Mathematical Reference

Leonardo Cerasi¹

GitHub repository: LeonardoCerasi/notes

 $[\]mathbf{1}_{\text{leo.cerasi@pm.me}}$

Contents

l	Mu	ıltilinear Algebra	1							
1	Vector Spaces and Applications									
	1.1	Matrices	3							
		1.1.1 Linear systems of equations	5							
	1.2									
		1.2.1 Subspaces	7							
		1.2.2 Bases	9							
	1.3	Linear applications	9							
	1.4	Inner products	9							
Αŗ	pend	dices	10							
A	Logi	ic Binary relations	12 12							
	Α.1	Diliary relations	12							
In	dex		14							

Part I Multilinear Algebra

Vector Spaces and Applications

§1.1 Matrices

Definition 1.1.1 (Matrix)

Given a field \mathbb{K} and $n, m \in \mathbb{N}$, an $n \times m$ matrix on \mathbb{K} is the object:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \equiv [a_{ij}]_{j=1,\dots,m}^{i=1,\dots,n} : a_{ij} \in \mathbb{K} \ \forall i = 1,\dots,n, \ j = 1,\dots,m$$

The set of all $n \times m$ matrices on \mathbb{K} is denoted by $\mathbb{K}^{n \times m}$.

When the dimensions of the matrix A are unambiguous, we simply write $A = [a_{ij}]$. We say that an $n \times n$ matrix is a **square matrix**, an $n \times 1$ matrix is a **column vector** and a $1 \times n$ matrix is a **row vector**.

It is possible to define three operations between matrices:

- sum $+: \mathbb{K}^{n \times m} \times \mathbb{K}^{n \times m} \to \mathbb{K}^{n \times m}: [a_{ij}]_{j=1,\dots,m}^{i=1,\dots,n} + [b_{ij}]_{j=1,\dots,m}^{i=1,\dots,n} \mapsto [a_{ij} + b_{ij}]_{j=1,\dots,m}^{i=1,\dots,n}$
- product by a scalar $\cdot : \mathbb{K} \times \mathbb{K}^{n \times m} \to \mathbb{K}^{n \times m} : \alpha \cdot [a_{ij}]_{j=1,\dots,m}^{i=1,\dots,n} = [\alpha a_{ij}]_{j=1,\dots,m}^{i=1,\dots,n}$
- product $\cdot : \mathbb{K}^{n \times p} \times \mathbb{K}^{p \times m} \to \mathbb{K}^{n \times m} : [a_{ij}]_{j=1,\dots,p}^{i=1,\dots,n} \cdot [b_{ij}]_{j=1,\dots,m}^{i=1,\dots,p} = [c_{ij}]_{j=1,\dots,m}^{i=1,\dots,n}, c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$

Note that αa_{ij} is the K-product.

Proposition 1.1.1

 $(\mathbb{K}^{n\times m},+)$ is an abelian group.

Proof. The matrix sum is equivalent to the \mathbb{K} -sum of corresponding elements, which is associative and commutative. The neutral element is the zero matrix $0_{n\times m}=[0]_{j=1,\dots,m}^{i=1,\dots,n}$, while the inverse element is $-A=[-a_{ij}]_{j=1,\dots,m}^{i=1,\dots,n}$.

Theorem 1.1.1

 $(\mathbb{K}^{n\times n},+,\cdot)$ is a non-commutative ring.

Proof. By Prop. 1.1.1, $(\mathbb{K}^{n\times n}, +)$ is an abelian group. It is trivial to show the associativity and distributivity of the matrix product, i.e.:

1.
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$
, $\lambda(A \cdot B) = (\lambda A) \cdot B = A \cdot (\lambda B) \ \forall A, B, C \in \mathbb{K}^{n \times n}$, $\lambda \in \mathbb{K}$

2.
$$A \cdot (B + C) = A \cdot B + A \cdot C$$
, $(A + B) \cdot C = A \cdot C + B \cdot C \ \forall A, B, C \in \mathbb{K}^{n \times n}$

Finally, the neutral element of the matrix product is the identity matrix $I_n = [\delta_{ij}]_{i,j=1,\dots,n}$. \square

Definition 1.1.2 (Transposed matrix)

Given a matrix $A \in \mathbb{K}^{n \times m}$, its **transpose** is defined as $A^{\intercal} \in \mathbb{K}^{m \times n}$: $[a_{ij}^{\intercal}]_{j=1,\dots,n}^{i=1,\dots,m} = [a_{ji}]_{i=1,\dots,n}^{j=1,\dots,n}$.

