Planche nº 38. Séries numériques. Corrigé

Exercice nº 1:

1) Soient a et b deux réels. Pour tout entier naturel n non nul, deux intégrations par parties fournit

$$\begin{split} \int_0^\pi \left(at^2 + bt\right) \cos(nt) \; dt &= \left[\left(at^2 + bt\right) \frac{\sin(nt)}{n} \right]_0^\pi - \int_0^\pi (2at + b) \frac{\sin(nt)}{n} \; dt = \frac{1}{n} \int_0^\pi (2at + b) (-\sin(nt)) \; dt \\ &= \frac{1}{n} \left(\left[(2at + b) \frac{\cos(nt)}{n} \right]_0^\pi - \int_0^\pi 2a \cos(nt) \; dt \right) = \frac{1}{n^2} \left[(2at + b) \frac{\cos(nt)}{n} \right]_0^\pi \\ &= \frac{1}{n^2} \left((2a\pi + b) (-1)^n - b \right). \end{split}$$

puis

$$\begin{split} \forall n \in \mathbb{N}^*, \, \int_0^\pi \left(at^2 + bt\right) \cos(nt) \,\, dt &= \frac{1}{n^2} \Leftrightarrow \forall n \geqslant 1, \,\, \frac{1}{n^2} \left((2\alpha\pi + b)(-1)^n - b \right) = \frac{1}{n^2} \\ &\Leftrightarrow \forall n \geqslant 1, \,\, (2\alpha\pi + b)(-1)^n - b = 1 \\ &\Leftrightarrow b = -1 \,\, \mathrm{et} \,\, \alpha = \frac{1}{2\pi}. \end{split}$$

$$\forall n \geqslant 1, \ \frac{1}{n^2} = \int_0^{\pi} \left(\frac{t^2}{2\pi} - t\right) \cos(nt) \ dt.$$

$$2) \ \operatorname{Pour} \ n \geqslant 1, \ \sum_{k=1}^n \frac{1}{k^2} = \sum_{k=1}^n \int_0^\pi \left(\frac{t^2}{2\pi} - t\right) \cos(kt) \ dt = \int_0^\pi \left(\frac{t^2}{2\pi} - t\right) \sum_{k=1}^n \cos(kt) \ dt. \ \operatorname{Pour} \ t \in [0,\pi], \ \operatorname{posons}$$

$$f_n(t) = \sum_{k=1}^n \cos(kt). \ \operatorname{Pour} \ t \in [0,\pi],$$

$$\begin{split} 2\sin\left(\frac{t}{2}\right)f_n(t) &= \sum_{k=1}^n 2\sin\left(\frac{t}{2}\right)\cos(kt) = \sum_{k=1}^n \left(\sin\left(\left(k+\frac{1}{2}\right)t\right) - \sin\left(\left(k-\frac{1}{2}\right)t\right)\right) \\ &= \sin\left(\left(n+\frac{1}{2}\right)t\right) - \sin\left(\left(\frac{1}{2}\right)t\right) \; (\text{somme t\'elescopique}) \\ &= \sin\left(\frac{(2n+1)t}{2}\right) - \sin\left(\frac{t}{2}\right). \end{split}$$

 $\mathrm{Par\ suite,\ si\ }t\in]0,\pi]\ \mathrm{de\ sorte\ que\ }2\sin\left(\frac{t}{2}\right)\neq0,\ f_n(t)=\frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)}-\frac{1}{2}\ \mathrm{et\ }d\mathrm{'autre\ part},\ f_n(0)=n.$

$$\textbf{3)} \ \operatorname{Pour} \ t \in]0,\pi], \ \left(\frac{t^2}{2\pi} - t\right) f_n(t) = \frac{\frac{t^2}{2\pi} - t}{2\sin\left(\frac{t}{2}\right)} \sin\left(\frac{(2n+1)t}{2}\right) - \frac{1}{2}\left(\frac{t^2}{2\pi} - t\right). \ \operatorname{Pour} \ t \in]0,\pi], \ \operatorname{on pose alors}$$

 $g(t) = \frac{\frac{t^2}{2\pi} - t}{2\sin\left(\frac{t}{2}\right)}.$ La fonction g est continue sur $]0,\pi]$ et se prolonge par continuité en 0 en posant g(0) = -1. En notant

encore g le prolongement obtenu, pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} \frac{1}{k^2} = -\frac{1}{2} \int_{0}^{\pi} \left(\frac{t^2}{2\pi} - t \right) dt + \int_{0}^{\pi} g(t) \sin \left(\frac{(2n+1)t}{2} \right).$$

Puisque la fonction g est continue sur le segment $[0,\pi]$, le lemme de LEBESGUE (voir planche n° 37, exercice n° 5) permet d'affirmer que $\lim_{n\to +\infty} \int_0^{\pi} g(t) \sin\left(\frac{(2n+1)t}{2}\right) = 0$ et donc

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = -\frac{1}{2} \int_0^{\pi} \left(\frac{t^2}{2\pi} - t \right) dt = -\frac{1}{2} \left[\frac{t^3}{6\pi} - \frac{t^2}{2} \right]_0^{\pi} = -\frac{1}{2} \left(\frac{\pi^3}{6\pi} - \frac{\pi^2}{2} \right) = \frac{\pi^2}{6}.$$

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice nº 2:

1) Soit
$$n \in \mathbb{N}^*$$
. Soit $k \in [1, n]$. $\int_0^1 t^{k-1} dt = \left[\frac{t^k}{k}\right]_0^1 = \frac{1}{k}$. Donc,

$$\begin{split} \sum_{k=1}^n \frac{(-1)^{k-1}}{k} &= \sum_{k=1}^n (-1)^{k-1} \int_0^1 t^{k-1} \ dt = \int_0^1 \left(\sum_{k=1}^n (-t)^{k-1} \right) dt \\ &= \int_0^1 \frac{1-(-t)^n}{1-(-t)} \ dt \ (\operatorname{car} \ \forall t \in [0,1], \ -t \neq 1) \\ &= \int_0^1 \frac{1}{1+t} \ dt - (-1)^n \int_0^1 \frac{t^n}{1+t} \ dt = \ln 2 - (-1)^n \int_0^1 \frac{t^n}{1+t} \ dt. \end{split}$$

$$\mathrm{De} \ \mathrm{plus}, \ \left| (-1)^n \int_0^1 \frac{t^n}{1+t} \ dt \right| = \int_0^1 \frac{t^n}{1+t} \ dt \leqslant \int_0^1 t^n \ dt = \frac{1}{n+1}.$$

Puisque $\lim_{n\to +\infty}\frac{1}{n+1}=0$, on en déduit que $\lim_{n\to +\infty}(-1)^n\int_0^1\frac{t^n}{1+t}\,dt=0$. Mais alors, la suite des sommes partielles $\left(\sum_{k=1}^n\frac{(-1)^{k-1}}{k}\right)_{n\geqslant 1}$ converge ou encore la série de terme général $\frac{(-1)^{n-1}}{n},\,n\geqslant 1$, converge et

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln 2.$$

2) Soit $n \in \mathbb{N}^*$. Soit $k \in [\![1,n]\!]$. $\int_0^1 t^{2k} \ dt = \frac{1}{2k+1}$. Donc,

$$\begin{split} \sum_{k=0}^n \frac{(-1)^k}{2k+1} &= \sum_{k=0}^n (-1)^k \int_0^1 t^{2k} \ dt = \int_0^1 \left(\sum_{k=0}^n (-t)^k \right) dt \\ &= \int_0^1 \frac{1-(-t^2)^{n+1}}{1-(-t^2)} \ dt \ (\operatorname{car} \ \forall t \in [0,1], \ -t^2 \neq 1) \\ &= \int_0^1 \frac{1}{1+t^2} \ dt + (-1)^n \int_0^1 \frac{t^{2n}}{1+t^2} \ dt = \frac{\pi}{4} + (-1)^n \int_0^1 \frac{t^{2n}}{1+t^2} \ dt. \end{split}$$

 $\mathrm{De}\ \mathrm{plus},\ \left|(-1)^n\int_0^1\frac{t^{2n}}{1+t^2}\ dt\right|=\int_0^1\frac{t^{2n}}{1+t^2}\ dt\leqslant \int_0^1t^{2n}\ dt=\frac{1}{2n+1}.$

Puisque $\lim_{n\to+\infty}\frac{1}{2n+1}=0$, on en déduit que $\lim_{n\to+\infty}(-1)^n\int_0^1\frac{t^{2n}}{1+t^2}\,dt=0$. Mais alors, la suite des sommes partielles $\left(\sum_{k=0}^n\frac{(-1)^k}{2k+1}\right)$ converge ou encore la série de terme général $\frac{(-1)^n}{2n+1}$, $n\geqslant 0$, converge et

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$$

Exercice $n^{\circ} 3$: La suite (u_n) est strictement positive.

