Premier University Department of Computer Science and Engineering 2nd Semester Final Exam-November, 2016 Course Title: Engineering Mathematics 11 Course Code: MAT 107

Fotal Marks: 50	Time: 3 hours	
Answer any five of the following questions (10 \times 5=50)	•	
Q1. a) Rewrite the integral $\int_{0}^{10} [(x^2 - 3)^2] x(x-1)^2 1 dx$ by using the Meti	hod of Partial 5	
Fractions. b) Evaluate this definite integral.	5.	
Q2. a) Evaluate $\int_{\Omega} \int_{\Omega'} \int_{\Omega'} [xy \cdot yz \cdot zx] dxdydz$, this definite integral.	5	
 h) Compute the indefinite integral [e *sin(x)dx. 	-5	
Q3. If [a, b] = [-3, 4], $P = (-3, -2, 1, 5/2, 4)$, and $f(x) = x^2 - 1$; then find U ₁	(P) and L _i (P). 10	
Q4. a) Assume that a sphere of ice melts at a rate proportional (, with proportionality k=10,) to its surface area: Find an expression for	constant of r the volume at	
any time t. b) Solve $x^2(dy/dx) = xy - 2y^2$	5	
Q5. Given $(y + e^{2x})dx + xdy = 0$,	2	
a) Determine (/exhibit the method) if it is exact.	6	
 b) Find general solution c) Check your solution by implicit differentiation. 	2	
	5	
Q6. a) Solve $x(dy/dx) + 2y = xy^3$	5	
b) Solve $(dy/dx) - y - 2Cos(x)$		
Q7. Solve $y'' + 3y' - y = 2e^*sin(2x)$, or Find the fundamental system of solution $y' - y = 0$ by showing that your solution functions are linearly independently, by computing relevant Wronskian).	olutions of y" + dent (of each 10	

Premier University Department of Computer Science & Engineering 2nd Semester Final Examination, May 2017 Course Title: Engineering Math II Course No.: MAT 107

Time: 3 Hours

Marks: 50

Answer any five (5) from following seven (7) questions.

- Q1 (a) (5 marks) Rewrite the integral $\int_{c^{2c}} [dx/(x^2 + x + 1)]$ by using the Method of Partial 5+5 Fractions; (b) (5 marks) Evaluate this definite integral.
- Q2 (a) Find the solution for the initial value problem $\frac{dI}{dt} + \frac{10I}{2t+5} = 10; t > 0, I(0) = 0$ (b) Solve $(D^3 + 1)y = 3 + e^{-x} + 5e^{2x}$
- Q3 (a) Evaluate $\int_0^{2x} \int_0^{\infty} \int_0^{4n} [x-y^2-z^3] dxdydz$, this definite integral. (b) Compute the indefinite integral $\int_0^{2x} \cos((\pi x)/3) dx$.
- Q4 (a) Solve the following differential equation 5+5 $\frac{dy}{dx} + \frac{2}{x}y = \frac{y^2}{x^4}$ (b) Solve $(D^2 4D + 3)y = \cos 2x$.
- Q5 Given dy/dx= [-Cos(xy) + xySin(xy)]/[-x²Sin(xy) + 2y] = 0, (a) (2 marks) Determine 10 (by exhibiting a method) if it is exact, (b) (5 marks) Find general solution, (c) (2 marks) Check your solution by implicit differentiation, (d) (1 mark) Find particular solution if y(2)=6.
- Q6 (a) If $I_{m,n} = \int \cos^m x \sin nx dx$, then prove that $I_{m,n}(m+n) = -\cos^m x \cos nx + mI_{m-1,n-1}$ and $\frac{1}{2} \cos^2 x \sin 4x dx$.
 - (b) Define Beta and Gamma function. Also evaluate following integral $\int_{0}^{\pi} x \sin^{\frac{\pi}{2}} x \cos^{\frac{\pi}{2}} x dx$
- Q7 Solve $y'' + 3y' y = 4e^xCos(4x)$ by following the Method of Undetermined Co-10 efficients, or find the fundamental system of solutions of y'' + 3y' y = 0 by showing that your solution functions are linearly independent (of each other, by computing relevant Wronskian).

