МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

МЕТОДИЧНІ ВКАЗІВКИ до лабораторної роботи № 10 на тему:

ЧИСЕЛЬНІ МЕТОДИ ІНТЕГРУВАННЯ

Мета роботи: ознайомлення на практиці з методами чисельного інтегрування.

11.1. Чисельне інтегрування

Багато наукових, технічних і практичних задач зводяться до інтегрування функцій. Зокрема, обчислення площ поверхонь, об'ємів тіл, моментів інерції і т.п. Нагадаємо, що геометричний зміст найпростішого означеного інтеграла

$$I = \int_{a}^{b} f(x)dx, \qquad (11.1)$$

від додатньо визначеної неперервної функції $f(x) \ge 0$ полягає у тому, що числове значення величини I — це площа, обмежена кривою y = f(x), віссю абсцис та прямими x = a, x = b.

Рис. 11.1. Геометричний зміст означеного інтеграла

У випадках, коли підінтегральну функцію задано аналітично, причому вона ϵ інтегровною, означений інтеграл обчислюють безпосередньо за допомогою формули Ньютона-Лейбніца. Ця формула поляга ϵ в тому, що означений інтеграл дорівню ϵ приросту первісної F(x) на відрізку інтегрування

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a).$$
 (11.2)

Однак на практиці цією формулою не завжди можна скористатися через дві основні причини:

- 1) функція f(x) не ϵ інтегровною, тобто її первісну F(x) не можна зобразити елементарними функціями;
- 2) значення функції f(x) є відомим тільки на множині скінченної кількості точок x_i ($i=\overline{0,n}$), тобто функцію задано у вигляді таблиці.

У цьому випадку застосовують методи чисельного інтегрування, які грунтуються на інтерполюванні підінтегральної функції за допомогою інтерполяційних поліномів. Така інтерполяція дає змогу наближено замінити означений інтеграл скінченною сумою

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} \alpha_{i} y_{i}, \qquad (11.3)$$

де y_i — значення підінтегральної функції у вузлах інтерполяції; α_i — числові коефіцієнти.

Співвідношення (11.3) називають *квадратурною формулою*, а його праву частину — *квадратурною сумою*. У залежності від способу її обчислення існують різні методи чисельного інтегрування (квадратурні формули) — метод прямокутників, трапецій, парабол (Сімпсона) та ін.

Чисельне інтегрування ґрунтується на тому, що відрізок інтегрування [a,b] розбивають на n менших відрізків $[x_{i-1},x_i]$, кожен з яких є основою плоскої геометричної фігури, площу S_i якої знаходять наближено, а значення інтегралу I визначають як суму площ S_i $(i=\overline{0,n})$, тобто

$$I = \sum_{i=0}^{n} S_i \,, \tag{11.4}$$

де S_i — наближене значення площі елементарної криволінійної трапеції, побудованої на відрізку $\left[x_{i-1},x_i\right]$.

Похибка чисельного інтегрування залежить від кроку розбиття. Зменшуючи цей крок, отримують точніші результати. Збільшити кількість точок не завжди можливо. Якщо функцію задано таблично, то обмежуються даною кількістю точок.

11.2. Метод прямокутників

Найпростішим методом наближеного обчислення інтеграла є метод прямокутників, суть якого зводиться до знаходження означеного інтеграла як суми площ n прямокутників висотою $f(x_i)$ та основою $h = \Delta x_i = x_{i+1} - x_i$, отриманих шляхом розбиття відрізка інтегрування [a,b] на n рівних частин.

Розбиття на прямокутники виконують зліва направо або справа наліво. При цьому висотою кожного елементарного прямокутника буде значення функції y = f(x) у крайній лівій (рис. 11.1, а) або крайній правій точці (рис. 11.1, б) відповідно.

