## Интерполяция Сплайны

Скалько Юрий Иванович **Цыбулин Иван** 

#### Задача интерполяции

#### Задача

Предположим, что некоторая функция f(x) известна в точках  $\{x_k\}_{k=1}^n$ :  $f(x_k)=f_k$ . Как определить ее значение в какой-нибудь другой точке  $x^*\neq x_k$ ?

### Задача интерполяции

#### Задача

Предположим, что некоторая функция f(x) известна в точках  $\{x_k\}_{k=1}^n$ :  $f(x_k)=f_k$ . Как определить ее значение в какой-нибудь другой точке  $x^*\neq x_k$ ?

Конечно, без дополнительных условий, данная задача некорректна. Функция может вести себя в промежутках между заданными точками произвольно. Но оказывается, что при определенных условиях, исходную функцию можно достаточно хорошо *приблизить* функцией из некоторого семейства так, чтобы она проходила через заданные точки  $(x_k, f_k)$ . Эта функция называется *интерполянтом* 

## Опрелеления

Понятия "узел", "сетка", "шаг сетки" встречаются в вычислительной математике очень часто. В отношении задачи интерполяции, узлами называются точки  $x_k$ , то есть точки, в которых заданы значения функции. Сеткой называется совокупность всех узлов. Шагом сетки называется расстояние между соседними узлами. Шаг может быть постоянным (равномерная сетка) или переменным (неравномерная сетка).

#### Виды интерполяции

В зависимости от вида семейства функций интерполяция бывает

ullet алгебраической — интерполянт является многочленом от x

## Виды интерполяции

В зависимости от вида семейства функций интерполяция бывает

- ullet алгебраической интерполянт является многочленом от x
- ullet тригонометрической интерполянт является тригонометрическим многочленом  $Q_m(x)=$

$$a_0 + a_1 \cos \frac{2\pi x}{L} + b_1 \sin \frac{2\pi x}{L} + \dots + a_m \cos \frac{2\pi mx}{L} + b_m \sin \frac{2\pi mx}{L}$$

## Виды интерполяции

# В зависимости от вида семейства функций интерполяция бывает

- ullet алгебраической интерполянт является многочленом от x
- ullet тригонометрической интерполянт является тригонометрическим многочленом  $Q_m(x)=$

$$a_0 + a_1 \cos \frac{2\pi x}{L} + b_1 \sin \frac{2\pi x}{L} + \dots + a_m \cos \frac{2\pi mx}{L} + b_m \sin \frac{2\pi mx}{L}$$

• сплайновой — интерполянт является кусочно-многочленной функцией. На каждом отрезке  $[x_k, x_{k+1}]$  сплайн является многочленом, а в узлах ставятся дополнительные условия (непрерывность, гладкость и т.п.)

## Алгебраическая интерполяция. СЛАУ

Будем искать многочлен  $P(x) = a_0 + a_1 x + a_2 x^2 + \dots$ , который удовлетворяет всем равенствам  $P(x_k) = f_k$ . Неизвестными здесь будут коэффициенты многочлена  $a_i$ .

## Алгебраическая интерполяция. СЛАУ

Будем искать многочлен  $P(x) = a_0 + a_1 x + a_2 x^2 + \dots$ , который удовлетворяет всем равенствам  $P(x_k) = f_k$ . Неизвестными здесь будут коэффициенты многочлена  $a_i$ .

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots &= f_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots &= f_2 \\ &\vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots &= f_n \end{cases}$$

## Алгебраическая интерполяция. СЛАУ

Будем искать многочлен  $P(x)=a_0+a_1x+a_2x^2+\ldots$ , который удовлетворяет всем равенствам  $P(x_k)=f_k$ . Неизвестными здесь будут коэффициенты многочлена  $a_j$ .

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots &= f_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots &= f_2 \\ & & \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots &= f_n \end{cases}$$

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ & & \vdots & \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}$$

## Алгебраическая интерполяция

Задача алгебраической интерполяции, таким образом, свелась к решению системы линейных алгебраических уравнений с матрицей

$$W = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ & & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

#### Вопрос

Как называется эта матрица? Чему равен ее определитель?

