Credit Scoring

Assess potential loan customer's creditworthiness

Background

A fintech company has collected historical data of their loan customers. Machine learning based credit scoring is required to categorize the "good" customers from the "bad".

Columns description

• Feature_X: feature of a customer, represented in numerical format.

```
E.g: loan size, job_code.
Data dictionary or definition of the features are available.
Target: good customer is 0 | bad customer = 1
```

```
In [1]:
```

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

%matplotlib inline

from sklearn import set_config
set_config(print_changed_only=False)

import warnings
warnings.filterwarnings('ignore')
```

```
In [2]:
```

```
df = pd.read_csv('InputData.csv')
df.drop(columns=['Unnamed: 0'],inplace=True)
```

Checking Missing Values (NaN)

```
In [3]:
```

```
df.isna().sum()
Out[3]:
feature 1
feature 2
feature 3
feature 4
feature 5
feature 1042
feature_1043
               2
feature 1044
feature 1045
             2
               0
target
Length: 1046, dtype: int64
```

Since there is no further informations about these missing values, so these values would be dropped, otherwise we can fill with certain value or with either, mean, median, or modes.

Similarly, bfill, backfill and pad methods can also be used.

```
In [4]:
```

```
df.dropna(inplace=True)
#df.fillna(method ='mean', inplace = True) => For Example
df.isna().sum()
Out[4]:
```

```
feature_1 0
feature_2 0
feature_3 0
feature_4 0
feature_5 0
...
feature_1042 0
feature_1043 0
feature_1044 0
feature_1045 0
target 0
Length: 1046, dtype: int64
```

Checking target columns

```
In [5]:
```

```
df["target"].value_counts()
print(pd.crosstab(index=df['target'],columns='count',normalize=True)*100)
ax = sns.countplot(x=df['target'], data=df, palette='viridis')
plt.show()
```


96,3% customers are good (0)

3.7% customers are bad (1)

The target column is imbalanced, so it is needed to be handled properly. In this case, random oversampling will be applied

SPLITING DATA

```
In [6]:
```

```
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix, f1_score,roc_auc_score, recall
_score, precision_score, accuracy_score

X = df.drop(columns=['target'])
y = df['target']

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify = y, train_size = .8,
random_state=42)
```

Checking shape of X_train and X_test

```
In [7]:

X_train.shape

Out[7]:
(237, 1045)

In [8]:

X_test.shape

Out[8]:
(60, 1045)
```

Target Engineering

Handling Imbalanced Data

SMOTE: Synthetic Minority Oversampling Technique

SMOTE is an oversampling technique where the synthetic samples are generated for the minority class. This algorithm helps to overcome the overfitting problem posed by random oversampling. It focuses on the feature space to generate new instances with the help of interpolation between the positive instances that lie together.

```
In [9]:
import imblearn
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=42)
X_train_sm, y_train_sm = sm.fit_sample(X_train, y_train)

In [10]:
X_train_sm.shape
Out[10]:
(456, 1045)

In [11]:
y_train_sm.shape
Out[11]:
(456,)
```

FEATURE SELECTION - DROPPING CONSTANT FEATURES

Since there are over 1000 columns, certain method needs to be applied. In this case Variance Threshold is used.

Feature selector that removes all low-variance features.

- This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning.
- Drop all columns that are either constant, or close to constant for numerics, and columns that have only one value for factors or ordered columns.
- The threshold number is 0

```
In [12]:
```

```
from sklearn.feature_selection import VarianceThreshold
constant_filter = VarianceThreshold(threshold=0.0)
constant_filter.fit(X_train_sm)
```

Out[12]:

VarianceThreshold(threshold=0.0)

Features that has 0 variances will be eliminated

```
In [13]:
```

```
SUM_constant_filter=len(X_train_sm.columns[constant_filter.get_support()])
print(f'SUM of constant filter: {SUM_constant_filter}')
SUM of constant filter: 837
```

Showing which are those constant features

