PCT/EP 0 3 / 0 9 1 0 2 BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

1 6 SE	2003	_
REC'D	2 6 SEP 2003	
WIPO	PCT	

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 38 978.0

Anmeldetag:

20. August 2002

Anmelder/Inhaber:

SunGene GmbH & Co. KGaA, Gatersleben/DE

Bezeichnung:

Verfahren zur Herstellung von Ketocarotinoiden in

Früchten von Pflanzen

IPC:

A 01 H, C 12 N, A 23 K

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 9. September 2003

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Quesco

Stanschus

Patentansprüche

- Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die in Früchten
 eine Ketolase-Aktivität aufweisen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten eine Ketolase exprimieren.
 - 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase, enthalten.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, in die man ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren einbringt, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser
 Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Ketolase aufweist.
- 30 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO. 1 einbringt.
- 7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man Nukleinsäuren einbringt die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 16 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20% auf Aminosäureebene mit der Sequenz SEQ ID NO. 16 und die enzymatische Eigenschaft einer Ketolase aufweist.
 - 8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man Nukleinsäuren, enthaltend die Sequenz SEQ ID NO. 15 einbringt.

40

15

- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Genexpression der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt.
- 10 11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze verwendet, die in Früchten Chromoplasten aufweist.
- 12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man als Pflanze eine Pflanze ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria,
- Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gárdinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium,
- Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes,
 Triphasia, Vaccinium, Viburnum, Vignia oder Vitis verwendet.
- Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man nach dem Kultivieren die genetisch veränderten Pflanzen erntet und anschließend die Ketocarotinoide aus den Früchten der Pflanzen isoliert.
 - 14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Ketocarotinoide ausgewählt sind aus der
 Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.
 - 15. Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und eine Nukleinsäure kodierend eine Ketolase.

- 16. Genetisch veränderte Pflanze, die in Früchten eine Ketolase-Aktivität aufweist.
- 17. Genetisch veränderte Pflanze nach Anspruch 16, dadurch
 5 gekennzeichnet, dass die genetisch veränderte Pflanze in den Früchten eine Ketolase exprimiert.
- 18. Genetisch veränderte Pflanze nach Anspruch 16 oder 17, enthaltend in Früchten mindestens eine Nukleinsäure, kodierend 10 eine Ketolase.
 - 19. Genetisch veränderte Pflanze nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet dass man in die Pflanze ausgehend von einer Ausgangspflanze mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.
- Genetisch veränderte Pflanze, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia,
 Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celas-
- Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium,
- Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita,
- Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis, enthaltend mindestens eine Nukleinsäure, kodierend eine Ketolase.
- 35 21. Genetisch veränderte Pflanze nach Anspruch 20, dadurch gekennzeichnet, dass die Ketolase in Früchten exprimiert wird.
- 22. Genetisch veränderte Pflanze nach einem der Ansprüche 16 40 bis 21, dadurch gekennzeichnet, dass die Expressionsrate einer Ketolase in Früchten am höchsten ist.
 - 23. Verwendung der genetisch veränderten Pflanzen nach einem der Ansprüche 16 bis 22 als Futter- oder Nahrungsmittel.

24. Verwendung der Früchte der genetisch veränderten Pflanzen nach einem der Ansprüche 17 bis 23 zur Herstellung von Ketocarotinoid-haltigen Extrakten oder zur Herstellung von Futter- oder Nahrungsergänzungsmittel.

25. Verfahren zur Herstellung von genetisch veränderten Pflanzen gemäß Anspruch 22, dadurch gekennzeichnet, dass man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und Nukleinsäuren kodierend eine Ketolase in das Genom der Ausgangspflanze einführt.

Verfahren zur Herstellung von Ketocarotinoiden in Früchten von Pflanzen

5 Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung von genetisch veränderten Pflanzen, die in Früchten eine Ketolase-Aktivität aufweisen, die10 genetisch veränderten Pflanzen, sowie deren Verwendung als Nahrungs- oder Futtermittel und zur Herstellung von Ketocarotinoidextrakten.

Carotinoide werden de novo in Bakterien, Algen, Pilzen und Pflan15 zen synthetisiert. Ketocarotinoide, also Carotinoide, die mindestens eine Keto-Gruppe enthalten, wie beispielsweise Astaxanthin,
Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin oder Adonixanthin sind natürliche Antioxidantien und Pigmente, die von einigen Algen und Mikroorganismen
20 als Sekundärmetabolite produziert werden.

Aufgrund ihrer farbgebenden Eigenschaften werden die Ketocarotinoide und insbesondere Astaxanthin als Pigmentierhilfsstoffe in der Tierernährung, insbesondere in der Forellen-, Lachs- und 25 Shrimpszucht verwendet.

Die Herstellung von Astaxanthin erfolgt heutzutage größtenteils durch chemische Syntheseverfahren. Natürliche Ketocarotinoide, wie beispielsweise natürliches Astaxanthin, werden heutzutage in biotechnologischen Verfahren in kleinen Mengen durch Kultivierung von Algen, beispielsweise Haematococcus pluvialis, oder durch Fermentation von gentechnologisch optimierten Mikroorganismen und anschließender Isolierung gewonnen.

35 Ein wirtschaftliches biotechnologisches Verfahren zur Herstellung von natürlichen Ketocarotinoiden ist daher von großer Bedeutung.

WO 98/18910 beschreibt die Synthese von Ketocarotinoiden in Nektarien von Tabakblüten durch Einbringen eines Ketolase-Gens 40 in Tabak.

WO 01/20011 beschreibt ein DNA Konstrukt zur Produktion von Ketocarotinoiden, insbesondere Astaxanthin, in Samen von Ölsaatpflanzen wie Raps, Sonnenblume, Sojabohne und Senf unter Verwendung 45 eines Samen-spezifischen Promotors und einer Ketolase aus Haematococcus. Die im Stand der Technik offenbarten Verfahren liefern zwar genetisch veränderte Pflanzen, die in spezifischen Geweben einen Gehalt an Ketocarotinoiden aufweisen, weisen jedoch den Nachteil auf, dass die Höhe des Gehalts an Ketocarotinoiden und die Reinbeit, insbesondere an Astaxanthin, noch nicht zufriedenstellend ist.

20020365

Der Erfindung lag daher die Aufgabe zugrunde, ein alternatives Verfahren zur Herstellung von Ketocarotinoiden durch Kultivierung 10 von Pflanzen zur Verfügung zu stellen, bzw. weitere transgene Pflanzen, die Ketocarotinoide herstellen, zur Verfügung zu stellen, die optimierte Eigenschaften, wie beispielsweise einen höheren Gehalt an Ketocarotinoiden, aufweisen und den geschilderten Nachteil des Standes der Technik nicht aufweisen.

15

Demgemäß wurde ein Verfahren zur Herstellung von Ketocarotinoiden gefunden, indem man genetisch veränderte Pflanzen kultiviert, die in Früchten eine Ketolase-Aktivität aufweisen.

20 Unter Ketolase-Aktivität wird die Enzymaktivität einer Ketolase verstanden.

Unter einer Ketolase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, am, gegebenenfalls substituierten,

25 β -Ionon-Ring von Carotinoiden eine Keto-Gruppe einzuführen.

Insbesondere wird unter einer Ketolase ein Protein verstanden, das die enzymatische Aktivität aufweist, β -Carotin in Cantha-xanthin umzuwandeln.

30

Dementsprechend wird unter Ketolase-Aktivität die in einer bestimmten Zeit durch das Protein Ketolase umgesetzte Menge β -Carotin bzw. gebildete Menge Canthaxanthin verstanden.

- 35 Um in den Früchten der genetisch veränderten Pflanzen eine Ketolaseaktivität aufzuweisen, werden in einer bevorzugten Ausführungsform genetisch veränderte Pflanzen verwendet, die in-Früchten eine Ketolase exprimieren.
- **40** Vorzugsweise werden daher im erfindungsgemäßen Verfahren genetisch veränderte Pflanzen verwendet, die in Früchten mindestens eine Nukleinsäure, kodierend eine Ketolase, enthalten.

Es sind keine Pflanzen bekannt, die als Wildtyp in Früchten eine Ketolase-Aktivität aufweisen. Insbesondere weisen die nachstehend beschriebenen, bevorzugten Pflanzen in Früchten als Wildtyp keine Ketolase-Aktivität auf.

5

In der vorliegenden Erfindung wird die Ketolase-Aktivität in Früchten der genetisch veränderten Pflanzen durch die genetische Veränderung der Ausgangspflanze verursacht. Die erfindungsgemäße genetisch veränderte Pflanze weist somit, im Vergleich zur genetisch nicht veränderten Ausgangspflanze eine Ketolase-Aktivität in Früchten auf und ist somit vorzugsweise in der Lage, in Früchten eine Ketolase zu exprimieren.

Unter dem Begriff "Ausgangspflanze" oder "Wildtyp" wird die ent-15 sprechende nicht genetisch veränderte Ausgangspflanze verstanden.

Unter dem Begriff "genetisch veränderte Pflanze" wird vorzugsweise eine im Vergleich zur Ausgangspflanze genetisch veränderte Pflanze verstanden.

20

Je nach Zusammenhang kann unter dem Begriff "Pflanze" die Ausgangspflanze (Wildtyp) oder eine erfindungsgemäße, genetisch veränderte Pflanze oder beides verstanden werden.

- 25 Die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, in den Früchten der Pflanzen erfolgt vorzugsweise durch Einbringen von Nukleinsäuren, die Ketolasen kodieren, in die Ausgangspflanze.
- 30 Die Erfindung betrifft daher insbesondere das vorstehend beschriebene Verfahren, dadurch gekennzeichnet, dass man genetisch veränderte Pflanzen verwendet, in die man ausgehend von einer Ausgangspflanze, mindestens eine Nukleinsäure, kodierend eine Ketolase, eingebracht hat.

35

Dazu kann prinzipiell jedes Ketolase-Gen, also jede Nukleinsäure die eine Ketolase kodiert, verwendet werden.

Alle in der Beschreibung erwähnten Nukleinsäuren können 40 beispielsweise eine RNA-, DNA- oder cDNA-Sequenz sein.

Bei genomischen Ketolase-Sequenzen aus eukaryontischen Quellen, die Introns enthalten, sind für den Fall, dass die Wirtspflanze nicht in der Lage ist oder nicht in die Lage versetzt werden 45 kann, die entsprechenden Ketolase zu exprimieren, bevorzugt be-

reits prozessierte Nukleinsäuresequenzen, wie die entsprechenden cDNAs, zu verwenden.

Beispiele für Nukleinsäuren, kodierend eine Ketolase, und die entsprechenden Ketolasen, die im erfindungsgemäßen Verfahren bzw. in den nachstehend beschriebenen erfindungsgemäßen genetisch veränderten Pflanzen verwendet werden können, sind beispielsweise 5 Sequenzen aus

20020365

Haematoccus pluvialis, insbesondere aus Haematoccus pluvialis Flotow em. Wille (Accession No. X86782; Nukleinsäure: SEQ ID No. 1, Protein SEQ ID No. 2),

10

Haematoccus pluvialis, NIES-144 (Accession No. D45881; Nukleinsäure: SEQ ID No. 3, Protein SEQ ID No. 4),

Agrobacterium aurantiacum (Accession No. D58420; Nukleinsäure: 15 SEQ. ID. No. 5, Protein SEQ ID No. 6),

Alicaligenes spec. (Accession No. D58422; Nukleinsäure: SEQ ID No. 7, Protein SEQ ID No. 8),

20 Paracoccus marcusii (Accession No. Y15112; Nukleinsäure: SEQ ID No. 9, Protein SEQ ID No. 10).

Synechocystis sp. Strain PC6803 (Accession No. S76617, NP442491; Nukleinsäure: SEQ ID No. 11, Protein SEQ ID No. 12).

Bradyrhizobium sp. (Accession No. AF218415, BAB 74888; Nukleinsäure: SEQ ID No. 13, Protein SEQ ID No. 14).

Nostoc sp. Strain PCC7120 (Accession No. AP003592; Nukleinsäure: **30** SEQ ID No. 15, Protein SEQ ID No. 16).

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene, die im erfindungsgemäßen Verfahren verwendet werden können, lassen sich beispielsweise aus verschiedenen Organismen, deren genomi35 sche Sequenz bekannt ist, durch Identitätsvergleiche der Aminosäuresequenzen oder der entsprechenden rückübersetzten Nukleinsäuresequenzen aus Datenbanken mit den vorstehend beschriebenen
Sequenzen und insbesondere mit den Sequenzen SEQ ID NO. 2 und/
oder SEQ ID NO. 16 leicht auffinden.

40

25

Weitere natürliche Beispiele für Ketolasen und Ketolase-Gene lassen sich weiterhin ausgehend von den vorstehend beschriebenen Nukleinsäuresequenzen, insbesondere ausgehend von den Sequenzen SEQ ID. No 1 und/oder SEQ ID NO. 15 aus verschiedenen Organismen,

45 deren genomische Sequenz nicht bekannt ist, durch Hybridisierungstechniken in an sich bekannter Weise leicht auffinden. Die Hybridisierung kann unter moderaten (geringe Stringenz) oder vorzugsweise unter stringenten (hohe Stringenz) Bedingungen erfolgen.

5 Solche Hybridisierungsbedingungen sind beispielsweise bei Sambrook, J., Fritsch, E.F., Maniatis, T., in: Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6 be10 schrieben.

Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit 0.2X SSC bei 50°C, bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumcitrat, 3 M Natriumchlorid, pH 7.0).

Darüberhinaus kann die Temperatur während des Waschschrittes von moderaten Bedingungen bei Raumtemperatur, 22°C, bis zu stringenten 20 Bedingungen bei 65°C angehoben werden.

Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der
Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 %
Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

Einige beispielhafte Bedingungen für Hybridisierung und Wasch-30 schritt sind infolge gegeben:

- (1) Hybridisierungsbedingungen mit zum Beispiel
 - (i) 4X SSC bei 65°C, oder
 - (ii) 6X SSC bei 45°C, oder

35

- (iii) 6X SSC bei 68°C, 100 mg/ml denaturierter Fischsperma-DNA, oder
- (iv) 6X SSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA bei 68°C, oder
- (v) 6XSSC, 0,5 % SDS, 100 mg/ml denaturierte, fragmentierte Lachssperma-DNA, 50 % Formamid bei 42°C, oder

25

weist.

- (vi) 50 % Formamid, 4X SSC bei 42°C, oder
- - (viii) 2X oder 4X SSC bei 50°C (moderate Bedingungen), oder
- 10 (ix) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42° (moderate Bedingungen).
 - (2) Waschschritte für jeweils 10 Minuten mit zum Beispiel
- 15 (i) 0,015 M NaCl/0,0015 M Natriumcitrat/0,1 % SDS bei 50°C, oder
 - (ii) 0,1X SSC bei 65°C, oder
- 20 (iii) 0,1x SSC, 0.5 % SDS bei 68°C, oder
 - (iv) 0,1% SSC, 0.5 % SDS, 50 % Formamid bei 42°C, oder
 - (v) 0,2X SSC, 0.1 % SDS bei 42°C, oder

(vi) 2X SSC bei 65°C (moderate Bedingungen).

In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahrens bringt man Nukleinsäuren ein, die ein Protein kodieren, 30 enthaltend die Aminosäuresequenz SEQ ID NO. 2 oder eine von dieser Sequenz durch Substitution, Insertion oder Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 und die enzymatische Eigenschaft einer Ketolase auf-

- 40 Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO. 2 durch künstliche Variation, beispielsweise durch
- 45 Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Verfahren bringt man man Nukleinsäuren ein, die ein Protein kodieren, enthaltend die Aminosäuresequenz SEQ ID NO. 16 oder eine von dieser Sequenz durch Substitution, Insertion oder 5 Deletion von Aminosäuren abgeleitete Sequenz, die eine Identität von mindestens 20 %, vorzugsweise mindestens 30 %, bevorzugter mindestens 40 %, bevorzugter mindestens 50 %, bevorzugter mindestens 60 %, bevorzugter mindestens 70 %, bevorzugter mindestens 80 %, besonders bevorzugt mindestens 90 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 16 und die enzymatische Eigenschaft einer Ketolase aufweist.

Dabei kann es sich um eine natürliche Ketolase-Sequenz handeln, die wie vorstehend beschrieben durch Identitätsvergleich der

15 Sequenzen aus anderen Organismen gefunden werden kann oder um eine künstliche Ketolase-Sequenz die ausgehend von der Sequenz SEQ ID NO. 16 durch künstliche Variation, beispielsweise durch Substitution, Insertion oder Deletion von Aminosäuren abgewandelt wurde.

Unter dem Begriff "Substitution" ist in der Beschreibung der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere Aminosäuren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Gln durch Asn, Val durch Ile, Leu durch Ile, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte 30 Bindung. Bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptid-35 kette, wobei formal eine direkte Bindung durch ein oder mehrere Aminosäuren ersetzt wird.

Unter Identität zwischen zwei Proteinen wird die Identität der Aminosäuren über die jeweils gesamte Proteinlänge verstanden,
40 insbesondere die Identität die durch Vergleich mit Hilfe der Lasergene Software der Firma DNASTAR, inc.Madison, Wisconsin (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:

Multiple alignment parameter:

Gap penalty	10
Gap length penalty	10
5 Pairwise alignment parameter:	
K-tuple	1
Gap penalty	3
Window	5
Diagonals saved	5

10

Unter einem Protein, das eine Identität von mindestens 20 % auf Aminosäureebene mit der Sequenz SEQ ID NO. 2 oder 16 aufweist, wird dementsprechend ein Protein verstanden, das bei einem Vergleich seiner Sequenz mit der Sequenz SEQ ID NO. 2 oder 16, insbesondere nach obigen Programmalgorithmus mit obigem Parame-

Geeignete Nukleinsäuresequenzen sind beispielsweise durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code er-20 hältlich.

tersatz eine Identität von mindestens 20 % aufweist.

Bevorzugt werden dafür solche Kodons verwendet, die entsprechend der pflanzespezifischen codon usage häufig verwendet werden. Die codon usage lässt sich anhand von Computerauswertungen anderer, 25 bekannter Gene der betreffenden Organismen leicht ermitteln.

In einer besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO. 1, in den Pflanze ein.

30

In einer weiteren besonders bevorzugten Ausführungsform bringt man eine Nukleinsäure, enthaltend die Sequenz SEQ ID NO. 15, in den Pflanze ein.

- 35 Alle vorstehend erwähnten Ketolase-Gene sind weiterhin in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebausteine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden
- 40 kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mithilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungs-
- 45 verfahren werden in Sambrook et al. (1989), Molecular cloning:

25

A laboratory manual, Cold Spring Harbor Laboratory Press, beschrieben.

In einer besonderes bevorzugten Ausführungsform der erfindungs-5 gemäßen Verfahrens verwendet man genetisch veränderte Pflanzen, die in Früchten die höchste Expressionsrate einer Ketolase aufweisen.

Vorzugsweise wird dies dadurch erreicht, dass die Genexpression 10 der Ketolase unter Kontrolle eines fruchtspezifischen Promotors erfolgt. Beispielsweise werden dazu die vorstehend beschriebenen Nukleinsäuren, wie nachstehend ausführlich beschrieben, in einem Nukleinsäurekonstrukt, funktionell verknüpft mit einem fruchtspezifischen Promotor, in die Pflanze eingebracht.

Unter Pflanzen werden erfindungsgemäß vorzugsweise Pflanzen verstanden, die als Wildtyp in Früchten Chromoplasten aufweisen.

Weiter bevorzugte Pflanzen weisen als Wildtyp in den Früchten zu- 20 sätzlich Carotinoide, insbesondere β -Carotin, Zeaxanthin, Neo- xanthin, Violaxanthin oder Lutein auf.

Weiter bevorzugte Pflanzen weisen als Wildtyp in den Früchten zusätzlich eine Hydroxylase-Aktivität auf.

Unter Hydroxylase-Aktivität wird die Enzymaktivität einer Hydroxylase verstanden.

Unter einer Hydroxylase wird ein Protein verstanden, das die 30 enzymatische Aktivität aufweist, am, gegebenenfalls substituierten, β -Ionon-Ring von Carotinoiden eine Hydroxy-Gruppe einzuführen.

Insbesondere wird unter einer Hydroxylase ein Protein verstanden, 35 das die enzymatische Aktivität aufweist, β -Carotin in Zeaxanthin oder Canthaxanthin in Astaxanthin umzuwandeln.

Dementsprechend wird unter Hydroxyase-Aktivität die in einer bestimmten Zeit durch das Protein Hydroxylase umgesetzte Menge 40 β -Carotin oder Canthaxanthin bzw. gebildete Menge Zeaxanthin oder Astaxanthin verstanden.

Besonders bevorzugte Pflanzen sind Pflanzen, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, 45 Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis,

Bixia, Brachychilum, Bryonia, Caliptocalix, Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster,

Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea, Iris, Lathy5 rus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus, Trichosanthes,

Die Bestimmung der Ketolase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen erfolgt in Anlehnung an die Methode von Frazer et al., (J. Biol. Chem. 272(10): 6128-6135, 1997). Die Ketolase-Aktivität in pflanzlichen Extrakten wird mit den Substraten beta-Carotin und Canthaxanthin in Gegenwart von Lipid (Sojalecithin) und Detergens (Natriumcholat) bestimmt. Substrat/Produkt-Verhältnisse aus den Ketolase-Assays werden mittels HPLC ermittelt.

