

IB Phil. of ScienceTranscendental

①

1. What is Philosophy
2. Four Branches
3. Knowledge v. belief - Sources of Knowledge
4. Views on Science
- 1a. Observational Theory - Theory's Explanatory Power
- 1b. A Simple Picture of Science
1. Sense Experience, Knowledge
- (a) Distinction between Science, Common Sense
2. Hunt or Cause
3. Tries - Conditions - Well def'd of cause
- 3a. causation, counterfactuals
4. Simple Model of Science, (Explanation, Method)
5. Types of Scientific Law
6. Linear view of laws 6.A.) Ramsey-Lewis account.
7. Reasons v. Explanations
8. Types of explanation
9. Deductive explanations of laws
10. Enumerative induction
- 10a. Eliminative induction
11. Solutions to the problem of induction
 - (a) Uniformity of Nature
 - (b) Pragmatic justification
 - (c) Popper's solution

P.TD

13.) N.ell's Method Joint
 ③a) { Argument Revision } (2)
 Difference Concurrent Variation } (132)

14.) Problem with Nell's Method

Irrelevant factors
Hidden factors
Plurality of causes
Complexity of causes

12.15.) Paradoxes of Confirmation Theory

The Bacon Paradox.

The Eve Paradox.

Transitivity Paradoxes

15.) Valid argument

16.) No logical paradoxes

16 (contd.) Symbol

17.) Sound argument

18 (contd.) Logical truth

19.) Logical contradictions and

20.) The Four views on logic

21.) Language Terms & Semantics

22.) Intension, Comprehension, Extension

21

~~21~~ statements o judgement
+ analyticity

(3)

22

Synthetic / analytic distinction

~~and the synthetic a priori~~

- Synthesis a priori

Duhem Bruno Thesis

Laplace's Ed. or D-U Thesis

Crucial experiments

The history of logic

- Mathematical logic

28

29 Po Syllogism

30 Syllogism - Maths o Figures

31

Rules

32

33 34 35 Examples:

ATO

(4)

376 Truth Taller or, and, not

377 Tautology \equiv

378 Material implication
of P then Q, Truth Table.

379 Deduction Theorem

Ex decision procedure for arguments

Methodologies

1. Levels of justified knowledge
2. Polya's problem solving
3. Basic strategies, solution
4. Poffman criteria, schema
5. Versus method
6. " "
7. " "
8. Kuhn on progress of science
9. Memorable world views
10. Lakatos
11. Feyerabend

(12)

Transcendence

WHAT IS PHILOSOPHY

Deals with ultimate Reality:
The analysis of concepts,
principles and presuppositions
underlying any branch of
knowledge.

Natural P. Study of
objects and phenomena in
the physical world.

Moral P. Study of
principles of human
action or conduct.

FOUR BRANCHES

(2)

ONTOLOGY

What there is (i.e. exists)

Tables, chairs, electrons, quarks,
Colours, numbers, minds,
Squareness, beauty, God....

EPISTEMOLOGY

How do we know what there is?
(and how it behaves etc.)

LOGIC

How do we argue about
what there is?

ETHICS and AESTHETICS

How do we evaluate what there is?
Good and bad (actions)
Beautiful and ugly (objects etc.)

KNOWLEDGE

(3)

v. BELIEF

g. know X

- 1.) X is true
- 2.) g believe X
- 3.) My belief is based
on adequate evidence
- 4.) If X were not true g
would not believe X.

SOURCES OF KNOWLEDGE

- Reason
- Sense experience
- Authority
- Intuition
- Revelation
- Faith

VIEWS ON SCIENCE

(4)

ORTHODOX

Science gives certain or at any rate probable knowledge

→ Inductivists
— Bucket approach.

UNORTHODOX

Science gives uncertain, problematic or conjectural knowledge.

Distinction between Science (IA) and Common sense (C.S.)

- 1) C.S. not concerned with explanations
- 2) C.S. makes too extravagant claims
- 3) C.S. may be inconsistent
- 4) C.S. tends to survive longer than science
- 5) C.S. concerned with matters of practical importance.

HUME ON CAUSE

(2)

3 conditions:

- 1) Contiguity
- 2) Succession
- 3) Constant conjunction

What about necessary connection?

Answers re (3)

- a) constant conjunction may not signal causation
ex traffic lights, night and day
- b) causation may not imply constant conjunction
ex striking the match may not always result in an explosion

INUS condition

(3)

In sufficient but necessary part of an unnecessary but sufficient condition.

