Writing papers and thesis using LATEX2e Part I: Writing papers using LATEX

Krishna Kumar *1

¹King's College University of Cambridge

King's Computing Workshop, January 2014

Sections

- To generate sections in LATEX: \section{name-here}
- Subsection: \subsection{name-here}
- Subsubsection: \subsubsection{name-here}
- Subsections without numbering \subsection*{name-here}

Sections

```
\documentclass{article}
\begin{document}
\section{Introduction}
The problem of \ldots
\section{Method}
We investigate \ldots
\subsection{Sample Preparation}
\subsection{Data Collection}
\section{Results}
\section{Conclusion}
\end{document}
```

1 Introduction

The problem of \dots

2 Method

We investigate . . .

- 2.1 Sample Preparation
- 2.2 Data Collection
- 3 Results
- 4 Conclusion

Title and Abstract

Before you begin typing your document, i.e., \begin{document} you need to define the author name and title.

- Title of the document in LATEX: \title{name-here}
- Author name: \author{name-here}
- Set a specific date: \date{date-here}
- How do you not print date: \date{}

This only defines what the title of the document, author name and date create. It does not print it. To print the meta-data, do \maketitle after begin document

Title and Abstract

- Tell LATEX the \title and \author names in the preamble.
- Then use \maketitle in the document to actually create the title.
- Use the abstract environment to make an abstract.

```
\documentclass{article}
\title{The Title}
\author{A. Author}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
Abstract goes here...
\end{abstract}
\end{document}
```

The Title

A. Author

November 11, 2014

Abstract

Abstract goes here...

\documentclass[options]{}

Argument	Possible Values	Default Value
Typeface Size	10pt, 11pt, 12pt	10pt
Paper Size	a4paper, a5paper,	letterpaper
	letterpaper, legalpaper	
	executivepaper b5paper	
Paper Orientation	portrait, landscape	portrait
Title Page	titlepage, notitlepage	titlepage
Equation Numbering	leqno	Right side
Equation Alignment	fleqn	Centered
Output Type	draft, final	final
Layout Type	oneside, twoside	oneside
Chapter Opening	openright, openany	openright
Columns	onecolumn, twocolumn	onecolumn

Font types

Font face

```
\label{eq:text} $$ \operatorname{text}_{\text{text}}, \operatorname{text}_{\text{
```

Font size

\hgorall huge, \hgorall Huge

Alignment

```
\begin{flushleft / flushright / center}
...
\end{flushleft / flushright / center}
```

Exercise 4: Sections

- Add title, author and print date
- Set font size to 11 pt
- Create sections and subsections

Click to open this exercise in $writeIAT_EX$

Hint: Don't forget to do \maketitle and don't forget begin{document} and end{document} click here to see my solution.

Typesetting Maths

• Why are dollar signs \$ special? We use them to mark mathematics in text.

```
% not so good:

Let a and b be distinct positive integers, and let c = a - b + 1.

% much better:

Let a and b be distinct positive integers, and let c = a - b + 1.

Let a and b be distinct positive integers, and let c = a - b + 1.

Let a and b be distinct positive integers, and let c = a - b + 1.
```

- Always use dollar signs in pairs one to begin the mathematics, and one to end it.
- LATEX handles spacing automatically; it ignores your spaces.

```
Let y=mx+b be \ldots

Let y=mx+b be ...

Let y=mx+b be ...
```

Notation

• Use caret ^ for superscripts and underscore '_' for subscripts.

$$y = c_2 x^2 + c_1 x + c_0$$
 $y = c_2 x^2 + c_1 x + c_0$

• Use curly braces { and } to group superscripts and subscripts.

$$F_n = F_{n-1} + F_{n-2}$$
 % oops! $F_n = F_{n-1} + F_{n-2}$ % ok! $F_n = F_{n-1} + F_{n-2}$

• There are commands for Greek letters and common notation.

\$\mu = A e^{Q/RT}\$
$$\mu = Ae^{Q/RT}$$
 \$\Omega = \sum_{k=1}^{n} \omega_k\$
$$\Omega = \sum_{k=1}^{n} \omega_k$$

Title and Abstract: Displayed Equations

If it's big and scary, display it on its own line using \begin{equation} and \end{equation}.

```
The roots of a quadratic equation are given by \begin{equation} x = \frac{frac}{-b} pm \sqrt{b^2 - 4ac}}{2a} \, \\ end{equation} where $a$, $b$ and $c$ are \ldots
```

The roots of a quadratic equation are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \,. \tag{1}$$

where a, b and c are . . .

Caution: LATEX mostly ignores your spaces in mathematics, but it can't handle blank lines in equations — don't put blank lines in your mathematics.

 \bullet You can add punctuations in your equations by doing \backslash , . to add a period and \backslash , , to add a comma.

Ex 5: Maths

$$i\hbar \frac{\partial}{\partial t} \Psi(r,t) = \left[\frac{-\hbar^2}{2\mu} \nabla^2 + V(r,t) \right] \Psi(r,t)$$

$$E^2 = (\rho c)^2 + (m_0 c^2)^2$$

Click to open this exercise in $writeIAT_EX$

- Format these two equations:
- To format math you need to use additional packages
- Add packages
- Use detexify to find out what the symbols are http://detexify.kirelabs.org/classify.html click here to see my solution.