```
In [14]:
```

Constant Features SUM: 208

```
feature_7
feature 101
feature 119
feature 120
feature 126
feature_128
feature_146
feature 171
feature_217
feature 222
feature_223
feature_224
feature_225
feature 235
feature_236
feature_237
feature_247
```

feature_250 feature 251 feature_253 feature_261 feature 262 feature_263 feature_264 feature 266 feature_270 feature_271 feature_272 feature_278 feature_279 feature_280 feature_281 feature_282 feature_283 feature_288 feature_311 feature_312 feature_313 feature_314 feature_315 feature_316 feature_317 feature_318 feature_321 feature_322 feature_323 feature_324 feature_327 feature_328 feature_329 feature_330 feature_349 feature_350 feature_351 feature 352 feature_355 feature_356 feature_357 feature_358 feature_359 feature_360 feature_361 feature_362 feature_363 feature_364 feature_375 feature_376 feature_377 feature_378 feature_381 feature 382 feature_383 feature_392 feature_393 feature_394 feature_395 feature_398 feature_399 feature_412 feature_413 feature_416 feature 417 feature_418 feature_419 feature 420 feature_421 feature_422 feature_423 feature_424 feature_425 feature_426 feature_439 feature 440 feature 441 feature_442 feature_443 feature_444 feature_445 feature 446 feature_447 feature_448 feature_449 feature_450 feature 457 feature_458 feature_459 feature_460 feature_461 feature_462 feature_469 feature_470 feature_471 feature_472 feature_473 feature 474 feature 480 feature_485 feature_504 feature 505 feature_508 feature_509 feature_514 feature_515 feature_516 feature_517 feature_531 feature_532 feature_555 feature_556 feature_559 feature_560 feature 561 feature_562 feature_579 feature_580 feature_583 feature_584 feature_589 feature_598 feature_599 feature_618 feature_619 feature 622 feature_623 feature_624 feature 625 feature 626 feature 627 feature 648 feature_649 feature_652 feature_653 feature_654 feature 655 feature_666 feature_667 feature_668 feature_669 feature 670 feature_671 feature_681 feature 682 feature 683 feature_684 feature 685 feature_686 feature_708 feature_709 feature_715 feature_717 feature 752

```
feature_754
feature_798
feature_800
feature_803
feature 804
feature 805
feature_806
feature_817
feature 818
feature 819
feature 824
feature_837
feature_840
feature_841
feature_843
feature_851
feature 852
feature_853
feature_854
feature 856
feature_860
feature 861
feature_862
feature_866
feature 867
feature_868
feature 869
feature_870
feature_871
feature_907
feature_922
feature_924
feature 938
feature_939
feature_940
feature_941
feature_942
```

In [15]:

```
train_features = constant_filter.transform(X_train)
test_features = constant_filter.transform(X_test)
print(train_features.shape, test_features.shape)
```

(237, 837) (60, 837)

Dropping these constant features from X_train

In [16]:

```
X_train_sm.drop(constant_columns,axis=1)
```

Out[16]:

	feature_1	feature_2	feature_3	feature_4	feature_5	feature_6	feature_8	feature_9	feature_10	feature_11	
0	1.000000e+06	-999.000000	2.100000e+07	3000000.0	28	0	263.000000	89.022731	94.000000	263.000000	
1	1.500000e+06	-999.000000	4.000000e+06	500000.0	22	0	263.000000	0.719261	1.000000	263.000000	
2	1.500000e+06	-999.000000	5.500000e+06	-999.0	27	0	269.000000	761.542396	87.000000	269.000000	
3	9.000000e+05	800000.000000	3.850000e+06	-999.0	36	0	252.000000	0.564729	1.000000	252.000000	
4	1.500000e+06	-999.000000	8.000000e+06	1500000.0	32	0	333.000000	0.266685	1.000000	333.000000	
451	1.893217e+06	-999.000000	4.069979e+06	-999.0	27	0	366.366020	30.953829	9.044317	366.366020	
452	8.405122e+05	340193.528198	4.962049e+06	-999.0	27	0	265.940636	133.770830	37.044246	265.940636	
453	3.844875e+06	-999.000000	6.844875e+06	-999.0	34	1	243.551247	0.673893	1.000000	243.551247	
454	1.976728e+06	10660.216532	4.525599e+06	-999.0	26	0	271.138938	0.238406	1.000000	271.138938	

456 rows × 837 columns

4

MODELING

