```
import pandas as pd
import matplotlib.pyplot as plt
data = {'Year': list(range(2010, 2021)),
'Job Postings': [150, 300, 450, 600, 800, 1200, 1600, 2100, 2700, 3400, 4200]}

df = pd.DataFrame(data)
plt.plot(df['Year'], df['Job Postings'], marker='o')
plt.title('Trend of Data Science Job Postings')
plt.xlabel('Year')
plt.ylabel('Number of Job Postings')
plt.show()
```



```
[4]:
     structured data = pd.DataFrame({'ID': [1, 2, 3], 'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]})
     print("Structured Data:\n", structured data)
     unstructured data = "This is an example of unstructured data. It can be a piece of text, an image, or a video file."
     print("\nUnstructured Data:\n", unstructured data)
     semi structured data = {'ID': 1, 'Name': 'Alice', 'Attributes': {'Height': 165, 'Weight': 68}}
     print("\nSemi-structured Data:\n", semi structured data)
     Structured Data:
         ID
               Name Age
              Alice 25
     0 1
                Bob 30
     2 3 Charlie 35
     Unstructured Data:
      This is an example of unstructured data. It can be a piece of text, an image, or a video file.
     Semi-structured Data:
      {'ID': 1, 'Name': 'Alice', 'Attributes': {'Height': 165, 'Weight': 68}}
```

```
[5]:
     from cryptography.fernet import Fernet
     key = Fernet.generate key()
     f = Fernet(key)
     token = f.encrypt(b"Rajalakshmi Engineering College")
     token
     b' . . . '
     f.decrypt(token)
     b'Rajalakshmi Engineering College'
     key = Fernet.generate key()
     cipher suite = Fernet(key)
     plain text = b"Rajalakshmi Engineering College."
     cipher text = cipher suite.encrypt(plain text)
     decrypted text = cipher suite.decrypt(cipher text)
     print("Original Data:", plain text)
     print("Encrypted Data:", cipher_text)
     print("Decrypted Data:", decrypted text)
     Original Data: b'Rajalakshmi Engineering College.'
     Encrypted Data: b'gAAAAABomxmEqTZRrJQz2mFmMGLRPbXNgZ nJnqj3jGOmha5Qqs28412cuLazlCTnsTuo29VLTSe8SIikaZuzd9p0jGqA7skcsXoAisnlpFQ2yCGWUY2EAVsKOCnkLASBdD9
     1EZkMXYp'
```

Decrypted Data: b'Rajalakshmi Engineering College.'

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
# === File path ===
file path = r"C:\Users\A R KRISHNA\Downloads\sales data.xlsx"
# === Check if file exists ===
if not os.path.exists(file path):
    raise FileNotFoundError(f"File not found: {file path}")
# === Load Excel file ===
try:
    df = pd.read excel(file path)
    print("File loaded successfully!")
except Exception as e:
    raise RuntimeError(f"Error reading Excel file: {e}")
# === Display basic info ===
print("\nFirst few rows:\n", df.head())
print("\nAvailable Columns:\n", df.columns.tolist())
print("\nMissing Values:\n", df.isnull().sum())
# === Validate required columns ===
required_cols = {'Sales', 'Quantity', 'Product', 'Region', 'Date'}
missing_cols = required_cols - set(df.columns)
if missing cols:
    raise ValueError(f"Missing required columns: {missing cols}")
# === Convert data types safely ===
df['Sales'] = pd.to_numeric(df['Sales'], errors='coerce')
df['Quantity'] = pd.to_numeric(df['Quantity'], errors='coerce')
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
# === Handle missing values ===
if df['Sales'].isnull().all():
    raise ValueError("All Sales values are missing or non-numeric.")
```

```
df['Sales'] = df['Sales'].fillna(df['Sales'].mean())
df.dropna(subset=['Product', 'Quantity', 'Region', 'Date'], inplace=True)
# === Ensure data is not empty ===
if df.empty:
    raise ValueError("No valid data available after cleaning.")
# === Descriptive statistics ===
print("\nDescriptive Statistics:\n", df.describe())
# === Product Summary ===
product summary = df.groupby('Product', as index=False)[['Sales', 'Quantity']].sum()
print("\nProduct Summary:\n", product summary)
# === Bar Chart: Total Sales by Product ===
if not product summary.empty:
    plt.figure(figsize=(10, 6))
    plt.bar(product summary['Product'], product summary['Sales'], color='skyblue', edgecolor='black')
    plt.xlabel('Product')
    plt.ylabel('Total Sales')
    plt.title('Total Sales by Product')
    plt.xticks(rotation=45, ha='right')
   plt.tight_layout()
   plt.show()
else:
    print("Skipping bar chart - product summary is empty.")
# === Line Chart: Sales Over Time ===
sales_over_time = df.groupby('Date', as_index=False)['Sales'].sum().sort_values('Date')
if not sales over time.empty:
    plt.figure(figsize=(10, 6))
    plt.plot(sales_over_time['Date'], sales_over_time['Sales'], marker='o', linestyle='-', color='green')
   plt.xlabel('Date')
    plt.ylabel('Total Sales')
   plt.title('Sales Over Time')
    plt.tight_layout()
    plt.show()
else:
    print("Skipping time series plot - no valid date data found.")
```

```
# === Pivot Table (Sales by Region and Product) ===
pivot table = df.pivot table(values='Sales', index='Region', columns='Product', aggfunc='sum', fill value=0)
print("\nPivot Table (Sales by Region and Product):\n", pivot table)
if not pivot table.empty:
    plt.figure(figsize=(8, 6))
    sns.heatmap(pivot table, annot=True, fmt=".0f", cmap='Blues')
    plt.title('Sales by Region and Product')
    plt.tight layout()
    plt.show()
# === Correlation Matrix ===
corr cols = ['Sales', 'Quantity']
if all(col in df.columns for col in corr cols):
    correlation matrix = df[corr cols].corr()
    print("\n 

Correlation Matrix:\n", correlation matrix)
    plt.figure(figsize=(6, 5))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", vmin=-1, vmax=1)
    plt.title('Correlation Matrix')
    plt.tight layout()
    plt.show()
else:
    print("Correlation plot skipped - missing numeric columns.")
File loaded successfully!
First few rows:
                           Product Sales Quantity Region
                   Date
0 2023-01-01 00:00:00 Product A
                                     200
                                                 4 North
1 2023-02-01 00:00:00 Product B
                                     150
                                                 3 South
2 2023-03-01 00:00:00 Product A
                                     220
                                                 5 North
```

3 2023-04-01 00:00:00

4 2023-05-01 00:00:00

Product C

Product B

300

180

East

West

```
Available Columns:
 ['Date', 'Product', 'Sales', 'Quantity', 'Region']
Missing Values:
Date
             0
Product
Sales
Quantity
Region
dtype: int64
Descriptive Statistics:
                       Date
                                 Sales
                                         Quantity
                             16.000000
                                        16.000000
count
                           237.500000
       2023-05-09 06:00:00
                                         5.375000
mean
min
       2023-01-01 00:00:00 150.000000
                                         3.000000
25%
       2023-01-15 18:00:00 187.500000
                                         4.000000
50%
       2023-04-16 00:00:00 225.000000
                                         5.500000
75%
       2023-08-08 18:00:00
                           302.500000
                                        7.000000
       2023-12-01 00:00:00
                           340.000000
                                         8.000000
max
std
                       NaN
                            64.031242
                                        1.746425
Product Summary:
      Product Sales Quantity
0 Product A
              1350
                           33
   Product B
                850
                           17
2 Product C
               1600
                           36
```

Total Sales by Product

Sales Over Time


```
import matplotlib.pyplot as cricket

Overs = list(range(5, 51, 5))
Indian_Score = [30, 55, 90, 129, 165, 200, 239, 270, 310, 350]
Srilankan_Score = [25, 70, 90, 120, 140, 170, 195, 220, 255, 279]
cricket.plot(Overs, Indian_Score, color="green", label="INDIA")
cricket.plot(Overs, Srilankan_Score, color="red", label="SRI LANKA")
cricket.title("INDIA VS SRI LANKA")
cricket.xlabel("Overs")
cricket.ylabel("Score")
cricket.legend(loc="center right")
cricket.show()
```



