PROJECT REPORT- Intro To Machine Learning

Rajiv Kumar

1. Summarize for us the goal of this project and how machine learning is useful in trying to accomplish it. As part of your answer, give some background on the dataset and how it can be used to answer the project question. Were there any outliers in the data when you got it, and how did you handle those? [relevant rubric items: "data exploration", "outlier investigation"]

Answer:

The goal of the project is deploy a supervised machine learning algorithm to identify POI(Person of interest) from the enron dataset. POI is the person who was potentially involved in the enron fraud case. Following is the summary of the Enron Data set

 Data set contains total 146 rows and 22 attributes. Following is the list of attributes.

'Name', 'salary', 'to_messages', 'deferral_payments', 'total_payments', 'exercised_stock_options', 'bonus', 'restricted_stock', 'shared_receipt_with_poi', 'restricted_stock_deferred', 'total_stock_value', 'expenses', 'loan_advances', 'from_messages', 'other', 'from_this_person_to_poi', 'poi', 'director_fees', 'deferred_income', 'long_term_incentive', 'email_address', 'from_poi_to_this_person'

Enron dataset contain some key characteristics, which can be used to identify POI. The POI attribute, which is already defined, identifies the important characteristics of POI and we can use machine learning algorithm to find patterns among the POIs and train our model to predict whether a person is POI or not based on given characteristics. For Example, Long_term_incentives for POIs seems to be higher than other employees so this could be considered as one of the attribute to identify what other employees have similar characteristics.

Below is Brief summary of the data:

- total number of data points- Total 146 Records and 22 attributes. Out of these there are total 18 POIs
- allocation across classes (POI/non-POI):18 POIs and 128 NON POIs i.e only 12%
 Records are POIs and rest ~88% are NON POIs
- number of features used: There are total 22 features in the data set.
- are there features with many missing values? etc. :There are lot of missing values in the columns. For exa: loan_advances, director fees and restricted_stock_defferred columns has mostly missing values.

Data Exploration:

First Step:

In my explanatory analysis, I started with the descriptive statistics for all attributes in the enron data set. Here are my key findings:

- Max value for each attribute was exceptionally high(way higher than the interquartile Range), indicating the presence of outliers
- Count of non missing values was significantly lower than total rows in the data set, which is an indication that there are lot of missing values in the dataset.
- I briefly looked at the median and mean values for the attributes and found that the median value for all the attributes was significantly less than the mean value. For example: Median Value for the salary column was only 259996, however the mean value was 562194. This was a strong indication that data is positively skewed and there are certainly outliers in the data.

Second Step:

To further investigate the data, I plotted some graphs. Below are my key findings;

I started by drawing the histograms of the key attributes to see how the data is distributed. Below is one such key graph to show the trend In the data.

This graph indicated an outlier in the salary attribute. In my further investigation , I found that there is a row "Total" in the data set , which contains the total for each attribute . I removed the "Total" row from the data set and my new histogram for salary looked like following:

Even though the data is still positively skewed, I decided not to remove the outliers because these outliers are indeed key characteristics of POI. I noticed that same distribution of data in most of the attributes. Below are some of the other interesting histograms that helped in my analysis:

Also, there are lot of missing values present in the columns, in order to successfully deploy the machine learning algorithm I have decided to remove the missing values from the data set. We could have tried filling the missing values with the mean or median of a the given column but since the data is so much skewed, it would not be appropriate. Therefore, I decided to drop the values even though it is going to reduce the overall size of my data set drastically.

2. What features did you end up using in your POI identifier, and what selection process did you use to pick them? Did you have to do any scaling? Why or why not? As part of the assignment, you should attempt to engineer your own feature that does not come ready-made in the dataset -- explain what feature you tried to make, and the rationale behind it. (You do not necessarily have to use it in the final analysis, only engineer and test it.) In your feature selection step, if you used an algorithm like a decision tree, please also give the feature importances of the features that you use, and if you used an automated feature selection function like SelectKBest, please report the feature scores and reasons for your choice of parameter values. [relevant rubric items: "create new features", "properly scale features", "intelligently select feature"]

Answer:

In order to identify the key features, I continued with my exploratory data analysis and drew graphs of potential attributes with POI. I used Box plots to see that trend in the data for non poi vs poi. Below are some of the key graphs that helped me find some relationship between POI and the given attribute.

