# 





#### ADELAIDE ALVES DE OLIVEIRA

**PROFESSORA** 

#### Formação Acadêmica

- Bacharel em Estatística UNICAMP
- Mestre em Ciências FSP/USP

#### **Atividades Profissionais**

- Diretora Técnica Estatística da empresa SD&W www.sdw.com.br
- Professora de Fundamentos Estatísticos, DataMining, Análise
  Preditiva e Machine Learning na FIAP dos cursos MBA: Big Data, Data
  Science, Business Intelligence & Analytics, Digital Data Marketing, IA &
  ML e Engenharia de Dados e nos Shift: People Analytics e Python
  Journey

•





profadelaide.alves@fiap.com.br



NAÏVE BAYES

INFERÊNCIA BAYESIANA PROBABILIDADES SUBJETIVAS

O fenômeno aleatório pode ser separado em etapas. A informação que ocorreu em uma determinada etapa pode influenciar nas probabilidades de ocorrências das etapas sucessivas.

#### Definição:

Dados dois eventos A e B, a probabilidade condicional de A dado que ocorreu B é representado por P(A/B) e dada por:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}, P(B) > 0$$

Fonte: Exemplo extraído do livro Noções de Probabilidade e Estatística página 41.

## PROBABILIDADE CONDICIONAL

Dados dois eventos A e B, com  $P(A) \neq 0$ :









$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}.$$

para o cálculo de  $P(A \cap B)$ :

$$P(A \cap B)=P(A).P(B|A)$$

$$P(A \cap B) = P(B).P(A \mid B)$$

A técnica de Basket Analysis utiliza a probabilidade condicional para encontrar cestas de produtos. Algoritmo Apriori.

## Um Exemplo de Sucesso!



- Descobriu-se que homens entre trinta e quarenta e cinco anos, que compram cervejas, nas sextas-feiras, após as dezesseis horas, também compram fraldas!
- Resultado: apenas mudando os produtos de lugar, colocando as fraldas ao lado de cervejas nos pontos de venda, obteve-se um aumento de mais de guarenta por cento nas vendas de fraldas.
- O que acha de possuir uma informação como essa?

A Wall-Mart soube tirar bom proveito dela!

Support (frequência)

$$(A \cap B \Rightarrow C) = \%$$

Confidence (probabilidade condicional)

$$(A \cap B \Rightarrow C) = \frac{P(A \cap B \cap C)}{P(A \cap B)}$$

Lift(associação)

$$(A\&B \Rightarrow C) = \frac{P(A \cap B \cap C)}{P(A \cap B)P(C)}$$

## TEOREMA DE BAYES

O Teorema de Bayes trata de problemas em que se deseja determinar a probabilidade de um evento ocorrer dada uma condição: (Probabilidade de ocorrer A, na condição de que B já tenha ocorrido – Probabilidade Condicional).

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

Onde,

- P(A) e P(B) são as probabilidades a priori de A e B.
- P(B|A) e P(A|B) s\(\tilde{a}\) os probabilidades posteriores de B condicional a A e de A condicional a B,
   respectivamente.

\_ . . •

#### Exemplo:

• Uma determinada peça é manufaturada por 3 fábricas: A, B e C. Sabe-se que A produz o dobro de peças que B e que B e C produzem o mesmo número de peças. Sabe-se ainda que 2% das peças produzidas por A e por B são defeituosas, enquanto que 4% das produzidas por C são defeituosas. Todas as peças produzidas são misturadas e colocadas em um depósito. Se do depósito for retirada uma peça ao acaso, qual a probabilidade de que ela seja defeituosa?

$$\rightarrow$$
 P(A) = 50%, P(B) = P(C) = 25%.

→ 
$$P(D|A) = P(D|B) = 2\%$$
 e que  $P(D|C) = 4\%$ .

