

Community Detection for Big Biological

Networks with ExoLabel

Research reported in this work was supported by the National Library of Medicine of the National Institutes of Health under award number **5T15LM007059-35**.

MCL (I=2.0)

Problem

Label Propagation

Comparative genomics depends on Orthology Detection

Fast Label Propagation

- Community Detection algorithms can infer orthology groups from sequence similarity networks
- Current approaches fail to scale to modern genomic data

Solution

- We introduce a new algorithm, ExoLabel
- ExoLabel performs Label Propagation using disk space to minimize memory consumption
- ExoLabel can identify communities in a network with billions of nodes using only 100MB of RAM
- Exolabel matches state-of-the-art community detection methods in accuracy and outperforms in runtime & memory

Historical cost of computer memory and storage

ExoLabel

This data is expressed in US dollars per terabyte (TB). It is not adjusted for inflation.

MCL (I=1.4)

Data source: John C. McCallum (2022)

Note: For each year, the time series shows the cheapest historical price recorded until that year.

Community Similarity on 50 Prokaryotic Genomes

Details

Louvain

- ExoLabel has log-linear runtime scaling in terms of number of nodes and edges
- Memory scaling is constant
- Disk consumption is linear with respect to number of nodes and edges
- Performance is comparable to low-inflation MCL or Label Propagation

Memory Scaling on Sparse Graphs 315.6 GB 172.3 GB 134.7 GB 56.3 GB Number of Genomes

Our Lab: www.WrightLabScience.com www2.DECIPHER.codes

ExoLabel is available in the SynExtend package for R

Contact me!
AHL27@pitt.edu
www.AHL27.com

