PDG Algebras and Modules

Michael Nelson

January 3, 2021

Contents

1	Introduction	2
	1.1 Notation and Conventions	2
	1.1.1 Category Theory	2
2	Basic Definitions	2
	2.1 PDG R-Algebras	2
	2.2 PDG A-Modules	
	2.2.1 Submodules	3
	2.2.2 Hom	4
	2.3 PMod _A is an Abelian Category	5
	2.3.1 Kernels	5
	2.3.2 Images	5
	2.3.3 Cokernels	5
	2.4 Associator Functor	6
	2.4.1 Homology of [X]	6
	2.4.2 Stable PDG A-Submodules	7
3	Invariant	8
4	Example	9
5	Grobner Basis Computations	10

1 Introduction

1.1 Notation and Conventions

Unless otherwise specified, let K be a field and let (R, \mathfrak{m}) be a local Noetherian ring.

1.1.1 Category Theory

In this document, we consider the following categories:

- The category of all sets and functions, denoted Set;
- The category of all rings and ring homomorphisms, denoted Ring;
- The category of all *R*-modules and *R*-linear maps, denoted **Mod**_{*R*};
- The category of all graded *R*-modules and graded *R*-linear maps, denoted **Grad**_{*R*};
- The category of all R-algebras R-algebra homorphisms, denoted \mathbf{Alg}_R ;
- The category of all R-complexes and chain maps, denoted $Comp_R$;
- The category of all R-complexes and homotopy classes of chain maps, denoted \mathbf{HComp}_R
- The category of all DG R-algebras DG algebra homomorphisms, denoted \mathbf{DG}_R .

2 Basic Definitions

2.1 PDG R-Algebras

Let (A, d) be an R-complex and let $\mu: A \otimes_R A \to A$ be a chain map. If $\sum_{i=1}^n a_i \otimes b_i$ is a tensor in $A \otimes_R A$, then we often denote its image under μ by

$$\mu\left(\sum_{i=1}^n a_i \otimes b_i\right) = \sum_{i=1}^n a_i \star_{\mu} b_i.$$

If μ is understood from context, then we also tend to drop μ from the subscript in \star_{μ} , or even drop \star altogether and write

$$\mu\left(\sum_{i=1}^n a_i \otimes b_i\right) = \sum_{i=1}^n a_i b_i.$$

Note that μ being a chain map implies it is a **graded-multiplication** which satisfies **Leibniz law**. Being a graded-multiplication means μ is an R-bilinear map which respects the grading. In particular, if $a \in A_i$ and $b \in A_j$, then $ab \in A_{i+j}$. Satisfying Leibniz law means

$$d(ab) = d(a)b + (-1)^{|a|}ad(b)$$

for all homogeneous $a, b \in A$. We can also impose other conditions on μ as follows:

1. We say μ is **associative** if

$$a(bc) = (ab)c$$

for all $a, b, c \in A$.

2. We say μ is **graded-commutative** if

$$ab = (-1)^{|a||b|}ba$$

for all homogeneous $a, b \in A$.

3. We say μ is **strictly graded-commutative** if it is graded-commutative and satisfies the following extra property:

$$aa = 0$$

for all $a \in A_i$ for all i odd.

4. We say μ is **unital** if there exists $1 \in A$ such that

$$a1 = a = 1a$$

for all $a \in A$.

The triple (A, d, μ) is called a **differential graded** R-**algebra** (or **DG** R-**algebra**) if μ satisfies conditions 1-4. If (A, d, μ) only satisfies conditions 2-4, then it is called a **partial differential graded** R-**algebra** (or **PDG** R-**algebra**). To clean notation in what follows, we will often refer to a PDG R-algebra (A, d, μ) via its underlying graded R-module A. In particular, if we write "let A be a PDG R-algebra" without specifying its differential or multiplication operations, then it will be understood that it's differential is denoted d_A and its multiplication is denoted μ_A .

Definition 2.1. Let A and A' be two PDG R-algebra. A **morphism** between them is a chain map $\varphi: A \to A'$ which satisfies the following two properties

- 1. it respects the identity elements, that is, $\varphi(1) = 1$;
- 2. it respects multiplication, that is, $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in A$.

It is straightforward to check that the collection of all PDG R-algebras algebras together with their morphisms forms a category, which we denote by PDG_R .

2.2 PDG A-Modules

Unless otherwise specificed, we fix *A* to be a PDG *R*-algebra.

Definition 2.2. A (left) **partial differential graded** *A***-module** (or **PDG** *A***-module**) is a triple $(X, d_X, \mu_{A,X})$ where (X, d_X) is an *R*-complex and where $\mu_{A,X} \colon A \otimes_R X \to X$ is a chain map which satisfies 1x = x for all $x \in X$.

Here again we are using the convention that the image of a tensor $\sum_{i=1}^{n} a_i \otimes x_i$ in $A \otimes_R X$ under the map μ_X is denoted by

$$\mu_{A,X}\left(\sum_{i=1}^n a_i \otimes x_i\right) = \sum_{i=1}^n a_i \star_{\mu_{A,X}} x_i = \sum_{i=1}^n a_i x_i$$

Also, as before, if we write "let X be a PDG A-module" without specifying its differential or scalar-multiplication operations, then it will be understood that it's differential is denoted d_X and its multiplication is denoted $\mu_{A,X}$. In fact, if A is understood from context, then we simplify this notation even further by writing μ_X rather than $\mu_{A,X}$. Note that μ_X being a chain map implies it is satisfies **Leibniz law**, which in this context says

$$d_X(ax) = d_A(a)x + (-1)^{|a|}ad_X(x)$$

for all homogeneous $a \in A$ and $x \in X$. Notice that we do not require μ_X to be associative in order for X to be a PDG A-module, that is, we do not require here the identity

$$(ab)x = a(bx)$$

to hold for all $a, b \in A$ and $x \in X$.

Definition 2.3. Let X and Y be two PDG A-modules. An A-linear map betweem them is a chain map $\varphi \colon X \to Y$ which satisfies $\varphi(ax) = a\varphi(x)$ for all $a \in A$ and $x \in X$. The collection of all PDG A-modules together with their A-linear maps forms a category, which we denote by **PMod**A.

2.2.1 Submodules

Definition 2.4. Let X and Y be two PDG A-modules. We say X is a **PDG** A-submodule of Y if $X \subseteq Y$. A PDG A-submodule of A is called a **PDG ideal** of A. Given any collection $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ of elements of X, we denote by $\langle\langle x_{\lambda}\rangle\rangle_{{\lambda}\in\Lambda}$ to be the smallest PDG A-submodule of A which contains $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$. We denote by $\langle x_{\lambda}\rangle_{{\lambda}\in\Lambda}$ to be the set of all A-linear combinations of $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$.

Proposition 2.1. Let X be a PDG A-module and let $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of elements of X. Then

$$\langle\langle x_{\lambda}\rangle\rangle_{\lambda\in\Lambda}=\langle x_{\lambda},d_X(x_{\lambda})\rangle_{\lambda\in\Lambda}$$

Proof. To clean notation in what follows, we drop the " $\lambda \in \Lambda$ " from the subscript of our bracket notation. Since $\langle \langle x_{\lambda} \rangle \rangle$ is the smallest PDG A-submodule of X which contains $\{x_{\lambda}\}$, we must have $d_{X}(x_{\lambda}) \in \langle \langle x_{\lambda} \rangle \rangle$ for all $\lambda \in \Lambda$. Furthermore, we must have all A-linear combinations of $\{x_{\lambda}, d_{X}(x_{\lambda})\}$ belong to $\langle \langle x_{\lambda} \rangle \rangle$ as well. Thus

$$\langle x_{\lambda}, d_X(x_{\lambda}) \rangle \subseteq \langle \langle x_{\lambda} \rangle \rangle.$$

For the reverse direction, notice that Leibniz law ensures that $\langle x_{\lambda}, d_X(x_{\lambda}) \rangle$ is d_X -stable. Indeed, if

$$\sum_{i=1}^m a_i x_{\lambda_i} + \sum_{j=1}^n b_j \mathbf{d}_X(x_{\lambda_j}),$$

is a finite *A*-linear combination of elements in $\{x_{\lambda}, d_X(x_{\lambda})\}$ where each a_i and b_j are homogeneous, then note that

$$\begin{split} \mathrm{d}_{X}\left(\sum_{i=1}^{m}a_{i}x_{\lambda_{i}}+\sum_{j=1}^{n}b_{j}\mathrm{d}_{X}(x_{\lambda_{j}})\right) &=\sum_{i=1}^{m}\mathrm{d}_{X}(a_{i}x_{\lambda_{i}})+\sum_{j=1}^{n}\mathrm{d}_{X}(b_{j}\mathrm{d}(x_{\lambda_{j}}))\\ &=\sum_{i=1}^{m}\left(\mathrm{d}_{A}(a_{i})x_{\lambda_{i}}+(-1)^{|a_{i}|}a_{i}\mathrm{d}_{X}(x_{\lambda_{i}})\right)+\sum_{j=1}^{n}\left(\mathrm{d}_{A}(b_{j})x_{\lambda_{j}}+(-1)^{|b_{j}|}b_{j}\mathrm{d}_{X}^{2}(x_{\lambda_{j}})\right)\\ &=\sum_{i=1}^{m}\mathrm{d}_{A}(a_{i})x_{\lambda_{i}}+\sum_{i=1}^{m}(-1)^{|a_{i}|}a_{i}\mathrm{d}_{X}(x_{\lambda_{i}})+\sum_{j=1}^{n}\mathrm{d}_{A}(b_{j})x_{\lambda_{j}}\\ &\in\langle x_{\lambda},\mathrm{d}_{X}(x_{\lambda})\rangle. \end{split}$$

In particular, we see that $\langle x_{\lambda}, d_X(x_{\lambda}) \rangle$ is a PDG A-submodule of X which contains $\{x_{\lambda}\}$. Since $\langle \langle x_{\lambda} \rangle \rangle$ is the *smallest* PDG A-submodule of X which contains $\{x_{\lambda}\}$, it follows that

$$\langle x_{\lambda}, d_X(x_{\lambda}) \rangle \supseteq \langle \langle x_{\lambda} \rangle \rangle.$$

Warning: In the category of R-modules, we have the concept of annihilators. In particular, suppose M is an R-module and let $u \in M$. We define the **annihilator** with respect to u to be the subset of R given by

$$0: u = \{r \in R \mid ru = 0\}.$$

In fact, 0:u is in an ideal of R, but we need the associative law to get this: if $r \in R$ and $x \in 0:u$, then (rx)u = r(xu) = 0 implies $rx \in 0:u$.

Now let us consider the case where X is a PDG A-module and let $x \in X$. We can define the annihilator 0 : x with respect to x as a subset of A as before:

$$0: x = \{a \in A \mid ax = 0\},\$$

however this time the set 0: x need not be a PDG ideal of A. On the other hand, if $u \in Assoc M$, where

Assoc
$$M = \{u \in M \mid [a, b, u] = 0 \text{ for all } a, b \in A\},$$

then there are no issues with the proof above, so 0:u is an ideal of R in this case.

2.2.2 Hom

Let M and N be two PDG A-modules. We denote by $\operatorname{Hom}_A(M,N)$ to be the set of all A-linear maps from M to N. The set $\operatorname{Hom}_A(M,N)$ as the structure of an abelian group via pointwise addition of A-linear maps from M to N. On the other hand, suppose we define a scalar "action" on $\operatorname{Hom}_A(M,N)$ by

$$(a \cdot \varphi)(u) = \varphi(au)$$

for all $a \in A$, $\varphi \in \operatorname{Hom}_A(M, N)$, and $u \in M$. Then this "action" does not necessarily give $\operatorname{Hom}_A(M, N)$ the structure of an R-module, since if $a \in A_i$, $b \in A_i$, and $\varphi \in \operatorname{Hom}_A(M, N)$, then

$$\begin{split} ((ab) \cdot \varphi)(u) &= \varphi((ab)u) \\ &= \varphi((-1)^{i+j}(ba)u) \\ &= (-1)^{i+j}\varphi((ba)u) \\ &= (-1)^{i+j}\varphi(b(au) + (-1)^{i+j}[b,a,u]) \\ &= (-1)^{i+j}(b \cdot \varphi)(au) + (-1)^{i+j}[b,a,\varphi(u)] \\ &= (-1)^{i+j}(a \cdot (b \cdot \varphi))(u) + (-1)^{i+j}[b,a,\varphi(u)] \end{split}$$

for all $u \in M$. Thus one needs commutativity and associativity in order to conclude that $(ab) \cdot \varphi = a \cdot (b \cdot \varphi)$.

2.3 PMod_A is an Abelian Category

Throughout the rest of this subsection, we fix a PDG R-algebra A. We would like to talk about the concept of an exact sequence in $PMod_A$. For this, we just need to check that $PMod_A$ is abelian category. First let us check that it is a pre-additive category.

2.3.1 Kernels

Proposition 2.2. Let $\varphi: X \to Y$ be a morphism of PDG A-modules and let $K = \ker \varphi$. Then K has the structure of a PDG A-submodule of X, where $d_K = d|_K$ and where $\mu_K = \mu_X|_{A \otimes_R K}$.

Proof. Since both d_K and μ_K are restrictions, we just need to check that d_K and μ_K land in K. Indeed, then all of the properties needed in order for K to be a PDG A-submodule of X will be inherited from X. First we show d_K lands in K. Let $X \in K$. Then

$$\varphi d_K(x) = d_K \varphi(x)$$

$$= d_K(0)$$

$$= 0$$

implies $d_K(x) \in K$. It follows that d_K lands in K. Now we show μ_K lands in K. Let $a \otimes x$ be an elementary tensor in $A \otimes_R K$. Then

$$\varphi \mu_K(a \otimes x) = \varphi(ax)$$

$$= a\varphi(x)$$

$$= a \cdot 0$$

$$= 0.$$

It follows that μ_K lands in K.

2.3.2 Images

Proposition 2.3. Let $\varphi: (A, d, \mu) \to (A', d', \mu')$ be a morphism of R-complex algebras. Then $(\operatorname{im} \varphi, \widetilde{d}', \widetilde{\mu}')$ is an R-complex algebra, where $\widetilde{d}' = d'|_{\ker \varphi}$ and $\widetilde{\mu}' = \mu'|_{\operatorname{im} \varphi \otimes_R \operatorname{im} \varphi}$.

Proof. We just need to check that \widetilde{d}' and $\widetilde{\mu}'$ land in ker φ . Then it will follow that $(\ker \varphi, \widetilde{d}, \widetilde{\mu})$ is an R-complex algebra since it will inherit the properties needed to be an R-complex algebra from (A, d, μ) . First we show \widetilde{d}' lands in im φ . Let $\varphi(a) \in \operatorname{im} \varphi$. Then

$$d'(\varphi(a)) = d'\varphi(a)$$
$$= \varphi d(a)$$
$$= \varphi(d(a)).$$

It follows that \widetilde{d}' lands in im φ . Now we show $\widetilde{\mu}'$ lands in im φ . Let $\varphi(a) \otimes \varphi(b)$ be an elementary tensor in im $\varphi \otimes_R \operatorname{im} \varphi$. Then

$$\mu((\varphi(a) \otimes \varphi(b)) = \varphi(a) \star \varphi(b)$$

$$= \varphi(a \star b)$$

$$= \varphi(\mu(a \otimes b)).$$

It follows that $\widetilde{\mu}'$ lands in im φ .

2.3.3 Cokernels

As we've seen, both kernels and images exist in $CompAlg_R$. The problem however is that cokernels do not necessarily exist in $CompAlg_R$. To see what goes wrong, suppose $\varphi \colon (A, d, \mu) \to (A', d', \mu')$ be a morphism of R-complex algebras. A naive attempt at defining the cokernel of φ would go as follows: first we take the cokernel of the underlying R-complexes, namely $(\overline{A'}, \overline{d'})$ where $\overline{A'} = A'/\operatorname{im} \varphi$ and $\overline{d'}$ is defined by $\overline{d'}(\overline{a'}) = \overline{d'(a')}$ for all $\overline{a'} \in \overline{A'}$. It is straightforward to check that $\overline{d'}$ is well-defined and gives $\overline{A'}$ the structure of an R-complex. Next we define multiplication $\overline{\mu'} \colon \overline{A'} \otimes_R \overline{A'} \to \overline{A'}$ by

$$\overline{\mu'}(\overline{a'} \otimes \overline{b'}) = \overline{a' \star_{\mu'} b'} \tag{1}$$

for all elementary tensors $\overline{a'} \otimes \overline{b'}$ in $\overline{A'} \otimes_R \overline{A'}$ and extending $\overline{\mu'}$ everywhere else R-linearly. Unfortunately, upon further inspection, we see that (??) is note well-defined. Indeed, if $a' + \varphi(a)$ is another representative of the coset $\overline{a'}$ and $b' + \varphi(b)$ is another representative of the coset $\overline{b'}$, then we have

$$\overline{\mu'}(\overline{a' + \varphi(a)} \otimes \overline{b' + \varphi(b)}) = \overline{(a' + \varphi(a)) \star (b' + \varphi(b))}$$

$$= \overline{a' \star b'} + \overline{a' \star \varphi(b)} + \overline{\varphi(a) \star b'} + \overline{\varphi(a) \star \varphi(b)}$$

$$= \overline{a' \star b'} + \overline{a' \star \varphi(b)} + \overline{\varphi(a) \star b'} + \overline{\varphi(a \star b)}$$

$$= \overline{a' \star b'} + \overline{a' \star \varphi(b)} + \overline{\varphi(a) \star b'}.$$

In particular, (??) is well-defined if and only if im φ is an ideal of A'.

