강의 목표 및 학습 로드맵 소개

학습목표

다관절 로봇 시스템 개발을 위한 로봇 공학과 컴퓨터 비전 기술을 심층적으로 학습하는 것을 목표로 합니다. 학습자는 CoppeliaSim 시뮬레이션 환경을 활용하여 로봇의 모션을 설계하고, 컴퓨터 비전을 통해 로봇의 자동화 및 인식 기술을 구현하는 방법을 배우게 됩니다.

1.로봇 공학 기본 개념 이해

- 1. 로봇의 정의 및 주요 특징 학습
- 2. 정기구학(Forward Kinematics) 및 역기구학(Inverse Kinematics) 실습
- 3. 로봇 좌표 변환 및 모션 제어 기법 습득

2.CoppeliaSim을 활용한 로봇 시뮬레이션

- 1. CoppeliaSim 기본 사용법 및 API 프로그래밍 학습
- 2. Python을 활용한 로봇 모션 제어 실습
- 3. 시뮬레이션 환경 내에서 로봇 자동화 프로젝트 수행

3.컴퓨터 비전 및 인공지능 적용

- 1. OpenCV를 활용한 이미지 전처리 및 객체 탐색 기술 습득
- 2. Template Matching을 이용한 물체 인식 실습
- 3. 딥러닝 기반 물체 인식 및 3D 포인트 클라우드 데이터 활용

4.실제 산업 적용 가능한 프로젝트 수행

- 1. 협동 로봇을 활용한 박스 디팔레타이징 및 제품 피킹 실습
- 2. 컴퓨터 비전 및 로봇 자동화를 활용한 스마트 팩토리 모델 구현

학습 로드맵

Part 1: 산업/협동 로봇 개발을 위한 로봇 공학과 컴퓨터 비전

이론과 기초 실습을 중심으로 로봇과 비전 기술의 기본 개념을 학습

CH01. 로봇과 컴퓨터 비전 개요

- •로봇의 정의와 주요 특징
- •로봇의 종류 및 역할
- •컴퓨터 비전의 개념 및 산업적 활용
- •로봇과 비전 기술의 융합 사례
- •강의 목표 및 학습 로드맵 소개

CH02. 로봇 공학 기초

- •로봇 좌표계 개념
- •로봇 모션 유형 (MoveJ, MoveL, Spline)
- •공간 좌표 변환의 원리 및 실습
- •정기구학(Forward Kinematics) & 역기구학(Inverse Kinematics) 실습

CH03. 컴퓨터 비전 기초

- •이미지 기본 요소 및 전처리 기법
- •OpenCV 설치 및 기본 설정
- •템플릿 매칭을 이용한 이미지 객체 탐색 및 실습

학습 로드맵

Part 2: CoppeliaSim 시뮬레이터를 활용한 실시간 로봇 인식 및 제어

CoppeliaSim과 Python API를 활용하여 로봇 시뮬레이션 및 모션 프로그래밍 실습

CH01. CoppeliaSim 사용법

- •CoppeliaSim 다운로드 및 설치 가이드
- •기본 인터페이스 및 주요 기능 소개
- •주요 로봇 모델 탐색 및 활용
- •기본 시뮬레이션 환경 생성 실습

CH02. 로봇 모션 프로그래밍

- •CoppeliaSim API를 활용한 로봇 모션 구성 요소
- •Python 환경에서 API 사용법 학습 및 실습
- •API를 활용한 모션 계획 및 테스트 실습

CH03. 컴퓨터 비전 활용 로봇 제어

- •CoppeliaSim 내 가상 카메라 구성 및 설정
- •가상 카메라 데이터 기반 이미지 처리
- •로봇-카메라 캘리브레이션 및 객체 검출
- •2D 비전 데이터를 기반으로 대상물 위치 검출

CH04. AI 비전 활용 로봇 제어

- •딥러닝을 활용한 물체 분류 및 인식
- •포인트 클라우드 데이터를 활용한 대상물 위치 검출
- •딥러닝 및 3D 비전을 활용한 로봇 작업 구현 실습

학습 로드맵

Part 3: 시뮬레이션 환경 내에서 직접 협동 로봇 프로젝트 구현

시뮬레이션 환경에서 실제 산업 응용이 가능한 프로젝트를 수행

CH01. 프로젝트 실습 1: 박스 디팔레타이징 로봇

- •프로젝트 개요 및 목표 설정
- •시뮬레이션 환경 구성
- •비전 시스템 연동 및 객체 탐색
- •로봇 경로 계획 및 모션 구현

CHO2. 프로젝트 실습 2: 제품 분류 및 피스피킹 로봇

- •프로젝트 개요 및 목표 설정
- •시뮬레이션 환경 구성
- •비전 시스템을 활용한 객체 탐색
- •로봇 경로 계획 및 모션 제어