2023년 36회 기출복원 인쇄용 (49문항)

총점 49/49

✓ 1. 다음 데이터에 대한 설명으로 가장 적절하지 않은 것은?	1/1
○ 추론, 예측, 전망, 추정을 위한 근거(basis)로 기능하는 특성을 갖는다.	
● 데이터는 축적된 지식과 아이디어가 결합된 창의적인 산물이다	✓
○ 데이터는 개별 데이터 자체로는 의미가 중요하지 않은 객관적인 사실이다.	
다른 객체와의 상호 관계 속에서 가치를 갖는다	
의견 보내기 1-01. 데이터의 정의 - 데이터는 개별 데이터 자체로는 의미가 중요하지 않은 객관적인 사실(fact) - 추론, 예측, 전망, 추정을 위한 근거(basis)로 기능하는 특성을 갖음 - 다른 객체와의 상호 관계 속에서 가치를 갖음 2 번의 설명은 '지혜(Wisdom)'에 대한 것	
✓ 2. 빅데이터가 가치 창출 측면에서 기업, 정부, 개인에게 미친 영향으로 옳고 않은 것은?	प 1/1
	\ 1/1
않은 것은?	
않은 것은? ○ 산업 전체의 생산성이 향상되었다 · 개인은 맞춤형 서비스를 받거나 적시에 필요한 정보를 얻음으로써 기회비용을 절	약
않은 것은? ○ 산업 전체의 생산성이 향상되었다 ○ 개인은 맞춤형 서비스를 받거나 적시에 필요한 정보를 얻음으로써 기회비용을 절하게 되었다. ○ 기업활동의 투명성은 없어지지만 경쟁사보다 강한 경쟁력을 확보하는데 도움이	약

있음

- 개인: 맞춤형 서비스를 저렴한 비용으로 이용

✓ 3. 사생활 침해 문제를 해결하기 위한 방법으로 가장 적절한 것은 무엇인가?1/1	
● 개인정보 사용자 책임제로 전환	
결과기반 책임 원칙 고수	
일고리즘 접근 허용	
○ 사용자 동의제도 시행	
의견 보내기	
1-16. 빅데이터 위기 요인과 통제방안 - 사생활 침해-> 동의제를 책임제로 전환 - 책임원칙의 훼손-> 기존의 책임원칙 강화 - 데이터의 오용-> 데이터 알고리즘에 대한 접근권 허용 및 객관적 인증방안 도입	
✓ 4. 암묵지와 형식지 상호작용의 과정 중 개인의 내재된 경험을 객관적인 데 1/1 이터로 변환하여 문서나 매체에 저장·가공·분석하는 과정을 무엇이라고 하 는가?	
이터로 변환하여 문서나 매체에 저장·가공·분석하는 과정을 무엇이라고 하	
이터로 변환하여 문서나 매체에 저장·가공·분석하는 과정을 무엇이라고 하는가?	
이터로 변환하여 문서나 매체에 저장·가공·분석하는 과정을 무엇이라고 하는가? 표출화	
이터로 변환하여 문서나 매체에 저장·가공·분석하는 과정을 무엇이라고 하는가? 표출화 연결화	
이터로 변환하여 문서나 매체에 저장·가공·분석하는 과정을 무엇이라고 하는가? 표출화 연결화 내재화	

- DBMS 소프트웨어를 사용하여 데이터베이스를 구축한다.
- 법률적으로 데이터베이스는 기술을 기반으로 한 일종의 저작물로 인정한다.
- 데이터베이스내의 모든 데이터는 2차원 테이블로 표현된다.

- RDBMS의 경우 데이터베이스 내의 데이터가 2차원 테이블로 표현되기도 하지만
- ODBMS, NoSQL의 종류는 테이블 이외에 객체를 기반으로 한 계층 구조, Key와 Value를 사용한 방법도 존재함
- "모든" 데이터가 2차원 테이블로 표현되는 것은 아님