```
In [17]:
```

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
```

KNN Classifier

```
In [18]:
```

```
KNN = KNeighborsClassifier()
KNN.fit(X_train_sm, y_train_sm)
KNN predict = KNN.predict(X test)
print(classification report(y test, KNN predict))
acc_base_KNN = accuracy_score(y_test, KNN_predict)
recall base KNN = recall score(y test, KNN predict)
precision_base_KNN = precision_score(y_test, KNN_predict)
f1_base_KNN = f1_score(y_test, KNN_predict)
print('\n\nacc score: ', acc_base_KNN)
print('recall score: ', recall_base_KNN)
print('precision score: ', precision_base_KNN)
print('f1 score: ', f1_base_KNN)
print('\n\ntrain accuracy KNN base: ', KNN.score(X train sm, y train sm))
print('test accuracy KNN base: ', KNN.score(X test, KNN predict))
print()
print()
KNN CM = confusion matrix(y test, KNN predict, labels=[1 , 0])
print(pd.DataFrame(data=KNN CM, index=["Akt 1" ,"Akt 0"], columns=["Pred 1", "Pred 0"]))
KNN DF = pd.DataFrame(data=KNN CM, index=["Akt 1","Akt 0"], columns=["Pred 1", "Pred 0"])
sns.heatmap(KNN DF, annot=True)
plt.show()
```

	precision recall f1-score		f1-score	support	
0	1.00	0.55	0.71	58	
1	0.07	1.00	0.13	2	
accuracy			0.57	60	
macro avg	0.54	0.78	0.42	60	
weighted avg	0.97	0.57	0.69	60	

```
acc score: 0.5666666666666667
```

recall score: 1.0

precision score: 0.07142857142857142

f1 score: 0.133333333333333333

```
train accuracy KNN base: 0.8618421052631579
```

test accuracy KNN base: 1.0

Logistic Regression

In [19]:

```
LogReg = LogisticRegression()
LogReg.fit(X_train_sm, y_train_sm)
LogReg_predict = LogReg.predict(X_test)
print(classification report(y test, LogReg predict))
acc_base_LogReg = accuracy_score(y_test, LogReg_predict)
recall base LogReg = recall score(y test, LogReg predict)
precision_base_LogReg= precision_score(y_test, LogReg_predict)
f1_base_LogReg = f1_score(y_test, LogReg_predict)
print('\n\nacc score: ', acc_base_LogReg)
print('recall score: ', recall_base_LogReg)
print('precision score: ', precision base LogReg)
print('f1 score: ', f1_base_LogReg)
print('\n\ntrain accuracy LogReg base: ', LogReg.score(X_train_sm, y_train_sm))
print('test accuracy LogReg base: ', LogReg.score(X_test, LogReg_predict))
print()
print()
LogReg_CM = confusion_matrix(y_test, LogReg_predict, labels=[1 , 0])
print(pd.DataFrame(data=LogReg CM, index=["Akt 1" ,"Akt 0"], columns=["Pred 1", "Pred 0"]))
LogReg DF = pd.DataFrame(data=LogReg CM, index=["Akt 1", "Akt 0"], columns=["Pred 1", "Pred 0"])
sns.heatmap(LogReg DF, annot=True)
plt.show()
```

support	f1-score	recall	precision	
58	0.91	0.86	0.96	0
2	0.00	0.00	0.00	1
60	0.83			accuracy
60	0.45	0.43	0.48	macro avg
60	0.88	0.83	0.93	weighted avg

```
acc score: 0.833333333333333334 recall score: 0.0 precision score: 0.0 f1 score: 0.0
```

```
train accuracy LogReg base: 0.8179824561403509 test accuracy LogReg base: 1.0
```


