量子カオスとしての Sachdev–Ye–Kitaev 模型とブラック ホール

2019年1月14日

目次

1	はじめに: SYK 模型とは	1
2	2 点関数	3
2.1	シュウィンガー・ダイソン方程式	3
2.2	共形不変性	4
2.3	ラージ q 極限	
2.4	自由エネルギー及びエントロピー	7
3	4 点関数	9
3.1	K_c の対角化	10
3.2	h=2 の場合の取り扱い	17
3.3	4 点関数: 最終結果	24
4	リパラメトリゼーションの有効理論	25
5	量子カオスとしての SYK 模型	27
5.1	量子重力の揺らぎ	27
5.2	SYK 模型のスペクトラル形状因子	28
5.3	スペクトラル形状因子の G 、 Σ による記述	28
6	量子カオスとしてのブラックホール	29
7	終わりに	30
付録 A	有効作用の計算	31
付録 B	係数 b の計算	34
付録 C	量子カオス	35
C.1	はじめに: カオスとは何か	35
C.2	時間順序外相関関数	37
C.3	スペクトラル統計	37

1 はじめに: SYK 模型とは

Sachdev-Ye-Kitaev(SYK) 模型とは、Kitaev が AdS/CFT 対応の簡単な模型として提唱した ものであり、そのハミルトニアンは次のように与えられる:

$$H = \frac{1}{4!} \sum_{i,j,k,l=1}^{N} J_{ijkl} \psi_i \psi_j \psi_k \psi_l. \tag{1}$$

ここで ψ はマヨラナフェルミオンである。また J_{ijkl} は乱数で与えられる時間に依らない反対称テンソルであり、その分布は

$$P(J_{ijkl}) = \sqrt{\frac{N^3}{12\pi J^2}} \exp\left(-\frac{N^3}{12J^2}J_{ijkl}^2\right).$$
 (2)

に従う。このようなパラメータを持つ理論は quenched disorder を持つといい、この J_{ijkl} で取った平均を disorder average と呼ぶ。SYK 模型において次元を持つパラメータのひとつは (2) 式の J であり、[J]=1 である。(1) 式の大きさはこの J によって決まる。

SYK 模型を調べるモチベーションは複数あり、大別して以下の 3 つに分けることができる:

強結合領域で可解な模型である. ラージ N 極限を取るとリーディングオーダーでのファインマンダイアグラムが単純なものとなり、その和を取ることによって強結合領域での相関関数が計算可能である。

最大にカオスである。カオスはリャプノフ指数によって計られ、その最大値はアインシュタイン 重力におけるブラックホールが持ち、 $2\pi/\beta$ となる [5]。強結合領域における SYK 模型もこの最大値を満たす事が知られている [1]。

共形不変性が現れる. 低エネルギーでは2点関数が共形不変性を持つ。

大抵の場合、理論を解析する際には摂動論が適用できる範囲でしか計算する事ができないが、SYK 模型では一つ目の性質により強結合領域でも計算する事が可能であり、大きなモチベーションの一つとなっている。一つ目と二つ目を組み合わせると非常に興味深い。古典論では「可解である」という事と可積分系である事は等しく、従ってカオスとは相容れない [3]。これが量子論では必ずしもそうではない事を SYK 模型は示している。また二つ目と三つ目の性質により、何らかの形におけるアインシュタイン重力理論が AdS/CFT 対応での双対理論として期待される。

2 節では SYK 模型のラージ N 極限における構造を調べる。SYK 模型はある確率分布に従う乱数 J_{ijkl} を持つ。2 節の諸々の結果は J_{ijkl} に対して平均操作を施したものである。この結果、2 つの双局所場 (bi-local field) $G(t_1,t_2)$ と $\Sigma(t_1,t_2)$ が現れる。分配関数においてフェルミオンを積分して取り払うと、これらの双局所場についての作用を得る事ができ、G や Σ について変分を取れ

ばそれらに関する運動方程式 (シュウィンガー・ダイソン方程式) を得る。G の古典解はフェルミオンの 2 点関数に等しい。シュウィンガー・ダイソン方程式は一般のエネルギースケールにおける解析解は知られておらず、数値的な計算がメインである。また低エネルギー極限では共形対称性を持ち、解析的な解の具体型も存在する。解析解が知られているケースはこの場合以外にも、相互作用するフェルミオンの数 q についてラージ極限を取った場合や、q=2 とした場合もある (ただし本論文では q=2 のケースは重要ではないので扱わない)。特にラージ q について得た G を用いる事で自由エネルギーやエントロピーを 1/q で展開した表式で得る事ができる。これらの諸々の熱力学的量は後の量子カオスにおける性質を述べる上で重要な役割を持つ。

3節では4点関数の解析解について述べる。特にラージNにおけるリーディングオーダーFを 調べるのだが、ダイアグラムは書き下せても一般的な解析解は知られていない。F に寄与するダイ アグラムはラダーダイアグラムと呼ばれるものであり、F はその総和で与えられる。ラダーダイア グラムは図4のように、両側にレールがあり、それに接するように内側に輪が存在する。n個、お よび n+1 個の輪を持つダイアグラムの間には積分核 K で与えられる漸化式が存在し、ダイアグ ラムの総和は K の幾何級数で与えられる。従ってリーディングオーダーは $\mathcal{F}=rac{1}{1-K}\mathcal{F}_0$ で与えら れる。ここで \mathcal{F}_0 は輪を持たないダイアグラムである。概念的には簡単であるが、K の作用する関 数空間についてある程度理解する必要があり、実際の計算はとても複雑である。そこで2点関数で は共形極限における解析解 G_c が調べられている事を思い出し、4点関数でもそれを用いる事にす る。基本的に4点関数のリーディングオーダー \mathcal{F} は2点関数で構成されるので、原理的には G_c を用いて解析は可能であり、実際に解を導く。ただしそれでも、そこまでの道のりがかなり長い。 一次元における共形対称性は $SL(2,\mathbb{R})$ であり、これを K の対角化において活用する。これによっ て一応の計算結果が示されるが、結果の表式に存在する級数は発散する項を含む。この発散項は、 K=1となるような K の固有関数の存在によってもたらされる。この発散を処理するためには、 リパラメトリゼーション不変性の成り立つ低エネルギー極限から少し高エネルギー側にずれる必 要がある。すなわち、有限な解ではリパラメトリゼーション不変性は自発的にも、また陽にも破れ る。発散項はこれによって有限になり、共形対称性を持たない。

2 2 点関数

ここではラージNにおけるSYK模型の2点関数について述べる。最初に2点関数の従うシュウィンガー・ダイソン方程式を示し、そこからリーディングオーダーで寄与するファインマンダイアグラムがメロンダイアグラムと呼ばれるものである事を見る。

次にシュウィンガー・ダイソン方程式が低エネルギー極限でリパラメトリゼーション不変性を持つ事を見る。この不変性は、古典解として共形対称性を持つものを選ぶ事によって自発的に破れる。この共形古典解を用いて、第3節で4点関数の解析を行う。

シュウィンガー・ダイソン方程式の解析解は共形古典解の他にも、相互作用するフェルミオンの数 q についてラージ極限を取ったものや、q=2 の時にも知られている。ただし本論文では q=2 のケースは重要ではないので扱わない。特にラージ q については自由エネルギーやエントロピーにも触れる。

2.1 シュウィンガー・ダイソン方程式

図 1 ラージ N 極限において 2 点関数に寄与する最初の補正ダイアグラム. 特に q=4 の場合について描画している. 灰色の丸と黒い丸はそれぞれ完全な 2 点関数および 1 粒子相互作用を表している.

SYK 模型の作用は

$$I = \int dt \left(\frac{1}{2} \sum_{i=1}^{N} \psi_i \frac{d}{dt} \psi_i - \frac{1}{4!} \sum_{i,j,k,l=1}^{N} J_{ijkl} \psi_i \psi_j \psi_k \psi_l \right)$$
 (3)

である。これを J_{ijkl} について期待値を取り、その後フェルミオンを積分するために 2 つの双局所

場 $G(t_1, t_2)$, $\Sigma(t_1, t_2)$ を導入すると

$$\frac{I_{eff}}{N} = -\frac{1}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) + \frac{1}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4}G^4\right) \tag{4}$$

を得る*1。 Σ は $G = \frac{1}{N} \sum_j \psi_j(t_1) \psi_j(t_2)$ とするようなラグランジュの未定乗数である。(4) 式の停留点が次式のシュウィンガー・ダイソン方程式を与える:

$$G(\omega)^{-1} = -i\omega - \Sigma(\omega), \qquad \Sigma(t) = J^2 G(t)^3 \tag{5}$$

なお、SYK 模型では 4 つのフェルミオンが相互作用するとしているが、その数を q として一般化しても有効作用やシュウィンガー・ダイソン方程式は計算する事ができ、それぞれ

$$\frac{I_{eff}}{N} = -\frac{1}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) + \frac{1}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{q}G^q\right)$$
 (6)

$$G(\omega)^{-1} = -i\omega - \Sigma(\omega), \qquad \Sigma(t) = J^2 G(t)^{q-1}$$
(7)

である。さらに複数の q について相互作用項を足し合わせたような一般化した SYK 模型も調べられており、[4] にて詳しく論じられている。

ラージ N 極限を施した SYK 模型において、リーディングオーダーで 2 点関数に寄与するファインマンダイアグラムは「メロンダイアグラム」と呼ばれている *2 。(7) 式の一般の ω における解析的な計算は現在のところ知られていないが、数値的には可能であり、図 1 のダイアグラムのように再帰的に計算を走らせる事で 2 点関数のグラフをプロットできる。

2.2 共形不変性

シュウィンガー・ダイソン方程式 (7) は $\omega=0$ という低エネルギー極限においては解析的な解が 知られている。この時 (7) 式の一つ目の式は

$$\Sigma(\omega)G(\omega) = -1 \tag{8}$$

となり、この両辺にフーリエ変換を施す事でシュウィンガー・ダイソン方程式は

$$\int dt \ G(t_1, t) \Sigma(t, t_2) = -\delta(t_1 - t_2), \qquad \Sigma(t_1, t_2) = J^2(G(t_1, t_2))^{q-1}$$
(9)

と書き改める事ができる. これらの2つの式は次のようなリパラメトリゼーション不変性を持つ:

$$G(t_1, t_2) \to (f(t_1)f(t_2))^{\Delta} G(f(t_1), f(t_2)), \qquad \Sigma(t_1, t_2) \to (f(t_1)f(t_2))^{1-\Delta} \Sigma(f(t_1), f(t_2)).$$
(10)

^{*1} 詳しい計算は付録 A を参照すること.

 $^{*^2}$ このメロンは watermelon の melon であってメロンではないらしい. どの辺がスイカなのかはよく分からない.

図 2 J=10 としてプロットした 2 点関数. 横軸は時間である。青色の線が一般の ω , 緑色の線が $\omega=0$, 赤色の線が低エネルギー極限に J^{-1} 補正を加えたものである。

図 3 J=50 としてプロットした 2 点関数. 横軸は時間である。各色の意味は左図と同様。低エネルギー極限はラージ J 極限でもあるので、左図と比べて各線は互いに近づく。

ここで $\Delta=1/q$ である。この不変性は、解として次のような形を仮定すると共形対称性に自発的に破れる:

$$G_c(t) = \frac{b}{|t|^{2\Delta}} \operatorname{sgn}(t), \quad \text{or} \quad G_c(t) = b \left[\frac{\pi}{\beta \sin(\pi t/\beta)} \right]^{2\Delta} \operatorname{sgn}(t)$$
 (11)

2番目の式は有限温度の場合の解であり、パラメータ t を $f(t)=\tan(\pi t/\beta)$ と変換して得る。図 2 および図 3 において G_c を緑色の線でプロットしたところ、一般の ω からは少しずれた。係数 b は

$$J^2 b^q \pi = \left(\frac{1}{2} - \Delta\right) \tan(\pi \Delta) \tag{12}$$

から決める事ができる*3。

2.3 ラージ q 極限

SYK 模型ではラージ q 極限においても (あるオーダーで) 解析解が知られている。ここでは 1/q オーダーおよび $1/q^2$ オーダーまでの解を述べる。

2.3.1 リーディングオーダー

まず最初に 1/q オーダーでの解を考える (q は偶数とする):

$$G(t) = \frac{1}{2}\operatorname{sgn}(t)\left(1 + \frac{1}{q}g(t)\right), \qquad \Sigma(t) = J^2 2^{1-q}\operatorname{sgn}(t)e^{g(t)}.$$
 (13)

^{*3} 詳しくは付録 B を参照.

