

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Types

Dr. Giuseppe Maggiore

Hogeschool Rotterdam Rotterdam, Netherlands

Introduction

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Lecture topics

- We introduce the Python type system
- Numbers
- Boolean values
- Arithmetic and boolean expressions

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Introduction

- Is everything an integer number?
- Yes and no

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Everything is an integer number

- For the CPU everything is a string of bits
- So yes, everything is (almost^a) an integer number
- Complex data structures like a GUI, a 3D model, a picture, etc. are made up of collections of numbers

^aalso floats are recognized by the CPU

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Everything is an integer number

- Low-level languages expose this view
- Everything is encoded with numbers
- It can become quite messy

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Not everything is an integer number

- For the programmer, there exist different kinds of values
- So common and useful that Python offers them out of the box
- Even if the CPU does not manipulate them directly

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Kinds of values

- Python has a type system
- Variables have different data types, often shortened to types
 - Integer numbers
 - Rational (floating point) numbers
 - Boolean truth values
 - Strings of text

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignmen

Integers

- Numbers without dot^a
 - 0
 - 100
 - -500

acomma in Dutch

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Integers

- Typical arithmetic operations on numbers (not in Python 3)
 - 3 + 5 = 8
 - 5 / 2 = 2
 - 40 * 5 = 200

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Floating points

- Numbers with dot^a
 - 0.0
 - 2.5
 - 10.0e3
 - 3.1e-5
 - 1- 5
 - -.1e-5

acomma in Dutch

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

The scientific notation

- 0.00001 is annoying to write
- we can write 1.e-5 instead
- the sign e-N means add N zeros right after the dot

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

The scientific notation

- 1000000.0 is annoying to write
- we can write 1.e6 instead
- the sign eN means add N zeros right before the dot

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Floating points

- Typical arithmetic operations on numbers
 - \bullet 5.0 / 2.0 = ?
 - 10.0e3 / 0.1 = ?
 - \bullet 3.1e-5 + 1.0e5 = ?
- Can you guess the results?

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Floating points

- Typical arithmetic operations on numbers
 - \bullet 5.0 / 2.0 = ?
 - 10.0e3 / 0.1 = ?
 - \bullet 3.1e-5 + 1.0e5 = ?
- Can you guess the results?
 - \bullet 5.0 / 2.0 = 2.5
 - 10.0e3 / 0.1 = 10.0e4
 - 3.1e-5 + 1.0e5 = 100000.000031

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Integers can be converted to floating points with float(n)
- Floating points can be converted to integers with int(n)

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions:
 - int(2.5) = ?
 - float(3) = ?
- Can you guess the results?

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions:
 - int(2.5) = ?
 - float(3) = ?
- Can you guess the results?
 - int(2.5) = 2
 - float(3) = 3.0

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Floating points can lose their decimal values
- They stay float's, but always end in .0
- math.floor(n) truncates the tail
- math.ceil(n) fills the tail and increases to the next unit

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions:
 - floor(2.5) = ?
 - ceil(2.5) = ?
- Can you guess the results?

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions:
 - floor(2.5) = ?
 - ceil(2.5) = ?
- Can you guess the results?
 - floor(2.5) = 2.0
 - \circ ceil(2.5) = 3.0

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Some conversions happen automatically
- Python operations try to preserve information
- 5 / 2.0 = 2.5, and 5 is converted to 5.0 right before the division

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Python 3 integer division

- The new version of Python has a new integer division: it always converts to float
- It is **very different** from most other programming languages
- 5 / 2 = 2.5

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Python 3 integer division

- Traditional integer division is now "//"
- 5 // 2 = 2

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Truth values
- True, False
- "Answers to yes/no questions"

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restriction

Assignment

- Logical operators on truth values
- Compose the asnwers to multiple questions
- Both questions in parallel:
 - Do you like chocolate? Yes.
 - Do you like vanilla? Yes.
 - Do you like chocolate and vanilla? Yes.
- Both questions concurrently:
 - Do you like chocolate? Yes.
 - Do you like vanilla? No.
 - Do you like chocolate or vanilla? Yes.
- Turn questions around:
 - Do you like chocolate? Yes.
 - Do you dislike chocolate? No.

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Logical operators take one or two input
- This means that we have no more than four possible combinations of input values
- Since the inputs are so few, we can enumerate all combinations
- This is done with a truth table

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Boolean values

• Truth tables enumerate all input values and the result of

their operator	Α	В	(A ⊙ B)
	True	True	
	True	False	
	False	True	
	False	False	

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Boolean values

- Logical operators on truth values
 - & for and В (A & B) True True True

FalseTrue False False True False

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

<u>As</u>signment

- Logical operators on truth values

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Logical operators on truth values
 - not

Α	not	Α
True	False	True
False	True	False

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Comparison operators on numeric values
 - >
 - <
 - ==
 - >=
 - <=>

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions:
 - \bullet 5.0 > 2.0 = ?
 - \bullet (3 > 4) | (5 == (3 + 2)) = ?
 - True & False = ?
- Can you guess the results?

