VLSI Design (CSE-4411)

BASICS

Agnik Saha

Department of Computer Science and Engineering

R. P. Shaha University

August 23, 2023

Electrical and Electronics

- ☐ Charge (Q): # of excess electrons beyond # of protons
 - Units of Coulombs: 1 coulomb = 6.24151 × 10¹⁸ electrons
- Voltage (V): electrical potential difference between two point in space
 - Point with lower potential called negative
 - Point with higher potential called positive
- Current (I): flow of electrons across a voltage potential
 - Electrons travel <u>from negative</u> to positive
 - Units of Amperes (A), where 1 A = 1 coulomb moving in 1 sec
- Resistance (R): property of material controlling amount of current: I = V/R or R = V/O or V = IR
- Capacitance (C): property of material to store a charge & form a voltage potential
 - V = Q/C = potential when Q charge is stored in a capacitance C
 - Units of capacitance are Farads,
 - where 1 volt = 1 Coulomb / 1 Farad

Underlying Physics

- Atoms constructed from
 - Protons: positively charged heavy particles
 - Neutrons: heavy particles with no charge
 - Electrons: very light negatively charged particles
- Protons & neutrons bind together in nucleus
- ☐ In neutral atom, # protons = # electrons
 - lon: numbers not equal; atom is charged
- Electrons circle nucleus in orbitals
 - Energy of orbital higher the further from nucleus
 - Higher energy makes it easier to escape
 - Up to 2 electrons per orbital
- Orbitals group into shells (K, L, M, N, O, ...)
 - # electrons in shell n = 2n²
 - Electrons fill lower shells first
- Each shell consists of subshells s, p, d, f,...
 - Different subshells have slightly different energies

	ı						
Shell	S	s p d f g					
K	2					2	
L	2	6				8	
Μ	2	6	10			18	
N	2	6	10	14		32	
0	2	6	10	14	18	50	

Periodic Table of Elements

Periodic Table of Elements

Same color is same "group" – elements with similar properties

Electronic Band Structure

- Valence Shell: outermost shell with electrons
- □ Covalent bonds: Atoms near each other with incomplete valence shell "share" electrons that fill valence shell
- □ Shells "above" valence shell
 - Have higher energies
 - Allow electrons to escape much easier
- In solids, differences between energy levels in neighboring orbitals becomes small (but non 0), and group into BANDS
 - Conduction Bands: Those above valence
 - If conduction band overlaps valence band electrons can move
 - I.E. "Current" can flow easily

Metals and Insulators

Metal:

- typically valence shell only partially filled
- may readily lose electrons from valence
- atoms become positively charged "holes"
- surrounded by "sea of free electrons"

Insulator (non-metal):

- valence shell is near full
- tough to pry out an electron
- when near a metal, loses an electron to form strong ionic bond

What Makes Electrons Move?

- Coulomb's Law: Force between two separated charged particles
 - Force = $-q_iq_i/(4\pi\epsilon r^2)$
 - q_i, q_i: charges of two particles in coulombs
 - r: distance between charges
 - ε ("episilon"): permittivity of material
 - If signs of q the same, force is repulsive
 - If signs different, force is attractive
- Mass of electron ~ 1/1836'th of proton
- \Box Electric field around charge i at radius r: $E = q_i/(4\pi ε r^2)$
 - In units of Volts: "force per unit charge"
 - Force on particle j is thus Eq_i

$$E = V/d$$

$$V = Q/C$$

$$E = Q/Cd$$

$$V$$

Resistance

- Conduction electrons drawn from region nearest +
- 2. This leaves positive "holes"
- 3. Which attract electrons from next region
- 4. ...
- 5. At "-" end, electrons are drawn from potential

Current flow is hole flow from + into material and out towards negative end. (OPPOSITE electrons)
How much flow depends on Voltage and Resistance

Current = Voltage / Resistance or Resistance = Voltage / Current Resistance in units of ohms (Ω), or $1\Omega = 1 \text{ Volt } / 1 \text{ Amp}$

Resistance $R = \rho L/A$:

- A = Cross section area
- L = Length of material
- ρ (rho) = Resistivity of material (in units of ohm meter)

Material	Resistivity, p (ohm-meter)
Metals	10-8
Semiconductors	variable 10 24
Electrolytes	variable
Insulators	1016
Superconductors	s 0 (exactly)

Kirchhoff's Laws

Resistance $R = \rho L/A$:

- A = cross section area
- L = length of material
- $\rho = resistivity$ of material (in units of ohm meter)

Current Density (J)

Current Density J = Current/Area = Amps/m² = V/(ρ L) (J is a "vector" with direction along path of electrons)

Why do we care? Too high a current density can cause:

- Metal migration
- Burnout
- Skin effect

Capacitors

Basic device:

- 2 conducting plates (of area A)
- Separated by a distance d
- With "dielectric" insulator material between
 - SiO₂ typical on chips

C (in units of *Farads* F: Coulombs / Volts) = ε A / d where ε = "*permittivity*" of material, often written as $\varepsilon_r \varepsilon_0$

- ε_0 = permittivity of vacuum = 8.854x10⁻¹² F m⁻¹
- ε_r = permittivity of material relative to vacuum
- 1 F = 1 Coulomb / 1 Volt

What happens with large ε_r ?

