Przęsło łukowe wiaduktu kolejowego. Wpływ schematu statycznego i rozwiązań konstrukcyjnych na własności dynamiczne.

Przemysław Kalitowski

28 sierpnia 2020

Spis treści

W	Wprowdzenie				
1	Kol	ejowe, łukowe przęsła mostowe. Przegląd	6		
	1.1	Typy.			
		Cechy.			
		Problemy związane z dynamiką	7		
	1.2	Wydzielić rozdział? Modele obiektów w celach analiz dynamicz-			
		nych Kalibracja/Walidacja/Weryfikacja	7		
		Kandracja/ wandacja/ werynkacja.	'		
2	Dyn	namiczne obciążenie kolejowe	10		
	2.1	Realne obciążenia - tabor.			
		Modele obciążenia.			
		Przepisy normowe i wytyczne	10		
3	Ider	ntyfikacja modalna	11		
	3.1	Klasyfikacja metod analizy modalnej	12		
	3.2	Teoretyczna analiza modalna	14		
		3.2.1 Zagadnienie własne	15		
		3.2.2 Transformacja do współrzędnych normalnych	18		
			18		
		3.2.4 Odpowiedź systemów dynamicznych o skończonej liczbie stopni			
		swobody (MDOF)	21		
	3.3	Metody doświadczalnej analizy modalnej	23		
	3.4	Metody analizy modalnej	23		
	3.5	Metody operacyjnej analizy modalnej	23		
	3.6	Metoda ERA	24		
	3.7	Metoda NEXT-ERA	24		
	3.8	Implementacja programu	24		
	3.9	Testy numeryczne metody NEXT-ERA	24		
	3.10	Testy eksperymentalne metody NEXT-ERA	24		
4	Opt	ymalizacja metodą roju cząstek - Particle Swarm Optimizaton	25		
•	4.1	Wprowadzenie: metody optymalizacji w tym "nieróżniczkowe".	_0		
		Particle Swarm optimization - opis, przegląd.			
		Wielokryterialne PSO - opis przegląd.			
		Opis implementacii	25		

SPIS TREŚCI 3

5	Wiadukt WK2 w ciągu Pomorskiej Kolei Metropolitalnej		26
	5.1	Budowa modelu numerycznego	26
	5.2	Badania - identyfikacja modalna: wybór punktów, opis badań, wyniki	
		identyfikacji	26
	5.3	Kalibracja modelu numerycznego z wykorzystaniem PSO	27
	5.4	Wielokryterialna optymalizacja modelu: opis + wyniki	27
	_		
6	Pod	lsumowanie i wnioski	29

Słownik pojęć

Dyskretyzacja matematyczna - czynność polegająca na określeniu lub poszukiwaniu wartości funkcji ciągłych w skończonym zbiorze punktów.

Wprowadzenie

Kolejowe, łukowe przęsła mostowe. Przegląd

Rysunek 1.1: Częstotliwość drgań własnych związana z decydującą prędkością krytyczną. Wieszaki proste, prędkość maksymalna 300km/h

CECHY.

Rysunek 1.2: Częstotliwość drgań własnych związana z decydującą prędkością krytyczną. Wieszaki proste, prędkość maksymalna 300km/h

- 1.1 Typy.Cechy.Problemy związane z dynamiką.
- 1.2 Wydzielić rozdział? Modele obiektów w celach analiz dynamicznych Kalibracja/Walidacja/Weryfikacja.

Rysunek 1.3: Częstotliwość drgań własnych związana z decydującą prędkością krytyczną. Wieszaki proste, prędkość maksymalna 300km/h

Rysunek 1.4: Częstotliwość drgań własnych związana z decydującą prędkością krytyczną. Wieszaki proste, prędkość maksymalna 300km/h

Rysunek 1.5: Częstotliwość drgań własnych związana z decydującą prędkością krytyczną. Wieszaki proste, prędkość maksymalna 300km/h

Dynamiczne obciążenie kolejowe

2.1 Realne obciążenia - tabor.

Modele obciążenia.

Przepisy normowe i wytyczne.

Identyfikacja modalna

Drgania towarzyszą ludzkości od zawsze. Jakkolwiek trywialnie nie brzmiałoby to zdanie, wibracje występują w naszym otoczeniu przejawiając się często w sposób niepożądany: wywołują dyskomfort użytkowania, są odbierane jako hałas, powodują zjawiska zmęczeniowe czy w skrajnej sytuacji wywołują uszkodzenia i zniszczenia (Maia i Silva 1997). Wciąż postępujący rozwój nauki połączony z komputeryzacją i informatyzacja sprawiaja, że używane materiały sa coraz wytrzymalsze. Jednocześnie rośnie zapotrzebowanie na coraz większe, spektakularne konstrukcje. Te dwa czynniki połączone ze sobą sprawiają, że zachowanie dynamiczne struktury często decyduje o właściwościach użytkowych i wytrzymałościowych konstrukcji. W odpowiedzi na zapotrzebowanie, w sposób naturalny rozwinęła się dziedzina nauki zajmująca się opisem i modelowaniem zjawisk dynamicznych. Podstawowym narzędziem służącym identyfikacji parametrów modalnych i zachowania dynamicznego jest analiza modalna (eng. modal analysis). Często Analiza modalna bywa określana jako identyfikacja modalna (eng. modal identification). (Zhang, Brincker i Andersen 2004) w pracy definiuje identyfikacje modalna jako gałąź szerszego pojęcia identyfikacji systemów, a jej celem jest budowa modelu matematycznego systemu dynamicznego poprzez pomiar i analizę zestawu danych wejściowych i wyjściowych. Z kolei Chmielewski i Zembaty 1998 zwięźle precyzuje pojęcie modelu matematycznego dla zagadnień dynamiki budowli jako żównanie lub zbiór równań, które opisują ruch modelu obliczeniowego". Ewins 2000 podaje trzy główne cele przeprowadzania analizy modalnej:

- ocena źródła drgań i ich przebiegu,
- weryfikacja modeli teoretycznych i przewidywanie zjawisk dynamicznych,
- identyfikacja charakterystyk materiałowych ciała poddanego wymuszeniu dynamicznemu (np. tłumienie, tarcie, wytrzymałość zmęczeniowa).

Każdy z powyższych celów może być jedynie środkiem do osiągnięcia zupełnie innego celu. W rzeczywistości tak właśnie jest najczęściej o czym świadczy mnogość aplikacji analizy modalnej w bardzo różnych zagadnieniach dotyczących konstrukcji.

W poniższej pracy tak jak w zdecydowanej większości innych opracowaniach, modele matematyczne będą oparte na trzech głównych zasadach (Maia i Silva 1997):

- system jest liniowy,
- obowiązuje zasada wzajemności Maxwell'a,

• system jest niezależny od czasu.

3.1 Klasyfikacja metod analizy modalnej

Identyfikacja modalna jest zbiorem technik, które są rozwijane dynamicznie od lat 60' XX w. Gwałtowny przyrost zainteresowania tym tematem wywołał głównie rozwój technik cyfrowych (Ewins 2000). Do tej pory powstało wiele różnych technik, których krótką klasyfikację z podziałem na główne kryteria podano w tym podrozdziale.

