

EXPERIMENTELLE MECHANIK

Kapitel 1

Einführung

- 1.1. Naturwissenschaften und Physik
- 1.2. Die naturwissenschaftliche Methode
- 1.3. Physikalische Größen
- 1.1 自然科学和物理学
- 12科学方法
- 1.3 物理量

寻找基本原则("基本原则") 描述自然界的基本构件之间的 相互作用

确定基本原则 描述自然界的基本构件之间的相互作用

1.1. Ziele der Physik

- Auffinden von <u>Grundprinzipien ("basic principles")</u>
 Beschreibung der <u>Wechselwirkungen</u>
 zwischen fundamentalen Bausteinen der Natur
- Kosmologie

(Woher kommt die Welt, wohin geht sie...)

- <u>Definition physikalischer Größen und ihrer Einheiten</u>
 Zeit, Leistung, Lichtstrom ..., mit Sekunde, Watt, Lumen, ...
- Entwicklung von <u>Messmethoden</u>, Verständnis des <u>Messprozesses</u> allgemein (z.B. Quantenmechanik!)
- Grundlagen für technologische Entwicklung
- ... und Vieles mehr ...

1.3.1. Messgrößen und Einheiten

Größe: Jedes physikalische Objekt wird durch <u>quantitativ bestimmbare Eigenschaften</u> definiert. Diese nennt man "physikalische Größen".

Angabe: Jede physikalische Größe wird mit Maßzahl und Einheit angegeben::

Größenart: Ein Typ von Größen, die mit derselben Messvorschrift gemessen werden können.

Beispiel: Breite, Dicke, Höhe, Wellenlänge, ...

Größenart "Länge" (messbar z.B. mit Zollstock)

Man kann zwei Größen nur dann vergleichen, addieren etc., wenn sie dieselbe Größenart haben

1.3.1. Einheit

Heinrich Heine Universität Düsseldorf

Eine <u>Messung</u> ist ein quantitativer Vergleich einer physikal. Größe mit einem Normal / einer Referenz

Der Begriff Einheit bezeichnet eine solche Referenz.

Beispiele für die Realisierung von Einheiten:

Ein "Urmeter" (PTB Braunschweig) veraltet!

"Standard-Kilogramm"

(Sevèrs, F) veraltet!

Modern: Präzise, reproduzierbare

Realisierungsvorschriften (später)

Für eine Größenart können verschiedene Einheiten in Gebrauch sein.

Beispiele:

Länge: m (Meter); ft (foot), inch, Seemeile

1 ft = 0,3048 m 1 inch = 0,0254 m 1 Naut. Meile = 1852 m

Temperatur: °C, F (Fahrenheit), K (Kelvin)

In der Naturwissenschaft soll nur eine Einheit pro Größenart verwendet werden

1.3.1. Das SI (<u>S</u>ystème <u>I</u>nternational d'Unites)

Konvention: Verwendung von 7 Basiseinheiten

Größenart	SI-Einheit	Einheit Symbo	
Masse	Kilogramm	kg	
Länge	Meter	m	
Zeit	Sekunde	S	
Stromstärke	Ampere	Α	
Temperatur	Kelvin	K	
Substanzmenge	Mol	mol	
Lichtstärke	Candela	cd	

Definition der Basiseinheiten:

Realisierungsvorschrift im SI (Experiment)SI中的实现规则

Alle anderen Größenarten sind

abgeleitete Einheiten派生单位

Definition der abgeleiteten Einheiten:

Zusammenhang mit Basiseinheiten (Formel)与基本单位的关系(公式)

Beispiele:

Geschwindigkeit v abgeleitet

von Länge und Zeit

$$\boxed{[v] = 1 \frac{\mathsf{m}}{\mathsf{s}}}$$

Energie E abgeleitet

von Masse, Länge und Zeit

$$|E| = 1 \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2} = 1 \text{ J} | \text{ (Joule)}$$

1.3.1. Schreibweisen für physikalische Größen

In der Physik kommen sehr große und sehr kleine Zahlen vor.

Beispiele:

Leistung P = 6450000000 WWellenlänge $\lambda = 0,000000589 \text{ m}$

(1) Potenzschreibweise

Leistung $P = 6,45 \cdot 10^9 \text{ W}$ Wellenlänge $\lambda = 5,89 \cdot 10^{-7} \text{ m}$

