Share Your Experience: Take the 2024 Developer Survey

How to get the GPU info?

Asked 13 years, 7 months ago Modified 1 year ago Viewed 2.0m times

I'm looking for a command that would give me the same info as:

391

cat /proc/cpuinfo

Except for the GPU (type of the chip and memory, frequency).

command-line graphics gpu

Share Edit Follow Flag


```
what does: cat /proc/cpuinfo do? what info are you looking for? - Charlie Parker Mar 5, 2018 at 17:00

@CharlieParker it outputs information of the cpu... - Emobe Sep 11, 2019 at 8:46

l personally use: python -c "import torch; print(torch.cuda.get_device_name(0));" - Charlie Parker Nov 7, 2022 at 22:44
```

25 Answers

Sorted by: Highest score (default)

\$

I do not know of a direct equivalent, but **Ishw** should give you the info you want, try:

408

sudo lshw -C display

(it also works without sudo but the info may be less complete/accurate)

You can also install the package lshw-gtk to get a GUI.

Share Edit Follow Flag

3 — Had to put gksu before the command in the menu to get Ishw-gtk to work. – robin0800 Feb 15, 2011 at 10:55

Any updates? I'm a fan of the command but the only clock rate (frequency) it seems to provide for me is the base bus clock 33MHz. I'm

attempting to bring this Q&A up to date. Thank you! – Elder Geek Dec 14, 2017 at 23:31

Apologies, new to Deep Learning. What should it say if I have a GPU? It says <code>product: 2nd Generation Core Processor Family</code>

Integrated Graphics Controller - Nathan majicvr.com Apr 17, 2018 at 2:13

@Nathan That means that you have a GPU....probably a very weak GPU. Your GPU says integrated graphics, which means that it's integrated into the CPU. Your CPU has it own component which functions as a graphics card and probably (to save on costs) uses the ordinary RAM to store its buffers. You do not have a separate independent removable graphics card. – Jack G May 13, 2020 at 0:03

This is the contract of the co

This doesn't (always?) give the memory for discrete NVidia cards on certain laptops (like the HP G7 Firefly) – AntonOfTheWoods Apr 4, 2023 at

1:32

That type of information is non-standard, and the tools you will use to gather it vary widely.

175

The command <code>glxinfo</code> will give you all available OpenGL information for the graphics processor, including its vendor name, if the drivers are correctly installed.

To get clock speed information, there is no standard tool.

- For ATI/AMD GPUs running the old Catalyst driver, aticonfig --odgc should fetch the clock rates, and aticonfig --odgt should fetch the temperature data. I'm not familiar with AMDGPU-Pro, but a similar tool should exist.
- For NVIDIA GPUs, the nvidia-smi tool will show all of the information you could want, including clock speeds and usage statistics.

I am not aware of an equivalent tool for the open source drivers or for Intel or other GPUs, but other information on the hardware can be fetched from the lspci and lshw tools.

Share Edit Follow Flag

edited Jun 2, 2020 at 18:17

answered Oct 9, 2010 at 17:30

greyfade

2.505 2 17 7

How to install glxinfo? – stiv Mar 13, 2015 at 13:40

@stiv: It's part of the Mesa library, and comes with the package mesa-utils on Ubuntu. - greyfade Mar 13, 2015 at 18:20

aticonfig doesn't appear to be available since the retirement of fglrx. nvclock also appears to have been abandoned since the last version was for trusty. Do you have any updated solutions? Here's what I have so far.. - Elder Geek Dec 14, 2017 at 23:16

glxinfo | grep "Device" worked well enough for me on an Intel GPU – John Hamilton May 26, 2018 at 14:10

luse: glxinfo | egrep -i 'device|memory' - Melroy van den Berg Jan 2, 2019 at 20:37

A blog post focusing on work done on the command-line is here:

150

http://www.cyberciti.biz/faq/howto-find-linux-vga-video-card-ram/

Find out the device ID:

You can then use this output with lspci again, forming two nested commands

```
lspci -v -s $(lspci | grep ' VGA ' | cut -d" " -f 1)
```

If you have more than 1 GPU card, try this equivalent command instead:

```
lspci | grep ' VGA ' | cut -d" " -f 1 | xargs -i lspci -v -s {}
```

Output from my system:

```
03:00.0 VGA compatible controller: NVIDIA Corporation G98 [Quadro NVS 295] (rev a1) (prog-if 00 [VGA controller])
Subsystem: NVIDIA Corporation Device 062e
Flags: bus master, fast devsel, latency 0, IRQ 24
Memory at f60000000 (32-bit, non-prefetchable) [size=16M]
Memory at ec0000000 (64-bit, prefetchable) [size=64M]
Memory at f40000000 (64-bit, non-prefetchable) [size=32M]
I/O ports at dc80 [size=128]
[virtual] Expansion ROM at f7e000000 [disabled] [size=128K]
Capabilities: <access denied>
Kernel driver in use: nvidia
```

EDIT: You can avoid the <access denied> by launching with sudo

So, (prefetchable) [size=64M) indicates that I have a 64-MB NVIDIA card. However, I don't, it's rather 256 MB. Why? See below.

To see how to get the most info and performance out of it, read an extremely comprehensive article on the Arch-Linux Wiki

https://wiki.archlinux.org/index.php/NVIDIA

For **nvidia users**, start with

nvidia-smi

(This works with the Nvidia drivers installed, but not with systems running the open-source 'nouveau' driver).