ETL은 주기적으로 내부 및 외부 데이터베이스로부터 정보를 추출하고 정해진 규약에 따라 정보를 변환한 후에 데이터웨어하우스에 정보를 적재한다	
● 데이터웨어하우스는 전사적 차원보다는 특정 조직의 특정 업무 분야에 초점을 둔 ✓ 것이다.	
데이터웨어하우스에서 관리하는 데이터들은 시간적 흐름에 따라 변화하는 값을 유지한다.	
데이터웨어하우스는 기업 내의 의사결정 지원 애플리케이션을 위한 정보를 제공하는 하나의 통합된 데이터 저장 공간을 말한다	
의견 보내기	
1-09. 기업 내부 데이터베이스 솔루션 - 데이터웨어하우스: 사용자의 의사 결정에 도움을 주기 위하여, 다양한 운영 시스템에서 추출, 변환, 통합되고 요약된 데이터베이스이다 - 데이터 마트 : 전사적으로 구축된 데이터웨어하우스로부터 특정 주제, 부서 중심으로 구	
축된 소규모 단일 주제의 데이터웨어하우스로, 대게 특정 조직 혹은 팀 등 제한된 사용자 그룹에게 서비스가 제공된다.	
✓ 8. 다음 데이터 사이언스에 대한 설명으로 가장 부적절한 것은? 1/1	
 ✓ 8. 다음 데이터 사이언스에 대한 설명으로 가장 부적절한 것은? □ 데이터 사이언스란 데이터로부터 의미있는 정보를 추출해내는 학문이다 	l
	1
○ 데이터 사이언스란 데이터로부터 의미있는 정보를 추출해내는 학문이다 ○ 분석 뿐 아니라 이를 효과적으로 구현하고 전달하는 과정까지 포함한 포괄적 개념이	1
○ 데이터 사이언스란 데이터로부터 의미있는 정보를 추출해내는 학문이다 ○ 분석 뿐 아니라 이를 효과적으로 구현하고 전달하는 과정까지 포함한 포괄적 개념이 다	1
 ○ 데이터 사이언스란 데이터로부터 의미있는 정보를 추출해내는 학문이다 ○ 분석 뿐 아니라 이를 효과적으로 구현하고 전달하는 과정까지 포함한 포괄적 개념이다 ● 정형 데이터를 대상으로 총체적 접근법을 사용한다. 	1
 ○ 데이터 사이언스란 데이터로부터 의미있는 정보를 추출해내는 학문이다 ○ 분석 뿐 아니라 이를 효과적으로 구현하고 전달하는 과정까지 포함한 포괄적 개념이다 ● 정형 데이터를 대상으로 총체적 접근법을 사용한다. 	1
 데이터 사이언스란 데이터로부터 의미있는 정보를 추출해내는 학문이다 분석 뿐 아니라 이를 효과적으로 구현하고 전달하는 과정까지 포함한 포괄적 개념이다 정형 데이터를 대상으로 총체적 접근법을 사용한다. 과학과 인문학의 교차로에 서 있다고 할 수 있다. 	1

✓ 7. 데이터웨어하우스에 대한 설명으로 가장 적절하지 않은 것은 무엇인가? 1/1

2-24. 데이터 분석 수준 진단

- 분석 준비도 : 기업의 데이터 분석 도입의 수준을 파악하기 위한 진단방법, 6가지 영역을 대상으로 현 수준을 파악함
- 6가지 영역: 분석 업무 파악, 인력 및 조직, 분석 기법, 분석 데이터, 분석 문화, IT 인프라(= 분석 인프라)

′1
/1

✓ 2-4. 다음 중 분석 대상은 명확하지만 분석 방식이 명확하지 않은 경우 수행 1/1 하는 분석 주제의 유형은 무엇인가?
● 솔루션(Solution) ✓
○ 통찰(Insight)
○ 최적화(Optimization)
을 발견(Discovery)
의견 보내기
2-02. 분석 주제 유형 4가지 - Optimization : 분석 대상 및 분석 방법을 이해하고 현 문제를 최적화의 형태로 수행함 - Solution : 분석 과제는 수행되고, 분석 방법을 알지 못하는 경우 솔루션을 찾는 방식으로 분석 과제를 수행함 - Insight : 분석 대상이 불분명하고, 분석 방법을 알고 있는 경우 인사이트 도출 - Discovery : 분석 대상, 방법을 모른다면 발견을 통해 분석 대상 자체를 새롭게 도출함
✓ 2-5. 분석 과제 정의서에 대한 설명으로 가장 적절한 것은 무엇인가? 1/1
프로젝트 수행 계획 수립 단계에서 전체 업무를 분류하여 구성 요소로 만든 후 각 요 소를 평가하고 일정별로 계획하며 그것을 완수할 수 있는 사람에게 할당해주는 역할 을 한다.
○ 분석 모델에 적용될 알고리즘과 분석모델의 기반이 되는 Feature가 포함되어야 한다.
○ 이해관계자가 프로젝트의 방향을 설정하고, 성공 여부를 판별할 수 없는 자료이다.
○ 이해관계자가 프로젝트의 방향을 설정하고, 성공 여부를 판별할 수 없는 자료이다. 필요한 소스 데이터, 분석 방법, 데이터 입수 난이도, 분석 과정 상세 등의 항목이 ✓ 포함되어야 한다.
필요한 소스 데이터, 분석 방법, 데이터 입수 난이도, 분석 과정 상세 등의 항목이 ✓
● 필요한 소스 데이터, 분석 방법, 데이터 입수 난이도, 분석 과정 상세 등의 항목이 ✓ 포함되어야 한다.

