Estimación y Predicción en Series Temporales

Estimador de máxima verosimilitud (MLE)

Departamento de Procesamiento de Señales

Instituto de Ingeniería Eléctrica Facultad de Ingeniería

2022

Agenda

- Repaso
- Estimadores de máxima verosimilitud (MLE)

Estimación de parámetros

Planteo del Problema:

- Dadas N muestras de una señal discreta x[n] que depende de cierto parámetro θ desconocido.
- Estimar θ a partir de las N muestras $x[0], x[1], \dots, x[N-1]$

Para ello se define un estimador de θ que es función de los datos:

$$\hat{\theta} = g(x[0], x[1], \dots, x[N-1])$$

- g:función a determinar
- $\hat{\theta}$: estimador de θ

Objetivo: Encontrar función g de forma que $\hat{\theta}$ sea buen estimador de θ .

- Estimador $\hat{\theta}$ debe ser cercano (en algún sentido a definir) al valor verdadero de θ .
- El criterio de cercanía debe ser especificado teniendo en cuenta que $\hat{\theta}$ es una Variable Aleatoria (función de V.As).

Modelado de los datos

• Se dispone de un **conjunto de** N **datos** $x[i] \in \mathbb{R}^n$:

$$\mathcal{D} = \left\{ x[0], x[1], \dots, x[N-1] \right\}$$

y un modelo que depende de un parámetro θ desconocido.

 Debido a la complejidad del fenómeno a caracterizar, modelamos los datos estadísticamente, mediante la función de densidad de probabilidad o pdf,

$$p(x[0], x[1], \dots, x[N-1]; \theta)$$

- La PDF está parametrizada por el parámetro desconocido θ , es decir define una familia de funciones.
- Puede interpretarse como que los datos son "aleatorios"

Criterio de Mínima Varianza

- En la búsqueda de estimadores óptimos es necesario utilizar algún criterio de optimalidad.
- Uno natural es la minimización del Error Cuadrático Medio (MSE, Mean Square Error)

$$MSE(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right].$$

Análisis (descomposición) del error cuadrático medio:

$$\begin{split} \mathrm{MSE}(\hat{\theta}) &= \mathbb{E}\left[(\hat{\theta} - \theta)^2 \right] \\ &= \mathbb{E}\left\{ \left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right) + \left(\mathbb{E}(\hat{\theta}) - \theta \right) \right]^2 \right\} \\ &= \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] + 2 \underbrace{\mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right) \left(\mathbb{E}(\hat{\theta}) - \theta \right) \right]}_{\left(\mathbb{E}(\hat{\theta}) - \theta \right) \mathbb{E}(\hat{\theta} - \mathbb{E}(\hat{\theta})) = 0} + \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] \\ &= \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta}) \right)^2 \right] + \left(\mathbb{E}(\hat{\theta}) - \theta \right)^2 \\ &= \mathrm{var}(\hat{\theta}) + b^2(\theta) \end{split}$$

Descomposición sumamente útil bias-variance.

Estimador insesgados de varianza mínima (MVU)

Existencia de estimadores MVU.

• Se dice que existe un estimador MVU si hay un estimador de menor varianza que el resto de los posibles estimadores para todo θ .

- Dos ejemplos: izquierda (existe MVU); derecha (no existe MVU).
- El estimador MVU no tiene porqué existir.

Búsqueda de estimadores MVU

 Aún si existe un estimador MVU, puede no ser posible encontrarlo. No hay ninguna receta infalible para encontrar estimadores MVU.

Enfoques de búsqueda de estimadores MVU:

- 1 Utilizando la cota de inferior de Cramér-Rao (CRLB, Cramér-Rao Lower Bound)
 - Determinar la CRLB y ver si algún estimador la alcanza.
 - CRLB determina un límite inferior en la varianza de cualquier estimador insesgado (Clase 3 / Capítulo 3 Kay)
 - Si un estimador tiene varianza igual a la CRLB para todos los valores de θ , es el estimador MVU.

Cota Inferior de Cramér-Rao

Teorema: Cota Inferior de Cramér-Rao, parámetro escalar.

Se asume que la PDF $p(\mathbf{x}; \theta)$ satisface la condición de regularidad,

$$\mathbb{E}_{\mathbf{x}}\left[\frac{\partial \log p(\mathbf{x};\theta)}{\partial \theta}\right] = 0 \quad \text{ para todo } \theta.$$

Entonces,

f 0 la varianza de todo estimador insesgado $\hat{ heta}$ cumple que

$$\operatorname{var}(\hat{\theta}) \ge \frac{1}{-\mathbb{E}_{\mathbf{x}} \left[\frac{\partial^2 \log p(\mathbf{x}; \theta)}{\partial \theta^2} \right]},$$

donde la derivada se evalúa en el valor verdadero de θ .

 $oxed{2}$ existe un estimador que alcanza la cota para todo heta si y solo si

$$\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta} = I(\theta) (g(\mathbf{x}) - \theta),$$

para alguna función I y g.

Este estimador, que es el MVU, es $\hat{\theta}=g(\mathbf{x})$ y su varianza es $\frac{1}{I(\theta)}.$

Estimador MVU en modelos lineales

Teorema: Estimador MVU en modelos lineales.

- $\mathbf{x} \in \mathbb{R}^N$: datos observados.
- $oldsymbol{ heta} \in \mathbb{R}^p$: p parámetros desconocidos.

$$\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}$$

- $\mathbf{H} \in \mathbb{R}^{N \times p}$: matriz de observación con N > p y rango p
- $\mathbf{w} \in \mathbb{R}^N$: ruido en observación es coloreado, muestras no son independientes. Se asume $\mathbf{w} \sim \mathcal{N}(0, \mathbf{C})$, con \mathbf{C} simétrica definida positiva.

Nota: El espacio $\mathbb R$ puede ser remplazado por $\mathbb C$. Entonces,

Estimador MVU

Matriz de Covarianza

$$\hat{\boldsymbol{\theta}} = \mathbf{g}(\mathbf{x}) = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x} \qquad \mathbf{C}_{\hat{\boldsymbol{\theta}}} = \mathbf{I}^{-1}(\boldsymbol{\theta}) = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}$$

• Además, el estimador $\hat{\theta}$ es eficiente ya que alcanza la CRLB para todo θ .

