CSC311-hw1

siweitang

September 2022

1 Nearest Neighbours and the Curse of Dimensionality

(a)

(i)

(b)

$$\mathbb{E}[R] = \mathbb{E}[Z_1 + \dots + Z_d]$$

$$= \mathbb{E}\left[\sum_{i=0}^d Z_i\right]$$

$$= \sum_{i=1}^d \mathbb{E}[Z_i]$$

$$= \sum_{i=1}^d \frac{1}{6}$$

$$= \frac{d}{6}$$

$$Var[R] = Var[Z_1 + \dots + Z_d]$$

$$= Var \left[\sum_{i=0}^{d} Z_i \right]$$

$$= \sum_{i=1}^{d} Var[Z_i]$$

$$= \sum_{i=1}^{d} \frac{7}{180}$$

$$= \frac{7d}{180}$$

(c)

(i)

$$\mathbb{P}(E) = \mathbb{P}(|R - \mathbb{E}[R]| \le d)$$

(ii)

$$\begin{split} \mathbb{P}(|R - \mathbb{E}[R]| \geq d) &\leq \frac{Var[R]}{d^2} \\ \Rightarrow -\mathbb{P}(|R - \mathbb{E}[R]| \geq d) \geq -\frac{Var[R]}{d^2} \\ \Rightarrow 1 - \mathbb{P}(|R - \mathbb{E}[R]| \geq d) \geq 1 - \frac{Var[R]}{d^2} \\ \Rightarrow \mathbb{P}(E) &= \mathbb{P}(|R - \mathbb{E}[R]| \leq d) \\ &= 1 - \mathbb{P}(|R - \mathbb{E}[R]| \geq d) \\ &\geq 1 - \frac{Var[R]}{d^2} \end{split}$$

(iii)

As d goes to ∞ , $\mathbb{P}(E)$ approaches 1

Markov's inequality suggests that probability of euclidean distance far away from expected value is unlikely, so that the distance between two point is likely to be similar.

2 Decision Tree

(a)

See python file

(b)

max depth	gini	log loss	entropy
7	0.6816	0.6857	0.6857
17	0.7041	0.7204	0.7265
27	0.7286	0.7347	0.7265
37	0.7102	0.7245	0.7163
47	0.7122	0.7245	0.7286

(c)

(d)

The top most split word is 'the', the information gain is 0.058909111805979575. For other words, see the below picture.

```
The information gain of a split at 'donald' is 0.04773248640015862

The information gain of a split at 'the' is 0.058909111805979575

The information gain of a split at 'hillary' is 0.034264881132076846

The information gain of a split at 'trumps' is 0.045315207919737845

The information gain of a split at 'de' is 0.0015217665211054569

The information gain of a split at 'election' is 0.00028016755682347405

The information gain of a split at 'are' is 0.01367884585470175
```

3 Regularized Linear Tree

(a)

$$\begin{split} w_j > 0, J_{reg}^{\alpha\beta}(w) &= \frac{1}{2N} \sum_{i=1}^N (y^{(i)} - t^{(i)})^2 + \sum_{j=1}^D \alpha_j w_j + \frac{1}{2} \sum_{j=1}^D \beta_j w_j^2 \\ w_j = 0, J_{reg}^{\alpha\beta}(w) &= \frac{1}{2N} \sum_{i=1}^N (y^{(i)} - t^{(i)})^2 + \frac{1}{2} \sum_{j=1}^D \beta_j w_j^2 \\ w_j < 0, J_{reg}^{\alpha\beta}(w) &= \frac{1}{2N} \sum_{i=1}^N (y^{(i)} - t^{(i)})^2 - \sum_{j=1}^D \alpha_j w_j + \frac{1}{2} \sum_{j=1}^D \beta_j w_j^2 \\ J &= \frac{1}{2N} \sum_{i=1}^N (y^{(i)} - t^{(i)})^2 \\ &= \frac{1}{2N} \sum_{i=1}^N (w^T x^{(i)} + b - t^{(i)})^2 \\ \Rightarrow \frac{\partial J}{\partial w_j} &= \frac{\partial J}{\partial y^{(i)}} \frac{\partial y^{(i)}}{\partial w_j} = \frac{1}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) \cdot x_j^{(i)} \\ \frac{\partial J}{\partial b} &= \frac{\partial J}{\partial y^{(i)}} \frac{\partial y^{(i)}}{\partial b} = \frac{1}{N} \sum_{i=1}^N (y^{(i)} - t^{(i)}) \end{split}$$

