The **boolexpr*** package

Purely expandable boolean expressions and switch (ε -T_EX).

<florent.chervet@free.fr>

2010/04/15- v3.14

Abstract

boolexpr provides a purely expandable way to evaluate boolean expressions of the form:

 α \AND β \OR γ ...

where α , β and γ are *atomic expressions* of one of those 8 valid forms:

 x = y x < y x < y x > y x > y

 \if\langle test\rangle 0\else 1\fi
 another \boolexpr evaluation

where x and y are either numeric expressions (or dimensions, glue, muglue to test using $\langle x \rangle$ dimexpr, $\langle x \rangle$ are either numeric expressions (or dimensions, glue, muglue to test using $\langle x \rangle$ dimexpr, $\langle x \rangle$ and $\langle x \rangle$ are switch ($\langle x \rangle$ and $\langle x \rangle$ diffalse or a conditional²). boolexpr abide by the precedence of $\langle x \rangle$ and $\langle x \rangle$ and $\langle x \rangle$ are shortcut boolean operators).

<u>boolexpr</u> will expand to **0** if the expression is **true**, making it proper to work with \ifcase Furthermore, boolexpr defines a \switch syntax which remains purely expandable.

Be aware that \boolexpr (a little like \numexpr) works only if its argument is purely expandable; the same for \switch. If you wish a more general \CASE syntax refer to this excellent paper: http://www.tug.org/TUGboat/Articles/tb14-1/tb38fine.pdf.

The boolexpr package is designed to work with an ε -TeX distribution of LaTeX: it is based on the ε -TeX \numexpr primitive and requires no other package.

Contents

1	Introduction – Using boolexpr: \boolexpr and \switch	2
	\boolexpr Examples	3
	The \switch syntax	4
	switch examples	4
	1.1 Purely expandable macros for tests with boolexpr	5
2	Implementation	6
	2.1 The algorithm	6
	2.2 Category codes considerations	
	2.3 Identification	7
	2.4 Special catcode	7
	2.5 Tree helper macros	8
	2.6 Atomic expression evaluation	
	2.7 \AND and \OR management	
	2.8 Future developments: to do	
3	History	11
	[2010/04/15 v3.14]	11
	[2009/09/30 v3.1]	11
	$[2009/09/03 \text{ v}3.0 - \varepsilon\text{-TeX}- \text{ and XeTeX}- \text{ stable}]$	11
	[2009/08/31 v2.9]	
	[2009/08/13 v2.2]	
	[2009/08/12 v2.1]	
	[2009/07/22 v1.0]	
4	Index	12

This documentation is produced with the DocStrip utility.

→ To get the documentation, run (thrice): pdflatex boolexpr.dtx
for the index: makeindex -s gind.ist boolexpr.idx
→ To get the package, run: etex boolexpr.dtx

The .dtx file is embedded into this pdf file thank to embedfile by H. Oberdiek.

1. The choice of <> rather than != is due to Category codes considerations.

2.\if, \ifcase, \ifcat, \ifcsname, \ifdefined, \ifdim, \ifeof, \iffontchar, \ifhmode, \ifnmer, \ifmmode, \ifnum, \ifodd, \ifvmode, \ifvoid, \ifx
1/12

^{*} boolexpr: CTAN:macros/latex/contrib/boolexpr

1 Introduction – Using boolexpr: \boolexpr and \switch

```
\begin{cases} boolean expression \end{cases} \end{cases}
```

\boolexpr is a macro that takes for unique argument a series of atomic expressions of the form:

```
numeric expr.
                         numeric expr.
numeric expr.
                  <>
                         numeric expr.
numeric expr.
                         numeric expr
                   <
numeric expr.
                  <=
                         numeric expr
numeric expr.
                         numeric expr.
                  >
numeric expr.
                  >=
                         numeric expr.
                 \langle test \rangle 0 \else 1\fi
  \boolexpr{\langle boolean \ expression \rangle}
```

related by **\AND** or **\OR** (with the usual logical precedence).

\boolexpr expands to 0 if the whole expression is true and to a non nul number if the whole expression is false.