2.4 Associator Functor

Let *A* be a PDG *R*-algebra and let *X* be a PDG *A*-module. Given $a, b \in A$ and $x \in X$, we define the **associator** of the triple (a, b, x), denoted [a, b, x], by the formula

$$[a,b,x] = (ab)x - a(bx).$$
(2)

More generally, let $\alpha_{A,A,X}$: $(A \otimes_R A) \otimes_R X \to A \otimes_R (A \otimes_R X)$ denote the unique chain map defined on elementary tensors by

$$(a \otimes b) \otimes x \mapsto a \otimes (b \otimes x).$$

We define the **associator chain map** with respect to μ_X to be chain map $[\cdot, \cdot, \cdot]_{\mu_X} \colon (A \otimes_R A) \otimes_R X \to X$ defined by

$$[\cdot,\cdot,\cdot]_{\mu_X}:=\mu_X(1\otimes\mu_X)\alpha_{A,A,X}-\mu_X(\mu_A\otimes 1).$$

If μ_X is understood from context, then we will simplify our notation by dropping μ_X from the subscript in $[\cdot, \cdot, \cdot]$. Thus, if $(a \otimes b) \otimes x$ is an elementary tensor in $(A \otimes_R A) \otimes_R X$ then the associatior chain map with respect to X maps the elementary tensor $(a \otimes b) \otimes x$ to the associator of the triple (a, b, x):

$$[\cdot,\cdot,\cdot]((a\otimes b)\otimes x)=[a,b,x],$$

where [a, b, x] is as defined above in (2). We define the **associator complex** with respect to μ_X , denoted $[X]_{\mu_X}$, to be the image of $[\cdot, \cdot, \cdot]$, where again we simplify notation by writing [X] instead of $[X]_{\mu_X}$ if μ_X is understood from context. Thus

$$[X] = \operatorname{Span}_{R} \{ [a, b, x] \mid a, b \in A \text{ and } x \in X \}.$$

Since $[\cdot, \cdot, \cdot]$ is a chain map, we see that [X], being the image of $[\cdot, \cdot, \cdot]$, is an R-subcomplex of X. We also see that $[\cdot, \cdot, \cdot]$ is a graded-trilinear map which satisfies Leibniz law, where Leibniz law in this context says

$$d_X[a,b,x] = [d_A(a),b,x] + (-1)^{|a|}[a,d_A(b),x] + (-1)^{|a|+|b|}[a,b,d_X(x)].$$
(3)

for all homogeneous $a, b \in A$ and $x \in X$.

Now suppose *Y* is another PDG *A*-module and $\varphi: X \to Y$ is an *A*-linear map. We obtain an induced chain map of *R*-complexes $[\varphi]: [X] \to [Y]$, where $[\varphi]$ is the unique chain map which satisfies

$$[\varphi][a,b,x] = \varphi((ab)x - a(bx))$$

$$= \varphi((ab)x) - \varphi(a(bx))$$

$$= (ab)\varphi(x) - a\varphi(bx)$$

$$= (ab)\varphi(x) - a(b\varphi(x))$$

$$= [a,b,\varphi(x)].$$

In particular, the map $[\varphi]$ is just the restriction of φ to [M]. It is straightforward to check that the assignment $M \mapsto [M]$ and $\varphi \mapsto [\varphi]$ gives rise to a functor from the category of PDG A-modules to the category of R-complex. We call this functor the **associator functor** with respect to A, and we denote this functor by $[\cdot]_{\mu_A} : \mathbf{PMod}_A \to \mathbf{Comp}_R$. As usual, we simplify our notation by droping μ_A from $[\cdot]$ when context is clear.

2.4.1 Homology of [X]

Let X be a PDG A-module. It is easy to see that μ_X is associative if and only if [X] = 0. Given that [X] is an R-complex, we also have a weaker form of associativity:

Definition 2.5. We say μ_X is homologically associative if H([X]) = 0.

