# Introducción al Régimen Transitorio Teoría de Circuitos

Oscar Perpiñán Lamigueiro

Mayo 2020

- Conceptos Fundamentales
- Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

- Conceptos Fundamentales
  - ¿Qué es el régimen transitorio?
  - Condiciones iniciales
- Circuitos de Primer Order
- Circuitos de Segundo Orden

### Permanente y Estacionario

#### Régimen permanente o estacionario

Las tensiones y corrientes de un circuito son constantes (continua) o periódicas (alterna) (circuito estabilizado)

#### Régimen transitorio

- Para alcanzar el régimen permanente (o para alternar entre dos regímenes permanentes) el circuito atraviesa el régimen transitorio.
- Posibles cambios: activación o apagado de fuentes, cambio en las cargas, cambio en el circuito (línea).
- En general, el estado transitorio es indeseado en sistemas eléctricos, pero provocado en sistemas electrónicos.

### Acumulación de Energía

#### Régimen Permanente

Energía acumulada en bobinas y condensadores

#### Régimen Estacionario

- Redistribución y disipación de energía acumulada.
- La redistribución de energía no se puede realizar de forma inmediata
- Duración corta (μs) pero superior a 0, dependiendo de relación entre acumulación y disipación (resistencia).

- Conceptos Fundamentales
  - ¿Qué es el régimen transitorio?
  - Condiciones iniciales
- 2 Circuitos de Primer Order
- Circuitos de Segundo Orden

### Respuesta completa de una red lineal

La respuesta completa de una red lineal a un cambio tiene dos componentes:

- Respuesta natural o propia (sin fuentes, determinada únicamente por la configuración del circuito)
- Respuesta **forzada** o particular (determinada por las fuentes existentes,  $t = \infty$ ).

$$f(t) = f_n(t) + f_{\infty}(t)$$

#### Condiciones iniciales

- Las **condiciones iniciales** son el estado del circuito en el instante temporal en el que se produce el cambio.
- Determinan las constantes de integración de la respuesta natural.
- El instante del cambio se representa habitualmente con t = 0:
  - $t = 0^-$ : la topología del circuito es la anterior al cambio.
  - $t = 0^+$ : la topología del circuito es la posterior al cambio.

#### Resistencia

$$u(t) = Ri(t)$$

No acumula energía: sigue los cambios de forma instantánea.

#### Inductancia

$$u(t) = L \frac{di_L(t)}{dt} \leftrightarrow i_L(t) = \frac{1}{L} \int_{-\infty}^t u(t) dt$$

La corriente en una bobina no puede variar de forma abrupta (implica tensión infinita).

$$i_L(0^-) = i_L(0^+)$$

### Capacidad

$$i(t) = C \frac{du_C(t)}{dt} \leftrightarrow u(t) = \frac{1}{C} \int_{-\infty}^t i(t) dt$$

La tensión en un condensador no puede variar de forma abrupta (implica corriente infinita).

$$u_C(0^-) = u_C(0^+)$$

# Circuitos Equivalentes en $t = 0^+$

- Sustituir fuentes de tensión  $u_g(t)$  por  $u_g(0^+)$ .
- Sustituir fuentes de corriente  $i_g(t)$  por  $i_g(0^+)$ .
- Sustituir bobinas por fuentes de corriente  $i_L(0^+)$ .
- Sustituir condensadores por fuentes de tensión  $u_C(0^+)$ .
- Calcular tensiones y corrientes en circuito.

| ELEMENTO                                                           | Circuito equivalente inicial $(t=0^+)$ |                                                                                                  | Circuito equivalente             |
|--------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                    | CARGADO                                | DESCARGADO                                                                                       | final (solo con c.c.) $t=\infty$ |
| °√√√°                                                              | 0 <b>−\</b> \                          | 0- <b>\</b> \ -0                                                                                 | 0 <b>−\</b> \                    |
| $ \begin{array}{c} L \\ \bullet \\ \downarrow \\ i_L \end{array} $ | $i_L(0^+)=i_L(0^-)$                    | $ \overset{i_L(0^+)=0}{\circ -\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!$ | Cortocircuito                    |
| ○— C<br>+ u <sub>C</sub> –                                         | $u_C(0^+)=u_C(0^-)$                    | $u_{C}(0^{+})=0$ $0$ $0$                                                                         | Circuito abierto  O—O O—O        |

### Ejemplo

El interruptor lleva en la posición (1) desde un tiempo infinito y pasa a la posición (2) en t=0:



- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- Circuitos de Segundo Orden

#### Definición

- Circuitos que tienen un **único elemento de acumulación** (o *varios elementos que pueden ser simplificados a un elemento equivalente*) y parte resistiva.
- Ecuación diferencial de primer orden: la respuesta natural es siempre una exponencial decreciente.
- Circuitos típicos:
  - ▶ RL serie
  - RC paralelo

### Respuesta natural y forzada

- El método de resolución analiza el circuito en dos etapas:
  - Sin fuentes: **respuesta natural** (la energía acumulada en t < 0 se disipa en la resistencia).
  - Con fuentes: respuesta forzada (determinada por la forma de onda de las fuentes).