✓ 2-6. 분석 마스터 플랜을 수립할 때 적용 범위 및 방식에 대한 고려요소가 아 1/1 닌 것은 무엇인가?
● 투입 비용 수준 ✓
○ 분석 데이터 적용 수준
○ 업무 내재화 적용 수준
기술 적용 수준
의견 보내기 분석 마스터 플랜 수립 시 고려 요소 - 우선순위 고려 요소 : 전략적 중요도, ROI(투자자본수익률), 실행 용이성 - 적용 범위/방식 고려 요소 : 업무 내재화 적용 수준, 분석 데이터 적용 수준, 기술 적용 수준
✓ 2-7. 분석 마스터플랜의 세부 이행계획 수립 시 고려해야 할 데이터 분석 체 1/1 계에 대한 설명으로 적절한 것은?
○ 분석 마스터플랜의 모든 단계를 반복한다.
● 분석 마스터플랜의 모든 단계를 반복한다.● 프로젝트의 세부 일정계획도 데이터 분석체계를 고려하여 작성한다.
● 프로젝트의 세부 일정계획도 데이터 분석체계를 고려하여 작성한다.
 ● 프로젝트의 세부 일정계획도 데이터 분석체계를 고려하여 작성한다. ✓ ✓ 산차적인 정련 과정을 통해 프로젝트의 기간을 단축하는 방식을 주로 사용한다.

✓ 2-10. 다음 빈칸에 공통으로 들어갈 단어로 알맞은 것은 무엇인가? 1/1
 분석 과제 우선순위 평가 기준에는 ()과 난이도가 있으며 ()의 경우 전략 적 중요도와 목표가치, 난이도의 경우 데이터 획득/저장/가공 비용, 분석 적용 비용, 분석 수준에 따라 판단하게 된다.
 ✓

✓ 3-1. 다음 중 군집분석 기법으로 적절하지 않은 것은 무엇인가?	1/1
PAM	
O DBSCAN	
● 실루엣 지수(Silhouette Coefficient)	✓
☐ 퍼지(Fuzzy) Clustering	
의견 보내기	
군집분석 기법의 종류 - Fuzzy clustering : 분할적 군집의 프로토타입 기반의 군집 분석 중 한가지로 Soft Clustering 이라고도 하며, 관측치가 여러 군집에 속할 수 있으며 이를 각 군집에 속할 가: 성(possibility), 확률(probability)로 제시해 줌 - PAM(Partitioning Around Medoids) : K-means와 유사하지만 총비용을 계산해 이 값이 중을 때만 그룹의 medoid를 바꾸어 준다	
✓ 3-2. Wage 데이터셋에 대한 anova 분석 결과 해석의 내용 중 틀린 것은?	1/1
<pre>> aov <-aov(wage ~ age, data=data) > summary(aov)</pre>	
Residuals 2998 5022216 1675 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '	
	T
age와 wage에 대한 선형관계를 알 수 없다.	
age와 wage는 양의 상관관계이다	~
○ 관측치는 3000 개 이다	
○ MSE는 1675 이다	
의견 보내기	

- ANOVA 분석은 선형성을 가정하지 않으므로 양의 상관관계인지 알 수 없다.
- 관측치는 2998 + 2 = 3000 이다. (n = df + k + 1, k는 변수의 개수)
- MSE : Mean Sq와 Residuals의 교차 부분에 표기 되어 있으며 1675 이다.

