Odgovori na možna vprašanja (Mrčun)

1.Zaporedja funkcij

Razlika med enakomerno konvergenco in konvergenco po točkah, integral in odvod f_n

Naj bo $A \subset \mathbb{R}$ in za vsak $n \subset \mathbb{N}$ naj bo definirana funkcija $f_n : A \to \mathbb{R}$ takrat sestavljajo funkcijo f_n funkcijsko zaporedje $(f_n)_{n \in \mathbb{N}}$

Konvergenca po točkah:

Ce za vsak $a \in A$ obstaja limita številskega zaporedja $(f_n(a))_n$ takrat rečemo, da funkcijsko zaporedje konvergira po točkah A:

$$f(a) = \lim_{n \to \infty} f_n(a)$$

Enakomerna konvergenca (Cauchyjev kriterij za enakomerno konvergenco):

Obstaja se: Weierstrassov M-test za enakomerno konvergenco

Naj funkcijsko zaporedje $f_n: A \to \mathbb{R}$ konvergira po točkah proti limitni funkciji $f: A \to \mathbb{R}$. Pravimo, da zaporedje $(f_n)_n$ konvergira proti f enakomerno na A, če

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geq N \ \forall x \in A : |f_n(x) - f(x)| < \epsilon$$

Pomemben je vrstni red. N mora biti dober za vse x

Ce imamo zaporedje zveznih funkcij, ki enakomerno konvergirajo na A, potem je tudi limitna funkcija zvezna.

Intergrabilnost zaporedja funkcij:

Naj bo $(f_n: [a,b] \to \mathbb{R})_{n=1}^{\infty}$ zaporedje **intergrabilnih** funkcij, ki konvergira enakomerno na [a, b] h funkciji $f: [a,b] \to \mathbb{R}$. Tedaj je tudi funkcija f intergrabilna in velja:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx$$

Posledica tega je, da je **enakomerna konvergenca** pogoj, da lahko zamenjamo vrstni red integrala in limite. Pomeni tudi, da lahko zamenjam vrstni red neskončne vsote in integrala.

Odvedljivost zaporedja funkcij:

Naj bo $(f_n:(a,b)\to\mathbb{R})_{n=1}^\infty$ zaporedje odvedljivih funkcij, ki je konvergentno v točki $x_0\in(a,b)$ in predpostavimo, da zaporedje odvodov (f_n') konvergira enakomerno h $g:(a,b)\to\mathbb{R}$. Tedaj je zaporedje (f_n) enakomerno konvergentno k neki **odvedljivi funkciji f** in velja f'=g

Enakomerna konvergenca je torej pogoj, da lahko zamenjamo vrstni red limite in odvajanja:

$$(\lim_{n\to\infty} f_n(x))' = \lim_{n\to\infty} f_n'(x)$$

2. Riemannov integral ali določeni integral

Dokazi, da so vse omejeno zvezne funkcije Riemannovo integrabilne

Definicija določenega integrala

Naj bo $f:[a,b]\to\mathbb{R}$ omejena funkcija. Funkcija f je intergrabilna, če sta spodnji in zgornji integral enaka:

$$\int_{a}^{b} f(x)dx = \int_{a}^{\overline{b}} f(x)dx = \int_{a}^{b} f(x)dx$$

Riemannov integral funkcije f

Realno število I je **Riemannov integral** funkcije $f:[a,b]\to\mathbb{R}$ če za poljuben $\epsilon>0$ $\exists \delta>0$, da za poljubno delitev $D=\{x_k\}_{k=0}^{k=n}$ intervala [a,b], pri kateri so rezine ožje od δ , in za poljubno izbiro tock $\xi_k\in[x_{k-1},x_k](za\ 1\le k\le n)$ velja:

$$|I - R(f, D, \{\xi_k\})| < \epsilon$$

Funkcija f je Riemannovo integrabilna, če ima Riemannov integral. Riemannova integrabilnost je ekvivalentna naši definicij integrabilnosti.