Im erfindungsgemäßen Verfahren zur Herstellung von Ketocarotinoiden wird vorzugsweise dem Kultivierungsschritt der genetisch veränderten Pflanzen, im folgenden auch transgene Pflanzen bezeichnet, ein Ernten der Pflanzen und ein Isolieren von Ketocarotinoi25 den aus den Früchten der Pflanzen angeschlossen.

Die transgenen Pflanzen werden in an sich bekannter Weise auf Nährböden gezogen und entsprechend geerntet.

- 30 Die Isolierung von Ketocarotinoiden aus den geernteten Früchten erfolgt in an sich bekannter Weise, beispielsweise durch Trocknung und anschließender Extraktion und gegebenenfalls weiterer chemischer oder physikalischer Reinigungsprozesse, wie beispielsweise Fällungsmethoden, Kristallographie, thermische Trennver-
- 35 fahren, wie Rektifizierverfahren oder physikalische Trennverfahren, wie beispielsweise Chromatographie. Die Isolierung von Ketocarotinoiden aus den Früchten erfolgt beispielsweise bevorzugt durch organische Lösungsmittel wie Aceton, Hexan, Ether oder tert.-Methylbutylether.

Weitere Isolierverfahren von Ketocarotinoiden sind beispielsweise in Egger und Kleinig (Phytochemistry (1967) 6, 437-440) und Egger (Phytochemistry (1965) 4, 609-618) beschrieben.

Vorzugsweise sind die Ketocarotinoide ausgewählt aus der Gruppe Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.

5 Ein besonders bevorzugtes Ketocarotinoid ist Astaxanthin.

Die Herstellung der transgenen Pflanzen erfolgt vorzugsweise durch Transformation der Ausgangspflanzen, mit einem Nukleinsäurekonstrukt, das die vorstehend beschriebenen Nuklein-10 säuren, kodierend eine Ketolase, enthält, die mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in Pflanzen gewährleisten.

Diese Nukleinsäurekonstrukte, in denen die kodierende Nuklein15 säuresequenz mit einem oder mehreren Regulationssignalen funktionell verknüpft sind, die die Transkription und Translation in
Pflanzen gewährleisten, werden im folgenden auch Expressionskassetten genannt.

20 Vorzugsweise enthalten die Regulationssignale einen oder mehrere Promotoren, die die Transkription und Translation in Pflanzen gewährleisten.

Die Expressionskassetten beinhalten Regulationssignale, also
25 regulative Nukleinsäuresequenzen, welche die Expression der kodierenden Sequenz in der Wirtszelle steuern. Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der kodierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden kodierenden Sequenz für mindestens eines der vorstehend beschriebenen Gene operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden

Im folgenden werden beispielhaft die bevorzugten Nukleinsäurekon-40 strukte, Expressionskassetten und Vektoren für Pflanzen und Verfahren zur Herstellung von transgenen Pflanzen, sowie die transgenen Pflanzen selbst beschrieben.

Sequenz bestimmungsgemäß erfüllen kann.

Die zur operativen Verknüpfung bevorzugten aber nicht darauf
45 beschränkten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retiku-

lum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten und Translationsverstärker wie die 5'-Führungssequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693-8711).

5

Als Promotoren der Expressionskassette ist grundsätzlich jeder Promotor geeignet, der die Expression von Fremdgenen in Pflanzen steuern kann.

- 10 "Konstitutiver" Promotor meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten.
- Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al. (1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. (1986) Plant Mol Biol 6:221-228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913;

Ein weiterer geeigneter konstitutiver Promotor ist der pds Promo-

Benfey et al. (1989) EMBO J 8:2195-2202).

25 ter (Pecker et al. (1992) Proc. Natl. Acad. Sci USA 89: 4962-4966) oder der "Rubisco small subunit (SSU)"-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677), der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacte-30 rium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen et al. (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sci USA 86:9692-9696), den Smas Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der 35 vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991), der Pnit-Promoter (Y07648.L, Hillebrand et al. (1998), Plant. Mol. Biol. 36, 89-99, Hillebrand et al. (1996), Gene, 170, 197-200) sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen 40 dem Fachmann bekannt ist.

Die Expressionskassetten können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des Ketolase-Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1 Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366),

durch Salicylsäure induzierbarer Promotor (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer Promotor (EP 0 388 186), ein durch Tetrazyklin-induzierbarer Promotor (Gatz et al. (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.

Ferner sind Promotoren bevorzugt, die durch biotischen oder abio10 tischen Stress induziert werden wie beispielsweise der pathogeninduzierbare Promotor des PRP1-Gens (Ward et al. (1993) Plant Mol
Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierbare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814), der licht-indu15 zierbare PPDK Promotor oder der verwundungsinduzierte pinII-Promoter (EP375091).

Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispiels
20 weise Gene von PR-Proteinen, SAR-Proteinen, b-1,3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al. (1983) Neth:J Plant Pathol 89:245-254; Uknes, et al. (1992) The Plant Cell4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987)

25 Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sci USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sci USA 91:2507-2511; Warner, et al. (1993) Plant J 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968(1989).

Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinII Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al. (1996) Nat Biotech 14:494-498), des wun1 und wun2-Gens 35 (US 5,428,148), des win1- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des Systemin (McGurl et al. (1992) Science 225:1570-1573), des WIP1-Gens (Rohmeier et al. (1993) Plant Mol Biol 22:783-792; Ekelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6(2):141-150) und dergleichen.

Weitere geeignete Promotoren sind beispielsweise fruchtreifungspezifische Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625). Entwick45 lungsabhängige Promotoren schließen zum Teil die gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.

Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Ketocarotinoiden bzw. dessen Vorstufen stattfindet. Bevorzugt sind beispielsweise Promotoren mit Spezifitäten für die Antheren, Ovarien, Petalen, Sepalen, Blüten, Blätter, Stengel, Wurzeln und Früchte und Kombinationen hieraus.

Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren 10 sind beispielsweise der Patatin Promotor Klasse I (B33) oder der Promotor des Cathepsin D Inhibitors aus Kartoffel.

Blattspezifische Promotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900), der SSU

15 Promotor (small subunit) der Rubisco (Ribulose-1,5-bisphosphat-carboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).

Blütenspezifische Promotoren sind beispielsweise der Phytoen Syn20 thase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593).

Antheren-spezifische Promotoren sind beispielsweise der 5126-Promotor (US 5,689,049, US 5,689,051), der glob-l Promotor oder 25 der g-Zein Promotor.

Fruchtspezifische Promotoren sind beispielsweise

- der Pds-Promoter aus Tomate (Genbank-ACCESSION U46919; Corona, 30 V., Aracri, B., Kosturkova, G., Bartley, G.E., Pitto, L., Giorgetti, L., Scolnik, P.A. and Giuliano, G., Regulation of a carotenoid biosynthesis gene promoter during plant development Plant J. 9 (4), 505-512 (1996)), SEQ ID NO.17,
- 35 der 2A11 Promoter aus Tomate (Pear, J.R., Ridge, N., Rasmussen, R., Rose, R.E. and Houck, C.M. Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomatoPlant Mol. Biol. 13 (6), 639-651 (1989), SEQ ID NO. 18,
- der Cucumisin Promoter (Yamagata, H., Yonesu, K., Hirata, A. and Aizono, Y., TGTCACA Motif Is a Novel cis-Regulatory Enhancer Element Involved in Fruit-specific Expression of the cucumisin GeneJ. Biol. Chem. 277 (13), 11582-11590 (2002), SEQ ID NO. 19,

20

35

der Promoter des Endogalacturonasegens (Redondo-Nevado, J., Medina-Escobar, N., Caballero-Repullo, J.L. and Munoz-Blanco, J.

A fruit-specific and developmentally regulated endo-polygalactu-5 ronase gene from strawberry (Fragaria x ananassa c.v. Chandler), J Experimental Botany 52 (362) 1941-1945 (2001), SEQ ID NO. 20,

die TMF7 und TMF9 Promotoren (US 5608150),

der Promotor E4 (Cordes S. Deikman J. Margossian LJ. Fischer RL. Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato (1989), Plant Cell 1, 1025-1034) und

der Promotor E8 (Deikman and Fisher, Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato (1988), EMBO J. 7, 3315-3320). Weitere zur Expression in Pflanzen geeignete Promotoren sind beschrieben (Rogers et al. (1987) Meth in Enzymol 153:253-277; Schardl et al. (1987) Gene 61:1-11; Berger et al. (1989) Proc Natl Acad Sci USA 86:8402-8406).

Alle in der vorliegenden Anmeldung beschriebenen Promotoren er-30 möglichen in der Regel die Expression der Ketolase in Früchten der erfindungsgemäßen Pflanzen.

Besonders bevorzugt im erfindungsgemäßen Verfahren sind konstitutive sowie insbesondere fruchtspezifische Promotoren.

Die vorliegende Erfindung betrifft daher insbesondere ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor, besonders bevorzugt einen oben beschriebenen fruchtspezifischen Promotor, und eine Nukleinsäure, 40 kodierend eine Ketolase.

Die Herstellung einer Expressionskassette erfolgt vorzugsweise durch Fusion eines geeigneten Promotors mit einer vorstehend beschriebenen Nukleinsäure kodierend eine Ketolase und vorzugs-45 weise einer zwischen Promotor und Nukleinsäure-Sequenz inserierten Nukleinsäure, die für ein plastidenspezifisches Transitpeptid kodiert, sowie einem Polyadenylierungssignal nach gängigen

lem Äquivalent abgeleitet ist.

Rekombinations— und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enguist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987) beschrieben sind.

10 Die vorzugsweise insertierte Nukleinsäuren, kodierend ein plastidares Transitpeptid, gewährleisten die Lokalisation in Plastiden und insbesondere in Chromoplasten.

Es können auch Expressionskassetten verwendet werden, deren

15 Nukleinsäure-Sequenz für ein Ketolase-Fusionsprotein kodiert,
wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das
die Translokation des Polypeptides steuert. Bevorzugt sind für
die Chromoplasten spezifische Transitpeptide, welche nach Translokation der Ketolase in die Chromoplasten vom Ketolase-Teil
20 enzymatisch abgespalten werden.

Insbesondere bevorzugt ist das Transitpeptid, das von der plastidären Nicotiana tabacum Transketolase oder einem anderen Transitpeptid (z.B. dem Transitpeptid der kleinen Untereinheit der 25 Rubisco (rbcS) oder der Ferredoxin NADP Oxidoreduktase als auch der Isopentenylpyrophosphat Isomerase-2) oder dessen funktionel-

Besonders bevorzugt sind Nukleinsäure-Sequenzen von drei 30 Kassetten des Plastiden-Transitpeptids der plastidären Transketolase aus Tabak in drei Leserastern als KpnI/BamHI Fragmente

mit einem ATG-Kodon in der NcoI Schnittstelle:

pTP09

35

40 TCC_BamHI

pTP10

 ${\tt TAAGGTCACCGGCGATTCGTGCCTCAGCTGCAACCGAAACCATAGAGAAAACTGAGACTGCGCTGGATCC_BamHI}$

pTP11

5

10 ATCC_BamHI

Weitere Beispiele für ein plastidäres Transitpeptid sind das Transitpeptid der plastidären Isopentenyl-pyrophosphat Isomerase-2 (IPP-2) aus Arabisopsis thaliana und das Transitpeptid der 15 kleinen Untereinheit der Ribulosebisphospaht Carboxylase (rbcS) aus Erbse (Guerineau, F, Woolston, S, Brooks, L, Mullineaux, P (1988) An expression cassette for targeting foreign proteins into the chloroplstas. Nucl. Acids Res. 16: 11380).

20 Die erfindungsgemäßen Nukleinsäuren können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen Nukleinsäure-Bestandteilen enthalten, sowie aus verschiedenen heterologen Genabschnitten verschiedener Organismen bestehen.

25

Bevorzugt sind, wie vorstehend beschrieben, synthetische Nukleotid-Sequenzen mit Kodons, die von Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können aus Kodons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten 30 interessanten Pflanzenspezies exprimiert werden.

Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

Zweckmäßigerweise können die Promotor- und die Terminator-Regio40 nen in Transkriptionsrichtung mit einem Linker oder Polylinker,
der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker
1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger
als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ
bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze

sein. Die Expressionskassette beinhaltet vorzugsweise in der 5'-3'-Transkriptionsrichtung den Promotor, eine kodierende Nukleinsäuresequenz oder ein Nukleinsäurekonstrukt und eine Region für die transkriptionale Termination. Verschiedene Ter-5 minationsbereiche sind gegeneinander beliebig austauschbar.

Ein Beispiel für einen Terminator ist der 35S-Terminator (Guerineau et al. (1988) Nucl Acids Res. 16: 11380), der nos Terminator (Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman 10 HM. Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet. 1982;1(6):561-73) oder der ocs Terminator (Gielen, J, de Beuckeleer, M, Seurinck, J, Debroek, H, de Greve, H, Lemmers, M, van Montagu, M, Schell, J (1984) The complete sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid 15 pTiAch5. EMBO J. 3: 835-846).

Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, 20 Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in vitro-Mutagenese, "primerrepair", Restriktion oder Ligation verwendet werden.

Bei geeigneten Manipulationen, wie z.B. Restriktion, "chewing-25 back" oder Auffüllen von Überhängen für "bluntends", können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.

Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadeny30 lierungssignale, vorzugsweise solche, die im wesentlichen T-DNAPolyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids
pTiACH5 entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff)
oder funktionelle Äquivalente.

Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet.

Dazu können an sich bekannte Methoden zur Transformation und 40 Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt werden.

Geeignete Methoden zur Transformation von Pflanzen sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA45 Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode, die Elektroporation, die
Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikro-

injektion und der, vorstehend beschriebene, durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispiels-weise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128-143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben.

Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor 10 kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711) oder besonders bevorzugt pSUN2, pSUN3, pSUN4 oder pSUN5 (WO 02/00900).

15 Mit einem Expressionsplasmid transformierte Agrobakterien können in bekannter Weise zur Transformation von Pflanzen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

Zur bevorzugten Herstellung von genetisch veränderten Pflänzen, im folgenden auch transgene Pflanzen bezeichnet, wird die fusionierte Expressionskassette, die eine Ketolase exprimiert, in einen Vektor, beispielsweise pBin19 oder insbesondere pSUN2 kloniert, der geeignet ist, in Agrobacterium tumefaciens transformiert zu werden

Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere 30 von Kulturpflanzen verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.

Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die ein in die Expressionskassette integriertes Gen für die Expression einer Nukleinsäure codierend eine Ketolase enthalten.

Zur Transformation einer Wirtspflanze mit einer für eine Ketolase 45 kodierenden Nukleinsäure wird eine Expressionskassette als Insertion in einen rekombinanten Vektor eingebaut, dessen Vektor-DNA zusätzliche funktionelle Regulationssignale, beispielsweise

Sequenzen für Replikation oder Integration enthält. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71-119 (1993) beschrieben.

5

Unter Verwendung der oben zitierten Rekombinations- und Klonierungstechniken können die Expressionskassetten in geeignete Vektoren kloniert werden, die ihre Vermehrung, beispielsweise in *E.*coli, ermöglichen. Geeignete Klonierungsvektoren sind u.a.

- 10 pJIT117 (Guerineau et al. (1988) Nucl. Acids Res.16:11380), pBR332, pUC-Serien, M13mp-Serien, pACYC184, pMC1210, pMcl 210 und pCL1920. Besonders geeignet sind binäre Vektoren, die sowohl in E. coli als auch in Agrobakterien replizieren können.
- 15 Dabei kann je nach Wahl des Promotors die Expression konstitutiv oder vorzugsweise spezifisch in den Früchten erfolgen.

Dementsprechend betrifft die Erfindung ferner ein Verfahren zur Herstellung von genetisch veränderten Pflanzen, dadurch gekenn20 zeichnet, dass man ein Nukleinsäurekonstrukt, enthaltend funktionell verknüpft einen fruchtspezifischen Promotor und Nukleinsäuren kodierend eine Ketolase in das Genom der Ausgangspflanze einführt.

25 Die Erfindung betrifft ferner die genetisch veränderten Pflanzen, die im Vergleich zur Ausgangspflanze in Früchten eine Ketolase-Aktivität aufweist.

Die Ketolaseaktivität wird in einer bevorzugten Ausführungsform 30 dadurch erreicht, dass die genetisch veränderte Pflanze in den Früchten eine Ketolase exprimiert.

Die bevorzugten, genetisch veränderten Pflanzen enthalten daher in Früchten mindestens eine Nukleinsäure, kodierend eine Keto35 lase.

In einer weiter bevorzugten Ausführungsform erfolgt, wie vorstehend ausgeführt, die Verursachung der Genexpression einer Nukleinsäure, kodierend eine Ketolase, durch Einbringen von 40 Nukleinsäuren, kodierend eine Ketolase, in die Ausgangspflanze.

Der Erfindung betrifft daher besonders bevorzugt eine vorstehend beschriebene genetisch veränderte Pflanze, dadurch gekennzeichnet, dass man in die Pflanze ausgehend von einer Ausgangspflanze 45 mindestens eine Nukleinsäure, kodierend eine Ketolase eingebracht hat.

21

Die Erfindung betrifft insbesondere genetisch veränderte Pflanzen, ausgewählt aus den Pflanzengattungen Actinophloeus, Aglaeonema, Ananas, Arbutus, Archontophoenix, Area, Aronia, Asparagus, Attalea, Berberis, Bixia, Brachychilum, Bryonia, Caliptocalix,

- 5 Capsicum, Carica, Celastrus, Citrullus, Citrus, Convallaria, Cotoneaster, Crataegus, Cucumis, Cucurbita, Cuscuta, Cycas, Cyphomandra, Dioscorea, Diospyrus, Dura, Elaeagnus, Elaeis, Erythroxylon, Euonymus, Ficus, Fortunella, Fragaria, Gardinia, Gonocaryum, Gossypium, Guava, Guilielma, Hibiscus, Hippophaea,
- 10 Iris, Lathyrus, Lonicera, Luffa, Lycium, Lycopersicum, Malpighia, Mangifera, Mormodica, Murraya, Musa, Nenga, Palisota, Pandanus, Passiflora, Persea, Physalis, Prunus, Ptychandra, Punica, Pyracantha, Pyrus, Ribes, Rosa, Rubus, Sabal, Sambucus, Seaforita, Shepherdia, Solanum, Sorbus, Synaspadix, Tabernae, Tamus, Taxus,
- 15 Trichosanthes, Triphasia, Vaccinium, Viburnum, Vignia oder Vitis, enthaltend mindestens eine Nukleinsäure, kodierend eine Ketolase.

Ganz besonders bevorzugte Pflanzengattungen sind Ananas, Asparagus, Capsicum, Citrus, Cucumis, Cucurbita, Citrullus,

20 Lycopersicum, Passiflora, Prunus, Physalis, Solanum, Vaccinium und Vitis, enthaltend mindestens eine transgene Nukleinsäure, kodierend eine Ketolase.

Wie vorstehend erwähnt wird in bevorzugten transgenen Pflanzen 25 die Ketolase in den Früchten exprimiert, besonderes bevorzugt ist die Expression der Ketolase in den Früchten am höchsten.

Die transgenen Pflanzen, deren Vermehrungsgut, sowie deren Pflanzenzellen, -gewebe oder -teile, insbesondere deren Früchte sind 30 ein weiterer Gegenstand der vorliegenden Erfindung.

Die genetisch veränderten Pflanzen können, wie vorstehend beschrieben, zur Herstellung von Ketocarotinoiden, insbesondere

Astaxanthin, verwendet werden.

Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Pflanzen mit erhöhtem Gehalt an Ketocarotinoiden können auch beispielsweise direkt oder nach an sich bekannter Prozessierung als Nahrungsmittel oder Futtermittel oder als Futter-40 und Nahrungsergänzungsmittel verwendet werden. Ferner können die genetisch veränderten Pflanzen zur Herstellung von Ketocarotinoid-haltigen Extrakten der Pflanzen und/oder zur Herstellung von Futter- und Nahrungsergänzungsmitteln verwendet werden.

45 Die genetisch veränderten Pflanzen weisen im Vergleich zum Wildtyp einen erhöhten Gehalt an Ketocarotinoiden auf.

Unter einem erhöhten Gehalt an Ketocarotinoiden wird in der Regel ein erhöhter Gehalt an Gesamt-Ketocarotinoid verstanden.

Unter einem erhöhten Gehalt an Ketocarotinoiden wird aber auch 5 insbesondere ein veränderter Gehalt der bevorzugten Ketocarotinoide verstanden, ohne dass zwangsläufig der Gesamt-Carotinoidgehalt erhöht sein muss.

In einer besonders bevorzugten Ausführungsform weisen die 10 erfindungsgemäßen, genetisch veränderten Pflanzen im Vergleich zum Wildtyp einen erhöhten Gehalt an Astaxanthin auf.

Unter einem erhöhten Gehalt wird in diesem Fall insbesondere ein verursachter Gehalt an Ketocarotinoiden, bzw. Astaxanthin 15 verstanden.

Die Erfindung wird durch die nun folgenden Beispiele erläutert, ist aber nicht auf diese beschränkt:

20 Allgemeine Experimentelle Bedingungen: Sequenzanalyse rekombinanter DNA

30

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma Licor (Vertrieb durch - 25 MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467).

Beispiel 1: Amplifikation einer cDNA, die die gesamte Primärsequenz der Ketolase aus Haematococcus pluvialis Flotow em. Wille kodiert

Die cDNA, die für die Ketolase aus Haematococcus pluvialis kodiert, wurde mittels PCR aus Haematococcus pluvialis (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttin-35 gen") Suspensionskultur amplifiziert.