This graph clearly shows median salary is higher for POIs and is lower for non POIs. It also indicate the higher quartile range of salaries for POI then Non POIs. I drew other box plots to see the distribution of other key attributes with POI. Below are some key box plots that helped me in identifying the trend.

By my analysis so far, I knew that following attributes certainly play some important role in identifying a POI.

'poi','salary','bonus','long_term_incentive','exercised_stock_options','from_poi_to_this_person'.

I went ahead to look out for some interesting relationships among the key attributes. I started by using a correlation matrix on my data set. I found some interesting correlation between following attributes:

Salary, exercised_stock_options, bonus, total_stock_value, long_term_incentive and shared_receipt_with_poi, from_this_person_to_poi.

I did some multivariate analysis to see the underlying relationship. For example:Below graph helped me in visualizing a clear trend between salary and bonus for poi and non-poi.

Based on my analysis so far , I observe that bonus and salary are correlated , which is intuitive as well. I tried to merge these two features in to one so that we don't have redundant features in the model. I created Percent_bonus feature, which reflect what % of bonus was given to the employee as shown below.

Also, I think it makes more sense to have the ratio of number of emails sent to POI vs total email sent by that person to have accurate numbers. For example: If the person has sent 1000 emails to the POI but in total has sent over 1 million emails then this person might not be the suspect. Hence I decided to create other two features, which are ratio_message and ratio_to_from_messages as shown below:

- Percent bonus=('bonus'/'salary')*100
- Ratio_message = from_this_person_to_poi / from_messages
- ratio_to_from_messages= (from_poi_to_this_person + from this person to poi) / to messages+from messages

We will compare the impact of these new features in later sections.

I draw the graphs for these new features with POI to see the trend

These graphs showed a clear trend and helped me in strengthening my intuition about key attributes.

I tried various combination of attributes to select the final list for my model. Various combinations of the features are provided in the further sections. Furthermore, I did not do any scaling of the features as it was not required for my algorithm choice. I used Guassian Naïve Bayes and Decision Tree classifier algorithms. Both these algorithm are not based on calculating the distance with the decision boundary therefore there was not going to be an impact of features magnitudes.

My initial selection of features was mostly based on the exploratory analysis that I have done in this section and my intuition. For example: From the box plots, I saw how salary, bonus, long term incentives etc are key characteristics to identify a poi. From the graphs, it was clear that these attribute play some important role and are significantly different for POIs than for NON POIs. Another key contribution came from the correlation matrix of the attributes and multivariate analysis, correlation matrix helped identifying the relationship among the attributes and I engineered new features for my model.

I also tried to use SelectKBest to select top best features for my model. I started with top 5 best features and went down up to 2 top best features for model. The comparison matrix for the selection is given in further section.

3. What algorithm did you end up using? What other one(s) did you try? How did model performance differ between algorithms? [relevant rubric item: "pick an algorithm"]

Answer:

After having an idea about my key attributes, I went ahead and tried couple of supervised machine learning algorithms. I also focused on tuning my algorithm by trying various combinations of key attributes. Here is my analysis:

I started by using Guassian naïve bayes algorithm, as this algorithm is well suited for a supervised classification problem like this.

Below is the summary of my different attempts to choose the right algorithm and attributes:

Features	Result
'poi', 'salary', 'bonus', 'long ter	Accuracy: 0.80050
m incentive', 'exercised stock op	Precision: 0.64985
tions','ratio messages'	Recall: 0.43800
	F1: 0.52330 F2: 0.46855
	Total predictions: 4000
	True positives: 438
	False positives: 236
	False negatives: 562
	True negatives: 2764
'poi', 'salary', 'bonus', 'long ter	Accuracy: 0.81075
m incentive', 'exercised stock op	Precision: 0.69134
tions','from poi to this person'	Recall: 0.43900
,	F1: 0.53700 F2: 0.47357
	Total predictions: 4000
	True positives: 439
	False positives: 196
	False negatives: 561
	True negatives: 2804
'poi','salary','bonus','long_ter	GaussianNB()
<pre>m_incentive','exercised_stock_op</pre>	Accuracy: 0.78050
tions', 'ratio_to_from_messages'	Precision: 0.58069
	Recall: 0.43900
	F1: 0.50000 F2: 0.46152
	Total predictions: 4000
	True positives: 439
	False positives: 317
	False negatives: 561
	True negatives: 2683
'poi', 'salary', 'long_term_incent	Accuracy: 0.78075
<pre>ive','exercised_stock_options','</pre>	Precision: 0.58554
ratio_to_from_messages'	Recall: 0.42100
	F1: 0.48982 F2: 0.44607
	Total predictions: 4000
	True positives: 421
	False positives: 298
	False negatives: 579 True negatives: 2702
	True negatives. 2702