- 1) Pour tout $n \in \mathbb{N}^*$, $n^{3/2} \times \frac{\ln n}{n^2} = \frac{\ln n}{\sqrt{n}}$. D'après un théorème de croissances comparées, $\lim_{n \to +\infty} \frac{\ln n}{\sqrt{n}} = 0$ et donc $n^{3/2} \times \frac{\ln n}{n^2} = o(1)$ ou encore $\frac{\ln n}{n^2} = o\left(\frac{1}{n^{\frac{3}{2}}}\right)$. Puisque $\frac{3}{2} > 1$, la série de terme général $\frac{1}{n^{\frac{3}{2}}}$ converge et donc la série de terme général $\frac{\ln n}{n^2}$ converge.
- Pour tout $n \in \mathbb{N}^*$, $n \times \frac{1}{\sqrt{n} \ln^2 n} = \frac{\sqrt{n}}{\ln^2 n}$. D'après un théorème de croissances comparées, $\lim_{n \to +\infty} \frac{\sqrt{n}}{\ln^2 n} = +\infty$ et donc $\frac{1}{\sqrt{n} \ln^2 n}$ est prépondérant devant $\frac{1}{n}$ quand n tend vers $+\infty$. Puisque la série de terme général $\frac{1}{n}$ diverge, la série de terme général $\frac{1}{\sqrt{n} \ln^2 n}$ diverge.
- 2) Si $\alpha < 0$, on peut écrire $u_n = \frac{n^{-\alpha}}{\ln^\beta n}$ avec $-\alpha > 0$. D'après un théorème de croissance comparées, u_n tend vers $+\infty$ quand n tend vers $+\infty$ et donc la série de terme général u_n , $n \ge 2$, diverge grossièrement.
- 3) On suppose que $0 \leqslant \alpha < 1$. $n \times \frac{1}{n^{\alpha} \ln^{\beta} n} = \frac{n^{1-\alpha}}{\ln^{\beta} n}$ avec $1-\alpha > 0$. D'après un théorème de croissances comparées, pour tout réel β , $\lim_{n \to +\infty} \frac{n^{1-\alpha}}{\ln^{\beta} n} = +\infty$. Par suite, $\frac{1}{n^{\alpha} \ln^{\beta} n}$ est prépondérant devant $\frac{1}{n}$ quand n tend vers $+\infty$ et donc la série de terme général u_n , $n \geqslant 2$, diverge.
- 4) On suppose que $\alpha > 1$. $n^{(\alpha+1)/2} \times \frac{1}{n^{\alpha} \ln^{\beta} n} = \frac{1}{n^{(\alpha-1)/2} \ln^{\beta} n}$ avec $\frac{\alpha-1}{2} > 0$. D'après un théorème de croissances comparées, pour tout réel β , $\lim_{n \to +\infty} \frac{1}{n^{(\alpha-1)/2} \ln^{\beta} n} = 0$. Donc, $\frac{1}{n^{\alpha} \ln^{\beta} n} = 0$. Puisque $\frac{\alpha+1}{2} > \frac{1+1}{2} = 1$, la série de terme général $\frac{1}{n^{\frac{\alpha+1}{2}}}$ converge et donc la série de terme général u_n converge.
- 5) Dans cette question, pour tout $n \ge 2$, $u_n = \frac{1}{n \ln^{\beta} n}$.
- a) Si $\beta < 0$, $u_n = \frac{\ln^{-\beta} n}{n}$ avec $-\beta > 0$. Dans ce cas, u_n est prépondérant devant $\frac{1}{n}$ en $+\infty$. Si $\beta = 0$, $u_n = \frac{1}{n}$. Dans tous les cas, si $\beta \leqslant 0$, la série de terme général u_n diverge.
- b) Soit $\beta > 1$. Vérifions que la série de terme général u_n converge. Puisque la suite $(u_n)_{n \in \mathbb{N}}$ est positive, on sait que la série de terme général u_n , $n \ge 2$, converge si et seulement si la suite des sommes partielles $\left(\sum_{k=2}^n u_k\right)_{n \ge 2}$ est majorée.

La fonction $t\mapsto t\ln^{\beta}t$ est strictement croissante sur $]1,+\infty[$ en tant que produit de fonctions strictement positives et strictement croissantes sur $]1,+\infty[$. Donc, la fonction $t\mapsto \frac{1}{t\ln^{\beta}t}$ est strictement décroissante sur $]1,+\infty[$ en tant qu'inverse de fonction strictement positive et strictement croissante sur $]1,+\infty[$.

On en déduit que pour $n \ge 3$,

$$\begin{split} \sum_{k=2}^{n} \frac{1}{k \ln^{\beta} k} &= \frac{1}{2 \ln^{\beta} 2} + \sum_{k=3}^{n} \frac{1}{k \ln^{\beta} k} \\ &\leqslant \frac{1}{2 \ln^{\beta} 2} + \sum_{k=3}^{n} \int_{k-1}^{k} \frac{1}{t \ln^{\beta} t} \; dt = \frac{1}{2 \ln^{\beta} 2} + \int_{2}^{n} \frac{1}{t \ln^{\beta} t} \; dt \\ &= \frac{1}{2 \ln^{\beta} 2} + \left[-\frac{1}{(\beta - 1) \ln^{\beta - 1} t} \right]_{2}^{n} = \frac{1}{2 \ln^{\beta} 2} + \frac{1}{(\beta - 1) \ln^{\beta - 1} 2} - \frac{1}{(\beta - 1) \ln^{\beta - 1} n} \\ &\leqslant \frac{1}{2 \ln^{\beta} 2} + \frac{1}{(\beta - 1) \ln^{\beta - 1} 2} \; (\operatorname{car} \beta - 1 > 0). \end{split}$$

Ainsi, si $\beta > 1$, la suite des sommes partielles $\left(\sum_{k=2}^n u_k\right)_{n\geqslant 2}$ est majorée et donc la série de terme général u_n converge.

• Vérifions que la série de terme général $\frac{1}{n \ln n}$ diverge. Par décroissance de la fonction $t \mapsto \frac{1}{t \ln t} \sup]1, +\infty[$, pour $n \geqslant 2,$

$$\begin{split} \sum_{k=2}^n \frac{1}{k \ln k} \geqslant \sum_{k=2}^n \int_k^{k+1} \frac{1}{t \ln t} \; dt &= \int_2^{n+1} \frac{1}{t \ln t} \; dt \\ &= \left[\ln |\ln t| \right]_2^{n+1} = \ln(\ln(n+1)) - \ln(\ln 2). \end{split}$$

Puisque $\lim_{n\to+\infty} (\ln(\ln(n+1)) - \ln(\ln 2)) = +\infty$, on en déduit que $\lim_{n\to+\infty} \sum_{k=2}^n \frac{1}{k \ln k} = +\infty$ ou encore que la série de terme général $\frac{1}{n \ln n}$, $n \ge 2$, diverge.

Enfin, si $\beta < 1$, $\frac{1}{n \ln^{\beta} n}$ est prépondérant devant $\frac{1}{n \ln n}$ en $+\infty$ car $\frac{1/n \ln^{\beta} n}{1/n \ln n} = \ln^{1-\beta} n$ et donc $\frac{1/n \ln^{\beta} n}{1/n \ln n}$ tend vers $+\infty$ quand n tend vers $+\infty$ car $1-\beta>0$. On en déduit que la série de terme général $\frac{1}{n \ln^{\beta} n}$, $n \geqslant 2$, diverge.

En résumé, la série de terme général $\frac{1}{n \ln^{\beta} n}$, $n \geqslant 2$, converge si et seulement si $\beta > 1$.

La série de terme général $\frac{1}{n^{\alpha} \ln^{\beta} n}$, $n \ge 2$, converge si et seulement si $\alpha > 1$ ou $(\alpha = 1 \text{ et } \beta > 1)$.

Exercice nº 4:

1) Pour $n \ge 1$, on pose $u_n = \ln\left(\frac{n^2 + n + 1}{n^2 + n - 1}\right)$. Pour tout entier $n \ge 1$, u_n existe. De plus

$$\begin{split} u_n &= \ln \left(1 + \frac{1}{n} + \frac{1}{n^2} \right) - \ln \left(1 + \frac{1}{n} - \frac{1}{n^2} \right) \\ &= \\ \underset{n \to +\infty}{=} \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right) \right) - \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right) \right) \underset{n \to +\infty}{=} O\left(\frac{1}{n^2}\right). \end{split}$$

Comme la série de terme général $\frac{1}{n^2}$, $n \ge 1$, converge (série de RIEMANN d'exposant $\alpha > 1$), la série de terme général u_n converge.

On peut aussi écrire : $\ln\left(\frac{n^2+n+1}{n^2+n-1}\right) \underset{n \to +\infty}{\sim} \frac{n^2+n+1}{n^2+n-1} - 1 = \frac{2}{n^2+n-1} \underset{n \to +\infty}{\sim} \frac{2}{n^2} > 0.$

- 2) Pour $n \ge 2$, on pose $u_n = \frac{1}{n + (-1)^n \sqrt{n}}$. $\forall n \ge 2$, u_n existe et de plus $u_n \underset{n \to +\infty}{\sim} \frac{1}{n}$. Comme la série de terme général $\frac{1}{n}$, $n \ge 2$, diverge et est à termes positifs, la série de terme général u_n diverge.
- 3) Pour $n \ge 1$, on pose $u_n = \left(\frac{n+3}{2n+1}\right)^{\ln n}$. Pour $n \ge 1$, u_n existe et $u_n > 0$.

$$\begin{split} \ln(u_n) &= \ln(n) \ln \left(\frac{n+3}{2n+1}\right) = \ln(n) \left(\ln \left(\frac{1}{2}\right) + \ln \left(1 + \frac{3}{n}\right) - \ln \left(1 + \frac{1}{2n}\right)\right) \\ &= \underset{n \to +\infty}{=} \ln(n) \left(-\ln 2 + O\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{=} - \ln 2 \ln(n) + O\left(\frac{\ln n}{n}\right) \\ &= \underset{n \to +\infty}{=} - \ln 2 \ln(n) + o(1). \end{split}$$

Donc $u_n = e^{\ln(u_n)} \underset{n \to +\infty}{\sim} e^{-\ln 2 \ln n} = \frac{1}{n^{\ln 2}}$. Comme la série de terme général $\frac{1}{n^{\ln 2}}$, $n \ge 1$, diverge (série de RIEMANN d'exposant $\alpha = \ln 2 \le 1$) et est à termes positifs, la série de terme général u_n diverge.

4) Pour $n \geqslant 2$, on pose $u_n = \frac{1}{\ln(n)\ln(\operatorname{ch} n)}$. u_n existe pour $n \geqslant 2$. $\ln(\operatorname{ch} n) \underset{n \to +\infty}{\overset{\sim}{\longrightarrow}} \ln\left(\frac{e^n}{2}\right) = n - \ln 2 \underset{n \to +\infty}{\overset{\sim}{\longrightarrow}} n$ puis $u_n \underset{n \to +\infty}{\overset{\sim}{\longrightarrow}} \frac{1}{n\ln(n)} > 0$.

Vérifions alors que la série de terme général $\frac{1}{n \ln n}$, $n \ge 2$, diverge. La fonction $x \to x \ln x$ est continue, croissante et strictement positive sur $]1,+\infty[$ (produit de deux fonctions positives et croissantes sur $]1,+\infty[$). Par suite, la fonction $x \to \frac{1}{x \ln x}$ est continue et décroissante sur $]1,+\infty[$ et pour tout entier k supérieur ou égal à 2,

$$\frac{1}{k \ln k} \geqslant \int_{k}^{k+1} \frac{1}{x \ln x} \, \mathrm{d}x$$

Par suite, pour $n \ge 2$,

$$\sum_{k=2}^{n} \frac{1}{k \ln k} \geqslant \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{x \ln x} dx = \int_{2}^{n+1} \frac{1}{x \ln x} dx = \ln(\ln(n+1)) - \ln(\ln(2) \underset{n \to +\infty}{\rightarrow} +\infty.$$

On en déduit que la série de terme général u_n diverge.

5) Pour $n\geqslant 1$, on pose $u_n=\operatorname{Arccos}\sqrt[3]{1-\frac{1}{n^2}}$. u_n existe pour $n\geqslant 1$ car pour $n\geqslant 1$, $\sqrt[3]{1-\frac{1}{n^2}}\in [-1,1]$. De plus $u_n\underset{n\to+\infty}{\to} 0$. On en déduit que

$$\begin{array}{l} u_n \underset{n \to +\infty}{\sim} \sin(u_n) = \sin\left(\operatorname{Arccos}\sqrt[3]{1 - \frac{1}{n^2}}\right) = \sqrt{1 - \left(1 - \frac{1}{n^2}\right)^{2/3}} \underset{n \to +\infty}{=} \sqrt{1 - 1 + \frac{2}{3n^2} + o\left(\frac{1}{n^2}\right)} \\ \underset{n \to +\infty}{\sim} \sqrt{\frac{2}{3}} \times \frac{1}{n} > 0 \end{array}$$

qui est le terme général d'une série de RIEMANN divergente. Donc la série de terme général u_n diverge.

6) Pour $n \geqslant 1$, on pose $u_n = \frac{n^2}{(n-1)!}$. Pour $n \geqslant 1$

$$n^2u_n=n^2\times\frac{n^3}{n!}=\frac{n^5}{n!}.$$

D'après un théorème de croissances comparées, n^2u_n tend vers 0 quand n tend vers $+\infty$ ou encore $u_n = 0$ or $(\frac{1}{n^2})$. On en déduit que la série de terme général u_n converge.

7) Pour $n \geqslant 1$, on pose $u_n = \left(\cos\frac{1}{\sqrt{n}}\right)^n - \frac{1}{\sqrt{e}}$. u_n est défini pour $n \geqslant 1$ car pour $n \geqslant 1$, $\frac{1}{\sqrt{n}} \in \left]0, \frac{\pi}{2}\right[$ et donc $\cos\frac{1}{\sqrt{n}} > 0$. Ensuite

$$\begin{split} \ln\left(\cos\frac{1}{\sqrt{n}}\right) &\underset{n \to +\infty}{=} \ln\left(1 - \frac{1}{2n} + \frac{1}{24n^2} + o\left(\frac{1}{n^2}\right)\right) \underset{n \to +\infty}{=} -\frac{1}{2n} + \frac{1}{24n^2} - \frac{1}{8n^2} + o\left(\frac{1}{n^2}\right) \\ &\underset{n \to +\infty}{=} -\frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right). \end{split}$$

Puis $n \ln \left(\cos \frac{1}{\sqrt{n}}\right) \underset{n \to +\infty}{=} -\frac{1}{2} - \frac{1}{12n} + o\left(\frac{1}{n}\right)$ et donc

$$u_n = e^{n \ln(\cos(1/\sqrt{n}))} - \frac{1}{\sqrt{e}} \underset{n \to +\infty}{=} \frac{1}{\sqrt{e}} \left(e^{-\frac{1}{12\pi} + o\left(\frac{1}{n}\right)} - 1 \right) \underset{n \to +\infty}{\sim} - \frac{1}{12n\sqrt{e}} < 0.$$

La série de terme général $-\frac{1}{12n\sqrt{e}}$ est divergente et donc la série de terme général u_n diverge.

8)

$$\begin{split} \ln\left(\frac{2}{\pi}\operatorname{Arctan}\left(\frac{n^2+1}{n}\right)\right) &= \ln\left(\frac{2}{\pi}\left(\frac{\pi}{2}-\operatorname{Arctan}\left(\frac{n}{n^2+1}\right)\right)\right) = \ln\left(1-\frac{2}{\pi}\operatorname{Arctan}\left(\frac{n}{n^2+1}\right)\right) \\ & \underset{n\to+\infty}{\sim} -\frac{2}{\pi}\operatorname{Arctan}\left(\frac{n}{n^2+1}\right)\underset{n\to+\infty}{\sim} -\frac{2}{\pi}\frac{n}{n^2+1}\underset{n\to+\infty}{\sim} -\frac{2}{n\pi}<0. \end{split}$$

Donc, la série de terme général u_n diverge.

9) Pour $n \ge 1$, on pose $u_n = \int_0^{\pi/2} \frac{\cos^2 x}{n^2 + \cos^2 x} dx$.

Pour $n \ge 1$, la fonction $x \mapsto \frac{\cos^2 x}{n^2 + \cos^2 x}$ dx est continue sur $\left[0, \frac{\pi}{2}\right]$ et positive et donc, u_n existe et est positif. De plus, pour $n \ge 1$,

$$0 \leqslant u_n \leqslant \int_0^{\pi/2} \frac{1}{n^2 + 0} dx = \frac{\pi}{2n^2}.$$

La série de terme général $\frac{\pi}{2n^2}$ converge et donc la série de terme général u_n converge.

$$10) -\sqrt{2}\sin\left(\frac{\pi}{4} + \frac{1}{n}\right) = -\sin\left(\frac{1}{n}\right) - \cos\left(\frac{1}{n}\right) \underset{n \to +\infty}{=} -1 + O\left(\frac{1}{n}\right) \text{ puis}$$
$$-\sqrt{2}\sin\left(\frac{\pi}{4} + \frac{1}{n}\right)\ln n \underset{n \to +\infty}{=} -\ln(n) + O\left(\frac{\ln n}{n}\right) \underset{n \to +\infty}{=} -\ln(n) + o(1).$$

Par suite,

$$0 < u_n = e^{-\sqrt{2} \sin\left(\frac{\pi}{4} + \frac{1}{n}\right) \ln n} \underset{n \to +\infty}{\sim} e^{-\ln n} = \frac{1}{n}.$$

La série de terme général $\frac{1}{n}$ diverge et la série de terme général u_n diverge.

11)
$$n \ln \left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{=} 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)$$
 et donc

$$u_n \underset{n \to +\infty}{=} e - e^{1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)} \underset{n \to +\infty}{=} e\left(1 - 1 + \frac{1}{2n} + o\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{\sim} \frac{e}{2n} > 0.$$

La série de terme général $\frac{e}{2n}$ diverge et la série de terme général u_n diverge.

Exercice nº 5

1) Pour $n \in \mathbb{N}$,

$$u_n = \sin\left(\frac{\pi n^2}{n+1}\right) = \sin\left(\frac{\pi (n^2-1+1)}{n+1}\right) = \sin\left(\frac{\pi}{n+1} + (n-1)\pi\right) = (-1)^{n-1}\sin\left(\frac{\pi}{n+1}\right).$$

La suite $\left((-1)^{n-1}\sin\left(\frac{\pi}{n+1}\right)\right)_{n\in\mathbb{N}}$ est alternée en signe et sa valeur absolue tend vers 0 en décroissant. La série de terme général u_n converge donc en vertu du critère spécial aux séries alternées.

2) Attention, la suite $\left(\frac{1}{n+(-1)^{n-1}}\right)_{n\in\mathbb{N}}$ n'est pas décroisante à partir d'un certain rang. Voici sa représentation graphique :

Ensuite,

$$u_n = \frac{(-1)^n}{n} \frac{1}{1+\frac{(-1)^{n-1}}{n}} \underset{n \to +\infty}{=} \frac{(-1)^n}{n} \left(1+O\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{=} \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right).$$

La série de terme général $\frac{(-1)^n}{n}$ converge en vertu du critère spécial aux séries alternées et la série de terme général $O\left(\frac{1}{n^2}\right)$ est absolument convergente. On en déduit que la série de terme général u_n converge.

3) $u_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + O\left(\frac{1}{n^{3/2}}\right)$. Les séries de termes généraux respectifs $\frac{(-1)^n}{\sqrt{n}}$ et $O\left(\frac{1}{n^{3/2}}\right)$ sont convergentes et la série de terme général $-\frac{1}{2n}$ est divergente. Si la série de terme général u_n convergeait alors la série de terme général $-\frac{1}{2n}=u_n-\frac{(-1)^n}{\sqrt{n}}-O\left(\frac{1}{n^{3/2}}\right)$ convergerait ce qui n'est pas. Donc la série de terme général u_n

Remarque. La série de terme général u_n diverge bien que u_n soit équivalent au terme général d'une série convergente.

4) Pour $x \in]0, +\infty[$, posons $f(x) = \frac{\ln x}{x}$. f est dérivable sur $]0, +\infty[$ et $\forall x > e, \ f'(x) = \frac{1-\ln x}{x} < 0$.

Donc, la fonction f est décroissante sur $[e, +\infty[$. On en déduit que la suite $\left(\frac{\ln n}{n}\right)_{n \ge 3}$ est une suite décroissante. Mais alors la série de terme général $(-1)^n \frac{\ln n}{n}$ converge en vertu du critère spécial aux séries alternées.

- 5) Si $\deg P \geqslant \deg Q$, u_n ne tend pas vers 0 et la série de terme général u_n est grossièrement divergente. Si $\deg P \leqslant \deg Q 2$, $u_n = O\left(\frac{1}{n^2}\right)$ et la série de terme général u_n est absolument convergente.
- $\bullet \ \mathrm{Si} \ \mathrm{deg}P = \mathrm{deg}Q 1, \ u_n \underset{n \to +\infty}{=} (-1)^n \frac{\mathrm{dom}P}{n \ \mathrm{dom}Q} + O\left(\frac{1}{n^2}\right) \! . \ u_n \ \mathrm{est \ alors \ somme \ de \ deux \ termes \ généraux \ de \ séries}$ convergentes et la série de terme général u_n o

En résumé, la série de terme général \mathfrak{u}_n converge si et seulement si $\deg P < \deg Q$.

6)
$$e = \sum_{k=0}^{+\infty} \frac{1}{k!}$$
 puis pour $n \ge 2$, $n!e = 1 + n + \sum_{k=0}^{n-2} \frac{n!}{k!} + \sum_{k=n+1}^{+\infty} \frac{n!}{k!}$.

Pour $0 \le k \le n-2$, $\frac{n!}{k!}$ est un entier divisible par n(n-1) et est donc un entier pair que l'on note $2K_n$. Pour $n \ge 2$, on

$$\sin(n!\pi e)=\sin\left(2K_n\pi+(n+1)\pi+\pi\sum_{k=n+1}^{+\infty}\frac{n!}{k!}\right)=(-1)^{n+1}\sin\left(\pi\sum_{k=n+1}^{+\infty}\frac{n!}{k!}\right).$$

Déterminons un développement limité à l'ordre 2 de $\sum_{k=n+1}^{+\infty} \frac{n!}{k!}$ quand n tend vers $+\infty$.

$$\sum_{k=n+1}^{+\infty} \frac{n!}{k!} = \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \sum_{k=n+3}^{+\infty} \frac{n!}{k!}.$$

 $\mathrm{Maintenant,\ pour\ } k\geqslant n+3,\ \frac{n!}{k!}=\frac{1}{k(k-1)\dots(n+1)}\leqslant \frac{1}{(n+1)^{k-n}}\ \mathrm{et\ donc}$

$$\sum_{k=n+3}^{+\infty} \frac{n!}{k!} \leqslant \sum_{k=n+3}^{+\infty} \frac{1}{(n+1)^{k-n}} = \frac{1}{(n+1)^3} \times \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n(n+1)^2} \leqslant \frac{1}{n^3}.$$

On en déduit que $\sum_{k=n+3}^{+\infty} \frac{n!}{k!} = o\left(\frac{1}{n^2}\right)$. Il reste

$$\sum_{k=n+1}^{+\infty} \frac{n!}{k!} \underset{n \to +\infty}{=} \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + o\left(\frac{1}{n^2}\right) \underset{n \to +\infty}{=} \frac{1}{n} \left(1 + \frac{1}{n}\right)^{-1} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \underset{n \to +\infty}{=} \frac{1}{n} + o\left(\frac{1}{n^2}\right).$$

Finalement , $\sin(n!\pi e) \underset{n \to +\infty}{=} (-1)^{n+1} \sin\left(\frac{\pi}{n} + o\left(\frac{1}{n^2}\right)\right) = \frac{(-1)^{n+1}\pi}{n} + o\left(\frac{1}{n^2}\right).$

 $\sin(n!\pi e)$ est somme de deux termes généraux de séries convergentes et la série de terme général $\sin(n!\pi e)$ converge.

Si $p \ge 2$, $|\sin^p(n!\pi e)| \sim \frac{\pi^p}{n^{p+\infty}}$ et la série de terme général $\sin^p(n!\pi e)$ converge absolument.

1) Si P n'est pas un polynôme unitaire de degré 3, u_n ne tend pas vers 0 et la série de terme général u_n diverge grossièrement.

Soit P un polynôme unitaire de degré 3. Posons $P = X^3 + aX^2 + bX + c$

$$\begin{split} u_n &= n \left(\left(1 + \frac{2}{n^2} \right)^{1/4} - \left(1 + \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} \right)^{1/3} \right) \\ &= \underset{n \to +\infty}{=} n \left(\left(1 + \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right) \right) - \left(1 + \frac{a}{3n} + \frac{b}{3n^2} - \frac{a^2}{9n^2} + O\left(\frac{1}{n^3}\right) \right) \right) \\ &= \underset{n \to +\infty}{=} -\frac{a}{3} + \left(\frac{1}{2} - \frac{b}{3} + \frac{a^2}{9} \right) \frac{1}{n} + O\left(\frac{1}{n^2}\right). \end{split}$$

- Si $a \neq 0$, u_n ne tend pas vers 0 et la série de terme général u_n diverge grossièrement. Si a = 0 et $\frac{1}{2} \frac{b}{3} \neq 0$, $u_n \underset{n \to +\infty}{\sim} \left(\frac{1}{2} \frac{b}{3}\right) \frac{1}{n}$. u_n est donc de signe constant pour n grand et est équivalent au terme général d'une série divergente. Donc la série de terme général u_n diverge.
- Si a = 0 et $\frac{1}{2} \frac{b}{3} = 0$, $u_n = 0$ O $\left(\frac{1}{n^2}\right)$. Dans ce cas, la série de terme général u_n converge (absolument).

En résumé, la série de terme général u_n converge si et seulement si a=0 et $b=\frac{3}{2}$ ou encore la série de terme général u_n converge si et seulement si P est de la forme $X^3 + \frac{3}{2}X + c, c \in \mathbb{R}$.

2) Pour $n \ge 2$, posons $u_n = \frac{1}{n^{\alpha}} S(n)$. Pour $n \ge 2$,

$$0 < S(n+1) = \sum_{p=2}^{+\infty} \frac{1}{p} \times \frac{1}{p^n} \leqslant \frac{1}{2} \sum_{p=2}^{+\infty} \frac{1}{p^n} = \frac{1}{2} S(n)$$

et donc $\forall n \ge 2$, $S(n) \le \frac{S(2)}{2^{n-2}}$. Par suite,

$$0 \leqslant u_n \leqslant \frac{1}{n^{\alpha}} \frac{S(2)}{2^{n-2}}.$$

On en déduit que $u_n = o\left(\frac{1}{n^2}\right)$ et donc que, pour tout réel α , la série de terme général u_n converge.

3) $\forall u_0 \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \ u_n > 0. \ \text{Par suite}, \ \forall n \geqslant 2, \ 0 < u_n < \frac{1}{n}$

On en déduit que $\lim_{n\to+\infty} u_n = 0$ et par suite $u_n \sim \frac{1}{n\to+\infty} > 0$. La série de terme général u_n diverge.

4) $\lim_{n \to +\infty} u_n = \frac{\pi}{4} - \frac{\pi}{4} = 0$. Donc

$$\begin{split} u_n & \mathop{\sim}_{n \to +\infty} \tan(u_n) \\ &= \frac{\left(1 + \frac{1}{n}\right)^\alpha - \left(1 - \frac{1}{n}\right)^\alpha}{1 + \left(1 - \frac{1}{n^2}\right)^\alpha} & \mathop{=}_{n \to +\infty} \frac{\frac{2\alpha}{n} + O\left(\frac{1}{n^2}\right)}{2 + O\left(\frac{1}{n^2}\right)} & \mathop{=}_{n \to +\infty} \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right). \end{split}$$

Par suite, la série de terme général u_n converge si et seulement si a=0.

5) La fonction $x \mapsto x^{3/2}$ est continue et croissante sur \mathbb{R}^+ . Donc pour $k \geqslant 1$, $\int_{k-1}^k x^{3/2} \ dx \leqslant k^{3/2} \leqslant \int_{k-1}^{k+1} x^{3/2} \ dx$ puis pour $n \in \mathbb{N}^*$:

$$\int_0^n x^{3/2} \ dx = \sum_{k=1}^n \int_{k-1}^k x^{3/2} \ dx \leqslant \sum_{k=1}^n k^{3/2} \leqslant \sum_{k=1}^n \int_{k}^{k+1} x^{3/2} \ dx = \int_1^{n+1} x^{3/2} \ dx$$

ce qui fournit

$$\frac{2}{5}n^{5/2}\leqslant \sum_{k=1}^n k^{3/2}\leqslant \frac{2}{5}((n+1)^{5/2}-1) \ \mathrm{et} \ \mathrm{donc} \ \sum_{k=1}^n k^{3/2} \underset{n\to +\infty}{\sim} \frac{2n^{5/2}}{5}.$$

 $\mathrm{Donc}\ \mathfrak{u}_n\underset{n\to+\infty}{\overset{\sim}{\sim}}\frac{2}{5}\times\frac{1}{n^{\alpha-\frac{5}{2}}}>0.\ \mathrm{La}\ \mathrm{s\acute{e}rie}\ \mathrm{de}\ \mathrm{terme}\ \mathrm{g\acute{e}n\acute{e}ral}\ \mathfrak{u}_n\ \mathrm{converge}\ \mathrm{si}\ \mathrm{et}\ \mathrm{seulement}\ \mathrm{si}\ \alpha>\frac{7}{2}.$

Exercice nº 7

1) D'après un théorème de croissances comparées, $\frac{n+1}{3^n} = o\left(\frac{1}{n^2}\right)$. Par suite, la série de terme général $\frac{n+1}{3^n}$ converge.