Рис. 11.1. Геометрична інтерпретація методу лівих (а) та правих (б) прямокутників

Для першого випадку отримуємо формулу *лівих прямокутників*

$$I_{n} = \int_{a}^{b} f(x)dx \approx h\left(f(x_{0}) + f(x_{1}) + \dots + f(x_{n-1})\right) = h\sum_{i=0}^{n-1} f(x_{i}),$$
(11.5)

а для другого - формулу правих прямокутників

$$I_{np} = \int_{a}^{b} f(x)dx \approx h\left(f(x_1) + f(x_2) + \dots + f(x_n)\right) = h\sum_{i=1}^{n} f(x_i).$$
 (11.6)

Тут крок інтегрування $h = \frac{b-a}{n}$. Якщо функція f(x) монотонно зростає на відрізку [a,b], то із використанням формул лівих і правих прямокутників отримують наближене значення інтеграла з недостачею та з надлишком відповідно.

На практиці застосовують точнішу розрахункову формулу *середніх (центральних) прямокутників*, у результаті чого отримують точніше значення інтеграла

$$I_{cep} = \int_{a}^{b} f(x)dx \approx h \left(f\left(x_{0} + \frac{h}{2}\right) + f\left(x_{1} + \frac{h}{2}\right) + \dots + f\left(x_{n-1} + \frac{h}{2}\right) \right) =$$

$$= h \sum_{i=0}^{n-1} f\left(x_{i} + \frac{h}{2}\right).$$
(11.7)

У цій формулі враховано значення функції в середніх точках $x_i + \frac{h}{2}$, $(i = \overline{1,n})$ елементарних відрізків.

Рис. 11.2. Геометрична інтерпретація методу середніх прямокутників

Зауважимо, що формули прямокутників ґрунтуються на наближенні функції f(x) кусково сталою функцією.

Похибку обчислення інтеграла за методом прямокутників визначають за формулою

$$R(f) = \frac{f''(\xi)}{24} (b - a)h^2, \tag{11.8}$$

де f''(x) - похідна другого порядку функції f(x), $\xi \in [a,b]$.

11.3. Метод трапецій

Метод трапецій полягає в тому, що відрізок інтегрування [a,b] розбивають на n рівних відрізків, а криву, описану підінтегральну функцією f(x), замінюють на кожному із цих відрізків кусково-лінійною функцією $\varphi(x)$, отриманою стягуванням хорд, які проходять через точки $(x_{i-1}, f(x_{i-1}))$ та $(x_i, f(x_i))$ $(i = \overline{1,n})$.

Значення інтеграла знаходять як суму площ S_i $(i=\overline{0,n})$ прямокутних трапецій (рис.11.3) з висотою $h=\frac{b-a}{n}$.

Рисунок 11.3. Геометрична інтерпретація методу трапецій

Площу кожної i -ої елементарної трапеції визначають за формулою

$$S_{i} = h \frac{f(x_{i}) + f(x_{i+1})}{2}.$$
 (11.9)

Відповідно на всьому відрізку інтегрування [a,b] площу складеної фігури визначають сумою площ усіх елементарних трапецій. У результаті отримують таку формулу

$$I_{mp} = \int_{a}^{b} f(x)dx \approx h\left(\frac{f(x_{0}) + f(x_{1})}{2} + \frac{f(x_{1}) + f(x_{2})}{2} + \dots + \frac{f(x_{n-1}) + f(x_{n})}{2}\right) = h\sum_{i=0}^{n-1} \frac{f(x_{i}) + f(x_{i+1})}{2}.$$

Оскільки в наведеній формулі під знаком суми величини $f(x_i)$, $(i=\overline{1,n-1})$ зустрічаються двічі, то перепишемо її у вигляді

$$I_{mp} = \int_{a}^{b} f(x)dx \approx h\left(\frac{f(x_{0})}{2} + f(x_{1}) + f(x_{2}) + \dots + f(x_{n-1}) + \frac{f(x_{n})}{2}\right) =$$

$$= h\left(\frac{f(x_{0}) + f(x_{n})}{2} + \sum_{i=0}^{n-1} f(x_{i})\right).$$
(11.10)

Похибку обчислення інтеграла з використанням формули трапецій визначають за формулою

$$R(f) = -\frac{f''(\xi)}{12}(b-a)h^2. \tag{11.11}$$

Тут $\xi \in [a,b]$, f''(x) - похідна другого порядку функції f(x).

