1. CONDITIONAL INDEPENDENCE AND FACTORIZATIONS

1. The implied factorization of a distribution $p \in \mathcal{L}(G)$ is p(x,y,z,t) = p(t|z)p(z|x,y)p(x)p(y). For two real valued independent r.v X and Y that follow two distribution $\mathcal{U}(0,2)$, and Z = X + Y, $T = \mathbf{1}_{(Z \geq 3)}$, the statement $X \perp Y \mid T$ is not true. Indeed, knowing that $X + Y \geq 3$ makes the two random variables not independent $(p(x|y=2,z=1) = p(x \geq 1) \neq p(x|z=1))$.

2.a. If Z is a binary variable, let p = p(z = 1) = 1 - p(z = 0). We have

$$\begin{split} p(x,y) &= p(x)p(y) = p(x,y|z=1)p + p(x,y|z=0)(1-p) \\ &= p(x|z=1)p(y|z=1)p + p(x|z=0)p(y|z=0)(1-p) \\ &= p(x)p(y) \left(\frac{1}{p}p(z=1|x)p(z=1|y) + \frac{1}{1-p}p(z=0|x)p(z=0|y)\right) \end{split} \tag{$X \perp Y$}$$

If we write $p_x = p(z=1|x) = 1 - p(z=0|x)$ and $p_y = p(z=1|y)$, the equality becomes $p^2 - (p_x + p_y)p + p_xp_y = 0$ which yields (p(z=1) =) $p = p_x$ (= p(z=1|x)) or $p = p_y$. Therefore either $X \perp Z$ or $Y \perp Z$.

2.b. Let \mathcal{A} be a finite space, X_0 and Y_0 two independent random variables on \mathcal{A} , we define $X = \begin{bmatrix} X_0 \\ 0 \end{bmatrix}$, $Y = \begin{bmatrix} 0 \\ Y_0 \end{bmatrix}$ and $Z = \begin{bmatrix} X_0 \\ Y_0 \end{bmatrix}$.

X, Y and Z are three random variables with $X \perp \!\!\! \perp Y$ and $X \perp \!\!\! \perp Y | Z$

2. Distributions factorizing in a graph

1. Let $p \in \mathcal{L}(G)$, $p(x) = \prod_{s \in V} p(x_s | x_{\pi_s})$. Since $\{i \to j\}$ is a covered edge, $\pi_j = \pi_i \cup \{i\}$. Therefore,

$$p(x) = p(x_i|x_{\pi_i}) \cdot p(x_j|x_{\pi_i}, x_i) \cdot \prod_{s \in V - \{i, j\}} p(x_s|x_{\pi_s})$$

And

$$p(x_i|x_{\pi_i}) \cdot p(x_j|x_{\pi_i}, x_i) = \frac{p(x_i, x_{\pi_i})}{p(x_{\pi_i})} \frac{p(x_i, x_{\pi_i}, x_j)}{p(x_{\pi_i}, x_i)} = p(x_i, x_j|x_{\pi_i}) \cdot \frac{p(x_j, x_{\pi_i})}{p(x_j, x_{\pi_i})}$$
$$= p(x_i|x_{\pi_i}, x_j) \cdot p(x_j|x_{\pi_i})$$

In G', $\{i \to j\}$ has been replaced by $\{j \to i\}$, thus $\pi'_i = \pi_i \cup \{j\}$ and $\pi'_j = \pi_i$, the equation above shows that p can be factorized in this new graph, hence $p \in \mathcal{L}(G')$. From the same equality above, if $p \in \mathcal{L}(G')$, also $p \in \mathcal{L}(G)$. Therefore $\mathcal{L}(G) = \mathcal{L}(G')$.

2. Since G is a directed tree, it doesn't contain any v-structure and all nodes have either 0 or 1 parent (only the root of the tree doesn't have a parent). Moreover, all cliques or G' contain at most 2 elements because any clique of 3 or more elements would contain a 3-clique. That 3-clique in the directed graph must contain either a v-structure or a cycle, which is not possible in a directed tree.

Hence if $p \in \mathcal{L}(G)$, $p(x) = \prod_i p(x_i|x_{\pi_i}) = \prod_i \Psi_i(x_i, x_{\pi_i})$, where Ψ_i is a function of an element and its parent (a 2-clique of the graph), or of the root of the tree only (a 1-clique). We have $\boxed{\mathcal{L}(G) \subset \mathcal{L}(G')}$