HW2_Regression

March 27, 2020

1 Final Results - Regression

• Without GridSearchCV

• LASSO Model

• Best parameters: {'alpha': 1}

• Cross-validation scores: 0.8842639367598525

Train score: 0.9115Test score: 0.8752

• With GridSearchCV

• Linear Regression with Model Parameter - Lasso *GridSearchCV

• Best parameters: {'regressor': Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,normalize=False, positive=False, precompute=False, random_state=0, selection='cyclic', tol=0.0001, warm_start=False)}

• Cross-validation scores: 0.8782561788110849

Train score: 0.9115Test score: 0.8752

1.1 Data PreProcessing

```
[1]: from math import sqrt
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import scipy.stats as stats
  from sklearn.metrics import mean_squared_error, r2_score
  from math import sqrt
  from sklearn.model_selection import GridSearchCV
  from sklearn.preprocessing import PolynomialFeatures
  from sklearn.pipeline import make_pipeline
  from sklearn.linear_model import LinearRegression
```

```
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, r2_score
from math import sqrt

pd.pandas.set_option('display.max_columns', None)
%matplotlib inline
```

1.1.1 Load Datasets

2000

196.0

0

Gable

Gd

CompShg

TA

```
[2]: # load dataset
     # your code here
     data = pd.read_csv(r'C:\Users\nabhs\OneDrive\BUAN - Semester 2\BUAN 6341 -_
      → Applied Machine Learning\Datasets\houseprice.csv')
[3]: data.head()
[3]:
        Ιd
            MSSubClass MSZoning
                                  LotFrontage LotArea Street Alley LotShape
                                           65.0
         1
                     60
                               R.T.
                                                    8450
                                                            Pave
                                                                   NaN
                                                                             Reg
     1
         2
                     20
                               R.T.
                                           80.0
                                                    9600
                                                            Pave
                                                                   NaN
                                                                             Reg
     2
                               RL
         3
                     60
                                           68.0
                                                   11250
                                                            Pave
                                                                   NaN
                                                                             IR1
                     70
                                                                             IR1
     3
         4
                               RL
                                           60.0
                                                    9550
                                                                   NaN
                                                            Pave
     4
         5
                               RL
                                           84.0
                                                   14260
                                                            Pave
                                                                   NaN
                     60
                                                                             IR1
       LandContour Utilities LotConfig LandSlope Neighborhood Condition1
     0
                       AllPub
                                  Inside
                                                Gtl
                Lvl
                                                          CollgCr
                                                                         Norm
                       AllPub
                                                Gtl
     1
                Lvl
                                     FR2
                                                          Veenker
                                                                        Feedr
     2
                Lvl
                       AllPub
                                  Inside
                                                Gtl
                                                          CollgCr
                                                                         Norm
     3
               Lvl
                       AllPub
                                                Gtl
                                                          Crawfor
                                  Corner
                                                                         Norm
               Lvl
                       AllPub
                                     FR2
                                                Gtl
                                                          NoRidge
                                                                         Norm
       Condition2 BldgType HouseStyle
                                         OverallQual
                                                        OverallCond
                                                                     YearBuilt
     0
             Norm
                       1Fam
                                 2Story
                                                    7
                                                                           2003
             Norm
                                                                  8
                                                                           1976
     1
                       1Fam
                                 1Story
                                                    6
     2
             Norm
                       1Fam
                                 2Story
                                                    7
                                                                  5
                                                                           2001
     3
             Norm
                       1Fam
                                 2Story
                                                    7
                                                                  5
                                                                           1915
     4
                                                                   5
             Norm
                       1Fam
                                 2Story
                                                    8
                                                                           2000
        YearRemodAdd RoofStyle RoofMatl Exterior1st Exterior2nd MasVnrType
     0
                 2003
                           Gable
                                  CompShg
                                               VinylSd
                                                            VinylSd
                                                                        BrkFace
     1
                 1976
                           Gable
                                  CompShg
                                               MetalSd
                                                            MetalSd
                                                                           None
     2
                 2002
                          Gable
                                  CompShg
                                               VinylSd
                                                            VinylSd
                                                                        BrkFace
     3
                 1970
                          Gable
                                  CompShg
                                               Wd Sdng
                                                            Wd Shng
                                                                           None
```

MasVnrArea ExterQual ExterCond Foundation BsmtQual BsmtCond BsmtExposure

VinylSd

PConc

VinylSd

Gd

BrkFace

TA

1	0.0	TA	TA	CBlc	ock (d TA	Gd			
2	162.0	Gd	TA	PCc		d TA	Mn			
3	0.0		TA	Brk7		TA Gd	No			
4	350.0		TA	PCc		d TA	Av			
	BsmtFinType	1 BsmtFinSF1	BsmtFinTy	pe2 E	SsmtFinSF2	BsmtUnfSF	TotalBsmtSF	\		
0	GL		•	Unf	0	150	856			
1	AL	.Q 978	3	Unf	0	284	1262			
2	GL		3	Unf	0	434	920			
3	AL	-		Unf	0	540	756			
4	GL			Unf	0	490	1145			
	Heating Hea	tingQC Centra	alAir Elect	rical	1stFlrSF	2ndFlrSF	LowQualFinSF	\		
0	GasA	Ex		SBrkr	856	854	0			
1	GasA	Ex	Y	SBrkr	1262	0	0			
2	GasA	Ex		SBrkr	920	866	0			
3	GasA	Gd		SBrkr	961	756	0			
4	GasA	Ex		SBrkr	1145	1053	0			
	GrLivArea	BsmtFullBath	BsmtHalf	Bath	FullBath	HalfBath H	BedroomAbvGr	\		
0	1710	1		0	2	1	3			
1	1262	C)	1	2	0	3			
2	1786	1		0	2	1	3			
3	1717	1		0	1	0	3			
4	2198	1		0	2	1	4			
	KitchenAbv	Gr KitchenQua	al TotRmsA	bvGrd	Functional	Fireplace	es FireplaceQ	u \		
0		1 0	łd	8	Тур	_	0 Nal			
1		1 T	CA.	6	Тур		1 T.	A		
2		1 0	łd	6	Тур		1 T.	A		
3		1 0	łd	7	Тур		1 G	d		
4			d	9	Тур		1 T.			
	GarageType	GarageYrBlt	GarageFini	sh Ga	arageCars	GarageArea	GarageQual	\		
0	Attchd	2003.0	R	.Fn	2	548	TA			
1	Attchd	1976.0	R	Fn	2	460	TA			
2	Attchd	2001.0	R	Fn	2	608	TA			
3	Detchd	1998.0	U	nf	3	642	TA			
4	Attchd	2000.0		Fn	3	836	TA			
	GarageCond	PavedDrive W	loodDeckSF	OpenF	orchSF Er	nclosedPorch	n 3SsnPorch	\		
0	TA	Y	0	-	61	(
1	TA	Y	298		0	(
2	TA	Y	0		42	(
			U		42	,	,			
3	TA	Y	0		35	272				

```
ScreenPorch PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold \
0
                         0
                              NaN
                                                   {\tt NaN}
                                                               0
                                                                        2
                                                                             2008
              0
                                     NaN
              0
                         0
                                                               0
                                                                        5
1
                              NaN
                                     NaN
                                                   NaN
                                                                             2007
2
              0
                         0
                                                               0
                                                                        9
                              NaN
                                     NaN
                                                   NaN
                                                                             2008
3
              0
                         0
                              NaN
                                     NaN
                                                   NaN
                                                               0
                                                                        2
                                                                             2006
                                                  NaN
                                                                       12
                                                                             2008
              0
                         0
                              NaN
                                     NaN
                                                               0
```

```
SaleType SaleCondition SalePrice
0
        WD
                  Normal
                              208500
1
        WD
                  Normal
                              181500
                  Normal
2
        WD
                              223500
3
        WD
                 Abnorml
                              140000
        WD
                  Normal
                              250000
```