Clearly if μ_X is associative, then μ_X is homologically associative. It turns out that the converse is also true if [X] is bounded below and **minimal** in the sense that $d_X([X]) \subseteq \mathfrak{m}[X]$ where \mathfrak{m} is the maximal ideal in the local ring R.

Proposition 2.4. Let X be a PDG A-module and assume that [X] is bounded below and minimal. Then μ_X is associative if and only if μ_X is homologically associative.

Proof. Clearly if μ_X is associative, then it is homologically associative. To show the converse, we prove the contrapositive: assume μ_X is not associative, so $[X] \neq 0$. Choose $i \in \mathbb{Z}$ minimal so that $[X]_i \neq 0$ and $[X]_{i-1} = 0$. By Nakayama's Lemma, we can find a triple (a,b,x) such that |a| + |b| + |x| = i and such that $[a,b,x] \notin \mathfrak{m}[X]_i$. By minimality of i, we have $d_X[a,b,x] = 0$. Also, since X is minimal, we have $d_X[X] \subseteq \mathfrak{m}[X]$. Thus [a,b,x] represents a nontrivial element in homology. It follows that μ_X is not homologically associative.

Note that if A and X are both minimal, then the Leibniz law (3) implies [X] is minimal too. Also our assumption in Proposition (2.4) that [X] is bounded below can clearly be weakened since in the proof we just needed to find an $i \in \mathbb{Z}$ such that $[X]_i \neq 0$ and $[X]_{i-1} = 0$. At the same time, the proof of Proposition (2.4) tells us something a bit more than what was stated in the proposition. To see this, we first need a definition

Definition 2.6. Let X be a PDG A-module and assume that [X] is bounded below. We define the **associative index** of μ_X , denoted index μ_X , is defined to be the smallest $i \in \mathbb{Z} \cup \{\infty\}$ such that $[X]_i \neq 0$ where we set index $\mu_X = \infty$ if μ_X is associative. We extend this definition to case where [X] is not bounded below by setting index $\mu_X = -\infty$.

With the associative index of μ_X defined, we see, after analyzing the proof of Proposition (2.4), that if we assume μ_X is not associative then

index
$$\mu_X = \inf\{i \in \mathbb{Z} \mid H_i([X]) \neq 0\}$$

In other words, the associative index of μ_X can be measured homologically.

We can also define an associative index of *R*-complex. Let us record this definition now:

Definition 2.7. Let *X* be a PDG *A*-module. We define the **associative index** of *X*, denoted index *X*, to be

index
$$X = \sup\{\text{index } \mu \mid \mu \text{ is a multplication on } X\}.$$

Let *I* be an ideal of *R* and let *F* be the minimal free resolution of R/I over *R*. We define the **associative index** of R/I, denoted index(R/I), to be the associative index of *F*.

2.4.2 Stable PDG A-Submodules

The associator functor $[\cdot]$: **PMod**_A \rightarrow **Mod**_R need not be exact. To see what goes wrong, let

$$0 \longrightarrow X \xrightarrow{\varphi} Y \xrightarrow{\psi} Z \longrightarrow 0 \tag{4}$$

be a short exact sequence of PDG A-modules. We obtain an induced sequence of R-complexes

$$0 \longrightarrow [X] \xrightarrow{[\varphi]} [Y] \xrightarrow{[\psi]} [Z] \longrightarrow 0 \tag{5}$$

We claim that we have exactness at [X] and [Z]. Indeed, this is equivalent to showing $[\varphi]$ is injective and $[\psi]$ is surjective, which follows from the fact that $[\varphi]$ (respectively $[\psi]$) is the restriction of the injective map φ (respectively the surjective map ψ). Let us see what goes wrong when trying to prove exactness at [Y]. Let $\sum_{i=1}^{n} [a_i, b_i, y_i] \in \ker[\psi]$. Then $\sum_{i=1}^{n} [a_i, b_i, y_i] \in \ker[\psi]$, and so by exactness of (4), there exists $x \in X$ such that $\varphi(x) = \sum_{i=1}^{n} [a_i, b_i, y_i]$. It is not at all clear however that $x \in [X]$. This leads us to consider the following definition:

Definition 2.8. Let X be a PDG A-submodule of Y. We say X is a **stable** PDG A-submodule of Y if it satisfies $[X] = X \cap [Y]$.

