Problem Statement:

For this model we will implement k-Means Clustering

In [1]: import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline

In [2]: df=pd.read_csv(r"C:\Users\my pc\Downloads\Online Retail.csv")
 df

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	France
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	France
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	France
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	France
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	France

541909 rows × 8 columns

Data cleaning and Preprocessing

In [3]: df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	01-12-2010 08:26	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:26	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:26	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:26	3.39	17850.0	United Kingdom

In [4]: df.tail()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
541904	581587	22613	PACK OF 20 SPACEBOY NAPKINS	12	09-12-2011 12:50	0.85	12680.0	France
541905	581587	22899	CHILDREN'S APRON DOLLY GIRL	6	09-12-2011 12:50	2.10	12680.0	France
541906	581587	23254	CHILDRENS CUTLERY DOLLY GIRL	4	09-12-2011 12:50	4.15	12680.0	France
541907	581587	23255	CHILDRENS CUTLERY CIRCUS PARADE	4	09-12-2011 12:50	4.15	12680.0	France
541908	581587	22138	BAKING SET 9 PIECE RETROSPOT	3	09-12-2011 12:50	4.95	12680.0	France

```
In [5]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 541909 entries, 0 to 541908
Data columns (total 8 columns):

	•	,					
#	Column	Non-Null Count	Dtype				
0	InvoiceNo	541909 non-null	object				
1	StockCode	541909 non-null	object				
2	Description	540455 non-null	object				
3	Quantity	541909 non-null	int64				
4	InvoiceDate	541909 non-null	object				
5	UnitPrice	541909 non-null	float64				
6	CustomerID	406829 non-null	float64				
7	Country	541909 non-null	object				
<pre>dtypes: float64(2), int64(1), object(5)</pre>							
memory usage: 33.1+ MB							

In [6]: df.describe()

Out[6]:

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

```
In [7]: df.shape
```

Out[7]: (541909, 8)

```
In [8]: df.isna().any()
 Out[8]: InvoiceNo
                        False
         StockCode
                        False
         Description
                         True
         Quantity
                        False
                        False
         InvoiceDate
         UnitPrice
                        False
         CustomerID
                         True
         Country
                        False
         dtype: bool
         df["InvoiceNo"].value_counts()
 In [9]:
 Out[9]: InvoiceNo
         573585
                    1114
         581219
                     749
         581492
                     731
         580729
                     721
         558475
                     705
         554023
                        1
         554022
                        1
         554021
                        1
         554020
                        1
         C558901
                        1
         Name: count, Length: 25900, dtype: int64
In [10]: | df=df.drop(["InvoiceNo", "StockCode", "Description", "InvoiceDate"], axis=1)
```

In [11]: df

Out[11]:

	Quantity	UnitPrice	CustomerID	Country
0	6	2.55	17850.0	United Kingdom
1	6	3.39	17850.0	United Kingdom
2	8	2.75	17850.0	United Kingdom
3	6	3.39	17850.0	United Kingdom
4	6	3.39	17850.0	United Kingdom
			•••	
541904	12	0.85	12680.0	France
541905	6	2.10	12680.0	France
541906	4	4.15	12680.0	France
541907	4	4.15	12680.0	France
541908	3	4.95	12680.0	France

541909 rows × 4 columns

```
In [12]: df.fillna(method="ffill",inplace=True) #filling the null values using forward fill method
```

```
In [13]: df.isna().any()
```

Out[13]: Quantity False
UnitPrice False
CustomerID False
Country False
dtype: bool

In [14]: df.isnull().sum()

Out[14]: Quantity 0

UnitPrice 0
CustomerID 0
Country 0

dtype: int64

In [15]: df

Out[15]:

	Quantity	UnitPrice	CustomerID	Country
0	6	2.55	17850.0	United Kingdom
1	6	3.39	17850.0	United Kingdom
2	8	2.75	17850.0	United Kingdom
3	6	3.39	17850.0	United Kingdom
4	6	3.39	17850.0	United Kingdom
541904	12	0.85	12680.0	France
541905	6	2.10	12680.0	France
541906	4	4.15	12680.0	France
541907	4	4.15	12680.0	France
541908	3	4.95	12680.0	France

541909 rows × 4 columns

In [16]: df["Country"].value_counts()

Out[16]: Country

Country	
United Kingdom 4	95478
Germany	9495
France	8557
EIRE	8196
Spain	2533
Netherlands	2371
Belgium	2069
Switzerland	2002
Portugal	1519
Australia	1259
Norway	1086
Italy	803
Channel Islands	758
Finland	695
Cyprus	622
Sweden	462
Unspecified	446
Austria	401
Denmark	389
Japan	358
Poland	341
Israel	297
USA	291
Hong Kong	288
Singapore	229
Iceland	182
Canada	151
Greece	146
Malta	127
United Arab Emirates	68
European Community	61
RSA	58
Lebanon	45
Lithuania	35
Brazil	32
Czech Republic	30
Bahrain	19
Saudi Arabia	10
Name: count, dtype: int64	