Für die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80), die 2 Wochen mit indirektem Tageslicht bei Raumtemperatur in Haematococcus-Medium (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgCl2x6H2O,

- 40 (1.2 g/l Natriumacetat, 2 g/l Hefeextrakt, 0.2 g/l MgCl2x6H2O, 0.02 CaCl2x2H2O; pH 6.8; nach Autoklavieren Zugabe von 400 mg/l L-Asparagin, 10 mg/l FeSO4xH2O) gewachsen war, wurden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend wurden 100 mg der gefrorenen, pulveri-
- 45 sierten Algenzellen in ein Reaktionsgefäß überführt und in 0,8 ml Trizol-Puffer (Life Technologies) aufgenommen. Die Suspension wurde mit 0,2 ml Chloroform extrahiert. Nach 15minütiger Zentri-

fugation bei 12000 g wurde der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert. Die RNA wurde mit einem Volumen Isopropanol gefällt, mit 75 % Ethanol gewaschen und das Pellet in DEPC Wasser 5 (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wurde photometrisch bestimmt.

Für die cDNA-Synthese wurden 2.5 µg Gesamt-RNA für 10 min bei 10 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime-beads, Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PR1 SEQ ID No. 29) in cDNA umgeschrieben.

15 Die Nukleinsäure codierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers (PR2 SEQ ID No. 30) und eines antisense spezifischen Primers (PR1 SEQ ID No. 29) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz kodiert, erfolgte in 25 einem 50 µl Reaktionsansatz, in dem enthalten war:

- μ l einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 0,25 mMdNTPs
- 30 -0,2 mM PR1 (SEQ ID No. 29)
 - $0.2 \, \text{mM}$ PR2 (SEQ ID No. 30)
 - μ l 10X PCR-Puffer (TAKARA)
 - $0,25 \mu 1$ R Taq Polymerase (TAKARA)
 - 25,8 $\mu 1$ Aq. Dest.

35

20

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94°C	2	Minuten
	35X	94°C	1	Minute
40		53°C	2	Minuten
		72°C	3	Minuten
	1X	72°C	10	Minuten

Die PCR-Amplifikation mit SEQ ID No. 29 und SEQ ID No. 30 resul-45 tierte in einem 1155 Bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz kodiert (SEQ ID No. 22). Unter Verwendung von Standardmethoden wurde das Amplifikat in den PCR-

Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO2 erhalten.

Sequenzierung des Klons pGKETO2 mit dem T7- und dem SP6-Primer 5 bestätigte eine Sequenz, die sich lediglich in den drei Kodons 73, 114 und 119 in je einer Base von der publizierten Sequenz X86782 unterscheidet. Diese Nukleotidaustausche wurden in einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten Haematococcus pluvialis Stamm 192.80 (Abbildung 3 und 4, Sequenzvergleiche).

tor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380)

15 verwendet. Die Klonierung erfolgte durch Isolierung des 1027 Bp
SpHI-Fragmentes aus pGKETO2 und Ligierung in den SpHI geschnittenen Vektor pJIT117. Der Klon, der das Haematococcus pluvialis Ketolasegen in der korrekten Orientierung als N-terminale translationale Fusion mit der rbcs Transitpeptidsequenz enthält, heißt

20 pJKETO2.

Dieser Klon wurde daher für die Klonierung in den Expressionsvek-

Beispiel 2: Amplifikation einer cDNA, die die Ketolase aus Haematococcus pluvialis Flotow em. Wille mit einem um 14 Aminosäuren verkürztem N-terminus kodiert

Die cDNA, die für die Ketolase aus *Haematococcus pluvialis* (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem N-Terminus kodiert, wurde mittels PCR aus *Haematococcus pluvialis* Suspensionskultur (Stamm 192.80 der "Sammlung von Algenkulturen der

30 Universität Göttingen") amplifiziert.

Die Präparation von Total-RNA aus einer Suspensionskultur von

Haematococcus pluvialis (Stamm 192.80) erfolgte wie in Beispiel 1
beschrieben.

35 Die cDNA-Synthese erfolgte wie unter Beispiel 1 beschrieben.

Die Nukleinsäure, kodierend eine Ketolase, aus *Haematococcus* pluvialis (Stamm 192.80) mit einem um 14 Aminosäuren verkürztem N-Terminus wurde mittels polymerase chain reaction (PCR) aus

40 Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers (PR3 SEQ ID No. 31) und eines antisense spezifischen Primers (PR1 SEQ ID No. 29) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein mit um 14 Aminosäuren verkürztem N-Terminus kodiert, erfolgte in 5 einem 50 µl Reaktionsansatz, in dem enthalten war:

- 4 μl einer Haematococcus pluvialis cDNA (hergestellt wie oben beschrieben)
- 0,25 mM dNTPs
- 10 0,2 mM PR1 (SEQ ID No. 29)
 - 0,2 mM PR3 (SEQ ID No. 31)
 - 5 μl 10X PCR-Puffer (TAKARA)
 - 0,25 μl R Tag Polymerase (TAKARA)
 - \sim 25,8 μ l Aq. Dest.

15

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94°C	2 Minuten
	35X	94°C	1 Minute
20		53°C	2 Minuten
		72°C	3 Minuten
	1X	72°C	10 Minuten

Die PCR-Amplifikation mit SEQ ID No.29 und SEQ ID No. 31 resul-25 tierte in einem 1111 Bp Fragment, das für ein Ketolase Protein kodiert, bei dem N-terminalen Aminosäuren (Position 2-16) durch eine einzige Aminosäure (Leucin) ersetzt sind.

Das Amplifikat wurde unter Verwendung von Standardmethoden in 30 den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO3 erhalten. Sequenzierungen mit den Primern T7- und SP6 bestätigten eine zur Sequenz SEQ ID No. 22 identische Sequenz, wobei die 5'Region (Position 1-53) der SEQ ID No. 22 im Amplikikat SEQ ID No. 24 durch eine in der Sequenz abweichende 35 Nonamersequenz ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

Die Klonierung erfolgte durch Isolierung des 985 Bp SpHI Fragmen-40 tes aus pGKETO3 und Ligierung mit dem SpHI geschnittenen Vektor pJIT117. Der Klon, der die Haematococcus pluvialis Ketolase mit einem um 14 Aminosäuren verkürztem N-Terminus in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcs Transitpeptid enthält, heißt pJKETO3.

Beispiel 3: Amplifikation einer cDNA, die die Ketolase aus Haematococcus pluvialis Flotow em. Wille (Stamm 192.80 der
"Sammlung von Algenkulturen der Universität Göttingen") bestehend aus der gesamten Primärsequenz und
fusioniertem C-terminalem myc-Tag kodiert

Die cDNA, die für die Ketolase aus Haematococcus pluvialis (Stamm 192.80) bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag kodiert, wurde mittels PCR unter Verwendung 10 des Plasmids pGKETO2 (in Beispiel 1 beschrieben) und des Primers PR15 (SEQ ID No. 32) hergestellt. Der Primer PR15 setzt sich zusammen aus einer antisense spezifischen 3'Region (Nucleotide 40-59) und einer myc-Tag kodierenden 5'Region (Nucleotide 1-39).

- 15 Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) von pGKETO2 und PR15 erfolgte in einem 11,5 μ l Reaktionsansatz, in dem enthalten war:
 - 1 μg pGKETO2 PlasmidDNA
- 20 0,1 μg PR15 (SEQ ID No. 32)

Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgte in einem 20 μ l Reaktionsansatz, in dem enthalten war:

- 25 11,5 μ l pGKETO2/PR15-Annealingsreaktion (hergestellt wie oben beschrieben)
 - 50 µM dNTPs
 - 2 μl 1X Klenow Puffer
 - 2U Klenow Enzym

30

5

Die Nukleinsäure kodierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) bestehend aus der gesamten Primärsequenz und fusioniertem C-terminalem myc-Tag wurde mittels polymerase chain reaction (PCR) aus Haematococcus pluvialis unter Verwendung eines sense spezifischen Primers (PR2 SEQ ID No. 30) und eines antisense spezifischen Primers (PR15 SEQ ID No. 32) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

- 40 Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein mit fusioniertem C-terminalem myc-Tag kodiert, erfolgte in einem 50 μ l Reaktionsansatz, in dem enthalten war:
- 1 μl einer Annealingsreaktion (hergestellt wie oben beschrieben)
 - 0,25 mM dNTPs
 - 0,2 μM PR15 (SEQ ID No. 32)

- 0,2 µM PR2 (SEQ ID No. 30)

- 5 μl 10X PCR-Puffer (TAKARA)

0,25 μl R Taq Polymerase (TAKARA)

- 28,8 µl Aq. Dest.

5

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94°C	2	Minuten
	35X	94°C	1	Minute
10		53°C	1	Minute
		72°C	1	Minute
	1X	72°C	10	Minuten

Die PCR-Amplifikation mit SEQ ID No. 32 und SEQ ID No. 30 resul15 tierte in einem 1032 Bp-Fragment, das für ein Protein kodiert,
bestehend aus der gesamten Primärsequenz der Ketolase aus Haematococcus pluvialis als zweifache translationale Fusion mit dem
rbcS Transitpeptide am N-Terminus und dem myc-Tag am C-Terminus.

- 20 Das Amplifikat wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKETO4 erhalten. Sequenzierungen mit den Primern T7- und SP6 bestätigten eine zur Sequenz SEQ ID No. 22 identische Sequenz, wobei die 3'Region (Position 993-1155) der SEQ ID No. 22
- 25 im Amplifikat SEQ ID No. 26 durch eine in der abweichende Sequenz aus 39 Bp ersetzt wurde. Dieser Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.
- 30 Die Klonierung erfolgte durch Isolierung des 1038 Bp EcoRI-SpHI Fragmentes aus pGKETO4 und Ligierung mit dem EcoRI-SpHI geschnittenen Vektor pJIT117. Durch die Ligation entsteht eine translationale Fusion zwischen dem C-Terminus der rbcS Transitpeptidsequenz und dem N-Terminus der Ketolase Sequenz. Der Klon, der
- 35 die Haematococcus pluvialis Ketolase mit fusioniertem C-terminalem myc-Tag in der korrekten Orientierung als translationale N-terminale Fusion mit dem rbcs Transitpeptid enthält, heißt pJKET4.
- 40 Beispiel 4: Herstellung von Expressionsvektoren zur konstitutiven Expression der Haematococcus pluvialis Ketolase in Lycopersicon esculentum

Die Expression der Ketolase aus Haematococcus pluvialis in 45 L. esculentum erfolgte unter Kontrolle des konstitutiven Promoters d35S aus CaMV (Franck et al. 1980, Cell 21: 285-294). Die

Expression erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715).

Die Herstellung eines Expressionsplasmides für die Agrobacterium-5 vermittelte Transformation der Ketolase aus Haematococcus pluvialis in L. esculentum erfolgte unter der Verwendung des binären Vektors pSUN3 (WOO2/00900).

- Zur Herstellung des Expressionsvektors pS3KETO2 wurde das
 2.8 Kb SacI-XhoI Fragment aus pJKETO2 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 5, Konstruktkarte). In der Abbildung 5 beinhaltet Fragment d35S den duplizierten 35S Promoter (747 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO2 (1027 bp) die gesamte Primärsequenz kodierend für die Haematococcus pluvialis Ketolase, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.
- Zur Herstellung des Expressionsvektors pS3KETO3 wurde das 2.7 Kb bp SacI-XhoI Fragment aus pJKETO3 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert. (Abbildung 6, Konstrukt-karte). In der Abbildung 6 beinhaltet Fragment d35S den duplizierten 35S Promoter (747 bp), Fragment rbcS das rbcS Transit-peptid aus Erbse (204 bp), Fragment KETO3 (985 bp) die um 14 Neterminale Aminosäuren verkürzte Primärsequenz kodierend für die Haematococcus pluvialis Ketolase, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.

Zur Herstellung des Expressionsvektors pS3KETO4 wurde das 2.8 Kb SacI-XhoI Fragment aus pJKETO4 mit dem SacI-XhoI geschnittenen 30 Vektor pSUN3 ligiert. (Abbildung 7, Konstruktkarte). In der Abbildung 7 beinhaltet Fragment d35S den duplizierten 35S Promoter ((747 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO4 (1038 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase mit C-terminalem myc-35 Tag, Fragment term (761 bp) das Polyadenylierungssignal von CaMV.

Beispiel 5: Herstellung von Expressionsvektoren zur Expression der Haematococcus pluvialis Ketolase in Lycopersicon esculentum

Die Expression der Ketolase aus Haematococcus pluvialis in L. esculentum erfolgte mit dem Transitpeptid rbcS aus Erbse (Anderson et al. 1986, Biochem J. 240:709-715). Die Expression erfolgte unter Kontrolle einer modifizierten Version AP3P des Promoters AP3 aus Arabidopsis thaliana (AL132971: Nukleotidregion 9298-10200; Hill et al. (1998) Development 125: 1711-1721).

Das DNA Fragment, das die AP3 Promoterregion -902 bis +15 aus Arabidopsis thaliana beinhaltet, wurde mittels PCR unter Verwendung genomischer DNA (nach Standardmethoden aus Arabidopsis thaliana isoliert) sowie der Primer PR7 (SEQ ID No. 33) und PR10 5 (SEQ ID No. 36) hergestellt.

Die PCR-Bedingungen waren die folgenden:

Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment 10 (-902 bis +15) beinhaltet, erfolgte in einem 50 μ l Reaktionsansatz, in dem enthalten war:

- 100 ng genomischer DNA aus A.thaliana
- 0,25 mM dNTPs
- 15 0,2 mM PR7 (SEQ ID No. 33)
 - 0,2 mM PR10 (SEQ ID No. 36)
 - 5 μl 10X PCR-Puffer (Stratagene)
 - 0,25 μl Pfu Polymerase (Stratagene)
 - $28.8 \mu l$ Aq. Dest.

20

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94°C	2	Minuten
	35X	94°C	1	Minute
25		50°C	1	Minute
		72°C	1	Minute
	1 X	72°C	10	Minuten

Das 922 Bp Amplifikat wurde unter Verwendung von Standardmethoden 30 in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pTAP3 erhalten.

Sequenzierung des Klons pTAP3 bestätigte eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der

- 35 Sequenz AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz AL132971) von der publizierten AP3 Sequenz (AL132971, Nukleotidregion 9298-10200) unterscheidet. Diese Nukleotidunterschiede wurden in einem unabhängigen Amplifikationsexperiment reproduziert und repräsentieren somit die
- 40 tatsächliche Nukleotidsequenz in den verwendeten Arabidopsis thaliana Pflanzen.

Die modifizierte Version AP3P wurde mittels rekombinanter PCR unter Verwendung des Plasmids pTAP3 hergestellt. Die

45 Region 10200-9771 wurde mit den Primern PR7 (SEQ ID No. 33) und Primern PR9 (SEQ ID No. 35) amplifiziert (Amplifikat A7/9),

die Region 9526-9285 wurde mit den PR8 (SEQ ID No. 34) und PR10 (SEQ ID No. 36) amplifiziert (Amplifikat A8/10).

Die PCR-Bedingungen waren die folgenden:

5

Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die die Regionen Region 10200-9771 und Region 9526-9285 des AP3 Promoters beinhalten, erfolgte in 50 μ l Reaktionsansätzen, in denen enthalten war:

10

- 100 ng AP3 Amplifikat (oben beschrieben)
- 0,25 mM dNTPs
- 0,2 mM sense Primer (PR7 SEQ ID No. 33 bzw. PR8 SEQ ID No. 35)
- 15 0,2 mM antisense Primer (PR9 SEQ ID No. 35 bzw. PR10 SEQ ID No. 36)
 - 5 μl 10X PCR-Puffer (Stratagene)
 - 0,25 μl Pfu Taq Polymerase (Stratagene)
 - 28,8 µl Aq. Dest.

20

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

	1X	94°C	2	Minuten
	35X	94°C	1	Minute
25		50°C	1	Minute
		72°C	1	Minute
	1x	72°C	10	Minuten

Die rekombinante PCR beinhaltet Annealing der sich über eine

30 Sequenz von 25 Nukleotiden überlappenden Amplifikate A7/9 und

A8/10, Vervollständigung zu einem Doppelstrang und anschließende

Amplifizierung. Dadurch entsteht eine modifizierte Version des

AP3 Promoters, AP3P, in dem die Positionen 9670-9526 deletiert

sind. Die Denaturierung (5 min bei 95°C) und Annealing (langsame

35 Abkühlung bei Raumtemperatur auf 40°C) beider Amplifikate A7/9

und A8/10 erfolgte in einem 17.6 «1 Reaktionsansatz, in dem enthalten war:

- 0,5 μg A7/9 Amplifikat -
- $40 0.25 \mu g$ A8/10 Amplifikat

Das Auffüllen der 3'Enden (30 min bei 30°C) erfolgte in einem 20 ∞l Reaktionsansatz, in dem enthalten war:

- 45 17,6 μ l A7/9 und A8/10-Annealingsreaktion (hergestellt wie oben beschrieben)
 - 50 μ M dNTPs

- 2 μl 1X Klenow Puffer

- 2U Klenow Enzym

Die Nukleinsäure, kodierend für die modifizierte Promoterversion 5 AP3P, wurde mittels PCR unter Verwendung eines sense spezifischen Primers (PR7 SEQ ID No. 28) und eines antisense spezifischen Primers (PR10 SEQ ID No. 36) amplifiziert.

Die PCR-Bedingungen waren die folgenden:

10

Die PCR zur Amplifikation des AP3P Fragmentes erfolgte in einem $50~\mu l$ Reaktionsansatz, in dem enthalten war:

- 1 μl Annealingsreaktion (hergestellt wie oben beschrieben)

- 0,25 mM dNTPs

- 0,2 mM PR7 (SEQ ID No. 33)

- 0,2 mM PR10 (SEQ ID No. 36)

- 5 μl 10X PCR-Puffer (Stratagene)

20 - $0.25 \mu l$ Pfu Taq Polymerase (Stratagene)

- 28,8 μ l Aq. Dest.

Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt:

25	1X	94°C	2	Minuten
	35X	94°C	1	Minute
		50°C	1	Minute
		72°C	1	Minute
	~1x	72°C	10	Minuten

30

Die PCR-Amplifikation mit SEQ ID No. 33 und SEQ ID No. 36 resultierte in einem 778 Bp Fragment, das für die modifizierte Promoterversion AP3P kodiert. Das Amplifikat wurde in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert und der Klon pTAP3P erhalten.

35 Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz AL132971, Region 10200-9298 identische Sequenz, wobei die interne Region 9285-9526 deletiert wurde. Diese Klon wurde daher für die Klonierung in den Expressionsvektor pJIT117 (Guerineau et al. 1988, Nucl. Acids Res. 16: 11380) verwendet.

40

Die Klonierung erfolgte durch Isolierung des 771 Bp SacI-HindIII Fragmentes aus pTAP3P und Ligierung in den SacI-HindIII geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heißt pJAP3P.

Zur Herstellung einer Expressionskassette pJAP3PKETO2 wurde das 1027 Bp SpHI-Fragment KETO2 (in Beispiel 1 beschrieben) in den SpHI geschnittenen Vektor pJAP3P kloniert. Der Klon, der das Fragment KETO2 in der korrekten Orientierung als N-terminale 5 Fusion mit dem rbcS Transitpeptid enthält, heißt pJAP3PKETO2.

Zur Herstellung einer Expressionskassette pJAP3PKETO4 wurde das 1032 Bp SpHI-EcoRI Fragment KETO4 (in Beispiel 3 beschrieben) in den SpHI-EcoRI geschnittenen Vektor pJAP3P kloniert. Der 10 Klon, der das Fragment KETO4 in der korrekten Orientierung als N-terminale Fusion mit dem rbcS Transitpeptid enthält, heißt pJAP3PKETO4.

Die Herstellung eines Expressionsvektors für die Agrobacterium
15 vermittelte Transformation der AP3P-kontrollierten Ketolase
aus Haematococcus pluvialis in L. esculentum erfolgte unter
der Verwendung des binären Vektors pSUN3 (WO02/00900).

- Zur Herstellung des Expressionsvektors pS3AP3PKETO2 wurde das
 2.8 KB bp SacI-XhoI Fragment aus pJAP3KETO2 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert (Abbildung 8, Konstrukt-karte). In der Abbildung 8 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO2 (1027 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase, Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.
- Zur Herstellung des Expressionsvektors pS3AP3PKETO4 wurde das
 2.8 KB SacI-XhoI Fragment aus pJAP3PKETO4 mit dem SacI-XhoI geschnittenen Vektor pSUN3 ligiert. (Abbildung 9, Konstrukt-karte). In der Abbildung 9 beinhaltet Fragment AP3P den modifizierten AP3P Promoter (771 bp), Fragment rbcS das rbcS Transitpeptid aus Erbse (204 bp), Fragment KETO4 (1038 bp) die gesamte Primärsequenz codierend für die Haematococcus pluvialis Ketolase mit C-terminalem myc-Tag, Fragment term (761 Bp) das Polyadenylierungssignal von CaMV.
- Beispiel 6: Herstellung transgener Lycopersicon esculentum Pflan-40 zen

Transformation und Regeneration von Tomatenpflanzen erfolgte nach der publizierten Methode von Ling und Mitarbeitern (Plant Cell Reports (1998), 17:843-847). Für die Varietät Microtom wurde mit höherer Kanamycin-Konzentration (100mg/L) selektioniert.

