

FCC Part22H&24E Test Report

Product Name : GPS Locator

Model No. : GV35

FCC ID : YQD-GV35

Applicant: Queclink Wireless Solutions Co., Ltd

Address: Room 501, Building 9, No 99, TianZhou Road,

Shanghai, China

Date of Receipt: 16/05/2012

Test Date : 16/05/2012~23/05/2012

Issued Date : 25/05/2012

Report No. : 125S045R-HP-US-P07V01

Report Version: V 1.1

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF, CNAS or any agency of the Government.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: 25/05/2012

Report No.: 125S045R-HP-US-P07V01

QuieTek

Product Name GPS Locator

Queclink Wireless Solutions Co., Ltd **Applicant**

Room 501, Building 9, No 99, TianZhou Road, Shanghai, Address

China

Manufacturer Queclink Wireless Solutions Co., Ltd

Room 501, Building 9, No 99, TianZhou Road, Shanghai, Address

China

GV35 Model No.

FCC ID YQD-GV35

EUT Voltage 10-16V **Brand Name** Queclink

Applicable Standard FCC CFR Title 47 Part 2,TIA/EIA 603-C

FCC Part22 Subpart H, FCC Part24 Subpart E

Test Result Complied

Performed Location Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech

Development Zone., Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

(Engineering ADM: Alice Ni) **Documented By**

Reviewed By

Engineering Supervisor: Robin Wu)

Marlinchen Approved By

(Engineering Manager: Marlin Chen)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC, NVLAP

Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : http://www.quietek.com/tw/ctg/cts/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.

Suzhou Testing Laboratory:

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., SuZhou, China

TABLE OF CONTENTS

Des	scription	Page
1.	General Information	6
1.1.	EUT Description	6
1.2.	Mode of Operation	7
1.3.	Tested System Details	8
1.4.	Configuration of Tested System	9
1.5.	EUT Exercise Software	10
2.	Technical Test	11
2.1.	Summary of Test Result	11
2.2.	Test Environment	12
3.	Peak Output Power	13
3.1.	Test Equipment	13
3.2.	Test Setup	14
3.3.	Limit	14
3.4.	Test Procedure	15
3.5.	Uncertainty	16
3.6.	Test Result	17
3.7.	Test Photograph	19
4.	Modulation Characteristic	21
4.1.	Test Equipment	21
4.2.	Test Setup	21
4.3.	Limit	22
4.4.	Test Procedure	22
4.5.	Uncertainty	22
4.6.	Test Result	23
5.	Occupied Bandwidth	24
5.1.	Test Equipment	24
5.2.	Test Setup	24
5.3.	Limit	25
5.4.	Test Procedure	25
5.5.	Uncertainty	25
5.6.	Test Result	26
6.	Spurious Emission At Antenna Terminals (+/- 1MHz)	30
6.1.	Test Equipment	30
6.2.	Test Setup	30
6.3.	Limit	31
6.4.	Test Procedure	31

6.5.	Uncertainty	. 31
6.6.	Test Result	. 32
7.	Spurious Emission	. 34
7.1.	Test Equipment	. 34
7.2.	Test Setup	. 35
7.3.	Limit	. 36
7.4.	Test Procedure	. 36
7.5.	Uncertainty	. 37
7.6.	Test Result	. 38
7.7.	Test Photograph	. 50
8.	Frequency Stability Under Temperature & Voltage Variations	. 52
8.1.	Test Equipment	. 52
8.2.	Test Setup	. 52
8.3.	Limit	. 53
8.4.	Test Procedure	. 53
8.5.	Uncertainty	. 53
8.6.	Test Result	. 54
9.	Attachment	
	EUT Photograph	. 56

