PROBLEM SET 2 - RANDOM VARIABLES, DISTRIBUTIONS AND EXPECTATIONS

ECO 104 - Statistics for Business and Economics - I, Summer-2025

Faculty: Sk. Tanvir Hossain Teaching Assistant: Habiba Afroz

Due Date - 3rd August (Sec 9) and 4th August (Sec 7), Group Submision (Max 3 Members) - Please Submit Hard Copy in Class

1. Summation formulas

(a) Show that the following formula for the sample variance

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

is equal to

$$s^{2} = \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} \right) - \bar{x}^{2}$$

Notice in this case we don't have n-1 in the denominator. Show that this formula is equivalent to (this one is easier to use in some cases)

(b) Also you can write a similar sample covariance formula,

$$s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

Show that this can be rewritten as (this one is easier to use in some cases)

$$s_{xy} = \frac{1}{n} \left(\sum_{i=1}^{n} x_i y_i - \bar{x}\bar{y} \right)$$

2. A discrete random variable X has the following PMF:

\overline{x}	1	2	3	4
f(x)	0.1	0.3	0.4	0.2

- (a) Verify that this is a valid PMF. Plot the PMF.
- (b) Claulate $\mathbb{P}(X \leq 2)$ and $\mathbb{P}(X > 2)$.
- (c) Calculate $\mathbb{P}(X=3)$ and $\mathbb{P}(X\neq 3)$.
- (d) Calculate $\mathbb{P}(1 \leq X \leq 3)$, $\mathbb{P}(1 \leq X < 3)$ and $\mathbb{P}(X \geq 3)$.
- (e) Calculate $\mathbb{E}(X)$ and $\mathbb{V}(X)$.
- (f) Create a new random variable $Y=X^2$ and calculate $\mathbb{E}\left(Y\right)$ and $\mathbb{V}\left(Y\right)$.

ECO104 PS - 2

- (g) Create a new random variable Y = 2X + 3 and calculate $\mathbb{E}(Y)$ and $\mathbb{V}(Y)$.
- (h) Create a new random variable $Y = 2X^2 + 3$ and calculate $\mathbb{E}(Y)$ and $\mathbb{V}(Y)$.
- (i) Let $\mu = \mathbb{E}(X)$ and $\sigma^2 = \mathbb{V}(X)$. Now create a new random variable $Z = \frac{X \mu}{\sigma}$ what are the values of Z, calculate $\mathbb{E}(Z)$ and $\mathbb{V}(Z)$ where (Note: In this case we say Z is a standardized version of the random variable X).
- (j) We can also calculate $\mathbb{E}(Z^3)$ and $\mathbb{E}(Z^4)$, which are called third and fourth moment of Z, and skewness and kurtosis of the random variable X [Note: Skewness and Kurtosis are two summary measures of the distribution, they measure the asymmetry and peakedness of the distribution respectively].
- (k) Calculate Cumulative Distribution Function (CDF) F(x) for x=1,2,3,4. and plot the CDF.
- 3. Answer the following conceptual questions
 - (a) Using LOTUS show that $\mathbb{E}(aX^2 + bX + c) = a\mathbb{E}(X^2) + b\mathbb{E}(X) + c$ for any random variable X and constants a, b and c (But it's a linearity of expectation, so when you apply, you can apply directly without using LOTUS).
 - (b) Suppose we have a random variable X with mean $\mu = \mathbb{E}(X)$ and variance $\sigma^2 = \mathbb{E}((X-\mu)^2)$. Now define another random variable $Z = \frac{X-\mu}{\sigma}$, show that $\mathbb{E}(Z) = 0$ and variance of $\mathbb{V}(Z) = 1$ (Note: this holds for any random variable X regardless of its distribution, and it's a very important property).
 - (c) A student claims that for any random variable X, $\mathbb{E}(X^2) = [\mathbb{E}(X)]^2$. Provide a counterexample and explain why this is generally false.
 - (d) If two random variables X and Y have the same expected value, do they necessarily have the same distribution? Provide an example to support your answer.
 - (e) Explain the difference between empirical PMF and theoretical PMF. Construct an example to illustrate this difference.
- 4. We already know the Mean and Variance of a distribution, recall population mean gives the central location of the distribution and variance gives the spread of the distribution. Now we will calculate some other summary measures of a distribution, which are called **skewness and kurtosis**.

Let X and Y be two rando, barwith PMF given by:

\overline{x}	1	2	3	4	5
f(x)	0.1	0.2	0.3	0.2	0.2

and

\overline{y}	1	2	3	4	5
f(y)	0.4	0.3	0.2	0.1	0.0

- (a) Plot the PMF of X and Y.
- (b) Calculate the mean and variance of X and Y.

ECO104 PS - 2

- (c) Calculate $\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]$, where $\mu=\mathbb{E}(X)$ and $\sigma^2=\mathbb{V}(X)$. This number measures the skewness of the distribution of X. which shows how symmetric the distribution is around its mean.
- (d) Calculate the skewness of Y
- (e) Which distribution is more skewed, X or Y?
- (f) Calculate $\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right]$. This number measures the kurtosis of the distribution of X.
- (g) Calculate the kurtosis of Y, which distribution is more peaked, X or Y?
- (h) Calculate skewness and kurtosis of the random variable X.