Honest	Effort
0.,00	

5,1,2	d)	χŭ	+ 47	+	× 7
		, -)	,		
	_	- (=)	- L	6.5	

- = (7g) yz + 97
- = $(\overline{\chi}\overline{y})\overline{y}\overline{z}\overline{\chi}\overline{z}$
- = (\hat{x} + \frac{1}{y}) y\frac{7}{2} \frac{7}{2}
- = (x+4) y\(\overline{x}\)\(\ove
- = (\bar{A} + y)(\bar{Y} + \bar{Z}) \bar{X} \bar{Z}
- $=(\overline{x}+y)(\overline{y}+\overline{z})\overline{x}\overline{z}$
- = (ダ+y)(ダ+マ)(ダ+マ)
- $= (\overline{X} + y)(\overline{Y} + \overline{Z})(\overline{X} + \overline{Z})$

5.3.3 d) (x+yz)(x+y+z)

2x + yzx + xy + yzy + xz + yzz 0 + yzx + xy + yzy + xz + yzz 0 + yzx + xy + yyz + xz + yzz 0 + yzx + xy + yz + xz + yzz 0 + yzx + xy + yz + xz + yzz 0 + yzx + xy + yz + xz + yzz yzx + xy + yz + xz + yz yzx + xy + xz + yz yzx + xy + xz + yz yzx + xy + xz + yz

Distributive law complement law commutative law Idempotent law Idempotent law Identity law commutative law commutative law Idempotent law

· · · · · ·	12 Mills Firsting and a day and
5,4,1	b) multiplication and complement
	$\frac{\overline{\chi}\overline{y}z + \chi y\overline{z}}{\overline{\chi}\overline{y}z + \chi y\overline{z}}$
	$-\frac{(xyz+xyz)}{(z-z)}$
	$= (\overline{\overline{\chi}} \overline{\overline{y}} \overline{z})(\overline{\chi} \overline{\overline{y}} \overline{z})$
	Ald Esperand Complement
	Addition and complement
	$= (\overline{\overline{x}}\overline{y}\overline{z} + \overline{x}\underline{y}\overline{z})$ $= (\overline{\overline{x}}\overline{y}\overline{z}) + (\overline{x}\underline{y}\overline{z})$
	$= (\overline{\chi} \underline{y} \underline{z}) + (\underline{\chi} \underline{y} \underline{z})$
	$= (\overline{\overline{\chi}} + \overline{y} + \overline{z}) + (\overline{\chi} + \overline{y} + \overline{z})$
	$= (\overline{\chi} + \overline{y} + \overline{z}) + (\overline{\chi} + \overline{y} + \overline{z})$

	Honest Effort and Feedback
5,4,5	a) we know that $x \to y$ is equivalent to $\bar{x} + y$, and £ addition, complement 3 is functionally complete, i.e. $\xi \to \infty$, complement 3 is also functionally complete.
5,5,5	a) XAI + XAZ + XAZ
	b) (XAI + XAZ) (XAIXAZ) (XAI + XAZ) (XAIXAZ) (XAZ + XAZ) (XAZXAZ)
	() (XAI (XBI) (XAZ (XBZ) (XAS (XBS)
	d) n classes m pair of classes
	2N+2M

