

### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Overblik

Vi skal have "udfyldt" følgende skema over modeller (rækker) og statistiske begreber (søjler):

|                | Intro | Model        | $Est. {+} SE$ | ΚI           | Test         | Kontrol | Præd. |
|----------------|-------|--------------|---------------|--------------|--------------|---------|-------|
| En stikprøve   | ✓     | ✓            | ✓             | ✓            | ✓            | ✓       |       |
| Ensidet ANOVA  | ✓     | $\checkmark$ | $\checkmark$  | $\checkmark$ | nu           |         |       |
| Lineær regr.   | ✓     | $\checkmark$ | $\checkmark$  | $\checkmark$ | <b>(√)</b>   |         |       |
| To stikprøver  | ✓     | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$ |         |       |
| Multipel regr. |       |              |               |              |              |         |       |
| Tosidet ANOVA  |       |              |               |              |              |         |       |

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

### I dag

Vi gennemgår først slides 1-23 om

- Kap. 6.3: F-test for sammenligning af tre eller flere grupper
- Kap. 6.4: F-test mere generelt
- Tankegang i hypotesetest
- Kap. 6.5: Fejl af type I og type II

I det omfang tiden tillader snakker vi også om

- Bonferronikorrektion (slides 24-29)
- Kap. 5: Statistiske modeller med samme struktur, repetition af *t*-test

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

F-testet for sammenligning af tre eller flere grupper

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### Statistisk model og hypoteser

**Data:**  $y_1, \ldots, y_n$  fra k grupper med  $n_i$  observationer i gruppe j.

Hver gruppe antages at have sin egen middelværdi (forventede værdi):  $\alpha_1,\ldots,\alpha_k$ 

**Statistisk model:** Uafhængighed + alle obs. er normalfordelte med den relevante gruppemiddelværdi og samme spredning  $\sigma$ .

### **Hypoteser:**

- $\alpha_1 = 5$  (middelværdien har en bestemt værdi i en given gruppe)
- $\alpha_1 \alpha_2 = 0$  (to grupper har samme middelværdi)
- $\alpha_1 = \alpha_2 = \ldots = \alpha_k$  (alle grupper har samme middelværdi)

De to første kan klares med t-test.

Til sidste hypotese har vi brug for en ny teststørrelse.

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Opgave 3.1: Between-group, within-group variation



- Variation mellem grupper stor ift. variation indenfor grupper: Tegn på forskel mellem grupperne
- Variation mellem grupper lille ift. variation indenfor grupper: Tegn på at der ikke er forskel mellem grupperne

Det kan vi bruge til at lave en teststørrelse!



### Ensidet ANOVA: antibio-datasættet



- Respons: Mængden af organisk materiale efter otte uger
- En kategorisk forklarende var.: fodergruppe
- H<sub>0</sub>: samme mængde organisk stof i alle fodergrupper?

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

#### DET NATURVIDENSKABELIGE FAKULTET

### Variation indenfor og mellem grupper

Variation mellem grupper: Gruppegennemsnit vs totalgennemsnit,

$$ext{SS}_{ ext{between}} = \sum_{i=1}^k n_j (\bar{y}_j - \bar{y})^2$$

Variation indenfor grupper: Observationer vs gruppegennemsnit,

$$SS_{within} = \sum_{i=1}^{n} (y_i - \bar{y}_{g(i)})^2$$

F-teststørrelse ser på forholdet mellem dem, passende normeret:

$$F = \frac{\text{MS}_{\text{between}}}{\text{MS}_{\text{within}}} = \frac{\text{SS}_{\text{between}}/(k-1)}{\text{SS}_{\text{within}}/(n-k)}$$

antibio-data:  $F_{\rm obs} = 7.97$ .





### Kan F bruges som teststørrelse?

#### De tre kriterier:

- Det er en talværdi, som kan beregnes udfra data √
- Den skal være et godt mål for hvor godt data stemmer med hypotesen

F er altid positiv. Små værdier passer godt med hypotesen, store værdier passer skidt. Siger at store værdier er kritiske.

 Under forudsætning af at hypotesen er sand, skal teststørrelsens sandsynlighedsfordeling kunne beregnes √

**Hvis**  $H_0$  er sand kan vi faktisk sige hvordan F vil opføre sig...

Tilsammen: Vi kan nu beregne ssh. for at få en F-værdi der passer dårligere med hypotesen end den vi fik fra vores data.

