This identity (2) is valid for any small $\epsilon > 0$. Our representation formula (1) would follow provided that we could show that the right side of (2) tended to $4\pi u(\mathbf{0})$ as $\epsilon \to 0$.

Now, on the little spherical surface $\{r = \epsilon\}$, we have

$$\frac{\partial}{\partial r} \left(\frac{1}{r} \right) = -\frac{1}{r^2} = -\frac{1}{\epsilon^2},$$

so that the right side of (2) equals

$$\frac{1}{\epsilon^2} \iint_{r=\epsilon} u \, dS + \frac{1}{\epsilon} \iint_{r=\epsilon} \frac{\partial u}{\partial r} \, dS = 4\pi \, \overline{u} + 4\pi \, \epsilon \, \frac{\overline{\partial u}}{\partial r},\tag{3}$$

where \overline{u} denotes the average value of $u(\mathbf{x})$ on the sphere $|\mathbf{x}| = r = \epsilon$, and $\overline{\partial u/\partial r}$ denotes the average value of $\partial u/\partial n$ on this sphere. As $\epsilon \to 0$, the expression (3) approaches

$$4\pi u(\mathbf{0}) + 4\pi \cdot 0 \cdot \frac{\partial u}{\partial r}(\mathbf{0}) = 4\pi u(\mathbf{0}) \tag{4}$$

because u is continuous and $\partial u/\partial r$ is bounded. Thus (2) turns into (1), and this completes the proof.

The corresponding formula in two dimensions is

$$u(\mathbf{x}_0) = \frac{1}{2\pi} \int_{\text{bdy } D} \left[u(\mathbf{x}) \frac{\partial}{\partial n} (\log|\mathbf{x} - \mathbf{x}_0|) - \frac{\partial u}{\partial n} \log|\mathbf{x} - \mathbf{x}_0| \right] ds$$
 (5)

whenever $\Delta u = 0$ in a plane domain D and \mathbf{x}_0 is a point within D. The right side is a line integral over the boundary curve with respect to arc length. Log denotes the natural logarithm and ds the arc length on the bounding curve.

EXERCISES

- 1. Derive the representation formula for harmonic functions (7.2.5) in two dimensions.
- 2. Let $\phi(\mathbf{x})$ be any C^2 function defined on all of three-dimensional space that vanishes outside some sphere. Show that

$$\phi(\mathbf{0}) = -\iiint \frac{1}{|\mathbf{x}|} \Delta \phi(\mathbf{x}) \frac{d\mathbf{x}}{4\pi}.$$

The integration is taken over the region where $\phi(\mathbf{x})$ is not zero.

3. Give yet another derivation of the mean value property in three dimensions by choosing D to be a ball and \mathbf{x}_0 its center in the representation formula (1).