31.2 Minimal Polynomials of Diagonalizable Linear Maps

In this section we prove that if the minimal polynomial m_f of a linear map f is of the form

$$m_f = (X - \lambda_1) \cdots (X - \lambda_k)$$

for distinct scalars $\lambda_1, \ldots, \lambda_k \in K$, then f is diagonalizable. This is a powerful result that has a number of implications. But first we need of few properties of invariant subspaces.

Given a linear map $f: E \to E$, recall that a subspace W of E is invariant under f if $f(u) \in W$ for all $u \in W$. For example, if $f: \mathbb{R}^2 \to \mathbb{R}^2$ is f(x,y) = (-x,y), the y-axis is invariant under f.

Proposition 31.3. Let W be a subspace of E invariant under the linear map $f: E \to E$ (where E is finite-dimensional). Then the minimal polynomial of the restriction $f \mid W$ of f to W divides the minimal polynomial of f, and the characteristic polynomial of $f \mid W$ divides the characteristic polynomial of f.

Sketch of proof. The key ingredient is that we can pick a basis (e_1, \ldots, e_n) of E in which (e_1, \ldots, e_k) is a basis of W. The matrix of f over this basis is a block matrix of the form

$$A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix},$$

where B is a $k \times k$ matrix, D is an $(n-k) \times (n-k)$ matrix, and C is a $k \times (n-k)$ matrix. Then

$$\det(XI - A) = \det(XI - B)\det(XI - D),$$

which implies the statement about the characteristic polynomials. Furthermore,

$$A^i = \begin{pmatrix} B^i & C_i \\ 0 & D^i \end{pmatrix},$$

for some $k \times (n-k)$ matrix C_i . It follows that any polynomial which annihilates A also annihilates B and D. So the minimal polynomial of B divides the minimal polynomial of A.

For the next step, there are at least two ways to proceed. We can use an old-fashion argument using Lagrange interpolants, or we can use a slight generalization of the notion of annihilator. We pick the second method because it illustrates nicely the power of principal ideals.

What we need is the notion of conductor (also called transporter).

Definition 31.2. Let $f: E \to E$ be a linear map on a finite-dimensional vector space E, let W be an invariant subspace of f, and let u be any vector in E. The set $S_f(u, W)$ consisting of all polynomials $q \in K[X]$ such that $q(f)(u) \in W$ is called the f-conductor of u into W.