Different idea for hypergraph matching

Jiaxin Hu

February 4, 2022

This note aims to compare the current ideas of tensor matching from me and Chanwoo.

	Jiaxin, Feb 3	Chanwoo, Jan 3	Jiaxin, Feb 3, after meeting
Setup	Two correlated asymmetric graphs	Two correlated order-3 symmetric hy-	Two correlated order-3 symmetric hy-
	$A, B \in \{0, 1\}^{n \times m}$ with two row and	pergraphs $\mathcal{A}, \mathcal{B} \in \{0,1\}^{n \otimes 3}$ with a	pergraphs $\mathcal{A}, \mathcal{B} \in \{0,1\}^{n\otimes 3}$ with a
	column latent permutations $\pi_1^*:[n] \mapsto$	signle permutation π^* : $[n] \mapsto [n]$.	signle permutation π^* : $[n] \mapsto [n]$.
	[n] and $\pi_2^* : [m] \mapsto [m]$. Want to find	Want to find the permutation π^* .	Want to find the permutation π^* .
	two permutations π_1^*, π_2^* .		
Derivation	Derive the row and column distance	1. Define open neighbourhood	1. Define open neighbourhood $\mathcal{N}_{\mathcal{A}}(i)$
of distance	statistics respectively. Take row statis-		as Chanwoo. Define the connected set
statistics Z	tics as an example.	$\mathcal{N}_{\mathcal{A}}(i) = \{(i_2, i_3) \in [n]^2, \mathcal{A}_{i, i_2, i_3} = 1\},$	
	1. Define connected sets		$\mathcal{C}_{\mathcal{A}}(i) = \{ i \in [n] : i \in \omega, \omega \in \mathcal{N}_{\mathcal{A}}(i) \} \cup \{ i \},$
		and closed neighbourhood	
	$N_A(i) = \{ j \in [m] : A_{ij} = 1 \},$		and $c_a(i) = \mathcal{C}_{\mathcal{A}}(i) $. Then $a_i = P_{c_a(i)-1}^2$
		$\mathcal{N}_{\mathcal{A}}[i] = \mathcal{N}_{\mathcal{A}}(i) \cup \{(i, i_3) : i_3 \in [n]\},$	(See caption). Similar for $\mathcal{C}_{\mathcal{B}}(k), c_b(k)$.
	$N_B(k) = \{ j \in [m] : B_{kj} = 1 \},$	with $a_i = N_A(i) $. Similar for	2. Define "innerdegree" set of j and i
	with $a_i = N_A(i) , b_k = N_B(k) .$	$ \mathcal{N}_{\mathcal{B}}(k), \mathcal{N}_{\mathcal{B}}[k] \text{ and } b_k.$	
	2. Define "degree" of vertex $j \in [m]$	2. Define "outdegree" of vertex $j \in [n]$	$\mathcal{D}_{j}(i) = \{(i_{1}, i_{2}) : i_{1}, i_{2} \in \mathcal{C}_{\mathcal{A}}(i) / \{j\}\} \} \cup$
	2. Define degree of vertex $j \in [m]$	2. Define outdegree of vertex $j \in [n]$	
	$a^{(i)} = 1$ $\sum (A_i - a_i)$	(i) 1	$\{(i_1, i_2) : \text{at least one of } i_1, i_2 = j\},$
	$a_j^{(i)} = \frac{1}{\sqrt{(n-1)q(1-q)}} \sum_{l \neq i} (A_{lj} - q),$	$a_{j}^{\gamma} = \frac{1}{\sqrt{n^2 - a_i - n_g(1 - g)}}$	$\{(v_1, v_2) \mid \text{are realest of } v_1, v_2 = j\},$
	v \		
