

Parameter Estimation

Ben Gravell

benjamin.gravell@utdallas.edu

The Erik Jonsson School of Engineering and Computer Science
The University of Texas at Dallas
800 W. Campbell Rd.
Richardson, TX 75080

Outline

- Parameter estimation
- Laws of large numbers
- 3 Central limit theorem

Parameter estimation

Parameter estimation

In many applications:

- \blacksquare Distribution of a random variable X is unknown or too complicated to compute
- lacktriangle Only need some parameter heta that characterizes the distribution

Goal: Obtain a good approximation of parameter θ based only on observations of X.

Estimator

An estimator $\hat{\Theta}$ is a function of the data $\{X_i\}$ that approximates θ , but is not an explicit function of θ .

How do we judge the quality of an estimator?

Consistency

An estimator $\hat{\Theta}_n$ computed from n samples is consistent if

$$\lim_{n \to \infty} P[|\hat{\Theta}_n - \theta| > \varepsilon] = 0 \tag{1}$$

for any positive tolerance $\varepsilon > 0$.

Consistency means "we can guarantee arbitrarily accurate estimates if we use an arbitrarily large amount of data"

What we really want:

Confidence bound

An estimator $\hat{\Theta}_n$ is arepsilon-accurate with $1-\delta$ confidence if

$$P[|\hat{\Theta}_n - \theta| > \varepsilon] \le \delta \tag{2}$$

- This is like soft consistency w/ finite data
- Consistency allows us to take ε and δ as small as we like (so long as we can pay for it with infinite data $n \to \infty$)
- lacksquare Quantifying n
 - Can be done exactly in certain special cases
 - e.g. estimating the mean of a Gaussian
 - Can be done conservatively using concentration inequalities in more general cases
 - e.g. estimating the mean of any distribution w/ finite variance

Confidence interval

Consider an estimator $\hat{\Theta}_n$. Fix the number of samples n and fix a failure probability δ . The $1-\delta$ confidence interval is the smallest accuracy tolerance ε such that

$$P[|\hat{\Theta}_n - \theta| > \varepsilon] \le \delta \tag{3}$$

i.e. the estimator $\hat{\Theta}_n$ is ε -accurate with $1-\delta$ confidence.

Basically the same as the confidence criterion where we fixed ε and sought n, but here we fix n and seek ε

Many classical results use two proxies for the ε - δ criterion:

- Bias
 - "systematic errors"
 - "location"
- Variance
 - "random errors"
 - "spread"

Bias

The bias of an estimator $\hat{\Theta}$ is

$$|\mathbb{E}[\hat{\Theta}] - \theta|.$$
 (4)

The estimator is unbiased if

$$\mathbb{E}[\hat{\Theta}] = \theta. \tag{5}$$

Variance

The variance of an estimator $\hat{\Theta}$ is

$$\mathbb{E}[(\hat{\Theta} - \theta)^2]. \tag{6}$$

The estimator is minimum variance if

$$\hat{\Theta} = \underset{\Theta}{\operatorname{argmin}} \ \mathbb{E}[(\Theta - \theta)^2]. \tag{7}$$

Sometimes bias can be eliminated without affecting the variance

■ We will see an example of such a correction

Sometimes bias can only be reduced at the expense of higher variance

■ In machine learning this is a well-studied phenomenon called the bias-variance tradeoff

Sample average estimator

Sample average estimator of a RV

The sample average estimator of a random variable X given N observations $\{X_i\}_{i=1}^N$ is

$$\hat{\mu}_X(n) := \frac{1}{N} \sum_{i=1}^N X_i$$

Sample average estimator of a function of a RV

The sample average estimator of a function g of a random variable X given N observations $\{X_i\}_{i=1}^N$ is

$$\hat{\mu}_{g(X)}(n) := \frac{1}{N} \sum_{i=1}^{N} g(X_i)$$

Properties of the sample average: bias

It's easy to show that the sample average is unbiased:

$$\mathbb{E}\left[\hat{\mu}_X(n)\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n X_i\right] \qquad \text{(def. of } \hat{\mu}_X(n)\text{)}$$