Als Ausgangsexplantat für die Transformation dienten Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wurde das Kulturmedium nach Murashige und Skoog (1962: Murashige and Skoog, 1962, Physiol. Plant 15, 473-) mit 2 % Saccharose pH 6 1 worwendet. Die Keimung fand heit

- 5 473-) mit 2 % Saccharose, pH 6,1 verwendet. Die Keimung fand bei 21°C bei wenig Licht (20 bis 100 μE) statt. Nach sieben bis zehn Tagen wurden die Kotyledonen quer geteilt und die Hypokotyle in ca. 5 bis 10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1, 3 % Saccharose + 1 mg/l BAP, 0,1 mg/l NAA)
- 10 gelegt, das am Vortag mit suspensionskultivierten Tabakzellen beschickt wurde. Die Tabakzellen wurden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgte für drei bis fünf Tage. Zellen des Stammes Agrobakterium tumefaciens LBA4404 wurden einzeln mit den
- 15 Plasmiden pS3KETO2, pS3KETO3 bzw. pS3AP3KETO2 transformiert. Von den einzelnen mit den Binaervektoren pS3KETO2, pS3KETO3 bzw. pS3KETO2 transformierten Agrobakterium-Stämmen wurde jeweils eine Übernachtkultur in YEB Medium mit Kanamycin (20 mg/l) bei 28 Grad Celsius kultiviert und die Zellen zentrifugiert. Das Bakterien-
- 20 pellet wurde mit flüssigem MS Medium (3 % Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate wurden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend wurden die
- 25 Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21°C) auf ihr Vorkulturmedium zurück gelegt.

Nach der Co-kultur wurden die Explantate auf MSZ2 Medium (MS pH 6,1 + 3 % Saccharose, 2 mg/l Zeatin, 100 mg/l Kanamycin, 30 160 mg/l Timentin) transferiert und für die selektive Regeneration bei 21°C unter Schwachlicht Bedingungen (20 bis 100 ∞E, Lichtrhythmus 16 h / 8 h) aufbewahrt. Aller zwei bis drei Wochen erfolgte der Transfer der Explantate bis sich Sprosse bildeten. Kleine Sprosse konnten vom Explantat abgetrennt werden und auf MS (pH 6,1 + 3 % Saccharose) 160 mg/l Timentin, 30 mg/l Kanamycin, 0,1 mg/l IAA bewurzelt werden. Bewurzelte Pflanzen wurden ins Gewächshaus überführt.

Gemäß der oben beschriebenen Transformationsmethode wurden mit 40 folgenden Expressionskonstrukten folgende Linien erhalten:

Mit pS3KETO2 wurde erhalten: cs13-24, cs13-30, cs13-40.

Mit pS3KETO3 wurde erhalten: cs14-2, cs14-3, cs14-9, cs14-19.

Mit pS3AP3PKETO2 wurde erhalten: cs16-15, cs16-34, cs16-35, cs16-40.

Beispiel 8: Charakterisierung der transgenen Früchte

Das Fruchtmaterial der transgenen Pflanzen wurde in flüssigem Stickstoff gemörsert und das Pulver (etwa 250 bis 500 mg) mit 5 100 % Aceton extrahiert (dreimal je 500 ul). Das Lösungsmittel wurde evaporiert und die Carotinoide in 100 ul Aceton resuspendiert.

Mittels einer C30-reverse phase-Säule konnte zwischen Mono
10 und Diestern der Carotinoide unterschieden werden. HPLC-Laufbedingungen waren nahezu identisch mit einer publizierten Methode (Frazer et al.(2000), Plant Journal 24(4): 551-558).
Eine Identifizierung der Carotinoide war aufgrund der UV-VISSpektren möglich.

Tabelle 1 zeigt das Carotinoidprofil in Tomatenfrüchten der gemäß der vorstehend beschriebenen Beispiele hergestellten transgenen Tomaten und Kontrolltomatenpflanzen. Im Vergleich zur genetisch nicht veränderten Kontrollpflanze weisen die genetisch veränderten Pflanzen einen Gehalt an Ketocarotinoiden und insbesondere einen Gehalt an Astaxanthin auf.

Tabelle 1

25	Pflanze	Lutein	Lycopin	beta-Carotin	Cryptoxanthin	Canthaxanthin	Adonirubin	Astaxanthin
	Kontrolle	+	+	+	(+)	-		_
	Kontrolle	+	+	+	(+)			_
	CS13-24		+	+	(+)	+	+	+
	CS13-30		+	+	(+)	+	+	+
	CS13-40		+	+	(+)	+	+	+
20	CS14-2		+	+	(+)	+	+	+
30	CS14-3		+	+	-	+	+	+
	CS14-9	_	+	+	(+)	+	+	+ _
)	CS14-19		+	+	_	+	+	+
	CS16-15	 	+	+	(+)	+	+	+
	CS16-34	† –	+	+	(+)	+	+	+
	CS16-35	 -	+	+	_	+	+	+
35	CS16-40	 	+	(+)	(+)	+	+	+

- + bedeutet Carotinoid nachweisbar
- bedeutet Carotinoid nicht detektiert
- (+) bedeutet Carotinoidkonzentration an der Nachweisgrenze

Abbildung 1: Biosyntheseschema von Carotinoiden in Tomatenfrüchten

Abbildung 2: Biosyntheseschema von Astaxanthin in genetisch veränderten Tomatenfruechten

Abbildung 3: Nukleotidsequenzvergleich

KETO2.seq X86782.seq	ATCCACCTACCACCACACTAATGITGCACCACCTTACCCCAACCCACCTCACCCACCACCACCACC	
KETO2.seq X86782.seq	GTACATGGGGGACCCAGTACTGGCTTCCGTCAGAGGAGTCAGACGCGCCCGGGCGCCTGAAGAATGCCTACAAGGCACCACCCTTCCGACAAAGGC GTACATGGGGGACCCAGTACTGGCTTCCGTCAGAAGAGTCAGACGCGGCCGGC	
KETO2.seq X86782.seq	CATCACAATGCCCTACCTGTCATCCCCTCCTCCCCCCAGTGTTCCTCCACCCCATTTTTCAAATCAACCTTCCGACCTCCTTCGACCACCTCCACCTCCACCTCCACCCCATTTTTCAAATCAACCTTCCGACCTCCTTCGACCACCTCACCTCACCTCACCAC	
KETO2.seq X86782.seq	CTCCCCGTGTCAGATCCCACAGCTCAGCTCGGTTAGCCCCAGCAGCAGCCTCCTCCACATCGTCGTAGTATTCTTTGTCCTCGAGTTCCTGTACACAGGCCCCCCCGGTGCAGATCCCTCAGAGTTCCTGTACACAGGCCCCCCCC	
KETO2.seq X86782.seq	TTTTTATCACCACGCATGATCCTATCCATGCCACCATCCCCATGAGAAACACCCACC	
KETO2.seq X86782.seq	GITTGATTACAACATGCTGCACCGCAAGCATTGGGACCACCACCACCACCACGCGGGGGGGG	
KETO2.seq X86782.seq	GTCCCCTCGTTTCCCACCTTCATGTCCACCTACATGTCGATGTCGCAGTTTCCCCCCCTCGCATGGTCGACGTCGTCATCCACCTCCTCGGTCCCCCAAGTTCCCCACCTTCATGTCCACCTACATGTCGATGTCGCACGTTTCCCCCCCACGTCGTCGACGTCGTCATCCACCTCCTCGGTCGCCCCAAGTTCGCCCCAAGTTCGCACGTCGTCATCATCCACCTCCTCGGTCGCCCCAAGTTCGTCGACGTCGTCACCTCCTCGGTCGCCCCAAGTTCGTCGACGTCGTCACCTCCTCGGTCGCCCCAAGTTCGTCGACGTCGTCACCTCCTCGGTCGACGTCGACGTCGTCGACGTCGTCGACGTCGTCGACGTCGACGTCGTCGACGTCGACGTCGTCGACGACGTCGACGTCGACGACGTCGACGACGTCGACGACGTCGACGACACACAC	
KETO2.seq X86782.seq	TGCCGAACCTGCTGGTGTTCATGCCGCCCCCCCCATCCTGTCCCCCTTCCCCTTGTTCTACTTTGCCACGTACATGCCCCACAACCCTGACCCTGCCCTCCCCCTTGCCCACAACCCTGCCCTCCCCCTTGCCCACAACCCTGACCCTGACCCTGCCCCCCCC	
KETO2.seq X86782.seq	CCCGTCACCCTCTTCACCACCCGTCATGAACTCGTCGAAGTCCCCCACTACCCACCGGTCCGACCTTGTCACCTTTTCTGACCTCCTACCACTTTCGACCTCCTACCACTTTCGACCTCGTCACCTTTCTGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTTTCGACCTCGTCACCTCACCAC	
KETO2.seq X86782.seq	CACTGGGACCACCACCCCTTTGCCCCCTGGTGGGACCTGCCCAACTGCCCCCCTGTCTGCCGACGTCTGGTTCCTGCCTAG CACTGGGACCACCACCACCACCACCTGGTCGCCCCTAG	990 990

Abbildung 4: Proteinsequenzvergleich

KETO2.pro X86782.pro	MQLAATVMLEQLTGSAEALKEKEKEVAGSSDVLRTWATQYSLPSEESDAA MQLAATVMLEQLTGSAEALKEKEKEVAGSSDVLRTWATQYSLPSEESDAA	50 50
KETO2.pro X86782.pro	RPGLKNAYKPPPSDTKGITMALAVIGSWAAVFLHAIFQIKLPTSLDQLHWIRPGLKNAYKPPPSDTKGITMALRVIGSWAAVFLHAIFQIKLPTSLDQLHWI	00
KETO2.pro X86782.pro	LPVSDATAQLVSGSSSLLHIVVVFFVLEFLYTGLFITTHDAMHGTIAMRN I LPVSDATAQLVSGTSSLLDIVVVFFVLEFLYTGLFITTHDAMHGTIAMRN I	50 50
KETO2.pro X86782.pro		200
KETO2.pro X86782.pro	VP WF AS F MS S Y MS MWQ F A R L A WWT V V MQ L L G A P MA N L L V F MA A A P I L S A F 2 V P WF A S F MS S Y MS MWQ F A R L A WWT V V MQ L L G A P MA N L L V F MA A A P I L S A F 2	!50 !50
KETO2.pro X86782.pro	RLFYFGTYMPHKPEPGAASGSSPAVMNWWKSRTSQASDLVSFLTCYHFDL RLFYFGTYMPHKPEPGAASGSSPAVMNWWKSRTSQASDLVSFLTCYHFDL R	00 00
KETO2.pro X86782.pro	H WE H H R WP F A P WWE L P N C R R L S G R G L V P A H WE H H R WP F A P WWE L P N C R R L S G R G L V P A	29 129

Abbildung 5: Konstrukt zur Überexpression des β -C-4-Oxygenase Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse unter Kontrolle des d35S-Promoters (Tomatentransformationskonstrukt)

Abbildung 6: Konstrukt zur Überexpression des N-terminal verkürzten Ketolase (β -C-4-Oxygenase) Proteins aus *H. pluvialis* mit rbcS Transitpeptid aus Erbse unter Kontrolle des d35S-Promoters.

Abbildung 7: Konstrukt zur Überexpression des Ketolase (β -C-4-Oxygenase) Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse und C-terminalem myc-Tag unter Kontrolle des d35S-Promoters.

Abbildung 8: Konstrukt zur Überexpression der β -C-4-Oxygenase Protein aus H. pluvialis mit rbcS Transitpeptide aus Erbse unter Kontrolle des AP3P-Promoters (Tomatentransformationskonstrukt).

Abbildung 9: Konstrukt zur Überexpression des Ketolase (β -C-4-Oxygenase) Proteins aus H. pluvialis mit rbcS Transitpeptid aus Erbse und C-terminalem myc-Tag unter Kontrolle des AP3P-Promoters.

SEQUENCE LISTING

<110>	SunGer	ne Gm	nbH (Co. F	(GaA										
<120>	Verfal	hren	zur	hers	stell	Lung	von	Asta	exant	chin	in E	rue	chter	n von	Pflanzen
<130>	NAE 3	65/02	2												
<160>	36														
<170>	Paten	tIn v	vers:	ion 3	3.1									•	
<210><211><212><212><213>	1 1771 DNA Haema	toco	ccus	pluv	vial:	is									
<220> <221> <222> <223>	CDS (166)	(1	155)												
<400> ggcacg	1 gaget t	gcac	gcaa	g tc	agcg	cgcg	caa	gtca	aca	cctg	ccgg	tc c	acag	cctca	60
aataat	aaag a	gctc	aagc	g tt	tgtg	cgcc	tcg	acgt	ggc	cagt	ctgc	ac t	gcct	tgaac	120
ccgcga	igtct c	ccgc:	cgca	c tg	actg	ccat	. agc	acag	cta	gacg	a at Me 1	g ca t Gl	g ct n Le	a gca eu Ala	177
gcg ac Ala Th 5	ca gta ır Val	atg Met	Leu	gag Glu 10	cag Gln	ctt Leu	acc Thr	gga Gly	agc Ser 15	gct Ala	gag Glu	gca Ala	ctc Leu	aag Lys 20	225
gag as Glu Ly	ag gag ys Glu	Lys	gag Glu 25	gtt Val	gca Ala	ggc Gly	agc Ser	tct Ser 30	gac Asp	gtg Val	ttg Leu	cgt Arg	aca Thr 35	tgg Trp	273
gcg ac	cc cag nr Gln	tac Tyr 40	tcg Ser	ctt Leu	ccg Pro	tca Ser	gaa Glu 45	gag Glu	tca Ser	gac Asp	gcg Ala	gcc Ala 50	cgc Arg	ccg Pro	321
gga c	tg aag eu Lys 55	aat Asn	gcc Ala	tac Tyr	aag Lys	cca Pro 60	cca Pro	cct Pro	tcc Ser	gac Asp	aca Thr 65	aag Lys	ggc	atc Ile	369
aca a Thr M	tg gcg et Ala 0	cta Leu	cgt Arg	gtc Val	atc Ile 75	ggc Gly	tcc Ser	tgg Trp	gcc Ala	gca Ala 80	gtg Val	ttc Phe	ctc Leu	cac His	417
gcc a Ala I 85	tt ttt le Phe	caa Gln	atc Ile	aag Lys 90	ctt Leu	ccg Pro	acc Thr	tcc Ser	ttg Leu 95	gac Asp	cag Gln	ctg Leu	cac His	tgg Trp 100	465
ctg c	cc gtg	tca	gat	gcc	aca	gct	cag	ctg	gtt	agc	ggc	acg	agc	agc	513

										2						
Leu	Pro	Val	Ser	Asp 105	Ala	Thr	Ala	Gln	Leu 110	Val	Ser	Gly	Thr	<i>S</i> er 115	Ser	
ctg Leu	ctc Leu	gac Asp	atc Ile 120	gtc Val	gta Val	gta Val	ttc Phe	ttt Phe 125	gtc Val	ctg Leu	gag Glu	ttc Phe	ctg Leu 130	tac Tyr	aca Thr	561
ggc Gly	ctt Leu	ttt Phe 135	atc Ile	acc Thr	acg Thr	cat His	gat Asp 140 _.	gct Ala	atg Met	cat His	ggc Gly	acc Thr 145	atc Ile	gcc Ala	atg Met	609
aga Arg	aac Asn 150	agg Arg	cag Gln	ctt Leu	aat Asn	gac Asp 155	ttc Phe	ttg Leu	ggc Gly	aga Arg	gta Val 160	tgc Cys	atc Ile	tcc Ser	ttg Leu	657
tac Tyr 165	gcc Ala	tgg Trp	ttt Phe	gat Asp	tac Tyr 170	aac Asn	atg Met	ctg Leu	cac His	cgc Arg 175	aag Lys	cat His	tgg Trp	gag Glu	cac His 180	705
cac His	aac Asn	cac His	act Thr	ggc Gly 185	gag Glu	gtg Val	ggc Gly	aag Lys	gac Asp 190	cct Pro	gac Asp	ttc Phe	cac His	agg Arg 195	gga Gly	753
											atg Met					801
tcg Ser	atg Met	tgg Trp 215	cag Gln	ttt Phe	gcg Ala	cgc Arg	ctc Leu 220	gca Ala	tgg Trp	tgg Trp	acg Thr	gtg Val 225	gtc Val	atg Met	cag Gln	849
ctg Leu	ctg Leu 230	ggt Gly	gcg Ala	cca Pro	atg Met	gcg Ala 235	aac Asn	ctg Leu	ctg Leu	gtg Val	ttc Phe 240	atg Met	gcg Ala	gcc Ala	gcg Ala	897
ccc Pro 245	atc Ile	ctg Leu	tcc Ser	gcc Ala	Phe	cgc Arg	Leu	Phe	Tyr	Phe	ggc Gly	Thr	Tyr	Met	ccc Pro 260	945
cac His	aag Lys	cct Pro	gag Glu	cct Pro 265	ggc	gcc Ala	gcg Ala	tca Ser	ggc Gly 270	tct Ser	tca Ser	cca Pro	gcc Ala	gtc Val 275	atg Met	993
aac Asn	tgg Trp	tgg Trp	aag Lys 280	tcg Ser	cgc Arg	act Thr	agc Ser	cag Gln 285	gcg Ala	tcc Ser	gac Asp	ctg Leu	gtc Val 290	agc Ser	ttt Phe	1041
ctg Leu	acc Thr	tgc Cys 295	tac Tyr	cac His	ttc Phe	gac Asp	ctg Leu 300	cac His	tgg Trp	gag Glu	cac His	cac His 305	cgc Arg	tgg Trp	ccc Pro	1089
ttc Phe	gcc Ala 310	ccc Pro	tgg Trp	tgg Trp	gag Glu	ctg Leu 315	ccc Pro	aac Asn	tgc Cys	cgc Arg	cgc Arg 320	ctg Leu	tct Ser	ggc Gly	cga Arg	1137
		gtt Val			tag	ctgg	gacac	cac t	gcag	gtggg	gc co	ctgct	gcca	1		1185

325

gctgggcatg	caggttgtgg	caggactggg	tgaggtgaaa	agctgcaggc	gctgctgccg	1245
gacacgctgc	atgggctacc	ctgtgtagct	gccgccacta	ggggagggg	tttgtagctg	1305
tcgagcttgc	cccatggatg	aagctgtgta	gtggtgcagg	gagtacaccc	acaggccaac	1365
acccttgcag	gagatgtctt	gcgtcgggag	gagtgttggg	cagtgtagat	gctatgattg	1425
tatcttaatg	ctgaagcctt	taggggagcg	acacttagtg	ctgggcaggc	aacgccctgc	1485
aaggtgcagg	cacaagctag	gctggacgag	gactcggtgg	caggcaggtg	aagaggtgcg	1545
ggagggtggt	gccacaccca	ctgggcaaga	ccatgctgca	atgctggcgg	tgtggcagtg	1605
agagctgcgt	gattaactgg	gctatggatt	gtttgagcag	tctcacttat	tctttgatat	1665
agatactggt	caggcaggtc	aggagagtga	gtatgaacaa	gttgagaggt	ggtgcgctgc	1725
ccctgcgctt	atgaagctgt	aacaataaag	tggttcaaaa	aaaaaa		1771

<210> 2

<211> 329

<212> PRT

<213> Haematococcus pluvialis

<400> 2

Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 5 15

Glu Ala Leu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val 20 25

Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp 35 40

Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp 55

Thr Lys Gly Ile Thr Met Ala Leu Arg Val Ile Gly Ser Trp Ala Ala 65 70 75

Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp 85 90 95

Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 100 105 110

Gly Thr Ser Ser Leu Leu Asp Ile Val Val Val Phe Phe Val Leu Glu 115 120 125

Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly 130 135 140

Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val 145 150 155 160

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys 165 170 175

His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp 180 185 190

Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met 195 200 205

Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr , 210 220

Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe 225 230 235 240

Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly 245 250 255

Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser 260 265 270

Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp 275 280 285

Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His 290 295 300

His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 305 310 315 320

Leu Ser Gly Arg Gly Leu Val Pro Ala

	<21 <21 <21 <21	1> 2>	3 1662 DNA Haem	atoc	occu	s pl	uvia	lis									
	<22 <22 <22 <22	1> 2>	CDS (168)(1130)											
	<40 cgg		3 act	caag	aaat	tc a	acage	ctgc	a ag	cgcge	cccc	agc	ctca	caq (cacc	aagtga	60
																tctgcg	120
				tgcc										atg		gtc	176
Ļ	gca Ala	tcg Ser 5	gca Ala	cta Leu	atg Met	gtc Val	gag Glu 10	cag Gln	aaa Lys	ggc Gly	agt Ser	gag Glu 15	gca Ala	gct Ala	gct Ala	tcc Ser	224
	agc Ser 20	cca Pro	gac Asp	gtc Val	ttg Leu	aga Arg 25	gcg Ala	tgg Trp	gcg Ala	aca Thr	cag Gln 30	tat Tyr	cac His	atg Met	cca Pro	tcc Ser:, 35	272
	gag Glu	tcg Ser	tca Ser	gac Asp	gca Ala 40	gct Ala	cgt Arg	cct Pro	gcg Ala	cta Leu 45	aag Lys	cac His	gcc Ala	tac Tyr	aaa Lys 50	cct Pro	320
	cca Pro	gca Ala	tct Ser	gac Asp 55	gcc Ala	aag Lys	Gly ggc	atc Ile	acg Thr 60	atg Met	gcg Ala	ctg Leu	acc Thr	atc Ile 65	att Ile	Gly	368
	acc	tgg Trp	acc Thr 70	gca Ala	gtg Val	ttt Phe	tta Leu	cac His 75	Ala	ata Ile	Phe	Gln	Ile	Arg	cta Leu	ccg Pro	416
	aca Thr	tcc Ser 85	atg Met	gac Asp	cag Gln	ctt Leu	cac His 90	tgg Trp	ttg Leu	cct Pro	gtg Val	tcc Ser 95	gaa Glu	gcc Ala	aca Thr	gcc Ala	464
	cag Gln 100	ctt Leu	ttg Leu	Gly	gga Gly	agc Ser 105	agc Ser	agc Ser	cta Leu	ctg Leu	cac His 110	atc Ile	gct Ala	gca Ala	gtc Val	ttc Phe 115	512
	att Ile	gta Val	ctt Leu	gag Glu	ttc Phe 120	ctg Leu	tac Tyr	act Thr	ggt Gly	cta Leu 125	ttc Phe	atc Ile	acc Thr	aca Thr	cat His 130	gac Asp	560
	gca Ala	atg Met	cat His	ggc Gly 135	acc Thr	ata Ile	gct Ala	ttg Leu	agg Arg 140	cac His	agg Arg	cag Gln	ctc Leu	aat Asn 145	gat Asp	ctc Leu	608
	ctt	ggc	aac	atc	tgc	ata	tca	ctg	tac	gcc	tgg	ttt	gac	tac	agc	atg	656

