Análise Assintótica

Prof. Juliano Foleis

Notação Assintótica

- Conseguimos mostrar que Soma_TS tem custo $T(n) = \alpha n^2 + \beta n + \gamma.$
- O nosso interesse real não é saber exatamente a função de custo, mas sim o comportamento assintótico dela.
- O comportamento assintótico refere-se a quanto o custo do algoritmo aumenta conforme *n* cresce.
- Por exemplo, quando falamos do custo de Soma_TS, apenas nos referimos a ele por "custo quadrático", uma vez que é o termo αn^2 que define o comportamento da função!

Notação Assintótica

- A notação assintótica é um formalismo matemático que nos permite comparar funções para n grande.
- Podemos usar a notação assintótica para comparar custos de algoritmos diferentes para um mesmo problema, com o objetivo de escolher o algoritmo mais eficiente.
- Se um algoritmo A tem custo $\Theta(n)$ e o algoritmo B tem custo $\Theta(n^2)$, dizemos que o algoritmo A tem custo assintoticamente inferior que o algoritmo B. Note que podemos concluir isso mesmo sem conhecer exatamente as funções de custo de A ou B!

Notação O

Notação O

Definição

 $O(g(n)) = \{f(n): ext{existem constantes positivas } n_0 \in c \ ext{tal que } f(n) \leq c g(n), orall n \geq n_0 \}$

- g(n) é um limite superior para f(n)
- A partir de um determinado n_0 , f(n) será sempre menor ou igual a cg(n).
- Note que O(g(n)) é o conjunto de todas as funções limitadas superiormente por g(n), ou seja, $f(n) \in O(g(n))$.

$$2n+1=O(n^2)$$

$$2n+1=O(n^2)$$

$$n^2 + 2n = O(n^2)$$

$$2n+1=O(n^2)$$

$$n^2 + 2n = O(n^2)$$

$$3n + 2 = O(n^3)$$

$$2n+1=O(n^2)$$

$$n^2 + 2n = O(n^2)$$

$$3n + 2 = O(n^3)$$

$$3\lg(n) = O(n)$$

$$2n+1=O(n^2)$$

$$n^2 + 2n = O(n^2)$$

$$3n + 2 = O(n^3)$$

$$3\lg(n) = O(n)$$

$$4n\lg(n) = O(n^2)$$

$$2n + 1 = O(n^2)$$

$$n^2 + 2n = O(n^2)$$

$$3n + 2 = O(n^3)$$

$$3\lg(n) = O(n)$$

$$4n\lg(n) = O(n^2)$$

$$n^3 + 20n + 1 \neq O(n^2)$$

Notação Ω (ômega)

Notação Ω (ômega)

Definição

```
\Omega(g(n)) = \{f(n) : 	ext{existem constantes positivas } n_0 \in c tal que cg(n) \leq f(n), \forall n \mid n \geq n_0 \}
```

Notação Ω – Exemplos

$$n^3 + 20n = \Omega(n^2)$$

$$n^3 + 20n = \Omega(n^2)$$

$$3n + 4 = \Omega(n)$$

$$n^3 + 20n = \Omega(n^2)$$

$$3n + 4 = \Omega(n)$$

$$n^3 + 2n = \Omega(n)$$

$$n^3 + 20n = \Omega(n^2)$$

$$3n + 4 = \Omega(n)$$

$$n^3 + 2n = \Omega(n)$$

$$10n = \Omega(\lg(n))$$

$$n^3 + 20n = \Omega(n^2)$$
$$3n + 4 = \Omega(n)$$

$$n^3 + 2n = \Omega(n)$$

$$10n = \Omega(\lg(n))$$

$$3n^2 \neq \Omega(n)$$

Notação ⊖ (teta)

Notação ⊖ (teta)

Definição

 $\Theta(g(n)) = \{f(n): ext{existem constantes positivas } n_0, c_1 ext{ e } c_2 \ ext{tal que } c_1g(n) \leq f(n) \leq c_2f(n), orall n \geq n_0 \}$

- g(n) é um limite assintoticamente restrito para f(n)
- f(n) tem o mesmo comportamento assintótico que g(n)
- Note que $\Theta(g(n))$ é o conjunto de todas as funções que são assitoticamente restritas a g(n), ou seja, $f(n) \in \Theta(g(n))$.