$$= \frac{1}{n}\sum_{i=1}^n \mathbb{E}\left[X_i\right] \qquad \text{(linearity of } \mathbb{E}[\cdot]\text{)}$$

$$= \frac{1}{n}\sum_{i=1}^n \mu_X \qquad \text{(def. of } \mu_X\text{)}$$

$$= \frac{1}{n} \cdot n \cdot \mu_X \qquad \qquad (8)$$

$$= \mu_X \qquad \qquad (9)$$

Properties of the sample average: variance

The variance of the sample average is not much harder to find:

$$\begin{split} \sigma_{\hat{\mu}}^2(n) &:= \mathbb{E}\left[(\hat{\mu}_X(n) - \mathbb{E}\left[\hat{\mu}_X(n)\right])^2 \right] & \text{(def. of } \sigma_{\hat{\mu}}^2(n)) \\ &= \mathbb{E}\left[(\hat{\mu}_X(n) - \mu_X)^2 \right] & \text{(since } \hat{\mu} \text{ unbiased)} \\ &= \mathbb{E}\left[\left(\frac{1}{n} \sum_{i=1}^n \left(X_i - \mu_X \right) \right)^2 \right] & \text{(def. of } \hat{\mu}) \\ &= \mathbb{E}\left[\frac{1}{n^2} \sum_{i=1}^n \left(X_i - \mu_X \right)^2 \right] + \mathbb{E}\left[\frac{1}{n^2} \sum_{i=1}^n \sum_{j \neq i}^n \left(X_i - \mu_X \right) \left(X_j - \mu_X \right) \right] \\ & \text{(expand squared sum)} \\ &= \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}\left[\left(X_i - \mu_X \right)^2 \right] + \frac{1}{n^2} \sum_{i=1}^n \sum_{i \neq j}^n \mathbb{E}\left[\left(X_i - \mu_X \right) \left(X_j - \mu_X \right) \right] \\ &= \frac{1}{n^2} \sum_{i=1}^n \sigma_X^2 + \frac{1}{n^2} \sum_{i=1}^n \sum_{i \neq j}^n 0 & \text{(def. of } \sigma_X^2, \text{ uncorrelation of } X_i) \\ &= \sigma_X^2/n & \text{(10)} \end{split}$$

Properties of the sample average: confidence

We can get a **confidence bound** by using the Chebyshev inequality:

$$P[|\hat{\mu}_X(n) - \mu_X| \ge \varepsilon] \le \frac{\sigma_{\hat{\mu}}^2(n)}{\varepsilon^2} = \frac{1}{n} \cdot \frac{\sigma_X^2}{\varepsilon^2}$$
 (11)

Taking $n \to \infty$ reveals that the sample average is consistent:

$$\lim_{n \to \infty} P\left[|\hat{\mu}_X(n) - \mu_X| \ge \varepsilon\right] = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{\sigma_X^2}{\varepsilon^2} = 0 \tag{12}$$

Remark: If we knew the form of the distribution e.g. Gaussian we could get an exact confidence bound using the standard normal CDF.

Remark: This confidence bound involves the true variance σ_X^2 , which is typically unknown. If X is Gaussian and σ_X^2 is replaced by a sample variance estimate, an exact confidence bound can still be obtained using the student T-distribution CDF - see Ch. 6.3 of [1].

Sample variance

So far we estimated the mean - what about estimating the variance?

If we knew the true mean μ we could create the variance estimator

$$\hat{\sigma}_X^2(n) = \frac{1}{n} \sum_{i=0}^n (X_i - \mu)^2$$
 (13)

But of course we don't know the true mean μ !

Natural idea: just use the sample mean in place of the true mean:

$$\hat{\sigma}_X^2(n) = \frac{1}{n} \sum_{i=0}^n (X_i - \hat{\mu})^2$$
 (14)

But there is an issue with this...