## Алгебраическая интерполяция

Задача алгебраической интерполяции, таким образом, свелась к решению системы линейных алгебраических уравнений с матрицей

$$W = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ & & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

#### Вопрос

Как называется эта матрица? Чему равен ее определитель? Эта матрица называется матрицей Вандермонда и ее определитель  $\det W = \prod_{i < j} (x_i - x_j) \neq 0$  при  $x_i \neq x_j$ 

Получается, что задача алгебраической интерполяции всегда имеет решение, и при этом единственное — многочлен степени n-1.

# Алгебраическая интерполяция. Другие методы

Коэффициенты многочлена-интерполянта можно искать решая СЛАУ. Однако, существуют более простые и надежные методы построения этого многочлена, а именно

- Интерполяционный многочлен в форме Ньютона
- Интерполяционный многочлен в форме Лагранжа

## Алгебраическая интерполяция. Другие методь

Коэффициенты многочлена-интерполянта можно искать решая СЛАУ. Однако, существуют более простые и надежные методы построения этого многочлена, а именно

- Интерполяционный многочлен в форме Ньютона
- Интерполяционный многочлен в форме Лагранжа

Необходимо понимать, что интерполянт остается все тем же единственным многочленом степени n-1, проходящим через все точки  $(x_k,f_k)$ . Отличие заключается лишь в способе его построения.

#### . . Алгебраическая интерполяция. Другие методы

Коэффициенты многочлена-интерполянта можно искать решая СЛАУ. Однако, существуют более простые и надежные методы построения этого многочлена, а именно

- Интерполяционный многочлен в форме Ньютона
- Интерполяционный многочлен в форме Лагранжа

Необходимо понимать, что интерполянт остается все тем же единственным многочленом степени n-1, проходящим через все точки  $(x_k,f_k)$ . Отличие заключается лишь в способе его построения.

Интерполяционный многочлен Ньютона проще строить на практике, но интерполяционный многочлен Лагранжа оказывается весьма удобным для теоретического изучения свойств интерполянтов.

Построение интерполянта в форме Ньютона происходит путем последовательного добавления точек и соответствующего "подправления" интерполянта.

## Интерполяционный многочлен в форме Ньютона

Построение интерполянта в форме Ньютона происходит путем последовательного добавления точек и соответствующего "подправления" интерполянта.

• Изначально есть только одно значение  $f(x_1) = f_1$  и интерполянт просто равен константе  $P(x) = f_1$ .

## Интерполяционный многочлен в форме Ньютона

Построение интерполянта в форме Ньютона происходит путем последовательного добавления точек и соответствующего "подправления" интерполянта.

- Изначально есть только одно значение  $f(x_1) = f_1$  и интерполянт просто равен константе  $P(x) = f_1$ .
- Предположим, что интерполянт для первых k точек уже посторен. Добавляем точку  $(x_{k+1}, f_{k+1})$ . Чтобы не нарушить интерполяционное свойство, к интерполянту нужно добавить функцию, которая в точках  $x_1 \div x_k$  обращается в ноль. Общий вид этой функции  $A(x-x_1)(x-x_2)\dots(x-x_k)$ . Значение A оперделяется из требования  $P(x_{k+1}) = f_{k+1}$

## Пример интерполянта в форме Ньютона

#### Построим интерполянт по следующим данным

| $x_k$ | 1 | 2 | 4 |
|-------|---|---|---|
| $f_k$ | 1 | 3 | 1 |

## Пример интерполянта в форме Ньютона

#### Построим интерполянт по следующим данным

| $X_k$ | 1 | 2 | 4 |
|-------|---|---|---|
| $f_k$ | 1 | 3 | 1 |

• Полагаем P(x) = 1.



## Пример интерполянта в форме Ньютона

#### Построим интерполянт по следующим данным

| X <sub>k</sub> | 1 | 2 | 4 |
|----------------|---|---|---|
| $f_k$          | 1 | 3 | 1 |

- Полагаем P(x) = 1.
- Добавляем линейную функцию к Р:

$$P = 1 + A(x - 1)$$



## Пример интерполянта в форме Ньютона

#### Построим интерполянт по следующим данным

| $X_k$ | 1 | 2 | 4 |
|-------|---|---|---|
| $f_k$ | 1 | 3 | 1 |

- Полагаем P(x) = 1.
- Добавляем линейную функцию к Р:

$$P = 1 + A(x - 1)$$

Добавляем
 квадратичную функцию
 к P:



$$P = 1+2(x-1)+B(x-1)(x-2)$$

## Разделенные разности

Ньютон нашел выражения для неизвестных коэффициентов A в форме, удобной для вычислений. Для этого вводится понятие разделенной разности. Разделенная разность k-го порядка обозначается как  $f(\underbrace{x_p, x_q, \ldots, x_s}_{k+1 \text{ аргумент}})$ . Разделенные разности

