Anneaux et corps

QCOP ANN.1

Soit $(A, +_A, \times_A)$ un anneau.

 \blacksquare Définir l'ensemble des inversibles de A, que l'on notera A^{\times} .

 \red{P} Montrer que (A^{\times}, \times_A) est un groupe.

(a) Établir, à l'aide d'inégalités, que $\mathbb{Z}^{\times} = \{-1, 1\}$.

(b) En déduire que $\left(\left\{-1,1\right\},\times\right)$ est un groupe.

QCOP ANN.2

Soit A un anneau.

? Soient $a, b \in A$ tels que ab = ba. Soit $n \in \mathbb{N}^*$. Montrer que

$$a^{n}-b^{n}=(a-b)\sum_{k=0}^{n-1}a^{k}b^{n-1-k}.$$

Soit $u \in A$ tel qu'il existe $n \in \mathbb{N}^*$ tel que $u^n = 0_A$. Montrer que 1 - u est inversible dans A.

QCOP ANN.3

Soient $(A, +_A, \times_A, 0_A, 1_A)$ et $(B, +_B, \times_B, 0_B, 1_B)$ deux anneaux. On note $P := A \times B$.

 \blacksquare Définir le groupe produit $(P, +_P, 0_P)$ où $+_B$ et 0_P sont à préciser.

On note

$$\times_P: \left| \begin{array}{ccc} P^2 & \longrightarrow & P \\ \left((x,y),(x',y')\right) & \longmapsto & (xx',yy'). \end{array} \right.$$

- **/** (a) Justifier que \times_P permet à $(P, +_P, \times_P, 0_P, 1_P)$ d'être un anneau. Préciser 1_P .
 - **(b)** Montrer que $P^{\times} = A^{\times} \times B^{\times}$.
- $m{\mathscr{Z}}$ Déterminer $\left(\mathbb{Z}^2\right)^{ imes}$, en admettant que $\mathbb{Z}^{ imes}=\{-1,1\}.$