运算放大器

1、如图所示同相放大电路,增益和输入电阻分别是多少?

参考答案:

$$A_{v} = \frac{v_{o}}{v_{i}} = \frac{R_{1} + R_{2}}{R_{1}} = 1 + \frac{R_{2}}{R_{1}} \qquad \qquad R_{i} = \frac{v_{i}}{i_{i}} \rightarrow \infty$$

2、如图所示反相放大电路,增益和输入电阻分别是多少?

$$A_v = \frac{v_o}{v_i} = -\frac{R_2}{R_1}$$
 $R_i = \frac{v_i}{i_1} = \frac{v_i}{v_i / R_1} = R_1$

3、如图所示直流毫伏表电路,**试证明** $V_s = (R_s R_i / R_s)$ I_m

参考答案:

解(1)根据虚短和虚断有

$$I_{\rm i}$$
=0 $V_{\rm p}$ = $V_{\rm n}$ =0 所以 I_2 = $I_{\rm s}$ = $V_{\rm s}/R_1$ R_2 和 R_3 相当于并联,所以 $-I_2R_2$ = R_3 $(I_2$ - $I_{\rm m})$ 得 $I_{\rm m}$ = $(\frac{R_2+R_3}{R_3})\frac{V_{\rm s}}{R_1}$

当 $R_2 >> R_3$ 时, $V_s = (R_3 R_1 / R_2) I_m$

4、为什么运算放大器具有虚断特性?

参考答案:

集成运放的对输入信号的差模输入电阻 rid 非常大,都以 M Ω 为单位。那么流入运放内部的电流 IP 和 IN 就十分微小,近似认为等于 0,就相当于内部"开路"。

5、什么是运算放大器的虚短特性?

参考答案:

差模开环放大倍数 Aod 非常大,可达几十万倍。因此,运放的线性区就非常陡峭,线性区间就非常窄,接近于 0. 当运算放大器工作在线性区时,可以近似认为 uP=uN。

附:

运放的输出电压是 uP-uN 的函数。 uP 是同向端电压 uN 是反向端电压

Uomax

6、什么是负反馈放大电路的深度负反馈?

参考答案:

由闭环增益的一般表达式:

$$\dot{A}_{f} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

$$|1+\dot{A}\dot{F}|>>1$$
 时,

深度负反馈

$$A = \frac{x_o}{x_{id}}$$
 开环增益
$$F = \frac{x_f}{x_o}$$
 反馈系数
$$A_f = \frac{x_o}{x_o}$$
 闭环增益

7、为什么在深度负反馈条件下,运算放大器具有"虚短"特性?

参考答案:

由于
$$|1+\dot{A}\dot{F}| >> 1$$
则 $\dot{A}_f = \frac{\dot{A}}{1+\dot{A}\dot{F}} \approx \frac{\dot{A}}{\dot{A}\dot{F}} = \frac{1}{\dot{F}}$

这时, 闭环增益只与反馈网络有关,

又因为
$$\dot{A}_{\rm f} = \frac{\dot{X}_{\rm o}}{\dot{X}_{\rm i}}$$
 $\dot{F} = \frac{\dot{X}_{\rm f}}{\dot{X}_{\rm o}}$ 代入 $\dot{A}_{\rm f} \approx \frac{\dot{A}}{\dot{A}\dot{F}} = \frac{1}{\dot{F}}$ 得 $\dot{X}_{\rm f} \approx \dot{X}_{\rm i}$ (也常写为 $x_{\rm f} \approx x_{\rm i}$)

2) 输入量近似等于反馈量

3) 净输入量近似等于零

$$\dot{X}_{\rm id} = \dot{X}_{\rm i} - \dot{X}_{\rm f} \approx 0$$

由此可得深度负反馈条件下,基本放大电路"虚短"的概念

8、下图所示电路中,输入缓冲电路的作用是什么?

图 2-2. 带输入缓冲的减法器电路

参考答案:作用是提高输入电阻,使输入源阻抗对电路共模抑制的影响为最小

9、希望抑制 50Hz 的干扰信号,应选用哪种类型的滤波电路?

参考答案: 带阻滤波

10、 放大音频信号,应选用哪种类型的滤波电路?

