

NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY

SUBMARINE BASE, GROTON, CONN.

REPORT NUMBER 812

ANTARCTIC ISOLATION AND ASSOCIATED CHANGES
IN SALIVARY BACTERIA

by

Robert G. Esquire, CDR, DC, USN

Bureau of Medicine and Surgery, Navy Department Research Work Unit MR041.20.02-6025.05

Released by:

R. L. Sphar, CDR, MC, USN Commanding Officer Naval Submarine Medical Research Laboratory

5 June 1975

ANTARCTIC ISOLATION AND ASSOCIATED CHANGES IN SALIVARY BACTERIA

by

Robert G. Esquire, CDR, DC, USN

NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY REPORT NUMBER 812

Bureau of Medicine and Surgery, Navy Department Research Work Unit MR041.20.02-6025.05

Transmitted by:

George T. Eden Captain, DC, U.S. Navy Head, Dental Research Branch

Reviewed and Approved by:

Approved and Released by:

Charles F. Gell

Charles F. Gell, M.D., D.Sc. (Med) SCIENTIFIC DIRECTOR NavSubMedRschLab R. L. Sphar, CDR, MC, USN COMMANDING OFFICER NavSubMedRschLab

Approved for public release; distribution unlimited.

SUMMARY PAGE

THE PROBLEM

Anticipated deployment into undersea, extraterrestrial and other uninhabitable areas requiring controlled-atmosphere shelters, suggests the need for broad understanding of human response to environmental extremes. The salivary oral flora of man not only may reflect overall biologic reaction, but also represent an obvious source of microbial transmission.

FINDINGS

Salivary acidogenic and bacterial fluctuations were observed in two groups of personnel during the Antarctic winter. Each group was exposed to different degrees of environmental stress. Salivary lactobacillus and presumptive <u>Streptococcus salivarius</u> counts were shown to be consistently different between the two study groups.

APPLICATIONS

The purpose of this study was to further refine earlier indications that human response to the extreme biotic stress of Antarctic survival was reflected in salivary bacterial population shifts.

Long term study of the oral flora ecosystem may focus on interparametric biologic relationships. The potential for establishment of correlations with general physiologic conditions suggests an avenue for developing the use of saliva as an ancillary vehicle for monitoring health under deployed conditions where venipuncture for conventional blood chemistry is not feasible.

ADMINISTRATIVE INFORMATION

This investigation was conducted as part of Bureau of Medicine and Surgery Research Work Unit MR041.20.02-6025 - Study of Oral Health in the Antarctica. The present report is the 23rd and final report on this work unit. It was submitted for review on 29 May 1975, approved for publication on 5 June 1975 and designated as NavSubMedRschLab Report No. 812.

PUBLISHED BY THE NAVAL SUBMARINE MEDICAL RESEARCH LABORATORY

ABSTRACT

Salivary studies were performed in an isolated community of fifty-one subjects during the Antarctic winter. Salivary acidogenesis, as measured by the Snyder Test, decreased significantly. Sustained differences in mean counts determined on media selective for lactobacilli and streptococci were observed as a function of relative levels of outdoor exposure. Differences in lactobacillus counts of indoor and outdoor workers paralleled findings reported in an earlier Antarctic study. Streptococcal growth on mitis salivarius agar had not been heretofore studied in Antarctica and S. salivarius counts varied inversely with lactobacillus counts. These findings appear to differentially relate to factors of oral health care, diet, environmental exposure and herd immunity.

Clip a	and Mail Form for Chan	ge of Address:
To:	Commanding Officer, Laboratory, Attn: Co	Naval Submarine Medical Research le 03B
Subj:	Change of Address	
		receive NavSubMedRschLab Reports, e of address should be noted:
	New Address:	
	Old Address:	

INTRODUCTION

The relationship of lactobacilli and streptococci to dental disease has long been a subject of extensive dental research effort. Direct relationships linking these particular organisms with acid production and caries abound in the literature. 1,2,3,4

Although early Antarctic explorers indicated many dentally oriented problems, 5,6,7 recent investigators have reported a low incidence of oral disease. 8,9,10 Many reasons can be suggested as contributing to this phenomenon, probably the most significant being that preventive dental care has been considerably upgraded. Exposure to the harsh, relatively abiotic environment may also lower physiologic activity of oral bacteria related to oral disease.

During the Austral Winter of 1957, salivary pH levels and lactobacillus counts were shown to diminish with exposure to the Antarctic elements. 11,12 More recently, during the Austral Winter of 1966, the relationship of salivary acidogenic levels to environmental exposure complemented the 1957 pH findings. 13 These earlier studies suggested the need for expansion of effort to further define the dynamics of oral flora shifts during the Austral Winter. To assay the entire salivary flora would require logistic support of massive proportions. During the Austral Winter of 1971, however, it was possible to study a few representative bacterial

groups. Since the streptococci and lactobacilli make up about half of the total oral flora of virtually all humans, 14 it seemed important to study these groups.