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions:
 - \bullet 5.0 > 2.0 = ?
 - \bullet (3 > 4) | (5 == (3 + 2)) = ?
 - True & False = ?
- Can you guess the results?
 - 5.0 > 2.0 = True
 - (3 > 4) | (5 == (3 + 2)) = True
 - True & False = False

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

String values

- Text
- "Hello!", "Hello world!", "", ...

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

String values

- String literals are sequences of characters, on a single line, between double " or single ' quotes
- Some characters do not fit this description
- We need special markings for such characters
- These special markings are called escape characters

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

String values

- \' for single quote
- \" for double quote
- \a for ASCII Bell (BEL)
- \b for ASCII Backspace (BS)
- \f for ASCII Formfeed (FF)
- \n for ASCII Linefeed (LF)
- \r for ASCII Carriage Return (CR)
- \t for ASCII Horizontal Tab (TAB)
- v for ASCII Vertical Tab (VT)

Python type system basics

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

String values

- "Hello\n world" is a string on two lines
- ullet "Hello\n world\n of Python" is a string on three lines
- ...

Python type system basics

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

String values

- The most common operator is string concatenation
- "Hello" + "\n" + "world" + "\n" + "on" + "\n" + "different" + "\n" + "lines"

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Not all operations are allowed on all possible variable types
 - Some operations are allowed (integer addition)
 - Some operations are not allowed (string division)
 - Some operations change meaning (addition of integers versus concatenation of strings)

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Examples of allowed operators
 - Addition, subtraction, division, multiplication, etc. between numbers
 - Concatenation between strings
 - Multiplication of strings and integers
 - Arithmetic comparison between numbers or strings
 - Conjunction, disjunction, negation between booleans
 - Treating integers as booleans (1=True, 0=False)
 - Treating strings as booleans (anything else=True, ""=False)

and, or, not

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Examples of not-allowed operators
 - Most arithmetic operations on strings and non-strings ("Hello" + True)
 - Most boolean operations on strings and non-strings ("Hello" & True)

Type errors

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Not-allowed operators generate type errors

```
Traceback (most recent call last):  File \ "C:\Users\Giuseppe\Desktop\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}samples\DEV_{\sqcup}I_{\sqcup}sa
```


Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Variables may change type in Python
- An integer variable becomes later on a string variable
- This is allowed, but dangerous
- A variable should never lose reasonable meaning
- Many type errors stem from changes in meaning, connected with changes in type of a variable

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Multiple operators in a single expression are ambiguous
- For example: not True | True
 - (not True) | True = False | True = True
 - not (True | True) = not True = False

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Python defines which operators are evaluated first, and which later
- Removes ambiguity
- Makes parentheses not required
 - Still, might remain better for readability

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Introduction

 From lowest precedence (least binding) to highest precedence (most binding)

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- From lowest precedence (least binding) to highest precedence (most binding)
- Some operators share the same precedence
 - +, -
 - *, /

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- From lowest precedence (least binding) to highest precedence (most binding)
- Some operators share the same precedence
 - +, -
 - *, /
- Unless the syntax is explicitly given (example by mean of parenthesis)

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- From lowest precedence (least binding) to highest precedence (most binding)
- Some operators share the same precedence
 - ◆ +, −
 - *, /
- Unless the syntax is explicitly given (example by mean of parenthesis)
- A complete table of precedence can be found on https://docs.python.org/2/reference/ expressions.html#operator-precedence

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- \bullet Example: integer operations in Python like * and / have higher precedence than + and -
- \bullet 1 + 4 * 2 = 9

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- \bullet Example: integer operations in Python like * and / have higher precedence than + and -
- \bullet 1 + 4 * 2 = 9
- Use parenthesis to group expressions
- (1+4)*2=10

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions what are the results:
 - (20 + 10) * 15 / 5 = ?
 - ((20 + 10) * 15) / 5 = ?
 - 20 + (10 * 15) / 5 = ?

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

- Given the following expressions what are the results:
 - (20 + 10) * 15 / 5 = ?
 - ((20 + 10) * 15) / 5 = ?
 - \bullet 20 + (10 * 15) / 5 = ?
- Results:
 - \bullet (20 + 10) * 15 / 5 = 90
 - ((20+10)*15)/5=90
 - 20 + (10 * 15) / 5 = 50

Assignment

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Instructions

- Split into four groups.
- Use the data types you saw in this lesson to model an RPG character in a Python program.
- Example: health, team color, ...
- Make sure the program runs without errors.
- Draw on a sheet what he soldier should look like.
- Hand over the code to another group and make them draw the soldier.
- If the pictures are the same then you have succeeded, otherwise adjust your code.

Assignment

Types

Dr. Giuseppe Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

Hand-in

- Write your names and student numbers on your sheets
- Hand them in
- They may be used at your oral check in the form of questions such as "how would you rewrite this after the course"

This is it!

Types

Dr. Giusepp Maggiore

Introduction

Python type system basics

Type restrictions

Assignment

The best of luck, and thanks for the attention!