

¿Cómo estimar estadísticamente la estatura de un árbol?

Jhonatan Smith García Alejandro Rengifo Gómez Yuberth Anderson Saavedra

Consideraciones iniciales

Inicialmente se eligió un árbol del que se pudiera recopilar información fundamental para resolver la pregunta planteada; (evidentemente, el dato más relevante sería la altura). A partir de la información obtenida se planteó una serie de experimentos que facilitaron la resolución del problema.

Como Resolverlo

En primera instancia, se escogió un árbol del cual se facilitara tomar información y mediante un proceso trigonométrico se obtuvo su altura (19 metros). Luego se tuvo en cuenta algunas variables y posteriormente, se realizó una encuesta con ciertos parámetros y restricciones; con la información obtenida se emplearon las diferentes herramientas estadísticas para responder la pregunta.

Recopilación de datos

Variables que se tuvieron en cuenta:

- o Género
- Distancia (15 metros y 30 metros)

ANÁLISIS DE LA INFORMACIÓN

TABLA 1:	GENERO			
DATOS OBTENIDOS	MUJERES	HOMBES	MUJERES	HOMBRES
DISTANCIA REAL	15 METROS		30 METROS	
19	23	8	13	14
19	28	10	24	19
19	12	12	29	25
19	24	20	13	23
19	26	25	12	28
19	23	18	28	32
19	20	10	31	18
19	27	10	42	12
19	45	12	16	15
19	12	11	19	25

Herramientas estadísticas implementadas para la solución del problema

La media muestral: se empleó para determinar la altura general de árbol en base a los datos obtenidos, así dar una aproximación de lo que creen los encuestados que mide el árbol.

• A continuación se presenta el promedio de los datos sin tener en cuenta las variables distancia y género, (tabla 2).

<u>Tabla 2: promedio alturas general</u>		
Sumatoria de las alturas	2503	
Número de datos	120	
Altura promedio	20,86	

Tabla 3: promedio alturas de todas las variablesMujeres a 15 metros22,33Hombres a 15 metros15,8Mujeres a 30 metros22,23Hombres a 30 metros23,033

 En base a las medias calculadas para los datos obtenidos, se puede decir que en cuento a la altura correspondiente a la de un árbol el cual mide 19 metros, las mujeres a 15 metros y 30 metros, estiman mejor las estaturas que los hombres en ambas situaciones. • Gráfico de dispersión: este nos permite observar gráficamente la variabilidad de los datos suministrados por los encuestados. Con esto, fijamos el punto de referencia (en este caso, la altura original del árbol) y comparamos toda la muestra con el dato real.

Realizando los gráficos se observa:

Gráfico de dispersión para la distancia

Gráfico de dispersión para la distancia

Hombres a 15 metros

Mujeres a 15 metros

La relación entre los gráficos:

Al observar los dos gráficos simultáneamente, parece observarse que a la distancia de 15 metros las mujeres tienen una mejor percepción visual del árbol; en otras palabras, se acercan mas a la altura real del árbol. Sin embargo la única forma de verificar este hecho es haciendo los cálculos pertinentes; para ello se realizará la siguiente operación:

Error real: consiste en restarle a la altura real del árbol, la altura recopilada al encuestar cada persona. Ejemplo; si suponemos que un dato obtenido es 12, entonces al restarle este a 19, la diferencia es 7; por lo tanto, se dice que el margen de error esta subvalorado.

Error real = Altura real - Dato obtenido

Tabla 4: errores reales a la distancia 1

HOMBRES				
DISTANCIA 1	ERROR REAL			
8	11			
10	9			
12	7			
20	-1			
25	-6			
18	1			
10	9			
10	9			
12	7			
11	8			
8	11			

MUJERES				
DISTANCIA 1	ERROR REAL			
23	-4			
28	-9			
12	7			
24	-5			
26	-7			
23	-4			
20	-1			
27	-8			
45	-26			
12	7			
27	-8			

La suma de los cuadrados de los errores reales representara el error en sí, es decir, donde la suma de los cuadrados sea mayor, el margen de error es mayor y por ende, menos exacto, por lo tanto:

Suma error cuadrados hombres= 2000 Suma error cuadrado mujeres = 1801

Como se puede apreciar que al ser el error más grande esta en los datos correspondientes a los hombres, a diferencia las mujeres poseen una mejor percepción visual del árbol, según los datos; a una distancia de 15 metros.

Gráfico de dispersión para la distancia

Gráfico de dispersión para la distancia

En comparativa con las dos gráficas anteriores a estas (15 metros respectivamente) difícilmente se puede detectar alguna diferencia que aporte algún dato relevante para responder la pregunta. Es decir, a diferencia de los datos a 15 metros, esta muestra no representa gran diferencia entre su grafica a comparar (30 metros); en pocas palabras, los datos de hombres y mujeres a una distancia de 30 metros son similares, pero no iguales, y para conocer con certeza, un dato más real, se calcula el error real para la distancia 2.

Tabla 5: Errores Reales para la Distancia 2

HOMBRES		MUJERES		
DISTANCIA 2	ERROR REAL	DISTANCIA 2	ERROR REAL	
14	5	13	6	
19	0	24	-5	
25	-6	29	-10	
23	-4	13	6	
28	-9	12	7	
32	-13	28	-9	
18	1	31	-12	
12	7	42	-23	
15	4	16	3	
25	-6	19	0	
10	9	23	-4	
42	-23	15	4	
12	7	18	1	

La suma de los cuadrados de los errores reales representara el error en sí, es decir, donde la suma de los cuadrados sea mayor, el margen de error es mayor y por ende menos exacto, por lo tanto:

Suma error cuadrados Hombres= 2747

Suma error cuadrado mujeres = 1779

Según el error real, las mujeres a 30 perciben mejor la altura del árbol, y son más acertadas.

CONCLUSIONES

- Según los parámetros establecidos para el experimento:
- A distancia de 15 metros las mujeres tienen ligeramente una mejor percepción visual de la altura del árbol, (lo que confirma una hipótesis inicial, que un género estimaría mejor que otro).