'poi', 'salary', 'long term incent	Accuracy: 0.80660
ive','total stock value','ratio	Precision: 0.52973
to from messages'	Recall: 0.29400
co_irom_messages	F1: 0.37814 F2: 0.32272
	Total predictions: 5000
	True positives: 294
	False positives: 261
	False negatives: 706
	True negatives: 3739
Incil Icalamii IDamaant banual I	•
'poi', 'salary', 'Percent_bonus', '	Accuracy: 0.81050 Precision: 0.68615
<pre>long_term_incentive', 'exercised_</pre>	
stock_options','from_poi_to_this	Recall: 0.44600
_person'	F1: 0.54061 F2: 0.47957
	Total predictions: 4000
	True positives: 446
	False positives: 204
	False negatives: 554
	True negatives: 2796
'poi', 'bonus', 'long_term_incenti	Accuracy: 0.83025
<pre>ve','exercised_stock_options','f</pre>	Precision: 0.77816
rom_poi_to_this_person'	Recall: 0.44900
	F1: 0.56944 F2: 0.49050
	Total predictions: 4000
	True positives: 449
	False positives: 128
	False negatives: 551
	True negatives: 2872
['poi','Percent_bonus','long_ter	Accuracy: 0.85675
<pre>m_incentive','exercised_stock_op</pre>	Precision: 0.79367
tions', 'from poi to this person'	Recall: 0.57700
	F1: 0.66821 F2: 0.61032
	Total predictions: 4000
	True positives: 577
	False positives: 150
	False negatives: 423
	True negatives: 2850
'poi', 'Percent_bonus', 'long_term	Accuracy: 0.82275
incentive', 'exercised stock opt	Precision: 0.74872
ions','ratio messages'	Recall: 0.43800
	F1: 0.55268 F2: 0.47764
	Total predictions: 4000
	True positives: 438
	False positives: 147
	False negatives: 562
	True negatives: 2853

Impact of the features on the model:

	Algorithm-GussianNB()			
1	With new feature/s	['poi',	<mark>'Percen</mark>	Accuracy: 0.85675
		t bonus	','long	Precision: 0.79367
	term incentiv		ncentiv	Recall: 0.57700
		e','exe	rcised_	F1: 0.66821 F2: 0.61032

			T-(-1
		stock_options'	Total predictions: 4000
		,'from_poi_to_	True positives: 577
		this_person']	False positives: 150
			False negatives: 423
		_	True negatives: 2850
	Without new	'poi','salary'	Accuracy: 0.81075
	feature/s	,'bonus','long	Precision: 0.69134
		_term_incentiv	Recall: 0.43900
		e','exercised	F1: 0.53700 F2: 0.47357
		stock options'	Total predictions: 4000
		,'from poi to	True positives: 439
		this person'	False positives: 196
			False negatives: 561
			True negatives: 2804
2	With new feature/s	'poi', <mark>'Percent</mark>	Accuracy: 0.82275
		bonus','long_	Precision: 0.74872
		term incentive	Recall: 0.43800
		','exercised s	F1: 0.55268 F2: 0.47764
		tock options',	Total predictions: 4000
		'ratio message	True positives: 438
		s'	False positives: 147
		5	False negatives: 562
			True negatives: 2853
	Without new	'poi','bonus',	Accuracy: 0.83025
	feature/s	'long term inc	Precision: 0.77816
		entive','exerc	Recall: 0.44900
		ised stock opt	F1: 0.56944 F2: 0.49050
		ions','from po	Total predictions: 4000
		i to this pers	True positives: 449
			False positives: 128
		on'	False negatives: 551
			True negatives: 2872
3	With new feature/s	'poi','salary'	Accuracy: 0.80660
		,'long term in	Precision: 0.52973
		centive','tota	Recall: 0.29400
		1 stock value'	F1: 0.37814 F2: 0.32272
		, 'ratio to fro	Total predictions: 5000
			True positives: 294
		m_messages'	False positives: 261
			False negatives: 706
			True negatives: 3739
	Without new	'poi','salary'	Accuracy: 0.81075
	feature/s	,'bonus','long	Precision: 0.69134
		term incentiv	Recall: 0.43900
		e','exercised	F1: 0.53700 F2: 0.47357
		_	Total predictions: 4000
		stock_options'	True positives: 439
		,'from_poi_to_	False positives: 196
		this_person'	False negatives: 561
	1		1

