Central Force Motion ...

- > Started with 6d, 2 body problem.
- Reduced it to 2, 3d 1 body problems, one (CM motion) of which is trivial.
- Angular momentum conservation reduces 2nd 3d problem (relative motion) from 3d to 2d (motion in a plane)!
- \triangleright Lagrangian ($\mu \rightarrow m$, conservative, central forces):

$$L = (\frac{1}{2})m|\dot{r}|^2 - V(r)$$

Motion in a plane

plane polar coordinates to do the problem:

$$L = (\frac{1}{2})m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r)$$

Energy

Total mechanical energy

$$E = T + V = constant$$

$$E = (\frac{1}{2})m(r^2 + r^2\theta^2) + V(r)$$
angular momentum :
$$\ell \equiv mr^2\theta = const$$

$$\theta = [\ell/(mr^2)]$$

$$\Rightarrow E = (\frac{1}{2})mr^2 + (\frac{1}{2})[\ell^2/(mr^2)] + V(r) = const$$

If V(r) is specified the above eqn. completely describes the system. General soln. in terms of E and ℓ .

Equations of motion

$$E = (\frac{1}{2})m\dot{r}^2 + [\frac{\ell^2}{(2mr^2)}] + V(r) = const$$

Energy Conservation allows us to get solutions to the eqns of motion in terms of r(t) & $\theta(t)$ and $r(\theta)$ or $\theta(r) \equiv$ The orbit of the particle!

Eqn of motion to get r(t): One degree of freedom

⇒ Very similar to a 1 d problem!

$$r = (dr/dt)$$
:
 $r = \pm (\{2/m\}[E - V(r)] - [\ell^2/(m^2r^2)])^{1/2}$

Equivalent "1d" Problem

The 2 body Central Force problem has been **reduced to evaluation of 2 integrals**, which will give **r(t)** & **θ(t)** : (Given **V(r)**)

$$t(r) = \pm \int dr(\{2/m\}[E - V(r)] - [\ell^2/(m^2r^2)])^{-1/2} (1)$$

- Limits determined by initial conditions
- Invert this to get r(t) & use that in θ(t)

$$\theta(t) = (\ell/m) \int (dt/[r^2(t)]) + \theta_0$$
 (2)

- Limits $0 \rightarrow t$, θ_0 determined by initial condition
- \triangleright Need 4 integration constants: E, ℓ , r_0 , θ_0

Most cases: (1), (2) can't be done except numerically

- \triangleright Once the central force is specified, we know V(r) & can, in principle, do the integral & get the orbit $\theta(r)$, or $r(\theta)$.
- ⇒ Assuming only a central force law & nothing else:
 Reduced the original 6-d problem of 2 particles to a 2-d problem with only 1 degree of freedom.

The solution for the orbit?

Orbits

Path in the \mathbf{r} , $\boldsymbol{\theta}$ plane: $\mathbf{r}(\boldsymbol{\theta})$ or $\boldsymbol{\theta}(\mathbf{r}) \equiv \underline{The\ orbit.}$

Orbits

chain rule:

```
(d\theta/dr) = (d\theta/dt)(dt/dr) = (d\theta/dt)/(dr/dt)
Or: (d\theta/dr) = (\theta/r)
```

Orbits

```
(d\theta/dr) = (\theta/r)
\ell \equiv \mathbf{mr^2\theta} = \text{const} \Rightarrow \mathbf{\theta} = [\ell/(\mathbf{mr^2})]
\dot{r} = \pm (\{2/m\}[E - V(r)] - [\ell^2/(m^2r^2)])^{1/2}
\Rightarrow (d\theta/dr) = \pm [\ell/(mr^2)](\{2/m\}[E - V(r)] - [\ell^2/(m^2r^2)])^{-1/2}
Or:
    (d\theta/dr) = \pm (\ell/r^2)(2m)^{-1/2}[E - V(r) - {\ell^2/(2mr^2)}]^{-1/2}
Integrating this will give \theta(r).
```

Integrating this gives a formal eqn for the orbit:

$$\theta(r) = \pm \int (\ell/r^2)(2m)^{-1/2}[E - V(r) - {\ell^2/(2mr^2)}]^{-1/2} dr$$

IF the central force is specified, we can calculate V(r) & can, do the integral & get the orbit $\theta(r)$, or, $r(\theta)$.

