FPGA Final Project: Elliptic Curve Cryptography

Team memebers:

F64096114 郭家佑

E24096213 蔡奇佑

E14071025 趙泓瑞

Outline

- Introduction to ECC
- Algorithm & Hardware Architecture
- Design features
- Results
- Problems to occur

Introduction to ECC

Introduction to ECC

- 橢圓曲線密碼學(英語:Elliptic Curve Cryptography,縮寫:ECC)是一種基 於橢圓曲線數學的公開密鑰非對稱加密演算法。
- 其特色為安全性能更高,160位ECC 和 1024位RSA、DSA有相同的安全強度。
- 處理速度更快,在計算速度上,ECC比RSA、DSA快得多。
- 儲存空間更小
- 橢圓曲線是由以下形式的方程式定義的平面曲線(Weierstrass方程式):

 $y^2 = x^3 + ax + b$ 其中a和b是實數。

Introduction to ECC - point addition

Introduction to ECC - point doubling

Point Doubling P + P = R = 2P

$$P + P = R = 2P$$

Algebraically

$$s = \frac{3x_P^2 + a}{2y_P}$$

$$x_R = s^2 - 2x_P$$

$$y_R = s(x_P - x_R) - y_P$$

Introduction to ECC

$$G = (5, 1)$$

$$2G = (6,3)$$

$$3G = (10, 6)$$

$$4G = (3,1)$$

$$5G = (9, 16)$$

$$6G = (16, 13)$$

$$7G = (0,6)$$

$$8G = (13, 7)$$

$$9G = (7,6)$$

$$10G = (7, 11)$$

$$11G = (13, 10)$$

$$12G = (0, 11)$$

$$13G = (16, 4)$$

$$14G = (9, 1)$$

$$15G = (3, 16)$$

$$16G = (10, 11)$$

$$17G = (6, 14)$$

$$18G = (5, 16)$$

$$19G = \mathcal{O}$$

Bob

Bobpicks

$$\beta=9$$

Computes

$$B=9G=(7,6)$$

Receives

$$A = (10, 6)$$

Computes

$$\beta A = 9A = 9(3G) = 27G = 8G = (13,7)$$

Eve

$$y^2 \equiv x^3 + 2x + 2 \pmod{17}$$

$$G = (5, 1)$$

$$n = 19$$

$$A = (10, 6)$$

$$B = (7, 6)$$

?

Alice

Alice pices

$$\alpha = 3$$

Computes

$$A=3G=(10,6)$$

Receives

$$B = (7, 6)$$

Computes

$$\alpha B = 3B = 3(9G) = 27G = 8G = (13,7)$$

Outline

- Introduction to ECC
- Algorithm & Hardware Architecture
- Design features
- Results
- Problems to occur

Algorithm – modulus (version1: use pre-division and shift)

- It replace division operation with multiply and shift
- However it would error when input is close to its bandwidth limit (128bits) since error rate.

a % q =
$$a - \left| \frac{a}{q} \right| \cdot q = a - \left| \frac{a \times \frac{2^k}{q}}{2^k} \right| \cdot q$$

$$e = \frac{1}{q} - \frac{q}{2^k} \Rightarrow ae < 1$$

Algorithm – modulus (sol2:直式除法)

- We use sequential divider instead
- It cost less clk cycle (66/2) than
 previous version (64*2)

Algorithm – inv_mod (費馬小定理 & 模冪)

• 費馬小定理

费馬小定理 是 數論 中的一個定理: 假如 a 是一個 整數 , p 是一個 素數 , 那麼

$$a^p \equiv a \pmod{p}$$

如果a不是p的倍數,這個定理也可以寫成

$$a^{p-1} \equiv 1 \pmod{p}$$

這個書寫方式更加常用。(符號的應用請參見模運算。)

• 模幂定理

模冪(英語:modular exponentiation)是一種對模進行的冪運算,在計算機科學,尤其是公開密鑰加密方面有一定用途。

模幂運算是指求整數b的e次方 b^e 被正整數m所除得到的餘數c的過程,可用數學符號表示為 $c=b^e \mod m$ 。由c的定義可得 $0 \le c < m$ 。

