

CEPLAS data management and DataPLANT

February 26th, 2020 Hajira Jabeen & Dominik Brilhaus

- Making CEPLAS research data FAIR
- Make Data Management @CEPLAS simple
 - organising data
 - making it reusable
 - find and use external data
 - publishing data in public repositories (required by journals & funders)
- Let collaborators find and work on your data
- Support to use internal resources for related tasks
 - e.g Computing, Backup, Sharing, etc...

Research Data Management @ CEPLAS

Research Data Management @ CEPLAS

ARC - Simply

A Directory + Template(Excel)

- A structured directory (following ISA model)
- An Excel file asking for necessary descriptions (MetaData)
- Useful to structure data of ANY
 - Type (transcriptomics, proteomics, metabolomics, microscopy, countable, code, workflows etc etc)
 - Size (a few MBs - GBs)
 - Granularity (Assay, Analysis, Protocols . .)
 - Source (Wet Lab, Imaging facility . .)
 - Any data can be stored as into an ARC

ARC - Why

- A homogenised data packaging model to enable FAIR
- Easy to use
- Nominal additional effort
- Useful (inbuilt) features
 - Version control
 - Sharing
 - Backup
 - Easy publishing
 - Compatibility with platforms like Galaxy, Omero etc

What does a real-world ARC look like?

ARCs: Share yours and work together

- ARCs are the basis of the collaborative research platform
- ARCs can be shared between researchers seamlessly

Collaborative working with ARCs

The guidelines for all repositories (challenge!)

ARC to the rescue!

Reducing the overall workload

WE work on the ARC mechanisms

Reducing the overall workload

Reducing the overall workload

ARC covers the complete research cycle

Behind the ARC

A researcher only works with ARC

ARC provides Excel Templates

Enriched using SWATE

Data type specific

Extended as needed

Exportable to public repositories

Researcher

Caution! Work in Progress...

CEPLAS + DataPLANT

- Specialised templates
- Support of data types, and workflows
- Integration of ARC with analytic tools e.g.Galaxy
- DataHub with access controls
- Seamless version control

Summary

CEPLAS + DataPLANT

- An MoU is being developed with DataPLANT
 - CEPLAS uses DataPLANT hub as its "data management platform"
 - This is reflected in CEPLAS data policy
 - Taking care of IPR and technological aspects

Summary

CEPLAS + DataPLANT

- An MoU is being developed with DataPLANT
 - CEPLAS uses DataPLANT hub as its "data management platform"
 - This is reflected in CEPLAS data policy
 - Taking care of IPR and technological aspects

Thank you Questions .. ?

The ISA Model of (experimental) metadata

Investigation

- Overall goals
- Scientific context

Study

Experimental steps

Assay

Leading to (raw) data

isa

investigation

high level concept to link related studies

study

the central unit, containing information on the subject under study, its characteristics and any treatments applied.

a study has associated assays

assay

test performed either on material taken from the subject or on the whole initial subject, which produce qualitative or quantitative measurements (data)

https://isa-tools.org/format/specification.html

Annotation principles

Source Name

The Source Name column defines the source of biological material used for your experiments. The name used must be a unique identifier. It can be an organism, a sample, or both.

Every annotation table must start with the Source Name column

Parameter

Use parameters to annotate your experimental workflow.

You can group parameters to create a protocol.

Characteristics

Use characteristics columns to annotate interesting properties of the source material. You can use any number of characteristics columns.

Sample name

The Sample Name column defines the resulting biological material of the annotated workflow. The name used must be a unique identifier.

Samples can again be sources for further experimental workflows.

Factor

Use factor columns to track the experimental conditions that govern your study

Most of the time, factors are the most important building blocks for downstream computational analysis.

Data

The Data column describes data files that results from your experiments. Additionally to the type of data, the annotated files must have a unique name.

Data files can be sources for computational workflows.

Mühlhaus, von Suchodoletz, Krüger, Usadel. (2020, September). DataPLANT Kick-Off Meeting: 21st September 2020: First General Assembly. Zenodo.

http://doi.org/10.5281/zenodo.4039749

