## Домашняя работа Кононов Александр Михайлович 16.11.2024

Условие:

## ЗАДАЧА 10 (4 БАЛЛА)

Найти все независимые компоненты тензора нелинейной оптической восприимчивости второго порядка  $\chi^{(2)}$  в:

а) Кристаллах со структурой цинковой обманки. Описываются точечной группой симметрии  $T_d$ , которая содержит: оси второго порядка  $C_2$ , перпендикулярные граням куба, оси третьего порядка  $C_3$  вдоль диагоналей куба, плоскости отражения  $\sigma$  вдоль диагоналей граней куба, а также оси зеркального поворота четвертого порядка  $S_4$ , перпендикулярные граням куба.



b) Кристаллах со структурой вюрцита. Описываются точечной группой симметрии  $C_{6v}$ , которая содержит: ось поврота шестого порядка  $C_6$  вокруг оси z и вертикальные плоскости отражения. Направления z и -z не эквивалетны.



Решение:

Пункт (а).  $\chi^{(2)}_{ijk}$  - всего 27 компонент

Bce  $C_2$  - симметрии:

Поворот на  $\pi$  вокруг x:

$$x \to x, \ y \to -y, \ z \to -z$$

$$p_x \to p_x, \ p_y \to -p_y, \ p_z \to -p_z$$
  
 $E_x \to E_x, \ E_y \to -E_y, \ E_z \to -E_z$ 

Получаем:

$$p_x = \chi_{xxy}^{(2)} E_x E_y$$

$$p_x = \chi_{xxy}^{(2)} E_x (-E_y)$$

$$\Rightarrow \chi_{xxy}^{(2)} = 0$$

Ан-но:

$$\chi_{xxy}^{(2)} = \chi_{xyx}^{(2)} = \chi_{xxz}^{(2)} = \chi_{xzx}^{(2)} = 0$$

Aн-но  $\pi$  вокруг y:

$$\chi_{yxy}^{(2)} = \chi_{yyx}^{(2)} = \chi_{yxz}^{(2)} = \chi_{yzx}^{(2)} = 0$$

Ан-но  $\pi$  вокруг z:

$$\chi_{zxy}^{(2)} = \chi_{zyx}^{(2)} = \chi_{zxz}^{(2)} = \chi_{zzx}^{(2)} = 0$$

Все  $C_3$  симметрии вокруг диагоналей:

$$x \to y, \quad y \to z, \quad z \to x$$

$$\chi_{xyz}^{(2)} = \chi_{yzx}^{(2)} = \chi_{zxy}^{(2)}$$

$$\chi_{xzy}^{(2)} = \chi_{zyx}^{(2)} = \chi_{yxz}^{(2)}$$

$$\chi_{xxx}^{(2)} = \chi_{yyy}^{(2)} = \chi_{zzz}^{(2)}$$

$$\chi_{xyy}^{(2)} = \chi_{yzz}^{(2)} = \chi_{zxx}^{(2)}$$

$$\chi_{xzz}^{(2)} = \chi_{yxx}^{(2)} = \chi_{zyy}^{(2)}$$

Вокруг другой диагонали

$$x \to -z, y \to x, z \to -y$$

Получаем:

$$\chi_{iii}^{(2)} = \chi_{ijj}^{(2)} = 0$$

Отражение  $\sigma$  отн диагонали грани

$$x \to x, y \to z, z \to y$$

Тогда все  $\chi^{(2)}_{ijk}$  с разными индексами равны. По сути это можно переписать через перестановку индексов:

$$\chi_{xyz}^{(2)} = \chi_{\sigma\{x;y;z\}}^{(2)}$$

Ответ:

$$\chi_{xyz}^{(2)} = \chi_{\sigma\{x;y;z\}}^{(2)}$$
$$\chi_{iii}^{(2)} = \chi_{\sigma\{i;i;j\}}^{(2)} = 0$$

Один линейно-независимый элемент Пункт (б) я не решал