Búsqueda de estimadores MVU

Enfoques de búsqueda de estimadores MVU:

- ② Buscar estadísticos suficientes y aplicar el teorema de Rao-Blackwell-Lehmann-Scheffé (RBLS)
 - Puede existir un estimador MVU que no alcance la CRLB.
- Clase 4 / Capítulo 5 (Kay)
- Restringir la clase de estimadores (e.g., lineales)
- Restringir la clase de estimadores no sólo a los insesgados, sino también a los insesgados que sean lineales con los datos, y encontrar el MVU en esta clase.
- Este estimador no será óptimo, a menos que el estimador MVU sea lineal en ese problema en particular.
- Clase 5 / Capítulo 6 (Kay)

Mejor Estimador Lineal Insesgado

Best Linear Unbiased Estimator (BLUE)

Se observa el conjunto de datos $\{x[0],x[1],\ldots,x[N-1]\}$ cuya PDF $p(\mathbf{x};\theta)$ depende del parámetro desconocido θ que se quiere estimar, y de la cual se asumen conocidos el primer y segundo momento.

 Se dice que un estimador es lineal si se se restringe a ser lineal con los datos,

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n].$$

- Estimador BLUE: estimador lineal, insesgado y tiene varianza mínima entre todos los estimadores lineales.
- Hay que determinar los coeficientes a_n para que el estimador cumpla estas condiciones.

Para determinar el BLUE se impone que el estimador $\hat{\theta}$ sea lineal e insesgado y se determinan los coeficientes a_n que minimizan la varianza.

Estimador lineal

$$\hat{\theta} = \sum_{n=0}^{N-1} a_n x[n] = \mathbf{a}^T \mathbf{x}$$

Condición de estimador insesgado

$$\mathbb{E}(\hat{\theta}) = \sum_{n=0}^{N-1} a_n \mathbb{E}(x[n]) = \theta, \quad \forall \theta.$$

• Para satisfacer la condición de insesgado, $\mathbb{E}(x[n])$ tiene que ser lineal con el parámetro desconocido θ ,

$$\mathbb{E}(x[n]) = s[n]\theta,$$

con s[n] conocido.

Nota. Si esto no se cumple, es imposible satisfacer la condición de insesgado.

Ejemplo. si $\mathbb{E}(x[n]) = \cos \theta$, la condición de insesgado sería $\sum_{n=0}^{N-1} a_n \cos \theta = \theta$. No existen coeficientes a_n que cumplan esto para todo θ .

 Condición necesaria para ser insesgado, implica que el BLUE solo es aplicable en estimación de amplitud de señalas conocidas en ruido,

$$x[n] = \theta s[n] + w[n].$$

- Se puede generalizar mediante transformaciones no lineales de los datos (e.g. $y[n] = x[n]^2$ para estimar σ^2 en WGN).
- Continuando con la condición de no sesgado,

$$\sum_{n=0}^{N-1} a_n \mathbb{E}(x[n]) = \theta$$

$$\sum_{n=0}^{N-1} a_n s[n] \theta = \theta$$

$$\sum_{n=0}^{N-1} a_n s[n] = 1$$

es decir,

$$\mathbf{a}^T\mathbf{s}=1,$$
 con $\mathbf{s}=[s[0],s[1],\ldots,s[N-1]]^T.$

Por otro lado, la varianza del estimador es:

$$var(\hat{\theta}) = \mathbb{E}\left[\left(\hat{\theta} - \mathbb{E}(\hat{\theta})\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\mathbf{a}^{T}\mathbf{x} - \mathbb{E}(\mathbf{a}^{T}\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\mathbf{a}^{T}(\mathbf{x} - \mathbb{E}(\mathbf{x}))^{2}\right]$$

$$= \mathbb{E}\left[\mathbf{a}^{T}(\mathbf{x} - \mathbb{E}(\mathbf{x}))(\mathbf{x} - \mathbb{E}(\mathbf{x}))^{T}\mathbf{a}\right]$$

$$= \mathbf{a}^{T}\mathbb{E}\left[(\mathbf{x} - \mathbb{E}(\mathbf{x}))(\mathbf{x} - \mathbb{E}(\mathbf{x}))^{T}\right]\mathbf{a}$$

$$= \mathbf{a}^{T}\mathbf{C}\mathbf{a}$$

 Hay que encontrar a de forma de minimizar la varianza manteniendo la restricción impuesta de estimador insesgado,

$$\mathbf{a}_* = \underset{\mathbf{a}}{\operatorname{arg \, min}} \ \mathbf{a}^T \mathbf{C} \mathbf{a} \quad \text{sujeto a} \quad \mathbf{a}^T \mathbf{s} = 1$$

Se puede resolver utilizando multiplicadores de Lagrange.

El estimador BLUE es entonces

$$\hat{\theta} = \mathbf{a}_*^T \mathbf{x} = \frac{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{x}}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}}$$

Su varianza es,

$$\operatorname{var}(\hat{\theta}) = \mathbf{a}_*^T \mathbf{C} \mathbf{a}_* = \frac{1}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}}$$

• Notar que el estimador es insesgado (usando que $\mathbb{E}(x[n]) = s[n]\theta), \forall \theta$),

$$\begin{split} \mathbb{E}(\hat{\theta}) &= \frac{\mathbf{s}^T \mathbf{C}^{-1} \mathbb{E}(\mathbf{x})}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}} \\ &= \frac{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s} \theta}{\mathbf{s}^T \mathbf{C}^{-1} \mathbf{s}} \\ &= \theta. \end{split}$$

- Observación: Para determinar el BLUE solo se requiere conocer:
 - s (media escalada) y C (matrix de covarianza de x) Es decir, los dos primeros momentos de p(x) en lugar de la PDF completa.

Estimador BLUE: Extensión a vector de parámetros

El estimador BLUE en el caso vectorial queda,

$$\hat{\boldsymbol{\theta}} = \mathbf{a}_* \mathbf{x} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x}$$

y su matriz de covarianza es

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

Observación

 El estimador BLUE es el mismo que el estimador MVU para el modelo lineal general

$$\mathbf{x} = \mathbf{H}\boldsymbol{\theta} + \mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{C}).$$

¿Por qué?

