Affine Objects

Mohamed Hashi

March 2, 2016

Abstract

Short summary of the contents of your thesis.

Acknowledgements

Put your acknowledgements here.

1 Introduction

Hoi, dit is de introductie.

Let $Y=(X,\mathfrak{T},\mathfrak{O})$ be a ringed site. Let $R=\Gamma(1;\mathfrak{O}).$ Let $\mathfrak{a},\mathfrak{b}\in X.$

2.0.1 basic categorical definitions

Notation 1. Let C be a category.

Definition 2 (Presheaf categories and yoneda functors). Let C be a category. Then we define

$$C^+ := [C^{op}, Set],$$

$$C^- := [C^{op}, Set^{op}] \cong [C, Set],$$

and the functors

$$h_C: C \to C^+ := X \mapsto \operatorname{Hom}(-, X),$$

 $h^C: C \to C^- := X \mapsto \operatorname{Hom}(X, -).$

Both these functors are fully faithfull by the Yoneda lemma.

Definition 3 (Over/Under categories). Let C and C' be categories. Let $F: C \to C'$ and $Z \in C'$. Define the category C_Z and C^Z as follows

$$Obj(C_{\mathsf{Z}}) := \{(X, \mathfrak{u}) \mid X \in \mathsf{C}, \mathfrak{u} : \mathsf{F}(X) \to \mathsf{Z}\},\$$

$$\operatorname{Hom}((X, \mathfrak{u}), (Y, \mathfrak{v})) := \{f : X \to Y \mid \mathfrak{v} \circ F(f) = \mathfrak{u}\},\$$

and

Obj
$$(C^{Z}) := \{(X, u) \mid X \in C, u : Z \to F(X)\},\$$

Hom $((X, u), (Y, v)) := \{f : X \to Y \mid F(f)u = v\}.$

We get faithfull functors $C_Z \to C : (X, u) \to X$ and $C^Z \to C : (X, u) \to X$.

2.0.2 Presheaves

Definition 4 (Presheaves). Let A be any category. An A-valued presheaf \mathfrak{F} is a functor $C^{op} \to A$. The category $[C^{op}, A]$ of all A-valued presheaves is denoted $C^+(A)$. If A = Set, we will use C^+ .

When it is obvious which presheaf is under consideration, then $\mathfrak{F}(f)$ we be denoted as f^* .

Definition 5 (Sections functor). For any $X \in C$ define the functor

$$\Gamma(X;-):C^+(A)\to A$$

by

$$\mathfrak{F} \to \mathfrak{F}(X)$$
.

Let $L: I \to C$ be diagram and assume that colim exists in $C^+(A)$. Define

$$\Gamma(\underset{i \in I}{\text{colim}}L(i); -) : C^+(A) \to A$$

by

$$\mathfrak{F} \to \text{Hom}(\underset{\mathfrak{i} \in I}{\text{colim}} \mathsf{L}(\mathfrak{i}), \mathfrak{F}) = \underset{\mathfrak{i} \in I}{\text{lim}} \text{Hom}(\mathsf{L}(\mathfrak{i}), \mathfrak{F}).$$

By definition of the colimit these definitions coincide when the colimits exists in C.

Example 6. As we will see, \mathfrak{C} is (co)complete so even if C does not have a terminal object, we can still compute the 'global sections'.

Lemma 7 (Complete). If A complete (or cocomplete) then $C^+(A)$ is and all sections functors commute with arbitrary limits and colimits.

 $\textit{Proof.} \ \, \text{Let} \ \, I \to C^+(A) \ \, \text{be an diagram, with } i \mapsto \mathfrak{F}_i. \ \, \text{Then the presheaves} \ \, U \mapsto \underset{i \in I}{lim} F_i(U) \\ \text{and} \ \, U \to \underset{i \in i}{colim} F_i(U) \ \, \text{are the limit and colimit of this diagram.}$

Lemma 8 (Abelian/Grothendieck). If A abelian (or Grothendieck) then C⁺(A) is.

Proof. Let $f, g: \mathfrak{F} \to \mathfrak{G}$. Let $U \in C$. The sum f+g will be defined such that all section functors are additive. Hence $(f+g)_U = f_U + g_U$, this completely determines f+g. Note that this makes f+g into an actual morphism of presheaves because composition is bilinear in A.

Define $Ker(f) \to \mathfrak{F}$ to be $U \mapsto Ker(f_U)$ and $Coker(f) \to \mathfrak{F}$ to be $U \mapsto Coker(f_U)$. Since A is abelian we have Im(f) = Coim(f). By the previous lemma $C^+(A)$ has direct sums. It also has a zero object which is the presheaf $U \mapsto 0$.

Hence $C^+(A)$ is abelian as defined in tag 0109 of stacks.

Assume A is also Grothendieck. Note that the section functions $\Gamma(U;-)$ have adjoints: Then using this the family $\{c_!G:c\in C\}$ is a small generating family. Taking the colimit over this family provides us with a generator in $C^+(A)$.

Exactness and taking colimits both are determined pointwise, so directed colimits aka direct limits are exact because they are in A.

Remark. So C⁺ is a Grothendieck category.

Definition 9 (direct image). Let $f: C \to D$ and $X \in C$. Define the direct image f_* of $\mathfrak{F} \in C^+(A)$ to be

$$f_*(F) = \mathfrak{F} \circ f.$$

Lemma 10 (direct image commutes with limits). f** commutes with limits.

Proof. Let $\mathfrak{G}=\underset{i\in I}{\lim}\mathfrak{F}_i$ be a limit of presheaves. Let $X\in C$. Then $f_*\mathfrak{G}(X)=\mathfrak{G}(f(X))=\underset{i\in I}{\lim}\mathfrak{F}_i(f(X))=(\underset{i\in I}{\lim}f_*\mathfrak{F}_i)(X)$. Hence f_* commutes with limits and this also holds for colimits.

Definition 11 (Inverse image, direct image & push-forward). Define the inverse image f^* of $\mathfrak{F} \in D^+(A)$ to be

$$f^*(F)(X) = \underset{(Y,u) \in C_X}{\text{colim}} \mathfrak{F}(Y).$$

Define the pushforward $f_!$ of $\mathfrak{F}\in D^+(A)$ to be

$$f_!(F)(X) = \lim_{(Y,u) \in C^X} \mathfrak{F}(Y).$$

Now f^* is left adjoint to f^* and $f_!$ is right adjoint to f^* by construction. This is a general construction to get adjoints, which works now because the indexing categories are small and the target contains all small (co)limits.

See Stacks Tag 09YX for a different existence lemma for the push-forward.

Assume C has binary products.

Definition 12. Let $j_X : C_X \to C$ be the projection. Let $i_X : C \to C_X$ be defined by

$$V \mapsto (U \times V, p_0)$$

We will use $F|_{X} = j_{X_*}\mathfrak{F}$.

Lemma 13. Let $\mathfrak{F} \in C^+(A)$ and let $\mathfrak{G} \in X^+(A)$

$$\begin{split} j_{X_*}\mathfrak{F}(V \to X) &= \mathfrak{F}(V), \\ j_X^*\mathfrak{G}(V) &= \bigoplus_{s \in Hom(V,X)} \mathfrak{F}(V \xrightarrow{s} X) \\ j_{X_!}\mathfrak{G}(V) &= \mathfrak{F}(X \times V \to X) \end{split}$$

Definition 14 (Internal Hom). Let $\mathfrak{F},\mathfrak{G}\in C^+(A)$. Define F^G to be the presheaf $X\mapsto \text{Hom}(\mathfrak{F}|_X,\mathfrak{G}|_X)$. For A=Set or A=R-Mod, we have $F^G\in C^+(A)$.

If we assume that the representable sheaves are A-valued, then we can also define

$$F^{G}(X) = \text{Hom}(\mathfrak{F} \times h_{X}, \mathfrak{G}).$$

These two definitions are equal because the following functions are inverses of each other:

$$r \mapsto (U : a \mapsto r(a, k)) \text{ where } U \xrightarrow{k} X,$$

 $s \mapsto (U : (a, b) \mapsto s(a)).$

Definition 15 (Monoidal structure). Let $\mathfrak{F}, \mathfrak{G} \in C^+(A)$. Let A have a monoidal structure. Define $\mathfrak{F} \otimes \mathfrak{G}$ as $X \mapsto \mathfrak{F}(X) \otimes \mathfrak{G}(X)$

Lemma 16 (Adjunction/monoidal closed structure). Let $\mathfrak F$ be fixed. Then $-\otimes \mathfrak F$ is left adjoint to $Hom(\mathfrak F,-)$.

2.0.3 Topology

Definition 17 (Sieve). A sieve on $X \in C$ is a subpresheaf(or subobject or subfunctor) of the representable presheaf h_X . The maximal sieve will be denoted $\max(C)$.

Definition 18 (Grothendieck Topology). A Grothendieck topology \mathcal{T} is a family $\mathcal{T}(X)$ of 'covering' sieves for every $X \in C$ with the following conditions:

- $\max(X) \in \mathfrak{T}(X)$
- $f^*R \in \mathfrak{T}(X')$ if $R \in \mathfrak{T}(X)$ for any $f: X' \to X$
- if $f^*R \in \mathfrak{I}(X')$ for all $f \in S$ with $S \in \mathfrak{I}(X)$ then $R \in \mathfrak{I}(X)$

Note that if $f \in R$ then $f^*R = \max(X')$. So if $R \subset S$ and R is covering then S is covering. Also $R \cap S$ is covering if and only if R and S are covering.

Definition 19 (Basis). Let C have pullbacks. A Grothendieck pretopology $\mathcal B$ is a collection $\mathcal B(X)$ of families $\{f_i:X_i\to X\}$ of 'covering' morphisms for every $X\in C$ with the following conditions:

- every isomorphism is a covering singleton family.
- (Stability) The pullback of a covering family is covering. If $\{f_i : X_i \to X\}$ is covering and $g : Y \to X$, then $\{f'_i : X_i \times_X Y \to Y\}$ is covering.
- (Transitivity) If $\{f_i: X_i \to X\}$ is covering and $\{f_{ij}: X_{ij} \to X_i\}$ for every i, then $\{f_{ij}: X_{ij} \to X\}$ is covering.

Generating a real topology: take any sieve containing a covering family to be a covering sieve. Any sieve is generated by itself as covering family, in this way any topology can be interpreted as a pretopology. This enables one to use the pullbacks in proofs.

Definition 20. A site (C, \mathcal{T}) is a category C with the Grothendieck topology \mathcal{T} . If C has pullbacks, then we consider \mathcal{T} always as a pretopology.

Definition 21 (Cocontinuous functor).

Lemma 22. Let $(C, T) \xrightarrow{g} (D, S)$. Let \mathfrak{F} be a presheaf on D. If g is cocontinuous, then

$$g_!\mathfrak{F}^+\cong \mathfrak{g}_!\mathfrak{F}^+.$$

Proof. Let X be an object. The two presheafs reduce to

$$\underset{R \in S(g(X))}{lim} Hom(R,F) \rightarrow \underset{K \in T(X)}{lim} Hom(g(K),F).$$

The poset of covering sieves on X is send to a dense poset of g(X) so the limits are isomorphic and this isomorphism is natural.

2.0.4 Ringed sites

2.0.5 Sheaves

Definition 23 (Sheaves of sets). Let (C, \mathfrak{T}) be a site. Let $\mathfrak{F} \in C^+$. A compatible family on X is a family of elements $x_f \in \mathfrak{F}(X_f)$ indexed by a sieve R on X, where $X_f = \text{Dom}(f)$ and such that $g^*(x_f) = x_{fq}$. This is the same as a morphism $R \to \mathfrak{F}$ as presheaves.

An amalgamation of a compatible family $(x_f)_R$ on X is an element $x \in \mathfrak{F}(X)$ such that $f^*(x) = x_f$. Hence given an morphism $X \to \mathfrak{F}$ that extends the morphism $R \to \mathfrak{F}$ defined by the compatible family.

A presheaf that admits a unique amalgamation of every compatible family is called a sheaf. The category Shv(C) is the full subcategory on these sheaves. Let i be the inclusion functor $Shv(C) \to C^+$.

Definition 24 (Sheaves #2). Let (C, \mathcal{T}) be a site. Let $\mathfrak{F} \in C^+A$. Let A be (small) complete. Define $\mathfrak{F}(R)$ for a sieve R on X to be

$$Hom(R, F)$$
.

We call \mathfrak{F} a sheaf if the map

$$\mathfrak{F}(X) \to \mathfrak{F}(R)$$

is an isomorphism.

This is just shorthand notation for the above definition. There is a bijection between Hom(R, F) and matching families and the map sends a section to the unique matching family indexed by R it is an amalgamation of.

Definition 25 (Plus construction Shapiro). Let (C, \mathcal{T}) be a site. Let $\mathfrak{F} \in C^+$. Define the category I whose objects are pairs (R, φ) with $R \in \mathcal{T}(X)$ and $R \xrightarrow{\varphi} F$. A morphism between $(R, \varphi) \to (S, \varphi)$ are inclusions $R \to S$ such that $\varphi = \varphi$ restricted to R.

