COORDINATING RESEARCH COUNCIL INC ATLANTA GA 1981 CRC OCTAME NUMBER REQUIREMENT SURVEY. (U) AD-A119 513 F/G 21/4 AUG 82 CRC-525 DAAK70-81-C-0128 UNCLASSIFIED NL 10.3

.... TOVEW FUR PUBLIC RELEASE: DISTRIBUTION

1981 CRC OCTANE NUMBER REQUIREMENT SURVEY

August 1982

SEP 2 3 1992

DIC FILE CO

A11951

82 09 23 047

COORDINATING RESEARCH COUNCIL, INC. 210 PERMITTER CENTER PARKWAY, ATLANTA, GEORGIA 30346

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 398-3400

1981 CRC OCTANE NUMBER REQUIREMENT SURVEY

(CRC PROJECT No. CM-123-81)

IN FORMULATING AND APPROVING REPORTS, THE APPROPRIATE COMMITTEE OF THE COORDINATING RESEARCH COUNCIL, INC. HAS NOT INVESTIGATED OR CONSIDERED PATENTS WHICH MAY APPLY TO . THE SUBJECT MATTER. PROSPECTIVE USERS OF THE REPORT ARE RESPONSIBLE FOR PROTECTING THEMSELVES AGAINST LIABILITY FOR INFRINGEMENT OF PATENTS.

Prepared by the

1981 Analysis Panel

of the

CRC Light-Duty Octane Number Requirement Survey Group

August 1982

Light-Duty Vehicle Fuel, Lubricant, and Equipment Research Committee

of the

Coordinating Research Council, Inc.

TAAK70-81-6-0128

TABLE OF CONTENTS

<u>TEXT</u>		<u>Page</u>
ı.	INTRODUCTION	. 1
II.	SUMMARY	. 2
	A. Vehicles Tested	. 2
	B. Octane Number Requirements	. 2
	C. Maximum Octane Number Requirements at Part-Throttle	. 4
	D. Tank Fuel Knock Reported by Trained Raters	
	E. After-Run on Tank Fuel	•
	G. Road Octane Number Depreciation	. 5
III.	TEST VEHICLES	. 5
IV.	REFERENCE FUELS	. 6
	A AA W	•
	A. PR Fuels	. 6
	B. FBRU Reference Fuels	
	C. FBRSU Reference Fuels	. 7
٧.	TEST TECHNIQUE	. 7
VI.	DISCUSSION OF RESULTS	. 8
	A. General	. 8
		• -
	B. Distribution of Maximum Octane Number Requirements	. 0
	C. 50th Percentile Acceleration Technique Octane Number	
	Requirement Distributions on FBRU Fuels	
	D. Select Models	
	E. Tank Fuel	. 17
	F. Surface Ignition and Rumble	. 18
	G. Engine Speed for Maximum and 50th Percentile	
	Acceleration Technique Octane Number Requirements	18
	H. Road Octane Number Depreciation of FBRU and FBRSU Fuels	• 10
	I. Speed Range Octane Number Requirements	. וא
	J. Gear Position for Maximum Requirements	. 19
		LETTER
	·	DE/ 15/1
	Ву	
	Distrib	ution/
	Availa	bility Codes
	DTIC	ail and/or
	Copy	Special
	(Mapected)	i 1

<u> </u>	Page
Table I Table II	- 1981 Select Model Specifications
Table III Table IV	Vehicles
1981 US and I	ported Vehicles - Maximum Research, Motor, and (R+M)/2 Octane Number Requirements
Table VII Table VIII	US and Imported Vehicles - Comparison of Maximum Research Octane Number Requirements
1981 US and I	
Table XI Table XI Table XII	O US and Imported Cars - Comparison of Maximum Research Octane Number Requirements
1981 US Vehi Table XIII	
1981 and 198 Table XIV Table XV	Requirements
1981 US Car Table XVI	S and (Daw)/2 Octane Number

TABLES (Contin	ned)	Page
2002 and 2000 H		
1981 and 1980 U	- Comparison of Maximum Research Octane Number	
INDIE VATIT	Requirements	40
Table XIX	- Comparison of Maximum Motor Octane Number	••••
IGDIE VIV	Requirements	AT
Table XX	- Comparison of Maximum (R+M)/2 Octane Number	•••••
INDIE AA	Requirements	12
	nequirementes	42
1981 Imported V	ehicles	
Table XXI	- Maximum Research, Motor, and (R+M)/2 Octane Numb	er
	Requirements	43
1981 and 1980 I	imported Vehicles	
Table XXII	- Comparison of Maximum Research Octane Number	
	Requirements	44
Table XXIII	- Comparison of Maximum Motor Octane Number	
	Requirements	45
Table XXIV	- Comparison of Maximum (R+M)/2 Octane Number	
	Requirements	46
	·	
Table XXV	- 50th Percentile Acceleration Technique	
	FBRU Octane Number Requirements -	
	1981 US and Imported Vehicles	47
Table XXVI	- 50th Percentile Acceleration Technique	
	FBRU Octane Number Requirements - 1981 US and Imported Cars	
	1981 US and Imported Cars	48
Table XXVII	- 50th Percentile Acceleration Technique	
	FBRU Octane Number Requirements -	
	1981 US Vehicles	49
Table XXVIII	- 50th Percentile Acceleration Technique	
	FBRU Octane Number Requirements -	_
	1981 US Cars	50
Table XXIX	- 50th Percentile Acceleration Technique	
	FBRU Octane Number Requirements - 1981 Imported Vehicles	
	1981 Imported Vehicles	51
Table XXX	- Comparison of Maximum with 50th Percentile	
	Acceleration Technique FBRU Research Octane	
	Number Requirements - 1981 US and Imported	
	Vehicles	52
Table XXXI	- Comparison of Vehicles with 50th Percentile	
	Acceleration Technique Requirements Greater	
T-61- WWWTT	Than Maximum Requirements	53
Table XXXII	- Maximum Octane Humber Requirements -	E A
T_L1_ VVVI++	1981 Select Models	34 EF
Table XXXIII Table XXXIV	- Owner/Rater Comparison of Tank Fuel Knock - Tank-Fuel Knock Reported by Trained Raters	
Table XXXV	- 1981 Vehicles Reported to After-Run on Tank Fuel	50 57
IEDIE VVVA	- 130: TEILICIES REDUITEL LU AITEITRUI DII IGIIK TUEI	/

IABLES	(Contin	ued)	Page
Table	IVXXX	- Engine Speeds for Maximum Octane Number	
Table	IIVXXX	Requirements - 1981 Select Models Engine Speeds for Maximum and 50th Percentile Acceleration Technique Octane Number	. 58
Table	XXXVIII	Requirements - All 1981 Vehicles Engine Speeds for FBRU 50th Percentile Acceleration Technique Octane Number Requirements -	. 60
Table	XXXIX	1981 Select Models Miles Per Hour for FBRU 50th Percentile	. 61
Table	XL	Acceleration Technique Octane Number Requirements Road Octane Depreciation of 1981 FBRU and .	. 62
		FBRSU Fuels - All 1981 Vehicles	. 63
FIGURES	<u> </u>	•	
Figure	· 1	- Distribution of Odometer Mileage for 1981 Model Vehicles Tested	61
Figure	2	- Distribution of Maximum RON Requirements -	
Figure	3	1981 US and Imported Vehicles Comparison of Maximum PR Fuel Requirements -	
Figure	. 4	1981 and 1980 US and Imported Vehicles Comparison of Maximum FBRU Fuel RON Requirements -	
Figure	· 5	1981 and 1980 US and Imported Vehicles Comparison of Maximum FBRSU Fuel RON Requirements -	
Figure	6	1981 and 1980 US and Imported Vehicles	. 69
Figure	. 7	1981 US Vehicles Comparison of Maximum PR Fuel Requirements -	
Figure	8	1981 and 1980 US Vehicles Comparison of Maximum FBRU Fuel Requirements -	
Figure	9	1981 and 1980 US Vehicles Comparison of Maximum FBRSU Fuel Requirements -	
Figure	10	1981 and 1980 US Vehicles Distribution of Maximum RON Requirements -	
Figure	: 11	1981 Imported Vehicles	. 75
Figure	12	1981 US and Imported Vehicles	
Figure	13	Technique RON Requirements - 1981 US Vehicles Distribution of 50th Percentile Acceleration	. 79
Figure	. 14	Technique FBRU RON Requirements - 1981 Imported Vehicles	. 81
rigura	. 17	50th Percentile Acceleration Technique Requirements - 1981 US and Imported Vehicles	83

FIGURES ((Contin	ued)	Page
Figure 1 Figure 1 Figure 1 Figure 2	5 16 17 18 19 20 21 22	Research Octane Number Requirements - 1981 Model HIA 238	. 85 . 86 . 87 . 88 . 89 . 90 . 91
APPENDIC	<u>ES</u>	- All 1981 Vehicles	, 93
Appendix		- Participating Laboratories	
Appendix		- Membership: 1981 Analysis Panel	
Appendix		- Data on 1981 Full-Boiling Range Reference Fuels	
Appendix		- Program	
Appendix		- 1981 Octane Number Requirement Survey Data	, E-1
Appendix	K F	- Procedures for Plotting Octane Number Requirement Distribution Data	. F-1
Appendix	K G	- Confidence Limits of Octane Number Requirement Distributions	. G- 1
Appendix	c H	- Octane Requirements for Knock Sensor-Equipped Vehicles	. H-1
Appendix	ı.	- Maximum Octane Number Requirements of Select Models	. I-1
Appendix	J.	- Speed Range Data	. J-1
Appendix	K -	- Gear Position for Maximum Octane Number Requirements	. K-1

I. INTRODUCTION

In the 35th annual statistical survey of current model vehicles conducted by the Coordinating Research Council, Inc., test data were obtained on 429 1981 model vehicles, including nine select models of special interest. Maximum octane number requirements at either full- or part-throttle operating conditions were determined. Included also are the octane number requirements as determined by the new 50th percentile acceleration technique designed to more nearly represent customer-type driving. Surface ignition and rumble, if present, were also reported.

Passenger cars and light-duty trucks including non-commercial vans (1/2-3/4 ton without four-wheel drive) were tested according to a weighted distribution. This year's Survey includes analyses of validated data for the following vehicle categories:

- (1) US and Imported Vehicles -- 417 vehicles
- (2) US and Imported Cars -- 392 cars
- (3) US Vehicles -- 318 vehicles;
- (4) US Cars -- 300 cars, AD)
- (5) Imported Vehicles -- 99 vehicles --

It should be noted that the term "cars" designates passenger cars only, while the term "vehicles" includes passenger cars plus vans and light-duty trucks.

The order of testing reference fuels was the same as the 1980 Survey, which is as follows:

- e Primary Reference (PR) Fuels......4th

Sixteen laboratories participated in this Survey and submitted data on US vehicles; fourteen of these laboratories also reported data on imported vehicles. Participating laboratories are listed in Appendix A. Members of the CRC Analysis Panel are identified in Appendix B.

II. SUMMARY

A. Vehicles Tested

Data were collected on 429 1981 model vehicles; however, analyses in this report were based on 417 vehicles. Data for twelve vehicles were excluded: six vehicles equipped with knock sensors; five vehicles with less than 4,000 miles; and one duplicate rating. The 417 vehicles included 318 US vehicles and 99 imported vehicles. There were three hundred US passenger cars and ninety-two imported cars. There were eighteen US and seven imported light-duty trucks and vans. The 1981 Survey included a sufficient amount of data for nine specific models which were analyzed separately as select models. Eight of these select model categories had automatic transmissions, and one had manual transmissions. The vehicles used in this program had an average of 10,601 deposit miles. The average production-weighted engine displacement and compression ratio were 2.99 £ and 8.50, respectively.

B. Octane Number Requirements

Requirements are expressed as the Research octane number (RON), Motor octane number (MON), and (R+M)/2 octane number of the reference fuel which produced the least audible knock due to either spark or surface ignition, whichever was limiting. Estimated octane number requirements for the US vehicles are weighted in proportion to the 1981 vehicle model production figures and, for the imported models, in proportion to import sales volume in the United States.

For the 1981 Survey, knocking tendency was investigated at maximum-throttle and by a new 50th percentile acceleration technique which essentially replaced the part-throttle procedure used in previous years. Part-throttle requirements were defined only when their requirements were higher than the maximum full-throttle requirements. The new 50th percentile acceleration technique was designed to study octane requirements of vehicles using an acceleration proffle representative of average customer driving patterns. The maximum requirements reported for the 1981 Survey were determined by the same method used in prior Surveys (the greater of maximum-throttle or part-throttle).

Maximum and 50th percentile acceleration technique octane number requirements at the 50 percent and 90 percent satisfaction levels for the five sample categories are given in the following table for FBRU fuels.

FBRU OCTANE NUMBER REQUIREMENTS 1981 AND CHANGES FROM 1980

	RO	N	МО	N				
Weighted Population	50% Sat.	90% Sat.	50% Sat.	90% Sat.				
werghted roputation	Jat.	Jac.	Sat.	Sa C.				
Maximum Octane Number Requirements								
All US and Imported Vehicles	90.3	96.1	82.9	86.1				
Δ from 1980	-0.5	1.0	-0.6	-0.1				
All US and Imported Cars	89.8		82.6					
Δ from 1980	-0.8	0.3	-0.8	-0.5				
All US Vehicles	91.1		83.3					
Δ from 1980	-0.3	1.0	-0.5	0.0				
All US Cars	90.6	95.8	83.0	85.9				
Δ from 1980	-0.7	0.3	-0.8	-0.5				
Imported Vehicles	89.0	95.1	82.1	85.5				
Δ from 1980	0.0	2.5	-0.2	0.9				
50th Percentile Acceleration Technique Octane Number Requirements								
All US and Imported Vehicles	88.1	94.3	81.7	85.1				
US and Imported Cars	87.7	93.7	81.4	84.7				
US Vehicles	89.3	94.5	82.3	85.2				
US Cars	88.7	94.1	82.0	84.9				
Imported Vehicles	86.9	93.5	81.0	84.6				

Maximum octane requirements for the select models at the 50 percent and 90 percent satisfaction levels for FBRU fuels are summarized on the next page.

SELECT MODELS

MAXIMUM FBRU OCTANE NUMBER REQUIREMENTS

		RON		MO	
Select Model	No. <u>Tested</u>	50% <u>Sat.</u>	90% <u>Sat.</u>	50% <u>Sat.</u>	90% <u>Sat.</u>
HIA 238	14	88.8	92.1	82.0	83.8
IIA 238/LIA 238	30	91.6	97.0	83.6	8F B
NCX 228/HCX 228/ ICX 228/ LCX 228	19	85.4	89.3	79.9	8
NC5 225/HC5 225/ IC5 225/LC5 225	24	92.5	97.6	84.1	{
OL 216/ML 216	14	92.0`	96.6	83.8	86.4
OL 216M/ML 216M	13	91.6	94.8	83.5	85.3
OCA 223/MCA 223	16	90.1	93.8	82.7	84.7
PL 217/KL 217	14	84.5	89.0	79.2	82.6
PC 222/KC 222	24	85.8	91.2	80.1	83.6

C. Maximum Octane Number Requirements at Part-Throttle

Incidence of part-throttle knock with FBRU greater than full-throttle knock was slightly higher in 1981 than in 1980. Maximum requirements occurred at part-throttle in 9.8 percent of all 1981 model vehicles with FBRU fuels, compared with 6.7 percent in 1980.

D. Tank Fuel Knock Reported by Trained Raters

In the 1981 Survey, 42.9 percent of the weighted vehicle population knocked on tank fuel; this compares with 49.9 percent found in the 1980 Survey. More cars in this Survey were found to have premium unleaded gasoline in their tanks at the time they were rated than in last year's Survey. This may account for the lower incidence of tank fuel knock in the 1981 Survey.

E. After-Run on Tank Fuel

Of the 148 vehicles which had owners' reports submitted, the trained raters found 3.4 percent incidence of after-run, while the owners reported 12.2 percent. The raters' lower incidence may be explained by the fact that their report is based on a single test using the fuel in the tank at that time, while the owners have multiple opportunities to evaluate after-run.

F. Surface Ignition and Rumble

There were no reports of either surface ignition or rumble in the 1981 Survey.

G. Road Octane Number Depreciation

Road octane number depreciation of FBRU fuels in the range 88 to 98 RON varied from 0.6 to 2.7, compared with 1.8 to 2.7 in the 1980 Survey. Depreciation of FBRSU fuels in the range 88 to 99 RON varied from 1.6 to 3.3, compared with 3.0 to 4.9 in last year's Survey.

III. TEST VEHICLES

This year's Survey tested a total of 429 1981 model vehicles. Data obtained on six vehicles equipped with knock sensors (knock limiters), five vehicles with less than 4,000 miles, and one duplicate rating were not included in the analysis. The data from the 417 vehicles used in the analysis included 392 passenger cars (three hundred US and ninety-two imports) and twenty-five non-commercial vans and light-duty trucks (eighteen US and seven imports).

A sufficient amount of data (thirteen or more vehicles) were available for nine specific models which were analyzed separately as select models. Eight of these select models' categories had automatic transmissions, and one had manual transmissions, as shown in Table I.

In the 1981 Survey, 75 percent of the vehicles were equipped with automatic transmissions, and 79 percent were equipped with air-conditioners. The vehicles used in this program had an average of 10,601 deposit miles. Table II shows the distribution of odometer mileage for vehicles used in both the 1980 and 1981 Surveys. The 1981 distribution is also shown as a bar chart in Figure 1. The weighted average engine displacement for the 1981 vehicles was 2.99 £ (7.4 percent smaller than in 1980); the weighted average compression ratio was 8.50 (0.1 higher than in 1980).

Participants were requested to rate specific vehicle models in a pattern which minimized data bias due to differences in testing and vehicle sampling. The United States was divided into four geographical areas, with the requested ratings for a given model divided among laboratories within each geographical area. The basic timing was adjusted to manufacturers' recommended setting prior to testing. Eighty vehicles were adjusted. Twenty-eight vehicles were more than $\pm 2^\circ$ from the manufacturer's specification when received, compared with thirty-five in the 1980 Survey. The number of vehicles and their deviation in degrees spark from the manufacturer's recommended basic spark timing is shown in Table III.

IV. REFERENCE FUELS

Three series of reference fuels were used in the 1981 Survey: primary reference (PR) fuels; average sensitivity full-boiling range unleaded (FBRU) reference fuels with sensitivities similar to those of normal commercial gasoline; and high-sensitivity full-boiling range unleaded (FBRSU) reference fuels with sensitivities higher than the FBRU fuels.

A. PR Fuels

Isooctane and normal heptane, meeting ASTM specifications, were blended in two octane number increments from 76 to 82 RON, and in one octane number increments from 82 to 100 RON.

B. FBRU Reference Fuels

FBRU fuels were prepared from three base blends (RMFD-332-81, RMFD-333-81, and RMFD-334-81) in two octane number increments from 78 to 84 RON, and in one octane number increments from 84 to 100 RON.

The base blends were prepared from normal refinery streams. Inspection data furnished by the supplier are compared with those of the 1980 FBRU fuels in Appendix C, Table C-I. The physical inspections of the 1981 fuels were similar to those of the 1980 fuels, although the 70 percent and 90 percent distillation temperatures of the 1981 intermediate fuels were significantly lower than those for the equivalent 1980 blends.

The composition and average laboratory octane data for the 1981 reference fuels are presented in Appendix C, Table C-II, with the sensitivities compared with the 1980 fuels in Table C-III. The sensitivities of the 1981 fuels were similar to those of the 1980 fuels through 90 Research octane number, and had higher sensitivities than the 1980 fuels above 90 Research octane number.

C. FBRSU Reference Fuels

FBRSU fuels were prepared from three base blends (RMFD-335-81, RMFD-336-81, and RMFD-337-81) in two octane number increments from 78 to 84 RON, and in one octane number increments from 84 to 101 RON.

The base blends were prepared from typical refinery streams. Inspection data furnished by the supplier are compared with those of the 1980 base blends in Appendix C, Table C-IV. There were significant differences between the 1981 and 1980 fuels in terms of API gravity, distillation temperatures, and hydrocarbon composition.

The laboratory blending octane data for the 1981 FBRSU reference fuels are presented in Table C-V, with the sensitivities compared with the 1980 fuels in Table C-III. The sensitivities of the 1981 fuels were higher than the 1980 fuels at octane levels below 89 RON, and lower at levels above 89 RON.

V. TEST TECHNIQUE

The test technique (CRC Designation E-15-81, Attachment 2 of Appendix D) specified that octane number requirements be determined at level road acceleration conditions. The order of fuel testing was tank fuel, FBRSU fuels, FBRU fuels, and PR fuels. Knocking tendency was investigated at both maximum-throttle and by a new 50th percentile acceleration technique. Part-throttle was investigated in each vehicle, however, to determine if the part-throttle requirement was higher than the maximum full-throttle requirement. In these cases, the part-throttle requirement was determined.

The new 50th percentile acceleration technique was designed to study octane requirements of vehicles using an acceleration profile representative of average customer driving patterns. The occurrence of other abnormal combustion noise, such as surface ignition and rumble, was also reported. After-run was investigated on the test vehicles tank fuel.

The octane number requirement of a vehicle is defined as the Research or Motor octane number of the highest octane test fuel producing borderline knock which is induced by spark or surface ignition. The maximum octane number requirement of the vehicle is defined as the highest of these requirements, whether at full- or part-throttle. Maximum octane number requirements were obtained over the speed range with PR fuels only. In addition, 50th percentile acceleration technique requirements were determined with FBRU fuels.

A modification of the E-15-81 technique was provided for vehicles equipped with knock sensors, and is appended to Attachment 2 of Appendix D.

VI. DISCUSSION OF RESULTS

A. General

Of the sixteen participating laboratories, four used level roads, and twelve used chassis dynamometers. Seventy percent of the cars were tested on chassis dynamometers.

Average test temperature was $75^{\circ}F$, with a barometric pressure average of 29.65 in. Hg and average humidity of 76 grains per pound. Test conditions for individual observations are reported in Appendix E.

B. <u>Distribution of Maximum Octane Number Requirements</u>

The octane number requirement data were used to prepare satisfaction curves and tables for the following samples of 1981 model vehicles: (1) US and Imported Vehicles; (2) US and Imported Cars; (3) US Vehicles; (4) US Cars; and (5) Imported Vehicles. Research and Motor octane number requirements for the five categories at 50 percent and 90 percent satisfaction are shown in Table IV along with the corresponding 95 percent confidence limits of these requirements. In preparing the curves and tables, the octane number requirement data were weighted in accordance with final 1981 US model-year production data, and with US sales figures in the case of imports. Each curve and table should, therefore, provide an estimate of the distribution of octane number requirements of the appropriate vehicle population on the road. The procedure for assigning weighting factors and for calculating the octane number requirement distributions is described in Appendix F.

1. US and Imported Vehicles

In the 1981 Survey, maximum octane number requirements were determined on 417 vehicles with FBRU and FBRSU fuels, and on 416 vehicles in the case of PR fuels.

Maximum Research octane number requirements for all three reference fuels are shown in Figures 2a (rectangular coordinates) and 2b (probability plot). Maximum Research, Motor, and (R+M)/2 octane number requirements are listed in Table V. The 50 percent and 90 percent satisfaction level requirements are as follows:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Vehicles)

	5	0% Satis	fied	90% Satisfied		
<u>Fue1</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR FBRU	89.3 90.3	89.3 82.9	89.3 86.6	93.8 96.1	93.8 86.1	93.8 91.1
FBRSU	91.4	81.7	86.5	97.6	85.9	91.7

Comparisons of 1981 and 1980 Survey maximum Research, Motor, and (R+M)/2 octane number requirements are shown in Tables VI, VII, and VIII, respectively, for all three fuel series. Distributions of maximum RON requirements are shown in Figure 3 for PR fuels, Figure 4 for FBRU fuels, and Figure 5 for FBRSU fuels. The differences at the 50 percent and 90 percent satisfaction levels are summarized in the following table:

DIFFERENCES BETWEEN 1981 AND 1980 MAXIMUM

OCTANE NUMBER REQUIREMENTS

(US and Imported Vehicles)

<u>Fue1</u>	5(0% Satis	sfied	90% Satisfied		
	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	-0.1	-0.1	-0.1	1.0	1.0	1.0
FBRU	-0.5	-0.6	-0.6	1.0	-0.1	0.5
FBRSU	-1.3	-0.5	-0.9	-0.1	0.7	0.3

Confidence limits for maximum octane number requirement distributions are given in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements varied from ± 0.33 to ± 0.48 at the 50 percent satisfaction level, and from ± 0.45 to ± 0.64 at the 90 percent satisfaction level.

2. US and Imported Cars

Maximum octane number requirements were determined on 392 US and imported cars with FBRU and FBRSU fuels, and on 391 cars in the case of PR fuels.

Maximum Research, Motor, and (R+M)/2 octane number requirements on all three fuel series are given in Table IX. Maximum octane number requirements at the 50 percent and 90 percent satisfaction levels are summarized in the following table:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US and Imported Cars)

	5(0% Satis	sfied	90% Satisfied		
Fuel	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	88.9	88.9	88.9	93.4	93.4	93.4
FBRU FBRSU	89.8 90.9	82.6 81.3	86.2 86.1	95.4 97.2	85.7 85.6	90.5 91.4
rokou	30.3	01.3	OU. I	31.7.	03.0	71.4

The maximum Research octane number requirements for 1981 US and imported cars are compared with 1980 model-year data in Table X for PR, FBRU, and FBRSU fuels. Corresponding comparisons of Motor and (R+M)/2 octane number requirements are given in Tables XI and XII, respectively. Differences between 1981 and 1980 data at the 50 percent and 90 percent satisfaction levels are as follows:

DIFFERENCES BETWEEN 1981 AND 1980 MAXIMUM

OCTANE NUMBER REQUIREMENTS

(US and Imported Cars)

<u>Fuel</u>	5	0% Sati	sfied	90% Satisfied		
	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	-0.3	-0.3	-0.3	0.7	0.7	0.7
FBRU	-0.8	-0.8	-0.8	0.3	-0.5	-0.1
FBRSU	-1.5	-0.7	-1.1	-0.3	0.6	0.1

Confidence limits for maximum octane number requirement distributions of 1981 US and imported cars are given in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements varied from ± 0.35 to ± 0.50 at the 50 percent satisfaction level, and from ± 0.47 to ± 0.67 at the 90 percent satisfaction level.

3. <u>US Vehicles</u>

Maximum octane number requirements were determined on 318 US vehicles with FBRU and FBRSU fuels, and on 317 vehicles with PR fuels.

Distributions of maximum Research octane number requirements are plotted in Figures 6a and 6b for the three fuel series. Research, Motor, and (R+M)/2 octane number requirements for the US vehicles are given in Table XIII. Octane number requirements at the 50 percent and 90 percent satisfaction levels are listed below:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Vehicles)

	5(0% Sati	sfied	90% Satisfied		
Fuel	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	89.4	89.4	89.4	93.3	93.3	93.3
FBRU	91.1	83.3	87.2	96.5	86.4	91.4
FBRSU	92.2	82.2	87.2	98.1	86.3	92.2

Comparisons of maximum octane number requirements of 1981 and 1980 US vehicles for the three fuel series are given in Tables XIV, XV, and XVI in terms of RON, MON, and (R+M)/2, respectively. Distributions of maximum Research octane number requirements are shown in Figure 7 for PR fuels, in Figure 8 for FBRU fuels, and in Figure 9 for FBRSU fuels. Differences between octane number requirements of 1981 and 1980 US vehicles at the 50 percent and 90 percent satisfaction levels are given in the following table:

DIFFERENCES BETWEEN 1981 AND 1980 MAXIMUM

OCTANE NUMBER REQUIREMENTS

(US Vehicles)

	5	50% Satisfied			90% Satisfied				
Fue1	RON	MON	(R+M)/2	RON	MON	(R+M)/2			
PR	-0.4	-0.4	-0.4	0.3	0.3	0.3			
FBRU FBRSU	-0.3 -1.2	-0.5 -0.4	-0.4 -0.8	1.0 0.0	0.0 8.0	0.5 0.4			

Confidence limits for maximum octane number requirement distributions of 1981 US vehicles are tabulated in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements were from ± 0.33 to ± 0.51 at the 50 percent satisfaction level, and from ± 0.45 to ± 0.68 at the 90 percent satisfaction level.

4. US Cars

Maximum octane number requirements were determined on 300 US cars with FBRU and FBRSU fuels, and on 299 cars with PR fuels.

Maximum Research, Motor, and (R+M)/2 octane number requirements for all three fuel series are given in Table XVII, and summarized below for the 50 percent and 90 percent satisfaction levels:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Cars)

	50% Satisfied				90% Satisfied			
<u>Fuel</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
PR FBRU FBRSU	89.0 90.6 91.8	89.0 83.0 82.0	89.0 86.8 86.9	92.9 95.8 97.8	92.9 85.9 86.0	92.9 90.8 91.9		

The maximum Research, Motor, and (R+M)/2 octane number requirements of US cars tested in the 1981 and 1980 Surveys are compared in Tables XVIII, XIX, and XX, respectively, for all three fuel series. The differences at the 50 percent and 90 percent satisfaction levels are as follows:

DIFFERENCES BETWEEN 1981 AND 1980 MAXIMUM OCTANE NUMBER REQUIREMENTS

(US Cars)

	50% Satisfied				90% Satisfied			
Fue1	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
PR FBRU FBRSU	-0.6 -0.7 -1.3	-0.6 -0.8 -0.5	-0.6 -0.7 -0.9	-0.1 0.3 -0.1	-0.1 -0.5 0.6	-0.1 -0.1 0.3		

Confidence limits for maximum octane number requirement distributions of 1981 US cars are given in Appendix G, Table G-I. The 95 percent confidence limits for Research octane number requirements varied between ± 0.36 and ± 0.53 at the 50 percent satisfaction level, and between ± 0.49 and ± 0.71 at the 90 percent satisfaction level.

5. <u>Imported Vehicles</u>

Maximum octane number requirements were determined on ninety-nine imported vehicles with PR, FBRU, and FBRSU fuels. Maximum Research octane number requirements for all three reference fuel series are plotted in Figures 10a and 10b. Maximum octane number requirements in terms of RON, MON, and (R+M)/2 are given in Table XXI. The 50 percent and 90 percent satisfaction level maximum octane number requirements are listed in the following table:

MAXIMUM OCTANE NUMBER REQUIREMENTS

(Imported Vehicles)

	5	50% Satisfied			90% Satisfied			
Fuel .	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
PR	89.0	89.0	89.0	95.0	95.0	95.0		
FBRU	89.0	82.1	85.6	95.1	85.5	90.3		
FBRSU	90.1	80.8	85.5	96.2	85.0	90.6		

The maximum Research, Motor, and (R+M)/2 octane number requirements of imported vehicles in the 1981 and 1980 Surveys are compared in Tables XXII, XXIII, and XXIY, respectively, for all three fuel series. The differences at the 50 percent and 90 percent satisfaction levels are as follows:

OCTANE NUMBER REQUIREMENTS (Imported Vehicles)

	50	50% Satisfied			0% Satis	fied
<u>Fue1</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
PR	1.0	1.0	1.0	3.5	3.5	3.5
FBRU	0.0	-0.2	-0.1	2.5	0.9	1.7
FBRSU	-0.7	-0.3	-0.5	1.2	1.5	1.4

Confidence limits for maximum octane number requirement distributions of 1981 imported vehicles are tabulated in Appendix G. Table G-I. The 95 percent confidence limits for Research octane number requirements were from ± 0.89 to ± 0.92 at the 50 percent satisfaction level, and from ± 1.20 to ± 1.24 at the 90 percent satisfaction level.

6. Maximum Requirements at Part-Throttle

The throttle positions for maximum octane number requirements of tested vehicles were reported as full-throttle or part-throttle. Part-throttle requirements were defined only when their requirements were higher than the maximum full-throttle requirements. The number and percentage of vehicles having FBRU part-throttle octane number requirements greater than full-throttle requirements are shown below, along with a comparison with the 1980 Survey. The percentages of all vehicles having maximum requirements at part-throttle were 9.8 percent in 1981, compared with 6.7 percent in 1980.

VEHICLES HAVING FBRU PART-THROTTLE REQUIREMENTS

> FULL-THROTTLE REQUIREMENTS

(1981 and 1980 US and Imported Vehicles)

	No. Vehicles <u>Tested</u>	No. of <u>Vehicles</u>	% of Vehicles
1981 US and Imported Vehicles	417	41	9.8
1980 US and Imported Vehicles	389	26	6.7

7. Knock Sensor-Equipped Vehicles

Six vehicles equipped with knock sensors (knock limiters) were tested using the modified E-15-81 and 50th percentile acceleration techniques. The tabulated results of the individual vehicles tested are given in Appendix H. Due to the small sample of vehicles, no analysis was performed. There were also variations in the procedure and equipment used by the contributing laboratories. Maximum and minimum octane number requirements are based on spark-retard meter readings rather than sudible knock, and therefore, cannot be analyzed with data obtained under the E-15-81 technique.

C. 50th Percentile Acceleration Technique Octane Number Requirement Distributions on FBRU Fuels

Fiftieth percentile acceleration technique octane number requirements were determined on FBRU fuels using the 50th percentile acceleration procedure as described in the CRC E-15-81 Technique (Appendix D, Attachment 2). Weighted population distributions were developed from these data for the five vehicle categories: (1) US and Imported Vehicles (414 vehicles); (2) US and Imported Cars (389 cars); (3) US Vehicles (316 vehicles); (4) US Cars (298 cars); and (5) Imported Vehicles (98 vehicles). Fiftieth percentile acceleration technique Research, Motor, and (R+M)/2 octane number requirements for each respective category are summarized in Tables XXV, XXVI, XXVII, XXVIII, and XXIX. Distribution of 50th percentile acceleration technique Research octane number requirements are presented in Figures 11a and 11b for US and imported vehicles, Figures 12a and 12b for US vehicles, and Figures 13a and 13b for imported vehicles.

Maximum FBRU Research octane number requirements are compared with 50th percentile acceleration technique requirements for US and imported vehicles in Table XXX and Figure 14. The difference between maximum and 50th percentile acceleration technique Research octane number requirements is approximately two octane numbers across the satisfaction range. There were 153 vehicles which had their highest requirement in Mode 1, 117 in Mode 2, and 139 had equal requirements in both modes (Modes 1 and 2 are described in Appendix D). Five vehicles had requirements less than the lowest octane fuel available. The average vehicle speed at which knock occurred was 43 mph.

The distribution of vehicles within ten mile-per-hour increments are shown in the following table:

DISTRIBUTION OF VEHICLES

MPH Increment:	0-9	10-19	20-29	30-39	40-49	<u>50-59</u>	<u>60</u>
No. of Vehicles	. 2	0	23	114	146	121	3

Average manifold vacuum for knock was 2,0 in. Hg for the 50th percentile acceleration technique requirements, compared with 1.5 in. Hg for maximum requirements. Sixty-nine vehicles had 50th percentile acceleration technique requirements equal to maximum requirements, and sixteen vehicles had requirements greater than maximum requirements. Comparisons of vehicles with 50th percentile acceleration technique requirements higher than maximum requirements are shown in Table XXXI.

Confidence limits for 50th percentile acceleration technique Research and Motor octane number requirement distributions for all five categories of 1981 vehicles are shown in Appendix G, Table G-II. The 95 percent confidence limits at the 50 percent and 90 percent satisfaction levels ranged from ± 0.43 to ± 0.64 for RON and ± 0.24 to ± 0.35 for MON for all cases except imported vehicles, which had much wider confidence limits.

D. Select Models

There was a total of nine select models, consisting of a total of seven engine-chassis combinations. All of these were select models from the program. One model, although originally intended in the program as a select model, did not have a sufficient number of cars representing it to analyze it as a select model. There were enough cars tested of another model to divide them into two separate select model groups differentiating between automatic transmissions and manual transmissions. There were enough Model HIA 238 cars (fourteen) tested to separate them into an additional select model group, although Model HIA 238 is the same engine-chassis combination as Models IIA 238/LIA 238. The identification and specifications of the engine-chassis combinations are given in Table I.

Maximum Research, Motor, and (R+M)/2 octane number requirements are shown for 50 percent and 90 percent satisfaction levels on PR, FBRU, and FBRSU fuels in Table XXXII. Maximum octane number requirements for each select model at various satisfaction levels are listed in Appendix I, Table I-I. Maximum Research, Motor, and (R+M)/2 octane number requirements for the individual cars of each select model are given in Table I-II.

Octane requirement data for the 50th percentile acceleration technique are shown in Table I-III of Appendix I for various satisfaction levels, and Table I-IV for the individual cars of each select model.

Maximum Research octane number satisfaction curves for the nine select models are shown in Figures 15 through 23 for all three fuel series, in addition to the 50th percentile acceleration technique satisfaction curves on FBRU fuels. The individual data points plotted on the figures represent the maximum requirements obtained on FBRU reference fuels. Each curve was constructed by use of the "Z" method, which is discussed in Appendix F. The 95 percent confidence limits for maximum requirements are shown in Appendix G, Table G-III, and for 50th percentile acceleration technique requirements in Table G-IV.

E. Tank Fuel

As required by the program, tank fuel was tested for incidence of knock whenever an owners' questionnaire was obtained; however, owners' questionnaires were obtained only when the vehicle tested had a regular driver and the ignition timing did not have to be reset. To gain additional information, tank fuel ratings were made by many participants on many other vehicles which did not meet the restrictions listed.

1. Owner/Rater Comparison of Tank Fuel Knock

Owners' questionnaires were completed for 149 vehicles which had spark timing set to manufacturers' specifications. This is about 25 percent fewer than reported in the 1980 Survey. Of the 149 1981 vehicles, 43.6 percent were reported by trained raters to be knocking on tank fuel, whereas the owners reported 29.5 percent. This results in an owner/rater knock ratio of 0.68. The 43.6 percent of vehicles found to be knocking by trained raters in 1981 is lower than in past surveys. The owner/rater comparison of tank fuel knock data for 1981, along with previous survey data back to 1974, is presented in Table XXXIII.

2. Objectionable Versus Unobjectionable Knock

Of the owners reporting knock with vehicles which had their spark timing set to manufacturers' specifications, 40.9 percent found knock to be objectionable. This percentage of objectionable knock is lower than the 48.5 percent found in 1980, as shown on Table XXXIII.

3. Tank Fuel Knock Reported by Trained Raters

Tank fuel knock observations were reported by trained raters on 326 of the 417 test vehicles. The percentages of all 1981 vehicles and the select models knocking on tank fuel are shown in Table XXXIV. On a weighted basis, 42.9 percent of the 1981 vehicles tested knocked on tank fuel, compared with 49.9 percent in the 1980 Survey and 47.3 percent of the vehicles in the 1979 Survey. As shown in the table, however, five of the nine select models tested had high knocking percentages ranging from 56 percent to 78 percent.

4. After-Run on Tank Fuel

After-run was reported by trained raters on nine of 309 vehicles tested on tank fuel in 1981. Of the 148 owners' question-naires completed, there were nineteen reports of after-run on tank fuel. Eighteen of these vehicles had the spark advance set according to the manufacturers' recommendations. One vehicle when received was retarded three degrees from the recommended setting. Table XXXV shows maximum FBRU octane requirements, along with RON and MON determinations of the tank fuel. These are for the vehicles with after-run reported by the owners (spark advance at the manufacturers' recommendations).

F. Surface Ignition and Rumble

There were no reports of either surface ignition knock or rumble in the 1981 Survey.

G. Engine Speed for Maximum and 50th Percentile Acceleration Technique Octane Number Requirements

Engine speeds at which maximum octane number requirements occurred for each select model are shown in Table XXXVI for PR, FBRU, and FBRSU fuels. Weighted data for all 1981 vehicles are shown in Table XXXVII and Figure 24 for both maximum and 50th percentile acceleration technique octane number requirements. Requirements for the 50th percentile acceleration technique were generally found at higher rpm's than maximum-throttle requirements.

Engine speeds for 50th percentile acceleration technique octane number requirements are shown in Table XXXVIII for select models. Table XXXIX shows vehicle speeds in miles-per-hour for octane number requirements determined during the 50th percentile acceleration technique.

H. Road Octane Number Depreciation of FBRU and FBRSU Fuels

Road octane number ratings and road octane number depreciation for FBRU and FBRSU fuels were determined from the octane requirement data for all vehicles. The results are shown in Table XL.

In this report, the road octane number rating of FBRU and FBRSU fuels is defined as the primary reference fuel octane level which satisfied the same percentage of vehicles. Depreciation values were established by subtracting the road octane number rating of the fuel from its Research octane number. Depreciation values of FBRU fuels in the range 88 to 98 RON varied from 0.6 to 2.7, compared with 1.8 to 2.7 in the 1980 Survey. Depreciation of FBRSU fuels in the range 88 to 99 RON varied from 1.6 to 3.3, compared with 3.0 to 4.9 in last year's Survey.

I. Speed Range Octane Number Requirements

Primary reference fuel octane number requirements were determined over a range of engine speeds from 1,000 to 3,750 rpm on 303 vehicles. The individual car data are given in Appendix J, Table J-I. Speed range data were analyzed for the nine select models totaling 123 cars, and are plotted in Figures J-1 through J-9 for the 50 percent satisfaction level. The select model calculated results are given in Table J-II.

J. Gear Position for Maximum Requirements

The throttle/gear position for maximum octane number requirements on FBRU fuels is shown in Appendix K. Of the 417 vehicles tested, 311 (75 percent) were equipped with automatic transmissions and 106 (25 percent) were equipped with manual transmissions.

Eighty-nine percent of the automatic-transmission cars had maximum requirements at full-throttle (69 percent in the highest gear and 20 percent in passing gear), and 10 percent had maximum requirements at part-throttle in the highest gear. Ninety percent of the manual transmission cars had maximum requirements at full-throttle (1 percent in 2nd, 12 percent in 3rd, and 77 percent in 4th gear), and 9 percent had maximum requirements at part-throttle in the highest gear. (The critical gear could not be determined for the other 1 percent of each transmission group due to maximum requirements less than 78 RON.

TABLES

AND

FIGURES

TABLE I

1981 SELECT MODEL SPECIFICATIONS

Model	Disp.	Engine Type	Brake HP	Carb. <u>Bbl.</u>	Comp. Ratio	Trans- mission
Chrysler Corporation:						
Dodge Omni/Plymouth Horizon Dodge Aries/Plymouth Reliant	1.7	L-4 L-4	63 81	2 2	8.2 8.5	A A
Ford Motor Company:						
Escort/Lynx	1.6	L-4	65	2	8.8	Α
Escort/Lynx	1.6	L-4	65	2 2 2	8.8	A M
Fairmont/Zephyr	2.3	L-4	88	2	9.0	A
General Motors Corporation:						
GM "X" Body	2.5	L-4	84	2	8.2	A
GM "X" Body	2.8	V-6	110	2 2	8.5	Ä
Buick Regal/Century/						
Oldsmobile Cutlass	3.8	V-6	110	2 2	8.0	Α
Pontiac LeMans/Grand Prix	3.8	V-6	110	2	8.0	A

TABLE II

DISTRIBUTION OF ODOMETER MILEAGE

FOR TESTED VEHICLES

	No. of Vehicles Withi	in Mileage Increments
Mileage	1981 Vehicles	1980 Vehicles
0 - 1,999	0	0
2,000 - 3,999	0	0
4,000 - 5,999	29	44
6,000 - 7,999	104	86
8,000 - 9,999	95	67
10,000 - 11,999	59	68
12,000 - 13,999	59	56
14,000 - 15,999	29	36
16,000 - 17,999	18	33
18,000 - 19,999	9	21
20,000 - 24,999	9	11
25,000 - 25,999	3	5
30,000 +	3	2
No. of Vehicles	s 417	429
Average Mileage	10,601	11,253

TABLE III

1981 BASIC TIMING ADJUSTMENTS

Degrees	! _ Ve	lo. of hicles
	+	-
1	7	6
2	25	14
3	12	5
4	3	5
5	0	2
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	1
	47	33

Total

80

TABLE IV
OCTANE NUMBER REQUIREMENTS WITH 95% CONFIDENCE LIMITS

		٤	Research Octane No.	ctane No.	Motor Octane No	ane No.
Weighted Population	Fee	Vehicles	50% Sat.	90% Sat.	50% Sat.	90% Sat.
A. Maximum Octane Number Requirements	%					
US and Imported Vehicles	8	416	+	** ©	+	0 + 8
	FBRU	417	90.3 ± 0.42	96.1 ± 0.57	6	86.1 ± 0.32
	FBRSU	417	4 + 0	÷ 9	.7 ±	0 + 6
US and Imported Cars	æ	391	.0 + 0.	3.4 ± 0	+	4 + 0
•	FBRU	392	8 + 0	95.4 ± 0.59	82.6 ± 0.24	85.7 ± 0.33
	FBRSU	392	.0 ± 0.	7.2 ± 0	.3 ± 0.	0 + 9.
US Vehtcles	8	317	+	+ 0,	+	3 + 0
	FBRU	318	91.1 ± 0.43	96.5 ± 0.58	83.3 ± 0.25	86.4 ± 0.34
	FBRSU	318	2 ± 0.	+ 0.	2 ± 0.	+1
US Cars	8	299	+	+	0.4	+ 0
	FBRU	300	+	0	+ 0	+
	FBRSU	300	91.8 ± 0.53	97.8 ± 0.71	0 + 0	86.0 ± 0.48
Imported Vehicles	8	66	0 + 0	0 + 1.	0 + 0.	0 + 1.
	FBRU	66	89.0 ± 0.90	+ -	1 + 0.	5 + 0.
	FBRSU	66	.] ± 0		œ	85.0 ± 0.82
B. 50th Percentile Acceleration <u>Technique Octane Number Requirements</u>	ints					
US and Imported Vehicles	FBRU	414	88.1 ± 0.46	94.3 ± 0.62	81.7 ± 0.25	85.1 ± 0.33
US and Imported Cars	FBRU	389	87.7 ± 0.48	93.7 ± 0.64	81.4 ± 0.26	84.7 ± 0.35
US Vehicles	FBRU	316	89.3 ± 0.43	94.5 ± 0.58	82.3 ± 0.24	85.2 ± 0.32
US Cars	FBRU	298	88.7 ± 0.47	94.1 ± 0.63	82.0 ± 0.26	84.9 ± 0.35
Imported Vehicles	FBRU	86	86.9 ± 1.04	93.5 ± 1.40	81.0 ± 0.56	84.6 ± 0.76

TABLE V

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 US and Imported Vehicles

D	20		FBRU Fuels			BRSU F	uels
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	<u>(R+M)/2</u>	RON	MON	<u>(R+M)/2</u>
10	84.7	85.5	80.1	82.8	86.3	78.2	82.3
20	86.2	87.0	81.0	84.0	88.0	79.4	83.7
30	87.5	88.0	81.6	84.8	89.2	80.3	84.7
40	88.4	89.1	82.1	85.6	90.2	81.0	85.6
50	89.3	90.3	82.9	86.6	91.4	81.7	86.5
60	90.1	91.6	83.5	87.6	92.7	82.6	87.7
70	91.1	92.8	84.2	88.5	94.0	83.4	88.7
80	92.2	94.0	84.9	89.5	95.6	84.6	90.1
90	93.8	96.1	86.1	91.1	97.6	85.9	91.7
95	95.6	97.9	87.3	92.6	99.7	87.4	93.5
98	97.0	Н	Н	н	н	Н	Н
99	98.0	Н	н	н	Н	H	Н

TABLE VI

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1981 and 1980 US and Imported Vehicles

Percent <u>Satisfied</u>	PR Fuels			FE	FBRU Fuels			FBRSU Fuels		
	1981	<u>1980</u>		1981	<u>1980</u>		1981	1980		
10	84.7	84.3	0.4	85.5	85.6	-0.1	86.3	86.8	-0.5	
20	86.2	86.3	-0.1	87.0	88.0	-1.0	88.0	89.6	-1.6	
30	87.5	87.6	-0.1	88.0	89.1	-1.1	89.2	90.7	-1.5	
40	88.4	88.6	-0.2	89.1	90.0	-0.9	90.2	91.7	-1.5	
50	89.3	89.4	-0.1	90.3	90.8	-0.5	91.4	92.7	-1.3	
60	90.1	90.1	0.0	91.6	91.7	-0.1	92.7	93.7	-1.0	
70	91.1	90.8	0.3	92.8	92.6	0.2	94.0	94.8	-0.8	
80	92.2	91.6	0.6	94.0	93.7	0.3	95.6	96.1	-0.5	
90	93.8	92.8	1.0	96.1	95.1	1.0	97.6	97.7	-0.1	
95	95.6	93.9	1.7	97.9	96.1	1.8	99.7	98.9	0.7	
98	97.0	95.0	2.0	н	97.5	-	н	100.0	-	
99	98.0	95.5	2.5	н	98.8	-	н	н	-	

TABLE VII

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1981 and 1980 US and Imported Vehicles

	PR Fuels			FBRU Fuels			FBRSU Fuels		
Percent Satisfied	1981	1980		1981	1980		1981	1980	
10	84.7	84.3	0.4	80.1	1.08	0.0	78.2	78.9	-0.7
20	86.2	86.3	-0.1	81.0	81.7	-0.7	79.4	80.4	-1.0
30	87.5	87.6	-0.1	81.6	82.4	-0.8	80.3	81.0	-0.7
40	88.4	88.6	-0.2	82.1	83.0	-0.9	81.0	81.6	-0.6
50	89.3	89.4	-0.1	82.9	83.5	-0.6	81.7	82.2	-0.5
60	90.1	90.1	0.0	83.5	84.0	-0.5	82.6	82.8	-0.2
70	91.1	90.8	0.3	84.2	84.6	-0.4	83.4	83.4	0.0
80	92.2	91.6	0.6	84.9	85.3	-0.4	84.6	84.2	0.4
90	93.8	92.8	1.0	86.1	86.2	-0.1	85.9	85.2	0.7
95	95.6	93.9	1.7	87.3	86.8	0.5	87.4	86.2	1.2
98	97.0	95.0	2.0	Н	87.7	-	Н	87.3	-
99	98.0	95.5	2.5	H	88.6	-	н	н	-