参考答案: 带通滤波

11、 复习思考题 2. 3. 5 反相放大电路如图 2. 3. 6a 所示。若要求电路的闭环 增益 Av=-10, 输入电阻 Ri=10 k Ω , 求出 R1 和 R2 的值。

图 2.3.6 反相放大电路 (a) 电路图 (b) 由虚短引出虚地 $v_n \approx 0$

参考答案:

12、 复习思考题 2. 3. 6 电压跟随器电路有什么特点 ? 一般用于什么场合 ? 若信号电压 vs=1 V, 内阻 Rsi=1 MΩ, 直接连接负载电阻 R =1 kΩ时, 负载电压 vo=?若中间接一电压跟随器, 则输出电压 vo=?

参考答案:

特点:
$$A_v = \frac{v_o}{v_i} \approx 1$$

输入阻抗很大,同相,可以提高负载上的电压 类似于这样算:

13、 复习思考题 2. 4. 1 在图 2. 4. 1 所示求差电路中用 INA105 模块, 读者自行组合连接, 实现 $A_{vd}=v_o/(v_{i2}-v_{i1})=1$, $A_v=v_o/v_i=-1$ 、+1、+2 和 1/2 的电路功能,画出电路结构图。

由Avd=Vo 2/ 700	
Vo=(R+Rx)(Rs Rx+Rx)	$V_{iz} - \frac{\rho_{\varphi}}{R_i}V_{ij}$
=> R12R4, R2=1	$Q_1 = \frac{3}{2} \lambda \frac{1}{3}$
(1) Av = V.	
一 it Vittel	Vii接Vi
2 Av= V: 2/	
iEVi.楼地即可	Viz錢Vi
③可以86条样配.海	2 Da Av +2 2 P F
eg. Vi, jšto	R4=3R, Rz=OR3 VistaVi
(16 3)	
eg: R1=2 R4 R	222Rs. Vistor, VisteVi

复习思考题 2.4.2 试画出下列电路:(1) 求差电路;(2) 仪用放大器;(3) 14 反相求和电路: (4) 反相积分和微分电路。利用理想运放的特性求每个电路输 出电压 v。和输入电压 vi 的关系并说明各种电路的性能。

参考答案:

1. 求差电路
$$v_o = (\frac{R_1 + R_4}{R_1})(\frac{R_3}{R_2 + R_3})v_{i2} - \frac{R_4}{R_1}v_{i1}$$

当
$$\frac{R_4}{R_1} = \frac{R_3}{R_2}$$
 时: $v_0 = \frac{R_4}{R_1} (v_{i2} - v_{i1})$ $R_{id} = \frac{v_{id}}{i_{id}} = R_1 + R_2$

2. 仪用放大器

$$v_0 = -\frac{R_4}{R_3}(v_3 - v_4) = -\frac{R_4}{R_3}\left(1 + \frac{2R_2}{R_1}\right)(v_1 - v_2)$$
 有很强的抑制共 模电压的能力

$$A_{v} = \frac{v_{o}}{v_{1} - v_{2}} = -\frac{R_{4}}{R_{3}} \left(1 + \frac{2R_{2}}{R_{1}} \right)$$

图 2.4.4 求和电路

$$-v_{o} = \frac{R_{3}}{R_{1}}v_{i1} + \frac{R_{3}}{R_{2}}v_{i2}$$

图 2.4.6 积分电路

4. 积分电路

$$v_{o} = -\frac{1}{RC} \int v_{i} dt$$

5. 微分电路

$$v_{o} = -RC \frac{dv_{i}}{dt}$$

15、 复习思考题 2. 4. 3 如图 2. 4. 3 所示仪用放大器,它有一干扰电压 v_{ic} =5 V, v_1 =(5+0.005sin ωt) V , v_2 =(5-0.005sin ωt) V,电路中 R_1 =1 k Ω , R_2 =0. 5 M Ω , R_3 = R_4 = 10 M Ω , 求电路中 v_3 、 v_4 和 v 。的值。

$$\frac{V_{3}-V_{1}}{R^{2}} = \frac{V_{2}-V_{1}}{R_{1}} = \frac{V_{2}-V_{4}}{R^{2}}$$

