Set Theory Cheatsheet 1

* $\emptyset = \{\}$ — **пустое** множество.

1.1 Терминология и обозначения

* Множество — неупорядоченный набор уникальных элементов.

Set

* Множество может быть задано с помощью:

- Set-builder notation
- \circ перечисления элементов: $\{a_1, a_2, \dots, a_n\}$ множество, состоящее из n элементов a_1, a_2, \dots, a_n . Urelement 42
 - Например, {□, 🖈, 42} множество, содержащее квадрат, кошку (или кота) и число 42.
- \circ характеристического свойства: $\{x \mid P(x)\}$ множество элементов, обладающих **свойством** P. Predicate Prime number
 - Например, $\{x \in \mathbb{N} \mid x \text{простое}\}$ множество простых чисел.

Empty set

* Ц-универсальное множество (универсум).

Universal set

* $x \in A$ — элемент x **принадлежит** множеству A.

Element

 $\square \in \{\triangle, \square, \bigcirc\}$ $1.25 \in \mathbb{O}$ $0.1 \in \{1, 2, 3\}$

o 9 ∉ {1, 2, 3}

 $\not \in \{\Box, 42, \{\not \in \}\}$

* $x \notin A$ – элемент x **не принадлежит** множеству A. $\pi \notin \mathbb{Q}$

 $2 \in \{x \in \mathbb{N} \mid x - \text{простое}\}\$ $42 \notin \{x \in \mathbb{N} \mid x - \text{простое}\}\$

* $A \subseteq B$ — множество A является **подмножеством** множества B, т.е. $\forall x: x \in A \rightarrow x \in B$.

Subset

 $\circ \{a,b\} \subseteq \{a,b,c\}$ $\{\{42\}\}\subseteq \{\{42\}\}$ $\{\bigcirc, \square\} \nsubseteq \{a, \bigcirc, 9\}$ $\{5\} \not\subseteq \{7, \{5\}\}$

* $A \subset B$ — множество A является **строгим подмножеством** множества B, т.е. $A \subseteq B$ и $A \ne B$.

Strict subset

Extensionality

{5} ⊄ {7, {5}} \circ {*c*} \subset {*a*, *b*, *c*} {42} ⊄ {42} $\{9, A\} \not\subset \{a, 0, 9\}$

*~A=B— множества A и B содержат одинаковые элементы, т.е. $\forall x:x\in A \leftrightarrow x\in B.$ $\circ \{\triangle, a, \{5\}\} = \{a, \{5\}, \triangle\}$ $\{2,\{\Box,\Box,\Box\},2\}=\{2,\{\Box\}\}$ $\{6,\emptyset\} \neq \{6\}$

1.2 Операции над множествами

* |A| — **мощность** множества A (число элементов).

Cardinality

 $\circ |\{4, \Box, d\}| = 3$

 $|\{1, 9, 9, 9, 1\}| = 2$ $|\{\{a, b, c\}, \{3, 5, 9\}\}| = 2$ $|\{1, \{2, 3, 4, \{5\}\}\}| = 2$

* $2^A = \mathcal{P}(A) = \{X \mid X \subseteq A\}$ — булеан множества A (множество всех подмножеств). $\circ \ \mathcal{P}(\{1,\Box,\varnothing\}) = \{\varnothing,\ \{1\},\{\Box\},\{\varnothing\},\ \{1,\Box\},\{1,\varnothing\},\{\Box,\varnothing\},\ \{1,\Box,\varnothing\}\}\}$

Powerset

* $A \cap B = \{x \mid x \in A \land x \in B\}$ — пересечение множеств A и B.

Intersection

* $A \cup B = \{x \mid x \in A \lor x \in B\}$ — объединение множеств A и B.

Union

* $A \setminus B = A \cap \overline{B} = \{x \mid x \in A \land x \notin B\}$ — разность множеств A и B (дополнение A до B).

Set difference

* $\overline{A} = \mathfrak{U} \setminus A = \{x \in \mathfrak{U} \mid x \notin A\}$ — дополнение (до универсума) множества A.

Complement

* $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ – симметрическая разность множеств A и B. Symmetric difference

 $*A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ — декартово произведение множеств A и B.

Cartesian product

* $A_1 \times ... \times A_n = \{(a_1, ..., a_n) \mid a_i \in A_i, i \in [1; n]\}$ — n-арное декартово произведение множеств $A_1, ..., A_n$. n sets

* $A^n = \underbrace{A \times \ldots \times A}_{n \text{ раз}} = \{\underbrace{(a_1, \ldots, a_n)}_{n \text{-кортеж}} \mid a_i \in A, \ i \in [1; n]\}$ — декартова степень множества A.

