Architektura procesorů

Od automatu k RISC architektuře

- · Z počátku byly počítače specializované na určité výpočty a daly se přeprogramovat pouze změnou zapojení automaty
- Koncept Johna Von Neumanna položil základ pro univerzální programovatelné stroje. Díky tomuto konceptu vznikl procesor, který vykonává zadaný program

Von Neumannova architektura

- Nejvyšší úroveň abstrakce
- vstupy/výstupy periferie
- ALU kombinační obvod pro nejduležitější operace
- Řadič sekvenční obvod, který generují řídící signály pro ostatní bloky
 - o řídí přenosy po sběrnicích
 - o dekoduje instrukce a generuje příslušné řídící signály
 - o data jsou rovněž uložena v operační paměti a nelze rozpoznat zda jsou to data nebo intrukce

Harvardská architektura

Paměť programu

- typ flash
- instrukce a konstanty v programu jsou uchovány i době vypnutí

Paměť dat

- statická RAM
- data se ztratí po vypnutí

obecně

- Každá paměť může mít jinou velikost nejmenší adresovací jednotky
- program nemůže přepsat sám sebe
- Dvě sběrnice umožňují jednoduchý paralelizmus kdy lze přistupovat pro instrukce i data současně
- příklad ESP82668

Architektura současného počítače

Různé sběrnice podle účelu

obsahují adresy, data. řídící a stavové signály, jsou specificky definované. mají různé protokoly a časování

Procesor implementuje stále vetší čast

• integruje řadič operační paměti - dříve north bridge chipsetu základní desky

Paměťová sběrnice

- Direct media interface
- Chipset zajišťuje komunikaci mezi periferiemi a procesorem pomocí rozšiřujících a periferních sběrnic

Registry procesoru

- udržují stav procesoru
- slouží k odkládání mezivýsledků
- tvoří operandy aritmetických a logických operací
- typické registry
 - o program counter
 - o instrukční registr
 - o stavový registr
 - o stack pointer
 - General purpose registers

Řadič procesoru

- Realzuje instrukční cyklus
- Řídí vykonávání dílčích operací v rámci instrukčního cyklu
- generuje řídící signály
- Reaguje na stavové signály
 - o Přerušení
- Realizace
 - Obvodový řadič
 - konečný automat
 - D-flip flop + kombinační logika
 - Mikroprogramový řadič
 - ralizuje složitější instrukce

- má paměť pro uložení mikroinstrukcí
- instrukce procesoru je realizována vykonáním sady mikroinstrukcí

Instrukční cyklus počítače

- IF
 - o načtení instrukce
- ID
 - o dekódování instrukce
- OF
 - o načtení operandů
- EX
 - o vykonání instrukce
- WB
 - o zapsání výsledku
- Interrupt detection

Načtení a dekódování instrukce

o přerušení

Instrukce ve strojovém kódu

- instrukce s pevnou délkou
 - o instrukční repertoár může mít delší instrukce, ale ty jsou minoritně zastoupeny
- instrukce s proměnnou délkou
 - o délka se mění například od jednoho do několika bytů

Průběh instrukce

- Načtení operandu
 - o přesun operandu z registrů na vstupy ALU
- Vykonání instrukce
 - o provedení všech operací
- Zapsání výsledku
 - o zapsání do registrů nebo paměti
 - o U instrukce ADD se jedná o zápis výstupu ALU do registrů nebo paměti

typy instrukcí

- Aritmetické
- logické
- posuvy
- skokové
- přesuny

Instruction set architecture

- tvoří rozhraní mezi hardware a software
- má zásadní vliv na architekturu procesoru
- Zahrnuje
 - o Registry procesoru
 - o instrukční sadu
 - o kódování instrukcí do binární podoby
 - o adresuje prostory
 - o vyjímky

