Teoremi di non retrazione e di Brouwer

Teorema di non retrazione. \nexists retrazione continua $r: B^2 \to S^1$.

Dim. Per assurdo, $r: B^2 \to S^1$ retrazione $\Rightarrow id_{\pi_1(S^1)} = 0$.

N.B. Più in generale, \sharp retrazione continua $r: B^n \to S^{n-1}$. *Esercizio* per n=1.

Teorema del punto fisso di Brouwer. $\forall f: B^2 \rightarrow B^2$ continua $\Rightarrow \exists a \in B^2$ t.c. f(a) = a (punto fisso).

Dim. Per assurdo, $f(x) \neq x$, $\forall x \in B^2 \sim \Rightarrow$

$$\ell_x := \{ t(x - f(x)) + f(x) \mid t > 0 \}$$

semiretta aperta con origine in f(x) passante per $x \rightsquigarrow$

$$r: B^2 \to S^1$$
$$r(x) = \ell_x \cap S^1$$

retrazione continua, contraddizione.

N.B. Più in generale, $\forall f: B^n \to B^n$ continua $\Rightarrow \exists a \in B^n$ t.c. f(a) = a. <u>Esercizio</u> per n = 1.

Applicazione. $f \in \mathbb{C}[x]$, deg $f \geqslant 1$, sotto certe condizioni sui coefficienti $\exists a \in \mathbb{C}$ t.c. $|a| \leqslant 1$ e f(a) = 0.

Esempio. $f = x^7 - x^4 - 5x + 3i \in \mathbb{C}[x], \ f(x) = 0 \Leftrightarrow g(x) = x \text{ con}$

$$g(x) = \frac{1}{5}x^7 - \frac{1}{5}x^4 + \frac{3i}{5}.$$

 $|x|\leqslant 1 \Rightarrow |g(x)|\leqslant 1 \Rightarrow g\colon B^2 \to B^2 \text{ continua} \Rightarrow \exists\, a\in B^2 \text{ t.c. } g(a)=a.$

Gruppi fondamentali delle sfere

Prop. $(\mathbb{R}^n - \{0\}) \ \ S^{n-1}, \ \forall \ n \geqslant 1.$

Dim.
$$H: (\mathbb{R}^n - \{0\}) \times I \to \mathbb{R}^n - \{0\}$$

$$H(x,t) = (1-t)x + \frac{tx}{\|x\|}.$$

Prop. Supponiamo $X = U \cup V$ con U, V e $U \cap V$ aperti non vuoti connessi per archi t.c. $\pi_1(U) = 0$ e $\pi_1(V) = 0 \Rightarrow \pi_1(X) = 0$.

Dim. X connesso per archi, $x_0 \in U \cap V$ punto base. $\forall [\omega] \in \pi_1(X) \rightsquigarrow \delta > 0$ numero di Lebesgue per $\{\omega^{-1}(U), \omega^{-1}(V)\}$ (ricopr. aperto di I) $\rightsquigarrow 0 = t_0 < t_1 < \dots < t_n = 1$ t.c. $t_i - t_{i-1} < \delta \rightsquigarrow x_i := \omega(t_i)$

$$egin{aligned} \omega([t_{i-1},t_i]) \subset egin{cases} U \ V \ \end{aligned} \ \omega_i := \omega|_{[t_{i-1},t_i]} : [t_{i-1},t_i]
ightarrow X \end{aligned}$$

Definiamo $\alpha_i: I \to X$ t.c.

$$lpha_0=lpha_n=\gamma_{x_0}$$
, $lpha_i(0)=x_0$, $lpha_i(1)=x_i$

$$lpha_i(I) \subset egin{cases} U \cap V, & ext{se } x_i \in U \cap V \ U, & ext{se } x_i \in U - V \ V, & ext{se } x_i \in V - U \end{cases}$$

$$\gamma_i := \alpha_{i-1} * \omega_i * \bar{\alpha}_i$$
 cappio in $U \circ V \Rightarrow [\gamma_i] = 1$

$$[\omega] = \left[igcap_{i=1}^n \omega_i
ight] = \left[igcap_{i=1}^n \gamma_i
ight] = igcap_{i=1}^n [\gamma_i] = 1$$

Cor. $\pi_1(S^n) = 0, \ \forall \ n \geqslant 2.$

Dim.
$$a_{\pm} = (0, ..., 0, \pm 1) \in S^n \subset \mathbb{R}^{n+1}$$
, $U_{\pm} = S^n - \{a_{\pm}\} \cong \mathbb{R}^n$ $U_{+} \cap U_{-} \cong (\mathbb{R}^n - \{0\}) \setminus S^{n-1}$ connesso per archi per $n \geqslant 2$ $U_{+} \cup U_{-} = S^n \Rightarrow \pi_1(S^n) = 0$.

Oss. S^n semplicemente connesso $\Leftrightarrow n \geqslant 2$.

Cor. $\forall n \geqslant 2$, $\forall a \in \mathbb{R}^n$ si ha

$$\pi_1(\mathbb{R}^n - \{a\}) \cong \begin{cases} \mathbb{Z}, & n = 2 \\ 0, & n \geqslant 3. \end{cases}$$

Invarianza topologica della dimensione. $\mathbb{R}^m \cong \mathbb{R}^n \Rightarrow m = n$.

