Conferencia 4 - Congruencia

December 4, 2024

Definición. Sea $n \in \mathbb{Z}_+$, $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, se dice que a es congruente con b módulo n si a y b tienen el mismo resto al ser divididos por n y esto se denota $a \equiv b \pmod{n}$ o $a \equiv b \pmod{n}$

Teorema. Sea $n \in \mathbb{Z}_+$, $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, se dice que $a \equiv b(n)$ si y solo si n|a-b

Demostración

Demostremos que si $a \equiv b(n)$ entonces n|a-bComo $a \equiv b(n)$, por definición, a = kn + r y b = qn + r luego a - kn = b - qna - b = kn - qna - b = (k - q)npor lo que n|a-b

Demostremos ahora que si n|a-b entonces $a \equiv b(n)$

Tenemos que

$$a = nq_1 + r_1 \text{ y } b = nq_2 + r_2$$

luego $a - b = n(q_1 - q_2) + r_1 - r_2$
Ahora, como $n|a - b \text{ y } n|n(q_1 - q_2)$
entonces $n|r_1 - r_2 \text{ y } n||r_1 - r_2|$
pero $|r_1 - r_2| < n$ por lo que $r_1 - r_2 = 0$
entonces $r_1 = r_2$ y, por tanto, $a \equiv b(n)$

Teorema. La relación de congruencia módulo n es una relación de equivalencia

Propiedades básicas de la congruencia

1. Para todo $a, a \equiv a(n)$

Demostración

Como
$$a - a = 0 = n * 0$$
 entonces $n|a - a$

2. Si $a \equiv b(n)$ si y solo si $b \equiv a(n)$

Demostración

Si a - b = kn para algún k luego b - a = -kn

3. Si $a \equiv b(n)$ y $b \equiv c(n)$ entonces $a \equiv c(n)$

Demostración

Si a - b = kn y b - c = ln para k, l enteros entonces a - c = (k + l)n

4. Si $a \equiv b(n)$ y $c \equiv d(n)$ entonces $a \pm c \equiv b \pm d(n)$

Demostración

Si a-b=kn y c-d=ln para k,l enteros entonces (a+c)-(b+d)=(k+l)n y (a-c)-(b-d)=(k-l)n

5. Si $a \equiv b(n)$ y $k \in \mathbb{Z}_+$ entonces $ak \equiv bk(n)$

Demostración

Se suma k veces $a \equiv b(n)$

6. Si $a \equiv b(n)$ y $c \equiv d(n)$ entonces $ac \equiv bd(n)$

Demostración

Para ello se debe demostrar que ac - bd es múltiplo de n. Entonces ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d) y como a - b y c - d son múltiplos de n entonces ac - bd también lo es

7. Si $a \equiv b(n)$ y $k \in \mathbb{Z}_+$ entonces $a^k \equiv b^k(n)$

Demostración

Se multiplica k veces $a \equiv b(n)$

8. Si $a \equiv b(n)$ entonces $a + c \equiv b + c(n)$

Demostración

Se tiene que $a \equiv b(n)$ y también que $c \equiv c(n)$ luego $a + c \equiv b + c(n)$

9. Si c es divisor común de a, b, n luego, si $a \equiv b(n)$ entonces $\frac{a}{c} \equiv \frac{b}{c}(\frac{n}{c})$

Demostración

Como c es divisor común de a,b,n entonces para a_1,b_1,n_1 enteros se tiene que $a=ca_1,\,b=cb_1$ y $n=cn_1$ y, entonces, $ca_1\equiv cb_1\,(cn_1)$ luego $ca_1-cb_1=kcn_1$ para k entero, lo que es lo mismo que $a_1-b_1=kn_1$, por lo que $a_1\equiv b_1\,(n_1)$ por tanto $\frac{a}{c}\equiv \frac{b}{c}\,(\frac{n}{c})$

10. Si c|n y $a \equiv b(n)$ entonces $a \equiv b(c)$

Demostración

Como c|n entonces n=qc con q entero y como $a\equiv b\,(n)$ entonces a-b=kn con k entero, luego a-b=kqc y como kq es un entero entonces $a\equiv b\,(c)$

Teorema. Si $ca \equiv cb(n)$ entonces $a \equiv b(\frac{n}{d})$ donde d = mcd(c, n)

Demostración

Como $ca \equiv cb$ (n) entonces ca - cb = c(a - b) = kn, ahora si se tiene que d = mcd(c, n) entonces existen s y r, (r, s) = 1 tales que c = dr y n = ds, si se sustituye en la igualdad previa se tiene que dr(a - b) = kds y si se simplifica queda que r(a - b) = ks.

