Scilab Textbook Companion for Elements Of Thermal Technology by J. H. Seely¹

Created by
Chaitanya Potti
Chemical Engineering
Chemical Engineering
IIT Bombay
College Teacher
NA
Cross-Checked by
Ganesh R

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elements Of Thermal Technology

Author: J. H. Seely

Publisher: Marcel Dekker Inc., New York, U. S. A.

Edition: 1

Year: 2002

ISBN: 0-8247-1174-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	Thermodynamic Definitions and Concepts	8
2	Units and Dimensions	10
3	Tem	13
4	viscosity	16
5	Surface Tension	19
6	work and heat	21
7	First Law of Thermodynamics	25
8	Second Law of Thermodynamics	29
9	Gas Properties and Processes	32
10	Combustion Processes	36
11	Conduction Heat Transfer	39
12	Convection Heat Transfer1	44
13	Boiling Heat Transfer	47
14	Radiation Heat Transfer	49

List of Scilab Codes

Exa 1.1	Chapter 1 example 1	8
Exa 1.2	Chapter 1 example 2	9
Exa 1.3	Chapter 1 example 3	9
Exa 2.1a	Chapter 2 example 1a	10
Exa 2.1b	chapter 2 example 1b	10
Exa 2.2	chapter 2 example 2	11
Exa 2.3	chapter 2 example 3	11
Exa 3.1	Chapter 3 example 1	13
Exa 3.2	chapter 3 example $2 \ldots \ldots \ldots \ldots$	13
Exa 3.3	chapter 3 example 3	14
Exa 3.4	chapter 3 example 4	14
Exa 4.1	Chapter 4 example 1	16
Exa 4.2	chapter 4 example 2	16
Exa 4.3	chapter 4 example 3	17
Exa 4.4	chapter 4 example 4	17
Exa 4.5	chapter 4 example 5	18
Exa 5.1	Chapter 5 example 1	19
Exa 5.2	chapter 5 example $2 \dots \dots \dots \dots \dots$	19
Exa 5.3	chapter 5 example 3	20
Exa 6.1	Chapter 6 example 1	21
Exa 6.2	chapter 6 example 2	21
Exa 6.3	chapter 6 example 3	22
Exa 6.4	chapter 6 example 4	22
Exa 6.5	chapter 6 example 5	23
Exa 6.6	chapter 6 example 6	23
Exa 7.1	Chapter 7 example 1	25
Exa 7.2	chapter 7 example 2	25
Exa 7.3	chapter 7 example 3	26

Exa 7.4	chapter 7 example 4	26
Exa 7.5	chapter 7 example 5	27
Exa 7.6	Chapter 7 example 6	28
Exa 8.1	Chapter 8 example 1	29
Exa 8.2	chapter 8 example 2	29
Exa 8.3	chapter 8 example 3	30
Exa 8.4	chapter 8 example 4	30
Exa 9.1	Chapter 9 example 1	32
Exa 9.2		32
Exa 9.3	chapter 9 example 3	33
Exa 9.4	chapter 9 example 4	33
Exa 9.5	chapter 9 example 5	34
Exa 9.6	chapter 9 example 6	35
Exa 10.1		36
Exa 10.2	chapter 10 example 2	36
Exa 10.3		37
Exa 10.4		37
Exa 10.5	chapter 10 example 5	37
Exa 11.1	Chapter 11 example 1	39
Exa 11.2	chapter 11 example 2	39
Exa 11.3		40
Exa 11.4	chapter 11 example 4	41
Exa 11.5	chapter 11 example 5	41
Exa 11.6		42
Exa 11.7	chapter 11 example 7	42
Exa 12.1		44
Exa 12.2	chapter 12 example 2	45
Exa 12.3		45
Exa 12.4	chapter 12 example 4	46
Exa 13.1	Chapter 13 example 1	47
Exa 13.2	chapter 13 example 2	48
Exa 14.2	Chapter 14 example 2	49
Exa 14.3	-	49
Exa 14.4		50
Exa 14.5		50
Exa 14.6		51
Exa 14.7		51
Exa. 15.1		- 53

Exa 15.2 chapter 15 example 2		Exa 15.2	chapter 15 example 2																		53
-------------------------------	--	----------	----------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----

Thermodynamic Definitions and Concepts

Scilab code Exa 1.1 Chapter 1 example 1

```
1 clc
 2 //initialisation of variables
 3 Vf = 0.019014 // ft^3 / lbm
4 Vg= 1.4249 / ft^3 / lbm
5 T= 425 //fahrenheit
6 quality= 60 //\%
 7 //CALCULATIONS
8 \text{ Vfg} = \text{Vg} - \text{Vf}
 9 V = (quality/100) * Vg + (1 - (quality/100)) * Vf
10 V1= Vf+(quality/100)*Vfg
11 V2 = Vg - (1 - (quality/100)) * Vfg
12 //RESULTS
13 printf ('Vfg = \%.4 f ft^3/lbm', Vfg)
14 printf (' \ \ V= \%.4 \, f \, ft^3/lbm', V)
15 printf (' \n V= \%.4 \,\mathrm{f} ft ^3/\mathrm{lbm}', V1)
16 printf (' \ \ V= \%.4 \ f \ ft \ 3/lbm', V2)
```