A square matrix $A \in \mathbb{K}^{n \times n}$ is said **symmetric** if $A^{\intercal} = A$ or **antisymmetric** if $A^{\intercal} = -A$, and it is **diagonal** if $a_{ij} = 0 \ \forall i \neq j \in \{1, \dots, n\}$.

Definition 1.1.3 (Inverse matrix)

A square matrix $A \in \mathbb{K}^{n \times n}$ is **invertible** if $\exists A^{-1} \in \mathbb{K}^{n \times n} : A^{-1} \cdot A = A \cdot A^{-1} = I_n$.

Example 1.1.1 (Non-invertible matrix)

The matrix $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ is non-invertible, as $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} 2\alpha & 2\beta \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ \forall \alpha, \beta, \gamma, \delta \in \mathbb{R}.$

Definition 1.1.4 (General linear group)

The **general linear group** $GL(n, \mathbb{K})$ is defined as the subset of $\mathbb{K}^{n \times n}$ of all invertible matrices.

Note that $GL(1, \mathbb{K}) = \mathbb{K} - \{0\}.$

Theorem 1.1.2

 $(GL(n, \mathbb{K}), \cdot)$ is a non-abelian group.

Proof. The neutral element is I_n , as $I_n^{-1} = I_n \implies I_n \in GL(n, \mathbb{K})$, while the existence of the inverse is granted by definition. We only have to show closure under matrix multiplication:

$$(AB)^{-1} = B^{-1}A^{-1} \iff I_n = A \cdot A^{-1} = AI_nA^{-1} = ABB^{-1}A^{-1} = (AB)(AB)^{-1}$$

Hence, $A, B \in GL(n, \mathbb{K}) \implies AB \in GL(n, \mathbb{K})$.

§1.1.1 Linear systems of equations

A linear equation with $n \in \mathbb{N}$ variables and \mathbb{K} -coefficients is an expression of the form:

$$a_1x_1 + \cdots + a_nx_n = b$$
 $a_i, b \in \mathbb{K} \ \forall i = 1, \dots, n$

A **solution** of the equation is an *n*-tuple $(\bar{x}_1,\ldots,\bar{x}_n)\in\mathbb{K}^n$ which satisfies this expression.

Definition 1.1.5 (Linear system of equations)

A linear system of equations (or simply **linear system**) is a collection of m linear equations with n variables:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases} \iff \mathbf{A}\mathbf{x} = \mathbf{b}$$

where we defined:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \in \mathbb{K}^{m \times n} \qquad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{K}^{m \times 1} \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^{n \times 1}$$

Two linear systems with the same set of solutions are called **equivalent systems**: note that two equivalent systems must have the same number of variables, but not necessarily the same number of equations.

Based on the cardinality of its solution set, a linear system is said to be **impossible** if it has no solutions, **determined** if it has one solution and **undetermined** if it has infinitely-many solutions. Moreover, if the solution set can be parametrized by $k \in \mathbb{N}_0$ variables, the system is of kind ∞^k : a determined system is of kind ∞^0 .

Linear systems can be systematically solved applying a reduction algorithm to their corresponding matrices: **Gauss algorithm**. Starting with a general composed matrix $[A|\mathbf{b}] \in \mathbb{K}^{m \times (n+1)}$, first we multiply the first row by a_{11}^{-1} , so that:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & a'_{12} & \dots & a'_{1n} & b'_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

Then, at each row R_2, \ldots, R_m we apply the transformation $R_k \mapsto R_k - a_{k1}R_1$, so that:

$$\begin{bmatrix} 1 & a'_{12} & \dots & a'_{1n} & b'_{1} \\ a_{21} & a_{22} & \dots & a_{2n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_{m} \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & a'_{12} & \dots & a'_{1n} & b'_{1} \\ 0 & a'_{22} & \dots & a'_{2n} & b'_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a'_{m2} & \dots & a'_{mn} & b'_{m} \end{bmatrix}$$

Reiterating this process to progressively smalles submatrices, the algorithm yields the general transformation:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & a'_{12} & \dots & a'_{1n} & b'_1 \\ 0 & 1 & \dots & a'_{2n} & b'_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & b'_m \end{bmatrix}$$

As these are linear transformations, the two matrices represent equivalent linear systems: the transformed linear system is substantially easier to solve, and its solution set is a solution set of the starting linear system too.