If $w_j > 0$:

$$R = \sum_{j=1}^{D} \alpha_j w_j + \frac{1}{2} \sum_{j=1}^{D} \beta_j w_j^2 = \sum_{j=1}^{D} (\alpha_j w_j + \frac{1}{2} \beta_j w_j^2)$$

$$\Rightarrow \frac{\partial R}{\partial w_j} = \alpha_j + \beta_j w_j, \quad \frac{\partial R}{\partial b} = 0$$

$$w_j \leftarrow w_j - \theta \frac{\partial J_{reg}^{\alpha\beta}}{\partial w_j}$$

$$= w_j - \theta \cdot (\frac{\partial J}{\partial w_j} + \frac{\partial R}{\partial w_j})$$

$$= w_j - \theta (\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \cdot x_j^{(i)} + \alpha_j + \beta_j w_j)$$

$$= (1 - \theta \beta_j) w_j - \frac{\alpha}{N} \sum_{i=1}^{N} (x_j^{(i)} (y^{(i)} - t^{(i)})) - \theta \alpha_j$$

$$b \leftarrow b - \theta \frac{\partial J_{reg}^{\alpha\beta}}{\partial b}$$

$$= b - \theta \cdot (\frac{\partial J}{\partial b} + \frac{\partial R}{\partial b})$$

$$= b - \theta \cdot (\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) + 0)$$

$$= b - \frac{\theta}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)})$$

If $w_j = 0$:

$$R = \frac{1}{2} \sum_{j=1}^{D} \beta_{j} w_{j}^{2}$$

$$\Rightarrow \frac{\partial R}{\partial w_{j}} = \beta_{j} w_{j}, \quad \frac{\partial R}{\partial b} = 0$$

$$w_{j} \leftarrow w_{j} - \theta \frac{\partial J_{reg}^{\alpha \beta}}{\partial w_{j}}$$

$$= w_{j} - \theta \cdot (\frac{\partial J}{\partial w_{j}} + \frac{\partial R}{\partial w_{j}})$$

$$= w_{j} - \theta (\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \cdot x_{j}^{(i)} + \beta_{j} w_{j})$$

$$= (1 - \theta \beta_{j}) w_{j} - \frac{\theta}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \cdot x_{j}^{(i)}$$

$$b \leftarrow b - \theta \frac{\partial J_{reg}^{\alpha\beta}}{\partial b}$$

$$= b - \theta \cdot (\frac{\partial J}{\partial b} + \frac{\partial R}{\partial b})$$

$$= b - \theta \cdot (\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) + 0)$$

$$= b - \frac{\theta}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)})$$

If $w_j < 0$:

$$R = -\sum_{j=1}^{D} \alpha_j w_j + \frac{1}{2} \sum_{j=1}^{D} \beta_j w_j^2 = \sum_{j=1}^{D} (\frac{1}{2} \beta_j w_j^2 - \alpha_j w_j)$$

$$\Rightarrow \frac{\partial R}{\partial w_j} = \beta_j w_j - \alpha_j, \quad \frac{\partial R}{\partial b} = 0$$

$$w_j \leftarrow w_j - \theta \frac{\partial J_{reg}^{\alpha \beta}}{\partial w_j}$$

$$= w_j - \theta \cdot (\frac{\partial J}{\partial w_j} + \frac{\partial R}{\partial w_j})$$

$$= w_j - \theta (\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \cdot x_j^{(i)} + \beta_j w_j - \alpha_j)$$

$$= (1 - \theta \beta_j) w_j - \frac{\alpha}{N} \sum_{i=1}^{N} (x_j^{(i)} (y^{(i)} - t^{(i)})) + \theta \alpha_j$$

$$\begin{split} b &\leftarrow b - \theta \frac{\partial J_{reg}^{\alpha\beta}}{\partial b} \\ &= b - \theta \cdot (\frac{\partial J}{\partial b} + \frac{\partial R}{\partial b}) \\ &= b - \theta \cdot (\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) + 0) \\ &= b - \frac{\theta}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \end{split}$$

Since the parameter before w is smaller than 1 so that means weight becomes smaller, that's why we call it weight decay.