TABLE VIII

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 and 1980 US and Imported Vehicles

Percent Satisfied	PR Fuels			FBRU Fuels			FBRSU Fuels		
	1981	<u>1980</u>		1981	<u>1980</u>		1981	<u>1980</u>	
10	84.7	84.3	0.4	82.8	82.9	-0.1	82.3	82.8	-0.5
20	86.2	86.3	-0.1	84.0	84.8	-0.8	83.7	85.0	-1.3
30	87.5	87.6	-0.1	84.8	85.7	-0.9	84.7	85.9	-1.2
40	88.4	88.6	-0.1	85.6	86.5	-0.9	85.6	86.7	-1.1
50	89.3	89.4	-0.1	86.6	87.2	-0.6	86.6	87.5	-0.9
60	90.1	90.1	0.0	87.6	87.8	-0.2	87.7	88.3	-0.6
70	91.1	90.8	0.3	88.5	88.6	-0.1	88.7	89.1	-0.4
80	92.2	91.6	0.6	89.5	89.5	0.0	90.1	90.1	0.0
90	93.8	92.8	1.0	91.1	90.6	0.5	91.7	91.4	0.3
95	95.6	93.9	1.7	92.6	91.5	1.1	93.5	92.5	1.0
98	97.0	95.0	2.0	н	92.6	•	Н	93.6	-
99	98.0	95.5	2.5	н	93.7	-	н	Н	-

TABLE IX

MAXIMUM RESEARCH, NOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 US and Imported Cars

D			BRU Fue	els	لسسا	FBRSU Fuels			
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
10	84.4	85.3	80.0	82.6	86.1	78.1	82.1		
20	85.9	86.7	80.8	83.8	87.7	79.2	83.5		
30	87.1	87.7	81.4	84.6	88.9	80.0	84.5		
40	88.1	88.7	81.9	85.3	89.9	80.7	85.3		
50	88.9	89.8	82.6	86.2	90.9	81.3	86.1		
60	89.2	91.2	83.3	87.2	92.2	82.3	87.3		
70	90.7	92.5	84.0	88.3	93.7	83.2	88.5		
80	91.9	93.7	84.7	89.2	95.2	84.3	89.8		
90	93.4	95.4	85.7	90.5	97.2	85.6	91.4		
95	94.9	97.4	87.0	92.2	99.4	87.2	93.2		
98	96.5	Н	H	н	H	н	н		
99	97.6	Н	н	н	H	H	н		

TABLE X

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1981 and 1980 US and Imported Cars

Percent	PR Fuels 1981 1980 Δ 84.4 83.8 0.6 85.9 86.2 -0.3 87.1 87.5 -0.4 88.1 88.4 -0.3 88.9 89.2 -0.3 89.7 90.0 -0.3 90.7 90.6 0.1 91.9 91.4 0.5 93.4 92.7 0.7	FB	RU Fue	ls	FBRSU Fuels				
Satisfied	1981	1980		1981	1980		1981	1980	
10	84.4	83.8	0.6	85.3	85.2	0.1	86.1	86.3	-0.2
20	85.9	86.2	-0.3	86.7	87.8	-1.1	87.7	89.4	-1.7
30	87.1	87.5	-0.4	87.7	89.0	-1.3	88.9	90.5	-1.6
40	88.1	88.4	-0.3	88.7	89.8	-1.1	89.9	91.4	-1.5
50	88.9	89.2	-0.3	89.8	90.6	-0.8	90.9	92.4	-1.5
60	89.7	90.0	-0.3	91.2	91.4	-0.2	92.2	93.3	-1.1
70	90.7	90.6	0.1	92.5	92.4	0.1	93.7	94.5	-0.8
80	91.9	91.4	0.5	93.7	93.6	0.1	95.2	96.0	-0.8
90	93.4	92.7	0.7	95.4	95.1	0.3	97.2	97.5	-0.3
95	94.9	94.1	0.8	97.4	96.2	1.2	99.4	98.8	0.6
98	96.5	9 5.1	1.4	H	97.8	-	H	100.3	-
99	97.6	95.6	2.0	Н	99.1	-	H	н	-

TABLE XI

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1981 and 1980 US and Imported Cars

0	PR Fuels			FE	RU Fue	s	FBRSU Fuels		
Percent <u>Satisfied</u>	<u>1981</u>	<u>1980</u>		1981	<u>1980</u>		1981	<u>1980</u>	
10	84.4	83.8	0.6	80.0	79.8	0.2	78.1	78.6	-0.5
20	85.9	86.2	-0.3	80.8	81.6	-0.8	79.2	80.3	-1.1
30	87.1	87.5	-0.4	81.4	82.3	-0.9	80.1	80.9	-0.8
40	88.1	88.4	-0.3	81.9	82.9	-1.0	80.7	81.5	-0.8
50	88.9	89.2	-0.3	82.6	83.4	-0.8	81.3	82.0	-0.7
60	89.7	90.0	-0.3	83.3	83.9	-0.6	82.3	82.6	-0.3
70	90.7	90.6	0.1	84.0	84.4	-0.4	83.2	83.2	0.0
80	91.9	91.4	0.5	84.7	85.2	-0.5	84.3	84.1	0.2
90	93.4	92.7	0.7	85.7	86.2	-0.5	85.6	85.0	0.6
95	94.9	94.1	0.8	87.0	86.8	0.2	87.2	86.2	1.0
98	96.5	95.1	1.4	Н	87.9	-	н	87.5	-
99	97.6	95.6	2.0	н	88.9	-	н	Н	-

TABLE XII

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 and 1980 US and Imported Cars

Downsak	PR Fuels			FE	FBRU Fuels			FBRSU Fuels		
Percent <u>Satisfied</u>	1981	1980		1981	1980		1981	1980	∆_	
10	84.4	83.8	0.6	82.6	82.5	0.1	82.1	82.4	-0.3	
20	85.9	86.2	-0.3	83.8	84.7	-0.9	83.5	84.8	-1.3	
30	87.1	87.5	-0.4	84.6	85.6	-1.0	84.5	85.7	-1.2	
40	88.1	88.4	-0.3	85.3	86.3	-1.0	85.3	86.4	-1.1	
50	88.9	89.2	-0.3	86.2	87.0	-0.8	86.1	87.2	-1.1	
60	89.2	90.0	-0.8	87.2	87.7	-0.5	87,3	88.0	-0.7	
70	90.7	90.6	0.1	88.3	88.4	-0.1	88.5	88.8	-0.3	
80	91.9	91.4	0.5	89.2	89.4	-0.2	89.8	90.0	-0.2	
90	93.4	92.7	0.7	90.5	90.6	-0.1	91.4	91.3	0.1	
95	94.9	94.1	0.8	92.2	91.5	0.7	93.2	92.5	0.7	
98	96.5	95.1	1.4	н	92.8	•	н	93.9	-	
9 9	97.6	95.6	2.0	н	94.0	-	н	н	-	

TABLE XIII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 US Vehicles

	20		BRU Fue	els	FBRSU Fue.s			
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
10	84.8	85.9	80.3	83.1	86.6	78.4	82.5	
20	86.3	87.2	81.1	84.1	88.2	79.6	83.9	
30	87.5	88.3	81.7	85.0	89.7	80.6	85.1	
40	88.6	89.8	82.6	86.2	90.9	81.3	86.1	
50	89.4	91.1	83.3	87.2	92.2	82.2	87.2	
60	90.3	92.2	83.8	88.0	93.4	83.0	88.2	
70	91.2	93.2	84.4	88.8	94.8	83.9	89.4	
80	92.0	94.4	85.2	89.8	96.1	84.9	90.5	
90	93.3	96.5	86.4	91.4	98.1	86.3	92.2	
95	95.0	98.2	87.5	92.8	100.0	87.6	93.8	
98	96.3	н	н	Н	н	Н	н	
99	97.0	Н	н	Н	Н	Н	н	

TABLE XIV

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1981 and 1980 US Vehicles

	F	R Fuels	<u> </u>	FB	RU Fue	ls	FB	FBRSU Fuels		
Percent <u>Satisfied</u>	1981	1980		1981	<u>1980</u>	Δ	1981	1980	Δ_	
10	84.8	85.3	-0.5	85.9	86.8	-0.9	86.6	88.3	-1.7	
20	86.3	87.0	-0.7	87.2	88.8	-1.6	88.2	90.3	-2.1	
30	87.5	88.2	-0.7	88.3	89.8	-1.5	89.7	91.4	-1.7	
40	88.6	89.1	-0.5	89.8	90.6	-0.8	90.9	92.4	-1.5	
50	89.4	89.8	-0.4	91.1	91.4	-0.3	92.2	93.4	-1.2	
60	90.3	90.4	-0.1	92.2	92.3	-1.1	93.4	94.5	-1.1	
70	91.2	91.1	0.1	93.2	93.2	0.0	94.8	95.6	-0.8	
80	92.0	91.9	0.1	94.4	94.2	0.2	96.1	96.6	-0.5	
90	93.3	93.0	0.3	96.5	95.5	1.0	98.1	98.1	0.0	
95	95.0	94.1	0.9	98.2	96.5	1.7	100.0	99.1	0.9	
98	96.3	95.2	1.1	н	98.0	-	н	100.2	-	
99	97.0	95.6	1.4	н	99.6	-	н	н	-	

TABLE XV

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1981 and 1980 US Vehicles

0		R Fuels	<u></u>	FB	RU Fue	ls	FBRSU Fuels		
Percent <u>Satisfied</u>	1981	<u>1980</u>		1981	<u>1980</u>		1981	<u>1980</u>	
10	84.8	85.3	-0.5	80.3	80.9	-0.6	78.4	79.8	-1,4
20	86.3	87.0	-0.7	81.1	82.2	-1.1	79.6	80.8	-1.2
30	87.5	88.2	-0.7	81.7	82.8	-1.1	80.6	81.4	-0.8
40	88.6	89.1	-0.5	82.6	83.4	-1.8	81.3	82.0	-0.7
50	89.4	89.8	-0.4	83.3	83.8	-0.5	82.2	82.6	-0.4
60	90.3	90.4	-0.1	83.8	84.4	-0.6	83.0	83.2	-0.2
70	91.2	91.1	0.1	84.4	85.0	-0.6	83.9	83.9	0.0
80	92.0	91.9	0.1	85.2	85.6	-0.4	84.9	84.5	0.4
90	93.3	93.0	0.3	86.4	86.4	0.0	86.3	85.5	0.8
95	95.0	94.1	0.9	87.5	87.0	0.5	87.6	86.4	1.2
98	96.3	95.2	1.1	Н	88.1	-	н	87.4	•
99	97.0	95.6	1.4	Н	89.3	-	н	н	-

TABLE XVI

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 and 1980 US Vehicles

		PR Fuels FBRU Fuels FB			1981 19 82.5 84 83.9 85 85.1 86 86.1 87 87.2 88 88.2 88	RSU Fuels			
Percent <u>Satisfied</u>	<u>1981</u>	1980	_Δ	<u>1981</u>	<u>1980</u>		1981	<u>1980</u>	
10	84.8	85.3	-0.5	83.1	83.9	-0.8	82.5	84.0	-1.5
20	86.3	87.0	-0.7	84.1	85.5	-1.4	83.9	85.5	-1.6
30	87.5	88.2	-0.7	85.0	86.3	-1.3	85.1	86.4	-1.3
40	88.6	89.1	-0.5	86.2	87.0	-0.8	86.1	87.2	-1.1
50	89.4	89.8	-0.4	87.2	87.6	-0.4	87.2	88.0	-0.8
60	90.3	90.4	-0.1	88.0	88.3	-0.3	88.2	88.8	-0.6
70	91.2	91.1	0.1	88.8	89.1	-0.3	89.4	89.7	-0.3
80	92.0	91.9	0.1	89.8	89.9	-0.1	90.5	90.6	-0.1
90	93.3	93.0	0.3	91.4	90.9	0.5	92.2	91.8	0.4
95	95.0	94.1	0.9	92.8	91.7	1.1	93.8	92.7	1.1
98	96.3	95.2	1.1	Н	93.1	-	н	93.8	-
99	97.0	95.6	1.4	Н	94.4	•	н	н	-

TABLE XVII

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 US Cars

		1	BRU Fue	els	FBRSU Fuels			
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
10	84.6	85.7	80.2	82.9	86.4	78.3	82.3	
20	86.0	86.9	81.0	84.0	87.9	79.4	83.6	
30	87.2	87.9	81.5	84.7	89.3	80.3	84.8	
40	88.1	89.2	82.2	85.7	90.5	81.1	85.8	
50	89.0	90.6	83.0	86.8	91.8	82.0	86.9	
60	89.9	92.0	83.7	87.8	93.1	82.9	88.0	
70	90.8	93.1	84.3	88.7	94.5	83.7	89.1	
80	91.7	94.1	85.0	89.5	95.8	84.7	90.2	
90	92.9	95.8	85.9	90.8	97.8	86.0	91.9	
95	94.4	97.7	87,2	92.4	99.8	87.5	93.6	
98	96.0	Н	Н	н	Н	н	н	
99	96.9	Н	Н	Н	Н	Н	н	

TABLE XVIII

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1981 and 1980 US Cars

Donaant		PR Fuels			BRU Fue	<u> s </u>	FBRSU Fuels		
Percent <u>Satisfied</u>	1981	<u>1980</u>		<u>1981</u>	<u>1980</u>	<u> </u>	<u>1981</u>	1980	Δ
10	84.6	85.1	-0.5	85.7	86.5	-0.8	86.4	87.8	-1.4
20	86.0	86.9	-0.9	86.9	88.8	-1.9	87.9	90.2	-2.3
30	87.2	88.1	-0.9	87.9	89.7	-1.8	89.3	91.2	-1.9
40	88.1	89.0	-0.9	89.2	90.5	-1.3	90.5	92.2	-1.7
50	89.0	89.6	-0.6	90.6	91.3	-0.7	91.8	93.1	-1.3
60	89.9	90.2	-0.3	92.0	92.1	-0.1	93.1	94.2	-1.1
70	90.8	90.8	0.0	93.1	93.1	0.0	94.5	95.3	-0.8
80	91.7	91.7	0.0	94.1	94.2	-0.1	95.8	96.5	-0.7
90	92.9	93.0	-0.1	95.8	95.5	0.3	97.8	97.9	-0.1
95	94.4	94.4	0.0	97.7	96.6	1.1	99.8	99.1	0.7
98	96.0	95.3	0.7	н	98.3	-	н	100.6	-
99	96.9	95.7	1.2	н	Н	-	H	н	-

TABLE XIX

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1981 and 1980 US Cars

Percent	!	PR Fuel:	<u> </u>	F	BRU Fue	ls_	FBRSU Fuels		
Satisfied	1981	1980		1981	1980		1981	<u>1980</u>	
10	84.6	85.1	-0.5	80.2	80.7	-0.5	78.3	79.5	-1.2
20	86.0	86.9	-0.9	81.0	82.2	-1.2	79.4	80.7	-1.3
30	87.2	88.1	-0.9	81.5	82.8	-1.3	80.3	81.3	-1.0
40	88.1	89.0	-0.9	82.2	83.3	-1.1	81.1	81.9	-0.8
50	89.0	89.6	-0.6	83.0	83.8	-0.8	82.0	82.5	-0.5
60	89.9	90.2	-0.3	83.7	84.2	-0.5	82.9	83.1	-0.2
70	90.8	90.8	0.0	84.3	84.8	-0.5	83.7	83.7	0.0
80	91.7	91.7	0.0	85.0	85.6	-0.6	84.7	84.4	0.3
90	92.9	93.0	-0.1	85.9	86.4	-0.5	86.0	85.4	0.6
95	94.4	94.4	0.0	87.2	87.1	0.1	87.5	86.4	1.1
98	96.0	95.3	0.7	н	88.3	-	Н	87.6	-
99	96.9	95.7	1.2	н	н	-	Н	Н	-

TABLE XX

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 and 1980 US Cars

	PR Fuels			FB	FBRU Fuels			FBRSU Fuels		
Percent <u>Satisfied</u>	<u>1981</u>	1980		<u>1981</u>	1980		1981	<u>1980</u>		
10	84.6	85.1	-0.5	82.9	83.6	-0.7	82.3	83.6	-1.3	
20	86.0	86.9	-0.9	84.0	85.5	-1.5	83.6	85.4	-1.8	
30	87.2	88.1	-0.9	84.6	86.3	-1.7	84.8	86.3	-1.5	
40	88.1	89.0	-0.9	85.7	86.9	-1.2	85.8	87.0	-1.2	
50	89.0	89.6	-0.6	86.8	87.5	-0.7	86.9	87.8	-0.9	
60	89.9	90.2	-0.3	87.8	88.1	-0.3	88.0	88.6	-0.6	
70	90.8	90.8	0.0	88.7	89.ù	-0.3	89.1	89.5	-0.4	
80	91.7	91.7	0.0	89.5	89.9	-0.4	90.2	90.4	-0.2	
90	92.9	93.0	-0.1	90.8	90.9	-0.1	91.9	91.6	0.3	
95	94.4	94.4	0.0	92.4	91.8	0.6	93.6	92.7	0.9	
98	96.0	95.3	0.7	н	93.3	-	H	94.1	•	
99	96.9	95.7	1,2	н	н	-	Н	H	-	

TABLE XXI

MAXIMUM RESEARCH, MOTOR, AND (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 Imported Vehicles

•	20		BRU Fue	els		FBRSU F	uels
Percent <u>Satisfied</u>	PR <u>Fuels</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2
10	84.4	85.0	79.8	82.4	85.7	77.8	81.8
20	86.0	86.4	80.6	83.5	87.6	79.1	83.4
30	87.3	87.6	81.4	84.5	88.6	79.9	84.2
40	88.2	88.4	81.8	85.1	89.4	80.4	84.9
50	89.0	89.0	82.1	85.6	90.1	80.8	85.5
60	89.7	89.8	82.6	86.2	90.9	81.3	86.1
70	90.9	91.2	83.2	87.2	92.2	82.2	87.2
80	92.9	92.9	84.2	88.6	94.0	83.4	88.7
90	95.0	95.1	85.5	90.3	96.2	85.0	90.6
95	96.8	96.8	86.6	91.7	98.4	86.5	92.4
98	Н	Н	Н	н	н	н	H
99	Н	Н	н	Н	Н	Н	н

TABLE XXII

COMPARISON OF MAXIMUM RESEARCH OCTANE NUMBER REQUIREMENTS

1981 and 1980 Imported Vehicles

	1	PR Fuels	<u> </u>	FI	RU Fuel	S	FB	RSU Fue	\$
Percent Satisfied	1981	1980		1981	1980		1981	1980	
10	84.4	79.4	5.0	85.0	81.7	3.3	85.7	82.3	3.4
20	86.0	84.5	1.5	86.4	85.7	0.7	87.6	87.3	0.3
30	87.3	86.1	1.2	87.6	87.4	0.2	88.6	89.2	-0.6
40	88.2	87.3	0.9	88.4	88.3	0.1	89.4	90.0	-0.6
50	89.0	88.0	1.0	89.0	89.0	0.0	90.1	90.8	-0.7
60	89.7	88.8	0.9	89.8	89.8	0.0	90.9	91.7	-0.8
70	90.9	89.7	1.2	91.2	90.8	0.4	92.2	92.6	-0.4
80	92.9	90.5	2.4	92.9	91.6	1.3	94.0	93.7	0.3
90	95.0	91.5	3.5	95.1	92.6	2.5	96.2	95.0	1.2
95	96.8	92.8	4.0	96.8	94.1	2.7	98.4	95.9	2.5
98	н	94.2	-	н	95.4	-	н	99.1	-
QQ	н	94.8	_	н	96.4	_	н	100.2	-

TABLE XXIII

COMPARISON OF MAXIMUM MOTOR OCTANE NUMBER REQUIREMENTS

1981 and 1980 Imported Vehicles

		R Fuels		FE	RU Fue	<u>s</u>	FBF	SU Fue	ls
Percent <u>Satisfied</u>	1981	1980		1981	1980		1981	<u>1980</u>	
10	84.4	79.4	5.0	79.8	77.3	2.5	77.8	75.8	2.0
20	86.0	84.5	1.5	80.6	80.2	0.4	79.1	79.2	-0.1
30	87.3	86.1	1.2	81.4	81.3	0.1	79.9	80.2	-0.3
40	88.2	87.3	0.9	81.8	81.9	-0.1	80.4	80.6	-0.2
50	89.0	88.0	1.0	82.1	82.3	-0.2	80.8	81.1	-0.3
60	89.7	88.8	0.9	82.6	82.9	-0.3	81.3	81.6	-0.3
70	90.9	89.7	1.2	83.2	83.5	-0.3	82.2	82.2	0.0
80	92.9	90.5	2.4	84.2	84.0	0.2	83.4	82.8	0.6
90	95.0	91.5	3.5	85.5	84.6	0.9	85.0	83.5	1.5
95	96.8	92.8	4.0	86.6	85.6	1.0	86.5	84.0	1.5
98	н	94.2	-	н	86.4	-	Н	86.4	•
99	н	94.8	-	н	86.9	•	н	87.3	•

TABLE XXIV

COMPARISON OF MAXIMUM (R+M)/2 OCTANE NUMBER REQUIREMENTS

1981 and 1980 Imported Vehicles

Democrat		R Fuels		FE	RU Fue	s	FBF	SU Fue	s
Percent <u>Satisfied</u>	1981	1980		1981	1980		1981	1980	
10	84.4	79.4	5.0	82.4	79.5	2.9	81.8	79.0	2.8
20	86.0	84.5	1.5	83.5	82.9	0.6	83.4	83,3	0.1
30	87.3	86.1	1.2	84.5	84.4	0.1	84.2	84.7	-0.5
40	88.2	87.3	0.9	85.1	85.1	0.0	84.9	85.3	-0.4
50	89.0	88.0	1.0	85.6	85.6	0.0	85.5	86.0	-0.5
60	89.7	88.88	0.9	86.2	86.4	-0.2	86.1	86.7	-0.6
70	90.9	89.7	1.2	87.2	87.2	0.0	87.2	87.4	-0.2
80	92.9	90.5	2.4	88.6	87.8	8.0	88.7	88.3	0.4
90	95.0	91.5	3.5	90.3	88.6	1.7	90.6	89.2	1.4
95	96.8	92.8	4.0	91.7	89.8	1.9	92.4	90.0	2.4
98	H	94.2	-	н	90.9	-	H	92.8	-
99	н	94.8	-	н	91.7	•	н	93.8	-

TABLE XXV

FBRU OCTANE NUMBER REQUIREMENTS

1981 US and Imported Vehicles
(414 Vehicles)

Percent <u>Satisfied</u>	Research Octane Number	Motor Octane Number	(R+M)/2 Octane Number
10	83.5	78.8	81.1
20	85.1	79.8	82.5
30	86.1	80.4	83.3
40	87.0	81.0	84.0
50	88.1	81.7	84.9
60	89.7	82.5	86.1
70	91.0	83.2	87.1
80	92.3	83.9	88.1
90	94.3	85.1	89.7
95	95.9	85.9	90.9
98	97.4	87.0	92.2
99	98.8	88.0	93.4

TABLE XXVI

FBRU OCTANE NUMBER REQUIREMENTS

1981 US and Imported Cars
(389 Cars)

Percent Satisfied	Research Octane Number	Motor Octane Number	(R+M)/2 Octane Number
10	83.1	78.6	80.8
20	84.8	79.7	82.2
30	85.8	80.3	83.1
40	86.8	80.8	83.8
50	87.7	81.4	84.6
60	89.1	82.2	85.6
70	90.5	83.0	86.7
80	92.0	83.7	87.8
90	93.7	84.7	89.2
95	95.9	86.0	90.9
98	97.6	87.1	92.4
99	99.2	88.2	93.7

TABLE XXVII

FBRU OCTANE NUMBER REQUIREMENTS

1981 US Vehicles

(316 Vehicles)

Percent Satisfied	Research Octane Number	Motor Octane Number	(R+M)/2 Octane Number
10	83.9	79.2	81.5
20	85.4	80.0	82.7
30	86.5	80.7	83.6
40	87.7	81.5	84.6
50	89.3	82.3	85.8
60	90.5	82.9	86.7
70	91.4	83.4	87.4
80	92.6	84.0	88.3
90	94.5	85.2	89.9
95	96.1	86.1	91.1
98	97.8	87.2	92.5
99	99.3	88.3	93.8

TABLE XXVIII

FBRU OCTANE NUMBER REQUIREMENTS

1981 US Cars

(298 Cars)

Percent Satisfied	Research Octane Number	Motor Octane Number	(R+M)/2 Octane Number
10	83.6	78.9	81.2
20	85.1	79.8	82.5
30	86.2	80.5	83.4
40	87.3	81.2	84.3
50	88.7	82.0	85.4
60	90.0	82.7	86.4
70	91.0	83.2	87.1
80	92.3	83.9	88.1
90	94.1	84.9	89.5
95	96.2	86.1	91.1
98	98.0	87.4	92.7
99	99.7	88.6	94.1

TABLE XXIX

FBRU OCTANE NUMBER REQUIREMENTS

1981 Imported Vehicles

(98 Vehicles)

Percent <u>Satisfied</u>	Research Octane Number	Motor Octane Number	(R+M)/2 Octane Number
10	82.6	78.2	80.4
20	84.5	79.5	82.0
30	85.5	80.1	82.8
40	86.2	80.6	83.4
50	86.9	81.0	83.9
60	87.6	81.4	84.5
70	88.5	81.8	85.2
80	90.9	83.2	87.0
90	93.5	84.6	89.0
95	95.4	85.7	90.6
98	96.5	86.4	91.4
99	97.2	86.9	92.0

TABLE XXX

COMPARISON OF MAXIMUM WITH 50TH PERCENTILE ACCELERATION TECHNIQUE

FBRU RESEARCH OCTANE NUMBER REQUIREMENTS

1981 US and Imported Vehicles

Percent Satisfied	Maximum <u>Octane Number</u> (417 Veh)	50th Percentile Octane Number (414 Veh)	
10	85.5	83.5	2.0
20	87.0	85.1	1.9
30	88.0	86.1	1.9
40	89.1	87.0	2.1
50	90.3	88.1	2.2
60	91.6	89.7	1.9
70	92.8	91.0	1.8
80	94.0	92.3	1.7
90	96.1	94.3	1.8
95	97.9	95.9	2.0
98	н	97.4	-
99	н	98.8	•

TABLE XXXI

COMPARISON OF VEHICLES WITH 50TH PERCENTILE ACCELERATION TECHNIQUE REQUIREMENTS

FBRU Fuels

		Maximum Requirement Data	irement	Data	50th Percentile Acceleration Technique Requirement Data	tile Acceleratio Requirement Data	celera ment D	tion Ta	schn1que
Observation No.	Vehicle Code	Requirement	RPM	MV.	Requirement	RPM	A.	MPH H	Mode
159	IIA 238	87	1600	1.4	88	1500	2.0	40	1 and 2
235	KL 22M	95	1900	2.0	96	2900	3.0	53	1 and 2
365	MCB 223	06	3550	8.0	92	3800	0.9	28	2
335	NLG 216M	82	850	1.0	82	1200	1.0	22	1 and 2
314	MCS 223	91.5	2900	9.0	93	2500	1.0	53	1 and 2
367	T 213M	84	2700	8.0	82	2800	0.8	40	1 and 2
215	NH 450	94	2100	1.0	95	2200	6.0	20	2
41	Q 218M	86	2700	1.8	87	2900	2.0	35	2
224	NH 450	86	2550	1.5	87	1850	4.0	34	1 and 2
80	OL 216M	06	1600	0.2	90.5	1800	0.2	40	2
15	EF 20	86.5	2500	9.0	87.5	1900	4.6	22	~
144	0CA 223	89	2700	1.6	06	2700	1.5	20	2
232	0V 242	92	1650	1.5	93	1900	1.4	47	_
153	00 250	92	1400	9.0	93	1400	9.0	45	_
301	SF 50	92	1400	0.3	92.5	1100	1.0	24	-
91	PL 217	83	2250	6.0	84.5	2100	1.2	34	2

TABLE XXXII

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1981 SELECT MODELS

	N.		_	earch ne No.	Mot Octar	or ne No.	(R+A Octar	1)/2 ne No.
<u>Model</u>	No. Tested	PR	FBRU	FBRSU	FBRU	FBRSU	FBRU	FBRSU
				50%	Satisfi	ed		
HIA 238	14	88.3	88.8	90.0	82.0	80.8	85.4	85.4
IIA 238/LIA 238	30	89.8	91.6	93.2	83.6	82.9	87.6	88.0
NCX 228/HCX 228/ ICX 228/LCX 228	19	84.6	85.4	86.9	79.9	78.6	82.7	82.7
NC5 225/HC5 225/ IC5 225/LC5 225	24	90.0	92.5	94.7	84.1	83.9	88.3	89.3
OL 216/ML 216	14	91.3	92.0	93.1	83.8	82.8	87.9	88.0
OL 216M/ML 216M	13	9 0.7	91.6	92.2	83.5	82.2	87.5	87.2
OCA 223/MCA 223	16	89.3	90.1	91.4	82.7	81.7	86.4	86.6
PL 217/KL 217	14	82.4	84.5	86.5	79.2	78.3	81.9	82.4
PC 222/KC 222	24	84.3	85.8	87.1	80.1	78.7	82.9	82.9
				90%	Satisfi	ed		
HIA 238	14	90.7	92.1	93.9	83.8	83.4	87.9	88.6
IIA 238/LIA 238	30	94.0	97.0	99.8	86.8	87.5	91.9	93.7
NCX 228/HCX 228/ ICX 228/LCX 228	19	88.2	89.3	91.6	82.4	81.8	85.9	86.7
NC5 225/HC5 225/ IC5 225/LC5 225	24	93.8	97.6	99.9	87.0	87.5	92.2	93.7
OL 216/ML 216	14	95.9	96.6	97.8	86.4	86.1	91.5	92.0
OL 216M/ML 216M	13	94.3	94.8	96.2	85.3	84.9	90.0	90.5
OCA 223/MCA 223	16	92.4	93.8	94.8	84.7	84.0	89.2	89.4
PL 217/KL 217	14	86.6	89.0	92.2	82.6	82.4	85.8	87.3
PC 222/KC 222	24	89.8	91.2	93.2	83.6	83.0	87.4	88.1

TABLE XXXIII

OWNER/RATER COMPARISON OF TANK FUEL KNOCK

(1974-1981 CRC Octane Number Requirement Surveys)

	1981	1980	1979	1978	1977	1976	1975	1974
Fue]:	Unleaded	Unleaded	Unleaded**	Unleaded**	Unleaded**	Unleaded**	Unleaded**	Mixed*
(No. of Reports):	(149)	(218)	(196)	(105)	(225)	(500)	(516)	(170)
% Knocking								
Trained Rater	43.6	51.1	52.6	50.5	54.7	63.8	89.4	24.7
Owner	29.5	31.2	26.0	32.4	29.3	40.5	21.8	11.2
% Owners Objecting								
Based on Total Reports	12.1	15.1	15.8	15.2	10.2	20.0	9.7	4.1
Based on Those Reporting Knock	40.9	48.5	8.09	46.9	34.8	49.4	44.5	36.6
Owner/Rater Ratio	0.68	0.61	0.49	0.64	0.54	0.63	0.24	0.45

* Mixed: Premium, regular, and subregular grades.

^{**} Some vehicles were designed for leaded fuels.

TABLE XXXIV

TANK-FUEL KNOCK REPORTED BY TRAINED RATERS

I.	All Vehicles			Cars Tested on	Tank Fuel
	Mo de 1	No. in Survey	No. Tested*	No. Knocking	% Knocking (Weighted Population)
	1981	417	326		42.9
	1980	429	374		49.9
	1979	490	414		47.3
	1978	434	338		47.2
	1977	478	457		44.2
II.	1981 Select Models	<u>i.</u>			
					% Knocking
	HIA 238	14	13	1	7.7
	IIA 238/LIA 238	30	18	10	55.6
	NCX 228/HCX 228/ ICX 228/LCX 228	19	17	3	17.6
	NC5 225/HC5 225/ IC5 225/LC5 225	24	19	13	68.4
	OL 216/ML 216	14	9	7	77.8
	OL 216M/ML 216M	13	9	6	66.7
	OCA 223/MCA 223	16	13	10	76.9
	PL 217/KL 217	14	12	1	8.3
	PC 222/KL 222	24	20	3	15.0

^{*} Tank-fuel tests were optional when owner questionnaires were not obtained.

TABLE XXXV

1981 VEHICLES REPORTED TO AFTER-RUN ON TANK FUEL

	Total Obs	ervations		/Rater Data Adjustment
	<u>Owner</u>	Rater	<u>Owner</u>	Rater
Vehicles Tested	169	309	148	148
After-Run Reported	19	9	18	5

AFTER-RUN REPORTED BY OWNER

(Vehicle Received with Spark at Manufacturer's Recommended Setting)

		FBRU	Tank	Fuel
Obs. No.	Vehicle <u>Code</u>	Maximum RON Requirement	RON	MON
167	KL 217	85.0	92.3	83.4
253	KL 217	86.0	91.4	83.5
14	KC 222	84.5	-	•
237	KC 222	90.0	93.5	83.9
2 95	LIA 238	94.0	92.4	83.6
319	MCB 133	93.0	90.9	83.0
264	MCS 223M	99.0	92.0	83.2
233	MI 242	91.5	92.5	83.1
89	NIK 238	90.0	92.5	82.2
163	NIK 238	98.0	91.7	82.5
187	NIK 238	94.0	95.1	85.6
204	OL 216M	90.0	90.7	83.4
309	OCS 223M	94.0	91.6	82.7
305	0 V250	91.0	91.6	82.7
200	PL 217	85.0	91.8	84.3
101	PC 222	82.0	92.0	83.2
239	PC 226	90.0	92.7	83.4
247	T 224	88.0	94.0	83.8

TABLE XXXVI

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS - 1981 SELECT MODELS % of Cars Having Maximum Requirements Within Specified Speed (rpm) Ranges

228/HCX 228/ 228/LCX 228	FBRSU	R 4 &	19	2	FBRSU	62 23	15	13
228/HC	FBRU	47 53	19	216M/M	ER S	23	©	13
ICX	8	ა 4 8 ა	19	6	8	8 ∞ ∞		13
1 238	FBRSU	33 7	30	516	FBRSU	29 50 7 14		14
11A 238/LIA 238	FBRU	30 93	30	OL 216/ML 216	FBRU	21 72 7		14
11A	8	0.89 8. E. E.	90	6	쫎	14 57 29		14
	FBRSU	57 29 7	14	225/	FBRSU	. 78 22 28	13	24
HIA 238	FBRU	7 65 21 7	4	225/HC5 225/LC5	FBRU	ക സ ക ക സ	.	24
	8	14 72 7	14	NC5 1C5	8	33	3 4	24
Kode]:	Fuel:			Model:	Fuel:			
		SPEED RANGE 1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799 2800 - 3199	3200 and Higher No. of Cars			SPEED RANGE 1599 and Lower 1600 - 1999 2000 - 2399	2400 - 2/99 2800 - 3199	Scoo and righer

TABLE XXXVI (Continued)

ENGINE SPEEDS FOR MAXIMUM OCTANE NUMBER REQUIREMENTS - 1981 SELECT MODELS X of Cars Having Maximum Requirements Within Specified Speed (rpm) Ranges

	Model:	OCA	223/MC/	1 223	4	217/KL	217	2	PC 222/KC 222	222
SPEED RANGE	Fue]:	8	FBRU	PR FBRU FBRSU	8	PR FBRU FBRSU	FBRSU	쫎	PR	FBRSU
1599 and Lower 1600 - 1999 2000 - 2399 2400 - 2799		96	6 75	9 0 0 0	19	69	9 9 9 9 9	35 52 13	17 70 13	6 8 6
2800 - 3199 3200 and Higher		15	စ္က	12	, ©	&	}	!	2	•
No of Cars		16	16	16	14*	14*	14*	24*	24*	24*

^{*} One car had a requirement of L (<78 RON)

TABLE XXXVII

ENGINE SPEEDS FOR MAXIMUM AND 50TH PERCENTILE ACCELERATION TECHNIQUE OCTANE NUMBER REQUIREMENTS

Weighted % of Vehicles Having Requirements in Indicated (rpm) Ranges

All 1981 Vehicles

Maximum Requirements	PR	FBRU	FBRSU
Engine Speed Range	<u>Fuels</u>	<u>Fuels</u>	<u>Fuels</u>
1599 and Lower	26.6	24.7	23.3
1600 - 1999	32.2	30.0	29.8
2000 - 2399	21.9	19.8	18.2
2400 - 2799	15.7	16.7	15.9
2800 - 3199	2.9	4.5	6.7
3200 and Higher	0.7	4.3	6.2
50th Percentile			
Acceleration Technique			
Engine Speed Range			
1599 and Lower	•	16.4	-
1600 - 1999	•	26.3	-
2000 - 2399	-	25.7	•
2400 - 2799	-	19.7	-
2800 - 3199	-	8.7	-
3200 and Higher	-	3.2	-

TABLE XXXVIII

ENGINE SPEEDS FOR FBRU 50TH PERCENTILE ACCELERATION TECHNIQUE

OCTANE NUMBER REQUIREMENTS

1981 Select Models

		% O. %	f Cars Hav	ing Require	ements Wit	% of Cars Having Requirements Within rpm Ranges	des
Model	No. of Cars	1599 and Lower	1600- 1999	2000-	2400- 2799	2800- 3199	3200 and Higher
HIA 238	14	14	28	7	7	14	
IIA 238/LIA 238	30	40	37	23			
NCX 228/HCX 228/ ICX 228/LCX 228	19			33	53	16	
NCS 225/HCS 225/ ICS 225/LCS 225	24		4	59	20	4	13
OL 216/ML 216	14	7	20	36	7		
OL 216M/ML 216M	13		33	15	31	œ	15
OCA 223/MCA 223	16			13	26	52	ø
PL 217/KL 217	14*			75	œ	11	
PC 222/KC 222	23*		19	29	14		

^{*} Two cars had requirements of L (<78 RON)

TABLE XXXIX

MILES PER HOUR FOR FBRU 50TH PERCENTILE ACCELERATION TECHNIQUE OCTANE NUMBER REQUIREMENTS

					Pegui		Cars be Within	laving in MPH F	ennec	
		No. of Cars	MPH Avg.	0- 9	10- 19	20- 29	30- 39	40- 49	50- 59	60
I.	SELECT MODELS									
	HIA 238	14	46.0				7	64	29	
	IIA 238/LIA 238	30	42.5			6	27	40	27	
	NCX 228/HCX 228/ ICX 228/LCX 228	19	47.0				21	26	53	
	NC5 225/HC5 225/ IC5 225/LC5 225	24	48.5				13	33	50	4
	OL 216/ML 216	14	39.2				43	57		
	OL 216M/ML 216M	13	43.4				31	38	23	8
	OCA 223/MCA 223	16	51.0			6		13	81	
	PL 217/KL 217	14*	38.1				66	17	17	
	PC 222/KC 222	23*	39.2			10	42	38	10	
II.	POPULATION (Weight	æd)								
	US and Imported Vehicles (132 Models)	414**	42.8	0.5	0.0	5.6	27.9	35.7	29.6	0.7

^{*} Two cars had requirements of L (<78 RON)

^{**} Five Vehicles had requirements of L (<78 RON)

TABLE XL

ROAD OCTANE DEPRECIATION OF 1981 FBRU AND FBRSU FUELS

All 1981 Vehicles

		FBRU F	י בי			FBRSU F	uels	
RON	% Satisfied	Sensi- tivity	Road Octane Rating	Depre- ciation	% Satisfied	Sensi- tivity	Road Octane Rating	Depre- ciation
84	4.9	4.8	83.2	0.8	3.3	7.5	-	-
85	7.7	5.2	84.2	0.8	5.0	7.5	-	-
86	12.6	5.6	85.1	0.9	8.5	8.0	84.2	1.8
87	20.2	6.0	86.3	0.7	13.7	8.3	85.2	1.8
88	30.0	6.4	87.4	0.6	19.8	8.6	86.4	1.6
89	39.4	6.9	88.4	0.6	27.9	8.9	87.2	1.8
90	47.6	7.3	89.1	0.9	37.6	9.2	88.2	1.8
91	54.9	7.8	89.8	1.2	47.2	9.6	89.0	2.0
92	62.7	8.3	90.5	1.5	54.6	9.9	89.6	2.4
93	71.6	8.7	91.2	1.8	61.9	10.2	90.2	2.8
94	79.8	9.1	92.3	1.7	69.7	10.6	91.0	3.0
95	85.7	9.5	93.0	2.0	75.8	10.9	91.7	3.3
96	89.5	10.0	93.8	2.2	82.0	11.2	92.6	3.4
97	92.7	10.3	94.5	2.5	87.6	11.5	93.2	3.8
98	95.2	10.6	95.3	2.7	91.5	11.8	94.2	3.8
99	97.3	10.9	-	-	93.9	12.1	94.7	3.3
100	•	•	-	-	95.5	12.4	-	-
101	-	-	-	-	96.5	12.7	-	-

FIGURE 1
DISTRIBUTION OF ODOMETER MILEAGE
FOR 1981 MODEL VEHICLES TESTED

FIGURE 2a

DISTRIBUTION OF MAXIMUM RON REQUIREMENTS 1981 U.S. AND IMPORTED VEHICLES

PR FUEL 416 VEHICLES
FBRU FUEL 417 VEHICLES
FBRSU FUEL 417 VEHICLES

FIGURE 26
DISTRIBUTION OF MAXIMUM RON REQUIREMENTS
1981 U.S. AND IMPORTED VEHICLES

FIGURE 3

COMPARISON OF MAXIMUM PR FUEL REQUIREMENTS 1981 AND 1980 U.S. AND IMPORTED VEHICLES

______1981 SURVEY 416 VEHICLES

FIGURE 4

COMPARISON OF MAXIMUM FBRU FUEL RON REQUIREMENTS 1981 AND 1980 U.S. AND IMPORTED VEHICLES

______ 1981 SURVEY 417 VEHICLES ____ _ 1980 SURVEY 429 VEHICLES

FIGURE 5

COMPARISON OF MAXIMUM FBRSU FUEL RON REQUIREMENTS 1981 AND 1980 U.S. AND IMPORTED VEHICLES

______1981 SURVEY 417 VEHICLES

FIGURE 6a
DISTRIBUTION OF MAXIMUM RON REQUIREMENTS - 1981 U.S. VEHICLES

FIGURE 86
DISTRIBUTION OF MAXIMUM RON REQUIREMENTS
1981 U.S. VEHICLES

FIGURE 7

COMPARISON OF MAXIMUM PR FUEL REQUIREMENTS 1981 AND 1980 US. VEHICLES

1981 SURVEY 317 VEHICLES
1980 SURVEY 344 VEHICLES

FIGURE 8

COMPARISON OF MAXIMUM FBRU FUEL REQUIREMENTS 1981 AND 1980 U.S. VEHICLES

1981 SURVEY 318 VEHICLES

FIGURE 9

COMPARISON OF MAXIMUM FBRSU FUEL REQUIREMENTS 1981 AND 1980 U.S. VEHICLES

1981 SURVEY 318 VEHICLES
1980 SURVEY 344 VEHICLES

FIGURE 10a

DISTRIBUTION OF MAXIMUM RON REQUIREMENTS 1981 IMPORTED VEHICLES

FIGURE 11a

DISTRIBUTION OF 50TH PERCENTILE FBRU *
RON REQUIREMENTS
1981 U.S. AND IMPORTED VEHICLES
(414 VEHICLES)

FIGURE 11b

DISTRIBUTION OF
*50TH PERCENTILE FBRU RON REQUIREMENTS
1981 U.S. AMD IMPORTED VEHICLES
(414 VEHICLES)

FIGURE 12a

DISTRIBUTION OF 50TH PERCENTILE FBRU*
RON REQUIREMENTS
1981 U.S. VEHICLES
(316 VEHICLES)

* 50th Percentile Acceleration Technique

FIGURE 13a

DISTRIBUTION OF 50TH PERCENTILE FBRU *
RON REQUIREMENTS
1981 IMPORTED VEHICLES
(98 VEHICLES)

FIGURE 13b
DISTRIBUTION OF
*50TH PERCENTILE FBRU RON REQUIREMENTS
1961 IMPORTED VEHICLES
(98 VEHICLES)

* 50th Percentile Acceleration Technique

FIGURE 14

COMPARISON OF MAXIMUM FBRU RON REQUIREMENTS WITH 50TH PERCENTILE REQUIREMENTS *
1981 U.S. AND IMPORTED VEHICLES

MAXIMUM (417 VEHICLES)

50TH PERCENTILE (414 VEHICLES)

^{* 50}th Percentile Acceleration Technique

* 50th Percentile Acceleration Technique

FIGURE 18
DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS
1981 MODEL NC5 225/HC5 225/LC5 225 (24 CARS)

FIGURE 19
DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS
1981 MODEL OL 216/ML 216 (14 CARS)

1

Ē 50TH PERCENTILE REQUIREMENTS* ** Points Plotted -- PR FUEL**

--- FBRU FUEL**

--- FBRSU FUEL

--- FBRSU FUEL

--- FBRU FUEL

--- FBRU FUEL DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS 1981 MODEL OL 216M/ML 216M (13 CARS) PERCENT SATISFIED FIGURE 20 50th Percentile Acceleration Technique 82 78 78 8 102 8 8 8 8 8 8 3 8 RESEARCH OCTANE NUMBER

50TH PERCENTILE REQUIREMENTS* MAXIMUM REQUIREMENTS DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS 1981 MODEL PL 217/KL 217 (14 CARS) PR FUEL FBRU FUEL** FBRSU FUEL FBRU FUEL 102 8 8 8 8 8 8 88 88 8 78 # 82 92 RESEARCH OCTANE NUMBER

** Points Plotted

PERCENT SATISFIED

FIGURE 23
DISTRIBUTION OF RESEARCH OCTANE NUMBER REQUIREMENTS
1981 MODEL PC 222/KC 222 (24 CARS)

FIGURE 24

ENGINE SPEEDS FOR MAXIMUM AND 50TH PERCENTILE* OCTANE NUMBER REQUIREMENTS ALL 1981 VEHICLES

* 50th Percentile Acceleration Technique

4-

APPENDIX A

PARTICIPATING LABORATORIES

PARTICIPATING LABORATORIES

EASTERN AREA

E. I. du Pont de Nemours and Company, Inc. Wilmington, Delaware

Exxon Research and Engineering Company Linden, New Jersey

Gulf Research and Development Company Pittsburgh, Pennsylvania

Mobil Research and Development Corporation Paulsboro, New Jersey

Sun Company Marcus Hook, Pennsylvania

Texaco Inc. Beacon, New York

EAST CENTRAL AREA

Ethyl Corporation Detroit, Michigan

Ford Motor Company Dearborn, Michigan

General Motors Corporation Warren, Michigan

Shell Canada Oakville, Ontario

Standard Oil Company (Ohio) Cleveland, Ohio

WESTERN AREA

Chevron Research Company Richmond, California

Union Oil Company of California Brea, California

WEST CENTRAL

Amoco Oil Company Naperville, Illinois

Phillips Petroleum Company Bartlesville, Oklahoma

Shell Development Company Houston, Texas APPENDIX B

MEMBERSHIP: 1981 ANALYSIS PANEL

1981 CRC OCTANE NUMBER REQUIREMENT SURVEY

(CRC Project No. CM-123-81)

1981 Analysis Panel

D. P. Barnard, Leader Standard Oil Company (Ohio)

J. L. Jorzone Mobil Research and Development Corporation

W. J. Brown Ethyl Corporation

E. S. Corner Consultant

N. D. Esau Amoco 011 Company

D. W. Hall Chevron Research Company

J. D. Rogers, Jr. E. I. du Pont de Nemours and Company, Inc.

K. R. Schaper Gulf Research and Development Company

R. A. Wirth Sun Company

T. Wusz Union Oil Company of California

APPENDIX C

DATA ON 1981 FULL-BOILING RANGE REFERENCE FUELS

TABLE C-I

SUPPLIERS' FUEL INSPECTIONS

COMPARISON OF 1980 AND 1981 FBRU FUELS

	Intermediate-							
	Low-Octane Base Blend		Octane Base Blend		High-Octane Base Blend			
	RMFD	RMFD	RMFD	RMFD	RMFD	RMFD		
	332-81	326-80	<u>333-81</u>	<u>327–80</u>	<u>334-81</u>	<u>328-80</u>		
Laboratory Inspection								
Distillation, °F				•••	23	114		
1 BP	97	106	97	106	91	114		
10% Evap.	130	138	126	138	124	156		
30% Evap.	160	182	167	164	173	198		
50% Evap.	197	219	204	202	225	238		
70% Evap.	235	243	232	256	247	257		
90% Evap.	308	318	285	344	285	296		
End Point	383	404	377	436	347	360		
Gravity, °API	66.9	66.6	62.2	60.6	53.1	51.2		
RVP, psi	8.4	8.0	9.0	7.1	9.0	6.9		
Lead, g/gal.	<0.003	0.009	<0.003	0.015	<0.003	0.013		
Oxidation Stability, hr. >24		>24	>24	>24	>24	>24		
Hydrocarbon Type, Vol. %	-							
Awama Adaa	18.0	12.7	18.0	18.2	47.0	50.8		
Aromatics	5.0	10.6	8.0	11.1	0.0	1.6		
Olefins	77.0	76.7	74.0	70.7	53.0	47.6		
Saturates	//.0	70.7	74.0		0000			
Research Octane Number	77.4	77.1	90.7	89.9	100.4	100.9		
Hotor Octane Number	73.6	73.1	82.9	82.1	89.1	90.0		
Sensitivity	3.8	4.0	7.8	7.8	11.3	10.9		

