Theoretical Computer Science Tutorial Week 4

Prof. Andrey Frolov

nnoboria

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

FSA (Formal definition)

Definition

A (complete) Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

Q is a finite set of *states*;

 Σ is a finite input alphabet;

 $q_0 \in Q$ is the *initial* state;

 $A \subseteq Q$ is the set of *accepting* states;

 $\delta: Q \times \Sigma \to Q$ is a (total) *transition* function.

FSA: formally

Example (by formal definition)

$$M = \langle \{q_0, q_1\}, \{0, 1\}, \{(q_0, 0), q_0\}, ((q_0, 1), q_1), ((q_1, 0), q_0), ((q_1, 1), q_1)\}, q_0, \{q_1\} \rangle$$

or

Example (by formal definition)

$$M=\langle\{q_0,q_1\},\{0,1\},\delta,q_0,\{q_1\}
angle$$
, where $\delta(q_0,0)=q_0,\delta(q_0,1)=q_1,\delta(q_1,0)=q_0,\delta(q_1,1)=q_1$

FSA: formally

Example of a FSA (by formal definition)

```
\begin{array}{ll} \textit{M} = \langle \\ \{q_0,q_1\}, & \text{set of states} \\ \{0,1\}, & \text{input alphabet} \\ \{((q_0,0),q_0),((q_0,1),q_1), \\ & ((q_1,0),q_0),((q_1,1),q_1)\}, & \text{total transition function} \\ q_0, & \text{initial state} \\ \{q_1\} & \text{set of final states} \\ \rangle \end{array}
```

FSA: Graphical Representation

State Transition Diagram

Example (by formal definition)

$$M = \langle \{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\} \rangle$$
, where $\delta(q_0, 0) = q_0, \delta(q_0, 1) = q_1, \delta(q_1, 0) = q_0, \delta(q_1, 1) = q_1$

FSA: Table Representation

State Transition Table

	0	1
$ ightarrow q_0$	q 0	q_1
*q_1	q 0	q_1

State Transition Diagram

Given an FSA as a State Transition Diagram, build a State Transition Table

	а	Ь
$ ightarrow q_0$		
q_1		
* q 2		

Given an FSA as a State Transition Diagram, build a State Transition Table

$$\begin{array}{c|cccc}
 & a & b \\
\hline
 \rightarrow q_0 & q_0 \\
 & q_1 \\
 & *q_2
\end{array}$$

Given an FSA as a State Transition Diagram, build a State Transition Table

Given an FSA as a State Transition Diagram, build a State Transition Table

Given an FSA as a State Transition Diagram, build a State Transition Table

Given an FSA as a State Transition Diagram, build a State Transition Table

	a	b
$ ightarrow q_0$	q 0	q_1
q_1	q_2	q_0
* q 2	q 2	

Given an FSA as a State Transition Diagram, build a State Transition Table

	а	b
$ ightarrow q_0$	q 0	q_1
q_1	q_2	q_0
$*q_{2}$	q_2	q_1

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

FSA (Formal definition)

Definition

A Finite State Automaton is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where

Q is a finite set of states;

 Σ is a finite *input alphabet*;

 $q_0 \in Q$ is the *initial* state;

 $A \subseteq Q$ is the set of *accepting* states;

 $\delta: Q \times \Sigma \to Q$ is a partial transition function.

If a FSA is not complete?

$$egin{array}{c|cccc} & a & b \\ \hline
ightarrow q_0 & q_1 & \\
ightarrow q_1 & q_1 & \end{array}$$

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

Regular Languages

Definition

A languages is called regular, if it recognized by a FSA.

Operations

Problem

If we have an algorithm to accept L, how can we formulate an algorithm to accept L^c ?

Problem

Suppose L_1 and L_2 are both languages over the alphabet A.

If we have one algorithm to accept L_1 and another to accept L_2 , how can we formulate an algorithm to accept $L_1 \cap L_2$? (similarly, $L_1 \cup L_2$ or $L_1 \setminus L_2$).

Operations

Problem

Suppose $M=(Q^1,A,\delta^1,q_0^1,F^1)$ is a finite automaton accepting L.

What is an automaton which accepts L^c ?

Problem

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively.

What is an automaton which accepts $L_1 \cap L_2$? (similarly, $L_1 \cup L_2$, $L_1 \setminus L_2$)?

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

Complement

Suppose $M = (Q, A, \delta, q_0, F)$ is a complete FSA accepting L.