Material	Episilon[r]				
Aluminium	-1.30E+17				
Silver	-8.50E+13				
Vacuum	1				
Air	1.00058986				
PTFE/Teflon	2.1				
Polyethylene	2.25				
Polyimide	3.4				
Paper	3.5				
Electroactive polymers	2-12				
Silicon dioxide	(3.9)				
Concrete	4.5				
Pyrex (Glass)	4.7				
Rubber	7				
Diamond	5.5-10				
Graphite	10-15				
Silicon	11.68				
Water	88				
Titanium dioxide	86-173				
Strontium titanate	310				
Barium strontium titanate	500				
Barium titanate	1250-10,000				
(La,Nb):(Zr,Ti)PbO3	500-6000				

Capacitors in Action

(a) Both plates have no charge

Which Direction is Current Flow?

- (b) Switch closes
- 1. Electrons attracted off of left plate into battery
- 2. Left plate becomes positively charged
- 3. Atoms in dielectric have electrons attracted to left
- 4. This pushes positive charge to right
- 5. Electrons on right plate attracted to leftmost side
- 6. Leaving positive charge in right wire
- 7. Which is neutralized by electrons from battery
- 8. Current stops when charge Q = CV

Semiconductors

Key Materials: Si, B, P

H	hydrogen noor metals									He							
Li ³	Be	alkali metals alkali earth metals		□ no	□ nonmetals ■ noble gases					С ⁶	N ⁷	o [®]	F ⁹	Ne			
Na Na	Mg	transition metals		rare earth metals				AI	Si 14	15 P	S 16	CI	Ar				
K ¹⁹	Ca 20	SC ²¹	Ti ²²	V ²³	Cr ²⁴	Mn 25	Fe ²⁶	Co ²⁷	Ni Ni	Cu ²⁹	Zn 30	Ga ³¹	Ge 32	As	Se ³⁴	Br 35	36 Kr
Rb	Sr Sr	Y 39	Zr 40	Nb	Mo ⁴²	TC 43	Ru	Rh 45	Pd 46	Ag 47	Cd 48	In	Sn 50	Sb 51	Te ⁵²	53 I	Xe
Cs ⁵⁵	Ba Ba	La	Hf 72	Ta ⁷³	W ⁷⁴	Re	Os Os	Ir 77	Pt 78	Au	Hg ⁸⁰	Ti 81	Pb	Bi Bi	84 Po	At 85	Rn 86
Fr 87	Ra Ra	Ac Ac	Unq	Unp		Uns	Uno		Unn								

Material	Atomic #	Electrons per Shell
Silicon Si	14	2, 8, 4
Boron B	5	2, 3
Phosphorus	15	2, 8, 5

Silicon

Si: silicon – has 4 electrons and space for 4 more in valence shell

Doping: Mixing Into Pure Silicon

P or Phosphorus

- •one more electron in valence than Si
- •known as a *donor* atom

B or Boron

- •one less electron in valence than Si
- •known as a acceptor atom

PN Junctions

- A junction between p-type and n-type semiconductor forms a diode.
- Current flows only in one direction

The "Why" of PN Junctions

- •Electrons move from N to P materials
- With holes that "move right"
- Until charge near surface at PN repels more

- If $V \le 0$, no current flows
 - V reinforces depletion zone
- If $0 < V < V_{bi}$
 - V cannot overcome attraction in junction
 - Depletion zone shrinks
 - No current flows
- If $V \ge V_{bi}$
 - Electrons pulled left from P-junction
 - Holes in N-type filled with electrons from V
 - Current flows

nMOS Transistor

- ☐ Four terminals: gate, source, drain, body
- □ Gate oxide body stack looks like a capacitor
 - Gate and body are conductors
 - SiO₂ (oxide) is a very good insulator
 - Called metal oxide semiconductor (MOS) capacitor
 - Even though gate is often not metal

nMOS Operation

- Body is commonly tied to ground (0 V)
- When the gate is at a low voltage:
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF
 - No current flows, transistor is OFF

nMOS Operation Contt.

- When the gate is at a high voltage:
 - Positive charge on gate of MOS capacitor
 - Negative charge attracted to body
 - Inverts a channel under gate to n-type
 - Now <u>electrons</u> can flow through n-type silicon from source through channel to drain
 - Current flows from the drain to the source (Why?)

pMOS Transistor

- Similar, but doping and voltages reversed
 - Body tied to high voltage (V_{DD})
 - Gate low: transistor ON
 - Gate high: transistor OFF
 - "Bubble" on gate symbol indicates inverted behavior
 - Holes (and current) flow from the source to the drain

Circuit Symbols

- When not shown, standard is:
 - NMOS Body is tied to V_{SS}, the logic negative voltage supply.
 - PMOS Body is tied to V_{DD}, the logic positive voltage supply.

The "Water" Analog

- □ Think of electrons as "drops of water"
- Water flows from high pressure (high voltage) to low pressure (low voltage)
- □ Flow of water can fill up a container (capacitor)
 - "Height" of water = voltage
- How high a certain amount of water fills a container depends on area of container
 - Wider area = higher capacitance => more water flow needed to raise level
- □ Transistors like toilet "flapper valves"
 - Turn "on" when water level reaches threshold
 - Assume threshold = 0.5 height in following

CMOS Switching Circuits

- Computing machines built from switches
- Encoding: voltage at points in circuit
- Operation: moving charge around

A Simple Inverter

switching

threshold

NMOS conducts when charge (water) level is above switching threshold

PMOS conducts when level below

No conduction after output container is full

MOS Transistors as Switches

- View MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

Textbook and readings

- CMOS VLSI Design: A Circuits and Systems Perspective
 - Book by David Harris and Neil Weste

THANK YOU