Skills

Power System Analysis

Analysis	Level from 5
Power Flow	5
Optimal Power Flow	5
AC DC load Calc.	5
Harmonics	5
Power Quality	5
Transient Stability	5
Voltage Stability	5
Short Circuit	5
Motor Starting	5
Arc Flash Hazard NFPA 70E 5	
Arc Flash Hazard IEEE	5
Voltage Drop Calc.	5
Reactive Power	5 5 5 5 5 5 5 5 5 5
Generation Interconnection	
Transmission Planning	4.5
Demand Response	4.5
Unit Commitment	4
Generation Retirment	4
Load Forcasting	4
Power Market Analysis	4
Reliability	3.5
Microgrids	3.5
Contingecy Analysis	3.5
EV integration	4.5
NERC Compliance	4
FACTS Devices	5
Renewables Integration	5

tools	Level from 5
PSCAD	5
Simens PSS/E	5
ETAP	5

SKM	5
PowerGEM TARA	4
ASPEN	4
CYME	5
Hitachi GRIDVIEW	4
Simulink	5
Hitachi PROMOD	2.5
GE PSLF	4
PSS CAPE	4
Easypower	5
Mathpower	5

Power System Desing

Docion	Level from 5
Design Drafting	5
Lightning Protection Design Emperical	3
Method	5
Lightning Protection Design Rolling Sphere	5
AC Schematics	5
DC Schematics	5
Wiring Diagrams	5
Conduit Fill Design	5
Bushing Design	5
Insulation Coordination	5
Lighting Desing	5
Panel Front	5
Surge Arrester Design	5
SCADA and Com Design	5
Conduit Plan	5
SCADA Coding	5
AC Transformer Sizing	5
Substation Design	5
Relay Coordination	5
BESS Design	5
Swithyard Design	5
Relay Setting	5
Cable Sizing	5
Battery Charger Sizing	5
Inverter Design	5
Controller Design	5

Control House Design	5
Grounding Design	4.5
NEC Compliance	4
IEC Compliance	4
IEEE Compliance	4
ANSI Compliance	4
Transmission Line Design	3.5
PV System Desing	3.5

Design tool	Level from 5
AutoCAD LT	5
PLS-CADD	4.5
PLS-Pole	3
PLS-Tower	3
Revit	4
Bluebeam	5
Microstation	4
PVSyst	3.5
COMSOL	4
Dialux	4
NX Routing	3
ETABS	3

Software and Data

Task	Level from 5
Pipelining	5
Data Cleansing	5
API/REST API	5
Object Oriented	5
ML	5
Deep Learning	4
Cloud	4
NoSQL	5
ETL	5
Data Warehousing	5
AWS	4
GCP	5
Azure	5
Data Visualizaton	5

Test Code	5
Web Scraping	5

Language	Leve from 5
Python	5
Shell Scripting/CLI	5
Git	5
CSS3	4
GITHUB	5
VS CODE	5
REACT	4.5
NODEJS	4.5
NGINX	4.5
POSTMARK	4
C++	5
VBA	5
.NET	3
HTML5	5
SQL	5
Javascript	5
MATLAB	5
Apache Spark	4

Full list of Projects

Title	Description	Skill Set Involved	Title
Panel Fabrication,	The drawings are	AutoCAD LT	Panel Fabrication,
AC and DC	engineered and		AC and DC
elementaries, and	created (drafted)		elementaries, and
wiring	using AutoCAD LT		wiring
interconnection	_		interconnection
Drawing prepration			Drawing prepration
for a new substation			for a new substation
Power Flow and	Power Flow Report	Python, ETAP,	Power Flow and
Arch Flash Full	Preparation of a Full	Matplotlib, Git,	Arch Flash Full
Report using ETAP	Power System of a	Github, VS Code	Report using ETAP
	Utility Client, with		
	automatic Word File		
	creation with all		
	warnings, tables,		
	and figures for 60		
	Scenarios and Load		
	Categories, Data		
	Visualization of		
	Relay DATA as		
	Appendix		
Substation P&C and	A remote end Relay	AutoCAD,	Substation P&C and
Physical: Full Line	change, another	Microstation,	Physical: Full Line
trap removal and	relay configuration	Bluebeam	trap removal and
line relay change in	change, Line change		line relay change in
all Physical and P&C	and line tuner		all Physical and P&C
Drawings package	removal is polulated into more than 600		Drawings package
	physical and P&C drawings of a		
	substation. Whole		
	schematics, and		
	wiring SCADA and		
	panels change		
	performed		
	accordingly		
Three phase	A MATLAB code is	MATLAB-CVX-	Three phase
unbalanced LV	created to model the	MATHPOWER	unbalanced LV
system optimal	three-phase	Visualization -00P -	system optimal
power Flow with	unbalanced system	Latex	power Flow with
PVs and Evs with	and then perform		PVs and Evs with
Power Quality	Optimal Power Flow		Power Quality
improvement	with several existing		improvement
features	and proposed		features
	engines. Evs and		
	PVs are integrated		