例如,給定b=5,e=3和m=13, $5^3=125$ 被13除得的餘數c=8。

Algorithm – inv_mod (費馬小定理 & 模冪)

```
inv mod (calculate x = (1 / a) \% p)
 3
      input a (64bit)
      output x (64bit)
 5
 6
    inv mod(a) {
 8
          // use Fermat's little theorem -> x = (a^{(p-2)}) \% p
 9
          exp = p-2
10
          x = 1
11
          t exp = a
12
13
          // calculate exponent
14
          for (i = 0 \text{ to } 63) begin
15
              if (exp[i] == 1) x = multiply(x, t exp)
              t exp = multiply(t_exp, t_exp)
16
17
          end
18
19
          return x
20
```

Algorithm – mul64x64

```
mul64x64 (calculate p = a \times b)
      input a (64bit)
      input b (64bit)
      output p (128bit)
    sc mul(a, b) {
 8
          tmp[7:0][0:15] is a 8*16 array initialize to 0
10
11
          for (i = 0 \text{ to } 3) begin
12
              base addr tmp = i*4;
              base addr b = i*16;
13
14
              mul b = b[ base addr b+16 : base addr b ]
15
              tmp[base_addr_tmp ] += mul_b * a[15:0 ]
              tmp[base addr tmp+1] += mul b * a[31:16]
17
              tmp[base_addr_tmp+2] += mul_b * a[47:32]
              tmp[base_addr_tmp+3] += mul_b * a[63:48]
19
          end
20
21
          x = tmp[7:0]
22
23
          return x
```

Algorithm – double

```
double ( calculate T = 2R )
    input R (129bit)
    output T (129bit)
    a = 128'd3628449283386729367
    double ( point R ){
       if(R[128] == 1){
          T = \{1'b1, 128'b0\}
10
           return T
       else {
           Ry = R [127 : 64];
           Rx = R [63 : 0];
           S1 = mod( mul64x64( mul64x64(3,Rx) , Rx ) + a ) //S1 = (3*Rx*Rx+a)*p
           S2 = inv_mod(mul64x64(2, Ry)) 	 //S2 = inv(2Ry)
          T = \{1'b0, Ty, Tx\};
           return T
```


Algorithm – add&sub

```
add
           ( calculate T = P+Q )
          ( calculate T = P-Q )
      sub
      input P (129bit)
      input 0 (129bit)
      output T (129bit)
      op == 0 -->add
      op == 1 -->sub
10
     add&sub ( point P , point Q ){
11
         if (P[128] == 1)&&(Q[128] == 1) {
12
             T = \{1'b1, 128'b0\}
13
             return T
         else if(P[128] == 0)&&(Q[128] == 1)&&(op == 0){
             T = \{1'b0, P[127:64], P[127:64]\}
17
              return T
         else if(P[128] == 0)&&(Q[128] == 1)&&(op == 1){
20
             T = \{1'b0, -P[127:64], P[127:64]\}
21
             return T
22
23
          else if(P[128] == 1)&&(Q[128] == 0)&&(op == 0){
              T = \{1'b0, Q[127:64], Q[127:64]\}
              return T
          else if(P[128] == 1)&&(Q[128] == 0)&&(op == 1){
             T = \{1'b0, -Q [127 : 64], Q [127 : 64]\}
29
              return T
```


Algorithm – add&sub

```
else {
   Px = P [63 : 0]
   Py = P [127 : 64]
   Qx = Q [63 : 0]
   if (op == 1)
       Qy = -Q [127 : 64]
   else
       Qy = + Q [127 : 64]
   S1 = mod(Py - Qy)
                                            //S1 = (Py - Qy)\%p
   S2 = inv mod(Px - Qx)
                                          //S2 = inv(Px - Qx)
   S = mod(mul64x64(S1, S2))
   Tx = mod(mu164x64(S,S) - Px - Qx) //Tx = (S*S - Px - Qx)%p
   Ty = mod( mul64x64( S , Rx-Tx ) - Ry ) //Ty = (S*(Rx-Tx)-Ry)%p
   T = \{ 1'b0, Ty, Tx \}
   return T
```