Form of the force law!!

Assignment

Finding the force law for a central force field that gives a particular known orbit.

Example:

Simple harmonic oscillator.

Radial velocity of a particle (central field)

$$r = \pm ({2/m}[E - V(r)] - [\ell^2/(m^2r^2)])^{1/2}$$

If radial velocity =0 → turning point in the motion has reached.

E - V(r) - ℓ^2 /(2mr²) =0 Generally two roots.

r=constant, what about the orbit?

Lagranges eqn of motion

$$\dot{\mathbf{r}} = \frac{d}{dt} r \hat{\mathbf{r}} = \dot{r} \hat{\mathbf{r}} + r \dot{\phi} \hat{\boldsymbol{\phi}}.$$

$$\mathcal{L} = \frac{1}{2}\mu \dot{\mathbf{r}}^2 - U(r),$$

Thus, the Lagrangian becomes

$$\mathcal{L} = \frac{1}{2} \mu \left(\dot{r}^2 + r^2 \dot{\phi}^2 \right) - U(r),$$

which is independent of ϕ , from which we also see that angular momentum is conserved.

Write down the Lagranges eqns. Of motion?

The Two Equations of Motion

 ϕ equation for the Lagrangian

$$\mathcal{L} = \frac{1}{2} \mu \left(\dot{r}^2 + r^2 \dot{\phi}^2 \right) - U(r),$$

is
$$\frac{\partial \mathcal{L}}{\partial \dot{\phi}} = \mu r^2 \dot{\phi} = \text{const} = \boldsymbol{\ell}$$
. (angular momentum)

The radial equation, is

$$\frac{\partial \mathcal{L}}{\partial r} = \mu r \dot{\phi}^2 - \frac{dU}{dr} = \mu \ddot{r}.$$

ightharpoonup Equation depends on $\dot{\phi}$, so the two equations are coupled, simply replace

and find

$$\mu \ddot{r} = \mu r \left(\frac{\ell}{\mu r^2}\right)^2 - \frac{dU}{dr} = \frac{\ell^2}{\mu r^3} - \frac{dU}{dr}.$$

- \triangleright This depends only on r, one-dimensional problem.
- The above equation is a force equation, so each term is a force.
- \blacktriangleright The first term on the right can be identified as the "centrifugal force" $F_{\rm cf}$.
- We can write this as the (1-d) gradient of a potential energy?

Centrifugal potential energy

$$F_{\rm cf} = -\nabla U_{\rm cf} = \frac{\ell^2}{\mu r^3} = -\frac{d}{dr} U_{\rm cf} \quad \Rightarrow \quad U_{\rm cf} = \frac{\ell^2}{2\mu r^2}.$$

Write down the eqn. of motion using the gradient of potential

The Equiv. 1-D Problem

Using the gradient of a potential, the equation of motion becomes

$$\mu \ddot{r} = -\frac{dU}{dr} - \frac{dU_{\text{cf}}}{dr} = -\frac{d}{dr} [U(r) + U_{\text{cf}}(r)] = -\frac{d}{dr} U_{\text{eff}}(r),$$

where $U_{\rm eff}$ is the effective potential energy, i.e. the sum of the actual potential energy U(r) and the centrifugal potential energy $U_{\rm cf}(r)$:

$$U_{\text{eff}} = U(r) + \frac{\ell^2}{2\mu r^2}.$$

This is actually a correct equation for any two-body central force problem.

For the specific case of a gravitational potential energy, we have

$$U_{\text{eff}} = -\frac{Gm_1m_2}{r} + \frac{\ell^2}{2\mu r^2}.$$

one term of this is negative, while the other is positive. Plot this.

