Análise e Modelos

de

Séries Temporais Financeiras

Cristiano Fernandes Dept. de Eng. Elétrica - PUC/Rio cris@ele.puc-rio

Novembro - 2010

ROTEIRO

- 1. Motivação
- 2. Modelos GARCH para Séries de Retornos Financeiros
- 3. Risco de Mercado: Estimação do VaR (Valor em Risco) por modelos GARCH

1. MOTIVAÇÃO

Retorno = medida de resultado financeiro.

 \bigcup

retorno e risco são as medidas mais importantes em Finanças pois sintetizam os ganhos e perdas potenciais de um investimento.

Definição

- retornos simples $R_t = 100 \cdot (\Delta P_t / P_{t-1})$
- log retornos $r_t = 100 \cdot \ln (P_t / P_{t-1})$

onde

- P_t é a cotação do ativo no tempo t;
- $-\Delta P_t = P_t P_{t-1}.$

Obs: Se $\Delta P_t \ll P_{t-1}$.: $R_t \sim r_t$.

⇒ Exemplo: ações da Light na Bovespa

Data	Cotação fechamento		
	(por lote de 1000 ações)		
07/01/04	73,50		
08/01/04	73,90		
09/01/04	73,52		

 $r_{08/01/04} = 100 [(73,90 - 73,50 / 73,5] = 0.544\%$ $R_{08/01/04} = 100 ln (73,90 / 73,5) = 0.543\%$

Fig. 1 Série de retornos diários do Ibovespa (02/01/95 à 17/05/02, 1922 dias úteis).

Estatísticas Descritivas:

Média	0.06
Mediana	.00000
Moda	.00
Desvio padrão	2.67
Assimetria	0.71
Curtose	16.81
Mínimo	-17.23
Máximo	28.82
Percentil de 1%	-7.84
Percentil de 99%	7.46

Tabela 1. Eventos extremos na série do Ibovespa.

Data	Retorno	Evento
10/01/05	-10.38	Crise no México
15/07/97	-8.9	Crise na Tailândia
16/07/97	8.45	
27/10/97	-16.22	Crise em Hong Kong
10/09/98	-17.23	Crise monetária na Rússia
11/09/98	12.57	
15/09/98	17.12	
14/01/99	-10.50	Desvalorização cambial no Brasil
15/01/99	28.82	

- Séries temporais (ST) de retornos são "inputs" de muitos modelos/ testes em Finanças:
 - CAPM: cálculo do beta:
 - Modelo de Fatores;
 - Média-Variância: construção da fronteira eficiente;
 - Teste de previsibilidade do mercado;
 - Risco de Mercado: VaR e Valores Extremos;
 - Volatilidade;
 - Apreçamento de opções.

- ⇒ **Fatos estilizados** = regularidades estatísticas observadas num grande número de séries de retornos financeiros, obtidas a partir de estudos empíricos inicializados na década de 60, utilizando séries dos diversos mercados mundiais:
 - i. estacionariedade;
 - ii. fraca dependência linear;
 - iii. dependência não linear com aglomerados (*cluster*) de volatilidade (previsibilidade);
 - iv. caudas grossas ou não normalidade.
- Os modelos de séries temporais adequados para retornos devem ser capazes de capturar estes fatos estilizados.
- A formalização dos modelos de séries temporais é realizada a partir do conceito de processo estocástico, a ser visto nas próximas transparências.

4. MODELOS GARCH PARA SÉRIES DE RETORNOS FINANCEIROS

- Modelo GARCH(1,1) (Bollerslev(1986))

$$y_{t} = h_{t}^{1/2}e_{t}, e_{t} \sim NID(0,1)$$

$$h_{t} = \alpha_{0} + \alpha_{1} y_{t-1}^{2} + \beta_{1} h_{t-1}$$

$$\alpha_{0} > 0, \alpha_{1} \geq 0, \beta_{1} \geq 0.$$

⇒ Pergunta:

- Esta classe de modelo é capaz de reproduzir os **fatos estilizados** encontrados na séries de retornos financeiros ?