Mill's Definition of Cause

Total set of conditions sufficient invariably to produce the effect

(3a)

Causation and Counterfactuals

If P were the case of Q
would be the case

If P were not the case of Q
would not be the case.

Then we can say
P causes Q

Problems :

Asymmetry
overdetermination
preemption

Simple Model of Science (4)

Science is collection of
Causal laws of the form
 P causes Q

Scientific explanation of Q is to
affirm P causes Q and that
 P has occurred.

Scientific Method
rules for arriving at P
for any given Q .

Types of Scientific Law

(5)

- 1) Properties attributed to 'Natural kind's'
- 2) gvariable sequential order
 - a) non-causal
 - b) causal.
3. Statistical Laws
4. Laws of functional dependence.
e.g. Boyle's law $PV = \text{const.}$
Dynamical Laws
 $s = \frac{1}{2} gt^2$.

Humean view of

(6)

Laws

Cosmic uniformities

- 1) Universally quantified over all particular instances
- 2) True
- 3) Contingent
- 4) Contains only general predicates

Query: Is a river of Coco-cola physically possible?

Laws as descriptive v. prescriptive

Subjunctive conditionals

Vacuously true laws
ex Newton I

Limited laws ex Kepler's Laws

(6a)

RAMSEY - LEWIS ACCOUNT

A Humean Uniformity is a Law of Nature if and only if it appears as a theorem (or axiom) in a true deductive system that achieves an optimum combination of simplicity and strength.

REASONS VERSUS

(7)

EXPLANATIONS

The Earth is Round:

Why?

- a) Why do you believe the earth is round?

Answer is a Reason
for your belief

- b) Why is the earth round?

Answer is an Explanation

TYPES OF EXPLANATION

(8)

1.) Deductive-nomological (D-N)
Model for explaining:

- (a) a particular fact
- (b) a law

2.) Probabilistic explanations

3.) Functional or teleological explanation
(cf The Anthropic Principle)

4.) Genetic explanations

EXPLANATION AND PREDICTION

Barometers and flagpoles
Earthquakes.

(9)

Deductive Explanations

- 1) The issue of circularity:
The explanandum should
not be the only evidence
for the explanans.
- 2) several laws involved
in the explanations
- 3) Depth and Unification

Enumerative Induction

(10)

$$P_n = F_n \times F_{n-1} \times \dots \times F_1 \times P_0$$

Thus: $P(h \& e) = P(h/e) \cdot P(e) = P(e/h) \cdot P_h$

But if $h \rightarrow \omega$, then $P(e/h) = 1$, so

$$P(h/e) = \frac{P(h)}{P(e)} \quad (\text{Bayes' Theorem})$$

$$\begin{aligned} \text{But } P(e) &= P(e/h) \cdot P(h) \\ &\quad + P(e/\neg h) \cdot P(\neg h) \\ &= P(h) + P(e/\neg h)(1 - P(h)) \end{aligned}$$

(10a)

All swans are white

$$P_0 = \frac{1}{N} = \frac{1}{2^M}$$

considering the first M swans

$\rightarrow 0$ as $M \rightarrow \infty$

Then $P_n = F_n \times \dots \times F_1 \times P_0 = 0$

This is Popper's argument.

Eliminative Induction

$$P_n = \frac{1}{N-n}, \text{ so } P_{N-1} = 1$$

SOLUTIONS TO THE
PROBLEM OF INDUCTION

(11)

contd.

- (a) Uniformity of Nature
- (b) Pragmatic justification
- (c) Popper's solution
 - we don't need induction!

Paradoxes of Confirmation (12)

1. The Raven Paradox
2. The Grue Paradox
3. Transitivity Paradox

See M. Hesse:

The Structure of
Scientific Inference

1974

(13)

MILL'S METHODS
OF EXPERIMENTAL
ENQUIRY
(A System of Logic, 1843)

1. Method of Agreement
2. Method of Difference
3. Joint Method of
Agreement and Difference
4. Method of Residues
5. Method of Concomitant
Variation

Method of Agreement

(13d)

If two or more instances of the phenomenon under investigation have only one circumstance in common, this circumstance in which alone all the instances agree is the cause of the given phenomenon.

Method of Difference

If an instance in which the phenomenon renders investigation occurs, and an instance in which it does not occur, have every circumstance in common save one, that one occurring in the former; the circumstance in which alone the two instances differ is the cause of an indispensable part of the cause, of the phenomenon.

