Automatic Security Evaluation of Block Cipher

Liu Zhang

School of Cyber Engineering, Xidian University

October 13, 2020

Outline

- Block Cipher
- Differential Cryptanalysis of a Toy Cipher
- Automatic Security Evaluation of Block Ciphers
- Tighten the Feasible Region with Valid Cutting-off Inequalities
- 6 NBC

Block Cipher

Figure: The process of encryption

A block cipher has two important parameters:

- the blocksize, which will be denoted by b, and
- the keysize, which will be denoted by k.

Structure of Block Cipher

Figure: Feistel-Structure

Figure: SP-Structure

Block Cipher Differential Cryptanalysis of a Toy Cipher Automatic Security Evaluation of Block Ciphers Tighten the Feasible Region with Valid Cu

Present

Figure: Two consecutive rounds of Present-80 encryption process

Differential Model of Sbox

Figure: Differential Model of Sbox

Ì	\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
	S[x]	C	5	6	В	9	0	Α	D	3	Е	F	8	4	7	1	2

Figure: The S-box of Present

The Differential Distribution Table of Present S-box

	0_x	1_x	2_x	3_x	4_x	5_x	6_x	7_x	8_x	9_x	A_x	B_x	C_x	D_x	E_x	F_x
0_x	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1_x	0	0	0	4	0	0	0	4	0	4	0	0	0	4	0	0
2_x	0	0	0	2	0	4	2	0	0	0	2	0	2	2	2	0
3_x	0	2	0	2	2	0	4	2	0	0	2	2	0	0	0	0
4_x	0	0	0	0	0	4	2	2	0	2	2	0	2	0	2	0
5_x	0	2	0	0	2	0	0	0	0	2	2	2	4	2	0	0
6_x	0	0	2	0	0	0	2	0	2	0	0	4	2	0	0	4
7_x	0	4	2	0	0	0	2	0	2	0	0	0	2	0	0	4
8_x	0	0	0	2	0	0	0	2	0	2	0	4	0	2	0	4
9_x	0	0	2	0	4	0	2	0	2	0	0	0	2	0	4	0
A_x	0	0	2	2	0	4	0	0	2	0	2	0	0	2	2	0
B_x	0	2	0	0	2	0	0	0	4	2	2	2	0	2	0	0
C_x	0	0	2	0	0	4	0	2	2	2	2	0	0	0	2	0
D_x	0	2	4	2	2	0	0	2	0	0	2	2	0	0	0	0
E_x	0	0	2	2	0	0	2	2	2	2	0	0	2	2	0	0
F_x	0	4	0	0	4	0	0	0	0	0	0	0	0	0	4	4

Figure: The Differential Distribution Table of Present S-box

Outline

- Block Cipher
- Differential Cryptanalysis of a Toy Cipher
- Automatic Security Evaluation of Block Ciphers
- Tighten the Feasible Region with Valid Cutting-off Inequalities
- NBC

Figure: Round-1

Figure: Round-2

 $S_{41} \qquad S_{42} \qquad S_{43} \qquad S_{44} \qquad \qquad \text{round 4}$ $S_{41} \qquad S_{42} \qquad S_{43} \qquad S_{44} \qquad \qquad \\ \text{subkey K, mixing} \qquad \qquad \\ C_{1} \qquad \qquad \text{ciphertext} \qquad \qquad C_{16}$

Figure: Round-3

Figure: Round-4

S-box Representation of Toy Cipher

input	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
output	Е	4	D	1	2	F	В	8	3	A	6	C	5	9	0	7

Permutation of Toy Cipher

input	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
output	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

								Out	put D	iffere	ence						
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	Ε	F
	0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ι	1	0	0	0	2	0	0	0	2	0	2	4	0	4	2	0	0
n	2	0	0	0	2	0	6	2	2	0	2	0	0	0	0	2	0
p	3	0	0	2	0	2	0	0	0	0	4	2	0	2	0	0	4
u t	4	0	0	0	2	0	0	6	0	0	2	0	4	2	0	0	0
·	5	0	4	0	0	0	2	2	0	0	0	4	0	2	0	0	2
D	6	0	0	0	4	0	4	0	0	0	0	0	0	2	2	2	2
i	7	0	0	2	2	2	0	2	0	0	2	2	0	0	0	0	4
f	8	0	0	0	0	0	0	2	2	0	0	0	4	0	4	2	2
f	9	0	2	0	0	2	0	0	4	2	0	2	2	2	0	0	0
e	A	0	2	2	0	0	0	0	0	6	0	0	2	0	0	4	0
r	В	0	0	8	0	0	2	0	2	0	0	0	0	0	2	0	2
e n	C	0	2	0	0	2	2	2	0	0	0	0	2	0	6	0	0
c	D	0	4	0	0	0	0	0	4	2	0	2	0	2	0	2	0
e	Ε	0	0	2	4	2	0	0	0	6	0	0	0	0	0	2	0
	F	0	2	0	0	6	0	0	0	0	4	0	2	0	0	2	0

