4.4) Optimization Absolute Extrema of a function f. If f(n) < f(c) (nesp. f(x)) f(c) for all x in the domain of f, then f(c) is called the value absolute maximum, of f. Or, (nesp. absolute Theorem (Extreme Value Theorem) of a function of is continuous on a closed interval
[a,b], then of has both an absolute maximum value and an absolute minimum value on [a, b]. Closed Interval Method This gives us the algo for finding absolute max/min on a closed, bounded interval [a,b]. They always exists by the theorem above O Find chitical number that lie in open interval (e, b)

(Next, we will treat these as well as a & b as chilipte.)

(2) Compute of at each chitical number; compute of (a), of (b). 3 The largest out of these is absolute max.

The least "" " is absolute min

<u>Eg!</u>	P Find absolute extrema for $q(x) = x^3 + 3x^2 - 1$
	over the inderval. [-3, 1]
a form	
Sofn:	g'(x) = 3x2 + 6x; sot g' exists everywhere as
	g is a polynomial.
	q'(x) = 0
-	$\frac{1}{2} 3\pi(\pi+2) = 0. = \pi \pi = 0, -2.$
The	g'(x) = 0 => $3x(x+2) = 0$. => $x = 0, -2$. us, cribical points on $(-3,1)$: $x = 0, -2$.
	· f(0) = 0-1; 10-20
11	inus,
1	$f(-2) = (-2)^3 + 3(-2)^2 - 1 = -8 + 12 - 1 = 3$ 0 (0,-1) is absolute
	$(-3,-1)$ _ minimum
	f(-3) = -27 + 27 - 1 = - 1
	f(1) = 1+3-1=3. $(-2,3)$ 7 - absolute
	(1,3) - absolute maximum.
	· · · · · · · · · · · · · · · · · · ·
	Note: - \ i the absolute min. value
	whereas g has an absolute min. at (0,-1) and
	(-3,-1).
k.	graph of
	3 is the absolute max. value whereas 9 has an
2010	3 is the absolute max. value whereas 9 has an absolute max at (-2,3) and (1,3).

2) Find abs. max/min: $\sqrt{4-\chi^2}$.
f(x) = \(4-x^2 - Domain: [-2,2]. So, abs. max/min
exist 1
If'(x) = - So, O is the only chitical point.
$f'(x) = \frac{-x}{\sqrt{4-x^2}}$ So, O is the only children point. on $(-2, 2)$.
· f(0) = 2 Thus, abs. max. value is 2.
((((((((((((((((((((
·f(-2)=0
-f(z)=0. abs. min value = 0
@ points (2,0).
Note: this is what we found out in Example 4 of runve sketching
7(0,2)
F2.0) (7,0)
Chile chatching curves, if you find domain is a
of white statung then you how to apply the closed
So, while sketching curves, if you find domain is a closed interval, then you have to apply the closed to interval lest? to find max/min to help you
the interval rest to find the stage of
alraw.