1.1.2 Types of variables

```
[4]: # we have an Id variable, that we should not use for predictions:

print('Number of House Id labels: ', len(data.Id.unique()))
print('Number of Houses in the Dataset: ', len(data))
```

Number of House Id labels: 1460 Number of Houses in the Dataset: 1460

Find categorical variables

```
[5]: # find categorical variables- hint data type = '0'
categorical = [var for var in data.columns if data[var].dtype=='0']
print(f'There are {len(categorical)} categorical variables')
categorical
```

There are 43 categorical variables

```
'RoofStyle',
'RoofMatl',
'Exterior1st',
'Exterior2nd',
'MasVnrType',
'ExterQual',
'ExterCond',
'Foundation',
'BsmtQual',
'BsmtCond',
'BsmtExposure',
'BsmtFinType1',
'BsmtFinType2',
'Heating',
'HeatingQC',
'CentralAir',
'Electrical',
'KitchenQual',
'Functional',
'FireplaceQu',
'GarageType',
'GarageFinish',
'GarageQual',
'GarageCond',
'PavedDrive',
'PoolQC',
'Fence',
'MiscFeature',
'SaleType',
'SaleCondition']
```

Find temporal variables

```
[6]: # make a list of the numerical variables first= Hint data type != 0
numerical = [var for var in data.columns if data[var].dtype!='0']

# list of variables that contain year information= Hint variable namme has Yru
or
year_vars = [var for var in numerical if 'Yr' in var or 'Year' in var]

year_vars
```

```
[6]: ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt', 'YrSold']
```

```
[7]: numerical
```

```
[7]: ['Id',
      'MSSubClass',
      'LotFrontage',
      'LotArea',
      'OverallQual',
      'OverallCond',
      'YearBuilt',
      'YearRemodAdd',
      'MasVnrArea',
      'BsmtFinSF1',
      'BsmtFinSF2',
      'BsmtUnfSF',
      'TotalBsmtSF',
      '1stFlrSF',
      '2ndFlrSF',
      'LowQualFinSF',
      'GrLivArea',
      'BsmtFullBath',
      'BsmtHalfBath',
      'FullBath',
      'HalfBath',
      'BedroomAbvGr',
      'KitchenAbvGr',
      'TotRmsAbvGrd',
      'Fireplaces',
      'GarageYrBlt',
      'GarageCars',
      'GarageArea',
      'WoodDeckSF',
      'OpenPorchSF',
      'EnclosedPorch',
      '3SsnPorch',
      'ScreenPorch',
      'PoolArea',
      'MiscVal',
      'MoSold',
      'YrSold',
      'SalePrice']
```

Find discrete variables To identify discrete variables- numerical variables with less than 20 unique values

```
[8]: # let's visualise the values of the discrete variables
discrete = [var for var in numerical if len(data[var].unique()) < 20 and var

→not in year_vars]

print(f'There are {len(discrete)} discrete variables')
```

discrete

There are 14 discrete variables

Continuous variables

```
[9]: # find continuous variables- hint numerical variables not in discrete and 
year_years

# Also remove the Id variable and the target variable SalePrice
# which are both also numerical

continuous = [var for var in numerical if var not in discrete and var not in [
'Id', 'SalePrice'] and var not in year_vars]

print('There are {} numerical and continuous variables'.format(len(numerical)))
continuous
```

There are 38 numerical and continuous variables

```
'EnclosedPorch',
'3SsnPorch',
'ScreenPorch',
'MiscVal']
```

1.1.3 Separate train and test set

[10]: ((1314, 79), (146, 79))

Now we will move on and engineer the features of this dataset. The most important part for this course.

1.1.4 Craete New Variables

Replace 'YearBuilt', 'YearRemodAdd', 'GarageYrBlt with time elapsed since YrSold So YearBuilt = YrSold-YearBuilt.

Similarly transform 'YearRemodAdd', 'GarageYrBlt. After making transformation drop YrSold

	MSSubClass	MSZoning	LotFrontage	${ t LotArea}$	${\tt Street}$	Alley	LotShape	\
930	20	RL	73.0	8925	Pave	NaN	IR1	
656	20	RL	72.0	10007	Pave	${\tt NaN}$	IR1	
45	120	RL	61.0	7658	Pave	${\tt NaN}$	Reg	
1348	20	RL	NaN	16196	Pave	${\tt NaN}$	IR3	
55	20	RL	100.0	10175	Pave	NaN	IR1	
	LandContour	Utilities	LotConfig La	ndSlope N	Neighbor	rhood (Condition1	\
930	HLS	AllPub	Inside	Gtl	T	imber	Norm	
656	Lvl	AllPub	Inside	Gtl	1	NAmes	Norm	
45	Lvl	AllPub	Inside	Gtl	Nr	idgHt	Norm	
1348	Low	AllPub	Inside	Gtl	Sav	wyerW	Norm	
55	Lvl	AllPub	Inside	Gtl	1	VAmes	Norm	
	Condition2 1	BldgType H	ouseStyle Ov	erallQual	l Overa	allCond	d YearBuil	t \
930	Norm	1Fam	1Story	8			5 200	7
			•					

