1. (Currently Amended) A method for maximum a posteriori (MAP) decoding of an input information sequence based on a first information sequence received through a channel, comprising:

iteratively generating a sequence of one or more decode results, X_i , for i=1, 2, ...n, where n is an integer, and where each X_i is generated by employing X_{i-1} , and X_1 is generated from said first information sequence and from starting with an initial decode result, X_0 ; and

outputting one of adjacent-decode results as a decode of the input-information sequence if the adjacent decode results are ceasing said step of iteratively generating, and outputting last –generated decode results when difference between said last-generated decode results and next-to-last-generated decode results is within a compare threshold.

2. (Currently Amended) A method for maximum a posteriori (MAP) decoding of an input information sequence based on a first information sequence received through a channel, comprising:

iteratively generating a sequence of one or more decode results starting with an initial decode result; and

outputting one of adjacent decode results as a decode of the input information sequence if the adjacent decode results are within a compare threshold. The method of claim 1, wherein the step of iteratively generating comprises:

- a. generating the initial decode result as a first decode result;
- b. generating a second decode result based on the first decode result and a model of the channel;
 - c. comparing the first and second decode results;
 - d. replacing the first decode result with the second decode result; and
- e. repeating b-d if the first and second decode results are not within the compare threshold.

- 3. (Original) The method of claim 2, wherein the generating a second decode result comprises searching for a second information sequence that maximizes a value of an auxiliary function.
- 4. (Original) The method of claim 3, wherein the auxiliary function is based on the expectation maximization (EM) algorithm.
- 5. (Original) The method of claim 4, wherein the model of the channel is a Hidden Markov Model (HMM) having an initial state probability vector $\boldsymbol{\pi}$ and probability density matrix (PDM) of P(X,Y), where $X \in X$, $Y \in Y$ and elements of P(X,Y), $p_{ij}(X,Y) = Pr(j,X,Y \mid i)$, are conditional probability density functions of an information element X of the second information sequence that corresponds to a received element Y of the first information sequence after the HMM transfers from a state i to a state j, the auxiliary function being expressed as:

$$Q(X_1^T, X_{1,p}^T) = \sum_z \Psi(z, X_{1,p}^T, Y_1^T) \log(\Psi(z, X_1^T, Y_1^T)), \text{ where p is a number of}$$

iterations, $\Psi(z, X_1^T, Y_1^T) = \pi_{i_0} \prod_{t=1}^T p_{i_{t-1}i_1}(X_t, Y_t)$, T is a number of information elements in a particular information sequence, z is a HMM state sequence i_0^T , π_{i_0} is the probability of an initial state i_0, X_1^T is the second information sequence, $X_{1,p}^T$ is a second information sequence estimate corresponding to a pth iteration, and Y_1^T is the first information

6. (Original) The method of claim 5, wherein the auxiliary function is expanded to be:

$$Q(X_1^T, X_{1,p}^T) = \sum_{t=1}^T \sum_{i=1}^n \sum_{j=1}^n \ \gamma_{t,ij}(\ X_{1,p}^T) \ log \ (p_{ij}(X_t, \ Y_t)) + C$$

where C does not depend on X_1^T and

sequence.

$$\gamma_{t,ij}(X_{1,p}^{T}) = \alpha_{i}(X_{1,p}^{t-1}, Y_{1}^{t-1})p_{ij}(X_{t,p}, Y_{t})\beta_{j}(X_{t+1,p}^{T}, Y_{t+1}^{T})$$

70170

A

where $\alpha_i(X_{l,p}^t,Y_l^T)$ and $\beta_j(X_{t+l,p}^T,Y_{t+l}^T)$ are the elements of forward and backward probability vectors defined as

$$\alpha(X_1^t, Y_1^t) = \pi \prod_{i=1}^t P(X_i, Y_i)$$
, and $\beta(X_1^T, Y_1^T) = \prod_{j=t}^T P(X_j, Y_j) 1$, π is an

initial probability vector, 1 is the column vector of ones.