Premier University Department of Computer Science & Engineering 2nd Semester Final Examination, May 2017

Course Title: Engineering Math II Course No. : MAT 107

Marks: 50

Time: 3 Hours

Answer any five (5) from following seven (7) questions.

- Q1 (a) (5 marks) Rewrite the integral $\int_{e^{2\epsilon}} [dx/(x^2 + x + 1)]$ by using the Method of Partial 545 Fractions: (b) (5 marks) Evaluate this definite integral.
- 5+5 Q2 (a) Find the solution for the initial value problem

$$\frac{dI}{dt} + \frac{10I}{2t+5} = 10; t > 0, I(0) = 0$$

(b) Solve $(D^3 + 1)v = 3 + e^{-1} + 5e^{2x}$

- 5+5 (a) Evaluate $\int_0^{2\pi} \int_0^{\infty} \int_0^{10} [x-y^2-z^3] dxdydz$, this definite integral. 03(b) Compute the indefinite integral le scos((ax)/3)dx,
- 5+5 (a) Solve the following differential equation 04 $\frac{dy}{dx} + \frac{2}{x}y = \frac{y^3}{x^3}$

(b) Solve
$$(D^2 - 4D + 3)y = \cos 2x$$
.

- Q5 Given $dy/dx = [-Cos(xy) + xySin(xy)]/[-x^2Sin(xy) + 2y] = 0$. (a) (2 marks) Determine (by exhibiting a method) if it is exact, (b) (5 marks) Find general solution, (c) (2 marks) Cheek your solution by implicit differentiation. (d) (1 mark) Find particular solution if y(2)-6.
- Q6 (a) If $I_{mn} = \int \cos^m x \sin nx dx$, then prove that $I_{m,n}(m+n) = -\cos^m x \cos nx + mI_{m+1,m-1}$ and 5 ± 5 . evaluate Cos x sin 4xdx.
 - (b) Define Beta and Gamma function. Also evaluate following integral $\int x \sin^4 x \cos^4 x dx$
- Q7 Solve $y'' + 3y' y = 4e^{x}Cos(4x)$ by following the Method of Undetermined Co- 10 efficients, or find the fundamental system of solutions of y'' + 3y' - y = 0 by showing that your solution functions are linearly independent (of each other, by computing relevant Wronskian).

Page 1 of 1

Premier University

Department of Computer Science & Engineering 2nd Semester Final Examination, May 2017

Course Title: Engineering Math II Course No. : MAT 107

Time:	3	н	lours

Marks: 50

Answer any five (5) from following seven (7) questions.

- (a) (5 marks) Rewrite the integral $\int_0^{2e} |dx/(x^2 + x + 1)|$ by using the Method of Partial 5+5 Fractions; (b) (5 marks) Evaluate this definite integral.
- Q2 (a) Find the solution for the initial value problem $\frac{dl}{dt} = \frac{10l}{2t+5} = 10; t > 0, l(0) = 0$ (b) Solve $(D^1 1) = 3 + e^{-t} + 5e^{2t}$
- Q3 (a) Evaluate $\int_0^{2\pi} \int_0^{\pi z} \int_0^{10} |x-y^2-z|^3 |dxdydz|$, this definite integral. 5+5 the compute the indefinite integral $\int_0^{\pi} \cos((ax)/3) dx$.
- Q4 Cat Solve the following differential equation $\frac{dh}{dx} + \frac{2}{x}v = \frac{v^2}{x}$ (b) Solve $(D^2 4D + 3)v = \cos 2x$.
- Q5 Given dy/dx=[-Cos(xy) + xySin(xy)]/[-x²Sin(xy) + 2y] = 0. (a) (2 marks) Determine 10 (by exhibiting a taethod) if it is exact, (b) (5 marks) Find general solution, (c) (2 marks) Check your solution by implicit differentiation, (d) (1 mark) Find particular solution if y(2)=6.
- Q6 (a) If $I_{m,n} = \int \cos^m x \sin nx dx$, then prove that $I_{m,n}(m+n) = -\cos^m x \cos nx + mI_{m+1,m+1}$ and 5+5 evaluate $\int_0^{\pi} \cos^2 x \sin 4x dx$.
 - (b) Define Beta and Gamma function. Also evaluate following integral $\int_{0}^{\pi} x \sin^{+} x \cos^{+} x dx$
- Q7 Solve $y'' + 3y' y = 4e^*Cos(4x)$ by following the Method of Undetermined Coefficients, or find the fundamental system of solutions of y'' + 3y' y = 0 by showing that your solution functions are linearly independent (of each other, by computing relevant Wronskian).

