Martingales

Lee De Zhang

December 19, 2020

1 Introduction

In this document, we discuss and prove several properties related to martingales.

A martingale, X_n , can be seen as the fortune of a gambler after the n-th fair game (i.e., equal odds of wining or losing). A sub (super)-martingale is when he bets on a favourable (unfavourable) game. It is of interest to study some properties of X_n , such as $\mathbb{E}X_n$, and sufficient conditions for convergence in L^1 and subsequently L^p , p > 1.

To recap, we will first state the definition of a random variable.

Definition 1.1 (Random Variable). Given a probability space (Ω, \mathcal{F}, P) , then a real valued random variable X is a measurable map $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B})$, where \mathcal{B} is the Borel σ -algebra on \mathbb{R} , with distribution $P \cdot X^{-1}$, that is,

$$\forall A \in \mathcal{B}, P(X \in A) = P(w : X(w) \in A) = P(X^{-1}(A)).$$

In a more familiar context, $X \in A$ simply means that the realization of the random event X is in A.

2 Conditional Expectation

We first state the definition of conditional expectation in the measure theoretic setting.

Definition 2.1 (Conditional Expectation). Given a probability space $(\Omega, \mathcal{F}_0, P)$, and a σ -field $\mathcal{F} \subset \mathcal{F}_0$, and some random variable $X \in \mathcal{F}_0$ with $\mathbb{E}|X| < \infty$. Then the conditional expectation $X|\mathcal{F}$ is a random variable Y, such that,

1. $Y \in \mathcal{F}$, i.e., Y is measurable in \mathcal{F} .

2.
$$\forall A \in \mathcal{F}, \int_A X dP = \int_A Y dP$$
.

The first order of business is to prove that the conditional expectation Y exists and is unique.

Proposition 2.2 (Uniqueness). If Y satisfies the above conditions, then it is integrable and unique.

Proof. We first show that Y is integrable, $\mathbb{E}|Y| < \infty$. Recall the definition of integration,

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu,$$

where $f^+(x) = \max(f(x), 0)$, and $f^-(x) = \min(f(x), 0)$. Therefore,

$$\int Y dP = \int Y^+ dP - \int Y^- dP.$$

Let $A = \{Y > 0\} \subset \mathcal{F}$. Then,

$$\int Y^+ dP = \int_A Y dP = \int_A X dP \le \mathbb{E}|X| < \infty,$$

and similarly,

$$\int Y^-\,dP = \int_{A^c} Y\,dP = \int_{A^c} X\,dP \le \mathbb{E}|X| < \infty,$$

Therefore $\mathbb{E}Y = \int Y dP < \infty$.

To prove uniqueness, suppose there exists random variable Z which satisfies the definition, and $Z \neq Y$. Then define $A = \{|Y - Z| > \epsilon\}$ for some arbitrary $\epsilon > 0$. Then,

$$0 = \int_A X - X dP = \int_A Z - Y dP \ge \epsilon P(A).$$

Since $\epsilon > 0$ is arbitrary, P(A) = 0.

The next part would be to prove the existence of conditional probabilities. To do so, we first state the following definitions.

Definition 2.3 (Absolute Continuity). Let μ and v be measures on a common probability space. Then v is absolutely continuous to μ (abbreviated as $v << \mu$ if

$$\mu(A) = 0 \Rightarrow \upsilon(A) = 0.$$

Definition 2.4 (Radon-Nikodym derivative). Suppose $v \ll \mu$ be σ -finite measures on (ω, \mathcal{F}) , then the function f such that for all $A \in \mathcal{F}$,

$$\upsilon(A) = \int_A f \, d\mu,$$

is the Radon-Nikodym derivative, written as, $f = dv/d\mu$.

To prepare for the proof, we also first state the dominated convergence theorem.

Theorem 2.5. Suppose $\{f_n\}$ is a sequence of measurable functions on some measurable space with measure μ , and f_n converges pointwise to f. If there exists some integrable function g (i.e. $\int |g| d\mu < \infty$), such that,

$$\forall n \, |f_n(x)| < g(x),$$

then f is integrable,

$$\int_{\Omega} |f_n - f| \, d\mu \to 0,$$

which implies,

$$\int_{\Omega} f_n \, d\mu \to \int_{\omega} f \, d\mu.$$

Corollary 2.6. Let $\mu = P$ be a measure of random variable $X \geq 0$, and $v(A) = \int_A X \, dP$. Then by the definition of the integral, $v \ll \mu$, X is the Radon-Nikodym derivative, and the dominated convergence theorem implies that v exists and hence, is a measure.

To remove the restriction of $X \geq 0$, write $X = X^+ + X^-$, then $\int_A X^+ dP$ and $\int_A X^- dP$ exists for $A \subset \mathcal{F}$. Therefore $Y = \mathbb{E}(X|\mathcal{F})$ exists. Next, we state some properties of conditional expectation.

