

SEQUENCE LISTING

<110> THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
GILL, Gordon N.
YEO, Michele
LIN, Patrick S.
DAHMUS, Michael E.

<120> PHOSPHATASE REGULATION OF NUCLEIC ACID TRANSCRIPTION

<130> 00015-041US1

<140> US/10/552,298
<141> 2005-09-30

<150> US 60/459,786
<151> 2003-04-01

<160> 69

<170> PatentIn version 3.5

<210> 1
<211> 783
<212> DNA
<213> Homo sapiens

<400> 1
atggacagct cggccgtcat tactcagatc agcaaggagg aggctcgaaa cccgctgcgg 60
ggcaaagggtg accagaagtc agcagttcc cagaagcccc gaagccgggg catcctccac 120
tcactcttct gctgtgtctg ccggatgtat ggggaggccc tgcctgctca cagcggggcg 180
ccctgcttg tggaggagaa tggccatc cctaagaccc cagtccaata cctgctccct 240
gaggccaagg cccaggactc agacaagatc tgcgtggtca tcgacctgga cgagaccctg 300
gtgcacagct cttcaagcc agtgaacaac gcggacttca tcattccctgt ggagattgtat 360
ggggtgttcc accaggtcta cgtgttgaag cgtcctcatg tggatgagtt cctgcagcga 420
atgggcgagc tcttgaatg tgtgtgttc actgcttagcc tcgccaagta cgcagaccca 480
gtagctgacc tgctggacaa atggggggcc ttccggggcc ggctgtttcg agagtccctgc 540
gtcttccacc gggggaaacta cgtgaaggac ctgagccgggt tgggtcgaga cctgcggcgg 600
gtgctcatcc tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtaccg 660
gtggcctcgt gtgttgcacaa catgagtgac acagagctcc acgacctcct ccccttcttc 720
gagcaactca gccgtgtgga cgacgtgtac tcagtgctca ggcagccacg gccaggagc 780
tag 783

<210> 2
<211> 260
<212> PRT
<213> Homo sapiens

<400> 2

Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arg
1 5 10 15

Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys
20 25 30

Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg
35 40 45

Asp Asp Gly Glu Ala Leu Pro Ala His Ser Gly Ala Pro Leu Leu Val
50 55 60

Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro
65 70 75 80

Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Asp Leu
85 90 95

Asp Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala Asp
100 105 110

Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr Val
115 120 125

Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu
130 135 140

Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro
145 150 155 160

Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe
165 170 175

Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser
180 185 190

Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro
195 200 205

Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp
210 215 220

Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe Phe
225 230 235 240

Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln Pro
245 250 255

Arg Pro Gly Ser
260

<210> 3
<211> 852
<212> DNA
<213> Homo sapiens

<400> 3
atggaacacg gctccatcat cacccaggcg cgagggaaag acgccttgtt gctcaccaag 60
caaggcctgg tctccaagtc ctctcctaag aagcctcggt gacgtaacat cttcaaggcc 120
cttttctgct gtttcgcgc ccagcatgtt ggccagtcaa gttcctccac tgagctcgct 180
gcgtataagg aggaagcaaa caccattgct aagtccggatc tgctccagtg tctccagttac 240
cagttctacc agatcccagg gacctgcctg ctcccagagg tgacagagga agatcaagga 300
aggatctgtg tggtcattga cctcgatgaa acccttgtgc atagctcctt taagccaatc 360
aacaatgctg acttcatagt gcctatagag attgagggga ccactcacca ggtgtatgtg 420
ctcaagaggc cttatgtgga ttagttcctg agacgcatgg gggactctt tgaatgtgtt 480
ctcttcactg ccagcctggc caagtatgcc gaccctgtga cagacctgct ggaccgggt 540
ggggtgttcc gggcccgccct attccgtgag tcttgcgtgt tccaccaggg ctgctacgtc 600
aaggacctca gccgcctggg gagggacctg agaaagaccc tcatcctgga caactcgcc 660
gcttcttaca tattccaccc cgagaatgca gtgcctgtgc agtcctggtt ttagtgcacatg 720
gcagacactg agttgctgaa cctgatccca atcttgagg agctgagcgg agcagaggac 780
gtctacacca gccttggggc agctgcgggc cccttagcct gcccgttcc caagcgacgg 840
ccatcccagt ag 852

<210> 4
<211> 283
<212> PRT
<213> Homo sapiens

<400> 4

Met Glu His Gly Ser Ile Ile Thr Gln Ala Arg Arg Glu Asp Ala Leu
1 5 10 15

Val Leu Thr Lys Gln Gly Leu Val Ser Lys Ser Ser Pro Lys Lys Pro
20 25 30

Arg Gly Arg Asn Ile Phe Lys Ala Leu Phe Cys Cys Phe Arg Ala Gln
35 40 45

His Val Gly Gln Ser Ser Ser Thr Glu Leu Ala Ala Tyr Lys Glu
50 55 60

Glu Ala Asn Thr Ile Ala Lys Ser Asp Leu Leu Gln Cys Leu Gln Tyr
65 70 75 80

Gln Phe Tyr Gln Ile Pro Gly Thr Cys Leu Leu Pro Glu Val Thr Glu
85 90 95

Glu Asp Gln Gly Arg Ile Cys Val Val Ile Asp Leu Asp Glu Thr Leu
100 105 110

Val His Ser Ser Phe Lys Pro Ile Asn Asn Ala Asp Phe Ile Val Pro
115 120 125

Ile Glu Ile Glu Gly Thr Thr His Gln Val Tyr Val Leu Lys Arg Pro
130 135 140

Tyr Val Asp Glu Phe Leu Arg Arg Met Gly Glu Leu Phe Glu Cys Val
145 150 155 160

Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro Val Thr Asp Leu
165 170 175

