ARITHMETIC

Chapter 22

5th of Secondary

MEDIDAS DE CENTRALIZACIÓN Y VARIACIÓN

En Grecia fueron famosos los métodos usados por Jerjes para contar a sus soldados: los hacía pasar a un recinto donde cabían 10000 soldados muy apretados. También se sabe que en el año 310 a. C., un censo efectuado bajo el reinado de Demetrio dio una población de 120000 personas libres y 400000 esclavos.

DATOS SIN AGRUPAR Media (\overline{x})

Es el promedio aritmético

Mediana (Me)

Es el dato central, ordenando los datos

Moda (Mo)

Es el dato con mayor frecuencia

Datos:

7; 5; 9; 7; 12; 7; 9; 8; 5; 10

$$\frac{2(5) + 3(7) + 8 + 2(9) + 10 + 12}{10}$$

$$\overline{x} = 7,9$$

$$Me = \frac{7+8}{2} = 7,5$$

Observación

√ 2; 5; 9; 7; 12; 6. (amodal)

√ 2; 5; 9; 2; 7; 5; 3. (bimodal)

Mo = 7

DATOS AGRUPADOS

(Eje (MISTDIBLIIDOS)					
I_i	x_i	f_i	$\boldsymbol{F_i}$	$x_i f_i$	
[5; 9)	7	8	8	56	
[9; 13)	11	15	23	165	
[13; 17)	15	12	35	180	
[17; 21)	19	5	40	95	
[21; 25)	23	10	50	230	
n =		50		694	

$$\bar{x} = \frac{\sum_{i=1}^{k} x_i f_i}{n}$$

$$\bar{x} = \frac{694}{50}$$

$$\bar{x} = 13,88$$

I_i	x_i	f_i	F_i	$x_i f_i$	
[5; 9)	7	8	8	56	
[9; 13)	11	15	23	165	← Mo
[13; 17)	15	12	35	180	← Me
[17; 21)	19	5	40	95	
[21; 25)	23	10	50	230	
n =		50		694	

Mediana (Me)

$$Me = L_i + \left[\frac{n}{2} - F_{i-1}\right] a_i$$

$$Me = 13 + \left[\frac{25 - 23}{12}\right] 4$$

$$Me = 13, \widehat{6}$$

Moda (*Mo*)

$$Mo = L_i + \left[\frac{f_i - f_{i-1}}{(f_1 - f_{i-1}) + (f_i - f_{i+1})} \right] a_i$$

$$Mo = 9 + \left[\frac{15 - 8}{(15 - 8) + (15 - 12)} \right] 4$$
 : $Mo = 11, 8$

Histograma

Moda (Mo)

$$3Mo - 27 = 91 - 7Mo$$

$$10Mo = 118$$

$$Mo = 11, 8$$

Aplicando proporcionalidad

I_i	x_i	f_i	$\boldsymbol{F_i}$	$x_i f_i$	
[5; 9)	7	8	8	56	
[9; 13)	11	15	23	165	← Mo
[13; 17)	15	12	35	180	← Me
[17; 21)	19	5	40	95	
[21; 25)	23	10	50	230	
n =		50		694	

Diag.F_i escalonado 50 40 35 23 8 5 9 13 17 21 25 7

Mediana (Me)

$$\frac{Me - 13}{25 - 23} = \frac{4}{12}$$

$$3Me - 39 = 2$$

$$3Me = 41$$

$$Me = 13, \hat{6}$$

Medidas de

dispersión dispersos se encuentran los datos alrededor del centro.

Los más conocidos son el rango, varianza, desviación estándar y coeficiente de variación.

1. VARIANZA MUESTRAL(S²)

A. Para datos no

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

B. Para datos

clas $s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2 f_i}{n}$

2.DESVIACIÓN ESTÁNDAR(s)

$$s = \sqrt{s^2}$$

3. COEFICIENTE DE VARIACIÓN (CV)

$$CV = \frac{s}{\overline{x}}$$

$$CV \times 100\%$$

1. En el curso de Aritmética cuyas notas finales fueron 4; 5; 6; 7; 8; 9; 10; 11 y 12, el profesor manifiesta que un alumno aprobará si su nota es mayor que la media aritmética o mayor que la mediana. ¿Cuántos alumnos no aprobarán?

Resolución

Media:

$$\bar{x} = \frac{4+12}{2} = 8$$

Mediana:

.: Cantidad de alumnos que no RPTA 5 aprobaron

2. Considere las siguientes tres muestras de datos simples:

Muestra 1: 1; 1; 2; 3; 4; 5; 5; 7; 1; 5; 7; 1

Muestra 2: 1; 2; 4; 0; 6; 7; 8; 3

Muestra 3: 1; 1; 3; 5; 7; 3; 1; 6; 3

Respecto a lo anterior, escriba verdadero (V) o falso (F) según corresponda.

