

ACM中的数学问题

北京大学信息学院 林舒/郭炜/李晔晨/钟原/王易檀

Polya定理

- >组合数学理论中最重要的定理之一
- ▶在组合计数问题中有重要作用
- 》涉及的概念和定理比较多,证明较复杂,本 讲只是粗略地介绍

一个经典的例子

- 》用两种颜色去染排成一个圈的6个棋子, 如果能够通过旋转得到只算作一种,问有 多少种染色状态
- ▶下面将通过这个例子来形象地介绍Polya 定理的内容和解决这类问题的方法

置族

- ▶置换:用矩阵形式表示的顶点的变换
- 》例子中,将棋子从某个点顺时针标上1到6,则将所有棋子顺时针旋转一个位置的置换可表示为:
 - (123456) 612345)

置换群

- ▶以置换为元素的群
- ▶置换群G={a₁,a₂,...,a_{|G|}}
- ▶例子中G内共有6个置换

```
    [123456]
    [123456]
    [123456]

    [123456]
    [561234]
```

 [123456]
 [123456]
 [123456]

 [456123]
 [345612]
 [234561]

循环

- ▶在一个置换下,X₁->X₂,X₂->X₃,...,X_n->X₁,这 样X₁,X₂,...,X_n就构成了一个循环
- ▶定义C_k为在置换a_k下的循环总数
- ▶例子中:

$$c_1=6, c_2=1, c_3=2, c_4=3, c_5=2, c_6=1$$

置换群

- ▶以置换为元素的群
- ▶置换群G={a₁,a₂,...,a_{|G|}}
- ▶例子中G内共有6个置换

```
    [123456]
    [123456]
    [123456]

    [123456]
    [561234]
```

 [123456]
 [123456]
 [123456]

 [456123]
 [345612]
 [234561]

$$c_1=6, c_2=1, c_3=2, c_4=3, c_5=2, c_6=1$$

 $c_1=6, c_2=1, c_3=2, c_4=3, c_5=2, c_6=1$
 $c_1=6, c_2=1, c_3=2, c_4=3, c_5=2, c_6=1$
 $c_1=6, c_2=1, c_3=2, c_4=3, c_5=2, c_6=1$
 $c_2=1, c_3=2, c_4=3, c_5=2, c_6=1$
 $c_1=2, c_2=1, c_3=2, c_4=3, c_5=2, c_6=1$
 $c_1=2, c_1=1, c_2=1, c_3=2, c_6=1$
 $c_1=2, c_1=1, c_2=1, c_1=1, c_1=1$
 $c_1=2, c_1=1, c_2=1, c_1=1, c_1=1, c_1=1$
 $c_1=2, c_1=1, c_2=1, c_1=1, c$

Polya定理

- 》设 $G=\{a_1,a_2,...,a_{|G|}\}$ 是 $N=\{1,2,...,N\}$ 上的置换群,现用m种颜色对这N个点染色,则不同的染色方案数为 $S=(m^{c1}+m^{c2}+...+m^{c|G|})/|G|$
- ▶证明比较复杂,略

利用Polya定理

解决组合针数问题的步骤

```
「123456」

「123456」

「123456」

「123456」

「123456」

「123456」

「123456」

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)

(123456)
```

- 》 求出每个置换的循环数 c_1 =6, c_2 =1, c_3 =2, c_4 =3, c_5 =2, c_6 =1
- ▶ 计算染色方案 S=(26+21+22+23+22+21)/6=14

常见置换的循环数

- ▶ 计算置换的循环数,是这一算法的瓶颈.如果能够快速计算出各置换的循环数,就可以大大提高程序的运行效率
- ▶ 旋转:n个点顺时针(或逆时针)旋转i个位置的置换,循环数为gcd(n,i)
- ▶翻转:
 - ▶n为偶数时,
 - ▶对称轴不过顶点:循环数为n/2
 - ▶对称轴过顶点:循环数为n/2+1
 - ▶n为奇数时,循环数为(n+1)/2

Polya定理小结

- ▶前面所讲的内容,仅适用于置换数目较少,看色没有其他限制的情况,是最简单的一类Polya定理的问题
- > 复杂的Polya定理的问题还需要用到数论知识来加快速度,用排列组合或动态规划来辅助计数
- ▶不过,对于ACM竞赛来说,掌握简单的Polya定理 就能够解决很多问题了

Polya定理应用

▶对2×2的方阵用黑白两种颜色涂色,问能得到多少种不同的图像? 经过顺时针旋转使之吻合的两种方案,算是同一种方案。

Polya定理应用

转0°:
$$\mathbf{f}_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
 转90°: $\mathbf{f}_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$

▶方案数(2⁴+2¹+2²+2¹)/4=6

Necklace of Beads

- **>**POJ1286
- ▶题目大意:
 - 》将三种不同颜色的珠子串成有n个珠子的项链,旋转/翻转后相同的算同一种,求方案数

Necklace of Beads

- ▶n个珠子绕成一个环,对其3染色,旋转对称后相同的算一种
- ▶如何使用Polya定理解决该问题?
- >旋转:
 - ▶n个点顺时针旋转i个位置的置换,循环数为gcd(n,i),方案数为3gcd(n,i)
- ▶翻转:
 - ▶n为偶数时,对称轴不过顶点的循环数为n/2, 方案数为3^{n/2},对称轴过顶点的循环数为n/2+1,)方案数为3^{n/2+1}
 - ▶n为奇数时,循环数为(n+1)/2, 方案数为3(n+1)/2

思考

- > for (int i = 1; i<=n; i++){
 tot += pow(3, gcd(n,i))</pre>
- **>**}
- ▶n很大(几千万),数据组数很多(几千组),怎么办?

思考

- ▶对大多数i, gcd(n,i)的值都相同
- ▶都是N的约数!
- ▶转而用Sqrt(n)的复杂度枚举n的约数

for (d是n 的约数){

tot += pow(3, d)

NUM{1..n中与n的最大公约数是d的数的个数}

▶如何计算NUM?

