Εργαστήριο Δικτύων - 2η Εργαστηριακή άσκηση

ΣΙΑΜΟΓΛΟΥ ΧΑΡΑΛΑΜΠΟΣ

ΑΜ 235890(ΠΑΛΙΟ)

AM 1041601(NEO)

ΕΤΟΣ 80

A Μέρος – IP Υποδικτύωση (subnetting)

- 1. Το δίκτυο έχει IP διεύθυνση 135.126.0.0 και επειδή ξεκινάει με 135 είναι προφανές ότι ανήκει στη **κλάση Β**
- 2. Επειδή όπως μας λέει στην εκφώνηση ο αριθμός των υποδικτύων πρέπει να είναι αυξημένος +70% το σύνολο των υποδικτύων θα είναι 9 και αυτό προκύπτει από τη πράξη 5+0.7*5=5+3.5(αυξάνεται προς τα πάνω να γίνει 4)=5+4=9

Επομένως για 9 υποδίκτυα χρειαζόμαστε 4 subnet bits

Άρα η Custom Subnet Mask είναι:

255.255.**nnnn**hhhh.hhhhhhh

Τα n είναι τα subnet bits και βάζουμε στη θέση τους 1 :

255.255.11110000.000000000

 $(1111.0000 \longrightarrow 240)$

255.255.240.0 που είναι η ζητούμενη subnet mask

- 3. Επειδή στο σχήμα μας δίνονται 5 υποδίκτυα είναι και ο ελάχιστος αριθμός υποδικτύων
- 4. Όπως απάντησα και στο 1 ερώτημα ο αριθμός υποδικτύων αυξημένος κατά

70% είναι 5+0.7*5=5+3.5 (αυξάνεται προς τα πάνω να γίνει 4)=5+4=9

5. Ο αριθμός host addresses στο υποδίκτυο του ρούτερ C στη F0/0 είναι :

- Χωρίς την προσαύξηση είναι 325 hosts
- Και με την προσαύξηση +70% είναι 325 * 0.7 = **228 hosts**

Ο αριθμός host addresses στο υποδίκτυο του ρούτερ C στη F0/1 είναι:

- Χωρίς την προσαύξηση είναι 220 hosts
- Και με την προσαύξηση +70% είναι 220 * 0.7 = 154 hosts

Ο αριθμός host addresses στο υποδίκτυο του ρούτερ A στη F0/0 είναι :

- Χωρίς την προσαύξηση είναι 150 hosts
- Και με την προσαύξηση +70% είναι 150 * 0.7 = **105 hosts**

Ο αριθμός host addresses στο υποδίκτυο που περιέχει τους ρούτερς \mathbf{A} και \mathbf{C} :

- Χωρίς την προσαύξηση είναι 2 hosts
- Και με την προσαύξηση +70% είναι 2 * 0.7 = 1.4 (που στρογγυλοποιείται προς τα πάνω και γίνεται 2) επομένως 2 + 2 =4 hosts

Ο αριθμός host addresses στο υποδίκτυο που περιέχει τους ρούτερς A και B:

- Χωρίς την προσαύξηση είναι 2 hosts
- Και με την προσαύξηση +70% είναι 2 * 0.7 = 1.4 (που στρογγυλοποιείται προς τα πάνω και γίνεται 2) επομένως 2 + 2 =4 hosts

6. <u>Το εύρος ΙΡ διευθύνσεων στο Υποδίκτυο του Router C στη διεπαφή F0/1</u> είναι:

Το εύρος ΙΡ διευθύνσεων στο Υποδίκτυο του Router C στη διεπαφή F0/0 είναι:

135.126.0.0 → 135.126.nnnnhhhh.hhhhhhhh → 135.126.00001111.11111111 → 135.126.15.255

Το εύρος ΙΡ	διευθύνσεων	στο	Υποδίκτυο	του	Router	Ασ	τη	διεπαφή Ε	<u>0/0</u>
είναι:									