Proposition 2.7 (Properties of Conditional Expectation).

1. If $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, then

$$\mathbb{E}(aX + bY|\mathcal{F}) = a\mathbb{E}(X|\mathcal{F}) + b\mathbb{E}(Y|\mathcal{F}).$$

2. If $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$ and $X \leq Y$, then

$$\mathbb{E}(X|\mathcal{F}) < \mathbb{E}(Y|\mathcal{F}).$$

3. If $X_n \geq 0, X_n \uparrow X$, and $\mathbb{E}X < \infty$, then,

$$\mathbb{E}(X_n|\mathcal{F}) \uparrow \mathbb{E}(X|\mathcal{F}).$$

Proof. Linearity can be verified by checking, for all $A \subset \mathcal{F}$,

$$\int_A a\mathbb{E}(X|\mathcal{F}) + b\mathbb{E}(Y|\mathcal{F}) dP = \int_A aX dP + \int_A bY dP = \int_A aX + bY dP$$

The second statement is because for any $A \subset \mathcal{F}$,

$$\int_{A} \mathbb{E}(X|\mathcal{F}) dP = \int_{A} X dP \le \int_{A} Y dP = \int_{A} \mathbb{E}(Y|\mathcal{F}) dP,$$

therefore,

$$\int_{A} \mathbb{E}(X|\mathcal{F}) - \mathbb{E}(Y|\mathcal{F}) dP \le 0.$$

If we define $A_{\epsilon} = \{\mathbb{E}(X|\mathcal{F}) - \mathbb{E}(Y|\mathcal{F}) > \epsilon\}$ for arbitrary $\epsilon > 0$, then clearly $A_{\epsilon} \subset \mathcal{F}$, and since,

$$\epsilon P(A_{\epsilon}) \le \int_{A_{\epsilon}} \mathbb{E}(X|\mathcal{F}) - \mathbb{E}(Y|\mathcal{F}) dP \le 0,$$

hence $P(A_{\epsilon}) = 0$.

For the third claim, we use the dominated convergence theorem and the

We can derive an equality similar to Jensen's inequality for conditional expectations. We will use $L^1(\Omega, \mathcal{F}, P)$ to denote the set of functions integrable in L^1 for the probability space, i.e., for any $f \in L^1(\Omega, \mathcal{F}, P)$ and $A \subset \mathcal{F}$, $\int_A f \, dP < \infty.$

Proposition 2.8 (Jensen-like Inequality). Suppose $\phi \in L^1(\Omega, \mathcal{F}, P)$ is convex and $\mathcal{G} \subset \mathcal{F}$, then,

$$\mathbb{E}(\phi(X)|\mathcal{G}) \ge \phi(\mathbb{E}(X|\mathcal{G}))$$
 a.s.

Proof. If ϕ is linear, the result is trivial. Otherwise, any convex function ϕ can be written as,

$$\phi(x) = \sup_{a} (ax - \psi(a)),$$

for some convex ψ . Therefore,

$$\mathbb{E}(\phi(X)|\mathcal{G}) = \mathbb{E}(\sup_{a} (aX - \psi(a))|\mathcal{G})$$

$$\geq \sup_{a} \mathbb{E}((aX - \psi(a))|\mathcal{G})$$

$$= \sup_{a} (a\mathbb{E}(X|\mathcal{G}) - \psi(a))$$

$$= \phi(\mathbb{E}(X|\mathcal{G}).$$

As a technicality, we should restrict our attention to $a \in \mathbb{Q}$, as conditional expectation is uniquely determined up to a set of measure 0, and the union of an uncountable number of sets of measure 0 may have positive measure. Since \mathbb{Q} is countable, it is appropriate.

Before we conclude this section, we present one more property.

Proposition 2.9. Suppose $X \in \mathcal{F}$, and $\mathbb{E}|Y|, \mathbb{E}|XY| < \infty$, then,

$$\mathbb{E}(XY|\mathcal{F}) = X\mathbb{E}(Y|\mathcal{F}).$$

Proof. Suppose $X = I_B$ for some $B \in \mathcal{F}$, then for some $A \in \mathcal{F}$,

$$\int_{A} I_{B} \mathbb{E}(Y|\mathcal{F}) dP = \int_{A \cap B} \mathbb{E}(Y|\mathcal{F}) dP = \int_{A \cap B} Y dP = \int_{A} I_{B} Y dP = \int_{A} XY dP$$

3 Regular Conditional Probabilities

Let (Ω, \mathcal{F}, P) be a probability space, and random variable $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ be a measurable map (i.e. X is a random variable taking values in a general space S, and a σ -field \mathcal{S} , a σ -field $\mathcal{G} \subset \mathcal{F}$. Under this setting, we state the definition of a regular conditional distribution.