\boolexpr is purely expandable.

```
Therefore, testing may be used as follow:

\ifcase\boolexpr{ boolean expression }

what to do if true

\else
what to do if false

\fi
```

It is possible to use switches as boolean quantities into a \boolexpr expression with the syntax: \ifswitch 0\else 1\fi

It is also possible to use \ifdim, \ifnum etc. (although it is not necessary because other forms of atomic expression can perform those tests more easily) and \ifdefined, \ifcsname etc. with the same syntax, f.ex.:

```
\langle cs-name \rangle \rangle  \quad \quad
```

It means that if the conditional is true then the *atomic expression* is true (expands to 0), otherwise the *atomic expression* is false (expands to non 0).

It is possible to test dimensions (or glue or muglue) by writing \dimexpr (or \glueexpr or \muexpr) in front of the *atomic expression*; therefore, the following are valid atomic expressions:

```
\dimexpr dimen expr. < dimen expr
\glueexpr glue expr. <> glue expr.
\muexpr mu expr. = mu expr.
```

It is allowed to group expressions inside the argument of \boolexpr by inserting another \boolexpr evaluation, f.ex.:

```
\boolexpr{ \alpha \setminus OR \beta \AND \gamma }
```

The logical **NOT** operator can be achieved by writing for example:

```
\ifcase\boolexpr{\langle boolean expression \rangle} 1\else \mathbf{0}\fi
```

Finally, if the $\langle boolean\ expression \rangle$ is missing:

```
\boolexpr{ } expands to 1 (ie. false).
```

```
\iftime boolexpr {\langle boolean\ expression \rangle} {\langle true\ part \rangle} {\langle false\ part \rangle}
```

\ifboolexpr is the LATEX form of a \boolexpr test.

\ifboolexpr is purely expandable (provided $\langle true \ part \rangle$ and $\langle false \ part \rangle$ are so).

\boolexpr examples

The part of the expression that is evaluated is in blue (the remainder is not evaluated).

```
\left( \frac{45}{80} \right) = \frac{50}{40} 
                      boolexpr is true
                                                                                                                                                                \longrightarrow boolexpr is false
   \else boolexpr is false
   \fi
   \left( \frac{45}{80} \right) = 5 \AND \ 0 <> 0 
                      boolexpr is true
                                                                                                                                                                \longrightarrow boolexpr is true
   \else boolexpr is false
   \fi
  \left( \frac{45 < 80 \ 0R 5 = 5 } \right) \ 
                      boolexpr is true
                                                                                                                                                                \longrightarrow boolexpr is false
   \else boolexpr is false
   \fi
\ifcase\boolexpr{ 12>0 \setminus AND (4+3)*5 > 20 }
                   boolexpr is true
                                                                                                                                                                \longrightarrow boolexpr is true
\else boolexpr is false
\fi
\makeatletter
                                                                                                                                                                \longrightarrow 0
\number\boolexpr{ \the\catcode'\@=11 }
                                                                                                                                                               (catcode of character @ is 11)
\makeatother
\number\boolexpr{ \the\catcode'\@=11 \AND \ifdefined\@undefined 0\else 1\fi }
                                                                                                                                                             \longrightarrow 1
                                                                                                                                                            (catcode of character @ is 12)
\makeatletter
\number\boolexpr{ 3<4 \AND \@ifundefined{iftest}{1}{\iftest 0\else 1\fi} }</pre>
                                                                                                                                                             \longrightarrow 1: \iftest not defined
\makeatletter
                                                    \newif\iftest
                                                                                                         \testtrue
\longrightarrow 0: \iftest is true
\ifcase\boolexpr{ \dimexpr 12pt + 1in > 8mm * 2 \AND \iftest 0\else 1\fi }
                      boolexpr is true
                                                                                                                                                                \longrightarrow boolexpr is true
\else boolexpr is false
\fi
\ifcase\boolexpr{ 0=0 \AND \ifcase\boolexpr{1=1 \AND 5<=5} 1\else 0\fi }
                                                                                                                                                                  \rightarrow boolexpr is false
                      boolexpr is true
                                                                                                                                                              \alpha \AND NOT( \beta \AND \gamma )
\else boolexpr is false
                                                                                                                                                         = \alpha \AND NOT \beta \OR \alpha \AND NOT \gamma
\fi
```

Results in green were evaluated by boolexpr at compilation time.