Matematyczne modele modalne mogą charakteryzować się różnym stopniem skomplikowania. Parametrami, które mogą opisywać model są postaci drgań własnych oraz powiązane z nimi częstotliwości i tłumienia modalne, a także masa i sztywność modalna. Z kolei metody analizy modalnej również różnią się pod względem informacji, którą mogą dostarczyć. Z tego względu wybór odpowiedniej metody powinien być świadomy i poparty przeglądem wielu technik, z których wybrana zostanie ta optymalna. Aspektami mogącymi wpłynąć na wybór metody są m.in.: czas potrzebny do implementacji (pierwszego użycia), informacje możliwe do uzyskania z modelu, możliwy wpływ założeń i uproszczeń, liczba parametrów potrzebnych do stworzenia modelu czy też stabilność rozwiązania. Przedstawiony podział opiera się na klasycznych kryteriach stosowanych przy klasyfikacji metod analizy modalnej. Istnieje wiele pozycji literaturowych, w których zainteresowany znajdzie dokładny opis wielu metod ze wskazówkami do ich użycia (Ewins 2000; Maia i Silva 1997; Zhang, Brincker i Andersen 2004; Brincker i Ventura 2015; Rainieri i Fabbrocino 2014).

Najogólniej analizę modalną można podzielić na dwie główne gałęzie zależne od typu stosowanej procedury, jej danych wejściowych i rezultatów: teoretyczną i eksperymentalną (Lengvarský i Bocko 2013). W niniejszej pracy wielokrotnie używane będą oba podejścia, dlatego autor zdecydował się na krótki ich opis. Ogólny schemat procedur teoretycznej i doświadczalnej analizy modalnej pokazano na rysunku 3.1.

Rysunek 3.1: Porównanie procedur teoretycznej i doświadczalnej analizy modalnej

Metody teoretyczne opierają się na rozwiązaniach analitycznych lub numerycznych (rys. 3.1a). Badanie zachowania dynamicznego rozpoczyna się od definicji struktury, najczęściej za pomocą modelu dyskretnego opisanego macierzami $\mathbf{M}, \mathbf{C}', \mathbf{K}$

oznaczającymi odpowiednio macierz mas, tłumienia i sztywności. Macierz tłumienia, w przypadku metod teoretycznych, jest to niewyznaczalna analitycznie macierz bazująca na doświadczeniach i rezultatach badań, stąd została oznaczona apostrofem C'. Za pomocą przekształceń matematycznych (skrótowo opisanych w dalszej części tekstu) tworzony jest model matematyczny we współrzędnych modalnych. Uzyskiwane sa charakterystyki modalne układu Λ i Ψ odpowiednio czestości drgań własnych, postaci drgań własnych i dodatkowo parametry opisujące przyjęty model tłumienia. Po uzyskaniu modelu matematycznego opisanego współrzędnymi modalnymi możliwe jest wyznaczenie odpowiedzi konstrukcji w czasie przy jej znanym wymuszeniu. Powyższy opis przedstawia pełną procedurę teoretyczną zakończoną wyznaczeniem odpowiedzi układu. Jednakże, jak wspomniano wcześniej, analiza modalna oraz jej metody są zróżnicowane z punktu widzenia skomplikowania. Zazwyczaj wybór metody zależy od zapotrzebowania na rezultaty. Zwłaszcza w przypadkach obliczeń inżynierskich często poprzestaje się na wyznaczeniu charakterystyk modalnych, które są następnie oceniane z punktu widzenia zagrożenia nadmiernymi efektami dynamicznymi. Metody analityczne znajdują realne zastosowanie w przypadku obiektów, których opis ciągły nie jest złożony, a dyskretny ograniczony jedynie do niewielkiej liczby stopni swobody. Rzeczywiste konstrukcje sa układami o nieskończonej liczbie stopni swobody. Niemniej, sprowadzenie ich do skończonej (choć zazwyczaj bardzo dużej) liczby stopni swobody pozwala otrzymać zadowalająco poprawne rezultaty. W przypadku dużej liczby stopni swobody najszerzej stosowane są metody przybliżone opierające się obliczeniach numerycznych, takie jak: metoda różnic skończonych (MRS) czy metoda elementów skończonych (MES). Teoretyczna analiza modalna ma wiele zalet. Pozwala uzyskać rezultaty relatywnie szybko i tanio. Wynika to z powszechności narzedzi do modelowania i obliczania konstrukcji. W obrębie modelowania realnych struktur współczesne oprogramowanie pozwala budować modele numeryczne praktycznie bez ograniczeń. Stosowane preprocesory graficzne pozwalają użytkownikowi na odwzorowanie nawet skomplikowanych kształtów geometrycznych. Rosnąca moc obliczeniowa komputerów przestaje być ograniczeniem, zwłaszcza przy obliczeniach statycznych modeli o znaczącej liczbie stopni swobody. Niepodważalną zaletą jest również dowolność sposobów obciążania i modyfikacji modelu numerycznego. Pomimo wielu niewatpliwych zalet, teoretyczna analiza modalna posiada ograniczenia, z których należy zdawać sobie sprawę. Przede wszystkim jakość rezultatów zależy wprost od jakości wprowadzonych przez użytkownika danych. (Potrzebne przykłady). W przypadku zagadnień dynamicznych kolejnym bardzo ważnym ograniczeniem jest brak analitycznej możliwości określenia tłumienia konstrukcji. Taką możliwość daje jedynie badanie doświadczalne na rzeczywistej konstrukcji. Metody analityczne i numeryczne są obszernie opisane w wielu publikacjach (Chmielewski i Zembaty 1998; Chopra 2012; Rucka i Wilde 2014). W dalszej części rozdziału zaprezentowano absolutne podstawy i założenia analitycznej analizy dynamicznej.

Doświadczalna analiza w odróżnieniu od wersji teoretycznej angażuje do identyfikacji warsztat badawczy. Ewins 2000 definiuje ją jako zespół procesów związanych z badaniem elementów konstrukcji w celu uzyskania matematycznego opisu ich zachowania dynamicznego. Jest to definicja zbliżona do ogólniejszej podanej przez Zhang, Brincker i Andersen 2004, ale stawia szczególnie mocny akcent na aspekt badawczy. Jak przedstawiono na rysunku (rys. 3.1b) ten typ analizy ma niejako odwrotny kierunek niż teoretyczna analiza modalna. W tym przypadku odpowiedź

konstrukcji jest mierzona i na jej podstawie wyznaczane są wielkości opisujące model matematyczny: Λ i Ψ . Następnie na dopiero ich podstawie możliwe jest przekształcenie na model matematyczny wyrażony we współrzędnych fizycznych: M, C', K. Doświadczalna analiza modalna dzieli się na dwie główne odnogi związane z zakresem rejestrowanych danych w trakcie wykonywania eksperymentu. Pierwsza z nich to Eksperymentalna Analiza Modalna (EMA) (eng. Experimental Modal Analysis) wymaga pomiaru sił wymuszających oraz odpowiedzi konstrukcji na to wymuszenie. Druga to Operacyjna Analiza Modalna (OMA) (eng. Operational Modal Analysis), która estymuje parametry modalne wyłącznie na podstawie pomierzonych efektów nieznanego wymuszenia. Wymuszenie to jednak nie może być dowolne, a ograniczenia przedstawione zostaną w dalszej części pracy.