Output

This indicates that I have a 256 MB GDDR3 Graphics card.

At this time, I don't know how to get this for Intel and AMD/ATI GPUs.

Share Edit Follow Flag

answered Dec 19, 2013 at 9:50

knb
5.014 4 34 42

```
+1 for nvidia-smi (that should be highlighted a bit in my opinion) – Martin Thoma Sep 7, 2014 at 15:23

If anyone have any idea: nvidia-smi hangs indefinitely: what could be the issue? – Franck Dernoncourt Aug 9, 2016 at 15:50 

nvidia-smi not showing me full GPU name. – mrgloom Nov 24, 2018 at 15:15
```

nvidia-smi -q, as suggested by @Quanlong uses more sensible output format. - Nickolay Oct 27, 2019 at 9:47 1 — You can also use \$ nvidia-smi --query-gpu=gpu_name --format=csv to just get the GPU name - Eric Wiener May 14, 2021 at 11:40

Run google-chrome and navigate to the URL about:gpu. If chrome has figured out how to use OpenGL, you will get extremely detailing information about your GPU.

92

Share Edit Follow Flag

- This also works in Chromium (Chromium Eliah Kagan Jul 2, 2017 at 13:02
- 1 Clever. Along these lines I additionally went to chromeexperiments.com to see the performance there. Smooth as butter I'm definitely on gpu – Jacksonkr Jul 29, 2018 at 17:49

66

Because you specified a command like cat for CPU's this is therefore the equivalent for GPU's. Specifically for Nvidia cards. It requires no software except the Nvidia device driver to be loaded.

The path here works for the cards I have. But yours may differ as others have pointed out in the comments.

1st GPU

> cat /proc/driver/nvidia/gpus/0/information GeForce GTX 680

Model:

IRQ: GPU UUID: GPU-71541068-cded-8a1b-1d7e-a093a09e9842

Video BIOS: 80.04.09.00.01

Bus Type: PCIe DMA Size: 40 bits DMA Mask: 0xfffffffff 0000:01.00.0 Bus Location:

2nd GPU

> cat /proc/driver/nvidia/gpus/1/information

Model: GeForce GTX 580

IRQ: 33

GPU UUID: GPU-64b1235c-51fc-d6f1-0f0e-fa70320f7a47

Video BIOS: 70.10.20.00.01

PCIe Bus Type: DMA Size: 40 bits DMA Mask: 0xffffffffff 0000:08.00.0 Bus Location:

Share Edit Follow Flag

edited Sep 26, 2019 at 3:33

answered Apr 1, 2015 at 21:22

2.599 6 32 40

Thanks! (though cat /proc/driver/nvidia/gpus/0000\:01\:00.0/information for me) - matt wilkie Nov 24, 2015 at 3:54

5 — This is the only correct answer in on-demand cloud/HPC cluster environment on which glxinfo or lspci both fail (the former because there's no OpenGL and display, the latter because the nVidia graphics card is abstracted by a graphics controller like Matrox G200eW3). The folder name under gpus is 0000:3b:00.0 or 0000:d8:00.0 for me, so we should type: cat

/proc/driver/nvidia/gpus/0000:3b:00.0/information. The lovely Tesla V100-PCIE-16GB model shows that the qsub job limit is satisfied as desired. - user5280911 Oct 6, 2018 at 7:40

For Nvidia cards, type

34

nvidia-smi -q

Share Edit Follow Flag

answered Jun 26, 2017 at 5:48

This got me the UUID of the Nvidia GPU on Windows. Thanks! Really useful! – rd51 Jul 5, 2023 at 10:28

clinfo

sudo apt-get install clinfo
clinfo

is the analogue of <code>glxinfo</code> but for OpenCL, my GPU setup is described at: https://stackoverflow.com/questions/7542808/how-to-compile-opencl-on-ubuntu/33483311#33483311 The output contains my GPU model among other things:

Number of devices Device Name 1 Quadro M1200

Ubuntu 20.04 Settings -> About

You can either open settings by clicking on top right menu, or you can just do:

- Super key (AKA Windows key)
- Type "about" and select the entry

So under "Graphics" I can see that my GPU model is

Quadro M1200/PCIe/SSE2

Some other things it can show:

- "Software Rendering" (Ubuntu 23.10): graphics card not working at all
- "NV117": I think this means it is using Nouveau

nvidia-settings

Mixes runtime with some static info.

More details: How do I check if Ubuntu is using my NVIDIA graphics card?

1 — This is perfect -- this answer deserved more upvotes. I think the other answers were more catered towards lower-level technical information about the GPU, whereas this option is much more consumer-friendly (since it resembles the Nvidia Control Panel program everyone on Windows is familiar with). - Raleigh L. Aug 2, 2022 at 23:11

I do believe the best option for this is <u>neofetch</u>.

