

求N!的高精度算法

本文中的算法主要针对Pascal语言

这篇文章的内容

- ◆你了解高精度吗?
- ◆你曾经使用过哪些数据结构?
- ◆你仔细思考过如何优化算法吗?

在这里,你将看到怎样成倍提速 求N!的高精度算法

关于高精度

◆Pascal中的标准整数类型

◆高精度算法的基本思想

Pascal中的标准整数类型

数据类型	值域
Shortint	-128~127
Byte	0~255
Integer	-32768~32767
Word	0~65535
Longint	-2147483648~2147483647
Comp	-9.2e18~9.2e18

Comp虽然属于实型,实际上是一个64位的整数

高精度算法的基本思想

- ◆ Pascal中的标准整数类型最多只能处理在-2⁶³~2⁶³之间的整数。如果要支持更大的整数运算,就需要使用高精度
- ◆ 高精度算法的基本思想,就是将无法直接处理的大整数,分割成若干可以直接处理的<u>小整数段</u>,把对大整数的处理转化为对这些**小整数段**的处理

数据结构的选择

- →每个小整数段保留尽量多的位
- ◆ 使用Comp类型
- ◆采用二进制表示法

每个小整数段保留尽量多的位

- 一个例子: 计算两个15位数的和
 - ▶方法一
 - 分为15个小整数段, 每段都是1位数, 需要15次1位数加法
 - ▶方法二
 - 分为5个小整数段,每段都是3位数,需要5次3位数加法
 - ▶方法三
 - · Comp类型可以直接处理15位的整数,故1次加法就可以了
 - ▶比较
 - · 用Integer计算1位数的加法和3位数的加法是一样快的
 - 故方法二比方法一效率高
 - · 虽然对Comp的操作要比Integer慢,但加法次数却大大减少
 - 实践证明,方法三比方法二更快

使用Comp类型

- →高精度运算中,每个小整数段可以用Comp类型表示
- ◆ Comp有效数位为19~20位
- ◆ 求两个高精度数的和,每个整数段可以保留17位
- ◆ 求高精度数与不超过m位整数的积,每个整数段可以 保留18-m位
- ◆求两个高精度数的积,每个整数段可以保留9位
- ◆如果每个小整数段保留k位十进制数,实际上可以认为其只保存了1位10^k进制数,简称为*高进制数*,称1位高进制数为*单精度数*

采用二进制表示法

- ◆ 采用二进制表示,运算过程中时空效率都会有所提高,但题目一般需要以十进制输出结果,所以还要一个很耗时的进制转换过程。因此这种方法竞赛中
 - 一般不采用,也不在本文讨论之列

算法的优化

- →高精度乘法的复杂度分析
- ◆连乘的复杂度分析
- ◆<u>设置缓存</u>
- ◆<u>分解质因数求阶乘</u>
- ◆二分法求乘幂
- ◆分解质因数后的调整

高精度乘法的复杂度分析

- ◆ 计算n位<u>高进制数</u>与m位<u>高进制数</u>的积
 - ➤需要n*m次乘法
 - ➤ 积可能是n+m-1或n+m位高进制数

连乘的复杂度分析(1)

- 一个例子: 计算5*6*7*8
 - ▶方法一: 顺序连乘
 - 5*6=30, 1*1=1次乘法
 - 30*7=210, 2*1=2次乘法
 - 210*8=1680, 3*1=3次乘法
 - ▶方法二: 非顺序连乘
 - · 5*6=30, 1*1=1次乘法
 - 7*8=56, 1*1=1次乘法
 - 30*56=1680, 2*2=4次乘法

共6次乘法

共6次乘法

特点: n位数*m位数=n+m位数

连乘的复杂度分析(2)

▶若"n位数*m位数=n+m位数",则n个单精度数, 无论以何种顺序相乘,乘法次数一定为n(n-1)/2次

▶证明:

- · 设F(n)表示乘法次数,则F(1)=0,满足题设
- 设k<n时, F(k)=k(k-1)/2, 现在计算F(n)
- · 设最后一次乘法计算为"k位数*(n-k)位数",则
- F(n)=F(k)+F(n-k)+k (n-k)=n(n-1)/2 (与k的选择无关)

设置缓存(1)

- 一个例子: 计算9*8*3*2
 - ▶方法一: 顺序连乘
 - 9*8=72, 1*1=1次乘法
 - · 72*3=216, 2*1=2次乘法
 - 216*2=432, 3*1=3次乘法
 - ▶方法二: 非顺序连乘
 - 9*8=72,1*1=1次乘法
 - 3*2=6, 1*1=1次乘法
 - · 72*6=432, 2*1=2次乘法

共6次乘法

共4次乘法

特点: n位数*m位数可能是n+m-1位数

设置缓存(2)

- ◆ 考虑k+t个单精度数相乘 $a_1*a_2*...*a_k*a_{k+1}*...*a_{k+t}$
 - \triangleright 设 $a_1*a_2*...*a_k$ 结果为m位高进制数(假设已经算出)
 - \triangleright $\mathbf{a_{k+1}}^* \dots ^* \mathbf{a_{k+t}}$ 结果为1位高进制数
 - ➤ 若顺序相乘,需要t次"m位数*1位数",共mt次乘法
 - ightharpoonup 可以先计算 $\mathbf{a}_{\mathbf{k}+\mathbf{l}}$ *...* $\mathbf{a}_{\mathbf{k}+\mathbf{l}}$,再一起乘,只需要 $\mathbf{m}+\mathbf{t}$ 次乘法

在设置了缓存的前提下,计算m个单精度数的积,如果结果为n位数,则乘法次数约为n(n-1)/2次,与m关系不大

- 设S=a₁a₂... a_m, S是n位高进制数
- 可以把乘法的过程近似看做,先将这m个数分为n组,每组的积仍然是一个单精度数,最后计算后面这n个数的积。时间主要集中在求最后n个数的积上,这时基本上满足"n位数*m位数=n+m位数",故乘法次数可近似的看做n(n-1)/2次

设置缓存(3)

- ▶ 缓存的大小
 - > 设所选标准数据类型最大可以直接处理t位十进制数
 - ➤ 设缓存为k位十进制数,每个小整数段保存t-k位十进制数
 - ➤ 设最后结果为n位十进制数,则乘法次数约为
 - $> k/(n-k) \sum_{(i=1..n/k)} i=(n+k)n/(2k(t-k))$,其中k远小于n
 - ▶要乘法次数最少,只需k(t-k)最大,这时k=t/2
 - >因此,缓存的大小与每个小整数段大小一样时,效率最高
 - ▶故在一般的连乘运算中,可以用Comp作为基本整数类型,每个小整数段为9位十进制数,缓存也是9位十进制数

分解质因数求阶乘

- 例: 10!=2⁸*3⁴*5²*7
 - ▶n!分解质因数的复杂度远小于nlogn,可以忽略不计
 - ▶与普通算法相比,分解质因数后,虽然因子个数m变多了,但结果的位数n没有变,只要使用了缓存,乘法次数还是约为n(n-1)/2次
 - ▶因此,分解质因数不会变慢(这也可以通过实践来说明)
 - ➤ 分解质因数之后,出现了大量求乘幂的运算,我们可以优化求乘幂的算法。这样,分解质因数的好处就体现出来了

二分法求乘幂

→ 二分法求乘幂,即:

- $> a^{2n+1} = a^{2n} * a$
- $> a^{2n} = (a^n)^2$
- ▶ 其中,a是单精度数

◆ 复杂度分析

- ➤ 假定n位数与m位数的积是n+m位数
- ▶ 设用二分法计算an需要F(n)次乘法
- $F(2n)=F(n)+n^2$, F(1)=0
- 》 设 $n=2^k$,则有 $F(n)=F(2^k)=\sum_{(i=0,k-1)}4^i=(4^k-1)/3=(n^2-1)/3$

