Recap of Hypothesis Testing (one sample)

Giorgio Corani - (IDSIA, SUPSI)

Bayesian Data Analysis and Probabilistic Programming

Cosa è un'ipotesi statistica

- A statistical hypothesis is an assumption about the parameter of a distribution.
- For instance, we can test whether the mean diameter μ of the production of manufactured cylinders equals the nominal value of 5 cm:

$$H_0: \mu = 5$$

$$H_1: \mu \neq 5$$

 \blacksquare H_0 è is the $\it null$ hypothesis, H_1 is the alternative hypothesis.

Hypothesis test

$$H_0: \mu = 5$$

$$H_1: \mu \neq 5$$

 \blacksquare H_0 and H_1 contain all the possible values of $\mu.$

Hypothesis test

- \blacksquare H_0 e H_1 refer to a parameter of a distribution, such as:
 - lacksquare the mean μ of a normal
 - lacksquare the proportion π of a binomial
- We make no test about sample mean and sample proportion, $(\bar{x}, p,$ etc), which are measured on the sample and there is no uncertainty about them.
- The uncertainty is about the parameter of the distribution / population.

Strong and weak decision

- We try to prove the alternative hypothesis.
- Rejecting the null hypothesis is a strong decision: the sample provides strong evidence about the null hypothesis being false.
- Non-rejecting the null hypothesis is a weak decision
 - By non-rejecting H_0 we do not conclude that H_0 is true. We rather conclude that there is not enough evidence to reject it.
 - A frequentist test cannot reject H_0 .

Type-1 error: rejecting H_0 when H_0 is true.

- \blacksquare α : probabilità di fare un errore di tipo I.
- Typical values for α =0.05 o α =0.01.
- \blacksquare α : significance of the test (e.g., 0.05, 0.01)
- \blacksquare 1 $-\alpha$: confidence of the test (e.g., 0.95, 0.99)
- If the test rejects H_0 , we say that a statistically significant effect has been observed with confidence $1-\alpha$.

Type II error: not rejecting H_0 when it is false.

- This corresponds to letting free
- The type II error (β) is controlled by using a large enough sample. In order to decide the sample size, the *power* of the test has to be studied.

Esempio di test di uguaglianza ("test a due code")

- La media della nostra produzione deve essere esattamente a 5cm.
- Questo test può scoprire sregolazioni della media verso l'alto o il basso:

$$H_0: \mu = 5$$
$$H_1: \mu \neq 5$$

$$H_1: \mu \neq 5$$

- \blacksquare Se il test non rifiuta H_0 (decisione debole), la produzione continua regolarmente.
- \blacksquare Se il test rifiuta H_0 (decisione forte), concludiamo che la produzione si sia sregolata; è necessario intervenire sul processo.

Test direzionali ("a una coda")

 In alcune applicazione ci interessano gli spostamenti del parametro in un'unica direzione (solo verso l'alto o il basso).

Example of one-tailed test (from Montgomery, chap 4)

A system manager wants to know whether the mean response time of a computer network command exceeds 75 millisec. If that is the case, there is evidence that the network is not working at its nominal speed.

The test is:

$$H_0: \mu \le 75$$

$$H_1: \mu > 75$$

If we reject H_0 , we conclude the network to be *significantly* slower than its nominal speed.

Example of one-tailed test

If instead the provider wants to demonstrate that the network is even faster than its nominal value, he will use the test:

$$H_0: \mu \ge 75$$

 $H_1: \mu < 75$

 \blacksquare If the test rejects H_0 , we conclude the network to be significatnly faster than its nominal speed.

Equals sign in ${\cal H}_0$ e ${\cal H}_1$

In general:

- lacksquare H_0 contains either =, or \geq , or \leq).
- lacksquare H_1 contains either \neq , or <, or >).

Test d'ipotesi per la media

■ Vogliamo testare l'ipotesi:

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

- lacksquare μ : media (ignota) della variabile nella popolazione
- \blacksquare μ_0 : valore di riferimento

Procedura

- Prendiamo un campione dalla popolazione
- Calcoliamo una statistica (statistica del test).
- Non rifiutiamo H_0 se il valore osservato della statistica è plausibile sotto l'ipotesi nulla (decisione **debole**).
- Rifiutiamo H_0 se il valore osservato della statistica non è plausibile sotto l'ipotesi nulla (decisione **forte**).