Pelo teorema da probabilidade total:

→ 
$$P(D) = P(A).P(D/A) + P(B).P(D/B) + P(C).P(D/C) =$$
  
0,5\*0,02 + 0,25\*0,02 + 0,25\*0,04 =2,50%,



## Exemplo:

Uma determinada peça é manufaturada por 3 fábricas: A, B e C. Sabe-se que A produz o dobro de peças que B e que B e C produzem o mesmo número de peças. Sabe-se ainda que 2% das peças produzidas por A e por B são defeituosas, enquanto que 4% das produzidas por C são defeituosas. Todas as peças produzidas são misturadas e colocadas em um depósito. Se do depósito for retirada uma peça ao acaso, qual a probabilidade de que ela seja defeituosa?

Se uma peça escolhida ao acaso está fora das especificações(defeituosa), qual é a probabilidade que





INFERÊNCIA BAYESIANA PROBABILIDADES SUBJETIVAS

#### Exemplo:

Considere o evento A = chover em SP no dia 12 de janeiro do próximo ano.

Suponha que uma pessoa morando em Fortaleza tenha que calcular essa probabilidade. Se ela não tiver informação sobre o tempo em São Paulo, poderá atribuir a probabilidade de ½.

Já o morador de São Paulo tem informações adicionais, como por exemplo, ele saberá que janeiro, fevereiro e março são os meses mais chuvosos e poderá arriscar uma probabilidade de 2/3 de ocorrer o evento A.

Fonte: Exemplo extraído do livro Estatística Básica página 121.

- Exercício:
- O São Paulo Futebol Clube ganha com probabilidade 0,7 se chove e com 0,8 se não chove. Em Setembro a probabilidade de chuva é de 0,3. <u>O São Paulo ganhou uma partida em Setembro</u>, qual a probabilidade de ter chovido nesse dia?





# USANDO TEOREMA DE BAYES

À técnica Naïve Bayes é um dos algoritmos de aprendizado supervisionado mais simples. Tem como premissa a suposição de independência entre as variáveis do problema (teorema de Bayes). Isto é, o classificador Naïve Bayes assume que o efeito de uma determinada variável é independente de outras variáveis. Mesmo que essas características dependam umas das outras, todas contribuem independentemente para a probabilidade e, é por isso que ele é conhecido como "naïve" (ingênuo).





## USANDO TEOREMA DE BAYES

#### . detecção de spam:

Dado uma mensagem que contém uma determinada palavra "X" queremos computar a probabilidade dela ser um spam. A maioria das pessoas acostumadas a receber e-mails sabe que essa mensagem provavelmente é spam, no entanto, como podemos "indicar" ao "gerenciador" para uma tomada de decisão?

→ Sabemos que a palavra "X" está presente no e-mail. Qual a chance deste e-mail ser um SPAM (S)? P(S/X)



$$P(X/S)$$
 = Probabilidade de ter a palavra X aparecer em mensagens de SPAM's  $\rightarrow$  30%

$$\rightarrow$$
 P(S/X) = P(X/S) \* P(S) / (P(X/S) \* P(S) + P(X/NS) \* P(NS))

$$\rightarrow$$
 P(S/X) = 30%\* 10% / (30%\* 10% + 2% \*90%) = 62,5%

Vamos acompanhar os cálculos seguindo um exemplo simples: a avaliação de concessão de um empréstimo (concessão: SIM ou NÃO). A tomada de decisão será em função das características do solicitante: seu salário, idade, local de moradia, histórico de empréstimos e transações anteriores. Mesmo que essas informações sejam interdependentes, eles ainda são considerados de forma independentes.



O que precisaremos é classificar se o solicitante de crédito vai ter ou não o crédito liberado, com base em suas características. Usaremos para esse exemplo como variáveis explicativas: estado civil, idade, se tem casa própria, situação de emprego. Variável Target: Crédito (SIM/NÃO).

| estadocivil | fx_etaria      | casapropria | empregado | crédito |
|-------------|----------------|-------------|-----------|---------|
| SOLTEIRO    | 26 a 34 anos   | NAO         | SIM       | SIM     |
| CASADO      | 26 a 34 anos   | SIM         | NAO       | SIM     |
| DEMAIS      | 26 a 34 anos   | SIM         | SIM       | NAO     |
| SOLTEIRO    | 26 a 34 anos   | SIM         | SIM       | SIM     |
| CASADO      | 35 e mais anos | NAO         | NAO       | SIM     |
|             |                |             |           |         |
| DEMAIS      | 35 e mais anos | SIM         | NAO       | SIM     |

Queremos calcular qual a probabilidade de ser liberado crédito para um solicitante dado que suas características são: seu estado civil é casado, sua idade é 30 anos, não tem cada própria e está empregado.