Method of Residues

Subtract from any phenomenon such part as is known to be (by previous induction) the effect of certain antecedents, and the residue of the phenomenon is the effect of the remaining antecedents.

Method of Con Comitant Variation

Whatever phenomenon varies in any manner whenever another phenomenon varies in some particular manner is connected with it through some fact of causation.

(14)

Problems with Mill's Methods

1. Irrelevant factors
2. Hidden factors
3. Plurality of causes
4. Complexity of causes.

Valid argument

(15)

Ex (1) q entered through the door or the window.

(2) q did not enter through the window

∴ (3) q entered through the door

Extract the logical form of the argument.

$$\begin{array}{c} X \text{ or } Y \\ \text{not } Y \\ \hline \therefore X \end{array}$$

If you accept the premises then you are compelled to accept the conclusion not in virtue of the subject matter, but in virtue of the meanings of the logical particles or, not...

The logical particles

(16)

connectives

and, or, if... then, not

quantifiers

all, some

Copula 'is'
Symbol of
predication

N.B. In logic use inclusive
sense of (not) 'or'.

contrast:

① This student is lazy or
stupid

② I like music or poetry

so $X \text{ or } Y \equiv \text{not}(\text{not } X \text{ and not } Y)$
and $X \text{ and } Y \equiv \text{not}(\text{not } X \text{ or not } Y)$

Also All men are mortal
 $\equiv \text{not}(\text{Some men are not mortal})$

and

Some men are mortal

 $\equiv \text{not } (\text{All men are not mortal})$ Symbols

or	\vee
and	\wedge
not	\sim or \neg
if ... then	\supset or \rightarrow
All	A
some	E

Ex All men are mortal

$\forall x (m_x \supset M_x)$

Some men are mortal

$\exists x (m_x \wedge M_x)$

Sound Argument

(17)

is a valid argument with
true premises.

so a sound argument delivers
a true conclusion

N.B. This is not true of
valid arguments *per se*.

A valid argument with false
premises may have a true
or a false conclusion.

The same is true for
invalid arguments with either
true or false premises.

So truth or falsehood
of conclusion in an
argument is like this:

(17 contd)

		Premises	
		True	False
		T	T or F
Argument	Valid		
In Valid	T or F	T or F	

Logical Truth

A proposition which is true
in virtue of the meanings
of the logical particles

Ex ① I am happy or I am
not happy $x \text{ or } (\neg x)$

② All elephants are elephants
 $\forall x (Ex \rightarrow Ex)$

18. Logical Contradiction (18)

is the negation of a logical truth, i.e. it is necessarily false.

Ex. I am happy and I am not happy x and (not x)

Four Views on Logical truth

- 1.) Psychological - laws of thought
- 2.) Platonic - objective meanings of the logical particles
- 3.) Very general laws of physics
- 4.) Instrumentalist conventions as to how we use the logical particles

Language and the World

(19)

LANGUAGE

Terms

Sentences

MENTAL
REALM

concepts

propositions

PLATONIC
WORLD

9 ideas

Relations
between
9 ideas

PHYSICAL
WORLD

physical
properties

states of
affairs

The Meaning of a TERM

(20)

① Extension

class of entities correctly
classified as exemplifying
the concept

② Intension

collection of properties or
attributes necessarily and
essentially associated with the
objects which comprise the
extension

e.g. Man is a rational animal

A Statement is the affirmation of a proposition
i.e. a claim that it is true

A Judgment is the rational assent to a proposition as being true (to be distinguished from mere belief)

An Analytic proposition is one which is true in virtue of the meaning of its constituent terms and/or the logical particles

Ex All Bachelors are unmarried

A Synthetic proposition is
one which is not analytic

(22)

What are our grounds for
believing a proposition
to be true?

a posteriori — Experience

a priori — independently
of experience

Kind of knowledge	analytic	✓	✗
	Synthetic	?	✓
<u>a priori</u>	<u>a posteriori</u>		
	<u>Source of knowledge</u>		

(23)

The Synthetic a priori

Rationalists yes

Empiricists no

of there is clear distinction
between analytic and synthetic
propositions in science?

e.g. Caesar crossed the Rubicon

Ag melts at 960°C

Energy is conserved

The Duhem-Quine Thesis

(24)

Any particular proposition
in the nexus of propositions
constituting a scientific
theory can be maintained
in the light of any possible
experience by making
appropriate changes in
other parts of the system.