1er calcul. Soit $S = \sum_{n=0}^{+\infty} \frac{n+1}{3^n}$. Alors

$$\frac{1}{3}S = \sum_{n=0}^{+\infty} \frac{n+1}{3^{n+1}} = \sum_{n=1}^{+\infty} \frac{n}{3^n} = \sum_{n=1}^{+\infty} \frac{n+1}{3^n} - \sum_{n=1}^{+\infty} \frac{1}{3^n}$$
$$= (S-1) - \frac{1}{3} \frac{1}{1 - \frac{1}{3}} = S - \frac{3}{2}.$$

On en déduit que $S = \frac{9}{4}$.

$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n} = \frac{9}{4}.$$

2ème calcul. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on pose $f_n(x) = \sum_{k=0}^n x^k$.

Soit $\mathfrak{n} \in \mathbb{N}^*.$ $f_\mathfrak{n}$ est dérivable sur \mathbb{R} et pour $x \in \mathbb{R},$

$$f_n'(x) = \sum_{k=1}^n k x^{k-1} = \sum_{k=0}^{n-1} (k+1) x^k.$$

Par suite, pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R} \setminus \{1\}$

$$\sum_{k=0}^{n-1} (k+1) x^k = f_n'(x) = \left(\frac{x^n-1}{x-1}\right)'(x) = \frac{n x^{n-1} (x-1) - (x^n-1)}{(x-1)^2} = \frac{(n-1) x^n - n x^{n-1} + 1}{(x-1)^2}.$$

 $\text{Pour } x = \frac{1}{3}, \text{ on obtient } \sum_{k=0}^{n-1} \frac{k+1}{3^k} = \frac{\frac{n-1}{3^n} - \frac{n}{3^{n-1}} + 1}{\left(\frac{1}{3} - 1\right)^2} \text{ et quand } n \text{ tend vers l'infini, on obtient de nouveau } S = \frac{9}{4}.$

2) Pour
$$k \geqslant 3$$
, $\frac{2k-1}{k^3-4k} = \frac{3}{8(k-2)} + \frac{1}{4k} - \frac{5}{8(k+2)}$. Puis

$$\begin{split} \sum_{k=3}^{n} \frac{2k-1}{k^3-4k} &= \frac{3}{8} \sum_{k=3}^{n} \frac{1}{k-2} + \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} - \frac{5}{8} \sum_{k=3}^{n} \frac{1}{k+2} = \frac{3}{8} \sum_{k=1}^{n-2} \frac{1}{k} + \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} - \frac{5}{8} \sum_{k=5}^{n+2} \frac{1}{k} \\ &= \sum_{n \to +\infty} \frac{3}{8} \left(\sum_{k=1}^{n} \frac{1}{k} \right) + \frac{1}{4} \left(-1 - \frac{1}{2} + \sum_{k=1}^{n} \frac{1}{k} \right) - \frac{5}{8} \left(-1 - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \sum_{k=1}^{n} \frac{1}{k} \right) + o(1) \\ &= \sum_{n \to +\infty} \frac{3}{8} + \frac{5}{8} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) + o(1) = \sum_{n \to +\infty} \frac{3}{8} + \frac{125}{96} + o(1) \\ &= \sum_{n \to +\infty} \frac{89}{96} + o(1). \end{split}$$

La série proposée est donc convergente de somme $\frac{89}{96}$

$$\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n} = \frac{89}{96}.$$

3) Pour
$$n \ge 1$$
, on pose $u_n = \frac{n^2}{(n-1)!}$. Pour $n \ge 3$

$$u_n = \frac{(n-1)(n-2) + 3n - 3 + 1}{(n-1)!} = \frac{1}{(n-3)!} + 3\frac{1}{(n-2)!} + \frac{1}{(n-1)!}.$$

Les séries de termes généraux respectifs $\frac{1}{(n-3)!}$, $\frac{1}{(n-2)!}$ et $\frac{1}{(n-1)!}$ converge et donc la série de terme général u_n converge. De plus,

$$\begin{split} \sum_{n=1}^{+\infty} \frac{n^2}{(n-1)!} &= 1+4+\sum_{n=3}^{+\infty} \frac{n^2}{(n-1)!} = 5+\sum_{n=3}^{+\infty} \frac{1}{(n-3)!} + 3\sum_{n=3}^{+\infty} \frac{1}{(n-2)!} + \sum_{n=3}^{+\infty} \frac{1}{(n-1)!} \\ &= 5+\sum_{n=0}^{+\infty} \frac{1}{n!} + 3\sum_{n=1}^{+\infty} \frac{1}{n!} + \sum_{n=2}^{+\infty} \frac{1}{n!} = 5+e+3(e-1)+e-2 = 5e. \\ &\sum_{n=1}^{+\infty} \frac{n^2}{(n-1)!} = 5e. \end{split}$$

4)

$$\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} = \frac{1}{\sqrt{n}} \left(\left(1 - \frac{1}{n} \right)^{-\frac{1}{2}} + \left(1 + \frac{1}{n} \right)^{-\frac{1}{2}} - 2 \right)$$

$$= \frac{1}{n \to +\infty} \frac{1}{\sqrt{n}} \left(1 + 1 - 2 + O\left(\frac{1}{n}\right) \right) = O\left(\frac{1}{n^{\frac{3}{2}}}\right)$$

Donc, la série de terme général $\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}, \, n \geqslant 2$, converge.

$$\begin{split} \sum_{k=2}^{n} \left(\frac{1}{\sqrt{k-1}} + \frac{1}{\sqrt{k+1}} - \frac{2}{\sqrt{k}} \right) &= \sum_{k=2}^{n} \left(\left(\frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}} \right) - \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) \right) \\ &= \left(1 - \frac{1}{\sqrt{2}} \right) - \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right) \text{ (somme t\'elescopique)} \\ &= \sum_{n \to +\infty} 1 - \frac{1}{\sqrt{2}} + o(1) \end{split}$$

$$\sum_{n=2}^{+\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} \right) = 1 - \frac{1}{\sqrt{2}}.$$

5) $\ln\left(1+\frac{(-1)^n}{n}\right) \underset{n\to+\infty}{=} \frac{-1)^n}{n} + O\left(\frac{1}{n^2}\right)$. La série de terme général $\frac{(-1)^n}{n}$ converge d'après le critère spécial aux séries alternées et la série de terme général $O\left(\frac{1}{n^2}\right)$ converge absolument et donc converge.

On en déduit que la série de terme général $\ln\bigg(1+\frac{(-1)^{\mathfrak{n}}}{\mathfrak{n}}\bigg),\,\mathfrak{n}\geqslant 2,$ converge.

Remarque. Il ne fallait surtout pas écrire que $\ln\left(1+\frac{(-1)^n}{n}\right) {\underset{n\to +\infty}{\sim}} \frac{-1)^n}{n}$ (ce qui est vrai), car $\frac{-1)^n}{n}$ n'étant pas de signe constant pour n grand, on ne peut rien en déduire quand à la convergence ou la divergence de la série de terme général $\ln\left(1+\frac{(-1)^n}{n}\right)$.

$$\begin{split} \mathrm{Pour} \ n \in \mathbb{N}^*, \ \mathrm{posons} \ S_n &= \sum_{k=2}^n \ln \left(1 + \frac{(-1)^k}{k} \right) . \ \mathrm{Soit} \ p \in \mathbb{N}^*. \\ S_{2p+1} &= \sum_{k=2}^{2p+1} \ln \left(1 + \frac{(-1)^k}{k} \right) = \sum_{k=1}^p \left(\ln \left(1 + \frac{1}{2k} \right) + \ln \left(1 - \frac{1}{2k+1} \right) \right) \\ &= \sum_{k=1}^p \left(\ln (2k+1) - \ln (2k) + \ln (2k) - \ln (2k+1) \right) = 0. \end{split}$$

D'autre part, $S_{2p} = S_{2p+1} - \ln\left(1 + \frac{(-1)^{2p+1}}{2p+1}\right) = \ln\left(1 - \frac{1}{2p+1}\right)$. Mais alors les suites $(S_{2p})_{p \in \mathbb{N}^*}$ et $(S_{2p+1})_{p \in \mathbb{N}^*}$ convergent et ont mêmes limites, à savoir 0. On en déduit que la suite $(S_n)_{n \in \mathbb{N}^*}$ converge ou encore la série de terme général $\ln\left(1 + \frac{(-1)^n}{n}\right)$, $n \geqslant 2$, converge et

$$\sum_{n=2}^{+\infty} \ln\left(1 + \frac{(-1)^n}{n}\right) = 0.$$

 $6) \text{ Si } \alpha \in \left]0, \frac{\pi}{2}\right[\text{ alors, pour tout entier naturel } n, \frac{\alpha}{2^n} \in \left]0, \frac{\pi}{2}\right[\text{ et donc } \cos\left(\frac{\alpha}{2^n}\right) > 0.$ Ensuite, $\ln\left(\cos\left(\frac{\alpha}{2^n}\right)\right) \underset{n \to +\infty}{=} \ln\left(1 + O\left(\frac{1}{2^{2n}}\right)\right) \underset{n \to +\infty}{=} O\left(\frac{1}{2^{2n}}\right) \text{ et la série converge. Ensuite, }$

$$\begin{split} \sum_{k=0}^n \ln\left(\cos\left(\frac{\alpha}{2^k}\right)\right) &= \ln\left(\prod_{k=0}^n \cos\left(\frac{\alpha}{2^k}\right)\right) = \ln\left(\prod_{k=0}^n \frac{\sin\left(2\times\frac{\alpha}{2^k}\right)}{2\sin\left(\frac{\alpha}{2^k}\right)}\right) = \ln\left(\frac{1}{2^{n+1}}\prod_{k=0}^n \frac{\sin\left(\frac{\alpha}{2^{k-1}}\right)}{\sin\left(\frac{\alpha}{2^k}\right)}\right) \\ &= \ln\left(\frac{\sin(2\alpha)}{2^{n+1}\sin\left(\frac{\alpha}{2^n}\right)}\right) \text{ (produit t\'elescopique)} \\ &\stackrel{\sim}{\underset{n\to+\infty}{\longrightarrow}} \ln\left(\frac{\sin(2\alpha)}{2^{n+1}\times\frac{\alpha}{2^n}}\right) = \ln\left(\frac{\sin(2\alpha)}{2\alpha}\right) \text{ (car } \frac{\sin(2\alpha)}{2\alpha}\neq 1). \end{split}$$

$$\forall \alpha\in\left]0,\frac{\pi}{2}\right[,\sum_{n=0}^{+\infty}\ln\left(\cos\left(\frac{\alpha}{2^n}\right)\right) = \ln\left(\frac{\sin(2\alpha)}{2\alpha}\right). \end{split}$$

