

CLAIM AMENDMENTS

1 1. (currently amended) A method for controlling input/output (I/O) operations of
2 a user's computer comprising the following steps:
3 implementing the user's computer as a virtual machine (VM);
4 including a virtual machine monitor (VMM) as a VM-transparent interface
5 between the VM and a physical computer system that includes at least one device;
6 in the VMM:
7 sensing a request for an I/O operation between the VM and the device;
8 performing a ~~predetermined~~ transformation of I/O data passing between
9 the VM and the device, said transformation being adjunct to necessary completion of
10 the request, as issued, for the I/O operation;
11 the transformation of the I/O data thereby being undefeatable by any ~~user~~ action
12 initiated via the VM.

1 2. (currently amended) A method as in claim 1, in which:
2 the device is a display;
3 the I/O data is VM display data output from the VM and intended for display; and
4 the ~~predetermined~~ transformation is a replacement of at least a portion of the VM
5 display data with non-defeatable display data stored external to the VM but accessible
6 to the VMM;
7 further including the step of displaying the VM display data with the non-
8 defeatable display data overlaid.

1 3. (currently amended) A method as in claim 1, further including the following
2 steps:
3 filtering the I/O data with respect to at least one ~~predetermined~~ filtering condition;
4 and
5 performing the ~~predetermined~~ transformation of the I/O data only when the
6 filtering condition is met.

1 4. (currently amended) A method as in claim 3, in which the filtering condition is
2 that the I/O data includes at least one ~~predetermined~~ restricted term.

1
1 5. (currently amended) A method as in claim 3, in which the filtering condition is
2 that the I/O data is from a ~~predetermined~~ restricted source.

1
1 6. (currently amended) A method as in claim 3, in which:
2 the I/O data includes image data;
3 the step of filtering the I/O data comprises detecting the presence of a
4 representation of a target image within the image data; and
5 the ~~predetermined~~ transformation is substitution of a representation of a
6 replacement image in place of the representation of the target image.

1
1 7. (original) A method as in claim 6, in which:
2 the I/O data is in a non-character image format;
3 the target image is a representation of a restricted character string; and
4 the step of filtering the I/O data comprises applying character recognition to the
5 I/O data.

1
1 8. (currently amended) A method as in claim 3, in which the ~~predetermined~~
2 filtering condition ~~in~~ is the presence in the I/O data of a copy protection indication.

1
1 9. (currently amended) A method as in claim 1, in which the ~~predetermined~~
2 transformation comprises insertion into the I/O data of a source indication associated
3 with the VM.

1
1 10. A method as in claim 1, in which the transformation is time-varying.

1
1 11. (original) A method as in claim 1, in which the device is a network
2 connection device.

3 12. (currently amended) A method as in claim 11, in which the ~~predetermined~~
4 transformation is a bandwidth limiting of the I/O data being transferred between the VM
5 and the network connection device.

1
1 13. (currently amended) A method as in claim 11, in which:
2 the requested I/O operation is a transfer of the I/O data between the VM and the
3 network connection device; and
4 the ~~predetermined~~ transformation is a time delay of the transfer.

1
1 14. (currently amended) A method as in claim 11, in which:
2 the requested I/O operation is a transfer of the I/O data from the VM to a first
3 destination address via the network connection device;
4 the ~~predetermined~~ transformation is a redirection of the I/O data to a second
5 destination address different from the first.

1
1 15. (currently amended) A method as in claim 1, in which:
2 the device is a display;
3 the display renders data stored in a display map; and
4 the step of performing the ~~predetermined~~ transformation comprises altering a
5 selected portion of the display map.

1
1 16. (currently amended) A method as in claim 15, in which the step of altering
2 the selected portion of the display data comprises substituting ~~predetermined~~, non-
3 defeatable display data for the selected portion.

1
1 17. (currently amended) A method as in claim 15, in which the step of altering
2 the selected portion of the display data comprises changing all occurrences in the
3 display map of a display color to a ~~predetermined~~ replacement color.