Statistisk Dataanalyse 1, Kursusuge 4, mandag Dias 9/40



## KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

```
R
```

```
model1 <- lm(org ~ type, data = antibio)
summary(model1)
## Call:
## lm(formula = org ~ type, data = antibio)
## Residuals:
## Min 1Q Median 3Q Max
## -0.29000 -0.06000 0.01833 0.07250 0.18667
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.89500 0.04970 58.248 < 2e-16 ***
## typeControl -0.29167 0.07029 -4.150 0.000281 ***
## typeEnroflox -0.18500 0.07029 -2.632 0.013653 *
## typeFenbenda -0.06167 0.07029 -0.877 0.387770
## typeIvermect 0.10667 0.07029 1.518 0.140338
## typeSpiramyc -0.04000 0.07858 -0.509 0.614738
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.1217 on 28 degrees of freedom
## Multiple R-squared: 0.5874, Adjusted R-squared: 0.5137
## F-statistic: 7.973 on 5 and 28 DF, p-value: 8.953e-05
```

Statistisk Dataanalyse 1, Kursusuge 4, mandag Dias 11/40



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### F-fordelingen (opkaldt efter R.A. Fisher)

Hvis nul hypotesen er sand, så er F-teststørrelsen F-fordelt med (k-1,n-k) frihedsgrader.

$$p$$
-værdi =  $P(F \ge F_{\rm obs})$ 



Antibio: n = 34, k = 6,  $F_{obs} = 7.97$ 

### Beregning af p-værdi:

Sandsynlighed til højre for 7.97

Konklusion: Hypotesen om 6 ens middelværdier bliver klart afvist!



### KØBENHAVNS UNIVERSITET

#### DET NATURVIDENSKABELIGE FAKULTET

### R

Dias 10/40

#### Bemærk:

- Vi kan ikke bruge modellen lm(tid ~ type 1, data=sudokoData) til dette test!
- Bogen bruger anova snarere end drop1. Ikke forkert, men jeg foretrækker drop1.

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### F-test mere generelt: fuld model og nulmodel

Husk at hypotesen beskriver en restriktion på modellen. Modellen hvor hypotesen er opfyldt, kaldes nulmodellen (null model).

Har altså to modeller hvor den ene er en delmodel af den anden:

- Fuld model:  $y_i = \alpha_{g(i)} + e_i$ ,  $e_i$ 'erne uafhængige  $N(0, \sigma^2)$ .
- Nulmodel:  $y_i = \alpha + e_i$ ,  $e_i$ 'erne uafhængige  $N(0, \sigma_0^2)$ .

Residualkvadratsum — kan beregnes i hver af de to modeller:

$$SS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

hvor  $\hat{y}_i$  er de estimerede middelværdier (=fittede værdier).

- Mål for hvor godt modellerne passer til data.
- $SS_0 > SS_{full}$ : Vi kan tilpasse  $\hat{y}_i$  bedre til data i fuld model
- $df_0 > df_{full}$ : Der er flere parametre i fuld model

Statistisk Dataanalyse 1, Kursusuge 4, mandag



KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R

```
fullModel <- lm(org ~ type, data = antibio)
nullModel <- lm(org ~ 1, data = antibio)
anova(nullModel, fullModel)
## Analysis of Variance Table
## Model 1: org ~ 1
## Model 2: org ~ type
    Res.Df RSS Df Sum of Sq
                                        Pr(>F)
        33 1.0058
        28 0.4150 5 0.59082 7.9726 8.953e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Bemærk: Jeg bruger anova når jeg sammenligner to modelfit.



DET NATURVIDENSKABELIGE FAKULTET

Nv teststørrelse — eller faktisk ikke...

Nyt forslag til teststørrelse:

KØBENHAVNS UNIVERSITET

$$F = \frac{(\mathrm{SS}_0 - \mathrm{SS}_{\mathsf{full}})/(\mathsf{df}_0 - \mathsf{df}_{\mathsf{full}})}{\mathrm{SS}_{\mathsf{full}}/\mathsf{df}_{\mathsf{full}}}$$

- Måler hvor meget større SS er under hypotesen ift. i den fulde model. Passende normeret med frihedsgrader.
- Store værdier er kritiske, dvs. passer dårligt med hypotesen

Kan vise at det er præcis den samme F-teststørrelse som før!

- Før: Variation mellem grupper ift. variation indenfor grupper
- Nu: Sammenligning af modellen med og uden restriktionen givet ved hypotesen

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

### Eksempel

Man kunne være interesset i at undersøge, om kontrolgruppen ('Control') er den eneste gruppe, hvor indholdet af organgisk stof afviger fra de øvrige.

Hypotesen er derfor.

$$H_0$$
:  $\alpha_{\mathsf{Alfacyp}} = \alpha_{\mathsf{Enroflox}} = \alpha_{\mathsf{Fenbenda}} = \alpha_{\mathsf{Ivermectin}} = \alpha_{\mathsf{Spiramyc}}$ 

Under hypotesen (hvis hypotesen er sand) er der kun to grupper. Vi kan udføre testet på følgende måde:

- Fit den fulde model, dvs. modellen med skes grupper
- Lav variabel med to grupper, fit nulmodellen med denne var.
- Sammenlign de to modeller med anova

Konklusion?



