1.3 Непрекъснатост на функции и изображения

Както и в първата част на анализа, при нас ще играят основна роля понятията функция и изображение. Нека \mathbf{D} е подмножество на \mathbb{R}^n . Казваме, че е дадено изображение от \mathbf{D} в \mathbb{R}^m , ако на всяка точка $x=(x_1,\ldots,x_n)$ от \mathbf{D} е съпоставена точката f(x) от \mathbb{R}^m . В такъв случай се казва още, че f е функция с дефиниционна област \mathbf{D} и със стойности в \mathbb{R}^m . Вместо f(x) понякога се пише $f(x_1,\ldots,x_n)$.

В случая m=1, т.е. функцията f взема стойности в множеството на реалните числа, ще казваме, че f е <u>числова</u>, или още <u>скаларна</u>, функция. В многомерния случай (при m>1) ще казваме, че f е векторна функция. *Всяка векторна функция може да бъде описана чрез числови функции; наистина, нека f е функция, дефинирана в $\mathbf{D} \subset \mathbb{R}^n$ и вземаща стойности в \mathbb{R}^m . Да означим чрез $f_1(x),\ldots,f_m(x)$ координатите на точката $f(x) \in \mathbb{R}^m$. Тогава $f_1(x),\ldots,f_m(x)$ са числови функции върху \mathbf{D} , които определят напълно функцията f. Тези функции се наричат координатни функции на изображението f.

Ще се занимаем с понятията граница на функция и непрекъснатост. Изложението почти дословно повтаря едномерния случай, изложен в част I, §1.8 и 1.10. Отново имаме две еквивалентни определения за граница на функция (и съответно две определения за непрекъснатост) - на Хайне и на Коши.

Определение на Хайне за граница на функция \mathcal{A} адена е функцията f(P) с дефиниционна област $\mathbf{D} \subset \mathbb{R}^n$ и със стойности в \mathbb{R}^m . Нека $P_0 \in \mathbb{R}^n$ и Q е точка от \mathbb{R}^m . Казваме, че функцията f(P) клони към Q при P_0 , ако за всяка редица $\{P_k\}_{k=1,2,\dots}$ от точки на P_0 , за която $P_k \to P_0$ имаме $f(P_k) \to Q$ в \mathbb{R}^m .

Определение на Коши за граница на функция. При горните условия казваме, че f(P) клони към Q при $P \to P_0$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всяка точка P от \mathbf{D} , за която $\rho(P,P_0) < \delta$, имаме $\rho(f(P),Q) < \varepsilon$.

 $^{^*}$ Използват се също така термините "векторнозначна функция" и "векторфункция".

Теорема 1. Определенията на Хайне и Коши за граница на функция са еквивалентни.

Доказателство. Ще започнем с по-лесната част - ще допуснем, че f(P) клони към Q при $P \to P_0$ в смисъл на Коши, и ще докажем, че това е вярно и в смисъл на Хайне. Наистина, нека $\{P_k\}_{k=1,2,\dots}$ е редица от точки на D, клоняща към P_0 . Ще докажем, че $f(P_k) \to Q$. Да изберем произволно $\varepsilon > 0$, и да вземем съответното $\delta > 0$ по определението на Коши. Тогава по определението на сходимост на редици от точки може да се намери ν такова, че $\rho(P_k, P_0) < \delta$ за всяко $k > \nu$. Следователно при $k > \nu$ имаме $\rho(f(P), Q) < \varepsilon$, което и трябваше да се докаже.

Доказателството, че от определението на Хайне следва определението на Коши, е по-трудно и се извършва чрез допускане на противното. Ще допуснем, че определението на Коши не е удовлетворено, и ще докажем, че не е изпълнено и определението на Хайне.

Твърдението "f(P) не клони в смисъл на Коши към Q при $P \to P_0$ " означава, че съществува число $\varepsilon_0 > 0$ такова, че по-нататъшната част от определението не е изпълнена: т.е. за всяко $\delta > 0$ съществува точка $P_\delta \in D$ такава, че $\rho\left(P_\delta, P_0\right) < \delta$, но $\rho\left(f\left(P_\delta\right), Q\right) \geq \varepsilon_0$. За да сведем нещата до редици, да дадем на δ стойности $\delta_1 = 1, \delta_2 = 1/2, \ldots, \delta_k = 1/k, \ldots$ и да означим $P_k = P_{\delta_k}$. Тогава тези точки удовлетворяват условията $P_k \in \mathbf{D}, \ \rho\left(P_k, P_0\right) < 1/k$ и $\rho\left(f\left(P_k\right), Q\right) \geq \varepsilon_0$. С други думи, редицата $\{P_k\}_{k=1,2,\ldots}$ от точки на D клони към P_0 , но редицата от функционалните стойности $\{f\left(P_k\right)\}$ не клони към Q.

Понятието граница на изображение (или вектор-функция) лесно се свежда към случая на граници на числови функции. Нека $f_1(P), \ldots, f_m(P)$ са координатните функции на изображението f(P), и нека $Q = (y_1, \ldots, y_m)$. Тогава:

Твърдение 2. Имаме $\lim_{P\to P_0} f(P) = Q$ тогава и само тогава, когато $\lim_{P\to P_0} f_i(P) = y_i$ за всяко і между 1 и т.

