Complexvec1 Complex number extension for C++ vector class library

Agner Fog

© 2022-07-20. Apache license 2.0

Introduction

The file complexvec1.h provides classes, operators, and functions for calculations with complex numbers and complex number vectors. This is an extension to the Vector Class Library.

Complex number vectors are stored with real and imaginary parts interleaved, both in memory arrays and in vector registers. Storing of real and imaginary parts in separate arrays is discussed below on page 15.

Complex number vectors with single precision and double precision are represented by the classes listed below. Common operators and functions are defined for these classes:

Table 1.1: Complex number vector classes

Complex vector class	Precision	Complex elements	Correspon- ding real	Total bits	Recommended minimum
vector class		per vector	vector class		instruction set
Complex1f	single	1	Vec4f	128	SSE2
Complex2f	single	2	Vec4f	128	SSE2
Complex4f	single	4	Vec8f	256	AVX
Complex8f	single	8	Vec16f	512	AVX512
Complex1d	double	1	Vec2d	128	SSE2
Complex2d	double	2	Vec4d	256	AVX
Complex4d	double	4	Vec8d	512	AVX512

Complex number vectors with half precision are also supported. Half precision is efficient only if the AVX512-FP16 instruction set extension is supported by the microprocessor and enabled in the compiler options. See vcl_manual.pdf section 2.3 for details on half precision support and performance. The half precision complex number vectors are defined in the file complexvecfp16.h. The following half precision complex number vectors are defined in this file:

Table 1.2: Half precision complex number vector classes

Complex	Precision	Complex	Correspon-	Total bits	Recommended
vector class		elements	ding real		minimum
		per vector	vector class		instruction set
Complex1h	half	1	Vec8h	128	AVX512-FP16
Complex2h	half	2	Vec8h	128	AVX512-FP16
Complex4h	half	4	Vec8h	128	AVX512-FP16
Complex8h	half	8	Vec16h	256	AVX512-FP16
Complex16h	half	16	Vec32h	512	AVX512-FP16

1.1 Compiling

The complex number vector class extension to the Vector Class Library is compiled in the same way as the Vector Class Library itself. All $\times 86$ and $\times 86$ -64 platforms are supported, including Windows, Linux, and Mac OS. The following C++ compilers can be used: Gnu, Clang, Microsoft, and Intel. See the vector class library manual for further details.

This example shows how to use the complex number vectors:

Example 1.1.

```
// Example for complex number vectors
#include <stdio.h>
#include "vectorclass.h" // vector class library
#include "complexvec1.h" // complex number extension
// function to print complex number vector:
template <typename C>
void printcx (const char * text, C a) {
    auto aa = a.to_vector(); // get elements as real vector
    printf("\n%s", text); // print text
    for (int n = 0; n < a.size(); n++) { // loop through elements
         printf("(\%.3G,\%.3G) - ", aa[2*n], aa[2*n+1]);
    }
}
int main() {
    // define vectors of two complex numbers
    Complex2d a (1, 2, 3, 4); // 1+i*2, 3+i*4
    Complex2d b(-2, 1, 0, -3); // -2+i*1, 0-i*3
    Complex2d \ c = a + b; \hspace{1cm} // \ add \ complex \ numbers
    Complex2d d = a * b;
                             // multiply complex numbers
    // print results
    printcx("a = ", a);
printcx("b = ", b);
printcx("c = ", c);
printcx("d = ", d);
                                 // a = (1,2)
                                                  (3,4)
                                 // b = (-2,1) (0,-3)
                              // c = (-1,3) (0,-3)
// d = (-1,3) (3,1)
                                  // d = (-4, -3) (12, -9)
```

Constructing vectors and loading data into vectors

There are many ways to create vectors and put data into vectors. These methods are listed here.

Method	default constructor
Defined for	all complex number classes
Description	the vector is created but not initialized.
	The value is unpredictable
Efficiency	good

```
// Example: Complex4f a; // creates a vector of four complex numbers
```

Method	Construct from single real
Defined for	all complex number classes
Description	The parameter defines the real part of all elements.
	The imaginary parts are zero.
Efficiency	good

```
// Example: Complex4d a(3); // a = (3,0) (3,0) (3,0) (3,0)
```

Method	Construct from single real/imaginary pair
Defined for	all complex number classes
Description	All elements get the same real/imaginary values
Efficiency	good

```
// Example: Complex4d a(3,1); // a = (3,1) (3,1) (3,1) (3,1)
```

Method	Construct from multiple real/imaginary pairs
Defined for	all complex number classes with more than one element
Description	The parameters define all the real/imaginary pairs
Efficiency	good

```
// Example: Complex4d a(1,0, 2,2, 3,-3, 0,4); // a = (1,0) (2,2) (3,-3) (0,4)
```

