IN THE CLAIMS:

1. (Currently Amended) A method for communicating packets from a packet source in a first network to a packet destination in a second network, where said packet destination has a network address X, comprising the steps of:

communicating, from an element in said second network to an element in said first network, an address Y that corresponds to address X mapped with function \mathcal{Q} ; and

mapping, in a node in said second network, at least a sub-field of an address field contained in packets received from said first network with a function \mathcal{P} , where \mathcal{Q} and \mathcal{P} are functions such that $\mathcal{P}(\mathcal{Q}(X))=X$, where functions \mathcal{P} and \mathcal{Q} change upon occurrence of an event.

- **2.** (Original) The method of claim 1 where functions \mathcal{P} and \mathcal{Q} change upon occurrence of an event.
- **3.** (Withdrawn) The method of claim **2** where said event is reception of a change-specification signal, or a specified change in the time-of-day.
- **4.** (Currently Amended) The method of claim $2 ext{ 1}$ where said functions \mathcal{Q} and \mathcal{P} change at regular time intervals.
- **5.** (Original) The method of claim 1 where said changes to said mapping function \mathcal{Q} and mapping function \mathcal{P} are algorithmically determined.
- **6.** (Original) The method of claim 1 where said changes to said mapping function \mathcal{Q} and mapping function \mathcal{P} are determined by reference to a table that is stored in said element of said second network, and a table that is stored in said node.
- 7. (Original) The method of claim 6 where said table in said node contains seed values that are used to develop a decryption function to serve as

mapping function \mathcal{P} , and said table in said element of said second network contains seed values that are used to develop a decryption function to serve as mapping function \mathcal{C} .

- **8.** (Original) The method of claim 1 further comprising the step of communicating, from said element in said second network, an identifier that is instrumental in routing said packets from said first network to said second network.
- **9.** (Original) The method of claim 1 where said node includes links to elements outside said second network.
- **10. (Original)** The method of claim **9** where said elements outside said second network are nodes in a third network.
- **11.** (Original) The method of claim 9 where said elements outside said second network are links to a PSTN network.
- **12. (Original)** The method of claim **9** where said elements outside said second network are Media Terminal Adapters
- **13.** (Original) The method of claim 1 where said node includes links to nodes outside said second network.
- **14.** (Currently Amended) The method of claim 1 where said element is in said second network is a call agent.
- **15.** (Original) The method of claim **14** where said call agent implements communication features for said packet destination.

- **16.** (Original) The method of claim 1 where said element in said first network is a call agent.
- 17. (Original) The method of claim 16 where said step of communicating employs a third network for communicating from said call agent in said second network to said call agent in said first network.
- **18.** (Original) A method for communicating packets from a packet source in a first network to a packet destination in a second network, where said packet destination has a network address X, comprising the steps of:

communicating, from an element in said second network to an element in said first network, an address Y that corresponds to address X mapped with function \mathcal{Q} ;

mapping, in a node in said second network, at least a sub-field of an address field contained in packets received from said first network with a function \mathcal{P} , where \mathcal{Q} and \mathcal{P} are functions such that $\mathcal{P}(\mathcal{Q}(X))=X$;

The method of claim 1-further comprising said node, after performing said step of mapping, carrying out the steps of:

determining whether result of said mapping correspond to a valid packet destination in said second network; and

if said step of determining concludes that said result of said mapping does not correspond to a valid packet destination in said second network, mapping said at least a sub-field of an address field contained in packets received from said first network with a function \mathcal{P} , which corresponds to the mapping function employed by said node prior to the last a change in mapping function \mathcal{P} .

19. (Original) The method of claim **1** where said first network and said second network carry information in packet format or switched-circuit format.

4 - 3

20. (Original) The method of claim 1 where said node in said second network receives said packets from said first network via one or more other networks.

21. (Withdrawn) .