100

TABLE C-II OCTANE NUMBERS AND COMPOSITIONS FOR 1981 FBRU FUELS

Blending Data Composition, Volume Percent Sensi-Motor Research RMFD-333-81 RMFD-334-81 Octane No. tivity RMFD-332-81 Octane No. 74.3 3.7 78 97.0 3.0 3.9 76.1 82.5 17.5 80 4.2 77.8 33.0 67.0 82 79.2 4.8 48.0 52.0 84 79.8 5.2 44.0 56.0 85 5.6 80.4 36.0 64.0 86 81.0 6.0 72.0 28.0 87 6.4 81.6 20.0 80.0 88 6.9 82.1 88.0 12.0 89 82.7 7.3 96.0 90 4.0 83.2 7.8 5.0 95.0 91 83.7 8.3 85.0 15.0 92 8.7 84.3 75.0 25.0 93 84.9 9.1 35.0 65.0 94 85.5 9.5 45.0 55.0 95 10.0 55.0 86.0 45.0 96 86.7 10.3 34.0 66.0 97 10.6 87.4 76.0 24.0 98 85.0 88.1 10.9 15.0 99 11.2 88.8 97.0 3.0

TABLE C-III

SENSITIVITIES OF 1980 AND 1981 FBRU AND FBRSU FUELS

		FBRU			FBRSU		
Research Octane No.	1981	1980		1981	1980		
78 80 82 84 85 86 87	3.7 3.9 4.2 4.8 5.2 5.6 6.0	3.5 4.1 4.5 5.1 5.3 5.6 6.0	0.2 -0.2 -0.3 -0.3 -0.1 0.0	5.8 6.4 6.9 7.5 7.7 8.0 8.3	5.5 5.9 6.4 7.0 7.3 7.6 8.0	0.3 0.5 0.5 0.5 0.4 0.4	
88 89 90 91 92 93	6.4 6.9 7.3 7.8 8.3 8.7 9.1	6.3 6.7 7.0 7.4 7.8 8.2 8.5	0.1 0.2 0.3 0.4 0.5 0.5	8.6 8.9 9.2 9.6 9.9 10.2	8.4 8.9 9.4 9.8 10.2 10.6 11.0	0.2 0.0 -0.2 -0.2 -0.3 -0.4	
95 96 97 98 99 100	9.5 10.0 10.3 10.6 10.9 11.2	8.9 9.3 9.7 9.9 10.2 10.4 (10.4)	0.6 0.7 0.6 0.7 0.7 0.8	10.9 11.2 11.5 11.8 12.1 12.4 12.7	11.5 11.9 12.3 12.6 12.7 12.7 (12.6)	-0.4 -0.7 -0.8 -0.8 -0.6 -0.3	

TABLE C-IV

SUPPLIERS' FUEL INSPECTIONS

COMPARISON OF 1980 AND 1981 FB		FUELS				
	Low-00 Base 1 RMFD 335-81		Inte 0 <u>Bas</u> RMFD 336-81	1iate <u>1</u> <u>xMFD</u> 330-80		Octane Blend RMFD 331-80
Laboratory Inspection						
Distillation, °F 1BP 10% Evap. 30% Evap. 50% Evap. 70% Evap. 90% Evap. End Point Gravity, °API RVP, psi	101 134 174 217 266 354 412 62.8	100 146 203 262 308 388 420 53.1	99 134 170 202 237 320 406 58.1	90 124 159 214 248 353 430 63.5	103 131 179 232 268 315 390 53.5	104 152 204 240 257 294 398 46.2
Lead, g/gal.	<0.003	0.009	<0.003	0.017	<0.003	0.014
Oxidation Stab., hr.	>24	>24	>24	>24	>24	>24
Hydrocarbon Type, Vol. %	_					
Aromatics Olefins Saturates	16.0 33.0 51.0	36.0 18.2 45.8	25.0 10.0 65.0	23.8 26.5 49.7	43.0 5.0 52.0	59.8 12.4 27.8
Research Octane Number	77.8	77.3	90.7	90.8	101.5	100.6
Motor Octane Number	71.4	71.2	80.8	80.9	88.4	87.7
Sensitivity	6.4	6.1	9.9	9.9	13.1	12.9

TABLE C-V

OCTANE NUMBERS AND COMPOSITIONS FOR 1981 FBRSU FUELS

Blending Data Composition, Volume Percent Research Motor Sensi-Octane No. RMFD-335-81 RMFD-336-81 RMFD-337-81 Octane No. tivity 78 72.2 96.0 4.0 5.8 73.6 80 81.0 19.0 6.4 75.1 82 66.0 34.0 6.9 84 51.0 49.0 76.5 7.5 43.0 77.3 7.7 85 57.0 35.5 78.0 8.0 86 64.5 78.7 8.3 87 27.5 72.5 80.0 79.4 8.6 88 20.0 89 12.0 88.0 80.1 8.9 96.0 80.8 9.2 90 4.0 81.4 9.6 91 96.0 4.0 82.1 9.9 92 87.5 12.5 82.8 93 79.0 21.0 10.2 83.4 94 70.0 30.0 10.6 84.1 10.9 95 61.0 39.0 84.8 52.0 48.0 11.2 96 57.5 85.5 11.5 97 42.5 11.8 33.0 67.0 86.2 98 12.1 77.5 86.9 99 22.5 90.0 87.6 12.4 100 10.0 100.0 88.3 12.7 101

APPENDIX D

PROGRAM

APPENDIX D

COORDINATING RESEARCH COUNCIL

INCORPORATED

219 PERIMETER CENTER PARKWAY ATLANTA, GEORGIA 30346 (404) 396-3400

PROGRAM

for the

1981 CRC OCTANE NUMBER REQUIREMENT SURVEY

CRC Project No. CM-123-81

Revised

September 1980

TABLE OF CONTENTS

TEXT	OF PROGRAM	Page No.
I.	INTRODUCTION	D-1
II.	GEOGRAPHICAL AREAS	D-1
III.	VEHICLES	D-2
IV.	FUELS	D-2
v.	TEST TECHNIQUE	D-3
VI.	DATA FORMS	D-4
VII.	REPORTING RESULTS	D-4
INDEX	OF TABLES	
TABLE	D-I - Design Specifications for 1981 Select Models	D-5
TABLE	D-II - Limiting Specifications for 1981 Full-Boiling Range Reference Fuels	D-6
INDEX	OF ATTACHMENTS	
ATTAC	HMENT 1 - Owner's Questionnaire	D-7
ATTAC	HMENT 2 - Technique for Determination of Octane Number Requirements of Light-Duty Vehicles	D-9

I. INTRODUCTION

The 1981 program of the CRC Light-Duty Octane Number Requirement Survey Group will consist of a survey of the octane number requirements of 1981 model domestic and imported vehicles. For the purposes of this program, the designation "passenger vehicles" will include passenger cars and light-duty (<8500 lb/3856 kg GVW) pickup trucks, and vans. Approximately 450 vehicles will be tested. Most of these vehicles will be sampled in proportion to their relative production or import volume, to provide data from which to estimate the distribution of octane number requirements for the 1981 model vehicle population in the United States. In addition, select models of special interest will be tested in sufficient numbers to estimate their requirement distributions.

Knocking characteristics will be investigated with three series of reference fuels. Tank fuel knock will also be evaluated. Octane requirements will be established for each vehicle using high sensitivity unleaded full-boiling range reference (FBRSU) fuels, average sensitivity unleaded full-boiling range reference (FBRU) fuels, and primary reference (PR) fuels.

Octane requirements throughout the speed range will be obtained with PR fuels only. After-run characteristics will be observed on tank fuel.

II. GEOGRAPHICAL AREAS

As in previous years, the 1981 Survey will be conducted on a nationwide basis. The country has been divided into four geographical areas. Participants located in New York, New Jersey, Delaware, and Pennsylvania have been included in the Eastern area; those located in Ohio, Michigan, and Kentucky comprise the East Central area; those in Illinois, Texas, and Oklahoma comprise the West Central area; and California participants make up the Western area. A coordinator has been appointed for each area as follows:

Eastern Area - S. Antika
East Central Area - D. P. Barnard
West Central Area - J. B. Baker
Western Area - T. Wusz

The area coordinators will contact their area participants periodically regarding the progress of the survey. To expedite this, it is suggested that participants send copies of all correspondence concerning the survey to the area coordinators. This program outlines the survey in broad terms. If more detailed information is desired, it is suggested that the participant contact his area coordinator.

III. VEHICLES

A total of approximately 450 vehicles will be tested in the 1981 Survey. By requesting each participating laboratory to test 25 vehicles and assuming 18 participants, the 450-vehicle total is obtained. These will be divided into two groups: (1) the statistical group, sampled in proportion to U. S. car model production or import volume, and (2) select models of special interest. Approximately 20 of each of these select models will be tested to provide an estimate of the octane requirement distribution for each model. Some of these 20 vehicles will be those already included in the statistical group, and the remainder will be additional vehicles added to the program.

The desired number of vehicles to be tested in each category is as follows:

Statistical Group 400
Additional Select
Model Group 50
Total 450

A detailed breakdown of the specific models and the number of each model to be tested will be circulated to the participants in May 1981 after an estimate of vehicle model production has been obtained. Design specifications for select models to be tested in the 1981 Survey are shown on page D-5. Selection of these vehicles has been based on new or modified design characteristics that might have a significant effect on octane number requirements and high sales volume which allows individual treatment without additional testing.

Wherever possible, specific vehicle assignments to individual participating laboratories will be made in a pattern which tends to minimize data bias. This will be accomplished by apportioning cars of a given model among the four geographical areas, and subsequently among the laboratories within each area, in order to minimize the effect of non-random factors on the results of the Survey.

IV. FUELS

A. Full-Boiling Range Reference Fuels

Two full-boiling range reference fuel series will be used to define the vehicle octane number requirements. The two series will be unleaded and of varying sensitivity. One series will be comparable to the average sensitivity of unleaded commercial fuels (FBRU); the other series (FBRSU) will be about two num-

bers higher in sensitivity than the FBRU fuels. The nominal Research Octane Number (RON) range for both fuel series is 77 to 101.

The two series will be blended in increments of two RON up to 84 and one RON above 84 from three base fuels for each series. The base fuels are compounded from normal refinery gasoline components. Limiting specifications for each base fuel for both series are shown in Table D-II.

Research and Motor ratings will be determined for incremental blends of each fuel series by all participants to provide data for establishment of blending curves. The average ratings and blending curves will be circulated to all participants.

B. Primary Reference Fuels

Blends of ASTM-grade isooctane and normal heptane will be prepared in two octane number increments from 76 to 82 and one octane number increments from 82 to 100.

C. Tank Gasoline

Research and Motor octane ratings will be obtained only on gasoline samples from the tank of vehicles with owner questionnaire (Attachment 1). Owner's questionnaire should be deleted when:

- a) the vehicle does not have a regular driver;
- b) the ignition timing had to be reset.

V. TEST TECHNIQUE

All tests are to be conducted using the technique entitled, "Technique for Determination of Octane Number Requirements of Light-Duty Vehicles" (CRC Designation E-15-81). A copy of this technique is included as Attachment 2 to this program. Octane number requirement investigations are to be conducted in all vehicles under level road conditions. Any vehicle obviously in poor mechanical condition or with malfunctioning emission control devices should not be considered for test work. The vehicles must have a minimum of 6000 deposit miles (9656 km) and preferably be privately owned and operated. Vehicles previously used for fuel road octane rating must not be employed in this Survey.

Data should be reported on each vehicle tested, even though knock was not encountered on any of the fuels.

The order in which the fuels are to be tested is as follows:

1) Tank fuel; 2) FBRSU; 3) FBRU; 4) PR.

VI. DATA FORMS

The test results on each vehicle will be reported on data form DFMF-11-1181 and work form DFMF-12-1181. Copies of these forms will be mailed to all participants from the CRC office with instructions for their use printed on the forms. Additional instructions are included in each test technique.

VII. REPORTING RESULTS

A consolidated data report form DFMF-15-1181 and speed range summary form DFMF-25-1181 will also be provided by CRC. The consolidated report forms and standard data forms for each vehicle tested should be submitted to the Coordinating Research Council, Inc., 219 Perimeter Center Parkway, Atlanta, Georgia 30346, as soon as possible, but not later than October 31, 1981.

TABLE D-I

DESIGN SPECIFICATIONS FOR 1981 SELECT MODELS

Make & Model Citation/Phoenix/ Skylark/Omega Citation/Phoenix/ Skylark/Omega Cutlass/Regal Fairmont/Zephyr/ Mustang/Capri	Engine Displ. Litres 2.5 2.8 3.8 2.3	No. Cyl. L-4 V-6 V-6 L-4 L-4	Carb Bbls CLAF 2 CLAF 2 CLAF 2	ပ ಜ I	BHP 67 86 82 66	Trans Type A A A	No. Stat. 16 9 9	Add1 Select 4 4 11 11	10tal 20 20 20 20
Lynx/Escort	1.6	L-4	CLAF 2	8.8	¥	4	4	16	20
Omni/Horizon	1.7	L-4	CLAF 2	8.2	63	⋖	9	14	20
Aries/Reliant	2.2	T-4	CLAF 2	8.9	84	∢	7	13	20
Toyota Corolla	1.8	L-4	CLAF 2		99	⋖	vo	14	20

RANGE REFERENCE PUBLS*
BI FULL-BOILING
G SPECIFICATIONS FOR 1981 FULL-BOILING RANGE REFE
LINITING 8

					2 dott bakantan	meitivity Refe	in the sensitivity Reference Puel (FBRSU)
Impact for Tests	Unleaded	Average Sensitivity Reference Puels (Fixa)	Rep 333	RED 334	MED 335	RFD 336	R4FD 337
ASTR Distillation, *F(*C)	8	(32.2)	. 8	90	90	90 115-150	90 115-158
104 Beap.	115-158	(46.1-70.0) (65.6-87.8)	150-190	061-051	150-190	150-190 195-250	150-190 195-250
50 Evep.	195-250		195-250 230-300	230-300	230-300	230-300	230-300 285-374
904 Evep. End Point, Max.	285-374 437	(140.6-190.0) (225)	437	437	437	437	437
HVP, pol (KPa)	7-9 0.03	(48-62) (<0.008)	7-9 <0.03	7-9 <0.03	7-9 <0.03	7-9 <0.03	4-9 40.03
Oridation Stability, minutes, minimum	1440		1440	1440	1440	1440	1440
Mydrocarton Type, Vol (Arramatics** Olefine Saturates	of ed of	etermined by imapsection and reported	ction and rep	or ted			
Octane Marber Research Gundifultutat	7741		90t1 . 7.7t.5	101±1 11±.5	7711 6.01.5	90±1 9.7±.5	1101 134.5
Color	Clear	,	Green	2	Yellow	Deep Purple	Light. Blue

All fuels to contain minimum 5 PTB of a 100% active antickidant. No menganese added.
* To be compounded from normal refinery components
** 10 maximum Benzene or legal
*** Sensitivites are whom for the mean Research Octane Number.

Minimum of two units memsitivity difference between corresponding fuels of each series.

OWNER'S QUESTIONNAIRE

CRC OCTANE NUMBER REQUIREMENT SURVEY

		_	-	
n	IΝ	т.	R	

by a	r vehicle is being a Coordinating Reso data, we would lil vehicle to amswer	e the person W	ho has recently	
1	Was env ensine kn	ock (ning) been	encountered with	h the fuel t

the	vehicle	o answe	r the fol	lowing ques	tions:		
1.	Has any o	n the t	mock (pir ank? Yes No	og) been end Occasi Freque	Lonally	id w <u>ith िक</u>	el that
2.	If "Yes"	was it	during a	ny of these	condit	ions?	
	Low S		Hil	l Climbing		Normal Acceleration Maximum	
	High	Speed	Tow	ing Trailer	لــا	Acceleration	L
3.	Did you	conside	r the kno	ck (ping) o	bjectio	nable?	
4.	With the	e fuel market	now in the		the er	gine eyer co	ntinued
5.	If "Yes off obj	ectional	Yes you consi ble? Yes	Mo der the eng	ine rur	nning with th	e key
			-				
Ve ¹	hicle Mak	•			Licens	a No	
			-4 No		-		
Ve'	hcile Ide	ntilles:	CLOR NO.			فالمجمعي المستراط في المجاهدي المستراط المستراط	

Vehicle	Make	License	
Vehcile	Identification	lo	

D-9/**V-/O**Attachment 2

TECHNIQUE FOR DETERMINATION
OF OCTANE NUMBER REQUIREMENTS
OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-81)

Revised

September 1980

TECHNIQUE FOR DETERMINATION OF OCTANE NUMBER REQUIREMENTS OF LIGHT-DUTY VEHICLES

(CRC Designation E-15-81)

A. GENERAL

The technique provides for the determination of octane number requirements of a vehicle in terms of borderline spark knock and surface ignition knock, regardless of throttle position, on two series of full-boiling range reference fuels as well as on primary reference fuels. It also provides octane requirements throughout the speed range on primary reference fuels.

Spark knock, surface ignition, and after-rum characteristics of tank fuel will also be determined.

B. DEFINITION OF TERMS

- 1. The following definitions of knock were approved by the CFR and CLR Committees on June 8, 1954, and will be used in this technique. Knock is the noise associated with autoignition* of a portion of the fuel-air mixture ahead of the advancing flame front. The flame front is presupposed to be moving at normal velocity. With this definition, the source of the normal flame front is immaterial; it may be the result of surface ignition or spark ignition.
 - a. Spark Knock: A knock which is recurrent and repeatable in terms of audibility. It is controllable by the spark advance; advancing the spark increases the knock intensity, and retarding the spark reduces the intensity. This definition does not include surface ignition knock.
 - b. Surface Ignition Knock: Knock which has been preceded by a surface ignition. It is not controllable by spark advance.** It may or may not be recurrent and repeatable.

^{*} Autoignition: The spontaneous ignition and the resulting very rapid reaction of a portion or all of the fuel-air mixture. The flame speed is many, many times greater than that which follows normal spark ignition. There is no time reference for autoignition.

^{***} For the purpose of this program, it is not intended that surface ignition knock be identified by manipulation of the spark advance.

- 2. The following definitions of knock intensity were specifically adopted for use in this technique:
 - a. No Knock: This means no spark knock or surface ignition knock.
 - b. Borderline Knock: This means spark knock of lowest audible intensity, recurrent surface ignition knock of borderline intensity, or infrequent (three or less) surface ignition knocks regardless of intensity.
 - c. Above Borderline Knock: This means greater than borderline spark knock, recurrent suface ignition knock greater than borderline intensity, or frequent (four or more) surface ignition knocks regardless of intensity.
 - d. After-Run: The engine continues to operate after the ignition is turned off.

3. Definition of Accelerations

Accelerations are made at maximum-throttle and part-throttle conditions which are defined below:

- a. Maximum-Throttle: The throttle is depressed and held at detent throughout the acceleration. This could be in highest gear or passing gear for automatic transmissions. The detent manifold vacuum obtainable on a given model is determined by the transmission characteristics.
- b. Part-Throttle: The throttle is depressed and regulated throughout the acceleration to maintain a desired, constant critical manifold vacuum in highest gear. Part-throttle will constitute any throttle position above detent vacuum up to the highest road load vacuum,
- c. 50th Percentile: The throttle is depressed and regulated to maintain an acceleration profile representative of average customer driving patterns.

C. VEHICLE PREPARATION

The following vehicle preparation steps should be completed before any octane tests are run. Detailed procedures for each adjustment can be found in the manufacturers' shop manuals.

 Record vehicle identification number and emission control type, Federal, Altitude, or California. Fill in heading on data sheet DFMF-11-1181. Ford emission calibration numbers are to be recorded.

- 2. Inspect all vacuum lines and air pump hoses for appropriate connections. Also, check to see if PCV valve, distributor vacuum delay valve, EGR valve, and heated inlet air mechanism are functioning. Engine must be warmed up for these checks.
- 3. Record engine idle speed and observe anti-dieseling solenoid operation. Adjust to manufacturers' recommended specifications as specified on the under-hood decal.
- 4. Observe and record basic spark timing at recommended engine speed. Adjust to manufacturers' recommended setting as specified on the under-hood decal.
- Crankcase oil, radiator coolant, automatic transmission fluid, and battery fluid levels shall be maintained as recommended by the manufacturer.
- 6. A calibrated tachometer graduated in 100 rpm (or smaller) increments and capable of indicating engine speed from 0-5000 rpm shall be installed on each vehicle.
- 7. One calibrated vacuum gage, graduated in one-half inch of mercury (or smaller) increments and capable of indicating vacuum from 0-24 inches of mercury (0-81 KPa) shall be connected to the intake manifold.
- 8. An auxiliary fuel system shall be provided to supply test fuels to the engine. Caution shall be taken to avoid placing auxiliary fuel lines in locations which promote vapor lock. If vehicles with carbureted engines have tank return fuel lines, this return line should be blocked off. Disconnect fuel tank vent line at evaporation control system canister. Instructions for fuel handling with fuel injection systems are given in Appendix A.
- 9. For vehicles equipped with knock sensor systems, instrumentation should be installed as described in Appendix B.
- 10. For vehicles with owner questionnaire completed, a sample of the tank gasoline shall be withdrawn for determination of Research and Motor method octane number ratings.

D. TEST PROCEDURE

1. Engine Warm-Up

- a. To stabilize engine temperatures, a minimum of ten miles of warm-up is required. The test vehicle should be operated at 55 mph (%8 kph) in top gear with a minimum of full-throttle operation.
- b. During the warm-up period, the general mechanical condition of the vehicle should be checked to insure satisfactory and safe operation during test work.

2. Fuel Change-Over

Caution: Because of the installation of catalytic devices on these vehicles, permanent damage may result if the engine runs lean or stalls. Therefore, change-over from one fuel to another must be accomplished without running the carburetor or fuel injection system dry. Fuel handling procedures for vehicles equipped with fuel injection systems are explained in Appendix A.

To eliminate contamination of the new fuel with residual amounts of the previous fuel, flush system twice with new fuel.

After fuel change-over, make or maximum-throttle acceleration before beginning Vehicle Rating Procedure.

3. Details of Observations

a. Operating Conditions

All octane number requirements will be determined under level road acceleration conditions.

Manual Transmissions: Vehicles with 3- and 4-speed transmissions shall be rated in highest gear. Vehicles with 5-speed transmissions shall be rated in 4th gear.

Automatic Transmissions: Automatic transmissions shall be run in the highest gear possible.

Tests will be conducted on moderately dry days, preferably at ambient temperatures above 60°F (15.5°C). Tests should not be conducted during periods of high humidity such as prevail when rain is threatening or during or immediately after a rain storm. Laboratories with control capabilities should target for 70°F (21°C) air temperature and 50 grains of water per pound (7.14 gm/kg) of dry air whenever possible.

Air-conditioned vehicles will be tested with air conditioner turned ON. (Normal setting, low fan)

b. Order of Fuel Testing

1. Tank

3. FBRU

2. FBRSU

4. Primary

c. Determination of Knock Intensity

Octane requirements will be established by evaluating the occurrence of knock in terms of knock intensity:

"N" for none, "B" for borderline, and "A" for above borderline. Establishment of representative knock intensity for a given fuel will be accomplished with the fewest number of accelerations possible. As defined below, the first two duplicating accelerations are sufficient with "N" and "B" knock intensity.

Number	of Accele	rations	Representative Rating
Ī	<u>2</u>	3	
N	N	-	N
N	В	N	N
N	В	В	В
В	N	В	В
В	В	-	В
В	A	-	Ā
A	-	-	Ä

All subsequent accelerations will normally be discontinued when "A" knock intensity is experienced, and testing continued with a higher octane number fuel in that series. An exception will be made if "A" knock is experienced on the highest octane fuel which knocks in the engine. In this case, it may be necessary to run additional accelerations to determine the speed of maximum knock intensity. If "A" knock is experienced at initiation of acceleration, as limited by transmission characteristics, this speed will be considered the speed of maximum knock. Otherwise, the midpoint between knock-in and knock-out will be considered the speed of maximum knock. When establishing knock-in and knock-out, back off on the throttle between points to eliminate "A" knock. Tip-in knock should be ignored.

d. <u>Determination of Octane Requirements and After-Run</u> Characteristics

Tests should be run to 60 mph (97 kph) unless required to terminate at 55 mph (88 kph) because of legal speed limits.

The procedure for knock sensor equipped-cars is shown in Appendix B.

1) Vehicle Operating Procedure (for driver)

a) For establishment of transmission characteristics, obtain top gear downshift engine rpm and manifold vacuum at 25, 35, 45, and 55 mph (40, 56, 72, 88 kph) by movement of the throttle through the detent position. Record both engine rpm and manifold vacuum at the downshift point for each speed.

The vehicle brakes may be applied lightly, if necessary, to maintain vehicle speed. In addition, for transmissions with converter clutches, determine the minimum vacuum and minimum road speed for converter clutch application. Record on data sheet.

- b) For maximum-throttle requirements in highest gear, accelerate at the detent position from the minimum obtainable speed as determined in (a)* up to 60 mph (97 mph). If transmission downshifts, abort and start acceleration again.
- c) For maximum-throttle requirements in passing gear for vehicles with automatic transmissions, accelerate from 10 mph (16 kph) below the starting speed for highest gear acceleration up to 60 mph (97 kph). When available, set shift gear selector to passing gear.
- d) For those vehicles with vacuum delay devices, to stabilize vacuum advance before starting each part-throttle acceleration, operate at road load for 40 seconds at the speed from which the acceleration is to begin.
- e) For part-throttle requirements, accelerate in highest gear at constant critical manifold vacuum from minimum obtainable speed to 60 mph (97 kph), or until vehicle ceases to accelerate. To obtain critical part-throttle vacuum, operate at road load for 40 seconds at 25, 35, 45, and 55 mph (40, 56, 72, and 88 kph). At each speed, move the throttle (in 3 to 5 seconds) from the highest road load vacuum down to detent manifold vacuum, or 1 inch Hg (3.4 KPa) above the minimum vacuum at which converter clutch engages. In this range, find a manifold vacuum for maximum knock intensity to use as the critical vacuum for all subsequent partthrottle accelerations. The vehicle brakes may be applied lightly, if necessary, to maintain vehicle speed, except for vehicles with converter clutch transmissions.

^{*} Starting speed for accelerations on manual transmission vehicles should be the lowest speed from which the vehicle will accelerate smoothly.

f) For 50th percentile requirements, follow the driving cycle described in Modes 1 and 2 below:

Mode 1: Idle 20 seconds. Make a 50th percentile acceleration through the gears to 60 mph. Decelerate to 55 mph and cruise for 0.5 mile. Decelerate moderately to 30 mph.

Mode 2: Cruise at 30 mph for 0.2 mile. Make a 50th percentile acceleration to 60 mph. Decelerate to 55 mph and cruise for 0.5 mile. Decelerate moderately to a stop.

Run the number of cycles necessary to be consistent with the table on page 15. Complete cycles (both modes) should be performed regardless of the mode in which knock occurs.

The 50th percentile acceleration profile is shown in Appendix C.

g) Determination of After-Run Characteristics

Determination of the occurrence of after-run will be evaluated on tank fuel. Following the engine warm-up, moderately brake the vehicle to a stop (foot off throttle) and place automatic transmission vehicles in park position, manual transmission vehicles in neutral. Air conditioner must be turned off. Immediately turn key to the "OFF" position. Note on the data sheet if after-run occurs.

2) Vehicle Rating Procedure (for rater)

Rnock rating should be performed while in a normal seated position (head above instrument panel) with floor mats in place.

- Step 1 Using a fuel estimated to give borderline knock in a given fuel series, investigate for incidence of knock under conditions as described in 3d(1)(b) above, and 3d(1)(c) above.
- Step 2 If no knock occurs, go to a lower octane number bland in that series and repeat Step 1.

- Step 3 If knock occurs at one or more of the operating conditions in Step 1, continue investigation at the critical condition(s) with higher octane blends until highest octane fuel giving knock is determined within one octane number or one blend. Record maximum knock intensity on all fuels and speed of maximum knock intensity on highest octane fuel that knocks.
- Step 4 Using the lowest octane blend that did not knock in Step 3, investigate for incidence of part-throttle knock as described in 3d (1)(e). If knock occurs, continue investigation at critical vacuum until requirement is defined. Record maximum knock intensity and critical manifold vacuum on all fuels, and speed of maximum knock intensity on highest octane fuel that knocks.
- Step 5 With FBRU fuel only, investigate for incidence of knock with 50th percentile accelerations as described in 3d(1)(f). If knock occurs, continue investigation using both modes with higher octane blends until highest octane fuel giving knock is determined within one octane number or one blend. If no knock occurs, investigate for knock with lower octane number fuels until the requirement is determined or the lowest octane number fuel has been used. Record maximum knock intensity on all fuels, and mode, manifold vacuum, and speed of maximum knock intensity on highest octane fuel that knocks.

The rating procedure is given in arrow diagram form on page 21.

e. Tank Fuel Observations on Vehicles with Owner's Questionnaire

Investigate for maximum-throttle and part-throttle knock as detailed in Item 3d(1). Define maximum knock intensity as per Item 3c. Record maximum knock intensity, speed of maximum knock intensity, and manifold vacuum at each operating condition. Determine after-run characteristics as described in Item 3d(1)(g).

f. Octane Number Requirement Over Speed Range

Octane requirements over the speed range will be obtained on primary reference fuels only using throttle position

for maximum requirements. These will be established by recording the knock-in and knock-out points during maximum requirement acceleration with each incremental fuel investigated. It may be necessary to test one or two additional lower octane fuels to describe the knocking characteristics over the speed range. Accelerate at maximum-throttle from minimum obtainable speed as determined in 3d(1)(a), up to 3500 rpm, if necessary, in order to define requirements. These should be run to 60 mph (97 kph) unless required to terminate at 55 mph (88 kph) because of legal speed limits. If 3500 rpm cannot be attained in top gear, accelerations shall be discontinued and resumed in the next highest gear from 500 rpm below the engine speed at which top gear accelerations were determined.

When "A" knock is experienced, continue the acceleration, but back off on the throttle to maintain "B" knock until just prior to the knock-out point.

E. INTERPRETATION OF DATA

The data will be recorded on data sheet DFMF-I1-1181. Octane requirements for all reference fuels shall be determined as follows:

- 1. If the knock intensity of the highest fuel giving knock is borderline, the requirement shall be reported as the octane number of that fuel.
- If the knock intensity of the highest fuel giving knock is above borderline, the requirement shall be reported as one-half the difference between the fuel giving knock and the next highest fuel.

Speed range data shall be reported on data sheet DFMF-11-1181 as the engine speed of knock-in and knock-out for the octane number of the primary reference fuel tested.

When transferring data to the summary report form, record "no" data as well as "yes" data.

Record data on all fuels tested, even though knock was not encountered. When transferring data to the summary report form DFMF-15-1181, record the higher among requirements under part-throttle and maximum-throttle condition for all fuels, and the 50th percentile requirement for FBRU fuel. Use proper letter designation (see footnotes on summary sheet) to designate requirements outside of the reference fuel limits.

Requirements for the various engine speeds will be determined by fitting a smooth curve through the knock-in and knock-out points

on work form DFMF-12-1181. Primary reference fuel requirements at various engine speeds should be reported to the nearest one-half octane number and recorded on the speed range summary sheets DFMF-25-1181.

It is important that the vehicle identification number (VIN) of each vehicle tested be recorded on all data and summary sheets to provide a means of cross-indexing.

APPENDIX A

CRC E-15-81 TECHNIQUE

APPENDIX A

CRC E-15-81 TECHNIQUE

Procedure For Setting Up Vehicles and Handling Reference Fuels -- Vehicles Equipped With Multiple-Port Fuel Injection

- 1. To run octane requirements on fuel injected vehicles it is necessary to run an external fuel line to the inlet of the vehicle fuel injection pump.
- 2. The fuel return line from the engine to the fuel tank must be disconnected after the fuel pressure regulator (in engine compartment) and before the fuel tank. An auxiliary line long enough to reach the cans must be added to the fuel return line.
- 3. Make certain that the fuel tank connections are plugged, this means both the normal fuel pump inlet line and the normal fuel return line connection. On vehicles with an in-tank booster pump, this pump must be shut off so it cannot run during the time the vehicle is operating on the external fuel system. If this pump is not disconnected, it will be destroyed.
- 4. An electric fuel pump (Bendix type acceptable) must be used to draw fuel from the reference fuel can to supply the fuel injection pump on the vehicle. Caution must be exercised to keep the fuel line between the reference fuel cans and the vehicle fuel injection pump full of fuel. If very much air gets into this line, the fuel injection system will become air bound and it is difficult to get the air out of the system.
- 5. Once the fuel injection pump line and return line have been disconnected, all subsequent operations must be done from an external fuel source.
- 6. It is possible to use three-way valves in the fuel line between the fuel pump and the fuel tank and between the return line and the fuel tank. When used, the operator must change the return line valve to the auxiliary fuel system while the engine is shut down, to avoid building up excessive pressure in the return line which could damage both the fuel pressure regulator and injection pump.
- 7. When changing from one reference fuel to another, the following steps must be followed:
 - a. Put fuel inlet line in reference fuel tank with the return line going to a slop fuel can. Do not keep fuel inlet line out of the fuel can any longer than is necessary to move it from one can to the next. DO NOT RUN OUT OF FUEL.

- b. Observe the fuel stream in the fuel return line. As soon as a steady flow of fuel is observed, move the fuel return line to an empty one-quart can (0.946 £). Allow one quart (0.946 £) of fuel to flow into this can before inserting the return line into the chosen reference fuel can. This operation should take about 60 seconds.
- c. When going to the next reference fuel, it will be necessary to repeat Steps a and b.

The fuel injection pumps on most vehicles pump between 30 and 50 gallons ($114-189\ t/h$) of fuel per hour. Therefore, Steps a and b should be followed very closely or there will be gross reference fuel contamination, or you will use a lot more reference fuel than is required to run each test. If Steps a and b are followed exactly, you will be discarding to slop about two quarts (1.892 t) of reference fuel each time you change reference fuels. The two quarts (1.892 t) to slop will be at least as much fuel as is consumed to get the reference fuel rating.

Procedure For Setting Up Vehicles and Handling Reference Fuels -Vehicles Equipped With Throttle-Body Fuel Injection

The General Motors throttle body fuel injection system is shown in the attached schematic drawing. The fuel supply system consists of an intank electric fuel pump, a full-flow fuel filter mounted on the vehicle frame, a fuel pressure regulator integral with the throttle body, fuel supply and return lines, and two fuel injectors. The injection timing and amount of fuel supplied is controlled by an electronic control module (not shown in figure). To prepare a vehicle with this system for octane requirement testing, an auxiliary electric fuel pump must be installed. The fuel pressure regulator controls fuel pressure at the injectors to a nominal 10.5 psi; therefore, an auxiliary pump capable of at least 10.5 psi outlet pressure must be used for satisfactory engine operation. The following procedure is recommended for preparing a vehicle with throttle body fuel injection for octane requirement testing and for changing reference fuels during such testing:

- 1. Disconnect and plug the fuel supply and fuel return lines at the locations shown in the figure. Install an additional line between the fuel supply line and the outlet of the auxiliary pump. Connect the inlet of the auxiliary pump to the reference fuel can. Connect the fuel return line to the reference fuel can through a tee at the auxiliary pump inlet. All auxiliary fuel lines are indicated by dashed lines in the figure.
- 2. An optional arrangement would be to use three-way selector valves in the fuel supply and fuel return lines at the locations where auxiliary fuel lines are connected. When these valves are used, the operator must change the valves to the external fuel system while the engine is shut off to avoid building up excessive pressure in the fuel return line.
- Disconnect the in-tank fuel pump so it cannot run during the time the wehicle is operating on the external fuel system. If this pump is not disconnected, it may be destroyed.
- 4. When changing from one reference fuel to another, the following steps should be followed:
 - a. Disconnect fuel inlet line from reference fuel can and run engine a short time; do not run out of fuel since this will introduce air into the fuel injection system, and excessive cranking will be required to restart the engine.
 - b. Insert fuel inlet line in desired reference fuel can; operate vehicle for two miles at a maximum speed of 55 mph during which time four part-throttle accelerations are made. This must be done to ensure that the vehicle fuel system has been purged and contains the desired reference fuel for octane rating.
 - When changing to another reference fuel, repeat steps a and b.

APPENDIX B

ONR MEASUREMENT WITH KNOCKSENSOR-EQUIPPED VEHICLES

ONR MEASUREMENT WITH KNOCK SENSOR EQUIPPED VEHICLES - INSTRUMENT METHOD

The test method will define the limits of the vehicles ability to adapt to varying fuel quality. This will be accomplished by observing the knock sensor output as a function of spark retard. Also, the fuel quality for borderline knock will be determined.

Prepare the vehicle according to Section C (Vehicle Preparation) and, in addition, install a spark retard indicator. Using an estimated non-knocking fuel, accelerate as defined in B-3 and observe spark retard. Using lower octane fuels, continue testing until the maximum octane requirement and minimum octane requirement have been determined. The maximum requirement is the fuel quality at which spark retard begins. The minimum requirement is the fuel quality at which the spark retard reaches a maximum. (See Figure)

Record knock intensity on all fuels for maximum and minimum octane in accordance with B-2. Also, determine the octane number of the fuel that gives borderline knock using the accelerations defined in B-3. Record the degrees of spark retard associated with the borderline knock.

Data should be recorded on data form DFMF-26-1181 and plotted on curve sheet DFMF-27-1181.

APPENDIX C

50th PERCENTILE ACCELERATION PROFILE

APPENDIX C
50th PERCENTILE ACCELERATION PROFILE

	Car	Cumulative
	Speed	Time
Driving Maneuver	(MPH)	(Sec.)
0-60 MPH Acceleration	0	0
	5	2.7
	10	5.0
	15	7.4
	20	9.9
	25	12.5
	30	15.2
	35	18.0
	40	20.9
	45	23.8
	50	26.8
	55	29.8
	60	32.8
30-60 MPH Acceleration	30	0
	35	2.8
	40	5.7
	45	8.6
	50	11.6
	55	14.6
	60	17.6

ETHYL CORPORATION

RESELECE AND DEVELOPMENT DEPARTMENT · RESEARCE LABORATORIES 1600 WEST RIGHT MILE ROAD · PERMDALE, MICHIGAN 46280 · (919) 300-0000

June 10, 1981

Participants of the 1981 CRC-Light-Duty Octane Number Requirement Survey

Gentlemen:

At our Group Meeting today we discussed a deficiency in the 50th percentile acceleration description. Preceding the Mode-one acceleration should be a preconditioning event as follows:

Make a 50th percentile acceleration through the gears to 60 mph. Decelerate to 55 mph and cruise for 0.5 mile. Decelerate moderately to a stop.

This preconditioning event is on the tape-recorded instructions provided by J. D. Benson.

Another item also concerning the 50th percentile accelerations was the shift points to be used with manual transmission-equipped vehicles. In order to have some consistency, the following procedure was accepted:

For manual transmissions, manufacturers' shift point recommendations should be followed. If the manufacturer does not recommend shift points, then make the 1-2 shift at 15 mph, the 2-3 shift at 25 mph, and for vehicles equipped with more than three speeds, shift from 3 to 4 at 40 mph.

Tim Wusz found two footnotes incorrectly numbered on data sheet DFMF-11-1181. In the TEST GEAR column the footnote number should be 9, not 4, and under FINAL RATING it should be 7 instead of 10.

Good luck with your testing!

Yours truly,

WJB:ah

W. J. Brown, Leader

Octane Requirement Survey Group

cc: Miss Beth Evans - CRC

ETHYL CORPORATION

RESEARCE AND DEVELOPMENT DEPARTMENT · RESEARCE LABORATORIES 1600 WEST EIGHT MILE ROAD · FERNDALE, MICHIGAN 48220 · (313) 399-9600

April 27, 1981

٠,

To: Participants in the 1981 CRC Octane Requirement Survey

At our Steering Panel meeting Wednesday, April 22, we discussed some details of the 1981 Program and thought it best to pass on to you the following information.

1. Knocksensor Vehicles

The data forms for knocksensor vehicles DFMF-26-1181 provide space in the summary block for only one fuel. However, the vehicles are to be tested on all three reference fuel series FBRSU, FBRU and PR. Therefore, three separate data sheets should be used. Data from these vehicles will be analyzed separately from the statistical distribution so there is no key punch section to fill out on the forms.

2. 50th Percentile Acceleration

Cassette recorder tapes have been sent to all the participants by Mr. J. D. Benson of GM, and you will receive them shortly.

3. Lockup and Overdrive Automatic Transmissions

A summary of gear selection for testing is as follows:

Place the selector in "D" or "O" and check for the critical condition.

GM 4 speed 4th gear, converter clutch engaged 3rd gear, converter clutch disengaged

GM 3 speed 3rd gear; converter clutch engaged 3rd gear, converter clutch disengaged

2nd gear, converter clutch disengaged

Ford O. D. 4th gear 3rd gear 2nd gear

Yours truly,

W. J. Brown, Leader Survey Steering Panel

WJB:ah

cc: Beth Evans - CRC

ETHYL CORPORATION

RESEARCH AND DEVELOPMENT DEPARTMENT - RESEARCH LABORATORIES 1600 WEST EIGHT MILE ROAD - FERNDALE, MICHIGAN 48220 - (313) 399-9600

September 10, 1981

To: Participants, 1981 CRC Octane Number Requirement Survey

Subject: 50th Percentile Reporting Data Form DFMF-11-1181

Jack Benson pointed out there is no provision in the summary block for a condition when both modes have equal octane requirements.

Gene Corner can accommodate this condition if we simply write in a number other than 1 or 2, so we decided on 3. Therefore, if the octane requirement is the same for both modes, put a 3 in column 71.

The problem in deciding which MPH, RPM and Man. Vac. to record in the summary block has a solution suggested by Dan Barnard. He favors reporting the milder condition since it would be the one most frequently encountered by the owner. Thus, if both modes have the same octane number, report the MPH and RPM corresponding to the highest manifold vacuum.

If you have sent in your data, Gene Corner will make the necessary changes.