Digital Implementation of Protection Relays Logic and phase recognittion with MATLAB and Novel Spiral Data Driven Distance Relay Method	as controllable objects into the model. Voltage imbalance (A power Quality measure) is implemented in the optimization as a constraint. Several Scenarios were tested and Data Visualization about the Optimal Power Flow is created. An academic Paper is created upon this First Phase detector algorithms are modelled in MATLAB to extract the magnitude and angle of a signal during fault. On this basis relay protection logics such as Over current, transformer differential, and distance with Power Swing Blocking is Modelled. Finally a new method is proposed to improve performance of relay during power swing in the marginal faults using real-time	MATLAB - REGRESSION - PSCAD	Digital Implementation of Protection Relays Logic and phase recognittion with MATLAB and Novel Spiral Data Driven Distance Relay Method
Overhead Transmission Line	spiral regression Mechanical and	PLS-CADD, Office	Overhead Transmission Line
Transmission Line Design	Electrical Calculation, Specification, Drawing, installation guideline, grid code compliance,	Tools+C6	Transmission Line Design

Physical Equipment: Transformer Bushing Design	Technical Report prepared and presented A Bushing is Modelled in COMSOL and its shape is optimized to reduce electric	COMSOL	Physical Equipment: Transformer Bushing Design
Data pipeline: Automatic	field tension on the sharp edges Having information about a Power	CYME - Access Database - Python	Data pipeline: Automatic
Migration of Excel formatted power system Data into CYME	System in Excel worksheets created manually by the client, I managed to figure out the relation of the CYME Database and then created a code to format and convert their data into CYME Database without manually modeling the system in CYME		Migration of Excel formatted power system Data into CYME
Power System Dynamics: AVR, Governor, and PSS Design for a Generator	Tradittional Generator is modeled in detailed in MATLAB simulink. A test scenario of short circuit fualt is designed to test the Genearator. Then using MATLAB SISO Tool AVR, Governer, and PSS controllers are designed to control Generators power voltage and improve stability of the power system	SIMULINK - SISO TOOL	Power System Dynamics: AVR, Governor, and PSS Design for a Generator
Full Microgrid Modeling: DC and AC	Two Microgrids, One AC and one DC are created. Several severe transient and	MATLAB PLEX PSCAD SISO TOOL PID	Full Microgrid Modeling: DC and AC

	T		<u></u>
	power quality		
	phenomena is		
	implemented as		
	scenarios (Model		
	resiliency test). First		
	Buck and Boost		
	inverters to convert		
	DC to AC with L and		
	LCL filters are		
	designed. Then PID		
	and PR controllers		
	are designed using		
	SISO tool and PID		
	tuner for the		
	inverters. Then		
	these inverters are		
	connected with		
	several loads and		
	phenomena are		
	tested. Finally a		
	tritery control		
	(Droop and average		
	power Sharing) is		
	desinged to		
	coordinate and		
	stabilze the		
	inverters as a whole		
	in the Islanded		
	Microgrid		
An automated	Integrates the To-do	python, Icalendar,	An automated
personal scheduling	list into Calendar	VBA, and Shell	personal scheduling
assistant: To Do	format and spreads	Scripting, Datetime	assistant: To Do
items integrated	the items into the	Library - Git - Github	items integrated
into Icalendar	schedule based on	Library die dienab	into Icalendar
format and a task	item length,		format and a task
status dashboard	deadlines, conflicts,		status dashboard
Status dasiibbai d	types, and priorities.		status dasiibbai d
	VBA to extract a		
	table of figures into		
	CSV and run a bat		
	file in MS Word		
Power System Blog	Another Website	REACT-NODEJS-	Power System Blog
web application	was created using	MongoDB-GCP-	web application
	_	Postmark-YAML	
using React nodeJS Postmarks and GCP	React Technology	rusuiiai K-I AML	using React nodeJS Postmarks and GCP
r osumai ks and GCP	and NodeJS		FUSUIIAI KS AIIU GCP
	backend. Hosted by GCP cloud		
Short-Circuit based		C L L DCC /E	Short-Circuit based
	A software native	C++, PSS/E,	
DG placement tool	script is developed	Digsilent, DPL	DG placement tool
for MV Networks	in C++ to perform		for MV Networks