La statistica del test (assumendo σ nota)

$$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

- \bar{x} : media del campione (media campionaria)
- \blacksquare n: numero di misure nel campione (dimensione del campione).
- σ^2 : varianza della popolazione, che assumiamo di conoscere. Più avanti rilasseremo questa assunzione.
- \blacksquare Se H_0 è vera, $Z_0 \sim N(0,1)$.

Intuizione

■ Teorema del limite centrale:

$$\bar{x} \sim N(\mu, \frac{\sigma^2}{n})$$

- \blacksquare la normalità di \bar{x} è garantita purchè n sia sufficientemente ampio.
- Questa è la distribuzione che otterremmo misurando \bar{x} in tanti diversi campioni di dimensione n estratti da una popolazione con media μ e varianza σ^2 .
- Se l'ipotesi nulla e' vera:

$$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Per avere la normalità di Z_0 è necessario n >5-10, oppure che la popolazione sia normale.

$$Z_{\alpha/2}$$

- lacksquare $Z_{lpha/2}$ e $Z_{1-lpha/2}$: percentile $rac{lpha}{2}$ ed ($1-rac{lpha}{2}$) della normale standard.
- lacksquare Per simmetria, $Z_{1-lpha/2}=-Z_{lpha/2}$ nel caso Gaussiano.
- Entrambe le code rosse contengono probabilità $\alpha/2$.

Regione di rifiuto e non-rifiuto

- Supponiamo di ripetere molte volte questo esperimento:
 - \blacksquare estrarre un campione di dimensione n dalla popolazione
 - \blacksquare calcolare Z_0
- Se l'ipotesi nulla è vera, una proporzione (1-a) dei valori di Z_0 cadrà tra $Z_{\alpha/2}$ e $Z_{1-\alpha/2}$.
- ullet È poco plausibile che Z_0 cada fuori da questi limiti (succede solo con probabilità lpha).
- Se succede questo rifiutiamo l'ipotesi nulla.

Regione di rifiuto del test a due code

■ Rifiutiamo H_0 se la statistica Z_0 cade in una delle due regioni rosse (regioni di rifiuto).

Regione di rifiuto ($\alpha=0.05$)

$$\begin{split} \alpha &= 0.05 \\ \alpha/2 &= 0.025 \\ 1 - \alpha/2 &= 0.975 \\ z_{1-\alpha/2} &= \Phi^{-1}(0.975) = 1.96 \\ z_{\alpha/2} &= \Phi^{-1}(0.025) = -1.96 \end{split}$$

Le due regioni di rifiuto sono:

- $Z_0 > 1.96$
- $Z_0 < -1.96$

$$Z_{lpha/2}$$
 ($lpha=0.01$)

$$\begin{split} \alpha &= 0.01 \\ \alpha/2 &= 0.005 \\ 1 - \alpha/2 &= 0.995 \\ z_{1-\alpha/2} &= \Phi^{-1}(0.995) = 2.58 \\ z_{\alpha/2} &= \Phi^{-1}(0.005) = -2.58 \end{split}$$

Le due regioni di rifiuto sono:

- $Z_0 > 2.58$
- $\blacksquare \ Z_0 < -2.58$

Test a una coda

- \blacksquare H_1 rappresenta l'ipotesi che vogliamo dimostrare.
- \blacksquare Se vogliamo provare a dimostrare $\mu>\mu_0$ faremo il test:

$$H_0: \mu \leq \mu_0$$

$$H_1: \mu > \mu_0$$

Regione di rifiuto (test con coda destra)

$$H_0: \mu \le \mu_0$$

$$H_1: \mu > \mu_0$$

- \blacksquare Il rifiuto di H_0 richiede $\bar{x} > \mu_0$, quindi $Z_0 > 0$.
- \blacksquare Più precisamente la regione di rifiuto è $Z_0>Z_{1-\alpha}.$

Regione di rifiuto (test con coda sinistra)

■ Invece se vogliamo dimostrare $\mu < \mu_0$ faremo il test:

$$H_0: \mu \ge \mu_0$$

$$H_1: \mu < \mu_0$$

 \blacksquare Rifiutiamo H_0 se $Z_0 < Z_\alpha$ (ricordiamo che $Z_\alpha = -Z_{1-\alpha}$).