Definition 1.1.6 (Character)

Given a matrix $M \in \mathbb{K}^{n \times m}$, its **character** car(M) is the number of non-zero rows remaining after Gauss reduction.

It can be proven that the character is independent of the operations performed during the reduction algorithm.

Theorem 1.1.3 (Rouché-Capelli theorem)

A linear system $A\mathbf{x} = \mathbf{b}$ has solutions only if $\operatorname{car}(A) = \operatorname{car}([A|\mathbf{b}])$. Moreover, if the system has solutions, then it is of kind ∞^{n-r} , with n number of variables and $r = \operatorname{car}(A)$.

§1.2 Vector spaces

Definition 1.2.1 (Vector space)

Given a set $V \neq \emptyset$ and a field K, then V is a K-vector space if there exist two operations:

$$+: V \times V \to V : (\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} + \mathbf{w}$$
 $\cdot: \mathbb{K} \times V \to V : (\lambda, \mathbf{v}) \mapsto \lambda \cdot \mathbf{v}$

such that (V, +) is an abelian group and the following properties hold $\forall \lambda, \mu \in \mathbb{K}, \mathbf{v}, \mathbf{w} \in V$:

1.
$$(\lambda + \mu) \cdot (\mathbf{v} + \mathbf{w}) = \lambda \cdot \mathbf{v} + \mu \cdot \mathbf{v} + \lambda \cdot \mathbf{w} + \mu \cdot \mathbf{w}$$

2.
$$(\lambda \cdot \mu) \cdot \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v}) = \mu \cdot (\lambda \cdot \mathbf{v})$$

3.
$$1_{\mathbb{K}} \cdot \mathbf{v} = \mathbf{v}$$

Note that there are three unique neutral elements: $0_{\mathbb{K}}$, $1_{\mathbb{K}}$ and $0_{V} \equiv \mathbf{0}$. In the following, the multiplication symbol \cdot is suppressed, as the factors clarify which multiplication is occurring $(\cdot : \mathbb{K} \times \mathbb{K} \to \mathbb{K} \text{ or } \cdot : \mathbb{K} \times V \to V$, which have the same neutral element $1_{\mathbb{K}}$).

Example 1.2.1 (Complex numbers)

 $V=\mathbb{C}$ is a vector space both for $\mathbb{K}=\mathbb{R}$ and $\mathbb{K}=\mathbb{C}$, although they are different objects.

Example 1.2.2 (Field as vector space)

 $V = \mathbb{K}$ is a \mathbb{K} -vector space. Note that, in this case, $0_{\mathbb{K}} \equiv 0_V$.

Note that, by the uniqueness of 0_V , then $\forall \mathbf{v} \in V \exists ! - \mathbf{v} \in V : \mathbf{v} + (-\mathbf{v}) = 0_V$, so the following cancellation rule holds $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$:

$$\mathbf{u} + \mathbf{v} = \mathbf{w} + \mathbf{v} \implies \mathbf{u} = \mathbf{w} \tag{1.1}$$

We can now state some basic properties of vector spaces.

