Physcalの大魔導書

传统弱校HFUT的蒟蒻,其幕后身份是,大魔导师(=¯ω¯=)。字体发虚右转MacType。

頁首 新章 微博 Github ModelZoo 文庫 祕境

Long-Short Memory Network(LSTM长短期记忆网络)

自剪枝神经网络

Simple RNN从理论上来看,具有全局记忆极力。因为T时刻、递归晚层一定记录着时序为1的状态 信由于Gradient Vanish问题、T时制向前反向传播的Gradient在T-10时制可能就有减为0。 从Long-Term进化至Short-Term。

尽管ReLU物够在前线网络中有效理解Gradient Vanish、但RNN的深度过泵、替换数活动数分标不治本。

$$\left|\prod_{j=p+1}^{t} \frac{\partial b_h^j}{\partial b_i^{-1}}\right| \le (\beta_W \cdot \beta_h)^{t-p}$$
 where $\beta = UpperBound$

上式中屋明的根源所在,由于WRIh两个矩阵多次幂导致受数值影响敏感,简而自之就是深度过大。 大部分Long-Term情况下,不需要提供路径上完整的信息,但反向传播还是循规跟矩地穿过这些冗保度。

解决方案之一是、设置可自主学习的参数来屏蔽掉这些无用的信息、与"降维"相似、这种方法叫"降层"

神经网络的野枝策略很简单,就是谁加参数矩阵,经过一定周期的学习,选择性屏蔽掉输入,精简网络。 从结构上来看,类似"树喜树",就是"神经网络喜神经网络"。

动态门结构

- ★LSTM将RNN的输入层、稳层移入Memory Cell加以保护
- ★Input Gate、Forget Gate、Output Gate、通过训练参数、将Gate収开(實1)或闭(實0)、保护Cell。 在时序展开图上则更加清晰。

公告

这是一个属于轻松绿写魔具 书平凡日常的故事,请不要 过度期待。还有,请保持服 内明亮离开电视3米以上再观 看。(= ~ ω ~ =)

眼隙: Physical 国龄:1年7个月 粉線:51 关注:19 +加关注

- 1. 从零开始山寨Caffe 拾氪... 从零开始山寨Caffe 拾:...
- 3. 从零开始山寨Caffe 软:...
- 4. 从零开始山寨Caffe 捌:...
- 5. 从零开始山廊Caffe 柒:...
- 6. 从零开始山寨Caffe 础:...
- 7. 从零开始山寨Caffe 伍:...
- 8. 从零开始山麻Caffe 肆:...
- 9. 从Bayesian角度浅析Bat... 10. 从零开始山寨Caffe-参...
- 随笔分类:::::

ACM(113) Haskell(3)

Qt(1)

并行计算(3) 机器学习现验(29)

机器学习系统设计(12)

模式识别(4)

随笔档案(30)

2016年3月 (8)

2016年2月 (5) 2015年11月(1)

2015年10月(2)

2015年9月(2)

2015年8月 (7)

2015年7月 (1) 2015年6月 (8)

2015年5月 (19)

2015年4月 (3)

2015年3月(7)

2015年2月 (10)

2014年11月 (17)

2014年10月 (71)

第1页 共3页

队友の魔導書

esxgx MaticsL Pentium 战犯期期

公式定义

原版LSTM最早在 [Hochreiter&Schmidhuber 97] 提出。

今天看到的LSTM是[Gers 2002]改良过的 extended LSTM。

extended LSTM扩展内容:

★Forget Gate, 用于屏蔽t-1以及之前时序信息。

在时序展开图上、由左侧锁住以保护Cell。

★三次门校:

97年提出的Gate输入类似RNN,分为两本Weight矩阵:

●Wx----序列输入信息

●Wh-进归隐态输入信息

2002年补充了第三志:

●Wc 通信Cell市输入信息

将Cel的时序状态引入Gate、称为Peephole Weights。

唯一作用似乎是提升LSTM精度、Alex Graves的博士论文中这么说:

The peephole connections meanwhile, improved the LSTM is ability to learn tasks that require precise

timing and counting of the internal states. 具体实现的时候,为了增加计算效率,可以包模:

Theano的/Tutorial中这么说道:

The model we used in this tutorial is a variation of the standard LSTM model.

in this variant, the activation of a cell is output gate does not depend on the memory cell is state C_{t_i}

This allows us to perform part of the computation more efficiently (see the implementation note, below, for details).

而CS224D Lecture8中压机就没提。

所以双布Gate可能是更为主流的LSTM变种。

2.1 前向传播

输入门:

 $i_t = Sigmoid(W_ix_t + U_ih_{t-1} + V_iC_{t-1})$

進制

 $f_t = Sigmoid(W_f x_t + U_f h_{t-1} + V_f C_{t-1})$

输出门:

 $O_t = Sigmoid(W_o x_t + U_o h_{t-1} + V_o C_t)$ \odot

原始Cell(RNN部分):

 $\tilde{C}_{r} = Tanh(W_{r}x_{r} + U_{r}h_{r-1})$

(8)

门家Cell:

 $C_t = i_t \cdot \tilde{C}_t + f_t \cdot C_{t-1}$

(输入门+速忘门)

 $h_t = O_t \cdot Tanh(C_t)$ where $h_t = FinalOutput$

(T) (S)

仔细观察①②②③,发现除了Peephole Weights引入的V所,这四个式子是一样的。

第3页 共3页 16/5/17 下午11:23