

Reconciling modern machine-learning practice and the classical bias-variance trade-off (PNAS 19)

Mikhail Belkin, Daniel Hsuc, Siyuan Maa, and Soumik Mandal Departments at The Ohio State University, Columbia University

Presented by Manuel Burger, ETH Zürich

Abstract – Model Selection

- Breakthroughs in machine learning
- Lack of rigorous understanding
- Classical model selection by bias-variance trade-off
- Recent evidence suggests a new approach to model selection

Outline

- Definitions and Introduction
- The "Double-Descent"-curve
- Empirical Evidence
 - Random Fourier Features
 - General Neural Networks
 - Decision Trees and Ensembles
- Conclusion
- Critique

Definitions

- Classical ERM:
 - $D = \{(x_1, y_1) \dots (x_n, y_n)\}$ where $x_i \in \mathbb{R}^d$
 - Learn $h_n(x): \mathbb{R}^d \to \mathbb{R}$ where $h \in \mathcal{H}_N$
 - H_N capacity in # parameters: N
 - $argmin_h \frac{1}{n} \sum_{i=1}^n l(h(x_i), y_i)$ with 0-1 or squared loss
 - Evaluate performance of h_n on unseen test data
 - $\mathbb{E}_{(x,y)\sim P}[l(h(x),y)]$
 - No regularization methods
- Challenge: Problem mismatch
 - Explicit ERM optimization problem (rigorous definition and solution)
 - Minimizing true/test risk (goal of machine learning)

Datasets

- CIFAR-10: object image classification
- MNIST: handwritten digits
- SVHN: house number images
- TIMIT: Speech recognition, dialects
- 20-Newsgroups: News articles and topics

Model Selection - Conventional Approach

- \mathcal{H} too small \rightarrow underfitting
- \mathcal{H} too large \rightarrow overfitting
- Find sweet spot
 - Explicit: e.g. choose fixed architecture
 - Implict: Regularization, Early Stopping, ...

Model Selection - Modern Approach

- Select models beyond interpolation threshold
 - 0 training loss
- Use large capacity models
 - Large NNs
 - Other non-linear predictors
- Achieve near-optimal test results
 - Even in high noise settings
 - Better than conventional approach

Double-Descent Risk Curve

- N < n classical risk behaviour
- N > n double-descent
 - All predictors fit training data perfectly
 - Capacity of function vs. Inductive Bias of problem
 - Occam's Razor: choose simplest explanation possible
 - Find small norm solutions in high capacity space
 - Increased generalization performance

Random Fourier Features

- Class of 2-layer NN with fixed weights in first layer
- v_k sampled from normal distribution in \mathbb{R}^d
- N → ∞ approaches Gaussian Kernel
 - Computationally attractive for $N \ll n$
- Optimized with ERM using linear regression
 - N > n choose minimum l_2 norm solution

$$h(x) = \sum_{k=1}^{N} a_k \phi(x; v_k)$$

$$\phi(x;v) \coloneqq e^{\sqrt{-1}\langle v,x\rangle}$$

Random Fourier Features on MNIST

General Neural Networks

- SGD/Backpropagation
- Observe double-descent
- Compatible with previous work suggesting "small norm" inductive bias for optim. algo.
 - Inductive Bias in architectures
- Interpolation treshold at #samples x #classes
 - Requires very large networks
 - ImageNet: 10⁶ samples and 10³ classes
- N << n high sensitivity to initialization
 - Can mask double-descent curve
 - Weight reuse scheme applied

Decision Trees

- Control size of tree by #leaves
- Maximally large trees can interpolate data
 - Ensembles achieve smoothness
 - Good Inductive Bias
- Beyond interpolation treshold use multiple trees (ensembles)
- Empirical evidence suggests:
 - Adaboost and RF more robust to noise with deep trees than with shallow trees

Random Forests

- Observe double-descent risk curve with random forests on MNIST
 - Classical setting for increasing #leaves
 - Double-descent for increasing #deepTrees
- Similar observation with L₂-boosting

Conclusion

- Double-descent curve observed
 - Mechanism: Inductive Bias
- Historical Absence:
 - Statistical analysis considers small feature space
 - Regularization
 - Smaller models computationally more attractive
 - Observed peak within narrow parameter range
- Inductive Bias
- "Modern" model selection has better performance and "easy" to optimize

Critique - Strength

- Questioning the status quo
 - Encouraging new ways of thinking about model selection
 - Better generalization
 - Suggests "easier" to train models
- Empirical evidence across a range of important predictors
- Considering all major data sources
- High-level analysis widely applicable

Critique - Weaknesses

- Are the examples designed to fit?
 - Random Features
 - Single hidden layer network
 - Switch from increasing leaves to trees
- Deep NNs
 - Difficult to get a capacity estimate
- Modern Optimizers (Adam,)
- Inductive Bias vs. regularization?
- Lack of a rigorous explanation
- Increased computational cost

Outlook

- Investigate optimization properties of solutions
- Find rigorous explanation for the found evidence
- Verify for other common models
 - Deep NNs
 - Modern optimizers

Understanding deep learning requires rethinking generalization

Chiyuan Zhang*

Massachusetts Institute of Technology chiyuan@mit.edu

Benjamin Recht[†] University of California, Berkeley brecht@berkeley.edu

Samy Bengio
Google Brain
bengio@google.com

Moritz Hardt Google Brain mrtz@google.com

Oriol Vinyals
Google DeepMind
vinyals@google.com

To Understand Deep Learning We Need to Understand Kernel Learning

Mikhail Belkin, Siyuan Ma, Soumik Mandal Department of Computer Science and Engineering Ohio State University {mbelkin, masi}@cse.ohio-state.edu, mandal.32@osu.edu

Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate

Mikhail Belkin¹, Daniel Hsu², and Partha P. Mitra³

¹The Ohio State University, Columbus, OH
²Columbia University, New York, NY
³Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

A Modern Take on the Bias-Variance Tradeoff in Neural Networks

Brady Neal Sarthak Mittal Aristide Baratin Vinayak Tantia Matthew Scicluna Simon Lacoste-Julien †,‡ Ioannis Mitliagkas †

Mila, Université de Montréal †Canada CIFAR AI Chair ‡CIFAR Fellow

Cited By

High-dimensional dynamics of generalization error in neural networks

Madhu S. Advani^{a,1}, Andrew M. Saxe^{a,2,*,1}, Haim Sompolinsky^{a,b}

^a Center for Brain Science, Harvard University, Cambridge, MA 02138, United States of America

^b Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel

Cited By

DEEP DOUBLE DESCENT: WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran*

Gal Kaplun[†]

Yamini Bansal[†]

Tristan Yang

Harvard University

Harvard University

Harvard University

Harvard University

Boaz Barak

Ilya Sutskever

Harvard University

OpenAI

Thank you for your attention

Discussion

- Have you seen the double-descent in practice?
- Knowing about this, will you approach model selection differently?
 - Pro's / Con's
- Do you have any concerns on when this could not work?

