1 COORDENADAS Y COSENOS DIRECTORES

2 MODELADO CON ELEMENTOS FINITOS

a) MATRICES DE RIGIDEZ LOCALES:

$$k_{rs}^{e\prime} = \left(\frac{EA}{l_e}\right)^e \begin{bmatrix} l^2 & lm & ln & -l^2 & -lm & -ln \\ lm & m^2 & mn & -lm & -m^2 & -mn \\ ln & mn & n^2 & -ln & -mn & -n^2 \\ -l^2 & -lm & -ln & l^2 & lm & ln \\ -lm & -m^2 & -mn & lm & m^2 & mn \\ -ln & -mn & -n^2 & ln & mn & n^2 \end{bmatrix}$$

b) COSENOS DIRECTORES:

$$l_e = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Los cosenos directores en función de las coordenadas nodales, serán:

$$l = \frac{x_2 - x_1}{l_e}$$

$$m = \frac{y_2 - y_1}{l_e}$$

$$n = \frac{z_2 - z_1}{l_e}$$

c) ESFUERZO EN UN ELEMENTO FINITO:

$$\sigma^{e} = \left(\frac{E}{l_{e}}\right) \begin{bmatrix} -l & -m & -n & l & m & n \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ q_{3} \\ q_{4} \\ q_{5} \\ q_{6} \end{bmatrix}$$

3 DEFORMADA DE LA ARMADURA

X _n	Y _n	Z _n
$X_1 + Q_1$	Y ₁ + Q ₂	Z ₁ + Q ₃
$X_2 + Q_4$	Y ₂ + Q ₅	$Z_2 + Q_6$
$X_3 + Q_7$	Y ₃ + Q ₈	$Z_3 + Q_9$

4 TEMA DE LA PRÁCTICA

En la figura se muestra una viga con dos apoyos simples, conformada mediante una armadura en 3D; con las cargas de servicio indicadas.

La unidad rígida en el espacio es el tetraedro; todos los espacios de la armadura en 3D deben ser tetraedros:

HALLAR:

- El esfuerzo en cada elemento finito.
- Las reacciones en los apoyos.
- La deformada de la armadura (gráfico).

DATOS:

• Dimensiones:

$$l \rightarrow \begin{cases} 600 \ mm \ (sección E) \\ 750 \ mm \ (sección F) \end{cases}$$

$$b = 500 mm$$

sección de las barras $\rightarrow \emptyset$ 50 mm

• Material:

$$E = 2.1 * 10^5 MPa$$

• Cargas:

$$P_A \rightarrow \begin{cases} 10\ 000\ N\ (secci\'on\ E) \\ 12\ 000\ N\ (secci\'on\ F) \end{cases}$$

$$P_B = 8000 \, N$$

ángulo de inclinación
$$\rightarrow$$
 $\begin{cases} \beta = 70^{\circ} \text{ (sección E)} \\ \beta = 60^{\circ} \text{ (sección F)} \end{cases}$