11.4. Метод Сімпсона

Даний метод полягає в тому, що криву, описану підінтегральною функцією f(x), на елементарних відрізках заміняють параболою.

Поділимо відрізок інтегрування [a,b] на парну кількість n рівних частин з кроком $h=\frac{b-a}{n}$. На кожному елементарному відрізку $[x_0,x_2], [x_2,x_4], \ldots, [x_{i-1},x_{i+1}], \ldots, [x_{n-2},x_n]$ підінтегральну функцію f(x) замінимо інтерполяційним поліномом другого степеня (квадратичною параболою). Тоді обчислення означеного інтеграла зводиться до обчислення суми площ S_i , $(i=\overline{1,n})$ криволінійних трапецій (рис. 11.4).

Рисунки 11.4 Геометрична інтерпретація методу Сімпсона

Площу S_i кожної елементарної криволінійної трапеції визначають за формулою Сімпсона

$$S_{i} = \frac{h}{3} \left(f(x_{i}) + 4 f(x_{i+1}) + f(x_{i+2}) \right).$$
 (11.12)

Послідовно обчислюємо за формулою (11.12) площі n криволінійних трапецій S_i $(i=\overline{1,n}\,)$

$$S_1 = \int_{x_0}^{x_2} f(x) dx = \frac{h}{3} \left(f(x_0) + 4 f(x_1) + f(x_2) \right),$$

$$S_2 = \int_{x_2}^{x_4} f(x) dx \approx \frac{h}{3} \left(f(x_2) + 4 f(x_3) + f(x_4) \right), \tag{11.13}$$

...

$$S_n = \int_{x_{2n-2}}^{x_{2n}} f(x) dx \approx \frac{h}{3} \left(f(x_{2n-2}) + 4 f(x_{2n-1}) + f(x_{2n}) \right).$$

Знайдемо суму площ всіх криволінійних трапецій.

$$\sum_{i=1}^{n} S_{i} = \frac{h}{3} \left(f(x_{0}) + f(x_{2n}) + 4(f(x_{1}) + \dots + f(x_{2n-1})) + 2(f(x_{2}) + \dots + f(x_{2n-2})) \right).$$

Тоді розрахункова формула методу Сімпсона набуде такого вигляду

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left(f(x_0) + f(x_{2n}) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) \right)$$
(11.14)

Для визначення похибки обчислення інтеграла за формулою (11.14) використовують нерівність:

$$R(f) = -\frac{(b-a)^5 M_4}{180n^4},\tag{11.15}$$

де $M_4 = \max_{a \le x \le b} \left| f^{IV}(x) \right| - \frac{(b-a)^5}{180n^4}$, $f^{IV}(x)$ - похідна четвертого порядку функції y = f(x).

11.5. Вибір кроку інтегрування

Дана задача полягає у виборі кроку h, що забезпечує задану точність ε обчислення інтеграла за вибраною формулою чисельного інтегрування.

Відомі два підходи для розв'язування даної задачі:

- 1) вибір кроку за теоретичними оцінками похибок;
- 2) за непрямими схемами (емпіричними оцінками).

Вибір кроку за теоретичними оцінками похибок.

Нехай потрібно обчислити інтеграл з точністю ε . Тоді, використовуючи формулу для R, вибирають крок так, щоб виконувалась нерівність

$$|R| < \varepsilon/2. \tag{11.16}$$

Враховується також число знаків після коми, щоб похибка заокруглення не перевищувала величину $\varepsilon/2$.

