Length of Fence (ft)

FUNCTION NOTATION

You can evaluate equations in function notation just like you evaluate expressions.

$$f(x) = 3x + 4$$

Evaluate f(4)

$$g(c) = c^2 + 2c + 6$$

Evaluate g(-1)

$$h(v) = 7 - 6v$$

Evaluate $h\left(\frac{1}{3}\right)$

$$k(x) = 6x - 12$$

Find x if
$$k(x) = 18$$

$$f(4) = 3(4) + 4$$

$$9(-1) = (-1)^{2} + 2(-1) + 6$$

$$h(\frac{1}{3}) = 7 - 6(\frac{1}{3})$$

$$18 = 6x - 12$$

$$\frac{30}{6} = 6x$$

Answer each of the following using this graph:

Find a point
$$\left(-1, \frac{-3}{3}\right)$$
 $f(-1) = \left[-3\right]$

Find
$$f(2)$$

Find a point
$$\left(2, \frac{1}{y}\right)$$
 $f(2) = \boxed{1}$

(3,2) (-1,-3)

Find x when f(x) = 2

$$\left(\frac{3}{x}, 2\right)$$

$$X = 3$$
or $f(3) = 2$

PRACTICE STAAR QUESTION

Given
$$f(x) = \frac{1}{3}(4-x)^2$$
, what is the value of $f(16)$?

Record your answer and fill in the bubbles on your answer document.

$$=\frac{1}{3}(4-14)^2$$

$$=\frac{1}{3}(-12)^2$$

$$= \frac{1}{3}(144) \quad \text{Same as} \quad \frac{48}{3144}$$