```
R
```

```
antibio$typeControl <- (antibio$type == "Control")
fullModel <- lm(org ~ type, data = antibio)
nullModel2 <- lm(org ~ typeControl, data = antibio)
anova(nullModel2, fullModel)

## Analysis of Variance Table
##
## Model 1: org ~ typeControl
## Model 2: org ~ type
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 32 0.68212
## 2 28 0.41500 4 0.26712 4.5056 0.006171 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Tankegang i hypotesetest

Hypotestest er baseret på teststørrelser som opfører sig forskelligt alt efter om hypotesen er sand eller falsk.

- Hvis stat. model er OK og hypotesen er sand, så ved vi hvilke værdier af teststørrelsen der er sandsynlige/usandsynlige.
- Hvis den værdi vi får for data er (meget) usandsynlig, er det evidens for at hypotesen er falsk.



KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

# Hypotesetest, Fejl af type I og II

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Falsificering

Vi kan **falsificere hypoteser:** Hvis hypotesen er sand, er det nogle meget mærkelige data vi har fået  $\rightarrow$  hypotesen afvises.

Men vi kan ikke påvise at hypoteser er sande.

Der kan være flere grunde til at en hypotese ikke kan afvises:

- Hypotesen er sand
- Hypotesen er falsk, men datagrundlaget er for småt
- Hypotesen er falsk, men afvigelsen fra hypotesen er for lille
- Hypotesen er falsk, men der er for stor biologisk variation



### Hypoteser

Statistiske hypoteser formuleres typisk "omvendt" af videnskabelige hypoteser.

### Eksempel:

- Videnskabelig hypotese: Behandlingen har en effekt
- Statistisk hypotese: Behandlingen har ikke en effekt

Når vi afviser den statistiske hypotese, er det altså (typisk) evidens for den videnskabelige hypotese.

Forresten: En forskel kan sagtens være statistisk signifikant uden at være relevant eller interessant! Angiv estimater og KI.

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

### Fejl af Type I og Type II

Fire muligheder:

|             | Hypotesen accepteres   | Hypotesen afvises     |
|-------------|------------------------|-----------------------|
| $H_0$ sand  | OK                     | fejl af <b>type l</b> |
| $H_0$ falsk | fejl af <b>type II</b> | OK                    |

- Fejl af type I: **Falsk positiv.** Konkluderer at der er effekt/sammenhæng selvom der ikke er.
- Fejl af type II: **Falsk negativ.** Konkluderer at der ikke er effekt/sammenhæng selvom der faktisk er.

Hvis signifikansgrænsen på 5% bruges, så er **ssh. for en fejl af type l netop 5%.** Fejl at type ll har vi ikke kontrol over.



### Konklusioner i hypotesetest

Hvis vi bruger signifikansniveau 5%

- afviser vi hypotesen, hvis p < 0.05
- accepterer vi hypotesen, hvis p > 0.05

Accept/afvisning af en hypotese betyder desværre ikke nødvendigvis at hypotesen er sand/falsk.

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

### Multiple testning og Bonferronikorrektion

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### Fejl af Type I og Type II

Vi minder om de fire muligheder:

|             | Hypotesen accepteres   | Hypotesen afvises     |
|-------------|------------------------|-----------------------|
| $H_0$ sand  | OK                     | fejl af <b>type l</b> |
| $H_0$ falsk | fejl af <b>type II</b> | OK                    |

- Fejl af type I: **Falsk positiv.** Konkluderer at der er effekt/sammenhæng selvom der ikke er.
- Fejl af type II: **Falsk negativ.** Konkluderer at der ikke er effekt/sammenhæng selvom der faktisk er.

Signifikansgrænse på  $5\% \rightarrow ssh$ . for en fejl af type I netop 5%.

Men hvad hvis vi laver flere test?

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Bonferroni korrektion

Man bør overveje at korrigere p-værdierne hvis man udfører mange tests.

