定理 (任意交换环尺上的一元多项式环的泛性质) 尺是一个任意的非零交换环.

B是一个交换环, $f:R \to B是一个环同态,beB,满处:$ $x \neq V$ 交换环A,Y 环同态 $\varphi:R \to A$,Y a.e.A, \exists 唯一的环同态 $\theta:B \to A$,s.t. 下图交换:

且有日(b)=~

B'是另一个交换环, $f':R \rightarrow B'$ 是另一个环同态, $b' \in B'$,满处: 又扩V交换环A,V环同态 $\psi:R \rightarrow A$, $V \propto \in A$, \exists 唯一的环同态 $\theta':B' \rightarrow A$, s.t. 下图交换:

且有0′(b′)=~

则存在唯一的映射 $\Theta: B \rightarrow B'$, s.t. 下图交换:

且B(b)=b', $B:B\rightarrow B'$ 是环同构。

 $Pnof: 对于交换环 B', 环同态 <math>f': R \rightarrow B', b' \in B', \exists u = u \in B \mapsto B', s.t.$ 下图交换: $f' \in B'$ 且有 $\Psi(b) = b'$

对于交换环B,环成于 $R \to B$, $b \in B$,3 = e - b,环风态 $E: B' \to B$,S.t. 下图交换: $f' \to B$ 且有 E(b') = b

: 亚: B→B'和里: B'→B都是环酸

· 更·里: B→B 和 亚·更: B'→B' 都是环同态

双于交换环B,环同态 $f: R \to B$ $b \in B$, $\exists \mathbf{u} - \mathbf{u}$ 的环 $\mathbf{v} : B \to B$ s.t. 下图交换 : $\mathbf{v} \in \mathbf{v}$ $\mathbf{u} : B \to \mathbf{v}$ $\mathbf{u} : \mathbf{v} \in \mathbf{v}$ $\mathbf{u} : \mathbf{v} \in \mathbf{v}$ $\mathbf{u} : \mathbf{v} \in \mathbf{v}$ $\mathbf{v} \in \mathbf{v}$ \mathbf

·B是环 · idg·B→B 是环同构,也是环同态。 ×→×

 $\therefore id_{B} \circ f = f$ $\therefore FA \not\subset \mathcal{A}$ $\therefore id_{B} \circ f = \emptyset$ $\therefore id_{B} \circ f = \emptyset$ $\therefore id_{B} = \emptyset$

 $\Psi(\overline{\Phi},\overline{\Lambda})(p) = \overline{\Phi}(\overline{\Lambda}(p)) = \overline{\Phi}(p) = p$ $\overline{\Phi}(p) = p$ $\overline{\Phi}(p) = p$ $\overline{\Phi}(p) = p$

对于交换环B',环同态 $f': R \to B'$, $b' \in B'$,且唯一的环同态 $B: B' \to B'$,s.t. 下图交换: $f' \cap F'$ 且有 B(b') = b' $B' \to B'$

$$:: id_{B'}: B' \longrightarrow B'$$
是环同态, $id_{B'} \circ f' = f'$

$$\Psi(\overline{\Phi} \cdot \overline{\Phi}) \cdot f' = \Psi(\overline{\Phi} \cdot f') = \Psi \cdot f = f'$$

假设存在映射
$$\mathbb{H}: \mathbb{B} \to \mathbb{B}'$$
, s.t. 下图交换:

假设还存在映射
$$\mathbb{D}: B \to B'$$
, s.t. 下图交换: f/f 且 $\mathbb{D}(b) = b'$,

$$\oint_{B} \oint_{B_{2}} f' \quad \text{A. } \Theta_{2}(b) = b',$$

: 对于交换环B', 环同态
$$f': R \rightarrow B'$$
, $b' \in B'$, ∃唯一的环同态

