### Welcome! And introduction



# Introduction

- What will we learn?
- Who are we?
- How will we learn?

## What will we learn?









From Robert Knight, UC Berkeley

## What will we learn?

### What cognitive neuroscience is!

- The scientific study of brain processes underlying human mental processes *cognition*
- What is the relationship between these cognitive processes and the activity of brain networks and their hubs?

## What will we learn?

- How to read and critically evaluate scientific literature
- How to understand and evaluate primary methods currently used to understand the relationship between the human mind and brain
- About some questions the field has addressed, and what the data (to date) tells us about the answers

Brandon Forys (he/him)
Instructor



Jacob Gerlofs (he/him)
Teaching Assistant



Nikolas Kokan (he/him)
Teaching Assistant



## Brandon Forys (he/him)

### Instructor



• Intro: I'm a PhD student working with Dr. Rebecca Todd and Dr. Alan Kingstone.

#### • Interests:

- How and when we deploy cognitive effort
- Developing fMRI analysis methods
- Open science
- Outside the lab, I enjoy reading science fiction and fantasy, exploring bookstores, and travelling.

Jacob Gerlofs (he/him)
Teaching Assistant



• Intro: PhD student working with Dr. Alan Kingstone. I study social cognition and attention.

#### • Interests:

- How our cognitive/attentional systems operate in social environments.
- Outside the lab, I enjoy travel, photography, karate, skiing, hiking, weight lifting, rock climbing, hockey, film, and salsa dancing.

### Nikolas Kokan (he/him)

Teaching Assistant



• Intro: I am a fourth year PhD student studying the effect of timing on simple learning (habituation) in the microscopic round worm C. elegans.

# Who are you?

#### Distribution of Programs of Study



## What will we aim to do?

- Introduce
  - Questions that drive research in cognitive neuroscience
  - The main methods that we can use to answer them
- Teach you
  - How to read scientific papers
- Engage you in
  - Active and critical discussion of current research and controversies in the field

## How will we learn?

• Lectures and the textbook:

Richard Passingham (2016). Cognitive Neuroscience: A Very Short Introduction.

- Oxford University Press. Available at the Bookstore and the library. Also available as an ebook!
- ISBN: 9780198786221
- Highly readable, offers background info
- Scientific papers: Posted on Canvas (Modules -> Course Readings)
  - I'll post tips on reading the papers
  - Read these tips they'll help you do well on exams!



## How will we learn?

### Exams:

- Neuroanatomy quizzes: 2% of your grade
  - Online, based on Canvas module, multiple attempts
  - A primer on the brain's key structures important to understand papers in this course!
- 3 midterms: 20%, 30%, and 30% the one you do worst on is weighted the least
  - All midterms are in person, pencil and paper
  - Based on in-class materials and assigned readings
  - Mixture of multiple choice and short answer

## How will we learn?

### Final presentation (15% total):

- Groups of 2 or 3 (with solo option)
- Choose a recent cognitive neuroscience paper (from list of approved journals) present the highlights
- Creative format encouraged! (podcast, video, artwork, poster, poetry)
- Last 2 weeks of class

### Participation:

- Discussion question: due March 15th
- Multiple choice exam questions (yes, you get to make them!): Due 1 week before midterms 1 and 2

## Extra credit!

- You can participate in psychology studies for up to 2 extra credit grade points via the Psych Department Human Subject Pool!
- You can also do a library report for those extra points
  - Details in syllabus

# Support is available!

• At this link on the Canvas page for the course:



https://psych.ubc.ca/undergraduate-wellbeing/

# Questions? Anyone?



# See you next class!