Leu Asp Arg Cys Gly Val Phe Arg Ala Arg Leu Phe Arg Glu Ser Cys
180 185 190

Val Phe His Gln Gly Cys Tyr Val Lys Asp Leu Ser Arg Leu Gly Arg
195 200 205

Asp Leu Arg Lys Thr Leu Ile Leu Asp Asn Ser Pro Ala Ser Tyr Ile
210 215 220

Phe His Pro Glu Asn Ala Val Pro Val Gln Ser Trp Phe Asp Asp Met
225 230 235 240

Ala Asp Thr Glu Leu Leu Asn Leu Ile Pro Ile Phe Glu Glu Leu Ser
245 250 255

Gly Ala Glu Asp Val Tyr Thr Ser Leu Gly Ala Ala Ala Gly Pro Leu
260 265 270

Ala Cys Pro Ala Ser Lys Arg Arg Pro Ser Gln
275 280

<210> 5
<211> 798
<212> DNA
<213> Homo sapiens

<400> 5
atggacggcc cgccccatcat cacccagggtg accaacccta aggaggacga gggccggttg 60
ccgggcgcgg gcgagaaagc ctcccagtgc aacgtcagct taaagaagca gaggagccgc 120
agcatcctta gtccttctt ctgctgcttc cgtgattaca atgtggaggc ccctccaccc 180
agcagccca gtgtgcttcc gccactggtg gaggagaatg gtgggcttca gaagccacca 240
gctaagtacc ttcttccaga ggtgacggtg cttgactatg gaaagaaatg tgtggtcatt 300
gatttagatg aaacatttgt gcacagttcg tttaagccta ttagtaatgc tgattttatt 360
gttccggttg aatcgatgg aactatacat caggtgtatg tgctgaagcg gccacatgtg 420
gacgagttcc tccagaggat gggcagctt tttgaatgtg tgctcttac tgccagctt 480
gccaagtatg cagaccctgt ggctgacctc ctagaccgct ggggtgtgtt ccggggccgg 540
ctcttcagag aatcatgtgt tttcatcgt gggactacg tgaaggacct gagtcgcctt 600
gggcgggagc tgagcaaagt gatcattgtt gacaattccc ctgcctcata catcttccat 660
cctgagaatg cagtcctgt gcagtcctgg ttcgatgaca tgacggacac ggagctgctg 720
gacctcatcc cttctttga gggcctgagc cgggaggacg acgtgtacag catgctgcac 780
agactctgca ataggtag 798

<210> 6
<211> 265
<212> PRT
<213> Homo sapiens

<400> 6

Met Asp Gly Pro Ala Ile Ile Thr Gln Val Thr Asn Pro Lys Glu Asp
1 5 10 15

Glu Gly Arg Leu Pro Gly Ala Gly Glu Lys Ala Ser Gln Cys Asn Val
20 25 30

Ser Leu Lys Lys Gln Arg Ser Arg Ser Ile Leu Ser Ser Phe Phe Cys
35 40 45

Cys Phe Arg Asp Tyr Asn Val Glu Ala Pro Pro Pro Ser Ser Pro Ser
50 55 60

Val	Leu	Pro	Pro	Leu	Val	Glu	Glu	Asn	Gly	Gly	Leu	Gln	Lys	Pro	Pro
65					70						75				80
Ala	Lys	Tyr	Leu	Leu	Pro	Glu	Val	Thr	Val	Leu	Asp	Tyr	Gly	Lys	Lys
					85				90				95		
Cys	Val	Val	Ile	Asp	Leu	Asp	Glu	Thr	Leu	Val	His	Ser	Ser	Phe	Lys
					100			105						110	
Pro	Ile	Ser	Asn	Ala	Asp	Phe	Ile	Val	Pro	Val	Glu	Ile	Asp	Gly	Thr
					115			120					125		
Ile	His	Gln	Val	Tyr	Val	Leu	Lys	Arg	Pro	His	Val	Asp	Glu	Phe	Leu
					130			135				140			
Gln	Arg	Met	Gly	Gln	Leu	Phe	Glu	Cys	Val	Leu	Phe	Thr	Ala	Ser	Leu
					145			150			155			160	
Ala	Lys	Tyr	Ala	Asp	Pro	Val	Ala	Asp	Leu	Leu	Asp	Arg	Trp	Gly	Val
					165			170					175		
Phe	Arg	Ala	Arg	Leu	Phe	Arg	Glu	Ser	Cys	Val	Phe	His	Arg	Gly	Asn
					180			185					190		
Tyr	Val	Lys	Asp	Leu	Ser	Arg	Leu	Gly	Arg	Glu	Leu	Ser	Lys	Val	Ile
					195			200				205			
Ile	Val	Asp	Asn	Ser	Pro	Ala	Ser	Tyr	Ile	Phe	His	Pro	Glu	Asn	Ala
					210			215			220				
Val	Pro	Val	Gln	Ser	Trp	Phe	Asp	Asp	Met	Thr	Asp	Thr	Glu	Leu	Leu
					225			230			235			240	
Asp	Leu	Ile	Pro	Phe	Phe	Glu	Gly	Leu	Ser	Arg	Glu	Asp	Asp	Val	Tyr
					245			250					255		
Ser	Met	Leu	His	Arg	Leu	Cys	Asn	Arg							
					260			265							
<210>	7														
<211>	642														
<212>	DNA														
<213>	Homo sapiens														
<400>	7														
atgatgggaa	gcccctgcct	gctcacagcg	gggcgcccct	gcttgtggag	gagaatggcg										60

ccatccctaa	ggcagacccc	agtccaatac	ctgctccctg	aggccaaggc	ccaggactca	120
gacaagatct	gcgtggtcat	cgacctggac	gagaccctgg	tgcacagctc	cttcaagcca	180
gtgaacaacg	cggacttcat	catccctgtg	gagattgatg	gggtggtcca	ccaggtctac	240
gtgttgaagc	gtcctcacgt	ggatgagttc	ctgcagcgaa	tggcgagct	ctttgaatgt	300
tgctgttca	ctgcttagcct	cgccaagtac	gcagacccag	tagctgacct	gctggacaaa	360
tggggggcct	tccggggcccg	gctgtttcga	gagtcctgcg	tcttccaccg	ggggactac	420
gtgaaggacc	tgagccgggtt	gggtcgagac	ctgcggcggg	tgctcatcct	ggacaattca	480
cctgcctcct	atgtcttcca	tccagacaat	gctgtaccgg	tggcctcgtg	gtttgacaac	540
atgagtgaca	cagagctcca	cgacccctc	cccttcttcg	agcaactca	ccgtgtggac	600
gacgtgtact	cagtgctcag	gcagccacgg	ccagggagct	ag		642

<210> 8
 <211> 213
 <212> PRT
 <213> Homo sapiens

<400> 8

Met	Met	Gly	Arg	Pro	Cys	Leu	Leu	Thr	Ala	Gly	Arg	Pro	Cys	Leu	Trp
1					5				10					15	

Arg	Arg	Met	Ala	Pro	Ser	Leu	Arg	Gln	Thr	Pro	Val	Gln	Tyr	Leu	Leu
		20					25					30			

Pro	Glu	Ala	Lys	Ala	Gln	Asp	Ser	Asp	Lys	Ile	Cys	Val	Val	Ile	Asp
		35				40					45				

Leu	Asp	Glu	Thr	Leu	Val	His	Ser	Ser	Phe	Lys	Pro	Val	Asn	Asn	Ala
		50				55				60					

Asp	Phe	Ile	Ile	Pro	Val	Glu	Ile	Asp	Gly	Val	Val	His	Gln	Val	Tyr
		65			70			75				80			

Val	Leu	Lys	Arg	Pro	His	Val	Asp	Glu	Phe	Leu	Gln	Arg	Met	Gly	Glu
					85			90			95				

