Perl & Bioinformatics

Intros to...
Genetics
BioPerl
SeqLab.net

Jay?

Jay Hannah 12 years of Perl, DBs, Internet. Bio newb.

Collaborative Laboratory for Applied Bioinformatics (CLAB) http://clab.ist.unomaha.edu/CLAB/

Join us!

DNA

http://en.wikipedia.org/wiki/DNA

This entire structure can be represented in only 21 characters (bases):

ACGTAGGATCGGATACGATAG

The Human Genome

- 3 billion DNA base pairs (A, C, G, or T)
 - Fully extended, the DNA from a single cell would have a total length of almost 6 feet.
 - All the DNA in your cells could reach the moon ...6000 times!
- 24 distinct chromosomes
- Estimated 20,000–25,000 genes

http://en.wikipedia.org/wiki/Human_genome http://www.rothamsted.ac.uk/notebook/courses/guide/dnast.htm

The Human Genome

- Only 2.5% of DNA is different between humans and mice. Only 1% different from chimpanzee. [1]
- "We share half our genes [DNA] with the banana." [2]
- - 1. Mural, R.J., et al., Science, v. 296, May 31, 2002, p. 1661.
 - 2. May, R., Quoted in Coglan & Boyce, New Scientist 167 (July 1):5, 2000

The "Central Dogma of Molecular Biology"

http://en.wikipedia.org/wiki/Image:Genetic_code.svg

NA / DNA

DNA is long strings of nucleotides.

There are 4 types of nucleotide (bases):

- A Adenine
- C Cytosine
- G Guanine
- T Thymine

Transcription

In RNA, thymine (T) is replaced by uracil (U).

AA / protein

Proteins are long strings of amino acids. There are 21 amino acids.

Alanine	A	Ala Asparagine		N	Asn
Cysteine	С	Cys	Proline	Р	Pro
Aspartic acid	tic acid D Asp Glutamine		Q	Gln	
Glutamic acid	E	Glu	Arginine	R	Arg
Phenylalanine	F	Phe	Serine	S	Ser
Glycine	G	Gly	Threonine	T	Thr
Histidine	Н	His	Selenocysteine	U	Sec
Isoleucine	I	Ile	Valine	V	Val
Lysine	K	Lys	Tryptophan	W	Trp
Leucine	L	Leu	Tyrosine	Y	Tyr
Methionine	M	Met			

Translation

RNA => protein: "translation"

(remember earlier we covered DNA => RNA: "transcription")

RNA codon table

This table shows the 64 codons and the amino acid each codon codes for. The direction is 5' to 3'.

		2nd base						
		U	С	Α	G			
	U	UUU (Phe/F)Phenylalanine UUC (Phe/F)Phenylalanine UUA (Leu/L)Leucine UUG (Leu/L)Leucine	UCU (Ser/S)Serine UCC (Ser/S)Serine UCA (Ser/S)Serine UCG (Ser/S)Serine	UAU (Tyr/Y)Tyrosine UAC (Tyr/Y)Tyrosine UAA Ochre (<i>Stop</i>) UAG Amber (<i>Stop</i>)	UGU (Cys/C)Cysteine UGC (Cys/C)Cysteine UGA Opal (<i>Stop</i>) UGG (Trp/W)Tryptophan			
1st	С	CUU (Leu/L)Leucine CUC (Leu/L)Leucine CUA (Leu/L)Leucine CUG (Leu/L)Leucine	CCU (Pro/P)Proline CCC (Pro/P)Proline CCA (Pro/P)Proline CCG (Pro/P)Proline	CAU (His/H)Histidine CAC (His/H)Histidine CAA (Gln/Q)Glutamine CAG (Gln/Q)Glutamine	CGU (Arg/R)Arginine CGC (Arg/R)Arginine CGA (Arg/R)Arginine CGG (Arg/R)Arginine			
base	A	AUU (lle/l)Isoleucine AUC (lle/l)Isoleucine AUA (lle/l)Isoleucine AUG (Met/M)Methionine, <i>Start</i> 1]	ACU (Thr/T)Threonine ACC (Thr/T)Threonine ACA (Thr/T)Threonine ACG (Thr/T)Threonine	AAC (Asn/N)Asparagine AAA (Lys/K)Lysine	AGU (Ser/S)Serine AGC (Ser/S)Serine AGA (Arg/R)Arginine AGG (Arg/R)Arginine			
	G	GUU (Val/V)Valine GUC (Val/V)Valine GUA (Val/V)Valine GUG (Val/V)Valine	GCU (Ala/A)Alanine GCC (Ala/A)Alanine GCA (Ala/A)Alanine GCG (Ala/A)Alanine	GAU (Asp/D)Aspartic acid GAC (Asp/D)Aspartic acid GAA (Glu/E)Glutamic acid GAG (Glu/E)Glutamic acid	GGU (Gly/G)Glycine GGC (Gly/G)Glycine GGA (Gly/G)Glycine GGG (Gly/G)Glycine			