1. General Information

1.1. EUT Description

Product Name	GPS Locator	
Model No.	GV35	
RF Exposure Environment	Uncontrolled	
Hardware Version	1.02	
Software Version	NMX	
GPS		
Operate Frequency	1575.42MHz	
Type of modulation	BPSK	
2G		
Support Band	GSM850/PCS1900	
GPRS Type	Class B	
GPRS Class	Class 10	
Uplink	GSM 850: 824~849MHz	
	PCS 1900: 1850~1910MHz	
Downlink	GSM 850: 869~894MHz	
	PCS 1900: 1930~1990MHz	
Release Version	R99	
Type of modulation	GMSK	
Antenna type	Internal	
	-2.9dBi for GSM 850	
Antenna Gain	2.2dBi for PCS 1900	
	1.8dBi for GPS	

1.2. Mode of Operation

QuieTek has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Test Mode
Mode 1: GPRS 850 Link
Mode 2: GPRS 1900 Link

Note:

- 1. Regards to the frequency band operation: the lowest, middle and highest frequency of channel were selected to perform the test, then shown on this report.
- 2. For the ERP/EIRP and radiated emission test, every axis (X, Y, Z) was verified, and show the worst result on this report.

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product	Manufacturer	Model No.	Serial No.	Power Cord
1 CMU200	R&S	CMU200	N/A	N/A

1.4. Configuration of Tested System

1.5. EUT Exercise Software

1	1 Setup the EUT and simulators as shown on above.		
2	2 Turn on the power of all equipment.		
3	3 EUT Communicate with CMU200, then select channel to test.		

Page: 10 of 60

2. Technical Test

2.1. Summary of Test Result

\boxtimes	No deviations from the test standards
	Deviations from the test standards as below description:

For GSM 850 (FCC Part 22H & Part 2)

Performed Item	Section in CFR 47	Test Performed	Deviation
Peak Output Power	FCC Part 22.913(a)(2) and Part	t Yes No	
	2.1046		
Modulation Characteristic	FCC Part 2.1047(d)	Yes	No
Occupied Bandwidth	FCC Part 2.1049	Yes	No
Spurious Emission At Antenna	FCC Part 22.917(a) and Part	Yes	No
Terminals (+/- 1MHz)	2.1049		
Spurious Emission	FCC Part 22.917(b) and Part	Yes	No
	2.1051, 2.1053		
Frequency Stability Under	FCC Part 22.355 and 2.1055	Yes	No
Temperature & Voltage			
Variations			

For PCS 1900 (FCC Part 24E & Part 2)

Performed Item	Section in CFR 47	Test Performed	Deviation
Peak Output Power	FCC Part 24.232(b) and Part	Yes No	
	2.1046		
Modulation Characteristic	FCC Part 2.1047(d)	Yes	No
Occupied Bandwidth	FCC Part 24.238(b) and Part	Yes	No
	2.1049		
Spurious Emission At Antenna	FCC Part 24.238(a) and Part	Yes	No
Terminals (+/- 1MHz)	2.1049		
Spurious Emission	FCC Part 24.238(b) and Part Yes		No
	2.1051, 2.1053		
Frequency Stability Under	FCC Part 24.235 and 2.1055	Yes	No
Temperature & Voltage			
Variations			

Page: 11 of 60

2.2. Test Environment

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	23
Humidity (%RH)	25-75	52
Barometric pressure (mbar)	860-1060	950-1000

3. Peak Output Power

3.1. Test Equipment

Peak Output Power / AC-5

Instrument	Manufacturer	Type No.	Serial No	Cali. Due Date
PSA Series Spectrum				
Analyzer	Agilent	E4440A	MY49420184	2013.04.10
Radio Communication				
Tester	R&S	CMU 200	117088	2013.04.18
Dual Directional Coupler	Agilent	778D	20160	2013.04.18
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2013.04.18
PSG Analog Signal				
Generator	Agilent	E8257D	MY44321116	2013.04.18
Preamplifier	QuieTek	AP-025C	CHM-0503006	2013.05.04
Preamplifier	Miteq	NSP1800-25	1364185	2013.05.04
Bilog Antenna	Teseq GmbH	CBL6112D	27612	2012.10.18
Half Wave Tuned Dipole				
Antenna	COM-POWER	AD-100	40137	2013.11.24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	737	2013.11.24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	499	2012.06.11
Temperature/Humidity Meter	Zhicheng	ZC1-2	AC5-TH	2013.01.10

3.2. Test Setup

Conducted Power Measurement:

Radiated Power Measurement:

3.3. Limit

For FCC Part 22.913(a)(2):

The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC Part 24.232(b):

The EIRP of mobile transmitters and auxiliary test transmitters must not exceed 2 Watts.