Figure: Difference Distribution Table

Figure: Round-1

Figure: Round-3

Figure: Round-2

Figure: Round-4

We use the follwing difference pairs of the S-box:

- $S_{12}: \Delta X = B \rightarrow \Delta Y = 2$ with probability 8/16
- $S_{12}: \Delta X = 4 \rightarrow \Delta Y = 6$ with probability 6/16
- $S_{12}: \Delta X = 2 \rightarrow \Delta Y = 5$ with probability 6/16
- $S_{12}: \Delta X = 2 \rightarrow \Delta Y = 5$ with probability 6/16

The input difference and output difference to the every round

- $\Delta P = \Delta U_1 = [0000 \ 1011 \ 0000 \ 0000]$ with probability 8/16
- $\Delta U_2 = [0000\ 0000\ 0100\ 0000]$ with probability 6/16
- $\Delta U_3 = [0000\ 0010\ 0010\ 0000]$ with probability (6/16)*(6/16)
- $\Delta V_3 = [0000\ 0101\ 0101\ 0000]$
- $\Delta U_4 = [0000\ 0110\ 0000\ 0110]$

Total probability is $8/16 \times 6/16 \times (6/16)^2 = 27/1024$

partial subkey	prob	partial subkey	prob
$[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$		$[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$	
1 C	0.0000	2 A	0.0032
1 D	0.0000	2 B	0.0022
1 E	0.0000	2 C	0.0000
1 F	0.0000	2 D	0.0000
2 0	0.0000	2 E	0.0000
2 1	0.0136	2 F	0.0000
2 2	0.0068	3 0	0.0004
2 3	0.0068	3 1	0.0000
2 4	0.0244	3 2	0.0004
2 5	0.0000	3 3	0.0004
2 6	0.0068	3 4	0.0000
2 7	0.0068	3 5	0.0004
2 8	0.0030	3 6	0.0000
2 9	0.0024	3 7	0.0008

Figure: Experimental Results for Differential Attack

Outline

- Block Cipher
- Differential Cryptanalysis of a Toy Cipher
- Automatic Security Evaluation of Block Ciphers
- Tighten the Feasible Region with Valid Cutting-off Inequalities
- NBC

Introduction of MILP

- Counting the number of active S-boxes is a common way to evaluate the security
 of symmetric key cryptographic schemes against differential attack. Based on
 Mixed Integer Linear Programming (MILP), we can the minimal number of active
 S-boxes.
- MILP: Given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ and $c_1, \cdots, c_n \in \mathbb{R}^n$, find an $x \in \mathbb{Z}^k \times \mathbb{R}^{n-k} \subseteq \mathbb{R}^n$ with $Ax \leq b$, such that the linear function $c_1x_1 + c_2x_2 + \cdots + c_nx_n$ is minimized (or maximized) with respect to the linear constraint $Ax \leq b$.

Building the Model

• For every input and output bit-level difference, a new 0-1 variable x_i is introduced obeying the following rule of variable assignment.

$$x_i = \left\{ \begin{array}{l} 1, \text{ for nonzero difference at this bit,} \\ 0, \text{ otherwise.} \end{array} \right.$$

ullet For every S-box in the schematic diagram, including the encryption provess and the key schedule algorithm, we instroduce a new 0-1 variable A_j such that

$$A_j = \left\{ \begin{array}{l} 1, \text{ if the input word of the Sbox is nonzero,} \\ 0, \text{ otherwise.} \end{array} \right.$$

 At this point, it is natural to choose the objective function f, which will be minimized, as ∑A_j for the goal of determining a lower bound of the number of active S-boxes.