Lemma 1.2.1 (Basic properties)

Given a \mathbb{K} -vector space V, then $\forall \lambda \in \mathbb{K}, \mathbf{v} \in V$:

a.
$$0_{\mathbb{K}} \cdot \mathbf{v} = 0_V$$

c.
$$\lambda \cdot 0_V = 0_V$$

b.
$$(-\lambda) \cdot \mathbf{v} = -(\lambda \cdot \mathbf{v})$$

d.
$$\lambda \cdot \mathbf{v} = 0_V \iff \lambda = 0_{\mathbb{K}} \vee \mathbf{v} = 0_V$$

Proof. Respectively:

- a. Consider $c \in \mathbb{K} \{0_{\mathbb{K}}\}$; then $c\mathbf{v} + 0_V = c\mathbf{v} = (c + 0_{\mathbb{K}})\mathbf{v} = c\mathbf{v} + 0_{\mathbb{K}} \cdot \mathbf{v}$, which by Eq. 1.1 proves $0_{\mathbb{K}} \cdot \mathbf{v} = 0_V$.
- b. $\lambda \mathbf{v} + (-\lambda)\mathbf{v} = (\lambda \lambda)\mathbf{v} = 0_{\mathbb{K}} \cdot \mathbf{v} = 0_V$, which by the uniqueness of the negative element proves $(-\lambda)\mathbf{v} = -(\lambda \mathbf{v})$.
- c. $\lambda \cdot 0_V = \lambda(\mathbf{v} \mathbf{v}) = \lambda \mathbf{v} + \lambda \cdot (-1_{\mathbb{K}}) \cdot \mathbf{v} = \lambda \mathbf{v} + (-\lambda)\mathbf{v} = \lambda \mathbf{v} (\lambda \mathbf{v}) = 0_V$
- d. $\lambda = 0_{\mathbb{K}}$ is trivial, so consider $\lambda \neq 0_{\mathbb{K}}$; then $\exists ! \lambda^{-1} \in \mathbb{K} : \lambda^{-1} \cdot \lambda = 1_{\mathbb{K}}$, so $0_V = \lambda^{-1} \cdot 0_V = \lambda^{-1} \cdot (\lambda \mathbf{v}) = (\lambda^{-1} \cdot \lambda) \mathbf{v} = 1_{\mathbb{K}} \cdot \mathbf{v} = \mathbf{v}$, i.e. $\mathbf{v} = 0_V$.

§1.2.1 Subspaces

Definition 1.2.2 (Subspace)

Given a \mathbb{K} -vector space V and a subset $U \subseteq V : U \neq \emptyset$, then U is a **subspace** of V if it is closed under $+: U \times U \to U$ and $\cdot: \mathbb{K} \times U \to U$.

Lemma 1.2.2

If U is a subspace of $V(\mathbb{K})$, then $0_V \in U$.

Proof. By definition $U \neq \emptyset \implies \exists \mathbf{v} \in U$. By the closure condition $\lambda \mathbf{v} \in U \ \forall \lambda \in \mathbb{K}$, hence taking $\lambda = 0_{\mathbb{K}}$ proves the thesis.

A typical strategy to prove that U is a subspace of $V(\mathbb{K})$ is showing the closure properties, while to prove that it is *not* a subspace we usually show that $0_V \notin U$.

Example 1.2.3 (Polynomial subspaces)

Given $V = \mathbb{K}[x]$, then $U = \mathbb{K}_n[x]$ is a subspace $\forall n \in \mathbb{N}_0$.

An important concept to analyze vector spaces is that of linear combination. Given two sets $\{\lambda_k\}_{k=1,\dots,n} \subset \mathbb{K}$ and $\{\mathbf{v}_k\}_{k=1,\dots,n} \subset V$, their **linear combination** is:

$$\sum_{k=1}^{n} \lambda_k \mathbf{v}_k = \lambda_1 \mathbf{v}_1 + \dots \lambda_n \mathbf{v}_n \in V$$
(1.2)

Proposition 1.2.1 (Subspaces and linear combinations)

Given a \mathbb{K} -vector space V and $U \subset V : U \neq \emptyset$, then U is a subspace of V if and only if it is closed under linear combinations, that is:

$$\{\lambda_k\}_{k=1,\dots,n} \subset \mathbb{K}, \{\mathbf{v}_k\}_{k=1,\dots,n} \subset U \implies \sum_{k=1}^n \lambda_k \mathbf{v}_k \in U$$

Proof. First, note that the general case of linear combinations of n vectors can be reduced to the case of 2 vectors.

