	<pre>print("Ingrese cuantos numeros aleatorios desea obtener") n=int(input()) aleatorios=listaAleatorios(n) print(aleatorios)</pre>
	Ingrese cuantos numeros aleatorios desea obtener 10 [10, 4, 5, 9, 10, 0, 4, 2, 10, 2]
In [3]:	<pre>def func(): arr = np.array(aleatorios) print(arr) func() arr = np.array(aleatorios)</pre>
In [4]:	<pre>print(arr) [6 0 9 9 7 3 2 3 5 9] [6 0 9 9 7 3 2 3 5 9] if arr.ndim>1:</pre>
In [5]:	<pre>print("No pot tenir més d'una dimensió") dimArray= (arr.ndim)</pre>
In [6]:	print("El teu array té "+ str(dimArray)+ " dimensió") El teu array té 1 dimensió #Crides de diferents maneres de l'array analitzant la informació que ens podria interessar. print(arr[2] + arr[3])
	<pre>print(arr[1:5]) print(arr[4:]) print(arr[-3:-1]) print(arr[1:5:2]) print(arr.dtype)</pre>
	18 [0 9 9 7] [7 3 2 3 5 9] [3 5] [0 9] int32
In [7]:	<pre>#Copy, no canvia l'original x = arr.copy() arr[0] = 42 print(arr) print(x)</pre>
In [8]:	[42 0 9 9 7 3 2 3 5 9] [6 0 9 9 7 3 2 3 5 9] #view, canvia l'original y = arr.view() arr[1] = 33
	<pre>print(arr) print(x) print(x.base) print(y.base)</pre>
	[42 33 9 9 7 3 2 3 5 9] [6 0 9 9 7 3 2 3 5 9] None [42 33 9 9 7 3 2 3 5 9]
In [9]:	<pre>aa = np.mean(arr) print(aa) bb=np.median(arr) print(bb) cc = np.std(arr)</pre>
	<pre>print(cc) dd= np.min(arr) print(dd) ee = np.max(arr) print(ee)</pre>
	<pre>ff= np.count_nonzero(arr) print(ff) gg= np.abs(arr) print(gg) hh= np.sin(arr)</pre>
	<pre>print(hh) ii= np.cos(arr) print(ii) jj= np.tan(arr) print(jj)</pre>
	<pre>kk = np.sin(np.pi/2) print(kk) ll= np.deg2rad(arr) print(ll)</pre>
	<pre>nn = np.hypot(arr[0], arr[1]) print(nn) oo = np.cosh(arr) print(oo) pp = np.unique(arr)</pre>
	<pre>print(pp) qq= np.lcm(arr[4], arr[3]) print(qq) rr = np.gcd(arr[0], arr[6]) print(rr)</pre>
	<pre>newarr = np.diff(arr) print(newarr) 12.2 8.0</pre>
	13.052202879207785 2 42 10 [42 33 9 9 7 3 2 3 5 9] [-0.91652155 0.99991186 0.41211849 0.6569866 0.14112001 0.90929743 0.14112001 -0.95892427 0.41211849] [-0.3998531 -0.01327675 -0.01113026 -0.01113026 0.75390225 -0.0899925
	[-0.39998531 -0.01327675 -0.91113026 -0.91113026 0.75390225 -0.9899925 -0.41614684 -0.9899925 0.28366219 -0.91113026] [2.29138799 -75.3130148 -0.45231566 -0.45231566 0.87144798 -0.14254654 -2.18503986 -0.14254654 -3.38051501 -0.45231566] 1.0 [0.73303829 0.57595865 0.15707963 0.15707963 0.12217305 0.05235988 0.03490659 0.05235988 0.08726646 0.15707963] 53.41348144429457
	[8.69637471e+17 1.07321790e+14 4.05154203e+03 4.05154203e+03 5.48317035e+02 1.00676620e+01 3.76219569e+00 1.00676620e+01 7.42099485e+01 4.05154203e+03] [2 3 5 7 9 33 42] 63 2 [-9 -24 0 -2 -4 -1 1 2 4]
In [10]:	<pre>for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']): print(x) b'42' b'33' b'9'</pre>
	b'9' b'7' b'3' b'2' b'3' b'5'
In [17]:	<pre>for idx, x in np.ndenumerate(arr): print(idx, x)</pre> (0,) 42 (1,) 33
	(2,) 10 (3,) 1 (4,) 9 (5,) 8 (6,) 1 (7,) 6 (8,) 8
In [11]:	<pre>(9,) 7 for x in np.nditer(arr): print(x)</pre>
	9 7 3 2 3 5
