String Matching

Algoritmos y Estructuras de Datos I

Búsqueda de un patrón en un texto

- **Problema:** Dado un string t (texto) y un string p (patrón), queremos saber si p se encuentra dentro de t.
- Notación: La función subseq(t, d, h) es el al substring de d entre i y h-1 (inclusive). Lo abreviamos como t[d, h)
- ▶ proc contiene(in t, p : seq⟨Char⟩, out result : Bool){

 Pre {True}

 Post {result = true $\leftrightarrow (\exists i : \mathbb{Z})(0 \le i < |t| |p|)$ ∧L t[i, i + |p|) = p)}
 }

¿Cómo resolvemos este problema?

Strings

- Llamamos un string a una secuencia de Char.
- ► Los strings no difieren de las secuencias sobre otros tipos, dado que habitualmente no se utilizan operaciones particulares de los **Char**s.
- Los strings aparecen con mucha frecuencia en diversas aplicaciones.
 - 1. Palabras, oraciones y textos.
 - 2. Nombres de usuario y claves de acceso.
 - 3. Secuencias de ADN.
 - 4. Código fuente!
 - 5. ...
- ► El estudio de algoritmos sobre strings es un tema muy importante.

Función Auxiliar iguales

► Implementemos una función auxiliar con la siguiente especificación:

```
▶ proc iguales(in s : seq\langle Char \rangle, in i : \mathbb{Z}, in r : seq\langle Char \rangle, in j : \mathbb{Z}, in , len : \mathbb{Z}, out result : Bool){

Pre \{enRango(i,s) \land enRango(i+len-1,s) \land enRango(j,r) \land enRango(j+len-1,r)\}

Post \{resut = true \leftrightarrow (\forall k : \mathbb{Z})(0 \le k < len \rightarrow_L s[i+k] = r[j+k])\}
```

Función Auxiliar iguales

```
bool iguales(string &s, int i, string &r, int j, int len) {
   bool result = true;
   for (int k = 0; k < len; k++) {
        if (s[i+k]!=r[j+k]) {
            result = false;
            }
        }
    return result;
}</pre>
```

¿Se puede hacer que sea más eficiente (ie: más rápido)?

Búsqueda de un patrón en un texto

▶ **Algoritmo sencillo:** Recorrer todas las posiciones i de t, y para cada una verificar si t[i, i + |p|) = p.

```
bool contiene(string &t, string &p) {
    int i = 0;
    while ( i + p.size() < t.size() && iguales(t,i,p,0,p.size())) {
        i++;
    }
    return i + p.size() < t.size() && iguales(t,i,p,0,p.size());
}</pre>
```

iguales es una función auxiliar definida anteriormente.

Función Auxiliar iguales

```
bool iguales(string &s, int i, string &r, int j, int len) {
    int k = 0;
    while (k < len && s[i+k] == r[j+k]) {
        k++;
    }
    return k == len;
    }
```

Este programa se interrumpe tan pronto como detecta una desigualdad.

Búsqueda de un patrón en un texto

- ► ¿Es eficiente este algoritmo?
- ▶ El ciclo principal realiza |t| |p| iteraciones. Sin embargo, la comparación de los substrings de t puede ser costosa si p es grande
 - 1. La comparación iguales(t,i,p,0,p.size()) requiere realizar |p| comparaciones entre chars.
 - 2. Por cada iteración del ciclo "for", se realizan |p| de estas comparaciones.
 - 3. En por caso, realizamos (|t| |p|) * |p| iteraciones.
- Aunque el algoritmo es eficiente si |p| se aproxima a |t|.

- ► En 1977, Donald Knuth, James Morris y Vaughan Pratt propusieron un algoritmo más eficiente.
- ▶ **Idea:** Si t[i, i + |p|) = p, entonces quizás podemos aprovechar parte de las coincidencias entre [i, i + |p|) y p para continuar la búsqueda.
- ► Mantenemos dos índices / y r a la secuencia, con el siguiente invariante:
 - 1. $0 \le r l \le |t|$
 - 2. t[l,r) = p[0,r-l)
 - 3. No hay apariciones de p en t[0, r).