 $Z_{\alpha} \ \mathbf{e} \ Z_{1-\alpha}$

$$\begin{split} \alpha &= 0.05 \\ z_{\alpha} &= \Phi^{-1}(0.05) = -1.64 \\ z_{1-\alpha} &= \Phi^{-1}(0.95) = 1.64 \\ \\ \alpha &= 0.01 \\ z_{\alpha} &= \Phi^{-1}(0.01) = -2.32 \\ z_{1-\alpha} &= \Phi^{-1}(0.99) = 2.32 \end{split}$$

Esempio

- Da specifica, il tempo di risposta di una rete di computer è di 75 ms.
- Il cliente sospetta che la rete sia più lenta del valore di specifica. Compie 25 misure, ottenendo un tempo di risposta medio $\bar{x}=79.25$.
- \blacksquare La σ dei tempi di risposta, nota da precedenti analisi, è 8 ms.
- Svolgere il test con significatività $\alpha = 0.05$.

Soluzione

$$H_0: \mu \leq 75$$

$$H_1: \mu > 75$$

■ La regione di rifiuto contiene tutti i valori superiori al valore critico $Z_{1-\alpha} = \Phi^{-1}(0.95) = 1.64.$

$$Z_0 = \frac{\bar{x} - 75}{8\sqrt{25}} = \frac{79.25 - 75}{8/\sqrt{25}} = 2.66$$

Esito del test

■ Prendiamo una decisione forte, rifiutando H_0 e concludendo che il tempo di risposta è *significativamente* superiore a 75 millisecondi.

Esempio - viscosità dell'asfalto

- Il valore ottimale di viscosità media dell'asfalto è 3200 cps (centipoise).
- Sulla base dell'esperienza è la viscosità può essere assunta normalmente distribuita, con $\sigma=118$.
- Sono state svolte 15 misure, la cui media è $\bar{x}=3210$.
- \blacksquare Testare la conformità della viscosità media della produzione assumendo $\alpha=0.05$.

Soluzione

Il test è:

$$H_0: \mu = 3200$$

$$H_1: \mu \neq 3200$$

I valori critici di questo test a due code sono $Z_{\alpha/2}$ e $Z_{1-\alpha/2}$, pari a ± 1.96 .

Soluzione

La statistica è:

$$Z_0 = \frac{\bar{x} - \mu_0}{8\sqrt{25}} = \frac{3210 - 3200}{118/\sqrt{15}} = 0.328$$

- Non rifiutiamo H_0 (decisione debole).
- Non abbiamo evidenza che la viscosità media della nostra produzione sia diversa dal valore di specifica.

Discussione

- La performance del processo potrebbe comunque essere insoddisfacente a causa di alta variabilità, per cui le singole unità potrebbero essere troppo lontane dalla media.
- Vedremo più avanti come valutare la performance del processo considerandone anche la variabilità (analisi di capacità del processo).

t-test

Test d'ipotesi con varianza ignota (t-test)

- In generale, la σ della popolazione è ignota; invece conosciamo la deviazione standard *campionaria*, s.
- Sostituendo s a σ , la statistica del test diventa:

$$t_0 = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

 \blacksquare Sotto H_0 , la statistica segue una distribuzione t con n-1 gradi di libertà (i gradi di libertà sono denotati da ν).

La distribuzione t ("t di Student")

- Come la N(0,1), la distribuzione t è simmetrica e centrata in 0.
- La t ha densità non trascurabile anche oltre le 3 deviazioni standard, dove invece la densità normale è praticamente nulla.