O classificador Naïve Bayes calcula a probabilidade de um evento nos seguintes passos:

• Passo 1: Calcular a probabilidade das classes (Probabilidade a priori):

$$P(crédito=SIM) = 11/20=0,55$$

$$P(crédito=NAO) = 9/20=0,45$$

Queremos calcular qual a probabilidade de ser liberado crédito para um solicitante dado que suas características são: seu estado civil é casado, sua idade é 30 anos, não tem cada própria e está empregado.

O classificador Naïve Bayes calcula a probabilidade de um evento nos seguintes passos:

• Passo 1: Calcular a probabilidade das classes (Probabilidade a priori):

$$P(crédito=SIM) = 11/20=0,55$$

$$P(crédito=NAO) = 9/20=0,45$$

• Passo 2: Criar a tabela de "Probabilidade" (likelihood) encontrando as probabilidades para cada atributo:

|              | Créd | ito |                          |
|--------------|------|-----|--------------------------|
| estado civil | NAO  | SIM | Cálculo de Probabilidade |
| casado       | 2    | 5   | 7/20 = 0,35              |
| demais       | 3    | 2   | 5/20 = 0,25              |
| solteiro     | 4    | 4   | 8/20 =0,40               |

Quadro 2 – Cálculo de Probabilidade Estado Civil

|                | (   | Crédito |                          |
|----------------|-----|---------|--------------------------|
| Faixa Etária   | NAO | SIM     | Cálculo de Probabilidade |
| 18 a 25 anos   | 3   | 2       | 5/20 = 0,25              |
| 26 a 34 anos   | 4   | 4       | 8/20 = 0,40              |
| 35 e mais anos | 2   | 5       | 7/20 =0,35               |

|              | Crédito |     |                          |
|--------------|---------|-----|--------------------------|
| Casa Própria | NAO     | SIM | Cálculo de Probabilidade |
| NAO          | 8       | 5   | 13/20 = 0,65             |
| SIM          | 1       | 6   | 7/20 = 0,35              |

Quadro 4 – Cálculo de Probabilidade Ter Casa Própria

|           | Crédito |     |                          |
|-----------|---------|-----|--------------------------|
| Empregado | NAO     | SIM | Cálculo de Probabilidade |
| NAO       | 4       | 2   | 6/20 = 0,30              |
| SIM       | 5       | 9   | 14/20 = 0,70             |

Quadro 5 – Cálculo de Probabilidade estar empregado



• Passo 3: Agora, usamos a equação de Bayes para calcular a probabilidade posterior de cada classe. A classe com a maior probabilidade posterior é o resultado da previsão.

Calculando para o indivíduo com estas características: seu estado civil é casado, sua idade é 30 anos, não tem cada própria e está empregado.

→ X= {estado civil="casado"; Fx\_etaria="26 a 34 anos"; não tem casa própria e empregado=sim}

Calculando na situação de Concessão de Crédito=SIM

• Passo 3: Agora, usamos a equação de Bayes para calcular a probabilidade posterior de cada classe. A classe com a maior probabilidade posterior é o resultado da previsão.

#### Calculando para o indivíduo com estas características:

seu estado civil é casado, sua idade é 30 anos, não tem cada própria e está empregado.

- P(estado civil="casado"/ credito=SIM) = 5/11
- P(Fx etaria="26 a 34 anos"/ credito=SIM) = 4/11
- P(ter cada própria ="Não"/ credito=SIM) = 5/11
- P(empregado="SIM"/ credito=SIM) = 9/11

P(Sim | Casado, 26a34anos, Não Casa, Empregado) = ?