Το εύρος ΙΡ διευθύνσεων στο Υποδίκτυο από το Router A στο Router C στη μεταξύ τους διεπαφή είναι:

Το εύρος ΙΡ διευθύνσεων στο Υποδίκτυο από το Router A στο Router B στη μεταξύ τους διεπαφή είναι:

7. Αν εφαρμόσουμε την τεχνική VLSM (Variable Length Subnet Masking) έχουμε :

Στο υποδίκτυο του Router C στη διεπαφή F0/0

Καταρχάς έχουμε 325 hosts οπότε θέλουμε 2^9 =512-2=510 host addresses **9 host bits**

Θέτοντας λοιπόν όπου 0 στα host bits και όπου 1 στα network bits θα βρούμε τη ζητούμενη μάσκα υποδικτύωσης του εκάστοτε υποδικτύου άρα:

11111111.11111111.111111110.00000000 → **255.255.254.0**

Στο υποδίκτυο του Router C στη διεπαφή F0/1

έχουμε 220 hosts οπότε θέλουμε 2^8 =256-2=254 host addresses \longrightarrow 8 host bits

Θέτοντας λοιπόν όπου 0 στα host bits και όπου 1 στα network bits θα βρούμε τη ζητούμενη μάσκα υποδικτύωσης του εκάστοτε υποδικτύου άρα :

11111111.111111111.11111111.00000000 → **255.255.255.0**

Στο υποδίκτυο από το Router A στο Router B

έχουμε 0 hosts αλλά θέλουμε 2^2 =4-2=2 host addresses \longrightarrow 2 host bits

Θέτοντας λοιπόν όπου 0 στα host bits και όπου 1 στα network bits θα βρούμε τη ζητούμενη μάσκα υποδικτύωσης του εκάστοτε υποδικτύου άρα :

11111111.111111111.11111111.000000000 **255.255.255.252**

Στο υποδίκτυο του Router A στη διεπαφή F0/0

έχουμε 150 hosts οπότε θέλουμε 2^8 =256-2=254 host addresses \longrightarrow 8 host bits

Θέτοντας λοιπόν όπου 0 στα host bits και όπου 1 στα network bits θα βρούμε τη ζητούμενη μάσκα υποδικτύωσης του εκάστοτε υποδικτύου άρα :

11111111.11111111.11111111.00000000 → **255.255.255.0**

Στο υποδίκτυο από το Router A στο Router C

έχουμε 0 hosts αλλά θέλουμε 2^2 =4-2=2 host addresses \longrightarrow 2 host bits

Θέτοντας λοιπόν όπου 0 στα host bits και όπου 1 στα network bits θα βρούμε τη ζητούμενη μάσκα υποδικτύωσης του εκάστοτε υποδικτύου άρα :

11111111.11111111.11111111.00000000 → 255.255.255.252

Β Μέρος – Αλγόριθμοι δρομολόγησης

a.

	W	V	X	y	u	Z
W	_	(4, w)	(9, w)	(9, w)	(5, w)	(1, w)
Z	_	(4, w)	(9, w)	(9, w)	(5, w)	_
V	_	_	(9, w)	(9, w)	(5, w)	_
u	_	_	(7, u)	(9, w)	_	_
X	_	_	_	(9, w)	_	_
y	_	_	_	_	_	_

	Κορυφή	Κόστος
1	W	0
2	Z	1
3	V	4
4	u	5
5	X	7
6	у	9

Κορυφή	D(w), p(w)	D(z), p(z)	D(v), p(v)	D(u), p(u)	D(x), p(x)	D(y), p(y)
W	_	1, w	4, w	5, w	9, w	9, w
W Z	_	_	4, w	5, w	9, w	9, w
wzv	_	_	_	5, w	9, w	9, w
wzvu	_	_	_	_	7, u	9, w
wzvux	_	_	_	_	_	9, w
wzvuxy	_	_	_	_	_	_

b.