$$= 2 \sqrt{3^{2}} = \frac{R_{1}+R_{1}}{R_{1}} V_{1} - \frac{P_{1}}{P_{1}} V_{1} - \frac{P_{2}}{P_{1}} V_{1} - \frac{P_{2}}{P_{1}} V_{1} - \frac{P_{2}}{P_{1}} V_{1} - \frac{P_{2}}{P_{2}} V_{1} - \frac{P_{2}}{P_{2}} V_{1} - \frac{P_{2}-V_{1}}{P_{2}} = \frac{V_{2}-V_{2}-V_{2}}{P_{2}}$$

$$= 2 \sqrt{3^{2}} = \frac{P_{2}+R_{2}}{R_{1}} V_{1} - \frac{P_{2}-V_{2}}{R_{1}} = 2 \sqrt{2^{2}} = \frac{P_{2}-V_{2}-P_{2}}{P_{2}} = \frac{P_{2}-V_{2}-P_{2}}{P_{2}} = 2 \sqrt{2^{2}} = \frac{P_{2}-P_{2}}{P_{2}} = 2 \sqrt{2^{2}} = 2 \sqrt$$

- 16、 复习思考题 2.4.4 画出实现下列关系的电路
- (1) $v_0 = -3v_{i1} v_{i2} 0.2v_{i3}$, (设跨接在输出端和反相输入端之间的电阻 $R_2 = 100~k~\Omega$)
- (2) $v_0 = -10 \int_0^1 v_{i1}(t) dt 2 \int_0^1 v_{i2}(t) dt$ (给定 C_i=1uF, $v_o(t) \big|_{t=0} = 0$) 参考答案:

17、 习题 2. 4. 1 差分放大电路如图题 2. 4. 1 (教材图 2. 4. 1) 所示, 运放是理想的, 电路中 $R_4/R_1=R_3/R_2$ 。 (1) 设 $R_1=R_2$,从 B、A 两端看进去的输入电阻 $R_{id}=20$ k Ω , $A_v=10$,求在 $v_{i2}-v_{i1}$,作用下电阻值 R_1 、 R_2 、 R_3 和 R_4 。 ; (2) $v_{i2}=0$ 时,求从 v_{i1} 输入信号端看进去的输入电阻 R_{i1} 值; (3) $v_{i1}=0$ 时,求从 v_{i2} 输入端看进去的输入电阻 R_{i2} 值。

参考答案:

ツンクンドウ 103 / ンコリプロ 双上ム ロノ103 / ンプロ Pユ ハウ ロエ 0

解:(1) 由主教材中式(2.4.6)得知,在 $v_{i2} - v_{i1}$ 作用下输入电阻为

$$R_{id} = R_1 + R_2 = 20 \text{ k}\Omega$$
,选 $R_1 = R_2 = 10 \text{ k}\Omega$
由主教材中式(2.4.5)得

$$A_{vd} = \frac{v_o}{v_{i2} - v_{i1}} = \frac{R_4}{R_1} = 10$$

$$R_4 = 10R_1 = 10 \times 10 \text{ k}\Omega = 100 \text{ k}\Omega$$

图题 2.4.1

$$\frac{R_4}{R_1} = \frac{R_3}{R_2}$$
,所以 $R_3 = R_4 = 100 \text{ k}\Omega$

(2) $v_{i2} = 0$ 时, v_{i1} 作用下的输入电阻 R_{i1}

由理想运放的特性有 $v_p = v_n$, $i_2 = i_3$, $i_1 = i_4$ 。列出如下方程

$$\begin{cases} i_1 = \frac{v_{i1} - v_n}{R_1} \\ \\ \frac{v_{i1} - v_n}{R_1} = \frac{v_n - v_o}{R_4} \\ \\ v_n = v_p = \frac{R_3}{R_2 + R_3} v_{i2} \end{cases}$$

由上式可以解得

$$i_1 = \frac{1}{R_1} \left(v_{i1} - \frac{R_3}{R_2 + R_3} v_{i2} \right)$$

所以vi端的输入电阻为

$$R_{i1} = \frac{v_{i1}}{i_1} = \frac{v_{i1}R_1}{\left(v_{i1} - \frac{R_3}{R_2 + R_3}v_{i2}\right)}$$

由此看出, v_{i1} 端看进去的电阻与 v_{i2} 的大小有关系。当 $v_{i2}=0$ 时, $R_{i1}=\frac{v_{i1}}{i_1}=R_{1}$ 。