7) Vérifions que pour tout réel x on a $\operatorname{th}(2x) = \frac{2 \operatorname{th} x}{1 + \operatorname{th}^2 x}$. Soit $x \in \mathbb{R}$.

$$\operatorname{ch}^2 x + \operatorname{sh}^2 x = \frac{1}{4} \left(\left(e^x + e^{-x} \right)^2 + \left(e^x - e^{-x} \right)^2 \right) = \frac{1}{2} \left(e^{2x} + e^{-2x} \right) = \operatorname{ch}(2x)$$

et

$$2 \operatorname{sh} x \operatorname{ch} x = \frac{1}{2} \left(e^{x} - e^{-x} \right) \left(e^{x} + e^{-x} \right) = \frac{1}{2} \left(e^{2x} - e^{-2x} \right) = \operatorname{sh}(2x)$$

puis, en multipliant numérateur et dénominateur par le réel non nul $\mathrm{ch}^2 \, x$,

$$\frac{2\operatorname{th} x}{1+\operatorname{th}^2 x} = \frac{2\operatorname{sh} x\operatorname{ch} x}{\operatorname{ch}^2 x + \operatorname{sh}^2 x} = \frac{\operatorname{sh}(2x)}{\operatorname{ch}(2x)} = \operatorname{th}(2x).$$

 $\mathrm{Par\ suite,\ pour\ } x \in \mathbb{R}^*,\ \frac{2}{\mathrm{th}(2x)} = \frac{1 + \mathrm{th}^2\,x}{\mathrm{th}\,x}\ \mathrm{puis\ } \mathrm{th}\,x = \frac{2}{\mathrm{th}(2x)} - \frac{1}{\mathrm{th}\,x}.\ \mathrm{Mais\ alors,\ pour\ } \alpha \in \mathbb{R}^*\ \mathrm{et\ } n \in \mathbb{N}$

$$\begin{split} \sum_{k=0}^{n} \frac{1}{2^k} \operatorname{th} \left(\frac{\alpha}{2^k} \right) &= \sum_{k=0}^{n} \frac{1}{2^k} \left(\frac{2}{\operatorname{th} \frac{\alpha}{2^{k-1}}} - \frac{1}{\operatorname{th} \frac{\alpha}{2^k}} \right) = \sum_{k=0}^{n} \left(\frac{1}{2^{k-1} \operatorname{th} \frac{\alpha}{2^{k-1}}} - \frac{1}{2^k \operatorname{th} \frac{\alpha}{2^k}} \right) \\ &= \frac{2}{\operatorname{th}(2\alpha)} - \frac{1}{2^n \operatorname{th} \frac{\alpha}{2^n}} \text{ (somme t\'elescopique)} \\ &\xrightarrow[n \to +\infty]{} \frac{2}{\operatorname{th}(2\alpha)} - \frac{1}{\alpha}, \end{split}$$

$$\forall \alpha \in \mathbb{R}^*, \ \sum_{n=0}^{+\infty} \frac{1}{2^n} \operatorname{th} \left(\frac{\alpha}{2^n} \right) = \frac{2}{\operatorname{th}(2\alpha)} - \frac{1}{\alpha}.$$

Exercice nº 8:

Il faut vérifier que $nu_n \underset{n \to +\infty}{\to} 0$. Pour $n \in \mathbb{N}$, posons $S_n = \sum_{k=0}^n u_k$. Pour $n \in \mathbb{N}$, on a

$$0 < (2n)u_{2n} = 2(\underbrace{u_{2n} + \ldots + u_{2n}}_n) \leqslant 2\sum_{k=n+1}^{2n} u_k \text{ (car la suite \mathfrak{u} est décroissante)}$$
$$= 2(S_{2n} - S_n).$$

Puisque la série de terme général u_n converge, $\lim_{n\to +\infty} 2(S_{2n}-S_n)=0$ et donc $\lim_{n\to +\infty} (2n)u_{2n}=0$. Ensuite, $0<(2n+1)u_{2n+1}\leqslant (2n+1)u_{2n}=(2n)u_{2n}+u_{2n}\underset{n\to +\infty}{\to} 0$. Donc les suites des termes de rangs pairs et impairs extraites de la suite $(nu_n)_{n\in\mathbb{N}}$ convergent et ont même limite à savoir 0. On en déduit que $\lim_{n\to +\infty} nu_n=0$ ou encore que $u_n\underset{n\to +\infty}{=} o\left(\frac{1}{n}\right)$.

Contre exemple avec $\mathfrak u$ non monotone. Pour $\mathfrak n\in\mathbb N,$ on pose $\mathfrak u_\mathfrak n=\left\{ \begin{array}{l} 0\ {\rm si}\ \mathfrak n=0\\ \dfrac{1}{\mathfrak n}\ {\rm si}\ \mathfrak n\ {\rm est}\ {\rm un}\ {\rm carr\'e}\ {\rm parfait}\ {\rm non\ nul}\ .\\ 0\ {\rm sinon} \end{array} \right.$

La suite u est positive et $\sum_{n=0}^{+\infty} u_n = \sum_{p=1}^{+\infty} \frac{1}{p^2} < +\infty$. Pourtant, $p^2 u_{p^2} = 1 \xrightarrow[p \to +\infty]{} 1$ et donc la suite (nu_n) admet une suite extraite convergeant vers 1. La suite (nu_n) ne converge donc pas vers 0.

Exercice nº 9:

Pour $n \in \mathbb{N}$, posons $u_n = (n+1)! \left(e - \sum_{k=0}^n \frac{1}{k!}\right)$. Soit $n \in \mathbb{N}^*$.

$$\begin{split} u_n &= \sum_{k=n+1}^{+\infty} \frac{(n+1)!}{k!} \\ &= 1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \frac{1}{(n+2)(n+3)(n+4)} + \frac{1}{(n+2)(n+3)(n+4)(n+5)} + \sum_{k=n+6}^{+\infty} \frac{1}{(n+2)(n+3)\dots k}. \\ &\text{On a } 0 < \sum_{k=n+6}^{+\infty} \frac{1}{(n+2)(n+3)\dots k} \leqslant \sum_{k=n+6}^{+\infty} \frac{1}{(n+2)^{k-(n+1)}} = \frac{1}{(n+2)^5} \frac{1}{1 - \frac{1}{n+2}} = \frac{1}{(n+2)^4(n+1)} \leqslant \frac{1}{n^5}. \end{split}$$

On en déduit que $\sum_{k=n+6}^{+\infty} \frac{1}{(n+2)(n+3)\dots k} \underset{n \to +\infty}{=} o\left(\frac{1}{n^4}\right)$. Donc

$$\begin{array}{l} u_n \underset{n \to +\infty}{=} 1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \frac{1}{(n+2)(n+3)(n+4)} + \frac{1}{(n+2)(n+3)(n+4)(n+5)} + o\left(\frac{1}{n^4}\right) \\ \underset{n \to +\infty}{=} 1 + \frac{1}{n}\left(1 + \frac{2}{n}\right)^{-1} + \frac{1}{n^2}\left(1 + \frac{2}{n}\right)^{-1}\left(1 + \frac{3}{n}\right)^{-1} + \frac{1}{n^3}\left(1 + \frac{2}{n}\right)^{-1}\left(1 + \frac{3}{n}\right)^{-1}\left(1 + \frac{4}{n}\right)^{-1} + \frac{1}{n^4} + o\left(\frac{1}{n^4}\right) \\ \underset{n \to +\infty}{=} 1 + \frac{1}{n}\left(1 - \frac{2}{n} + \frac{4}{n^2} - \frac{8}{n^3}\right) + \frac{1}{n^2}\left(1 - \frac{2}{n} + \frac{4}{n^2}\right)\left(1 - \frac{3}{n} + \frac{9}{n^2}\right) + \frac{1}{n^3}\left(1 - \frac{2}{n}\right)\left(1 - \frac{3}{n}\right)\left(1 - \frac{4}{n}\right) \\ \underset{n \to +\infty}{=} 1 + \frac{1}{n}\left(1 - \frac{2}{n} + \frac{4}{n^2} - \frac{8}{n^3}\right) + \frac{1}{n^2}\left(1 - \frac{5}{n} + \frac{19}{n^2}\right) + \frac{1}{n^3}\left(1 - \frac{9}{n}\right) + \frac{1}{n^4} + o\left(\frac{1}{n^4}\right) \\ \underset{n \to +\infty}{=} 1 + \frac{1}{n} - \frac{1}{n^2} + \frac{3}{n^4} + o\left(\frac{1}{n^4}\right). \end{array}$$

Finalement

$$(n+1)! \left(e - \sum_{k=0}^{n} \frac{1}{k!}\right) \underset{n \to +\infty}{=} 1 + \frac{1}{n} - \frac{1}{n^2} + \frac{3}{n^4} + o\left(\frac{1}{n^4}\right).$$

Exercice no 10:

Pour $n \in \mathbb{N}$, posons $u_n = \sin\left(\pi\left(2+\sqrt{3}\right)^n\right)$. D'après la formule du binôme de Newton, $\left(2+\sqrt{3}\right)^n = A_n + B_n\sqrt{3}$ où A_n et B_n sont des entiers naturels. Un calcul conjugué fournit aussi $\left(2-\sqrt{3}\right)^n = A_n - B_n\sqrt{3}$. Par suite, $\left(2+\sqrt{3}\right)^n + B_n\sqrt{3}$. $\left(2-\sqrt{3}\right)^n=2A_n$ est un entier pair. Par suite, pour $n\in\mathbb{N}$,

$$u_{n} = \sin\left(2A_{n}\pi - \pi\left(2 - \sqrt{3}\right)^{n}\right) = -\sin\left(\pi\left(2 - \sqrt{3}\right)^{n}\right)$$

Mais $0 < 2 - \sqrt{3} < 1$ et donc $\left(2 - \sqrt{3}\right)^n \underset{n \to +\infty}{\to} 0$. On en déduit que $|u_n| \underset{n \to +\infty}{\sim} \pi \left(2 - \sqrt{3}\right)^n$ terme général d'une série géométrique convergente. Donc la série de terme général u_n converge.