- (\Rightarrow) Being U a subspace, it is closed under $+: U \times U \to U$ and $\cdot: \mathbb{K} \times U \to U$; then, by definition $\lambda, \mu \in \mathbb{K}, \mathbf{v}, \mathbf{w} \in U \implies \lambda \mathbf{v} + \mu \mathbf{w} \in U$.
- (\Leftarrow) Given $\lambda \in \mathbb{K}$ and $\mathbf{v}, \mathbf{w} \in V$, then $\mathbf{v} + \mathbf{w} = 1_{\mathbb{K}} \mathbf{v} + 1_{\mathbb{K}} \mathbf{w}$ and $\lambda \mathbf{v} = \lambda \mathbf{v} + 0_{\mathbb{K}} \mathbf{w}$, hence closure under linear combinations implies closure under $+: U \times U \to U$ and $\cdot: \mathbb{K} \times U \to U$.

Generally, it is easier to show closure under linear combinations rather than under addition and scalar multiplication.

Lemma 1.2.3 (Intersection of subspaces)

Given two subspaces of V_1, V_2 of $V(\mathbb{K})$, then $V_1 \cap V_2$ is still a subset of $V(\mathbb{K})$.

Proof. Being V_1, V_2 subspaces, both V_1 and V_2 are closed under linear combinations, so $V_1 \cap V_2$ is too, as $\mathbf{v} \in V_1 \cap V_2 \implies \mathbf{v} \in V_1 \wedge \mathbf{v} \in V_2$.

On the other hand, in general $V_1 \cup V_2$ is not a subspace. As a counterexample, consider e.g. $V = \text{Vect}_0(\mathbb{E}^3)$, the plane $\pi : z = 0$ and the line $r : (x, y, z) = (0, 0, t), t \in \mathbb{R}$; then, consider the subspaces $V_1 = \text{Vect}_0(\pi), V_2 = \text{Vect}_0(r)$: their union is clearly not closed under addition, as:

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \in V_1, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in V_2 \qquad \qquad \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \notin V_1 \cup V_2$$

Definition 1.2.3 (Sum of subspaces)

Given a K-vector space V and two subspaces V_1, V_2 , their **sum** is defined as:

$$V_1 + V_2 := \{ \mathbf{w} \in V : \mathbf{w} = \mathbf{u} + \mathbf{v}, \mathbf{u} \in V_1, \mathbf{v} \in V_2 \}$$

This is a **direct sum**, denoted by $V_1 \oplus V_2$, if every $\mathbf{w} \in V_1 + V_2$ has a unique expression as $\mathbf{w} = \mathbf{u} + \mathbf{v}, \mathbf{u} \in V_1, \mathbf{v} \in V_2$.

Trivially $V_1, V_2 \subseteq V_1 + V_2$.

Lemma 1.2.4 (Direct sum as disjoint sum)

Given two subspaces V_1, V_2 of $V(\mathbb{K})$, then $V_1 + V_2 = V_1 \oplus V_2 \iff V_1 \cap V_2 = \{\mathbf{0}\}.$

Proof. (\Rightarrow) Suppose $\exists \mathbf{v} \in V_1 \cap V_2 : \mathbf{v} \neq \mathbf{0}$; then $\mathbf{v} = \mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v}$, i.e. the expression of $\mathbf{v} \in V_1 + V_2$, but the expression of $\mathbf{v} \in V_1 \oplus V_2$ must be unique, hence $\mathbf{v} = \mathbf{0} \rightarrow \leftarrow$. (\Leftarrow) Suppose $\exists \mathbf{w} \in V_1 + V_2 : \mathbf{w} = \mathbf{u}_1 + \mathbf{v}_1 = \mathbf{u}_2 + \mathbf{v}_2, \mathbf{u}_1 \neq \mathbf{u}_2 \in V_1, \mathbf{v}_1 \neq \mathbf{v}_2 \in V_2$; then $V_1 \ni \mathbf{u}_1 - \mathbf{u}_2 = \mathbf{v}_2 - \mathbf{v}_1 \in V_2 \implies \mathbf{v}_2 - \mathbf{v}_1 \in V_1$, so $\mathbf{v}_2 - \mathbf{v}_1 \in V_1 \cap V_2$, but $V_1 \cap V_2 = \{\mathbf{0}\}$, hence $\mathbf{v}_2 = \mathbf{v}_1$ and idem for $\mathbf{u}_1 = \mathbf{u}_2 \rightarrow \leftarrow$.

