第四章 网络层

刘 轶 北京航空航天大学 计算机学院

本章内容

- 4.1 网络层提供的两种服务
- 4.2 网际协议IP
- 4.3 划分子网和构造超网
- 4.4 网际控制报文协议ICMP
- 4.5 路由算法及协议
- 4.6 IP组播
- 4.7 网络地址转换NAT和虚拟专用网VPN

4.1 网络层提供的两种服务

4.1 网络层提供的两种服务

- 网络层应该向传输层提供怎样的服务?
 - 两种选择:面向连接 or 无连接
 - 曾引起了长期的争论
 - 争论的实质: 数据的可靠传输应该由网络还是端系统来负责?
- 面向连接的服务,即虚电路(virtual circuit)
 - 通信双方在开始数据传输前,先由网络建立连接,之后的数据均通过该连接进行,由网络保证数据传输的可靠性
 - 虚电路只是一种逻辑连接,分组沿着这条逻辑连接按照存储转发方式传送,而并不是真正建立了一条物理连接
 - 支持方: 以电信公司为代表的一派
- 无连接的服务,即数据报(datagram)
 - 网络在发送数据时不需要先建立连接,每一个分组在网络中独立传送
 - 网络层不保证服务质量,分组可能出错、丢失、重复和失序,也不保证分组传送的时限
 - 支持方:以Internet为代表的一派
- TCP/IP采用数据报服务

packet: 分组、数据包

虚电路: H1 发送给 H2 的所有分组都沿着同一条虚电路传送

数据报: H1 发送给 H2 的分组可能沿着不同路径传送

4.1 网络层提供的两种服务

虚电路与数据报的比较

对比的方面	虚电路服务	数据报服务
思路	可靠通信应当由网络来保证	可靠通信应当由用户主机来保证
连接的建立	必须有	不需要
终点地址	仅在连接建立阶段使用,每 个分组使用短的虚电路号	每个分组都有终点的完整地址
分组的转发	属于同一条虚电路的分组均 按照同一路由进行转发	每个分组独立选择路由进行转发
当结点出故障时	所有通过出故障的结点的虚 电路均不能工作	出故障的结点可能会丢失分组, 一些路由可能会发生变化
分组的顺序	总是按发送顺序到达终点	到达终点时不一定按发送顺序
端到端的差错处 理和流量控制	可以由网络负责,也可以由用户主机负责	由用户主机负责

一、IP(Internet Protocol)简介

- 网际协议 IP 是 TCP/IP 体系中两个最主要的协议之一
- 与 IP 协议配套使用的还有四个 协议:
 - 地址解析协议ARP(Address Resolution Protocol)
 - 逆地址解析协议RARP (Reverse Address Resolution Protocol)
 - 网际控制报文协议ICMP (Internet Control Message Protocol)
 - 网际组管理协议IGMP (Internet Group Management Protocol)

应用层	各种应用层协议	
<u> </u>	(HTTP, FTP, SMTP 等)	
传输层	TCP, UDP	
	ICMP IGMP	
网络层 (网际层)	IP	
	RARP ARP	
网络接口层	与各种网络接口	

物理硬件

Linux中接收/发送包的调用图

• 包接收:

- 网络接口卡(NIC)收到帧后触发中断
- 中断服务程序调用net_rx_action()接收帧
- 调用网络层接口函数netif_receive_skb()将帧 中数据交给网络层
- 包被注册到sk_buff中以便后续处理
- 如为 \mathbf{IP} 协议包则调用 \mathbf{ip}_{rcv} ()作协议处理
- 如包是发给本机的,则调用ip_local_deliver()和ip_local_deliver_finish()将数据交给传输层

• 包发送:

- 根据传输层协议不同,分别调用接口函数 ip_append_data()、ip_append_page()或 ip_queue_xmit()将数据交给传输层
- 调用dst_output(),将包注册到sk_buff
- 如为IP包,则调用ip_output()
- 如不分片,则ip_finish_output2()调用net_tx_action()将包交给数据链路层
- 週用网卡驱动程序接口函数发送帧,帧为 送完毕后通常会产生中断通知上层

注: sk_buff是Linux中用于存储和处理包的数据结构,通过使用sk_buff,无需在各层间和程序模块间复制数据,而只需传递指针。采用双向链表结构

二、分类的IP地址

- IP 地址
 - 分配给主机或路由器的标识符,目前使用的IPv4为32位IP地址
 - IP 地址的分配由ICANN (Internet Corporation for Assigned Names and Numbers)负责
- IP地址的编址方法经历了三个阶段:
 - 分类的 IP 地址: 最基本的编址方法,1981 年通过标准
 - 子网的划分: 最基本编址方法的改进,1985年成为标准[RFC 950] 4.3节
 - 构成超网:比较新的无分类编址方法,1993年提出
- 分类的IP地址
 - IP地址被分为A, B, C, D, E五类,每一类地址都包含网络号(net-id)和主机号(host-id)两个字段

IP 地址 ::= { <网络号>, <主机号>}

- 不同类的IP地址区别主要是网络号、主机号的长度不同

IP 地址中的网络号字段和主机号字段

IP 地址的表示方法: 点分十进制记法(dotted decimal notation)

- 全0、全1的IP地 址有特殊含义
 - 全**0**表示本网络 或本主机
 - 全1表示广播地 址

- 三、IP地址与硬件地址
- IP地址
 - 网络层及以上各层使用的地址,是一种逻辑地址
 - 存放在IP包头部
- 物理地址
 - 数据链路层及物理层使用的地址
 - 存放在数据链路层的帧中
 - 问题: 帧中有无IP地址?

四、ARP与RARP协议

- IP 地址与物理地址的相互转换问题
 - 例:如下图,主机 H_{10} 向主机 H_1 发送了IP包,路由器 R_1 要想在局域网中将 IP包发送给主机 H_1 ,需知道 H_1 的物理地址
- RFC 826: An Ethernet Address Resolution Protocol

C:\>arp -a

Interface: 192.168.1.103 --- 0x10004

Internet Address Physical Address

192.168.1.1 70-a8-e3-e0-ba-f8

Type dynamic

四、ARP与RARP协议

- ARP协议(Address Resolution Protocol)
 - 主机设有一个ARP高速缓存(ARP cache),存有本地局域网上 各主机和路由器的 IP 地址与硬件地址的映射表
 - 当主机 A 欲向本局域网上的主机B发送IP包时
 - ① 先在其ARP高速缓存中查看有无主机B的IP地址
 - ② 如有,就可查出其对应的硬件地址,再将此硬件地址写入MAC帧,通过局域网发送
 - ③ 如无,则在网络中<u>广播</u>一个ARP请求
 - ④ 当主机B收到ARP请求后,向主机A返回一个ARP应答,告知自己的物理地址

- 注意:

- ARP解决同一局域网中的主机或路由器的 IP 地址和硬件地址的映射 问题
- 如果目的主机不在本局域网内,IP包需经由路由器转发
 - 此时在局域网内要完成的是路由器IP与物理地址的映射

五、IP数据报格式

- 一个 IP包由头部和数据两部分组成
- 头部: 20字节的固定字段 + 0到多个可选字段

首 部 数 据 部 分

IP 数据报