Yours truly,

WJB:ah

W. J. Brown, Leader Survey Steering Panel

W & Brown

cc: Dr. E. S. Corner
Miss Beth Evans - CRC

APPENDIX E

1981 OCTANE NUMBER REQUIREMENT SURVEY DATA

GLOSSARY

Emission Certification: California **Federal** Both California and Altitude В Transmission: A Automatic Manual Air Conditioner: Yes Spark Advance: Before Top Center After Top Center Test Fuel: Tank Fuel FB RSU **FBRU** PR D Drive, Automatic Transmissions Gear: P Passing Gear, Automatic Transmissions
1-5 Manual Transmissions Less than lowest available ON for FBRU and FBRSU fuels and less than 76 for PR fuels Octane Number Requirements: (expressed as Research ON) Higher than highest available ON for FBRU and FBRSU fuels and higher than 100 ON for PR fuels Tank Fuel Owner Report Knock: Yes No Objectionable: Yes No After-Run: Yes No Rater Report None Noise Intensity: Borderline Above Borderline After-Run: Yes No

Octane Number Requirement Data

Mode:

Throttle: M Maximum Part

> 1 50th Percentile Acceleration Technique

50th Percentile Acceleration Technique

Mode 1 ON Requirement = Mode 2 ON Requirement

			,	VEHIC	. E	OE:	SCR	l P	110															IT DATA												
		-																	IAX I	MUM		SOTH	PER	CENTIL	E TI	СН		OW	4E R					RATE	R	••
				E	T R A		4	A	DV	IRK INCE						F		ī	GE							M	f U	K N D (R	OC1						AR
OBS NO	NC		CODE	-	N 5 ~	CR	_			TST	MILES		BA	RO	HUM	Ĺ	NO	R	R	RPM	MV	NO	н	RPM	MV	E	E L	K	-	RES				RPM	MV	N
175	•	6 B.	A F17	F	A	8.:	2 Y	• -	3	- 3	6737	77	29	. 79	105	2	87.0		Ø	2400 3000 3000	1.2		45	3000	1.:	2 3	•									
178	•	6 8	A F17	F	A	6.:	2 V	٠ -	3	- 3	6165	66	30	. 04	72	2	89.0) #	D	3200 3050 3100	1.4		52	3200	1.0	3 1	1									
116	•	5 8.	A F17M	F	M	€.;	2 M	•	0	o	8781	71	30	. 10	55	2	88.0) M	1 4	2000 1900 1900	0.0	l .	45	2000	0.1	5 1	1	N	N	92.	1 83	.0	N			N
376	4	1 B	A F17M	c	M	■.	2	٠ -	3	- 3	11440	71	7 29	. 84	63	2	96.0) P	, 3	3600 3600 3600	5.5	i	40	2600	0.4	3 3	1						N			N
203) 4	4 D	I 137	F	A	8.	4 1	, .	12	+12	11120	84	1 29). 17	43	2	96.0) P	1 D	2200 2300 2100	1.1		5	3 2300	1.1	5 3	1	۷ ۱	r N	90.	4 84	. 5	8 P	2550	1.1	N
378	4	1 0	I 137	С	A	8.	4 1	, •	16	+ 16	6322	2 7	30	.00	64	2	86.0		10	1950 2100 2000	1.2	!	50	2100	1.	• 1	1						N			N
104	١ :	5 D	1 252	F	A	■.	5 '	, ,	16	•10	6033	9 61	3 0	. 22	72	2	н		, D	1500 1550 1350	7.0)	26	1350	8.0) 1	1	٧ ١	r N	92.	2 82	.0	A D	1300	1.1	N
336	4	6 D	1 252	F	A	8.	5 '	,	16	• 16	8344	1 74	1 25	. 58	90	2	91.0	0	e D	1500 1700 1600	1.5	i) 3 (5 1400	4.0	3	•						N			

			VEHIC	LE	D	E SC	R	PTI	ON				WEAT	HER				DC.	TAN	E ML	MBE	R	EQUIR	EMEI	NT	DATA					1	ANK	FUEL	INFO	RM.	ATION		
) MUM			501H			NTIL				OMV						RATE		
085		s MODE		R	!		4		ARK														OCT					M	F	K N O 0	A		r NO	N I	G E			A R U
	NO	C00			CI	2	Ř	RCD	75	7 MI	LES	TMP	-		HUM	•		•	R	RPN	4 1	W	NO	H		PM	WV						MOT			RPM	MV	-
				_	•		-											-	-									•	-		_				-			-
62	23	G9 F60	•	•		. 2	Y	٠.	+ #4	0 6	980	55	27.	94	48	2	90.	0 1	4 D	180	00 (5.6		0 40	0 1	600	2.0	2	•					N				N
110	5	G9 F60	•			. 2	٧	٠.	+10	0 4	838	73	30.	10	60	2	89	0 1	H P	240	00 (00 (50 (9.9		0 41	8 2	500	3.0	2	1									N
226	28	G9 F60	• •			. 2	¥	+10	+ 1	0 7	7934	76	29.	18	80	2	80	Ō I	4 P	180	00 : 00 :	2.0		0 5:	2 1	850	2.0	3	1	N	N			N				N
294	47	G9 F60	•	: A		. 2	٧	+ 10) + 1 (0 5	s 100	70	29.	74	43	2	92	0 1	# D	200	00 00 00	1.0							1									
410	26	G9 F60	,			. 2	Y	+ 10	+1	0 12	2085	98	3 0.	00	124	2	91.	0 1	4 D	175	00 (80 (3.4		0 34	6 1	725	0.6	5 2	1			92.	82	9 N				N
59	23	HCX 22	. '			. 5	٧	+ 10	• 1:	0 5	38 10	82	28.	14	106	2	84	.0	M P	240	50 : 00	1.0		0 51	• 2	700	2.5	5 1	1					N				N
214	23	HCX 22	• •		. 6	. 5	Y	+10) + f	0 8)648	58				2	86	Ö I	H P	230		1.2		0 50	0 3	000	2.0	, 1	1					N				
47	29	HC5 22	5 1	. 4	. 8	. 2	٧	• 4	•	4 7	7554	70	30 .	10	59		94	0	H P	220	00 00 00	1.0		0 4:	3 2	200	2.2	? 3	1			92.	83.	7 A	Ρ:	2200	1.0	N

			VEHICLE										R										T DATA										AAT TON		
																14	AX J	MUM		,	50TH	PER	CENTIL	E 16	СН		OWN	€R		• • • •			RATE	R	
	LAI NO	8 MODE COD		! \	1		AS	AS		AMB		RO	HUM	f U E	001	† H	G E A				OCT	MP	RPM		M 0	F U E	0 D	A R U		NO MO1	N I N	G	RPM	MV	A R U
71	53	HC5 22	5 F A	8.	2 \	, ,	4	+ 4	7510	75	28	. 13	91	2	90.0) M	D	2400 2400 2400	1	0	84.0	35	2550	ŧ.c	э э	•					N	ı			N
79	3	HC5 22	5 F A	. 6.	2 \	•	4	+ 4	8210	80	30	. 12	50	2	94.0	M	D	2400 2300 2200	1.	Ó	90.0	55	3000	1 0) 3	,									N
173	6	HC5 22	S FA	a a .	2 Y	•	4	+ 4	12575	75	30	. 06	81	2	95.0	M	D	1850 1600 1650	1.	3	93.0	47	1625	1.4	2	1									
197	4	HC5 22	5 F A	8.	2 1	4 •	4	• 4	6370	83	28	. 86	100	2	68.0	M	P	2450 2400 2300	1.	5	84.0	43	2600	3.2	1	1	N	N	91 7	83	1 N				N
363	8	HC5 22	5 F A	8.	2 \	•	4	• 4	11859	80	29	. 96	74	2	90.0	M	D	2200 2250 2300	1.	Ô	65 . O	35	2600	0.8	1	•	N	N			N				N
401	26	HC5 22	5 F A		2 v	•	4	• 4	23285	83	30	. 17	76	2	97.0	M	D	2450 2500 2400	Ô.	3	93.0	52	2700	0.3	1	•			97.0	85.	2 A	D	2500	o :	3 N
416	26	HC5 22	5 F A	8.	2 Y	, 4	4	+ 4	20170	70	30	. 02	75	3	99.0	M	D	2650 2550 2600	0.	4	96.0	45	2500	0.5	2	1			92.4	82.6	6 A	D	2500	0 9	5 N
191	4	HFW 44	Ð FA	. 8.	1 1	•	12	+12	9752	72	29	. 52	45	2	91.0	- 10	Đ	2900 2500 2600	Ø.	5	80.0	44	1800	3.6	3	1	N	N	90.7	83.	3 6	P	2600	0.5	5 N

			VEHI									WE/	THE	R			oc	TAN	Æ M	NUMB	ER	RE	QUIR	EM	ENT	DATA	١		_		1	AN	FL	JEL	IN	FOR	MATIC)N		
						•												MAX	IM.	UM			501 1	P	ERC	ENTIL	E T	ECH		0A	NEF	1					RA			. .
NO	NO	B MODE COC	L E	E 4 C 1 T 1	5 0	R	A I R	AD AS	751	DOOM MILES	TM	8/	RO	HUM	FUEL	OC:	r 2	G T E H A R R	RF	PM	M		OC1	· (M P H	RPM	MV	000	F	K N O C	0 F	N (OCT	NO.		N G I E N A	i			A R U
70	23	HIA 23	8	F	A 8	1.0	٧	+15	i +15	6557	72	21	.02	118	2	90	.0	M D	16	600 600 600	0	. 6	68.	ο .	45	1500	0	8 1	•						ı	N				N
72	23	HIA 23	8	F	A 6	B . O	¥	+ 15	5 +15	13607	7 (3 20	3.04	136	2	95	0	M P	2	500 500 500	1	0	92.	0 9	55	3000	1,1	0 3	•							A D	1400) (0 6	N
94	3	H1A 23	8	F	A 6	. 0	٧	+ 15	• 15	17843	70	29	. 29	80	2	86	.0	M D	15	900 900 900	1.	0	85.	0	47	1900	1.1	8 3	1			9:	? 2	63	2	N				N
115	5	HIA 23	18	F	A 6	. o	¥	+ 15	5 +19	5 5125	70	3(0.07	52	2	88	. О	M D	10	700 600 650	1.	. 5	87.	0	48	1500	1.3	3 2	1	N	٠	1 9 1	1.2	82	8 1	N				N
150	6	HIA 2	18	F	A 8	3 . Q	Y	+1	2 +15	3 16780		1 21	. 96	93	2	97	.0	M 0	1 (700 600 500	1.	0.	95.	0	50	1600	1.	5 2	1											
192	4	H1A 2	18	F	A 8	9.0	Y	+14	1 +14	8282	: B(21	. 53	63	2	90	۰.	M D	10	850 800 900	0	. 9	87.	0	46	1850	1.0	6 2	•	٧	N P	N 9:	1.7	84.	0	N				N
340	46	HIA 2	8	F	A 6	9.0	y	+19	5 +19	5 10083	3 70	5 29) . 2 8	110	2	87	О.	M D	15	900 900	•	.0	85.	0	30	1800	2.	0 1	1						ı	N				
341	46	HIA 2:	16	F	A 6	• . c	, ¥	+ 11	5 + 11	5 958	1 7(9 21) . 5 0	120	2	90	.0	M D	2	150 100 950	1	.0	87.	0	45	1900	2.	0 3	1						1	N				

			VEHICLE		ES	CR	I P T	10N			,	WEA	THE	R			o c	TAN	E NUM	BER	RE	QUIRE	MEA	T DATA	•				7	ANK	FUEL	11	VF OR	MAT I OF	N	
																		MAX	MCM I			501H	PER	CENTIL	E 1	E C	4	OM	NER					RATI	R	
NO	NO		E M	5 (;R	A I R	AD A RC	D TS	E S OI T M	ILES	TMP	BA	RO	HUM	F U E L	OCT NO	ļ	G T E H A R R	RPM	H	ev.	OCT NO	M P H	RPM	M		4 6	K 101	A D R B U	0 C	T NO	ı 	N G I E N A			A R U
342	46	H1A 23	8 F I	۱.) . c	, v	+1	5 • 1	5	7926	78	29	. 27	103	2	87	o	M D	2150 2300 1950	,	ı.o		45	1800	1.	o :	3 1	1					N			
343	46	HIA 23	8 F I	• (• 6	, ,	• 1	5 • 1	5	8635	77	29	41	78	2	92.	0	M D	2100 2250 1900	•	0.1	89.5	5 50	1900	1.	0	, ,)					N			
344	46	HIA 23	8 F /	. (. 0	*	• 1	5 • 1	5	7984	72	29	. 12	86	2	89	5	M D	1950 2000 1900) 1	Ō	67.5	45	1750	1.	0	• •	•					N			
348	46	HIA 23	6 F /	۸ (9 0	y	• 1	5 •1	5	8473	78	29	38	122	2	89	0	M D	1900 1900 2000	, ,	0		50	2100	1	0 2	2 1	ı					N			
351	46	H]A 23	• F	٠.	• 0	, 4	+1	5 • 1	3	99 40	76	29	. 50	90	2	87	Ó	m D	2800 2800 2600	•	ı.ō	85.0	45	2600	2	о:	3 1	1					N			
362	•	HIA 23	• F /	٠ (• 0	, 4	• 1	5 • 1	5	646 7	85	29	. 64	91	3	90	0	M D	1750 1650 1700	0	9	87 0	43	2500	١.	6	1 1	N	N				N			N
7	40	HIS 24	3 F	A (3	, 4	•1	2 •	2 1	0066	75	29	. 42	82	5	93	0	M D	1300 1400 1400) 2	5	90.0	45	1400	3.	0 :	2 ' 1	N	N	92	9 84	9	N			N
114	5	ICX 22	8 F	A (5 N	• 1	0 •	0	4202	70	30	.04	52	2	96	0	M P	2400 2850 2400) 1	2	80.0	56	2700	2.	0	. ,	N	N	92.	2 84	.0	N			N

			VEHICLE	DE	SCR	[PT	ON			WEAT	HER			0	CTAR	IE NUR	BER A	REQUIR	EMEN	IT DATA					T	MK	FUEL 1	INFO	RMATIO	٧	
		**													MA)	INUM		501H	PER	RCENTIL	E TE	СН		OWI	NE R				RAT		
oBS NO	L AE		E R	CR	A	AD'	ARK ANCE	ODOM	AMB TMP	BAR	D H	(UM (F U	oc t	TE			OCT	M	₽PM		M O D	F U E	K N O C	A D R B U	OC.	T NO MOT	N I	G E		A R U
274	47	ICX 228	C A	8.	5 Y	• (3 +10	6300	70	29.	60		2	87.0	M 5	2100 2250 2200	0.6	3	0 55	3 2300	2 5	i 3	1								
360		ICX 228	FA	6.	5 Y	• 10	• 10	18175	80	30.6	00		2	80.0) M (2250 2200 3100	1.8	3	0 30	2200	4 5	i 1	1	N	N			N			N
61	23	105 225	F A	8.	2 Y	• ,	4 + 4	6151	73	28 .	13 1		2	91.0) M (2600 2600 2600	0.6	3	0 57	7 2700	1 0	2	1					N			N
73	23	IC5 225	FA	8.	2 Y	• .		10139	70	28.	14		2	95.0) M (2400 2500 2400	0.6	5	0 57	3500	1.0) з	1					A	P 2200	0 8	N
193	4	105 225	FA	.	2 Y	• .	• • 4	9730	77	29.	42		2	89.0) M (2350 2400 2500	0.6	3	0 37	2250	0.8	1	1	N	N	91.	3 83.5	5 N			N
218	28	[CS 225	FA	. 8.	2 Y	• .		12324	71	29 .	48		2	96.0) M (2200 2400 1900	1.5	5	0 49	2100	1.5	3	1	γ,	r N	93.	4 83.4	4 B I	D 2200	1.5	i N
271	7	ICS 225	F A	.	2 Y	•	2 + 4	13960	72	3 0.	13		2	96.0) M (2600 3400 3250	1.4		0 52	32 0 0	1.5	3	1								
355	46	ICS 225	. F.A	. 6.	2 Y	•	4 + 4	10946	76	29 .	38 1		2	85.0) M (2200 2400 2400) 1 ()	0 45	3 2200	1.0	3	1					N			

			VEHICLE	DE	SCF	IPT	ON		1	WEAT	HER	?		00	TAP	IE NUM	BER A	EQUIR	EMEN	T DATA	١		_		T	INK F	UEL I	NF)RM	ATION		
															MA)	MUMI		50TH	PEP	CENTIL	E TE	СН		OWI	VE R					RATE	R	
			E R M A	<u> </u>		AD	ARK ANCE															M	F	K N 0 1	A	Oc.	NO	•	G			AR
OBS NO	L A E							ODOM MILES			10	HUM	E	DCT NO	H A	RPM	MV	OCT NO	P H	RPM	MV	Đ	E	C E	JN	RES	MOT	N T	AR	RPM	MV	U
													-									•	-	-				•	-			-
42	29	IIA 238	FA	8.	۰ ۱	* + 1!	+ 15	7653	70	30.	24	59	2	90.5 94.0 90.0	M F	1600	0.6	;	5 43	1600	1.5	1	1			91.6	83.7	В	D	1600	1.0	N
64	23	IIA 238	FA	8.	٥ ١	+19	+ 15	13282	68	27 .	83	82	2	89.0 90.0 90.0	MF	1700	0.6	;	0 35	1600	1.0) 1	1					N		·		N
68	23	IIA 238	F A	B.	0 1	r +1	l +19	17548	68	28.	. 14		2	92.0 93.0 91.0	M	1500	1.0)	0 45	1400	1.0	, 1	1					8	O	1500	1.0	N
75	23	IIA 238	FA	8.	o 1	r + 1!	5 +15	7917	68	28.	.03	74	2	90.0 92.0 89.0	M F	1700	0.8	1	0 35	1850	1.0	3	•					8	P	1700	0.8	N
83	3	11A 238	FA	8.	0 1	r +1!	5 +15	6173	78	29.	. 79	83	2	88.0 88.0 85.0	M F	2200	1.0)	0 45	2000	1.5	1	1									N
113	5	IIA 238	FA	6.	0 1	r +1!	5 + 15	8690	70	29.	. 98	48	2	90.0 91.0 89.0	M (1750	1 4	l	0 53	1750	1.4	, ,	,									N
159	6	IIA 238	F A	8.	۰ ٥	/ +1!	5 +15	8410	88	30.	. 10	98	2	87.0 89.0 86.0	M (1500	1.4	ı	0 40	1500	2.0	3	1									
171	6	IIA 238	F #	я.	0 1	/ +1	5 +15	10627	76	3 0.	.03	52	2	H 101.0 100.0	ME	1500	2.0)	50	1500	2.0) 1	1									

			VEHICLE																					T DATA												ATION	ı	
																	-	MAX	INU	M		50TH	PER	CENTIL	E 1	EC	H	-	DWN	ER						RATE	R	
	LAE NO	MODEL				A	AD A	PARI VAN	CE AS	DDOM MILES	TMP	B/	RO	HUM	F U E L	OCT NO		G T E H A R R	RP	M	MV	OCT NO	M P H		M	,	M O D	F (K N O O	ARU	00			- 1	E 6 A	RPM		
202	4	11A 238	5 F A	١ ١	3 . O	,	+ 1	4 +	14	10680	63	29	. 23	54	2	86. 86. 86.	0	M D	18	100	1.2		3 43	1600	•	. 3	3	1 1	4	N	90	. 4	84.	5 +	•			N
222	28	11A 238) F /	١.	3 .0	· ¥	+1	5 +	15	16437	73	29	. 32	90	2	87. 87. 87.	0	M D	15	100	1.5	85.0	25	1500	3	. 5	•	1 1	N	N	93	. 3	83.	5 1	•			N
251	7	11A 236	5 F #	١.	3 .0	Y	+1	5 +	15	15000	72	30). 17	44	2	92 98 90	0	P D	16	50	8.0	91.0	43	1500	1	0	3	1										N
254	7	11A 236	5 F /	۱ ۱	B . C	· ¥	+1	2 +	15	4600	74	30	. 28	48	2	94 . 94 . 92 .	0	M O	19	100	1.0		28	1500	6	0	3	•	v v	4	96	. 1	86.	4 8	P	2700	1.1	Y
276	47	11A 236	· c/	. (8 . 0	¥	+1	3 +	15	10550	70	25	. 76	62	2	H H 92.		P D	16	00	6.0		30	1500	6	0	1	1										
284	47	11A 236	C /	۱ (9 . C	¥	+1	5 +	15	19940	70	21	64	60	2	88. 89. 68.	0	M D	17	'00	0.0		52	2000	2	. 9	3	1										
285	47	11A 236	3 C /	A 1	B.C	Y	•1	2 +	15	8800	70	21	. 62	60	2	95. 99. 90.	0	PD	15	100	5.0	95.	30	1500	5	0	1	1										
349	46	IIA 236	5 F /	A (8 . C	Y	+ 1	5 +	15	13055	74	21	. 28	83	2	89. 89.	0	M D	17	00	1.0		45	2100	٠	5	3	1						٨	•			

			VEHICL	E	DES	CRI	PTI	ON			WEAT	THER	!		1	OC1	ANE	NUME	ER	REQ	UIRE	MEN	T DATA	١				T	LNK	FU	EL 1	NFO)R#	IAT LON	I	
																		MUM					CENTIL				OW							RATE		
			E			A	SP ADV	ARK ANCE	ODOM					F		1	G					н				F		A	oc	et i	WO	N I				A R
OBS NO	NO	CODI	Ť	\$		-	KUD	131	MIFE2	1 100		10	TUR	L	NU		, R	KPM	MA		NU	-	RPM	m v	E	E L		U N			40 1			RPM	MV	N N
371	41	IIA 230	з с	A	8.0	Y	+13	+ 15	6298	71	29.	. 98	64	2	н	P	D	3000 2950 1900	4.	8	91.0	43	1600	1.2	3	1	N	N	96.	1 1	95 . C	В	D	2900	5.0) N
394	26	IIA 238	3 F	A	8.0	¥	+ 19	+ 15	5448	93	29.	98	134	2	87.	ō N	ıĎ	1600 1600 1550	Ó.	3	84.5	35	1700	1.0	2	1			92.	4 (32 . 9	N				N
298	47	11F 24:	э с	A	7.5	•	+20	+20	12417	70	29.	. 76	62	2	89.	5 P	I P	2000 2850 1950	0.	0	B6 . 5	50	2000	0.5	3	1						N				N
404	26	IIF 24:	3 F	A	7.5	Y	+20	+20	7243	96	29.	. 87	137	2	96.	0 F	D	1700 1700 1650	6.	5	91.0	25	1700	4.0	1	1			92.	3 (82 . 9	8	D	1600	6.5	5 N
156	6	1F 243	F	A	7.5	¥	+20	+18	17305	82	29 .	. 85	85	2	96.	O N	D	1900 2000 2000	2.	0	94.0	45	2000	2.0	2	•	N	N	95.	5 (36.3	8	D	1900	2.0	N
151	6	IY 450	F	A	7.9	Y	+ 15	+ 15	11125	87	29.	95	106	2	89.	0 1	Ō	1600 1600 1600	2.	Ò	85.0	30	1600	3.0	1	1										
407	26	IY 450	F	A	7.9	¥	+ 15	+ 15	10057	95	29.	95	131	2	87.	0 #	D	1100 1025 1625	1.	6	83.0	38	1600	2.0	3	•			92.	2 6	92.8	N				N
24	29	KL 217	F	A	8.2	N	+10	+10	10190	70	29.	.77	60	2	89.	0 1	١Ď	2000 2000 2000	Ó.	8	82.0	30	2150	2.5	3	1	N	N	92.	2 6	93.9	N				N

				VEHICL										!										T DATA													
																	M	AXI	MUM			50TH	PER	CENTIL	E T6	СН		OM	ER					RAT	ER		
	LAS NO		MODEL CODE	E M C	A		A	ADV	AS				80	HUM	FUE	OCT	Ť	G E A	RPM			OCT	M		MV	=	F	K N		OC RES			N G	.		A R U	
103	5	KL	217	F	A	8.2	N	+10	+10	10132	70	29.	83	40	2	85.) M	D	2400 2400 2400	1.	. 5	82.0	45	2700	1.0	3	•	N	N	93.:	. 8:	3.4	N			Y	
167	6	KL	217	F	A	8.2	. Y	+10	+10	9880	75	30.	.03	49	2	87.) M	D	2200 2200 2200	0	. 5	85.0	40	2200	0.1	3	•	N	Y	92.	3 8	3 . 4	N			N	
253	7	KL	217	F	A	8.2	N	+10	+ 10	7069	70	3 0.	.06	50	2	88.	P	D	3450 2600 3250	2	.0	84.0	52	3000	4.0	. 3	•	N	•	91.	4 8:	3.5	N			N	
353	46	KL	217	F	A	6.2	Y	+12	+12	15450	70	29.	40	65	2	78.		D	2500 2500 2500	1	. 5	L					•						N				
235	28	KL	222 M	F	M	8.5	Y	+ 10	+ 10	12248	82	29.	48	102	2	95.	P	4	1900 1900 1500	2.	0	96.0	53	2900	3.0	3	1	Y Y	N	93.	1 8:	3.7	8 4	1500	2	.O N	
. 14	22	KC	222	F	A	8.5	, v	+ 10	+10	6678	70	29.	13	62	2	86.) M	D	2250 2000 2250	1.	. 2	82.0	38	2000	1.6	3 2	•	Y N	Y				N			٧	
55	29	KC	222	F	A	9 .5	, y	+10	+10	11721	70	3 0.	.02	55	2	92.) H	P	2200 2100 2200	Ö.		87.0	32	1900	1.0) 1	1						N			N	
164	6	KC	222	F	A	8.5	, A	+ 10	+10	8840	63	3 0.	.04	101	2	91.		D	5000 5300 5000	1.	. 5	90.0	45	2100	2.0) 1	1										

			VEHIC	LE	0	ES	CR	1 P	r 1 0	IN				EATH	ER				0	CTA	NE	NUMB	ER R	EQU1	REM	EN'	T DATA						TA	NK	FL	JEL	IN	OR	MATIO	N	
																		- 				MUM					CENTIL					WN							RAT		
			P	T R	!			A	OVA	RK																				ı F	K		AR			NO	•	V G			A R
	NO	CODI		. N		R					MILES				Н.	UM	E L	DC N	T O 	H R -	A R	RPM	MV	OC.	† D 	P H 	RPM	MV	_	E	-	_		RES		MOT			RPM	MV	N
236	28	KC 222	F			. 5	Y	٠	10	+ 10	9315	i 7	9	29.3	8		2	92	.0	M	D	2650 2400 2000	1.0)	. о	48	2200	١.	5 2	: 1							•	٧			N
237	28	KC 222	•		. 8	. 5		٠	10	+ 10	12292	. 7	9 :	29.3	5		2	91	Ō.	M	D	2150 2100 2100	2.0)	. 0	34	2300	2.	5 1	1	N		٧	93	. 5	83.	9 1	4			N
339	46	KC 222	ŗ	: /	8	. 5	Y	•	10	+ 10	7876		8	29 . 3	3		2	85	.o	M	D	1700 1700 1700	1.5	i	.0	45	2400	1.	0 1	1							•	4			
49	29	KC 222	• •		• •	. 5	Y	٠	10	+ 10	12300) 1	0	29.7	7		2	92	. 5	P	4	700 700 700	2.0)	. О	25	1100	0.	3 1	•							•	٧			N
234	28	KC 2221	4 F		• •	. 5	y	٠	10	+ 10	14781	•	9	29.3	1		2	90	.0	M	4	1700 1700 1600	0.3)	. 0	37	1800	2.	5 (•							•	4			N
238	28	KC 226	•	. ,		1.2	. v	•	7	• 7	12597	' 1	3	29.5	4		2	94	٠Ô	M	D	2600 2600 2700	1.5	j	.0	54	2400	2.	0 2	• •							•	•			N
52	29	KI 137	,	. ,	٠.	1.4	¥	٠	12	+ 12	12665	1	0	30.2	0		2	99	.0	M	P	1600 2700 1700	0.4		. 6	30	1700	1.	2 1	1				92.	. 7	83.	5 1	4			N
138	•	KI 137	,			1.4	¥	•	12	+ 12	14281	•	2 :	90.0	•		2	98	. 0		0	2100 2050 2100			. 0	52	2050	1.	2 3	1											

				VEHI																E NUME																		
																		-	KAN	IMUM		50TH	PE	RCI	ENTIL	E T	ECH		OW	1ER						RATE	R	
	LA NO	,	MODEL		E I M I C I	5 (:R	A 1 R	AD'	TS		TMP	BA	RO	HUN	F U E L	OCT NO	,	G E A R	RP#	MV	0C1 N0	# P H	· ·	RPM	MV	M 0 0	FUEL	KNOCK	ARUN	OC RÉS		0	X X	G E A			A R U
170	6	i KI	1 137		F	A (1.4	Y	٠ :	+15	8640	74	30	. 07	78	2	96.) (P		1.0)	0 5	5 2	2400	1.9	5 3	1										
409	26	i KI	1 137		F	A (3.4	Y	+ 13	! +1:	9571	90	30	. 0 0	107	2	90.) I	4 D	2300 2100 1950	0.9	1	0 5	6 2	2400	0.1	2	,			93.	0 8	3.0	8	P	1850	0.5	i N
	26	i K1	252		F	A (3.5	Y	+ 10	+ 10	9944	94	30	.00	119	2	99.	o i	PĎ	1450 1450 1450	7.0)	0 2	17 1	1300	7.0) 1	1			92.	6 8	3.0	A	D	1500	1.0) N
		LC	CX 226	•	F	A (9.5	Y	+ 10) + 10	8280	72	29	. 93	62	2	87.0) (4 P	2700 2700 2700	0.7		0 4	5 2	2600	2.1	3 3	1	N	N	92.	• •	2.0	N				N
190	4	LC	CX 226)	F.	A (3 . 5	N	+ 10	+ 10	5542	75	29	. 32	44	2	88.0) i	40	2450 2500 2300	1.0)	0 4	7 2	2250	3.9	3 2	1	N	N	92 .	0 8	2.4	8	P	2100	0.0	1 N
219	26	L	CX 226	•	F	A (9 . 6	Y	+ 10	+10	0833	69	29	. 50	67	2	84.) (Ö	2500 2500 2600		i	0 5	5 2	2650	2.1	3 2	•						N				*
270	7	, FC	CX 226	1	F	A 1	3 . 5	٧	+ 10	+10	6936	70	30	. 40	60	2	85.6	Э,	4 D	2600 2500 2550	1.2	!	0 5	0 2	2400	2.1	2	1	N	N	90.	• •	1.8	N				N
345	40	. LC	CX 226	•	F .	A (. 5	•	+10	+10	14396	76	29	. 6 0	70	2	84.4	0 1	4 D	2400 2500 2700	1.0)	0 3	8 2	2400	3 .6	2	,						ĸ				

			VEH	1CL	E O) S	CRI	PT:	ION																T DATA						TAP	ak F	UEL	IN	FOR	MATIO	N	
																			MAX	I MUM			50TH	PER	CENTIL	E T	ECH	1	01	ME	R					RAT		
NO	NO	B MOD	DE		R A N 5 C	R	A I R	AD!	TC	CE AS ST	ODOM MILES	TIMP	BA	RO	HUM	F U E L	OCT NO		G T E H A R R	RPM	MV	,	OCT NO	MPH	RPM		0	I F	KNOC	0	A R U			(N G			A R U
92	3	LC5 2	25	F).2	¥	• •	• •	4	5925	74	29	. 93	92	2	95.	ō	M D	2500 2500 2500	1.	Ō	95.0	55	2500	1,	0 3	1	٧	N	N S)1.9	82	. 5	A D	2400	١.	5 N
154	6	LC5 2	25	F	۸ ه	1.2	*	• •	• •	4	9150	87	29	. 84	118	2	96.	0	M P	2500 2500 2500	1.	0	92.0	50	2600	1.	• •	ı 1	٧	N I	N S	2 . 4	83.	4 /	A P	2500	1.	0 N
217	28	LC5 2	25	F	A 8	3.2	*	• •	• •	4	13121	70	29	. 44	72	2	99 .	0	M P	3500 3500 2500	1.	.0	96.0	55	3600	1.	0 1							•	A P	3500	1.	0 N
384	41	LC5 2	25	c i	٠.	. 2	*	• 4	• •	4	6590	77	30	.04	64	2	94.	0	M D	2600 2500 2600	0.	. 8	90.0	50	2500	0.	8 2	. 1						(B D	2500	0.	8 N
57	23	LIA 2	38	F	۸ •	0.0	٧	+ 11	5 •	15	9020	65	20	.03	€0	2	68.	Ó	MD	1600 1500 1600	1.	Ō.	87.0	55	2200	1.	0 1	•						•	4			N
66	23	LIA 2	30	F	A 4	. 0	٧	+ 1!	5 +	15	7495	73	28	. 25	40	2	90.	0	M D	1500 1500 1500	1.	. 2	69 . C	47	1500	1.	0 1	•						•	4			N
67	23	LIA 2	30	•	۸ .	1.0	٧	+ 11	5 +	15	13694	-5	20	. 34	60	2	93.	0	M D	1600 1700 1600	1.	0	90.0	48	1500	1.	0 1	1						١	5 D	1500	0.	8 N
108	5	LIA 2	30	F		0.0	٧	+ 11	5 •	15	6941	71	29	. 99	50	2	88.	0	M D	1750 1850 1850	1.	4	86.0	35	1700	2.	0 3	1										N

				VEHIC	LE	DE	SCR	IPT	100				WEA	THE	2			ОС	TAN	E NUM	BER	RE	QUIRE	MEN	T DATA	١				T	ANK	FU	EL 1	NF O	RMAT	ION		
					T R				PARK																CENTIL				K	VER						ATE		
OBS NO	LA!		CODE	M	A		I		S A	: 5 (ODOM MILES			RO	HUM	FUEL	DC.	r D	G T E H A R R	RPM	M	v	OCT NO	M P H	RPM	MV	0	E	0 (5 U	00		NO MOT	N.	E N	4	MV	RUZ
132	6	CIA	238	F	A			+1	5 +1	5	12119	87	29	. 62	118	2	97	.0	P D	1350 1300 1700	4.	.0	94.0	51	1850	2.4	1 1	1										
142	6	LIA	238	F	A) Y	+1	4 +1	5	8175	85	30	.00	103	2	95	О.	M D	1600 1500 1500	1.	. 8	93.0	50	2100	2.6	1 1	•										
209	4	LIA	238	F	A	8.0	9 Y	+1	5 +1	5	10054	76	29	. 13	96	2	87	ō	M P	1925 1800 1800	1	. 2	85.0	35	1775	1.9	3	1	N	N	91.	.2	82.8	N				N
256	7	LIA	238	F	A	8.	9 Y	+1	5 +1	5	14756	72	29	. 68	47	2	H		PD	1800 1700 2450	6	.0	92.0	37	1500	3.0	3	1	Y 1	٧ ٧	92.	.4	83.6	A 1	240	00	1.4	N
286	47	LIA	238	С	A	8.	> ¥	•1	2 +1	5	15210	70	29	. 76	€2	2	95	. O	PD	1500 1500 1350		.0	92.5	35	1400	1.5	1	1										
354	46	LIA	238	F	A	8.6	> v	+1	5 +1	5	5344	72	29	. 50	58	2	98	Ō.	MĎ	1900 1900 1900	1.	.0	93.0	45	2000	2.0	1	1						A I	180	00	1.0	
380	41	LIA	238	С	A	●.	D Y	+1	3 +1	5	6200	72	29	.97	60	2	99	.0	PŌ	3000 2950 1900	5	. 5	87.0	42	1850	1.4	3	•						A	239	50	1.0	N
403	26	LIA	236	F	A	•.	D Y	+1	5 +1	5 4	46789	91	29	. 80	131	2	95	0	M D	1500 1500 1575	0.	. 5	91.0	58	2000	2.0	1	1			92.	2 (82.8	A I	150	ю	0.5	N

			٠	VEHIC	LE	DI	SC	RI	PTI	ON				WEA	THE	R			00	TAI:	NE	NUME						T DATA					,	FAR	. .	FUEI	LI	NF O	RM	IAT I DN	ı	
																						HUM			50TH	P	ER(CENTIL	E T	ECH			NE					- 		RATE		
	LAB NO		DEL		RAS			A I	ADV						RO	HUM	FUE	OC	:T	T	G E A	RPM			001	1	M P			M 0	F U E	K N O C	0 I	A R J -		r no		N I N	G E A	RPM		A R U
					-			-						•			-			-						-					•	-				 .	• • •	-	-			-
221	28	LA 2:	38	•		8.	0	٧	+ 15	+15	163 [.]	70	75	29	.41	91	2	88	.0		2	2 100 2 100 1 7 5 0	1.	0	87.	0 4	45	2400	1.0	2	1							N				N
95	3	LY 49	50	•		7.	9	٧	+ 15	+ 15	1279	96	74	29	. 97	78	2	82	.0	M () 1	1900 1900 2000	1.	5	82.	0 4	40	1800	1.0	3	•											
109	5	LY 4!	50	F		7.	9	٧	+ 15	+ 15	100	71	70	30	. 15	56	2	87	٠0) 1	1550 1400 1750	2.	. 8	84.	0 :	35	1600	3.6	2	1	N	٠	19	2.7	7 82	≱.9	N				N
148	. 6	LY 49	50	•		7.	9	Υ	+ 18	+16	94(00	78	30	. 17	67	2	94	.0	P) 1	1000 1000 2100		0	91.	0 !	53	1350	2.0) †	•	N		19	2 1	1 83	1.4	N				N
225	28	LY 49	50	•		7.	9	٧	+ 18	+ 18	80	9 0	78	29	. 36	96	2	87	. О	M C) 1	1900 1900	1.	5	86.	0 (85	1900	1.9	3 1	•							N				N
23	29	L4 4	11	F		8.	0	Y	+ 15	+15	1516	38	70	29	. 90	64	2	H		M C	2	1900 2000	Ō.	4	98.	0 4	47	2000	0.1	2	1			9	2.4	84	1. 0	A (D	1800	0.4	N
127	• 1	ML 2	16	•	A	₿.	8	٧	+ 10	+ 10	764	15	87	29	. 99	120	2	93	Ō.	M C	2	1950 1300 1100	ō.		90.	0 4	40	2100	2.0	• •	•											
252	7 1	ML 2	16	,	A	8.		٧	• 8	• 8	561	93	72	30	. 36	43	-	94	Ō.	M C	2	1000 1400 1100	Ö.	5	91.	0 3	35	2000	1.8	3	1	N	N	194	5.6	. 86	i . 5	8 (D :	2800	0.5	N

			VE	HICL	E	DE	SCR	119	· T I C	N			WEA	THE	R			oc	AAT:	Æ	NUMB	ER R	EQUIR	EME	NT D	ATA					T	ANK	FUE	L II	NF OF	MAT10	IN .	
																			MAX	11	NUM			PE	RCEN	TIL	E TI	CH		OM.	ÆR					RAT		
NO	NO		DΕ	E M C T	S	CR	A	A -	AS CD	TST		TMF	BA	RO	HUM	f U E L	OC.	T D	TEHAR) 	RPM	MV	OCT NO	M P H	RP	*	MV	M O D E	F U E L	K N C E	ARU	00	T N	0	N G I E N A	3		A R U
281	47	ML 21	•	С	A	8 .	• v	•	6	• 6	10400	70	28	. 68	64	2	89	. 5	K C	, 1	1600 1650 1750	0.5		0 4	5 20	00	1.0	, ,	1									
6	40	ML 21	6 M	F	M	8.	8 N	, •	10	+ 10	10159	75	29	. 50	110	2	93	.0	P 4	. (1300 1300 1300	2.0		0 4	5 18	50	0.0	3	1	N	N	92.	9 8	4.9	B 4	1500	0.	0 N
228	28	ML 21	6M	F	M	8.	8 Y	, 4	10	+ 10	9261	70	26	. 35	71	2	89	.0	M 4	•	1500 1500 1500	0.5		0 3	4 19	00	0.0	. 1	1	N	N	92.	1 6	3.2	N			N
310	32	ML 21	6 M	F	*	8.	. \	, ,	-14	+ 10	13073		5 26) . 44	66	2	93	.0	M 4	•	1000 1000 1 100	0.0		0 5	5 24	00	0.3	2 1	•									
313	32	ML 21	6M	F	•	8.	8 1	• •	13	+ 10	7665	i a t	3 21	. 56	68	2	94	. 0	M 4	1	1000 1050 1200	0.1		0 5	2 24	0 0	0.3	, ,	1									
358		ML 21		F	Ħ	•.	• 1	, 4	10	+ 10	8800		29	. 66	79	2	88	.0	M 3	3	1750 1750 1800	0.9		0 3	0 20	50	0.1	, 2	1	N	N				N			N
128	•	MCA 1	33	F	A	₿.	• \	, •	10	+ 10	13680	90	21	. 89	139	2	91	.0	M 1	• :	3000 3200 2 90 0	2.1				00	2.0	2	1									
311	33	MCA 1	33	F	A	₩.	• 1	, ,	• 12	+10	995	. 8!	5 21	. 69	67	2	94	.0	M 1	• :	2200 2200 2300	0.7		0 5	5 24	00	1.9	5 2	1									

€-17

			VEHIC								WEA.	THER	1			ОСТ	ANE	NUME	BER	RE	QUIR	ME	NT DAT	A				T	LINEK (FUEL	IN	FOR	MATION	1	
																-		MUM					RCENTI				OW						RATE	R	
OBS NO	LAI NO		EL C	T R A N S	CR	Ā	AS	ANCE	ODOM MILES			RO	HUM	F U E	OCT NO	T	G		M		OCT	M			M 0 0	F U E	0 0	A R B U	OCT			N G I E N A T R		MV	ARUN
266	7	MCA 2	23 F	: A	9.0	- • v	+ 8	+12	6710	73				3 2	90.	0 M	I P	3100	1	. 9	88.0	2	8 2000	3.5	5 1	1	N	N	92.5	5 83	. 3	8 P	3500	1.9	- v
139	6	MCB 1	33 F	A	8.6	¥	+ 6	+10	13930	82	30	.09	85	2	100.	0 1	P	2400 2400 1700	- 1	. 0	94.0	5	0 2000	1.0	2	1									
318	32	MCB 1	33 F	A	8.6	Y	+ 10	+ 10	11377	85	29	. 48	66	2	93.	0 #	D	2200 2000 2400	Ō.	5	92.0	5	5 2400	0.7	2	1	Y 1	•	90.9	9 63	.0	B D	2300	2.5	4
324	46	MCB 1	33 F	A	8.6	¥	+ 12	+ 10	10664	72	29	. 50	66	2	90.	5 M	P	3100 3100 2700	- 1		86.0) 5 [.]	7 2800	1.5	3	•					1	N			
370	41	MCB 1	33 0		8.6	N	+10	+10	6500	70	29	.90	88	2	91.0	0 14	D	2300 2200 2200	1.	.0	88.0	41	23 5 0	2.2	3	1			92.3	82	. 5 (B 0	2500	1.5	N
365	8	MCB 2	23 F	· A	9.0	٧	+12	• 12	7582	86	29	. 84	106	2	92.	0 1	P	3550 3550 2450	0.	. 8	92.0	51	8 3800	0.8	2	1	Y N	N			1	ВР	3500	0.8	N
315	32	MCS 1	33 F		8.6	٧	+10	+ 10	12058	84	28 .	. 97	62	2	89.	0 M	D	2300 2200 2100	Ō.	6	88.0	50	2400	0.8	2	1	Y N	N	91.0	. 83	. 7 (N			N
306	32	MCS 1	33M F	M	8.6	N	٠ 6	٠ 8	5051	85	29	. 29	68	2	96.6 96.6	0 1	4	800 800 800	0.	0	91.0	40	1450	1.0	2	•									

			VEHICLE								WEAT	THER						NUME										Ţ	ANK I	UEL	INF	ORI	ATION	l 	
						•••										M	AX1	MUM		50TH	4 PE	RC	ENTIL	E TE	СН		OWI						RATE		
NO	NO	3 MODEI CODI	E 1	s c	R	A I R	ADV AS RCD	151	ODOM MILES	AMB TMP	BAF	80	HUM	F U E	OCT	T	G			O C1	, M	•			M 0	FIJE	K N O C	A C R B U	OC1	NO	N I	GEA			A R U N
137	6	MCS 223	9 F	4 9	. О	Y	+ 12	+ 12	9223	82	3 0.	. 09	85	2	94.0) M	₽	2790 3200 3000	0.6	,	.03	15	2200	1.0	3	1									
314	32	MCS 223	3 F /	A 9	.0	Y	+ 14	+12	19535	85	29	.51	66	2	93.1	5 M	D	2900 2900 2900	0.6	3	.0 5	3	2500	1.0	3	1									
36 1	8	MCS 22	3 F	A 9	.0	Y	+12	+12	7610	80	30.	. 02	64	2	95.0) N	Ð	2500 2450 2500	2.0)	.0 4	10	2350	3.5	3	•	٧.	Y N	1			P	3100	1.0	N
264	7	MCS 22	3M F (M 9	.0	N	٠ 6	٠ 6	5972	71	30	. 60	61	2	14	M	4	2600 2500 2750	1.0)	.0 4	13	2300	3.5	5 1	1	¥ '	Y Y	92.0	83	2 A	3	2900	1.0	N
306	32	MCS 22	344 F	M 9	.0	٧	٠.	• •	1745 8	85	29.	. 40	64	2	93.6) M	4	1500 2150 1550	0.	5	.0 5	55	2500	0.5	, ,	1									
233	28	MI 242	F	A 0	. 2	Y	+ 10	+10	17039	70	29.	. 44		2	92.6) M	D	1250 1150 1200	1.5	5	.0 4	17	1600	2.5	1	1	Y 1	N Y	92.	63.	1 8	D	1100	2.0	N
265	7	M I 242	F	A .	. 2	٧	• 10	+ 10	12181	70	30	. 59	60	2	95.0) H	D	2000 2200 2000	0.1		.0 4	15	1800	4.0	3	1	Y 1	N N	93.	l 63.	7 A	P	2300	1.0	N
304	32	MI 250	F	A =	. 4	٧	+ 10	+10	10631	85	29.	. 32	63	2	96.		D	1250 1400 1300	2.1	5	.0 4	17	1500	2.1			v (N N	9 1.(82.	7 A	D			N

			VEHICL							,	WEA	THER	2		(ст	ANE	NUME	ER	REC			IT DATA					Ţ	NK	FUE	LI	NF OR	AO I TAM	I	
																Ņ	AXI	MUM					CENTIL				OW					•	RATE		
08S NO	LA!	COL	E M L C	A N S (CR	A I R	ADV AS RCD	TST	ODOM MILES	TMP	BA	RU	HUR	ι	OCT NO	N	×	RPM	MV		OCT NO	M P H	RPM		0	FU	Č I	A D R	00			N G I E N A	,		A R U N
269	7	M V250) F	A i	8.4	¥	+ 8	+ 8	7927	70	30	.41	59	2	90.0) M	D	1350 1450 1350	0.	9	88.0	27	1200	6.	5 1	1	N	N	92	1 82	2 . 7	N			N
299	32	M V250) F	A :	8.4	Y	+ 8	+ 8	6954	85	29	. 56	63	2	90	5 #	D	950 1100 1000	1.	5	89.0	40	1150	2.	0 1	•	Y (N N	90.	9 8:	2 . 6	N			N
302	32	M V250) F	A :	8.4	Y	+ 8	• 8	10898	85	29	. 29	70	2	91 () N	D	1300 1400 1~00	3	0	85.5	32	1400	4.	0 1	1	γ (N N	91	0 8:	2 6	A 0	1300	2 5	N
69	23	NL9 2	16 F	A :	B . 6	*	+ 18	+ 18	26140	70	28	. 99	90	2	92.0) P	D	2100 2100 2400	6	5	87.0	55	4700	1.	0 1	1						N			N
. 77	23	NL9 2	16 F	A 1	8.6	*	+18	+ 18	11203	70	27	. 76	110	2	90.0		P	2400 2400 2400	0.	6	85.0	40	2800	1.	0 3	1						N			N
140	6	NL9 2	16 F	4 :	9.6	٧	+ 18	+18	13390	81	30	. 21	76	2	99.0) P	D	2400 2400 2500	5.	0	98.0	23	2300	6.	0 1	1									
166	6	NL9 2	16 F	A 1	B . 6	¥	+ 18	+ 18	14220	73	29	. 84	52	2	91.0) W	0	2400 2400 2500	0	6	90.0	35	2600	0.	7 2	•									
201	4	NL9 2	16 F	A 1	9.6	٧	+20	+20	16580	72	29	. 30	49	2	90.0) M	D	2600 2450 2700	1	3	85.0	46	2750	2.	9	1	N	N	91	2 83	3.5	B D	2700	1.3	N

				ICL								WEA	THER	ì		•	DCT	ANI	NUMB	ER	REG	WIRE	MEN	T DATA					T	ANIC	FUI	Et I	N/C)@#	IAT I ON			
																	M	AX!	MUM		•	тотн	PER	CENTIL	E TE	СН		OW	ŧΕR						RATE			
NO	NO	B MODI	DE	C I	R 4 8	:R	A I R	ADV AS RCD	TST		TMP	BA	RO	HUM	FUEL	DCT NO	1	GEAR	RPM	MV	,	DCT NO	M P H	RPM	MV	M 0 0	F U E L	K N C C K	A R B U J N	RES	5	NO	N I N	G E A			A R U	
267	7	NL9 2	16	F	4 6	3.6	٧	+22	+ 18	9354	71	29	. 99	61	2	96.	0 1	D	2600 3100 2700	1,	1	91.0	35	2500	6.0	3	•	N	N	93	0 1	84 0		0	2900	•	1 N	
379	41	NL9 2	16	C	A 6) . 6	٧	+20	+20	6390	- 81	29	. 90	54	2	88.6	0 1	ıD	2500 2500 2700	1.	0	84.0	45	2400	2.0	3	1						N				N	
400	26	NL9 2	16	F	4 6	3.6	٧	+ 18	+ 18	7943	93	29	. 9 0	134	2	94.	0 1	ı D	2700 3450 2250	Ο.	8	91.0	35	2400	1.4	1 3	•			92	4 (82 8	8	D	2900	o	8 N	
28	29	NL9 2	16M	FI	M (3 . 6	N	+18	+ 18	11435	70	30	.04	57	2	97.	0 1	1 4	1000 1000 1000	0.	2	92.5	28	1600	1.8	, ,	,	y 1	/ N	92.	2 (B3.7		4	1000	2	0 N	
81	3	NL9 2	16M	Fi	м (1.6	N	+ 18	+ 18	6729	79	29	. 92	75	2	86.	0 1	1 4	2000 2000 1500	Ο.	2	86.0	40	2300	0.5	3 2	1										N	
295	47	NL9 2	16M	C	M (1.6	N	+ 18	+ 18	12870	70	29	. 69	56	2	95.	5 1	1 4	1750 1750 1600	Ο.	0	93.5	35	1800	6.0) 1	1											
335	46	NL9 2	16M	F	m (5 . 6	Y	+ 16	+18	14655	78	29	. 36	103	2	82.	0 1	4	850 850 850	1.	ō	85.0	25	1200	1.0	3	1						N					
27	29	NCX 2	28	F	A 1	9.5	¥	+ 9	* 9	8437	70	30	. 13	57	2	94.	0 1	P	2000 2100 1900	1.	0	86.0	44	2400	2.0	, 1	1	N	N				В	P	2150	1	0 N	

		v	EHICL	E (DES	CRI	PTI	ON			WEATH	ER			0CT	ANE	NUMB	ER 1	REQ	UIRE	MEN	T DATA					TA	NK I	FUEL	. 11	NF OR	MATION		
085	LAS		E I	A N		A	ADV	ARK ANCE	DDOM	AMB			F U E	ОСТ	т н	GEA	MUM			0TH 	PER M P	CENTIL	E 76	CH M O D	F U E	K N O O	ARU	ОС	r NC	,	N G I E N A	PATE	R	A R U
	NO	CODE							MILES									MV		NO	H 	RPM	MV 	. E	- -	K .	- -	RES) T	T R	RPM		·
46	29	NCX 228	F	A 1	8.5	٧	+ 10	+ 10	10575	70	30.1	9 56	2	92.	0 M	P	2200 2200 2100	1.4	0	87.0	38	2100	4.0) 2	1			92.	4 84	1 1	A P	2200	1.0	N
56	23	NCX 228	F	A 1	8.5	¥	+ 8	+10	6096	70	27.9	4 76	2	87.	0 M	D	2400 2400 2400	3 (0	82.0	50	2500	2.0) 1	1						N			N
63	23	HCX 228	F	A 1	B . 5	¥	+10	+10	5810	64	27.9	8 7	2	86.	0 M	D	2400 2300 2400	1 1	0	82.0	45	2400	1.5	5 1	1						N			N
160	6	NCX 228	F	A	8.5	¥	٠ 8	+ 10	19280	84	30.0	0 156	2	93.	0 M	O	2300 2300 2300	2.	0	89.0	45	2300	2.0) 3	1		•							
220	28	NCX 228	F	A :	8 . 5	. ¥	+ 13	+ 10	17034	77	29.3	1 116	2	90.	0 M	D	2150 2100 2200	3 .	2	87.O	37	2100	3.2	? 2	•	Y Y	N	92.:	2 82	2.7	N			N
366	8	NCX 228	F	A :	8.5	. ¥	+10	+10	12795	85	30.0	2 91	2	82.	0 #	D	2300 2300 2400	3.	0	78.C	50	3000	1.0	2	1	N	N				N			N
387	41	NCX 228	С	A	8 . 5	. ¥	٠ 8	+ 10	12172	71	29.8	8 64	2	86.	0 M	P	2400 2500 2500	1.	8	79.0	50	2800	1.0	3	•						N			N
399	26	NCX 228	F	A	6.5	Y	+10	+ 10	6741	92	30.0	0 136	2	90.	0 M	D	2050 2175 2250	0	8	87.0	51	2400	2.5	5 1	•			92.	2 82	2 . 8	N			N

			VEH	ICLE							•	EATHE	R			CTA	NE NUM				T DATA					TA	MK	FUE	L II	4F OF	MATIO	N	
																	x t muum		50TH	PER	CENTIL	E TE	СН								PAT		
				E R M A	7		ADV	ANC	£														M	F	K N	A	ос	T N	0	N G	1		A R
	NO	C	DEF PEF		CR	R	RCD	75	1		TMP		HUM	E	OCT NO	H	G E A R RPM	MV	OCT NO	P H	RPM	MV	D E	É	C B	U				N A	RPM	MV	N
50	29	NCS :	225	F	. 6 .:	2 4	• 4	٠	4	96 10	70	30. 19	56	2	99 () M	P 2000 P 2000 P 2000	0.6		o 40	2100	2.0	2	1			92.	5 6-	4.1	A 0	2200	Ο.	8 N
74	23	NC5	225	F	.	2 N	+ 4	•	4	7053	65	28.06	57	2	97.0	M	0 2500 0 2500 0 2500	0.8		50	2600	O.8	3	,						A 0	2400	Ο.	8 N
78	23	NC5	225	F	8.:	2 Y	+ 5	•	4 1	11120	75	28.00	102	2	97.0	M	D 2400 D 2400 P 1900	1.0		55	410C	7 11	1	1						A 0	2400	1.4	0 N
263	7	NC5	225	F	\ 6.:	2 4	. 4	•	4	6200	71	30.47	6 1	2	98.0	M	P 3300 P 3200 D 2550	2.2		56	2600	2,5	3	•	Y Y	N	91.	4 8:	3.6	A P	2800	2.	2 N
278	47	NC5	225	c A		2 N	+ 4	•	4 2	20100	70	29.74	62	2	H	M	D 2000 D 2250 D 2300	0.8		40	2000	0.8	3	•									
286	47	NC5	225	c A	. 6.:	2 4	+ 4	•	4 1	12680	70	29.70	62	2	97.0	M	D 2150 D 2300 D 2300	0.5	-	5 60	2300	1.5	2	1									
174	6	NC5	225M	FI	4 8.:	2 4	+ 4	•	4 1	13530	77	29.79	105	2	93.0	M	4 1800 3 2300 4 1800	0.4		50	1800	0.6	3	1	Y N	N	95.	3 8	5.3	N			N
45	29	NFH	450M	Fı	1 8.	š Ý	٠ 6	•	5	8721	70	29.97	55	2	95.0	M	3 1900 3 2000 3 1900	1.5		36	1900	3.5	1	1	Y N	N	92.	5 84	4.0	A 4	1900	2.0	0 N

