

Data Science on Prometheus Metrics

Natasha Frumkin AIOPS Intern August 21, 2018

Outline

1. Metadata Analysis

2. Time Series Forecasting

3. Model Comparison

Metadata Analysis

ip-172-31-78-254.us-east-2.compute.internal ip-172-31-73-251.us-east-2.compute.internal ip-172-31-65-74.us-east-2.compute.internal ip-172-31-74-247.us-east-2.compute.internal

- ip-172-31-76-218.us-east-2.compute.internal
- ip-172-31-75-193.us-east-2.compute.internal
- ip-172-31-71-195.us-east-2.compute.internal
- ip-172-31-69-53.us-east-2.compute.internal

T-SNE Embedding of Metric Metadata

Time Series Forecasting and Anomaly Detection

Goal: to provide automatic alerting to developers when there are anomalies in Prometheus data

The Data Transfer Pipeline

Data Processing

Bz2 File Text file of Json packets

{"metric": {"__name___": "kubelet_docker_operations_latency_microseconds". "beta_kubernetes_io_arch": "amd64", "beta_kubernetes_io_fluentd_ds_ready": "true", "beta_kubernetes_io_instance_type": "m4.xlarge", "beta_kubernetes_io_os": "linux", "clam_controller_enabled": "True", "failure_domain_beta_kubernetes_io_region": "us-east-2"}, "values": [[1518307199, "12844"], [1518308638, "13212"], [1518310077, "13830"], [1518311516, "13395"], [1518312955, "16546"], [1518314394, "15174"], [1518315833, "14455"], [1518317272, "12949"], [1518318711, "13439"], [1518320150, "14386"], [1518321589, "12447"], [1518323028, "15947"], [1518324467, "14893"], [1518325906, "14096"], [1518327345, "14735"], [1518328784, "12969"], [1518330223, "14067"], [1518331662, "16286"], [1518333101, "14008"], [1518334540, "12923"], [1518335979, "11888"], [1518337418, "12263"], [1518338857, "11751"], [1518340296, "13534"], [1518341735, "15522"], [1518343174, "14912"], [1518390661, "12235"], [1518392100, "14209"], [1518393539, "15757"]]}

Pickle File Dict of DataFrames

Key = str(metadata) Value = Pandas DataFrame

Timestamps	Values
03-03-18 12:30:15	32193
03-03-18 12:31:15	33210
03-03-18 12:32:15	32184

Fourier Extrapolation

Problem: What is an anomaly? 160000 140000 -Point-wise 120000 100000-Seasonal 80000 Seasonal 60000-40000 20000 0-5000 10000 15000 20000 25000 30000 35000

Forecast Comparison

Prophet vs. Fourier

Summary of our Techniques

Exponential Smoothing

ARIMA models

Fourier Analysis

Prophet models

RNNs

training models

Thresholding
Gaussian Tail Probability
Accumulators

anomaly detection rules

Main Takeaways

Metadata configurations are constantly changing.

Prophet vs. Fourier vs. RNNs Which features do we care about?

Anomaly detection requires finesse. Need to test parameters.

Next Steps

For which anomalies do we send alerts? Threshold needed.

Scalability? Which time series do we choose to monitor?

Notebooks: Gitlab AlCOE/jupyter-notebooks

<u>Documentation and Scripts: github.com/nfrumkin/forecast-prometheus</u>

Challenges with Prometheus Dataset

- Data comes from multiple sources
 - Need to explore correct time series filtering
- Data has holidays and season
 - Leverage known smoothing and decomposition techniques
- Wide range of metric types and behavior
 - Possibly apply different AD techniques for different series
- Training Data has hidden anomalies and dropouts
 - Find a way to accurately prepare historical data for training

The Data Transfer Pipeline

