Assignment 1

Question 2

The insertion sort algorithm was tested 2000 times on 100 unique arrays (incrementally increasing in length from 10 to 1000). Analysis of average runtimes from this test indicates an operation cost of $O(n^2)$ as expected. The quadratic trend lines in figure 1&2 below suggest a complexity of $O(n^2)$ in the worst case (reverse sorted arrays) and $\theta(n^2)$ in the average case (unsorted randomized arrays). The linear trend line in figure 3 suggests a complexity of $\Omega(n)$ in the best case (sorted array).

figure 1: random values (unsorted)

figure 2: reverse sorted values

Average Runtime (Best Case) 1250 1000 750 500 250 200 400 600 800 1000 Array Size

figure 3: sorted values

Data Table Insertion Sort Runtime Average Case

Average Execution Time (ns)	# of Runtimes
4174	2000
10204	2000
21089	2000
37291	2000
55188	2000
80891	2000
108606	2000
137023	2000
177600	2000
214088	2000
	Execution Time (ns) 4174 10204 21089 37291 55188 80891 108606 137023 177600

figure 4: Data table of average runtimes for the average case test (only data from 10 arrays shown for simplicity)

Question 3

With binary search, complexity is logarithmic where the algorithm searches for the location that the value being compared should be placed. With traditional insertion sort the complexity is linear when finding this location, meaning a higher operation cost. However, because the inner loop in binary search would have a complexity of O(n) due to shifting of remaining elements, it would not be any more efficient than insertion sort since total operation cost would also be quadratic.