Théorie des Nombres - TD2 Corps finis

Exercice 1 : Montrer les isomorphismes suivants et exhiber un générateur du groupe des éléments inversibles :

- a) $\mathbb{F}_4 \cong \mathbb{F}_2[X]/(X^2 + X + 1)$.
- b) $\mathbb{F}_8 \cong \mathbb{F}_2[X]/(X^3 + X + 1)$.
- c) $\mathbb{F}_{16} \cong \mathbb{F}_2[X]/(X^4 + X + 1)$.
- d) $\mathbb{F}_{16} \cong \mathbb{F}_2[X,Y]/(Y^2+Y+1,X^2+X+Y).$

Solution de l'exercice 1. Puisque pour tout $n \geq 1$, le corps \mathbb{F}_2 admet une unique extension de degré n à l'intérieur d'une clôture algébrique $\overline{\mathbb{F}_2}$ fixée, il suffit de vérifier pour les trois premiers isomorphismes que les polynômes en question sont irréductibles sur \mathbb{F}_2 .

- a) Il est clair que le polynôme $X^2 + X + 1$ n'a pas de racine dans \mathbb{F}_2 , donc il est irréductible sur \mathbb{F}_2 . Alors $\mathbb{F}_2[X]/(X^2 + X + 1)$ est une extension de degré 2 de \mathbb{F}_2 , donc il est isomorphe à \mathbb{F}_4 . En outre, \mathbb{F}_4^* est cyclique d'ordre 3, donc tout élément de \mathbb{F}_4 distinct de 0 et 1 engendre \mathbb{F}_4^* . Par conséquent, la classe de X (ou celle de X + 1) engendre le groupe des inversibles de $\mathbb{F}_2[X]/(X^2 + X + 1)$.
- b) Le polynôme $X^3 + X + 1$ n'a pas de racine dans \mathbb{F}_2 , il est donc irréductible sur \mathbb{F}_2 . D'où l'isomorphisme recherché. Or $\mathbb{F}_8^* \cong \mathbb{Z}/7\mathbb{Z}$, donc tout élément de \mathbb{F}_8 distinct de 0 et 1 engendre \mathbb{F}_8^* . Par exemple, la classe de X engendre le groupe des inversibles de $\mathbb{F}_2[X]/(X^3 + X + 1)$.
- c) On voit que $X^4 + X + 1$ n'a pas de racine dans \mathbb{F}_2 . Montrons qu'il ne peut se décomposer en produit de deux polynômes irréductibles de degré 2 sur \mathbb{F}_2 . Or on sait que le seul polynôme irréductible de degré 2 sur \mathbb{F}_2 est $X^2 + X + 1$, et il est clair que son carré n'est pas $X^4 + X + 1$. On peut aussi montrer que $X^4 + X + 1$ est irréductible en montrant qu'il n'a pas de racine dans \mathbb{F}_4 . Cela assure que $\mathbb{F}_{16} \cong \mathbb{F}_2[X]/(X^4 + X + 1)$. Or le groupe \mathbb{F}_{16}^* est isomorphe à $\mathbb{Z}/15\mathbb{Z}$. Donc les générateurs de \mathbb{F}_{16}^* sont les éléments de ce groupes qui sont distincts de 1 et d'ordre ni 3, ni 5. Considérons la classe de X (notée abusivement X) dans $\mathbb{F}_2[X]/(X^4 + X + 1)$. On dispose de la base $(1, X, X^2, X^3)$ de $\mathbb{F}_2[X]/(X^4 + X + 1)$ sur k, et il est donc clair que $X^3 1$ et $X^5 1 = X^2 + X + 1$ ne sont pas nuls dans le quotient. Par conséquent, X n'est pas d'ordre 3, ni d'ordre 5, il est donc d'ordre 15. C'est donc un générateur du groupe des inversibles.
- d) On dispose d'un isomorphisme naturel:

$$\mathbb{F}_2[X,Y]/(Y^2+Y+1,X^2+X+Y) \cong \left(\mathbb{F}_2[Y]/(Y^2+Y+1)\right)[X]/(X^2+X+Y).$$

Par la première question, on a un isomorphisme $\mathbb{F}_2[Y]/(Y^2+Y+1)\cong \mathbb{F}_4$, par conséquent, il suffit de montrer que pour $y\in \mathbb{F}_4$, $y\neq 0,1$, le polynôme $X^2+X+y\in \mathbb{F}_4[X]$ est irréductible, i.e. que ce polynôme n'a pas de racine dans \mathbb{F}_4 . Ceci est clair (tester 0,1,y et y^2), donc $\mathbb{F}_{16}\cong \mathbb{F}_4[X]/(X^2+X+y)\cong \mathbb{F}_2[X,Y]/(Y^2+Y+1,X^2+X+Y)$. On dispose alors de la base (sur \mathbb{F}_2) (1,X,Y,XY), et on vérifie qu'un générateur de \mathbb{F}_{16}^* est alors donné par la classe de X (la classe de Y en revanche est d'ordre 3).

Exercice 2 : Montrer que dans un corps fini, tout élément est somme de deux carrés.

Solution de l'exercice 2. Soit \mathbb{F}_q le corps fini en question (où $q=p^r$). On considère le morphisme de groupes multiplicatifs $\varphi: \mathbb{F}_q^* \to \mathbb{F}_q^*$ défini par $\varphi(x) := x^2$. Alors par définition $\operatorname{Im}(\varphi)$ est l'ensemble des

carrés dans \mathbb{F}_q^* . Notons que $\operatorname{Ker}(\varphi)$ est réduit à ± 1 . Par conséquent, le cardinal de $\operatorname{Ker}(\varphi)$ vaut 2 si $p \neq 2$, il vaut 1 si p = 2. En particulier, si p = 2, φ est injectif, donc surjectif, donc tout élément e \mathbb{F}_q est un carré, donc en particulier tout élément est somme de deux carrés.

On suppose maintenant p impair. On sait que

$$\#\mathbb{F}_q^* = \#\mathrm{Ker}(\varphi)\#\mathrm{Im}(\varphi)$$
,

et $\#\mathbb{F}_q^* = q-1$. Par conséquent, on en déduit que

$$\#\mathrm{Im}(\varphi) = \frac{q-1}{2} \,.$$

Soit alors $a \in \mathbb{F}_q$. Considérons l'ensemble $C := \operatorname{Im}(\varphi) \cup \{0\}$ des carrés dans \mathbb{F}_q . On a montré que $\#C = \frac{q+1}{2}$. Or l'ensemble $C_a := \{a - x^2 : x \in \mathbb{F}_q\}$ est en bijection avec C, donc il est aussi de cardinal $\frac{q+1}{2}$. Donc

$$\#C + \#C_a = \frac{q+1}{2} + \frac{q+1}{2} = q+1 > q = \#\mathbb{F}_q$$
,

par conséquent les ensembles C et C_a ne peuvent pas être disjoints, i.e. $C \cap C_a \neq \emptyset$. Prenons alors $c \in C \cap C_a$. Par définition, il existe $x, y \in \mathbb{F}_q$ tels que $c = x^2$ et $c = a - y^2$. Finalement, on a bien $a = x^2 + y^2$, ce qui conclut.

Exercice 3:

- a) Soit $q = p^r$, p un nombre premier impair. Montrer que $x \in \mathbb{F}_q^*$ est un carré si et seulement si $x^{\frac{q-1}{2}} = 1$.
- b) En étudiant les diviseurs de $(n!)^2 + 1$, montrer qu'il existe une infinité de nombres premiers de la forme 4k + 1 $(k \in \mathbb{N})$.

Solution de l'exercice 3.

- a) On suppose d'abord que x est un carré, i.e. il existe $y \in \mathbb{F}_q^*$ tel que $x = y^2$. Alors $x^{\frac{q-1}{2}} = y^{q-1} = 1$ (puisque \mathbb{F}_q^* est d'ordre q-1).
 - Considérons l'ensemble R des racines du polynôme $P(X) = X^{\frac{q-1}{2}} 1$. Il contient, par la remarque précédente, tous les carrés de \mathbb{F}_q^* . Or on a vu (exercice 2) que \mathbb{F}_q^* contenait $\frac{q-1}{2}$ carrés. Par conséquent, puisque P(X) est de degré $\frac{q-1}{2}$, R coïncide avec l'ensemble des carrés dans \mathbb{F}_q^* , ce qui conclut.
- b) Soit $n \in \mathbb{N}$ et p un diviseur premier de $(n!)^2 + 1$. Alors p > n (sinon p diviserait n!, donc p diviserait 1, ce qui n'est pas). Vérifions que p est congru à 1 modulo 4: puisque p divise $(n!)^2 + 1$, on a $(n!)^2 = -1$ dans \mathbb{F}_p . En particulier, -1 est un carré dans \mathbb{F}_p . Par la question précédente, cela assure que $(-1)^{\frac{p-1}{2}} = 1$, donc $\frac{p-1}{2}$ est pair, donc p est congru à 1 modulo 4. En prenant des entiers p tendant vers l'infini, on obtient ainsi une infinité de nombres premiers p congrus à 1 modulo 4.

Exercice 4 : Soit p un nombre premier impair. Montrer que 2 est un carré dans \mathbb{F}_p si et seulement si $p \equiv \pm 1$ [8].

[Indication : on pourra considérer ζ une racine primitive 8-ième de l'unité dans $\overline{\mathbb{F}_p}$ et étudier $\zeta + \zeta^{-1}$.]

Solution de l'exercice 4. On calcule que $(\zeta + \zeta^{-1})^2 = 2$. Donc 2 est un carré modulo p si et seulement si $\zeta + \zeta^{-1} \in \mathbb{F}_p$, si et seulement si $(\zeta + \zeta^{-1})^p = \zeta + \zeta^{-1}$ si et seulement si $\zeta^p + \zeta^{-p} = \zeta + \zeta^{-1}$. Or $\zeta^5 = -\zeta$ et $\zeta^3 = -\zeta^{-1}$, donc il est clair que la condition $\zeta^p + \zeta^{-p} = \zeta + \zeta^{-1}$ équivaut à la condition $p \equiv \pm 1$ [8].

Exercice 5:

- a) Soit k un corps, a ∈ k, p un nombre premier. Montrer que X^p − a est irréductible dans k[X] si et seulement si il n'admet pas de racine dans k.
 [Indication: si X^p − a est réductible, on pourra écrire une décomposition de ce polynôme dans k[X], puis utiliser la décomposition de X^p − a en facteurs de degré 1 sur k, pour en déduire que a est une puissance p-ième dans k.]
- b) Soient p, l deux nombres premiers tels que l divise p-1. Soit $n \in \mathbb{Z}$ tel que la classe de n engendre $(\mathbb{Z}/p\mathbb{Z})^*$. Montrer que le polynome $X^l + pX^k n$ est irréductible dans $\mathbb{Z}[X]$, pour tout $1 \le k < l$.

Solution de l'exercice 5.

- a) Il est clair que si X^p-a a une racine dans k, alors ce polynôme est réductible. Supposons maintenant que le polynôme X^p-a soit réductible. Alors il existe $P,Q\in k[X]$ de degrés respectifs d et p-d, avec $1\leq d< p$. On note b le coefficient constant de P. Sur \overline{k} , le polynôme X^p-a se décompose sous la forme $X^p-a=\prod_{i=0}^{p-1}(X-\zeta^i\alpha)$, où $\zeta\in\overline{k}$ est une racine primitive p-ième de l'unité, et $\alpha^p=a$, $\alpha\in\overline{k}$ (si k est de caractéristique p, alors $\zeta=1$). Or P divise X^p-a , donc P se décompose sous la forme $P(X)=\prod_{i\in I}(X-\zeta^i\alpha)$, où I est une partie non vide (et non pleine) de $\{0,\ldots,p-1\}$. En particulier, on a $b=\zeta^r\alpha^d$, pour un certain entier r. Donc on a $b^p=\alpha^{pd}=a^d$. Or d et p sont premiers entre eux (car p est premier et $1\leq d< p$, donc il existe $u,v\in\mathbb{Z}$ tels que ud+vp=1. Alors $(a^d)^u=(b^p)^u$, donc $a=(a^vb^u)^p$, donc a est une puissance p-ième dans k, donc X^p-a admet une racine dans k (en l'occurrence, cette racine est a^vb^u).
- b) On considère la réduction modulo p du polynôme P considéré : on a $\overline{P} = X^l n \in \mathbb{F}_p[X]$. Alors pour appliquer la question a) à $k = \mathbb{F}_p$, au nombre premier l et à a = n, il suffit de montrer que n n'est pas une puissance l-ième dans \mathbb{F}_p . Si c'était le cas, alors il existerait $b \in \mathbb{F}_p$ tel que $b^l = n$. Alors n serait d'ordre divisant $\frac{p-1}{l}$ dans \mathbb{F}_p^* , ce qui contredirait le fait que n engendre \mathbb{F}_p^* . Donc la question a) assure que \overline{P} est irréductible dans $\mathbb{F}_p[X]$. Donc $P(X) = X^l + pX^k n$ est irréductible dans $\mathbb{Z}[X]$.

Exercice 6:

- a) Si p et l sont des nombres premiers, montrer qu'il existe un morphisme de corps $\mathbb{F}_{p^n} \to \mathbb{F}_{l^m}$ si et seulement si p = l et n divise m.
- b) Ce morphisme de corps est-il unique?
- c) Fixons, pour tout n, m tels que n divise m, un morphisme $\mathbb{F}_{p^n} \to \mathbb{F}_{p^m}$, de façon compatible. Montrer que $\overline{\mathbb{F}_p} := \bigcup_{n \geq 1} \mathbb{F}_{p^{n!}}$ est une clôture algébrique de \mathbb{F}_p .

Solution de l'exercice 6.

- a) On remarque d'abord que pour toute extension de corps L/K, la caractéristique de L est égale à celle de K. Donc la condition p=l est clairement nécessaire. Supposons que l'on a une inclusion de corps $\mathbb{F}_{p^n} \subset \mathbb{F}_{p^m}$. Alors $\mathbb{F}_{p^n}^*$ est un sous-groupe d'ordre
 - supposons que i on a une inclusion de corps \mathbb{F}_{p^n} . Alors \mathbb{F}_{p^n} est un sous-groupe d'ordre p^n-1 dans le groupe $\mathbb{F}_{p^m}^*$ d'ordre p^m-1 . On en déduit que p^n-1 divise p^m-1 . On effectue alors la division euclidienne de m par n: m=nq+r avec $0 \le r < n$. Alors $p^m-1=p^r((p^n)^q-1)+(p^r-1)$, et p^n-1 divise $(p^n)^q-1$. Donc p^r-1 est le reste de la division euclidienne de p^m-1 par p^n-1 . Il est alors clair que p^n-1 divise p^m-1 si et seulement si p^n-1 si et seulement si p^n-1 divise p^n-1 divise p^n-1 divise p^n-1 si et seulement si p^n-1 si et seulement si p^n-1 si et seulement si p^n-1 divise $p^$
 - On peut également montrer que n divise m en disant que \mathbb{F}_{p^m} est un \mathbb{F}_{p^n} -espace vectoriel de dimension finie (disons d), il est donc isomorphe (comme espace vectoriel) à $(\mathbb{F}_{p^n})^d$, donc en calculant les cardinaux, on a $p^m = (p^n)^d$, donc m = n.d, donc n divise m.
 - Réciproquement, si n divise m, alors on \mathbb{F}_{p^n} s'identifie à l'ensemble des $x \in \mathbb{F}_{p^m}$ tels que $x^{p^n} = x$, puisque $p^n 1$ divise $p^m 1$.
- b) Ce morphisme n'est pas unique en général, on peut toujours le composer avec un automorphisme non trivial du corps \mathbb{F}_{p^n} (le Frobenius $x \mapsto x^p$ par exemple, si n > 1).

c) Tout d'abord, on remarque que les corps $\mathbb{F}_{p^{n!}}$ forment une famille croissante de corps puisque n! divise (n+1)!. L'ensemble $\overline{\mathbb{F}_p}$ est une réunion croissante de corps, donc on vérifie facilement que c'est lui-même de façon naturelle un corps (étant donnés $x,y\in\overline{\mathbb{F}_p}$, il existe un $n\in\mathbb{N}$ tel que $x,y\in\mathbb{F}_{p^{n!}}$, et donc la somme et le produit x+y, xy sont bien définis dans $\mathbb{F}_{p^{n!}}$, donc dans $\overline{\mathbb{F}_p}$ puisque les images de x+y et xy dans $\overline{\mathbb{F}_p}$ ne dépendent pas de l'entier n choisi). Par construction, on dispose d'un morphisme de corps $\mathbb{F}_p \subset \overline{\mathbb{F}_p}$. En outre, $\overline{\mathbb{F}_p}$ est une réunion d'extensions finies (donc algébriques) de \mathbb{F}_p , donc l'extension $\overline{\mathbb{F}_p}/\mathbb{F}_p$ est algébrique. Par conséquent, il reste donc à montrer que le corps $\overline{\mathbb{F}_p}$ est algébriquement clos. Soit $P\in\overline{\mathbb{F}_p}[X]$ un polynôme non constant. Par construction de $\overline{\mathbb{F}_p}$ et puisque P n'a qu'un nombre fini de coefficients, il existe $n\in\mathbb{N}$ tel que $P\in\mathbb{F}_{p^{n!}}[X]$. En prenant par exemple un corps de décomposition de P, il existe $d\in\mathbb{N}$ tel que P ait une racine dans une $\mathbb{F}_{p^{n!d}}$. Or le corps $\mathbb{F}_{p^{n!d}}$ est contenu dans $\mathbb{F}_{p^{N!}}$ pour N assez grand (par exemple N=nd), donc P a une racine dans $\mathbb{F}_{p^{N!}}$, donc dans $\overline{\mathbb{F}_p}$. Cela conclut la preuve.

Exercice 7: Soit p un nombre premier. Montrer que le groupe $\mathbb{F}_{p^n}^*$ s'identifie à un sous-groupe du groupe $\mathbf{GL}_n(\mathbb{F}_p)$.

Solution de l'exercice 7. On voit \mathbb{F}_{p^n} comme un \mathbb{F}_p -espace vectoriel de dimension n. On dispose d'une action par multiplication de $\mathbb{F}_{p^n}^*$ sur \mathbb{F}_{p^n} , qui induit un morphisme de groupes évident $\mathbb{F}_{p^n}^* \to \mathbf{GL}(\mathbb{F}_{p^n})$. Ce morphisme est clairement injectif. Enfin, si on fixe une base de \mathbb{F}_{p^n} sur \mathbb{F}_p (comme espace vectoriel), on peut identifier les groupes $\mathbf{GL}(\mathbb{F}_{p^n})$ et $\mathbf{GL}_n(\mathbb{F}_p)$

Exercice 8:

- a) Donner la liste de tous les polynômes irréductibles de degré ≤ 5 sur \mathbb{F}_2 .
- b) Donner la liste de tous les polynômes irréductibles unitaires de degré ≤ 3 sur \mathbb{F}_3 .
- c) Donner le nombre et la liste de tous les polynômes irréductibles unitaires de degré ≤ 2 sur \mathbb{F}_4 .

Solution de l'exercice 8.

- a) Il est facile d'énumérer tous les polynômes de degré ≤ 5 sur \mathbb{F}_2 . Ensuite on teste si chacun de ces polynômes est irréductible ou non. On obtient la liste suivante de polynômes irréductibles : $X, X+1, X^2+X+1, X^3+X+1, X^3+X^2+1, X^4+X+1, X^4+X^3+1, X^4+X^3+X^2+X+1, X^5+X^2+1, X^5+X^3+1, X^5+X^3+X^2+X+1, X^5+X^4+X^2+X+1, X^5+X^4+X^3+X^2+1, X^5+X^4+X^3+X^2+1$.
- b) On note $\mathbb{F}_3 = \{0, 1, 2\}$. On énumère tous les polynômes unitaires non constants de degré 2 et 3 à coefficients dans \mathbb{F}_3 , et on ne conserve que ceux qui n'ont pas de racine dans \mathbb{F}_3 . On obtient la liste suivante :

$$X, X + 1, X + 2, X^2 + 1, X^2 + X + 2, X^2 + 2X + 2, X^3 + 2X + 1, X^3 + 2X + 2, X^3 + X^2 + X + 2, X^3 + X^2 + 2X + 1, X^3 + 2X^2 + 1, X^3 + 2X^2 + X + 1, X^3 + 2X^2 + 2X + 2.$$

c) On dispose de deux méthodes : la première, analogue à la précédente, consiste à énumérer tous les polynômes unitaires de degré 2 sur \mathbb{F}_4 (il y en a seize), puis de tester si chacun de ces polynômes a ou non une racine dans \mathbb{F}_4 (il y a quatre éléments dans \mathbb{F}_4 à tester).

Un autre méthode plus "élaborée" est la suivante : un polynôme irréductible de degré 4 sur \mathbb{F}_2 a une racine dans \mathbb{F}_{16} . Donc il se décompose en produit de deux polynômes irréductibles dans \mathbb{F}_4 (car \mathbb{F}_{16} est une extension de degré 2 de \mathbb{F}_4). Réciproquement, étant donné un polynôme irréductible de degré 2 sur \mathbb{F}_4 , le produit avec son conjugué (par l'unique \mathbb{F}_2 -automorphisme non trivial de \mathbb{F}_4 : cet automorphisme est l'élévation au carré, i.e. le Frobenius de \mathbb{F}_2) est un polynôme de $\mathbb{F}_2[X]$ (les coefficients sont invariants par le groupe de Galois) irréductible de degré 4. Par conséquent, il y a deux fois plus de polynômes irréductibles unitaires de degré 2 dans \mathbb{F}_4 que de polynômes irréductibles de degré 4 dans \mathbb{F}_2 , et ils sont obtenus en factorisant dans $\mathbb{F}_4[X]$ les polynômes de degré 4 obtenus à la question précédente. Par conséquent, il y a exactement

6 polynômes irréductibles unitaires de degré 2 sur \mathbb{F}_4 . Notons j un élément de $\mathbb{F}_4 \setminus \mathbb{F}_2$, alors $\mathbb{F}_4 = \{0, 1, j, j^2\}$.

Les polynômes unitaires irréductibles de degré 1 sont X, X + 1, X + j et $X + j^2$. Ceux de degré 2 sont obtenus en décomposant les polynômes irréductibles de degré 4 sur \mathbb{F}_2 :

$$X + X + 1 = (X^2 + X + j)(X^2 + X + j^2),$$

$$X^4 + X^3 + 1 = (X^2 + jX + j)(X^2 + j^2X + j^2),$$

$$X^4 + X^3 + X^2 + X + 1 = (X^2 + jX + 1)(X^2 + j^2X + 1).$$

Exercice 9 : Montrer (sans utiliser les résultats généraux sur les polynômes cyclotomiques) que le polynôme $X^4 + 1$ est irréductible dans $\mathbb{Q}[X]$, et qu'il est réductible dans $\mathbb{F}_p[X]$ pour tout nombre premier p.

Solution de l'exercice 9. Pour montrer l'irréductibilité sur \mathbb{Q} , il suffit de montrer l'irréductibilité sur \mathbb{Z} . Or il est clair que le polynôme X^4+1 n'a pas de racines dans \mathbb{Z} . Par conséquent, s'il est réductible, sa décomposition dans $\mathbb{Z}[X]$ s'écrit :

$$X^4 + 1 = (X^2 + aX + b)(X^2 + cX + d),$$

avec $a, b, c, d \in \mathbb{Z}$. On voit facilement que ceci est impossible, donc X^4+1 est irréductible dans $\mathbb{Q}[X]$. Dans $\mathbb{F}_2[X]$, on a $X^4+1=(X+1)^4$, donc le polynôme est réductible modulo 2. Soit p un nombre premier impair. On remarque que trouver une racine de X^4+1 revient à trouver une racine primitive 8-ième de l'unité. Or on voit que l'entier $p^2-1=(p-1)(p+1)$ est divisible par 8, ce qui signifie que \mathbb{F}_{p^2} contient toutes les racines 8-ièmes de l'unité. Soit alors $\zeta \in \mathbb{F}_{p^2}$ une racine primitive 8-ième de l'unité. Alors $t:=\zeta^4\in\mathbb{F}_p$ vérifie $t^2=1$ et $t\neq 1$, donc t=-1, don

Exercice 10: Soit $n \geq 2$ un entier.

- a) Soit p un nombre premier. Montrer que $p \equiv 1$ [n] si et seulement si \mathbb{F}_p contient une racine primitive n-ième de l'unité.
- b) Soit $k \in \mathbb{N}$, et p un diviseur premier de $\phi_n(k!)$. Montrer que p > k et soit p divise n, soit $p \equiv 1$ [n].
- c) Montrer qu'il existe une infinité de nombres premiers $p \equiv 1$ [n].

Solution de l'exercice 10.

- a) Le groupe \mathbb{F}_p^* est isomorphe à $\mathbb{Z}/(p-1)\mathbb{Z}$ (c'est un groupe cyclique d'ordre p-1). Alors \mathbb{F}_p contient une racine primitive n-ième de l'unité si et seulement si de groupe admet un élément d'ordre n si et seulement si n divise p-1 si et seulement si $p \equiv 1$ [n].
- b) Si on écrit $\phi_n(X) = X^d + a_{d-1}X^{d-1} + \cdots + a_0$, avec $a_i \in \mathbb{Z}$, alors $a_0 = \phi(0) = \pm 1$, et $\phi_n(k!) = k!^d + a_{d-1}k!^{d-1} + \cdots + a_0$. Or si $p \leq k$, alors p divise k!, donc p divise $\phi_n(k!) a_0$, donc p divise $a_0 = \pm 1$, ce qui est contradictoire. Donc p > k. Supposons que p ne divise pas n. Alors modulo p, on a $\phi_n(k!) \equiv 0$ [p], donc la classe de k! est une racine primitive n-ième de l'unité dans \mathbb{F}_p . Donc la question a) assure que $p \equiv 1$ [n].
- c) Si p_1, \ldots, p_r sont des nombres premiers distincts congrus à 1 modulo n, on pose $k := \max(p_i, n)$. Alors $\phi_n(k!)$ admet un facteur premier p. Par la question b), on a p > n et $p > p_i$ pour tout i, et $p \equiv 1$ [n]. Cette construction assure qu'il existe une infinité de nombres premiers $p \equiv 1$ [n].

Exercice 11 : Soit Irr(n,q) l'ensemble des polynômes irréductibles unitaires de degré n sur \mathbb{F}_q et I(n,q) le cardinal de cet ensemble.

- a) Montrer que si d divise n, alors pour tout $P \in Irr(d,q)$, P divise $X^{q^n} X$.
- b) Montrer que si $P \in Irr(d,q)$ divise $X^{q^n} X$, alors d divise n.
- c) En déduire la formule

$$\sum_{d|n} dI(d,q) = q^n.$$

- d) On définit la fonction de Möbius $\mu: \mathbb{N}^* \to \{-1,0,1\}$ par $\mu(n) = (-1)^r$ si n est le produit de r nombres premiers distincts, et par $\mu(n) = 0$ si n admet un facteur carré. Montrer que si $f,g: \mathbb{N}^* \to \mathbb{C}$ sont deux fonctions, on a $f(n) = \sum_{d|n} g(d)$ pour tout n si et seulement si $g(n) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$ pour tout n.
- e) En déduire la formule

$$I(n,q) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d$$
.

- f) Montrer que pour tout $n \ge 1$, $I(n,q) \ge 1$.
- g) Montrer le "théorème des nombres premiers pour les polynômes" :

$$I(n,q) = \frac{q^n}{n} + O\left(\frac{q^{\frac{n}{2}}}{n}\right)$$

quand n tend vers $+\infty$.

[remarque : si on pose $x = q^n$, cette formule devient $I(x,q) = \frac{x}{\log_q(x)} + O\left(\frac{\sqrt{x}}{\log_q(x)}\right)$, qui est l'exacte analogue de la forme précise (conjecturée!) du classique théorème des nombres premiers.]

Solution de l'exercice 11.

- a) On suppose que d divise n. Soit $P \in \mathbb{F}_q[X]$ irréductible de degré d. Alors \mathbb{F}_{q^d} est un corps de rupture de \mathbb{F}_q . Or $\mathbb{F}_{q^d} \subset \mathbb{F}_{q^n}$ puisque d divise n, donc les racines de P sont annulées par $X^{q^n} X$. Donc P divise $X^{q^n} X$.
- b) Soit $P \in Irr(d,q)$ divisant $X^{q^n} X$. Le corps \mathbb{F}_{q^n} est un corps de décomposition de $X^{q^n} X$ sur \mathbb{F}_q , donc il contient les racines de P, donc il contient un corps de décomposition de P. Or un corps de décomposition de P est de degré d sur \mathbb{F}_q , et \mathbb{F}_{q^n} est de degré n sur \mathbb{F}_q , donc d divise n.
- c) Les deux questions précédentes assurent que l'on a légalité suivante dans $\mathbb{F}_q[X]$:

$$X^{q^n} - X = \prod_{d|n} \prod_{P \in Irr(d,q)} P(X).$$

En prenant les degrés des deux côtés, on obtient l'égalité souhaitée :

$$q^n = \sum_{d|n} dI(d,q) \,.$$

d) On montre d'abord la formule suivante :

$$\sum_{d|n} \mu(d) = 0 \text{ si } n \ge 2 , \sum_{d|n} \mu(d) = 1 \text{ si } n = 1.$$

La seconde formule est évidente. Pour la première, on décompose n en facteurs premiers distincts $n = p_1^{r_1} \dots p_s^{r_s}$, avec $r_i \ge 1$. Alors on a

$$\sum_{d|n} \mu(d) = \sum_{(t_1, \dots, t_s) \in \{0, 1\}^s} \mu(p_1^{t_1} \dots p_s^{t_s}) = \sum_{(t_1, \dots, t_s) \in \{0, 1\}^s} (-1)^{\sum_{i=1}^s t_i} = \sum_{k=0}^d \binom{s}{k} (-1)^k = (1-1)^s = 0.$$

Montrons alors le résultat demandé : supposons que $f(n) = \sum_{d|n} g(d)$. Alors on a

$$\sum_{d|n}\mu(\frac{n}{d})f(d)=\sum_{d|n}\mu(\frac{n}{d})\sum_{d'|d}g(d')=\sum_{d'|n}g(d')\sum_{d'|d|n}\mu(\frac{n}{d})\,.$$

Or on a

$$\sum_{d'|d|n}\mu(\frac{n}{d})=\sum_{k|\frac{n}{d'}}\mu(k)=0$$

sauf si d' = n auquel cas la somme vaut 1. Donc on en déduit que

$$\sum_{d|n} \mu(\frac{n}{d}) f(d) = g(n) .$$

Réciproquement, supposons que $\sum_{d|n} \mu(\frac{n}{d}) f(d) = g(n)$. Alors on a

$$\sum_{d|n} g(d) = \sum_{d|n} \sum_{d'|d} \mu(\frac{d}{d'}) f(d') = \sum_{d'|n} f(d') \sum_{d'|d|n} \mu(\frac{d}{d'}) = \sum_{d'|n} f(d') \sum_{k|\frac{n}{d'}} \mu(k) = f(n)$$

en utilisant à nouveau que $\sum_{k|\frac{n}{d'}} \mu(k) \neq 0$ si et seulement si d' = n.

e) On applique la question précédente à la relation $q^n = \sum_{d|n} dI(d,q)$. On obtient alors immédiatement

$$nI(n,q) = \sum_{d|n} \mu(\frac{n}{d})q^d,$$

d'où la formule souhaitée.

f) On déduit de la question précédente une formule de la forme

$$nI(n,q) = q^n + \sum_{d|n,d < n} \mu(\frac{n}{d})q^d.$$

Or pour tout $d|n, |\mu(\frac{n}{d})| \le 1$, donc il est clair que $\left|\sum_{d|n,d < n} \mu(\frac{n}{d})q^d\right| \le q^{\frac{n}{2}+1}$, donc $nI(n,q) \ne 0$, donc $I(n,q) \ne 0$, donc $I(n,q) \ge 1$.

g) On reprend la formule de la question précédente :

$$nI(n,q) = q^n + \sum_{d|n,d < n} \mu(\frac{n}{d})q^d.$$

On en déduit que

$$|nI(n,q) - q^n| \le q^{\frac{n}{2}} + \sum_{d \le \frac{n}{3}} q^d \le 2q^{\frac{n}{2}}.$$

Par conséquent, après division par n, on obtient

$$\left| I(n,q) - \frac{q^n}{n} \right| \le \frac{2q^{\frac{n}{2}}}{n},$$

d'où la conclusion.

Exercice 12: Soient p, l deux nombres premiers impairs, tels que $l \equiv 2$ [3] et la classe de p modulo l engendre $(\mathbb{Z}/l\mathbb{Z})^*$.

Montrer que $X^{l+1} - X + p$ est irréductible dans $\mathbb{Z}[X]$.

[Indication : on pourra considérer les réductions de ce polynôme modulo 2 et p.]

Solution de l'exercice 12. Modulo p, ce polynôme s'écrit $X^{l+1}-X=X(X^l-1)=X(X-1)\phi_l(X)$ dans $\mathbb{F}_p[X]$. Or la classe de p engendre $(\mathbb{Z}/l\mathbb{Z})^*$, donc le polynôme ϕ_l est irréductible dans $\mathbb{F}_p[X]$. Supposons que le polynôme initial n'est pas irréductible dans \mathbb{Z} . Alors il admet un facteur de degré ≤ 2 . Or modulo 2, ce polynôme s'écrit $X^{l+1}+X+1$. Il est clair qu'il n'a pas de racine dans \mathbb{F}_2 , donc il admet un facteur irréductible de degré 2. Donc il est divisible par X^2+X+1 (qui est l'unique polynôme irréductible de degré 2 sur \mathbb{F}_2). Or pour tout $n\geq 5$, on a $X^n+X+1=(X^2+X+1)(X^{n-2}-X^{n-3})+X^{n-3}+X+1$. Donc on a $\operatorname{pgcd}(X^n+X+1,X^2+X+1)=\operatorname{pgcd}(X^{n-3}+X+1,X^2+X+1)$. Une récurrence simple assure alors que $\operatorname{pgcd}(X^{l+1}+X+1,X^2+X+1)=\operatorname{pgcd}(X^3+X+1,X^2+X+1)$ (car l+1 est divisble par 3, par hypothèse). Mais il est clair que X^2+X+1 ne divise pas X^3+X+1 (ce dernier n'a pas de racine dans \mathbb{F}_2), donc ceci contredit le fait que X^2+X+1 divise $X^{l+1}+X+1$. Donc finalement le polynôme initial est irréductible dans $\mathbb{Z}[X]$.

Exercice 13: Soit \mathbb{F} un corps fini de cardinal $q = p^r$. Pour tout $Q \in \mathbb{F}[X_1, \dots, X_n]$, on pose $S(Q) := \sum_{x \in \mathbb{F}^n} Q(x) \in \mathbb{F}$.

- a) Pour $a_1, \ldots, a_n \in \mathbb{N}$, calculer $S(X_1^{a_1} \ldots X_n^{a_n})$.
- b) Soient P_1, \ldots, P_r des polynômes de $\mathbb{F}[X_1, \ldots, X_n]$, de degrés d_1, \ldots, d_r . On note $Z := \{x \in \mathbb{F}^n : P_1(x) = \cdots = P_r(x) = 0\}$. Si $P(x) := \prod_{i=1}^r (1 - P_i(x)^{q-1})$, exprimer S(P) en fonction du cardinal #Z de Z.
- c) En déduire que si $d_1 + \cdots + d_r < n$, alors #Z est multiple de p (théorème de Chevalley-Warning).
- d) En déduire que si les P_i sont des polynômes homogènes non constants (ou au moins si les P_i sont sans terme constant) et si $d_1 + \cdots + d_r < n$, alors le système $P_1(x) = \cdots = P_r(x) = 0$ a une solution non nulle dans \mathbb{F}^n .
 - On dit que le corps \mathbb{F} est un corps C_1 .
- e) Montrer l'application suivante (théorème de Erdös-Ginzburg-Ziv) : pour tout $n \geq 1$, pour tout $a_1, \ldots, a_{2n-1} \in \mathbb{Z}$, il existe un sous-ensemble $I \subset \{1, \ldots, 2n-1\}$ de cardinal exactement n tel que $\sum_{i \in I} a_i \equiv 0$ [n].

Solution de l'exercice 13.

a) On remarque d'abord que si l'un des a_i est nul, on a $S(X_1^{a_1} \dots X_n^{a_n}) = 0 \in \mathbb{F}$, puisque $\sum_{x \in \mathbb{F}} 1 = q.1 = 0$. On suppose désormais qu'aucun des a_i n'est nul. On a alors

$$S(X_1^{a_1} \dots X_n^{a_n}) = \sum_{x \in \mathbb{F}^n} x_1^{a_1} \dots x_n^{a_n} = \prod_{i=1}^n \left(\sum_{x \in \mathbb{F}} x^{a_i} \right).$$

On sait que le groupe \mathbb{F}^* est cyclique d'ordre N=q-1. Notons $\zeta\in\mathbb{F}^*$ un générateur Pour chaque i, on a

$$\sum_{x \in \mathbb{F}} x^{a_i} = \sum_{x \in \mathbb{F}^*} x^{a_i} = \sum_{k=0}^{N-1} \zeta^{a_i k} .$$

Alors deux cas se présentent : soit $\zeta^{a_i}=1$, i.e. q-1 divise a_i , et alors $\sum_{k=0}^{N-1} \zeta^{a_i k}=N=q-1=-1\in\mathbb{F}$. Soit $\zeta^{a_i}=1$, i.e. q-1 ne divise pas a_i , et alors $\sum_{k=0}^{N-1} \zeta^{a_i k}=\frac{\zeta^{Na_i-1}}{\zeta^{a_i-1}}=0$. Finalement, on conclut que

$$S(X_1^{a_1} \dots X_n^{a_n}) = (-1)^n$$
 si $q - 1$ divise tous les a_i ,

et

$$S(X_1^{a_1} \dots X_n^{a_n}) = 0 \text{ sinon }.$$

b) On remarque d'abord que pour tout $1 \le i \le r$ et pour tout $x \in \mathbb{F}^n$, on a $1 - P_i(x)^{q-1} = 1$ si $P_i(x) = 0$ et $1 - P_i(x)^{q-1} = 0$ sinon. Par conséquent, on a :

$$S(P) = \sum_{x \in \mathbb{F}^n} \prod_{i=1}^r (1 - P_i(x)^{q-1}) = \sum_{x \in Z} 1 = \#Z.1 \in \mathbb{F}.$$

c) On suppose $d_1 + \cdots + d_r < n$. Le degré de P est égal à

$$\deg(P) = (d_1 + \dots + d_r)(q-1) < n(q-1).$$

Par conséquent, si on développe le polynôme P, tout monôme $X_1^{a_1} \dots X_n^{a_n}$ apparaissant dans ce développement a un degré $0 \le a_1 + \dots + a_n < n(q-1)$, donc soit il existe $1 \le j \le n$ tel que $a_j = 0$, soit il existe un indice $1 \le i \le n$ tel que a_i ne soit pas multiple de q-1. Par conséquent, tout monôme $X_1^{a_1} \dots X_n^{a_n}$ apparaissant dans P vérifie $S(X_1^{a_1} \dots X_n^{a_n}) = 0$ (voir la première question). Donc on en déduit que $S(P) = 0 \in \mathbb{F}$. Or par la question b), on sait que $\#Z.1 = S(P) \in \mathbb{F}$, donc on en déduit que #Z.1 est nul dans \mathbb{F} , donc #Z est divisible par p.

- d) Sous ces hypothèses, l'élément $(0, ..., 0) \in \mathbb{F}^n$ est solution du système, donc $Z \neq \emptyset$, donc par la question d), l'ensemble Z est de cardinal au moins p, donc il contient un élément distinct de la solution nulle.
- e) Pour montrer l'application, on se ramène au cas où n est premier par récurrence. En effet, écrivons n=m.k, avec $m,k\geq 2$ et supposons le résultat connu pour m et k. Une récurrence simple à partir du résultat pour k assure qu'il existe des sous-ensembles I_1,\ldots,I_{2m-1} de $\{1,\ldots,(2m)k-1\}$ deux-à-deux disjoints, tels que pour tout $1\leq j\leq 2m-1, \sum_{i\in I_j}a_i\equiv 0$ [k]. Posons alors pour tout $j,b_j:=\sum_{i\in I_j}a_j$ et $c_j:=\frac{b_j}{k}$. On dispose alors de 2m-1 entiers (c_j) , donc le résultat pour m assure qu'il existe un sous-ensemble $J\subset\{1,\ldots,2m-1\}$ de cardinal m tel que $\sum_{j\in J}c_j\equiv 0$ [m]. Cette dernière égalité se réécrit, en posant $I:=\bigcup_{j\in J}I_j$,

$$\sum_{i \in I} a_i \equiv \sum_{j \in J} \sum_{i \in I_j} a_i \equiv \sum_{j \in J} kc_j \equiv 0 \ [n]$$

ce qui permet de montrer le résultat pour l'entier n puisque #I = n.

Il reste donc à montrer le cas où n=p est premier : pour cela, on considère les deux polynômes $P_1(X_1,\ldots,X_{2p-1}):=\sum_{i=1}^{2p-1}a_iX_i^{p-1}$ et $P_2(X_1,\ldots,X_{2p-1}):=\sum_{i=1}^{2p-1}X_i^{p-1}$. Puisque $\deg(P_1)+\deg(P_2)=2p-2<2p-1$, la question d) assure qu'il existe $x=(x_1,\ldots,x_{2p-1})\in\mathbb{F}_p^{2p-1},\ x\neq 0$, tel que $P_1(x)=P_2(x)=0$. Or pour tout $y\in\mathbb{F}_p,\ y^{p-1}=1$ si $y\neq 0$ et $0^{p-1}=0$, donc les égalités $P_1(x)=P_2(x)=0$ se réécrivent dans \mathbb{F}_p de la façon suivante $\sum_{i\in I}a_i=0$ et $\sum_{i\in I}1=0$, où $I:=\{1\leq i\leq 2p-1:x_i\neq 0\}$. Autrement dit, on trouve $\#I\equiv 0$ [p] et $\sum_{i\in I}a_i\equiv 0$ [p], donc #I=p et $\sum_{i\in I}a_i\equiv 0$ [p], ce qui conclut la preuve.

Exercice 14: On appelle "algèbre à division" (ou "corps gauche") tout anneau non nul A (pas forcément commutatif) dans lequel tout élément non nul est inversible.

Dans tout l'exercice, on fixe une algèbre à division finie A. On souhaite montrer que A est commutatif, c'est-à-dire que A est un corps (théorème de Wedderburn).

- a) Montrer que le centre Z de A est un corps fini de cardinal q, et que A est un Z-espace vectoriel de dimension n.
- b) Supposons n > 1, i.e. A non commutative. Écrire l'équation aux classes pour l'action de A^* sur lui-même par conjugaison. En déduire que $q^n 1 = q 1 + \sum \frac{q^n 1}{q^d 1}$, la somme portant sur un certain nombre de diviseurs stricts de n.
- c) En déduire que $\phi_n(q)$ divise q-1, où ϕ_n est le n-ième polynôme cyclotomique.
- d) En déduire une contradiction.
- e) Conclure.

Solution de l'exercice 14.

a) Il est clair que $Z \subset A$ est un sous-anneau commutatif (il est stable par somme, par produit, il contient 0 et 1). Montrons que c'est un corps : pour cela, il suffit de montrer que Z est stable par inverse. Soit $z \in Z \setminus \{0\}$. Alors par hypothèse, z admet un inverse $z^{-1} \in A$. Alors pour tout

 $a \in A$, on a za = az puisque z est central. En multipliant à gauche et à droite par z^{-1} , on en déduit que $az^{-1} = z^{-1}a$, donc $z^{-1} \in Z$. Donc Z est un corps fini, et on note $q = p^r$ son cardinal. Montrons que A est naturellement un Z-espace vectoriel. La multiplication extérieure $Z \times A \to A$ est définie par la multiplication dans A. On vérifie alors facilement que cette action de Z sur A munit le groupe abélien A d'une structure de Z-espace vectoriel. Enfin, A est de dimension finie sur Z puisque A est fini. On note n sa dimension.

b) Le groupe A^* agit sur lui-même par conjugaison : un élément $a \in A^*$ agit sur un élément $x \in A^*$ par la formule $a.x := axa^{-1}$. On vérifie que cela définit bien une action du groupe A^* sur A^* . On note $\{x_1, \ldots, x_r\}$ un ensemble de représentants des orbites pour cette action. Alors l'équation aux classes s'écrit :

$$\#A^* = \sum_{i=1}^r \frac{\#A^*}{\#\text{Stab}(x_i)}$$

où $\operatorname{Stab}(x_i)$ désigne le sous-groupe de A^* formé des $a \in A^*$ tels que $a.x_i = x_i$.

Or pour tout i, $\operatorname{Stab}(x_i) = A^*$ si et seulement si $x_i \in \mathbb{Z} \setminus \{0\}$. Par conséquent, l'équation précédente se réécrit ainsi :

$$#A^* = #(Z \setminus \{0\}) + \sum_{i:x_i \notin Z} \frac{#A^*}{\# \operatorname{Stab}(x_i)}.$$

Soit alors $x_i \notin Z$. Calculons $\#\mathrm{Stab}(x_i)$. On sait que $\mathrm{Stab}(x_i)$ est un sous-groupe de A^* , donc son cardinal divise $q^n - 1$, et on vérifie que $\mathrm{Stab}(x_i) \cup \{0\}$ est un sous Z-espace vectoriel de A: c'est exactement l'ensemble des $a \in A$ tels que $ax_i = x_ia$. Donc il existe un entier $1 \le d < n$ tel que $\#\mathrm{Stab}(x_i) = q^d - 1$. Enfin, puisque $q^d - 1|q^n - 1$, on sait que d doit diviser n. Finalement, on obtient que

$$q^{n} - 1 = q - 1 + \sum_{d} \frac{q^{n} - 1}{q^{d} - 1}$$

où chaque d apparaissant dans la somme est un diviseur strict de n (a priori, un même diviseur d peut apparaître plusieurs fois).

- c) On sait que $\phi_n(X)$ divise X^n-1 dans $\mathbb{Z}[X]$. Si d< n divise n, en utilisant les formules $X^n-1=\prod_{k|n}\phi_k(X)$ et $X^d-1=\prod_{m|d}\phi_m(X)$, on en déduit que $\frac{X^n-1}{X^d-1}=\prod_{k|n,k\nmid d}\phi_k(X)$ dans $\mathbb{Z}[X]$, donc en particulier $\phi_n(X)|\frac{X^n-1}{X^d-1}$. En évaluant en X=q, on trouve que $\phi_n(q)|\frac{q^n-1}{q^d-1}$, et la question précédente assure alors que $\phi_n(q)|q-1$.
- d) On a $\phi_n(q) = \prod_{\zeta} (q-\zeta)$, où ζ décrit les racines primitives n-ièmes de l'unité. Or pour toute racine de l'unité ζ différente de 1, on a clairement $|q-\zeta| > |q-1|$ (faire un dessin!). En particulier, on a $|\phi_n(q)| > |q-1|$, ce qui contredit la question précédente.
- e) La contradiction ainsi obtenue assure que l'hypothèse de la question b) (à savoir n > 1) n'est pas vérifiée. Par conséquent, n = 1, donc A = Z, donc A est commutative.

Exercice 15 : L'objectif de cet exercice est de montrer une partie du résultat suivant.

Soit $(P_i)_{i\in I}$ une famille de polynôme de $\mathbb{Z}[X_1,\ldots,X_n]$. Alors les assertions suivantes sont équivalentes :

- les polynômes $(P_i)_{i\in I}$ ont un zéro commun dans \mathbb{C}^n .
- il existe un ensemble infini de nombres premiers p tels que les $(P_i)_{i \in I}$ aient un zéro commun dans \mathbb{F}_p^n .
- pour tout nombre premier p assez grand, il existe un corps de caractéristique p où les $(P_i)_{i\in I}$ ont un zéro commun.

On va montrer que la deuxième assertion implique la première, et que la troisième implique également la première.

Pour ce faire, on répondra aux questions suivantes :

- a) (Nullstellensatz faible) : soient $(Q_j)_{j\in J}$ des polynômes dans $\mathbb{C}[X_1,\ldots,X_n]$, sans zéro commun dans \mathbb{C}^n .
 - i) Montrer que, pour tout $(a_1, \ldots, a_n) \in \mathbb{C}^n$, l'idéal $(X_1 a_1, \ldots, X_n a_n) \subset \mathbb{C}[X_1, \ldots, X_n]$ est maximal.
 - [Indication : on pourra comparer cet idéal avec le noyau du morphisme $\mathbb{C}[X_1,\ldots,X_n]\to\mathbb{C}$ défini par $P\mapsto P(a_1,\ldots,a_n)$]
 - ii) Soit $\mathfrak{m} \subset \mathbb{C}[X_1,\ldots,X_n]$ un idéal maximal. Définissons pour $1 \leq i \leq n, \ \phi_i : \mathbb{C}[X_i] \to \mathbb{C}[X_1,\ldots,X_n]/\mathfrak{m} =: K$. Montrer que $K = \mathbb{C}$, puis que $\operatorname{Ker}(\phi_i)$ est un idéal premier non nul, donc maximal. En déduire qu'il existe $(a_1,\ldots,a_n) \in \mathbb{C}^n$ tels que $\mathfrak{m} = (X_1-a_1,\ldots,X_n-a_n)$.
 - iii) En déduire que l'idéal engendré par les $(Q_j)_{j\in J}$ est $\mathbb{C}[X_1,\ldots,X_n]$ tout entier.
- b) Soit K/k une extension de corps. Soient $(a_{i,j})_{0 \le i \le n, 1 \le j \le n}$ des éléments de k. Supposons qu'il existe $(x_1, \ldots, x_n) \in K^n$ tels que $\sum_{i=1}^n a_{i,j} x_i = a_{0,j}$ pour tout $1 \le j \le n$. Montrer qu'il existe $(y_1, \ldots, y_n) \in k^n$ tels que $\sum_{i=1}^n a_{i,j} y_i = a_{0,j}$ pour tout $1 \le j \le n$.
- c) Soient $(P_i)_{i\in I}$ une famille de polynôme de $\mathbb{Z}[X_1,\ldots,X_n]$ sans zéro commun dans \mathbb{C}^n . En utilisant le Nullstellensatz, montrer qu'il existe un ensemble fini E de nombres premiers tel que pour tout $p \notin E$, pour tout corps F de caractéristique p, les $(P_i)_{i\in I}$ n'aient pas de zéro commun dans F.
- d) En déduire la réponse à la question initiale.

Solution de l'exercice 15.

- a) i) Considérons le morphisme indiqué $\phi: \mathbb{C}[X_1,\ldots,X_n] \to \mathbb{C}$ défini par $\phi(P):=P(a_1,\ldots,a_n)$. Alors il est clair que ϕ est surjectif. Notons \mathfrak{m} son noyau, qui est donc un idéal maximal. Par définition de ϕ , on a $(X_1-a_1,\ldots,X_n-a_n)\subset \mathfrak{m}$. Soit $P\in \mathbb{C}[X_1,\ldots,X_n]$. Une récurrence simple sur n assure que le polynôme P s'écrit dans $\mathbb{C}[X_1,\ldots,X_n]$
 - $P(X_1, \ldots, X_n) = (X_1 a_1) \cdot P_1(X_1, \ldots, X_n) + (X_2 a_2) P_2(X_2, \ldots, X_n) + \ldots + (X_n a_n) P_n(X_n) + \alpha$ avec $\alpha \in \mathbb{C}$. Supposons que $P \in \mathfrak{m}$. En évaluant cette égalité en (a_1, \ldots, a_n) , on obtient $\alpha = 0$, donc $P \in (X_1 - a_1, \ldots, X_n - a_n)$. Donc finalement $(X_1 - a_1, \ldots, X_n - a_n) = \mathfrak{m}$ est un idéal maximal.
 - ii) Le morphisme composé $\mathbb{C} \to \mathbb{C}[X_1,\ldots,X_n] \xrightarrow{\phi} K$ est clairement un morphisme de corps, donc on a une inclusion naturelle $\mathbb{C} \subset K$. Si l'extension K/\mathbb{C} n'était pas algébrique, alors K serait un \mathbb{C} -espace vectoriel de dimension infinie non dénombrable. Or $\mathbb{C}[X_1,\ldots,X_n]$ est clairement engendré sur \mathbb{C} par un nombre dénombrable de générateurs, donc K/\mathbb{C} est de dimension dénombrable. Donc K/\mathbb{C} est algébrique, or \mathbb{C} est algébriquement clos, donc $K=\mathbb{C}$.
 - Supposons ϕ_i injectif. Alors $\mathbb C$ contient $\mathbb C(X_i)$, mais ceci est impossible pour des raisons de dimension. Donc $\operatorname{Ker}(\phi_i) \neq 0$. Le morphisme ϕ_i n'est pas le morphisme nul puisque $\phi_i(1) \neq 0$ $(1 \notin \mathfrak{m})$. Donc on en déduit que $\operatorname{Ker}(\phi_i)$ est un idéal propre de $\mathbb C[X_i]$. C'est clairement un idéal premier, donc maximal, de $\mathbb C[X_i]$. Par conséquent, $\operatorname{Ker}(\phi_i)$ est l'idéal engendré par un polynôme irréductible unitaire $Q(X_i) \in \mathbb C[X_i]$. Un tel Q est nécessairement de la forme $Q(X_i) = X_i a_i$, pour un $a_i \in \mathbb C$. Donc finalement $\operatorname{Ker}(\phi_i) = (X_i a_i)$, donc $(X_i a_i)\mathbb C[X_1, \dots, X_n] \subset \mathfrak m$. Ceci étant vrai pour tout i, on en déduit que $(X_1 a_1, \dots, X_n a_n) \subset \mathfrak m$.
 - Alors la question a) i) assure que $\mathfrak{m} = (X_1 a_1, \dots, X_n a_n)$.
 - iii) On raisonne par l'absurde : on suppose que l'idéal I engendré par les $(Q_j)_{j\in J}$ n'est pas $\mathbb{C}[X_1,\ldots,X_n]$ tout entier. Alors il existe un idéal maximal \mathfrak{m} de cet anneau contenant I. Par la question a) ii) assure qu'il existe $(a_1,\ldots,a_n)\in\mathbb{C}^n$ tels que $\mathfrak{m}=(X_1-a_1,\ldots,X_n-a_n)$. Alors $I\subset (X_1-a_1,\ldots,X_n-a_n)$, donc pour chaque $j\in J$, il existe des polynômes $P_{1,j},\ldots,P_{n,j}\in\mathbb{C}[X_1,\ldots,X_n]$ tels que $Q_j=(X_1-a_1)P_{1,j}+\cdots+(X_n-a_n)P_{n,j}$. En particulier, $Q_j(a_1,\ldots,a_n)=0$ pour tout $j\in J$. Donc les polynômes $(Q_j)_{j\in J}$ ont un zéro commun dans \mathbb{C}^n , ce qui contredit l'hypothèse. Par conséquent, l'idéal engendré par les $(Q_j)_{j\in J}$ est l'anneau $\mathbb{C}[X_1,\ldots,X_n]$ tout entier.

- b) On voit l'équation de l'énoncé comme un système linéaire de la forme AX = B, où A est une matrice carrée de taille n à coefficients dans k, et $B \in k^n$. Alors on sait que si cette équation a des solutions dans une extension, alors elle a des solutions dans k (en utilisant par exemple les formules de Cramer qui expriment les solutions en fonction des coefficients de A et de B).
- c) Par la question a) iii), on sait que l'idéal engendré par les $(P_i)_{i\in I}$ est $\mathbb{C}[X_1,\ldots,X_n]$. Par conséquent, cet idéal contient le polynôme constant égal à 1. Donc il existe un sous-ensemble fini $J\subset I$ et des polynômes $(Q_j)_{j\in J}$ tels que $\sum_{j\in J}Q_jP_j=1$. On voit cette relation comme un système d'équations linéaires en les coefficients des polynômes Q_j . Puisque ce système linéaire a une solution en nombres complexes (en l'occurence les coefficients des polynômes Q_j), la question b) assure qu'il admet une solution rationnelle. Par conséquent, on peut supposer que les polynômes Q_j ont leurs coefficients dans \mathbb{Q} .

Si on note $N \in \mathbb{N}^*$ le PPCM des dénominateurs des coefficients des Q_j , en définissant $R_j := NQ_j \in \mathbb{Z}[X_1, \dots, X_n]$, on a la relation suivante dans $\mathbb{Z}[X_1, \dots, X_n]$:

$$\sum_{j \in J} R_j P_j = N .$$

On définit alors E comme l'ensemble des diviseurs premiers de N. Alors E est un ensemble fini de nombres premiers. Soit p un nombre premier et F un corps de caractéristique p. Si les polynômes $(P_i)_{i\in I}$ ont un zéro commun $(a_1,\ldots,a_n)\in F^n$, alors on a N=0 dans F, donc p divise N, donc $p\in E$. Par conséquent, on a bien montré que pour tout $p\notin E$, pour tout corps F de caractéristique p, les polynômes $(P_i)_{i\in I}$ n'ont pas de zéro commun dans F^n .

d) C'est une conséquence directe de la question précédente.