Leu	Phe	Glu	Cys	Val	Leu	Phe	Thr	Ala	Ser	Leu	Ala	Lys	Tyr	Ala	Asp
					100			105			110				

Pro	Val	Ala	Asp	Leu	Leu	Asp	Lys	Trp	Gly	Ala	Phe	Arg	Ala	Arg	Leu
						115		120			125				

Phe Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu

130

135

140

Ser Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser
145 150 155 160

Pro Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser
165 170 175

Trp Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe
180 185 190

Phe Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln
195 200 205

Pro Arg Pro Gly Ser
210

<210> 9
<211> 783
<212> DNA
<213> Drosophila

<400> 9
atggacagct cggccgtcat tactcagatc agcaaggagg aggctcgaaa cccgctgcgg 60
ggcaaaggta accagaagtc agcagttcc cagaagcccc gaagccgggg catcctccac 120
tcactcttct gctgtgtctg ccggatgtat ggggaggccc tgcctgctca cagcggggcg 180
ccctgcttg tggaggagaa tggcccatc cctaagaccc cagtccaata cctgctccct 240
gaggccaagg cccaggactc agacaagatc tgcgtgtca tcgarctgaa cgagaccctg 300
gtgcacagct cttcaagcc agtgaacaac gcggacttca tcattccctgt ggagattgtat 360
ggggtgttcc accaggtcta cgtgttgaag cgtcctcatg tggatgagtt cctgcagcga 420
atgggcgagc tcttgaatg tgtgctgttc actgcttagcc tcgccaagta cgcaaaaa 480
gtagctgacc tgctggacaa atggggggcc ttccggggcc ggctgtttcg agagtcctgc 540
gtcttccacc gggggacta cgtgaaggac ctgagccgggt tgggtcgaga cctgcggcgg 600
gtgctcatcc tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtaccg 660
gtggcctcgt gtgttgcacaa catgagtgac acagagctcc acgacccctt ccccttcttc 720
gagcaactca gccgtgtgga cgacgtgtac tcagtgctca ggcagccacg gccaggagc 780
tag 783

<210> 10
<211> 260
<212> PRT

<213> Drosophila

<400> 10

Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arg
1 5 10 15

Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys
20 25 30

Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg
35 40 45

Asp Asp Gly Glu Ala Leu Pro Ala His Ser Gly Ala Pro Leu Leu Val
50 55 60

Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro
65 70 75 80

Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu Leu
85 90 95

Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala Asp
100 105 110

Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr Val
115 120 125

Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu
130 135 140

Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro
145 150 155 160

Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe
165 170 175

Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser
180 185 190

Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro
195 200 205

Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp
210 215 220

Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe Phe

225 230 235 240

Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln Pro
245 250 255

Arg Pro Gly Ser
260

<210> 11
<211> 642
<212> DNA
<213> Drosophila

<400> 11
atgatgggga ggcctgcct gtcacagcg gggcgccccct gcttgtggag gagaatggcg 60
ccatccctaa ggcagacccc agtccaatac ctgctccctg aggccaaggc ccaggactca 120
gacaagatct gcgtggtcat cgarcgtgaac gagaccctgg tgcacagctc cttcaagcca 180
gtgaacaacg cggacttcat catccctgtg gagattgtat gggtggtcca ccaggtctac 240
gtgttgaagc gtcctcacgt ggatgagttc ctgcagcgaa tggcgagct ctttgaatgt 300
gtgctgttca ctgcttagcct cgccaagtac gcagacccag tagctgacct gctggacaaa 360
tggggggccct tccgggcccc gctgttcga gagtcctgcg tcttccaccg ggggaactac 420
gtgaaggacc tgagccgggtt gggtcgagac ctgcggcggg tgctcatcct ggacaattca 480
cctgcctcct atgtttcca tccagacaat gctgtaccgg tggcctcg 540
atgagtgaca cagagctcca cgaccctcctc cccttcttcg agcaactcag ccgtgtggac 600
gacgtgtact cagtgctca gcaagccacgg ccagggagct ag 642

<210> 12
<211> 213
<212> PRT
<213> Drosophila

<400> 12

Met Met Gly Arg Pro Cys Leu Leu Thr Ala Gly Arg Pro Cys Leu Trp
1 5 10 15

Arg Arg Met Ala Pro Ser Leu Arg Gln Thr Pro Val Gln Tyr Leu Leu
20 25 30

Pro Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu
35 40 45

Leu Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala
50 55 60

Asp	Phe	Ile	Ile	Pro	Val	Glu	Ile	Asp	Gly	Val	Val	His	Gln	Val	Tyr
65				70				75				80			
Val	Leu	Lys	Arg	Pro	His	Val	Asp	Glu	Phe	Leu	Gln	Arg	Met	Gly	Glu
				85				90				95			
Leu	Phe	Glu	Cys	Val	Leu	Phe	Thr	Ala	Ser	Leu	Ala	Lys	Tyr	Ala	Asp
				100				105				110			
Pro	Val	Ala	Asp	Leu	Leu	Asp	Lys	Trp	Gly	Ala	Phe	Arg	Ala	Arg	Leu
				115				120				125			
Phe	Arg	Glu	Ser	Cys	Val	Phe	His	Arg	Gly	Asn	Tyr	Val	Lys	Asp	Leu
				130				135				140			
Ser	Arg	Leu	Gly	Arg	Asp	Leu	Arg	Arg	Val	Leu	Ile	Leu	Asp	Asn	Ser
				145				150				155			160
Pro	Ala	Ser	Tyr	Val	Phe	His	Pro	Asp	Asn	Ala	Val	Pro	Val	Ala	Ser
				165				170				175			
Trp	Phe	Asp	Asn	Met	Ser	Asp	Thr	Glu	Leu	His	Asp	Leu	Leu	Pro	Phe
				180				185				190			
Phe	Glu	Gln	Leu	Ser	Arg	Val	Asp	Asp	Val	Tyr	Ser	Val	Leu	Arg	Gln
				195				200				205			
Pro	Arg	Pro	Gly	Ser											
				210											

