(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-188346 (P2001-188346A)

(43)公開日 平成13年7月10日(2001.7.10)

(51) Int.Cl. ⁷		識別記号		FΙ			ī	·-マコード(参考)
G03F	7/039	601		G03F	7/039		601	2H025
C08F	20/28			C08F	20/28			4 J O O 2
	32/02				32/02			4 J 1 0 0
	32/08				32/08			
C08K	5/00			C 0 8 K	5/00			
			審査請求 未	請求 請求	マダス ファイス ファイス ファイス ファイス アイス アイス アイス アイス アイス アイス アイス アイス アイス ア	OL	(全 32 頁)	最終頁に続く

(21)出願番号 特顧2000-89903(P2000-89903)

(22)出願日 平成12年3月28日(2000.3.28)

(31)優先権主張番号 特願平11-295883

(32) 優先日 平成11年10月18日(1999.10.18)

(33)優先権主張国 日本(JP)

(71)出願人 000004178

ジェイエスアール株式会社

東京都中央区築地2丁目11番24号

(72) 発明者 銅木 克次

東京都中央区築地二丁目11番24号 ジェイ

エスアール株式会社内

(72)発明者 岩沢 晴生

東京都中央区築地二丁目11番24号 ジェイ

エスアール株式会社内

(74)代理人 100100985

弁理士 福沢 俊明

最終頁に続く

(54) 【発明の名称】 感放射線性樹脂組成物

(57)【要約】

【課題】 化学増幅型レジストとして、放射線に対する 透明性が高く、しかもドライエッチング耐性、感度、解 像度、パターン形状等のレジストとしての基本物性に優 れるとともに、微細加工時の現像欠陥を生じることがな く、半導体素子を高い歩留りで製造しうる感放射線性樹 脂組成物を提供する。

【解決手段】 感放射線性樹脂組成物は、(A)下記構造式(1)で表される骨格を、好ましくは下記構造式(2-1)または構造式(2-2)で表される基として、有するアルカリ不溶性またはアルカリ難溶性の酸解離性基含有樹脂であって、該酸解離性基が解離したときアルカリ可溶性となる樹脂、並びに(B)感放射線性酸発生剤を含有する。(A)成分は、下記式(3)に示す各繰返し単位からなる共重合体等に代表される。

【化1】

【化3】

【化2】

20

【特許請求の範囲】

【請求項1】 (A) 下記構造式(1) で表される骨格 を有するアルカリ不溶性またはアルカリ難溶性の酸解離 性基含有樹脂であって、該酸解離性基が解離したときア ルカリ可溶性となる樹脂、並びに(B)感放射線性酸発 生剤を含有することを特徴とする感放射線性樹脂組成 物。

【化1】

【請求項2】 (A) 下記構造式 (2-1) または下記構 造式(2-2)で表される基の群から選ばれる少なくとも 1種を有するアルカリ不溶性またはアルカリ難溶性の酸 解離性基含有樹脂であって、該酸解離性基が解離したと きアルカリ可溶性となる樹脂、並びに(B)感放射線性 酸発生剤を含有することを特徴とする感放射線性樹脂組 成物。

【化2】

(4-1)

〔一般式 (4-1) および一般式 (4-2) において、R² は水素原子またはメチル基を示し、R3 は置換もしくは 非置換の炭素数1~4の直鎖状もしくは分岐状のアルキ レン基を示す。〕

*【請求項3】 (A) 成分の酸解離性基含有樹脂が下記 一般式 (3-1) で表される繰返し単位、下記一般式 (3 -2) で表される繰返し単位、下記下記一般式 (4-1) で 表される繰返し単位および下記一般式(4-2)で表され る繰返し単位の群から選ばれる少なくとも1種の単位を 有する樹脂であることを特徴とする請求項2に記載の感 放射線性樹脂組成物。

【化3】

(3-1)(3-2)

〔一般式 (3-1) および一般式 (3-2) において、nは 0~2の整数であり、R1 は単結合または置換もしくは 非置換の炭素数1~4の直鎖状もしくは分岐状のアルキ レン基を示す。〕

【化4】

(4-2)

【請求項4】 (A) 成分の酸解離性基含有樹脂が請求 項3に記載の一般式 (3-1) で表される繰返し単位、一 般式 (3-2) で表される繰返し単位、一般式 (4-1) で 50 表される繰返し単位および一般式 (4-2) で表される繰

20

30

3

返し単位の群から選ばれる少なくとも1種の単位と、下記一般式(5)で表される繰返し単位、下記一般式(6)で表される繰返し単位および下記一般式(8)で表される繰返し単位の群から選ばれる少なくとも1種の単位とを有する樹脂であることを特徴とする請求項2に記載の感放射線性樹脂組成物。

【化5】

[一般式(5)において、AおよびBは相互に独立に水素原子または酸の存在下で解離して酸性官能基を生じる炭素数20以下の酸解離性基を示し、かつAおよびBの少なくとも1つが該酸解離性基であり、XおよびYは相互に独立に水素原子または炭素数1~4の直鎖状もしくは分岐状のアルキル基を示し、mは0~2の整数である。]

【化6】

$$\begin{array}{c|c}
 & R^4 \\
\hline
 & C \\
 &$$

〔一般式(6)において、R⁴は水素原子またはメチル基を示し、R⁵は下記一般式(7)

【化7】

$$R^6 - C - R^6 \qquad (7)$$

(式中、各R⁶ は相互に独立に炭素数1~4の直鎖状もしくは分岐状のアルキル基または炭素数4~20の1価の脂環式炭化水素基もしくはその誘導体を示すか、あるいは何れか2つのR⁶ が相互に結合して、それぞれが結合している炭素原子と共に炭素数4~20の2価の脂環式炭化水素基もしくはその誘導体を形成し、残りのR⁶ が炭素数1~4の直鎖状もしくは分岐状のアルキル基または炭素数4~20の1価の脂環式炭化水素基もしくはその誘導体である。)で表される基を示す。〕

【化8】

[一般式(8)において、 R^1 は水素原子またはメチル基を示し、 R^8 は炭素数 $1\sim4$ の直鎖状もしくは分岐状のアルキレン基または炭素数 $3\sim15$ の2価の脂環式炭化水素基を示す。]

【請求項5】 (A)成分の酸解離性基含有樹脂が請求項3に記載の一般式(3-1)で表される繰返し単位、一般式(3-2)で表される繰返し単位、一般式(4-1)で表される繰返し単位および一般式(4-2)で表される繰返し単位の群から選ばれる少なくとも1種の単位と、請求項4に記載の一般式(5)で表される繰返し単位、一般式(6)で表される繰返し単位および一般式(8)で表される繰返し単位の群から選ばれる少なくとも1種の単位と、下記式(9)で表される繰返し単位とを有する樹脂であることを特徴とする請求項2に記載の感放射線性樹脂組成物。

【化9】

O C O (9)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、感放射線性樹脂組成物に関わり、さらに詳しくは、KrFエキシマレーザーあるいはArFエキシマレーザー等の遠紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線の如き各種の放射線を使用する微細加工に有用な化学増幅型レジストとして好適に使用することができる感放射線性樹脂組成物に関する。

[0002]

【従来の技術】集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、最近では0.20μm以下のレベルでの微細加工が可能なリソグラフィー技術が必要とされている。しかし、従来のリソグラフィープロセスでは、一般に放射線としてi線等の近紫外線が用いられているが、この近紫外線では、サブクオーターミクロンレベルの微細加工が極めて50 困難であると言われている。そこで、0.20μm以下

のレベルでの微細加工を可能とするために、より波長の 短い放射線の利用が検討されている。このような短波長 の放射線としては、例えば、水銀灯の輝線スペクトル、 エキシマレーザーに代表される遠紫外線、X線、電子線 等を挙げることができるが、これらのうち、特にKrF エキシマレーザー(波長248nm)あるいはArFエ キシマレーザー (波長193nm) が注目されている。 このようなエキシマレーザーによる照射に適した感放射 線性樹脂組成物として、酸解離性官能基を有する成分と 放射線の照射(以下、「露光」という。)により酸を発 10 生する成分(以下、「酸発生剤」という。)とによる化 学増幅効果を利用した組成物(以下、「化学増幅型感放 射線性組成物」という。)が数多く提案されている。化 学増幅型感放射線性組成物としては、例えば、特公平2 -27660号公報には、カルボン酸の t -ブチルエス テル基またはフェノールの t ープチルカーボナート基を 有する重合体と酸発生剤とを含有する組成物が提案され ている。この組成物は、露光により発生した酸の作用に より、重合体中に存在する t ープチルエステル基あるい は t -ブチルカーボナート基が解離して、該重合体がカ ルボキシル基あるいはフェノール性水酸基からなる酸性 基を有するようになり、その結果、レジスト被膜の露光 領域がアルカリ現像液に易溶性となる現象を利用したも

のである。

【0003】ところで、従来の化学増幅型感放射線性組 成物の多くは、フェノール系樹脂をベースにするもので あるが、このような樹脂の場合、放射線として遠紫外線 を使用すると、樹脂中の芳香族環に起因して遠紫外線が 吸収されるため、露光された遠紫外線がレジスト被膜の 下層部まで十分に到達できないという欠点があり、その ため露光量がレジスト被膜の上層部では多く、下層部で は少なくなり、現像後のレジストパターンが上部が細く 下部にいくほど太い台形状になってしまい、十分な解像 度が得られないなどの問題があった。その上、現像後の レジストパターンが台形状となった場合、次の工程、即 ちエッチングやイオンの打ち込みなどを行う際に、所望 の寸法精度が達成できず、問題となっていた。しかも、 レジストパターン上部の形状が矩形でないと、ドライエ ッチングによるレジストの消失速度が速くなってしま い、エッチング条件の制御が困難になる問題もあった。 一方、レジストパターンの形状は、レジスト被膜の放射 線透過率を高めることにより改善することができる。例 えば、ポリメチルメタクリレートに代表される(メタ) アクリレート系樹脂は、遠紫外線に対しても透明性が髙 く、放射線透過率の観点から非常に好ましい樹脂であ り、例えば特開平4-226461号公報には、メタク リレート系樹脂を使用した化学増幅型感放射線性樹脂組 成物が提案されている。しかしながら、この組成物は、 微細加工性能の点では優れているものの、芳香族環をも

あり、この場合も高精度のエッチング加工を行うことが 困難であり、放射線に対する透明性とドライエッチング 耐性とを兼ね備えたものとは言えない。

【0004】また、化学増幅型感放射線性樹脂組成物か らなるレジストについて、放射線に対する透明性を損な わないで、ドライエッチング耐性を改善する方策の一つ として、組成物中の樹脂成分に、芳香族環に代えて脂環 族環を導入する方法が知られており、例えば特開平7-234511号公報には、脂環族環を有する (メタ) ア クリレート系樹脂を使用した化学増幅型感放射線性樹脂 組成物が提案されている。しかしながら、この組成物で は、樹脂成分が有する酸解離性官能基として、従来の酸 により比較的解離し易い基(例えば、テトラヒドロピラ ニル基等のアセタール系官能基) や酸により比較的解離 し難い基(例えば、t-ブチルエステル基、t-ブチル カーボネート基等の t - ブチル系官能基) が用いられて おり、前者の酸解離性官能基を有する樹脂成分の場合、 レジストの基本物性、特に感度やパターン形状は良好で あるが、組成物としての保存安定性に難点があり、また 前者の酸解離性官能基を有する樹脂成分では、逆に保存 安定性は良好であるが、レジストの基本物性、特に感度 やパターン形状が損なわれるという欠点がある。さら に、この組成物中の樹脂成分には脂環族環が導入されて いるため、樹脂自体の疎水性が非常に高くなり、基板に 対する接着性の面でも問題があった。しかも、従来の化 学増幅型感放射線性組成物では、微細加工の進展ととも に、得られる半導体素子の歩留りを悪化させるという理 由から、レジストパターン加工時の現像欠陥が大きな問 題となってきている。そこで、遠紫外線に代表される放 射線に対する透明性が高く、しかもドライエッチング耐 性、感度、解像度、パターン形状等に優れるのみなら ず、微細加工時に現像欠陥を生じることがなく、半導体 素子を高い歩留りで製造しうる化学増幅型感放射線性樹 脂組成物の開発が求められている。

[0005]

【発明が解決しようとする課題】本発明の課題は、活性放射線、例えばKrFエキシマレーザーあるいはArFエキシマレーザーに代表される遠紫外線、に感応する化学増幅型レジストとして、放射線に対する透明性が高く、しかもドライエッチング耐性、感度、解像度、パターン形状等のレジストとしての基本物性に優れるとともに、微細加工時の現像欠陥を生じることがなく、半導体素子を高い歩留りで製造しうる感放射線性樹脂組成物を提供することにある。

[0006]

り、例えば特開平4-226461号公報には、メタク リレート系樹脂を使用した化学増幅型感放射線性樹脂組 成物が提案されている。しかしながら、この組成物は、 協細加工性能の点では優れているものの、芳香族環をも たないため、ドライエッチング耐性が低いという欠点が 50 溶性となる樹脂、並びに(B) 感放射線性酸発生剤を含

有することを特徴とする感放射線性樹脂組成物、

[0007] 【化10】

によって達成される。

【0008】本発明の感放射線性樹脂組成物は、好ましくは、(A)下記構造式(2-1)または下記構造式(2-2)で表される基の群から選ばれる少なくとも1種を有するアルカリ不溶性またはアルカリ難溶性の酸解離性基含有樹脂であって、該酸解離性基が解離したときアルカリ可溶性となる樹脂、並びに(B)感放射線性酸発生剤を含有することを特徴とする感放射線性樹脂組成物、

[0009]

【化11】

からなる。

【0010】以下、本発明を詳細に説明する。 (A) 成分

本発明における(A)成分は、前記構造式(1)で表される骨格(以下、「多環ラクトン骨格(1)」という。)を、好ましくは前記構造式(2-1)または構造式(2-2)で表される基(以下、これらの基をまとめて「エステル基(2)」という。)として、有するアルカリ不溶性またはアルカリ難溶性の酸解離性基含有樹脂であって、該酸解離性基が解離したときアルカリ可溶性となる樹脂(以下、「樹脂(A)」という。)からなる。本発明においては、樹脂(A)が多環ラクトン骨格

(1)を有することにより、レジストとして、特に、微細加工時の現像欠陥を生じることがなく、半導体素子を高い歩留りで製造しうる感放射線性樹脂組成物を得ることができる。

【0011】樹脂(A)において、多環ラクトン骨格(1)は、構造式(1)中のカルボニル基を形成している炭素原子以外の任意の炭素原子の位置で結合することができるが、好ましい結合位置は、エステル基(2)に示されている位置である。また、多環ラクトン骨格(1)は、眩骨格中の1個の炭素原子の位置で結合して

も、2個以上の炭素原子の位置で結合してもよい。ま

た、多環ラクトン骨格(1)は、樹脂(A)の主鎖および/または側鎖に直接結合しても、2価の結合手を介して樹脂(A)の主鎖および/または側鎖に結合してもよい。前記2価の結合手としては、例えば、炭素数1~4の直鎖状もしくは分岐状のアルキレン基、炭素数1~4の直鎖状もしくは分岐状の(ポリ)オキシアルキレン基、-O-、-CO-、-COO-、-R-OCO-(但し、Rは置換もしくは非置換の炭素数1~4の直鎖

状もしくは分岐状のアルキレン基である。以下同様。)、-R-COO-、-OCO-R-COO-、-COO-R-OCO-等を挙げることができる。本発明において、多環ラクトン骨格(1)は、エステル基

