Topics in Algebra, Chapter 1 Solutions

David Sillman

2022

- (1a) If $A \subset B$ and $B \subset C$, then every element $a \in A$ is also $a \in B$. Likewise, $B \subset C \Leftrightarrow (a \in B \Rightarrow a \in C)$. Thus, every element $a \in A$ is also in C. Therefore, $A \subset C$.
- (1b) If we presuppose that $B \subset A$, this means that $x \in B \Rightarrow x \in A$. In set-builder notation, we know that

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Because every element of B is also in A, the set builder is reduced to

$$A \cup B = \{x \mid x \in A\} = A$$

Conversely, if we start by supposing that $A \cup B = A$, this implies, by logical necessity, that

$$(x \in A) \Leftrightarrow (x \in A \lor x \in B)$$

As alluded to above, this is logically transformable into the statement that $x \in B \Rightarrow x \in A$, and thus $B \subset A$.

(1c) In the set $B \cup C$, every element satisfies $x \in B \vee x \in C$. Likewise, in $A \cup C$, every element satisfies $x \in A \vee x \in C$. In the case that $x \in C$, the right side of the disjunction is satisfied in both sets. If $x \in B$, then $B \subset A$ implies that $x \in A$, and so both sets are satisfied again. This means that every element in $B \cup C$ is in $A \cup C$, and so $B \cup C \subset A \cup C$.

Similarly, every element of $B \cap C$ satisfies $x \in B \land x \in C$ and every element of $A \cap C$ satisfies $x \in A \land x \in C$. Because, again, due to $B \subset A$, we have that $x \in B \Rightarrow x \in A$ and thus every element in $B \cap C$ must also be in $A \cap C$ and so $B \cap C \subset A \cap C$.

(2a) The commutativity of set intersection (\cap) and set union (\cup) follow from the analogous commutativity properties of logical operators \wedge and \vee , respectively. Because $A \cap B$ consists of the elements which satisfy

$$x \in A \land x \in B \equiv x \in B \land x \in A$$

and thus it follows that $A \cap B = B \cap A$. The same argument follows for $A \cup B = B \cup A$.

(2b) As with the last problem, the associativity of \cap follows from the associativity of logical \wedge . That is, the set $(A \cap B) \cap C$ consists of elements which satisfy,

$$(x \in A \land x \in B) \land x \in C \equiv x \in A \land (x \in B \land x \in C)$$

And thus, exactly those same elements satisfy the necessary condition for being elements of $A \cap (B \cap C)$, giving the equality $(A \cap B) \cap C = A \cap (B \cap C)$.

(3) Logically speaking, the elements of $A \cup (B \cap C)$ are those which satisfy $x \in A \vee (x \in B \wedge x \in C)$. By the distributivity of \vee , it follows that this logical condition is equivalent to the condition,

$$x \in A \lor (x \in B \land x \in C) \equiv (x \in A \lor x \in B) \land (x \in A \lor x \in C)$$

And thus, the elements in the former set must be exactly those elements in the latter set, giving the equality $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

- (4a) The elements of $(A \cap B)'$ are those which satisfy $\neg (x \in A \land x \in B)$. Applying De Morgan's logical negation rules, we get that this is logically equivalent to $x \notin A \lor x \notin B$. The set whose elements all satisfy this condition is identically $A' \cup B'$.
- (4b) As in the last problem, we translate the set $(A \cup B)'$ into the membership condition $\neg (x \in A \lor x \in B)$. De Morgan transforms this into the membership condition $x \notin A \land x \notin B$. This membership condition corresponds to the identical set, $A' \cap B'$.

(5) There are two cases: (i) A is disjoint from B $(A \cap B = \emptyset)$, or (ii) A is not disjoint from B $(A \cap B \neq \emptyset)$.

In case (i), we trivially have that $o(A \cap B) = o(\emptyset) = 0$. So, it is trivially the case that every element of A is represented in $A \cup B$ and likewise for B, and all of these elements are distinct. Therefore, $o(A \cup B) = o(A) + o(B)$, which works for our hypothesis given that $o(A \cap B) = 0$.

