Predição de séries temporais utilizando técnicas clássicas e de aprendizado de máquina

Uma aplicação a índices setoriais econômicos

Richard Sousa Antunes

Fevereiro, 2024

Flávio Almeida de Magalhães Cipparrone POLI-USP

Overview

- **1** Introdução
- **2** Modelos Clássicos
- **3** Modelos Modernos
- Manipulação dos Dados
- **5** Técnica de validação dos modelos

- **6** Resultados
- Conclusão

Overview

- 1 Introdução
- 2 Modelos Clássicos
- Modelos Modernos
- **4** Manipulação dos Dados
- **6** Técnica de validação dos modelos

- **6** Resultados
- Conclusão

- Predição de séries temporais tem sido extensivamente utilizada, sobretudo em economia e finanças.
- No mercado financeiro, uma predição acertiva o suficiente pode trazer lucros ao investidor, o que exemplifica sua relevância.

- Não existe fórmula mágica, por melhor que seja o modelo utilizado, não se terá 100% de sucesso.
- A dinâmica do mercado financeiro é complexa e difícil de prever
 - ▶ Analisar o mercado por setores, pode amenizar a complexidade

• Exemplo de uma série temporal da S&P

• Exemplo de uma série temporal múltipla da S&P

• Esse trabalho se propõe a predizer o retorno de índices setoriais econômicos do mercado americano .

 Realiza um comparativo simples entre modelos clássicos de séries temporais (VAR e VARMA) e modernos com uso de técnicas de aprendizado de máquina (MLP).

Overview

- 1 Introdução
- **2** Modelos Clássicos
- Modelos Modernos
- **4** Manipulação dos Dados
- **6** Técnica de validação dos modelos

- **6** Resultados
- **7** Conclusão

Modelos

- Existe uma diversidade de modelos para séries temporais multivariadas
 - ► VAR, VARMA, VARIMA, VECM, VARMAX, MGARCH, Redes Neurais LSTM, Recorrentes, Prophet, etc
 - ▶ será usado 2 modelos clássicos (VAR e VARIMA) e 1 moderno (MLP).

Modelos - VAR

- O Modelo Vetorial Autorregressivo (VAR) prevê uma série temporal com base nos próprios valores defasados, capturando relações dinâmicas entre múltiplas séries interdependentes
- Dada a série $\mathbf{Z}_t = (z_{1t}, z_{2t}, ..., z_{nt}), t = 1, ..., T, VAR(p)$ é descrito por:

$$Z_t = \delta + \Phi_1 Z_{t-1} + \Phi_2 Z_{t-2} + ... + \Phi_p Z_{t-p} + U_t$$
 (1)

Sendo Φ_j matriz $(n \times n)$ de coefientes dos termos autoregressivos, δ $(n \times 1)$ o intercepto (constante) e U_t $(n \times 1)$ vetor de ruído branco

Modelos - VAR

- Necessita da série estacionária e que U_t seja Ruído Branco Gaussiano
- Transformação para um formato de regressão [Helmut].

$$Z := (Z_1, Z_2, ..., Z_T), \quad B := (\delta, \Phi_1, \Phi_2, ..., \Phi_p), Z_t^* := (1, Z_t, ..., Z_{t-p+1})^{\mathsf{T}}, \quad Z^* := (Z_0^*, ..., Z^*_{T-1}), \quad U := (U_1, ..., U_T)$$
 (2)

$$Y = BZ^* + U \tag{3}$$

Estimação por MQO

$$\hat{B} = Y Z^{*T} (Z^* Z^{*T})^{-1}$$
 (4)

VAR - Critérios de Informação

 Para a ordem p do VAR(p) escolhe o que minimiza os critérios de informações

$$AIC(\mathbf{p}) = ln|\tilde{\Sigma}_{u}(\mathbf{p})| + \frac{2pn}{T}$$

$$BIC(\mathbf{p}) = ln|\tilde{\Sigma}_{u}(\mathbf{p})| + \frac{lnT}{T}pn^{2}$$

$$HQ(\mathbf{p}) = ln|\tilde{\Sigma}_{u}(\mathbf{p})| + \frac{2lnlnT}{T}pn^{2}$$
(5)

onde $|\tilde{\Sigma}_u(\mathbf{p})|$ é o determinante da matriz de covariância dos resíduos obtido pela estimação de máxima verossimilhança

