## EC 504 Data Structure HW1

Name: Yangruirui Zhou BU ID: U16997747

1. a)

## 3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o,  $\Omega$ ,  $\omega$ , or  $\Theta$  of B. Assume that  $k \ge 1$ ,  $\epsilon > 0$ , and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

|    | A              | B              | 0 | 0 | Ω | ω | Θ |
|----|----------------|----------------|---|---|---|---|---|
| a. | $\lg^k n$      | $n^{\epsilon}$ |   |   |   |   |   |
| b. | $n^k$          | $c^n$          |   |   |   |   |   |
| c. | $\sqrt{n}$     | $n^{\sin n}$   |   |   |   |   |   |
| d. | 2 <sup>n</sup> | $2^{n/2}$      |   |   |   |   |   |
| e. | $n^{\lg c}$    | $c^{\lg n}$    |   |   |   |   |   |
| f. | lg(n!)         | $\lg(n^n)$     |   |   |   |   |   |

|   | О | 0 | Ω | ω | Θ |
|---|---|---|---|---|---|
| a | у | у | n | n | n |
| b | у | у | n | n | n |
| С | n | n | n | n | n |
| d | n | n | у | у | n |
| е | у | n | у | n | у |
| f | у | n | у | n | у |

$$\prod_{k=1}^{n} \left(1 - \frac{1}{k^2}\right) < (1 - \frac{1}{n})^n = 1 = n^{\frac{1}{n}} < \sum_{k=1}^{n} \frac{1}{k} < \ln(\ln(n)) < \ln(n) < 3^{\ln(n)} < n^{1 + \cos n} < n^2 + n^{-2}$$

$$< n^2 + 3n + 5 < n^2 + 3n \log(n) + 5 < \sum_{k=1}^{\log(n)} \frac{n^2}{2^k} < n! < (1+n)^n < n^{n^2-1} < n^{n^2} + n!$$

(c) Because  $T(n) = c_1 n + c_2 n \log_2 n$ , and T(n) = 2T(n/2) + n. We can get following equations:

$$c_{1}n + c_{2}n \log_{2} n = 2 \times \left(c_{1} \frac{n}{2} + c_{2} \frac{n}{2} \log_{2} \frac{n}{2}\right) + n = c_{1}n + c_{2}n \log_{2} \frac{n}{2} + n$$

$$\therefore n \neq 0 \ \therefore c_{2} \log_{2} n = c_{2} \log_{2} \frac{n}{2} + 1$$

$$c_{2} \log_{2} n = c_{2} \log_{2} n - c_{2} + 1$$

$$\therefore c_{2} = 1, \ c_{1} = T(1)$$

(extra) From 
$$T(n) = c_1 n^{\gamma} + c_2 n^k$$
,  $T(n) = aT(n/b) + n^k$   

$$c_1 n^{\gamma} + c_2 n^k = a[c_1 (\frac{n}{b})^{\gamma} + c_2 (\frac{n}{b})^k] + n^k = ac_1 \frac{n^{\gamma}}{b^{\gamma}} + ac_2 \frac{n^k}{b^k} + n^k$$

$$\therefore b^{\gamma} = a, \gamma = k \ \therefore c_1 n^{\gamma} + c_2 n^k = \frac{ac_1}{b^{\gamma}} n^{\gamma} + \frac{ac_2}{b^k} n^k + n^k = c_1 n^{\gamma} + c_2 b^{\gamma-k} n^k + n^k$$

$$\therefore (c_1 + c_2) n^{\gamma} = (c_1 + c_2) n^{\gamma} + n^{\gamma} \therefore n^{\gamma} = 0$$

Thus, it means only when n=0, the equation can be satisfied.

From 
$$T(n) = c_1 n^{\gamma} + c_2 n^{\gamma} \log_2 n$$
,  $T(n) = aT(n/b) + n^{\gamma}$   

$$c_1 n^{\gamma} + c_2 n^{\gamma} \log_2 n = a[c_1(\frac{n}{b})^{\gamma} + c_2(\frac{n}{b})^{\gamma} \log_2 \frac{n}{b}] + n^{\gamma} = ac_1 \frac{n^{\gamma}}{b^{\gamma}} + ac_2 \frac{n^{\gamma}}{b^{\gamma}} (\log_2 n - \log_2 b) + n^{\gamma}$$

$$c_1 n^{\gamma} + c_2 n^{\gamma} \log_2 n = \frac{ac_1}{b^{\gamma}} n^{\gamma} + \frac{ac_2}{b^{\gamma}} n^{\gamma} (\log_2 n - \log_2 b) + n^{\gamma} = c_1 n^{\gamma} + c_2 n^{\gamma} (\log_2 n - \log_2 b) + n^{\gamma}$$

$$0 = c_2 n^{\gamma} (-\log_2 b) + n^{\gamma}$$

$$\therefore n \neq 0 \ \therefore c_2 = \log_b 2, \ c_1 = T(1)$$

2.