нулевого порядка совпадают со значениями самой функции в этой точке

$$f(x_k) = f_k$$

Остальные разности определяются рекуррентно:

$$f(x_p, x_q, \ldots, x_r, x_s) = \frac{f(x_q, \ldots, x_r, x_s) - f(x_p, x_q, \ldots, x_r)}{x_s - x_p}$$

В этих обозначениях,

$$P(x) = f(x_1) + f(x_1, x_2)(x - x_1) + f(x_1, x_2, x_3)(x - x_1)(x - x_2) + \dots$$

## Пример вычисления разделенных разностей

## Пример вычисления разделенных разностей

| X <sub>k</sub>           | 1 | 2   | 2 |   | ŀ |
|--------------------------|---|-----|---|---|---|
| $f(x_k)$                 | 1 | (1) | 3 | 1 |   |
| $f(x_k, x_{k+1})$        |   |     |   |   |   |
| $f(x_k,x_{k+1},x_{k+2})$ |   |     |   |   |   |

$$f(x_p, x_q, ..., x_r, x_s) = \frac{f(x_q, ..., x_r, x_s) - f(x_p, x_q, ..., x_r)}{x_s - x_p}$$

## Пример вычисления разделенных разностей

| X <sub>k</sub>           | 1 | - | 2   | 2 |   | 1 |
|--------------------------|---|---|-----|---|---|---|
| $f(x_k)$                 | 1 |   | (3) | 3 | 1 | L |
| $f(x_k, x_{k+1})$        |   | 2 | 2   |   |   |   |
| $f(x_k,x_{k+1},x_{k+2})$ |   |   |     |   |   |   |

$$f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

## Пример вычисления разделенных разностей

| X <sub>k</sub>           | 1 | L | 2 | 2 | 4 | 1 |
|--------------------------|---|---|---|---|---|---|
| $f(x_k)$                 | 1 | L | 3 | 3 | ] | L |
| $f(x_k, x_{k+1})$        |   | 2 | 2 | _ | 1 |   |
| $f(x_k,x_{k+1},x_{k+2})$ |   |   |   |   |   |   |

$$f(x_2, x_3) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

## Пример вычисления разделенных разностей

| X <sub>k</sub>           | 1 |   | 2 | 2 | 4   | 1 |
|--------------------------|---|---|---|---|-----|---|
| $f(x_k)$                 | 1 | L | 3 | 3 | ]   | L |
| $f(x_k, x_{k+1})$        |   | 2 | 2 | _ | - 1 |   |
| $f(x_k,x_{k+1},x_{k+2})$ |   |   | _ | 1 |     |   |

$$f(x_1, x_2, x_3) = \frac{f(x_2, x_3) - f(x_1, x_2)}{x_3 - x_1}$$

## Пример вычисления разделенных разностей

| X <sub>k</sub>           | ] | L | 2   | 2 | 4 | 4 |
|--------------------------|---|---|-----|---|---|---|
| $f(x_k)$                 |   | L | (1) | 3 | ] | 1 |
| $f(x_k, x_{k+1})$        |   | 2 | 2   | _ | 1 |   |
| $f(x_k,x_{k+1},x_{k+2})$ |   |   | _   | 1 |   |   |

$$P(x) = 1 + 2(x - x_1) - 1(x - x_1)(x - x_2)$$

#### Базисные интерполяционные полиномы

Для построения интерполяционного многочлена в форме Лагранжа решается вспомогательная задача

#### Задача о базисном интерполяционном многочлене

Необходимо построить многочлен, который во всех точках  $x_k$ , кроме точки  $x_j$  обращался в 0, а в точке  $x_j$  был равен 1

$$\ell_j(x_k) = \left\{ egin{array}{ll} 0 & , & k 
eq j \\ 1 & , & k = j \end{array} 
ight.$$

#### Базисные интерполяционные полиномы

Для построения интерполяционного многочлена в форме Лагранжа решается вспомогательная задача

#### Вадача о базисном интерполяционном многочлене

Необходимо построить многочлен, который во всех точках  $x_k$ , кроме точки  $x_j$  обращался в 0, а в точке  $x_j$  был равен 1

$$\ell_j(x_k) = \left\{ egin{array}{ll} 0 & , & k 
eq j \ 1 & , & k = j \end{array} 
ight.$$

