2023-2024 学年第二学期期末考试 A 卷

一、单选题。在四个选项中选择一个最合适的答案(每小题 L分,共 20 分)
1.下列关于存储程序工作方式的描述,正确的是()
A.程序事先存储在磁盘中,执行时从磁盘逐条指令读取到 CPU 中。
B. 程序事先存储在主存中、执行时从主存逐条指令读取到 CPU 中。
C.程序事先存储在主存中,所需数据必须从输入设备获取。
D.在主存中为了区分数据和程序,需要在信息表示中使用相应的标志信息、
2.下列各项内容中不属于指令集体系结构 ISA 范畴的是()
A.应用程序的编程是选 C 还是 JAVA B.可编程寄存器的名称、变化和用途等
C.主存储器的编址方式 D.指令中操作码的长度和编码方法
3.下列性能指标中表示计算机的浮点操作速度的指标是()
A.CPI B. MIPS C.MFLOPS D.时钟频率
4.高速缓存的组成一般采用()
A.动态存储器 B.静态存储器 C.顺序存取存储器 D.直接存取存储器
5.下列说法正确的是()
A.动态存储器是靠触发器来存储信息 B.动态存储器属于非易失性存储器
C.动态存储器是破坏性存储器,读出后需要重写 D.动态存储器比静态存储器速度要快
6.中断响应过程中的保存断点是指()
A.将 CPU 中的各通用寄存器的内容压入堆栈 B.将程序计数器 PC 的内容压入堆栈
C.将 CPU 中的指令寄存器的内容压入堆栈 D.将寄存器 SP 的内容压入堆栈
7.对于二进制数 1.01110 用 IEEE754 标准的"就近舍入"法舍入为只保留 3 位小数的数,
正确结果是()
A.1.010 B.1.011 C1.100 D.1.110
8.设n位ALU最高位产生的进位为Cn,减法运算控制位SUB=1,则进位标志CF的产生逻辑表达式
为()
$A.CF = Cn \oplus SUB$ $B.CF = Cn$ $C.CF = Cn \& SUB$ $D.CF = SUB$
9.一个 8 位的
A.0096H B.8096H C.F096H D.FF96H
10. 下列选项中不是串行总线的是()
A.FSB B.QPI C.USB D.PCI-Express

```
11.采用相对寻址方式的操作数地址是以一个寄存器的内容再加上 个常数,这个寄存器是(
A.程序计数器 PC B.堆栈指针 SP C 个通用寄存器 D.存储器地址寄存器 MAR
12.下列表述中最符合 RISC 计算机的是(
A.指令寻址方式丰富,大多数指令都能访问存储器 B.只有少数几条指令能访问存储器
C.指令系统中指令条数多
                         D. 指令系统中指令长度可长可短
13.MIPS 指令系统中如果操作码字段 OP 为 0,则指令类型是(
      B.J 型 C.R 型 D.无法确定
14.32 位 MIPS 计算机中,一条指令在主存中的存放地址一定是( )
A.2 的整数倍 B.3 的整数倍 C.4 的整数倍 D.32 的整倍数
15.下列几种寻址方式中,执行速度最快的是( )
A.直接寻址 B.寄存器寻址 C.寄存器间接寻址 D.间接寻址
16.在五段流水线 MIPS CPU 中的流水段寄存器的个数是( )
A.2 B.3 C.4. D.5
17.计算机中的微程序存放在( )
A.主存储器
        B.高速缓存
                 C.中央处理器
                              D.硬盘
18.CPU 访问 cache 时若未命中需替换 cache 行数据 需使用替换算法的映射是(
              B.直接映射和全相联映射
A.直接映射和组相联映射
C.组相联映射和全相联映射
               D.直接映射、组相联映射和全相联映射
19.虚地址到实地址的转换操作是由( )完成
         B.CPU 中的硬件电路 C.用户程序 D.磁盘驱动程序
A.操作系统
20.在输入/输出传送控制方式中,不是通过执行指令实现数据传送的方式是( )
A.程序查询方式 B.中断方式 C.DMA 方式 D.程序直接控制方式
二、填空题(每空 1 分,共 12 分) ~
1.IEEE754 单精度浮点数的阶码的移码偏置常数为( ) 尾数的二进制位数为(
                                         )位.
规格化数的隐藏位的值为(
                ),非规格化数的隐藏位的值为( )。
2.MIPS 计算机的一条指令的长度为( )字节,指令在主存中的存放地址值必须是(
3.在采用直接映射 cache 的存储系统中,一个主存地址被划分为(
                                ١ (
   」二个部分,该存储单元被装入 cache 时,三个部分中的(
                                 )也被装入 cache 中。
4.DMA 数据传送方式有( )、( )和交替分时访问法三种方式、
```

《计算机组成原理与结构》复习题

=	夕词	解释	(每	瓜小	f 2	4	#	0	44)
	石 四	MF11	174	JUNE	83	71	• 75	7	//

- 1.直接寻址
- 2.流水线冒险
- 3.中断响应

四. 简答题(每小题 4分,共 12分)

1.简述 MIPS 计算机的指令"bne rs,rt,imm16"的执行过程。如果该指令的存储地址为 2000,imm16 为 100,该指令执行后下一条指令的地址为多少?