CISC

- Complex instruction set computer
- počítač s rozsáhlým souborem instrukcí

Instrukční sada obsahuje

- složité instrukce i jednoduché
 - o kopírování bloku dat do paměti
- typicky různá délka instrukcí
- Původní snaha: urychlit vykonávání instrukcí realizovat je stále složitější
- Pozitiva
 - o snížena četnost načítání instrukcí
 - snaha načíst pouze jednou
 - o možnost vícenásobného využití funkčních jednotek v různých fázích vykonávání instrukce
 - o Přítomnost mikroprogramového řadiče dává možnost změnit repertoár
- Negativa
 - O Složité instrukce jsou specializované
 - mnoho variant
 - o velký počet instrukcí
 - složitý dekodér

- o Nutnost mikroprogramovatelných řadičů
- o instrukce trvají různě dlouho

RICS

- Reduced instruction set computer
- v jednoduchosti je síla
- kódování stejným počtem bitů
- vykonáno v jednom nebo několika málo taktech hodinového signálu
- Nemůžeme dělat složité instrukce ale pomocí jednoduchých dosáhnout stejného výsledku

interlocked pipeline – podmínky při řazení instrukcí do pipeline zajišťuje přímo procesor **non-interlocked pipeline** - podmínky při řazení instrukcí hlídá programátor (překladač)

Porovnání vlastností CISC a RISC

	CISC	RISC
Časová složitost	může probíhat mnoho	většina trvá jeden
instrukcí:	hodinových cyklů	hodinový cyklus
Práce s pamětí:	jednoduchá	složitější
Instrukce:	komplexní (například více operandů než dva)	primitivní standardizované instrukce
Počet instrukcí	průměrně 100-200 i více	většinou méně než 100
Instrukce, které mohou přistupovat do paměti:	Load a Store	téměř všechny.

Sběrnice

- Sběrnice je skupina vodičů, které propojují dvě a více zařízení
- skupina vodičů tvoří určitý logický celek sloužící k jednomu účelu
- u sběrnic musí být definováno CLOCK signál případně protokol, kterého jsou data přenášeno (např. hrana clock signálu)
- V daném okamžiku může být připojeno pouze jedno výstupní zařízení

Taxonomie sběrnice

účelu

- adresová
 - o přenos adresy mezi procesorem, pamětí a ostatními částmi systému
- datová
 - o přenost dat mezi ||-
 - o za datovou sběrnici můžeme pokládat za jakoukoliv sběrnici, po které se přenášejí data
- řídící sběrnice
 - o slouží pro přenos řídících signálů
 - READ
 - WRITE
 - BYTE ENABLE
- systémová sběrnice
 - o sběrnice pro přenos dat mezi procesorem, pamětí a periferiemi
 - o typicky zahrnuje adresovou, datovou a řídící sběrnici, ale může se jednat i jednu sběrnici jejíchž protokol implementuje přenos adresy dat a realizaci čtecích a zapisovacích cyklů do paměti a periferií
 - Transakce na systémové sběrnici jsou přímo vyvolány instrukcemi pro zápis/čtení paměti a ve stupně/výstupním adresním prostoru
 - o příklady
 - PCI, PCIe, HyperTransport, DMI
- periferní sběrnice
 - o sběrnice mezi řadičem periferních sběrnic a periferiemi na dané sběrnici
 - příklady
 - USB, SATA, SAS, SCSI, SMBus

přenos dat

- Jednosměrná
 - o typicky adresová sbernice
 - o dvě jednosměrné sběrnice ale v opačném směru realizuje full duplexní přenos dat mezi dvěma body
 - cache
 - Umožňuje broadcast
- obousměrná
 - o přenos jedním a druhým smerem se multiplexuje v čase
 - o může probíhat pouze přenos jedním směrem zároveň
 - o half duplex
 - o data můžeme přenášet na více míst
 - \circ pokud je třeba data z více míst propojených sběrnicí, musí se vyloučit kolize
 - o tom rozhoduje arbitrace sběrnice

Způsob přenosu dat

- Paralerní sběrnice
 - o přenos dat probíhá paralelně po více vodičích
 - o data ale musí dorazit současně

- o při dnešních rychlostech přenosu hraje roli délka vodičů
- o kompenzace meandrem
- Seriová sběrnice
 - o přenos dat probíhá postupně
 - o přenos bitů je roložen v čase
 - O Jednotlivé bity jsou přenášeny jeden za druhým v intervalech

