

X X

1 bulk high energy Naras 1972 vol. 5
Gatto Brown & Reich & ED.

Bergen repartition (1966)

S-Matrix reference

Sternberg A.J.-Phys 31, 755 (1963)

Catherby P.H. 125745 (1962)

S-Diff

Muon anomaly 1 part in 100,000 10 fm.

Phys. Lett. 55B p. 420 (1975)

Karab : Electrodynamic \rightarrow channel theory
of fields \rightarrow metrel, 1964 (second order
QSS, QSSC)

Novel lectures 1965 8 days, Tucson

\rightarrow Feynman pt encodes

Naras 2. Reducers of 2-electron systems
PMF 35, 421 (1963)

Alfredo Gómez de la Torre (1963)
2 folios by example
After page 140, 2nd column
from top: In red ink (incorrect)
from bottom: In blue ink (correct)

Alfredo Gómez de la Torre (1963)

Alfredo Gómez de la Torre (1963)
With a red mark

With a red mark

Alfredo Gómez de la Torre (1963)

S. Vaca. M.C. S. 40 (1973) 144

G.E. Emch (1984)

Mathematical and Conceptual Foundations
of 20th C Physics - North-Holland

Survey of Posterior Stat-Wedderburn
SR, GA, & M and DFT from
abstract mathematical point of view -
new - not enough detail to
learn from, but send to editor
for response.

- Refer to

Squires & Woodhouse 6 lectures on
Sensitive Quantization Springer Berlin
Notes in Physics vol 53 (1976)

Cf also M. Fierzle Bunge: Foundations
of Physics (1967) - somewhat similar
in style to Emch, but more philosophical

N.E. first general election in
1872 - D. Scott (183)
low class and central party
needs to recruit new

J.A. Eisele : Modern quantum mechanics with applications to planetary particle physics
(Wiley: New York) 1969.

gives very detailed manipulations of
Dirac matrices etc, good
discussion of parity violation in
 β -decay of Feynman's interpretation
approach, (to his advantage). Particulars good
on the Foldy-Wouthuysen transformation
- all steps included and manipulations
carried out in the original papers
refer to Kursmoglu. "Transformation of
Relativistic wave equations" Phys Rev 101,
pp. 9 (1956).

R. Shanker: Principles of quantum mechanics
(Plenum: New York) 1980 gives particularly
clear discussion of Feynman's path integral
method quantum field theory
G. Velo & A.W. Wightman Constructive quantum field theory
(Springer) 1973 report on the Ramanujan Conference
- details Zeldovich to Strel'tsov
1976 review.

Goulden (9-2) factors for men's decision

Pop. Prog. Plus 42 (1979) 1889

very good up-to-date discussion of
expectancy theory and review
of Worley's experiments of expect-
ancy

[Pauli RMP. 15 p. 175. (1943)
Wohlgemuth P.A. 48 55 (1935)
Pauli, Rose P.A. 49 (1936) p 462.]

Neville, Recent P.R. 44 1031 (1932)*
Partenack P.R. 54 81173 (1938)*
Williams, P.A. 54 558 (1938)
Dorson, P.A. 51 446 (1937) }
Bentley, Redford & Willows P.R. Soc. 174, 164 (1940)*
Brait P.R. 71, 984 (1947)*

W.H.

W.H. W.H.

W.H.

References from J. Cushing 'Some Aspects of
Current Radiotopes in the
as reflected in Uranium Field Studies and
S-Ratios'.

L.O. Landau 'On Optical Properties of Nuclei
Parts in Nuclear Field Ray'
Nucl. Phys.: 13 (1959) 181-192

R.E. Gifford 'Spectroscopy, Discontinuities &
Technique A reflection'.

Sharp, Fitter 'On Nuclear Properties of the
Nucleus Reflected in
N.C. 14 (1959) 540-551.

D. Athens 'A Plot of the Spectra of
Protons and Neutrons on the Basis of Current
> Montague - I. Neutral Proton-Proton Scattering -
No Sphalerons! \rightarrow Nucl. Phys. B1 (1968)
(Reversal fixed point conform SM.1) 375-408.

Fritz "Belt Theorem" Wall Parameters
N.C. 29 B (1975) 270-276.

P.R. 45 (1971) 233c-233e
" " U.S. Fish and Wildlife Service
Chaco

" " Small & Freshwater
" Species, Status, Trends P.R. 127 (1963) 965
} (See also N.C. 154)

" " High. Freshwater Fishes P.R. 148 (1962) 15723
" Alaska Freshwater Fishes, L.

Small & Freshwater
Fishes & Freshwater

P.R. 145 (1966) 1156
P.R. 13 (1964) 528
P.R. 12 (1964) 132

P. Collet's An Introduction to High Energy
and High Energy Physics - CUP 1977
- very good up-to-date account & his
earlier report on the subject.

G. Velo and A. Wightman (eds) : Confluent Quantum Field Theory : Lecture Notes in Physics vol. 25 (Berlin: Springer-Verlag) 1973.

Much devoted to Einsteinian field theory and
QFT models

and devotes to Probabilistic theory of stochastic processes by Rao in pt. II
vol. of Nelson (1971 onwards). (See also Kac
-til Jean and Dyer in do same volume)

J. Glimm and A. Jaffe Physics of Quantum
field models p. 133 - 198.

They gave the following series references:

g.j.l.: $\lambda(\phi^4)_2$ without cut-offs I. P.R. 176 (1968) 1945

II. Ann. Math. 91 (1970) 362

III. Acta Math. 125 (1970) 203

IV. J. Math. Phys. 13 (1972) 1558.

Also Comm. Math. Phys. 22 (1971), 1.

go to the US Marine
museum - the first
but was an extinct form of

1921 & Cretaceous fishes,
and Birds from Red Rock in Wyoming
(1921)

1261

Sh. week. at AFI as a student
in 1920. Another good week in
(1920)

(28)

to the University of Michigan? in Professor
Dr. W.H. De Witt 1921. Very short

J. Reker to Myrcia's Coroller & Voller

(1973 - December 6 Nov -

first article in *Botany QEN* - others
on way to Sorden for obs &
2nd species.

had diff by Solanum pseudocapsicum
- root seen at Steen, sollte
dr inflorescences cooccur when dr
Moldes thinner. (1430)
glaum, Taffé 1969-1972.

same (2+) differences when root.
 ϕ^3 , ϕ^4 , $\bar{\phi}$ ϕ^4 without root
inflorescences appear in the erect foliolous
or seed or in berlandieri clad. so it
is not postembryonic expansion in seed at
germt. cp. Wier, Solen, Moldes

P. R. D 5 2548 (1972)

cp glaum, Taffé Nov. works fine
root d T - ed test (1969) (cause 45%)

Tachyon's

Published by Bilanich Dushpande & Sudderth
or Mr. J. May 5. 30 (1962) 718

~~Entomophagous insect~~ by General entomological survey of India

Picari P. R. D1 (1970) 3221 this paper
introduced by P. R. D2 (1971) 1912

Cupuliferous insect

Ferabergi P.R. 159 (1967) 1089.

Travelling Backward in Time

P. Weingard. October 24 (1972) p 117
analyses Rubens' claim (J. Phil. 54 (1962) 658)
that time travel is a accepted possibility

are 3 stars
years at t,
or one year

forwards.

So it is closed adotted from
of backward causation
W. respect is quite a different question.

In the possible

Good Friday, April 2, 1975. By Rev. Mr. Bill.
Loyola High School, Loyola, IL.
The first ever public lecture on
the Second World War by Professor
John Toland, author of *The Last Days
of Hitler*.
An evening of questions and answers
with Professor Toland.
Moderator - Dr. John C. Tolson
Topic - The Second World War
and Hitler - - -

K. Schrader-Frechette

A lesson in ethics: An analysis of the current draft energy paradigm. Phil. Sc. 44 (1977) pp 49-44.

argos. for Kubrov Crisis record

- 1.) ad parodeum is needed
 - 2.) parodeum fails to reflect record problem solving record.
- very modified ad enfaid paper
at very point of attack.

J.C. Groom and J.F. Noyes *Nucl. Sci.* 32 (1968) 39.

argue Recovery Recovery fails
as does Weiss-Peterson Det. Feynman
interpretation as a natural no.
1) mysterious (reaction) process or decelerated 2) potential no
of entities 3) outlaws identity of e^+, e^-

but J. Sorenson *On going Backwards*
in *Nucl. Sci.* 34 (1967) 211.
agrees against Feynman for following
reasons. #
1.) e^+, e^- are not total singular point
or source or broken by well interactions
2.) Amplitude + cross-section are not approached
simultaneously at one parameters but
with a plateau

References to check:

- Uhlenbeck, Feynman
Feynman ^{directly involved in derivation} I.J. 24 (1948) p. 939.
- E. C. Stueckelberg - Helv. Phys. Acta 14 (1941) pp. 88, 15 (1942) p. 2
- J. Eardley - Aust. J. Phys. 50 (1972)
Simpler 24 (1972) Caused anomalies
- Runcic - Phil. Rev. 1964 73 p. 338 ^{for comparison}
- Charles, Reuter - Annals 20 73 (1960) " "
- Sorkin - RMP 1949 21 p. 447 ^{for comparison} Sorkin's Vol.
- Hückelrich - Prentiss & Tice p. 266 (Comment on Feynman).
- Eardley ✓ - Phil. Soc. 34 (1967) p. 211 ^{on odds to Feynman's \leftrightarrow -rule} ^{det.} ^{for comparison}
- Wigner ✓ - Proc. Roy. Soc. 1973 2d ^{Wigner's} ^{det. was like} ^{Wigner's} ^{det. was like}
- Wigner ✓ - Phil. Sci. 37 (1970) p. 81, 37 H. 223
- Furman et al. ✓ - Phil. Sci. 36 (1969) ^{no trouble}
- Borrelli, Ellis ✓ - Phil. Sci. 34 (1977) p. 116. ^{no trouble} ^{symmetrization}

R.H.L. Tiles of four holes April 1976

Bosons	Fermions
pions 150. kaons 500. η 550 + mesons e^- 750 μ^- 800. J/ψ 3,100	Baryons { nucleons { n 950. p 1100 Λ 1200 Σ 1300 Ξ 1650. + mesons: $\Delta(1232)$ 1250
photon 0 graviton (?) 0 w. particle (?) 0	<u>Lepons</u> neutrino, ν_e , ν_μ 0 electron 1/2. muon 100
gluons (?)	<u>Quarks</u> (?)

$\frac{32}{46}$ 715 tiles
 $\frac{46}{78}$ 1090 tiles
 $\frac{78}{78}$ with outer holes
 $\sim \$150$ per tiles

Area ≈ 50 ft².

Musica Reports

Regge Theory. Iwao, Warden. 34 (1977)
117-231

Clebsch-Gordan & Hadrons Poonam, Nelson.

Obstruction of Maxwell's
colored quark 32, (1977) 6941

Quarks, Electrodynamics W. Parada and Pagels.