										0						
Leu	Gly	Asn 150	Ile	Cys	Ile	Ser	Leu 155	Tyr	Ala	Trp	Phe	Asp 160	Tyr	Ser	Met	
	cat His 165															704
	gac Asp															752
	agc Ser															800
	tgg Trp															848
	cta Leu															896
	tac Tyr 245															944
	ggc															992
	gat Asp															1040
	cac His															1088
cgc Arg	cgc Arg	ctg Leu 310	tcc Ser	ggg Gly	cgt Arg	ggc Gly	ctg Leu 315	gtg Val	cct Pro	gcc Ala	ttg Leu	gca Ala 320	tga			1130
ccts	gtc	ect o	ccgct	ggtg	ga co	ccago	gtct	t gca	acaag	gagt	gtca	atgci	tac a	agggt	tgctgc	1190
ggc	cagto	ggc a	agcgo	cagto	gc ad	etete	cagco	c tgi	tatg	gggc	tac	eget	gtg (ccact	tgagca	1250
ctgg	ggcat	gc o	cacto	gagca	ac to	gggcg	gtgct	t act	gago	caat	ggg	gtg	cta d	ctga	gcaatg	1310
ggcg	gtgct	cac t	gaca	aatgg	gg cg	gtgct	cacto	a aad	gtcto	ggca	gtg	gcta	gga	tgga	gtttga	1370
tgca	attca	agt a	agcgg	gtgg	cc aa	acgto	catg	t gga	atggi	tgga	agt	getg	agg (ggtt	taggca	1430
gccg	ggcat	tt g	gagag	gggct	ta ag	gttai	taaat	t cg	catgo	ctgc	tca	tgcg	cac a	atat	ctgcac	1490
acag	gccag	agg a	aaato	ccct	tc ga	agagt	tgati	t at	ggga	cact	tgta	attg	gtt	tcgt	gctatt	1550

gttttattca gcagcagtac ttagtgaggg tgagagcagg gtggtgagag tggagtgagt 1610 1662 gagtatgaac ctggtcagcg aggtgaacag cctgtaatga atgactctgt ct

<210> 4

<211> 320

<212> PRT

<213> Haematococcus pluvialis

<400> 4

Met His Val Ala Ser Ala Leu Met Val Glu Gln Lys Gly Ser Glu Ala 5

Ala Ala Ser Ser Pro Asp Val Leu Arg Ala Trp Ala Thr Gln Tyr His 25

Met Pro Ser Glu Ser Ser Asp Ala Ala Arg Pro Ala Leu Lys His Ala 35

Tyr Lys Pro Pro Ala Ser Asp Ala Lys Gly Ile Thr Met Ala Leu Thr 50 55 60

Ile Ile Gly Thr Trp Thr Ala Val Phe Leu His Ala Ile Phe Gln Ile 65 70 75

Arg Leu Pro Thr Ser Met Asp Gln Leu His Trp Leu Pro Val Ser Glu 85 90

Ala Thr Ala Gln Leu Leu Gly Gly Ser Ser Ser Leu Leu His Ile Ala 100 105

Ala Val Phe Ile Val Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr 120

Thr His Asp Ala Met His Gly Thr Ile Ala Leu Arg His Arg Gln Leu 130 135 140

Asn Asp Leu Leu Gly Asn Ile Cys Ile Ser Leu Tyr Ala Trp Phe Asp 160 145 150 155

Tyr Ser Met Leu His Arg Lys His Trp Glu His His Asn His Thr Gly 170 175 165

Glu Val Gly Lys Asp Pro Asp Phe His Lys Gly Asn Pro Gly Leu Val

180

185

190

Pro Trp Phe Ala Ser Phe Met Ser Ser Tyr Met Ser Leu Trp Gln Phe 195 200

Ala Arg Leu Ala Trp Trp Ala Val Val Met Gln Met Leu Gly Ala Pro 215

Met Ala Asn Leu Leu Val Phe Met Ala Ala Ala Pro Ile Leu Ser Ala 225 230 235 240

Phe Arg Leu Phe Tyr Phe Gly Thr Tyr Leu Pro His Lys Pro Glu Pro 245 250 255

ly Pro Ala Ala Gly Ser Gln Val Met Ala Trp Phe Arg Ala Lys Thr 260 265

Ser Glu Ala Ser Asp Val Met Ser Phe Leu Thr Cys Tyr His Phe Asp 275

Leu His Trp Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Gln Leu 290 295

Pro His Cys Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Leu Ala 310 315 320

<210> 5

<211> 729

<212> DNA

213> Agrobacterium aurantiacum

<220>

<221> CDS

<222> (1)..(729)

<223>

<400> 5

atg age gea cat gee etg eec aag gea gat etg ace gee ace age etg 48 Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1

ate gte teg gge gge ate ate gee get tgg etg gee etg cat gtg cat 96 Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30

gcg ctg tgg ttt ctg gac gca gcg gcg cat ccc atc ctg gcg atc gca 144 Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala

		35			40				45					
aat Asn		_												192
cat His 65										cgc Arg				240
gcg Ala										ttt Phe				288
										gcc Ala 110				336
										tgg Trp				384
_						 _				ctg Leu				432
_										tgg Trp			·	480
										cag Gln				528
										gcg Ala 190				576
_	_		-				-			gtg Val				624
												cac His		672
								Arg				gac Asp 240		720
	gca Ala	tga									•			729

<212> PRT

<213> Agrobacterium aurantiacum

<400> 6

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 5 10 15

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20 25 30

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Ile Ala 35 40 45

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr
100 105 110

Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 115 120 125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu 195 200 205

11

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220

Pro Thr Val Pro Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235

Thr Ala

. .

<210> 7

<211> 1631

<212> DNA

<213> Alcaligenes sp.

<220>

<221> CDS

<222> (99)..(827)

105

<223>

<400> 7 ctgcaggccg ggcccggtgg ccaatggtcg caaccggcag gactggaaca ggacggcggg 60 ccggtctagg ctgtcgccct acgcagcagg agtttcgg atg tcc gga cgg aag cct 116 Met Ser Gly Arg Lys Pro 5 ggc aca act ggc gac acg atc gtc aat ctc ggt ctg acc gcc gcg atc 164 Gly Thr Thr Gly Asp Thr Ile Val Asn Leu Gly Leu Thr Ala Ala Ile 15 10 ctg ctg tgc tgg ctg gtc ctg cac gcc ttt acg cta tgg ttg cta gat 212 Leu Leu Cys Trp Leu Val Leu His Ala Phe Thr Leu Trp Leu Leu Asp 35 30 25 260 geg gee geg cat eeg etg ett gee gtg etg tge etg get ggg etg aee Ala Ala Ala His Pro Leu Leu Ala Val Leu Cys Leu Ala Gly Leu Thr 45 40 tgg ctg tcg gtc ggg ctg ttc atc atc gcg cat gac gca atg cac ggg 308 Trp Leu Ser Val Gly Leu Phe Ile Ile Ala His Asp Ala Met His Gly 70 60 tcc gtg gtg ccg ggg ccg ccg cgc gcc aat gcg gcg atc ggg caa ctg 356 Ser Val Val Pro Gly Arg Pro Arg Ala Asn Ala Ile Gly Gln Leu 75 gcg ctg tgg ctc tat gcg ggg ttc tcg tgg ccc aag ctg atc gcc aag 404 Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp Pro Lys Leu Ile Ala Lys 90 95

cac atg acg cat cac cgg cac gcc ggc acc gac aac gat ccc gat ttc

His Met Thr His His Arg His Ala Gly Thr Asp Asn Asp Pro Asp Phe

110

ggt Gly	cac His 120	gga Gly	Gly aaa	ccc Pro	gtg Val	cgc Arg 125	tgg Trp	tac Tyr	ggc	agc Ser	ttc Phe 130	gtc Val	tcc Ser	acc Thr	tat Tyr	!	500
ttc Phe 135	ggc Gly	tgg Trp	cga Arg	gag Glu	gga Gly 140	ctg Leu	ctg Leu	cta Leu	ccg Pro	gtg Val 145	atc Ile	gtc Val	acc Thr	acc Thr	tat Tyr 150		548
gcg Ala	ctg Leu	atc Ile	ctg Leu	ggc Gly 155	gat Asp	cgc Arg	tgg Trp	atg Met	tat Tyr 160	gtc Val	atc Ile	ttc Phe	tgg Trp	ccg Pro 165	gtc Val	-	596
ccg Pro	gcc Ala	gtt Val	ctg Leu 170	gcg Ala	tcg Ser	atc Ile	cag Gln	att Ile 175	ttc Phe	gtc Val	ttc Phe	gga Gly	act Thr 180	tgg Trp	ctg Leu	ć	544
ccc Pro	cac His	cgc Arg 185	ccg Pro	gga Gly	cat His	gac Asp	gat Asp 190	ttt Phe	ccc Pro	gac Asp	cgg Arg	cac His 195	aac Asn	gcg Ala	agg Arg	6	592
Ser	acc Thr 200	ggc Gly	atc Ile	ggc	gac Asp	ccg Pro 205	ttg Leu	tca Ser	cta Leu	ctg Leu	acc Thr 210	tgc Cys	ttc Phe	cat His	ttc Phe	7	740
ggc Gly 215	ggc Gly	tat Tyr	cac His	His	gaa Glu 220	cat His	cac His	ctg Leu	cat His	ccg Pro 225	cat His	gtg Val	ccg Pro	tgg Trp	tgg : Trp 230	7	788
cgc Arg	ctg Leu	cct Pro	Arg	aca Thr 235	cgc Arg	aag Lys	acc Thr	gga Gly	ggc Gly 240	cgc Arg	gca Ala	tga	cgca	atto	ct	8	3 7 .
catt	gtcg	tg g	cgac	agtc	c tc	gtga	tgga	gct	gaco	gcc	tatt	ccgt	cc a	ccgc	tggat	8	97
tatg	cacg	gc c	ccct	aggc	t gg	ggct	ggca	caa	gtcc	cat	cacg	aaga	gc a	cgac	cacgc	9	57
gttg	gaga	ag a	acga	cctc	t ac	ggcg	tcgt	ctt	cgcg	gtg	ctgg	cgac	ga t	cctc	ttcac	10	17
															tatgg	10	77
															tatat	11	.37
															gtcga	11	.97
gggg	cggg	ac c	actg	cgtc	a gc	ttcg	gctt	cat	ctat	gcc	ccac	ccgt	gg a	caag	ctgaa	12	57
gcag	gatc	tg a	agcg	gtcg	g gt	gtcc	tgcg	ccc	ccag	gac	gagc	gtcc	gt c	gtga	tctct	13	17
gatc	ccgg	cg t	ggcc	gcat	g aa	atcc	gacg	tgc	tgct	ggc	aggg	gcċg	gc c	ttgc	caacg .	13	77
gact	gatc	gc g	ctgg	cgat	c cg	caag	gcgc	ggc	ccga	cct	tcgc	gtgc	tg c	tgct	ggacc	14	37
gtgc	ggcg	gg c	gcct	cgga	c gg	gcat	actt	ggt	cctg	cca	cgac	accg	at t	tggc	gccgc	14	97
actg	gctg	ga c	cgcc	tgaaq	a cci	gatc	aggc	gtg	gcga	ctg	gccc	gatc	ag g	aggt	gcggt	15	57

tcccagacca ttcgcgaagg ctccgggccg gatatggctc gatcgacggg cgggggctga 1617
tgcgtgcggt gacc 1631

<210> 8

<211> 242

<212> PRT

<213> Alcaligenes sp.

<400> 8

Met Ser Gly Arg Lys Pro Gly Thr Thr Gly Asp Thr Ile Val Asn Leu 1 5 10 15

Gly Leu Thr Ala Ala Ile Leu Leu Cys Trp Leu Val Leu His Ala Phe 20 25 30

Thr Leu Trp Leu Leu Asp Ala Ala Ala His Pro Leu Leu Ala Val Leu 35 40 45

Cys Leu Ala Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55 60

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75 80

Ala Ala Ile Gly Gln Leu Ala Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85 90 95

Pro Lys Leu Ile Ala Lys His Met Thr His His Arg His Ala Gly Thr 100 105 110

Asp Asn Asp Pro Asp Phe Gly His Gly Gly Pro Val Arg Trp Tyr Gly
115 120 125

Ser Phe Val Ser Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Thr Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155 160

Val Ile Phe Trp Pro Val Pro Ala Val Leu Ala Ser Ile Gln Ile Phe 165 170 175

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Asp Phe Pro

180

185

190

Asp Arg His Asn Ala Arg Ser Thr Gly Ile Gly Asp Pro Leu Ser Leu 195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His

Pro His Val Pro Trp Trp Arg Leu Pro Arg Thr Arg Lys Thr Gly Gly 230 235

Arg Ala

<210> 9 <211> 729 <212> DNA <213> Paracoccus marcusii

<220> <221> CDS <222> (1)..(729) <223>

<400> 9 atg agc gca cat gcc ctg ccc aag gca gat ctg acc gcc aca agc ctg 48 Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 1 5 10

atc gtc tcg ggc ggc atc atc gcc gca tgg ctg gcc ctg cat gtg cat 96 Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20

gcg ctg tgg ttt ctg gac gcg gcg gcc cat ccc atc ctg gcg gtc gcg 144 Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala

aat ttc ctg ggg ctg acc tgg ctg tcg gtc gga ttg ttc atc atc gcg 192 Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55

cat gac gcg atg cac ggg tcg gtc gtg ccg ggg cgt ccg cgc gcc aat 240 His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65 70 75

gcg gcg atg ggc cag ctt gtc ctg tgg ctg tat gcc gga ttt tcg tgg 288 Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 85

ege aag atg ate gte aag cae atg gee cat cae ege cat gee gga ace 336 Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr

								TO						
			100				105				110			
								ccg Pro						384
								gag Glu						432
								ggg Gly 155						480
								gcg Ala						528
								ggc Gly						576
								agc Ser				 _		624
								cac His					,	672
								acc Thr 235						720
acc Thr	gca Ala	tga												729
<210 <211 <212	L> 2 2> I	L0 242 PRT												
<213		Parad	cocci	ıs ma	arcus	sii								
<400	J>]	10							_	_				

Met Ser Ala His Ala Leu Pro Lys Ala Asp Leu Thr Ala Thr Ser Leu 5 15 10

Ile Val Ser Gly Gly Ile Ile Ala Ala Trp Leu Ala Leu His Val His 20

Ala Leu Trp Phe Leu Asp Ala Ala Ala His Pro Ile Leu Ala Val Ala 40

Asn Phe Leu Gly Leu Thr Trp Leu Ser Val Gly Leu Phe Ile Ile Ala 50 55

His Asp Ala Met His Gly Ser Val Val Pro Gly Arg Pro Arg Ala Asn 65

Ala Ala Met Gly Gln Leu Val Leu Trp Leu Tyr Ala Gly Phe Ser Trp 90

Arg Lys Met Ile Val Lys His Met Ala His His Arg His Ala Gly Thr 100 105

Asp Asp Asp Pro Asp Phe Asp His Gly Gly Pro Val Arg Trp Tyr Ala 120 125

Arg Phe Ile Gly Thr Tyr Phe Gly Trp Arg Glu Gly Leu Leu Pro 130 135 140

Val Ile Val Thr Val Tyr Ala Leu Ile Leu Gly Asp Arg Trp Met Tyr 145 150 155

Val Val Phe Trp Pro Leu Pro Ser Ile Leu Ala Ser Ile Gln Leu Phe 165

Val Phe Gly Thr Trp Leu Pro His Arg Pro Gly His Asp Ala Phe Pro 180 185 190

Asp Arg His Asn Ala Arg Ser Ser Arg Ile Ser Asp Pro Val Ser Leu 195 200 205

Leu Thr Cys Phe His Phe Gly Gly Tyr His His Glu His His Leu His 210 215 220

Pro Thr Val Pro Trp Trp Arg Leu Pro Ser Thr Arg Thr Lys Gly Asp 225 230 235

Thr Ala

<210> 11

<211> 1629

<212> DNA

<213> Synechococcus sp.

<220: <221: <222: <223:	> C:	DS 1)	(162	9)													
<400: atg : Met :	atc	acc	acc Thr	gat Asp 5	gtt Val	gtc Val	att Ile	att Ile	ggg Gly 10	gcg Ala	GJÀ ààà	cac His	aat Asn	ggc Gly 15	tta Leu		48
gtc Val	tgt Cys	gca Ala	gcc Ala 20	tat Tyr	ttg Leu	ctc Leu	Gln	cgg Arg 25	ggc Gly	ttg Leu	Gly ggg	gtg Val	acg Thr 30	tta Leu	cta Leu		96
gaa Glu	Lys	cgg Arg 35	gaa Glu	gta Val	cca Pro	GJA aaa	ggg Gly 40	gcg Ala	gcc Ala	acc Thr	Thr	gaa Glu 45	gct Ala	ctc Leu	atg Met		144
Pro	gag Glu 50	cta Leu	tcc Ser	ccc Pro	cag Gln	ttt Phe 55	cgc Arg	ttt Phe	aac Asn	cgc Arg	tgt Cys 60	gcc Ala	att Ile	gac Asp	cac His		192
gaa Glu 65	ttt Phe	atc Ile	ttt Phe	ctg Leu	ggg Gly 70	ccg Pro	gtg Val	ttg Leu	cag Gln	gag Glu 75	cta Leu	aat Asn	tta Leu	gcc Ala	cag Gln : 80	,	240
tat Tyr	ggt Gly	ttg Leu	gaa Glu	tat Tyr 85	tta Leu	ttt Phe	tgt Cys	gac Asp	ccc Pro 90	agt Ser	gtt Val	ttt Phe	tgt Cys	ccg Pro 95	Gly ggg		288
ctg Leu	gat Asp	ggc Gly	caa Gln 100	gct Ala	ttt Phe	atg Met	agc Ser	tac Tyr 105	cgt Arg	tcc Ser	cta Leu	gaa Glu	aaa Lys 110	acc Thr	tgt Cys		336
gcc Ala	cac His	att Ile 115	gcc Ala	acc Thr	tat Tyr	agc Ser	ccc Pro 120	cga Arg	gat Asp	gcg Ala	gaa Glu	aaa Lys 125	tat Tyr	cgg Arg	caa Gln		384
ttt Phe	gtc Val 130	Asn	tat Tyr	tgg Trp	acg Thr	gat Asp 135	ttg Leu	ctc Leu	aac Asn	gct Ala	gtc Val 140	cag Gln	cct Pro	gct Ala	ttt Phe		432
aat Asn 145	gct Ala	ccg Pro	ccc	cag Gln	gct Ala 150	Leu	cta Leu	gat Asp	tta Leu	gcc Ala 155	. Leu	aac Asn	tat Tyr	ggt	tgg Trp 160		480
gaa Glu	aac Asn	tta Leu	aaa Lys	tcc Ser 165	Val	ctg Leu	gcg Ala	ato	gcc Ala 170	Gly	tcg Ser	aaa Lys	acc Thr	aag Lys 175	gcg Ala		528
ttg Leu	gat Asp	ttt Phe	ato Ile 180	Arg	act Thr	atg Met	atc :Ile	ggc Gly 185	y Ser	ccg Pro	gaa Glu	gat Asp	gtg Val	. Lev	aat Asn		576
gaa	. tgg	tto	gac	ago	gaa	cgg	gtt	aaa	a gct	. cct	: tta	a gct	aga	a cta	a tgt		624