The sum of subspaces preserves the subspace structure, contrary to the simple union.

Proposition 1.2.2 (Sum as subspace)

Given a K-vector space and two subspaces V_1, V_2 , their sum $V_1 + V_2$ is still a subspace of V.

Proof. Consider $\mathbf{a}, \mathbf{b} \in V_1 + V_2$ and define $\mathbf{u}_{a,b} \in V_1, \mathbf{v}_{a,b} \in V_2 : \mathbf{a} = \mathbf{u}_a + \mathbf{v}_a \wedge \mathbf{b} = \mathbf{u}_b + \mathbf{v}_b$: as V_1, V_2 are subspaces, they are closed under linear combinations, so, given $\lambda, \mu \in \mathbb{K}$, then $\lambda \mathbf{a} + \mu \mathbf{b} = (\lambda \mathbf{u}_a + \mu \mathbf{u}_b) + (\lambda \mathbf{v}_a + \mu \mathbf{v}_b) \equiv \mathbf{u} + \mathbf{v} \in V_1 + V_2$, where $\mathbf{u} \in V_1$ and $\mathbf{v} \in V_2$, which shows that $V_1 + V_2$ too is closed under linear combinations and a subspace by Prop. 1.2.1. \square

§1.2.2 Bases

To give a more explicit description of vector spaces, we have to define the concept of basis and its properties.

§1.2.2.1 Generators

Definition 1.2.4 (Linear dependence)

Given a K-vector space V and a subset $\{\mathbf{v}_i\}_{i=1,\dots,k} \equiv S \subseteq V$, then the vectors of S are:

- linearly dependent (LD) if $\exists \{\lambda_i\}_{i=1,\dots,k} \subset \mathbb{K} \{0\} : \lambda_1 \mathbf{v}_1 + \dots \lambda_k \mathbf{v}_k = \mathbf{0}$
- linearly independent (LI) if $\lambda_1 \mathbf{v}_1 + \dots \lambda_k \mathbf{v}_k = \mathbf{0} \iff \lambda_j = 0 \ \forall j = 1, \dots, k$

§1.3 Linear applications

§1.4 Inner products

Logic

§A.1 Binary relations

Definition A.1.1 (Binary relation)

Given two sets \mathcal{A} , \mathcal{B} and their cartesian product $\mathcal{A} \times \mathcal{B} := \{(a, b) : a \in \mathcal{A} \land b \in \mathcal{B}\}$, a **binary relation** \mathfrak{R} is a subset of $\mathcal{A} \times \mathcal{B}$. Two elements $a \in \mathcal{A}$, $b \in \mathcal{B}$ are related, and we write $a\mathfrak{R}b$, if $(a, b) \in \mathfrak{R} \subseteq \mathcal{A} \times \mathcal{B}$.

If $\mathcal{B} = \mathcal{A}$, we say that \mathfrak{R} is a relation "on" \mathcal{A} .

Definition A.1.2 (Function)

A function between two sets \mathcal{A} , \mathcal{B} is a relation \mathfrak{R}_f such that, given an element $a \in \mathcal{A}$, then there exists at most one element $b \in \mathcal{B}$: $a\mathfrak{R}_f b$.

We usually write b = f(a) in place of $a\mathfrak{R}_f b$.

Definition A.1.3 (Equivalence relation)

Given a set \mathcal{A} , a relation \mathfrak{R} on \mathcal{A} is an **equivalence relation** if it has the following properties:

- 1. reflexivity: $a\Re a \ \forall a \in \mathcal{A}$;
- 2. symmetry: $a\Re b \iff b\Re a \ \forall a,b \in \mathcal{A}$;
- 3. transitivity: $a\Re b \wedge b\Re c \implies a\Re c \ \forall a,b,c \in \mathcal{A}$.

Example A.1.1

Take $\mathcal{A} = \mathbb{Z}$. Then, the relation $a\Re b \iff \exists k \in \mathbb{Z} : a-b=2k$ is an equivalence relation: a-a=2k with k=0 (reflexivity), $a-b=2k \iff b-a=2h$ with h=-k (symmetry) and $a-b=2k, b-c=2h \implies a-c=2l$ with l=k+h (transitivity.