(2) として、直接あるいは置換もしくは非置換の炭素数1~4の直鎖状もしくは分岐状のアルキレン基を介して、樹脂(A)の主鎖および/または側鎖に、特に側鎖に結合することが好ましい。

【0012】樹脂(A)における酸解離性基としては、例えば、酸の存在下で解離して酸性官能基、好ましくはカルボキシル基を生じる炭素数20以下の酸解離性有機20 基(以下、単に「酸解離性有機基」という。)を挙げることができる。本発明における酸解離性有機基としては、例えば、下記一般式(10)で表される基(以下、「酸解離性有機基(I)」という。)、下記一般式(11)で表される基(以下、「酸解離性有機基(II)」という。)等が好ましい。

[0013]

【化12】

30

$$\begin{array}{ccc}
O & R^6 \\
---C - O - C - R^6 & (10) \\
R^6
\end{array}$$

【0014】〔一般式(10)において、各R⁶ は相互に独立に炭素数1~4の直鎖状もしくは分岐状のアルキル基または炭素数4~20の1価の脂環式炭化水素基もしくはその誘導体を示すか、あるいは何れか2つのR⁶が相互に結合して、それぞれが結合している炭素原子と共に炭素数4~20の2価の脂環式炭化水素基もしくはその誘導体を形成し、残りのR⁶ が炭素数1~4の直鎖状もしくは分岐状のアルキル基または炭素数4~20の1価の脂環式炭化水素基もしくはその誘導体である。〕

[0015]

[一般式(11)において、R⁸ は炭素数1~4の直鎖 状もしくは分岐状のアルキレン基または炭素数3~15 の2価の脂環式炭化水素基を示す。]

【0016】酸解離性有機基(I)においては、そのカ

10

ルボニルオキシ基と-C (R⁶)。との間が酸の存在下で解離し、また酸解離性有機基 (II) においては、その t ープトキシカルボニル基中の t ープチル基とオキシカルボニル基との間が酸の存在下で解離する。

【0017】酸解離性有機基(I)において、R⁶の炭素数1~4の直鎖状もしくは分岐状のアルキル基としては、例えば、メチル基、エチル基、nープロピル基、iープロピル基、nーブチル基、2ーメチルプロピル基、1ーメチルプロピル基、tーブチル基等を挙げることができる。これらのアルキル基のうち、特に、メチル基、エチル基等が好ましい。

【0018】また、R⁶ の炭素数4~20の1価の脂環 式炭化水素基、および何れか2つのR6 が相互に結合し て形成した炭素数4~20の2価の脂環式炭化水素基と しては、例えば、ノルボルナン、トリシクロデカン、テ トラシクロドデカン、アダマンタンや、シクロブタン、 シクロペンタン、シクロヘキサン、シクロヘプタン、シ クロオクタン等のシクロアルカン類等に由来する脂環族 環からなる基;これらの脂環族環からなる基を、例え ば、メチル基、エチル基、n-プロピル基、i-プロピ 20 ル基、nープチル基、2-メチルプロピル基、1-メチ ルプロピル基、t-ブチル基等の炭素数1~4の直鎖状 もしくは分岐状のアルキル基の1種以上あるいは1個以 上で置換した基等を挙げることができる。これらの1価 または2価の脂環式炭化水素基のうち、特に、ノルボル ナン、トリシクロデカン、テトラシクロドデカンまたは アダマンタンに由来する脂環族環からなる基や、これら の脂環族環からなる基を前記アルキル基で置換した基等 が好ましい。

【0019】また、前記1価または2価の脂環式炭化水 30 素基の誘導体としては、例えば、ヒドロキシル基;カル ボキシル基;ヒドロキシメチル基、1-ヒドロキシエチ ル基、2-ヒドロキシエチル基、1-ヒドロキシプロピ ル基、2-ヒドロキシプロピル基、3-ヒドロキシプロ ピル基、1-ヒドロキシブチル基、2-ヒドロキシブチ ル基、3-ヒドロキシブチル基、4-ヒドロキシブチル 基等の炭素数1~4の直鎖状もしくは分岐状のヒドロキ シアルキル基;メトキシ基、エトキシ基、n-プロポキ シ基、i-プロポキシ基、n-ブトキシ基、2-メチル プロポキシ基、1-メチルプロポキシ基、 t-ブトキシ 40 基等の炭素数1~4の直鎖状もしくは分岐状のアルコキ シル基;シアノ基;シアノメチル基、2-シアノエチル 基、3-シアノプロピル基、4-シアノブチル基等の炭 素数2~5の直鎖状もしくは分岐状のシアノアルキル基 等の置換基を1種以上あるいは1個以上有する基を挙げ ることができる。これらの置換基のうち、特に、ヒドロ キシル基、カルボキシル基、ヒドロキシメチル基、シア ノ基、シアノメチル基等が好ましい。

【0020】次に、酸解離性有機基 (II) において、R ® の炭素数3~15の2価の脂環式炭化水素基として

は、例えば、ノルボルナン、トリシクロデカン、テトラシクロドデカン、アダマンタンや、シクロプタン、シクロペンタン、シクロペンタン、シクロオクタン等のシクロアルカン類等に由来する脂環族環からなる基を、例えば、メチル基、エチル基、ロープロピル基、1ープロピル基、ローブチル基、2ーメチルプロピル基、1ーメチルプロピル基、tーブチル基等の炭素数1~4の直鎖状もしくは分岐状のアルキル基の1種以上あるいは1個以上で置換した基等を挙げることができる。これらの脂環式炭化水素基のうち、特に、ノルボルナン、トリシクロデカン、テトラシクロドデカンまたはアダマンタンに由来する脂環族環からなる基や、これらの脂環族環からなる基を前記アルキル基で置換した基等が好ましい。

【0021】酸解離性有機基(I)の好ましい具体例としては、t-ブトキシカルボニル基や、下記式(I-1) \sim (I-45)で表される基等を挙げることができる。

[0022]

[0023]

(I-4) (I-5) (I-6)

[0024] 【化16】

【0028】 【化20】 (8)

特開2001-188346 14

-CH₃

(1-36)

【化22】

Ċ=O

(1-25)

[0031] 【化23】

(1-28)

-CH₃

Ċ=O

(I-26)

[0035] 【化27】

$$C=0$$
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

[0036]

20

【0037】これらの酸解離性有機基(I)のうち、t -ブトキシカルボニル基や、式(I-1)、式(I-2)、 式(I-10)、式(I-11)、式(I-13)、式(I-14)、式 (I-16)、式(I-17)、式(I-34)、式(I-35)、式 (I-40)または式 (I-41)で表される基等が好ましい。 【0038】また、酸解離性有機基(I)および酸解離 性有機基(川)以外の好ましい酸解離性有機基(以下、 「酸解離性有機基(III)」という。)としては、例え ば、メトキシカルボニル基、エトキシカルボニル基、n -プロポキシカルボニル基、 i -プロポキシカルボニル 基、n-ブトキシカルボニル基、2-メチルプロポキシ カルボニル基、1-メチルプロポキシカルボニル基、n -ペンチルオキシカルボニル基、n-ヘキシルオキシカ ルボニル基、n-ヘプチルオキシカルボニル基、n-オ クチルオキシカルボニル基、nーデシルオキシカルボニ ル基、シクロペンチルオキシカルボニル基、シクロヘキ シルオキシカルボニル基、4-t-ブチルシクロヘキシ ルオキシカルボニル基、シクロヘプチルオキシカルボニ ル基、シクロオクチルオキシカルポニル基等の (シク ロ) アルコキシカルボニル基; フェノキシカルボニル 基、4-t-プチルフェノキシカルボニル基、1-ナフ チルオキシカルボニル基等のアリーロキシカルボニル 基;ベンジルオキシカルボニル基、4-t-ブチルベン ジルオキシカルボニル基、フェネチルオキシカルボニル 基、4-t-プチルフェネチルオキシカルボニル基等の アラルキルオキシカルボニル基;

【0039】1-メトキシエトキシカルボニル基、1-エトキシエトキシカルボニル基、1-n-プロポキシエ トキシカルボニル基、1-i-プロポキシエトキシカル ボニル基、1-n-プトキシエトキシカルボニル基、1 - (2'ーメチルプロポキシ)エトキシカルボニル基、 1-(1'-メチルプロポキシ)エトキシカルボニル 基、1-t-プトキシエトキシカルボニル基、1-シク ロヘキシルオキシエトキシカルボニル基、1-(4't - ブチルシクロヘキシルオキシ) エトキシカルボニル 基等の1-(シクロ) アルキルオキシエトキシカルボニ ル基;1-フェノキシエトキシカルボニル基、1-(4'-t-ブチルフェノキシ) エトキシカルボニル 基、1-(1'-ナフチルオキシ)エトキシカルボニル 基等の1-アリーロキシエトキシカルポニル基;1-ベ ンジルオキシエトキシカルボニル基、1-(4'-t-

ェネチルオキシエトキシカルボニル基、1-(4'-t 10 ープチルフェネチルオキシ)エトキシカルボニル基等の 1-アラルキルオキシエトキシカルボニル基:

【0040】メトキシカルボニルメトキシカルボニル 基、エトキシカルボニルメトキシカルボニル基、n-プ ロポキシカルボニルメトキシカルボニル基、i-プロポ キシカルボニルメトキシカルボニル基、n-ブトキシカ ルボニルメトキシカルボニル基、2-メチルプロポキシ カルボニルメトキシカルボニル基、1-メチルプロポキ シカルボニルメトキシカルボニル基、シクロヘキシルオ キシカルボニルメトキシカルボニル基、4-t-ブチル シクロヘキシルオキシカルボニルメトキシカルボニル基 等の(シクロ)アルコキシカルボニルメトキシカルボニ ル基;メトキシカルボニルメチル基、エトキシカルボニ ルメチル基、n-プロポキシカルボニルメチル基、i-プロポキシカルボニルメチル基、n-ブトキシカルボニ ルメチル基、2-メチルプロポキシカルボニルメチル 基、1-メチルプロポキシカルボニルメチル基、t-ブ トキシカルボニルメチル基、シクロヘキシルオキシカル ボニルメチル基、4-t-ブチルシクロヘキシルオキシ カルボニルメチル基等の (シクロ) アルコキシカルボニ ルメチル基;フェノキシカルボニルメチル基、4-t-30 プチルフェノキシカルボニルメチル基、1-ナフチルオ キシカルボニルメチル基等のアリーロキシカルボニルメ チル基;ベンジルオキシカルボニルメチル基、4-t-プチルベンジルオキシカルボニルメチル基、フェネチル オキシカルボニルメチル基、4-t-ブチルフェネチル オキシカルボニルメチル基等のアラルキルオキシカルボ ニルメチル基:

【0041】2-メトキシカルボニルエチル基、2-エ トキシカルボニルエチル基、2-n-プロポキシカルボ 40 ニルエチル基、2-i-プロポキシカルボニルエチル 基、2-n-プトキシカルボニルエチル基、2-(2) -メチルプロポキシ) カルボニルエチル基、2-(1' ーメチルプロポキシ) カルボニルエチル基、2 – t –プ トキシカルボニルエチル基、2-シクロヘキシルオキシ カルボニルエチル基、2-(4'-t-ブチルシクロへ キシルオキシカルボニル) エチル基等の2-(シクロ) アルコキシカルボニルエチル基;2-フェノキシカルボ ニルエチル基、2-(4'-t-プチルフェノキシカル ボニル) エチル基、2-(1'-ナフチルオキシカルボ プチルベンジルオキシ) エトキシカルボニル基、1-フ 50 ニル) エチル基等の2-アリーロキシカルボニルエチル

基;2-ベンジルオキシカルボニルエチル基、2-(4'-t-ブチルベンジルオキシカルボニル) エチル 基、2-フェネチルオキシカルボニルエチル基、2-(4'-t-ブチルフェネチルオキシカルボニル) エチ ル基等の2-アラルキルオキシカルボニルエチル基や、 テトラヒドロフラニルオキシカルボニル基、テトラヒド ロピラニルオキシカルボニル基等を挙げることができ る。

17

【0042】これらの酸解離性有機基(111)のうち、基 -COOR' 〔但し、R' は炭素数1~19の (シク ロ) アルキル基を示す。〕または基-COOCH2 CO OR'' 〔但し、R''は炭素数1~17の(シクロ) アル キル基を示す。〕に相当するものが好ましい。

【0043】樹脂(A)は、多環ラクトン骨格(1) と、酸解離性有機基 (1)、酸解離性有機基 (11)、酸 解離性有機基(III) 等の酸解離性基とを有するアルカリ 不溶性またはアルカリ難溶性の樹脂であり、該酸解離性 基が解離したときアルカリ可溶性となるものである限り は特に限定されるものではなく、付加重合系樹脂、重付 加系樹脂あるいは重縮合系樹脂の何れでもよいが、好ま 20 しくは付加重合系樹脂である。本発明における樹脂

(A) としては、放射線に対する透明性等の観点から、 芳香族環をもたないか、あるいは芳香族環の含量が可及 的に少ない樹脂が好ましい。本発明における好ましい樹 脂(A)としては、例えば、下記一般式(3-1)で表さ れる繰返し単位(以下、「繰返し単位(3-1)」とい う。)、下記一般式 (3-2) で表される繰返し単位 (以 下、「繰返し単位 (3-2)」という。)、下記一般式 (4-1) で表される繰返し単位(以下、「繰返し単位 (4-1)」という。) および下記一般式 (4-2) で表さ 30 れる繰返し単位(以下、「繰返し単位(4-2)」とい う。) の群から選ばれる少なくとも1種の単位を有する*

0=

(4-1)

*アルカリ不溶性またはアルカリ難溶性の酸解離性基含有 樹脂であって、該酸解離性基が解離したときアルカリ可 溶性となる樹脂(以下、「樹脂(A1)」という。)を 挙げることができる。

[0044]

【化29】

(3-1)(3-2)

[一般式 (3-1) および一般式 (3-2) において、nは 0~2の整数であり、R¹ は単結合または置換もしくは 非置換の炭素数1~4の直鎖状もしくは分岐状のアルキ レン基を示す。但し、一般式 (3-1) における n と一般 式 (3-2) における n、および一般式 (3-1) における R¹ と一般式 (3-2) におけるR¹ は、それぞれ同一で も異なってもよい。〕

[0045]

【化30】

(4-2)

[一般式 (4-1) および一般式 (4-2) において、R²

非置換の炭素数1~4の直鎖状もしくは分岐状のアルキ は水素原子またはメチル基を示し、R3 は置換もしくは 50 レン基を示す。但し、一般式 (4-1) におけるR2 と一

般式 (4-2) における R^2 、および一般式 (4-1) における R^3 と一般式 (4-2) における R^3 は、それぞれ同一でも異なってもよい。〕

【0046】一般式(3-1)、一般式(3-2)、一般式 (4-1) および一般式 (4-2) において、R¹ およびR 3 の置換もしくは非置換の炭素数1~4の直鎖状もしく は分岐状のアルキレン基としては、例えば、メチレン 基、1-メチル-1、1-エチレン基、エチレン基、プ ロピレン基、1、1-ジメチルエチレン基、トリメチレ ン基、テトラメチレン基、ヒドロキシメチレン基、1- 10 ヒドロキシー1, 1-エチレン基、1-ヒドロキシー 1, 2-エチレン基、2-ヒドロキシ-1, 2-エチレ ン基、1-ヒドロキシトリメチレン基、2-ヒドロキシ トリメチレン基、3-ヒドロキシトリメチレン基等を挙 げることができる。これらのアルキレン基のうち、特 に、メチレン基、エチレン基、2-ヒドロキシトリメチ レン基等が好ましい。また、繰返し単位(3)における nとしては、0または1が好ましい。樹脂 (A1) にお いて、繰返し単位 (3-1)、繰返し単位 (3-2)、繰返 し単位 (4-1) および繰返し単位 (4-2) は、それぞれ 20 単独でまたは2種以上が存在することができる。