Dim. Per m=2 (ma vale in generale).

$$f: \mathbb{R}^2 \xrightarrow{\cong} \mathbb{R}^n \text{ omeo } \Rightarrow f|: \mathbb{R}^2 - \{0\} \xrightarrow{\cong} \mathbb{R}^n - \{f(0)\} \text{ omeo } \Rightarrow n \geqslant 2$$

 $\mathbb{Z} \cong \pi_1(\mathbb{R}^2 - \{0\}) \cong \pi_1(\mathbb{R}^n - \{f(0)\}) \Rightarrow n = 2.$

Gruppo fondamentale di uno spazio prodotto

Teor. $\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$ isomorfismo canonico.

Dim.
$$p_1: X \times Y \to X$$
, $p_2: X \times Y \to Y$ proiezioni canoniche $\sim p := (p_{1*}, p_{2*}): \pi_1(X \times Y, (x_0, y_0)) \xrightarrow{\cong} \pi_1(X, x_0) \times \pi_1(Y, y_0)$ iso $p([\omega]) = ([p_1 \circ \omega], [p_2 \circ \omega]).$

Cor. $\pi_1(T^n) \cong \mathbb{Z}^n$.

Gruppi fondamentali degli spazi proiettivi

Caso reale.

$$\pi_1(\mathbb{R}\mathsf{P}^n)\congegin{cases} 0, & n=0\ \mathbb{Z}, & n=1\ \mathbb{Z}_2, & n\geqslant 2 \end{cases}$$

 $\begin{array}{c|c} \hline n=1 & \mathbb{R}\mathsf{P}^1 \cong S^1 \Rightarrow \pi_1(\mathbb{R}\mathsf{P}^1) \cong \mathbb{Z}. \\ \hline n \geqslant 2 & p: S^n \to \mathbb{R}\mathsf{P}^n, \ p(x) = [x] \ \text{rivestimento universale} \Rightarrow \\ \#(\pi_1(\mathbb{R}\mathsf{P}^n)) = d(p) = 2 \Rightarrow \pi_1(\mathbb{R}\mathsf{P}^n) \cong \mathbb{Z}_2. \\ \end{array}$

Oss. $\pi_1(\mathbb{RP}^n)$ generato da $[\omega]$ con

$$S^{n} \quad \tilde{\omega}(t) = (\cos(\pi t), \sin(\pi t), 0 \dots, 0)$$

$$I \xrightarrow{\omega} \mathbb{R}P^{n} \quad \omega(t) = [\cos(\pi t), \sin(\pi t), 0 \dots, 0]$$

$$S^{n} \quad \tilde{\omega}(t) = (\cos(\pi t), \sin(\pi t), 0 \dots, 0)$$

$$S^{n} \quad \tilde{\omega}(t) = (\cos(\pi t), \sin(\pi t), 0 \dots, 0)$$

infatti $\Phi_p([\omega]) = -a$, funzione di sollevamento da $a = (1, 0, ..., 0) \in S^n$. ω parametrizza $\mathbb{R}\mathsf{P}^1 \subset \mathbb{R}\mathsf{P}^n \Rightarrow i_* : \pi_1(\mathbb{R}\mathsf{P}^1) \to \pi_1(\mathbb{R}\mathsf{P}^n)$ suriettiva. In altre parole $\pi_1(\mathbb{R}\mathsf{P}^n)$ è "generato" da $\mathbb{R}\mathsf{P}^1 \subset \mathbb{R}\mathsf{P}^n$.

Caso complesso.

$$\pi_1(\mathbb{CP}^n) = 0, \ \forall n \geqslant 0.$$

Induzione su n. n=0 banale. Supponiamo $\pi_1(\mathbb{C}\mathsf{P}^{n-1})=0$ per $n-1\geqslant 0$. $H: x_0=0 \Rightarrow H\cong \mathbb{C}\mathsf{P}^{n-1} \leadsto U=\mathbb{C}\mathsf{P}^n-H\cong \mathbb{C}^n \Rightarrow \pi_1(U)=0$ $a=[1,0,\ldots,0]\in \mathbb{C}\mathsf{P}^n \leadsto V=\mathbb{C}\mathsf{P}^n-\{a\}\supset H$

$$\mathcal{K}: V \times I \rightarrow V$$

$$\mathcal{K}([x_0, x_1, \dots, x_n], t) = [(1-t)x_0, x_1, \dots, x_n]$$

retrazione per deformazione $V \not : H \Rightarrow \pi_1(V) \cong \pi_1(H) \cong \pi_1(\mathbb{CP}^{n-1}) = 0$ $U \cap V \cong \mathbb{C}^n - \{0\} \cong \mathbb{R}^{2n} - \{0\} \not : S^{2n-1}$ connesso per archi.

Oss.

 $\mathbb{R}\mathsf{P}^n$ non semplicemente connesso $\forall\, n\geqslant 1$ $\mathbb{C}\mathsf{P}^n$ semplicemente connesso $\forall\, n\geqslant 0.$