Get neofetch sudo add-apt-repository ppa:dawidd0811/neofetch sudo apt update sudo apt install neofetch # Run neofetch neofetch

This gives an output like this:

```
haozeke
              neofetch
                                         haozeke@myi7archbox
                 .0+`
                 000/
                                         OS: Arch Linux x86_64
                                         Host: HP 406 G1 MT
                +0000:
               +000000:
                                         Kernel: 4.14.3-1-zen
                                         Uptime: 4 days, 11 hours, 21 mins
              -+000000+:
             /:-:++0000+:
                                         Packages: 1925
            /++++/++++++:
                                         Shell: zsh 5.4.2
                                         Resolution: 1366x768, 1920x1200
          /+++0000000000000/`
                                         DE: KDE
        ./ooosssso++osssssso+`
                                         WM: LG3D
                                         Theme: Breeze Dark [KDE], Arc-Dark-Grey [GTK2/3]
       .oossssso-`
                     /ossssss+`
                                         Icons: Breeze-dark [KDE], Papirus-Dark [GTK2/3]
      -osssssso.
                       :SSSSSSSO.
                                         Terminal: tilix
     :osssssss/
                       0SSSS0+++.
    /osssssss/
                       +ssssooo/-
                                         CPU: Intel i7-4770 (8) @ 3.900GHz
   ossssso+/:-
                       -:/+osssso+-
                                         GPU: AMD Mobility Radeon HD 4530/4570/545v
                             .-/+oso:
                                         Memory: 14117MiB / 28065MiB
```

Share Edit Follow Flag

edited Dec 14, 2019 at 12:50

Aminu Kano

answered Dec 10, 2017 at 16:37

- I'm not seeing the video card frequency and memory in this answer. There are far simpler methods to obtain the model of GPU which appears to be all you are giving us. I'm not sure what this adds to the existing answers. Elder Geek Dec 10, 2017 at 17:16
- 4 The screenfetch program does the same thing and doesn't require a PPA to install. Braden Best Jan 30, 2018 at 19:31
- 1 ___ It's a shell script. Plus I linked to its github as well so you can just use it as a script. HaoZeke Jan 30, 2018 at 19:36

If you're looking for only the names of the video cards on the machine, then simply use:

10 \$ nvidia-smi --list-gpus

1

For some newer GPUs, this also lists the memory of each device.

Share Edit Follow Flag

1 — to be even shorter: \$nvidia-smi -L - Shawyan Azdam May 18, 2020 at 21:14

This is really not that complex For model and memory, here's a 1 liner that works for every video card I've tested it on regardless of manufacturer (Intel, AMD, NVIDIA):

GPU= All this bit does is grab the 3rd field from 'lspci' output filtered via 'grep' for VGA which corresponds to the video chip.

RAM= All this bit does is set variable cardid equal to the first field of output from lspci matching "VGA" and feeds that as a request for -v verbose output from lspci for that specific -s device, further filtering the output by grep for the string " prefetchable" as this contains the memory on the card itself (note the preceding space as we don't want to match "non-prefetchable" in our output.

For clock rate on Intel integrated graphics (Tested on I3 and I5)

execute the command sudo find /sys -type f -name gt_cur* -print0 | xargs -0 cat This dives into the /sys tree to locate the gt_cur_freq_mhz file which on my I3 is /sys/devices/pci0000:00/0000:00:02.0/drm/card0/gt_cur_freq_mhz and prints the content. which in my case under extremely light load is 350 as in 350 MHz which corresponds to the minimum frequency found in /sys/devices/pci0000:00/0000:00:02.0/drm/card0/gt_min_freq_mhz and when running glxgears and glmark2 results in 1050 as in 1050 MHz which corresponds to the maximum frequency found in

/sys/devices/pci0000:00/0000:00:02.0/drm/card0/gt_max_freq_mhz

For clock rates on nvidia cards:

nvidia-smi -stats -d procClk corresponds to the GPU clock nvidia-smi -stats -d memClk corresponds to the memory clock.

Note: I am unable to test the above as my trusty GeForce 210 isn't supported and this works only on Kepler or newer GPUs as indicated by `nvidia-smi -stats --help'

I do not currently have any solutions for clock rate on AMD cards and do not have the hardware available for testing. I will however say that to the best of my knowledge the aticonfig mentioned in the accepted answer no longer exists and it appears that nvclock isn't available for anything since trusty.

Share Edit Follow Flag

edited Dec 14, 2017 at 23:17

answered Dec 11, 2017 at 13:52

Elder Geek

8

Conky or Terminal Splash Screen

I use two methods to automatically display nVidia GPU and Intel iGPU information:

- Conky dynamically displays GPU information in real time
- ~/.bashrc displays GPU information each time the terminal is opened

43

Conky real time display

This example uses Conky to display current GPU (nVidia or Intel) stats in real time. Conky is a light weight system monitor popular among many Linux enthusiasts.

The display changes depending on if you booted after prime-select intel or prime-select nvidia.

Intel iGPU

- The Intel iGPU shows as Skylake GT2 HD 530 iGPU with current frequency
- The Minimum frequency is 350 MHz and the Maximum is 1050 MHz