【0047】繰返し単位(3-1)を与える重合性不飽和単量体としては、例えば、下記一般式(12-1)で表される化合物(以下、「ノルボルネン誘導体(α -1)」という。)を挙げることができ、また繰返し単位(3-2)を与える重合性不飽和単量体としては、例えば、下記一般式(12-2)で表される化合物(以下、「ノルボルネン誘導体(α -2)」という。)を挙げることができる。*

* [0 0 4 8]
[化 3 1]

R¹

O=C

(12-1) (12-2)
[一般式 (1 2-1) において、nおよびR' は一般式
(3-1) のそれぞれnおよびR' と同義であり、一般式
(1 2-2) において、nおよびR' は一般式 (3-2) の
それぞれnおよびR' と同義である。〕

【0049】 ノルボルネン誘導体 (α -1) の好ましい具体例としては、下記式 (12-1-1) \sim (12-1-8) に示す化合物等を挙げることができる。

[0050] [化32]

[0051]

(12) 特開2001-188346 22 C-CH₃ CH₂ HO-ÇH H₃C-Ç-CH₃ HO-CH (12-1-5)(12-1-6)(12-1-7)(12-1-8)【0052】また、ノルボルネン誘導体 (α-2) の好ま * [0053] しい具体例としては、下記式 (12-2-1) ~ (12-2-8) に 【化34】 示す化合物等を挙げることができる。 (12-2-1)(12-2-2)(12-2-3)(12-2-4)[0054] 【化35】 -CH₃ HO-ÇH C-CH₃ (12-2-5)(12-2-6)(12-2-7)(12-2-8)

【0055】これらのノルボルネン誘導体 (α-1) およ びノルボルネン誘導体 (α-2) のうち、特に、式 (12-1

で表される化合物等が好ましい。ノルボルネン誘導体 (α-1) およびノルボルネン誘導体 (α-2) は、例え -1)、式 (12-1-3)、式 (12-2-1) または式 (12-2-3) 50 ば、ヒドロキシアルキルノルボルネン化合物と多環ラク

トン骨格(1)にカルボキシル基を付加させた化合物と を反応させる方法、カルボキシル基含有ノルボルネン化 合物と多環ラクトン骨格(1)にヒドロキシル基を付加 させた化合物とを反応させる方法、グリシジル基含有ノ ルボルネン化合物と多環ラクトン骨格(1)にカルボキ シル基を付加させた化合物とを反応させる方法等により 合成することができる。

【0056】また、繰返し単位(4-1)を与える重合性 不飽和単量体は、下記一般式(13-1)で表される化合 物(以下、「(メタ)アクリル酸誘導体(β -1)」とい 10 う。) からなり、また繰返し単位 (4-2) を与える重合 性不飽和単量体は、下記一般式(13-2)で表される化 合物(以下、「(メタ)アクリル酸誘導体(β-2)」と いう。) からなる。

[0057]

(13-2)

(13-1-2)

(13-1-1)[0060]

(13-1)

(13-1-3)(13-1-4)

【化38】

*〔一般式(13-1)において、R2 およびR3 は一般式 (4-1) のそれぞれR²およびR³ と同義であり、一般 式 (13-2) において、R2 およびR3 は一般式 (4-2) のそれぞれR² およびR³ と同義である。〕

【0058】 (メタ) アクリル酸誘導体 (β-1) の好ま しい具体例としては、下記式 (13-1-1) ~ (13-1-8) に 示す化合物等を挙げることができる。

[0059]

【化37】

25 26 ÇH₃ =CH₂ (13-1-5)(13-1-6)(13-1-7)(13-1-8)

【0061】また、 (メタ) アクリル酸誘導体 (β-2) の好ましい具体例としては、下記式 (13-2-1) ~ (13-2 -8) に示す化合物等を挙げることができる。

* [0062] 【化39】

【0064】これらの (メタ) アクリル酸誘導体 (β-1) および (メタ) アクリル酸誘導体 (β-2) のうち、 特に、式(13-1-1)、式(13-1-2)、式(13-2-1)また は式 (13-2-2) で表される化合物等が好ましい。 (メ タ) アクリル酸誘導体 (β-1) および (メタ) アクリル 酸誘導体 (β-2)は、例えば、ヒドロキシアルキル (メ タ)アクリレートと多環ラクトン骨格(1)にカルボキ シル基を付加させた化合物とを反応させる方法、カルボ 50 は繰返し単位 (4-2) に加えて、さらに他の繰返し単位

キシアルキル (メタ) アクリレートと多環ラクトン骨格 (1) にヒドロキシル基を付加させた化合物とを反応さ せる方法、グリシジル (メタ) アクリレートと多環ラク トン骨格(1)にカルボキシル基を付加させた化合物と を反応させる方法等により合成することができる。

【0065】樹脂 (A1) は、通常、繰返し単位 (3-1) 、繰返し単位 (3-2) 、繰返し単位 (4-1) あるい

特開2001-188346

28

$$\begin{array}{ccc}
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & | \\
 & |$$

【0070】 (式中、R⁶ は一般式 (10) におけるR ⁶ と同義である。) で表される基を示す。]

[0071]

【化44】

20 【0072】〔一般式(8)において、R¹は水素原子またはメチル基を示し、R⁸は一般式(11)におけるR⁸と同義である。〕

[0073]

【化45】

【0074】繰返し単位(5)において、AおよびBの 酸解離性基としては、t-ブトキシカルボニル基、t-ブトキシカルボニルメトキシカルボニル基や、酸解離性 有機基(III) のうち、基-COOR' [但し、R'は炭 素数1~19の(シクロ)アルキル基を示す。〕または 基-COOCH2 COOR' 〔但し、R''は炭素数1~ 17の(シクロ)アルキル基を示す。〕に相当するもの が好ましく、特に、 tープトキシカルボニル基、 tープ トキシカルボニルメトキシカルボニル基、1-メチルプ ロポキシカルボニル基等が好ましい。また、XおよびY の炭素数1~4の直鎖状もしくは分岐状のアルキル基と 40 しては、例えば、メチル基、エチル基、n-プロピル 基、i-プロピル基、n-プチル基、2-メチルプロピ ル基、1-メチルプロピル基、 t-ブチル基等を挙げる ことができる。これらのアルキル基のうち、特に、メチ ル基、エチル基等が好ましい。また、繰返し単位 (5) におけるmとしては、0または1が好ましい。樹脂 (A 1-1) において、繰返し単位 (5) は、単独でまたは2 種以上が存在することができる。

【0075】繰返し単位(5)を与える重合性不飽和単 量体としては、例えば、下記一般式(14)で表される 50 化合物(以下、「ノルボルネン誘導体(α-3)」とい

27

を有する。このような他の繰返し単位を有する好ましい 樹脂 (A1) としては、例えば、繰返し単位 (3~1)、 繰返し単位 (3-2)、繰返し単位 (4-1) および繰返し 単位(4-2)の群から選ばれる少なくとも1種の単位 と、下記一般式(5)で表される繰返し単位(以下、 「繰返し単位(5)」という。)、下記一般式(6)で 表される繰返し単位(以下、「繰返し単位(6)」とい う。) および下記一般式 (8) で表される繰返し単位 (以下、「繰返し単位(8)」という。) の群から選ば れる少なくとも1種の単位を有する樹脂(以下、「樹脂 (A1-1)」という。)、繰返し単位(3-1)、繰返し 単位 (3-2)、繰返し単位 (4-1) および繰返し単位 (4-2) の群から選ばれる少なくとも1種の単位と、繰 返し単位(5)、繰返し単位(6)および繰返し単位 (8) の群から選ばれる少なくとも1種の単位と、下記 一般式(9)で表される繰返し単位(以下、「繰返し単 位(9)」という。)とを有する樹脂(以下、「樹脂 (A1-2)」という。) 等を挙げることができる。 [0066]

【化41】

[一般式 (5) において、AおよびBは相互に独立に水 案原子または酸の存在下で解離して酸性官能基を生じる 炭素数 20以下の酸解離性基を示し、かつAおよびBの 少なくとも1つが該酸解離性基であり、XおよびYは相 互に独立に水素原子または炭素数 1~4の1 価の直鎖状 もしくは分岐状のアルキル基を示し、mは0~2の整数 である。]

[0067]

【化42】

【0068】 (一般式 (6) において、R⁴ は水素原子 またはメチル基を示し、R⁵ は下記一般式 (7)

[0069]

【化43】

(16)

特開2001-188346

う。)を挙げることができる。 [0076] 【化46】

29

〔一般式(14)において、A、B、X、Yおよびmは 一般式(5)のそれぞれA、B、X、Yおよびmと同義 である。〕

【0077】ノルボルネン誘導体 (α-3) のうち、mが 0の化合物の具体例としては、5-メトキシカルボニル ビシクロ[2.2.1]ヘプト-2-エン、5-エトキ シカルボニルビシクロ[2.2.1]ヘプト-2-エ ン、5-n-プロポキシカルボニルビシクロ[2.2. 1]ヘプト-2-エン、5-i-プロポキシカルボニル ビシクロ[2.2.1] 2 2 2 2 2 トキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-(2'-メチルプロポキシ)カルボニルビシ クロ[2.2.1]ヘプトー2ーエン、5ー(1'ーメ チルプロポキシ) カルボニルビシクロ[2.2.1]へ プト-2-エン、5-t-ブトキシカルボニルビシクロ [2.2.1]ヘプト-2-エン、5-シクロヘキシル オキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-(4'-t-ブチルシクロヘキシルオキシ)カルボニルビシクロ[2.2.1]ヘプト-2-エン、 トー2ーエン、5ー(1'-エトキシエトキシ)カルボ ニルビシクロ[2.2.1]ヘプト-2-エン、5-(1'-シクロヘキシルオキシエトキシ) カルボニルビ シクロ[2.2.1] ヘプト-2-エン、5-t-ブト キシカルボニルメトキシカルボニルビシクロ[2.2. 1]ヘプト-2-エン、5-テトラヒドロフラニルオキ シカルボニルビシクロ[2.2.1]ヘプト-2-エ ン、5-テトラヒドロピラニルオキシカルボニルビシク ロ[2.2.1]ヘプト-2-エン、

【0078】5-メチル-5-メトキシカルボニルビシ 40 シクロ[2.2.1]ヘプト-2-エン、5,6-ジ クロ[2.2.1]ヘプトー2ーエン、5ーメチルー5 ーエトキシカルボニルビシクロ[2.2.1]ヘプトー 2-エン、5-メチル-5-n-プロポキシカルボニル ビシクロ[2.2.1]ヘプト-2-エン、5-メチル -5-i-プロポキシカルボニルビシクロ[2.2.1]ヘプトー2ーエン、5ーメチルー5ーnープトキシカ ルポニルビシクロ[2.2.1]ヘプト-2-エン、5 ーメチルー5-(2'-メチルプロポキシ)カルボニル ピシクロ[2.2.1] ヘプト-2-エン、5-メチル -5-(1'-メチルプロポキシ) カルボニルビシクロ 50 ドデカ-3-エン、8-エトキシカルボニルテトラシク

[2. 2. 1] ヘプトー2ーエン、5ーメチルー5ー t ーブトキシカルボニルビシクロ[2.2.1]ヘプトー 2-エン、5-メチル-5-シクロヘキシルオキシカル ボニルビシクロ[2.2.1]ヘプト-2-エン、5-メチル-5-(4'-t-ブチルシクロヘキシルオキ シ) カルボニルビシクロ[2.2.1]ヘプト-2-エ ン、5-メチル-5-フェノキシカルボニルビシクロ[2. 2. 1]ヘプト-2-エン、5-メチル-5-(1'-エトキシエトキシ) カルボニルビシクロ[2. 10 2.1] ヘプト-2-エン、5-メチル-5-(1'-シクロヘキシルオキシエトキシ) カルボニルビシクロ[2. 2. 1]ヘプト-2-エン、5-メチル-5-t-ブトキシカルボニルメトキシカルボニルビシクロ[2. 2. 1]ヘプト-2-エン、5-メチル-5-テトラヒ ドロフラニルオキシカルボニルビシクロ[2.2.1] ヘプト-2-エン、5-メチル-5-テトラヒドロピラ ニルオキシカルボニルビシクロ[2.2.1] ヘプトー 2-エン、

【0079】5,6-ジ(メトキシカルボニル)ビシク ロ[2.2.1]ヘプト-2-エン、5,6-ジ(エト キシカルボニル) ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(n-プロポキシカルボニル) ビシク ロ[2.2.1]ヘプト-2-エン、5,6-ジ(i-プロポキシカルボニル) ビシクロ[2.2.1]ヘプト -2-エン、5,6-ジ(n-ブトキシカルボニル)ビ シクロ[2.2.1] 2 2 2 2 2 2 (2'ーメチルプロポキシカルボニル) ビシクロ[2. 2. 1]ヘプト-2-エン、5, 6-ジ(1'-メチル プロポキシカルボニル) ビシクロ[2.2.1]ヘプト 5-フェノキシカルボニルビシクロ[2.2.1]へプ 30-2-xン、5,6-ジ(t-ブトキシカルボニル)ビシクロ[2. 2. 1] $^{\text{N}}$ トー2ーエン、5, 6ージ (シクロヘキシルオキシカルボニル) ビシクロ[2. 2. 1] 1 チルシクロヘキシルオキシカルボニル) ビシクロ[2. 2. 1] ヘプト-2-エン、5,6-ジ(フェノキシカ ルボニル) ビシクロ[2.2.1]ヘプト-2-エン、 5, 6-ジ(1'-エトキシエトキシカルボニル) ビシ クロ[2.2.1]ヘプト-2-エン、5,6-ジ (1'-シクロヘキシルオキシエトキシカルボニル)ビ (t-プトキシカルボニルメトキシカルボニル) ビシク ロ[2.2.1]ヘプト-2-エン、5,6-ジ(テト ラヒドロフラニルオキシカルボニル) ビシクロ[2. 2. 1]ヘプト-2-エン、5,6-ジ(テトラヒドロ ピラニルオキシカルボニル) ビシクロ[2.2.1]へ プト-2-エン等を挙げることができる。

> 【0080】また、ノルボルネン誘導体 (α -3) のう ち、mが1の化合物の具体例としては、8-メトキシカ ルポニルテトラシクロ[4.4.0. $1^{2.5}$. $1^{7.10}$]

ロ[4. 4. 0. 12.5 . 17.10]ドデカー3ーエン、 8-n-プロポキシカルボニルテトラシクロ[4.4. 0. 1^{2,5}. 1^{7,10}]ドデカー3-エン、8-i-プロ ポキシカルボニルテトラシクロ[4.4.0.12.5. 17.10] ドデカー3ーエン、8-n-ブトキシカルボニ ルテトラシクロ[4. 4. 0. 1^{2.5} . 1^{7.10}]ドデカ -3-エン、8-(2'-メチルプロポキシ)カルボニ ルテトラシクロ[4. 4. 0. 1^{2,5}. 1^{7,10}]ドデカ -3-エン、8-(1'-メチルプロポキシ)カルボニ ルテトラシクロ[4. 4. 0. 1^{2.5}. 1^{7.10}]ドデカ -3-エン、8-t-プトキシカルボニルテトラシクロ [4.4.0.12.5.17.10]ドデカー3ーエン、8 -シクロヘキシルオキシカルボニルテトラシクロ[4. 4. 0. $1^{2.5}$. $1^{7.10}$] \ddot{r} \ddot{r} (4'-t-プチルシクロヘキシルオキシ) カルボニル テトラシクロ[4. 4. 0. 1^{2.5} . 1^{7.10}]ドデカー 3-エン、8-フェノキシカルボニルテトラシクロ[4. 4. 0. 1^{2,5} . 1^{7,10}]ドデカー3ーエン、8ー (1'-エトキシエトキシ) カルボニルテトラシクロ[4. 4. 0. $1^{2.5}$. $1^{7.10}$] \vec{r} \vec{r} (1'-シクロヘキシルオキシエトキシ) カルボニルテ トラシクロ[4. 4. 0. 12.5 . 17.10]ドデカー3 -エン、8-t-プトキシカルボニルメトキシカルボニ ルテトラシクロ[4. 4. 0. 1^{2,5} . 1^{7,10}]ドデカ -3-エン、8-テトラヒドロフラニルオキシカルボニ ルテトラシクロ[4.4.0.12.5.17.10]ドデカ -3-エン、8-テトラヒドロピラニルオキシカルボニ ルテトラシクロ[4.4.0.12.5.17.10]ドデカ -3-エン、