MATERIALS AND METHODS

Fifty-one volunteer subjects were selected from the 200-man winteringover party at McMurdo Station, Antarctica, for salivary bacterial assay. The subjects were classified into two groups (outdoor or indoor) on the basis of degree of exposure to the Antarctic environment. Most outdoor workers were employed by the Public Works Department and consisted of personnel engaged in electrical line maintenance, fuel distribution and snow clearing. The indoor workers were primarily administrative, medical and supply personnel. Homogeneity of groups was supported by standard error of the mean comparisons of the following characteristics: Age, DMFT (Decayed, Missing, Filled Teeth) and DMFS (Decayed, Missing and Filled Tooth Surfaces) (Table 1).

Environmental Conditions and Sampling Technique.

The study commenced on the 39th day of the wintering-over party's 224-day isolation period. This covered a span of 185 days bracketing the Austral Winter of 1971. During this period, physical contact with the rest of the world ceased. Ships could not travel the frozen sea and airplane travel was severely restricted because hydraulic

Table 1 - Similarity characteristics of Antarctic indoor and outdoor workers.

		Mean	Variance	Standard deviation	Standard error	n
1,44.7° 4,1°, 44.2° 4.2° 4.2° 4.2° 4.2° 4.2° 4.2° 4.2	Indoor					
	workers	29.7	61.3	7.8	1.5	29
Age	Outdoor				6	
	workers	26.1	42.8	6.5	1.4	22
Decayed, missing and filled teeth	Indoor workers	15.2	31.9	5.6	1.1	28
(DMFT)	Outdoor workers	16.1	39.4	6.3	1.4	22
Decayed, missing and filled surfaces	Indoor workers	31.0	216.6	14.7	2.9	28
(DMFS)	Outdoor workers	34.3	274.2	16.6	3.6	22

landing systems tended to freeze. Supplies of fresh fruit, vegetables, milk and eggs were exhausted within the first 60 days of isolation, not to be resupplied until a single flight was able to negotiate the trip from New Zealand on the 197th day of isolation. Climatic conditions included gradations of daylight and darkness ranging from minimal to total; low humidity ranging from 5 to 24%; and extreme cold ranging from -40° to +10°F. Indoor temperatures were maintained at about 70°F.

Single samples were obtained on each subject seven times during the study, at intervals of about 27 days. Approximately seven milliliters of paraffin-stimulated whole saliva was obtained in a sterile vial from each subject immediately upon arising. Each man was instructed to:

DONATE SALIVA IMMEDIATELY UPON ARISING FROM A PERIOD OF REST OR SLEEP

- 1. Do not smoke, drink, brush teeth or eat before sample is taken.
- 2. Place wax into mouth to warm to body temperature.
- 3. Then chew wax with all teeth by moving it around your mouth.
- 4. Expectorate saliva (not the wax) into vial as the saliva accumulates in your mouth.
- 5. Fill vial 3/4th full and replace cap securely.
- 6. Bring vial immediately to the Dental Staff.

Periodic expeditions forced occasional omissions in sampling. Corresponding adjustments were subsequently made in the number of subjects included in each analytical matrix, depending on the requirements of the statistical test applied.

Specimen Processing.

Specimens were inoculated to ap-- propriate-selective media, usually within an hour after collection and processing. 15 The collection vials were shaken in a Jay Shaker (Eberbach Corporation, Ann Arbor, Michigan) at 60 cycles per second for seven minutes. One milliliter transfers were immediately made to 9 ml and 99 ml dilution blanks of 0.2% Yeast Extract Broth (YEB), (DIFCO, Detroit, Michigan). Serial dilutions ranged from 10⁻¹ to 10⁻⁸ depending upon which bacterial types were being assayed during a given study period. Since media supply limitations prevented use of all media at each of the seven sampling periods, specific assays were arranged to be performed at intervals most representative of the total isolation period: early, middle and late. Each dilution was hand shaken 30 times immediately prior to spreading 0.1 ml over the surface of the media using metal spreaders. All dilution assays were performed in duplicate for each type medium used. Snyder Test Agar prepared in 10 ml tubes was melted, and tempered to 45°C. Duplicate tubes were inoculated with 0.2 ml of whole saliva, and mixed by hand-rolling the molten suspension. All plates and tubes were incubated at 37°C.

Media and Organisms.

