CALCULUS II	Dept. or School		Year	proctor
2014 Fall Final Exam	Student ID		Name	
** Your answer must be provided with descriptions how to get the answer. 1. Let $f(x,y)=e^{2x-x^2-2y^2}$ and $g(x,y)= \nabla f(x,y) $. 1. (1)(4 points) Find the maximum value of $g(x,y)$.	2.(4 points) Let $f(x,y) = e^{2x-x^2-2y^2}$ and $R = \{(x,y) -2 \le x \le 0, -2 \le y \le 0\}$. By dividing R into four equal squares, calculate the smallest and largest Riemann sums for approximating $\iint_R f(x,y) dA$.			

(2)(2 points) At which point(s) (x,y) and in the direction of which unit vector(s) \hat{u} does the maximum value for the directional derivative $D_{\hat{u}}f(x,y)$ occur?

3. Evaluate the following iterated integrals.

(1)(3 points)
$$\int_{-1}^{1} \int_{-1}^{x} (1 + x \sin^{2} y + y^{3} \cos^{4} x) \, dy dx$$
$$+ \int_{-1}^{1} \int_{-1}^{y} (2 + x \sin^{2} y + y^{3} \cos^{4} x) \, dx dy$$

(2)(3 points) $\int_0^\infty \int_0^\infty (x^2 + y^2) \ e^{-(x^2 + y^2)^2} dy dx$

CALCULUS II 2014 Fall Final Exam

Dept. or School Year proctor

Student ID Name

4.(6 points) Let F(x,y,z) = 2zi + yj - xk and a curve C be obtained by the part of the intersection of the surfaces $z = x^2$ and $x^2 + y^2 = 4$ with non-negative y-coordinate and non-positive x-coordinate and oriented so that z-coordinate increases as one travel along C.

Evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$.

5. Let a vector field

 $F(x,y) = <\cos x + \frac{y^2}{1+x^2} \ , \ \frac{2y}{1+y^2} + 2y\tan^{-1}x >$ and a curve $C\colon r(t) = < t^2, 2t > , 0 \le t \le 1$ be given.

(1)(3 points) Find a potential function f such that $\nabla f = F$.

(2)(3 points) Evaluate a line integral $\int_C F \cdot dr$.

- 6.(6 points) Find the area of the part of the surface $f(x,y)=2y+x^2 \ \text{that lies above the region}$ $R=\left\{(x,y)|\ y\leq x\leq 1,\ 0\leq y\leq 1\right\}.$
- 7.(6 points) Verify that Green's Theorem is true for the line integral $\int_C xy^2 dx x^2y dy$, where C consists of the parabola $y = x^2$ from (-1,1) to (1,1) and the line segment from (1,1) to (-1,1).