Вибір кроку за емпіричним оцінками. У зв'язку з тим, що визначення максимального значення за абсолютною величиною k-ої похідної підінтегральної функції приводить до громіздких обчислень, то на практиці вдаються до штучних підходів досягнення потрібної точності. А саме, означений інтеграл обчислюють за допомогою будь-якої квадратурної формули двічі з кроком h і h/2, що подвоює кількість розбиттів заданого відрізка n. А далі поступають таким чином:

якщо
$$\left|I_{n}-I_{2n}\right| , то $I=I_{2n}$; якщо $\left|I_{n}-I_{2n}\right|>arepsilon$, то вибирають крок $h/4$; якщо $\left|I_{2n}-I_{4n}\right| , то $I=I_{4n}$.
$$(11.17)$$$$$

За початковий крок h можна вибрати $h = \sqrt[m]{\varepsilon}$, де m = 2 для формул прямокутників і трапецій, m = 4 - для формули Сімпсона.

На практиці для підвищення точності чисельного інтегрування широко використовують *схему Ейткена*: обчислення проводять три рази з кроками h_1 , h_2 , h_3 , зберігаючи при цьому виконання співвідношення

$$\frac{h_2}{h_1} = \frac{h_3}{h_2} = q.$$

Отримують три значення $I_1,\ I_2,\ I_3$ і уточнюють за емпіричною формулою

$$I = I_1 - \frac{(I_1 - I_2)^2}{I_1 - 2I_2 + I_3}$$
 (11.18)

остаточне значення інтеграла.

11.6. Приклади розв'язування задач

Приклад 6.1. Обчислити інтеграл $I = \int_{1.5}^{2.3} \sqrt{0.3x + 1.2} dx$ за формулами лівих, правих та середніх прямокутників для n=10.

Розв'язання. Для обчислення інтеграла методом прямокутників розіб'ємо відрізок інтегрування [1,5;2,3] на 10 рівних частин з кроком $h=\frac{2,3-1,5}{10}=0,08.$

Складемо таблицю значень підінтегральної функції в точках поділу відрізка.

Таблиця 11.1

i	x_i	\mathcal{Y}_i
0	1.5	1.2845
1	1.58	1.2938
2	1.66	1.3031
3	1.74	1.3122
4	1.82	1.3214
5	1.90	1.3304
6	1.98	1.3394
7	2.06	1.3483
8	2.14	1.3572
9	2.22	1.3660
10	2.30	1.3748

Отже, за формулою лівих прямокутників

$$I = \int_{1.5}^{2.3} \sqrt{0.3x + 1.2} dx \approx 0.08(1.2845 + 1.2938 + 1.3031 + 1.3122 + 1.3214 + 1.3304 + 1.3394 + 1.3483 + 1.3572 + 1.3660) \approx 1.0605.$$

За формулою правих прямокутників:

$$I = \int_{1.5}^{2.3} \sqrt{0.3x + 1.2} dx \approx 0.08(1.2938 + 1.3031 + 1.3122 + 1.3214 + 1.3304 + 1.3394 + 1.3483 + 1.3572 + 1.3660 + 1.3748) \approx 1.0677.$$

Складемо таблицю значень підінтегральної функції в середніх точках відрізків поділу.

Таблиця 11.2

i	x_i	$y_i = f(x_i + \frac{h}{2})$
0	1.54	1.2892
1	1.62	1.2985
2	1.70	1.3077
3	1.78	1.3168
4	1.86	1.3259
5	1.94	1.3349
6	2.02	1.3439
7	2.10	1.3528
8	2.18	1.3616
9	2.26	1.3704

За формулою середніх прямокутників:

$$I = \int_{1.5}^{2.3} \sqrt{0.3x + 1.2} dx \approx 0.08(1.2892 + 1.2985 + 1.3077 + 1.3168 + 1.3259 + 1.3349 + 1.3439 + 1.3528 + 1.3616 + 1.3704) \approx 1.0641.$$

Приклад 6.2. Обчислити інтеграл $I = \int\limits_0^1 \sqrt{1+x^2} dx$ за формулою трапецій для $n{=}10.$

Розв'язання. Для обчислення інтеграла методом прямокутників розіб'ємо

відрізок інтегрування [0;1] на 10 рівних частин з кроком $h=\frac{1-0}{10}=0,1.$ Складемо таблицю значень підінтегральної функції в точках поділу відрізка.

Таблиця 11.3

i	x_i	\mathcal{Y}_i
0	0	1
1	0.1	1.005
2	0.2	1.0198
3	0.3	1.044
4	0.4	1.077
5	0.5	1.118
6	0.6	1.1662
7	0.7	1.2207
8	0.8	1.2806
9	0.9	1.3454
10	1	1.4142

Отже, за формулою трапецій:

$$I = \int_{0}^{1} \sqrt{1 + x^{2}} dx \approx 0.1(0.5 + 1.005 + 1.098 + 1.044 + 1.077 + 1.118 + 1.1662 + 1.2207 + 1.2806 + 1.3454 + 0.7071) \approx 1.14838.$$

Приклад 6.3. Обчислити інтеграл $\int_{-2}^{8} \sqrt{x^3 + 16} dx$ за формулою Сімпсона для n=10.

Розв'язання. Для обчислення інтеграла методом прямокутників розіб'ємо

відрізок інтегрування [-2;8] на 10 рівних частин з кроком $h = \frac{8 - (-2)}{10} = 1$. Складемо таблицю значень підінтегральної функції в точках поділу відрізка.

Таблиця 11.4

i	x_i	y_i
0	-2	2.828
1	-1	3.873
2	0	4
3	1	4.123
4	2	4.899
5	3	6.557
6	4	8.944
7	5	11.87
8	6	15.23
9	7	18.94
10	8	22.97

$$\int_{-2}^{8} \sqrt{x^3 + 16} dx \approx \frac{8 - (-2)}{6 \cdot 5} [2.828 + 22.978 + 2[4 + 4.899 + 8.944 + 15.232] + 4[3.873 + 4.123 + 6.557 + 11.874 + 18.947]] = 91.151.$$

Приклад 6.4. За допомогою формули Сімпсона (n=1) обчислити крок для знаходження інтеграла $I = \int_{\pi/4}^{\pi/2} \frac{\sin x}{x} dx$ з точністю $\varepsilon = 10^{-3}$.

Розв'язання. Виберемо крок h за теоретичною оцінкою похибок.

$$R(f) = -\frac{f^{IV}(\xi)}{180}h^4(b-a); \xi \in [a,b],$$
 тобто $\xi \in [\pi/4, \pi/2].$

Згідно (11.15) отримаємо:

$$\frac{h^4(b-a)}{180} \max_{[a,b]} |f^{IV}(x)| < 0.5 \cdot 10^{-3}.$$

Знайдемо четверту похідну $f^{IV}(x)$ функції f(x)

$$f^{IV}(x) = \frac{\sin x}{x} + 4\frac{\cos x}{x^2} - 12\frac{\sin x}{x^3} - 24\frac{\cos x}{x^4} + 24\frac{\sin x}{x^5}.$$

Оцінимо $|f^{IV}(x)|$ на відрізку $[\pi/4, \pi/2]$. Величини $\frac{\sin x}{x} \left(1 - \frac{12}{x^2} + \frac{24}{x^4}\right)$ та

 $\frac{4\cos x}{x^2} \left(\frac{6}{x^2} - 1\right)$, як функції, є додатними та спадаючими і досягають своїх

максимальних значень в точці $x = \pi/4$. Тому

$$|f^{(IV)}(x)| \le \frac{\sin x}{x} \left(1 - \frac{12}{x^2} + \frac{24}{x^4}\right) + \frac{4\cos x}{x^2} \left(\frac{6}{x^2} - 1\right) < 81.$$

Таким чином,

$$R \le \frac{h^4 \cdot \pi/4}{180} \cdot 81 < 0.5 \cdot 10^{-3}; \ h^4 < 14 \cdot 10^{-4}; \ h \le 0.19.$$

Варіанти завдань

Скласти програму чисельного інтегрування у відповідності до варіанту:

- 1) методом лівих, правих та середніх прямокутників;
- 2) методом трапецій;
- 3) методом Сімпсона.