45	Norm	TwnhsE	1Story	9	5	20	005
1348	Norm	1Fam	1Story	7	5	19	998
55	Norm	1Fam	1Story	6	5	19	964
			*	Exterior1st		MasVnrT	ype \
930	2	007 Ga	ble CompShg	VinylSd	VinylSd	No	one
656	2	006 Ga	ble CompShg	HdBoard	HdBoard	BrkFa	ace
45	2	005	Hip CompShg	MetalSd	MetalSd	BrkFa	ace
1348	1	998 Ga	ble CompShg	VinylSd	VinylSd	No	one
55	1	964 Ga	ble CompShg	HdBoard	Plywood	BrkFa	ace
				Foundation B	smtQual Bsmt	Cond \	
930	0.	0 G	d TA	PConc	Gd	TA	
656	54.	0 G	d TA	CBlock	TA	TA	
45	412.	0 E	x TA	PConc	Ex	TA	
1348	0.	0 G	d TA	PConc	Gd	TA	
55	272.	0 T	'A TA	CBlock	TA	TA	
	BsmtExposu	re BsmtFin	V -	inSF1 BsmtFi			\
930		Av	GLQ	16	Unf	0	
656		No	ALQ	806	Unf	0	
45		No	GLQ	456	Unf	0	
1348	1348 Gd		GLQ	1443	Unf	0	
55		No	BLQ	490	Unf	0	
000	BsmtUnfSF		_	HeatingQC Ce			\
930	1450		466 GasA	Ex	Y	SBrkr	
656	247		053 GasA	Ex	Y	SBrkr	
45	1296		752 GasA	Ex	Y	SBrkr	
1348	39		482 GasA	Ex	Y	SBrkr	
55	935	1	425 GasA	Gd	Y	SBrkr	
	1stFlrSF	2ndFlrSF	LowQualFinS	F GrLivArea	BsmtFullBa	th Ramtl	HalfRa+h ∖
930	1466	0	· ·	0 1466	Dom of Gilba	0	0
656	1053	0		0 1400		1	0
45	1752	0		0 1752		1	0
1348						1	0
	1494	0				_	
55	1425	0		0 1425		0	0
	FullBath	HalfBath	BedroomAbvG	r KitchenAb	vGr KitchenQ	ual \	
930	2	0		3	1	Gd	
656	1	1		3	1	Gd	
45	2	0		2	1	Ex	
1348	2	0		3	1	Gd	
55	2	0		3	1	TA	
00	Z	J		•	_	· n	

 ${\tt TotRmsAbvGrd\ Functional\ Fireplaces\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceQu\ GarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceGarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceS\ FireplaceGarageType\ GarageYrBlt\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceGarageType\ } \\ {\tt TotRmsAbvGrd\ Functional\ FireplaceGarag$

```
930
                                                                                 2007.0
                        7
                                  Тур
                                                0
                                                           NaN
                                                                    Attchd
      656
                        5
                                                0
                                                           {\tt NaN}
                                                                    Attchd
                                                                                  1959.0
                                  Тур
                                                            Gd
      45
                        6
                                  Тур
                                                1
                                                                    Attchd
                                                                                  2005.0
      1348
                        5
                                                            Fa
                                                                    Attchd
                                  Тур
                                                1
                                                                                  1998.0
      55
                        7
                                                1
                                                            Gd
                                                                    Attchd
                                                                                  1964.0
                                  Тур
           GarageFinish GarageCars
                                       GarageArea GarageQual GarageCond PavedDrive \
      930
                     Fin
                                              610
                                                           TA
                                                                       TA
                                                                                   Y
                                    3
      656
                     RFn
                                    1
                                              312
                                                           TA
                                                                       ТΑ
                                                                                   Y
      45
                     RFn
                                    2
                                              576
                                                           TA
                                                                       TA
                                                                                   Y
                     RFn
                                    2
                                                                       TA
                                                                                    Y
      1348
                                              514
                                                           TA
      55
                     RFn
                                    2
                                              576
                                                           TA
                                                                       TA
                                                                                   Y
                                       EnclosedPorch 3SsnPorch ScreenPorch
            WoodDeckSF
                         OpenPorchSF
      930
                    100
                                   18
                                                    0
                                                               0
      656
                      0
                                   0
                                                    0
                                                               0
                                                                             0
                    196
                                   82
                                                    0
                                                                             0
      45
                                                               0
      1348
                    402
                                   25
                                                    0
                                                               0
                                                                             0
      55
                      0
                                    0
                                                             407
                                                                             0
            PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType \
                                                                       2009
      930
                    0
                         NaN
                                NaN
                                             NaN
                                                         0
                                                                 7
                                                                                   WD
      656
                    0
                         NaN MnPrv
                                             NaN
                                                         0
                                                                 8
                                                                       2008
                                                                                  WD
                         NaN
                                             NaN
                                                         0
                                                                 2
      45
                    0
                                NaN
                                                                       2010
                                                                                  WD
      1348
                    0
                         NaN
                                NaN
                                             NaN
                                                         0
                                                                 8
                                                                       2007
                                                                                  WD
                    0
                         NaN
                                                         0
                                                                 7
      55
                                NaN
                                             NaN
                                                                       2008
                                                                                  WD
           SaleCondition
      930
                   Normal
      656
                  Normal
      45
                   Normal
      1348
                   Normal
      55
                   Normal
[12]: # function to calculate elapsed time
      def elapsed_years(df, var):
          # capture difference between year variable and
          # year the house was sold
          df[var] = df['YrSold'] - df[var]
          return df
[13]: for var in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']:
          X_train = elapsed_years(X_train, var)
          X_test = elapsed_years(X_test, var)
```

```
[14]: # drop YrSold
      X_train.drop('YrSold', axis=1, inplace=True)
      X_test.drop('YrSold', axis=1, inplace=True)
[15]: year vars.remove('YrSold')
[16]: # capture the column names for use later in the notebook
      final_columns = X_train.columns
      final_columns
[16]: Index(['MSSubClass', 'MSZoning', 'LotFrontage', 'LotArea', 'Street', 'Alley',
             'LotShape', 'LandContour', 'Utilities', 'LotConfig', 'LandSlope',
             'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'HouseStyle',
             'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'RoofStyle',
             'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'MasVnrArea',
             'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual', 'BsmtCond',
             'BsmtExposure', 'BsmtFinType1', 'BsmtFinSF1', 'BsmtFinType2',
             'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'Heating', 'HeatingQC',
             'CentralAir', 'Electrical', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF',
             'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
             'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual', 'TotRmsAbvGrd',
             'Functional', 'Fireplaces', 'FireplaceQu', 'GarageType', 'GarageYrBlt',
             'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual', 'GarageCond',
             'PavedDrive', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
             'ScreenPorch', 'PoolArea', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal',
             'MoSold', 'SaleType', 'SaleCondition'],
            dtype='object')
     1.1.5 Feature Engineering Pipeline
[17]: # I will treat discrete variables as if they were categorical
      # to treat discrete as categorical using Feature-engine
      # we need to re-cast them as object
      X_train[discrete] = X_train[discrete].astype('0')
      X_test[discrete] = X_test[discrete].astype('0')
[18]: # import relevant modules for feature engineering
      from sklearn.pipeline import Pipeline
      from sklearn.preprocessing import StandardScaler
      from feature_engine import missing_data_imputers as mdi
      from feature_engine import categorical_encoders as ce
      from feature_engine.variable_transformers import YeoJohnsonTransformer
      from sklearn.preprocessing import StandardScaler
      from feature_engine.discretisers import DecisionTreeDiscretiser
```

```
# missing data imputation
         ('missing_ind', mdi.AddNaNBinaryImputer(
            variables=['LotFrontage', 'MasVnrArea', 'GarageYrBlt'])),
         ('imputer_num', mdi.MeanMedianImputer(imputation_method='mean',
                                             ('imputer_cat', mdi.CategoricalVariableImputer(variables=categorical)),
         # categorical encoding
          ('rare_label_enc', ce.RareLabelCategoricalEncoder(
              tol=0.01,n_categories=6, variables=categorical+discrete)),
         ('categorical_enc', ce.MeanCategoricalEncoder(variables = categorical +u
      →discrete)),
         # Transforming Numerical Variables
         ('yjt', YeoJohnsonTransformer(variables = ['LotFrontage', 'MasVnrArea', __
      # discretisation and encoding
         ('treeDisc', DecisionTreeDiscretiser(cv=2,__
      ⇔scoring='neg_mean_squared_error',
                                       regression=True,
                                       param_grid={'max_depth': [1,2,3,4,5,6]})),
         # feature Scaling
         ('scaler', StandardScaler()),
     ])
[20]: house_preprocess.fit(X_train,y_train)
[20]: Pipeline(memory=None,
              steps=[('missing_ind',
                      AddNaNBinaryImputer(variables=['LotFrontage', 'MasVnrArea',
                                                   'GarageYrBlt'])),
                     ('imputer_num',
                     MeanMedianImputer(imputation_method='mean',
                                       variables=['LotFrontage', 'MasVnrArea',
                                                 'GarageYrBlt'])),
                     ('imputer_cat',
                     CategoricalVariableImputer(variables=['MSZoning', 'Street',
                                                          'Alley', 'LotShape',
```

[19]: house_preprocess = Pipeline([

```
'LandContour',
                                                               'Utilities', '...
                                                            'Utilities', 'LotConfig',
                                                            'LandSlope', 'Neighborhood',
                                                            'Condition1', 'Condition2',
                                                            'BldgType', 'HouseStyle',
                                                            'OverallQual',
                                                            'OverallCond', 'YearBuilt',
                                                            'YearRemodAdd', 'RoofStyle',
                                                            'RoofMatl', 'Exterior1st',
                                                            'Exterior2nd', 'MasVnrType',
                                                            'MasVnrArea', 'ExterQual',
                                                            'ExterCond', 'Foundation',
                                                            'BsmtQual', ...])),
                       ('scaler',
                       StandardScaler(copy=True, with_mean=True, with_std=True))],
               verbose=False)
[21]: # Apply Transformations
      X_train=house_preprocess.transform(X_train)
      X_test=house_preprocess.transform(X_test)
```

1.2 DO NOT CHANGE STEPS BEFORE THIS POINT

1.3 Regression Models- Tune different models one by one

1.3.1 Linear Regression

```
[22]: # Train a linear regression model, report the coefficients and model

→performance

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score

lr = LinearRegression().fit(X_train, y_train)
cv_scores = cross_val_score(lr, X_train, y_train)
```

C:\Users\nabhs\Anaconda3\lib\sitepackages\sklearn\model_selection_split.py:1978: FutureWarning: The default
value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to
silence this warning.
warnings.warn(CV_WARNING, FutureWarning)

Results

```
[23]: x_lrtrain= lr.predict(X_train)
x_lrtest = lr.predict(X_test)
```

```
# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_lrtrain)))
print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lrtrain))))
print('train r2: {}'.format(r2_score(y_train, x_lrtrain)))
print()
print('test mse: {}'.format(mean_squared_error(y_test, x_lrtest)))
print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lrtest))))
print('test r2: {}'.format(r2_score(y_test, x_lrtest)))

#print("Best parameters: {}".format(lr.best_params_))
print("Mean Cross-validation scores: {}".format(cv_scores))
print('Train score: {:.4f}'.format(lr.score(X_train, y_train)))
print('Test score: {:.4f}'.format(lr.score(X_test, y_test)))
```

train mse: 552937051.405446 train rmse: 23514.61357125492 train r2: 0.9114426745730106

test mse: 861097775.8563162 test rmse: 29344.467551078793 test r2: 0.8746968378820517

Mean Cross-validation scores: [8.76530743e-01 -7.34975702e+22 8.94769314e-01]

Train score: 0.9114 Test score: 0.8747

1.3.2 Ridge Regression

Results

```
[25]: x_gridtrain= grid_ridge.predict(X_train)
    x_gridtest = grid_ridge.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_gridtrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_gridtrain))))
    print('train r2: {}'.format(r2_score(y_train, x_gridtrain)))
    print()
    print('test mse: {}'.format(mean_squared_error(y_test, x_gridtest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_gridtest))))
    print('test r2: {}'.format(r2_score(y_test, x_gridtest)))

print("Best parameters: {}".format(grid_ridge.best_params_))
    print("Cross-validation scores: {}".format(grid_ridge.best_score_))
    print('Train score: {:.4f}'.format(grid_ridge.score(X_train, y_train)))
    print('Test score: {:.4f}'.format(grid_ridge.score(X_test, y_test)))
```

train mse: 552540520.7585117 train rmse: 23506.1804800038 train r2: 0.911506182152134

test mse: 858035459.791463 test rmse: 29292.242314159957 test r2: 0.8751424526508844 Best parameters: {'alpha': 1}

Cross-validation scores: 0.8843013657740887

Train score: 0.9115 Test score: 0.8751

1.3.3 Lasso

```
[26]: # Train a Lasso regression model, report the coefficients, the best parameters, □ → and model performance

# YOUR CODE HERE

from sklearn.linear_model import Lasso
lasso = Lasso(random_state=0)

#define a list of parameters
#param_lasso = {'alpha': [0.001, 0.01, 0.1, 1, 10, 100] }
param_lasso = {'alpha': [1, 1e4, 1e5] }
```

```
grid_lasso = GridSearchCV(lasso, param_lasso, cv=10, return_train_score = True)
grid_lasso.fit(X_train, y_train)
```

Results

```
[27]: x_lassotrain= grid_lasso.predict(X_train)
    x_lassotest = grid_lasso.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_lassotrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lassotrain))))
    print('train r2: {}'.format(r2_score(y_train, x_lassotrain)))
    print()
    print('test mse: {}'.format(mean_squared_error(y_test, x_lassotest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lassotest))))
    print('test r2: {}'.format(r2_score(y_test, x_lassotest)))

    print("Best parameters: {}".format(grid_lasso.best_params_))
    print("Cross-validation scores: {}''.format(grid_lasso.best_score_))
    print('Train score: {:.4f}'.format(grid_lasso.score(X_train, y_train)))
    print('Test score: {:.4f}'.format(grid_lasso.score(X_test, y_test)))
```

train mse: 552539222.3512008 train rmse: 23506.152861563733 train r2: 0.9115063901025299

test mse: 857849072.1153543 test rmse: 29289.060621934503 test r2: 0.87516957496597 Best parameters: {'alpha': 1}