La distribuzione t ("t di Student")

Per ν <10, la t ha code più lunghe della N(0,1); questo implica un aumento del 10-30% dei valori critici:

$$z_{.975} = 1.96$$

$$t_{\nu=4,.975} = 2.78$$

$$t_{\nu=10,.975} = 2.23$$

$$t_{\nu=30,.975} = 2.04$$

 \blacksquare Per ν >30 la t è praticamente equivalente ad una N(0,1).

Supponiamo di estrarre molte volte un campione di dimensione n
 dalla popolazione e di calcolare per ogni campione la statistica:

$$t_0 = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

- Il valore di t_0 calcolato per ogni campione sarà diverso e segue una distribuzione t con n-1 gradi di libertà.
- I valori critici del test $(t_{n-1,\alpha/2},t_{n-1,1-\alpha/2},t_{n-1,1-\alpha}$ etc) si leggono in tabella (dipendono da n-1 e da α).

Esempio di t-test

- Un processo di produzione monitora la lunghezza di un componente, che da specifica è di 5.2 mm.
- Si vogliono identificare sregolazioni del processo verso l'alto e verso il basso.
- Il campione ha n=15 misure, con \bar{x} =4.66, s=1.52
- Calcolare test e CI usando α =0.05.

Soluzione

$$H_0 : \mu = 5.2$$

 $H_1 : \mu \neq 5.2$

- Da tabella:
 - $t_{14,\alpha/2} = -2.145$
 - $t_{14,1-\alpha/2} = 2.145$
 - Nel caso normale (cioè se σ fosse noto), i valori critici sarebbero più vicini a 0: ± 1.96 .

$$t_0 = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{4.66 - 5.2}{1.52/\sqrt{15}} = -1.376$$

■ Il test non rifiuta H_0 : la statistica è all'interno dei valori critici.

Verifica tramite intervallo di confidenza

Il CI calcolato con lo stesso α è:

$$\bar{x} \pm t_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}} = 4.66 \pm 2.145 \frac{1.52}{\sqrt{15}} = (3.82, 5.50)$$

- Il valore ipotizzato dall'ipotesi nulla, cioè 5.2, è all'interno del CI; è quindi un valore plausibile per la media della popolazione.
- Coerentemente, il *t*-test non rifiuta l'ipotesi nulla.

Esercizio

- Un'associazione di consumatori vuole dimostrare che le scatole di biscotti prodotte da una certa azienda siano più leggere del valore dichiarato (375 g.).
- L'associazione pesa 26 scatole, con il seguente risultato:
 - $\bar{x}=368$ gr.
 - = s = 15 gr.
- C'è evidenza che l'azienda stia vendendo scatole di biscotti più leggero del dichiarato?
 - Adottare $\alpha = 0.05$.

- Consideriamo una popolazione in cui ogni elemento ha una caratteristica binaria:
 - conforme, difettoso
 - guarisce, non guarisce
 - preferisce sito A, preferisce sito B (AB test)
- Di solito l'esito d'interesse è quello più raro ed è detto successo.
- Vogliamo testare l'ipotesi che la proporzione π di successi nella popolazione sia uguale a π_0 (ipotesi nulla).

- Misuriamo la proporzione campionaria $p = \frac{X}{n}$:
 - X: numero di successi nel campione
 - n: dimensione del campione
- Verifichiamo che il campione sia sufficientemente ampio:
 - \blacksquare X > 5 (numero di successi >5)
 - -N X > 5 (numero di insuccessi >5)

Se il campione è sufficientemente ampio, possiamo approssimare con una ${\cal N}(0,1)$ la distribuzione della statistica:

$$Z_0=\frac{p-\pi_0}{\sqrt{\pi_0(1-\pi_0)/n}}$$

- $\blacksquare \ \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$ è l'errore standard di p sotto H_0
- \blacksquare cioè la deviazione standard di p su infiniti campioni estratti da una popolazione binaria la cui proporzione di successi è π_0

■ Il test a due code è ad esempio:

$$H_0: \pi = \pi_0$$

$$H_1: \pi \neq \pi_0$$

lacksquare Valori critici e p-value si calcolano usando la N(0,1).