In [12]:	<pre>print(np.sort(arr)) a = np.where(arr == 4) b = np.where(arr%2 == 0) c = np.where(arr%2 == 1)</pre>
	<pre>d = np.searchsorted(arr, 7) e = np.searchsorted(arr, 1, side='right') f= x = np.searchsorted(arr, [3, 5, 8]) g= np.searchsorted(arr, 10)</pre> <pre>print(a)</pre>
	<pre>print(b) print(c) print(d) print(e) print(f) print(g)</pre>
	<pre>[2 3 3 5 7 9 9 9 33 42] (array([], dtype=int64),) (array([0, 6], dtype=int64),) (array([1, 2, 3, 4, 5, 7, 8, 9], dtype=int64),) 9 0 [0 8 9] 10</pre>
In [13]:	<pre>np.sort(arr) h = [True, False, True, False, True, True, False, True,False] newArr = arr[h] print(newArr)</pre>
In [14]:	[42 9 3 2 5] newList= [] for i in arr: if i > 5:
	<pre>newList.append(True) else: newList.append(False) newArray = arr[newList] print(newArray) print(newList)</pre>
In [15]:	<pre>[42 33 9 9 7 9] [True, True, True, True, False, False, False, True] filtering = [] for x in arr:</pre>
	<pre>if x % 2 == 0: filtering.append(True) else: filtering.append(False) newFilter = arr[filtering] print(newFilter)</pre>
In [16]:	[42 2] [True, False, False, False, False, True, False, False] #Crea un quadrat de XperX amb nums aleatoris de 0 a 100
	<pre>from numpy import random import pandas as pd quadrat = random.randint(100, size=(5, 5)) print(quadrat) df = pd.DataFrame(quadrat)</pre>
	print(df) [[92 38 37 33 24] [66 82 3 95 12] [31 38 42 39 10] [42 24 1 53 78] [32 14 97 59 53]]
Tr. T	0 1 2 3 4 0 92 38 37 33 24 1 66 82 3 95 12 2 31 38 42 39 10 3 42 24 1 53 78 4 32 14 97 59 53
In [17]:	<pre>#Crea una funció que donada una taula de dues dimensions, et calculi els totals per fila i els totals per columna. from numpy import random nouArr = random.randint(100, size=(2, 5)) print(nouArr)</pre>
In [18]:	<pre>[[19 74 51 51 65] [6 22 46 75 65]] dff= pd.DataFrame((nouArr), index= ['x', 'y'])</pre>
	<pre>print(dff) #Columnes Total = dff[0].sum() print ("Column 1 sum:", Total) total2 = dff[1].sum() print("Colum 2 sum:", total2)</pre>
	<pre>total3 = dff[2].sum() print("Colum 3 sum:", total3) total4 = dff[3].sum() print("Colum 4 sum:", total4)</pre>
	<pre>total5= dff[4].sum() print("Colum 5 sum:", total5) #Files totalFila = np.sum(nouArr, axis=1) print(totalFila)</pre>
	0 1 2 3 4 x 19 74 51 51 65 y 6 22 46 75 65 Column 1 sum: 25 Colum 2 sum: 96 Colum 3 sum: 97
	Colum 4 sum: 126 Colum 5 sum: 130 [260 214] #Implementa manualment una funció que calculi el coeficient de correlació. #Informa't-en sobre els seus usos i interpretació.
	<pre>nouArr1 = nouArr.transpose() nouArr1 = pd.DataFrame(nouArr1) print(nouArr1) nouArr1.columns = ['x', 'y'] print(nouArr1) def corr_coeff(dataFrame, var1, var2):</pre>
	<pre>dataFrame["corrn"] = (dataFrame[var1] - np.mean(dataFrame[var1])) * (dataFrame[var2] - np.mean(dataFrame[var2])) dataFrame["corr1"] = (dataFrame[var1] - np.mean(dataFrame[var1])) ** 2 dataFrame["corr2"] = (dataFrame[var2] - np.mean(dataFrame[var2])) ** 2 coeficienteCorrelacionPearson = sum(dataFrame["corrn"]) / np.sqrt(sum(dataFrame["corr1"]) * sum(dataFrame["corr2"])) return coeficienteCorrelacionPearson</pre> corr_coeff(nouArr1, "x", "y")