Cross-validation scores: 0.8842639367598525

Train score: 0.9115 Test score: 0.8752

1.4 Linear Regression with SGD

```
[28]: from sklearn.linear_model import SGDRegressor
[29]: # create pipeline
      reg_sgd_pipe = Pipeline([
          # feature Scaling
          ('scaler', MinMaxScaler()),
          # regression
          ('sgd reg', SGDRegressor(max iter=1000, tol = 1e-6))
      1)
      param_sgd = {'sgd_reg__eta0':[0.01, 0.05, 0.1, 0.5],
                   'sgd_reg__penalty' :['l1','l2'],#lasso,ridge
                   'sgd_reg__alpha' :[0.1,0.01,0.001] }
      grid_linearsgd = GridSearchCV(reg_sgd_pipe,
                                    param_sgd,cv=5,
                                    n_{jobs=-1},
                                    return_train_score = True,
                                     scoring='neg_mean_squared_error')
      # let's fit the pipeline
      grid_linearsgd.fit(X_train, y_train)
      # let's get the predictions
      X_train_preds = grid_linearsgd.predict(X_train)
      X_test_preds = grid_linearsgd.predict(X_test)
```

C:\Users\nabhs\Anaconda3\lib\site-

packages\sklearn\model_selection_search.py:814: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.

DeprecationWarning)

1.4.1 Results

```
[30]: # check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, X_train_preds)))
print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, X_train_preds))))
print('train r2: {}'.format(r2_score(y_train, X_train_preds)))
print()
print('test mse: {}'.format(mean_squared_error(y_test, X_test_preds)))
print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, X_test_preds))))
print('test r2: {}'.format(r2_score(y_test, X_test_preds)))
```

```
print("Best parameters: {}".format(grid_linearsgd.best_params_))
print('Train score: {:.4f}'.format(grid_linearsgd.score(X_train, y_train)))
print('Test score: {:.4f}'.format(grid_linearsgd.score(X_test, y_test)))
```

train mse: 606391235.6555519
train rmse: 24625.01239909438
train r2: 0.9028815561273599

test mse: 989766831.120983
test rmse: 31460.559930188512
test r2: 0.8559734827144475
Best parameters: {'sgd_reg__alpha': 0.001, 'sgd_reg__eta0': 0.05, 'sgd_reg__penalty': 'l1'}
Train score: -606391235.6556
Test score: -989766831.1210

1.5 Polynomial Regression

```
[31]: #apply polynomial regression in pipeline
      #pipe_poly = make_pipeline(PolynomialFeatures(), MinMaxScaler(), __
      → LinearRegression())
      pipe_poly=Pipeline([
          ('polynomialfeatures', PolynomialFeatures()),
          ('scaler', MinMaxScaler()),
          ('norm_reg', LinearRegression())
      ])
      #define a list of parameters
      param_poly = {'polynomialfeatures__degree':range(1,3)}
      grid_poly = GridSearchCV(pipe_poly, param_poly,cv=5, n_jobs=-1,__
       →return_train_score = True,scoring='neg_mean_squared_error')
      grid_poly.fit(X_train, y_train)
      # let's get the predictions
      X_train_preds = grid_poly.predict(X_train)
      X_test_preds = grid_poly.predict(X_test)
```

C:\Users\nabhs\Anaconda3\lib\site-

packages\sklearn\model_selection_search.py:814: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.

DeprecationWarning)

1.5.1 Results

```
[32]: x polytrain= grid lasso.predict(X train)
      x_polytest = grid_lasso.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean squared_error(y_train, x_polytrain)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_polytrain))))
      print('train r2: {}'.format(r2_score(y_train, x_polytrain)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_polytest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_polytest))))
      print('test r2: {}'.format(r2_score(y_test, x_polytest)))
      print("Best parameters: {}".format(grid poly.best params ))
      print("Cross-validation scores: {}".format(grid_poly.best_score_))
      print('Train score: {:.4f}'.format(grid_poly.score(X_train, y_train)))
      print('Test score: {:.4f}'.format(grid_poly.score(X_test, y_test)))
     train mse: 552539222.3512008
     train rmse: 23506.152861563733
     train r2: 0.9115063901025299
     test mse: 857849072.1153543
     test rmse: 29289.060621934503
     test r2: 0.87516957496597
     Best parameters: {'polynomialfeatures__degree': 2}
     Cross-validation scores: -6.118248744280687e+32
     Train score: -27597.3189
     Test score: -2148247783488639653001383903232.0000
[33]: print('train mse: {}'.format(mean_squared_error(y_train, X_train_preds)))
      print('train rmse: {}'.format(sqrt(mean squared error(y train, X train preds))))
      print('train r2: {}'.format(r2_score(y_train, X_train_preds)))
      print('test mse: {}'.format(mean_squared_error(y_test, X_test_preds)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, X_test_preds))))
      print('test r2: {}'.format(r2_score(y_test, X_test_preds)))
     train mse: 27597.318873668188
     train rmse: 166.12440782036873
     train r2: 0.9999955800669494
     test mse: 2.1482477834886397e+30
     test rmse: 1465690207202272.2
     test r2: -3.126035716632908e+20
```

1.6 ElasticNet

```
[34]: from sklearn.linear_model import ElasticNet
      elasticnet = ElasticNet().fit(X_train, y_train)
      #define a list of parameters
      param_elasticnet = {'alpha':[1, 1e4, 1e5],
                          'l1_ratio' :[0.2,0.4,0.6,0.8]}
      grid_elasticnet = GridSearchCV(elasticnet , param_elasticnet, cv=5,_
      →return_train_score = True)
      grid_elasticnet.fit(X_train, y_train)
      x_elastictrain_predict = grid_elasticnet.predict(X_train)
      x_elastictest_predict = grid_elasticnet.predict(X_test)
[35]: print('train mse: {}'.format(mean_squared_error(y_train,__
      →x_elastictrain_predict)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
       →x_elastictrain_predict))))
      print('train r2: {}'.format(r2 score(y train, x elastictrain predict)))
      print('test mse: {}'.format(mean_squared_error(y_test, x_elastictest_predict)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test,__
      →x_elastictest_predict))))
      print('test r2: {}'.format(r2_score(y_test, x_elastictest_predict)))
      print()
      print('Best parameters: ', grid_elasticnet.best_params_)
      print('Best cross-validation score:', grid_elasticnet.score(X_test, y_test))
      print("Training set score: {:.2f}".format(elasticnet.score(X_train, y_train)))
      print("Test set score: {:.2f}".format(elasticnet.score(X_test, y_test)))
     train mse: 580812656.1496782
     train rmse: 24100.055106776796
     train r2: 0.9069781717972707
     test mse: 908630644.7418916
     test rmse: 30143.500870699998
     test r2: 0.8677800638026185
     Best parameters: {'alpha': 1, 'l1_ratio': 0.8}
     Best cross-validation score: 0.8677800638026185
     Training set score: 0.90
     Test set score: 0.85
```