Поскольку степень этого многочлена n-1, а  $x_k, k \neq j$  - его корни, то сам многочлен можно записать в форме

$$\ell_j(x) = A(x - x_1)(x - x_2) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)$$

#### Базисные интерполяционные полиномь

Для построения интерполяционного многочлена в форме Лагранжа решается вспомогательная задача

#### Задача о базисном интерполяционном многочлене

Необходимо построить многочлен, который во всех точках  $x_k$ , кроме точки  $x_i$  обращался в 0, а в точке  $x_i$  был равен 1

$$\ell_j(x_k) = \left\{ \begin{array}{ll} 0 & , & k \neq j \\ 1 & , & k = j \end{array} \right.$$

Поскольку степень этого многочлена n-1, а  $x_k, k \neq j$  - его корни, то сам многочлен можно записать в форме

$$\ell_j(x) = A(x-x_1)(x-x_2)\cdots(x-x_{j-1})(x-x_{j+1})\cdots(x-x_n)$$

Пользуясь условием  $\ell_j(x_j)=1$ 

$$\ell_j(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)}{(x_j - x_1)(x_j - x_2) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}$$

## Интерполяционный многочлен в форме Лагранжа

Используя базисные интерполяционные многочлены Лагранжа легко написать явное выражение для интерполянта в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} \ell_j(x) f_j$$

## Интерполяционный многочлен в форме Лагранжа

Используя базисные интерполяционные многочлены Лагранжа легко написать явное выражение для интерполянта в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} \ell_j(x) f_j$$

Действительно,

$$P(x_k) = \sum_{j=1}^n \ell_j(x_k) f_j = \ell_k(x_k) f_k = f_k$$

## Интерполяционный многочлен в форме Лагранжа

Используя базисные интерполяционные многочлены Лагранжа легко написать явное выражение для интерполянта в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} \ell_j(x) f_j$$

Действительно,

$$P(x_k) = \sum_{j=1}^n \ell_j(x_k) f_j = \ell_k(x_k) f_k = f_k$$

Заметим, что базисные интерполяционные многочлены  $\ell_j(x)$  зависят только от *сетки*, а не от значений функции в узлах. Если приходится решать несколько задач интерполяции на одной и той же сетке, то форма Лагранжа может оказаться удобнее.

## Пример вычисления базисных интерполяционных многочленов

| X <sub>k</sub> | 1 | 2 | 4 |
|----------------|---|---|---|
| $f_k$          | 1 | 3 | 1 |

$$\ell_{1}(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_{2}(x) = \frac{(x-1)(x-4)}{(2-1)(2-4)} = \frac{1}{2}(x-1)(4-x)$$

$$\ell_{3}(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

#### Пример вычисления базисных интерполяционных многочленов

| X <sub>k</sub> | 1 | 2 | 4 |
|----------------|---|---|---|
| $f_k$          | 1 | 3 | 1 |

$$\ell_{1}(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_{2}(x) = \frac{(x-1)(x-4)}{(2-1)(2-4)} = \frac{1}{2}(x-1)(4-x)$$

$$\ell_{3}(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

#### Вопрос

Чему равна сумма  $\ell_1(x) + \ell_2(x) + \ell_3(x)$  ?

#### Пример вычисления базисных интерполяционных многочленов

| X <sub>k</sub> | 1 | 2 | 4 |
|----------------|---|---|---|
| $f_k$          | 1 | 3 | 1 |

$$\ell_{1}(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_{2}(x) = \frac{(x-1)(x-4)}{(2-1)(2-4)} = \frac{1}{2}(x-1)(4-x)$$

$$\ell_{3}(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

#### Вопрос

Чему равна сумма  $\ell_1(x) + \ell_2(x) + \ell_3(x)$  ?

$$\ell_1(x) + \ell_2(x) + \ell_3(x) = 1.$$

Подсказка: рассмотреть f(x) = 1 и ее интерполянт P(x)

#### Пример интерполяционного многочлена в форме Лагранжа



$$P(x) = \frac{1}{3}(x-2)(x-4) + 3\frac{1}{2}(x-1)(4-x) + \frac{1}{6}(x-1)(x-2)$$

Логичный вопрос — насколько восстановленная по значениям функция (интерполянт) близка к исходной? Она в точности с ней совпадает в точках  $x_k$ , но что можно сказать про различия в промежутках?