Commercially prepared media (DIFCO, Detroit, Michigan) were used throughout this study. Acidogenesis was measured in Snyder Test Agar by recording the degree of color change of the bromcresol green indicator over a 72-hour period. Lactobacillus counts were made on Rogosa Agar, enriched by adding 200 ml tomato juice filtrate to 800-ml of distilled water. Streptococcal counts were determined on Mitis-Salivarius Agar. All bacterial types were reported on the basis of presumptive identification derived primarily by colonial growth characteristics on selective/differential media with periodic confirmatory gram-staining.

Measurements.

Acidogenesis in Snyder Test Agar was assigned a value of zero to four depending on the degree of medium color change from green to yellow.

Individual lactobacillus levels varied over a wide span. Acceptable counting ranges were usually found at the 10^{-1} to 10^{-5} dilution levels with a few extensions to 10^{-7} . Lactobacillus counts were determined after four days of incubation.

Streptococci usually showed acceptable counting ranges at the 10^{-5} to 10^{-7} dilution levels. Presumptive counts for S. salivarius were determined at 48 hours of incubation based on the presence of large "gumdrop" colonies. 16,17 These plates were then reincubated for an additional four days, at which time presumptive counts for S. mitis 16,17 were determined based on the presence of minute blue colonies. These counts actually were probably a heterogenous mixture of oral streptococci and the designator "S. mitis" is used in this report primarily for morphologic colonial identity in describing differential counts on this selective media. Counts for both colonial types

were summated in order to provide total streptococci values for growth on Mitis-Salivarius Agar.

Statistical Treatment.

Duplicate plate counts on each subject were in close agreement. These were averaged and the resulting numbers entered as raw data in analytical matrices. The high degree of variability in human oral flora studies has historically frustrated attempts of investigators to quantitate salivary bacteria. 18,19 Counts obtained in this study proved no exception.

Parametric statistical analysis was complicated by high variability in bacterial populations between individuals. Variability within individuals was not as marked. Lactobacillus counts ranged from less than 100/ml to $12,700 \times 10^3/\text{ml saliva}$. Counts on Mitis-Salivarius media ranged from 6×10^6 to 2.378 x 10^6 /ml saliva. Recurrence of extreme counts suggested that they were not products of artifaction and that exclusion of these subjects from the experimental regimen would be an unfair approach to characterizing the salivary flora of this population. Preliminary statistical analysis on individual raw count values produced variances too diverse for parametric comparisons of raw mean scores. Procedures for "normalizing" the data, similar to those used in Brown's²⁰ salivary bacterial studies with nonhuman primates, were attempted in order to more closely equalize variances to satisfy primary requisites 21 for the use of analysis of variance to compare means. Since raw score variances were roughly

proportional to their means squared, the standard transformation of log (x+1) was selected to convert each average count for entry into the calculation matrices.²² This had the desired effect of narrowing variance ranges and minimizing the impact of extreme count values, thus making feasible the inclusion of all data points on all subjects studied. Analyses of variance were performed and significant differences localized by the multiple-comparisons methods of Newman-Keuls and Duncan.23 As a validity check, corresponding non-parametric chi square tests were performed. While the degree of parallelism in detection of significant differences was most encouraging, a few disparites still need to be resolved before the transformation method can be recommended as a suitable general procedure for parametrically handling salivary bacterial population data from randomly selected human subjects.

For purposes of this paper, probability-estimate (P) values for data obtained from plate counts are reported based on the non-parametric chi-square test with one degree of freedom. Differences between groups of indoor and outdoor workers are compared according to the median test. By the 39th day of isolation it was felt that both groups had been equally exposed to the same living conditions, with the exception of occupational activities which placed one group outdoors more frequently. Initial measurements obtained from the first sampling were considered early isolation period control values. Within-group comparisons against control values are reported according to the sign test.²²

RESULTS

Snyder Tests.

Mean measurements of acid production for indoor and outdoor groups decreased, becoming significantly lower than control at about 100 days into the isolation period. This decline was progressive and reached its lowest point late in the isolation period (175-194 days). The final testing period (202-221 days) showed a sudden increase in acid production to control level. There was no statistically demonstrable difference in acidogenesis between indoor and outdoor worker groups (Figure 1, Tables 2, 3, and 4).