The \switch syntax

```
\switch
\case{\langle boolean expression\rangle} ...
\case{\langle boolean expression\rangle} ...
\otherwise ...
\endswitch
```

boolexpr defines a syntax for \switch conditionals which remains purely expandable:

Each part of the switch is optional. That means:

```
\switch
\case{ \langle bool expr \rangle \} ...
\case{ \langle beel expr \rangle \} ...
\case{ \langle bool expr \rangle \} ...
\case{ \langle beel expr \rangle \} ...
\case{ \langle bool expr \rangle \} ...
```

```
\switch
\otherwise ...
\endswitch
\characteristics
```

are allowed by boolexpr.

\switch examples

The part of the expression that is evaluated is in blue (the remainder is not evaluated).

```
\switch
\cse{6>1 \AND 6<=5}\ and \leq 5%
\cspace{3<10}$> 5$ and $< 10$%
                                               \rightarrow > 5 and < 10
\cspace{3>10}\space{3>10}\
\endswitch
\edef\result{%
\switch
\case{6>1 \AND 6<=5}\ and \line 5\%
                                               \longrightarrow result:
\cspace{3<10}$> 5$ and $< 10$%
                                               $>5$ and $< 10$
\cspace{3>10} \geq 10
\endswitch}
\newcounter{myCounter} \setcounter{myCounter}{2}
\edef\result{%
\switch[\value{myCounter}=]
\case{1}one%
      | ----->
\case{2}two% <=> \case{value{myCounter}=2}
                                                \longrightarrow result: two
\case{3}three%
\case{2}vartwo%never found%
\otherwise something else%
\endswitch}
switch[\value{myCounter}]
\case{=1}It's $1$%
                                                \rightarrow It's >= 0
\case{=-1}It's $-1$%
               |-| -----> |-|
\case{>=0}It's $>=0$% <=> \case{\value{myCounter}>=0}
\otherwise something else%
\endswitch
switch[\pdfstrcmp{DuMmY}]
                                                \longrightarrow It's "DuMmY"
\case{{First}}It's "First"%
               |-| -----> |-|
\case{{DuMmY}It's DuMmY%
\otherwise something else%
\endswitch
```

Results in green were evaluated by boolexpr.sty at compilation time.

1.1 Purely expandable macros for tests with boolexpr

Please refer to the etextools package documentation at:

http://www.ctan.org/tex-archive/macros/latex/contrib/etextools/etextools.pdf

2 Implementation

2.1 The algorithm

The *string* is the suite of *atomic expressions* connected by \AND or \OR.

The *result* must be 0 if the *string* is true, and non zero if the *string* is false.

"go to some macro" means: "now expand some macro".

A \bex@OR

1) Split the *string* into two parts:

 $#1 = before the first \OR (#1 does not contain any \OR)$

 $#2 = after the first \OR$

2) If #2 is blank: the string contains no \OR

then go to \bex@AND to test \AND relations in #1

Otherwise: test the \AND relations in #1 and keep #2 in a so called "or-buffer" for further testing.

B \bex@AND

#1 = or-buffer for further testing if needed

1) Split the string "before the first \OR" (ie. the #1 of A.1) into two parts:

 $#2 = before the first \AND (#2 is an atomic expression)$

 $#3 = after the first \AND (#3 does not contain any \OR)$

2) Then test #2 (the *atomic expression*):

TRUE: If #3 is blank then #2 is either:

- an atomic expression alone
- the last atomic expression in *string*, preceded by \OR
- an atomic expression preceded by \OR and followed by \OR

In each of these 3 cases, the whole expression (*ie.* the *string*) is true because #2 is true (otherwise, we had known the result of the whole *string* earlier, and were not into testing #2)

Now if #3 is not blank then #2 is followed by \AND:

go to \bex@ANDAND to test the series of \AND

FALSE: if the or-buffer #1 is blank then #2 is either:

- an atomic expression alone
- an atomic expression followed a series of \AND (and no \OR)
- the last atomic expression of the *string*

In each or these 3 cases, the whole expression (*ie.* the *string*) is false because #2 is false (otherwise, the result would have been known earlier)

Now if the or-buffer #1 is not blank, then we have to do more tests to get the result:

go to \bex@OR to split the or-buffer (#1 here) and continue testing...

C \bex@ANDAND

#1 is the or-buffer for further testing if needed

1) Split the string (ie. #3 in B.2.TRUE) into two parts:

#2 : before the first \AND (#2 is an atomic expression)

#3: after the first \AND

2) Test the *atomic expression* #2:

TRUE: If #3 is blank then #2 is the last atomic expression of a series of \AND (possibly followed by \OR).