Το αρχικό διάνυσμα απόστασης σε κάθε κόμβο θα είναι:

	u	W	V	у	X
Du	0	∞	3	∞	∞
Dv	3	9	0	∞	4
Dx	∞	6	4	7	0
Dw	∞	0	9	∞	6
Dy	∞	∞	∞	0	7

Du τοποθετούμε όλες τις κορυφές που είναι απευθείας συνδεδεμένες με την u

Dv τοποθετούμε όλες τις κορυφές που είναι απευθείας συνδεδεμένες με την v

Dx τοποθετούμε όλες τις κορυφές που είναι απευθείας συνδεδεμένες με την x

Dw τοποθετούμε όλες τις κορυφές που είναι απευθείας συνδεδεμένες με την w

Dy τοποθετούμε όλες τις κορυφές που είναι απευθείας συνδεδεμένες με την y

-

Το διάνυσμα απόστασης σε κάθε κόμβο μετά την 1η επανάληψη:

	u	W	V	у	X
Du	0	∞	1	∞	7
Dv	3	9	0	11	4
Dx	7	6	4	7	0
Dw	∞	0	9	13	6
Dy	∞	13	11	0	7

Du εξετάζουμε την ακμή (v,x) και προσθέτουμε την νέα τιμή στο x

Dv εξετάζουμε την ακμή (x,y) και προσθέτουμε τη νέα τιμή στο y μέσω του μονοπατιού vxy

Dx εξετάζουμε την ακμή (v,u) και προσθέτουμε τη νέα τιμή στο v μέσω του μονοπατιού xvu

Dw εξετάζουμε την ακμή (x,y) και προσθέτουμε τη νέα τιμή στο y μέσω του μονοπατιού wxy

Dy εξετάζουμε την ακμή (x,v) και προσθέτουμε τη νέα τιμή στο w μέσω του μονοπατιού yxv

Το διάνυσμα απόστασης σε κάθε κόμβο μετά την 2η επανάληψη:

	u	W	V	У	X
Du	0	12	3	8	7
Dv	3	9	0	11	4
Dx	7	6	4	7	0
Dw	12	0	9	13	6
Dy	∞	13	11	0	7

Dw εξετάζουμε την ακμή (v,u) και προσθέτουμε τη νέα τιμή στο u μέσω του μονοπατιού wvu

Dy **σε αυτή τη περίπτωση δεν εξετάζουμε καμία ακμή**

Το διάνυσμα απόστασης σε κάθε κόμβο μετά την 3η επανάληψη:

	u	W	V	у	X
Du	0	12	3	14	7
Dv	3	9	0	11	4
Dx	7	6	4	7	0
Dw	12	0	9	13	6
Dy	∞	13	11	0	7

Du - εξετάζουμε την ακμή (x,y) και προσθέτουμε την νέα τιμή στο y

Dv → δεν έχουμε αλλαγή του διανύσματος v

Dx → δεν έχουμε αλλαγή του διανύσματος x

Dw 🗪 δεν έχουμε αλλαγή του διανύσματος w

Dy ___ εξετάζουμε την ακμή (v,u) και προσθέτουμε την νέα τιμή στο u διαμέσου του μονοπατιού yxvu

Το διάνυσμα απόστασης σε κάθε κόμβο μετά την 4η επανάληψη:

	u	W	V	у	X
Du	0	12	3	14	7
Dv	3	9	0	11	4
Dx	7	6	4	7	0
Dw	12	0	9	13	6
Dy	14	13	11	0	7

Παρατήρηση

Όπως βλέπουμε σε σχέση και με την προηγούμενη επανάληψη δεν αλλάζουν οι τιμές των διανυσμάτων u , v , x , w , y οπότε αυτά είναι τα τελικά διανύσματα και αναλυτικά έχουμε :

