İGÜ Uçak Mühendisliği - UCK 302 AERODİNAMİK II

2021-2022 Bahar Dönemi

ÖDEV 1

HAZIRLAYANLAR

190414151

200414359

200414361

210414983

1) NACA 652-215 kamburluklu kanat profilinin NACA TR 824 de yer alan deneysel sonuçlarından sıfır taşıma açısı ve taşıma eğrisi eğimi belirlendi. Taşıma eğrisi eğimini bulmak için Excel kullanıldı. NACA raporunda belirtilmiş olan değer tablosunda 0 değerine en yakın olan taşıma taşıma katsayısı değerine bakılarak sıfır taşıma açısı bulundu. Excel kullanılarak, belirli değerlerdeki hücum açıları ile eğim hesaplandı ve böylece taşıma eğrisi eğimi bulundu.

\angle	A	В	С	D	E	F	G	Н
67	6.250 0.7596 0.01332 0.00754 -0.0163 0.4447 0.9191							
68	6.500 0.7431 0.01453 0.00798 -0.0088 0.3085 0.9351							
69	6.750 0.7247 0.01618 0.00888 -0.0020 0.1764 0.9568							
70	7.000 0.7283 0.01837 0.01043 -0.0004 0.0856 0.9769				hücum açısı	Değerler		Eğim
71	7.250 0.7490 0.01980 0.01179 -0.0015 0.0695 1.0000				10	1,0172		0,08711
72	7.500 0.7598 0.02057 0.01258 -0.0002 0.0639 1.0000				0	0,1461		
73	7.750 0.7688 0.02186 0.01380 0.0011 0.0591 1.0000							
74	8.000 0.7855 0.02280 0.01477 0.0017 0.0553 1.0000							
75	8.250 0.8016 0.02383 0.01579 0.0024 0.0523 1.0000							
76	8.500 0.8178 0.02501 0.01692 0.0032 0.0500 1.0000							
77	8.750 0.8400 0.02638 0.01825 0.0036 0.0480 1.0000							
78	9.000 0.8643 0.02732 0.01925 0.0038 0.0464 1.0000							
79	9.250 0.8885 0.02832 0.02029 0.0040 0.0442 1.0000							
80	9.500 0.9152 0.02944 0.02143 0.0038 0.0425 1.0000							
81	9.750 0.9495 0.03092 0.02290 0.0028 0.0412 1.0000							
82	10.000 1.0172 0.03488 0.02696 -0.0032 0.0398 1.0000							
83	10.250 1.0388 0.03665 0.02896 -0.0028 0.0395 1.0000							
84	10.500 1.0539 0.03827 0.03084 -0.0014 0.0390 1.0000							
85	10.750 1.0656 0.04005 0.03289 0.0002 0.0384 1.0000							
86	11.000 1.0791 0.04253 0.03565 0.0015 0.0382 1.0000							
87	11.250 1.0895 0.04553 0.03893 0.0029 0.0384 1.0000							
88	11.500 1.0959 0.04884 0.04252 0.0045 0.0388 1.0000							
89	11.750 1.1008 0.05301 0.04693 0.0059 0.0393 1.0000							
90	12.000 1.1144 0.05570 0.04980 0.0069 0.0405 1.0000							
91	12.250 1.0473 0.06262 0.05760 0.0146 0.0468 1.0000							
92	12.500 0.9380 0.05869 0.05421 0.0206 0.0455 1.0000							
93	12.750 0.9171 0.06435 0.06006 0.0212 0.0467 1.0000							

Sıfır taşıma hücum açısı: −1,250° olarak bulundu.

Taşıma eğrisi eğimi: 0,08711° olarak bulundu.

Sonsuz bir kanadın taşıma eğrisi eğimi lineer eğri üzerindeki herhangi iki noktadan da elde edilebilir. NACA 65(2)215 profili için grafik üzerinde bulunan eğriye bakılarak iki tane etkin açı değerindeki taşıma katsayıları bulunur ve eğim hesaplanır.