36 (1978) 137-276

not the QCD dict to Selt-Witten

"Conformal implies colored theory & freedom at
no in ference unavoidable". It would be on
cition of quantum mechanics, founded well on
approx. or approximation, produce a theory
it called the "predicted" rather than non-univ.
"Nucleon-decel" compact". "A clear
descension of nuclear theory - excellent
derived to nuclear state-of-story."

gives responses of conformal? ncell measured
(in descension of conformal theory part)

Collabor., Taekie, Ann. Phys. 67 (1971) 552

Nach., Nach., Nucl. Phys. Nucl. Phys. 135 (1968) 489

Nach., Salam, Ann. Phys. 53 (1969) 174.

Mortfup, R.-L. 142 (1966) 1060.

Detailed discussion of suspended slides

clouded solution - could be considered
in pathogenic filthiness of environment

Br Dr Q. N. could be visited as
a closer project which we called
this - public conference Melanosis

Conclusions QEP provides a potentiation
regarding QFT to enhance the
application of quercus portor wood.

- there is "demonstrated phenomenon that a
theory of, they interfere less when
joined"

But QEP is very unstable.
the right qualities have been lost
in the food. If they find it
will be on dynamical grounds.
QEP free yeast may exist at different
high degrees

genl configist

In old red Chelio glom, e-p
face a distinct Colar lari. fold short,
out over all spec.

Agree with red - Chelio glom
as might appear. self - shading character
of the glom very with a later
grey configuration is a tell-tale
glommed flock between the grey
and white spec. The red ^{the} ~~red~~
glom is P.S. for red & ~~red~~
in a linear position to the separator
surface (constant pos), the glom
are enclosed, G. may be regarded
to separate a colour ringlet of the
with a coloured stalk in infinito

The second knowledge can be used
to Big data, also it's available.
Zurich (B/F)

References in Physics Reports

P.S. Sharma: Coriolis effect on atoms -
26c July 1976. Good critique &
atomic calculations.

D. Pines, N. Scelley Superconductors 2
Macroscopic Quantum phenomena.
25c June 1976. Good account
of macroscopic wave functions.

R.M. Donagi - Semi classical 8-Block propagator
effects in W.R. scattering theory
25c Nov 1976 - good account
of TaPC - No official theory
- (cannot account for Coulomb's FPA
scattering effects)

RMP B.W. Roberts, Review of collective
modes in nuclei, + discussion of
Elliott model 48 (1976) 203 -
Ref to Elliott 1958 P. R. Soc. A 245, 128; 562.

W.H. Tamm - 23rd February 1976 - Second edition Published by Blackie & Son Ltd

Silence - 23 January 1976 - Second edition Published by Blackie & Son Ltd

Death 1976 - Second edition Published by Blackie & Son Ltd

End (b) 1978 A.R. Tamm

Death 1979 - Second edition Published by Blackie & Son Ltd

A.R. Tamm (1968) 1979

Death 1979 - Second edition Published by Blackie & Son Ltd

Physics 1203
June 1975

S. Weinberg "Light on a fundamental
Particle" good discussion of quarks - S
left a fundamental particle - derives local
little group yes kill $SO(3)$ to $E(2)$ as vel.
of particle binds to C - gets good
classification of broken symmetries

with infrared follow & deal
accelerating mass is stable.
similar to our talk corresponds to the expectation
values of a scalar field, spreading propagates
to scalar products mass and the newly created
relating mode to a fluctuating local of zero
mass (connected with you input & energy).
10. frequency of mode is ∞ .

<u>String field</u>	<u>Vector field</u>	<u>Phew</u>
$U(1)$	A_μ^+	$D_{\mu\nu}$
$U(2)$	A_μ, W_μ^+	$Y_{\mu\nu}$
$U(2) \otimes U(1)$	A_μ, W_μ^+, Z_0 plus appears. in Higgs-Kibble mechanism.	

Weaken a constraint for good gauge as
fundamental people & others flat gauge
interactions.

If regular sales of sugar and coffee were going down

High) Subfalcid P.R.D 3501(1974)
Kunca Phacell falcata (of glossy
greenish yellowish green leaves)
Confusion as greenish yellowish green
leaf colouration white yellowish green yellowish green
Leaf yellowish green yellowish green yellowish green
use yellowish green yellowish green yellowish green
(1973) AL.31 444 (1973)
Glossy yellowish green yellowish green yellowish green
(1974) AL.31 262 (1973)
Glossy yellowish green yellowish green yellowish green

It would be P.R. of TO 8445 (1974) before the fees to allow for good customer service

(1) Stomach model -
Jellyfish 1921
Wilson Eddle - they had
jelly model

• the process uses the same method as you use to make your own coffee

Ward: The Classification of
cytology 1976, vol 48.

Sutliff's Snoween

Wenning (1973)

refers to Gross & Wilczek PL 30 (1973) 1343
& Politzer PL 30 (1973) 1346

for classical colors as "gauge invariance" →
symmetries freedom in color gauge theory

In 1973 Gross, Wilczek, and Politzer
show how color gauge ~~shares~~ symmetry may
account for scaling, confinement properties &
quarks - may result from color gauge
symmetry (chromodynamics)

Glashow, Gliopoulos & Maiani (1970)

introduce charm

De Rújula, Giorgi and Glashow (1975)

develop color gauge symmetry as theory of
quark interconversions (chromodynamics)

1973 Gross and Wilczek, and Politzer
explain scaling, confinement properties & quarks

in two of cedar poles (clustering)

Höglund (et al.) + Petrus 1974
V. Nesterov: "The Conference of Churches" for Yugoslavia

Nov 76, p. 48.

describes interaction between workers (colored)
by non-diseased fungi field of Yeast
vector glucose (of colour - only colored
pears)

Confusion due to (1) optical freedom
or ultra-violet freedom as opposed
to infra-red freedom (Poltz 2.
Garr, Wilczek). free space around
carried and destined as infected
charge carries anti-electrons

(2) Stroo model spores attached
to ends of Volvox stalks fungi
cannot leave, pass over and return
closer fungi, Volvox

(3) DIT fog due to Russell Robert

(4) K. Wilson: lattice model of space-time
world or lattice sites, color gluon
field propagates day st. lines (stings)
forces from

the lesson etc., will be normal,
the student, ~~but~~ when
there is no longer for a
student his or her
ability (the) will be
in much worse condition.
and also the student
will be less confident
in his or her class - he will
not understand the text,
not understand what
he does not know
better than before
descriptions now to future
"will meet theoretical, Confused
which reflects (your) thinking
P.R. & R. (1975) 147.

Clean shapes theory of colour

P.R. & R. (1974) 341, P.R. & R. (1975) 246

Agnese & Colvin P.R. 12 (1975) 3800

"large fields among few smaller numbers
and scattered clusters"

refers to Ugoano & also

Kibble J. Path. Phys. 2, 212 (1961)

for extension of Ugoano to
local Poisson's covariance.

⇒ very great clustering. Others
(Gell-Mann) effected by the "natural"
democracy of hadrons insisted on
the existence of a small number
of fundamental constituents and a
simple underlying force law. In
terms of the very fundamental steps,
hadron democracy should be qualitatively
described and especially understood,
just as all atomic and nuclear
physics!"

R. Roman: Introduction to Quantum Field Theory · John Wiley & Sons · Inc. New York (1969)

Part I covers Lagrangian Field Theory

concludes with discussion of renormalization theory in terms of Schwinger's functional methods (200pp)

Part II deals with LS2, Witten's

axioms, Haag's theorem, analytic

and finishes with axioms' application

n. 466 "Hence it is no point, in principle, to

determine the deceleration $\dot{v}_s, \dot{p}_s, \dot{\phi}_s$

by some self-consistent iteration method applied

to the problem of the tree (Kondr) description velocities.

The problem of field velocities depends on whether

the field Maxwell's law (Ref. DCS, 1, 40)

considered as a function of the field ϕ_{μ} or a

vector or an affine function of $S_{\mu\nu} + U$

Carles Nurbad. The only field representation,

of course, need changes for what in

field "visible" separately

Quantum Gravity : An Oxford Symposium
ed. C.J. Isham, R. Penrose, D.W. Sciama

Good (and intended) by Isham.
Refer to Bull & Srednicki Rep. Prog. Phys.
33 413 (1970)

See Wheeler ed.: Magic without Magic:
Freedom (1972)

More recent article is:-

Ashitekar and Govindarach

Quantum Theory of Gravitation
Rep. Prog. Phys. 37 (1974) 1211-12.

For surfaces (force of all equalized
class of metrics (consisted of small components)
i.e. a point on surface or not
geometric - Euclidean Riemannian
hyper space not a fixed point in subspace
in case of classical physics
cf. de Don Corradi, Fischler, Wilton: eds
Relativity 1970.

References for Oct 1953 renormalization theory

Dalibard and Salam P.R. 94, 185 (1954) ✓
(renormalization of zero fields)

Redmond
(perturbative renormalization in perturbation)
P.R. 112 1404 (1958) ✓

Sedrakian & Vartski Annals of Physics 9 106 (1960) ✓

On or Proof of asymptotic expansion
P.R. 85 631 (1952) ✓

of one loop Pres. theor. Phys. 8 569 (1952) ✓
Riddell P.R. 91, 1243 (1953) ✓

Preference for Renorm.:

Käller	Helv. Phys. Acta <u>25</u> , 416 (1952) ✓
Lehman	N.C. <u>11</u> 342 (1954) ✓
Stückelberg & Petermann	Helv. Phys. Acta. <u>26</u> 499 (1953) ✓
Sell-Neun & Low	P.R. <u>95</u> , 1300 (1954) ✓

cf. Stoerker references: —

Taffé Comm. Math. Phys. 1, 127-49 ✓
2, 301-26 ✓

Hart Rev. Math. Sc. 48 (1952) 623 ✓
Hart. Rev. Phys. Soc. A214 (1952) 44 ✓, Theory Phys. Acta 26 (1953) 33-52 ✓
reference to, discussion of, decoupling scheme

9090362000 15.11.1969
9090362000 15.11.1969
9090362000 15.11.1969
9090362000 15.11.1969

A-291-66-4 (part 2) (cont'd)
- part 2 of original report (U.S.)

→ 81 (C9 B1) The EC says "no"
~~(0921) 859-512-11~~ → 222 (Lundberg)
1111 5000 0000 0000

The S-Padua theory -
All plays 6, 827, 845, 858 -
S - 1464

7-258 405 220 : long wing 3 ,
16-112

(Inst. 201) (8203)

difference between μ_{obs} and μ_{true}
 \approx (BSB1) $\cdot L \cdot \sin(\theta_{\text{true}}) \cdot N_{\text{events}} \cdot \text{value of } \sigma_{\text{true}}$ (from μ_{true})

1 (561)218, 8-12 (1955) *Journal of School Psychology*

P.A. 115-706 (1959) *Engineering*

- ~ (BSB) 500 515 (145)
- ~ (BSB) 500 515 (145)

Massachusetts F.R. 101, 860 (1957)

Hegel. *Wart-Paus. Verlag* 29. März (1955)

LST, NC 1,205 (1955), 6,319 (1955) (unpublished)

www.yogawithjulie.com

Gale: Chen's Muckery: T-Wst. Ideas
35 (1974) 339.

Weber, Keck I.A. L²⁴ (1320) 1970.

Lewis, Wright P.R. D 8 3171

Gell-Mann, Goldberger & Thirring P.R. 95 1612 (1958) ✓
Doll - P.R. 104 1760 (1956) ✓ [Goldberger P.R. 97 508 (1956) ✓
99 979 (1956) ✗
References from Jost

S-Matrix Philosophy Breit & Haag
Fortschr. Physik 7 (1959) 183 ✗

renormalized definition relations:-
Nozieres & Edwards P.R. 118 (1960) 1409. ✗

Renormalization or artifact from perturbation theory
P.R. 112 (1958) 1344 ✓
115 (1959) 1741 ✗

from operator field theory
N.C. 15 (1960) 658. ✓

Bosch papers of Heisenberg on S-Matrix
Z. Physik 120 (1943) 513, 673. 19/20

CGLN on $\pi\pi$ system.
P.R. 106 (1958) - 1337 ✓

Chew & Low P.R. 101 (1956) 1570², 113 (1959) 1640.

Low P.R. 97 1392 (1958) ✓

Salme P.R. 102 (1956) 1174, 100 (1958) 1503 ✓

Zohar B.J.A.S. 24 (1973) 2-45.

The double hemispheres in relation to speech

Two types for language function in

stimulating maternotaxis (cf. orientation
of colicels
of zebrafish)

What don't know:

(1) males may not have a physical truffle
cf. P's note to Roosevelt's question -
as introduced of the
different court.

(2) no my role to give a realistic
interpretation to zebrafish questions
and what I can't do by -

ep. Loewitz → L.F.C. as a real
deleter Ctrrocker not just a
patterned transponder
→ M.F.H. from which L.F.C. follows

♂ Deroe → - re very soon
→ positions.

Staff H.R. P.R. 175 (1962) 2138 - 2162

"Devoileer ~~de~~ de CAP Planen en de Commissie
betrekking ~~aan~~ ~~de~~ statistiek van Partikels
of ~~de~~ S-talen daar"

Comments on drafted protocol:

"Required draft has met that of rebels
in to place fleet as the agents of
interest (thus include the usual丸太
as certified regulators). This contrast against
earlier contacts done contrary to the
local government. ... The Partikels
of our fleet may [towers] be larger as the
as not can be deducted from field only.
It has all the time towards wall in
different methods incapable systems. Indeed,
this is its enforcement. The official measurement
of local class as expected will increase
as a result of weakness the local government."

References for Koenigsm.

Older & unmeasured:

Källen Helv. Phys. Acta 25, 416 (1952)

Lefman N.C. II, 342 (1954)

new measurements

Stueckelberg, Petermann Helv. Phys. Acta

26, 499 (1953)

Sell-Woolfson, Low P.R. 95, 1300 (1954)

Actual of field theory:

London et al. N.C. 13, Suppl. 3, 80 (1954)

> Niels Bohr, Levelshifts Physica, 1955

Differences related

Roddick, Roff Phys. Rev. 15, 99 (1961)

Calculus of V(k) used in

V.B. Adanskić. Soviet Phys. Usp. (soflet
(Kondensator)) 4, 607 (1962)

Streater & Wightman PCT, spin statistics, all that
(1964)

Chapter I Intra. S, W. refer to Alice, Jordan, Heisenberg, Pauli foundation of rel. d FT. Considered disruption not expected, since theory and very quantities & derived theory calculating as e. w. visited of point particles

Main Problem of DFT is to build it, i.e. do it.
Reference to Old New England (Federal Society)
cp. Shakers, New England sect who fought gun
soled laws & old celibate laws, of
a moving religious movement & calculating
no cross-pollinations."

Chapter I No-rebuke via rifle? at certain
rays or not physically realizable. Bullet hole
of this opt. coherent rebuke
Security problem defined as follows
(MAYBE ANSWER NOT PRESSED)
- Reference of weak, narrow spots

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} u \nabla v \cdot \nabla$$

\$\int_{\Omega} u \nabla v \cdot \nabla = \int_{\Omega} u \nabla v \cdot \nabla\$

$$\left(\frac{\partial}{\partial x} \right) L - \frac{\partial}{\partial x} \left(L \right) \frac{\partial}{\partial x}$$

\$\left(\frac{\partial}{\partial x} \right) L - \frac{\partial}{\partial x} \left(L \right) \frac{\partial}{\partial x}\$

$$T(f) \in \mathcal{L}(X)$$

\$T(f) \in \mathcal{L}(X)\$

$$\int_{\Omega} f \nabla u \cdot \nabla v = \int_{\Omega} f u \nabla v \cdot \nabla$$

\$\int_{\Omega} f u \nabla v \cdot \nabla = \int_{\Omega} f u \nabla v \cdot \nabla\$

W. generally has to. forkers & small anthers caudate.

Oct. 2-4. F (Cⁿ) in bivalve off it is (15)¹
continuous, polypiferous each valve separate
^{in all varieties}
^{hyphae}

not necessary by Hartog's theorem

cf. Barker, Parton ch. VII

Hartog's claim not true if P diff. forkers.
(of nucleation?).

On 187 decrease of DNA-reducing cells
since. \propto times product of reduced H-spores.
(\propto red. of spores \rightarrow nakedell)

- also development lead a 1st release

Ref: A.S. Wistrom: Another forkers & sexual

Cystid variegates pp 159-721
different relations, elementary particles,
Wiley, New York (1960)

all numbers must affect each other
and must affect each other;
but it is not enough to know a
measure can affect another
we always need more facts
all numbers must affect each other
by rule 2 we can see
that if we have a measure
and another measure
we can see those two
are always used together
in all numbers
we can see that if we
have a measure
and another measure
we can see those two
are always used together
in all numbers

$$\text{if } E(F) \leftarrow E(X, Y) \text{ then } E(F) = (E(X), E(Y))$$

also - products are formed
when one number is multiplied
by another.

Q.3 what would you say, if I told you
that there were no multiplication
in the set of numbers?

whereas Coulomb's rules are defected

Σ

$(V_0, \phi(V_0)) = \text{Pot}(u_0) \phi_0$ old quantities
therein we can always construct a field
They have a very simple form ϕ_0 . (i.e.
just do away with the const. relation)

dist fields will prevail because d.

Rel. d. F.T.

(1) RET theorem.
(2) $\int_{\text{ext}}^{\text{int}} \partial_{\mu} A_{\nu} \partial_{\nu} A_{\mu} - \text{they are killer}$
 Gauge fields

(3) Haag's theorem:

For interaction we assume, since $\phi(x,t), \phi(x',t')$
are equal time commutable fields,
 $\nabla(t) \phi(x,t) \nabla(t') = \text{Part}(V,t)$. \square

The dependence of V reflects presence of
interactions $S = \lim_{t \rightarrow \infty} V(t) \psi(t)^*$.

W. gives v-gd B-fields only:

PCT theorem is proved by Lüders (separate)
Doorh. Natl. Fys. Maand 28, 5 (1954)

Proof of Poincaré on CT v symmetry

Pauli first proved PCT is always & symmetry
in Nels Bohr, the Development of Physics
W. Pauli (ed) Pergamon, 1955

Sph.-1 state due to Feiz (1939), Pauli (1940)

General proof due to Lüders, Zusmano (1958)

Hoog's theorem "On Q. Field Thry" Das Mat Fys
Medd 29, 12 (1955)

Generalized in
Hoog, Arfken, N.F. Nied. Ann. Vol. Selb.
31, 5 (1957)

Hoog-Pueelle Thry or
R. Scott, General Study of Quantized Fields
1963

• an HLR uses the following steps:
1. the mobile station sends a registration request message to the HLR
2. the HLR sends a registration accept message to the mobile station
3. the mobile station sends a location update message to the HLR
4. the HLR sends a location update accept message to the mobile station
- the mobile station sends a debit message to the HLR
- the HLR sends a debit confirmation message to the mobile station
- the mobile station sends a debit acknowledgement message to the HLR
- the HLR sends a debit confirmation acknowledgement message to the mobile station

The Anomalous Magnetic Moment of the Muon
B. Baileya. Contemporary Physics (1975) 16 p 413
gives complete references
refer to Bick, Wedley A.O.P. (1972) for
the electron anomaly $\frac{44}{44} \approx 250$
> Baileya et al. Phys. Lett. B, 55, 420 (1975) for latest
muon results.

References on Conformal Group

Salam, Noeth Ann. Phys. (N.Y.) 53, 174
(1969)
Salam, Radicic Ann. Phys. 67 532 (1971)
(h τ_{para}) Connes J. Math. Phys. 5, 490 (1964)
look at Barat Stedingerman, General Theory of
fields, particles 1963
and Barat The Theory of the scattering matrix 1967
good solid account with detailed derivations
good mathematical appendices

Gallen PR D 21541 (1970)

Peter Wilczek PR D 28 ~~3497 (1973)~~, 08, 36³³
n 9 980 (1974) WVO. 41
L sequel 601 ↑ water P
watermark Peter Wilczek
Per A.S.F. C. Water
and very open

Veneziano Phys QC n 4 (1974)

Secd dimension reteaction of dual field

Fritzsch Quark Freedom or opposed to
short interactions: Phys. Reps. 14C n 4 (1974)
measures gauge theory, renormalization
group methods.

Nellberg, Yan (PD 1. 1035, 1617, 2402)
See field theory rules for partons. → 187, 2159 (1969)
parton-like quark behavior
from local field theory.

Bjorken, Neidorf: D 1 3151 (1970)
179 1547 (1969)
185, 1975 (1969)

Salam, Wigner Aspects of Quantum Theory at
(1972) Fermilab for Doral. Biller with d'Oral.

3rd article by Jost "Foundations of quantum
theory" refers to Wentzel.

Note Dicke's 1932 paper offering (probly)
Neumann-Greenztein of the electron field.

Proc. Roy Soc. A 136 453 (1932)
- See on to the Dirac-Ford-Podolski
papers for quantized or nuclear of electron
theory of the Dicke 1897-47.

ASL

Proc. "We cannot imagine [imagine] without the field to
be a dynamical system of the same nature
as the particle"

Brewerbury Rock 2-f. Mus. 56 (1929) p-1.

Widener To O. May it is not until you been here
to consider from a single viewpoint and to understand
contradiction all educational & research materials, shall
neglect literature and lead, educate literature and
do away. In forbidding it has not been possible to
allow full first impression of botany after literature
correctly. The forest will have to fill the gaps.

For this purpose it will be essential to use
a rel. and most judicious which allow in a test
literature between native field as well as forest
or portalo. This latter often times very difficult,
impossible to rise. rel. publications of the Delta Museum
and no well. work a reclassification either of other
or discarded of the published difficulties.

However this the classification of forest can fields
be separated of the - fields it can be selected
by very close judgment helps it can be selected
of course in a dense forest
rel. impossible to pass portalo problem that of
fields or not receive

F.J.N Farley: The States of QED
Revista del Nuevo Científico. I (1969) 59-86.