Definition 3.1 (Regular Conditional Distribution). Given the above, $\mu : \Omega \times \mathcal{S} \to [0,1]$ is a regular conditional distribution for X given \mathcal{G} if,

- 1. For each $A, \omega \to \mu(\omega, A)$ is a version of $P(X \in A|\mathcal{G})$.
- 2. For a.e., $\omega, A \to \mu(\omega, A)$ is a probability measure on (S, \mathcal{S}) .

Definition 3.2 (Regular Conditional Probability). If $S = \Omega$, and X is the identity map, then μ is a regular conditional probability.

To facilitate understand, we also present an alternative but equivalent definition of regular conditional probabilities and distributions. **Definition 3.3** (Regular Conditional Distribution and Probabilities). Let (Ω, \mathcal{F}, P) , $\mathcal{G}, X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ as above. Then the **regular conditional distribution** of X given \mathcal{G} is the family of distributions $(\mu(\omega, .))_{\omega \in \Omega}$ on (S, \mathcal{S}) , such that for all $A \in \mathcal{S}, \mu(., A) = \mathbb{E}(1 + A)X_{|\mathcal{G}|}$ a.s.

If $(S, \mathcal{S}) = (\Omega, \mathcal{F})$, and $X(\omega) = \omega$, then $(\mu(\omega, .))_{\omega \in \Omega}$ is a regular conditional probability on \mathcal{F} given \mathcal{G} .

For convenience, we will use the abbreviations rcp and rcd to denote regular conditional probability and distribution. Next, we will present a result which expresses the expectation of X given \mathcal{G} as an integral over the rcd.

Proposition 3.4 (Expectation over rcd). Let $(\mu(\omega, \cdot))_{\omega \in \Omega}$ be a rcd of X given \mathcal{G} . Then for any Borel measurable function $f:(S,\mathcal{S}) \to (\mathbb{R},\mathcal{B})$, with $\mathbb{E}|f(X)| < \infty$, we have,

$$\mathbb{E}[f(X)|\mathcal{G}] = \int f(x)\mu(\omega, dx), \quad a.s.$$

Proof. By writing f as the sum of its positive and negative parts, we assume wlog that $f \geq 0$. By definition, the above holds when f is an indicator function, and hence when f is the linear combination of linear functions (simple function). Since any non-negative measurable function is the increasing limit of a sequence of simple functions, by the monotone convergence theorem, the integral exists.

4 Martingales

Martingales capture the notion of fair future returns, given past information. It was initially developed as a class of betting strategies popular in the past. We will focus on discrete time martingales. We will start with some definitions to guide our discussion.

Definition 4.1 (Filtration). Let (Ω, \mathcal{F}, P) be a probability space. A filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is an increasing sequence of sub σ -algebra of \mathcal{F} , i.e.,

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}$$
.

We can view \mathcal{F}_n as the information available at time n.

Definition 4.2 (Adaptation). A sequence of random variables X_n is adapted to a sequence of σ -fields \mathcal{F}_n if $X_n \in \mathcal{F}_n$ for all n.

Definition 4.3 (Martingale, Super-Martingale, Sub-Martingale). If X_n is a sequence such that

- 1. $E|X_n| < \infty$,
- 2. X_n is adapted to \mathcal{F}_n ,
- 3. $E(X_{n+1}|\mathcal{F}) = X_n$ for all n,

then X_n is a martingale with respect to \mathcal{F}_n . Replace the = in the third condition with $\leq or \geq for$ super or sub martingale.

If the filtration is not stated explicitly, we take $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$, i.e. the σ algebra generated by the random variables.

We will now state some examples of martingales.

Example 4.1 (Mean Zero Random Walk). If X_1, X_2, \cdots are iid random variables, $\mathbb{E}X_n = 0$, then $Y_n = \sum_{i=1}^n X_i$ is a martingale adapted to filtration $\mathcal{F}_n = \sigma(X_1, \cdots, X_n)$. In this case, Y_n records the position of a random walk on \mathbb{R}

Proposition 4.4. If X_n is a martingale wrt \mathcal{G}_n , let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$, then $\mathcal{G}_n \supset \mathcal{F}_n$, and X_n is a martingale wrt \mathcal{F}_n .

Proof. Clearly \mathcal{F}_n is a filtration. Since \mathcal{F}_n is the smallest σ -field containing X_1, \dots, X_n , then $\mathcal{F}_n \subset \mathcal{G}_n$. We verify,

$$\mathbb{E}(X_{n+1}|\mathcal{F}_n) = \mathbb{E}(\mathbb{E}(X_{n+1}|\mathcal{G}_n)|\mathcal{F}_n) = \mathbb{E}(X_n|\mathcal{F}_n) = X_n.$$

We present one example relating to a betting strategy.

