CROPLAND CLASSIFICATION USING OPTICAL AND RADAR DATA

TEAM: AKASH A (191EC102), NAVRATAN (191EC133) AND ROHAN J (191EC147)

MENTOR: DR. RAGHAVENDRA B S

AN OVERVIEW

- Motivation: Given radar and optical feature information, classify data of a single pixel into one of seven crop types
- Possibility of use by NGOs and governments for agriculture planning and management
- Efficient Classifier Full image not needed;
 Only information about a single pixel is sufficient (Less Storage)
- Dataset Available At:
 https://archive.ics.uci.edu/ml/datasets/Crop+mapping+usi
 https://archive.ics.uci.edu/ml/datasets/Crop+mapping+usi
 https://archive.ics.uci.edu/ml/datasets/Crop+mapping+usi
 https://archive.ics.uci.edu/ml/datasets/Crop+mapping+usi
 https://archive.ics.uci.edu/ml/datasets/
 https://archive.ics.u

DESCRIPTION OF DATASET

- □ Supervised Learning Problem Data consists of 174 features optical and radar taken on two different dates
- □ Radar Features Collected by sending radio waves in the L band and measuring characteristics of the reflected light
- Optical Features Spectral data collected by sending out waves in the RGB, Near Infrared (NIR) and RedEye Spectrum
- ☐ Imbalanced Dataset Seven kinds of crops; Number of samples for each crop was different

Class	Corn	Peas	Canola	Soybeans	Oats	Wheat	Broadleaf
No. of samples	39162	3598	75673	74067	47117	85074	1143

TECHNIQUES ADOPTED - BALANCED TRAINING

- ☐ Features were divided into groups based on their similarity to optimize performance
- A Random Forest Classifier was used to train data from each group and the accuracy was collected
- Each group of data was then multiplied by the overall accuracy and then stacked together
- ☐ Finally, training was done on modified data using another RF classifier