7. (Original) The method of claim 6, wherein a source of an encoded sequence is a trellis code modulator (TCM), the TCM receiving a source information sequence I_1^T and outputting X_1^T as an encoded information sequence that is transmitted, the TCM defining $X_t = g_t(S_t, I_t)$ where X_t and I_t are the elements of X_1^T and I_1^T for each time t, respectively, S_t is a state of the TCM at t, and $g_t(.)$ is a function relating X_t , to I_t and S_t , the method comprising:

generating, for iteration p+1, a source information sequence estimate $I_{1,p+1}^T$ that corresponds to a sequence of TCM state transitions that has a longest cumulative distance $L(S_{t-1})$ at t=1 or $L(S_0)$, wherein a distance for each of the TCM state transitions is defined by $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1}))$ for the TCM state transitions at each t for t=1,...,T and the cumulative distance is the sum of $m(\hat{I}_t(S_t))$ for all $t,m(\hat{I}_t(S_t))$ being defined as

 $m(\hat{I}_{t}(S_{t})) = \sum_{i=1}^{n_{c}} \sum_{j=1}^{n_{c}} \gamma_{t,ij}(I_{1,p}^{T}) \log p_{c,ij}(Y_{t} | X_{t}(S_{t})), \text{ for each } t = 1, 2, ..., T, \text{ where}$

$$\begin{split} X_t(S_t) &= g_t(S_t, \ \hat{I}_t \, (S_t)), \, n_c \text{ is a number of states in an HMM of the channel and} \\ p_{c,ij}(Y_t \, \big| \, X_t(S_t)) \text{ are channel conditional probability density functions of } Y_t \text{ when } X_t(S_t) \text{ is} \\ \text{transmitted by the TCM, } I_{1,\,p+1}^T \text{ being set to a sequence of } \hat{I}_t \text{ for all } t. \end{split}$$

8. (Original) The method of claim 7, wherein for each t = 1, 2, ..., T, the method comprises:

generating $m(\hat{I}_t(S_t))$ for each possible state transition of the TCM;

MA

T0181

A

selecting state trajectories that correspond to largest

- $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1}))$ for each state as survivor state trajectories; and selecting $\hat{I}_t(S_t)$ s that correspond to the selected state trajectories as $I_{t,p+1}(S_t)$.
 - 9. (Original) The method of claim 8, further comprising:
 - a. assigning $L(S_T)=0$ for all states at t=T;
- b. generating $m(\hat{I}_t(S_t))$ for all state transitions between states S_t and all possible states S_{t+1} ;
- c. selecting state transitions between the states S_t and S_{t+1} that have a largest $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1})) \text{ and } \hat{I}_{t+1}(S_{t+1}) \text{ that correspond to the selected state}$ transitions;
- d. updating the survivor state trajectories at states S_t by adding the selected state transitions to the corresponding survivor state trajectories at state S_{t+1} ;
 - e. decrementing t by 1;
 - f. repeating b-e until t = 0; and
- g. selecting all the $\hat{I}_t(S_t)$ that correspond to a survivor state trajectory that corresponding to a largest $L(S_t)$ at t=0 as $I_{1,p+1}^T$.
- 10. (Original) The method of claim 6, wherein the channel is modeled as $\mathbf{P}_c(Y \mid X) = \mathbf{P}_c\mathbf{B}_c(Y \mid X)$ where \mathbf{P}_c is a channel state transition probability matrix and $\mathbf{B}_c(Y \mid X)$ is a diagonal matrix of state output probabilities, the method comprising for each t = 1, 2, ..., T:

generating
$$\gamma_{t,i}(I_{1,p}^T) = \alpha_i(Y_1^t \mid I_{1,p}^t)\beta_i(Y_{t+1}^T \mid I_{t+1,p}^T);$$

selecting an $\hat{I}_t(S_t)$ that maximizes $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1}))$, where $m(\hat{I}_t(S_t))$ is defined as

$$\mathcal{N}(\mathcal{G}) \qquad \qquad \mathcal{T} \\ m(\hat{\mathbf{I}}_{t}(\mathbf{S}_{t})) = \sum_{i=1}^{n_{c}} \gamma_{t, i}(\mathbf{I}_{1,p}^{T})\beta_{j}(\mathbf{Y}_{t} \mid \mathbf{X}_{t}(\mathbf{S}_{t})), n_{c} \text{ being a number of states in an HMM of }$$

the channel;

A

selecting state transitions between states S_t and S_{t+1} that corresponds to a largest $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1})); \text{ and }$

forming survivor state trajectories by connecting selected state transitions.

11. (Original) The method of claim 10, further comprising:

selecting $\hat{I}_t(S_t)$ that corresponds to a survivor state trajectory at t=0 that has the largest $L(S_t)$ as $I_{1,p+1}^T$ for each pth iteration;

comparing $I_{1,p}^T$ and $I_{1,p+1}^T$; and

outputting $I_{l,p+l}^T$ as the second decode result if $I_{l,p}^T$ and $I_{l,p+l}^T$ are within the compare threshold.