3.4. Test Procedure

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200, then selects a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.

Radiated Power Measurement:

- e) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- f) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- g) The output of the test antenna shall be connected to the measuring receiver.
- h) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- j) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- k) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- I) The maximum signal level detected by the measuring receiver shall be noted.
- m) The transmitter shall be replaced by a substitution antenna.
- n) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- o) The substitution antenna shall be connected to a calibrated signal generator.
- p) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- q) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- r) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- s) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

- t) The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- u) Test site anechoic chamber refer to ANSI C63.4: 2009.

3.5. Uncertainty

The measurement uncertainty is defined as for Conducted Power Measurement \pm 1.2 dB, for Radiated Power Measurement \pm 3.2 dB

3.6. Test Result

GPRS 850

Channel	Frequency	Modulation	Conducted Power	ERP	Limit
No.	(MHz)		(dBm)	(dBm)	(dBm)
128	824.2	GMSK	32.88	29.26	38.50
189	836.4	GMSK	32.95	28.88	38.50
251	848.8	GMSK	32.96	30.06	38.50

GPRS1900

Channel	Frequency	Modulation	Conducted Power	EIRP	Limit
No.	(MHz)	Modulation	(dBm)	(dBm)	(dBm)
512	1850.2	GMSK	30.41	32.40	33.00
661	1880.0	GMSK	30.44	32.59	33.00
810	1909.8	GMSK	30.45	31.58	33.00

Page: 17 of 60

Radiated Measurement

GPRS 850

Frequency	SA	Ant. Pol.	SG	Cable	Gain	ERP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBd)	(dBm)	(dBm)	(dB)
	(dBm)		(dBm)	(dB)				
Low Chann	nel 128 (82	24.20MHz)					
824.2	-12.31	Н	21.44	1.76	-0.02	19.66	38.50	-18.84
824.2	-3.45	V	31.04	1.76	-0.02	29.26	38.50	-9.24
Middle Cha	annel 189	(836.40MI	Hz)					
836.4	-13.20	Н	20.69	1.75	0.10	19.04	38.50	-19.46
836.4	-4.23	V	30.53	1.75	0.10	28.88	38.50	-9.62
High Chan	nel 251 (8	48.80MHz	2)					
848.8	-12.08	Н	21.93	1.78	0.13	20.28	38.50	-18.22
848.8	-2.89	V	31.71	1.78	0.13	30.06	38.50	-8.44

GPRS1900

Frequency	SA	Ant .Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBi)	(dBm)	(dBm)	(dB)
	(dBm)		(dBm)	(dB)				
Low Chann	nel 512 (18	350.20MH	z)					
1850.2	21.78	Н	20.38	2.68	10.40	28.10	33.00	-4.90
1850.2	26.28	V	24.68	2.68	10.40	32.40	33.00	-0.60
Middle Cha	annel 661	(1880.00N	ИHz)					
1880.0	22.61	Н	21.11	2.68	10.43	28.86	33.00	-4.14
1880.0	26.68	٧	24.84	2.68	10.43	32.59	33.00	-0.41
High Channel 810 (1909.80MHz)								
1909.8	21.98	Н	20.63	2.70	10.44	28.37	33.00	-4.63
1909.8	25.63	V	23.84	2.70	10.44	31.58	33.00	-1.42

3.7. Test Photograph

Description: ERP Test Setup

Description: Substitution Antenna for ERP Test

Description: EIRP Test Setup

Description: Substitution Antenna for EIRP Test

4. Modulation Characteristic

4.1. Test Equipment

Modulation Characteristic / AC-6

Instrument	Manufacturer	Type No.	Serial No	Cal. Date
PSA Series Spectrum				
Analyzer	Agilent	E4440A	MY49420184	2013.04.10
Radio Communication				
Tester	R&S	CMU 200	117088	2013.04.18
Dual Directional Coupler	Agilent	778D	20160	2013.04.18
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2013.04.18
Temperature/Humidity Meter	Zhicheng	ZC1-2	AC6-TH	2013.01.10