◆与连乘的比较

- ▶ 用连乘需要n(n-1)/2次乘法, 二分法需要(n²-1)/3
- ▶ 连乘比二分法耗时仅多50%
- ➤ 采用二分法,复杂度没有从n²降到nlogn

二分法求乘幂之优化平方算法

- ▶ 怎样优化
 - $(a+b)^2=a^2+2ab+b^2$
 - ▶ 例: 12345²=<u>123²</u>*10000+<u>45²</u>+2*<u>123*45</u>*100
 - ▶把一个n位数分为一个t位数和一个n-t位数,再求平方
- ◆ 怎样分
 - ▶ 设求n位数的平方需要F(n)次乘法
 - F(n)=F(t)+F(n-t)+t(n-t), F(1)=1
 - ▶用数学归纳法,可证明F(n)恒等于n(n+1)/2
 - > 所以, 无论怎样分, 效率都是一样
 - ▶ 将n位数分为一个1位数和n-1位数,这样处理比较方便

二分法求乘幂之复杂度分析

- ▶ 复杂度分析
 - ▶前面已经求出F(n)=n(n+1)/2,下面换一个角度来处理
 - $ightharpoonup S^2 = (\sum_{(0 \le i < n)} a_i 10^i)^2 = \sum_{(0 \le i < n)} a_i^2 10^{2i} + 2\sum_{(0 \le i < j < n)} a_i a_j^2 10^{i+j}$
 - ▶一共做了n+C(n,2)=n(n+1)/2次乘法运算
 - ▶普通算法需要n²次乘法,比改进后的慢1倍
- ◆改进求乘幂的算法
 - ➤ 如果在用改进后的方法求平方,则用二分法求乘幂,需要 (n+4)(n-1)/6次乘法,约是连乘算法n(n-1)/2的三分之一

分解质因数后的调整(1)

- ◆ 为什么要调整
 - ▶ 计算S=2¹¹3¹⁰,可以先算2¹¹,再算3¹⁰,最后求它们的积
 - ▶也可以根据S=2¹¹3¹⁰=6¹⁰*2, 先算6¹⁰, 再乘以2即可
 - ▶ 两种算法的效率是不同的

分解质因数后的调整(2)

- ◆什么时候调整
 - ➤ 计算S=a^{x+k}b^x=(ab)^xa^k
 - ▶ 当k<xlog_ab时,采用(ab)^xa^k比较好,否则采用a^{x+k}b^x更快
 - ▶证明:
 - 可以先计算两种算法的乘法次数,再解不等式,就可以得到结论
 - 也可以换一个角度来分析。其实,两种算法主要差别在最后一步 求积上。由于两种方法,积的位数都是一样的,所以两个因数的 差越大,乘法次数就越小
 - · :: 当axbx-ak>ax+k-bx时,选用(ab)xak,反之,则采用ax+kbx。
 - $a^xb^x-a^k>a^{x+k}-b^x$
 - $\therefore (b^x a^k)(a^x + 1) > 0$
 - $b^x>a^k$
 - · 这时k<xlog_ab

总结

内容小结

- ▶用Comp作为每个小整数段的基本整数类型
- > 采用二进制优化算法
- ▶高精度连乘时缓存和缓存的设置
- > 改进的求平方算法
- > 二分法求乘幂
- > 分解质因数法求阶乘以及分解质因数后的调整

◆应用

- ▶高精度求乘幂(平方)
- ▶高精度求连乘(阶乘)
- ▶高精度求排列组合

结束语

求N!的高精度算法本身并不难,但我们仍然可以从 多种角度对它进行优化。

其实,很多经典算法都有优化的余地。我们自己编写的一些程序也不例外。只要用心去优化,说不准你就想出更好的算法来了。

也许你认为本文中的优化毫无价值。确实是这样, 竞赛中对高精度的要求很低,根本不需要优化。而我以 高精度算法为例,不过想谈谈<u>如何</u>优化一个算法。我想 说明的只有一点: **算法是可以优化的**。