Scilab code Exa 1.2 Chapter 1 example 2

```
1 clc
2 //initialization of variables
3 tsat=431.82 //F
4 vf=0.019124 //ft^3/lbm
5 vg=1.3267 //ft^3/lbm
6 //Calculations
7 disp('From keenan and keyes steam tables, at 500 f and 350 psia,')
8 v=1.4913 //ft^3/lbm
9 //Results
10 printf('\n Specific volume = %.4f',v)
```

Scilab code Exa 1.3 Chapter 1 example 3

```
1 clc
2 //initialisation of variables
3 T= 100 //degrees
4 P= 200 //bar
5 //CALCULATIONS
6 Psat= 1.0135 //bar
7 Vf= 1.0435 //cm^3/gm
8 V= 1.0337 //cm^3/gm
9 v= Vf-V
10 //RESULTS
11 printf ('Amount of liquid compressed= %.4 f cm^3/gm', v)
```

Units and Dimensions

Scilab code Exa 2.1a Chapter 2 example 1a

```
1 clc
2 //initialisation of variables
3 F= 1//N
4 L= 1//m
5 T= 1//s
6 I= 1//N m s^2
7 N= 1//Kg m s^-2
8 //CALCULATIONS
9 I= F*L*T^2 //Kg m^2
10 //RESULTS
11 printf ('I in SI system= %. f Kg m^2', I)
```

Scilab code Exa 2.1b chapter 2 example 1b

```
1 clc
2 //initialisation of variables
3 F= 1//lbf
4 L= 1//ft
```

```
5 T= 1//s
6 I= 1//lbf ft s^2
7 lbf= 1//slug ft s^-2
8 //CALCULATIONS
9 I= F*L*T^2 //slug ft^2
10 //RESULTS
11 printf (' I in British Gravitational System = %.f slug ft^2',I)
```

Scilab code Exa 2.2 chapter 2 example 2

```
1 clc
2 //initialisation of variables
3 F= 1 //Pouunda
4 m= 1 //lbm
5 g= 1 //fts^-2
6 //CALCULATIONS
7 gc= m*g/F
8 //RESULTS
9 printf ('gc= %.2 f lbm ft/poundal^2',gc)
```

Scilab code Exa 2.3 chapter 2 example 3

```
1 clc
2 //initialisation of variables
3 h= 76 //cmhg
4 g= 32.2 //ft/s^2
5 h= 76.0 //cmHg
6 Dhg= 847 //lbm/ft^3
7 //CALCULATIONS
8 Pa= Dhg*g*h*0.33
9 Pa1= Pa/1
10 //RESULTS
```

11 printf ('Pa= %.f poundal/ft^2',Pa1)

Tem

Scilab code Exa 3.1 Chapter 3 example 1

```
1 clc
2 //initialisation of variables
3 T1= -3 //degrees
4 T2= 650 //Rankine
5 T3= 650 //Rankine
6 //CALCULATIONS
7 t1= (9/5)*T1+32
8 t2= T2-459.67
9 t21= (5/9)*(t2-32)
10 t3= t21+273.15
11 //RESULTS
12 printf ('T= %.2 f F',t1)
13 printf ('\n T= %.2 f C',t21)
14 printf ('\n T= %.2 f K',t3)
```

Scilab code Exa 3.2 chapter 3 example 2

```
1 clc
```

```
2 //initialisation of variables
3 T1= 40 //degrees
4 T2= 30 //degrees
5 //CALCULATIONS
6 d1= (T1-T2)*(9/5)
7 d2= d1
8 //RESULTS
9 printf ('T= %.2 f F',d1)
10 printf (' \n T= %.2 f R',d2)
```

Scilab code Exa 3.3 chapter 3 example 3

```
1 clc
2 //initialisation of variables
3 l= 400 //mm
4 t1= 20 //degrees
5 t2= 90 //degrees
6 alpha= 19.3*10^-6 //degrees^-1
7 //CALCULATIONS
8 L= alpha*(t2-t1)*1
9 L1= L+1
10 //RESULTS
11 printf ('L= %.2 f mm', L1)
```

Scilab code Exa 3.4 chapter 3 example 4

```
1 clc
2 //initialisation of variables
3 d= 2.98 //in
4 T1= 69 //F
5 T2= -15 //F
6 alpha= 22.7*10^-6 //C^-1
7 //CALCULATIONS
```

```
8 A0= %pi*d^2/4
9 alpha1= alpha/1.8
10 A= 2*alpha1*A0*(T1-T2)
11 A1= A0-A
12 d1= sqrt(4*A1/%pi)
13 //RESULTS
14 printf ('diameter at -15 = %.3 f in',d1)
```

viscosity

Scilab code Exa 4.1 Chapter 4 example 1

```
1 clc
2 //initialisation of variables
3 V= 1 //cp
4 //CALCULATIONS
5 SI= V*10^-2/10
6 BE= (V*10^-2*32.2)/(4.788*10^2)
7 RE= V*10^-2/(4.788*10^2*144)
8 //RESULTS
9 printf ('SI units= %.2e Pa s',SI)
10 printf ('\n BE units= %.2e lbm/ft s',BE)
11 printf ('\n Reyns units= %.2e reyn',RE)
```