The automaton $M^c=(Q,A,\delta,q_0,F^c)$ accepts the language L^c .

Recall that

$$F^c = Q \setminus F$$

$$M = \langle \{q_0, q_1\}, \{a\}, \\ \{((q_0, a), q_1), ((q_1, a), q_0)\}, \\ q_0, \{q_1\}\rangle$$

$$M^{c} = \langle \{q_{0}, q_{1}\}, \{a\}, \{((q_{0}, a), q_{1}), ((q_{1}, a), q_{0})\}, q_{0}, \{q_{0}\} \rangle$$

What would be the complement M^c ?

What would be the complement M^c ?

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

Intersection

Suppose $M^1 = (Q^1, A, \delta^1, q_0^1, F^1)$ and $M^2 = (Q^2, A, \delta^2, q_0^2, F^2)$ are finite automata accepting L_1 and L_2 , respectively.

$$egin{aligned} Q &= Q^1 imes Q^2 \ A \ q_0 &= (q_0^1, q_0^2) \ \delta((q, p), a) &= (\delta^1(q, a), \delta^2(p, a)) \ F &= \{(q, p) \in Q^1 imes Q^2 \mid q \in F^1 \& p \in F^2 \} \end{aligned}$$

The automaton $M = (Q, A, \delta, q_0, F)$ accepts the language $L_1 \cap L_2$.

$$M = M_1 \cap M_2$$

$$M^1 = \langle \{q_0, q_1\}, \{a\}, \\ \{((q_0, a), q_1), ((q_1, a), q_0)\}, \\ q_0, \{q_1\} \rangle$$

$$M^2 = \langle \{p_0\}, \{a\},$$
$$\{((p_0, a), p_0)\},$$
$$p_0, \{p_0\}\rangle$$
$$\text{start} \longrightarrow \boxed{p_0} \quad \text{a}$$

$$M^1 = \langle \{q_0, q_1\}, \{a\}, \ \{((q_0, a), q_1), ((q_1, a), q_0)\}, \ q_0, \{q_1\} \rangle$$
 $M^2 = \langle \{p_0\}, \{a\}, \ \{((p_0, a), p_0)\}, \ p_0, \{p_0\} \rangle$

$$(M^{1} \cap M^{2}) = \langle \{(q_{0}, p_{0}), (q_{1}, p_{0})\}, \{a\},$$

$$\Big\{ \Big(((q_{0}, p_{0}), a), (q_{1}, p_{0}) \Big), \Big(((q_{1}, p_{0}), a), (q_{0}, p_{0}) \Big) \Big\},$$

$$(q_{0}, p_{0}), \{(q_{1}, p_{0})\} \rangle$$

M_1

M_2

$M_1 \cap M_2$

$M_1 \cap M_2$

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

Union

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively.

$$Q = Q^{1} \times Q^{2}$$

$$A$$

$$q_{0} = (q_{0}^{1}, q_{0}^{2})$$

$$\delta((q, p), a) = (\delta^{1}(q, a), \delta^{2}(p, a))$$

$$F = \{(q, p) \in Q^{1} \times Q^{2} \mid q \in F^{1} \lor p \in F^{2}\}$$

The automaton $M = (Q, A, \delta, q_0, F)$ accepts the language $L_1 \cup L_2$.

$$M = M_1 \cup M_2$$

J

_

M_1

M_2

$M_1 \cup M_2$

$M_1 \cup M_2$

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
 - Complement
 - Intersection
 - Union
 - Difference
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

Difference

Suppose $M^1=(Q^1,A,\delta^1,q_0^1,F^1)$ and $M^2=(Q^2,A,\delta^2,q_0^2,F^2)$ are finite automata accepting L_1 and L_2 , respectively.

$$\begin{split} Q &= Q^1 \times Q^2 \\ A \\ q_0 &= (q_0^1, q_0^2) \\ \delta((q, p), a) &= (\delta^1(q, a), \delta^2(p, a)) \\ F &= \{(q, p) \in Q^1 \times Q^2 \mid q \in F^1 \& p \notin F^2\} \end{split}$$

The automaton $M = (Q, A, \delta, q_0, F)$ accepts the language $L_1 \setminus L_2$.

$$M = M_1 \setminus M_2$$

Difference (Example 1)

Difference (Example 1)

Difference (Example 2 $L_1 \setminus L_2$)

Difference (Example 3 $L_2 \setminus L_1$)

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

For a language L over an alphabet A,

$$s_1 \equiv_L s_2 \Leftrightarrow (\forall t \in A^*) (s_1 t \in L \leftrightarrow s_2 t \in L)$$

 \equiv_L is an equivalence relation

What are equivalence relations in general?