The Equiv. 1-D Problem

we have

$$U_{\text{eff}} = -\frac{Gm_1m_2}{r} + \frac{\ell^2}{2\mu r^2}.$$

V(r) is kind of fictitious potential that has the real potential U(r) and the energy term associated with the angular motion about the center of force.

$$m\ddot{r}$$
 -[ℓ^2 /(mr^3)] = - ($\partial V/\partial r$) \equiv f(r) (f(r) \equiv force along r)

$$mr = f(r) + [\ell^2/(mr^3)]$$
 (1)

(1) involves only **r**

Same Eqtn of motion (Newton's 2nd Law) as for a fictitious (effective) 1d (r) problem of mass m subject to a force:

$$f'(r) = f(r) + [\ell^2/(mr^3)]$$

Centrifugal "Force" & Potential

> Effective 1d (r) problem: m subject to a force:

$$f'(r) = f(r) + [\ell^2/(mr^3)]$$

Using $\ell \equiv \mathbf{mr^2\dot{\theta}}$:

$$[\ell^2/(mr^3)] \equiv mr\dot{\theta}^2 \equiv m(v_\theta)^2/r \equiv \text{``Centrifugal Force''}$$

> Equivalently, energy:

$$E = (\frac{1}{2})m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r) = (\frac{1}{2})m\dot{r}^2 + (\frac{1}{2})[\ell^2/(mr^2)] + V(r) = const$$

Same energy Eqn as for a fictitious (or effective) 1d (r) problem of mass m subject to a potential:

$$V'(r) = V(r) + (\frac{1}{2})[\ell^2/(mr^2)]$$

- Easy to show that $f'(r) = -(\partial V'/\partial r)$
- Can clearly write **E** = (1/2)mir² + V'(r) = const

Centrifugal "Force" & Potential

- ightharpoonup Consider: $E = (\frac{1}{2})m\dot{r}^2 + (\frac{1}{2})[\ell^2/(mr^2)] + V(r)$
- \rightarrow Term \rightarrow [ℓ^2 /(2mr²)].

Conservation of angular momentum: put ℓ in this eqn.

Centrifugal "Force" & Potential

- > Consider: $E = (\frac{1}{2})m\dot{r}^2 + (\frac{1}{2})[\ell^2/(mr^2)] + V(r)$
- ightharpoonup Term → [ℓ²/(2mr²)]. Conservation of angular momentum: ℓ = mr²θ ⇒ [ℓ²/(2mr²)] ≡ (¹/₂)mr²θ²
 - Angular part of kinetic energy of mass m.
- \triangleright Because of the form [$\ell^2/(2mr^2)$], this contribution to the energy depends only on r:
- > When analyzing the r part of the motion, can treat this as an additional part of the potential energy.
- ⇒ Call it another potential energy term ≡ <u>"Centrifugal"</u>

 <u>Potential Energy</u>

- \triangleright [ℓ^2 /(2mr²)] \equiv "Centrifugal" PE \equiv V_c(r)
- \Rightarrow "Force" associated with $V_c(r)$:

$$f_c(r) \equiv -(\partial V_c/\partial r) = [\ell^2/(mr^3)]$$

Or, using
$$\ell = mr^2\theta$$
:
$$f_c(r) = [\ell^2/(mr^3)] = mr\dot{\theta}^2 \equiv m(v_\theta)^2/r$$
$$\equiv \text{``Centrifugal Force''}$$

Effective Potential

- For both qualitative & quantitative analysis of the *RADIAL* motion for "particle" of mass **m** in a central potential V(r), $V_c(r) = [\ell^2/(2mr^2)]$ acts as an additional potential
 - But physically, it comes from the Kinetic Energy of the particle!
- ⇒ Combine V(r) & $V_c(r)$ together into an <u>Effective Potential</u> = $V'(r) \equiv V(r) + V_c(r)$ $\equiv V(r) + [\ell^2/(2mr^2)]$

Effective Potential ≡

$$V'(r) \equiv V(r) + V_c(r) \equiv V(r) + [\ell^2/(2mr^2)]$$

Consider now:

E =
$$(\frac{1}{2})m\dot{r}^2 + (\frac{1}{2})[\ell^2/(mr^2)] + V(r) = (\frac{1}{2})m\dot{r}^2 + V'(r) = const$$

$$\Rightarrow \dot{r} = \pm (\{2/m\}[E - V'(r)])^{\frac{1}{2}}$$

➤ Given **U(r)**, can use **the above eqn.** to **qualitatively** analyze the *RADIAL* motion for the "particle".