```
import matplotlib.pyplot as hscmark
import numpy as np
Names = ['SHREE', 'DEV', 'KEERTHI', 'PRIYA', 'SHAN', 'KUMARAN']
xaxis = np.arange(len(Names))
Percentage_hsc = [96, 91, 94, 75, 45, 81]
hscmark.bar(Names, Percentage_hsc)
hscmark.xticks(xaxis, Names, rotation=45)
hscmark.xlabel("Names of Pupil")
hscmark.ylabel("Percentage")
hscmark.title("Comparison of HSC Percentage", fontsize=20, color="green")
hscmark.show()
```



```
import matplotlib.pyplot as election
# Election data
labels = ['CANDIDATE 1', 'CANDIDATE 2', 'CANDIDATE 3', 'CANDIDATE 4']

Votes = [315, 130, 245, 210]

colors = ['green', 'yellow', 'red', 'orange']

explode = (0.2, 0, 0, 0)

# Plotting the pie chart
election.pie(Votes, labels=labels, colors=colors, explode=explode, autopct='%0.2f%%')
election.title('Election Results')
election.show()
```



```
import nltk
from nltk.tokenize import word tokenize
from nltk.corpus import gutenberg
from collections import Counter
nltk.download('gutenberg')
nltk.download('punkt')
nltk.download('punkt tab')
sample = gutenberg.raw("austen-emma.txt")
tokens = word tokenize(sample)
wlist = tokens[:50]
wordfrea = Counter(wlist)
print("Pairs\n" + str(list(wordfreq.items())))
[nltk data] Downloading package gutenberg to C:\Users\A R
[nltk data]
               KRISHNA\AppData\Roaming\nltk data...
[nltk data] Package gutenberg is already up-to-date!
[nltk data] Downloading package punkt to C:\Users\A R
[nltk data]
               KRISHNA\AppData\Roaming\nltk data...
[nltk data]
              Package punkt is already up-to-date!
[nltk data] Downloading package punkt tab to C:\Users\A R
                KRISHNA\AppData\Roaming\nltk data...
[nltk data]
[nltk data]
             Unzipping tokenizers\punkt tab.zip.
Pairs
[('[', 1), ('Emma', 2), ('by', 1), ('Jane', 1), ('Austen', 1), ('1816', 1), (']', 1), ('VOLUME', 1), ('I', 2), ('CHAPTER', 1), ('Woodhouse', 1), (',',
5), ('handsome', 1), ('clever', 1), ('and', 3), ('rich', 1), ('with', 2), ('a', 1), ('comfortable', 1), ('home', 1), ('happy', 1), ('disposition', 1),
('seemed', 1), ('to', 1), ('unite', 1), ('some', 1), ('of', 2), ('the', 2), ('best', 1), ('blessings', 1), ('existence', 1), (';', 1), ('had', 1), ('l
ived', 1), ('nearly', 1), ('twenty-one', 1), ('years', 1), ('in', 1), ('world', 1)]
```

```
import pdfplumber
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
with pdfplumber.open(r"C:\Users\A R KRISHNA\Downloads\diabetes.pdf") as pdf:
    first page = pdf.pages[0]
    table = first page.extract table()
df = pd.DataFrame(table[1:], columns=table[0])
df = df.apply(pd.to numeric, errors='ignore')
print(df.head())
print(df.info())
print(df.describe())
df.hist(bins=50, figsize=(20, 15))
plt.show()
sns.pairplot(df.select_dtypes(include='number'))
plt.show()
```

C:\Users\A R KRISHNA\AppData\Local\Temp\ipykernel_4084\1601767611.py:11: FutureWarning: errors='ignore' is deprecated and will raise in a future versi
on. Use to_numeric without passing `errors` and catch exceptions explicitly instead
 df = df.apply(pd.to_numeric, errors='ignore')

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
0	6	148	72	35	0	33.6
1	1	85	66	29	0	26.6
2	8	183	64	0	0	23.3
3	1	89	66	23	94	28.1
4	0	137	40	35	168	43.1

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 45 entries, 0 to 44 Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	45 non-null	int64
1	Glucose	45 non-null	int64
2	BloodPressure	45 non-null	int64
3	SkinThickness	45 non-null	int64
4	Insulin	45 non-null	int64
5	BMI	45 non-null	float64

dtypes: float64(1), int64(5)

memory usage: 2.2 KB

None

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	١
count	45.000000	45.000000	45.000000	45.000000	45.000000	
mean	5.644444	128.088889	71.133333	19.000000	90.600000	
std	3.484743	31.856798	21.257726	16.742705	158.991338	
min	0.000000	78.000000	0.000000	0.000000	0.000000	
25%	3.000000	103.000000	66.000000	0.000000	0.000000	
50%	6.000000	119.000000	74.000000	23.000000	0.000000	
75%	8.000000	147.000000	84.000000	33.000000	140.000000	
max	13.000000	197.000000	110.000000	47.000000	846.000000	

	BMI
count	45.000000
mean	31.646667
std	8.117898
min	0.000000
25%	27.100000
50%	31.600000
75%	37.100000
max	45.800000


```
[10]: import numpy as np
      import pandas as pd
      # Load dataset
      df = pd.read csv(r"C:\Users\A R KRISHNA\OneDrive\Documents\Hotel Dataset.csv")
      print("Initial Data:")
      print(df)
      print("\n" + "-"*80 + "\n")
      # Remove duplicate rows
      df = df.drop duplicates()
      # Drop unwanted column if present
      if 'Age Group.1' in df.columns:
          df = df.drop(['Age Group.1'], axis=1)
      # Replace invalid negative values with NaN
      df.loc[df['CustomerID'] < 0, 'CustomerID'] = np.nan</pre>
      df.loc[df['Bill'] < 0, 'Bill'] = np.nan</pre>
      df.loc[df['EstimatedSalary'] < 0, 'EstimatedSalary'] = np.nan</pre>
      df.loc[(df['NoOfPax'] < 1) | (df['NoOfPax'] > 20), 'NoOfPax'] = np.nan
      # Fix text inconsistencies
      df['Hotel'] = df['Hotel'].replace(['Ibys'], 'Ibis')
      df['FoodPreference'] = df['FoodPreference'].replace(['Vegetarian', 'veg'], 'Veg')
      df['FoodPreference'] = df['FoodPreference'].replace(['non-Veg'], 'Non-Veg')
      # Fill missing numerical values with mean or median
      df['EstimatedSalary'] = df['EstimatedSalary'].fillna(round(df['EstimatedSalary'].mean()))
      df['NoOfPax'] = df['NoOfPax'].fillna(round(df['NoOfPax'].median()))
      df['Rating(1-5)'] = df['Rating(1-5)'].fillna(round(df['Rating(1-5)'].median()))
      df['Bill'] = df['Bill'].fillna(round(df['Bill'].mean()))
      # Display cleaned dataset
      print("Cleaned Data:")
      print(df)
      print("\nDataFrame Info:")
      df.info()
```

Ini	tial Data:							
	CustomerID	Age_Group	Rating(1-5)	Hotel	${\sf FoodPreference}$	Bill	\	
0	1	20-25	4	Ibis	veg	1300		
1	2	30-35	5	LemonTree	Non-Veg	2000		
2	3	25-30	6	RedFox	Veg	1322		
3	4	20-25	-1	LemonTree	Veg	1234		
4	5	35+	3	Ibis	Vegetarian	989		
5	6	35+	3	Ibys	Non-Veg	1909		
6	7	35+	4	RedFox	Vegetarian	1000		
7	8	20-25	7	LemonTree	Veg	2999		
8	9	25-30	2	Ibis	Non-Veg	3456		
9	9	25-30	2	Ibis	Non-Veg	3456		
10	10	30-35	5	RedFox	non-Veg	-6755		
	NoOfPax E	stimatedSala	ry Age_Group	.1				
0	2	400	00 20-	25				
1	3	590	00 30-	35				
2	2	300	00 25-	30				

	NOOTPAX	Estimatedsalary	Age_Group.1
0	2	40000	20-25
1	3	59000	30-35
2	2	30000	25-30
3	2	120000	20-25
4	2	45000	35+
5	2	122220	35+
6	-1	21122	35+
7	-10	345673	20-25
8	3	-99999	25-30
9	3	-99999	25-30
10	4	87777	30-35

Cleaned Data:

	CustomerID	Age_Group	Rating(1-5)	Hotel	FoodPreference	Bill	\
0	1.0	20-25	4	Ibis	Veg	1300.0	
1	2.0	30-35	5	LemonTree	Non-Veg	2000.0	
2	3.0	25-30	6	RedFox	Veg	1322.0	
3	4.0	20-25	-1	LemonTree	Veg	1234.0	
4	5.0	35+	3	Ibis	Veg	989.0	
5	6.0	35+	3	Ibis	Non-Veg	1909.0	
6	7.0	35+	4	RedFox	Veg	1000.0	
7	8.0	20-25	7	LemonTree	Veg	2999.0	
8	9.0	25-30	2	Ibis	Non-Veg	3456.0	
10	10.0	30-35	5	RedFox	Non-Veg	1801.0	

