Exploration of Potential Improvements to INVASE

Application of Direct Replacement Version Loss

Individual Settings: **Activation**: Choose between SeLU and ReLU to determine which yields better results. (*INVASE*: A.1–A.5 use ReLU, A.6 uses SeLU; Proposed: A.1–A.3 use ReLU, A.4–A.6 use SeLU.); **Policy**: Early Stopping Policy ($\delta = 0.3\%$, patience T = 5).

- ◆ Enhance both sensitivity & feature selection performance (e.g., TPR, FDR)
 - Syn A.1, A.2:
 - Broader range of ideal tunning range
 - Syn A.3 A.6:
 - Similar performance on FDR
 - Obvious better performance on TPR
 - → Provide a broader range of well-performing configurations
 - → Reduce the risk of drastic performance drops due to minor hyperparameter changes
 - → More stable and user-friendly

Exploration of Potential Improvements to INVASE

Application of Direct Replacement Version Loss

- ◆ Enhance both sensitivity & feature selection performance (e.g., TPR, FDR)
 - Syn A.1, A.2:
 - Broader range of ideal tunning range

Syn A.3 - A.6:

- Similar performance on FDR
- Obvious better performance on TPR
- Provide a broader range of well-performingconfigurations
- Reduce the risk of drastic performance drops due to minor hyperparameter changes
 - → More stable and user-friendly

Individual Settings: **Activation**: Choose between SeLU and ReLU to determine which yields better results. (*INVASE*: A.1–A.5 use ReLU, A.6 uses SeLU; Proposed: A.1–A.3 use ReLU, A.4–A.6 use SeLU.); **Policy**: Early Stopping Policy ($\delta = 0.3\%$, patience T = 5).

Exploration of Potential Improvements to INVASE

Application of Percentage Version Loss

Individual Settings: Activation: ReLU; Policy: Post-Training Selection Policy (I = 10k, m = 100, r = 500, k = 7)