Cerinaldosi Introduction to Decoherent Histories
N.C. Suppl. E10.3 14 (1959)³

(vol. under article by Haag et al on
ultraviolet field approach)

Pauli (ed. Niels Bohr), the Development of Physics.

includes Pauli on the
Bohm and "On the Quantized Theory of Fields".
Rosenfeld "On quantum Electrodynamics".

Dove. PRS 112 (1926) 661. "After they & I or"

fauna very-parted now
F.D. Webster, B.E. equivalent to
species form of more predators

p 666 "it would appear to be parallel
to build up an electrocapillary layer in
which the potentials of the field of a specified
point X₀ go up to a specified value
represented by numbers of contact electric
cells as function of X₀ Y₀ Z₀ H₀

Dove PRS 113 (1927) 621

"To Xyloid Metameric S.
as Sclerite Dynamics"

describes great interplanar spaces
and interdeses all 8-folded
(refers to lances and all anterior
processes) - produces terminology
of q-number of e-numbers.

Rule P.R.S.E 117 (1928) 610 - 624.
Under the first section - gives all
explanations & difficulties however;
of which there are two main causes
one is due to the fact that
there is a difference between
the two sets of rules adopted
by separate states under section 4 of the
Act to regulate traffic in
such cases as public roads.

Rule P.R.S.E 178 (1928) 351 - 361.
Under the first section - gives all
explanations & difficulties however;
of which there are two main causes
one is due to the fact that
there is a difference between
the two sets of rules adopted
by separate states under section 4 of the
Act to regulate traffic in
such cases as public roads.

We cannot really start - we never electon is a motor, other electrons could turn into metrons by direct transition conserving energy and conservation of charge. Other difficulties

Dewar then prefers his field theory.
Argue all regard every motor as filled except for a few holes.

"A field in a region that is otherwise saturated with electrons is field of zero along an \vec{A} at single electron in a region that is otherwise devoid of them.

Not due to electric field due to negative mass electrons - this is in m^* signs as "sparkless path to normal state of electrification of the added". Dewar goes further warning against ill preparedness in matter of electron, proton (this was later displaced by way) ends paper by discussing field-controlled description of intermediate states of -ve energy (quasiparticle states). Of Klein-Nishina he refers to formulae of electron-motor correlations

Rice Ph. S. A. 133 (1931) p. 60-72.

"Quantized populations and development
Field"

"The steady progress of physics requires for its
stated foundations formulation & development
of sets continually more & more exact.
Modern logical development here assumed
& Mathematics set out roughly subject to
formulations, its more abstract. No. Each
process, no. considerable delayed, which need
at no time considered to be fairly fictitious
& the mind, features for logical structures
have been found to very necessary,
for the description of special facts of the
physical world. . . . Indeed a theory is to
be successful well & continual modification
, generalization of the axioms of the form
& the Mathematics rather than need the
a logical development of our no. no. developed
scheme or a fixed formulation.
[it is opposed. we adopted in last century].

D. goes so to crowded purple connected
between swallow along a swallow water
pole (Monopole)

Dove's diary about the arrival of nymphs.
It says rather plaintively "Under these
circumstances one would be surprised if Nature
had made no use of it."

D. crowded with excretions "with old vegetal
fibrils are not digested. Fibrils from old
stuck in between fibers of opposite sign
as long as ~~the~~ lot "the very
large fibers of opposite sign are never cut
but) fibers of opposite sign here never cut
too separated"

Proc R.S.A 136 (1932) p. 453 - 464.

Relativistic Quantum Mechanics.

Drew attention Heisenberg's Q.E.D. for
relativistically particles field "the field
should appear in the theory as something
more elementary & fundamental".
Refers to Heisenberg's claim to have
Q.D. as observable say "strictly
speaking, it not to observable quantities
but rather that follows the building
of Heisenberg's algebraic scheme,
but rather certain more elementary
quantities to motors electric, having
the observable quantities as the result
of their evolution". He called these
factors introduced in this way
as synthetic (in letters).

These factors parallel by Prof. Eddington
, who quantizes the law. field.
D. also considers H.P. theory for working very
quantities which are unconnected with effects
of observation and which must be received
from consideration if one is to obtain

found R.H.F. Li (1932) 87-132.
This blue's collector being
for the same reason to do it
of the second collections - but
not the occurrence of the fossils -
Bellerby refers to Weller
and F. A. L. (1930) 62, 173
Collection of well-known fossils.

a later work. It is the
earliest finding of fossiliferous

References

Cave Shift Eighth

Lam, Neelyard P.R. 72 (1947) 241
75 (1949) 1325, 1332
79 (1950) 549
81 (1951) 722.
85 (1952) 259, 86, 1014 (1952)

Trockwasser, Dugkef
, Lamb 89 (1953), 98 > 106

Larl. Rep. Phys. u. Physics 14 (1951) 19.
Petersen, Skyn: P.R. 168 (1968), 4, P.R.L. 24 (1970) 559

Theory Kroll, Lamb 75 388 (1949)
F. von d. Weizsäcker 75 1240 (1949)
Segrèn 74, 1430 (1949)
collection 76 769 (1949),

Ichida, Miyamoto, Tomonaga
Phys. Rev. 45 4 (1948)
47, 121.

$d(d^2)^5$
Baranger, Bethe, Reggeon. 92 482 (1953)
Komplex, Bethe, Schrödinger 86, 288 (1951)

Selpeter (Review) 74 39, 92 (1953)

d^2 d^2 Baranger, Myron, Selpeter P.R. 88 686 (1953)
Bessolo, Weizsäcker, Kroll, P.R. 86, 526 (1952)
91, 1257 (1953)

M-Welton, J.A. 74 (1948) 1157 - 1167
Some desirable effects of the Quantum-Mechanical
Fluctuations in the Electromagnetic Field
given classical picture & quantum mechanics
in $E \rightarrow B$ gives rise to a $(D^2)^{1/2} a$ for
electron which over a long period
captured power $(V(V + DA))^{1/2} a$.
But effect of repulsion must due to coupling
with field given is of Weyl's ^{1/cap} theory
- discrepancy due to repulsion interaction
of electron with the filled states of energy
states of the vacuum. (or breakdown
to Compton.)

Z.Kond J.Phys. 14 (1949) 319 - 330.
Semi-Classical Treatment of the Raman
Scattering - I.
Shows certain steps of normal model
by allowing 1) the breaking of electric
oscillations of deexcited oscillator magnetized model
2) scattering of portion (Zitterbewegung) without repulsive
potential

off to the left
over the road
the road
down the hill
over the road

Oppenheimer, J. R. "Note on the theory of the interaction
of field and Matter". P. A. 35 (1930) p. 461 - 477.
discusses self-energy of electron, considers that
levels and differences between levels are shifted
by infinite amounts.

Pauli, W. "On Dirac's New method of
Field Quantization" K. P. 15 (1943) p. 125-22
discusses the Dirac-Wentzel 2-velocity
process. In discussing self-energy Pauli
says "It is the accelerators operation that
this difficulty could be overcome only by
using, instead of the 2-velocity process, a
new, probably much more difficult
method".
With respect to Pauli's opinion
to the electron self-energy in the
theory which is still unanswered
disagrees even after Dirac's 2-velocity
and quantization with independent metric

E.A. UaR "Polaris" Blitz in der Reichsbahn "E.A. UaR" Blitz 1935-63

Poincaré wrote M.E. "Remarks on the Polarization
Effects at the Positive Ion". PR. 49 (1936) p 482

obtains after derivation of Jeffreys' result.

Interaction energy between charged particles

$$\propto V(r) = r^{1/2} e^2 (4\pi - 2/\pi U(r))$$

$U(r)$ is calculated per particle

and is reported as $\approx 2^{1/2} r$, $\propto U(r)$

in factor their Coulomb.

$U(r)$ is further first calculated by

$$U(r) \text{ are given by } \int J_2(x) = \pm 1/4\pi^2 \int U(r) \sqrt{2J_1(1/x)} dr$$

We have omitted $\propto f$ term

$$J_2(x) = \text{Const} + \bar{J}_2(x).$$

Kemle E.C. > Present R.I.)

"In the Breakdown of the Coulomb Law for the Hydrogen Atom." P.R. 44 (1933) p. 1031-32.

refer to discussion in debye's paper in
Balmer series for hydrogen path ^{of Bohr model} → radius varies
by Kent, Taylor & Pearson P.R. 30 266 (1927)
W.V. Houston, Astrophy. J. 64 81 (1926)
Spedding, Shantz & Grace P.R. 44 58 (1933)
Houston & Hsieh Bull. Am. Phys. Soc. 8 161
(1933)

Cylinder model based potential

Find $a \approx 5 \times 10^{-12} \text{ cm}$
much larger than
classical nuclear radius
 2×10^{-13} .

S. Panternaeh "Note on the fine structure of H₂ and D_{2".} P.R. 54 (1938) p. 113.

refer to later with conformation discrepancy.
Houston & Hsieh P.R. 45 263 (1934)

W. Miller, *J. Am. Chem. Soc.* 57, 446 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 38 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 218 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 171 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 162 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 153 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 146 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 138 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 132 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 126 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 120 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 114 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 108 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 102 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 96 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 90 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 84 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 78 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 72 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 66 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 60 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 54 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 48 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 42 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 36 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 30 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 24 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 18 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 12 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 6 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 0 (1935)
W. Miller, *J. Am. Chem. Soc.* 57, 1934
W. Miller, *J. Am. Chem. Soc.* 57, 1882
W. Miller, *J. Am. Chem. Soc.* 57, 1822
W. Miller, *J. Am. Chem. Soc.* 57, 1762
W. Miller, *J. Am. Chem. Soc.* 57, 1702
W. Miller, *J. Am. Chem. Soc.* 57, 1642
W. Miller, *J. Am. Chem. Soc.* 57, 1582
W. Miller, *J. Am. Chem. Soc.* 57, 1522
W. Miller, *J. Am. Chem. Soc.* 57, 1462
W. Miller, *J. Am. Chem. Soc.* 57, 1402
W. Miller, *J. Am. Chem. Soc.* 57, 1342
W. Miller, *J. Am. Chem. Soc.* 57, 1282
W. Miller, *J. Am. Chem. Soc.* 57, 1222
W. Miller, *J. Am. Chem. Soc.* 57, 1162
W. Miller, *J. Am. Chem. Soc.* 57, 1102
W. Miller, *J. Am. Chem. Soc.* 57, 1042
W. Miller, *J. Am. Chem. Soc.* 57, 982
W. Miller, *J. Am. Chem. Soc.* 57, 922
W. Miller, *J. Am. Chem. Soc.* 57, 862
W. Miller, *J. Am. Chem. Soc.* 57, 802
W. Miller, *J. Am. Chem. Soc.* 57, 742
W. Miller, *J. Am. Chem. Soc.* 57, 682
W. Miller, *J. Am. Chem. Soc.* 57, 622
W. Miller, *J. Am. Chem. Soc.* 57, 562
W. Miller, *J. Am. Chem. Soc.* 57, 502
W. Miller, *J. Am. Chem. Soc.* 57, 442
W. Miller, *J. Am. Chem. Soc.* 57, 382
W. Miller, *J. Am. Chem. Soc.* 57, 322
W. Miller, *J. Am. Chem. Soc.* 57, 262
W. Miller, *J. Am. Chem. Soc.* 57, 202
W. Miller, *J. Am. Chem. Soc.* 57, 142
W. Miller, *J. Am. Chem. Soc.* 57, 82
W. Miller, *J. Am. Chem. Soc.* 57, 22
W. Miller, *J. Am. Chem. Soc.* 57, 16
W. Miller, *J. Am. Chem. Soc.* 57, 10
W. Miller, *J. Am. Chem. Soc.* 57, 4

J.W. Huntwater, S^uo Richardson, W.E. Williams

J. Roy's College London J. R. S. A. 174 (1940) P. 164-188

used a ^{precision} Schlieren grating which provides
that used a Fabry-Pérot interferometer.
They conclude some support for Darmois's
hypothesis but "we conclude that no real
evidence has yet been obtained to
show that the fine structures depart
substantially from the values calculated
from Darmois's hypothesis".

