

Gate Driver with VReg and Two Point Regulator

DATASHEET

- 60mA/120mA MIN GATE DRIVE
- TWO POINT REGULATOR FOR SWITCHING CHARGE PUMP SUPPLY
- 3.3V OR 5V VOLTAGE REGULATOR
- **LOW STARTUP CURRENT**
- **UVLO PROTECTION**
- **2kV ESD PROTECTION**

DESCRIPTION

TD220 is a solution for micro-controller based offline applications. TD220 includes a two point regulator for power supply generation, a 3.3V (TD220) or 5V (TD221) linear regulator for the microcontroller supply, and a MOSFET driver.

APPLICATIONS

■ µC-BASED OFF-LINE APPLICATIONS

ORDER CODE

Part Number	Temperature	Package
l ait ivalliber	Range	D
TD220I	-25, +125°C	•
TD221I	-25, +125°C	•

Note: \mathbf{D} = Small Outline Package (SO) - also available in Tape & Reel (DT)

Package Reference

PIN CONNECTIONS (top view)

TD220/221 Block Diagram

1 BLOCK DIAGRAM

Pin Description

Name	Pin Number	Туре	Function
VCC	1	Power supply	Supply capacitor and startup resistor
VOUT	2	Analog output	+3.3V (TD220) or +5V (TD221) voltage regulator
IN	4	Digital input	Input signal for gate drive
GATE	5	Analog output	Gate drive output
GND	6	Power supply	Signal ground
VSUP	7	Power supply	Charge pump input
VCAP	8	Power supply	Capacitor for charge pump

2 ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Icc<5mA)	-0.3 to selflimit	V
Vout	Voltage on GATE and VCAP pins	-0.3 to VCC+0.3	V
Vin	Voltage on IN and VOUT pins	-0.3 to 7	V
Isup	Continuous current in VSUP pin	-200 to 200	mA
lpeak	Peak current in VSUP pin (tp≤1μs, f≤150kHz, see waveform below)	-1.0 to 1.0	А
Pd	Power dissipation	500	mW
Tstg	Storage temperature	-55 to 150	°C
Tj	Maximum Junction Temperature	150	°C
Rhja	Thermal Resistance Junction-Ambient	150	°C/W
Rhjc	Thermal Resistance Junction-Case	40	°C/W
ESD	Electrostatic discharge (HBM)	2	kV

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
VCC	Supply Voltage	UVLO to 17	V
Isup	Continuous current in VSUP pin	0 to 200	mA
Ipeak	Peak current in VSUP pin (tp≤1μs, f≤150kHz, see waveform below)	-1.0 to 1.0	Α
Tj	Junction Temperature	-25 to 125	°C