Algorithm double vs. add&sub

```
else ∤
13
            Rv = R [127 : 64];
            Rx = R [63 : 0];
            S1 = mod( mul64x64( mul64x64(3,Rx) , Rx ) + a ) //S1 = (3*Rx*Rx+a)%p
            S2 = inv mod( mul64x64( 2 , Ry ))
                                            //S2 = inv(2Ry)
17
            S = mod(mul64x64(S1, S2)) //S = (S1*S2)%p
            Tx = mod(mu164x64(S, S) - Rx - Rx) //Tx = (S*S - 2*Rx)%p
            Ty = mod( mul64x64( S , Rx-Tx ) - Ry ) //Ty = (S*(Rx-Tx)-Ry)%p
            T = \{1'b0, Ty, Tx\};
            return T
         else {
            Px = P [63 : 0]
            Pv = P [127 : 64]
            Qx = Q [63 : 0]
            if (op == 1)
                Qy = -Q [127 : 64]
            else
                Qy = + Q [127 : 64]
            S1 = mod(Pv - Qv)
                                                   //S1 = (Py - Qy)%p
40
            S2 = inv mod(Px - Qx)
                                                   //S2 = inv(Px - Qx)
            S = mod(mul64x64(S1, S2)) //S = (S1*S2)%p
            Tx = mod(mul64x64(S,S) - Px - Qx) //Tx = (S*S - Px - Qx)%p
            Ty = mod(mu164x64(S,Rx-Tx)-Ry) //Ty = (S*(Rx-Tx)-Ry)%p
            T = \{ 1'b0, Ty, Tx \}
            return T
```

Point addition
Point subtraction
Point double

Resource sharing for 3 functions in one architecture.

→ Control unit of ALU

ALU Hardware Architecture

Introduction to ECC – scalar multiplication

$$11_{(10)} = 1011_{(2)}$$
 (initial R = infinity point)
 $1x2^3$ R = 2 R + 1 P = P
 $0x2^2$ R = 2 R + 0 P = 2^1 P
 $1x2^1$ R = 2 R + 1 P = 2^2 P + 2^0 P
 $1x2^0$ R = 2 R + 1 P = 2^3 P + 2^1 P + 2^0 P

Algorithm – scalar multiplication

```
scalar multiplication (calculate R = a \times P)
      input a (64bit) // number
      ipuut P (1+64+64bit) // point
      output R (1+64+64bit) // point
 6
     \blacksquaresc_mul(a, P) {
 8
 9
           R = infinity point
10
           for (i = 63 \text{ to } 0) begin
11
               R = double(R)
12
               if(a[i] == 1)
13
                    R = add(R, P)
14
           end
15
16
           return R
17
```

Algorithm – generate key

```
p = 10997031918897188677
    a = 3628449283386729367
    b = 4889270915382004880
    Gx = 3124469192170877657
    G_V = 4370601445727723733
    G = \{ Gy, Gx \}
    k = srand(0,p)
8
    /////////Generate key////////////
10
11
    Deliver k from software by AXI to memory
    K = scalar mul(k, G)
12
    Store K in memory
14
    Deliver K to software by AXI
15
```

Algorithm – Encryption

```
p = 10997031918897188677
    a = 3628449283386729367
    b = 4889270915382004880
    Gx = 3124469192170877657
    G_V = 4370601445727723733
    G = \{Gy, Gx\}
    k = srand(0,p)
 8
    10
11
    Deliver r,m from software by AXI to memory
12
    C1 = scalar mul(r, G)
13
    C2 = add(m, scalar mul(r, K)) //C2 = m+rk
    Store C1,C2 in memory & Deliver C1,C2 to software by AXI
14
15
```

Algorithm – Decryption

```
p = 10997031918897188677
    a = 3628449283386729367
    b = 4889270915382004880
    Gx = 3124469192170877657
    Gy = 4370601445727723733
    G = \{ Gy, Gx \}
    k = srand(0,p)
8
    10
11
    Deliver C1,C2 from software by AXI to memory
    M1 = scalar mul(k,C1)
12
    m = C2 - M1
13
14
    Store m in memory & Deliver m to software by AXI
15
16
    // k is private key
    // K is public key
17
18
```

Controller Hardware Architecture

ECC System Hardware Architecture

Block diagram

Outline

- Introduction to ECC
- Algorithm & Hardware Architecture
- Design features
- Result
- Problems to occur

Resource sharing

Use handshake and stall to share hardware

Resource sharing

Merge the similar function hardware to one module

Resource sharing

 Use wallace tree multiplier and sequential divider to solve large number calculation and share its sub-multiplier

parallelism of small DSP multiplier

- With split 64*64 multiplier into four 16*16 multiplier run four stage rather than four 32*32 multiplier run one stage
- Reduce critical path & period
- Can use DSP module in FPGA rather than LUT
- Area decreases significantly