4.2. Test Setup

4.3. Limit

N/A

4.4. Test Procedure

GMSK is a form of binary signaling schemes which represent digital states as a shift between discrete sinusoidal frequencies called Frequency Shift Keying (FSK). Minimum Shift Keying (MSK) is continuous phase FSK with the smallest possible modulation index h. Modulation index is defined as: h = 2*F*Tb

where F = Peak frequency deviation in Hz and Tb = Bit period in seconds

Two discrete frequencies, representing two distinct digital states, with equal phases at switch time t=0 requires a minimum value of h=0.5. The Gaussian part of GMSK describes the fact that the digital pulses are filtered in the time domain. This results in bits which are sinusoidal rather than square. The effective spectrum is then compressed with the average carrier frequency in the center of the passband. This is a great advantage because of the significantly reduced bandwidth. GMSK is utilized because of these bandwidth conservation properties.

The bandwidth for GSM is a 60 MHz up-link at 1850-1910 MHz and down-link at 1930-1990 MHz. The 65 MHz is divided into 299 channels, each of which is 200 kHz wide. Slight spectral spillage is allowed into neighboring channels (which is minimized by GMSK). This separated transmit/receive frequencies scheme under GSM enables easier duplex filtering.

Within the bandwidth, individual channels are subdivided into multiframes (made of 26 frames), frames (made of 8 time slots), and time slots (made of 8 fields). The time slots are 0.57 ms long allowing 156.25 bits of information including overhead.

The modulation used in GPRS is the same used in GSM. A GSM channel contains eight timeslots, each timeslot is dedicated to one circuit switched call. For GPRS the timeslots are assigned on an as needed basis, and more than one timeslot can be assigned for a particular transmission depending on the network and the device.

4.5. Uncertainty

The measurement uncertainty is defined as 0.1%

4.6. Test Result

The modulation of GSM/GPRS were verified and confirmed compliance with requirement.

Page: 23 of 60

5. Occupied Bandwidth

5.1. Test Equipment

Occupied Bandwidth / AC-6

Instrument	Manufacturer	Type No.	Serial No	Cali. Due Date
PSA Series Spectrum				
Analyzer	Agilent	E4440A	MY49420184	2013.04.10
Radio Communication				
Tester	R&S	CMU 200	117088	2013.04.18
Dual Directional Coupler	Agilent	778D	20160	2013.04.18
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2013.04.18
Temperature/Humidity Meter	Zhicheng	ZC1-2	AC6-TH	2013.01.10

5.2. Test Setup

5.3. Limit

N/A

5.4. Test Procedure

Using Occupied Bandwidth measurement function of spectrum analyzer, and setting as follows:

For GSM 850/1900 test --- RBW = 3 kHz and VBW = 10 kHz

5.5. Uncertainty

The measurement uncertainty is defined as \pm 10 Hz

5.6. Test Result

Product	GPS Locator		
Test Item	Occupied Bandwidth		
Test Mode	Mode 1: GPRS 850 Link		
Date of Test	2012/05/22	Test Site	AC-6

	Fraguenav		99% Occupied
Channel No.	No. Frequency (MHz)	Bandwidth	Bandwidth
		(kHz)	(kHz)
128	824.20	316.17	249.43
189	836.40	318.98	246.31
251	848.80	316.68	246.65

Figure Channel 128 (824.20MHz)

Figure Channel 189 (836.40MHz)

Figure Channel 251 (848.80MHz)

Product	GPS Locator		
Test Item	Occupied Bandwidth		
Test Mode	Mode 2: GPRS 1900 Link		
Date of Test	2012/05/22	Test Site	AC-6

