Operacje na obrazach (III)

WYKŁAD 4 Dla studiów niestacjonarnych 2021/2022

Dr hab. Anna Korzyńska, prof. IBIB PAN

Z poprzedniego wykładu

Krawędziowanie i operatory krawędzujące

Działania matematyczne uwzględniające sąsiedztwo Całkowanie (sumowanie, uśrednianie) Różniczkowanie (pierwsza pochodna) Laplasjany (druga pochodna)

Detekcja (wykrywanie) krawędzi (ang. edge detection)

Jest to jedna z technik segmentacji obrazu, polegająca na znajdowaniu pikseli krawędziowych przez sprawdzanie ich sąsiedztwa.

Krawędź

Zbiór pikseli na krzywej mający taką właściwość, że piksele w ich sąsiedztwie, lecz po przeciwnych stronach krzywej mają różne poziomy jasności.

Cel detekcji

znalezienie lokalnych nieciągłości w poziomach jasności obrazu oraz granic obiektów zawartych w obrazie.

10

Wyostanie krawędzi obrazu widoczne na przekroju (xz) a. obraz pierwotny b. obraz wynikowy po obróbce i po dodaniu w sposób ważony jasności odpowiednich pikseli obrazu pierwotnego c. maska laplasjanu d. laplasjan Rezultat uwypuklenie (wzmacnianie) krawędzi (edge enhancement) a. b. UWAGA!! Metoda ma podstawy w procesach fizjologicznych zachodzących w oku ludzkim zwanych hamowaniem obocznym, jaj efekty opisał w Ernst Mach w 1860 roku

Obraz o wzmocnionych konturach obiektów

Wyostrzenie przez złożenie obrazów:

- wejściowego,
- po operacji zadanej laplasjanem lub filtrem rozmywającym/wygładzającym następnie przeskalowanie stopni szarości

0	-1	0	-1	-1	-1	1	-2	1	-1	-1	-1	0	-1	0
-1	4	-1	-1	8	-1	-2	4	-2	-1	9	-1	-1	5	-1
0	-1	0	-1	-1	-1	1	-2	1	-1	-1	-1	0	-1	0

Wykonanie operacji konstrukcji tzn. Unsharpen Mask

Odjęcie obrazu wygładzonego (rozmytego np. filtrem gaussa) od obrazu oryginalnego daje obraz regionów wyostrzenia

Metoda specjalnego gradientu

Stosowana w przypadkach, gdy metody filtracji górnoprzepustowej (FG) powodują wzmocnienie zakłóceń w obszarach leżących wewnątrz konturu.

Zasada

Krawędź uznana jest za istniejącą, jeśli wartość gradientu intensywności w pewnych punktach przekracza ustalony próg.

Metody: Robertsa, Sobela, Prewitta, Kirsha, Canny oraz filtry rzeźbiące

Operatory krawędziowania

Konstruowane przez nieliniową kombinacje dwóch prostopadłych kierunków gradientu (liniowych transformacji)

dok	ładne		$\tilde{r} = \sqrt{1}$	Gx^2	² + ($\frac{\overline{g}^2}{2}$	pr	+	<i>G</i> y				
R	obert		,				So	bela					
Gx	1	0	lub	-1	0		1	0	-1		-1	0	1
	0	-1		0	1	Gx	2	0	-2	lub	-2	0	2
		_		_	_		1	0	-1		-1	0	1
	0	1	lub	0	-1		1	2	1		-1	-2	-1
Gy	-1	0		1	0	Gy	0	0	0	lub	0	0	0
							-1	-2	-1		1	2	1 19

Metoda Kirscha

Wartość piksela (i, j)jest zmieniana według wzoru:

$$g(i,j) = \max_{k=0}^{7} \left\{ 1, \max[|5S_k - 3T_k|] \right\}$$

gdzie:

 $S_k = f_k + f_{k+1} + f_{k+2}$

$$T_k = f_{k+3} + f_{k+4} + f_{k+5} + f_{k+6} + f_{k+7}$$

Numeracja pikseli:

f - obraz źródłowy,

0 1 2 7 *i,j* 3

 ${\it g}$ - obraz wynikowy

6 5 4

Indeksy punktów obrazu f - wartości modulo 8

10

Maski odpowiadające operatorowi Kirscha (maski Kirscha)

N					NE			E				SE			
3	3	3		3	3	3		-5	3	3		-5	-5	3	
3	0	3		-5	0	3		-5	0	3		-5	0	3	
-5	-5	-5		-5	-5	3		-5	3	3		3	3	3	
	S				SW				w				NW		
-5	S -5	-5]	3	SW -5	-5]	3	W 3	-5		3	NW 3	3	
-5 3	_	-5 3		3		-5 -5		3		-5 -5		3			
-	-5	_		H-	-5	-		_	3	<u> </u>		⊢-	3	3	

