Feuille d'exercice n° 10 : Relations d'ordre et d'équivalence, et ensembles de nombres usuels

Exercice 1 Soit E un ensemble et A une partie de E. On définit la relation \mathcal{R} sur $\mathscr{P}(E)$ par $: X\mathcal{R}Y$ si $X \cup A = Y \cup A$.

- 1) Montrer que \mathcal{R} est une relation d'équivalence.
- 2) Décrire la classe d'équivalence de $X \in \mathcal{P}(E)$

Exercice 2 ($\stackrel{\triangleright}{\sim}$) Soit \mathcal{R} une relation binaire réflexive et transitive sur un ensemble E. On définit la relation \mathcal{S} sur E par $: x\mathcal{S}y$ si $(x\mathcal{R}y \text{ et } y\mathcal{R}x)$.

Montrer que S est une relation d'équivalence et que R permet de définir une relation d'ordre sur les classes d'équivalences de S.

Exercice 3 ($^{\otimes}$) Soit (E, \leq) un ensemble ordonné. On définit sur $\mathscr{P}(E) \setminus \{\emptyset\}$ la relation \mathcal{R} par : $X\mathcal{R}Y$ si $(X = Y \text{ ou } \forall x \in X \ \forall y \in Y \ x \leq y)$. Vérifier que c'est une relation d'ordre.

Exercice 4 Un ensemble E muni d'une relation d'ordre \leq est dit bien ordonné pour \leq si toute partie non vide admet un plus petit élément pour \leq .

- 1) Donner un exemple d'ensemble bien ordonné et un exemple d'ensemble qui ne l'est pas.
- 2) Montrer que tout ensemble bien ordonné est totalement ordonné.
- 3) La réciproque est-elle vraie ?

Exercice 5

1) On définit une relation \leq^0 sur \mathbb{R}^2 en posant, pour tout $(x,y),(x',y')\in\mathbb{R}^2$:

$$(x,y) \leqslant^0 (x',y')$$
 si $x \leqslant x'$ et $y \leqslant y'$.

- a) Montrer que \leq^0 est une relation d'ordre sur \mathbb{R}^2 .
- b) Soit $(x,y) \in \mathbb{R}^2$. Représenter graphiquement l'ensemble des majorants et l'ensemble des minorants de $\{(x,y)\}$ pour \leq^0 .
- c) Cet ordre est-il total?
- 2) On définit une relation \leq^* sur \mathbb{R}^2 en posant, pour tout $(x,y),(x',y')\in\mathbb{R}^2$:

$$(x,y) \leqslant^{\star} (x',y')$$
 si $x < x'$ ou $(x = x' \text{ et } y \leqslant y')$.

- a) Montrer que \leq^* est une relation d'ordre sur \mathbb{R}^2 . Cet ordre s'appelle l'ordre lexicographique.
- b) Soit $(x,y) \in \mathbb{R}^2$. Représenter graphiquement l'ensemble des majorants et l'ensemble des minorants de $\{(x,y)\}$ pour \leq^* .
- c) Cet ordre est-il total?
- d) L'ordre lexicographique (sur \mathbb{R}^2) possède-t-il la propriété de la borne supérieure ? Indication : on pourra considérer $\mathscr{A} = \mathbb{R}_{-}^{*} \times \mathbb{R}$.

Exercice 6 Déterminer les bornes supérieures et inférieures des parties suivantes de \mathbb{R} .

$$A = \left\{ \sqrt{\frac{n}{n+1}} \mid n \in \mathbb{N} \right\} \qquad B = \left\{ x^2 + 2x + 3 \mid x \in [-3; 2] \right\} \qquad C = \left\{ \frac{1}{n} + (-1)^n \mid n \in \mathbb{N}^* \right\}$$

Exercice 7 (${\mathfrak{S}}$) Soit $(k_n)_{n\in\mathbb{N}}$ une suite décroissante d'entiers naturels. Montrer que $(k_n)_{n\in\mathbb{N}}$ est stationnaire, i.e. que k_n prend toujours la même valeur à partir d'un certain rang.

Exercice 8 (\mathcal{F}) Soient A et B deux parties non vides et majorées de \mathbb{R} , soit $\lambda \in \mathbb{R}_+^*$. On définit

$$A + B = \{ x \in \mathbb{R} \mid \exists (a, b) \in A \times B, \ x = a + b \} = \{ a + b \mid (a, b) \in A \times B \}$$
et $\lambda A = \{ x \in \mathbb{R} \mid \exists a \in A, \ x = \lambda a \} = \{ \lambda a \mid a \in A \}.$

- 1) Si $A \subset B$, montrer que sup $A \leq \sup B$.
- 2) Montrer que $A \cup B$ possède une borne supérieure. Que vaut sup $(A \cup B)$?
- 3) Montrer que A+B possède une borne supérieure. Que vaut sup (A+B)?
- 4) Montrer que λA possède une borne supérieure. Que vaut sup (λA) ? Et si $\lambda < 0$?

Exercice 9 (**Solution**) Soit X et Y deux ensembles non vides et $f: X \times Y \to \mathbb{R}$ majorée. Montrer $\sup \{ f(x,y) \mid (x,y) \in X \times Y \} = \sup \{ \sup \{ f(x,y) \mid y \in Y \} \mid x \in X \}.$

Exercice 10 (\circlearrowleft) Soient a et b deux réels. Montrer que :

- 1) $a \leqslant b \Rightarrow \lfloor a \rfloor \leqslant \lfloor b \rfloor$;
- 2) $\lfloor a \rfloor + \lfloor b \rfloor \leqslant \lfloor a + b \rfloor \leqslant \lfloor a \rfloor + \lfloor b \rfloor + 1$.

Exercice 11 On veut calculer, pour tout $n \in \mathbb{N}^*$, la somme $S_n = \sum_{k=1}^{n^2} \lfloor \sqrt{k} \rfloor$.

- 1) Montrer que $S_n = \sum_{i=1}^{n-1} \left(\sum_{k=i^2}^{(i+1)^2-1} \left\lfloor \sqrt{k} \right\rfloor \right) + n.$
- 2) Conclure.

Exercice 12 On appelle ouvert de \mathbb{R} toute partie U de \mathbb{R} vérifiant la propriété suivante.

« Pour tout $x \in U$, il existe un intervalle I ouvert tel que $x \in I \subset U$. »

On pourra démontrer que cette proposition est équivalente à la proposition suivante :

« Pour tout $x \in U$, il existe $\varepsilon \in \mathbb{R}_+^*$ ouvert tel que $]x - \varepsilon, x + \varepsilon[\subset U.$ »

Soit U et V deux ouverts denses de \mathbb{R} . Établir que $U \cap V$ est encore un ouvert dense de \mathbb{R} .

