Définitions

- Document $[w_1,...,w_d]$: une liste de mots
 - pourrait être tout un texte
 - pourrait être une seule phrase
 - pourrait être quelques mots

- Mots w_i : un mot ou une ponctuation
 - on suppose que nos documents ont déjà été segmentés en mots
 - généralement facile à faire en anglais (on sépare en fonction des espaces et des ponctuations)
 - difficile en chinois ou en japonais (pas d'espaces entre les mots)

Classification de documents

Soit les deux documents (question d'examen) suivants:

« Dessinez la partie de l'espace d'états qui serait explorée par l'algorithme alpha-beta pruning, en supposant qu'il explore l'espace d'états de la gauche vers la droite. » « En utilisant l'algorithme d'apprentissage du perceptron et un pas d'apprentissage de 0.3, donnez la sortie et les poids des connexions à la fin de la deuxième itération. »

Laquelle est une question d'examen final?

Classification de documents

Soit les deux documents (question d'examen) suivants:

« d'états d'états de qui explore qu'il explorée gauche l'algorithme pruning, l'espace par en Dessinez alpha-beta droite. la la supposant l'espace partie serait la de vers » « un pas de l'algorithme fin sortie de perceptron donnez la deuxième En à poids du et et des d'apprentissage connexions les itération. la la d'apprentissage utilisant 0.3, »

Laquelle est une question d'examen final?

Classification de documents

- Les mots individuels sont très informatifs du sujet (catégorie) d'un document
- L'ordre des mots n'est souvent pas utile
 - ◆ l'ordre reflète surtout la syntaxe d'une langue
 - on suppose que la catégorie n'influence que la probabilité d'observer un mot dans un document
- Ignorer l'ordre des mots va permettre de simplifier le système, sans trop compromettre sa précision
- On va formaliser ces hypothèses à l'aide d'un réseau bayésien

Réseau bayésien: modèle bayésien naïf multinomial

 En général la probabilité conjointe d'un document [W₁,...,W_d] ayant d mots et de sa catégorie C:

$$P([W_1,...,W_d], C) = P(C) \prod_i P(W_i \mid C)$$

• Exemple:

C	intra	final	
<i>P</i> (<i>C</i>)	0.5	0.5	

С	intra	final
$P(W_i = \langle \langle \rangle C)$	0.01	0.01
$P(W_i = \text{``un ``} C)$	0.02	0.02
$P(W_i = \ll d' \gg C)$	0.01	0.02
$P(W_i = \text{``Perceptron'}) C)$	10-6	0.002
$P(W_i = \text{``algorithme "} C)$	0.005	0.005
$P(W_i = \text{``apprentissage ``apprentissage''})$	10 ⁻⁵	0.001
$P(W_i = «.» C)$	0.03	0.03
	•••	

$$P$$
(« Perceptron, un algorithme d'apprentissage. », $C = intra$) = $0.5 * 10^{-6} * 0.01 * 0.02 * 0.005 * 0.01 * 10^{-5} * 0.03 = 1.5 * 10^{-21}$

$$P$$
(« Perceptron, un algorithme d'apprentissage. », $C = final$) = 0.5 * 0.002 * 0.01 * 0.02 * 0.005 * 0.02 * 0.001 * 0.03 = 6 * 10^{-16}

Décision de la catégorie d'un document

Pour classifier un document contenant les mots $[w_1,...,w_d]$, on choisit la classe c ayant la plus grande **probabilité a posteriori** $P(C=c \mid [w_1,...,w_d])$

```
\begin{array}{l} \operatorname{argmax} P(C=c \mid [w_1, ..., w_d]) \\ = \operatorname{argmax} P(C=c, [w_1, ..., w_d]) / \alpha \\ = \operatorname{argmax} P(C=c, [w_1, ..., w_d]) & \quad \text{pour simplifier les calculs} \\ = \operatorname{argmax} \log P(C=c, [w_1, ..., w_d]) \\ = \operatorname{argmax} \log P(C=c) \prod_i P(W_i = w_i \mid C=c) & \quad \text{pour éviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(W_i = w_i \mid C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(C=c) + \sum_i \log P(C=c) & \quad \text{pour eviter} \\ = \operatorname{argmax} \log P(C=c) + \sum_i \log P(C=
```

Décision de la catégorie d'un document

- Pour classifier un document contenant les mots $[w_1,...,w_d]$, on choisit la classe c ayant la plus grande **probabilité a posteriori** $P(C=c \mid [w_1,...,w_d])$
- Exemple: