7 The diagram shows a logic circuit.

(a) Complete the truth table for the given logic circuit. Show your working.

Inputs			Working space			Outputs	
Α	В	С	Р	Q	R	Y	Z
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

		[3]
(b)	State the name of the logic circuit.	
		[1]
(c)	Write the Boolean expressions for the two outputs Y and Z in the truth table sum-of-products and state the purpose of each output.	as
	/ =	
	Purpose	
	Z =	
	Purpose	

7 (a) Write the Boolean expression that corresponds to the given truth table as a sum-of-products.

	INPUT					
Α	В	С	D	Z		
0	0	0	0	0		
0	0	0	1	0		
0	0	1	0	0		
0	0	1	1	0		
0	1	0	0	0		
0	1	0	1	0		
0	1	1	0	0		
0	1	1	1	0		
1	0	0	0	0		
1	0	0	1	1		
1	0	1	0	0		
1	0	1	1	1		
1	1	0	0	1		
1	1	0	1	1		
1	1	1	0	1		
1	1	1	1	1		

Z	=	
		[3]

(b) (i) Complete the Karnaugh map (K-map) for the given truth table.

_ AE	3			
CD	00	01	11	10
00				
01				
11				
10				

(ii) Draw loop(s) around appropriate group(s) of 1s in the K-map to produce an optimal sum-of-products. [2]

[2]

(iii) Write the Boolean expression from your answer to **part b(ii)** as a simplified sum-of-products.

Z	=	
		[2]

(iv) Write the simplified Boolean expression for your answer to part b(iii).

Z =	
	 [1]

4		duced Instruction Set Computers (RISC) and Complex Instruction Set Computers (CISC) are types of processor.				
	(a)	Describe what is meant by RISC and CISC processors.				
		RISC				
		CISC				
		[4]				
	(b)	Identify two differences between RISC and CISC processors.				
		1				
		2				
		[2]				
		L=3				

6	A virtual machine is used to emulate a new computer system.
	Describe two benefits and one limitation of using a virtual machine for this purpose.
	Benefit 1
	Benefit 2
	Limitation
	[6]

9 The table shows assembly language instructions for a processor that has one general purpose register, the Accumulator (ACC).

	Instr	uction	Explanation		
Label	Opcode Operand				
	LDM	#n	Load the number n to ACC		
	LDD	<address></address>	Load the contents of the given address to ACC		
	LDI	<address></address>	The address to be used is at the given address Load the contents of this second address to ACC		
	ADD <address></address>		Add the contents of the given address to the ACC		
	STO	<address></address>	Store the contents of the ACC at the given address		
<label>:</label>		<data></data>	Gives a symbolic address <label> to the memory location with the contents <data> <label> can be used in place of <address></address></label></data></label>		
# denotes a d	enary number	, e.g. #123			

(a) The address	500 contains t	he value 100	and the address	100 contains the	value 20
۱a) The address	300 Contains t	lile value 100	and the address	100 Contains the	value 20.

State the addressing mode and the contents of ACC after each instruction has been executed.

	Contonio di 7.00	
	Contents of ACC	
LDI 500	Addressing mode	
	Contents of ACC	
HDD 300	Addressing mode	
T.DD 500	Addressing mode	
	Contents of ACC	
пры #500	Addressing mode	
T.DM #500	Addressing mode	

- (b) Use only the given instruction set to write assembly language code to:
 - use the constant 20 which needs to be stored
 - · add this constant to the value stored in the address contained in the variable Y
 - store the result in variable Z.

	Instruction		
Label	Opcode	Operand	

7 (a) Complete the Karnaugh map (K-map) for the Boolean expression.

$$Z = \overline{A}$$
, B, \overline{C} , $\overline{D} + \overline{A}$, B, \overline{C} , D + A, B, \overline{C} , \overline{D} + A, B, \overline{C} , D + A, \overline{B} , \overline{C} , \overline{D} + A, \overline{B} , \overline{C} , D

∖ AB					
CD	00	01	11	10	
00					
01					
11					
10					

[2]

- (b) Draw loop(s) around appropriate group(s) in the K-map to produce an optimal sum-of-products. [2]
- (c) Write the Boolean expression from your answer to part (b) as a simplified sum-of-products. Use Boolean algebra to give your answer in its simplest form.

Simplified sum-of-products

Z =	
Sim	plest form
Z =	

8	Virtu	ual memory, paging and segmentation are used in memory management.	
	(a)	Explain what is meant by virtual memory.	
			[3]
	(b)	State one difference between paging and segmentation in the way memory is divided.	
			[י]

10	Reduced Instruction Set Computers (RISC) and Complex Instruction Set Computers (CISC) are
	two types of processor.

(a) Tick	✓) one box in each	h row to show if the	statement applies to	RISC or CISC processors	s.
----------	--------------------	----------------------	----------------------	-------------------------	----

Statement	RISC	CISC
uses a smaller instruction set		
uses single-cycle instructions and limited addressing modes		
uses fewer general-purpose registers		
uses both hardwired and micro-coded control unit		
uses a system where cache is split between data and instructions		

[2]

(b) Describe the process of pipelining during the fetch-execute cycle in RISC processors.