Homework: Sample variance

Homework P4-1

Compute the expectation of the sample variance estimator

$$\hat{\sigma}_X^2(n) = \frac{1}{n} \sum_{i=0}^n (X_i - \hat{\mu}_X(n))^2$$
 (15)

where

$$\hat{\mu}_X(n) = \frac{1}{n} \sum_{i=0}^n X_i$$
 (16)

- **1** Is this sample variance estimator $\hat{\sigma}_X^2(n)$ biased?
- If so, how much is the bias?
- **3** How does the bias change with the number of samples n?
- 4 What correction needs to be made to $\hat{\sigma}_X^2(n)$ in order to make the estimator unbiased?

Maximum likelihood estimation

Maximum likelihood estimation provides a principled way to design estimators based on optimization.

Likelihood

The likelihood function $L(\theta)$ of the random variables $\{X_i\}_{i=1}^n$ for outcome $\{x_i\}_{i=1}^n$ under parameter θ is the parametric joint pdf

$$L(\theta) = f_{\{X_i\}_{i=1}^n}(\{x_i\}_{i=1}^n; \theta).$$
(17)

As a special case, if $\{X_i\}_{i=1}^n$ are i.i.d. random variables then

$$L(\theta) = \prod_{i=1}^{n} f_X(x_i; \theta)$$
 (18)

Maximum likelihood estimation

Maximum likelihood estimate

The maximum likelihood estimate for outcome $\{x_i\}_{i=1}^n$ is the parameter $\theta^*(\{x_i\}_{i=1}^n)$ that maximizes the likelihood, i.e.

$$\theta^*(\{x_i\}_{i=1}^n) = \underset{\theta}{\operatorname{argmax}} \ L(\theta) \tag{19}$$

The maximum likelihood estimator is the random variable

$$\hat{\theta} = \theta^*(\{X_i\}_{i=1}^n) \tag{20}$$

MLE: mean of a Gaussian

We start by assuming the *form* of the distribution is Gaussian with variance σ^2 . We are estimating the mean, so the parameter is $\theta = \mu$

The likelihood is

$$L(\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$
 (21)

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(\sum_{i=1}^n -\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right) \tag{22}$$

Since the log function is monotonic increasing, the argmax of $L(\mu)$ is the same as the argmax of $\log L(\mu)$. The log is easier to work with.

$$\log L(\mu) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$$
 (23)

MLE for mean of a Gaussian

To maximize the log likelihood we find the stationary point

$$0 = \frac{\partial \log L(\mu)}{\partial \mu} \bigg|_{\mu^*} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu^*)$$
 (24)

which implies the MLE is

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{25}$$

which happens to be the sample mean.

Homework: MLE for variance of a Gaussian

Homework P4-2: Derive the expression for the maximum likelihood estimator of the mean and variance of a Gaussian. Is the MLE variance biased?

Hint: Use the log-likelihood

$$\log L(\mu, \sigma) = -\frac{n}{2}\log(2\pi) - n\log(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$
 (26)

Suppose we wish to estimate a vector parameter which is exposed through the linear observation model

$$Y = H\theta + N \tag{27}$$

- Y is an observation vector
- *H* is a known constant observation matrix
- lacktriangledown is an unknown constant parameter vector
- N is a random observation noise vector

The observation Y is directly measured, but the noise N is not.

Define the residual

$$E = Y - H\theta \tag{28}$$

which measures the error between the observation and its expected value.

A natural idea is to choose a parameter estimate that minimizes an objective function $v(\theta)$ which increases with the size of the residual.

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \ v(\theta) \tag{29}$$

In particular, choose $v(\theta)$ as the squared norm of the residual:

$$v(\theta) = ||E||^2 = (Y - H\theta)^{\mathsf{T}}(Y - H\theta) \tag{30}$$

Next we need some basic facts from optimization and matrix calculus.