```
NoOfPax EstimatedSalary
      2.0
                 40000.0
0
1
      3.0
                 59000.0
      2.0
2
                 30000.0
3
      2.0
                120000.0
4
      2.0
                45000.0
5
      2.0
                122220.0
6
      2.0
                 21122.0
7
    2.0
              345673.0
8
      3.0
                 96755.0
10
      4.0
                 87777.0
DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
Index: 10 entries, 0 to 10
Data columns (total 8 columns):
    Column
                  Non-Null Count Dtype
0 CustomerID 10 non-null float64
1 Age Group 10 non-null object
2 Rating(1-5) 10 non-null int64
3 Hotel
          10 non-null object
4 FoodPreference 10 non-null object
5 Bill
                  10 non-null float64
                  10 non-null float64
6 NoOfPax
7 EstimatedSalary 10 non-null float64
dtypes: float64(4), int64(1), object(3)
memory usage: 720.0+ bytes
```

```
[4]: import numpy as np
      import seaborn as sns
     import matplotlib.pyplot as plt
      array = np.array([27, 50, 44, 6, 58, 61, 23, 86, 67, 20, 75, 7, 79, 61, 90, 54])
      print("--- Initial Data Analysis ---")
     print(f"Array: {array}")
     print(f"Mean: {array.mean()}")
     print(f"25th Percentile (01): {np.percentile(array, 25)}")
     print(f"50th Percentile (Median): {np.percentile(array, 50)}")
     print(f"75th Percentile (Q3): {np.percentile(array, 75)}")
     print(f"100th Percentile (Max): {np.percentile(array, 100)}")
     print("-" * 30)
     print("\nDisplaying Original Data Histogram...")
     sns.displot(array, kind="hist", bins=5)
     plt.title("Original Data Distribution (Histogram)")
      plt.show()
     print("\nDisplaying Original Data Density Plot...")
     sns.histplot(array, kde=True, bins=5) # 'bins=5' matches the visual in the file
     plt.title("Original Data Distribution (with Density Curve)")
      plt.show()
      def outDetection(data):
         Q1, Q3 = np.percentile(data, [25, 75])
         IQR = Q3 - Q1
         lr = Q1 - (1.5 * IQR)
         ur = Q3 + (1.5 * IQR)
         return lr, ur
     print("\n--- Outlier Range Calculation ---")
     lr, ur = outDetection(array)
     print(f"Calculated Outlier Range (lr, ur): ({lr}, {ur})")
     print("-" * 30)
     final array = array[(array > lr) & (array < ur)]</pre>
     print("\n--- Filtered Data Result ---")
     print(f"Final Array: {final_array}")
     print("\nDisplaying Filtered Data Distribution...")
     sns.histplot(final_array, kde=True, bins=5)
     plt.title("Filtered Data Distribution (No Outliers Found)")
     plt.show()
```

--- Initial Data Analysis --Array: [27 50 44 6 58 61 23 86 67 20 75 7 79 61 90 54]
Mean: 50.5
25th Percentile (Q1): 26.0
50th Percentile (Median): 56.0
75th Percentile (Q3): 69.0
100th Percentile (Max): 90.0

Displaying Original Data Histogram...

Displaying Original Data Density Plot...

Original Data Distribution (with Density Curve) 4.0 3.5 3.0 2.5 Count 2.0 1.5 1.0 0.5 0.0 20 80 40 60

```
--- Outlier Range Calculation ---
Calculated Outlier Range (lr, ur): (-38.5, 133.5)
```

--- Filtered Data Result --- Final Array: [27 50 44 6 58 61 23 86 67 20 75 7 79 61 90 54]

Displaying Filtered Data Distribution...


```
import pandas as pd
from sklearn.impute import SimpleImputer
from sklearn, preprocessing import OneHotEncoder, StandardScaler, MinMaxScaler
data = {
    'Country': ['France', 'Spain', 'Germany', 'Spain', 'Germany', 'France', 'Spain', 'France', np.nan, 'France'],
    'Age': [44.0, 27.0, 30.0, 38.0, 40.0, 35.0, np.nan, 48.0, 50.0, 37.0],
    'Salary': [72000.0, 48000.0, 54000.0, 61000.0, np.nan, 58000.0, 52000.0, 79000.0, 83000.0, 67000.0],
    'Purchased': ['No', 'Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes']
df = pd.DataFrame(data)
print("--- Original DataFrame 'df' ---")
print(df)
country mode = df['Country'].mode()[0]
df['Country'] = df['Country'].fillna(country mode)
features = df.iloc[:, :-1].values
label = df.iloc[:, -1].values
age imputer = SimpleImputer(strategy="mean", missing values=np.nan)
salary imputer = SimpleImputer(strategy="mean", missing values=np.nan)
features[:, [1]] = age_imputer.fit_transform(features[:, [1]])
features[:, [2]] = salary imputer.fit transform(features[:, [2]])
print("\n--- 'features' array after imputing missing Age/Salary ---")
print(features)
oh = OneHotEncoder(sparse output=False)
Country encoded = oh.fit transform(features[:, [0]])
print("\n--- 'Country' array after OneHotEncoding ---")
print(Country encoded)
final_set = np.concatenate((Country_encoded, features[:, [1, 2]]), axis=1)
print("\n--- 'final_set' array (concatenated) ---")
print(final set)
sc = StandardScaler()
feat_standard_scaler = sc.fit_transform(final_set)
print("\n--- 'feat_standard_scaler' (StandardScaler output) ---")
print(feat standard scaler)
mms = MinMaxScaler(feature range=(0, 1))
feat_minmax_scaler = mms.fit_transform(final_set)
print("\n--- 'feat_minmax_scaler' (MinMaxScaler output) ---")
print(feat_minmax_scaler)
```

[5]: import numpy as np

```
--- Original DataFrame 'df' ---
  Country Age Salary Purchased
   France 44.0 72000.0
                                No
    Spain 27.0 48000.0
                               Yes
1
  Germany 30.0 54000.0
                                No
    Spain 38.0 61000.0
3
                               No
  Germany 40.0
                     NaN
                               Yes
   France 35.0 58000.0
                             Yes
5
   Spain
           NaN
                 52000.0
                               No
   France 48.0 79000.0
                               Yes
      NaN 50.0 83000.0
8
                              No
   France 37.0 67000.0
                               Yes
--- 'features' array after imputing missing Age/Salary ---
[['France' 44.0 72000.0]
 ['Spain' 27.0 48000.0]
 ['Germany' 30.0 54000.0]
 ['Spain' 38.0 61000.0]
 ['Germany' 40.0 63777.777777778]
 ['France' 35.0 58000.0]
 ['Spain' 38.77777777777 52000.0]
 ['France' 48.0 79000.0]
 ['France' 50.0 83000.0]
 ['France' 37.0 67000.0]]
--- 'Country' array after OneHotEncoding ---
[[1. 0. 0.]
[0. 0. 1.]
[0. 1. 0.]
[0. 0. 1.]
[0. 1. 0.]
[1. 0. 0.]
[0. 0. 1.]
[1. 0. 0.]
[1. 0. 0.]
 [1. 0. 0.]]
```