<210>	13														
<211>	7020														
<212>	DNA														
<213>	Drosophila														
<400>	13														
ctggagcgcg	gcaggaaccc	ggccggcccc	gcctcccagt	ccgccttagcc	gcccgggtcc										60
cagaagtggc	gaaagccgca	gccgagtcca	ggtcacgccc	aagccgttgc	ccttttaagg										120
gggagccttg	aaacggcgcc	tgggttccat	gtttgcatcc	gcctcgccgg	aaggaaactc										180
catgttgtaa	caaagtttcc	tccgcgcccc	ctccctcccc	ctccccctta	gaacctggct										240
cccctccct	ccggagctcg	cggggatccc	tccctcccac	ccctccccctc	ccccccgcgc										300
cccgattccg	gccccagccg	ggggggaggc	cgggcgcccc	ggccagagtc	cggccggagc										360
ggagcgcgcc	cggccccatg	gacagctcg	ccgtcattac	tcaagatcagc	aaggaggagg										420

ctcgggggccc	gctgcggggc	aaaggtaccg	gggctgcggg	gagggggccg	aagccggggc	480
gccgtggag	gagagaaggg	gccggatct	tccccagggg	agccgcccgc	gccgccccgg	540
gcggccgcct	tagctgtgcc	cgaagctccc	agccc gagag	ggagcaggga	gagagttga	600
actcagagga	ggctcagaga	cgcgggcccgg	ggcctggcgc	cttggggcg	ctcctgtccg	660
ctcgaggtga	gaaaaactgag	gcaggaatag	agagggaaact	ctttcggggg	tttcctggca	720
ggcattgcgt	ggtgcattggg	cgcggggccca	ccattggcgc	caatggggct	gtgagatggg	780
ggagctgagg	agggcgccta	tgggcacccc	gtgagactc	cgcggccaccc	cccaccccca	840
cccccccggg	ctgcggtccg	gtagggtctt	gggagggggc	gccgagggtga	cagcaggctg	900
gggaggcttg	gagggatctc	ccgccaacac	acagctacgt	tccccacaaa	cttcgcgtca	960
cgcgtggagg	cgcggacccc	ctcggaggca	cagagaggac	ggccggcact	tccaagagtc	1020
gcttggcgcc	cgcggggaga	gtcgtgcgcc	tagtgggcac	gcaccacccc	gcaaagcctc	1080
gcgcggccga	cgaggctgcg	tccccagcg	tggctgggcc	gggggtggggg	ggtctgtctt	1140
ctcctttcc	ccgtgtggac	ctcaggatct	ggacgctgcc	cccaggctcg	cccacccctcg	1200
cctgggtctg	gctgccccgg	aactgagggc	aaggtggaaa	ggctagttgc	agggggccgg	1260
aggggggtgg	gttgggaggg	gtatctgtca	atcaggctgc	tgggctccag	gtcggaggtc	1320
tgggcggggc	agggcaaaca	gatggccact	ggacactggc	cccaggccgc	gggactgcac	1380
ccctgcctct	gggcccagcc	gcagtgagga	cttcgtaccc	acgggggtgg	agaggatgg	1440
gggaggggcag	gggtggactg	ccctgggtcc	caggccctgg	ctgtcctgag	caggggtgct	1500
caggttaaggt	ggggtcagga	ggcaccccaa	tggggctgat	cagcagcagt	catggaggct	1560
gtgagaggca	gggagagagc	accccaggac	ctccttctcc	aggccacgca	ctccctatgt	1620
gggcgcctta	atacctgcta	gacctatttgc	tctggagct	gcaggagcct	tggagttgat	1680
tgtggagccc	tgacaggggc	gtttcagaga	aagtcaaggag	ctgccttcgt	gtgtctggat	1740
gaagggggcca	cgcaagatc	ctcctggccc	aggggttcac	acctgggcac	acatgcagga	1800
ttctgcaggc	cagtgtgcac	cgagcctcca	acttgtgcct	ccctacttca	ggtgaccaga	1860
agtcaagcgc	ttcccagaag	ccccgaagcc	ggggcatcct	ccactcactc	ttctgctgt	1920
tctgccggga	tgtatggggag	gccctgcctg	ctcacagcgg	ggcgccccctg	cttgtggagg	1980
agaatggcgc	catccctaag	gtgcgtgggg	gccaggtggg	gccacggggg	cacctggact	2040
cagtcttcag	ggcttttaggg	gaaggggctc	ctgactgagc	ttttcaggat	ggacttgcag	2100
acctgaaagt	gcagagtagg	agggtggcag	cctccctgc	caggccctgc	ccactgtggg	2160
gaaactgaat	tctccctcat	aagtggaaagc	tttttctac	cttggtttt	agagaggtct	2220

caaagagcca	agaggcctac	ccaagcccta	gagctggcag	gggcaaagct	gggaaggggg	2280
aagtatctgt	tcctggggcc	tggggttcct	ctggagacgg	ctagggggag	aagcctgcgt	2340
gggaggaagg	accaggcccc	gagagaggca	ccccagccag	ccccggccctc	cctacagcag	2400
accccagtcc	aatacctgct	ccctgaggcc	aaggcccagg	actcagacaa	gatctgcgtg	2460
gtcatcgacc	tggacgagac	cctggtgcac	agtccttca	aggtgggccc	tgctcaacag	2520
ccctcagccc	gggtctcggg	gggcattcccc	caccctggcc	tgggagggag	gtgtgtgctg	2580
gaccatgc	cctggggctc	ctcctccaac	tccagcagct	cttttcccc	cacagccagt	2640
gaacaacgcg	gacttcatca	tccctgtgga	gattgatggg	gtggtccacc	aggtgagggc	2700
caggaagagg	cagtggtggg	cttggcatct	gcctccagac	cctaggctct	tcccaccaat	2760
ccggagcgcc	tcggatggga	attggataca	tgtggaatgt	cagaggccca	gagaggggtgt	2820
gagacttgtc	ccaaagtac	acagaacctc	aagggcttgt	gctgactcca	agcctgcaga	2880
gtgggctcct	cctctaggct	ccccctgtct	gtgctccctc	gccccaccct	gcccgggacc	2940
cagttcaagt	aattcaggat	aggttgtgt	ctgtccagcc	tgttctccat	tacttggctc	3000
ggggaccgg	gccctgcagc	cttggggta	gggggctgccc	cctggattcc	tgcactaggc	3060
tgaggttag	gcaggggaag	ggattggaa	ttagggacct	cgtgaggtag	gactggccag	3120
tggagttggaa	gttttgc	ttttctggcg	gggggtgggt	acagttccc	cagcagtgg	3180
caggtagct	ggccaagcgg	agcctgcggg	cccagtctcc	ttcctgtgcg	cctctgcctc	3240
cctggcccat	gccctgccag	ccctcgccca	cccccacact	gccccactgg	cccgagccc	3300
cctcaactggc	cgcccccca	ggtctacgt	ttgaagcgtc	ctcatgtgga	ttagttcctg	3360
cagcgaatgg	gcgagcttt	tgaatgtgt	ctgttcactg	ctagcctcgc	caaggtgagc	3420
cccacagggg	tcccggggca	accctgcct	cctacctacc	tcccgcac	agcccagtga	3480
acctgcgggc	cccaggatga	cccacccct	gctcccagta	cgcagaccca	gtagctgacc	3540
tgctggacaa	atggggggcc	ttccggggcc	ggctgtttcg	agagtcctgc	gtttccacc	3600
gggggaacta	cgtgaaggac	ctgagccggt	tgggtcgaga	cctgcggcgg	gtgctcatcc	3660
tggacaattc	acctgcctcc	tatgtttcc	atccagacaa	tgctgtgagt	gcgggctgga	3720
ctgggactgg	gacaggagct	gagaccagg	aagggtcag	tccattcagg	ccaccttggc	3780
ctcttggatc	cccagttggg	gggtgggtgc	cctcccagtc	ttcctgcac	tcattgcctg	3840
tgcctgccgc	ccactccct	catccacctg	ccctgttagcc	atatggtctt	ttcccctcgc	3900
acaaagcaga	gcatctgcca	tgcacagggg	cccccacagg	gcaacggagt	ttggaaagtt	3960
tcaattttc	gaattgccag	ttgtgaccta	ctgatggccc	acagaattaa	tttagtgggt	4020
tctgattggg	aatttaaca	aaatgaaata	aatagaaaa	tatccggcgt	ggtgcagtgg	4080

tcatgcctg taatcccagc actttggaa gctgagggtgg gcaggttagct gagcccagta 4140
gttcaagacc agcctcgca acatagtcaa accttatgtc tacaaaaaat acaaaaacta 4200
gccaggcgtg gtggcgcatg cctggagtcc cggttatgca gaaggctgag gtaggaggtat 4260
cgcttgagcc ctggaggcag aggctgtggt gagccaagat tgtgccactg cactctagcc 4320
tggcaacag agcaagaccc tgccctcaaaa aaaaaaaaaa gtatccaagt gcttcgcaca 4380
gataaggta ggaattgtga agctttgca ttgttacgtt ataaatgtgt tttcctgggg 4440
attgctgtca aaaaagttt aacactgtgg gtgaggggtt ttcagaaact gcatgatctg 4500
agtagtggtc acataggcgt ggcctggaaa ttctgcaccc aggaccacct gccccctca 4560
tcttcctaca cccacttccc caggtaccgg tggcctcgat gtttgcacaat atgagtgaca 4620
cagagctcca cgaccccttc cccttctcg agcaactcag ccgtgtggac gacgtgtact 4680
cagtgcctcag gcagccacgg ccagggagct agtgagggtg atggggccag gacctgcccc 4740
tgaccaatga tacccacacc tcctcccagg aagactgccc aggcctttgt tagaaaaacc 4800
catggccgcg cggcacactc agtgccatgg ggaagcgggc gtctcccca ccagccccac 4860
caggcggtgt agggcagca ggctgcactg aggaccgtga gctccaggcc ccgtgtcagt 4920
gccttcaaacc ctccctccct attctcaggg gacctgggg gccctgcctg ctgctccctt 4980
tttctgtctc tgccatgct gccatgttcc tctgctgcca aattggggccc cttggccccct 5040
tccggttctg ctccctgggg gcaggggtcc tgccttggac ccccagtctg ggaacgggtgg 5100
acatcaagtgcctgcata agccccctct tccccgcccc gcttcccag gggcacagct 5160
ctaggctggg aggggagaac cagccccctcc ccctgccccca cctccctccct tgggactgag 5220
agggcccccta ccaaccttg cctctgcctt ggagggaggg gaggtctgtt accactgggg 5280
aaggcagcag gagtctgtcc ttcaggcccc acagtgcagc ttctccaggcc cgacagctg 5340
agggctgctc cctgcatacat ccaagcaatg acctcagact tctgccttaa ccagccccgg 5400
ggcttggctc cccagctct gagcgtgggg gcataggcag gaccccccctt gtggtgccat 5460
ataaaatatgt acatgtgtat atagatttt agggaaagga gagagggaaag ggtcagggtat 5520
gagacaccccc tcccttgccc ctttcctggg cccagaagtt ggggggaggg agggaaagga 5580
tttttacatt ttttaaactg ctatttctg aatggaacaa gctggggccaa gggggccagg 5640
ccctgtcctc tgccatcacc accccttgc tccggttcat cattcaaaaa aacatttctt 5700
gagcacccctc tggcccccagc atatgctagg cccaccagct aagtgtgtgt ggggggtctc 5760
tacgccagct catcagtgcc tccttgcccc tccttcaccg gtgcctttgg gggatctgtat 5820
ggaggtggga cttctgtgg ggtttggggta tctccaggaa gcccggccaa gctgtccccct 5880

tcccctgtgc	caaccatct	cctacagccc	cctgcctgat	cccctgctgg	ctgggggcag	5940
ctcccaggat	atcctgcctt	ccaaactgttt	ctgaagcccc	tcctctaacc	atggcgattc	6000
cggaggtcaa	ggccttggc	tctcccagg	gtctaacgg	taaggggacc	cacataccag	6060
tgccaagggg	gatgtcaagt	ggtgatgtcg	ttgtgctccc	ctccccaga	gcgggtggc	6120
gggggggtgaa	tatggttggc	ctgcatcagg	tggccttccc	attnaagtgc	cttctctgtg	6180
actgagagcc	ctagtgtgat	gagaactaaa	gagaaagcca	gaccctatac	ctgcttctgt	6240
ggttattgcg	ggggacttca	gcaagtgggg	tgtgtgcctt	gcacctgcgg	ctgccgtgg	6300
cccccccccc	gcttcagcac	acctagaggg	ctgttggtgg	agggaggggc	tgcccgcccc	6360
tcgacacttc	aggtgggaag	ggcagcgtca	gagcacaaat	ttgagcctcc	aggctgtgct	6420
cgtctacgtc	ttcccgccctc	gggtatgtgg	tctgc当地at	ggagatgtgc	cctattggca	6480
ggactaatta	agtgcctgga	cacagacgac	aggatactag	tagctggaaa	gcaaaattcg	6540
aaggcctggg	taggggcagt	cctggaatgc	ggcggggggag	ggggcgtggc	ctctgccc	6600
gagcagaggg	gcggggcttg	tgcggctccg	aaggcagagg	cggggagcgg	ggcgaggctc	6660
tgggtggagg	ctccagcggc	agaacttgg	ggcctgggtg	cggcgggctc	cggcgcctgg	6720
ctctgccggg	cggcctgggt	ggggccggcg	ccggggctcg	cccccccccg	cccctctgcg	6780
gcctctgagc	agccattggc	cgcgc当地cc	ccccacttcc	cgc当地ccccc	cgcgtccggg	6840
aggcacttcc	tttgc当地aaac	cgc当地ccccc	caggcgc当地gg	caggaaatgc	cctccgc当地gg	6900
tccccagcca	gccttgctt	gcttcccacg	ccagccgcta	gaggcctccc	tgtcctcg	6960
gacgcaggaa	ctccccgggg	gctggaaaga	tggggccac	ctcactcacc	cccttcccgg	7020