Fraguenay		-26dB Occupied	99% Occupied
Channel No.	Frequency	Bandwidth	Bandwidth
	(MHz)	(kHz)	(kHz)
512	1850.20	322.19	248.83
661	1880.00	320.76	246.48
810	1909.80	314.96	246.63

Figure Channel 512 (1850.20MHz)

Figure Channel 661 (1880.00MHz)

Figure Channel 810 (1909.80MHz)

6. Spurious Emission At Antenna Terminals (+/- 1MHz)

6.1. Test Equipment

Spurious Emission At Antenna Terminals (+/- 1MHz) / AC-6

	· · · · · · · · · · · · · · · · · · ·	*		
Instrument	Manufacturer	Type No.	Serial No	Cali. Due Date
PSA Series Spectrum				
Analyzer	Agilent	E4440A	MY49420184	2013.04.10
Radio Communication				
Tester	R&S	CMU 200	117088	2013.04.18
Dual Directional Coupler	Agilent	778D	20160	2013.04.18
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2013.04.18
Temperature/Humidity Meter	Zhicheng	ZC1-2	AC6-TH	2013.01.10

6.2. Test Setup

6.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

6.4. Test Procedure

In the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions.

6.5. Uncertainty

The measurement uncertainty is defined as \pm 1.2 dB.

6.6. Test Result

Product	GPS Locator			
Test Item	Spurious Emission At Antenna Terminals (+/- 1MHz)			
Test Mode	Mode 1: GPRS 850 Link			
Date of Test	2012/05/22	Test Site	AC-6	

Figure Channel 128 (824.20MHz)

Figure Channel 251 (848.80MHz)

Product	GPS Locator			
Test Item	Spurious Emission At Antenna Terminals (+/- 1MHz)			
Test Mode	Mode 2: GPRS 1900 Link			
Date of Test	2012/05/22	Test Site	AC-6	

Figure Channel 512 (1850.20MHz)

Figure Channel 810 (1909.80MHz)

7. Spurious Emission

7.1. Test Equipment

Spurious Emission / AC-5

Instrument	Manufacturer	Type No.	Serial No	Cali. Due Date
PSA Series Spectrum				
Analyzer	Agilent	E4440A	MY49420184	2013.04.10
Radio Communication				
Tester	R&S	CMU 200	117088	2013.04.18
Dual Directional Coupler	Agilent	778D	20160	2013.04.18
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2013.04.18
PSG Analog Signal				
Generator	Agilent	E8257D	MY44321116	2013.04.18
Preamplifier	QuieTek	AP-025C	CHM-0503006	2013.05.04
Preamplifier	Miteq	NSP1800-25	1364185	2013.05.04
Bilog Antenna	Teseq GmbH	CBL6112D	27612	2012.10.18
Half Wave Tuned Dipole				
Antenna	COM-POWER	AD-100	40137	2013.11.24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	737	2013.11.24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	499	2012.06.11
Temperature/Humidity Meter	Zhicheng	ZC1-2	AC5-TH	2013.01.10

7.2. Test Setup

Conducted Spurious Emission Measurement:

Radiated Spurious Measurement: below 1GHz

Radiated Spurious Measurement: above 1GHz

7.3. Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB.

7.4. Test Procedure

Conducted Spurious Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMU200 by a Directional Couple.
- c) EUT Communicate with CMU200, then select a channel for testing.
- d) Add a correction factor to the display of spectrum, and then test.
- e) The resolution bandwidth of the spectrum analyzer was set at 1 MHz, sufficient scans were taken to show the out of band Emission if any up to 10th harmonic.

Radiated Spurious Measurement:

- a) The EUT shall be placed at the specified height on a support, and in the position closest to normal use as declared by provider.
- b) The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter
- c) The output of the test antenna shall be connected to the measuring receiver.

