Linguagens Formais e Autômatos

Conceitos Básicos de Linguagens

Eduardo Furlan Miranda

Baseado em: GARCIA, A. de V.; HAEUSLER, E. H. Linguagens Formais e Autômatos. Londrina: EDA, 2017.

Alfabetos, palavras, cadeias, linguagens

• Linguagem - expressão de ideias. Aspectos:

foco da disciplina

- Léxicos
 - Símbolos
- Sintáticos
 - Regras
- Semânticos
 - Significado

análise léxica

análise sintática

análise semântica

- Alfabeto (ou vocabulário)
 representado pela letra Σ (sigma)
 - Conjunto finito n\u00e3o vazio de s\u00eambolos
- Linguagem sobre esse alfabeto
 - Conjunto de sequências finitas de símbolos do alfabeto
- Exemplos de alfabeto

```
• \Sigma_1 = \{ \alpha, \beta, \gamma, \delta, ..., \omega \} \Sigma_2 = \{ 0, 1 \} símbolos
```

$$\Sigma_1 = \{ \alpha, \beta, \gamma, \delta, \dots, \omega \}$$

$$\Sigma_2 = \{ 0, 1 \}$$

- Cadeia (ou palavra, ou cadeia de símbolos)
 - Sequência qualquer de caracteres
 - de Σ₁ : "ψω"
 - de Σ_2 : "10001"
 - Cadeia com nenhum símbolo (ou vazia) = ε = ""
 - ε é uma cadeia sobre qualquer alfabeto (épsilon)
 - Comprimento:
 - quantidade de símbolos
 - Ex.: (n = 2)

 comprimento 2

- "ε", "ϵ", ou ""
- Imaginar ε como se fosse uma variável criada (ela existe), porém sem nenhum elemento dentro
 - Ex.: a = ""

- "10001" = comprimento 5
- Cadeia vazia = "" = ϵ
- Justaposição = concatenação de palavras
 - "ab" + "c" = "abc"
- Gramática = conjunto de regras
 - $S \rightarrow a \ S \ b$; $S \rightarrow \epsilon$ cadeia vazia

Concatenação

- Dadas duas cadeias, definimos sua concatenação como a justaposição de seus valores
 - Ex.: se $\omega_1 = "101"$ e $\omega_2 = "000"$, sua concatenação é "101000"
- Representamos a concatenação como:
 - ω₁ ° ω₂
 - ω_1 ω_2
 - ω₁ ω₂

neste caso a representação não é "vezes", é "concatenação"

Concatenação

- A concatenação é um operador associativo
 - ω_1 ° (ω_2 ° ω_3) = (ω_1 ° ω_2) ° ω_3
- Concatenação da cadeia vazia
 - ε ° ω
 - ω = "abc" , $\varepsilon \circ \omega$ = $\varepsilon \circ$ "abc" = "abc"
- Prefixos de uma cadeia (ex. a cadeia "abcdef")
 - "ε", "ab", "abc", "abcd", etc.
 - começa do início e inclui a cadeia vazia

Prefixo

- Dadas 2 cadeias ω_1 e ω_2 dizemos que
 - ω_1 é prefixo de ω_2 , se existe uma cadeia ω_3 tal que ω_1 ° $\omega_3 = \omega_2$
- Ex.: a cadeia "101" possui os prefixos ε, "1", "10" e "101"

Sufixo

- Do final para o início
- Ex.: a cadeia "100" possui os sufixos: "ε", "0", "00" e "100"

- Dado um alfabeto Σ,
 - definimos uma linguagem L sobre este alfabeto como
 - um conjunto de cadeias sobre este alfabeto. Ex.:
 - Alfabeto: $\Sigma = \{ a, b \}$
 - Linguagem: $L = \{ \epsilon, a, b, aa, ab, ba, bb \}$
- Linguagem vazia = ∅
 - Não contém nenhuma cadeia
 - É simplesmente um conjunto vazio sem qualquer elemento

```
\emptyset = linguagem vazia (não possui nem ε) ε = cadeia vazia
```

