CHAPITRE MI7 – DOCUMENTS Mouvements d'un solide

FIGURE 1: Métronome

FIGURE 2 : Expérience de Cavendish : mesure de la constante de gravitation avec un pendule de torsion

FIGURE 3: Camion en translation rectiligne

FIGURE 4: Nacelle en translation circulaire

FIGURE 5 : Mouvement de M d'un solide en rotation dans l'espace (à gauche), dans le plan orthogonal à Δ (à droite)

FIGURE 6 : Moments d'inertie par rapport à l'axe (Oz) d'un solide de masse m

FIGURE 7: Couple de deux forces

FIGURE 8 : Réalisation d'une liaison pivot

Exercice d'application 1 : pendule pesant

On note (Oz) l'axe de rotation du solide, G son centre de gravité situé à une distance d du point O, $J_{(Oz)}$ son moment d'inertie par rapport à l'axe (Oz). On repère la position du solide par l'angle θ entre la droite (OG) et l'axe (Ox). On suppose que la liaison pivot entre le solide et le référentiel terrestre est parfaite d'axe (Oz).

Déterminer l'équation du mouvement du pendule pesant.

FIGURE 9: Pendule pesant

FIGURE 11 : Graphe d'énergie potentielle du pendule pesant

Exercice d'application 3

Retrouver l'équation du mouvement du pendule pesant par application du théorème de l'énergie cinétique.

FIGURE 10 : Pendule de torsion vu en perspective

Exercice d'application 2 : pendule de torsion

On étudie les mouvements dans lesquels le fil reste vertical (axe (Oz)) et la barre tourne autour du fil avec un mouvement oscillatoire en restant dans un plan horizontal.

Déterminer l'équation du mouvement du pendule de torsion.