

Data Parallelism

Pytorch实现数据并行

• 自己使用pytorch通信原语dist.all_reduce()实现梯度的更新。

```
def average_gradients(model, args):
    size = float(dist.get_world_size())
    for param in model.parameters():
        dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
```

• 自己使用pytorch自己的数据并行DDP实现数据并行

```
resnet152 = models.resnet152(pretrained=False)
model = Resnet_large(resnet152).cuda()
model=DDP(model, device_ids=[args.local_rank],output_device=args.local_rank)
```


- 自己实现的all_reduce梯度交换:对于模型中<mark>每一个梯度矩阵</mark>都要进行一次同步 协调。
- Pytorch实现的梯度交换:定义一个桶的概念,在backward的过程中每算出一个梯度矩阵后就会将其放入桶内,当桶里装满之后,再进行All_reduce将桶里面的梯度矩阵发出去;同时使用Ring_AllReduce技术,可以避免由于gpu的增加导致通信效率下降。

Experiment on two 3090 gpus

数据集: cifar10增强

模型: resnet152

策略:基于自己的all_reduce。

环境:一台linux虚拟机,上面装配2张3090显卡

Experiment on two 3090 gpus

数据集: cifar10增强

模型: resnet152

策略: PytorchDDP。

环境:一台linux虚拟机,上面装配2张3090显卡

数据集: cifar10增强

模型: resnet152

环境:两台linux虚拟机,每一台各装备一张A2000显卡

集群名林: A 深度学习集群								+添加机器 ^ 收起
IP	机器ID	机器备注	机器型号	带宽	镜像	状态	添加时间	操作
192.168.1.43/24	wO7BdJ	-	NVIDIA RTX A2000	2.5Gbps	Pytorch 2.0.1	Master ❷ 初始化成功 ❷ 已连接	7 12-17 14:09	释放 移除
192.168.1.44/24	qg31M0	-	NVIDIA RTX A2000	2.5Gbps	Pytorch 2.0.1	初始化成功已连接	12-17 14:09	设置master 释放 移除

Experiment on A2000-V100(16GB)

数据集: cifar10增强

模型: resnet152

环境:两台linux虚拟机,一台V10016GB显存,一台A2000。

集群名称: A 深度学习集群								+ 添加机器 ^ 收起
IP	机器ID	机器备注	机器型号	带宽	镜像	状态	添加时间	操作
192.168.1.41/24	q3XKQO	-	NVIDIA RTX A2000	2.5Gbps	Pytorch 2.0.1	✓ 初始化成功✓ 已连接	12-16 18:56	设置master 释放 移除
192.168.1.42/24	Z7vRxK	-	NVIDIA Tesla V100-16GB	2.5Gbps	Pytorch 2.0.1	Master ② 初始化成功 ③ 已连接	12-16 18:56	释放 移除

Experiment on A2000-V100(16GB)

Experiment on A16-V100(16GB)

数据集: cifar10增强

模型: resnet152

环境:两台linux虚拟机,一台V100-16GB显存,一台A16。

集群名称: A + 添加机器 へ 收起 深度学习集群 机器ID 帯宽 镜像 添加时间 操作 IΡ 机器备注 机器型号 状态 Pytorch 2.0.1 ② 初始化成功 12-17 19:58 释放 移除 192.168.1.51/24 wLQpYR - NVIDIA Tesla V100-16GB 2.5Gbps ❷ 已连接 ❷ 初始化成功 12-17 19:58 设置master 释放 移除 2.5Gbps Pytorch 2.0.1 192.168.1.52/24 P6GaY3 -**NVIDIA A16**

Experiment on A16-V100(16GB)

Experiment on A16-A16-A2000

数据集: cifar10增强

模型: resnet152

环境:两台linux虚拟机,一台机器两张A16,一台机器一张A2000。

Experiment on A16-A16-A2000