【0081】8-メチル-8-メトキシカルボニルテト ラシクロ[4. 4. 0. 1^{2.5} . 1^{7.10}]ドデカー3ー エン、8-メチル-8-エトキシカルボニルテトラシク ロ[4. 4. 0. 12.5 . 17.10]ドデカー3ーエン、 8-メチル-8-n-プロポキシカルボニルテトラシク ロ[4. 4. 0. $1^{2.5}$. $1^{7.10}$]ドデカー3ーエン、 8-メチル-8-i-プロポキシカルボニルテトラシク ロ[4. 4. 0. 1^{2,5}. 1^{7,10}]ドデカー3ーエン、 8-メチル-8-n-プトキシカルボニルテトラシクロ [4.4.0.12.5.17.10]ドデカー3ーエン、8 テトラシクロ[4. 4. 0. 1^{2.5} . 1^{7.10}]ドデカー 3-エン、8-メチル-8-(1'-メチルプロポキ シ) カルボニルテトラシクロ[4.4.0.12.5.1 7.10]ドデカー3-エン、8-メチル-8-t-ブトキ シカルボニルテトラシクロ[4.4.0.12.5.1 7.10]ドデカー3-エン、8-メチル-8-シクロヘキ シルオキシカルボニルテトラシクロ[4.4.0.1 ^{2.5} . 1^{7.10}]ドデカー3ーエン、8ーメチルー8ー (4'-t-ブチルシクロヘキシルオキシ) カルボニル テトラシクロ[4.4.0.1^{2.5}.1^{7.10}]ドデカー 50

3-エン、8-メチル-8-フェノキシカルボニルテト ラシクロ[4.4.0.12.6.17.10]ドデカー3ー エン、8-メチル-8-(1'-エトキシエトキシ)カ ルボニルテトラシクロ[4.4.0.12.5.17.10] ドデカー3ーエン、8ーメチルー8ー(1'ーシクロへ キシルオキシエトキシ) カルボニルテトラシクロ[4. 4. 0. 1^{2,5} . 1^{7,10}]ドデカー3ーエン、8ーメチ ルー8-t-プトキシカルボニルメトキシカルボニルテ トラシクロ[4. 4. 0. 12,5 . 17,10]ドデカー3 ーエン、8ーメチルー8ーテトラヒドロフラニルオキシ カルボニルテトラシクロ[4.4.0.12.5.17.10]]ドデカー3-エン、8-メチル-8-テトラヒドロピ ラニルオキシカルボニルテトラシクロ[4.4.0.1 2.5 . 17.10]ドデカー3ーエン、

【0082】8,9-ジ(メトキシカルボニル)テトラ シクロ[4. 4. 0. 12.5 . 17.10]ドデカー3ーエ ン、8,9-ジ(エトキシカルボニル)テトラシクロ[4. 4. 0. 1^{2,5}. 1^{7,10}]ドデカー3ーエン、8, 9-ジ (n-プロポキシカルボニル) テトラシクロ[20 4.4.0. $1^{2.5}$. $1^{7.10}$] \vec{r} \vec{r} 9-ジ(i-プロポキシカルボニル)テトラシクロ[4. 4. 0. $1^{2.5}$. $1^{7.10}$] \ddot{r} \ddot{r} 9-ジ (n-ブトキシカルボニル) テトラシクロ[4. 4. 0. 1^{2,5} . 1^{7,10}]ドデカー3ーエン、8,9ー ジ(2'ーメチルプロポキシカルボニル)テトラシクロ [4. 4. 0. $1^{2.5}$. $1^{7.10}$]ドデカー3ーエン、 8,9-ジ(1'-メチルプロポキシカルボニル)テト ラシクロ[4.4.0.12.5.17.10]ドデカー3ー エン、8,9-ジ(t-ブトキシカルボニル)テトラシ 30 クロ[4.4.0.12.5.17.10]ドデカー3ーエ ン、8、9-ジ(シクロヘキシルオキシカルボニル)テ トラシクロ[4. 4. 0. 12.5 . 17.10]ドデカー3 ーエン、8,9-ジ(4'-t-ブチルシクロヘキシル オキシカルボニル) テトラシクロ[4.4.0.1 ^{2,5} . 1^{7,10}]ドデカー3ーエン、8, 9ージ(フェノ キシカルボニル) テトラシクロ[4.4.0.12.5. 17.10] ドデカー3ーエン、8, 9ージ(1'ーエトキ シエトキシカルボニル) テトラシクロ[4.4.0.1 2.5 . 17.10]ドデカー3-エン、8, 9-ジ(1'-ーメチルー8-(2'-メチルプロポキシ)カルボニル 40 シクロヘキシルオキシエトキシカルボニル)テトラシク ロ[4.4.0.1^{2,5}.1^{7,10}]ドデカー3ーエン、 8, 9-ジ(t-プトキシカルボニルメトキシカルボニ ル) テトラシクロ[4.4.0.12.5.17.10]ドデ カー3-エン、8,9-ジ(テトラヒドロフラニルオキ シカルボニル) テトラシクロ[4.4.0.12,5.1 7.10]ドデカー3ーエン、8, 9ージ (テトラヒドロピ ラニルオキシカルポニル)テトラシクロ[4.4.0. 12.5 . 17.10]ドデカー3-エン等を挙げることがで

【0083】これらのノルボルネン誘導体 (α-3) のう

33

【0084】樹脂(A1-1)において、繰返し単位 (6)は、単独でまたは2種以上が存在することができる。繰返し単位(6)を与える重合性不飽和単量体は、 (x) アクリル酸のカルボキシル基を酸解離性有機基 (x) に変換した化合物(以下、「(x) アクリル酸 誘導体(x)」という。)からなる。

【0085】樹脂(A1-1)において、繰返し単位(8)は、単独でまたは2種以上が存在することができ 20る。繰返し単位(8)を与える重合性不飽和単量体は、(メタ)アクリル酸のカルボキシル基を酸解離性有機基(II)に変換した化合物(以下、「(メタ)アクリル酸誘導体(β -4)」という。)からなる。

【0086】また、繰返し単位(9)は、無水マレイン酸に由来する単位である。無水マレイン酸は、ノルボルネン誘導体(α -1)、ノルボルネン誘導体(α -2)、ノルボルネン誘導体(α -3)、後述するノルボルネンや他のノルボルネン誘導体との共重合性が良好であり、これらのノルボルネン(誘導体)と共重合することにより、得られる樹脂(α 1)の分子量を所望の値にまで大きくすることができる。

【0087】ここで、樹脂 (A1-1) および樹脂 (A1

-2) の例をより具体的に示すと、繰返し単位 (3-1) お

よび/または繰返し単位 (3-2) と繰返し単位 (5) と

を有する樹脂、繰返し単位(4-1)および/または繰返し単位(4-2)と繰返し単位(6)とを有する樹脂、繰返し単位(4-2)と繰返し単位(3-1)および/または繰返し単位(3-1)および/または繰返し単位(3-2)と繰返し単位(4-1)および/または繰返し単位(4-2)と繰返し単位(5)と繰返し単位(9)とを有する樹脂、繰返し単位(5)と繰返し単位(9)とを有する樹脂、繰返し単位(3-1)および/または繰返し単位(3-2)と繰返し単位(6)と繰返し単位(9)とを有する樹脂、繰返し単位(3-1)および/または繰返し単位(3-2)と繰返し単位(8)と繰返し単位(9)とを有する樹脂、繰返し単位(3-1)および/または繰返し単位(3-2)と繰返し単位(5)と繰返し単位(9)とを有する樹脂、繰返し単位(5)と繰返し単位(6)と繰返し単位(6)と繰返し単位(5)と

し単位 (3-2) と繰返し単位 (5) と繰返し単位 (8) と繰返し単位 (9) とを有する樹脂、繰返し単位 (4-1) および/または繰返し単位 (4-2) と繰返し単位 (5) と繰返し単位 (6) と繰返し単位 (9) とを有する樹脂、繰返し単位 (4-1) および/または繰返し単位 (4-2) と繰返し単位 (5) と繰返し単位 (8) と繰返

る樹脂、繰返し単位 (4-1) および/または繰返し単位 (4-2) と繰返し単位 (5) と繰返し単位 (8) と繰返し単位 (9) とを有する樹脂、繰返し単位 (3-1) および/または繰返し単位 (3-2) と下記一般式 (15) で表される繰返し単位 (以下、「繰返し単位 (5-1)」という。)と繰返し単位 (6) と繰返し単位 (9) とを有する樹脂、

[0088]

【化47】

[一般式(15)において、A'およびB'は相互に独立に水素原子、炭素数1~4の直鎖状もしくは分岐状のアルキル基または酸の存在下で解離して酸性官能基を生じる炭素数20以下の酸解離性基を示し、かつA'およびB'の少なくとも1つが該酸解離性基であり、mは0~2の整数である。]

【0089】繰返し単位(3-1)および/または繰返し 単位 (3-2) と繰返し単位 (5-1) と繰返し単位 (8) と繰返し単位(9)とを有する樹脂、繰返し単位(4-1) および/または繰返し単位(4-2) と繰返し単位 (5-1) と繰返し単位(6)と繰返し単位(9)とを有 する樹脂、繰返し単位 (4-1) および/または繰返し単 位(4-2)と繰返し単位(5-1)と繰返し単位(8)と 繰返し単位(9)とを有する樹脂、繰返し単位(3-1) および/または繰返し単位 (3-2) と繰返し単位 (5-1) と繰返し単位(6)(但し、R⁵がtープチル基) と繰返し単位(9)とを有する樹脂、繰返し単位(3-1) および/または繰返し単位 (3-2) と繰返し単位 (5-1) と繰返し単位 (8) と繰返し単位 (9) とを有 する樹脂、繰返し単位 (4-1) および/または繰返し単 位 (4-2) と繰返し単位 (5-1) と繰返し単位 (6) (但し、R⁵ が t - プチル基) と繰返し単位 (9) とを 有する樹脂、繰返し単位(4-1)および/または繰返し 単位 (4-2) と繰返し単位 (5-1) と繰返し単位 (8) と繰返し単位(9)とを有する樹脂等を挙げることがで きる。

単位(3-1)および/または繰返し単位(3-2)と繰返 【0090】さらに、樹脂(A1)は、前記以外の繰返し単位(5)と繰返し単位(6)と繰返し単位(9)と し単位(以下、「他の繰返し単位」という。)を 1 種以を有する樹脂、繰返し単位(3-1)および/または繰返 50 上有することもできる。他の繰返し単位としては、例え

30

ば、ノルボルネン(即ち、ビシクロ[2.2.1]ヘプ トー2-エン)、酸解離性基をもたないノルボルネン誘

導体(以下、「他のノルボルネン誘導体」という。) や、これら以外の重合性不飽和単量体(以下、単に「他 の単量体」という。) の重合性不飽和結合が開裂して得 られる繰返し単位を挙げることができる。

【0091】他のノルボルネン誘導体としては、例え ば、5-メチルビシクロ[2.2.1]ヘプト-2-エ ン、5-エチルビシクロ[2.2.1]ヘプト-2-エ ン、5-ヒドロキシビシクロ[2.2.1]ヘプト-2 ーエン、5ーヒドロキシメチルビシクロ[2.2.1] ヘプトー2ーエン、テトラシクロ[4.4.0.1] 2.5 . 17.10] ドデカー3-エン、8-メチルテトラシ クロ [4.4.0.12.5.17.10]ドデカー3ーエ ン、8-エチルテトラシクロ [4.4.0.12.5.1 7.10]ドデカー3-エン、8-ヒドロキシテトラシクロ [4.4.0.1 $^{2.5}$.1 $^{7.10}$]ドデカー3ーエン、8 ーヒドロキシメチルテトラシクロ [4.4.0.1 ^{2,5} . 1^{7,10}]ドデカー3-エン、8-フルオロテトラ シクロ[4.4.0.12.5.17.10]ドデカー3-エ ン、8-フルオロメチルテトラシクロ[4.4.0.1 ^{2,5} . 1^{7,10}]ドデカー3-エン、8-ジフルオロメチ ルテトラシクロ[4.4.0.12,5.17,10]ドデカ -3-エン、8-トリフルオロメチルテトラシクロ[4. 4. 0. 1^{2,5} . 1^{7,10}]ドデカー3ーエン、8-ペンタフルオロエチルテトラシクロ[4.4.0.1 ^{2,5} . 1^{7,10}]ドデカー3-エン、8, 8-ジフルオロ テトラシクロ[4. 4. 0. 12.5 . 17.10]ドデカー 3-エン、8, 9-ジフルオロテトラシクロ[4.4. (トリフルオロメチル) テトラシクロ[4.4.0.1 ^{2,5} . 1^{7,10}]ドデカー3-エン、8, 9-ビス (トリ フルオロメチル) テトラシクロ[4.4.0.12.5. 17.10]ドデカー3ーエン、8ーメチルー8ートリフル オロメチルテトラシクロ[4.4.0.12.5.17.10]ドデカー3ーエン、8,8,9ートリフルオロテトラ シクロ[4. 4. 0. 12,5 . 17,10]ドデカー3ーエ ン、8,8,9-トリス(トリフルオロメチル)テトラ シクロ[4. 4. 0. 12.5. 17.10]ドデカー3ーエ ン、

【0092】8,8,9,9-テトラフルオロテトラシ クロ[4. 4. 0. 12.5 . 17.10]ドデカー3ーエ ン、8,8,9,9-テトラキス(トリフルオロメチ ル) テトラシクロ[4.4.0.12.5.17.10]ドデ カー3ーエン、8,8ージフルオロー9,9ーピス(ト リフルオロメチル) テトラシクロ[4.4.0.1 ^{2,5} . 1^{7,10}]ドデカー3ーエン、8, 9ージフルオロ -8, 9-ビス (トリフルオロメチル) テトラシクロ[4. 4. 0. $1^{2.5}$. $1^{7.10}$]ドデカー3ーエン、8,