Fato estilizado	Como investigar ?		
i. Estacionariedade	- $E(R_t)$, $Var(R_t)$ e $FAC(R_t)$		
	não dependem de t		
ii. Dependência linear nula	- FAC de R _t é nula		
iii. Dependência não - linear	- FAC de R ² _t é não nula		
iii. Não normalidade	- Curtose da distribuição de		
(excesso de curtose)	R _t é maior do que 3		

 Assim sendo os fatos estilizados podem ser investigados a partir do modo incondicional dos modelos GARCH. Para obtermos as propriedades estatísticas do modo incondicional, precisamos primeiro, obter as propriedades do modo condicional.

Fatos Estilizados e Modelo GARCH(1,1)

$$y_t = h_t^{1/2} e_t,$$
 $e_t \sim NID(0,1)$
 $h_t = \alpha_0 + \alpha_1 y_{t-1}^2 + \beta_1 h_{t-1}$

• modelo condicional:

$$\begin{split} \mathsf{E}(y_t \mid & \mathbf{Y_{t-1}}) = \mathsf{E}(h_t^{1/2} e_t \mid \mathbf{Y_{t-1}}) \\ &= h_t^{1/2} \, \mathsf{E}(e_t \mid \mathbf{Y_{t-1}}) \\ &= h_t^{1/2} \, 0 = 0 \end{split}$$

Var
$$(y_t | \mathbf{Y}_{t-1}) = E[(h_t^{1/2}e_t)^2 | \mathbf{Y}_{t-1}]$$

= $h_t E[e_t^2 | \mathbf{Y}_{t-1}]$
= $h_t \cdot 1 = h_t$

Portanto
$$y_t | \mathbf{Y}_{t-1} \sim N(0, h_t)$$

- modelo incondicional:
- média:

$$E(y_t) = E(E(y_t | Y_{t-1})) = E(0) = 0$$

- variância:

$$Var(y_t) = E (Var(y_t | Y_{t-1})) + Var (E(y_t | Y_{t-1}))$$

$$= E(h_t) + Var(0)$$

$$= E(h_t)$$

$$= E (\alpha_0 + \alpha_1 y^2_{t-1} + \beta_1 h_{t-1})$$

$$= \alpha_0 + \alpha_1 E(y^2_{t-1}) + \beta_1 E(h_{t-1})$$

$$= \alpha_0 + \alpha_1 Var(y_t) + \beta_1 Var(y_t)$$

Pois como:

- i. $Var(y_t) = E(h_t) \rightarrow E(h_{t-1}) = Var(y_{t-1})$
- ii. $Var(y_{t-1}) = Var(y_t)$ por estacionariedade

Assim sendo, segue que:

$$Var(R_t) = \alpha_0 / [1 - (\alpha_1 + \beta_1)], (\alpha_1 + \beta_1) < 1.$$

⇒ Ou seja, a média e a variância incondicionais do processo GARCH(1,1) são invariantes no tempo.

- Autocorrelação para y_t

$$FAC(y_t) = \rho(k) = [E(y_t \ y_{t-k}) - E(y_t) E(y_{t-k})] / Var(y_t)$$

= E(y_t y_{t-k}) / Var(y_t)

mas
$$E(y_t y_{t-k}) = E[E(y_t y_{t-k} | Y_{t-1})]$$

= $E[y_{t-k} E(y_t | Y_{t-1})]$
= 0

⇒ Portanto o processo GARCH(1,1) produz observações descorrelatadas.

- Curtose para y_t

$$K=E(y_t^4)/[Var(y_t)]^2.$$

$$E(y_t^4) = E(E(y_t^4)|Y_{t-1}) = E(E(h_t^2 \ \epsilon_t^4)|Y_{t-1}) = E(h_t^2 \ E(\epsilon_t^4)|Y_{t-1})$$

$$= E(h_t^2 \ 3) = 3E(h_t^2)$$

Substituindo-se na expressão de h_t , y_{t-1} por $h_{t-1}^{1/2} \epsilon_{t-1}$, elevando-se ao quadrado, e tomando-se o valor esperado, chegamos a

$$K = \frac{3[1 - (\alpha_1 + \beta_1)^2]}{[1 - (\alpha_1 + \beta_1)^2 - 2\alpha_1^2]} > 3.$$

⇒ Portanto, o processo GARCH(1,1) produz observações não normais, leptocúrticas.

- Autocorrelação para y²t

Definindo $v_t = y_t^2 - h_t$ e substituindo h_t , temos $v_t = y_t^2 - (\alpha_0 + \alpha_1 y_{t-1}^2 + \beta_1 h_{t-1})$.

