David Molta Hernández

Alejandro Castro

Alexis Jaramillo

TAD : Graph

Representation: Adjacency list

Invariant: { V is a vertex $\in G \land x$ is a vertex $\in G \rightarrow x != v$ }

{ V is a list of adjacency of U, then $U \in /V$ }

Primitive operations

Operation Name	Input	Output	Operation Type
addVertex():	GRAPH X	GRAPH	MODIFIER
	ELEMENT		
removeVertex(vertex):	GRAPH X	GRAPH	MODIFIER
	ELEMENT		
addEdge(sourceVertex,	GRAPH X	GRAPH	MODIFIER
destinationVertex):	SOURCE_ELEMENT		
	X DEST_ELEMENT		
removeEdge(sourceVertex,	GRAPH X	GRAPH	MODIFIER
destinationVertex):	SOURCE_ELEMENT		
	X DEST_ELEMENT		
BFS(startVertex)	GRAPH X	STRING	ANALYZER
	START_VERTEX		
DFS(startVertex)	GRAPH X	STRING	ANALYZER
	START_VERTEX		
Dijkstra(starVertex,finalVertex)	GRAPH X	MAP	ANALYZER
-	START_VERTEX X		
	FINAL_VERTEX		
Floydwarhsall()	GRAPH	INT [] []	ANALYZER