• Για το κόμβο u το τελικό διάνυσμα απόστασης είναι :

	u	W	V	у	X
Du	0	12	3	14	7

• Για το **κόμβο v** το τελικό διάνυσμα απόστασης είναι :

	u	W	V	у	X
Dv	3	19	0	11	4

• Για το κόμβο x το τελικό διάνυσμα απόστασης είναι :

	u	W	V	у	X
Dx	7	6	4	7	0

• Για το κόμβο w το τελικό διάνυσμα απόστασης είναι :

	u	W	V	y	X
Dw	12	0	9	13	6

• Για το κόμβο y το τελικό διάνυσμα απόστασης είναι :

	u	W	V	y	X
Dy	14	13	11	0	7

Γ Μέρος – Κατακερματισμός πακέτων

a) Data Size/MTU=4000/1500

Αφού το Data size και το MTU είναι 4000 και 1500 αντίστοιχα τα πραγματικά δεδομένα για το συγκεκριμένο πακέτο :

4000bytes -20bytes (που είναι τα bytes της κεφαλίδας) = 3980 bytes

1500 bytes – 20 bytes (εξίσου τα bytes της κεφαλίδας) = **1480 bytes**

Επομένως τα fragments που θα προκύψουν:

 $3980 / 1480 = 2.68 \Rightarrow 3$ fragments

	Data Size	MF Flag	Fragment Offset
1° fragment	1480 bytes	1	0 (εύρος 0 έως
			1479 bytes)
2° fragment	1480 bytes	1	1480 (εύρος 1480
	-		έως 2959 bytes)
3° fragment	1020 bytes *1	0	2960

 $^{^{*1}}$ Αυτό προκύπτει 1480 + 1480 = 2960 bytes και 3980 – 2960 = 1020 bytes

b) <u>Data Size/MTU=2000/500</u>

Αφού το Data size και το MTU είναι 2000 και 500 αντίστοιχα τα πραγματικά δεδομένα για το συγκεκριμένο πακέτο :

2000bytes – 20bytes (που είναι τα bytes της κεφαλίδας) = **1980 bytes**

500 bytes – 20 bytes (εξίσου τα bytes της κεφαλίδας) = **480 bytes**

Επομένως τα fragments που θα προκύψουν:

$$1980 / 480 = 4.125 \Rightarrow 5$$
 fragments

	Data Size	MF Flag	Fragment Offset
1° fragment	480 bytes	1	0 (εύρος 0 έως
			479 bytes)
2° fragment	480 bytes	1	480 (εύρος 480
			έως 959 bytes)
3° fragment	480 bytes	1	960 (εύρος 960
			εος 1439 bytes)
4° fragment	480 bytes	1	1440 (εύρος 1440
			έως 1919 bytes)
5° fragment	60 bytes *2	0	1920

^{*2} Αυτο προκύπτει 480 + 480 + 480 + 480 = 1920 bytes και 1980 - 1920 = 60 bytes

c) Data Size/MTU=2000/1000

Αφού το Data size και το MTU είναι 2000 και 1000 αντίστοιχα τα πραγματικά δεδομένα για το συγκεκριμένο πακέτο :

2000bytes – 20bytes (που είναι τα bytes της κεφαλίδας) = **1980 bytes**

1000 bytes – 20 bytes (εξίσου τα bytes της κεφαλίδας) = **980 bytes**

Επομένως τα fragments που θα προκύψουν:

1980 / 980 = 2.020 > 3 fragments

	Data Size	MF Flag	Fragment Offset
1º fragment	980 bytes	1	0 (εύρος 0 έως
	-		979 bytes)
2° fragment	980 bytes	1	980 (εύρος 0 έως
	-		1959 bytes)
3º fragment	20 bytes *3	0	1960

d) Data Size/MTU=4000/6000

Αφού το Data size και το MTU είναι 4000 και 6000 αντίστοιχα τα πραγματικά δεδομένα για το συγκεκριμένο πακέτο :