一方でG(t)をフーリエ変換したものは

$$\frac{1}{G(\omega)} = \frac{1}{-\frac{1}{i\omega} + \frac{[\operatorname{sgn} \times g](\omega)}{2g}} = -i\omega + \omega^2 \frac{[\operatorname{sgn} \times g](\omega)}{2q} = -i\omega - \Sigma(\omega)$$
(14)

で与えられる。ここで $[sgn \times g](\omega)$ は sgn(t)g(t) の積のフーリエ変換を表す。また 2 番目の等号は 1/q で展開した。 3 番目の等号より

$$\Sigma(\omega) = -\omega^2 \frac{[\operatorname{sgn} \times g](\omega)}{2q} \tag{15}$$

を得るので、これを更にフーリエ変換したものと (13) 式の $\Sigma(t)$ を比べると次のような微分方程式 を得る:

$$\partial_t^2(\operatorname{sgn}(t)g(t)) = 2\mathcal{J}^2\operatorname{sgn}(t)e^{g(t)}, \qquad \mathcal{J} \equiv \sqrt{q}\frac{J}{2^{\frac{q-1}{2}}}.$$
 (16)

 $q \to \infty$ の極限で $\mathcal J$ は固定されているものとする。この微分方程式の一般解は次のような形をしている事が知られている:

$$e^{g(t)} = \frac{c^2}{\mathcal{J}^2} \frac{1}{\sin^2(c|t| + t_0)}. (17)$$

我々が興味ある解は、g(0)=0 かつ $g(\beta)=0$ を満たすものである。なぜなら J は質量次元が 1 であり、したがって (16) 式が有効となるようなスケールの t が常に存在する。特に t=0 は J のスケールで言い換えれば UV 領域なので、理論は相互作用なしの場合のものになるからである。これを考慮すると、

$$e^{g(t)} = \left[\frac{\cos \frac{\pi v}{2}}{\cos \left(\pi v \left(\frac{1}{2} - \frac{|t|}{\beta} \right) \right)} \right]^2, \qquad \beta \mathcal{J} = \frac{\pi v}{\cos \frac{\pi v}{2}}$$
 (18)

を得る。2つ目の式によってパラメータ $v \in [0,1]$ を決定する。

2.3.2 サブリーディングオーダー*4

次に我々は $1/q^2$ のオーダーを計算する (q は偶数とする):

$$G(t) = \frac{1}{2}\operatorname{sgn}(t)\left(1 + \frac{1}{q}g(t) + \frac{1}{q^2}h(t)\right). \tag{19}$$

自己エネルギー $\Sigma(t)$ は(9)式より

$$\Sigma(t) = \frac{\mathcal{J}^2}{q} \operatorname{sgn}(t) e^g \left(1 + \frac{1}{q} \left(h - g - \frac{1}{2} g^2 \right) \right)$$
 (20)

^{*4} この節の内容は [10] による.

となる。以下では $t\in[0,\beta]$ とする (従って $\mathrm{sgn}(t)=1$ である)。 $G(\omega)^{-1}$ を (19) 式を用いて $1/q^2$ まで展開すると

$$G(\omega)^{-1} = -i\omega + \frac{1}{2q}\omega^2 g(\omega) + \frac{\omega^2}{2q^2} \left(h(\omega) + \frac{i\omega}{2} [g \times g](\omega) \right) = -i\omega - \Sigma(\omega)$$
 (21)

となるので、フーリエ変換された自己エネルギーとして

$$\Sigma(\omega) = -\frac{1}{2q}\omega^2 g(\omega) - \frac{\omega^2}{2q^2} \left(h(\omega) + \frac{i\omega}{2} [g \times g](\omega) \right)$$
 (22)

を得る。これを ω から t へ逆変換したものと (20) を比べれば、(16) 式及び h(t) に関する微分方程式を得る:

$$\partial_t^2 h = 2\mathcal{J}^2 e^g h + \frac{1}{2} \partial_t^3 [g \times g] - 2\mathcal{J}^2 e^g \left(g + \frac{1}{2} g^2 \right). \tag{23}$$

リーディングオーダーの場合と同様に g と h は次の境界条件を満たすとする:

$$g(0) = g(\beta) = h(0) = h(\beta) = 0.$$
(24)

この時 g(t) は (18) 式で与えられる。また (23) 式の解は次式で与えられる:

$$h(x) = \frac{1}{2}g^{2}(x) - 2L(x) - 4\left(\tan x \int_{0}^{x} dy \ L(y) + 1\right) + 4\frac{1 + x \tan x}{1 + \frac{\pi v}{2} \tan \frac{\pi v}{2}} \left(\tan \frac{\pi v}{2} \int_{0}^{\frac{\pi v}{2}} dy \ L(y) + 1\right).$$
 (25)

ここで $x = \frac{\pi v}{2} - \frac{\pi v}{\beta}t$ 、また

$$L(x) = g(x) - e^{-g(x)} \operatorname{Li}_2(1 - e^{g(x)}) \qquad \left(\operatorname{Li}_2(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^2}\right)$$
 (26)

である*⁵。

2.4 自由エネルギー及びエントロピー

自由エネルギーは(6)式より

$$-\frac{\beta F}{N} = \frac{1}{2} \log \det \left(\frac{d}{dt} - \Sigma \right) - \frac{1}{2} \int_0^\beta dt_1 dt_2 \left(\Sigma(t_{12}) G(t_{12}) - \frac{J^2}{q} G(t_{12})^q \right)$$
(27)

で与えられる。ここで $t_{ij} \equiv t_i - t_j$ とした。右辺の第一項目の計算を避けるためには自由エネルギーを $J\partial_J$ で微分すると良い*6:

$$J\frac{\partial}{\partial J}\left(-\frac{\beta F}{N}\right) = \frac{J^2\beta}{q} \int_0^\beta dt \ G(t)^q = -\frac{\beta}{q} \frac{\partial G}{\partial t}(t \to 0^+). \tag{28}$$

 $^{^{*5}}$ Li $_2(z)$ は http://mathworld.wolfram.com/Dilogarithm.html を参照した。

 $^{^{*6}}$ G と Σ が運動方程式に従っているため、 ∂_J はあらわに J に依存している項のみに作用する。

ここで2つ目の等号では(7)式の2つ目の式を用いた。(19)式を代入すると

$$-\frac{\beta}{q}\frac{\partial G}{\partial t}(t \to 0^{+}) = \frac{\pi v}{2q} \left(\frac{1}{q} \frac{\partial g}{\partial x} \left(x \to \frac{\pi v}{2} \right) + \frac{1}{q^{2}} \frac{\partial h}{\partial x} \left(x \to \frac{\pi v}{2} \right) \right)$$
(29)

となり、更に (18) 式と (25) 式を代入して計算を進めると

$$\frac{\partial g}{\partial x}\left(x \to \frac{\pi v}{2}\right) = 2\tan\frac{\pi v}{2} \tag{30}$$

及び

$$\frac{\partial h}{\partial x}\left(x \to \frac{\pi v}{2}\right) = \frac{4}{1 + \frac{\pi v}{2}\tan\frac{\pi v}{2}} \left(\frac{\pi v}{2} - \tan\frac{\pi v}{2}\left(1 + \frac{\pi v}{2}\tan\frac{\pi v}{2}\right) - \int_0^{\frac{\pi v}{2}} dy \ L(y)\right) \tag{31}$$

を得る。上式のL(y)に対する積分は具体的に実行する事ができ、

$$\int_0^{\frac{\pi v}{2}} dy \ L(y) = -\frac{\pi^2 v^2 (\pi v + 3\sin \pi v)}{24\cos^2 \frac{\pi v}{2}}$$
 (32)

で与えられる [10]。この積分結果及び

$$J\frac{\partial}{\partial J} = \frac{v}{1 + \frac{\pi v}{2} \tan \frac{\pi v}{2}} \frac{\partial}{\partial v}$$
 (33)

を用いて (28) 式を積分すると自由エネルギーをラージq で展開した式を求める事ができる:

$$-\frac{\beta F}{N} = \frac{1}{2}\log 2 + \frac{1}{q^2}F_{1/q^2} + \frac{1}{q^3}F_{1/q^3} + \cdots,$$
 (34)

$$F_{1/q^2}(v) = \pi v \left(\tan \frac{\pi v}{2} - \frac{\pi v}{4} \right), \tag{35}$$

$$F_{1/q^3}(v) = \pi v \left(\pi v - 2 \tan \frac{\pi v}{2} \left(1 - \frac{\pi^2 v^2}{12} \right) \right). \tag{36}$$

パラメータ v は相互作用の大きさ $\beta \mathcal{J}$ で展開すると

$$v = 1 - \frac{2}{\beta \mathcal{J}} + \frac{4}{(\beta \mathcal{J})^2} - \frac{24 + \pi^2}{3(\beta \mathcal{J})^2} + \cdots$$
 (37)

となる。これを用いて自由エネルギーを強結合領域で展開すると

$$-\frac{\beta F}{N} = \beta \mathcal{J} \left(\frac{1}{q^2} - \frac{12 - \pi^2}{6q^3} \right) + \left(\frac{1}{2} \log 2 - \frac{\pi^2}{4q^2} + \frac{\pi^2}{3q^3} \right) + \frac{1}{\beta \mathcal{J}} \left(\frac{\pi^2}{2q^2} - \frac{\pi^2(\pi^2 + 12)}{12q^3} \right) \cdots$$
(38)

となる。右辺の一行目は基底状態のエネルギー、二行目の1つめの括弧は零温度エントロピー、2つ目はその補正項である。零温度エントロピーは次式をラージqで展開したものと一致する [1]:

$$\frac{S_0}{N} = \frac{1}{2}\log 2 - \int_0^{1/q} dx \, \left(\frac{1}{2} - x\right) \tan \pi x. \tag{39}$$

3 4 点関数

この節では強結合領域 $\beta J\gg 1$ における 4 点関数を論じる。disorder-average を取る事によって最も一般的な 4 点関数は

$$\langle \psi_i(t_1)\psi_i(t_2)\psi_i(t_3)\psi_i(t_4)\rangle \tag{40}$$

という形に制限される。これをiとjについて平均を取ったものを考える:

$$\frac{1}{N^2} \sum_{i,j=1}^{N} \langle T\psi_i(t_1)\psi_i(t_2)\psi_j(t_3)\psi_j(t_4)\rangle = G(t_{12})G(t_{34}) + \frac{1}{N}\mathcal{F}(t_1,\dots,t_4). \tag{41}$$

以下ではFについて解析する。

$$t_1$$
 t_2 t_3 t_4 t_4 t_4 t_5 t_6 t_8

図 4 (41) 式の 1/N の項を表すダイアグラム。特に q=4 の場合について描画した。ラダーダイアグラムと呼ぶ。

 \mathcal{F} を表すダイアグラムはラダーダイアグラムである (図 4)。n 個の輪があるものを \mathcal{F}_n とすると、計算するべきは

$$\mathcal{F} = \sum_{n} \mathcal{F}_{n} \tag{42}$$

である。図4の最初にある輪を持たないラダーダイアグラムは単なるプロパゲーターの積である:

$$\mathcal{F}_0(t_1, \dots, t_4) = -G(t_{13})G(t_{24}) + G(t_{14})G(t_{23}). \tag{43}$$

次に並ぶ、輪を1個だけ持つラダーダイアグラムでは、輪の端の位置について積分した形で与えられる:

$$\mathcal{F}_1(t_1,\cdots,t_4)$$

$$= J^{2}(q-1) \int dt dt' \left(G(t_{1}-t)G(t_{2}-t')G(t-t')^{q-2}G(t-t_{3})G(t'-t_{4}) - (t_{3} \leftrightarrow t_{4}) \right). \tag{44}$$

積分の前にある q-1 という因子は、どの線をレールや輪にするかのパターン数に起因する。上述した 2 つのラダーダイアグラム \mathcal{F}_0 、 \mathcal{F}_1 に限らず、全てのラダーダイアグラムは 1/N に比例する。

あるラダーダイアグラム \mathcal{F}_n と次の \mathcal{F}_{n+1} の間には

$$\mathcal{F}_{n+1}(t_1, \dots, t_4) = \int dt dt' \ K(t_1, t_2; t, t') \mathcal{F}_n(t, t', t_3, t_4)$$
 (45)

という漸化式的な関係がある。ここで積分核Kは

$$K(t_1, t_2; t_3, t_4) = -J^2(q-1)G(t_{13})G(t_{24})G(t_{34})^{q-2}$$
(46)

である。(45) 式の計算では、K の最初の 2 つの変数を 1 つめの添字、残りの 2 つを 2 つ目の添字 と見なす事によって積分を行列計算としてしまうのが便利である (行列 K は 2 変数反対称関数の空間に作用する)。こうする事で全てのラダーダイアグラムの総和を

$$\mathcal{F} = \sum_{n=0}^{\infty} \mathcal{F}_n = \sum_{n=0}^{\infty} K^n \mathcal{F}_0 = \frac{1}{1 - K} \mathcal{F}_0 \tag{47}$$

という様に表す事ができる。これを更に計算するために、以下では K を対角化する事を考える。 (46) 式による定義では K は対称行列ではないが、次のような操作により対称化する事が可能である:

$$\tilde{K}(t_1, t_2; t_3, t_4) \equiv |G(t_{12})|^{\frac{q-2}{2}} K(t_1, t_2; t_3, t_4) |G(t_{34})|^{\frac{2-q}{2}}.$$
(48)

従って K は固有関数 (固有ベクトル) の完全系を持つとして良い。

3.1 K_c の対角化

ここまでの話は一般の βJ について成り立つ。解析を進めるために、以下では共形対称性の成り立つ極限 $\beta J\gg 1$ で考える。よって 2 点関数は (11) 式の $G_c(t)$ で与えられる。 (11) 式を (46) 式 に代入すると、K の共形不変なものとして

$$K_c(t_1, t_2; t_3, t_4) = -\frac{1}{\alpha_0} \frac{\operatorname{sgn}(t_{13}) \operatorname{sgn}(t_{24})}{|t_{13}|^{2\Delta} |t_{24}|^{2\Delta} |t_{34}|^{2-4\Delta}}$$
(49)

を得る。ここで

$$\alpha_0 \equiv \frac{2\pi q}{(q-1)(q-2)\tan\frac{\pi}{q}} \tag{50}$$

である。 K_c を対角化した暁には、実は固有関数の中に固有値 $k_c(h)=1$ を持つものも存在する。 従って (47) 式の級数は発散するが、これは共形極限から摂動的に少しずれる事によって対処する 事ができる。それを議論するまでは、ひとまず (49) 式を用いる事にする。

 K_c の対角化では共形不変性を活用する事になる。SYK 模型は時間 1 次元しか持たないので、1 次元共形場理論 CFT $_1$ であり *7 、共形変換群は $SL(2,\mathbb{R})$ で与えられる [11]:

$$\hat{D} = -t\partial_t - \Delta, \qquad \hat{P} = \partial_t, \qquad \hat{K} = t^2\partial_t + 2t\Delta,$$
 (51)

^{*7 1} 次元の場の量子論は本質的に量子力学なので、Conformal Quantum Mechanics の頭文字を取って CQM と表記する事もある。

$$[\hat{D}, \hat{P}] = \hat{P}, \qquad [\hat{D}, \hat{K}] = -\hat{K}, \qquad [\hat{P}, \hat{K}] = -2\hat{D}.$$
 (52)