Pogoj integrabilnosti funkcij

- Ce je f zvezna ali odsekoma zvezna na [a, b] je po Riemannovem smislu integrabilna
- Ce je f na [a, b] **monotona** je po Riemannovem smislu integrabilna

Dokaz: Vse omejeno zvezne funkcije so intergrabilne (str. 207)

Dokazati moramo, da za poljuben $\epsilon>0$ se da vsoto poljubno približati k pravi vsoti. Naj bo $f\colon [a,b]\to\mathbb{R}$ poljubna **zvezno odvedljiva funkcija** in $D=\{x_k\}_{k=0}^{k=n}$ delitev intervala [a,b]. Izberimo poljubne točke $\xi_k\in [x_{k-1},x_k](za\ 1\le k\le n)$. Riemannova vsota aproksimira ploščino pod f, ki lezi med spodnjo in zgornjo integralsko vsoto. Sledi : $s(f,D)\le R(f,D,\{\xi_k\})\le S(f,D)$ velja, da je f zvezna in potem velja:

$$\left| \int_{a}^{b} f(x) dx - R(f, D, \{\xi_k\}) \right| < \epsilon \qquad \int_{a}^{b} f(x) dx = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^{n} f(\xi_k) \Delta x_k$$

Newton-Leibnizova formula

Naj bo $f:[a,b] \to \mathbb{R}$ integrabilna funkcija in naj bo $F:[a,b] \to \mathbb{R}$ zvezna funkcija na [a, b], odvedljiva na (a, b) in velja: F'(x) = f(x) za $\forall x \in (a,b)$. Tedaj velja:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Dokaz:

Dokazali bomo, da za vsak $\epsilon > 0 \; \text{ velja} \left| F(b) - F(a) - \int_a^b f(x) dx \right| < \epsilon$

Ker je funkcija f integrabilna, lahko najdemo delitev $D=\{x_k\}_{k=0}^{k=n}$ intervala [a, b] da je $S(f,D)-s(f,D)<\epsilon$. Funkcija F je zvezna na vsakem izmed intervalov $[x_{k-1},x_k]$ in odvedljiva v njihovih notranjostih. Zato lahko po **Lagrangeevem izreku** za vsak $1\leq k\leq n$ najdemo točko

 $\xi_k \in [x_{k-1}, x_k]$, tako da je $F(x_k) - F(x_{k-1}) = F'(\xi_k)(x_k - x_{k-1}) = f(\xi_k)\Delta x_k$

Od tod lahko izpeljemo, da je Riemannova vsota

$$\sum_{k=1}^{\infty} f(\xi_k) \Delta x_k = \sum_{k=1}^{\infty} \left(F(x_k) - F(x_{k-1}) \right) = F(x_n) - F(x_0) = F(b) - F(a)$$

Riemannova vsota je med zgornjo in spodnjo vsoto in je enaka integralu

$$\left| F(b) - F(a) - \int_a^b f(x) dx \right| = \left| \sum_{k=1}^\infty f(\xi_k) \Delta x_k - \int_a^b f(x) dx \right| < S(f, D) - S(f, D) < \epsilon$$

Per partes za določeni integral

Naj bosta $f,g\in R\big((a,b)\big)$ in $G,F\colon [a,b]\to\mathbb{R}$ zvezna na [a, b] ter odvedljivi na (a, b). F'(x)=f(x) in G'(x)=g(x) za vse $x\in (a,b)$. Tedaj velja:

$$\int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x)dx$$

Uvedba nove spremenljivke v določeni integral

Naj bosta $g: E^{odp} \subset \mathbb{R} \to \mathbb{R}$ in $F: D^{odp} \subset \mathbb{R} \to \mathbb{R}$ zvezno odvedljivi, $[a,b] \subset E$ in $g([a,b]) \subset D$ in $f = F': D \to \mathbb{R}$. Tedaj je funkcija $(f \circ g)g'$ intergrabilna na [a,b] in velja:

$$\int_{a}^{b} f(g(x))g'(x)dx = F(g(b)) - F(g(a)) = \int_{g(a)}^{g(b)} f(t)dt$$

Dokaz je precej enostaven:

$$(F \circ g)'(x) = F'(g(x))g'(x) = f(g(x))g'(x)$$

$$\int_{a}^{b} f(g(x))g'(x)dx = (F \circ g)(b) - (F \circ g)(a)$$

Seštevanje integralskih mej

Naj bodo $a \le b \le c$ realna stevila in naj bo $f: [a,c] \to \mathbb{R}$ funkcija. Potem je $f \in R([a,c])$ natanko takrat, ko sta $f|_{[a,b]} \in R([a,b])$ in $f|_{[b,c]} \in R([b,c])$. V tem primeru velja:

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Integralski test za konvergenco številskih vrst

Naj bo $f:[1,\infty)\to\mathbb{R}$ padajoča, zvezna funkcija $f(x)\geq 0$ za $\forall x\in[1,\infty)$. Tedaj izlimitiran integral $\int_1^\infty f(x)dx$ konvergira, če in samo če konvergira številska vrsta $\sum_{n=1}^\infty f(n)$

Izrek o povprečni vrednosti

Naj bo $f:[a,b]\to\mathbb{R}$ zvezna, a< b. Tedaj obstaja $c\in[a,b]$, da velja $f(c)=\frac{1}{b-a}\int_a^b f(x)dx$

3. Taylorjeva vrsta (in tudi potenčna vrsta)

Linearni približek f v okolici točke a

Naj bo $f:(c,d)\to\mathbb{R}$ odvedljiva funkcija in naj bo $a\in(c,d)$ Takrat velja $f(x)\approx f(a)+f'(a)(x-a)$

Taylorjev polinom

Naj bo $f: U^{odp} \subset \mathbb{R} \to \mathbb{R}$ **n-krat zvezno odvedljiva** $a \in U, n \in \mathbb{N}$. Tedaj obstaja natanko en polinom P stopnje $\leq n$ za katerega velja: $P(a) = f(a), P'(a) = f'(a), P''(a) = f''(a), \dots, P^{(n)}(a) = f^{(n)}(a)$

Temu polinomu pravimo Taylorjev polinom reda n funkcije f, razvit okoli točke a. Označimo ga:

$$T_n f(x,a) \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Taylorjev polinom ima lahko zraven se neko napako oz. ostanek R_n

Lagrangeova oblika:

$$R_n(x) = \frac{f^{(n+1)}(a + \theta(x-a))}{(n+1)!} (x-a)^{n+1} \quad za \ \theta \in (0,1)$$

Cauchyjeva oblika:

$$R_n(x) = \frac{(1-\theta)^n f^{(n+1)} \left(a + \theta(x-a)\right)}{n!} (x-a)^{n+1} \ za \ \theta \in (0,1)$$

Taylorjeva vrsta

Naj bo $f: U^{odp} \subset \mathbb{R} \to \mathbb{R}$ gladka funkcija in naj bo $a \in U$. Vrsti:

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

Pravimo da je **Taylorjeva vrsta**, če konvergira k vsoti f(x) torej, ce velja: $\lim_{n \to \infty} R_n(x) = 0$

Nekaj pomembnejših Taylorjevih vrst

• Eksponentna vrsta:

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \qquad \lim_{n \to \infty} R_n = 0 \implies konvergira\ za\ vse\ x$$

Sinusna vrsta:

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \pm \cdots \quad \lim_{n \to \infty} R_n = 0 \ \Rightarrow konvergira\ za\ vse\ x$$

Kosinusna vrsta

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = x - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \cdots \quad \lim_{n \to \infty} R_n = 0 \implies konvergira\ za\ vse\ x$$

• Logaritemska vrsta $f(x) = \ln(x+1)$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \pm \dots \quad konvergira \ za \ x \in (-1,1]$$

Binomska vrsta

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n \qquad konvergira \ za \ |x| < 1$$

Potenčna vrsta

Potenčna vrsta je vrsta oblike:

$$\sum_{n=0}^{\infty} a_n (z-a)^n = \sum_{n=0}^{\infty} (a_n (z-a)^n)_{n=0}^{\infty}$$

$$= a_0 + a_1 (z-a) + a_2 (z-a)^2 + \dots + a_n (z-a)^n + \dots$$

a₀, a₁, a₂, .. so konstante. Ta vrsta je razvita v okolici točke a.

