EECS 545: Machine Learning Lecture 1. Introduction

Honglak Lee

1/5/2011

Outline

Administrative

What is machine leanning?

Teaching staffs

- Instructor: Honglak Lee
 - Email: honglak@eecs.umich.edu
 - Office: CSE 3773
 - Office hour: TBD (or email appointment)
- Graduate Student Instructor: James Boerkoel
 - Email: <u>boerkoel@umich.edu</u>
 - Office hours: TBD
 - Will hold review sessions on background materials (linear algebra, probability, Matlab, etc.)
- For all questions, please send email to eecs545qa@umich.edu!

Online syllabus and survey

- Check syllabus at
 - http://www.eecs.umich.edu/~honglak/teaching/eecs545

- Please fill out the online survey by <u>5pm today</u>.
 - Required for enrollment
 - https://spreadsheets.google.com/viewform?hl=en &formkey=dHpmUXpsSXpvWEsxcWp2WGoyclNk MWc6MQ#gid=0

Text books

- Chris Bishop, "Pattern Recognition and Machine Learning". Springer, 2006.
 - http://research.microsoft.com/en-us/um/people/cmbishop/prml/
- (optional) Sutton and Barto, "Reinforcement Learning: An Introduction". MIT Press, 1998
 - (Free: MIT cognet) http://cognet.mit.edu/library/books/view?isbn=0262193981
 - http://searchtools.lib.umich.edu/V?func=native-link&resource=UMI02069
- (optional) Hastie, Tibshrani, Fiedman, "Elements of Statistical Learning". Springer, 2010.
 - (Free) http://www-stat.stanford.edu/~tibs/ElemStatLearn/download.html
- (optional) Mackay, "Information Theory, Inference, and Learning Algorithms". Cambridge University Press. 2003.
 - (Free) http://www.inference.phy.cam.ac.uk/itprnn/book.pdf

Prerequisites

- EECS 492: Introduction to Al
- Undergrad linear algebra (e.g., MATH 217, MATH 417)
- Undergrad probability and statistics (e.g., EECS 401)
- Programming skills (equivalent to EECS 280, EECS 281, and experience in MATLAB)
 - Nontrivial level of programming is required.
- Self-check:
 - Read Bishop Sections 1.1, 1.2, and 1.3 carefully.
 - Read Appendix C & E.

Grading policy

- Homework: 40%
- Midterm: 15%
- Project: 45%
 - progress report (10%)
 - final report (35%)
- Extra credits:
 - Up to 2% may be awarded for class participation.
 - 1% will be given for lecture scribing (more details later).

More about lecture scribing

- 1% will be given for lecture scribing.
- Student can scribe at most one lecture.
 - Sign up form will be available (google doc)
- NOT all lectures will be scribed. Instructor will designate lectures for scribing.
 - Purpose: put detailed derivations and useful notes.
 - Handwritten lecture note and other materials will be provided for scribing.
 - A latex template will be available. (Good opportunity to improve your latex skills)

Homework

- There will be five (bi-weekly) problem sets.
- Goal: strengthen the understanding of the fundamental concepts, mathematical formulations, algorithms, and the applications.
- The problem sets will also include programming assignments to implement algorithms covered in the class.
- Homework #1 will be out next Wednesday (1/12).

Study group

- Form your study group early on!
 - Up to three people are allowed.
- For homework, you may discuss between the study group members, but you should write your own solution <u>independently</u>.
- You must put the names of the other members in your homework submissions.
- Please start on homework early. (Warning: cramming does not work!)

Course Project

Scope

- develop new theory and algorithms in machine learning,
- apply existing algorithms to new problems,
- apply to their own research problems.

Milestones

- project proposals
- progress reports
- poster presentations and the final report. (~4/25)

Requirement

- Write a 8-page paper
- Submit the final code
- Give a poster presentation
- Evaluation is based on the quality of the project.

Course Project

- Up to three people can form a project group.
- Talk to instructor if you want to get suggestions about project topics.
- Start early!!! (form your group and start working)

Any questions?

Outline

Administrative

What is machine learning?

Definition of Machine Learning

Formal definition (Mitchell 1997): A computer program A is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Informal definition

 Algorithms that improve their <u>performance</u> at some <u>task</u> with <u>experience</u>.

Problem: Given an image of a handwritten digit, what digit is it?

Problem:

You have absolutely no idea how to do this!

Slide credit: Kilian Weinberger

Problem: Given an image of a handwritten digit, what digit is it?

Problem:

You have absolutely no idea how to do this!

Good news: You have examples

Slide credit: Kilian Weinberger

Problem: Given an image of a handwritten digit, what digit is it?

Problem: Given an image of a handwritten digit, what digit is it?

Examples of ML applications

- Text data mining
- Understanding fMRI data
- Stock price prediction
- Computer vision
- Speech recognition
- Robotics
- •

ML application: Computer Vision

- Handwritten digit recognition
 - LeCun et al., 1989

- Face recognition
 - Viola & Jones face detector(2001)

ML applications: speech recognition

Voice search (e.g., Google)

- Speech transcription
 - http://www.youtube.com/watch?v=W3DhnpLIKCQ

ML application: text processing/data mining

- Spam filtering
 - Given email, predict if it spam or not
- Document clustering
 - Given news articles, group them into different categories
- Web Search
 - Given query, predict which document will be clicked on.
- Advertisement matching
 - Given user info, predict which ad will be clicked on.