	Algorithm-DecisionTreeClassifier			
Features	Result			
'poi', 'salary', 'Perce	'salary': 0.42773752	Accuracy: 0.71875		
<pre>nt_bonus','long_term_</pre>	'Percent_bonus':	Precision: 0.44175		
incentive', 'exercised	$0.115740\overline{74}$	Recall: 0.47400		
stock options','from	'long_term_incentive	F1: 0.45731 F2:		
poi to this person'	': 0.21875	0.46718		
	'exercised stock opt	Total predictions: 4000		
	ions': $0.2\overline{3777174}$	Truce positives, 474		
	'from poi to this pe	True positives: 474 False positives: 599		
	rson':0.0	False positives: 599 False negatives: 526		
		True negatives: 2401		
'poi','salary','bonus	'salary': 0.31746032	Accuracy: 0.66950		
','long term incentiv	'bonus':0.0	Precision: 0.33868		
e','exercised stock o	'long term incentive	Recall: 0.33800		
ptions', 'ratio messag	':0.0	F1: 0.33834 F2:		
es'	'exercised stock opt	0.33814		
	ions':0.0	Total predictions: 4000		
	'ratio messages':			
	0.68253968	True positives: 338		
	0.00233900	False positives: 660		
		False negatives: 662		
		True negatives: 2340		
'poi', 'salary', 'bonus	'salary': 0.06728778	Accuracy: 0.72950		
','long_term_incentiv	'bonus': 0.21164021	Precision: 0.46139		
e','exercised_stock_o	'long_term_incentive	Recall: 0.49000 F1: 0.47527 F2:		
ptions','from_poi_to_	': 0.33449074	0.48400		
this_person'	'exercised_stock_opt	Total predictions: 4000		
	ions': 0.38658126	Total predictions: 4000		
	'from_poi_to_this_pe	True positives: 490		
	rson':0.0	False positives: 572		
		False negatives: 510		
		True negatives: 2428		
'poi','salary','long_	'salary': 0.16363636	Accuracy: 0.73075		
term_incentive','exer	'long_term_incentive	Precision: 0.45528		
<pre>cised_stock_options',</pre>	': 0.198	Recall: 0.39200		
'ratio_to_from_messag	'exercised_stock_opt	F1: 0.42128 F2:		
es'	ions': 0.63836364	0.40321		
	'ratio_to_from_messa	Total predictions: 4000		
	ges': 0.0	True positives: 392		
		False positives: 469		
		False negatives: 608		
		True negatives: 2531		
'poi', 'salary', 'long	'salary':0	Accuracy: 0.72950		
term incentive', 'exer	'long term incentive	Precision: 0.45244		
cised stock options',	': 0.198	Recall: 0.39000		
'ratio to from messag	'exercised stock opt	F1: 0.41890 F2:		
es'	ions': 0.802	0.40107		
	'ratio to from messa	Total predictions: 4000		
	ges':0			
	_	True positives: 390		