A partir de esto se tiene que s|r(a-b) y, como r y s son primos relativos, entonces por el Lema de Euclides s|a-b y, por tanto $a\equiv b\left(s\right)$ lo que es lo mismo que $a\equiv b\left(\frac{n}{d}\right)$

Corolario. Si $ca \equiv cb (n) \ y \ mcd(c, n) = 1 \ entonces \ a \equiv b (n)$

Demostración

Para d=1 se tiene entonces, a partir del teorema anterior que $a\equiv b\left(\frac{n}{1}\right)$

Corolario. Si $ca \equiv cb(p)$ y $p \nmid c$ donde p es primo, entonces $a \equiv b(p)$

Demostración

Como $p \nmid c$ y p es primo, entonces mcd(c, p) = 1, y entonces se tienen el corolario anterior

Propiedades fuertes de la congruencia

1. Si $a \equiv b(m)$ y $a \equiv b(n)$ entonces $a \equiv b(mcm(m, n))$

Demostración

Por el Teorema Fundamental de la Aritmética

$$m = \prod_p p^{m_p}, \, n = \prod_p p^{n_p}$$
y $mcm(m,n) = \prod_p p^{max(m_p,n_p)}$

donde p son números primos, $m_p \geq 0$ y $n_p \geq 0$.

Entonces, si $a \equiv b(m)$ y $a \equiv b(n)$ esto significa que $p^{m_p}|a-b$ y que $p^{n_p}|a-b$ y, por tanto, $p^{\max(m_p,n_p)}|a-b$.

Ahora como $a - b = \prod_p p^{c_p}$ donde $c_p \ge max(m_p, n_p)$ entonces mcm(m, n)|a - b y, por tanto, $a \equiv b \ (mcm(m, n))$

2. Si $a \equiv b(n)$ entonces mcd(a, n) = mcd(b, n)

Demostración

Si $a \equiv b(n)$ entonces a - b = kn para k entero, luego a = k * n + b y por tanto mcd(a, n) = mcd(n, b)

3. Si $ac \equiv bd(n)$, $c \equiv d(n)$ y mcd(c,n) = 1 entonces $a \equiv b(n)$

Demostración

Como $c \equiv d(n)$ entonces mcd(d, n) = mcd(c, n) = 1 y c - d = qn, lo que es lo mismo que c = qn + d

Ahora, como $ac \equiv bd(n)$ entonces ac - bd = kn y sustituyendo c se tiene que

$$a(qn + d) - bd = kn$$

 $aqn + ad - bd = kn$
 $ad - bd = kn - aqn$
 $ad - bd = (k - aq)n$
entonces $da \equiv db(n)$ y como $mcd(d, n) = 1$ entonces $a \equiv b(n)$

4. Sea f(x) un polinomio con coeficientes enteros $a \equiv b(n)$ entonces $f(a) \equiv f(b)(n)$

Demostración

f(x) de manera general se puede definir como $f(x) = \sum_{k=0}^{m} c_k x^k$

Como $a \equiv b(n)$ entonces se puede tener $a^k \equiv b^k(n)$ luego se pueden multiplicar por un entero tal que $c_k a^k \equiv c_k b^k(n)$ y estas se pueden sumar varias veces de modo que $\sum_{k=0}^m c_k a^k \equiv \sum_{k=0}^m c_k b^k(n)$ y como $f(a) = \sum_{k=0}^m c_k a^k$ y $f(b) = \sum_{k=0}^m c_k b^k$ entonces $f(a) \equiv f(b)(n)$

Definición. Si f(x) es un polinomio con coeficientes enteros se dice que a es solución de $f(x) \equiv 0$ (n) si $f(a) \equiv 0$ (n)

Teorema. Sea f(x) un polinomio con coeficientes enteros tal que a es solución de $f(x) \equiv 0$ (n) y $a \equiv b$ (n), entonces b también es solución

Demostración

Por el teorema anterior se tiene que $f(a) \equiv f(b)(n)$ entonces se tiene que $f(b) \equiv f(a) \equiv 0$ (n) y, por tanto, b es solución

Teorema. Pequeño Teorema de Fermat. Sea p primo y $a \in \mathbb{Z}$, luego si $p \nmid a$ entonces $a^{p-1} \equiv 1 (p)$

Demostración

Si se tienen los primeros p-1 múltiplos positivos de a, que serían $a, 2a, 3a, \ldots, (p-1)a$, ninguno de ellos es congruente con otro módulo p pues si eso pasara entonces se tendría $ra \equiv sa(n), 1 \leq r < s \leq p-1$, lo que resultaría en que $r \equiv s(n)$ lo que es falso.

Entonces el conjunto de múltiplos debe ser cogruente módulo p con $1, 2, 3, \ldots, p-1$, en algún orden. Luego, si múltiplicamos todas estas congruencias se tiene:

$$a * 2a * 3a * \dots * (p-1)a \equiv 1 * 2 * 3 * \dots * (p-1)(p)$$

Lo que es lo mismo que:

$$(p-1)!a^{p-1} \equiv (p-1)!(p)$$

luego $a^{p-1} \equiv 1(p)$