Kwestia pomiaru sił wymuszających wpływa na podstawowe różnice pomiedzy dwoma rodzinami metod: EMA i OMA. EMA najczęściej prowadzona jest w kontrolowanych warunkach i przez to pozwala dostarczyć bardziej szczegółowych i dokładniejszych informacji na temat zachowania dynamicznego konstrukcji. Jednakże w przypadku rzeczywistych konstrukcji inżynierskich (np. mosty) trudno jest stworzyć takie kontrolowane warunki. Obiekt musi zostać na czas pomiarów wyłączony z eksploatacji. Okazuje się to czesto niemożliwe z przyczyn proceduralnych, a na pewno kosztowne. Drugim zasadniczym ryzykiem jest potrzeba stworzenia takiego systemu wymuszenia, które wywoła mierzalną odpowiedź konstrukcji. W przypadku dużych konstrukcji inżynierskich może okazać się to trudne do zrealizowania ponieważ oddziaływania środowiskowe moga wywoływać efekty oddziaływań porównywalne z kontrolowanym wymuszeniem. OMA praktycznie pozbywa się negatywnych skutków potrzeby kontroli wymuszenia. Badania prowadzone moga być przy normalnej eksploatacji, a losowe oddziaływania środowiskowe zazwyczaj polepszają jakość wyników. Oczywiście odbywa się to kosztem dokładności rezultatów. Teoretyczne założenia metody są spełnione tylko w sposób przybliżony. Z tego względu serie pomiarowe zwykle muszą trwać znacznie dłużej, a interpretacja wyników wymaga większego doświadczenia.

Połączenie obu typów analiz

3.2 Teoretyczna analiza modalna

Metody teoretycznej analizy modalnej są obszernie opisane w literaturze przedmiotu (cytowania). Ze względu na złożoność rzeczywistych konstrukcji, w praktyce mają one zastosowanie głównie w formie rozwiązań numerycznych. Według przedstawionej na rysunku 3.1a procedury metody teoretycznej analizy modalnej służą głównie dwóm celom: identyfikacji charakterystyk modalnych (częstotliwości i postaci drgań własnych) i wyznaczaniu odpowiedzi układu. Dla zrozumienia zagadnienia, metody analityczne najczęściej przedstawione są dla najprostszego przypadku układu z jednym stopniem swobody. Układ ten z reguły łatwo daje się uogólnić do układu o wielu stopniach swobody. Macierzowe równanie drgań wymuszonych dla tłumionego układu o skończonej liczbie stopni swobody przedstawiono we wzorze 3.1.

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{C}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{F}(t)$$
(3.1)

gdzie M, C, K to odpowiednio macierze mass, tłumienia i sztywności, x to wektor współrzędnych uogólnionych (przemieszczeń lub obrotów punktu), F(t) to wektor

uogólnionych sił wymuszających. Wzór 3.2 odpowiadający formule 3.1 pozbawionej składnika reprezentującego opory ruchu opisuje ruch nietłumiony układu.

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{F}(t) \tag{3.2}$$

Drgania swobodne są procesem fizycznym spowodowanym zaburzeniem stanu równowagi, przez zaistnienie warunków początkowych. Macierzowe równanie ruchu drgań swobodnych, tłumionych opisane jest wzorem 3.3, a nietłumionych wzorem 3.4. Od równań ruchu drgań wymuszonych, równania te różnią się brakiem składnika sił wymuszających.

$$M\ddot{x}(t) + C\dot{x}(t) + Kx(t) = 0$$
(3.3)

$$M\ddot{x}(t) + Kx(t) = 0 \tag{3.4}$$

Okazuje się, że parametry modalne systemu są ściśle powiązane z rozwiązaniem algebraicznego problemu własnego równań drgań własnych.

3.2.1 Zagadnienie własne

Identyfikacja modalna modelu matematycznego polegająca na wyznaczeniu częstotliwości i postaci drgań własnych najczęściej sprowadza się do rozwiązania zagadnienia własnego. Bardzo pozytywnym aspektem tej zależności jest to, że istnieje wiele prostych w aplikacji, wydajnych i dokładnych algorytmów pozwalających rozwiązać numerycznie zagadnienie własne (Golub i Van Loan 2013). Dzięki temu, właśnie ta metoda identyfikacji modalnej cieszy się największą popularnością wśród producentów oprogramowania do obliczania konstrukcji. Użytkownicy oprogramowania mogą bez większego wysiłku dokonać identyfikacji parametrów modalnych nawet złożonych modeli matematycznych.

Układ nietłumiony

Z reguły przyjmuje się, że rozwiązanie zagadnienia własnego wykorzystuje równanie drgań swobodnych nietłumionych (3.4). Należy zaznaczyć, że drgania własne nie opisują procesu fizycznego, a są jedynie matematyczną idealizacją drgań układu. W przypadku nietłumionym, dla każdego z modów, układ oscyluje wokół położenia równowagi z częstotliwością drgań własnych, a wszystkie stopnie swobody drgają w tej samej fazie. Oznacza to, że każdy z punktów osiąga swoje ekstremalne położenie w tej samej chwili. Podobnie wszystkie punkty znajdują się w położeniu równowagi w tym samym czasie. Poniżej przedstawiono rozwiązanie dla nietłumionego układu N dynamicznych stopni swobody.

Założono rozwiązanie 3.4 w postaci $\boldsymbol{x}(t) = \boldsymbol{\psi} e^{j\omega t}$ gdzie ω to częstość drgań własnych, $j = \sqrt{-1}$, a ψ to niezerowy wektor postaci drgań własnych. Po podstawieniu rozwiązania i jego drugiej pochodnej $(\ddot{\boldsymbol{x}}(t) = -\boldsymbol{\psi}\omega^2 e^{j\omega t})$ do równia 3.4 otrzymamy równanie 3.5.

$$-M\psi\omega^2 e^{j\omega t} + K\psi e^{j\omega t} = 0 (3.5)$$

Dzieląc strony równania przez niezerową wartość $e^{j\omega t}$ otrzymujemy układ liniowych równań algebraicznych:

$$-\boldsymbol{M}\omega^2\boldsymbol{\psi} + \boldsymbol{K}\boldsymbol{\psi} = \boldsymbol{0} \tag{3.6}$$

w którym dwie niewiadome do ustalenia to: ψ - niezerowy wektor postaci drgań własnych oraz ω - częstość drgań własnych. Równanie to można zapisać w formie 3.7 z indeksami określającymi poszczególne mody drgań własnych. Liczba par odpowiadających sobie częstości ω_i i postaci drgań własnych ψ_i jest równa liczbie N stopni swobody.

$$\omega_i^2 \mathbf{M} \psi_i = \mathbf{K} \psi_i \qquad i = 1, 2, ..., N \tag{3.7}$$

Z kolei równanie 3.8 to reprezentacja uogólnionego problemu własnego, w którym λ_i to wartość własna, a u_i to wektor własny. Z porównania wzorów 3.7 i 3.8 wyraźnie widać powiązanie $\lambda_i = \omega_i^2$. Wynika z tego, że rozwiązanie numeryczne uogólnionego problemu własnego pozwala wprost uzyskać częstości ($\lambda_i = \omega_i^2$) i postaci drgań własnych (ψ_i).

$$\lambda_i \mathbf{A} u_i = \mathbf{B} u_i \tag{3.8}$$

Układ równań (3.7) ma nietrywialne rozwiązania tylko jeśli

$$\det[\boldsymbol{K} - \omega_i^2 \boldsymbol{M}] = \mathbf{0} \tag{3.9}$$

Formuła 3.9 jest znana jako równanie charakterystyczne zagadnienia własnego. Jeśli rozwinąć wyznacznik, otrzymamy wielomian stopnia N względem ω_i^2 . Pierwiastkami równania 3.9 są częstości drgań własnych ω_i . Znając częstości własne ω_i z równania 3.7 można obliczyć odpowiadające wektory własne ψ_i z dokładnością do stałego czynnika. Taki wynik bywa nieprzystępny w ocenie więc wektory poddawane mogą być normalizacji. Do najczęściej stosowanych metod normalizacji należy taka modyfikacja wektora tak aby maksymalna wartość bezwzględna spośród wszystkich elementu była równa jedności. Innym przykładem może być normalizacja wektorów tak aby wartość elementu dla danego stopnia swobody, we wszystkich wektorach była równa jedności.

Jeżeli macierze M i K (A i B wg 3.6) są symetryczne i dodatnio określone o wartościach rzeczywistych to wartości oraz wektory własne są również rzeczywiste. W przypadku konstrukcji budowlanych macierz K jest zawsze dodatnio określona ponieważ warunki brzegowe zapewniają brak ruchu ciała jako bryły sztywnej. Nie jest to oczywiste dla innych niż budowlane struktur, takich jak np. samolot w locie (Chopra 2012).

Postaci drgań własnych (wektory własne) odpowiadające różnym częstościom własnym spełniają warunki ortogonalności. W przypadku gdy $\omega_i \neq \omega_j$ prawdziwe są zależności 3.10. Ortogonalność wektorów własnych może być wykorzystana do weryfikacji obliczonych wektorów.

$$\boldsymbol{\psi}_i^T \boldsymbol{K} \boldsymbol{\psi}_i = 0 \qquad \boldsymbol{\psi}_i^T \boldsymbol{M} \boldsymbol{\psi}_i = 0 \tag{3.10}$$

Obliczone z równania 3.9 wartości oraz wektory własne możemy przedstawić w postaci dwóch specjalnych macierzy. N obliczonych wartości własnych zestawionych w macierz diagnonalną tworzy tak zwaną macierz widmową (3.11). Z kolei N wektorów własnych zestawionych kolumnowo nazywamy macierzą modalną (3.12).

$$\mathbf{\Omega}^{2} = \begin{bmatrix} \omega_{1}^{2} & 0 & \dots & 0 \\ 0 & \omega_{2}^{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \omega_{N}^{2} \end{bmatrix}$$
(3.11)

$$\Psi = [\psi_{i,j}] = \begin{bmatrix} \psi_{11} & \psi_{12} & \dots & \psi_{1N} \\ \psi_{12} & \psi_{22} & \dots & \psi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{N1} & \psi_{N2} & \dots & \psi_{NN} \end{bmatrix} \qquad 1 \leqslant i, j \leqslant N.$$
(3.12)

Dla układu o N stopniach swobody możemy wyznaczyć N par częstotliwości i postaci drgań własnych. Jednak w rzeczywistości rozwiązanie ogranicza się do wyznaczenia jedynie ograniczonej do kilkunastu (maksymalnie kilkuset) pierwszych par. Określenie "pierwszych" właściwe jest w przypadku kiedy wyznaczone częstości uporządkujemy w szeregu rosnącym

$$0 \leqslant \omega_1 \leqslant \omega_2 \dots \omega_{N-1} \leqslant \omega_N \tag{3.13}$$

W większości przypadków zagadnienie własne jest rozwiązywane numerycznie za pomocą maszyn cyfrowych. Metody numeryczne wykorzystują iteracyjne algorytmy do rozwiązania zagadnienia własnego. Chopra 2012 definiuje trzy główne kategorie algorytmów:

- Metody iteracji wektora wykorzystujące właściwości równania (3.7),
- Metody transformacyjne korzystające z ortogonalności wektorów własnych,
- Metody iteracyjne wykorzystujące równanie charakterystyczne (3.9).

Dla dużych systemów korzystne okazuje się łączenie algorytmów z tej samej bądź różnych kategorii co podnosi wydajność metody rozwiązania. W oprogramowaniu komercyjnym stosowane są złożone algorytmy takie jak metoda iteracji podprzestrzeni, metoda Lanczosa czy metoda gradientów Ritza. Wybór metody zależy również od wybranego solvera (silnika programu rozwiązującego równania). Algorytmy te różnią się pod względem wydajności, maksymalnej dokładności rozwiązania czy zbieżności. Ich wydajność może zależeć od liczby zadanych do wyznaczenia wartości własnych czy wielkości zadania. Więcej szczegółów odnośnie stosowanych metod rozwiązania zagadnienia własnego można odnaleźć w literaturze (Bathe 2006; Wilson i Itoh 1983; Wilson 1997; Fialko 2000; Papadrakakis 1993; Hughes 1987; Chopra 2012). W przypadku dobrej jakości oprogramowania komercyjnego informacje na temat używanych algorytmów powinny dostępne w pomocy do programu.

Układ tłumiony

Drgania swobodne tłumione układu określone są równaniem (3.3), które przytoczono ponownie poniżej:

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{C}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{0} \tag{3.14}$$

Rozwiązanie tego równania jest uzależnione od postaci tłumienia: klasycznego lub nieklasycznego. Tłumienie klasyczne zwane również proporcjonalnym (eng. classical damping, proportional damping) występuje w przypadku kiedy spełnione jest równanie (3.15).

$$CM^{-1}K = KM^{-1}C \tag{3.15}$$

Kiedy macierz C jest diagonalna to warunek (3.15) jest spełniony. W takim przypadku wszystkie częstości drgań własnych są rzeczywiste i identyczne do tych wyznaczonych dla układu nietłumionego. W przypadku przeciwnym mamy do czynienia

z tłumieniem nieklasycznym bądź nieproporcjonalnym (eng. nonclassical damping, nonproportional damping). Dla tej sytuacji macierz C nie jest diagonalna, a wartości własne są zespolone. Szczegółowe informacje oraz metody rozwiązania przypadków dynamiki konstrukcji nieklasycznie tłumionych podano w (Caughey i O'kelly 1961; Chopra 2012). Inman, Lallement i Inman 1995 na przykładzie pokazali, że obliczanie struktur charakteryzujących się tłumieniem nieklasycznym za pomocą zagadnienia własnego bez uwzględnienia macierzy tłumienia możne prowadzić do błędnych rezultatów. Tak wyznaczone częstotliwości drgań będą różnić się od rzeczywistych, co może pociągnąć za sobą błędne wnioski odnośnie zakresu częstotliwości grożących rezonansem.

3.2.2 Transformacja do współrzędnych normalnych

Rozważmy ponownie równanie ruchu układu MDOF (3.14). Wiemy, że każdy wektor o długości N może być przedstawiony jako kombinacja liniowa N liniowo niezależnych wektorów. Przedstawmy zatem wektor przemieszczeń \boldsymbol{x} jako kombinację wektorów własnych $\boldsymbol{\psi}$.

$$\boldsymbol{x} = \sum_{r=1}^{N} \boldsymbol{\psi}_r q_r = \boldsymbol{\Psi} \boldsymbol{q} \tag{3.16}$$

gdzie współczynniki q_r nazywane są współrzędnymi normalnymi (eng. modal coordinates, normal coordinates) i $\mathbf{q} = \langle q_1 \ q_2 \ \dots \ q_N \rangle^T$. Załóżmy, że zagadnienie własne zostało rozstrzygnięte i wyznaczyliśmy macierz modalną $\mathbf{\Psi}$ (3.12). Aby uzyskać wartości współczynników q_n dla danego \mathbf{x} , przemnóżmy obie strony równania 3.16 przez $\mathbf{\psi}_n^T \mathbf{M}$:

$$\boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{x} = \sum_{r=1}^N (\boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{\psi}_r) q_r$$
 (3.17)

Ortogonalność wektorów własnych (3.10) sprawia, że wszystkie składniki powyższej sumy są równe 0 poza tymi, w których r=n. Pomińmy więc znak sumy i zapiszmy

$$\boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{x} = (\boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{\psi}_n) q_n \tag{3.18}$$

$$q_n = \frac{\boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{x}}{\boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{\psi}_n} \tag{3.19}$$

Transformacja do współrzędnych normalnych jest istotnym elementem przewidywania odpowiedzi wymuszonych, liniowych układów MDOF z tłumieniem proporcjonalnym (p. 3.2.4).