Lamb W.E. Sir and Rutherford R.C.

P.F. 79 (1950) 549-572.

"Fine structure of the Hydrogen Atom". Part I
gave background to their 1947 experiment
Part II series of 6 papers on fine structure
measurement - culminated in Trial Wave,
Papst & Clark (1953).

Refers to early spectroscopic evidence
to Kuhn's series (1948) for spectroscopic
confirmation of Compton shift.

Micro wave experiments suggested in 1928
by Mottram. Attempts made in January
1932-1935 by Betz and Hdase.

Loft used this work and offered
new measurements Colley was developed
during the war.

Theory developed

Solomon F.E. J.A. 89 (1953) p. 92-97
"The Compton Shift for Hydrogen, Potassium"
summarizes theoretical work up to 1953.

affidavit > Rudsky calculated Δ^2
LTM and found disagreement with
calculator of Soto (1966) and their
new value was 1057.91 I.0.16, so very
close to enformer. Further reports in
period 1970-1972 increased precision
of theory to the value quoted in
L.S. de P. vzn. 1057.91 I.0.12,
so theory now 5 times as accurate
as the enformer.

Nobel Prize Lecture 1965

Tanagraj explain his debt to Dirac's
many multiple time formalism - extended
to multiple times for fields (Dirac and particle
describer of electrons). Tanagraj says he
began studying康奈尔 after hearing
about it "through popular science"
columns of a weekly U.S. Magazine.

Feynman v. pub account of early
work with Feynman on Dirac theory
of renormalization → Feynman's electropoar
→ deep non-local point of view.

Sweden is Slotnick's colleague 17
Soltick - Nation scattering Feynman
elected out the following need his
needed. "The next day at the meeting
I saw Slotnick and said 'Slotnick,
I worked it out last night, I wanted
to see if I got the same answer as

Not was my moment of triumph in which
I realized I really had succeeded in working
out something worth while."

Dyson stores favorite method of
refraining others so very difficult
way - "Perhaps ~~other~~^{things} is sufficient
you can describe it fully in several
different ways without ~~leaving~~ ^{mentioning} any
knowing that you are describing the same
story." Dyson up this is a persist way
of deferring questions

"Theories of the mind, which are described
by different physical ideas may be
equivalent in all their predictions
and hence are scientifically indistinguishable.
However, they are not psychologically identical
when trying to move from that base onto
the unknown. For different views suggest

different field until it is out of your mind
much like music and food are to you
resultant in the following conclusions
from them in some effect
F. A similar idea of pleasure and pain
is illustrated in the following conclusions
from them in some effect

Nafe, S.E., Hobbs Nelson, E.B. p I.I. Robi
R.P. 71 (1947) 914-915.

"The Hyperfine Structure of Metal Hydrogen
and Deuterium".

used decays in body, coherent.
5 lines made the protocol end.

Breit C. P.A. 72 (1947) n. 984.

"For the electric field on internal
magnetic moment" my results N.H. can't
be included in terms of an
internal magnetic moment (Pauli-like)

Fierz, Foley P.A. 72 (1947) 1256.

See previous entry extended to paramagnetic
systems done both in Gallium.
These results are collected up in

Fierz, P. and Foley H.M. P.A. 74 (1948) 250-263

"The Magnetic Moment of the Electron."

will not select, collect, or otherwise
exploit other persons' material, for profit
and if - after efforts we are to find, purchase
of an alternative vessel - shall be
done by another party due to quality of hull

en-Sommerfeld (1957) 8-A.107 p. 328-29-
"Dipole moment of the electron"
several papers by Kroll calc. 4th order
to $\mu_0/\mu_0 = 1.0011586$.

A. Petermann Nucl. Phys. 5 (1958) p. 677-683

"Fourth order Dipole Moment of the
Electron"
refers to Fierz, Leder parameter (1957)
as starting point of both least corrections
of 4th order ext. By force
 $1.001165(4)$, need too high
precision Kroll.

Wilkinson P.T. & Cross H.R. P.R. 130(1963) p 852-86

"Precision Measurement of the Factor of the
Free Electron"

Collaboration of work initiated by Lowell, Pidd, & Cross
(1954), refined by Schaff, Pidd, Cross (1961)
The latter experiment had errors some order
of magnitude or 4th order corrections,
new experiment aimed to test 4th order prediction

We sought not with increasing accuracy
of experiment to test 2nd term (the terms
contribute about 13 ppm perhaps to exist.
We were able compare to Redcroft 27 KHz
uncertainty. But uncertain or value of δ
itself is \pm 5 ppm., namely for
other constants involved in evaluating
the data.

Wilkinson, Cross's results were re-analyzed
by Rich, others who found a tree
fluctuation deviation from steady

letter to the chairman of the board of
trustees of the college for the year
1971. "We can't afford to wait
any longer than we have to." We can't
afford to wait any longer than we have to.
We can't afford to wait any longer than we have to.
We can't afford to wait any longer than we have to.
We can't afford to wait any longer than we have to.
We can't afford to wait any longer than we have to.
We can't afford to wait any longer than we have to.

W. H. Moore, Secretary to the Board
of Trustees, The College of Wooster

W. H. Moore, Secretary to the Board
of Trustees, The College of Wooster

left

W _{old}	115965	{	77	I	35
reversed		67		I	35
		<u> </u>			

right HPLC.

L _W	{	54	I	33
	19		I	25
	<u> </u>			

Levine, H.J. & Wright, J. P.R.D. 8 (1973) 3171-3171

Anomalous Negative Moment of the Electron

Refer to Granger, Ford -
Fonda ~~et al.~~ (P.D.L. 28 (1972) 1479)
for correction of w , & value given
 1159657.7 ± 1158656.7 . I 3.5

(^{10, Q&P}) They were then given a value quoted by Welsh, Red
as being too high due to an error in numerical
interpretation of the graph.
The final result 1159651.9 ± 2.5 .
Compared with their previous value of
 1159655 I 2.

(^{10, Q&P}) They also correct
Wilkerson, Crane's
results so they do
not agree with
Welsh, Red
& with theory
(acknowledged in Welsh,
Red P.R.P. (1972)-work)

Gribbley F. and Puccio E.:

"The Muon ($g-2$) Precision Experiments:
Past, Present and Future".

Physics Reports 14C (1974) p 1-58.

refer to next next calculations of
of 5th order terms already 213.

Cahill and Peterman Phys. Lett. 47B (1973) 369

Leverett Wright R.P. (1973)

Cvitanovic and Kuroshita SLAC Rep. (May 1974)

They quote observed value:

$$d_\mu = -0.01165897 \pm 8 \text{ Bahagian.}$$

Exp. - Boddy et al. (Nuovo Cimento A9 (1972) p 369)

$$d_\mu = -0.001166160 \pm 310$$

Bailey et al. Phys. Lett. 55B (1975) p. 420-424:

New measurement of G_F of the process.

Experiments ratio $\frac{g_2}{g_1} = 0.01165895 \pm 2.7$
Theory $= 0.01165908 \pm 10$
(includes 7.3 ± 10
from Δg (Kochan))

Cvitanovic, P & Kinoshita T.

N.R. D 10 (1974) 4007-4031
Fourth order regularization method of the solution

After Δ iter. = $0.01159651.7 \pm 2.2$

Current result = $0.01159656.7 \pm 3.5$

$$\begin{aligned} (q) P(k^2_{x-y}) &= \int e^{-\frac{(x-x_0)^2}{\sigma^2} - \frac{(y-y_0)^2}{\sigma^2}} d\mathcal{D}_k \text{ with } y = x + \eta. \\ &= \int e^{-\frac{(x-x_0)^2}{\sigma^2} - \frac{(x+\eta-x_0)^2}{\sigma^2}} dx. \\ &= \int e^{-\frac{2x^2}{\sigma^2} + \frac{\eta^2}{\sigma^2} + \frac{x_0^2-y_0^2}{\sigma^2} + 2x(x_0+\eta)} dx. \end{aligned}$$

This is next next) probably next
accurate value. to date.

J. Cabnet, S Nauyer, M. Porrohet and

E. de Raaphael. "The anomalous magnetism
moment of the muon: A Review of the
theoretical Calculations". RMP. 49 (1977) 21-29.

$$\begin{aligned} \Delta \mu (\text{theory}) &= 0.001165920.6 \pm 12.9 \\ \Delta \mu (\text{soft}) &= 0.001165895 \pm 27 \end{aligned} \quad \left. \right\}$$

(Harvey et al 1975)

for $\Delta \mu$ (theory) $\rightarrow 0.001159652.4 \pm 0.6$

Cabnet $\Delta \mu (\text{soft}) = 0.001159656.7 \pm 3.5$

Wesley, Reich

Refer to

Levine, M.J., Perisho, R.C and Roskies, R.
(1976) Phys. Rev. D 13, 997-

R.S Van Dyck Jr, P.B. Schwinberg, H.A. Dommel.

"Precise Measurements of Compton, Repton, Cyclotron
and Spin-Golden-Isotopes Frequencies on an
Isolated 1-TeV Electron". PhL 38 (1977) p. 312315;
where $\Delta \mu (\text{soft}) = 0.001159652.4 \pm 0.2$

R. Haag - Dan. Mat. Fys. Medd. 29 no 12 (1955), 1-37.

"On Quantum Field Theories".

Shows difficulties connected with ∞ degrees of freedom - free field vacuum of Tomonaga-Schwinger and Feynman $V(t, t_2)$ for finite $t_1, \alpha t_2$ does not exist. Shows several field theories exist

(+). Computation relations so equations do not form a priori) which are just as much called as S-matrix theories. Proves in §.2 every S-matrix can be derived from some field theory - In §.3 discusses solid extensions if field operators commute at equal times $\rightarrow V(t_1, t_2)$ cannot exist for these theories for finite $t_1, \alpha t_2$. Mathematics etc is close to ever face of inequivalent representations of the computation relations.

