Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2017-18

Οργάνωση Υπολογιστών (ΙΙ)

(κύρια και κρυφή μνήμη)

http://mixstef.github.io/courses/csintro/

Μ. Στεφανιδάκης

Ένα τυπικό υπολογιστικό σύστημα σήμερα

• Εισαγωγή

οι ρυθμοί μεταφοράς που δίνονται είναι οι θεωρητικά μέγιστοι!

Κύρια μνήμη

- Εισαγωγή
- Μνήμη

- Βασικό υποσύστημα του υπολογιστή
 - Αποθήκευση δεδομένων και προγραμμάτων
- Συλλογή από θέσεις αποθήκευσης
 - Σε κάθε θέση αποθηκεύεται μία ποσότητα των n bits
 - n = εύρος (1, 2 ή 4 bytes, "λέξη")
 - Σε κάθε θέση αντιστοιχεί μία μοναδική διεύθυνση (address)
 - μη προσημασμένος δυαδικός αριθμός
 - με *m* bits επιλέγουμε μεταξύ 2^{*m*} διευθύνσεων
 - Χώρος διευθύνσεων μνήμης: 0...2^m 1
 - Συνολική χωρητικότητα μνήμης:
 - $2^m \times n$ bits

Μοντέλο λειτουργίας μνήμης

- Εισαγωγή
- Μνήμη

Ανάγνωση από μνήμη

- Εισαγωγή
- Μνήμη

Ακόμα κι όταν το προγραμματιστικό μοντέλο επιτρέπει την ανάγνωση ή εγγραφή μεμονωμένων bytes, η φυσική επικοινωνία με τη μνήμη γίνεται σε "λέξεις" (πολλαπλά bytes)

Εγγραφή στη μνήμη

- Εισαγωγή
- Μνήμη

Μονάδες μέτρησης χωρητικότητας μνήμης

- Εισαγωγή
- Μνήμη

Προσοχή! Μόνο η χωρητικότητα της μνήμης μετράται σε δυνάμεις του 2!

- 1 Byte = 8 bits
- 1 KiloByte (KB) = 2^{10} Bytes
 - 1.024 Bytes
- 1 MegaByte (MB) = 2^{10} KB = 2^{20} Bytes
 - 1.048.576 Bytes
- 1 GigaByte (GB) = 2^{10} MB = 2^{20} KB = 2^{30} bytes
 - 1.073.741.824 Bytes
- Κλπ...

Τεχνολογίες μνημών

- Εισαγωγή
- Μνήμη

"κελί" (cell): ο χώρος αποθήκευσης ενός

bit.

DRAM: 1 τρανζίστορ/κελί

SRAM: 6 τρανζίστορ/κελί

- Μνήμη "τυχαίας προσπέλασης"
 - Random Access Memory (RAM)
 - Ανάγνωση-Εγγραφή
 - Στατική (SRAM) και δυναμική (DRAM)
 - Διαφορετική μέθοδος υλοποίησης "κελιών" (cells) μνήμης
 - SRAM: πολύ γρήγορη μικρότερη ολοκλήρωση (χρήση: κρυφή μνήμη)
 - DRAM: αργότερη μεγάλη ολοκλήρωση (χρήση: κύρια μνήμη)
 - Απαιτείται περιοδική ανανέωση των δεδομένων κάθε 16 έως 128 ms (DRAM refresh)
 - Και στις δύο χάνονται τα δεδομένα με τη διακοπή της τροφοδοσίας

Τεχνολογίες μνημών

- Εισαγωγή
- Μνήμη

- Μνήμες μόνιμης αποθήκευσης
 - Διατήρηση δεδομένων χωρίς τροφοδοσία
 - Μόνο για ανάγνωση
 - Read Only Memory (ROM)
 - Ακολουθεί το κλασσικό μοντέλο μνήμης
 - Αποθήκευση κώδικα αρχικοποίησης υπολογιστή
 - Αργή ανάγνωση-εγγραφή αλλά μαζική αποθήκευση
 - FLASH
 - Μοιάζει με δίσκο αποθήκευσης κι όχι με το κλασικό μοντέλο μνήμης
 - Ανάγνωση-εγγραφή μπλοκ δεδομένων

Παράδειγμα: οργάνωση μνήμης DRAM

[Micron]

Διασύνδεση επεξεργαστή-μνήμης

- Εισαγωγή
- Μνήμη

Δίαυλοι: ομάδες αγωγών – διασύνδεση για τη μεταφορά πληροφορίας. Ο ρυθμός μεταφοράς στους διαύλους επηρεάζει τη συνολική απόδοση του υπολογιστή!