```
--- 'final_set' array (concatenated) ---
[[1.0 0.0 0.0 44.0 72000.0]
 [0.0 0.0 1.0 27.0 48000.0]
 [0.0 1.0 0.0 30.0 54000.0]
 [0.0 0.0 1.0 38.0 61000.0]
 [0.0 1.0 0.0 40.0 63777.7777777778]
 [1.0 0.0 0.0 35.0 58000.0]
[0.0 0.0 1.0 38.777777777778 52000.0]
 [1.0 0.0 0.0 48.0 79000.0]
 [1.0 0.0 0.0 50.0 83000.0]
 [1.0 0.0 0.0 37.0 67000.0]]
--- 'feat_standard_scaler' (StandardScaler output) ---
[[ 1.00000000e+00 -5.00000000e-01 -6.54653671e-01 7.58874362e-01
  7.49473254e-01]
 [-1.00000000e+00 -5.00000000e-01 1.52752523e+00 -1.71150388e+00
  -1.43817841e+00]
 [-1.00000000e+00 2.00000000e+00 -6.54653671e-01 -1.27555478e+00
 -8.91265492e-01]
 [-1.00000000e+00 -5.00000000e-01 1.52752523e+00 -1.13023841e-01
 -2.53200424e-01]
 [-1.00000000e+00 2.00000000e+00 -6.54653671e-01 1.77608893e-01
   6.63219199e-16]
 [ 1.00000000e+00 -5.00000000e-01 -6.54653671e-01 -5.48972942e-01
 -5.26656882e-01]
 [-1.00000000e+00 -5.00000000e-01 1.52752523e+00 0.00000000e+00
 -1.07356980e+00]
 [ 1.00000000e+00 -5.00000000e-01 -6.54653671e-01 1.34013983e+00
   1.38753832e+00]
 [ 1.00000000e+00 -5.0000000e-01 -6.54653671e-01 1.63077256e+00
   1.75214693e+001
 [ 1.00000000e+00 -5.00000000e-01 -6.54653671e-01 -2.58340208e-01
   2.93712492e-01]]
--- 'feat_minmax_scaler' (MinMaxScaler output) ---
[[1.
            0.
                      0.
                                  0.73913043 0.685714291
[0.
            0.
                       1.
                                             0.
 [0.
            1.
                       0.
                                  0.13043478 0.17142857]
 [0.
            0.
                       1.
                                  0.47826087 0.37142857]
[0.
            1.
                      0.
                                  0.56521739 0.45079365]
                      0.
[1.
            0.
                                  0.34782609 0.28571429]
[0.
            0.
                       1.
                                  0.51207729 0.11428571]
[1.
           0.
                      0.
                                 0.91304348 0.885714291
 [1.
                      0.
           0.
                                             1.
 [1.
                                  0.43478261 0.54285714]]
            0.
                       0.
```

```
[10]: import numpy as np
      import pandas as pd
      # 1. Re-create the initial DataFrame
      data = {
           'Country': ['France', 'Spain', 'Germany', 'Spain', 'Germany', 'France', 'Spain', 'France', np.nan, 'France'],
           'Age': [44.0, 27.0, 30.0, 38.0, 40.0, 35.0, np.nan, 48.0, 50.0, 37.0],
           'Salary': [72000.0, 48000.0, 54000.0, 61000.0, np.nan, 58000.0, 52000.0, 79000.0, 83000.0, 67000.0],
          'Purchased': ['No', 'Yes', 'No', 'No', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes']
      df = pd.DataFrame(data)
      print("--- 1. Original DataFrame 'df' (with missing values) ---")
      print(df)
      # 2. Impute (fill) missing values (Warning-free method)
      df.fillna({
          'Country': df['Country'].mode()[0],
          'Age': df['Age'].median(),
          'Salary': round(df['Salary'].mean())
      }, inplace=True)
      print("\n--- 2. DataFrame 'df' after Imputation ---")
      print(df)
      # 3. Apply One-Hot Encoding to 'Country' and concatenate
      updated dataset = pd.concat([pd.get dummies(df.Country), df.iloc[:, [1, 2, 3]]], axis=1)
      print("\n--- 3. 'updated_dataset' after One-Hot Encoding 'Country' ---")
      print(updated_dataset)
      # 4. Replace and explicitly infer types (Warning-free method)
      # First, perform the replacement as before
      updated_dataset['Purchased'] = updated_dataset['Purchased'].replace(['No', 'Yes'], [0, 1])
      # NOW, apply the fix exactly as suggested by the warning
      updated_dataset['Purchased'] = updated_dataset['Purchased'].infer_objects(copy=False)
      print("\n--- 4. Final 'updated_dataset' after replacing 'Purchased' ---")
      print(updated_dataset)
      print("\n--- Final 'updated_dataset.info()' (to check dtypes) ---")
      updated_dataset.info()
```

	- 1. Orig	ginal D	DataFrame	'df'	(with	missin	g values)		
	Country	Age	Salary	Purch	ased				
0	France	44.0	72000.0		No				
1	Spain	27.0	48000.0		Yes				
2	Germany	30.0	54000.0		No				
3	Spain	38.0	61000.0		No				
4	Germany	40.0	NaN		Yes				
5	France	35.0	58000.0		Yes				
6	Spain	NaN	52000.0		No				
7	France	48.0	79000.0		Yes				
8	NaN	50.0	83000.0		No				
9	France	37.0	67000.0		Yes				
			'df' afte			on			
	Country	Age	Salary	Purch	ased				
0	France	44.0	72000.0		No				
1	Spain	27.0	48000.0		Yes				
2	Germany	30.0	54000.0		No				
3	Spain	38.0	61000.0		No				
4	Germany	40.0	63778.0		Yes				
5	France	35.0	58000.0		Yes				
6	Spain	38.0	52000.0		No				
7	France	48.0	79000.0		Yes				
8	France	50.0	83000.0		No				
9	France	37.0	67000.0		Yes				
	_					_			
	•	_					_	ntry'	
			ny Spain	_		-			
0			se False				No		
1			se True				Yes		
2			ue False				No		
3	False	Fals		38.0			No		
4	False	Tru		40.0			Yes		
5	True	Fals		35.0			Yes		
6	False	Fals		38.0		90.0	No		
7	True	Fals		48.0			Yes		
8	True	Fals		50.0			No		
9	True	Fals	se False	37.0	6700	90.0	Yes		

```
False False 44.0
                                72000.0
    True
   False
                    True 27.0
            False
                                48000.0
   False
             True False 30.0
                                54000.0
   False
            False
                    True 38.0
                                61000.0
             True False 40.0
   False
                                63778.0
            False False 35.0
    True
                                58000.0
   False
                    True 38.0
            False
                                52000.0
            False False 48.0 79000.0
    True
    True
            False False 50.0 83000.0
                                                 0
            False False 37.0 67000.0
    True
--- Final 'updated dataset.info()' (to check dtypes) ---
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 6 columns):
               Non-Null Count Dtype
    Column
               10 non-null
                               bool
    France
    Germany
               10 non-null
                               bool
    Spain
               10 non-null
                               bool
                               float64
    Age
               10 non-null
    Salarv
               10 non-null
                               float64
    Purchased 10 non-null
                               int64
dtypes: bool(3), float64(2), int64(1)
memory usage: 402.0 bytes
C:\Users\A R KRISHNA\AppData\Local\Temp\ipykernel 4764\2742519366.py:37: FutureWarning: Downcasting behavior in `replace` is deprecated and will be re
moved in a future version. To retain the old behavior, explicitly call `result.infer objects(copy=False)`. To opt-in to the future behavior, set `pd.s
et option('future.no silent downcasting', True)`
 updated dataset['Purchased'] = updated dataset['Purchased'].replace(['No', 'Yes'], [0, 1])
```

--- 4. Final 'updated dataset' after replacing 'Purchased' ---

Salary Purchased

Age

France Germany Spain

