Chapter-8

Matrix Eigenvalue Problems

8.1 Eigenvalues and Eigenvectors

Eigen values:

Let $A = [a_{jk}]$ be an $n \times n$ matrix and λ be a scalar. Then $D(\lambda) = \det(A - \lambda I) = |A - \lambda I| = 0$ is called characteristic equation of A.

A root of the characteristic equation, $|A - \lambda I| = 0$ is called an eigenvalue of characteristic value of A.

Here,
$$|A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$
.

Note: An $n \times n$ matrix A has at least one eigenvalue and at most n numerically different eigenvalues.

Examples:

Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$.

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 1 - \lambda & 3 \\ 4 & 5 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda)(5 - \lambda) - 12 = 0$$

$$\Rightarrow \lambda^2 - 6\lambda - 7 = 0$$

$$\Rightarrow (\lambda - 7)(\lambda + 1) = 0$$

$$\Rightarrow \lambda = -1, 7$$

Hence the eigenvalues of A are -1, 7.

Example:

Find the eigen values of the matrix $A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{bmatrix}$.

Solution: The characteristic equation of A is
$$|A - \lambda I| = 0$$

$$\begin{vmatrix}
1 - \lambda & -1 & 0 \\
1 & 2 - \lambda & -1 \\
3 & 2 & -2 - \lambda
\end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda)\{-(2 - \lambda)(2 + \lambda) + 2\} + 1(-2 - \lambda + 3) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - 2) + (1 - \lambda) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - 1) = 0$$

$$\Rightarrow \lambda = 1, 1, -1$$

Hence the eigenvalues of A are 1, 1-1.

Eigen Vectors:

Let A be an $n \times n$ matrix. A non-null vector X which is a solution of the vector equation $AX = \lambda X$, is called an eigenvector or characteristic vector of A. Here λ is a scalar.

Example:

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} -5 - \lambda & 2 \\ 2 & -2 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^2 + 7\lambda + 6 = 0$$
$$\Rightarrow \lambda = -1, -6$$

Let $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be an eigen vector corresponding to $\lambda = -1$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$\Rightarrow -4x_1 + 2x_2 = 0, \quad 2x_1 - x_2 = 0$$

$$\Rightarrow 2x_1 - x_2 = 0$$

Let
$$x_1 = k$$
, then $x_2 = 2k$ where, $k \neq 0$.
So, $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k \\ 2k \end{bmatrix} = k \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Hence the eigenvector corresponding to $\lambda = -1$ is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Similarly, let $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be an eigenvector corresponding to $\lambda = -6$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -6 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow x_1 + 2x_2 = 0, \ 2x_1 + 4x_2 = 0$$

$$\Rightarrow x_1 + 2x_2 = 0$$

Let
$$x_1 = k$$
, then $x_2 = -k/2$ where, $k \neq 0$.
So, $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} k \\ -k/2 \end{bmatrix} = k/2 \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

Hence the eigenvector corresponding to $\lambda = -6$ is $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Example:

Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\begin{vmatrix} 1 - \lambda & 1 & -2 \\ -1 & 2 - \lambda & 1 \\ 0 & 1 & -1 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda)\{(2 - \lambda)(-1 - \lambda) - 1\} - 1(\lambda + 1 - 0) - 2(-1 - 0) = 0$$

$$\Rightarrow (1 - \lambda)\{(2 - \lambda)(-1 - \lambda) - 1\} + (1 - \lambda) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - \lambda - 2) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda - 2)(\lambda + 1) = 0$$

\Rightarrow \lambda = 1, 2, -1

Let
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 be an eigenvector corresponding to $\lambda = 1$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow 0x_1 + x_2 - 2x_3 = 0, \tag{1}$$

$$-x_1 + x_2 + x_3 = 0,$$
(2)

Solving Eqs.(1) and (2) by cross multiplication method, we get

$$\frac{x_1}{1+2} = \frac{x_2}{2-0} = \frac{x_3}{0+1}$$

$$\Rightarrow \frac{x_1}{3} = \frac{x_2}{2} = \frac{x_3}{1} = k \text{ (say)}$$

Then $x_1 = 3k$, $x_2 = 2k$, $x_3 = k$. You can easily verify that this solution is also satisfied Eq. (3).

So,
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3k \\ 2k \\ k \end{bmatrix} = k \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

Hence the eigenvector corresponding to $\lambda = 1$ is $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$.

