UNIVERSIDADE FEDERAL DO AMAZONAS INSTITUTO DE CIÊNCIAS EXATAS BACHARELADO EM MATEMÁTICA

LABORATÓRIO DE FÍSICA II RELATÓRIO I - OSCILAÇÕES LIVRES

Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844

Professor: Dra. Daniela Menegon Trichês

Manaus 2016

Sumário

1	RE	SUMO	3			
2	INT	INTRODUÇÃO				
3	\mathbf{FU}	NDAMENTOS TEÓRICOS	5			
4	\mathbf{PR}	OCEDIMENTO EXPERIMENTAL	7			
	4.1	Materias utilizados	7			
	4.2	Procedimento do Experimento I	7			
	4.3	Propagação de erro do Experimento I	8			
	4.4	Método do Experimento II	8			
	4.5	Propagação de erro do Experimento II	9			
5	RE	SULTADOS	10			
	5.1	Experimento I - Determinação da constante elástica pelo método estático $$	10			
	5.2	Experimento II - Determinação da constante elástica pelo método dinâmico $\ . \ . \ .$	11			
6	CONCLUSÃO					
	6.1	Experimento 1:	13			
	6.2	Experimento 2:	13			
D.		PÊNCIAS BIBLIOCDÁFICAS	11			

1. RESUMO

Este relatório descreve e analisa dois experimentos para obter a constante elástica de uma mola. O primeiro experimento consiste em determinar a constante elástica de uma mola estimando-a a partir da força peso e a respectiva distensão sofrida pela mola ao ser submetida a diversas massas. Foi gerado um gráfico mostrando a relação destas duas variáveis e através de regressão linear foi obtida a reta necessária para estimar a constante elástica. O segundo experimento consiste em determinar a constante elástica da mola utilizando os resultados do movimento harmônico simples. Para isso, os alunos cronometram o período que o objeto levou para completar um ciclo após a mola ter sido esticada e, em seguida, liberada. De posse do período, foi possível criar um gráfico relacionando o período com o respectiva massa e estimar a constante de elasticidade da mola. No final, a constante elástica obtida pelos dois métodos foram comparadas e descobrimos uma diferença de 5 unidades entre eles.

2. INTRODUÇÃO

Este relatório descreve e analisa dois experimentos para obter a constante elástica de uma mola. De posse da constante elástica, um engenheiro ou cientista pode calcular a força e energia exercida pela mola. Com a força e energia, pode-se entender e prever o comportamento de sistemas constituídos por mola-massa.

Para a obtenção das constantes elásticas, os alunos realizaram os experimentos em laboratório, pesquisaram os fundamentos teóricos, e realizaram a análise de dados obtidos através dos experimentos. As atividades realizadas em cada uma destas etapas estão detalhadas nos textos a seguir.

3. FUNDAMENTOS TEÓRICOS

De acordo com (Halliday 1996), a força elástica é uma força restauradora, ou seja, ela tende a restaurar o estado relaxado de, por exemplo, uma mola. Neste caso, uma extremidade da mola é fixa e a outra um objeto é preso a outra extremidade da mola. Se alongamos a mola puxando puxando o bloco para a direita, a mola exerce uma força no bloco para a esquerda. Se comprimimos a mola empurrando o bloco para a esquerda, a mola exerce uma força no bloco para a direita. Esta força é sempre contrária ao deslocamento. Ela é definida como:

$$F = -k * x \tag{3.1}$$

Em que:

F: é a força elástica;

k: é a constante elástica da mola;

x: é o deslocamento

De acordo com (Halliday 1998), em um movimento harmônico simples a aceleração é obtida de acordo com a seguinte fórmula:

$$a(t) = -\omega^2 x(t) \tag{3.2}$$

Em que ω é frequência angular e é obtido de acordo com:

$$\omega = \frac{2 * \pi}{T} \qquad , T \text{ \'e o per\'odo de um ciclo}$$
 (3.3)

Aplicando a aceleração obtida em 3.2 na segunda lei de Newton, tem-se:

$$F = ma = -(m\omega^2)x\tag{3.4}$$

Comparando a equação 3.4 com a equação da lei de Hooke em 3.1, observa-se que um movimento harmônico simples é o movimento executado por uma partícula sujeita a uma força proporcional ao deslocamento da partícula e de sinal oposto. Equivalente a lei de Hooke. Portanto, pode-se obter a constante elástica pela seguinte equação:

$$k = m\omega^2 \tag{3.5}$$

Substituindo ω de 3.3 em 3.5 e isolando ω , tem-se:

$$\omega = \sqrt{\frac{m}{k}} \tag{3.6}$$

Substituindo ω pelo período de 3.3, T, tem-se:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{3.7}$$

Isolando k, tem-se:

$$k = \frac{4\pi^2 m}{T^2} \tag{3.8}$$

4. PROCEDIMENTO EXPERIMENTAL

Esta seção apresenta os materias e métodos utilizados nos experimentos.

4.1 Materias utilizados

- 1 mola
- 1 porta-peso 10g
- 5 massas de aproximadamente 50g*.
- 1 régua milimetrada
- 1 cronômetro.
- Os valores exatados estão apresentados na tabela de dados dos experimentos.

4.2 Procedimento do Experimento I

Este relatório apresentará dois experimentos para obter a constante elástica de uma mola utilizando a força gravitacional. Cada experimento utilizará um metódo diferente.

O primeiro experimento consiste um obter a constante elástica da mola via a aplicação de algumas forças peso e suas respectivas distensões sofridas pela mola. Para isso, uma extremidade da mola foi presa em um suporte vertical e a altura da outra extremidade foi medida com uma reguá milimetrada. Algumas partículas foram adicionadas a extremidade livre da mola e a distensão sofrida pela mola foi medida no ponto de equilíbrio foi medida. O modelo matemático para obter a constante elástica por este método é apresentado abaixo.

De acordo com a segunda lei de Newton, tem-se:

$$F_r = ma (4.1)$$

No momento de equilíbrio da mola distendida devido a aplicação da partícula, tem-se:

$$P - F_e(x) = 0$$
 a=0, pois a partícula está em equilíbrio (4.2)

Então,

$$P = F_e(x)$$
 P: é a força peso e F_e é a forca elástica. (4.3)

Substituindo por suas respectivas equações, tem-se:

$$mg = -kx (4.4)$$

Conclui-se que:

$$k = -\frac{mg}{r} \tag{4.5}$$

Portanto, a constante k pode ser obtida experimentalmente fazendo um gráfico da força peso em relação a distensão da mola, determinando a melhor reta que combina com os pontos no gráfico e calculando seu coeficiente angular. A equação 4.5 representa o coeficiente angular desta reta. Portanto, neste método o valor da constante elástica é dado pelo coeficiente angular da reta obtida por regrassão linear no gráfico Peso X Distensão.

Uma observação importante: como a nossa referência para o deslocamento x é para cima e o objeto se move para baixo, tem-se que x sempre será um número negativo. Portanto, o valor de k sempre será positivo.

4.3 Propagação de erro do Experimento I

Para a estimativa de erro da constante elástica, calculamos a derivada da equação 4.5 conforme demostrado a seguir:

$$\delta k = \left| \frac{\partial k}{\partial m} \right| \delta m + \left| \frac{\partial k}{\partial x} \right| \delta x \tag{4.6}$$

$$\delta k = \frac{xg\delta m + mg\delta x}{x^2} \tag{4.7}$$

4.4 Método do Experimento II

O segundo experimento consiste em determinar a constante elástica da mola utilizando um modelo baseado no movimento harmônico simples. Para isso, foi preso à mola uma objeto, registrado o alongamento da mola com esse objeto na posição de equilíbrio, mantida alongada a mola em uma amplitude de 30 milimetros, liberada o objeto e registrada o tempo de 10 períodos do objeto.

A equação obtida em 3.7 é o modelo utilizado neste experimento para obter a constante elástica. No entento, precisa-se linearizar esta equação. O processo utilizado de linearização está apresentado abaixo:

$$log(T) = log(2\pi\sqrt{\frac{m}{k}}) \tag{4.8}$$

Após alguns manipulações da função logarítmica, obtem-se:

$$log(T) = log(\frac{2\pi}{\sqrt{k}}) + \frac{1}{2}log(m)$$
(4.9)

Como a equação acima é uma equação linear, pode-se obter a constante elástica comparando valor da estimativa da interseção da reta, obtida via regressão linear, com o eixo dos períodos de acordo com a equação abaixo:

$$b = log(\frac{2\pi}{\sqrt{k}})$$
 b é o valor da interseção da reta com o eixo dos períodos (4.10)

Portanto, o valor de k no experimento é:

$$k = \frac{4\pi^2}{10^{2b}} \tag{4.11}$$

Em que b é o valor do coeficiente linear da função obtida via regressão linear com os dados do experimento.