1 18. (currently amended) A method as in claim 1, in which:
2 the device is a data storage device;
3 the requested I/O operation is a transfer of data between the VM and the storage
4 device; and

5 the step of performing the ~~predetermined~~ transformation comprises changing at
6 least a portion of the data during the transfer between the VM and the storage device.

1 19. (currently amended) A method as in claim 18, in which the step of
2 performing the ~~predetermined~~ transformation of the I/O data comprises encrypting data
3 written by the VM to the data storage device and decrypting data read from the data
4 storage device by the VM.

1 20. (currently amended) A method as in claim 18, in which the step of
2 performing the ~~predetermined~~ transformation of the I/O data comprises compressing
3 data written by the VM to the data storage device and decompressing data read from
4 the data storage device by the VM.

1 21. (currently amended) A method as in claim 1, in which:
2 the device is a network connection device;
3 the requested I/O operation is a transfer of data between the VM and the network
4 connection device; and

5 the step of performing the ~~predetermined~~ transformation comprises changing at
6 least a portion of the data during the transfer between the VM and the network
7 connection device.

1 22. (currently amended) A method as in claim 21, in which the step of
2 performing the ~~predetermined~~ transformation of the I/O data comprises encrypting data
3 written by the VM to the network connection device and decrypting data read from the
4 network connection device by the VM.

1 23. (currently amended) A method as in claim 21, in which the step of
2 performing the ~~predetermined~~ transformation of the I/O data comprises compressing
3 data written by the VM to the network connection device and decompressing data read
4 from the network connection device by the VM.

1
1 24. (currently amended) A method as in claim 1, in which the step of
2 performing the ~~predetermined~~ transformation of the I/O data comprises cryptographic
3 transformation of the I/O data.

1
1 25. (currently amended) A method as in claim ~~4~~ 3, in which:
2 the VM supports a plurality of I/O modes;
3 the step of filtering is performed on I/O data corresponding to a first one of the
4 plurality of I/O modes; and
5 the ~~predetermined~~ transformation is applied to I/O data in a second one of the I/O
6 modes when the I/O data in the first I/O mode satisfies ~~the a~~ transformation-triggering
7 criterion.

1
1 26. (original) A method as in claim 25, in which the I/O modes include a video
2 mode and an audio mode.

1

1
1 27. (currently amended) A method for controlling input/output (I/O) of a user's
2 computer comprising the following steps:

3 implementing the user's computer as a virtual machine (VM);

4 including a virtual machine monitor (VMM) as a VM-transparent interface

5 between the VM and a physical computer system that includes at least one device that
6 carries out an I/O operation on the basis of device control data;

7 storing the device control data associated with the VM in a buffer in the VMM;

8 upon sensing a transformation command from an administrative system external

9 to the VM, entering replacement data into at least a portion of the buffer said

10 replacement data being entered as a processing step that is adjunct to the necessary
11 completion of the I/O operation;

12 the entry of the replacement data thereby being undefeatable by any ~~user~~ action
13 initiated via the VM.

1
1 28. (currently amended) A system for controlling input/output (I/O) operations of
2 a user's computer, comprising:

3 a virtual machine (VM) constituting the user's computer;

4 a virtual machine monitor (VMM) forming a VM-transparent interface between the

5 VM and a physical computer system that includes at least one device;

6 the VMM including means:

7 for sensing a request for an I/O operation between the VM and the device;

8 and

9 for performing a ~~predetermined~~ transformation of I/O data passing

10 between the VM and the device, said transformation being adjunct to necessary
11 completion of the request, as issued, for the I/O operation;

12 the transformation of the I/O data thereby being undefeatable by any ~~user~~ action
13 initiated via the VM.

1 29. (original) A system as in claim 28, in which the device is a display and the
2 I/O data is VM display data.

1
1 30. (original) A system as in claim 29, further comprising:
2 a display buffer within the VMM for storing the VM display data that is output from
3 the VM and is intended for display; and
4 transformation means located within the VMM for replacing at least a portion of
5 the VM display data stored in the display buffer with non-defeatable display data;
6 in which the display is provided for displaying the contents of the display buffer.

1
1 31. (original) A system as in claim 28, in which the device is a data storage
2 device.

1
1 32. (original) A system as in claim 28, in which the device is a network
2 connection device.