Solving nonhomogeneous linear DEs via undetermined coefficients

Recall that the general solution of the differential equation

$$ay'' + by' + cy = f(x),$$

with $f(x) \neq 0$ and constants a,b,c, is of the form

$$y=y_h+y_p,$$

where y_h is the general solution of the homogeneous DE ay'' + by' + cy = 0, and y_p is a particular solution of the nonhomogeneous DE above. We learned how to find y_h in the previous module.

Here, we learn how to find y_p in four special cases. In particular, when f(x) is:

- 1. a polynomial of degree k;
- 2. a sum of $\sin(x)$ and/or $\cos(x)$;
- 3. of the form $x^k e^{mx}$; or
- 4. a combination of the above terms.

Discussion, comments, and examples:

Math/15-Module-13-Video-01

WeBWorK module 13 exercises:

• Problems 1, 2, 3, 4

Relevant Wikipedia articles:

• Method of undetermined coefficients & (https://en.wikipedia.org/wiki/Method of undetermined coefficients)