16																
Glu	_	Phe 195	Asp	Ser	Glu		Val 200	Lys	Ala	Pro	Leu	Ala 205	Arg	Leu	Cys	
Ser	gaa Glu 210	att Ile	ggc	gct Ala	Pro	cca Pro 215	tcc Ser	caa Gln	aag Lys	ggt Gly	agt Ser 220	agc Ser	tcc Ser	ggc	atg Met	672
atg Met 225	atg Met	gtg Val	gcc Ala	atg Met	cgg Arg 230	cat His	ttg Leu	gag Glu	gga Gly	att Ile 235	gcc Ala	aga Arg	cca Pro	aaa Lys	gga Gly 240	720
ggc Gly	act Thr	gga Gly	gcc Ala	ctc Leu 245	aca Thr	gaa Glu	gcc Ala	ttg Leu	gtg Val 250	aag Lys	tta Leu	gtg Val	caa Gln	gcc Ala 255	caa Gln	768
ggg Gly	gga Gly	aaa Lys	atc Ile 260	ctc Leu	act Thr	gac Asp	caa Gln	acc Thr 265	gtc Val	aaa Lys	cgg Arg	gta Val	ttg Leu 270	gtg Val	gaa Glu	816
aac Asn	aac Asn	cag Gln 275	gcg Ala	atc Ile	GJÀ aaa	gtg Val	gag Glu 280	gta Val	gct Ala	aac Asn	gga Gly	gaa Glu 285	cag Gln	tac Tyr	cgg· Arg	864
gcc Ala	aaa Lys 290	aaa Lys	ggc	gtg Val	att Ile	tct Ser 295	aac Asn	atc Ile	gat Asp	gcc Ala	cgc Arg 300	cgt Arg	tta Leu	ttt Phe	ttg Leu .	912
caa Gln 305	ttg Leu	gtg Val	gaa Glu	ccg Pro	ggg Gly 310	gcc Ala	cta Leu	gcc Ala	aag Lys	gtg Val 315	Asn	caa Gln	aac Asn	cta Leu	ggg Gly 320	960
gaa Glu	cga Arg	ctg Leu	gaa Glu	cgg Arg 325	cgc Arg	act Thr	gtg Val	aac Asn	aat Asn 330	aac Asn	gaa Glu	gcc Ala	att Ile	tta Leu 335	Lys	1008
atc Ile	gat Asp	tgt Cys	gcc Ala 340	Leu	tcc Ser	ggt Gly	tta Leu	ccc Pro 345	cac His	ttc Phe	act Thr	gcc Ala	atg Met 350	Ala	ggg	1056
ccg	gag Glu	gat Asp 355	Leu	acg Thr	gga Gly	act Thr	att Ile 360	Leu	att	gcc Ala	gac Asp	tcg Ser 365	Val	cgc Arg	cat His	1104
gtc Val	gag Glu 370	Glu	gcc Ala	cac His	gcc Ala	ctc Leu 375	Ile	gcc	ttg Leu	Gly ggg	g caa g Glr 380	ı Ile	ccc Pro	gat Asp	gct Ala	1152
aat Asn 385	Pro	tct Ser	tta Leu	tat Tyr	ttg Leu 390	. Asp	att Ile	ccc	act Thr	gta Val	L Le	g gac ı Asp	cco Pro	acc Thr	atg Met 400	1200
gcc Ala	cco Pro	cct Pro	Gly ggg	Glr Glr 405	ı His	acc Thr	cto Lev	tgg Trp	ato Ile 410	e Glu	a tti ı Phe	ttte Phe	gco Ala	e ccc a Pro 415	tac Tyr	1248
cgc	ato	gco Ala	ggg Gly	tto Lei	g gaa ı Glu	r Gl7	g aca y Thi	ggg	y tta y Lei	a atq ı Me	g gg t Gl	c aca y Thi	a ggt c Gly	tgq Y Trj	g acc o Thr	1296

										19				•		
			420					425					430			
gat Asp	gag Glu	tta Leu 435	aag Lys	gaa Glu	aaa Lys	gtg Val	gcg Ala 440	gat Asp	cgg Arg	gtg Val	att Ile	gat Asp 445	aaa Lys	tta Leu	acg Thr	1344
gac Asp	tat Tyr 450	gcc Ala	cct Pro	aac Asn	cta Leu	aaa Lys 455	tct Ser	ctg Leu	atc Ile	att Ile	ggt Gly 460	cgc Arg	cga Arg	gtg Val	gaa Glu	1392
agt Ser 465	ccc Pro	gcc Ala	gaa Glu	ctg Leu	gcc Ala 470	caa Gln	cgg Arg	ctg Leu	gga Gly	agt Ser 475	tac Tyr	aac Asn	ggc Gly	aat Asn	gtc Val 480	1440
tat Tyr	cat His	ctg Leu	gat Asp	atg Met 485	agt Ser	ttg Leu	gac Asp	caa Gln	atg Met 490	atg Met	ttc Phe	ctc Leu	cgg Arg	cct Pro 495	cta Leu	1488
ccg Pro	gaa Glu	att Ile	gcc Ala 500	aac Asn	tac Tyr	caa Gln	acc Thr	ccc Pro 505	atc Ile	aaa Lys	aat Asn	ctt Leu	tac Tyr 510	tta Leu	aca Thr	1536
GJA aaa	gcg Ala	ggt Gly 515	acc Thr	cat His	ccc Pro	ggt Gly	ggc Gly 520	tcc Ser	ata Ile	tca Ser	ggt Gly	atg Met 525	ccc Pro	ggt Gly	aga Arg	1584
aat Asn	tgc Cys 530	gct Ala	cgg Arg	gtc Val	ttt Phe	tta Leu 535	aaa Lys	caa Gln	caa Gln	cgt Arg	cgt Arg 540	ttt Phe	tgg Trp	taa		1629 · .
<210> 12 <211> 542 <212> PRT <213> Synechococcus sp.																
<400)> 1	.2														
Met 1	Ile	Thr	Thr	Asp 5	Val	Val	Ile	Ile	Gly 10	Ala	Gly	His	Asn	Gly 15	Leu	
Val	Cys	Ala	Ala 20	Tyr	Leu	Leu	Gln	Arg 25	Gly	Leu	Gly	Val	Thr 30	Leu	Leu	
Glu	Lys	Arg 35	Glu	Val	Pro	Gly	Gly 40	Ala	Ala	Thr	Thr	Glu 45	Ala	Leu	Met	
_		_	_	_								_	_			

Glu Phe Ile Phe Leu Gly Pro Val Leu Gln Glu Leu Asn Leu Ala Gln 70 75

Pro Glu Leu Ser Pro Gln Phe Arg Phe Asn Arg Cys Ala Ile Asp His

55

Tyr Gly Leu Glu Tyr Leu Phe Cys Asp Pro Ser Val Phe Cys Pro Gly

Leu Asp Gly Gln Ala Phe Met Ser Tyr Arg Ser Leu Glu Lys Thr Cys

Ala His Ile Ala Thr Tyr Ser Pro Arg Asp Ala Glu Lys Tyr Arg Gln

Phe Val Asn Tyr Trp Thr Asp Leu Leu Asn Ala Val Gln Pro Ala Phe

Asn Ala Pro Pro Gln Ala Leu Leu Asp Leu Ala Leu Asn Tyr Gly Trp

Glu Asn Leu Lys Ser Val Leu Ala Ile Ala Gly Ser Lys Thr Lys Ala

Leu Asp Phe Ile Arg Thr Met Ile Gly Ser Pro Glu Asp Val Leu Asn

Glu Trp Phe Asp Ser Glu Arg Val Lys Ala Pro Leu Ala Arg Leu Cys

Ser Glu Ile Gly Ala Pro Pro Ser Gln Lys Gly Ser Ser Ser Gly Met

Met Met Val Ala Met Arg His Leu Glu Gly Ile Ala Arg Pro Lys Gly

Gly Thr Gly Ala Leu Thr Glu Ala Leu Val Lys Leu Val Gln Ala Gln

Gly Gly Lys Ile Leu Thr Asp Gln Thr Val Lys Arg Val Leu Val Glu

Asn Asn Gln Ala Ile Gly Val Glu Val Ala Asn Gly Glu Gln Tyr Arg

Ala Lys Lys Gly Val Ile Ser Asn Ile Asp Ala Arg Arg Leu Phe Leu

Gln Leu Val Glu Pro Gly Ala Leu Ala Lys Val Asn Gln Asn Leu Gly 305 310 315 320

Glu Arg Leu Glu Arg Arg Thr Val Asn Asn Glu Ala Ile Leu Lys 325 330 335

Ile Asp Cys Ala Leu Ser Gly Leu Pro His Phe Thr Ala Met Ala Gly 340 345 350

Pro Glu Asp Leu Thr Gly Thr Ile Leu Ile Ala Asp Ser Val Arg His 355 360 365

Val Glu Glu Ala His Ala Leu Ile Ala Leu Gly Gln Ile Pro Asp Ala 370 375 380

Asn Pro Ser Leu Tyr Leu Asp Ile Pro Thr Val Leu Asp Pro Thr Met 385 390 395 400

Ala Pro Pro Gly Gln His Thr Leu Trp Ile Glu Phe Phe Ala Pro Tyr 405 410 415

Arg Ile Ala Gly Leu Glu Gly Thr Gly Leu Met Gly Thr Gly Trp Thr 420 425 430

Asp Glu Leu Lys Glu Lys Val Ala Asp Arg Val Ile Asp Lys Leu Thr 435 440 445

Asp Tyr Ala Pro Asn Leu Lys Ser Leu Ile Ile Gly Arg Arg Val Glu 450 455 460

Ser Pro Ala Glu Leu Ala Gln Arg Leu Gly Ser Tyr Asn Gly Asn Val 465 470 475 480

Tyr His Leu Asp Met Ser Leu Asp Gln Met Met Phe Leu Arg Pro Leu 485 490 495

Pro Glu Ile Ala Asn Tyr Gln Thr Pro Ile Lys Asn Leu Tyr Leu Thr
500 505 510

Gly Ala Gly Thr His Pro Gly Gly Ser Ile Ser Gly Met Pro Gly Arg 515 520 525

Asn Cys Ala Arg Val Phe Leu Lys Gln Gln Arg Arg Phe Trp

										44	4									
530						535					540									
<21 <21 <21 <21	1> 2>	13 776 DNA Brad	yrhi	zobi	um s	p.														
<22 <22 <22 <22	1> 2>	CDS (1).	. (77	4)																
<40 atg Met 1	cat	13 gca Ala	gca Ala	acc Thr 5	gcc Ala	aag Lys	gct Ala	act Thr	gag Glu 10	ttc Phe	ggg	gcc Ala	tct Ser	cgg Arg 15	cgc Arg		48			
gac Asp	gat Asp	gcg Ala	agg Arg 20	cag Gln	cgc Arg	cgc Arg	gtc Val	ggt Gly 25	ctc Leu	acg Thr	ctg Leu	gcc Ala	gcg Ala 30	gtc Val	atc Ile		96			
atc Ile	gcc Ala	gcc Ala 35	tgg Trp	ctg Leu	gtg Val	ctg Leu	cat His 40	gtc Val	ggt Gly	ctg Leu	atg Met	ttc Phe 45	ttc Phe	tgg Trp	ccg Pro		144			
ctg Leu	acc Thr 50	ctt Leu	cac His	agc Ser	ctg Leu	ctg Leu 55	ccg Pro	gct Ala	ttg Leu	cct Pro	ctg Leu 60	gtg Val	gtg Val	ctg Leu	cag Gln		192			
acc Thr 65	tgg Trp	ctc Leu	tat Tyr	gta Val	ggc Gly 70	ctg Leu	ttc Phe	atc Ile	atc Ile	gcg Ala 75	cat His	gac Asp	tgc Cys	atg Met	cac His 80		240			
ggc Gly	tcg Ser	ctg Leu	gtg Val	ccg Pro 85	ttc Phe	aag Lys	ccg Pro	cag Gln	gtc Val 90	aac Asn	cgc Arg	cgt Arg	atc Ile	gga Gly 95	cag Gln		288			
ctc Leu	tgc Cys	ctg Leu	ttc Phe 100	ctc Leu	tat Tyr	gcc Ala	ggg	ttc Phe 105	tcc Ser	ttc Phe	gac Asp	gct Ala	ctc Leu 110	aat Asn	gtc Val		336			
gag Glu	cac His	cac His 115	aag Lys	cat His	cac His	cgc Arg	cat His 120	ccc Pro	ggc Gly	acg Thr	gcc Ala	gag Glu 125	gat Asp	ccc Pro	gat Asp		384			
ttc Phe	gac Asp 130	gag Glu	gtg Val	ccg Pro	ccg Pro	cac His 135	ggc Gly	ttc Phe	tgg Trp	cac His	tgg Trp 140	ttc Phe	gcc Ala	agc Ser	ttt Phe		432			
ttc Phe 145	ctg Leu	cac His	tat Tyr	Phe	ggc Gly 150	tgg Trp	aag Lys	cag Gln	gtc Val	gcg Ala 155	atc Ile	atc Ile	gca Ala	gcc Ala	gtc Val 160		480			
tcg Ser	ctg Leu	gtt Val	tat Tyr	cag Gln	ctc Leu	gtc Val	ttc Phe	gcc Ala	gtt Val	ccc Pro	ttg Leu	cag Gln	aac Asn	atc Ile	ctg Leu		528			

	23																		
	165 170														175				
		tgg Trp															576		
		acc Thr 195															624		
		e aac s Asn)															672		
	r Cys	ttc Phe										_			_		720		
_		tgg Trp			-	_			-			_	_	_			768		
_	t gad g Ası															: _	776		
<2 <2	10> 11> 12> 13>	14 258 PRT Brad	yrhi:	zobii	um sj	ọ.													
	00> t His	14 s Ala	Ala	Thr 5	Ala	Lys	Ala	Thr	Glu 10	Phe	Gly	Ala	Ser	Arg 15	Arg				

Asp Asp Ala Arg Gln Arg Arg Val Gly Leu Thr Leu Ala Ala Val Ile 20 25 30

Ile Ala Ala Trp Leu Val Leu His Val Gly Leu Met Phe Phe Trp Pro 35 40 45

Leu Thr Leu His Ser Leu Leu Pro Ala Leu Pro Leu Val Val Leu Gln 50 55 60

Thr Trp Leu Tyr Val Gly Leu Phe Ile Ile Ala His Asp Cys Met His 65 70 75 80

Gly Ser Leu Val Pro Phe Lys Pro Gln Val Asn Arg Arg Ile Gly Gln 85 90 95

Leu Cys Leu Phe Leu Tyr Ala Gly Phe Ser Phe Asp Ala Leu Asn Val 100 105

Glu His His Lys His His Arg His Pro Gly Thr Ala Glu Asp Pro Asp 115 120

Phe Asp Glu Val Pro Pro His Gly Phe Trp His Trp Phe Ala Ser Phe 130

Phe Leu His Tyr Phe Gly Trp Lys Gln Val Ala Ile Ile Ala Ala Val 150 155

Ser Leu Val Tyr Gln Leu Val Phe Ala Val Pro Leu Gln Asn Ile Leu 165 170

Leu Phe Trp Ala Leu Pro Gly Leu Leu Ser Ala Leu Gln Leu Phe Thr 180 185

Phe Gly Thr Tyr Leu Pro His Lys Pro Ala Thr Gln Pro Phe Ala Asp 195 200

Arg His Asn Ala Arg Thr Ser Glu Phe Pro Ala Trp Leu Ser Leu Leu 210 220

Thr Cys Phe His Phe Gly Phe His His Glu His His Leu His Pro Asp 225 230 235 240

Ala Pro Trp Trp Arg Leu Pro Glu Ile Lys Arg Arg Ala Leu Glu Arg 245 250

Arg Asp

<210> 15

<211> 777

<212> DNA

<213> Nostoc sp.

<220>

<221> CDS

<222> (1)..(777)

<223>

<400> 15

	25															
											gaa Glu					48
											aat Asn					96
											agt Ser					144
											tta Leu 60					192
-											ttt Phe			_		240
											ccc Pro					288
								_							aaa į Lys į,	336
											cat His					384.
	-						-				aac Asn 140					432
											acg Thr					480
											gtg Val					528
							_				att Ile		_		-	576
								_			aaa Lys					624
								_	_		cca Pro 220					672
tgg	tct	ttt	gtt	act	tgt	tat	cac	ttc	ggc	tac	cac	aag	gaa	cat	cac	720

Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 225 230 235 240

gaa tac cct caa ctt cct tgg tgg aaa tta cct gaa gct cac aaa ata 768
Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile
245 250 255

tct tta taa 777 Ser Leu

<210> 16

<211> 258

<212> PRT

<213> Nostoc sp.

<400> 16

Met Val Gln Cys Gln Pro Ser Ser Leu His Ser Glu Lys Leu Val Leu 1 5 10 15

Leu Ser Ser Thr Ile Arg Asp Asp Lys Asn Ile Asn Lys Gly Ile Phe 20 25 30

Ile Ala Cys Phe Ile Leu Phe Leu Trp Ala Ile Ser Leu Ile Leu Leu 35 40 45

Leu Ser Ile Asp Thr Ser Ile Ile His Lys Ser Leu Leu Gly Ile Ala 50 55 60

Met Leu Trp Gln Thr Phe Leu Tyr Thr Gly Leu Phe Ile Thr Ala His 65 70 75 80

Asp Ala Met His Gly Val Val Tyr Pro Lys Asn Pro Arg Ile Asn Asn 85 90 95

Phe Ile Gly Lys Leu Thr Leu Ile Leu Tyr Gly Leu Leu Pro Tyr Lys
100 105 110

Asp Leu Leu Lys Lys His Trp Leu His His Gly His Pro Gly Thr Asp 115 120 125

Leu Asp Pro Asp Tyr Tyr Asn Gly His Pro Gln Asn Phe Phe Leu Trp 130 135 140

Tyr Leu His Phe Met Lys Ser Tyr Trp Arg Trp Thr Gln Ile Phe Gly 145 150 155 160

Leu Val Met Ile Phe His Gly Leu Lys Asn Leu Val His Ile Pro Glu 165 170 175

Asn Asn Leu Ile Ile Phe Trp Met Ile Pro Ser Ile Leu Ser Ser Val 180 185 190

Gln Leu Phe Tyr Phe Gly Thr Phe Leu Pro His Lys Lys Leu Glu Gly 195 200 205

Gly Tyr Thr Asn Pro His Cys Ala Arg Ser Ile Pro Leu Pro Leu Phe 210 215 220

Trp Ser Phe Val Thr Cys Tyr His Phe Gly Tyr His Lys Glu His His 225 230 235 240

Glu Tyr Pro Gln Leu Pro Trp Trp Lys Leu Pro Glu Ala His Lys Ile 245 250 255

Ser Leu

<210> 17

<211> 2093

<212> DNA

<213> Tomate

<220>

<221> promoter

<222> (1)..(2093)

<223>

<400> 17

tttgccagta ttacaacagc ttatatgttg agcaggtaaa agcttcaatg ccctattctt 60 tctacagtta tcaatgttgc tcgtctaata tctggtgttc ttctcgaaat gtcaattggc 120 180 ttgcagcaca ttgtcctcta atatccattc aagcttctta gatgatgaaa catttgtcaa atttattaat ttcatagtgt tcagtctcaa ttctttagct ggttcctcat agtaaagttg 240 300 tctaatatga aatgaaaatg ttctgtgtgt tgtactaata ccttttcatg gttgtctata gaacgtcgat gaagagccaa acagaaacta ttttgggctg cgatttctga taccattgta 360 tctgaatgct gggtgggagc tcatcagaag ctttacaatg ggtcacatat atggagccgg 420 480 tatgaggaat gctgggaatc agttgcgttt cgcgtgctag gacttttcct tcctggtatt

tctgcccaca gcccagttga ttacgtgaac tccgtcagac ttggaaagga gagaagtacc 540 caaatgtcgt ctttttagaa atacttttgt cacaaaatag cggggtttac agctacagaa 600 gatcatgcag aaggcgtcca gtttagtttt tgaaggttgt ttggagttta tttatctaaa 660 gtaaacttaa atcagctttt tgtttatgag ttcagtgaac tatatgttca aataagactt 720 ccctttgtag atatgtgttt tttttgttgt tgagcacttt gtgtgcattg gataaaccc 780 caacgtgtaa tagctaccat acaagagaag taactcgcac tgtccatgtc ttatgtggct 840 cgactcagaa agcattcagg gggattgata accaccetce aaaccaactg aaccattgtg 900 aataaccacc cttcaaatca accgagtcct cgtgaaggac aaatatgtgg ttttatatac 960 attaaatttt gtttttacat getteetett aettetttag ttttettgae eatatettge 1020 gtttttccct tctgtaattg acacttttct tcaaaccatc cagcaatgtg gaagcttgac 1080 gattttcctt cagagtagaa attgaaaaga atcaactaaa aaggatagtc cttcgatttg 1140 atttccggct taaaaataaa ctaataagaa tgagagagcg aataatagaa tattttqaaa 1200 ttttaaagat attcaactat gttaaattgc gttataaatt tcttaaatta gtagcaccta, 1260 atagtttagt teteaaaagt caaaactaet acataatgtg eteattttte acattaaaat 1320 gcctacatga tgtaaaagta aaactcgtag cattctacgt gttttactca actcaaacat 1380 cctgttcatt ttaataaacg tacgatgage ttetetete aattttettt tetttttt 1440 ttttaaaaaa atatttttt ttatatcaat ccaaatgggc tccaatttat cataaattag 1500 gtagaaactt agatattaaa gaaagaaaag ggtttatctc gcaagtgtgg ctatggtggg 1560 acgtgtcaaa ttttggattg tagccaaaca tgagatttga tttaaaggga attggccaaa 1620 tcaccgaaag caggcatctt catcataaat tagtttgttt atttatacag aattatacgc 1680 ttttactagt tatagcattc ggtatctttt tctgggtaac tgccaaacca ccacaaattt 1740 caagtttcca tttaactctt caacttcaac ccaaccaaat ttatttgctt aattgtgcag 1800 aaccactccc tatatcttct aggtgctttc attcgttccg aggtaagaaa agatttttgt 1860 ttctttgaat gctttatgcc actcgtttaa cttctgaggt ttgtggatct tttaggcgac 1920 ttttttttt tttgtatgta aaatttgttt cataaatgct tctcaacata aatcttgaca 1980 aagagaagga attttaccaa gtatttaggt tcagaaatgg ataattttct tactgtgaaa 2040 tatccttatg gcaggtttta ctgttatttt tcagtaaaat gcctcaaatt gga 2093

