Interrogation n°0. Barème sur 23.5 pts. Le sujet comporte deux pages

- 1) [2 pts] On considère le réel $x=\frac{\ln 3}{\ln 2}$. Montrer que x est irrationnel. On rappelle que $e^{\alpha \ln 2}=2^{\alpha}$.
- 2) Soient $p_1, p_2, ..., p_r$ des nombres premiers distincts. On peut donc supposer $2 \le p_1 < p_2 < ... < p_r$.
- a) [1.5 pt] Soient des entiers $m_1, ..., m_r \in \mathbb{N}$. On pose $n = \prod_{i=1}^r p_i^{m_i}$.

Montrer $\forall i \in [1, r], m_i \leq \lfloor \log n \rfloor$, où $\log n = \frac{\ln n}{\ln 2}$ est le logarithme de n en base 2.

b) [1.5 pt] Soit $N \in \mathbb{N}^*$.

On note D_N le nombre d'entiers n compris entre 1 et N qui s'écrivent sous la forme $n=\prod_{i=1}^r p_i^{m_i}$.

Autrement dit, il s'agit des entiers $n \leq N$ dont tous les diviseurs premiers appartiennent à $\{p_1, p_2, ..., p_r\}$.

En utilisant a), montrer que $D_N \leq (1 + \log N)^r$.

- c) [1.5 pt] En déduire que l'ensemble des nombres premiers est infini.
- 3) Soient des entiers n et p tels que $0 \le p \le n$. On considère $E = \{1, 2, ..., n + 1\}$.

not sluts

a) [1 pt] On considère $k \in \{0, 1, 2, ..., n\}$.

Donner le nombre N(p, n, k) de parties A de E telles que card A = p + 1 et $\max(A) = k + 1$.

b) [1 pt] En déduire la valeur de $S(p,n) = \sum_{k=p}^{n} {k \choose p}$, qui s'écrit aussi $S(p,n) = \sum_{k=0}^{n} {k \choose p}$.

P+ 1 (P+1)
P+1 et

4) a) [1.5 pt] Étant donnés (n+1) réels $y_0, y_1, ..., y_n$ dans]a, b[, montrer qu'il existe $i \neq j$ tels que

$$0 \le y_j - y_i < \frac{b-a}{n}$$

b) [2 pts] Montrer que $\tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$.

hower

c) [1.5 pt] (Oral Mines) Soient 13 réels $x_0, x_1..., x_{12}$. Montrer qu'on peut toujours $i \neq j$ tels que

$$0 \le \frac{x_i - x_j}{1 + x_i x_j} < 2 - \sqrt{3}$$

Indication: Poser $x_i = \tan(\theta_i)$, où $\theta_i \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

- 5) Soit E un ensemble fini de cardinal n.
- a) [1 pt] Soient A et B deux parties de E. Montrer que $card(A \cap B) \ge (card A) + (card B) n$.
- b) [2.5 pts] Soient $A_1, ..., A_p$ des parties de E telles que card $A_1 + \operatorname{card} A_2 + ... + \operatorname{card} A_p > n(p-1)$.

Montrer que $A_1 \cap A_2 \cap ... \cap A_p$ n'est pas vide.