«Точно так же»

Неорганическое вещество **X** получают в лаборатории пропусканием хлора в горячий раствор гидроксида калия (p-uия 1). Выпадающие кристаллы кислородсодержащей соли **X** отфильтровывают и подвергают перекристаллизации. Растворимость **X** при 0 °C составляет 3.3 г соли на 100 г воды, а при 100 °C 56.2 г на 100 г воды.

С очищенной перекристаллизацией солью Х провели 4 опыта:

- А) **X** нагрели с диоксидом марганца в присутствии твердого гидроксида калия (p-u, продукты реакции растворились в воде без остатка с образованием темно-зеленого раствора, со временем изменяющего окраску с выпадением коричневого осадка (p-u, 3).
- Б) Нагревание **X** с диоксидом марганца без щелочи (*p-ция 4*) приводит к остатку, частично растворимому в воде, образующийся раствор не окрашен и со временем никаких изменений с ним не происходит. Если к твердому остатку разложения прибавить концентрированную серную кислоту выделяется газ желто-зеленого цвета (*p-ция 5*).
- В) Если к X прибавить концентрированную серную кислоту выделятся другой газ желтого цвета (*p-ция 6*), реагирующий с горячим раствором гидроксида калия (*p-ция 7*) с образованием бесцветного раствора.
- Γ) Взаимодействие **X** с красным фосфором сопровождается взрывом, при этом образуется белый твердый остаток (*p-ция* 8), растворимый в воде.

Вопросы:

- 1. Напишите уравнения реакций 1-9. Укажите тривиальное название X.
- **2**. Какую окраску приобретает раствор по окончанию *p-ции 3*? Где в быту используется *p-ция 8*?
- 3. Определите минимальную массу воды *m*₁ в которой растворится 15 г соли **X** при 100 °C. Рассчитайте сколько граммов безводной соли *m*₂ можно получить из 58 г насыщенного при 100 °C раствора при его охлаждении до 0 °C.
 - 4. Определите вещества **A**, **B** и массовую долю **ω** щелочи в растворе **A**.

Решение задачи 9-4 (автор: Серяков С.А.)

- 1. Как известно, при нагревании КОН реагирует с хлором по уравнению:
- 1) $6KOH + 3Cl_2 = 5KCl + KClO_3 + 3H_2O$
- В условии сказано, что соль X содержит кислород, откуда следует $X = \text{KClO}_3$, или *бертолетова соль*. Составим реакции, описанные в опытах:
- **А.** Бертолетова соль является сильным окислителем, что способствует переводу MnO_2 в более высокую степень окисления, стабилизации которой способствует щелочь, образующая манганат:
 - 2) $KClO_3 + 3MnO_2 + 6KOH = 3K_2MnO_4 + KCl + 3H_2O$

В растворе манганат диспропорционирует с образованием перманганата и диоксида марганца:

- 3) $3K_2MnO_4 + 2H_2O = 4KOH + MnO_2 + 2KMnO_4$
- **Б.** В отсутствие щелочи, марганец не стабилизируется в более высоких степенях окисления, поэтому MnO₂ выступает в качестве катализатора разложения хлората, понижая температуру процесса с 400 °C до 200–250 °C:
 - 4) $2KClO_3 = 2KCl + 3O_2$

Остаток содержит MnO₂ и KCl, серная кислота создает среду для о протекания реакции между ними:

- 5) $MnO_2 + 2KCl + 2H_2SO_4 = MnSO_4 + Cl_2\uparrow + K_2SO_4 + 2H_2O$ Желтый газ это хлор.
- **В.** В H_2SO_4 хлорат диспропорционирует с образованием перхлората и ClO_2 (другой желтый газ):
 - 6) $3KClO_3 + 2H_2SO_4 = KClO_4 + 2KHSO_4 + 2ClO_2 \uparrow + H_2O$

Уравнения с продуктами K₂SO₄, HClO₄ считать полностью верными.