36 シクロ[4. 4. 0. 12.5 . 17.10]ドデカー3ーエ ン、8,8,9-トリフルオロ-9-トリフルオロメト キシテトラシクロ[4.4.0.12.5.17.10]ドデ カー3-エン、8,8,9-トリフルオロー9-ペンタ フルオロプロポキシテトラシクロ[4.4.0.1 ^{2,5} . 1^{7,10}]ドデカー3ーエン、8ーフルオロー8ー ペンタフルオロエチルー9, 9-ビス (トリフルオロメ チル) テトラシクロ[4. 4. 0. 1^{2,5} . 1^{7,10}]ド デカー3-エン、8,9-ジフルオロー8-ヘプタフル 10 オロイソプロピルー9ートリフルオロメチルテトラシク ロ[4. 4. 0. 1^{2.5} . 1^{7.10}]ドデカー3ーエン、 8-クロロー8, 9, 9-トリフルオロテトラシクロ[9-ジクロロ-8, 9-ビス (トリフルオロメチル) テ トラシクロ[4. 4. 0. 12,5 . 17,10]ドデカー3 -エン、8-(2', 2', 2'-トリフルオロカルボ エトキシ) テトラシクロ[4.4.0.12.6.17.10]]ドデカー3ーエン、8ーメチルー8ー(2', 2', 2'ートリフルオロカルボエトキシ)テトラシクロ[20 4. 4. 0. $1^{2.5}$. $1^{7.10}$] $| \vec{r} \vec{r} \vec{r} \vec{r} - \vec{3} - \vec{r} \vec{r} \vec{r}$ 【0093】ジシクロペンタジエン、トリシクロ[5. 2. 1. $0^{2,6}$] デカー3ーエン、トリシクロ[4. 4. 0. 1^{2,5}] ウンデカー3-エン、トリシクロ[6. 2. 1. 0^{1.8}] ウンデカー9ーエン、トリシクロ [6. 2. 1. 0^{1.8}] ウンデカー4ーエン、テトラシ クロ[4. 4. 0. 12.5 . 17.10. 01.6] ドデカー 3-エン、8-メチルテトラシクロ[4.4.0.1 ^{2,5} . 1^{7,10}. 0^{1,6}] ドデカー3ーエン、8ーエチリ 0. $1^{2.5}$. $1^{7.10}$] ドデカー3-エン、8 , 8-ビス 30 デンテトラシクロ[4 . 4 . 0 . $1^{2.5}$. $1^{7.12}$] ドデ カー3-エン、8-エチリデンテトラシクロ[4.4. 0. 1^{2,5} . 1^{7,10}. 0^{1,6}] ドデカー3ーエン、ペン タシクロ[6.5.1.13.6.02.7.09.13]ペン

【0094】さらに、他の単量体としては、例えば、 (メタ) アクリル酸ノルボルニル、(メタ) アクリル酸 イソボルニル、(メタ) アクリル酸トリシクロデカニ 40 ル、(メタ) アクリル酸テトラシクロデカニル、(メ タ) アクリル酸ジシクロペンテニル、(メタ) アクリル 酸アダマンチル、(メタ) アクリル酸アダマンチルメチ ル、(メタ) アクリル酸1-メチルアダマンチル、(メ タ) アクリル酸メチル、(メタ) アクリル酸エチル、 (メタ) アクリル酸 n - プロピル、 (メタ) アクリル酸 n-プチル、(メタ) アクリル酸2-メチルプロピル、 (メタ) アクリル酸2-ヒドロキシエチル、 (メタ) ア クリル酸2-ヒドロキシプロピル、(メタ) アクリル酸 3-ヒドロキシプロピル、(メタ) アクリル酸シクロプ 8,9-トリフルオロ-9-トリフルオロメチルテトラ 50 ロピル、(メタ)アクリル酸シクロペンチル、(メタ)

タデカー4ーエン、ペンタシクロ[7.4.0.1

ることができる。

^{2,5} . 1^{9,12}. 0^{8,13}]ペンタデカー3-エン等を挙げ

アクリル酸シクロヘキシル、 (メタ) アクリル酸シクロ ヘキセニル、(メタ) アクリル酸4-メトキシシクロヘ キシル、(メタ) アクリル酸2-シクロプロピルオキシ カルボニルエチル、(メタ) アクリル酸2-シクロペン チルオキシカルボニルエチル、(メタ)アクリル酸2-シクロヘキシルオキシカルボニルエチル、 (メタ) アク リル酸2-シクロヘキセニルオキシカルボニルエチル、 (メタ) アクリル酸2-(4'-メトキシシクロヘキシ ル) オキシカルボニルエチル等の (メタ) アクリル酸エ ステル類:

37

【0095】α-ヒドロキシメチルアクリル酸メチル、 $\alpha-$ ヒドロキシメチルアクリル酸エチル、 $\alpha-$ ヒドロキ シメチルアクリル酸n-プロピル、α-ヒドロキシメチ ルアクリル酸n-ブチル等のα-ヒドロキシメチルアク リル酸エステル類;酢酸ビニル、プロピオン酸ビニル、 酪酸ビニル等のビニルエステル類;(メタ)アクリロニ トリル、αークロロアクリロニトリル、クロトンニトリ ル、マレインニトリル、フマロニトリル、メサコンニト リル、シトラコンニトリル、イタコンニトリル等の不飽 和ニトリル化合物;(メタ)アクリルアミド、N、N-ジメチル (メタ) アクリルアミド、クロトンアミド、マ レインアミド、フマルアミド、メサコンアミド、シトラ コンアミド、イタコンアミド等の不飽和アミド化合物; Nービニルーεーカプロラクタム、Nービニルピロリド ン、ビニルピリジン、ビニルイミダゾール等の他の含窒 素ピニル化合物;(メタ)アクリル酸、クロトン酸、マ レイン酸、フマル酸、イタコン酸、シトラコン酸、メサ コン酸等の不飽和カルボン酸類; (メタ) アクリル酸2 -カルボキシエチル、 (メタ) アクリル酸2-カルボキ ル、(メタ) アクリル酸4-カルボキシブチル、(メ タ) アクリル酸4-カルボキシシクロヘキシル、(メ タ) アクリル酸カルボキシトリシクロデカニル、(メ タ) アクリル酸カルボキシテトラシクロデカニル等の不 飽和カルボン酸のカルボキシル基含有エステル類;前記 不飽和カルボン酸類あるいは前記不飽和カルボン酸のカ ルボキシル基含有エステル類のカルボキシル基を、下記 する酸解離性有機基(以下、「酸解離性有機基(IV)」 という。) に変換した化合物等の単官能性単量体や、 【0096】メチレングリコールジ(メタ)アクリレー 40 ることができる。 ト、エチレングリコールジ (メタ) アクリレート、プロ ピレングリコールジ (メタ) アクリレート、1,6-ヘ キサンジオールジ (メタ) アクリレート、2, 5-ジメ チルー2, 5-ヘキサンジオールジ (メタ) アクリレー ト、1,8-オクタンジオールジ(メタ)アクリレー ト、1,9-ノナンジオールジ(メタ)アクリレート、 1, 4-ピス(2-ヒドロキシプロピル) ベンゼンジ

(メタ) アクリレート、1, 3-ビス (2-ヒドロキシ

プロピル) ベンゼンジ (メタ) アクリレート、1, 2-

ーアダマンタンジオールジ (メタ) アクリレート、1, 4-アダマンタンジオールジ (メタ) アクリレート、ト リシクロデカニルジメチロールジ (メタ) アクリレート 等の多官能性単量体等を挙げることができる。

【0097】酸解離性有機基(IV)としては、例えば、 カルボキシル基の水素原子を、置換メチル基、1-置換 エチル基、1-分岐アルキル基、シリル基、ゲルミル 基、アルコキシカルボニル基、アシル基、環式酸解離性 基等で置換した基を挙げることができる。但し、酸解離 性有機基(IV)は、(メタ)アクリル酸中のカルボキシ ル基を酸解離性有機基(IV)に変換した化合物が(メ β)アクリル酸誘導体 (β-1) ~ (β-4) に相当する場 合を含まない。前記置換メチル基としては、例えば、メ トキシメチル基、メチルチオメチル基、エトキシメチル 基、エチルチオメチル基、メトキシエトキシメチル基、 ベンジルオキシメチル基、ベンジルチオメチル基、フェ ナシル基、プロモフェナシル基、メトキシフェナシル 基、メチルチオフェナシル基、αーメチルフェナシル 基、シクロプロピルメチル基、ベンジル基、ジフェニル メチル基、トリフェニルメチル基、プロモベンジル基、 ニトロベンジル基、メトキシベンジル基、メチルチオベ ンジル基、エトキシベンジル基、エチルチオベンジル 基、ピペロニル基、メトキシカルボニルメチル基、エト キシカルボニルメチル基、n-プロポキシカルボニルメ チル基、イソプロポキシカルボニルメチル基、n-ブト キシカルボニルメチル基、 t ープトキシカルボニルメチ ル基等を挙げることができる。また、前記1-置換エチ ル基としては、例えば、1-メトキシエチル基、1-メ チルチオエチル基、1,1-ジメトキシエチル基、1-シプロピル、(メタ)アクリル酸3-カルボキシプロピ 30 エトキシエチル基、1-エチルチオエチル基、1,1-ジエトキシエチル基、1-フェノキシエチル基、1-フ エニルチオエチル基、1,1-ジフェノキシエチル基、 1-ベンジルオキシエチル基、1-ベンジルチオエチル 基、1-シクロプロピルエチル基、1-フェニルエチル 基、1、1-ジフェニルエチル基、1-メトキシカルボ ニルエチル基、1-エトキシカルボニルエチル基、1n-プロポキシカルボニルエチル基、1-イソプロポキ シカルボニルエチル基、1-n-プトキシカルボニルエ チル基、1-t-プトキシカルボニルエチル基等を挙げ

【0098】また、前記1-分岐アルキル基としては、 例えば、i-プロピル基、1-メチルプロピル基、t-プチル基、1, 1-ジメチルプロピル基、1-メチルブ チル基、1,1-ジメチルプチル基等を挙げることがで きる。また、前記シリル基としては、例えば、トリメチ ルシリル基、エチルジメチルシリル基、メチルジエチル シリル基、トリエチルシリル基、イソプロピルジメチル シリル基、メチルジイソプロピルシリル基、トリイソプ ロピルシリル基、tープチルジメチルシリル基、メチル アダマンタンジオールジ(メタ)アクリレート、1, 3 50 ジーt-ブチルシリル基、トリーt-ブチルシリル基、

フェニルジメチルシリル基、メチルジフェニルシリル 基、トリフェニルシリル基等を挙げることができる。ま た、前記ゲルミル基としては、例えば、トリメチルゲル ミル基、エチルジメチルゲルミル基、メチルジエチルゲ ルミル基、トリエチルゲルミル基、イソプロピルジメチ ルゲルミル基、メチルジイソプロピルゲルミル基、トリ イソプロピルゲルミル基、t-ブチルジメチルゲルミル 基、メチルジーtープチルゲルミル基、トリーtープチ ルゲルミル基、フェニルジメチルゲルミル基、メチルジ フェニルゲルミル基、トリフェニルゲルミル基等を挙げ ることができる。また、前記アルコキシカルボニル基と しては、例えば、メトキシカルボニル基、エトキシカル ボニル基、イソプロポキシカルボニル基、t-ブトキシ カルボニル基等を挙げることができる。

【0099】また、前記アシル基としては、例えば、ア セチル基、プロピオニル基、ブチリル基、ヘプタノイル 基、ヘキサノイル基、バレリル基、ピバロイル基、イソ バレリル基、ラウリロイル基、ミリストイル基、パルミ トイル基、ステアロイル基、オキサリル基、マロニル 基、スクシニル基、グルタリル基、アジポイル基、ピペ 20 ロイル基、スベロイル基、アゼラオイル基、セバコイル 基、アクリロイル基、プロピオロイル基、メタクリロイ ル基、クロトノイル基、オレオイル基、マレオイル基、 フマロイル基、メサコノイル基、カンホロイル基、ベン ゾイル基、フタロイル基、イソフタロイル基、テレフタ ロイル基、ナフトイル基、トルオイル基、ヒドロアトロ ポイル基、アトロポイル基、シンナモイル基、フロイル 基、テノイル基、ニコチノイル基、イソニコチノイル 基、p-トルエンスルホニル基、メシル基等を挙げるこ えば、3-オキソシクロヘキシル基、テトラヒドロピラ ニル基、テトラヒドロフラニル基、テトラヒドロチオピ ラニル基、テトラヒドロチオフラニル基、3-ブロモテ トラヒドロピラニル基、4-メトキシテトラヒドロピラ ニル基、2-オキソー4-メチルー4-テトラヒドロピ ラニル基、4-メトキシテトラヒドロチオピラニル基、 3-テトラヒドロチオフェン-1, 1-ジオキシド基等 を挙げることができる。

【0100】樹脂(A1)において、繰返し単位(3-1) 、繰返し単位 (3-2) 、繰返し単位 (4-1) および 繰返し単位 (4-2) の合計含有率は、全繰返し単位に対 して、通常、5~80モル%、好ましくは5~70モル %、さらに好ましくは10~60モル%である。この場 合、該合計含有率が5モル%未満では、特に現像欠陥の 抑制効果が低下する傾向があり、一方80モル%を超え ると、得られる樹脂の親水性が高くなりすぎて、膨潤し やすくなる傾向がある。また、繰返し単位 (5)、繰返 し単位(6)、繰返し単位(8)および繰返し単位 (9) の合計含有率は、全繰返し単位に対して、通常、

に好ましくは40~90モル%である。この場合、該合 計含有率が20モル%未満では、レジストとしての解像 度が低下する傾向があり、一方95モル%を超えると、 レジストとして現像欠陥が生じやすくなる傾向がある。 さらに、他の繰返し単位の含有率は、全繰返し単位に対 して、通常、10モル%以下、好ましくは5モル%以下 である。

【0101】共重合体(A1)は、例えば、ノルボルネ ン誘導体 $(\alpha-1)$ 、ノルボルネン誘導体 $(\alpha-2)$ 、 (メ タ) アクリル酸誘導体 (β-1) および (メタ) アクリル 酸誘導体 (β-2) の群から選ばれる少なくとも1種を、 好ましくはノルボルネン誘導体 (α-3)、(メタ)アク リル酸誘導体 (β-3) および (メタ) アクリル酸誘導体 (β-4) の群から選ばれる少なくとも1種と共に、ある いはさらに無水マレイン酸と一緒に、場合によりさらに 他の繰返し単位を与える重合性不飽和単量体と共に、ヒ ドロパーオキシド類、ジアルキルパーオキシド類、ジア シルパーオキシド類、アゾ化合物等のラジカル重合開始 剤を使用し、適当な溶媒中で重合することにより製造す ることができる。前記重合に使用される溶媒としては、 例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、 n-オクタン、n-ノナン、n-デカン等のアルカン 類;シクロヘキサン、シクロヘプタン、シクロオクタ ン、デカリン、ノルボルナン等のシクロアルカン類;ベ ンゼン、トルエン、キシレン、エチルベンゼン、クメン 等の芳香族炭化水素類; クロロブタン類、ブロモヘキサ ン類、ジクロロエタン類、ヘキサメチレンジプロミド、 クロロベンゼン等のハロゲン化炭化水素類;酢酸エチ ル、酢酸nーブチル、酢酸iーブチル、プロピオン酸メ とができる。さらに、前記環式酸解離性基としては、例 30 チル等の飽和カルボン酸エステル類;テトラヒドロフラ ン、ジメトキシエタン類、ジエトキシエタン類等のエー エル類等を挙げることができる。これらの溶媒は、単独 でまたは2種以上を混合して使用することができる。ま た、前記重合における反応温度は、通常、40~120 ℃、好ましくは50~90℃であり、反応時間は、通 常、1~48時間、好ましくは1~24時間である。 【0102】樹脂(A)のゲルパーミエーションクロマ トグラフィー(GPC)によるポリスチレン換算重量平 均分子量(以下、「Mw」という。)は、通常、3,0 00~300,000、好ましくは4,000~20 0,000、さらに好ましくは5,000~100,0 00である。この場合、樹脂(A)のMwが3,000 未満では、レジストとしての耐熱性が低下する傾向があ り、一方300,000を超えると、レジストとしての 現像性が低下する傾向がある。また、樹脂(A)のMw とゲルパーミエーションクロマトグラフィー (GPC) によるポリスチレン換算数平均分子量(以下、「Mn」 という。) との比 (Mw/Mn) は、通常、1~5、好 ましくは1~3である。なお、樹脂(A)は、ハロゲ $20 \sim 95$ モル%、好ましくは $30 \sim 95$ モル%、さら 50 ン、金属等の不純物が少ないほど好ましく、それによ