Den simpleste metode er **Bonferronikorrektion:** 

- Beregn *p*-værdier som sædvanlig for hvert test
- $\bullet \ \, \mathsf{Gang} \,\, \mathit{p}\text{-}\mathsf{v} \\ \mathsf{ærdierne} \,\, \mathsf{med} \,\, \mathsf{antallet} \,\, \mathsf{af} \,\, \mathsf{tests} \, \to \, \mathsf{justerede} \,\, \mathit{p}\text{-}\mathsf{v} \\ \mathsf{ærdier} \\ \mathsf{er} \,\, \mathsf{er$
- For hver hypotese: Sammenlign den justerede *p*-værdier med sign.-niveauet (5%) for at afgøre om hypotesen skal afvises

Hvis man fx tester fem hypoteser:

- Hver af de oprindelige p-værdier skal ganges med 5 før sammenligning med 5%
- Altså: Hypoteser forkastes hvis den oprindelige p-værdi er 1%



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Multiple tests

Hvis vi bruger 5% som signifikansniveau:

- Ved et test: Risiko for fejl (falsk positiv) = 5%
- Ved m tests er risikoen for mindst en type I fejl  $1-0.95^m$
- Vokser hurtigt når vi laver mange tests!



Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Bonferroni korrektion

Hvis man bruger Bonferroni, kan man vise at **risikoen for at lave mindst en type I fejl** (mindst en falsk positiv) er < 5%.

Man afviser færre hypoteser efter korrektionen.

Faktisk er Bonferroni meget **konservativ** (streng) og man får typisk for få signifikante tests.

Bedre metode: Holm's metode (se evt. opgave 6.15).



### Bonferroni-korrektion: antibio datasættet

- Hvilke fodertyper giver signifikant højere indhold af organisk materiale end kontrolgruppen?
- Betyder det noget om vi anvender Bonferroni-korrektion af de fem p-værdier?

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Fællestræk / generelle statistisk begreber

Lærebogens Kapitel 5.1-5.3 forsøger at opsummere og fremhæve fællestræk ved de tre statistiske modeller, som vi har set på

- enstikprøveproblemet / model for en (enkelt) stikprøve
- ensidet variansanalyse (ANOVA)
- lineær regression

Kapitlerne er bevidst skrevet abstrakt fordi man vil undgå at bruge konkrete formler som knytter sig til en bestemt model.

Håbet er at nogle studerende får en bedre intuition omkring centrale begreber af at læse kapitlerne.

På de følgende slides forsøger jeg at fremhæve nogle af pointerne ..



KØBENHAVNS UNIVERSITET

#### DET NATURVIDENSKABELIGE FAKULTET

## De statistiske modeller har samme struktur

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### De statistiske modeller

**Data**:  $y_1, \ldots, y_n$  samt evt. forklarende variabel

Har specificeret statistisk model således:  $y_1, \ldots, y_n$  uafhængige og  $y_i$  normalfordelt med middelværdi \*\*\* og spredning  $\sigma$ .

Middelværdierne:

- ullet En enkelt stikprøve: Middelværdi  $\mu$
- Ensidet ANOVA: Middelværdi  $\alpha_{g(i)}$
- Lineær regression: Middelværdi  $\alpha + \beta x_i$



Statistisk Dataanalyse 1, Kursusuge 4, manda

### De statistiske modeller har samme struktur

Ækvivalent måde at skrive modellerne på:

$$y_i = middelværdi + e_i$$

hvor **restleddene** (residualerne)  $e_1, \ldots, e_n$  er uafhængige og allesammen normalfordelt med middelværdi 0 og spredning  $\sigma$ .

 $\sigma$  kaldes også **residualspredningen**.

- En enkelt stikprøve:  $v_i = \mu + e_i$
- Ensidet ANOVA:  $y_i = \alpha_{g(i)} + e_i$
- Lineær regression:  $y_i = \alpha + \beta x_i + e_i$

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

### Parametre der bestemmer middelværdien

Lidt mere generelt kan vi skrive

$$y_i = \mu_i + e_i = f(x_i; \theta_1, \dots, \theta_p) + e_i$$

hvor  $\theta_1, \dots, \theta_p$  er de ukendte **parametre** der bruges til at beskrive middelværdierne, og  $e_1, \ldots, e_n$  er **iid**  $N(0, \sigma^2)$ 

- En enkelt stikprøve:  $y_i = \mu + e_i$ . Parameteren er  $\mu$
- Ensidet ANOVA:  $y_i = \alpha_{g(i)} + e_i$ . Parametreme er  $\alpha_1, \dots, \alpha_k$
- Lineær regression:  $y_i = \alpha + \beta x_i + e_i$ . Parametrene er  $\alpha$  og  $\beta$



iid

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Antager at  $e_1, \ldots, e_n$  er uafhængige og allesammen normalfordelt med middelværdi 0 og spredning  $\sigma$ .

