The Ristretto and Cortado elliptic curve groups

Mike Hamburg*

August 27, 2017

Abstract

1 Introduction

2 Definitions and notation

Let the symbol \perp denote failure.

2.1 Field elements

Let \mathbb{F} be a finite field of prime order p. For an element $x \in \mathbb{F}$, let $\operatorname{res}(x)$ be the integer representative of $x \in [0, p-1]$. We call an element $x \in \mathbb{F}$ negative if $\operatorname{res}(x)$ is odd. Call an element in \mathbb{F} square if it is a quadratic residue, i.e. if there exists $\sqrt{x} \in \mathbb{F}$ such that $\sqrt{x}^2 = x$. There will in general be two such square roots; let the notation \sqrt{x} mean the unique non-negative square root of x. If $p \equiv 1 \pmod 4$, then \mathbb{F} contains an element $i := \sqrt{-1}$.

Let $\ell := \lceil \log_{2^8} p \rceil$. Each $x \in \mathbb{F}$ has a unique little-endian byte representation, namely the sequence

$$\mathbb{F}_{\text{-}}\text{to_bytes}(x) := [\![b_i]\!]_{i=0}^{l-1} \text{ where } b_i \in [0, 255] \text{ and } \sum_{i=0}^{l-1} 2^{8i} \cdot b_i = \operatorname{res}(x)$$

[[TODO: bytes to \mathbb{F}]]

^{*}Rambus Security Division

2.2 Groups

For an abelian group \mathbb{G} with identity O, let $n\mathbb{G}$ denote the subgroup of \mathbb{G} which are of the form $n \cdot g$ for some $g \in \mathbb{G}$. Let \mathbb{G}_n denote the n-torsion group of \mathbb{G} , namely the subgroup $\{g \in \mathbb{G} : n \cdot g = O\}$.

2.3 Edwards curves

We will work with twisted Edwards elliptic curves of the form

$$E_{a.d}: y^2 + a \cdot x^2 = 1 + d \cdot x^2 \cdot y^2$$

where $x, y \in \mathbb{F}$. Twisted Edwards curves curves have a group law

$$(x_1, y_1) + (x_2, y_2) := \left(\frac{x_1 y_2 + x_2 y_1}{1 + dx_1 x_2 y_1 y_2}, \frac{y_1 y_2 - ax_1 x_2}{1 - dx_1 x_2 y_1 y_2}\right)$$

with identity point O := (0,1) and group inverse operation

$$-(x,y) = (-x,y)$$

The group law is called *complete* if is produces the correct answer (rather than e.g. 0/0) for all points on the curve. The above formulas are complete when d and ad are nonsquare in \mathbb{F} , which implies that a is square. When these conditions hold, we also say that the curve itself is complete.

Let the number of points on the curve be

$$\#E_{a,d} = h \cdot q$$

where q is prime and $h \in \{4, 8\}$. We call h the cofactor.

For $P = (x, y) \in E$, we can define the projective homogeneous form of P as (X, Y, Z) with $Z \neq 0$ and

$$(x,y) = (X/Z, Y/Z)$$

and the extended homogeneous form as (X, Y, Z, T) where additionally XY = ZT. Extended homogeneous form is popular because it supports simple and efficient complete addition formulas [?].

2.4 Montgomery curves

When a-d is square in \mathbb{F} , the twisted Edwards curve $E_{a,d}$ is isomorphic to the Montgomery curve

$$v^{2} = u \cdot \left(u^{2} + 2 \cdot \frac{a+d}{a-d} \cdot u + 1\right)$$

by the map

$$(u,v) = \left(\frac{1+y}{1-y}, \quad \frac{1+y}{1-y} \cdot \frac{1}{x} \cdot \frac{2}{\sqrt{a-d}}\right)$$

with inverse

$$(x,y) = \left(\frac{u}{v} \cdot \frac{\sqrt{a-d}}{2}, \frac{u-1}{u+1}\right)$$

If M=(u,v) is a point on the Montgomery curve, then the u-coordinate of 2M is $(u^2-1)^2/(4v^2)$ is necessarily square. It follows that if (x,y) is a point on $E_{a,d}$, and a-d is square, then (1+y)/(1-y) is also square.