Method	Construct from single complex scalar
Defined for	all complex number classes
Description	The complex number is broadcast into all elements
Efficiency	good

```
// Example:
Complex1d a(1,2)
Complex4d b(a); // a = (1,2) (1,2) (1,2) (1,2)
```

Method	Construct from multiple complex scalars
Defined for	all complex number classes with more than one element
Description	Each parameter defines one complex pair
Efficiency	good

```
// Example: Complex1d a(1,2) Complex1d b(3,4) Complex1d c(5,6) Complex4d d(a,b,c,b); // a = (1,2) (3,4) (5,6) (3,4)
```

Method	Construct from two complex vectors of half the size
Defined for	all complex number classes with more than one element
Description	The two vectors are concatenated into one bigger vector
Efficiency	good

Method	member function load(p)
Defined for	all complex number classes
Description	Load data from array of same precision. Each real part must
	be followed by the corresponding imaginary part.
Efficiency	good

```
// Example: double a[8] = \{1,2,3,4,5,6,7,8\}; Complex4d b; b.load(a); // b = (1,2) (3,4) (5,6) (7,8)
```

Method	member function store(p)
Defined for	all complex number classes
Description	Save data into array of same precision. Each real part is
	followed by the corresponding imaginary part.
Efficiency	good

```
// Example:
float a[8];
Complex4f b(1,2,3,4,5,6,7,8);
```

```
b. store (a); // a = {1,2,3,4,5,6,7,8}
```

Method	member function real()
Defined for	all complex number classes
Description	Get real parts of complex vector
Efficiency	medium

```
// Example:
Complex1d a(10,11);
double r1 = a.real(); // r1 = 10
Complex2d b(10,11,20,21);
Vec2d r2 = b.real(); // r2 = (10, 20)
```

Method	member function imag()
Defined for	all complex number classes
Description	Get imaginary parts of complex vector
Efficiency	medium

```
// Example:
Complex1d a(10,11);
double i1 = a.imag(); // i1 = 11
Complex2d b(10,11,20,21);
Vec2d i2 = b.imag(); // i2 = (11, 21)
```

Method	member function insert(i)
Defined for	all complex number classes
Description	Insert one complex number into vector at position i.
	The first element has index 0.
Efficiency	good with AVX512VL, medium otherwise

```
// Example: Complex4d a(1,2, 3,4, 5,6, 7,8); Complex1d b(10,11); a.insert(1, b); // a = ((1,2), (10,11), (5,6), (7,8));
```

Method	member function extract(i)
Defined for	all complex number classes
Description	Extract one complex number from vector at position i.
	The first element has index 0.
Efficiency	good with AVX512VL, medium otherwise

```
// Example:
Complex4d a(1,2, 3,4, 5,6, 7,8);
Complex1d b = a.extract(1); // b = (3,4)
```

Method	member function get_low()
Defined for	all complex number classes with more than one element
Description	Get the lower half of a complex vector
Efficiency	good

```
// Example: Complex4d a(1,2, 3,4, 5,6, 7,8); Complex2d b = a.get_low(); // b = (1,2) (3,4)
```

Method	member function get_high()
Defined for	all complex number classes with more than one element
Description	Get the upper half of a complex vector
Efficiency	good

```
// Example: Complex4d a(1,2, 3,4, 5,6, 7,8); Complex2d b = a.get_high(); // b = (5,6) (7,8)
```

Method	member function size()
Defined for	all complex number classes
Description	Get the number of complex pairs
Efficiency	good

```
// Example: Complex4d a(0); int b = a.size(); // b = 4
```

Method	member function elementtype()
Defined for	all complex number classes
Description	Get the precision of the numbers.
	The return value is 0x10F for half precision, 0x110 for single
	precision, and 0x111 for double precision complex number
	vectors. Non-complex vector classes return other values,
	defined in vcl_manual.pdf
Efficiency	good

```
// Example:
Complex4f a(0);
int b = a.elementtype(); // b = 0x110
```

F 4.*	C
Function	Complex1h interleave_c (Float16 re, Float16 im)
	Complex2h interleave_c2 (Vec8h re, Vec8h im)
	Complex4h interleave_c4 (Vec8h re, Vec8h im)
	Complex8h interleave_c (Vec8h re, Vec8h im)
	Complex16h interleave_c (Vec16h re, Vec16h im)
	Complex1f interleave_c (float re, float im)
	Complex2f interleave_c2 (Vec4f re, Vec4f im)
	Complex4f interleave_c (Vec4f re, Vec4f im)
	Complex8f interleave_c (Vec8f re, Vec8f im)
	Complex1d interleave_c(double re, double im)
	Complex2d interleave_c (Vec2d re, Vec2d im)
	Complex4d interleave_c (Vec4d re, Vec4d im)
	(the suffixes c2 and c4 are only used when the return type
	cannot be deduced from the input type)
Defined for	all complex number classes
Description	Interleave a vector of real parts and a vector of imaginary
	parts to form a vector of complex numbers
Efficiency	medium