Decision Tree Classifier

In [20]:

```
DT = DecisionTreeClassifier()
DT.fit(X train sm, y train sm)
DT predict = DT.predict(X test)
print(classification_report(y_test, DT_predict))
acc_base_DT = accuracy_score(y_test, DT_predict)
recall base DT = recall_score(y_test, DT_predict)
precision base DT= precision score(y test, DT predict)
f1_base_DT = f1_score(y_test, DT_predict)
print('\n\nacc score: ', acc_base_DT)
print('recall score: ', recall base DT)
print('precision score: ', precision base DT)
print('f1 score: ', f1_base_DT)
print('\n\ntrain accuracy DT base: ', DT.score(X train sm, y train sm))
print('test accuracy DT base: ', DT.score(X_test, DT_predict))
print()
print()
DT_CM = confusion_matrix(y_test, DT_predict, labels=[1 , 0])
print(pd.DataFrame(data=DT_CM, index=["Akt 1" ,"Akt 0"], columns=["Pred 1", "Pred 0"]))
DT DF = pd.DataFrame(data=DT CM, index=["Akt 1" ,"Akt 0"], columns=["Pred 1", "Pred 0"])
sns.heatmap(DT_DF, annot=True)
plt.show()
```

support	f1-score	recall	precision	
58	0.92	0.86	0.98	0
2	0.18	0.50	0.11	1
60	0.85			accuracy
60	0.55	0.68	0.55	macro avg
60	0.89	0.85	0.95	weighted avg

```
acc score: 0.85
recall score: 0.5
```

```
train accuracy DT base: 1.0

test accuracy DT base: 1.0

Pred 1 Pred 0

Akt 1 1 1

Akt 0 8 50
```


Random Forest Classifier

In [21]:

```
RF = RandomForestClassifier()
RF.fit(X_train_sm, y_train_sm)
RF predict = RF.predict(X test)
print(classification_report(y_test, RF_predict))
acc base RF = accuracy score(y test, RF predict)
recall base RF = recall score(y test, RF predict)
precision_base_RF = precision_score(y_test, RF_predict)
f1_base_RF = f1_score(y_test, RF_predict)
print('\n\nacc score: ', acc_base_RF)
print('recall score: ', recall_base_RF)
print('precision score: ', precision_base_RF)
print('f1 score: ', f1_base_RF)
print('\n\ntrain accuracy RF base: ', RF.score(X train sm, y train sm))
print('test accuracy RF base: ', RF.score(X test, RF predict))
print()
print()
RF_CM = confusion_matrix(y_test, RF_predict, labels=[1 , 0])
print(pd.DataFrame(data=RF CM, index=["Akt 1", "Akt 0"], columns=["Pred 1", "Pred 0"]))
RF DF = pd.DataFrame(data=RF CM, index=["Akt 1" ,"Akt 0"], columns=["Pred 1", "Pred 0"])
sns.heatmap(RF_DF, annot=True)
plt.show()
```

	precision	recall	f1-score	support
0	0.97	1.00	0.98	58
1	0.00	0.00	0.00	2
accuracy			0.97	60
macro avg	0.48	0.50	0.49	60
weighted avg	0.93	0.97	0.95	60

```
acc score: 0.966666666666667
```

recall score: 0.0 precision score: 0.0

```
f1 score: 0.0

train accuracy RF base: 1.0
test accuracy RF base: 1.0

Pred 1 Pred 0

Akt 1 0 2

Akt 0 0 58
```


XG Boost Classifier

In [22]:

```
XGB = XGBClassifier()
XGB.fit(X_train_sm, y_train_sm)
XGB_predict = XGB.predict(X_test)
print(classification report(y test, XGB predict))
acc_base_XGB = accuracy_score(y_test, XGB_predict)
recall_base_XGB = recall_score(y_test, XGB_predict)
precision_base_XGB= precision_score(y_test, XGB_predict)
f1 base XGB = f1 score(y test, XGB predict)
print('\n\nacc score: ', acc_base_XGB)
print('recall score: ', recall_base_XGB)
print('precision score: ', precision_base_XGB)
print('f1 score: ', f1_base_XGB)
print('\n\ntrain accuracy XGB base: ', XGB.score(X train sm, y train sm))
print('test accuracy XGB base: ', XGB.score(X_test, XGB_predict))
print()
print()
\label{eq:cm_matrix} \texttt{XGB\_CM} = \texttt{confusion\_matrix}(\texttt{y\_test}, \ \texttt{XGB\_predict}, \ \texttt{labels=[1 , 0]})
print(pd.DataFrame(data=XGB CM, index=["Akt 1" ,"Akt 0"], columns=["Pred 1", "Pred 0"]))
XGB DF = pd.DataFrame(data=XGB CM, index=["Akt 1","Akt 0"], columns=["Pred 1", "Pred 0"])
sns.heatmap(XGB DF, annot=True)
plt.show()
```

support	f1-score	recall	precision	
58	0.97	0.97	0.98	0
2	0.40	0.50	0.33	1
60	0.95			accuracy
60	0.69	0.73	0.66	macro avg
60	0.95	0.95	0.96	weighted avg