Then

$$\mathfrak{F}^+(X) = \lim_{(R,\phi) \in I} F(R).$$

More concretely, $\mathfrak{F}^+(X)$ is the set of all objects (R,ϕ) with the equivalence relation that $(R,\phi)\sim (S,\varphi)$ if $\phi=\varphi$ on $R\cap S$. Or equivalently the set all compatible families with the equivalence relation that $(x_f)_R\sim (y_g)_S$ if $(x_f)_{R\cap S}=(y_g)_{R\cap S}$.

We have the map

$$\eta: \mathfrak{F}(X) \to \prod f \in R\mathfrak{F}(Dom(f))$$

 $x \mapsto (X, x).$

This defines a natural transformation from Id to -+.

Definition 26 (Plus construction Moerdijk).

Lemma 27. \mathfrak{F}^+ is separated

Lemma 28. If \mathfrak{F} is separated then \mathfrak{F}^+ is a sheaf.

Lemma 29. Let $(C,S) \xrightarrow{g} (D,T)$. Let \mathfrak{F} be a presheaf on D. Then

$$\mathfrak{F}^+g\cong\mathfrak{Fg}^+.$$

Proof.

Definition 30 (Sheafification). Define $a(\mathfrak{F})=\mathfrak{F}^{++}:C^+\to Shv(C)$. This is a left adjoint to the inclusion functor.

The functor a(-) commutes with finite limits. There are two different proofs: Moerdijk and stack+Shapiro. Shapiro defines the plus with as a colimit over a directed set, hence this commutes with limits.

Theorem 31. The following this are equivalent for a category C.

- A Grothendieck topology
- A full subcategory $E \subset C^+$ such that the inclusion functor has a left adjoint that preserves finite limits.

Remark (Properties). • The restriction of a sheaf is a sheaf

3 Restrictive

Definition 32 (Restrictive functor). A functor $f:(C,\mathfrak{T},\mathfrak{O})\to(D,\mathfrak{S},\mathfrak{U})$ between ringed sites is called restrictive if for every quasi-coherent module \mathfrak{G} the co-unit induces an isomorphism

$$\begin{split} \mathfrak{G} &\to f_* f^* \mathfrak{G}, \\ \Gamma(1;\mathfrak{G}) &\to \Gamma(1;\mathfrak{f}_* \mathfrak{f}^* \mathfrak{G}) \cong \Gamma(1;\mathfrak{f}^* \mathfrak{G}) \\ \Gamma(1;\mathfrak{G}) \otimes_{\Gamma(1;\mathfrak{Q})} \Gamma(1;\mathfrak{U}) &\to f_* f^* \mathfrak{G}. \end{split}$$

Note that

Definition 33 (Restrictive morphism). A morphism $f: X \to Y \in C$ is called restrictive if the induced functor

$$\mathsf{C}_X\to\mathsf{C}_Y$$

is restrictive.

Example 34. In Sch, the morphism Spec $A_f \to Spec A$ is restrictive.

Non-Example 35. The open immersion Spec $R^2 \setminus 0 \to \text{Spec } R^2$ is not restrictive. The quasi-coherent sheaf $\Lambda(\frac{R[x,y]}{xy})$ fails to satisfy the condition from the definition.

Lemma 36 (Restrictive to affines). If $f: X \to Spec\ R$ is a restrictive open immersion. then X is affine.

Non-Example 37 (Affine non-restrictive map). Both canonical inclusions $\mathbb{A}^1 \to \mathbb{P}^1$ are not restrictive. Look at the quasi-coherent module $\mathfrak{O}(-1)$. There are no global sections but on every affine chart this invertible sheaf is trivial.

Non-Example 38. Any inclusion Spec $\kappa(\mathfrak{p}) \to \mathbb{P}^1$ is not restrictive. Look at $\mathfrak{O}(-1)$.

3 Restrictive

Lemma 39. The composition of two restrictive functors is restrictive. If the composition gf is restrictive, then g is restrictive

Proof.

4.0.1 introduction

Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site.

Definition 40 (Caffine). Let $a \in C$ be an object. We call a *caffine* if the adjunction $\Gamma(1;-) \dashv \Lambda(-)$ is an equivalence of categories. Or equivalently that the unit η and co-unit ϵ of this adjunction are natural isomorphisms.

Example 41 (Examples of caffine objects). The main example to keep in mind is Spec $R \in Sch$.

Let $(*, \mathfrak{R})$ be a ringed space. This space is always caffine, because all presheaves are sheaves. If R is non-local, then this space is not a scheme. This is an example of a non-scheme caffine ringed space

4.0.2 Restrictive maps between caffine objects

Lemma 42 (Morphism between caffines is restrictive). Let $b \xrightarrow{f} a \in C$ be a morphism between caffine objects, then f is restrictive.

Proof. Let \mathfrak{F} be a quasi-coherent module on C_a . We have to show that $\Gamma(a;\mathfrak{F})\otimes_{\Gamma(a;\mathfrak{D})}\Gamma(b;\mathfrak{D})\stackrel{k}{\to}\Gamma(b;\mathfrak{F})$ is an isomorphism. The map k is the adjunct of $\mathfrak{F}(f)$ with respect to the adjunction between restricting scalars and extending scalars along the map $\Gamma(a;\mathfrak{D})\to\Gamma(b;\mathfrak{D})$. More concretely, this map is

$$k: x \otimes m \mapsto \mathfrak{F}(f)(x)m$$
.

The argument will go as follows. First we observe that the morphism $e_{\mathfrak{F}}: \mathfrak{F} \to \Lambda(\Gamma(1;\mathfrak{F}))$ is an isomorphism because a is caffine. Second $i_a: \Gamma(1;\mathfrak{F})(a) \to \Lambda(\Gamma(1;\mathfrak{F}))(a)$ is an isomorphism by lemma ... This holds for any caffine objects, so also for b. The consequence is that $\Gamma(1;\mathfrak{F})(f)=i_b^{-1}\mathfrak{F}(f)\circ i_a$, by naturality of the transformation $i:\Gamma(1;\mathfrak{F})\to \mathfrak{F}$. Third, show that $\Gamma(1;\mathfrak{F})(f)$ has an isomorphism as adjunct along the same extension/restriction adjunction. Call this adjunct k'. Fourth, use naturality of adjunction bijections to conclude that k must also be an isomorphism.

Since α is caffine, $\mathfrak{F} = \Lambda(\Gamma(1;\mathfrak{F}))$. Since $\Lambda(-) = \alpha(-) \circ -$, we know that \mathfrak{F} is the sheafification of the presheaf

$$\Gamma(1;\mathfrak{F})=c \to \Gamma(\alpha;\mathfrak{F})\otimes_{\Gamma(\alpha;\mathfrak{O})}\Gamma(c;\mathfrak{O}).$$

Set $M = \Gamma(\alpha; \mathfrak{F})$.