Operators

Operator	+
Defined for	all complex number classes
Description	Add two complex number vectors, or one complex number vector and one real scalar of the same precision
Efficiency	good

```
// Example: Complex2f a(1,2, 3,4); Complex2f b(5,6, 7,8); Complex2f c = a + b; // c = (6,8) (10,12) Complex2f d = a + 10.0 f; // d = (11,2) (13,4)
```

Operator	-
Defined for	all complex number classes
Description	Subtract two complex number vectors, or one complex num-
	ber vector and one real scalar of the same precision
Efficiency	good

```
// Example: Complex2f a(5,6, 7,8)); Complex2f b(1,-1, 2,3); Complex2f c = a - b; // c = (4,7) (5,5) Complex2f d = a - 2.0 f; // d = (3,6) (5,8) Complex2f e = -a; // e = (-5,-6) (-7,-8)
```

```
        Operator
        *

        Defined for
        all complex number classes

        Description
        Multiply two complex number vectors, or one complex number vector and one real scalar of the same precision

        Efficiency
        medium

        Accuracy
        Complex number multiplication involves the calculation of sums of products. Loss of precision may occur if the result is close to zero. It is possible that the results of a * b and b * a are slightly different in this case. The function mul_accurate provides better accuracy.
```

```
// Example: Complex2f a(5,6,0,2);
```

Operator	
Defined for	all complex number classes
Description	Divide two complex number vectors, or one complex number
	vector and one real scalar of the same precision
Efficiency	medium
Accuracy	Complex division involves the same possible loss of preci-
	sion as complex multiplication. The function div_accurate
	provides better accuracy.

```
// Example: Complex2f a(2,4, 8,4); Complex2f b(1,2, 0,4); Complex2f c = a / b; // c = (2,0) (1,-2) Complex2f d = a / 2.0 f; // d = (1,2) (4,2) Complex2f e = 2.0 \, \text{f} // e = (0.4, -0.8) (0,-0.5)
```

Operator	~
Defined for	all complex number classes
Description	Complex conjugate. The sign of the imaginary part is in-
	verted
Efficiency	good

```
// Example: Complex2f a(1,2,3,4); Complex2f b = \sim a; // b = (1,-2) (3,-4)
```

Operator	==
Defined for	all complex number classes
Description	Compare for equality.
	The result is a boolean vector as defined by the vector class
	library.
	One complex number element corresponds to two boolean
	elements with the same value.
Efficiency	good

```
// Example:
Complex2f a(1, 2, 3,4);
Complex2f b(1,-2, 3,4);
Vec4fb c = (a == b); // c = (false, false, true, true)
```

Operator	!=
Defined for	all complex number classes
Description	Compare for not equal.
	The result is a boolean vector as defined by the vector class
	library.
	One complex number element corresponds to two boolean
	elements with the same value.
Efficiency	good

```
// Example: Complex2f a(1 ,2 , 3,4); Complex2f b(1,-2, 3,4); Vec4fb c = (a != b); // c = (true, true, false, false)
```

General functions

Function	to_float
Defined for	Complex1d, Complex2d, Complex4d
Description	Convert from double precision to single precision
Efficiency	good

```
// Example: Complex2d a(1.0,2.0, 3.0,4.0); Complex2f b = to_float(a); // b = (1.0f,2.0f) (3.0f,4.0f)
```

Function	to_float
Defined for	Complex1h, Complex2h, Complex4h, Complex8h
Description	Convert from half precision to single precision
Efficiency	good

Function	to_float16
Defined for	Complex1f, Complex2f, Complex4f, Complex8f
Description	Convert from single precision to half precision
Efficiency	good

Function	to_double
Defined for	Complex1f, Complex2f, Complex4f
Description	Convert from single precision to double precision
Efficiency	good

```
// Example: Complex2f a(1.0 f, 2.0 f, 3.0 f, 4.0 f); Complex2d b = to\_double(a); // b = (1.0, 2.0) (3.0, 4.0)
```

Function	to_vector
Defined for	all complex number classes
Description	Convert to a vector of interleaved real and imaginary parts.
Efficiency	good

```
// Example: Complex2f a(1,2, 3,4); Vec4f b = a.to\_vector(); // b = (1,2,3,4)
```