Estimador BLUE: Extensión a vector de parámetros

Teorema de Gauss-Markov. Si los datos observados ${\bf x}$ tienen la forma del modelo lineal general

$$x = H\theta + w$$

donde

- \mathbf{x} : $N \times 1$ vector de observaciones
- $\mathbf{H}: N \times p$ matriz de observación conocida, con $N \geq p$ y rango p.
- $\theta: p \times 1$ vector de parámetros a estimar
- $\mathbf{w}: N \times 1$ vector de ruido con PDF arbitraria, media nula y covarianza $\mathbf{C}.$

Entonces, el estimador BLUE de θ es

$$\hat{\boldsymbol{\theta}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{C}^{-1} \mathbf{x},$$

y la varianza es

$$\operatorname{var}(\hat{\theta}_i) = \left[(\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1} \right]_{ii}.$$

Además, la matriz de covarianza del estimador es

$$\mathbf{C}_{\hat{\boldsymbol{\theta}}} = (\mathbf{H}^T \mathbf{C}^{-1} \mathbf{H})^{-1}.$$

Consideraciones sobre la optimalidad del BLUE

Nivel de DC en WGN El BLUE es óptimo

Media en ruido uniforme El BLUE es subóptimo

- Si el MVU pertenece a la clase de estimadores lineales, no se pierde desempeño con el BLUE.
- Si el MVU pertenece a la clase de estimadores no lineales, hay pérdida de desempeño (puede ser significativa).

Estimador de Máxima Verosimilitud (MLE)

- En el problema de estimación de parámetros, una alternativa al estimador MVU es el Estimador de Máxima Verosimilitud (Maximum Likelihood Estimator – MLE).
- Es la herramienta más popular para obtener estimadores prácticos ya que puede ser utilizado en problemas de estimación complejos, o en problemas donde el MVU no existe o no puede encontrarse.
- Tiene características asintóticas deseables:
 - es asintóticamente eficiente
 - es consistente
 - es invariante a re-parametrizaciones
- En muchos casos no puede encontrarse una fórmula cerrada para el MLE y se deben utilizar métodos numéricos.

- Se observa un conjunto de datos $\{x[0],x[1],\ldots,x[N-1]\}$ que dependen de cierto parámetro desconocido θ que se quiere estimar.
- Especificación del Modelo: los datos son generados por un proceso aleatorio caracterizado por cierta PDF:

$$p(\mathbf{x}; \theta)$$
, donde $\theta \in [a, b]$.

- Al variar el parámetro desconocido, se cambia la PDF que modela la generación de datos.
- El modelo es definido como una familia de PDFs indexada por el parámetro desconocido.
- Para estimar el parámetro desconocido, la idea es encontrar la PDF de la familia que maximiza la probabilidad de haber generado los datos observados.

Ejemplo: Estimar nivel de DC en WGN (una única muestra)

$$x[0] = A + w[0], \quad \text{donde}, \ w[0] \sim \mathcal{N}(0, \sigma^2)$$

• En este caso, la PDF de los datos es $x[0] \sim \mathcal{N}(A, \sigma^2)$,

$$p(x[0]; A) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x[0] - A)^2\right].$$

• Familia de PDFs indexadas por parámetro desconocido ($\theta = A$):

p(x[0];A=2)

- Dado un valor del parámetro, la PDF correspondiente indica cómo se deberían distribuir los datos observados (probabilidad) si ese fuese el parámetro.
- En particular, dado $A=A_0$, la probabilidad de observar un valor de x[0] en un intervalo de tamaño Δ centrado en x_0 es:

$$\Pr\left(x[0] \in \left[x_0 - \frac{\Delta}{2}, x_0 + \frac{\Delta}{2}\right]\right) = \int_{x_0 - \frac{\Delta}{2}}^{x_0 + \frac{\Delta}{2}} p(x; A = A_0) dx$$
$$\approx p(x[0] = x_0; A = A_0) \Delta.$$

• Por ejemplo, si A=1 (con $\sigma^2 = 1/4$),

$$\Pr\left(x[0] \in \left[1 - \frac{\Delta}{2}, 1 + \frac{\Delta}{2}\right]\right) \approx 0.798\Delta$$

$$\Pr\left(x[0] \in \left[2 - \frac{\Delta}{2}, 2 + \frac{\Delta}{2}\right]\right) \approx 0.108\Delta$$

- En la práctica los datos son los observados, así que vamos a resolver el problema inverso:
- Dados los datos observados y el modelos definido por la familia de PDFs, hay que encontrar la PDF que hace más probable haber producido esos datos observados.
- Función de verosimilitud: es la función dada por la PDF al variar el parámetro fijando el valor de los datos.
- Cuantifica que tan "verosímil" es cierto valor del parámetro desconocido luego de observados los datos (no es una probabilidad en A en el sentido matemático)
- Por ejemplo, la probabilidad de observar x[0]=2 para cada valor de A es aproximadamente $p(x[0]=2;A)\Delta$.
- Si la observación fue x[0]=2, inferir A=3 no sería razonable, ya que la probabilidad de observar x[0]=2 es muy pequeña.
- Es más probable que $A \approx 2$, ya que conduce a probabilidad alta de observar x[0] = 2.

• Por lo tanto, si se observó $x[0] = x_0$, se elige como estimador \hat{A} el valor que maximiza $p(x[0] = x_0; A)$, la función de verosimilitud fijando los datos en $x = x_0$, sobre todo el dominio válido de A.

Estimador de Máxima Verosimilitud (MLE) Si se asume el modelo de generación de datos dada por la PDF $p(\mathbf{x};\theta)$, es decir

$$\mathbf{x} \sim p(\mathbf{x}; \theta)$$

y se observa x_0 , entonces el estimador de máxima verosimilitud (MLE) es

$$\hat{\theta}_{\mathsf{MLE}}(\mathbf{x}_0) = \mathop{\arg\max}_{\theta \in \mathcal{D}_{\theta}} \ \log p \left(\mathbf{x} = \mathbf{x}_0; \theta \right).$$

- El MLE se define como el valor de θ que maximiza el logaritmo de $p(\mathbf{x};\theta)$ fijando \mathbf{x} , es decir el valor que maximiza la func. de verosimilitud logarítmica.
- Observar que el tomar el logaritmo no afecta la posición del máximo de la función (logaritmo es función monótona creciente)

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas) Los datos observados son

$$x[n] = \mathbf{A} + w[n] \quad \text{con } n = 0, 1, \dots, N-1 \text{ y } w[n] \sim \mathcal{N}(0, \mathbf{A}) \ \forall n,$$

donde A es desconocido. El parámetro desconocido se refleja en la media y en la varianza. Se quiere encontrar el estimador MVU.