Define $k': \Gamma(a;\mathfrak{M}) \otimes_{\Gamma(a;\mathfrak{D})} \Gamma(b;\mathfrak{D}) \to \Gamma(b;\mathfrak{M})$ By $k': x \otimes m \mapsto M(f)(x)m$. If you unfold the constructions, it follows that

$$k'(x \otimes m) = x \otimes m \in \Gamma(b; \mathfrak{M}) = M \otimes \Gamma(b; \mathfrak{O})$$

is actually the identity.

We will prove that A)Thecomponentatacaffine object of the unversal sheaf if ication morphism is an iso $\epsilon_{T,a}$. Hence when a is caffine then $\Gamma(1;i)$ on is an iso. Note that $\Gamma(1;i): C/x \to \mathfrak{D}(x)$ -Mod is equal to $\Gamma(x;i): Cy \to \mathfrak{D}(x)$

- B) Adjunction bijection respects composition with isos We have now that $M(f) = i_b^{-1} \circ \Lambda(F)(f) \circ i_a$. Let F be the bijection from the adjunction $\Gamma(1;-) \dashv \Lambda(-)$. Then
- C) Hence k is also an iso.

Note that restricting and sheafification commute. We can first restrict our presheaf to C/b and then sheafify. The global sections component of the universal sheafification morphism will be

$$M \otimes \Gamma(b; \mathfrak{O}) \to \Gamma(b; \mathfrak{F}),$$

$$m \otimes r \mapsto mr$$

because the triangle

must commute by naturality. This is exactly the component of the unit η of the $\Gamma(1;-)$ \dashv $\Lambda(-)$ on $(C,\mathfrak{T})O/b$ for $\Gamma(a;\mathfrak{F})\otimes\Gamma(b;\mathfrak{O})$. Since b is caffine, this is an isomorphism by assumption.

Let
$$(C, \mathcal{T}, \mathfrak{O})$$
 be a ringed site. Let $R = \Gamma(1; \mathfrak{O})$. Let $\alpha \in C$ and $f: x \to y \in C$.

Lemma 43 (Co-unit is iso when locally iso). Let $a \in C$ be an object. Let $\{b_i \to a\}$ be a restrictive caffine cover, then ϵ is a natural isomorphism.

Proof. Assume we have a restrictive caffine cover $\{b_i \to a\}$. Let \mathfrak{F} be a quasi-coherent sheaf module. Set $M = \Gamma(a; \mathfrak{F})$. Set $M_i = \Gamma(b_i; \mathfrak{F})$ on C/a.

Consider the co-unit at 3

$$\epsilon_{\alpha}(\mathfrak{F}): \Lambda(\Gamma(\alpha;\mathfrak{F})) \to \mathfrak{F}.$$

This morphism restricted gives

$$\varepsilon_{\mathfrak{a},\mathfrak{b}_{\mathfrak{i}}}(\mathfrak{F}):\Lambda(\Gamma(\mathfrak{a};\mathfrak{F}))\big|_{\mathfrak{b}_{\mathfrak{i}}}\to\mathfrak{F}\big|_{\mathfrak{b}_{\mathfrak{i}}},$$

which is the same map as $\epsilon_b(\mathfrak{F}|_b)$. We only need to establish that $\Lambda(\Gamma(a;\mathfrak{F}))|_{b_i}$.

Because bi is caffine, the canonical morphism given by sheafification

$$M \otimes_{\Gamma(a:\mathfrak{D})} \Gamma(b_i;\mathfrak{D}) \to M_i$$

is an isomorphism.

Hence the component

$$\varepsilon_{b_i}(\mathfrak{F}\big|_{b_i}):\Lambda(\Gamma(b_i;\mathfrak{F}))\to\mathfrak{F}\big|_{b_i}.$$

is an isomorphism, because ϵ_{b_i} is a natural isomorphism because b_i is caffine. The subscript b_i signifies that we are working in C/b_i .

But over an caffine object, a map is an isomorphism if and only if it is an isomorphism on global sections. In this case, using naturality of ϵ ,

$$\begin{split} \varepsilon_{b_i}(b_i) : \Gamma(1;\mathfrak{F}) \otimes_{\Gamma(\mathfrak{a};\mathfrak{D})} \Gamma(b_i;\mathfrak{D}) &\to \Gamma(b_i;\mathfrak{F}), \\ m \otimes r &\to mr. \end{split}$$

By restrictiveness of the map $b_i \to a$, this map is an isomorphism. A local isomorphism between sheaves is an isomorphism.

4.0.3 Caffine = Affine for schemes

Let (X, \mathfrak{O}) be a caffine scheme. Let $X \xrightarrow{F} \operatorname{Spec} \Gamma(1; \mathfrak{O}) = Y$ be the adjunct of the identity map via the adjunction (Spec $-, \Gamma(1; -)$). Equivalently, let F be the component at X of the unit from this adjunction.

Let's introduce our variables. Let $x, y \in X$. Let $\mathfrak{p}, I, J \subset \mathfrak{O}(X)$ be ideals with \mathfrak{p} prime. Let $a, b \in \mathfrak{O}(X)$ be global sections.

Definition 44. Define

$$\ker(x) = \ker(\mathfrak{O}(X) \to \kappa(x)),$$

$$D_X(a) = \{x \in X \mid a \not\in \ker(x)\},$$

Define

$$V_X(I) = \text{Supp}(\Lambda_X(\frac{\mathfrak{O}(X)}{I})).$$

Remark. Recall that $F(x) = \ker(x)$ for $x \in X$. I will use $D_Y(a)$ for the distinguished open defined by a in the affine Y. Note that $D_X(ab) = D_X(a) \cap D_X(b)$ since $\ker(x)$ is a prime ideal.

Remark. If the support of a sheaf \mathfrak{G} is empty, then locally all sections are zero. Hence all sections are equal to the zero section and $\mathfrak{G}=0$.

Lemma 45. The set $V_X(I)$ is closed.

Proof. Let $z \in X$ and M a \mathfrak{O} -module. Assume z is in the support of M, then $g \neq 0$ for any generating element $g \in M_z$.

Consider the exact sequence

$$\mathfrak{O}(X) \to \frac{\mathfrak{O}(X)}{I} \to 0.$$

The functor Λ_X is a left adjoint hence right exact so

$$\mathfrak{O} \xrightarrow{f} \Lambda_X(\frac{\mathfrak{O}(X)}{I}) \to 0$$

is exact. Hence the sequence

$$\mathfrak{O}_{x} \xrightarrow{f_{x}} \Lambda_{X}(\frac{\mathfrak{O}(X)}{I})_{x} \to 0$$

is exact. The global section f(1) must generate $\Lambda_X(\frac{\mathfrak{D}(X)}{I})$ as a module by surjectivity of f. Similarly $f_x(1_x)$ generates $\Lambda_X(\frac{\mathfrak{D}(X)}{I})_x$.