Esempio

- In un campione casuale di 899 persone che lavorano a casa ci sono 414 donne.
- È plausibile che la proporzione di donne nella popolazione di persone che lavorano da casa sia il 50%?
- $lue{}$ Svolgere il test con lpha=0.05 e calcolare il p-value.

Soluzione

- Il campione contiene più di 5 successi ed insuccessi, quindi possiamo fare il test.
- Il test è a due code:

$$H_0: \pi = 0.5$$

$$H_1: \pi \neq 0.5$$

I valori critici sono ± 1.96 .

Soluzione

$$p = \frac{414}{899} = 0.46$$

$$Z_0 = \frac{p - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)/n}}$$

$$= \frac{.46 - .5}{\sqrt{.46(1 - .46)/899}}$$

- Rifiutiamo H_0
- p-value : $2 \cdot (1 \Phi(|Z_0|)) = 2 \cdot 0.008 = 0.016 < \alpha$

= -2.41

Esercizio: frazione di difettosi

- Prima di firmare un contratto, volete forte evidenza che la frazione di difettosi del fornitore sia <10%.</p>
- Quindi analizzate un campione di n=250 pezzi trovandone 11 difettosi (p=11/250= 0.044).
- Svolgere il test d'ipotesi ($\alpha=0.05$) per decidere se accettare la fornitura.

p-value (rete di computer)

$$H_0: \mu \geq 75$$

$$H_1: \mu < 75$$

$$Z_0 = \frac{\bar{x} - 75}{8\sqrt{25}} = \frac{79.25 - 75}{8/\sqrt{25}} = 2.66$$

$$p\text{-value: }=1-\Phi(Z_0)=1-0.996=0.0039$$

Rifiutiamo H_0 ; il p-value è un ordine di grandezza inferiore ad α e la statistica è quindi molto oltre il valore critico.

p-value (viscosità asfalto)

$$H_0: \mu = 3200$$

$$H_1: \mu \neq 3200$$

$$Z_0 = \frac{\bar{x} - \mu_0}{8\sqrt{25}} = \frac{3210 - 3200}{118/\sqrt{15}} = 0.328$$

$$P\text{-value: } = 2 \cdot [1 - \Phi(Z_0)] = 2 \cdot [1 - \Phi(.328)]$$

$$= 2 \cdot [1 - 0.628] = 0.743$$

Non rifiutiamo H_0 . Il p-value è molto superiore ad α : siamo ampiamente in regione di *non-rifiuto*.

t-test sulle scatole di biscotti

$$H_0: \mu \ge 375$$

 $H_1: \mu < 375$

$$t_0 = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{368 - 375}{15/\sqrt{26}} = -2.38$$

- \blacksquare Il valore critico del test a una coda è $t_{25,0.05}=-1.7$: rifiutiamo $H_0.$
- Non calcoliamo il CI, in quanto servirebbe il CI unilaterale.

Frazione di difettosi

Il campione contiene più di 5 successi ed insuccessi; possiamo quindi procedere con il test:

$$H_0: \pi \geq 0.1$$

$$H_1: \pi < 0.1$$

Frazione di difettosi

$$Z_0 = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

$$Z_0 = \frac{.044 - .1}{\sqrt{\frac{.1 \cdot .9}{250}}} = -2.95$$

- II valore critico è $Z_{alpha} = Z_{.05} = -1.64$.
- \blacksquare La statistica è oltre il valore critico e quindi rifiutiamo H_0 .
- \blacksquare Il p-value è $\Phi(Z_0)=\Phi(-2.95)=0.0001$, molto più piccolo di $\alpha.$

Some problems with frequentist hypothesis test

- It can only reject (strong decision) or non-reject (weak decision) H_0 ; it cannot make a strong decision in favor of H_0 . For instance, you cannot conclude with high confidence that two classifiers are practically equivalent.
- There are many other drawbacks of frequentist hypothesis testing, which we do not cover.
- \blacksquare A point hypothesis (two-tailed test) of the type $H_0:\mu=0$ is always wrong, in the sense that the parameter has never exactly the hypothesised value.
- \blacksquare We would like instead to have the posterior probability of H_0 and H_1 being correct, given the data