Homework - Week 6

Adam Collado

Contents

Question 5:											2
A) $5n^3 + 2n^2 + 3n = \Theta(n^3)$											2
B) $\sqrt{7n^2 + 2n - 8} = \Theta(n)$.											

Question 5:

Use the definitnion of Θ in order to show the following:

A)
$$5n^3 + 2n^2 + 3n = \Theta(n^3)$$

In order to prove that $5n^3 + 2n^2 + 3n = \Theta(n^3)$ we will show that the upper-bound is $5n^3 + 2n^2 + 3n = O(n^3)$ and the lower bound is $5n^3 + 2n^2 + 3n = \Omega(n^3)$.

First we will find the $O(n^3)$:

$$5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3 + 3n^3$$

= $10n^3$
= $c_1 n$

We can see that $5n^3 + 2n^2 + 3n = O(n^3)$ when c = 10 and $n_0 = 1$.

Now let us find $\Omega(n^3)$:

$$5n^3 + 2n^2 + 3n >= 5n^3$$
$$= 5n^3$$
$$= cn$$

We can see that $5n^3 + 2n^2 + 3n = \Omega(n^3)$ when c = 5 and $n_0 = 1$.

Since $T(N) = O(n^3)$ and $T(N) = \Omega(n^3)$, it follows that $5n^3 + 2n^2 + 3n = \Theta(n^3)$.

B)
$$\sqrt{7n^2 + 2n - 8} = \Theta(n)$$

In order to prove that $\sqrt{7n^2 + 2n - 8} = \Theta(n)$ we will show that the upper-bound $\sqrt{7n^2 + 2n - 8} = O(n)$ is and the lower bound is $\sqrt{7n^2 + 2n - 8} = \Omega(n)$.

First we will find the O(n):

$$\sqrt{7n^2 + 2n - 8} <= \sqrt{7n^2 + 2n - 8}$$

$$= \sqrt{7n^2 + 2n}$$

$$= \sqrt{7n^2 + 2n^2}$$

$$= \sqrt{9n^2}$$

$$= 3n$$

$$= cn$$

We can see that $\sqrt{7n^2 + 2n - 8} = O(n)$ when c = 3 and $n_0 = 1$.

Now let us find $\Omega(n)$.

$$\sqrt{7n^{2} + 2n - 8} >= \sqrt{7n^{2} + 2n - 8}$$

$$= \sqrt{7n^{2} + 2n^{2} - 8n^{2}}$$

$$= \sqrt{7n^{2} - 6n^{2}}$$

$$= \sqrt{n^{2}}$$

$$= n$$

$$= cn$$

We can see that $\sqrt{7n^2+2n-8}=\Omega(n)$ when c=1 and $n_0=1$. Since T(N)=O(n) and $T(N)=\Omega(n)$, it follows that $\sqrt{7n^2+2n^2-8n^2}=\Theta(n)$.