ROBOTICS MASTER

Universitat de Vic

Subject: Perception Systems

Session1: Sensors and Measurements

Exercixse 1.1: Encoder pulses

Author: Toni Guasch Serra

Date: 2015-10-27

Robotics Master - Robotics Integration: Exercise 1.1: Human Tracking

Exercise 1.1.

If you have a mobile robot with wheels of radius R=0.4m, and it can run at maximum speed of 3m/s, compute how many pulses will receive a counter if you use an encoder of 500ppr.

Exercise 1.1.

If you have a mobile robot with wheels of radius R=0.4m, and it can run at maximum speed of 3m/s, compute how many pulses will receive a counter if you use an encoder of 500ppr.

Using angular velocity formula;

$$w\left[\frac{rad}{s}\right] = \frac{V\left[\frac{m}{s}\right]}{R[m]} = \frac{3 \ m/s}{0.4 \ m} = 7.5 \ rad/s$$

Considering that 1 r.p.m. is equal to;

$$1rpm = \frac{2\pi[rad]}{60[s]} = \frac{\pi}{30} \left[\frac{rad}{s} \right]$$

Applying a simple rule of three can be obtained the number of revolutions per minute;

$$1 \to \frac{\pi}{30}$$

$$x \to 7.5$$

$$x = 71.61 \, rpm$$

To know the revolutions per second;

Considering that the encoder gives 500 pulses per revolution in one second. The number of pulses received by the counter;

$$\frac{71.61}{60} * 500 =$$
596.75 *Pulses*

Radius	0,4m
Speed	3m/s
Encoder ppr	500
Time [s]	Pulses
1	596,75
2	1193,5
3	1790,25
4	2387
5	2983,75
6	3580,5
7	4177,25
8	4774
9	5370,75
10	5967,5