WITHIN-GROUP COMPARISON AGAINST CONTROL: * p ≤ .05 ** p ≤ .01

Fig. 1. Comparisons of whole saliva acidogenesis as measured by Snyder Tests on 47 subjects wintering-over in Antarctica. Indoor workers (n = 27) vs. Outdoor workers (n = 20)

Table 2	- Comparisons	of Snyder tests.	Indoor Worke		=27) and	d Outdoor	(n=20)
Antarcti day numb	ic isolation per	Environmental exposure group	Mean	±	SE	$Q_{\overline{W}}$	f _b
39-62 ((April control)	Indoor workers Outdoor workers	2.63 3.00		0.23 0.26		1.100
68-87 ((May)	Indoor workers Outdoor workers	2.44 2.40		0.31 0.31	1.23 2.53	.009
95-112	(June	Indoor workers Outdoor workers	1.93 1.95		0.23 0.31	4.61* 4.43*	.004
112-141	(July)	Indoor workers Outdoor workers	1.89 1.85		0.24 0.36	4.80 [*] 4.85 [*]	.009
148-167	(Early August)	Indoor workers Outdoor workers	1.63 1.20		0.26 0.28	6.49** 7.59**	,
175-194	(Late August)	Indoor workers Outdoor workers	1.30 1.25		0.25 0.27	8.63** 7.38**	0.016
202-221	(September)	Indoor workers Outdoor workers	2.70 2.55		0.25 0.28	0.45	0.164

 Q_w = Neuman-Keuls Q value: Within-group comparison against April control f_b = Analysis of Variance f value: Between-group comparison.

Lactobacillus counts.

At every measuring period, the mean lactobacillus count for outdoor workers was markedly lower than that for indoor workers. Comparisons of each group against joint median values revealed a statistically significant difference between indoor and outdoor workers moderately late in the isolation period

(148-167 days). Mean values for the indoor worker group progressively decreased throughout the isolation period. Proportional decreases, as compared with control, reached a significant low during the final testing period (202-221 days). The outdoor worker group mean counts, conversely, showed a slight increase during the final sampling period (Figure 2, Table 5).

 $^{* =} p \leq .05$

 $^{** =} p \leq .01$

Table 3 - Snyder Tests. Within-group statistical analyses relative to duration of Antarctic isolation.

Analysis of variance for repeated measurements (two-way classification)

-	Source of variance	Sum of squares	df	Mean square	f
Indoor workers (n=27)	Between sample periods	45.926	6	7.654	11.932**
	Within subjects (interaction term)	100.074	156	0.642	
Outdoor workers (n=20)	Between sample periods	53.686	6	8.948	
	Within subjects (interaction term)	128.314	114	1.126	7.950**

WITHIN-GROUP COMPARISON AGAINST CONTROL: * p €.05 BETWEEN GROUP COMPARISON: ††p €.01

CHRONOLOGIC DAYS OF ANTARCTIC ISOLATION

Fig. 2. Comparisons of whole saliva lactobacillus counts on Rogosa media for 51 subjects wintering-over in Antarctica. Indoor workers (n = 29) vs. Outdoor workers (n = 22)

Table 4 - Snyder Tests. Between-group statistical analyses relative to degree of Antarctic exposure.

Analysis of variance for independent groups (one-way classification).

Indoor (n=27) vs. outdoor (n=20) workers.

Antarctic isolation			··· ····· -		
sampling period (day number)	Source of variance	Sum of squares	df	Mean square	f
39-62 (April)	Between groups Within groups	1.576 64.296	1 45	1.576 1.429	1.103
68-87 (May)	Between groups Within groups	0.023 103.467	1 45	0.023 2.299	0.010
95-112 (June)	Between groups Within groups	0.007 74.802	1 45	0.007 1.662	0.004
112-141 (July)	Between groups Within groups	0.018 89.217	1 45	0.018 1.983	0.009
148-167 (Early August)	Between groups Within groups	2.121 74.496	1 45	2.121 1.722	1.231
175-194 (Late August)	Between groups Within groups	0.025 71.380	1 45	0.025 1.586	0.016
202-221 (September)	Between groups Within groups	0.271 74.580	1 45	0.271 1.657	0.164

Presumptive Streptococcal Counts.

Total Count

Plate-count values for both groups showed a cyclical trend. Control values started out low, increased significantly early in the isolation period (68-87 days), returned to control level midway through the isolation period

(122-141 days), and then increased again late in the isolation period. During one of the late sampling periods (175-194 days), the indoor worker counts again showed a significant increase over control. Significant differences were not demonstrable between the two worker groups at any point during the study. (Figure 3, Table 6).

