Tuna spawning in the Phoenix Islands Protected Area: combining field data and computational methods

Christina Hernandez
Guest lecture at URI Feb 27, 2019

Acknowledgements

- Co-authors: Joel Llopiz, Jan Witting, Ciara Willis, Simon Thorrold, Randi Rotjan
- SEA Faculty, Staff, and Crew:
 - Capt. Rick Miller, Kelsey Lane, Janet Bering, Nick Mendoza, Sarah Fuller
 - Crew and students of \$261 and \$268
- Rotjan Lab: Adrienne Breef-Pilz and sorting crew
- Llopiz Lab: Sarah Glancy, Julie Pringle

Making money on tuna

Figure 1: Total Fishing License Revenue (Excl. Development Funds)

Source: MFED and MFMRD data

From MFED report, Sept 2014: http://www.mfed.gov.ki/sites/default/files/Fishing-License-Revenues-in-Kiribati-Report-2014_1.pdf

- PIPA represents ~11% of the Exclusive Economic Zone of Kiribati
- Completely closed to fishing as of January 1, 2015

Research questions

- What is the abundance and distribution of larval tunas in PIPA?
 - Establish timeseries for monitoring protected area

- Where are those larvae spawned, and what can we infer about adult use of the protected area?
 - Understand role of protected area for large pelagics

Llopiz Lab

Johan Hjort

Complex (bipartite) life history

Why study larvae?

- Map spawning locations
- Understand larval growth and survival
- Understand population dynamics
- Ecosystem health
- Population connectivity

pc: Cedric Guigand

- Larval age
- Hatch date
- Daily growth rates
 (from increment widths)

Methods

- What is the abundance and distribution of larval tunas in PIPA?
 - Establish timeseries for monitoring protected area

- Larval sampling with plankton nets
 - Morphological ID of tuna larvae

MUR Sea Surface Temperature

VIIRS Satellite Chlorophyll

Methods

- Where are those larvae spawned, and what can we infer about adult use of the protected area?
 - Understand role of protected area for large pelagics

- Estimate spawning sites
 - Use larval otoliths to estimate age at a given size
 - Particle backtracking simulations to estimate spawning sites

- Larval age
- Hatch date
- Larval size at age

Skipjack

Daily Increments

Particle backtracking

- Hydrodynamic model = ocean physics (including currents, temperature, salinity, etc)
- Lagrangian vs. Eulerian modeling perspective
 - Euler sits on a mooring and watches things go by
 - Lagrange rides on a drifter and experiences conditions along the trajectory

Langrangian - An observer fixed to the missile

Eulerian - An observer on the ground to follow

Why 'particles'?

- Simple to implement
- Can approximate:
 - Oceanographic drifters
 - Sediment
 - Oil globules
 - Eggs
 - Larvae
 - ...Basically anything that doesn't react chemically and that doesn't swim too well!

Connectivity Modeling System

- Lagrangian particle tracking software
- Open source (free, but in Fortran 90)
- Built to simulate larval dispersal
- Built for use with the HyCOM model, but can be adapted to other hydrodynamic output
- Requires pretty high computing power

 Developed by Claire Paris and colleagues (see Paris et al. 2013 Environmental Modelling and Software)

How do I use CMS?

- DISCLAIMER: I do not read or write Fortran.
- I use a Unix server, and I talk to it from the command line (Terminal on a Mac)
- Input files:
 - 3 that I edit on the server (starting from example files that came with the install)
 - 2 that I build in Excel or R and output as tab-delimited files, then upload to the server
- Run script: specific to the computing system

Output

- CMS provides trajectory output (location of particles at each time point) as a netcdf file:
 - Time
 - Particle ID
 - Latitude
 - Longitude
 - Depth
 - Particle status (dead, beached, still drifting, etc)
- I post-process in Matlab or R to pull out the particles that I'm interested in, and make plots

Calculating "relative spawning output"

- Backtrack 1000 particles that correspond to each collected fish
- Estimate number of eggs spawned to yield 1 fish of that age
- Scale 1000 particles by number of eggs required
- Sum all the estimated spawning locations for a given year/taxon
- Scale so that the maximum value is 1

Backtracking 2015 skipjack

Takeaway Messages

- Tunas are spawning inside PIPA.
- The larval distribution and growth was similar in 2015 and 2016, despite big differences in the ecosystem (due to ENSO).
- Numerical simulations help us understand where the actual spawning activity (by adults) is occurring, relative to the protected area.
 - Stronger currents during the La Niña state in 2016 moved more larvae across the PIPA boundary.