- d) The transmitter shall be switched on and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- e) The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- f) The transmitter shall then be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- g) The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- v) The maximum signal level detected by the measuring receiver shall be noted.
- h) The transmitter shall be replaced by a substitution antenna.
- i) The substitution antenna shall be orientated for vertical polarization and the length of the substitution antenna shall be adjusted to correspond to the frequency of the transmitter.
- j) The substitution antenna shall be connected to a calibrated signal generator.
- k) If necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- I) The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- m) The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring receiver, that is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- n) The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.
- The measure of the effective radiated power is the larger of the two levels recorded at the input to the substitution antenna, corrected for gain of the substitution antenna if necessary.
- p) The frequency range was checked up to 10th harmonic.
- q) Test site anechoic chamber refer to ANSI C63.4: 2009

7.5. Uncertainty

The measurement uncertainty is defined as 3.2 dB for Radiated Power Measurement.

7.6. Test Result

Product	GPS Locator		
Test Item	Conducted Spurious Emission		
Test Mode	Mode 1: GPRS 850 Link		
Date of Test	2012/05/22 Test Site TR-8		

Mid Channel 189(836.4MHz)

Product	GPS Locator		
Test Item	Conducted Spurious Emission		
Test Mode	Mode 2: GPRS 1900 Link		
Date of Test	2012/05/22	Test Site	TR-8

High Channel 810(1909.8MHz)

Product	GPS Locator		
Test Item	Radiated Spurious Emission		
Test Mode	Mode 1: GPRS 850 Link		
Date of Test	2012/05/22 Test Site AC-5		

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBi)	(dBm)	(dBm)	(dB)
	(dBm)		(dBm)	(dB)				
Low Channe	el 128 (82	4.20MHz))					
1646.00	-34.00	V	-36.57	2.50	9.75	-29.32	-13.00	-16.32
2470.50	-47.82	V	-46.85	3.12	10.48	-39.49	-13.00	-26.49
1646.00	-31.20	Н	-33.86	2.50	9.75	-26.61	-13.00	-13.61
2470.50	-40.22	Н	-39.11	3.12	10.48	-31.75	-13.00	-18.75
Middle Cha	nnel 189 (836.40MI	Hz)					
1671.50	-39.39	V	-42.06	2.52	9.95	-34.63	-13.00	-21.63
2513.00	-49.60	V	-48.91	3.18	10.62	-41.47	-13.00	-28.47
1671.50	-35.84	Н	-38.26	2.52	9.95	-30.83	-13.00	-17.83
2513.00	-46.25	Н	-45.18	3.18	10.62	-37.74	-13.00	-24.74
High Chann	el 251 (84	18.80MHz	:)					
1697.00	-41.82	V	-44.55	2.54	10.06	-37.03	-13.00	-24.03
2547.00	-54.94	V	-53.38	3.14	10.68	-45.84	-13.00	-32.84
1697.00	-37.32	Н	-39.32	2.54	10.06	-31.80	-13.00	-18.80
2547.00	-49.13	Н	-47.31	3.14	10.68	-39.77	-13.00	-26.77

Product	GPS Locator		
Test Item	Radiated Spurious Emission		
Test Mode	Mode 2: GPRS 1900 Link		
Date of Test	2012/05/22	Test Site	AC-5

Frequency	SA	Ant.Pol.	SG	Cable	Gain	EIRP	Limit	Margin
(MHz)	Reading	(H/V)	Reading	Loss	(dBi)	(dBm)	(dBm)	(dB)
	(dBm)		(dBm)	(dB)				
Low Channe	el 512 (18	50.20MH	z)					
3703.00	-44.75	V	-41.3	3.84	12.69	-32.45	-13.00	-19.45
5547.50	-54.33	V	-45.83	4.82	13.15	-37.50	-13.00	-24.50
3703.00	-41.31	Н	-37.94	3.84	12.69	-29.09	-13.00	-16.09
5547.50	-53.30	Н	-45.41	4.82	13.15	-37.08	-13.00	-24.08
Middle Char	nnel 661 (1880.00N	1Hz)					
3762.50	-41.32	V	-38.1	3.73	12.72	-29.11	-13.00	-16.11
5641.00	-53.07	V	-45.14	4.93	13.14	-36.93	-13.00	-23.93
3762.50	-40.42	Н	-37.12	3.73	12.72	-28.13	-13.00	-15.13
5641.00	-54.22	Н	-46.61	4.93	13.14	-38.40	-13.00	-25.40
High Chann	el 810 (19	909.80MH	z)					
3822.00	-41.75	V	-38.03	4.02	12.73	-29.32	-13.00	-16.32
5726.00	-55.40	V	-46.78	4.87	13.11	-38.54	-13.00	-25.54
3822.00	-41.91	Н	-38.04	4.02	12.73	-29.33	-13.00	-16.33
5726.00	-54.63	Н	-46.39	4.87	13.11	-38.15	-13.00	-25.15

