Homework 4

Introduction to Machine Learning Fall 2018 Instructor: Anna Choromanska

Homework is due 11/02/2018.

Problem 1 (20 points): EM

Consider a random variable x that is categorical with M possible values $1, 2, \ldots, M$. Suppose x is represented as a vector such that x(i) = 1 if x takes the ith value, and $\sum_{i=1}^{M} x(i) = 1$. The distribution of x is described by a mixture of K discrete multinomial distributions such that:

$$p(x) = \sum_{k=1}^{K} \pi_k p(x|\mu_k)$$

and

$$p(x|\mu_k) = \prod_{j=1}^{M} \mu_k(j)^{x(j)},$$

where π_k denotes the mixing coefficient for the kth component (aka the prior probability that the hidden variable z=k), and μ_k specifies the parameters of the k^{th} component. Specifically, $\mu_k(j)$ represents the probability p(x(j)=1|z=k), and $\sum_j \mu_k(j)=1$. Given an observed data set $\{x_i\}, i=1,2,\ldots,N$, derive the E and M step of the EM algorithm for optimizing the mixing coefficients and the component parameters $\mu_k(j)$ for this distribution (below we provide the generic formula for the E and M steps, where θ denotes all the parameters of the mixture model).

- E-step (5 points): For each i, calculate $Q_i(z_i) = p(z_i|x_i;\theta)$, i.e. the probability that observation i belongs to each of the K clusters.
- M-step (15 points): Set

$$\theta \coloneqq \arg \max_{\theta} \sum_{i=1}^{N} \sum_{z_i} Q_i(z_i) \log \frac{p(x_i, z_i; \theta)}{Q_i(z_i)}.$$

Problem 2 (10 points): Clustering

Lemma 1 Let $\phi(W_1)$ be the optimum value of the k-means objective for the k-clustering of data set W_1 , and let $\phi(W_2)$ be the optimum value of the k-means objective for the k-clustering of data set W_2 . Finally, let $\phi(W_1 \cup W_2)$ be the optimum value of the k-means objective for the k-clustering of data set $W_1 \cup W_2$. Prove that

$$\phi(W_1) + \phi(W_2) \le \phi(W_1 \cup W_2).$$

Problem 3 (20 points): MLE and MAP

Consider a univariate normal distribution. Given N one-dimensional scalar samples, $\{x_1, \dots, x_N\}$ and $x_i \in \mathbb{R}$, independently drawn from a normal distribution with KNOWN variance σ^2 and UNKNOWN mean μ , derive

- a) [8 points] Maximum Likelihood Estimator for the mean μ .
- b) [8 points] Maximum a Posteriori Estimator for the mean μ . Assume that the prior distribution for the mean is a normal distribution with mean ν and variance β^2 .
- c) [4 points] How do the estimators behave when the number of samples N goes to infinity?