Devoir-Maison 1 - A rendre pour le jeudi 3 octobre 2019. –

Exercice 1 —

Soient a < b deux réels et soit $f : [a, b] \longrightarrow \mathbb{C}$ de classe \mathscr{C}^1 .

On pose pour tout $n \in \mathbb{N}^*$, $S_n(f) := \frac{1}{n} \sum_{k=0}^{n-1} f(x_{k,n})$, où l'on a noté $x_{k,n} := a + k \frac{b-a}{n}$.

1. Montrer qu'il existe $M \geq 0$ tel que pour tout $n \in \mathbb{N}^*$, pour tout $k \in \{0, ..., n-1\}$,

$$\forall t \in [x_{k,n}, x_{k+1,n}], \quad |f(t) - f(x_{k,n})| \le M(t - x_{k,n}).$$

- 2. Montrer que $\forall n \in \mathbb{N}^*, \ \forall \ k \in \{0, ..., n-1\}, \quad \left| \int_{x_{k,n}}^{x_{k+1,n}} (f(t) f(x_{k,n})) \ dt \right| \leq \frac{M(b-a)^2}{2n^2},$ puis que $\forall \ n \in \mathbb{N}^*, \quad \left| \int_a^b f(t) \ dt (b-a)S_n(f) \right| \leq \frac{M(b-a)^2}{2n}.$
- 3. <u>Application</u>. Calcul d'une valeur approchée de $\int_0^1 e^{-x^2} dx$ par la méthode des rectangles. On considère dans cette question que $f(x) = e^{-x^2}$.
 - (a) Déterminer $\max_{[0,1]} |f'|$.
 - (b) Soit $\varepsilon > 0$. En utilisant 2., écrire un algorithme qui calcule une valeur approchée de $\int_0^1 e^{-x^2} dx$ à ε près.

Exercice 2 —

Soit $f:[0,1] \longrightarrow \mathbb{R}$ continue décroissante.

On pose pour tout $n \in \mathbb{N}^*$, $r_n := \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n})$ et on définit l'application $I:]0,1] \longrightarrow \mathbb{R}$ par

$$\forall x \in]0,1], \quad I(x) = \int_{x}^{1} f(t) dt.$$

- $1. \text{ Démontrer que } \forall \ n \geq 2, \ \forall \ k \in \{1,...,n-1\}, \quad \frac{1}{n}f\big(\frac{k+1}{n}\big) \leq \int_{\frac{k}{n}}^{\frac{k+1}{n}}f(x) \ dx \leq \frac{1}{n}f\big(\frac{k}{n}\big).$
- 2. Déduire que $\forall n \geq 2$, $I\left(\frac{1}{n}\right) + \frac{1}{n}f(1) \leq r_n \leq I\left(\frac{1}{n}\right) + \frac{1}{n}f\left(\frac{1}{n}\right)$.
- 3. On suppose en plus que f est à valeurs positives et que $\lim_{x\to 0} I(x) = l$ où $l \in \mathbb{R}$. Montrer qu'alors $\lim_{x\to 0} xf(x) = 0$ puis que la suite $(r_n)_{n\in\mathbb{N}^*}$ converge.
- 4. Dans cette question, on prend $f: x \longmapsto \frac{x^2-1}{4} \frac{1}{2}\ln(x)$.
 - (a) Montrer que $\forall n \in \mathbb{N}^*$, $r_n = \frac{(n+1)(2n+1)}{24n^2} \frac{1}{4} \frac{1}{2n} \ln \left(\frac{n!}{n^n}\right)$. Indication : on pourra utiliser, après l'avoir démontré, que $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$.
 - (b) En utilisant les questions précédentes, montrer que la suite $\left(\frac{n!^{\frac{1}{n}}}{n}\right)_{n\in\mathbb{N}^*}$ converge vers un réel à préciser.