```
In [17]: plt.scatter(df["Quantity"],df["UnitPrice"])
    plt.xlabel("Quantity")
    plt.ylabel("UnitPrice")
```

Out[17]: Text(0, 0.5, 'UnitPrice')


```
In [18]: from sklearn.cluster import KMeans
km=KMeans()
km
```

```
In [19]: y_predicted=km.fit_predict(df[["Quantity","UnitPrice"]])
y_predicted
```

C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster_kmeans.py:870: Fut
ureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` ex
plicitly to suppress the warning
 warnings.warn(

Out[19]: array([0, 0, 0, ..., 0, 0, 0])

In [20]: df["cluster"]=y_predicted

In [21]: df.head()

Out[21]:

	Quantity	UnitPrice	CustomerID	Country	cluster
0	6	2.55	17850.0	United Kingdom	0
1	6	3.39	17850.0	United Kingdom	0
2	8	2.75	17850.0	United Kingdom	0
3	6	3.39	17850.0	United Kingdom	0
4	6	3.39	17850.0	United Kingdom	0

```
In [22]: df1=df[df.cluster==0]
    df2=df[df.cluster==1]
    df3=df[df.cluster==2]
    plt.scatter(df1["Quantity"],df1["UnitPrice"],color="red")
    plt.scatter(df2["Quantity"],df2["UnitPrice"],color="green")
    plt.scatter(df3["Quantity"],df3["UnitPrice"],color="blue")
    plt.xlabel("Quantity")
    plt.ylabel("UNITprice")
```

Out[22]: Text(0, 0.5, 'UNITprice')

In [23]: **from** sklearn.preprocessing **import** MinMaxScaler

```
In [24]: Scaler=MinMaxScaler()
          Scaler.fit(df[["Quantity"]])
In [25]:
Out[25]:
           ▼ MinMaxScaler
          MinMaxScaler()
          df["Quantity"]=Scaler.transform(df[["Quantity"]])
In [26]:
          df.head()
Out[26]:
              Quantity UnitPrice CustomerID
                                                 Country cluster
                                   17850.0 United Kingdom
           0 0.500037
                          2.55
                                                             0
           1 0.500037
                          3.39
                                   17850.0 United Kingdom
                                                             0
           2 0.500049
                           2.75
                                   17850.0 United Kingdom
                                                             0
                                   17850.0 United Kingdom
           3 0.500037
                           3.39
                                                             0
           4 0.500037
                                   17850.0 United Kingdom
                                                             0
                           3.39
          Scaler.fit(df[["UnitPrice"]])
In [27]:
Out[27]:
           ▼ MinMaxScaler
          MinMaxScaler()
```

In [28]: df["UnitPrice"]=Scaler.transform(df[["UnitPrice"]])
 df.head()

Out[28]:

	Quantity	UnitPrice	CustomerID	Country	cluster
0	0.500037	0.221150	17850.0	United Kingdom	0
1	0.500037	0.221167	17850.0	United Kingdom	0
2	0.500049	0.221154	17850.0	United Kingdom	0
3	0.500037	0.221167	17850.0	United Kingdom	0
4	0.500037	0.221167	17850.0	United Kingdom	0

In [29]: km=KMeans()

In [30]: y_predicted=km.fit_predict(df[["Quantity","UnitPrice"]])
y_predicted

C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster_kmeans.py:870: Fut
ureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` ex
plicitly to suppress the warning
warnings.warn(

Out[30]: array([0, 0, 0, ..., 0, 0, 0])

In [31]: df["New Cluster"]=y_predicted
 df.head()

Out[31]:

	Quantity	UnitPrice	CustomerID	Country	cluster	New Cluster
	0 0.500037	0.221150	17850.0	United Kingdom	0	0
	1 0.500037	0.221167	17850.0	United Kingdom	0	0
:	2 0.500049	0.221154	17850.0	United Kingdom	0	0
;	3 0.500037	0.221167	17850.0	United Kingdom	0	0
	4 0.500037	0.221167	17850.0	United Kingdom	0	0

```
In [32]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["Quantity"],df1["UnitPrice"],color="red")
    plt.scatter(df2["Quantity"],df2["UnitPrice"],color="green")
    plt.scatter(df3["Quantity"],df3["UnitPrice"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[32]: Text(0, 0.5, 'Income(\$)')

Out[34]: Text(0, 0.5, 'Income(\$)')


```
In [35]: k_rng=range(1,10)
    sse=[]
    for k in k_rng:
        km=KMeans(n_clusters=k)
        km.fit(df[["Quantity","UnitPrice"]])
        sse.append(km.inertia_)
```

```
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
C:\Users\my pc\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\cluster\ kmeans.py:870: Fut
ureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Set the value of `n init` ex
plicitly to suppress the warning
  warnings.warn(
```

```
In [36]: plt.plot(k_rng,sse)
    plt.xlabel("k")
    plt.ylabel("Sum of Squared Error")
```

Out[36]: Text(0, 0.5, 'Sum of Squared Error')

Conclusion:

Here we have clustered for the columns "Quantity", "UnitPrice". We have founded clusters for two times, the new clusters formed are 0. Even though , they are goodly clustered without any error