Exercice nº 11:

 $\mathrm{Pour}\ n\in\mathbb{N}^*,\ \mathrm{on}\ \mathrm{a}\left(\sqrt{u_n}-\frac{1}{n}\right)^2\geqslant 0\ \mathrm{et}\ \mathrm{donc}\ 0\leqslant\frac{\sqrt{u_n}}{n}\leqslant\frac{1}{2}\left(u_n+\frac{1}{n^2}\right).\ \mathrm{Comme}\ \mathrm{la}\ \mathrm{s\acute{e}rie}\ \mathrm{terme}\ \mathrm{g\acute{e}n\acute{e}ral}\ \frac{1}{2}\left(u_n+\frac{1}{n^2}\right)$ converge, la série de terme général $\frac{\sqrt{u_n}}{n}$ converge.

Exercice nº 12:

Exercise
$$n^{\circ} 12$$
:

Pour $n \ge 2$, $\nu_n = \frac{u_n + 1 - 1}{(1 + u_1) \dots (1 + u_n)} = \frac{1}{(1 + u_1) \dots (1 + u_{n-1})} - \frac{1}{(1 + u_1) \dots (1 + u_n)}$ et d'autre part $\nu_1 = 1 - \frac{1}{1 + u_1}$.

Donc, pour $n \ge 2$

$$\sum_{k=1}^n \nu_k = 1 - \frac{1}{(1+u_1)\dots(1+u_n)} \ (\mathrm{somme \ t\'elescopique}).$$

Si la série de terme général u_n converge alors $\lim_{n \to +\infty} u_n = 0$ et donc $0 < u_n \sim \lim_{n \to +\infty} \ln(1 + u_n)$. Donc la série de terme général $\ln(1+u_n)$ converge ou encore la suite $\left(\ln\left(\prod_{k=1}^n(1+u_k)\right)\right)_{n>1}$ converge vers un certain réel ℓ . Mais alors la suite

$$\left(\prod_{k=1}^n (1+u_k)\right)_{n\geqslant 1} \text{ converge vers le réel strictement positif } P=e^\ell. \text{ Dans ce cas, la suite } \left(\sum_{k=1}^n \nu_k\right)_{n\geqslant 1} \text{ converge vers } 1-\frac{1}{P}.$$

Si la série de terme général u_n diverge alors la série de terme général $\ln(1+u_n)$ diverge vers $+\infty$ et il en est de même que la suite $\left(\prod_{k=1}^{n}(1+u_k)\right)$. Dans ce cas, la suite $\left(\sum_{k=1}^{n}v_k\right)$ converge vers 1.

Exercice no 13:

1) Soit $n \in \mathbb{N}$.

$$2n^3 - 3n^2 + 1 = 2(n+3)(n+2)(n+1) - 15n^2 - 22n - 11 = 2(n+3)(n+2)(n+1) - 15(n+3)(n+2) + 53n + 79$$

$$= 2(n+3)(n+2)(n+1) - 15(n+3)(n+2) + 53(n+3) - 80$$

Donc

$$\sum_{n=0}^{+\infty} \frac{2n^3 - 3n^2 + 1}{(n+3)!} = \sum_{n=0}^{+\infty} \left(\frac{2}{n!} - \frac{15}{(n+1)!} + \frac{53}{(n+2)!} - \frac{80}{(n+3)!} \right) = 2e - 15(e-1) + 53(e-2) - 80\left(e - \frac{5}{2}\right)$$

$$= -40e + 109.$$

$$\sum_{n=0}^{+\infty} \frac{2n^3 - 3n^2 + 1}{(n+3)!} = -40e + 109.$$

$$\textbf{2)} \ \mathrm{Pour} \ n \in \mathbb{N}, \ \mathrm{on} \ \mathrm{a} \ u_{n+1} = \frac{n+1}{a+n+1} u_n. \ \mathrm{Par} \ \mathrm{suite} \ (n+a+1) u_{n+1} = (n+1) u_n = (n+a) u_n + (1-a) u_n \ \mathrm{puis}$$

$$(1-\alpha)\sum_{k=1}^n u_k = \sum_{k=1}^n \left((k+\alpha+1)u_{k+1} - (k+\alpha)u_k\right) = (n+\alpha+1)u_{n+1} - (\alpha+1)u_1 = (n+\alpha+1)u_{n+1} - 1.$$

Si $a = 1, \forall n \in \mathbb{N}^*, u_n = \frac{1}{n+1}$. Dans ce cas, la série diverge.

$$\mathrm{Si}\ \alpha \neq 1,\ \forall n \in \mathbb{N}^*,\ \sum_{k=1}^n u_k = \frac{1}{1-\alpha}((n+\alpha+1)u_{n+1}-1) = \frac{1}{\alpha-1} - \frac{1}{\alpha-1}(\alpha+n+1)u_{n+1}.$$

Si a > 1, la suite u est strictement positive et la suite des sommes partielles (S_n) est majorée par $\frac{1}{a-1}$. Donc la série de terme général u_n converge. Il en est de même de la suite $((a+n+1)u_{n+1})$. Soit $\ell = \lim_{n \to +\infty} (a+n+1)u_{n+1}$.

Si $\ell \neq 0$, $u_{n+1} \xrightarrow[n \to +\infty]{\ell} \frac{\ell}{n+q+1}$ contredisant la convergence de la série de terme général u_n . Donc $\ell = 0$ et

$$\forall \alpha > 1, \ \sum_{n=1}^{+\infty} u_n = \frac{1}{\alpha - 1}.$$

Si 0 < a < 1, pour tout $n \in \mathbb{N}^*$, $u_n \geqslant \frac{1 \times 2 \times \ldots \times n}{2 \times 3 \ldots \times (n+1)} = \frac{1}{n+1}$. Dans ce cas, la série diverge.

Exercice nº 14:

Pour tout entier naturel non nul n, $0 < \frac{1}{2^p n^{p-1}} = \sum_{k=1}^n \frac{1}{(2n)^p} \leqslant \sum_{k=1}^n \frac{1}{(n+k)^p} \leqslant \sum_{k=1}^n \frac{1}{n^p} = \frac{1}{n^{p-1}}$ et la série de terme général u_n converge si et seulement si p > 2.

Exercice nº 15:

La série de terme général $\frac{(-1)^{n-1}}{n^2}$, $n\geqslant 1$, est absolument convergente et donc convergente.

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right) - 2\left(\frac{1}{2^2} + \frac{1}{4^2} + \dots\right)$$

$$= \left(1 - \frac{2}{2^2}\right) \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right) = \frac{\pi^2}{12}$$

et

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right) - \left(\frac{1}{2^2} + \frac{1}{4^2} + \dots\right)$$

$$= \left(1 - \frac{1}{2^2}\right) \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right) = \frac{\pi^2}{8}.$$

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12} \text{ et } \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

Exercice nº 16:

- 1) Pour $n \in \mathbb{N}^*$, posons $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$. Puisque la série de terme général $\frac{1}{k^2}$, $k \ge 1$, converge, la suite (R_n) est définie et tend vers 0 quand n tend vers $+\infty$.
- 2) Pour tout entier $k \ge 2$,

$$\frac{1}{k(k+1)}\leqslant \frac{1}{k^2}\leqslant \frac{1}{(k-1)k}.$$

Soient n un entier naturel non nul puis N un entier supérieur ou égal à n+1. En sommant membre à membre les inégalités précédentes, on obtient

$$\sum_{k=n+1}^{N} \left(\frac{1}{k} - \frac{1}{k+1} \right) \leqslant \sum_{k=n+1}^{N} \frac{1}{k^2} \leqslant \sum_{k=n+1}^{N} \left(\frac{1}{k-1} - \frac{1}{k} \right),$$

ou encore $\frac{1}{n+1} - \frac{1}{N+1} \leqslant \sum_{k=n+1}^{N} \frac{1}{k^2} \leqslant \frac{1}{n} - \frac{1}{N}$. Quand N tend vers $+\infty$, n étant fixé, on obtient $\frac{1}{n+1} \leqslant R_n \leqslant \frac{1}{n}$.