Conclusion: the whole *string* is true (otherwise, we would have concluded earlier that it was false and were not into testing #2... think about it)

Now if #3 is not blank then #2 is followed by \AND and we have to test further: go to \bex@ANDAND to test #3.

FALSE: we do not have to test the following \AND: the \AND-connected series is false.

If the or-buffer #1 is blank then the whole *string* is false.

Now if the or-buffer #1 is not blank: continue testing into this or-buffer: go to \bex@OR.

2.2 Category codes considerations

At first glance, the author of this package wanted to test inequality with the operator !=. A problem arose because some languages make the character ! active (f.ex. french). As far as babel changes the catcodes \AtBeginDocument, the category code of ! is different in the preamble (12) than in the document (13).

After all, it was possible to change the definitions after begin document but... if you try to make the = character active, you will (surprisingly) observe that a test like:

```
\ifnum 4=4 ok\fi
leads you to one of the following error messages:
undefined control sequence = if = is undefined
missing = inserted for \ifnum if = is defined.
```

The same apply for < or >. Therefore: such conditionals are possible for T_EX only if = ,< and > have a category code of 12 (11 is forbidden too).

Thus the choice of <> is far easier and more reliable than the c-like !=.

2.3 Identification

This package is intended to use with a LATEX distribution of ε -TEX.

```
1 \( *\package \)
2 \ProvidesPackage{boolexpr}
3 [2010/04/15 v3.14 Purely expandable boolean expressions and switch (eTeX)]
```

2.4 Special catcode

The colon (/) will be used as a delimiter. We give it a category code of 8 (as in etextools):

```
4 \let\bex@AtEnd\@empty
5 \def\TMP@EnsureCode#1#2{%
   \edef\bex@AtEnd{%
7
      \bex@AtEnd
      \catcode#1 \the\catcode#1\relax
8
   }%
9
   \catcode#1 #2\relax
10
11 }
12 \TMP@EnsureCode{95}{11}% _
13 \TMP@EnsureCode{47}{8}% / etextool delimiter
14 \TMP@EnsureCode{60}{12}% <
15 \TMP@EnsureCode{61}{12}% =
16 \TMP@EnsureCode{62}{12}% >
17 \TMP@EnsureCode{43}{12}% -
```

```
18 \TMP@EnsureCode{45}{12}% +
19 \TMP@EnsureCode{58}{8}% : delimitor
```

2.5 Tree helper macros

While reading the log file it is preferable to read \@firstoftwo/\@secondoftwo when the algorithm is making a choice (\ifblank) and \bex@truepart/bex@falsepart when the algorithm has just determined the result of an atomic expression.

```
20 \let\bex@truepart\@firstoftwo
21 \let\bex@falsepart\@secondoftwo
```

\bex@nbk

The following macro is purely expandable and its code is most probably due to D. Arseneau (url.sty). \bex@nbk means if not blank.

```
22 \long\def\bex@nbk#1#2/#3#4#5//{#4}
```

\bex@ifoptchar

\bex@ifoptchar checks if a character is a single opening bracket '['.

```
23 \long\def\bex@ifoptchar#1[#2/#3#{\csname @\if @\detokenize{#1#2}@% first\else second\fi oftwo\endcsname}
```

2.6 Atomic expression evaluation

The six possible numeric atomic expressions x < y, x <= y, x > y, x >= y, x <> y and x = y are first transformed to their zero-form:

```
\numexpr x - y < 0,\numexpr x - y > 0,\numexpr x - y < 0,\numexpr x - y = 0 etc.
```

Before all, we need to know which relation is used in the atomic expression:

/pex@r.e1

\bex@rel tests an *atomic expression*: first determine its type (inferior to, superior to, equality, inequality, other \boolexpr) and then use the appropriate evaluation macro:

```
25 \long\def\bex@rel#1{%
                               \bex@test_eval#1/{\bex@eval{#1}}
26
                                                   {\bex@test_neg#1<>//{\bex@neg #1/}
27
28
                                                                       {\bex@test_infeq#1<=//{\bex@infeq #1/}
                                                                                          {\bex@test_inf#1<//{\bex@inf #1/}
29
                                                                                                             {\text{\ensuremath{\bex@test\_supeq#1>=//{\bex@supeq #1/}}}}
30
31
                                                                                                                                 {\bex@test_sup#1>//{\bex@sup #1/}
                                                                                                                                                    {\text{\ensuremath{\lower.09475pt \ensuremath{\lower.09475pt \ensuremath{\low
32
33
                                                                                                                                                                        {\@latex@error{Unknown relation found while scanning
                                                                                                                                                                                          \noexpand\boolexpr!}\@ehd}//}//}//}//}//}
34
```