✓ 3-3. 웹 데이터의 수집을 위해 웹페이지의 구조를 분석하여 데이터를 자동으1/1로 수집하는 방법을 무엇이라고 하는가?
○ FTP
● 웹 크롤링(Web Crawling)
Streaming)
Open API
의견 보내기
데이터 수집 기술 - 웹 크롤링(Web Crawling) : 웹 데이터의 수집을 위해 웹페이지의 구조를 분석하여 데이터 를 자동으로 수집하는 방법
- FTP(File Transfer Protocol) : 서버/클라이언트 사이의 파일 전송, TCP/IP 기반 빠른 데이 터 송/수신
- Open API : 서비스, 정보, 데이터 등 오픈 된 정보로부터 API를 통해 실시간 데이터를 수집 하는 기술 (API : 다수의 함수로 구성, 시스템 간 연동을 통한 실시간 데이터 송/수신) - Streaming : 음성, 오디오, 비디오 등의 멀티미디어 데이터를 실시간 송/수신 하는 기술
하는 것으로 각 범주에 속할 사후 확률을(posterior probability) 제공하는 활성화 함수는 무엇인가?
ReLU
sigmoid
softmax
의견 보내기
활성화 함수(activation function) - sigmoid : 결과가 두 개 범주인 경우 사용하는 활성화 함수 - softmax : sigmoid 함수의 일반화된 형태로 결과가 다 범주인 경우 사용, 각 범주에 속할 사후 확률을(posterior probability) 제공하는 활성화 함수 - ReLU : Hidden Layer에서 주로 사용되는 활성화 함수로 음수에 대해 0으로 양수는 그대로 내보냄 - 항등 함수 : 그대로 출력으로 내보내는 활성화 함수

1/1

0 ~ 1

/

- -1 ~ 1
- -1 ~ 0
- 0.5 ~ 1

의견 보내기

sigmoid 함수 연속형 0~1, Logistic 함수라 불리기도 함 선형적인 Multi-Perceptron에서 비선형 값을 얻기 위해 사용

✓ 3-6. 다음의 수식에 해당하는 데이터 간의 거리 계산 방식은 무엇인가? 1/1

$$\sum_{i=1}^{n} |x_i - y_i|$$

- 유클리드 거리
- 맨해튼거리

/

- 민코프스키 거리
- 마할라노비스 거리

의견 보내기

맨해튼 거리: 거리 차의 절대값의 합

유클리드 거리: 거리 차의 제곱의 합에 대한 제곱근

✓ 3-7. 연관분석에 대한 특징 틀린 것은?	1/1
○ 조건반응(if then)으로 표현되는 연관분석의 결과를 이해하기 쉽다.	
이 비목적성 분석 기법이다.	
○ 대표적인 알고리즘으로 Aprior가 있다.	
● 분석을 위한 계산이 복잡하다는 단점이 있다.	✓
의견 보내기 3-98. 연관분석(Association Analysis) - 너무 세분화된 품목을 가지고 연관규칙을 찾으려면 의미 없는 분석 결과가 도출됨 - 상대적 거래량이 적으면 규칙 발견 시 제외되기 쉬움 - 조건반응(if-then)으로 표현되는 연관 분석의 결과를 이해하기 쉬움 - 강력한 비목적성 분석 기법이며, 분석 계산이 간편함 - 분석 품목 수가 증가하면 분석 계산이 기하급수적으로 증가함	
✓ 3-8. 다음 중 표본들이 서로 관련되어 있는 경우, 짝지어진 두 개의 관찰차의 크고 작음을 +와 -로 표시하여 그 개수를 가지고 두 그룹의 분포 차이 있는가에 대한 가설을 검증하는 방법은 무엇인가?	
의 크고 작음을 +와 –로 표시하여 그 개수를 가지고 두 그룹의 분포 차이	
의 크고 작음을 +와 –로 표시하여 그 개수를 가지고 두 그룹의 분포 차이 있는가에 대한 가설을 검증하는 방법은 무엇인가?	가
의 크고 작음을 +와 -로 표시하여 그 개수를 가지고 두 그룹의 분포 차이 있는가에 대한 가설을 검증하는 방법은 무엇인가? Sign Test	가
의 크고 작음을 +와 -로 표시하여 그 개수를 가지고 두 그룹의 분포 차이 있는가에 대한 가설을 검증하는 방법은 무엇인가? Sign Test Chi-Square Test	가
의 크고 작음을 +와 -로 표시하여 그 개수를 가지고 두 그룹의 분포 차이 있는가에 대한 가설을 검증하는 방법은 무엇인가? Sign Test Chi-Square Test ANOVA Test	가
의 크고 작음을 +와 -로 표시하여 그 개수를 가지고 두 그룹의 분포 차이 있는가에 대한 가설을 검증하는 방법은 무엇인가? Sign Test Chi-Square Test ANOVA Test	가
의 크고 작음을 +와 -로 표시하여 그 개수를 가지고 두 그룹의 분포 차이 있는가에 대한 가설을 검증하는 방법은 무엇인가? Sign Test Chi-Square Test ANOVA Test 스피어만 상관계	가

