Project Euler #134: Prime pair connection

This problem is a programming version of Problem 134 from projecteuler.net

Consider the consecutive primes $p_1 = 19$ and $p_2 = 23$. It can be verified that 1219 is the smallest number such that the last digits are formed by p_1 whilst also being divisible by p_2 .

In fact, with the exception of $p_1 = 3$ and $p_2 = 5$, for every pair of consecutive primes, $p_2 > p_1$, there exist values of p_1 for which the last digits are formed by p_1 and p_1 and p_2 . Let p_1 be the smallest of these values of p_1 .

Given \$L\$ and \$R\$, find \$\sum S\$ for every pair of consecutive primes with \$L \le p_1 \le R\$.

Input Format

The first line of input contains \$T\$, the number of test cases.

Each test case consists of one line containing two integers, \$L\$ and \$R\$.

Constraints

\$1 \le T \le 10\$ \$5 \le L \le R \le 10^9\$ \$|R - L| \le 10^6\$

But in test cases worth 50% of the total points, \$R \le 10^6\$.

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

1 5 20

Sample Output

4272

Explanation

The following are the relevant values in the range \$5 \le p_1 \le 20\$:

•
$$p_1 = 5$$
, $p_2 = 7$, $S = 35$ \$

•
$$p 1 = 7, p 2 = 11, S = 77$$

•
$$p_1 = 11$$
, $p_2 = 13$, $s = 611$ \$

•
$$p 1 = 13, p 2 = 17, S = 1513$$

Thus, $\sum S = 35 + 77 + 611 + 1513 + 817 + 1219 = 4272$