Física Estadística Computacional

Percolación - 1° cuatrimestre 2017

Problema 1: Determinación de p_c

Considere redes cuadradas de lado L = 4, 16, 32, 64, 128.

- (a) Estime el valor de la probabilidad crítica (p_c) , registrando los valores de p para los cuales aparece el cluster percolante. Comience con p=1/2, si el sistema percola repueble la red (usando la misma semilla de números pseudo-aleatorios) con p=p-1/4. En caso contrario, use p=p+1/4. Repita este procedimiento sumando o restando 1/8, 1/16, ..., hasta alcanzar la precisión deseada. Promedie luego sobre diferentes realizaciones de la red (semillas).
- (b) Calcule la probabilidad de aparición del cluster percolante F(p) dp cuando $p \in [p, p + dp]$. Estime $p_c(L)$ como el valor de p para el cual la red percola al menos la mitad de las veces. Compare con el método anterior.
- (c) Estudie cómo se comporta la dispersión de los valores obtenidos en los puntos anteriores para p_c , en función del tamaño del sistema.
- (d) Utilizando los resultados anteriores para fijar un rango de búsqueda, emplee el ajuste χ^2 a la distribución de fragmentos para deteminar $p_c(L)$. Recuerde que $n_s(p_c) \sim s^{-\tau}$, por lo que $\ln(n_s)$ vs. s debe ajustarse mediante una recta cuando $p = p_c$.

Problema 2: P_{∞}

Calcule la intensidad del cluster percolante P_{∞} en función de p para diversos tamaños de red.

Problema 3: dimensión fractal

Encuentre la masa M del cluster percolante para $p=p_c$ como función de L. Calcule la dimensión fractal involucrada.

Problema 4: hipótesis de scaling

Según la hipótesis de scaling $n_s(p) = q_0 s^{-\tau} f(z)$ con $z = s^{\sigma} \cdot \epsilon$. Pues bien, encuentre la función de scaling f(z). Utilice para ello una red de L = 64, el valor de τ ya calculado en el punto 1(d) y el valor de σ correspondiente a $L = \infty$. Utilice eventos provenientes de un amplio rango de p, considerando sólo fragmentos $0.01 < s/s_0 < 0.12$.

Problema 5: exponente σ

Conociendo ya la forma cualitativa de f(z) estime el valor del exponente crítico σ . Para ello, estudie para clusters de tamaño $1 \le s \le 15$, cuál es el valor de ε_s para el cual la producción de fragmentos de tamaño s se maximiza.

Problema 6: γ -matching

Para L=6,128 encuentre el exponente crítico γ . Para ello, estudie el comportamiento cerca de $\varepsilon=0$ de

$$m_2(p) = \sum_{s=1}^{s_\infty} n_s s^2 \sim c_{\pm} |\varepsilon|^{-\gamma}$$
(1)

Problema 7: Grupo de renormalización

Enumere las configuraciones percolantes para una celda b=2. Encuentre la relación de recursión correspondiente y los puntos fijos asociados. Utilice diversos criterios de percolación interna y compare. Encuentre p^* y ν .