Plan du cours

I.	Théorème de Thalès	1
	1. Le théorème	1
11.	Réciproque du théorème de Thalès	2

Chapitre . . . : Le théorème de Thalès et sa réciproque

Activité d'introduction

Entourer les figures dans lesquelles, on peut utiliser le théorème de Thalès.

a. A B C

I. Théorème de Thalès

1. Le théorème

Théorème

Soient ABC un triangle quelconque non aplati.

Si les droites (BD) et (BE) sont sécantes en B et si la droite (AC) est parallèle à la droite (DE). Alors on a l'égalité suivante :

$$\frac{BA}{BD} = \frac{BC}{BE} = \frac{AC}{DE}$$

Énoncé:

Dans la figure ci-dessous, les droites (MN) et (BC) sont parallèles.

Calculer la longueur MN.

Résolution:

Dans les triangles ... et ... :

- Les droites et . . . sont sécantes en A.
- //

D'après , on a :

$$\frac{AM}{AC} = \frac{AN}{AB} = \frac{MN}{BC}$$

On remplace:

$$\frac{0,6}{1,8} = \frac{AN}{AB} = \frac{MN}{2,1}$$

Calcul de MN:

$$\frac{0,6}{1,8} = \frac{MN}{2,1} \text{ donc } MN = \frac{\dots \times \dots}{\dots}$$

$$MN = \dots cm$$

II. Réciproque du théorème de Thalès

Théorème

Si les points A, B et M sont alignés dans le même ordre que les points A, C et N et $\frac{AM}{AB} = \frac{AN}{AC}$ alors (BC)//(MN).

Exemple 1

Les droites (MN) et (BC) sont-elles parallèles?

Exemple 2

Montrer que 2 droites ne sont pas parallèles.

Exercice 1

- 1. Les droites (AB) et (DE) sont-elles parallèles?
- 2. Les droites (PR) et (DE) sont-elles parallèles?