Scilab code Exa 4.2 chapter 4 example 2

```
1 clc
2 //initialisation of variables
3 T= 68 //F
4 d= 1.0 //gm/cm<sup>3</sup>
```

```
5 mu= 10^-2 //gm/cm s
6 SIm= 10^-4 //m^2/s
7 m= 10.76 //ft
8 //CALCULATIONS
9 SI= mu*SIm
10 BU= SI*m
11 //RESULTS
12 printf ('SI Units= %.2e m^2/s',SI)
13 printf ('\n British Units= %.2e ft/s',BU)
```

Scilab code Exa 4.3 chapter 4 example 3

```
1 clc
2 //initialisation of variables
3 Ku= 40 //SUS
4 //CALCULATIONS
5 SU= 0.0022*Ku-(1.8/Ku)
6 //RESULTS
7 printf ('Stoke Units= %.3 f stoke', SU)
```

Scilab code Exa 4.4 chapter 4 example 4

```
1 clc
2 //initialisation of variables
3 v= 50 //fps
4 mu= 1.6*10^-4 //ft^2/s
5 d1= 10 //in
6 d2= 10 //in square
7 //CALACULATIONS
8 D= (%pi*4*d1^2/4)/(%pi*d2*12)
9 Re= (v*D)/mu
10 D1= (d1^2/(4*d2*3))
11 Re1= (v*D1)/mu
```

```
12 //RESULTS
13 printf ('Re= %.3 e ',Re)
14 printf (' \n Re= %.3 e ',Re1)
```

Scilab code Exa 4.5 chapter 4 example 5

```
1 clc
2 //initialisation of variables
3 v= 1.75*10^-3 //pa s
4 l= 1 //m
5 P= 1 //Mpa
6 d= 0.5 //mm
7 //CALCULATIONS
8 Q= (%pi*P*10^6*((d/2)*10^-3)^4)/(1*8*v)
9 //RESULTS
10 printf ('Q= %.2 e Ns/m^2',Q)
```

Surface Tension

Scilab code Exa 5.1 Chapter 5 example 1

```
1 clc
2 //initialisation of variables
3 St= 0.04 //N/m
4 d1= 5 //cm
5 d2= 15 //cm
6 //CALCULATIONS
7 W= St*10^3*2*4*%pi*((d2/2)^2-(d1/2)^2)
8 //REULTS
9 printf ('Work= %.2 e dyn cm or erg', W)
```

Scilab code Exa 5.2 chapter 5 example 2

```
1 clc
2 //initialisation of variables
3 R= 0.017 //in
4 sigma= 72.8 //m N/m
5 //CALCULATIONS
6 P= (2*sigma*0.005*0.017)/(72.8*R*7.08*10^-4)
```

```
7 //REULTS
8 printf ('Presuure difference= %.1 f lbf/ft^2',P)
```

Scilab code Exa 5.3 chapter 5 example 3

```
1 clc
2 //initialisation of variables
3 d= 13.6 //gm/cm^3
4 g= 980 //cm/s^2
5 D= 0.4 //mm
6 angle= 130 //degrees
7 s= 514 //dyn/cm
8 //CALCULATIONS
9 h= (4*s*cosd(angle))/(d*g*D*10^-1)
10 //RESULTS
11 printf (' Difference in mercury level= %.2 f cm (depression)',h)
```

work and heat

Scilab code Exa 6.1 Chapter 6 example 1

```
1 clc
2 //initialisation of variables
3 m= 5 //kg
4 h= 10 //m
5 gc= 1.0 //kg m/N s^2
6 //CALCULATIONS
7 v2= 2*h*gc*9.8
8 KE= (m*v2)/(2*gc)
9 PE= (m*gc*9.8*h)/(gc)
10 //RESULTS
11 printf ('KE= %.f J',KE)
12 printf (' \n PE= %.f J',PE)
```

Scilab code Exa ${\bf 6.2}\,$ chapter 6 example 2

```
1 clc
2 //initialisation of variables
3 T= 149 //F
```

```
4  p= 20
5  //CALCULATIONS
6  h= 116.96+(p/100)*1008.7
7  //RESULTS
8  printf ('h= %.1 f Btu/lbm',h)
```

Scilab code Exa 6.3 chapter 6 example 3

```
1 clc
2 //initialisation of variables
3 \text{ F} = 30 //1b
4 \text{ w} = 40 // \text{lb}
5 1 = 10 //ft
6 t = 2 // sec
7 \text{ mu} = 0.1
8 //CALCULATIONS
9 f = mu * w
10 W = F * 1 - f * 1
11 FW = f * 1
12 Fhp= FW/(550*t)
13 //RESULTS
14 printf ('Total work done= %.f ft lbf', W)
15 printf (' \n FW= %.f ft lbf',FW)
16 printf ('\n Frictional horsepower= \%.3 f hp', Fhp)
```

Scilab code Exa 6.4 chapter 6 example 4

```
1 clc
2 //initialisation of variables
3 N= 40 //lbf
4 mu= 0.1
5 l= 10 //ft
6 J= 778 //ft lbf/Btu
```

```
7 //CALCULATIONS
8 f= mu*N
9 FW= f*1
10 n= FW/J
11 //RESULTS
12 printf ('No of Btu involved= %.3 f ft Btu',n)
```

