- **3.** What is the negation of each of these propositions?
 - a) Linda is younger than Sanjay.
 - b) Mei makes more money than Isabella.
 - c) Moshe is taller than Monica.
 - d) Abby is richer than Ricardo.
- **5.** What is the negation of each of these propositions?
 - a) Mei has an MP3 player.
 - **b)** There is no pollution in New Jersey.
 - c) 2 + 1 = 3.
 - **d)** The summer in Maine is hot and sunny.
- 13. Let p and q be the propositions
 - p: It is below freezing.
 - q: It is snowing.

Write these propositions using p and q and logical connectives (including negations).

- a) It is below freezing and snowing.
- b) It is below freezing but not snowing.
- c) It is not below freezing and it is not snowing.
- **d)** It is either snowing or below freezing (or both).
- e) If it is below freezing, it is also snowing.
- **f**) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.
- **g)** That it is below freezing is necessary and sufficient for it to be snowing.
- **19.** Determine whether each of these conditional statements is true or false.
 - a) If 1 + 1 = 2, then 2 + 2 = 5.
 - **b)** If 1 + 1 = 3, then 2 + 2 = 4.
 - c) If 1 + 1 = 3, then 2 + 2 = 5.
 - **d**) If monkeys can fly, then 1 + 1 = 3.
- **21.** For each of these sentences, determine whether an inclusive or, or an exclusive or, is intended. Explain your answer.
 - a) Coffee or tea comes with dinner.
 - **b)** A password must have at least three digits or be at least eight characters long.
 - c) The prerequisite for the course is a course in number theory or a course in cryptography.
 - d) You can pay using U.S. dollars or euros.

- **25.** Write each of these statements in the form "if p, then q" in English. [*Hint:* Refer to the list of common ways to express conditional statements.]
 - a) It snows whenever the wind blows from the northeast.
 - **b)** The apple trees will bloom if it stays warm for a week.
 - c) That the Pistons win the championship implies that they beat the Lakers.
 - d) It is necessary to walk eight miles to get to the top of Long's Peak.
 - e) To get tenure as a professor, it is sufficient to be world famous.
 - **f**) If you drive more than 400 miles, you will need to buy gasoline.
 - g) Your guarantee is good only if you bought your CD player less than 90 days ago.
 - h) Jan will go swimming unless the water is too cold.
 - i) We will have a future, provided that people believe in science.
- **35.** Construct a truth table for each of these compound propositions.
 - **a**) $(p \lor q) \to (p \oplus q)$
- **b**) $(p \oplus q) \rightarrow (p \land q)$
- c) $(p \lor q) \oplus (p \land q)$
- **d)** $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow q)$
- e) $(p \leftrightarrow q) \oplus (\neg p \leftrightarrow \neg r)$
- $\mathbf{f}) \ (p \oplus q) \to (p \oplus \neg q)$

Truth Table to Compound Propositions (not in textbook)

For each unknown proposition, x, y, and z:

- Find an expression for the proposition as a compound proposition using x, y, and z.
- You may use **only** \land , \lor , \neg , and parentheses in each expression.
- You may use x, y, and z at most once in each expression.

p	q	r	x	y	z
$\overline{\mathrm{T}}$	Τ	T	F	Т	Т
${ m T}$	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	F
${ m T}$	F	\mathbf{T}	F	T	Т
${ m T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	F	F
\mathbf{F}	\mathbf{T}	\mathbf{T}	F	T	Т
\mathbf{F}	\mathbf{T}	\mathbf{F}	F	T	F
\mathbf{F}	\mathbf{F}	\mathbf{T}	T	T	Т
\mathbf{F}	\mathbf{F}	\mathbf{F}	$\mid T \mid$	T	T