Determinación de la CRLB

- Par encontrar el MVU, una primera posibilidad es determinar la CRLB y ver si existe algún estimador cuya varianza la alcance.
- La PDF de los datos es,

$$p(\mathbf{x}; A) = \prod_{n=0}^{N-1} \frac{1}{\sqrt{2\pi A}} \exp\left[-\frac{1}{2A} (x[n] - A)^2\right]$$
$$= \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Determinación de la CRLB

· Tomando el logaritmo queda,

$$\log p(\mathbf{x}; A) = -\frac{N}{2} \log 2\pi - \frac{N}{2} \log A - \frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^{2}.$$

• Calculando la derivada primera de la función $\log p(\mathbf{x}; A)$,

$$\frac{\partial \log p(\mathbf{x}; A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

$$\stackrel{?}{=} I(A) (g(\mathbf{x}) - A).$$

- La derivada de la función de verosimilitud parece no poder factorizarse de la forma requerida (CRLB, estimador eficiente)
- No es obvio, pero se puede probar que no se puede factorizar de esa manera. Por lo tanto, no existe un estimador eficiente.

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Determinación de la CRLB

Igualmente, podemos determinar la CRLB. Derivando nuevamente

$$\frac{\partial^2 \log p(\mathbf{x}; A)}{\partial A^2} = \frac{N}{2A^2} - \frac{N}{A} - \frac{2}{A^2} \sum_{n=0}^{N-1} (x[n] - A) - \frac{1}{A^3} \sum_{n=0}^{N-1} (x[n] - A)^2$$

Tomando la esperanza en x se llega a,

$$\mathbb{E}\left[\frac{\partial^2 \log p(\mathbf{x}; A)}{\partial A^2}\right] = \frac{N}{2A^2} - \frac{N}{A} - \frac{1}{A^3} NA$$
$$= -\frac{N(A + \frac{1}{2})}{A^2}$$

Por lo tanto, la CRLB para este problema es

$$\operatorname{var}(\hat{A}) \ge \frac{A^2}{N(A + \frac{1}{2})}.$$

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Búsqueda del MVU mediante estadísticos suficientes de DC

 Se busca un estadístico suficiente de A en base a la factorización de Neyman-Fisher,

$$p(\mathbf{x}; A) = g(T(\mathbf{x}), A)h(\mathbf{x}).$$

Observando que

$$\frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A)^2 = \frac{1}{A} \sum_{n=0}^{N-1} x^2[n] - 2N\bar{x} + NA,$$

la PDF de los datos se puede expresar como,

$$p(\mathbf{x}; A) = \underbrace{\frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2} \left(\frac{1}{A} \sum_{n=0}^{N-1} x^{2}[n] + NA\right)\right]}_{g(T(\mathbf{x}), A)} \underbrace{\exp(N\bar{x})}_{h(\mathbf{x})}$$

• Se concluye que un estadístico suficiente de A es $T(\mathbf{x}) = \sum_{n=0}^{N-1} x^2[n]$.

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Búsqueda del MVU mediante estadísticos suficientes de DC

 Debemos verificar si el estadístico suficiente es completo. Para eso hay que buscar una única función g que lo haga insesgado,

$$\mathbb{E}\left[g\left(\sum_{n=0}^{N-1}x^2[n]\right)\right] = A, \quad \forall A.$$

Dado que

$$\mathbb{E}\left[\sum_{n=0}^{N-1} x^{2}[n]\right] = N\mathbb{E}\left[x^{2}[n]\right]$$
$$= N\left(\operatorname{var}\left[x[n]\right] + \mathbb{E}\left[x[n]\right]^{2}\right)$$
$$= N(A + A^{2}).$$

no existe una forma obvia de elegir g.

Esto agota las posibilidades de obtener un estimador MVU.

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Cálculo del MLE

El MLE se define como

$$\hat{A}_{\mathsf{MLE}} = \underset{A>0}{\arg\max} \ \log p(\mathbf{x}; A)$$

· Recordemos que la PDF de los datos es,

$$p(\mathbf{x}; A) = \frac{1}{(2\pi A)^{\frac{N}{2}}} \exp\left[-\frac{1}{2A} \sum_{n=0}^{N-1} (x[n] - A)^2\right].$$

- PDF como función de A: se convierte en la función de verosimilitud.
- Para maximizar la función de verosimilitud logarítmica se diferencia e iguala a 0. Recordemos que la derivada es,

$$\frac{\partial \log p(\mathbf{x}; A)}{\partial A} = -\frac{N}{2A} + \frac{1}{A} \sum_{n=0}^{N-1} (x[n] - A) + \frac{1}{2A^2} \sum_{n=0}^{N-1} (x[n] - A)^2.$$

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Cálculo del MLE

Igualando a 0 y despejando se llega a que:

$$\hat{A}^2 + \hat{A} - \frac{1}{N} \sum_{n=0}^{N-1} x^2[n] = 0.$$

• Resolviendo el polinomio de segundo grado en \hat{A} se obtienen las dos soluciones

$$\hat{A} = -\frac{1}{2} \pm \sqrt{\frac{1}{N} \sum_{n=0}^{N-1} x^2[n] + \frac{1}{4}}.$$

• Se elige la solución que produce estimadores positivos, en acuerdo a la restricción sobre $A,\,A>0,$

$$\hat{A} = -\frac{1}{2} + \sqrt{\frac{1}{N} \sum_{n=0}^{N-1} x^2[n] + \frac{1}{4}}.$$

 Falta verificar que la solución corresponde al máximo (no mínimo) [ejercicio]

$$\frac{\partial^2 \log p(\mathbf{x}; A)}{\partial A^2} \mid_{A = \hat{A}} < 0.$$

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Análisis del MLE: Sesgo

$$\begin{split} \mathbb{E}(\hat{A}) &= \mathbb{E}\left(-\frac{1}{2} + \sqrt{\frac{1}{N}\sum_{n=0}^{N-1} x^2[n] + \frac{1}{4}}\right) \\ &\neq -\frac{1}{2} + \sqrt{\mathbb{E}\left(\frac{1}{N}\sum_{n=0}^{N-1} x^2[n]\right) + \frac{1}{4}} \\ &= -\frac{1}{2} + \sqrt{A + A^2 + \frac{1}{4}} \\ &= -\frac{1}{2} + \sqrt{\left(A + \frac{1}{2}\right)^2} \\ &= A \end{split}$$

El estimador tiene sesgo.