- Διεύθυνση
 - Προς/από πού γίνεται η προσπέλαση;
- Δεδομένα
 - Τα δεδομένα ανάγνωσης/εγγραφής
- Έλεγχος
 - Ανάγνωση ή εγγραφή; και συγχρονισμός μεταφοράς

Επιλέγοντας στόχο: chip select

- Εισαγωγή
- Μνήμη

Chip Select: σήμα επίτρεψης. Επιλέγει έναν από πολλούς στόχους για τη μεταφορά δεδομένων.

Στο διπλανό σχήμα, μπορεί να θεωρηθεί ως μέρος της διεύθυνσης

Η κύρια μνήμη σήμερα

- Εισαγωγή
- Μνήμη

- Υποσύστημα κύριας μνήμης
 - Μεγάλες χωρητικότητες (GBs)
 - Μεγάλο εύρος (bits) διαύλου μεταφοράς
 - Για την ικανοποίηση των αναγκών των ΚΜΕ
 - 64 και πλέον bits ανά μεταφορά
 - ≥400 MTransfers/sec, ≥3.2 GB/s
 - Βελτιστοποιήσεις απόδοσης
 - Για τον ελάχιστο χρόνο προσπέλασης δεδομένων
- Ελεγκτής κύριας μνήμης
 - Λόγω της πολυπλοκότητας διασύνδεσης
 - Μια ΚΜΕ δεν συνδέεται απευθείας στη μνήμη
 - Αλλά: παρεμβολή ελεγκτή μνήμης
 - Το μοντέλο προσπέλασης δεν αλλάζει

Διασύνδεση επεξεργαστή-μνήμης

- Εισαγωγή
- Μνήμη

- Ελεγκτής κύριας μνήμης
 - Μετατρέπει τις αιτήσεις ανάγνωσης-εγγραφής της
 ΚΜΕ στις κατάλληλες εντολές προς τα τσιπ κύριας μνήμης (DRAM)

Ιεραρχία Μνήμης

- Εισαγωγή
- Μνήμη
- Κρυφή μνήμη
- Προσέγγιση της ιδανικής μνήμης
 - Ο επεξεργαστής βλέπει "μνήμη"
 - Με την ταχύτητα του υψηλότερου επιπέδου
 - Και το μέγεθος του χαμηλότερου επιπέδου

0,5-5ns \$4.000-\$10.000/GB

50-70ns \$100-\$200/GB

5.000.000-20.000.000 ns \$0,5-\$2/GB CPU

Κρυφή μνήμη (SRAM)

Κύρια μνήμη (DRAM)

Μαγνητικοί δίσκοι Κρυφή μνήμη (cache memory)

- Εισαγωγή
- Μνήμη
- Κρυφή μνήμη

- Μεταξύ ΚΜΕ και κύριας μνήμης
 - Περιέχει ένα μέρος μόνο των περιεχομένων της κύριας μνήμης
 - Διαφορετικές θέσεις κύριας μνήμης φορτώνονται στην ίδια θέση της κρυφής! (αντικατάσταση)
 - Γρηγορότερη από κύρια μνήμη
 - Εκμετάλλευση της τοπικότητας των προσπελάσεων
 - Διαχείριση από υλικό διαφανής στο λογισμικό!
 - Σήμερα: κρυφή μνήμη σε πολλά επίπεδα (L1, L2, L3)

Η αρχή της τοπικότητας

- Εισαγωγή
- Μνήμη
- Κρυφή μνήμη

• Χρονική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστεί ξανά στο άμεσο μέλλον
- Π.χ. για εντολές ενός βρόχου (loop)
- Χωρική Τοπικότητα
 - Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστούν και οι γειτονικές θέσεις στο άμεσο μέλλον
 - Εντολές προγραμμάτων
 - Δεδομένα σε πίνακες κλπ

Μπλοκ (γραμμές) κρυφής μνήμης

- Εισαγωγή
- Μνήμη
- Κρυφή Μνήμη

Οι σύγχρονοι επεξεργαστές διαθέτουν κρυφές μνήμες (L1) με μέγεθος μπλοκ έως 64 bytes

- •Όταν πρέπει να μεταφερθεί μια λέξη, μεταφέρεται όλο το μπλοκ που την περιέχει
- •Πιθανότατα εκτοπίζοντας κάποιο άλλο μπλοκ που βρίσκεται στην ίδια θέση
- •Η θέση του μπλοκ στην κρυφή μνήμη υπολογίζεται με διάφορους τρόπους
- •Το σύστημα κύριας μνήμης έχει βελτιστοποιηθεί αρχιτεκτονικά για μεταφορές μπλοκ

Ανάγνωση μέσω της κρυφής μνήμης

Εγγραφή μέσω της κρυφής μνήμης