り、レジストとしての感度、解像度、プロセス安定性、 パターン形状等をさらに改善することができる。樹脂

41

(A) の精製法としては、例えば、水洗、液々抽出等の 化学的精製法や、これらの化学的精製法と限外ろ渦、遠 心分離等の物理的精製法との組み合わせ等を挙げること ができる。本発明において、樹脂(A)は、単独でまた は2種以上を混合して使用することができる。

【0103】(B)成分

次に、本発明における(B)成分は、露光により酸を発 生する感放射線性酸発生剤(以下、「酸発生剤(B)」 という。) からなる。酸発生剤(B)は、露光により発 生した酸の作用によって、樹脂(A)中に存在する酸解 離性基を解離させ、その結果レジスト被膜の露光部がア ルカリ現像液に易溶性となり、ポジ型のレジストパター ンを形成する作用を有するものである。このような酸発 生剤(B)としては、例えば、オニウム塩、ハロゲン含 有化合物、ジアゾケトン化合物、スルホン化合物、スル ホン酸化合物等を挙げることができる。これらの酸発生 剤(B)の例としては、下記のものを挙げることができ る。

【0104】オニウム塩:オニウム塩としては、例え ば、ヨードニウム塩、スルホニウム塩(テトラヒドロチ オフェニウム塩を含む。)、ホスホニウム塩、ジアゾニ ウム塩、ピリジニウム塩等を挙げることができる。好ま しいオニウム塩の具体例としては、ジフェニルヨードニ ウムトリフルオロメタンスルホネート、ジフェニルヨー ドニウムノナフルオローn-ブタンスルホネート、ジフ エニルヨードニウムピレンスルホネート、ジフェニルヨ ードニウム nードデシルベンゼンスルホネート、ジフ ェニルヨードニウムヘキサフルオロアンチモネート、ビ 30 ス(4-t-プチルフェニル) ヨードニウムトリフルオ ロメタンスルホネート、ビス (4-t-ブチルフェニ ル) ヨードニウムノナフルオロ-n-ブタンスルホネー ト、ビス (4-t-ブチルフェニル) ヨードニウム n ードデシルベンゼンスルホネート、ビス (4 - t - ブチ ルフェニル) ヨードニウムヘキサフルオロアンチモネー ト、ビス (4-t-プチルフェニル) ヨードニウムナフ タレンスルホネート、トリフェニルスルホニウムトリフ ルオロメタンスルホネート、トリフェニルスルホニウム ノナフルオロー n ープタンスルホネート、トリフェニル 40 スルホニウムヘキサフルオロアンチモネート、トリフェ ニルスルホニウムナフタレンスルホネート、トリフェニ ルスルホニウム 10-カンファースルホネート、4-ヒドロキシフェニル・フェニル・メチルスルホニウム p-トルエンスルホネート、シクロヘキシル・2-オキ ソシクロヘキシル・メチルスルホニウムトリフルオロメ タンスルホネート、ジシクロヘキシル・2-オキソシク ロヘキシルスルホニウムトリフルオロメタンスルホネー ト、2-オキソシクロヘキシルジメチルスルホニウムト

ル・ベンジル・メチルスルホニウム p-トルエンスル ホネート、1-ナフチルジメチルスルホニウムトリフル オロメタンスルホネート、1-ナフチルジエチルスルホ ニウムトリフルオロメタンスルホネート、4-シアノー 1-ナフチルジメチルスルホニウムトリフルオロメタン スルホネート、4-ニトロ-1-ナフチルジメチルスル ホニウムトリフルオロメタンスルホネート、4-メチル - 1 - ナフチルジメチルスルホニウムトリフルオロメタ ンスルホネート、4ーシアノー1ーナフチルジエチルス ルホニウムトリフルオロメタンスルホネート、4-ニト 10 ロー1-ナフチルジエチルスルホニウムトリフルオロメ タンスルホネート、4-メチル-1-ナフチルジエチル スルホニウムトリフルオロメタンスルホネート、4-ヒ ドロキシー1-ナフチルジメチルスルホニウムトリフル オロメタンスルホネート、

【0105】4-ヒドロキシ-1-ナフチルテトラヒド ロチオフェニウムトリフルオロメタンスルホネート、4 -メトキシ-1-ナフチルテトラヒドロチオフェニウム トリフルオロメタンスルホネート、4-エトキシー1-ナフチルテトラヒドロチオフェニウムトリフルオロメタ ンスルホネート、4-n-プトキシ-1-ナフチルテト ラヒドロチオフェニウムノナフルオロ-n-ブタンスル ホネート、4-メトキシメトキシ-1-ナフチルテトラ ヒドロチオフェニウムトリフルオロメタンスルホネー ト、4-エトキシメトキシ-1-ナフチルテトラヒドロ チオフェニウムトリフルオロメタンスルホネート、4-(1'ーメトキシエトキシ) -1-ナフチルテトラヒド ロチオフェニウムトリフルオロメタンスルホネート、4 - (2'-メトキシエトキシ)-1-ナフチルテトラヒ ドロチオフェニウムトリフルオロメタンスルホネート、 4-メトキシカルボニルオキシ-1-ナフチルテトラヒ ドロチオフェニウムトリフルオロメタンスルホネート、 4-エトキシカルボニルオキシ-1-ナフチルテトラヒ ドロチオフェニウムトリフルオロメタンスルホネート、 4-n-プロポキシカルボニルオキシ-1-ナフチルテ トラヒドロチオフェニウムトリフルオロメタンスルホネ ート、4-i-プロポキシカルボニルオキシ-1-ナフ チルテトラヒドロチオフェニウムトリフルオロメタンス ルホネート、4-n-ブトキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタ ンスルホネート、4-t-ブトキシカルボニルオキシー 1-ナフチルテトラヒドロチオフェニウムトリフルオロ メタンスルホネート、4-(2'-テトラヒドロフラニ ルオキシ) -1-ナフチルテトラヒドロチオフェニウム トリフルオロメタンスルホネート、4-(2'-テトラ ヒドロピラニルオキシ) -1-ナフチルテトラヒドロチ オフェニウムトリフルオロメタンスルホネート、4-ベ ンジルオキシー1ーナフチルテトラヒドロチオフェニウ ムトリフルオロメタンスルホネート、1-(1'-ナフ リフルオロメタンスルホネート、4-ヒドロキシフェニ 50 チルアセトメチル)テトラヒドロチオフェニウムトリフ

ルオロメタンスルホネート等を挙げることができる。 【0106】ハロゲン含有化合物:ハロゲン含有化合物 としては、例えば、ハロアルキル基含有炭化水素化合 物、ハロアルキル基含有複素環式化合物等を挙げること ができる。好ましいハロゲン含有化合物の具体例として は、フェニルビス(トリクロロメチル)-s-トリアジ ン、4-メトキシフェニルビス(トリクロロメチル)s-トリアジン、1-ナフチルビス(トリクロロメチ ル) - s - トリアジン等の (トリクロロメチル) - s -トリアジン誘導体や、1,1-ビス(4'-クロロフェ 10 ニル) -2, 2, 2-トリクロロエタン等を挙げること ができる。ジアゾケトン化合物:ジアゾケトン化合物と しては、例えば、1,3-ジケト-2-ジアゾ化合物、 ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物 等を挙げることができる。好ましいジアゾケトンの具体 例としては、1,2-ナフトキノンジアジド-4-スル ホニルクロリド、1,2-ナフトキノンジアジド-5-スルホニルクロリド、2,3,4,4'-テトラヒドロ キシベンゾフェノンの1,2-ナフトキノンジアジドー 4-スルホン酸エステルまたは1,2-ナフトキノンジ 20 アジドー5-スルホン酸エステル、1,1,1-トリス (4'ーヒドロキシフェニル) エタンの1, 2ーナフト キノンジアジド-4-スルホン酸エステルまたは1,2 -ナフトキノンジアジド-5-スルホン酸エステル等を

【0107】スルホン化合物:スルホン化合物としては、例えば、βーケトスルホン、βースルホニルスルホンや、これらの化合物のαージアゾ化合物等を挙げることができる。好ましいスルホン化合物の具体例としては、4ートリスフェナシルスルホン、メシチルフェナシ 30ルスルホン、ビス(フェニルスルホニル)メタン等を挙げることができる。

挙げることができる。

スルホン酸化合物:スルホン酸化合物としては、例えば、アルキルスルホン酸エステル、アルキルスルホン酸イミド、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等を挙げることができる。好ましいスルホン酸化合物の具体例としては、ベンゾイントシレート、ピロガロールのトリス(トリフルオロメタンスルホネート)、ニトロベンジルー9,10-ジエトキシアントラセン-2-スルホネート、トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、Nーヒドロキシスクシイミドトリフルオロメタンスルホネート、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネート等を挙げることができる。

【0108】これらの酸発生剤(B)のうち、特に、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオローnーブタンスルホネート、ピス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート ピス(4-t

ープチルフェニル) ヨードニウムノナフルオローnーブ タンスルホネート、トリフェニルスルホニウムトリフル オロメタンスルホネート、トリフェニルスルホニウムノ ナフルオローローブタンスルホネート、シクロヘキシル ・2-オキソシクロヘキシル・メチルスルホニウムトリ フルオロメタンスルホネート、ジシクロヘキシル・2-オキソシクロヘキシルスルホニウムトリフルオロメタン スルホネート、2-オキソシクロヘキシルジメチルスル ホニウムトリフルオロメタンスルホネート、4-ヒドロ キシー1-ナフチルジメチルスルホニウムトリフルオロ メタンスルホネート、4-ヒドロキシ-1-ナフチルテ トラヒドロチオフェニウムトリフルオロメタンスルホネ ート、1-(1'-ナフチルアセトメチル)テトラヒド ロチオフェニウムトリフルオロメタンスルホネート、ト リフルオロメタンスルホニルビシクロ[2.2.1]へ プトー5ーエンー2, 3ージカルボジイミド、N-ヒド ロキシスクシイミドトリフルオロメタンスルホネート、 1,8-ナフタレンジカルボン酸イミドトリフルオロメ タンスルホネート等が好ましい。

20 【0109】本発明において、酸発生剤(B)は、単独でまたは2種以上を混合して使用することができる。酸発生剤(B)の使用量は、レジストとしての感度および現像性を確保する観点から、樹脂(A)100重量部に対して、通常、0.1~10重量部、好ましくは0.5~7重量部である。この場合、酸発生剤(B)の使用量が0.1重量部未満では、感度および現像性が低下する傾向があり、一方10重量部を超えると、放射線に対する透明性が低下して、矩形のレジストパターンを得られ難くなる傾向がある。

0 【0110】各種添加剤

本発明の感放射線性樹脂組成物には、露光により酸発生剤(B)から生じる酸のレジスト被膜中における拡散現象を制御し、非露光領域における好ましくない化学反応を抑制する作用を有する酸拡散制御剤を配合することが好ましい。このような酸拡散制御剤を配合することにより、得られる感放射線性樹脂組成物の貯蔵安定性がさらに向上し、またレジストとしての解像度がさらに向上するとともに、露光から現像処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れた組成物が得られる。酸拡散制御剤としては、レジストパターンの形成工程中の露光や加熱処理により塩基性が変化しない含窒素有機化合物が好ましい。このような含窒素有機化合物としては、例えば、下記一般式(16)

【0111】 【化48】

$$R^{11}$$
 R^{10}
 N
 R^{12} (16)

ニウムトリフルオロメタンスルホネート、ビス(4-t 50 〔一般式(16)において、 R^{10} 、 R^{11} および R^{12} は相

互に独立に水素原子、置換もしくは非置換のアルキル 基、置換もしくは非置換のアリール基または置換もしく は非置換のアラルキル基を示す。〕

【0112】で表される化合物(以下、「含窒素化合物 (イ)」という。)、同一分子内に窒素原子を2個有す る化合物(以下、「含窒素化合物(ロ)」という。)、 窒素原子を3個以上有する重合体(以下、「含窒素化合 物(ハ)」という。)、アミド基含有化合物、ウレア化 合物、含窒素複素環化合物等を挙げることができる。

【0113】含窒素化合物(イ)としては、例えば、n -ヘキシルアミン、n-ヘプチルアミン、n-オクチル アミン、n-ノニルアミン、n-デシルアミン、シクロ ヘキシルアミン等のモノ (シクロ) アルキルアミン類; ジーnープチルアミン、ジーnーペンチルアミン、ジー n-ヘキシルアミン、ジ-n-ヘプチルアミン、ジ-n ーオクチルアミン、ジーn-ノニルアミン、ジーn-デ シルアミン、シクロヘキシルメチルアミン、ジシクロヘ キシルアミン等のジ(シクロ)アルキルアミン類;トリ エチルアミン、トリーnープロピルアミン、トリーnー ブチルアミン、トリーnーペンチルアミン、トリーn- 20 ヘキシルアミン、トリーnーヘプチルアミン、トリーn ーオクチルアミン、トリーnーノニルアミン、トリーn ーデシルアミン、シクロヘキシルジメチルアミン、ジシ クロヘキシルメチルアミン、トリシクロヘキシルアミン 等のトリ(シクロ)アルキルアミン類;アニリン、N-メチルアニリン、N, N-ジメチルアニリン、2-メチ ルアニリン、3-メチルアニリン、4-メチルアニリ ン、4-ニトロアニリン、ジフェニルアミン、トリフェ ニルアミン、ナフチルアミン等の芳香族アミン類を挙げ ることができる。

【0114】含窒素化合物(ロ)としては、例えば、エ チレンジアミン、N, N, N', N' - テトラメチルエチ レンジアミン、テトラメチレンジアミン、ヘキサメチレ ンジアミン、4,4'ージアミノジフェニルメタン、 4, 4'ージアミノジフェニルエーテル、4, 4'ージ アミノベンプフェノン、4,4'-ジアミノジフェニル アミン、2, 2-ビス(4'-アミノフェニル)プロパ ン、2-(3'-アミノフェニル)-2-(4'-アミ ノフェニル)プロパン、2-(4'-アミノフェニル) -2-(3'-ヒドロキシフェニル)プロパン、2-(4'-アミノフェニル)-2-(4'-ヒドロキシフ ェニル) プロパン、1, 4ービス [1'-(4"-アミ ノフェニル) -1' -メチルエチル] ベンゼン、1,3 ービス[1'ー(4''ーアミノフェニル)ー1'ーメチ ルエチル] ベンゼン、ビス (2-ジメチルアミノエチ ル) エーテル、ビス (2-ジエチルアミノエチル) エー テル等を挙げることができる。