The test macros

They test each *atomic expression* in order to determine its type:

```
35 \def\bex@test_neq#1<>#2/{\bex@nbk#2/}
36 \def\bex@test_eq#1=#2/{\bex@nbk #2/}
37 \def\bex@test_infeq#1<=#2/{\bex@nbk #2/}</pre>
38 \def\bex@test_inf#1<#2/{\bex@nbk #2/}</pre>
39 \def\bex@test_supeq#1>=#2/{\bex@nbk #2/}
40 \def\bex@test_sup#1>#2/{\bex@nbk #2/}
41 \long\def\bex@test_eval#1#2/{%
     \ifcat\noexpand#1\relax% #1 is a control sequence
42
           \bex@test_Eval{#1}
43
     \else \expandafter\@secondoftwo
44
45
46 \long\def\bex@test_Eval#1#2\fi{\fi\csname @%
     \ifx#1\the second%
```

\else\ifx#1\numexpr second%

```
\else\ifx #1\number second%
                     49
                          \else\ifx #1\dimexpr second%
                     50
                          \else\ifx #1\glueexpr second%
                     51
                     52
                          \else\ifx #1\muexpr second%
                          \else\ifx #1\value second%
                     53
                          \else first%
                     54
                          \fi\fi\fi\fi\fi\fi oftwo\endcsname}
                    They evaluate each atomic expression according to its type:
Evaluation macros
                     56 \long\def\bex@true_or_false#1{\csname bex@%
                          \ifnum\numexpr#1 true\else false\fi part\endcsname}
                     58 \long\def\bex@false_or_true#1{\csname bex@%
                          \ifnum\numexpr#1 false\else true\fi part\endcsname}
                     60 \def\bex@eq#1=#2/{\bex@true_or_false{#1-(#2)=0}}
                     61 \def\bex@neq#1<>#2/{\bex@false_or_true{#1-(#2)=0}}
                     62 \def\bex@infeq#1<=#2/{\bex@false_or_true{#1-(#2)>0}}
                     63 \def\bex@inf#1<#2/{\bex@true_or_false{#1-(#2)<0}}
                     64 \def\bex@supeq#1>=#2/{\bex@false_or_true{#1-(#2)<0}}
                     65 \def\bex@sup#1>#2/{\bex@true_or_false{#1-(#2)>0}}
                     66 \long\def\bex@eval#1{\bex@true_or_false{#1=0}}
                    2.7 \AND and \OR management
          \bex@OR \bex@OR splits the string to evaluate into two parts: before the first \OR and after:
                     67 \long\def\bex@OR#1\OR#2:{\bex@AND{#2}#1\AND:}
         \bex@AND
                    \bex@AND splits the string to evaluate into two parts: before the first \AND and after:
                     68 \long\def\bex@AND#1#2\AND#3: {%
                          \bex@rel{#2}
                              {\bex@nbk #3//{\bex@ANDAND{#1}#3:}{+0}//}
                     70
                              {\bex@nbk #1//{\bex@0R#1:}{+1}//}}
                     71
                    \bex@ANDAND evaluate successive atomic expressions related by \AND until false is found or until
      \bex@ANDAND
                    the end if every expression is true:
                     72 \long\def\bex@ANDAND#1#2\AND#3:{%
                     73
                          \bex@rel{#2}
                              {\bex@nbk #3//{\bex@ANDAND{#1}#3:}{+0}//}
                     74
                     75
                              {\bex@nbk #1//{\bex@OR#1:}{+1}//}}
        \boolexpr \boolexpr is the entry point for evaluating boolean expressions:
                     76 \newcommand\boolexpr[1] {\bex@nbk \#1//\{\text{numexpr}\cdot \text{bex@0R}\#1 \setminus \text{OR}:}_{+1}//}
      \ifboolexpr \ifboolexpr is the LATEX form of \boolexpr tests:
                     77 \ifdefined\ifboolexpr% etoolbox defines ifboolexpr...
                     78 \PackageWarning{boolexpr}{\string\ifboolexpr\space has been defined before\MessageBreak
                           by etoolbox (I suppose) - Overwritting}
                     80 \renewcommand\ifboolexpr[1] {\bex@true_or_false{\boolexpr{#1}=0}}
                     82 \newcommand\ifboolexpr[1]{\bex@true_or_false{\boolexpr{#1}=0}}
                     83 \fi
```

```
\switch is not long to implement... see:
                               84 \long\def \switch#1\endswitch {\bex@nbk#1//{\bex@switch_opt#1\endswitch}{}}//}
                               85 \long\def \bex@switch_opt#1#2\endswitch{\bex@ifoptchar#1/[/
                                               {\bex@switch_opti#1#2\endswitch}{\bex@switch_opti[]#1#2\endswitch}}%]
                               87 \def \bex@switch_opti[#1]#2\endswitch {\bex@switch_otherwise[{#1}]#2\otherwise\endswitch}
