Практическая работа №5

Алгоритм Флойда и Дейкстры

Студент группы: АИ-205

Светашов Д.В.

Вариант 15

1. Граф, соответствующий номеру варианта задания.

Рис 1.1 Исходный граф.

Для начала необходимо составить матрицу смежности для данного графа.

	0	1	2	3	4	5	6	7	
0	∞	∞	2	1	∞	8	∞	∞	
1	∞	∞	1	6	∞	3	4	∞	
2	2	1	∞	∞	∞	∞	∞	4	
3	1	6	∞	∞	4	∞	∞	∞	
4	∞	∞	∞	4	∞	∞	7	∞	
5	8	3	∞	∞	∞	∞	∞	3	
6	∞	4	∞	∞	7	∞	∞	5	
7	∞	∞	4	∞	∞	3	5	∞	

Рис 1.2 Матрица смежности графа.

2. Алгоритм Флойда — Уоршелла

Алгоритм Флойда — Уоршелла — алгоритм для нахождения кратчайших расстояний между всеми вершинами взвешенного графа без циклов с отрицательными весами с использованием метода динамического программирования. Динамическое программирование — способ решения сложных задач путем разбиения их на более простые. В основе алгоритма лежит метод релаксации. Время выполнения имеет порядок $0(V^3)$, поскольку в ней практически нет ничего, кроме вложенных друг в друга трех циклов. Его отличие от алгоритма Дейкстры состоит в том, что в нем вычисляются кратчайшие расстояния для всех пар вершин, а алгоритм Дейкстры решает проблему кратчайшего пути для одного источника.

Ссылка на онлайн компилятор с кодом алгоритма:

https://code.sololearn.com/cowENo1sC206

Мат	рица		L						
o ^o	3	2	<u>2</u> 1	5	6	7	6		
13	-	1	4	8	3	4	5		
22	1	-	3	7	4	5	4		
31	4	3	-	4	7	8	7		
45	8	7	4	-	11	7	11		
<u>5</u> 6	3	4	7	11	-	7	3		
67	4	5	8	7	7	-	5		
7 6	5	4	7	11	3	5	-		

Рис 2.1 Матрица расстояний.

Данная матрица показывает самые короткие расстояния между вершинами.

Mat	грица	цÀ.	теи:	4	5	6	7
0-	2	2	3	3	2	2	2
2		2	2	3	5	6	2
20	1		Θ	3	1	1	7
30	2	0		4	2	2	2
43	3	3	3		3	6	3
<u>5</u> 2	1	1	2	3		1	7
62	1	1	2	4	1		7
72	2	2	2	3	5	6	-

Рис 2.2 Матрица путей.

Принцип использования данной матрицы до безумия прост. Допустим, что нам необходимо попасть из 7й вершини в 3ю вершину - V(7,3)

Man	грица	ηу	тей:	ų	_	_	7
0-	2	2	3	3	2	2	2
2		2	2	3	5	6	2
20	1		Θ	3	1	1	7
30	2	0		4	2	2	2
43	3	3	3		3	6	3
<u>5</u> 2	1	1	2	3		1	7
62	1	1	2	4	1		7
72	2	2	کا 2ے۔	3	5	6	-

Сразу попасть в 3ю вершину мы не можем, поэтому путь лежит через 2ю вершину. V(7,2)

Мат	рица	а пут	гей:	U	_	6	ュ
0	2	2	3 \	3	2	2	2
2		2	2	3	5	6	2
20	1		(o) ^e	3	1	1	7
30	2	Θ		4	2	2	2
43	3	3	3		3	6	3
<u>5</u> 2	1	1	2	3		1	7
62	1	1	2	4	1		7
72	2	2	(2)	3	5	6	-

Как мы видим, на пересечении строки с индексом 2 и столбца с индексом 3 находится 0, значит наш путь будет лежать и через эту вершину V(2,0)

Мат	рица	ůλ.	тей:	11	_	7	7
0-	2_	2	_3·/	3	2	2	2
1 2		2	2	3	5	6	2
20	1		Θ	3	1	1	7
30	2	Θ		4	2	2	2
43	3	3	3		3	6	3
<u></u> 52	1	1	2	3		1	7
62	1	1	2	4	1		7
72	2	2	2	3	5	6	

На пересечении строки с индексом 0 и столбца с индексом 3 находится 3. А это значит что мы достигли нужной нам вершини. Если подвести итог, то пусть из 7й вершины в 3ю будет выглядеть так

$$V(7,3)=V(7,2)+V(2,0)+V(0,3)$$

И если мы посчитаем сумму весов ребер через которые мы проходили, то сумма совпадет с числом указанным в матрице расстояний на Рис 2.1, то есть будет равна 7.

3. Алгоритм Дейкстры

Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Работает только для графов без рёбер отрицательного веса.

```
The shortest path from start vertex ( 1 ) to all other vertices:
To vertex: 0 is 3
To vertex: 1 is 0
To vertex: 2 is 1
To vertex: 3 is 4
To vertex: 4 is 8
To vertex: 5 is 3
To vertex: 6 is 4
To vertex: 7 is 5
```

Для своего графа я нахожу кратчайшие пути к вершинам из 1й вершины.

```
kraskal.Result( startVertex: 1, finishVertex: 7);//the first argument is our startVertex, the second is
```

Метод Result принимает 2 аргумента. 1й — стартовая вершина, в моем случае она равна 1, и конечая вершина, она равна 7.

Можно устанавливать разные значения стартовой и конечной вершины, в функцию нужно просто передать другие аргументы.

```
The path from start vertex ( 1 ) to finish vertex ( 7 ) 1 2 7
```

Вывод кратчайшего пути из 1й вершины в 7ю.

Ссылка на онлайн компилятор с кодом:

https://code.sololearn.com/c4s2Dar9OV90

Вывод: на этой лабораторной работе я разобрал алгоритм Флойда и Краскала. Реализовал их на языке java и c++ и загрузил на гитхаб, чтобы они всегда были под рукой.