

In Data Science, building a model is only half the job. The other half? Evaluating it correctly.

Choosing the right metric depends on the type of problem you're solving:

- Regression → Predicting continuous values
 (e.g., house prices, MPG)
- Classification → Predicting categories (e.g., spam vs not spam, disease detection)

Regression Metrics

Regression models predict continuous numbers. To judge how good they are, we look at both fit and prediction accuracy.

AIC – Akaike Information Criterion

- Balances fit vs complexity.
- Lower = better.
- Good for avoiding overfitting.

BIC – Bayesian Information Criterion

- Similar to AIC but stronger penalty for complexity.
- Lower = better.
- Often preferred for smaller datasets.

R² – Coefficient of Determination

- Measures how much variance in the target is explained by the model.
- Range: $0 \rightarrow 1$ (higher = better)
- Limitation: Always increases with more variables even if they're useless.

Adjusted R²

- R² adjusted for the number of predictors.
- Penalizes adding irrelevant variables.
- Best for comparing models with different numbers of predictors.

MAE – Mean Absolute Error

- Average absolute difference between predictions and actual values.
- Lower = better.
- Easy to interpret in target's units.

Classification Metrics

Classification models predict discrete categories. We need metrics that measure both correctness and error type. Average absolute difference between predictions and actual values.

Confusion Matrix

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

- Base for calculating other metrics.
- Helps see how the model is wrong, not just how often.

Accuracy

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

- Measures overall correctness.
- Misleading if classes are imbalanced.

Precision

- Of all predicted positives, how many are correct?
- Good when false positives are costly (e.g., spam filter).

Recall

Recall =
$$\frac{TP}{TP + FN}$$

- Recall measures how many of the actual positive cases the model correctly identified.
- Good when false negatives are costly

F1-Score

- Harmonic mean of Precision & Recall.
- Balances false positives & false negatives.

Conclusion

In data science, building a model is only half the battle—the real skill lies in evaluating it correctly.

- For regression problems, metrics like Adjusted R², AIC,
 BIC, and MAE help balance accuracy with simplicity.
- For classification problems, tools like the confusion matrix, precision, recall, F1-score, and ROC-AUC reveal not just how often the model is right, but how it makes mistakes.

The key is to choose the right metric for the business problem:

- Maximize recall when missing a positive is dangerous (disease detection, fraud prevention).
- Maximize precision when false alarms are costly (spam detection, legal alerts).
- Balance both when you need an all-rounder model.