- 2.通过在运算器 ALU 中执行 A-B 的操作来比较两个补码数 A 和 B 的大小。(1)应使用哪些标志 位?(2)如何判断 A 和 B 的大小?(3)以 8 位补码数 A=01001001 B=10111010 为例进行比较分析。
- 3. 简述微程序控制器中机器指令、微程序、微指令、微命令、微操作之间的对应关系

五、计算与分析题(共 47 分)

- 1.(10 分)设有二进制表示的浮点数 X=110 0100.1,Y=10 0010 01。
- (1)使用 IEEE754 单精度(32 位)格式表示 X 和 Y 最后结果要求用 | 六进制数表示。
- (2)使用计算机内部的浮点数乘除法运算规则,分别计算 $X \times Y$ 的阶码和 X/Y 的阶码,要求:用 IEEE754 移码进行运算,结果也用 IEEE754 移码表示。

- 2.(6分)设有一"取指、详码/取数、执行、访存、写回"五级指令流水线,寄存器的写口操作与该口操作分别在前、后半个时钟周期完成。试分析以下指令序列并回答下列各问。
- ①and \$1,\$2,\$3
- ②add \$3,\$1,\$2
- ③sub \$2,\$3,\$1
- @lw \$4,10(\$3)
- ⑤add \$1,\$2,\$4
- (1)哪些指令对会发生数据冒险?(2)哪些数据冒险可以采用转发技术解决?(3)哪些不能用转发技术解决?需要采用什么方法解决?

(计算机组成原理与结构) 复习题

3.(12 分)设某计算机编程地址空间为 4GB,主存容量为 512MB·CPU 中有一个 TLB 和一个 Ll data cache. 按字节编址,页大小为 4KB,TLB 为 4 路组相取联映射,共有 8 个页表项:Ll data cache 为 2 路组相联映射,共 32 行,数据块大小为 256B。

请回答下列问题:

- (1)虚拟地址有多少位?哪几位表示页内偏移量?哪几位表示虚拟了页号?哪几位用作 TLB 标记?哪几位用作 TLB 组索引?
- (2)设备存器 t2 的内容为 0x12345678,执行指令"lw\$t1,4(\$t2)"从存储器读取数据时,在 TLB 的哪一组中查找以确定该存储单元已装入内存?
- (3)若第(2)问中的存储单元地址在页表中查得页框号为 0x1659C,其转换后的物理地址是多少(要求用十六进制表示)?该地址单元被装入 L1 data cache 时组号是多少?
- (4)若 L1 data cache 每行 1 位有效位 V,其总容量是多少字节?
- 4.(8 分)若某计算机有 4 级中断,中断响应优先级为 1>2>3>4,面中断处理优先级为 1>4>3>2。 要 求. \ (1)设计各级中断处理程序的中断屏蔽位(假设:为屏蔽,0 为开族) 将答案直接填入下表。

中断程序级别	屏蔽字						
中断在广级加	1级	2 级	3 级	4级			
第1级							
第2级	•						
第3级		-					
第 4 级	,						

(2)若在运行生程序时,同时出现第1、2、4级中断请求,而在处理第4级中断过程中,又出现3级中断请求,试在下面图中画出此程序运行过程示意图.

中断服务 4	1
中断服务 3.	
中断服务 2.	4_
中断服务上	
主程序。	in a distribution of the state

- 5.(11 分)设有如下图所示的单周期 MIPS CPU 数据通路,试回答以下各问。
- (1)将该数据通路中数据存储器与其他部件之间的连接补充完整,使其能够执行访存指令 lw 和 sw。要求:直接在数据通路图中画出相应的连线。
- (2)下列各指令在该数据通路中执行时各控制信号取何值?答案直接填入表中。说明:信号有效为 I,无效为 0、无影响为 x: ALUctr 可取值分别为 add.sub, addu, subu, or, and e

lw \$s1,100(\$s2)

beg \$s1,\$s2, imm16

sub \$s1,\$s2, \$s3

指令	RegDst	ALUSrc	ALUctr	MemWr	ExtOP	RegWr	MemtoReg	Branch	Jump
lw						-			
beq	240			,	-				
sub									