Konvergenčni radij

Ce potenčna vrsta $\sum a_n z^n$ konvergira v neki točki $z_0 \in \mathbb{C}$ potem absolutno konvergira v vsaki točki $z \in \mathbb{C}$, za katero je $|z| < |z_0|$

Konvergenčni radij potenčne vrste $\sum a_n z^n$ je tisti element $R \in [0, \infty) \cup \{\infty\}$ za katerega velja:

- (i) V vsaki točki $z \in \mathbb{C}$, za katero je |z| < R, vrsta $\sum a_n z^n$ absolutno konvergira
- (ii) V vsaki točki $z \in \mathbb{C}$, za katerjo je |z| > R, vrsta $\sum a_n z^n$ divergira

Množenje dveh vrst (Cauchyjeva produkt)

Ce sta številski vrsti $\sum (u_n)_{n=0}^{\infty}$ in $\sum (v_n)_{n=0}^{\infty}$ konvergentni, in če je vsaj ena izmed njiju tudi absolutno konvergentna, je tudi njun produkt **konvergentna številska vrsta** (z radijem, ki je najmanjši od radijev prejšnjih vrst).

$$\sum_{n=0}^{\infty} u_n \sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} u_k v_{n-k} \right)$$

Odvajanje potenčne vrste

 $\sum a_n x^n$ je realna potenčna vrsta s konvergenčnim radijem R. In naj bo $s: (-R,R) \to \mathbb{R}$ vsota te vrste na intervalu (-R,R). Torej: $s(x) = \sum_{n=0}^{\infty} a_n x^n \ \forall x \in (-R,R)$. Potem velja:

- (i) Potenčna vrsta $\sum (na_nx^{n-1})_{n=1}^{\infty}$ ima konvergenčni radij R (Dokaz je korenski test nad koef. na_n kjer bo ta n sel v 1) $\lim_{n\to\infty} \sup \sqrt[n]{|na_n|}$
- (ii) s je odvedljiva

(iii)
$$s'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1} \ \forall x \in (-R, R)$$

Torej lahko odvajamo potenčne vrste tako.

Primer za logaritemsko vrsto

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$$

Kriterij za konvergenco vrste: $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$

$$\lim_{n \to \infty} \left| \frac{\frac{(-1)^n x^{n+1}}{n+1}}{\frac{(-1)^{n-1} x^n}{n}} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n n x^n x}{(-1)^{n-1} (n+1) x^n} \right| = x \lim_{n \to \infty} \left| \frac{n}{n+1} \right| = |x| < 1$$

Preverimo se meje -1 in 1:

$$x = -1; \quad \sum_{n=1}^{\infty} \frac{(-1)^{2n-1}}{n} = -1 - \frac{1}{2} - \frac{1}{3} - \cdots \quad \text{Divergira}$$

$$x = 1; \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 1^n}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{3} \pm \cdots \quad \text{Po Leibnizovem kriteriju konvergira}$$

$$R \in (-1, 1]$$

Taylor za binomsko vrsto

 $f(x) = (1+x)^{\alpha}$ Razvijemo v Taylorjevo vrsto v okolici $\alpha = 0$

$$f'(\alpha) = \alpha(1+x)^{\alpha-1} \qquad f''(\alpha) = \alpha(\alpha-1)(1+x)^{\alpha-2}$$

$$f^{(n)}(\alpha) = \alpha(\alpha-1)(\alpha-2) \dots (\alpha-n+1)(1+x)^{\alpha-n}$$

$$f(x) = (1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!}x^n$$

$${\alpha \choose n} = \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!}; \quad \alpha \in \mathbb{R}, \quad k \in \mathbb{N} \cup \{0\}$$

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n$$

Konvergenčni radij:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\binom{\alpha}{n}}{\binom{\alpha}{n+1}} \right| = \lim_{n \to \infty} \left| \frac{\binom{\alpha}{n}}{\binom{\alpha}{n}} \frac{\alpha - n}{n+1} \right| = 1 \Longrightarrow |x| < 1$$

Bonus: Metrični prostor

Metrični prostor in metrika

Naj bosta v in w vektorja v \mathbb{R}^n funkciji d (npr. $d: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$), rečemo metrika če velja:

- $d:(v,w) \geq 0$
- $d:(v,w)=0 \Leftrightarrow v=w$
- $d:(v,w) \le d(v,u) + d(u,w)$

Ce to velja je d metrika in (\mathbb{R}^n, d) je metrični prostor

Lastnosti metričnega prostora

$$K(a,\epsilon) = \{v \in \mathbb{R}^n; |v-a| < \epsilon\}$$
 odprta krogla, s srediscem v a in radijem ϵ

$$\overline{K}(a,\epsilon) = \{v \in \mathbb{R}^n; |v-a| \le \epsilon\}$$
 zaprta krogla, s srediscem v a in radijem ϵ

