

CS 310: Algorithms

Lecture 5

Instructor: Naveed Anwar Bhatti

Chapter 3: **Graphs**

Section 3.1: **Basic Definitions and Applications**

Undirected

Directed

Undirected

Directed

Undirected

$$G = (V, E)$$

- V = nodes.
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Graphs

G = (V, E)

- V = nodes.
- E = edges between pairs of nodes.
- Captures one-way relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Directed

Graph	Nodes	Edges
Transportation	street intersections	highways

Graph	Nodes	Edges		
Transportation	street intersections	highways		
Communication	computers	fiber optic cables		

Graph	Nodes	Edges
Transportation	street intersections	highways
Communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks

Graph	Nodes	Edges
Transportation	street intersections	highways
Communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
Social	people	relationships

Graph	Nodes	Edges
Transportation	street intersections	highways
Communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
Social	people	relationships
Food Web	species	predator-prey

Graph	Nodes	Edges
Transportation	street intersections	highways
Communication	computers	fiber optic cables
World Wide Web	web pages	hyperlinks
Social	people	relationships
Food Web	species	predator-prey
Software systems	functions	function calls
Scheduling	tasks	precedence constraints
Circuits	gates	wires

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².

	1	2	3	4	5	6	7	8
1	0	1	1 1 0	0	0	0	0	0
2	0	0	1	1	1	0	0	0
	1	1	0	0	1	0	1	1
	0	1	0	0	1	0	0	0
	0	1	1	1	0	1	0	0
	0	0	0	0	1	0	0	0
7	0	0	0 1 0 1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².

	1	2	3	4	5	6	7	8
1	0	1		0		0	0	0
1 2	1	0	1	1	1	0	0	0
3	1	1	0	0	1		1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0 1	1	0	0
	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
1 2	1	0	1	1	1	0	0	0
3		1	0	0	1	0	1	1
	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	
8	0	0	1	0	0	0	1	0

Graphs: Live Poll 1

Given an adjacency matrix for a graph of size N, which mathematical expression represents the number of iterations required to find all the edges for both directed and undirected graphs with no self-loops? (I'm not talking about Big O)

- A. Directed n², Undirected n²
- B. Directed (n²-n), Undirected (n²/2)
- C. Directed **n**, Undirected **(n²/2)**
- D. Directed $((n^2-n)/2)$, Undirected n^2
- E. Directed n², Undirected ((n²-n)/2)

Scan the QR code to vote or go to https://forms.office.co m/r/52HLAPDU24

Graphs: Live Poll 1

Only people in my organization can respond, Record name

1. Given an adjacency matrix for a graph of size N, which mathematical expression represents the...

Directed n ² , Undirected n ²	10%
Directed (n²-n), Undirected (n²/2)	39%
Directed n , Undirected (n²/2)	4%
Directed ((n²-n)/2) , Undirected n²	15%
Directed n ² , Undirected ((n ² -n)/2)	31% ▼
68 responses	< 1/1 >

Scan the QR code to vote or go to https://forms.office.co m/r/52HLAPDU24

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.
 - Two representations of each edge.
 - Space proportional to n².
 - Checking if (u, v) is an edge takes $\Theta(1)$ time.
 - Identifying all edges takes $\Theta(n^2)$ time.

Graphs: Live Poll 2

Given an undirected graph represented by an adjacency matrix, if the sum of all elements in the matrix is 'S', and the graph has no self-loops, how many edges does the graph have?

- A. S
- $B. S^2$
- C. S/2
- D. 2S

Scan the QR code to vote or go to https://forms.office.co m/r/nwiUWqMzwK

Graphs: Live Poll 2 Only people in my organization can respond, Record name 1. Given an undirected graph represented by an adjacency matrix, if the sum of all elements in the... 11% S^2 5% S/2 79% 25 6%

66 responses

Scan the QR code to vote or go to https://forms.office.co m/r/nwiUWqMzwK

1/1

- Adjacency list.
 - Two representations of each edge.
 - Space proportional to 2m + n.
 - Checking if (u, v) is an edge takes O(deg(u)) time.
 - Identifying all edges takes $\Theta(2m + n) = \Theta(m + n)$ time.

degree = number of neighbors of u

• **Def:** A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

• **Def:** A path is simple if all nodes are distinct.

• **Def:** A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

• **Def:** A path is simple if all nodes are distinct.

• **Def:** A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

• **Def:** A path is simple if all nodes are distinct.

Path A = 1-2-4-5-6 Path B = 1-3-7-8

- **Def:** A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.
- **Def:** A path is simple if all nodes are distinct.
- **Def:** An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

• **Def:** A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle A = 1-2-4-5-3-1

• **Def:** A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle A = 1-2-4-5-3-1

cycle B = 7-3-8-7

• A graph with **n-1 edges** can not have **cycles**?

cycle A = 1-2-4-5-3-1

cycle B = 7-3-8-7

• A graph with **n-1 edges** can not have **cycles**?

• A connected graph with n-1 edges can not have cycles

- **Theorem:** Let **G** be an undirected graph on **n** nodes. Any two of the following statements imply the third.
 - G is connected.
 - G does not contain a cycle.
 - G has n-1 edges.

- **Theorem:** Let **G** be an undirected graph on **n** nodes. Any two of the following statements imply the third.
 - G is connected.
 - G does not contain a cycle.
 - G has n-1 edges.

- **Theorem:** Let **G** be an undirected graph on **n** nodes. Any two of the following statements imply the third.
 - G is connected.
 - G does not contain a cycle.
 - G has n-1 edges.

- **Theorem:** Let **G** be an undirected graph on **n** nodes. Any two of the following statements imply the third.
 - G is connected.
 - G does not contain a cycle.
 - G has n-1 edges.

Trees

• **Def:** An undirected graph is a tree if it is **connected** and **does not contain a cycle**.

- **Def:** An undirected graph is a tree if it is **connected** and **does not contain a cycle**.
- **Rooted tree:** Given a tree **T**, choose a root node **r** and orient each edge away from r.

a tree

Section 3.2: **Graph Traversal**

Next Time

Thanks a lot

If you are taking a Nap, wake up.....Lecture Over