Outline

- Introduction to ECC
- Algorithm & Hardware Architecture
- Design features
- Results
- Problems to occur

Result

- 軟體執行(透過VITIS IDE 與硬體互動)
 - 1. 先將ECC的參數存入BRAM的指定位置
 - 2. 使用者輸入inst mode = 1 (generate key)利用私鑰k產生公鑰K
 - 3. 使用者輸入inst mode = 2 (encrypt) 並輸入公鑰、message(M)、random number來加密
 - 4. 使用者輸入inst mode = 3 (decrypt) 並輸入私鑰、被加密文件C1、C2來解密

Demo

Result

Time: 1968400 ns Iteration: 3 Instance: /alu tb

- With something encryption and decryption error
- But with correct ECC arithmetic operation (ALU module)

```
Loading work. INV MOD
Refreshing C:/Users/oppol/Desktop/FPGA/final project/final/src/work.ADD DOUBLE
Loading work.ADD DOUBLE
SIM 82> run -all
   10, op=0
   3, op=0
   9, op=0
   16, op=0
   0, op=0
   13, op=0
   7, op=0
   7, op=0
  13, op=0
  0, op=0
  16, op=0
  9, op=0
  3, op=0
  10, op=0
  6, op=0
                         14,
  5, op=0
  ** Note: $finish : C:/Users/oppol/Desktop/FPGA/final project/final/src/alu tb.v(161)
```

```
E: y^2 \equiv x^3 + 2x + 2 \pmod{17}
  G = (5, 1)
                 11G = (13, 10)
 2G = (6,3) 12G = (0,11)
 3G = (10, 6) 13G = (16, 4)
 4G = (3, 1) 14G = (9, 1)
                 15G = (3, 16)
 5G = (9, 16)
                  16G = (10, 11)
 6G = (16, 13)
                   17G = (6, 14)
 7G = (0,6)
                  18G = (5, 16)
 8G = (13,7)
                   19G = \mathcal{O}
 9G = (7,6)
 10G = (7, 11)
因此 n = 19. h = 1
```

Utilization

Resource	Utilization	Available	Utilization %
LUT	7684	53200	14.44
LUTRAM	658	17400	3.78
FF	8465	106400	7.96
BRAM	14.50	140	10.36
DSP	4	220	1.82
Ю	1	125	0.80
MMCM	1	4	25.00

LUT Utilization

- LUT utilization is dominated by add double module
- Multiply is replaced by DSP module in mul64
- Mod area is dominated only two 128bits subtraction

DSP Utilization

With split 64*64
 multiplier into four
 16*16 multiplier run
 four stage

Figure 2-1: 7 Series FPGA DSP48E1 Slice

UG369_c1_01_052109

Outline

- Introduction to ECC
- Algorithm & Hardware Architecture
- Results
- Design features
- Problems to occur

Setup time violation

- (Sol)
 - 將乘法器和除法器一個stage的critical path再縮短
 - 使用clock wizard將clk period提高至slack>0

Tools with verification

large number calculator (* & mod)
 https://www.calculator.net/big-number-calculator.html

inverse modulo calculator

https://keisan.casio.com/exec/system/15901266097609

ecc calculator

http://www.christelbach.com/eccalculator.aspx

Reference

- Hardware design and implementation of ECC based crypto processor for low-area-applications on FPGA
 https://ieeexplore.ieee.org/abstract/document/8279005?fbclid=lwAR3y2Ey7g9
 STRfPIBXAQByA_J2NVTw2d140kOitqDdDAnMINuXb0hFFYOU4
- 非對稱式加密演算法 橢圓曲線密碼學 Elliptic Curve Cryptography, ECC (觀念篇)
 - https://ithelp.ithome.com.tw/articles/10251031
- How can I best check these Elliptic Curve parameters are valid?
 https://stackoverflow.com/questions/22270485/how-can-i-best-check-these-elliptic-curve-parameters-are-valid
- Elliptic Curve Cryptography (ECC) by Christof Paar
 https://www.youtube.com/watch?v=zTt4gvuQ6sY&t=4805s

Thanks for listening