Get turning points, oscillations, etc.

Gives **r** vs. **r** phase diagram.

 Similar to analysis of 1 d motion where one analyzes particle motion for various E.

Inverse square law central force: $f(r) = -(k/r^2) \Rightarrow V(r) = -(k/r)$

- Taking $V(r \rightarrow \infty) \rightarrow 0$
- **k > 0**: Attractive force. **k < 0**: Repulsive force.
- Gravity: k = GmM. Always attractive!
- Coulomb (SI Units): $k = (q_1q_2)/(4\pi\epsilon_0)$. Could be attractive or repulsive!

For inverse square law force, effective potential is:

$$V'(r) \equiv V(r) + [\ell^2/(2mr^2)] = -(k/r) + [\ell^2/(2mr^2)]$$

V'(r) for Attractive r-2 Forces

Qualitatively analyze motion for different energies E in effective potential for inverse square law force.

$$V'(r) = -(k/r) + [\ell^2/(2mr^2)]$$

 $E = (\frac{1}{2})mr^2 + V'(r) \Rightarrow E - V'(r) = (\frac{1}{2})mr^2 \ge 0$

 \Rightarrow **r** = **0** at turning points (**E** = **V**'(**r**))

NOTE: This analysis is for the r part of the motion only. To get the particle orbit $\mathbf{r}(\boldsymbol{\theta})$, must superimpose $\boldsymbol{\theta}$ motion on this!

Motion of particle with energy $E_1 > 0$

$$E_1 - V'(r) = (\frac{1}{2})m\dot{r}^2 \ge 0$$

turning point ?

min distance of approach?

max?

Bounded or **Unbounded orbit?**

Particle from $\mathbf{r} \to \infty$ comes in towards $\mathbf{r} = \mathbf{0}$.

What happens at $r = r_1$.

It speeds up until which point.

Motion of particle with energy $E_1 > 0$

$$E_1 - V'(r) = (\frac{1}{2})mr^2 \ge 0$$

turning point **r1.**min distance of approach = r1
No. max.

Unbounded orbit.

Particle from $r\to\infty$ comes in towards r=0. At $r=r_1$, it "strikes" the "repulsive centrifugal barrier", is repelled (turns around) & travels back out towards $r\to\infty$. It speeds up until $r=r_0=\min$ of V'(r). Then, slows down as it approaches r_1 . After it turns around, it speeds up to r_0 & then slows down to $r\to\infty$.

Motion of particle with energy $E_2 = 0$:

$$E_2 - V'(r) = (\frac{1}{2})m\dot{r}^2 \ge 0.$$
 $\Rightarrow -V'(r) = (\frac{1}{2})m\dot{r}^2 \ge 0$

Qualitative motion?

the turning point?

Motion of particle with **energy** $E_2 = 0$:

$$E_2 - V'(r) = (\frac{1}{2})mr^2 \ge 0.$$
 $\Rightarrow -V'(r) = (\frac{1}{2})mr^2 \ge 0$

Qualitative motion is \sim the same as for E_1 , except the turning point is at r_0 (figure):

Motion of particle with energy $E_3 < 0$:

 $E_3 - V'(r) = (\frac{1}{2})m\dot{r}^2 \ge 0$. Qualitative motion:

Motion of particle with energy $E_3 < 0$:

$$E_3 - V'(r) = (\frac{1}{2})mr^2 \ge 0.$$

"oscillatory" in r

2 turning points, min & max r: $(r_1 \& r_2)$.

Turning points given by solutions to $E_3 = V'(r)$.

Orbit is bounded. $r_1 \& r_2 \equiv$ "apsidal' distances.