(3) $v_{i1} = 0$ 时, v_{i2} 作用下的输入电阻 R_{i2}

由 $i_1 = 0$, $i_2 = i_3$, 所以 $v_{i2} = (R_2 + R_3)i_2$, v_{i2} 作用下的输入电阻为

$$R_{i2} = \frac{v_{i2}}{i_2} = R_2 + R_3$$

18、 习题 $\frac{2.4.2}{-6}$ 一高输入电阻的桥式放大电路如图题 2.4.2 所示, (1) 试写 出 $v_o = f(\delta)$ 的表达式($\delta = \Delta R/R$); (2) 当 $v_i = 7.5$ V, $\delta = 0.01$ 时, 求 v_A 、 v_B 、 v_{AB} 和 v_o 。

图题 2.4.2

产:	由KCL:	VA=VI	NR = 5	1 Vi		
,	V= R	VA+R	RL RZ	VB2 -	$\frac{2}{2}$, $\sqrt{A} + \frac{R}{R}$	-, VB
	4 6	$\frac{p_1}{2p_1}V_i +$				· • • • · · · ·
		$\frac{1}{4+28}$		Wall		
~ Z) Vi=	7.5V. S VA=3.75V	- 0 0 7.T	A = 3 13 74	REAL PORT	3	
		× 4.02 7				·
	10 /21	T. 0 0 1		1	-1	

19、 习题 2. 4. 4(仪表放大器)、INA2128 型仪用放大器。电路如图题 2. 4. 4 所示, 其中 R_1 是外接电阻。(1)它的输入干扰电压 V_c = 1 V(直流),输入信号 V_{i1} =- V_{i2} =0. 04s in ω t V,输入端电压 V_i =(V_c +0. 04s in ω t) V, V_2 =(V_c -0. 04s in ω t) V,当 R_1 =1 k Ω 时,求出 V_3 、 V_4 、 V_3 - V_4 和 V_8 的电压 值;(2)当输入电压 V_{id} = V_1 - V_2 =0. 018 66 V 时,要求 V_8 = -5 V,求此时外接电阻 R_1 的值。

图题 2.4.4 仪用放大器

20、 习题 2.4.8(加减法电路)、加减运算电路如图题 2.4.8 所示, 求输出电压 v_{o} 的表达式。

$$\frac{1}{10} \frac{V_{i3} - V_{i1}}{10} + \frac{V_{i4} - V_{i1}}{20} = \frac{V_{i1}}{20}$$

$$= \frac{1}{10} \frac{V_{i3} - V_{i1}}{10} + \frac{1}{10} \frac{V_{i2} - 3V_{i1}}{10} = \frac{1}{10} \frac{V_{i3} + \frac{1}{10} V_{i3}}{10}$$

$$= \frac{1}{10} \frac{V_{i1} - V_{i1}}{10} + \frac{V_{i2} - V_{i1}}{10} = \frac{V_{i1} - V_{i2}}{10}$$

$$= \frac{1}{10} \frac{V_{i1} - V_{i1}}{10} + \frac{V_{i2} - V_{i2}}{10} = \frac{1}{10} \frac{V_{i2} - V_{i2}}{10}$$

$$= \frac{1}{10} \frac{V_{i3} - V_{i1}}{10} + \frac{1}{10} \frac{V_{i2} - 2V_{i2}}{10}$$

$$= \frac{1}{10} \frac{V_{i3} - V_{i1}}{10} + \frac{1}{10} \frac{V_{i2} - 2V_{i2}}{10}$$

$$= \frac{1}{10} \frac{V_{i3} - V_{i1}}{10} + \frac{1}{10} \frac{V_{i2} - 2V_{i2}}{10}$$

21、 习题 $\frac{2.4.14}{(微分电路)}$ 一实用微分电路如图题 $\frac{2.4.14}{(m)}$ 所示,它具有衰减高频噪声的作用。(1)确定电路的传递函数 $\frac{2.4.14}{(m)}$ 所示,它具有衰减高频噪声的作用。(1)确定电路的传递函数 $\frac{2.4.14}{(m)}$ 所示,它具有衰减高频噪声的作用。(1)确定电路的传递函数 $\frac{2.4.14}{(m)}$ 所以。(s) $\frac{1}{(m)}$ 化。(s) $\frac{1}{(m)}$ 化。(d) $\frac{1}{(m)}$ 化。(e) $\frac{1}{(m)}$ 化。(e) $\frac{1}{(m)}$ 化。(f) $\frac{1}{(m$