$$n^3 + 20n = \Theta(n^3)$$

$$n^3 + 20n = \Theta(n^3)$$

$$3n + 4 = \Theta(n)$$

$$n^3 + 20n = \Theta(n^3)$$

$$3n + 4 = \Theta(n)$$

$$n^2 + 3 = \Theta(n^2)$$

$$n^3 + 20n = \Theta(n^3)$$

$$3n + 4 = \Theta(n)$$

$$n^2 + 3 = \Theta(n^2)$$

$$3\lg(n) = \Theta(\lg(n))$$

$$n^{3} + 20n = \Theta(n^{3})$$

$$3n + 4 = \Theta(n)$$

$$n^{2} + 3 = \Theta(n^{2})$$

$$3\lg(n) = \Theta(\lg(n))$$

$$3n^{2} \neq \Theta(n^{3})$$

$$n^{3} + 20n = \Theta(n^{3})$$

$$3n + 4 = \Theta(n)$$

$$n^{2} + 3 = \Theta(n^{2})$$

$$3lg(n) = \Theta(lg(n))$$

$$3n^{2} \neq \Theta(n^{3})$$

$$3n^{2} \neq \Theta(n)$$

Teorema 1

Para duas funções quaisquer f(n) e g(n), $f(n) = \Theta(g(n)) \text{ se e somente se } f(n) = O(g(n)) \to f(n) = \Omega(g(n)).$

Teorema 2

Para qualquer polinômio
$$p(n)=\sum_i^d a_i n^i$$
 onde a_i são constantes E $a_d>0,$ $p(n)=\Theta(n^d).$

Teorema 2

Para qualquer polinômio
$$p(n) = \sum_{i=1}^{d} a_i n^i$$
 onde a_i são constantes E $a_d > 0$, $p(n) = \Theta(n^d)$.

Em outras palavras, um polinômio p(n) de grau $d \in \Theta(n^d)$.

Exemplos (Teorema 2)

$$2n^2+3n+1=\Theta(n^2)$$

Exemplos (Teorema 2)

$$2n^2 + 3n + 1 = \Theta(n^2)$$

$$5n^3 + 3n^2 + n = \Theta(n^3)$$

Exemplos (Teorema 2)

$$2n^{2} + 3n + 1 = \Theta(n^{2})$$

$$5n^{3} + 3n^{2} + n = \Theta(n^{3})$$

$$10 = \Theta(1)$$

Teorema 3

Para duas funções quaisquer f(n) e g(n), $\Theta(f(n)+g(n))=\Theta(\max(f(n),g(n)))$

Teorema 3

Para duas funções quaisquer f(n) e g(n), $\Theta(f(n) + g(n)) = \Theta(\max$

Intuição: a função de maior custo assintótico domina o custo da função-soma.

Exemplos (Teorema 3)

$$f(n) = n \wedge g(n) = n^2 \Rightarrow \Theta(f(n) + g(n)) = \Theta(n^2).$$

Exemplos (Teorema 3)

```
f(n) = n \cdot g(n) = n^2 \cdot Rightarrow \cdot Theta(f(n) + g(n)) =  \text{Theta(n^2).}
```

 $f(n) = \lg(n) \pmod{g(n)} = n \pmod{Theta(f(n) + g(n))} =$ \Theta(n).

Exemplos (Teorema 3)

```
f(n) = n \cdot g(n) = n^2 \cdot Rightarrow \cdot Theta(f(n) + g(n)) =  \text{Theta(n^2).}
```

```
f(n) = \lg(n) \pmod{g(n)} = n \pmod{Theta(f(n) + g(n))} = 
\Theta(n).
```

```
f(n) = n \lg(n) \operatorname{lg}(n) = n \operatorname{Rightarrow} \operatorname{Theta}(f(n) + g(n)) = \operatorname{Theta}(n \lg(n)).
```

Teste do Limite

Sejam duas funções f(n) e g(n) positivas e monótonas crescentes. Para conhecer a relação assintótica entre f(n) e g(n), podemos usar o teste do limite.

$$\mathrm{Seja}\ L = \lim_{n o\infty}rac{f(n)}{g(n)}$$

- 1. Se L=0, então f(n)=O(g(n)).
- 2. Se $L=\infty$, então $f(n)=\Omega(g(n))$.
- 3. Se L=C, tal que C é uma constante diferente de zero, então $f(n)=\Theta(g(n))$.

Outras Propriedades

Transitividade

Se
$$f(n)=\Theta(g(n))$$
 e $g(n)=\Theta(h(n))$ então $f(n)=\Theta(h(n))$
Se $f(n)=O(g(n))$ e $g(n)=O(h(n))$ então $f(n)=O(h(n))$
Se $f(n)=\Omega(g(n))$ e $g(n)=\Omega(h(n))$ então $f(n)=\Omega(h(n))$

Outras Propriedades Propriedade Reflexiva

$$egin{aligned} f(n) &= \Theta(f(n)) \ f(n) &= O(f(n)) \ f(n) &= \Omega(f(n)) \end{aligned}$$

Outras Propriedades

Simetria

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$$

Simetria Transposta

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$$

Intuição para Comparação

$$f(n) = O(g(n))$$
 é análogo a $a \leq b$

$$f(n) = \Omega(g(n))$$
 é análogo a $a \geq b$

$$f(n) = \Theta(g(n))$$
 é análogo a $a=b$

Bibliografia

[CRLS] CORMEN, T. H. et al. Algoritmos: Teoria e Prática. Elsevier, 2012. 3a Ed. Capítulo 3 (Crescimento de Funções), Seção 3.1