<210> 14
 <211> 4833
 <212> DNA
 <213> Homo sapiens

<400> 14	60					
gccatttcct	cctttgttt	tcactccgga	ttctccatgt	tggacccaaa	ctgaggagcc	60
cggagctgcc	gctgggggat	cggggccggg	ggcacccggg	ggagccgctg	cccgccgc	120
ccgc当地tttgc	tacaggccgc	ctcccttccc	ggtccgggaa	ggaaacgaga	ggggggatgt	180
gaacagctgt	ggaagtgc当地	gtctcggag	ccggagcggg	ccccgc当地ca	ggccccccag	240
cccagccag	cccgc当地cc	cgc当地ccct	cccgtccagc	cagcccggc	ccgc当地ggatt	300
gttagatgga	acacggctcc	atcatcaccc	aggcgc当地gg	ggaagacg	cc	360
ccaagcaagg	cctggctcc	aagtccctc	ctaagaagcc	tcgtggacgt	aacatcttca	420
aggccctttt	ctgctgtttt	cgc当地ccagc	atgttggcca	gtcaagttcc	tccactgagc	480

tcgctgcgt	taaggaggaa	gcaaacacca	ttgctaagtc	ggatctgctc	cagtgtctcc	540
agtaccagtt	ctaccagatc	ccagggacct	gcctgctccc	agaggtgaca	gaggaagatc	600
aaggaaggat	ctgtgtggtc	attgacactcg	atgaaaccct	tgtgcata	tcctttaagc	660
caatcaacaa	tgctgacttc	atagtgccta	tagagattga	ggggaccact	caccaggtgt	720
atgtgctcaa	gaggcattat	gtggatgagt	tcctgagacg	catggggaa	ctcttgaat	780
gtgttctt	cactgccagc	ctggccaagt	atgcccaccc	tgtgacagac	ctgctggacc	840
ggtgtgggt	gttccgggccc	cgcctattcc	gtgagtcttg	cgtgttccac	cagggctgct	900
acgtcaagga	cctcagccgc	ctggggaggg	acctgagaaa	gaccctcatc	ctggacaact	960
cgcctgcttc	ttacatattc	caccccgaga	atgcagtgcc	tgtgcagtcc	tggttttagt	1020
acatggcaga	cactgagttg	ctgaacctga	tcccaatctt	tgaggagctg	agcggagcag	1080
aggacgtcta	caccagcctt	ggggcagctg	cggggccctt	agcctgcct	gcttccaagc	1140
gacggccatc	ccagtagggg	actttccac	actgtgcctt	tacgatcagc	gtgacagagt	1200
agaagctgga	gtgcctcacc	acacggcccg	gaaacagcgg	gaagtaactg	gaaagagctt	1260
taggacagct	tagatgccga	gtggcgaat	gccagaccaa	tgataacccag	agctacactgc	1320
cgc当地actt	ttgagatgtg	tgtttactg	ttagagagtg	tgtgtttgtg	tgtgtgtttt	1380
gccatgaact	gtggccccag	tgtatagtgt	ttcagtgggg	gagaagctga	aagaccaaga	1440
ctcttcccaa	gttagcttgt	ctcctctcct	gtcaccctaa	gagccactga	gttgtgttagg	1500
gatgaaract	attgaagact	ccattgccaa	accatggcct	ttcctcagtg	ttgtaaggcc	1560
tatgccaagg	ataaaggaag	ggtatgcctt	tgggtactcc	aggcatacac	ctttctgaaa	1620
tccttctcca	gccagctgct	gcagacaaaa	gatcacattt	ctgggaagat	gagaacttgt	1680
ttccagacca	gcatccagtg	gccatcaggt	cttgtggccc	aaaggctatg	ctgcctccg	1740
gctgagtgcc	tgggataggc	cttttctatg	tctcccaag	gctgggggtgc	tgagcctgccc	1800
ttcctcacca	cctagccata	gtctcaaacc	tgtggggaaag	gaggtttct	ccctgcccgg	1860
gaagaggaca	gataactgat	ttccgttctt	ttgactgtgt	tttaaaattc	tctttctaaa	1920
cacagagtgt	tgggcctgg	ttgtttctga	caaagttaca	gtcctgggcc	tgtaatgaat	1980
gtcggcggcg	ctggggttgc	agggaaaaga	caaatcctca	aagcgtggac	gtgtgtcccc	2040
atggcttgc	gatcagctaa	gctcgggatc	attccataaa	gtctgtttt	cagggattct	2100
ctgctggtgc	tggtgcaagg	acttctgttc	caaaggctgg	aaaaaactaa	gctgtcccag	2160
cccctccat	ttcttgggca	gggcttttt	cctgttgtgt	cttccccag	ggcctgtcct	2220
gtaccgagct	ctgtctgttc	cagcctacat	cttccctggg	tgttgctttt	cctcttaagg	2280
gcctcagaac	tcttgctctt	cctggggtga	ggggaaatga	gtgttcttga	catgtgacag	2340

ccta atgcgc atgcttctg cctctggtaa caggagttag tgagccctc agacctgcac	2400
tctgggtgtc tcctgcttac aaaggttctt aatagtgaat gctttaaaat taaagtcatc	2460
acgaaatgga agtttccca gggtggaaaa taagaggaag tgctgctgta attgggagca	2520
caaggggcct cccaaaaagg agccccacct cagcatcaact gccttaatcg tggcctccct	2580
ggggtggtgt gggttctctc ctcccctccct ccctcctccct ggggtggag ggcgctcctg	2640
ttcccatctc tgtgttccct ggaggcaggt atcacaaagc atttgtgaat tgcttaggt	2700
gcagggacac cacccactca ggactttcc ccatcatccc ttccattgcc acaccctaga	2760
tccagcctca ggaactaaca agttktgaga aaagcaggtg gttagcagc agcttcgtgc	2820
tctcagcgggt ggctggctgg cattttctc tagcgttgtg gtgccacctt cccttcttgt	2880
cccaaggta taaggccttg tcttctctt tggaatcata aagtggaca gagtccccag	2940
aactcatgtg ghcatttccg acagcatcac tccccgggtgc ctatggggtc ccgggtgtacc	3000
taaaggaga aggacccat gtgctagcca gaaataact gtctctgaa ggaaagcagg	3060
agctcagact cttagagcca gctgtggctt cggacccaag gcctgaccta ggctgctatc	3120
ctaattttgg aggaggggcc tctcttccaa gccccaccct aagggttagc cttggacaa	3180
atcttgcc gtc taggccc agccaggctt ttctgactaa ataagcaata agaggctcta	3240
agctgactga gttgcaagga cccttccgc cctcccttgg atctccatgt ttctccagat	3300
ggcggaaagag catgtgccac ccccttcct aacagacttg tccaagtgt tgccgtggaa	3360
cccatgacca aagcccagga tggctggtg ggagtgtccc tgctgcacat gcatgaagcc	3420
cctgctttt aggctcaact cccatcagaa ccctgcctgc ccacctgcaa ctccccccca	3480
acaatgccat tcccacttgc cccagagaag ctactcggcc aaacctagcc agggctgtt	3540
cttggacc agagccagcc tagtattat ttgctgtcg gttccagtt tcaccgtgt	3600
ttagggtgag ggttgcattgt aaaatttgct cctcaaagga atcaggccag actcaatttt	3660
gggagggcaa gacagggagg aggccgcttc atcccagact ctcttctagg gcttcccacc	3720
atcagccctt cccacttgc actggctttt gggaggcaat aggccaccat gcctggtcag	3780
caccaattca agccatgccca ggaatgtgcc tacctgccag gttcagttct tttaggtgc	3840
ctcttcaggg acacagtgtg tctctctgat tggcttcta aatcaaaaagc ctgatgtcg	3900
tgtccctctc atagggggag cttggacac aggaccagtt tgaaaaagg tcaggttaagg	3960
gtttccactc tgcacattgt agagggaca ctctgttaggc ccatgggtcc cttaactagag	4020
aggtttagtg aatttgccct cagtaacat gggacccctt gtttagcttc ctcttgcttc	4080
ccaaagattt taagcatttt gttaaatgtat aaactcacct ctggtaaacag tggcccagac	4140