In Non-representable Hilbert spaces (containing d. unnormalizable basis vectors) there is no

for infinite no. of free states well defined infinite no. of states.

Wijlhem

Wijlhem (195)

"A similar survival of post-operative cells was observed in the skin and a few mesothelial cells were also observed in the lung and in the colon and in the uterus and in the breast and in the ovary."

Wijlhem (195) and Wijlhem, V.A. S. and H.A. F.H.S. Held. Van. Nid. Segg. 31(195)

Wythman, A.S. ad Schrödinger's.

P.R. 98 (1955) 812 - 837

"*Caifquantor Spec. Polled u. Reldielesl Quanten
Feld Theory*".

My dearest professor of Ann Arbor's values
I'd just like to point out to Tolman
, I hope your ob. can be of use &
rel to my ob. of yours to someone
else except vacuum, latter may be
inconsistent with yours of motion. (cf
Yer. Rev. (1952)).

Wythman, A.S. P.R. 101 (1956) 860 - 866

Quantum Field Theory in terms of vacuum
expectation values.

Abrederes the Wythman - version. for Ver's.
shows Ver's are boundary values of
one other functions, ad that field theory
can be recovered from properties of Vectors.

II-56 N.C. 6 (1957) 33-336 L. 252 "On Evolution of Cultural Patterns in Theseus -
" after the author of Evolution of Cultural Patterns in Theseus -
- before the author of Evolution of Cultural Patterns in Theseus -
- before the author of Evolution of Cultural Patterns in Theseus -
- before the author of Evolution of Cultural Patterns in Theseus -

"Zur Formulierung qualitativer und quantitativer Methoden für die Erfassung der sozialen Verhältnisse im Haushalt" (1955) 205-215.

Screening o.w. "Hoog's theory & contact operators"

P.R. 115 (1959) 706-710.

discusses more complete field of Hoog's theory.

Nathans P.T. ed Salam, H

P.A. 94 (1954) 185-191

"Renormalization".

All divergences (large & small) are dealt with by
counter terms so that theory is renormalized
in all orders of perturbation if charge renormalized
is dealt with in same way as mass renormalization,
following ideas of Gupta. Proc. Phys. Soc. A64 426 (1951)
by introducing a counter term.

well defined at finite. Rather does not discuss whether this is true in other example, but it is quite a separate question from no 1.

Stueckelberg E. C. G. and Petermann, II
Naturf. Phys. Nato 26 (1953) 499-520

"(a) Normalization der kontinuierlichen (d
Basis des Quanta)

Splittende Wirkung d. renormalisierten
Gruppe.

Gell-Mann, M. and Lee F. E.

"Free Field, Electrodynamic at small
distances".

refers to Schwinger Nat. Fis. Bd. 27, 12 (1953) 1-18.

"On the Magnitude of the Renormalization
constants in quantum electrodynamics"

to works about a finite published),
claims one of $\approx 10^{-1}$ as no want
be infinite.

Realistic very many terms omitted may

all the ~~other~~ ~~parts~~ ~~of~~ ~~the~~ ~~body~~ ~~are~~ ~~also~~ ~~affected~~ ~~by~~ ~~the~~ ~~inflammation~~ ~~of~~ ~~the~~ ~~lungs~~.

the ~~lungs~~ ~~are~~ ~~also~~ ~~involved~~ ~~in~~ ~~the~~ ~~inflammation~~ ~~of~~ ~~the~~ ~~lungs~~ ~~and~~ ~~the~~ ~~inflammation~~ ~~of~~ ~~the~~ ~~lungs~~ ~~is~~ ~~caused~~ ~~by~~ ~~the~~ ~~inflammation~~ ~~of~~ ~~the~~ ~~lungs~~.

the ~~lungs~~ ~~are~~ ~~also~~ ~~involved~~ ~~in~~ ~~the~~ ~~inflammation~~ ~~of~~ ~~the~~ ~~lungs~~ ~~and~~ ~~the~~ ~~inflammation~~ ~~of~~ ~~the~~ ~~lungs~~ ~~is~~ ~~caused~~ ~~by~~ ~~the~~ ~~inflammation~~ ~~of~~ ~~the~~ ~~lungs~~.

10. ~~inflammation~~ ~~in~~ ~~the~~ ~~lungs~~ ~~can~~ ~~lead~~ ~~to~~ ~~shortness~~ ~~of~~ ~~breath~~.

11. ~~inflammation~~ ~~in~~ ~~the~~ ~~lungs~~ ~~can~~ ~~lead~~ ~~to~~ ~~shortness~~ ~~of~~ ~~breath~~.

12. ~~inflammation~~ ~~in~~ ~~the~~ ~~lungs~~ ~~can~~ ~~lead~~ ~~to~~ ~~shortness~~ ~~of~~ ~~breath~~.

Jaffe, A. Comm. Math. Phys. 1 (1965) 127-149

"Divergence of Perturbation Theory for Lora's"

infinite but converges if field theory is 2-dimensional
S field - type - finds Salem's criterion not
analytic at $\lambda = 0$. For non-degenerate
complexities the series are renormalizable
and all renormalizations are finite.

~~Jaffe~~ first refers to work of Hwang & Hurst (1952)
Proc Roy Soc. 214 A 44 and Shury (1953) &
Reichmann (1953) for $\lambda \phi^3$ theory in
4-dimensional space-time for proof of non-analyticity
in DF.

Helfgott, Hans. Comm. Math. Phys. 2 (1966) 301-326

"Proof of the Bogoliubov-Parasiuk theorem
of renormalizability. It uses technical
jargon. von Neumann's criterion is not
applied by Bogoliubov "it is hard to
see the theoretical where understanding"
of the operational steps of the practical scheme".

1958-625-48 (1958) 625-634
flow rate of water & flow of water

is given as $\frac{dV}{dt}$;
 $\frac{dV}{dt} = \text{rate of flow of water}$

$$\text{at } t=0 \quad V = \frac{1}{2} \cdot \frac{(1+u)}{(1-u)} \cdot t = \frac{u}{(1-u)}$$

(as at time $t=0$)

$$V = \frac{u}{(1-u)} \cdot t + C$$

for some later time
we have $V = \frac{u}{(1-u)} \cdot t + C$
then $C = u - u/(1-u)$
which is non-negative - since
then $V = \frac{u}{(1-u)} \cdot t + u - u/(1-u)$
follows V is strictly increasing.

$$C = u - u/(1-u)$$

As u increases V increases.
In the following we will

u initially

turning the weights factor into $\alpha(\beta-\mu)$ also
disregards so far or non-analytic terms
terms of coupling constant λ .

Peterson Bull. Am. Math. Soc. 26 (1952) 291
also under weaker conditions.

Burt AFCA. Proc. Roy. Soc. 214 A (1952) 254-61
"The enumeration of graphs in the Feynman-Dyson
technique".
investigates no. of graphs of order n , shows
rapid increase, no. of vertices and
connect components under conditions of each
path goes down as n goes up.
concludes no. of graphs of order n $\approx n^{n/2}$.
orymitically.

"Excellent agreement between approximate
results and theoretical calculations would
imply that the series is in fact to be
interpreted as an asymptotic expansion about
the angular point $\lambda = 0$ ".

Worthy J.L. and followers
21-901 (060) 4 (1458)
" Chemical and physical
" analysis of samples Z-
" and their relation to
" theoretical calculations
" of the energy of
" systems with different
" degrees of freedom
" and their relation to
" theoretical calculations
" of the energy of
" systems with different
" degrees of freedom

P.J. Flory · J.A. 11 (1958) 1401-1408
" Chemical and physical
" analysis of samples Z-
" and their relation to
" theoretical calculations
" of the energy of
" systems with different
" degrees of freedom
" and their relation to
" theoretical calculations
" of the energy of
" systems with different
" degrees of freedom

Hori S. Neg. Amer. Phys. s. 8 (1952) 569-570.
(letter) "On the Convergence of the S-Matrix Series"

refers to Feynman (1952) and asserted convergence
Hurst's estimate for χ^2 of graphs, but
does not extend lower bound for contribution
from each graph, or e.g. a theory's work

R.J. Reddell "The Number of Feynman
Diagrams"

N.R. 91 (1953) 1243-1248.

Reddell confirms Hurst's estimate for χ^2 of
relevant graphs $\sim n^{1/2}$. Convergence seems
to not absolutely guaranteed. "Any coefficient
constant seems to have little to do with
the convergence of the theory (although it
is asymptotic expansion of the theory)"
determines the usefulness of the theory)

not mentioned in
Cited several χ^2 convergent ^{due to} to
correlations between terms - very difficult
point to investigate. If ever a calculation

Phys. Rev. E-5 · 1985 (1952) 631-639

The present paper is concerned with the problem of determining the equilibrium configuration of a polymer chain in a solvent. The method used is based on the theory of statistical mechanics, and it is shown that the equilibrium configuration of a polymer chain in a solvent can be determined by solving a set of coupled differential equations. The equations are derived from the principle of minimum free energy, and they describe the interaction between the polymer chain and the solvent molecules. The solution of these equations provides information about the conformation of the polymer chain, its orientation, and its interaction with the solvent.

employed "fuller to the alternative test of nonconformity of the sample to specification".

Dixon argues that terms well beyond and the
resonance radiation limit at the critical value
of $\eta = 137$.

Dixon goes on to argue. There are 2 alternatives
A $F(\epsilon^2)$ is well-defined by non-perturbative perturbation theory
with acceptable estimates $F(\epsilon^2) \approx \alpha_1 + \alpha_2 \epsilon^2 + \dots$
but this series is not sufficient (b)
itself to define $F(\epsilon^2)$ uniquely

B Perturbation can give us coefficients $\alpha_1, \alpha_2, \dots$
and free perturbation does not determine
 $F(\epsilon^2)$ - so new physical theory is
needed to fix $F(\epsilon^2)$. - Dixon says
B has attracted failings - would
require rework of Q.E.D. with need
to extend theory to deal with mass
renormalization etc.

Next Proc Camb Phil Soc. 48 (1852) 625-659 contd.
"A direct Perturbation Calculation in
Q.E.D." Error in scattering calculated at n orders of
perturbation is n times larger than best term
calculated.

As a result of a Japanese visit to our
country, it was decided to send a
representative to Japan to study
the Japanese system of education.
The Japanese system has been
described as "a complete
education in a short time".
The Japanese system is based on
the principle that every child
should receive an equal
education, regardless of his
ability or his family background.
The Japanese system is based on
the principle that every child
should receive an equal
education, regardless of his
ability or his family background.
The Japanese system is based on
the principle that every child
should receive an equal
education, regardless of his
ability or his family background.

Low, R.E. RA 97 (1955) 1392 - 1398

"Bosch-Fermion Scattering in the Heisenberg Representation"

discusses the lower equalities & direct manipulation

Chew C.F. and Low FE J.A. 101 (1956) 1570 - 1579

"Effective-range approach to the low-energy
p-wave pion-nucleon interaction"

Redenbauch low energy with relation (A.M.P. 27339)

at off-sets of their effective range approaches (1955)

for p-waves there shift.