Let $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ be an eigen vector corresponding to $\lambda = 2$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 2 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\Rightarrow -x_1 + x_2 - 2x_3 = 0, \tag{1}$$

$$-x_1 + 0x_2 + x_3 = 0, \tag{2}$$

$$0x_1 + x_2 - 3x_3 = 0 \tag{3}$$

Solving Eqs.(1) and (2) by cross multiplication method, we get

$$\frac{x_1}{1-0} = \frac{x_2}{2+1} = \frac{x_3}{0+1}$$

$$\Rightarrow \frac{x_1}{1} = \frac{x_2}{3} = \frac{x_3}{1} = k \text{ (say)}$$

Then $x_1 = k$, $x_2 = 3k$, $x_3 = k$. You can easily verify that this solution is also satisfied Eq. (3).

So,
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} k \\ 3k \\ k \end{bmatrix} = k \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

Hence the eigenvector corresponding to $\lambda = 2$ is $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

Similarly, you can obtain the eigen value corresponding to $\lambda = -1$.

The eigenvalue corresponding to $\lambda = -1$ will be $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Eigen Basis (Basis of eigenvectors):

Let A be an $n \times n$ matrix. Then an eigen basis is a basis of \mathbb{R}^n consisting of eigenvectors of A. If A has n distinct eigenvalues, then A has a basis of eigenvectors $X_1, X_2, ..., X_n$ for \mathbb{R}^n .

Eigen space:

The eigenvectors corresponding to one and the same eigenvalue λ of A together with null vector **0**, form a vector space, called the Eigen space of A corresponding to that λ . It is usually denoted by E_{λ} .

Algebraic Multiplicity and Geometric Multiplicity:

The order of an eigenvalue λ is called the algebraic multiplicity of λ and it is denoted by M_{λ} .

The number of linearly independent eigenvectors corresponding to an eigenvalue λ is called the geometric multiplicity of λ and it is denoted by m_{λ} . Thus, the geometric multiplicity is the dimension of the Eigen space corresponding to this λ .

An eigenvalue λ is regular if $M_{\lambda} = m_{\lambda}$.

Example: Find the algebraic multiplicity and geometric multiplicity of the eigenvalues of the matrix $A = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$.

Solution: The characteristic equation of A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} = 0$$

\Rightarrow (\lambda - 3)^2 = 0
\Rightarrow \lambda = 3, 3

Hence the algebraic multiplicity of $\lambda = 3$ is $M_3 = 2$.

Let $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ be an eigen vector corresponding to $\lambda = 3$. Then

$$AX = \lambda X$$

$$\Rightarrow \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow 2x_2 = 0, \quad 3x_2 = 3x_2$$

$$\Rightarrow x_2 = 0$$

So,
$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

The eigen vector corresponding to $\lambda = 3$ is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Hence the geometric multiplicity of $\lambda = 3$ is $m_3 = 1$.

Results:

1: If A is a $n \times n$ triangular matrix -upper triangular, lower triangular or diagonal, the eigenvalues of A are the diagonal entries of A.

2: $\lambda = 0$ is an eigenvalue of *A* if *A* is a singular (noninvertible) matrix.

3: A and A^T have the same eigenvalues.

4: det *A* is the product of the eigenvalues of *A*.

5: If λ be an eigenvalue of A, then

- a) $k\lambda$ is an eigenvalue of kA, k = scalar.
- b) λ^2 is an eigenvalue of A^2

8.3. Symmetric, Skew-Symmetric, and Orthogonal Matrices

Symmetric, Skew-Symmetric, and Orthogonal Matrices.

A real square matrix $A = [a_{jk}]$ is called

1. **symmetric** if transposition leaves it unchanged,

$$A^T = A$$
, thus $a_{kj} = a_{jk}$,

2. skew-symmetric if transposition gives the negative of A,

$$A^{T} = -A$$
, thus $a_{kj} = -a_{jk}$,

3. orthogonal if transposition gives the inverse of A,

$$A^{T} = A^{-1}$$
.

Example: The matrices

$$\begin{bmatrix} -3 & 1 & 5 \\ 1 & 0 & -2 \\ 5 & -2 & 4 \end{bmatrix}, \begin{bmatrix} 0 & 9 & -12 \\ -9 & 0 & 20 \\ 12 & -20 & 0 \end{bmatrix}, \text{ and } \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$

are symmetric, skew-symmetric, and orthogonal, respectively.

Note:

- 1. The determinant of an orthogonal matrix has the value +1 or -1.
- 2. Every square matrix can be expressed as the addition of symmetric and skew-symmetric matrix.

$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$

Eigenvalues of Symmetric and Skew-Symmetric and Orthogonal Matrices:

- (a) The eigenvalues of a symmetric matrix are real.
- **(b)** The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.
- (c) The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs and have absolute value 1.