3.2.3 Odpowiedź systemów dynamicznych o jednym stopniu swobody

Przegląd metod pozwalających wyznaczyć odpowiedź konstrukcji poddanej wymuszeniu wypada zacząć klasycznie od układu z jednym stopniem swobody. W przypadku liniowego układu SDOF obciążonego siłą zewnętrzną, równanie ruchu jest liniowym równaniem różniczkowym drugiego rzędu (3.20). Znając warunki początkowe x(0) i $\dot{x}(0)$ możemy traktować zadanie jako w pełni sformułowane. Dla konstrukcji wstępnie nieobciążonej dynamicznie przemieszczenie i prędkość początkowe

można przyjąć jako równe zeru.

$$m\ddot{x} + c\dot{x} + kx = f(t) \tag{3.20}$$

Dla tak sformułowanego problemu istnieją cztery podstawowe metody wyznaczenia odpowiedzi dynamicznej:

- klasyczne rozwiązanie równań różniczkowych,
- wykorzystanie całki Duhamela,
- rozwiązanie w dziedzinie częstotliwości,
- wykorzystanie metod numerycznych.

Dla porządku powyższe metody zostaną w dalszej części krótko opisane. Dokładny opis metod jest przedstawiony w wielu podstawowych pozycjach literaturowych dotyczących dynamiki budowli (Clough i Penzien 1975; Chmielewski i Zembaty 1998; Chopra 2012).

Metoda klasyczna

Rozwiązanie liniowego równania różniczkowego o stałych współczynnikach jakim jest równanie ruchu składa się z rozwiązania całki ogólnej i szczególnej, a następnie zsumowaniu ich. Równanie ruchu jest rzędu drugiego stąd do wyznaczenia pozostają dwie zmienne całkowania. Z kolei do ich wyznaczenia wykorzystane są warunki początkowe. OGRANICZENIA

Całka Duhamela

Metoda rozwiązania równania ruchu układu SDOF za pomocą całki Duhamela polega na przekształceniu funkcji obciążenia f(t) na sekwencję nieskończenie krótkich impulsów. Przykładając impulsowe, jednostkowe wymuszenie (delta Diraca) do układu (3.20), dla odpowiednich warunków początkowych otrzymuje się rozwiązanie w postaci odpowiedzi impulsowej, inaczej zwanej impulsową funkcją przejścia (eng. unit response function). Aby uzyskać odpowiedź układu w czasie t sumuje się wszystkie odpowiedzi impulsowe do chwili czasowej t. W przypadku całkowalnej funkcji wymuszenia, całka Duhamela może być alternatywą do rozwiązania metodą klasyczną. Dla eksperymentalnych funkcji wymuszenia, całkę Duhamela można wyznaczyć metodami numerycznymi. W tym przypadku odpowiedź będzie wyznaczona w dyskretnych chwilach czasowych. Należy jednak wspomnieć, w przypadku angażowania metod numerycznych całka Duhamela nie jest najwydajniejszym rozwiązaniem. Dodatkowo, ze względu na wykorzystywaną superpozycję, rozwiązanie to jest ograniczone wyłącznie do układów liniowych.

Metoda przejścia do dziedziny częstotliwości

Metoda przejścia do dziedziny częstotliwości (eng. frequency-domain method) wykorzystuje właściwości przekształceń Laplace'a lub Fourier'a. Dla układu SDOF (3.20) wykonuje się wybrane przekształcenie funkcji wymuszenia f(t) uzyskując $F(\omega)$. $F(\omega)$ można określić jako amplitudy wszystkich składników harmonicznych,

które składają się na wymuszenie f(t) Przekształcenie $X(\omega)$ rozwiązania równania różniczkowego x(t) można z kolei opisać następująco

$$X(\omega) = H(\omega)F(\omega) \tag{3.21}$$

gdzie $H(\omega)$ to odpowiedź zespolona w dziedzinie częstotliwości nazywana też funkcją przenoszenia lub transmitancją (eng. complex frequency-response function (FRF)). Funkcja przenoszenia $H(\omega)$ opisuje odpowiedź układu w dziedzinie częstotliwości przy wymuszeniu harmonicznym. Ostatnim krokiem metody jest wyznaczenie rozwiązania x(t) poddając $X(\omega)$ odwrotnemu przekształceniu (Fourier'a bądź Laplace'a). Tak uzyskany rezultat x(t) można traktować jako określenie odpowiedzi harmonicznych układu na każdy z składników wymuszenia. Te cząstkoweg odpowiedzi te są następnie sumowane w celu uzyskania całkowitej odpowiedzi x(t). Ponownie, metoda ta bezpośrednio może być stosowana tylko dla prostych funkcji wymuszenia f(t). Jeżeli funkcja wymuszenia jest określona numerycznie, odpowiednie przekształcenia można przeprowadzić np. z użyciem algorytmu dyskretnej transformaty Fouriera w wariancie szybkiej transformaty Fourier'a (eng. Fast Fourier Transform (FFT)).

Metody numeryczne

Zastosowanie powyższych trzech metody wyznaczania odpowiedzi dynamicznej ograniczone jest tylko do układów liniowych. Wspomniano również, że stają się niepraktyczne lub wręcz niemożliwe do zastosowania w przypadku skomplikowanych, zmiennych w czasie funkcji wymuszenia f(t). W takich niekorzystnych okolicznościach z pomocą przychodzą metody numeryczne. Co więcej, okazuje się, że w przypadkach liniowych układów metody te są również konkurencyjne dla metod analitycznych.

Stworzono wiele metod i algorytmów numerycznych służących skutecznemu rozwiązaniu równań ruchu. Powstało wiele pozycji traktujących o tym zagadnieniu (LITERATRA). Z tego względu przytoczono tylko podstawowe pojęcia i założenia dotyczące istoty rozwiązań numerycznych układów SDOF. Metody numeryczne w głównej mierze opierają się na mechanizmie kroku czasowego (eng. time-step). Polega on na dyskretyzacji siły wymuszającej i odpowiedzi układu poprzez określenie ich wyłącznie w wybranych chwilach czasowych. Rozpatrzmy równanie ruchu SDOF:

$$m\ddot{x} + c\dot{x} + kx = f(t) \tag{3.22}$$

Dokonajmy dyskretyzacji i przedstawmy siłę wymuszającą f(t) określoną dla $t \in <0, t_k>$ jako zestaw dyskretnych wartości w chwilach czasowych t_i :

$$f_i = f(t_i)$$
 $i = 0, 1, 2 \dots N - 1, N$ (3.23)

gdzie $t_N \leqslant t_k$. Krokiem czasowym nazywamy różnice pomiędzy kolejnymi zdyskretyzowanymi chwilami czasowymi:

$$\Delta t_i = t_{i+1} - t_i \tag{3.24}$$

Jest on zazwyczaj przyjmowany jako stały, ale nie jest to konieczne. Tak jak wymuszenie, odpowiedź również podlega dyskretyzacji w chwilach t_i , a więc równanie ruchu można zapisać w nowej formie

$$m\ddot{x}_i + c\dot{x}_i + kx_i = f_i \tag{3.25}$$

Znając warunki początkowe x(0) i (x)(0) algorytmy wykorzystywane w metodach numerycznych potrafią wyznaczyć rozwiązania równania w kolejnych krokach i=1,2...N-1,N. Zwykle jednak nie jest to rozwiązanie ścisłe. Metody dostarczają przybliżonych rozwiązań, dlatego też muszą spełniać następujące kryteria:

- zbieżności (eng. convergence) wraz ze zmniejszeniem kroku czasowego, rozwiązanie powinno zmierzać do rozwiązania dokładnego,
- stabilności (eng. stability) rozwiązanie powinno być stabilne pomimo występowania błędów zaokrągleń,
- dokładności (*eng. accuracy*) rozwiązanie powinno być dostatecznie bliskie rozwiązanie dokładnego.

