

# Bentley Rules for Optimizing Work

黄 波 bhuang@dase.ecnu.edu.cn

SOLE 系统优化实验室 华东师范大学

\* Recompiled from MIT's OCW









https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-172-performance-engineering-of-software-systems-fall-2018/lecture-slides/MIT6\_172F18\_lec2.pdf

### Work

#### Definition

•The work of a program (on a given input) is the sum total of all the operations executed by the program.

# Optimizing Work

- Algorithm design can produce dramatic reductions in the amount of work it takes to solve a problem, as when a  $\Theta(n \mid g \mid n)$ -time sort replaces a  $\Theta(n^2)$ -time sort.
- Reducing the work of a program does not automatically reduce its running time, however, due to the complex nature of computer hardware:
  - instruction-level parallelism (ILP),
  - caching,
  - vectorization,
  - speculation and branch prediction,
  - etc.
- Nevertheless, reducing the work serves as a good heuristic for reducing overall running time.

## New "Bentley" Rules

- Most of Bentley's original rules dealt with work, but some dealt with the vagaries of computer architecture three and a half decades ago.
- We have created a new set of Bentley rules dealing only with work.
- We shall discuss architecture-dependent optimizations in subsequent lectures.

## New "Bentley" Rules

#### Data structures

- Packing and encoding
- Augmentation
- Precomputation
- Compile-time initialization
- Caching
- Lazy evaluation
- Sparsity

#### Loops

- Hoisting
- Sentinels
- Loop unrolling
- Loop fusion
- Eliminating wasted iterations

#### Logic

- Constant folding and propagation
- Common-subexpression elimination
- Algebraic identities
- Creating a fast path
- Short-circuiting
- Ordering tests
- Combining tests

#### **Functions**

- Inlining
- Tail-recursion elimination
- Coarsening recursion

# Packing and Encoding (1)

The idea of packing is to store more than one data value in a machine word. The related idea of encoding is to convert data values into a representation requiring fewer bits.

#### **Example: Encoding dates**

- The string "September 11, 2018" can be stored in 18 bytes more than two double (64-bit) words which must moved whenever a date is manipulated.
- Assuming that we only store years between 4096 B.C.E. and 4096 C.E., there are about  $365.25 \times 8192 \approx 3$  M dates, which can be encoded in  $\lceil \lg(3 \times 10^6) \rceil = 22$  bits, easily fitting in a single (32-bit) word.
- But determining the month of a date takes more work than with the string representation.

# Packing and Encoding (2)

#### **Example: Packing dates**

- Instead, let us pack the three fields into a word:
- This packed representation still only takes 22 bits, but the individual fields can be extracted much more quickly than if we had encoded the 3 M dates as sequential integers

```
typedef struct {
  int year: 13;
  int month: 4;
  int day: 5;
} date_t;
```

Sometimes unpacking and decoding are the optimization, depending on whether more work is involved moving the data or operating on it.

## Augmentation

The idea of data-structure augmentation is to add information to a data structure to make common operations do less work.

#### **Example:** Appending singly linked lists

- Appending one list to another requires
   walking the length of the first list to set its
   null pointer to the start of the second.
- Augmenting the list with a tail pointer allows appending to operate in constant time.





### Precomputation

- The idea of precomputation is to perform calculations in advance so as to avoid doing them at "mission-critical" times.
- Example: Binomial coefficients

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Computing the "choose" function by implementing this formula can be expensive (lots of multiplications), and watch out for integer overflow for even modest values of n and k.
- Idea: Precompute the table of coefficients when initializing, and perform table look-up at runtime.

## Pascal's Triangle

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

```
int choose(int n, int k) {
   if (n < k) return 0;
   if (n == 0) return 1;
   if (k == 0) return 1;
   return choose(n-1, k-1) + choose(n-1, k);
}</pre>
```

| 1 | 0 | 0  | 0        | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----------|----|----|----|---|---|
| 1 | 1 | 0  | 0        | 0  | 0  | 0  | 0 | 0 |
| 1 | 2 | 1  | 0        | 0  | 0  | 0  | 0 | 0 |
| 1 | 3 | 3  | 1        | 0  | 0  | 0  | 0 | 0 |
| 1 | 4 | 6  | 4        | 1  | 0  | 0  | 0 | 0 |
| 1 | 5 | 10 | 10       | 5  | 1  | 0  | 0 | 0 |
| 1 | 6 | 15 | 20       | 15 | 6  | 1  | 0 | 0 |
| 1 | 7 | 21 | 35       | 35 | 21 | 7  | 1 | 0 |
| 1 | 8 | 28 | 56<br>56 | 70 | 56 | 28 | 8 | 1 |
|   |   |    |          |    |    |    |   |   |

