МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ТОЭ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Математические основы электротехники»

Тема: Исследование характеристик линейных и нелинейных резисторов и источников электромагнитной энергии

Киреев К.А.
Портной M.C.

Санкт-Петербург

Цель работы

Экспериментальное определение BAX линейных и нелинейных резисторов и источников электромагнитной энергии; изучение временных реакций линейных и нелинейных резисторов на заданные воздействия.

Основные теоретические положения

Зависимость между напряжением и током элемента электрической цепи называется его вольтамперной характеристикой (BAX). У линейного резистора BAX описывается уравнением прямой, проходящей через начало координат: u=Ri. У нелинейного резистора BAX соответствует нелинейное уравнение: u=f(i). Примеры BAX линейного и нелинейного резисторов показаны на рис. 1, а, б соответственно.

Рисунок 1 – Примеры ВАХ линейного и нелинейного резисторов

Идеальные источники напряжения и тока имеют ВАХ, изображенные сплошной линией соответственно на рис.2, а, б. Характеристики реальных источников в определенном диапазоне изменения токов и напряжений приближаются к ВАХ либо источников напряжения, либо источников тока. ВАХ реальных источников электромагнитной энергии изображены на рис.2, а, б пунктирными линиями.

Рисунок 2 – Характеристики реальных источников

Обработка результатов эксперимента

1.1.1 Определение ВАХ линейного и нелинейного резисторов

Вопрос 1. Что определяет угол наклона ВАХ линейного резистора?

Ответ на вопрос 1:

Тангенс угла наклона BAX линейного резистора определяет значение сопротивления данного резистора в прямо пропорциональном выражении.

Для выполнения работы была использована схема, представленная на рис.3:

Рисунок 3 – Схема для определения ВАХ линейного и нелинейного резисторов

Данные, полученные в ходе экспериментов для определения ВАХ линейного резистора, занесены в таблицу 1.1 в первые две строки. Вычисленное на их основе сопротивление резистора также занесено в таблицу третьей строкой. На основе полученной таблицы был построен график, изображенный на рис.4.

Таблица 1.1 - BAX линейного резистора.

U, B	-3	-2	-1	0	1	2	3
I, MA	-23.1	-19.0	-9.6	0	10	18.9	28.0
R, Om	129.8	105.3	104.2	-	100.0	105,8	107,1

Рисунок 4 – BAX линейного резистора

Вопрос 2. Если точки ВАХ, полученные экспериментально, не лежат строго на прямой, то чем это объяснить? Каким образом в таком случае провести график ВАХ?

Ответ на вопрос 2:

В этом случае распределение точек на графике объясняется такой неотъемлемой частью эксперимента как погрешности измерений. Провести прямую в данном случае можно воспользовавшись МНК (методом наименьших квадратов).

Данные, полученные в ходе экспериментов для определения ВАХ нелинейного резистора, занесены в таблицу 1.2 в первые две строки. Вычисленные на их основе сопротивления резистора также занесены в таблицу третьей строкой. На основе полученной таблицы был построен график, изображенный на рис. 5.

Таблица 1.2 - BAX нелинейного резистора.

U, B	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
I, MA	-2.7	-2.3	-1.8	-1.4	-1	-0.4	0	0.5	6.3	14	24.3
R, O _M	1111	1087	1111	1071	1000	1250	-	1000	158.7	107.1	82.3

Рисунок 5 – ВАХ нелинейного резистора

Вопрос 3. Какой зависимостью связаны между собой ток и напряжение линейного и нелинейного резисторов?

Ответ на вопрос 3:

У линейного резистора зависимость тока и напряжения будет строго линейной. В случае же с нелинейным резистором, зависимость будет нелинейной. (Для линейного резистора график — прямая, проходящая через начало координат. Для нелинейного — сложная функция: u = f(i))

1.1.2 Анализ временных зависимостей токов и напряжений линейного и нелинейного резисторов при синусоидальных воздействиях

Для снятия осциллограмм тока и напряжения линейного и нелинейного резисторов R при действии синусоидального напряжения, была собрана схема, изображенная на рис. 6.

Рисунок 6 — Схема для снятия осциллограмм тока и напряжения линейного и нелинейного резисторов R при действии синусоидального напряжения Осциллограмма тока и напряжения линейного резистора представлена на рис. 7.

