Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Высшая школа прикладной математики и вычислительно физики

Вычислительные комплексы

Лабораторная работа №1

Работу выполнил: Колесник Виктор Группа: 3630102/70201 Преподаватель: к.ф.-м.н., доцент Баженов Александр

Николаевич

 ${
m Cankt-}\Pi{
m erepfypr}$ 2020

Содержание

1.	Пос	тановка задачи	3
	1.1.	Задача 1	3
	1.2.	Задача 2	Ç
2.	Реш	тение	3
	2.1.	Задача 1	3
		2.1.1. Аналитический вывод	3
		2.1.2. Численный эксперимент	4
	2.2.	Задача 2	1
		2.2.1. Численный эксперимент	
3.	При	иложение	ç

1. Постановка задачи

1.1. Задача 1

Имеем 2×2 -матрицу A

$$A = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix} \tag{1}$$

Пусть все элементы матрицы a_{ij} имеют радиус ε :

$$rad\mathbf{a}_{ij} = \varepsilon \tag{2}$$

Получаем

$$\mathbf{A} = \begin{pmatrix} [1 - \varepsilon, 1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \\ [1.1 - \varepsilon, 1.1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \end{pmatrix}$$
(3)

Определить, при каком радиусе ε матрица **A** содержит особенные матрицы.

1.2. Задача 2

Имеем $n \times n$ -матрицу **A**

$$\mathbf{A} = \begin{pmatrix} 1 & [0, \varepsilon] & \dots & [0, \varepsilon] \\ [0, \varepsilon] & 1 & \dots & [0, \varepsilon] \\ \dots & \dots & \dots \\ [0, \varepsilon] & [0, \varepsilon] & \dots & 1 \end{pmatrix}$$
(4)

Определить, при каком радиусе ε матрица **A** содержит особенные матрицы.

2. Решение

2.1. Задача 1

2.1.1. Аналитический вывод

Воспользуемся критерием Баумана

Теорема

Интервальная матрица A неособенна тогда и только тогда, когда определители всех ее крайних матриц имеют одинаковый знак, т.е.

$$(\det A') * (\det A'') > 0 \tag{5}$$

для любых $A', A'' \in vert A$.

Найдем, при каких значениях ε матрица является неособенной. Тогда особенной она будет при всех остальных значениях.

Посчитаем определители всех крайних матриц, т.е. получим 16 функций, зависящих от ε .

Некоторые функции повторяются, поэтому их опустим:

$$-0.1(1-\varepsilon) \tag{6a}$$

$$-0.1(1+\varepsilon) \tag{6b}$$

$$4.1\varepsilon - 0.1\tag{6c}$$

$$-4.1\varepsilon - 0.1 \tag{6d}$$

$$(1 - \varepsilon)(2\varepsilon - 0.1) \tag{6e}$$

$$(1 - \varepsilon)(-2\varepsilon - 0.1) \tag{6f}$$

$$(1+\varepsilon)(2\varepsilon - 0.1) \tag{6g}$$

$$(1+\varepsilon)(-2\varepsilon - 0.1) \tag{6h}$$

$$2\varepsilon^2 - 2.1\varepsilon - 0.1\tag{6i}$$

$$2\varepsilon^2 + 2.1\varepsilon - 0.1\tag{6j}$$

Так как $\varepsilon \geq 0$, то из (6b) получаем, что определители всех крайних матриц должны быть отрицательными.

Запишем выведенные из выражений (6) ограничения на ε . Неравенства, где ε должен быть больше некоторого отрицательного числа, опустим.

$$\varepsilon < 1$$
 (7a)

$$\varepsilon < \frac{1}{20} \tag{7b}$$

$$\varepsilon < 1.09$$
 (7c)

$$\varepsilon < \frac{1}{40} \tag{7d}$$

$$\varepsilon < 0.0456$$
 (7e)

Минимальная правая граница равна $\frac{1}{41}$. Максимальная левая граница - 0. Значит, матрица **A** является неособенной при $\varepsilon \in [0,\frac{1}{41})$.

Соответственно, особенной матрица является при $\varepsilon \geq \frac{1}{41}$.

Примером особенной матрицы, у которой значение ε близко к границе, может служить данная матрица ($\varepsilon = \frac{1}{40}$):

$$\mathbf{A} = \begin{pmatrix} [0.975, 1.025] & [0.975, 1.0.25] \\ [1.075, 1.125] & [0.975, 1.0.25] \end{pmatrix}$$
(8)

Определитель этой матрицы равен: [-0.2025, 0.0025]

2.1.2. Численный эксперимент

Проверим, что полученные значения ε соответствуют особенным и неособенным матрицам. Для этого посчитаем определитель-интервал при следующих значениях радиуса:

$$[0, \frac{1}{70}, \frac{1}{42}, \frac{1}{41}, \frac{1}{40}, 1] \tag{9}$$

Получим следующие результаты:

Рисунок 2.1. Определители матриц с заданными ε

Результаты численного эксперимента соответствуют полученным аналитически результатам: для значений $[0, \frac{1}{70}, \frac{1}{42}]$ определитель не содержит 0; для значений $[\frac{1}{41}, \frac{1}{40}, 1]$ определитель содержит 0.

2.2. Задача 2

2.2.1. Численный эксперимент

Очевидно, что при $\varepsilon \geq 1$ матрица является особенной, так как содержит особенную точечную матрицу со всеми элементами - единицами.

Попробуем улучшить эту оценку, используя признаки Бекка и Румпа.

Теорема (признак Бекка)

Пусть интервальная матрица $A \in IR^{n \times n}$ такова, что ее середина midA неособенна и

$$\rho(|(midA)^{-1}| * radA) < 1 \tag{10}$$

Тогда А неособенна.

Теорема (признак Румпа)

Если для интервальной матрицы $A \in IR^{n \times n}$ имеет место

$$\sigma_{max}(radA) < \sigma_{min}(midA)$$
 (11)

Тогда А неособенна.

Возьмем начальное значение $\varepsilon=0.001$ и будем его увеличивать с шагом 0.001, пока хотя бы один из признаков подтверждает, что матрица является неособенной. Запишем ε для такой последней матрицы.

Размерности матриц возьмем от 2 до 20.

Получим следующие результаты:

```
Task 2
Last non-special matrix with eps: 0.66600000000000005
Rump criteria: (True, 0.666000000000000, 0.66699999999999)
1 / (n - 1) = 0.5
Last non-special matrix with eps: 0.3990000000000003
Beck criteria: (False, 1.1390334579129657)
Rump criteria: (True, 0.79800000000005, 0.80049999999998)
Last non-special matrix with eps: 0.2850000000000002
Beck criteria: (False, 1.1961522162029703)
Rump criteria: (True, 0.855000000000005, 0.857499999999994)
n = 5
1 / (n - 1) = 0.25
Last non-special matrix with eps: 0.22200000000000017
Rump criteria: (True, 0.88800000000000, 0.88899999999999)
1 / (n - 1) = 0.2
Last non-special matrix with eps: 0.18100000000000013
Beck criteria: (False, 1.2430445886270298)
```

Рисунок 2.2. Полученные значения ε и величины $\frac{1}{n-1}$

```
Last non-special matrix with eps: 0.1530000000000001
Beck criteria: (False, 1.2546489073476705)
Rump criteria: (True, 0.918000000000006, 0.923499999999997)
1 / (n - 1) = 0.14285714285714285
Last non-special matrix with eps: 0.133000000000001
Beck criteria: (False, 1.2688547903329892)
Rump criteria: (True, 0.931000000000007, 0.93349999999999)
1 / (n - 1) = 0.125
Last non-special matrix with eps: 0.11700000000000009
Beck criteria: (False, 1.2714796523027645)
Rump criteria: (True, 0.936000000000002, 0.941499999999994)
Last non-special matrix with eps: 0.10500000000000008
Beck criteria: (False, 1.2818380959633755)
Rump criteria: (True, 0.945000000000012, 0.94749999999999)
n = 11
Last non-special matrix with eps: 0.09500000000000007
Beck criteria: (False, 1.2864451265625703)
Rump criteria: (True, 0.950000000000008, 0.952499999999995)
n = 12
1 / (n - 1) = 0.09090909090909091
Last non-special matrix with eps: 0.08600000000000006
Beck criteria: (False, 1.2770715796209167)
Rump criteria: (True, 0.946000000000000, 0.95699999999993)
```

Рисунок 2.3. Полученные значения ε и величины $\frac{1}{n-1}$

```
1 / (n - 1) = 0.0833333333333333333
Last non-special matrix with eps: 0.07900000000000006
Beck criteria: (False, 1.2779258315398552)
Rump criteria: (True, 0.948000000000004, 0.96049999999999)
1 / (n - 1) = 0.07692307692307693
Last non-special matrix with eps: 0.07400000000000005
Beck criteria: (False, 1.2984476964359215)
Rump criteria: (True, 0.96200000000001, 0.96299999999999)
1 / (n - 1) = 0.07142857142857142
Last non-special matrix with eps: 0.06800000000000005
Beck criteria: (False, 1.280625270020817)
Rump criteria: (True, 0.952000000000004, 0.965999999999995)
Last non-special matrix with eps: 0.064000000000000004
Beck criteria: (False, 1.2919365646638385)
Rump criteria: (True, (0.96000000000001+0j), 0.9679999999999)
1 / (n - 1) = 0.0625
Last non-special matrix with eps: 0.060000000000000046
Rump criteria: (True, 0.960000000000007, 0.96999999999994)
1 / (n - 1) = 0.058823529411764705
Last non-special matrix with eps: 0.057000000000000044
Beck criteria: (False, 1.3038103289663128)
Rump criteria: (True, 0.96900000000000, 0.97149999999991)
```

Рисунок 2.4. Полученные значения ε и величины $\frac{1}{n-1}$

Рисунок 2.5. Полученные значения ε и величины $\frac{1}{n-1}$

Запишем результаты в виде таблицы:

n	$\frac{1}{n-1}$	ε
2	1.0	0.666
3	0.5	0.399
4	0.333	0.285
5	0.25	0.222
6	0.2	0.181
7	0.166	0.153
8	0.142	0.133
9	0.125	0.117
10	0.111	0.111
11	0.1	0.095
12	0.09	0.086
13	0.083	0.079
14	0.076	0.074
15	0.071	0.068
16	0.066	0.064
17	0.0625	0.06
18	0.058	0.057
19	0.055	0.054
20	0.052	0.051

Из таблицы видно, что полученные ε немного меньше величин $\frac{1}{n-1}$, которые можно получить, применив признак Адамара.

Теорема (интервальный признак Адамара)

Интервальная матрица с диагональным преобладанием является неособенной.

Таким образом, можно использовать значения $\varepsilon > \frac{1}{n-1}$ для получения особенных матриц.

3. Приложение

Код программы на Python лежит в данном репозитории: https://github.com/PinkOink/Interval_Analysis/tree/main/lab1