Conector VGA (Video Graphics Array)

Os conectores **VGA** (*Video Graphics Array*) foram desenvolvidos na década de 1980 pela IBM e são bastante conhecidos, pois estiveram presentes na maioria absoluta dos "grandalhões" monitores de tubo (CRT — *Cathode Ray Tube*), bem como foram implementados nos <u>primeiros monitores LCD</u>.

O conector VGA, cujo nome é *D-Sub* ou *Conector DB*, é composto por três "fileiras" de cinco pinos. Esses pinos são conectados a um cabo cujos fios transmitem, de maneira independente, informações sobre as cores vermelha (*red*), verde (*green*) e azul (*blue*). A combinação dessas cores, também conhecida como esquema RGB, resulta nas imagens exibidas na tela.

Também cabe ao cabo VGA transmitir informações sobre frequências. A *frequência horizontal* consiste no número de linhas da tela que o monitor consegue "preencher" por segundo. Assim, quando um monitor consegue varrer 60 mil linhas, dizemos que a sua frequência horizontal é de 60 KHz.

Existe também a *frequência vertical* ou *taxa de atualização*, que consiste no tempo em que o monitor leva para ir do canto superior esquerdo da tela para o canto inferior direito.

Assim, se a frequência horizontal indica a quantidade de vezes que o monitor consegue varrer linhas por segundo, a frequência vertical indica a quantidade de vezes que a tela como um todo é percorrida por segundo. Se ela é percorrida, por exemplo, 56 vezes por segundo, dizemos que a frequência vertical do monitor é de 56 Hz.

Por definição, conexões VGA suportam até 70 Hz de taxa de atualização e <u>resoluções de tela</u> de até 800x600 pixels (graças ao SVGA, abordado a seguir), embora a resolução de 640x480 pixels tenha sido a mais comum na época em que esse padrão era comum.

Vale dizer ainda que muitos monitores vinham com cabos VGA com pinos faltantes. Não era um defeito: embora os conectores VGA tenham um encaixe com 15 pinos, nem sempre todos eram usados.

Cabo VGA

SVGA (Super Video Graphics Array)

Pode-se encontrar referências ao **SVGA** (*Super VGA*). Trata-se, essencialmente, de uma versão melhorada do VGA apresentada pela VESA (*Video Electronics Standards Association*) para trazer suporte a resoluções maiores. Os conectores, porém, não mudaram.

Por conta da sua proposta de aumentar a resolução suportada pelo padrão, é comum que a sigla SVGA ou o nome Super VGA sejam usados para designar a resolução de 800x600 pixels.

Conector DVI (Digital Video Interface)

Revelados no fim da década de 1990, os conectores **DVI** (*Digital Video Interface*) foram, pelo menos até certo ponto, considerados substitutos do padrão VGA. Isso porque, tal como o seu nome indica, as informações das imagens podem ser tratadas de maneira totalmente digital aqui, o que não ocorre com o padrão VGA.

Quando, por exemplo, um monitor LCD trabalha com conectores VGA, ele precisa converter o sinal que recebe para digital. Esse processo tem o efeito colateral de reduzir a qualidade da imagem.

Como o DVI trabalha diretamente com sinais digitais, não é necessário fazer a conversão, portanto, a qualidade da imagem é mantida. Por essa razão, a saída DVI foi bastante empregada em monitores de vídeo, projetores, TVs, entre outros equipamentos de vídeo.

Conectores VGA e DVI

Convém destacar que a indústria adotou mais de um tipo de conector DVI:

DVI-A: é um tipo que utiliza sinal analógico, porém oferece qualidade de imagem superior ao padrão VGA. O 'A' em DVI-A é de *Analog* (analógico);

DVI-D: é um tipo similar ao DVI-A, mas utiliza sinal digital, razão pela qual o DVI-D também é conhecido como **DVI Digital**. É também mais comum que o seu similar por ter sido muito implementado em placas de vídeo;

DVI-I: esse padrão consegue trabalhar tanto com DVI-A quanto com DVI-D. Por conta dessa conveniência, o DVI-I foi amplamente adotado pela indústria. O 'I' na sigla vem de *Integrated* (integrado).

Cabo DVI

Há ainda conectores DVI que trabalham com as especificações *Single Link* e *Dual Link*. O primeiro suporta resoluções de até 1920x1080 pixels e, o segundo, resoluções de até 2060x1600 pixels, ambos com frequência de até 60 Hz.

O cabo dos dispositivos que utilizam o padrão DVI é composto, basicamente, por quatro pares de fios trançados, sendo um par para cada cor primária (vermelho, verde e azul) e um para o sincronismo.

Já os conectores variam conforme o tipo do DVI, mas são parecidos entre si, como mostra a imagem a seguir:

Tipos de conectores DVI

Apesar de trazer grandes avanços em relação ao VGA, como resoluções maiores e suporte a telas mais largas, o DVI foi progressivamente sendo substituído pelo <u>HDMI</u>, sendo inclusive compatível com este: você pode ter um cabo com conector DVI em uma ponta e HDMI na outra.

Conector S-Video (Separated Video)

Para entender o **S-Video** (*Separated Video*), é melhor conhecer, antes, outro padrão: o *Compost Video*, mais conhecido como *Vídeo Composto*. Esse tipo utiliza conectores do tipo RCA (*Radio Corporation of America*) e era comumente encontrado em TVs, aparelhos de DVD, filmadoras, entre outros.

Geralmente, equipamentos com Vídeo Composto fazem uso de três cabos, sendo dois para áudio (canal esquerdo e canal direito) e o terceiro para o vídeo. Este último cabo é formado por dois fios: um responde pela transmissão da imagem em si enquanto o outro atua como "terra".

O S-Video, por sua vez, tem um único cabo formado por três segmentos: um transmite sinal com parâmetros de brilho e "estrutura" em preto e branco; outro envia informações de cores; o terceiro atua como terra. É essa divisão de funções que fez o S-Video receber a denominação Separated Video.

Placa de vídeo com S-Video e DVI

O conector do padrão S-Video é conhecido como *Mini-Din* e costuma ser formado por quatro pinos. Também é possível encontrar conexões S-Video de sete pinos, o que indica que o dispositivo também pode contar com Vídeo Componente (visto adiante).

Muitas placas de vídeo ofereciam conexão VGA ou DVI com S-Video. Dependendo do caso, era possível encontrar os três tipos de conexão na mesma placa.

Vale dizer que o S-Video surgiu na década de 1980, é totalmente analógico e suporta as resoluções 480i (em NTSC) e 576i (em PAL).

Component Video (Vídeo Componente)

O padrão **Component Video** ou, em bom português, **Vídeo Componente**, foi muito utilizado em computadores para trabalhos profissionais (como edição de vídeo), mas o seu uso foi mais comum em aparelhos de DVD, <u>Blu-ray</u>, TVs de alta definição e sistemas de home theater.

A conexão do Component Video é feita por meio de um cabo "triplo", sendo que, geralmente, um de seus fios é identificado com a cor verde, outro é indicado pela cor azul e o terceiro recebe cor vermelha, em um esquema conhecido como Y-Pb-Pr (ou Y-Cb-Cr).

Cabo Component Video

O primeiro (de cor verde), é responsável pela transmissão de parâmetros de brilho e estrutura em preto e branco da imagem. Os demais conectores trabalham com os dados das cores e com o sincronismo. Eles devem ser encaixados nos conectores com cores correspondentes (verde com verde, azul com azul, vermelho com vermelho).

Para fazer a conexão de um dispositivo ao computador usando o Component Video, era necessário utilizar um cabo especial: uma de suas extremidades continha os conectores Y-Pb-Pr, enquanto a outra possuía um encaixe único para ser inserido na placa de vídeo.

O Vídeo Componente é um padrão analógico e, via de regra, tem qualidade superior ao S-Video, podendo trabalhar com resoluções como 1080i e 1080p, embora as resoluções 480p, 576i, 576p e 720p fossem muito mais frequentes em equipamentos compatíveis com esse padrão.

Conectores Vídeo Componente em uma TV

HDMI

O HDMI foi projetado em 2002 como uma opção para substituir os antigos padrões <u>DVI</u>, <u>VGA</u>, SCART e o vídeo componente (sinal de vídeo dividido em dois ou mais componentes. Era aquele cabo com conectores coloridos).

É possível encontrar cinco tipos de conectores HDMI:

- 1. A (conector padrão)
- 2. B (conector estendido) com especificação 1.0
- 3. C (conector mini) com especificação 1.3
- 4. D (conector micro) com especificação 1.4
- 5. E (conector para automotivos) também na especificação 1.4

DisplayPort

Projetado em 2006, o padrão DisplayPort (DP), assim como o HDMI, também conduz áudio e imagem em alta-definição em relação aos antigos padrões DVI, VGA, SCART e o vídeo componente – caso tanto seu dispositivo eletrônico e tela sejam compatíveis.

Apesar de já existir há algum tempo, sua popularidade ainda é menor que o HDMI, mas a chegada de eletrónica com opção para DisplayPort pode mudar essa realidade nos próximos anos. O DisplayPort possui conector com 20 pinos e o cabo pode ser encontrado em dois tamanhos: o padrão e o Mini DisplayPort.

Diferença entre HDMI e DisplayPort

Cabos

Em relação aos tipos de cabo, o padrão HDMI tem quatro opções no mercado e um quinto padrão, mais recente, para HDMI 2.1. O problema nessa variedade é que, ao menos em cabos mais antigos, não há indicação no produto sobre qual modelo ele é (padrão, padrão com ethernet, alta velocidade, alta velocidade com ethernet).

Usar um cabo HDMI "errado", para a função que você deseja, pode causar falhas no vídeo e/ou áudio, problemas com sincronização e etc. Não que um cabo HDMI escolhido errado vá estragar seu aparelho, mas certamente você terá uma experiência abaixo do que gostaria.

Já o cabo DisplayPort vem em apenas um padrão. Ele transporta vídeo e áudio digital, mas ao contrário de alguns modelos do HDMI, não envia dados ethernet. Vale destacar que ambos os cabos (HDMI e DisplayPort) podem ser usados com adaptadores, dependendo da sua necessidade.

O HDMI consegue lidar bem com um fluxo único de vídeo e som, ou seja, é uma boa opção para ligar, por exemplo, um PC a um único monitor ou ligar um videogame a TV. Entretanto, se você é uma pessoa que prefere trabalhar (ou jogar) com dois monitores ao mesmo tempo, o DisplayPort é mais indicado já que tem a capacidade de suportar até quatro monitores com resolução 1920×1200.

No caso de dois monitores, a interface suporta a resolução de 2560×1600 para cada. Se você tem no seu PC uma placa que suporte o padrão DP, e quer usar dois monitores, esta pode ser uma boa opção. Caso sua tela não tenha uma saída para DisplayPort, vale comprar um adaptador.

Cabo DisplayPort

Qual escolher?

Depende do seu tipo de uso. Não é fundamental ter o DisplayPort em tudo, mas é bem interessante poder usá-lo para jogos, por exemplo (dependendo da sua GPU). Os melhores

monitores, placas de vídeo e PCs all-in-one do mercado têm adotado o padrão. É possível encontrar, no mínimo, uma entrada DP nestes dispositivos – juntamente com o HDMI.

Ainda sobre games, se você usa alguma GPU da <u>NVIDIA</u>, o DisplayPort é recomendado caso queira usar a tecnologia <u>G-Sync</u> (reduz o efeito de "tearing", ou recorte da imagem). Já o <u>FreeSync</u>, equivalente do G-Sync só que da <u>AMD</u>, funciona por meio do HDMI (em displays lançados recentemente).

O padrão HDMI 2.1 é bem mais avançado que as versões anteriores, com banda em torno de 48Gbps e suporte ao <u>HDR</u>. O cabo ainda traz a função Enhanced Audio Return Channel (eARC), permitindo que TVs enviem sinais de som para receptores.

Para monitores gamers, que costumam trabalhar com taxas de atualização que variam de 75Hz a 250Hz, o HDMI 2.1 tem vantagem sobre as versões antigas (antes do 2.0), se sua GPU é uma AMD com FreeSync. As versões antigas do HDMI limitam o 4K a apenas 30Hz.

Monitores gamer costumam vir com, ao menos, um conector DisplayPort – além do HDMI

O padrão mais recente do DisplayPort é o 1.4, com banda de 32,4 Gbps. Apesar de parecer mais limitado, em relação ao HDMI 2.1, sua taxa de compactação de 3:1 é quase sem perda. Por isso, o cabo é capaz de executar tarefas complexas de exibição de imagem e som.

Além da possibilidade de conectar mais telas que o HDMI, o DP permite vídeo de altíssima resolução (HDR e até 8K) e SuperSpeed USB — usando um cabo para isso. Se estiver usando uma placa de vídeo da NVIDIA, e com um monitor que tenha saída DisplayPort, o ideal é usar este cabo para tirar proveito do G-Sync (mesmo tendo saídas HDMI à disposição).

Novamente, é importante enfatizar que só o cabo não fará com que você consiga jogar a, por exemplo, 144Hz. É necessário que tanto o seu monitor quanto a placa de vídeo deem suporte a essa frequência (ou superior).

Conclusão

O DisplayPort tem um foco maior para substituir os antigos padrões DVI e VGA no PC, especialmente com a possibilidade de conectar, sem quase perda nenhuma de qualidade

visual e de som, vários monitores (pode ser necessário usar um hub para isso). Já o HDMI foi projetado por um grupo de fabricantes de eletrônicos para aplicações comerciais mais abrangentes, como em aparelhos de TV.

A diferença do HDMI e do DisplayPort, na hora da sua escolha, vai depender diretamente do tipo de conteúdo que pretende exibir e, claro, de quais eletrônicos você tem disponíveis. Fique atento às especificações do monitor e/ou da TV para adquirir a versão mais recente e que vá entregar a melhor experiência possível.