ML application: Robotics

- Helicopter control
 - Learn from human experts, but it is now better!
 http://www.youtube.com/watch?v=VCdxqn0fcnE&feature=player_embedded

ML application: Robotics

- Robot perception and navigation
- STAIR (Stanford AI robot)
 - http://www.youtube.com/watch?v=mgHUNfqIhAc

- Team Michigan (http://april.eecs.umich.edu/magic/)
 - Robot perception + nagivation + multigent coordination
 - MAGIC competition winner, 2010!! (\$750k prize)
 - Prof. Edwin Olson's group

Machine Learning and other fields

This course is ...

- Graduate-level introduction of machine learning
- Provide foundations of machine learning
 - Mathematical derivation, Implementation of the algorithms, Applications
- Topics
 - supervised learning
 - unsupervised learning
 - learning theory
 - reinforcement learning
- Additional advanced topics
 - sparsity and feature selection, Bayesian techniques, and deep learning.

This course is ...

- Practical applications of machine learning
 - computer vision, data mining, speech recognition, text processing, bioinformatics, and robot perception and control
- Our goal is to help you to
 - Understand fundamentals of machine learning
 - Learn technical details of ML algorithms
 - Learn how to implement some important algorithms
 - Use machine learning algorithms for your research and applications.
- This will be a fun class!!

Machine Learning Tasks

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Density estimation
 - Clustering
 - Embedding / Dimensionality reduction
- Reinforcement Learning
 - Learning to act (e.g., robot control, decision making, etc.)

Supervised Learning

- Goal:
 - Given data X in feature space and the labels Y
 - Learn to predict Y from X
- Labels could be discrete or continuous
 - Discrete labels: classification
 - Continuous labels: regression

Supervised Learning - Classification

"Learning decision boundaries"

Supervised Learning - Classification

Slide credit: Aarti Singh

Supervised Learning - Regression

"Learning regression function f(X)"

Supervised Learning - Regression

Slide credit: Aarti Singh

Unsupervised Learning

- Goal:
 - Given data X without any labels
 - Learn the structures of the data
 - Probability distribution (density)
 - Clustering
 - Embedding & neighborhood relations
- "Learning without teacher" !!

Unsupervised Learning – Density estimation

Unsupervised Learning – Density estimation

Population density

Unsupervised Learning – Clustering

"Grouping into similar examples"

Unsupervised Learning – Clustering

Group similar things e.g. images

[Goldberger et al.]

Unsupervised Learning-Embedding and Dimensionality reduction

• E.g., Reducing pixel images (several thousand pixels) into low dimensional coordinates

[Saul and Roweis, 03]

Reinforcement Learning

Setting

- Given sequence of states X and <u>"rewards" (e.g., delayed labels)</u>
- Agent has to take actions A for each time step

Goal:

 How to "learn to act" or "make decisions" to maximize the sum of future rewards

Example:

 Robot navigation task: Dynamical environment, action (control signals), rewards (time to reach goal without colliding with obstacles)

Reinforcement Learning – learning to control

- Example: Robot walking
 - States: sensor inputs, joint angles
 - Action: servo commands for joints
 - Rewards:
 - 1 for reaching the goal
 - -1 for falling down
 - 0 otherwise
- Goal: How can we provide control inputs to maximize the expected future rewards?

Feature representations

Feature Extraction

Represent data in terms of vectors. Features are statistics that describe the data.

Real World

Data

Vector Space

$$\{\vec{x}_1,\ldots,\vec{x}_n\}\in\mathcal{R}^d$$

Each dimension is one feature.

Slide credit: Kilian Weinberger

Learning pipeline

Learning pipeline

Examples of features: Housing data

- Given statistics about houses in a local area, predict median value of homes.
 - 1. CRIM: per capita crime rate by town
 - 2. ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
 - 3. INDUS: proportion of non-retail business acres per town
 - 4. CHAS: Charles River dummy variable (= 1 if tract bounds river;
 0 otherwise)
 - 5. NOX: nitric oxides concentration (parts per 10 million)
 - 6. RM: average number of rooms per dwelling
 - 7. AGE: proportion of owner-occupied units built prior to 1940
 - **–**
- Label: MEDV: Median value of owner-occupied homes in \$1000's

How is computer perception done?

State-of-the-art: "hand-tuning"

Feature representation Learning Input data algorithm Object detection Low-level Recognition **Image** vision features **Audio** classification Low-level Speaker Audio audio features identification

Computer vision features

Audio features

Advanced topic: Learning features!

- Problem of hand-engineered features
 - 1. Needs expert knowledge
 - 2. Requires time-consuming hand tuning
 - 3. Does not generalize to other domains
- Key question: Can we automatically learn good feature representations from input data?

Learning features via subspaces

Example: Eigenfaces

Training face images

Learned PCA bases

Test example

Learning features via sparse coding

[0, 0, ..., 0, **0.8**, 0, ..., 0, **0.3**, 0, ..., 0, **0.5**, ...] Compact & easily = coefficients (feature representation)

interpretable

Learning hierarchy of features

1. Learn high-level "structures" from data.

2. good performance in prediction.

Next class

- Supervised Learning
 - Linear regression

Reminder

- Check syllabus at
 - http://www.eecs.umich.edu/~honglak/teaching/eecs545
- Please fill out the online survey by <u>5pm today</u>.
 - Required for enrollment!
 - https://spreadsheets.google.com/viewform?hl=en&formk
 ey=dHpmUXpsSXpvWEsxcWp2WGoyclNkMWc6MQ#gid=0
- For all questions, please send email to <u>eecs545qa@umich.edu</u> (not to individual staff)

Questions?