- A linguagem que contém apenas a cadeia vazia ε
 - contém exatamente uma palavra, que é a cadeia vazia ε
- Isso significa que o conjunto tem um elemento
 - esse elemento é uma cadeia que não contém nenhum símbolo

- O alfabeto $\Sigma_2 = \{0, 1\}$ tem infinitas linguagens possíveis
 - $L_1 = \emptyset$
 - não possui nenhuma cadeia, nem a vazia ε
 - $L_2 = \{ \epsilon \}$
 - possui apenas a cadeia vazia ε
 - $L_3 = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, \dots \}$
 - possui todas as cadeias possíveis com símbolos do alfabeto Σ_2 (até o infinito)

Concatenação

- A concatenação de duas linguagens é uma linguagem cujas cadeias são todas as possíveis concatenações entre
 - cadeias da primeira linguagem com as cadeias da segunda linguagem
- Dadas as linguagens L_1 e L_2 , definimos sua concatenação como a linguagem
 - $L_1 \circ L_2 = \{ \omega_1 \circ \omega_2 \mid \omega_1 \in L_1 \in \omega_2 \in L_2 \}$

" L_1 concatenado com L_2 é igual ao conjunto de todas as cadeias ω_1 concatenado com ω_2 , tal que ω_1 pertence a L_1 e ω_2 pertence a L_2 "

```
• Se L_1 = \{a, ab\} (n = 2) , e L_2 = \{bb, c\} (m = 2) , então L_1 ° L_2 será: \{abb, ac, abbb, abc\}
```

• O número de elementos em $L_1 \circ L_2 \in 2 * 2 = 4$

- Que linguagem é L°∅?
 - Ø → (n = 0) não possui nenhuma cadeia, nem a vazia ε
 - $0 \cdot m = 0$
 - Portanto é uma linguagem vazia

não confundir

- Qual é a melhor definição para L⁰ ?
 - $L^0 = \{ \epsilon \}$
 - Linguagem que contém apenas a cadeia vazia ε
 - $L^1 = L$
 - L elevado a 1 é a própria linguagem L

Notação de potência

- L³ = L ° L ° L (L elevado a 3 é a concatenação de L com L com L)
- Definição

```
• L^0 = \{\epsilon\} (caso base)
```

- $L^n = L^{n-1}$ L , para n > 0 (passo recursivo)
 - Para calcular L^n , usamos L^{n-1} e concatenamos com L
 - Esse processo se repete até atingir a base da recursão, que é L^0

```
Seja L<sub>1</sub> = {a, b}
L<sub>1</sub><sup>0</sup> = {ε}
L<sub>1</sub><sup>1</sup> = {a, b}
L<sub>1</sub><sup>2</sup> = {aa, ab, ba, bb}
L<sub>1</sub><sup>3</sup> = {aaa, aab, aba, abb, baa, bab, bba, bbb}
L<sub>1</sub><sup>3</sup> = { a a, a b, b a, b b } ∘ { a, b } = { a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b }
...
```

ab ≠ ba

Fecho de Kleene ("*")

- O fecho de Kleene é representado por *
 - $\{a, b\}^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...\}$
 - Conjunto infinito
 - Todas as combinações possíveis de símbolos
 - Incluindo o conjunto vazio ε
- L* = fecho de Kleene da linguagem L
- $L^* = L^0 \cup L^1 \cup L^3 \cup ...$ ($L^0 = \varepsilon$)

```
\{a,b\} \cup \{b,c\} = \{a,b,c\}
\{a,b\} \circ \{c,d\} = \{ac,ad,bc,bd\}
```

- Seja $L = \{a, b\}$
- $L^* = L^0 \cup L^1 \cup L^3 \cup ...$
 - $L^0 = \{ \epsilon \}$
 - $L^1 = \{a, b\}$
 - $L^2 = \{aa, ab, ba, bb\}$
 - $L^3 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$
 - •
- Resultado parcial apenas para L⁰ υ L¹ υ L² υ L³ =
 - {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}