nVidia GPU

CPU 2 3% CPU 3 4% CPU 4 3% CPU 5 4% CPU 6 3% CPU 7 3% All CPUs 3% Temp: 51°C Up: 22h 24m 16s 1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
CPU 3 4% CPU 4 3% CPU 5 4% CPU 6 3% CPU 7 3% All CPUs 3% Temp: 51°C Up: 22h 24m 16s 1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
CPU 4 3% CPU 5 4% CPU 6 3% CPU 7 3% All CPUs 3% Temp: 51°C Up: 22h 24m 16s 1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
CPU 5 4% CPU 6 3% CPU 7 3% All CPUs 3% Temp: 51°C Up: 22h 24m 16s 1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
CPU 6 3% CPU 7 3% All CPUs 3% Temp: 51°C Up: 22h 24m 16s 1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
CPU 7 3% All CPUs 3% Temp: 51°C Up: 22h 24m 16s 1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
All CPUs 3% Temp: 51°C Up: 22h 24m 16s 1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
1 running of 300 loaded processes. Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
Load Average 1-5-15 minutes: .053 .078 .102 GeForce GTX 970M @ 746 MHz Temp: 55°C
GeForce GTX 970M @ 746 MHz Temp: 55°C
Ver: 384.130 P-State: P0 BIOS: 84.04.79.00.0
GPU:0 % Ram:1 % Pwr:20.47 W Freg: 2505 MH
GI GIS /GINGHILL XI WILES: II WITEQLESSS III
Process Name: PID CPU% Mem%
Web Content 4036 0.55 7.06
conky 2830 0.35 0.22
Web Content 3599 0.35 6.71
Xorg 1355 0.30 6.73
x firefox 2832 0.25 8.31
pulseaudio 2488 0.15 0.18
compiz 2534 0.15 4.71
Web Content 4061 0.15 6.16
Web Content 4079 0.15 6.33

• The nVidia GPU shows as GeForce GTX970M with current GPU frequency and temperature

- The Driver version, P-State and BIOS version are displayed
- The GPU load, RAM use, Power Consumption and RAM frequency is displayed

Conky Code

Here is the relevant Conky script for Intel iGPU and nVidia GPU:

```
#----+
# Intel iGPU |
#----+
${color orange}${hr 1}${if_match "intel" == "${execpi 99999 prime-select query}"}
${color2}${voffset 5}Intel@ Skylake GT2 HD 530 iGPU @${alignr}${color green}${execpi .001 (cat
/sys/class/drm/card1/gt_cur_freq_mhz)} MHz
${color}${goto 13}Min. Freq:${goto 120}${color green}${execpi .001 (cat /sys/class/drm/card1/gt_min_freq_mhz)}
MHz${color}${qoto 210}Max. Freq:${alignr}${color green}${execpi .001 (cat /sys/class/drm/card1/gt_max_freq_mhz)} MHz
${color orange}${hr 1}${else}
#----+
# Nvidia GPU |
#----+
${color2}${voffset 5}${execpi .001 (nvidia-smi --query-gpu=gpu_name --format=csv,noheader)} ${color1}@ ${color
green}${execpi .001 (nvidia-smi --query-gpu=clocks.sm --format=csv,noheader)} ${alignr}${color1}Temp: ${color
green}${execpi .001 (nvidia-smi --query-gpu=temperature.gpu --format=csv,noheader)}°C
${color1}${voffset 5}Ver: ${color green}${execpi .001 (nvidia-smi --guery-gpu=driver_version --format=csv,noheader)}
${color1} P-State: ${color green}${execpi .001 (nvidia-smi --query-gpu=pstate --format=csv,noheader)}
${alignr}${color1}BIOS: ${color green}${execpi .001 (nvidia-smi --query-gpu=vbios_version --format=csv,noheader)}
${color1}${voffset 5}GPU:${color green}${execpi .001 (nvidia-smi --query-gpu=utilization.gpu --format=csv,noheader)}
${color1}Ram:${color green}${execpi .001 (nvidia-smi --query-gpu=utilization.memory --format=csv,noheader)}
${color1}Pwr:${color green}${execpi .001 (nvidia-smi --query-gpu=power.draw --format=csv,noheader)}
${alignr}${color1}Freq: ${color green}${execpi .001 (nvidia-smi --query-gpu=clocks.mem --format=csv,noheader)}
${color orange}${hr 1}${endif}
```

~/.bashrc Terminal splash screen

This example modifies ~/.bashrc to display information on a splash screen each time the terminal is opened or whenever you type . .bashrc at the shell prompt.

In addition to neofetch answered previously, there is screenfetch which looks a lot nicer (IMO). Plus another answer mentions he doesn't know how to get iGPU listed and this does it:

```
■ rick@alien: ~
Weather report: Edmonton
                                         April 2018
                Partly cloudy
                7 °C
                ↓ 4 km/h
                                   15 16 17
                14 km
                                   22 23 24 25 26 27 28
                0.0 mm
                                   29 30
                                         rick@alien
                                         OS: Ubuntu 16.04 xenial
                                         Kernel: x86 64 Linux 4.14.34-041434-generic
                                         Uptime: 21m
                                         Packages: 2211
                                         Shell: bash 4.3.48
                        .-/00++++/
                                         Resolution: 1920x2160
        .:+0:+0/.
                            +sssoo+/
                                         DE: Unity 7.4.0
  .++/+:+00+0:
                             /sssooo.
                                         WM: Compiz
 /+++//+:`00+0
                              /::--:.
                                         WM Theme: Ambiance
 \+/+0+++<sup>`</sup>0++0
                              /dddhhh.
                                         GTK Theme: Ambiance [GTK2/3]
  .++.0+++00+:
                            oddhhhh+
                                         Icon Theme: ubuntu-mono-dark
        .+.0+00:.
                                         Font: Ubuntu 11
         \+.++o+o
                         :ohdhhhhh+
                                         CPU: Intel Core i7-6700HQ CPU @ 3.5GHz
                                         GPU: Mesa DRI Intel(R) HD Graphics 530 (Skylake GT2)
            .o:\.svhhhhhhh/.oo++o\
                                         RAM: 2522MiB / 7581MiB
                          ++000+++/
                          +00+++0\:
                            00++.
rick@alien:~$
```

For details on setup see: Terminal splash screen with Weather, Calendar, Time & Sysinfo?

