Emulación de detectores: Reconstrucción de la masa del bosón Z

Emmanuel Botero Osorio Camilo Londoño Vera

Contenido

01 Modelo estándar

La manera en que entendemos el universo.

04

Madgraph

Paquete de root para emulación de colisiones y detectores.

02

Bosones WyZº

Partículas mediadoras de la fuerza débil.

05

Lectura de Datos

Obtener la información de Delphes y realizar los cortes necesarios.

03

CMS

Detector del LHC.

06

FIT y MC

Ajuste de los datos y comprobación del modelo.

El modelo estándar

Standard Model of Elementary Particles

Bosones W y Z

Son los bosones mediadores de la fuerza débil. La masa del hierro es de 52 GeV aprox

Corriente neutra

$$\Delta E \cdot \Delta au \geq rac{\hbar}{2}$$

03 Colisiones

Haciendo honor a su nombre, el LHC produce colisiones que son medidas por sus diferentes experimentos.

Las colisiones más interesantes son las inelásticas

Detectores del CMS

Figure 2.18: CMS HCAL representation.

Figure 2.14: Tracker acceptance in η .

Masa invariante

Es la masa que tiene una partícula en reposo.

Es equivalente a la magnitud del cuadrimomento lineal.

$$p=\left(p^0,p^1,p^2,p^3
ight)=\left(rac{E}{c},p_x,p_y,p_z
ight).$$

Decaimientos dimuónicos

Madgraph.

Framework que proporciona los elementos necesarios para la fenomenología de SM y BSM.

```
Loading default model: sm

INFO: Restrict model sm with file models/sm/restrict_default.dat .

INFO: Run "set stdout_level DEBUG" before import for more information .

INFO: Change particles name to pass to MG5 convention

Defined multiparticle p = g u c d s u~ c~ d~ s~

Defined multiparticle j = g u c d s u~ c~ d~ s~

Defined multiparticle l+ = e+ mu+

Defined multiparticle l- = e- mu-

Defined multiparticle vl = ve vm vt

Defined multiparticle vl = ve vm vt

Defined multiparticle all = g u c d s u~ c~ d~ s~ a ve vm vt e- mu- v

e~ vm~ vt~ e+ mu+ t b t~ b~ z w+ h w- ta- ta+

MG5_aMC>
```

Generar el proceso en madgraph

```
MG5 aMC>generate p p > mu+ mu-
INFO: Checking for minimal orders which gives processes.
INFO: Please specify coupling orders to bypass this step.
INFO: Trying process: g g > mu+ mu- WEIGHTED<=4 @1</pre>
INFO: Trying process: u u~ > mu+ mu- WEIGHTED<=4 @1
INFO: Process has 2 diagrams
INFO: Trying process: u c~ > mu+ mu- WEIGHTED<=4 @1
INFO: Trying process: c u~ > mu+ mu- WEIGHTED<=4 @1
INFO: Trying process: c c~ > mu+ mu- WEIGHTED<=4 @1
INFO: Process has 2 diagrams
INFO: Trying process: d d~ > mu+ mu- WEIGHTED<=4 @1
INFO: Process has 2 diagrams
INFO: Trying process: d s~ > mu+ mu- WEIGHTED<=4 @1
INFO: Trying process: s d~ > mu+ mu- WEIGHTED<=4 @1
INFO: Trying process: s s~ > mu+ mu- WEIGHTED<=4 @1
INFO: Process has 2 diagrams
INFO: Process u~ u > mu+ mu- added to mirror process u u~ > mu+ mu-
INFO: Process c~ c > mu+ mu- added to mirror process c c~ > mu+ mu-
INFO: Process d \sim d > mu + mu - added to mirror process d d \sim > mu + mu - added
INFO: Process s~ s > mu+ mu- added to mirror process s s~ > mu+ mu-
4 processes with 8 diagrams generated in 0.027 s
Total: 4 processes with 8 diagrams
MG5 aMC>
```

Colisiones y detectores en la simulación.

Phytia8

Generación de eventos de física de partículas y las interacciones entre las partículas producidas

Delphes

Se utiliza para simular la respuesta de un detector de partículas y generar datos simulados que se asemejan a los datos experimentales.

Lectura de datos.

Recolectar la información arrojada por Delphes (10.000 eventos)

Cortes.

Dada la física del problema se trata de disminuir la cantidad de background en los datos obtenidos.

```
if (mu_size < 2) continue;
if (fabs(Mu_pt[0]<30)) continue;
if (fabs(Mu_pt[1]<30)) continue;
if (fabs(Mu_eta[0])>2.4) continue;
if (fabs(Mu_eta[1])>2.4) continue;
```


PT

FIT y MC

Ajuste a los datos filtrados y verificación del modelo con MC.

Cálculo de la masa invariante.

```
// Calcular la masa invariante utilizando la fórmula
Double t delta eta = eta1 - eta2;
Double t delta phi = TMath::Abs(phi1 - phi2);
  (delta phi > TMath::Pi())
   delta phi = 2 * TMath::Pi() - delta phi;
Double t invariant pt = pt1 * pt2 * (TMath::CosH(delta eta) - TMath::Cos(delta phi));
  (invariant pt > 0)
h->Fill(TMath::Sqrt(2 * invariant pt));
M = TMath::Sqrt(2 * invariant pt);
```

```
muon1.SetPtEtaPhiE(Mu_pt[0], Mu_eta[0], Mu_phi[0], Mu_E[0]);
muon2.SetPtEtaPhiE(Mu_pt[1], Mu_eta[1], Mu_phi[1], Mu_E[1]);
```

Resultado del Fit

Verificación del modelo con generación MC.

```
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=14.4251 FROM HESSE
                        STATUS=0K
                                             10 CALLS
                                                             69 TOTAL
                  EDM=7.71045e-05 STRATEGY= 1
                                                   ERROR MATRIX ACCURATE
EXT PARAMETER
                                          INTERNAL
                                                       INTERNAL
NO.
      NAME
               VALUE
                               ERROR
                                          STEP SIZE
                                                        VALUE
    meanMu
               1.78073e+00 5.38924e+00
                                         7.50366e-03
                                                      6.35496e-01
    widthMu
                4.99951e+00
                             4.78069e+00
                                         6.15559e-03 1.55101e+00
                           ERR DEF= 0.5
```

Bibliografía.

- https://launchpad.net/mg5amcnlo#:~:text=MadGraph5_aMC%40NL0%20is%20a%20framework,to%20event%20manipulation%20and%20analysis.
- https://www.sciencedirect.com/science/article/abs/pii/S0370157311000846?via%3Dihub
- https://launchpad.net/mg5amcnlo#:~:text=MadGraph5_aMC%40NL0%20is%20a%20fram-ework,to%20event%20manipulation%20and%20analysis.
- https://arxiv.org/abs/1405.0301
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/MadgraphTutorial
- https://arxiv.org/pdf/1402.1178.pdf
- https://en.wikipedia.org/wiki/W_and_Z_bosons
- https://en.wikipedia.org/wiki/Neutral_current
- https://en.wikipedia.org/wiki/Invariant_mass
- https://en.wikipedia.org/wiki/Four-momentum
- https://m.bergauer.org/friedl/diss/html/node8.html