

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

Name:	
Mohammedanas	tai

UB Person Number:

5	0	2	3	2	6	6	5
0 1 2 3 4 6 7 8 9	① ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨	0 1 2 3 4 5 6 7 8 9			0 1 2 3 4 5 6 7 8 9		© 1 2 3 4 6 6 7 8 9

Instructions:

- Textbooks, calculators and any other electronic devices are not permitted.
 You may use one sheet of notes.
- For full credit solve each problem fully, showing all relevant work.

1	2	3	4	5	6	7	TOTAL	GRADE
						867		

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} -2 \\ 2 \\ b \end{bmatrix}$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

a)
$$\begin{bmatrix} 5 & 1 & -1 & 1 & -2 \\ 6 & 1 & 2 & 2 \\ -2 & -3 & 6 & 1 & 6 \end{bmatrix}$$
 (2) $\Rightarrow \begin{bmatrix} 1 & -1 & 1 & -2 \\ 0 & 1 & 2 & -2 \\ 0 & -5 & 2 & -4 + 5 \end{bmatrix}$ 5

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 1 & 2 & 7 \\
0 & 0 & 1 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 1 & 2 & 7 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 1 & 2 & 7 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 1 & 2 & 7 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

$$\begin{pmatrix}
x_1 & x_2 & x_3 \\
0 & 0 & 12 & 6 + 10
\end{pmatrix}$$

Span(b) = 123 sine a bid be a solution to any rat

b)
$$x_1 - y_1 + y_3 = -2$$
 $x_1 = -2 - x_2 + y_3$
 $x_2 + 2x_3 = 2$
 $x_3 = \frac{6+b}{12}$
 $x_3 = \frac{6+b}{12}$
 $x_4 = 2 - 2x_3$
 $x_5 = \frac{6+b}{12}$
 $x_6 = \frac{6+b}{12}$

Since the equation has a solution any value be given to the control of the con

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix} 1 & -1 & 2 & -1 \\ -0 & 2 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

we needed to find a matrix 5.4
it is eased to the laborating martine

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$\Delta^{\dagger} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 6 & -1 \\ -1 & 1 & 2 \end{bmatrix}$$

$$A^{*}.B = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 1 \\ 2 & 0 & -1 \\ 3 & -1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 0 & -1 \\ 2 & 1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 0 & -1 \\ 2$$

$$C = \begin{bmatrix} 7 & 7 & 1 \\ -1 & 5 & 5 \\ 9 & 7 & 5 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(u) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

a)
$$A = \begin{bmatrix} T(|X|) & T(|X|) \end{bmatrix}$$

$$T(\begin{bmatrix} |X| \\ |X| \end{bmatrix}) = \begin{bmatrix} |X| & -7x1 \\ |X| & +|X| \\ |X| & -3x2 \end{bmatrix}$$

b)
$$x_1 - 2x_2 = 1$$
 $x_1 + x_2 = 10$
 $x_1 - 3x_2 = -7$
 $x_1 - 3x_2 = -7$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to-one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$A \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 7 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0$$

$$A \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 24 \end{bmatrix} \cdot 7 = \begin{bmatrix} 2 \\ 6 \\ 5 \end{bmatrix}$$

The occtors for such where the last number mones bouth of them equal, ?

$$\sqrt{12} \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \qquad \sqrt{2} = \left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right]$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True obecause if who is in the span(U,U)

den W & Span (U,U) Shows it is a part of

that span. Grapheany H would be on the

Some the because W is only borney added

by w

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

Holse B. you can have $\{[\frac{1}{2}], [\frac{1}{3}]\}$ when it's dependent while these two areas
bloopendant.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

True because for what A you are given
16'11 be on the span of us assumming they
are dependent

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

The True because we are we are doing linear transformation we are just multiplying usetons with which makes it a linear trans combination and a span is