1. Robust powerline provisioning. We have m power plants, i = 1, ..., m, generate power to be delivered to n destinations j = 1, ..., n. We wish to attach powerlines to minimize the cost of provisioning the lines while protecting against plant failures. We represent these lines as a bipartite graph between the m plants and n destination nodes. To connect a line between plant i and destination j requires we lay line of length L_{ij} , and given a radius R_{ij} of the line, we assume the cost is proportional is the volume of metal required, that is, $L_{ij}R_{ij}^2$. We let $A_{ij} = R_{ij}^2$, which is proportional to the area of the line, and is also the cost per unit length of line with the given radius R_{ij} . The power available to node j must be at least a usage level $u_j \in \mathbf{R}_+$, which is given. Plant i has a total capacity c_i on its power generation (also specified). If a there is a line between plant i and destination j and plant i transmits power P_{ij}^{tr} on the line, the arrival power P_{ij}^{ar} satisfies

$$P_{ij}^{\text{tr}} = P_{ij}^{\text{ar}} + \alpha \frac{L_{ij}(P_{ij}^{\text{ar}})^2}{R_{ij}^2} = P_{ij}^{\text{ar}} + \alpha \frac{L_{ij}(P_{ij}^{\text{ar}})^2}{A_{ij}},$$

where $\alpha > 0$ is a known constant related to the transmission losses. We require that the total arriving power to node j, $\sum_{i=1}^{m} P_{ij}^{ar}$, is at least the usage level u_j at j. Then a convex formulation of the minimum cost line allocation problem is to solve

minimize
$$\begin{aligned} \mathbf{tr} \, L^T A \\ \text{subject to} \quad & P_{ij}^{\text{tr}} \geq P_{ij}^{\text{ar}} + \alpha \frac{L_{ij}(P_{ij}^{\text{ar}})^2}{A_{ij}}, \quad i = 1, \dots, m, \ j = 1, \dots, n \\ & \sum_{i=1}^m P_{ij}^{\text{ar}} \geq u_j, \quad j = 1, \dots, n \\ & \sum_{j=1}^n P_{ij}^{\text{tr}} \leq c_i, \quad i = 1, \dots, m, \end{aligned}$$

where the variables are the areas $A \in \mathbf{R}^{m \times n}$ and transmitted and arriving powers $P^{\text{tr}}, P^{\text{ar}} \in \mathbf{R}_{+}^{m \times n}$. (Note that A is implicitly constrained to be positive in the above formulation; you should feel free to add explicit constraints on P^{tr} and P^{ar} .)

The rest of the problem uses the data in robust_power_data.*.

(a) Using the given data, implement this problem in CVX*. For the resulting solution A^* , give the number of entries (i,j) with $|A_{ij}^*| > 10^{-3}$ and the total cost $\operatorname{tr} L^T A^*$ of your solution. (Here, we threshold at 10^{-3} as a proxy for zero entries in A^* .)

It is unrealistic to assume that all powerstations and powerlines will remain up, so you would like to build robustness into your system. We would like to guarantee m-k reliability: the system will provide the desired level of power u_j at each destination node even if k of the power plants fail.

(b) Let $O_i \in \{0, 1\}$ represent the event that plant i is online, so $O_i = 1$ if plant i is online and $O_i = 0$ if it is offline. Let \mathcal{O}_k denote the set of such O with at most k offline plants. Reformulate the line allocation problem to include the robust power arrival constraint that

$$\sum_{i=1}^{m} O_i P_{ij}^{\text{ar}} \ge u_j \quad \text{for all } O \in \mathcal{O}_k.$$

Give as explicit a form as you can, and solve the resulting robust optimization problem for values k = 1, 2, 3, 4 with the given data. For each k, give give the number of entries in your solution A^* with $|A_{ij}^*| > 10^{-3}$ and the total cost $\operatorname{tr} L^T A^*$. Give a one sentence explanation of your results. *Hint*. The sumsmallest or sum_smallest operation may be helpful.