                               89 \def\bex@switch_otherwise[#1]#2\otherwise#3\endswitch{%
                                         \bex@switch_case[{#1}]#2\case\endswitch
                               90
                                               {\bex@nbk#3//{\bex@otherwise#3\endswitch}{}//}
                               91
                                               \endswitch}
                               92
                               93
                               94 \def\bex@switch_case[#1]#2\case#3\endswitch{\bex@nbk#2//%
                               95
                                               {\text{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\
                                                     {\bex@nbk#3//{\bex@switch_case[{#1}]#3\endswitch}\@firstoftwo//}}%
                               96
                               97
                                               {\bex@nbk#3//{\bex@switch_case[{#1}]#3\endswitch}\@firstoftwo//}//}
                               98
                               99 \long\def\bex@case[#1]#2#3\endcase{\ifboolexpr{#1#2}{\bex@after_endswitch{#3}}}
                              101 \long\def\bex@after_endswitch#1#2\endswitch{#1}
                              102 \long\def\bex@otherwise#1\otherwise#2\endswitch{#1}
                              2.7.1 Purely expandable macros for tests with boolexpr
\bex@pdfmatch
                              103 \long\def\bex@pdfmatch#1#2{\ifnum\pdfmatch{#2}{#1}=0 1\else0\fi}
  \bex@ifempty
                              104\long\def\bex@ifempty#1{\if\relax\detokenize{#1}\relax0\else1\fi}
                              105 \long\def\bex_ifempty#1{\csname @\if\relax\detokenize{#1}\relax first\else second\fi oftwo
  \bex@ifblank
                              106 \long\def\bex@ifblank#1{\bex@nbk#1//10//}
          \bex@ifx
                              107 \long\def\bex@ifx#1#2{\bex__ifx#1#2//}
                              108 \long\def\bex_ifx#1#2#3/#4#5#6//{\bex@nbk#6//{\ifx#1#2\bex_else#5\else\bex_fi#6\fi}{#5}//j
                              109 \lceil def \cdot else#1 \cdot else#2 \cdot fi \{ fi#1 \}
                              110 \geq \int def \sec_f i#1 fi {fi#1}
        \bex@comp
                              111 \long\def\bex@comp#1{\bex@ifoptchar#1/[/\bex@c@mp{\bex@c@mp@[\numexpr]}}
                              112 \long\def\bex@c@mp[#1#2]#3#4#5{%
                              113
                                         \bex_ifempty{#2}{%
                                               \ifx #1\dimexpr
                                                                                              \bex@c@mp@\ifdim\dimexpr{#3}{#4}{#5}%
                              114
                                               \else\ifx #1\numexpr
                                                                                              \bex@c@mp@\ifnum\numexpr{#3}{#4}{#5}%
                              115
                                                                                              \bex@c@mp@\ifdim\glueexpr{#3}{#4}{#5}%
                              116
                                               \else\ifx #1\glueexpr
                              117
                                               \else\ifx #1\muexpr
                                                                                              \bex@c@mp@\ifdim\muexpr{#3}{#4}{#5}%
                              118
                                               \else\ifx #1\number
                                                                                              \bex@c@mp@\ifnum\numexpr{#3}{#4}{#5}%
                                               \else\PackageError{boolexpr}{%
                              119
                                                     Invalid comparison test while scanning \string\bex@comp\MessageBreak
                              120
                                                     found: \detokenize{#1}}%
                              121
                              122
                                               \fi\fi\fi\fi\fi\fi}%
                                               {\PackageError{boolexpr}{Invalid comparison test while scanning \string\bex@comp\Me:
                              123
                                               found: \detokenize{#1}}}
                              124
```