Operatory kierunkowe

1 -1 -1 1 -2 -1 1 1 1

 $\begin{aligned} &q_{22} = 15 + 14 + 4 + 15 + 12 - 28 - 15 - 14 - 13 = -10 \\ &q_{23} = 15 + 14 + 15 + 12 + 11 - 26 - 14 - 13 - 12 = 2 \\ &q_{32} = 14 + 4 + 5 + 3 + 4 - 30 - 14 - 13 - 12 = -39 \\ &q_{42} = 4 + 5 + 1 + 3 - 6 - 15 - 12 - 4 = -24 \\ &q_{33} = 14 + 15 + 3 + 4 + 5 - 24 - 13 - 12 - 11 = -19 \\ &q_{43} = 15 + 3 + 3 + 4 - 8 - 12 - 11 - 5 = -11 \\ &q_{24} = 14 + 13 + 12 + 11 + 12 - 24 - 13 - 14 - 12 = -11 \\ &q_{34} = 13 + 12 + 4 + 5 + 6 - 22 - 12 - 12 - 12 = -18 \\ &q_{44} = 12 + 4 + 3 + 4 + 2 - 10 - 11 - 12 - 6 = -14 \end{aligned}$

22

Filtry kierunkowe rzeźbiące -1 -1 0 0 -1 -1 0 -1 1 -1 -1 -1 -1 1 -1 1 0 0 1 -1 1 1 1 1 -1 0 1 0 1 1 1 1 1 1 1 0 Ε SE S SW NW NE -1 0 1 1 1 1 1 1 1 -1 1 1 -1 0 1 0 -1 1 1 0 -1 0

Obraz wykorzystujący efekty płaskorzeźby

Operator Canny-ego

Wieloetapowy algorytm detekcji krawędzi zaproponowany przez twórcę teorii Computational theory of edge detection John F. Canny w 1986 r. Jego działanie oparte jest o znane detektory krawędzi (Robertsa, Sobela i Prewitta) i progowanie z histerezą, które optymalizuje wynik wyrzucając krawędzie rozmyte, nachylone pod kątami niewiele odchylonymi od wcześniej wykrytych, zapobiega przerwaniu krawędzi w miejscach utraty kontrastu, itp...

1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, 1986, pp. 679-698

Etapy działania operatora Canny-ego

- Zamiana obrazu kolorowego na jego wersję monochromatczną w odcieniach szarości
- $\hbox{{\it Rozmycie filtrem gaussowskim o zadanym parametrze:}}\\$ np.: sigma (δ)
- Obliczenie gradientu Sobele/Prewitta i kierunku gradientu według Robertsa
- Wytłumienie lokalnych nie maksymalnych gradientów w obrazie gradientu celem otrzymania cienkiej linii
- Dokonanie podwójnego progowania według zadanych parametrów Tmin (i Tmax):
 - <Tmin brak krawędzi,
 - >Tmax silne krawędzie
 - >=Tmin i <=Tmax krawędzie słabe
- Wykonanie śledzenia krawędzi opartego na histerezie w celu ich uciąglenia: słabe krawędzi będące przedłużeniem silnych są dołączane a nie będące są oznaczane do
- . Wyczyszczenie krawędzi

Operacje morfologii matematycznej na obrazach

Operacje morfologiczne

Są to operacje, w których modyfikacja danego piksla obrazu jest uzależniona od kształtu elementu strukturalnego (wzorca) użytego w danej operacji oraz od **spełnienia zadanego warunku** logicznego.

Metody te oparte o matematycznej teorii zbiorów i poszukują i uwypukla lub wyrzucają cech, które ujawniają się w obrazie/obiekcie w kontekście narzędzia badawczego, którym jest element strukturalny

Cel: przygotowanie poszczególnych elementów obrazu do etapu analizy obrazów

Główna cecha różniąca operacje morfologiczne od operacji punktowych i operacji sąsiedztwa:

W operacjach morfologicznych przekształcana jest tylko ta część pikseli obrazu, których otoczenie jest zgodne z elementem strukturalnym - koincydentne

jednostkowym

Operacje morfologii matematycznej na obrazach

Pozwalają na budowanie złożonych operacji nieliniowych, do analize kształtu i wzajemnego położenia obiektów.

Fundamentalne pojęcie: element strukturalnym (strukturujący)

– podzbiór obrazu z wyróżnionym punktem, zwanym często punktem centralnym

Operacje morfologii matematycznej na obrazach

w elemencie strukturalnym występują następujące symbole:
• 1 element wskazuje piksel zapalony tzn. wartość obiektu w

- 1 element wskazuje pissel zapatony tzh. wartość utaku w masce binarnej
 0 element wskazuje piksel wytłumiony tzh. wartość tła w masce binarnej
 X element wskazuje dowolną wartość tzh. wartość tła lub obiektu w masce binarnej

Przekształcenia polegają na pozostawieniu lub zmianie intensywności według pewnej funkcji skojarzonej z nazwą funkcji punktu przykrytego przez punkt centralny elementu strukturalnego jeśli jego otoczenie nie ma lub ma zgodność z założeniami zakodowanemu symbolami w elemencie strukturalnym.