# Погрешность алгебраической интерполяции

Логичный вопрос — насколько восстановленная по значениям функция (интерполянт) близка к исходной? Она в точности с ней совпадает в точках  $x_k$ , но что можно сказать про различия в промежутках?

#### Теорема

Ошибка алгебраической интерполяции допускает оценку

$$|f(x)-P(x)|\leq \frac{f^{(n)}(\xi)}{n!}|\omega(x)|\leq \frac{M_n}{n!}|\omega(x)|,\quad x,\xi,x_k\in[a,b],$$

где 
$$\omega(x)=(x-x_1)(x-x_2)\cdots(x-x_n)$$

# Погрешность алгебраической интерполяции

Логичный вопрос — насколько восстановленная по значениям функция (интерполянт) близка к исходной? Она в точности с ней совпадает в точках  $x_k$ , но что можно сказать про различия в промежутках?

#### Теорема

Ошибка алгебраической интерполяции допускает оценку

$$|f(x)-P(x)|\leq \frac{f^{(n)}(\xi)}{n!}|\omega(x)|\leq \frac{M_n}{n!}|\omega(x)|,\quad x,\xi,x_k\in[a,b],$$

где 
$$\omega(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$$

часть ошибки  $\frac{M_n}{n!}$  зависит только от вида функции, а вторая  $\omega(x)$  — только от расположения точек интерполяции.

### Ощибка интерполяции на равномерной сетке

Рассмотри равномерную сетку  $x_k = a + \frac{k-1}{n-1}(b-a)$  Оценим максимальное значение функции  $\omega(x)$  на ней.

$$\max_{x \in [a,b]} \omega(x) \le (n-1)! \left(\frac{b-a}{n-1}\right)^n \equiv (n-1)! h^n,$$

где через h обозначен шаг сетки, то есть  $\frac{b-a}{n-1}$ 

#### Ощибка интерполяции на равномерной сетке

Рассмотри равномерную сетку  $x_k = a + \frac{k-1}{n-1}(b-a)$  Оценим максимальное значение функции  $\omega(x)$  на ней.

$$\max_{x \in [a,b]} \omega(x) \leq (n-1)! \left(\frac{b-a}{n-1}\right)^n \equiv (n-1)! h^n,$$

где через h обозначен шаг сетки, то есть  $\frac{b-a}{n-1}$  Отсюда, погрешность интерполяции, которая является ошибкой метода, равна

$$arepsilon_{\mathsf{METOA}} = rac{M_n}{n!} \max_{x \in [a,b]} |\omega(x)| \leq rac{M_n}{n} h^n$$

Однако, в ошибке метода фигурирует максимум n-й производной, который может сильно расти при увеличении n.











# Оптимальный выбор узлов интерполяции

Посмотрим, насколько возможно уменьшить ошибку интерполяции, только за счет выбора узлов  $x_k$ . (Предполагаем, что можем узнать только n значений функции, но в тех точках, которые нам интересны).

<sup>\*</sup>О функциях мало удаляющихся от нуля при некоторых величинах переменной/Чебышев П.Л. - Спб.,1881

# Оптимальный выбор узлов интерполяции

Посмотрим, насколько возможно уменьшить ошибку интерполяции, только за счет выбора узлов  $x_k$ . (Предполагаем, что можем узнать только n значений функции, но в тех точках, которые нам интересны).

Задача состоит в минимизации функции  $\omega(x)$  за счет выбора  $x_k$ . Однако фраза "минимизация функции" требует конкретизации

<sup>\*</sup>О функциях мало удаляющихся от нуля при некоторых величинах переменной/Чебышев П.Л. - Спб.,1881

# Оптимальный выбор узлов интерполяции

Посмотрим, насколько возможно уменьшить ошибку интерполяции, только за счет выбора узлов  $x_k$ . (Предполагаем, что можем узнать только n значений функции, но в тех точках, которые нам интересны).