12. (Original) A maximum a posteriori (MAP) decoder that decodes a transmitted information sequence using a received information sequence received through a channel, comprising:

a memory; and

a controller coupled to the memory, the controller iteratively-generating-a sequence of one or more decode results starting with an initial decode result, and outputting one of adjacent decode results as a decode of the input information sequence if the adjacent decode results are, X_i , for i=1,2,...n, where n is an integer, and where each X_i is generated by employing X_{i-1} , and X_1 is generated from said first information sequence and from an initial decode result, X_0 , and ceasing said step of iteratively generating, and outputting last –generated decode results when difference between said last-generated decode results and next-to-last-generated decode results is within a compare threshold.

13. (Currently Amended) A maximum a posteriori (MAP) decoder that decodes a transmitted information sequence using a received information sequence received through a channel, comprising:

a memory; and

a controller coupled to the memory, the controller iteratively generating a sequence of one or more decode results starting with an initial decode result, and outputting one of adjacent decode results as a decode of the input information sequence if the adjacent decode results are within a compare threshold. The decoder of claim 12, wherein the controller:

- a. generates the initial decode result as a first decode result;
- b. generates a second decode result based on the first decode result and a model of the channel;
 - c. compares the first and second decode results;
 - d. replaces the first decode result with the second decode result; and
- e. repeats b-d until the first and second decode result are not within the compare threshold.
- 14. (Original) The decoder of claim 13, wherein the controller searches for information sequence that maximizes a value of an auxiliary function.
- 15. (Original) The decoder of claim 14, wherein the auxiliary function is based on expectation maximization (EM).
- 16. (Original) The decoder of claim 15, wherein the model of the channel is a Hidden Markov Model (HMM) having an initial state probability vector $\boldsymbol{\pi}$ and probability density matrix (PDM) of P(X,Y), where $X \in X$, $Y \in Y$ and elements of P(X,Y), $p_{ij}(X,Y) = Pr(j,X,Y \mid i)$, are conditional probability density functions of an information element X of the second information sequence that corresponds to a received element Y of the first information sequence after the HMM transfers from a state i to a state j, the auxiliary function being expressed as:

$$(X_{1}^{T}, X_{1,p}^{T}) = \sum_{z} \Psi(z, X_{1,p}^{T}, Y_{1}^{T}) \log(\Psi(z, X_{1}^{T}, Y_{1}^{T})), \text{ where p is a number of }$$

iterations, $\Psi(z, X_1^T, Y_1^T) = \pi_{i_0} \prod_{t=1}^T p_{i_{t-1}i_t}(X_t, Y_t)$, T is a number of information elements

in a particular information sequence, z is a HMM state sequence i_0^T , π_{i_0} is the probability

70210

of an initial state i_0, X_1^T is the second information sequence, $X_{1,p}^T$ is a second information sequence estimate corresponding to a pth iteration, and Y_1^T is the first information sequence.

17. (Original) The decoder of claim 16, wherein the auxiliary function is expanded to be:

$$Q(X_1^T, X_{1,p}^T) = \sum_{t=1}^T \sum_{i=1}^n \sum_{j=1}^n \gamma_{t,ij}(X_{1,p}^T) \log (p_{ij}(X_t, Y_t)) + C$$

where C does not depend on X_1^T and

$$\gamma_{t,ij}(X_{1,p}^T) = \alpha_i(X_{1,p}^{t-1},Y_1^{t-1})p_{ij}(X_{t,p},Y_t)\,\beta_j(X_{t+1,p}^T,Y_{t+1}^T)$$

where $\alpha_i(X_{l,p}^t,Y_l^T)$ and $\beta_j(X_{t+l,p}^T,Y_{t+l}^T)$ are the elements of forward and backward probability vectors defined as $\alpha(X_l^t,Y_l^t) = \pi \prod_{i=1}^t P(X_i,Y_i), \text{ and } \beta(X_{t+l}^T,Y_{t+l}^T) = \prod_{j=t+l}^t P(X_j,Y_j) \mathbf{1}, \pi \text{ is an initial}$

$$\alpha(X_{1}^{t}, Y_{1}^{t}) = \pi \prod_{i=1}^{t} P(X_{i}, Y_{i}), \text{ and } \beta(X_{t+1}^{T}, Y_{t+1}^{T}) = \prod_{j=t+1}^{T} P(X_{j}, Y_{j}) \mathbf{1}, \pi \text{ is an initial}$$

probability vector, 1 is the column vector of ones.