Example:

The matrix $\begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$ is symmetric and has eigenvalues 2 and 8.

The matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ is skew-symmetric and has eigenvalues -i and i.

Example: The orthogonal matrix

$$\begin{bmatrix} \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \end{bmatrix}$$

has eigenvalues -1, $(5+i\sqrt{11})/6$ and $(5-i\sqrt{11})/6$, which have absolute value 1.

8.5. Complex Matrices and Different Forms.

Complex Conjugate Matrix

 $\bar{A} = [\bar{a}_{ik}]$ is obtained from $A = [a_{ik}]$ by replacing each entry $a_{ik} = \alpha + i\beta$ (α , β real) with its complex conjugate $\bar{a}_{jk} = \alpha - i\beta$. Also, $\bar{A}^T = [\bar{a}_{kj}]$ is the transpose of \bar{A} , hence the conjugate transpose of A.

Hermitian, Skew-Hermitian, and Unitary Matrices.

A square matrix $A = [a_{ki}]$ is called

 $\begin{array}{lll} \textbf{Hermitian} & & \text{if $\bar{A}^T=A$,} & \text{that is,} & \bar{a}_{kj}=a_{jk} \\ \textbf{skew-Hermitian} & & \text{if $\bar{A}^T=-A$,} & \text{that is,} & \bar{a}_{kj}=-a_{jk} \\ \textbf{unitary} & & \text{if $\bar{A}^T=A^{-1}$.} \end{array}$ 1.

3.

Note:

1. Let A be a unitary matrix. Then its determinant has absolute value one, that is, $|\det A| = 1.$

2. Every complex square matrices can be expressed as the addition of Hermitian and Skew-Hermitian matrices.

$$A = \frac{A + (\overline{A})^T}{2} + \frac{A - (\overline{A})^T}{2}$$

Eigenvalues of Hermitian and Skew-Hermitian and Unitary Matrices.

(a) The eigenvalues of a Hermitian matrix (and thus of a symmetric matrix) are real.

(b) The eigenvalues of a skew-Hermitian matrix (and thus of a skew-symmetric matrix) are pure imaginary or zero.

(c) The eigenvalues of a unitary matrix (and thus of an orthogonal matrix) have absolute value 1.

Example:

The matrix $\begin{bmatrix} 4 & 1-3i \\ 1+3i & 7 \end{bmatrix}$ is Hermitian and has eigenvalues 9 and 2.

The matrix $\begin{bmatrix} 3i & 2+i \\ -2+i & -i \end{bmatrix}$ is skew-Hermitian and has eigenvalues 4i and -2i.

The matrix $\begin{vmatrix} \frac{1}{2}i & \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & \frac{1}{2}i \end{vmatrix}$ is unitary and has eigenvalues $(\sqrt{3}+i)/2$ and $(-\sqrt{3}+i)/2$, which have

absolute value 1.

Different Forms

1. Quadratic Form

Quadratic form is an expression of the form

$$Q = x^{T} A x$$

$$Where A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \text{ and } x = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$\Rightarrow Q = x^{T} A x = a_{11} x_{1}^{2} + a_{12} x_{1} x_{2} + \cdots + a_{1n} x_{1} x_{n} + a_{21} x_{1} x_{2} + a_{22} x_{2}^{2} + \cdots + a_{n1} x_{1} x_{n} + \cdots + a_{nn} x_{n}^{2}$$

$$\Rightarrow Q = x^{T} A x = a_{11} x_{1}^{2} + a_{22} x_{2}^{2} + \cdots + a_{nn} x_{n}^{2} + (a_{12} + a_{21}) x_{1} x_{2} + (a_{13} + a_{31}) x_{1} x_{3} + \cdots + (a_{1n} + a_{n1}) x_{1} x_{n}$$
In particular

Determination of Symmetric matrix from Quadratic form

From the given Quadratic form $Q = x^T Ax$ we can obtain symmetric matrix as follows:

- Place coefficients of x_i^2 diagonally. I.
- Divide the coefficients of $x_i x_j$, $i \neq j$ equally and place equal values at a_{ij} and II. a_{ii} places respectively.