- Conceptos Fundamentales
- Circuitos de Primer Orden
  - Circuito RL serie
  - Circuito RC paralelo
  - Análisis Sistemático
- 3 Circuitos de Segundo Orden

#### Circuito básico

- En t < 0 la fuente alimenta el circuito RL (la bobina almacena energía).
- En t = 0 la fuente se desconecta.
- En t > 0 la bobina se descarga en la resistencia.



#### Respuesta natural



**Ecuaciones** 

$$u_R(t) + u_L(t) = 0$$
$$Ri + L\frac{di}{dt} = 0$$

Solución Genérica

$$i(t) = Ae^{st}$$

Ecuación Característica

$$s + \frac{R}{L} = 0 \Rightarrow s = -\frac{R}{L}$$

#### **Condiciones Iniciales**

Analizando circuito para  $t < 0 \dots$ 



... obtenemos  $i(0^-) = I_0 = \frac{U_0}{R}$ 

#### **Condiciones Iniciales**

Por otra parte, para t > 0:

$$i(t) = Ae^{-R/Lt}$$
$$i(0^+) = Ae^0 = A$$

Y dada la condición de continuidad,  $i(0^+) = i(0^-)$ :

$$A = I_0$$

Por tanto, la respuesta natural es:

$$i(t) = I_0 e^{-R/Lt}$$

#### Constante de tiempo

$$i(t) = I_0 e^{-t/\tau}$$

- $\tau = \frac{L}{R}$  es la constante de tiempo (unidades [s]).
- Ratio entre almacenamiento (*L*) y disipación (*R*).
- Valores altos de  $\tau$  implican decrecimiento lento.
- La respuesta natural «desaparece» tras  $\simeq 5\tau$ .



### Balance Energético

La energía acumulada en la bobina en t<0 se disipa en la resistencia en t>0

$$W_R = \int_0^\infty Ri^2(t)dt =$$

$$= \int_0^\infty R(I_0e^{-t/\tau})^2dt =$$

$$= \frac{1}{2}LI_0^2 = W_L$$

### Respuesta forzada

Cambiemos el funcionamiento del interruptor: en t > 0 la fuente alimenta el circuito RL.



#### Respuesta forzada



Las ecuaciones son ahora:

$$u_R(t) + u_L(t) = u(t) \rightarrow Ri + L\frac{di}{dt} = U_0$$

Para la solución particular,  $i_{\infty}$ , se propone una función análoga a la excitación (analizando circuito para t > 0)

$$i(t) = i_n(t) + i_{\infty}(t)$$
$$i_n(t) = Ae^{st}$$
$$i_{\infty}(t) = U_0/R$$

#### Condiciones iniciales

Particularizamos las ecuaciones en  $t = 0^+$ :

$$i(0^{+}) = i_{n}(0^{+}) + i_{\infty}(0^{+})$$
  

$$i(0^{+}) = A + i_{\infty}(0^{+})$$
  

$$A = i(0^{+}) - i_{\infty}(0^{+})$$

### Respuesta completa (ejemplo)

$$i(t) = i_n(t) + i_{\infty}(t)$$

$$i_n(t) = Ae^{st}$$

$$i_{\infty}(t) = U_0/R$$

$$A = i(0^+) - i_{\infty}(0^+)$$

Suponiendo que la bobina está inicialmente descargada,  $i(0^-)=0$ , y teniendo en cuenta la condición de continuidad,  $i(0^+)=i(0^-)=0$ , obtenemos  $A=0-U_0/R$ .

La solución completa es:

$$i(t) = \frac{U_0}{R} (1 - e^{-\frac{t}{\tau}})$$

#### Respuesta completa

$$i(t) = \frac{U_0}{R} (1 - e^{-\frac{t}{\tau}})$$



# Expresión general de la respuesta completa

$$i(t) = [i(0^+) - i_{\infty}(0^+)] e^{-t/\tau} + i_{\infty}(t)$$

- $i(0^+)$ : corriente en la bobina, condiciones iniciales,  $i(0^-) = i(0^+)$ .
- $i_{\infty}(t)$ : corriente en la bobina en régimen permanente para t>0.
- $i_{\infty}(0^+)$ : corriente en la bobina en régimen permanente particularizada en t=0.