Motion of particle with **energy** $E_4 < 0$:

$$\triangleright E_4 - V'(r) = 0$$

Motion of particle with **energy** $E_4 < 0$:

 $ightharpoonup E_4 - V'(r) = 0 \ (\dot{r} = 0) \Rightarrow r = r_1 \ (min \ r \ of \ V'(r)) = constant \Rightarrow$ Circular orbit (& bounded) $r(\theta) = r_1!$

Energy $E < E_4$? $\Rightarrow E - V'(r) = (\frac{1}{2})m^{\frac{r}{2}} < 0$

Unphysical! Requires $\mathbf{r} = \text{imaginary}$.

Till now considered one value of angular momentum ℓ .

Clearly changing ℓ changes V'(r) quantitatively, but not Qualitatively.

⇒ Orbit types will be the same for similar energies.

V'(r) for Attractive r⁻² Forces

Shape of the orbit ??

- \triangleright Energy $\mathbf{E_1} > \mathbf{0}$:
- \triangleright Energy $\mathbf{E}_2 = \mathbf{0}$:
- \triangleright Energy $\mathbf{E_3} < \mathbf{0}$:
- \triangleright Energy $\mathbf{E}_4 = [\mathbf{V}'(\mathbf{r})]_{\min}$:

Other Attractive Forces

For other types of Forces: Orbits aren't so simple.

For any *attractive* V(r) still have the same qualitative division into open, bounded, & circular orbits if:

- 1. V(r) falls off slower than r^{-2} as $r \to \infty$ Ensures that $V(r) > (1/2)[\ell^2/(mr^2)]$ as $r \to \infty$
- \Rightarrow V(r) dominates the Centrifugal Potential at large r.
- 2. $V(r) \rightarrow \infty$ slower than r^{-2} as $r \rightarrow 0$ Ensures that $V(r) < (\frac{1}{2})[\ell^2/(mr^2)]$ as $r \rightarrow 0$
- \Rightarrow The centrifugal Potential dominates V(r) at small r.

- ➤ If the attractive potential V(r) doesn't satisfy these conditions, the qualitative nature of the orbits will be different.
- > However, we can still use same method to examine the orbits.
- \triangleright Example: $V(r) = -(a/r^3)$ (a = constant)
 - \Rightarrow Force: f(r) = ?

V'(r) for Attractive r-4 Forces

> Example: $V(r) = -(a/r^3)$; $\Rightarrow f(r) = -(3a/r^4)$.

Eff. potential: $V'(r) = -(a/r^3) + (1/2)[\ell^2/(mr^2)]$

Energy E, motion types?

V'(r) for Attractive r-4 Forces

> Example: $V(r) = -(a/r^3)$; $\Rightarrow f(r) = -(3a/r^4)$.

Eff. potential: $V'(r) = -(a/r^3) + (1/2)[\ell^2/(mr^2)]$

Energy **E** →

motion types, depending on **r**:

$$r < r_1, ?$$

$$r > r_2, ?$$

$$r_1 < r < r_2$$
:

V'(r) for Attractive r-4 Forces

Energy **E**, 2 motion types, depending on **r**:

- $r < r_1$, bounded orbit. $r < r_1$ always. Particle passes through center of force (r = 0).
- $r > r_2$, unbounded orbit.

 $ightharpoonup r_1 < r < r_2$: Not possible physically, since would require $E - V'(r) = (\frac{1}{2})m\dot{r}^2 < 0 \Rightarrow Unphysical! \Rightarrow \dot{r}$ imaginary!

V'(r): Isotropic Simple Harmonic Oscillator

> Example: Isotropic Simple Harmonic Oscillator:

$$f(r) = ?, V(r) = ?$$

Effective potential: V'(r) = ?

V'(r): Isotropic Simple Harmonic Oscillator

Isotropic Simple Harmonic Oscillator:

$$f(r) = -kr, V(r) = (\frac{1}{2})kr^2$$

Effective potential: $V'(r) = (\frac{1}{2})kr^2 + (\frac{1}{2})[\ell^2/(mr^2)]$

For
$$\ell = 0$$

$$\Rightarrow$$
 V'(r) = V(r) = (1/2)kr²:

Motion?

