15. Representative-learning

Intro

Hypothesis

:Unlabeled data can be used to learn a good representation.

- Supervised & semi-supervised & unsupervised learning
 - Supervised learning:
 - Training with supervised learning techniques on the labeled subset often results in severe overfitting.
 - semi-supervised learning:
 - Also learning from the unlabeled data
 - learn good representations -> unlabeled data: Possible

15.1 Greedy Layer-Wise Unsupervised Pretraining

- A representation learned for one task can sometimes be useful for another task(SL).
 - Unsupervised Pretraining -> Train a DSN(deeo supervised network) without convolution or recurrence

Compose

- Layer -> pretrained by unspervised learning -> simpler output for nexe Layer
 - A single-layer representation learning algorithm
 - RBM
 - A single-layer autoencoder
 - A sparse coding model

Effect

(there are some citations in the book)

- Sidestep the difficulty of jointly training the layers of NNs(supervised task)
 - o Initialization for a joint learning
 - Even fully-connected architectures
 - for other unsupervised learning algorithms:
 - deep autoencoders, probabilistic models with many layers of latent variables
 - models above:
 - deep belief networks
 - deep Boltzmann machines

Interpretation

- greedy: optimizes each piece of the solution independently
- layer-wise: proceeds one layer while freezes the previous one(s)?
- unsupervised
- pretraining: the first step before joint fune-tuning
 - Regularizer(正则化) / parameter initialization
 - Common use of pretraining:
 - Pretraining
 - Supervised learning
 - training a classifier based on pretraining phase
 - or supervised fine-tuning

Why Does Unsupervised Pretraining Work?

Combination of two different ideas:

- Initial parameters -->> Regularizing effect on the model
 - Out-of-date idea: Local initialization -> Local Minimum
 - Now:
 - standard neural network training procedures usually do not arrive at a critical point
 - Local-pretraining-initialization -> Inaccessible areas
 - Problems:
 - What unsupervising-pretrained parameters should be retained for supervised learning next?
 - UL + SL at the same time
 - Another reason: the constraints imposed by the output layer are naturally included from the start.
 - (or)Freezing the parameters for the feature extractors
 - But how unsupervised pretraining can act as a regularizer?
 - One hypothesis:

Pretraining encourages the learning algorithm to discover features that relate to the underlying causes that generate the observed data.

Learning input distribution helps mapping from inputs to outputs

- basis: Features that are useful for the unsupervised task may also be useful for the supervised learning task
 - The effectiveness of features learned through unsupervised training heavily depends on the specific model architecture. For example, a top-layer linear classifier requires features that make the underlying classes linearly separable.

- When the initial representation is poor, unsupervised will be more effective.

- Example:
 - Word embeddings
 - Idea: Unsupervised pretraining as learning a representation.
 - One-hot vector representation: can't quantify **distance** between vectors
 - Embeddings: encode similarity -> better for processing words
 - Less labeled examples scenerios
 - Idea: Unsupervised pretraining as a regularizer.

- When the function to be learned is extremely complicated, UP is more useful.

Unsupervised learning differs from regularizers like weight decay because it does not bias the learner toward discovering a simple function but rather toward discovering feature functions that are useful for the unsupervised learning task.

Complicated function is too much for regularizers like weight decay[^1].

Application

- Improve classifiers & reduce test set errors
- Improve optimization
 - Why? --UP takes the parameters into a region that would otherwise be inaccessible.
 - Why inaccessible?
 - gradient becomes small
 - early stop(to prevent overfitting)
 - the gradient is large but it is difficult to find a downhill step due to problems such as stochasticity or poor conditioning of the Hessian.
 - Pretraining reduces the variance of the estimation process, initializes neural network parameters into a region that they do not escape
 - results: more consistent

Disadvantages

- Two separate training phases:
 - Too many hyperparameters -> Effects can't be predicted before the try

- UL + SL without P: one single decisive parameter
- Different hyperparameters in two phases:
 - Params -> Forward feedback -> Gradient calculate -> Backward feedback -> Update params