Trabajo Fin de Grado Diseño de un pulsómetro por infrarrojos

Rafael Bailón Ruiz

Tutor Dr. Alberto J. Palma López Cotutor Dr. Fernando Martínez Martí

Departamento de Electrónica y Tecnología de Computadores
Universidad de Granada

20 julio de 2015

Índice

- 1 Introducción
- Estado del Arte Fundamento teórico Medida de las pulsaciones Dispositivos comerciales
- 3 Diseño y desarrollo del sistema Hardware Firmware Software
- 4 Resultados

Prueba de validación estática Prueba de validación dinámica

5 Conclusiones y trabajos futuros

- Signos vitales:
 - Temperatura corporal
 - · Frecuencia respiratoria
 - Tensión arterial
 - Frecuencia cardíaca

- · Signos vitales:
 - · Temperatura corporal
 - · Frecuencia respiratoria
 - Tensión arterial
 - Frecuencia cardíaca

Pulsimetría

Método no invasivo de monitorización de la frecuencia cardíaca

- Signos vitales:
 - · Temperatura corporal
 - · Frecuencia respiratoria
 - Tensión arterial
 - Frecuencia cardíaca

Pulsimetría

Método no invasivo de monitorización de la frecuencia cardíaca

Fotopletismografía (PPG)

Representación de la variación volumétrica de las arterias obtenida mediante luz

· Aumento de las enfermedades crónicas

- · Aumento de las enfermedades crónicas
- · Incremento de incidentes cardiacos inesperados
 - Infarto
 - · Muerte súbita

- Aumento de las enfermedades crónicas
- Incremento de incidentes cardiacos inesperados
 - Infarto
 - Muerte súbita
- Necesidad de monitorización fuera del recinto hospitalario (home care)

- Aumento de las enfermedades crónicas
- Incremento de incidentes cardiacos inesperados
 - Infarto
 - Muerte súbita
- Necesidad de monitorización fuera del recinto hospitalario (home care)
- La instrumentación médica suele ser aparatosa y compleja de utilizar

- Aumento de las enfermedades crónicas
- Incremento de incidentes cardiacos inesperados
 - Infarto
 - Muerte súbita
- Necesidad de monitorización fuera del recinto hospitalario (home care)
- La instrumentación médica suele ser aparatosa y compleja de utilizar
- Auge de los smartphones y wearable devices:
 - Potencia
 - Interfaz de usuario
 - Conectividad

• Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.
 - · Obtención del fotopletismograma.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.
 - · Obtención del fotopletismograma.
 - · Procesado de la señal.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.
 - · Obtención del fotopletismograma.
 - · Procesado de la señal.
 - · Adquisición mediante un microcontrolador.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.
 - Obtención del fotopletismograma.
 - · Procesado de la señal.
 - · Adquisición mediante un microcontrolador.
 - Comunicación inalámbrica con un sistema monitorización.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.
 - Obtención del fotopletismograma.
 - · Procesado de la señal.
 - · Adquisición mediante un microcontrolador.
 - · Comunicación inalámbrica con un sistema monitorización.
 - Diseño del sistema en placa de circuito impreso.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.
 - Obtención del fotopletismograma.
 - · Procesado de la señal.
 - · Adquisición mediante un microcontrolador.
 - · Comunicación inalámbrica con un sistema monitorización.
 - Diseño del sistema en placa de circuito impreso.
- Diseño e implementación de una aplicación móvil para la monitorización remota del pulso cardíaco de un paciente.

- Estudio bibliográfico de las señales cardíacas y de dispositivos existentes para su medida.
- Diseño y fabricación de un pulsómetro con sensor infrarrojo.
 - Obtención del fotopletismograma.
 - · Procesado de la señal.
 - · Adquisición mediante un microcontrolador.
 - · Comunicación inalámbrica con un sistema monitorización.
 - Diseño del sistema en placa de circuito impreso.
- Diseño e implementación de una aplicación móvil para la monitorización remota del pulso cardíaco de un paciente.

Índice

- Introducción
- 2 Estado del Arte Fundamento teórico

Medida de las pulsaciones Dispositivos comerciales

- Diseño y desarrollo del sistema Hardware Firmware Software
- Resultados Prueba de validación estática Prueba de validación dinámica
- 5 Conclusiones y trabajos futuros

Corazón

 Secuencia de eventos eléctricos, mecánicos, sonoros y de presión relacionados con el flujo de sangre a través de las cavidades cardíacas

- Secuencia de eventos eléctricos, mecánicos, sonoros y de presión relacionados con el flujo de sangre a través de las cavidades cardíacas
- Fases:

- Secuencia de eventos eléctricos, mecánicos, sonoros y de presión relacionados con el flujo de sangre a través de las cavidades cardíacas
- · Fases:

Sístole Contracción

- Secuencia de eventos eléctricos, mecánicos, sonoros y de presión relacionados con el flujo de sangre a través de las cavidades cardíacas
- Fases:

Sístole Contracción

Diástole Relajación

Señales cardíacas

ECG y PPG

Índice

- 1 Introducción
- 2 Estado del Arte Fundamento teórico Medida de las pulsaciones Dispositivos comerciales
- 3 Diseño y desarrollo del sistema Hardware Firmware Software
- Resultados Prueba de validación estática Prueba de validación dinámica
- 5 Conclusiones y trabajos futuros

 Registra la variación de la absorbancia de tejidos, órganos y fluidos al ser iluminados

- Registra la variación de la absorbancia de tejidos, órganos y fluidos al ser iluminados
- · Compuesto por