- Conceptos Fundamentales
- Circuitos de Primer Orden
  - Circuito RL serie
  - Circuito RC paralelo
  - Análisis Sistemático
- 3 Circuitos de Segundo Orden

#### Circuito básico

- En t < 0 la fuente alimenta el circuito RC (el condensador se carga).
- En t = 0 se desconecta la fuente (el condensador comienza a descargarse en la resistencia).



### Respuesta natural



#### **Ecuaciones**

$$i_R(t) + i_C(t) = 0$$
$$Gu + C\frac{du}{dt} = 0$$

Solución Genérica

$$u(t) = Ae^{st}$$

Respuesta natural

$$u(t) = U_0 e^{-G/Ct}$$

### Constante de tiempo

- $\tau = \frac{C}{G}$  es la constante de tiempo (unidades [s]).
- Ratio entre almacenamiento (*C*) y disipación (*G*).

$$u(t) = U_0 e^{-t/\tau}$$



### Balance Energético

La energía acumulada en el condensador en t<0 se disipa en la resistencia (conductancia) en t>0

$$W_G = \int_0^\infty Gu^2(t)dt = \frac{1}{2}CU_0^2 = W_C$$

# Expresión general de la respuesta completa

$$u(t) = [u(0^+) - u_{\infty}(0^+)] e^{-t/\tau} + u_{\infty}(t)$$

- $u(0^+)$ : tensión en el condensador, condiciones iniciales,  $u(0^-) = u(0^+)$ .
- $u_{\infty}(t)$ : tensión en el condensador en régimen permanente para t > 0.
- $u_{\infty}(0^+)$ : tensión en el condensador en régimen permanente particularizada en t=0.

### Ejemplo con respuesta forzada



$$u(t) = [u(0^+) - u_{\infty}(0^+)] e^{-t/\tau} + u_{\infty}(t)$$

Suponiendo que el condensador está inicialmente descargado:

$$u(0^+) = u(0^-) = 0$$
  
 $u_{\infty}(0^+) = I_0/G$   
 $u(t) = \frac{I_0}{G}(1 - e^{-\frac{t}{\tau}})$ 

- Conceptos Fundamentales
- Circuitos de Primer Orden
  - Circuito RL serie
  - Circuito RC paralelo
  - Análisis Sistemático
- 3 Circuitos de Segundo Orden

# Equivalente de Thévenin (Norton)



#### Procedimiento General

- Dibujar el circuito para t < 0.
  - ▶ Determinar variables en régimen permanente,  $u_c(t)$ ,  $i_L(t)$ .
  - ▶ Particularizar para t = 0, obteniendo  $u_c(0^-)$  o  $i_L(0^-)$ .
  - Continuidad:  $u_c(0^+) = u_c(0^-), i_L(0^+) = i_L(0^-).$
- Dibujar el circuito para t > 0.
  - Calcular el equivalente de Thevenin (Norton) visto por el elemento de acumulación.
  - La constante de tiempo de la respuesta natural es  $\tau = \frac{L}{R_{th}}$  o  $\tau = \frac{C}{G_{th}}$ .
  - ► Calcular las variables  $i_L(t)$  o  $u_c(t)$  en régimen permanente, obteniendo  $i_{\infty}(t)$  o  $u_{\infty}(t)$ .
- Obtener respuesta completa:

$$i_L(t) = (i_L(0^+) - i_\infty(0^+)) e^{-t/\tau} + i_\infty(t)$$
  

$$u_C(t) = (u_C(0^+) - u_\infty(0^+)) e^{-t/\tau} + u_\infty(t)$$

- Conceptos Fundamentales
- 2 Circuitos de Primer Orden
- 3 Circuitos de Segundo Orden

#### Introducción

- Circuitos que tienen dos elementos de acumulación que intercambian energía, y parte resistiva que disipa energía.
- Ecuación diferencial de segundo orden: la respuesta natural incluye exponenciales decrecientes y quizás señal sinusoidal.
- Circuitos típicos:
  - ▶ RLC serie
  - RLC paralelo

#### Respuesta natural y forzada

- El método de resolución analiza el circuito en dos etapas:
  - Sin fuentes: **respuesta natural** (la energía acumulada en t < 0 se redistribuye).
  - Con fuentes: respuesta forzada (determinada por la forma de onda de las fuentes).