- a. La moda en la muestra 1 es 1. (V)
- b. La moda en la muestra 2 es 0. (F)
- c. La muestra 3 es bimodal. (v)

Resolución

3. En el siguiente cuadro, calcule la suma de la mediana y la moda.

Resolució n

Edad	f_i	F_i
14	2	2
15	8	10
16	12	22
17	30	52
18	28	80
19	10	90
Total =		

Moda:

$$Mo = 17$$

Mediana:

$$Me = 17$$

Dato de mayor frecuencia

∴ 17 + 17 =

RPTA: 34

4. En cierta fábrica se hizo un estudio sobre la edad de los trabajadores, con el fin de establecer un plan de seguro grupal y se obtuvo los siguientes datos:

	I_i	f_i	F_i
	[20; 30)	2	2
[3	[30; 40)	4	6
Me 📥	[40; 50)	5	11
	[50; 60)	6	17
	[60; 70)	3	20

Total = 20

Resolución

Calcule la mediana.

$$Me = L_i + \left[\frac{\frac{n}{2} - F_{i-1}}{f_1}\right] a_i$$

$$Me = 40 + \left[\frac{10 - 6}{5}\right] 10$$

. Mediana:

RPTA 48

5. Del problema anterior, calcule la moda y la media.

Resolución

I_i	f_i	F_i
[20; 30)	2	2
$[30;40\rangle$	4	6
$[40;50\rangle$	5	11
[50; 60)	6	17
[60; 70)	3	20

Total
$$= 20$$

Mediana (Me)

$$Me = L_i + \left[\frac{\frac{n}{2} - F_{i-1}}{f_i}\right] a_i$$
 $Me = 40 + \left[\frac{10 - 6}{5}\right] 10$

$$Me = 40 + \left[\frac{10 - 6}{5}\right] 10$$

$$Me = 48$$

Moda

$$Mo = L_i + \left[\frac{f_i - f_{i-1}}{(f_1 - f_{i-1}) + (f_1 - f_{i+1})} \right] a_i$$

$$Mo = 50 + \left[\frac{6-5}{(6-5)+(6-3)} \right] 10$$

Mo = 52.5

6. Considerando la tabla de frecuencia calcule

a.
$$f_2 - f_3 + H_2$$
.

b. la mediana.

Edad	f_i	F_i	h_i	H_i
[0; 30)	20	20	0,1	0,1
[30; 60)	66	86	0,33	0,43
[60; 90)	60	146	0,3	0,73
[90; 120)	24	170	0,12	0,85
[120; 150)	30	200	0,15	1

Resolución

$$h_i = \frac{f_i}{n}$$
 $\frac{30}{n} = 0.15$ $n = 200$

$$f_1 = 20$$
 $f_3 = 60$
a. $f_2 - f_3 + H_2 = 6,43$

b. Mediana

$$Me = L_i + \left[\frac{n}{2} - F_{i-1}\right] a_i$$

$$Me = 60 + \left[\frac{100 - 86}{60}\right] 30$$

∴
$$Me = 67$$

7. Si el siguiente cuadro de distribución es simétrica y tiene un ancho de clase comúnica en comúnica

Edad	f_i	F_i	h_i
[20; 28 >	12	12	
[28; 36)	9	21	0,15
[36;44)	18	39	
[44;52)	9	48	
[52;60)	12	60	

calcule la moda.

Resolución

$$\frac{f_2}{60} = 0.15 \quad f_2 = 9$$

Distribución

$$\mathbf{simetrica} \\
f_5 = 12 \\
f_4 = 9$$

Moda

$$Mo = L_i + \left[\frac{f_i - f_{i-1}}{(f_1 - f_{i-1}) + (f_1 - f_{i+1})} \right] a_i$$

$$Mo = 36 + \left[\frac{18 - 9}{(18 - 9) + (18 - 9)} \right] 8$$

$$Mo = 40$$

8. Las notas de un examen de aptitud académica están distribuidas en el siguiente histograma de frecuencias:

Resolución

$$=\frac{L_i + Ls}{2}$$

$$= \frac{2}{2}$$

$$x_1$$
=6,5; x_2 =9,5; x_3 =13,5; x_4 =15,5 y x_5 = 18,5

$$\overline{X} = \frac{6x6,5 + 14x9,5 + 16x13,5 + 10x15,5 + 4x18,5}{6 + 14 + 16 + 10 + 4}$$

$$\overline{X} = 12,34$$

¿Cuál es la nota promedio?