Usando que $h_t = y_t^2 - v_t$, segue que

$$y_t^2 = \alpha_0 + (\alpha_1 + \beta_1) y_{t-1}^2 - \beta_1 v_{t-1} + v_t$$

Ou seja, o processo para y²_t é do tipo:

$$y_{t}^{2} = c + \phi y_{t-1}^{2} + \theta v_{t-1} + v_{t}$$

que se trata de um processo correlacionado, denominado de ARMA(1,1).

• Portanto obtemos a seguinte relação:

GARCH(1,1) p/
$$y_t \Leftrightarrow ARMA(1,1) p/ y_t^2$$

Prova-se que a FAC para y²_t será dada por

$$\begin{split} \rho(k) &= \alpha_1 \; (1 \text{-} \alpha_1 \beta_1 \text{-} \beta_1^{\; 2}) \; / \; (1 \text{-} 2 \alpha_1 \beta_1 \text{-} \beta_1^{\; 2}), \; k \text{=} 1 \\ &= (1 \text{+} \beta_1)^{k \text{-} 1} \rho(1), \; \; k \text{=} \; 2, 3, \dots \end{split}$$

Assim sendo provamos que o processo GARCH(1,1)

consegue reproduzir os principais fatos estilizados observados em séries de retornos financeiros:

- série estacionária de 2ª ordem;
- série descorrelatada;
- dependência no quadrado da série;
- não normalidade da série.

- Previsão da variância

$$\begin{split} E_{t}(h_{t+s}) &= \alpha_{0} + (\alpha_{1} + \beta_{1}) \ E_{t}(h_{t+s-1}), \ s > 1 \\ &= h_{t} (\alpha_{1} + \beta_{1})^{s} + \alpha_{o} \sum_{k=0}^{s-1} (\alpha_{1} + \beta_{1})^{k} \\ &= w + (\alpha_{1} + \beta_{1})^{s} (h_{t} - w), \end{split}$$

onde w = α_0 / [1-(α_1 + β_1)], α_1 + β_1 < 1, é a variância incondicional (reversão).

• Se no modelo GARCH(1,1), $\alpha_1 + \beta_1=1$, então obtemos o modelo IGARCH(1,1)

$$h_t = \alpha_0 + \alpha_1 y_{t-1}^2 + (1 - \alpha_1) h_{t-1}$$

- Se α₀=0, este é o modelo RiskMetrics da JPMorgan.
- Modelos IGARCH apresentam persistência (meia vida ∞) na volatilidade, i.e., a volatilidade hoje afeta,

indefinidamente, a volatilidade no futuro:

$$\mathsf{E}_{\mathsf{t}}(\mathsf{h}_{\mathsf{t+s}}) = \mathsf{h}_{\mathsf{t}} + \mathsf{s}\alpha_0$$

- Estimação

- Por MV (máxima verossimilhança).
- Requer que postulemos uma distribuição para os distúrbios e_t.
- Se

$$e_t \sim f(e_t)$$
, com $E(e_t)=0$ e $E(e_t)^2=1$,

então pode-se demonstrar que a forma genérica do log da função de verossimilhança para modelos GARCH(1,1) é dada por :

log L(
$$\psi$$
)= $-1/2\sum_{t=2}^{n}\log(h_t) + \sum_{t=2}^{n}\log f(e_t)$

onde $f(e_t)$ é avaliada em $(y_t - \mu_t)/h_t^{1/2}$, μ_t sendo a média condicional de y_t .

[prova:

$$\log L(\psi) = \log \prod_{t=2}^{n} f(y_{t}|Y_{t-1}) = \sum_{t=2}^{n} \log f(y_{t}|Y_{t-1}).$$

Mas $f(y_t|\mathbf{Y_{t-1}}) = f(e_t = y_t/h_t^{1/2}) / |dy_t/de_t|$, (mudança de variável)

Portanto:

$$\log L(\psi) = \sum_{t=2}^{n} \log f(y_t | \mathbf{Y_{t-1}}) = \sum_{t=2}^{n} \log(f(e_t) h_t^{-1/2}) = -1/2 \sum_{t=2}^{n} \log h_t + \sum_{t=2}^{n} \log f(e_t)$$