十 川 占十

부호 검정 표본들이 서로 관련되어 있는 경우, 짝지어진 두 개의 관찰치들의 크고 작음을 +와 -로 표 시하여 그 개수를 가지고 두 그룹의 분포 차이가 있는가에 대한 가설을 검증하는 방법

비율척도 - 사칙연산이 모두 가능하고, 혈액형, 학력 등이 해당된다.	/
구간척도 - 덧셈, 뺄셈이 가능하고 절대 0점을 포함하지 않는 온도가 이에 해당된다	
서열척도 - 연산이 불가능하고 메달과 같이 범주간 순서가 있는 것이 이에 해당된다	∤.
명목척도 - 단순히 측정 대상의 특성을 분류하거나 확인하기 위한 목적으로 사용된 다.	
	비율척도 - 사칙연산이 모두 가능하고, 혈액형, 학력 등이 해당된다. 구간척도 - 덧셈, 뺄셈이 가능하고 절대 0점을 포함하지 않는 온도가 이에 해당된다. 서열척도 - 연산이 불가능하고 메달과 같이 범주간 순서가 있는 것이 이에 해당된다. 명목척도 - 단순히 측정 대상의 특성을 분류하거나 확인하기 위한 목적으로 사용된다.

3-41. 척도의 종류

- 비율척도(Ratio scale) 절대 0점이 존재하여 측정값 사이의 비율 계산이 가능한 척도
- 등간척도(구간척도) : 순위를 부여하되 순위 사이의 간격이 동일하여 양적인 비교가 가능, 절대 0점 존재하지 않음 (온도계 수치, 물가지수)
- ✓ 3-10. 소득순위처럼 정규분포가 아닌 오른쪽 꼬리가 긴 분포(Positive 1/1 skewed)에서 평균과 중앙값의 관계로 알맞은 것은?
- 중앙값이 평균보다 크다
- ◉ 평균이 중앙값보다 크다
- 평균과 중앙값의 관계에 변화가 없다
- 평균은 중앙값의 제곱과 같다

의견 보내기

오른쪽 꼬리가 긴 분포: 중앙값 < 평균 왼쪽 꼬리가 긴 분포: 중앙값 > 평균

정규 분포: 중강값 = 평균

✓ 3-11. R에서 숫자형, 문자형, 논리형 벡터를 하나로 합친 벡터를 구성하는 경1/1 우 합쳐진 벡터의 형식은 무엇인가?
숫자형 벡터
● 문자형 벡터
○ 논리형 벡터
○ 데이터프레임
의견 보내기 3-13. R의 데이터 구조-vector - R에서는 서로 다른 종류 타입을 갖는 벡터를 하나로 합칠 때 문자형 벡터가 포함되어 있으면 문자형 벡터가 됨 - 만일 숫자형 벡터와 논리형 벡터를 하나로 합치면 숫자형 벡터가 됨
✓ 3-12. 다음 중 빅데이터 분석 프로세스에서 모델링 단계에 해당하지 않는 항 1/1 목은 무엇인가?
목은 무엇인가?
목은 무엇인가? 데이터 분할
목은 무엇인가? 데이터 분할 데이터 모델링
목은 무엇인가? 데이터 분할 데이터 모델링 모델 적용 및 운영 방안

✓ 3-13. 다음 중 모형 성과 평가 방법으로 적절하지 않은 것은?	1/1
○ 결정계수	
실루엣 지수	
◉ 엔트로피(Entropy)	✓
O ROC 그래프	
의견 보내기 회귀 모형 평가: 결정계수, MAPE, MAE, MSE, MSLE, RMSLE 등 분류 모형 평가: 오분류표를 활용한 정확도, 정밀도, F1, 특이도, 민감도, 오분류율 등과 ROC 그래프, 이익 도표, 향상도 그래프, Kappa 지수 등 군집 모형 평가: 실루엣 지수, Dunn Index 등 Entropy - 불순도 측정에 사용함	
✓ 3-14. 다음 중 분류 모형 평가에 활용하지 않는 것은 무엇인가?	1/1
● 덴드로그램	✓
○ 오분류표	
O ROC 그래프	
○ Kappa 지수	
의견 보내기	
분류 모형 평가의 종류 오분류표를 활용한 정확도, 정밀도, F1, 특이도, 민감도, 오분류율 등 ROC 그래프 이의 도표, 향상도 그래프, Kappa 지수 등	