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Análisis del MLE: Comportamiento asintótico

Si definimos

$$u = \frac{1}{N} \sum_{n=0}^{N-1} x^2[n],$$

entonces, el MLE encontrado es una transformación g(u) no lineal de u,

$$\hat{A} = g(u) = -\frac{1}{2} + \sqrt{u + \frac{1}{4}}.$$

• Cuando $N \to \infty$, por L.G.N,

$$\lim_{N \to \infty} u = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} x^2[n] = \mathbb{E}(x^2[n]) = A + A^2 = u_o.$$

• Si N es grande, los valores probables de u se encuentran en un intervalo pequeño en torno a su media u_0 .

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Análisis del MLE: Comportamiento asintótico

- En un intervalo pequeño en torno a u₀ la función g(u) es aproximadamente lineal: linealidad estadística de transformaciones.
- Aproximando linealmente g(u) en torno a u_0 tenemos que que:

$$g(u) \approx g(u_0) + g'(u_0)(u - u_0)$$
 (1)

donde

$$g'(u) = \frac{\frac{1}{2}}{\sqrt{u + \frac{1}{4}}}.$$

• Teniendo en cuenta que $u_0 = A + A^2$,

$$g(A^2 + A) = -\frac{1}{2} + \sqrt{A^2 + A + \frac{1}{4}} = A, \qquad g'(A^2 + A) = \frac{\frac{1}{2}}{A + \frac{1}{2}}.$$

Por lo que sustituyendo en (1), para N grande (asintótico),

$$\hat{A} \approx A + \frac{\frac{1}{2}}{A + \frac{1}{2}} \left[\frac{1}{N} \sum_{n=0}^{N-1} x^2 [n] - (A + A^2) \right].$$
 (2)

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Análisis del MLE: Comportamiento asintótico

• De (2) es

$$\mathbb{E}(\hat{A}) = A + \frac{\frac{1}{2}}{A + \frac{1}{2}} \left[\mathbb{E}\left(\frac{1}{N} \sum_{n=0}^{N-1} x^2[n]\right) - (A + A^2) \right] = A,$$

concluyendo que \hat{A} es asintóticamente insesgado.

· La varianza asintótica es,

$$\operatorname{var}(\hat{A}) = \left(\frac{\frac{1}{2}}{A + \frac{1}{2}}\right)^{2} \operatorname{var}\left(\frac{1}{N} \sum_{n=0}^{N-1} x^{2}[n]\right)$$
$$= \frac{\frac{1}{4}}{N(A + \frac{1}{2})^{2}} \operatorname{var}(x^{2}[n]). \tag{3}$$

• Si $\zeta \sim \mathcal{N}(\mu, \sigma^2)$, entonces

$$\operatorname{var}(\zeta^2) = \mathbb{E}(\zeta^4) - \mathbb{E}^2(\zeta^2) = 4\mu^2\sigma^2 + 2\sigma^4.$$

• Como $x[n] \sim \mathcal{N}(A, A)$,

$$var(x^{2}[n]) = 4A^{3} + 2A^{2} = 4A^{2}\left(A + \frac{1}{2}\right).$$
 (4)

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Análisis del MLE: Comportamiento asintótico

• Sustituyendo (4) en (3),

$$\operatorname{var}(\hat{A}) = \frac{\frac{1}{4}}{N\left(A + \frac{1}{2}\right)^2} 4A^2 \left(A + \frac{1}{2}\right)$$
$$= \frac{A^2}{N(A + \frac{1}{2})}$$
$$= CRLB(A)$$

concluyendo que \hat{A} alcanza la CRLB asintóticamente.

- Como el estimador es asintóticamente insesgado y alcanza asintóticamente la CRLB, se dice que es asintóticamente eficiente.
- Además, el estimador es consistente. Esto significa que se cumple que

$$\lim_{N\to\infty} \Pr\left\{|\hat{A} - A| > \epsilon\right\} = 0, \ \forall \epsilon > 0.$$

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Análisis del MLE: Comportamiento asintótico

- PDF Gaussiana: por el Teorema Central del Límite, la variable aleatoria $u=\frac{1}{N}\sum_{n=0}^{N-1}x^2[n]$ es Gaussiana con $N\to\infty$, y como si N es grande \hat{A} es afin en u (ecuación (2)), también tiene PDF Gaussiana.
- Como el MLE es asintóticamente insesgado, alcanza asintóticamente la CRLB y tiene PDF Gaussiana. La PDF del MLE es

$$\hat{A} \stackrel{a}{\sim} \mathcal{N}(A, I^{-1}(A)),$$

donde $\stackrel{a}{\sim}$ significa asintóticamente distribuido como.

- Este resultado es general; implica la optimalidad asintótica del MLE.
- N pequeño: si bien el estimador es asintóticamente óptimo, no puede afirmarse nada sobre su desempeño si el conjunto de datos es pequeño. Es posible, de hecho, es probable que existan mejores estimadores.
- En ocasiones, el estimador MLE conduce al estimador eficiente para un conjunto de datos finito.

Ejemplo: Nivel de DC en WGN (varianza conocida)

Se observan N muestras dadas por

$$x[n] = A + w[n]$$
 con $n = 0, 1, \dots, N-1$ y $w[n] \sim \mathcal{N}(0, \sigma^2) \ \forall n$.

El parámetro a estimar es A. La varianza del ruido σ^2 se asume conocida.

La PDF de los datos es

$$p(\mathbf{x}; A) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right]$$

La función de verosimilitud logarítmica es

$$\log p(\mathbf{x}; A) = -\log \left[(2\pi\sigma^2)^{\frac{N}{2}} \right] - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2$$

 Para encontrar el MLE, se debe derivar e igualar a cero (encontrar el máximo),

$$\frac{\partial \log p(\mathbf{x}; A)}{\partial A} = \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A) = 0.$$

Ejemplo: Nivel de DC en WGN (varianza conocida)

El MLE queda

$$\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n] = \bar{x}.$$

- Como la media muestral es el estimador eficiente de A, el MLE es eficiente en este caso.
- Este resultado es general y se formaliza en el siguiente teorema.

Eficiencia del MLE

Teorema.

Si existe un estimador eficiente, el método de máxima verosimilitud permite encontrarlo.