In summary just for the bottom section with Ubuntu display containing GPU information (second last line) use:

```
sudo apt install screenfetch screenfetch
```

You'll want to put the screenfetch command an the bottom of your ~/.bashrc file to have it appear every time you open the terminal.

Share Edit Follow Flag

edited Jun 12, 2020 at 14:37

answered Apr 18, 2018 at 23:05 WinEunuuchs2Unix

Community Bot

103k 37 245 417

Just to find the basics, according to https://wiki.debian.org/NvidiaGraphicsDrivers#NVIDIA Proprietary Driver,

7 lspci | grep VGA

If you need more detail than that, see @knb's answer to this same question.

Share Edit Follow Flag

edited Sep 22, 2017 at 20:50

answered May 4, 2017 at 21:11

mightypile

1.212 1 15 16

For nvidia GPUs, nvidia-smi command is your friend. See man nvidia-smi if you like to.

5

For listing GPUs use nvidia-smi -L (nvidia-smi --list-gpus), nvidia-smi -q give information about the gpu and the running processes.

Share Edit Follow Flag

answered Jan 21, 2019 at 15:19

If you have a AMD Radeon Card, you may want to run the following commands

sudo update-pciids #optional command, requires internet lspci -nn | grep -E 'VGA|Display'

It should report something like this

00:01.0 VGA compatible controller [0300]: Advanced Micro Devices, Inc. [AMD/ATI] Wani [Radeon R5/R6/R7 Graphics] [1002:9874] (rev c5)

1

03:00.0 Display controller [0380]: Advanced Micro Devices, Inc. [AMD/ATI] Sun XT [Radeon HD 8670A/8670M/8690M / R5 M330 / M430 / R7 M520] [1002:6660] (rev ff)

Share Edit Follow Flag

answered May 27, 2018 at 11:04

- This was also an issue solver for me with my NVIDIA card. Found this in the official CUDA installation guide: docs.nvidia.com/cuda/cuda-
- installation-guide-linux/... boomkin Mar 31, 2020 at 8:41
- The best answer! I have AMD Ryzen 7 6800u (onexplayer), Every tool shows just AMD/ATI Rembrandt. After this tip it shows Radeon 680M
- additionally. Kudos! x'ES Mar 22 at 20:52

If you would like to have simple information, you could try <u>gpustat</u>. It is very good and simple.

5

•

i you would like to have simple information, you could try <u>gpustat</u>. It is very good and simple.

>>> gpustat -cp dali.vision Thu Jun 2 23:46:16 2016 GeForce GTX TITAN X python/52046(11821M) 77'C, 96 % **11848** / 12287 MB GeForce GTX TITAN X 75'C, 9 % python/52046(11821M) **11848** / 12287 MB GeForce GTX TITAN X 39 % python/52046(11821M) python/128424(165M) 75'C, **12015** / 12287 MB

1

The author gives the following installation instructions:

Install from PyPI:

pip install gpustat

To install the latest version (master branch) via pip:

pip install git+https://github.com/wookayin/gpustat.git@master

If you don't have root privilege, please try to install on user namespace: pip install --user. Note that from v0.4, gpustat.py is no more a zero-dependency executable. However, in rare cases you'll need a single executable script (legacy), you can also try:

wget https://raw.githubusercontent.com/wookayin/gpustat/v0.3.2/gpustat.py -0 ~/.local/bin/gpustat chmod +x ~/.local/bin/gpustat # Assuming ~/.local/bin is in your \$PATH

Share Edit Follow Flag

edited Mar 28, 2019 at 1:10

answered Apr 24, 2018 at 1:43

Only NVIDIA supported. – Protect children of Donbas2014 Nov 21, 2020 at 17:31

Well, this answer assumes you have a server with NVIDIA-GPUs. You have three ways:

1. To get just a short gist: nvidia-smi

2. To get a detailed one: nvidia-smi -q. You'll get multiple screens of detailed info if you more than 1 gpu.

3. Do a ls /proc/driver/nvidia/gpus/. It'll display the GPU-bus location as folders. Now, run the following command for each of the gpu bus locations. Fill <gpu-id> with bus-location: cat /proc/driver/nvidia/gpus/<gpu_id>/information

Share Edit Follow Flag

answered Jun 13, 2019 at 2:38

For AMD based graphics card(GPU), you can use radeon-profile application to get detailed information about the cards. It provides temperature, clock, Vram usage etc. (Github repository link)

2 Step 1: sudo add-apt-repository ppa:radeon-profile/stable

Step 2:

sudo apt update

1

sudo apt install radeon-profile

Step 3: run radeon-profile

Output screenshots (I have two GPU cards, card0(integrated) and card1(discrete)):

System specification:

- Ubuntu 20.04 LTS
- CPU: AMD® Ryzen 5 4600h
- GPU: AMD® Radeon rx 5600m

Source

Share Edit Follow Flag answered Feb 23, 2022 at 15:47

If you're running Ubuntu on a Chromebook with crouton, the only one of the answers that will work is going to chrome://gpu in the Chrome browser.

Share Edit Follow Flag

answered Aug 25, 2015 at 17:55

For checking the utilization of Intel GPUs there is intel_gpu_top available since xenial (https://packages.ubuntu.com/bionic/intel- <u>gpu-tools</u>).

apt-get install intel-gpu-tools

There are just a few options available - see man intel_gpu_top.

