Chapter 3

Arithmetic for Computers

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product —> rd

Chapter 3

Arithmetic for Computers

Signed Multiplication?

- Make both positive
 - remember whether to complement product when done
- Apply definition of 2's complement
 - need to sign-extend partial products and subtract at the end
- Booth's Algorithm
 - elegant way to multiply signed numbers
 - using same hardware as before and save cycles

Motivation for Booth's Algorithm

Example 2 x 6 = 0010 x 0110:

```
0010

<u>x 0110</u>

+ 0000 shift (0 in multiplier)

+ 0010 add (1 in multiplier)

+ 0000 shift (0 in multiplier)

shift (0 in multiplier)
```

ALU with add or subtract gets same result in more than one way:

$$14 = 2 + 4 + 8$$

$$14 = -2 + 16$$

$$001110 = -000010 + 010000 = 111110 + 010000$$

For example

Booth's Algorithm

end of run

middle of run

0(1|1|1)0

beginning of run

Cur	rent Bit	Bit to the Right	Explanation	Example	Op
1		0	Begins run of 1s	000111 <u>10</u> 00	sub
1		1	Middle of run of 1s	00011 <u>11</u> 000	none
0		1	End of run of 1s	00 <u>01</u> 111000	add
0		0	Middle of run of 0s	0 <u>00</u> 1111000	none

Originally for Speed (when shift was faster than add)

 Replace a string of 1s in multiplier with an initial subtract when we first see a one and then later add for the bit after the last one

Chapter 3

Arithmetic for Computers

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Floating-Point Addition

- Consider a 4-digit decimal example
 - \bullet 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - -1.002×10^2

FP Adder Hardware