1.7 Tune Multiple Models with one GridSearch

1.7.1 Model - Linear Regression with Model Parameter - Ridge *GridSearch

```
[36]: model_linear = Pipeline([("regressor", LinearRegression())])
[37]: model parm gd1 = [{ 'regressor': [Ridge()]}]
[38]: from sklearn import svm
      grid_search_linear = GridSearchCV(svm.SVC(gamma='auto'),{
          'C':[30],
          'kernel':['linear']
      },cv=5,return_train_score=False)
[39]: grid_search_linear = GridSearchCV(model_linear,model_parm_gd1)
[40]: grid_search_linear.fit(X_train,y_train)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\model_selection\_split.py:1978: FutureWarning: The default
     value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to
     silence this warning.
       warnings.warn(CV_WARNING, FutureWarning)
[40]: GridSearchCV(cv='warn', error_score='raise-deprecating',
                   estimator=Pipeline(memory=None,
                                      steps=[('regressor',
                                              LinearRegression(copy_X=True,
                                                                fit_intercept=True,
                                                                n_jobs=None,
                                                                normalize=False))],
                                      verbose=False),
                   iid='warn', n jobs=None,
                   param_grid=[{'regressor': [Ridge(alpha=1.0, copy_X=True,
                                                    fit intercept=True, max iter=None,
                                                    normalize=False,
                                                    random_state=None, solver='auto',
                                                    tol=0.001)]}],
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring=None, verbose=0)
     Results
[41]: x_lrtrain= grid_search_linear.predict(X_train)
      x_lrtest = grid_search_linear.predict(X_test)
      # check model performance:
```

```
print('train mse: {}'.format(mean_squared_error(y_train, x_lrtrain)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lrtrain))))
      print('train r2: {}'.format(r2_score(y_train, x_lrtrain)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_lrtest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lrtest))))
      print('test r2: {}'.format(r2_score(y_test, x_lrtest)))
      print()
      print("Best parameters: {}".format(grid_search_linear.best_params_))
      print("Cross-validation scores: {}".format(grid_search_linear.best_score_))
      print('Train score: {:.4f}'.format(grid_search_linear.score(X_train, y_train)))
      print('Test score: {:.4f}'.format(grid_search_linear.score(X_test, y_test)))
     train mse: 552540520.7585117
     train rmse: 23506.1804800038
     train r2: 0.911506182152134
     test mse: 858035459.791463
     test rmse: 29292.242314159957
     test r2: 0.8751424526508844
     Best parameters: {'regressor': Ridge(alpha=1.0, copy_X=True, fit_intercept=True,
     max_iter=None,
           normalize=False, random_state=None, solver='auto', tol=0.001)}
     Cross-validation scores: 0.8783595644720746
     Train score: 0.9115
     Test score: 0.8751
     1.8 Linear Regression with Model Parameter - Lasso *GridSearchCV
[42]: model_linear2 = Pipeline([("regressor", LinearRegression())])
[43]: model parm gd2 = [{ 'regressor': [Lasso(random state=0)]}]
[44]: grid_search_linear2 = GridSearchCV(svm.SVC(gamma='auto'),{
          'C': [1,10,20,30],
          'kernel':['polynomial']
      },cv=5,return train score=False)
[45]: grid search linear2 = GridSearchCV(model_linear2,model_parm_gd2)
[46]: grid search linear2.fit(X train, y train)
```

C:\Users\nabhs\Anaconda3\lib\site-

```
packages\sklearn\model_selection\_split.py:1978: FutureWarning: The default
     value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to
     silence this warning.
       warnings.warn(CV_WARNING, FutureWarning)
[46]: GridSearchCV(cv='warn', error_score='raise-deprecating',
                   estimator=Pipeline(memory=None,
                                      steps=[('regressor',
                                              LinearRegression(copy_X=True,
                                                                fit_intercept=True,
                                                                n_jobs=None,
                                                                normalize=False))],
                                      verbose=False).
                   iid='warn', n_jobs=None,
                   param grid=[{'regressor': [Lasso(alpha=1.0, copy X=True,
                                                    fit_intercept=True, max_iter=1000,
                                                    normalize=False, positive=False,
                                                    precompute=False, random state=0,
                                                    selection='cyclic', tol=0.0001,
                                                    warm_start=False)]}],
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring=None, verbose=0)
```

Results

```
[47]: x_lrtrain= grid_search_linear2.predict(X_train)
    x_lrtest = grid_search_linear2.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_lrtrain)))
    print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_lrtrain))))
    print('train r2: {}'.format(r2_score(y_train, x_lrtrain)))
    print()
    print('test mse: {}'.format(mean_squared_error(y_test, x_lrtest)))
    print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_lrtest))))
    print('test r2: {}'.format(r2_score(y_test, x_lrtest)))
    print('Best parameters: {}".format(grid_search_linear2.best_params_))
    print("Cross-validation scores: {}".format(grid_search_linear2.score(X_train, y_train)))
    print('Train score: {:.4f}'.format(grid_search_linear2.score(X_test, y_test)))
```

train mse: 552539222.3512008
train rmse: 23506.152861563733
train r2: 0.9115063901025299

test mse: 857849072.1153543

```
test rmse: 29289.060621934503
     test r2: 0.87516957496597
     Best parameters: {'regressor': Lasso(alpha=1.0, copy_X=True, fit_intercept=True,
     max iter=1000,
           normalize=False, positive=False, precompute=False, random_state=0,
           selection='cyclic', tol=0.0001, warm start=False)}
     Cross-validation scores: 0.8782561788110849
     Train score: 0.9115
     Test score: 0.8752
     1.9 Pipeline - RandomForest Regressor with Model Parameter - Linear Regres-
          sion *GridSearchCV
[48]: from sklearn.ensemble import RandomForestRegressor
[49]: model rf = Pipeline([('regressor', RandomForestRegressor(random state = 42))])
[50]: model_parm_rf = [{ 'regressor': [LinearRegression()]}]
[51]: from sklearn import svm
[52]: grid_rf = GridSearchCV(svm.SVC(gamma='auto'),{
          'C':[30],
          'kernel':['linear']
      },cv=5,return_train_score=False)
[53]: grid_rf = GridSearchCV(model_rf, model_parm_rf)
[54]: grid_rf.fit(X_train,y_train)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\model_selection\_split.py:1978: FutureWarning: The default
     value of cv will change from 3 to 5 in version 0.22. Specify it explicitly to
     silence this warning.
       warnings.warn(CV_WARNING, FutureWarning)
[54]: GridSearchCV(cv='warn', error_score='raise-deprecating',
                   estimator=Pipeline(memory=None,
                                      steps=[('regressor',
                                              RandomForestRegressor(bootstrap=True,
                                                                    criterion='mse',
                                                                    max_depth=None,
     max_features='auto',
     max_leaf_nodes=None,
     min_impurity_decrease=0.0,
```

```
min_impurity_split=None,
     min_samples_leaf=1,
     min_samples_split=2,
     min_weight_fraction_leaf=0.0,
     n_estimators='warn',
                                                                     n_jobs=None,
                                                                     oob score=False,
                                                                     random_state=42,
                                                                     verbose=0,
      warm_start=False))],
                                      verbose=False).
                   iid='warn', n_jobs=None,
                   param_grid=[{'regressor': [LinearRegression(copy_X=True,
                                                                fit_intercept=True,
                                                                n jobs=None,
                                                               normalize=False)]}],
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring=None, verbose=0)
[55]: x_rftrain= grid_rf.predict(X_train)
      x_rftest = grid_rf.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean squared error(y train, x rftrain)))
      print('train rmse: {}'.format(sqrt(mean squared error(y train, x rftrain))))
      print('train r2: {}'.format(r2_score(y_train, x_rftrain)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_rftest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_rftest))))
      print('test r2: {}'.format(r2_score(y_test, x_rftest)))
      print("Best parameters: {}".format(grid_rf.best_params_))
      print("Cross-validation scores: {}".format(grid_rf.best_score_))
      print('Train score: {:.4f}'.format(grid_rf.score(X_train, y_train)))
      print('Test score: {:.4f}'.format(grid_rf.score(X_test, y_test)))
     train mse: 552937051.405446
     train rmse: 23514.61357125492
     train r2: 0.9114426745730106
     test mse: 861097775.8563162
     test rmse: 29344.467551078793
     test r2: 0.8746968378820517
     Best parameters: {'regressor': LinearRegression(copy_X=True, fit_intercept=True,
     n jobs=None, normalize=False)}
     Cross-validation scores: -2.449919008266954e+22
```