(2) Mit Präfix vor der Einheit

Leistung P = 6,45 GW

Wellenlänge λ = 0,589 μ m = 589 nm

Präfixe für SI-Einheiten

Faktor	Präfix	Symb.	Faktor	Präfix	Symb.
10 ¹	Deka	da	10 ⁻¹	Dezi	d
10 ²	Hekto	h	10 ⁻²	Zenti	С
10 ³	Kilo	k	10 ⁻³	Milli	m
10 ⁶	Mega	М	10 ⁻⁶	Mikro	μ
10 ⁹	Giga	Ð	10 ⁻⁹	Nano	n
10 ¹²	Tera	Т	10-12	Piko	р
10 ¹⁵	Peta	Р	10 ⁻¹⁵	Femto	f
10 ¹⁸	Exa	Е	10 ⁻¹⁸	Atto	а
10 ²¹	Zetta	Z	10-21	Zepto	Z
10 ²⁴	Yotta	Υ	10-24	Yokto	у

1.3.2. Die Zeit t

Die Sekunde ist die SI-Basiseinheit der Zeit. 秒是SI的基本时间 单位 Die Abkürzung der Einheit Sekunde ist "s".

<u>Historische Definition</u> (Weltzeit-Sekunde): "1 Sekunde entspricht der Dauer eines mittl. Sonnentags geteilt durch (24 x 60 x 60) = 86400"

Die Drehung der Erde um ihre eigene Achse ist offensichtlich nicht sehr gleichmäßig (kein Präzisionsnormal).

Die Sekunde ist die SI-Basiseinheit der Zeit. Die Abkürzung der Einheit Sekunde ist "s".

Aktuelle Definition (Atomuhr-Sekunde, 1967): "1 Sekunde entspricht dem 9.192.631.770 - fachen der

Periodendauer des Überganges zwischen den beiden Hyperfeinstrukturzuständen des Nuklids ¹³³Cs "

Prinzip einer Atomuhr

PTB Braunschweig www.ptb.de

1.3.2. Die Zeit t

Weitere Einheiten der Zeit

<u>Einheit</u>	Abk.
1 Minute	min
1 Stunde	h
1 Tag	d
1 John	.,

$\underline{\textit{Umrechnung}} \rightarrow \text{SI-Basis Einheiten}$

1 min = 60 s 1 h = 60 min = 3600 s 1 d = 24 h = 86400 s 1 y \approx 365,24 d = 31,6 \cdot 10⁶ s $\approx \pi \cdot 10^7$ s (Zufall!)

Zeitskalen in der Physik

"Alter" des Universums	13 ⋅ 10 ⁹ y	=	4 · 1017 s	
Bestehen der Zivilisation	10.000 y	=	$3\cdot 10^{11}\mathrm{s}$	
Menschliches Leben	100 y	=	$3\cdot 10^9\mathrm{s}$	
Umlauf Erde um Sonne	1 y	=	$3 \cdot 10^7 \text{s}$	
Drehung der Erde um Achse	0,003 y	=	86.400 s	
Vorlesung	$2 \cdot 10^{-4}$ y	=	5.400 s	
Lichtlaufzeit Erde-Sonne	$2 \cdot 10^{-5}$ y	=	480 s	
Lichtlaufzeit Erde-Mond	$3 \cdot 10^{-8}$ y	=	1 s	
"Augenblick"	$3\cdot 10^{-9}$ y	=	0,1 s	
Periodendauer eines Tons	$3\cdot 10^{-11}$ y	=	0,001 s	
Periodendauer von Licht	1 · 10 ⁻²² y	=	$3\cdot 10^{-15}\mathrm{s}$	

1.3.2. Die Zeit t

Vorsicht:

"Zeit" hat zwei Bedeutungen:

 "Zeitpunkt" (engl. "time") und

• "Zeitdauer" (engl. "duration")

"Zeitpunkte" werden als "Zeitdauer" von einem

Referenzpunkt weg gemessen

Zeitmessung:

- · "Referenzvorgang" wird benötigt
- · Messung der Zeitdauer eines beliebigen Vorgangs durch Vergleich mit der Dauer des Referenzvorgangs
- Es gibt 2 Klassen von Referenzvorgängen:

(1) Periodische Vorgänge: Periodendauer bekannt:

• Erdrotation (Sonnenuhr)

- · Pendeluhr
- Quarzuhr
- Atomuhr

(2) Aperiodische Vorgänge:

Zeitlicher Verlauf bekannt:

- · Radionuklidmethode
- Sanduhr

1.3.2. Die Länge s

Die SI-Basiseinheit der Länge ist 1 Meter Die Abkürzung der Einheit Meter ist "m".

Ursprüngliche Definition (1795):

"1 Meter entspricht dem 10.000.000 Teil der Länge des Quadranten, auf dem Paris liegt."

Spätere Definition (1889):

"1 Meter entspricht der Länge des Archivmeters". Das Archivmeter ist ein Platin-Iridium-Stab, der als Referenz dient ("Ur-Meter").

1.3.2. Die Länge s

Die SI-Basiseinheit der Länge ist <u>1 Meter</u> Die Abkürzung der Einheit Meter ist "m".