The "Central Dogma of Molecular Biology"

http://en.wikipedia.org/wiki/Image:Genetic_code.svg

The "Central Dogma of Molecular Biology"

```
use Bio::Seq;  # BioPerl!
$seq = Bio::Seq->new(
    -seq => 'GTGCATCTGACTCCTGAGGAGAG',
    -id => 'JAY1',
);
print $seq->translate->seq . "\n";

# VHLTPEEK
```

BioPerl

- www.bioperl.org
- "A collection of Perl modules that facilitate the development of Perl scripts [programs] for bioinformatics applications." - Wikipedia
- Humongous toolbox of problem solutions that take care of ugly details I don't want to try to understand yet. - Jay
- Use "bioperl-live" Jay

BLAST

- Basic Local Alignment Search Tool
- Given a sequence, search one or millions of other sequences looking for similarities. (Google for white coats.)
 - Why? Similar proteins might do similar things.
 - Why are sick people sick? Grab samples and search databases looking for known bugs.
 - Compare sick people with healthy people. Where are the differences? What can we do about them?
 - Steal neat tricks from other critters.

Microarray

http://en.wikipedia.org/wiki/DNA_microarray

```
$ seqlab.pl --find_consensus \
   --forward TAGCTAGCTGGTTGGACGGATCGGATGAC \
   --reverse CCGATCCGTCAACCAGCTAGCTACGT
```

acgTAGCTAGCTGGTTgGACGGATCGGatgac

 Given any arbitrary number of organisms, each containing an arbitrary number of sequences, discover all of the "strong", "fairly strong", and "weak" similarities between sequences. Output reports which tell us lots of information about your discoveries and create microarray specifications so we can fab a few thousand chips to test real-world samples against all proteins those organisms code for. We want to see whether or not Mr. Jones' illness may be related to these particular bugs.

Buckets...

For 3 sequence sets (organisms), cross_blast() performs 6 different BLAST runs, accumulating results along the way:

"query" => "database"

ss1 => ss2

ss1 => ss3

ss2 => ss1

ss2 => ss3

ss3 => ss1

ss3 => ss2

Each of those BLAST runs requires...

- Walk through the query and database GenBank files. For each CDS, read the protein sequence, transform it to a FASTA file.
- Run the BLAST utility "formatdb" on the FASTA files.
- Run blastall on the files formatdb creates.
- Backtrack blast results (protein) in your original GenBank files to read the nucleotide sequences.

SeqLab performs all this drudgery for us. 6 times. Yay! (Imagine how much work we'd have to do manually if we had 5 organisms. Or 10. Yikes!)

SOLVED!

\$ k.pl

:)

http://seqlab.net/pods2html/tutorial.html

```
# slide 1 of 3
use SeqLab;
my $data dir = "/home/jhannah/kiran/data";
my $data tmp = "$data dir/tmp";
unlink(glob "$data tmp/*");
my $s1 = SeqLab->new(storage => $data tmp);
my $ss1 = $s1->new SequenceSet(
   name => "Organism1"
$ss1->load(
   files => "$data dir/ATCC12228 combo.gbk"
```

http://seqlab.net/pods2html/tutorial.html

```
slide 2 of 3
my $ss2 = $sl->new SequenceSet(
   name => "Organism2"
$ss2->load(
   files => "$data dir/SE Org3.gbk"
);
my $ss3 = $sl->new SequenceSet(
   name => "Organism3"
$ss3->load(
   files => "$data dir/SE RP62A combo.gbk"
```

http://seqlab.net/pods2html/tutorial.html

```
# slide 3 of 3
my (\$stats, \$H pools) = \$sl->cross blast(
   type => "protein",
   SequenceSets \Rightarrow [ $ss1, $ss2, $ss3 ],
   hit class hierarchy => ['I', 'II', 'III'],
   hit class unique => ['III'],
$stats->report1("report1 final.txt");
$stats->report2("report2 final.txt");
$sl->chipsets(
     SequenceSet => $ss1, # I want Organism1
     stats => $stats,
     output
               => ".",
# All done!
```

http://seqlab.net/pods2html/tutorial.html

Results

Running that program generates these files:

The .seq and .xls files are microarray definition data. The .txt files are reports.