In case (ii), let's suppose that there are k elements in common between A and B, such that $o(A \cap B) = k$. Because $A \cup B$ will only contain one copy of each of the common elements, we must subtract $o(A \cap B)$ from o(A) + o(B) to get the number of unique elements in $A \cup B$.

(6) First, we construct on A a bijective index $i: A \to [n]$. Every subset $S \subset A$ is uniquely identified by an n-tuple of binary variables $(b_1, \ldots, b_n) \in B$, with $b_i \in \{0, 1\}$. It's trivial to see that the set of all binary n-tuples B has 2^n elements. From this set, we have a bijection which generates (and indexes) the set of all subsets of A (hereafter called the *power set* of A, $\mathcal{P}(A)$). That is, we define $\sigma: B \to \mathcal{P}(A)$ via the map

$$\sigma: b \mapsto \bigcup_{b_j=1} i^{-1}(j)$$

In other words, if a particular subset had $b_j = 1$, this means the element $a \in A$ with i(a) = j is included in the subset. Because there exists a bijective map between the finite sets B and $\mathcal{P}(A)$, we have that they are the same size. Therefore, $\mathcal{P}(A)$ has 2^n elements.

(7) Let S be the set of Americans. Let C be the set of Americans that like cheese, and A be the set of Americans that like apples. The proportions given suggest that |C|/|S| = 0.63 and that |A|/|S| = 0.76. Because both $C \subset S$ and $A \subset S$, we expect $C \cup A \subset S$. This necessitates that

$$|C \cup A| \le |S|$$
$$|C| + |A| - |C \cap A| \le |S|$$

Rearranging terms and dividing through by |S|, we get a bound on the proportion of Americans which like both cheese and apples:

$$|C \cap A| \ge \frac{|C|}{|S|} + \frac{|A|}{|S|} - 1.0$$

 $|C \cap A| \ge 0.63 + 0.76 - 1.0$
 $|C \cap A| \ge 0.39$

In English, no fewer than 39% of Americans like both cheese and apples.

(8) Recall that set difference A-B entails the membership condition $x \in A \land x \notin B$. This means that the *symmetric difference* A * B entails the membership condition,

$$(x \in A \land x \notin B) \lor (x \in B \land x \notin A)$$

By double-distributing the disjunction, we get to a CNF representation, and then set-difference:

$$(x \in A \lor x \in B) \land (x \in A \lor x \notin A) \land$$
$$(x \notin B \lor x \in B) \land (x \notin B \lor x \notin A)$$
$$\Downarrow$$
$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A)$$
$$\Downarrow$$
$$(x \in A \lor x \in B) \land \neg (x \in A \land x \in B)$$

This shows logical equivalence in membership between A*B and $(A \cup B) - (A \cap B)$.

(9a) For brevity, we argue non-symbolically. Every element of (A+B) is either unique to A or unique to B. Taking the symmetric difference, then, (A+B)+C must result in those elements which are either unique to A, unique to B, unique to C, or common to all three of them.

Likewise, the elements of (B+C) are those elements unique to B and unique to C. Taking the symmetric difference, we see that A+(B+C) is the set of elements which are unique to A, unique to B, unique to C, or common to all three. Therefore, the sets are equal and so (A+B)+C=A+(B+C).

(9b) Reducing the symmetric differences and distributing the leftmost conjunction,

$$A \cap ((B-C) \cup (C-B))$$
$$(A \cap (B-C)) \cup (A \cap (C-B))$$

We then use the fact that intersection distributes over set difference:

$$((A \cap B) - (A \cap C)) \cup ((A \cap C) - (A \cap B))$$

$$\downarrow$$

$$A \cdot B + A \cdot C$$

(9c) It's trivially the case that $A \cdot A = A \cap A = A$.

- (9d) Every element of A is also (identically) an element of A, so there are no elements unique to either set. Therefore, $A + A = \emptyset$
- (9e) Taking the left-symmetric-difference from A of both sides of the equation and applying the associativity from part (a) with the cancellation property of part (d), we get:

$$A + (A + B) = A + (A + C)$$
$$(A + A) + B = (A + A) + C)$$
$$\emptyset + B = \emptyset + C$$

Trivially, the symmetric difference of any set with the empty set is simply the set itself, which gives us B=C.

- (10a) The relation of having a common ancestor is reflexive, symmetric and transitive. Therefore, it is a valid equivalence relation.
- (10b) The relation of living within 100 miles of each other is reflexive and symmetric, but not transitive. Therefore, it is not a valid equivalence relation.
- (10c) The relation of having the same father is reflexive, symmetric and transitive. Therefore, it is a valid equivalence relation.
- (10d) The relation of having the same absolute value is reflexive, symmetric and transitive. Therefore, it is a valid equivalence relation.
- (10e) The relation of being strictly greater and strictly lesser than one another is impossible to satisfy. Therefore, it is not a valid equivalence relation.
- (10f) The relation of two lines having the same slope in the plane is reflexive, symmetric and transitive. Therefore, it is a valid equivalence relation.

- (11a) Using only symmetry and transitivity, we do not have a guarantee that there exists a b for a such that $a \sim b$. Thus, this argument does not account for cases that each equivalence class [a] are each only individual elements.
- (11b) If we include a property known as seriality, which necessitates that every a has a b such that $a \sim b$. Under this assumption, both symmetry and transitivity imply reflexivity.

(12) Clearly, $a \sim a$ because 0 is a multiple of n. Likewise, if $a \sim b$, then it means a - b = pn and so b - a = -pn, which is also a multiple of n, implying $b \sim a$. Finally, $a \sim b$ and $b \sim c$ mean that a-b=pn and b-c=qn. Adding the equations together gives us a-c=(p+q)n, so $a\sim c$. Therefore, differing by a multiple of n is a valid equivalence relation. Each of the equivalence classes are defined to be $cl(i) = \{x \in \mathbb{Z} \mid x \equiv i \pmod{n}\}.$ Because every integer must have a remainder in [n] after division by n, we have that cl: $[n] \to \mathbb{Z}$ is a surjection, and so there are at most n equivalence classes. Because each equivalence class cl(i) trivially contains i for $0 \le i < n$, we have that there are at least n equivalence classes. Therefore, there are exactly nequivalence classes.

(13) It's clear that being in the same mutually disjoint subset A_{α} is a valid equivalence relation. This follows from the demonstrable reflexivity, symmetry and transitivity. Moreover, the equivalence classes must be the distinct A_{α} 's because that is how we defined our equivalence.

As a matter of notation, I invoke \sqrt{t} as meaning the *positive square* root of t, so $\sqrt{t} \ge 0$.

- (1a) σ is surjective, but not injective. Every $t \in T$ is mapped to the set $\sigma^{-1}(t) = \{-\sqrt{t}, \sqrt{t}\}.$
- (1b) σ is both injective and surjective. Every $t \in T$ is mapped to its pre-image $\sigma^{-1}(t) = \sqrt{t}$.
- (1c) σ is injective, but not surjective. Only the perfect squares $t \in T$ have pre-images of the form $\sigma^{-1}(t) = \sqrt{t}$.
- (1d) σ is injective, but not surjective. Only the even integers $t \in T$ have pre-images of the form $\sigma^{-1}(t) = t/2$.

(2) I define the injection $\alpha: S \times T \to T \times S$ as the "swap" map, $\alpha: (s,t) \mapsto (t,s)$. This map is provably an injection because

$$(t,s) = (t',s') \Leftrightarrow (s,t) = (s',t')$$

So, this injection, α , is evidence of the one-to-one correspondence between the sets.