Wśród metod numerycznych, które okazały się skuteczne w rozwiązaniach problemów możemy wyróżnić trzy główne:

- metoda interpolacji funkcji wymuszającej,
- metoda różnic skończonych,
- metoda średniego lub liniowego przyspieszenia w przedziale różnicowym, oparte na metodzie Newmark'a.

Pomimo, że powyższe metody są opisane dla układu SDOF, są praktycznie wykorzystywane do obliczania układów MDOF. Poniżej przedstawiono metody wyznaczania odpowiedzi dla układów MDOF.

3.2.4 Odpowiedź systemów dynamicznych o skończonej liczbie stopni swobody (MDOF)

Systemy o skończonej liczbie stopni swobody mogą charakteryzować się tłumieniem klasycznym (proporcjonalnym) bądź nieklasycznym (nieproporcjonalnym). Mogą być liniowe lub nieliniowe geometrycznie lub materiałowo. Czynniki te mają wpływ na wybór metody przewidywania odpowiedzi takiego układu. Macierzowe równanie ruchu dla układu o N stopniach swobody możemy zapisać jako N równań różniczkowych w formie (3.1) dla wygody ponownie opisanej równaniem (3.26)

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{C}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{F}(t) \tag{3.26}$$

Modelem z tłumieniem proporcjonalnym, z wystarczającym przybliżeniem, można opisać większość badanych struktur. Odpowiedź układów ograniczonych do kilku stopni swobody może być wyznaczana przez rozwiązanie równania różniczkowego 3.26. W przypadku większej liczby stopni swobody zwykle wykorzystuje się metody numeryczne. Jak wiemy z rozdziału 3.2, dla takich układów zawsze możliwe jest wyznaczenie częstotliwości i postaci drgań własnych. Co więcej, opisujące je macierzowe równanie ruchu można przekształcić za pomocą metody transformacji własnej do postaci zależnej od współrzędnych modalnych. W takiej formie równanie to jest zbiorem równań rozwikłanych. Z tego względu można wyznaczyć odpowiedź dla każdego modu (zestawu jednej częstotliwości i postaci własnej oraz towarzyszącego tłumienia) osobno, a następnie złożyć je w celu wyznaczenia odpowiedzi całkowitej. Dodatkowo, każda odpowiedź modalna może być wyznaczona jako funkcja czasu

przez analizę układu SDOF. Równania SDF mogą być oczywiście rozwiązane wszystkimi przytoczonymi wcześniej wymienionymi metodami - w tym numerycznymi.

W przypadku kiedy mamy do czynienia z układem o tłumieniu nieproporcjonalnym, klasyczne parametry modalne nie mogą być wyznaczone, a równania ruchu nie mogą być rozwikłane. Takie systemy można analizować dwiema metodami: poprzez przekształcenie równań ruchu na wektory własne obliczone w zespolonym zagadnieniu własnym lub poprzez bezpośrednie całkowanie nierozwikłanych równań różniczkowych. Druga metoda wykorzystuje metody numeryczne co wynika z braku zamkniętych rozwiązań analitycznych nawet dla analitycznie opisanych funkcji obciążenia. Metody numeryczne muszą być stosowane również w przypadku kiedy układ jest nieliniowy (niezależnie czy materiałowo, czy geometrycznie). W przypadku braku założenia o liniowości wybór metody nie jest uzależniony od tego, czy tłumienie jest proporcjonalne, czy też nie jest.

Zachowując porządek i kompletność wywodu poniżej przedstawiono krótki zarys dwóch podstawowych metod wyznaczania odpowiedzi układów dyskretnych o skończonej liczbie stopni swobody.

Metoda superpozycji modalnej

Rozpatrzmy układ MDOF, liniowy o tłumieniu proporcjonalnym dany równaniem 3.26. Wiemy, że wektor przemieszczeń \boldsymbol{x} może być zapisany za pomocą współrzędnych normalnych (p. 3.2.2) co powtórzono dla wygody poniżej:

$$\boldsymbol{x}(t) = \sum_{r=1}^{N} \boldsymbol{\psi}_r q_r(t) = \boldsymbol{\Psi} \boldsymbol{q}(t)$$
 (3.27)

Podstawmy ?? do równania 3.26

$$\sum_{r=1}^{N} \boldsymbol{M} \boldsymbol{\psi}_r \ddot{q}_r(t) + \sum_{r=1}^{N} \boldsymbol{C} \boldsymbol{\psi}_r \dot{q}_r(t) + \sum_{r=1}^{N} \boldsymbol{K} \boldsymbol{\psi}_r q_r(t) = \boldsymbol{F}(t)$$
(3.28)

Następnie przemnóżmy z lewej strony każdy składnik przez $\boldsymbol{\psi}_n^T$ otrzymując:

$$\sum_{r=1}^{N} \boldsymbol{\psi}_{n}^{T} \boldsymbol{M} \boldsymbol{\psi}_{r} \ddot{q}_{r}(t) + \sum_{r=1}^{N} \boldsymbol{\psi}_{n}^{T} \boldsymbol{C} \boldsymbol{\psi}_{r} \dot{q}_{r}(t) + \sum_{r=1}^{N} \boldsymbol{\psi}_{n}^{T} \boldsymbol{K} \boldsymbol{\psi}_{r} q_{r}(t) = \boldsymbol{\psi}_{n}^{T} \boldsymbol{F}(t)$$
(3.29)

Podobnie jak w punkcie 3.2.2, ortogonalność wektorów własnych ψ sprawia, że wszystkie składniki sum, w których $r\neq n$, zerują się. Możemy więc zapisać zredukowane równanie w postaci

$$(\boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{\psi}_n) \ddot{q}_n(t) + (\boldsymbol{\psi}_n^T \boldsymbol{C} \boldsymbol{\psi}_n) \dot{q}_n(t) + (\boldsymbol{\psi}_n^T \boldsymbol{K} \boldsymbol{\psi}_n) q_n(t) = \boldsymbol{\psi}_n^T \boldsymbol{F}(t)$$
(3.30)

Zauważmy, że iloczyny zawarte w nawiasach są skalarami. Uprośćmy więc zapis do następującej formy:

$$\mathcal{M}_n \ddot{q}_n(t) + \mathcal{C}_n \dot{q}_n(t) + \mathcal{K}_n q_n(t) = \mathcal{F}_n(t)$$
(3.31)

gdzie:

$$\mathcal{M}_n = \boldsymbol{\psi}_n^T \boldsymbol{M} \boldsymbol{\psi}_n \qquad \mathcal{C}_n = \boldsymbol{\psi}_n^T \boldsymbol{C} \boldsymbol{\psi}_n \qquad \mathcal{K}_n = \boldsymbol{\psi}_n^T \boldsymbol{K} \boldsymbol{\psi}_n \qquad \mathcal{F}_n(t) = \boldsymbol{\psi}_n^T \boldsymbol{F}(t) \quad (3.32)$$