1.
$$\int_{0}^{3} \sqrt{x} \sin^{2} \frac{\pi x}{3} dx;$$
 2.
$$\int_{0}^{4} \frac{1 + 2x}{\ln^{2}(2 + x^{2})} dx;$$

3.
$$\int_{0}^{2} \frac{\ln(1+x)}{1+x+3x^{2}} dx;$$

12.
$$\int_{2}^{10} \exp\left(\frac{1+\sqrt[3]{x}}{1-\sqrt[3]{x}}\right) dx$$
;

4.
$$\int_{0}^{2} \frac{shx}{1 - 2x + 3x^{2}} dx;$$

13.
$$\int_{0}^{4} \frac{sh x + \sin x/2}{\lg(1-x)} dx;$$

5.
$$\int_{0}^{2} \ln(1+|1-5x^{2}+3x^{5}|) dx;$$

14.
$$\int_{0}^{6} x^{3} \exp(x/3) ch x dx$$
;

6.
$$\int_{1}^{5} \frac{chx + 0.3\sin x}{\lg(1+x)} dx;$$

$$15. \int_{0}^{2} \frac{\ln(1-x)}{1+\cos x} \, dx;$$

7.
$$\int_{0}^{6} x^{3/2} \exp(-x^{2}/4) dx;$$

$$16. \int_{1}^{5} \sqrt{x^3} \sin(\frac{\pi x}{2}) dx;$$

8.
$$\int_{0}^{\ln 2} \sqrt[3]{thx} \ dx$$
;

17.
$$\int_{11}^{3} \sqrt{x} \, ch^2 \, x \, dx$$
;

9.
$$\int_{-2}^{2} \ln^2(1+|x|) dx$$
;

$$18. \int_{0}^{4} \frac{sh \, x + 2}{\ln^{2}(2 + x^{2})} \, dx;$$

10.
$$\int_{0}^{3} \sqrt{x} \ln(1+\sqrt[3]{x^2}) dx$$
;

19.
$$\int_{0}^{2} \ln(1+|1-x^2-3x^3|) dx$$
;

11.
$$\int_{0}^{4} (1+th x)^{-2.3} dx$$
;

$$20. \int_{1}^{5} \frac{sh x^{2} + 2 \sin x}{\lg(x-1)} dx.$$

Вимоги до програми

У програмі слід передбачити такі можливості:

- 1. Автоматизований режим обчислення інтеграла заданими методами.
- 2. Ручний режим введення меж інтегрування та точності обчислення.
- 3. Обчислення похибки отриманого результату за кожним із методів.
- 4. Можливість некоректного введення даних.
- 5. Вивід покрокового виконання результатів (у вигляді таблиці) для кожного методу.

Контрольні запитання

- 1. Який геометричний зміст означеного інтеграла?
- 2. Які основні причини використання методів чисельного інтегрування?
- 3. Що визначають за квадратурною формулою?
- 4. Яка суть чисельного інтегрування?
- 5. Який метод чисельного інтегрування ϵ найпростішим?
- 6. Яка геометрична інтерпретація методу прямокутників?
- 7. Які існують модифікації методу прямокутників?
- 8. Як визначають похибку методу прямокутників?
- 9. У чому суть методу трапецій?
- 10. Яка геометрична інтерпретація методу трапецій?
- 11.Як визначають похибку методу трапецій?
- 12.У чому полягає метод Сімпсона?
- 13. Яка геометрична інтерпретація методу Сімпсона?
- 14. Як оцінюють похибку методу Сімпсона?
- 15. Для чого потрібно вибирати крок інтегрування?
- 16.У чому полягає вибір кроку за теоретичними оцінками похибок?
- 17.У чому полягає вибір кроку за емпіричними оцінками похибок?
- 18. Яка суть схеми Ейткена?