- (3a) As in problem (2), the injection $\alpha: (S \times T) \times U \to S \times (T \times U)$ defined by $\alpha: ((s,t),u) \mapsto (s,(t,u))$ evidences a one-to-one correspondence between the sets.
- (3b) We define the injection $\alpha:(S\times T)\times U\to S\times T\times U$ via the map $\alpha:((s,t),u)\mapsto (s,t,u)$, which evidences the one-to-one correspondence between the sets.

- (4a) If there's a one-to-one correspondence between S and T, then there exists an injection $\sigma: S \to T$ satisfying $\sigma(s) = \sigma(s') \Rightarrow s = s'$. This injection induces an inverse injection, $\sigma^{-1}: T \to S$ defined by $\sigma^{-1}(t) = \{t \in T \mid \bigcup_{s \in S} \sigma(s) = t\}$. The injection σ^{-1} evidences a one-to-one correspondence between T and S.
- (4b) Suppose that the injections $\alpha: S \to T$ and $\beta: T \to U$ evidence the one-to-one correspondences between S and T, and T and U respectively. Then we can define the composed injection $\sigma: S \to U$ via the map $\sigma: s \mapsto \beta(\alpha(s))$. Because $\beta(t) = \beta(t') \Rightarrow t = t'$ and $\alpha(s) = \alpha(s') \Rightarrow s = s'$, it follows that $\sigma(s) = \sigma(s') \Rightarrow s = s'$ and thus σ is injective. This shows that there is a one-to-one correspondence between S and U.

- (5) Because the identity automorphism $\iota: s \mapsto s$, it's clear that $\sigma \circ \iota: s \mapsto \sigma(s)$, which is identical to the map $\sigma: s \mapsto \sigma(s)$. An identical argument holds for $\iota \circ \sigma$, and so it holds that $\sigma = \sigma \circ \iota = \iota \circ \sigma$.
- (6) Because we know that $|S^*| > |S|$ for any set, it is impossible for any mapping of the |S| elements of S to cover the $|S^*|$ elements of S^* . Therefore, no mapping $S \to S^*$ will ever be surjective.
- (7) We can consider constructing an element $\sigma \in A(S)$ as a sequence of choosing unique images $\sigma(s_i)$ for each $s_i \in S$, $1 \le i \le n$. s_1 could have any one of the n elements of S as its image. Each subsequent s_i will have one fewer option for its image. This generates a set of n! distinct automorphisms, and this set is A(S).

(8a) Suppose for the sake of argument that $\sigma: S \to S$ is surjective, but not injective. Specifically, suppose that there exists an $s^* \in S$ with more than one preimage, $\gamma = \sigma^{-1}(s^*)$. Then, it follows that σ is still surjective if its restriction $\bar{\sigma}: S - \gamma \to S - s^*$ is surjective (note that we must remove γ from our domain in order to enforce the constraint that an element of the domain cannot have two different images). However, the domain of $\bar{\sigma}$ is smaller than its codomain, which means that $\bar{\sigma}$ cannot be surjective because no element of the domain can map to two different images. Therefore, neither $\bar{\sigma}$ nor σ itself can be surjective without also being injective.

(8b) Using the reverse argument from problem (8a), we suppose for the sake of contradiction that σ is not surjective. Because it is injective, we have that every element $s \in S$ in the domain is mapped to a unique image $\sigma(s) \in S$. Because we assume it is not surjective, we assume that there is an $s^* \in S$ which does not have a preimage. So, σ maps the |S| elements of S to the |S|-1 elements of $S-\{s^*\}$. By the pigeonhole principle, σ must map two distinct inputs to the same image, and so σ cannot be injective. We have a contradiction, so we prove the result

 σ is injective \Leftrightarrow σ is surjective

(8c) Consider the mapping $\sigma: \mathbb{Z} \to \mathbb{Z}$ via the assignment $n \mapsto \lfloor n/2 \rfloor$. Clearly, σ is surjective because every integer can be doubled to result in one of its preimages. However, it is not injective because n has the multiple preimages $\{2n, 2n+1\}$. So, σ is an infinite counter-example to (8a).

