Practice Exam Questions Week 3, Linear Algebra

1. Consider the following matrix A:

$$A = \left[\begin{array}{rrr} 3 & -6 & 2 \\ 1 & -2 & 1 \\ -2 & 4 & -2 \end{array} \right].$$

- a. Are the columns of A linearly independent?
- b. Is A invertible? (Hint: use the answer from a.)
- 2. Consider the following transformation

- a. Construct the matrix which would give this transformation.
- b. Give the coordinates of point P.
- 3. Consider the following matrix A:

$$A = \left[\begin{array}{rrr} 3 & 2 & -1 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{array} \right].$$

- a. Compute the inverse of A.
- b. Let $\mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$ and find a solution to the linear system of equations $A\mathbf{x} = \mathbf{b}$.
- c. Give an example of an alternative bottom row for A which would make it singular.
- 4. Compute the determinant of the following matrix:

$$\left[\begin{array}{cccc} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{array}\right].$$

- 5. True or false? If the given statement is true, briefly explain why. If it is false, give a counterexample.
 - a. If S is a 3×3 matrix such that $S^2 = 0$, then S^{-1} does not exist.

- b. If the equation $A\mathbf{x} = \mathbf{b}$ is consistent, and the variable x_3 is a free variable in the reduced echelon form of A, then there is a solution with $x_3 = 4$.
- c. If you take two vectors in \mathbb{R}^3 they will never be linearly dependent.
- d. If F is (2×2) with $\det(F) = 0$ and g is a (2×1) vector, then the matrix equation $F\mathbf{x} = \mathbf{g}$ is always inconsistent.
- e. If G is a (3×3) matrix for which $G^2 = I$, then det(G) = 1.
- f. If $det(B) \neq 0$, then B^T is invertible.
- g. If A is a (3×4) matrix, then the transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^3 onto \mathbb{R}^4 .
- h. An elementary row operation on A does not change the determinant of A.