Typical waveform of current in VSUP pin

3 ELECTRICAL CHARACTERISTICS

Tamb = 25°C, VCC=13V unless otherwise specified

d Voltage d Voltage	no load at any pin, Vin<1V Tamb=25°C -25°C <tj<125°c -25°c<tj<125°c="" 1nf="" 300khz="" active="" gate="" icc<5ma="" in="" load,="" signal="" tamb="25°C" uvlo="" vin="3.3V</th" vin<0.5v=""><th>20 1.8 1.0 0.5</th><th>0.7 5 160 22</th><th>1.0 1.2 6 230 24 2.1 1.3</th><th>mA mA mA μA μA V</th></tj<125°c>	20 1.8 1.0 0.5	0.7 5 160 22	1.0 1.2 6 230 24 2.1 1.3	mA mA mA μA μA V
d Voltage	Tamb=25°C -25°C <tj<125°c -25°c<tj<125°c="" 1nf="" 300khz="" active="" gate="" icc<5ma<="" in="" load,="" signal="" tamb="25°C" td="" uvlo=""><td>20 1.8 1.0</td><td>5 160</td><td>1.2 6 230 24 2.1 1.3</td><td>mA mA μA μA V</td></tj<125°c>	20 1.8 1.0	5 160	1.2 6 230 24 2.1 1.3	mA mA μA μA V
d Voltage	300kHz IN signal UVLO active Tamb=25°C -25°C <tj<125°c icc<5ma="" td="" vin<0.5v<=""><td>20 1.8 1.0</td><td>160</td><td>230 24 2.1 1.3</td><td>μΑ μΑ V</td></tj<125°c>	20 1.8 1.0	160	230 24 2.1 1.3	μΑ μΑ V
d Voltage	Tamb=25°C -25°C <tj<125°c icc<5ma="" td="" vin<0.5v<=""><td>1.8</td><td></td><td>24 2.1 1.3</td><td>μA V V V V V</td></tj<125°c>	1.8		24 2.1 1.3	μA V V V V V
d Voltage	Vin<0.5V	1.8	22	2.1	V V
d Voltage		1.0		1.3	V
d Voltage		1.0		1.3	V
					V
I .		0.5		20	+ -
ı				20	Δ.
1	Vin=3.3V				μΑ
				100	μΑ
					_1
	lout=10mA TD220 TD221	3.20 4.85	3.30	3.40 5.15	V
	lout change from 10mA to 25mA			50	mV
	Vout=1V	100		1	mA
ent	lout=10mA			250	ppm/°C
oad - Note 1	lout=10mA	0.1		1	μF
JVLO state	Vout=1V			10	μΑ
ote 1	f=100Hz f=10kHz	40 20			dB dB
	100Hz <f<100khz< td=""><td></td><td>1</td><td>1</td><td>mV</td></f<100khz<>		1	1	mV
3.1V)	Cout=1μF			0.1	ms
al value)	Cout=1μF		2		ms
				13.6	V
		12.4			V
	=VTPROn-VTPROff	0.23	0.29	0.35	V
			1	1.5	V
	3.1V)	f=10kHz 100Hz <f<100khz 8.1v)="" =vtpron-vtproff<="" al="" cout="1μF" td="" value)=""><td>f=10kHz 20 100Hz<f<100khz 0.23<="" 12.4="VTPROn-VTPROff" 3.1v)="" al="" cout="1μF" td="" value)=""><td> f=10kHz 20 100Hz<f<100khz 1="" td="" ="" <=""><td> f=10kHz 20 100Hz<f<100khz 0.1="" 1="" td="" ="" <=""></f<100khz></td></f<100khz></td></f<100khz></td></f<100khz>	f=10kHz 20 100Hz <f<100khz 0.23<="" 12.4="VTPROn-VTPROff" 3.1v)="" al="" cout="1μF" td="" value)=""><td> f=10kHz 20 100Hz<f<100khz 1="" td="" ="" <=""><td> f=10kHz 20 100Hz<f<100khz 0.1="" 1="" td="" ="" <=""></f<100khz></td></f<100khz></td></f<100khz>	f=10kHz 20 100Hz <f<100khz 1="" td="" ="" <=""><td> f=10kHz 20 100Hz<f<100khz 0.1="" 1="" td="" ="" <=""></f<100khz></td></f<100khz>	f=10kHz 20 100Hz <f<100khz 0.1="" 1="" td="" ="" <=""></f<100khz>

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Gate Outp	ut		'			
VOL	Output low voltage	Igate=10mA			0.5	V
VOH	Output high voltage	Igate=-10mA	VCC-2.0			V
Isink	Output sink current	Vgate=6V Tj=25°C -25°C < Tj < 125°C	120	300		mA mA
Isrc	Output source current	Vgate=3V Tj=25°C -25°C < Tj < 125°C	60	150		mA mA
VOL2	Output low voltage in UVLO state	Vcc=6V, Igate=1mA			2	V
tgmin	Minimum output pulse width ¹	Cgate=10pF			80	ns
tpd	IN to GATE propagation delay			200		ns
Under Vol	tage Lockout (UVLO)					
UVLOH	UVLO top threshold				15	V
UVLOL	UVLO bottom threshold		7.8		8.7	V
Vhyst	UVLO Hysteresis	Vhyst=UVLOH-UVLOL	5			V

¹⁾ Not 100% tested. Guaranteed by design.

TD220/221 Timing Diagrams

4 TIMING DIAGRAMS

Fig. 1: Power up and power down

Fig. 2: Two point regulator

APPLICATION DIAGRAM

5 TYPICAL PERFORMANCE CURVES

Fig. 3: Supply Current vs Temperature

Fig. 4: Gate Drive Sink Current vs Temperature

Fig. 5: Vreg Output Voltage vs Temperature

Fig. 6: Standby Current vs Temperature

Fig. 7: Gate Drive Source Current vs Temp.

*5*7

6 PACKAGE MECHANICAL DATA

SO-8 MECHANICAL DATA

DIM.	mm.			inch			
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k	8° (max.)						
ddd			0.1			0.04	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com