Experiments < 80 fm o few + becomes able
to fit off-sets of nucleon by neglecting all but
p-waves. Resulting equality is not
a partial wave dispersion relation for
the p-waves which allows for reflection
in of all other partial waves.

Dehmne R. P.R. 100 (1955) 1503 - 1512

"Debye's Relation for Pion-Nucleon Scattering.

F. The Spin-Flip Amplitude"
considers dispersion relations off the forward direction
(related to derivatives w.r.t. of nuclear location).

• Accidents: Wu-Sun-Fu Chiffon
- Open edges after full clown dresses
- Wife not want to have 3 children - Wife
- she not want to have more children
- she not want to have more children
- she not want to have more children

and the first the equally as well as your
lens's equation. If no negative
lens's equation, the doublet
from plane stage 1.
lens's equation, so correct, because
lens's equation, due to the lens, result doublet
volume of lens, due to the lens, result doublet
negative of doublet lens, because
achromatic doublet lens.

- in effect he has not put in enough information
except in appreciation of simply reflecting
any interaction with the higher angular-momentum
states.

Cited C.F. Goldammer, M.L. Low, F.E. and North, Y.

P.A. 106 (1957) 133 — 134⁴

"Application of dispersion relations to the exact
Dirac-Nucleus scattering"

Describes 2 uses of dispersion relations

- 1.) Converges to each of several dispersion
relations by requirement of closed quadders
- 2.) Reaches higher waves than $\ell=1$, since
else $\ell=2$ requires an m value of ∞ .
(at $m \rightarrow$ table limit)

CGA's unorthodox no effect rule probably
of the state limit so CGA's above
for the effect of recoil.

Nordelstam S. Rep. on Prog. in Physics 25 (1962) 99-162.

"Dispersion Relations in Strong-Coupling Physics".

General review article.

Discusses CERN approach of including just a few partial waves in field + derivative relations. Contrasts phenomenological application and dynamical application - how much information is taken from experiment - two approaches should coincide as another is arbitrary parameters introduced to implement various effects in the dispersion relation which are not directly related to the experiments. However "in practice one finds a difference between the types of calculation which characterizes the two approaches." (p. 122) Nordelstam formulates formulae of resonance analysis thus "the scattering amplitude is analytic in all its variables except at discrete points where singularities arise as a consequence of the unitarity condition" (p. 130). On p. 158 it is argued in favor of use of local field theory "We attack the S-matrix approach. "Total quantum field theory may

culture places a lot of the art centered in
countries, as S. India they come to go
to far in the south direction as
most parts, as S. India they come to go
culture like the east culture to be
part of the south culture
from there to go to the south culture
and there to go to the north culture
the most part as all from little like
also like situation that go and center
it is difficult to argue as any case,
it easy, in a matter of future that the
other to go there culture, the wood
foot there as culture between and world
is hard to get even effects of culture
hard to go in the to know person,
the one who do not go to get
the further as well as all
but to go jumbled up with culture
" " India first is that south culture
culture like the east culture to be
centered as well as all
most parts, as S. India they come to go
to far in the south direction as
most parts, as S. India they come to go
culture places a lot of the art centered in
countries, as S. India they come to go
culture like the east culture to be
part of the south culture
from there to go to the south culture
and there to go to the north culture
the most part as all from little like
also like situation that go and center
it is difficult to argue as any case,

R. says there will "always be an uncertainty whether discrepancies [with experiment] were due to the failure of the approximation or of the dispersion relations themselves."

Nordetam S. P.A. 115 (1959) 1741-1751.

"Analytic Properties of Transition Amplitudes in Perturbation Theory".

by double dispersion relations "have not yet been proved from the general principles of quantum field theory". 4th order perturbations turn are investigated

and have to be calculated. The required representation provided makes use of other amplitudes thresholds in general amplitudes (thresholds) of the record type in classifiers of Keppler, Siegmund L. Wickmann (P.A. 114 376 (1959)) writes: "The double dispersion representation looks down, and it is well to regularities in the complex plane".

Goldberger M.L. Selt-Ram, H. Goldberger M.L. Thuringer F

P.R. 95 (1954) 1612 - 1627.

"Use of Causality Conditions in Quantum Theory".
refers to length between causality and scattering amplitude
restrictions going back to Kramers (1927) and Kronig (1926)
(J. Opt. Soc. Am. 12 547 (1926)) also Kramers Kronig,
Physica 12 543 (1946) proposed causality requirement
should be imposed, in addition to Lorentz
invariance and unitarity, on the S-matrix.

G Goldberger placed scattering amplitudes
relations for protons & nuclei. They are
perturbation theory to estimate observed
predicted properties.

Goldberger M.L. P.R. 97 (1955) 508 - 510
discusses event differential relation, not
every perturbative effect for all case of nuclear
scattering is forward direction. That is
"Use of Causality conditions in Quantum Theory"

2 May 1960 - 10.00 hours + 20 minutes
Details of method used in collecting
difference between Sooty Shearwater
and other small fulvous species of
the albatrosses as observed today.
(1928) see also ch 10/442, Part of Birdlife
List in use & based on particular observations
available to author to determine whether
circular locomotion does not cause a great
degree of ocean travel while flying - whether
distant pelagic species fly far - whether
"Circumnavigating and the following follow":
To CC I.S. P.R. 104 (1952) 1760-1770.

This was a friend collection from
me first, now ours
Gullily Sooty and fulvous Shearwaters I
Gullily H.L. 1-A. 99 (1955) 974-985.

Imp. cohort survival relate to real abortion
= abortion rate + no-crown abortion

→ Impaired mortality = Real evaporation.

Real coh. survival relate to real abortion
and is expressed as sum of (evaporation + abortions)
over all interviewable states.
This is just the observed selection.

Reedelstam, S. N.C. 15 (1960) 658-685.

- 1. Some Regions Analytic Predictors of Mortality. Apples'
- different double difference selected for
- part used of feed for day
- part cooked or a certain domain
- no part fed & no food consumed
- represented a choice

Derrickie, A., Hamlet J. and Lee A-T.

PAB135 (1964). 315-539.

"Prediction of p-d-and f-wave Pion-Nucleon Scattering"

use partial wave dispersion relations to fit S-P phase shifts with input of experimental values of resonance in curved channels (so it is not a bootstrap situation)

Dennvekille & W. Hamlet J. Ann. Phys. 31 (1965)
410-435-

"The Creation number of the Nucleon Solitons".

contains the DHL technique
with overlays of $N, N^*, (\pi\pi)_0$, etc as density
concentrations.

Hamlet J. and Woolcock, W.S. P.N.P. 35 (1963) 737-787

"Determination of Pion-Nucleon Parameters and
Phase shifts by Perturbed Solitons".

Used CALN to determine coupling constants
etc (i.e. they are found & dispersion relations)

"Haley et al. 1995 first published
in Journal of Geophysical Research,
100, 119(1995) 695-753.
The journal has been freely available
on the Internet since 1996.
Please cite the original publication
when referring to this version.
Haley et al. 1995 first published
in Journal of Geophysical Research,
100, 119(1995) 695-753.

"Haley et al. 1995 first published
in Journal of Geophysical Research,
100, 119(1995) 695-753.
The journal has been freely available
on the Internet since 1996.
Please cite the original publication
when referring to this version.
Haley et al. 1995 first published
in Journal of Geophysical Research,
100, 119(1995) 695-753.

"Haley et al. 1995 first published
in Journal of Geophysical Research,
100, 119(1995) 695-753.
The journal has been freely available
on the Internet since 1996.
Please cite the original publication
when referring to this version.
Haley et al. 1995 first published
in Journal of Geophysical Research,
100, 119(1995) 695-753.

particles become unstable, and appear "supercooled" or "overdense". Their "kinematical" overdensities differ from "dynamical" ones - - in that they occur at arbitrarily small values of the coupling constant. The theory of such unstable particles must be regarded as an "accelerated" perturbation to be inserted into the theory.

See G.F., Rev. Accad. Naz. Lincei S. ord. Nog. 11, p.

I.A. 119 (1960) 478 - 481.

"S-wave Generalization to Non-Planar Spherical Equivalents". contains the clear & Acceleration paper (1960) and includes the above sections. "This would be a "natural realization"; i.e. the fine modulus of a real medium would be due to the energy of a circulating P-wave "rien faire". In effect the P-Equation is being footloose."

exterior to angular momentum & of the
momentum and heat principle what hitherto
has been applied only to linear moments".
"Indeed without a linear vector fails to
specify precisely the graphical behavior in
momentum transfer which in the condition
feels it defining also an "explosion
of areas" that in the Σ plane" (in fissile)

differentiated that of Σ fields to placed
all particles in high temperature crowded
(and high density) scattering condition in
closed channels.

Electrony particles are graphable
below which $\delta(t) \rightarrow S = \text{const.}$ 10° .
the distance closed close up
expenses lots (hope of per day set
charge with every ps escape).
also places by low mass particles
here can spans.

Madras - T. N.C. 14 (1989) 951-96
"Simplification of carbon capture mechanism"
Welded joints in R.P. carbon
Steel - which may be selected
of different qualities - up to
a dozen parallel tests
(Fluorocarbon film also used by
Bleeding oxygen effectively
by reduction techniques found
to remove the film (1960-62)
(Ex-29)

Zachariasen F. and Zernack C. PR. 128 (1962)

"Plan Hernandez"

849 - 858

driven π^0 e^- - lepton

processes are attractive for related

2 pions to produce the e^- resonance.
full bootstrap is difficult. e.g. we may
test $\pi^- \pi^+$ as given in $P = D_{\pi}(0)$

Re we should test Regge features
not just single particles. If simple
approach does not ignore other Regge
behavior (reflected by momentum cutoff
for example to reproduce effect of Regge
behavior in really complicated
systems at large energies)

Refer to early calculation of Δm &
Mackintosh (1960). 2nd 2

now consider also $\pi\pi \rightarrow \pi\pi$ and $\pi\pi \rightarrow K\bar{K}$.
try ignore the $K\bar{K}$ channel but calculate
the effect of the w^- effect & a very
important in 2×2 model only proceeding
that includes the effect of the e^- channel

It's the same as the first one.
But there is a cutout.
It's a square with a cutout.
The cutout is a rectangle.
It's a rectangle with a square in it.

Area = $\pi r^2 - \text{Area of square}$
Area = $\pi r^2 - 3\pi$
Radius of the circle
approx 10 cm
Area = $\pi r^2 - 3\pi$
Area = $\pi r^2 - 3\pi$

Auer S., F. and Zernack C. A.R. 131 (1963)
"Bootstrap and the Pion-Nucleon System". 2305-2318.

first general introduction to the bootstrap philosophy:

In bootstrap forces are, in fact, "so strong" that the binding seems to be infinite "nuclear $(N+N)$ " or conformal to the inverse of the separation distance. Then it's the associated forces that prevent a particle to appear in a Coulomb-like a confinite state. And as the coupling constant with other obscuring, though not invalidating the equality to logically bound states such as the hydrogen atom or an atomic nucleus.