```
import seaborn as sns
[42]:
      import pandas as pd
      import numpy as np
      import matplotlib.pyplot as plt
      %matplotlib inline
      tips=sns.load dataset('tips')
      tips.head()
      sns.displot(tips.total bill,kde=True)
      sns.displot(tips.total bill,kde=False)
      sns.jointplot(x=tips.tip,y=tips.total bill)
      sns.jointplot(x=tips.tip,y=tips.total bill,kind="reg")
      sns.jointplot(x=tips.tip,y=tips.total bill,kind="hex")
      sns.pairplot(tips)
      tips.time.value counts()
      sns.pairplot(tips,hue='time')
      sns.pairplot(tips,hue='day')
      sns.heatmap(tips.corr(numeric_only=True),annot=True)
      sns.boxplot(tips.total bill)
      sns.boxplot(tips.tip)
      sns.countplot(tips.day)
      sns.countplot(tips.sex)
      tips.sex.value_counts().plot(kind='pie')
      tips.sex.value_counts().plot(kind='bar')
      sns.countplot(tips[tips.time=='Dinner']['day'])
```

Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.

C:\Users\A R KRISHNA\AppData\Local\Programs\Python\Python312\Lib\site-packages\seaborn\categorical.py:383: UserWarning: Attempting to set identical low and high ylims makes transformation singular; automatically expanding.

ax.set_ylim(n - .5, -.5, auto=None)

[42]: <Axes: xlabel='sex', ylabel='count'>

Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.


```
[46]:
      import numpy as np
      import pandas as pd
      from sklearn.linear model import LinearRegression
      from sklearn.model selection import train test split
      import pickle
      df = pd.read csv(r"C:\Users\A R KRISHNA\Downloads\Salary data.csv")
      df.dropna(inplace=True)
      features = df.iloc[:, [0]].values
      label = df.iloc[:, [1]].values
      x train, x test, y train, y test = train test split(features, label, test size=0.2, random state=42)
      model = LinearRegression()
      model.fit(x train, y train)
      print("Training Score:", model.score(x train, y train))
      print("Testing Score:", model.score(x test, y test))
      print("Model Coefficients:", model.coef )
      print("Model Intercept:", model.intercept )
      pickle.dump(model, open('SalaryPred.model', 'wb'))
      model = pickle.load(open('SalaryPred.model', 'rb'))
      yr of exp = float(input("Enter Years of Experience: "))
      yr of exp NP = np.array([[yr of exp]])
      Salary = model.predict(yr of exp NP)
      print("Estimated Salary for {} years of experience is {}:".format(yr_of_exp, Salary[0][0]))
      Training Score: 0.9645401573418146
      Testing Score: 0.9024461774180497
      Model Coefficients: [[9423.81532303]]
      Model Intercept: [25321.58301178]
      Enter Years of Experience: 26
```

Estimated Salary for 26.0 years of experience is 270340.7814105822:

```
[2]: import numpy as np
                                                                                                                                    向 个 ↓ 古 〒 🗎
     import pandas as pd
     from sklearn.model selection import train test split
     from sklearn.linear model import LogisticRegression
     from sklearn.metrics import classification report
     df = pd.read csv(r"C:\Users\A R KRISHNA\Downloads\LogisticsRegression.csv")
     features = df.iloc[:, [2, 3]].values
     label = df.iloc[:, 4].values
     for i in range(1, 401):
         x train, x test, y train, y test = train test split(features, label, test size=0.8, random state=i)
         model = LogisticRegression()
         model.fit(x train, y train)
         train score = model.score(x_train, y_train)
         test score = model.score(x_test, y_test)
         if test score > train score:
             print("Test {:.4f} Train {:.4f} Random State {}".format(test score, train score, i))
     x train, x test, y train, y test = train test split(features, label, test size=0.2, random state=42)
     finalModel = LogisticRegression()
     finalModel.fit(x_train, y_train)
     print("Train Accuracy:", finalModel.score(x train, y train))
     print("Test Accuracy:", finalModel.score(x_test, y_test))
     print("\nClassification Report:\n", classification_report(label, finalModel.predict(features)))
```

Test	0.8375	Train	0.8125	Random	State	2
Test	0.8313	Train	0.8000	Random	State	4
Test	0.8406	Train	0.8000	Random	State	8
Test	0.8375	Train	0.8250	Random	State	9
Test	0.8531	Train	0.7750	Random	State	13
Test	0.8719	Train	0.7875	Random	State	14
Test	0.8656	Train	0.8625	Random	State	15
Test	0.8688	Train	0.8375	Random	State	17
Test	0.8406	Train	0.7750	Random	State	18
Test	0.8313	Train	0.8250	Random	State	19
Test	0.8375	Train	0.8250	Random	State	21
Test	0.8469	Train	0.8375	Random	State	22
Test	0.8531	Train	0.8500	Random	State	25
Test	0.8438	Train	0.8125	Random	State	26
Test	0.8688	Train	0.7750	Random	State	27
Test	0.8250	Train	0.8125	Random	State	29
Test	0.8219	Train	0.8125	Random	State	33
Test	0.8344	Train	0.8250	${\sf Random}$	State	34
Test	0.8375	Train	0.8250	${\sf Random}$	State	35
Test	0.8406	Train	0.8250	Random	State	42
Test	0.8406	Train	0.8125	Random	State	47
Test	0.8594	Train	0.8375	Random	State	53
Test	0.8313	Train	0.8250	${\sf Random}$	State	55
Test	0.8469	Train	0.8375	${\sf Random}$	State	56
Test	0.8281	Train	0.8250	Random	State	59
Test	0.8375	Train	0.7750	Random	State	68
Test	0.8531	Train	0.8500	Random	State	71
Test	0.8719	Train	0.8375	Random	State	74
Test	0.8594	Train	0.8375	Random	State	80
Test	0.8625	Train	0.7500	Random	State	82
Test	0.8656	Train	0.8125	Random	State	83
Test	0.8469	Train	0.8375	Random	State	86
Test	0.8375	Train	0.8250	Random	State	93
Test	0.8438	Train	0.8250	Random	State	99
Test	0.8562	Train	0.8500	Random	State	100
Test	0.8625	Train	0.7625	Random	State	105
Test	0.8406	Train	0.8375	Random	State	106
Test	0.8406	Train	0.8375	Random	State	110
Test	0.8469	Train	0.7375	Random	State	111

Test	0.8469	Train	0.8125	Random	State	113
Test	0.8594	Train	0.8125	Random	State	118
Test	0.8313	Train	0.8125	Random	State	120
Test	0.8469	Train	0.8250	Random	State	122
Test	0.8406	Train	0.8375	Random	State	123
Test	0.8469	Train	0.8125	Random	State	134
Test	0.8562	Train	0.8500	Random	State	135
Test	0.8438	Train	0.8125	Random	State	136
Test	0.8344	Train	0.8250	Random	State	138
Test	0.8313	Train	0.8000	Random	State	146
Test	0.8781	Train	0.8250	Random	State	150
Test	0.8688	Train	0.8000	Random	State	152
Test	0.8500	Train	0.8125	Random	State	153
Test	0.8688	Train	0.8375	Random	State	154
Test	0.8375	Train	0.7750	Random	State	155
Test	0.8625	Train	0.8375	Random	State	156
Test	0.8594	Train	0.8250	Random	State	161
Test	0.8281	Train	0.8000	Random	State	163
Test	0.8594	Train	0.8500	Random	State	171
Test	0.8469	Train	0.8250	Random	State	173
Test	0.8313	Train	0.8125	Random	State	175
Test	0.8438	Train	0.8250	Random	State	176
Test	0.8406	Train	0.8250	Random	State	180
Test	0.8344	Train	0.8250	Random	State	185
Test	0.8375	Train	0.8250	Random	State	186
Test	0.8187	Train	0.7875	Random	State	187
Test	0.8344	Train	0.8250	Random	State	194
	0.8406					
Test	0.8344	Train	0.7875	Random	State	200
	0.8531					
	0.8344					
Test	0.8438	Train	0.8375	Random	State	207
Test	0.8438	Train	0.8375	Random	State	211
Test	0.8438	Train	0.8125	Random	State	213
	0.8531					
	0.8594					
	0.8375					
Test	0.8594	Train	0.7750	Random	State	223
Test	0.8469	Train	0.8000	Random	State	226

Test 0.8531	Train	0.8500	Random	State	227
Test 0.8500	Train	0.7750	Random	State	228
Test 0.8500	Train	0.7875	Random	State	229
Test 0.8594	Train	0.8375	Random	State	232
Test 0.8531	Train	0.8250	Random	State	240
Test 0.8469	Train	0.7875	Random	State	241
Test 0.8688	Train	0.8500	Random	State	242
Test 0.8656	Train	0.8250	Random	State	245
Test 0.8688	Train	0.8375	Random	State	247
Test 0.8438	Train	0.8375	Random	State	251
Test 0.8562	Train	0.8500	Random	State	252
Test 0.8781	Train	0.8000	Random	State	256
Test 0.8406	Train	0.8250	Random	State	259
Test 0.8438	Train	0.8375	Random	State	262
Test 0.8562	Train	0.8000	Random	State	273
Test 0.8531	Train	0.8500	Random	State	276
Test 0.8313	Train	0.8000	Random	State	284
Test 0.8156	Train	0.7125	Random	State	290
Test 0.8469	Train	0.8250	Random	State	292
Test 0.8469	Train	0.8375	Random	State	293
Test 0.8313	Train	0.8250	Random	State	298
Test 0.8344	Train	0.8250	Random	State	301
Test 0.8406	Train	0.8250	Random	State	303
Test 0.8656	Train	0.8250	Random	State	306
Test 0.8344	Train	0.8000	Random	State	307
Test 0.8719	Train	0.7625	Random	State	308
Test 0.8562	Train	0.8500	Random	State	317
Test 0.8562	Train	0.8375	Random	State	318
Test 0.8531	Train	0.8250	Random	State	322
Test 0.8250	Train	0.8125	Random	State	328
Test 0.8281	Train	0.8125	Random	State	329
Test 0.8469	Train	0.8250	Random	State	336
Test 0.8375	Train	0.8250	Random	State	338
Test 0.8469	Train	0.8375	Random	State	344
Test 0.8500	Train	0.8375	Random	State	346
Test 0.8750	Train	0.8125	Random	State	349
Test 0.8500	Train	0.8000	Random	State	352
Test 0.8500	Train	0.7875	Random	State	355
Test 0.8531	Train	0.8125	Random	State	371

Test 0.8469 Train	0.8125	Random Sta	te 372	
Test 0.8375 Train	0.7750	Random Sta	te 373	
Test 0.8562 Train	0.8375	Random Sta	te 381	
Test 0.8500 Train	0.8125	Random Sta	te 382	
Test 0.8250 Train	0.8125	Random Sta	te 383	
Test 0.8656 Train	0.7625	Random Sta	te 386	
Test 0.8594 Train	0.7875	Random Sta	te 393	
Test 0.8531 Train	0.8500	Random Sta	te 395	
Test 0.8719 Train	0.7625	Random Sta	te 397	
Test 0.8438 Train	0.8375	Random Sta	te 398	
Test 0.8438 Train	0.7750	Random Sta	te 399	
Test 0.8156 Train	0.8125	Random Sta	te 400	
Train Accuracy: 0	.8375			
Test Accuracy: 0.	8875			
Classification Re	port:			
pr	ecision	recall	f1-score	support
0	0.85	0.93	0.89	257
1	0.85	0.70	0.77	143
accuracy			0.85	400
macro avg	0.85	0.81	0.83	400
weighted avg	0.85	0.85	0.84	400