Tuple

1.3 Некоторые свойства и законы

- * Свойства операций над множествами ($\forall A$):
 - $A \cup \emptyset = A$ $A\cap\varnothing=\varnothing$ $A \cup \mathfrak{U} = \mathfrak{U}$ $A \cap \mathfrak{U} = A$

 $A \triangle \emptyset = A$

* Законы де Моргана: $\circ \ \overline{A \cup B} = \overline{A} \cap \overline{B}$

De Morgan's laws

 $A \cup A = A$ $A \cap A = A$ $A \triangle \mathfrak{U} = \overline{A}$ $A \triangle A = \emptyset$

 $\circ \ \overline{A \cap B} = \overline{A} \cup \overline{B}$ * Законы поглошения:

Absorption law

 $A \cup \overline{A} = \mathfrak{U}$

 $A \cap \overline{A} = \emptyset$ $\overline{\varnothing} = \mathfrak{U}$

 $A \triangle \overline{A} = \mathfrak{U}$

 $\circ A \cup (A \cap B) = A$ $\circ A \cap (A \cup B) = A$

 $\overline{A} = A$ $|2^A| = 2^{|A|}$ $|\emptyset| = 0$ $|\mathbb{N}| = |\mathbb{Q}| = \aleph_0$

 $\overline{\mathfrak{U}} = \emptyset$ $|A^n| = |A|^n$

* Мистические законы: $\circ A \cup (A \cap B) = A \cup B$

 $\emptyset \subseteq A$

 $2^{\emptyset} = {\emptyset}$

 $|\mathbb{R}| = \mathfrak{c} = |2^{\mathbb{N}}| = \beth_1 \quad |A \times B| = |A| \cdot |B|$ $A^0 = \{()\}$

 $\circ A \cap (\overline{A} \cup B) = A \cap B$

Диаграммы Венна

Venn diagram

4

C

6

На предоставленной слева диаграмме Венна для трёх множеств A, B, C и универсума $\mathfrak U$ области отмечены номерами. Для заданного списка областей нарисуйте диаграмму Венна и составьте соответствующую формулу, используя термы $A, B, C, \overline{A}, \overline{B}, \overline{C}$ и операторы \cup , \cap .

1.
$$S(1, 4, 6, 8) = S(1, 4, 6) + S(8) = \text{# Wolfram #}$$

= # $S(1, 4, 6) = A$ without ABC,

$$= (A - ABC) + \overline{A + B + C} =$$

$$= A\overline{ABC} + \overline{A + B + C} =$$

$$= A \cdot (\overline{A} + \overline{B} + \overline{C}) + \overline{A} \cdot \overline{B} \cdot \overline{C} =$$

$$= A\overline{A} + A\overline{B} + A\overline{C} + \overline{A} \cdot \overline{B} \cdot \overline{C} =$$

$$= \overline{B} \cdot (A + \overline{A} \cdot \overline{C}) + A\overline{C} =$$

$$= \overline{B} \cdot (A + \overline{C}) + A\overline{C} =$$

$$= A \cdot \overline{B} + \overline{B} \cdot \overline{C} + A \cdot \overline{C}$$

$$S(8) = ext{outside of } (A+B+C) \ /\!/ = A-ABC) + \overline{A+B+C} = \ \overline{ABC} + \overline{A+B+C} = \ \overline{ABB} + \overline{ABB} = \overline{ABB}$$
 раскрываем скобку, сокращаем $\overline{AAB} = \emptyset$ $\overline{ABB} + \overline{ABB} + \overline{ABB} + \overline{ABB} + \overline{ABB} = \overline{ABB} + \overline{ABB} + \overline{ABB} + \overline{ABB} + \overline{ABB} = \overline{ABB} + \overline{ABB} + \overline{ABB} + \overline{ABB} + \overline{ABB} = \overline{ABB} + \overline{AB$

$$= \|S(1,6) = A \text{ without } AB,$$

$$S(5) = BC \text{ without } ABC \| =$$

$$= (A - AB) + (BC - ABC) =$$

$$= A\overline{AB} + BC\overline{ABC} =$$

$$= A \cdot (\overline{A} + \overline{B}) + BC \cdot (\overline{A} + \overline{B} + \overline{C}) =$$

$$= A\overline{A} + A\overline{B} + \overline{ABC} + BC\overline{B} + BC\overline{C} =$$

$$= A\overline{B} + \overline{ABC}$$

$$= AB + \overline{ABC}$$

Декартово произведение множеств на плоскости \mathbb{R}^2

\mathbb{R}^2 coordinate space

Декартово произведение двух множеств – множество пар. Если представить, что такие пары – элементы пространства \mathbb{R}^2 (точки на плоскости), то возможна следующая геометрическая интерпретация:

