### COMP 6611C: Advanced Topics in Embedded Al Systems

### Lecture 2: Challenges in Embedded Al Systems

#### **Xiaomin Ouyang**

Assistant Professor

Department of Computer Science and Engineering, HKUST



### Recap

- ➤ Paper selection <u>spreadsheet</u> by end of today (Feb 11)
  - Auditing students are also expected to present one paper
- > Team formulation spreadsheet by end of Friday (Feb 14)
  - Auditing students are encouraged (not mandatory) to join in a project team
  - About 7-8 teams (15-17 students now)
- ➤ Q&A recording <u>spreadsheet</u>

### Outline

- > Course APP Introduction and Installation
- ➤ Challenges in Embedded AI Systems

### MobiBox APP and Dataset

- Data Collection
  - IMU (Accelerometer / Gyroscope / Magnetic), GPS, Screen & App Usage, Battery Status, Bluetooth connection, Network Traffic, Step Count, Wi-Fi Connections.
- Daily & Weekly Activity Summary
- Bump-up Activity Advice







**IOS** version

### MobiBox APP and Dataset

- ➤ Data Collecting Duration:
  - 8 a.m. 10 p.m.
- Daily actions:
  - Start the APP at 8 a.m.
  - Check the APP at 10 p.m.
  - Pump-up advice every hour





239 fets:

Distance: 7.85 km

Sleep: 0.00 hours

IMU Data

Heart Rate: 84 BPM

Accelerometer X: -0.000

Screen Time: 40 seconds

Gyroscope X: -0.000 Magnetic Field X: 27.207

Usage Data

Battery Data

Battery Level: 100%

Battery State: charging

IOS version

**Generate Summary** 

Weekly Survey

::!! 🗢 996

Android version

### MobiBox APP Installment

- > Android version
  - Directly install the App by APK package: <u>MobiBox-App</u>
- > IOS version:
  - Coming soon.
- > Ensure that the necessary permissions are granted.

# MobiBox APP Usage

- Should grant necessary permissions at first use.
  - Android: follow the right video instruction.
  - IOS: follow internal instruction
- ➤ The app continuously collects sensor data in the background. You can use your phone as usual, but it must remain active in the background.



Android version

# **Activity Advice**

- > Pump-up every hour, or pro-active click
- After receiving the **activity advice**, Please provide a quick feedback in the App.



# **Activity Summary**

- Daily Summary Notification:
  - Every day at 10:00 p.m.
  - Please select the best option of summary and write the feedback

- Weekly Mental Health Survey:
  - Every Sunday at 10:00 p.m.
  - Please complete the Weekly Survey manually.



Android version

## Group Chat for Feedback and Discussions

- To ensure a smooth and convenient data collection process, please join the WhatsApp/Wechat group chat.
- ➤ This will help us stay organized and keep you updated with important reminders. Thank you!

COMP6611C APP Group

WhatsApp 群组

群聊: COMP6611C Group



WhatsApp Group



Wechat Group

### Bonus for the Dataset Collection

- Complete Data collection can obtain up to 10 extra points.
- Account in Course Project.

### Outline

- > Course APP Introduction and Installation
- > Challenges in Embedded AI Systems
  - You may refer to them for deciding your project topics

### What is Embedded Al

- ➤ AI on network edge, physical devices & "Things"
  - Mobiles, wearables, vehicles, robots, sensors



#### Environment with Ambient Intelligence



- In-situ sensing
- On-device computing
- Networked computing

### What is Embedded Al

- ➤ AI on network edge, physical devices & "Things"
  - Mobiles, wearables, vehicles, robots, sensors



Al on resource-constrained devices



Real-time, efficient, and reliable intelligence at the edge.

### Challenges in Embedded Al Systems

- > Data Challenges
- > System Challenges
- Challenges related to Specific Sensor Modalities
- > Challenges related to Specific Applications

> How to harness distributed and imperfect data?









- Distributed: Data siloed across devices/users/locations.
- Imperfect: Data not ready for naïve (supervised) deep learning.

> How to harness distributed and imperfect data?

#### Distributed

- Domain shift
- Security and privacy

#### Imperfect

- Limited labeled data
- Missing data
- Data heterogeneity and noise
- Data skewness

#### Others

- Complex event detection
- Long-term data analysis

- Domain shift:
  - Spatial: adapt to new subjects/environments







- Techniques:
  - Domain generalization
  - Domain adaptation
  - Meta learning
- **Temporal:** distribution shifts over time after deployment



- Techniques:
  - Continuous/online learning
  - Test-time adaptation

- Security and Privacy:
  - Data privacy: cannot be uploaded to cloud



#### Techniques:

- Federated Learning
- Edge computing
- Cloud-edge cooperation

Data security: physical/adversarial/backdoor attacks



- Encryption
- Adversarial Training
- Anomaly Detection

#### Label scarcity





- Unsupervised/Semi-supervised learning
- Active learning
- Reinforcement learning
- Weakly supervised learning

#### Missing data





- Data imputation/reconstruction/generation
- Learning with missing data
  - masked training

> Data heterogeneity and noise



- Data preprocessing: sampling/denoise
- Robust representation learning
- Multimodal Fusion

Data skewness/imbalance





- Resampling
- Data augmentation
- Penalize training loss functions

### Complex Event Detection



#### Techniques:

- Neuro-Symbolic Learning
- Spatio-Temporal Analysis
- LLMs

Complex Event: A series of Atom Events

Long-term Data Analysis



- Hierarchical analysis
- Time-series data analysis
- Memory-based Model (Mamba)

➤ How can we make the system more resource-efficient, real-time, robust, and scalable?







Resource constraints

Task requirements

How can we make the system more resource-efficient, real-time, robust, and scalable?

- Limited resources
- Real-time Performance
- Robustness
- Scalability

#### Limited resources – memory usage

To give some examples of how much VRAM it roughly takes to load a model in bfloat16:

- **GPT3** requires 2 \* 175 GB = **350 GB** VRAM
- **Bloom** requires 2 \* 176 GB = **352 GB** VRAM
- Llama-2-70b requires 2 \* 70 GB = 140 GB VRAM
- <u>Falcon-40b</u> requires 2 \* 40 GB = 80 GB VRAM
- MPT-30b requires 2 \* 30 GB = 60 GB VRAM
- bigcode/starcoder requires 2 \* 15.5 = 31 GB VRAM

| Device Name        | CPUs                      | RAM (GB) |
|--------------------|---------------------------|----------|
| Google Pixel 6 Pro | 2x2.80 GHz Cortex-X1      | 12       |
|                    | 2x2.25 GHz Cortex-A76     |          |
|                    | 4x1.80 GHz Cortex-A55     |          |
| Xiaomi Mi Mix 2S   | 4x2.8 GHz Kryo 385 Gold   | 6        |
|                    | 4x1.8 GHz Kryo 385 Silver |          |
| Raspberry Pi 4B    | 4x1.8 GHz Cortex-A72      | 8        |

- Model compression
- Neural architecture search
- Online memory management (model slicing/chunks, communication scheduling)

Limited resources – power efficiency



- Model compression
- Power management (e.g., adaptive voltage scaling, energy-aware scheduling)
- Data filtering/duty cycling

> Limited resources – communication bandwidth



#### • Techniques:

- (Context-aware) Data compression/ filtering
- Feature extraction
- Edge computing

Video streaming, autonomous driving, 3D model rendering

#### > Real-time performance









#### • Techniques:

- Caching (space -> time)
- Progressive inference or speculative decoding in LLMs
- Context-aware inference
- Multi-task scheduling

Inference latency no less than xx seconds/ milliseconds.

#### > Robustness

# System Dynamics





Heterogeneous Platforms







- RL-based tasks scheduling
- Dynamic Resource Management
- CPU-GPU co-scheduling

#### Scalability



Ability to maintain performance, efficiency, and reliability as the system grows.

- Node selection/dropout/scheduling
- Synchronization -> Asynchronization
- Split learning between server and devices

### Break

- > Next lecture: Challenges in Embedded Al Systems Cont'd
- > Reminder:
  - > IOS version of Course APP to be released soon.
  - > First paper presentations on next Thursday (Feb 20)
- > Any questions?