125 \long\def\bex@c@mp@#1#2#3#4#5{#1#2#3#4#5 **0**\else 1\fi}

```
126 \bex@AtEnd\let\bex@AtEnd\@undefined
127 </package>
```

2.8 Future developments: to do

boolexpr should work either with ε -TEX or ε -TEX-LATEX...

May be build a "real" \NOT operator.

3 History

[2010/04/15 v3.14]

• etoolbox now defines a \ifboolexpr macro (not purely expandable). Fix has been done (with a warning) to be able to use \ifboolexpr from boolexpr.

[2009/09/30 v3.1]

• Support of \pdfmatch added (\bex@pdfmatch)

[2009/09/03 v3.0 – ε -T_EX- and XeT_EX- stable]

- Many bug fixed in \switch. Tested on LATEX, pdfLATEX and XeLATEX.
- Revision of this pdf documentation.

[2009/08/31 v2.9]

• Added \value in the "list of exceptions" (\bex@test_Eval) Enhancement of \switch with the optional first argument (refer to the examples).

[2009/08/13 v2.2]

• Small optimisation in \bex@OR

[2009/08/12 v2.1]

- Added the \switch syntax
- Small bug (\numexpr forgotten in the "list of exceptions" (\bex@test_Eval)
- Redesigned tests for better compilation

[2009/07/22 v1.0]

• First version.

4 Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined refer to the code line of the definition; numbers in roman refer to the code lines where the entry is used.

Symbols	D
\@firstoftwo 20, 96, 97	\detokenize 23, 104, 105, 121, 124
\@secondoftwo 21,44	\dimexpr 50, 114
\@undefined 126	•
	${f E}$
A	\endswitch 84, 85,
\AND 67, 68, 72	86, 87, 89, 90, 91, 92, 94, 96, 97, 101, 102
В	\Evaluation_macros \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\bex@after 99, 101	_
\bex@AND 67, <u>68</u>	G
\bex@ANDAND 70, <u>72</u>	\glueexpr 51, 116
\bex@AtEnd 4, 6, 7, 126	
\bex@c@mp 111, 112	I
\bex@c@mp@ . 111, 114, 115, 116, 117, 118, 125	\ifboolexpr 2, <u>77</u> , 99
\bex@case 95, 99	\ifcat 42
\bex@comp <u>111</u>	\ifdim 114, 116, 117
\bex@eq 32, 60	\ifnum 57, 59, 103, 115, 118
\bex@eval 26, 66	
\bex@false 58, 61, 62, 64	\mathbf{M}
\bex@falsepart 21	\muexpr 52, 117
\bex@ifblank	
\bex@ifempty	N
\bex@ifoptchar 23, 85, 111	\number 49, 118
\bex@ifx	\numexpr 48, 57, 59, 76, 111, 115, 118
\bex@inf	
\bex@infeq	О
\bex@nbk <u>22</u> , 35, 36, 37, 38, 39, 40, 70,	\OR 67, 76
71, 74, 75, 76, 84, 91, 94, 96, 97, 106, 108	\otherwise 87, 89, 102
\begin{align*} \begin	
\bex_00R	P
\begin{align*} \begin	\PackageError
\bex@pdfmatch	\PackageWarning 78
\bex@sup	\pdfmatch 103
\bex@supeq	
\bex@switch . 84, 85, 86, 87, 89, 90, 94, 96, 97	\mathbf{S}
\bex@test	\switch 4, <u>84</u>
30, 31, 32, 35, 36, 37, 38, 39, 40, 41, 43, 46	
bex@true 56, 60, 63, 65, 66, 80, 82	T
\bex@truepart 20	\The_test_macros <u>35</u>
\boolexpr 2, 34, 76, 80, 82	\TMP@EnsureCode 5, 12, 13, 14, 15, 16, 17, 18, 19
_	
C	V
\catcode 8, 10	\value 53