CREDIT ONE

PREPARE AND EXPLORE
DATA -PYTHON
SUGITHA DEVARAJAN

OVERALL PROBLEM

- 1. Increase in customer default rates This is bad for Credit One since we approve the customers for loans in the first place.
- 2. Revenue and customer loss for clients and, eventually, loss of clients for Credit One

Investigative Questions:

1. How do you ensure that customers can/will pay their loans? Can we do this?

SOME LESSONS LEARNT:

- 1. We cannot control customer spending habits
- 2. We cannot always go from what we find in our analysis to the underlying "why"
- 3. We must on the problem(s) we can solve: What attributes in the data can we deem to be statistically significant to the problem at hand?
- 4. What concrete information can we derive from the data we have?
- 5. What proven methods can we use to uncover more information and why?

IDENTIFY WHICH **CUSTOME** R **ATTRIBUT ES RELATE SIGNIFICA** NTLY TO DEFAULT RATE

STEPS TAKEN TO ANALYZE AND PERFORM DATA CLEANUP:

- Imported required libraries pandas, numpy, matplotlib, pandas_profiling etc.
- 2. Imported the data from SQL
- 3. Initial analysis showed (data.head()) that the data need clean up
- 4. Removed Header (invalid row) and the second row was the actual header.
- 5. Found 202 rows of duplicate removed duplicates
- 6. Dropped ID column since that will cause unnecessary interference in visualization and when pivoting/grouping.
- 7. With data.info found the data was not all integer, some where object. Decided to use **label encoder** to make all column values integer.

DATA EXPLORATION TO IDENTIFY SIGNIFICANT ATTRIBUTES TO DEFAULT RATE

METHODS USED:

- PANDAS PROFILING
- SEABORN CHARTS PAIRPLOT, CATPLOT, FACET GRID ETC
- BOX PLOTS
- HISTOGRAM
- GROUPING
- FILTER
- PIVOT
- DISCRETIZATION

Data.info after cleanup

```
In [40]: #All data is now integer - perfect for ML
         data.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 30000 entries, 0 to 30200
         Data columns (total 24 columns):
                                         Non-Null Count Dtype
             Column
          0 LIMIT BAL
                                         30000 non-null int64
          1
             SEX
                                         30000 non-null int64
          2
             EDUCATION
                                         30000 non-null int64
             MARRIAGE
          3
                                         30000 non-null int64
                                         30000 non-null int64
             PAY 0
                                         30000 non-null int64
          5
          6
             PAY_2
                                         30000 non-null
                                         30000 non-null int64
          7
            PAY 3
          8 PAY 4
                                         30000 non-null int64
          9
             PAY 5
                                         30000 non-null int64
          10 PAY_6
                                         30000 non-null int64
          11 BILL AMT1
                                        30000 non-null int64
          12 BILL_AMT2
                                        30000 non-null int64
          13 BILL AMT3
                                         30000 non-null
                                        30000 non-null int64
          14 BILL AMT4
          15 BILL_AMT5
                                        30000 non-null int64
          16 BILL AMT6
                                         30000 non-null int64
          17 PAY AMT1
                                         30000 non-null
                                                        int64
          18 PAY AMT2
                                         30000 non-null int64
          19 PAY AMT3
                                         30000 non-null int64
          20 PAY AMT4
                                         30000 non-null int64
          21 PAY AMT5
                                         30000 non-null int64
                                         30000 non-null int64
          22 PAY AMT6
          23 default payment next month 30000 non-null int64
         dtypes: int64(24)
         memory usage: 5.7 MB
```

Attribute info after label encoding:

Attribute Information

Attribute	Description
SEX	1 is Male and 0 is Female
EDUCATION	0 is graduate School, 3 is University , 1 is High School and 2 is others
MARRIAGE	1 is Married , 2 is single, 3 is divorce , and 0 is others
Pay_0 to Pay_6	History of Past Payment from April 2005 to September 2005. Value meaning: -2 = No consumption, -1= Paid in full, 0 = The use of revolving credit, 1 = Payment delay for one month , 2 = Payment delay for two month etc9 = Payment delay for 9 months
Bill_AMT	Amount of Bill Statement
Pay_AMT	Amount of previous Payment
Defaulted	1 = not defaulted and 0 = defaulted

Artificial neural network is the only one that can accurately estimate the real probability of default

PANDAS PROFILING:

Generates profile reports from a panda Data Frame. The pandas df.describe() function is great but a little basic for serious exploratory data analysis. pandas_profiling extends the pandas Data Frame with df. profile_report () for quick data analysis.

For each column the following statistics - if relevant for the column type - are presented in an interactive HTML report:

- Type inference: detect the types of columns in a Data frame.
- Essentials: type, unique values, missing values
- Quantile statistics like minimum value, Q1, median, Q3, maximum, range, interquartile range
- **Descriptive statistics** like mean, mode, standard deviation, sum, median absolute deviation, coefficient of variation, kurtosis, skewness
- Most frequent values
- Histograms
- Correlations highlighting of highly correlated variables, Spearman, Pearson and Kendall matrices
- Missing values matrix, count, heatmap and dendrogram of missing values
- Duplicate rows Lists the most occurring duplicate rows
- Text analyses learn about categories (Uppercase, Space), scripts (Latin, Cyrillic) and blocks (ASCII) of text data

Some important observations of credit one data from pandas profiling:

- There are no missing values or duplicates
- Variables types are numerical, Boolean (Sex and default), and categorical (education and marriage).
- Limit balance min is 10,000 and max is 1,000,000
- Past history gives some valid data with high percentage of zeros. Zeros means use of revolving credit.
- Bill amount seems to have high correlations