Share Edit Follow Flag

answered Nov 15, 2020 at 20:17

\$ intel_gpu_top -d pci Failed to detect engines! (No such file or directory) (Kernel 4.16 or newer is required for i915 PMU support.) Segmentation fault (core dumped) for me on a ChromeOS Flex NUC - paul_h Mar 21 at 11:17

In order to get all the information about the graphics processor, you can use the following command as specified by @greyfade.

> glxinfo

However, if the program glxinfo is currently not installed, you can install it by typing:

> sudo apt install mesa-utils

You will also have to enable the component called universe. Once this is done, glxinfo will list all the specifications related to the graphics processor in that environment.

Share Edit Follow Flag

answered Mar 26, 2019 at 5:58

Nayantara Jeyaraj

Tested for GTX 1080Ti - For clock rates on nvidia card -

nvidia-smi stats -d procClk corresponds to the Core clock nvidia-smi stats -d memClk corresponds to the Memory clock

For monitoring every second -

watch -n 1 nvidia-smi stats -d procClk -c 1

For monitoring a subset of the devices every second -

watch -n 1 nvidia-smi stats -d procClk -c 1 -i 0,1

Based off on Elder Geek's answer with modifications to print every second to check for thermal throttling. If your GPU is being throttled, the procClk will drop significantly.

Share Edit Follow Flag

answered Dec 8, 2019 at 1:53

Use lspci , lspci -v to get basic info see here.

1

In my case for ex once I run lspci and I have got:

1

dina@dina-X450LA:~\$ lspci

00:02.0 VGA compatible controller: Intel Corporation Haswell-ULT Integrated Graphics Controller (rev 0b)

00:03.0 Audio device: Intel Corporation Haswell-ULT HD Audio Controller (rev 0b)

00:14.0 USB controller: Intel Corporation 8 Series USB xHCI HC (rev 04)

00:16.0 Communication controller: Intel Corporation 8 Series HECI #0 (rev 04)

00:1b.0 Audio device: Intel Corporation 8 Series HD Audio Controller (rev 04)

00:1c.0 PCI bridge: Intel Corporation 8 Series PCI Express Root Port 1 (rev e4)

00:1c.2 PCI bridge: Intel Corporation 8 Series PCI Express Root Port 3 (rev e4)

00:1c.3 PCI bridge: Intel Corporation 8 Series PCI Express Root Port 4 (rev e4)

00:1d.0 USB controller: Intel Corporation 8 Series USB EHCI #1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation 8 Series LPC Controller (rev 04)

00:1f.2 SATA controller: Intel Corporation 8 Series SATA Controller 1 [AHCI mode] (rev 04)

00:1f.3 SMBus: Intel Corporation 8 Series SMBus Controller (rev 04)

02:00.0 Ethernet controller: Qualcomm Atheros QCA8171 Gigabit Ethernet (rev 10)

03:00.0 Network controller: Ralink corp. RT3290 Wireless 802.11n 1T/1R PCIe

03:00.1 Bluetooth: Ralink corp. RT3290 Bluetooth

Share Edit Follow Flag

answered Feb 9, 2019 at 18:49

For my setup this is the cleanest:

python -c "import torch; print(torch.cuda.get_device_name(0));"

٥r

python -c "import uutils; gpu_name_otherwise_cpu(print_to_stdout=True);"

43

code:

```
def gpu_name_otherwise_cpu(print_to_stdout: bool = False):
    gpu_name_or_cpu = None
    try:
       gpu_name_or_cpu = torch.cuda.get_device_name(0)
    except:
       device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        gpu_name_or_cpu = device
    print(f'{gpu_name_or_cpu=}') if print_to_stdout else None
    return gpu_name_or_cpu
```

Share Edit Follow Flag

answered Nov 7, 2022 at 22:43

For the Intel GMA950 (comes with EeePC in particular) you can run:

setpci -s 00:02.0 f0.b

which will return '00' for 200MHz, '01' for 250MHz or '03' for 400MHz. You may be able to apply the same principle to other Intel cards.

answered Feb 15, 2011 at 9:24 user10872

I'm getting 04. My GPU is 00:02.0 VGA compatible controller: Intel Corporation Mobile GM965/GL960 Integrated Graphics Controller (primary)