```
[12]: import numpy as np
       import pandas as pd
       from sklearn.model selection import train test split
       from sklearn.linear model import LogisticRegression
       from sklearn.metrics import classification report
       try:
          df = pd.read csv(r"C:\Users\A R KRISHNA\Downloads\Social Network Ads.csv")
       except FileNotFoundError:
          print("Error: 'Social Network Ads.csv' not found.")
          df = pd.DataFrame({
               'Age': [19, 35, 26, 27, 19],
               'EstimatedSalary': [19000, 20000, 43000, 57000, 76000],
               'Purchased': [0, 0, 0, 0, 0]
          print("Using dummy data. Please add the correct CSV file to get real results.")
       print("--- Original DataFrame Head ---")
       print(df.head())
       print("-" * 30)
       features = df.iloc[:, [2, 3]].values
       label = df.iloc[:, 4].values
       print("\n--- Experiment 1 (In [7]) Output ---")
       for i in range(1, 401):
          x_train, x_test, y_train, y_test = train_test_split(features, label, test_size=0.2, random state=i)
          model = LogisticRegression()
          model.fit(x_train, y_train)
          train_score = model.score(x_train, y_train)
          test_score = model.score(x_test, y_test)
          if test score > train score:
               print("Test {:.4f} Train {:.4f} Random State {}".format(test_score, train_score, i))
       print("-" * 30)
```