Page 1 of 1

Premier University Department of Computer Science & Engineering 2nd Semester Final Exam, April 2016 Course Code: MAT 107

Course Title: Engineering Mathematics II

		Course Title: Engineering Mathematics II	SHIE
Tota	al M	arks: 50 any five (5) from the following seven (7) questions.	5
Q.1	n.	Rewrite the integral $\int_2^e (x^5 + 2)/(x^2 - 1) dx$ by decomposing into a polynomial and partial fractions.	05
	b.	Evaluate the definite integral given in Q.1(a) if possible.	05
Q.2	a,	Evaluate $\int_0^{x} \int_0^1 \int_0^y (x-y+z)dx dy dz$	05
	b.	Compute the indefinite integral $\int e^{-x} \cos(2x) dx$	05
Q.3		If [a, b] = [-3, 5], P = {-3, -1, 0, 3, 5}, and $f(x) = x^2 - x$; then find U ₁ (P) and L ₁ (P).	10
Q.4	a.	Assume that a sphere of ice melts at a rate proportional to its surface area. Find an expression for the volume (V) at any time t if $V(0) = (4/3)\pi m^3$.	05
	ь.	Solve (if possible) $x^3y\left(\frac{dy}{dx}\right) = x^2y^2 - 2y^4$; $y(0) = 0$	05
Q.5	a. b.	Given, $(y + e^x)dx + xdy = 0$. Determine (by exhibiting the method) if it is exact. Find a general solution of the above differential equation. Check your solution by implicit differentiation.	02 06 02
Q.6	n.	$Solve\left(\frac{dy}{dx}\right) + y = x.$	05
	b.	Solve $\left(\frac{dy}{dx}\right) + y = y^4$, if possible.	05
Q.7		Solve $y'' + 2y' - 3y = 2e^x$ by adopting Method of Un-determined. Coefficients and Variation of Parameters.	40

Premier University

Department of Computer Science & Engineering 2nd Semester Final Exam, November 2015

Course Title: Engineering Math II

Course Code: MAT 107

nē:	3	hours

Marks: 50

Answer any five (5) from the following questions

- Rewrite the integral $\int_{x}^{10} [(x^5 + 2)^{3}(x^2 4)] dx$ by decomposing into a. 5 Q.1 polynomial and partial fractions. 5 Evaluate this definite integral, if possible. 5 Evaluate le'lo' lo' [x-y+z]dxdydz. 5 0.2Compute the indefinite integral [e-2xSin(2x)dx. b.
- If [a, b] = [-4, 4], $P = \{-4, -1, 0, 3, 4\}$, and $f(x) = -x^2 + x$; then find $U_i(P)$ 10 Q.3 and L(P).
- Assume that a sphere of ice melts at a rate proportional to its surface area. 5 Find an expression for the volume (V) at any time 1 if $V(0) = 10m^3$. Q.4 5 Solve $x^3(dy/dx) = x^2y - 2y^3$.
- Given $(y + e^x)dx + xdy = 0$. 0.5
 - 2 Determine (by exhibiting the method) if it is exact. 6 Solve it. 2 b.
 - Check your solution by implicit differentiation. c. 10 Solve $(dy/dx) + (1/x)y = 3x^2$.
- Q.6 10 Solve $y'' + 2y' - 3y = 4e^{2x}$. Q.7