Scilab code Exa 6.5 chapter 6 example 5

```
1 clc
2 //initialisation of variables
3 \text{ M} = 50. //gm
4 T= 98. //C
5 Mw = 75. //gm
6 \text{ T1} = 19. //C
7 Tm = 27. //C
8 \text{ Mc} = 123. //gm
9 SH= 0.1 // cal gm^- - 1 C^- - 1
10 Qinst= 6.5 / cal
11 //CALCULATIONS
12 c= (Mc*SH+Mw+Qinst)/(M*(T-Tm))
13 //RESULTS
14 printf ('Mean specific heat of the metal sample= %.4
      f cal/C gm',c)
15 //The answer given in textbook is Wrong
```

Scilab code Exa 6.6 chapter 6 example 6

```
1 clc

2 //initialisation of variables

3 Mw= 500 //gm

4 Tw= 80 //C

5 Ti= -4 //F
```

```
6 Tf= 50 //C
7 ci= 0.5 //cal/gm
8 L= 79.7 //cal/gm
9 cw= 1 //cal/gm
10 Dt= Tw-Tf
11 //CALCULATIONS
12 Tf1= (5/9)*(Ti-32)
13 Dt1= Tf1-Tf
14 m= (Mw*cw*Dt)/(ci*(-Dt1)+L)
15 //RESULTS
16 printf ('Grams of ice can be added= %.f gm',m)
```

First Law of Thermodynamics

Scilab code Exa 7.1 Chapter 7 example 1

```
1 clc
2 //initialisation of variables
3 m= 3000 //lb
4 Z1= 50 //ft
5 V1= 50 //mph
6 gc= 32.2 //ft/lbf s^2
7 V2= 0 //mph
8 g= 32.2 //ft/s^2
9 Z2= 0 //ft
10 //CALCULATIONS
11 V1= V1*(73.3/50)
12 Q2= ((m*(V2^2-V1^2))/(2*gc))+((m*g)/gc)*(Z2-Z1)
13 //RESULTS
14 printf ('Energy dissipated from the brakes= %.e ft lbf',-Q2)
```

Scilab code Exa 7.2 chapter 7 example 2

```
1 clc
2 //initialisation of variables
3 P= 15 //bar
4 T= 300 //C
5 h1= 3043.1 //J/gm
6 //CALCULATIONS
7 u2= h1
8 T= 453.4
9 //RESULTS
10 printf ('Temperature of the steam in the tank= %.1 f C',T)
```

Scilab code Exa 7.3 chapter 7 example 3

```
1 clc
2 //initialisation of variables
3 m= 10 //lbf
4 T= 120 //F
5 T1= 275 //F
6 u1= 98.9 //Btu/lbm
7 u2= 125.6 //Btu/lbm
8 //CALCULATIONS
9 Q= m*(u2-u1)
10 //RESULTS
11 printf ('Heat transferred to the tank= %.f Btu',Q)
```

Scilab code Exa 7.4 chapter 7 example 4

```
1 clc
2 //initialisation of variables
3 v0= 1 //m/s
4 vi= 60 //m/s
5 Q= -500 //J/s
```

Scilab code Exa 7.5 chapter 7 example 5

```
1 clc
2 //initialisation of variables
3 \text{ m} = 0.3 //lt/s
4 T = 82 //C
5 P = 2.4 //bar
6 p = 80
7 \text{ Tw} = 800 //\text{C}
8 \text{ h1} = 67.19 //J/gm
9 h3 = 343.3 //J/gm
10 hf = 529.65 / J/gm
11 hfg= 2185.4 //J/gm
12 v3= 1.0305 //\text{cm}^3/\text{gm}
13 V3= 300 //\text{cm}^3/\text{s}
14 //CALCULATIONS
15 \text{ h2= hf+(p/100)*hfg}
16 \text{ m3} = \text{V3/v3}
17 m2 = (m3*(h3-h1))/(h2-h1)
18 //RESULTS
19 printf ('Required steam flow rate= %.1 f gm/s', m2)
```

Scilab code Exa 7.6 Chapter 7 example 6

```
1 clc
2 //initialisation of variables
3 h2= 2 //J/gm
4 h1= 1 //J/gm
5 //CALCULATIONS
6 L= h2-h1
7 //RESULTS
8 printf ('Difference between the enthalpies of the system in the two phases= %.f (h2-h1) J/gm',L)
```

Second Law of Thermodynamics

Scilab code Exa 8.1 Chapter 8 example 1

```
1 clc
2 //initialisation of variables
3 W= 25 //Btu
4 W1= 100 //Btu
5 T1= 140 //R
6 T2= 0 //R
7 //CALCULATIONS
8 Th= T1+460
9 T1= T2+460
10 nt= (Th-T1)/Th
11 n= nt*100
12 //RESULTS
13 printf ('maximum theotrical efficiency= %.1f (Claim is not valid)',n)
```

Scilab code Exa 8.2 chapter 8 example 2

```
1 clc
2 //initialisation of variables
3 P = 10 //bar
4 P1= 38 //bar
5 T = 310 //C
6 \text{ v= } 64.03 \text{ } //\text{cm}^3/\text{gm}
7 \text{ s} = 6.4415 //J/gm \text{ K}
8 vf = 1.12773 / \text{cm}^3/\text{gm}
9 vg= 194.44 / \text{cm}^3/\text{gm}
10 sf = 2.1387 / J/gm K
11 sfg= 4.4478 / J/gm K
12 //CALCULATIONS
13 x = (v-vf)/(vg-vf)
14 \text{ sx= sf+x*sfg}
15 S= s-sx
16 //RESULTS
17 printf ('Change in Entropy= \%.3 f J/gm', S)
```