Demostración:

• Por el teorema de Cramér-Rao, si existe un estimador eficiente, existen las funciones $g(\mathbf{x})$ y $I(\theta)$ tal que

$$\frac{\partial \log p(\mathbf{x}; \theta)}{\partial \theta} = I(\theta) \left(g(\mathbf{x}) - \theta \right).$$

El estimador eficiente es $\hat{\theta}_{crlb} = g(\mathbf{x})$ con varianza $I^{-1}(\theta)$.

• Como el MLE es el valor de θ que maximiza la función de verosimilitud logarítmica se tiene que

$$\left. \frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{\mathsf{MLE}}} = I(\hat{\boldsymbol{\theta}}_{\mathsf{MLE}}) \left(g(\mathbf{x}) - \hat{\boldsymbol{\theta}}_{\mathsf{MLE}} \right) \, = 0,$$

y por lo tanto

$$\hat{\theta}_{\mathsf{MLE}} = g(\mathbf{x}) = \hat{\theta}_{crlb}.$$

Eficiencia asintótica

Teorema. Propiedades asintóticas del MLE.

Si la PDF $p(\mathbf{x};\theta)$ de los datos satisface ciertas condiciones de regularidad, el MLE del parámetro desconocido θ es asintóticamente distribuido como

$$\hat{\theta} \stackrel{a}{\sim} \mathcal{N}(\theta, I^{-1}(\theta)),$$

- $I(\theta)$ es la información de Fisher evaluada en el valor verdadero del parámetro desconocido.
- Las condiciones de regularidad son: (i) Existencia de las derivadas primera y segunda de la función de verosimilitud; (ii) condición de regularidad necesaria para teorema de CRLB: $\mathbb{E}\left[\frac{\partial \log p(\mathbf{x};\theta)}{\partial \theta}\right] = 0 \quad \forall \theta.$
- El MLE es asintóticamente eficiente y por lo tanto asintóticamente óptimo.

(Prueba. Ver Kay [1993], apéndice 7B.)

Observaciones

- La expresión analítica de la PDF verdadera (no asintótica) del MLE es en general imposible de derivar.
- En la práctica, no se sabe cuan grande debe ser N para estar cerca del comportamiento asintótico. Se suelen utilizar simulaciones numéricas para estudiar el desempeño.

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Se quiere determinar el tamaño necesario de los datos para que se *cumplan* los resultados asintóticos.

Previamente se encontró que

$\begin{array}{ll} \textbf{Estimador MLE} & \textbf{CRLB} & \textbf{PDF asintótica} \\ \\ \hat{A}_{\text{MLE}} = -\frac{1}{2} + \sqrt{\frac{1}{N} \sum_{n=0}^{N-1} x^2[n]} \cdot & \text{var} \hat{A} \geq \frac{A^2}{N(A + \frac{1}{2})} & \hat{A}_{\text{MLE}} \overset{a}{\sim} \mathcal{N}\left(A, \frac{A^2}{N(A + \frac{1}{2})}\right) \\ \end{array}$

- Una estrategia podría ser encontrar la PDF exacta de \hat{A} y establecer para qué valor de N está cerca de la PDF asintótica.
- En principio es posible encontrar la PDF verdadera en este ejemplo, pero sería extremadamente tedioso.
- Si repetimos el experimento un número M de veces, es posible estimar experimentalmente la media y la varianza del estimador como

$$\widehat{\mathbb{E}\left(\hat{A}\right)} = \frac{1}{M} \sum_{i=1}^{M} \hat{A}_{i} \qquad \widehat{\operatorname{var}\left(\hat{A}\right)} = \frac{1}{M} \sum_{i=1}^{M} \left(\hat{A}_{i} - \widehat{\mathbb{E}\left(\hat{A}\right)}\right).$$

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

- Se generan N muestras de x[n] usando un valor de A=1 y se calcula \hat{A} (MLE).
- Se repite el experimento $M=10^4$ veces (sorteando siempre de manera independiente) y se calcula la media y la varianza muestral

$$\widehat{\mathbb{E}\left(\hat{A}\right)}$$
, $\widehat{\operatorname{var}\left(\hat{A}\right)}$.

Valores asintóticos:

$$\hat{A} = 1$$

$$N \operatorname{var}(\hat{A}) = \frac{2}{3}$$

Con
$$N \geq 20$$
,

$$\left|\widehat{\mathbb{E}\left(\hat{A}\right)} - 1\right| \le 0.01$$

Ejemplo: Nivel de DC en WGN (varianza y media relacionadas)

Para comparar la PDF verdadera con la PDF asintótica, se repiten M=20000 experimentos con N=5 y N=200 y se grafican los histogramas de los estimadores.

Histograma con N = 5 en M = 20000 experimentos.

Histograma con N = 200 en M = 20000 experimentos.

PDF asintótica:

$$\hat{A} \stackrel{a}{\sim} \mathcal{N}\left(1, \frac{2/3}{N}\right)$$

Con N=5,

- Se observa sesgo en el estimador
- PDF verdadera no tiene forma Gaussiana.

Con N=200, se cumplen bien las propiedades asintóticas.

Ejemplo: MLE de la fase de una sinusoide

Se quiere estimar la fase ϕ de una sinusoide contaminada con WGN,

$$x[n] = A\cos(2\pi f_0 n + \phi) + w[n], \text{ con } n = 0, 1, \dots, N - 1,$$

donde $w[n] \sim \mathcal{N}(0, \sigma^2)$, para todo n; se asume A, f_0 y σ^2 conocidos.