参考答案:

解:(1) 确定电路传递函数

$$\frac{V_{i}(s)}{R_{1} + \frac{1}{sC_{1}}} = -\frac{V_{o}(s)}{\left(sC_{2} + \frac{1}{R_{2}}\right)^{-1}}$$

$$\frac{V_{i}(s)sC_{1}}{1 + sR_{1}C_{1}} = -V_{o}(s)\frac{1 + sR_{2}C_{2}}{R_{2}}$$

$$\frac{V_{o}(s)}{V_{i}(s)} = -\frac{sR_{2}C_{1}}{(1 + sR_{1}C_{1})(1 + sR_{2}C_{2})}$$

所以

(2) 讨论电路的功能

当
$$R_1 = R_2 = R$$
, $C_1 = C_2 = C$ 时, $R_1 C_1 = R_2 C_2 = RC$, 则
$$\frac{V_o(s)}{V_o(s)} = -\frac{sRC}{(1 + sRC)^2}$$

$$A(j\omega) = \frac{V_{o}(j\omega)}{V_{i}(j\omega)} = -\frac{j\omega RC}{(1+j\omega RC)^{2}}$$
$$= -\frac{j\frac{\omega}{\omega_{H}}}{1-(\frac{\omega}{\omega_{H}})^{2}+2j\frac{\omega}{\omega_{H}}}$$

式中 $\omega_{\rm H} = \frac{1}{RC}$ 。下面分三种情况进行讨论。

- ① 当 $\omega = \omega_H$ 时 $A = -\frac{1}{2}$, 电路构成反相比例运算电路。
- ② 当ω>>ω, 时

$$A(j\omega) \approx -\frac{j\frac{\omega}{\omega_{H}}}{-\left(\frac{\omega}{\omega_{H}}\right)^{2} + j2\frac{\omega}{\omega_{H}}} = -\frac{j}{-\frac{\omega}{\omega_{H}} + 2j}$$

$$= j\frac{\frac{\omega}{\omega_{H}} + j2}{\left(\frac{\omega}{\omega_{H}}\right)^{2} + 4} = \frac{j\frac{\omega}{\omega_{H}}}{\left(\frac{\omega}{\omega_{H}}\right)^{2} + 4} - \frac{2}{\left(\frac{\omega}{\omega_{H}}\right)^{2} + 4}$$

因 $\omega >> \omega_{\rm H}, \frac{\omega}{\omega_{\rm H}} >> 4, 上式改写为$

$$A(j\omega) = j\frac{\omega_H}{\omega} - 2\left(\frac{\omega_H}{\omega}\right)^2 \approx j\frac{\omega_H}{\omega} = -\frac{1}{j\omega RC}$$

此时电路具有反相积分功能。

③ 当ω << ω_H

$$\begin{split} A(j\omega) &\approx -\frac{j\frac{\omega}{\omega_{H}}}{1+j2\frac{\omega}{\omega_{H}}} = \frac{-j\frac{\omega}{\omega_{H}}\left(1-j2\frac{\omega}{\omega_{H}}\right)}{\left(1-j2\frac{\omega}{\omega_{H}}\right)\left(1+j2\frac{\omega}{\omega_{H}}\right)} \\ &= -\frac{j\frac{\omega}{\omega_{H}} + 2\left(\frac{\omega}{\omega_{H}}\right)^{2}}{1+4\left(\frac{\omega}{\omega_{H}}\right)^{2}} \approx -j\frac{\omega}{\omega_{H}} = -j\omega RC \end{split}$$

电路具有微分功能。

由此可见,只有 v_1 的角频率 ω 比电路中RC的固有角频率 ω_H 小很多时,即 $f << f_H = \frac{1}{2\pi RC}$,电路才有微分功能。

22、 说明下图虚线框所示恒流源的原理,并说明如何选择稳压二极管、可变电阻 R_w ,限流电阻 R_6 ,PNP 晶体管等器件的规格。

参考答案:

原理: 稳压二极管使同相端、反向端电压恒定,使射极电流 iE 恒定, 当 BJT 工作在放大区时, 进而使 iC 恒定。

规格: Rw 使齐纳二极管工作在击穿线性区, R6 控制电流源输出大小, 晶体管规格是使它工作在放大区。