Scilab code Exa 8.3 chapter 8 example 3

```
1 clc
2 //initialisation of variables
3 Qh= 70000 //Btu/hr
4 T= 15 //F
5 T1= 72 //F
6 //CALCULATIONS
7 COP= (T1+460)/((T1+460)-(T+460))
8 W= Qh/COP
9 //RESULTS
10 printf ('Minimum power required to drive the heat pump= %. f Btu/hr', W)
```

Scilab code Exa 8.4 chapter 8 example 4

```
1 clc
2 //initialisation of variables
3 h= 26 //KW
4 T= 43 //C
5 To= 0 //C
6 //CALCULATIONS
7 COP= (T+273)/((T+273)-(To+273))
8 W= h/COP
9 Qh=h
10 //RESULTS
11 printf ('Minimum electrical requirement = %.2 f KW', W)
12 printf (' \n Elctrical requirement if an electrical heater used= %.f KW',Qh)
```

Gas Properties and Processes

Scilab code Exa 9.1 Chapter 9 example 1

```
1 clc
2 //initialisation of variables
3 v= 15 //ft^3
4 m= 20 //lbm
5 T= 80 //lbf
6 P= 320 //psia
7 //CALCULATIONS
8 R= P*144*v/(m*(T+460))
9 M= 1545/R
10 //RESULTS
11 printf ('Molecular weight of the gas = %.1 f lbm/lbm mol', M)
```

Scilab code Exa 9.2 chapter 9 example 2

```
1 clc
2 //initialisation of variables
3 V= 50 //lit
```

```
4 P= 20 //atm
5 T= 30 //C
6 P1= 6 //atm
7 T1= 10 //C
8 M= 32 //gm/gm mol
9 //CALCULATIONS
10 n= V*P/(0.082*(T+273))
11 m= n*M
12 n2= P1*V/(0.082*(T1+273))
13 m2= n2*M
14 //RESULTS
15 printf ('Initial Mass of Oxygen = %.f gm',m)
16 printf ('\n Final mass of oxygen= %.f gm',m2)
```

Scilab code Exa 9.3 chapter 9 example 3

```
1 clc
2 //initialisation of variables
3 V2= 0.75 //ft^3
4 P2= 1 //atm
5 P1= 3 //atm
6 T= 35 //F
7 e= 1.3
8 //CALCULATIONS
9 V1= ((P2*(V2)^e)/P1)^(1/e)
10 T2= P1*V1*(T+460)/(P2*V2)
11 //RESULTS
12 printf ('Final volume = %.2 f ft^3 ', V2)
13 printf (' \n Final temperature= %.f R',T2)
14 //The answer is approximated in the textbook
```

Scilab code Exa 9.4 chapter 9 example 4

```
1 clc
2 //initialisation of variables
3 \text{ m} = 0.45 //\text{kg}
4 \text{ v1} = 0.03 //\text{m}^3
5 \text{ v2} = 0.06 / \text{m}^3
6 \text{ P= } 6.9*10^5 //Pa
7 K = 1.4
8 R = 287.1 //J/Kg K
9 //CALCULATIONS
10 T1= (P*v1)/(m*R)
11 T2= T1
12 P2 = P*v1/v2
13 T3= T2*(v2/v1)^(K-1)
14 P3 = P2*(v2/v1)^K
15 //RESULTS
16 printf ('T1 = \%. f K', T1)
17 printf (' \n T2= \%. f K', T2)
18 printf (' \ T3=\%.f\ K',T3)
19 printf ('\n P2= \%.2 e Pa', P2)
20 printf ('\n P3= \%.2 e Pa', P3)
```

Scilab code Exa 9.5 chapter 9 example 5

```
1 clc
2 //initialisation of variables
3 P= 1 //atm
4 T= 60 //F
5 P1= 4 //atm
6 e= 1.3
7 R= 55.15 //lbf/lbm R
8 m= 778
9 //CALCULATIONS
10 T2= (T+460)*(P1/P)^((e-1)/e)
11 W= R*(T2-(T+460))/(1-e)
12 W1= W/m
```

```
13 //RESLUTS
14 printf ('Work associated with the process= %.1f Btu/
lbm ',W1)
```

Scilab code Exa 9.6 chapter 9 example 6

```
1 clc
2 //initialisation of variables
3 \text{ m} = 10 // \text{lbm}
4 R= 48.28 / lbf / lbm R
5 T = 120 //F
6 \ V = 150 \ // ft^3
7 \text{ m1} = 15 // \text{lbm}
8 R1= 55.15 // lbf/ lbm R
9 //CALCULATIONS
10 P1= (m*R*(T+460))/V
11 P2= (m1*R1*(T+460))/V
12 Pm= P1+P2
13 V1= (m*R*(T+460))/Pm
14 V2 = (m1*R1*(T+460))/Pm
15 \text{ Vm} = \text{V1} + \text{V2}
16 //RESULTS
17 printf ('Total volume= %.f ft^3 ', Vm)
```