Likewhise, when d-a is square in \mathbb{F} , $E_{a,d}$ is isomorphic to the Montgomery curve

$$v^{2} = u \cdot \left(u^{2} - 2 \cdot \frac{a+d}{a-d} \cdot u + 1\right)$$

by the map

$$(u,v) = \left(\frac{y+1}{y-1}, \quad \frac{y+1}{y-1} \cdot \frac{1}{x} \cdot \frac{2}{\sqrt{d-a}}\right)$$

with inverse

$$(x,y) = \left(\frac{u}{v} \cdot \frac{\sqrt{d-a}}{2}, \frac{1+u}{1-u}\right)$$

3 Lemmas

First, we characterize the 2-torsion and 4-torsion groups.

Lemma 1. Let $E_{a,d}$ be a complete Edwards curve. Its 2-torsion subgroup is generated by (0,-1). The 4-torsion subgroup is generated by $(1/\sqrt{a},0)$.

Adding the 2-torsion generator to (x,y) produces (-x,-y). Adding the 4-torsion generator $(1/\sqrt{a},0)$ produces $(y/\sqrt{a},-x\cdot\sqrt{a})$

Proof. Inspection.

Lemma 2. Let $E_{a,d}$ be a complete twisted Edwards curve over \mathbb{F} , and $P_1 = (x_1, y_1)$ be any point on it. Then there are exactly two points $P_2 = (x_2, y_2)$ satisfying $x_1y_2 = x_2y_1$, namely P_1 itself and $(-x_1, -y_1)$. That is, there are either 0 or 2 points on any line through the origin.

Proof. Plugging into the group operation gives

$$x_1y_2 = x_2y_1 \iff P_1 - P_2 = (0, y_3)$$

for some y_3 . Plugging x=0 into the curve equation gives $y=\pm 1$, the 2-torsion points. Adding back, we have $P_2=P_1+(0,\pm 1)=(\pm x_1,\pm y_1)$ as claimed.

Lemma 3. If $E_{a,d}$ is a complete Edwards curve, then $a^2 - ad$ is square in \mathbb{F} (and thus a - d is square in \mathbb{F}) if and only if the cofactor of $E_{a,d}$ is divisible by 8.

Proof. Doubling an 8-torsion generator (x, y) should produce a 4-torsion generator, i.e. a point with y = 0. From the doubling formula, this happens precisely when $y^2 = ax^2$, or $2ax^2 = 1 + adx^4$. This has roots in \mathbb{F} if and only if its discriminant $4a^2 - 4ad$ is square, so that $a^2 - ad$ is square.

Lemma 4. If $(x_2, y_2) = 2 \cdot (x_1, y_1)$ is an even point in $E_{a,d}$, then $(1 - ax_2^2)$ is a quadratic residue in \mathbb{F} . [[**TODO:** $(y_2^2 - 1)$]].

Proof. The doubling formula has

$$x_2 = \frac{2x_1y_1}{y_1^2 + ax_1^2}$$

so that

$$1 - ax_2^2 = \left(\frac{y_1^2 - ax_1^2}{y_1^2 + ax_1^2}\right)^2$$

is a quadratic residue. Now for any point $(x, y) \in E_{a,d}$, we have

$$(y^2 - 1) \cdot (1 - ax^2) = y^2 + ax^2 - 1 - ax^2y^2 = (d - a)x^2y^2$$

which is a quadratic residue by Lemma 3.

4 The Espresso groups

Let E be a complete twisted Edwards curve with $a \in \{\pm 1\}$ and cofactor 4 or 8. We describe the Espresso group $\mathbb{G}(E)$ as

$$Espresso(E) := 2E/E_{h/2}$$

This group has prime order q.

4.1 Group law

The group law on Espresso(E) is the same as that on E.

4.2 Equality

Two elements $P_1 := (x_1, y_1)$ and $P_2 := (x_2, y_2)$ in Espresso(E) are equal if they differ by an element of $E_{h/2}$.

If h=4, the points are equal if $P_1-P_2\in E_2$. By Lemma 2, this is equivalent to

$$x_1y_2 = x_2y_1$$

If h = 8, the points are equal if $P_1 - P_2 \in E_4$. By Lemmas 1 and 2, this is equivalent to

$$x_1y_2 = x_2y_1$$
 or $x_1x_2 = -ay_1y_2$

These equations are homogeneous, so they may be evaluated in projective homogeneous form with X_i and Y_i in place of x_i and y_i

4.3 Encoding

We now describe how to encode a point P = (x, y) to bytes. The requirements of encoding are that

- Any point $P \in 2E$ can be encoded.
- Two points P, Q have the same encoding if and only if $P Q \in E_{h/2}$.

When h = 4, we encode a point as $\sqrt{a(y-1)/(y+1)}$