On the other hand, the mapping $\sigma: \mathbb{Z} \to \mathbb{Z}$ via the assignment $n \mapsto 2n$ is clearly injective because every integer can be doubled to result in a unique image. However, it is not surjective because the odd integers have no preimages (they are not the result of any integer being doubled). This evidences an infinite counter-example to (8b).

(9a) Consider the maps

$$\sigma: [2] \to [2]$$
 $\sigma: i \mapsto 1$
 $\tau: [2] \to [1]$ $\tau: 1 \mapsto 1$

Clearly, σ is not surjective because 2 has no preimage. However, $\sigma \circ \tau$ is surjective because 1 does have a preimage. So, the converse of the lemma is false.

(9b) Consider the maps

$$\sigma: [1] \to [2] \qquad \sigma: 1 \mapsto 1$$

$$\tau: [2] \to [2] \qquad \tau: i \mapsto 1$$

Clearly, τ is not injective because both 1 and 2 are mapped to the same image, 1. However, $\sigma \circ \tau$ is injective because 1 has only one preimage. So, the converse of the lemma is false.

(10) We define the map $\kappa : \mathbb{Z} \to \mathbb{Q}$ via the assignment based on prime factorization of each integer:

$$p_1^{r_1} p_2^{r_2} \cdots p_n^{r_n} \mapsto \frac{p_1^{r_1}}{p_2^{r_2} \cdots p_n^{r_n}}$$

It's clear that the numerator and denominator are coprime, and so the image of each integer is a valid rational. Moreover, every rational has at most one preimage. If two images (p/q) and (p'/q') are equal, then it means that their components p=p' and q=q', and so their preimages are equal, pq=p'q'. This shows that κ is an injection and so there is a one-to-one correspondence between the integers and the rationals.

- (11a) Trivially, because σ is a mapping into T, and $\sigma(A) = \sigma_A(A)$, σ_A is thus a mapping $A \to T$.
- (11b) If we assume that σ is injective, then we know that every element of $\sigma(S)$ is the image of exactly one $s \in S$. Because $\sigma(A) \subset \sigma(S)$, we have that every element of $\sigma(A)$ is the image of exactly one $a \in A$. Because $\sigma(A) = \sigma_A(A)$, the same property is true of σ_A 's domain. Therefore, σ_A is injective.
- (11c) If the set of elements, $T \subset T$, in T which have more than one preimage is disjoint from $\sigma(A)$ such that $\sigma(A) \cap \overline{T} = \emptyset$, then σ will still have the property of mapping each $a \in A$ to a unique image $\sigma(a) \in \sigma(A)$. Therefore, σ_A can still be injective, even if σ as a whole is not.

- (12) First, we recognize that $\sigma(A) \subset A$, so $\sigma \circ \sigma(A) \subset A$. On the other hand, $\sigma_A(A) = \sigma(A) \subset A$, and likewise for $\sigma_A \circ \sigma_A(A)$. Because of this equality, we have that $\sigma \circ \sigma(A) = \sigma_A \circ \sigma_A(A)$, and so the domain of both $(\sigma \circ \sigma)_A$ and $\sigma_A \circ \sigma_A$ are mapped to the same images, and so the functions are the same.
- (13a) Consider the proper subset $5\mathbb{Z} \subset \mathbb{Z}$. The injection $\sigma : x \mapsto 5x$ evidences a one-to-one correspondence between the sets, and so \mathbb{Z} is infinite.
- (13b) Consider the proper subset $\mathbb{R}_{>0} \subset \mathbb{R}$. The injection $\sigma : x \mapsto e^x$ evidences a one-to-one correspondence between the sets, and so \mathbb{R} is infinite.
- (13c) Because A is infinite, it has a subset $\bar{A} \subset A \subset S$ with which it has a one-to-one correspondence. This means that S also has the same one-to-one correspondence with \bar{A} and so S is also infinite.