Combustion Processes

Scilab code Exa 10.1 Chapter 10 example 1

```
1 clc
2 //initialisation of variables
3 n= 3 //lbm mol
4 Mo2= 32 //lbm/lbm mol
5 //CALCULATIONS
6 m= n*Mo2
7 //RESULTS
8 printf ('Mass of O2 required= %.f lbm ',m)
```

Scilab code Exa 10.2 chapter 10 example 2

```
1 clc
2 //initialisation of variables
3 n= 3 //lbm mol
4 Mo2= 32 //lbm/lbm mol
5 //CALCULATIONS
6 m= n*Mo2
7 //RESULTS
8 printf ('Mass of O2 required= %.f lbm ',m)
```

Scilab code Exa 10.3 chapter 10 example 3

```
1 clc
2 //initialisation of variables
3 n= 12.5 //mol
4 n1= 3.76 //mol
5 M= 114 //gm/gm mol
6 M1= 28.96 //gm/gm mol
7 //CALCULATIONS
8 n2= n*(1+n1)
9 m= n2*M1/M
10 //RESULTS
11 printf ('Air-fuel ratio= %.1f gm air/gm fuel',m)
```

Scilab code Exa 10.4 chapter 10 example 4

```
1 clc
2 //initialisation of variables
3 p= 150
4 n02= 12.5 //mol
5 n1= 3.76
6 //CALCULATIONS
7 n2= (n02*(p/100))+(n02*n1*(p/100))
8 //RESULTS
9 printf ('Air-fuel raio= %.2 f kg mol air/kg mol fuel', n2)
```

Scilab code Exa 10.5 chapter 10 example 5

```
1 clc
2 //initialisation of variables
3 P= 65
4 T= 30 //C
5 T1= 10 //C
6 c= 4.19 //J/gm C
7 h= 41961
8 m= 185 //lt
9 //CALCULATIONS
10 Q= m*10^3*c*(T-T1)
11 M= (Q*100)/(h*P)
12 //RESULTS
13 printf ('Benzene required= %.f gm', M)
```

Conduction Heat Transfer

Scilab code Exa 11.1 Chapter 11 example 1

```
1 clc
2 //initialisation of variables
3 T= 76 //F
4 T1= 21 //F
5 Tw= 67 //W
6 h= 1.5 //Btu/
7 A= 1 //ft^2
8 h0= 6.5 //Btu/hr
9 //CALCULATIONS
10 q= h*A*(T-Tw)
11 t= (q/(h0*A))+T1
12 //results
13 printf ('Outside wall temperature= %.1 f F',t)
```

Scilab code Exa 11.2 chapter 11 example 2

```
1 clc
2 //initialisation of variables
```

```
3 hi= 2 //Btu/hr ft ^2 F
4 l= 6 //in
5 k= 0.5 //Btu/hr ft F
6 h0= 10 //Btu/hr ft ^2 F
7 ti= 70 //F
8 t0= 20 //F
9 A= 1 //ft ^2
10 //CALCULATIONS
11 U= 1/((1/hi)+((1*0.5)/(6*k))+(1/h0))
12 q= U*A*(ti-t0)
13 //RESULTS
14 printf ('Thermal transmittance= %.2 f ft ^2 F',U)
15 printf (' \n Heat transfer rate= %.1 f Btu/hr',q)
```

Scilab code Exa 11.3 chapter 11 example 3

```
1 clc
2 //initialisation of variables
3 Ti= 300 //F
4 T0= 100 //F
5 1 = 0.25 //in
6 li= 3 //in
7 A = 12 //in/ft
8 \text{ ks} = 31.4 //Btu/hr ft F}
9 ki = 0.04 //Btu/hr ft F
10 //CALCULATIONS
11 q = (Ti-T0)/((1/(A*ks))+(1i/(A*ki)))
12 t= Ti-((q*1/12)/ks)
13 //RESULTS
14 printf ('Heat loss= \%. f Btu/hr',q)
15 printf ('\n Temperature at the interface of the
      steel and the insulation = \%.2 f F',t)
```

Scilab code Exa 11.4 chapter 11 example 4

```
1 clc
2 //initialisation of variables
3 \text{ ti} = 149 //C
4 t0= 27 //C
5 D0 = 0.1149 / m
6 1 = 1 //m
7 h0= 23 //W/m^2 C
8 hi= 227 //W/m^2 C
9 \text{ k= } 0.19 \text{ //W/m C}
10 Di= 0.0889 //cm
11 //CALCULATIONS
12 D1= D0*100
13 D2= Di*100
14 R0=(1/(D0*\%pi*l*h0))
15 Rins=(\log(D1/D2)/(2*\%pi*k*1))
16 Ri=1/(Di*%pi*l*hi)
17 q = (ti-t0)/(R0+Rins+Ri)
18 //RESULTS
19 printf ('Heat loss= \%. f W', q)
```

Scilab code Exa 11.5 chapter 11 example 5

```
1 clc
2 //initialisation of variables
3 l= 0.2 //m
4 l1= 0.5 //m
5 k= 0.35 //W/m C
6 t= 0.15 //m
7 T1= 1100 //C
8 T2= 150 //C
9 //CALCULATIONS
10 Ai= 6*1^2
11 Ao= 6*11^2
```

```
12 q= 0.73*k*sqrt(Ai*Ao)*(T1-T2)/t
13 //RESULTS
14 printf ('Power consumption= %. f W',q)
```