For a language L over an alphabet A,

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

t is called a distinguishing extension.

Myhill-Nerode theorem

A language L is regular iff \equiv_L has a finite number of equivalent classes.

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
- Myhill-Nerode criteria
 - Positive Examples
 - N ... E
 - Negative Examples

Myhill-Nerode method. Examples

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Example 1: $L_1 = \{0x \mid x \in \Sigma^*\}$, where $\Sigma = \{0, 1\}$

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0, 1,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0, 1, 00,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0, 1, 00, 01,
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon, 0, 1, 00, 01,10,11,...
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon, 0, 1, 00, 01,10,11,...
1. \epsilon
2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \in L_1 \& \epsilon \cdot \epsilon \notin L_1 (a disting. ext. is \epsilon)
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)] Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0, 1, 00, 01,10,11,...

1. \epsilon
2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \in L_1 \& \epsilon \cdot \epsilon \notin L_1 (a disting. ext. is \epsilon)
3. 1:
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \, [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)] Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\} \epsilon, 0, 1, 00, 01,10,11,...

1. \epsilon
2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \in L_1 \& \epsilon \cdot \epsilon \notin L_1 (a disting. ext. is \epsilon)
3. 1: 1 \not\equiv_{L_1} 0, since 1 \notin L_1, 0 \in L_1
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon. 0. 1. 00. 01.10.11....
   1. \epsilon
  2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \in L_1 \& \epsilon \cdot \epsilon \notin L_1 (a disting. ext. is \epsilon)
   3. 1:
                 1 \not\equiv_{L_1} 0, since 1 \notin L_1, 0 \in L_1
                 1 \not\equiv_{L_1} \epsilon, since 1 \cdot 0 \notin L_1, \epsilon \cdot 0 \in L_1 (a distinguishing ext. is 0)
   4. 0t \equiv_{I_1} 0
```