['poi','salary','long	'salary': 0.33711934	False positives: 472 False negatives: 610 True negatives: 2528 Accuracy: 0.65800
_term_incentive','tot	'long_term_incentive	Precision: 0.22901
al_stock_value','rati	':0.0	Recall: 0.30000
o_to_from_messages']	'total_stock_value':	F1: 0.25974 F2: 0.28249
	0.41636071'	Total predictions: 5000
	ratio_to_from_messag	Total predictions. 3000
	es': 0.2465199	True positives: 300
		False positives: 1010
		False negatives: 700
	_	True negatives: 2990
'poi','Percent_bonus'	'Percent_bonus':	Accuracy: 0.68800
,'long_term_incentive	0.15873016	Precision: 0.38988 Recall: 0.43900
','exercised_stock_op	'long_term_incentive ':0.0	F1: 0.41298 F2:
<pre>tions','ratio_message s'</pre>		0.42821
S	'exercised_stock_opt ions': 0.14880952	Total predictions: 4000
	'ratio_messages': 0.69246032	True positives: 439 False positives: 687 False negatives: 561 True negatives: 2313
'poi', 'Percent_bonus'	'Percent_bonus':	Accuracy: 0.72975
, 'long_term_incentive	0.08928571	Precision: 0.46211 Recall: 0.49400
','exercised_stock_op	'long_term_incentive ': 0.54315476	F1: 0.47753 F2:
<pre>tions','from_poi_to_t his person'</pre>		0.48728
nis_person	'exercised_stock_opt ions': 0.36755952	Total predictions: 4000
	'from poi to this pe	·
	rson':0	True positives: 494
	13011 . 0	False positives: 575
		False negatives: 506
		True negatives: 2425
'poi', 'bonus', 'long t	'bonus': 0.14880952	Accuracy: 0.74325
erm incentive', 'exerc	'long term incentive	Precision: 0.48730
ised stock options','	': 0.61341874	Recall: 0.51800
from poi to this pers	'exercised_stock_opt	F1: 0.50218 F2:
on'	ions': 0.23777174	0.51155
	'from_poi_to_this_pe	Total predictions: 4000
	rson':0	True positives: 518
		False positives: 545
		False negatives: 482
		True negatives: 2455

	Algorithm-Decision Tree classifier					
1	1 With new feature/s 'poi', 'salary', 'Per Accuracy: 0.71875					
	cent bonus', 'long t		Precision: 0.44175			
		erm incentive', 'exe	Recall: 0.47400			

	Without new feature/s	rcised_stock_option s','from_poi_to_thi s_person' 'poi','salary','bon us','long_term_ince ntive','exercised_s tock_options','from _poi_to_this_person '	F1: 0.45731 F2: 0.46718 Total predictions: 4000 True positives: 474 False positives: 599 False negatives: 526 True negatives: 2401 Accuracy: 0.72950 Precision: 0.46139 Recall: 0.49000 F1: 0.47527 F2: 0.48400 Total predictions: 4000 True positives: 490 False positives: 572 False negatives: 510
2	With new feature/s	'poi','salary','bon us','long_term_ince ntive','exercised_s tock_options','rati o_messages'	True negatives: 2428 Accuracy: 0.66950 Precision: 0.33868 Recall: 0.33800 F1: 0.33834 F2: 0.33814 Total predictions: 4000 True positives: 338 False positives: 660 False negatives: 662 True negatives: 2340
	Without new feature/s	'poi', 'salary', 'bon us', 'long_term_ince ntive', 'exercised_s tock_options', 'from _poi_to_this_person '	Accuracy: 0.72950 Precision: 0.46139 Recall: 0.49000 F1: 0.47527 F2: 0.48400 Total predictions: 4000 True positives: 490 False positives: 572 False negatives: 510 True negatives: 2428
	Without new feature/s	'poi', 'salary', 'bon us', 'long_term_ince ntive', 'exercised_s tock_options', 'from _poi_to_this_person '	Accuracy: 0.81075 Precision: 0.69134 Recall: 0.43900 F1: 0.53700 F2: 0.47357 Total predictions: 4000 True positives: 439 False positives: 196 False negatives: 561

Select Kbest features:

Below is the score for the key features:

- 'salary': 5.46410678'bonus': 3.89576806
- 'to messages': 0.16595733
- 'total payments': 4.2923287
- 'exercised stock options': 15.5445133
- 'bonus': 3.89576806
- 'restricted stock': 9.18669591
- 'shared receipt with poi': 0.07674135
- 'total_stock_value': 14.58481944
 - 'from messages': 0.49220496
- 'from_this_person_to_poi': 0.54997264
 'long term incentive': 9.89786842
- 'from poi to this person': 0.30777798
- 'Percent bonus': 0.03766537
- 'ratio messages': 4.28545407
- 'ratio_to_from_messages'0.07329423

