Potensfunktioner som væksttype

Potensvækst

Vi har set, hvordan lineær vækst udvikler sig, og vi har set, hvordan eksponentiel vækst udvikler sig. Begge dele fremgår af Fig. 1.

Lineær vækst Eksponentiel vækst

$$\frac{x + 1}{f(x)f(x) + a} \qquad \frac{x + 1}{f(x) af(x)} = \frac{x + 1}{f(x) af(x)}$$

Figur 1: Udvikling af lineær og eksponentiel vækst

Vi kan desværre ikke få noget helt tilsvarende for potensvækst, da en øgning af x med en vil give forskellige fremskrivninger af f(x) alt efter hvad x er. Vi kan derimod beskrive potensvækst ved følgende sætning.

Sætning 1.1. Lad f være en potensfunktion, altså

$$f(x) = b \cdot a^x.$$

Så vil en multiplikation af x med en faktor k tilsvare en stigning af f(x) med en faktor k^a . Mere præcist gælder der, at

$$f(k \cdot x) = k^a \cdot f(x).$$

Bevis. Vi betragter

$$f(k \cdot x) = b \cdot (k \cdot x)^a = b \cdot k^a \cdot x^a = k^a \cdot \underbrace{b \cdot x^a}_{=f(x)} = k^a \cdot f(x),$$

hvilket beviser sætningen.

Det er værd at bemærke, at det at gange med k tilsvarer at øge x med $(k-1)\cdot 100\%$. Tilsvarende svarer multiplikation med k^a til at øge f(x) med $(k^a-1)\cdot 100\%$, så når vi øger x med en hvis procent, så fås en tilsvarende procentvis øgning til f(x). Derfor kaldes potensvækst til tider for %%-vækst. Lineær vækst kaldes til tider for $\Delta\Delta$ -vækst og eksponentiel vækst kaldes til tider for $\Delta\%$ -vækst. Potensvækst illustreres på Figur 2.

$$\frac{x + k \cdot x}{f(x)k^a \cdot f(x)}$$

Figur 2: Udvikling af potensvækst

Eksempel 1.2. Arealet af et rektangel med højde 2x og bredde x har vi tidligere set kunne beskrives ved potensfunktionen A givet ved

$$A(x) = 2x^2.$$

Hvis x=2, så er bredden 2, højden 4 og arealet 8. Tilsvarende giver x=4 os bredden 4, højden 8 og arealet 32. Dette kan ses på Figur 3.

Figur 3: To ligedannede rektangler

Dette passer også med vores forventning, da ved at gange vores x-værdi med 2 (2 til 4) gør, at vi skal gange vores samlede areal med $2^a = 2^2 = 4$, hvilket som kan ses af Figur 3 er fra 8 til 32.

Opgave 1

En potensfunktion f er givet ved

$$f(x) = 4 \cdot x^2.$$

- i) Afgør, hvad f(x) ganges med, hvis vi ganger x med 2.
- ii) Afgør, hvad f(x) ganges med, hvis vi ganger x med 4.

Opgave 2

En potensfunktion f er givet ved

$$f(x) = 5 \cdot x^{-1.5}.$$

- i) Hvad ganges funktionsværdien med, hvis x ganges med 2?
- ii) Hvad ganges funktionsværdien med, hvis x ganges med 1.5?

Opgave 3

En potensfunktion f er givet ved

$$f(x) = 10 \cdot x^{0.6}$$

- i) Hvad ganges f(x) med, hvis x ganges med 3?
- ii) Hvor mange procent øges f(x) med, hvis x øges med 50%?

Opgave 4

For en bestemt bil er sammenhængen mellem hastigheden x (i km/t) og den aktuelle motoreffekt f (i hk) givet ved

$$f(x) = 0.00005x^3$$

- i) Hvis hastigheden øges med 100%, hvor meget øges den krævede motoreffekt så?
- ii) Hvis motoreffekten ganges med 2, hvad skal hastigheden så ganges med?

Opgave 5

Vi betragter nu rektanglet fra Figur 3. Vi tager udgangspunkt i, at sidelængden i rektanglet er 2.

- i) Gang sidelængden i rektanglet med 3, så x=6. Hvor mange gange større bliver arealet?
- ii) Gang sidelængden i rektanglet med 4, så x=8. Hvor mange gange større bliver arealet

Opgave 6

En kasse har længde, højde og bredde x.

- i) Bestem forskriften for den potensfunktion f, der beskriver rumfanget af kassen.
- ii) Bestem rumfanget, hvis x = 2.
- iii) Gang sidelængden med 2, så x=4. Hvor mange gange større bliver rumfanget?
- iv) Gang sidelængden med 3, så x=6. Hvor mange gange større bliver rumfanget?
- v) Gang sidelængden med 4, så x=8. Hvor mange gange større bliver rumfanget?

Opgave 7

Rumfanget af en kugle med radius x er givet ved

$$R(x) = \frac{4}{3}\pi x^3.$$

- i) Bestem rumfanget, hvis x = 2.
- ii) Gang radius med 2, så x = 4. Hvor mange gange større bliver rumfanget?
- iii) Gang radius med 3, så x = 6. Hvor mange gange større bliver rumfanget?
- iv) Gang radius med 4, så x = 8. Hvor mange gange større bliver rumfanget?
- v) Gang radius med 5, så x = 10. Hvor mange gange større bliver rumfanget?

Opgave 8

En potensfunktion f er givet ved

$$f(x) = 3 \cdot x^{1.7}$$

Udfyld følgende tabel uden at sætte x-værdierne ind i forskriften for f.

x	1	2	4	5	6	8	11
f(x)	3						

Opgave 9

Den effekt, det kræves at bevæge sig gennem luft med kan beskrives ved

$$P(v) = K \cdot v^3,$$

hvor v beskriver hastigheden og K er en konstant, der afhænger af en række forhold.

- i) Hvis vi øger hastigheden v med 50%, hvor meget øges den effekt, der kræves for at bevæge sig gennem luften så med?
- ii) Hvis vi øger vores effekt med 200%, hvor meget hurtigere kan vi så bevæge os gennem luften?

Opgave 10

Bremselængden for en bil kan beskrives ved ${\cal D}$ givet ved

$$D(v) = k \cdot v^2.$$

- i) Hvis vi øger hastigheden med 20%, hvor meget øges bremselængden D så med?
- ii) Hvis vi vil sænke vores bremselængde med 50%, hvor meget skal vi så sænke vores hastighed med?