Example: Find the symmetric matrix from the following quadratic form

$$Q = 2x_1^2 + 4x_2^2 + 3x_3^2 + 10x_1x_2 + 12x_2x_3 + 8x_3x_1$$

Solution: In case of symmetric matrix
$$a_{ij} = a_{ji}$$

$$\Rightarrow Q = 2x_1^2 + 4x_2^2 + 3x_3^2 + (5+5)x_1x_2 + (6+6)x_2x_3 + (4+4)x_3x_1$$
The symmetric matrix is

$$A = \begin{bmatrix} 2 & 5 & 4 \\ 5 & 4 & 6 \\ 4 & 6 & 3 \end{bmatrix}$$

2. Hermitian Form

Hermitian form H is given by

$$H = \bar{x}^T A x$$

Where A is a Hermitian matrix and x is a column matrix.

Note: Hermitian form is always real.

Example: Is the following matrix Hermitian or Skew-Hermitian matrix? Find the Hermitian form or Skew-Hermitian form.

$$A = \begin{bmatrix} 4 & 3-2i \\ 3+2i & -4 \end{bmatrix}, x = \begin{bmatrix} -2i \\ 1+i \end{bmatrix}$$
Solution: $\bar{A} = \begin{bmatrix} 4 & 3+2i \\ 3-2i & -4 \end{bmatrix}, \bar{A}^T = \begin{bmatrix} 4 & 3-2i \\ 3+2i & -4 \end{bmatrix} = A$

Since $\bar{A}^T = A$, so A is Hermitian.

Hermitian form is $H = \bar{x}^T A x$

Here
$$x = \begin{bmatrix} -2i \\ 1+i \end{bmatrix}$$
 $\Rightarrow \bar{x} = \begin{bmatrix} 2i \\ 1-i \end{bmatrix}$
 $\Rightarrow H = \bar{x}^T A x = \begin{bmatrix} 2i \\ 1-i \end{bmatrix} \begin{bmatrix} 4 & 3-2i \\ 3+2i & -4 \end{bmatrix} \begin{bmatrix} -2i \\ 1+i \end{bmatrix} = \begin{bmatrix} 7i+5 & 10i \end{bmatrix} \begin{bmatrix} -2i \\ 1+i \end{bmatrix} = 4$

3. Skew-Hermitian Form

Skew-Hermitian form S is given by

$$H = \bar{x}^T A x$$

Where *A* is a Skew-Hermitian matrix and *x* is a column matrix.

Note: Skew-Hermitian form is always 0 or purely imaginary.

Example: Is the following matrix Hermitian or Skew-Hermitian matrix? Find the Hermitian form or Skew-Hermitian form.

$$A = \begin{bmatrix} i & -2+3i \\ 2+3i & 0 \end{bmatrix}, x = \begin{bmatrix} i \\ 4 \end{bmatrix}$$
Solution: $\overline{A} = \begin{bmatrix} -i & -2-3i \\ 2-3i & 0 \end{bmatrix}, \overline{A}^T = \begin{bmatrix} -i & 2-3i \\ -2-3i & 0 \end{bmatrix} = -\begin{bmatrix} i & -2+3i \\ 2+3i & 0 \end{bmatrix} = -A$

Since $\overline{A}^T = -A$, so A is Skew-Hermitian.

Skew-Hermitian form is $S = \overline{x}^T A x$

Here
$$x = \begin{bmatrix} i \\ 4 \end{bmatrix}$$
 $\Rightarrow \bar{x} = \begin{bmatrix} -i \\ 4 \end{bmatrix}$
 $\Rightarrow S = \bar{x}^T A x = \begin{bmatrix} -i \\ 4 \end{bmatrix} \begin{bmatrix} i \\ 2+3i \end{bmatrix} \begin{bmatrix} i \\ 4 \end{bmatrix} = \begin{bmatrix} 9+12i \\ 2i+3 \end{bmatrix} \begin{bmatrix} i \\ 4 \end{bmatrix} = 17i$

8.4 Eigen basis. Diagonalization

Similarity of Matrices

A square matrix \hat{A} of order n is said to be similar to a $n \times n$ square matrix A if there exists a non-singular matrix P such that

$$\hat{A} = P^{-1}AP$$

This transformation of A to \hat{A} is known as *Similarity transformation*.

Note:

- 1. Eigenvalues of \hat{A} = Eigenvalues of \hat{A}
- 2. If X is an eigenvector of A corresponding to the eigenvalue λ i.e. $AX = \lambda X$, $X \neq 0$ then $Y = P^{-1}X$ is an eigenvector of \hat{A} corresponding to same eigenvalue λ , means $\hat{A}(P^{-1}X) = \lambda(P^{-1}X)$, $P^{-1}X = Y \neq 0$

Basis of Eigenvectors

If A is a square matrix of order n and it has n distinct eigenvalues then the corresponding n eigenvectors are L. I. and they will form a basis which is known as **basis of eigenvectors or Eigen basis**.