 $A \subset M, \alpha \in M$

Notranja točka

a je **notranja točka** podmnožice $A \subset M$ ce $\exists \delta > 0$, da $K(\alpha, \delta) \subset A$

Okolica točke

A je **okolica točke** a če je a notranja točka množice $A \subset M$

Odprta množica

A je **odprta v M**, če je okolica vsake točke $a \in A$

Zaprta množica

A je **zaprta v M** če je komplement M-A odprta v M

Stekališče množice

a je **stekališče podmnožice** $A \subset M$ ce za $\forall \delta > 0$ velja $K(a, \delta) \cap A - \{a\} \neq 0$

Omejena

A je **omejena**, če $\exists b \in M \ \exists R \in \mathbb{R}^+$: $A \subset K(b,R)$ (da krogla, ki je v M, zajame cel A)

Omejenost metričnega prostora

M je **omejen** če $\exists b \in M \ \exists R \in \mathbb{R}^+$: K(b,R) = M

Se zaporedje v metričnem prostoru

Zaporedje v (M,d) je funkcija $\mathbb{N} \to M$, $k \mapsto a_k$, označimo ga lahko $(a_k)_{k=1}^{\infty} = (a_k)$

Stekališče zaporedja

 $a \in M$ je stekališče zaporedja (a_k) če $\forall \epsilon > 0 \quad \forall N \in \mathbb{N} \quad \exists k \geq N : \ d(a_k, a) < \epsilon$

Limita zaporedja

 $a\in M$ je **limita zaporedja** (a_k) če, $\forall \epsilon>0$ $\exists N\in\mathbb{N}\ \forall k\geq N\colon d(a_k,a)<\epsilon$ V temu primeru je $a=\lim_{k\to\infty}a_k$

Omejenost zaporedja

Zaporedje (a_k) je omejeno, če je množica členov $\{a_1, a_2, a_3, ...\}$ omejena podmnožica v M

Cauchyjevo zaporedje in poln metrični prostor

Zaporedje (a_k) je **Cauchyjevo** če $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall k, j \geq N : d(a_k, a_j) < \epsilon$ Metrični prostor je poln, če je vsako Cauchyjevo zaporedje v njem konvergentno.

Kompakten metrični prostor

Metrični prostor M je **kompakten**, če ima vsako zaporedje v M vsaj eno stekališče v M. Vsak kompakten metrični prostor je **tudi poln.** Podmnožica $A \subset \mathbb{R}^n$ je kompaktna ko je zaprta in omejena.

Povezanost s potmi

Metrični prostor M je **s potmi povezan**, če za vsaki dve točki $a, b \in M$ obstaja vsaj ena pot od a do b v M.

Zveznost funkcije v metričnem prostoru

Naj bosta (M,d) in (M',d') metricna prostora in naj bo $f:M\to M'$ in $a\in M$. Funkcija f je **zvezna** v točki a, če $\forall \epsilon>0$ $\exists \delta>0$: $f(K(a,\delta))\subset K(f(a),\epsilon)$

4. Funkcije več spremenljivk

Realna funkcija n spremenljivk

 $f: U \subset \mathbb{R}^n \to \mathbb{R}$ $f(x_1, x_2, x_3, ..., x_n) \in \mathbb{R}$ Rezultat je realno število

Vektorska funkcija n spremenljivk

$$g: U \subset \mathbb{R}^n \to \mathbb{R}^m \quad g(x_1, x_2, x_3, ..., x_n) \in \mathbb{R}^m = (g_1(x_1, ..., x_n), ..., g_m(x_1, ..., x_n))$$

 $g_1 \dots g_m : U \subset \mathbb{R}^n \to \mathbb{R}$ Posamezne komponente vektorske funkcije so realne funkcije.