(a) In each recursion, we need to execute the conditional statement to judge if n equals to 0 and complete the multiple operation A(n-1) \* A(n-1), so totally 2 executions. And in the last recursion, we will only execute 2 statements: first, is the conditional statement and the second one is "return 1". Thus, we can have following equations:

$$T(0) = 2$$
 
$$T(n) = 2T(n-1) + 2 = 2 (2T(n-2) + 2) + 2 = 2^k T(n-k) + 2^{k+1} - 2$$
 From the structure, we can assume  $T(n) = c_1 2^n + c_2$  and substitute it into  $T(n) = 2T(n-1) + 2$  
$$c_1 2^n + c_2 = 2(c_1 2^{n-1} + c_2) + 2 = c_1 2^n + 2c_2 + 2$$
 
$$c_2 = -2$$

Thus, we can substitute  $c_2 = -2$  and  $T(n) = c_1 2^n + c_2$  into T(0) = 2, and we can get  $c_1 = 4$   $T(n) = 2^{n+2} - 2 = \Theta(2^n)$ 

(b) In each recursion (n>1), we need to execute the conditional statement to judge if n equals to 0 and if  $B(n/2) \ge 10$  and execute one return statement, so totally 3 normal execution + twice B(n/2) call. When n=1, we will only need to call B(n/2) once, because B(1/2) = B(0) = 1 < 10. Thus, we totally need 3 normal execution + once B(n/2) call. When n=0, we will only need two execution includes judging if n equals to 0 and return 1, so T(0)=2. Thus, we can have following equations:

$$T(n) = \begin{cases} 2T(n/2) + 3 & n > 1, n \mod 2 = 0\\ 2T((n-1)/2) + 3 & n > 1, n \mod 2 = 1\\ T(0) + 3 = 5 & n = 1\\ 2 & n = 0 \end{cases}$$

(i) When n>1 and n is even number:

$$T(n) = 2T(n/2) + 3 = 2(2T(n/4) + 3) + 3 = 2^k T(n/2^k) + 3 \times (2^k - 1)$$

From the structure, we can assume  $T(n) = c_1 n + c_2$ 

$$c_1 n + c_2 = 2 \times (c_1 \frac{n}{2} + c_2) + 3 = c_1 n + 2c_2 + 3 = c_1 n + 2c_2 + 3$$

$$c_2 = -3$$

Thus, we can substitute  $c_2 = -3$  and T(n) = 2T(n/2) + 3 into T(2) = 2T(1) + 3 = 13

$$c_1 = 8$$

$$T(n) = 8n - 3$$

(ii) When n>1 and n is odd number:

$$T(n) = 2T((n-1)/2) + 3 = 2(2T((n-1)/4) + 3) + 3 = 2^{k}T((n-1)/2^{k}) + 3 \times (2^{k}-1)$$

From the structure, we can assume  $T(n) = c_1(n-1) + c_2$ 

$$c_1 n + c_2 = 2 \times \left(c_1 \frac{n-1}{2} + c_2\right) + 3 = c_1 n - c_1 + 2c_2 + 3 = c_1 n - c_1 + 2c_2 + 3$$

$$\therefore c_1 - c_2 = 3$$

Thus, we can substitute  $c_1 - c_2 = 3$  and  $T(n) = c_1 n + c_2$  into T(3) = 2T(1) + 3 = 13

$$\therefore \begin{cases} c_1 = \frac{16}{3} \\ c_2 = \frac{7}{3} \end{cases}$$

$$T(n) = \frac{16}{3}n + \frac{7}{3}$$

So,

$$T(n) = \begin{cases} \frac{8n-3}{16} & n > 1, n \bmod 2 = 0\\ \frac{16}{3}n + \frac{7}{3} & n > 1, n \bmod 2 = 1\\ & n = 1\\ & n = 0 \end{cases} = \Theta(n)$$