Train score: 0.9114 Test score: 0.8747

1.10 KNN Regressor

```
[56]: from sklearn.neighbors import KNeighborsRegressor
      from sklearn.pipeline import make_pipeline
      from sklearn.preprocessing import MinMaxScaler
      knnreg = KNeighborsRegressor().fit(X_train, y_train)
      print("Training set score: {:.2f}".format(knnreg.score(X_train, y_train)))
      print("Test set score: {:.2f}".format(knnreg.score(X_test, y_test)))
     Training set score: 0.88
     Test set score: 0.59
[57]: pipe knn = make pipeline(MinMaxScaler(), KNeighborsRegressor())
      knnreg = pipe_knn.fit(X_train, y_train)
      print("Training set score: {:.2f}".format(knnreg.score(X train, y train)))
      print("Test set score: {:.2f}".format(knnreg.score(X_test, y_test)))
     Training set score: 0.86
     Test set score: 0.71
[58]: from sklearn.model_selection import GridSearchCV
      pipe_knn=Pipeline([
          ('scaler', MinMaxScaler()),
          ('knnreg', KNeighborsRegressor())
      ])
      # define a list of parameters
      #param_knn = {'n_neighbors': [5, 10, 15, 20, 25, 30]}
      param_knn = {'knnreg__n_neighbors': range(1,25)}
      #apply grid search
      grid_knn = GridSearchCV(pipe_knn, param_knn, cv=5, return_train_score=True)
      grid_knn.fit(X_train, y_train)
[58]: GridSearchCV(cv=5, error_score='raise-deprecating',
                   estimator=Pipeline(memory=None,
                                      steps=[('scaler',
                                              MinMaxScaler(copy=True,
                                                           feature_range=(0, 1))),
                                              ('knnreg',
                                              KNeighborsRegressor(algorithm='auto',
                                                                  leaf_size=30,
                                                                  metric='minkowski',
                                                                  metric_params=None,
```

1.10.1 Results

```
[59]: x_knntrain= grid_knn.predict(X_train)
x_knntest = grid_knn.predict(X_test)

# check model performance:

print('train mse: {}'.format(mean_squared_error(y_train, x_knntrain)))
print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_knntrain))))
print('train r2: {}'.format(r2_score(y_train, x_knntrain)))
print()
print('test mse: {}'.format(mean_squared_error(y_test, x_knntest)))
print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_knntest))))
print('test r2: {}'.format(r2_score(y_test, x_knntest)))
print('train score: ', grid_knn.score(X_train, y_train))
print('test score: ', grid_knn.score(X_test, y_test))

#find best parameters
print('Best parameters: ', grid_knn.best_params_)
print('Best cross-validation score:', grid_knn.best_score_)
```

train mse: 926540858.0310757 train rmse: 30439.13366098115 train r2: 0.8516070137143069

test mse: 1657648286.6700912 test rmse: 40714.227079364915 test r2: 0.7587863099604379

train score: 0.8516070137143069 test score: 0.7587863099604379

Best parameters: {'knnreg_n_neighbors': 6}
Best cross-validation score: 0.7858788323709909

1.11 ElasticNet with GridSearch

```
[60]: elasticnet = ElasticNet()
      #define a list of parameters
      param_elasticnet = {'alpha': [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10],
      \leftrightarrow'l1_ratio' :[0.2,0.4,0.6,0.8]}
      grid_elasticnet = GridSearchCV(elasticnet , param_elasticnet, cv=5,_
      →return_train_score = True)
      grid_elasticnet.fit(X_train, y_train)
      grid_elasticnet_train_score = grid_elasticnet.score(X_train, y_train)
      grid_elasticnet_test_score = grid_elasticnet.score(X_test, y_test)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
     Duality gap: 275261918430.7595, tolerance: 657118734.8147435
       positive)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
     Duality gap: 270472843507.742, tolerance: 655974723.0327224
       positive)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
     Duality gap: 269415475236.1935, tolerance: 635955900.9288123
       positive)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
     Duality gap: 293367949607.249, tolerance: 642749145.1567798
       positive)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
     Duality gap: 299702168310.0032, tolerance: 689033704.679551
       positive)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
     Duality gap: 275132322643.92615, tolerance: 657118734.8147435
       positive)
     C:\Users\nabhs\Anaconda3\lib\site-
     packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
     Objective did not converge. You might want to increase the number of iterations.
```

```
Duality gap: 270265546612.78378, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269359988115.02875, tolerance: 635955900.9288123
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293114639456.2878, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299461621874.3815, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274876218400.22867, tolerance: 657118734.8147435
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269853488069.79288, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269250900786.1243, tolerance: 635955900.9288123
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 292610782725.36975, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 298983659623.677, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274113520713.21634, tolerance: 657118734.8147435
  positive)
```

