ULB

Université Libre de Bruxelles - Département de Mathématique

Titulaire: Guillaume Dujardin

Assistants: Thibaut Grouy et Robson Nascimento

Exercices de Calcul Différentiel et Intégral 2 - 2016/2017

Séance 12 - Analyse complexe

Exercice 1. Déterminer l'image par les fonctions $f:\mathbb{C}\to\mathbb{C}$ suivantes des ensembles respectifs :

- a) $f(z) = i(z+1), \quad \{z \in \mathbb{C} \mid \text{Re}(z) > 0\},\$
- b) $f(z) = e^z$, $\{z \in \mathbb{C} \mid 0 < \text{Im}(z) < \frac{\pi}{4} \text{ et } \text{Re}(z) < 0\}$.

Représenter les régions suivantes. S'agit-il de domaines? Justifier.

- a) $\{z \in \mathbb{C} \mid \text{Re}(z^2) > 1\},\$
- b) $\{z \in \mathbb{C} \mid |z 1| \ge |z|\}.$

Exercice 2. Déterminer l'ensemble des points où les fonctions suivantes sont \mathbb{C} -différentiables et calculer leur dérivée en ces points :

- a) $f(z) := \frac{x}{x^2+y^2} i\frac{y}{x^2+y^2}, \quad z = x + iy \in \mathbb{C} \setminus \{0\},$
- b) $g(z) := \ln(z), \quad z \in \mathbb{C} \setminus \mathbb{R}^-,$
- c) $h(z) := x^2 + iy^2$, $z = x + iy \in \mathbb{C}$,
- d) $j(z) := \cos(x)\cosh(y) i\sinh(y)\sin(x), \quad z = x + iy \in \mathbb{C},$
- e) $k(z) := z \operatorname{Im}(z), \quad z \in \mathbb{C}.$

Exercice 3.

a) Montrer que la fonction $f: \mathbb{C} \to \mathbb{C}$ définie par

$$f(x+iy) := (ax+by) + i(cx+dy)$$

est holomorphe sur \mathbb{C} si et seulement s'il existe $\lambda \in \mathbb{C}$ tel que pour tout $z \in \mathbb{C}$, $f(z) = \lambda z$.

- b) Soit $g: \mathbb{C} \to \mathbb{C}$ une fonction holomorphe sur \mathbb{C} . Montrer que :
 - (i) Si $\forall z \in \mathbb{C}, g'(z) = 0$, alors g est constante sur \mathbb{C} .
 - (ii) Si $\forall z \in \mathbb{C}$, $g(z) \in \mathbb{R}$, alors g est constante sur \mathbb{C} .

Exercice 4. On rappelle qu'un sous-ensemble C d'un espace vectoriel normé E, muni de sa topologie standard, est :

- (i) convexe si pour tous $x, y \in C$, le segment joignant x à y est contenu dans C,
- (ii) connexe si pour tous ouverts U, V de E tels que $C \subset U \cup V$ et $U \cap V = \emptyset$, alors $U = \emptyset$ ou $V = \emptyset$,
- (iii) étoilé s'il existe un point $x_0 \in C$ tel que, pour tout $x \in C$, le segment joignant x à x_0 soit contenu dans C.
- a) Montrer que tout convexe est connexe.

Indication: tout ensemble connexe par arcs est connexe.

- b) Les affirmations suivantes sont-elles vraies ou fausses? Justifier.
 - Tout domaine étoilé est convexe.
 - Tout ouvert convexe est un domaine étoilé.
 - Tout domaine étoilé est connexe par arcs.
 - Tout ouvert connexe est un domaine étoilé.