Exemplos:

 \Rightarrow se $\mathbf{e}_{\mathsf{t}} \sim \mathsf{NID}(0,1)$:

$$\log L = -\frac{1}{2}(n-1)\log(2\pi) - 1/2\sum_{t=2}^{n}\log(h_t) - \frac{1}{2}\sum_{t=2}^{n}\frac{y_t - (c + \varphi y_{t-1})^2}{h_t}$$

 \Rightarrow se $\mathbf{e}_t = \mathbf{u}_t [(\mathbf{m-2})/\mathbf{m}]^{1/2}$, $\mathbf{m>2}$, onde $\mathbf{u}_t \sim \mathbf{t(m)}$, então $Var(\mathbf{e}_t)=1$. Segue que

$$\log L = -1/2 \sum_{t=2}^{n} \log(h_{t}) - \frac{1}{2} (m+1) \sum_{t=2}^{n} \log[y_{t} - (c + \varphi y_{t-1})^{2} / [h_{t} (m-2)] + 1] + n \log\{(m-2)^{-1/2} \Gamma[(m+1)/2] / [\Gamma(m/2) \pi^{1/2}]\}$$

Solução do problema de maximização: efetuada através de algoritmos de otimização não-linear (ex: Gauss Newton/BHHH).

- Validação do Modelo

- Utilização de procedimentos gráficos e testes estatísticos para investigar a adequabilidade do modelo estimado aos dados reais.
 - i. hipóteses do termo aleatório
 - distribuição: QQ plot, JB (normalidade)
 - iid: FAC p/ res, FAC p/ res², teste BDS
 - , onde res é o resíduo padronizado.
 - ii. previsibilidade da variância
 - teste de cobertura: Christorffensen
- Se o modelo falhar em alguns destes testes, deve ser reespecificado:
 - outra distribuição p/ o termo aleatório ?
 - outro processo dinâmico para a volatilidade ?

- Generalizações

• GARCH(p,q)

$$\begin{split} y_t &= h_t^{1/2} e_t, \quad e_t \sim \text{NID}(0,1) \\ h_t &= \alpha_0 + \sum_{i=1}^q \; \alpha_i \, y^2_{t\text{-}i} + \sum_{i=1}^p \; \beta_i h_{t\text{-}i}, \\ \alpha_0 &> 0, \; \alpha_i \geq 0, \; \beta_j \geq 0, \; i = 1, \, ..., q; \; j = 1, \, ... \; , p. \end{split}$$

Outras generalizações tipo GARCH

MODELO		REFERÊNCIA		
GJR / TARCH	$y_t = h_t^{1/2} e_t$	Glosten,		
	$h_t = \alpha_0 + \alpha_1 h_{t-1} + \alpha_2 y_{t-1}^2 +$	Jagannathan and		
	$+ \alpha_3 S_{t-1} y_{t-1}^2$, $S_t = 1$, se $y_t < 0$,	Runkle (1989)		
	0, cc			
EGARCH(1,1)	$y_t = h_t^{1/2} e_t$	Nelson (1991)		
	In $h_t = \alpha_0 + \alpha_1 y_{t-1} h^{-1/2}_{t-1} +$			
	+ α_2 y _{t-1} (h _{t-1}) ^{-1/2} + α_3 ln h _{t-1}			
EAR(1,1)	$y_t = \phi \exp(-h_t \sigma_y^{-2}) y_{t-1} + e_t$	LeBaron (1992)		
	$h_t = \alpha_0 + \alpha_1 e^2_{t-1} + \alpha_2 h_{t-1}$			
MACH(1)	$y_t = h_t^{1/2} e_t$	Yang & Bewley		
	$h_t = \alpha_0 + \alpha_1 y_{t-1} h^{-1/2}_{t-1}$	(1992)		

 Volatilidade Estocástica (Harvey, Ruiz & Shephard (1994))

$$y_t = \exp(1/2 h_t^{1/2}) e_t$$

 $h_t = \alpha_0 + \alpha_1 h_{t-1} + \eta_t$, $\eta_t \sim NID(0, \sigma^2)$ ou t(m).

3. Risco de Mercado: Estimação do VaR (Valor em Risco) por modelos GARCH

• VaR (Value at Risk) = uma medida do <u>risco de mercado</u> para ativos/carteiras.