$$Min f = \sum A_j$$

Constrains Describing the S-box Operation

• Suppose $\left(x_{i_0},\ldots,x_{i_{\omega-1}}\right)$ and $\left(y_{j_0},\ldots,y_{j_{\nu-1}}\right)$ are the input and output bit-level differences of an $\omega\times\nu$ S-box marked by A_t . Firstly, to ensure that $A_t=1$ holds if and only if $\left(x_{i_0},\ldots,x_{i_{\omega-1}}\right)$ are not all zero,we require that:

$$\begin{cases} A_t - x_{i_k} \ge 0, & k \in \{0, \dots, \omega - 1\} \\ x_{i_0} + x_{i_1} + \dots + x_{i_{\omega - 1}} - A_t \ge 0 \end{cases}$$

 For bijective S-boxes, nonzero input difference must result in nonzero output difference and vice versa:

$$\begin{cases} \omega y_{j0} + \omega y_{j_1} + \dots + \omega y_{j_{\omega-1}} - \left(x_{i_0} + x_{i_1} + \dots + x_{i_{\omega-1}}\right) \ge 0 \\ \nu x_{i_0} + \nu x_{i_1} + \dots + \nu x_{i_{\omega-1}} - \left(y_{j_0} + y_{j_1} + \dots + y_{j_{\nu-1}}\right) \ge 0 \end{cases}$$

Constrains Describing the S-box Operation, cont

• The Hamming weight of the $(\omega + \nu)$ -bit word $x_{i_0} \cdots x_{i_{\omega-1}}, y_{j_0} \cdots y_{j_{\nu-1}}$ is lower bounded by the branch number $\mathcal{B}_{\mathcal{S}}$ of the S-box for nonzero input difference $x_{i_0} \cdots x_{i_{\omega-1}}$, where $d_{\mathcal{S}}$ is a dummy variable:

$$\begin{cases} \sum_{k=0}^{\omega-1} x_{i_k} + \sum_{k=0}^{\nu-1} y_{j_k} \ge \mathcal{B}_{\mathcal{S}} d_{\mathcal{S}} \\ d_{\mathcal{S}} \ge x_{i_k}, & k \in \{0, \dots, \omega-1\} \\ d_{\mathcal{S}} \ge y_{j_k}, & k \in \{0, \dots, \omega-1\} \end{cases}$$

• The branch number $\mathcal{B}_{\mathcal{S}}$ of an S-box \mathcal{S} is defined as

$$\mathcal{B}_{\mathcal{S}} = \min_{a \neq b} \left\{ \operatorname{wt} \left((a \oplus b) \| (\mathcal{S}(a) \oplus \mathcal{S}(b)) : a, b \in \mathbb{F}_2^{\omega} \right\} \right.$$

and $wt(\cdot)$ is the standard Hamming wight of a 2ω -bit word.

Constrains Imposed by XOR Operations

• Suppose $a \oplus b = c$, where $a,b,c \in \mathbb{F}_2^{\omega}$ are the input and output differences of the XOR operation, the following constraints will make sure that when a,b and c are not all zero, then there are at least two of them are nonzero:

$$\begin{cases} a+b+c \ge 2d_{\bigoplus} \\ d_{\bigoplus} \ge a \\ d_{\bigoplus} \ge b \\ d_{\bigoplus} \ge c \end{cases}$$

where d_{\oplus} is a dummy variable taking values from $\{0,1\}$.

• If each one of a, b and c represents one bit, we should also add the inequalitie:

$$a+b+c \le 2$$

Result for the single-key Present differential analysis

Rounds		#Constraints	#Active S-boxes	Timing (in seconds)
1	96 + 64	257	1	1
2	128 + 128	513	2	1
3	160 + 192	769	4	1
4	192 + 256	1025	6	1
5	224 + 320	1281	10	1
6	256 + 384	1537	12	1
7	288 + 448	1739	14	2
8	320 + 512	2049	16	5
9	352 + 576	2305	18	3
10	384 + 640	2561	20	6
11	416 + 704	2817	22	14
12	448 + 768	3073	24	13
13	480 + 832	3329	26	14
14	512 + 896	3585	28	17
15	544 + 960	3841	30	22
16	576 + 1024	4097	32	27
17	608 + 1088	4353	34	35
18	640 + 1152	4609	36	33
19	672 + 1216	4865	38	46
20	704 + 1280	5121	40	39
21	736 + 1344	5377	42	43
22	768 + 1408	5633	44	82
23	800 + 1472	5889	46	69
24	832 + 1536	6145	48	88
25	864 + 1600	6401	50	107
26	896 + 1664	6657	52	105
27	928 + 1728	6913	54	116
28	960 + 1792	7169	56	140
29	992 + 1856	7425	58	165
30	1024 + 1920	7681	60	262
31	1056 + 1984	7937	62	222

