DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN E INTELIGENCIA ARTIFICIAL

Problemas Lección 4 (sesión prácticas)

MATEMÁTICA DISCRETA

GRAFOS

Ejercicio 1 La tabla siguiente es una lista de las actividades a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 , a_8 , a_9 , a_{10} , a_{11} , de un proyecto y para cada una de ellas, el tiempo en días necesario y las actividades que deben completarse antes de poder iniciarse.

Actividad	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}
Tiempo necesario	3	4	1	2	1	2	4	1	3	3	2
Prerrequisitos	-	a_1, a_5	a_1, a_4	-	a_1, a_3, a_4	a_2, a_5	a_4, a_5	a_{6}, a_{7}	a_5, a_7	a_2, a_6, a_8	a_8, a_9

- 1. Dibuja el grafo que representa dicho proyecto.
- 2. Obtén la matriz de peso del grafo.
- 3. Aplica el algoritmo de renumeración de los vértices y razona si el grafo presenta circuitos o no.
- 4. Calcula el mínimo número de días en que puede completarse el proyecto.
- 5. Obtén el camino crítico y su peso explicando su significado.
- 6. Identifica los caminos más largos y sus pesos del vértice inicial al resto.
- 7. En caso de que sea posible el retraso de la actividad a_7 sin retrasar la duración del proyecto total, averigua cuánto se puede retrasar dicha actividad.

Ejercicio 2 Para el grafo siguiente, utilizando el algoritmo de Dijkstra, calcula los caminos más cortos del vértice v_1 al resto de vértices.

Ejercicio 3 Consideremos un grafo ponderado con conjunto de vértices $V = \{1, 2, 3, 4, 5\}$ y matriz de pesos:

$$\left[\begin{array}{ccccc} \infty & 4 & 1 & \infty & 9 \\ \infty & \infty & \infty & \infty & \infty \\ \infty & 2 & \infty & 3 & \infty \\ \infty & \infty & \infty & \infty & 4 \\ 5 & \infty & 5 & \infty & \infty \end{array}\right]$$

- 1. Calcula el peso del camino más corto entre cada par de vértices aplicando el método de Floyd-Warshall explicando el procedimiento.
- 2. Utilizando las matrices que proporciona el método de Floyd-Warshall, identifica el camino más corto del vértice 1 al 5.
- 3. Aplicando el algoritmo de Floyd-Warshall como creas conveniente y razonadamente, calcula el camino más corto del vértice 4 al vértice 2 con la condición de que no contenga como interno al vértice 3. Para ello tendrás que hacer antes una reordenación de los vértices y matriz de pesos, y decir en qué iteración de Floyd-Warshall tienes que parar.

Ejercicio 4 Se desea establecer una red informática que conecte 5 puntos a_1 , a_2 , a_3 , a_4 y a_5 . Las posibilidades de conexión vienen dadas en el siguiente grafo, en donde los pesos asignados a las aristas representan el coste de construcción de la línea directa correspondiente.

- 1. Explica razonadamente qué problema de grafos debes resolver para obtener dicha conexión.
- 2. Usa el algoritmo de Prim para determinar qué líneas deben construirse para que el coste total sea mínimo.
- 3. Resuelve el problema ahora aplicando razonadamente a este grafo el algoritmo de Kruskal.
- 4. Por otro lado se prevé que el tráfico entre los puntos a_3 y a_5 sea muy intenso, por lo que se desea saber qué líneas deben construirse de manera que exista una comunicación directa entre a_3 y a_5 y con coste mínimo. Modifica el algoritmo de Prim (explicando dicha modificación) y aplícalo para resolver esta cuestión.
- 5. Modifica el algoritmo de Kruskal para responder al apartado anterior.