Midterm Exam

CS513

Name: Lan Chang

Question 1

$$A = \{1, 2, 3\}$$

$$B = \{1, 2, 5, 6\}$$

$$C = \{1, 3, 5\}$$

a)
$$\overline{(A \cup B)} = \{4\}$$

 $\overline{A} \cap \overline{B} = \{4\}$

True.

b)
$$\overline{(A \cap C)} = \{2, 4, 5, 6\}$$

 $\overline{A} \cup \overline{C} = \{2, 4, 5, 6\}$

True.

c)
$$\overline{(A \cap C)} - B = \{4\}$$

 $\overline{A} \cup (C - B) = \{3, 4, 5, 6\}$

False.

Question 2

$$d(x,y) = \left(\sum_i (x_i - y_i)^2\right)^{3/2}$$

A distance metric or distance function is a real-valued function d, such that for any coordinates x, y, and z:

1.
$$d(x,y) \ge 0$$
, and $d(x,y) = 0$ if and only if $x = y$

2.
$$d(x, y) = d(y, x)$$

3.
$$d(x,z) \le d(x,y) + d(y,z)$$

For statement 3:

Distance from
$$(0, 0)$$
 to $(0, 1)$, $d1 = ((0 - 0)^2 + (0 - 1)^2)^{3/2} = 1$.

Distance from
$$(0, 1)$$
 to $(1, 1)$, $d2 = ((0 - 1)^2 + (1 - 1)^2)^{3/2} = 1$.

Distance from
$$(0, 0)$$
 to $(1, 1)$, $d3 = ((0 - 1)^2 + (0 - 1)^2)^{3/2} = 2\sqrt{2} \approx 2.828$.

d1 + d2 = 2 < 2.828 = d3, so this function is not a proper distance function.

Question 3

See Midterm_q3.R

Question 4

	International Plan	Voice Plan	Churn False	Churn True	Row Total
	no	no	1878	302	2180
	no	yes	786	44	830
Sub-Total			2664	346	3010
	yes	no	130	101	231
	yes	yes	56	36	92
Sub-Total			186	137	323
Grand-Total			2850	483	3333

```
P(Churn = True) = 483/3333 \approx 0.1449
P(Churn = False) = 2850/3333 \approx 0.8551
P(International Plan = Yes) = 323/3333 \approx 0.0969
P(Voice Plan = Yes) = (830 + 92)/3333 \approx 0.2766
P(International Plan = Yes, Voice Plan = Yes) = 92/3333 \approx 0.0276
Are "Voice Plan" and "International plan" independent?
P(VPlan = Yes) = 922/3333
P(IPlan = Yes) = 323/3333
P(VPlan = Yes) \times P(IPlan = Yes) = (922 \times 323)/(3333 \times 3333) = 297806/11108889
P(IPlan = Yes, VPlan = Yes) = 92/3333 = 306636/11108889
P(VPlan = Yes) \times P(IPlan = Yes) \neq P(IPlan = Yes, VPlan = Yes)
They are not independent.
P((International Plan = Yes, Voice Plan = Yes)/Churn = True)
  P(International Plan = Yes, Voice Plan = Yes, Churn = True)
                       P(Churn = True)
= (36/3333)/(483/3333) = 36/483 \approx 0.0745
P((International Plan = Yes, Voice Plan = Yes)/Churn = False)
  P(International Plan = Yes, Voice Plan = Yes, Churn = False)
                       P(Churn = False)
= (56/3333)/(2850/3333) = 56/2850 \approx 0.0196
P(Churn = True/(International Plan = Yes, Voice Plan = Yes))
  P(International Plan = Yes, Voice Plan = Yes, Churn = True)
         P(International Plan = Yes, Voice Plan = Yes)
= (36/3333)/(92/3333) = 36/92 \approx 0.3913
P(Churn = False/(International Plan = Yes, Voice Plan = Yes))
  P(International Plan = Yes, Voice Plan = Yes, Churn = False)
         P(International Plan = Yes, Voice Plan = Yes)
= (56/3333)/(92/3333) = 56/92 \approx 0.6087
```

Question 5

a)

Customer	Day Calls	Eve Calls	Night Calls
A	110	99	91
В	123	103	103
С	71	88	89
D	113	122	121
Е	98	101	118
X	114	110	?

After normalization:

Customer	Day Calls	Eve Calls
A	0.628571	0.565714
В	0.702857	0.588571
С	0.405714	0.502857
D	0.645714	0.697143
Е	0.56	0.577143
X	0.651429	0.628571

Distance:

	distance	1/(d^2)
A	0.066884	223.5401
В	0.065153	235.5769
С	0.276007	13.12688
D	0.068809	211.2069
Е	0.1049	90.87537

k=1, unweighted vote:

В

NightCalls(X) = 103

k=2, unweighted vote:

A, B

NightCalls(X) = (91 + 103)/2 = 97

k=3, weighted vote:

A, B, D

$$NightCalls(X) = \frac{91 \times 223.5401 + 103 \times 235.5769 + 121 \times 211.2069}{223.5401 + 235.5769 + 211.2069} \approx 104.67 \approx \textbf{105}$$

b)

Customer	Day Calls	Eve Calls	Night Calls
A	110	99	Low
В	123	103	Medium
С	71	88	Low
D	113	122	High
Е	98	101	Medium
F	114	110	High
G	114	110	Medium
Н	114	110	Medium
X	114	110	?

k=3, weighted vote:

3 no distance: F, G, H

There are two Medium and one High.

NightCalls(X) = Medium