これらの生成子は K_c と交換し、

$$(\hat{D}_1 + \hat{D}_2)K_c(t_1, t_2; t_3, t_4) = K_c(t_1, t_2; t_3, t_4)(\hat{D}_3 + \hat{D}_4)$$
(53)

となる。ただし、この可換性を示す計算の際に現れる表面項の取扱いには注意を要する。 K_c の固有関数を Ψ_h とすると、固有値方程式は

$$\int dt_1 dt_2 \ \Psi_h(t_1, t_2) K(t_1, t_2; t_3, t_4) = k_c(h) \Psi_h(t_3, t_4)$$
(54)

となり、(53) 式は正確に書けば

$$\int dt_1 dt_2 \left[(\hat{D}_1 + \hat{D}_2) \Psi_h(t_1, t_2) \right] K_c(t_1, t_2; t_3, t_4)
= (\hat{D}_3 + \hat{D}_4) \int dt_1 dt_2 \ \Psi_h(t_1, t_2) K_c(t_1, t_2; t_3, t_4)
= k_c(h) \left[(\hat{D}_3 + \hat{D}_4) \Psi_h(t_3, t_4) \right]$$
(55)

である。この最初の行の積分を実行する際に現れる表面項は、後に K_c の固有関数は超幾何関数 $_2F_1$ のある特定の線型結合である事が判明するが、これを用いた場合のみ消滅する。 \hat{P} や \hat{K} についても同様である。

この対称性により、まずラダーダイアグラム \mathcal{F}_n は $SL(2,\mathbb{R})$ 不変の複比 (cross ratio)

$$\chi = \frac{t_{12}t_{34}}{t_{13}t_{24}} \tag{56}$$

の関数である事が示唆される。これは F_0 が共形 4 点関数のように変換するからである。この性質は $SL(2,\mathbb{R})$ 不変の演算子を作用させても変わらない。従って $K_c(t_1,t_2;t_3,t_4)$ とする代わりに $K_c(\chi;\tilde\chi)$ とする事ができる。2 つ目の示唆は、 K_c が次式で与えられるカシミール演算子 C_{1+2} と可換というものである:

$$C_{1+2} = (\hat{D}_1 + \hat{D}_2)^2 - \frac{1}{2}(\hat{K}_1 + \hat{K}_2)(\hat{P}_1 + \hat{P}_2) - \frac{1}{2}(\hat{P}_1 + \hat{P}_2)(\hat{K}_1 + \hat{K}_2)$$

$$= 2(\Delta^2 - \Delta) - \hat{K}_1\hat{P}_2 - \hat{P}_1\hat{K}_2 + 2\hat{D}_1\hat{D}_2.$$
(57)

スペクトラムに縮退はないため、これは K_c の固有関数が C_{1+2} のそれと同じである事を意味する。 (47) 式を C_{1+2} の固有関数 $\Psi_h(\chi)$ で展開すれば、何らかの内積を用いて

$$\mathcal{F}(\chi) = \sum_{h} \Psi_{h}(\chi) \frac{1}{1 - k_{c}(h)} \frac{\langle \Psi_{h}, \mathcal{F}_{0} \rangle}{\langle \Psi_{h}, \Psi_{h} \rangle}$$
 (58)

と変形できる。よって我々が行うべき仕事は Ψ_h と $k_c(h)$ を求め、そして内積を計算する事である。 そのために、まず χ の関数としての \mathcal{F}_n の性質を調べる事から始める。

3.1.1 $\mathcal{F}_n(\chi)$ の性質

共形極限では、ラダーダイアグラム \mathcal{F}_n は $SL(2,\mathbb{R})$ 変換のもとで次元 Δ を持つ 4 点関数として振る舞う:

$$\mathcal{F}_n(t_1, t_2; t_3, t_4) = G_c(t_{12})G_c(t_{34})\mathcal{F}_n(\chi). \tag{59}$$

 t_1 と t_2 の間、および t_3 と t_4 の間の反対称性、さらに (t_1,t_2) と (t_3,t_4) の間の対称性や $SL(2,\mathbb{R})$ 変換を駆使すると、 $t_1=0$ 、 $t_3=1$ 、 $t_4=\infty$ さらに $t_2>0$ という様に移す事ができ、 $\chi=t_2$ の値を正であるとして制限できる。 (41) 式の時間順序積の存在により、 $\chi>1$ か $\chi<1$ かによって

$$\mathcal{F}_n(\chi) \approx \begin{cases} +\langle \psi_j(\infty)\psi_j(1)\psi_i(\chi)\psi_i(0)\rangle & 0 < \chi < 1\\ -\langle \psi_j(\infty)\psi_i(\chi)\psi_j(1)\psi_i(0)\rangle & 1 < \chi < \infty \end{cases}$$
(60)

となる。

 $\chi > 1$ の領域では、ある離散的な対称性が存在する。これを見るには

$$\frac{t-2}{t} = \tan\frac{\theta}{2} \tag{61}$$

として t を円周上に写像すると良い。 $t=0,1,\infty$ はそれぞれ $\theta=-\pi,-\frac{\pi}{2},\frac{\pi}{2}$ に写される。 $t_2=\chi$ はある θ が対応する。対称性 $\theta\to-\theta$ によって $\chi\to\frac{\chi}{\chi-1}$ となる。

図 5 $\theta \to -\theta$ という対称性は $\chi > 1$ において $\chi \to \frac{\chi}{\chi-1}$ と対応する。

これは $\chi>1$ では $F(\chi)=F(\frac{\chi}{\chi-1})$ が成り立つ事を意味する。この変換は $1<\chi<2$ の区間を $2<\chi<\infty$ へと写す事に注意すると、 $F(\chi)$ を決定するには $0<\chi<2$ という区間で十分である 事に気付く。また $\chi=2$ は固定点なので、F の一階微分の $\chi=2$ における値は 0 であるという条件もつく。

 \mathcal{F}_{n+1} と \mathcal{F}_n の間の関係式 (45) 式を χ を用いて書き直すと

$$\mathcal{F}_{n+1}(\chi) = \int_0^2 \frac{d\tilde{\chi}}{\tilde{\chi}^2} K_c(\chi; \tilde{\chi}) \mathcal{F}_n(\chi)$$
 (62)

となる。 $K_c(\chi; \tilde{\chi})$ は次式で与えられる:

$$K_c(\chi; \tilde{\chi}) = \frac{1}{\alpha_0} \left[\frac{\chi^{2\Delta} \tilde{\chi}^{2\Delta}}{|\chi - \tilde{\chi}|^{2\Delta}} m(\chi, \tilde{\chi}) + \operatorname{sgn}(\tilde{\chi} - 1) \frac{\chi^{2\Delta} \tilde{\chi}^{2\Delta}}{|\chi + \tilde{\chi} - \chi \tilde{\chi}|^{2\Delta}} m\left(\chi, \frac{\tilde{\chi}}{\tilde{\chi} - 1}\right) \right]. \tag{63}$$

ここで $m(\chi, \tilde{\chi})$ は次のような超幾何関数 $_2F_1$ で与えられる χ と $\tilde{\chi}$ に関して対称な関数である:

$$z \equiv \frac{1 - \min(\chi, \tilde{\chi})}{|\chi - \tilde{\chi}|}, \qquad B_h(x) = \frac{\Gamma(h)^2}{\Gamma(2h)} x^h_2 F_1(h, h, 2h, x)$$
 (64)

という2つの記号を導入して、

$$m(\chi, \tilde{\chi}) = \frac{2\pi}{\sin 2\pi \Delta} {}_{2}F_{1}(1 - 2\Delta, 2\Delta, 1, z) - B_{2\Delta}\left(\frac{1}{1 - z}\right) - B_{1-2\Delta}\left(\frac{1}{1 - z}\right) \qquad z \le 0, \quad (65)$$

$$m(\chi, \tilde{\chi}) = -\frac{2\pi}{z^{2\Delta} \sin 2\pi \Delta} {}_{2}F_{1}\left(2\Delta, 2\Delta, 1, \frac{z-1}{z}\right) + \frac{2\pi}{\sin 2\pi \Delta} {}_{2}F_{1}(2\Delta, 1-2\Delta, 1, z) \qquad 0 \le z \le 1,$$
(66)

$$m(\chi,\tilde{\chi}) = -\frac{2\pi}{\sin 2\pi\Delta} {}_2F_1(2\Delta, 1 - 2\Delta, 1, 1 - z) - B_{2\Delta}\left(\frac{1}{z}\right) - B_{1-2\Delta}\left(\frac{1}{z}\right) \qquad 1 \le z \qquad (67)$$
 である。

3.1.2 カシミール演算子 C_{1+2} の固有関数

次にカシミール演算子 C_{1+2} の固有関数を求める。(57) 式から、 C_{1+2} は

$$C_{1+2} \frac{1}{|t_{12}|^{2\Delta}} f(\chi) = \frac{1}{|t_{12}|^{2\Delta}} \mathcal{C}f(\chi), \qquad \mathcal{C} = \chi^2 (1-\chi) \partial_{\chi}^2 - \chi^2 \partial_{\chi}$$
 (68)

を満たす。 \mathcal{C} の固有値を h(h-1) とすると、固有値方程式は $\mathcal{C}f = h(h-1)f$ である。この一般解は超幾何関数 $_2F_1$ を用いて

$$\chi^{h}{}_{2}F_{1}(h, h, 2h, \chi), \qquad x^{1-h}{}_{2}F_{1}(1-h, 1-h, 2-2h, \chi)$$
 (69)

という 2 つの解の線型結合となる。それで張られる空間は f'(2) = 0 となるような関数の空間である。またこの関数空間の内積は (62) 式より

$$\langle g, f \rangle = \int_0^2 \frac{d\chi}{\chi^2} g^*(\chi) f(\chi) \tag{70}$$

のように与えられる。規格化はこの内積から計算される。 $\mathcal C$ がエルミート演算子であるための条件は

$$0 = \langle g, \mathcal{C}f \rangle - \langle \mathcal{C}g, f \rangle = \int_0^2 d\chi \, \frac{d}{d\chi} \left[g^*(\chi)(1-\chi) \frac{d}{d\chi} f(\chi) - \frac{d}{d\chi} g^*(\chi)(1-\chi) f(\chi) \right]$$
(71)

である。 $\chi=2$ では f や g^* の一階微分が 0 になる事から表面項は消える。また $\chi=0$ においても f や g^* は $\chi^{1/2}$ よりも速く 0 となるという条件を課す事で消滅する。加えて (69) 式の固有関数は $\chi=1$ にて対数発散が存在するため、もう 1 つの条件を課す必要がある。即ち、特異点を打ち消すためには

$$f \approx A + B \log(1 - \chi)$$
 for $\chi \to 1^-$,
 $f \approx A + B \log(\chi - 1)$ for $\chi \to 1^+$

のように定数項と対数の項が1に近づくにつれ一致していなければならない。

以上を踏まえて、カシミール演算子 C_{1+2} の固有関数 $\Psi_h(\chi)$ は次のように書き下す事ができる。 まず $1<\chi$ の時は

$$\Psi_h(\chi) = \frac{\Gamma\left(\frac{1}{2} - \frac{h}{2}\right)\Gamma\left(\frac{h}{2}\right)}{\sqrt{\pi}} {}_2F_1\left(\frac{h}{2}, \frac{1}{2} - \frac{h}{2}, \frac{1}{2}, \frac{(2-\chi)^2}{\chi^2}\right) \quad \text{for } 1 < \chi$$
 (72)

である。また χ <1の時は

$$\Psi_h(\chi) = A \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h {}_2F_1(h, h, 2h, \chi) + B \frac{\Gamma(1-h)^2}{\Gamma(2-2h)} \chi^{1-h} {}_2F_1(1-h, 1-h, 2-2h, \chi) \qquad \text{for } \chi < 1$$
(73)

である。ここでAとBは

$$A = \frac{1}{\tan\frac{\pi h}{2}} \frac{\tan \pi h}{2}, \qquad B = A(1-h) = -\tan\frac{\pi h}{2} \frac{\tan \pi h}{2}$$
 (74)

で与えられる。 $\chi>1$ と $\chi<1$ の両方の場合において $\Psi_h=\Psi_{1-h}$ という性質を持つ。最後に $\chi\to0$ で Ψ_h は $\chi^{1/2}$ と同じかそれ以上に速く 0 に近づくという条件から、h について次の 2 つの解が存在する: 1 つ目は $h=\frac{1}{2}+is$ というものである。この時 $\Psi_h(\chi)$ は $1<\chi$ で単調関数であり、また $1>\chi$ で振動する (非常に多く振動する)。2 つ目は $h=2n,n\in\mathbb{N}$ であり、定数 B は消滅する。この解もまた $0<1<\chi$ で単調関数であり、 $1>\chi$ で振動する (0 を n 回横切る)。

3.1.3 Kcの固有値

 C_{1+2} の固有関数 Ψ_h に縮退はないため、 K_c と C_{1+2} が可換である事から Ψ_h は K_c の固有関数でもある。原理的には (54) 式から固有値 $k_c(h)$ を計算できるが、ここではもっと単純な方法を取る。固有値 h(h-1) を持つ C_{1+2} の固有関数は 2 つのフェルミオンの共形 3 点関数の形を持つ:

$$\frac{\operatorname{sgn}(t_{12})}{|t_{10}|^h|t_{20}|^h|t_{12}|^{2\Delta-h}}. (75)$$