 \bigcup

Qual a perda máxima esperada de uma carteira (ou ativo) em um dado <u>horizonte</u> de tempo a um determinado <u>nível de confiança</u>?

Exemplo: Nos próximos dias, devido as flutuações do mercado, espera-se que em 19 de cada 20 dias, o valor das perdas não excedam o patamar de 45 mil Reais (o VaR)

ou

que, em média, em cada 20 dias, um apresentará perdas que excedam o patamar de 45 mil Reais

Exige: - horizonte: dias, semanas, meses, etc;

- nível de confiança: 90%,95%, 99% (Basiléia).

 Na prática o cálculo do VaR é efetuado a partir da distribuição dos retornos calculados com a freqüência adequada (diária, semanal, mensal, etc) e através da sua versão logarítmica (r_t).

- A partir desta distribuição calcula-se um valor "crítico" do retorno (ou quantil) = é um valor negativo extremo, portanto associado a grandes perdas.
- A probabilidade de ocorrer perdas menores do que o valor "crítico" é muito grande. Ou de forma equivalente, a probabilidade de ocorrer perdas maiores do que o valor "crítico" é pequena.
- O cálculo formal deste valor exige a determinação da distribuição de densidade dos retornos (incondicional)

Pr. (Retorno \geq valor "crítico") = (1- α)% (conhecido) Pr. (Retorno < valor "crítico") = α %

Ou algebricamente:

$$\int_{-100\%}^{r_t^*} f(r_t) dr = \alpha$$

- Este cálculo exige o conhecimento da distribuição incondicional da série de retornos. Se esta não for assumida a priori (ex: t(m), ged etc) ou não puder ser obtida de forma explícita a partir do modelo de ST adotado para a série de retornos, então este valor crítico não poderá ser estimado.
- Na abordagem paramétrica, que aqui utilizamos, o mais natural é se obter o VaR a partir da densidade condicional dos retornos:

$$\int_{-100\%}^{r_t \mid^* \mathbf{r_{t-1}}} f(r_t \mid \mathbf{r_{t-1}}) dr = \alpha$$

 A perda monetária (absoluta) associada a este retorno extremo é o VaR, o qual é obtido usando que:

$$r_t^* = \Delta V_t^* / V_0$$
, donde segue que

$$VaR = \Delta V_t^* = - r_t^* V_0$$

onde - V₀ é o valor inicial investido no ativo/carteira.

- se for o valor condicional substituir r*t por

$$\mathbf{r_t}^* = r_t^* \quad \mathbf{r_{t-1}}^*$$

- Interpretação: espera-se que as flutuações do preço do ativo produzam uma perda monetária máxima de r_t* V₀ unidades monetárias, com confiança de (1-α)% no período em consideração.
- Esta é a perda máxima em situação "normal" de mercado, i.e., se os retornos não excederem o limite especificado pelo quantil extremo r_t*.
- De forma equivalente, será a perda mínima se houver retornos na região a esquerda do quantil limite.
- Ou seja, do ponto de vista estatístico, o cálculo do VaR se resume ao cálculo do quantil associado a uma determinada probabilidade extrema da cauda esquerda (5%, 1%, etc) da função distribuição de probabilidade (condicional/incondicional) dos retornos.
- Métodos de cálculo do VaR:
 - Paramétrico (linear, delta-normal, RiskMetrics)
 - Monte Carlo

- Simulação Histórica
- Delta-Gama

⇒ Outra medida de risco

 <u>Perda média esperada</u> (PME), ou *expected shortfall* = é o valor esperado da perda, dado que esta excedeu o VaR. É avaliada calculando-se :

$$PME = E[\Delta V_t | \Delta V_t < -VaR]$$

usando que $\Delta V_t = -R V_0$, segue que, na prática, o seguinte cálculo deve ser efetuado:

PME = -V₀ E(R_t |R_t < R_t*)= - V₀
$$\int_{-100\%}^{R_t^*} R f(\text{Re}torno_t) dr$$

 Observe que se houver perdas devido a ocorrência na região extrema, o VaR apenas oferece a perda mínima. A PME é mais informativa pois calcula a média da perda nesta região.

Exemplo de cálculo do VaR

⇒ Suponha que você tem 1.000.000,00 de Reais aplicados numa carteira que espelha exatamente o Ibovespa.

