Chinmay Talegaonkar

🛪 Website | 🗷 ctalegaonkar@ucsd.edu | 🖬 LinkedIn | 🗘 GitHub | 🕿 Google Scholar

EDUCATION

University of California, San Diego

Ph.D. in Electrical and Computer Engineering

Advisor: Prof. Nicholas Antipa

San Diego, CA

Sept 2022 - Present

GPA: 4.0/4.0

University of California, Los Angeles

M.S. in Electrical and Computer Engineering

Advisor: Prof. Achuta Kadambi

CPA: 4.0/4.0

Indian Institute of Technology, BombayMumbai, IndiaB. Tech. in Electrical Engineering2015 - 2019Minor in Computer ScienceGPA: 9.07/10.0

Advisor: Prof. Ajit Rajwade

Work Experience

Research Intern $San\ Diego,\ CA$ $Qualcomm\ AI$ $June\ 2023-Sept\ 2023$

Qualcomm AI

• Developed a memory-efficient generalizable NeRF-like method to create human avatars from

- monocular videos. Achieved comparable accuracy to existing methods. Patent Pending
- Invented a point-based 3D scene representation for human modeling that reduces memory usage by 10x and training time by 100x respectively.
- Engineered an end-to-end pipeline to estimate SMPL mesh, and segmentation masks from videos.

Senior Deep Learning Engineer

Mountain View, CA May 2022 - Sept 2022

Intrinsic.ai

- Led the development of a novel HDR fusion algorithm, resulting in higher pose estimation accuracy for difficult lighting scenarios.
- Implemented a deep learning-based feature extractor to improve stereo matching and point cloud generation from a multi-view camera setup.

Senior Deep Learning Engineer

Palo Alto, CA

Akasha Imaging - acquired by Intrinsic.ai (an Alphabet company) in May 2022.

May 2021 - May 2022

- Developed an end-to-end deep learning based multi-view pose estimation pipeline with more than 99% reliability and sub-millimeter accuracy. This led to the company's first product order.
- Engineered a synthetic data generation pipeline to generate training data for segmentation and keypoint estimation algorithms.
- Contributed to tools for ML Ops, CI/CD testing, pose evaluation frameworks, and data collection setups.

Deep Learning Software Intern NVIDIA

Santa Clara, CA

June 2020 - Sept 2020

- Optimized CUDA kernels for backpropagation in 2D and 3D convolution layers in popular CNN architectures, resulting in 30% speedup.
- Implemented a linearized thread launching algorithm resulting in over 30 % speedup for 3D convolutions with low channel counts.
- Enabled complex valued convolution kernels in CUTLASS achieving more than 90% compute resource utilization.

AI/ML Compute DevTech Intern

Bengaluru, India

NVIDIA

May 2018 - July 2018

- Developed CUDA kernels for optimizing routing layer and back-propagation in capsule networks resulting in a 2x speedup
- Parallelized end-to-end implementation of DBscan using CUTLASS and thrust libraries for NVIDIA Rapids \square platform

PUBLICATIONS

Pose Estimation of Buried Deep-Sea Objects using 3D Deep Learning Models

Jerry Yan*, *Chinmay Talegaonkar**, Nicholas Antipa, Eric Terrill, Sophia Merrifield OCEANS Conference and Expositions, 2024. Paper Z Code Z

Visual Physics: Discovering Physical Laws from Videos

Pradyumna Chari*, *Chinmay Talegaonkar**, Yunhao Ba*, Achuta Kadambi

ICCP 2020 Poster, CVPR 2020 Tutorial. arXiv PrePrint 🗹

Journal Version: On learning mechanical laws of motion from video using neural networks.

IEEE Access, 2023. Paper 🗹

Compressive Phase Retrieval Under Poisson Noise

Chinmay Talegaonkar, Parthasarthi Khirwadkar, Ajit Rajwade

IEEE International Conference on Image Processing (ICIP) 2019. Paper

Performance Bounds For Tractable Poisson Denoisers With Principled Parameter Tuning Chinmay Talegaonkar, Ajit Rajwade

IEEE Global Conference on Signal and Information Processing (GlobalSIP) 2018. Paper 🗹

KEY SKILLS

Programming Languages: C & C++, CUDA, Bash, Python, MATLAB

Frameworks: Pytorch, OpenCV, scikit-learn, numpy, scipy, pandas, blender, mitsuba3, Slang.D

Development Tools: Github, Jenkins, Google Cloud, Docker

Research Projects

Exact Volume Rendering of 3D Gaussians

Aug 2024 - Present

Guide: Prof. Nicholas Antipa and Prof. Ravi Ramamoorthi

Developed a method for fast, exact volume rendering of 3D Gaussians. Currently exploring potential applications in Computed Tomography.

Defocus Blur Rendering with 3D Gaussian Splatting

Jan 2024 - Present

Guide: Prof. Nicholas Antipa and Prof. Ravi Ramamoorthi

Devised an approach for rendering 3D Gaussians with defocus blur. Demonstrated applications in novel view synthesis from blurry images.

Monocular Depth Diffusion Models with Defocus Cues

Jan 2024 - Present

Guide: Prof. Nicholas Antipa

Developed a test-time optimization method leveraging lens blur to remove depth ambiguities in monocular depth diffusion models. The proposed approach also enables metric depth estimation through these models.

Novel View Synthesis in the Presence of Phase Optics

Sept 2022 - Dec 2022

Guide: Prof. Ravi Ramamoorthi

NeRF-based view synthesis from sparse views captured using a microlens array Code 🗹 Report 🗹

TEACHING ASSISTANT

• Introduction to Quantum Physics	IIT Bombay, Fall 2016
• Software Systems Lab	UCLA, Winter 2020
• Reinforcement Learning	UCLA, Spring 2020
• Introduction to Computer Vision	UCLA, Winter 2021
• Computational Imaging	UCSD, Spring 2024