Figure: Result for the single-key Present differential analysis

Outline

- Block Cipher
- Differential Cryptanalysis of a Toy Cipher
- Automatic Security Evaluation of Block Ciphers
- Tighten the Feasible Region with Valid Cutting-off Inequalities
- NBC

Valid Cutting-off Inequalities

Figure: The relationship between the set of all differential paths and the feasible region of the MILP problem, and the effect of cutting-off inequality

Methods for Generating Valid Cutting-off Inequalities

Theorem (1)

The S-box of PRESENT-80 has the following properties:

- (i) $1001 \rightarrow ????0$: If the input difference of the S-box is 0x9 = 1001, then the least significant bit of the output difference must be 0;
- (ii) $0001 \rightarrow ????1$: If the input difference of the S-box is 0x1 = 0001 or 0x8 = 1000, then the least significant bit of the output difference must be 1;
- (iii) ???1 \rightarrow 0001 and ???1 \rightarrow 0100: If the output difference of the S-box is 0x1 = 0001 or 0x4 = 0100, then the least significant bit of the input difference must be 1;
- (iiii) ??? $0 \rightarrow 0101$: If the output difference of the S-box is 0x5 = 0101, then the least significant bit of the input difference must be 0.

Methods for Generating Valid Cutting-off Inequalities, cont

Theorem (2)

Let 0-1 variables (x_0, x_1, x_2, x_3) and (y_0, y_1, y_2, y_3) represent the input and output differences of the S-box respectively, where x_3 and y_3 are the least significant bit. Then the logical conditions in Theorem 1 can be described by the following linear inequalities:

$$-x_0 + x_1 + x_2 - x_3 - y_3 + 2 \ge 0$$

$$\begin{cases} x_0 + x_1 + x_2 - x_3 + y_3 \ge 0 \\ -x_0 + x_1 + x_2 + x_3 + y_3 \ge 0 \end{cases}$$

$$\begin{cases} x_3 + y_0 + y_1 + y_2 - y_3 \ge 0 \\ x_3 + y_0 - y_1 + y_2 + y_3 \ge 0 \end{cases}$$

$$-x_3 + y_0 - y_1 + y_2 - y_3 + 2 \ge 0$$

Convex Hull of All Possible Differentials for an S-box

• The convex hull of a set Q of discrete points in \mathbb{R}^n is the smallest convex set that contains Q. A convex hull can be described as the common solutions of a set of finitely many linear euqations and inequalities as follows:

$$\begin{cases} \lambda_{0,0}x_0 + \dots + \lambda_{0,n-1}x_{n-1} + \lambda_{0,n} \ge 0\\ \gamma_{0,0}x_0 + \dots + \gamma_{0,n-1}x_{n-1} + \gamma_{0,n} = 0 \end{cases}$$

This is called the H-representation of a convex hull.

• Define the convex hull of a specfic $\omega \times \nu$ S-box to the set of all linear inequalities in the H-Representation of the convex hull $\nu_S \subseteq \mathbb{R}^{\omega+\nu}$ of all possible differential patterns of the S-box.