Modelos - VARMA

- O Modelo Vetorial Autorregressivo de Médias Móveis (VARMA) combina o VAR com as médias móveis, capturando também os choques nos termos de erro.
- Dada a série $Z_t = (z_{1t}, z_{2t}, ..., z_{nt})$, VARMA(p,q) é descrito por:

$$Z_{t} = \delta + \Phi_{1} Z_{t-1} + \dots + \Phi_{p} Z_{t-p} + U_{t} - \Theta_{1} U_{t-1} - \dots - \Theta_{q} U_{t-q}$$
 (6)

Sendo Φ_j matriz $(n \times n)$ de coeficientes dos termos autorregressivos, Θ_j matriz $(n \times n)$ de coeficientes dos termos de médias móveis, δ o intercepto (constante) $(n \times 1)$, e \mathbf{U}_t um vetor de ruído branco $(n \times 1)$.

Modelos - VARMA

- A superfície de verossimilhança não possui um único máximo.
- Costuma ser usado para obter um modelo mais parcimonioso do que VAR(p).
- são usados algoritmos numéricos para minimizar.
- a ordem é obtido de forma análoga ao VAR

Overview

- Introdução
- 2 Modelos Clássicos
- **3** Modelos Modernos
- **4** Manipulação dos Dados
- **6** Técnica de validação dos modelos

- **6** Resultados
- Conclusão

 O Modelo de Perceptron Multicamadas (MLP) é uma rede neural artificial composta por múltiplas camadas, que consiste em neurônios que aplicam funções de ativação não lineares a suas entradas. A saída de uma camada serve como entrada para a próxima camada.

• A relação entre a entrada X e a saída f(X) em cada neurônio:

$$f(X) = \beta_0 + \sum_{k=1}^{K} \beta_k A_k$$
 (7)

$$A_k = g\left(w_{k0} + \sum_{j=1}^{p} w_{kj} X_j\right).$$
(8)

Onde w_{kj} são matrizes de pesos das conexões entre as camadas de entrada, oculta e de saída. β_j são os vetores de viés e $g(\cdot)$ função de ativação não-linear .

• Funções de ativações mais utilizadas: Sigmoide e ReLU

Sigmoide

$$g(z) = \frac{1}{1 + e^{-z}} \tag{9}$$

ReLU (Rectified Linear Unit)

$$g(z) = \max(0, z) \tag{10}$$

• Encontra-se os parâmetros minimizando o erro quadrático

$$\sum_{i=1}^{n} (y_i - f(x_i))^2 \tag{11}$$

- Modelos de Aprendizado de Máquina como MLP, recebe X como entrada e prevê $\hat{Y} = \hat{f}(X)$, ou seja, não é preparado inicialmente para lidar com dados sequenciais.
- fazendo-se necessário remodelar os dados para usá-lo.

Overview

- Introdução
- **2** Modelos Clássicos
- Modelos Modernos
- Manipulação dos Dados
- **6** Técnica de validação dos modelos

- **6** Resultados
- Conclusão

Ações extraídas do S&P.

- Usado para definição dos setores a classificação GICS (Global Industry Classification Standard)
- ▶ Setores:
 - » Energia, Materiais, Industrial, Bens de Consumo Discricionário, Produtos Básicos de Consumo, Assistência Médica, Serviços Financeiros, Tecnologia da Informação, Serviços de Comunicações, Serviços de Utilidade Pública e Imóveis.

- Seleção de ações para representação de setores.
 - ► Será selecionado as 10 ações com maior valor de mercado (*VM*):

$$VM_{j} = V_{j} \quad x \quad P_{j},$$

$$V_{j} = \text{Volume}, \quad P_{j} = \text{Preço de fechamento}$$

- Substituição das séries.
 - Destas 10 ações escolhidas para cada ação, será usado como a série a ser utilizada, a média de seus retornos líquido simples:

$$\mathcal{R}_{it} = \frac{1}{10} \sum_{k=1}^{10} \left(\frac{P_{kit}}{P_{kit-1}} - 1 \right)$$
 (12)

Onde P_{kit} é o preço de fechamento da ação k, no setor i e período t

• Utilizar o retorno, torna a série estacionária [Morettin]

Rank	Technology		Communication Services ¹		Consumer Cyclical	
1	MSFT	2.89T	GOOG	1.79T	AMZN	1.60T
2	AAPL	2.88T	META	962.39B	TSLA	695.83B
3	NVDA	1.35T	NFLX	215.41B	HD	354.02B
4	AVGO	518.55B	TMUS	187.97B	MCD	212.87B
5	ORCL	293.04B	CMCSA	173.04B	NKE	159.18B
6	ADBE	272.10B	DIS	165.37B	LOW	125.90B
7	CRM	263.23B	VZ	162.11B	BKNG	122.20B
8	AMD	236.77B	Т	117.83B	TJX	108.30B
9	ACN	223.42B	CHTR	53.98B	SBUX	104.55B
10	CSCO	204.56B	EA	37.10B	ABNB	87.90B