18. (Original) The decoder of claim 17, wherein a source of an encoded sequence is a trellis code modulator (TCM), the TCM receiving a source information sequence I_1^T and outputting X_1^T as an encoded information sequence that is transmitted, the TCM defining $X_t = g_t(S_t, I_t)$ where X_t and I_t are the elements of X_1^T and I_1^T for each time t, respectively, S_t is a state of the TCM at t, and $g_t(.)$ is a function relating X_t , to I_t and S_t , the controller generates, for iteration p+1, an input information sequence estimate $I_{1,p+1}^{T}$ that corresponds to a sequence of TCM state transitions that has a longest cumulative distance $L(S_{t-1})$ at t = 1 or $L(S_0)$, wherein a distance for each of the TCM state transitions is defined by $L(S_{t+1}) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1}))$ for the TCM state transitions at each t for t=1,...,T and the cumulative distance is the sum of $m(\hat{I}_t(S_t))$ for all $t,m(\hat{I}_t(S_t))$ being defined as

16230

$$m(\hat{I}_{t}(S_{t})) = \sum_{i=1}^{n_{c}} \sum_{j=1}^{n_{c}} \gamma_{t,ij}(I_{1,p}^{T}) \log p_{c,ij}(Y_{t} | X_{t}(S_{t})), \text{ for each } t = 1, 2, ..., T, \text{ where}$$

 $X_t(S_t) = g_t(S_t, \ \hat{I}_t(S_t)), \ n_c$ is a number of states in an HMM of the channel and $p_{c,ij}(Y_t \mid X_t(S_t))$ are channel conditional probability density functions of Y_t when $X_t(S_t)$ is transmitted by the TCM, $I_{1,p+1}^T$ being set to a sequence of \hat{I}_t for all t.

- 19. (Original) The decoder of claim 18, wherein for each t = 1, 2, ..., T, the controller generating $m(\hat{I}_t(S_t))$ for each possible state transition of the TCM, selecting state trajectories that correspond to largest $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1}))$ for each state as survivor state trajectories, and selecting $\hat{I}_{t+1}(S_{t+1})$ s that correspond to the selected state trajectories as $I_{t+1,p+1}(S_{t+1})$.
 - 20. (Original) The decoder of claim 19, wherein the controller:
 - a. assigns $L(S_T)=0$ for all states at t=T;
- b. generates $m(\hat{I}_t(S_t))$ for all state transitions between states S_t and all possible states S_{t+1} ;
- c. selects state transitions between the states S_t and S_{t+1} that have a largest $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1})) \text{ and } \hat{I}_{t+1}(S_{t+1}) \text{ that correspond to the selected state}$ transitions;
- d. updates the survivor state trajectories at states S_t by adding the selected state transitions to the corresponding survivor state trajectories at state S_{t+1} ;
 - e. decrements t by 1;
 - f. repeats b-e until t = 0; and
- g. selects all the $\hat{I}_t(S_t)$ that correspond to a survivor state trajectory that corresponding to a largest $L(S_t)$ at t=0 as $I_{1,p+1}^T$.
- 21. (Original) The decoder of claim 20, wherein the channel is modeled as $P_c(Y \mid X) = P_cB_c(Y \mid X)$ where P_c is a channel state transition probability matrix and

10

 $\mathbf{B}_{c}(Y \mid X)$ is a diagonal matrix of state output probabilities, for each t = 1, 2, ..., T, the controller:

generates
$$\gamma_{t,i}(I_{1,p}^T) = \alpha_i(Y_1^t \mid I_{1,p}^t)\beta_i(Y_{t+1}^T \mid I_{t+1,p}^T);$$

selects an $\hat{I}_t(S_t)$ that maximizes $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1}))$, where $m(\hat{I}_t(S_t))$ is defined as

$$m(\hat{I}_{t}(S_{t})) = \sum_{i=1}^{n_{c}} \gamma_{t, i}(I_{1,p}^{T})\beta_{j}(Y_{t} \mid X_{t}(S_{t})), n_{c} \text{ being a number of states in an HMM of the channel;}$$

selects state transitions between states S_t and S_{t+1} that corresponds to a largest $L(S_t) = L(S_{t+1}) + m(\hat{I}_{t+1}(S_{t+1})); \text{ and }$

22. (Original) The decoder of claim 21, wherein the controller selects $\hat{I}_t(S_t)$ that corresponds to a survivor state trajectory at t=0 that has the largest $L(S_t)$ as $I_{l,p+1}^T$ for each pth iteration, compares $I_{l,p}^T$ and $I_{l,p+1}^T$, and outputs $I_{l,p+1}^T$ as the second decode result if $I_{l,p}^T$ and $I_{l,p+1}^T$ are within the compare threshold.

70040