Le théorème des gendarmes montre alors que nR_n tend vers 1 quand n tend vers $+\infty$ ou encore $R_n \sim \frac{1}{n \to +\infty}$ ou enfin

$$R_n \underset{n \to +\infty}{=} \frac{1}{n} + o\left(\frac{1}{n}\right).$$

3) Soient n un entier naturel non nul puis N un entier naturel supérieur ou égal à n+1.

$$\sum_{k=n+1}^{N} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{n} - \frac{1}{N} \text{ (somme t\'elescopique)}.$$

Quand N tend vers $+\infty$, n étant fixé, on obtient $\frac{1}{n} = \sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k}\right)$. Par suite, pour tout entier naturel non nul n,

$$\begin{split} R_n - \frac{1}{n} &= \sum_{k=n+1}^{+\infty} \frac{1}{k^2} - \sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \sum_{k=n+1}^{+\infty} \left(\frac{1}{k^2} - \frac{1}{k(k-1)} \right) \\ &= - \sum_{k=n+1}^{+\infty} \frac{1}{k^2(k-1)}. \end{split}$$

Pour tout $k \ge 2$, on a

$$\frac{1}{(k-1)k(k+1)} \leqslant \frac{1}{k^2(k-1)} \leqslant \frac{1}{(k-2)(k-1)k}$$

et donc

$$\sum_{k=n+1}^{N} \frac{1}{(k-1)k(k+1)} \leqslant \sum_{k=n+1}^{N} \frac{1}{k^2(k-1)} \leqslant \sum_{k=n+1}^{N} \frac{1}{(k-2)(k-1)k}$$
 Ensuite,
$$\sum_{k=n+1}^{N} \frac{1}{(k-1)k(k+1)} = \frac{1}{2} \sum_{k=n+1}^{N} \left(\frac{1}{(k-1)k} - \frac{1}{k(k+1)} \right) = \frac{1}{2} \left(\frac{1}{n(n+1)} - \frac{1}{N(N+1)} \right) \text{ et } \sum_{k=n+1}^{N} \frac{1}{(k-2)(k-1)k} = \frac{1}{2} \sum_{k=n+1}^{N} \left(\frac{1}{(k-2)(k-1)} - \frac{1}{(k-1)k} \right) = \frac{1}{2} \left(\frac{1}{(n-1)n} - \frac{1}{(N-1)N} \right) \text{ et donc}$$

$$\frac{1}{2} \left(\frac{1}{n(n+1)} - \frac{1}{N(N+1)} \right) \leqslant \sum_{k=n+1}^{N} \frac{1}{k^2(k-1)} \leqslant \frac{1}{2} \left(\frac{1}{(n-1)n} - \frac{1}{(N-1)N} \right).$$

Quand N tend vers $+\infty$, n étant fixé, on obtient $\frac{1}{2n(n+1)} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2(k-1)} \leqslant \frac{1}{2(n-1)n}$ puis $-\frac{1}{2(n-1)n} \leqslant R_n - \frac{1}{n} \leqslant -\frac{1}{2n(n+1)}$.

Le théorème des gendarmes montre que $-2n^2\left(R_n-\frac{1}{n}\right)\underset{n\to+\infty}{=}1+o(1)$ ou encore

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} = \frac{1}{n \to +\infty} \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right).$$

Exercice nº 17:

Soit $n \in \mathbb{N}$.

$$\begin{split} u_n &= \frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1} = \int_0^1 \frac{1}{1+t^2} \; dt - \sum_{k=0}^n (-1)^k \int_0^1 t^{2k} \; dt = \int_0^1 \frac{1}{1+t^2} \; dt - \int_0^1 \frac{1-(-t^2)^{n+1}}{1-(-t^2)} \; dt \\ &= \int_0^1 \frac{(-t^2)^{n+1}}{1+t^2} \; dt. \end{split}$$

Par suite, pour $N \in \mathbb{N}$,

$$\sum_{n=0}^{N}u_{n}=\int_{0}^{1}\sum_{n=0}^{N}\frac{(-t^{2})^{n+1}}{1+t^{2}}\;dt=\int_{0}^{1}(-t^{2})\frac{1-(-t^{2})^{N+1}}{(1+t^{2})^{2}}\;dt=-\int_{0}^{1}\frac{t^{2}}{(1+t^{2})^{2}}\;dt+(-1)^{N+1}\int_{0}^{1}\frac{t^{2N+2}}{(1+t^{2})^{2}}\;dt.$$
 Or $\left|(-1)^{N+1}\int_{0}^{1}\frac{t^{2N+2}}{(1+t^{2})^{2}}\;dt\right|=\int_{0}^{1}\frac{t^{2N+2}}{(1+t^{2})^{2}}\;dt\leqslant\int_{0}^{1}t^{2N+2}\;dt=\frac{1}{2N+3}.$ Comme $\frac{1}{2N+3}$ tend vers 0 quand N tend vers $+\infty$, il en est de même de $(-1)^{N+1}\int_{0}^{1}\frac{t^{2N+2}}{(1+t^{2})^{2}}\;dt.$ On en déduit que la série de terme général $u_{n},\,n\in\mathbb{N}$, converge et de plus

$$\begin{split} \sum_{n=0}^{+\infty} u_n &= -\int_0^1 \frac{t^2}{(1+t^2)^2} \ dt = \int_0^1 \frac{t}{2} \times \frac{-2t}{(1+t^2)^2} \ dt \\ &= \left[\frac{t}{2} \times \frac{1}{1+t^2} \right]_0^1 - \int_0^1 \frac{1}{2} \times \frac{1}{1+t^2} \ dt = \frac{1}{4} - \frac{\pi}{8}. \\ &\sum_{n=0}^{+\infty} \left(\frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1} \right) = \frac{1}{4} - \frac{\pi}{8}. \end{split}$$

Exercice nº 18:

1) On sait qu'il existe une infinité de nombres premiers. Notons $(p_n)_{n\in\mathbb{N}^*}$ la suite strictement croissante des nombres premiers. La suite $(p_n)_{n\in\mathbb{N}^*}$ est une suite strictement croissante d'entiers et donc $\lim_{n\to+\infty} p_n = +\infty$ ou encore $\lim_{n\to+\infty} \frac{1}{p_n} = 0$. Par suite, $0 < \frac{1}{p_n} \sum_{n\to+\infty}^{\infty} \ln\left(\left(1-\frac{1}{p_n}\right)^{-1}\right)$ et les séries de termes généraux $\frac{1}{p_n}$ et $\ln\left(\left(1-\frac{1}{p_n}\right)^{-1}\right)$ sont de même nature. Il reste donc à étudier la nature de la série de terme général $\ln\left(\left(1-\frac{1}{p_n}\right)^{-1}\right)$.

$$\textbf{2)} \ \mathrm{Montrons} \ \mathrm{que} \ \forall N \in \mathbb{N}^*, \ \sum_{n=1}^{+\infty} \ln \left(\left(1 - \frac{1}{p_n} \right)^{-1} \right) \geqslant \ln \left(\sum_{k=1}^{N} \frac{1}{k} \right).$$

Soit $n \geqslant 1$. Alors $\frac{1}{p_n} < 1$ et la série de terme général $\frac{1}{p_n^k}$, $k \in \mathbb{N}$, est une série géométrique convergente de somme :

$$\sum_{k=0}^{+\infty} \frac{1}{p_n^k} = \left(1 - \frac{1}{p_n}\right)^{-1}.$$

Soit alors N un entier naturel supérieur ou égal à 2 et $p_1 < p_2 ... < p_n$ la liste des nombres premiers inférieurs ou égaux à N.

Tout entier entre 1 et N s'écrit de manière unique $\mathfrak{p}_1^{\beta_1} \dots \mathfrak{p}_k^{\beta_k}$ où $\forall i \in [\![1,n]\!], \ 0 \leqslant \beta_i \leqslant \alpha_i = E\left(\frac{\ln(N)}{\ln(\mathfrak{p}_i)}\right)$ et deux entiers distincts ont des décompositions distinctes. Donc

$$\begin{split} \sum_{k=1}^{+\infty} \ln \left(\left(1 - \frac{1}{p_k}\right)^{-1} \right) &\geqslant \sum_{k=1}^n \ln \left(\left(1 - \frac{1}{p_k}\right)^{-1} \right) \, \left(\operatorname{car} \, \forall k \in \mathbb{N}^*, \, \left(1 - \frac{1}{p_k}\right)^{-1} > 1 \right) \\ &= \sum_{k=1}^n \ln \left(\sum_{i=0}^{+\infty} \frac{1}{p_k^i} \right) \geqslant \sum_{k=1}^n \ln \left(\sum_{i=0}^{\alpha_k} \frac{1}{p_k^i} \right) \\ &= \ln \left(\prod_{k=1}^n \left(\sum_{i=0}^{\alpha_k} \frac{1}{p_k^i} \right) \right) = \ln \left(\sum_{0 \leqslant \beta_1 \leqslant \alpha_1, \dots, \ldots, 0 \leqslant \beta_n \leqslant \alpha_n} \frac{1}{p_1^{\beta_1} \dots, \, p_n^{\beta_n}} \right) \\ &\geqslant \ln \left(\sum_{k=1}^N \frac{1}{k} \right). \end{split}$$

Cette inégalité est vraie pour tout entier naturel non nul N. Puisque $\lim_{N\to+\infty}\ln\left(\sum_{k=1}^N\frac{1}{k}\right)=+\infty$, quand N tend vers $+\infty$,

$$\mathrm{on\ obtient}\ \sum_{k=1}^{+\infty} \ln\left(\left(1-\frac{1}{p_k}\right)^{-1}\right) \geqslant +\infty\ \mathrm{et\ donc}\ \sum_{k=1}^{+\infty} \ln\left(\left(1-\frac{1}{p_k}\right)^{-1}\right) = +\infty.$$

La série de terme général $\ln\left(1-\frac{1}{p_k}\right)^{-1}$ diverge et il en est de même de la série de terme général $\frac{1}{p_n}$.

(Ceci montre qu'il y a beaucoup de nombres premiers et en tout cas beaucoup plus de nombres premiers que de carrés parfaits par exemple).