(rev 03) (prog-if 00 [VGA controller]) – johny why Sep 19, 2019 at 19:29

Like in Chromium, if you have Firefox: about:support

Graphics Features Compositing Asynchronous Pan/Zoom wheel input enabled; scrollbar drag enabled; keyboard enabled; autoscroll enabled; smooth pinch-zoom enabled GLX_VENDOR(client): Mesa Project and SGI GLX_VENDOR(server): SGI Extensions: GLX_ARB_create_context_GLX_ARB_create_context_no_error_GLX_ARB_create_context_profile_GLX_ARB_create_context_robustness_GLX_ARB_floonfig_float_GLX_ARB_framebuffer_sRGB_GLX_ARB_get_proc_address_GLX_ARB_multisample_GLX_EXT_buffer_age_GLX_EXT_create_context_es2_profile_GLX_EXT_create_context_es_profile_GLX_EXT_floonfig_packed_float_GLX_EXT_framebuffer_sRGB_GLX_EXT_import_context_GLX_EXT_texture_from_pixmap WebGL 1 Driver WSI Info GLX_EXT_visual_info.GLX_EXT_visual_rating.GLX_INTEL_swap_event.GLX_MESA_copy_sub_buffer.GLX_MESA_query_renderer.GLX_MESA_swap_control.GLX_OML_swap_method.GLX_OML_sync_control.GLX_SGIS_multisample.GLX_SGIX_fbconfig GLX_SGIX_pbuffer GLX_SGIX_visual_select_group GLX_SGI_make_current_read GLX_SGI_swap_control GLX_SGI_video_sync IsWebglOutOfProcessEnabled: 0 WebGL 1 Driver Renderer Intel Open Source Technology Center -- Mesa DRI Intel(R) HD Graphics 4000 (IVB GT2) WebGL 1 Driver Version GL_ARB_multisample GL_EXT_abgr GL_EXT_blend_color GL_EXT_blend_minmax GL_EXT_blend_subtract GL_EXT_copy_texture GL_EXT_subtexture GL_EXT_texture_object GL_EXT_vertex_array GL_EXT_compiled_vertex_array GL_EXT_texture GL_EXT_texture3D GL_IBM_rasterpos_clip GL_ARB_point_parameters GL_EXT_draw_range_elements GL_EXT_packed_pixels GL_EXT_point_parameters GL_EXT_rescale_normal GL_EXT_separate_specular_color GL_EXT_texture_edge_clamp GL_SGIS_texture_logic_clamp GL_SGIS_texture_logic_lamp GL_SGIS_texture_logic_lamp GL_SGIS_texture_logic_lamp GL_EXT_manebuffer_sRGB GL_ARB_multitexture_EXT_separate_SGL_EXT_framebuffer_sRGB GL_IBM_multimode_draw_arrays GL_IBM_texture_intervals_texture_logic_lamp.GL_SGIS_texture_logic_lamp.GL_GL_ARB_texture_env_add_GL_ARB_texture_multivals_texture_env_add_GL_ARB_texture_multivals_texture_logic_lamp.GL_GL_ARB_texture_env_add_GL_ARB_texture_multivals_texture_logic_lamp.GL_GRB_texture_env_add_GL_ARB_texture_multivals_texture_logic_lamp.GL_GL_GRB_texture_env_add_GL_ARB_texture_env_add_GL_ARB_texture_logic_lamp.GL_GRB_texture_env_add_GL_ARB_t GL_EXT_multi_draw_arrays GL_EXT_secondary_color GL_EXT_texture_env_add GL_EXT_texture_filter_anisotropic GL_EXT_texture_lod_blas GL_INGR_blend_func_separate GL_NV_blend_square GL_NV_light_max_exponent GL_NV_texture_filter_anisotropic GL_EXT_texture_lod_blas GL_INGR_blend_func_separate GL_NV_blend_square GL_NV_light_max_exponent GL_NV_texture_lod_blas GL_INGR_blend_func_separate GL_NV_blend_square GL_NV_light_max_exponent GL_NV_texture_lod_blas GL_INGR_blend_func_separate GL_NV_blend_square_glas_bland_func_separate GL_NV_blend_square_glas_bland_func_separate GL_NV_blend_func_separate GL_NV_bland_func_separate GL_NV_blend_func_separate GL_ GL_NV_Texture_env_combine4 GL_S3_s3tc GL_SUN_multi_draw_arrays GL_ARB_texture_border_clamp GL_ARB_texture_compression GL_EXT_framebuffer_object GL_EXT_texture_compression_s3tc GL_EXT_texture_env_combine GL_EXT_texture_env_dots GL_MESA_window_pos GL_NV_packed_depth_stencil GL_NV_texture_rectangle GL_ARB_depth_texture GL_ARB_posculusion_query GL_ARB_standow GL_ARB_texture_env_corsbar GL_ARB_texture_env_dots GL_ARB_texture_milrored_repeat GL_ARB_window_pos GL_EXT_stencil_two_side GL_EXT_texture_cube_map GL_NV_fog_distance_GL_APPL_fracked_pixels_GL_ARB_texture_buffers GL_ARB_tragment_program GL_ARB_tragment_shader_GL_ARB_shader_objects GL_ARB_vertex_program GL_ARB_vertex_shader_GL_ATI_draw_buffers GL_ATI_texture_env_combine3 GL_ATI_texture_float GL_EXT_shadow_funcs GL_EXT_stencil_wrap GL_MESA_pack_invert GL_NV_primitive_restart GL_ARB_depth_clamp GL_ARB_tragment_program_shadow GL_ARB_half_float_pixel GL_ARB_coclusion_query2 GL_ARB_point_sprite GL_ARB_shading_language_100 GL_ARB_sync GL ARB texture non power of two GL ARB vertex buffer object GL ATI blend equation separate GL EXT blend equation separate GL EXT blend equation separate GL EXT blend equation separate GL OES read format GL ARB color buffer float GL ARB pixel buffer object GL ARB texture compression rgtc GL EXT texture rectangle GL EXT texture sRGB