Scilab code Exa 11.6 chapter 11 example 6

```
1 clc
2 //initialisation of variables
3 h= 12 //W/m^2 C
4 \text{ k} = 0.19 / W/m C
5 d = 0.6 / m
6 //CALCULATIONS
7 r = k/h
8 d1 = d/2
9 if (r<d1)
       printf('heat loss will increase if the
10
          insulation is added');
11 else
       printf('heat loss will increase if the
12
          insulation is added');
13 end
```

Scilab code Exa 11.7 chapter 11 example 7

```
1 clc
2 //initialisation of variables
3 h= 85 //W/m^2 C
4 s= 0.15 //m
5 K= 225 //W/m C
6 t= 510 //C
7 t1= 1200 //C
8 t0= 16 //C
9 a= 0.34
```

```
10 //CALCULATIONS
11 Bi= h*s/K
12 T= K*s*log((t0-t1)/(t-t1))/(h*a)
13 //RESULTS
14 printf ('Time needed for the casting to be heated to
510 C= %.2 f hr',T)
```

Convection Heat Transfer1

Scilab code Exa 12.1 Chapter 12 example 1

```
1 clc
2 //initialisation of variables
3 d = 5 //ft
4 Tw = 150 //F
5 T = 50 //F
6 \text{ Pr} = 0.72
7 k = 0.015 //Btu/hr ft F
8 r= 1.76*10^6 / (F ft^3)^-1
9 //CALCULATIONS
10 D= d*(0.42/5)
11 dt = Tw - T
12 \text{ Gr} = r*D^3*dt
13 z = Gr * Pr
14 h = 0.59*(z^{(0.25)}) *(k/D)
15 disp(h)
16 q = (2*h*dt*d^2)/144
17 //RESULTS
18 printf ('Heat transfer rate from both sides of the
      plate = %.2 f Btu/hr',q)
19 //The answer given in the textbook has been rounded
      off at several places.
```

Scilab code Exa 12.2 chapter 12 example 2

```
1 clc
2 //initialisation of variables
3 T = 70 //F
4 1 = 0.9 //in
5 v = 7 //ft/s
6 d = 62.3 //lbm/ft^3
7 \text{ m} = 6.58*10^-4 //\text{lbm/ft s}
8 \text{ Pr} = 6.82
9 k = 0.347 //Bt/hr ft F
10 //CALCULATIONS
11 \quad 11 = 1*0.075/1
12 Re= (d*v*11)/m
13 Nu= 0.023*Re^0.8*Pr^0.4
14 h = Nu*k/l1
15 //RESULTS
16 printf ('Heat transfer coefficient when the flow is
      fully devoloped= %.f Btu/hr ft^2 F',h)
```

Scilab code Exa 12.3 chapter 12 example 3

```
1 clc
2 //initialisation of variables
3 P= 1 //atm
4 d= 0.783 //Kg/m^3
5 K= 0.0371 //W/m C
6 m= 2.48*10^-5 //Ns/m^2
7 Pr= 0.683
8 D= 0.03 //m
9 v= 6 //m/s
```

```
10  T= 10  //C
11  //CALCULATIONS
12  Re= d*v*D/m
13  Nu= 0.023*Re^0.8*Pr^0.4
14  h= Nu*K/D
15  ql= h*%pi*D*T
16  //RESULTS
17  printf ('Heat transfer rate per unit lenght= %.1 f W/m',ql)
```

Scilab code Exa 12.4 chapter 12 example 4

```
1 clc
2 //initialisation of variables
3 T = 25 //C
4 P= 1 //atm
5 v = 46 //m/s
6 d = 5 / cm
7 \text{ T1} = 135 //C
8 d1= 0.998 // kg/m^3
9 \text{ k} = 0.03 / \text{W/m C}
10 m = 2.08*10^{-5} //Kg/s m
11 c = 0.024
12 n = 0.81
13 //CALCULATIONS
14 \text{ Tf} = (T+T1)/2
15 D = d/100
16 \text{ Re= } d1*v*D/m
17 h = c*Re^0.81*k/D
18 \text{ dt} = T1 - T
19 ql = h*\%pi*D*dt
20 //RESULTS
21 printf ('Heat transfer rate per unit lenght of
       cylinder = \%. f W/m', ql)
```

Boiling Heat Transfer

Scilab code Exa 13.1 Chapter 13 example 1

```
1 clc
2 //initialisation of variables
3 P = 1 //atm
4 dt = 11 //C
5 \text{ Csf} = 0.006
6 r = 1/3
7 s = 1
8 cl= 4.218 //J/gm K
9 \text{ hfg} = 2257 //J/gm
10 Pr= 1.75
11 ul= 283.1*10^{-3} //gm/m s
12 s= 57.78*10^{-3} / N/m
13 pl= 958*10^3 //gm/m^3
14 pv = 598 //gm/m^3
15 gc= 10^3 / gm m/N s^2
16 g= 9.8 //m/s^2
17 //CALCULATIONS
18 p = pl - pv
19 q = ((((cl*dt)/(hfg*Csf*Pr))^(1/r))*(ul*hfg))/(gc*s/(
      g*p))^(1/2)
20 h = q/dt
```

