Machine Learning for Causal Inference from Observational Data

- ► Introduction
- ► Motivation
- ► Causality
- ► Methods
- ► Conclusion

Welcome!

INTRODUCTION
•000

- ► Agenda
 - ► Slides: Introduction to Causal Inference
 - ► Tutorial: Guided Example with Code
 - ► Exercise: Do It Yourself

With some breaks in the middle as necessary.

RESOURCES

- ► Textbooks
 - ▶ J. Pearl, M. Glymour, and N. P. Jewell, Causal Inference in Statistics: A Primer. John Wiley & Sons. 2016.¹
 - ▶ J. Peters, D. Janzing, and B. Scholkopf, Elements of Causal Inference: Foundations and Learning Algorithms. The MIT Press, 2017.²
- ▶ Online
 - ► Introduction to Causal Inference³

http://bayes.cs.ucla.edu/PRIMER/

²https://mitpress.mit.edu/books/elements-causal-inference

https://www.bradyneal.com/causal-inference-course

Tools

INTRODUCTION

We are going to use the following:

- ► Python 3
- ► numpy
- ► pandas
- ightharpoonup matplotlib
- ► scikit-learn
- ightharpoonup EconML⁴
- ► Google Colab

⁴https://github.com/microsoft/EconML

MACHINE LEARNING

INTRODUCTION

0000

We will need the following:

- ightharpoonup Supervised learning predict y given (X, y) samples
 - ► Regression (continuous outcome)
 - ► Classification (binary outcome)
- ► Basic data exploration
- ► Data pre-processing
- ► Cross-validation
- ► Model selection

PROBLEM SETTING

Introduction

- \blacktriangleright We want to estimate the causal effect of treatment T on outcome Y
 - \blacktriangleright What benefits accrue if we intervene to change T?
 - ► Treatment must be modifiable
 - ► We observe only one outcome per each individual
- ► Example:
 - ► My headache went away after I had taken the aspirin
 - ▶ Would the headache have gone away without taking the aspirin?
 - ▶ We cannot go back in time and test the alternative!
 - ► Treatment effect
 - ► Test more people and measure the average outcome?

RANDOMISED CONTROLLED TRIALS

- ► Data from controlled experiments
- ightharpoonup Randomised T people assigned T=0 (control) or T=1 (treated)
- ► This mimicks observing alternative reality
- ightharpoonup Record background characteristics as $X = [X_1, X_2, ..., X_n]$
- ► Can be expensive or even unfeasible (e.g. smoking)

Observational Data

- ► Passively collected data (non-experimental)
- ► Abundant nowadays
- ► Quasi-experimental study
- \blacktriangleright Keep only X recorded before Y (discard other)

ML Perspective

- ► Correlation (association) vs causation
- ▶ The role of confounders
- ► Domain shift/adaptation perspective
- ► Out-of-distribution (OOD) generalisation
- ► Learn from given individuals, but predict unseen examples
- ► Cannot learn from counterfactuals
- ▶ On the surface it looks the same as supervised ML
 - ► ML: predict Y given (X, Y) samples
 - ► CI: predict effects given (X, Y) samples

- ightharpoonup Learn: $[x_i, t_i, y_i]$
- ightharpoonup Predict: $[x_i, 1-t_i] \rightarrow ?$

FUNDAMENTALS

INTRODUCTION

$$Effect = Y_1 - Y_0$$

#	X_1	X_2	X_3	Τ	Y_0	Y_1
1	1.397	0.996	0	1	?	4.771
2	0.269	0.196	1	0	2.956	?
3	1.051	1.795	1	1	?	4.164
4	0.662	0.196	0	1	?	6.172
5	0.856	1.795	1	0	7.834	?

But we observe only one outcome!

This is known as the fundamental problem of causal inference. We cannot know the difference. But we can **approximate** it.

TREATMENT EFFECT

INTRODUCTION

Let us define the **true** outcome $\mathcal{Y}_t^{(i)}$ of individual (i) that received treatment $t \in \{0,1\}$. The Individual Treatment Effect (ITE) is then defined as follows:

Causality 00000000

$$ITE^{(i)} = \mathcal{Y}_1^{(i)} - \mathcal{Y}_0^{(i)}$$

The Average Treatment Effect (ATE) builds on ITE:

$$ATE = \mathbb{E}[ITE]$$

Metrics

INTRODUCTION

- ▶ In practice, we want to measure how accurate our inference model is
- \blacktriangleright This is often done by measuring the amount of error (ϵ) or risk (\mathcal{R}) introduced by a model
- ► Examples:
 - ightharpoonup ϵ_{ITE}
 - ightharpoonup ϵ_{ATE}
 - ightharpoonup ϵ_{PEHE}
 - $ightharpoonup \epsilon_{ATT}$
 - ightharpoons \mathcal{R}_{pol}

 ϵ_{ATE} and ϵ_{PEHE} are the most common ones and we will focus on them.