# Precomputing Pascal

```
#define CHOOSE SIZE 100
int choose[CHOOSE SIZE][CHOOSE SIZE];
void init choose() {
 for (int n = 0; n < CHOOSE_SIZE; ++n)
    choose[n][0] = 1;"
    choose[n][n] = 1;.....
for (int n = 1; n < CHOOSE_SIZE; ++n) {</pre>
    choose[0][n] = 0; ....
    for (int k = 1; k < n; ++k) {
      choose[n][k] = choose[n-1][k-1] + choose[n-1][k];
      choose[k][n] = 0;
```

• Now, whenever we need a binomial coefficient (less than 100), we can simply index the choose array.

## Compile-Time Initialization (1)

The idea of compile-time initialization is to store the values of constants during compilation, saving work at execution time.

#### **Example:**

```
int choose[10][10]
       0, 0, 0, 0, 0, 0, 0, 0, 0, },
   1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, },
1, 2, 1, 0, 0, 0, 0, 0, 0, 0, },
   1, 3, 3, 1, 0, 0, 0, 0, 0, 0, },
      4, 6, 4, 1, 0, 0, 0, 0,
              10, 5, 1, 0,
                               0,
                  15, 6, 1, 0, 0,
          15,
              20,
                      21, 7, 1, 0, 0, },
    1, 7, 21, 35,
                  35,
   1, 8, 28,
              56, 70, 56, 28, 8, 1,
      9, 36, 84, 126, 126, 84, 36, 9,
```

## Compile-Time Initialization (2)

Idea: Create large static tables by metaprogramming.

```
int main(int argc, const char *argv[]) {
 init choose();
 printf("int choose[10][10] = {\n");
 for (int a = 0; a < 10; ++a) {
   printf(" {");
   for (int b = 0; b < 10; ++b) {
      printf("%3d, ", choose[a][b]);
   printf("},\n");
 printf("};\n");
```

## Caching

The idea of caching is to store results that have been accessed recently so that the program need not compute them again.

```
inline double hypotenuse (double A, double B) {
  return sqrt(A*A + B*B);
}
```



About 30% faster if cache is hit 2/3 of the time.

```
double cached_A = 0.0;
double cached_B = 0.0;
double cached_h = 0.0;

inline double hypotenuse(double A, double B) {
   if (A == cached_A && B == cached_B) {
      return cached_h;
   }
   cached_A = A;
   cached_B = B;
   cached_h = sqrt(A*A + B*B);
   return cached_h;
}
```

# Sparsity (1)

The idea of exploiting sparsity is to avoid storing and computing on zeroes. "The fastest way to compute is not to compute at all."

Example: Matrix-vector multiplication

$$y = \begin{pmatrix} 3 & 0 & 0 & 0 & 1 & 0 \\ 0 & 4 & 1 & 0 & 5 & 9 \\ 0 & 0 & 0 & 2 & 0 & 6 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 5 & 0 & 0 & 0 & 8 & 0 \\ 5 & 0 & 0 & 9 & 7 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 2 \\ 8 \\ 5 \\ 7 \end{pmatrix}$$

Dense matrix-vector multiplication performs  $n^2 = 36$  scalar multiplies, but only 14 entries are nonzero.

# Sparsity (2)

#### Compressed Sparse Row (CSR)



Storage is O(n+nnz) instead of  $n^2$ .

# Sparsity (3)

CSR matrix-vector multiplication

```
typedef struct {
 int n, nnz;
 int *rows; // length n
 int *cols; // length nnz
 double *vals; // length nnz
} sparse matrix t;
void spmv(sparse matrix t *A, double *x, double *y) {
 for (int i = 0; i < A -> n; i++) {
   y[i] = 0;
   for (int k = A \rightarrow rows[i]; k < A \rightarrow rows[i+1]; k++) {
      int j = A->cols[k];
      y[i] += A->vals[k] * x[j];
```

Number of scalar multiplications = nnz, which is potentially much less than  $n^2$ .

# Sparsity (4)

Storing a static sparse graph





- Can run many graph algorithms efficiently on this representation, e.g., breadth-first search, PageRank
- Can store edge weights with an additional array or interleaved with Edges



# Constant Folding and Propagation

The idea of constant folding and propagation is to evaluate constant expressions and substitute the result into further expressions, all during compilation.

```
#include <math.h>

void orrery() {
   const double radius = 6371000.0;
   const double diameter = 2 * radius;
   const double circumference = M_PI * diameter;
   const double cross_area = M_PI * radius * radius;
   const double surface_area = circumference * diameter;
   const double volume = 4 * M_PI * radius * radius * radius / 3;
   // ...
}
```

With a sufficiently high optimization level, all the expressions are evaluated at compile-time.

