

ADS AD TO AT P CA CO SOUN

www.aduni.edu.pe

FUNCIONES OXIGENDAS I Semana 38

SAN MARCOS

www.aduni.edu.pe

ADUNI

I. OBJETIVOS

Los estudiantes, al término de la sesión de clase serán capaces de:

- Identificar y clasificar los compuestos oxigenados (alcohol, éter y aldehído) según su grupo funcional.
- 2. Nombrar y formular a los compuestos oxigenados (alcohol, éter y aldehído) aplicando las reglas de la IUPAC.
- 3. Identificar las principales propiedades y aplicaciones de alcoholes, éteres y aldehídos.

ADUNI

II. INTRODUCCIÓN

Alcoholes, aldehídos y éteres son **compuestos orgánicos oxigenados** con amplio uso en el sector industrial y uso medicinal.

Veamos algunos ejemplos:

El alcohol medicinal (solución acuosa de etanol, C_2H_5OH) se usa en medicina como antiséptico, desinfectante. Aplicado a la piel se usa para desinfectarla antes de una inyección y antes de una cirugía.

Se llama formol a una solución acuosa de formaldehido, **HCHO**, ≈40%, el cual es usado como desinfectante y en la conservación de elementos biológicos.

FUNCIONES OXIGENADAS

III. CONCEPTO

Las funciones oxigenadas son compuestos orgánicos ternarios, constituidos por carbono, hidrógeno y oxígeno, donde el oxígeno forma parte del grupo funcional, según el tipo de grupo funcional encontramos seis tipos de funciones oxigenadas:

Función oxigenada	Grupo funcional	Nombre de grupo funcional	Fórmula general
Alcohol	- O H	Hidroxilo o oxidrilo	ROH
Éter	лсария — Ö —	oxi	ROR
Aldehido	-СНО	carbonilo	RCHO
Cetona	-co-	carbonilo	RCOR
Ácido carboxílico	-соон	carboxilo	RCOOH
Éster	-coo-	carboalcoxi	RCOOR

R y R son grupos sustituyentes que pueden ser iguales o diferentes.

IV. ALCOHOLES

Son compuestos oxigenados que tienen como grupo funcional al hidroxilo (-**OH**) unido a un átomo de carbono con enlaces simples.

átomo de carbono saturado (forma solo enlaces simples).

Hibridación sp³
 para el átomo de
 carbono

EJEMPLO

Indique aquella sustancia que es considerada un alcohol.

 CH_3 CH_2 CH CH

Es un alcohol

No es un alcohol

• Es un compuesto aromático

Su fórmula general es:

$$R-\ddot{O}-H \iff R-OH$$

R-: grupo alquilo.

NOMENCLATURA COMÚN

Alcohol nombre del sustituyente ico

EJEMPLOS

CH₃—OH : alcohol metílico

(también llamado alcohol de madera)

CH₃-CH₉-OH : alcohol etílico

(también llamado espíritu del vino)

CH₃—CH—CH₃ : alcohol isopropílico (forma parte del ron de quemar)

En el nombre del hidrocarburo, se cambia la terminación "o" por "ol".

Observación:

Si el número de $C \ge 3$; la cadena principal se enumera iniciando por el extremo más cercano al grupo hidroxilo (-OH).

EJEMPLOS

CH₃-OH: metanol

CH₂-CH₂-OH : etanol

 $\frac{3}{CH_3} - \frac{2}{CH_2} - CH_2 - OH : 1-propanol$ (propan-1-ol)

4-isopropil-6,6-dimetil-4-octanol

(4-isopropil-6-6-dimetiloctan-4-ol)

4-etil-4-metil-5-hexen-2-ol

(4-etil-4-metilhex-5-en-2-ol)

8-metil-4-nonen-3-ol

(8-metilnon-4-en-3-ol)

TIPOS DE ALCOHOLES

Según el número de los grupos hidroxilo (-OH)

MONOLES

Poseen solo un grupo funcional (-OH).