✓ 3-15. 다차원척도법에 대한 설명으로 가장 적절하지 않은 것은 무엇인가?	1/1
○ 개체들의 거리는 유클리드(Euclidean) 거리와 유사도를 이용하여 구한다.	
○ 관측 대상의 상대적 거리의 정확도를 높이기 위해 적합 정도를 스트레스 값(Stre Value)로 나타낸다.	ss
○ 스트레스 값은 0에 가까울 수록 적합도가 좋음을 나타낸다.	
● 개체들 사이의 유사성과 비유사성을 측정하여 차원을 축소하기 위해 사용한다.	✓
의견 보내기 3-73. 차원 축소 기법 - 다차원 척도법 개체들 사이의 유사성, 비유사성을 2차원 혹은 3차원 공간상에 점으로 표현하여 개체 시 의 군집을 시각적으로 표현하는 분석방법	<i>}0</i>
✓ 3-16. 앙상블 모형의 특징으로 올바르지 않은 것은?	1/1
✓ 3-16. 앙상블 모형의 특징으로 올바르지 않은 것은?○ 성능을 분산시키기 때문에 과대적합(overfitting) 감소 효과가 있다.	1/1
	1/1
○ 성능을 분산시키기 때문에 과대적합(overfitting) 감소 효과가 있다.	1/1
○ 성능을 분산시키기 때문에 과대적합(overfitting) 감소 효과가 있다. ○ 각 모형의 상호연관성이 높을수록 정확도 또한 높아진다.	1/1

- DBSCAN 군집을 실행해 군집에 포함되지 않은 것을 이상치로 한다.
 ESD 방법에서는 평균 3*표준편차보다 작거나, 평균 + 3*표준편차보다 큰 데이터를 이상치로 규정한다.
 기하평균을 이용하는 경우 기하평균 2.5*표준편차 보다 작거나, 기하평균 + 2.5*표준편차보다 큰 데이터를 이상치로 규정한다.
- IQR을 사용하는 방식의 경우 Q2(중위수) + 1.5*IQR 보다 크거나 Q2(중위수) ✓ 1.5*IQR 작은 데이터를 이상치로 규정한다.

IQR을 사용하는 이상치 탐색 방법 - Q1 - 1.5 *IQR 보다 작거나, Q3 + 1.5*IQR 보다 큰 데이터로 규정

✓ 3-18. 군집분석에 대한 설명으로 적절하지 않은 것은?

1/1

- 집단별 특성이 유사할 경우 안정성이 높다
- 유사성을 이용하여 몇 개의 집단으로 그룹화하는 분석이다
- 군집분석은 집단 간 이질성과 집단 내 동질성이 모두 낮아지는 방향으로 군집을 ✓ 만든다
- 이 비계층적 군집분석 기법의 경우 사용자가 사전 지식 없이 그룹의 수를 정해주는 일이 많기 때문에 결과가 잘 나오지 않을 수 있다.

의견 보내기

군집분석

- 군집분석은 집단 간 이질성과 집단 내 동질성이 모두 높아지는 방향으로 군집을 만든다
- 집단별 특성이 유사할 경우 안정성이 높다
- 유사성을 이용하여 몇 개의 집단으로 그룹화하는 분석이다
- 비계층적 군집분석 기법의 경우 사용자가 사전 지식 없이 그룹의 수를 정해주는 일이 많 기 때문에 결과가 잘 나오지 않을 수 있다.

- 연관성이 높은 변수가 있어도 영향을 받지 않는다.
 ⑥ 비정상적인 잡음 데이터에 대해서는 민감하게 분류한다.
 목적 변수가 이산형(범주형)인 경우와 연속형인 경우 모두 사용할 수 있다.
- 설명력이 좋으며, 과대적합에 취약한 특징이 있다.

