Image style Transfer Using Convolutional Neural Networks

統計碩一 翁婉庭

内容

- ➤ 目標: 圖像的風格轉換(style transfer)
- ➤ 問題: 如何提取圖像的內容特徵(content feature) 及風格特徵(style feature)

→ CNN方法

> 風格轉換的模型架構:

→19-layer VGG-network

Image representation

□方法:CNN

CNN特徵提取

特徵重建

Content Reconstructions:

- → Lower layers perfect
- → (點線特徵)

Style Reconstructions:

- → Higher layers perfect
- → (花紋特徵)

Image representation

□ Content representation:

$$L_{content}(ec{p},ec{x},l) = rac{1}{2}\sum (F_{ij}^l - P_{ij}^l)^2$$

- →對 求 採用梯度下降法來尋找符合原始圖像特徵的另外的圖像
- □Style representation:

Layer I 的loss:

$$E_l = rac{1}{4N_l^2M_l^2} \sum_{i,j} (G_{ij}^l - A_{ij}^l)^2$$

$$L_{style}(ec{a},ec{x}) = \sum_{l=0}^L \omega_l E_l$$

 \vec{p} : 原始圖像

 \vec{x} : 初始化白噪音圖像(生成圖像)

 p^l : 原圖像內容特徵

 F^l :白噪音圖像內容特徵

ā:目標風格原圖像

x: 初始化白噪音圖像(生成圖像)

 A^l :目標風格特徵

 G^l :白噪音圖像風格特徵

求相同層內各個特徵圖之間的相關程度:

$$G_{ij}^l = \sum_k F_{ik}^l F_{jk}^l$$

→對 求 採用梯度下降法來尋找符合目標風格特徵的另外的圖像

Style transfer

□模型架構: 19-layer VGG-network

16層convolutional 5層pooling layers

模型是用imagenet資料集訓 練的vgg19pre-trained model

step1:分別計算存儲兩特徵

step2:初始化一個隨機白噪聲,計算兩特徵

step3:計算兩種特徵的loss

step4:反向傳播loss,更新優化白噪聲

step5:重複2~4, 直到loss收斂

訓練完模型之後左邊取五層做style transfer conv1_1 conv2_1 conv3_1 conv4_1 conv5_1

設定:

Pooling:2*2

Convolution:3*3

圖片原始大小:512*512

原圖(待轉換)

風格圖像

Result

圖片原始大小:512*512 迭代500次

轉換後的圖

原圖(待轉換)

風格圖像

Result

轉換後的圖