NACA 652-215

[Stations and ordinates given in percent of airfoil chord]

Upper surface		Lower surface			
Station	Ordinate	Station	Ordinate		
0 406 645 1. 132 2. 385 4. 848 7. 342 9. 841 14. 948 19. 863 24. 882 29. 904 44. 976 65. 021 65. 021 65. 023 76. 065 80. 063 85. 053 70. 060 95, 020 100. 000	0 1. 170 1. 423 1. 805 2. 606 3. 557 4. 380 5. 060 6. 175 7. 018 7. 658 8. 123 8. 426 8. 569 8. 522 8. 221 7. 815 7. 189 6. 433 6. 678 8. 688 8. 688 8. 688 9. 688 9. 688 9. 688 9. 689 9. 744 0	0 594 .855 1.368 2.635 5.152 7.658 10,159 15:152 20,137 25,118 30,096 35,073 40,048 46,024 50,000 54,979 59,961 64,947 69,938 74,935 79,937 84,945 89,980 94,980 100,000	0 -1. 070 -1. 282 -1. 591 -2. 134 -2. 925 -3. 582 -4. 035 -4. 829 -5. 868 -6. 179 -6. 382 -6. 065 -5. 047 -4. 373 -3. 625 -3. 848 -2. 061 -1. 308 -6. 626 -1. 112 0		

2) Üç-boyutlu kanatların Prandtl taşıyıcı çizgi teorisiyle incelenmesine yönelik bir bilgisayar programı yazıldı. Bu kodlar Python programı aracılığıyla yazıldı.

```
import math
import numpy as np
import matplotlib.pylab as plt

# DEĞERLER
N = 11 # İstasyon Sayısı
S = 20.67 # Kanat Alanı [m^2] - Wing Area
AR = 9.08 # Açıklık Oranı - Aspect Ratio
TR = 0.80 # Taper Ratio
alpha_hucum = 10.0 # Hücum Açısı [derece] - Twist Angle
alpha_sonsuz = 5.98 # Taşıma Eğrisi Eğimi [derece] - Lift Curve Slope
alpha_zero_lift = -1.250 # Sıfır Taşıma Açısı [derece] - Zero Lift Angle of
Attack
# HESAPLAMALAR
```

```
b = math.sqrt(AR * S) # Kanat Açıklığı (m)
print("b degeri: ", b)
kok_chord = (1.5 * (1 + TR) * MAC) / (1 + TR + TR ** 2) # Kök kanat[m] -
theta = np.linspace((math.pi / (2 * N)), (math.pi / 2), N) # Dizi
k = (b / 2) * np.cos(theta)
c = kok_chord * (1 - (1 - TR) * np.cos(theta))
mu = alpha_sonsuz * c / (4 * b)
mu_hesaplama_2 = mu * (np.array(alpha_hucum) - alpha_zero_lift)
mu_hesaplama_2_rad = np.deg2rad(mu_hesaplama_2)
teta_grafik = []
for i in range(1, 2 * N + 1, 2):
    teta_grafik_iter = np.sin(i * theta) * (1 + (mu * i) /
(np.sin(list(theta))))
   teta_grafik.append(teta_grafik_iter)
denklem = np.asarray(teta_grafik)
denklem_transpoz = np.transpose(denklem)
denklem_is_active = np.linalg.inv(denklem_transpoz)
new_matrix = np.matmul(denklem_is_active, mu_hesaplama_2_rad)
