Lecture-14

Sushrut Tadwalkar; 55554711

February 8, 2024

Quotes of the day: Dr. Joshua Zahl 02/08/2024

No quotes today:(

Theorem: Baby Rudin 7.11

Let (\mathcal{M}_1, d_1) and (\mathcal{M}_2, d_2) be metric spaces with (\mathcal{M}_2, d_2) complete, i.e., \mathbb{R} or \mathbb{C} . Let $\mathcal{E} \subseteq \mathcal{M}_1$, and let $\{f_n\}$ be a sequence of functions $f_n : \mathcal{E} \to \mathcal{M}_2$, and suppose $f_n \to f$ uniformly on \mathcal{E} .

Let $x \in \mathcal{M}_1$ be a limit point of \mathcal{E} . Suppose $\lim_{t \to x} f_n(t) = y_n$ exists for each n; $\{y_n\}$ is a convergent sequence, i.e., $y_n \to y \in \mathcal{M}_2$, and $\lim_{t \to x} f(t) = y$, i.e.,

$$\lim_{t \to x} \underbrace{\lim_{n \to \infty} f_n(t)}_{f(t)} = \lim_{n \to \infty} \underbrace{\lim_{t \to x} f_n(t)}_{y_n}$$

Proof. **Step-1:** Show that $\{y_n\}$ converges.

It suffices to show that $\{y_n\}$ is Cauchy. Let $\varepsilon>0$ be given. Choose N such that for all m,n>N, for all $t\in\mathcal{E}$, $d_2(f_n(t),f_m(t))<\frac{\varepsilon}{3}$, and thus

$$d_2(y_n, y_m) \le d_2(y_n, f_n(t)) + d_2(f_n(t), y_m)$$

$$\le d_2(y_n, f_n(t)) + d_2(f_n(t), f_m(t)) + d_2(f_m(t), y_m).$$

We can choose t such that the above is at most $<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$; call this the " $\frac{\varepsilon}{3}$ trick".

In conclusion, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all m, n > N, $d_2(y_n, y_m) < \varepsilon$, i.e., $\{y_n\}$ is Cauchy, and by completeness of (\mathcal{M}_2, d_2) , hence convergent.

Step-2: Prove that $f(t) \to y$ as $t \to x$.

For all $t \in \mathcal{E}$ and n,

$$d_2(f(t), y) \le d_2(f(t), f_n(t)) + d_2(f_n(t), y_n) + d_2(y_n, y). \tag{*}$$

Let $\varepsilon > 0$; since $f_n \to f$ uniformly, there exists $N_1 \in \mathbb{N}$ such that for all $n > N_1$, for all $t \in \mathcal{E}$,

$$d_2(f(t), f_n(t)) < \frac{\varepsilon}{3}.$$

Since $y_n \to y$, there exists $N_2 \in \mathbb{N}$ such that for all $n > N_2$, $d_2(y_n, y) < \frac{\varepsilon}{3}$. Let $N := \max\{N_1, N_2\}$. Applying eq. (*) with this choice of N, we have

$$d_2(f(t), y) \le \frac{\varepsilon}{3} + d_2(f_N(t), y_N) + \frac{\varepsilon}{3}.$$

Since $\lim_{t\to x} f_N(t) = y_N$, there exists $\delta > 0$ such that for all $t\in \mathcal{E}$, $d_1(t,x) < \delta$, we have $d_2(f_N(t),y_N) < \frac{\varepsilon}{3}$. Hence, for all $t\in \mathcal{E}$, for all x obeying $d_1(t,x) < \delta$, we have

$$d_2(f(t),y)<\varepsilon.$$

Corollary: Baby Rudin 7.12

Let (\mathcal{M}_1, d_1) , (\mathcal{M}_2, d_2) , $\{f_n\}$, f, and \mathcal{E} be as before. If each f_n is continuous on \mathcal{E} , and $f_n \to f$ uniformly, then f is continuous on \mathcal{E} .

Effectively, "the uniform limit of continuous functions is continuous."

Proof. f is always continuous at isolated points, so we only need to consider limit points, $x \in \mathcal{E} \cap \mathcal{E}'$, For every such x, theorem 7.11 implies

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{t \to x} f_n(t) = \lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{t \to x} f(t).$$

0.1 Series of functions

Definition: Convergence of a series of functions to a function

Let $\mathcal E$ be a set, let $\{f_n\}$ be a sequence of functions, $f_n:\mathcal E\to\mathbb R$ or $\mathcal E\to\mathbb C$, and let $g:\mathcal E\to\mathbb R$ or $\mathcal E\to\mathbb C$. We say $\sum_{n\in\mathbb N}f_n$ converges point-wise (uniformly) to g is the sequence $S_n:=\sum_{i=1}^nf_i$ converges point-wise (uniformly) to g.

Example 1. The series $1 + \sum_{n \in \mathbb{N}} \frac{x^n}{n!}$ converges to $g(x) = e^x$

- point-wise on \mathbb{R} .
- uniformly on any bounded set $\mathcal{E} \subseteq \mathbb{R}$, or any compact set $\mathcal{K} \subseteq \mathbb{R}$.

Theorem: Weierstraß M-test

Let \mathcal{E} be a set, $f_n: \mathcal{E} \to \mathbb{R}$ or $\mathcal{E} \to \mathbb{C}$. If $|f_n(x)| \leq M$ for all $n > N_0 \in \mathbb{N}$, for all $x \in \mathcal{E}$, and if $\sum_{n=N_0}^{\infty} M_n < \infty$, then $\sum_{n \in \mathbb{N}} f_n$ converges uniformly.