LOGIC

# Common-Subexpression Elimination

The idea of common-subexpression elimination is to avoid computing the same expression multiple times by evaluating the expression once and storing the result for later use.

The third line cannot be replaced by c = a, because the value of b changes in the second line.

## Algebraic Identities

The idea of exploiting algebraic identities is to replace expensive algebraic expressions with algebraic equivalents that require less work

return d <= b1->r + b2->r;



```
#include <stdbool.h>
#include <math.h>
typedef struct {
  double x; // x-coordinate
 double y; // y-coordinate
 double z; // z-coordinate
 double r; // radius of ball
                                 bool collides(ball t *b1, ball t *b2) {
} ball t;
                                   double dsquared = square(b1->x - b2->x)
                                                    + square(b1->y - b2->y)
double square(double x) {
                                                    + square(b1->z - b2->z);
  return x*x;
                                   return dsquared <= square(b1->r + b2->r);
bool collides(ball t *b1, ball t *b2) {
                                                       \sqrt{u} \le v exactly
  double d = sqrt(square(b1->x - b2->x)
                  + square(b1->y - b2->y)
                                                        when u \leq v^2.
                  + square(b1->z - b2->z));
```

## Creating a Fast Path



```
#include <stdbool.h>
#include <math.h>
typedef struct {
 double x; // x-coordinate
 double y; // y-coordinate
 double z; // z-coordinate
 double r; // radius of ball
} ball t;
double square(double x) {
  return x*x;
bool collides(ball t *b1, ball t *b2) {
 if ((abs(b1->x - b2->x) > (b1->r + b2->r))
      (abs(b1->y - b2->y) > (b1->r + b2->r))
      (abs(b1->z - b2->z) > (b1->r + b2->r)))
    return false;
 double dsquared = square(b1->x - b2->x)
                   + square(b1->y - b2->y)
                   + square(b1->z - b2->z);
 return dsquared <= square(b1->r + b2->r);
```

## **Short-Circuiting**

When performing a series of tests, the idea of short-circuiting is to stop evaluating as soon as you know the answer.

```
#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
   int sum = 0;
   for (int i = 0; i < n; i++) {
      sum += A[i];
   }
   return sum > limit;
}

sum += A[i];
}

return sum > limit;
}
#include <st
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int *A, int n, int limit) {
   int sum = bool sum_exceeds(int n, int limit) {
   int sum = bool sum_exceeds(int n, int limit) {
   int sum = bool sum_exceeds(int n, int limit) {
   int sum = bool sum_exceeds(int n, int limit) {
   int sum = bool sum_exceeds(int n, int limit) {
   int sum = bool sum_exceeds(int n, int limit) {
  int sum = bool sum_exceeds(int n, int limit) {
   int sum = bool
```

Note that **&&** and || are short-circuiting logical operators, and **&** and | are not.

```
#include <stdbool.h>
// All elements of A are nonnegative
bool sum_exceeds(int *A, int n, int limit) {
   int sum = 0;
   for (int i = 0; i < n; i++) {
      sum += A[i];
      if (sum > limit) {
        return true;
      }
   }
   return false;
}
```

## Ordering Tests

Consider code that executes a sequence of logical tests. The idea of ordering tests is to perform those that are more often "successful" — a particular alternative is selected by the test — before tests that are rarely successful. Similarly, inexpensive tests should precede expensive ones.

```
#include <stdbool.h>
bool is_whitespace(char c) {
   if (c == '\r' || c == '\t' || c == '\n') {
      return true;
   }
   return false;
}

#include <stdbool.h>
bool is_whitespace(char c) {
   if (c == ' ' || c == '\n' || c == '\t' || c == '\r') {
      return true;
   }
   return false;
}
```

# Combining Tests (1)

The idea of combining tests is to replace a sequence of tests with one

test or switch.