alan_deneme_sayilari = np.divide((4 * b), c)
iter0 = (np.sin((1) * theta)) * new_matrix[0] * alan_deneme_sayilari
iter1 = (np.sin((3) * theta)) * new_matrix[1] * alan_deneme_sayilari
iter2 = (np.sin((5) * theta)) * new_matrix[2] * alan_deneme_sayilari
iter3 = (np.sin((7) * theta)) * new_matrix[3] * alan_deneme_sayilari
iter4 = (np.sin((9) * theta)) * new_matrix[4] * alan_deneme_sayilari
iter5 = (np.sin((11) * theta)) * new_matrix[5] * alan_deneme_sayilari
iter6 = (np.sin((13) * theta)) * new_matrix[6] * alan_deneme_sayilari
iter7 = (np.sin((15) * theta)) * new_matrix[7] * alan_deneme_sayilari
iter8 = (np.sin((17) * theta)) * new_matrix[8] * alan_deneme_sayilari
iter9 = (<mark>np.sin((19) * t</mark>heta)) * new_matrix[9] * alan_deneme_sayilari
iter10 = (np.sin((21) * theta)) * new matrix[10] * alan deneme sayilari
CL grafik = iter0 + iter1 + iter2 + iter3 + iter4 + iter5 + iter6 + iter7 +
CL hesap = (math.pi * AR * new_matrix[0])
rho = (2 * (new_matrix[1] / new_matrix[0])) + (3 * (new_matrix[2] /
new_matrix[1])) + (4 * (new_matrix[3] / new_matrix[2])) + (5 * (new_matrix[4]
 new_matrix[3])) + (6 * (new_matrix[5] / new_matrix[4])) + (7 *
(new matrix[6] / new matrix[5]) + (8 * (new matrix[7] / new matrix[6]))) +
```

```
(9* (new_matrix[8] / new_matrix[7])) + (10 * (new_matrix[9] / new_matrix[8]))
- (11 * (new_matrix[10] / new_matrix[9]))
CL_induklenmis_grafik = CL_grafik ** 2 / (math.pi * AR) * rho
CL_induklenmis_hesap = CL_hesap ** 2 / (math.pi * AR) * rho
CL1_dizi = np.append(0, CL_grafik)
CL_induklenmis_dizi = np.append(0, CL_induklenmis_grafik)
/_eksen = [b / 2, k[0], k[1], k[2], k[3], k[4], k[5], k[6], k[7], k[8], k[9],
k[10]]
print("Tasima Katsayisi: ", CL_hesap)
print("Induklenmis Surukleme Katsayisi: ", CL_induklenmis_hesap)
fig = plt.figure("AERODİNAMİK ÖDEVİ [12.GRUP] CL")
plt.plot(y_eksen, CL1_dizi, marker="o")
plt.title("NACA 65(2)-215")
plt.xlabel("Kanat Yarı-Açıklık Konumu (m)")
plt.ylabel("Taşıma Katsayısı")
plt.grid()
plt.show()
fig2 = plt.figure("AERODİNAMİK ÖDEVİ [12.GRUP] CL_induklenmis")
plt.plot(y_eksen, CL_induklenmis_dizi, marker="o")
plt.title("NACA 65(2)-215")
plt.xlabel("Kanat Yarı-Açıklık Konumu (m)")
plt.ylabel("İndüklenmiş Sürükleme Katsayısı")
plt.grid()
plt.show()
```