Note:

- 1. A symmetric matrix has an orthonormal basis of eigenvectors.
- 2. A Hermitian, Skew-Hermitian or unitary matrix has a basis of eigenvectors which is a unitary system or unitary Eigen basis.
- 3. A basis of eigenvectors is possible if algebraic multiplicity of λ = geometric multiplicity.

Example: Let
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Eigenvalues

The characteristic equation is $|A - \lambda I| = 0$.

$$\Rightarrow \begin{vmatrix} -\lambda & 1 \\ 0 & -\lambda \end{vmatrix} = 0 \qquad \Rightarrow \lambda^2 = 0 \qquad \Rightarrow \lambda = 0, \ 0$$

Hence for $\lambda = 0$, A. M. =2

Eigenvectors

The homogeneous system is $(A - \lambda I)X = 0$, $X \neq 0$.

$$\Rightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Rightarrow 0x_1 + x_2 = 0$$
$$0x_1 + 0x_2 = 0$$

Here $x_2 = 0$ but x_1 is arbitrary.

$$\Rightarrow X = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, This is the only one eigenvector.

Hence G. M. =1

Therefore A cannot provide a basis of eigenvectors.

Diagonalization

Let A be any square matrix and X be the Modal matrix whose column vectors are eigenvectors of A. Then the **Diagonalization** of the matrix A is denoted by D and defined by

$$D = X^{-1}AX$$

Note:

- 1. Only those matrices can be diagonalized if there exists a basis of eigenvectors.
- 2. A square matrix A of order n with n L. I. eigenvectors is similar to a diagonal matrix D whose diagonal elements are eigenvalues of A.
- 3. Powers of a matrix A

We have
$$D = X^{-1}AX$$

$$\Rightarrow D^2 = DD = (X^{-1}AX)(X^{-1}AX) = X^{-1}A^2X$$

Similarly
$$D^3 = X^{-1}A^3X$$

In general, $D^n = X^{-1}A^nX$

To obtain A^n we have to pre-multiply by X and post multiply by X^{-1}

$$\Rightarrow XD^nX^{-1} = XX^{-1}A^nXX^{-1} = A^n$$

Hence
$$A^n = XDX^{-1}$$
.

Procedure of Diagonalization

Any square matrix which has a basis of eigenvectors can be diagonalized as follows:

- I. Find the eigenvalues of the given matrix A
- II. Find eigenvectors.
- III. Form a Modal matrix *X* by taking eigenvectors as its columns.
- IV. Calculate X^{-1} .
- V. The diagonal matrix is $D = X^{-1}AX$ (Main diagonal elements are eigenvalues of A).

Example: Diagonalize the following matrix

$$A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$$

Solution: Eigenvalues

The characteristic equation is $|A - \lambda I| = 0$.

$$\Rightarrow \begin{vmatrix} 2 - \lambda & 1 \\ 2 & 1 - \lambda \end{vmatrix} = 0 \qquad \Rightarrow (2 - \lambda)(1 - \lambda) - 2 = 0$$

$$\Rightarrow \lambda^2 - 3\lambda = 0$$

The eigenvalues are $\lambda_1 = 0$ and $\lambda_2 = 3$.

Eigenvector for $\lambda_1 = 0$

The homogeneous system is $(A - \lambda_1 I)X_1 = 0$, $X_1 \neq 0$.

$$\Rightarrow \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Rightarrow 2x_1 + x_2 = 0$$
$$2x_1 + x_2 = 0$$

Both the equations are identical.

 $\Rightarrow x_2 = -2x_1$, Here x_1 is arbitrary.

$$X_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ -2x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

The eigenvector for $\lambda_1 = 0$ is

$$X_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Eigenvector for $\lambda_2 = 3$

The homogeneous system is $(A - \lambda_2 I)X_2 = 0$, $X_2 \neq 0$.

$$\Rightarrow \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Rightarrow -x_1 + x_2 = 0$$
$$2x_1 - 2x_2 = 0$$

Both the equations are identical.

 $\Rightarrow x_2 = x_1$, Here x_1 is arbitrary.

$$X_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

The eigenvector for $\lambda_2 = 3$ is

$$X_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

The **modal matrix** is
$$X = \begin{bmatrix} X_1 & X_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$

$$\Rightarrow |X| = 1 + 2 = 3$$

$$\Rightarrow X^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{bmatrix}$$

$$\Rightarrow D = X^{-1}AX = \begin{bmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix}$$

This is the required diagonal matrix whose diagonal elements are eigenvalues of the matrix A.