Table 1: Top 10 empresas em valor de mercado dos setores de Tecnologia, Servições de comunicação e Consumo Cíclico

Rank	Healthcare		Financial Services		Consumer Defensive	
1	LLY	610.33B	V	542.92B	WMT	434.31B
2	UNH	482.36B	JPM	492.34B	PG	354.95B
3	JNJ	390.92B	MA	402.40B	COST	303.17B
4	MRK	300.61B	BAC	259.12B	KO	261.09B
5	ABBV	286.72B	WFC	170.59B	PEP	229.97B
6	TMO	210.31B	MS	148.55B	PM	147.89B
7	ABT	197.77B	BX	144.34B	MDLZ	99.51B
8	DHR	166.44B	SPGI	138.44B	МО	73.11B
9	AMGN	164.04B	AXP	132.66B	CL	66.62B
10	PFE	162.05B	GS	123.19B	TGT	65.05B

Table 2: Top 10 empresas em valor de mercado dos setores de Serviços Financeiros, Saúde e Energia

Rank	Energy		Basic Materials		Industrials	
1	XOM	399.48B	LIN	198.28B	CAT	147.84B
2	CVX	278.01B	SHW	77.43B	UNP	144.91B
3	COP	132.63B	FCX	58.71B	GE	141.31B
4	SLB	71.35B	APD	58.70B	UPS	134.87B
5	EOG	67.67B	ECL	56.72B	HON	132.57B
6	MPC	59.79B	NEM	43.38B	ВА	131.70B
7	PSX	58.46B	NUE	41.52B	RTX	124.13B
8	PXD	52.26B	DOW	37.43B	LMT	114.92B
9	OXY	50.95B	PPG	34.32B	DE	108.22B
10	VLO	44.77B	CTVA	32.49B	ADP	97.05B

Table 3: Top 10 empresas em valor de mercado dos setores de Consumo Defensivo, Materiais Básicos e Industriais

Rank	Ut	ilities	Real Estate		
1	NEE	125.24B	PLD	121.55B	
2	SO	77.89B	AMT	97.63B	
3	DUK	75.88B	EQIX	76.52B	
4	SRE	47.46B	SPG	55.01B	
5	PCG	44.69B	PSA	52.02B	
6	AEP	42.85B	WELL	50.88B	
7	D	39.61B	CCI	48.88B	
8	CEG	36.06B	О	42.64B	
9	EXC	35.91B	DLR	42.40B	
10	XEL	33.83B	CSGP	34.06B	

Table 4: Top 10 empresas em valor de mercado dos setores de Utilidades Públicas e Imobiliário

Remodelagem dos ddados para o formato de aprendizado de máquina

		tempo		z_2t			
	01	01/02/2023		89			
	02	02/02/2023		7			
	03	/02/2023	34	42			
	04	04/02/2023		22			
	05	/02/2023	12	1			
\downarrow							
x_1	x_2	$c_2 \mid y_1$		y_2			
?	?	? 12		89			
12	89	0		7			
0	7	34		42			
34	42	21		22			
21	22	12		1			
		y_1 a ser		y_2 a ser			
12	1	predito		predito			
	? 12 0 34	$\begin{array}{c cccc} & 01 & \\ 02 & \\ 03 & \\ 04 & \\ 05 & \\ \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Overview

- Introdução
- 2 Modelos Clássicos
- Modelos Modernos
- **4** Manipulação dos Dados
- **5** Técnica de validação dos modelos

- **6** Resultados
- **7** Conclusão

Técnica de validação dos modelos

 Cross-Validation extensivamente utilizada em Aprendizado de Máquina, mas que falha em séries temporais

Técnica de validação dos modelos

- Janela Expansiva com o conjunto aumentando de tamanho
- Janela Deslizante com o conjunto mantendo aproximadamente o tamanho e transladando no período

Técnica de validação dos modelos

- Será escolhido Janela Expansiva com os períodos:
 - Treino: 03/01/2022 a 11/07/2022, Teste: 12/07/2022 a 18/07/2022
 - 2 Treino: 03/01/2022 a 13/01/2023, Teste: 17/01/2023 a 23/01/2023
 - 3 Treino: 03/01/2022 a 22/09/2023, Teste: 25/09/2023 a 29/09/2023

Treino: Conjunto usado para ajustar os parâmetros dos modelos Teste: Conjunto usado para predição a fim de verificar a métrica de erro cometida.