	short circuit study in select buses and export results for each study and automaticly testing the results to generate warnings to aid the placement of new Distributed Generation in the system		
Motor Starting Study of cold start Scenario in Tabriz Power Plant	Tabriz power Generation Plant with internal Loads is modelled and motor starting studies are performed to determine the resiliency of the system in Black Start	PSS/E - Cable Sizing -Transient Modeling	Motor Starting Study of cold start Scenario in Tabriz Power Plant
Substation Calculations: P&C and Physical	AC Station Service Transformer Sizing/ Battery and Battery Charger Sizing, Voltage drop and Raceway Fill Calculations, Lighting design using IEEE Rolling Sphere and emperical methods	Microsoft Excel BlueBeam ProjectWise	Substation Calculations: P&C and Physical
Substation Physical: QC/QA on the full Physical IFR Drawing Package	Below grade and above grade cable trench and raceway, grounding, and section elevations and detail drawings, plan layouts and lighting equipment are reveiwed for IFC submittal	AutoCAD, Microstation, Bluebeam	Substation Physical: QC/QA on the full Physical IFR Drawing Package
Power Flow and Arc Flash Report QA/QC of a Hyperloop Power System	Reviewed and Commented on the ETAP Arch Flash and Power Flow Reports and	ETAP	Power Flow and Arc Flash Report QA/QC of a Hyperloop Power System

			<u> </u>
	Conceptual Design		
	proposed for		
	HyperloopTT		
Complete Design of	Instrumentation &	SKM - CYME	Complete Design of
a distribution	Distribution System		a distribution
system	Design Cable Sizing,		system
	Load Estimation,		
	Transformer		
	Selection, Relay		
	Selection, and		
	coordination in		
	PSS/E Grid Code		
	Compliance		
	assessment,		
	Grounding Design,		
	Maneuver points,		
	radial topology		
	design Technical		
	reports are		
	presented, including		
	voltage profiles,		
	load statistics, and		
	planning comment		
	F - 8		
Inverter Small	Inverter control and	MATLAB - Symbolic	Inverter Small
Signal Model: A	operation is	Functions - Text	Signal Model: A
detail Model using	modeled using	manipulation	detail Model using
computational	linerization and full	r	computational
approach	phsical model in		approach
Tr ···	matlab. 16		FF
	Equations were		
	solved		
	parametrically in		
	MATLAB and an		
	explicit equation is		
	derived as an		
	accurate linear		
	inverter small signal		
	model		
Ivnerter based	MATLAB SIMULINK	MATLAB - Callback	Ivnerter based
system protection	+ MATLAB coding is	functions	system protection
modeling	used to implement	14110410110	modeling
modeling	overcurrent and		modeling
	distance relays logic		
	into MATLAB		
	simulink to be used		
	by other		
	researchers in their		
	studies		
	Studies		

DC to DC Inverter and Controller Desing	Another Project to design a buck-boost inverter and test scenarios this time modelled in MATLAB SIMULINK with SISO tool for PI controller desing	MATLAB PLEX PSCAD SISO TOOL PID LATEX VISIO	DC to DC Inverter and Controller Desing
Domestic and Industrial Electrical Design	For an industrial System: Lighting Design using Dialux, AC load, cable sizing, and power factor correction calculations. Recepticles and Lighting Circuits and drawings are created	Autocad, Revit, Dialux	Domestic and Industrial Electrical Design
IEEE 18 Bus: Line Outage Contingency Study of an HV Network	PSS/E and DigSilent are used to perform load flow studies in contingency scenarios of N-1 line outages	PSS/E, Digsilent	IEEE 18 Bus: Line Outage Contingency Study of an HV Network
MV system total loss calculation with Load Imbalance Effect	A software native script is developed in C++ to calculate loss of all system in unbalanced conditions and compare the results to figure out trend between rise of imbalance and the system loss	C++ PSS/E	MV system total loss calculation with Load Imbalance Effect