LoRa receiver in MATLAB

LoRa receiver SDR implementation in MATLAB using the RTL-SDR dongle as a receiver.

SDL team:

Guillermo Ortas 4612957 Abdul Aziz Hamad 4621565 Kumar Navneet 4619110

Implementation

Two main blocks:

- Demodulation
- Decoding

Signal modulation

- The chirp rate is $\frac{BW}{2^{SF}}$, inverse of the symbol time.
- Signal bandwidth is either 125 kHz, 250 kHz or 500 kHz.
- Spreading Factor ranges from 6 to 12 bits (# bits/symbol)
- The preamble/training sequence: 10 up-chirps (the last two are a special sync word), corresponding to the value zero.
- Start of Frame Delimiter (SFD): 2.25 down-chirps, immediately followed by the data.

Channelization and re-sampling

The signal is channelized using a Digital Down Conversion (DDC) technique.

- Bring signal to base-band
- Low pass filter
- 3. Resample to match the chirp bandwidth: $F_s' = BW$ (decimation)

This dramatically decreases the computational load required to process the signal (less samples).

De-chirping process

- Locally generating chirp:
 - Chirp rate matching the incoming signal
- Multiplying the incoming signal with the complex conjugate of the locally generated chirp.
- The resulting signal is equivalent to a MFSK modulation with M = 2^{SF} levels.

De-chirped signal

- Spectrogram with adjusted parameters to make the symbols easier to see
- The horizontal lines correspond to the SFD (more spread)

Synchronization and alignment

- The start of the signal is identified with a correlation function
 - Good correlation properties of chirps
- Symbols are aligned to the data segment

Extraction of symbols and bits

- Spectrogram set up to return one sample per symbol per frequency bin (as in last slide)
- A symbol corresponds to the frequency index of the strongest spectral component for each symbol time

The script now returns a string of raw bits

Decoding block

- The next step is to decode the raw bits to get actual data.
- There are four different stages for decoding:
 - Grey Coding
 - Whitening sequence
 - De-interleaving
 - Forward error correction

Grey indexing

- It is equivalent to Grey code
- Convert grey code block to binary code.
- Binary output (B) given by:

```
B_1 = D_1

B_2 = B_1 \text{ XOR } D_1

B_3 = B_2 \text{ XOR } D_2...B_n = B_{n-1} \text{ XOR } D_n
```


Removing Data Whitening

- It's needed to know the random number used for whitening the signal
- XOR that random number with the bits B

Deinterleaving and FEC

- Hamming(N,4) encoder is used in LoRa:
 - Every 4 data bit is concatenated with N bit, with N = SF.
- Knowing two thing before we perform FEC:
 - Deinterleaving matrix
 - Error correcting code
- Fill in the bits and flip the matrix to get the data
- Use error correcting code to correct the bit

Thank You