```
print("\n--- Experiment 2 (In [8] - [10]) ---")
x train, x test, y train, y test = train test split(features, label, test size=0.2)
finalModel = LogisticRegression()
print(f"Model: {finalModel}") #
finalModel.fit(x train, y train)
print("\nScores from In [9]:")
print(f"Train Score: {finalModel.score(x train, y train)}")
print(f"Test Score: {finalModel.score(x test, y test)}")
print("\nClassification Report from In [10]:")
print(classification report(label, finalModel.predict(features)))
print("-" * 30)
--- Original DataFrame Head ---
   User ID Gender Age EstimatedSalary Purchased
0 15624510
              Male
                    19
                                   19000
1 15810944
              Male
                                   20000
                    35
2 15668575 Female
                                   43000
                    26
3 15603246 Female
                                   57000
4 15804002
              Male 19
                                   76000
--- Experiment 1 (In [7]) Output ---
Test 0.9000 Train 0.8406 Random State 4
Test 0.8625 Train 0.8500 Random State 5
Test 0.8625 Train 0.8594 Random State 6
Test 0.8875 Train 0.8375 Random State 7
Test 0.8625 Train 0.8375 Random State 9
Test 0.9000 Train 0.8406 Random State 10
Test 0.8625 Train 0.8562 Random State 14
Test 0.8500 Train 0.8438 Random State 15
Test 0.8625 Train 0.8562 Random State 16
Test 0.8750 Train 0.8344 Random State 18
Test 0.8500 Train 0.8438 Random State 19
```

Test 0.8750 Train 0.8438 Random State 20

Test	0.8625	Train	0.8344	Random	State	21
Test	0.8750	Train	0.8406	Random	State	22
Test	0.8750	Train	0.8406	Random	State	24
Test	0.8500	Train	0.8344	Random	State	26
Test	0.8500	Train	0.8406	Random	State	27
Test	0.8625	Train	0.8344	Random	State	30
Test	0.8625	Train	0.8562	Random	${\sf State}$	31
Test	0.8750	Train	0.8531	Random	State	32
Test	0.8625	Train	0.8438	Random	State	33
Test	0.8750	Train	0.8313	Random	${\sf State}$	35
Test	0.8625	Train	0.8531	Random	State	36
Test	0.8875	Train	0.8406	Random	State	38
Test	0.8750	Train	0.8375	Random	${\sf State}$	39
Test	0.8875	Train	0.8375	Random	State	42
Test	0.8750	Train	0.8469	Random	${\sf State}$	46
Test	0.9125	Train	0.8313	Random	State	47
Test	0.8750	Train	0.8313	Random	State	51
Test	0.9000	Train	0.8438	Random	${\sf State}$	54
Test	0.8500	Train	0.8438	Random	State	57
Test	0.8750	Train	0.8438	Random	State	58
Test	0.9250	Train	0.8375	Random	State	61
Test	0.8875	Train	0.8344	Random	State	65
Test	0.8875	Train	0.8406	Random	${\sf State}$	68
Test	0.9000	Train	0.8313	Random	${\sf State}$	72
Test	0.8875	Train	0.8375	Random	State	75
Test	0.9250	Train	0.8250	Random	${\sf State}$	76
Test	0.8625	Train	0.8406	Random	State	77
Test	0.8625	Train	0.8594	Random	State	81
Test	0.8750	Train	0.8375	Random	State	82
Test	0.8875	Train	0.8375	Random	State	83
Test	0.8625	Train	0.8531	Random	State	84
Test	0.8625	Train	0.8406	Random	State	85
Test	0.8625	Train	0.8406	Random	State	87
Test	0.8750	Train	0.8469	Random	State	88
Test	0.9125	Train	0.8375	Random	State	90
Test	0.8625	Train	0.8500	Random	State	95

Test	0.8750	Train	0.8500	Random	State	99
Test	0.8500	Train	0.8406	Random	State	101
Test	0.8500	Train	0.8406	Random	State	102
Test	0.9000	Train	0.8250	Random	State	106
Test	0.8625	Train	0.8406	Random	State	107
Test	0.8500	Train	0.8344	Random	${\sf State}$	109
Test	0.8500	Train	0.8406	Random	${\sf State}$	111
Test	0.9125	Train	0.8406	Random	${\sf State}$	112
Test	0.8625	Train	0.8500	Random	State	115
Test	0.8625	Train	0.8406	Random	${\sf State}$	116
Test	0.8750	Train	0.8344	Random	State	119
Test	0.9125	Train	0.8281	Random	State	120
Test	0.8625	Train	0.8594	Random	State	125
Test	0.8500	Train	0.8469	Random	State	128
Test	0.8750	Train	0.8500	Random	State	130
Test	0.9000	Train	0.8438	Random	State	133
Test	0.9250	Train	0.8344	Random	State	134
Test	0.8625	Train	0.8500	Random	State	135
Test	0.8750	Train	0.8313	Random	State	138
Test	0.8625	Train	0.8500	Random	State	141
Test	0.8500	Train	0.8469	Random	State	143
Test	0.8500	Train	0.8469	Random	State	146
Test	0.8500	Train	0.8438	Random	State	147
Test	0.8625	Train	0.8500	Random	State	148
Test	0.8750	Train	0.8375	Random	State	150
Test	0.8875	Train	0.8313	Random	State	151
Test	0.9250	Train	0.8438	Random	State	152
Test	0.8500	Train	0.8406	Random	State	153
Test	0.9000	Train	0.8438	Random	State	154
Test	0.9000	Train	0.8406	Random	State	155
Test	0.8875	Train	0.8469	Random	State	156
Test	0.8875	Train	0.8344	Random	State	158
Test	0.8750	Train	0.8281	Random	State	159
Test	0.9000	Train	0.8313	Random	State	161
Test	0.8500	Train	0.8375	Random	State	163
Test	0.8750	Train	0.8313	Random	State	164

Test	0.8625	Train	0.8500	Random	State	169
Test	0.8750	Train	0.8406	Random	State	171
Test	0.8500	Train	0.8406	Random	${\sf State}$	172
Test	0.9000	Train	0.8250	Random	${\sf State}$	180
Test	0.8500	Train	0.8344	Random	State	184
Test	0.9250	Train	0.8219	Random	${\sf State}$	186
Test	0.9000	Train	0.8313	Random	State	193
Test	0.8625	Train	0.8500	Random	${\sf State}$	195
Test	0.8625	Train	0.8406	Random	State	196
Test	0.8625	Train	0.8375	Random	State	197
Test	0.8750	Train	0.8406	Random	${\sf State}$	198
Test	0.8875	Train	0.8375	Random	State	199
Test	0.8875	Train	0.8438	Random	${\sf State}$	200
Test	0.8625	Train	0.8375	Random	State	202
Test	0.8625	Train	0.8406	Random	${\sf State}$	203
Test	0.8875	Train	0.8313	Random	${\sf State}$	206
Test	0.8625	Train	0.8344	Random	State	211
Test	0.8500	Train	0.8438	Random	${\sf State}$	212
Test	0.8625	Train	0.8344	Random	${\sf State}$	214
Test	0.8750	Train	0.8313	Random	State	217
Test	0.9625	Train	0.8187	Random	State	220
Test	0.8750	Train	0.8438	Random	${\sf State}$	221
Test	0.8500	Train	0.8406	Random	State	222
Test	0.9000	Train	0.8438	Random	State	223
Test	0.8625	Train	0.8531	Random	${\sf State}$	227
Test	0.8625	Train	0.8344	Random	State	228
Test	0.9000	Train	0.8406	Random	State	229
Test	0.8500	Train	0.8438	Random	${\sf State}$	232
Test	0.8750	Train	0.8469	Random	State	233
Test	0.9125	Train	0.8406	Random	State	234
Test	0.8625	Train	0.8406	Random	State	235
Test	0.8500	Train	0.8469	Random	State	236
Test	0.8750	Train	0.8469	Random	State	239
Test	0.8500	Train	0.8438	Random	State	241
Test	0.8875	Train	0.8500	Random	State	242
Test	0.8875	Train	0.8250	Random	State	243

Test	0.8750	Train	0.8469	Random	State	244
Test	0.8750	Train	0.8406	Random	State	245
Test	0.8750	Train	0.8469	Random	State	246
Test	0.8625	Train	0.8594	Random	State	247
Test	0.8875	Train	0.8438	Random	State	248
Test	0.8625	Train	0.8500	Random	State	250
Test	0.8750	Train	0.8313	Random	State	251
Test	0.8875	Train	0.8438	Random	State	252
Test	0.8625	Train	0.8469	Random	State	255
Test	0.9000	Train	0.8406	Random	State	257
Test	0.8625	Train	0.8562	Random	${\sf State}$	260
Test	0.8625	Train	0.8406	Random	State	266
Test	0.8625	Train	0.8375	Random	State	268
Test	0.8750	Train	0.8406	Random	State	275
Test	0.8625	Train	0.8500	Random	State	276
Test	0.9250	Train	0.8375	Random	State	277
Test	0.8750	Train	0.8469	Random	${\sf State}$	282
Test	0.8500	Train	0.8469	Random	State	283
Test	0.8500	Train	0.8438	Random	${\sf State}$	285
Test	0.9125	Train	0.8344	Random	State	286
Test	0.8500	Train	0.8406	Random	State	290
Test	0.8500	Train	0.8406	Random	${\sf State}$	291
Test	0.8500	Train	0.8469	Random	${\sf State}$	292
Test	0.8625	Train	0.8375	Random	State	294
Test	0.8875	Train	0.8281	Random	State	297
Test	0.8625	Train	0.8344	Random	${\sf State}$	300
Test	0.8625	Train	0.8500	Random	State	301
Test	0.8875	Train	0.8500	Random	State	302
Test	0.8750	Train	0.8469	Random	${\sf State}$	303
Test	0.8625	Train	0.8344	Random	State	305
Test	0.9125	Train	0.8375	Random	State	306
Test	0.8750	Train	0.8469	Random	State	308
Test	0.9000	Train	0.8438	Random	State	311
Test	0.8625	Train	0.8344	Random	State	313
Test	0.9125	Train	0.8344	Random	State	314
Test	0.8750	Train	0.8375	Random	State	315

Test	0.9000	Train	0.8469	Random	State	317
Test	0.9125	Train	0.8219	Random	State	319
Test	0.8625	Train	0.8500	Random	State	321
Test	0.9125	Train	0.8281	Random	State	322
Test	0.8500	Train	0.8469	Random	State	328
Test	0.8500	Train	0.8375	Random	State	332
Test	0.8875	Train	0.8531	Random	State	336
Test	0.8500	Train	0.8375	Random	State	337
Test	0.8750	Train	0.8406	Random	State	343
Test	0.8625	Train	0.8438	Random	State	346
Test	0.8875	Train	0.8313	Random	State	351
Test	0.8625	Train	0.8500	Random	State	352
Test	0.9500	Train	0.8187	Random	State	354
Test	0.8625	Train	0.8500	Random	State	356
Test	0.9125	Train	0.8406	Random	State	357
Test	0.8625	Train	0.8375	Random	State	358
Test	0.8500	Train	0.8406	Random	State	362
Test	0.9000	Train	0.8438	Random	State	363
Test	0.8625	Train	0.8531	Random	State	364
Test	0.9375	Train	0.8219	Random	State	366
Test	0.9125	Train	0.8406	Random	State	369
Test	0.8625	Train	0.8531	Random	State	371
Test	0.9250	Train	0.8344	Random	State	376
Test	0.9125	Train	0.8281	Random	State	377
Test	0.8875	Train	0.8500	Random	State	378
Test	0.8875	Train	0.8500	Random	State	379
Test	0.8625	Train	0.8406	Random	State	382
Test	0.8625	Train	0.8594	Random	State	386
Test	0.8500	Train	0.8375	Random	State	387
Test	0.8750	Train	0.8281	Random	State	388
Test	0.8500	Train	0.8438	Random	State	394
Test	0.8625	Train	0.8375	Random	State	395
Test	0.9000	Train	0.8438	Random	State	397
Test	0.8625	Train	0.8438	Random	State	400