3-82. 의사 결정 나무(Decision Tree) 모형

- 상관성이 높은 다른 불필요한 변수가 있는 경우에도 크게 영향을 받지 않음
- 비정상적인 잡음 데이터에 대해 민감하지 않음 : 가지치기(pruning)을 사용하여 잡음에 민 감하지 않도록 할 수 있음
- 과대적합(Overfitting)에 취약함
- 설명력이 좋음

✓	3-20. 데이터마이닝을 위한 데이터 분할과 관련된 설명 중 알맞지 않은 것	1/1
	은?	

- 데이터는 학습용, 검증용, 평가용 데이터로 분할하여 사용할 수 있다.
- 검증용 데이터(validation data)는 학습과정에서 사용되지 않는다.
- 검증용 데이터는 훈련에 사용되지 않는다.
- 데이터 수가 적을 때는 교차 검증을 사용한다

의견 보내기

Hold Out

- 데이터를 학습 세트, 검증 세트, 시험(테스트) 세트 세 가지로 분할하여 사용할 수 있음
- Training Data : 학습용 데이터, Test Data : 학습 종료 후 성능 확인용 데이터
- Validation Data : 학습 중 성능 확인용 데이터 (Overfitting 여부 확인, Early Stopping 등을 위해 사용)
- 데이터 수가 적을 때는 Hold Out 보다 교차 검증을 사용함

- 단순 무작위 추출법
- 계통 추출법
- 집단 추출법
- 증화 추출법

3-40. 표본추출

- 단순 무작위 추출: 모집단의 각 개체가 표본으로 선택될 확률이 동일하게 추출되는 경우
- 층화 추출 : 모집단을 서로 겹치지 않게 몇 개의 집단 또는 층(strata)으로 나누고, 각 집단 내에서 원하는 크기의 표본을 단순 무작위추출법으로 추출함
- 군집 추출(=집락 추출) : 모집단을 차이가 없는 여러 개의 집단(cluster)로 나눔, 이들 집단 중 몇 개를 선택 한 후, 선택된 집단 내에서 필요한 만큼의 표본을 임으로 선택함
- 계통 추출: 모집단 개체에 1, 2,...,N 이라는 일련번호를 부여한 후, 첫 번째 표본을 임의로 선택하고 일정 간격으로 다음 표본을 선택함

Call:

lm(formula = Fertility ~ ., data = swiss)

Residuals:

1Q Median Min 30 Max -15.2743 -5.2617 0.5032 4.1198 15.3213

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 66.91518 10.70604 6.250 1.91e-07 *** Agriculture -0.17211 0.07030 -2.448 0.01873 * Examination -0.25801 0.25388 -1.016 0.31546 Education Catholic Infant.Mortality 1.07705 0.38172 2.822 0.00734 **

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 7.165 on 41 degrees of freedom Multiple R-squared: 0.7067, Adjusted R-squared: 0.671 F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10

- 회귀모형은 유의수준 5%하에서 통계적으로 유의미하다.
- 모든 회귀계수들이 유의미한다.
- 설명력은 7.165 이다
- 데이터의 개수는 41개 이다

의견 보내기

- Examination의 회귀계수는 유의미하지 않음
- 설명력은 70.67%(Multiple R-squared) 임
- 데이터의 개수는 41+ 5+ 1=47

✓ 3-23. 데이터 전처리 과정에 대한 설명으로 올바른 것은 무엇인가?	1/1
결측치는 연산에 아무런 방해가 되지 않으므로 그대로 두어도 무방하다.	
● 데이터 특성을 파악하고 통찰을 얻기 위한 방법을 데이터 EDA라고 한다.	✓
○ 모든 분석의 이상치는 시간이 오래 걸리더라도 모두 찾아내어 제거한다	
이 되지 않는다. 데이터 변환을 통해 정규분포 형태의 데이터로 만들면 데이터가 왜곡되어 올바	른 학
의견 보내기	
- 모든 분석의 이상치를 모두 제거해야 하는 것은 아니다. - 결측치를 포함한 데이터는 연산이 불가하므로 반드시 해결해야 한다. - 데이터 변환을 통해 정규분포 형태로 만드는 것은 학습에 도움이 될 수 있는 방법이다.	! .
✓ 3-24. 변수 가공에 대한 설명으로 적절하지 않은 것은?	
♥ 3-24. 근무 기용에 대한 필요프로 국물에서 많은 것은!	1/1
● 구간화의 개수가 감소하면 정확도는 높아지지만 속도가 느려진다.	1/1
	1/1
구간화의 개수가 감소하면 정확도는 높아지지만 속도가 느려진다.	1/1
● 구간화의 개수가 감소하면 정확도는 높아지지만 속도가 느려진다. ● log, sqrt를 취하면 큰 값을 작게 만들 수 있다 - 오른쪽 꼬리 긴 분포에 사용	1/1
 ● 구간화의 개수가 감소하면 정확도는 높아지지만 속도가 느려진다. ● log, sqrt를 취하면 큰 값을 작게 만들 수 있다 - 오른쪽 꼬리 긴 분포에 사용 ● 제곱, exp를 취하면 작은 값을 크게 만들 수 있다 - 왼쪽 꼬리 긴 분포에 사용 	1/1
 ● 구간화의 개수가 감소하면 정확도는 높아지지만 속도가 느려진다. ● log, sqrt를 취하면 큰 값을 작게 만들 수 있다 - 오른쪽 꼬리 긴 분포에 사용 ● 제곱, exp를 취하면 작은 값을 크게 만들 수 있다 - 왼쪽 꼬리 긴 분포에 사용 	1/1