ABC-I.Organism3.seq ABC-I.Organism3.xls ABC-II.Organism3.seq ABC-II.Organism3.xls AC-I.Organism3.seq AC-I.Organism3.xls AC-II.Organism3.seq AC-II.Organism3.xls BC-I.Organism3.seq BC-I.Organism3.xls C-unique.Organism3.seq C-unique.Organism3.xls report1 final.txt report2 final.txt

http://seqlab.net/pods2html/tutorial.html

Sample "Report 1"

Class I hits:		
Organism1	Organism2	Organism3
27314465	240997	57636584
27314478	58003341	57636554
27314531,27314539,273145	50 \	
133	83307,13383313 \	
	57635993 , 57	7636005,57636530,57638139
27314683		
		57636374
Class II hits:		
Organism1	Organism2	Organism3
27314792 (81	01007),3201550	(57636783)
Class III hits:		
Organism1	Organism2	Organism3
(27314764), (27316102)	(19172398)	(57636790) , (57638035)
(27315326)	(886710)	
	(70987045)	(57638504)

Collaborative Laboratory for Applied Bioinformatics (CLAB) Join us!

http://seqlab.net/pods2html/tutorial.html

Sample "Report 2"

Organism1						
GI	I	II	TII	bin	DeDupe	O Pool
27315923	C		В	AC-I	0	1
27315719	C			AC-I	0	i i
27315640	C		ВС	AC-I	0	
27314608			BC	A-unique	0	1
27315325		С	В	AC-II	0	1
27315149		Error:	dupe c	f 27315137		
Organism2			多层数			
GI	A L	ΙΙ	III	bin	DeDupe	O Pool
37725698	А	С	AC	ABC-I	0	_ 6
88683205	AC			ABC-I	0	15
27316891			AC	B-unique	0	1
Organism3						
GI	I	II	III	bin	DeDupe	O Pool
57636473			AB	C-unique	0	
57637152	A		В	AC-I	0	1
57636398	В	AB		BC-I	0	1
57638147		Error:	dupe c	f 57637502		

A GenBank file

```
2499279 bp DNA circular BCT 04-JAN-2006
LOCUS
            AE015929
            Staphylococcus epidermidis ATCC 12228, complete genome.
DEFINITION
            AE015929 AE016744 AE016745 AE016746 AE016747 AE016748
ACCESSION
            AE015929.1 GT:27316888
VERSION
AUTHORS
            Zhang, Y.Q., Ren, S.X., Li, H.L., Wang, Y.X., Fu, G.
            Location/Oualifiers
FEATURES
  CDS
     15518..15847
    /product="conserved hypothetical protein"
    /protein id="AA003607.1"
    /db xref="GI:27314470"
    /translation="MTTDLHTLVLIILCGVVTLLIRVIPFVMISRVNLPAIVIKWLSF
    IPITLFTALIIDGVIOOHDHAFGYTLNLPYIIAIVPTVMLAIFTRSLTVTILGGIFVI
    ACLRLIF"
ORTGIN
 1 aagaaattgt gacgcttatt tgaagttatc cacttataca cataatttct cgcaaaaatt
 61 gtggataaca catgcgctat acacacagtt attcaaaatt taacaacata ttcacagcca
```

121 tttgacatca cttggagtta aaaagtataa ttatgtggat aagtcgttca aattatgatt

181 ttacaaggat ttatttatta aatttatata cataaatggt gtgcataaat catagttatg

241 tttaagttat ccactgattg tgattaactt gtggataatt attaacatgc tgtgattatt

. . .

BioPerl a GenBank file

```
use strict;
use Bio::SeqIO;
my $seq in = Bio::SeqIO->new(
  -file => "<$ARGV[0]", -format => "genbank"
);
while (my $inseq = $seq in->next seq)
  my @features = $inseq->get SeqFeatures(); # just top level
   foreach my $feat (@features ) {
      next unless ($feat->primary tag eq "CDS");
      my @db xrefs = $feat->annotation->get Annotations("db xref");
      my @product = $feat->annotation->get Annotations("product");
      my @trans = $feat->annotation->get Annotations("translation");
      my $nucleic seq = $feat->spliced seq(-nosort => 1)->seq;
      my $protein seq = $trans[0];
      @db xrefs = grep { /^GI:/ } @db xrefs;
      my $gi = $db xrefs[0];
      $gi =~ s/^GI://;
      printf("locus gi:%s", $inseq->primary id);
      print " gi:$gi product:$product[0]\n";
      print "$nucleic seq\n$protein seq\n\n";
```