Now it is easy to check that (5) is a short exact sequence of R-complexes if and only if $\varphi(X)$ is a stable PDG A-submodule of Y. Thus if $\varphi(X)$ is a stable PDG A-submodule of Y, then the short exact sequence (5) of R-complexes induces a long exact sequence in homology

$$\cdots \longrightarrow H_{i+1}([Z]) \longrightarrow H_i([X]) \longrightarrow H_i([X]) \longrightarrow H_i([X]) \longrightarrow \cdots$$

$$(6)$$

$$H_{i-1}([X]) \longrightarrow \cdots$$

From this, one concludes immediately the following theorem:

Theorem 2.1. Suppose X is a PDG A-submodule of Y. Then μ_Y is homologically associative if and only if μ_X and $\mu_{Y/X}$ are homologically associative.

3 Invariant

Let I be an ideal of R and let F be the minimal free resolution of R/I over R. The multilpication map $R/I \otimes_R R/I \to R/I$ can be lifted to a multiplication map $\mu_F \colon F \otimes_R F \to F$, which in general is associative and graded-commutative only up to homotopy. Moreover μ_F is unique only up to homotopy. It is known that μ_F can be chosen to be graded-commutative "on the nose", but in general it is not possible to choose μ_F such that it is associative. Choose such a μ_F throughout the rest of this section.

Now suppose $r \in \mathfrak{m}$ is an (R/I)-regular element. Then the mapping cone C(r) is the minimal free resolution of $R/\langle I, x \rangle$ over R. The multiplication μ_F on F induces a multilpication $\mu_{C(r)}$ on C(r) as follows: First note that $F \oplus F(-1)$ is the underlying graded R-module of C(r). Express this graded R-module in the form F + Fe where e is a generator of degree -1 and where $\{1,e\}$ is an F-linearly independent set. Thus an element in F + Fe can be expressed in the form $\alpha + \beta e$ for unique $\alpha, \beta \in F$. If this element is homogeneous of degree i, then α and β are homogeneous of degrees i and i-1 respectively. With this understood, the multilpication $\mu_{C(r)}$ is defined on homogeneous elements $\alpha, \beta, \gamma, \delta \in F$ by

$$(\alpha + \beta e)(\gamma + \delta e) = \alpha \gamma + (\alpha \delta + (-1)^{|\gamma|} \beta \gamma)e$$

and extended R-linearly everywhere else. The mapping cone C(r) inherits a natural PDG F-module structure via restriction of scalars. Now there are two associator complexes to consider. The first is the associator complex with respect to $\mu_{F,C(r)}$, given by

$$[C(r)]_{\mu_{F,C(r)}} = \operatorname{Span}_{R}\{[\alpha,\beta,\gamma+\delta e] \mid \alpha,\beta,\gamma,\delta \in F\}.$$

The second is the associator complex with respect to $\mu_{C(r)}$, given by

$$[C(r)]_{\mu_{C(r)}} = \operatorname{Span}_R\{[\alpha + \beta e, \gamma + \delta e, \varepsilon + \zeta e] \mid \alpha, \beta, \gamma, \delta, \varepsilon, \zeta \in F\}.$$

It turns out that these two associator complexes are the same. Indeed, clearly we have

$$[C(r)]_{\mu_{F,C(r)}} \subseteq [C(r)]_{\mu_{C(r)}}.$$

Conversely, a calculation gives us

$$[\alpha, \beta, \gamma + \delta e] = [\alpha, \beta, \gamma] + [\alpha, \beta, \delta]e$$

$$[\alpha, \beta + \gamma e, \delta] = [\alpha, \beta, \gamma] + (-1)^{|\delta|} [\alpha, \gamma, \delta]e$$

$$[\alpha + \beta e, \gamma, \delta] = [\alpha, \gamma, \delta] + (-1)^{|\gamma| + |\delta|} [\beta, \gamma, \delta]e$$

where α , β , γ , $\delta \in F$. Using these identities together with the fact that $e^2 = 0$ and the identity 1 associates with everything, we obtain

$$[\alpha + \beta e, \gamma + \delta e, \varepsilon + \zeta e] = [\alpha, \gamma, \varepsilon] + [\alpha, \gamma, \zeta] e + (-1)^{|\varepsilon|} [\alpha, \delta, \varepsilon] e + (-1)^{|\gamma| + |\varepsilon|} [\beta, \gamma, \varepsilon] e$$

$$= [\alpha, \gamma, \varepsilon + \zeta e] + (-1)^{|\varepsilon|} [\alpha, \delta, \varepsilon] e + (-1)^{|\gamma| + |\varepsilon|} [\beta, \gamma, \varepsilon] e$$

$$= [\alpha, \gamma, \varepsilon + \zeta e] + (-1)^{|\varepsilon|} [\alpha, \delta, 1 + \varepsilon e] + (-1)^{|\gamma| + |\varepsilon|} [\beta, \gamma, 1 + \varepsilon e],$$

where α , β , γ , δ , ε , $\zeta \in F$. It follows that

$$[\mathsf{C}(r)]_{\mu_{F,\mathsf{C}(r)}} \supseteq [\mathsf{C}(r)]_{\mu_{\mathsf{C}(r)}}.$$