#### Full adder

| a | b | С | carry | sum |
|---|---|---|-------|-----|
| 0 | 0 | 0 | 0     | 0   |
| 0 | 0 | 1 | 0     | 1   |
| 0 | 1 | 0 | 0     | 1   |
| 0 | 1 | 1 | 1     | 0   |
| 1 | 0 | 0 | 0     | 1   |
| 1 | 0 | 1 | 1     | 0   |
| 1 | 1 | 0 | 1     | 0   |
| 1 | 1 | 1 | 1     | 1   |

```
a+b+c \rightarrow carry, sum
```

```
void full_add (int a,
               int b,
               int c,
               int *sum,
               int *carry) {
 if (a == 0) {
   if (b == 0) {
     if (c == 0) {
        *sum = 0;
        *carry = 0;
      } else {
        *sum = 1;
        *carry = 0;
   } else {
      if (c == 0) {
        *sum = 1;
        *carry = 0;
      } else {
        *sum = 0;
        *carry = 1;
```

```
} else {
if (b == 0) {
  if (c == 0) {
    *sum = 1;
    *carry = 0;
  } else {
    *sum = 0;
    *carry = 1;
} else {
  if (c == 0) {
    *sum = 0;
    *carry = 1;
  } else {
     *sum = 1;
    *carry = 1;
```

# Combining Tests (2)

The idea of combining tests is to replace a sequence of tests with one

test or switch.

#### Full adder

| a | b | С | carry | sum |
|---|---|---|-------|-----|
| 0 | 0 | 0 | 0     | 0   |
| 0 | 0 | 1 | 0     | 1   |
| 0 | 1 | O | 0     | 1   |
| 0 | 1 | 1 | 1     | 0   |
| 1 | 0 | O | 0     | 1   |
| 1 | 0 | 1 | 1     | 0   |
| 1 | 1 | 0 | 1     | 0   |
| 1 | 1 | 1 | 1     | 1   |

For this example, table lookup is even better.

```
void full add (int a,
              int b,
               int c,
               int *sum,
              int *carry) {
 int test = ((a == 1) << 2)
             ((b == 1) << 1)
              (c == 1);
 switch(test) {
   case 0:
     *sum = 0;
     *carry = 0;
     break:
   case 1:
     *sum = 1;
     *carry = 0;
     break;
    case 2:
     *sum = 1;
     *carry = 0;
      break;
```

```
case 3:
 *sum = 0;
  *carry = 1;
  break;
case 4:
*sum = 1;
 *carry = 0;
  break;
case 5:
  *sum = 0;
  *carry = 1;
  break;
case 6:
  *sum = 0;
  *carry = 1;
  break;
case 7:
  *sum = 1;
  *carry = 1;
  break;
```

## Hoisting

The goal of hoisting — also called loop-invariant code motion — is to avoid recomputing loop-invariant code each time through the body of a loop.

```
#include <math.h>
void scale(double *X, double *Y, int N) {
  for (int i = 0; i < N; i++) {
    Y[i] = X[i] * exp(sqrt(M PI/2));
                                      #include <math.h>
                                      void scale(double *X, double *Y, int N) {
                                        double factor = exp(sqrt(M_PI/2));
                                       for (int i = 0; i < N; i++) {
                                         Y[i] = X[i] * factor;
```

### Sentinels

Sentinels are special dummy values placed in the data structure to simplify the logic of boundary conditions, and in particular, the handling of loop-exit tests.

```
#include <stdint.h>
#includer <stdbool.h>
bool overflow (int64_t *A, size_t n) {
// All elements of A are nonnegative
  int64 t sum = 0;
  for (size t i = 0; i < n; ++i)
    sum += A[i];
    if ( sum < A[i] ) return true;
  return false;
```

```
#include <stdint.h>
#include <stdbool.h>
// Assumes that A[n] and A[n+1] exist and
// can be clobbered
bool overflow(int64_t *A, size_t n) {
// All elements of A are nonnegative
  A[n] = INT64 MAX;
 A[n+1] = 1; // or any positive number
                                             Why?
  size t i = 0;
  int64 t sum = A[0];
  while ( sum >= A[i] ) {
   sum += A[++i];
  if (i < n) return true;
  return false;
```



# Loop Unrolling

Loop unrolling attempts to save work by combining several consecutive iterations of a loop into a single iteration, thereby reducing the total number of iterations of the loop and, consequently, the number of times that the instructions that control the loop must be executed.

- Full loop unrolling: All iterations are unrolled.
- Partial loop unrolling: Several, but not all, of the iterations are unrolled.