- En este caso no es posible encontrar un estimador MVU mediante la CRLB o estadísticos suficientes.
- La CRLB para el problema es (Kay 1993, ejemplo 3.4),

$$\operatorname{var}(\hat{\phi}) \ge \frac{2\sigma^2}{NA^2}.$$

• Para encontrar el MLE hay que maximizar $p(\mathbf{x}; \phi)$, siendo

$$p(\mathbf{x};\phi) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A\cos(2\pi f_0 n + \phi))^2\right],$$

que es equivalente a minimizar

$$J(\phi) = \sum_{n=0}^{N-1} (x[n] - A\cos(2\pi f_0 n + \phi))^2.$$

Ejemplo: MLE de la fase de una sinusoide

• Diferenciando respecto a ϕ se tiene que

$$\frac{\partial J(\phi)}{\partial \phi} = 2A \sum_{n=0}^{N-1} (x[n] - A\cos(2\pi f_0 n + \phi)) \sin(2\pi f_0 n + \phi).$$

• Al igualar a 0, se llega a que el MLE $\hat{\phi}$ cumple

$$\sum_{n=0}^{N-1} x[n] \sin(2\pi f_0 n + \hat{\phi}) = A \sum_{n=0}^{N-1} \cos(2\pi f_0 n + \hat{\phi}) \sin(2\pi f_0 n + \hat{\phi}).$$

 El lado derecho de la igualdad es aproximadamente 0 si fo no es cercana a 0 o a 1/2 (ejercicio). Por lo que el MLE cumple aproximadamente,

$$\sum_{n=0}^{N-1} x[n] \sin(2\pi f_0 n + \hat{\phi}) = 0.$$

Ejemplo: MLE de la fase de una sinusoide

• Utilizando la relación trigonométrica $\sin(a+b) = \sin a \cos b + \cos a \sin b$:

$$\sum_{n=0}^{N-1} x[n] \sin(2\pi f_0 n) \cos(\hat{\phi}) = -\sum_{n=0}^{N-1} x[n] \cos(2\pi f_0 n) \sin(\hat{\phi})$$

• Despejando $\hat{\phi}$ se obtiene que el MLE es aproximadamente

$$\hat{\phi} = -\arctan \frac{\sum_{n=0}^{N-1} x[n] \sin(2\pi f_0 n)}{\sum_{n=0}^{N-1} x[n] \cos(2\pi f_0 n)}.$$

En ese ejemplo, la varianza asintótica del estimador MLE es,

$$\mathrm{var}(\hat{\phi}) = \frac{1}{N\frac{A^2}{2\sigma^2}} = \frac{1}{N\eta} \qquad \text{donde} \;, \; \eta = \frac{\frac{A^2}{2}}{\sigma^2} \; \text{ es la SNR}.$$

La PDF asintótica es

$$\hat{\phi} \stackrel{a}{\sim} \mathcal{N}(\phi, 1/(N\eta)).$$

Ejemplo: MLE de la fase de una sinusoide

 Para determinar la cantidad de datos para que se cumplan las propiedades asintóticas se realiza una simulación en computadora.

$$A = 1$$
, $f_0 = 0.08$, $\phi = \pi/4$, $\sigma^2 = 0.05$ (con lo cual SNR=10)

Valores asintóticos:

$$\hat{\phi} = \frac{\pi}{4}, \qquad N \operatorname{var}(\hat{A}) = \frac{1}{10}$$

N > 100 (approx) para alcanzar valores asintóticos

Hay valores de N preferenciales para el sesgo

Ejemplo: MLE de la fase de una sinusoide

• Para comparar la PDF verdadera con la PDF asintótica, se repite el experimento M=20000 veces con N=20 y con N=200.

 La PDF asintótica es

$$\hat{A} \sim \mathcal{N}\left(\frac{\pi}{4}, \frac{1}{10N}\right)$$

- N=20 el sesgo es significativo.
- N = 200 se cumplen bien las propiedades asintóticas
- MLE desempeño pobre si conjunto de datos es chico.

Ejemplo: MLE de la fase de una sinusoide

- Se quiere analizar el desempeño del estimador al variar la SNR.
- Para eso se repite el experimento fijando N en 100 y se calcula la media y la varianza cambiando la SNR.

- Si SNR es pequeña, varianza supera CRLB considerablemente.
- La cota se alcanza con SNR altas.
- Condición para estar en regimen asintótico depende de N pero además de la SNR.

Ejemplo: MLE de la fase de una sinusoide

Observaciones/Resumen

- La PDF asintótica del estimador MLE es válida solo si el conjunto de datos es suficientemente grande.
- En problemas de estimación de parámetros de señales en ruido las condiciones asintóticas también dependen de la SNR
- Para establecer la cantidad de datos necesarios para estar en regimen asintótico, se pueden realizar simulaciones numéricas
- En este ejemplo, el estimador MLE encontrado analíticamente es aproximado. Para encontrar el MLE exacto, se puede recurrir a métodos de optimización para encontrar el cero de la función deseada.

- En ocasiones, es necesario estimar una función del parámetro θ .
- Por ejemplo, en el problema de estimación del nivel de DC A en WGN, podría interesar calcular la potencia A^2 de la señal.
- El MLE de una función del parámetro θ se obtiene fácilmente a partir del MLE de θ .

Ejemplo: Nivel de DC transformado en WGN Se consideran los datos

$$x[n] = A + w[n], \quad \text{con } n = 0, 1, \dots, N-1 \text{ y } w[n] \sim \mathcal{N}(0, \sigma^2) \ \forall n,$$

donde σ^2 es conocido y se quiere estimar el MLE de $\alpha = \exp(A)$.

La PDF de los datos es

$$p(\mathbf{x}; A) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right], \quad -\infty < A < \infty.$$

Ejemplo: Nivel de DC transformado en WGN

• Como α es una transformación biyectiva de A, es posible re-parametrizar la PDF en función de α ,

$$p_T(\mathbf{x}; \alpha) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - \log \alpha)^2\right], \quad \alpha > 0.$$
 (5)

El subíndice ${\cal T}$ refleja que la PDF es parametrizada respecto al parámetro transformado.

• Para encontrar el MLE de α , hay que maximizar (5) en α , llegando a

$$\sum_{n=0}^{N-1} (x[n] - \log \hat{\alpha}) \frac{1}{\hat{\alpha}} = 0 \qquad \text{de donde} \quad \hat{\alpha} = \exp(\bar{x}).$$

- $\hat{A} = \bar{x}$ es el MLE de A, entonces $\hat{\alpha} = \exp(\hat{A})$.
- Propiedad de invarianza: El MLE del parámetro transformado es la transformación del MLE del parámetro original.

Ejemplo: Nivel de DC transformado en WGN

- Consideremos ahora la transformación $\alpha=A^2$ para el conjunto de datos dado en el ejemplo anterior.
- Al intentar reparametrizar la PDF de A respecto a α se observa que

$$A = \pm \sqrt{\alpha}$$

ya que en este caso la transformación no es uno a uno.