Table 5 - Comparisons of salivary lactobacillus counts (colony count x 10⁶/ml)

Antarctic isolation sampling period (day number)	Environmental exposure group	Mean d	t se	χ_w^2	N	x _b ²	n
39-62 (April control)	Indoor workers Outdoor workers	235.5 16.9	166.7 8.7			.74	{ 29 21
95-112 (June)	Indoor workers Outdoor workers	98.4 17.6	79.5 8.9	2.45 0.84	20 19	1.19	{ 29 22
148-167 (August)	Indoor workers Outdoor workers	100.8 17.0	35.5 15.8		24 19	7.32 7	$\frac{1}{1} \begin{cases} 29 \\ 22 \end{cases}$
202-221 (September)	Indoor workers Outdoor workers	92.1 23.6	48.7 17.9	4.76 [*] 1.07	21 15	0.56	} 29 22

 χ_w^2 = Chi-square within-group comparison against April control (sign test)

 $* = p \le .05$

N = paired observations

 χ_b^2 = Chi-square between-group comparison (median test)

$$\dagger \dagger = p \leq .01$$

n = group size

Differential Counts

S. salivarius.

The mean presumptive S. salivarius count for the outdoor worker group was consistently higher than that for the indoor worker group. Between-group comparisons against the joint median showed the outdoor worker counts to be significantly higher during the early sampling periods (39-87 days). The indoor worker counts showed signi-

ficant increase over their control counts both during this early sampling period and in the final sampling period (202-221 days). (Figure 4, Table 7).

S. mitis.

Presumptive S. mitis values for both groups demonstrated a pattern parallel to that described for total colony counts on this media. Group comparison against the joint median demonstrated outdoor worker counts to be significantly higher than

Fig. 3. Comparisons of total presumptive streptococci counts on Mitis-salivarius media for 51 subjects winteringover in Antarctica. Indoor workers (n = 29) vs. Outdoor workers (n = 22)

those for the indoor group during one of the late sampling periods (175-194 days). The indoor workers showed significant increases

over control during both this period and the early sampling period (68-87 days). (Figure 5, Table 8).

Table 6 - Comparisons of presumptive salivary streptococcal total counts on Mitis-Salivarius media (colony count x $10^6/\text{ml}$)

Environmental exposure group	Mean ± SE	χ _w ²	N	χ _b n
Indoor workers Outdoor workers	95.3 15.0 126.3 27.9			2.12 } 27 21
Indoor workers	213.4 51.7	4.82*	28	0.78 { 29 } 21
Outdoor workers	197.6 31.6	4.76*	21	
Indoor workers	109.2 12.2	0.04	28	$0.32 \begin{cases} 28 \\ 22 \end{cases}$
Outdoor workers	128.2 20.2	0.76	21	
Indoor workers	163.0 23.3	10.32**	28	3.30 { 29 22
Outdoor workers	246.4 50.9	1.71	21	
Indoor workers	253.1 89.3	1.75	28	0.74 \ 29 21
Outdoor workers	195.4 40.6	0.19	21	
	Indoor workers Outdoor workers Outdoor workers Outdoor workers Indoor workers Outdoor workers Indoor workers Outdoor workers Indoor workers	Exposure group Mean ± SE Indoor workers 95.3 15.0 126.3 27.9 Indoor workers 126.3 27.9 Indoor workers 213.4 51.7 197.6 31.6 Indoor workers 109.2 12.2 12.2 12.2 12.2 12.2 12.2 12.2 1	Indoor workers 95.3 15.0 Outdoor workers 126.3 27.9 Indoor workers 213.4 51.7 4.82* Outdoor workers 197.6 31.6 4.76* Indoor workers 109.2 12.2 0.04 Outdoor workers 128.2 20.2 0.76 Indoor workers 163.0 23.3 10.32** Outdoor workers 246.4 50.9 1.71 Indoor workers 253.1 89.3 1.75	Indoor workers 95.3 15.0 Outdoor workers 126.3 27.9 Indoor workers 213.4 51.7 4.82* 28 Outdoor workers 197.6 31.6 4.76 21 Indoor workers 109.2 12.2 0.04 28 Outdoor workers 128.2 20.2 0.76 21 Indoor workers 163.0 23.3 10.32** 28 Outdoor workers 246.4 50.9 1.71 21

 $[\]chi_w^2$ = Chi-square within-group comparison against April control (sign test)

N = paired observations

 χ_b^2 = Chi-square between-group comparison (median test)

n = group size

DISCUSSION

Living conditions at McMurdo Station Antarctica, have improved markedly since the early salivary pH studies ¹¹ revealed differences related to degree of environmental exposure. Because of warmer, more comfortable quarters; protected, heated cabs for outdoor heavy equipment and billeting of virtually all personnel in the same building, it was expected that differences between indoor and outdoor workers would be undetectable. Since

specimens were collected upon arising, re-establishment of individual normal salivary bacterial densities would have been expected to occur during sleep. Consistent with these expectations, results of Snyder Tests in this study demonstrated no significant differences in acidogenic levels between indoor and outdoor workers. This relationship was at variance with findings of Kasenchak in 1966, when living conditions were far more spartan. The overall profile observed in this study however, demonstrates a significant,