【0115】含窒素化合物(ハ)としては、例えば、ポ リエチレンイミン、ポリアリルアミン、2-ジメチルア

きる。前記アミド基含有化合物としては、例えば、ホル ムアミド、Nーメチルホルムアミド、N, Nージメチル ホルムアミド、アセトアミド、N-メチルアセトアミ ド、N, N-ジメチルアセトアミド、プロピオンアミ ド、ベンズアミド、ピロリドン、N-メチルピロリドン 等を挙げることができる。前記ウレア化合物としては、 例えば、尿素、メチルウレア、1,1-ジメチルウレ ア、1、3-ジメチルウレア、1、1、3、3-テトラ メチルウレア、1,3-ジフェニルウレア、トリーn-ブチルチオウレア等を挙げることができる。前記含窒素 複素環化合物としては、例えば、イミダゾール、ベンズ イミダゾール、4ーメチルイミダゾール、4ーメチルー 2-フェニルイミダゾール等のイミダゾール類;ピリジ ン、2-メチルピリジン、4-メチルピリジン、2-エ チルピリジン、4-エチルピリジン、2-フェニルピリ ジン、4-フェニルピリジン、2-メチル-4-フェニ ルピリジン、ニコチン、ニコチン酸、ニコチン酸アミ ド、キノリン、4-ヒドロキシキノリン、8-オキシキ ノリン、アクリジン等のピリジン類;ピペラジン、1-(2'-ヒドロキシエチル) ピペラジン等のピペラジン 類のほか、ピラジン、ピラゾール、ピリダジン、キノザ リン、プリン、ピロリジン、ピペリジン、モルホリン、 4-メチルモルホリン、1,4-ジメチルピペラジン、 1, 4-ジアザビシクロ [2.2.2] オクタン等を挙 げることができる。

【0116】これらの含窒素有機化合物のうち、含窒素 化合物(イ)、含窒素化合物(ロ)、含窒素複素環化合 物が好ましい。前記酸拡散制御剤は、単独でまたは2種 以上を混合して使用することができる。酸拡散制御剤の 配合量は、樹脂(A)100重量部に対して、通常、1 5重量部以下、好ましくは10重量部以下、さらに好ま しくは5重量部以下である。この場合、酸拡散制御剤の 配合量が15重量部を超えると、レジストとしての感度 や露光部の現像性が低下する傾向がある。なお、酸拡散 制御剤の配合量が0.001重量部未満であると、プロ セス条件によっては、レジストとしてのパターン形状や 寸法忠実度が低下するおそれがある。

【0117】また、本発明の感放射線性樹脂組成物に は、ドライエッチング耐性、パターン形状、基板との接 40 着性等をさらに改善する作用を示す、酸解離性有機基を 有する脂環族添加剤を配合することができる。このよう な脂環族添加剤としては、例えば、1-アダマンタンカ ルボン酸 t - ブチル、3-アダマンタンカルボン酸 t-プチル、1, 3-アダマンタンジカルボン酸ジ-t-ブ チル、1-アダマンタン酢酸 t-プチル、3-アダマン タン酢酸 t - ブチル、1, 3-アダマンタンジ酢酸ジー t-プチル等のアダマンタン誘導体類;デオキシコール 酸 t ープチル、デオキシコール酸 t ープトキシカルボニ ルメチル、デオキシコール酸2-エトキシエチル、デオ ミノエチルアクリルアミドの重合体等を挙げることがで 50 キシコール酸2-シクロヘキシルオキシエチル、デオキ

シコール酸3-オキソシクロヘキシル、デオキシコール 酸テトラヒドロピラニル、デオキシコール酸メバロノラ クトンエステル等のデオキシコール酸エステル類;リト コール酸 t - プチル、リトコール酸 t - ブトキシカルボ ニルメチル、リトコール酸2-エトキシエチル、リトコ ール酸2-シクロヘキシルオキシエチル、リトコール酸 3-オキソシクロヘキシル、リトコール酸テトラヒドロ ピラニル、リトコール酸メバロノラクトンエステル等の リトコール酸エステル類等を挙げることができる。これ らの脂環族添加剤は、単独でまたは2種以上を混合して 使用することができる。脂環族添加剤の配合量は、樹脂 (A) 100重量部に対して、通常、50重量部以下、 好ましくは30重量部以下である。この場合、脂環族添 加剤の配合量が50重量部を超えると、レジストとして の耐熱性が低下する傾向がある。

【0118】また、本発明の感放射線性樹脂組成物に は、塗布性、現像性等を改良する作用を示す界面活性剤 を配合することができる。前記界面活性剤としては、例 えば、ポリオキシエチレンラウリルエーテル、ポリオキ シエチレンステアリルエーテル、ポリオキシエチレンオ レイルエーテル、ポリオキシエチレン n - オクチルフェ ニルエーテル、ポリオキシエチレンn-ノニルフェニル エーテル、ポリエチレングリコールジラウレート、ポリ エチレングリコールジステアレート等のノニオン系界面 活性剤のほか、以下商品名で、KP341(信越化学工 業(株)製)、ポリフローNo. 75, 同No. 95 (共栄社化学(株)製)、エフトップEF301,同E F303, 同EF352 (トーケムプロダクツ (株) 製)、メガファックスF171, 同F173 (大日本イ ンキ化学工業(株)製)、フロラードFC430、同F C431 (住友スリーエム (株) 製)、アサヒガードA G710, サーフロンS-382, 同SC-101, 同 SC-102, 同SC-103, 同SC-104, 同S C-105, 同SC-106 (旭硝子 (株) 製) 等を挙 げることができる。これらの界面活性剤は、単独でまた は2種以上を混合して使用することができる。界面活性 剤の配合量は、樹脂(A)と酸発生剤(B)との合計1 00重量部に対して、通常、2重量部以下である。ま た、前記以外の添加剤としては、ハレーション防止剤、 接着助剤、保存安定化剤、消泡剤等を挙げることができ 40

【0119】組成物溶液の調製

本発明の感放射線性樹脂組成物は、普通、その使用に際 して、全固形分濃度が、通常、5~50重量%、好まし くは10~25重量%となるように、溶剤に溶解したの ち、例えば孔径 0.2μm程度のフィルターでろ過する ことによって、組成物溶液として調製される。前記組成 物溶液の調製に使用される溶剤としては、例えば、2-プタノン、2-ペンタノン、3-メチル-2-プタノ ン、2-ヘキサノン、4-メチル-2-ペンタノン、3 50 ビン酸エチル、N-メチルピロリドン、N, N-ジメチ

ーメチルー2ーペンタノン、3,3-ジメチルー2-ブ タノン、2-ヘプタノン、2-オクタノン等の直鎖状も しくは分岐状のケトン類;シクロペンタノン、3-メチ ルシクロペンタノン、シクロヘキサノン、2-メチルシ クロヘキサノン、2.6-ジメチルシクロヘキサノン、 イソホロン等の環状のケトン類;プロピレングリコール モノメチルエーテルアセテート、プロピレングリコール モノエチルエーテルアセテート、プロピレングリコール モノーn-プロピルエーテルアセテート、プロピレング リコールモノーiープロピルエーテルアセテート、プロ ピレングリコールモノ-n-ブチルエーテルアセテー ト、プロピレングリコールモノー i - ブチルエーテルア セテート、プロピレングリコールモノーsec-ブチル エーテルアセテート、プロピレングリコールモノーtー ブチルエーテルアセテート等のプロピレングリコールモ ノアルキルエーテルアセテート類;2-ヒドロキシプロ ピオン酸メチル、2-ヒドロキシプロピオン酸エチル、 2-ヒドロキシプロピオン酸n-プロピル、2-ヒドロ キシプロピオン酸i-プロピル、2-ヒドロキシプロピ オン酸nープチル、2-ヒドロキシプロピオン酸iーブ チル、2-ヒドロキシプロピオン酸secープチル、2 -ヒドロキシプロピオン酸 t -ブチル等の 2 -ヒドロキ シプロピオン酸アルキル類;3-メトキシプロピオン酸 メチル、3-メトキシプロピオン酸エチル、3-エトキ シプロピオン酸メチル、3-エトキシプロピオン酸エチ ル等の3-アルコキシプロピオン酸アルキル類のほか、 【0120】nープロピルアルコール、iープロピルア ルコール、n - ブチルアルコール、t - ブチルアルコー ル、シクロヘキサノール、エチレングリコールモノメチ ルエーテル、エチレングリコールモノエチルエーテル、 エチレングリコールモノーn-プロピルエーテル、エチ レングリコールモノー n ープチルエーテル、ジエチレン グリコールジメチルエーテル、ジエチレングリコールジ エチルエーテル、ジエチレングリコールジーn-プロピ ルエーテル、ジエチレングリコールジ-n-プチルエー テル、エチレングリコールモノメチルエーテルアセテー ト、エチレングリコールモノエチルエーテルアセテー ト、エチレングリコールモノ-n-プロピルエーテルア セテート、プロピレングリコールモノメチルエーテル、 プロピレングリコールモノエチルエーテル、プロピレン グリコールモノーnープロピルエーテル、トルエン、キ シレン、2-ヒドロキシ-2-メチルプロピオン酸エチ ル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシー3-メチル酪酸メチル、3-メトキシプチ ルアセテート、3-メチル-3-メトキシブチルアセテ ート、3-メチル-3-メトキシブチルプロピオネー ト、3-メチル-3-メトキシブチルプチレート、酢酸 エチル、酢酸 n ープロピル、酢酸 n ープチル、アセト酢 酸メチル、アセト酢酸エチル、ピルピン酸メチル、ピル

ルホルムアミド、N, Nージメチルアセトアミド、ベンジルエチルエーテル、ジーnーへキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、カプロン酸、カプリル酸、1ーオクタノール、1ーノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、しゅう酸ジエチル、マレイン酸ジエチル、γーブチロラクトン、炭酸エチレン、炭酸プロピレン等を挙げることができる。

【0121】これらの溶剤は、単独でまたは2種以上を混合して使用することができるが、就中、直鎖状もしくは分岐状のケトン類、環状のケトン類、プロピレングリコールモノアルキルエーテルアセテート類、2ーヒドロキシプロピオン酸アルキル類、3ーアルコキシプロピオン酸アルキル類が好ましい。

【0122】レジストパターンの形成方法

本発明の感放射線性樹脂組成物は、特に化学増幅型ポジ 型レジストとして有用である。前記化学増幅型ポジ型レ ジストにおいては、露光により酸発生剤 (B) から発生 した酸の作用によって、樹脂 (A) 中の酸解離性基が解 離して、カルボキシル基を生じ、その結果、レジストの 20 露光部のアルカリ現像液に対する溶解性が高くなり、該 露光部がアルカリ現像液によって溶解、除去され、ポジ 型のレジストパターンが得られる。本発明の感放射線性 樹脂組成物からレジストパターンを形成する際には、組 成物溶液を、回転塗布、流延塗布、ロール塗布等の適宜 の塗布手段によって、例えば、シリコンウエハー、アル ミニウムで被覆されたウエハー等の基板上に塗布するこ とにより、レジスト被膜を形成し、場合により予め加熱 処理(以下、「PB」という。)を行ったのち、所定の レジストパターンを形成するように該レジスト被膜に露 光する。その際に使用される放射線としては、使用され る酸発生剤の種類に応じて、可視光線、紫外線、遠紫外 線、X線、荷電粒子線等を適宜選定して使用されるが、 ArFエキシマレーザー(波長193nm)あるいはK rFエキシマレーザー(波長248nm)が好ましい。 本発明においては、露光後に加熱処理(以下、「PE B」という。)を行うことが好ましい。このPEBによ り、樹脂(A)中の酸解離性有機基の解離反応が円滑に 進行する。PEBの加熱条件は、感放射線性樹脂組成物 の配合組成によって変わるが、通常、30~200℃、 好ましくは50~170℃である。

【0123】本発明においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば特公平6-12452号公報等に開示されているように、使用される基板上に有機系あるいは無機系の反射防止膜を形成しておくこともでき、また環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5-188598号公報等に開示されているように、レジスト被膜上に保護膜を設けることもでき、あるいはこれらの技術を併用することもできる。次いで、露光されたレジス

ト被膜を現像することにより、所定のレジストパターン を形成する。現像に使用される現像液としては、例え ば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウ ム、けい酸ナトリウム、メタけい酸ナトリウム、アンモ ニア水、エチルアミン、n-プロピルアミン、ジエチル アミン、ジーnープロピルアミン、トリエチルアミン、 メチルジエチルアミン、エチルジメチルアミン、トリエ タノールアミン、テトラメチルアンモニウムヒドロキシ ド、ピロール、ピペリジン、コリン、1,8-ジアザビ シクロー [5.4.0] - 7 - ウンデセン、1,5-ジ アザビシクロー [4.3.0] -5-ノネン等のアルカ リ性化合物の少なくとも1種を溶解したアルカリ性水溶 液が好ましい。前記アルカリ性水溶液の濃度は、通常、 10重量%以下である。この場合、アルカリ性水溶液の 濃度が10重量%を超えると、非露光部も現像液に溶解 するおそれがあり好ましくない。

【0124】また、前記アルカリ性水溶液からなる現像 液には、例えば有機溶媒を添加することもできる。前記 有機溶媒としては、例えば、アセトン、メチルエチルケ トン、メチルiープチルケトン、シクロペンタノン、シ クロヘキサノン、3-メチルシクロペンタノン、2,6 -ジメチルシクロヘキサノン等のケトン類;メチルアル コール、エチルアルコール、n-プロピルアルコール、 i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロペンタノール、シクロヘキサ ノール、1,4-ヘキサンジオール、1,4-ヘキサン ジメチロール等のアルコール類;テトラヒドロフラン、 ジオキサン等のエーテル類;酢酸エチル、酢酸n-ブチ ル、酢酸i-アミル等のエステル類;トルエン、キシレ ン等の芳香族炭化水素類や、フェノール、アセトニルア セトン、ジメチルホルムアミド等を挙げることができ る。これらの有機溶媒は、単独でまたは2種以上を混合 して使用することができる。有機溶媒の使用量は、アル カリ性水溶液に対して、100容量%以下が好ましい。 この場合、有機溶媒の使用量が100容量%を超える と、現像性が低下して、露光部の現像残りが多くなるお それがある。また、アルカリ性水溶液からなる現像液に は、界面活性剤等を適量添加することもできる。なお、 アルカリ性水溶液からなる現像液で現像したのちは、一 40 般に、水で洗浄して乾燥する。

[0125]

【発明の実施の形態】以下、実施例を挙げて、本発明の 実施の形態をさらに具体的に説明する。但し、本発明 は、これらの実施例に何ら制約されるものではない。こ こで、部は、特記しない限り重量基準である。実施例お よび比較例における各測定・評価は、下記の要領で行っ た。

8598号公報等に開示されているように、レジスト被 Mw: 東ソ- (株) 製GPCカラム (G2000HXL 2 膜上に保護膜を設けることもでき、あるいはこれらの技 本、G3000HXL 1本、G4000HXL 1本)を用 術を併用することもできる。次いで、露光されたレジス 50 い、流量1. 0ミリリットル/分、溶出溶媒テトラヒド

ロフラン、カラム温度40℃の分析条件で、単分散ポリ スチレンを標準とするゲルパーミエーションクロマトグ ラフィー(GPC)により測定した。

放射線透過率:組成物溶液を石英ガラス上にスピンコー トにより塗布し、90℃に保持したホットプレート上で 60秒間PBを行って形成した膜厚1 μmのレジスト被 膜について、波長193nmにおける吸光度から、放射 線透過率を算出して、遠紫外線領域における透明性の尺 度とした。

相対エッチング速度:組成物溶液をシリコーンウエハー 上にスピンコートにより塗布し、乾燥して形成した膜厚 0. 5μmのレジスト被膜に対して、PMT社製ドライ エッチング装置 (Pinnacle8000) を用い、エッチングガ スをCF4 とし、ガス流量75sccm、圧力2.5m Torr、出力2,500Wの条件でドライエッチング を行って、エッチング速度を測定し、クレゾールノボラ ック樹脂からなる被膜のエッチング速度に対する相対値 により、相対エッチング速度を評価した。エッチング速 度が小さいほど、ドライエッチング耐性に優れることを 意味する。