Note that $f_x(1_x) = f(1)_x$ by definition of f_x , hence $f(1)_x$ is a generating element. Hence $\Lambda_X(\frac{\mathfrak{D}(X)}{I})_x \neq 0$ if and only if $f(1)_x \neq 0$.

This implies $V_X(I) = Supp(f(1))$ which makes $V_X(I)$ closed as the support of a global section.

The functor Λ_X is exact, so it commutes with quotients. So

$$\Lambda_X(\frac{\mathfrak{O}(X)}{I}) = \frac{\mathfrak{O}}{\Lambda_X(I)}$$

and

$$\Lambda_X(\frac{\mathfrak{O}(X)}{I})_x = \frac{\mathfrak{O}_x}{\Lambda_X(I)_x} = \frac{\mathfrak{O}_x}{I \otimes \mathfrak{O}_x}$$

 $\frac{\mathfrak{O}_x}{\Lambda_X(I)_x} \neq 0$, which is the same as saying that $\Lambda_X(I)_x$ is a proper ideal of \mathfrak{O}_x . The sheaf $\Lambda_X(I)_x$ is the sheafification of the presheaf $(U \mapsto I \otimes \mathfrak{O}(U))$, hence the stalk at x of the sheaf is $\operatornamewithlimits{colim}_{x \in U} I \otimes \mathfrak{O}(U)$. The functor $I \otimes -$ is a left adjoint, hence commutes with colimits. So the stalk is isomorphic to $I \otimes \operatornamewithlimits{colim}_{x \in U} \mathfrak{O}(U) = I \otimes \mathfrak{O}_x$. See Stacks[01BH].

Lemma 46. For $x \in X$ TFAE:

1.
$$x \in V_X(I)$$

2.
$$I\mathfrak{O}_{x} \neq \mathfrak{O}_{x}$$

3.
$$I \subset \ker(x)$$
.

Proof. $1 \Rightarrow 2$:

Assume $x \in V_X(I)$. Then $\Lambda_X(\frac{\mathfrak{O}(X)}{I})_x = \frac{\mathfrak{O}_x}{I\mathfrak{O}_x} \neq 0$. Hence $I\mathfrak{O}_x \neq \mathfrak{O}_x$.

 $2 \Rightarrow 3$:

Assume $I\mathfrak{O}_x \neq \mathfrak{O}_x$. Then $I\mathfrak{O}_x$ is proper hence contained in the unique maximal ideal of the local ring \mathfrak{O}_x , therefore $I \mapsto 0$ in k(x) or equivalently $I \subset \ker(x)$.

 $3 \Rightarrow 1$:

Assume $I \subset \ker(x)$. Then I maps into \mathfrak{m}_x , hence $I\mathfrak{O}_x \subset \mathfrak{m}_x$. Therefore

$$\frac{\mathfrak{O}_x}{\Lambda_X(I)_x} = \frac{\mathfrak{O}_x}{I\mathfrak{O}_x} \neq 0.$$

Corollary 47. If $y \in I$ then $D_X(y) \cap V_X(I) = \emptyset$

Proof. Assume $y \in I$. Let $z \in V_X(I)$, then $y \in \ker(z)$ by the previous lemma. This implies $z \notin D_X(y)$

Corollary 48. $V_X(I) \cup V_X(J) = V_X(IJ)$

Proof. Let $z \in V_X(I) \cup V_X(J)$. Then $I \subset \ker(z)$ and $J \subset \ker(z)$ by the lemma, hence $IJ \subset \ker(z)$. Apply the lemma again to get $z \in V_X(IJ)$. Let $z \in V_X(IJ)$. Then $IJ \subset \ker(z)$ by the lemma. The ideal $\ker(z)$ is prime, so $I \subset \ker(z)$ or $J \subset \ker(z)$. Invoke the lemma again to get $z \in V_X(I) \cup V_X(J)$.

Lemma 49. Every closed set W can be written as $V_X(I)$ for some ideal I.

Proof. Let $\mathfrak I$ be some ideal sheaf inducing a closed subscheme structure on W. Let $\mathfrak O_W$ be the structure sheaf of this closed subscheme. By construction $V_X(I)$ is the support of the push-forward of $\mathfrak O_W$, hence $V_X(I)=W$.

Lemma 50. The sets $D_X(a)$ form a basis for the topology of X.

Proof. Let $U \subset X$ be any open. Let $x \in U$. By the previous lemma we get I such that $V_X(I) = U^c$. It follows that $x \notin V_X(I)$ and $I \not\subset \ker(x)$. So we get a $g \in I$ with $g \notin \ker(x)$. We get $x \in D_X(g)$ and by corollary .. $D_X(g) \subset U$. As stated earlier, $D_X(ab) = D_X(a) \cap D_X(b)$ since $\ker(x)$ is a prime ideal. So $D_X(a)$ form a basis.

Lemma 51. The map F is surjective.

Proof. Let $\mathfrak{p} \in Y$ be a point in the target of F. Then $\Lambda_X(\kappa(\mathfrak{p}))$ is a quasi-coherent sheaf of modules. In fact $\kappa(\mathfrak{p}) \otimes_{\Gamma} (\mathfrak{O}) \mathfrak{O}(U)$ is a $\mathfrak{O}(U)$ algebra, hence $\Lambda_X(\kappa(\mathfrak{p}))$ is a quasi-coherent sheaf of algebras. Hence we can compute the relative spec Rspec $(\Lambda_X(\kappa(\mathfrak{p}))) \to X$. The adjunct of the map

Rspec
$$(\Lambda_X(\kappa(\mathfrak{p}))) \to Y$$

is the canonical morphism $g:R\to \kappa(\mathfrak{p}).$ This morphism is also the adjunct of the composition

Rspec
$$(\Lambda_X(\kappa(\mathfrak{p}))) \to \operatorname{Spec} \kappa(\mathfrak{p}) \to X$$
,

so both maps must be equal. This gives us a commutative square

By lemma .., we know that $\Lambda_X(\kappa(\mathfrak{p}))$ is not the zero sheaf hence the structure sheaf of Rspec $(\Lambda_X(\kappa(\mathfrak{p})))$ non-zero. This implies that the scheme is not the empty scheme. Therefore the point \mathfrak{p} is in the image of F.

Lemma 52. The closed set $V_X(\mathfrak{p})$ is irreducible. This implies that F is injective.