Algoritmo de Knuth, Morris y Pratt

- ▶ Si r l = |p|, entonces encontramos p en t.
- ▶ Si r l < |p|, consideramos los siguientes casos:
 - 1. Si t[r] = p[r l], entonces encontramos una nueva coincidencia, y entonces incrementamos r para reflejar esta nueva situación.
 - 2. Si $t[r] \neq p[r-l]$ y l=r, entonces no tenemos un prefijo de p en el texto, y pasamos al siguiente elemento de la secuencia avanzando l y r.
 - 3. Si $t[r] \neq p[r-l]$ y l < r, entonces debemos avanzar l. ¿Cuánto avanzamos l en este caso? ¡Tanto como podamos! (más sobre este punto a continuación)

Algoritmo de Knuth, Morris y Pratt

▶ Planteamos el siguiente esquema para el algoritmo.

```
bool contiene_kmp(string &t, string &p) {
   int l = 0, r = 0;
   bool result = false;
   while( r < t.size() ) {
      // Aumentar l o r
      // Verificar si encontramos p
   }
   return result;
   }
}</pre>
```

> ¿Cómo aumentamos / o r preservando el invariante?

Algoritmo (parcial) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
     int l = 0, r = 0;
      bool result = false;
     while( r < t.size() && r-l < p.size()) {
       if(t[r] == p[r-l])
         r++;
       \} else if( I == r ) \{
         r++;
         I++;
        } else {
         I = I/A avanzar I
11
12
13
     return r-l == p.size();
15
```

- ▶ ¿Cuánto podemos avanzar 1 en el caso que $t[r] \neq p[r-l]$ y l < r?
- ► El invariante implica que t[l,r) = p[0,r-l), pero esta condición dice que $t[l,r+1) \neq p[0,r-l+1)$.
- Ejemplo:

► ¿Hasta donde puedo avanzar /?

KMP: Función π

- ▶ **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de p[0, i+1)
- ▶ Por ejemplo, sea *p*=abbabbaa:

i	$\rho[0,i+1)$	Máx. bifijo	$\pi(i)$
0	a	⟨⟩	0
1	ab	⟨⟩	0
2	abb	⟨⟩	0
3	abba	a	1
4	abbab	ab	2
5	abbabb	abb	3
6	abbabba	abba	4
7	abbabbaa	а	1

Bifijos: Prefijo y Sufijo simultáneamente

- ▶ **Definición:** Una cadena de caracteres b es un bifijo de s si $b \neq s$, b es un prefijo de s y b es un sufijo de s.
- ► Ejemplos:

S	bifijos				
а	$\langle \rangle$				
ab	$\langle \rangle$				
aba	$\langle angle$,a				
abab	$\langle angle$,ab				
ababc	$\langle \rangle$				
aaaa	$\langle angle$,a, aa, aaa, aaa				
abc	$\langle \rangle$				
ababaca	⟨⟩,a				

Observación: Sea una cadena s, su máximo bifijo es único.

KMP: Función π

- **Definición:** Sea $\pi(i)$ la longitud del máximo bifijo de p[0, i+1)
- ightharpoonup Otro ejemplo, sea p=ababaca:

p[0,i+1)	Máx. bifijo	$\pi(i)$
a	⟨⟩	0
ab	⟨⟩	0
aba	а	1
abab	ab	2
ababa	aba	3
ababac	⟨⟩	0
ababaca	a	1
	a ab aba abab ababa ababac	a () aba () aba a abab ab ababa aba ababac ()

Ejemplo: Supongamos que ...

		1		<i>I'</i>			r					
		\downarrow		\downarrow			\downarrow					
 	 	а	b	а	b	а	а	b	С	b	а	b
		=	=	=	=	=	\neq					
		а	b	а	b	а	С	а				

- ► En este caso, podemos avanzar / hasta la posición ababa, dado que no tendremos coincidencias en las posiciones anteriores.
- ▶ Por lo tanto, en este caso fijamos $l' = r \pi(r l 1)$.

Algoritmo de Knuth, Morris y Pratt

- ▶ ¿Se cumplen los tres puntos del teorema del invariante?
 - 1. El invariante vale con l=r=0.
 - 2. Cada caso del if... preserva el invariante.
 - 3. Al finalizar el ciclo, el invariante permite retornar el valor correcto.
- L'Cómo es una función variante para este ciclo?
 - Notar que en cada iteración se aumenta / o r (o ambas) en al menos una unidad.
 - ► Entonces, una función variante puede ser:

$$fv = (|t| - I) + (|t| - r) = 2 * |t| - I - r$$

Es fácil ver que se cumplen los dos puntos del teorema de terminación del ciclo, y por lo tanto el ciclo termina.

Algoritmo (parcial) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
    int l = 0, r = 0;
    bool result = false;

while( r < t.size() && r-l < p.size()) {
    if( t[r] == p[r-l] ) {
        r++;
    } else if( l == r ) {
        r++;
    } l++;
    } else {
        | l = r - calcular_pi(r-l-1);
    }
}
return r-l == p.size();
}</pre>
```