Okazuje się, że wszystkie powyższe przekształcenia doprowadzają do tego, że (3.31) jest równaniem o jednym stopniu swobody dla n-tej współrzędnej normalnej odpowiadającej n-tej postaci drgań. Z tego względu współczynniki \mathcal{M}_n , \mathcal{C}_n , \mathcal{K}_n , $\mathcal{F}_n(t)$ nazywane są odpowiednio uogólnioną masą, uogólnionym tłumieniem, uogólnioną sztywnością i uogólnioną siłą dla n-tej postaci własnej (eng. generalized mass, generalized damping, generalized stiffness, generalized force). Równanie to możemy rozwiązać wszystkimi metodami dotyczącymi układów SDOF przedstawionymi w (p. 3.2.3). Warto też zwrócić uwagę, że wartości \mathcal{M}_n , \mathcal{C}_n , \mathcal{K}_n , $\mathcal{F}_n(t)$ są uzależnione jedynie od pojedynczej postaci drgań ψ_n . Naturalnie więc, jeśli znamy tylko jeden mod ψ_n , możemy wyznaczyć odpowiadający mu parametr q_n bez znajomości pozostałych modów. Jeśli współczynniki normalne q_n zostały wyznaczone dla N' wybranych (najczęściej kilku istotnych) modów, to wkład n-tego modu w całkowitą wartość przemieszczeń $\boldsymbol{x}(t)$ wyznaczyć można następująco

$$\boldsymbol{x}_n(t) = \boldsymbol{\psi}_n q_n(t) \tag{3.33}$$

a wykorzystując równania (3.27) i (3.33) obliczyć przemieszczenie całkowite

$$\boldsymbol{x}(t) = \sum_{r=1}^{N'} \boldsymbol{x}_n(t) \tag{3.34}$$

Sumowanie wkładu poszczególnych postaci drgań w przemieszczenie całkowite jest par excellence superpozycją. Stąd też nazwa: "metoda superpozycji modalnej". Należy wspomnieć o paru istotnych założeniach mogących wpłynąć na zastosowanie tej metody. Jak już wcześniej wspomniano, może być ona wykorzystana tylko w układach liniowych (ze względu na superpozycję) i tłumionych proporcjonalnie. W przypadku tłumienia nieproporcjalnego przekształcenie równania (3.29) do (3.30) nie będzie prawdziwe. Warto również pamiętać, że wynikowe przemieszczenia $\boldsymbol{x}(t)$ są niezależne od normalizacji wektorów własnych, natomiast współrzędne normalne $q_n(t)$ są od niej ściśle zależne.

Metoda time-step Newmarka

Należy zwrócić uwagę, że układ równań 3.26 uległ rozwikłniu

Z reguły w praktycznych zastosowaniach obciążenie nie jest ani harmoniczne, ani nawet okresowe. Dla układu z jednym stopniem swobody

3.3 Metody doświadczalnej analizy modalnej

W tej pracy zastosowano następując, klasyczne kryteria podziału metod identyfikacji:

- wymaganie dotyczące istnienia dostępnego, rzeczywistego obiektu badawczego,
- liczba mierzonych punktów wymuszenia i odpowiedzi,

•

- 3.4 Metody analizy modalnej
- 3.5 Metody operacyjnej analizy modalnej

Podział metod (diagram)

- 3.6 Metoda ERA
- 3.7 Metoda NEXT-ERA
- 3.8 Implementacja programu

MAC - (allemang modal 2003) formuła musi być dla zespolonych a nie tylko transpozycja!

- 3.9 Testy numeryczne metody NEXT-ERA
- 3.10 Testy eksperymentalne metody NEXT-ERA

Optymalizacja metodą roju cząstek - Particle Swarm Optimizaton

4.1 Wprowadzenie: metody optymalizacji w tym "nieróżniczkowe".

Particle Swarm optimization - opis, przegląd. Wielokryterialne PSO - opis przegląd. Opis implementacji.

Wiadukt WK2 w ciągu Pomorskiej Kolei Metropolitalnej

5.1 Budowa modelu numerycznego

5.2 Badania - identyfikacja modalna: wybór punktów, opis badań, wyniki identyfikacji

Zastosowane kryteria: max mac 0.6, rowno na obie strony, maksymalna srednia z wektorow punktow. Dodac zmiennosc w kombinacjach maksymalnego momentu jako przestroge.

Rysunek 5.1: Diagram AUTOMAC dla pierwszych dziesięciu wektorów postaci drgań własnych, odczytanych z modelu dla wybranych punktów pomiarowych

Rysunek 5.2: Diagram stabilizacyjny metody NExT-ERA.

- 5.3 Kalibracja modelu numerycznego z wykorzystaniem PSO
- 5.4 Wielokryterialna optymalizacja modelu: opis + wyniki

Rysunek 5.3: Diagram stabilizacyjny metody NExT-ERA.

Rysunek 5.4: Diagram stabilizacyjny metody NExT-ERA.

Podsumowanie i wnioski

Podsumowania wnioski

Some claim (**szafranski'oddzialywania'2013**; **rucka'dynamika'2014**) Parametry metody NeXT-ERA: (**caicedo'practical'2011**) 1) Długość okna użytego przy transformacie Fouriera 2) Wybór kanału referencyjnego 3) Wielkość macierzy Hankela – alfa i beta 4) Liczba biegunów do identyfikacji 5) Długość i częstotliwość próbkowania sygnału wejściowego

Wykres dwóch pierwszych momentów sygnału – średniej i odchylenie standardowe. Wskazówka do określenia stacjonarności – jeśli wartości są prawie stałe. (caicedo practical 201 bendat random 2011)

Wybór sygnałów: parametry częstotliwość próbkowania, noise-to-signal ratio i stacjonarność

Blisko położone piki – zmniejszenie częstotliwości próbkowania (caicedo practical 2011)

Częstotliwość próbkowania – obniżenie – wartość ok 2 razy większa niż interesujące częstotliwości (caicedo practical 2011)

Liczba punktów funkcji kros korelacji jest równa liczbie punktów użytych w FFT, a częstotliwość próbkowania jest równa częstotliwości użytych sygnałów (caicedo practical 2011)

MAC kryterium doboru punktów pomiarowych dla testów dynamicznych

Metoda Welcha (welch'use'1967)

Oś pionowa oznaczona jako g^2 (caicedo practical 2011)

Alfa i beta – numer column 4x liczba modów (2x liczba biegunów). Numer wierszy – numer punktów w cross spectral density? (caicedo practical 2011). Ostatecznie chodzi o to by uwzględnić tyle danych z CCF żeby nie ująć ani za dużo ani za mało.