3) NACA 652 – 215 profilinde dikdörtgensel üstgörünümlü bir kanat için uygulanmış herhangi bir açıklık oranında taşıma katsayısı ve indüklenmiş sürükleme katsayısı:

AR=9.08

 $b = 13.69976642136646 \text{ m}, S = 20,67 \text{ m}^2 \text{ ve } c = 1.4725215484915752 \text{ m}$

İstasyon sayısı (N)= 11 olursa istasyonların açı aralığı şu şekilde olur:

$$\Delta\theta = \frac{\pi}{2N} = \frac{\pi}{22}$$

olarak bulunur.

10 derece hücum açısı için;

İstasyon theta degerleri: [0.14279967 0.28559933 0.428399 0.57119866 0.71399833 0.856798 0.99959766 1.14239733 1.28519699 1.42799666 1.57079633]

$$\mu = \frac{a_{\infty} \times c}{4 \times b} = 0.16069031013269844$$
 olarak

bulundu.

$$\sum_{n=1}^{N} \left(1 + \frac{n\mu_m}{\sin \theta_m} \right) A_n \sin n\theta_m = \mu_m (\alpha_m - \alpha_{0_m})$$

formülü kullanılarak kod yazıldı.

```
mu = alpha_sonsuz * c / (4 * b)
mu_hesaplama_2 = mu * (np.array(alpha_hucum) - alpha_zero_lift)
mu_hesaplama_2 = np.deg2rad(mu_hesaplama_2)

teta_grafik = []
for i in range(1, 2 * N + 1, 2):
        teta_grafik_iter = np.sin(i * theta) * (1 + (mu * i) / (np.sin(list(theta))))
        teta_grafik_append(teta_grafik_iter)

denklem = np.asarray(teta_grafik)
denklem_transpoz = np.transpose(denklem)
denklem_is_active = np.linalg.inv(denklem_transpoz)

new_matrix = np.matmul(denklem_is_active, mu_hesaplama_2_rad)
alan_deneme_sayilari = np.divide((4 * b), c)

iter0 = (np.sin((1) * theta)) * new_matrix[0] * alan_deneme_sayilari
iter1 = (np.sin((3) * theta)) * new_matrix[1] * alan_deneme_sayilari
iter2 = (np.sin((5) * theta)) * new_matrix[2] * alan_deneme_sayilari
iter4 = (np.sin((9) * theta)) * new_matrix[4] * alan_deneme_sayilari
iter5 = (np.sin((11) * theta)) * new_matrix[5] * alan_deneme_sayilari
iter6 = (np.sin((13) * theta)) * new_matrix[6] * alan_deneme_sayilari
iter7 = (np.sin((15) * theta)) * new_matrix[7] * alan_deneme_sayilari
iter8 = (np.sin((17) * theta)) * new_matrix[8] * alan_deneme_sayilari
iter9 = (np.sin((17) * theta)) * new_matrix[9] * alan_deneme_sayilari
iter9 = (np.sin((19) * theta)) * new_matrix[10] * alan_deneme_sayilari
iter10 = (np.sin((21) * theta)) * new_matrix[10] * alan_deneme_sayilari
```

11 bilinmeyen ve 11 denklem oluşmuştur.

A degerleri: [3.30381191e-02 3.93241728e-03 1.50584408e-03 3.65059767e-04 2.19686948e-04 5.17747319e-05 5.76024961e-05 6.28605144e-06 2.18072142e-05 -4.29536950e-06 9.79380043e-06]

Taşıma Katsayısı= 0.9424341941935923

İndüklenmiş sürükleme katsayısı= 0.6106487646972549 olarak bulundu.

Çeşitli AR değerleri için indüklenmiş sürükleme katsayıları hesaplandı.

$$C_{D_i} = \frac{C_L^2}{\pi AR} (1 + \delta)$$

Formülü kullanılarak indüklenmiş sürükleme katsayısı bulundu.

Açıklık oranı arttıkça taşıma katsayısının arttığı ve açıklık oranının fazla artışı ile de indüklenmiş sürükleme katsayısının da arttığı görüldü.

4) RAPOR

Bu ödev kapsamında, takım çalışmasının ne denli önemli olduğu ve takımdaki bireylerin iş paylaşımındaki tutumunun ödeve olan katkısı anlaşılmıştır. Prandtl Taşıyıcı Çizgi Teorisi hakkında daha detaylı bilgiler edinildi. Uygulamadaki kullanımı hakkında deneyim kazanıldı. Çeşitli oranların ve değerlerin taşıma katsayısı üzerindeki etkisi gözlemlendi. Rho değerinin formüle dahil edilmediği zaman indüklenmiş sürükleme katsayısının daha az olduğu hesaplanmıştır.

Aynı yüzey alanına sahip bir kanatta açıklık oranı artınca indüklenmiş sürükleme azalacağı için taşıma artar. Deney sonuçlarına bakılarak da bu çok açık bir şekilde görülebilir. Bunun nedeni kanat ucu vortexlerinin, açıklık oranı artınca iki boyutlu kanatta olduğu gibi taşımaya etkisi azalır.

Planörlerin açıklık oranının bu denli fazla olmasının nedeni de budur.

Yüzey alanı ve açıklık oranı sabit kalmak şartıyla en az indüklenmiş sürükleme katsayısı eliptik kanat geometrisinde gözlenir. Bunun dışındaki geometrilerde indüklenmiş sürükleme artacaktır.