4000bytes -20bytes (που είναι τα bytes της κεφαλίδας) = 3980 bytes

6000 bytes – 20 bytes (εξίσου τα bytes της κεφαλίδας) = **5980 bytes**

Επομένως τα fragments που θα προκύψουν:

$$3980 / 5980 = 0.66$$
 \triangleright 1 fragments

	Data Size	MF Flag	Fragment Offset
1° fragment	5980 bytes	0	0

Δ Μέρος – Μελέτη Παραθύρου συμφόρησης πρωτοκόλλου ΤΟΡ

1. Το πρωτόκολλο είναι **TCP Reno** καθώς δέχεται 3 διπλότυπα ACK και επίσης μπορεί να επέλθει fast recovery όπως αντιλαμβανόμαστε μεταξύ των 6 και 10 χρονικών στιγμών (6-10 Time Units)

^{*3} Αυτο προκύπτει 980 + 980 = 1960 bytes και 1980 - 1960 = 20 bytes

Time units	Slow Start	CongestionAvoidance	Fast Recovery
1-3	✓		
4-6		✓	
7			✓
8		✓	
9			✓
10		✓	
11-13	✓		
14-27		✓	
28-31	✓		
32-35		✓	
36-40	✓		

3.

Χρονική στιγμή απώλειας πακέτων	Λόγος που γίνεται αυτό
7	Triple Duplicate Ack
9	Triple Duplicate Ack
11	Timeout
28	Timeout
36	Timeout
39	Timeout

4.

Αριθμός Μετάδοσης	Αριθμός πακέτων	Congestion Window Size
1	1	1
2	2-3	2
3	4-7	4
4	8-15	8
5	16-24	9
6	25-34	10
7	35-42*1	8

 *1 Τα 37 πακέτα όπως βλέπουμε και στο πάνω πίνακα έχουν μεταδοθεί στην 7^{η} χρονική στιγμή και τότε το congestion window size είναι 8

Αριθμός	Αριθμός	Congestion
Μετάδοσης	πακέτων	Window
13		Size
8	43-51	9
9	52-59	8
10	60-68	9
11	69	1
12	70-71	2
13	72-75	4
14	76-83	8
15	84-92	9
16	93-102	10
17	103-113	11
18	114-125	12
19	126-138	13
20	139-152	14
21	153-167	15
22	168-183	16
23	184-200	17
24	201-218	18
25	219-237	19
26	238-257	20
27	258-278	21
28	279	1
29	280-281	2
30	282-285	4
31	286-293	8
32	294-309	16
33	310-326	17
34	327-344	18
35	345-363	19
36	364	1
37	365-366	2
38	367-370	4
39	371	1
40	372- <mark>373</mark> *2	2

 $^{^{*2}}$ Άρα όπως διαπιστώνουμε από το υπόλοιπο εκτενές πίνακα τα πακέτα που έχουν μεταδοθεί μέχρι την λήξη είναι ${\bf 373}$

5. Το ssthresh αλλάζει τις χρονικές στιγμές που παρατηρούνται και ταυτόχρονα απώλειες πακέτων άρα παίρνουμε τις στιγμές αυτές του ερωτήματος 3 και έχουμε :

Χρονική στιγμή που αλλάζει ο ssthresh	Τιμή του νέου ssthresh
7	10/2=5
9	9/2=4
11	8/2=4
28	21/2=10
36	19/2=9
39	4/2=2

6. Εφόσον δεν υπάρχουν απώλειες:

Αριθμός Μετάδοσης	Αριθμός πακέτων	Congestion Window Size
41	374-376	3
42	377-380	4
43	381-385	5
44	386-391	6

7. Αν την χρονική στιγμή 40 γίνει timeout η νέα τιμή του Congestion Window θα είναι 1 λόγω του ότι ήταν slow start και η νέα τιμή του ssthresh θα είναι το αμέσως προηγούμενο Congestion Windos διά 2 άρα 1 και αυτό.