			VEHICL																		T DAT									MATIO		
									-						MAX	I MUM			SOTH	PER	CENTI	E TE	СН			ÆR				RATI	R	
085 NO	LAE NO	CODE		R A N S CR	A I R	ADV AS	TST	ODOM MILES	AMB TMP	BARO		F U E	OC1	r 1	G T E H A				ОСТ	M			M 0	F U E	K N O C	AR	0C1		N G	i		A R U
213	23	NFL 457	F	A 8.	2 Y	+ 4	+ 6	7440	75	28.20	74	2	93	0	P D	1700 1700 1500	. 6	. О	87.0	50	2000	9.0	2	1					N			N
273	47	NIA 236	С	A 8.	o ¥	+15	+ 15	7150	70	29.77	50	2	101	0	P D	1400 1400 1650	7	0	97.0	25	1200	€.0	3	1	Y Y	N			A D	1400	7.0	N
372	41	NIA 236	С	A 8.	O ¥	+14	+14	8800	70	29.92	62	2	н		PD	2900 2900 1900	5	. 6	90.0	35	2900	1.5	2	1					во	1800	6.0	· N
350	46	NIH 450) F	A 8.	6 Y	• 4	+ 6	7467	72	29.26	67	2	86	ō.	M D	1600 1600 1450	01	. 5	85.0	35	1400	3.5	1	1					N			
1	40	NIJ 244		4 8.	3 Y	• 6	+ 6	10284	75	29.34	102	2	91	o I	PD	1800 2100 1600	4	Ō.	89.0	35	1850	2.0	1	1	N	N	92.9	84.9	N			N
34	29	NIK 236) F	A 8.	6 Y	٠ 6	+ 6	13104	70	29 . 98	62	2	98	0	PO	1300 1300 1300	5	.0	90.0	33	1850	3.4	•	1			92.4	83.9	8 D	1300	5.0	N
60	23	NIK 236	F	A 8.	6 Y	• 6	+ 6	14553	67	28.20	99	2	95.	.0	M D	1400 1400 1400	- 4	. 0	90.0	35	2100	1.0	2	1					8 0	1300	4.0	N
65	23	NIK 238	i F	A 8.	6 Y	• 5	+ 6	897:1	60	28.20	36	2	97.	0	P D	1300 1300 1600	6	.0	91.0	55	2800	1.2	•	1					8 D	1300	5.0	N

			VEHICLE							,	WEAT	THEF	!		0	CT.	ANE	NUMB	ER RI	QUIRE	MEN	T DATA	•			_	1/	NK I	FUEL	IN	IF OR	MATIO	N	
																		MUM				CENTIL				OWN	ER					RAT	ER	
NO	NO		E R M A	CR	A I R	AD!	75	E IS C	DDOM MILES	TMP	BAI	RO	HUM	E	NO	T H R	E A R	RPM	MV	NO	н	RPM	MV	D E	FUEL	K N O B J	A R U N	OC1	OM T	 T	N G I E N A T R	RPM	MV	A R U N
89	3	NIK 23	8 F A	e.(5 Y	• (5 ÷	6	8125	75	29	. 89	76	2	91.5	5 P	D	1600 1700 2400	6.0	86.0	30	1800	3.5	2	1	Y N	I ¥	92.	5 82	. 2	N			N
163	6	NIK 23	8 FA	8.0	5 Y	• (•	6	9490	79	28	. 99	90	2	98.0) P	D	1800 1800 1700	7.0	90.0	35	1400	4.0	2	1	Y Y	¥	91.3	7 82	. 5	A D	1500	2.2	! N
187	4	NIK 23	8 FA	8.0	5 N	• (5 +	6	5594	78	29	. 33	67	2	95.0	P	D	3250 1800 1750	5.0	92.0	57	1800	4.5	i 1	•	N	٧	95.	85	. 6	N			N
268	7	NIK 23	8 FA	8.1	5 Y	• !	5 +	6	8560	70	30	. 46	61	2	91.0) P	0	2150 1800 2050	4.0	88.0	55	2200	0.6	3	1	N	N	93.0	82	. 1	6 0	2100	o .€	: N
359	8	NIK 23	8 F A	8.	B Y	• (5 ÷	6	6884	90	29	.71	63	2	86.0) M	D	1700 1700 1700	1.0	84.0	36	1700	1.5	3	1	N	N				N			N
405	26	NIK 23	8 F A	8.4	6 Y	• 1	6 4	6	7865	99	29	. 90	86	2	95.0	P	D	1300 1300 1250	5.9	88.0	33	1600	0.8	3	1			92.	2 82	. 9	A D	1400	5.9	N
199	4	NS6 45	7 F A	8.	2 Y	•	6 •	6	6410	80	28	. 82	83	2	86.0) M	D	1300 1500 2150	1.5	82.0	38	1500	4.0) 1	•	N	N	92.	7 83	. 1	N			N
215	23	NH 450	FA	. 8.	8 Y	•	5 +	6	8681	42				2	96.0) M	P	2100 2100 1400	1.0	95.0	50	2200	6.0	2	1						A D	1300	2.0	, N

				VEH											WEA	THE	R			00	CTAI	NE	NUMB	ER I	REQ	JIRE	MEP	NT DAT	A					TA	NK	FUE	LI	INF	ORA	AO I T AN	1	
																		-					MUM					RCENTI												RATE		
	N	ĵ	MODE	Ē	E M C T	N	CR	R	A!	DVA AS CD	TST	OI M	ILES	AME TMP	BA	RO 	HUM	F U E	ОС	Ŧ	T (G E			,	ост	M	RPM			M O D	F N U O E C	, , ,	A R U	00		10	N 1 N	G E A			A R U
223	28	9 A#	1 450		F	A	8.6	; v	٠	6	• 6	: 1;	2960	64	29	. 45	76	2	92	٠Ō	M	•		1.5	5	91.0	56	1450	2 .	0	1.	1						8	D	1000	1.	5 N
224	28	9 N#	1 450		F	A	8.6	, v	٠	6	٠ 6	i 1:	24 15	85	28	. 42	103	2	91	.0	M (2	2550 2500 2300	1.5	5	37 . C	34	I 1850	4.	0	3	1 N	ı	N	92.	2 8	12.5	5 N				N
275	47	7 NH	1 450		С	A	0.6	, 4	٠	6	٠ 6	; (5000	70	29	. 65	56	2	93	. 0	P (,	1750 1750 1900	7.0	•	37 . C	40	1800	3.	0	1	•										
111	,	5 N.	244		F	A	6.3	y	٠	6	٠ 6	; ;	5274	70	30	. 22	61	2	93	.0	M	, :	2 150 2 150 2 150	3.0	•	90 . C	36	2000	3.	0	3	1 4	N	N	93.	0 6	2.6	8	D	2100	3.6	0 N
391	26	5 N.	244		F	A	8.3	1 4	•	6	+ 6	•	5048	95	29	. 90	124	2	96	0	P) 1	1550 1525 1100	6.0	•	92.C	32	975	5.	5	2	•			92.	3 8	2.8		D	1500	6.6	D N
51	29) NH	238		F	•	8.6	; v	٠	6	٠ 6	10	360	70	30	, 11	58	2	98	0	P () 1	1700 1600 1700	5.0	•	91.0	93	1700	1.	0	2	•			92.	6 8	3.7		D	1500	5.0	D N
207	4	l NR	238		F	A	8.6	; y	٠	6	• 6	•	5449	82	29	. 12	107	2	85	۰0	M) 1	1675 1650 1675	1.5	5	12.0	32	1700	1.	5	2	N		N	91.	9 8	2.4	N				N
4	40) OL	. 216		F	A	B. E	. N	٠	10	+ 10	10	0029	73	29	. 45	80	2	95	۰.	M () 1	1800 1800 1800	1 5	5	93 . C	40	1900	2.	0	3	ı N		N	92.	9 8	4.9	A	D	1500	2.6	D N

			٧	/EHIC																					T DATA													
					-														MAX	IMUM			SOTH :	PER	CENTIL	E TE	СН		OW	ΙER					R	ATE		
	LA NO		MODEL CODE	E M C T	N	CR	A I R	AC RC	AS CD	121		IMP	-	ĸU.		F U E L	OC1	r :	G T E H A R R	RPM			OCT	M P			M G	F U E	K N G C	A B R	90		0	N G	3			A R U
12	22	OL	216	F	A	8.	B Y	•	10	+ 10	9163	70	29			2	83	0	M O	1400 1300 2250	2	. 8	83.0	42	2300	1.2	. 1	1						N				N
35	29	OL	216	F	A	8.	8 Y	•	10	+ 10	10340	70	30). 13	57	2	94.	0	M D	1400 1400 1400	Ö	. 8	90.0	35	1600	1.0	2	•			91.	98	3.8	8 0	14	00	0.8	N
105	.	OL	216	F	A	8.	B N) + 1	10	+ 10	5850	73	30	. 18	60	2	93.	0	M D	1950 2400 2050	1	0.	90.0	45	2300	1.0	2	1										N
162	6	OL	216	F	A	8.	B Y	• 1	10	+ 10	9850	79	29	. 99	90	2	98	0	M D	1700 1800 1800	Ò	6	96.0	40	1900	0.7	1	•										
212	4	OL	216	F	A	8.	8 Y	• 1	10	+ 10	12485	77	29	. 11	54	2	91.	0	M P	1700 1950 1800	0	. 7	89.0	36	1700	1.0	• 1	•	N	N	90.	4 8	4.5	N				N
227	28	OL	216	F	A	8.	8 Y	•	10	+ 10	8320	79	29	. 42	96	2	92	.0	M D	1800 1700 1850	• •	. 5	90.0	40	1900	2.0	3	•						8 0	16	50	1.5	N
312	32	OL	216	F	A	8.	9 Y	• 1	15	+ 10	11610	85	29	. 66	65	2	95	0	M D	1700 1800 1800	ŏ	. 6	93.5	48	2500	1.5	3	1										
383	41	OL	216	c	A	8.	B N	•	9	٠ 6	7500	82	29	. 96	66	2	93	Ō.	M D	1700 1800 1700	1	ō	90.0	35	1750	1.0	3	1						8 0	15	00	١.٥	i

			VEH	HICL	E	DES	CRI	[PT]	DN			WE A	THEF	ł			DС	TAN	E NUM				IT DATA													
																			IMUM		50TH	PER	CENTIL	E T	ECH		OW							RATE	R	
				E				ADV	ARK ANCE						F			G T E				M				F	K	A	o c	T N	D	NI				A R
NO NO		C	DEL DOE	C T 		CR				MILES			RO	HUM	E L	OCT NO		H A R R	RPM	MV	OCT NO	Р Н		MV	_	E L	C (JN	RES	MI				RPM	MV	. N
393	26	OL 2	16	f	A	8.8	٧	+ 10	+10	17710	88	30	. 02	133	2	96 .	Ō	M D	1650 1650 1700	0.0)	0 35	1625	0.9	5 2	1			92	2 6:	3 0	A	0	1600	0 0) N
406	26	OL 2	16	F	A	8.8	Y	+10	+ 10	7310	88	29	. 93	122	2	97.	Ō	M D	1400 1400 1500	0.5	3	0 33	1550	0.0	6 2	1			92	3 R:	2.8	A	D	1400	0 9	5 N
53	29	OL 2	16M	F	M	8.8	Y	+10	+10	12293	70	30	. 20	57	2		0	M 4	800)	5 50	3200	1.:	2 3	1			92	1 8	4 0	A	4	800	0.0) N
80	3	OL 2	16M	F	M	8.8	N		+10	8333	. 50	30	. 12	50	2	92.	Ō	M 4	1600 1600 1500	0.2	ł	5 40	1800	0.:	2 2	•										N
135	6	OL 2	16M	F	M	6.6	N	+10	+10	11195	83	29	.81	89	2	95.	Ō	M 3	1700 4000 2000	0.4	1	0 35	2500	0.	4 1	•	Y (N N	92	5 6:	3 2	A	4	2500	0 4	IN
204	4	OL 2	16M	F	•	8.8	N	+ 10	+ 10	6861	78	29	.06	57	2	91.	0	P 4	1300 1250 1350	2.0)	0 36	2700	6.6	3	1	N	٧	90	7 6:	3 4	8	4	1750	2 () N
307	32	OL 2	16M	F	M	8.6	· Y	+14	+10	8693	6 5	29	. 32	60	2	96.	0	M 3	4200 4200 1100	0.7	,	0 60	4200	0.	7 2	,										
320	32	OL 2	16M	F	M	8.6	¥	+10	+10	10243	85	29	. 73	62	3 2 4	94 .	ō	M 4	1200 1100 1200	0.1	1	0 40	3000	2.0) 1	1	Y 1	N N	91	5 8:	2.7	4	4	1200	0 4	l N

				VEHIC								WEAT												T DATA					TA	NK F	UEL	INFO	RM	NO I TAI		
		•••																4AX	I MUM		50	TH	PER	CENTIL	E TI	СН		OWN						RATE		-
DBS NO	LA NO	_	MODE L	E M C	A	CR	A	ADV		ODOM MILES					F U E	ост	. 1	G F E			0	ст	MP	RPM		M 0 D	F U E	K N O O C B	A R U		NO MOT	N 1 N	G E A			A R U N .
328	46	OL	2 16M	F	M	8.6	, ,	+10	+10	1488	78	29.	.41	120	2	86.	0	4	1550 1900 1450	0.	5	15.0	45	2000	0.5	3 3	•					N				
388	41	OL	216M	С	M	•. 6	N	• 7	+ 10	8079	71	29.	99	63	2	92.	0 1	4 4	1500 1500 1500	0.1	8	8.0	40	1750	1.0	3	•					A	4	1500	0.8	N
33	29	ОС	A 133	•	A	8.6	5 ¥	+ 10	+10	13028	70	30.	. 13	57	2	93.	0 1	P	1500 1400 1500	0.4	4	0.5	33	1600	0.6	2	1					•	D	1400	0.4	N
130	•	OC	A 133	F	A	•.•	5 ¥	+10	+ 10	18576	67	29.	.77	124	2	89.	0 .	P	2000 2000 2000	1.1	8	7.0	45	2200	2.0	2	1									
	47	OC	A 133	С	•	8 .6	3 ¥	• 12	+ 10	6000	70	20.	. 68	6 2	2	95.	0	I D	2000 2000 1900	0.0	•	1.5	50	2000	1.6	3	•									
316	32	ос	A 133	ŗ	A	•.•	3 Y	+12	+ 10	5386	e 5	29.	. 26	68	2	60 .	0	1 D	2100 2300 2050	0.1	•	5.0	54	2300	1.0	3	•									
318	32	ОС	EC1 A	•	A	8.0	. 4	+10	+10	9270	e 5	29.	39	66	2	87.	0	10	1950 2150 2000	1.0	o -	4.8	45	2200	1.0	2	•	N	N	95.0	85 4	N				N
396	26	OC	A 133	F	A	•.•	. 4	• 10	+10	15856	93	29.	.94	134	3 2 4	89.	0 1	I P	1900 1950 1800		•	4.0	40	1900	0.9	3	1			92 . B	83.	N				N

			VEH	CL	E (ŒS	CR	i P 1	10	N			WE.	ATHE	R			00	TAN	E 1	NUMB	ER R	EQUI	RE	MEN	T DATA						TA	NIK	FUE	L 1	NF DI	RM.	MO1TA		
	•																		MAX	114	UM		501	H I	PER	CENTIL	.E 1	EC	н	0	WN	ER						RATE	R	
NO N	10	MODE	L Ē	E I	5 (CR.	A I R	RC	VA S	TST	ODOM MILES	TIM) B	ARO	HUM	F U E L	DC:	Ţ D	T E H A R R	R	P M	MV	00	:T	M P H	RPM	M	,	M (K NO C K	0 8 J	A R U N	o c	T N	D	N (G E			A R U
106	5 (ICA 22:	3	F	A 1	9.0	Y	•	9	+ 12	12726	70	3	0.05	56	2	86	. 5	M D	2	550 650 550	0.5		1.0	55	2600	0	6	1	•										*
144	6 ()CA 22:	3	F	A :	3.0	Y	• 1	12	+ 12	12380	71	5 34	0. 12	76	2	91	0	M 0	21	700 800 700	1.4		0.0	50	2700	1	5	2 1	•										
211	4 0	ICA 22	3	F	A 1	9.0	Y	• 1	12	+ 12	15450	79	5 2:	9 . 22	81	2	92	Ō.	M D	2:	300 350 300	1.6). O	45	2600	1.	6	2 1	, A	y	N	90.	4 8	4 . 5	8 1	D	2400	1.	6 N
229 2	18 (CA 22:	3	F	A 1	9.0	Y	•1	12	+ 12	11759	61	9 2:	9 . 40	58	2	94	О.	M D	2	400 400 600	1.3		1.0	50	3300	1.	5	2 1	•						В	D :	2650	•	5 Y
230 2	28 ()CA 22:	3	F.	A :	9 . C	y	• :	12	+ 12	12549	. 8	1 2	9.25	130	2	88	О.	M 0	2	700 700 700	1.2		8.0	53	2800	1.	5	3	•						N				N
231 2	18 ()CA 22	3	F	A 1	9 . Q	, 4	• 1	12	+12	12925	8!	5 2	9 . 42	103	2	95	.0	MD	20	500 600 200	1.5		1.0	56	2600	1.	5	1 1	•						A I	D :	2600	1.	5 N
317 (92 (CA 22	3	F	A 9	9 . C	, v	•	13	+ 12	6922	8	5 2	9 . 09	62	2	96	. 5		2	700 800 600	0.4	_	9.5	57	2800	0	6	3	١										
325	16 (DCA 22	3	F	A :	9.0	, v	٠	12	+ 12	8550	7:	5 2	9 . 35	97	2	89	О.	M P	31	150 550 600	1.0	,	5.0	53	2800	1.	5	•	•						N				

			VEHICLE						١١	FATHE	R			DCT.	ANE	NUM	BER				T DATA										4A T I ON		
																MUM			501H	PER	CENTIL	E TE	СН			ER					RATE	R	
NO	LAE NO	CODE	TS	CR	A I R	RCD	ANCE AS TST	ODOM MILES	TIMP	BARO	HUM	F U E L	OCT NO	T H R	G E A R	RPM			OCT	MP	RPM		8 0 D	F U E	K N O O C B	A R U			N I N	GEA			A R U
		OCA 223										3 2	88.0	0 M	P P		1	. 5	88.0	50	2600	2.0	1	•		•			 A	P	3400	1.5	-
327	46	OCA 223	FA	9.0	, 4	+12	+12	9759	78	29.53	57	2	90.0	0 M	D	2400 2150 2300	•	. 5	82.0	55	2900	2.0	3	1					8	D	1900	1 5	
329	46	OCA 223	FA	9.0	y	+12	+ 12	9684	76	29.73	78	2	87.	O M	D	2400 2300 2400	1	.0	85.0	55	2600	2.0	3	•					N				
330	46	OCA 223	FA	9.0	, ,	+12	+12	8375	78	29.76	6 2	2	90.	0 1	D	2600 2500 2450	•	. 5	86.0	50	2500	1.5	3	•					8	D	2700	1.5	
331	46	OCA 223	FA	9.C	y	+12	+12	8324	75	29.30		2	92.	5 M	D	2450 2550 2450	1	. 5	92.0	55	2600	2.0	3	1					A	D	2550	1 5	
332	46	OCA 223	FA	. .	y	+12	+12	8234	76	29 . 45	73	2	94.0	0 M	0	2600 2600 2600	01	. 5	86.0	45	2300	3.5	1	1					8	D	2600	1.5	
413	26	OCA 223	FA	9.0	٧ (+ 12	+ 12	12494	77	29.00	111	2	93.	0 #	D	2700 2600 2750	1	. o	9 1.0	51	2700	1.0	3	•			97.3	85.6	. 4	D	265 0	1 0	N
25	29	OCB 193	FA		Y	+ 10	+ 10	7483	70	30.24	59	2 4	95.0	0 14	D	1900 1900 1800	` 1	.0	91.0	52	2200	1.0	2	1	Y N	N	9 2 . 5	83 1		D	1800	1.0	N

			VEHICLE	DE	SCR	IPT	100			WE A	THEF	2										IT DATA													
															M	A X I	MUM		50	нтс	PER	CENTIL	.E 1	EC	+	OW	NER						RATE	R	
OBS NO	L AE				I	AD		•			RO	HUM	F U E	ОСТ	T H	G E A			,	ост	MP	RPM		A C	1 F	C	D R B U	00		NO MOT	NIN	G E			A R U N
	• -												-		-	-						• • • • -		•	-	-			-		-	-			
26	29	OCB 13:	3 F A	8.	6 Y	+1) + te	9720	70	30	. 24	59	2	96.0) M	D	1800 1700 1700	1	0	93.0	53	2200	1.	5 1	1						A	D	1700	•	0 N
210	4	OCB 13	3 F A	8.	6 Y	+1	D + 10	11608	77	29	. 25	92	2	88.0) #	P	1975 2000 1950	1.	3	86.0	45	5 2100	3	1 :	? 1	N	N	92	. 1	83 3	N				N
165	6	OCB 22	3 F A	9.	o v	+1	2 +1:	2 119 6 0	73	29	. 84	52	2	93 .	5 M	D	2400 2700 2700	0.	4	91.0	50	2700	0	4 1	. 1										
3	40	OCB 24	2 F A	8.	2 1	1 +1	0 +10	10038	75	29	. 52	62	2	88.0) M	D	1600 1600 1800	1.	5	85.0	50	2000	3	5 3	, 1	N	N	92	9	84 9	N				N
90	3	OCS 13	3 F A	₿.	6 Y	• 1	0 +10	8105	75	29	. 77	51	2	88.0) M	D	2100 2100 2100	1	2	98.0	31	2000	1.	5 3	, 1										N
300	32	OCS 22	3 F A	9.	o v	+1	5 +1:	9452	85	29	. 40	80					2800 2800			37. 5	54	2900	1.	0 2	! 1										
374	41	OCS 22	3 CA	9.	o v	•1	2 + 1:	2 21900	70	30	. 10	60	2	91.0) #	D	2500 2400 2700	2.	ŏ	39 . O	45	2550	2	0 3	, ,			93	2	83 C		D	2800	2 -	0 N
96	3	OCS 22	3M F M	9.	0 4	ı +	• • (7181	70	29	. 99	45	2	97.0) H	4	1500 1500 1400	0.	6	97.0	45	1700	0.	6 3	1	۷ ۱	1 N	92	0	82.6	A	4	1400	0	6 N

			VEHICLE						,	JEATH	R		0	CTA	NE NIL	MBE	R RE	QUIRE	MEN	T DATA	١				TA	NK	FUEL	IN	FOR	MATION	•	
															X I MUN					CENTIL				OWN						RATE		
	NO	MODEL CODE	T S	CR	A I R	AS RCD	AS TST		TMP	BARO		F U E L	OCT NO	T I	G E A R RPA		MV	ОСТ	M P			M 0	F U E	K N O O C B	A R U		T NO		N G I E N A		MV	A R U
		OCS 223						20122				3		M	4 140 4 150	00 (3	91.0	54	2600	0.	5 3	1	Y N	· ¥	91	6 82	7	A 4	2000	0.0	5 N
107	5	01 242	FA	8.2	¥	+10	+10	5576	72	29.90	49	2	92.0 93.0 91.0	M 1	120	00	2.0	92.0	53	1300	2.0) 1	1	N	N	93.	8 83	.3	8 P	1350	1 ;	2 N
323	32	01 242	FA	8.2	Y	+ 10	• 10	7711	85	29 . 1:	67	2	91.0 92.0 91.0	M (180	00	1 5	91.0	45	1850	0.5	3 2	1	N	N	91.	0 82	.7	A D	2000	2 () N
232	28	O V242	FA	8.2	Y	• 7	• 7	13199	72	29.2	5 82	2	92.0 93.0 91.0	M	160	00	1.5	93.0	47	1900	1.4	1 1	•					ļ	B D	1400	1 9	5 N
153	6	0 V250	FA	8.4	Y	٠ 8	• 8	14850	87	29.84	1 118	2	92.0 93.0 92.0	M 1	130	00 (0.5	93.0	45	1400	o .€	3 2	1									
177	6	0 V250	FA	8.4	Y	٠ .	• 8	12355	72	29.9	57	2	92.0 93.0 92.0	P	170	00 :	3.0	91.0	42	1800	3.4	1 3	1					1	8 D	1700	3 () N
303	32	0 V250	FA	8.4	¥	٠ 6	٠ .	19146	85	29.2	≥ 65		90.0	M (120	00 :	2.0	89.5	45	1400	1.0) 1	•	Y N	N	91 (0 82	6	N			N
305	32	0 V250	FA	8.4	*	٠.	• •	14800	85	29 . 2	5 64	2	91.0 92.0 91.0	P	100	00	3.0	90.0	40	1150	2.5	3 1	•	N	٧	91 (6 82	7	8 D	1100	3 () N

- .

			VEHICL										R			0¢1	ANI	NUME	ER R	EQUIP	EME	NT	DATA					*	ANK	C FU	EL	[NF	OR	IATION	i .	
	•																	MUM					ENTIL			ì	0	NER						RATE		
	LAB			R N	CR	A	ADV	ARK ANCE		AMB	BA	RO 		U		1									0	F U	K N 0 C	A O R B U	0	C†	NO 	1	I G			A R U
397	26 0	v250	F	A 1	B . 4	Y	٠ :	. + 6	9470	101	29	.94	121	2	91.	5 F	D	1000 1050 1000	3 0	•	0 4	19	1300	3	0 2	• •			93	3	82 (9 4	0	1050	3 0	N
179	6 0	W V258	F	٩ (3.3	Y	+ 10	+ 10	5330	85	29	. 88	103	2	91.	0 1	D	1200 1200 1300	1 2		0 3	5	1300	2	0 3	• •						N	•			N
16	22 F	rk 217	F	A (3 . 2	٧	+ 10	+10	16592	70	29	. 18	62	2	56.	0 .	0	2250 2200 2200	09		5 3	4 :	2100	•	2 2	1						•				N
17	22 P	217	F	A (9.2	¥	+ 10	+10	19328	70	29	. 12	61	2	87.	5 1	0	2200 2200 2450	0 9		5 3	17 :	2050	1	2 2	. 1						•	1			N
40	29 P	217	F	• 1	9.2	N	+ 10	+10	13092	. 70	30	. 10	55	2	90.	0 1	P	2000 2000 1800	0 8		0 3	11 :	2 100	1	2 1	1	N	N	!				•			N
96	3 9	L 217	F	A (9.2	N	+10	+10	7083	73	29	. 96	65	2	L L					ι						•	N	N	92	1.2	R2 (5 N	•			N
143	6 P	L 217	F	4 (8.2	٧	• !	* * 10) 17470	85	30	.00	103	2	89	0	D	2100 2200 2100	1 0	•	0 3	15 :	2200	•	0 1	•										
149	6 F	rt 217	•	A 1	8 . 2		+ 14	+10	20119	85	30	. 29	60	2	69.	Q F	, D	5300 5000 5300	5 0	•	0 3	.	2300	4	0 1	١										

			١	VEHIC									WEA	THE	₹			oc	TAN	iE f	NUMB	FR	RE	OU I F	REN	EN	DATA						TA	NK	FUI	EL 1	NF	ORI	4A T 1 OF	ı	
																			MAX	I MI	UM		,	5011	4 P	ER	CENTIL	.E 1	ECI	н	O)AN	ER						RATE	R	
08S NO	LAI NO		CODE	M C T		CR			AS CD	151	ODOM MILES	TMP	BA	RO	HUM	FUEL	OC:	Ţ	G T E H A R R	:				OC1	r	M P			1	M I	, K	(1 0 0 0 0	A R U	oc		NO.	N I N	G E	RPM		A R U
200	4	PL	217	F	A	8.	2 1	, ,	10	+10	19692	79	29	.31	70	2	89	.0	M D	20	050 600 050	1.	5	84.	0	53	2850	1.	5	3	I N	•	٧	91		94 (3 N				٧
364	8	PL	217	f	A	8,	2 1	, ,	10	+ 10	7906	84	29	. 98	88	2	84	О.	M D	2	200 400 350	ō	9	80.	0	30	2200	0	6	,	I N	•	N				N				N
415	26	PL	217	F	A	8.	2 Y	, ,	10	+10	8816	71	30	. 15	67	2	93	. 0	M D	2:	450 300 450	2.	5	89.	0	35	2750	1.	5 :	3 1	l			92	3 (52.6	8	D	2150	0	5 N
100	5	PL	217M	F	M	8.	2 F		12	+12	8858	72	29	. 92	62	2	91	. 0	P 4	- 15	400 500 450	3	0	87.	0	35	1900	3	0 :	2 1	N	•	N	94	9 (96 5	N				N
255	7	PL	217M	F	M	8	2 1	4 •	12	+12	9092	70	30	. 28	49	2	96	Ö	M 4	2	475 450 700	Ō.	6	95	0	37	2200	0	7	•	r										N
368	41	PL	222	c	. A	8.	5 Y	, .	8	+10	15681	66	30	.06	70	2	89	Ō	M D	19	000 900 100	2	Ō	86.	0	45	2000	2.	о:	3 1	ı						N				N
13	22	PC	322	f	A	8.	5 1	•	10	+ 10	12895	70	29	. 23	60	2	84	5	M D	20	800 000 700	1.	0	61.	o	38	2000	ŧ.	0:	2 1	ì						N				N
54	29	PC	222	F	A	8	5 '	, .	10	+ 10	13244	70	30	. 02	56	2	95	0	M D	2	000 100 800	2	2	93.	o	33	2100	2.	8 :	2 1	· ¥	N	N	92.	1 6	93 6	A	Đ	2100	2.:	? N

			VEHI	CLI	E (ES	CRI	PTI	ON			w	EAT	HER	ł			00	TAP	١E	NUMB	ER	RE				DATA												MATI)N		
																					MUM			50TH	P	ERC	ENTIL	E T	EC	4	0	WNI	ΕR		•	·			RA	FER		
	LAB		. 1 L (E '	T A N		A	AD\	ANCE	ODOM	Al	MB				F U E	o c	T	T (3				DCT	,	M P				# F	K N C	0 B	A R U	00	:1	NO		N G	.			A R U
	NO	COD		- :	5 (CR	R ~	RCE	15	MILE		MP	BAF		HUM	-		- 	R F	-	RPM	M'	v 			H 	RPM		- '		. K	J	·	RES	; 	MOT	-	T 12	RPM		4V 	Ņ
84	3 1	PC 222	ı	F	A E	9.5	Υ	+10	+10	677	0	80	29.	92	96	2	L L							L						,	N		N	92	•	82	a	N				N
101	5 /	PC 222	•	٠,	A 1	9.5	N	+ 10	+ 10	971	2	72	29	. 77	58	2	84	0	M F	,	2000 2150 2000	1	.0	B2.6	0 4	4 <i>ž</i>	200 0	1	5	1 1	N		Y	92	0	83.	2	N				N
194	4 1	PC 222	1	F	A 6	5.5	Y	+ 10	+10	1016	4	78	28.	75	67	2	81	Ó	M F	,	2100 2150 1900	1	0	78.6	0 4	41	2000	1.	0:	? 1	N		N	9 0	4	84	5	N				N
249	7 (PC 222	ı	F;	4 6	3 . 5	ν.	+10	+ 10	1221	3	70	30.	20	48	2	91	۰0	M ()	2250 2300 2550	1	. 2	68.6	0 4	45	2200	۲.	2 :	• •	N		N	93	4	83.	6	N				N
261	7 1	PC 222	1	Fi	A 6	3 . 5	Y	٠ (3 + T	574	3	70	29.	92	60	2	91	0	M F	•	2600 7800 2650	1	6	86.6	0 9	52	2400	2.	7	1 1	Y	٧	N	91.	8	83.	7	8 0	2600) ;	2 3	N
282	47 (PC 222	•	c i	A 6	3 . 5	Y	+10	* 10	1295	0	70	29.	61	64	2	91	9	ME)	2000 2000 1950	0	7	87.6	0 4	45	2000	1	0	1 1												
283	47 (PC 22 2	•	c i	A (3 5		+12	+ 10	1245	0	70	29	.74	60	2	93	. 5	M E)	2000 2000 2000	0	. 8	69.	0 !	50	2000	1.	0	1 1	ı											
333	46 (PC 222	1	F	A 6	3 5	Y	+ 10) +1C	884	5	76	29.	70	56	2	84	5	M () :	2 100 2 250 2 200	1	Ó	82.6	0 4	45	2200	1	0:	. 1								N				

			VEHIC	LE	DES	SCR:	IPT:	ON			WEATH	ER			0C1	AN	E NUME	BER	RE	QUIRE	MEN	T DATA					TA	NK F	UEL	INFO	RM/	TION		
											•					IAX:	MUM]			50TH	PER	CENTIL	.E 7E	СН		OWN	ER					RATES	2	
	LAB NO		E #4 L C E T	RAN	CR	A 1 R	AD') TST		TMP	BARO	HUN	l L	OCT NO	1 	G	RPM			OCT	M P			MOD	F U E	K N O O C B	ARU	OCT	NO.	N :	G E			
337	46 F	°C 222	F	A	8.9	5 Y	+ 10) +10	8514	76	29.6	1 70	2	83.	Ó Þ	10	2300 2200 2250	1.	0	79.0	35	1900	3.0	3	1					N				
338	46	PC 222	F	A	8.9	5 ¥	+ 10	+10	8933	76	29.8	1 61	2	84.	0 1	ıD	2400 2050 2000	1.	0	ι					1					N				
346	46 F	PC 222	F	A	8.9	5 Y	+ 10	+10	9146	76	29.1	8 101	2	85	Ó N	10	2100 2000 2200	1.	5						1									
347	46 5	PC 222	F	A	8.9	5 Y	+1	1 +11	8680	74	29.2	8 83	2	85.	0 1	10	2000 2000 1700	1.	0	80.0	25	1700	3.0	1	•					N				
356	46 F	PC 222	F	A	8.9	5 Y	+10	+10	8965	67	29.5	0 66	2	82.	0 1	ıD	2300 2300 2100	1.	5	78.0	35	1800	2.5	1	1					N				
357	8 1	PC 222	,		8.	5 Y	+ 10	o +10	10291	83	29.7	4 100	2	80.	0 1	10	2250 2300 2400	1.	5	78.0	38	2650	1.2	3	1	N	N			N				N
411	26	PC 222	F		8.9	5 Y	+ 11	+1 0	28458	86	30.0	0 139	2	91.	0	• 0	1700 2000 1950	0.	6	86.0	25	2000	1.5	3	1			97 0	65	5 8 (D 2	200	0 6	N
412	26 1	PC 222	F		8.9	5 Y	+ 1	0 +10	30109	80	29.9	0 136	2	90	0 1	10	1850 1850 1800	0	2	67.0	32	2000	1.2	9	•			97 1	85.	5 N				N

£ 37

- .

				VEH:	ICL	E	DE:	SCR	ΙP	TIC	N			AE1	THE	R			00	TAN	IE I	NUMB	ER R	E QU	RE	MEN	T DATA	١.				T	ANK	FU	EL	INF	OR	MAT I OF	1	
		-													- -					MAX	IM	UM		50	rH ·	PER	CENTIL	E TI	СН		OW							RATE		
NO	NC	o .	MODE L		E M C	A		A	A	DV/								OCT											0	F	K 0 0	A D R B U	00	CT 	NO	A 1 - A	G E			A R U
85	:	3 PC	226		F	A	8.:	2 Y	+	9	+ 7	9720	3 79	28	9.92	92	2	87	.0	M D	19	800 900 500	1.5	;	7.0	45	1900	1.9	3 3	1	N	N	92	. О	82	8 1	•			N
102	5	5 PC	226		F	A	8.2	2 N	•	10	+ 7	6823	70	28	. 93	61	2	89.	0	M P	2:	100 200 100	1.8		1.0	45	2100	2.0	3 1	,						^	,			N
239	28	3 PC	226		F	A	8.1	2 4	٠	7	+ 7	11870	69	29	3.32	71	2	91.	0	M D	25		1.7		5.0	50	2400	4.0	3	1	N	٧	92	7	83	4 N	1			Y
392	26	6 P(226		F	A	8.3	2 Y	+	7	+ 7	7500	80	29	. 88	124	2	95)	M D	24	400 450 150	1.0)	2.0	50	2450	1	1 1	1			92	6	82	6 A	D	2500	1 () N
99	3	3 RL	. 225N	•	F	M	8.3	3 N	٠ +	10	+ 10	7997	72	29	9.94	50	2	93.	0	M 4	- 13	300 300 300	0.3		1.0	40	2000	0.4	2	1	N	N	92	. 2	83 -	0 4	. 4	1200	0 :	3 N
129	•	5 R(225		F	A	8.3	3 Y	•	12	+ 12	18360	85	29	. 85	91	2	92.	О.	M D	2	500 500 300	1.4		1.0	51	2600	1.;	2 1	1										
208	4	R	242		F	A	8.3	3 N	•	5	+ 5	6800	79	29	. 03	101	2	86 .	0	M D	16	800 800 750	1.0		2.0	50	1800	3.6	i 1	•	N	N	91	7	83 -	4 N	l			N
240	28	3 R	242		F	A	a . :	3 Y	٠	6	+ 6	12434	68	29	. 50	67	2	87.	0	M D	11	750 750 700	1.5		i . O	45	1650	3.	3	1						N	•			N

			VEH	ICL	E (DE S	CR	[PT]	ON			WEAT	THER	₹										T DATA					t	AN	F	UEL	1 NF	ORI	401 TAN	,	
								- *										4AX	I MUM			50TH	PER	CENTIL	.E TI	CH							-		RATE		
	LAE NO		-	E M C	A		A	ADV	ARK ANCE		AMB	BAF	? 0		F U E	ост	1	G F E				DCT	M			M 80 D	F U E	K N 0 (A 0	; ; ;			N I	GEA			•
241	28	RC 242	ı	F	A I	8.3	, v	٠ (: + (17347	66	29.	. 48	78	2	87.	0 1	4 D	1600 1600 1600	1.	5	86.0	48	1500	2.!	5 3	•	N	N	92	2.6	83.0	D N	l			N
163	6	S F50		F	A I	8.4) y	+ 17	+17	9750	61	30	. 11	32	2	95.	0	1 P	3050 3200 1450	1.	0	93.0	32	1300	1.!												
301	32	S F50		F	A 1	8 4	٧	+20	+20	11795	85	29.	. 12	83	2	87.	ō #	I P	1400 3400 1500	Ť.	5	92.5	24	1100	1.0	3 1	1	٧ ،	/ N	9	. 3	83.6	•				
395	26	S F50		F	A i	8.4	Y	+20	+20	7570	90	29.	. 94	126	2	94.	0 1	ŧ D	1000 1000 1050	0.	4	91.5	32	1000	1.0	2	,			93	. 3	83.	2 A	D	1100	0.4	N
32	29	KT 131	M	F	H	8.4	N	٠,	. + •	12801	70	29.	. 95	56	2	96 .	0 1	4 3	1700 1700 1700	١.	0		35	1950	2.0	3	1	Y I	N N	93	1.5	85.(3 A	3	1600	1.0	N
		KV 252	!	F	A :	8.5	i Y	+ 16	+16	343 8 0	9 87	30.	.00	124	2	95	0	i P	1750 1700 1700	Ō.	7	91.0	40	2200	1.5	3	•			96	. 4	65.6	5 A	P	1700	0.7	N
	7	NTLD 2	241	F	A 1	B.3	N	+ 6	+10	7 107	72	30.	. 10	61	2	100.	0 1	1 D	2250 2050 2250	2.	2	95.0	55	2500	1.7	, 1	1	٧ ١	r N	92	. 5	84.4		P	2200	2.3	N
76	23	NTLD 2	24 1M	F	M :	B.3	Y	+10	+10	6000	76	28.	. 29	57	2	97.	0	1 2	2900 2900 1100	1.	5	92.0	42	1500	0.	3 3	•						A	2	2900	1.5	N

			VEHICLE							SEATH	ER		0	CTA	NE N	UMBE	R RE	QUIRE	MEN	T DATA	١				TA	NK F	UEL :	INFO)RM	AT I ON		
															XIMO					CENTIL										RATE		
	NO		T S	R I I I CR	A I R	ADV/ AS RCD	TST	ODOM MILES	TMP	BARO		Ē	ост	T H R	G E A R RP		MV	ост	MP		MV	M 0 D	F U E	C B	A R U		NO MOT	N I N	G E			A R U
352	46	NTLD 24	IM F B	f 8.3	N	+10	+10	15944	75	29.20	9 76	2	91.0 90.0 90.0	M	3 12	25	1.0	86.0	35	1200	1.5	2	1					N				
56	23	NTLG 250	0 F A	N 8.5	N	+ 8	• 8	6013	66	28 . 10	5 50	2	98.0 99.0 95.0	P	D 10	00	6.0	94.0	25	1000	4.5	1	1					A	D	900	2.6	N
417	26	NTLG 25	O FA	8.8	Y	+ 6	+ 8	6594	81	30.0	7 88	2	99.0 101.0 94.0	P	D 18	00	5.0	94.0		1175	1.8	2	1		9	96 . 0	85.	1 A	D	1300	5.0	N
168	4	NTLH 45	0 F #	\ 8.€	; Y	+ 5	+ 5	7722	69	29.3	33	2	92.0 93.0 90.0	M	D 19	00	2.0	91.0	50	1800	3,1	3	1	N	N S	96 . 3	65.9) N				N
122	5	NVLD 24	1 F A	8.3	N	+ 8	+ 8	6935	71	30.0	2 50	2	98.0 98.0 93.0	M	P 33	50	1.6	96.0	57	3400	1.5	2	•	N	N S	91.5	82 . 4	A	D	2250	1.8	N
10	22	OT 149M	F	8.5	N	+ 6	+ 6	8543	73	29.9	9 70	2	86.0 86.5 86.0	M	4 30	00	0.3	65.5	42	2700	4.0	•	•									N
198	4	OT 149M	F	4 6.9	Y	+ 6	+ 6	6832	72	28.9	4 86	2	91.0 91.0 91.0	M	4 8	25 50 50	0.6	91.0	35	1150	1.0	2	1	N	N S	92.7	84.0	8	4	900	0.6	N
390	41	OT 149M	C M	1 8.9	N	+ 6	+ 6	9800	66	30.0	2 62	2	97.0 97.0 96.0	M	4 11		2.0	96.0	50	1450	3.5	3	1	Y N	N S	91.6	82.9	A	4	750	2.0	N

				VEHI	CL	E	DE!	SCR	IP.	110	IN			ME	ATHE	R										T DATA												AT LON		
															•				M	AX I	MUM		501	H F	ER	CENTIL	E TE	CH		OW	NE							RATE	R	
					E				A	V/	RK						F			G								M	F	K		A		r NO		N i	G			A.
	NO		CODE		C	N		1	-	١5	A5						E	OC1	1	I À			DC.	۲	P	RPM		Đ	E	C	8	Ù ·				N	A	RPM	MV	Ü
22	22	? 0 1	7 250		F	A 1	ß , 4	l Y	*	8	+ 8	15740	\$ 70	2	9.33	50	2	86	5 N	0	1450 1450 1450	0.8		. 5	39	1500	1,1	2	1							N				N
123	5	a 1	7 250		F	A :	8.4	! Y	•	4	+ 8	580	o 69	3	0.20	58	2	91	O P	D	1400 1150 1375	6 0)	.0	25	1000	B.() 1	1											N
126	5	5 D\	y 149		ŧ	A 1	8.9	Y	*	10	+ 10	861	5 72	2 3	0.13	58	2	93	O M	a ı	2300 1900 2100	2.0)	.0	52	2000	2.4	1	•	N		N S	2.0	83	. 6	A 1	D 1	1900	\$.,	0 N
351	32	2 01	V 149M		F	M	9.9	.	٠	6	+ 6	15991	/ 85	5 2	9.42	67	2	96	0 #	3	1300 1300 1100	0.5		.0	45	1525	1.0	3	1	٧	Y	N 9	11.3	: 62	, 6	A :	3 1	1300	3.	O N
322	32	1 01	v 250M		F	M i	8.4	• v	•	8	٠ ه	14016) 8 1	5 2	9.55	64	2	99	0 M	4	800 800 750	0.8	1	.0	35	1500	١.2	2	1	٧	Y	N S	1, 1	i 6 2	. 3	A				N
250	1	P	v 452		F	A :	8 . 9	5 Y	•	8	+ 9	16671	9 70	> 2	9.98	47	2	84	0 1	P	2200 2100 2000	0.6	1	.0	37	2000	2.5	3	1											N
180	6	i Al	J F 17M		c	på i	a . c	N	-	3	- 3	970	71	7 2	9.92	83	2	87.	0 1	4	2400 2700 2550	0 2	!	.0	50	2400	1.5	. 2	1	н		N 6	9.1	84	2	N				N
93	3	8	F 17M		F	p)	e . :	2 N)	0	o	878	6 8 0	3 2	9.81	106	2	89	0 1	4	2200 2200 1800	1.0)	.0	35	2300	1.0	3	1	N		N E	5.8	86	. 7	N				N

			V	EHICL								WEATH	ER			CT/	NE	NUMB	ER				DATA			_		TA	NK	FUE	L I	NF OF	MATIO	•	
																		MUM		50TH	1 PE	RC	ENTIL	E TE	СН		OWN						RATI		
08 S NO	LA NO	-	MODEL CODE	E M C	A	CR	Ā	ADV				BARO		F U E	ост	T H R	G E A		MV	OCI	, B	4	RP M		M	F U E	K N O O C B	ARU	OC RES			N C	;		A R U
184	6	B	F17M	F	M	8.2	N	- 3	- :	6000	70			3 2	87.0 90.0) M) M	4	2000 1900 2000	1.0	0	.0 4	10	1900	1.0	2	1	N	N	91.	7 8	3.9	N			N
121	5	CH	1 226	F	A	8.2	N	+ 7	• 1	11265	69	30.0	2 54	2	86 .	M	D	2200 2150 2150	2.	4	0 3	90	2200	2.8	1	•	N	N	92.	1 8	2.9	N			N
377	41	СР	114M	c	M	8.8	N	+ 5	+ (6770	66	29.9	8 62	2	90.0) M	4	1950 2100 1950	0	7	0 4	12	2600	1.0	2	1						N			N
112	5	СР	216	F	A	8.5	¥	+ 2	+ (6977	71	29.9	2 68	2	87.0	M (D	2350 2400 2200	1.1	9	0 2	?7	1950	2.0	1	1									N
293	47	СР	216	c	A	6.5	Y	+ 5	+ !	6026	70	29.6	B 60		90.5	5 M	D	3100 3100 2100	1.	Ď	0 5	57	3100	1.0	1	1						A (3000	10	N
133	6	CP	216M	F	M	8.5	N	• 5	+ !	9013	87	29.6	2 116	2	94.0) M	4	3200 3350 1700	1.0	0	0 :	55	3 100	1.0	3	1	Y N	N	92.	8 8	2.8	A 4	3200	1.0	N
145	6	cs	226	F	A	8.2	¥	+ 7	+ 1	8430	75	30.1	2 76		91.0) M	D	2200 2100 2400	3.	8	0 4	ю	2500	4.0	•	1	N	N	95.	D 8'	5.3	N			N
382	41	E	212M	c	M	8.5	N	+ 7	• 1	9187	72	30.0	2 64		90.0) M	4	1600 1700 1700	0.4	8	0 4	15	2700	1.5	3	•	N	N				N			N

				HICL											THE											T DAT										AO I TAN		
									-												MUMI					CENTIL					ÆR					RATE	R	
085		3 MO	DEL	E M C	Ä		A	JA A)VA	RK INCE	00)M	AME	ı			F U E	DC	Ť	T E	3 E			ост	MP			_		K	A		NO.	N	G			A
NO.	NO 		ODE	- <u>T</u>	5	CR	R -	RC	0:	151	MI	LES	TMF	8/	RO	HUM	L	N	0	RF	RPM		TV.	NO	н	RPM	MV	E	L	K	N	RES	MOT	_ †	R	RPM	MV	N
29	29	E 21	5	F	A	6.9	, 4	٠	5	• 5	10:	272	70	30	. 24	57	2	100	. O	M F	3000 3000	2	2.0	95.5	5 30	3200	2.	3 3	1					A	D	2000	2.0	N
30	29	E 21	5	F	A	8.8	, ,	•	5	٠ 5	. 8:	373	70	30	. 24	57	2	93	.0	M C	2300 2200 2250) 1	8.1	90.0	32	2300	2.2	2 1	1	Y .	N	92.0	83.	8 8	D	2300	1.8	N
157	6	E 21	5	F	A	6.9	γ	•	5	• 5	9.	100	80	29	. 76	78	2	Н		ME	3000 3200 2200	0 1	1.5	н	50	3100	1.5	5 2	•									
172	6	E 21	5	F	A	8.9	, 4	•	5	+ 5	101)30	76	30	.03	52	2	H		MC	3500 3500 3400	3	5.5	98.0	55	3500	3.5	3	1					A	0	3500	3.4	N
402	26	E 21	5	F	A	0.9	, 4	٠	5	• 5	7 ()9 1	90	30	.01	132	2	96	0.	M C	3150 2700 2150	5 1	1.1	92.0	56	3150	1.1	1 2	1			92.2	83.6	A	b	2600	1.1	N
20	22	E 21	5M	F	M	8 . 8	N	٠	3	• 5	6:	30	70	29	.31	52	2	94	Ō.	# 4	1 100 1 1050 1 1000	0	3 .	87.5	40	2000	2.4	1	1					A	4	1100	0.3	N
98	3	E 21	5M	F	M	8.9	Y	٠	5	• 5	6	36	64	30	.00	35	2	93	ю.	M 4	1700 1700 1700) 1	1.2	92.0	43	2400	1,4	3	1	Y Y	N	90.E	82.	7 A	4	1700	1.2	
134	6	E 21	5 M	F	M	8.9	N	•	5	+ 5	12:	380	83	29	.81	89	2	97	Ō.	M 4	3100 3100 2100) 1	. 8	96.0	52	3000	1.6	3	•	N	N	92.1	83 . (4	3000	1.8	N

. .