- Usando a concatenação de conjuntos, a união, e o fecho de Kleene, podemos especificar algumas linguagens simples
 - Considerando o alfabeto $\Sigma = \{\ 0\ , 1\ \}$ podemos especificar algumas linguagens formadas por cadeias que representam números na base binária de numeração
 - L = { n° na base 2 que são múltiplos de 4 } = { 0 , 1 }* \circ { 00 } :

```
0100 4
1000 8
1100 12
```

```
Concatenação = •
União = U (ou +)
Fecho de Kleene = *
```

Fecho positivo (ou transitivo) ("+")

```
• L+ = L • L*
    Ex.: Seja L = \{ a, b \}
     • L^* = \{ \epsilon, a, b, aa, ab, ... \}

    todas as combinações de a e b incluindo ε

     • L ° L* = {aε, aa, ab, ..., bε, ba, bb, ...}

 o ε acaba "sumindo"

    + não possui a cadeia ε , a não ser que ε já pertença a L

  • L^+ = L^1 \cup L^2 \cup L^3 \cup ... (não tem o L^0)
  • L^* = L^0 \cup L^+
                                       (a união acrescenta o ε)
```

Monoide 21/25

• É uma estrutura algébrica possuindo as propriedades:

- Fechamento
 - a°b concatenado com b°a resulta em a°b°b°a
 - o resultado é outra cadeia dentro do mesmo conjunto
- Associatividade
 - $(a^{\circ}a)^{\circ}b = a^{\circ}(a^{\circ}b)$
 - a ordem das operações não altera o resultado
- Elemento neutro (identidade)
 - $\varepsilon^{\circ}a = a^{\circ}\varepsilon = a$
 - elemento combinado com qualquer outro, resulta no elemento

Exemplo - Monoide

 Σ^* = conjunto de todas as cadeias

- Seja o alfabeto $\Sigma = \{a, b\}$
 - Fechamento
 - a concatenação de duas cadeias em Σ* resulta em outra cadeia também em Σ*
 - "ab" ($\in \Sigma^*$) ° "ba" ($\in \Sigma^*$) = "abba" ($\in \Sigma^*$)
 - "a" $(\in \Sigma^*)$ ° ϵ $(\in \Sigma^*)$ = "a" $(\in \Sigma^*)$
 - Associatividade
 - ordem de agrupamento das operações não altera o resultado final
 - ("ab" ° "ba") ° "a" = "abba" ° "a" = "abbaa"
 - Elemento identidade
 - quando concatenado com qualquer cadeia, não a modifica
 - "ab" \circ ϵ = "ab"
 - ε ° ε = ε

Definição de linguagem simples

- Seja o alfabeto $\Sigma = \{ n, +, \times \}$
 - n um número qualquer, + a soma, e × a multiplicação
- Definir uma linguagem L sobre Σ como a linguagem de todas as 'expressões' bem formadas usando-se as duas operações:
 - L = { n, n+n, n×n, n+n+n, n+n×n, n×n+n, n×n×n, ... }
 - Temos uma definição de linguagem que diz que a linguagem é simplesmente um conjunto de sentenças (cadeias)
 - Porém não define o aspecto estrutural da linguagem

- A escolha da forma de especificar uma linguagem depende do contexto e dos objetivos da aplicação
- Ao escolher um método, deve ser considerado a complexidade da linguagem, o objetivo da especificação e as ferramentas disponíveis

- Os numerais decimais são a linguagem definida pelo conjunto { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }⁺
 _{↑ não tem ε}
- Para restringir os numerais decimais com a impossibilidade de termos zeros à esquerda
 - { 1, 2, 3, 4, 5, 6, 7, 8, 9 } ° { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }* \star 1° ϵ = 1, 2°0 = 2, 3°45 = 345, 1°000 = 1000