(c) In each recursion (n>1), we need to execute the conditional statement to judge if n equals to 0 and if n equals to 1 and execute one return statement, so totally 3 normal execution + once D(n-1) call +twice D(n-2) call. And it is very easy to know the number of executions when n equals to 0 and 1. So we can get following equations:

$$T(n) = \begin{cases} T(n-1) + 2T(n-2) + 3 & n > 1\\ 3 & n = 1\\ 2 & n = 0 \end{cases}$$

From the structure, we can assume  $T(n) = c_1 2^n + c_2$ 

$$c_1 2^n + c_2 = (c_1 2^{n-1} + c_2) + 2(c_1 2^{n-2} + c_2) + 3 = c_1 2^{n-1} + c_2 + 2c_1 2^{n-2} + 2c_2 + 3 = c_1 2^n + 3c_2 + 3$$

$$c_2 = -\frac{3}{2}$$

Thus, we can substitute  $c_2 = -\frac{3}{2}$  and  $T(n) = c_1 2^n + c_2$  into T(2) = T(1) + 2T(0) + 3 = 10 and T(3) we can find  $c_1$  is not exist. So, the assumption fails, we have to analyze the borders of it.

(i) For the lower border, note that T(n) > S(n) = S(n-1) + 2S(n-2) (n>1), which can be calculate by: Let  $T(n)=r^n$  in the difference equation  $S_{n+2} = S_{n+1} + 2S_n$  to obtain  $r^2 - r - 2 = 0$ , which yields the solutions  $r \in \{2, -1\}$  and leads to the general form

$$S_n = A2^n + B(-1)^n$$

. Assume the values  $S_2=0$  and  $S_3=1$  then

$$S_n = \frac{2^{n-2} - (-1)^n}{3} = \Theta(2^n)$$
 and  $T(n) = \Omega(2^n)$ 

(ii) For the upper border, note that T(n) < H(n) = 2H(n-1) + 2 = H(n-1) + 2H(n-2) + 4 (n>1), which can be calculate by:

We can assume  $H(n)=c_12^n+c_2$  and  $H_3=6$   $c_12^n+c_2=2(c_12^{n-1}+c_2)+2 \ \ \therefore \ c_2=-2, c_1=1$  Thus,  $H(n)=O(2^n)$ 

From above, we can know  $T(n) = \Theta(2^n)$ 

## 3. Pseudo-code description:

Get inputs from terminal, let nuts[] be the sets of nuts, bolts[] be the sets of bolts, n is their number. Swap() means value transition. PrintArray() means print two arrays on the console.

```
int find(char arr[], int low, int high, char midvalue, int flag)
// flag is used to remark the order of nut and bolt in TEST()
{
    int i = low;

    for(int j = low; j < high; j++)
    {
        if (flag > 0) a = arr[j]; b = midvalue;
            else a = midvalue; b = arr[j];

    // This is used to judge if midvalue is bigger than arr's element.
    // If it is true, I will put it to midvalue's left.
    if (TEST(a, b) * flag == -1)
    {
        Swap(arr[i],arr[j]);
    }
}
```

```
i++;
     }
     else if (TEST(a, b) == 0)
          Swap(arr[j],arr[high]);
       j--;
     }
  Swap(arr[i],arr[high]);
  return i;
}
// Function which works just like quick sort, low is the smallest subtitle of both arrays, high is the biggest
subtitle of both arrays.
void Qsort(char nuts[], char bolts[], int low, int high)
  if (low < high)
     int middle = find(nuts,low, high, bolts[high], 1)
     find(bolts, low, high, nuts[middle], -1);
     Qsort(nuts, bolts, low, middle - 1);
     Qsort(nuts, bolts, middle + 1, high);
   PrintArray (nuts, bolts)
```

