Task: Geospatial Analysis

- Visualize the locations of restaurants on a map using latitude and longitude information.
- Analyze the distribution of restaurants across different cities or countries. Determine if there is any correlation between the restaurant's location and its rating.

```
In [21]: import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns

rdata_df=pd.read_csv('Dataset.csv')
  rdata_df
```

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri- La, Ortigas, Mandaluyong City
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City
•••						
9546	5915730	Namll Gurme	208	� � stanbul	Kemanke�� Karamustafa Pa��a Mahallesi, Rìhtìm	Karak � _y
9547	5908749	Ceviz A��acl	208	�� stanbul	Ko��uyolu Mahallesi, Muhittin ��st�_nda�� Cadd	Ko��uyolu
9548	5915807	Huqqa	208	�� stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru�_e��me
9549	5916112	A���k Kahve	208	♦ ♦ stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru�_e��me
9550	5927402	Walter's Coffee Roastery	208	�� stanbul	Cafea��a Mahallesi, Bademaltl Sokak, No 21/B, 	Moda

```
In [22]:
         import os
         os.getcwd()
```

Out[22]: 'C:\\Users\\bhanuprasad\\Desktop\\cognify intenship'

here the map will shows the locations based on the latitude and longitude

```
In [23]: import folium
         # Drop rows with missing values in 'Latitude' or 'Longitude' columns
         data_cleaned = rdata_df.dropna(subset=['Latitude', 'Longitude'])
         # Create a map centered on the average latitude and longitude of the restaurants
         map_center = [data_cleaned['Latitude'].mean(), data_cleaned['Longitude'].mean()]
         restaurant_map = folium.Map(location=map_center, zoom_start=10)
         # Add markers for each restaurant's location
         for _, row in data_cleaned.iterrows():
             folium.Marker(
                 location=[row['Latitude'], row['Longitude']],
                 popup=row['Restaurant Name'],
             ).add_to(restaurant_map)
         # Save the map to an HTML file to view
         map_file_path =r'C:\\Users\\bhanuprasad\\Desktop\\cognify intenship\\restaurant_
         restaurant_map.save(map_file_path)
         map_file_path
Out[23]: 'C:\\\Users\\\bhanuprasad\\\Desktop\\\cognify intenship\\\restaurant_map1.
In [25]:
         rdata df
```

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri-La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri- La, Ortigas, Mandaluyong City
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City
•••						
9546	5915730	Namll Gurme	208	� � stanbul	Kemanke�� Karamustafa Pa��a Mahallesi, Rìhtìm	Karak � _y
9547	5908749	Ceviz A��acl	208	�� stanbul	Ko��uyolu Mahallesi, Muhittin ��st�_nda�� Cadd	Ko��uyolu
9548	5915807	Huqqa	208	�� stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru�_e��me
9549	5916112	A���k Kahve	208	♦ ♦ stanbul	Kuru�_e��me Mahallesi, Muallim Naci Caddesi, N	Kuru�_e��me
9550	5927402	Walter's Coffee Roastery	208	�� stanbul	Cafea��a Mahallesi, Bademaltl Sokak, No 21/B, 	Moda

```
city=rdata_df['City'].value_counts()
         country=rdata_df['Country Code'].value_counts()
         city, country
Out[27]: (City
          New Delhi
                             5473
          Gurgaon
                             1118
          Noida
                            1080
          Faridabad
                             251
          Ghaziabad
                              25
                             ...
          Panchkula
                               1
          Mc Millan
                               1
          Mayfield
                               1
          Macedon
                                1
          Vineland Station
                               1
          Name: count, Length: 141, dtype: int64,
          Country Code
          1
                8652
          216
              434
          215
                 80
          30
                 60
          214
                 60
          189
                 60
          148
                 40
                 34
          208
          14
                 24
          162
                  22
          94
                  21
                 20
          184
          166
                 20
          191
                  20
          37
                   4
          Name: count, dtype: int64)
In [31]:
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         #city distribution = rdata df['City'].value counts()
         #country_distribution = rdata_df['Country Code'].value_counts()
         # Plot the top 10 cities with the most restaurants
         plt.figure(figsize=(8, 5))
         city.head(10).plot(kind='bar', color='skyblue')
         plt.title('Top 10 Cities with the Most Restaurants')
         plt.xlabel('City')
         plt.ylabel('Number of Restaurants')
         plt.show()
         plt.figure(figsize=(8, 5)) # Plot the top 10 countries with the most restaurants
         country.head(10).plot(kind='bar', color='salmon')
         plt.title('Top 10 Countries with the Most Restaurants')
         plt.xlabel('Country Code')
         plt.ylabel('Number of Restaurants')
         plt.show()
         # 2. Average Rating by City
```

```
avg_rating_by_city = rdata_df.groupby('City')['Aggregate rating'].mean().sort_va
# Plot top 10 cities by average rating
plt.figure(figsize=(8, 7))
avg_rating_by_city.head(10).plot(kind='bar', color='lightgreen')
plt.title('Top 10 Cities by Average Restaurant Rating')
plt.xlabel('City')
plt.ylabel('Average Rating')
plt.show()
# 3. Correlation Check (if needed, can calculate using city-level numeric data)
# Check the relationship between the number of restaurants in a city and the ave
city_rating_correlation = pd.DataFrame({
    'Restaurant Count': city_distribution,
    'Average Rating': avg_rating_by_city
}).dropna()
correlation = city_rating_correlation.corr().loc['Restaurant Count', 'Average Ra
print("Correlation between the number of restaurants in a city and average ratin
```


Correlation between the number of restaurants in a city and average rating: -0.32862750510298927

In []: