Groupwork 7 Problems

1. Get to the Point [10 points]

Consider an arbitrary set A. We say a function $f: A \to A$ has a fixed point iff there exists $a \in A$ such that f(a) = a.

Consider the notation $f^{(n)}$ to mean $\underbrace{f \circ \cdots \circ f}_{n \text{ times}}$, where $n \in \mathbb{Z}^+$. Essentially, n copies of f are composed together.

Prove by **induction** that if f is a function with a fixed point, then for all positive integers n, $f^{(n)}$ has a fixed point.

Solution:

2. Going Off the Grid [8 points]

In a grid, we say that a point a dominates a point b iff a lies strictly above and to the right of b. For example, in the picture below, a dominates b.

a b

Prove using the Pigeonhole Principle that if we choose 4n-1 points from an $n \times n$ grid $(n \ge 4)$, there must be three chosen points x, y, z such that x dominates y and y dominates z. Make sure to state what your pigeons are and what your holes are, as well as how many of each you have.

Hint: If x, y, z lie on the same increasing diagonal as shown in the picture below, then x dominates y and y dominates z.

Solution:			