Notação Assintótica: O

André Vignatti

DINF- UFPR

Notação Assintótica

Vamos expressar complexidade através de funções em variáveis que descrevam o tamanho de instâncias do problema.

Exemplos:

- Problemas de aritmética de precisão arbitrária: número de bits (ou bytes) dos inteiros.
- Problemas em grafos: número de vértices e/ou arestas
- Problemas de ordenação de vetores: tamanho do vetor.
- Busca em textos: número de caracteres do texto ou padrão de busca.

 Vamos supor que funções que expressam complexidade são sempre positivas, já que estamos medindo número de operações.

Notação Assintótica

Notação assintótica

É um jeito de descrever o comportamento de funções no limite.

- A notação assintótica descreve o crescimento de funções.
- Foca no que é importante, ao abstrair os termos de baixa ordem e fatores constantes
- É o modo padrão de indicar o tempo de execução de algoritmos.

No decorrer da disciplina, iremos estudar a eficiência assintótica do algoritmos e estrutura de dados.

Comparação de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10^{6}	10 ⁹
n log n	200	3000	$4 \cdot 10^{4}$	$6 \cdot 10^{6}$	$9 \cdot 10^9$
n^2	10 ⁴	10 ⁶	10 ⁸	10^{12}	10 ¹⁸
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$\approx 10^{10}$	$pprox 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Comparando funções

Com a notação assintótica, podemos comparar formalmente o "tamanho" das funções.

$$\Omega \approx \geq$$

$$o \approx <$$

$$\omega \approx >$$

Notação O

Definição

 $f(n) \in O(g(n))$ se existe constantes c > 0 e n_0 tal que $f(n) \le cg(n)$, para todo $n \ge n_0$.

Exemplo

Seja
$$f(n) = n^2 + 2n + 1$$
. É verdade que $f(n) = O(n^2)$?

- $n^2 + 2n + 1 \le n^2 + 2n^2 + n^2 = 4n^2$, sempre que $n \ge 1$. Então pegamos c = 4 e $n_0 = 1$.
- $n^2 + 2n + 1 \le n^2 + n^2 + n^2 = 3n^2$, sempre que $n \ge 2$. Então pegamos c = 3 e $n_0 = 2$.

Exemplo

Seja $f(n) = n^2$. É verdade que f(n) = O(n)?

- Ou seja, $\exists c, n_0$ contantes tal que $n^2 \le cn$ para $n \ge n_0$?
- (dividindo ambos os lados por n) $n \le c$?
- Não é verdade!

Exemplo

Seja $f(n) = \log_2 n$. É verdade que $f(n) = O(\log_5 n)$?

- Note que $\log_2 n = \frac{\log_5 n}{\log_5 2}$ (mudança de base de logaritmo).
- Então, basta mostrar que $\exists c, n_0$ contantes tal que $\frac{\log_5 n}{\log_5 2} \le c \log_5 n$, para $n \ge n_0$.
- (divide os dois lados por $log_5 n$) Assim, basta escolher $c \ge \frac{1}{\log_c 2}$ e $n_0 \ge 0$.

Podemos generalizar para obter o seguinte resultado:

Teorema (Exercício)

 $\log_b n = O(\log_a n)$ para todo a > 1, b > 1.

Exemplo

As funções a seguir são $O(n^2)$

- \bullet n^2
- $n^2 + n$
- $n^2 + 1000n$
- $1000n^2 + 1000n$
- n
- n/1000
- $n^{1.9999999}$
- $n/\log_2\log_2\log_2 n$

Teorema da Soma

Sejam $\overline{f}(n), \overline{g}(n)$ funções não negativas tais que $\overline{f}(n) = O(f(n))$ e $\overline{g}(n) = O(g(n))$. Então

$$\overline{f}(n) + \overline{g}(n) = O(f(n) + g(n)).$$

Demonstração.

- Pela definição, $\exists c_1, n_1$ tal que $\overline{f}(n) \leq c_1 f(n)$ para $n \geq n_1$.
- Pela definição, $\exists c_2, n_2$ tal que $\overline{g}(n) \leq c_2 g(n)$ para $n \geq n_2$.
- Assim,

$$\overline{f}(n) + \overline{g}(n) \le c_1 f(n) + c_2 g(n)$$

 $\le \max\{c_1, c_2\}(f(n) + g(n))$

para $n \ge \max\{n_1, n_2\}$.

• Portanto, $\overline{f}(n) + \overline{g}(n) \le c(f(n) + g(n))$ para algum $n \ge n_0$.

Teorema da Multiplicação

Sejam $\overline{f}(n),\overline{g}(n)$ funções não negativas tais que $\overline{f}(n)=O(f(n))$ e $\overline{g}(n)=O(g(n)).$ Então

$$\overline{f}(n)\overline{g}(n) = O(f(n)g(n)).$$

Demonstração.

Exercício

Usando os Teoremas da Soma e Multiplicação

```
Entrada: instância / tal que |I| = n
inicio
procedimento_1(I)
procedimento_2(I)
```

- Linha 2: $\overline{f}(n) = O(f(n))$.
- Linha 3: $\overline{g}(n) = O(g(n))$.
- Tempo Total = $\overline{f}(n) + \overline{g}(n) = O(f(n) + g(n)).$

```
Entrada: instância I tal que |I| = n

inicio
para i \leftarrow 1 até n hacer
procedimento_1(I)
```

- Linha 2: O(n).
- Linha 3: $\overline{f}(n) = O(f(n))$.
- Tempo Total = O(nf(n)).

Use os Teoremas da Soma e Multiplicação para os seguintes exemplos:

Exemplo

Dê uma estimativa usando a notação O para $f(n) = 3n \log(n!) + (n^2 + 3) \log n$, onde n é inteiro positivo.

Exemplo

Dê uma estimativa usando a notação O para $f(n) = (n+1)\log(n^2+1) + 3n^2$.

Demonstração.

Exercício.