Function	select
Defined for	all complex number classes
Description	Choose between the elements of two vectors. This is useful
	when there are branches in the algorithm.
	The selector is a boolean vector defined in the Vector Class
	Library. The number of elements in the boolean vector must
	be double the number of elements in the complex vector.
	Each pair of boolean elemens must have the same value,
	unless you want to separate real and imaginary parts.
Efficiency	good

Function	mul_accurate
Defined for	all complex number classes
Description	multiplies complex numbers without loss of precision. mul_accurate(a, b) is more accurate than a * b if the instruction set FMA is enabled.
Efficiency	medium

Function	div_accurate
Defined for	all complex number classes
Description	divides complex numbers without loss of precision.
	div_accurate(a, b) is more accurate than a / b if the instruc-
	tion set FMA is enabled.
Efficiency	medium

Function	abs
Defined for	all complex number classes
Description	Gives the absolute value of each complex number element
	(also called modulus or Euclidean norm).
	The result is real numbers.
Efficiency	medium

```
// Example:
Complex2f a(0,2, 3,4);
Complex2f b = abs(a); // b = (2,0) (5,0)
```

Function	abs_greater, abs_less
Defined for	all complex number classes
Description	compares the absolute values of two complex numbers.
	a > b , a < b
	The result is a boolean vector with two identical elements for
	each complex pair
Efficiency	medium

```
// Example:
```

Function	chorizontal_add
Defined for	all complex number classes
Description	Calculates the sum of the complex elements of a vector
Efficiency	medium

```
// Example: Complex4d x(1,2, 3,4, 5,6, 7,8); Complex1d y = chorizontal\_add(x); // y = (16,20)
```

Mathematical functions

Function	csqrt
Defined for	all complex number classes
Description	Calculates the principal square root of complex numbers.
Efficiency	medium

```
// Example: Complex4d a(-3,4, 3,-4, -16,0, -16,-0.) Complex4d b = csqrt(a); // b = (1,2) (2,-1) (0,4) (0,-4);
```

Function	сехр
Defined for	all complex number classes
Description	Calculates the complex exponential function
Implementation	The files vectormath_exp.h and vectormath_trig.h must be
	included before complexvec1.h.
Efficiency	poor

```
// Example: const double pi = 3.14159265358979323846; Complex2d a(0,pi/2, 1,pi); Complex2d b = cexp(a); // b = (0,1) (-2.71828,0)
```

Function	clog
Defined for	single and double precision complex number classes
Description	Calculates the principal complex logarithm
Implementation	The files vectormath_exp.h and vectormath_trig.h must be
	included before complexvec1.h.
Efficiency	poor

```
// Example: const double e = 2.71828182845904523536; Complex2d a(0,-1, e,0); Complex2d b = clog(a); // b = (0,-1.5708) (1,0)
```

Interleaved representation versus separate real and imaginary vectors

Most complex number software is storing vectors of complex numbers with real and imaginary parts interleaved. The complex number vectors defined here are using the same pattern for the sake of compatibility with other software. However, it may be more efficient in some cases to store the real and imaginary parts in separate vectors. This may improve the performance if the algorithm involves many multiplications, divisions, or conversion to polar coordinates.

The following example shows how to convert complex number vectors between the interleaved representation and the representation with real and imaginary parts stored in separate vectors.

```
// Interleaved representations in two complex vector arrays
double Ainterleaved [4] = \{10,11, 20,21\};
double Binterleaved [4] = \{30,31, 40,41\};
// Load into complex vectors
Complex2d A, B;
A. load (Ainterleaved);
B. load (Binterleaved);
// Split into separate real and imaginary vectors
Vec2d Areal = A.real();
Vec2d Aimag = A.imag();
Vec2d Breal = B. real();
Vec2d Bimag = B.imag();
// calculate A*B using separate real/imag vectors
Vec2d AxBreal = Areal * Breal - Aimag * Bimag;
Vec2d AxBimag = Areal * Bimag + Aimag * Breal;
// convert A*B to interleaved representation
Complex2d AxB = interleave_c (AxBreal, AxBimag);
// calculate A/B using separate real/imag vectors
Vec2d dd = Breal * Breal + Bimag * Bimag;
Vec2d AdivBreal = (Areal * Breal + Aimag * Bimag) / dd;
Vec2d AdivBimag = (Aimag * Breal - Areal * Bimag) / dd;
// convert A to polar coordinates
Vec2d Aradius = sqrt (Areal*Areal + Aimag*Aimag);
Vec2d Angle = atan2 (Aimag, Areal);
```