Predicting Wine Quality

Data Collected:

- Features included profiles on alcohol content, chlorides, citric acid, acidity, sulfur dioxide, residual sugar, density, and pH for each wine
- Target = quality score (discrete value between 1 and 10)
- Train and Test dataset supplied by Kaggle
- 2056 wines included in training data
- We discovered our dataset was generated from a larger dataset that separately described red and white wines. The Kaggle competition dataset we used does not differentiate between reds and whites for the quality scoring.

Test Data Quality Score Distribution

Exploring Our Data

Decision Tree Model:

Kappa Score : 0.2883 :(Classification Report:

	precision	recall	f1-score	support
3	0.00	0.00	0.00	2
4	0.00	0.00	0.00	8
5	0.60	0.57	0.58	169
6	0.47	0.46	0.46	158
7	0.30	0.30	0.30	69
8	0.00	0.00	0.00	6
accuracy	/		0.46	412
macro a	vg 0.23	0.22	0.23	412
weighted	d avg 0.48	0.46	0.47	412

Random Forest Model

р	recision	recall	f1-score	support
3	0.00	0.00	0.00	2
4	0.00	0.00	0.00	11
5	0.65	0.70	0.68	216
6	0.48	0.62	0.54	183
7	0.61	0.27	0.38	91
8	0.00	0.00	0.00	11
accuracy			0.57	514
macro av	g 0.29	0.27	0.27	514
weighted :	ava 0.55	0.57	0.54	514

Gradient Boosting Model:

Kappa Score : 0.5528 Classification Report:

Classification Report:						
	pre	ecision	recall	f1-score	support	
	3 4 5 6 7 8	0.00 1.00 0.65 0.52 0.57 0.00	0.00 0.12 0.73 0.59 0.35 0.00	0.00 0.22 0.69 0.56 0.43 0.00	2 8 169 158 69 6	
	accuracy			0.59	412	
n	nacro avg	0.46	0.30		412	
	ghted avg	0.58			412	

XGBoost Matrix Model

Kappa Score: 0.5329 **Classification Report**:

pr	ecision	recall	f1-score	support
3 4 5 6 7 8	0.00 0.00 0.72 0.53 0.50 0.00	0.00 0.00 0.73 0.67 0.36 0.00	0.00 0.00 0.72 0.59 0.42 0.00	2 11 168 156 67 8
accuracy macro avg weighted avg	0.29 0.58	0.39 0.6		412 412 412

Gradient_Boosting Classifier Model:

Confusion Matrix from Fourth Gradient Boosted Search

Learning Rate: 0.05, Tree Depth: 2, Number of Trees: 30

Quadratic Kappa Score: 0.5528, Model Compute Time: 0.42 sec

Random_Forest Model

Gradient Boosting

Random_Forest ROC plot

Gradient Boosting ROC-OvR plot

Recommended Model to Use

- XGBoost model showed the most promise for our dataset
- Second Highest kappa score
- Best runtime (seconds vs. 30+ minutes)
- Process of elimination with our multiclass dataset knowing what would or wouldn't be realistic

Parameters of model

Best Estimators: 30

Best Learning Rate: 0.1

Best Max Depth: 3

Accuracy: 0.61

F1: 0.59

Precision: 0.58 Recall: 0.61

Runtime: 39.2 Seconds

When you force your data to fit the constraints of your model

Limitations

Machine learning bias

Great advice.

Future Plans:

- Using a wider variety and collection of wine data
- Look into building a system granularity depending on wine color
- Look for other classifiers to enhance the machine learning algorithm

Thank You for Our Time Together

End of presentation

Bonus slides follow this slide

Distribution of Feature Values

Distribution of Feature Values in 'Real' Wine

Feature weights of Kaggle Data

Feature weights of 'Real' Red & White Wine Data

Confusion Plot of 'Real' Red & White Wine Data

Learning Rate: 0.1, Tree Depth: 5, Number of Trees: 200

Quadratic Kappa Score: 0.6504, Model Compute Time: 23.92 sec

ROC-OvO plot