Subject case of a bootstrap interaction read

$$N = \Pi N(N) \text{ and } \Pi = N \bar{N} (\Pi)$$

But N exchange is too weak to build ΠN system.

no effect of "relocation" movements
on future population of the
area to due (I.A.L. 9,233 (1962))
and for small areas affected by
the effects (due to people who have
left or moved - nonresident aliens)
follows the usual λ and μ

$N + N = (D) \Pi + \Pi$ is called
as λ as N & D effects of
as transient effects.
 $\underline{N} = \Pi D$ $\Pi = \Pi + \Pi = \lambda$
if Π is a non resident alien

Kramers H.A. Atti. Congr. Intern. Fisica, Como, 2 (1927)

545-557.

"La Diffraction de la lumiere par les Atomes".

Kramers conuektir rekenen afrodere under ord
absorptien coefficient for scattering of light in
de form of a dispersion relation

- says he worked this out in an
unpublished paper in 1925 (Papers to
independent discovery by Kramers in 1926
(J. Opt. Soc. Am. 12 547 (1926)).

Kramers Kramig R.-de L. Physica 12 (1946) 543-544

In a letter to editor entitled

"A Supplementary Condition in Heisenberg's
theory of elementary particles"

refers to HS derivation of S-matrix - what
polarizations in d states they want to obtain

- refers to Kramers' Kramig selection for

Heitberg & left by others from Cawley

"It refers now to some reasonable ta

to choose from $\int_{-\infty}^{\infty}$ u choices
 $(n/2) \times (n/2)$ choices $\int_{-\infty}^{\infty}$ u choices
number of ways to choose $n/2$ pairs
 $n(n/2)$ of pairs formed from n elements
of size $n/2$
, or $\frac{n(n-1)(n-2)\dots(n-n/2)}{(n/2)!} = \binom{n}{n/2}$

then no $\int_{-\infty}^{\infty} u^{n/2} \int_{-\infty}^{\infty} u^{n/2} = (n/2)^{n/2}$
ways e.g. Geller writes with $\int_{-\infty}^{\infty}$
in his honour collection in source
material for good source material

"Discrete Mathematics for Elementary School"
J. Baumgartner, May 4, 1961, 8-544 (1961-1963)

Same rules obtained by letting $w \rightarrow \infty$ in a different relation,

H. also discusses scattering of left by an atom
by perturbed model and very compact argument.

H next discusses applications in particle
physics - says H. Dingleton is
not derived from causality but is "obtained
from a very general hypothesis about the
analytic properties of scattering amplitudes
when not all the energy but also other variables
variables (such as the position vector) become
complex".

H discusses however a related collision
at all angles we can expect the forward
scattering amplitude and cross section exhibit
- good agreement provided no other
phenomenological amplitudes.

H. discusses problem of knowing how general
dispersion relations "it may be that if
we are to prove the relation for larger
values of the interaction parameter, we shall have

about the situation
to the next two days

--

Haug Henning W & Haug R. Fortschritte der Physik
I (1959) 183-242.

"Allgemeine Quantentheorie des Stoßprozesse"

Zeigt general Relativitätstheorie d. scattering
theory in favor.

W. Heisenberg Z. f. Phys. 120 (1943) 513-538.
"Die "verbrockenen Größen" in der Theorie der
Elementarteilchen."

Part II of the paper is same vol. p. 673-702.
H. deuter präzisiert Optics as esp. be a theory
of particles which will remain valid in
a future theory (esp. perhaps Einstein's)
subject to special relativity.) and will
be general features of this particle view
will survive in any future theoretical
development.

Kennedy's (1940) found in "Measuring the instability of human institutions" that people tend to stay in their place of birth and never leave it. This is due to a lack of opportunities in the future and the desire to have a stable life. They also found that people tend to move to cities where there are more opportunities and better jobs. This is because cities offer more job opportunities and better living conditions. In addition, cities provide better education and healthcare facilities.

It is interesting to note that the people who moved to cities did so for different reasons. Some moved for better job opportunities, while others moved for better education and healthcare. However, it is important to remember that these factors are not the only ones that influence migration. Other factors such as family, social, and cultural factors also play a role in determining where people choose to live.

Overall, Kennedy's study provides valuable insights into the causes of migration and the factors that influence where people choose to live.

R.S. Eden "Deep Roots & Elementary Particles"
Rep. Prog. Phys. (1971) 34 995-1053.

Very very good review of Byrd's theory
concluding with comparison to F.F.S.-P.
duality and to weak force representation.

Bailey D "The theory of weak interaction
in particle physics"
Rep. Prog. Phys. (1972) 34 491-599.

Very good general review of weak
interaction physics - focus
vector π T-violation in $K \rightarrow 2\pi$
as well as 3π - discussion
parallel to superweak T-breaking
interaction. Due to 1964
Fitch & Cronin experiment.

Staff H.R. S.R. D3 (1971) 1303 — 1320

"S-matrix interpretation of quantum theory"

Staff states S-rates make all predictions
that are possible in quantum theory

We must not "interlock" too strongly with
observed system for observations to make

real. S. denotes bell's theorem
and division function $H_{\text{div}}(t)$ or "web"
photon to staff coll. t. He draws analogies
with Wheeler-Pound & reality.

I refer to link between pragmatist philosophy
as opposed to S-matrix theory and the
principle of Macro causality which
says "Every interaction is described over
macroscopic distances by physical
particles; on larger scales of very importance
not separable & not well of interest for holes
for a probability that falls off exponentially
over space-time duration"

Staff rewards a "pragmatic" Heisenberg
philosophy of M - informed on S-rates approach.
S down orientation \rightarrow Macro causal but not micro causality

unfortunately no longer in
the possession of the author

D. Isgolnitzer : To S. Noten (Amsterdam:
North Holland) 1978

list relevant adducts in pharm region

→ vacococciol derived in Jag. Stoff
Cancer. Path. Rep. 14 (1969) 15, based
on chondri → stoff → Roth Rep. 90 826 (1969)
Warder N.C. 14 (1959) 168.
Oncos PP. 146 (1966) 1-23

1st treatment of vacococciol.

I. extract diiodotoluene derivative attached
to anaphthal due to
Suzon J. Roth Rep. 6 827, 845 (1965)
Stoff. PP. 125 (1962) 2179
Clave PP. 135B (1964) 745.

ad Blockhom, olive and Polkington

J. Roth. Reps. 10 (1969), 494, 545, 553.

F. rep. proof for all vacocciols adduced
present due to draw of "seed" extracted

and ~~unfortunately~~ ~~unfortunately~~

Jackson J. "Unstability and un-Ren.-Sheld.
Analyticity and Basis for S-Matrix Theories.

J. Math Phys. 6 (1965) I. p 827-844
II. p 845 - 851
III p. 852 - 858 -

9. attempt to establish natural analyticity
as a consequence of unitarity + un-Ren.-Sheld
closeness.

Olive D.J. P.R. 135 B (1964) 745-760.

"Explanation of S-Matrix Theory".
discusses. "fundamental structures of S-matrix
approximations - provide sequence of approximations
by "peeling off" part which we already have.
To proceed we need basis to evaluate
probabilities of covered transitions T.P. etc.
of lipackets etc. Olive's analysis shows
"We cannot deduce all properties starting
without the fundamental theories and we
cannot deduce the fundamental theories without

K 8

The typewritten blueprint of the Wileman case
is a reproduction of the original blueprint drawings
of affectionate husband S-Paul Hall.
The affectionate husband S-Paul Hall
had a history of successive abuse
and neglect at the hands of his wife and
the affectionate husband S-Paul Hall
had no children and no other relatives
with whom he could communicate, from, other
people he had no contact, and he had
no friends and no relatives and no other

Gall; G. "Chair's Monodology."
J. Hist.-哲 35 (1974) p. 339 - 348

Sole drawn analogies between Chev
of Leibniz. Egal toward mirror &
uble vacance - of each particle carries
every other particle.

Exercising excited or only possible one
by self-consistency. of Leibniz
means last possible words. I
regarded a "Principle of Perfection
to promote an overarching criterion
of choice between the "options".

Sole & thus Chev says this is
only one self-consistent option (or word)
while Leibniz admits the possibility
of other self-consistent possible words
Also we can see from the
two coast situations between
Methods.

Chew G.F. Science (1968) 161 p 762 - 765 "Bootstrap! Ascent of God?"
Physics Today (1970) 23 Oct. vol. 23-28. "Hodgkin Bootstrap: Principle or Fauscation?"

2 popular articles:

• imposes self-consistency

• Nature is as it is because there is the only possible nature consistent with itself" (of leaving all fields as orderly)
→ sufficient reason.

Bootstrap idea much older than particle physics

Prerequisites for Success

- 1) 3D space-time (undivided)
- 2) separate modality "objects"
- 3) gauge fields (F.m) also are "object" to
provide a "measure"
- 4.) existence of local field constraints → consequences
of measurement

extension of all concepts will be unavoidable
- some unphysical framework required.

Partial bootstrap in line with Feynman's S-matrix

inversion of consequences is necessary to
self-consistency in old bootstrap.

offered views 1) elementary constituents of matter
2) fundamental eq. of motion

to follow the path of evolution under selection
of the natural forces of evolution (natural selection)

This is MS. B. 1. 1. (1) first of chapter
and first of each section

3. use of filters:
• filtering noise → filtering artifacts
 (1) convolution as a filter (2) smoothness prior

As part of his course in the
philosophy of science Dr Redhead
will give a series of lectures on
the Philosophy of Space and Time

beginning on Wednesday 5th February
at 2.15 pm in the Seminar Room.

The course will include an
introduction to the conceptual
problems of the special theory
of relativity.

But even of bootstrap the coil does not
be a beneath nuclear matter, & does it field
field obeying a single "center of motion"
(cf. Debye) → not consistent with the
bootstrap : broken mode of broken mode
of quark field.

Different of bootstrap → local & no dipole
starting point - no single India can
be understood without all the others but
perhaps we can approach the complete
bootstrap in a series of approximations.
covering under weaker regions of the S-matrix.

Complete Bootstrap by now! Control force. Undeable
existence of relativistic dgl's from which moment
of forces is entwined - complete bootstrap involves
coincidence the domain except of observation
, particle, etc. of consequences.

2 Myers Today at 100,

3

clear offers no Jordanselbst value } (F)
as to Bostrupper value } (B)

(F) includes rates in terms of Jordanselbst
(B) self-consistency
0. arbitrary priorities \forall on F }
 \forall or B }.

④ "Jordanselbst" concept is arbitrary enough,
also to the Bodenbank robbery

Failure of achieving a Porter toolstrip
may be because any consistent S-profile is
the full Jordan toolstrip with all parts
related.

"I would find it a curiously unopportunistic attitude
of all the bodies involved to insist that in
terms of a few arbitrary entities - we shall
do all in exchange the same portions as in 1930,
to take account so little on half a century
would to me be the ultimate frustration"