Algorytm filtrowanego diagramu stabilizacyjnego (caicedo practical 2011)

Parametry alfa i beta (brownjohn'ambient'2010; caicedo'practical'2011; hollkamp'modal'2001; nayeri'study'2009; siringoringo'system'2008; szafranski'oddzialywar przyjmować tak żeby alfa zawierała ok dwukrotność liczby biegunów (4x liczba modów) a parametr beta swoim zakresem obejmował odpowiednią liczbę sygnałów)

Wynikiem przeprowadzonej analizy modalnej są postaci i częstotliwości o wartościach zespolonych. Postaci zidentyfikowane na podstawie pomiarów wartości rzeczywistych powinny stanowić wektory o współrzędnych rzeczywistych. W przypadku modów normalnych wszystkie punkty konstrukcji drgają dokładnie w fazie lub w przeciw fazie względem siebie. Przeciwnie, kiedy postaci są wektorami zespolonymi przemieszczenia osiągają wartości ekstremalne w różnych chwilach czasowych dla różnych stopni swobody. ewins modal 2000; chopra dynamics 2012 podają przykładowe przyczyny powstania postaci o wektorach zespolonych. Są to m.in.

efekt żyroskopowy, efekty aerodynamiczne, nieliniowość czy nieproporcjonalne tłumienie. Zidentyfikowane mody zwykle występują w postaci zespolonej. Wynika to z relatywnie niskiego wskaźnika sygnału do szumu (rainieri'operational'2014). Mimo to, śtopień zespolenia" jest zwykle niewielki i w praktycznych zastosowaniach błąd wynikający z tej cechy może być zaniedbany. Mimo to ważnym jest żeby rozróżnić, które mody są normalne, a które w dużej mierze zespolone. Jedną z najprostszych metod jest wykreślenie współrzędnych składników postaci w zespolonym układzie współrzędnych. Metoda została szerzej opisana w (ewins'modal'2000). Podstawą jest, że jeśli w konstrukcji występuje tłumienie proporcjonalne to składniki danej postaci układają się na linii prostej w zespolonym układzie współrzędnych (rainieri'operational'2014)). Do ilościowego określenia stopnia przestrzennej spójności moda pappa'consistent-mode'1992 opracowali wskaźnik MPC (Modal Phase Collinearity). Jest on dla i-tego moda określony wzorem 6.5.

$$S_{xx} = \mathbf{\Phi'}_{i}^{\mathsf{T}} \mathbf{\Phi'}_{i} \quad S_{yy} = \mathbf{\Phi''}_{i}^{\mathsf{T}} \mathbf{\Phi''}_{i} \quad S_{xy} = \mathbf{\Phi'}_{i}^{\mathsf{T}} \mathbf{\Phi''}_{i}$$
(6.1)

$$\mu = \frac{S_{xx} - S_{yy}}{2S_{xy}}$$
 $\beta = \mu + \text{sgn}(S_{xy}\sqrt{\mu^2 + 1})$ $\tau = \tan^{-1}(\beta)$ (6.2)

$$\lambda_1 = S_{xx} + \frac{S_{xy}(2(\mu^2 + 1)\sin^2(\tau) - 1)}{\mu}$$
(6.3)

$$\lambda_2 = S_{yy} + \frac{S_{xy}(2(\mu^2 + 1)\sin^2(\tau) - 1)}{\mu} \tag{6.4}$$

$$MPC_i = \left[2 \cdot \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} - 0.5\right)\right]^2 \tag{6.5}$$

gdzie $\operatorname{sgn}(\cdot)$ oznacza funkcję zwracającą znak liczby. Wskaźnik MPC jest bezwymiarowy. Przyjmuje wartości z zakresu od 0 dla modów z zupełnie nieskorelowanymi kątami fazowymi do 1 dla modów jednofazowych. Przykłady zastosowania tego wskaźnika zaprezentowano w pracach

Bibliografia

- Bathe, Klaus-Jürgen (2006). Finite element procedures. Prentice Hall. ISBN: 978-0-9790049-5-7.
- Brincker, Rune i Carlos E. Ventura (2015). *Introduction to Operational Modal Analysis*. English. Chichester, West Sussex: Wiley, s. 1–360. ISBN: 978-1-119-96315-8. DOI: 10.1002/9781118535141.
- Caughey, T K i M E J O'kelly (1961). "Effect of damping on the natural frequencies of linear dynamic systems". W: *The Journal of the Acoustical Society of America* 33.11, s. 1458–1461. ISSN: 0001-4966.
- Chmielewski, Tadeusz i Zbigniew Zembaty (1998). *Podstawy dynamiki budowli*. Arkady". ISBN: 83-213-4072-5.
- Chopra, Anil K (2012). Dynamics of structures: theory and applications to earthquake engineering. en. 4th ed. Upper Saddle River, N.J: Prentice Hall, s. 944. ISBN: 978-0-13-285803-8. URL: http://files/681/Chopra%20-%202012%20-%20Dynamics%20of%20structures%20theory%20and%20applications%20to.pdf.
- Clough, Ray Wi Joseph Penzien (1975). Dynamics of structures. New York: McGraw-Hill, s. 634. ISBN: 978-0-07-011392-3. URL: http://files/103/Clough%20i%20Penzien%20-%201975%20-%20Dynamics%20of%20structures.pdf.
- Ewins, David J. (2000). *Modal testing: theory, practice and application*. Baldock: RESEARCH STUDIES PRESS LTD. ISBN: 0863802184.
- Fialko, Sergey (2000). "High-preformance aggregation element-by-element Ritz-gradient method for structure dynamic response analysis". W: Computer Assisted Mechanics and Engineering Sciences 7.4, s. 537–550. ISSN: 1232-308X.
- Golub, Gene H i Charles F Van Loan (2013). "Matrix computations, 4th". W: Johns Hopkins.
- Hughes, Thomas (1987). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewood Cliffs, New Jersey: Prentice-Hall.
- Inman, Daniel J, Gerard Lallement i Daniel J Inman (1995). "A TUTORIAL ON COMPLEX EIGENVALUES". en. W: Proceedings of SPIE The International Society for Optical Engineering. January 1995, s. 7. URL: http://files/1095/Lallement%20i%20Inman%20-%20A%20TUTORIAL%200N%20COMPLEX%20EIGENVALUES.pdf.
- Lengvarský, Pavol i Jozef Bocko (2013). "Theoretical basis of modal analysis". W: American Journal of Mechanical Engineering 1.7, s. 173–179.
- Maia, Nuno Manuel Mendes i Julio Martins Montalvao Silva (1997). Theoretical and Experimental Modal Analysis. Research Studies Press, s. 488. ISBN: 978-0-863-80208-9.
- Papadrakakis, Manolis (1993). Solving large-scale problems in mechanics. Wiley.

32 BIBLIOGRAFIA

Rainieri, C i G Fabbrocino (2014). Operational Modal Analysis of Civil Engineering Structures: An Introduction and Guide for Applications. Italy, Europe: Springer-Verlag. ISBN: 9781493907670.

- Rucka, Magdalena i Krzysztof Wilde (2014). Dynamika budowli : z przykładami w środowisku MATLAB®. Gdańsk : Wydawnictwo Politechniki Gdańskiej, 2014. ISBN: 978-83-7348-588-4. URL: http://files/107/Rucka%20i%20Wilde%20-%202014%20-%20Dynamika%20budowli%20z%20przyk%7B%5Cl%7Dadami%20w%20%7B%5C'%7Bs%7D%7Drodowisku%20MATL.pdf.
- Wilson, Edward L (1997). Three dimensional dynamic analysis of structures: with emphasis on earthquake engineering. Computers i Structures Incorporated.
- Wilson, Edward L i Tetsuji Itoh (1983). "An eigensolution strategy for large systems". W: Computers Structures 16.1-4, s. 259–265. ISSN: 0045-7949.
- Zhang, Lingmi, Rune Brincker i Palle Andersen (2004). "An overview of major developments and issues in modal identification". W: *Proceeding of the 22nd IMAC* 1, s. 1–8. ISSN: 0888-3270.