Fact 1: The minimum of a continuous function $f(\theta)$ can only occur at a stationary point where the gradient vanishes

$$0 = \frac{\partial f(\theta)}{\partial \theta} \tag{31}$$

Fact 2: The derivative of an affine form is

$$\frac{d}{dx}a^{\mathsf{T}}x = a\tag{32}$$

and the derivative of a quadratic form is

$$\frac{d}{dx}x^{\mathsf{T}}Qx = 2Qx\tag{33}$$

Since $v(\theta)$ is a quadratic form, we can compute the minimizer in closed-form by finding the **stationary point** where the gradient of the objective vanishes:

$$0 = \frac{\partial v(\theta)}{\partial \theta} \Big|_{\hat{\theta}} = 2(H^{\mathsf{T}}H)\hat{\theta} - 2H^{\mathsf{T}}Y \tag{34}$$

Rearranging yields the so-called normal equation

$$(H^{\mathsf{T}}H)\hat{\theta} = H^{\mathsf{T}}Y \tag{35}$$

If $H^{\mathsf{T}}H$ is invertible, we obtain the least-squares estimate (LSE)

$$\hat{\theta} = (H^{\mathsf{T}}H)^{-1}H^{\mathsf{T}}Y \tag{36}$$

Remark: If N is a white Gaussian noise, i.e. $N \sim \mathcal{N}(0,I)$, then it can be shown that the LSE is an unbiased, minimum variance, and maximum likelihood estimator.

Homework P4-3: We are given the following data:

$$\begin{bmatrix} 6.2 \\ 7.8 \\ 2.2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} \theta + \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
 (37)

where n_i are random variables. Find a least-squares estimate for θ .

Asymptotics

Asymptotics

In this section we see major results from classical statistics

Claims are asymptotic; they only hold as the amount of data $\to \infty$

Claims are all about convergence of some kind

Contrast with finite-sample results c.f. [2]

Weak law of large numbers (WLLN)

Weak law of large numbers

Let X_i be an infinite sequence of i.i.d. random variables with a finite, common true mean μ and variance σ^2 . Consider the sample mean

$$\hat{\mu}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (38)

Then for any fixed positive tolerance $\varepsilon > 0$ we have

$$\lim_{n \to \infty} \mathbb{P}\left[|\hat{\mu}(n) - \mu| < \varepsilon\right] = 1 \tag{39}$$

i.e. the sample mean converges in probability to the true mean.

Proof: We already proved that the sample mean is consistent, which is the same thing as the WLLN.

Strong law of large numbers (SLLN)

Strong law of large numbers

Let X_i be an infinite sequence of i.i.d. random variables with a finite, common true mean μ and variance σ^2 . Consider the sample mean

$$\hat{\mu}(n) = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{40}$$

Then we have

$$\mathbb{P}\left[\lim_{n\to\infty}\hat{\mu}(n)=\mu\right]=1\tag{41}$$

i.e. the sample mean converges almost surely to the true mean.

Proof: More involved than the WLLN. Also SLLN implies WLLN.

Notice the difference between weak and strong laws:

- WLLN: Sequence of success probabilities approaches one
- 2 SLLN: Sequence of sample means approaches the true mean

Central limit theorem

Central limit theorem

Let X_i be an infinite sequence of independent random variables with cdf's F_{X_i} , finite means μ_i and finite variances σ_i^2 .

Define the variance sum s_n^2 and normalized random variable \mathbb{Z}_n

$$s_n^2 = \sum_{i=1}^n \sigma_i^2, \quad Z_n = \sum_{i=1}^n (X_i - \mu_i)/s_n$$
 (42)

Suppose there exists $\varepsilon>0$ and for all n sufficiently large that

$$\sigma_i < \varepsilon s_n, \quad i = 1, \dots, n$$
 (43)

Then

$$\lim_{n \to \infty} F_{Z_n}(z) = \Phi(z) \tag{44}$$

i.e. Z_n converges in distribution to a standard normal.

Homework: Central limit theorem

Homework P4-4: Let $\{X_i\}_{i=1}^n$ be a sequence of n i.i.d. random variables. Compute the approximate probability

$$\mathbb{P}[a \le S \le b] \tag{45}$$

of the sum

$$S(n) = \sum_{i=1}^{n} X_i \tag{46}$$

using the central limit theorem.

For concreteness, assume the X_i are uniform random variables on the unit interval [0,1], n=100, a=45, and b=52.5.

Bibliography I

- John Woods and Henry Stark.
 Probability, Statistics, and Random Processes for Engineers.
 Pearson Higher Ed, 4 edition, 2011.
- [2] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge University Press, 2019.

https://people.eecs.berkeley.edu/~wainwrig/BibPapers/Wai19.pdf.