Overview

 $\begin{array}{c} \textbf{LIMIT_BAL} \\ \text{Real number } (\mathbb{R}_{\geq 0}) \end{array}$

Distinct	81
Distinct (%)	0.3%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	167484.3227
Minimum	10000
Maximum	1000000
Zeros	0
Zeros (%)	0.0%
Memory size	234.4 KiB

Toggle details

PAY_0 Real number (ℝ)

ZEROS

Distinct	11
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	-0.0167
Minimum	-2
Maximum	8
Zeros	14737
Zeros (%)	49.1%
Memory size	234.4 KiB

Toggle details

PAY_2 Real number (ℝ)

Distinct	11
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	-0.1337666667
Minimum	-2
Maximum	8
Zeros	15730
Zeros (%)	52.4%
Memory size	234.4 KiB

Toggle details

PAY_3
Real number (R)

ZEROS

Distinct	11
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	-0.1662
Minimum	-2
Maximum	8
Zeros	15764
Zeros (%)	52.5%
Memory size	234.4 KiB

Toggle details

PAY_4 Real number (\mathbb{R})

ZEROS

Distinct	11
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	-0.2206666667
Minimum	-2
Maximum	8
Zeros	16455
Zeros (%)	54.9%
Memory size	234 4 KiB

Toggle details

PAY_5 Real number (R)

ZEROS

Distinct	10
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	-0.2662
Minimum	-2
Maximum	8
Zeros	16947
Zeros (%)	56.5%
Memory size	234 4 KiB

Toggle details

PAY_6 Real number (ℝ)

ZEROS

Distinct	10
Distinct (%)	< 0.1%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	-0.2911
Minimum	-2
Maximum	8
Zeros	16286
Zeros (%)	54.3%
Memory size	234.4 KiB

Toggle details

BILL_AMT1 Real number (R)

HIGH CORRELATION ZEROS

Distinct	22723
Distinct (%)	75.7%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	51223.3309
IVICALI	31223.3309
Minimum	-165580
Maximum	964511
Zeros	2008
Zeros (%)	6.7%
Memory size	234.4 KiB

BILL_AMT2

Real number (\mathbb{R})

HIGH CORRELATION ZEROS

Distinct	22346
Distinct (%)	74.5%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	49179.07517
Minimum	-69777
Maximum	983931
Zeros	2506
Zeros (%)	8.4%
Memory size	234.4 KiB

Toggle details

BILL_AMT3

Real number (R)

HIGH CORRELATION ZEROS

Distinct	22026
Distinct (%)	73.4%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	47013.1548
Minimum	-157264
Maximum	1664089
Zeros	2870
Zeros (%)	9.6%
Memory size	234 4 KiB

Toggle details

BILL_AMT4

Real number (\mathbb{R})

HIGH CORRELATION

Distinct	21548
Distinct (%)	71.8%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	43262.94897
Minimum	-170000
Maximum	891586
Zeros	3195
Zeros (%)	10.7%
Memory size	234.4 KiB

BILL_AMT5

Real number (\mathbb{R})

HIGH CORRELATION **ZEROS**

Distinct	21010
Distinct (%)	70.0%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	40311.40097
Minimum	-81334
Maximum	927171
Zeros	3506
Zeros (%)	11.7%
Memory size	234.4 KiB

BILL_AMT6

Real number (\mathbb{R})

HIGH CORRELATION ZER0S

Distinct	20604
Distinct (%)	68.7%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%

Mean	38871.7604
Minimum	-339603
Maximum	961664
Zeros	4020
Zeros (%)	13.4%
Memory size	234.4 KiB

Other Observations from EDA:

1. We have less data on default

2. Found some anomalies in Limit Bal using box plot after \$600K

3. Bill amount has negative value.

4. Pay X seems to be important with values greater than 0 which can help predict default.

- 5. Facet Grid which is one of the most interesting functions in the Seaborn library! It allows you to visualize data sets with lots of columns especially categorical columns
 - Which sex defaults more?Not defaulted are more by females than males

default payment next mo 0

1

Limit Bal Anything over 750K to 1M is not defaulted. All default is in the lower limit balance which is less than 250K

default payment next month 0 1

PAY X

Not default is seen more when the Pay X is greater than 0 meaning who missed payments.

Month over month it has slowly increased if you see from April to September

variable = PAY_0

2.5

AGE Age 30 to 40 are high in not defaulting

default payment next month

• PAY_AMTX

Pay AMT zeros are in more % than other values and tends to default.

6. With catplot we can confidently say that when customers are well educated then they don't default.

(0 is graduate School, 3 is University, 1 is High School and 2 is others)

7. Age Discretization – When age is divided into bins I see the default and not default behave very similar.

8. Limit_Bal have more defaults in the lower values.

9. Limit Bal discretization – Again this says the same thing as box plot above where the default is more in the lower limit balance.

Report Focus:

Did you learn anything of potential business value from this analysis?

Yes, I found that even though correlations are week among variables there are some with high correlation like the Bill_Amt which need to be used in my next step of data modeling to predict. I also found Limit_BAL and PAY_X are other variables which will help me predict in my data modeling.

What are the main lessons you've learned from this experience?

I learnt about pandas profiling and Facet grid along with pd.melt. I also explored about correlation interpretation where I found about the significance test. I need to understand more about the hypothesis test.

https://towardsdatascience.com/eveything-you-need-to-know-about-interpreting-correlations-2c485841c0b8

What recommendations would you give based on your findings?

To predict the default customers, we need to model using the following feature variables LIMIT BAL, PAY-X, BILL AMTX, and PAY AMTX