Example 4.2 (Martingale Transform as Betting Strategy). Let the martingale difference $D_n = X_n - X_{n-1}$ as the reward/loss of the n-th game, in a sequence of (possibly dependent games), and $X_0 = 0$ for convenience (although it doesn't matter. Then a martingale corresponds to a fair game, because $\mathbb{E}X_n = \mathbb{E}X_0$.

A martingale transform is defined by $X'_n = X'_{n-1} + h_{n-1}D_n$, where $h_{n-1} \in \mathcal{F}_{n-1}$ such that $h_{n-1}D_n$ is integrable.

In the context of betting, we interpret h_{n-1} as the size of the bet in the n-th game, and $h_{n-1} \in \mathcal{F}_{n-1}$ means that we can choose our bet based on information right up to just before the n-th game.

We verify that X'_n is a martingale, since

$$\mathbb{E}(X'_{n+1}|\mathcal{F}_n) = \mathbb{E}(X'_n + h_{n-1}D_n|\mathcal{F}_n) = X'_n + \mathbb{E}(h_{n-1}D_n|\mathcal{F}_n) = X'_n + h_{n-1}\mathbb{E}(D_n|\mathcal{F}_n),$$

and $\mathbb{E}(D_n|\mathcal{F}_n) = 0$ since $\mathbb{E}X_n = X_0$ for all n (fair game).

Therefore, this is a martingale, and the game still remains fair $(\mathbb{E}(X'_{n+1}|\mathcal{F}_n) = X'_0)$

4.1 Martingale Decomposition

Let $X \in L_1(\Omega, \mathcal{F}, P)$. A useful technique in bounding the variance of X or establish concentration properties of X is through a martingale decomposition. We introduce a filtration $\mathcal{F}_0 := \{\emptyset, \Omega\} \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n = \mathcal{F}$. Let $X_i = \mathbb{E}(X|\mathcal{F}_i)$, and write,

$$X = \mathbb{E}X + \sum_{i=1}^{n} (X_i - X_{i-1}).$$

Note that the X_i 's are martingales. Furthermore if $X \in L_2(\Omega, \mathcal{F}, P)$, then,

$$Var(X) = \mathbb{E}((X - \mathbb{E}X)^2) = \sum_{i=1}^{n} \mathbb{E}((X_i - X_{i-1})^2) = \sum_{i=1}^{n} \mathbb{E}((Var(X_i | \mathcal{F}_{i-1})),$$

and the conditional variance,

$$Var(X_i|\mathcal{F}_{i-1}) := \mathbb{E}(X_i^2|\mathcal{F}_{i-1}) - \mathbb{E}(X_i|\mathcal{F}_{i-1}),$$

can often be bounded using coupling techniques.

To illustrate martingale decomposition, we prove a concentration of measure inequality for martingales with bounded increments.

Theorem 4.5 (Azuma-Hoeffding Inequality). Let $(X_i)_{1 \leq i \leq n}$ be martingales adopted to filtration $(\mathcal{F}_i)_{1 \leq 1 \leq n}$ on (Ω, \mathcal{F}, P) . Wlog, assume $X_0 = \mathbb{E}X_1 = 0$, and $|X_i - X_{i-1}| \leq K$ for $1 \leq i \leq n$ a.s.. Then for all $x \geq 0$,

$$P\left(\frac{X_n}{n} \ge x\right) \le \exp\left(-\frac{x^2}{2K^2}\right).$$

Proof. Let $D_i = X_i - X_{i-1}$. By the exponential Markov inequality,

$$P(X_n \ge y) = P(e^{\lambda X_n} \ge e^{\lambda y}) \le e^{\lambda y} \mathbb{E}(e^{\lambda X_n}) = e^{\lambda y} \mathbb{E}(e^{\lambda X_{n-1}} \mathbb{E}(e^{\lambda D_n} | \mathcal{F}_{n-1})).$$

Since $|X_i - X_{i-1}| \le K$, for all $x \in [-K, K]$, we have,

$$e^{\lambda x} \leq \frac{e^{\lambda K} + e^{-\lambda K}}{2} + \frac{e^{\lambda K} - e^{-\lambda K}}{2K} x,$$

and since $|D_n| \leq K$ a.s and $\mathbb{E}(D_n|\mathcal{F}_{n-1}) = 0$,

$$\mathbb{E}(e^{\lambda D_n}|\mathcal{F}_{n-1}] \le \frac{e^{\lambda K} + e^{-\lambda K}}{2} \le e^{\frac{\lambda^2 K^2}{2}}.$$

Therefore,

$$P(X_n \ge y) \le \exp\left(-\lambda y + \frac{n\lambda^2 K^2}{2}\right)$$

Since λ is arbitrary, optimizing for λ yields,

$$P(X_n \ge y) \le \exp\left(-\frac{y^2}{2nK^2}\right).$$

Substituting $y = x\sqrt{n}$ yields the desired result.