gctgcttgt	gctaaaagca	tggaaatgt	aaaggcagtc	tttctctgg	aatggatgc	4200
tattctattc	tgctgccct	acctgttcct	gaggcctcat	ttagaaagaa	aatcccctca	4260
gaaggctgtc	tggcacccag	tgtcctagcc	aggccaagta	tatgagaaag	gtaaagtccat	4320
tttcccttc	aggtcctcag	tggattactt	aaccactgct	gtccctcggt	cccttttcc	4380
taaacgggtt	tagttctgtc	tttttctcc	tttttctaa	atgctggtaa	atatttacat	4440
tcagccaggg	aagaggaggc	cagaggtcgg	gccagctgcc	ccatttttt	aacgttntag	4500
ggcctgccc	tggagcggac	cctcctctt	gggcctcgtg	agctttttg	cttatcatgt	4560
tccatttcgt	gccgcttcc	cccttcaaga	tgccatttg	aggtagggg	atctgcttcc	4620
cactgtgact	gggctatggg	attctgacta	ccttgcttac	agattcatgg	tttgataaat	4680
ttgttgtatt	ccaaaacttg	aatgcagga	cgccattaag	tgtctgtta	tatTTTgga	4740
atatttgtat	tacttacaat	taattaataa	aagtgggtt	aaaaaacctt	tccaggaaaa	4800
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaa	aaa		4833

<210> 15
<211> 859
<212> DNA
<213> Homo sapiens

<400> 15						
atggacggcc	cggccatcat	cacccaggtg	accaacccca	aggaggacga	gggcccgttg	60
ccgggcgcgg	gcgagaaagc	ctcccagtgc	aacgtcagct	taaagaagca	gaggagccgc	120
agcatccta	gctccttctt	ctgctgcttc	cgtgattaca	atgtggaggc	ccctccaccc	180
agcagccccca	gtgtgcttcc	gccactggtg	gaggagaatg	gtgggcttca	gaagccacca	240
gctaagtacc	ttcttccaga	ggtgacggtg	cttgactatg	gaaagaaatg	tgtggtcatt	300
gattnagatg	aaacattgg	gcacagttcg	tttaagccta	ttagtaatgc	tgattttatt	360
gttcccggtt	aatcgtatgg	aactatacat	caggtgtatg	tgctgaagcg	gccacatgtg	420
gacgagttcc	tccagaggat	ggggcagctt	tttgaatgtg	tgctctttac	tgccagcttg	480
gccaagtatg	cagaccctgt	ggctgacctc	ctagaccgct	ggggtgtgtt	ccggggcccg	540
ctcttcagag	aatcatgtgt	tttcatcgt	gggaactacg	tgaaggacct	gagtcgcctt	600
gggcgggagc	tgagcaaagt	gatcattgtt	gacaattccc	ctgcctcata	catcttccat	660
cctgagaatg	cagtgcctgt	gcagtcctgg	ttcgatgaca	tgacggacac	ggagctgctg	720
gacctcatcc	cttctttga	gggcctgagc	cgggaggacg	acgtgtacag	catgctgcac	780
agactctgca	ataggttagcc	ctggcctctg	cctgcctccc	gcctgtgcac	tctggaacct	840
ctggcctcag	gggacctgc					859

<210>	16					
<211>	754					
<212>	DNA					
<213>	Homo sapiens					
<400>	16					
atgatgggga	ggccctgcct	gctcacagcg	gggcgc(cc)ct	gcttgtggag	gagaatggcg	60
ccatccc(taa)	ggcagacccc	agtccaatac	ctgctccctg	aggccaaggc	ccaggactca	120
gacaagatct	gcgtggtcat	cgacctggac	gagaccctgg	tgcacagctc	cttcaagcca	180
gtgaacaacq	cggacttcat	catccctgtg	gagattgatg	gggtggtcca	ccaggtctac	240
gtgttgaagc	gtcctcacgt	ggatgagttc	ctgcagcgaa	tggcgagct	ctttgaatgt	300
tgctgttca	ctgcttagcct	cgc(a)gtac	gcagacccag	tagctgac(t)	gctggacaaa	360
tggggggcct	tccgggccc	gctgttcga	gagtcc(t)cg	tcttccaccg	ggggactac	420
gtgaaggacc	t(g)agccggtt	gggtcgagac	ctgcggcggg	tgctcatcct	ggacaattca	480
cctgcctcct	atgtttcca	tccagacaat	gctgtaccgg	tggcctcg(t)	gtttgacaac	540
atgagtgaca	cagagctcca	cgacccctc	cccttctcg	agcaactcag	ccgtgtggac	600
gacgtgtact	cagtgctcag	gcagccacgg	ccagggagct	agtgagggtg	atggggccag	660
gacctgcccc	tgaccaatga	tacccacacc	tcctcccagg	aagactgccc	aggc(t)ttgt	720
tagaaaaacc	catgggcccgc	cgcacactc	agt			754
<210>	17					
<211>	27					
<212>	DNA					
<213>	Artificial sequence					
<220>						
<223>	Synthetic construct: polymerase binding site					
<400>	17					
gaattaaatac	gactcactat	agggaga	27			
<210>	18					
<211>	25					
<212>	DNA					
<213>	Artificial sequence					
<220>						
<223>	Primer					
<400>	18					
atgggcgaac	tatacgagt	cgttc	25			
<210>	19					
<211>	25					
<212>	DNA					