## 4. Coding work report



Fig1. Command line input and output

| Activit       | ies 🏿 Text Editor ▼ |           |    |           | Sun 17:43                       |              |                |              | # (0) () · |
|---------------|---------------------|-----------|----|-----------|---------------------------------|--------------|----------------|--------------|------------|
|               | Open ▼ 🚇            |           |    |           | ed1M.txt_out<br>sktop/HW1_codes |              |                |              |            |
|               | 621729799           | 1.661e-06 | 19 | 7.27e-07  | 16                              |              |                |              |            |
| -             | 1999262920          | 1.15e-06  | 20 | 7.68e-07  | 21                              |              |                |              |            |
|               | 1486999471          | 1.232e-06 | 20 | 1.065e-06 | 19                              |              |                |              |            |
|               | 1367915066          | 9.49e-07  | 18 | 9.3e-07   | 19                              |              |                |              |            |
| ~ 79          | 1605473689          | 8.89e-07  | 20 | 7.07e-07  | 19                              |              |                |              |            |
|               | 512366770           | 1.153e-06 | 19 | 8.5e-07   | 19                              |              |                |              |            |
| •             | 1900603481          | 8.12e-07  | 20 | 5.78e-07  | 18                              |              |                |              |            |
|               | 1632277687          | 8.86e-07  | 17 | 8.86e-07  | 19                              |              |                |              |            |
|               | 1110189708          | 7.1e-07   | 16 | 1.075e-06 | 20                              |              |                |              |            |
|               | 1377581233          | 5.34e-07  | 19 | 8.45e-07  | 19                              |              |                |              |            |
|               | 434885545           | 1.173e-06 | 19 | 5.64e-07  | 13                              |              |                |              |            |
| _             | 1052866982          | 9.78e-07  | 20 | 6.43e-07  | 20                              |              |                |              |            |
|               | 792149896           | 8.16e-07  | 19 | 6.37e-07  | 19                              |              |                |              |            |
|               | 1117341039          | 7.03e-07  | 20 | 6.81e-07  | 20                              |              |                |              |            |
|               | 1927515480          | 6.33e-07  | 20 | 9.04e-07  | 18                              |              |                |              |            |
|               | 1104441492          | 6.35e-07  | 20 | 6.79e-07  | 20                              |              |                |              |            |
| -0-           | 388511881           | 6.67e-07  | 18 | 6.12e-07  | 19                              |              |                |              |            |
| A             | 824431664           | 7.48e-07  | 19 | 5.75e-07  | 19                              |              |                |              |            |
|               | 191522547           | 1.086e-06 | 19 | 6.04e-07  | 16                              |              |                |              |            |
|               | 979511238           | 9.4e-07   | 16 | 6.08e-07  | 20                              |              |                |              |            |
| 7             | 11084061            | 9.97e-07  | 20 | 7.78e-07  | 22                              |              |                |              |            |
|               | 1278217560          | 9.5e-07   | 19 | 1.004e-06 | 20                              |              |                |              |            |
|               | 1507616841          | 6.92e-07  | 19 | 1.123e-06 | 18                              |              |                |              |            |
|               | 2053744673          | 8.9e-07   | 20 | 6.81e-07  | 17                              |              |                |              |            |
| $\mathbf{X}$  | 1001000187          | 6.03e-07  | 19 | 8.51e-07  | 18                              |              |                |              |            |
|               | 46356557            | 5.92e-07  | 19 | 2.51e-07  | 15                              |              |                |              |            |
|               | 1551953356          | 7.49e-07  | 20 | 7.43e-07  | 18                              |              |                |              |            |
| QC            | 1428216917          | 1.247e-06 | 19 | 6.26e-07  | 19                              |              |                |              |            |
|               | 374659033           | 4.91e-07  | 17 | 5.86e-07  | 19                              |              |                |              |            |
|               | 1508847656          | 7.32e-07  | 19 | 5.67e-07  | 18                              |              |                |              |            |
| <b>&gt;</b> _ | 1104446909          | 2.3e-07   | 18 | 2.82e-07  | 17                              |              |                |              |            |
|               | 2104092148          | 6.33e-07  | 18 | 3.39e-07  | 16                              |              |                |              |            |
|               | 1361733779          | 6.22e-07  | 20 | 5.99e-07  | 20                              |              |                |              |            |
|               | 1552356350          | 3.43e-07  | 20 | 4.42e-07  | 17                              |              |                |              |            |
| :::           | 286140868           | 8.16e-07  | 20 | 5.93e-07  | 18                              |              |                |              |            |
| •••           | 4020442270          | 4 0- 07   | 20 | 4 20- 07  | 40                              | Plain Text ▼ | Tab Width: 8 ▼ | Ln 1, Col 1  | ▼ INS      |
|               |                     |           |    |           |                                 | r tuni rext  | ico vilacii o  | Lii 1, CO( 1 | 1113       |

Fig2. Output file (Sorted1M.txt out)



Fig3. Output file (Sorted100K.txt out)



Fig4. All files I got in the HW1 codes folder