- Registra la variación de la absorbancia de tejidos, órganos y fluidos al ser iluminados
- · Compuesto por
 - · Emisor: diodo

Sensor fotopletismográfico

- Registra la variación de la absorbancia de tejidos, órganos y fluidos al ser iluminados
- · Compuesto por
 - · Emisor: diodo
 - Receptor: transistor o fotodiodo

Sensor fotopletismográfico

- Registra la variación de la absorbancia de tejidos, órganos y fluidos al ser iluminados
- Compuesto por
 - · Emisor: diodo
 - Receptor: transistor o fotodiodo
- Rango de frecuencias: infrarrojo rojo

Sensor fotopletismográfico

- Registra la variación de la absorbancia de tejidos, órganos y fluidos al ser iluminados
- Compuesto por
 - · Emisor: diodo
 - Receptor: transistor o fotodiodo
- Rango de frecuencias: infrarrojo rojo

Topología del sensor

Topología del sensor

Transmis<u>ión</u>

Reflexión

Componentes del PPG

Pulsos

Índice

- 1 Introducción
- 2 Estado del Arte Fundamento teórico Medida de las pulsaciones
 - Dispositivos comerciales
- Diseño y desarrollo del sistema Hardware Firmware Software
- Resultados Prueba de validación estática Prueba de validación dinámica
- 5 Conclusiones y trabajos futuros

Pulsómetros ECG

Monitor ECG

Cardiofrecuencimetro

Pulsómetros PPG

- · Pulsera Fithit
- FitBit Inc. >100 patentes sobre pulsómetros vestibles

- Pulsera Samsung Gear Fit
- Diseñada para comuncación con smartphone

Problema de los pulsómetros PPG

· Artefactos debidos al movimiento

Topología de los sensores

Topología de los sensores

Diagrama

Índice

- 1 Introducción
- Estado del Arte Fundamento teórico Medida de las pulsaciones Dispositivos comerciales
- 3 Diseño y desarrollo del sistema Hardware

Firmware Software

- A Resultados Prueba de validación estática Prueba de validación dinámica
- 5 Conclusiones y trabajos futuros

Alimentación

Adquisición y procesado

Característica de los filtros

Microcontrolador y comunicación

Índice

- 1 Introducción
- Estado del Arte Fundamento teórico Medida de las pulsaciones Dispositivos comerciales
- 3 Diseño y desarrollo del sistema

Hardware

Firmware

Software

- Prueba de validación estática
 Prueba de validación dinámica
- 5 Conclusiones y trabajos futuros

Función principal

Manejo de interrupciones

Índice

- 1 Introducción
- Estado del Arte Fundamento teórico Medida de las pulsaciones Dispositivos comerciales
- 3 Diseño y desarrollo del sistema Hardware

Firmware

Software

4 Resultados

Prueba de validación estática Prueba de validación dinámica

5 Conclusiones y trabajos futuros

Aplicación Android

Pulsómetro en funcionamiento

Índice

- 1 Introducción
- Estado del Arte Fundamento teórico Medida de las pulsaciones Dispositivos comerciales
- Diseño y desarrollo del sistema Hardware Firmware Software
- 4 Resultados

Prueba de validación estática Prueba de validación dinámica

5 Conclusiones y trabajos futuros

• Toma de pulsaciones en reposo

- Toma de pulsaciones en reposo
- Sujeto:
 - Varón
 - · Atleta veterano
 - 54 años

- Toma de pulsaciones en reposo
- Sujeto:
 - Varón
 - Atleta veterano
 - 54 años
- Validación de los datos:
 - · Comparación con cardiofrecuencímetro comercial basado en ECG

	Pulsómetro	Cardiofrecuencímetro
Promedio pulsaciones [PPM]	70	69
Desviación estándar	4,01	1,90
g	8	8
n	9	9
t student (0,9950)	3,355	3,355
Error absoluto	±4,49	±2,12

Índice

- Fundamento teórico Medida de las pulsaciones
- Resultados

Prueba de validación dinámica

 Toma de pulsaciones durante el periodo de recuperación tras sesión de ejercicio

- Toma de pulsaciones durante el periodo de recuperación tras sesión de ejercicio
- Sujeto:
 - Varón
 - · Atleta veterano
 - 54 años
- La validación de los datos:
 - · Comparación con cardiofrecuencímetro comercial basado en ECG

Pulsaciones del sujeto durante el periodo de recuperación

Pulsómetro frente a cardiofrecuencímetro

Pulsómetro/Cardiofrecuencímetro — Lineal (Pulsómetro/Cardiofrecuencímetro)

Conclusiones

- El estudio del estado del arte ha revelado las posibilidades de la pulsimetría basada en PPG
- La comunicación inalámbrica y los smartphones facilitan el uso de la instrumentación médica
- · Comprobación del correcto funcionamiento del pulsómetro

Trabajos Futuros

- Pasar del montaje experimental al producto final
- Diseñar un sistema de fijación del sensor al dedo
- · Ampliar funcionalidad de la aplicación
 - Portar a otros sistema operativos
 - · Más opciones de configuración y personalización

Preguntas

¡Gracias por su atención!

LA MEJOR DEFENSA DE TESIS ES UN BUEN ATAQUE DE TESIS 1

Contenido disponible en https://github.com/rafael1193/TFG-heart-rate-monitor

Referencias I

¹Thesis Defense de Randall Munroe traducido por Gabriel Rodríguez Alberich, disponible bajo la licencia CC BY-NC 2.0 http://es.xkcd.com/strips/defensa-de-tesis/