^{* =} p ≤ .05

^{** =} $p \leq .01$

Fig. 4. Comparisons of differential presumptive \underline{S} . salivarius counts on Mitis-salivarius media for 51 subjects wintering-over in Antartica. Indoor workers (n = 29) vs. Outdoor workers (n = 22)

progressive reduction in acidogenesis throughout the isolation period, except for a sudden return to control level during the final sampling period just prior to re-opening of the Station. Several factors may have produced this effect:

1. Arrival of a single flight brought in fresh food and new personnel. Fresh dairy products, fruit and vegetables (which had not been available since approximately the 60th day of the isolation period) arrived on the 197th day of

isolation, just prior to commencement of the final sampling period. This flight also brought in approximately 15 new personnel, 10 of whom stayed to assist the Wintering-over party's preparation for Station opening which would occur one month later. A few of these new personnel had "colds". Shortly after arrival of this flight, minor upper-respiratory illness was generally observed throughout the Wintering-over party.

2. Motivation for oral hygiene was periodically reinforced by the Dental

Table 7 - Comparisons of presumptive salivary S. Salivarius differential counts (colony count x 10⁶/ml)

Antarctic isolation sampling period (day number)	Environmental exposure group	Mean	± SE	xw 2	N .	χ _b ²
39-62 (April control)	Indoor workers Outdoor workers	21.4 46.9	5.7 9.1			5.48† }
68-87 (May)	Indoor workers Outdoor workers	59.2 73.3	20.1 13.0	7.84 ^{**}	25 21	6.65
122-141 (July)	Indoor workers Outdoor workers	30.8 40.1	7.5 9.5	0.15 0.05	27 21	0.07
175 - 194 (Late August)	Indoor workers Outdoor workers	30.0 44.5	5.8 11.5	1.75 0.19	28 21	0.87
202-221 (September)	Indoor workers Outdoor workers	41.2 62.9	8.6 20.1	4.48 0.19	27 21	0.20

 $[\]chi_w^2$ = Chi-square within-group comparison against April control (sign test)

N = paired observations

 χ_b^2 = Chi-square between group comparison (median test)

$$\dot{T} = p \leq .05$$

n = group size

 $\frac{1}{1} = p \leq .01$

Department throughout the isolation period. This pattern of acidogenic decline and return to control parallels the patterns of reduction and return to control of oral disease indices observed in these subjects (unpublished data) and in other Antarctic studies. 9,10,24 Since the final sampling was conducted during a period of intensive activity in preparation for station re-opening, improved behavioral patterns in oral health maintenance probably fell prey to occupational stress factors and plaque was permitted to accumulate.

The observation of markedly lower lactobacillus counts in the outdoor workers, however, tends to verify earlier indications of an environmental effect¹² on this bacterial group. The low levels of lactobacilli observed early in the isolation period in the outdoor group and late in the isolation period for both groups is in direct contrast to the high levels of acidogenesis demonstrated in their Snyder Tests. Snyder Test acidity has often been directly associated with density of lactobacilli.²⁵

 $^{* =} p \le .05$

 $^{** =} p \le .01$

Fig. 5. Comparisons of differential presumptive \underline{S} . mitis counts on Mitis-salivarius media for 51 subjects wintering over in Antarctica. Indoor workers (n = 29) vs. Outdoor workers (n = 22)

Counts for presumptive streptococcal colonies, while at variance with high acidogenesis early in the isolation period, roughly seemed to parallel the Snyder Test profile showing reductions to a low point at the middle of the isolation period and progressive increase toward the end of Wintering-over. It should be noted, however, that commencement of the late increase in streptococcal levels preceded arrival of the first flight on the 197th day and that indoor and outdoor workers demonstrated statis-

tically significant differences in both lactobacillus and S. mitis counts during a period of increased exposure on the part of the outdoor workers in airstrip preparation for the first flight (148-194 days).