Algoritmo de Knuth, Morris y Pratt

- Para completar el algoritmo debemos calcular $\pi(i)$.
- Podemos implementar una función auxiliar, pero una mejor idea es precalcular estos valores y guardarlos en un vector (¿por qué?).
- ▶ Para este precálculo, recorremos *p* con dos índices *i* y *j*, con el siguiente invariante:

```
1. 0 \le j \le |p|
2. pi(k) = \pi(k) para k = 0, ..., j - 1.
3. i es la longitud de un bifijo de p[0, j + 1).
```

```
vector<int> precalcular_pi(string &p) {
     int i = 0, i = 1:
     vector<int> pi(p.size()); // inicializado en 0
     pi[0] = 0; // valor de pi para 0
     while( j < p.size()) {</pre>
       if(p[i] == p[j]) 
          pi[j] = i+1;
         i++;
         i++;
       \} else if( i > 0 ) {
        i = pi[i-1];
        } else {
          pi[j] = 0;
         i++;
15
     return pi;
```

Algoritmo (completo) de Knuth, Morris y Pratt

```
bool contiene_kmp(string &t, string &p) {
     int l = 0, r = 0;
     vector<int> pi = precalcular_pi(p);
     bool result = false;
     while( r < t.size() \&\& r-l < p.size()) {
       if(t[r] == p[r-l]) 
          r++;
7
       \} else if( I == r ) \{
          r++;
          1++:
10
        } else {
11
         l = r - pi[r-l-1];
12
13
     return r-l == p.size();
15
```

Algoritmo de Knuth, Morris y Pratt

- ► ¡Es importante observar que sin el invariante, es muy difícil entender este algoritmo!
- ► Cómo es una función variante adecuada para el ciclo?
 - 1. En la primera rama, se incrementan i y j.
 - 2. En la segunda rama, se disminuye el valor de i.
 - 3. En la tercera rama, se incrementa *i*.
- Luego, en cada iteración se incrementa 2j i.
- Además, $2j i \le 2 \times |p|$, y entonces una función variante puede ser $fv = 2 \times |p| (2j i)$.

Algoritmo de Knuth, Morris y Pratt

¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?

Veamos como funciona cada algoritmo en la computadora

http://whocouldthat.be/visualizing-string-matching/

- ▶ ¿Es realmente mejor la eficiencia de KMP en comparación con la solución trivial?
 - ▶ El algoritmo naïve realiza, en peor caso, |t| * |p| iteraciones.
 - ▶ El algoritmo kmp realiza, en peor caso, |t| + |p| iteraciones
- ▶ Por lo tanto, comparando sus peores casos, el algoritmo KMP es más eficiente (menos iteraciones) que el algoritmo naïve.
- Existen más algoritmos de búsqueda de strings (o string matching):
 - ► Rabin-Karp (1987)
 - ▶ Boyer-Moore (1977)
 - ► Aho-Corasick (>1977)

Bibliografía

- ► David Gries The Science of Programming
 - ► Chapter 16 Developing Invariants (Linear Search, Binary Search)
- ► Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein- Introduction to Algorithms, 3rd edition
 - ► Chapter 32.1 The naive string-matching algorithm
 - ► Chapter 32.4 The Knuth-Morris-Pratt algorithm