Noch spätere Definition (1960):

"1 Meter entspricht dem 1 650 763,73-fachen der Wellenlänge der von ungestörten Atomen des Nuklids 86 Kr beim Übergang vom Zustand 5d $_5$ zum Zustand 2p $_{10}$ ausgesandten und sich im Vakuum ausbreitenden Strahlung."

Realisierung:

Krypton-Laser mit der Wellenlänge $\lambda = 605,78$ nm

Heute werden Laser für hochgenaue Längenmessungen eingesetzt,

aber nicht zur Definition für 1 Meter

1.3.2. Die Länge s

Die SI-Basiseinheit der Länge ist <u>1 Meter</u> Die Abkürzung der Einheit Meter ist "m".

Heute gültige Definition (1983):

"1 Meter entspricht jener Strecke, die Licht im Vakuum im 1/299.792.458-ten Teil einer Sekunde zurück legt."

Grundlage:

Die Ausbreitungsgeschwindigkeit von elektromagnetischen Wellen (z.B. Licht) im Vakuum beträgt genau

 $c_0 = 299792458 \text{ m/s}$

Dieser Wert ist unabhängig davon, wie schnell sich ein Beobachter bezüglich Der Lichtquelle bewegt (Relativitätstheorie).

1.3.2. Die Länge s			hhu Heinrich Heine Universität Düsseldorf		
Längenskalen in der Physik:	Größe des Universums	13 · 10 ⁹	ly	=	$1\cdot 10^{26} m$
银河系的直径	Durchmesser Milchstraße	100.000	ly	=	$1\cdot 10^{21}\text{m}$
地球-太阳的距离	Entfernung Erde – Sonne	150 · 10 ⁶	km	=	$2\cdot 10^{11}\text{m}$
	Durchmesser der Erde	6.380	km	=	6 · 10 ⁷ m
地球的直径	Mensch	2	m		
声音的波长	Wellenlänge des Schalls	0,3	m		
一个头虱的长度 头发直径	Länge einer Kopflaus	3	mm	=	$3\cdot 10^{-3}\text{m}$
	Haardurchmesser	50	μm	=	5 · 10 ⁻⁵ m
光的波长 原子直径	Wellenlänge des Lichts	0,5	μm	=	5 · 10 ⁻⁷ m
	Atomdurchmesser	0,1	nm	=	10 ⁻¹⁰ m
最敏感的干涉仪	empfindlichste Interferometer	0,01	am	=	10 ⁻²⁰ m

1.3.2. Die Masse *m*

Die SI-Basiseinheit der Masse ist 1 Kilogramm Die Abkürzung der Einheit Kilogramm ist "kg".

Definition bis Mai 2019:

"1 Kilogramm entspricht der Masse des Kilogramm-Prototyps ("Ur-Kilogramm")."

Das "Ur-Kilogramm" in Sèvres bei Paris (Platin-Iridium-Legierung)

Problem: Konstanz fraglich und nicht überprüfbar

1.3.2. Die Masse *m*

Die SI-Basiseinheit der Masse ist 1 Kilogramm Die Abkürzung der Einheit Kilogramm ist "kg".

Heute gültige Definition (2019):

aktuell gültig !

"1 Kilogramm beruht darauf, dass die Naturkonstante "Plancksches Wirkungsquantum" genau den Wert

 $h = 6,626\,070\,15\cdot10^{-34}$ Js hat.

Dabei ist die Einheit 1Js = 1kg·1m²/1s, wobei Meter und Sekunde nach den SI-Definitionen realisiert werden müssen."

Plancksches Wirkungsquantum h:

Basiskonstante der Quantenmechanik. Verknüpft z.B. die Frequenz v und die Mindestenergie E jeder Schwingung:

 $E = h \cdot v$

Der Wert von h ist als konstant definiert.

Mögliche Experimente zur Realisierung:

"Avogadro-Projekt":

Bestimme die Anzahl von Atomen in einer Kugel aus hochreinem Silizium

"Watt-Waage" (engl.: Kibble balance)

Kompensiere Schwerkraft mit elektromagn. Kraft

1.3.2. Die Masse <i>m</i>				Heinrich Heine Universität Düsseldorf
Massenskalen in der Physik:	Masse des Universums	ca. 10 ⁵³	kg	
	Masse der Sonne	$1,99 \cdot 10^{30}$	kg	
	Masse der Erde	$5,97 \cdot 10^{24}$	kg	
	Großer Lastkraftwagen	$35 \cdot 10^{3}$	kg	
	Mensch	75	kg	
	Maus	0,02	kg	
	Ameise蚂蚁	5 · 10 ⁻⁶	kg	
	Menschliche DNA	3,5 · 10 ⁻¹²	kg	
	Gold-Atom金原子	$6,97 \cdot 10^{-23}$	kg	
	Masse eines Elektrons	9,1 · 10 ⁻³¹	kg	

1.3.2. Der Massenmitelpunkt (Schwerpunkt)质量中心 (重力中心)

Definition:

Der <u>Massenmittelpunkt</u> eines Körpers ist jener Punkt, In dem man sich seine gesamte Masse vereinigt denken kann, um die Wirkung von Gravitation und Trägheit richtig zu berechnen.

