Living Data Workshop 2

Link to this slideshow: http://bit.ly/LDWS2-19

In Workshop 1

- Introduction to coding in Processing
- Drawing with code
- Loops and variables

In the pre-work

You have:

- Loaded some data into Processing
- Used loops to read each row of data, one-by-one

In this workshop...

- Floats
- Mapping variables
- Drawing with data
- Capturing your own data on your mobile

Exploring our data

CSV stands for Comma Separated Values

One row per line. Each column is separated by a comma

```
2019,2,26,3720,2.45,113,0:35

2019,2,27,0,0.00,0,0:00

2019,2,28,737,0.52,22,0:06

2019,3,1,6586,4.61,200,1:03

2019,3,2,15545,10.88,474,2:13
```

Exploring our data

CSV stands for **C**omma **S**eparated **V**alues

One row per line. Each column is separated by a comma

2019,	2,	26,	3720,	2.45,	113,	0:35
2019,	2,	27,	0,	0.00,	0,	0:00
2019,	2,	28,	737,	0.52,	22,	0:06
2019,	3,	1,	6586,	4.61,	200,	1:03
2019,	3,	2,	15545,	10.88,	474,	2:13

Exploring our data

The first row *might* be a header. Headers **describe** the data.

year,	month,	day,	steps,	dist,	kcal,	duration
2019,	2,	26,	3720,	2.45,	113,	0:35
2019,	2,	27,	0,	0.00,	0,	0:00
2019,	2,	28,	737,	0.52,	22,	0:06
2019,	3,	1,	6586,	4.61,	200,	1:03
2019,	3,	2,	15545,	10.88,	474,	2:13

Loading Data (recap)

Opens a data file on your

computer

Store the loaded data in myData

The *name* of the file to open.

Tells Processing to treat the first-row as *a header* instead of as data.

What could go wrong?

You may get this message in the console:

hours_data.csv does not exist or could not be read

Check two things:

- Filename is *exactly* correct
 - Does it end with .csv?
 - No typos
 - Capitalisation and spaces matter
- File has been dragged into
 Processing (see Workshop 2 Sheet)

Reading Data (recap)

On the Table called Create a variable myData, find the number called numRows of rows. with type Int int numRows = myData.getRowCount(); println("There are", numRows, "rows of data"); Create a message that Print some info to the includes the number of console. rows.

Checking that it works

Nothing shows up in the sketch window...

Because we haven't told it to draw anything.

But we can see our message in the console.

Reading Data (recap)

the console

```
Set up a loop to run numRows number of times.
for (int i = 0; i < numRows; i++) {
  float value = myData.getFloat(i, "Steps (average per min)");
  println(value);
                        Get a value from a
                                                        What the column is called
                        column in myData
                                                        (i.e. it's header label)
                                      Which row number
                                      to get the data from
 Print this value to
```

Processing Reference: https://processing.org/reference/Table_getFloat_.html

Floats

In this example, we added a new concept - a datatype called float

Short for floating point - lets you have decimal points:

i.e.

```
int pi = 3;
float pi = 3.14159;
```

Floats

Remember that you can't assign a float to an int

Doing this:

```
int pi = 3.14159;
```

Results in an error:

cannot convert from float to int

Mapping

In maths, a mapping refers to applying a *function* to convert one **range** of data, to **another**.

Why do mapping?

Your data is lots of:

- Very small numbers:
 0.3555, 0.200550, 0.455555
- Very big numbers
 12323, 343453, 123123, 3212312

But your output needs:

- To fit within the width of the screen
- Stay within the bounds of what a colour code can be (i.e. max 255)

map() function

```
Syntax

map(value, start1, stop1, start2, stop2);

Example:

float value = 489;
float mapValue = map(value, 0, 1204, 0, 100);
println(mapValue);
```

What is output to the console?

Parameters

value	value to be converted
start1	lower bound of current range
stop1	upper bound of current range
start2	lower bound of the target range
stop2	upper bound of the target range

Mapping our data

Before we can use map() properly, we need to know two more things about our data:

- 1. What's the maximum value?
- 2. What's the minimum value?

We could do this by hand... but. Let's use code.

Exercise

Finding the range of values

```
... // Leave the existing code here
float minValue = 0;
float maxValue = 0;
for(int i = 0; i < numRows; i++) {</pre>
  float value = myData.getFloat(i, "Steps (average per min)");
  minValue = min(value, minValue);
  maxValue = max(value, maxValue);
  println(value);
println("Minimum value: ", minValue);
println("Maximum value: ", maxValue);
```

Drawing with data

```
... // Leave the existing code here
// Create a second loop to make a drawing
for(int i = 0; i < numRows; i++) {</pre>
 float value = myData.getFloat(i, "Steps (average per min)");
 float barHeight = map(value, minValue, maxValue, 0, height);
 rect(i*5, 0, 5, barHeight);
```

The Result

Capturing your own data

Capturing your own data

We are going to use your own activity as a source of data. We will keep track of your *hourly* or *daily* **step count**.

We need you to install an app to help capture this data.

Android

Apple

Important note

You do not need to create an account for either app

On iOS:

HealthKit is enabled by default. QSAccess will collect your logged data.

On Android:

Accupedo will start logging once you run it for the first time.

Sample Data

We have provided some data for you, captured on both Android and iOS.

Download these files from Dropbox.

http://bit.ly/LDWS2-DATA-19

Downloading your own data

We'll walk you through the process of downloading your data in the pre-work for Workshop 3.