Predicting Wine Quality by using Watson Machine Learning

by Maksym Bielushkin

2019, Kyiv

Dataset

 https://www.kaggle.com/maitree/wine-qualityselection

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

ETL step

- Apache Spark, Pandas
- Matplotlib, Seaborn
- Python

ETL step

ETL step

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol	quality
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138.360657	0.994027	3.188267	0.489847	10.514267	5.877909
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.498065	0.002991	0.151001	0.114126	1.230621	0.885639
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.000000	0.987110	2.720000	0.220000	8.000000	3.000000
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.000000	0.991723	3.090000	0.410000	9.500000	5.000000
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.000000	0.993740	3.180000	0.470000	10.400000	6.000000
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.000000	0.996100	3.280000	0.550000	11.400000	6.000000
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440.000000	1.038980	3.820000	1.080000	14.200000	9.000000

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):

fixed acidity 4898 non-null float64 4898 non-null float64 volatile acidity citric acid 4898 non-null float64 residual sugar 4898 non-null float64 4898 non-null float64 chlorides free sulfur dioxide 4898 non-null float64 total sulfur dioxide 4898 non-null float64 density 4898 non-null float64 pН 4898 non-null float64 sulphates 4898 non-null float64 alcohol 4898 non-null float64 quality 4898 non-null int64 dtypes: float64(11), int64(1)

memory usage: 459.3 KB

None

Double check for null values in `red`
pd.isnull(red)

[7]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	fre
0	False	False	False	False	False	
1	False	False	False	False	False	
2	False	False	False	False	False	
3	False	False	False	False	False	
4	False	False	False	False	False	
5	False	False	False	False	False	
6	False	False	False	False	False	

What predicted?

- 2 types of prediction
- Quality of wine bad or good
- Wine quality itself

System ML

• Logistic Regression R2 score: 0.861742

 Quality of wine: Good or Bad is predicted (binary classification)

Winequality-red dataset is used

https://github.com/belushkin/IBM/blob/master/SystemML.ipynb

PySpark

Linear Regression (wine quality prediction)

RMSE: 0.736556

r2: 0.176016

Winequality-red dataset is used

https://github.com/belushkin/IBM/blob/master/LinearRegression.ipynb

+	+	+
prediction qua	lity	features
+	+	
5.869559864798003	6.0 [5.0,	0.7400000095
5.665521454793363	5.0 [5.0,	1.0399999618
6.09153656061749	7.0 [5.09	999990463256
5.959804873149034	7.0 [5.09	999990463256
5.775795584293244	5.0 [5.59	999990463256
5.954873616514447	5.0 [5.59	999990463256
5.586980062290905	4.0 [5.59	999990463256
5.928305788699809	7.0 [5.59	999990463256
5.683334709772041	5.0 [5.59	999990463256
5.86505764630658	6.0 [5.69	999980926513
5.422212333841235	4.0 [5.69	999980926513
5.672918317700854	6.0 [5.80	000019073486
5.719515405404755	6.0 [5.90	000009536743
5.931200447812138	6.0 [6.0,	0.4900000095
5.603560521481262	5.0 [6.0,	0.5,0.039999
5.909009844393404	6.0 [6.0,	0.5799999833
5.66094876484712	5.0 [6.09	999990463256
5.725983625919463	5.0 [6.09	999990463256
5.635184600026006	6.0 [6.09	999990463256
5.763467479447425	5.0 [6.09	999990463256
+	+	
only showing ton 20 re	uc.	

only showing top 20 rows

PySpark

Gradient-Boosted Trees (GBTs)

f1 score: 0.8901

Quality of wine: Good or Bad is predicted (binary classification)

Winequality-red dataset is used

https://github.com/belushkin/IBM/blob/master/GBT.ipynb

++	++				
label	label				
++	++				
0	0				
j 1j	1				
j oj	0				
j 1j	1				
j 0j	0				
j 1j	1				
j oj	0				
1	1				
1	1				
j 0j	0				
j 1j	1				
j 1j	1				
j oj	0				
j oj	0				
j oj	0				
++	++				
only show	only showi				

Keras

 Feed-forward neural network or Multi-Layer Perceptron is used in this lab

Wine quality prediction:

MSE: 0.4849

MAE: 0.5514

R2 score: 0.3619

https://github.com/belushkin/IBM/blob/master/Keras%204.ipynb

4.6: Compare the results

Check the predictions

```
y_pred = y_pred.astype(int)
predictions = np.column_stack((y[test], y_pred));
print(predictions[:15])

[[5 5]
    [5 4]
    [7 5]
    [5 5]
    [4 4]
    [5 5]
    [6 5]
    [6 5]
    [5 5]
    [6 5]
    [5 5]
    [6 6]
    [5 6]
    [6 6]
    [5 4]]
```

Data product example

 I decided not to set up web form since I totally reproduced this example:

https://github.com/IBM/predictive-model-on-wat son-ml/

https://predictive-model-on-watson-ml-2019022 0141448821.mybluemix.net/

Data product example

I represent deployed model with REST API available

6.3 Invoke prediction model deployment

Define a method to call scoring url. Replace the **scoring_url** in the method below with the scoring_url returned from above.

Materials

Here is all notebook are stored

https://github.com/belushkin/IBM

