Boğaziçi University
Department of Mathematics
Math 231 Advanced Calculus I
Fall 2025 – First Midterm Exam

1	2	3	4	\sum
28 pts	25 pts	25 pts	22 pts	100 pts

Date:	October 31, 2025	Full Name:	DDAMCIA	OMITHAN	
Time:	17:00-19:00		YKVIUJCI	XLUIIUN	

- 1. Prove or give a counter-example:
 - (a) Every bounded sequence in \mathbb{R}^k is Cauchy.

FALSE:
$$a_n = (-1)^n$$
 bounded. For $\forall i$ odd, j even $|a_i - a_j| = 2$.
So given $\mathcal{E} < 2$, one cannot find N to satisfy the defin of being Cauchy.

(b) Consider a sequence $(u_n)_{n=1}^{\infty}$ in \mathbb{R}^k . If $||u_{n+1} - u_n|| \longrightarrow 0$ as $n \longrightarrow \infty$ then the sequence (u_n) is convergent.

FALSE: Consider
$$u_n = \frac{n}{k=1} \frac{1}{k}$$
. Then $u_{n+1} - u_n = \frac{1}{n+1} \frac{n \to \infty}{n+1} 0$
but $\forall M > 0$ \exists some $N : u_N = \frac{N}{k=1} \frac{1}{k} > M$.
Hence (u_n) diverges $(40 + \infty)$.

(c) If a nonempty set $A \subset \mathbb{R}^k$ is bounded then $\operatorname{diam}(A) \in \mathbb{R}$. (Recall: $\operatorname{diam}(A) = \sup\{||x-y|| : x,y \in A\}$.) TRUE: A bold \iff $A \subset B(R,o)$. Then $\forall x,y \in A$, $n,y \in B(R,o)$ so that $\|y-y\| \leqslant \|y\| + \|y\| \leqslant 2R$. Hence $\operatorname{diam} A \leqslant 2R \in \mathbb{R}$.

(d) Let $n, k \geq 1$ and $f : \mathbb{R}^n \to \mathbb{R}^k$ be defined **over all** \mathbb{R}^n . If f is **continuous** and $D \subset \mathbb{R}^n$ is **closed**, then f(D) is closed in \mathbb{R}^k .

FALSE:
$$n=k=1$$
; $f(n)=e^n$.

 $D=R$ closed in R ;
 $f(R)=(0,+\infty)$ not closed in R .

- 2. For a bounded sequence $(a_n)_{n=1}^{\infty}$ in \mathbb{R} , define the set $S = \{x \in \mathbb{R} : x < a_n \text{ for infinitely many } n$'s}.
 - (a) Show that S is nonempty by explicitly giving an element in S.

(an) is bounded. Any lower bound of the set tant is in S.

(b) Why is $\sup S$ finite? (Denote this $\sup by a$.)

S is bounded from above by any upper bound of lang. Then by Completeness, sup exists.

(c) Show that (a_n) has a subsequence which converges to a. Do this by first constructing a subsequence $(a_{n_k})_{k=1}^{\infty}$ of $(a_n)_{n=1}^{\infty}$ (tell why the indices can be chosen in an increasing manner); then you must show that the subsequence you constructed converges to a. (Prove all these from scratch! Do not use Bolzano-Weierstrass theorems here. Because your proof will be a new proof of the Bolzano-Weierstrass Theorem I: Every bounded sequence in \mathbb{R} has a convergent subsequence.)

3. Consider a sequence $(b_n)_{n=1}^{\infty}$ in \mathbb{R}^k , $k \geq 1$. Suppose there is some real $c \in (0,1)$ such that for all n, $|b_{n+1} - b_n| \leq c|b_n - b_{n-1}|$. Prove that the sequence (b_n) is convergent. (Hint: \bullet Bound the differences in terms of $|b_2 - b_1|$. \bullet Recall the sum formula for $1 + r + \ldots + r^k$. \bullet Cauchy.)

Observe $\forall j \geqslant 2: |b_{j-1} - b_{j}| \leqslant c \cdot |b_{j} - b_{j-1}| \leqslant \dots \leqslant c^{j-1} |b_{2} - b_{1}|$.

Then $\forall i > j \geqslant 2: |b_{i} - b_{j}| \leqslant |b_{i} - b_{i-1}| + \dots + |b_{j+1} - b_{j}|$ $\leqslant |c^{i-2} + c^{i-3} + \dots + c^{j-2}| \cdot |b_{2} - b_{1}|$ Thus given \$\text{\$\text{\$P\$}\$} \tag{\text{\$\text{\$N\$}}\$} \text{\$\text{\$N\$}} \text{\$\text{\$\text{\$C\$}}\$} \text{\$\te

4. Let K be closed and P be open in \mathbb{R}^n . Then K - P is Closed in \mathbb{R}^n . Fill in the blank and prove that statement.

Observe $(K-P)^c = (K \cap P^c)^c = K^c \cup P$. Since $K^c \& P$ are open, so is $(K-P)^c$. Hence K-P is closed.