BioPerl a GenBank file

\$ perl j.pl genbank sample.seq locus gi:1019382 gi:1019383 product:glutathione reductase (NADPH) ATGACTTTTGATTATGACTTGTTTGTAATTGGTGCTGGTTCTGGTGGTTTTGGCTGCTTCTAAACGAGCTGC TAGCTATGGCGCAAAAGTAGCGATCGCCGAAAATGATTTAGTGGGGTGGAACCTGTGTCATTCGGGGTTGTG TACCCAAAAACTCATGGTTTATGGTTCTCACTTTCCCGCTTTATTCGAGGATGCAGCAGGCTATGGTTGG CAAGTCGGTAAGGCAGAATTAAATTGGGAACATTTCATTACATCTATAGATAAGGAAGTCCGGCGACTATC CCAACTGCACATCAGCTTTCTAGAAAAAGCCGGGGTAGAACTGATCTCTGGTCGTGCTACTTTGGTAGATA ATCACACAGTAGAAGTAGGCGAGCGTAAATTTACCGCCGATAAATTTTAATTTGCCGTTGGTGGTCGTCCC ATCAAACCAGAGTTGCCAGGGATGGAATATGGCATCACCTCCAACGAAATTTTTTCACCTAAAAACCCAACC AAAACACATCGCTATCATTGGTTCTGGTTACATCGGTACAGAATTTGCCGGAATCATGCGTGGTTTGGGTT CACAAGTCACCCAAATTACCAGAGGTGACAAAATTCTCAAAGGTTTTTGATGAAGACATCCGCACCGAAATT CAAGAAGGGATGACAAATCACGGTATTCGGATTATTCCTAAAAACGTAGTTACAGCTATTCAACAAGTACC AGAAGGTTTGAAAATAAGTTTATCTGGTGAAGACCAAGAACCAATCATTGCCGATGTATTTTTAGTAGCTA CAGGACGGGTTCCCAACGTAGATGGTTTAGGTCTGGAAAATGCTGGTGTTGATGTTGTTGACAGTTCTATA GAGGGGCCAGGATACAGCACCATGAATGCCATTGCAGTGAACGAATACAGCCAAACCAGCCAACCCAATAT CTATGCTGTTGGTGATGTTACAGACCGCTTAAACCTCACTCCCGTAGCCATTGGTGAAGGTCGCGCCTTCG CCGACAGTGAATTTGGCAACAACCTCCGAGAATTTAGCCACGAAACTATTGCTACTGCTGTATTCTCTAAC CCACAAGCCTCTACG

MTFDYDLFVIGAGSGGLAASKRAASYGAKVAIAENDLVGGTCVIRGCVPKKLMVYGSHFPALFEDAAGYGW

Collaborative Laboratory for Applied Bioinformatics (CLAB) http://clab.ist.unomaha.edu/CLAB/ Join us!

QVGKAELNWEHFITSIDKEVRRLSQLHISFLEKAGVELISGRATLVDNH

```
$ cat Pools.t
                                    SeqLab::Pools
use Test::More tests => 52;
use SeqLab::Pools;
ok($p = SeqLab::Pools->new(),
                                      "new()");
ok(p-) add(1,2),
                                      "add()");
ok(my $pools = $p->get pools,
                                      "get pools()");
is deeply(pools, [ [ 1,2 ] ],
                                      "pools are as expected()");
ok($p->add(3,4),
                                      "add()");
ok(my $pools = $p->get pools,
                                      "get pools()");
is deeply($pools, [ [ 1,2 ], [ 3,4 ]
                                      ], "pools are as expected()");
ok($p->add(2,4),
                                      "add()");
                                      "get pools()");
ok(my $pools = $p->get pools,
is deeply($pools, [ [ 1,2,3,4 ] ],
                                      "pools are as expected()");
ok($p = SeqLab::Pools->new(),
                                      "new()");
ok($p->add(1,2),
                                      "add()");
ok(p-) add(2,3),
                                      "add()");
                                      "add()");
ok($p->add(6,7),
                                      "add()");
ok (p->add(8,9),
                                      "add()");
ok($p->add(3,9),
ok(my $pools = $p->get pools,
                                      "get pools()");
is deeply($pools, [[1,2,3,8,9], [6,7]],
                                      "pools are as expected()");
```

Collaborative Laboratory for Applied Bioinformatics (CLAB) http://clab.ist.unomaha.edu/CLAB/ Join us!

SeqLab::Pools

```
$ perl Pools.t
1..52
ok 1 - new()
ok 2 - add()
ok 3 - get pools()
ok 4 - pools are as expected()
ok 5 - add()
ok 6 - get pools()
ok 7 - pools are as expected()
ok 8 - add()
ok 9 - get pools()
ok 10 - pools are as expected()
ok 11 - new()
ok 12 - add()
ok 13 - add()
ok 14 - add()
ok 15 - add()
ok 16 - add()
ok 17 - get pools()
ok 18 - pools are as expected()
```

Collaborative Laboratory for Applied Bioinformatics (CLAB) http://clab.ist.unomaha.edu/CLAB/ Join us!

Thank you!

Collaborative Laboratory for Applied Bioinformatics (CLAB) http://clab.ist.unomaha.edu/CLAB/

Join us!

Omaha Perl Mongers http://omaha.pm.org