FEATURE GROUPS

RADAR FEATURES

G ^R ,	$a_{\text{th}} = 10\log_{10} S_{\text{hh}} ^2$, $a_{\text{to}} = 10\log_{10} S_{\text{to}} ^2$, $a_{\text{to}} = 10\log_{10} S_{\text{to}} ^2$, $a_{\text{tr}} = 10\log_{10} S_{\text{fr}} ^2$, $a_{\text{fr}} = 10\log_{10} S_{\text{fr}} ^2$.
$G_2^{R_i}$	$R_{\text{hhw}} = 10\log_{10}(S_{\text{hh}} ^2/ S_{\text{w}} ^2), R_{\text{hwh}} = 10\log_{10}(S_{\text{hv}} ^2/ S_{\text{hl}} ^2), R_{\text{hww}} = 10\log_{10}(S_{\text{hv}} ^2/ S_{\text{w}} ^2),$
	$\textit{R}_{rdl} = 10log_{10}\big(S_r ^2\big/ S_{ll} ^2\big), \textit{R}_{dlr} = 10log_{10}\big(S_{rl} ^2\big/ S_{rl} ^2\big), \textit{R}_{dll} = 10log_{10}\big(S_{dl} ^2\big/ S_{ll} ^2\big)$
-R _i	$R_{hh} = 10log_{10}(S_{hh} ^2/span), R_{hv} = 10log_{10}(S_{hv} ^2/span), R_{vv} = 10log_{10}(S_{wv} ^2/span),$
	$\textit{R}_{rr} = 10log_{10}(S_{rr} ^{2}/span), \textit{R}_{rl} = 10log_{10}(S_{rl} ^{2}/span), \textit{R}_{1} = 10log_{10}(S_{ll} ^{2}/span)$
$G_4^{R_i}$	$\begin{cases} \text{span} = S_{hh} ^2 + 2 S_{hv} ^2 + S_{vv} ^2 = S_{vl} ^2 + 2 S_{d} ^2 + S_{tl} ^2 + S_{tl} ^2 \rbrace \\ \rho_{hhw} = \left \frac{S_{hh}.S_{tw}^*}{\sqrt{(S_{hh}.S_{th}^*)(S_{vv}.S_{vv}^*)}} \right , \rho_{hvhh} = \left \frac{S_{hv}.S_{hh}^*}{\sqrt{(S_{hv}.S_{hv}^*)(S_{hh}.S_{hh}^*)}} \right , \rho_{hvw} = \left \frac{S_{hv}.S_{vv}^*}{\sqrt{(S_{hv}.S_{hv}^*)(S_{vv}.S_{vv}^*)}} \right , \rho_{hvw} = \frac{S_{hv}.S_{tw}^*}{\sqrt{(S_{hv}.S_{hv}^*)(S_{vv}.S_{vv}^*)}} \right , \rho_{hvw} = \frac{S_{hv}.S_{tw}^*}{\sqrt{(S_{hv}.S_{tw}^*)(S_{vv}.S_{vv}^*)}} \right , \rho_{hvw} = \frac{S_{hv}.S_{tw}^*}{\sqrt{(S_{hv}.S_{tw}^*)(S_{tw}.S_{tw}^*)}} \right $
	$\rho_{ntt} = \left \frac{S_{n}.S_{n}^{*}}{\sqrt{\left(S_{n}.S_{n}^{*}\right)\left(S_{t}.S_{n}^{*}\right)}} \right , \rho_{ntr} = \left \frac{S_{n}.S_{n}^{*}}{\sqrt{\left(S_{n}.S_{n}^{*}\right)\left(S_{n}.S_{n}^{*}\right)}} \right , \rho_{rtt} = \left \frac{S_{n}.S_{n}^{*}}{\sqrt{\left(S_{n}.S_{n}^{*}\right)\left(S_{t}.S_{n}^{*}\right)}} \right $
	{+:complex conjugate,:vector dot product}
-R, 35	$\lambda_1, \lambda_2, \lambda_3, H = -\sum_{i=1}^{3} \rho_i \log_3 \rho_i, A = (\lambda_2 - \lambda_3)/(\lambda_2 + \lambda_3), \bar{\alpha} = \sum_{i=1}^{3} \rho_i \alpha_i $ $\left\{ \rho_i = \lambda_i / \sum_{k=1}^{3} \lambda_k \right\}$
	$HA, H(1-A), (1-H)A, (1-H)(1-A), \psi = \min(\lambda_1, \lambda_2, \lambda_3)/(\lambda_1 + \lambda_2 + \lambda_3), \text{RVI} = 4\lambda_3/(\lambda_1 + \lambda_2 + \lambda_3)$
-R _i 3 ₆	$ a ^2 = \frac{\sqrt{2}}{2} S_{hh} + S_{vv} ^2, \beta ^2 = \frac{\sqrt{2}}{2} S_{hh} - S_{w} ^2, \gamma ^2 = 2 S_{hv} ^2, k_a ^2 = S_{hl} ^2, k_d ^2 = min(S_{w} ^2, S_{l} ^2), k_h ^2 = abs(S_{vv} ^2 - S_{hl} ^2)$
-R	{s : surface scattering, d : double — bounce scattering, h : helix scattering}
S ^R ,	$P_s = f_s(1 + \beta ^2), P_d = f_d(1 + a ^2), P_v = f_v, P_s^v = f_s(1 + \beta ^2), P_d^v = f_d(1 + a ^2), P_v^v = f_v, P_c^v = f_c$ {v : volume scattering, c : helix scattering}