Proof. Let $F(z) = \mathfrak{p}$ for some $z \in X$. By lemma .. this is possible. Let $y \in V_X(\mathfrak{p})$. Then $\ker(z) \subset \ker(y)$, hence if $y \in D_X(a)$ then $x \in D_X(a)$. Therefore y specialises to z, which thus must be $V_X(\mathfrak{p})$. This shows that it is irreducible. Uniqueness of generic points of closed irreducible subsets of schemes implies injectivity of F.

Lemma 53. The function F is open, hence a homeomorphism.

Proof. Note that $F(D_X(\alpha)) = \{F(x) \mid \alpha \notin F(x)\} = F(X) \cap D_Y(\alpha) = D_Y(\alpha)$. Our map F is continuous and open, so a homeomorphism.

Lemma 54. If F is a homeomorphism, then X is affine.

Proof. Let Spec $A_i = U_i \subset X$ be open and let $\bigcup_i U_i = X$. Assume it is a finite affine cover. Using our base, we get a cover of $U_i = \bigcup_j D_X(a_{ij})$ with a_{ij} global sections. Observe that $D_X(a_{ij}) \subset U_i$, hence $D(a_{ij}\big|_{U_i}) = D_X(a_{ij})$ which makes them affine. Continuing like this, we get a finite cover of affines $D_X(a_{ij})$ of X. since $F(X) = F(\bigcup_{ij} D_X(a_{ij})) = \bigcup_{ij} D_Y(a_{ij}) = Y$, we have $(a_{ij}) = (1)$. Affine-ness satisfies the two requirements for the affine communication lemma [HAG II Ex.2.17], hence X is affine.

4.0.4 P1

Quasi-coherent modules on a scheme X can be defined for affine schemes first and as module sheaves that are \tilde{M} for some $f^*\mathfrak{O}$ -module M pulled back to every affine Spec $R \xrightarrow{f} X$. Let's consider the following conjecture.

Conjecture 55 (P1). Let $a \in C$. A sheaf module \mathfrak{F} on $(C, \mathfrak{T}, \mathfrak{O})/a$ is quasi-coherent if and only if \mathfrak{F} is quasi-coherent on $(C, \mathfrak{T}, \mathfrak{O})/b$ for any affine $b \to a$

Remark. The only if direction always holds.

Definition 56. We say that a ringed site $(C, \mathcal{O}, \mathfrak{T})$ has *enough affines* if any object has an affine covering $\{b_i \to a\}$.

Lemma 57 (P1 holds with enough affines). P1 holds for any ringed site with enough affines.

Proof. Quasi-coherence is a local property. So if every object admits a affine cover P1 holds.

Lemma 58 (Finite poset has enough affines). Any finite poset has enough affines.

NA-chain proof. Let $x_0 \in C$. If x_0 is covered by the maximal sieve only or the maximal sieve and the empty sieve, it is affine and we are done. Assume otherwise. Let $S = \{y_i \to x_0\}$ be a non-maximal, non-empty cover of x_0 . Then S does not contain isomorphisms.

We can associate to any non-maximal non-empty covering sieve S of an element x_0 , the set of all NA-chains $x_0 \leftarrow x_1 \leftarrow \ldots \leftarrow x_n$. An NA-chain, associated to R, is a chain of maps ending in x_0 such that $x_i \leftarrow x_{i+1}$ is contained in a non-maximal, non-empty cover of x_i , where $x_0 \leftarrow x_1$ is contained in R.

By finiteness of C, any chain of maps is bounded by the size of C or contains a cycle. If a chain contains a cycle, it contains isomorphisms. By construction, no isomorphism can be present in a NA-chain. Therefore the length of any NA-chain is bounded by ||C||.

Let H be a NA-chain associated to S of maximal length m. Then the last map ... \leftarrow h \leftarrow g in H has an affine object g as domain, because H cannot be increased and so g has no non-maximal, non-empty coverings which makes it affine. Also the non-maximal, non-empty covering of h where this map appears must be an affine covering by applying the same reasoning to the other objects occurring in it. Hence all objects occurring at the (m-1)th place in any NA-chain admits an affine cover. Let $i \leq m-1$. Assume all elements at the (i-1)th place admit an affine cover. Let b be a object occurring at the (i-1)th place in a chain. It is either affine or all objects in any non-maximal, non-empty cover occur at the ith place in some chain hence admit an affine cover. Therefore any non maximal, non empty cover on b can be refined to an affine cover. This provides us with an affine cover of b. By reversed induction, x_0 admits a affine cover.

Lemma 59 (Non-quasi-coherent sheaf). Any category admits a non-quasi-coherent sheaf.

Proof. Let C be a ringed site with no affines. Therefore no object can have the empty sieve as a covering sieve, because that would make all sheafs trivial localized at this object. Let $\mathfrak O$ be its structure sheaf.

Let a be an object of C. Let b be an object of C such that $Hom(b, a) = \emptyset$.

The following situation, the commuting square with conditions on the maps and objects, will be called S1. Note that a, b are fixed and not variables in S1.

$$\begin{array}{ccc}
e & \xrightarrow{L} & b \\
K & & \uparrow \\
G & & G
\end{array}$$

With $\mathfrak{O}(d) \neq 0$, $\operatorname{Hom}(e, a) = \emptyset$ and $\operatorname{Hom}(c, a) \neq \emptyset$.

Assume that for any S a covering sieve on b.

- 1) every map $F \in S$ as in S1, so F has codomain b and its domain maps to a, we can find maps G, K, L to complete to S1 with $L \in S$.
- 2) For every $L \in S$ as in S1, so L has codomain b and its domain does not map to a, we can complete the to get S1.

Consequences: Every non-empty covering sieve of b contains maps L and F that fit in S1. 'Objects under a get under every object under b'. Call this assumption A1 en A2.

Define the presheaf $\mathfrak F$ as

$$x\mapsto \mathfrak{O}(x) \text{ if } \mathsf{Hom}(x,\mathfrak{a})=\emptyset,$$

$$x\mapsto \mathfrak{O}(x)[y] \text{ otherwise },$$

$$u \xrightarrow{f} v \mapsto \mathfrak{O}(f) \text{ if } \text{Hom}(x,\alpha) = \emptyset,$$

$$(u \xrightarrow{f} v) \mapsto (\mathfrak{O}(u) \to \mathfrak{O}(u)[y]) \circ \mathfrak{O}(f) \text{ otherwise }.$$

Let $G = \mathfrak{F}^{++}$.