✓ 3-25. 다음이 설명하는 시계열 모형은 무엇인가?

1/1

"자기자신의 과거자료로 설명하는 모형으로 백색잡음의 현재값과 자기 자신의 과거값의 가중합으로 선형성을 표현하는 정상시계열 모형이다."

AR 모형

의견 보내기

3-76. 시계열 모형

- AR(p) : 현 시점의 자료를 p 시점 전의 유한 개의 자기 자신의 과거 값을 사용하여 설명 백색 잡음의 현재 값과 자기 자신의 과거 값의 선형 가중 값으로 이루어진 정상 확률 모형

- MA(q) : 과거 q 시점 이전 오차들에서 현재항의 상태를 추론한다

최근 데이터의 평균을 예측치로 사용하는 방법, 각 과거치는 동일 가중치가 주어짐

✓ 3-26. 다음이 설명하는 앙상블 모형의 종류는 무엇인가?

1/1

"배깅(bagging)에 랜덤 과정을 추가한 방법으로 노드 내 데이터를 자식 노드로 나누는 기준을 정할 때 모든 예측 변수에서 최적의 분할을 선택하는 대신, 설명변수의 일부분만을 고려함으로 성능을 높이는 방법을 사용한다."

랜덤 포레스트

/

✓ 3-27. 다음 오분류표를 사용하여 F1-score 를 구하시오.

1/1

		예측			
		TRUE	FALSE	합계	
실제	TRUE	30	70	100	
	FALSE	60	40	100	
	합계	90	110	200	

6/19

1

의견 보내기

F1 score 구하기

Precision: 30 / 90 = 1/3, Recall (=Sensitivity): 30/100 = 3/10

F1 score = (2 * Precision * Recall) / (Precision + Recall) = (2 * 1/3 * 3/10) / (1/3 + 3/10) =

6/19

✓ 3-28. 이산확률변수 X가 가능한 값으로 1, 2, 4가 있다.
 P(X=1) = 0.3 이고 기댓값이 2.7 일 때 P(X=2)는 무엇인가?
 0.2
 의견 보내기
 이산확률 변수의 기댓값: E(X) = ∑x·f(x)
 식기) 1*0.3 + 2*p1 + 4*p2 = 2.7 # 기댓값 공식에 대입해서 구한 식
 식2) p1 + p2 = 0.7 # X=1 일때가 0.3 이므로 전체 확률의 합1 - 0.3 = 0.7 이고, p1 + p2 = 0.7 이 됨
 p2 = 0.7 - p1 를 식1에 대입
 0.3 + 2*p1 + 4*(0.7 - p1) = 2.7
 0.3 + 2*p1 + 2.8 - 4*p1 = 2.7
 0.4 = 2p1, p1 = 0.2

✓ 3-29. 우등반에 들어가기 위해서는 어느 시험에서 상위 2% 안에 들어야 한 1/1다. 해당 시험 점수의 평균이 85점이고 표준편차가 5일 때, 우등반에 들어가기 위한 최소 시험 점수는? (단, P(Z<=2.05)=0.98)

95.25

의견 보내기

Z = 2.05 인 경우 0.98 확률을 갖게 되므로, 평균+ 표준편차 * 2.05 한 값을 구하면 됨. >> 점수 = 85 + 5 * 2.05 = 95.25 >> 그림은 영상 참조

이 콘텐츠는 Google이 만들거나 승인하지 않았습니다. - <u>서비스 약관</u> - <u>개인정보처리방침</u>

Google 설문지