29

<211> 4760 <212> DNA <213> Tomate <220> <221> promoter <222> (1)..(4760) <223>

<400> 18

tctagattga aataaacctt attgcattta gtatatgaga atgcatctat aaaataatgt 60 ctatttttgg tggaaaatat ttgtgcgcca aagcacggtt tgtattttat attttacaat 120 atttttgcac ggtaatatag ttgcaaggtt ttacaaacga attatctctt gaactttaaa 180 ttaagttcac agtttattcc aaaaataatg ttcaacttct aatcatatct ccccctattg 240 ctagaaaaat ataacattta cgcccaactt catttaggat ccatttttat gcatggtgga 300 gcaattggat catatactac atatttttt aaaaaaaata gatagaaatt atttaatctt 360 gattccgaat caattgtgat gggaaaacct tattagtttg atgtgtacat ataatgtttt 420 480 atgtcaaata aatttattt atactaaatt ttatttgaaa gtatttttct cataacaaat, aatttaacta tattggagac atgaaaattc tacaaaacca acttgcatta tcaacataat 540 tttatagttt gaaattgtgc tcttaattaa acaattcaag ataacaatct ggtaaaatta 600 aaattacaag ttgataacaa acatatacat atgtacatct catagatgca ttcattaaat 660 catataatag taaatgcttc acaatagaag ggtctatatt cattttttt ttatgtgtca 720 aacaattttg aggaattcaa tttcatcttt aactggtaca ataatcattt tatcatgaaa 780 840 ataagcagct caagagaatt tttgaagaat cttttatttc tttaacattt aaccacatga atttttaatt tttttttgca atacatttaa accgaaatgg tcaaacgatc aaccaactga 900 tctttattct aataaacttc tagtttacat ttgcatgtga gtgcatcatc attatcatat 960 ttgtacacaa caaacaagaa aaaaatataa acaatatttt atttaaatat ttatattcca 1020 ctttgactgt agatattaaa tcttgtcatc atttatagtc tcaatattat aattttttta 1080 ttttttcaaa attcaaaagt ttacaattat ttttttgaac tataatatta tccaagatga 1140 acatctcaag aagaaaatta ttaatattgt tatggttaaa attttacata caatacttgt 1200 tttttgcttt acttttatct taccgtagat acacaatcga cgataactta gtgatcacac 1260 aataataatt attttgttca tgacacaata tttataagaa atacttattt ctttcttta 1320

teetteagta gtteataata aaaacatace ataatatttg tgatgeatte atagtaegta

atgaaatgac aatttatgtc aaattatttt cttttatact ctcaaacctc ccgtaaaggt 1440 gagatgagtc atttatccaa ttatacataa atatgtcttt attcatgctc tttatcacat 1500 tctgacacat tcacttaatt tcaagagtaa gcaagcatga taactgaaac tatttatgcg 1560 tatcttacct tgatatttga cacattacat gacacacctc aacatcactt tcaaagatta 1620 agcgcaccac catattatct ttctttttt ttttatgaag gttttataaa attattaaat 1680 taggtccaaa aaattgtttg tcaaataacc ttttatacta gattgatgac aaaaattacc 1740 tttacgtttt gaaagaccat tttaagacct aatctatcag tgactcctta aagttggcac 1800 aatatttcac ttagacaccc taattgaatg atgttcattt taaacaccca atgtagggtt 1860 ccgctatatc attttgacac atttcttaac atcaacaaaa atatataatg agtatgtgat 1920 atactcgcga atgacgtgaa aaatgaagac atttgttatt tgtatcaaag tagttactaa 1980 ataattaatt ttgaataaaa ataaaagctg accagtaaat caataacaca taatattttc 2040 cacctaataa ttaaaatata aaataaaaaa gagccatctc agggtcatct gcccaccatt 2100 gctatttcaa agaaatttgt acgttagttt atagaaattg atgttaaaat tctttcaaga 2160 aaaatttatg aatgaattta ttctctaatt taaaaatatt ttctgttatt tttgttgaaa 2220 gaaatttaac ttggataaaa tggtggttaa aactggaaag aagaaaagag aaaaaataat 2280 taaaaatcat ttcacgctct aatcaatgag cgtatcacat tcattatgtt atataagcaa 2340 aagtgacaaa acgaaaataa tatattacat gaaatgtcta aaataaatat cgtctaatta 2400 aaatatctaa gtaacatatt gtgcctaact ttagagggat catcaataag ttaaacccca 2460 ttttaataac tcataattgt cctttttatt taatattgtc acaaatcaca atgataatta 2520 acattaattt gtcctttgtg acgtccatat tcatgcattt aaccaatcat cttcatttgg 2580 acttattatc acaattatcc cactttcctc acaaaatgga gcattcaagt ggaatagact 2640 acacgatttt taatttcatc aaaaacatct ttttgcttta ttcattatta tattgtcgct 2700 attgttgaat tttatttgcc ctaaatttct taccataaat agatttttct tttagaaaaa 2760 ggagattgac taattetttt ettgtaggaa aaggtttagg actetataaa tagagacata 2820 ttccttctaa cttaatcaac atttacaatg tagtcttaaa gactttgaaa gtttttggtt 2880 agggggagaa attgtgggtc acaagcttga tacgttatca attgtgtaaa cctcccatgt 2940 attctgagtg aatttggttg aggttgtttc cctctgtatt ttgtactctc atatttatag 3000 tggattgttc atctctttcg tggacgtagg tcgattgacc gtcgattgac cgaaccacgt 3060 taaatetttg tattttttga tatatttete attatettet taetegtgat ettteaaggt 3120

ttgcattgct atcttccgcg ttacaccaac ttatttacga tcctaacagc tatggtgtgg 3180 aaacataaat caaacatttt actgatataa acacatcttt gattataaca tgatagaaat 3240 ttgagcccaa ctttttatca tcattatata caaaaagttc taaatttttt ttttgatgta 3300 gtaaaactta aatccatagt cttgccccta aaccaatgac ataatatata acccaaaata 3360 tactagtttt cgccctcgag ccctttaaaa agtatagtca atatttacgg tgaccgtgaa 3420 tttcttaatt atgatatata atttaaaaga aatcatgatc acattctact gatgagaaca 3480 tgtgctaatc aagggaaaac atggatgtga aaaatacttt ttgttaaaag taaaaaaaa 3540 tgtgaaattt tgttagttat ttactaccta tacattattt gagcatgtgc aaactttaca 3600 aatacctaat agaagatttt cacctgcctg tatatatgta aattaattat aatgaacact 3660 ctcacataaa ataattatca gtatatacat taatacttgc cctccacaat gaattaaata 3720 aaatgtagaa catgatctac acttcaataa aactaagacc ataaagaata atttcaaaat 3780 atacacatgt caacaataaa ttatttgcat attatattaa cttactaaac aatctttact 3840 tttgaaatat aaaaataatc aagttataag tctgctcaaa gtaaagcact tgttagactc, 3900 atctgatttt gagaaggtaa gcaaattgat ggtgcataat agtcacaagt aaaatataaa 3960 4020 atagatttca ttagtaaaat tgttttttac tttctttata tataattatc aatatccttc aatggtaggt taattatatt gttaacttct tgttgaatta aagcaataag acaagaatat 4080 4140 taaagataaa agaacaataa aaatagaaag actaagagat aagagttttc ttattcttct ttcaataagt atcatcaagt gtatacaata taaatttttg tatttttgat ctatctattt 4200 ataatgttat atataagcat acaaaagatc agtcataaat atgactttaa tcatgaaaat 4260 4320 aatgaaagag attatgaagg cgtaaggtta ctagaataat agtcattaaa aaaaggggtt atctttataa ttgaataatt gatgaagtaa tggagataat tagtgagcat aaattttttt 4380 4440 aaaaaaatgg acatttacac tataatattt tataacactt tcccttaaac atctaggtat aaataatgag tottgtcaaa atottagtag gaaaaattot gtgaaatttt tttagtgaaa 4500 acaaatgata taaatatctt gaatactcat tatttgttgt ctcattaaaa atcttatctg 4560 acctataaaa taaattattt gctcaactca aaatagtttt tcattctaaa attagtataa 4620 ttattagtga atatttaatt aacataattg tatactaagg ggcctataaa ttggattctt 4680 ctcaaagaaa aataaaatca ccacacaact ttcttcttct gctcatcaat tagcaattaa 4740 4760 tccaaaacca ttatggctgc

32

<210> 19
<211> 1229
<212> DNA
<213> Tomate

<220>
<221> promoter
<222> (1)..(1229)
<223>

19

<400>

gatcttactt taccataatg gtgaaaagga tagagaccca catggttttt acttcgttat 60 agagacaaga tgaaaacaaa tctaaaattt aatattatag atggatagat gatggacaac 120 180 aaaaagagaa aagaagatac tggtcattgg tccaaaacag ccacccgaat caatatatga ccaaaaaaca aaagctacag aatcatatct gtgcaacggt gccacagtgc tataggatag 240 cacaaccaca ctgtcacata aaaaagagga ttttgcactc gttttagatg gagtttcgta 300 attttcgggt ctttcaagct taaatatata cttcattaaa gcttcgaatt ttgtaatgtt 360 420 caattctacc tctttgatgt tcgataccta taaaataatt aaataaacgt atagacgtag 480 qaacaattaa gcggagttag atagtgcatt tatgattcta cctgtgagtg caatggtaaa atggacatta taaaagagta ggggcaaaga gggaagtgaa aaattctccc cacttagcca 540 tgtttaatat agtagggata ggaatatgta ataagtagtg ttttttctat ttaattttct 600 gtatacttct tccatctcct ttaattatta aaaggttttc ctctctttac tctttctctc 660 720 taaattacta ttctgaagta tattttcttt tataaaaaga gtaataaact ttatttccat 780 taaaaqaaca aacaacaaga aatgataatc aaatacacat tcatattttt aaaaaaaaag 840 ttaaacaaga tatagaaata gttatcaaat atatttatgt tgtcattcct tgtatacaat 900 agcattectt tagetttgtt tatgtattte etgagettet ettagtgtae tatateettt aatattaatg catctttcga tcttgctaag atatgataaa aatagacgac acgtgtcaca 960 acctaattga gatatttcga tgtactttct atccgtctta gcttgtaatt aattattgtt 1020 1080 aaaaaagaat actcaattaa ctagaaacaa gaaataagaa acgaaaacat tacaaaacgg agttgaagcg tgcaaatttg tggaaatgat tgttatcatg aaccagaaaa cattaaataa 1140 ctcttcctat aaaaggccct tattcttcac tttctcaaat cacgtcctaa agatatcaaa 1200

gatttcaact gatagcaaaa agcactact

120

33

<211> <212> <213>	845 DNA Toma	te					
<220> <221> <222> <223>		oter .(845)					
<400> ctgttat	20 ttga	atttctataa	aatgttataa	tattgatttc	ttaatgatca	gttaactacg	60
tgattai	tttg	atatgttttt	aatctaaaat	gtgatatgta	aaatatagaa	gaaaaaaaat	120
taaaaa	gaac	tttaagaaaa	aaatttcaac	ccaccccaac	ctaaaatcct	aggtccgcca	180
tggtaa	ttat	agatatatga	tgatgaaggg	caaatattgg	tctatgagaa	tttcggtgat	240
actacc	gctt	gaagagcaat	aatggttttg	ggactccgat	gagggaaaca	ttcaaatatg	300
atggat	tttg	gtgatactat	gtttacccga	gctagctatc	acagaataat	ctacatccca	360
caaatg	aaat	atgttatagg	ctaccaatta	ggaagtagtg	gaattatgaa	gaagtaggga	420
tgtgca	aata	taagagaaaa	tttgaaaatt	atgattgaaa	caagttatgt	ttttttaact	480
agatga	atta	aatggtttaa	agatttgtag	atttataatc	aaacaattac	cgctactcta	540
tcggtg	acta	ccaattccat	cattgtaaat	aacaaataac	agattcgttg	ctggatgtct	600
tagtgc	cgtg	aagcctacaa	atcacactat	aaactgctta	gctctcgagc	gttactaatt	660
tggtga	ttac	caattccaac	attgcgactt	cttctactag	tagtactaaa	atagcaagta	720
atatgo	attt	gtggtaagat	gtttggtgtt	aacctttcct	aaccagacta	taaatgacct	780
caacac	tata	gtggagtttc	atcgatcatc	attctaaacg	aaaaacttga	agtgaaagca	840
tcaag							84!
<210><211>	21 341	7					
<212>	DNA						
<213>		ate					
<220>							
<221>	pro	moter					
<222>	_	(3417)					
<223>				·			
<400>	21						

aagettgget geaggtegae etgeaggtea aeggateaat geettgttaa taatatgaaa

ataagacgta aaagaagtct tgcatatgca ccataatatt agacttatgg acaaaagtaa

gttggttcaa attacgcttt tatttatcca catagcaaga aaataatact caaaatccaa 180 cggtatcggt tattttatat tttactctac atgtatatat gtagtataat ggacataaat 240 tctgtcgtaa ttatacatat attaataatg aggattgtaa aataatatgc aaaaacgtcg 300 tatttgacat actaatagct aaaatactac ctactatcat atataattag ttaactatgt 360 gccttttaag aaaaattacg tgaaataaca aatatttaga gcatattatg taatatagct 420 gtagttttat tattttttgt taatggctac aatttcgcaa aattttccta ttttgtttct 480 taatcgtata aatccaaatt ttgtataatt atgaccttaa ttgtttaatt cagatttcgt 540 ataaaattcg atttttgatt ttataaatta aaatttatac ttactttagc tacttgttta 600 tgatttatca aaaaattcat attaatctat ttgtatatgg acaagcaaaa tatacaaatg 660 gagttctgaa aatttctaaa tgcatatact taatatcttt gatggtcact caactatcaa 720 ctttttccat aaaaagtcac ttaacattga ttttcaactc gaaaatcact caactatgaa 780 atctttgtat agaaagtcac tcaacctatt taattatttt tttccattat atctgttgtc 840 acgaaatatt atttctaact aatattctaa gaataaacat acatccattt aaatcattta 900 ataaacccgc ccacttgacc taacccacat aatattaaca cttttgtttt acttttattc 960 tccaaaatta ttttcttggt ttcccattct ttctcctttg ctttttttt cttcttca 1020 atttcagcct ttttcttcct ttttttagta aacctcagtc aaataggaat tagattgtga 1080 ttaaaatatt attagaagga tgcagggttg tacaaagaga gtttattaag agataatcta 1140 1200 taaaaaaaa aaagtcagat aatgcatatt cagattcaga gatcattaaa tgatgacttt tttcgtaata ggttttcttt aaatcctttc gccttcatac gacgactctc gataataaca 1260 tcgtttaaag ctaataatgc taatgaacaa taatcaaaat aaaaaagaat tcggatacaa 1320 gagaaaatga tttagtgaga gaaaaaattg agatattcct tattcctaac taaacgaagg 1380 aagaagaggc taaaattgag attcagttaa aaaaaaaaa caaagaaaaa cgcaatggag 1440 atgagagaaa gtaattttga aaaataaaaa taaattaaga gggtaaatat tttattttta 1500 gcgagttggg ttaagtggtg ccggtcatta aatggatata tgtttatttc ttaaaatttt 1560 agttagaaat acaaatttca aatcaacaaa ttttaatgaa aaaataatta aataggttga 1620 gtggctttct atgcaaagat ctcatagttg agtgattttt gagtagaaaa tcatagttaa 1680 gtgagtttct gtgaaaaaaa attgatagtt gagtgactat caaagatatt aactctagac 1740 ttgtcatatt cgtatactta catacgaaat atacaaacct ctgcctccat gacaagcaaa 1800

	aaactataac	tatgaaacaa	tattttcgaa	atcatagcta	taaagtctta	ttatatctaa	1860	
	tatctttact	atttttaaaa	atttcacata	attttaatac	ataaataatt	tacttttaac	1920	
	taacgaaaaa	ggacattttt	atgtcacctg	agagcccatc	ggtagattca	tcacattttt	1980	
	tcgtttcttg	taataaactg	tacacatata	aggagaaatt	aaattagaga	ttatttttcc	2040	
	attttgagga	gattaataaa	tttaaaatgt	aacttaacat	gtaaactgct	ataaaggtaa	2100	
	caaaacacgt	aaactgctat	aaaggtaatt	ctatttaaaa	gataaataaa	tgcttaaaag	2160	
	aagtgccaaa	aaaacacaaa	caaacaaatg	aaactaaacc	tacttcaagg	gaagttcttg	2220	
	tagtataaaa	ataaataaag	tcaacttatt	cacgacattt	ctttttggtt	ttcttttggc	2280	
	tacgtattca	tatttaagtc	tgactaattt	agattctcgc	tatatataaa	agattcaggg	2340	
	gtggctcaac	gcaattggag	gcctagagca	aaatttcaat	tcgcggccta	atatattata	2400	
	tactttatat	acctatttat	tcaaaattta	tttttttac	actatttaga	tggaaattat	2460	
	tagtacttaa	tattgttttt	tcagttatta	gttttaggta	aaattttatt	aatacaacat	2520	
	tgaaaaacat	cctttaagtg	agacaattat	tatatgtatt	gttaacatag	tgctataagt	2580	
	aataagtaaa	taaatattaa	ataaaaataa	. gagtaagaac	catagaattt	gacacaagaa	2640	
	gttgatgact	tggtatacct	cattttaaca	tgcttgtact	ttagtaatgc	ttgaatctaa	2700	
	aatttaaaaa	gaaataaaaa	agaatttgta	atccactttt	tccaacactt	ttcactgtta	2760	
	attcttattt	ttaacatagt	acaaaaaata	ı ttaaaatgga	taaaataatt	tattttataa	2820	
	aagattatat	atatatttt	ttatcatata	taactaattt	: ttctataaaa	atttaaacac	2880	
	ataatttaat	tttaaaaaaa	atttggggct	ttggggccta	agacaaaggo	cttaaaggac	2940	
J	aaaacataga	geegeeetg	aaaagatcto	c attcgaaaga	a aaatatgcat	: taccaatgat	3000	
	ttttcgtacc	: cagagctcaa	aatcaaaatt	gtactgttat	ttttttaaaa	aatttcatct	3060	
	cagactaaat	ggaattttt	tetttggtta	a acctgtttga	a tcaatcttt	ggaatcagtt	3120	
	aattttgaaa	a aataaattaa	tgagaaata	a tttgtatttg	g tccagcttat	ttaagaatta	3180	
	tttttgagca	a acaatttata	tttagtcac	g cttttaagt	g tatttttaa	a aataaaatta	3240	
	aggtattatt	: tgaaaaaatt	: acttttaaa	a aaattgaat	t aaattctgt	t actcttatta	3300	
	tatactccta	a tataatttga	a ttgccaaaa	a tatcaaacg	t ttaatattt	g aagttgatgt	3360	
	gagggattad	ttcttgatta	a aattgtact	a caatgtaat	a ttatcaaat	t aaagctt	3417	