Thus $H \wedge h_1 \wedge h_2 \wedge h_3 \dots \Rightarrow O$

Does not O allow us to
infer $\neg(H)$?

In fact

$\neg O \Rightarrow (\neg H) \vee (\neg h_1) \vee (\neg h_2) \dots$

(25)

Ex $H \wedge h_1 \wedge h_2 \wedge h_3 \Rightarrow NO \text{ no}$

H : whenever a thread is pulled with a force exceeding that which characterizes its tensile strength it will break.

h_1 : no other forces are acting other than attaching a weight.

h_2 : force characteristic for this thread is 1 lb wt.

h_3 : wt. put on the thread is 2 lb.

O : iron wt. of 2 lb was put on thread at a particular time location? and it did not break.

(26)

Crucial Experiments

$$H_1 \Rightarrow e$$

$$H_2 \Rightarrow \sim e$$

check whether e occurs

if it does: H_2 is false

if it does not: H_1 is false

so e is a crucial observation
to decide between H_1 and
 H_2 .

History of logic

(27)

Aristotle

Categorical
Syllogisms

↓
Predicate logic
(quantification)

Stoics

Propositional
Logic

Boole
(Schröder)

Algebraic Logic
(1847)

Fregé

Modale Logic (1879)
Logicism
(reduction of
Mathematics to Logic)

Russell, Whitehead

Principia Mathematica
3 vols. 1910-1913

Gödel

1931 Incompleteness
Theorem.

Mathematical logic

(28)

Two Senses:

1. Logic exhibited as
a formal axiomatic
system
2. The logic required to do
mathematics.

In the context of the logic
required for science, we
concentrate on 2 fragments
of logic

Syllogisms and Propositional
Logic

The Categorical Syllogism

(29)

All humans are mortal (major premise)

All Athenians are human (minor premise)

∴ All Athenians are mortal
(conclusion)

Extract logical form

All M's are P's

All S's are M's

∴ All S's are P's

M is the middle term.

We symbolize the argt. thus:

$$\frac{M - P}{S - M} \quad \underline{\text{1st figure}}$$

How can we generalize? (30)

① There are 4 figures

$$\begin{array}{r} P - M \\ S - M \\ \hline S - P \end{array}$$

2nd Figure

$$\begin{array}{r} M - P \\ M - S \\ \hline S - P \end{array}$$

3rd Figure

$$\begin{array}{r} P - M \\ M - S \\ \hline S - P \end{array}$$

4th Figure

But there are also
 $4 \times 4 \times 4 = 64$ Moods

(giving 256 syllogisms in all)

Moods

(31)

A All P are Q } universal
E no P are Q

I Some P are Q } particular
O Some P are not Q

So our first example is
A A A in the 1st figure

B an bar a c

A

$$P \cap \bar{Q} = \emptyset$$

$$\forall x(P_x \supset Q_x)$$

E

$$P \cap Q = \emptyset$$

$$\forall x(P_x \sim Q_x)$$

I

$$P \cap Q \neq \emptyset$$

(32)

$$\exists x (P_x \wedge Q_x)$$

O

$$P \cap \bar{Q} \neq \emptyset$$

$$\exists x (P_x \wedge \neg Q_x)$$

Examples

① A A A 1st Figure

All Men P
All Sons M
All Sons P

So Syllogism is valid.

② A I I 3rd Figure (33)

DatSC

All M are P
Some M are S
—————
Some S are P

So Syllogism is valid

③ AOE 1st Figure ④

All M are P ?
Some S are not M
All S are not P

In valid

(35)

(4) IOD in 1st Figure

Some M are P

Some S are not M

Some S are not P

invalid conclusion
would require

Propositional logic

(36)

Truth Tables or, and

p	q	$p \vee q$	$p \wedge q$
T	T	T	T
F	F	F	F
T	F	T	F
F	T	T	F

Not

p	$\neg p$
T	F
F	T

Tautology Logical truth specialized
to propositional logic

Ex $P \vee (\neg P)$

(37)

P	$\neg P$	$P \vee (\neg P)$
T	F	T
F	T	T

Similarly $P \wedge (\neg P)$ is a logical contradiction

Implication statements

if P then Q

How are P and Q related?

1. logical connection
2. causal connection
3. definitional connection
4. decisional connection

(38)

What about
if Chelsea wins the cup then
I am a monkey's uncle?

