Appendix List of Basic Logic Symbols

Symbol	Name	Explanation	Example
⇒ → ⊃ ⇔ ≡	implies; if	$A \Rightarrow B$ is true just in the case that either A is false or B is true, or both	$x=2 \Rightarrow x2=4$ is true, but $x=2 \Rightarrow x=2$ is in general false (since x could be -2)
\supset		\rightarrow and \supset may mean the same as \Rightarrow	
\Leftrightarrow	if and only if; if; means the same as	$A \Leftrightarrow B$ is true just in case either both A and B are false, or both A and B are true	$x+5=y+2 \Leftrightarrow x+3=y$
=			
\leftrightarrow			
~	not	The statement ¬A is true if and only if A is false	$\neg(\neg A) \Leftrightarrow A \ x \neq y \Leftrightarrow \neg(x = y)$
!		A slash placed through another operator is the same as "¬" placed in front	
\wedge	and	The statement $A \wedge B$ is true if A and	$n < 4 \land n > 2 \Leftrightarrow n = 3$ when
•		B are both true; else it is false	n is a natural number
&			
V	or	The statement $A \vee B$ is true if A or B	$n \ge 4 \lor n \le 2 \Leftrightarrow n \ne 3$ when
+		(or both) are true; if both are false, the statement is false	n is a natural number
$lue{\oplus}$	xor	The statement $A \bigoplus B$ is true when either A or B, but not both, are true. $A \succeq B$ means the same	$(\neg A) \bigoplus A$ is always true. $A \bigoplus A$ is always false
<u>V</u>			
Т	top, verum	The statement ⊤ is unconditionally true	$A \Rightarrow \top$ is always true
T			
1			
	bottom,	The statement ⊥ is unconditionally	$\perp \Rightarrow$ A is always true
F	falsum	false	
∀ 0			
\forall	for all; for any; for each	$\forall x$: $P(x)$ or (x) $P(x)$ means $P(x)$ is true for all x	$\forall n \in N: n2 \ge n$
() ∃			
3	there exists	$\exists x: P(x)$ means there is at least one x such that $P(x)$ is true	$\exists n \in \mathbb{N}: n \text{ is even}$

(continued)

(continued)

Symbol	Name	Explanation	Example
∃!	there exists exactly one	$\exists ! x: P(x)$ means there is exactly one x such that $P(x)$ is true	$\exists ! \ n \in N: \ n+5 = 2n$
:= =	is defined as	$x := y$ or $x \equiv y$ means x is defined to be another name for y (but note that	$ cosh x := (1/2)(exp x + exp (-x)) A XOR B :\Leftrightarrow (A \lor B) \land $
<u>-</u> :⇔		\equiv can also mean other things, such as congruence). $P \Leftrightarrow Q$ means P is defined to be logically equivalent to Q	$\neg(A \land B)$
F	provable	$x \vdash y$ means y is provable from x (in some specified formal system)	$A \to B \vdash \neg B \to \neg A$
⊨	entails	$x \models y$ means x semantically entails y	$A \to B \vDash \neg B \to \neg A$