これは任意の t_0 や h において K_c の固有関数である。 $SL(2,\mathbb{R})$ を用いて t_0 を動かす事が可能なため、固有値 $k_c(h)$ は h にのみ依存する。特に t_0 を無限大に持っていけば、固有値は (49) 式より

$$k_c(h) = \int dt_1 dt_2 \ K_c(1,0;t_1,t_2) \frac{\operatorname{sgn}(t_{12})}{|t_{12}|^{2\Delta - h}} = -\frac{1}{\alpha_0} \int dt_1 dt_2 \ \frac{\operatorname{sgn}(1 - t_1) \operatorname{sgn}(-t_2) \operatorname{sgn}(t_{12})}{|1 - t_1|^{2\Delta} |t_2|^{2\Delta} |t_{12}|^{2-2\Delta - h}}$$
 (76)

となる。この積分の実行には

$$\frac{\operatorname{sgn}(t)}{|t|^a} = \int \frac{\omega}{2\pi} e^{-i\omega t} c(a) |\omega|^{a-1} \operatorname{sgn}(\omega), \qquad c(a) = 2i2^{-a} \sqrt{\pi} \frac{\Gamma\left(1 - \frac{a}{2}\right)}{\Gamma\left(\frac{1}{2} + \frac{a}{2}\right)}$$
(77)

を用いると良い。結果は

$$k_c(h) = \frac{1}{\alpha_0} \frac{c(2 - 2\Delta - h)}{c(2\Delta - h)} c(2\Delta)^2$$
 (78)

となる。 $k_c(h)$ は全ての $h = \frac{1}{2} + is$ や h = 2n で実数となる。特に連続的なスペクトラムに対しては負、離散的なスペクトラムだと正となる。 $q = 4, \infty, 2$ の場合について具体的な式は

$$k_c(h) = -\frac{3}{2} \frac{\tan\frac{\pi(h-1/2)}{2}}{h - \frac{1}{2}} \qquad q = 4,$$
 (79)

$$k_c(h) = \frac{2}{h(h-1)} \qquad q = \infty, \tag{80}$$

$$k_c(h) = -1 q = 2 (81)$$

となる。特に $q=4,\infty$ の時 $k_c(h=2)=1$ となり、(47) の級数が発散する。この h=2 について の正しい取り扱いは後に議論する。

$3.1.4 \quad \langle \Psi_h, \Psi_h \rangle \succeq \langle \Psi_h, \mathcal{F}_0 \rangle$

次に (58) 式の計算に必要な 2 つの内積 $\langle \Psi_h, \Psi_h \rangle$ と $\langle \Psi_h, \mathcal{F}_0 \rangle$ を求める。連続的なスペクトラム $h=\frac{1}{2}+is$ に関しては

$$\langle \Psi_h, \Psi_h \rangle = \frac{\pi \tan \pi h}{4h - 2} 2\pi \delta(s - s') \tag{82}$$

で与えられ、また離散的なスペクトラム $h=2n, n \in \mathbb{N}$ に関しては

$$\langle \Psi_h, \Psi_h \rangle = \frac{\delta_{hh'} \pi^2}{4h - 2} \tag{83}$$

となる。

 χ の関数としての \mathcal{F}_0 は

$$\mathcal{F}_0(\chi) = \begin{cases} -\chi^{2\Delta} + \left(\frac{\chi}{1-\chi}\right)^{2\Delta} & 0 < \chi < 1, \\ -\chi^{2\Delta} - \left(\frac{\chi}{\chi-1}\right)^{2\Delta} & 1 < \chi < \infty \end{cases}$$
(84)

で与えられる。以下では内積 $\langle \Psi_h, \mathcal{F}_0 \rangle$ の計算には連続的なスペクトラムについてのみ考える。離散的なスペクトラムの場合はhについて解析接続する事で得られる。固有関数 Ψ_h は連続スペクトラムにおいて次のような積分表示を持つ:

$$\Psi_h(\chi) = \frac{1}{2} \int_{-\infty}^{\infty} dy \, \frac{|\chi|^h}{|y|^h |\chi - y|^h |1 - y|^{1 - h}}.$$
 (85)

この積分表示を用いて $\langle \Psi_h, \mathcal{F}_0 \rangle$ の積分を行う。 $\chi \to \frac{\chi}{\chi-1}$ の変換で $\Psi_h(\chi) = \Psi_h\left(\frac{\chi}{\chi-1}\right)$ であるが、 \mathcal{F}_0 はこの変換で、 $\chi > 1$ の時は対称、 $\chi < 1$ の時は反対称となる。この性質を用いると

$$\langle \Psi_h, \mathcal{F}_0 \rangle = -\frac{1}{2} \int_{-\infty}^{\infty} dy d\chi \, \frac{\operatorname{sgn}(\chi)}{|\chi|^{2-h-2\Delta}|\chi - y|^h|1 - y|^{1-h}|y|^h} \tag{86}$$

を得る。この積分は、積分領域を分割し、それぞれの領域でオイラーの β 関数を用いると実行できる。便利な表式として

$$\langle \Psi_h, \mathcal{F}_0 \rangle = \frac{\alpha_0}{2} k_c(h) \tag{87}$$

というものがある。

3.1.5 全ラダーダイアグラムの総和

ここまでの議論を踏まえて、4点関数は

$$\mathcal{F}(\chi) = \sum_{h} \Psi_{h}(\chi) \frac{1}{1 - k_{c}(h)} \frac{\langle \Psi_{h}, \mathcal{F}_{0} \rangle}{\langle \Psi_{h}, \Psi_{h} \rangle}$$

$$= \alpha_{0} \int_{0}^{\infty} \frac{ds}{2\pi} \frac{2h - 1}{\pi \tan \pi h} \frac{k_{c}(h)}{1 - k_{c}(h)} \Psi_{h}(\chi) + \alpha_{0} \sum_{n=1}^{\infty} \left[\frac{2h - 1}{\pi^{2}} \frac{k_{c}(h)}{1 - k_{c}(h)} \Psi_{h}(\chi) \right]_{h=2n}$$
(88)

となる。ここで 1 つの問題が生じる: n=1 の項は $k_c(2)=1$ より発散する。これを取り扱うには 共形極限から少しずれた領域に行かなければならない。ここでは、ひとまず $n\neq 2$ となる固有関数 のみを扱い、その寄与を $\mathcal{F}_{h\neq 2}$ とする.この時

$$\frac{2}{\tan \pi h} = \frac{1}{\tan \frac{\pi h}{2}} - \frac{1}{\tan \frac{\pi (1-h)}{2}} \tag{89}$$

という公式を使い、s の積分領域を実数全体 $-\infty \to \infty$ に広げ、被積分関数が持つ $h \to 1-h$ の下での反対称性を用いて複数ある項を 1 つに直すと

$$\frac{\mathcal{F}_{h\neq 2}}{\alpha_0} = \int_{-\infty}^{\infty} \frac{ds}{2\pi} \frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \Psi_h(\chi) + \sum_{n=2}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \Psi_h(\chi) \right]_{h=2n}.$$
(90)

となる。級数の項は $\frac{1}{\tan(\pi h/2)}$ の極の留数を走る総和として書いた。第 1 項目の被積分関数と第 2 項目の級数の中身が同じであるため、右辺全体を複素 h 平面のある曲線 C 上の線積分として理解できる:

$$\frac{1}{2\pi i} \int_{\mathcal{C}} dh = \int_{-\infty}^{\infty} \frac{ds}{2\pi} + \sum_{n=1}^{\infty} \operatorname{Res}_{h=2n}.$$
 (91)

ここで、 Ψ_h は h=1+2n に極を持つが、これは $1/\tan(\pi h/2)=\pm 1/\infty$ によって相殺される。 従って全体では h=2n のみに極を持つ。

 Ψ_h が $\chi>1$ の場合 (72) 式と $\chi<1$ の場合 (73) 式で違うため、この 2 つのケースで場合分けして考える。まず $\chi>1$ の時、曲線 $\mathcal C$ を s 軸から無限遠へ右にずらす事ができる。これによって h=2n における極の総和はキャンセルされるが、 $k_c(h)=1$ となる $h=h_m$ における極を選ぶ事となり、

$$\mathcal{F}_{h\neq 2}(\chi) = -\alpha_0 \sum_{m=0}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \Psi_h(\chi) \right]_{h=h_m} \qquad \chi > 1$$
 (92)

を得る (図 6)。

次に $\chi<1$ の場合について考える。この場合は (73) 式の $_2F_1(1-h,1-h,2-2h,\chi)$ を大きい h>0 に持っていく事ができないため、少し回り道をする必要がある。最初に、被積分関数の中の $\tan(\pi h/2)$ を $\tan(\pi h)$ に置き換えるために、 $_2F_1$ 以外の残りの部分が持つ $h\to 1-h$ の下での反

図 6 h 平面における極。h=2n における極を点、 $k_c(h)=1$ となるような $h=h_m$ における極をバツ印で表した。 $h=2=h_0$ では極が重なるため点とバツ印を重ねている。h の連続スペクトラム h=1/2+is の直線は右へずらす事ができ、点で表した $1/\tan(\pi h/2)$ の極を相殺し、バツ印の極を選ぶ事になる。

対称性を利用する。これによって $h \to 1-h$ の下で対称となる被積分関数を得る。この対称性を使って (73) 式の B を A に置き換えれば、

$$\frac{\mathcal{F}_{h\neq 2}(\chi)}{\alpha_0} = \int \frac{ds}{2\pi} \frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h {}_2F_1(h, h, 2h, \chi)
+ \sum_{n=2}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h {}_2F_1(h, h, 2h, \chi) \right]_{h=2n}$$
(93)

という式に至る。ここで留数の総和において、h が偶数の時 $\Psi_h(\chi) = \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h \ _2F_1(h,h,2h,\chi)$ となる事を用いた。この被積分関数は $\chi>1$ の場合のように右へずらす事が可能であり、選ぶべき留数が $k_c(h)=1$ となる $h=h_m$ におけるものとなり、最終的に

$$\mathcal{F}_{h\neq 2} = -\alpha_0 \sum_{m=0}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h_{2} F_1(h, h, 2h, \chi) \right]_{h=h_m} \qquad \chi < 1$$
(94)

を得る。

$3.2 \quad h = 2$ の場合の取り扱い

 K_c は固有値 $k_c(h)=1$ を持つため、(47) 式の級数が発散する。 $k_c(h)=1$ となるのは h=2 における $SL(2,\mathbb{R})$ のカシミール演算子 C_{1+2} の固有関数である。 4 点関数の有限な解を得るために、K を摂動的に共形極限から δK だけずらした場所でその固有関数を扱う必要がある。 摂動による補正 δK は、K を構成する 2 点関数 G の非共形極限におけるリーディングオーダーでの補正 δG から生じる。 摂動パラメータは結合の大きさの逆数 $(\beta J)^{-1}$ である。

共形極限において、零温度と有限温度での両方の解 (11) 式は t のリパラメトリゼーション不変性によって互いに等しいものであったが、摂動 δK によって共形対称性が破れるため、2 つの解を

等しいとする事はできない。そこで最初から有限温度で議論し、周期を β から 2π にするために角度座標 $\theta=2\pi t/\beta$ を導入する。値の範囲は $\theta\in[0,2\pi]$ である。これは $\beta=2\pi$ と設定して議論を始めようとしているとも言える。 θ は周期的ユークリッド時間である。

また K を直接論じるよりも、それを対称化した \tilde{K} の方が話を進めやすい。(48) 式で $t \to \theta$ と変数変換すると

$$\tilde{K}(\theta_1, \theta_2; \theta_3, \theta_4) = -J^2(q-1)|G(\theta_{12})|^{\frac{q-2}{2}}G(\theta_{13})G(\theta_{24})|G(\theta_{34})|^{\frac{q-2}{2}}$$
(95)

となる。またこの積分核 $ilde{K}$ の反対称な固有関数を

$$\Psi_{h,n}^{\text{exact}}(\theta_1, \theta_2) = -\Psi_{h,n}^{\text{exact}}(\theta_2, \theta_1)$$
(96)

と書く事にする。ここで添字 h はあるラベルであり、後に詳しく説明する。また n はフーリエ展開 した際の $e^{-in(\theta_1+\theta_2)/2}$ の中の n である。 \tilde{K} は次式で与えられる内積において対称となる:

$$\langle \Psi, \Phi \rangle \equiv \int_0^{2\pi} d\theta_1 d\theta_2 \ \Psi^*(\theta_1, \theta_2) \Phi(\theta_1, \theta_2). \tag{97}$$

4 点関数の表式を得るためには、輪を持たないラダーダイアグラム \mathcal{F}_0 が反対称単位行列

$$I(\theta_1, \cdots, \theta_4) = -\delta(\theta_{13})\delta(\theta_{24}) + \delta(\theta_{14})\delta(\theta_{23}) = -2\sum_{h,n} \Psi_{h,n}^{\text{exact}}(\theta_1, \theta_2)\Psi_{h,n}^{\text{exact}*}(\theta_3, \theta_4)$$
(98)

に作用する \tilde{K} に比例するという事を用いると良い。おおよそ $\mathcal{F}=(1-\tilde{K})^{-1}\tilde{K}\cdot I$ の様に書き表す事ができ、より正確には

$$\left[(q-1)J^{2}G(\theta_{12})^{\frac{q-2}{2}}G(\theta_{34})^{\frac{q-2}{2}} \right] \mathcal{F}(\theta_{1},\cdots,\theta_{2}) = 2\sum_{h,n} \frac{k(h,n)}{1-k(h,n)} \Psi_{h,n}^{\text{exact}}(\theta_{1},\theta_{2}) \Psi_{h,n}^{\text{exact}*}(\theta_{3},\theta_{4})$$
(99)

となる。ここで k(h,n) は固有関数 $\Psi_{h,n}^{\rm exact}(\theta_1,\theta_2)$ に対応する固有値である。適切な固有関数の完全系の下で、この 4 点関数の表式はあらゆるカップリングの大きさ βJ において正しい。