Overview

- Introdução
- 2 Modelos Clássicos
- Modelos Modernos
- **4** Manipulação dos Dados
- **6** Técnica de validação dos modelos

- **6** Resultados
- Conclusão

• Critérios de informação no modelo VAR(p)

		Treino1			Treino2			Treino3	
	AIC	BIC	HQ	AIC	BIC	HQ	AIC	BIC	HQ
1	-100.40	-97.72	-99.31	-101.51	-99.84	-100.84	-103.28	-102.14	-102.83
2	-99.76	-94.37	-97.57	-101.10	-97.77	-99.76	-103.06	-100.77	-102.16
3	-99.11	-90.98	-95.81	-100.82	-95.81	-98.81	-102.83	-99.40	-101.48
4	-98.92	-88.02	-94.49	-100.50	-93.80	-97.81	-102.64	-98.06	-100.83
5	-98.46	-84.77	-92.90	-100.05	-91.65	-96.67	-102.36	-96.62	-100.09
6	-98.69	-82.18	-91.98	-99.69	-89.58	-95.62	-102.16	-95.26	-99.44
7	-99.58	-80.22	-91.72	-99.43	-87.60	-94.67	-101.96	-93.90	-98.78
8	-101.13	-78.88	-92.09	-99.08	-85.52	-93.62	-101.77	-92.54	-98.12
9	-105.95	-80.79	-95.73	-98.95	-83.66	-92.80	-101.71	-91.31	-97.60
10	-149.00	-120.90	-137.59	-98.89	-81.84	-92.03	-101.55	-89.97	-96.97

Escolhe a ordem p = 1 que minimizou em 2 das 3 janelas

Critérios de informação no VARMA(p,q)
 Escolhe a ordem (1,1)

Treino 1						
) (AIC	BIC	HQ			
1 1	-8626.66	-7743.46	-8267.79			
1 2	2 -8524.52	-7294.34	-8024.66			
2 1	-8526.27	-7296.10	-8026.41			
2 2	-8300.37	-6723.23	-7659.53			
	7	reino 2				
q	AIC	BIC	HQ			
1	-17891.11	-16794.42	-17450.23			
2	-17774.95	-16247.42	-17160.87			
Treino 3						
q	AIC	BIC	HQ			
1	-30821.04	-29567.25	-30326.10			
2	-30705.37	-28959.03	-30015.99			
1	-30703.69	-28957.34	-30014.30			
2	-30467.40	-28228.50	-29583.57			
	q 1 2 2 2 1 2 2 2 2 2 1 2 1 2	AIC AIC	P q AIC BIC 1 1 -8626.66 -7743.46 2 2 -8524.52 -7294.10 2 2 8300.37 -6723.23			

• MSE e RMSE obtido no VAR(1)

Data	MSE	RMSE				
2022-07-12	0.000101	0.010051				
2022-07-13	0.000046	0.006782				
2022-07-14	0.000121	0.010999				
2022-07-15	0.000428	0.020677				
2022-07-18	0.000153	0.012361				
	(b) Treino2					
Data	MSE	RMSE				
2023-01-17	0.000040	0.006352				
2023-01-18	0.000314	0.017734				
2023-01-19	0.000121	0.011010				
2023-01-20	0.000337	0.018367				
2023-01-23	0.000158	0.012569				
(c) Treino3						
Data	MSE	RMSE				
2023-09-25	0.000022	0.004708				
2023-09-26	0.000253	0.015906				
2023-09-27	0.000100	0.010000				

2023-09-29 0.000069 0.008317

(a) Treino1

• MSE e RMSE obtido no VARMA(1,1)

	(a) Treino1				
Date	MSE	RMSE			
2022-07-12	0.000095	0.009748			
2022-07-13	0.000045	0.006700			
2022-07-14	0.000121	0.011001			
2022-07-15	0.000429	0.020720			
2022-07-18	0.000153	0.012355			
	(b) Treino2				
Date	MSE	RMSE			
2023-01-17	0.000038	0.006177			
2023-01-18	0.000315	0.017744			
2023-01-19	0.000122	0.011030			
2023-01-20	0.000337	0.018363			
2023-01-23	0.000158	0.012569			
(c) Treino3					
Date	MSE	RMSE			
2023-09-25	0.000021	0.004573			
2023-09-26	0.000253	0.015913			
2023-09-27	0.000100	0.009994			