POLIOLES

Poseen dos o más grupos funcionales -OH.

1,2,4-pentanotriol (pentano-1,2,4-triol)

SEGÚN LA POSICIÓN DEL GRUPO FUNCIONAL -OH EN LA CADENA CARBONADA

Alcohol primario

Alcohol secundario

Alcohol terciario

$$CH_{3}-CH_{2}-CH_{2}-OH$$

$$CH_{3}-CH-CH_{3}$$

$$OH$$

$$OH$$

$$CH_{3}-C-CH_{2}-CH_{3}$$

$$CH_{3}-C-CH_{2}-CH_{3}$$

$$CH_{3}$$

La mezcla de HCl y ZnCl₂ permite convertir los alcoholes en haluros de alquilo y recibe el nombre **de reactivo de Lucas**, que es empleado para reconocer los alcoholes primarios, secundarios y terciarios.

Reactividad: $3^{rio} > 2^{rio} > 1^{rio} > CH_3$ -OH

PROPIEDADES FÍSICAS DE LOS ALCOHOLES

• Forman EPH con el agua y su solubilidad disminuye con el aumento de su masa molar.

SOLUBILIDAD DE ALCOHOLES EN AGUA				
Alcohol	Solubilidad g/100g de H ₂ O			
CH ₃ OH	∞			
CH3CH2OH	∞			
CH3CH2CH2OH	∞			
CH3CH2CH2CH2OH	7.9			
CH3CH2CH2CH2CH2OH	2.3			

• En alcoholes lineales, el punto de ebullición aumenta con el número de átomos de carbono.

Metanol (CH₃-OH)
$$\Rightarrow$$
 Teb= 65 °C

Etanol (CH₃-CH₂-OH)
$$\Rightarrow$$
 Teb= 78 °C

• Al aumentar el número de grupos hidroxilo (-OH), se incrementa el punto de ebullición.

$$CH_2OH-CH_2OH \Rightarrow Teb= 197,6 °C$$
 $CH_2OH-CHOH-CH_2OH \Rightarrow Teb= 290 °C$

OXIDACIÓN DE ALCOHOLES

$$\begin{array}{c|ccccc} OH & O & O \\ R-C-H & \stackrel{[\mathcal{O}]}{\longrightarrow} & R-C-H & \stackrel{[\mathcal{O}]}{\longrightarrow} & R-C-OH \\ H & & & & & \\ Alcohol~1^{\circ} & & & Aldehido & Acido carboxílico \\ \end{array}$$

EJEMPLO

$$CH_3-CH_2-OH \xrightarrow{[O]} CH_3-CHO \xrightarrow{[O]} CH_3-COOH$$

$$\begin{array}{c|cccc}
OH & O \\
R - C - R' & \xrightarrow{[o]} & R - C - R' \\
H & \\
Alcohol 2° & Cetona
\end{array}$$

EJEMPLO

$$\begin{array}{ccc}
\mathbf{OH} & \mathbf{O} \\
 & | & \mathbf{O} \\
\mathbf{CH_3-CH-CH_3} & \xrightarrow{[\mathcal{O}]} & \mathbf{CH_3-C-CH_3}
\end{array}$$

V. FUNCIÓN ÉTER

*Son compuestos orgánicos que poseen un grupo funcional donominado oxi $(-\dot{O}-)$. Son volátiles e inflamables. Son isómeros de función con los alcoholes de igual número de átomos de carbono.

* Su fórmula general:

$$R-\ddot{Q}-R' \iff RQR'$$

Si los grupos - R y - R' son iguales, el éter es simétrico y si son diferentes, el éter es asimétrico.

NOMENCLATURA COMÚN

Se establece mediante la identificación de cada grupo R, dispuestos en orden alfabético y añadiéndole la palabra éter.