Einfaches Beispiel:

Berechnung:

$$\vec{r_{\scriptscriptstyle S}} = \frac{\sum \vec{r_i} \cdot m_i}{\sum m_i}$$
 (viele Einzelmassen)

$$\vec{r}_{s} = \frac{\int \vec{r} \cdot \rho \cdot dV}{M}$$
 (kontinuierlicher Körper)

Beispiel: Quadratische Pyramide

1.3.2. Der Massenmitelpunkt (Schwerpunkt)

Schwerpunkt:

Wir können die Gravitationskraft, die auf alle Massenelemente eines Körpers wirkt, im Massenmittelpunkt summieren.

Wenn ein Körper im Schwerpunkt festgehalten wird, heben sich die Drehmomente aller Massenelemente auf.

Beispiel

 $\mbox{Kr\"{a}ftegleichgewicht:} \quad F_1+F_2=F_k$ $\mbox{Momentengleichgewicht:} \quad F_1\cdot r_1=F_2\cdot r_2$

Bestimmung des Schwerpunkts:

Drehmoment wirkt so lange, bis Schwerpunkt genau unter dem Drehpunkt liegt.

Kreuzungspunkt der vertikalen Linien durch mehrere Achsen liefert den Schwerpunkt

1.3.3. Messfehler und Genauigkeit

Messfehler:

- Jedes Messergebnis hat eine gewisse Unsicherheit → "Messfehler"
- Messfehler zeigen nicht, dass fehlerhaft gearbeitet wurde! → systembedingte Unsicherheit
- Die Angabe der Fehler ist ein wesentlicher Bestandteil jedes experimentellen Ergebnisses!
- Experimentelle Ergebnisse, die ohne Fehler angegeben werden, sind (oft) nur sehr eingeschränkt verwendbar.

Fehlerabschätzung:

Beispiel: Breite $b = 8.82 \pm 0.02$ cm? oder $b = 8.8 \pm 0.1$ cm? oder $b = 9.0 \pm 0.5$ cm?

Beispiel für Abschätzung:

Die Genauigkeit beträgt ± 1 mm. Daher hier: $b = 8.8 \pm 0.1$ cm

1.3.3. Messfehler und Genauigkeit

Angabe von experimentellen Fehlern:

Angabe als absoluter Fehler Bsp: Geschwindigkeit $v = 80 \pm 4$ m/s

Angabe als relativer Fehler Geschwindigkeit $v = 80 \text{ m/s } \pm 5\%$

Angabe mit individuellem Fehler (selten): Geschwindigkeit $v = 80 \frac{+10}{2}$ m/s

Signifikante Stellen: Regel:

Geben Sie jedes Messergebnis mit Fehler so genau an, dass der <u>Fehler</u> 1 oder 2 signifikante Ziffern enthält

Beispiele: 3,058 295 004 ± 0,015 784 934 NEIN!

→ 3,058 ± 0,016

3,058 295 004 ± 0,000 000 138 NEIN!

3,058 ± 0,000 000 14 NEIN!

→ 3,058 295 00 ± 0,000 000 14

Gleiche Einheit: (3,058 \pm 0,016) m, nicht: 3,058 m \pm 0,016 oder 3,058 m \pm 1,6 cm

1.3.3. Messfehler und Genauigkeit

Schreibweise mit "signifikanten Stellen"

Regel:

Beispiele: $L = 245 \text{ m} \rightarrow \text{Fehler } \Delta L \approx 0.5 \text{ m}$

 $H = 1.82 \text{ m} \rightarrow \text{Fehler } \Delta H \approx 0.005 \text{ m}$

t = 2 min \rightarrow Fehler $\Delta t \approx 0.5 \text{ min} = 30 \text{ s}$

Wenn kein Fehler explizit angegeben ist: Angabe einer Zahl bedeutet immer, dass die <u>letzte Stelle</u> noch sinnvoll ist.

Angabe berechneter Werte:

Regel:

Ein errechnetes Resultat kann höchstens so genau sein wie die Eingangszahlen!

<u>Beispiele:</u> 4,14 / 1,27 = 3,259 842 52 <u>NEIN</u>! = 3,26

7,178 057 835 / 2,62 = 2,739 716 731 NEIN!

= 2,74