

3250 Foundations of Data Science

Module 4: Pandas

Course Plan

Module Titles

Module 1 – Introduction to Data Science

Module 2 – Introduction to Python

Module 3 – NumPy

Current Focus: Module 4 – Pandas

Module 5 – Data Collection and Cleaning

Module 6 – Descriptive Statistics and Visualization

Module 7 – Workshop (No Content)

Module 8 – Time Series

Module 9 – Introduction to Regression and Classification

Module 10 – Databases and SQL

Module 11 – Data Privacy and Security

Module 12 – Term Project Presentations (no content)

Learning Outcomes for this Module

- Further build your Python skills
- Use Pandas data analysis libraries to organize and summarize data

Topics for this Module

- 4.1 Pandas: the Python data analysis package
- 4.2 Class Exercises
- 4.3 Resources and Homework

Module 4 – Section 1

Pandas

<u>Pandas</u>

- Data analysis package created by Wes McKinney
- Brings the equivalent of the R Data Frame to Python
- Powerful capabilities for working with time series data
- Automatic data alignment
- Flexible handling of missing data
- Relational operations
- Support for categorical variables

Series

- One-dimensional array of data with a one-dimensional array of labels called the index
- Usually of a single type but can be heterogeneous
- We'll come back to it in the module on Time Series

DataFrame

- A tabular data structure with labelled columns and rows
- Used for manipulating and analyzing data
- Exhibits size mutability allowing rows and columns to be added and deleted
- Similar to a relational table but heterogeneously-typed

DataFrame

	Age	Height	Weight
0	8	128	27.5
1	10	138.9	34.5
2	16	157.3	91.1
3	6	116.6	21.4
4	14	159.2	54.4

Creating a DataFrame

- Can be created from:
 - Dict of 1-D structures (ndarrays, lists, dicts, tuples or Series)
 - List of 1-D structures
 - 2-D numpy ndarray
 - Structured or record ndarray
 - A Series
 - Another DataFrame

Creating a DataFrame from a 2-D List

```
import pandas as pd
df = DataFrame(
            data=[
                   [8, 128, 27.5],
                   [10, 138.9, 34.5],
                   [16, 157.3, 91.1],
                   [6, 116.6, 21.4],
                   [14, 159.2, 54.4]
            columns=["Age", "Height", "Weight"]
```


Indexing for DataFrames

- Use the method .ix to select rows
- Example:

```
df.ix[0]
df.ix['Toronto']
```

Use either of these forms for columns:

```
df['Age']
df.Age
```


Loading/Saving DataFrames

- import pandas as pd
- CSV: pd.read_csv(), pd.to_csv()
- Excel: pd.read_excel(), pd.to_excel()
- Relational tables: pd.read_sql(), pd.to_sql()
- Pandas SQL queries

Basic Statistical Functions

- Mean
 - pandas.DataFrame.mean
- Median
 - pandas.DataFrame.median
- Standard Deviation
 - pandas.DataFrame.std
- Sum
 - pandas.DataFrame.sum

<u>Hierarchical Indexes in DataFrames</u>

DataFrames can have a hierarchy of indexes, e.g.

```
df = DataFrame(
          data=[4, 7, 2, 5, 6],
          columns=["Data"],
          index=
                 ["a", "a", "b", "b", "a"],
                 ["x", "y", "x", "y", "x"]
          ])
               Data
    a
          X
    a
          У
          X
    a
          X
```


Aggregation and Grouping

- Pandas has "slice and dice" operations for DataFrames
 - Split into pieces by key
 - Apply functions to each column
 - Apply functions to groups
 - Compute pivot tables
 - Calculate common statistics by group

GroupBy

- Works by split-apply-combine
- Identify a grouping with .groupby() e.g. df.groupby('key1')
- This creates a GroupBy object but doesn't actually do the split-apply-combine yet
- Iterate over the groups using group in df.groupby('key1')

Pivot Tables

 DataFrame has a .pivot_table() method that makes it easy to select rows and columns of a hierarchically indexed DataFrame and get automatic subtotals by group

Module 4 – Section 2

Class Exercises

Getting Started with Pandas

- Chapter 5 of "Python for Data Analysis" book, Getting Started with Pandas
- Download the code (or clone the repository) and work through Chapter 5

Analyzing 311 Calls in New York

Pandas Cookbook, Julia Evans: Chapters 2 and 3

Linear Regression with Python

<u>Linear Regression with Python blog article by Connor Johnson</u>

Module 4 – Section 3

Resources and Homework

Resources

- Intro to Data Structures:
- Open Data with IPython and Pandas:
- Some tricks for better looking Pandas tables:

Next Class

- Gathering and Preparing Data
 - Types of data
 - Reading and saving data
 - Cleaning up problem data using Pandas
 - Handling missing data
 - Getting data from the web

Follow us on social

Join the conversation with us online:

- f facebook.com/uoftscs
- uoftscs @uoftscs
- in linkedin.com/company/university-of-toronto-school-of-continuing-studies
- @uoftscs

Any questions?

Thank You

Thank you for choosing the University of Toronto School of Continuing Studies