```
s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]
Example 1: L_1 = \{0x \mid x \in \Sigma^*\}, where \Sigma = \{0, 1\}
\epsilon. 0. 1. 00. 01.10.11....
   1. \epsilon
  2. 0: 0 \not\equiv_{L_1} \epsilon, since 0 \cdot \epsilon \in L_1 \& \epsilon \cdot \epsilon \notin L_1 (a disting. ext. is \epsilon)
   3. 1:
                 1 \not\equiv_{L_1} 0, since 1 \notin L_1, 0 \in L_1
                 1 \not\equiv_{L_1} \epsilon, since 1 \cdot 0 \notin L_1, \epsilon \cdot 0 \in L_1 (a distinguishing ext. is 0)
   4. 0t \equiv_{I_1} 0
   5. 1t \equiv_{I_1} 1
```

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & \\ *[0] & \\ [11] & \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] \\ *[0] & \\ [1] & \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [1] \\ \hline *[0] & [1] & \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon] \mid [0] \mid [1]}$$
*[0] [0]

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [1] \\ *[0] & [0] & [0] \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\begin{array}{c|c} \delta \mid 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [1] \\ *[0] & [0] & [0] \\ [1] & [1] \end{array}$$

Example 1:
$$L_1 = \{0x \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\}, [0] = \{0x \mid x \in \Sigma^*\} = L_1, [1] = \{1x \mid x \in \Sigma^*\}$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon] \mid [0] \mid [1]}$$
*[0] [0] [0]
[1] | [1] | [1]

Example 1: $L_1 = \{0x \mid x \in \Sigma^*\}$

Example 1: $L_1 = \{0x \mid x \in \Sigma^*\}$

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ

- 2. 0: $0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)

3. 1: $1 \equiv_{L_2} \epsilon$, $t1 \equiv_{L_2} \epsilon$

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ
2. 0: $0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ
2. 0: $0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)
3. 1: $1 \equiv_{L_2} \epsilon$, $t1 \equiv_{L_2} \epsilon$
4. 00:

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) [(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L)]$$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ
2. 0: $0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)
3. 1: $1 \equiv_{L_2} \epsilon$, $t1 \equiv_{L_2} \epsilon$
4. 00: $00 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon \notin L_2$ (a distinguishing ext. is ϵ)

$$s_1 \not\equiv_L s_2 \Leftrightarrow (\exists t \in A^*) \left[(s_1 t \notin L \& s_2 t \in L) \lor (s_1 t \in L \& s_2 t \notin L) \right]$$
Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$
1. ϵ
2. $0: 0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon 0 = 0 \notin L_2$ (a disting. ext. is 0)
3. $1: 1 \equiv_{L_2} \epsilon$, $t1 \equiv_{L_2} \epsilon$
4. $00: 0 \not\equiv_{L_2} \epsilon$, since $00 \in L_2 \& \epsilon \notin L_2$ (a distinguishing ext. is ϵ)
$$00 \not\equiv_{L_2} \epsilon$$
, since $00 \in L_2 \& \epsilon \notin L_2$ (a distinguishing ext. is ϵ)
$$00 \not\equiv_{L_2} 0$$
, since $00 \in L_2 \& \epsilon \notin L_2$ (a distinguishing ext. is ϵ)

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon]}$$

$$[0]$$
*[00]

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] \\ \hline [0] & *[00] \end{array}$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [\epsilon] \\ \hline [0] & *[00] & \end{array}$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [\epsilon] \\ \hline [0] & [00] & *[00] \end{array}$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\begin{array}{c|c} \delta & 0 & 1 \\ \hline \rightarrow [\epsilon] & [0] & [\epsilon] \\ \hline [0] & [00] & [\epsilon] \end{array}$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

$$[\epsilon] = \{\epsilon\} \cup \{x1 \mid x \in \Sigma^*\}, [0] = \{x10 \mid x \in \Sigma^*\}, [00] = \{x00 \mid x \in \Sigma^*\} = L_2$$

$$\frac{\delta \mid 0 \mid 1}{\rightarrow [\epsilon] \mid [0] \mid [\epsilon]}$$

$$[0] \mid [00] \mid [\epsilon]$$

$$[00] \mid [00] \mid [\epsilon]$$

Example 2:
$$L_2 = \{x00 \mid x \in \Sigma^*\}$$

[
$$\epsilon$$
] = { ϵ } \cup { x 1 | $x \in \Sigma^*$ }, [0] = { x 10 | $x \in \Sigma^*$ }, [00] = { x 00 | $x \in \Sigma^*$ } = L_2

δ	0	1
$ o$ $[\epsilon]$	[0]	$[\epsilon]$
[0]	[00]	$[\epsilon]$
*[00]	[00]	$[\epsilon]$

Example 2: $L_2 = \{x00 \mid x \in \Sigma^*\}$

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}, where <math>\Sigma = \{0, 1\}$

- 1. $[\epsilon]$
- 2. $[0] = \{0x \mid x \in \Sigma^*\}$
- 3. $[1] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 1}\}$
- 4. $[10] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 2}\}$
- 5. $[11] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 3}\}$
- 6. $[100] = \{x \mid \text{the remainder after dividing } x \text{ by 5 is 4}\}$
- 7. $[101] = \{x \mid x \text{ is divisible by 5}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]		
[10]		
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	
[10]		
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]		
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]		
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	
[100]		
*[101]		

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]		
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	
*[101]		

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	[100]
*[101]		

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	[100]
*[101]	[101]	

Example 3: $L_3 = \{x \in \Sigma^* \mid x \text{ is a binary representation of an integer divisible by 5 and it begins with 1}\}$

δ	0	1
$ o$ $[\epsilon]$	[0]	[1]
[0]	[0]	[0]
[1]	[10]	[11]
[10]	[100]	[101]
[11]	[1]	[10]
[100]	[11]	[100]
*[101]	[101]	[1]

Agenda

Finite State Automaton (FSA)

- Representations of FSA
 - Complete
 - Non-complete
- Operations on FSA
- Myhill-Nerode criteria
 - Positive Examples
 - Negative Examples

Negative Example 1

 $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

For $m \neq k$,

$$a^m \not\equiv_{L_1} a^k$$
,

since $a^m b^k \notin L_1$, $a^k b^k \in L_1$ (a distinguishing ext. is b^k). Therefore, there are infinity many equivalence classes! So, L_1 is not regular.

Negative Example 2

 $L_2 = \{a^nba^n \mid n \in \mathbb{N}\}$ is not regular.

Proof

For $m \neq k$,

$$a^m b \not\equiv_{L_2} a^k b$$
,

since $a^mba^k \notin L_2$, $a^kba^k \in L_2$ (a distinguishing ext. is a^k). Therefore, there are infinity many equivalence classes! So, L_2 is not regular.

Thank you for your attention!