K	Features	Results
5	<pre>'salary' ,'exercised_stock_options', 'restricted_stock', 'total_stock_value', 'long_term_incentive'</pre>	Accuracy: 0.84300 Precision: 0.66117 Recall: 0.44100 F1: 0.52909 F2: 0.47247 Total predictions: 5000 True positives: 441 False positives: 226 False negatives: 559 True negatives: 3774
4	<pre>,'exercised_stock_options', 'restricted_stock', 'total_stock_value', 'long_term_incentive'</pre>	Accuracy: 0.84100 Precision: 0.65140 Recall: 0.44100 F1: 0.52594 F2: 0.47146 Total predictions: 5000 True positives: 441 False positives: 236 False negatives: 559 True negatives: 3764
3	<pre>'exercised_stock_options', 'total_stock_value', 'long_term_incentive'</pre>	Accuracy: 0.83333 Precision: 0.50000 Recall: 0.42600 F1: 0.46004 F2: 0.43899 Total predictions: 6000 True positives: 426 False positives: 426 False negatives: 574 True negatives: 4574
2	'exercised_stock_options',	Accuracy: 0.89710

'total_stock_value',	Precision: 0.48343
	Recall: 0.42300
	F1: 0.45120 F2: 0.43385
	Total predictions: 10000
	True positives: 423
	False positives: 452
	False negatives: 577
	True negatives: 8548

I ended up using GuassianNB() algorithm as this algorithm gave me higher precision with given combination of my key attributes.

```
['poi', 'Percent_bonus', 'long_term_in centive', 'exercised_stock_options', ' From_poi_to_this_person']

Accuracy: 0.85675

Precision: 0.79367

Recall: 0.57700

F1: 0.66821 F2: 0.61032

Total predictions: 4000

True positives: 577

False positives: 150

False negatives: 423

True negatives: 2850
```

As shown in above table, I also tried using DecisionTreeClasifier but could not get good precision. Performance difference between these two algorithms is shown in above table.

4. What does it mean to tune the parameters of an algorithm, and what can happen if you don't do this well? How did you tune the parameters of your particular algorithm? (Some algorithms do not have parameters that you need to tune -- if this is the case for the one you picked, identify and briefly explain how you would have done it for the model that was not your final choice or a different model that does utilize parameter tuning, e.g. a decision tree classifier). [relevant rubric item: "tune the algorithm"]

Answer:

Many Machine learning algorithms are parameterised and modification of the parameters can influence the outcome of the learning process. Having one or two algorithm that perform well can be a good start but sometimes parameter tuning can yield best results from these selected algorithms. Each parameter in the algorithm can be considered as a dimension on the graph with values of the parameters as a point along the axis. So n parameters in an algorithm can be considered as n dimensional cube of possible configurations. The objective of tuning the algorithm is to find the best point in the n dimensional cube for the given problem. If we don't tune our algorithm well then we can miss the opportunity of achieve the best performance from our model.

I ended up choosing GuassinNB() as it gave me better performance but I tried tuning my decision tree classifier. I used GridSearchCV to get the best combinations of the parameters. I passed following list of parameters to get the best combination.

parameters = {'criterion':('gini', 'entropy'),'splitter':('best','random'),
'min_samples_split':[2,3,4,5,6,7,8,9,10]}

Below is the comparison of the results that I got using the algorithm with and without tuning. Clearly ,Tuning the algorithm helped in better performance as we can see. However, F1 Score fell a little but after tuning but precision has gone up, which is of our interest in this particular scenario.