Рисунок 7 – Осциллограмма тока и напряжения линейного резистора R при действии синусоидального напряжения

Вопрос 4. На какой вход осциллографа подаётся сигнал, пропорциональный току, а какой – напряжению?

Ответ на вопрос 4:

Канал 1 - ток, канал 2 - напряжение.

Вопрос 5. Может ли форма тока линейного резистора отличаться от формы напряжения, например, может ли ток быть несинусоидальным при синусоидальном напряжении?

Ответ на вопрос 5:

Нет, так как сопротивление резистора постоянно.

Вопрос 6. Заметно ли отличие формы тока от синусоидальной?

Ответ на вопрос 6:

Да, так как нелинейный резистор пропускает мало тока при напряжении U<0.

Осциллограмма тока и напряжения нелинейного резистора (R=100 Ом) представлена на рис. 8.

Рисунок 7 — Осциллограмма тока и напряжения нелинейного резистора R при действии синусоидального напряжения

По фотографиям можно сказать следующее о форме тока и напряжения линейного и нелинейного резисторов: на осциллограмме тока и напряжения линейного резистора формы тока и напряжения <u>синусоидальны</u>. На осциллограмме тока и напряжения нелинейного резистора форма напряжения имеет <u>синусоидальную</u> форму, а форма тока — <u>несинусоидальную</u>.

Вопрос 7. Какой формы будет ток линейного резистора, если напряжение будет иметь вид периодической последовательности прямоугольных импульсов?

Ответ на вопрос 7:

Ток линейного резистора будет иметь вид периодической последовательности прямоугольных импульсов, так как резистор имеет постоянное сопротивление.

1.1.3 Исследование ВАХ реальных источников

Для получения экспериментальных данных для построения ВАХ ИП была собрана схема, представленная на рис. 9.

Рисунок 9 – Схема для определения ВАХ реальных источников

Данные для построения ВАХ ИП, полученные в ходе эксперимента, занесены в таблицу 1.3. На основе полученной таблицы был построен график, изображенный на рис.10.

Таблица 1.3 - ВАХ ИП постоянного напряжения.

U, B	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
I, мА	40.0	18.8	14.4	9.9	9.3	7.3	6.7	5.7	5.2	4.4
R, Om	20	40	60	80	100	120	140	160	180	200

Рисунок 10 – ВАХ ИП постоянного напряжения.

Вопрос 8. Можно ли исследуемый источник считать близким к идеальному ИН или идеальному ИТ?

Ответ на вопрос 8:

Да, так как изменений напряжения в процессе измерений практически не наблюдалось.

Данные для построения ВАХ ИП, полученные в ходе эксперимента, занесены в таблицу 1.4. На основе полученной таблицы был построен график, изображенный на рис.11.

Таблица 1.4 – ВАХ ГС

U, B	1	0.92	0.8	0.4
I, MA	4.4	6.0	8.6	16.8
R, Om	200	140	80	30

Рисунок $10 - BAX \Gamma C$

Для определения внутреннего сопротивления ГС воспользуемся формулой:

$$u = u_{\Gamma C} - iR_{\Gamma C}, u_{\Gamma C} = 1B$$

Для определения внутреннего сопротивления возьмем значения u и i из табл. 1.4 при нагрузке R=80 Ом: u=0.8 В, i=8.6 мА. Тогда

$$R_{\Gamma C} = (u_{\Gamma C} - u) / i = (1 - 0.8) / (8.6 \cdot 10^{-3}) = 23.3 \text{ Om}$$

Проведем повторное вычисление, но уже взяв значения $u1=0.92~\mathrm{B},~i1=6.0~\mathrm{MA}$ из таблицы 1.4 при нагрузке $R=140~\mathrm{Om}.$

$$R_{\Gamma C} = (u_{\Gamma C} - u_1) / i_1 = (1 - 0.92) / (6.0 \cdot 10^{-3}) = 13.3 \text{ Om}$$

Выводы

В процессе выполнения лабораторной работы были исследованы ВАХ линейного и нелинейного резисторов, а также реальных источников, таких как генератор сигналов и ИП постоянного напряжения. Были определены сопротивление линейного резистора, внутреннее сопротивление ГС, а также изучена форма тока и напряжения на резисторах.