Zveznost

Funkcija
$$f: U \subset \mathbb{R}^n \to \mathbb{R}, \ a \in U$$
 je zvezna v tocki a, ce $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall v \in K(a, \delta) \cap U: f(v) \in K(f(a), \epsilon)$ oz. $\forall v \in U: |v - a| < \delta => |f(v) - f(a)| < \epsilon$

Vektorska funkcija $g\colon U\subset\mathbb{R}^n\to\mathbb{R}^m$ $g(g_1,g_2,g_3\dots,g_m)$ ce je vsaka funkcija g_1,g_2,\dots,g_m zvezna v točki a

Seštevanje, odštevanje, množenje s skalarjem (ali pa dveh realnih funkcij) in kompozitum nič ne vplivajo na zveznost.

Limita

Naj bo $g: U \subset \mathbb{R}^n \to \mathbb{R}^m$ a je stekališče množice $U \subset \mathbb{R}^n$. Vektor $L \in \mathbb{R}^n$ je **limita** funkcije g v točki a, če $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall v \in K(a,\delta) \cap U - \{a\}: \ |g(v) - L| < \epsilon$. V temu primeru je $L = \lim_{v \to a} g(v)$ ampak samo če je $L_i = \lim_{v \to a} g_i(v)$ za vse i = 1, 2, ..., m za $g = (g_1, ..., g_m)$ (torej za vse komponente) Z limitami funkcij več spremenljivk računamo tako kot z limitami ene spremenljivke (vsaj formalne lastnosti)..

Odvedliivost

Naj bo $f: U^{odp} \subset \mathbb{R}^n \to \mathbb{R}, \ a \in U \ not ranja \ tocka$

Parcialni odvod

Ce obstaja
$$\lim_{h \to 0} \frac{f(a_1, a_2, \dots, a_j + h, \dots, a_n) - f(a_1, a_2, \dots, a_j, \dots, a_n)}{h}$$
 je to parcialni odvod $\frac{\partial f}{\partial x_j}(a) \in \mathbb{R}$

Parcialna odvedljivost

f je **parcialno odvedljiva** na spremenljivko x_j , če je parcialno odvedljiva na x_j v vseh točkah $a \in U$. Dobimo funkcijo (parcialno odvod f na x_j): $\frac{\partial f}{\partial x_j}$: $U \to \mathbb{R}$

Ce je f parcialno odvedljiva na vseh spremenljivkah $x_1, x_2, ... x_n$ Dobimo gradient: $\nabla f : U \subset \mathbb{R}^n \to \mathbb{R}^n$

Zvezna odvedljivost

f je **zvezno odvedljiva**, če je zvezna in parcialno odvedljiva in so vsi parcialni odvodi zvezni.

Smerni odvod

Naj bo $u \in \mathbb{R}^n$ Ce obstaja limita: $\lim_{h \to 0} \frac{f(a+hu)-f(a)}{h}$ jo označimo z $(D_u f)(a)$ in ji rečemo smerni odvod funkcije f v smeri vektorja u v točki a.

Totalna odvedljivost

Funkcija $f: U \subset \mathbb{R}^n \to \mathbb{R}$ je **totalno odvedljiva** v notranji točki $a \in U$, ce obstaja tak vektor $v \in \mathbb{R}^n$ da je:

$$\lim_{w\to 0} \frac{f(a+w) - f(a) - v \cdot w}{|w|} = 0$$

Vektorska funkcija pa je totalno odvedljiva, če so totalno odvedljive vse njene komponente.

Posledice

Naj bo funkcija $f: U \subset \mathbb{R}^n \to \mathbb{R}$ totalno odvedljiva v notranji točki $a \in U$. Tedaj velja:

- (i) Funkcija f je **zvezna** v točki a
- (ii) Funkcija f je **parcialno odvedljiva** v točki a
- (iii) Za vsak vektor $u \in \mathbb{R}^n$ obstaja smerni odvod $(D_u f)(a)$ in velja $(D_u f)(a) = (\nabla f)(a) \cdot u$
- (iv) Obstaja natanko en vektor $v \in \mathbb{R}^n$ za katerega je $\lim_{w \to 0} \frac{f(a+w)-f(a)-v \cdot w}{|w|} = 0$ in sicer $v = (\nabla f)(a)$

Vsaka zvezno odvedljiva funkcija, je totalno odvedljiva.