In [26]:

```
data = {
    "K Nearest Neighbors" : [acc_base_KNN, precision_base_KNN, recall_base_KNN, f1_base_KNN, (KNN.sc
ore(X_train, y_train))],
    "Logistic Regression" : [acc_base_LogReg, precision_base_LogReg, recall_base_LogReg, f1_base_Lo
gReg,LogReg.score(X_train, y_train)],
    "Decission Tree" : [acc_base_DT, precision_base_DT, recall_base_DT, f1_base_DT,DT.score(X_train
, y_train)],
    "Random Forest" : [acc_base_RF, precision_base_RF, recall_base_RF, f1_base_RF,RF.score(X_train
, y_train)],
    "XG Boost" : [acc_base_XGB, precision_base_XGB, recall_base_XGB, f1_base_XGB,XGB.score(X_train,
y_train)]
}
print('Model Score Comparison:\n\n',pd.DataFrame(data=data, index=['Accuracy', 'Precision',
'Recall', 'F1 Score','Train Model Accuracy']).T)
```

Model Score Comparison:

```
Accuracy Precision Recall F1 Score \
                                       1.0 0.133333
K Nearest Neighbors 0.566667
                             0.071429
                            0.000000
                                         0.0 0.000000
Logistic Regression 0.833333
                                         0.5 0.181818
Decission Tree
                   0.850000 0.111111
                                        0.0 0.000000
Random Forest
                   0.966667 0.000000
XG Boost
                   0.950000 0.333333
                                         0.5 0.400000
                   Train Model Accuracy
K Nearest Neighbors
                              0.801688
Logistic Regression
                              0.810127
Decission Tree
                              1.000000
                              1.000000
Random Forest
                              1.000000
XG Boost
```

Confusion Matrix for Classification Model

- Accuracy is literally how good our model is at predicting the correct category (classes or labels). If our dataset is pretty balanced and every category has equal importance, this should be our go-to metric to measure our model's performance.
- Precision is the ratio of what our model predicted correctly to what our model predicted. For each category/class, there is one precision value. We focus on precision when we need our predictions to be correct, i.e. ideally we want to make sure our model is right when it predicts a label. For example, if we have a Loan underwriting model that predicts whether to approve or reject a

loan request, our priority is being right for all those cases where our model predicted to approve the loan as we will lose money when it approved a loan ideally it should reject. We don't lose money when it tells us to reject the loan as we still have that money with us.

- Recall is the ratio of what our model predicted correctly to what the actual labels are. Similar to precision, for each
 category/class, there is one recall value. We focus on recall when we have a FOMO(Fear Of Missing Out) situation. Ideally, you
 want the model to capture all examples of a particular class. For example, airport security scanning machines have to make sure
 the detectors don't miss any actual bombs/dangerous items, and hence we are okay with sometimes stopping the wrong
 bag/traveler.
- F1 score is used, if we want our model to have a balanced precision and recall score, we average them to get a single metric. Here comes, F1 score, the harmonic mean of recall & precision.

Summary

- There is little value of either True Positive or False Positive on each models.
- Precision Score from classification report is being used, in order to minimize False Positive, which we don't predict bad customer
 as good customer, because the risk of losing money is higher.
- Since XGB Model has the highest precision score, in this case XG Boost model will be selected
- To increase the score of the mode, dataset that has high variance, so it will be good if the selected features in the dataset which has variance more than a fix threshold.

Export Model

```
In [24]:
import joblib

In [25]:
joblib.dump(XGB,'Credit Scoring XGB Model')

Out[25]:
['Credit Scoring XGB Model']
```