OPTICAL FEATURES

```
Features and formulas (G: groups, O: optical, i = 1 to 5)
                R<sub>B</sub>: 440 - 510nm, R<sub>G</sub>: 520 - 590nm, R<sub>R</sub>: 630 - 685nm, R<sub>RE</sub>: 690 - 730nm, R<sub>NIR</sub>: 760 - 850nm
                R: Reflectance
               NDVI = (R_{NIR} - R_{R})/(R_{NIR} + R_{R})
               SR = R_{NIR}/R_{R}
                RGRI = R_G/R_R
               EVI = 2.5(R_{NIR} - R_{R})/(R_{NIR} + 6R_{R} - 7.5R_{B} + 1)
               ARVI = (R_{NIR} - (2R_R - R_B))/(R_{NIR} + (2R_R - R_B))
               SAVI = (1 + 0.5)(R_{NIR} - R_{R})/(R_{NIR} + R_{R} + 0.5)
               NDGI = (R_G - R_R)/(R_G + R_R)
               gNDVI = (R_{NIR} - R_{G})/(R_{NIR} + R_{G})
               MTVI2 = 1.5(1.2(R_{NIR} - R_{G}) - 2.5(R_{R} - R_{G})) / \sqrt{(2R_{NIR} + 1)^{2} - (6R_{NIR} - 5\sqrt{R_{R}})} - 0.5
               NDVIre = (R_{NIR} - R_{RE})/(R_{NIR} + R_{RE})
               SRre = R_{NIR}/R_{RE}
               NDGIre = (R_G - R_{RE})/(R_G + R_{RE})
               RTVIcore = 100(R_{NIR} - R_{RE}) - 10(R_{NIR} - R_{G})
               RNDVI = (R_{RE} - R_{R})/(R_{RE} + R_{R})
               TCARI = 3((R_{RE} - R_R) - 0.2(R_{RE} - R_G)(R_{RE}/R_R))
               TVI = 0.5(120(R_{RE} - R_{G}) - 200(R_{R} - R_{G}))
               PRI2 = R_{RF}/R_{R}
               μ<sub>PC1</sub>, σ<sub>PC1</sub>, HOM<sub>PC1</sub>, CON<sub>PC1</sub>, DIS<sub>PC1</sub>, H<sub>PC1</sub>, ASM<sub>PC1</sub>, COR<sub>PC1</sub> from GLCM of PC1
               μ<sub>PC2</sub>, σ<sub>PC2</sub>, HOM<sub>PC2</sub>, CON<sub>PC2</sub>, DIS<sub>PC2</sub>, H<sub>PC2</sub>, ASM<sub>PC2</sub>, COR<sub>PC2</sub> from GLCM of PC2
```

IMPLEMENTATION

RESULTS OBTAINED EARLIER

STACKED FEATURES	OVERALL ACCURACY
RADAR FEATURES - DATE 1	60.33%
RADAR FEATURES - DATE 2	75.24%
RADAR FEATURES	70.04%
OPTICAL FEATURES - DATE 1	66.67%
OPTICAL FEATURES - DATE 2	66.28%
OPTICAL FEATURES	59.33%
RADAR & OPTICAL FEATURES	64.03%

FINAL RESULTS AFTER IMPROVISATION

- Earlier, predicted values were multiplied by overall accuracy and stacked for next stage no improvement
- Alternative was tried by multiplying the feature values themselves with overall accuracy - significant improvement
- ☐ Final overall accuracy exceeded 90% Exceeded performance obtained by research in given problem
- □ Hyperparameters for RF classifier No. of decision tree and number of features given to each decision tree

STACKED FEATURES	OVERALL ACCURACY
RADAR FEATURES - DATE 1	60.42%
RADAR FEATURES - DATE 2	75.22%
RADAR FEATURES	86.87%
OPTICAL FEATURES - DATE 1	66.59%
OPTICAL FEATURES - DATE 2	65.86%
OPTICAL FEATURES	78.60%
RADAR & OPTICAL FEATURES	90.55%

IMBALANCED TRAINING - TECHNIQUES ADOPTED

- Random Forest Classifier was tried out Gave good results of about 96% for each of the groups itself but took too much time to converge. Hence, other techniques were explored
- Neural Network architectures were thought of as an alternative since they can implement complex non-linear classifiers very optimally
- Convolutional Networks could not be used since they have applications for images but here we are dealing with pixel data. Thus feedforward networks were resorted to with variation of hyperparameters
- Two-thirds of the data was arbitrarily assigned as the training set and the remaining one-third as the test set. This leads to an imbalanced training since the original dataset itself is imbalanced.

NEURAL NETWORK ARCHITECTURES

- ☐ Three layers Input Layer, Output Layer and a Hidden Layer
- ☐ Input Layer has 174 neurons equal to the number of input features
- Output Layer has 7 neurons Each represents the probability of the feature vector belonging to one of seven classes
- Number of neurons in hidden layer is an important hyperparameter geometric mean of input and output was considered here

Single Hidden Layer

NEURAL NETWORK ARCHITECTURES - CONTD.

