Problem 1

Problem 1

Use the K-Means Algorithm to create two clusters for the following data:

Assume A(2,2) and C(1,1) are the initial centers of the two clusters. For the first iteration, cluster the points, and update the centers.

Center Pt A	Center H C
(2,2)	(1,1)
$B(3,2)$ $(3-2)^2 + (2-2)^2$	$(3-1)^{2}+(2-1)^{2}$ = 4+1=5
$D(3,1) (3-2)^{2} + (1-2)^{2}$ = 2	$(3-1)^{2}+(1-1)^{2}$ = 4
$E(1.5,0.5)$ $(1.5-2)^{2}+(0.5-2)^{2}$	(1.5-1)2 (05-1)2
=0.25 + 2.15	0.25 + 0.25

Center for (1+1.5), (1+0.5) = (1.25, 0.75)/

put $CkE = \frac{1}{2} = (1.25, 0.75)$ /

Center for (2+3+3), (2+2+1) = $(\frac{8}{3}, \frac{5}{3})$ Doint A.B.D.

Show that if rik's are fixed Egnci) J= ZZ rik || Xi- MH/2 can be m7n7m7zed by choosing UK as shown in eqn(4): $U_K = \frac{\sum_i V_{iK} X_i}{\sum_i V_{iK}}$ J= ZZ FIK || XI-UK||2 If Pik is fixed, only one

T= ||XI-UK||2 of the Fix is not zero, so this

= FIK || XI-UK||2

Note that I want the service of the servi = E rik (XiXi-2MKXi + MKME) expand 1 - 2 Tik (-2X7 +2Mx) = 0 puttal derivative to zero => ZrikXi - ZrikUk = 0 => UK = Fil Fix XT & Egn (4) Z rik J=27/ik >D, SO Egn(1) 75 mm7m72ed by choosing Uk's shown in Egn(4).