Задача состоит в минимизации функции  $\omega(x)$  за счет выбора  $x_k$ . Однако фраза "минимизация функции" требует конкретизации

Если искать минимум максимального отклонения  $\omega(x)$ , то такая задача была решена Чебышевым $(1881)^*$ 

$$\max_{x \in [a,b]} |(x-x_1)(x-x_2)\cdots(x-x_n)| \to \min_{x_k}$$

<sup>\*</sup>О функциях мало удаляющихся от нуля при некоторых величинах переменной/Чебышев П.Л. - Спб.,1881

#### штерполиции Миогомлены Чебышева

Многочленом Чебышева степени n называется многочлен

$$T_n(x) = \cos n \arccos x = 2^{n-1}x^n + \dots$$

Он является многочленом, наименее уклоняющимся от нуля на отрезке [-1,1] среди многочленов с тем же коэффициентом при старшей степени. Чтобы получить решение предыдущей задачи, необходимо этот многочлен отмасштабировать и перевести отрезок [-1,1] в [a,b].

### Многочлены Чебышева

Многочленом Чебышева степени n называется многочлен

$$T_n(x) = \cos n \arccos x = 2^{n-1}x^n + \dots$$

Он является многочленом, наименее уклоняющимся от нуля на отрезке [-1,1] среди многочленов с тем же коэффициентом при старшей степени. Чтобы получить решение предыдущей задачи, необходимо этот многочлен отмасштабировать и перевести отрезок [-1,1] в [a,b].

$$\omega(x) = \tilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$

### Многочлены Чебышева

Многочленом Чебышева степени n называется многочлен

$$T_n(x) = \cos n \arccos x = 2^{n-1}x^n + \dots$$

Он является многочленом, наименее уклоняющимся от нуля на отрезке [-1,1] среди многочленов с тем же коэффициентом при старшей степени. Чтобы получить решение предыдущей задачи, необходимо этот многочлен отмасштабировать и перевести отрезок [-1,1] в [a,b].

$$\omega(x) = \tilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$

$$\max_{x \in [a,b]} = \frac{(b-a)^n}{2^{2n-1}} = \frac{h^n n^n}{2^{2n-1}} \approx \frac{h^n n! \, e^n}{2^{2n-1} \sqrt{2\pi n}} = h^n n! \left(\frac{e}{4}\right)^n \sqrt{\frac{2}{\pi n}}$$

Существенное отличие от равномерной сетки в быстро убывающем сомножителе  $\left(\frac{e}{4}\right)^n$ 

### Сетка из нулей многочлена Чебышева

Узлы сетки  $x_k$  являются корнями  $\omega(x)$ . Оптимальной в смысле минимума ошибки интерполяции будет сетка из узлов  $x_k$ , которые являются корнями  $\omega(x) = \tilde{T}_n(x)$ .

## Сетка из нулей многочлена Чебышева

Узлы сетки  $x_k$  являются корнями  $\omega(x)$ . Оптимальной в смысле минимума ошибки интерполяции будет сетка из узлов  $x_k$ , которые являются корнями  $\omega(x) = \tilde{T}_n(x)$ .

$$\tilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2k-1}{2n}\pi\right)$$



### Сетка из нулей многочлена Чебышева

Узлы сетки  $x_k$  являются корнями  $\omega(x)$ . Оптимальной в смысле минимума ошибки интерполяции будет сетка из узлов  $x_k$ , которые являются корнями  $\omega(x) = \tilde{T}_n(x)$ .

$$\tilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$

$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos\left(\frac{2k-1}{2n}\pi\right)$$



#### Теорема

Если функция f(x) имеет ограниченную производную на отрезке, то последовательность интерполяционных многочленов  $P_n(x)$  на такой сетке сходится равномерно к f(x).

$$P_n(x) \rightrightarrows f(x)$$

# Экстраполяция

До сих пор, мы изучали поведение интерполянта в пределах отрезка, на котором заданы точки. Также можно ставить задачу определения значений функции за пределами отрезка, например, спрогнозировать значения функции по уже имеющимся данным.

# Экстраполяция

До сих пор, мы изучали поведение интерполянта в пределах отрезка, на котором заданы точки. Также можно ставить задачу определения значений функции за пределами отрезка, например, спрогнозировать значения функции по уже имеющимся данным.

Большая часть формальных выводов, в том числе и погрешности экстраполяции, один-к-одному переносятся из интерполяции. Отличие заключается в расширении отрезка [a,b], до отрезка, в который входит точка x. В свою очередь, оценки для максимумов функции  $\omega(x)$  сильно зависят от изучаемого отрезка.

## Экстраполяция на равномерной сетке

Для оценки ошибки экстраполяции остается верной формула

$$\varepsilon_{\mathsf{метод}} \leq \frac{M_n}{n!} |\omega(x)|$$

Пусть точка x лежит правее точки b на  $\delta$ :  $x=b+\delta$ 

$$\omega(x) = \prod_{k=0}^{n-1} (\delta + kh) = h^n \frac{\Gamma\left(\frac{\delta}{h} + n\right)}{\Gamma\left(\frac{\delta}{h}\right)} \approx \begin{cases} h^n n! & , & \delta \lesssim h \\ \delta^n & , & \delta \gg h \end{cases}$$

То есть, экстраполяция на расстояния порядка h имеет погрешность, близкую к погрешности интерполяции, но по мере удаления от конца отрезка, ошибка стремительно растет.

#### Экстаполяция на сетке из нулей многочлена Чебышева

В этом случае открывается другое экстремальное свойство многочленов Чебышева.

#### Экстаполяция на сетке из нулей многочлена Чебышева

В этом случае открывается другое экстремальное свойство многочленов Чебышева.

Наряду с тем, что на данной сетке функция  $\omega(x)$  наименее отклоняется от нуля среди всех многочленов со старшей степенью 1, эта функция стремительнее всех остальных растет за пределами отрезка [a,b].

#### Экстаполяция на сетке из нулей многочлена Чебышева

В этом случае открывается другое экстремальное свойство многочленов Чебышева.

Наряду с тем, что на данной сетке функция  $\omega(x)$  наименее отклоняется от нуля среди всех многочленов со старшей степенью 1, эта функция стремительнее всех остальных растет за пределами отрезка [a,b].

Таким образом, сетка из нулей многочлена Чебышева оказывается самой плохой в смысле погрешности экстраполяции — оценка для ошибки превышает оценку для ошибки на любой другой сетке.

#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



К последнему кадру

#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них





#### Чувствительность интерполяции

Возьмем 20 точек функции  $\sin x$  и чуть-чуть (на доли процента) пошевелим значение функции в одной из них



▶ К первому кадру

#### Нувствительность интерполяции

Вспомним выражение для интерполяционного многочлена в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} f_j \ell_j(x)$$

"Пошевелив"  $f_k$  на  $\delta f_k$ , мы тем самым "пошевелили" интерполянт на

$$\delta P(x) = \sum_{j=1}^{n} (f_j + \delta f_j) \ell_j(x) - \sum_{j=1}^{n} f_j \ell_j(x) = \sum_{j=1}^{n} \delta f_j \ell_j(x)$$

Поскольку конкретное направление шевеления (в большую или меньшую сотрону) обычно неизвестно, а известно только абсолютное значение, можно написать оценку

$$|\delta P(x)| \leq \sum_{j=1}^{n} |\delta f_j| |\ell_j(x)|$$

Рассмотрим случай, когда все  $|\delta f_k|$  одинаковы и равны  $\delta f$ :

$$|\delta P(x)| \le \delta f \sum_{j=1}^{n} |\ell_j(x)|$$

Сумма  $\sum_{j=1}^{n} |\ell_j(x)|$  зависит только от сетки, называется функцией Лебега этой сетки и обозначается L(x). В случае, когда интересует максимальное отклонение интерполянта по всему отрезку, вводят максимум функции Лебега, который называется константой Лебега и обозначается L

$$|\delta P(x)| \le L(x)\delta f$$

$$|\delta P| \le \max_{x \in [a,b]} L(x)\delta f \equiv L\delta f$$

## Функция Лебега равномерной сетки



Для равномерной сетки константа Лебега L растет как  $L\sim \frac{2^n}{\sqrt{n}}.$ 

## Функция Лебега равномерной сетки



Для равномерной сетки константа Лебега L растет как  $L\sim \frac{2^n}{\sqrt{n}}.$ 

## Функция Лебега равномерной сетки



Для равномерной сетки константа Лебега L растет как  $L\sim \frac{2^n}{\sqrt{n}}.$ 

## Функция Лебега равномерной сетки



Для равномерной сетки константа Лебега L растет как  $L \sim \frac{2^n}{\sqrt{n}}$ . Также видно, что за пределами отрезка функция Лебега растет еще быстрее. Это означает что задача экстраполяции крайне чувствительна к заданию точных значений в узлах.

#### Функция Лебега сетки из нулей многочлена Чебышева



Для этой сетки константа Лебега L растет как  $L\sim {2\over \pi}\ln n.$ 

#### Функция Лебега сетки из нулей многочлена Чебышева



Для этой сетки константа Лебега L растет как  $L\sim \frac{2}{\pi}\ln n$ . Использование сетки из нулей многочлена Чебышева позволяет сильно снизить требования к точности задания функции в узлах.