	<pre>cols = nouArr1.columns.values for x in cols: for y in cols: print(x + ", " + y + " : " + str(corr_coeff(nouArr1, x, y)))</pre>
	<pre>plt.plot(nouArr1["x"], nouArr1["y"], "ro") plt.title("Correlació entre x i y") nouArr1.corr() plt.matshow(nouArr1.corr())</pre>
	#El coeficiente de correlación de Pearson mide la asociación lineal entre variables. Su valor se puede interpretar así: #+1 - Correlación positiva completa #+0,8 - Fuerte correlación positiva #+0,6 - Correlación positiva moderada #0 - sin correlación alguna
	#-0,6 - Correlación negativa moderada #-0,8 - Fuerte correlación negativa #-1 - Correlación negativa completa #L'entrada per aquesta funció sol ser una matriu d'un tamany mxn on:
	#Cada columna representa els valors d'una variable aleatoria #Cada fila representa una sola mostra de n variables aleatories #n representa el número total de diferents variables aleatories #m representa el número total de mostres per cada variable #Totes les entrades diagonals són 1 perquè perque el coeficient de correlació d'una variable amb ella mateixa sempre #donarà aquest valor. Les diagonals solen ser iguals entre elles.
	#Primer tenim una correlació completament positiva entre dues variables (+1) #Després l'altre coeficient de correlació hauria de ser proper a 0. #El primer rand.uniform() La trucada genera una distribucio uniforme aleatoria. # I vstack() apila verticalment altres matrius en ell. Així podrem accedir seqüencialment.
	#el segon te una relació positiva completa amb el primer, el tercer té una correlació negativa #completa amb el primer i el quart és completament aleatori. Hauria de tenir una correlació de ~ 0. 0 1 0 19 6 1 74 22 2 51 46 3 51 75
	3 51 75 4 65 65
	4 65 65 x, x : 1.0 x, y : 0.4193095821245791 x, corrn : -0.03703409175535179 x, corr1 : -0.6032181834082021 x, corr2 : -0.9624622936598533 y, x : 0.4193095821245791 y, y : 1.0
	y, corrn : -0.008949488920798441 y, corr1 : -0.23653672850418583 y, corr2 : -0.49657622250809147 corrn, x : 0.0363930062914001 corrn, y : -0.04754657923169269 corrn, corrn : 1.6263676734041405e-19 corrn, corr1 : 0.0
	<pre>corrn, corr2 : 0.0 corr1, x : nan corr1, y : nan corr1, corrn : nan corr1, corr1 : nan corr1, corr2 : nan corr1, corr2 : nan corr2, x : nan</pre>
	<pre>corr2, x : nan corr2, y : -0.8766648948633549 corr2, corrn : -0.0019812140398738423 corr2, corr1 : 1.2420026740645948e-22 corr2, corr2 : 1.0 <matplotlib.image.axesimage 0x1e31a11b0a0="" at=""></matplotlib.image.axesimage></pre>

Out[48]:

70

60 -

50 -

40

30 ·

20

10

20

0

30

40

2 3 4

Correlació entre x i y

60

50

70

In [44]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import random
lista = [0] * n
for i in range(n):
 lista[i] = random.randint(0, 10)
return lista

def listaAleatorios(n):

#Crea una funció que donat un Array d'una dimensió, et faci un resum estadístic bàsic de les dades. Si detecta que #l'array té més d'una dimensió, ha de mostrar un missatge d'error.