Operacje morfologiczne przekształcają tylko część punktów obrazu

Operacje morfologiczne

- Operacje morfologiczne binarne działają na tzn. maskach czyli obrazach binarnych, w którym obiekty oznaczone są "1" a tło "0" lub na obrazach w odcieniach szarości, ale korzystając z uogólnionej definicji
- Element strukturalny jest przemieszczany po wszystkich punktach obrazu tak, że punkt centralny elementu strukturalnego jest nakładany na kolejne punkty w kolejnych wierszach,
- W każdym położeniu elementu sprawdza się, czy rzeczywista konfiguracja punktów jest zgodna (koincydentna) ze wzorcem zawartym w elemencie strukturalnym zakodowanym symbolami 1, 0,
- W przypadku wykrycia zgodności jest wykonywana operacja związana z filtrem, a w przeciwnym przypadku wartość występująca w obrazie pierwotnym jest przepisywana.

Operacje morfologiczne

Jeśli punkt otoczenia jest wygaszony (równy wartości tła - 0) przy zapalonym (większym od tła - 1) elemencie centralnym, element pod elementem centralnym zostaje wygaszany zrównany z tłem, a w przeciwnym wypadku zostawiamy jego poprzednią wartość

Przykładowe operacje morfologiczne

- Erozia oparta o różnice Minkowskiego:
- Def.: jeżeli choć jeden piksel z sąsiedztwa określonego elementem strukturalnym ma wartość "0" to punkt centralny otrzymuje wartu "0", w przeciwnym przypadku jego wartość nie ulega zmianie
- dylatacja oparta o sumę Minkowskiego;
- Def.: jeżeli choć jeden piksel z sąsiedztwa określonego elementem strukturalnym ma wartość "1" to punkt centralny otrzymuje wartość "1", w przeciwnym przypadku przyjmuje wartość "0"
- Otwarcie złożenie erozji i dylatacji,
- Zamknięcie złożenie dylacji i erozji.

Wykorzystanie sasiedztwa 8-spóinego i 4-spóinego

Podstawowe operacje morfologii matematycznei

0-zgaszony; 1-zapalony; X-o dowolnej wartości.

1

1

1

1

X X

 $\mathbf{x}(\mathbf{0})$ X

 $\mathbf{x} \mid \mathbf{x}$ X

Erozja

$$q(i,j) = \min_{i_n, j_m \in B(i,j)} (p(i_n, j_m))$$

Dylatacja (dylacja) negatyw erozji

$$q(i,j) = \max_{i_n, j_m \in B(i,j)} (p(i_n, j_m))$$

B(i,j) element strukturalny z punktem centralnym o współrzędnych (i,j)

Dylatacja jest operacją **dualną** do erozji i na odwrót

Przykłady operacji erozji

Algorytm erozji opiera się na wybraniu piksela o wartości najmniejszej / minimalnej i wstawieniu go w miejsce elementu centralnego.

elemencie strukturalnym Minimum / Ściemnienie

Otwarcie

Operacja morfologiczna, która opiera się na dwóch innych operacjach: erozji i dylatacji. Otwarcie polega na wykonaniu na obrazie najpierw erozji (minimum), a następnie na tak przetworzonym obrazie należy zastosować dylatację (maksimum) na tym samym elemencie strukturyzyjącym.

Zamkniecie

Operacja morfologiczna, która opiera się na dwóch innych operacjach: dylatacji i erozji. Zamknięcie polega na wykonaniu na obrazie najpierw dylatacji (maksimum), a następnie na tak przetworzonym obrazie należy zastosować erozję (minimum) na tym samym elemencie strukturyzyjącym.

Pocienianie

Zmniejszenie obiektu o piksele będące jego krawędzią.

Pogrubianie

Zwiększenie obiektu o dodatkowe piksele tła stykające się z krawędzią obiektu.

Ekstrakcja konturu

Kolejność działań: 1) operacja erozji obrazu, 2) odjęcie wyniku erozji od obrazu pierwotnego. W wyniku otrzymujemy kontur obiektu.

Szkieletyzacja

Operacja, która wykrywa szkielet obiektu. Przykładowy algorytm szkieletyzacji: 1) obliczyć, ile erozji można wykonać, aby obraz nie został sprowadzony do tła, 2) wykonać obliczoną ilość razy erozję i otwarcie. Wyniki kolejnych kroków erozji i otwarcia należy od siebie odjąć. Wyniki odejmowania z kolejnych kroków należy wstawić w obraz wynikowy.

obraz wynikowy

Pozostałe operacje morfologii matematycznej

- Gradient morfologiczny (= Otwarcie+Zamknięcie)
- Wygładzanie morfologiczne (=Dylacja–Erozja)
- Odcinanie gałęzi (artefaktów z nieregularności obiektów szkeletyzowanych)
- Detekcja centroidów (punktów centralnych obiektu)
- Dylatacja bez styków (SKIZ ang. Skeleton by influece zone)
- Erozja warunkowa
- Automediana