Analyse $P \supset Q$ as

$$\begin{aligned} & \sim(P \wedge \sim Q) \\ & \equiv (\sim P) \vee Q \end{aligned}$$

or in terms of truth tables

P Q		P \supset Q
T	F	F
F	F	T
F	T	T
T	T	T

Notice

(39)

if p is false then $p \rightarrow q$
is always true.

Ex if a circle is square
then God exists
is a true proposition!

But also

if a circle is square
then God does not
exist!

Modus ponens

$$\frac{p \rightarrow q}{\therefore q}$$

Modus tollens

$$\frac{p \rightarrow q}{\neg q} \quad \frac{\neg q}{\therefore \neg p}$$

(40)

The fallacy of affirming the consequent

$$\begin{array}{c} p \supset q \\ q \\ \hline \therefore p \end{array} \quad \begin{array}{l} \text{invalid} \\ \text{argument} \end{array}$$

Deduction Theorem

$$\begin{array}{ll} p \vdash q & \text{derivability} \\ p \models q & \text{logical consequence} \\ \models q & q \text{ is a tautology} \end{array}$$

① $p \vdash q$ iff $p \models q$
 soundness and completeness

② $p \models q$ iff $\models (\neg p \supset q)$
 (Semantic Version of Deduction Theorem)

Levels of factual knowledge

①

0. Subjective experience
1. Singular statements about observable things & events
2. Regularities displayed by ①
3. Exact experimental laws
4. Scientific Theories

Falsification

(2)

All swans are white

$$\forall x (S(x) \supset W(x))$$

$$= \neg \exists x \neg (S(x) \supset W(x))$$

$$= \neg \exists x \neg (\neg S(x) \vee W(x))$$

$$= \neg \exists x (S(x) \wedge (\neg W(x)))$$

This is refuted by

$$\exists x (S(x) \wedge (\neg W(x)))$$

i.e. by some swans are not white

Singular Predictive Implication (SPI)

$$S(R) \supset W(R) = \underline{\neg(S(R)) \vee W(R)}$$

Potential falsifier $\neg (SPI)$

$$= \underline{S(R) \wedge (\neg W(R))}$$

Basic statement

(3)

Singular existential statement
which is of right logical
form to refute a universal
law.

Potential falsifier

Basic statement which does
refute a law

for Popper a theory should be: ④

	<u>Feature</u>	<u>Reason</u>
a)	Testable	Scientific
b)	lead to <u>novel</u> predictions	corroborable
c)	be corroborated	increase in <u>Verisimilitude</u>

Popper Schema

(3)

Verisimilitude

$$= m(\text{Truth Content}) - m(\text{False Content})$$

so $V(A) = m(AT) - m(AF)$

$AT = \{\text{True consequences of } A\}$

$AF = \{\text{False consequences of } A\}$

if any
false consequence
of A .

But if we add \leq to AT , we also add \leq to AF
and if we take away \leq from AF , we also take away \leq from AT

gf

6

Then $v(A) > v(B)$

But this situation is not possible

Ex A: It is now between 9.45 > 9.48
 $9.40 > 9.48$

B: - - - - -

Truth: It is now 9.50.

At all sentences of form: It is now
 between $x > y$ where $x < 9.45, y > 9.50$

Similarly for B_T where $x < 9.40, y > 9.50$

Clearly $B_T \subset A_T$, but $A_F \not\subset B_F$

because A itself is a member of \mathbb{B}^A_F
 which is not in B_F !

Consider 2 astronomical
series :

7.

$P = \text{no. of planets}$

$D = \text{no. of days in the week}$

Truth	$\frac{P}{9}$	$\frac{D}{7}$	$\frac{P+D}{16}$
A	11	5	16
B	9	5	14

? $v(B) > v(A)$?

yes on basis of $P+D$

No on basis of $P, D, P+D$

Senses of Paradigm

1. Sociological
2. Metaphysical
3. Artefact Paradigm

Incommensurable World Views

1. Different ontology.
2. Different sorts of question
are meaningful and
legitimate

Does "Rabbits eat lettuce"
contradict
"Ducks do not eat lettuce"?

LAKATOS

10

Methodology of Scientific Research Programmes (MSRP)

Positive Heuristic

A "research policy" for articulating the protective belt and so developing a succession of theories in the programme.

Negative Heuristic Do not change the hard code.

F. E. YERABEND

11

PLURALISM

1. Methodological
2. Theoretical
3. Ideological