Report: act_report

• Create a **250-word-minimum written report** called "act_report.pdf" or "act_report.html" that communicates the insights and displays the visualization(s) produced from your wrangled data. This is to be framed as an external document, like a blog post or magazine article, for example.

This report communicate my insight and display the visualization of my analysis, i used three different dataset from different source for this project, tweet enhanced archive, twitter API and image prediction.

my data Insights

- 1.Which Dog name has the highest rating
- 2. Which dog name has the lowest rating
- 3.Which algorithm p1, p2 and p3 has the highest correct prediction of image
- 4. Which name is the Most popular Dog name
- 5.Which type of relationship exist between Favorite and Retweet count
- 6.What is the percentage of each dog stages

Analyzing and Visualizing Data

Which Dog name has the highest rating

```
In [11]: most_rate.plot(kind='bar', figsize=(10,5))
plt.xlabel("Dog Names",fontsize=12)
plt.ylabel("Rating",fontsize=12)
plt.title("Graph of Most Highest Dog Rating",fontsize=12)
plt.grid(color = 'dimgrey', linestyle = '--', linewidth = 0.5)
```


Which name is the Most popular Dog name

Charile is the most popular dog name

Which algorithm p1, p2 and p3 has the highest correct prediction of image

In [13]: # P1 bar plot twitter_archive_master["p1_dog"].value_counts(normalize=True).plot(kind='bar', figsize=(10,5)) plt.xlabel("P1 Image Prediction",fontsize=12) plt.ylabel("Proportion",fontsize=12) plt.title("Proportion of P1 algorithms image Prediction",fontsize=12) plt.grid(color = 'dimgrey', linestyle = '--', linewidth = 0.5);

In [14]: # P2 bar plot twitter_archive_master["p2_dog"].value_counts(normalize=True).plot(kind='bar', figsize=(10,5)) plt.xlabel("P2 Image Prediction",fontsize=12) plt.ylabel("Proportion",fontsize=12) plt.title("Proportion of P2 algorithms image Prediction",fontsize=12) plt.grid(color = 'dimgrey', linestyle = '--', linewidth = 0.5);


```
In [15]: twitter_archive_master["p3_dog"].value_counts(normalize=True).plot(kind='bar', figsize=(10,5))
 plt.xlabel("P3 Image Prediction",fontsize=12)
 plt.ylabel("Proportion",fontsize=12)
 plt.title("Proportion of P3 algorithms image Prediction",fontsize=12)
 plt.grid(color = 'dimgrey', linestyle = '--', linewidth = 0.5);
```


P2 algorithms has the highest probability of correct image prediction

What is the percentage of each dog stages

Graph of dog stages percentage

From the above pie chart we can canclude that pupper have the highest percentage 67% while floofer has the lowest percentage 1.1%

Which dog name has the lowest rating

```
In [19]: most_rate_lowest.plot(kind='bar', figsize=(10,5))
 plt.xlabel("Dog Names",fontsize=12)
 plt.ylabel("Rating",fontsize=12)
 plt.title("Graph of Dog with lowest rating",fontsize=12)
 plt.grid(color = 'dimgrey', linestyle = '--', linewidth = 0.5)
```


Tedrick and Henry recieve the lowest rating dog

Which type of relationship exist between Favorite and Retweet count

```
In [28]: sns.scatterplot(x = c, y = b, data=twitter_archive_master )
 plt.xlabel("Retweet Count",fontsize=12)
 plt.ylabel("Favorite Count",fontsize=12)
 plt.title("Scatter of Retweet Count vs Favorite Count",fontsize=12)
 plt.grid(color = 'dimgrey', linestyle = '--', linewidth = 0.5);
```


There is strong relationship between favorite and retweet count

```
In [ ]:
```