Simpson's 1/3rd Rule of Integration

Prepared By:

Miss Shaista Rais

What is Integration?

Integration

The process of measuring the area under a curve.

$$I = \int_{a}^{b} f(x) dx$$

Where:

f(x) is the integrand

a= lower limit of integration

b= upper limit of integration

Simpson's 1/3rd Rule

Trapezoidal rule was based on approximating the integrand by a first order polynomial, and then integrating the polynomial in the interval of integration. Simpson's 1/3rd rule is an extension of Trapezoidal rule where the integrand is approximated by a second order polynomial.

Hence

$$I = \int_{a}^{b} \underline{f(x)} dx \approx \int_{a}^{b} \underline{f_2(x)} dx$$

Where $f_2(x)$ is a second order polynomial.

$$f_2(x) = a_0 + a_1 x + a_2 x^2$$

as the three points of the function to evaluate a_0 , a_1 and a_2 .

$$f(a) = f_2(a) = a_0 + a_1 a + a_2 a^2$$

$$f\left(\frac{a+b}{2}\right) = f_2\left(\frac{a+b}{2}\right) = a_0 + a_1\left(\frac{a+b}{2}\right) + a_2\left(\frac{a+b}{2}\right)^2$$

$$f(b) = f_2(b) = a_0 + a_1b + a_2b^2$$

Solving the previous equations for a₀, a₁ and a₂ give

$$a_{0} = \frac{a^{2} f(b) + abf(b) - 4abf\left(\frac{a+b}{2}\right) + abf(a) + b^{2} f(a)}{a^{2} - 2ab + b^{2}}$$

$$a_{1} = -\frac{af(a) - 4af\left(\frac{a+b}{2}\right) + 3af(b) + 3bf(a) - 4bf\left(\frac{a+b}{2}\right) + bf(b)}{a^{2} - 2ab + b^{2}}$$

$$a_{2} = \frac{2\left(f(a) - 2f\left(\frac{a+b}{2}\right) + f(b)\right)}{a^{2} - 2ab + b^{2}}$$

Then

$$I \approx \int_{a}^{b} f_{2}(x) dx$$

$$= \int_{a}^{b} (a_{0} + a_{1}x + a_{2}x^{2}) dx$$

$$= \left[a_{0}x + a_{1} \frac{x^{2}}{2} + a_{2} \frac{x^{3}}{3} \right]_{a}^{b}$$

$$= a_{0}(b - a) + a_{1} \frac{b^{2} - a^{2}}{2} + a_{2} \frac{b^{3} - a^{3}}{3}$$

Substituting values of a₀, a₁, a₂ give

$$\int_{a}^{b} f_2(x)dx = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Since for Simpson's 1/3rd Rule, the interval [a, b] is broken into 2 segments, the segment width

$$h = \frac{b - a}{2}$$

Hence

$$\int_{a}^{b} f_{2}(x) dx = \frac{h}{3} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right]$$

Because the above form has 1/3 in its formula, it is called Simpson's 1/3rd Rule.

Example 1

The distance covered by a rocket from t=8 to t=30 is given by

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

- a) Use Simpson's 1/3rd Rule to find the approximate value of x
- b) Find the true error, E_t
- c) Find the absolute relative true error, $|\epsilon_t|$

Solution

a)
$$x = \int_{8}^{30} f(t)dt$$

$$x = \left(\frac{b-a}{6}\right) \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)\right]$$

$$= \left(\frac{30-8}{6}\right) \left[f(8) + 4f(19) + f(30)\right]$$

$$= \left(\frac{22}{6}\right) \left[177.2667 + 4(484.7455) + 901.6740\right]$$

$$= 11065.72 m$$

Solution (cont)

b) The exact value of the above integral is

$$x = \int_{8}^{30} \left(2000 \ln \left[\frac{140000}{140000 - 2100t} \right] - 9.8t \right) dt$$

$$=11061.34 m$$

True Error

$$E_t = 11061.34 - 11065.72$$
$$= -4.38 m$$

Solution (cont)

a)c) Absolute relative true error,

$$|\epsilon_t| = \left| \frac{11061.34 - 11065.72}{11061.34} \right| \times 100\%$$

$$=0.0396\%$$