

National University of Computer & Emerging Sciences, Karachi Fall-2023 Department of Computer Science

Final Exam 26th December 2023, 09:00 AM – 09:30 AM Part (A)

Course Code: CS2009	Course Name: Design and Analysis of Algorithm				
Instructor Name / Names: Dr. Muhammad Atif Tahir, Dr. Fahad Sherwani, Dr. Farrukh Salim, Dr. Nasir Uddin, Mr. Faisal Ahmed, Mr. Sandesh Kumar, Ms. Anaum Hamid, Mr. Syed Faisal Ali, and Mr. Minhal Raza					
Student Roll No:	Section:				

Instructions:

- Must be submitted within 30 minutes. No extra sheets allowed. Must solve in given space
- You can start Part B but not before returning Part A to invigilator.

Time: 30 minutes Max Marks: 10

Question #1 [CLO: 2]

[5 marks]

Sol: Strict marking but different valid algorithm can be proposed by the students

Problem	Give name of	Worst Time	Space
	Algorithm e.g.	Complexity	Complexity
	insertion sort etc	[0.125 marks]	[0.125
	[0.25 marks each]		marks]
to design networks with the least cost. It can be	Kruskal / Prims	O(V LOG E)	O(E),
used to find the least expensive network	Algorithm		
connections that can connect all the nodes in the			
network.			
selecting sites for satellite stations in order to	Knapsack Algorithm	2^n or m*w	O(N)
maximize the global traffic with respect to a budget			
constraint.			
to avoid vehicle collisions in cars and airplanes.	Convex Hull	Nlogn	(n log n)
Arbitrage detection in financial markets, where	Bellmen Ford	V^3	O(V)
negative weights represent profitable trading			
opportunities.			
to design a scheduler that to schedule a set of tasks.	Use Topological Sort	O(V LOG E)	O(V).
A number of the tasks need to wait for some other			
tasks to complete prior to running themselves.			
Picking the optimal location for a cell tower so	Use Set Cover	O(2^n)	O(n)
that it covers the maximum number of customers			
Consider a social network, where the graph's	Clique Problem	O(2^n)	O(n^2 + n)
vertices represent people, and the graph's edges			
represent mutual acquaintance.			

scheduling of a machine to drill holes in a circuit	Travelling Sales Men	O(N^2LogN)	O(N).
board or other object. In this case the holes to be	Problem	"Or"	
drilled are the cities, and the cost of travel is the		O(N^22^N)	
time it takes to move the drill head from one hole			
to the next.			
sorts data with integer keys by grouping the keys	Radix Sort	O(dn+kd)	n+k
by individual digits that share the same significant			
position and value (place value)			
sorts data by selecting a 'pivot' element from the	Quick Sort	O(nlogn)	0(1)
array and partitioning the other elements into two			
sub-arrays, according to whether they are less than			
or greater than the pivot			

Question #2 [CLO: 2]

[5 marks]

- (a) [3 Points] For each of the following questions, indicate whether it is T (True) or F (False) and justify using some examples e.g. assuming a function?
 - I. For all positive f(n), g(n) and h(n), if f(n) = O(h(n)) and $f(n) = \Omega(g(n))$, then g(n) + h(n) = O(f(n)).
 - II. Let f (n) and g(n) be asymptotically nonnegative functions, then min $(f(n), g(n)) = \Theta(f(n) + g(n))$.
 - III. if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then we have $(f(n))^3 = (g(n))^3$

Sol: Correct Answer with explanation: 1 mark; Only Correct Answer without explanation: 0.5 marks; Wrong Answer with some explanation and attempt: 0.25 marks; Wrong Answer: 0 marks

- (a) Let $f(n) = n^2$, then h(n) can be n^3 and g(n) can be n, and thus $n + n^3 = O(n^2)$; thus False
- (b) Let f(n) = n, $g(n) = n^2$, $min(n, n^2) = \Theta(n + n^2) => n = \Theta(n^2)$; thus False
- (c) f(n) and g(n) can be of same order, but these are different functions, thus False
- (b) [2 Points] Compute the time complexity of the following. Show all steps clearly

```
for i=1...n do

j=n

while i < j do

if j \mod 2 = 0 then j=j-1

else j=i
```

Sol: While loop will each time run at most two iterations. This makes the algorithm O(n) Marking Scheme: Correct Answer with reasoning 2 marks; Correct Answer with no / wrong reason: 1 mark; Incorrect Answer: 0 mark