Scilab code Exa 13.2 chapter 13 example 2

```
1 clc
2 //initialisation of variables
3 k = 0.384 //Btu/hr ft F
4 Tsat= 170.03 / F
5 hfg= 996.2 / Btu/lbm
6 T = 130 //F
7 1 = 5 //ft
8 P = 6 //psia
9 \text{ g} = 4.17*10^8 // \text{ft/h}^2
10 d = 0.042 //ft
11 p= 61.2 / lbm / ft^3
12 u= 1.05 //lbm/ft h
13 //CALCULATIONS
14 dt= Tsat-T
15 Tf = (Tsat + T)/2
16 hc= 0.943*((k^3*p^2*g*hfg)/(1*u*dt))^(1/4)
17 hc1= 0.725*((k^3*p^2*g*hfg)/(d*u*dt))^(1/4)
18 //RESULTS
19 printf ('Condensation heat transfer coefficient if
      the tube is vertical= \%.f Btu/h ft^2 F',hc)
20 printf ('\n Condensation heat transfer coefficient
      if the tube is horizontally = \%. f Btu/h ft^2 F',
      hc1)
```

Radiation Heat Transfer

Scilab code Exa 14.2 Chapter 14 example 2

```
1 clc
2 //initialisation of variables
3 T= 116 //C
4 C1= 3.74*10^-16
5 C2= 1.44*10^-2
6 //CALCULATIONS
7 WLmax= (2893*10^-6)/(T+273)
8 Wb= (C1*(WLmax)^(-5))/((%e^(C2/2893*10^6))-1)
9 //RESULTS
10 printf ('Wavelength at which the maximum monochromatic emissive power = %.2e m',WLmax)
11 printf ('\n Coffecient of performnance= %.2e W/m^3',Wb)
```

Scilab code Exa 14.3 chapter 14 example 3

```
1 clc
2 //initialisation of variables
```

```
3 T= 389 //K
4 s= 5.7*10^-8 //K^4
5 //CALCULATIONS
6 Wb= s*T^4
7 //RESULTS
8 printf ('Emissive power for the blackbody = %.f W/m ^2', Wb)
```

Scilab code Exa 14.4 chapter 14 example 4

```
1 clc
2 //initialisation of variables
3 T= 100 //F
4 T1= 2000 //F
5 W= 3.2*10^4 //Btu/hr ft^2
6 W1= 140 //Btu/hr ft^2
7 s= 0.17*10^-8 //Btu/hr ft^2 R^4
8 //CALCULATIONS
9 alpha= W/(s*(T1+460)^4)
10 b= W1/(s*(T+460)^4)
11 //RESULTS
12 printf ('Average absorptivity of the body at 100 F = %.2 f ',alpha)
13 printf ('\n Average absorptivity of the body at 2000 F= %.2 f ',b)
```

Scilab code Exa 14.5 chapter 14 example 5

```
1 clc
2 //initialisation of variables
3 T= 300 //F
4 T1= 50 //F
5 s= 0.17*10^-8 //Btu/hr ft^2 R^4
```

Scilab code Exa 14.6 chapter 14 example 6

Scilab code Exa 14.7 chapter 14 example 7

```
1 clc
2 //initialisation of variables
3 P= 1 //atm
4 T= 11 //C
5 Csf= 0.006
6 r= 1/3
```

```
7 s = 1
8 cl= 4.218 //J/gm K
9 \text{ hfg} = 2257 //J/gm
10 \text{ Pr} = 1.75
11 ul= 283.1*10^-3 //gm/m s
12 s= 57.78*10^{-3} / N/m
13 pl= 958*10^3 //gm/m^3
14 pv = 598 //gm/m^3
15 gc= 10^3 / gm m/N s^2
16 g= 9.8 //m/s^2
17 //CALCULATIONS
18 p = pl - pv
19 q= ((((cl*dt)/(hfg*Csf*Pr^s))^(1/r))*(ul*hfg))/(gc/(
      g*p))^(1/2)
20 h = q/T
21 //RESULTS
22 printf ('Heat transfer coefficient for nucleate
      boiling= \%.2e W/m<sup>2</sup> C',h)
```

Refrigeration and Air Conditioning

Scilab code Exa 15.1 Chapter 15 example 1

```
1 clc
2 //initialisation of variables
3 P= 7 //bar
4 P1= 1.4 //bar
5 T= 260 //C
6 T1= 251 //C
7 h= 2974.9 //J/gm
8 //CALCULATIONS
9 dT= T-T1
10 Mj= dT/(P-P1)
11 //RESULTS
12 printf ('Joule-Thomson coefficient= %.2 f C/bar ',Mj)
```

Scilab code Exa 15.2 chapter 15 example 2

```
1 clc
```

```
2 //initialisation of variables
3 T = 10 / F
4 T1= 110 //F
5 Pr= 180 //lbm/hr
6 h1= 78.335 //Btu/lbm
7 h3= 33.531 //Btu/lbm
8 \text{ h2} = 91 \text{ //Btu/lbm}
9 L= 12000 //Btu/hr per ton
10 //CALCULATIONS
11 h4 = h3
12 QL = h1 - h4
13 \ W = h2 - h1
14 \text{ COP} = QL/W
15 C= QL*Pr/L
16 //RESULTS
17 printf ('Refrigerating effect = %.1 f Btu/lbm',QL)
18 printf ('\n Coffecient of performnance= %.1f', COP)
19 printf ('\n Capacity of refrigeration in tons=\%.2f
       ton',C)
```