⇒ P(Sim/X)=P(Casado/SIM)P(26a34anos/SIM)P(NãoCasa/SIM)P(empregado/SIM) = 0,0615

• Passo 3: Agora, usamos a equação de Bayes para calcular a probabilidade posterior de cada classe. A classe com a maior probabilidade posterior é o resultado da previsão.

Agora calculando na situação de Concessão de Crédito=NÃO

- P( estado civil="casado"/ credito=NAO) = 2/9
- P(Fx etaria="26 a 34 anos"/ credito=NAO) = 4/9
- P(ter cada própria ="Não"/ credito=NAO) = 8/9
- P( empregado="SIM"/ credito=NAO) = 5/9
- $\Rightarrow$  P(Não | Casado, 26a34anos, Não Casa, Empregado = ?)
- ⇒ P(Não | Casado, 26a34anos, Não Casa, Empregado) =
- ⇒ P(Casado/NAO)\*P(26a34anos/NAO)\*P(NãoCasa/NAO)\*P(empregado/NAO)= 0,04877

• E

Como P(Sim/X) > P(Não/X), classificamos esse solicitante com essas características como Crédito = SIM.



#### Aplicações do Algoritmo Naïve Bayes:

- Em aplicações na análise de crédito, diagnósticos médicos, busca por falhas em sistemas mecânicos,
   detecção de SPAMs entre outras aplicações.
- Aplicações na saúde, como sistemas que determinam se alguém tem uma doença ou não.
- Como classificador de SPAM ele analisa e-mails e tenta avaliar se ele é spam ou não (classes definidas)
   com base em suas informações e estrutura.
- Classificadores de sentimento. Nesses casos, eles analisam os textos e tentam identificar a emoção expressada, geralmente entre opções específicas como "neutro", "positivo" ou "negativo". Nas redes sociais é utilizado para identificar se o usuário está feliz ou triste ao publicar determinado texto.
- Em classificação de textos, têm boas taxas de sucesso em comparação com outros algoritmos.

Mais aplicações do Algoritmo Naïve Bayes:

- Sistema de Recomendação: utilizando filtragem colaborativa constroem um sistema de recomendação. Nesse caso, o objetivo é analisar certas pessoas e tentar sugerir algo que possa interessar a elas, seja conteúdo ou produtos.
- Usado para fazer previsões em tempo real: Por possuir uma velocidade relativamente alta e precisar apenas de poucos dados para realizar a classificação, o Naïve Bayes pode ser utilizado para previsões em tempo real.
- Pode ser utilizado para prever a probabilidade de múltiplas classes de variáveis.

## **EXERCITANDO**

## **NAIVE BAYES**









## BIBLIOGRAFIA

- KUHN, M. / JOHNSON K. Applied Predictive Modeling, 1st ed. 2013, Corr. 2nd printing 2018 Edition
  - LESKOVEC, RAJAMARAM, ULLMAN. Mining of Massive Datasets, 2014. http://mmds.org.
  - HAIR, J.F. / ANDERSON, R.E. / TATHAN, R.L. / BLACK, W.C. Análise multivariada de dados, 2009
  - TORGO, L. Data Mining with R: Learning with Case Studies, 2.a ed. Chapman and Hall/CRC, 2007
  - MINGOTI, S.A.; Análise de dados através de métodos de estatística multivariada, UFMG, 2005
  - CARVALHO, L.A.V., Datamining A mineração de dados no marketing, medicina, economia, engenharia e administração. Rio de Janeiro: Editora Ciência Moderna, 2005.
  - BERRY, M.J.A., LINOFF, G. Data Mining Techniques For Marketing, Sales and Customer Support. 3a. ed. New York: John Wiley & Sons, Inc., 2011.
  - DUNHAM, M.H. Data Mining Introductory and Advanced Topics. Prentice Hall, 2002.
  - DINIZ,C.A.R., NETO F.L. Data Mining: Uma Introdução. São Paulo: XIV Simpósio Nacional de Probabilidade e Estatística.
     IME-USP, 2000.



# **OBRIGADO**







Copyright © 2022 | Professor (a) Adelaide Alves de Oliveira

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor.