1 Assignment 6
1 Assignment 6 1.1 Learning Objectives
1.2 Written Questions
1. Computing a transformation matrix
a. Find corresponding Keypoints between an object
a. Find corresponding Keypoints between an object and an image using an appropriate algorith like
3171.
b. Eliminate outliers among the point using an algorithm
b. Eliminate outliers among the point using an algorithm like RANSAC. At least 3 good point are required but over determination is better
but over determination is better
c. Solve this linear system
$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix}$
d e + y - y
where X is the linear transformation
matrix of is an original keypoint, and
matrix, a is an original keypoint, and X is the mapped keypoint d. In actuality a numerical method would be used to find this:
d. In actuality a numerical meth od would
be used to find this:
min(xa-x')
2. Warping four corners
Original four corners
(0,0), (w-1,0), (w-l, h-l), (0, h-l)
Warped four corners
2. Warping four corners Original four corners (0,0), (w-1,0), (w-1, h-1), (0, h-1) Warped four corners (0,0), T[w-1], T[n-1], T[0], T[0] 1]

Assuming uniform illumination Thew-Iorig =
$$\Delta i$$

 $SSD_{new} = \sum_{i=1}^{|W|} [x_i - (y_i + \Delta i)]$

$$= \sum_{i} x_{i}^{2} - 2x_{i}(y_{i} + \Delta c) + y_{i}^{2} + 2\Delta c + \Delta c^{2}$$

$$= \sum_{i} x_{i}^{2} - 2x_{i}y_{i} + y^{2} - 2x_{i}\Delta c + 2\Delta c + \Delta c^{2}$$

$$= SSD_{\text{orig}} + \sum_{i} \left[2\Delta c \left(1 - x_{i} \right) + \Delta c^{2} \right]$$

b. Show normalized Correlation Coefficient is invarient to changes in bri where and contrast

changes in bri where and contrast
$$ax_i+b=|W| \geq ax_i+b=b+a \geq x_i$$

$$=b+ax$$

$$|W|$$

$$G_{ax_{i}+b}^{2} = \overline{|W|} \ge \left[ax_{i}+b-(b+a\overline{x})\right]^{2}$$

$$= \overline{|W|} \ge \left[a(x_{i}-\overline{x})\right]^{2}$$

$$= \overline{|W|} \cdot a^{2} \ge (x_{i}-\overline{x})^{2}$$

$$= a^{2} \cdot 6x_{i} \text{ or } 6ax_{i}+b = a \cdot 6x_{i}$$

 $h \left(\left(\frac{ax_i + b - \left(b - a\overline{x} \right) \left[ay_i + b - \left(b - a\overline{y} \right) \right]}{a^2 6x_i \cdot a^2 6y_i} \right)$ $= \frac{1}{a^4 |W|} \sum_{i=1}^{\infty} \frac{a^2(x_i - \overline{x})(y_i - \overline{y})}{6x 6y}$ $=\frac{1}{|W|}\sum \frac{(x_{i}-\overline{x})(y_{i}-\overline{y})}{6\times6\gamma}$... n CCax, +b = n CCx; and the normalized Correlation Coefficient 15 invarient to change in lonightness and contrast C. The goal of Newton-Raphson method is to find roots for a function - values in the domain at which the function equals zero. Finding the line tangent to f(x) at Xo y = mx + b $m = f'(x_0)$ f(x°) = f(x°) X°+p $b = f(x) \cdot f'(x_0)$ is the equation for the tangent line d. Brush up on Eigenvalues