16MSPAH101 — ADVANCED CLASSICAL MECHANICS CANONICAL TRANSFORMATIONS

V.H. BELVADI*

St Philomena's College Autumn 2017

Generating function Derivatives Trivial case $\chi'(q,Q,t) \qquad p_i = \partial_{q_i}\chi' \quad \text{and} \quad P_i = -\partial_{Q_i}\chi' \qquad \chi' = q_iQ_i$ $\chi''(q,P,t) - Q_iP_i \qquad p_i = \partial_{q_i}\chi'' \quad \text{and} \quad Q_i = \partial_{P_i}\chi'' \qquad \chi' = q_iP_i$ $\chi'''(p,Q,t) + q_ip_i \qquad q_i = -\partial_{p_i}\chi''' \quad \text{and} \quad P_i = -\partial_{Q_i}\chi''' \quad \chi' = p_iQ_i$ $\chi''''(p,P,t) + q_ip_i - Q_iP_i \quad q_i = -\partial_{p_i}\chi'''' \quad \text{and} \quad Q_i = \partial_{P_i}\chi'''' \quad \chi' = p_iP_i$

1 EXAMPLES OF CANONICAL TRANSFORMATIONS

1.1 Some general results on q and p

Consider the generating function $\chi'' = q_i p_i$ with the transformation equations $p_i = \partial_{q_i} \chi'' = P_i$ and $Q_i = \partial_{P_i} \chi''$ with K = H since $\partial_t \chi'' = 0$. This is the trivial case of the χ'' listed above. We already know that $P_i = \partial_{q_i} \chi''$ and $q_i = \partial_{P_i} \chi''$ which means $p_i = P_i$ and $q_i = Q_i$, leaving the new coördinates untouched.

The general form of this arises from a generating function containing f(q, t) as expected but along with some g(q, t), a differentiable function of q and possibly t. That is $\chi'' = f_i(q_1, \ldots, q_n; t) P_i + g(q_1, \ldots, q_n; t)$ which, when g = 0, satisfies $Q_i = \partial_{P_i} \chi'' = f_i(q_1, \ldots, q_n; t)$ and tells us that point transformations are always canonical.

When $g \neq 0$ we end up with writing $p_i = \partial_{q_i} \chi''$ as $p_j = P_i \partial_{q_j} f_i + \partial_{q_j} g$. These are essentially matrices with i rows and j columns, which means we could rearrange this equation to get $P = \left[\partial_q f\right]^{-1} \left(p - \partial_q g\right)$.

As a second exercise consider $\chi' = q_i Q_i$ which, as evinced by the single prime, is what we have defined as a generating function of the first kind. This

For more visit vhbelvadi.com/teaching.

^{*}vh@belvadi.com

trivially transforms surprisingly $p_i = \partial_{q_i} \chi' = Q_i$ and $P_i = -\partial_{Q_i} \chi' = -q_i$ which tells us that p and q are interconvertible. This result is ample proof that q and p differ only in name and that, celebrating the generality of analytical mechanics, they can transform into each other with considerable ease.

In a system with, say, two degrees of freedom with a generating function that is a combination like $\chi' + \chi'' = q_1Q_1 + q_2Q_2$ we end up with the relations $Q_1 = q_1$, $P_1 = p_1$, $Q_2 = p_2$ and $P_2 = -q_2$. Generating functions and their derivative coördinates and momenta are, therefore, superimposable.

1.2 Harmonic oscillators

This example will finally clarify just how and where we find use for the four generating functions discussed earlier. Consider a one-dimensional simple harmonic oscillator, i.e. an object simple harmonically moving to and fro along a single direction. The Hamiltonian, given by sum of the kinetic and potential energies, of such a system is known (from previous lectures) to be

$$\mathscr{H} = \frac{p^2}{2m} + k \, \frac{q^2}{2}$$

If $\omega^2 = k/m$ we have

$$\mathcal{H} = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right)$$

The term inside the parentheses looks suspiciously like it is waiting to be written as $\cos^2 \theta + \sin^2 \theta$. To achieve this an appropriate substitution would be

$$p = f(P)\cos Q$$
 and $qm\omega = f(P)\sin Q$

naturally because we have no justification to claim that $p = \cos Q$ straight away. The correction function f(P) is of course unknown. Substituting these we have

$$\mathscr{H} = \frac{f^2(P)}{2m} = \mathscr{K}$$

and the only thing now left to do is to find f(P).

This is where our generating functions come in. The first type, χ' , is of the form $\chi'(q, Q, t)$ with the trivial case $\chi' = q_i Q_i$ so that $Q_i = p_i$ and $P_i = -q_i$.

These give rise to the following generating function:

$$\chi' = q_i Q_i$$

$$= q_i p_i$$

$$= \frac{f^2(P) \sin Q \cos Q}{m\omega}$$

$$= \frac{q^2 m^2 \omega^2 \sin Q \cos Q}{\sin^2 Q m\omega}$$

$$= q^2 m\omega \cot Q$$

We now use this in $p = \partial_q \chi'$ and $P = -\partial_Q \chi'$ to arrive at

Recall that
$$\partial_{\theta} \cot \theta = -\csc \theta$$
.

$$p = 2m\omega \cot Q$$
 and $P = \frac{m\omega q^2}{\sin^2 Q}$

which gives us

$$q = \sin Q \sqrt{\frac{P}{m\omega}}$$
 and $p = 2\cos Q \sqrt{pm\omega}$

Comparing this with $p = f(P) \cos Q$ we get $f(P) = 2\sqrt{Pm\omega}$ and the new Hamiltonian becomes

$$\mathcal{K} = \frac{f^2(P)}{2m} = 2P\omega$$

which, on further comparison to P = E/m tells us the factor of 2 is extra and that our generating function needs to be corrected accordingly. Suppose we take the generating function

$$\chi' = \frac{q^2 m\omega \cot Q}{2}$$

we will end up with $\mathcal{K}(P,Q) = \omega P$ as expected, signalling that this is in fact the correct generating function. The new Hamiltonian is **cyclic in Q**. Consequently, Hamilton's equation for Q is

$$\dot{Q} = \partial_P K = \omega \implies Q = \omega t + \beta \text{ (say)}$$

where β is a constant of integration, and, on substituting this back into the equation for q above we get

$$q = \sin(\omega t + \beta) \sqrt{\frac{2E}{m\omega^2}}$$

The additional factor of 2 comes once we rework the previous steps with the corrected generating function (which, if you recall, itself differs from our

originally expected function by a factor of half).

* * *