Thus we are justified in simplifying our notation by dropping either $\mu_{F,C(r)}$ and $\mu_{C(r)}$ from the subscript and just writing [C(r)] to denote the common R-complex.

Now the homothety map $F \xrightarrow{r} F$ gives rise to a short exact sequence of *R*-complexes

$$0 \longrightarrow F \stackrel{\iota}{\longrightarrow} C(r) \stackrel{\pi}{\longrightarrow} \Sigma F \longrightarrow 0 \tag{7}$$

where $\iota: F \to C(r)$ is the inclusion map and where $\pi: C(r) \to \Sigma F$ is the projection map given by

$$\pi(\alpha + \beta e) = \beta$$

for all $\alpha, \beta \in F$. In fact, both ι and π are A-linear maps, and so (7) is a short exact sequence of PDG F-modules. In fact, it is a stable short exact sequence of PDG F-modules, as the next proposition shows

Proposition 3.1. With the notation above, F is a stable PDG F-submodule of C(r).

Proof. We must check that $[C(r)] \cap F \subseteq [F]$ since the reverse inclusion is trivial. Suppose $\sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \gamma_i + \delta_i e] \in [C(r)] \cap F$ where $r_i \in R$ abd $\alpha_i, \beta_i, \gamma_i, \delta_i \in F$ for each $1 \le i \le m$. Observe that

$$\sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \gamma_i + \delta_i e] = \sum_{i=1}^{m} r_i([\alpha_i, \beta_i, \gamma_i] + ([\alpha_i, \beta_i, \delta_i] e)$$

$$= \sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \gamma_i] + \sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \delta_i] e$$

Since $\sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \gamma_i + \delta_i e] \in F$, it follows that $\sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \delta_i] = 0$. Thus

$$\sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \gamma_i + \delta_i e] = \sum_{i=1}^{m} r_i[\alpha_i, \beta_i, \gamma_i] \in [F].$$

Therefore $[C(r)] \cap F \subseteq [F]$.

Since (7) is a stable short exact sequence of PDG *F*-modules, we obtain a long exact sequence in homology

Using Nakayama's lemma, we obtain index(μ_F) = index($\mu_{C(r)}$). In particular, this implies

$$index(R/\langle I, r \rangle) \ge index(R/I)$$
.

4 Example

Let $R = \mathbb{F}_2[x, y, z, w]$, let $I = \langle x^2, w^2, zw, xy, y^2z^2 \rangle$, and let F be the free minimal resolution of R/I over R. The complex F is supported on the simplicial complex drawn below:

Consider the multiplication on *F* defined as follows: in degree 1 we have the multiplication table

	e_1	e_2	e_3	e_4	e_5
e_1	0	e_{12}	e_{13}	xe_{14}	$yz^2e_{14} + xe_{45}$
e_2	e_{12}	0	we_{23}	e_{24}	$y^2ze_{23} + we_{35}$
e_3	e_{13}	we ₂₃	0	e_{34}	ze_{35}
e_4	xe_{14}	e_{24}	e ₃₄	0	ye_{45}
$\overline{e_5}$	$yz^2e_{14} + xe_{45}$	$y^2ze_{23} + we_{35}$	ze_{35}	<i>ye</i> ₄₅	0

in degree 3 we have the multiplication table

	e_{12}	e_{45}	e_3	e_4	e_5
e_1			e_{13}	xe_{14}	$yz^2e_{14} + xe_{45}$
e_2		$yze_{234} + we_{345}$	we_{23}	e_{24}	$y^2ze_{23} + we_{35}$
e_3			0	e_{34}	<i>ze</i> ₃₅
e_4			e ₃₄	0	<i>ye</i> ₄₅
e_5	$y^2ze_{123} + yzwe_{134} + xwe_{345}$		ze_{35}	ye_{45}	0

5 Grobner Basis Computations