Barrett Reduction

Time limit: 500 ms Memory limit: 256 MB

The C++ compiler optimizes the division by a constant D by multiplying your number by a constant A and then shifting the result B bits. This process is called Barrett reduction.

In this challenge we'll consider the division of an unsigned 32 bit integer by another unsigned 32 bit integer.

Given A and B, your task is to find the minimum possible value of D, for which the division is correct.

Note: it's guaranteed that for the given values A and B there exists an integer D such that for every number $0 \le X < 2^{31}$, $\lfloor \frac{X}{B} \rfloor = \lfloor \frac{X \times A}{2^{91}} \rfloor$, where $\lfloor X \rfloor$ represents the floor (integer part) of the result.

E.g: |0.4| = 0, |6.8| = 6.

Note that the challenge only uses unsigned integers, so there are no problems regarding using floor on negative numbers.

Standard input

The first line contains two integers A and B.

Standard output

The first line should contain one integer D.

Constraints and notes

- ullet $0 \leq A < 2^{32}$
- $0 \le B \le 63$
- 1 < D < 2³¹

Input	Output	Explanation
3435973837 35	10	Here are some examples of divisions.
		$\lfloor \frac{5}{10} \rfloor = 0$
		$\lfloor rac{5 imes3435973837}{2^{25}} floor = \lfloor rac{17179869185}{2^{25}} floor = 0$
		$\lfloor rac{17}{10} floor = 1$
		$\lfloor rac{17 imes 3435973837}{2^{25}} floor = \lfloor rac{58411555229}{2^{25}} floor = 1$
		$\lfloor rac{35}{10} floor = 3$
		$\lfloor rac{35 imes 435973837}{2^{25}} floor = \lfloor rac{120259084295}{2^{35}} floor = 3$