Задача 1. Пусть f непрерывна на [a,b], дифференцируема на (a,b) и $f'(x_0) > 0$ в точке $x_0 \in (a,b)$. **а)** Найдется ли такая окрестность U точки x_0 , что для всех $x \in U$ если $x > x_0$, то $f(x) > f(x_0)$, а если $x < x_0$, то $f(x) < f(x_0)$? **б)** Верно ли, что f монотонно возрастает в некоторой окрестности x_0 ?

Определение 1. Говорят, что c — точка локального максимума f, если $f(c) \geqslant f(x)$ для всех x из некой окрестности c. Если верно строгое неравенство, говорят о строгом локальном максимуме. Аналогично определяют (строгой) локальный минимум. Вместе точки (строгого) локального максимума и минимума называют точками (строгого) локального экстремума.

Задача 2. а) (*Теорема Ферма*) Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что если $x \in (a,b)$ — точка локального максимума (минимума) f, то f'(x) = 0. **б)** Верно ли обратное?

Задача 3. а) Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Тогда максимум (минимум) f на [a,b] достигается, причём точками максимума (минимума) могут быть только a,b и точки $x \in (a,b)$, где f'(x) = 0. 6) Если f дифференцируема на \mathbb{R} и $f(x) \to +\infty$ при $x \to \pm \infty$, то минимум f на \mathbb{R} достигается, и в точке минимума x обязательно f'(x) = 0.

Задача 4. Докажите для всех x: **a)** $x^4 + x^3 \geqslant -\frac{3^3}{4^4}$; **6)** $x^6 - 6x + 5 \geqslant 0$; **в)** $x^4 - 4x^3 + 10x^2 - 12x + 5 \geqslant 0$.

Задача 5. Найдите наибольшее и наименьшее значение при $x \in [0,1]$ функций из задачи 4.

Задача 6. Найдите наименьшее значение при x > 0: a) $x + \frac{1}{x}$; б) $x + \frac{1}{x^2}$; в) $x^2 + 2x + \frac{4}{x}$.

Задача 7. (Теорема Ромя) Пусть f непрерывна на [a,b] и дифференцируема на (a,b), и, кроме того, f(a) = f(b). Докажите, что найдётся такая точка $x \in (a,b)$, что f'(x) = 0.

Задача 8. (*Теорема Лагранжа*) Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что найдётся такое $x \in (a,b)$, что $f'(x) = \frac{f(b)-f(a)}{b-a}$ и объясните геометрический смысл этой теоремы.

Задача 9. Пусть f непрерывна на [a,b] и дифференцируема на (a,b). Докажите, что если для всех $x \in (a,b)$ выполнено: **a)** f'(x) = 0, то f постоянна на [a,b]. **6)** f'(x) > 0, то f возрастает на [a,b].

Задача 10. Докажите, что для для всех x>0 выполнены неравенства: **a)** $\sin x>x-\frac{x^3}{6};$

6)
$$1 - \frac{x^2}{2} < \cos x < 1 - \frac{x^2}{2!} + \frac{x^4}{4!};$$
 B) $e^x > 1 + x + \frac{x^2}{2} + \ldots + \frac{x^n}{n!}, \text{ где } n \in \mathbb{N}.$ **r)** $\sin x = \lim_{k \to \infty} \sum_{n=0}^k (-1)^n \frac{x^{2n+1}}{(2n+1)!}.$

Задача 11. Найдите все дифференцируемые на $\mathbb R$ функции f, такие что f'(x) = f(x) для всех $x \in \mathbb R$.

Задача 12. а) Какую наибольшую площадь может иметь трапеция, три стороны которой равны 1?

- б) Какова наибольшая возможная площадь четырёхугольника, 3 стороны которого равны 1?
- в) У какого равностороннего шестиугольника со стороной 1 площадь наибольшая?

Задача 13. Из пункта A, находящегося в лесу в 5 км от прямой дороги, пешеходу нужно попасть в пункт B, расположенный на этой дороге в 13 км от A. Наибольшая скорость пешехода на дороге — 5 км/ч, а в лесу — 3 км/ч. За какое наименьшее время пешеход сможет попасть из A в B?

Задача 14. Даны точки A и B по разные стороны от прямой l, разделяющей две среды. Скорость света в верхней среде $-v_1$, а в нижней $-v_2$. Пусть D — такая точка на l, что время преодоления светом пути ADB минимально. Докажите, что D существует и определяется условием $\sin \alpha_1/\sin \alpha_2 = v_1/v_2$, где α_1 и α_2 — углы, образованные прямыми AD и BD с прямой, проходящей через D перпендикулярно l.

Задача 15. Найдите точку параболы $y=x^2$, ближайшую к точке (-1;2).

Задача 16. В круглый бокал, осевое сечение которого — график функции $y = x^4$, опускают вишенку — шар радиусом r. При каком наибольшем r шар коснётся нижней точки дна?

Задача 17. Пусть f определена и дифференцируема на (a,b). **a)** Верно ли, что f' непрерывна на (a,b)? **6)** ($Teopema\ \mathcal{A}apby$) Пусть $[c,d]\subset (a,b)$. Докажите, что f' принимает на [c,d] все значения между f'(c) и f'(d). **в)** Пусть f' имеет пределы слева и справа в точке $x_0\in (a,b)$. Верно ли, что они совпадают?

Задача 18. Пусть функция f дифференцируема в некоторой окрестности $\mathcal U$ точки a, причём a — точка строгого локального минимума f. Всегда ли найдётся ли такая окрестность точки a, что f'(x) < 0 для всех x < a из этой окрестности, и f'(x) > 0 для всех x > a из этой окрестности?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left \begin{array}{c c} 4 & 4 & 5 \\ 6 & B & \end{array} \right $	6 6 6 a 6 B	7 8 9 9 a 6	10 10 10 10 11 а б в г	12 12 12 1 а б в	$13 \ 14 \ 15 \ 16 \ 17 \ 17 \ 17 \ $	18