 Para caracterizar todas las posibles PDFs se requiere dos conjuntos de PDFs,

$$p_{T_1}(\mathbf{x}; \alpha) = p\left(\mathbf{x}; \sqrt{\alpha}\right) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - \sqrt{\alpha})^2\right], \ \alpha \ge 0$$

$$p_{T_2}(\mathbf{x}; \alpha) = p\left(\mathbf{x}; -\sqrt{\alpha}\right) = \frac{1}{(2\pi\sigma^2)^{\frac{N}{2}}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] + \sqrt{\alpha})^2\right], \ \alpha > 0$$

El MLE de α se obtiene como

$$\hat{\alpha} = \arg\max_{\alpha} \left\{ p_{T_1}(\mathbf{x}; \alpha), p_{T_2}(\mathbf{x}; \alpha) \right\}.$$

Ejemplo: Nivel de DC transformado en WGN

• De manera equivalente, el MLE puede encontrarse como el valor de α que maximiza la función de verosimilitud modificada, construida como

$$\bar{p}_T(\mathbf{x}; \alpha) = \max_{\alpha} \left\{ p_{T_1}(\mathbf{x}; \alpha), p_{T_2}(\mathbf{x}; \alpha) \right\}, \quad \text{ para cada } \alpha \geq 0.$$

• En este ejemplo el MLE de $\hat{\alpha}$ es

$$\hat{\alpha} = \underset{\alpha \geq 0}{\arg \max} \left\{ p_{T_1}(\mathbf{x}; \alpha), p_{T_2}(\mathbf{x}; \alpha) \right\}$$

$$= \underset{\alpha \geq 0}{\arg \max} \left\{ p(\mathbf{x}; \sqrt{\alpha}), p(\mathbf{x}; -\sqrt{\alpha}) \right\}$$

$$= \left[\underset{\sqrt{\alpha} \geq 0}{\arg \max} \left\{ p(\mathbf{x}; \sqrt{\alpha}), p(\mathbf{x}; -\sqrt{\alpha}) \right\} \right]^2$$

$$= \left[\underset{-\infty < A < \infty}{\arg \max} p(\mathbf{x}; A) \right]^2$$

$$= \hat{A}^2$$

$$= \bar{x}^2.$$

 La propiedad de invarianza se cumple aunque la transformación no sea biyectiva.

Teorema: Propiedad de invarianza del MLE El MLE del parámetro $\alpha=g(\theta)$, donde la PDF $p(\mathbf{x},\theta)$ está parametrizada por θ , está dado por

$$\hat{\alpha} = g(\hat{\theta}),$$

donde $\hat{\theta}$ es el MLE de θ .

- el MLE de θ se obtiene maximizando $p(\mathbf{x}; \theta)$.
- Si g no es una función biyectiva, $\hat{\alpha}$ maximiza la función de verosimilitud modificada $\bar{p}(\mathbf{x};\alpha)$, definida como

$$\bar{p}(\mathbf{x}; \alpha) = \max_{\{\theta: \alpha = g(\theta)\}} p(\mathbf{x}; \theta).$$

- Análogamente al caso escalar, el MLE para un vector de parámetros θ es el valor que maximiza la función de verosimilitud p(x; θ) sobre todo el rango válido de θ.
- Asumiendo que la función de verosimilitud es diferenciable, el MLE se encuentra como

$$\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}.$$

 En caso de existir múltiples soluciones, el MLE es aquella que maximiza la función de verosimilitud, es decir aquella que produce el máximo global.

Ejemplo: Nivel de DC en WGN (estimar A y σ^2) Se consideran las observaciones del nivel de continua en WGN,

$$x[n]=A+w[n], \quad \text{con} \quad n=0,1,\ldots,N-1 \ \ \text{y} \ \ w[n]\sim \mathcal{N}(0,\sigma^2) \ \forall n,$$
 donde A y σ^2 son desconocidos.

- En este caso, el vector de parámetros es $\theta = [A, \sigma^2]^T$.
- La función de verosimilitud logarítmica queda

$$\log p(\mathbf{x}; \boldsymbol{\theta}) = -\frac{N}{2} \log 2\pi - \frac{N}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2,$$

y las derivadas son (ejercicio)

$$\begin{split} \frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial A} &= \frac{1}{\sigma^2} \sum_{n=0}^{N-1} (x[n] - A) \\ \frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \sigma^2} &= -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n=0}^{N-1} (x[n] - A)^2. \end{split}$$

Ejemplo: Nivel de DC en WGN (estimar A y σ^2)

• Resolviendo para A en la primer ecuación se tiene que

$$\frac{1}{\hat{\sigma^2}}\sum_{n=0}^{N-1}(x[n]-\hat{A})=0\quad \text{con lo cual}\quad \hat{A}=\bar{x}.$$

• Mientras que utilizando la segunda ecuación y sustituyendo el valor obtenido de $\hat{A}=\bar{x}$, se obtiene

$$-\frac{N}{2\hat{\sigma^2}} + \frac{1}{2\hat{\sigma^4}} \sum_{n=0}^{N-1} (x[n] - \hat{A})^2 = 0 \quad \text{con lo cual} \quad \hat{\sigma^2} = \frac{1}{N} \sum_{n=0}^{N-1} (x[n] - \bar{x})^2.$$

El MLE es por lo tanto

$$\hat{\boldsymbol{\theta}} = \begin{bmatrix} \bar{x} \\ \frac{1}{N} \sum_{n=0}^{N-1} (x[n] - \bar{x})^2 \end{bmatrix}.$$

Teorema: Propiedades asintóticas del MLE

Si la PDF $p(\mathbf{x}; \boldsymbol{\theta})$ de los datos \mathbf{x} satisface ciertas condiciones de regularidad, el MLE del parámetro desconocido $\boldsymbol{\theta}$ es asintóticamente distribuido como,

$$\hat{\boldsymbol{\theta}} \stackrel{a}{\sim} \mathcal{N}\left(\boldsymbol{\theta}, \mathbf{I}^{-1}(\boldsymbol{\theta})\right),$$

- I(θ) es la matriz de información de Fisher evaluada en el valor verdadero del parámetro desconocido.
- Las condiciones de regularizad son:
 - Existencia de las derivadas de primer y segundo orden de la función de verosimilitud.
 - Además se requiere la condición de regularidad (idem a CRLB),

$$\mathbb{E}\left[\frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right] = \mathbf{0} \quad \forall \boldsymbol{\theta}.$$

Referencias

• Kay, S. M. (1993)
Fundamentals of Statistical Signal Processing, Volume I:
Estimation Theory, Capítulo 7.