Let S be a covering sieve on b. If S is empty, then $G(b)=0=\mathfrak{O}(b)$. Assume otherwise. Let (x_f) be a matching family indexed by S. Let $x_f\in G(\mathfrak{u})\setminus O(\mathfrak{u})$ for $\mathfrak{u}\stackrel{f}{\to} b$ such that $\text{Hom}(\mathfrak{u},\mathfrak{a})\neq\emptyset$, which is possible by A2. Set F=f and complete to S1. Then

 $\mathfrak{F}(G)(x_F) = \mathfrak{F}(K)(x_L) = x_{KL}$ since it is a matching family, which is impossible because $\mathfrak{F}(G)(x_F)$ is not in the image of $\mathfrak{F}(K)$. So all matching families (x_f) have components that are elements of $O(Dom(f)) \subset G(Dom(f))$, which already have unique amalgamations in $\mathfrak{O}(b)$. Hence $G(b) = \mathfrak{O}(b)$.

Let U be a global cover of the category. By A1, U(b) contains an element $g:e\to b$ with $Hom(e,a)=\emptyset$. Set g=L and complete S1. The element $y\in G(d)$ is not generated locally by sections of G(e). Hence G is not locally presentable.

Examples that satisfy A1&A2

- Open category of any irreducible space.
- Neighbourhood space of any point in any topological space.
- categories with pullbacks, terminal object and are irreducible.

Example 60 (Stacks 01BL example). Let $L = (\mathbb{R}, O_R)$ be the real line with the euclidean topology and the sheaf of continuous real valued functions as structure sheaf. Let

$$X = \frac{\bigcup_{i=0}^{\infty} L_i}{\sim}$$

with $[i,x] \sim [j,y]$ if and only if i=j and x=y or y=x=0. The real lines are glued to each other at zero. Define the open $U_n \subset X$ as $U_n \cap L_i = (-\frac{1}{n},\frac{1}{n})$. These opens form a basis of neighbourhoods of 0. Let $f:\mathbb{R} \to \mathbb{R}$ be any continuous function such that f(x)=0 if $x\in (-1,1)$ and f(x)=1 if $x\in (-\infty,-2)\cup (2,\infty)$. Let $f_n(x)=f(nx)$.

Define the sheaf map

$$igoplus_{i} O_{R} \xrightarrow{\alpha} igoplus_{ij} O_{R},$$
 $e_{i} \mapsto \sum_{i} f_{i} 1_{L_{j}} e_{ij}.$

To proof that this is well-defined, we need to show that the sum $\sum_j f_i 1_{L_j} e_{ij}$ is locally finite for every i. Let $[k, y] \in X$. If $y \neq 0$, then

$$W_{[k,y]} = \{[k,z] \in X \mid z \in (y-\delta, y+\delta) \subset L_k$$

is open in X and $\alpha_{W_{[k,y]}}(e_i) = f_i e_{ik}$ for any $\delta < |\frac{y}{2}|$. If y = 0, then $\alpha_{U_n}(e_i) = 0$ if n > i because f_i is zero on U_n . Hence we found a cover on which our sum is locally finite, which makes α well-defined.

Let U be any open of any topological space X. Let \mathfrak{F} be any presheaf. Consider the map of presheafs

$$\mathfrak{F}|_{11}^{+} \xrightarrow{\mathfrak{g}} \mathfrak{F}^{+}|_{11}$$

defined by the components

$$g_V: \underset{S \in Cov(V)}{colim} \operatorname{Match}(S, F) \xrightarrow{id} \underset{S \in Cov(V)}{colim} \operatorname{Match}(S, F).$$

Every component is a isomorphism, hence q is an isomorphism.

The adjunction $(\Lambda(-), \Gamma(X, -))$ implies that $\Lambda(-)$ commutes with arbitrary colimits. Moreover

$$O_X \cong \Lambda(\Gamma(X, O_X))$$

so

$$\bigoplus_i O_R \cong \Lambda(\bigoplus_i \Gamma(X,O_X)).$$

This shows that α is a morphism between associated sheafs. Let $\beta:\bigoplus_i \Gamma(U,O_X)\to \bigoplus_{ij} \Gamma(U,O_X)$ for some open U. Then $\Lambda(\beta)(e_i)=\sum_{j\in J_i} a_{ij}e_{ij}$ where J_i is finite for every i.

Assume that $\alpha=\Lambda(\beta)$ over some neighbourhood U of 0. Then there exists a m such that $U_m\subset U$. Let k>2m. Then $f_k\neq 0$ on U_m , hence $f_k1_{L_j}\neq 0$ on U_m for every j and so no coëfficients vanish of $\alpha_{U_m}(e_k)=\sum_j f_k1_{L_j}e_{kj}$. This contradicts $\alpha=\Lambda(\beta)$.

Example 61 (Category without enough affines #1). Let X, f_j and U_n be as in the previous example. Define the full subcategory $N(y) \xrightarrow{i} Open(()X)$ of all opens U that contain the point $y \in X$.

This category has all fibre products. Let $U \to V \leftarrow W$ be two morphisms. Then $U \leftarrow U \cap W \to W$ is the pullback.

On this category N(y), let a family $\{f_i: U_i \to U\}$ be covering if $\bigcup_i f_i(U_i) = U$.

Let $V \xrightarrow{f} U$ be an isomorphism, then f(V) = U so $\{f\}$ is a covering family.

Let $\{U_i \xrightarrow{f_i} U\}$ be a covering family. For every i, let $\{U_{ij} \xrightarrow{f_{ij}} U_i\}$ be a covering family. By definition this gives that $\bigcup_i f_i(U_i) = U$ and $\bigcup_i f_{ij}(U_ij) = U_i$ for every i. Hence

$$\bigcup_{\mathfrak{i},\mathfrak{j}}(f_{\mathfrak{i}}\circ f_{\mathfrak{i}\mathfrak{j}})(U_{\mathfrak{i}\mathfrak{j}})=\bigcup_{\mathfrak{i}}f_{\mathfrak{i}}(U_{\mathfrak{i}})=U$$

and so the family $\{U_{ij} \xrightarrow{f_i \circ f_{ij}} U\}$ is covering.

Let $V \to U$ be a morphism in N(y) and $\{U_i \xrightarrow{f_i} U\}$ be a covering family on U. This tells us that $\bigcup_i f_i(U_i) = U$, hence also $\bigcup_i g_i(U_i \cap V) = V$ where $g_i : U_i \cap V \to V$ is the pullback of f_i . Hence $\{U_i \cap V \xrightarrow{g_i} V\}$ is a covering family of V.

All criteria for a pretopology are established. Let τ be the generated Grothendieck topology.