2023-09-29 0.000069 0.008317

• MSE e RMSE obtido no MLP pegando 1 e 5 dias atrás

(a) Tre	ino 1 usando	1 dia	(d) Treino 1 usando 5 dias		
Date	MSE	RMSE	Date	MSE	RMS
2022-07-12	0.000209	0.014462	2022-07-12	0.001213	0.0348
2022-07-13	0.000077	0.008799	2022-07-13	0.000313	0.0176
2022-07-14	0.000214	0.014628	2022-07-14	0.000524	0.0228
2022-07-15	0.000080	0.008937	2022-07-15	0.000637	0.0252
2022-07-18	0.000140	0.011814	2022-07-18	0.000268	0.0163
(A) To-	rino 2 usando	s di-	(a) Too	ino 2 usando !	
(-)			(1)		
Date	MSE	RMSE	Date	MSE	RMSI
2023-01-17	0.000150	0.012230	2023-01-17	0.000092	0.0095
2023-01-18	0.000154	0.012410	2023-01-18	0.000345	0.0185
2023-01-19	0.000075	0.008672	2023-01-19	0.000088	0.0093
2023-01-20	0.000117	0.010804	2023-01-20	0.000308	0.0175
2023-01-23	0.000298	0.017271	2023-01-23	0.000039	0.0062
(e) Tre	ino 3 usando .	1 dia	(f) Tre	ino 3 usando !	dias
Date	MSE	RMSE	Date	MSE	RMSI
2023-09-25	0.000027	0.005221	2023-09-25	0.000081	0.0090
2023-09-26	0.000266	0.016313	2023-09-26	0.000053	0.0072
2023-09-27	0.000119	0.010895	2023-09-27	0.000077	0.0087
2023-09-28	0.000069	0.008335	2023-09-28	0.000183	0.0135
2023-09-29	0.000098	0.009924	2023-09-29	0.000072	0.0084

• MSE e RMSE médios

Sector	VAR(1)	VARMA(1,1)	MLP 1 dia	MLP 5 dias
Technology	0.000274	0.000502	0.002231	0.021428
Communication Services	0.007297	0.007528	0.002364	0.012190
Consumer Cyclical	0.000272	0.000174	0.003857	0.025443
Financial Services	0.020383	0.020695	0.016922	0.000198
Healthcare	0.011043	0.010949	0.009599	0.003771
Energy	0.014529	0.013961	0.007648	0.025666
Consumer Defensive	0.017096	0.017106	0.017373	0.015085
Basic Materials	0.005065	0.005356	0.003539	0.016515
Industrials	0.008938	0.009174	0.008189	0.008369
Utilities	0.061542	0.061500	0.061500	0.052960
Real Estate	0.015513	0.015713	0.011480	0.002176

Tabela 7.5: Comparação da RMSE para cada um dos modelos para diferentes setores.

Sector	VAR	VARMA	MLP 1 dia	MLP 5 dias
Average Value	0.014723	0.014787	0.013155	0.016709

Tabela 7.6: Média do RMSE por modelo

• Retorno acumulado realizado

Sector	Retorno Acumulado
Technology	0.001354
Communication Services	-0.004807
Consumer Cyclical	0.001877
Financial Services	-0.018550
Healthcare	-0.010171
Energy	0.014850
Consumer Defensive	-0.017566
Basic Materials	-0.004277
Industrials	-0.007858
Utilities	-0.060948
Real Estate	-0.013772

Tabela 7.7: Retorno acumulado por setor.

Overview

- 1 Introdução
- 2 Modelos Clássicos
- Modelos Modernos
- **4** Manipulação dos Dados
- **6** Técnica de validação dos modelos

- **6** Resultados
- **7** Conclusão

Conclusão

- A ordem de grandeza do retorno predito está maior que o retorno realizado, evidenciando os modelos não terem conseguido extrair um padrão dos dados
- VAR e VARMA n\u00e3o conseguiu performar bem, pois ambos ficaram com as menores ordem e ainda teve um Erro Quadr\u00e1tico relativamente grande.
- MLP teve um RMSE levemente menor, mas não o bastante pra dizer que é melhor que os outros nesse contexto

Conclusão

- Esses resultados evidencia a dificuldade de predizer o mercado financeiro e econômico, com os modelos clássicos e modernos simples
- Há uma diversidade de modelos que podem ser testados para tentar melhorar a performance de predição, como GARCH, LSTM, Prophet, etc