Turning point?

motion amplitude.

$$E - V(r) = (1/2)mr^2 > 0$$

Speed?

V'(r): Isotropic Simple Harmonic Oscillator

Isotropic Simple Harmonic Oscillator:

$$f(r) = -kr, V(r) = (\frac{1}{2})kr^2$$

Effective potential: $V'(r) = (\frac{1}{2})kr^2 + (\frac{1}{2})[\ell^2/(mr^2)]$

$$\triangleright \ell = 0 \Rightarrow V'(r) = V(r) = (\frac{1}{2})kr^2$$
:

Any $\mathbf{E} > \mathbf{0}$: Motion is straight line in " \mathbf{r} " direction. Simple harmonic. Passes through $\mathbf{r} = \mathbf{0}$. Turning point at $\mathbf{r}_1 =$ motion amplitude.

 $E - V(r) = (1/2)mr^2 > 0 \Rightarrow$ Speeds up as heads towards r = 0, slows down as heads away from r = 0. Stops at r_1 , turns around.

Isotropic Simple Harmonic Oscillator:

$$f(r) = -kr, V'(r) = (\frac{1}{2})kr^2 + (\frac{1}{2})[\ell^2/(mr^2)]$$

Case 2: $\ell \neq 0$

➤ Isotropic Simple Harmonic Oscillator:

$$f(r) = -kr, V'(r) = (\frac{1}{2})kr^2 + (\frac{1}{2})[\ell^2/(mr^2)]$$

 $\geq \ell \neq 0$

All E: orbit?

Turning

points?

Motion?

Isotropic Simple Harmonic Oscillator:

$$f(r) = -kr, V'(r) = (\frac{1}{2})kr^2 + (\frac{1}{2})[\ell^2/(mr^2)]$$

 $\triangleright \ell \neq \mathbf{0} \Rightarrow (fig)$:

All E: Bounded

orbit. Turning

points $\mathbf{r_1} \& \mathbf{r_2}$.

$$E - V'(r) = (1/2) mr^2 > 0$$

Does not pass through r = 0

Question

Find the force law for a central force field that allows a particle to move in a spiral orbit given by $r=k\theta^2$, where k is a constant.

Orbits

```
(d\theta/dr) = (\theta/r)
\ell \equiv \mathbf{mr^2\theta} = \text{const} \Rightarrow \mathbf{\theta} = [\ell/(\mathbf{mr^2})]
\dot{r} = \pm (\{2/m\}[E - V(r)] - [\ell^2/(m^2r^2)])^{1/2}
\Rightarrow (d\theta/dr) = \pm [\ell/(mr^2)](\{2/m\}[E - V(r)] - [\ell^2/(m^2r^2)])^{-1/2}
Or:
    (d\theta/dr) = \pm (\ell/r^2)(2m)^{-1/2}[E - V(r) - {\ell^2/(2mr^2)}]^{-1/2}
Integrating this will give \theta(r).
```

Solution

$$r = k\theta^2$$

$$\begin{bmatrix} dr \\ d\theta \end{bmatrix}^2 = 4k^2\theta^2 = 4kr$$

Solution

$$r = k\theta^2$$

$$4kr = \frac{2\mu r^4}{\ell^2} \left[E - U - \frac{\ell^2}{2\mu r^2} \right]$$

$$U = E - \frac{2k\ell^2}{\mu} \frac{1}{r^3} - \frac{\ell^2}{2\mu} \frac{1}{r^2}$$

$$F(r) = -\frac{\ell^2}{\mu} \left[\frac{6k}{r^4} + \frac{1}{r^3} \right]$$

Orbit Eqn

(d0/dr) =
$$\pm (\ell/r^2)(2m)^{-1/2}[E - V(r) - {\ell^2/(2mr^2)}]^{-1/2}$$

➤ Integrating this gives:

$$\theta(r) = \pm \int (\ell/r^2)(2m)^{-1/2}[E - V(r) - \{\ell^2/(2mr^2)\}]^{-1/2} dr$$

 \triangleright Once the central force is specified, we know V(r) & we can, in principle, do the integral & get the orbit $\theta(r)$, or, $r(\theta)$.

