Course: Data Analysis with SPSS (task №4)

Students' Name and Surname ___Rashid Ali______

Please do the task below.

1. Open **fact+clust.sav** file. Do the factor analysis. Interpret the factors and save them as new variables. Use saved factors for cluster analysis. Define the number of clusters. Describe the clusters' characteristics.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		<mark>.812</mark>
	Approx. Chi-Square	176.560
Bartlett's Test of Sphericity	df	28
	Sig.	<mark>.000</mark>

KMO = 0.812 > 0.6

H0: All the correlations are not significant

H1: There are significant correlations

 $Sig=0.000 \Rightarrow H1$ accepted.

So, these variables could be used for factor analysis.

Communalities

	Initial	Extraction
Percentage of urban	1.000	.668
population		
Average life expectancy for	1.000	.769
men		
Average life expectancy for	1.000	.900
women		
Infant mortality per 1,000	1.000	.872
newborns		
Number of sunshine days	1.000	.876
per year		
Number of dull days per	1.000	.731
year		
The average daily	1.000	.728
temperature in January		
The average daily	1.000	.808
temperature in July		

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	4.944	61.801	61.801	4.944	61.801	61.801	
2	1.408	17.604	79.406	1.408	17.604	79.406	
3	.698	8.721	88.127				
4	.389	4.868	92.994				
5	.193	2.414	95.408				
6	.175	2.187	97.595				
7	.123	1.536	99.131				
8	.069	.869	100.000				l

Extraction Method: Principal Component Analysis.

We have 2 factors and they explain 79,406% of the initial variables' variation.

Agglomeration Schedule

Stage	Cluster C		Coefficients	Stage Cluster	Next Stage	
	Cluster 1	Cluster 2		Cluster 1	Cluster 2	
1	16	22	.015	0	0	8
2	2	23	.016	0	0	10
3	5	6	.018	0	0	5
4	4	17	.055	0	0	8
5	5	11	.085	3	0	10
6	3	18	.086	0	0	12
7	7	15	.108	0	0	15
8	4	16	.118	4	1	13
9	26	28	.129	0	0	12
10	2	5	.148	2	5	18
11	19	24	.164	0	0	15
12	3	26	.183	6	9	20
13	4	10	.228	8	0	18
14	13	25	.231	0	0	19
15	7	19	.254	7	11	20
16	1	21	.438	0	0	22
17	20	27	.645	0	0	22
18	2	4	.648	10	13	21
19	8	13	.810	0	14	23
20	3	7	.939	12	15	24
21	2	12	1.665	18	0	24
22	1	20	1.793	16	17	25
<mark>23</mark>	8	9	1.839	19	0	27
24	2	3	2.229	21	20	26
25	1	14	4.220	22	0	26
26	1	2	5.925	25	24	27
27	1	8	6.957	26	23	0

23-28= 5

So, there will be 5 clusters.

Dendrogram using Average Linkage (Between Groups)