7.7. Test Photograph

Description: ERP Test Setup

Description: Substitution Antenna for ERP Test

Description: EIRP Test Setup

Description: Substitution Antenna for EIRP Test

8. Frequency Stability Under Temperature & Voltage Variations

8.1. Test Equipment

Frequency Stability Under Temperature & Voltage Variations / AC-6

Instrument	Manufacturer	Type No.	Serial No	Cali. Due Date
PSA Series Spectrum				
Analyzer	Agilent	E4440A	MY49420184	2013.04.10
Radio Communication				
Tester	R&S	CMU 200	117088	2013.04.18
Dual Directional Coupler	Agilent	778D	20160	2013.04.18
10dB Coaxial Coupler	Agilent	87300C	MY44300299	2013.04.18
DC Power Supply	IDRC	CD-035-020PR	977272	2012.09.22
Temperature & Humidity				
Chamber	Gaoyu	TH-1P-B	WIT-05121302	2013.01.13
Temperature/Humidity Meter	Zhicheng	ZC1-2	AC6-TH	2013.01.10

8.2. Test Setup

8.3. Limit

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

8.4. Test Procedure

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of +50°C reached.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20° C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation ($\pm 15\%$) and endpoint, record the maximum frequency change.

8.5. Uncertainty

The measurement uncertainty is defined as \pm 10 Hz.

8.6. Test Result

Product	GPS Locator		
Test Item	Frequency Stability Under Temperature & Voltage Variations		
Test Mode	Mode 1: GPRS 850 Link		
Date of Test	2012/05/22	Test Site	TR7

Frequency Stability under Temperature

Temperature Interval (°C)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	836.40	-93	± 2091
-20	836.40	-113	± 2091
-10	836.40	-120	± 2091
0	836.40	-64	± 2091
10	836.40	-87	± 2091
20	836.40	-73	± 2091
30	836.40	-66	± 2091
40	836.40	-75	± 2091
50	836.40	-41	± 2091

Frequency Stability under Voltage

DC Voltage	Test Frequency	Deviation	Limit
(V)	(MHz)	(Hz)	(Hz)
10.00	836.40	-63	± 2091
12.00	836.40	-11	± 2091
16.00	836.40	-48	± 2091

Product	GPS Locator			
Test Item	Frequency Stability Under Temperature & Voltage Variations			
Test Mode	Mode 2: GPRS 1900 Link			
Date of Test	2012/05/22 Test Site TR7			

Frequency Stability under Temperature

Temperature Interval (°C)	Test Frequency (MHz)	Deviation (Hz)	Limit (Hz)
-30	1880.00	-17	± 4700
-20	1880.00	-24	± 4700
-10	1880.00	-44	± 4700
0	1880.00	-26	± 4700
10	1880.00	-31	± 4700
20	1880.00	-8	± 4700
30	1880.00	11	± 4700
40	1880.00	20	± 4700
50	1880.00	34	± 4700

Frequency Stability under Voltage

DC Voltage	Test Frequency	Deviation	Limit
(V)	(MHz)	(Hz)	(Hz)
10.00	1880.00	-22	± 4700
12.00	1880.00	-23	± 4700
16.00	1880.00	-34	± 4700

9. Attachment

> EUT Photograph

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

(4) EUT Test Platform

(5) EUT Test Platform

(6) EUT Test Platform

(7) EUT Test Platform

(8) EUT Test Platform

(9) EUT Test Platform

(10) EUT Test Platform