# Full Loop Unrolling

```
int sum = 0;
for (int i = 0; i < 10; i++) {
   sum += A[i];
}</pre>
```

```
int sum = 0;
sum += A[0];
sum += A[1];
sum += A[2];
sum += A[3];
sum += A[4];
sum += A[5];
sum += A[6];
sum += A[7];
sum += A[8];
sum += A[9];
```

## Partial Loop Unrolling

```
int sum = 0;
for (int i = 0; i < n; ++i) {
   sum += A[i];
}</pre>
```



```
int sum = 0;
int j;
for (j = 0; j < n-3; j += 4) {
   sum += A[j];
   sum += A[j+1];
   sum += A[j+2];
   sum += A[j+3];
}
for (int i = j; i < n; ++i) {
   sum += A[i];
}</pre>
```

#### **Benefits of loop unrolling**

- Lower number of instructions in loop control code
- Enables more compiler optimizations

Unrolling too much can cause poor use of instruction cache

## **Loop Fusion**

The idea of loop fusion — also called jamming — is to combine multiple loops over the same index range into a single loop body, thereby saving the overhead of loop control.

```
for (int i = 0; i < n; ++i) {
   C[i] = (A[i] <= B[i]) ? A[i] : B[i];
}

for (int i = 0; i < n; ++i) {
   D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}</pre>
```

```
for (int i = 0; i < n; ++i) {
  C[i] = (A[i] <= B[i]) ? A[i] : B[i];
  D[i] = (A[i] <= B[i]) ? B[i] : A[i];
}</pre>
```



## Eliminating Wasted Iterations

The idea of eliminating wasted iterations is to modify loop bounds to avoid executing loop iterations over essentially empty loop bodies.



```
for (int i = 0; i < n; ++i) {
  for (int j = 0; j < n; ++j) {
    if (i > j) {
      int temp = A[i][j];
      A[i][j] = A[j][i];
      A[j][i] = temp;
    }
  }
}
```

```
for (int i = 1; i < n; ++i) {
  for (int j = 0; j < i; ++j) {
    int temp = A[i][j];
    A[i][j] = A[j][i];
    A[j][i] = temp;
  }
}</pre>
```

# Inlining (1)

The idea of inlining is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

```
double square(double x) {
  return x*x;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
    sum += square(A[i]);
  }
  return sum;
}</pre>
```



```
double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
    double temp = A[i];
    sum += temp*temp;
  }
  return sum;
}</pre>
```

# Inlining (2)

The idea of inlining is to avoid the overhead of a function call by replacing a call to the function with the body of the function itself.

```
double square(double x) {
  return x*x;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
    sum += square(A[i]);
  }
  return sum;
}</pre>
```

Inlined functions can be just as efficient as macros, and they are better structured.



```
static inline double square(double x) {
  return x*x;
}

double sum_of_squares(double *A, int n) {
  double sum = 0.0;
  for (int i = 0; i < n; ++i) {
     sum += square(A[i]);
  }
  return sum;
}</pre>
```

### Tail-Recursion Elimination

The idea of tail-recursion elimination is to replace a recursive call that occurs as the last step of a function with a branch, saving function-call overhead.

```
void quicksort(int *A, int n) {
   if (n > 1) {
     int r = partition(A, n);
     quicksort (A, r);
     quicksort (A + r + 1, n - r - 1);
   }
}
```



```
void quicksort(int *A, int n) {
  while (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
}
```

# Coarsening Recursion

The idea of coarsening recursion is to increase the size of the base case and handle it with more efficient code that avoids function-call overhead.

```
void quicksort(int *A, int n) {
  while (n > 1) {
    int r = partition(A, n);
    quicksort (A, r);
    A += r + 1;
    n -= r + 1;
  }
}
```



```
#define THRESHOLD 10
void quicksort(int *A, int n) {
  while (n > THRESHOLD) {
   int r = partition(A, n);
   quicksort (A, r);
   A += r + 1;
   n -= r + 1;
  // insertion sort for small arrays
  for (int j = 1; j < n; ++j) {
   int key = A[j];
   int i = j - 1;
   while (i >= 0 && A[i] > key) {
    A[i+1] = A[i];
      --i;
    A[i+1] = kev:
```

## New "Bentley" Rules - Summary

#### Data structures

- Packing and encoding
- Augmentation
- Precomputation
- Compile-time initialization
- Caching
- Lazy evaluation
- Sparsity

#### Loops

- Hoisting
- Sentinels
- Loop unrolling
- Loop fusion
- Eliminating wasted iterations

#### Logic

- Constant folding and propagation
- Common-subexpression elimination
- Algebraic identities
- Creating a fast path
- Short-circuiting
- Ordering tests
- Combining tests

#### **Functions**

- Inlining
- Tail-recursion elimination
- Coarsening recursion

# Closing Advice

- Avoid premature optimization. First get correct working code. Then optimize, preserving correctness by regression testing.
- Reducing the work of a program does not necessarily decrease its running time, but it is a good heuristic.
- The compiler automates many low-level optimizations.
- To tell if the compiler is actually performing a particular optimization, look at the assembly code.

If you find interesting examples of work optimization, please let us know!