4.5 Propagação de erro do Experimento II

Para a estimativa de erro da constante elástica, calculamos a derivada da equação 3.8 conforme demostrado a seguir:

$$\delta k = \left| \frac{\partial k}{\partial m} \right| \delta m + \left| \frac{\partial k}{\partial T} \right| \delta T \tag{4.12}$$

$$\delta k = \frac{4\pi^2 T \delta m + 8\pi^2 m \delta T}{T^3} \tag{4.13}$$

5. RESULTADOS

5.1 Experimento I - Determinação da constante elástica pelo método estático

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

Tabela 5.1: Experimento 1.

	$Massa \pm 0.001 \text{ (kg)}$	Distensão \pm 0.001 (m)	Peso (N) \pm 0.001						
1	0.000	0.000	0.000						
2	0.010	0.005	0.098						
3	0.060	0.031	0.588						
4	0.110	0.053	1.078						
5	0.161	0.084	1.578						
6	0.210	0.110	2.058						
7	0.260	0.135	2.548						

Na tabela acima, a coluna Força Gravitacional foi calculada utilizando a seguinte fórmula:

$$P_i = m_i * g \tag{5.1}$$

Em que i representa a i-ésima amostra coleta e $g = 9,8m/s^2$.

O gráfico seguinte apresenta os dados da força peso em relação a distensão obtida para cada amostra.

A reta azul foi gerada utilizando o método de regressão linear que obteve a melhor reta para os dados do experimento. A equação desta reta é:

$$F = 18.757 * Distensao + 0.0154 \tag{5.2}$$

O coeficiente desta equação corresponde a constante k. Portanto, o valor de $k=18.757\pm0.483$ N/m. O erro foi calculado utilizando a fórmula 4.7.

5.2 Experimento II - Determinação da constante elástica pelo método dinâmico

Tabela 5.2: Experimento 2

	$Massa \pm 0.0001 \text{ (kg)}$	$T_1 \pm 0.001 \; (s)$	$T_2 \pm 0.001(s)$	$T_3 \pm 0.001(s)$	$T_{md} \pm 0.001(s)$	$T_{dp} \pm 0.001 \text{ (s)}$
1	0.0600	0.419	0.375	0.419	0.404	0.025
2	0.1100	0.526	0.498	0.497	0.507	0.016
3	0.1610	0.586	0.566	0.575	0.576	0.010
4	0.2100	0.687	0.656	0.683	0.675	0.017
5	0.2600	0.765	0.759	0.762	0.762	0.003

Em que:

 T_1 , T_2 e T_3 : são as três amostras de período obtidas para uma determinada massa;

 T_{md} : é a média dos períodos obtidos;

 T_{dp} : é o desvio padrão da média dos períodos;

O gráfico seguinte apresenta, em escala logarítmica, a relação dos períodos com as massas.

A equação da reta obtida via regressão linear é:

$$log(T) = 0.4243 * log(Massa) + 0.1162$$
(5.3)

Então, aplicando o valor do coeficiente linear da equação acima no equação 4.11, pode-se obter o valor de k para este experimento:

$$k = \frac{4\pi^2}{10^{2*0.1162}} = 23.123 \pm 0.122 \text{ N/m}$$
 (5.4)

 ${\cal O}$ erro foi estimado utilizando a equação 4.13.

6. CONCLUSÃO

Após a realização dos experimentos e análise dos resultados obtidos, é possível responder algumas perguntas levantadas para cada experimento.

6.1 Experimento 1:

1 Que tipo de curva foi obtida?

Conforme apresentado na seção "5. Resultados", a curva obtida é uma reta.

2 De que forma seus resultados foram afetados por se considerar a massa desprezível?

Ao considerar a massa da mola desprezível, nao parece ter causado qualquer impacto no experimento 1 uma vez que os resultados obtidos estão de acordo com a teoria.

6.2 Experimento 2:

1 Compare o valor da constante elástica obtido pelo método estático com aquele obtido pelo método dinâmico. Faça comentários.

Os valores de constante elástica obtidos via os dois experimentos possui em torno de 5 unidades de divergência. O da constante elástica pelo método estático é 18.757 ± 0.483 N/m e pelo metódo dinámico é 23.123 ± 0.122 N/m. A equipe concluiu que tal divergência se deu devido a alguma etapa executada incorretamente. Uma possível causa deste problema talvez tenha sido a contagem dos ciclos no experimento II. No entanto, para entender melhor o que pode ter ocorrido de errado, a equipe necessitaria repetir os experimentos.

REFERÊNCIAS BIBLIOGRÁFICAS

Halliday, R.; Krane, D.; Resnick. 1996. Física 1. Vol. 1. Livros Técnicos e Científicos Editora.

— . 1998. Física 2. Vol. 2. Livros Técnicos e Científicos Editora.

Nussenzveig, H.M. 1997. Curso de Física Básica 2. Vol. 1. Edgard Bucher Ltda.