METRICS - PREDICTIONS

INTRODUCTION

Let us denote $\hat{y}_{t}^{(i)}$ as **predicted** outcome for individual (i) that received treatment t. Then, our predicted ITE and ATE can be written as:

$$\widehat{ITE}^{(i)} = \hat{y}_1^{(i)} - \hat{y}_0^{(i)}$$

$$\widehat{ATE} = \frac{1}{n} \sum_{i=1}^{n} \widehat{ITE}^{(i)}$$

Metrics - Measuring Errors

This allows us to define the following measurement errors:

$$\epsilon_{PEHE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\widehat{ITE}^{(i)} - ITE^{(i)})^2}$$

CAUSALITY 000000000

$$\epsilon_{ATE} = \left| \widehat{ATE} - ATE \right|$$

Where PEHE stands for Precision in Estimation of Heterogeneous Effect, and which essentially is a Root Mean Squared Error (RMSE) between predicted and true ITEs.

BENCHMARK DATASETS

Semi-simulated data or combinations of experimental and observaional datasets. We use metrics depending on what outcomes we have access to. Counterfactuals - ATE and PEHE. Otherwise ATT.

Causality 000000000

Well-established causal inference datasets:

► IHDP

- ► Jobs
- ► News
- ► Twins
- ► ACIC challenges

ASSUMPTIONS

- ► Ignorability:
 - ► No hidden confounders (we observe everything)
- \blacktriangleright All background covariates X happened before the outcome Y
- ightharpoonup Modifiable treatment T
- ► Stable Unit Treatment Value Assumption (SUTVA):
 - ▶ No interference between units
 - ► Consistent treatment (different versions disallowed)

Assumptions (2)

► Most CI estimators assume the *triangle* graph

- ► This is a very simplistic view of the world
- ► Actual reality can be much more complex

Assumptions (3)

Introduction

- ► Can we infer graphs from data?
- ► Causal discovery

Modern Approaches

Mosty regression and classification (classic ML), but combined in a smart way.

- ▶ Recent surveys on modern causal inference methods ⁵ ⁶
- ► Most popular:
 - ► Inverse Propensity Weighting (IPW)
 - ► Doubly-Robust
 - ► Double/Debiased Machine Learning
 - ► Causal Forests
 - ► Meta-Learners
 - ► Multiple based on neural networks (very advanced)

We will start with a simple regression, enhance it with IPW, and conclude with Meta-Learners.

⁵https://dl.acm.org/doi/10.1145/3397269

⁶https://arxiv.org/abs/2002.02770

S-Learner

INTRODUCTION

We want to estimate

$$\mu(t, x) = \mathbb{E}[\mathcal{Y}|X = x, T = t]$$

- 1. Obtain $\hat{\mu}(t,x)$ estimator.
- 2. Predict ITE as

$$\widehat{ITE}(x) = \hat{\mu}(1, x) - \hat{\mu}(0, x)$$

- ► Single model approach
- ► Allows heterogenous treatment effects
- ► Can be biased (next slide)

BIASED ESTIMATORS

Introduction

Propensity Score

$$e(x) = P(t_i = 1 | x_i = x)$$

- ightharpoonup Probability of a unit i receiving the treatment (T=1)
- ► For discrete treatments, this is a classification problem
- \blacktriangleright Binary classification in most cases as $t \in \{0,1\}$
- \blacktriangleright We denote $\hat{e}(x)$ as our estimation

IPW ESTIMATOR.

Using the propensity score $\hat{e}(x)$, we can obtain the following weights

$$w_i = \frac{t_i}{\hat{e}(x_i)} + \frac{1 - t_i}{1 - \hat{e}(x_i)}$$

- ► These are called Inverse Propensity Weights (IPW)
- ▶ Use the weights to perform **weighted** regression
- ► Similar to S-Learner, but combines regression and classification
- ► Sample importance (pay attention to scarce data points)
- ▶ Either $\hat{e}(x)$ or $\hat{\mu}(x)$ can still have bias (misspecification)
- ▶ Doubly-Robust method attempts to address that

T-LEARNER.

- ▶ Treated and control distributions are often different
- ► Solution: fit *two* separate regressors

$$\mu_1(x) = \mathbb{E}[\mathcal{Y}|X=x, T=1]$$

$$\mu_0(x) = \mathbb{E}[\mathcal{Y}|X=x, T=0]$$

- 1. Learn $\mu_1(x)$ from treated units, obtain $\hat{\mu}_1(x)$.
- 2. Learn $\mu_0(x)$ from control units, obtain $\hat{\mu}_0(x)$.
- 3. Predict ITE as

$$\widehat{ITE}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

X-LEARNER.