(b)

$$\begin{split} \frac{\partial J_{reg}^{\beta}}{\partial w_{j}} &= \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)} (y^{(i)} - t^{(i)}) + \beta_{j} w_{j} \\ &= \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)} (\sum_{j'=1}^{D} w_{j'} x_{j'}^{(i)} - t^{(i)}) + \beta_{j} w_{j} \\ &= \sum_{j'=1}^{D} \frac{1}{N} (\sum_{i=1}^{N} (x_{j}^{(i)} x_{j'}^{(i)} w_{j'}) + N \beta_{j} w_{j}) - \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)} t^{(i)} \\ &= \sum_{j'=1}^{D} \frac{1}{N} \sum_{i=1}^{N} (x_{j}^{(i)} x_{j'}^{(i)} w_{j'} + \beta_{j} w_{j}) - \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)} t^{(i)} \\ &\Rightarrow A_{jj'} = \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)} x_{j'}^{(i)} , \text{ if } j' \neq j \\ A_{jj'} &= \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)} x_{j'}^{(i)} + \beta_{j} , \text{ if } j' = j \\ c_{j} &= \frac{1}{N} \sum_{i=1}^{N} x_{j}^{(i)} t^{(i)} \end{split}$$

(c)

$$A = \begin{pmatrix} \frac{1}{N} \sum_{i=1}^{N} x_{1}^{(i)} x_{1}^{(i)} & \dots & \frac{1}{N} \sum_{i=1}^{N} x_{1}^{(i)} x_{D}^{(i)} \\ \vdots & \ddots & \vdots \\ \frac{1}{N} \sum_{i=1}^{N} x_{D}^{(i)} x_{1}^{(i)} & \dots & \frac{1}{N} \sum_{i=1}^{N} x_{D}^{(i)} x_{D}^{(i)} \end{pmatrix} + \begin{pmatrix} \beta_{1} & 0 & \dots & 0 \\ 0 & \beta_{2} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \beta_{D} \end{pmatrix}$$

$$= \frac{1}{N} \begin{pmatrix} \sum_{i=1}^{N} x_{1}^{(i)} x_{1}^{(i)} & \dots & \sum_{i=1}^{N} x_{1}^{(i)} x_{D}^{(i)} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{N} x_{D}^{(i)} x_{1}^{(i)} & \dots & \sum_{i=1}^{N} x_{D}^{(i)} x_{D}^{(i)} \end{pmatrix} + \begin{pmatrix} \beta_{1} & 0 & \dots & 0 \\ 0 & \beta_{2} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \beta_{D} \end{pmatrix}$$

$$= \frac{1}{N} X^{T} X + \beta I$$

$$c = \begin{pmatrix} \frac{1}{N} \sum_{i=1}^{N} x_{1}^{(i)} t^{(i)} \\ \vdots \\ \frac{1}{N} \sum_{i=1}^{N} x_{D}^{(i)} t^{(i)} \end{pmatrix} = \frac{1}{N} \begin{pmatrix} \sum_{i=1}^{N} x_{1}^{(i)} t^{(i)} \\ \vdots \\ \sum_{i=1}^{N} x_{D}^{(i)} t^{(i)} \end{pmatrix} = \frac{1}{N} X^{T} t$$

$$w = \begin{pmatrix} w_{1} \\ \vdots \\ w_{D} \end{pmatrix}$$

$$\Rightarrow Aw = c$$

$$\Rightarrow w = A^{-1}c$$

 $= (X^T X + \beta I)^{-1} X^T t$