<212> <213>		NA aemat	toco	ccus	pluv	/iali	İs										
<220: <221: <222: <223:	> C:	DS 6)	(995)													
<400: gaage	c at	a ca	g ct	a gca u Ala	a gc a Ala 5	g aca	a gt r Va	a at	g tt t Le	g gaq u Gli 10	g caq u Gl	g cti n Lei	ace 1 Th:	c ggg r Gl	a agc y Ser 15		50
gct Ala	gag Glu	gca Ala	Leu	aag Lys 20	gag Glu	aag (Lys (gag Glu	Lys	gag Glu 25	gtt (Val :	gca (Ala (ggc a	ser	tct Ser 30	gac Asp	9	98
gtg Val	ttg Leu	Arg	aca Thr 35	tgg Trp	gcg Ala	acc Thr	cag Gln	tac Tyr 40	tcg Ser	ctt Leu	ccg Pro	tca (Ser (gag Glu 45	gag Glu	tca Ser	1	46
gac Asp	gcg Ala	gcc Ala 50	cgc Arg	ccg Pro	gga Gly	Leu	aag Lys 55	aat Asn	gcc Ala	tac Tyr	aag Lys	cca Pro 60	cca Pro	cct Pro	tcc Ser		94
gac Asp	aca Thr 65	aag Lys	ggc Gly	atc Ile	aca Thr	atg Met 70	gcg Ala	cta Leu	gct Ala	gtc Val	atc Ile 75	ggc Gly	tcc Ser	tgg Trp	gcc Ala	´ 2	42
gca Ala 80	gtg Val	ttc Phe	ctc Leu	cac His	gcc Ala 85	att Ile	ttt Phe	caa Gln	atc Ile	aag Lys 90	ctt Leu	ccg Pro	acc Thr	tcc Ser	ttg Leu 95	2	90
gac Asp	cag Gln	ctg Leu	cac His	tgg Trp 100	ctg Leu	ccc Pro	gtg Val	tca Ser	gat Asp 105	gcc Ala	aca Thr	gct Ala	cag Gln	ctg Leu 110	gtt Val	3	38
agc Ser	ggc	agc Ser	agc Ser 115	agc Ser	ctg Leu	ctg Leu	cac His	atc Ile 120	gtc Val	gta Val	gta Val	ttc Phe	ttt Phe 125	gtc Val	ctg Leu	3	386
gag Glu	ttc Phe	ctg Leu 130	Tyr	aca Thr	Gly	ctt Leu	ttt Phe 135	Ile	acc	acg Thr	cat His	gat Asp 140	gct Ala	atg Met	cat His	•	434
Gly	acc Thr 145	: Ile	gcc Ala	atg Met	aga Arg	aac Asn 150	Arg	cag Gln	ctt Leu	: aat ı Asn	gac Asp 155	Pne	ttg Leu	ggc	aga Arg		482
gta Val 160	Cys	ato	tcc Ser	ttg Leu	tac Tyr 165	Ala	tgg Tr	ttt Phe	gat Asp	tac Tyr 170	Asn	atg Met	ctg Leu	r cac His	cgc Arg 175		530
aag Lys	cat His	tgg Trp	gag Glu	cac His	His	aac Asn	cao His	c act	gg Gly 18!	A CTA	g gtg ı Val	ggc Gly	aag Lys	g gad s Asp 190	cct Pro		578

gac Asp	ttc Phe	cac His	agg Arg 195	gga Gly	aac Asn	cct Pro	ggc Gly	att Ile 200	gtg Val	ccc Pro	tgg Trp	ttt Phe	gcc Ala 205	agc Ser	ttc Phe	626
atg Met	tcc Ser	agc Ser 210	tac Tyr	atg Met	tcg Ser	atg Met	tgg Trp 215	cag Gln	ttt Phe	gcg Ala	cgc Arg	ctc Leu 220	gca Ala	tgg Trp	tgg Trp	674
acg Thr	gtg Val 225	gtc Val	atg Met	cag Gln	ctg Leu	ctg Leu 230	ggt Gly	gcg Ala	cca Pro	atg Met	gcg Ala 235	aac Asn	ctg Leu	ctg Leu	gtg Val	722
ttc Phe 240	atg Met	gcg Ala	gcc Ala	gcg Ala	ccc Pro 245	atc Ile	ctg Leu	tcc Ser	gcc Ala	ttc Phe 250	cgc Arg	ttg Leu	ttc Phe	tac Tyr	ttt Phe 255	770
ggc	acg Thr	tac Tyr	atg Met	ccc Pro 260	cac His	aag Lys	cct Pro	gag Glu	cct Pro 265	ggc	gcc Ala	gcg Ala	tca Ser	ggc Gly 270	tct Ser	818
tca Ser	cca Pro	gcc Ala	gtc Val 275	atg Met	aac Asn	tgg Trp	tgg Trp	aag Lys 280	Ser	cgc Arg	act Thr	agc Ser	cag Gln 285	gcg Ala	tcc Ser	866
gac Asp	ctg Leu	gtc Val 290	Ser	ttt Phe	ctg Leu	acc Thr	tgc Cys 295	Tyr	cac His	ttc Phe	gac Asp	ctg Leu 300	Hls	tgg Trp	gag , Glu	914
cac His	cac His	Arg	tgg Trp	ccc Pro	ttt Phe	gcc Ala 310	Pro	tgg Trr	tgg Trp	gag Glu	ctg Leu 315	Pro	aac Asn	tgc Cys	cgc Arg	962
cgc Arg 320	Lev	tct Ser	ggc Gly	cga Arg	ggt Gly 325	Let	gtt Val	cct Pro	gco Ala	ta <u>c</u> a	, ct <u>c</u>	gaca	acac	tgca	igtgggc	1015
cct	gctg	gcca	gctg	ggca	atg c	aggt	tgtg	gg ca	aggad	tggg	j ∙tga	aggtg	gaaa	agct	gcaggc	1075
gct	gctg	geeg	gaca	acgct	gc a	tggg	gctad	cc c	tgtg	tagct	gco	cgcca	acta	gggg	gaggggg	1135
ttt	gtag	gctg	tcga	agctt	gc											1155
<2: <2:	L0> L1> L2> L3>	329 PRT	mato	cocci	us pi	luvi	alis									
	00>															
Me 1	t Gl	n Le	u Al	a Al 5	a Th	r Va	l Me	t Le	u Gl 10	u Gl	n Le	u Th	r Gl	y Se 15	r Ala	

Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val 30 25 20

Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp 35 40 45

Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp 50 55 60

Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp Ala Ala 65 70 75 80

Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp 85 90 95

Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 100 105 110

Gly Ser Ser Leu Leu His Ile Val Val Val Phe Phe Val Leu Glu 115 120 125

Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly 130 135 140

Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val 145 150 155 160

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys 165 170 175

His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp 180 185 190

Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met 195 200 205

Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr 210 215 220

Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe 225 230 235 240

Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly 245 255

39

Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser 260 265 270

Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp 275 280 285

Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His 290 295 300

His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg 305 310 315

Leu Ser Gly Arg Gly Leu Val Pro Ala 325

<210> 24

<211> 1111

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (4)..(951)

<223>

<400> 24

tgc atg cta gag gca ctc aag gag aag gag aag gag gtt gca ggc agc

Met Leu Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser

1 5 10 15

tct gac gtg ttg cgt aca tgg gcg acc cag tac tcg ctt ccg tca gaa Ser Asp Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu 20 25 30

gag tca gac gcg gcc cgc ccg gga ctg aag aat gcc tac aag cca cca
Glu Ser Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro
35 40 45

cct tcc gac aca aag ggc atc aca atg gcg cta gct gtc atc ggc tcc

Pro Ser Asp Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser

50 55 60

tgg gcc gca gtg ttc ctc cac gcc att ttt caa atc aag ctt ccg acc 240
Trp Ala Ala Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr
65 70 75

tcc ttg gac cag ctg cac tgg ctg ccc gtg tca gat gcc aca gct cag
Ser Leu Asp Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln
80 85 90 95

40																		
ctg Leu	gtt Val	agc Ser	ggc	agc Ser 100	agc Ser	agc Ser	ctg Leu	ctg Leu	cac His 105	atc Ile	gtc Val	gta Val	gta Val	ttc Phe 110	ttt Phe		336	
gtc Val	ctg Leu	gag Glu	ttc Phe 115	ctg Leu	tac Tyr	aca Thr	ggc Gly	ctt Leu 120	ttt Phe	atc Ile	acc Thr	acg Thr	cat His 125	gat Asp	gct Ala		384	
atg Met	cat His	ggc Gly 130	acc Thr	atc Ile	gcc Ala	atg Met	aga Arg 135	aac Asn	agg Arg	cag Gln	ctt Leu	aat Asn 140	gac Asp	ttc Phe	ttg Leu		432	
ggc Gly	aga Arg 145	gta Val	tgc Cys	atc Ile	tcc Ser	ttg Leu 150	tac Tyr	gcc Ala	tgg Trp	ttt Phe	gat Asp 155	tac Tyr	aac Asn	atg Met	ctg Leu		480	
cac His 160	cgc Arg	aag Lys	cat His	tgg Trp	gag Glu 165	cac His	cac His	aac Asn	cac His	act Thr 170	ggc	gag Glu	gtg Val	ggc	aag Lys 175		528	
gac Asp	cct Pro	gac Asp	ttc Phe	cac His 180	agg Arg	gga Gly	aac Asn	cct Pro	ggc Gly 185	att Ile	gtg Val	ccc Pro	tgg Trp	ttt Phe 190	Ala		576	
agc Ser	ttc Phe	atg Met	tcc Ser 195	Ser	tac Tyr	atg Met	tcg Ser	atg Met 200	Trp	cag Gln	ttt Phe	gcg Ala	cgc Arg 205	Leu	gca Ala	,	624	
tgg Trp	tgg Trp	acg Thr	Val	gtc Val	atg Met	cag Gln	ctg Leu 215	Lev	ggt Gly	gcg	cca Pro	atg Met 220	АДа	aac Asn	ctg Leu		672	
ctg Leu	gtg Val 225	. Phe	atg Met	gcg : Ala	gcc Ala	gcg Ala 230	Pro	ato	ctg Leu	tco Ser	gcc Ala 235	a Phe	e Arg	ttg Lev	ttc Phe		720	
tac Tyr 240	Phe	ggo Gly	c acg Thi	g tac Tyr	atg Met	Pro	cac His	c aag s Lys	g cct s Pro	gag Glu 250	ı Pro	c ggo	gco Y Ala	gcg A Ala	g tca a Ser 255	:	[.] 768	
ggc	tct Se	t to	a cca r Pro	a gco Ala 260	a Val	ato Met	g aad Ası	tgg n Trj	g tgg p Trg 269) Ly:	g tc s Se:	g cgo r Aro	c act	z ago r Se: 27	c cag r Gln 0		816	
gcç	g tco a Se:	c ga r As	c cto p Let 27	u Vai	c ago l Sei	tti Phe	t cto	g acu u Th 28	r Cy	c tags	c ca r Hi	c tto s Pho	c gade Asj	b re.	g cac u His		864	
tgg Trj	g ga o Gl	g ca u Hi 29	s Hi	c cg s Ar	c tg: g Tr]	g cc	c tt o Ph 29	e Al	c cc a Pr	c tg o Tr	g tg p Tr	g ga p Gl 30	u Le	g cc u Pr	c aac o Asn		912	
tg: Cy:	c cg s Ar 30	g Ar	c ct g Le	g tc u Se	t gg r Gl	c cg y Ar 31	g Gl	t ct y Le	g gt u Va	t cc l Pr	t go o Al 31	.a	g ct	ggac	acac		961	
tg	cagt	.gggc	cct	.gctg	rcca	gctg	ggca	itg c	aggt	tgtg	ıg ca	aggac	tggg:	ı 'tga	ıggtgaa	aa	1021	

agctgcaggc gctgctgccg gacacgttgc atgggctacc ctgtgtagct gccgccacta 1081 ggggaggggg tttgtagctg tcgagcttgc 1111

<210> 25

<211> 315

<212> PRT

<213> Haematococcus pluvialis

<400> 25

Met Leu Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser 1 5 10 15

Asp Val Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu 20 25 30

Ser Asp Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro 35 40 45

Ser Asp Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp ,
50 55 60

Ala Ala Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser 65 70 75 80

Leu Asp Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu 85 90 95

Val Ser Gly Ser Ser Leu Leu His Ile Val Val Phe Phe Val 100 105 110

Leu Glu Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met 115 120 125

His Gly Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly 130 135 140

Arg Val Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His 145 150 155 160

Arg Lys His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp 165 170 175

146

42

Pro Asp Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser 180 185 190

Phe Met Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp 195 200 205

Trp Thr Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu 210 215 220

Val Phe Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr 225 230 235 240

Phe Gly Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly 245 250 255

Ser Ser Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala 260 265 270

Ser Asp Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp 275 280 285

Glu His His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys 290 295 300

Arg Arg Leu Ser Gly Arg Gly Leu Val Pro Ala 305 310 315

<210> 26

<211> 1031

<212> DNA

<213> Haematococcus pluvialis

<220>

<221> CDS

<222> (6)..(1031)

<223>

<400> 26

gaagc atg cag cta gca gcg aca gta atg ttg gag cag ctt acc gga agc 50

Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser

1 5 10 15

gct gag gca ctc aag gag aag gag aag gag gtt gca ggc agc tct gac Ala Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp 20 25 30

gtg ttg cgt aca tgg gcg acc cag tac tcg ctt ccg tca gag gag tca

										4	13							
	Val	Leu	Arg	Thr 35	Trp	Ala	Thr	Gln	Tyr 40	Ser	Leu	Pro	Ser	Glu 45	Glu	Ser		
	gac Asp	gcg Ala	gcc Ala 50	cgc Arg	ccg Pro	gga Gly	ctg Leu	aag Lys 55	aat Asn	gcc Ala	tac Tyr	aag Lys	cca Pro 60	cca Pro	cct Pro	tcc Ser	194	•
	gac Asp	aca Thr 65	aag Lys	ggc Gly	atc Ile	aca Thr	atg Met 70	gcg Ala	cta Leu	gct Ala	gtc Val	atc Ile 75	ggc	tcc Ser	tgg Trp	gct Ala	242	}
	gca Ala 80	gtg Val	ttc Phe	ctc Leu	cac His	gcc Ala 85	att Ile	ttt Phe	caa Gln	atc Ile	aag Lys 90	ctt Leu	ccg Pro	acc Thr	tcc Ser	ttg Leu 95	290)
	gac Asp	cag Gln	ctg Leu	cac His	tgg Trp 100	ctg Leu	ccc Pro	gtg Val	tca Ser	gat Asp 105	gcc Ala	aca Thr	gct Ala	cag Gln	ctg Leu 110	gtt Val	338	3
	agc Ser	ggc Gly	agc Ser	agc Ser 115	agc Ser	ctg Leu	ctg Leu	cac His	atc Ile 120	gtc Val	gta Val	gta Val	ttc Phe	ttt Phe 125	gtc Val	ctg Leu	386	б
	gag Glu	ttc Phe	ctg Leu 130	Tyr	aca Thr	ggc	ctt Leu	ttt Phe 135	Ile	acc Thr	acg Thr	cat His	gat Asp 140	gct Ala	atg Met	cat His	43	4
	ggc Gly	acc Thr 145	Ile	gcc Ala	atg Met	aga Arg	aac Asn 150	Arg	cag Gln	ctt Leu	aat Asn	gac Asp 155	Phe	ttg Leu	ggc	aga Arg	48	2
	gta Val 160	Суз	ato Ile	tcc Ser	ttg Leu	tac Tyr 165	Ala	tgg Trp	ttt Phe	gat Asp	tac Tyr 170	Asn	atg Met	ctg Leu	cac His	cgc Arg 175	53	0
J	aag Lys	cat His	TI	gag Glu	ı His	: His	Asr	. His	Thr	Gly	r Glu	ı Val	. Gly	aag Lys	gad Asy 190	c cct Pro	57	8
	gac Asp	tto Pho	c cade His	agg Arg 195	g Gly	a aac y Asr	cct Pro	Gl7	att 7 Ile 200	val	g ccc	tgg Tr	ttt Phe	gcc Ala 205	a Se	ttc Phe	62	26
	ato Met	tc tSe	c ago r Se: 21	r Туз	c ato	g tcg t Sei	g ato	g tgg t Trg 21:	o Gli	g tti n Phe	gc Ala	g cgo	c cto g Lev 220	ı Ala	a tg:	g tgg p Trp	67	74
	ac Th	g gt r Va 22	l Va	c ato	g ca t Gl:	g cto n Le	g ct u Le 23	u Gl	t gcg y Ala	g cca a Pro	a ato	g gcg t Ala 23	a Ası	c cto n Leo	g ct u Le	g gtg u Val	7:	22
	tt Ph 24	e Me	g gc t Al	g gc a Al	c gc a Al	g cc a Pr 24	o Il	c ct e Le	g tc u Se	c gc r Al	c tt a Ph 25	e Ar	c tt g Le	g tt u Ph	c ta e Ty	c ttt r Phe 255	7	70
	gg Gl	c ac	g ta ır Ty	c at r Me	g cc t Pr	c ca	c aa s Ly	g cc s Pr	t ga	g cc u Pr	t gg	c gc y Al	c gc a Al	g tc a Se	a gg r Gl	c tct y Ser	8	18

270 265 260 tca cca gcc gtc atg aac tgg tgg aag tcg cgc act agc cag gcg tcc 866 Ser Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser 280 275 gac ctg gtc agc ttt ctg acc tgc tac cac ttc gac ctg cac tgg gag 914 Asp Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu 295 290 962 cac cac cgc tgg ccc ttt gcc ccc tgg tgg gag ctg ccc aac tgc cgc His His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg 315 310 305 cgc ctg tct ggc cga ggt ctg gtt cct gcc gag caa aaa ctc atc tca 1010 Arg Leu Ser Gly Arg Gly Leu Val Pro Ala Glu Gln Lys Leu Ile Ser 335 330 325 320 1031 gaa gag gat ctg aat agc tag Glu Glu Asp Leu Asn Ser 340

<210> 27

<211> 341

<212> PRT

<213> Haematococcus pluvialis

<400> 27

Met Gln Leu Ala Ala Thr Val Met Leu Glu Gln Leu Thr Gly Ser Ala 1 5 10 15

Glu Ala Leu Lys Glu Lys Glu Lys Glu Val Ala Gly Ser Ser Asp Val 20 25 30

Leu Arg Thr Trp Ala Thr Gln Tyr Ser Leu Pro Ser Glu Glu Ser Asp 35 40 45

Ala Ala Arg Pro Gly Leu Lys Asn Ala Tyr Lys Pro Pro Pro Ser Asp 50 55 60

Thr Lys Gly Ile Thr Met Ala Leu Ala Val Ile Gly Ser Trp Ala Ala 65 70 75 80

Val Phe Leu His Ala Ile Phe Gln Ile Lys Leu Pro Thr Ser Leu Asp 85 90 95

Gln Leu His Trp Leu Pro Val Ser Asp Ala Thr Ala Gln Leu Val Ser 100 105 110

Gly Ser Ser Ser Leu Leu His Ile Val Val Val Phe Phe Val Leu Glu

Phe Leu Tyr Thr Gly Leu Phe Ile Thr Thr His Asp Ala Met His Gly

Thr Ile Ala Met Arg Asn Arg Gln Leu Asn Asp Phe Leu Gly Arg Val

Cys Ile Ser Leu Tyr Ala Trp Phe Asp Tyr Asn Met Leu His Arg Lys

His Trp Glu His His Asn His Thr Gly Glu Val Gly Lys Asp Pro Asp

Phe His Arg Gly Asn Pro Gly Ile Val Pro Trp Phe Ala Ser Phe Met

Ser Ser Tyr Met Ser Met Trp Gln Phe Ala Arg Leu Ala Trp Trp Thr

Val Val Met Gln Leu Leu Gly Ala Pro Met Ala Asn Leu Leu Val Phe

Met Ala Ala Pro Ile Leu Ser Ala Phe Arg Leu Phe Tyr Phe Gly

Thr Tyr Met Pro His Lys Pro Glu Pro Gly Ala Ala Ser Gly Ser Ser

Pro Ala Val Met Asn Trp Trp Lys Ser Arg Thr Ser Gln Ala Ser Asp

Leu Val Ser Phe Leu Thr Cys Tyr His Phe Asp Leu His Trp Glu His

His Arg Trp Pro Phe Ala Pro Trp Trp Glu Leu Pro Asn Cys Arg Arg

Leu Ser Gly Arg Gly Leu Val Pro Ala Glu Gln Lys Leu Ile Ser Glu

Glu Asp Leu Asn Ser 340

<210> 28
<211> 777
<212> DNA
<213> Arabidopsis thaliana
<220>
<221> promoter
<222> (1)..(777)
<223>

<400> 28 gageteacte actgatttee attgettgaa aattgatgat gaactaagat caateeatgt 60 tagtttcaaa acaacagtaa ctgtggccaa cttagttttg aaacaacact aactggtcga 120 agcaaaaaga aaaaagagtt tcatcatata tctgatttga tggactgttt ggagttagga 180 ccaaacatta tctacaaaca aagacttttc tcctaacttg tgattccttc ttaaacccta ggggtaatat tctattttcc aaggatcttt agttaaaggc aaatccggga aattattgta 300 atcatttggg gaaacatata aaagatttga gttagatgga agtgacgatt aatccaaaca 360 tatatatctc tttcttctta tttcccaaat taacagacaa aagtagaata ttggctttta 420 acaccaatat aaaaacttgc ttcacaccta aacacttttg tttactttag ggtaagtgca 480 aaaagccaac caaatccacc tgcactgatt tgacgtttac aaacgccgtt aagtcgatgt 540 ccgttgattt aaacagtgtc ttgtaattaa aaaaatcagt ttacataaat ggaaaattta 600 tcacttagtt ttcatcaact tctgaactta cctttcatgg attaggcaat actttccatt 660 tttagtaact caagtggacc ctttacttct tcaactccat ctctcttt ctatttcact 720 tetttettet cattatatet ettgteetet ceaccaaate tetteaacaa aaagett 777

<210> 29
<211> 22
<212> DNA
<213> kuenstlich

<220>
<221> primer_bind
<222> (1)..(22)
<223>

<400> 29 gcaagctcga cagctacaaa cc

```
<210> 30
<211> 24
<212> DNA
<213> kuenstlich
<220>
<221> primer_bind
<222> (1)..(24)
<223>
<400> 30
                                                                     24
gaagcatgca gctagcagcg acag
<210> 31
<211> 30
<212> DNA
k213> kuenstlich
<220>
<221> primer_bind
<222>
      (1)..(30)
<223>
<400> 31
                                                                     30
tgcatgctag aggcactcaa ggagaaggag
<210> 32
<211> 59
 <212> DNA
 <213> kuenstlich
> <220>
<221> primer_bind
       (1)..(59)
1<222>
 <223>
 <400> 32
                                                                      59
 ctagctattc agatcctctt ctgagatgag tttttgctcg gcaggaacca gacctcggc
 <210> .33
 <211> 28
 <212> DNA
 <213> kuenstlich
 <220>
 <221> primer_bind
 <222> (1)..(28)
 <223>
```

	33 actc actgatttcc attgcttg	28
	34 37 DNA kuenstlich	
	primer_bind (1)(37)	
<400> cgccgt	34 taag tegatgteeg ttgatttaaa eagtgte	37
<210> <211> <212> <213>	35 34 DNA kuenstlich	
	primer_bind (1)(34)	
<400> atcaac	35 ggac atcgacttaa cggcgtttgt aaac	34
<210> <211> <212> <213>	36 25 DNA kuenstlich	
<220> <221> <222> <223>	<pre>primer_bind (1)(25)</pre>	
<400> taagct	36 Ettt gttgaagaga tttgg	25