Qual o VaR diário de 95 % ?

• **Hipótese:**
$$r_t = \mu_t + h_t^{1/2} e_t - e_t \sim NID(0,1)$$

onde, tipicamente:

- μ_t é um processo AR(1)
 h_t ½ é um processo GARCH(1,1)
- Assim sendo, temos que:

$$r_t | \mathbf{r}_{t-1} \sim N(\mu_t, h_t)$$

 $e_t = (r_t - \mu_t) / h_t^{1/2} \sim N(0, 1)$

• Cálculo do VaR condicional(a 95%)

Prob
$$(r_t \le r_t^* | r_{t-1}) = 5\%$$
 (densidade condicional) $\begin{picture}(0,0) \put(0,0){\line(0,0){100}} \put(0,0){\line$

Prob[
$$(r_t - \mu_t) / h_t^{1/2} \le (r_t^* - \mu_t) / h_t^{1/2*} | \mathbf{r_{t-1}}) = 5\%$$

Prob $(e_t \le -\xi) = 5\%$ (densidade condicional padronizada)

>> Portanto $r_{t|t-1}^* = \mu_t - 1.645 h_t^{1/2}$ é o retorno "crítico", um retorno com valor negativo extremo (perda !!)

- Para calcularmos R_t^* ajustamos um modelo, para a série de retornos ($R_t = \mu_t + h_t^{\frac{1}{2}} e_t$) e projetamos a equação de R_t^* um passo à frente.
- Assim podemos avaliar o VaR amanhã, baseado na evidência dos dados até hoje.

$$r_{\text{T+1|T}}^* = \hat{\mu}_{\text{T+1|T}} - 1.645 \hat{h}_{\text{T+1|T}}^{1/2}$$

onde

$$\begin{split} \hat{\mu}_{T+1|T} &= \hat{\phi} \ r_T \\ \hat{h}_{T+1|T} &= \hat{\alpha}_0 \ + \hat{\alpha}_1 \ (r_T \ - \hat{\phi} \ r_{T-1})^2 + \ \hat{\beta}_1 \ \hat{h}_T \end{split}$$

Tabela 2: Resultados da estimação de um modelo AR(1)-GARCH(1,1) para a série de retornos do Ibovespa.

	Coefficient	Std. Error	z-Statistic	Prob.		
С	0,145466	0,044783	3,248255	0,0012		
RET(-1)	0,053504	0,023510	2,275825	0,0229		
Variance Equation						
С	0,254009	0,039543	6,423614	0,0000		
ARCH(1)	0,167417	0,012348	13,55848	0,0000		
GARCH(1)	0,794086	0,015641	50,77054	0,0000		
R-squared	0,000818					

Fig. 12 - Variância condicional para a série de retornos do Ibovespa.

• Cálculo do VaR

$$r_{T+1|T}^* \! = \; \hat{\mu}_{T+1|T}^{} \; \text{--} \; 1,\!645 \; \hat{h}_{T+1|T}^{1/2}^{1/2}$$

onde

$$\begin{split} \hat{\mu}_{T+1|T} &= 0,1454 \ + 0,0535 \ R_T \\ \hat{h}_{T+1|T} &= 0,254 + 0,167 \ (R_T \ \text{--} \ 0,0535 \ R_{T-1})^2 + 0,794 \ \hat{h}_T \end{split}$$

Substituindo-se:

$$R_T = 0.308$$
, $R_{T-1} = 2.483$ e $\hat{h}_T = 4.317$, segue que:

$$\hat{\mu}_{T+1|T} = 0.162$$

$$\hat{h}_{T+1|T} = 3,687$$
, ou seja

$$\hat{R}_{T+1|T}^* = -2,997\%$$
 é o valor crítico.

 A perda monetária, associada a este retorno "crítico" é o VaR, o qual é obtido usando que:

$$\Delta V_{T+1|T} = r^*_{T+1|T} V_T = -2,997 \%^* 1.000.000,00$$

= - 29.970,00 Reais

- Ou seja, nos próximos dias, espera-se que, em média, apenas um em 20 dias produza uma perda superior a 29.970,00 Reais.
- O que ficou faltando?
 - validar o modelo GARCH(1,1)!
 - vide notas complementares