Part 1e: The Ratio-of-Uniforms method

Textbook: pp. 33-36



Ratio-of-Uniforms Method

**Theorem 1.39** (ratio-of-uniforms method) Let  $f : \mathbb{R}^d \to \mathbb{R}_+$  be such that  $Z = \int_{\mathbb{R}^d} f(x) dx < \infty$  and let X be uniformly distributed on the set

$$A = \left\{ (x_0, x_1, \dots, x_d) \middle| x_0 > 0, \frac{x_0^{d+1}}{d+1} < \mathbf{f}\left(\frac{x_1}{x_0}, \dots, \frac{x_d}{x_0}\right) \right\} \subseteq \mathbb{R}_+ \times \mathbb{R}^d.$$

Then the vector

$$Y = \left(\frac{X_1}{X_0}, \dots, \frac{X_d}{X_0}\right)$$

has density  $\frac{1}{2}$  from  $\mathbb{R}^d$ .

Proof:

$$g_{1}(\vec{x}) = g_{1}(x_{0}) = \sum_{d+1}^{d+1} x_{0}^{d+1} = y_{0}^{d}$$
 $g_{2}(\vec{x}) = \frac{x_{1}}{x_{0}} = y_{1}^{d}$ 
 $g_{3}(\vec{x}) = y_{1}^{d}$ 
 $g_{3$ 

= (d+1) xx - 1 y xx - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1 x - 1  $A = \left\{ (x_0, ..., x_d) : \frac{x_d}{x_1} + \left\{ (x_1, ..., x_d) \right\} \cap \left[ (x_1, ..., x_d) \right] \right\}$ The joint distribution of (xo, ..., xd), conditional on the set A, is Uniform(A). g(A) = B = { (yo, ..., yd): 0 < yo < f(y, ..., yd) } The joint density of (Yo, ..., Ya) is 1B(g), 1/2, => The marginal density of (Y,,..., Yd) is f.

| Example | : The Cauchy dist                             | ribution                              |                       |                                        |
|---------|-----------------------------------------------|---------------------------------------|-----------------------|----------------------------------------|
|         |                                               |                                       | ace density           |                                        |
| Example | • 1.40 The Cauchy                             | $f(x) = \frac{1}{\pi(x)}$             |                       |                                        |
|         |                                               |                                       |                       |                                        |
| φ ≏     | 0 <                                           | $\mathcal{I}_{n}$ , $\mathcal{I}_{n}$ | 1                     |                                        |
| A.      | $= \frac{1}{2} \left( x_{0}, x_{1} \right) :$ | 22 4 T(1-                             | + (2) 2)              |                                        |
|         |                                               |                                       |                       |                                        |
| _       | = { (x, x): ]                                 | 20 2                                  | $\chi_0^2 + \chi_1^2$ |                                        |
|         | $\{(\mathbf{I}_{0}, \mathbf{I}_{1}):$         | x2+x2                                 | ∠ √2/π )              |                                        |
|         | Χ, 4                                          |                                       |                       |                                        |
|         | VIII /                                        |                                       |                       | , V                                    |
|         |                                               |                                       | γ =                   | $\frac{\times_{1}}{\times_{0}} \sim f$ |
|         |                                               |                                       |                       |                                        |
|         | .1                                            |                                       | ×o                    |                                        |
|         |                                               |                                       |                       |                                        |
|         |                                               |                                       |                       |                                        |
|         |                                               |                                       |                       |                                        |
|         |                                               |                                       |                       |                                        |