Openjumper 避障小车

一. 概述

简介

在完成寻线小车的制作后,使用红外避障传感器改装小车就变得十分简单了。

基本原理

控制流程:小车的红外传感器检测到障碍物后发送给控制器,控制器判断应该如何行走, 再通过电机驱动控制电机转速来改变小车的行驶方向。

二. 需要的材料

- 1. 车体: Openjumper 小车车体套件×1
- 2. 控制器: Arduino uno×1
- 3. 电机驱动: openjumper L298 电机驱动板×1
- 4. 扩展板: UNO 配套的传感器扩展板×1
- 5. 传感器模块: 红外避障传感器×3
- 6. 尼龙柱,螺丝螺帽,杜邦线,传感器 3p 杜邦线若干。

三. 硬件的组装试调

1.车体组装和板卡安装

详见小车车体组装教程和循迹小车组装教程。

2.安装传感器

四. 规格

控制器	Arduino uno	
电机驱动	L298	
驱动部分工作电流	2A	
驱动部分输入电压	4.8∼25V	
逻辑部分输入电压	5V	
长*宽*高	200mm*180mm*110mm	
重量	520g	
电机型号	130	
电机电压	3-6v	
转速	125 转/分	
减速比	Jan-48	
最大行驶速度	47.7 米/分	
电机空载电流	110ma	
电机堵转电流	150ma	
车轮直径	65mm	
底盘离地面高度	20-22mm	
传感器探测距离	3~30cm(不同物体反射率不定)	

五. 引脚定义

10 □	类型	作用	描述
D4	数字输出	电机 A 正反转控制端	1 为正转 0 为反转
D5	PWM 输出	电机 A 调速端	电机速度 0-255
D6	PWM 输出	电机 B 调速端	电机速度 0-255
D7	数字输出	电机 B 正反转控制端	1 为正转 0 为反转
D11	数字输出	左传感器	检测到障碍物为0未检测到为1
D12	数字输出	中间传感器	检测到障碍物为0未检测到为1
D13	数字输出	右传感器	检测到障碍物为0未检测到为1

六. 示例代码

```
int PWMA = 5; //电机 A 调速端
int INB = 7; //电机 B 正反转控制端
int PWMB = 6; //电机 B 调速端
void motospd(int sp1,int sp2) //电机速度控制函数。括号内分别为左右电机速度值,
                       //范围-255~+255,正值为正转,负值为反转。
 if(sp1>0)
   digitalWrite(INA, HIGH);
 else
    digitalWrite(INA, LOW);
 if(sp2>0)
    digitalWrite(INB, HIGH);
 else
    digitalWrite(INB, LOW);
 analogWrite(PWMA,abs (sp1));
 analogWrite(PWMB,abs (sp2));
}
void setup(){
pinMode(11, INPUT); //配置左传感器 IO 口为输入
pinMode(12, INPUT); //配置中传感器 IO 口为输入
pinMode(13, INPUT); //配置右传感器 IO 口为输入
Serial.begin(9600); //打开串口,初始化
pinMode(INA,OUTPUT);
pinMode(INB,OUTPUT);
                   //配置电机驱动 IO 口为输出
}
void loop(){
 SNUM[0] = digitalRead(11);//左传感器赋值
 SNUM[1] = digitalRead(12); //中传感器赋值
 SNUM[2] = digitalRead(13); //右传感器赋值
for (int i=0;i<3;i++)
  Serial.print(SNUM[i]);//串口输出每个传感器的值,打开串口可显示传感器检测结果
 }
  Serial.println(SNUM[2]);
 if ((SNUM[0]==1)&&(SNUM[1]==1)&&(SNUM[2]==1))//所有传感器都没有检测到障碍
   motospd(100,100);
                                           //直行
 if ((SNUM[0]==0)&&(SNUM[1]==1)&&(SNUM[2]==1)) //左传感器检测到障碍物
   motospd(100,50);
   if ((SNUM[0]==1)&&(SNUM[1]==1)&&(SNUM[2]==0)) //右传感器检测到障碍物
   motospd(50,100);
   if ((SNUM[0]==1)&&(SNUM[1]==0)&&(SNUM[2]==1)) //中传感器检测到障碍物
```

七. 改进思路

本例程中的避障小车利用三个红外传感器实现了简单的避障功能。下面也给大家一些改进加强的提示,给喜欢自己摸索和 DIY 的朋友们一些方向。

- 1. 增减传感器数量: 3 个传感器最多只能检测前-左-右三个方向的障碍物,增加多个传感器并改进控制程序可以让小车变得更加智能。
- 2. 使用超声波传感器:超声波传感器可以通过返回的超声波信号计算出前方障碍物的具体 距离,其范围为 2-450cm。超声波传感器配合舵机加装在小车上,效果比红外传感器好 很多哦。