

Faculty of Engineering and Technology Department of Electrical and Computer Engineering

ENCS 2110

EXP 3 Pre-Lab: Encoders, Decoders, Multiplexers, and Demultiplexers

Student's name: Anas Al Sayed

Student's No.: 1221020

Section: 10

Instructor: Hanya Radwan

✓ Design a circuit which uses an SN74151 to implement a sum-of-products expression, as follows:.

a) Convert the following expression into summation form (i.e., $F(A, B, C) = \sum (...)$:

$$F(A,B,C)=AB'+B'C$$

identify the minterms (cases where F = 1):

A	В	С	F(A,B,C)=AB'+B'C
0	0	0	0
0	0	1	1(m1)
0	1	0	0
0	1	1	0
1	0	0	1(m4)
1	0	1	1(m5)
1	1	0	0
1	1	1	0

the summation form (Sum of Products) is:

⋄
$$F(A,B,C) = \sum (1,4,5)$$
.

b) Sketch on Figure 3.1 the input connections necessary to implement the function in part (a). Observe that the inputs are connected to 0 or 1 depending on the value of the function for that min term.

Implement using an 8-to-1 MUX (SN74151)

Select (A B C)	MUX Input In
000 (m0)	1
001 (m1)	1
010 (m2)	0
011 (m3)	0
100 (m4)	1
101 (m5)	1
110 (m6) 0	110 (m6) 0
111 (m7) 0	111 (m7) 0

✓ Design a circuit which uses an SN74138 Demultiplexer to implement a sum-ofproducts expression, as follows: a) Convert the following expression into summation (Sum of Products –SOP-) form (i.e. F(A,B,C)=∑(...)):

F(A,B,C) = A'BC + B'C

identify the minterms (cases where F = 1):

Α	В	С	F(A,B,C) = A'BC + B'C
0	0	0	0
0	0	1	0
0	1	0	1(m2)
0	1	1	1(m3)
1	0	0	0
1	0	1	0
1	1	0	1(m6)
1	1	1	0

the summation form (Sum of Products) is:

⋄ $F(A,B,C) = \sum (2,3,6)$.