GL_EXT_texture_shared_exponent GL_ARB_framebuffer_object GL_EXT_framebuffer_bilt GL_EXT_framebuffer_multisample GL_EXT_packed_depth_stencil GL_APPLE_object_purgeable GL_ARB_vertex_array_object GL_ATI_separate_stencil WebGL 1 Driver Extensions GL_ARB_blend_func_extended GL_ARB_debug_output GL_ARB_draw_buffers_blend GL_ARB_draw_elements_base_vertex GL_ARB_explicit_attrib_location GL_ARB_fragment_coord_conventions GL_ARB_provoking_vertex GL_ARB_sample_shading GL_ARB_sampler_objects GL_ARB_seamless_cube_map GL_ARB_shader_texture_lod GL_ARB_texture_cube_map_array GL_ARB_texture_gather GL_ARB_texture_multisample GL_ARB_texture_query_lod GL_ARB_texture_rgb10_a2vii GL_ARB_uniform_buffer_object GL_ARB_vertex_type_2_10_10_10_rev_GL_EXT_provoking_vertex_GL_EXT_texture_snorm_GL_MESA_texture_signed_rigba_GL_NV_texture_barrier_GL_ARB_draw_indirect_GL_ARB_get_program_binary_GL_ARB_robustness_GL_ARB_shader_objects_GL_ARB_transform_feedback2_GL_ARB_transform_f GL_ARB_shader_atomic_counters GL_ARB_shader_image_load_store GL_ARB_shading_language_420pack.GL_ARB_shading_language_packing.GL_ARB_toxiture_storage.GL_ARB_transform_feetback_instances GL_EXT_transebuffer_multisample_biti_scaled_GL_EXT_transform_feetback_RB_compute_shader_trinap_minimats.GL_ARB_ESS_compatibility.GL_ARB_arrays_of_arrays_GL_ARB_transform_feetback_RB_compute_shader_GL_ARB_compute_shader_trinap_size GL_ARB_explicit_uniform_location_GL_ARB_fragment_layer_viewport_GL_ARB_shader_image_size GL_ARB_shader_storage_buffer_object GL_ARB_texture_query_levels GL_ARB_texture_storage_multisample GL_ARB_texture_view GL_ARB_vertex_attrib_binding GL_KHR_debug GL_KHR_robustness GL_ARB_buffer_storage GL_ARB_clear_texture GL_ARB_compute_variable_group_size GL_ARB_indirect_parameters GL_ARB_internalformat_query2 GL_ARB_multi_bind GL_ARB_seamless_cubemap_per_texture GL_ARB_shader_draw_parameters GL_ARB_shader_group_vote GL_ARB_shading_language_include GL_ARB_texture_mirror_clamp_to_edge GL_ARB_vertex_type_10f_11f_11f_rev_GL_EXT_shader_integer_mix_GL_INTEL_performance_query_GL_ARB_clip_control GL_ARB_clip_control GL_ARB_tilder_integer_mix_GL_A GL_ARB_gl_spirv_GL_ARB_spirv_extensions GL_MESA_shader_integer_functions GL_ARB_polygon_offset_clamp GL_ARB_texture_filter_anisotropic GL_KHR_parallel_shader_compile GL_EXT_EGL_image_storage GL_EXT_shader_framebuffer_fetch_non_coherent GL_EXT_texture_sRGB_R8 GL_EXT_texture_shadow_lod GL_INTEL_blackhole_render GL_NV_compute_shader_derivatives GL_EXT_EGL_sync GL_EXT_demote_to_helper_invocation ANGLE_instanced_arrays EXT_blend_minmax EXT_color_buffer_half_float_EXT_float_blend_EXT_frag_depth_EXT_shader_texture_lod_EXT_sRGB_EXT_texture_compression_bptc_EXT_texture_compression_rgtc_EXT_texture_flitter_anisotropic_MOZ_debug WebGL 1 Extensions OES_element_index_uint OES_floo_render_mipmap OES_standard_derivatives OES_texture_float OES_texture_float_linear OES_texture_half_float WEBGL_compressed_texture_etc WEBGL_compressed_texture_s3tc WEBGL_compressed_texture_s3tc srgb WEBGL_debug_renderer_info WEBGL_debug_shaders WEBGL_debug_texture_webGL_draw_buffers WEBGL_lose_context GLX_VENDOR(client): Mesa Project and SGI GLX_VENDOR(server): SGI Extensions: GLX_ARB_create_context_GLX_ARB_create_context_no_error GLX_ARB_create_context_profile GLX_ARB_create_context_robustness GLX_ARB_floorning_float GLX_ARB_framebuffer_sRGB_GLX_ARB_get_proc_address WebGL 2 Driver WSI Info GLX_ARB_multisample_GLX_EXT_buffer_age_GLX_EXT_create_context_es2_profile_GLX_EXT_create_context_es_profile_GLX_EXT_through gacked_float_GLX_EXT_framebuffer_sRGB_GLX_EXT_import_context_GLX_EXT_texture_from_pixmap GLX_EXT_visual_info GLX_EXT_visual_rating GLX_INTEL_swap_event GLX_MESA_copy_sub_buffer GLX_MESA_query_renderer GLX_MESA_swap_control GLX_OML_swap_method GLX_OML_sync_control GLX_SGIS_multisample GLX_SGIX_tbconfig GLX_SGIX_pbuffer GLX_SGIX_visual_select_group GLX_SGI_make_current_read GLX_SGI_swap_control GLX_SGI_video_sync WebGL 2 Driver Renderer Intel Open Source Technology Center -- Mesa DRI Intel(R) HD Graphics 4000 (IVB GT2)

Share Edit Follow Flag

edited Mar 4, 2021 at 0:53

answered Mar 4, 2021 at 0:35

Vitaly Zdanevich

Highly active question. Earn 10 reputation (not counting the association bonus) in order to answer this question. The reputation requirement helps protect this question from spam and non-answer activity.