				AEH1	CF	E	DE S	CR	IPI	rio	N			WEA	THE	R			00	TAF	NE	NUMB	ER	REC	UIRE	MEN	NT DAT	A				7/	MK	FU	EL I	NF	ORI	AATION	ı	
																				MA	K I N			5	отн	PEF	RCENTI	LE T	ECH	1	OW					-		RATE		
08\$	LA	В	MODEL		E I M . C I	A			AL)VA	RK NCE		AME	ı					Ŧ	T I	4	·			OCT	P			0	Ü	K N O C	A R B U				N I N	G			A R U
NO	NO		CODE		T :	5	CR	R	RC	O	TST	MILES	TMP	BA	RO	HUM	Ĺ	N	0	R		RPM	MV	, 	NO	н	RPM	MV	. E	L	Κ.	J N	RES	5	MOT		R	RPM	MV	N
182	6	E	215M		F	M	8.9	N	•	5	+ 5	15859	61	29	.94	43	3	95	.0	M 4	1 2	3000 3900 1800	0	4	93 . C	55	3 3000	0.	6 2	•	N	N	92	. 2	83 2	? A	4	3400	0.4	N
189	4	E	215M		F	M	8.9	N	٠	2	+ 5	11909	66	29	. 20	42	2	91	0	M 4	. 1	1300 1150 1450	Ō.	5	88 . C	32	2000	1.	2 2	1	N	N	98		87 6	5 N	ı			N
296	47	E	215M		C !	M	8.9	N	٠	3	+ 5	17453	70	29	. 70	56	2	101	0	M 4	. 3	2750 3000 2900	0	5	97 . C	55	3 2750	1,	9	•										
244	28	E	220		F.	A .	B . S	3 Y	٠	6	+ 6	1177	74	29	. 31	79	2	89	Ō.	M (2	2300 2300 2400	3.	Ō	86 . C	3(2100	3.0	0 1	,						N				N
243	28	ε	220M		F	M	8.5	, y	•	7	٠ 6	12933	68	29	. 30	79	2	90	Ō.	M 4	4 1	1500 1500 1800	1	2	89 . C	4:	2 2200	٠.	0 2	1						N				N
373	41	E	220M		c	M	8.5	5 N	٠	6	+ 6	10490	70	30	. 10	93	2	90	0	4	4 1	2200 1900 2000	2.	0	67 .0	35	1800	2.	э з	1						N				N
2	40	£	F20		F	A	6.5	5 N	•	8	٠ ه	7610	72	28	. 56	77	2	87	.0		9		1.	5	85.C	5	3000	1.	o 1	1	N	N	92	y	84.9	N				N
15	22	E	F20		F	4	a . s	5 Y	٠	6	٠ 6	12503	70	26	. 27	60	2	88	۰0	M	7	2500 2550 2600	0.	6	87.5	3 25	3 1900	4.	6 1	1						N				N

			VEHICLE																		IT DATA												
	-	-													MA	X E	MUM		SOTH	PER	CENTIL	E 1	ECH	ŧ	OW	ve R					RAT	£ R	
NO	NO			CR	A I R	AD!	5 A				0 F	4UM	F U E	ост	T H	G E			oct	M P			0	F	K 0 C	A D R B U	00	T N	D 	N G I E N A	i		A R U
119	5 E	F2OM	F	8.9	5 Y	• :	3 + (5 5022	70	30.	15		2	92.0 94.0 96.0	P	4	10'10	2.0		35	2600	4.	0 1	1									N
290	47 E	F2OM	c i	18.	5 Y	• 1	• •	10305	70	29.	82		2	97.0 97.0 93.0	P	4	2500	3.0		O 60	3000	0.	5 2	1									
161	6 €	F28M	F	6.	8 Y	+ (3 + (15010	84	30.	00 1		2	88.0 88.0 89.0	M	4	1700	0.6		5	1000	5.0	0 1	1	N	N	93	0 8	3 4	N			N
258	7 E	F28M	F	1 8.1	B Y	• (3 + (9600	70	29.	92		2	92.0 89.0 96.0	M	3	1300	0.3						1	N	N	92	5 8	3 5	N			N
39	29 J	3 _, 13M	FI	18.	9 N	• (5 + 1	5 6824	70	3 0.	02		2	87.0 90.0 86.0	M	3	2100	1.2		30	2000	1.	5 1	1	N	N				N			N
279	47 d	313M	c I	18.	8 Y	+ ;	2 + :	2 6000	70	29.	78	-	2	85.0 85.0	M	4	1750	0.8		40	2000	0.	8 2	1									
381	41 J	313M	c i	1 8.	8 N	• :	2 + :	2 9720	71	29.	90		2	86.0 86.0 87.0	M	4	1700	0.6		42	2600	1.4	0 3	• •	N	N	93	2 8	3 0	N			N
141	6 0	315	F	4 8 .	B Y	- :	2 - :	2 9457	81	3 Q.	21		2	85.0 88.0 85.0	M	D :	3000	1.5		35	2500	3.	1 3	•									

				EHIC									THE													TOATA					Ŧ	AFM	F	UFt	in	FQF	MAT [ON		
		-																MAX	CIMU	jed		-	5011	4 4	ER	CENTIL	E T	ECH		OMI					- `			TER		
OBS NO	L A NO		MODEL	E M C	A	CR	A	ADV						HUM	F U E	OC1	г	0 1 E H A	3 :				0 C1	т	M P	RPM		M 0	F U E	0 (A R G U					N G I E N A				A R U
87	3	J	315M	F	M	8.8	N	+ 4	• 4	10643	75	30	. 02	81	2	82	0	M 4	1 19	100 100 100	0.	6	82	0	40	2500	1	0 3	•	N	N	92	2	81	8	N				N
196	4	IJ	315M	F	M	8.8	N	+10	+10	6982	79	29	.00	60	2	95	0	M 3	18	100 100 100	0	5	93	. О	40	2000	1.	8 2	1	٧ 1	N N	91	. 0	63.	2	B 4	160	0	0 4	N
48	29	J	318	F	A	8.8	¥	0	0	11777	70	30	.04	58	2	H H		M P	24	00 00 00	o	9	96.	0	35	2600	2.	2 1	1			92	. 6	64	0	A P	240	9 (9.9	N
146	6	J	318	F	A	8.8	٧	- 2	0	15550	86	29	. 76	102	2	97	0	M D	33	00 00	1.	8	96.	0	45	3200	1.1	B 1	1	N	N	92	. 4	83.	3	A D	350)	1 8	N
82	3	J	318M	f	*	8.6	¥	٥	o	6052	79	30	.06		2	L							ι						1	N	N	92	4	82	5 (ч				N
120	5	J	318M	F	M	8.8	٧	0	0	4616	70	30	. 15	52	2	85	0	M 4	17	00	1.	ō	62.	0	48	2950	1.1	9 2	1	N	N	92	. 2	83	4 1	٧				N
168	6	J	318M	F	M	8.6	N	0	٥	8040	75	30	. 03	49	2	85.	0	M 4	24	00 00	1.	8	81.	0	35	2500	2.:	2 2	1	N	N	92	4	83	2 (V				N
242	28	J	316M	F	M	8 - 6	٧	0	0	17345	71	29	. 50	47	2	94	0	M 4		00		5	91.	O	55	3200	2.0) 1	1	۷ ۴	N	92	. 2	83	4 1	3 4	270	,	1.5	N

		_		VEHIC									WEA	THE	R		C	cr	ANE	NUME	BER	Rŧ	QUIR	EME	NT DAT	A				T	ANK	FUF	LI	NF ()PN	AT LON	ı	
																		M	AX1	MUM			501H	PE	RCENTI	LE T	ECH	•	OW	√E R						PATE	R	
	L A NO		MODEL	E M C	AN		A	-	DV/	AS		AMB		RO		F U E	OCT	ĭ	G E				OCT	M P	RPM		0	F	K N O C	A R B U	σc			N I N	G E			A R U
			• • • • • •		-			-								-			-									-						-	-			-
259	7	J	316M	F	M	8.8	9 N	1	o	0	7190	70	29	78	44	2	92.0) N	3	2400 2900 2400	1	7	86.0	5 40	2650	2	1 1	1	N	N	91.	28	3.7	A	4	2500	1 3	N
289	47	J	318M	С	M	8.8	3 Y	٠	2	0	14760	70	29	. 80	60	2	89.0) M	4	1500 1550 1500	1	. 0	88.9	5 40	2000	2.	0 2	•										
181	6	0	216M	f	M	9.0	7 Y	٠	8	٠ 8	10005	62	29	. 90	46	2	94.0	M	3	1750 3700 1600	1	.0	93.0	3	7 1800	1.	0 2	1	N	N	92.	2 8	3 . 4	A	4	1700	0.6	N
195	4	Q	216M	F	M	9.0	N	•	8	• 8	5804	86	29	, 14	49	2	91.0	*	4	3475 3450 1400	0	. 5	88.0	59	3000	2.	5 1	1	N	N	92.	4 8	29	R	4	3375	0 5	N
	40	Q	218M	F	M	8.7	7 N	+	8	• 8	7376	86	29	. 32	140	2	90.0	M	4	3200 3200 2200	2	0	87 (5 5 5	2800	2	о з	•	N	N				N				N
19	22	q	2188	8	M	8.7	7 N	. •	8	٠ .	6490	70	29	. 16	60	2	89.0	M	4	1200 1350 1000	Ó	4	84.5	3 39	3 2200	0	7 1	1						N				N
41	29	• •	218M	F	M	8.7	7 4	٠	10	+ 10	9549	70	30	.02	56	2	90.0	-	4	2700 2600 2500		. 8	87.0	35	3 2900	2.0	3 2	٠	N	N				N				N
176	6	0	218M	r	M	8 .7	7 N	٠ +	8	۰ 8	6250	72	29	75	63		96.0	M	3	3400 4000 2300	0	8	93.0	55	2800	1.	9 f	t	N	N	92.0) 8	3 0	4	4	2500	1 0	N

			VEHIC	LE	DE	SCI	e I P	TIC)N			,	WE A 1	HER				oc	TAN	E I	NUMB	R	RE	QU I R	EM	ENT	DATA						TAF	VIK I	FUE	L I	NF	ORI	MATION		
																					UM						ENTIL				Ow	INE	R						RATE	R	
	LAB NO	MODE L	E M . C		CR	1	A -	AS CD	757	O	ILES	TMP	BAF	90	HUM	F U E L	0C1	r (G T E H A R R	R	P M	M\	,	OCT		M P H	RPM	MV	0	F U E L	K N O C K	0 B	A R U -	RES	 W	NO 40 T	N 1 N	G			A R U
186	4	7 213M														3 2	84 . 85 .	0 1	M 3	: f:		0	4				2700										N	ı			N
277	47	T 213M	ι	M	9.	0 1	′ •	10	+ 8	,	6010	70	29	74	54	2	84	0	M 4	2	000 450 100	0	2	83.	0	55	2250	0	2 1	,											
367	8	T 213M	F	M	9.	0 1		20	٠ و		6950	80	30	00		2	88	0	м 3	21	700 950 700	0.	9	85.	0	40	2800	0	R 3	1	Y	v 1	N S	92 () B	13 .0	, N				N
36	29	T 215	F	A	9.	0 1	• •	5	٠ ;	5 1	1163	70	30	10	59	2	91	0	M P	3	100 600 100	1	0	65.	0	47	3100	2.	2 2	1							N				N
158	6	T 215	F		9.	0	, ,	10	• 5	3 1	3730	86	30	10	98	2	89	0	M D	3	200 200 100	1	5	86.	0	45	3000	1.	5 2	,											
272	47	7 215	c	. 4	9.	ο '	, ,	5	٠,	5	6900	70	29	70	50	2	83	0	M D	2	500 350 500	1.	0	80.	0	40	2500	2	0 2	. 1											
9	40	T 215M	F	M	9	0 1	4	5	٠,	5	5409	66	29	. 50	82	2	89	0	M 4	1	600 600	ŧ.	0	87.	0	35	1750	١.	5 3	. 1	N		N 9	92.5	9 6	34 . 9	N	ı			N
155	6	T 215M	F	M	9	0	٧ ٠	- 5	٠ :	5	9130	82	29	. 87	85	2	94	0	M 4	1	800 800 700	0	4	92.	0	40	2000	o.	5 2	1	N		N S	92.	3 A	33 4	1 A	4	1800	0.4	N

			VE	HIC	LE	DI	ESC	RI	PΤ	10	N				WE A	THE	R			0	CT	NE	NUME	SER I	RE	DUIREM	N	T DATA	١.					t	AN	K F	UE	LI	NF O	RM	IAY I ON		
													-								M	×I	MUM			50TH PI	R	CENTIL	E	TEC	H		OW	NF R	?						RATE	R	
NO	NO		OE	(4 A	CI	₹	A I R	AD A RC	VA S D	151	ODON	S	TMP	BA	RO	HUM	F U E L	00	T •	† H	G E A R	RPM	MV		OCT (4	RPM.	M	v	MODE	F U E L	KNOCK	A O R B U	; ; ; R	0C 1	M	0 	7 1 7 1	G E A R			A R U
334	46	7 215	м	,	. M	19	0	٧	•	5	+ 5	853	2	80	29	. 68	94	2	BS	9.0	M	4	1900 1850 1700	1 (0	80 O S	25	1700	3	.0	1	1							N				
389	41	T 215	,M	C	: M	9.	O	N	•	7	+ 5	825	o	71	29	. 98	60	2	89	9.0	M	4	1600 1600 1550	0.6	6	83.0 4	15	2550	•	2	3	1	٧	N N	9	1 7	7 8:	2 8	N				N
11	22	T 216	ı	•		-1	o	Y	•	7	+ 7	793	5	70	29	. 31	50	2	83	1.0	M	D	2500 2900 2800	1.4	4	81 0 4	12	2800	1.	. 5	2	1							N				*
43	29	T 218	I	F		9.	0	Y	٠	7	+ 7	1405	0	70	30	. 24		2	94	0	M	۴	2100 2100 2350	1.0)	87 5 3	5	2300	2	0	3	1							N				`
44	29	T 218	1	,		9.	0	Y	•	8	+ 8	1205	•	70	30	. 24	57	2	94	ιò	M	P	2300 2200 2300	1.0	9	88.0 3	13	2300	2	ο	•	•	N	N	9.	2 '	• 4	, ,	Þ	r.			
136	6	T 216	:	,		9	0	Y	٠	7	+ 7	2252	0	83	29	. 8 1	69	2	92	. 0	M	D	2650 2600 2500	1 6	Ą	9003	10	2500	2	4	•	•	N	*	•	:	•	•					
205	4	1 218		F		9.	0	٧	• .	4	• 7	727	6	81	28	. 99	77	2	88	0	M	P	2200 2350 2450	1 9	9	84 0 2	9	2050	2		•	٠	~	`	u		-						
2 16	28	1 218	i	F		9.	σ.	Y	• 1	8	+ 8	2204	5	54	29	. 42	40	2	90	0.0	M	D	2500 26(X) 2475	1 8	3	8° 0 4	10	24%		٠													

			VEHICL	E DE	SCR	IPTI	ON			WEATHE	R		0				EQUIR											RMAT			
												-		MA	MUM1X			PER	CENTI	LE TE	СН	(DWN	ER					ATER	1	-
NO	LAE	CDD	E M . M . L C I	T R A N S CR	A 1 R	ADV AS RCD	ARK ANCE AS TST	ODOM MILES	AMB	BARO	HUM	FUEL									# O	FUE	K N D D C B	ARU		NO	N J N -				A R U N
248	28	T 216	F.	A 9,	O Y	• 7	+ 7	22192	53	29.42	2 35	2	89.0 92.0 89.0	M (P 290	0 1.5	1	0 40	2200	2.0	2	1					N				N
408	26	T 218	F	A 9.	O Y	+ 7	+ 7	6194	85	30.23	48	2	93.0 94.0 89.0	M :	P 440	0.1	,	o 56	4200	0.8	3	•			92.4	82.	B A	P 34	00	0.7	N
68	3	T 218#	F	M 9 ,(v v	+ 7	+ 7	7251	80	29.82	98	2	91.0 91.0 90.0		4 170	0 1.4	•	0 30	1800	1.5	2	1 1	١.	N	91.9	82.0	5 N				N
117	5	T 218#	l Fi	M 9.	O Y	٠ 7	• 7	8533	71	29.61	59		88.0	1	4 170		1	0 35	1900	1.8	2	, ,	4	N	92 . 2	83.	3 N			1	N
131	6	T 2188) FI	# 9 .(O Y	+ 1	+ 7	11550	• •2	29.64	70	2	94.0 95.0 94.0		4 250	0 1.4)	90	3600	1.4	•	1 1	4	N :	9 5 . 1	84.0	5 A	4 25	00	1.2	N
257	7	T 2188) F (M 9.	o N	• 7	• 7	10633	71	30.10	42	2	93.0 96.0 92.0		4 250	0 1.3		0 40	2000	3.0	3	, ,	•	N	91.3	82.4	3 A	3 184	00	1.6	N
280	47	7 2188	l c	9 ,(O Y	• •	• •	15200	70	29.61	96		90 .0			0.0)	39	2000	0.0	2	1									
386	41	T 2184	ı cı	# 9 .4	0 N	• 7	• 7	10840	70	29.94	62	2 4				0.6 0.0 0.0)	9 47	2600	1.5	3	•						4 170	00 (D.8 (N

all controls

•			٧	EHICL										WE	ATH	R																						TION		
					_															1	M X	T MANUAL T		5011	1 PE	RC	ENTIL	€ 1	ta	•								RATE		
08S NO	NO)	MODEL	E M C T	A N S	CR		A I	AS	AN	AS ST	ODOM MILES	THE			H	,		OCT MO	· [RP48	•	0C1			RP10	•			K	A		1 N		N I	e E		**	ARU
152	6	; T :	224	F	A	9.	0 '	٧	٠.	•		9140	• •:	, ,	10 . 91	10	:	3	80	Ö I		2900 2900			0 4	ю :	2700	2.	0 :		ı									
169	6	т:	224	F	A	9.	0 '	٧.	•	. •	•	15000	74		10.01	, ;	:	2	10	Ō (3800 3800 3800	1 0		0 4	18	2700	1	•	•	•									
246	28	т:	224	F	A	9.	0	٧	٠ •	•	•	12341	70	. :	10 . 34	11	- 1	•	Õ.	ě١	iõ	3600 3600	10	•	. 0	16 :	9000	2	0 2	• •)					N				*
247	28	1 T	224	F	•	●,	0	γ .	٠ •	•	•	10064		5 2	10 . 46	12		2		0 1	• •	3900 3900	2.0		0 1	?7 :	2400	7.	• :	• •		V 9	94 . (0 0	3.0	*				N
118	5	; т :	224M	*	×	ቌ.	0	Y	٠ ۱	•	•	7206	70	9 1	10 . 0 4	. •		2	99.	Ŏ i	Ò	1 190 1 190 1 100	2.0		.0 4	ю	1900	0.	• :	. 1	N	N 1	92 . (4.1	A	4 1:	200	0.0) *
206	4	τ:	224M	٠	#	●.	0	٧	٠ .	•	•	0001	.	7 2	19.01	1		2	91.	0	4	1200 1200 1100	0.0		.0 1	**	1700	•.	0 :	2 1		N :	₽ ∮.1	•	3.1	•	4 1	480	0.0	. N
245	26	т:	224 M	•	*	●.	0	¥	٠ :	• •		13290	71	B 2	19 . 3 [.]	1 10		2	90.	0 (1 4	2980 3100 1900	1.0		.0 4	10	1960	1.	0 :	•	1					N				N
287	47	7 🕇 :	224 M	c	×	●,	0	٧	• •	5 4	•	9650	7(0 2	19 . 1 4	•			88.	Ō	1 4	1290 1290 1300	0.1		.0 4	ю	1500	4.	0 :	2 1	•									

			VEHICLE							WEAT										IT DATA										TION		
	-														MAX!			50TH	PER	CENTIL	E TE	СН	(DWN	ER					RATE		
OBS NO		MODE		? \	A	ADV				BAR	0 H	UNIL	DC N	T !	G T E H A			OCT	MP			M	FUE	K N O O		OCT	MO	N 1 N	G E	tem	MV.	A R U N
305	41 T	224 M	CH	9.0	Y	٠.	• 8	2546	61	29.	92	2	92	.0	M 4	1900 2000 1900	1.0		45	2150	2.5	2	•					N				N
147	• •	F21	FA	9.3	Y	٠ ۽	• •	9393	96	29.	76 1	2		.0	M D	2500 2500 2400	1.8		45	2800	1.6	. 1	1									
36	29 V	F2 0 4	FI		1 Y	٠.	• •	11533	70	29.	96	2	93	1.0	M 3	1700 1600 1650	0.2		30	1900	0.2	• •	1 (N	N S	92.3	84.0		3 1	1500	0.2	N
21	33 A	2140	FI	• • . 1	N	• 3	+ 3	5292	70	29.	32	2	90	0.6	M 4	1100 1050 1100	0.0		5 38	2200	2.2	2	-1					N				N
•	40 Z	215	FA	9.0	N	٠.	. + 8	13508	73	29.	46	2	84	.0	M D	2250 2550 2550	1.5		40	2100	1.6	3	1 (М	N 1	92.9	84.9	N				N
18	22 Z	2150	FI	9.0	N	٠.	• •	7392	70	29.	12	2	99	.5	H 4	1400 1400 1400	0.4		30	2300	2.4	1	•					N				N
185	6 Z	2 1 5 00	F 1	9.0	y	٠.	• •	5630	6 3	29 .	87	2	80	0.0	M 4	1800 1800 1800	0.6		35	1900	0.7	2	1 (N	N	94.0	83.1	7 N				N
262	7 Z	2150	F	1 9.0	N	٠.	• •	25173	72	30.	18	1	92	1.0	M 4	2400 2400 2400	1.4		39	2200	2.0	2	•	y y	N 1	91.8	83.	N				N

			VEHICLE	E C	ES	CRI	PT	10	N			WE	ATHE	R			oc	TAR	Æ	NUMB	ER RI	EQUIRE	MEN	T DAT	١		_			TA	NIK I	FUEL	IN	FOR	MATIO	N	
				•											-			MAX						CENTI					MN	ER		• • • •			RAT		
			E 1				AO	VA	RK NCE						F			1 1	3			oct					19 (, I	(A	oc:	T MC		N G			A
OBS NO	NO	COD	L ĈI	ĺ	R	Ĩ	A	5	A5	MILES			ARO	HUN	Ě	OC:	r				WV			RPM	M		D I	E		202		MC		Ñ Ā		My	Ü
297	47	Z 215M	C I	• •) .0	Y	•	•	• •	9200	70	2	9.80	64	2	86	. О	M 4	8 1	1800 1850 1750	0.0		40	2000	0	. 5	•		•	N							
369	41	Z 215M	C I	4 1	. 0	N	•	8	• •	6460	7	. 3	0.00	64	2	91	۰.	M 4	1	1600 1600 1600	0.5	86.0	45	2450	•	.4	3	٠,	•	N	92.(6 82	2.7	8 4	1550	0.	5 N
292	47	CRT 22	o c	4 6	3 . c	¥	•	•	• •	14810	76) 2	9.60	51	2	100	Ō.	10 F	٠ :	9500 3500 3000	2.0		5 48	3000	4	.0	•	1									
125	5	CRT 22	OM FI	n (N	٠	5	+ 8	12068	6 1	2	9.90	. 40	2	96	.0	# 4		900 950 1000	0.5	94.0	46	1930	t	0	•	•									N
124	8	ET 222	m F1	16 (9.9	Y	•	3	• 5	10410	7(3	0.11	82	2	97	Ō.	M 4	1 1	1 150 1 150 1 100	0.6	95.0		1100	•	.0	•	1									N
•	29	ŤT 224	4 F I	X 1	9 .0	N	•	•	• •	5294	70	3	0.11	56	2	94	٥.		•	1 100 1000 1 100	2.0		35	1600	1	. 2	2	1						A 4	1000	2.	0 N
97	3	TT 224	M F (H 1	●.0	N	•	•	٠.	6773) 6 ;	9 2	9 . 90	5 2	2	91	.0	# 4	•	1700 1700 1700	0.5		46	2900	0	.•	•	• •	•	N	94.	5 54	.9	B 4	1600	0.	5 N
375	41	77 224	M C (m (9 . C	N	٠	•	٠.	6025	6	1 2	9.90	- 55		92	Ŏ.	Ħ 4		2700 2750 2100			45	2325	1	.0	3	1 1	, 4	N	97.:	2 90	.4	N			N

			VEH	ICL	E	DES	CR 1	PTI	ON			1	MEAT	THEF	?			OC.	TAN	E NUM	BER	RE	QUIRE	MEN	T DATA	ı				74	NAK F	UEL I	NF OF	MATION	1	
																			MAX	IMUM			50TH	PER	CENTIL	E T	CH	-	OWN					RATE	R	
085 NO			CODE CODEL	E M C T -	A	CR	Ā	AD\		E - 5 0	DOM IILES	AMB TMP	BAI	RO	HUM	_	DC1	1			 M	v	OCT NO		RPM	WV	# O D E	FUEL	K	A	OCT		N G 1 E N A T R		WV	ARUN
37	29	YUT	210M	F	M	8.5	N	٠ (. •	6 t	1422	70	29	. 95	5 7	2	92	o i	4	1800 1800 1800		. 5	88.0	26	1850	2.5	. 1	•	N	N			N			N
800	5	NL9	216	F	A	•.•	N	+11	1 +1	•	3976	70	29	. 88	45	2	92	Ŏ	PD	2900 2200 2500	8	.0	89.0	23	2200	6.0) 1	1	N	N	94.0	83.3	A P	2700	1.2	N
801	•	IIA	238	F	A	8.0	Y	+ 15	i +1	5	3703	85	29	.73	75	2	90	0	M Ø	1800 1750 1750		.0	89.0	40	1700	1.3	2	1	N	N			N			
802		LIA	238	F	A	●.0	Y	+11	5 +1	5	3764	95	29	.61	105			0		1600 1550 1.150	2	. 5	96 .0	40	1700	1.0	2	•	N	N			N			N
903		BA	F 17	F	A	8.2	. ¥	+ 1	•	7	2311	85	29	.74	76	2		Ō i	N D	2480 2450 2700		. 2	78.0	40	2200	1.4	3	1	N	N			N			N
804	8	T 2	18	F	A	9.0	į V	• 1	* *	7	3200	84	29	. 84	88		87	0	J P	3900 3900 2550	1		96 .0	5 0	3800	1.0	3 1	1	N	W			N			N
805	26	. o v	250	F	A	0.4	Y	+ 1	•	• 1	10747	99	30	.08	124	2	92 92 92	. 5		1060	3	.0	91.5	26	1200	3.0) 1	•			92.3	82.9	A 0	1000	3.0	N

APPENDIX F

PROCEDURES FOR PLOTTING

OCTANE NUMBER REQUIREMENT DISTRIBUTION DATA

WEIGHTED VEHICLE/CAR POPULATIONS

Weighting factors for each vehicle model were developed from information supplied by the U.S. Vehicle Manufacturers and from information published (Ward's Automotive Reports) for imported vehicles. These weight factors were proportioned to the relative production and/or sales volumes of the vehicles tested.

For any vehicle having octane requirements lower (L) than the lowest octane number fuel available within a given fuel series, a number 0.5 Research/0.4 Motor lower was assigned. Similarly, for any vehicle having octane requirements higher (H) than the highest octane fuel available within a given fuel series, a number 0.5 Research/0.4 Motor higher was assigned.

The weighting factors of each vehicle model were divided by the number of vehicles tested to calculate individual vehicle weight factors. The octane requirements for each vehicle were then arranged in increasing order with the appropriate individual weighting factors. The percent of vehicles at each octane requirement level represents the summation of all vehicle weighting factors before that level, plus one-half the sum of the weighting factors at that level. The individual vehicle weighting factors are adjusted so that the summation of all weighting factors is 100.00 for any vehicle population of interest. The midpoint percentiles are plotted versus octans number requirement on arithmetic probability paper and a distribution curve is drawn through the points. These distributions are then plotted point to point on Cartesian coordinates for figures shown in the survey report.

SELECT CAR MODELS

For individual car models, the octane number requirement distribution curves were plotted by the "Z" method as described in "Statistical Estimation of the Gasoline Octane Number Requirement of New Model Automobiles," C. S. Brinegar and R. R. Miller, <u>Technometrics</u>, Vol. 2, No. 1, February 1960.

The procedure is as follows:

For any cars having octane requirements lower (L) than the lowest octane number fuel available within a given fuel level, a number 0.5 Research/0.4 Motor lower was assigned. Similarly, for individual cars having octane requirements higher (H) than the highest octane fuel available within a given fuel series a number 0.5 Research/0.4 Motor higher was assigned.

Using all observed and estimated octane number values, calculate the mean (X) and the standard deviation (S) from the data for each car model.

1.
$$\overline{\chi} = \frac{r \chi_1}{n}$$

$$s = \sqrt{\frac{1}{n-1} \left[r \chi_1^2 - \left(\frac{r \chi_1}{n} \right)^2 \right]}$$

Where X_i = Octane number requirement of the ith car of a given model n = Number of cars of that model.

2. Estimate octane number requirements at the percentiles of interest from octane number requirement distribution data by

O.N. =
$$\overline{X}$$
 + ks

where k is selected from normal distribution tables.

Values of k used to calculate percentiles in this report are:

<u>Percentile</u>	<u>k</u>
5	-1.645
10	-1.282
20	-0.842
30	-0.524
40	-0.253
50	0
60	+0.253
70	+0.524
80	+0.842
90	+1.282
95	+1.645

The requirements were arranged in increasing order and plotted on arithmetic probability paper; the percent satisfaction for any car is calculated by the following relationship:

Percent satisfied:
$$i^{th} car = \frac{(i-0.5)}{N}$$
 100

where N is the total number of cars tested for a given fuel and i is an integer having increasing values from I to N.

Curves may either be faired through the plotted points or a straight line superimposed using the mean and standard deviation calculated above. From inspection of these curves, revised L and H values may be indicated. If so, new means and standard deviations may be calculated.

APPENDIX G

CONFIDENCE LIMITS OF
OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

CONFIDENCE LIMITS OF OCTANE NUMBER REQUIREMENT DISTRIBUTIONS

Octane number requirements of vehicles presented in this survey are determined at the levels that satisfy certain percentages of specific vehicle populations. In many cases, the recorded octane number requirement is followed by a plus and minus limit, referred to as the confidence interval. These limits give the interval within which the requirement for that satisfaction level would be expected 95% of the time in replicate testing.

At the 50% satisfaction level, the 95% confidence interval is calculated as follows:

$$CI = \pm ts / \sqrt{n}$$

where t = Students t at the proper number of degrees of freedom*

- s = Standard deviation, calculated directly from the data or estimated
 as the difference between the 84.16th and 50th percentiles (assuming normal distribution)
- n = Number of vehicles in population.

At other satisfaction levels:

** D.F = (n-1)

$$CI = \pm ts \sqrt{1/n + k^2/[2(n-1)]}$$

At the 90% satisfaction level, k = 1.2817. For other satisfaction levels, appropriate values for k may be found in the standard statistical tables.

* Distribution of t for probability = 0.05.

Degrees of		Degrees of	
Freedom**	_t	Freedom	t
1 2 3 4 5 6	12.706	18	2.101
2	4.393	19	2.093
3	3.182	20	1.086
4	2.776	21	2.080
5	2.571	22	2.074
6	2.447	23	2.069
7	2.365	24	2.064
	2.306	25	2.060
8 9	2.262	26	2.056
10	2.228	27	2.052
11	2.201	28	2.048
12	2.179	29	2.045
13	2.160	30	2.042
14	2.145	40	2.021
15	2.131	60	2.000
		120	1.980
16	2.120	150	
17	2.110	•	1.960

TABLE G-I

95% CONFIDENCE LIMITS FOR MAXIMUM REQUIREMENTS

1981 Weighted Vehicle Population Groups

				642	Dev.		Confid	ence Lim	i ts
					s)		۹	M	ON
Population	Fue1	<u>_n</u>	t_	RON	MON	50%	<u> </u>	50%	90%
US and Imported Vehicles	PR FBRU FBRSU	416 417 417	1.966 1.966 1.966	3.44 4.37 4.94	3.44 2.47 3.36	0.33 0.42 0.48	0.45 0.57 0.64	0.33 0.24 0.32	0.45 0.32 0.44
US and Imported Cars	PR FBRU FBRSU	391 392 392	1.966 1.966 1.966	3.50 4.40 4.99	3.50 2.44 3.38	0.35 0.44 0.50	0.47 0.59 0.67	0.35 0.24 0.34	0.47 0.33 0.45
US Vehicles	PR FBRU FBRSU	317 318 318	1.968 1.968 1.968	3.01 3.91 4.59	3.01 2.25 3.13	0.33 0.43 0.51	0.45 0.58 0.68	0.33 0.25 0.34	0.45 0.34 0.47
US Cars	PR FBRU FBRSU	299 300 300	1.968 1.968 1.968	3.20 3.99 4.65	3.20 2.27 3.16	0.36 0.45 0.53	0.49 0.61 0.71	0.36 0.26 0.36	0.49 0.35 0.48
Imported Vehicles	PR FBRU FBRSU	99 99 99	1.983 1.983 1.983	4.47 4.50 4.59	4.47 2.51 3.04	0.89 0.90 0.92	1.20 1.21 1.24	0.89 0.50 0.61	1.20 0.68 0.82

TABLE G-II

95% CONFIDENCE LIMITS FOR FBRU 50TH PERCENTILE ACCELERATION TECHNIQUE REQUIREMENTS

1981 Weighted Vehicle Population Groups

			Std.	Dev.	95	% Confid	ence Lim	its
				s)	R	<u>08</u>	M	ON
Population	<u>n</u>	<u>t</u>	RON	MON	50%	90%	50%	901
US and Imported Vehicles	414	1.966	4.74	2.57	0.46	0.62	0.25	0.33
US and Imported Cars	389	1.966	4.78	2.58	0.48	v.64	0.26	0.35
US Vehicles	316	1.968	3.89	2.14	0.43	0.58	0.24	0.32
US Cars	298	1.968	4.10	2.25	0.47	0.63	0.26	0.35
Imported Vehicles	98	1.983	5.17	2.82	1.04	1.40	0.56	0.76

TABLE G-III

95% CONFIDENCE LIMITS FOR MAXIMUM REQUIREMENTS

1981 Select Models

					95	Confid	ence Lim	í ts
					R	ON	M	ON
Fuel	<u>n</u>	_t_	RON	MON	50%	90%	50%	90%
PR	14	2.160	1.899	1.899	1.10	1.50	1.10	1.50
FBRU	14	2.160	2.524	1.414	1.46	2.00	0.82	1.12
FBRSU	14	2.160	3.003	2.037	1.73	2.38	1.18	1.61
PR	30	2.045	3.268	3.268	1.22	1.66	1.22	1.66
FRRU	30	2.045	4.274	2.513	1.62	2.21	0.94	1.28
FBRSU	30	2.045	5.213	3.564	1.95	2.65	1.33	1.81
PR	19	2, 101	2.813	2.813	1.36	1.85	1.36	1.85
FRRU				1.905		2.03	0.92	1.25
FBRSU	19	2.101	3.635	2.548	1.75	2.39	1.23	1.68
PR	24	2.069	2.980	2,980	1.26	1.72	1.26	1.72
								1.31
								1.59
101.50	£ 7	2.003	71070			2.00	,	
PR	14	2.160	3.566	3.566	2.06	2.83	2.06	2.83
FBRU	14	2.160	3.587	2.086	2.07	2.84	1.20	1.65
FBRSU	14	2.160	3.691	2.544	2.13	2.93	1.47	2.02
	PR FBRU FBRSU PR FBRSU PR FBRSU PR FBRSU PR FBRSU PR FBRSU PR FBRSU FBRSU PR FBRSU	PR 14 FBRU 14 FBRSU 14 PR 30 FBRU 30 FBRSU 30 PR 19 FBRU 19 FBRSU 19 PR 24 FBRSU 24 FBRSU 24 FBRSU 24 PR 14 FBRSU 14	PR 14 2.160 FBRU 14 2.160 FBRSU 14 2.160 PR 30 2.045 FBRU 30 2.045 FBRSU 30 2.045 PR 19 2.101 FBRU 19 2.101 FBRSU 19 2.101 FBRSU 19 2.101 PR 24 2.069 FBRU 24 2.069 FBRSU 24 2.069 FBRSU 24 2.069 PR 14 2.160 FBRU 14 2.160	Fuel n t RON PR 14 2.160 1.899 FBRU 14 2.160 2.524 FBRSU 14 2.160 3.003 PR 30 2.045 3.268 FBRU 30 2.045 4.274 FBRSU 30 2.045 5.213 PR 19 2.101 2.813 FBRU 19 2.101 3.076 FBRSU 19 2.101 3.635 PR 24 2.069 2.980 FBRU 24 2.069 3.912 FBRSU 24 2.069 4.048 PR 14 2.160 3.566 FBRU 14 2.160 3.587	PR 14 2.160 1.899 1.899 FBRU 14 2.160 2.524 1.414 FBRSU 14 2.160 3.003 2.037 PR 30 2.045 3.268 3.268 FBRU 30 2.045 4.274 2.513 FBRSU 30 2.045 5.213 3.564 PR 19 2.101 2.813 2.813 FBRU 19 2.101 3.076 1.905 FBRSU 19 2.101 3.635 2.548 PR 24 2.069 2.980 2.980 FBRSU 24 2.069 3.912 2.280 FBRSU 24 2.069 4.048 2.762 PR 14 2.160 3.566 3.566 FBRU 14 2.160 3.587 2.086	Fuel n t RON MON 50% PR 14 2.160 1.899 1.899 1.10 FBRU 14 2.160 2.524 1.414 1.46 FBRSU 14 2.160 3.003 2.037 1.73 PR 30 2.045 3.268 3.268 1.22 FBRU 30 2.045 4.274 2.513 1.62 FBRSU 30 2.045 5.213 3.564 1.95 PR 19 2.101 2.813 2.813 1.36 FBRU 19 2.101 3.076 1.905 1.48 FBRSU 19 2.101 3.635 2.548 1.75 PR 24 2.069 2.980 2.980 1.26 FBRSU 24 2.069 3.912 2.280 1.65 FBRSU 24 2.069 4.048 2.762 1.71 PR 14 2.160 <	Std. Dev. (S) RON Fuel n t RON MON 50% 90% PR 14 2.160 1.899 1.899 1.10 1.50 FBRU 14 2.160 2.524 1.414 1.46 2.00 FBRSU 14 2.160 3.003 2.037 1.73 2.38 PR 30 2.045 3.268 3.268 1.22 1.66 FBRU 30 2.045 4.274 2.513 1.62 2.21 FBRSU 30 2.045 5.213 3.564 1.95 2.65 PR 19 2.101 2.813 2.813 1.36 1.85 FBRU 19 2.101 3.076 1.905 1.48 2.03 FBRSU 19 2.101 3.635 2.548 1.75 2.39 PR 24 2.069 2.980 2.980 1.26 1.72 FBRSU 24	Fuel n t RON MON 50% 90% 50% PR 14 2.160 1.899 1.899 1.10 1.50 1.10 FBRU 14 2.160 2.524 1.414 1.46 2.00 0.82 FBRSU 14 2.160 3.003 2.037 1.73 2.38 1.18 PR 30 2.045 3.268 3.268 1.22 1.66 1.22 FBRU 30 2.045 4.274 2.513 1.62 2.21 0.94 FBRSU 30 2.045 5.213 3.564 1.95 2.65 1.33 PR 19 2.101 2.813 2.813 1.36 1.85 1.36 FBRU 19 2.101 3.076 1.905 1.48 2.03 0.92 FBRSU 19 2.101 3.635 2.548 1.75 2.39 1.23 PR 24 2.069 2.980 2.980 1.26 1.72 1.26 FBRU 24 2.069 3.912 2.280 1.65 2.25 0.96 FBRSU 24 2.069 4.048 2.762 1.71 2.33 1.17 PR 14 2.160 3.566 3.566 2.06 2.83 2.06 FBRU 14 2.160 3.566 3.566 2.06 2.83 2.06 FBRU 14 2.160 3.587 2.086 2.07 2.84 1.20

TABLE G-III
(Continued)

95% CONFIDENCE LIMITS FOR MAXIMUM REQUIREMENTS

1981 Select Models

						95% Confidence Limits			
		n	_t_		Dev. S)	RON		MON	
Car Model	Fue1			RON	MON	50%	90%	50%	90%
OL 216M/ML 216M	PR	13	2.179	2.839	2.839	1.72	2.36	1.72	2.36
	FBRU	13	2.179	2.515	1.383	1.52	2.09	0.84	1.15
	FBRSU	13	2.179	3.132	2.124	1.89	2.60	1.28	1.76
OCA 223/MCA 223	PR	16	2.131	2.406	2.406	1.28	1.76	1.28	1.76
	FBRU	16	2.131	2.880	1.601	1.53	2.10	0.85	1.17
	FBRSU	16	2.131	2.685	1.804	1.43	1.96	0.96	1.32
PL 217/KL 217	PR	14	2.160	3.251	3.251	1.88	2.58	1.88	2.58
	FBRU	14	2.160	3.554	2.590	2.05	2.82	1.50	2.05
	FBRSU	14	2.160	4.422	3.151	2.55	3.50	1.82	2.50
PC 222/KC 222	PR	24	2.069	4.278	4.278	1.81	2.46	1.81	2.46
	FBRU	24	2.069	4.232	2.753	1.79	2.44	1.16	1.58
	FBRSU	24	2.069	4.803	3.362	2.03	2.76	1.42	1.93

TABLE G-IV

95% CONFIDENCE LIMITS FOR FBRU SOTH PERCENTILE ACCELERATION TECHNIQUE REQUIREMENTS

1981 Select Models

			Std.	Ome	95% Confidence Limits				
				<u>5)</u>	RON		<u> HON</u>		
Mode1	<u>n</u>	_t_	RON	MON	50%	90%	50%	901	
HIA 238	14	2.160	2.865	1.620	1.65	2.27	0.94	1,28	
IIA 238/LIA 238	30	2.045	4.137	2.434	1.54	2.10	0.91	1.24	
NCX 228/HCX 228/ ICX 228/LCX 228	19	2.101	3.360	2.422	1.62	2.21	1.17	1.60	
NC5 225/HC5 225/ IC5 225/LC5 225	24	2.069	4.636	2.698	1.96	2.67	1.14	1,55	
OL 216/ML 216	14	2.160	3.244	1.851	1.87	2.57	1.07	1.47	
OL 216M/ML 216M	13	2.179	2.743	1.560	1.66	2.28	0.94	1.30	
OCA 223/MCA 223	16	2.131	3.392	1.952	1.81	2.48	1.04	1.42	
PL 217/KL 217	14	2.160	3.494	2.612	2.02	2.77	1.51	2.07	
PC 222/KC 222	23	2.074	5.076	3.555	2.20	2.99	1.54	2.10	

TABLE N-1
OCTAME MARKER REQUIREMENTS OF MINUTE SERSON-EQUIPMED VEHICLES

		•	MA	X SAMURI RI	E QUEREN			11991 8	t gy i ng Pi	t MT			10 TO 10 T	<u>ik</u>		Ţ	MMX	
Car Code	Fuel	Test Technique	ŎĺĠ	RPM	Gear	Yac.		100	Spor	Vac.		RPN.	-	Vac.	INT	RFN	Geer	Non. Vac.
NTEG 450	Tank	E-15-81	-		-	-	•		•	•	•		-	-		2000		1.0
	FBRU	E-15-81	94	-	0	2.8	84	1900	•	1.0	91	2000	•	1.0	•	•	-	-
		50th & Accel.	91	-	Ð	• •			•	8.5	16	2000	:	2.8	•	-	•	•
	FBRSU	E-15-81	97	-	D	1.0	85	1900		1.0	92	1900	Ţ	1.9	•	-	•	-
	PR	E-15-81	93	-	•	1.0	84	2000	•	9.8	91	1300	•	2.8	-	•	-	-
NTLG 450	Tank														A	1600	8	3.0
	FBRU	E-15-81	99	1600	D	3.0	78	2000	•	3.0	99	1600		3.0	•	•	_	-
		50th % Accel.	95	2000	Ö	5.0	76*	2000	ĺ	1.0	95	2000	-	3.0	-	-		
	FBRSU	E-15-81	99	1600	D	3.0	78	1606	Ď	3.0	99	1600	•	3.0	-	-	-	•
	PR	E-15-81	95	2000	D	3.0	74*	5000	Ð	3.0	95	5000	•	3.0	-	-	•	•
NTLG 450	Tank	£-15-81				-										-	-	
	FBRU	E-15-81	94	1500	D	8.5	82	1900		2.0	91	1900	0	2.0	-	-	-	-
		50th % Accel.	92	2400	Ď	2.0	62	2400	i	2.0	98	2600	-	2.0	_			-
	FBRSU	E-15-81	94	2500	ř	2.0	35	2000	•	2.0	92	5600	P	2.0	-	-		-
	PR	E-15-81	92	2400	D	2.0	81	2500	•	2.0	89	2000		2.0	-	-	•	-
L4 441	Tank	E-15-81		-	-					-		-				3000	•	0.8
2	FBRU	E-15-81		-	-		-		•		94	2450	•	1.2	-			
	, , , ,	50th % Accel.	-	-	•	NO NE	TER				93	2300		1,3		-		-
	FBRSU	E-15-81	_	-		•	•	-	-		95	3300	P	0.8	-	-		-
	PR	E-15-81	•	-	-	•	-	-	•	-	90	3350	P	0.6	-	-	-	-
L4 441	Tank	E-15-81			-		-		_	_	٠.		-		A	2500	b	1.5
• • • • • • • • • • • • • • • • • • • •	FBRU	E-15-81	34	2400	D	1.2	89	2500		1.2	100	2450		1.2	-	•		•
		50th % Accel.	Ä	2700	Ď	1.2	99	2500	i	1.2	100	2700	Ĭ	1.2	-		-	-
	FBRSU	E-15-81	H	2200	Ò	1.5	89	2500	Ĭ	1.2	101	2200	•	1.2	-	-	•	
	PR	E-15-81	95	2600	D	1.2	88	5600	ě	1.2	94	2500	•	1.2	-	-	•	-
L4 441	Tank	E-15-81		-						-						1400	D	2.0
	FORU	E-15-81	M	2000	D	3.0	94	2000	•	3.0		2000		3.0	-	-	-	•
		50th & Accel.	-			•	99	2400	Ĭ	5.0	99	2400	Ď	5.0	-	-	-	
	FBRSU	E-15-81	н	2000	0	3.0	H	2000	Ď	3.0	,	2000	Ð	3.0	-	-	•	-
	PR	E-15-87	-	-	-	-		•	•	•	H	2200	•	3.0	-	-	-	-

* Estimated

APPENDIX I MAXIMUM OCTANE NUMBER REQUIREMENTS OF SELECT MODELS

TABLE 1-1

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1981 SELECT MODELS

MODEL: HIA 238

D	20.5		FBRU		FBRSU				
Percent Satisfied	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
5	85.2	84.7	79.7	82.2	85.1	77.4	81.3		
10	85.9	85,6	80.2	82,9	86.2	78.2	82.2		
20	86.7	86.7	80.8	83,8	87.5	79.1	83.3		
30	87.3	87.5	81.3	84.4	88.5	79.7	84.1		
40	87.8	88.2	81.6	84.9	89.3	80.3	84.8		
50	88.3	88.8	82.0	85,4	90.0	80.8	85,4		
60	88.8	89.5	82.4	85.9	90.8	81.3	86,0		
70	89.3	90.1	82.7	86.4	91.6	81.9	86.7		
80	89.9	90.9	83.2	87.1	92.6	82,5	87.5		
90	90.7	92.1	83.8	87.9	93.9	83.4	88.6		
95	91.4	93.0	84.3	88.6	95.0	84.1	89.6		

TABLE I-I (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1981 SELECT MODELS

MODEL: 11A 238/L1A 238

Percent Satisfied	55		FBRU		FBRSU				
	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
5	84.4	84.5	79.5	82.0	84.6	77.0	80.6		
10	85.6	86.1	80.4	83.2	86.5	78.3	82.4		
20	87.0	88.0	81.5	84.7	88.8	79.9	84.3		
30	88.1	89.3	82.3	85.8	90.4	81.0	85.7		
40	89.0	90.5	83.0	86.7	91.8	82.0	86.9		
50	89.8	91.6	83.6	87.6	93.2	82.9	88.0		
60	90.6	92.6	84.2	88.4	94.5	83.8	89.2		
70	91.5	93.8	84.9	89.3	95.9	84.8	90.3		
80	92.6	95.2	85.7	90.4	97.6	85.9	91.7		
90	94.0	97.0	86.8	91.9	99.8	87.5	93.7		
95	95.2	98.6	87.7	93.1	101.7	88.8	95.3		