共形極限 $\beta J\gg 1$ に行くと、前節までの議論と接続できる。固有関数 $\Psi_{h,n}^{\rm exact}$ は、 $SL(2,\mathbb{R})$ に属する固有値 h(h-1) を持つカシミール演算子 C_{1+2} の固有関数 $\Psi_{h,n}$ となり、固有関数も $k(h,n)\to k_c(h)$ の様に h だけの関数になる。また (99) 式の n を走る総和は (t を $t=\tan\frac{\theta}{2}$ によって円周上に射影した後で) $\mathcal{F}_{h\neq 2}$ の Ψ_h が現れる表式を与える。

4 点関数の計算において h=2 からは無限大の寄与を得てしまう。これはフーリエインデックスn について走る関数族 $\Psi_{2,n}$ によって与えられる。この無限大を対処するには、共形極限から少し離れて共形対称性を破った上でリーディングオーダーでの補正を求める必要がある。特に共形極限での固有値 $k_c(h)$ への補正を計算する:

$$k(2,n) = 1 - O\left(\frac{1}{\beta J}\right). \tag{100}$$

3.2.1 $\Psi_{2.n}$ の具体型

まず最初に $\Psi_{2,n}$ の具体型を求める。このためにリパラメトリゼーション不変性を活用する。共 形極限におけるシュウィンガー・ダイソン方程式 (9) 式はリパラメトリゼーション不変性を持つ。 これによって $\theta \to \theta + \epsilon(\theta)$ という様にリパラメトライズしたとすると変化分 $\delta_\epsilon G_\epsilon$ は

$$\delta_{\epsilon}G_{c} = \left[\Delta\epsilon'(\theta_{1}) + \Delta\epsilon'(\theta_{2}) + \epsilon(\theta_{1})\frac{\partial}{\partial\theta_{1}} + \epsilon(\theta_{2})\frac{\partial}{\partial\theta_{2}}\right]G_{c}$$
(101)

となり、 $G_c + \delta_{\epsilon}G_c$ もまた (9) 式の解となる。 (9) 式の最初の式から

$$\delta_{\epsilon}G_c * \Sigma_c + G_c * \delta_{\epsilon}\Sigma_c = 0 \qquad \therefore \quad 0 = \delta_{\epsilon}G_c + G_c * [(q-1)J^2G_c^{q-2}\delta_{\epsilon}G_c] * G_c = (1-K_c)\delta_{\epsilon}G_c$$

$$\tag{102}$$

を得る。ここで積*は

$$(F * G)(t_1, t_2) \equiv \int dt \ F(t_1, t)G(t, t_2) \tag{103}$$

を表す。つまり変化分 $\delta_\epsilon G_c$ は $1-K_c$ を作用させる事により消滅する。書き換えれば $K_c\delta_\epsilon G_c=\delta_\epsilon G_c$ という固有値方程式になるため、 $\delta_\epsilon G_c$ は固有値 1 を持つ K_c の固有関数である。 \tilde{K}_c において対応する固有関数は $|G_c|^{\frac{q-2}{2}}\delta_\epsilon G_c$ である。

便利な基底を選ぶには $\epsilon \approx e^{-in\theta}$ とすると良い。(11) 式の有限温度の G_c を (101) 式に代入し、 $|G_c|^{\frac{q-2}{2}}\delta_\epsilon G_c$ を計算し、最後に内積 (97) 式を用いて規格化すると、 \tilde{K}_c の固有値 1 の固有関数として

$$\Psi_{2,n} = \gamma_n \frac{e^{-iny}}{2\sin\frac{x}{2}} f_n(x), \qquad f_n(x) = \frac{\sin\frac{nx}{2}}{\tan\frac{x}{2}} - n\cos\frac{nx}{2}, \tag{104}$$

$$x = \theta_1 - \theta_2, \qquad y = \frac{\theta_1 + \theta_2}{2}, \qquad \gamma_n^2 = \frac{3}{\pi^2 |n|(n^2 - 1)}$$
 (105)

を得る。 $\Psi_{2,n}$ はカシミール演算子 C_{1+2} の h=2 の固有関数でもある。また n=-1,0,1 の場合、 G_c の $SL(2,\mathbb{R})$ 共変性により変化分 $\delta_\epsilon G_c$ は消滅する。従って $|n|\geq 2$ の場合のみ考えれば良い。 $n\geq 2$ に対して、 $\Psi_{2,n=2}$ に $\hat{P}_1+\hat{P}_2$ を作用させる事により全ての $\Psi_{2,n}$ を得る事ができ、従って $SL(2,\mathbb{R})$ のある表現を構成する。 $n\leq -2$ の場合も同様である。

3.2.2 固有値への補正

ここでは h=2 の固有値 k(2,n) の共形極限での値 $k_c(h=2)=1$ に対する $(\beta J)^{-1}$ 補正を、相互作用するフェルミオンの数 q のラージ極限において計算する。伝搬関数は (13) 式、また $g(\theta)$ は (18) 式より与えられる。ラダーダイアグラムの梯子のレールの部分の伝搬関数は

$$G(\theta) = \frac{1}{2}\operatorname{sgn}(\theta),\tag{106}$$

また輪の部分は (qを偶数として)

$$G(\theta)^{q-2} = \frac{1}{2^{q-2}} \left(1 + \frac{g(\theta)}{q} \right)^{q-2} \to \frac{1}{2^{q-2}} e^{g(\theta)} \quad \text{for } q \to \text{large}$$
 (107)

となる。これらを用いると固有値方程式 $ilde{K}\Psi=k\Psi$ は

$$-J^{2}q \int d\theta_{1} d\theta_{2} \frac{\operatorname{sgn}(\theta_{13})}{2} \frac{\operatorname{sgn}(\theta_{24})}{2} \frac{e^{(g(\theta_{12})+g(\theta_{34}))/2}}{2^{q-2}} \Psi(\theta_{1},\theta_{2}) = k\Psi(\theta_{3},\theta_{4})$$
(108)

と表される。この固有値方程式の両辺に $\partial_{\theta_3}\partial_{\theta_4}e^{g(\theta_{34})/2}$ を作用させ、 $\partial_x \mathrm{sgn}(x)=2\delta(x)$ を用いる積分を解消して微分方程式に直す事ができる。(18) 式の e^g を代入し、固有値を k=2/h(h-1) のようにパラメトライズし、フーリエ変換した上で解くと

$$\Psi(\theta_1, \theta_2) = \frac{e^{-iny}}{\sin\frac{\tilde{x}}{2}} \psi_n(x), \qquad \tilde{x} = vx + (1 - v)\pi, \tag{109}$$

$$\left(n^2 + 4\frac{\partial^2}{\partial x^2} - \frac{h(h-1)v^2}{\sin^2\frac{\tilde{x}}{2}}\right)\psi_n(x) = 0$$
(110)

という解を得る。ここで v は (18) 式の 2 つ目の式によって定義される。x と y は (105) 式で与えられる。v=1 の時は $\beta\mathcal{J}\to\infty$ であり、(110) 式は共形変換群 $SL(2,\mathbb{R})$ のカシミール演算子 C_{1+2} の固有関数を与える方程式となる。ここで \mathcal{J} は (16) 式の 2 つ目の式で与えられる、ラージ q で一定となるようにリスケールされた相互作用の大きさである。しかし (110) 式は任意の $\beta\mathcal{J}$ に対してラージ q の固有関数を与える。

探したいものは然るべき対称性を備えた固有関数である。4 点関数は θ_1, θ_2 の 2 変数関数として

$$F(\theta_1, \theta_2) = -F(\theta_2, \theta_1), \qquad F(\theta_1 + 2\pi, \theta_2) = -F(\theta_1, \theta_2), \qquad F(\theta_1, \theta_2 + 2\pi) = -F(\theta_1, \theta_2)$$
(111)

という性質を持つ。最初の2つの性質は1つにまとめる事ができ、それをxとyを使って表すと

$$F(x,y) = F(2\pi - x, y + \pi)$$
(112)

というものになる。また (111) 式の最初の性質より x>0 と制限できる。さらに (109) 式の e^{-iny} の存在により、 $\psi_n(x)$ は $x=\pi$ で、n が偶数の時は対称、奇数の時は反対称となる必要がある。以上を踏まえると $\psi_{h,n}$ は、 $\tilde{n}=n/v$ として、

$$\psi_{h,n}(x) \approx \left(\sin\frac{\tilde{x}}{2}\right)^h {}_2F_1\left(\frac{h-\tilde{n}}{2}, \frac{h+\tilde{n}}{2}, \frac{1}{2}, \cos^2\frac{\tilde{x}}{2}\right)$$
 (n even)

$$\psi_{h,n}(x) \approx \cos\frac{\tilde{x}}{2} \left(\sin\frac{\tilde{x}}{2}\right)^h {}_{2}F_{1}\left(\frac{1+h-\tilde{n}}{2}, \frac{1+h+\tilde{n}}{2}, \frac{3}{2}, \cos^2\frac{\tilde{x}}{2}\right)$$
(n odd) (114)

となる。 ψ は x=0 で消滅するという境界条件によって h の量子化条件が決まる。

欲しい固有関数は強結合領域で h=2 共形固有関数になるものである。 $h\approx 2$ の時、 $\tilde{x}\approx 0$ 発散する。(1-v) の 2 次のオーダーにおいて、この発散が存在しないための条件は超幾何関数の 1 番目か 2 番目の変数の少なくともどちらかが負の整数になるというものである。2 に近い解は $h_n=2+|\tilde{n}|-|n|=2+|n|\frac{1-v}{v}$ となる。(78) 式から $q=\infty$ の時 $k_c(h)=\frac{2}{h(h-1)}$ であるのを思い出せば、これを展開して

$$k(2,n) = 1 - \frac{3|n|}{2}(1-v) + \left(\frac{7n^2}{4} - \frac{3|n|}{2}\right)(1-v)^2 + \dots = 1 - \frac{3|n|}{\beta\mathcal{J}} + \frac{7n^2}{(\beta\mathcal{J})^2} + \dots$$
(115)

を得る。ここで最後の表式はvを(18)式の右の式から $(\beta \mathcal{J})^{-1}$ で展開したものを用いた:

$$1 - v = \frac{2}{\beta \mathcal{J}} - \frac{4}{(\beta \mathcal{J})^2} + \cdots$$
 (116)

次に一般の q について考える。固有値方程式 $\tilde{K}\Psi_{2,n}=k(2,n)\Psi_{2,n}$ を厳密に解く事はできないが、 $\tilde{K}=\tilde{K}_c+\delta \tilde{K}$ として共形極限からの摂動論を 1 次まで計算する事は可能である。計算するべきは $\langle \Psi_{2,n},\delta \tilde{K}\cdot \Psi_{2,n}\rangle$ となる。

摂動補正 $\delta \tilde{K}$ は共形伝搬関数に摂動を加えた $G_c+\delta G$ というものを \tilde{K}_c の表式 (95) 式に代入する事で得られる。ここでラージ q に戻って δG を求めると、(11) 式と (18) 式から有限温度のラージ q 共形伝搬関数は

$$G(\theta) = G_c(\theta) \left[1 - \frac{2}{q} \frac{1}{\beta \mathcal{J}} \left(2 + \frac{\pi - \theta}{\tan \frac{\theta}{2}} \right) + \cdots \right]$$
 (117)

となるので、 $(eta \mathcal{J})^{-1}$ 補正 δG は

$$f_0(\theta) \equiv 2 + \frac{\pi - \theta}{\tan\frac{\theta}{2}} \tag{118}$$

に比例する事がわかる。これは (104) 式の f_n で $n\to 0$ としたものに一致する。(118) 式を用いて 一般の q における G_c への補正は

$$\frac{\delta G}{G_c} = -\frac{\alpha_G}{\beta \mathcal{J}} f_0 \tag{119}$$

のように表せるはずである。ここで α_G は $q\to\infty$ で $q\alpha_G\to 2$ となるような係数である。数値解析によって (119) 式は様々な q の値において精度の良いフィッティング関数となる事が示されている [1]。

固有値への補正項を求めるために直接 $\langle \Psi_{2,n}, \delta \tilde{K} \cdot \Psi_{2,n} \rangle$ を計算しても良いが、手っ取り早い方法が存在し、

$$\frac{1}{q\alpha_G} \frac{\langle \Psi_{h,n}, \tilde{K} \cdot \Psi_{2,n} \rangle}{1 - k_c(h)} \tag{120}$$

が実は q に依らない量である事を用いる [1]。この量は h=2 で極を持ち、その留数は固有値への補正項に比例する。この留数とラージ q における固有値の表式 (115) 式、及びラージ q において成

り立つ性質 $(q\alpha_G=2,\ k_c'(2)=-3/2)$ を用いると、一般の q における固有値

$$k(2,n) = 1 - \frac{\alpha_K}{\beta \mathcal{J}} |n| + \cdots$$
 (121)

$$\alpha_K \equiv -qk_c'(2)\alpha_G = \left[\frac{\pi q}{\sin\frac{2\pi}{q}} + \frac{q^3(6-q) - 6q^2}{2(q-1)(q-2)}\right]\alpha_G$$
 (122)

を得る。 α_K は (115) 式よりラージq で 3 となる係数である。 α_K を q に関して数値的に求めると、どの q に対しても 3 に近い事がわかる [1]。

3.2.3 h=2 の 4 点関数への寄与

ここまでの議論により 4 点関数 (99) 式での発散は共形極限から少しずれる事によって処理されたので、h=2 の 4 点関数への寄与は有限となり、 $\beta \mathcal{J}$ のオーダーの値を持つ。ただし h=2 の寄与はこれだけではなく、 $\frac{k(2,n)}{1-k(2,n)}$ による $(\beta \mathcal{J})^0$ の寄与も存在する。ここでは先に $O(\beta \mathcal{J})$ の大きさの寄与を計算し、O(1) の寄与の計算は後で $q=\infty$ において計算する。