【0126】感度:基板として、表面に膜厚520Åの DeepUV30 (ブルワー・サイエンス (BrewerScience) 社 製) 膜を形成したシリコーンウエハー (ARC) を用 い、組成物溶液を、各基板上にスピンコートにより塗布 し、ホットプレート上にて、表2に示す条件でPBを行 って形成した膜厚 0. 4 μ mのレジスト被膜に、(株) ニコン製ArFエキシマレーザー露光装置(レンズ開口 数0.55、露光波長193nm)により、マスクパタ ーンを介して露光した。その後、表2に示す条件でPE Bを行ったのち、2.38%のテトラメチルアンモニウ 30 ムヒドロキシド水溶液(実施例1~2)または2.38 ×1/50%のテトラメチルアンモニウムヒドロキシド 水溶液(比較例1)により、25℃で1分間現像し、水 洗し、乾燥して、ポジ型のレジストパターンを形成し た。このとき、線幅 0. 18 μ m のライン・アンド・ス ペースパターン(1L1S)を1対1の線幅に形成する 露光量を最適露光量とし、この最適露光量を感度とし た。

解像度:最適露光量で解像される最小のレジストパター ンの寸法を、解像度とした。

現像欠陥:光学顕微鏡により現像欠陥の有無および程度 を観察し、さらにケー・エル・エー・テンコール (株) 製のKLA欠陥検査装置を用いて、下記手順により評価

KLA欠陥検査装置を用いる評価手順: 寸法0. 15 μ m以上の欠陥を検出できるように感度を設定したKLA 欠陥検査装置を用い、アレイモードにて観察して、比較 用イメージとピクセル単位の重ね合わせにより生じる差 異から抽出されるクラスターおよびアンクラスターのウ エハー1枚当たりの欠陥総数を測定した。

パターン形状:線幅0.20μmのライン・アンド・ス ペースパターン(1L1S)の方形状断面の下辺寸法L 1 と上下辺寸法L2 とを走査型電子顕微鏡により測定 し、0.85≦L2 /L1≦1を満足し、かつパターン 形状が裾を引いていない場合を、パターン形状が"良 好"であるとした。

【0127】〈単量体の合成〉

合成例1

8-ヒドロキシメチルテトラシクロ[4.4.0.1 10 ^{2,5} . 1^{7,10}]ドデカー3ーエン40.0gと下記式 (17) で表される化合物 45.9 g とを、トルエン 4 00ミリリットル中に懸濁させて、p-トルエンスルホ ン酸1.2gを加え、130℃で48時間加熱して還流 させた。その後、反応溶液を冷却して、炭酸水素ナトリ ウム1.8gを加え、さらに蒸留水を加えたのち、酢酸 エチルで有機層を抽出した。その後、有機層を蒸留水で 洗浄し、硫酸マグネシウムで乾燥したのち、溶媒を留去 して、粗生成物を得た。次いで、粗生成物をシリカゲル カラムクロマトグラフィー処理したのち、n-ヘキサ ン:酢酸エチル=9:1の流分を集め、溶媒を留去し て、前記式(12-1-3)で表されるノルボルネン誘導体 (α-1) 31. 6gを得た。

[0128]

20

【化49】

【0129】合成例2

2-ヒドロキシエチルアクリレート40.3gと前記式 (17) で表される化合物 50.0gとを、トルエン7 00ミリリットル中に懸濁させて、p-メトキシフェノ ール0.5gおよびpートルエンスルホン酸2.6gを 加え、130℃で48時間加熱して還流させた。その 後、反応溶液を冷却して、炭酸水素ナトリウム 6.9 g を加え、さらに蒸留水を加えたのち、酢酸エチルで有機 層を抽出した。その後、有機層を蒸留水で洗浄し、硫酸 マグネシウムで乾燥したのち、溶媒を留去して、粗生成 40 物を得た。次いで、粗生成物をシリカゲルカラムクロマ トグラフィー処理したのち、n-ヘキサン:酢酸エチル =4:1の流分を集め、溶媒を留去して、前記式 (13-1 -3) で表される (メタ) アクリル酸誘導体 (β-1) 2 2.8gを得た。

【0130】合成例3

2-ヒドロキシエチルアクリレートの代わりに、2-ヒ ドロキシメチルメタクリレート40.5gを用いた以外 は、合成例2と同様にして、前記式 (13-1-2)で表され る (メタ) アクリル酸誘導体 (β-1) 9.7 gを得た。 【0131】合成例4

-27-

8-カルボキシメチルテトラシクロ[4.4.0.1 * $^{2.5}$.1 $^{7.10}$]ドデカー 3 -エン45.9gと下記式 (18)で表される化合物38.8gとを、トルエン400ミリリットル中に懸濁させて、 9 -トルエンスルホン酸1.2gを加え、130 9 -で48時間加熱して還流させた。その後、反応溶液を冷却して、炭酸水素ナトリウム1.8gを加え、さらに蒸留水を加えたのち、酢酸エチルで有機層を抽出した。その後、有機層を蒸留水で洗浄し、硫酸マグネシウムで乾燥したのち、溶媒を留去して、粗生成物を得た。次いで、粗生成物をシリカゲルカラムクロマトグラフィー処理したのち、 9 -ハーへキサン:酢酸エチル=9:1の流分を集め、溶媒を留去して、前記式 (12-2-3)で表されるノルボルネン誘導体 (9 -2)33.1gを得た。

53

【0132】 【化50】

【0133】合成例5

カルボキシメチルアクリレート50.0gと前記式(18)で表される化合物42.3gとを、トルエン700ミリリットル中に懸濁させて、pーメトキシフェノール0.5gおよびpートルエンスルホン酸2.6gを加え、130℃で48時間加熱して還流させた。その後、反応溶液を冷却して、炭酸水素ナトリウム6.9gを加え、さらに蒸留水を加えたのち、酢酸エチルで有機層を*30

*抽出した。その後、有機層を蒸留水で洗浄し、硫酸マグネシウムで乾燥したのち、溶媒を留去して、粗生成物を得た。次いで、粗生成物をシリカゲルカラムクロマトグラフィー処理したのち、n-ヘキサン:酢酸エチル=4:1の流分を集め、溶媒を留去して、前記式(13-2-2)で表される(メタ)アクリル酸誘導体(β -2)20.4gを得た。

【0134】合成例6

【0135】 (樹脂の合成)

合成例7

前記式 (12-1-3) で表されるノルボルネン誘導体 (α-1) 53.2g、無水マレイン酸49.1g、5-t-ブトキシカルボニルビシクロ[2.2.1]へプト-2-エン67.7g、アゾビスイソブチロニトリル15g、酢酸n-ブチル170gをフラスコに仕込み、窒素の断酸n-ブチル170gをフラスコに仕込み、窒素の下、70℃で6時間重合した。重合終了後、反応溶液を室温まで冷却して、大量のi-プロピルアルコール/n-ヘキサン混合溶液中に注ぎ、沈殿した樹脂をろ過して、少量のn-ヘキサンで洗浄したのち、真空乾燥して、Mwが8,300の白色樹脂を得た。この樹脂は、下記式 (19) に示す (i-1)、 (i-2) および (i-3) の各繰返し単位の含有率がそれぞれ15モル%、50モル%および35モル%からなる共重合体であった。この樹脂を、樹脂 (A-1) とする。

[0136]

【化51】

【0137】合成例8

仕込み原料として、前記式 (13-1-3) で表される (メタ) アクリル酸誘導体 (β -1) 140.2 g、アクリル酸 t -ブチル64.1 g、アゾビスイソブチロニトリル 15 g、酢酸 n -ブチル204 gを用いた以外は、合成例1と同様にして、Mwが11,100の白色樹脂を得 50

た。この樹脂は、下記式 (20) に示す (ii-1) および (ii-2) の各繰返し単位の含有率がそれぞれ50モル% および50モル%からなる共重合体であった。この樹脂を、樹脂(A-2) とする。

[0138]

【化52】

特開2001-188346 56

【0139】合成例9

仕込み原料として、前記式 (13-1-2) で表される (メ タ) アクリル酸誘導体 (β-1) 168.2g、下記式 (21) で表される (メタ) アクリル酸誘導体 (β-3) 93. 7g、アゾピスイソブチロニトリル15g、テト ラヒドロフラン262gを用いた以外は、合成例1と同 様にして、Mwが7,700の白色樹脂を得た。この樹 脂は、下記式 (22) に示す (iii-1)および (iii-2)の 各繰返し単位の含有率がそれぞれ60モル%および40 モル%からなる共重合体であった。この樹脂を、樹脂 (A-3) とする。

[0140] 【化53】

【0144】合成例11

仕込み原料として、前記式(13-2-2)で表される(メ タ) アクリル酸誘導体 (β-2) 57.7g、アクリル酸 t-ブチル146.5g、アゾビスイソブチロニトリル 15g、酢酸n-プチル204gを用いた以外は、合成 50 を、樹脂 (A-5) とする。

【0142】合成例10

仕込み原料として、前記式 (12-2-3) で表されるノルボ ルネン誘導体 (α-2)31.2g、無水マレイン酸4 9. 1g、8-t-プトキシカルボニルテトラシクロ[4. 4. 0. 12.5 . 17.10]ドデカー3-エン13 20 4.7g、アゾビスイソブチロニトリル15g、酢酸n ープチル215gを用いた以外は、合成例1と同様にし て、Mwが10,600の白色樹脂を得た。この樹脂 は、下記式 (23) に示す (iv-1) 、 (iv-2) および (iv-3) の各繰返し単位の含有率がそれぞれ12モル %、50モル%および38モル%からなる共重合体であ った。この樹脂を、樹脂 (A-4) とする。

例1と同様にして、Mwが12,000の白色樹脂を得 た。この樹脂は、下記式 (24) に示す (v-1) および (v-2) の各繰返し単位の含有率がそれぞれ45モル% および55モル%からなる共重合体であった。この樹脂

(30)

特開2001-188346

【0146】合成例12

仕込み原料として、前記式 (13-1-8) で表される (メ タ) アクリル酸誘導体 (β -1) 1 3 5. 9 g、下記式 (2 5) で表される (メタ) アクリル酸誘導体 (β -3) *

(vi-1)

[0149]

【実施例】実施例1~6および比較例1

表 1 に示す成分からなる各組成物溶液について、各種評価を行った。評価結果を、表 3 に示す。表 1 における樹脂 $(A-1) \sim (A-6)$ 以外の成分は、下記のとおりである。

他の樹脂

a-1 :メタクリル酸 t ープチル/メタクリル酸メチル 40 /メタクリル酸共重合体 (共重合モル比=40/40/ 20、Mw=20,000)

酸発生剤(B)

B-1 : トリフェニルスルホニウムノナフルオロー n ー ブタンスルホネート

*136.2g、アゾビスイソブチロニトリル15g、酢酸nープチル272gを用いた以外は、合成例1と同様にして、Mwが9,200の白色樹脂を得た。この樹脂は、下記式(26)に示す(vi-1)および(vi-2)の各繰返し単位の含有率がそれぞれ58モル%および42モル%からなる共重合体であった。この樹脂を、樹脂(A-6)とする。

[0147]

【化57】

10

 $\begin{array}{ccc}
HC = CH_2 & (25) \\
O = C & O \\
O & C_2H_5
\end{array}$

【0148】 【化58】

 $\begin{array}{c}
-(HC-CH_2-) \\
O=C \\
O\\
C_2H_5
\end{array}$ (26)

(vi-2)

B-2 : $\forall x (4-t-7)$ チルフェニル) ヨードニウム ノナフルオローn-7 タンスルホネート

酸拡散制御剤

C-1 : トリーn-オクチルアミン

C-2 : ビス (2-ジメチルアミノエチル) エーテル

他の添加剤

D-1 :デオキシコール酸 t ープチル

40 溶剤

E-1 : 2 - ヘプタノン

E-2 : 3-エトキシプロピオン酸エチル

【0150】 【表1】

-30-

表 1

60

	檢	脂(部)	酸発生	E剤(B) (部)	酸拡射	¢制御剤 (部)	他の著	知知 (部)	溶	剤 (部)
実施例 1	A-I	(90)	B-1	(1.5)	C-1	(0.03)	D-1	(10)	E-1 E-2	(430) (100)
実施例2	A-2	(90)	B-2	(1.5)	C-2	(0, 03)	D-1	(10)		(430) (100)
実施例3	A-3	(90)	B-2	(1.5)	C-2	(0.03)	D-I	(10)		(430) (100)
実施例 4	A-4	(90)	B-2	(1.5)	C-1	(0, 03)	D-I	(10)		(430) (100)
実施例 5	A-5	(95)	B-1	(1.5)	C-1	(0, 03)	D-1	(5)		(430) (100)
実施例 6	A-6	(95)	B-1	(1.5)	C-1	(0.03)	D-I	(5)		(430) (100)
比較例1	a-l	(90)	B-1	(1.5)	C-2	(0.03)	D-1	(5)	E-1	(530)

[0151]

【表2】

_ 表 2

$\overline{}$	レジスト被膜	基板	Р	В	PEB		
	の膜厚(μm)		温度 (℃)	時間(秒)	温度 (℃)	時間(秒)	
実施例 1	0.4	ARC	130	90	140	90	
実施例 2	0.4	ARC	130	90	140	90	
実施例3	0.4	ARC	130	90	130	90	
実施例 4	0. 4	ARC	130	90	130	90	
実施例 5	0.4	ARC	130	90	140	90	
実施例 6	0. 4	ARC	130	90	130	90	
上較例 1	0. 4	ARC	130	90	130	90	

[0152]

【表3】

_ 表 3

	放射線透過率 (193mm、%)	相対エッチ ング速度	感度 (J/m2)	解像度 (μm)	現像欠陥	パターン 形状
実施例Ⅰ	6 2	1. 6	6 8	0. 15	0	良好
実施例2	6 9	1. 9	7 4	0. 15	0	良好
実施例3	6.8	1. 4	8 0	0. 15	0	良好
実施例4	6 5	1. 5	7 0	0. 15	0	良好
実施例 5	6 7	1. 7	7 4	0. 15	0	良好
実施例 6	6 8	1. 6	6 8	0. 15	0	良好
比較例 1	6 1	2. 5	150	0. 18	4 5	良好

[0153]

【発明の効果】本発明の感放射線性樹脂組成物は、化学 増幅型レジストとして、放射線に対する透明性が高く、 かつ解像度が優れるとともに、ドライエッチング耐性、

感度、パターン形状等にも優れるのみならず、微細加工時に現像欠陥を生じることがなく、半導体素子の歩留りを著しく向上させることができ、今後さらに微細化が進 50 行すると予想される半導体素子の分野において、極めて

フロントページの続き

(51) Int. Cl. 7

識別記号

F I C 0 8 L 101/06 テーマコード(参考)

C 0 8 L 101/06 H 0 1 L 21/027

H01L 21/30

502R

(72)発明者 征矢野 晃雅

東京都中央区築地二丁目11番24号 ジェイ

エスアール株式会社内

(72)発明者 梶田 徹

東京都中央区築地二丁目11番24号 ジェイ

エスアール株式会社内

(72) 発明者 下川 努

東京都中央区築地二丁目11番24号 ジェイ

エスアール株式会社内

Fターム(参考) 2H025 AA00 AA01 AA02 AA03 AA09

AB16 ACO4 ACO5 ACO6 ACO8 ADO3 BEO0 BGO0 CC20 FA03

FA12 FA17

4J002 AA051 BG071 BK001 EN136

EV296 EW176 GP03 GQ05

4J100 AK32R AL01Q AL08P AL08Q

AR09P AR09Q AR11P AR11Q BA10P BA15P BA15Q BC53P

CA01 CA04 CA05 DA39 JA37

JA38 JA46