Пропускание диоксида хлора в горячий раствор щелочи приводит к тем же продуктам, что и при получении \mathbf{X} :

- 7) $6KOH + 6ClO_2 = KCl + 5KClO_3 + 3H_2O$
- Γ . Красный фосфор является типичным восстановителем окисляется до P_2O_5 , который испаряется в условиях протекания экзотермической реакции:
 - 8) $6P + 5KClO_3 = 3P_2O_5 \uparrow + 5KCl$
- **2.** Раствор в *р-ции 3* приобретает *малиновую* окраску перманганат-иона. *Р-ция 8* протекает при чирканьи спички о коробок.

3. Определим массу воды для растворения 15 г соли по пропорции:

15 г соли
$$-m_1$$
 г воды

56.2 г соли
$$-100$$
 г воды, откуда $m_1 = 100 \cdot (15/56.2) = 26.7$ г.

Пусть m — масса воды, а $m_{\rm cl}$ — масса соли в 58 г горячего раствора, в таком случае: $m_{\rm cl}$ + m = 58 в то же время по пропорции $m_{\rm cl}$ = $56.2 \cdot (m/100)$ = 0.562m, откуда 0.562m + m = 58, m = 37.13 г

В процессе выпадения безводной соли масса воды останется неизменной. Составим пропорцию

$$m$$
 г воды — выпадет m_2 соли 100 г воды — выпадет $(56.2-3.3)$ г соли, откуда $m_2 = 52.9 \cdot (37.13/100) = \mathbf{19.6}$ г.

4. Составим уравнение реакции щелочи $\mathbf{A} = \text{YOH c}$ галогеном $\mathbf{B} = \mathbb{Z}_2$. Реакция протекает при нагревании, «точно так же», как реакция между КОН и хлором:

$$6YOH + 3Z_2 = 5YZ + YZO_3 + 3H_2O$$

Пусть образовалось x моль YZO₃, значит его масса $m(YZO_3) - x(48 + M(YZ))$, согласно уравнению реакции соли YZ образовалось 5x моль, и её масса $m(YZ) = 5x \cdot M(YZ)$. Масса бескислородной соли больше, а поскольку обе соли входят в состав одного раствора, отношение их массовых долей в точности равно отношению их масс:

$$m(YZ)/m(YZO_3) = 5M(YZ)/(48 + M(YZ)) = 26.31 \% / 8.165 \% = 3.222$$
, откуда $M(YZ) = 87.0$ г/моль.

Перебором сумм атомных масс щелочного металла и галогена находим, что Y = Li, Z = Br.

9)
$$6\text{LiOH} + 3\text{Br}_2 = 5\text{LiBr} + \text{LiBrO}_3 + 3\text{H}_2\text{O}$$

 ${\bf A} = {\rm LiOH}, \ {\bf B} = {\rm Br}_2.$ Определим количество и массу щелочи в исходном растворе.

Масса конечного раствора равна массе раствора щелочи и прибавленного брома: $m = (70.4 + 160 \cdot 3x)$, выходит что количество бромата лития $x = 0.08165 \cdot (70.4 + 480x)/135$, откуда x = 0.06 моль. По уравнению реакции n(LiOH) = 6x = 0.36 моль, его масса $m(\text{LiOH}) = 0.36 \cdot 24 = 8.64$ г.

Отсюда массовая доля $\omega(\text{LiOH}) = 8.64/70.4 = 0.123$, или **12.3** %.

Система оценивания:

системи оценивания.		
1	9 уравнений реакций по 1 баллу – 9 баллов	10 баллов
	Тривиальное название «бертолетова соль» для KClO ₃ – 1 балл	
2	Указание на малиновую окраску раствора реакции 3 – 1 балл	2 балла
	Применение реакции 8 в быту – 1 балл	
3	Определение массы воды $m_1 - 2$ балла	4 балла
	Определение масса $m_2 - 2$ балла	
4	Определение веществ А и В по 1 баллу	4 балла
	Определение массовой доли LiOH – 2 балл	
	Итого: 20 баллов	

Если ход определения массовой доли верен, но не учтено изменение массы раствора при поглощении брома выставлять за последние два пункта 1 балл. Ответ при таком решении составит 8.7 %.