An additional suggestion of environmental effect is the observation that differential counts for presumptive S. salivarius colonies were consistently higher in the outdoor workers, a difference which was statistically significant early in the isolation period

Table 8 - Comparisons of presumptive salivary S. mitis differential counts $(colony count \times 10^6/m1)$

Antarctic isolation sampling period (day number)	Environmental exposure group	Mean	± SE	x _w ²	N	Zb n
39-62 (April control)	Indoor workers Outdoor workers	73.9 82.6	12.0 24.8			1.15 28
68-87 (May)	Indoor workers Outdoor workers	154.1 124.3	38.6 25.7	4.32 [*] 1.71	28 21	0.93 { 29 21
122-141 (July)	Indoor workers Outdoor workers	78.0 88.1	8.9 17.9	0.32	28 21	1.57 { 29 22
175-194 (Late August)	Indoor workers Outdoor workers	133.0 201.9	20.3 44.9	8.03** 1.71	28 21	4.02†\29 21
202-221 (September)	Indoor workers Outdoor workers	212.0 132.6	84.6 32.5	1.75 1.71	28 21	0.20 { 29 22
			14			

 χ^2 = Chi-square within-group comparison against April control (sign test)

 $* = p \leq .05$

N = paired observations

** = $p \le .01$

 χ_b^2 = Chi-square between group comparison (median test)

 $\dot{\tau} = p \leq .05$

n = group size

(39-87 days). While outdoor activity was not as extensive during this time (as compared with the late periods) adaptation to isolation, darkness and decreasing temperature may have still been occurring and could have had an effect on the flora of those workers who were more frequently exposed to the adverse elements.

The recurring observation that outdoor workers consistently demonstrated low lactobacillus and high S. salivarius counts as contrasted with the recurrent opposite bacterial rela-

tionship in the indoor workers suggests an ecological shift. It is hypothesized that the susceptibility of lactobacilli to the hostile environment permitted selective enrichment and hence growth of more resistant streptococci. Similar streptococcal-lactobacillus shifts reported by other investigators have been associated with full-mouth extractions²⁶ and oral radiotherapy.²⁷

Presumptive S. mitis counts were much higher than those for S. salivarius, demonstrating their ability to mask the observed differences between indoor and outdoor group S. salivarius counts when both counts were pooled. The overall profile for S. mitis directly paralleled that for total counts on this media. The pooling of counts also prevented detection of significance between indoor and outdoor worker S. mitis counts during one of the late sampling periods (175-194 days).

CONCLUSION

Individual diversity of salivary bacteria, while making assay a complex procedure, may provide a wide variety of indices to correlate with different factors relative to the general physiologic condition. In this study, acidogenesis appeared more related to local factors in the oral physiology concerning oral health maintenance and dietary change. Assay of two specific salivary bacterial groups, on the other hand, identified changes more suggestive of response to environmental stress. The observation that lactobacillus and streptococcal counts did not directly parallel the pattern of acidogenesis indicates other factors to be at work in decreasing salivary acidogenic potential. Salivary yeast and staphylococcal levels could very well play a significant role in this phenomenon.

Since the Antarctic atmosphere is relatively gnotobiotic, factors of herd immunity cannot be discounted.

Sladen²⁸ found that nasal and pharyngeal carrier rates of <u>Staph</u>, aureus and <u>Strep</u>, pyogenes were sharply reduced or eliminated in men during a 12-month period of Antarctic isolation.

Muchmore²⁹ hypothesizes that the relative absence of infections in Wintering-over personnel reflects a de-

crease in the number and varieties of microbial agents to which these isolated personnel are exposed. His report of neutropenia in healthy personnel Wintering-over at the South Polar Plateau shows a reduction in white blood cell count with a return to baseline. This pattern is curiously parallel to the salivary acidogenesis profile reported in this study.

The statistically significant salivary alterations in oral flora parameters observed in this study suggest an additional avenue for characterizing man's response to changes in his environment. The diagnostic value of whole saliva as a vehicle for assessing the physiologic state can probably be better defined in studies which simultaneously provide a broad spectrum of biometric analyses.

ACKNOWLEDGEMENTS

Grateful acknowledgment is given Captain M. A. Mazzarella for guidance in experimental design and for contributing valuable perspectives in salivary bacterial research; to Dr. Benjamin B. Weybrew for assistance in statistical analysis; to Lieutenant Commander Shannon D. Stewart and Captain George T. Eden for help in manuscript editing; and to Mr. P. Gentile for timely and expert graphic support. Thankful appreciation is also extended to Messrs. James F. Perrotta and Alfred L. LaMarche for their assistance in data reduction and to Mrs. Helen B. Sobolewski for knowledgeable expertise in scientific report preparation.

REFERENCES

- 1. Rosebury, T., Linton, R. W., and Buchbinder, L. A comparative study of dental aciduric organisms and lactobacillus acidophlus. J Bacteriol 18:395-412, 1929.
- 2. Anderson, T. G., and Rettger, L. F. Acidogenic and aciduric bacteria of the mouth and their possible relation to dental caries. J Dent Res 16:489-506, 1937.
- Pigman, W., Gilman, E., Powell, R. and Muntz, L. The action of individual bacterial strains on human teeth under in vitro conditions. J Dent Res 36:314-324, 1957.
- 4. Poole, D. F. G., Newman, H. N. Dental plaque and oral health.