Algorithm-Decision Tree Classifier				
Features	Without Tuning	With Tuning		
'poi', 'bonus', 'long term	Accuracy: 0.74325	Accuracy: 0.76325		
incentive', 'exercised s	Precision: 0.48730	Precision: 0.53557		
tock options', 'from poi	Recall: 0.51800	Recall: 0.39900		
to this person'	F1: 0.50218 F2: 0.51155	F1: 0.45731 F2: 0.42044		
	Total predictions: 4000	Total predictions: 4000		
	True positives: 518	True positives: 399		
	False positives: 545	False positives: 346		
	False negatives: 482	False negatives: 601		
	True negatives: 2455	True negatives: 2654		

In some cases, Tuning the algorithm can help improve the performancy drastically. Given the number of parameters, sometime it is obvious to tune couple of parameters manually and see the impact. In other situations, algorithms such as GridSearchCV can be used to tune the algorithm for better performance.

5. What is validation, and what's a classic mistake you can make if you do it wrong? How did you validate your analysis? [relevant rubric item: "validation strategy"]

Answer:

Validation is a process of gauging the performance of your model against a test data set. A test data is set of data points that the model has not seen before. The classic mistake during validation step is to validate the model on the training data set. Under such situation , we can end having a over fitted model, which perform exceptionally well on the training data set but does not perform well on the test data set.

In the given problem, I used the tester.py script to validate the results of my model. Given the low number of data points, the strategy was to use stratified sampling technique for validation i.e K-Fold Validation technique with 1000 folds. Inside tester.py, StratifiedShuffleSplit function is used, which is a combination of StratifiedKFold and ShuffleSplit. Stratified K-Folds provides train/test indices to split data in train test sets and shuffleSplit is permutation cross-validation iterator which yields indices to split data into

training and test sets. StratifiedShuffleSplit is combination of these two functions. Also, in the tester.py Accuracy, Precision, Recall values are calculated by looping through the predicted values and true labels and counting the true positive, true negative, false positives and false negatives. Actual score is calculated based on the average of the score through each fold.

6. Give at least 2 evaluation metrics and your average performance for each of them. Explain an interpretation of your metrics that says something human-understandable about your algorithm's performance. [relevant rubric item: "usage of evaluation metrics"]

Answer:

Following are some useful evaluation matrices.

Accuracy: Accuracy for a given algorithm helps in identifying how many times, the algorithm was able to make correct predictions out of given total of tries. It is a ratio of correct predictions to total tries. However, in some situation where number of data points are less, Accuracy may not be a good measure to gauge the performance of the algorithm. For example, lets say we have following prediction and test labels

Predictions	0	1	1	1	0
Test_lables	0	0	0	1	1

Here we have only 5 data points and accuracy is $\frac{1}{2}$ =50% even though the model was able to predict the correct value only once. So this situation can lead to a false impression that model is doing well.

Due to the reason mentioned above, I used precision and recall to measure the performance of the algorithm in the given problem.

Precision:

Precision is also called positive predictive value of an algorithm. It is ration of number of instances that algorithm has predicted correctly and Total number of positively reported cases by the algorithm. i.e True Positive/ (True Positive + False Positive). I have focussed on achieving a high precision that means that whenever a POI gets flagged in my test set, I know with a lot of confidence that its very likely to be a real POI and not a false alarm. In the given problem , we have precision value of 0.79 ,which means that we can say that ~80 % of the time POI predicted by algorithm is actually a true POI.

['poi', 'Percent_bonus', 'long_term_in centive', 'exercised_stock_options', 'from_poi_to_this_person']

Accuracy: 0.85675

Precision: 0.79367

Recall: 0.57700

F1: 0.66821 F2: 0.61032

Total predictions: 4000

True positives: 577

False positives: 150

False negatives: 423

True negatives: 2850

<u>Recall:</u>Recall also known as sensitivity of an algorithm is the ratio of how many times algorithm has predicted a correct values and total number of correct values predicted + number of time it has missed to predict correct values i.e True Positive / True Positive + False Negatives

That means that, nearly every time a POI shows up in my test set, I am able to identify him or her. The cost of this is that I sometimes get some false positives, where non-POIs get flagged. In the give problem, we have achieved a Recall value 0.57, which means that algorithm will be able to find the POI at least 57% times.

['poi','Percent_bonus','long_term_in centive','exercised_stock_options',' from_poi_to_this_person']

Accuracy: 0.85675

Precision: 0.79367

Recall: 0.57700

F1: 0.66821 F2: 0.61032

Total predictions: 4000

True positives: 577

False positives: 150

False negatives: 423

True negatives: 2850