<213> Artificial sequence	
<220>	
<223> Primer	
<400> 19	25
atcaacgaca acttcgagat cgtcg	
<210> 20	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 20	24
atgtcgctct tgcaaaaaact aagc	
<210> 21	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 21	25
tgaagatcct caccgagcgc ggcta	
<210> 22	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 22	25
cagctggtgc gggagtacgg cttcc	
<210> 23	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 23	22
gagctgtcgt tgagctttgg cg	
<210> 24	
<211> 23	
<212> DNA	
<213> Artificial sequence	

<220>		
<223> Primer		
<400> 24		
actgggccta ttactactgg ctc		23
<210> 25		
<211> 25		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 25		
caacgaagcc gagcgagcca tccag		25
<210> 26		
<211> 26		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 26		
gcaacaactg gccaagggt cattac		26
<210> 27		
<211> 26		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 27		
gccttccaag agcacgacgt acaaag		26
<210> 28		
<211> 26		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 28		
ctcgccaatc aagtaccttg tgctgc		26
<210> 29		
<211> 25		
<212> DNA		
<213> Artificial sequence		

<220>		
<223> Primer		
<400> 29		
cttcgctcgc acctcagaaa cgatc		25
<210> 30		
<211> 25		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 30		
caacggaaact aacggccgct ccgag		25
<210> 31		
<211> 22		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 31		
ctcgccattg ttctcctgggt gg		22
<210> 32		
<211> 25		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 32		
cttgtctgct gctggttcaa catgg		25
<210> 33		
<211> 25		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 33		
gcgggttggag tagccaaact cgttg		25
<210> 34		
<211> 25		
<212> DNA		
<213> Artificial sequence		
<220>		

<223> Primer	
<400> 34	
ttataggata tcttcgattt tcggc	25
<210> 35	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 35	
gaccggactc gtcatactcc tgcttg	26
<210> 36	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 36	
tgcgcagctc gcccatgttag acctg	25
<210> 37	
<211> 23	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 37	
cgcgtggatt gggagaagaag gtc	23
<210> 38	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 38	
ccgtaaaacc gcgcgcatta aagt	24
<210> 39	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	

<400> 39	
tggcatggt cacgaatccg aatc	24
<210> 40	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 40	
cttggcatcg aacatctgct gggtaag	27
<210> 41	
<211> 26	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 41	
cgatcagaag tggatcgccgg tcctta	26
<210> 42	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 42	
ccctggctga agcagaactt catg	24
<210> 43	
<211> 25	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 43	
tatggcataa aagggtggc cattc	25
<210> 44	
<211> 24	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	

<400> 44	24
gttctcgcca tcggtgagat ctgc	
<210> 45	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 45	22
cgtacatgag gtagaccctg ga	
<210> 46	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 46	27
cggccgtcat tactcagatc agcaagg	
<210> 47	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 47	22
tccaccaccc tgtgttgctg ta	
<210> 48	
<211> 27	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 48	27
catctctgat ctcgactgct ccagcag	
<210> 49	
<211> 30	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 49	

tgcctcacc caaggctct gacactgtgg	30
<210> 50	
<211> 30	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 50	
ctgtggccat ggaggaaac agtggttcc	30
<210> 51	
<211> 28	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 51	
gcaaccgcag gcacgactgt ttacggag	28
<210> 52	
<211> 29	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 52	
ccatcgccctg cgaaacctcc ccaggtaga	29
<210> 53	
<211> 28	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 53	
gcagtgaaca gcacacattc aaagagct	28
<210> 54	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Primer	
<400> 54	
accacagtc accatcac	20

<210> 55		
<211> 27		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 55		
gggtcagaga gtggatgc cacagtg		27
<210> 56		
<211> 28		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 56		
cttgaacagc tcctggatgg cagtgtg		28
<210> 57		
<211> 28		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 57		
agaagtccag gagcagctga gggagcac		28
<210> 58		
<211> 30		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 58		
agatgaccat ccggaagaag ttggcattgt		30
<210> 59		
<211> 30		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 59		
agccaactca gctggactct ctccagcttc		30

<210> 60		
<211> 30		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 60		
tgcggttat attatcctgc acgcccggag		30
<210> 61		
<211> 27		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 61		
ggagccctat gcagggttaag ggaataa		27
<210> 62		
<211> 28		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 62		
aactatttct gggtaactcc ttagacac		28
<210> 63		
<211> 30		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 63		
ctggataagt tactgaagag tgggctttgg		30
<210> 64		
<211> 29		
<212> DNA		
<213> Artificial sequence		
<220>		
<223> Primer		
<400> 64		
caccgggttcg agtccccgga gaggatatac		29

```

<210> 65
<211> 28
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 65
ggccttgat tttggagcc accttgtg 28

<210> 66
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 66
gctgggagga atgcttcta atgcatttg 29

<210> 67
<211> 25
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 67
cagacgacaa gttacatgca acatg 25

<210> 68
<211> 150
<212> PRT
<213> Homo Sapiens

<400> 68

Asn Arg Lys Leu Val Leu Met Val Asp Leu Asp Gln Thr Leu Ile His
1 5 10 15

Thr Thr Glu Gln His Cys Gln Gln Met Ser Asn Lys Gly Ile Phe His
20 25 30

Phe Gln Leu Gly Arg Gly Glu Pro Met Leu His Thr Arg Leu Arg Pro
35 40 45

His Cys Lys Asp Phe Leu Glu Lys Ile Ala Lys Leu Tyr Glu Leu His
50 55 60

Val Phe Thr Phe Gly Ser Arg Leu Tyr Ala His Thr Ile Ala Gly Phe
65 70 75 80

```

Leu Asp Pro Glu Lys Lys Leu Phe Ser His Arg Ile Leu Ser Arg Asp
85 90 95

Glu Cys Ile Asp Pro Phe Ser Lys Thr Gly Asn Leu Arg Asn Leu Phe
100 105 110

Pro Cys Gly Asp Ser Met Val Cys Ile Ile Asp Asp Arg Glu Asp Val
115 120 125

Trp Lys Phe Ala Pro Asn Leu Ile Thr Val Lys Lys Tyr Val Tyr Phe
130 135 140

Gln Gly Thr Gly Asp Met
145 150

<210> 69

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Consensus sequence

<220>

<221> MISC_FEATURE

<222> (1)..(3)

<223> Xaa at 1, 2, or 3 is a hydrophobic residue

<220>

<221> MISC_FEATURE

<222> (5)..(5)

<223> Xaa is any amino acid

<220>

<221> MISC_FEATURE

<222> (7)..(7)

<223> Xaa is any amino acid

<220>

<221> MISC_FEATURE

<222> (8)..(8)

<223> Xaa is T or V

<220>

<221> MISC_FEATURE

<222> (9)..(10)

<223> Xaa is a hydrophobic amino acid

<400> 69

Xaa Xaa Xaa Asp Xaa Asp Xaa Xaa Xaa Xaa
1 5 10