- Number of hidden layers was chosen by method of trial and error Hidden layers were added till accuracy no longer improved
- Adam optimizer was used for training with Categorical Cross Entropy as error metric

RESULTS

ONE HIDDEN LAYER

Epoch 15/500		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
500/500 [======] - 2s 4ms/ste	p - loss: 9.1349 - accuracy:	0.9198 - val loss: 2.4975 -	val_accuracy: 0.9570
Epoch 16/500		W. H. 102011 1 W. 11	AN SAL MARKS INCOME
500/500 [======] - 2s 3ms/ste	p - loss: 12.1884 - accuracy	: 0.9125 - val loss: 3.1065 -	val accuracy: 0.9492
Epoch 17/500			
500/500 [======] - 2s 3ms/ste	p - loss: 8.2772 - accuracy:	0.9260 - val loss: 4.5093 -	val accuracy: 0.9531
Epoch 18/500	to proceed seattless and second	**************************************	
500/500 [======] - 2s 4ms/ste	p - loss: 9.5611 - accuracy:	0.9198 - val loss: 3.2605 -	val accuracy: 0.9336
Epoch 19/500		mm 240 - 2.5-2.200 18 0400 -	
500/500 [=======] - 2s 3ms/ste	p - loss: 8.3610 - accuracy:	0.9232 - val_loss: 5.2934 -	val_accuracy: 0.9336
Epoch 20/500		1 2	
500/500 [======] - 2s 3ms/ste	p - loss: 10.1683 - accuracy	: 0.9126 - val_loss: 3.1727 -	val_accuracy: 0.9570
Epoch 21/500			
500/500 [======] - 2s 3ms/ste	p - loss: 9.5007 - accuracy:	0.9239 - val_loss: 44.7430 -	val_accuracy: 0.7812
Epoch 22/500			
500/500 [======] - 2s 4ms/ste	p - loss: 12.0754 - accuracy	: 0.9141 - val_loss: 5.0989 -	val_accuracy: 0.9180
Epoch 23/500			
500/500 [======] - 2s 3ms/ste	p - loss: 6.6663 - accuracy:	0.9294 - val_loss: 7.5614 - '	val_accuracy: 0.9062
Epoch 24/500			
500/500 [======] - 2s 3ms/ste	p - loss: 10.2480 - accuracy	: 0.9125 - val_loss: 9.5240 -	val_accuracy: 0.8750
Epoch 25/500			
497/500 [======>.] - ETA: 0s -			
500/500 [======] - 2s 5ms/ste	p - loss: 7.1794 - accuracy:	0.9293 - val_loss: 0.2448 -	val_accuracy: 0.9922
Epoch 26/500			
500/500 [======] - 2s 3ms/ste	p - loss: 7.9251 - accuracy:	0.9266 - val_loss: 1.0116 -	val_accuracy: 0.9688
Epoch 27/500	7 5420	0.007 1.1 5.000	3 0040
500/500 [======] - 1s 3ms/ste	p - loss: /.6420 - accuracy:	0.925/ - val_loss: 5.1029 -	val_accuracy: 0.9648
Epoch 28/500			

TWO HIDDEN LAYERS

```
Epoch 15/500
Epoch 16/500
Epoch 17/500
Epoch 18/500
Epoch 19/500
Epoch 20/500
Enoch 21/500
Epoch 22/500
Epoch 23/500
500/500 [=================] - 2s 3ms/step - loss: 24.9595 - accuracy: 0.7956 - val loss: 23.7484 - val accuracy: 0.8086
Epoch 24/500
Epoch 25/500
Epoch 26/500
500/500 [=============] - 2s 3ms/step - loss: 26.8509 - accuracy: 0.7889 - val loss: 18.1688 - val accuracy: 0.7461
Epoch 27/500
Enoch 28/500
```

RESULTS - CONTD.

```
Probability Values generated by the model :
[[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0000000e+00
  3.8196823e-24 0.0000000e+001
 [0.0000000e+00 0.0000000e+00 2.8908889e-34 0.0000000e+00 9.9998927e-01
 1.0762273e-05 3.9544315e-37]
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00
  0.0000000e+00 0.0000000e+001
 [0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00 0.0000000e+00
  0.0000000e+00 0.0000000e+001
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00
  0.0000000e+00 0.0000000e+001
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
 1.0000000e+00 0.0000000e+001
 [1.0000000e+00 0.000000e+00 0.000000e+00 0.0000000e+00 0.000000e+00
  0.0000000e+00 0.0000000e+001
 [1.0000000e+00 0.0000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
  0.0000000e+00 0.0000000e+001
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
 1.0000000e+00 0.0000000e+001
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0000000e+00 0.0000000e+00
  0.0000000e+00 0.000000e+0011
Class Selected based on Maximum Probability :
[5 5 4 3 4 6 1 1 6 4]
Actual Class :
[5 6 4 3 4 6 1 1 6 4]
```

