University of California, Los Angeles Department of Statistics

Instructor: Nicolas Christou

Statistics C183/C283

Homework 2

EXERCISE 1

Consider a portfolio consisting of n+1 assets: n risky assets and the (n+1)st asset is the risk free asset with guaranteed return R_f . When short sales allowed, the efficient frontier of all feasible portfolios which can be constructed from these n+1 assets is defined as the locus of feasible portfolios that have the smallest variance for a prescribed expected return E is determined by solving the problem

min
$$\frac{1}{2}\mathbf{x}'\mathbf{\Sigma}\mathbf{x}$$

subject to $E = R_f + (\mathbf{\bar{R}} - R_f \mathbf{1})'\mathbf{x}$

Definitions:

Vector of the weight of the n risky assets. \mathbf{x}

 $\mathbf{\Sigma}$ Variance covariance matrix of the n risky assets.

 $\bar{\mathbf{R}}$ Vector of the expected returns of the n risky assets.

 $\mathbf{1} = (1, 1, \dots, 1)'$ $n \times 1$ vector of ones.

Risk free rate.

ERequired expected return (combination of the n risky assets and R_f).

We showed in class that the weights of the n risky assets are given by

$$\mathbf{x} = \frac{E - R_f}{(\bar{\mathbf{R}} - R_f \mathbf{1})' \mathbf{\Sigma}^{-1} (\bar{\mathbf{R}} - R_f \mathbf{1})} \mathbf{\Sigma}^{-1} (\bar{\mathbf{R}} - R_f \mathbf{1}). \tag{1}$$

Consider now the point of tangency G. The composition of portfolio G is computed by finding first $\mathbf{Z} = \mathbf{\Sigma}^{-1}(\mathbf{\bar{R}} - Rf\mathbf{1})$. Show that when the required expected return E is equal to the expected return of portfolio G then using (1) the weights are exactly the same as the ones obtained using handout #15.

EXERCISE 2

Show that two portfolios on the capital allocation line are perfectly correlated.

EXERCISE 3

Answer the following questions:

a. An investor has \$900000 invested in a diversified portfolio. Subsequently the investor inherits ABC company stock worth \$100000. His financial adviser provided him with the following forecast information:

	\bar{R} (monthly)	σ (monthly)
Portfolio	0.67%	2.37%
ABC Compnay	1.25	2.95

The correlation coefficient between ABC company stock returns and the portfolio is 0.40. Assume that the investor keeps the ABC company stock. Answer the following questions:

- 1. Calculate the expected return of the new portfolio which includes the ABC company stock.
- 2. Calculate the covariance between ABC company stock and the portfolio.
- 3. Calculate the standard deviation of his new portfolio which includes the ABC company stock.
- b. Refer to question (a). If the investor sells the ABC company stock, he will invest the proceeds in risk-free government securities yielding 0.42% per month. Calculate the:
 - 1. Expected return of the new portfolio which includes the government securities.
 - 2. The standard deviation of his new portfolio which includes the government securities.

EXERCISE 4

The covariance matrix \mathbf{Q} of the returns of two stocks has the following inverse:

> solve(Q)

Answer the following questions:

- a. Find the composition of the minimum risk portfolio.
- b. It is given that the minimum risk portfolio (point A on the graph below) has standard deviation equal to 0.05408825 and expected return equal to 0.01315856. Portfolio B (see graph below) has expected return equal to 0.01219724. What is the composition of portfolio B in terms of portfolio A and the risk free asset? Assume $R_f = 0.011$.

c. The standard deviation of portfolio B is equal to 0.03. Given this level of risk, can you do better than the expected return of portfolio B? Please explain.