Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° Semestre 2019

Ayudantía 13

25 de Abril

MAT1106 - Introducción al Cálculo

1) Sean $\{x_n\}, \{y_n\}$ sucesiones. Sea $\{z_n\}$ definida como

$$z_n = \begin{cases} x_n & \text{si } n \text{ es impar} \\ \\ y_n & \text{si } n \text{ es par} \end{cases}$$

Demuestre que si $\lim_{n\to\infty}x_n=0$ y $\lim_{n\to\infty}y_n=0$, entonces $\lim_{n\to\infty}z_n=0$. ¿Es cierto el recíproco?

- 2) Sea $\{x_n\}$ una sucesión de enteros que converge a 0. Pruebe que $\{x_n\}$ es eventualmente constante.
- 3) Demuestre que las siguientes sucesiones convergen a 0:

a)
$$x_n = \frac{1 + \dots + n}{n^3}$$

b)
$$x_n = \frac{1+3+\dots+(2n+1)}{n^3}$$

c)
$$x_n = \frac{1+2+\dots+n^2}{n^4}$$

4) Sea

$$x_n = 1 - 0, \underbrace{9999 \cdots 9}_{n \text{ 9s}}$$

Demuestre que $\lim_{n\to\infty} x_n = 0$.