Доказателство. По теорема 3 от §2 редицата $f(P_k)$ клони към Q точно тогава, когато $f_i(P_k) \to y_i$ за $i=1,\ldots,m$. Оттук, използвайки дефиницията на Хайне, получаваме твърдението.

От тук веднага следва, че при линейните операции — сума на векторни функции и произведение на векторна функция с числова функция — може да се извършва граничен преход. По-точно, имаме:

Твърдение 3.

a/ Ако f(P) и g(P) са векторни функции със стойности в \mathbb{R}^m , притежаващи граници при $P \to P_0$, то $\lim_{P \to P_0} (f(P) + g(P)) = \lim_{P \to P_0} f(P) + \lim_{P \to P_0} g(P)$.

b/Aко $\lambda(P)$ е числова функция, а f(P) - векторна функция, и двете функции притежават граници при $P \to P_0$, то $\lim_{P \to P_0} \lambda(P) \ f(P) = \lim_{P \to P_0} \lambda(P) \ \lim_{P \to P_0} f(P)$.

Непрекъснатост на функции.

Определение. Нека е дадена функцията f(P) с дефиниционна област $\mathbf{D} \subset \mathbb{R}^n$ и със стойности в \mathbb{R}^m . Ще казваме, че f(P) е непрекъсната в точката $P_0 \in \mathbf{D}$, ако

$$\lim_{P \to P_0} f(P) = f(P_0).$$

Двете еквивалентни определения на понятието граница на функция водят до две еквивалентни определения на непрекъснатостта:

Непрекъснатост по Хайне. Функцията f(P) е непрекъсната в точката P_0 , ако за всяка редица $\{P_k\}_{k=1,2,...}$ от точки на \mathbf{D} , за която $P_k \to P_0$ имаме $f(P_k) \to f(P_0)$ в \mathbb{R}^m .

Непрекъснатост по Коши. Функцията f(P) е непрекъсната в точката P_0 , ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всяка точка P от \mathbf{D} , за която $\rho(P, P_0) < \delta$, имаме $\rho(f(P), f(P_0)) < \varepsilon$.

Разбира се, тези две определения са еквивалентни, и ние можем да използваме това определение, което е по-удобно в дадена конкретна ситуация. От определението на Хайне, както и в едномерния случай, веднага следва, че сума, произведение и частно на непрекъснати функции е също непрекъсната функция.

По същият начин от твърдение 3 следва:

Твърдение 4. Сума на две непрекъснати векторни функции (със стойности в едно и също пространство \mathbb{R}^m), както и произведение на непрекъсната скаларна функция с непрекъсната векторна функция, са също непрекъснати.

Непрекъснатост на сложно изображение. Нека g е изображение с дефиниционна област $\mathbf{E} \subset \mathbb{R}^n$ и стойности в \mathbb{R}^m , и f е изображение

с дефиниционна област $\mathbf{D} \subset \mathbb{R}^m$ и стойности в \mathbb{R}^p . Да предположим, че $g(\mathbf{E}) \subset \mathbf{D}$. Тогава можем да определим изображението F с дефиниционна област \mathbf{E} и стойности в \mathbb{R}^p с формулата $F(P) = f(g(P)), \ P \in \mathbf{E}$. Изображението F се нарича сложно, или съставно, изображение. Казва се още, че изображението F е суперпозиция на изображенията f и g, и се записва като $F = f \circ g$. Както се вижда от следващата теорема, суперпозицията на две непрекъснати изображения е също непрекъснато изображение:

Теорема 5. Нека функцията g е непрекъсната в точката $P_0 \in \mathbf{E}$, u f е непрекъсната в $Q_0 = g(P_0)$. Тогава съставната функция F(P) = f(g(P)) също е непрекъсната в P_0 .

Доказателство. Нека $\{P_k\}$ е редица от точки на E, клоняща към P_0 . Гогава по дефиницията на Хайне редицата $Q_k = g\left(P_k\right)$ клони към Q_0 и следователно редицата $F\left(P_k\right) = f\left(Q_k\right)$ клони към $F\left(P_0\right) = f\left(Q_0\right)$.

Пример. Следният пример показва, че непрекъснатостта по две променливи е нещо повече от непрекъснатостта по всяка от тях поотделно. Нека f(x,y) е определена с формулата

$$f(x,y) = \frac{x y}{x^2 + y^2}$$
 при $(x,y) \neq (0,0)$, $f(0,0) = 0$.

Тогава при всяко фиксирано y функцията f(x,y) е непрекъсната като функция на променливата x, и при всяко фиксирано x - като функция на y. В точката (0,0) обаче функцията не е непрекъсната. Наистина, ако $P_n = (1/n, 1/n)$, то $f(P_n) \to 1/2$. Нещо повече, ако разгледаме редица от точки в \mathbb{R}^2 , която клони към началото на координатите, намирайки се върху правата с уравнение $y = \lambda x$, то редицата от функционалните стойности клони към $\frac{\lambda}{1+\lambda^2}$, т.е. граничната стойност зависи от посоката, по която се стремим към точката.

Възможна е и по-сложна ситуация - една функция да има една и съща граница по всички прави, минаващи през дадена точка, и въпреки това да не бъде непрекъсната в тази точка - виж задача 11.

Характеризация на непрекъснатите функции. Казваме, че една функция е непрекъсната, ако тя е непрекъсната във всички точки