具体的に計算すれば、h=2 の $O(\beta \mathcal{J})$ の寄与は

$$\frac{\mathcal{F}_{\text{big}}(\theta_1, \dots, \theta_4)}{G(\theta_{12})G(\theta_{34})} = \frac{6\alpha_0}{\pi^2 \alpha_K} \beta \mathcal{J} \sum_{|n| \ge 2} \frac{e^{in(y'-y)}}{n^2(n^2-1)} \left[\frac{\sin \frac{nx}{2}}{\tan \frac{x}{2}} - n \cos \frac{nx}{2} \right] \left[\frac{\sin \frac{nx'}{2}}{\tan \frac{x'}{2}} - n \cos \frac{nx'}{2} \right], \tag{123}$$

$$x = \theta_{12}, \qquad \tilde{x} = \theta_{34}, \qquad y = \frac{\theta_1 + \theta_2}{2}, \qquad y' = \frac{\theta_3 + \theta_4}{2}$$
 (124)

となる。さらに共形極限において (102) 式から h=2 の固有関数はリパラメトリゼーション $\theta \to \theta + \epsilon(\theta)$ による変化分 $\delta_\epsilon G$ そのものであった事から、特に $\epsilon_n \propto e^{-in\theta}$ として

$$\mathcal{F}_{\text{big}} = \sum_{n} \langle \epsilon_n \epsilon_{-n} \rangle \delta_{\epsilon_n} G \delta_{\epsilon_{-n}} G, \qquad \langle \epsilon_n \epsilon_{-n} \rangle = \left(\frac{6\alpha_0 q^2}{\alpha_K N} \right) \frac{\beta \mathcal{J}}{n^2 (n^2 - 1)}$$
(125)

と書く事ができる。 $\langle \epsilon_n \epsilon_{-n} \rangle$ はフーリエ変換によって

$$\langle \epsilon(\theta)\epsilon(0)\rangle = \frac{1}{N} \frac{6(\beta \mathcal{J})\beta^2 q^2 \alpha_0}{(2\pi)^4 \alpha_K} \left[-\frac{1}{2} (|\theta| - \pi)^2 + (|\theta| - \pi)\sin|\theta + 1 + \frac{\pi^2}{6} + \frac{5}{2}\cos\theta \right]$$
(126)

と変換される。(123) 式の n を走る和はこの 2 点関数とリパラメトリゼーション (101) 式を用いる事によって計算できる。結果は 4 つのフェルミオンの順番によって変わり、 $\langle \psi_i \psi_j \psi_j \rangle$ か $\langle \psi_i \psi_j \psi_i \psi_j \rangle$ かで場合分けする必要がある。

最初の iijj という順番の場合は

$$iijj \text{ order}: \frac{\mathcal{F}_{\text{big}}(\theta_1, \cdots, \theta_4)}{G(\theta_{12})G(\pi)} = \frac{6\alpha_0}{\pi^2 \alpha_K} \beta \mathcal{J} \left(\frac{\theta_{12}}{2 \tan \frac{\theta_{12}}{2}} - 1 \right) \left(\frac{\theta_{34}}{2 \tan \frac{\theta_{34}}{2}} - 1 \right)$$
(127)

で与えられる。また ijij という順番の場合は、特に $\theta_3=0, \theta_4=\pi$ とすると結果が簡略化される:

$$ijij \text{ order}: \frac{\mathcal{F}_{\text{big}}(\theta_1, \theta_2, 0, \pi)}{G(\theta_{12})G(\pi)} = -\frac{6\alpha_0}{\pi^2 \alpha_K} \beta \mathcal{J} \left(\frac{\theta_{12}}{2 \tan \frac{\theta_{12}}{2}} - 1 - \pi \frac{\sin \frac{\theta_1}{2} \sin \frac{\theta_2}{2}}{|\sin \frac{\theta_{12}}{2}|} \right). \tag{128}$$

3.2.4 $q=\infty$ における h=2 の寄与

次に h=2 の $O((\beta\mathcal{J})^0)$ の寄与をラージ q において計算する。ラージ q ではラダーダイアグラムの梯子のレールの伝搬関数は $\mathrm{sgn}(\theta)$ に比例するため、K は次式のような微分演算子のグリーン関数となる事が示せる:

$$-\frac{2}{v^2\tilde{P}^2}\frac{\partial}{\partial\theta_1}\frac{\partial}{\partial\theta_2}K(\theta_1,\cdots,\theta_4) = \delta(\theta_{13})\delta(\theta_{24}), \qquad \tilde{P} = \frac{1}{\sin\frac{\tilde{x}}{2}}, \qquad \tilde{x} = vx + (1-v)\pi. \quad (129)$$

4 点関数は $\mathcal{F}=(K^{-1}-1)^{-1}$ の様に書けるため、両辺に $(K^{-1}-1)$ を作用させれば \mathcal{F} の満たす微分方程式を得る。この際、 $x=\theta_{12},y=\frac{\theta_1+\theta_2}{2}$ という座標を導入すると便利である。ただしこの x と y は配位を足しすぎてしまうため、 $x\geq 0, \tilde{x}\geq 0, y\geq y'$ という様に制限する必要がある。 \mathcal{F} の満たす微分方程式は

$$\left(-\frac{1}{4}\frac{\partial^2}{\partial y^2} + v^2\frac{\partial^2}{\partial \tilde{x}^2} - \frac{v^2\tilde{P}^2}{2}\right)\mathcal{F}(x, y, x', y') = \delta(y - y')\delta(x - x') + \delta(y - y' - \pi)\delta(2\pi - x - x')$$
(130)

となる。この微分方程式は変数分離法によって解く事が可能である。まず $-\partial_x^2 + \tilde{P}^2/2$ の固有関数による完全系で展開する。ただし境界条件は x=0 で 0 とする。この固有関数は (113) 式や (114) 式で h=2 としたものに一致し、(104) 式で定義されている f_n に簡略化される。固有値は $n^2/4$ である。 f_n は完全系の条件

$$\sum_{n>2} \frac{f_n(\tilde{x})f_n(\tilde{x}')}{\pi(n^2-1)} = \delta(\tilde{x} - \tilde{x}'), \qquad \sum_{n>2} (-1)^n \frac{f_n(\tilde{x})f_n(\tilde{x}')}{\pi(n^2-1)} = \delta(2\pi - \tilde{x} - \tilde{x}')$$
(131)

を満たす事から、Fは

$$\mathcal{F}(x, y, x', y') = \sum_{n>2} H_n(y - y') \frac{f_n(\tilde{x}) f_n(\tilde{x}')}{\pi(n^2 - 1)},$$
(132)

$$\left(-\frac{1}{4}\frac{\partial^2}{\partial y^2} - \frac{v^2 n^2}{4}\right) H_n(y) = v[\delta(y) + (-1)^n \delta(y - \pi)]$$
(133)

となる。 H_n は周期 2π の連続関数だが、 $y=0,\pi$ で一階導関数は不連続である。y=0 における不連続性は 0^+ や $2\pi^-$ における導関数の不連続性と同じである。これらの条件を解くと、 $0< y< 2\pi$ の範囲で

$$H_n(y) = -\frac{2}{n\sin(n\pi v)} \left(\cos[nv(y-\pi)] + (-1)^n \cos[nv(|y-\pi| - \pi)]\right)$$
 (134)

$$= \frac{4\cos(ny)}{\pi n^2(1-v)} + \frac{4(y-\frac{\pi}{2})\sin(ny)}{\pi n} + O(1-v)$$
 (135)

$$= \left(\frac{\beta \mathcal{J}}{2} + 1 - \left(y - \frac{\pi}{2} \frac{\partial}{\partial y}\right)\right) \frac{4\cos(ny)}{\pi n^2} + O\left(\frac{1}{\beta \mathcal{J}}\right)$$
(136)

という結果になる。2 行目では $0 < y < \pi$ と仮定して (1-v) で展開した。 $\pi < y < 2\pi$ ならば $\pi/2$ を $3\pi/2$ に置き換えれば良い。また 3 行目では $(1-v)^{-1} \approx \beta \mathcal{J}/2 + 1$ を用いた。この 3 行目の式を (132) 式に代入し、

$$f_n(\tilde{x}) = f_n(x) + (1 - v)(\pi - x)\frac{d}{dx}f_n(x) + \cdots$$
 (137)

を用いて展開すると、ラージ q における 4 点関数として

$$\mathcal{F}(x,y,x',0) = \left[\beta \mathcal{J} - 2\left\{-1 + \left(y - \frac{\pi}{2}\right)\frac{\partial}{\partial y} + (x - \pi)\frac{\partial}{\partial x} + (x' - \pi)\frac{\partial}{\partial x'}\right\}\right] \times \sum_{|n| \ge 2} \frac{e^{-iny} f_n(x) f_n(x')}{\pi^2 n^2 (n^2 - 1)}$$
(138)

を得る。 $O(\beta\mathcal{J})$ の項は (123) 式の $\mathcal{F}_{\rm big}$ でラージ q 極限を取ったものに一致する $(\alpha_0=2,\alpha_K=3,G=1/2)$ 。

3.3 4点関数: 最終結果

一般の q について伝搬関数に補正 δG を加えると、 4 点関数は (99) 式より次のような補正を受ける:

$$\frac{\mathcal{F}(\theta_1, \dots, \theta_4)}{G(\theta_{12})G(\theta_{34})} \supset -\frac{q}{2} \left[\frac{\delta G(\theta_{12})}{G_c(\theta_{12})} + \frac{\delta G(\theta_{34})}{G_c(\theta_{34})} \right] \frac{\mathcal{F}_{\text{big}}(\theta_1, \dots, \theta_4)}{G_c(\theta_{12})G_c(\theta_{34})}$$
(139)

$$= \frac{3\alpha_0}{\pi^2 |k_c'(2)|} [f_0(\theta_{12}) + f_0(\theta_{34})] \sum_{|n|>2} \frac{e^{in(y'-y)} f_n(x) f_n(x')}{n^2 (n^2 - 1)}.$$
(140)

ここで重要な点は、この補正項は $\alpha_0/k_c'(2)$ という因子を通してのみ q に依存している事である。 従ってラージ q における 4 点関数の結果 (138) 式を一般の q に対する F に使う事が可能である。 $\chi < 1$ の時は

$$\frac{\mathcal{F}(x, y, x', 0)}{G(x)G(x')} = \alpha_0 \left\{ \frac{6\beta \mathcal{J}}{\alpha_K} - \frac{6}{|k'_c(2)|} \left[-1 + \left(y - \frac{\pi}{2} \right) \frac{\partial}{\partial y} + (x - \pi) \frac{\partial}{\partial x} + (x' - \pi) \frac{\partial}{\partial x'} \right] \right\} \sum_{|n| \ge 2} \frac{e^{-iny} f_n(x) f_n(x')}{\pi^2 n^2 (n^2 - 1)} - \alpha_0 \sum_{m=1}^{\infty} \text{Res} \left[\frac{h - 1/2}{\pi \tan(\pi h/2)} \frac{k_c(h)}{1 - k_c(h)} \frac{\Gamma(h)^2}{\Gamma(2h)} \chi^h_2 F_1(h, h, 2h, \chi) \right]_{h=h_m} \chi < 1 \tag{141}$$

となる。 $\chi>1$ に関しては $\frac{\Gamma(h)^2}{\Gamma(2h)}\chi^h$ $_2F_1(h,h,2h,\chi)\to \Psi_h(\chi)$ という置き換えをすると得る事ができる。

4 リパラメトリゼーションの有効理論

この節では SYK 模型の有効理論を扱う。これによって第 3 節で論じた 4 点関数の計算に対して第 2 の視点を得る。

有効理論の作用は(6)式で与えられるが、ここでもう一度掲載する:

$$\frac{S}{N} = -\frac{1}{2}\log\det\left(\frac{\partial}{\partial t} - \tilde{\Sigma}\right) + \frac{1}{2}\int dt_1 dt_2 \left[\tilde{\Sigma}(t_1, t_2)\tilde{G}(t_1, t_2) - \frac{J^2}{q}\tilde{G}(t_1, t_2)^q\right]. \tag{142}$$

ここで $\tilde{\Sigma}, \tilde{G}$ は経路積分の積分変数である。古典解は Σ, G と表記する。フェルミオンの 4 点関数は

$$\frac{1}{N^2} \sum_{i,j} \langle \psi_i(t_1) \psi_i(t_2) \psi_j(t_3) \psi_j(t_4) \rangle = \int \mathcal{D}\tilde{\Sigma} \mathcal{D}\tilde{G} \ e^{-S} \tilde{G}(t_1, t_2) \tilde{G}(t_3, t_4)$$
 (143)

と書き表される。(142) 式の停留点はシュウィンガー・ダイソン方程式の解 G, Σ で与えられる。この解からの揺らぎを計算するならば、その揺らぎをそれぞれ $\tilde{G}=G+|G|^{\frac{2-q}{2}}g$ 、 $\tilde{\Sigma}=\Sigma+|G|^{\frac{2-q}{2}}\sigma$ とするのが便利である。この様にしても測度は不変である: $D\tilde{G}D\tilde{\Sigma}=DgD\sigma$ 。作用を g, σ の 2 次まで展開し、シュウィンガー・ダイソン方程式 $G=(\partial_t-\Sigma)^{-1}$ を用いると、揺らぎ g, σ の作用を 得る:

$$\frac{S}{N} = -\frac{1}{4J^2(q-1)} \int dt_1 \cdots dt_4 \ \sigma(t_1, t_2) \tilde{K}(t_1, \cdots, t_4) \sigma(t_3, t_4)
+ \frac{1}{2} \int dt_1 dt_2 \ \left(g(t_1, t_2) \sigma(t_1, t_2) - \frac{1}{2} J^2(q-1) g(t_1, t_2)^2 \right).$$
(144)

 $ilde{K}$ は (48) 式で与えられる対称化したラダーダイアグラムの積分核である。上式はさらに σ を積分して消去する事ができ、g の作用

$$\frac{S}{N} = \frac{J^2(q-1)}{4}g \cdot (\tilde{K}^{-1} - 1) \cdot g \tag{145}$$

