There are 3 problems in total. Please write down your solution on another piece of paper and submit it to your TA on or before Mar. 20, 2018

1. Let
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & -2 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$$

- (a) Find a singular value decomposition for A
- (b) Find an orthogonal basis for the range of A
- (c) Find an orthogonal basis for the null space of A^T
- 2. Singular value decomposition of A denote as $A = U\Sigma V^T$. Assume A has l positive singular values, i.e.,

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_l > \sigma_{l+1} = \cdots = \sigma_n = 0$$

For $1 \leq k \leq l$, obtain Σ_k by setting the singular values σ_{k+1} , σ_{k+2} ,..., σ_l to zeros in the matrix Σ . Let $A_k = U\Sigma_k V^T$. Show $||A - A_k|| = \sigma_{k+1}$.

- 3. Our data vector b has been measured with some error. Let b_{true} be the true but unknown data, and let $Ax_{true} = b_{true}$.
 - (a) The columns of the matrix $V = [v_1, ..., v_n]$ form an orthonormal basis for n-dimensional space. Let's express the solution x_{true} to the least squares problem as

$$x_{true} = w_1 v_1 + \dots + w_n v_n$$

- . Determine a formula for w_i (i = 1, ..., n) in terms of U, b_{true} and the singular values of A.
- (b) Use the two statements below and the fact that $||A|| = \sigma_1$

$$A(x - x_{true}) = (b - b_{true} - r) \ means \ \|x - x_{true}\| \le \frac{1}{\sigma_n} (\|b - b_{true} - r\|)$$

$$b_{true} = Ax_{true} \ means \ \|b_{true}\| = \|Ax_{true}\| \le \|A\| \|x_{true}\|$$

. Derive an upper bound on $\frac{\|x-x_{true}\|}{\|x_{true}\|}$ in terms of the condition number $\kappa(A) \equiv \frac{\sigma_1}{\sigma_n}$ and $\frac{\|b-b_{true}\|}{\|b_{true}\|}$.