Let \mathfrak{F} be a sheaf on $\operatorname{Open}(X)$. Let $\widehat{\mathfrak{F}}=\mathfrak{F}\circ i$. Let $\{U_i\to V\}$ be a covering family on V in N(y). Let $(x)_i$ be a matching family of $\widehat{\mathfrak{F}}$ indexed by $\{U_i\to V\}$, so $x_i\in\widehat{\mathfrak{F}}(U_i)=\mathfrak{F}(U_i)$. Note that $\{U_i\to V\}$ is also a covering family on V in $\operatorname{Open}(X)$, hence $(x)_i$ is also a matching family of \mathfrak{F} on V. Since \mathfrak{F} is a sheaf, there exists a unique amalgamation $x\in\mathfrak{F}(V)=\widehat{\mathfrak{F}}(V)$ such that $x=x_i$ in $\mathfrak{F}(U_i)=\widehat{\mathfrak{F}}(U_i)$. This shows that $\widehat{\mathfrak{F}}$ is a sheaf, hence i is continuous.

Let $\mathfrak{O}_{X,y}=\mathfrak{O}_X\circ\tau$. This is a sheaf of rings by the previous. We constructed a ringed site $(N(y),\tau,\mathfrak{O}_{X,y})$.

Let F be the inclusion functor from the category of sheafs to the category of presheafs. We have the adjunctions:

- 1. $(\Lambda(-), \Gamma(X, -)),$
- 2. $((-)^{++}, F)$.

The structure sheaf $O_{X,y}$ is, trivially, isomorphic to $\Lambda(\Gamma(X,O_{X,y}))$. By adjunction (2)

$$\bigoplus_{i} \mathfrak{O}_{X,y} \cong (\bigoplus_{i} \mathfrak{O}_{X,y})^{+s},$$

where the coproduct on the left hand side is in the category of sheafs and the coproduct on the right hand side in the category of presheafs.

By adjunction (1)

$$\bigoplus_i \Lambda(\Gamma(X,O_{X,y})) \cong \Lambda(\bigoplus_i \Gamma(X,O_{X,y})).$$

Combine these 3 observation to get

$$\bigoplus_i \mathfrak{O}_{X,y} \cong \Lambda(\bigoplus_i \Gamma(X,O_{X,y})),$$

which shows that $\bigoplus_i \mathfrak{O}_{X,y}$ is quasi-coherent.

Set $y = 0 \in X$. Define the sheaf map

$$\bigoplus_{i} O_{X_{y}} \xrightarrow{\alpha} \bigoplus_{ij} O_{X_{y}},$$

$$e_{\mathfrak{i}}\mapsto \sum_{\mathfrak{j}}\mathsf{f}_{\mathfrak{i}}1_{\mathsf{L}_{\mathfrak{j}}}e_{\mathfrak{i}\mathfrak{j}}.$$

Fix i. We will prove that $\alpha_X(e_i)$ is a well-defined global section. Let m>i. Let $V_k=L_k\cup U_m$ and $\{V\to=\}\{V_k\}$. By construction f_i is zero on U_m , hence $f_i1_{L_j}$ is zero on V_k if $k\neq j$ and so $\sum_j f_i1_{L_j}e_{ij}=f_i1L_ke_{ik}$ on V_k . This shows that $\alpha_X(e_i)$ is a well-defined section on any element of the cover $\{U_i\to V\}$ and this family is matching since the sections are functions and the 'restriction' maps are actual restriction.

Assume there exists $\beta:\bigoplus_i \Gamma(V,O_{X,y})\to\bigoplus_{ij}\Gamma(V,O_{X,y})$ such that $\Lambda(\beta)=\alpha_V$. Then $\alpha_V(e_i)=\sum_j f_i 1_{L_j} e_{ij}$ is not just locally finite over some cover, but actually finite globally on V for all i. So almost all $f_i 1_{L_j}$ are zero on V. Note that $y\in V$, so $U_d\subset V$ for some d. Let i>2d, then $f_i\neq 0$ on $(-\frac{1}{d},\frac{1}{d})$ and so $f_i 1_{L_j}\neq 0$ on U_d for any j. Hence $\alpha_V(e_i)=\sum_j f_i 1_{L_j} e_{ij}$ is not a finite sum for i>2d. This contradicts our assumption.

Let $U \subset X$ be $U \cap L_j = U_j$. Fix i. Then $f_i 1_{L_i} = 0$ if i < j, hence

$$\sum_{j} f_{i} 1_{L_{j}} e_{ij} = \sum_{j \leqslant i} f_{i} 1_{L_{j}} e_{ij}$$

is a finite sum.

The restriction of any quasi-coherent sheaf is quasi-coherent. Observe that α , and its restrictions, is a morphism between quasi-coherent sheafs but does not come from a map of modules. Therefore $\Lambda(-)_V: \Gamma(V, O_{X,y}) - \text{Mod} \to \text{Qcoh}(\mathfrak{V})$ is not full for any V and no object V is affine in N(y).

Example 62 (Category without enough affines #1).

Example 63 (General P1 does not hold). The category C is $\mathbb{Z} \times \mathbb{Z}$ with the usual ordering. An element (i,j) is only non-trivially covered by $\{(i,j-1) \to (i,j), (i-1,j) \to (i,j)\}$. Let k be any field. Let $R = k[x_{ij}|i,j \in \mathbb{Z}]$. Define the structure sheaf as $O(i,j) = R[x_{kl}^{-1}|i \le k \& j \le l]$.

Fix $(a,b) \in C$. Consider the over category $C \downarrow (a,b)$ at this point. Let $(i,j) \to (a,b)$ be an object of $C \downarrow (a,b)$. Define the presheaf of modules $F(i,j) = O(i,j)/(x_{a-1,b}x_{a,b-1})$ on X. Then a > i or b > j or (i = a and j = b). If a > i or b > j, then $x_{a-1,b}$ or $x_{a,b-1}$ is invertible in O(i,j), hence F(i,j) = 0 in both cases. This presheaf is zero everywhere except at (a,b), hence sheafifies to the zero sheaf. In other words: $\Lambda(\frac{O(a,b)}{(x_{a-1,b}x_{a,b-1})}) = 0$, where Λ is the 'tilde' functor. Hence (a,b) is not affine, which shows that C has no affine objects.

Consider $G = O(i,j)[y_{kl}|k \leqslant i \& l \leqslant j]$. Let $\bigoplus_{k \in I} O \xrightarrow{\alpha} G$ be any sheaf map. Let $\alpha_{00}(e_k)$ be the image of the generators $e_k \in \bigoplus_{k \in I} O$ in the global sections. The section $y_{1,1} \in G(1,1)$ cannot be written as a finite sum $\sum_k \lambda_k \alpha_{00}(e_k)$ for scalars $\lambda_k \in O(i,j)$ for any (i,j). This shows that α is not surjective hence G is not quasi-coherent(locally presentable).

5 Cohomology