Table of Contents

Group members	2
Screenshots of Editor and Code Compiling/Executing	3
Editor	3
Code Compiling and Executing	4
Alternate Algorithm	5
Pseudocode	5
Step Count	6
Efficiency Class with Limit Theorem	7
Lawnmower Algorithm	8
Pseudocode	8
Step Count	9
Efficiency Class with Limit Theorem	10

Group members

Jonathan Gaytan jagaytan@csu.fullerton.edu

Kyle Dang dangkyle@csu.fullerton.edu

Submission for Project 1

Screenshots of Editor and Code Compiling/Executing

Editor

Code Compiling and Executing

Alternate Algorithm

Pseudocode

```
for n to n + 1

if even

for position at 0 to rightmost_disk

if value of left_disk > value of right_disk

swap position of disks

add to numOfSwap

position += 2

else odd

for position at 1 to rightmost disk - 1

if value of left_disk > value of right_disk

swap position of disks

add to numOfSwap

position += 2

return sorted
```

Step Count

$$s.c. = 1 + 1 + 2 + 1 + (n - 0 + 1) * (2 + 2 + max((\frac{n-0}{2} + 1) * (2 + 1), ((\frac{(n-1)-1}{2} + 1) * (2 + 1))))$$

$$= 5 + (n + 1) * (4 + max((\frac{n}{2} + 1) * 3, (\frac{n-2}{2} + 1) * 3))$$

$$= 5 + (n + 1) * (4 + max((\frac{n+2}{2}) * 3, (\frac{n-2+2}{2}) * 3)))$$

$$= 5 + (n + 1) * (4 + max(\frac{3n+6}{2}, \frac{n}{2} * 3))$$

$$= 5 + (n + 1) * (4 + max(\frac{3n+6}{2}, \frac{3n}{2}))$$

$$= 5 + (n + 1) * (4 + \frac{3n+6}{2})$$

$$= 5 + (n + 1) * (\frac{3n+6+8}{2})$$

$$= 5 + (n + 1) * (\frac{3n+6+8}{2})$$

$$= 5 + (\frac{3n^2+14n}{2} + \frac{3n+14}{2})$$

$$= 5 + (\frac{3n^2+14n}{2} + \frac{3n+14}{2})$$

$$= 5 + (\frac{3n^2+17n+14+10}{2})$$

$$= \frac{3n^2+17n+14+10}{2}$$

$$= \frac{3n^2+17n+14+10}{2}$$

$$= \frac{3n^2+17n+24}{2}$$

Efficiency Class with Limit Theorem

$$\lim_{n \to \infty} \frac{\frac{\frac{3}{2}n^2 + \frac{17}{2}n + 12}{n^2}}{n^2} = \frac{3}{2}$$

Due to $\frac{3}{2} \ge 0$ and $\frac{3}{2}$ being a constant, the Limit Theorem states that $\frac{3n^2 + 17n}{2} + 12 \in O(n^2)$.

That means this algorithm has a time complexity of $O(n^2)$.

Lawnmower Algorithm

Pseudocode

```
for n to n / 2

for position at 0 to rightmost_disk - 1

if value of left_disk > value of right_disk

swap the disks

add to numOfSwap

position++

for position at rightmost_disk - 2

if value of left_disk > value of right_disk

swap the disks

add to numOfSwap

position--

return sorted
```

Step Count

$$s. c. = 1 + 1 + 1 + 1 + 1 + (n - 0 + 1) * (((n - 1) - 0 + 1) * (2 + 1) + (\frac{0 - (n - 2)}{-1} + 1) * (2 + 1))$$

$$= 4 + (n + 1) * (n * 3 + (\frac{-n + 2}{-1} + 1) * 3)$$

$$= 4 + (n + 1) * (3n + (n - 2 + 1) * 3)$$

$$= 4 + (n + 1) * (3n + (n - 1) * 3)$$

$$= 4 + (n + 1) * (3n + (3n - 3))$$

$$= 4 + (n + 1) * (6n - 3)$$

$$= 4 + (6n^2 - 3n + 6n - 3)$$

$$= 6n^2 + 3n + 1$$

Efficiency Class with Limit Theorem

$$\lim_{n \to \infty} \frac{6n^2 + 3n + 1}{n^2} = 6$$

Due to $6 \ge 0$ and 6 being a constant, the Limit Theorem states that $6n^2 + 3n + 1 \in O(n^2)$.

That means this algorithm has a time complexity of $O(n^2)$.