INTRODUCTION

A hybrid of the previous approaches. There are three main stages.

Stage 1 (same as T-Learner)

- 1. Learn $\mu_1(x)$ from treated units, obtain $\hat{\mu}_1(x)$.
- 2. Learn $\mu_0(x)$ from control units, obtain $\hat{\mu}_0(x)$.

X-Learner (2)

Stage 2

Define *imputed* treatment effects as:

$$\mathcal{D}_0^{(i)} = \hat{\mu}_1(X_0^{(i)}) - \mathcal{Y}_0^{(i)}$$
$$\mathcal{D}_1^{(i)} = \mathcal{Y}_1^{(i)} - \hat{\mu}_0(X_1^{(i)})$$

Use provided regressors to model \mathcal{D}_0 and \mathcal{D}_1 separately. The response functions are formally defined as:

$$\tau_0(x) = \mathbb{E}[\mathcal{D}_0|X = x]$$

$$\tau_1(x) = \mathbb{E}[\mathcal{D}_1|X = x]$$

We denote estimated functions as $\hat{\tau}_0$ and $\hat{\tau}_1$.

X-Learner (3)

Stage 3

INTRODUCTION

The final treatment effect estimate is a weighted average of the two estimates from Stage 2:

$$\hat{\tau}(x) = g(x)\hat{\tau}_0(x) + (1 - g(x))\hat{\tau}_1(x)$$

Where $g \in [0,1]$ is a weight function. In practice, g can be modelled as a propensity score function e(x).

Using a provided classifier, we can obtain an estimate \hat{e} that can be used in place of q. That is:

$$\hat{\tau}(x) = \hat{e}(x)\hat{\tau}_0(x) + (1 - \hat{e}(x))\hat{\tau}_1(x)$$

X-Learner - Intuition

Introduction

Conclusion

SUMMARY

- ► Causal inference is about measuring causal effects
 - ► Cannot calculate them exactly due to missing counterfactuals
 - ▶ But we can approximate them through data
- ▶ RCTs are the most reliable source of data, but can be unfeasible to get
- ▶ Non-experimental data are a great alternative, but can be biased
- ▶ Most methods are about finding *unbiased* estimators
- ▶ Machine Learning and Causal Inference can be both mutually beneficial
 - ► ML delivers better CI estimators
 - ► CI helps ML with OOD generalisation (domain adaptation)
- ▶ Assumptions are important and must be considered in applications

Conclusion

ACKNOWLEDGEMENTS

INTRODUCTION

This course builds heavily on the materials from *Introduction to Machine Learning for Causal Analysis Using Observational Data* online course, delivered on June 22-23 2021 by Professor Paul Clarke, Dr Spyros Samothrakis and Damian Machlanski.

Conclusion 000

References

- ▶ J. M. Robins, A. Rotnitzky, and L. P. Zhao, 'Estimation of Regression Coefficients When Some Regressors are not Always Observed', Journal of the American Statistical Association, vol. 89, no. 427, pp. 846–866, Sep. 1994.
- ▶ U. Shalit, F. D. Johansson, and D. Sontag, 'Estimating individual treatment effect: generalization bounds and algorithms', in International Conference on Machine Learning, Jul. 2017, рр. 3076–3085.
- ▶ V. Chernozhukov et al., 'Double/debiased machine learning for treatment and structural parameters', The Econometrics Journal, vol. 21, no. 1, pp. C1–C68, Feb. 2018.
- ▶ S. Wager and S. Athey, 'Estimation and Inference of Heterogeneous Treatment Effects using Random Forests', Journal of the American Statistical Association, vol. 113, no. 523, pp. 1228–1242, Jul. 2018.
- ▶ S. R. Künzel, J. S. Sekhon, P. J. Bickel, and B. Yu. 'Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning', Proc Natl Acad Sci USA, vol. 116, no. 10, pp. 4156-4165, Mar. 2019.
- ▶ R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu, 'A Survey of Learning Causality with Data: Problems and Methods', ACM Comput. Surv., vol. 53, no. 4, p. 75:1-75:37, Jul. 2020.
- ▶ L. Yao, Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang, 'A Survey on Causal Inference', arXiv:2002.02770 [cs, stat], Feb. 2020.

WHAT'S NEXT?

- ► Onto the practical parts
 - ► Tutorial
 - ▶ Predict ATE and measure ϵ_{ATE}
 - ► S-Learner, IPW and X-Learner
 - ► Random Forest as base regressors and classifiers
 - ► Exercise IHDP
 - ▶ Predict ITE and ATE
 - ▶ Measure ϵ_{PEHE} and ϵ_{ATE}
 - ► Exercise JOBS (optional)
 - ► Predict ATT and Policy
 - ▶ Measure ϵ_{ATT} and \mathcal{R}_{pol}
- ► Short break?