Vi siger også at  $e_1, \ldots, e_n$  er **iid**  $N(0, \sigma^2)$ -fordelt:

iid = independent with identical distributions

= uafhængige og identisk fordelt

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

### DET NATURVIDENSKABELIGE FAKULTET

Estimater (teori)

Mindste kvadraters metode  $\rightarrow$  **estimater**  $\hat{\theta}_1, \dots, \hat{\theta}_p$ 

Fittede værdier

$$\hat{y}_i = f(x_i; \hat{\theta}_1, \dots, \hat{\theta}_p)$$

Residualer

$$r_i = \text{observeret} - \text{fittet} = y_i - \hat{y}_i$$

**Estimat** for residualspredningen  $\sigma$ :

$$s = \hat{\sigma} = \sqrt{\frac{1}{n-p} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$



### Standard error og konfidensinterval

**Standard error** (estimeret spredning) for hvert  $\theta_i$  har formen

$$\operatorname{SE}(\hat{\theta}_j) = s\sqrt{k_j}$$

hvor  $k_j$  er en konstant som ikke afhænger af  $y_i$ 'erne, men kun af modellen (kan beregne den før man har set data).

**95% konfidensinterval** for hver parameter  $\theta_i$ :

estimat 
$$\pm t_{0.975,n-p}$$
 · standard error

$$\hat{\theta}_j \pm t_{0.975,n-p} \cdot SE(\hat{\theta}_j)$$

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

#### DET NATURVIDENSKABELIGE FAKULTET

### R

Modeller fittes med 1m og undersøges derefter med summary, confint og — som vi skal se — drop1 og anova.

Output fra summary

- ullet En linie for hver parameter, dvs. for hvert  $heta_j$
- Alle tal i linien hører til denne parameter!
- t-teststørrelse og p-værdi er for hypotesen  $H_0: \theta_j = 0$ . Derfor er t-værdien altid defineret som  $\frac{\text{estimat}}{\text{SE}}$
- Residualspredning  $s = \hat{\sigma}$  er angivet under tabellen



Hypotesetest for et enkelt  $\theta_i$ 

Hypotese,  $H_0: \theta_i = \theta_0$  for en **præ-specificeret værdi**  $\theta_0$ .

*T*-teststørrelsen

KØBENHAVNS UNIVERSITET

$$T_{
m obs} = rac{ ext{estimat} - ext{hypoteseværdi}}{ ext{SE(estimat)}} = rac{\hat{ heta}_j - heta_0}{ ext{SE}(\hat{ heta})}$$

*p*-**værdi** bereges i *t*-fordelingen med df = n - p:

$$p = P(|T| \ge |T_{\text{obs}}|) = 2 \cdot P(T \ge |T_{\text{obs}}|).$$

Hypotesen forkastes hvis p-værdien er lille, nemlig < 5%. Angiv altid selve p-værdien, ikke blot om den er < 5% eller ej.

Vi siger at vi bruger 5% signifikansniveau.

Statistisk Dataanalyse 1, Kursusuge 4, mandag



### KØBENHAVNS UNIVERSITET

#### DET NATURVIDENSKABELIGE FAKULTET

DET NATURVIDENSKABELIGE FAKULTET

### t-test i lineær regression

Middelværdi (af y):

$$\alpha + \beta \cdot x$$

**Hypotese**,  $H_0: \beta = 0$  (ingen sammenhæng mellem x og y)

Eks: 144 kattes hjertevægt (y = Hwt) og kropsvægt (x = Bwt)

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3566624 0.6922770 -0.5152019 6.072131e-01
## Bwt 4.0340627 0.2502615 16.1193908 6.969045e-34
```

**Estimat**:  $\hat{\beta} = 4.0341$ , **Standard Error**:  $SE(\hat{\beta}) = 0.2503$ 

**T-test**: 
$$T_{\mathrm{obs}} = \frac{\mathrm{estimat-hypoteseverdi}}{\mathrm{SE}(\mathrm{estimat})} = \frac{\hat{\theta}_j - \theta_0}{\mathrm{SE}(\hat{\theta})} = \frac{4.0341 - 0}{0.2503} = 16.119$$

**P-værdi**: 
$$p = P(T > |T_{obs}|) = 0$$

Statistisk Dataanalyse 1, Kursusuge 4, manda