Verižno pravilo

Naj bo $g: U \subset \mathbb{R}^n \to \mathbb{R}^m$ totalno odvedljiva v notranji točki $a \in U$ in naj bo $f: V \subset \mathbb{R}^m \to \mathbb{R}$ totalno odvedljiva v notranji točki $g(a) \in V$. Tedaj je a notranja točka $g^{-1}(v)$, $f \circ g$ je totalno odvedljiva v točki a in:

$$\frac{\partial (f \circ g)}{\partial x_j}(a) = \nabla f(g(a)) \cdot \frac{\partial g}{\partial x_j}(a) = \sum_{i=1}^m \frac{\partial f}{\partial u_i}(g(a)) \cdot \frac{\partial g_i}{\partial x_j}(a)$$

Ekstremi funkcij več spremenljivk

Naj bo $f: U \subset \mathbb{R}^n \to \mathbb{R}, \ a \in U$

- (i) f ima v tocki **a (strogi) lokalni maksimum**, če $\exists \delta > 0 \ \forall v \in (K(a, \delta) \{a\}) \cap U: \ f(v) \leq (<) f(a)$
- (ii) f ima v tocki a **(strogi) lokalni minimum**, če

$$\exists \delta > 0 \ \forall v \in (K(a, \delta) - \{a\}) \cap U: \ f(v) \geq (>) f(a)$$

Fernet-Serret formule

Formula opise kinetično gibanje(lastnosti) neke točke, ki se giblje po neprekinjeni odvedljivi zanki v \mathbb{R}^3 . Formula opise odvode tangentnega, normalnega in binomskega (vektorski produkt prejšnjih dveh) vektorja, ki so ortonormirani (pravokotni) med sabo z odvisnostjo od časa. V formulah nastopata skalarja torzije in ukrivljenosti.

Extras:

Ce je odvedljiv odvod, je tudi odvedljiva funkcija?

Naj bo $f:D^{odp}\subset\mathbb{R}\to\mathbb{R}$ funkcija in $a\in D$. Naj bo f odvedljiva na $D-\{a\}$ in zvezna v točki a. Predpostavimo da obstaja: $\lim_{x\to a}f'(x)$. Tedaj je f odvedljiva tudi v tocki a in $f'(a)=\lim_{x\to a}f'(x)$

Dodatno o konveksnosti in konkavnosti

Naj bo $f:[a,b] \to \mathbb{R}$, zvezna na [a,b], odvedljiva na (a,b):

- (i) Če je f' strogo naraščajoča na (a,b), potem je f strogo **konveksna** (oz. $f'' \ge 0$)
- (ii) Če je f' strogo padajoča na (a, b), potem je f strogo **konkavna** (oz. $f'' \le 0$)

L'Hospitalovo pravilo

Naj bosta $f,g:(a,b)\to\mathbb{R},\ x_0\in(a,b), f,g$ sta zvezni na in (a,b) in odvedljivi na $(a,b)-\{x_0\}.$ $g(x_0)=f(x_0)=0,\ g(x)\neq0,\ f(x)\neq0\ \forall x\in(a,b)-\{x_0\}.$ Če obstaja limita $\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$ potem obstaja tudi limita $\lim_{x\to x_0}\frac{f(x)}{g(x)}$ in sta te limiti enaki.

Uporaba integrala

KOORDINATE	PLOSCINA	DOLZINA KRIVULJE	VOLUMEN VRTENINE	PLASC VRTENINE
KARTEZNICE				
	$\int_{a}^{b} f(x) dx$	$\int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} dx$	$\pi \int_{a}^{b} f(x)^{2} dx$	$2\pi \int_{a}^{b} f(x)\sqrt{1 - f'(x)^2} dx$
PARAMETRICNE				
	$\frac{1}{2} \int_{t_1}^{t_2} (x\dot{y} - \dot{x}y) dt$	$\int_{t_1}^{t_2} \sqrt{\dot{x}^2 + \dot{y}^2} dt$	$\pi \int_{t_1}^{t_2} y(x)^2 \dot{x} dt$	$2\pi \int_{t_1}^{t_2} y(t) \sqrt{\dot{x}^2 + \dot{y}^2} dt$
POLARNE				
	$\frac{1}{2} \int_{\phi_1}^{\phi_2} r^2 d\phi$	$\int_{\phi_1}^{\phi_2} \sqrt{r^2 + {r'}^2} d\phi$	Parametriziraj	$2\pi \int_{\phi_1}^{\phi_2} r \sin(\phi) \sqrt{r^2 + {r'}^2} d\phi$