TABLE I-I
(Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS - 1981 SELECT MODELS

MODEL: NCX 228/HCX 228/ICX 228/LCX 228

			FBRU		FBRSU				
Percent <u>Satisfied</u>	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2		
5	80.0	80.3	76.8	78.6	80.9	74.4	77.6		
10	81.0	81.5	77.5	79.5	82.2	75.3	78.8		
20	82.3	82.8	78.3	80.6	83.8	76.4	80.1		
30	83.2	83.8	78.9	81.4	85.0	77.2	81.1		
40	83.9	84.6	79.5	82.0	86.0	77.9	81.9		
50	84.6	85.4	79.9	82.7	86.9	78.6	82.7		
60	85.3	86.2	80.4	83.3	87.8	79.2	83.5		
70	86.1	87.0	80.9	84.0	88.8	79.9	84.3		
80	87.0	88.0	81.5	84.8	90.0	80.7	85.3		
90	88.2	89.3	82.4	85.9	91.6	81.8	86.7		
95	89.3	90.5	83.1	86.8	92.9	82.8	87.8		

TABLE I-I
(Continued)

MODEL: NC5 225/HC5 225/IC5 225/LC5 225

			FBRU	·	FBRSU			
Percent Satisfied	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
5	85.1	86.1	80.4	83.2	88.0	79.4	83.7	
10	86.2	87.5	81.2	84.3	89.5	80.4	85.0	
20	87.5	89.3	82.2	85.7	91.3	81.6	86.5	
30	88.4	90.5	82.9	86.7	92.6	82.5	87.6	
40	89.2	91.6	83.5	87.5	93.7	83.2	88.5	
50	90.0	92.5	84.1	88.3	94.7	83.9	89.3	
60	90.7	93.5	84.7	89.1	95.7	84.6	90.2	
70	91.5	94.6	85.3	89.9	96.8	85.4	91.1	
80	92.5	95.8	86.0	90.9	98.1	86.3	92.2	
90	93.8	97.6	87.0	92.2	99.9	87.5	93.7	
95	94.9	99.0	87.9	93.4	101.4	88.5	94.9	

TABLE I-I (Continued)

MODEL: 0L 216/ML 216

			FBRU		FBRSU			
Percent <u>Satisfied</u>	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
5	85.4	86.1	80.3	83.3	87.0	78.6	82.8	
10	86.7	87.4	81.1	84.3	88,4	79.6	84.0	
20	88.3	89.0	82.0	85.5	90.0	80.7	85.3	
30	89.4	90.2	82.7	86.4	91.2	81.5	86.3	
40	90.4	91.1	83.2	87.2	92.2	82.2	87.2	
50	91.3	92.0	83.8	87.9	93.1	82,8	88.0	
60	92.2	92.9	84.3	88.6	94.0	83.5	88.8	
70	93.2	93.9	84.9	89.4	95.0	84.2	89.6	
80	94.3	95.1	85.5	90.2	96.2	85.0	90.6	
90	95 .9	96.6	86.4	91.5	97.8	86.1	92.0	
95	97.2	97.9	87.2	92.5	99.2	87.0	93.1	

TABLE I-I
(Continued)

MODEL: OL 216H/ML 216H

	PRF ON		FBRU		FBRSU		
Percent <u>Satisfied</u>		RON	MON	(R+M)/2	RON	HOH	(R+M)/2
5	86.0	87.4	81.3	84.4	87.0	78.7	82.9
10	87.0	88.4	81.8	85.1	88.1	79.5	83.8
. 20	88.3	89.5	82.4	85.9	89.5	80.4	85.0
30	89.2	90.3	82.8	86.5	90.5	81.1	85.8
40	89.9	90.9	83.2	87.1	91.4	81.7	86.5
50	90.7	91.6	83.5	87.5	92.2	82.2	87.2
60	91.4	92.2	83.9	88.0	92.9	82.7	87.8
70	92.1	92.9	84.3	88.5	93.8	83.3	88.6
80	93.0	93.7	84.7	89.2	94.8	84.0	89.4
90	94.3	94.8	85.3	90.0	96.2	84.9	90.5
95	95.3	95.7	85.8	90.7	97.3	85.7	91.5

TABLE I-I
(Continued)

MODEL: OCA 223/MCA 223

			FBRU		FBRSU			
Percent Satisfied	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
5	85.4	85,3	80.1	82.7	87.0	78.7	82.9	
10	86.3	86.4	80.6	83.5	88.0	79.4	83.7	
20	87.3	87.6	81.3	84.5	89.1	80.2	84.7	
30	88.1	88.6	81.8	85.2	90.0	80.8	85.4	
40	88.7	89.3	82.3	85.8	90.7	81.2	86.0	
50	89.3	90.1	82.7	86.4	91.4	81.7	86.6	
60	90.0	90.8	83.1	86.9	92.1	82.2	87.1	
70	90.6	91.6	83.5	87.5	92.8	82.7	87.7	
80	91.4	92.5	84.0	88.2	93.7	83.2	88.4	
90	92.4	93.8	84.7	89.2	94.8	84.0	89.4	
95	93.3	94.8	85.3	90.0	95.8	84.7	90.2	

TABLE I-I (Continued)

MODEL: PL 217/KL 217

Percent			FBR"		FBRSU			
Percent <u>Satisfied</u>	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
5	77.1	78.6	75.0	76.8	79.3	73.1	76.2	
10	78.3	79.9	75.9	77.9	80.9	74.3	77.6	
20	79.7	81.5	77.1	79.3	82.8	75,7	79.2	
30	80.7	82.6	77.9	80.3	84.2	76.7	80.4	
40	81.6	83.6	78.6	81.1	85.4	77.5	81.5	
50	82.4	84.5	79.2	81.9	86.5	78.3	82.4	
60	83.3	85.4	79.9	82.6	87.7	79.1	83.4	
70	84.1	86.3	80.6	83.5	88.9	80.0	84.4	
80	85.2	87.5	81.4	84.4	90.3	81.0	85.6	
90	86.6	89.0	82.6	85.8	92.2	82.4	87.3	
95	87.8	90.3	83.5	86.9	93.8	83.5	88.7	

TABLE I-I
(Continued)

MODEL: PC 222/KC 222

mA	PRF		FBRU		FBRSU			
Percent Satisfied	ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
5	77.2	78.8	75.5	77.2	79.2	73.1	76.1	
10	78.8	80.3	76.5	78.4	80.9	74,3	77.6	
20	80.7	82.2	77.7	80.0	83.0	75.8	79.4	
30	82.0	83.5	78.6	81.1	84.5	76.9	80.7	
40	83.2	84.7	79.4	82.0	85.8	77.8	81.8	
50	84.3	85.8	80.1	82.9	87.1	78.7	82.9	
60	85.4	86.8	80.7	83.8	88.3	79.5	83.9	
70	86.5	88.0	81.5	84.7	89.6	80.4	85.0	
80	87.9	89.3	82.4	85.8	91.1	81.5	86.3	
90	89.8	91.2	83.6	87.4	93.2	83.0	88.1	
95	91.3	92.7	84.6	88.7	95.0	84.2	89.6	

TABLE I-II

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF

1981 SELECT MODEL HIA 238

			FBRU			FBRSU		1	
<u> </u>	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Satisfied	
1	86.0	85.5	80.1	82.8	86.0	78.0	82.0	3.57	
2	86.0	86.0	80.4	83.2	87.0	78.7	82.8	10.71	
3	86.0	86.0	80.4	83.2	87.0	78.7	82.8	17.86	
4	87.0	88.0	81.6	84.8	88.0	79.4	83.7	25.00	
5	88.0	88.0	81.6	84.8	89.0	80.1	84.6	32.14	
6	88.0	88.0	81.6	84.8	89.5	80.4	85.0	39.29	
6 7	88.0	88.0	81.6	84.8	90.0	80.8	85.4	46.43	
8	88.0	89.0	82.1	85.6	90.0	80.8	85.4	53.57	
ğ	88.0	89.0	82.1	85.6	90.0	80.8	85.4	60.71	
1Ó	89.0	89.0	82.1	85.6	90.0	80.8	85.4	67.86	
ii	89.0	89.0	82.1	85.6	90.0	80.8	85.4	75.00	
12	90.0	91.0	83.2	87.1	92.0	82.1	87.0	82.14	
13	90.0	92.0	83.7	87.8	95.0	84.1	89.6	89.29	
14	93.0	95.0	85.5	90.2	97.0	85.5	91.2	96.43	
N	14		14			14			
50% (X)	88.286	88.821	82.007	85.421	90.036	80.786	85.407		
s	1.899	2.524	1.414	1.956	3.003	2.037	2.521		

TABLE I-II
(Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF
1981 SELECT MODEL 11A 238/LIA 238

	PRF	FBRU				FBRSU		1
	ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Satisfied
1	85.0	86.0	80.4	83.2	86.0	78.0	82.0	1.67
2	85.0	86.0	80.4	83.2	87.0	78.7	82.8	5.00
3	86.0	87.0	81.0	84.0	87.0	78.7	82.8	8,33
4	86.0	87.0	81.0	84.0	87.0	78.7	82.8	11.67
5	86.0	87.0	81.0	84.0	87.0	78.7	82.8	15,00
6	87.0	87.0	81.0	84.0	88.0	79.4	83.7	18,33
Ž	87.0	87.0	81.0	84.0	88.0	79.4	83.7	21.67
8	87.0	88.0	81.6	84.8	88.0	79.4	83.7	25.00
9	88.0	88.0	81.6	84.8	89.0	80.1	84.6	28,33
10	88.5	89.0	82.1	85.6	89.0	80.1	84.6	31.67
11	89.0	89.0	82.1	85.6	89.0	1.08	84.6	35.00
12	89.0	90.0	82.7	86.4	90.0	80.8	85.4	38.33
13	89.0	90.0	82.7	86.4	91.0	81.4	86.2	41.67
14	89.0	90.0	82.7	86.4	92.0	82.1	87.0	45.00
15	90.0	90.5	83.0	86.7	93.0	82.8	87.9	48.33
16	90.0	91.0	83.2	87.1	93.0	82.8	87.9	51.67
17	90.0	92.0	83.7	87.8	94.0	83.4	88.7	55.00
18	90.0	92.0	83.7	87.8	94.0	83.4	88.7	58.33
19	90.0	92.0	83.7	87.8	95.0	84.1	89.6	61.67
20	90.5	93.0	84.3	88.6	95.0	84.1	89.6	65.00
21	91.0	94.0	84.9	89.4	95.0	84.1	89.6	68,33
22	91.0	94.0	84.9	89.4	97.0	85.5	91.2	71.67
23	91.0	94.0	84.9	89.4	98.0	86.2	92.1	75.00
24	92.0	95.0	85.5	90.2	98.0	86.2	92.1	78.33
25	92.0	95.5	85.8	90.6	99.0	86.9	93.0	81.67
26	92.5	96.0	86.0	91.0	99.0	86.9	93.0	85.00
27	92.5	97.0	86.7	91.8	101.0	88.3	94.6	88.33
28	94.0	98.0	87.4	92.7	H	H	H	91.67
29	96.0	H	H	H	H	H	H	95.04
30	100.0	H	H	H	H	H	Н	98.33
N	30		30			30		
50% (X)	89.800	91.567	83.600	87.570	93,167	82.910	88.040	
\$	3.268	4.274	2.513	3.373	5.213	3.564	4.395	

TABLE I-II (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODEL MCX 228/HCX 228/ICX 228/LCX 228

	PRF		FBRU			FBRSU				
	<u>on</u>	RON	MON	(R+M)/2	RON	MON	(R+M)/2	% Satisfied		
1	78.0	80.0	76.1	78.0	80.0	72 €	76.0			
2	80.0	82.0	77.8	79.9	82.0	73.6	76.8	2.63		
3	82.0	82.0	77.8	79.9	84.0	75.1	78.6	7.89		
4	83.0	82.0	77.8	79.9		76.5	80.2	13.16		
5	83.0	84.0	79.2	81.6	84.0	76.5	80.2	18.42		
5 6	84.0	84.0	79.2	81.6	84.0	76.5	80.2	23.68		
7	84.0	84.0	79.2		85.0	77.3	81.2	28.95		
8 9	84.0	84.0	79.2	81.6	86.0	78.0	82.0	34.21		
q	84.0	85.0	79.2 79.8	81.6	86.0	78.0	82.0	39.47		
10	85.0	85.0		82.4	86.0	78.0	82.0	44.74		
iĭ	85.0	85.0	79.8	82.4	86.0	78.0	82.0	50.00		
iż	85.0		79.8	82.4	87.0	78. <i>7</i>	82.8	55.26		
13	85.0	86.0	80.4	83.2	87.0	78.7	82.8	60.53		
14		86.0	80.4	83.2	87.0	78.7	82.8	65.79		
15	86.0	86.0	80.4	83,2	88.0	79.4	83.7	71.05		
	87.0	87.5	81.3	84,4	90.0	80.8	85.4	76.32		
16	87.0	88.0	81.6	84.8	90.0	80.8	85.4	81.58		
17	88.0	90.0	82.7	86.4	92.0	82.1	87.0	86.84		
18	89.0	90.0	82.7	86.4	93.0	82.8	87.9	92.11		
19	89.0	92.0	83.7	87.8	94.0	83.4	88.7	97.37		
N	19		19			19				
50% (X)	84,632	85.395	79.942	82.668	86.895	78.574	82.721			
s	2,913	3.076	1.905	2.496	3,635	2.548	3.089			

TABLE I-II
(Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF
1981 SELECT MODEL NC5 225/HC5 225/HC5 225/LC5 225

	PRF	FBRU			FBRSU				
<u>i</u>	ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	X Satisfied	
1	82.0	84.0	79.2	81.6	85.0	77.3	81.2	2.08	
2	84.0	86.0	80.4	83.2	88.0	79.4	83.7	6.25	
3	87.0	87.0	81.0	84.0	89.0	80.1	84.6	10.42	
4	87.0	88.0	81.6	84.8	90.0	80.8	85.4	14.58	
5	88.0	88.0	81.6	84.8	90.0	80.8	85.4	18.75	
	89.0	89.0	82.1	85.6	91.0	81.4	86.2	22.92	
6 7	89.5	92.0	83.7	87.8	94.0	83.4	88.7	27.08	
8	90.0	92.0	83.7	87.8	94.0	83.4	88.7	31.25	
9	90.0	92.0	83.7	87.8	94.0	83.4	88.7	35.42	
10	90.0	92.0	83.7	87.8	95.0	84.1	89.6	39.58	
11	90.0	93.0	84.3	88.6	95.0	84.1	89.6	43.75	
12	90.0	93.0	84.3	88.6	95.0	84.1	89.6	47.92	
13	90.0	94.0	84.9	89.4	96.0	84.8	90.4	52.08	
14	91.0	94.0	84.9	89.4	96.0	84.8	90.4	56.25	
15	91.0	94.0	84.9	89.4	96.0	84.8	90.4	60.62	
16	91.0	94.0	84.9	89.4	97.0	85.5	91.2	64.58	
17	91.0	94.0	84.9	89.4	97.0	85.5	91.2	68.75	
18	91.0	94.0	84.9	89.4	97.0	85.5	91.2	72.92	
19	91.0	95.0	85.5	90.2	97.0	85.5	91.2	77.08	
20	92.0	95.0	85.5	90.2	98.0	86.2	92.1	81.25	
21	92.0	96.0	86.0	91.0	99.0	86.9	93.0	85.42	
22	93.0	96.0	86.0	91.0	99.0	86.9	93.0	89.58	
22	93.0	98.0	87.4	92.7	99.0	86.9	93.0	93.75	
	97.0	H	H	H	H	H	H	97.92	
N	24		24			24			
50% (X)	89.979	92.542	84.108	88.296	94,708	83.942	89.333		
S	2.980	3.912	2.280	3.081	4.048	2.762	3.400		

Ξ

TABLE I-II (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODEL OL 216/ML 216

	5.0.0		FBRU			FBRSU			
	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Satisfied	
1	81.5	83.0	78.5	80.8	83.0	75.8	79.4	3.57	
2	88.5	89.0	82.1	85.6	89.5	80.4	85.0	10.71	
3	89.0	89.0	82.1	85.6	91.0	81.4	86.2	17.86	
4	89.0	91.0	83.2	87.1	92.0	82.1	87.0	25.00	
5	91.0	91.5	83.4	87.5	93.0	82.8	87.9	32.14	
6	92.0	92.0	83.7	87.8	93.0	82.8	87.9	39.29	
7	92.0	92.0	83.7	87.8	93.0	82.8	87.9	46.43	
8	92.0	92.0	83.7	87.8	94.0	83.4	88.7	53.57	
8 9	92.0	92.0	83.7	87.8	94.0	83.4	88.7	60.71	
10	93.0	94.0	84.9	89.4	95.0	84.1	89.6	67.86	
ii	93.0	94.0	84.9	89.4	95.0	84.1	89.6	75.00	
12	94.0	95.0	85.5	90.2	96.0	84.8	90.4	82.14	
13	95.0	97.0	86.7	91,8	97.0	85.5	91.2	89.29	
14	96.0	97.0	86.7	91.8	98.0	86.2	92.1	96.43	
N	14		14			14			
50% (X)	91.286	92.036	83.771	87.886	93.107	82.829	87.971		
s	3.566	3.587	2.086	2.802	3.691	2.544	3,115		

TABLE I-II (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODEL OL 216M/ML 216M

PRF			FBRU			FBRSU			
<u> </u>	ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	% Satisfied	
1	85.0	87.0	81.0	84.0	86.0	78.0	82.0	3.85	
2	87.0	88.0	81.6	84.8	88.0	79.4	83.7	11.54	
3	88.0	90.0	82.7	86.4	89.0	80.1	84.6	19,23	
4	89.0	90.0	82.7	86.4	91.0	81.4	86.2	26,92	
5	91.0	90.0	82.7	86.4	92.0	82.1	87.0	34,62	
6 7	91.0	92.0	83.7	87.8	92.0	82.1	87.0	42,31	
	91.0	92.0	83.7	87.8	93.0	82.8	87.9	50,00	
8	91.0	92.0	83.7	87.8	93.0	82.8	87.9	57,69	
9	92.0	92.5	84.0	88.2	93.0	82.8	87.9	65,38	
10	92.0	93.0	84.3	88.6	94.0	83.4	88.7	73.08	
11	92.5	94.0	84.9	89.4	94.0	83.4	88.7	80,77	
12	93.0	94.0	84.9	89.4	95.0	84.1	89.6	88,46	
13	96.0	96.0	86.0	91.0	98.0	86.2	92.1	96.15	
N	13		13			13			
50% (X)	90.654	91.577	83.531	87.538	92.154	82.200	87.177		
s	2.839	2.515	1.383	1.928	3.132	2.124	2.628		

TABLE I-II (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 981 SELECT MODEL OCA 223/MCA 223

			FBRU			FBRSU		
<u> </u>	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	% Satisfied
1	85.0	86.0	80.4	83.2	87.0	78.7	82.8	3.13
Ž	86.5	86.5	80.7	83.6	88.0	79.4	83.7	9.38
3	87.0	87.0	81.0	84.0	88.5	79.8	84.1	15,63
4	87.0	87.0	81.0	84.0	89.0	80.1	84.6	21.88
5	88.0	88.0	81.6	84.8	90.0	80.8	85.4	28.13
	88.0	89.0	82.1	85.6	90.0	80.8	85.4	34.38
6 7	88.5	89.0	82.1	85.6	90.0	80.8	85.4	40.63
8	89.0	89.0	82.1	85.6	91.0	81.4	86.2	46.88
8 9	90.0	89.0	82.1	85.6	92.0	82.1	87.0	53.13
10	90.0	91.0	83.2	87.1	92.0	82.1	87.0	59.38
11	90.0	92.0	83.7	87.8	92.5	82.4	87.5	65.63
12	91.0	92.0	83.7	87.8	93.0	82.8	87.9	71.88
13	91.5	93.0	84.3	88.6	94.0	83.4	88.7	78.13
14	92.0	94.0	84.9	89.4	94.0	83.4	88.7	84.38
15	92.0	94.0	84.9	89.4	95.0	84.1	89.6	90.63
16	94.0	94.5	85.2	89.8	96.5	85.2	90.8	96.88
N	16		16			16		
50% (X)	89.344	90.063	82.688	86.369	91.406	81.706	86.550	
s	2.406	2.880	1.601	2,214	2.685	1.804	2.248	

TABLE I-II
(Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF

1981 SELECT MODEL PL 217/KL 217

			FBRU			FBRSU		1
	PRF ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Satisfied
1	L	L	ι	L	L	ι	L.	3.57
ż	78.0	78.0	74.3	76.2	78.0	72.2	75.1	10.71
2 3	78.0	82.0	77.8	79.9	84.0	76.5	80.2	17.86
Ă	82.0	83.0	78.5	80.8	85.0	77.3	81.2	25.00
5	82.0	84.0	79.2	81.6	86.0	78.0	82.0	32.14
	83.0	85.0	79.8	82.4	87.0	78.7	82.8	39.29
6 7	83.0	85.0	79.8	82.4	87.5	79.0	83.3	46.43
Ŕ	84.0	85.0	79.8	82.4	88.0	79.4	83.7	53.57
8 9	84.0	86.0	80.4	83.2	89.0	80.1	84.6	60.71
10	84.0	86.0	80.4	83.2	89.0	80.1	84.6	67.86
ii	84.0	87.0	81.0	84.0	89.0	80.1	84.6	75.00
12	85.0	87.0	81.0	84.0	89.0	80.1	84.6	82.14
13	86.0	87.5	81.3	84.4	90.0	80.8	85.4	89.29
14	86.0	90.0	82.7	86.4	93.0	82.8	87.9	96.43
N	14		14			14		
50% (X)	82.429	84.464	79,243	81.864	86.536	78.329	82.443	
s	3.251	3,554	2.590	3.065	4.422	3.151	3.805	

TABLE I-II (Continued)

MAXIMUM OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODEL PC 222/KC 222

	PRF		FBRU			FBRSU		1
	ON	RON	MON	(R+M)/2	RON	MON	(R+M)/2	Satisfied
1	L	L	L	L	L	Ĺ	L	2.08
2	76.0	80.0	<i>7</i> 6.1	78.0	80.0	<i>7</i> 3.6	76.8	6.25
3	80.0	80.0	76.1	78.0	0.18	74.4	77.7	10.42
4	80.0	82.0	77.8	79.9	82.0	75.1	78.6	14.58
5	80.0	82.0	77.8	79.9	83.0	75.8	79.4	18.75
6 7	82.0	82.0	77.8	79.9	84.0	76.5	80.2	22.92
7	82.0	83.0	78.5	80.8	84.0	76.5	80.2	27.08
8 9	82.0	83.0	78.5	80.8	84.5	76.9	80.7	31.25
9	82.5	84.0	79.2	81.6	84.5	76.9	80.7	35.42
10	83.0	84.0	79.2	81.6	85.0	77.3	81.2	39.58
11	83.0	84.5	79.5	82.0	85.0	77.3	81.2	43.75
12	83.0	85.0	79.8	82.4	85.0	77.3	81.2	47.92
13	84.0	85.0	79.8	82.4	86.0	78.0	82.0	52.08
14	86.5	88.0	81.6	84.8	90.0	80.8	85.4	56.25
15	87.0	88.0	81.6	84.8	91.0	81.4	86.2	60.42
16	87.0	88.0	81,6	84.8	91.0	81.4	86.2	64.58
17	88.0	88.0	81,6	84.8	91.0	81.4	86.2	68.7 5
18	88.0	89.0	82.1	85.6	91.0	81,4	86.2	72.92
19	88.0	90.0	82.7	86.4	91.0	81,4	86,2	77.08
20	88.0	90.0	82.7	86.4	91.0	81.4	86.2	81.25
21	88.0	90.0	82.7	86.4	92.0	82.0	87.0	85.42
22	88.0	90.5	83.0	86.7	92.0	82.1	87.0	89.58
23	90.0	91.0	83.2	87.1	93.5	83.1	88.3	93、75
24	91.5	94.0	84.9	89.4	95.0	84.1	89.6	97.92
N	24		24			24		
50% (X)	84,271	85.750	80,050	82.904	87.063	78.654	82.858	
\$	4.278	4.232	2.753	3.493	4.803	3.362	4.084	

TABLE 1-111

50TH PERCENTILE ACCELERATION TECHNIQUE FBRU OCTANE NUMBER REQUIREMENTS

1981 SELECT MODELS

	Mod	le1: HIA	238	Model:	11A 238	/LIA 238	Model:		/HCX 228/
Percent Satisfied	RON	MON	(R+M)/2	RON	MON	(R+M)/2	RON	MON	(R+M)/2
5	82.9	78.7	80.8	83.3	78.8	81.1	77.3	74.1	75.7
10	84.0	79.3	81.6	84.8	79.6	82.2	78.5	75.0	76.7
20	85.2	80.0	82.6	86.6	80.7	83.7	80.0	76.1	78.0
30	86.1	80.5	83.3	87.9	81.5	84.7	81.0	76.8	78.9
40	86.9	80.9	83.9	89.1	82.1	85.6	81.9	77.5	79.7
50	87.6	81.3	84.5	90.1	82.8	86.4	82.8	78.1	80.4
60	88.4	81.7	85.0	91.2	83.4	87.3	83.6	78.7	81.2
70	89.1	82.2	85.7	92.3	84.0	88.1	84.5	79.4	82.0
80	90.1	82.7	86.4	93.6	84.8	89.2	85.6	80.1	82.9
90	91.3	83.4	87.3	95.4	85.9	90.6	87.1	81.2	84.2
95	92.4	84.0	88.2	96.9	86.8	91.8	88.3	82.1	85.2

TABLE I-III
(Continued)

50TH PERCENTILE ACCELERATION TECHNIQUE FBRU OCTANE NUMBER REQUIREMENTS

1981 SELECT MODELS

	Model:		6/HC5 225/ 6/LC5 225	Model	: OL 216	5/ML 216	Model:	OL 216	/ML 216M
Percent Satisfied	RON	MON	(R+M)/2	RON	MON	(R+M)/2	RON	MON	(R+M)/2
5	83.4	78.8	81.1	85.5	80.1	82.8	83.8	79.1	81.5
10	85.0	79.8	82.4	86.7	80 ,7	83.8	84.8	79.7	82.3
20	87.1	80.9	84.0	88.1	81.6	84.9	86.0	80.4	83.2
30	88.5	81.8	85.2	89.1	82.1	85.7	86.9	80.9	83.9
40	89.8	82.5	86.2	90.0	82.6	86.3	87.6	81.3	84.5
50	91.0	83.2	87.1	90.8	83.1	87.0	88.3	81.7	85.0
60	92.2	83.9	88.0	91.6	83.6	87.6	89.0	82.1	85.6
70	93.4	84.6	89.0	92.5	84.1	88.3	89.7	82.5	86.1
80	94.9	85.5	90.1	93.6	84.7	89.1	90.6	83.0	86.8
90	96.9	86.7	91.8	95.0	85.5	90.2	91.8	83.7	87.8
95	98.6	87.7	93.1	96.2	86.2	91.1	92.8	84.3	88.5

TABLE I-111
(Continued)

50TH PERCENTILE ACCELERATION TECHNIQUE FBRU OCTANE NUMBER REQUIREMENTS

1981 SELECT MODELS

Percent	Model: OCA 223/MCA 223		Mode1	: PL 217	/KL 217	Mode1: PC 222/KC 222				
Satisfied	RON	MON	(R+M)/2	RON	MON	(R+M)/2	RON	MON	(R+M)/2	
5	82.8	78.5	80.7	77.6	74.2	75.9	75.3	72.7	74.0	
10	84.1	79.2	81.7	78.9	75.2	77.0	77.2	73.9	75.6	
20	85.6	80.1	82.8	80.4	76.3	78.4	79.4	75.5	77.5	
30	86.6	80.7	83.7	81.5	77.1	79.3	81.0	76.6	78.9	
40	87.5	81.2	84.4	82.5	77.8	80.2	82.4	77.6	80.0	
50	88.4	81.7	85.1	83.4	78.5	80.9	83.7	78.5	81.1	
60	89.3	82.2	85.7	84.2	79.2	81.7	85.0	79.4	82.2	
70	90.2	82.8	86.5	85.2	79.9	82.5	86.4	80.4	83.4	
80	91,3	83.4	87.3	86.3	80.7	83.5	88.0	81.5	84.7	
90	92.8	84.2	88.5	87.8	81.8	84.8	90.2	83.1	86.6	
95	94.0	84.9	89.4	89.1	82.8	86.0	92.0	84.4	88.2	

TABLE 1-1V

50TH PERCENTILE ACCELERATION TECHNIQUE FBRU OCTANE NUMBER REQUIREMENTS OF

INDIVIDUAL CARS OF 1981 SELECT MODELS

		Mode	1: HIA 23	8		Model II	A 238/LIA	238
<u>i</u>	RON	MON	(R+M)/2	% Satisfied	RON	MON	(R1, 1/2	% Satisfied
1	85.0	79.8	82.4	3.57	84.0	79.2	81.6	1.67
2	85.0	79.8	82.4	10.71	84.5	79.5	82.0	5.00
3	85.0	79.8	82.4	17.86	85.0	79.8	82.4	8.33
4	85.0	79.8	82.4	25.00	85.0	79.8	82.4	11.67
5	87.0	81.0	84.0	32.14	86.0	80.4	83.2	15.00
6 7	87.0	81.0	84.0	39.29	86.0	80.4	83.2	18.33
7	87.0	81.0	84.0	46.43	87.0	81.0	84.0	21.67
8	87.0	81.0	84.0	53.57	87.0	81.0	84.0	25.00
9	87.0	81.0	84.0	60.71	87.0	81.0	84.0	28.33
10	87.5	81.3	84.4	67.86	88.0	81.6	84.8	31.67
11	88.0	81.6	84.8	75.00	88.0	81.6	84.8	35.00
12	89.5	82.4	86.0	82.14	89.0	82.1	85.6	38,33
13	92.0	83.7	87.8	89.29	89.0	82.1	85.6	41.67
14	95.0	85.5	90.2	96.43	89.0	82.1	85.6	45.00
15					90.0	82.7	86.4	48.33
16					90.0	82.7	86.4	51.67
17					90.5	83.0	86.7	55.00
18					91.0	83.2	87.1	58.33
19					91.0	83.2	87.1	61.67
20					91.0	83.2	87.1	65.00
21					91.0	83.2	87.1	68.33
22					92.0	83.7	87.8	71.67
23					92.5	84.0	88.2	75.00
24					93.0	84.3	88.6	78.33
25					93.0	84.3	88.6	81.67
26					94.0	84.9	89.4	85.00
27					94.0	84.9	89.4	88.33
28					95.0	85.5	90.2	91.67
29					100.0	88.8	94.4	95.04
30					H	Н	H	98.33
N		14				30		
50% (X)	87.643	81.336	84.486		90.117	82.757	86,430	
\$	2.865	1.620	2,229		4.137	2.434	3,269	

TABLE I-IV (Continued)

50TH PERCENTILE ACCELERATION TECHNIQUE FBRIL OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODELS

			NCX 228/HCX ICX 228/LCX			Mode1:	NC5 225/HC!	
<u> </u>	RON	MON	(R+M)/2	% Satisfied	RON	MON	(R+M)/2	% Satisfied
1	78.0	74.3	76.2	2.63	83.0	78.5	80.8	2,08
2	78.0	74.3	76.2	7.89	84.0	79.2	81.6	6.25
3	79.0	75.2	77.1	13.16	84.0	79.2	81.6	10.42
4	80.0	76.1	78.0	18.42	85.0	79.8	82.4	14.58
5	80.0	76.1	78.0	23.68	85.0	79.8	82.4	18,75
6	80.0	76.1	78.0	28.95	87.0	81.0	84.0	22,02
7	80.0	76.1	78.0	34.21	88.0	81.6	84.8	27.0
8	82.0	77.8	79.0	39.47	90.0	82.7	86.4	31.25
9	82.0	77.8	79.9	44.74	90.0	82.7	86.4	35.42
10	82.0	77.8	79.9	50.00	90.0	82.7	86.4	39.58
11	83.0	78.5	80.8	55.26	90.0	82.7	86.4	43,75
12	84.0	79.2	81.6	60.53	92.0	83.7	87.8	47.92
13	84.0	79.2	81.6	65.79	92.0	83.7	87.8	52.08
14	85.0	79.8	82.4	71.05	92.5	84.0	88.2	56,25
15	86.0	80.4	83.2	76.32	93.0	84.3	88.6	60.42
16	87.0	81.0	84.0	81.58	93.0	84.3	88.6	64.58
17	87.0	81.0	84.0	86.84	93.0	84.3	88.6	68,75
18	87.0	81.0	84.0	92.11	93.0	84.3	88.6	72.92
19	89.0	82.1	85.6	97.37	94.0	84.9	89.4	77.08
20					95.0	85.5	90.2	81.25
21					96.0	86.0	91.0	85,42
22					96.0	86.0	91.0	89.58
23					97.0	86.7	91.8	93,75
24					9	Н	Н	97,92
N		19				24		
50% (X)	82.789	78.095	80.442		90.979	83.213	87.083	
S	3.360	2.422	2.894		4.636	2.698	3.644	

1-23

TABLE I-IV (Continued)

50TH PERCENTILE ACCELERATION TECHNIQUE FBRU OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODELS

		Model:	OL 216/ML	216		Model:	OL 216M/ML	216M
	RON	MON	(R+M)/2	% Satisfied	RON	MON	(R+M)/2	% Satisfied
1	83.0	78.5	80.8	3.57	85.0	79.8	82.4	3.85
2	88.0	81.6	84.8	10.71	85.0	79.8	82.4	11.54
2 3	89.0	82.1	85.6	17.86	85.0	79.8	82.4	19.23
4	90.0	82.7	86.4	25.00	86.0	80.4	83.2	26.92
5	90.0	82.7	86.4	32.14	86.5	80.7	83.6	34.62
	90.0	82.7	86.4	39.29	88.0	81.6	84.8	42.31
6 7	90.0	82.7	86.4	46.43	89.0	82.1	85.6	50.00
8	90.0	82.7	86.4	53.57	89.0	82.1	85.6	57.69
9	91.0	83.2	87.1	60.71	89.0	82.1	85.6	65.38
10	93.0	84.3	88.6	67.86	90.0	82.7	86.4	73.08
11	93.0	84.3	88.6	75.00	90.5	83.0	86.7	80.77
12	93.5	84.6	89.0	82.14	91.0	83. <i>2</i>	87.1	88.46
13	95.0	85.5	90.2	89.29	94.0	84.9	89.4	96.15
14	96.0	86.0	91.0	96.43				
N		14				13		
50% (X)	90.821	83.114	86.979		88.308	81.708	85.015	
S	3.244	1.851	2.518		2.743	1.560	2.145	

TABLE I-IV (Continued)

50TH PERCENTILE ACCELERATION TECHNIQUE FBRU OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODELS

		Mode1:	OCA 223/MC	A 223		Mode1:	PL 217/K	L 217
<u> </u>	RON	MON	(R+M)/2	% Satisfied	RON	MON	(R+M)/2	% Satisfied
1	82.0	77.8	79.9	3.13	L	L	Ĺ	3.57
2	85.0	79.8	82.4	9.38	L	L	L	10.71
2 3	85.0	79.8	82.4	15.63	80.0	76.1	78.0	17.86
4	86.0	80.4	83,2	21.88	82.0	77.8	79.9	25.00
5	86.0	80.4	83.2	28.13	82.0	77.8	79.9	32.14
6	86.0	80.4	83.2	34.38	84.0	79.2	81.6	39.29
6 7	87.0	81.0	84.0	40.63	84.0	79.2	81.6	46.43
8	88.0	81.6	84.8	46.88	84.0	79.2	81.6	53.57
8 9	88.0	81.6	84.8	53.13	84.5	79.5	82.0	60.71
10	90.0	82.7	86.4	59.38	85.0	79.8	82.4	67,86
11	90.0	82.7	86.4	65.63	85.0	79.8	82.4	75.00
12	91.0	83.2	87.1	71.88	86.5	80.7	83.6	82.14
13	91.0	83,2	87.1	78.13	87.0	81.0	84.0	89,29
14	92.0	83.7	87.8	84.38	89.0	82.1	85.6	96.43
15	93.5	84,6	89.0	90.63				
16	94.0	84.9	89.4	96.88				
N		16				14		
το ≭ (Χ)	88.406	81.738	85.069		83,357	78.500	80.929	
s	3.392	1.952	2.661		3.494	2.612	3.058	

TABLE I-IV (Continued)

SOTH PERCENTILE ACCELERATION TECHNIQUE FBRU OCTANE NUMBER REQUIREMENTS OF INDIVIDUAL CARS OF 1981 SELECT MODELS

		Model:	PC 222/KC 2	22
	RON	MON	(R+M)/2	% Satisfied
1	L	Ĺ	L	2.17
2	į	ĩ	ī	6.52
2 3 4 5 6 7 8	78.0	74.3	76.2	10.87
3	78.0	74.3	76.2	15.22
•	78.0	74.3	76.2	19.57
2	78.0 78.0	74.3	76.2	23.91
Ď.		75.2	77.1	28.26
′	79.0	76.1	78.0	32.61
8	80.0	77.0	79.0	36.96
	81.0		79.9	41.30
10	82.0	77.8	79.9	45.65
11	82.0	77.8	79.9	50.00
12	82.0	77.8		54.35
13	86.0	80.4	83.2	58.70
14	86.0	80.4	83.2	63.04
15	87.0	81.0	84.0	67,39
16	87.0	81.0	84.0	71.74
17	87.0	81.0	84.0	
18	88.0	81.6	84.8	76.09
19	89.0	82.1	85.6	80.43
20	90.0	82.7	86.4	84.78
21	90.0	82 <i>.</i> 7	86.4	89.13
22	90.0	82.7	86.4	93.48
23	93.0	84.3	88.6	97.83
N		23		
50% (X)	83.696	78.504	81.113	
s	5.076	3.555	4.309	

APPENDIX J

SPEED RANGE DATA

TABLE J-I

			E			A		PAR							PRIM	ARY R		DCTANE	NUME	ER RE	QUIREN	ENTS.	AT RP	M	
OBS NO	NO	CODE	C	-	CR	I R		_		MILES	AMB	BARO	HUM	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
376	41	BA F17M	С	H	8.2	N	-	3 -	3	11440	77	29.84	63		88.0	88.0	87.5	87.0			87.0	87.7	88.5	89.0	89.0
203	4	DI 137	F	A	8.4	٧	+1	3 4	12	11120	84	29 17	43				88 5	90.0	90.0	89.5	89.0	66.5	88.0	87.0	86.0
378	41	DI 137	С	A	8.4	Y	+ 1	6 4	16	6322	71	30.00	64				83.0	84.0	82.5						
104	5	DI 252	F	A	0.5	¥	+ 1	6 1	16	6033	69	30.22	72			92.5	88.0	87.5	87.5	87.0					
336	46	D1 252	F	A	8.5	Y	+ 1	6	16	8344	74	29.58	90			86 0	89.0								
110	5	G9 F60	F	A	8.2	. A	+	8 4	10	4838	73	30.10	60					85.5	86.0	85.5	84.0	63.0	82.0	81.0	80.5
410	26	G9 F60	F	A	8.2	. A	+ 1	0 4	10	12055	96	30.00	124			86.0	89.0	86.0	94.5	82.0	80.0				
47	29	HC5 225	F	A	8.2	! Y	٠	4 4	4	7554	70	30.10	59					86.0	90.0	87.0	86.5	86.0			
79	3	HC5 225	F	A	8.2	, A	٠	4 4	4	8210	80	30.12	50						90.0	90.0	89.0	88.0	86.5	84.5	
197	4	HC5 225	F	A	8.2	N	٠	4 4	4	6370	63	28 . 86	100			78.5	80.5	82.0	83.5	84.0	83.0	82.0	81.0	80.5	79.5
363	8	HC5 225	F	A	0.2	ł 4	+	4 4	4	11859	80	29.96	74						87.0	86.0					
401	26	HC5 225	F	A	8.2	? Y	٠	4 4	4	23285	83	30. 17	76					84.0	87.0	89.5	89 . Q	88.0	85.5	84.0	81.5
416	26	HC5 225	F	A	• . 2) Y	٠	4 4	4	20170	70	30.02	75					88.0	89.5	91.5	91.0	89.5	88.5	87.5	86.5
191	4	HFW 449	F	A	8.	Y	+ 1	12 1	12	9752	72	29.52	45					85.0	86.0	87.0	87.0	86.0	85.5	84.0	
94	3	HIA 236	F	A	8.0) Y	+ (5	15	17843	70	29.29	80					85.5	85.0	84.0	83.0	82.0	80.0		
115	5	HIA 238	F	A	a .() Y	+1	15	15	5125	70	30.07	52			86.0	86.0	86.5	85.5	85.0	84.0	83.5	82.0		
192	4	HIA 238	F	A	8.0	Y	+ (14 4	14	8282	80	29.53	63		88.5	69.5	90.0	89.0	87.5	86.0	85.0	84.5	83.5	83.0	62.5
340	46	HIA 238	F	A	6.0	, v	+ (15	15	10083	76	29 . 28	110				83.5	86.0	85.5	85.0	84.0				
341	46	H1A 238	F	A	0 .0	Y	+1	15	15	958 1	78	29.58	120				85.0	86.0	85.0	82.0					
342	46	HIA 238	F	A	8.6	y	+ 1	15	15	7928	78	29.27	103					86.0	85.0	94.0					
343	46	HIA 236	F	A	8.0) Y	+ (15	15	6635	77	29 . 4 1	78				86 0	89.0	87.5						
344	46	HIA 238	F	A	8.0) Y	+ 1	15	15	7984	72	29.12	86			80.0	87.5	66.0	63.0						

TABLE J-I (Continued)

		٠	E	•			_	PARK						0011	MARY R		CTANE	A.H 10457	1ED 06	OUIREN	IFNTC	AT DO	•	
085	LAB	CODE	C	N	CR			-	DOOM		RAPO	HM	1000		1500									3750
				-		-																		
348	46	HIA 238	F	A	0 . 0	¥	+ 15	5 + 15	8473	78	29.38	122					87.0	86.0	85.5					
351	46	HIA 238	F	A	8.0	Y	+ 15	5 + 15	9940	76	29.50	90							85.0	85.0	84.0	83.5		
362		HIA 238	F	A	8.0	Y	+ 11	5 +15	6467	85	29.64	91				88.0	86.5							
7	40	HIS 243	F	A	0.3	¥	+1	2 +12	10066	75	29.42	82	83.0	90.5	92.0	87.0	63.5	81.0						
114	5	ICX 228	F	A	8 . 5	N	+ 10	0 +10	4202	70	30.04	52					82.0	84.0	84.0	83.5	82.5	81.5	80.5	80.0
274	47	ICX 228	c	A	8.5	¥	+ (8 +10	6300	70	29.60	50					84.0	86.0	84.0	82.5	81.0	78 5	76.5	
360	8	ICX 228	F	A	8.5	Y	+10	0 + 10	18175	80	30.00	64								78.0	80.0	80.0		
193	4	IC5 225	F	A	8 . 2	¥	• 4	1 + 4	9730	77	29.42	40				84.0	85.0	86.5	88.0	86.5	85.5	85.0	84.5	84.0
218	28	105 225	F	A	8.2	. 4	• •	4 + 4	12324	71	29 . 48	88			87.0	91.0	91.0	68.0	86.0					•
271	7	IC5 275	F	A	8.2	٧	٠ :	2 + 4	13960	72	30.13	59						87.5	88.8	90.0	90.6	91.0	87.5	
355	46	IC5 225	F	A	8.2	Y	• •	4 + 4	10946	76	29.38	112				80.5	82.0	82.0	82.0	82.0	82.0			
42	29	IIA 238	F	A	8.0	Y	+ 15	5 +15	7653	70	30.24	59				89.0	88.0	87.0	87.0	87.0				
83	3	11A 238	F	A	8.0	Y	+ 15	5 +15	6173	78	29.79	63					85.0	85.0	85.0	85.0	84.0			
113	5	11A 238	F	A	8.0	Y	+ 15	5 +15	6690	70	29.98	48				89.0	88.0	86.0	85.0	84.5	84.0	83.0	82.0	
202	4	IIA 238	F	A	8 .Q	Y	+ 14	4 +14	10680	83	29.23	54			85.0	86 0	\$5.0	84.0	83.0	82.0	81.0	80.5	80.0	
222	28	11A 238	F	A	8 .0	y	+ 11	5 + 15	16437	73	29.32	90			85.0	87.0	86.5	83.0	85 0					
251	7	11A 236	F	A	6.0	¥	+ 11	5 +15	15000	72	30.17	44			89.0	90.0	89.6	88.5	87.2	85.6	84.Q			
254	7	11A 238	F	A	8.0	¥	+1:	2 +15	4600	74	30.28	48			90.5	92.0	81.8	91.0	90.0	88.6	87.0			
276	47	11A 238	c	A	8 . Q	Y	+ 1:	3 + 15	10550	70	29.76	62	86.0	89.0	92.5	92.5	90.0	88.0	87.5	87.0	87.0	86.5	86 0	
284	47	11A 238	c	A	8 . C	Y	+ 11	8 + 15	19940	70	29.64	60			86.0	88.5	87.5	87.0	86.0					
285	47	11A 238	c	A	8.0	, ,	+ 1:	2 + 15	8800	70	29.62	60		,	90.5									
349	46	IIA 238	F	A	6.0	Y	+ 11	5 + 15	13055	74	29.28	83				87.0	86.5	85.5	84.5					

TABLE J-I (Continued)

				E			•		ARK ANCE							6018	IARY R		W TAME	10.000	E0 0E		EMTC	AT RF	•	
	LAE NO		CODE	C	N	CR	Ī			MILES		SAD	o ⊦	4 M	1000	~			2000							3750
				-	-		-																			
371	41	114	238	c	A	6.0	Y	+ 13	+15	6298	71	29.	98	64				90.0	90.0	89.5	89.0					
394	26	114	238	F	A	0 . 0	Y	+ 19	+ 15	5446	63	29.	96 1	34			85.0	85.5	83.5	83.0	81.0	80.0				
298	47	11F	243	c	A	7.5	٧	+20	+20	12417	70	29 .	76	62			82.0	83.5	86.5	84.0	83.5	83.0	83.0	82 5	82 0	
404	26	[[F	243	F	A	7.5	٧	+ 20	+20	7243	96	29 .	87 1	37		83.0	87.0	86.5	85.0	82.5	80.0					
407	26	14	450	F	A	7 9	Y	+ 15	+ 15	10057	95	29.	95 1	131	80.0	60.5	61 0	83.5	80.5	80.0	80.0	80.0	80.0			
24	29	KŁ	217	F	A	0.2	N	+ 10	+10	10190	70	29 .	77	60					83.0	82.5	81.5	60.0	78 5			
103	5	KL	217	F	A	8 . 2	N	+ 10	+ 10	10132	70	29.	83	40					81.5	83.5	84.0	83.0	82.0	81 0	79.5	78.5
253	7	KL	217	F	A	8 . 2	N	+ 10	+10	7009	70	30	06	50							78.9	81.0	82.8	84.0	83.0	81.0
235	28	KĽ	222M	F	*	6.5	. ¥	+ 10	+10	12248	82	29 .	40 1	102		91.0	91.0	91.0	90.0	87.0	86.0	85.0				
14	22	KC	222	F	A	8 5	¥	+ 10	+ 10	6678	70	29 .	13	62					79.0	80.0	79.5	79.0	78.5	78.5	76.5	
55	29	KC	222	F	A	6.5	٧	+ 10	+ 10	11721	70	30 .	02	55					84.0	88.0	87.5	86.5	85.5	85.0	84.0	
236	20	KC	222	F	A	0.5	¥	+ 10	+10	9315	79	29 .	30	70			83.0	85.5	87.0	86.0	85.0	63.5	82.0			
237	26	KC	222	F	A		Y	• 10	+ 10	12292	79	29 .	35	90				84.0	67.0	86.5	86.0	84.0	81.0	80.0		
330	46	KC	222	F	A	8.9	٧	+ 10	+10	7876	68	29 .	33	74			81.0	82.0	\$1.0	79.5						
49	29	KC	42 2 M	F	•		. 4	+ 10	+10	12300	70	29 .	77	•0	85 5											
234	28	KC	22 2W	F	*	9.5	A	+ 10	• 10	14781	69	29 .	31	96			88.0	86.5								
230	26	KC	226	•	A	8 2	¥	+ 1	+ 1	12597	73	29	54	80				84.0	85.5	87.5	90.0	90.0	88.0	85.5	62.0	
5 2	29	ĸı	137	F	A	• 4	*	• 12	+ 12	12065	70	30.	2 0	57				90.5	90.5	87.5	86.0	85.0	84.5			
400	20	ĸı	137	*	A	. 4	¥	• 12	* 12	9671	90	30	00	107			87.0	87.5	88.0	86.5	85.0	82.0	80.0			
300	24	KI	252	*	A	0.5		• 10	+10	9844	94	30.	00	1 1=		86.0	90.0	89.5	86.5	85.5	85.0	84.0				
91	3	LCX	228	•	A	• •	٧	• 10	• 10	8280	72	29.	93	6 2								84.0	63.5	83.0	82.0	
190	4	rcx	228	•	A	• •	N	• 10	+10	5842	75	29.	32	44				83.5	85.0	85.0	84.5	83.5	82.0	79.5		ç

٢

TABLE J-I (Continued)

