

CS 383 – Machine Learning

Decision Trees

Slides adapted from material created by E. Alpaydin Prof. Mordohai, Prof. Greenstadt, Pattern Classification (2nd Ed.), Pattern Recognition and Machine Learning

Objectives

• Decision Trees

Decision Trees

Decision Trees

- Building Decision Trees: Hierarchical and Recursive partitioning of the feature space
- Example: Play tennis?

Greenstadt

Decision Trees

- Representation
 - Each internal node tests an attribute
 - Each branch is an attribute value
 - Each leaf assigns a classification

Greenstadt

Consistent Decision Trees

- If we have D binary features and a binary classification system then there are $2^{2^{D}}$ decision trees
 - Yikes
- If our data is noiseless and without any randomness, then there is at least one trivially consistent decision tree for the data set
 - Fits the data perfectly
- In fact there's many potential ones
- But we'd prefer to find a compact one.
 - That is one with a minimal height.

Example

- Example: Situations for which I will/won't play tennis
- Exercise: Let's (painfully) build a consistent decision tree from these examples
 - There's a lot of different possible ones

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes

Example: Consistent Tree

• Here's one!

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes

Decision Tree Learning

- In practice it may be impossible to build a consistent decision tree
 - There may be noise
 - And/or there may be randomness
 - Or we don't have enough information/features.
- Ultimately we'd like to find a small (compact) tree consistent with as many training examples as possible.

Decision Tree Learning

- Idea: (recursively) choose "most significant" attribute/feature as root of (sub)tree
 - A greedy algorithm

```
function DTL(examples, attributes, default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples) else best \leftarrow \text{Choose-Attributes}(attributes, examples) \\ tree \leftarrow \text{a new decision tree with root test } best \\ \text{for each value } v_i \text{ of } best \text{ do} \\ examples_i \leftarrow \{\text{elements of } examples \text{ with } best = v_i\} \\ subtree \leftarrow \text{DTL}(examples_i, attributes - best, \text{Mode}(examples)) \\ \text{add a branch to } tree \text{ with label } v_i \text{ and subtree } subtree \\ \text{return } tree
```


Choosing an Attribute

- Idea: A good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"
- Which choice is better? (Patrons? Or Type?)

Example					At	ttributes	3				Target
Literripie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

Choosing an Attribute

- While there's many ideas on how to choose the next attribute, let's use something we already talked about!
- Information gain!

Information Gain (again)

• Given probability of events v_1, \dots, v_n as $P(v_1), \dots, P(v_n)$ we can compute the entropy as

$$H(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$$

Information Gain (IG) or reduction in entropy based on attributed
A:

$$IG(A) = H\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - remainder(A)$$

• Where remainder(A) is the weighted average entropy after splitting on attribute A

$$remainder(A) = \sum_{i=1}^{v} \frac{p_i + n_i}{p + n} H\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

Example: Information gain

- Overall Entropy:
 - p = n = 6
 - H(6/12,6/12) = 1
- Consider the attributes Patrons and Type (really we should look at all the attributes)
- Patrons
 - 2 none instances
 - 0 true wait
 - 2 false wait
 - 4 some instances
 - 4 true wait
 - 0 false wait
 - 6 full instances
 - 2 true wait
 - 4 false wait

•	IG(Patrons) = 1 -	$\left[\frac{2}{12}H\right]$	$\left(\frac{0}{2},\frac{2}{2}\right)$	$+\frac{4}{12}H($	$\left(\frac{4}{4},\frac{0}{4}\right)$	$+\frac{6}{12}H$	$\left(\frac{2}{6}, \frac{4}{6}\right)$	= 0.5	4
---	-------------------	------------------------------	--	-------------------	--	------------------	---	-------	---

Example					A	ttributes	3				Target
Litempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	Т	F	T	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

Example: Information gain

Patrons

•
$$IG(Patrons) = 1 - \left[\frac{2}{12}H\left(\frac{0}{2},\frac{2}{2}\right) + \frac{4}{12}H\left(\frac{4}{4},\frac{0}{4}\right) + \frac{6}{12}H\left(\frac{2}{6},\frac{4}{6}\right)\right] = 0.54$$

Type

•
$$IG(Type) = 1 - \left[\frac{2}{12}H\left(\frac{1}{2},\frac{1}{2}\right) + \frac{4}{12}H\left(\frac{2}{4},\frac{2}{4}\right) + \frac{4}{12}H\left(\frac{2}{4},\frac{2}{4}\right) + \frac{2}{12}H\left(\frac{1}{2},\frac{1}{2}\right)\right] = 0$$

• So which should we split on?

Example					At	ttributes	3				Target
Litempre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0-10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30-60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
X_4	T	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0-10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

Example

 Building a tree completely using information gain is called the ID3 decision tree algorithm

Outlook	Temperatur e	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Overfitting

- What's the problem with fitting our data as closely as possible?
 - We may overfit the data!
- There are two different approaches to dealing with this
 - 1. Stop growing based on some condition
 - Grow "fully" then "prune" (again based on some condition)
- For each of these we can make our decision
 - Based on some statistic
 - Based on error with a new set (validation set)

Overfitting

http://jmvidal.cse.sc.edu/talks/decisiontrees/allslides.html

Statistical Approaches

- Statistics-Based Growth
 - Maybe you already know the ideal "height" (based on other stuff you've done). So just grow to that height OR
 - You can set a threshold on information gain
 - When it comes time to split, only split if best IG is above some threshold

Statistical Approaches

- Statistics-Based Pruning
 - After having fully grown tree, find the node that has the lowest (or largest) statistic
 - If it's below (or above) some threshold make it a leaf with it's class equal to the mode of the labels passing through it
 - Update statistics in tree
 - Continue until no split nodes meet criteria

Reduced Error Approaches

- Split data into training, validation, and testing
- Reduced Error Growing
 - When you look to split a node based on training data, evaluating after using validation set
 - If things get worse, stop
- Reduced Error Pruning
 - Evaluate impact on validation set of pruning each possible node (plus those below it)
 - Greedily remove the one that most improve validation set accuracy
 - Continue until none help

Reduced Error Pruning

http://jmvidal.cse.sc.edu/talks/decisiontrees/allslides.html

Continuous Valued Inputs

- What if we have features that have continuous values?
 - One branch for each value?
 - Bad idea!!!! (impossible?)
- If we know the range of our values and we set how many branches the node should make then
 - Divide range evenly?
 - Somehow do it more intelligently?

Final Observations

- Let's think about this algorithm
 - Supervised or un-supervised?
 - Classification or regression?
 - Model-based or instance-based?
 - When it comes time to test/use, are we using the original data?
 - Linear vs Non-Linear?
 - Can this work on categorical data?
 - Can this work on continuous valued data?
 - Training Complexity?
 - Testing Complexity?
 - How to deal with overfitting?
 - Directly handles multi-class?