C:\Users\nabhs\Anaconda3\lib\site-

```
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268620977582.17148, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268927308309.11826, tolerance: 635955900.9288123
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 291102803101.93744, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 297554322499.26166, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 275285371342.0834, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270500219669.26224, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269455263299.4938, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293390700602.9906, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299724423882.7319, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 275126170208.67175, tolerance: 657118734.8147435
```

```
positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270267583340.30392, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269382447458.56412, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293109101936.22723, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299452447939.0266, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274841772404.84204, tolerance: 657118734.8147435
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269830678356.61826, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269256329279.5095, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 292577554374.5457, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 298943887810.3167, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
```

packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:

```
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274051946790.85733, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268573717281.67993, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268915978578.34824, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 291042350452.3709, tolerance: 642749145.1567798
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 297484634292.5844, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274840164312.18774, tolerance: 657118734.8147435
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270621725492.51758, tolerance: 655974723.0327224
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269731153808.08066, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 293432778873.37506, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299665315171.12964, tolerance: 689033704.679551
 positive)
```

```
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 274320207459.15918, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 270089455409.16162, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269461868093.74542, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 292811730158.3288, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 299004317909.24976, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 273940590197.94852, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269428587209.82605, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 269193156672.4067, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 292033002979.416, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
```

Objective did not converge. You might want to increase the number of iterations.

```
Duality gap: 298242533193.7177, tolerance: 689033704.679551
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 273151756027.88977, tolerance: 657118734.8147435
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 267998525106.42767, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 268738473819.79742, tolerance: 635955900.9288123
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 290312550120.06335, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 296613343354.8944, tolerance: 689033704.679551
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 221086170647.84283, tolerance: 655974723.0327224
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 204650042677.63684, tolerance: 635955900.9288123
 positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear_model\coordinate_descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 232586340970.15808, tolerance: 642749145.1567798
  positive)
C:\Users\nabhs\Anaconda3\lib\site-
packages\sklearn\linear model\coordinate descent.py:475: ConvergenceWarning:
Objective did not converge. You might want to increase the number of iterations.
Duality gap: 186705495812.65787, tolerance: 689033704.679551
 positive)
```

1.11.1 Results

```
[61]: # let's get the predictions
      x_elastictrain= grid_elasticnet.predict(X_train)
      x_elastictest = grid_elasticnet.predict(X_test)
      # check model performance:
      print('train mse: {}'.format(mean_squared_error(y_train, x_elastictrain)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train,_
       →x_elastictrain))))
      print('train r2: {}'.format(r2_score(y_train, x_elastictrain)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_elastictest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_elastictest))))
      print('test r2: {}'.format(r2_score(y_test, x_elastictest)))
      print('Training set score: ', grid_elasticnet_train_score)
      print('Test score: ', grid_elasticnet_test_score)
      #find best parameters
      print('Best parameters: ', grid_elasticnet.best_params_)
      print('Best cross-validation score:', grid_elasticnet.best_score_)
```

train mse: 560460520.2398213 train rmse: 23674.04739878294 train r2: 0.9102377304004107

test mse: 872749277.5992303 test rmse: 29542.33026691074 test r2: 0.8730013625797748

Training set score: 0.9102377304004107

Test score: 0.8730013625797748

Best parameters: {'alpha': 0.1, 'l1_ratio': 0.2} Best cross-validation score: 0.8840622166107981

1.12 Decision Tree Regression

```
grid_dtree.fit(X_train,y_train)
[62]: GridSearchCV(cv=5, error_score='raise-deprecating',
                   estimator=DecisionTreeRegressor(criterion='mse', max_depth=None,
                                                   max_features=None,
                                                   max_leaf_nodes=None,
                                                   min_impurity_decrease=0.0,
                                                   min_impurity_split=None,
                                                   min_samples_leaf=1,
                                                   min_samples_split=2,
                                                   min weight fraction leaf=0.0,
                                                   presort=False, random_state=0,
                                                   splitter='best'),
                   iid='warn', n_jobs=None,
                   param grid={'max depth': range(1, 30),
                               'max_leaf_nodes': range(2, 20),
                               'min_samples_split': range(2, 30)},
                   pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                   scoring=None, verbose=0)
[63]: # let's get the predictions
     x_dtreetrain= grid_dtree.predict(X_train)
     x_dtreetest = grid_dtree.predict(X_test)
     print('train mse: {}'.format(mean_squared_error(y_train, x_dtreetrain)))
     print('train rmse: {}'.format(sqrt(mean squared error(y train, x dtreetrain))))
     print('train r2: {}'.format(r2_score(y_train, x_dtreetrain)))
     print()
     print('test mse: {}'.format(mean_squared_error(y_test, x_dtreetest)))
     print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_dtreetest))))
     print('test r2: {}'.format(r2_score(y_test, x_dtreetest)))
     print('Best parameters: ', grid_dtree.best_params_)
     print("Accuracy on training set: {:.4f}".format(grid_dtree.score(X_train,_
     print("Accuracy on test set: {:.3f}".format(grid_dtree.score(X_test, y_test)))
     train mse: 1105977258.816959
     train rmse: 33256.23638984061
     train r2: 0.8228688278802175
     test mse: 1548654925.2624905
     test rmse: 39352.953196202325
     test r2: 0.7746465446714791
     Best parameters: {'max_depth': 6, 'max_leaf_nodes': 19, 'min_samples_split':
     29}
```

Accuracy on training set: 0.8229 Accuracy on test set: 0.775

1.13 SVM

C:\Users\nabhs\Anaconda3\lib\site-

packages\sklearn\model_selection_split.py:657: Warning: The least populated class in y has only 1 members, which is too few. The minimum number of members in any class cannot be less than n_splits=5.

% (min_groups, self.n_splits)), Warning)

C:\Users\nabhs\Anaconda3\lib\site-

packages\sklearn\model_selection_search.py:814: DeprecationWarning: The default of the `iid` parameter will change from True to False in version 0.22 and will be removed in 0.24. This will change numeric results when test-set sizes are unequal.

DeprecationWarning)

```
'kernel': ['sigmoid']}],
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)
```

1.13.1 Results

```
[65]: # let's get the predictions
      x_svctrain= grid_svc_kernel.predict(X_train)
      x_svctest = grid_svc_kernel.predict(X_test)
      print('train mse: {}'.format(mean_squared_error(y_train, x_svctrain)))
      print('train rmse: {}'.format(sqrt(mean_squared_error(y_train, x_svctrain))))
      print('train r2: {}'.format(r2_score(y_train, x_svctrain)))
      print()
      print('test mse: {}'.format(mean_squared_error(y_test, x_svctest)))
      print('test rmse: {}'.format(sqrt(mean_squared_error(y_test, x_svctest))))
      print('test r2: {}'.format(r2_score(y_test, x_svctest)))
      print('Best parameters: ', grid_svc_kernel.best_params_)
      print('train score: ', grid_svc_kernel.score(X_train, y_train))
      print('test score: ', grid_svc_kernel.score(X_train, y_train))
     train mse: 2439782937.844749
     train rmse: 49394.15894460345
     train r2: 0.609249097978234
     test mse: 3425485845.3767123
     test rmse: 58527.650263586635
     test r2: 0.501538361553501
     Best parameters: {'C': 1, 'gamma': 'auto', 'kernel': 'poly'}
     train score: 0.3082191780821918
     test score: 0.3082191780821918
 []:
 []:
```