```
--- Experiment 2 (In [8] - [10]) ---
Model: LogisticRegression()
Scores from In [9]:
Train Score: 0.8375
Test Score: 0.85
Classification Report from In [10]:
             precision recall f1-score support
          0
                 0.84
                          0.92
                                    0.88
                                               257
                 0.83
                           0.69
                                    0.76
                                               143
                                    0.84
                                               400
   accuracy
  macro avg
                 0.84
                        0.81
                                   0.82
                                              400
weighted avg
                 0.84
                          0.84
                                   0.84
                                               400
```

```
[4]:
     import numpy as np
     import pandas as pd
     from sklearn.model selection import train test split
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import confusion matrix, classification report
     df = pd.read csv(r"C:\Users\A R KRISHNA\OneDrive\Documents\Iris.csv")
     features = df.iloc[:, :-1].values
     label = df.iloc[:, 4].values
     xtrain, xtest, ytrain, ytest = train test split(features, label, test size=0.2, random state=42)
     model KNN = KNeighborsClassifier(n neighbors=5)
     model KNN.fit(xtrain, vtrain)
     print("Train Accuracy:", model KNN.score(xtrain, ytrain))
     print("Test Accuracy:", model KNN.score(xtest, ytest))
     print("Confusion Matrix:\n", confusion matrix(label, model KNN.predict(features)))
     print("\nClassification Report:\n", classification report(label, model KNN.predict(features)))
     Train Accuracy: 0.966666666666667
     Test Accuracy: 1.0
     Confusion Matrix:
      [[50 0 0]]
      [ 0 47 3]
      [ 0 1 49]]
     Classification Report:
                                 recall f1-score
                     precision
                                                    support
            Setosa
                        1.00
                                  1.00
                                            1.00
                                                        50
       Versicolor
                                            0.96
                                                        50
                        0.98
                                  0.94
        Virginica
                        0.94
                                            0.96
                                                        50
                                  0.98
                                            0.97
                                                       150
         accuracy
```

0.97

0.97

macro avg

weighted avg

0.97

0.97

0.97

0.97

150

150

```
[5]:
     import numpy as np
     import pandas as pd
     df = pd.read csv(r"C:\Users\A R KRISHNA\OneDrive\Documents\Iris.csv")
     df.info()
     df.variety.value counts()
     df.head()
     features=df.iloc[:,:-1].values
     label=df.iloc[:,4].values
     from sklearn.model_selection import train_test_split
     from sklearn.neighbors import KNeighborsClassifier
     xtrain,xtest,ytrain,ytest=train_test_split(features,label,test_size=.2,random_state=52)
     model KNN=KNeighborsClassifier(n neighbors=5)
     model KNN.fit(xtrain,ytrain)
     print(model_KNN.score(xtrain,ytrain))
     print(model KNN.score(xtest,ytest))
     from sklearn.metrics import confusion matrix
     confusion_matrix(label,model_KNN.predict(features))
     from sklearn.metrics import classification_report
     print(classification report(label,model KNN.predict(features)))
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 150 entries, 0 to 149
     Data columns (total 5 columns):
          Column
                        Non-Null Count Dtype
                        -----
          sepal.length 150 non-null
                                        float64
      1
          sepal.width 150 non-null
                                        float64
      2
          petal.length 150 non-null
                                        float64
      3
          petal.width 150 non-null
                                        float64
          variety
                        150 non-null
                                        object
     dtypes: float64(4), object(1)
     memory usage: 6.0+ KB
     0.975
     0.9666666666666667
                   precision
                                recall f1-score
                                                 support
                        1.00
                                            1.00
           Setosa
                                  1.00
                                                        50
                                            0.96
       Versicolor
                        0.98
                                  0.94
                                                        50
                                            0.96
        Virginica
                        0.94
                                  0.98
                                                        50
                                            0.97
                                                      150
         accuracy
                        0.97
                                  0.97
                                            0.97
                                                      150
        macro avg
```

0.97

0.97

weighted avg

0.97

150

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read csv(r"C:\Users\A R KRISHNA\Downloads\Mall Customers.csv")
df.info()
df.head()
sns.pairplot(df)
features = df.iloc[:, [3, 4]].values
from sklearn.cluster import KMeans
model = KMeans(n clusters=5)
model.fit(features)
Final = df.iloc[:, [3, 4]].copy()
Final.columns = ['Annual Income (k$)', 'Spending Score (1-100)']
Final['label'] = model.predict(features)
sns.set style("whitegrid")
sns.FacetGrid(Final, hue="label", height=8) \
    .map(plt.scatter, "Annual Income (k$)", "Spending Score (1-100)") \
    .add legend()
plt.show()
features_el = df.iloc[:, [2, 3, 4]].values
wcss = []
for i in range(1, 10):
    model = KMeans(n_clusters=i)
    model.fit(features_el)
    wcss.append(model.inertia )
plt.plot(range(1, 10), wcss)
plt.title("Elbow Method")
plt.xlabel("Number of Clusters")
plt.ylabel("WCSS")
plt.show()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
     Column
                              Non-Null Count
                                              Dtvpe
                                               int64
 0
     CustomerID
                              200 non-null
                                              object
 1
     Gender
                              200 non-null
                                              int64
 2
     Age
                              200 non-null
                                               int64
     Annual Income (k$)
                              200 non-null
     Spending Score (1-100) 200 non-null
                                               int64
dtypes: int64(4), object(1)
memory usage: 7.9+ KB
```



```
[14]:
      import numpy as np
      from scipy import stats
      marks=np.array([72, 68, 75, 70, 74, 69, 71, 73, 70, 72])
      mu \ 0 = 70
      t stat, p value = stats.ttest 1samp(marks, mu 0)
      print(f"T-statistic: {t stat:.3f}")
      print(f"P-value: {p value:.4f}")
      alpha = 0.05
      if p value<alpha:</pre>
          print("Reject Null Hypothesis → Mean is significantly different from 70.")
      else:
          print("Fail to Reject Null Hypothesis → No significant difference.")
      T-statistic: 1.993
      P-value: 0.0774
      Fail to Reject Null Hypothesis → No significant difference.
```

```
[15]: import numpy as np
      from math import sqrt
      from scipy.stats import norm
      x bar = 51.2
      mu \ 0 = 50
      sigma = 3
      n = 36
      z stat = (x bar - mu 0) / (sigma / sqrt(n))
      p value = 2 * (1 - norm.cdf(abs(z stat)))
      print(f"Z-statistic: {z_stat:.3f}")
      print(f"P-value: {p value:.4f}")
      alpha = 0.05
      if p value<alpha:</pre>
          print("Reject Null Hypothesis → Mean is significantly different from 50 g.")
       else:
           print("Fail to Reject Null Hypothesis → No significant difference.")
      Z-statistic: 2.400
      P-value: 0.0164
      Reject Null Hypothesis → Mean is significantly different from 50 g.
[16]: import numpy as np
      from scipy import stats
      A = [20, 22, 23]
      B = [19, 20, 18]
      C = [25, 27, 26]
      f_stat, p_value = stats.f_oneway(A, B, C)
      print(f"F-statistic: {f stat:.3f}")
      print(f"P-value: {p_value:.4f}")
      alpha = 0.05
      if p_value<alpha:</pre>
          print("Reject Null Hypothesis → Means are significantly different.")
       else:
          print("Fail to Reject Null Hypothesis → No significant difference.")
      F-statistic: 25.923
      P-value: 0.0011
       Reject Null Hypothesis → Means are significantly different.
```