We have reduced the original 6d problem of 2 particles to a 2d problem with only 1 degree of freedom. The solution can be obtained simply by doing the above (1d) integral!

(integral can always be done. Usually numerically.)

General Eqn for orbit (any Central Potential V(r)) is:

$$(2m)^{\frac{1}{2}}\theta(r) = \pm \int (\ell/r^2) dr D(r)$$
 (1)
 $D(r) \equiv [E - V(r) - {\ell^2/(2mr^2)}]^{\frac{1}{2}}$

> In general, (1) must be evaluated numerically.

True for most power law forces:

$$f(r) = kr^n; V(r) = kr^{n+1}$$

For a few integer & fractional values of **n**, can be done analytically.

Another approach → differential eqtn for the orbit!

Start with the equation of motion in terms of forces, and transform it using a couple of tricks. Radial eqn.

$$\mu \ddot{r} = F(r) + \frac{\ell^2}{\mu r^3}.$$

First change variables from r to u = 1/r.

Second convert the differential operator d/dt in terms of $d/d\phi$:

$$\frac{d}{dt} = \frac{d\phi}{dt}\frac{d}{d\phi} = \dot{\phi}\frac{d}{d\phi} = \frac{\ell}{\mu r^2}\frac{d}{d\phi} = \frac{\ell u^2}{\mu}\frac{d}{d\phi}.$$

Find \ddot{r}

$$\dot{r} = \frac{d}{dt}(r) = \frac{\ell u^2}{\mu} \frac{d}{d\phi} \frac{1}{u} = -\frac{\ell}{\mu} \frac{du}{d\phi}$$

$$\dot{r} = \frac{d}{dt}(r) = \frac{\ell u^2}{\mu} \frac{d}{d\phi} \frac{1}{u} = -\frac{\ell}{\mu} \frac{du}{d\phi}$$

$$\ddot{r} = \frac{d}{dt}(\dot{r}) = \frac{\ell u^2}{\mu} \frac{d}{d\phi} \left(-\frac{\ell}{\mu} \frac{du}{d\phi} \right) = -\frac{\ell^2 u^2}{\mu^2} \frac{d^2 u}{d\phi^2}.$$

$$\dot{r} = \frac{d}{dt}(r) = \frac{\ell u^2}{\mu} \frac{d}{d\phi} \frac{1}{u} = -\frac{\ell}{\mu} \frac{du}{d\phi}$$

$$\ddot{r} = \frac{d}{dt}(\dot{r}) = \frac{\ell u^2}{\mu} \frac{d}{d\phi} \left(-\frac{\ell}{\mu} \frac{du}{d\phi} \right) = -\frac{\ell^2 u^2}{\mu^2} \frac{d^2 u}{d\phi^2}.$$

$$\mu \ddot{r} = F(r) + \frac{\ell^2}{\mu r^3}.$$

$$-\mu \frac{\ell^2 u^2}{\mu^2} \frac{\partial^2 u}{\partial \phi^2} = F(r) + \frac{\ell^2 u^3}{\mu} \quad \text{or}$$

$$u''(\phi) = -u(\phi) - \frac{\mu}{\ell^2 u(\phi)^2} F(r).$$

- \triangleright Usually, given f(r), we use the integral formulation.
- ➤ However, <u>differential eqn are most useful for</u> *The Inverse Problem:*
 - Given a known orbit r(θ) or θ(r),
 determine the force law f(r).

Problems

- 1: Find the force law for a central force field that allows a particle to move in a some orbit given by $\mathbf{r} \sim \mathbf{f}(\boldsymbol{\theta})$.
- 2: Find r(t) and $\theta(t)$ for the same case.
- **3:** What is the total energy of the orbit for the same case?