#### Функция Лебега сетки из нулей многочлена Чебышева



Для этой сетки константа Лебега L растет как  $L\sim \frac{2}{\pi}\ln n$ . Использование сетки из нулей многочлена Чебышева позволяет сильно снизить требования к точности задания функции в узлах.

Глобальная многочленная или тригонометрическая интерполяции при большом количестве узлов начинают испытывать проблемы при быстром росте констант  $M_n$  и весьма чувствительны к заданию функции в узлах.

## Проблемы глобальной интероляции

Глобальная многочленная или тригонометрическая интерполяции при большом количестве узлов начинают испытывать проблемы при быстром росте констант  $M_n$  и весьма чувствительны к заданию функции в узлах. Одно из решений — проводить не глобальную, а локальную интерполяцию, по небольшому количеству соседних узлов. Такой интерполянт называется сплайном.

## Проблемы глобальной интероляции

Глобальная многочленная или тригонометрическая интерполяции при большом количестве узлов начинают испытывать проблемы при быстром росте констант  $M_n$  и весьма чувствительны к заданию функции в узлах. Одно из решений — проводить не глобальную, а локальную интерполяцию, по небольшому количеству соседних узлов. Такой интерполянт называется сплайном.

Степенью сплайна называется степень многочлена на каждом отрезке. Гладкостью сплайна называется количество непрерывных производных у функции на всем отрезке Дефектом сплайна называется разность между степенью и гладкостью сплайна.

#### Кусочно-линейная интерполяция

Простейшая кусочно-многочленная интерполяция — кусочно линейная. Функция на каждом отрезке приближается линейной.



Cтепень — 1  $\Gamma$ ладкость — 0  $\mathcal{L}$  Дефект — 1

#### Кусочно-квадратичная интерполяция

Построим на каждом отрезке параболу по трем ближайшим точкам.



Степень — 2 Гладкость — 0 Дефект — 2

#### Гладкая кусочно-квадратичная интерполяция

Построим по трем первым точкам параболу, а на следующих отрезках будем стоить параболу, проходящую через концы отрезка и гладко продолжающую параболу на предыдущем отрезке.

Пусть 
$$P_k(x) = a_k x^2 + b_k x + c$$
,  $q_k = P'_{k-1}(x_k)$ 

$$\begin{cases} a_k x_k^2 + b_k x_k + c_k &= f_k \\ a_k x_{k+1}^2 + b_k x_{k+1} + c_k &= f_{k+1} \\ 2a_k x_k + b_k &= q_k \end{cases}$$

Данный метод позволяет строить сплайны любой степени с дефектом 1. Частный случай степени 3 называется сплайном Шонберга.



Степень — 2 Гладкость — 1 Дефект — 1

Удалось добиться гладкости сплайна, но при этом исчезло свойство локальности: при изменении какого-нибудь значения функции изменяется весь сплайн. Конечно, изменение не такое большое, как при глобальной интерполяции, но хотелось бы от него избавиться

#### Локальные гладкие сплайны

Возьмем за основу негладкий сплайн P(x) (например кусочно-линейный). На каждом отрезке будем искать кубическую параболу  $Q_k(x)$ , которая проходит через его концы, на левом конце производная совпадает с  $P'(x_k+0)$ , а на правом — с  $P'(x_{k+1}+0)$ . Таким образом, производная сплайна будет непрерывной, а для вычисления интерполянта на отрезке используются только 3 ближайшие точки

$$\begin{cases} Q'_k(x_k) &= \frac{f_k - f_{k-1}}{x_k - x_{k-1}} \\ Q'_k(x_{k+1}) &= \frac{f_{k+1} - f_k}{x_{k+1} - x_k} \\ Q_k(x_k) &= f_k \\ Q_k(x_{k+1}) &= f_{k+1} \end{cases}$$

Таким образом можно строить локальные сплайны степени 2s+1 при гладкости s.

## Гладкая локальная кусочно-кубическая интерполяция



Степень — 3 Гладкость — 1 Дефект — 2

Сплайн получился гладкий и сохранил свойство локальности. Такие локальные сплайны называются сплайнами В.С. Рябенького.

# Спасибо за внимание!

tsybulin@crec.mipt.ru