を与える。4 点関数 (143) 式の被積分関数の \tilde{G} を $|G|^{\frac{q-2}{2}}$ に置き換え、(145) 式を代入してガウス積分を実行する事で $O(N^{-1})$ の項を計算できる。結果は (99) 式となる。

ここまでの議論は任意のエネルギーで成り立つ。低エネルギー極限を取り、共形古典解 G_c, Σ_c を使い、さらに揺らぎとして (101) 式で与えられるリパラメトリゼーション $\delta_\epsilon G_c$ を選べば、 $\delta_\epsilon G_c$ 自身が \tilde{K}_c の固有値 1 に対する固有関数である事から、揺らぎの作用 (145) 式は消滅する。これは (142) 式が行列式の中の ∂_t を捨てる事で、リパラメトリゼーション $t \to f(t)$ 及び (10) 式の下で不変になる事の帰結である。このリパラメトリゼーション不変性は、共形古典解 G_c が部分群 $SL(2,\mathbb{R})$ 対称性しか持たないために自発的に破れる。f(t) はそれによって現れるゴールドストーンボソンである。

共形極限から離れるとリパラメトリゼーション不変性は陽に破れ、h=2の固有値は 1 から (122) 式に修正され、その結果ゼロモードに対する有限の作用を得る。これを計算するために微小

変換 $t \to t + \epsilon(t)$ を考え、 $\delta_{\epsilon}G_{c}$ の作用を評価すれば、

$$\frac{S}{N} = \frac{\alpha_S}{\mathcal{J}} \int_0^\beta dt \, \frac{1}{2} \left[(\epsilon'')^2 - \left(\frac{2\pi}{\beta} \right)^2 (\epsilon')^2 \right], \qquad \alpha_S \equiv \frac{\alpha_K}{6q^2 \alpha_0} = \frac{q |k_c'(2)| \alpha_G}{6q^2 \alpha_0}$$
(146)

という有限の作用を得る。従って共形対称性は自発的にも、また陽にも破れる。次に (146) 式に有限のリパラメトリゼーション $t \to f(t)$ を施した表式を求めたい。これには零温度から始めるのが良い。従って t や f は直線上の座標となる。 f(t) はマクローリン展開すれば

$$f(t) = f(0) + f'(0) \left(t + \frac{1}{2} \frac{f''(0)}{f'(0)} t^2 + \dots \right)$$
(147)

となり、小さい t に関しては、スケーリングや並進によって $\epsilon'=0, \epsilon''=f''/f'$ となるような微小変換を得る。このスケーリングや並進は零温度 2 点関数に影響しないため、次式のような微小変換から有限の変換への一般化が可能である:

$$\frac{1}{2} \int dt \ (\epsilon'')^2 \to \frac{1}{2} \int dt \ \left(\frac{f''}{f'}\right)^2. \tag{148}$$

これによって作用 (146) 式は

$$S = -N\frac{\alpha_S}{\mathcal{J}} \int dt \ \{f, t\}, \qquad \{f, t\} = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)$$
 (149)

となる。 $\{f,t\}$ はシュワルツ微分であり、 $SL(2,\mathbb{R})$ 変換 $f \to \frac{af+b}{cf+d}$ の下で不変という性質を持つ。 零温度では G_c が $SL(2,\mathbb{R})$ 不変なので、この対称性は厳密なものである。有限温度に移るには

$$f(t) = \tan\left(\frac{\pi t}{\beta}\right) \tag{150}$$

という変換をすればよい。

5 量子カオスとしての SYK 模型

5.1 量子重力の揺らぎ

量子重力の大きい謎の1つは、ブラックホールのミクロな状態が持つ離散スペクトラムの起源である。量子論が本質的に持つ離散スペクトラムの存在は、2点関数を用いる事によって調べる事ができる:

$$G(t) = \frac{1}{Z(\beta)} \operatorname{tr} \left[e^{-\beta H} O(t) O(0) \right]$$

$$= \frac{1}{Z(\beta)} \sum_{m,n} e^{-\beta E_m} |\langle m|O|n\rangle|^2 e^{i(E_m - E_n)t}.$$
(151)

ここで O はあるエルミート演算子、 $Z=\operatorname{tr}(e^{-\beta H})$ は分配関数、そして $|n\rangle$ は固有値 E_n を持つエネルギーの固有状態である。t が小さい時は級数を粗子化して滑らかな密度の積分に置き換える事ができ、G(t) は指数関数的に 0 に落ちる。しかしこの振る舞いはずっと続く訳ではなく、t が大きい時にはスペクトラムの離散性が重要になっていき、(151) 式の波の位相によって G(t) は激しく振動し、もはや 0 には落ちない。

ホログラフィック原理において、粗子化による近似は古典重力への量子補正を加えた摂動計算と同じであり、この近似の範疇ではG(t)の値はずっと落ち続ける。よって量子論の持つ離散性が見えておらず、量子重力ではそれに対する補正項の存在があるはずである。

離散スペクトラムの存在を調べるには、2点関数よりも次式のような量を用いる方が単純化される:

$$Z(\beta, t) = \text{tr } e^{-\beta H - itH}. \tag{152}$$

これは分配関数 $Z(\beta)$ を $\beta \to \beta + it$ のように解析接続して得られる。t が大きい時では $Z(\beta,t)$ は G(t) と同様に激しく振動する。

t が大きい時のある量の振る舞いを調べるには時間平均を取るという事がしばしば行われる。 $Z(\beta,t)$ の時間平均はゼロであるので、 $Z(\beta,t)$ は大きい t でゼロのまわりで揺らぐという事が言える。その揺らぎの大体のサイズは

$$\left| \frac{Z(\beta, t)}{Z(\beta)} \right|^2 = \frac{1}{Z(\beta)^2} \sum_{m,n} e^{-\beta(E_m + E_n)} e^{i(E_m - E_n)t}$$

$$\tag{153}$$

で与えられる。一般にこの揺らぎのサイズの $t\gg 1$ での振る舞いを調べるのは容易ではないが、長時間平均を取る事によって計算がいくらか簡単になる。長時間平均を取ると有限の位相を持つ波は全てゼロに均され、 $E_n-E_m=0$ の項のみが残り次式にたどり着く:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T dt \ \left| \frac{Z(\beta, t)}{Z(\beta)} \right|^2 = \frac{1}{Z(\beta)^2} \sum_E N_E^2 e^{-2\beta E}. \tag{154}$$

ここで N_E は縮退度であり、スペクトラムに縮退が存在しない i.e. $N_E=1$ であるならば

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T dt \left| \frac{Z(\beta, t)}{Z(\beta)} \right|^2 = \frac{Z(2\beta)}{Z(\beta)^2}$$
 (155)

となる。Z のスケールは一般的にエントロピー S とある定数 a>0 を用いて $Z\approx e^{aS}$ である。よって Z の揺らぎの長時間平均 (155) 式は大体 e^{-aS} という大きさを持つ。AdS/CFT 対応の文脈では S はブラックホールエントロピーであり、そのスケールは、バルク理論のストリング結合定数 g_s とニュートン定数 G_N を用いて、 $1/g_s^2\approx 1/G_N$ で与えられる。よって (155) 式はバルク理論における非摂動計算となる。ラージブラックホールでは S は境界側の場の理論の熱力学的エントロピーであり、その大きさは系の自由度で与えられる。超対称性非可換ゲージ理論ならば $S\approx N^2$ であり、SYK 模型ならば $S\approx N$ となる。いずれにせよ (155) 式は 1/N の非摂動的量である。

ここで (155) 式の左辺を粗子化近似によって計算しようとすると、離散スペクトラムを走る和が滑らかな密度の積分に置き換わり、結果としてゼロとなり (155) 式の右辺と一致しない。よって Z の揺らぎの大きさがゼロにならないのは何故かを探求する事で、ブラックホールのスペクトラムの離散性や量子論を探る事ができる。この研究において、 $\mathcal{N}=4$ 超対称非可換ゲージ理論よりも解析が可能という理由で SYK 模型は良い"研究室"となっている。

以下では、基本的には SYK 模型における分配関数の揺らぎの大きさの平均を調べる事になる。 ただし SYK 模型はランダム結合定数 J_{ijkl} を持つので、長時間平均の代わりに J_{ijkl} で平均を取る (disorder average):

$$g(t) \equiv \frac{\langle Z(\beta, t)Z(\beta, t)^* \rangle_J}{\langle Z(\beta)^2 \rangle_J}.$$
 (156)

ここで分母と分子をまとめて平均操作を施すという選択肢もあるが、ここでは別々に分子と分母の平均を取った。このような量を annealed quantity という。こうするメリットとしてはレプリカの数が有限で済むという事が挙げられる。すなわち、(156) 式は基本的に ZZ^* の期待値なので、言ってみれば Z に対応する系と Z^* のそれというように SYK の系を 2 つコピーしたと言える。もし分母と分子をまとめて平均取ったとすると、このコピーの数が任意個になってしまう。

(156) 式は量子カオスの分野において重要なスペクトラル統計の量であり、スペクトラル形状因子と呼ばれる* *8 。

- 5.2 SYK 模型のスペクトラル形状因子
- 5.3 スペクトラル形状因子の G、 Σ による記述

^{*8} 量子カオスやスペクトラル統計の詳細は付録 C を参照する事。

6 量子カオスとしてのブラックホール

この節では主に SYK 模型の重力双対である Jackiw–Teitelboim ブラックホールの量子カオスの性質を述べる*⁹。

^{*9} この節の内容は [7] 及び [8] による。

7 終わりに

付録 A 有効作用の計算

SYK 模型のラグランジアンは

$$L = \frac{1}{2} \sum_{i=1}^{N} \psi_i \frac{d}{dt} \psi_i - \frac{1}{4!} \sum_{i,j,k,l=1}^{N} J_{ijkl} \psi_i \psi_j \psi_k \psi_l$$
 (157)

で与えられる。SYK 模型ではしばしば有限温度を考慮するため、分配関数はユークリッド化した ものを計算する:

$$Z = \int \mathcal{D}\psi \, \exp\left(-\int dt \, L\right). \tag{158}$$

以下では (158) 式を乱数 J_{ijkl} について平均を取るという disorder-average の計算を行い、その後 フェルミオンについて積分し有効作用を得る事を目標とする。

disorder-average は

$$\langle Z \rangle = \int \prod_{i < j < k < l}^{N} \left[dJ_{ijkl} \ P(J_{ijkl}) \right] Z \tag{159}$$

を計算すれば良い。以下では表記を簡潔にするために

$$a \equiv \frac{N^3}{12J^2} \tag{160}$$

$$I_{ijkl} \equiv \int dt \; \psi_i \psi_j \psi_k \psi_l \tag{161}$$

としておく。 J_{ijkl} についての積分が実行される部分が明確になるように式変形すると

$$\langle Z \rangle = \int \mathcal{D}\psi \exp\left(-\int dt \sum_{i} \frac{1}{2} \psi_{i} \frac{d}{dt} \psi_{i}\right)$$

$$\times \underbrace{\int \left[\prod_{i < j < k < l} dJ_{ijkl} \sqrt{\frac{a}{\pi}} \exp\left(-aJ_{ijkl}^{2}\right)\right] \exp\left(\frac{1}{4!} \sum_{i,j,k,l} I_{ijkl} J_{ijkl}\right)}_{=G}$$
(162)

となる。ここから更にGを複数のガウス積分の積となるように変形すると

$$G = \left(\frac{a}{\pi}\right)^{4!_N C_4/2} \prod_{i < j < k < l} \int dJ_{ijkl} \exp\left(-aJ_{ijkl}^2 + I_{ijkl}J_{ijkl}\right)$$
(163)

となる。ここで J_{ijkl} と I_{ijkl} が反対称テンソルである事を用いて

$$\frac{1}{4!} \sum_{i,j,k,l} I_{ijkl} J_{ijkl} = \sum_{i < j < k < l} I_{ijkl} J_{ijkl} \tag{164}$$

を使用した。あとは通常のガウス積分を実行すると

$$G = \exp\left(\frac{3J^2}{N^3} \sum_{i < j < k < l} I_{ijkl}^2\right) = \exp\left(\frac{3J^2}{4!N^3} \sum_{i,j,k,l} I_{ijkl}^2\right)$$
(165)

となり、

$$\langle Z \rangle = \int \mathcal{D}\psi \, \exp\left(-\int dt \, \sum_{i} \frac{1}{2} \psi_{i} \frac{d}{dt} \psi_{i} + \frac{3J^{2}}{4!N^{3}} \sum_{i,j,k,l} \int dt_{1} dt_{2} \, \psi_{i}(t_{1}) \psi_{j}(t_{1}) \psi_{k}(t_{1}) \psi_{l}(t_{2}) \psi_{j}(t_{2}) \psi_{k}(t_{2}) \psi_{l}(t_{2})\right)$$
(166)

という結果を得る。次はフェルミオンについて積分するのであるが、その前に

$$G(t_1, t_2) = \frac{1}{N} \sum_{i=1}^{N} \psi_i(t_1) \psi_i(t_2)$$
(167)

という場を導入するために

$$1 = \int \mathcal{D}G \, \delta \left(NG - \sum_{i} \psi_{i} \psi_{i} \right)$$

$$= \int \mathcal{D}G \, \int \mathcal{D}\Sigma \, \exp\left(-\int dt_{1} dt_{2} \, \frac{1}{2} \Sigma(t_{1}, t_{2}) \left(NG(t_{1}, t_{2}) - \sum_{i} \psi_{i}(t_{1}) \psi_{i}(t_{2}) \right) \right)$$
(168)

を $\langle Z \rangle$ に挿入する *10 。この時、挿入したデルタ関数によって

$$\sum_{i,j,k,l} \int dt_1 dt_2 \ \psi_i(t_1) \psi_j(t_1) \psi_k(t_1) \psi_l(t_1) \psi_i(t_2) \psi_j(t_2) \psi_k(t_2) \psi_l(t_2) \to N^4 \int dt_1 dt_2 G(t_1, t_2)^4$$
(169)

