride	$ZnCl_2$	Soldering flux, disinfectant
Silver chloride	AgCl	Photographic paper, antimicrobial coatings
Cadmium chloride	$CdCl_2$	Electroplating (toxic, restricted)
Mercury(I/II) chloride	Hg ₂ Cl ₂ / HgCl ₂	Calomel electrodes (historical)

4. Post-Transition Metal Chlorides

Compound	Formula	Key Uses
Aluminum chloride	AlCl ₃	Friedel-Crafts catalyst, antiperspirant
Gallium chloride	GaCl₃	Semiconductor doping
Indium chloride	InCl ₃	LCD screens, solar cells
Tin(II/IV) chloride	$SnCl_2/SnCl_4$	Glass coatings, PVC stabilizers
Lead(II/IV) chloride	PbCl ₂ / PbCl ₄	Lead-acid batteries (limited due to toxicity)
	BiCl ₃	Pepto-Bismol synthesis, catalysts

Compound	Formula	Key Uses
Bismuth chloride		
Cinoriae		

5. Non-Metal Chlorides

Compound	Formula	Key Uses
Hydrogen chloride	HCl	Industrial acid, PVC production
Ammonium chloride	NH ₄ Cl	Fertilizer, dry cell batteries
Phosphorus(III/ V) chloride	PCl ₃ /PCl ₅	Pesticides, plasticizers
Sulfur(II/IV) chloride	S ₂ Cl ₂ / SOCl ₂	Rubber vulcanization, lithium battery electrolytes

6. Rare Earth & Actinide Chlorides

Compound	Formula	Key Uses
Lanthanum chloride	LaCl ₃	Optical glass, catalysts
Cerium(III/IV) chloride	CeCl ₃ / CeCl ₄	Polishing compounds, OLEDs
Uranium(III/IV) chloride	UCl3/UCl4	Nuclear fuel processing

7. Organic Chlorides

Compound	Formula	Key Uses
Methyl chloride	CH₃Cl	Refrigerant, silicone production
Chloroform	$CHCl_3$	Former anesthetic, solvent
Carbon tetrachloride	CCl ₄	Historical fire extinguisher (toxic, banned)
Vinyl chloride	C_2H_3Cl	PVC plastic production
	_	-

Key Notes

• Solubility: Most are water-soluble (exceptions: AgCl, PbCl2, Hg_2Cl_2).

- **Toxicity**: Heavy metal chlorides (e.g., CdCl₂, PbCl₂) are highly regulated.
- Industrial Scale: NaCl, HCl, and AlCl₃ are produced in millions of tons annually.

Need **reaction mechanisms** or **environmental impact data** for any specific chloride? Let me know!

Chlorides, compounds containing chlorine, have been known since ancient times and were referred to by various historical names before modern chemical nomenclature was established. Here are some notable examples:

1. Common Salt (Sodium Chloride, NaCl)

Historical Names:

- Sal (Latin) Used in alchemy and early chemistry.
- **Halite** Derived from the Greek *hals* (salt).
- Rock Salt Used in mining and geology.
- **Table Salt** or **Sea Salt** Common names in everyday usage.

2. Mercury(II) Chloride (HgCl₂)

Historical Names:

- Corrosive Sublimate Named for its sublimation property and toxicity.
- Mercury Bichloride Older systematic name.
- **Sublimate** Used in alchemy.

3. Mercury(I) Chloride (Hg2Cl2)

Historical Names:

- Calomel From Greek kalos (beautiful) and melas (black), as it turns black when mixed with ammonia.
- Sweet Mercury Due to its less corrosive nature compared to HgCl₂.

4. Ammonium Chloride (NH₄Cl)

Historical Names:

- Sal Ammoniac Derived from the Temple of Jupiter Ammon in Libya, where it was first obtained from camel dung.
- Nushadir Salt Arabic/Persian name.

5. Potassium Chloride (KCl)

- Historical Names:
 - **Muriate of Potash** From *muria* (Latin for brine).
 - Potash General term for potassium salts derived from wood ash.

6. Hydrogen Chloride (HCl)

- Historical Names:
 - Spirit of Salt or Acid Spirit When dissolved in water (hydrochloric acid).
 - Muriatic Acid From Latin muria (brine).

7. Silver Chloride (AgCl)

- Historical Names:
 - Horn Silver or Cerargyrite Naturally occurring mineral form.
 - Luna Cornea Alchemical name ("horned moon," referring to its horn-like appearance when fused).

8. Lead(II) Chloride (PbCl₂)

- Historical Names:
 - **Plumbum Corneum** Alchemical term ("horn-like lead").
 - Lead Butter Due to its soft, buttery appearance when freshly precipitated.

9. Antimony Trichloride (SbCl₃)

- Historical Names:
 - **Butter of Antimony** Due to its soft, buttery consistency.
 - Caustic Antimony For its corrosive properties.

10. Gold Chloride (AuCl₃)

- Historical Names:
 - Auric Chloride Older systematic name.
 - Gold Trichloride Descriptive name.

General Historical Terms for Chlorides:

- **Muriate** An old term for chloride (from *muria*, Latin for brine).
- **Spiritus Salis** Alchemical term for hydrochloric acid or chloride solutions.

These names reflect the pre-modern understanding of chemistry, often based on appearance, origin, or alchemical properties rather than systematic composition. The modern IUPAC naming system standardized these terms in the 19th and 20th centuries.

Would you like details on a specific chloride compound?