 Nature 234:329-331, December 10, 1971.
- Fuchs, Sir Vivian, and Hillary, Sir Edmund. <u>The Crossing of</u> <u>Antarctica</u>. Little, Brown & Co., Boston, 1958.
- 6. Lansing, A. Endurance. McGraw-Hill, New York, 1959.
- 7. Owens, J. E. Arctic and cold weather dentistry. Fundamentals of Arctic and Cold Weather Medicine and Dentistry. Research Division, Bureau of Medicine and Surgery, U. S. Navy Department, Washington, D. C.
- 8. Adams, R. J. and Stanmeyer, W. R. The effects of a closely

- supervised oral hygiene program upon oral cleanliness. J Periodontol 31:242-245, July 1960.
- 9. Lindsay, J. S. and Nielsen, A. G. Antarctic environment and gingival health. <u>J Periodontol</u> 33:315-321, Oct 1962.
- 10. Richardson, W. G. and Shiller, W. R. A long-term clinical evaluation of a clay containing dentifrice in Antarctic Naval personnel.

 NavSubMedRschLab Rept. No. 626, 7 May 1970.
- 11. Stanmeyer, W. R., and Adams, R. J. Reduced oral temperatures and acid production rates in dental plaques. <u>J Dent Res</u> 38:905-909 Sept-Oct 1959.
- 12. Adams, R. J. and Stanmeyer, W. R. Effects of prolonged Antarctic isolation on oral and intestinal bacteria. Oral Surg 13(1):117-120, Jan 1960.
- 13. Kasenchak, P. and Shiller, W. R. Oral acidogenic bacteria in the Antarctic. Milit Med 133(1):54-56, Jan 1968.
- 14. Schachtele, C. F. Recent developments in the microbiology of plaque formation. Northwest Dentistry 51:108-113, March-April 1972.
- 15. Jay, P. and Voorhees, R. S. Jr. Bacillus acidophilus and dental caries. <u>Dent Cosmos</u> 69:977, 1927.

- 16. Chapman, G. H. The isolation of streptococci from mixed cultures.

 J Bacteriol 48:113-114, 1944.
- 17. Chapman, G. H. The isolation and testing of fecal streptococci.

 Am J Digestive Diseases 13:105107, 1946.
- Crowley, M. C. and Rickert,
 U. G. The bacterial content of the mouth by direct count.
 J Bacteriol 30:395-400, 1935.
- 19. Bibby, B. G. and Maurer, D. W. Bacterial counts on saliva.

 J Dent Res 20:258, 1941.
- 20. Brown, L. R., Shea, C., Allen, S., Handler, S., Wheatcroft, M. G. and Frome, W. J. Effects of simulated spacecraft environment on the oral flora of nonhuman primates. Dent Res 35(2):286-293, Feb 1973.
- 21. Steel, R. G. D., Torrie, J. H.

 Principles and Procedures of

 Statistics 156-157, McGraw-Hill
 Book Co., Inc., New York, 1960.
- 22. Ferguson, G. A. Statistical Analysis in Psychology and Education, 3rd Ed., pp. 220, 217, 241-243, 271-273, 323-325, McGraw-Hill Book Co., New York, 1971.
- Snedecor, G. W. and Cochran,
 W. G. <u>Statistical Methods</u>, 6th
 Ed. 329-330, The Iowa State University Press, Ames, Iowa, 1967.
- 24. Fisher, E., Esquire, R. G., Eden, G. T., and Mazzarella, M. A. Effects of waxed dental

- floss inclusion in the regimen of oral hygiene of Antarctic personnel.

 NavSubMedRschLab Rpt. No. 782,

 27 March 1974.
- 25. Difco Manual, 9th ed. Personal communication with Snyder, 1948, p 192, Difco Laboratories, Inc., Detroit, Michigan, 1971.
- 26. Shklair, I. L. and Mazzarella, M. A. Effects of full-mouth extraction on oral microbiota.

 Dent Dig 1(4):275-280, July 1961.
- 27. Llory, H., Dammon, A., Frank, R. M. Les modifications de la flore buccale aerobie apres radiotherapie bucco-pharyngee. Arch Oral Biol 16:617-630, June 1971.
- 28. Sladen, W. J. L. Staphylococci in noses and streptococci in throats of isolated and semi-isolated Antarctic communities. J Hyg 63: 105-116, 1965.
- 29. Muchmore, H. G., Blackburn, A. B., Shurley, J. T., Peirce, C. M. and McKown, B. A. Neutropenia in healthy men at the South Polar Plateau. Arch Intern Med 25(4):646-648, April 1970.