				E				-	VA	RK NCE					0014	ADV B	. F .	CTANE	La mil	co or	OUIREN	ENT C	A1 90	•	
NO	LAE NO		ODE DEL	C	N	CR]		_		ODOM MILES	TMP	BARO			1500	1750	2000						•	3750
		rcx	228	F	A	6.5	. ·	+1	10	+ 10	8833							76.0	79.5	82.0	81 5	78 5			
270	7	FCX	228	F	A	6.5	, ,	•	ю	+ 10	6936	70	30.40	60						64 0	83.0	82 0	80 5	78 7	
345	46	LCX	228	F	A	6.5	, v	+1	10	+ 10	14398	76	29.60	70						82 0	62 0	82 0			
92	3	LC5	225	F	A	6.3	, 4	•	4	• 4	5925	74	29.93	92						93.0	91.5	90.0	88 0	85 0	
217	28	LCS	225	F	A	8.2	. A	+	4	+ 4	13121	70	29.44	72				86.0	90.5	91.0	91.0	90 5	88 5	96 5	
384	41	LC5	225	c	A	8.2	٧ (٠	4	• 4	6590	77	30.04	64					88.0	88.5	88.0				
106	5	LIA	238	F	A	8.0	Y	+ 1	15	+ 15	6941	71	29.99	50		84.0	86.0	85.5	84.0	83.5	83.0	62.0	81 0	79.5	
209	4	LIA	238	F	A	8.0	, 4	•	15	+ 15	10054	76	29.13	96	82.5	85.0	87 0	96.0	84.5	83.5	82.5	62.0	81.5	81 0	
256	7	LIA	238	F	A	8 . (, v	+ 1	15	+ 15	14756	72	29.68	47			86.5	89.0	91.3	92.0	9 Q.0	87.8			
288	47	LIA	238	c	Ą	B . (, Y	• 1	12	+ 15	15210	70	29.76	62	92.0	92.0	90.5	89.5	87.5	86.0	63.5	82.0	•		
354	46	LIA	238	F	A	8.0	, 4	4 !	15	+ 15	5344	72	29.50	58				95.0	94.5	93.5					
380	41	LIA	238	C	A	8.0) Y	• 1	13	+ 15	6200	72	29.97	60			67.5	67.5	86.5						
403	26	LIA	236	F	4	8.6) Y	• :	15	+ 15	46789	91	29.80	131		90.0	89 .0	87.0	85.5	85.0	84.5	83.0	81 5		
221	28	LA 2	38	F	4	6 .(, Y	•	15	+ 15	16370	75	29.41	91		80.5	82.0	80.8							
95	3	LY 4	50	F	A	7.5	, ,	•	15	+ 15	12796	74	29.97	78				80.0	60.0	80.0	79.5	79.0	78.5	78.0	
109	5	LY 4	50	F	A	. s	, v	+ 1	15	+ 15	10071	70	30. 15	56		84.0	85.0	84.5	83.0	82.5	62.0	81.5	81.0		
225	28	LY 4	50	F	A	7.9	,	+ 1	18	+ 18	8080	78	29.36	86		80.0	87.5	88.0	86.0	82.0					
23	29	L4 4	41	F	A	8,0) Y	4	15	+ 15	15106	70	29.98	64			88.5	95.0	93.5	89.0				•	
252	7	ML 2	16	F	A	8.1	y	٠	8	+ 8	5693	72	30.36	43		88.0	90.6	93.0	92.9	92.2	91.9	91.2	90.6	89.9	88.9
281	47	ML 2	16	c	A	8.0	3 Y	•	6	+ 6	10400	70	29.68	64		88.0	88.O	88.0	88.0	87.5	86.5	86.0	85.0	84.0	
•	40	ML 2	16M	F	M	•.0	B N		10	4 10	10159	75	29.50	110		93.2	92.5	91.0	89.5	88.0	86.5	84.5			
22k	28	ML 2	1614	F	#	8.1	. v		10	+ 10	9281	78	29.35	71	88.0	89.2	88.7	88.0	87.0	85.8	84.0	82.7			

TABLE J-I (Continued)

				E	T			-	PAI	RK NCE																
				M			A									PRIM	ARY R	1.F. 0	CTANE	NUMB	ER RE	QUIREM	ENTS.	AT RP	M	
	NO		CODE	C	5	CR	R				ODOM MILES		BARO	HUM	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
		- -		-	-		-		-																	
356		ML	2 16M	F	M	8.8	¥	+1	0	• 10	8906	83	29.66	79				85.0	85.0	84.5	83.5	83.0	82.5	81.5	81.0	
266	7	MC	A 223	F	4	9 . C	Y	٠	8	+ 12	67 10	73	30.37	64					82.0	83.0	84.4	86.0	66.0	86.0	83.8	82.6
324	46	MC	8 133	F	A	8.6	y	+ 1	2	• 10	10664	72	29.50	66					84.5	86.0	87.5	88.0	86.0	85.0	84.0	
370	41	MC	B 133	C	A	8.6	N	+1	0	+ 10	6500	70	29.90	88					85.5	87.0	87.0	87.0	86.0			
365	•	MC	B 223	F	A	9 . C	٧ (+ 1	2	+ 12	7582	86	29.84	108					86.5	88.0	89.0					
36 1		MC	5 223	F	A	9.0	Y	+ 1	2	+ 12	7610	80	30.02	64					90.0	91.5	92.0					
264	7	MC	S 223M	F	M	9.0	N	٠	6	• 6	5972	71	30.60	61				92.1	93.0	94.0	95.4	97.6	95.0	93.0	91.7	90.3
233	28	MI	242	F	A	8.1	٧	٠,	0	+ 10	17039	70	29.44	75		91.0	90.5	89.5	88.0							
265	7	mı	242	F	A	8 . 2	٧	• 1	0	• 10	12181	70	30.59	60					93.5	92.7	91.8	90.2	87.0			
269	7		V250	F	A	8.4		٠	8		7927	70	30,41	59		88.2	89.0	87.3	85.7	84.4	83.2	82.3	81.5	80.6	80.0	
201	4	NL:	9 216	F	A	8.4	٧	+2	0	• 20	16580	72	29.30	49						83.5	85.5	86.0	85.5	84.5	84.0	83.0
267	7	NL	9 216	F	A	. •	*	+2	2	+ 18	9354	71	29 . 99	61						88.5	91.0	92.0	91.0	89.9	88.7	87.3
379	41	NL	9 216	c	٨	. •	¥	+2	0	• 20	6390	81	29.90	54							65.0	86.0				
400	26	ML	9 216	F	A	. 4	*	+1		+ 18	7943	93	29.90	134					85.0	88.5	88.5	87.5	84.0	82.5	01.5	81.0
28	29	ML	9 216M	F	M	8 . 9	N	+ 1	6	• 18	11435	70	30.04	57	95.0	94.5	93.0	91.5	90.0	88.5						
81	3	ML	9 2 16M	F	m	8 . 4	N	• 1	8	• 18	6729	79	29.92	75			88.0	87.5	87.0	86.0	85.5	84.5	83.5	82.5	81.5	
295	47	ML	9 216M	C	Ħ	8 . 4	N	+ 1	•	• 18	12870	70	29.69	56		90.0	93.5	93.5	91.5	90.0	88.5	87.5	86.5	85.5	84.0	
339	46	NŁ	9 216M	•	M	. (¥	• ;		+ 18	14655	78	29.36	103	80.5		•									
27	29	NC	X 228	F	A	8.5	¥	٠	•	• •	8437	70	30.13	57					88.0	87.5	86.0	85.0	64.5	84.0		
46	29	NC	X 226	F	A	8 . 5	Y	+ 1	0	+ 10	10575	70	30.19	56					85.0	89.0	68.5	86.0	87.0	86.0	85.0	
230	20	NC	× 228	F	A	. 5	¥	+ 1	3	• 10	17034	77	29.31	116					86.0	87.0	86.3	85.5				
366	•	NC	X 228	F	A	6.5	¥	+ 1	0	+ 10	12795	65	30.02	97						77.5	78.0					

Ţ

ب

TABLE J-I (Continued)

				T R				_	PAI VAI	RK NCE																		
				A			A										ы	? [M/	ARY R	F (CTANE	NUME	ER RE	OUIRER	ENTS,	AT RF	M	
OBS	NO		_	N	CR						ODOM MILES		BADO	Lan		1000	121	in	1500	1750	2000	2250	2500	2750	3000	2250	3500	3750
				-		-	-		-													2250	2500			3250	3300	3730
387	41	NCX 228	c	A	8.	5	٧	+	8	+ 10	12172	71	29.9		54								65.0	83.5				
399	26	NCX 228	F	A	8.	5	¥	+ 1	0	+ 10	6741	92	30.0	0 13	36						84.0	87.0	85.5	84.0	83.0	81.5	80.0	
50	29	NC5 225	F	A	8.	2	¥	٠	4	+ 4	98 10	70	30.1	9 9	56						93 0	92.5	91.5	90.5	89.5	88 5		
263	7	NC5 225	F	A	8.	2	Y	٠	4	+ 4	6200	71	30.4	7 (5 1							85.6	90.0	89.5	88 4	86 9	65 0	
278	.47	NC5 225	c	A	8.	2	N	٠	4	+ 4	20100	70	29.7	4 (52						94.0	97.0	96.0	95 O	94.0			
286	47	NC5 225	c	A	8.	2	٧	+	4	+ 4	12680	70	29.7	0	52						90 0	91.0	90.0	89.0	88 0	86 5	85 O	
45	29	NFH 450M	F	M	8.	6	Y	٠	6	+ 5	8721	70	29.9	7 !	55						92.0	90.0	88.0	87 0	86 0			
372	41	NIA 238	c	A	8.	0	4	+ 1	4	+ 14	8800	70	29.9	2 (52					87 . 5	89.5	89.0	88.0					
350	46	NIH 450	F	A	8.	6	Y	٠	4	+ 6	7467	72	29.2	8 (67		84	5	85.0	84 5	82.0							
1	40	NIJ 244	F	A	8.	3	Y	٠	6	. 6	10284	75	29.3	4 10	02					90.5	88.0	85.0	83.5	82 5				
34	29	NIK 238	F	A	8.	6	Y	٠	6	٠ 6	13104	70	29.9	8 (52				89.0	88 0	86.0	85.0						
89	3	N1K 238	F	A	8.	6	Y	٠	6	+ 6	8125	75	29 . 6	9	76								85.5	83.5	82.0	81 0	80 0	
187	4	NIK 238	F	A	8.	6	N	+	6	٠ و	5594	78	29.3	3 (87				87.0	88.0	87.5	66.5	85.5	65.0	64.5	84 0	83.0	
268	7	NIK 238	F	A	8.	6	٧	٠	5	+ 6	8560	70	30.4	6 (5 f						88.8	87.5	85.8	84.1	83.0	81.9	81.0	
359	8	NIK 238	F	A	8.	6	¥	٠	6	٠ 6	6884	80	29.7	1 (83					87.0	85.0							
405	26	NIK 238	*	A		6	Y	٠	6	٠ و	7865	99	29.9	0 (16		91	0	90 0	89.0	87.5	85.5	84.0	83.0	82.0			
199	4	NSG 457	,	A	8.	2	Y	٠	6	٠.	64 10	90	28.6	2	R3						64 0	84.0	83.0	82.0	81.0	80.5	80.0	
223	28	NH 450	F			6	٧	٠	6	٠.	12960	64	29.4	5	76	88.0	91	0	90.6	87.0	65 5	84.0	82.0	79.Q				
224	28	NH 450	F		8.	. 6	¥	٠	6	٠.	12415	85	29.4	2 1	03				79.0	82.0	84.5	86.0	85.0	81.5				
275	47	NH 450	•		8	. 6	٧	٠	6	٠.	6000	70	29.6	5 !	56				84.0	88 5	88.5	88.5	88.5	87.0	86.0	85.0	84.0	
111	5	NJ 244	F			. 3	Y	•	6	٠ و	5274	70	30.2	2 (6 f				85.0	90.0	91.0	88.5	87.5	86.5	85.0	84.0	83.0	
39 1	26	NJ 244	F	A	8.	. 3	٧	٠	6	٠ و	6048	95	29.9	0 1	24	88.0	88	5	87.0	B\$.0	86.0	83.5	81.0					

1

TABLE J-I (Continued)

				E			•	ADI	ARM	E							PRIM	LARY	R.F	. 0	CTANE	NUMB	ER RE	OUIREM	ENTS.	AT RP	W	
OBS ND			CODE	C	N	CR	1 R			-	ODOM MILES		BAR	80	HUM	1000	-				2000							3750
	_			-	-		-			-																		
51	29	NK	238	F	A	8.6	Y	٠ (•	6	10360	70	30	. 11	58			88.0	9	0.0	87.5							
207	4	NK	238	F	A	8 4	. 4	٠ (•	•	6449	82	29	. 12	107		81 0	63 5	8	4.0	83.5	83.Q	82.0	81.0	79.5	78.5	77.5	
4	40	OL	216	F	A	8.8	N	+10	+ 1	0	10029	73	29	. 45	80			92.0	9	4.5	95.0	93.5	91.0	89.Q	82.5	86.5	85.5	
12	22	OL	216	F	A	8.6	l Y	+ 10	•	0	9163	70	29	. 40	55			80.5		0.5	81.0	81.5	81.0	79.5	78.5	76.5	L	
35	29	OL	216	F	A	8.8	y	+ 10	•	0	10340	70	30	. 13	37			92.0	9	0.5	89.5	89.0	87.5	88.0	87.0			
105	5	OL	216	F	A	8.6	N	+ 10	•	0	5850	73	30	18	60			89.0	9	0.0	91.0	90.0	89.0	88.0	87.0	85.5	84.0	
212	4	OL	216	F	A	8.6	Y	+ 10	, .	0	12486	77	29	. 11	54			88.0	8	9.0	68.5	68.5	68.0	67.5	87.0	86.5	86.0	85.5
227	28	OL	216	F	A	. 1	Y	+10	•	0	8320	79	29	. 42	96			88.7	8	9.2	89.1	88.9	88.0	87.0	86.0	65.0	65.0	
383	41	OL	216	c	A	8.6	N	+ 1	•	6	7500	82	29	. 96	66			91.0	9	2.0	91.7	91.0	90.0					
393	26	OŁ.	216	F	A	6.8	I Y	+10	•	10	17710	88	30	. 02	133			92.0	9	2.0	92.0	91.0	80.0	87.0	86.0	85.5	85.0	84.5
406	26	OL	216	F	A	8.0	y	+10	٠ ٠	10	7310	88	29	. 93	122		94.5	95.0	9	4.5	93.5	93.0	92.0	90.5	90.0	89.5	89.0	88.5
53	29	OL	2 16M	F	M	8.4) Y	+ 10	•	10	12293	70	30	. 20	57	91.0	90.0	89.0		8.0	87.5							
80	3	OL	2169	F	M	8.6	N			0	8333	80	30	. 12	50			90.0	9	0.0	90.5	89.5	88.5	87.5	86.5	85.0	63.5	
204	4	OL	216M	F	14	8.6	N	+ 10	•	ю	6861	78	29	. 06	57	86.0	88.0	88.0		7.5	86.5	86.0	85.5	85.0	85.0	84.5	84.5	84.0
320	46	OL	216M	F	M	8.8	l y	+ 10	•	10	14888	78	29	. 41	120			87.0	8	5.0	83.5	82.5						
366	41	OL.	216M	c	M	8.6	N	•	, .	10	8079	71	29	. 99	63			91.0	9	0.5	90.0	88.5	87.0					
33	29	oc/	A 133	F	A	8.4	Y	+ 10	٠ +	10	13028	70	30	. 13	57			92.0	9	1.0	89.5	88.0						
291	47	OC/	A 133	c	A	6.0	. 4	+1:	٠ د	10	6000	70	29	. 68	62		84.5	86.0		7.5	89.0	68.0	87.0	86.0	85.5	85.0	84.0	
396	26	OC/	133	F	A	8.6	. Y	+ 10	•	10	15856	93	29	. 94	134				8	5.0	85.0	83.5	82.5	81.5	80.0			
106	5	OC/	223	F	A	s .(, ,	+ 1	•	12	12726	70	30	.08	56							86.0	87.0	86.0	84.5	83.0	82.0	
211	4	oc/	1 223	F	A	8.6	, ,	+ #:	2 +	12	15450	75	29	. 22	81						88.5	90.0	89.0	87.5	87.0	86.0	86.0	
229	28	OC/	A 223	F	A	9.0	Y	+1;	2 +	12	11759	68	29	. 48	58					6.0	88.0	90.5	90.8	89.0				

ç

TABLE J-I (Continued)

			E M				-	ARK						PRIM	ARY R	.F. C	CTANE	NUMB	ER RE	OUTREM	ENTS.	AT RP	M	
DBS NO	L AE NO	CODE	C		CR				MILES		BARO	HUM		1250		1750	2000							3750
230	28	OCA 223	F	Ā	9.0	· ¥	• 12	+12	12549	84	29.25	130					76.0	82.0	86 0	87.1	85.0	63.5		
231	28	OCA 223	F	A	9.0	y	+ 12	+ 12	12925	85	29.42	103			76.0	80.5	83.5	91.5	91.0	90 5	87.5			
325	46	OCA 223	F	A	9.0	Y	+12	+ 12	8550	75	29.35	97						82.5	85.0	86.0	86.0	84.5	83 0	
326	46	OCA 223	F	A	9.0	Y	+ 12	+12	8760	75	29.09	91							88.0	87.5	86.5	85 5	85.0	
327	46	OCA 223	F	A	9.0	Y	+ 12	+12	9759	78	29.53	57					86.0	86.0	86.0	86.0				
329	46	OCA 223	F	A	9 C	, ,	+ 12	+12	9684	76	29 73	78					84.0	85.Q	65 .0					
330	46	OCA 223	F	A	9 0	٧	+12	+ 12	8375	78	29 75	62						85.5	89.0	87.0				
331	46	OCA 223	F	A	9 0	٧	+12	+ 12	8324	75	29.30	81						89.0	92.0	89.0				
332	46	OCA 223	F	A	9.0	Y	+12	+12	8234	76	29.45	73					87.0	88.5	89.0	89.0				
413	26	DCA 223	F	A	9.0	Y	+12	+ 12	12494	77	29.80	111						85.5	91.0	91.0	89.5	89.0	88.0	87.0
25	29	DCB 133	F	A	8.6	¥	+10	+10	7483	70	30.24	59				89.0	88.0	86.5	85.5	85.0				
26	29	OCB 133	F	A	6.6	٧	+10	+10	9720	70	30.24	59				91.0	91.0	91.0	90.5	90.5	90.5	90.0	89.5	
210	4	OCB 133	F	A	8.6	, y	+ 10	+10	11608	77	29.25	92				85.5	87.0	85.5	85.0	84.0	83.5			
3	40	DCB 242	F	A	8.2	N	+10	+10	10038	75	29.52	82			64.0	87.5	88.0	85.5	84.0	83.0	82.0			
90	3	OCS 133	F	A	8.6	. 4	+ 10	+10	6 105	75	29.77	51						86.0	84.5	82.0	80.0	79.0	78.0	
374	41	OCS 223	c	A	9 .0	, _Y	+1:	2 +12	21900	70	30.10	68					82.0	84.5	85.5	86.0	86.0	85.5	85.0	84 0
96	3	OC\$ 223#	F	M	9.0	N	+ 4		7181	70	29.99	45			97.0	97.0	96.0	95.0	94.0	92.0	90.0			
107	5	01 242	F	A	8.2	Y	+ 10	+10	5576	72	29.90	49	91.0	91.0	90 0	88.5	87.5	85.5	84.0	82.5				
232	28	D V242	F	A	0.2	Y	• 1	, . 7	13199	72	29.25	82		90 5	91 5	90 . B	89.5	88.0						
397	26	0 V250	F	A	8.4	٧	+ (9470	101	29.94	121	90.5	8R 5	87.5	85.0	82.0	81.0	80.0					
16	22	PL 217	F	A	8.2	Y	+ 10	+10	16592	70	29.18	62						83.0	82.5	82.0	81.5	80 5	79.5	
17	22	PL 217	F	A	8.2	Y	+ 10	+10	19328	70	29.12	61						84.5	85.0	64.5	83.5	82.5	82.0	

TABLE J-I (Continued)

				E			,		SPA	RK					PRIM	ARY R	.F. 0	CTANE	NUMB	ER RE	QUIREM	ENTS.	AT RP	M	
	NO		CODE	C T		CR	1 * 				NILES		BARO	HUM					2250	2500	2750	3000	3250	3500	3750
40	29	Pl	217	F	A	8 2	? P		10	+ 10	13092	70	30.10	55			80.0	84.0	84.0	83.5	83 0	82.0	81.0	79.5	76.0
200	4	PL	217	F	A	8.2	۲ ۱	, .	10	+ 10	19692	73	29 31	70				82.0	82.0	81.0	80.0	79.0	78 0	77 0	76.0
364	8	PL	217	F	A	8.2	2 1		10	+ 10	7906	84	29.96	68	,			76.0	78.5	78.0	77.0	75.5			
415	26	PL	217	F	A	0.2	2 1		10	• 10	88 16	71	30.15	67				83.0	85.0	86.0	84.5	83.5	82.5	82.0	81 0
100	5	PL	217M	F	M	8.2	2 1	4 •	12	+ 12	8858	72	29.92	62	87.0	87.0	86.5	85.5	84.5	83.0	81.0	79.0			
255	7	PL	2 1 7M	F	M	8.2	2 4	4 4	12	+12	8085	70	30 . 28	49		90.0	91.0	90.0	8 88	87.7	86.5	85.7	84.9	84 0	
368	41	PL	222	С	A	a . t	5 Y	, .		+ 10	1568 1	66	30 06	70			81.5	84.0	85.0	85.5	85.5	85.5	84.5	83.5	
13	22	PC	222	F	A	8.5	5 Y	, ,	10	+ 10	12895	70	29.23	60			82 5	81.0	80.0	79.5	79.0	78.5	78 0	77.0	
54	29	PC	222	F	A	8.5	3 1	•	10	+ 10	13244	70	30.02	56				91.0	89.5	88.5	87.5	86.0			
101	5	PÇ	333	F	A	8.5	5 P	•	10	+ 10	9712	72	29.77	58		77.5	79.5	83.0	79.5	78.5	78.0	78.0	78.0		
194	4	PC	222	F	A	8.5	5 Y	1 4	10	+ 10	10164	78	28 75	67			80.0	80.0	60.0	79.5	78.5	78.0			
249	7	PC	222	F	A	8 . \$	5 \	•	10	+ 10	12213	70	30 . 20	48			83.5	86.2	87.9	88.6	86.3	84.8	83.5	83.0	
261	7	PC	222	F	A	8.5	5 Y	1 4	8	+ 7	5743	70	29.92	60						88.7	88.3	86.1	85.0	84.0	83.4
282	47	PC	222	С	A	8.5	5 Y	•	10	+ 10	12950	70	29.61	64			86.5	86.5	85.0	84.0	83.0	82.0	81.0	80.0	
283	47	PC	222	С	A	0 . 5	5 Y	1 4	12	+ 10	12450	70	29.74	60		84.0	86.5	88.0	86.5	65.5	85.0	84.0	82.5	80.0	
333	46	PC	222	F	A	8.5	5 h	1 4	10	+ 10	8845	76	29.70	56				90.0	82.0	80.0					
337	46	PC	222	F	A	8 . 9	5 1	1 4	10	+ 10	8514	76	29.61	70				78.0	82.0	81.0					
338	46	PC	222	F	A	8.5	5 h	1 4	10	+ 10	8933	76	29.81	61				83.0	82.0	81.0	80.5				
346	46	PC	222	F	A	8.5	5 Y	′ •	10	+10	9146	76	29 . 18	101			80.5	82.0	82.0	81.0					
347	46	PC	222	F	A	8.5	5 h	•	11	+11	8680	74	29.28	83			64.0	84 0	83.0	82.0					
356	46	PC	222	F	A	0 . 5	5 Y	•	10	+10	8965	67	29.50	66				80.0	78.0						
411	26	PC	222	F	A	8.5	۶ ۱	1 4	10	+ 10	28458	86	30.00	139			85.5	88 0	86 5	86.0	84.0	82 5	81.5	81.0	80.0

J-9

TABLE J-I (Continued)

			E				A	-	RK						PRIM	IARY R	F C	CTANE	NI JAIR	ER RE	OUTREN	IENTS.	AT RP	w	
OBS	NO	B MODEL CODE	C	N	CR	I R		-	-	ODOM MILES		BARO	HUM	1000				5000							3750
412	26	PC 222	F	4	8.5	, Y	٠	10	+10	30109	80	29.90	136				87.0	86.0	85.5	85.0	84 5	80.0			
85	3	PC 226	F	A	8.2	. Y	٠	9	+ 7	9728	79	29.92	92			85 0	84.5	82.5							
102	5	PC 226	F	A	ə.2	N	٠	10	+ 7	6823	70	29.93	61					86.0	86.0	83.5	82.5	62.0	81.0	80.0	
239	28	PC 226	F	A	8.2	Y	٠	7	+ 7	11870	69	29.32	71					80.0	82.0	84.8	86.0	86.0	83.0		
392	26	PC 226	F	A	8.2	? Y	٠	7	٠ 7	7500	80	29.88	124				84.5	89.5	90 . Q	89.5	88.5	64.0	82.5	80.0	
. 99	3	RL 225M	F	M	8.3	N	٠	10	+ 10	7997	72	29.94	50		91.0	90.5	89.5	66.0	66.5	85.0	83.0	81.0			
208	4	RC 242	F	A	8.3	N	٠	5	+ 5	6800	79	29.03	101			83.5	85.0	84.5	82.5	80.0					
240	28	RC 242	F	A	8.3	y	٠	6	+ 6	12434	69	29.50	67			82 0	86 0	84.9	82.0	74.0					
241	28	RC 242	F	A	8.3	, v	+	6	+ 6	17347	66	29.48	78		80 O	88.0	87.5	85.2	82.5	77.0					
395	26	S F50	F	A	8.4	. Y	٠	20	+20	7570	90	29.94	126	92.0	90.5	90.0	90.0	69.5	68.5	88.0	85.5	84.0	83.0	82.0	
32	29	KT 137M	F	M	8.4	N	•	6	+ 6	12801	70	29.95	56				91 5	89.5	88.5	87.5	86.5				
414	26	KV 252	F	A	8.5	5 Y	4	16	+ 16	34380	87	30.00	124			87.0	89.5	89.0	88.0	87.5	87.0	85.5	83.5		
260	7	NTLD 241	F	A	8.3	, N	+	8	+ 10	7 107	72	30.10	61			86.0	88.5	91.0	93.1	90.5	87.9	65.6	83.6	82.0	
352	46	NTLD 241M	F	M	8.3	9 N	•	10	+ 10	15944	75	29.28	76	86.0	86.0	86.0	86.0	86.0	86.0						
417	26	NTLG 250	F	A	8.5	5 Y	٠	6		6594	81	30.07	66		94.0	93.0	92 0	93.0	91.0	89.0	88.5	87.0	85.5		
188	4	NTLH 450	F	A	8.6	5 Y	4	5	4 5	7722	69	29.30	93			86.0	88.5	90.0	90.0	88.5	87.5	86.5	85.5	84.5	
122	5	NVLD 241	F	A	8.3) N	•	8	. 8	6935	71	30.02	50				92.5	93.0	92.0	90.5	89.5	89.0	68.5	88.0	
10	22	OT 149M	F	M	8.9	9 N		6	٠ و	6543	73	29.99	70		85 5	85.0	83.5	63.5	83.5	83.5	85.0	85.0	85.0	84.0	82.5
198	4	OT 149M	F	M	8.5	, ,	4	6	+ 6	6832	72	26.94	86	90.5	90.0	89.0	88.0	87.0	86.5	85.0	84.0	83.0	81.5	80.5	
390	41	QT 149M	С	M	6.1	3 N	4	6	٠ 6	9800	66	30.02	62	92.5	94.5	95 0	94.0	90.0							
22	22	01 250	F	A	8.4	. Y	٠	8	+ 8	15746	70	29.33	50		85.5	90.0	86.5	87.0	85.5	84.0	82.5	80.5	78.5	76.0	
123	5	DT 250	F	A	8.4	. Y	٠	4	٠ :	5800	69	30.20	58	84.0	87 0	89.0	86.5	86.0	85.0	84.5	84 0	84.0	84.0		

TABLE J-I (Continued)

				E		•		ADI	PAR IAN	CE																
085	LAE	s MOS	DEL	K C			J	A			MOGO	AMB					MARY F							AT RP		
NO	NO	C	306	T _	s (R	8	RC) T	51	MILES	TMP	BARO	HUM	1000	1250	1500	1750	5000	2250	2500	2750	3000	3250	3500	3750
126	5	OV 1	19	F	A 6	9	¥	+ 10	•	10	8616	72	30.13	55			88.0	90.5	92.0	91.5	89.5	88.5	88.0			
250	7	PV 4	52	F	a 6	3.5	٧	+ (. •	9	16679	70	29.98	47			17.7	79.8	81.0	81.0	794	77.1	ι			
.93	3	B F1	7M	F	M 1	9.2	N	-	D	D	8786	80	29.61	106			86.0	86.Q	85.5	85.0	84.0	83.5	82.5	81.5	80.5	
121	5	CH 2	26	F	A 1	3 . 2	N		7 +	7	11265	69	30.02	54					66.0	66.0	81.0	79.0	78.5	78.0		
377	41	CP 1	14M	c	M (8 . 8	N	* !	5 +	5	6770	66	29.98	62			88.0	89.0	89.2							
112	5	CP 2	16	F	A (9.5	¥	•	2 +	5	6917	71	29.92	68					87.0	87.0	86.5	85.5	85.0	84.0	84.0	83.5
293	47	CP 2	16	С	A 1	9 . 5	¥	• !	5 +	5	6026	70	29.68	60				65,5	87.0	87.0	87.0	86.5	86.5	86.0	85.0	
382	41	E 21	2 M	c	ph (9.5	N		7 +	7	9187	72	30.02	64			85.0	80 0	89.5	89.0	87.5	86.0	85.0			
29	29	£ 21	5	F	A 1	9.9	٧	+ 9	5 +	5	10272	70	30.24	57					88.0	93.0	93.0	92.5	92.0	89.5	66.0	
30	29	E 21	5	F	A 1	1.9	¥	• 1	5 +	5	8373	70	30.24	57						87.0	85.0	84.0	83.0	82.0		
402	26	E 21	5	F	A 1	3.9	Y		5 +	5	7091	90	30.01	132						88.5	88.5	88.5	88.0	86.5	83.0	60.5
20	22	E 21	5M	F	m 1	9.6	N	•	3 +	5	6230	70	29.31	52	93.5	93.0	92.5	92.5	92.0	92.0	91.5	90.0	86.0	86.5	86.0	
98	3	E 21	5M	F	34 (B . 9	Y	4	5 4	5	6130	64	30.00	35			93.0	92.5	92.5	92.0	91.0	90.0	88.5	96.0		
189	4	€ 21	5M	F	M :	9 . 9	N	٠	2 +	5	11909	66	29.20	42	90.0	90.0	90.0	90.0	89.5	69.5	89.0	88.5	66 0	87.5	87.0	86.0
296	47	E 21	5M	c	u (B . 9	N	•	3 4	5	17453	70	29.70	56							96.0	98.0	98.0	97.5	96.0	
244	28	E 22	0	F		8.5	, Y		6 4	6	11775	74	29.31	79					86.0	87.0	87.0	84.Q	62.6	81.0	79.9	78.5
243	28	£ 22	OM.	F	M 1	8.5	٧ ا	٠	7 +	6	12933	68	29.30	79			89.0	90.0	89.5	88.5	88.0	87.0	86.5	86.0		
373	41	€ 22	OM	С	pd (8 , 5	N		6 +	6	10490	70	30.10	93				85.0	96.0	86.5	87.0	87.0	86.5	86.0	85.0	84.0
2	40	€ F2	0	F	A (B . 5	N	•			7610	72	29.56	77					80.0	63.0	86.0	89.0	88.5	87.5	86.0	84.5
_		E F2	-	F	A	8.5	. 4		6 <i>+</i>	6	12503	70	29.27	80					86.0	86.5	87.0	87.0	86.5	86.0	85.5	
		E F2	-						-		5022		30.15	52	96.0	96.0	95.0	93.5	91.0	66.5	86.5	85.0	84.5	84.0	84.0	
	_	E F2		•					•		10305	_					89.0	89.5	90.0	90.5	93.0	93.0	93.0	90.0	69.0	
		4		•		4			•	•																

ب

TABLE J-I (Continued)

					_	T R			_	PAR		٠																	
085		40		DEL	M			A				MOGO							RIM	ARY R	.F. 1	OCTANE	NUMB	ER RE	QUIREM	ENTS.	AT RE	?M	
NO		_	_	ODE			CR	Ř			-	MILES		BAR	D	HUM	1000	12	50	1500	1750	2000	2250	2500	2750	3000	3250	3500	3750
	-	-			-	-		-																					
39	2	9 .	J 31	3 M	F	M	8.6	N	+	6 4	6	6824	70	30 .	02	56						86.0	86.0	85.5	85.0	84.5	83.5	82.0	
279	4	7	J 31	3M	C	M	8.8	٧ (٠	2 4	2	6000	70	29.	78	62				85.0	85.0	85.0	84.5	84.0	82.0	81.0	79.5	78.0	
38 1	4	1 ,	J 31	3 M	c	M	8.6	N	٠	2 4	2	9720	71	29.	90	60				87.0	87 0	86.7	86.5	85.8	85.0				
87		з,	J 31	5M	F	M	8.6	N	٠	4 4	4	10643	75	30 .	02	81						81.5	81.0	80.0	79.0	78.0	77.0	75.5	
196		4 ,	J 31	5M	F	M	8.6	N	+1	0 4	10	6982	79	29.	00	60	85.0	90	0.0	93.0	92.5	91.5	90.5	89.0	88.0	86.5	85.0	83.0	
46	2	9 .	3 3 1	8	F	A	8.8	Y		0	0	11777	70	30.	04	58								н	н	98.0	95 0	92 0	
120		5 (J 31	8M	F	M	8.6	¥		0	0	4818	70	3 0.	15	52		83	. 0	84.0	83 0	82.5	61.5	81.0	81.0	60.5	80.5	80.0	
242	2	8	J 31	BM	F	Ħ	8.6	. 4		0	0	17345	71	29.	50	47					91 0	92.0	92.8	94.0	94.5				
250		,	J 31			M	8.6			_	^	7190	70	10	78	44						90.0	01.	9 2 0	91.7			86 0	
209		•	U 31	-	•	-	• •			U	U	7190	70	29.	10							5 0.0	31.5	\$2.0	9 1.7		07.0	88.0	
289	4	7	J 31	BM	С	M	8.6	٧	*	2	0	14760	70	29 .	60	60	88.0	89	0.1	89 . Q	89.0	88 . Q	88.0	87 5	87.5	87.0	86 . O	85.0	
195		4 (0 21	6M	F	M	9 . C	N	٠	8 4	8	5804	86	29.	14	49	85.0	88	5	89.0	88 5	88.5	88.0	87.5	87.0	86.0	85.5	84.5	83.5
	4	0	2 2 1	8M	F	M	8.1	N	•	8 1	. 8	7376	86	29 .	32	140						85.0	89.Q	69 .0	88.0	67.0	66 . O	84 0	62.5
19	2	2 (0 21	8M	8	M	8.7	N	+	6 4	. a	6490	70	29.	16	60	67.5	87	.0	86.5	86 0	84.5	83.5	83 0	82.5	82.5	82 5	82 0	
_	Ī	_		-						_			_																
41	2	9 (0 21	5M	F	=	8.7	•	• 1	0 1	10	9549	70	30.	02	56								85 U	85.0	85.U	84 0	62.0	
186		4	T 21	3M	F	M	9.0	N	٠	8 4		12337	68	29 ,	39	43	84.0	8:	0.0	85.5	86.0	85.5	65 . Q	84.5	63.5	83.0	82.5	82 0	
277	4	7	T 21	314	c	M	9.0	y	+ 1	0 4	•	6010	70	29	74	54				80.0	81.0	84.0	84.0	83.5	83 0	83.0	82.5	82.0	80.0
367		8	T 21	314	F	m	9.0	N	+2	0 4	8	6950	80	30.	00								83.5	85:5	86.0	85.0	84 0		
24	•		T 21	_								11163	10	20											89.0	86.0		85 0	
30	•		. 21	9	•	-	• (,	•	9 '	. 9	11163	,,	3 0.	.0	39											•• •	63 0	
272	4	7	T 21	5	С	4	9.0	Y	٠	5 4	5	6900	70	29 .	70	50						78.0	80.0	80.0	80 ^	60.0	78 5	78.0	76 5
9	4	0	1 21	SM	F	M	• . •) N	٠	5	5	5408	66	29.	50	82					90.5	90.0	88.5	87.0	85.0	81 5			
334	4	6	T 21	5M	F	•	9.0	Y	٠	5 4	5	8532	80	29.	68	94					69.0	68.0	87.5	66.5	86.0	85.0	84 5		
389	4	1	T 21	5M	c	M	9.0) N	٠	7 4	5	6250	71	29.	98	60				89.0	88.5	86.0							

TABLE J-I (Continued)

				E					PAF																	
085	L	AB	MODEL	M . C 1			I	A	 S	AS	MOOO	AMB				PRIM	ARY R	'.F. C	CTANE	NUME	ER RE	QUIREN	ENTS.	AT RP	**	
NO	N	0 	CODE	 T -	5 C	R	R	RCI	D 1	51	MILES	TMP	BARO	HUM	1000	1250	1500	1750	5000	2250	2500	2750	3000	3250	3500	3750
11	2:	2 T	218	F	A 9	.0	٧	•	, ,	. 7	7935	70	29.31	50						76.5	79.0	81.0	80.5	80.5	80.0	
43	2	9 T	218	F	A 9	.0	Y	+	7 4	7	14050	70	30.24	57					87.0	92.0	91.0	89.5	88.0	87.5	87.0	
44	2	9 T	218	F	A 9	.0	٧	• :		. 8	12051	70	30.24	57						86.0	87.5	87.0	86.0	85.0	84.0	
205		4 T	218	F	A 9	.0	¥	•	4 4	. 7	7276	81	28.99	77	•				86.5	88.0	88.0	88.0	87.5	87.0	86.5	86 0
216	2	8 1	218	F	A 9	. 0	٧	• 1	8 4	. 8	22045	54	29.42	40					84.8	86.0	89.0	86.5	84.5			
248	2	B T	216	F	A 9	.0	Y	•	7 4	7	22192	53	29.42	35					86.0	88.5	89.5	88.5	87.5	85.5	63.0	81.5
408	2	6 T	218	F	A 9	. 0	Y	•	7 4	7	6194	85	30.23	48		-			87.0	88.0	88.0	88.0	88.0	88.0	88.5	88.0
. 88	;	3 T	218M	F	м 9	.0	¥	•	7 4	7	7251	80	29.82	98				90.0	89.0	88.0	87.0	86.0	84.5	82.0		
117	,	5 T	218M	F	M 9	.0	Y	•	7 4	. 7	8533	71	29.69	59			86.0	85.0	84.5	84.0	83.0	83.0	82.5	82.0		
257		7 T	216M	F	M 9	.0	N	+	7 4	. 7	10633	71	30.10	42					91.1	92.0	92.4	92.2	91.6	90.8	89.9	88.9
280	4	7 T	216M	C	M 9	0.0	٧	•	8 4	. 8	.15200	70	29.61	56		84.0	89.0	89.0	68.0	87.0	86.0	85.5	85.0	84.5	84.0	
386	4	1 1	218M	C	M 9	.0	N	+	7 4	. 7	10940	70	29.94	62			88.0	89.5	89.5	89.0	88.0					
246	2	. 1	224	F	A 9	. 0	Y	+ ;	8 4		12341	76	29.34	112					86.5	87.5	88.0	86.5	87.6	86.4		
247	2	e 1	224	F	A 9	0.0	Y	•		. 8	16984	85	29.48	121						36 .0	86.0	86.0	84.5	83.5	82.0	
118		5 T	224M	F	M 9	.0	٧	•	8 4		7206	70	30.02	56	93.0	93.0	92.0	87.5	87.0	86.0	85.0	84.5	83.5	82.0	81.0	80.0
206		4 T	224M	F	M 9	0.0	٧	•	8 4	. 8	6665	87	29.01	77	90.0	91.0	90.5	90.0	89.5	88.5	87.5	86.5	85.5	84.5	83.5	82.5
245	2	8 T	224M	F	M 9	.0	٧	•	9 4		13250	75	29.31	108		88.0	91.0	90.6	90.1	89.5	88.5	87.3	86.0	84.7		
287	4	7 1	224M	c	M 9	. 0	y	•	5 4		8650	70	29.58	54	86.0	89.0	89.0	85.5	85.0	84.5	84.0	83.5	63.0	82.0	80.0	
385	4	1 1	224M	c	M 9	0.0	٧	•	8 4		8546	61	29.92	56			89 .0	91.5	92.0	91.0	89.5					
30	2	9 V	F26M	F		. 6	٧	•	8 4		11533	70	29.98	60			86.0	89.0	88.0	87.0	86.5	86.0	85.5	85.0	84.0	
21	2	2 Y	214M	F	M 8) . 6	N	•	3 4	3	5292	70	29.32	51	89.0	88.5	88.0	87.5	87.0	86.0	85.0	84.0	83.0	80.5	78.5	
5	4	0 2	215	F	A 9	0.0	N	•	8 4		13509	73	29.46	95					84.0	85.0	85.0	85.0	84.0	83.0	82.0	80.5

Ė

TABLE J-I (Continued)

				E						ARK						PRI	LMAI	Y R	.F.	OCTANE	NUME	IER RE	QUIREN	ENTS,	AT RE	·M	
085 NO			CODE	C	N S	CR	1	. E	AS CD		MILES	AMB TIMP	BARO	HUM	1000	1250	 o	500	1750	2000	2250	2500	2750	3000	3250	3500	3750
18	_	2 2	2 215M	F		9.6					7392	70	29.12	62		84.9	5 (96.0	85.0	83.5	83.0	82.5	82.0	81.5	81.0	80.5	****
_	_		2 2 1 5 14	F						-	25173										89.2						
297	4	7 2	Z 215M	c	M	9.6	, v			٠.	9200	70	29.80	64	80.0	81.5	5 (32.5	82 5	82.5	82.0	81.0	80.0	79.0	77.5		
369	4	1 2	7 215M	С	M	9.() N		8	٠ .	6460	71	30.00	64			,	91.0	91.0	•						•	
292	4	7 0	RT 220	c	A	8.6	5 Y	•	8	٠ 6	14810	70	29.60	57						86.0	86.5	87.0	87.5	87.5	87 0	86 . Q	86 0
125		5 C	RT 220M	F	M	8.(5 1	1 4	5	٠ ,	12068	69	29.98	46	96.0	97 (9	0.0	95.0	94.5	93.5	93.0	92.5	92.0			
124		5 E	ET 222M	F	M	8.9	5 1	4	3	٠ :	10410	70	30.11	52	97.0	96.9	5 9	96.0	95.0	94.5	94.0	93.5	93.5	93.0			
31	2	9 T	TT 224M	F	M	9.0) N	•	8	٠ ۽	5294	70	30.11	56	91.5	93.0	9 1	91.5	90.5	69.5	88.5	88.0	87.5	87.0			
97		3 1	TT 224M	F	M	9.0	•	• •		+ 1	6773	63	29.95	52			•	91.0	91.0	90.5	69.5	89.0	88.0	87.0	85 · 5	84.5	
375	4	1 1	TT 224M	С	M	9.0	•	• •		٠ (6025	64	29.90	55					84.9	86.0	88.5	80.5	88.5	87.5	86.0		
37	2	9 Y	YUT 218M	F	M	8.9	5 1	1 +	6	٠ (11423	70	29.95	57					87.0	86.5	86.0	85.0	84.0	03 .0	82 0		
800)	5 N	WL9 216	F	A	8.0	6 1	•	16	+ 18	3976	70	29 . 86	48						82.0	87.0	88.0	86.5	85.0	83.5	83.0	82.0
801		8 1	IIA 236	F	A	₿.(۱ (4	15	+ 15	3703	85	29.73	75					90.5	88.0							
802	!	8 (LIA 238	F	A) 1	4	15	+ 15	3764	95	29.61	105			1	3 8 . Q	85.5	83.0							
803	1	8 6	BA F17	F	A	8.:	2 i	•	7	+ 7	2311	85	29.74	76								77.5	70.0	77.5			
804		8 1	7 218	F	A	9.(۱ (1 4	7	+ 1	3299	84	29 . 84	88								85.0	95 .0	84 .0			
805	2	6 (V250	F	A	8.	۹ ۱	1 4		+ 6	10747	99	30.08	124	92.5	90.	5 (96.0	85.0	84.0	83.0	82.0	81.5	81.0	80.5	80.0	

TABLE J-11

SPEED RANGE CALCULATED DATA

1981 SELECT MODELS ~ 50% SATISFACTION

							Engin	RPH					
		1000	1250	1500	<u>1750</u>	2000	2250	<u>2500</u>	2750	3000	3250	3500	<u>3750</u>
HIA 238	50% Sat.	-	-	-	86.9	87.2	85.6	84.6	84.2	83.5	82.3	-	-
	SD N	-	-	-	2.2	1.3 10	1.4	1.2	0.8 5	1,1	1,7	•	•
	n	-	•	-	,	10	9		•	•	4	-	-
IIA 238/LIA 238	50% Sat.	-	-	88.1	88.5	88.1	87.0	85.7	85.3	84.0	82.3	81.7	-
	SD	-	-	3.2	2.1	2.6	3.0	3.4	2.5	2.3	2,2	2.6	-
	N	-	-	11	15	17	17	16	12	11	6	5	•
NCX 228/HCX 228/	50% Sat.	-	-	-	-	84.0	84.7	84.1	83.4	82.4	81.6	80.5	-
ICX 228/LCX 228	SD .	-	-	-	-	3.0	3.8	2.8	2.3	2.2	2.4	2.9	-
	N	-	-	•	-	8	9	12	13	11	9	6	-
NC5 225/HC5 225/	50% Sat.	-	-	-	84.0	87.4	88.5	88.9	88.8	88.0	86.9	85.0	82.9
IC5 225/LC5 225	SD	-	-	•	4.9	4.2	3.6	3.3	3.3	3.3	2.6	2.0	3.0
	K	-	-	-	4	11	16	17	15	14	11	10	4
OL 216/ML 216	50% Sat.	-	-	89.5	90.1	90.2	89.8	88.7	87.5	86.4	85.6	86.1	86.9
	SD	-	-	3.7	3.8	3.8	3.3	3.1	3.3	3.3	3.9	2.2	2.2
	ĸ			11	11	11	11	11	10	10	9	8	4
OL 216H/ML 216H	50% Sat.	•	-	89.6	88.4	87.8	86.8	86.4	85.2	84.2	-	-	-
	SD	-	•	2.0	2.6	2.7	2.6	1.8	1.8	1.7	-	-	-
	N	-	•	7	8	8	7	6	5	5	•	-	•
OCA 223/MCA 223	50% Sat.	-	_	-	_	84.4	86.5	88,1	87.8	86.8	85.4	84.6	-
•	SD	•	•	-	-	4,1	3.1	2.6	1.7	1.6	2.0	2.2	-
	ĸ	-	-	-	-	8	13	14	13	8	7	6	-
PL 217/KL 217	50% Sat.	-	-	-	-	81.6	82.9	82.3	81.7	80.9	81.4	80.4	78.7
•	SD	-	-	•	-	2.9	2.0	2.7	2.4	2.7	1.9	2.1	2 <u>.</u> 7
	N	-	-	•	-	6	8	9	9	9	7	7	5
PC 222/KC 222	50% Sat.		-	81.4	83.5	83.7	83.5	83.6	83.3	82.2	81.6	81.0	-
	SD	-	-	2.9	2.5	3.5	3.4	3.4	3.3	3.1	2.7	2.9	-
	M	-	-	4	14	21	21	20	16	15	31	9	-

_

FIGURE J-1

PRF SPEED RANGE OCTANE NUMBER REQUIREMENTS

1981 Select Model: HIA 238

FIGURE J-2

1981 Select Model: IIA 238 LIA 238

FIGURE J-3

1981 Select Model: NCX 228 HCX 228 ICX 228 LCX 228

FIGURE J-4

1981 Select Model: NC5 225

NC5 225 HC5 225 IC5 225 LC5 225

FIGURE J-5

1981 Select Model: OL 216 ML 216

FIGURE J-6

1981 Select Model: OL 216M ML 216M

FIGURE J-7

1981 Select Model: OCA 223 MCA 223

FIGURE J-8

1981 Select Model: PL 217 KL 217

FIGURE J-9

1981 Select Model: PC 222 KC 222

APPENDIX K

GEAR POSITION FOR

MAXIMUM OCTANE NUMBER REQUIREMENTS

TABLE K-I

THROTTLE/GEAR POSITION FOR 1981 MAXIMUM FBRU OCTANE NUMBER REQUIREMENTS

Throttle Position	Gear	No. of Vehicles	% of <u>Vehicles</u>
	<u>Automatic Transmi</u>	ission	
Full	Highest (Drive)	216	69
	Passing	61	20
Part	Highest	32	10
No Gear Determined (Max. Requirement <78)		2	1
		311	100
	<u>Manual Transmi</u> s	<u>ssion</u>	
Full	2 3 4 5	1 13 82 0	1 12 77
Part	2 3 4 5	0 1 8 0	1 8 0
No Gear Determined (Max. Requirement <78)		1	1
•		106	100

DATE ILMEI