RESULTS - CONFUSION MATRICES (BALANCED)

	PREDICTED CLASS								
		CLASS 1	CLASS 2	CLASS 3	CLASS 4	CLASS 5	CLASS 6	CLASS 7	RECALL
	CLASS 1	37143	28	451	130	639	90	680	94.85%
SS	CLASS 2	0	3468	117	2	10	0	0	96.41%
CLASS	CLASS 3	7	163	75187	88	73	94	60	99.36%
	CLASS 4	298	22	5349	59827	549	8020	1	80.78%
ACTUAL	CLASS 5	137	0	164	57	40428	6274	56	85.81%
	CLASS 6	424	12	183	387	6416	77596	55	91.21%
	CLASS 7	0	0	0	0	0	0	1143	100%
	PRECISION	97.72%	93.91%	91.63%	98.90%	84.02%	84.28%	57.32%	

RESULTS - F1 SCORES (BALANCED)

CLASS 1	96.26%
CLASS 2	95.14%
CLASS 3	95.34%
CLASS 4	88.93%
CLASS 5	84.91%
CLASS 6	87.61%
CLASS 7	72.87%
MACRO AVG	88.72%

- □ All classes except class 7 have an F1 score value of greater than 80% which is interpreted to be quite good
- Macro average comes out to be 88.72% which again is interpreted as a quite accurate for an imbalanced multi-class classification
- □ Class 7 is observed to have perfect recall but a poor precision. Similarly, classes 5 and 6 are observed to be poorly separable
- ☐ To make further conclusions, it would be necessary to compare with recent research as these are relative values.

RESULTS - CONFUSION MATRICES (IMBALANCED)

	PREDICTED CLASS								
		CLASS 1	CLASS 2	CLASS 3	CLASS 4	CLASS 5	CLASS 6	CLASS 7	RECALL
	CLASS 1	38639	30	79	328	8	24	53	98.67%
SS	CLASS 2	27	3532	12	23	0	3	0	98.19%
CLASS	CLASS 3	38	48	75246	218	87	33	2	99.44%
	CLASS 4	486	132	124	72951	129	239	5	98.49%
ACTUAL	CLASS 5	1482	4	85	355	42553	2486	150	90.32%
	CLASS 6	241	0	107	281	3803	80539	102	94.67%
	CLASS 7	235	2	18	4	5	25	854	74.72%
	PRECISION	93.90%	94.24%	99.44%	98.37%	91.34%	96.63%	73.24%	

RESULTS - F1 SCORES (IMBALANCED)

CLASS 1	96.23%
CLASS 2	96.17%
CLASS 3	99.44%
CLASS 4	98.43%
CLASS 5	90.83%
CLASS 6	95.64%
CLASS 7	73.97%
MACRO AVG	92.96%

- ☐ Imbalanced training was observed to given a better distribution between precision and recall as compared to balanced training
- □ Particularly for class 7 with least number of samples, significant improvement in precision value by trading with recall (no free lunch)
- ☐ F1-Score found to improve significantly for most of the classes
- Conclusion: Imbalanced training gives better results as compared to balanced training

IMPROVEMENTS

- ☐ More advanced methods can be explored for stacking fusion strategies Variable feature selection, Bhattacharya's distance based selection, etc.
- More advanced and standard architectures for training the neural networks could offer improved accuracy
- Study on how data was collected and how the radar and optical features were combined -Processes like coregistration and orthorectification

REFERENCES

- Iman Khosravi & Seyed Kazem Alavipanah (2019) A random forest-based framework for crop mapping using temporal, spectral, textural and polarimetric observations, International Journal of Remote Sensing, 40:18, 7221-7251, DOI: 10.1080/01431161.2019.1601285
- https://www.analyticsvidhya.com/blog/2021/04/getting-into-randomforest-algorithms/