HQ U.S. Air Force Academy

ECE 215
Objective 3.10
Electronic Warfare

I can analyze jamming scenarios using the Friis equation, RADAR equation, and SNR.

Electromagnetic Warfare (EW)

Military action involving the use of electromagnetic (EM) and directed energy to control the EM spectrum or to attack the enemy.

Electromagnetic Support (ES)

Search, intercept,
identify, and
locate/localize sources of
intentional or
unintentional radiated
EM energy

Electromagnetic Attack (EA)

Use of EM energy, or directed energy, or antiradiation weapons to degrade, neutralize, or destroy enemy capability

Electromagnetic Protection (EP)

Protection of personnel, facilities, and equipment from employment of EM spectrum

Communications Jamming

$$P_{R,Radio} = P_T G_T G_R \frac{\lambda^2}{(4\pi R_T)^2}$$

$$SNR = \frac{P_{Signal}}{P_{Noise}} = \frac{P_{R,Radio}}{P_{R,jammer}} = \frac{P_T G_T R_J^2}{P_J G_J R_T^2}$$

SNR increases - radio wins **SNR** decreases - jammer wins

As the jammer gets closer to receiver, is jamming more or less effective?

Communications Jamming Example

(Example 1)

 $SNR > SNR_{min}$ - radio wins

 $SNR < SNR_{min}$ - jammer wins

**The missile is guided by a radio control signal

> $P_T = 1kW, G_T = 3$ freq = 750 MHz

Is aircraft jamming effective? In other words, is SNR<.06

$$SNR = \frac{P_{R-Radio}}{P_{R-Jamming}} = \frac{1}{P_T G_T R_J^2} \frac{P_T G_T R_J^2}{P_J G_J R_T^2}$$

Radar Jamming

Radar Jamming Example

(Example 2)

Given the following information about an enemy radar/SAM site and your own aircraft, what is the enemy Weapons Engagement Zone (WEZ), i.e., at what distance will the radar detect your aircraft?

Enemy Radar	Your Aircraft Specifications
Height = 10' AGL	Altitude = 2,000' AGL
Power Transmitted = 1 kW	RCS = 25 m ²
Transmit Antenna Gain = 3000	
Frequency = 7 GHz	
Min Required Power Received = 52 fW	

■ You turn on your jammer pod well before this distance. What is the new WEZ, i.e., how close can you get before your jamming pod become ineffective (burn-through distance)?

Your Jamming Specifications	
Jammer Power Transmitted = 20 W	
Jammer Transmit Antenna Gain = 3.5	
Frequency = 7 GHz	
SNR _{min} = 0.02	

Jamming Summary

Comm Jamming

- 3 variables we can control
 - 1. P_T Jammer
 - 2. G_T Jammer
 - 3. R (between Jammer and Radio Rcvr)
- As jammer gets closer to receiver, jamming is more effective

Radar Jamming

- 5 variables we can control
 - 1. P_T Jammer
 - 2. G_T Jammer
 - R (from Radar)
 - 4. P_R Radar Power (destroy it DEAD)
 - 5. RCS (orientation and acquisition)
- As jammer gets closer to radar, jamming is <u>less</u> effective (BURN THROUGH)

Jamming Countermeasures

- Also known as Low Probability of Intercept (LPI) Signals
 - Chirp Signals
 - Frequency Hopping
 - Direct-sequence spread spectrum

In order for jamming to be effective $f_{Iamming}$ must equal $f_{Transmitted}$,

Hedy Lamar

Jamming Countermeasures: Frequency Hopped Signals

Change the carrier frequency at specific points in time according to pre-established hopping sequence

Jammer only effective for short time periods!

Examples:

- Bluetooth
- SINCGARS radios
- JTRS radios
- Link-16
- Have quick radio

SINCGARS Hopes 111 times/sec between 30-88 MHz

Jamming Countermeasures: Direct Sequence Spread Spectrum

16

Radar Countermeasures

- What in the radar equation can I exploit/change?
 - Outside *R_{LOS}...*fly lower... "fly under the radar"
 - False RCS / Decoy: chaff... release cloud of radar reflective metal
 - Reduce RCS: stealth
 - Mask/Block P_R: Radar jamming, decrease SNR
 - Eliminate P_T : High-speed Anti-Radiation Missiles (next slide)
 - Fly fast ... get to target before enemy can react hypersonics

SEAD & DEAD

- SEAD (<u>Suppression</u> of Enemy Air Defenses)
 - Taking a radar offline temporarily
 - Examples:
 - Jamming
 - Cyber attack
 - Psychological means (threat of HARMs)
 - Radar stops transmitting to avoid HARM

- Destroying enemy radar or SAM site
- Examples:
 - Bombs
 - Special Forces
 - HARMs (High-speed Anti-Radiation Missiles)
 - Detect radar signals and follow to origin