	$1 \qquad \sum_{k} p_{k}$	$\sum_{\omega otin\mathcal{N}_{\mathcal{A}}[i]}(\mathcal{A}_{\omega,j}-q).$	and note that $ \mathcal{D}_i(i) = P_{a_i(i)-1}^2 = a_i +$
	$b_j^{(k)} = \frac{1}{\sqrt{(n-1)q(1-q)}} \sum_{l \neq j} (B_{lj} - q).$	$\omega otin \mathcal{N}_{\mathcal{A}}[i]$	and note that $ \mathcal{D}_j(i) = P_{c_a(i)-1}^2 = a_i + 2n - 1$. Define "outdegree" of vertex
	$\bigvee (N-1)q(1-q) \mid_{l eq j}$	C : A : C : A(k)	$j \in [n]$
	3. Obtain empirical distributions	Similar for $b_j^{(k)}$.	2 - []
	1	3. Define dual neighbourhood	$a^{(i)} - \frac{1}{a^{(i)}} \sum_{i=1}^{n} A_{i} \cdot a_{i}$
	$\bar{\mu}_i = \frac{1}{a_i} \sum_{j \in N_A(i)} \delta_{a_j^{(i)}} - \overline{B}(n-1,q),$	$\mathcal{N}_{\mathcal{A}}^*(i) = \{j : \exists \omega \in \mathcal{N}_{\mathcal{A}}(i), \mathcal{A}_{\omega,j} = 1\},$	$a_j^{(i)} = \frac{1}{\sqrt{n^2 - \mathcal{D}_j(i) }} \sum_{\omega \notin \mathcal{D}_j(i)} (\mathcal{A}_{\omega,j} - q),$
	$a_i \stackrel{\textstyle \smile}{\underset{j \in N_A(i)}{\sum}} a_j$	$\mathcal{N}_{\mathcal{A}}(i) = \{ j : \exists \omega \in \mathcal{N}_{\mathcal{A}}(i), \mathcal{A}_{\omega,j} = 1 \},$	$\omega \notin \mathcal{D}_{j}(t)$
	, ,	and $a_i^* = \mathcal{N}_A^*(i) $. Similar for $\mathcal{N}_B^*(k)$	similar for $b_j^{(k)}$.
	$\bar{\nu}_k = \frac{1}{b_k} \sum_{j \in N_B(i)} \delta_{b_k^{(i)}} - \overline{B}(n-1,q).$	and $a_i = \mathcal{N}_{\mathcal{A}}(t) $. Similar for $\mathcal{N}_{\mathcal{B}}(t)$	3. Obtain empirical distribution
	$b_k = b_k \sum_{i \in N(i)} b_k^{(i)} = B(n-1,q).$	h	1
		1. Count empirical distributions	$\bar{\mu}_i = \frac{1}{c_a(i) - 1} \sum_{j \in \mathcal{C}_A(i)/\{j\}} \delta_{a_j^{(i)}} - \overline{B}(n^2 - a_i - 2n)$
	4. Obtain row distance Z_{ik} with $\bar{\mu}_i, \bar{\nu}_k$	$\begin{bmatrix} \bar{a} & 1 & \nabla & \delta & \overline{D}(n^2 & \delta & n^2) \end{bmatrix}$	
	and tuning parameter L as (Ding et al.,	$\bar{\mu}_i = \frac{1}{a_i^*} \sum_{j \in \mathcal{N}_{\delta}^*(i)} \delta_{a_j^{(i)}} - \overline{B}(n^2 - a_i - n, q),$	and similar for $\bar{\nu}_k$.
	2021).	J = A()	4. Obtain distance Z_{ik} with $\bar{\mu}_i$ and $\bar{\nu}_k$.
	5. Repeat previous steps for column	and similar for $\bar{\nu}_k$.	$=i\kappa$
	distance.	5. Obtain distance Z_{ik} with $\bar{\mu}_i$ and $\bar{\nu}_k$	

Table 1: Note that P_b^a is the number of permutation of a elements out of b elements. Particularly, $P_b^2 = b(b-1)$.

References

Ding, J., Ma, Z., Wu, Y., and Xu, J. (2021). Efficient random graph matching via degree profiles. *Probability Theory and Related Fields*, 179(1):29–115.