Definition A.1.4 (Equivalence class)

Given a set \mathcal{A} and an equivalence relation \mathfrak{R} on \mathcal{A} , then the **equivalence relation** of $a \in \mathcal{A}$ is defined as $[a]_{\mathfrak{R}} := \{b \in \mathcal{A} : a\mathfrak{R}b\}$.

Appendix A: Logic 13

In absence of ambiguity, the subscript \mathfrak{R} is dropped, and the equivalence class $a \in \mathcal{A}$ is simply denoted by [a].

Theorem A.1.1

Given a set \mathcal{A} , an **equivalence** relation \mathfrak{R} on \mathcal{A} and two elements $a, b \in \mathcal{A}$, then:

- 1. $a \in [a]_{\mathfrak{R}}$;
- 2. $a\Re b \implies [a]_{\Re} = [b]_{\Re}$;
- 3. $a\mathfrak{R}b \implies [a]_{\mathfrak{R}} \cap [b]_{\mathfrak{R}} = \varnothing$.

Proof. The first proposition is true by reflexivity. To prove the second proposition, let $x \in [a]_{\Re}$: then, $x\Re a$, but also $x\Re b$ by transitivity, hence $x \in [b]_{\Re}$. This proves $[b]_{\Re} \subseteq [a]_{\Re}$, and the vice versa is equivalently proven, hence $[a]_{\Re} = [b]_{\Re}$. To prove the third proposition, suppose $\exists x \in [b]_{\Re} \cap [a]_{\Re}$: then, $x\Re a \wedge x\Re b \implies a\Re b$ by transitivity, which is absurd. \square

This theorem shows that an equivalence relation splits the set in separated equivalence classes.

Definition A.1.5 (Partition)

Given a set $\mathcal{X} \neq \emptyset$ and its power set $\mathcal{P}(\mathcal{X}) := \{\mathcal{A} : \mathcal{A} \subseteq \mathcal{X}\}$, a **partition** of \mathcal{X} is a collection of subsets $\{\mathcal{A}_i\}_{i\in\mathcal{I}} \subseteq \mathcal{P}(\mathcal{X})$ which satisfies the following properties:

- 1. $A_i \neq \emptyset \ \forall i \in \mathcal{I};$
- 2. $\mathcal{A}_i \cap \mathcal{A}_j = \emptyset \ \forall i \neq j \in \mathcal{I};$
- 3. $\mathcal{X} = \bigcup_{i \in \mathcal{T}} \mathcal{A}_i$.

The equivalence classes determined by an equivalence relation form a partition of the set it is defined on.

Definition A.1.6 (Quotient set)

Given a set \mathcal{A} and an equivalence relation \mathfrak{R} on \mathcal{A} , the **quotient set** \mathcal{A}/\mathfrak{R} is defined as the set of all equivalence classes of \mathcal{A} determined by \mathfrak{R} .

Example A.1.2 (\mathbb{Z} as a quotient set)

The set \mathbb{Z} can be seen as a quotient set $\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\mathfrak{R}$ with $(n, m)\mathfrak{R}(n', m') \iff n - m = n' - m'$. Indeed, there are three kinds of equivalence classes: $[(n, 0)] \equiv n$, $[(0, n)] \equiv -n$ and $[(0, 0)] \equiv 0$.

Example A.1.3 (Modular equivalence)

Given $n \in \mathbb{N}$, the **congruence modulo** n relation is an equivalence relation on \mathbb{Z} defined as $a \equiv_n b \iff \exists k \in \mathbb{Z} : a - b = kn$. This relation defines the quotient set $\mathbb{Z}_n \equiv \mathbb{Z}/(\text{mod } n)$, which in general is $\mathbb{Z}_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$.

Index

 $GL(n, \mathbb{K}), 4$ matrix, 3 $\operatorname{direct\ sum}$ partition of subspaces, 9 of a set, 13 equivalence quotient class, 12 set, 13 relation, 12 subspace, 7 Gauss algorithm, 5 sum of, 8 linear combination, 8 theoremRouché-Capelli, 6 linear system, 5