

Deep Learning Final Project

Sentiment Analysis with LSTMs for Mental Health Detection

05/06/2025

Pau Peirats, Mireia Pou, and Stuart Lance

Table of contents

O1 Introduction

Problem definition

Problem

- Identify potential mental health issues based on text inputs.
- LSTM-based model to classify into mental health categories

Motivation

- Critical issue nowadays
- Exploration of AI in a clinical environment
- Positive social impact

Dataset characteristics

- **Columns** = [Unique ID, Statement, Mental Health Status]
- 53.042 data entries with 51.704 unique values

Figure 1: Screenshot of a dataset entry

- Mental health status:
- 1 Normal2 Suicidal3 Anxiety4 Personality Disorder
- 5 Depression 6 Bipolar 7 Stress

02

State of the Art

State of the Art

- RNNs (LSTMs, GRUs, BiLSTMs)
- Transformers (BERT-based)
- CNNs + RNNs

- Pre-trained embeddings
- Dropout
- Accuracy and F1-score

Model	Classification	Accuracy	
LSTM	7 classes	75-88%	
MentalBERT	4 classes	93%	
CNN+GRU	3 classes	93%	

Table 1: State of the Art comparison.

Benchmark

Transformers

- Transformer used= nateraw/bert-base-unc ased-emotion
- Accuracy = 0.849

Figure 2: Transformer-based confusion matrix [1]

LSTM

- LSTM + ReLu + Softmax
- Accuracy = 0.723

Figure 3: LSTM confusion matrix [2]

Machine Learning

- Model = XGBoost
- Accuracy = 0.808

Figure 4: XGBoost confusion matrix [3]

03

Methodology

Exploratory Data Analysis (EDA)

Figure 5: Barplot showing class distribution

Figure 6: Boxplot showing statements' length

	θ
hashtag	1754
mention	1094
uri	902
emoji	539952
Figure 7:	Toyt paice

Exploratory Data Analysis (EDA)

4 Top 20 words per class

Figure 8(1): Barplot showing top 20 words in bipolar class

Figure 8(2): Barplot showing top 20 words in anxiety class

Figure 8(3): Barplot showing top 20 words in depression class

Baseline Model

- Single layer LSTM
- Trained with **raw text**
- Good performance but improvable
- Poor generalisation

Model optimization through input data preprocessing

Data processing models

Model 1: Data Cleaning

- 1. Length outlier removal
- 2. Text noise removal:

Model 2: Stopword removal

- Articles (a, an, the)
- Prepositions (of, in, for, through)
- Pronouns (it, their, his)

Data processing models

Model 3: Embedding selection

Word2Vec

- Easiest and simplest
- Does not improve baseline

GloVe

- State-of-the-art embedder
- Improves baseline

Model 4: Data augmentation

1. Back translation

2. Synonym replacement

Data processing models

Model 5: Grid Search

- Maximize performance
- Brute-force

Batch Size: 56

Batch Size: 28

Batch Size: 14

Learning rate

Hidden layers

Model optimization through architecture refinement

Architecture refinement models

Architecture refinement models

04

Results

Baseline model

- Final accuracy = 0.7332
- Weighted F1-score = 0.7355

Figure 10: Baseline LSTM Training and Validation Loss and Accuracy plots

Figure 11: Baseline LSTM Confusion Matrix

Model	Name	Best validation accuracy	Final validation accuracy	Final validation loss	Weighted F1-score
0	Baseline	0.7524	0.7332	1.5110	0.7355
1	Data cleaning	0.7566	0.7408	1.3936	0.7412
2	Stopword removal	0.7539	0.7394	1.4413	0.7384
3	Embedding Selection	0.7779	0.7744	0.6665	0.7753
4	Data Augmentation	0.7590	0.7442	0.8882	0.7476
5	Grid Search	0.7818	0.7735	0.6010	0.7769

Table 2: Results of the data preprocessing models

Figure 13: Data cleaning model. Confusion matrix.

Embedding Selection

Figure 15: Embedding Selection model. Confusion matrix.

Figure 17: Grid Search model. Loss and accuracy curves.

Less

Better

Architecture optimization experiments

Model	Name	Best validation accuracy	Final validation accuracy	Final validation loss	Weighted F1-score
0	Baseline	0.7524	0.7332	1.5110	0.7355
5	Grid Search	0.7818	0.7735	0.6010	0.7769
6	Dropout	0.7790	0.7773	0.5892	0.7774
7	Stacked LSTM	0.7820	0.7789	0.5835	0.7795
8	Attention	0.7804	0.7715	0.6420	0.7732
9	Baseline GRU	0.7627	0.7388	1.7622	0.7376
10	Improved GRU	0.7932	0.7684	0.9345	0.7682

Architecture optimization experiments

Architecture optimization experiments

05

Conclusions

Conclusions

- 1 Raw baseline model limited by noisy data and simple features.
- 2 Data cleaning and using embeddings like GloVe raise accuracy.
- Final best model: Stacked LSTM with dropout. Accuracy = 0.7789. Weighted F1-score = 0.7795
- 4 Outperformed benchmark models, with exception of transformers.

06

Future work

Future work

1 Bidirectional LSTMs (BiLSTM)

- **Transformer Models:** Experiment with SotA transformers (BERT, RoBERTa, etc)
- Ensembling models: Combination of multiple models like LSTM and transformer classifiers. CNNs + RNNs, like seen in SotA

Resources

https://www.kaggle.com/code/grantgonnerman/mental-health-sentiment-analysis-eda-modeling

- [2] https://www.kaggle.com/code/rafaeldrago/lstm-sentiment-prediction/notebook
- [3] https://www.kaggle.com/code/hnfrmdhni/klasifikasi-jenis-depresi

Thank you!

Any question?

05/06/2025
Pau Peirats, Mireia Pou, and Stuart Lance