Convex Hull of All Possible Differentials for an S-box, cont

Constraints selected from the	Impossible differential patterns re-
convex hull by the greedy algo-	moved
rithm	
(-2, 1, 1, 3, 1, -1, 1, 2, 0)	(1, 0, 1, 0, 0, 1, 0, 0) (1, 0, 0, 0, 1, 1, 0, 0) (1, 0, 0, 0, 1, 0, 0, 0) (1,
	0, 1, 0, 0, 1, 1, 0) (1, 0, 0, 0, 1, 1, 1, 0) (1, 1, 0, 0, 0, 1, 0, 0) (1, 1,
	0, 0, 0, 1, 1, 0) (1, 0, 0, 0, 0, 1, 1, 0) (1, 0, 1, 0, 1, 1, 0, 0) (1, 0, 0,
	0, 0, 1, 0, 0) (1, 0, 0, 0, 0, 1, 0, 1) (1, 0, 0, 0, 0, 0, 1, 0) (1, 1, 0, 0,
	1, 1, 0, 0) (1, 1, 1, 0, 0, 1, 0, 0)
(1, -2, -3, -2, 1, -4, 3, -3, 10)	(0, 1, 1, 0, 1, 1, 0, 1) (1, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1, 1, 1) (1,
	0, 1, 1, 0, 1, 0, 1) (0, 1, 1, 0, 0, 1, 0, 1) (0, 1, 1, 1, 0, 1, 0, 0) (0, 1,
	1, 1, 0, 1, 0, 1) (1, 1, 1, 1, 1, 1, 0, 1) (0, 0, 1, 1, 0, 1, 0, 1) (0, 1, 1,
	1, 1, 1, 0, 1) (1, 1, 1, 1, 0, 1, 0, 1) (0, 1, 0, 1, 0, 1, 0, 1) (0, 0, 1, 1,
	1, 1, 0, 1)
(2, -2, 3, -4, -1, -4, -4, 1, 11)	(0, 1, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 0, 1, 1, 0) (0, 0, 0, 1, 1, 1, 1, 0) (0,
	1, 0, 1, 0, 1, 1, 1) (0, 0, 0, 1, 1, 1, 1, 1) (0, 1, 0, 1, 1, 1, 1, 1) (0, 1,
	0, 1, 1, 1, 1, 0) (0, 0, 0, 1, 0, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 0) (0, 1, 1,
	1, 1, 1, 1, 0) (1, 1, 0, 1, 1, 1, 1, 1)
(-1, -2, -2, -1, -1, 2, -1, 0, 6)	(1, 1, 1, 0, 1, 0, 1, 1) (1, 1, 1, 0, 1, 0, 1, 0) (1, 1, 1, 1, 1, 0, 0, 1) (1,
	1, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1, 1, 1, 0, 1, 0) (0, 1,
	1, 1, 1, 0, 1, 0) (1, 1, 1, 1, 0, 0, 1, 1) (1, 1, 1, 1, 1, 0, 1, 1) (1, 1, 1,
	1, 0, 0, 1, 0)
(-2, 1, -2, -1, 1, -1, -2, 0, 6)	(1, 1, 1, 1, 0, 1, 1, 0) (1, 1, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 0) (1,
	0, 1, 0, 0, 1, 1, 1) (1, 0, 1, 1, 0, 0, 1, 1) (1, 0, 1, 1, 1, 1, 1, 0) (1, 0,
	1, 1, 1, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1, 0, 1, 1, 0)
(2, 1, 1, -3, 1, 2, 1, 2, 0)	(0, 0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 1, 0, 0, 1, 0) (0, 0, 0, 1, 0, 0, 0, 1) (0,
	1, 0, 1, 1, 0, 0, 0) (0, 0, 0, 1, 0, 1, 0, 0) (0, 0, 0, 1, 0, 0, 1, 0) (0, 0,
	1, 1, 1, 0, 0, 0) (0, 1, 0, 1, 0, 0, 1, 0) (0, 0, 0, 1, 1, 0, 1, 0)

Figure: Impossible differential patterns removed by the constraints selected from the convex hull of the Present S-box

Convex Hull of All Possible Differentials for an S-box, cont

Rounds	#Variables	#Constraints	#Active S-boxes	Time (in seconds)
1	97 + 277	632	0	1
2	130 + 474	1262	0	1
3	163 + 671	1892	1	1
4	196 + 868	2522	2	1
5	229 + 1065	3152	3	5
6	262 + 1262	3782	5	16
7	295 + 1459	4412	7	107
8	328 + 1656	5042	9	254
9	361 + 1853	5672	10	522
10	394 + 2050	6302	13	4158
11	427 + 2247	6932	15	18124
12	460 + 2444	7562	16	50017
13	493 + 2641	8192	18	137160*
14	526 + 2838	8822	20	1316808*
15	559 + 3035	9452	_	> 20 days

Figure: MILP related-key models for Present with CDP constraints added

Outline

- Block Cipher
- Differential Cryptanalysis of a Toy Cipher
- Automatic Security Evaluation of Block Ciphers
- Tighten the Feasible Region with Valid Cutting-off Inequalities
- **5** NBC

NBC

Figure: NBC Round Function

Figure: F Function

NBC-128

Figure: NBC-128 Round Function

Figure: NBC-128 S-box