NOMENCLATURA SISTEMÁTICA

Se nombra como un derivado de un alcano con un sustituyente denominado alcoxi, -OR. Los grupos alcoxi más usados son los siguientes.

Sustituyente alcoxi Cadena principal $\mathbf{R} \stackrel{\bullet}{\nearrow} \mathbf{\ddot{Q}} \stackrel{\bullet}{\blacktriangleright} \mathbf{R}$

Sustituyentes alcoxi:

$$CH_3$$
— \ddot{O} — : metoxi

$$\mathbf{CH_3} - \mathbf{CH_2} - \ddot{\mathbf{O}} - \mathbf{O} : \mathbf{CH_3}$$

$$CH_3 - CH_2 - CH_2 - \ddot{O} - : propoxi$$

EJEMPLOS

$$\frac{3}{\text{CH}_{3}-\text{CH}_{2}-\text{CH}_{2}} + \ddot{\mathbf{O}} - \text{CH}_{3}$$
 metoxi

1-metoxipropano

metil

3-etoxi-2-metilhexano

VI. FUNCIÓN ALDEHIDOS

Son compuestos oxigenados que tienen como grupo funcional al carbonilo (– COH).

Se obtienen por la oxidación moderada de un alcohol primario.

Su fórmula general:

R-: grupo alquilo o arilo.

$$R-CH_2OH \xrightarrow{[O]} RCHO$$

Alcohol primario

Aldehido

$$CH_3 - CH_2 - OH \xrightarrow{[O]} CH_3 - CHO$$

Etanol **Alcohol primario**

Etanal

NOMENCLATURA COMÚN

(Raíz común) aldehido

Nº C	1	2	3	4	5
Raíz común	form	acet	propion	butir	valer

EJEMPLOS

HCHO : **form**aldehido

CH₃CHO: acetaldehido

CH₃ CH₂CHO : propionaldehido

CH₃ CH₂ CH₂ CHO : butiraldehido

(nombre del hidrocarburo) al

EJEMPLOS

HCHO: metanal **CH**₃**CHO**: etanal

CH₃ CH₂ CHO: propanal CH₃ CH₂ CH₂ CHO: butanal

4-etil-4,6,6-trimetilheptanal

UNMSM 2020 I

A diferencia del benzaldehído, el formol, metanal en solución acuosa al 40 %, tiene olor irritante y es antiséptico. Al respecto, se puede afirmar que

- A) el formol es un alcohol alifático soluble en agua.
- B) ambos pertenecen a grupos funcionales diferentes.
- C) la fórmula global del benzaldehido es C_7H_7O .
- D) ambos pertenecen al grupo funcional aldehído.

RESOLUCIÓN

A) NO SE PUEDE AFIRMAR

El formol contiene metanal que es un aldehído alifático.

B) **NO SE PUEDE AFIRMAR**

El bentaldehído y el metanal pertenecen a la misma función orgánica oxigenada (son aldehídos).

C) NO SE PUEDE AFIRMAR

La fórmula molecular o global del bentaldehído es C₇H₆O.

D) SI SE PUEDE AFIRMAR

El **metanal** y el **bentaldehído** pertenecen a la misma función orgánica: aldehído, porque contienen al grupo formil (–CHO).

RESPUESTA: D

Química Guinte Carpordo Refereiro 202 Química Grandente Andre des refereiros de la carpo de Reculto de Reculto de la carpo de Reculto de

VII. BIBLIOGRAFÍA

- Química, colección compendios académicos UNI; Lumbreras editores
- Química, fundamentos teóricos y aplicaciones; 2019 Lumbreras editores.
- Química, fundamentos teóricos y aplicaciones.
- Química esencial; Lumbreras editores.
- Fundamentos de química, Ralph A. Burns; 2003; PEARSON
- Química ORGÁNICA, David Klein,
- Química un proyecto de la ACS; Editorial Reverte; 2005
- Química general, Mc Murry-Fay quinta edición

