MA2001 AY23/24 Sem 2 Final

Solution by Thang Pang Ern Audited by Malcolm Tan Jun Xi

Question 1

(a) Use Gaussian elimination to reduce the matrix

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 & 3 \\
0 & 2 & 2 & 2 & 0 & 0 \\
-1 & 0 & 1 & 3 & 2 & 1
\end{pmatrix}$$

to a row-echelon form. Indicate clearly the row operations used in each step.

(b) Let $\mathbf{u}_1 = (1,1,0,-1)$, $\mathbf{u}_2 = (0,1,2,0)$, $\mathbf{u}_3 = (1,2,2,1)$ and $\mathbf{v}_1 = (1,2,2,3)$, $\mathbf{v}_2 = (2,3,0,2)$, $\mathbf{v}_3 = (3,3,0,1)$. For each i = 1,2,3, use (a) to determine whether $\mathbf{v}_i \in \text{span}\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$. You do not need to explain your answers.

Solution.

(a) Working omitted. A row-echelon form is

$$\begin{pmatrix} 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & -2 \\ 0 & 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

In fact, this matrix is in reduced row-echelon form.

(b) Note that the matrix in **(a)** is

$$\begin{pmatrix} \textbf{u}_1 & \textbf{u}_2 & \textbf{u}_3 & \textbf{v}_1 & \textbf{v}_2 & \textbf{v}_3 \end{pmatrix}.$$

By considering the red entries, we see that

$$\mathbf{v}_1 = -\mathbf{u}_1 - \mathbf{u}_2 + 2\mathbf{u}_3.$$

By considering the blue entries, we see that \mathbf{v}_2 is not contained in the span of the \mathbf{u}_i 's. By considering the purple entries,

$$\mathbf{v}_3 = \mathbf{u}_1 - 2\mathbf{u}_2 + 2\mathbf{u}_3$$
.

Hence,
$$v_1, v_3 \in \text{span}\{u_1, u_2, u_3\}.$$

Let

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} -1 \\ 1 \\ -2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 0 \\ 3 \\ -2 \\ 0 \end{pmatrix}.$$

- (a) Solve the linear system Ax = b.
- (b) Is the linear system Ax = c consistent? Justify your answer.
- (c) Find a least squares solution to Ax = c.
- (d) Use the result in (c) to find the projection of c onto the column space of A.

Solution.

(a) Let $\mathbf{x} = (x, y, z)$. Then, by considering the RREF of $(\mathbf{A} \mid \mathbf{b})$, we have

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}.$$

So, $\mathbf{x} = (1, 1, -1)$.

(b) Let $\mathbf{c} = (x, y, z)$. Consider the RREF of $(\mathbf{A} \mid \mathbf{c})$ so

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

The first row implies x = 0, the second row implies y = 0, and the third row implies z = 0. However, the fourth row implies 0 = 1, which is a contradiction, so the system is inconsistent.

(c) Consider $\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathrm{T}}\mathbf{c}$, so

$$\mathbf{x} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{c} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$$

which is a least squares solution.

(d) Consider Ax = c. Let **p** be the projection of **c** onto the column space of **A**. Recall that **u** is a least squares solution to Ax = c if and only if Au = p. Hence, the projection is

$$\mathbf{p} = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -2 \\ 1 \end{pmatrix}.$$

Solution.

Let

$$\mathbf{B} = \begin{pmatrix} 2 & -2 & -1 \\ 1 & -1 & -1 \\ 1 & -2 & 0 \end{pmatrix}.$$

It is known that the eigenvalues of **B** are 1 and -1.

- (a) Find a basis for the eigenspace of **B** associated with the eigenvalue 1.
- (b) Find a basis for the eigenspace of **B** associated with the eigenvalue -1.
- (c) Write down an invertible matrix \mathbf{P} and a diagonal matrix \mathbf{D} such that $\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \mathbf{D}$.

(a) By considering $\mathbf{B}\mathbf{x} = \mathbf{x}$, where $\mathbf{x} = (x, y, z)$, we have $(\mathbf{B} - \mathbf{I})\mathbf{x} = \mathbf{0}$, so

$$\begin{pmatrix} 1 & -2 & -1 \\ 1 & -2 & -1 \\ 1 & -2 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Hence, x = 2y + z. A basis is

$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}.$$

(b) By considering $\mathbf{B}\mathbf{x} = -\mathbf{x}$, where $\mathbf{x} = (x, y, z)$, we have $(\mathbf{B} + \mathbf{I})\mathbf{x} = \mathbf{0}$, so

$$\begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Solving the system yields x = y = z. A basis is

$$\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

(c) We have $\mathbf{B} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ so

$$\mathbf{P} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Let $S = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ be a basis for \mathbb{R}^3 . Define $T = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ such that

$$\mathbf{v}_1 = \mathbf{u}_1 - \mathbf{u}_2 + \mathbf{u}_3, \quad \mathbf{v}_2 = \mathbf{u}_1 - \mathbf{u}_2 + a\mathbf{u}_3, \quad \mathbf{v}_3 = \mathbf{u}_1 + b\mathbf{u}_2,$$

where a and b are constants.

- (a) If T is a basis for \mathbb{R}^3 , write down the transition matrix from T to S.
- **(b)** Determine the values of a and b so that T is a basis for \mathbb{R}^3 .
- (c) Suppose S is orthonormal. Determine the values of a and b so that T is orthogonal.

Solution.

(a) Suppose the coordinate vector of \mathbf{x} with respect to T is

$$[\mathbf{x}]_T = \begin{pmatrix} p \\ q \\ r \end{pmatrix}$$
 so $\mathbf{x} = p\mathbf{v}_1 + q\mathbf{v}_2 + r\mathbf{v}_3$.

Hence,

$$\mathbf{x} = (p+q+r)\mathbf{u}_1 + (-p-q+br)\mathbf{u}_2 + (p+aq)\mathbf{u}_3.$$

The transition matrix from T to S is

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & b \\ 1 & a & 0 \end{pmatrix}.$$

(b) By the invertible matrix theorem,

$$\det\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & b \\ 1 & a & 0 \end{pmatrix} \neq 0 \quad \text{so} \quad (1-a)(1+b) \neq 0$$

Hence, $a \neq 1$ and $b \neq -1$.

(c) We have

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$$
 so $\|\mathbf{u}_1\|^2 + \|\mathbf{u}_2\|^2 + a\|\mathbf{u}_3\|^3 = 0$
 $\mathbf{v}_1 \cdot \mathbf{v}_3 = 0$ so $\|\mathbf{u}_1\|^2 - b\|\mathbf{u}_2\|^2 = 0$
 $\mathbf{v}_2 \cdot \mathbf{v}_3 = 0$ so $\|\mathbf{u}_1\|^2 - b\|\mathbf{u}_2\|^2 = 0$

Since S is orthonormal, then $\|\mathbf{u}_i\| = 1$ so a = -2 and b = 1.

Let **w** be a vector in \mathbb{R}^n . Define

$$V = \{ \mathbf{u} \in \mathbb{R}^n : \mathbf{u} \cdot \mathbf{w} = 0 \}.$$

- (a) Show that *V* is a subspace of \mathbb{R}^n .
- (b) If n = 3 and $\mathbf{w} = (1, 1, -1)$, find an orthonormal basis for V.

Solution.

(a) Let $\mathbf{u} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{w} = \mathbf{0} \cdot \mathbf{w} = 0$, so V is non-empty.

Next, let $\mathbf{u}_1, \mathbf{u}_2 \in V$. Then, $\mathbf{u}_1 \cdot \mathbf{w} = 0$ and $\mathbf{u}_2 \cdot \mathbf{w} = 0$. So,

$$(\mathbf{u}_1 + \mathbf{u}_2) \cdot \mathbf{w} = \mathbf{u}_1 \cdot \mathbf{w} + \mathbf{u}_2 \cdot \mathbf{w} = 0 + 0 = 0.$$

So, *V* is closed under addition. Lastly, let $k \in \mathbb{R}$. Then,

$$(k\mathbf{u}) \cdot \mathbf{w} = k(\mathbf{u} \cdot \mathbf{w}) = k \cdot 0 = 0.$$

So, V is closed under scalar multiplication. We conclude that V is a subspace of \mathbb{R}^n .

(b) Suppose n = 3 and $\mathbf{w} = (1, 1, -1)$. Then, let $\mathbf{u} = (u_1, u_2, u_3)$. Since $\mathbf{u} \cdot \mathbf{w} = 0$, then $u_1 + u_2 - u_3 = 0$. We first construct a basis for V, say

$$\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}.$$

By the Gram-Schmidt process,

$$\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} -1\\2\\1 \end{pmatrix} \right\}$$

is an orthonormal basis for V.

Question 6

For each of the following statements, determine if it is true or false. Justify your answers.

- (a) A non-homogeneous system of linear equations can have a trivial solution.
- (b) For a square matrix **A**, if λ is an eigenvalue of **A**, then $a\lambda^2 + b\lambda + c$ is an eigenvalue of $a\mathbf{A}^2 + b\mathbf{A} + c\mathbf{I}$, where a, b, c are real constants.
- (c) For any positive integers n and m, there exists a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $\ker(T) = \{\mathbf{0}\}.$
- (d) For a linear transformation $T : \mathbb{R}^n \to \mathbb{R}$, there exists a vector $\mathbf{u} \in \mathbb{R}^n$ such that every vector $\mathbf{v} \in \mathbb{R}^n$ can be expressed as $\mathbf{v} = \mathbf{z} + a\mathbf{u}$ for some $\mathbf{z} \in \ker(T)$ and $a \in \mathbb{R}$.

Solution.

- (a) False. Consider a non-homogeneous system Ax = b where $b \neq 0$. Then, x = 0 does not satisfy the mentioned equation.
- (b) True. Suppose λ is an eigenvalue of **A** with corresponding eigenvector **v**. Then, $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$. As such,

$$(a\mathbf{A}^{2} + b\mathbf{A} + c\mathbf{I})\mathbf{v} = a\mathbf{A}^{2}\mathbf{v} + b\mathbf{A}\mathbf{v} + c\mathbf{v}$$

$$= a\mathbf{A}(\mathbf{A}\mathbf{v}) + b\lambda\mathbf{v} + c\mathbf{v}$$

$$= a\mathbf{A}(\lambda\mathbf{v}) + b\lambda\mathbf{v} + c\mathbf{v}$$

$$= a\lambda(\mathbf{A}\mathbf{v}) + b\lambda\mathbf{v} + c\mathbf{v}$$

$$= a\lambda^{2}\mathbf{v} + b\lambda\mathbf{v} + c\mathbf{v}$$

which is equal to $(a\lambda^2 + b\lambda + c)$ v.

(c) False. Recall that

 $T: V \to W$ is injective if and only if $\dim(V) \leq \dim(W)$ if and only if $\ker(T) = \{\mathbf{0}\}$.

To come up with a contradiction, we need n > m, so we can set m = 1 and n = 2. The matrix representation **A** has 1 row and 2 columns. Suppose

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$ so $\mathbf{A}\mathbf{x} = \begin{pmatrix} x+y \\ x+y \end{pmatrix}$.

Then, $\ker T = \{(x,y) \in \mathbb{R}^2 : x + y = 0\}$ so the kernel is $\neq \{\mathbf{0}\}$.

(d) True. We proceed with casework. If T = 0, i.e. T is the zero transformation, then $\ker(T) = \mathbb{R}^n$. To see why, choose $\mathbf{u} \neq \mathbf{0}$. Then for any \mathbf{v} , we can write

$$\mathbf{v} = \mathbf{v} + 0 \cdot \mathbf{u}$$
 where $\mathbf{v} \in \ker T$ and $0 \in \mathbb{R}$.

On the other hand, if $T \neq 0$, then rank T = 1 and nullity T = n - 1 by the rank-nullity theorem. Choose **u** so that $T(\mathbf{u}) = 1$. So,

for any
$$\mathbf{v} \in \mathbb{R}^n$$
 set $a = T(\mathbf{v})$ and $\mathbf{z} = \mathbf{v} - a\mathbf{u}$.

Thus,

$$T(\mathbf{z}) = T(\mathbf{v}) - aT(\mathbf{u}) = a - a \cdot 1 = 0,$$

so $\mathbf{z} \in \ker(T)$, and $\mathbf{v} = \mathbf{z} + a\mathbf{u}$. Hence every \mathbf{v} decomposes as required.

Question 7

Let **A** and **B** be two square matrices of order n such that AB = BA.

- (a) Suppose A has n distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.
 - (i) For each i = 1, 2, ..., n, prove that $\dim(E_{\lambda_i}) = 1$.
 - (ii) For each i = 1, 2, ..., n, prove that if $\mathbf{B}\mathbf{u}_i \neq 0$, then $\mathbf{B}\mathbf{u}_i$ is an eigenvector of \mathbf{A} associated with λ_i .

- (iii) Show that **B** is diagonalizable and there exists an invertible matrix **P** such that both $P^{-1}AP$ and $P^{-1}BP$ are diagonal matrices.
- (b) Let n = 2. Give an example of matrices **A** and **B** such that $\mathbf{AB} = \mathbf{BA}$ and **A** is diagonalizable while **B** is not.

Solution.

(a) (i) Since **A** is of order n and **A** has n distinct eigenvalues, then each eigenspace E_{λ_i} is at most one-dimensional, otherwise the order of **A** would be > n, which is a contradiction.

Next, the dimension of each E_{λ_i} is ≥ 1 since it contains an eigenvector \mathbf{u}_i (by definition, $\mathbf{u}_i \neq \mathbf{0}$) such that $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$.

Since dim $(E_{\lambda_i}) \le 1$ and dim $(E_{\lambda_i}) \ge 1$, then the result follows.

(ii) From (a), $\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i$, so

$$\mathbf{B}\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{B}\mathbf{u}_i$$

 $\mathbf{A}\mathbf{B}\mathbf{u}_i = \lambda_i \mathbf{B}\mathbf{u}_i$ from the preamble

where we note that $\mathbf{B}\mathbf{u}_i \neq \mathbf{0}$. Since $\mathbf{A}(\mathbf{B}\mathbf{u}_i) = \lambda_i(\mathbf{B}\mathbf{u}_i)$, then the result follows.

(iii) From (ii), we have $\mathbf{ABu}_i = \lambda_i \mathbf{Bu}_i$. By (i), each eigenspace is one-dimensional, i.e. $E_{\lambda_i} = \operatorname{span} \{\mathbf{u}_i\}$. Geometrically, this is a line in \mathbb{R}^n , so $\operatorname{span} \{\mathbf{u}_i\} = \mu_i \mathbf{u}_i$ for some $\mu_i \in \mathbb{R}$. Thus, $\mathbf{Bu}_i = \mu_i \mathbf{u}_i$. Since $1 \le i \le n$, then $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is a basis for \mathbb{R}^n . As such \mathbf{B} has n distinct eigenvalues μ_i , which implies that it is diagonalizable.

Since A and B are diagonalizable, then there exists an invertible matrix P (this P is common to both A and B due to the result established in the first part of (iii)) and diagonal matrices D_1 and D_2 such that

$$\mathbf{A} = \mathbf{P}\mathbf{D}_1\mathbf{P}^{-1}$$
 and $\mathbf{B} = \mathbf{P}\mathbf{D}_2\mathbf{P}^{-1}$.

Hence, $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{D}_1$ and $\mathbf{P}^{-1}\mathbf{B}\mathbf{P} = \mathbf{D}_2$ which are diagonal matrices.

(b) To construct such an example, we motivate using the fact that diagonal matrices commute and are diagonalizable. So, choose $\mathbf{A} = \mathbf{D}$ for some diagonal matrix \mathbf{D} , i.e. $\mathbf{D} = \mathbf{I}$ and we can choose \mathbf{B} to be non-diagonalizable. Hence,

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$