という置き換えができる。以上を踏まえてフェルミオンの積分が実行される部分が明確になるよう に式変形を行うと

$$\langle Z \rangle = \int \mathcal{D}G \int \mathcal{D}\Sigma \exp\left(-\frac{N}{2} \int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4} G^4\right)\right) \times \underbrace{\int \mathcal{D}\psi \exp\left(-\sum_i \int dt_1 dt_2 \frac{1}{2} \psi_i(t_1) \left(\delta(t_1 - t_2) \frac{d}{dt_1} - \Sigma(t_1, t_2)\right) \psi_i(t_2)\right)}_{\equiv F}$$
(170)

$$\delta(x) \propto \int dp \, \exp(ipx)$$

であるが、今は $\Sigma(t_1,t_2)$ を虚軸方向に積分していると考えているため、結果として虚数単位 i がさらに i 倍され負 号となる。

となる。あとはFと置いた部分を計算するのだが、そのためには次の公式を使うとよい[9]:

$$\int d\theta \exp\left(-\frac{1}{2}\theta \cdot M \cdot \theta\right) = \sqrt{\det(M)} \tag{171}$$

ここで $\theta = (\theta_1, \cdots, \theta_n)$ は n 個のグラスマン数であり、M は反対称行列である。これを用いて、

$$F = \prod_{i} \int \mathcal{D}\psi_{i} \exp\left(-\int dt_{1}dt_{2} \frac{1}{2}\psi_{i}(t_{1}) \left(\delta(t_{1} - t_{2}) \frac{d}{dt_{1}} - \Sigma(t_{1}, t_{2})\right) \psi_{i}(t_{2})\right)$$

$$= \prod_{i} \left[\det\left(\delta(t_{1} - t_{2}) \frac{d}{dt_{1}} - \Sigma(t_{1} - t_{2})\right)\right]^{1/2}$$

$$= \left[\det\left(\frac{d}{dt} - \Sigma\right)\right]^{N/2}$$

$$= \exp\left(\frac{N}{2}\log\det\left(\frac{d}{dt} - \Sigma\right)\right)$$
(172)

となる。ここで

$$\delta(t_1 - t_2) \frac{d}{dt_1} - \Sigma(t_1 - t_2) \to \frac{d}{dt} - \Sigma \tag{173}$$

という記号的な処理を施した。

以上より

$$\langle Z \rangle = \int \mathcal{D}G \int \mathcal{D}\Sigma \exp\left(\frac{N}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) - \frac{N}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4}G^4\right)\right)$$

$$\equiv \int \mathcal{D}G \int \mathcal{D}\Sigma \exp(-I_{eff})$$
(174)

となり、有効作用として

$$\frac{I_{eff}}{N} = -\frac{1}{2}\log\det\left(\frac{d}{dt} - \Sigma\right) + \frac{1}{2}\int dt_1 dt_2 \left(\Sigma G - \frac{J^2}{4}G^4\right)$$
 (175)

を得た。

付録 B 係数 b の計算

この付録では (11) 式の係数 b の計算方法について述べる. まず (9) 式の 2 つの式を一つにまとめると

$$J^{2} \int ds \ G(s-t_{1})G(s-t_{2})^{q-1} = -\delta(t_{2}-t_{1})$$
(176)

となる.この積分を実行するには、

$$\frac{\operatorname{sgn}(t)}{|t|^{2\Delta}} = \int \frac{d\omega}{2\pi} \exp(-i\omega t) \ i \, 2^{1-2\Delta} \sqrt{\pi} \frac{\Gamma(1-\Delta)}{\Gamma(1/2+\Delta)} |\omega|^{2\Delta-1} \operatorname{sgn}(\omega) \tag{177}$$

を使用すると便利である. 少しの計算のあとに、

$$-\delta(t) = -J^{2}b^{q}\pi \frac{\Gamma(1-\Delta)\Gamma(\Delta)}{\Gamma(1/2+\Delta)\Gamma(3/2-\Delta)}$$

$$\times \int ds \int \frac{d\omega}{2\pi} \exp(-i\omega(t-s)) |\omega|^{2\Delta-1} \operatorname{sgn}(\omega) \int \frac{d\Omega}{2\pi} \exp(-i\Omega s) |\Omega|^{1-2\Delta} \operatorname{sgn}(\Omega)$$
(178)

という式にたどり着く。積分の部分は最初に s について実行すると $\delta(\omega-\Omega)$ が現れ、その後 ω および Ω で積分すると $\delta(t)$ が現れる。またガンマ関数の部分については

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$$
 for $\forall z \notin \mathbb{Z}$ (179)

という性質と $\Gamma(1+z)\Gamma(z) = z\Gamma(z)$ を用いることで

$$\frac{\Gamma(1-\Delta)\Gamma(\Delta)}{\Gamma(1/2+\Delta)\Gamma(3/2-\Delta)} = \frac{1}{(1/2-\Delta)\tan(\pi\Delta)}$$
(180)

となる. 以上より、係数bは

$$J^2 b^q \pi = \left(\frac{1}{2} - \Delta\right) \tan(\pi \Delta) \tag{181}$$

という式により決定できる。

付録 C 量子カオス

C.1 はじめに: カオスとは何か

カオスの分野は 19 世紀末のアンリ・ポアンカレによる 3 体問題に関する研究に始まる [12]。 2 つの質点が互いに内力のみで相互作用し、外力が存在しないような 2 質点系は可積分系である。 そのような系の位相空間上の軌道は、一般に系の自由度の数だけ存在する保存量によって決まる多様体からはみ出る事がなく、安定である。一方、ポアンカレによって 3 質点系では摂動展開した級数の収束性は証明不可能である事が示された。この問題を我々の太陽系に当てはめると、「太陽系は本当に安定な系か?」という興味深い (そして少し不安になるような (?)) 問いとなる。しかし我々の太陽系は観測上ケプラーの法則に非常に精度良く従っている。ケプラーの法則は根本的に 2 質点系の可積分性から演繹されるものであるため、太陽系のような多体系がこの法則に従うのは今日でも解消されていない謎の 1 つとなっている。

我々の住む世界には多くの場面においてカオスが顔を表す。上述したような 3 つ以上の惑星を含む系の運動に始まり、化学反応、病気の広がり方、インターネットや経済学にも現れる [12]。一方、可積分系は非可積分系に比べて知られているものが非常に少ない。可積分系という単語は、ハミルトン形式の力学において次のようにして定義される:系の自由度を n とする。この時、運動の定数 $I_i(\vec{q},\vec{p})={\rm const}$ が n 個あり、かつ

$$[I_i, I_j]_{\text{poisson}} = 0 \tag{182}$$

を満たす時、系は可積分性を持つという。ここで[,]poisson は

$$[f,g]_{\text{poisson}} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$$
(183)

で与えられるポアソン括弧である。ポアンカレによって、ほとんどの力学系は運動の定数としてエネルギーしか持たない事が示された [12]。つまり、これらの系は自由度が n=1 でなければ可積分系とはならない。従って、 $n\geq 2$ となるようなほとんどの系は可積分系ではないと言える。

例として 3 次元空間内における N 体問題を考えると、系の自由度が 3N であるのに対して、ポアソン括弧の意味で互いに可換となるような運動の定数は 6 つしかない。故に N=2 の時のみ可積分系となるのであり、それより多い数の物体が存在すると最早可積分系ではなくなる。

カオス系の最も簡易な定義は次のように与えられる: ある 1 つの運動を、初期条件をわずかに変えて時間発展させた時、運動の軌跡が初期条件によって大きく異なるような系をカオス系という。この定義はいわゆるバタフライ効果である。しかし古典カオスにおいて、これは寧ろ証明されるものであり、より根本的かつ数学的に厳密な定義が複数存在する [14]: 1 つは位相的推移性 (topological transitivity) を持つ写像が存在する事である。つまり、運動を表す状態空間 (例えば位相空間) M 上で作用する写像 $f: M \to M$ があり、任意の 2 つの開集合 U,V に対して $f^N(U) \cap V \neq \emptyset$ となるような自然数 $N \in \mathbb{N}$ が存在するというものである。ここで $f^N(U) = f(f(\cdots f(U) \cdots))$ であ

る。もう少し直感的な言葉を使うなら、ある時点での任意の状態に対して、それに限りなく近づくような軌道が状態空間 M 内に必ず存在するという事でもある。2 つ目は状態空間 M 内に周期的な点からなる稠密部分集合が存在する事である *11 。つまり、全ての状態 $x \in M$ それぞれに限りなく近い点 y が存在し、y はある周期的な軌道に乗ったものである。これらの定義は互いに等価な内容である。

古典カオスが位相空間を用いた厳密な定義を持つ一方で、量子カオスにはそのような定義が存在しない。これは、量子系は不確定性原理により正準共役な変数が可換でなくなるため、位相空間上の軌道という概念は最早意味を成さない事に起因する。

量子カオスの伝統的な研究手法では対応原理を使用する:カオス系として知られている古典系を用意し、それを単純に量子化するのである。典型的な系は次のようなものである [13]:あるリング上に存在する粒子を考える。その粒子はある一定時間ごとにデルタ関数的なポテンシャルにより強く加速される。ハミルトニアンは

$$H(x,p) = \frac{p^2}{2} + V(x) \sum_{n=-\infty}^{\infty} \delta(t-n)$$
 (184)

の様に与えられる。ここで $V(x) = -\frac{K}{4\pi^2}\cos(2\pi x)$ はリング上の周期的ポテンシャルである。この系は V(x) の大きさ K によって可積分系からカオス系へと転移するという特徴を持ち (図 7)、系を量子化した後でも、この性質は伏見関数 $\Psi(x,p)$ を見る事により保たれている事を示せる [13]。

図 7 (184) 式で与えられる系の位相空間上の軌道。横軸がx、縦軸がpである。Kが大きくになるにつれて可積分性が消滅しカオスとなっていく。

系の持つ量子カオス性を測定する道具として時間順序外相関関数 (out-of-time-order correlation function: OTOC) というものがある:

$$C(t) \equiv -\langle [W(t), V(0)]^2 \rangle. \tag{185}$$

^{*11} 位相 (topological) 空間 X の部分集合 A が X において稠密であるとは、 $x \in X$ の任意の近傍 U(x) が $U(x) \cap A \neq \emptyset$ を満たす事を言う。等価な定義として、A を含む X の閉集合が X 自身しかない時、A は稠密であるというものもある。

ここで W,V はハイゼンベルグ描像での一般のエルミート演算子、そして $\langle A \rangle \equiv Z^{-1} \mathrm{tr}(e^{-\beta H}A)$ である。交換子 [W(t),V(0)] は、時刻 t における測定量 W に対する V(0) による摂動の効果を表し、その熱平均 (thermal average) を取る事で影響の大きさを測ったものが (185) 式である。

量子カオスを調べる道具はもう 1 つ存在する。量子カオスの性質にエネルギー固有値などのスペクトラムが統計的な振る舞いをするというものがある。一方で可積分性を持つ量子系 (対応する古典系が可積分系) のスペクトラムはランダムであり、統計的な分布を持たない。この事から量子カオスの性質を探る統計的手法としてスペクトラル統計が使われる。用いる数学はランダム行列理論 (Random Matrix Theory: RMT) である。ランダム行列とは、その名の通りある確率分布に従う乱数を成分として持つ行列であり、RMT はその統計的な性質を調べるものである。重要な量として挙げられるものは複数あるが、特に SYK 模型と関連が深いものはスペクトラル形状因子 (spectral form factor) g(t) である。量子カオスを示す系ではスペクトラル形状因子は特有の構造を持ち、その物理的起源を探求する事が主な研究課題となる。

以下では OTOC 及びスペクトラル統計について詳しく解説する。

C.2 時間順序外相関関数

OTOC は古典カオスのバタフライ効果の定義を量子論に拡張したものである。

C.3 スペクトラル統計

参考文献

- [1] J. Maldacena and D. Stanford, "Comments on the Sachdev-Ye-Kitaev model," arXiv:1604.07818 [hep-th]
- [2] V. Rosenhaus, "An introduction to the SYK model," arXiv:1807.03334v1 [hep-th]
- [3] J. Polchinski and V. Rosenhaus, "The Spectrum im the Sachdev-Ye-Kitaev Model," arXiv:1601.06768 [hep-th]
- [4] D. J. Gross and V. Rosenhaus, "A Generalization of Sachdev-Ye-Kitaev," arXiv:1610.01569 [hep-th]
- [5] J. Maldacena, S. H. Shenker and D. Stanford, "A bound on chaos," arXiv:1503.01409 [hep-th]
- [6] J. Liu, "Spectral form factors and late time quantum chaos," arXiv:1806.05316 [hep-th]
- [7] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher and M. Tezuka, "Black Holes and Random Matrices," arXiv:1611.04650 [hep-th]
- [8] P. Saad, S. H. Shenker and D. Stanford, "A semiclassical ramp in SYK and in gravity," arXiv:1806.04650 [hep-th]
- [9] H. E. Haber, "Notes on antisymmetric matrices and the pfaffian"
- [10] G. Tarnopolsky, "On large q expansion in the Sachdev-Ye-Kitaev model," arXiv:1801.06871 [hep-th]
- [11] K. Andrzejewski, "Quantum conformal mechanics," arXiv:1506.05596 [hep-th]
- [12] J. Masoliver and A. Ros, "Integrability and chaos: the classical uncertainty," arXiv:1012.4384 [nlin.CD]
- [13] D. Ullmo and S. Tomsovic, "INTRODUCTION TO QUANTUM CHAOS," http://www.lptms.u-psud.fr/membres/ullmo/Articles/eolss-ullmo-tomsovic.pdf
- [14] W. Hsiao, "Introduction to Classical Chaos," http://theory.uchicago.edu/ejm/course/JournalClub/IntroductionToClassicalChaos.pdf
- [15] P. H. C. Lau, C. T. Ma, J. Murugan and M. Tezuka, "Randomness and Chaos," arXiv:1812.04770 [hep-th]