Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский Государственный Технический Университет имени Н.Э. Баумана» (МГТУ им Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Компьютерные системы и сети»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

по дисциплине «Глобальные сети»

на тему

«Маршрутизация в глобальных сетях»

Стенд №3

Выполнили студ. гр. ИУ6-18 Лапина Надежда Хорунжина Кристина Шведова Дарья Королев Михаил Тюрин Владислав Тюрин Сергей Серебренников Илья Коновалов Иван

СТАТИЧЕСКАЯ МАРШРУТИЗАЦИЯ

Цель работы: Получение навыков настройки программного маршрутизатора и построения статических маршрутов с использованием ОС Linux.

Собрали топологию сети, представленную на рисунке ниже

Настройка компьютеров:

Исходя из схемы, у первого компьютера включен только 1 интерфейс:

У второго компьютера все три (на примере второго ПК показано выключение/включение интерфейсов перед работой)

```
[root@host-2 ~]# ifconfig eth0 down

[root@host-2 ~]# ifconfig eth1 down

[root@host-2 ~]# ifconfig eth2 down

[root@host-2 ~]# ifconfig eth2 up

[root@host-2 ~]# ifconfig eth1 up

[root@host-2 ~]# ifconfig eth0 up
```

```
Link encap:Ethernet HWaddr 6C:62:6D:60:D0:20
         inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
         Interrupt:42 Base address:0x6000
eth1
         Link encap:Ethernet HWaddr 00:11:6B:98:AB:38
         inet addr:192.168.2.2 Bcast:192.168.2.255 Mask:255.255.255.0
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:9 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 b) TX bytes:540 (540.0 b)
         Interrupt:16 Base address:0xc00
eth2
         Link encap:Ethernet Hwaddr 00:11:6B:98:A1:BD
         inet addr:192.168.6.2 Bcast:192.168.6.255 Mask:255.255.255.0
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
         Interrupt:17 Base address:0x4c00
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
         RX packets:26 errors:0 dropped:0 overruns:0 frame:0
         TX packets:26 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
         RX bytes:2136 (2.0 Kb) TX bytes:2136 (2.0 Kb)
[root@host-2 ~]#
```

У третьего:

```
[root@host-4 ~]# ifconfig
           Link encap:Ethernet HWaddr 6C:62:6D:60:CF:27
           inet addr:192.168.4.4 Bcast:192.168.4.255 Mask:255.255.255.0
           UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
           RX packets:0 errors:0 dropped:0 overruns:0 frame:0
           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
           collisions:0 txqueuelen:1000
           RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
           Interrupt: 42 Base address: 0x6000
           Link encap:Ethernet Hwaddr 00:11:68:98:9E:C5
eth1
           inet addr:192.168.3.3 Bcast:192.168.3.255 Mask:255.255.255.0
           UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
           RX packets:0 errors:0 dropped:0 overruns:0 frame:0
           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
           collisions:0 txqueuelen:1000
           RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
           Interrupt:16 Base address:0x2c00
           Link encap:Ethernet HWaddr 00:11:68:98:A1:44
           inet addr:192.168.5.3 Bcast:192.168.5.255 Mask:255.255.255.0
eth2
           UP BROADCAST FLINNING MULTICAST MTU: 1500 Metric:1
           RX packets:0 errors:0 dropped:0 overruns:0 frame:0
           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
           collisions:0 txqueuelen:1000
           PX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
Interrupt:17 Base address:0x6c00
           Link encap:Local Loopback
                             1 Mask:255.0.0.0
```

У четвертого – как и у первого – один интерфейс включен

```
[root@host-3 ~]# ifconfig
eth0
          Link encap:Ethernet HWaddr 6C:62:6D:60:D0:27
          inet addr:192.168.4.3 Bcast:192.168.4.255 Mask:255.255.25.0
          UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
          RX packets:5 errors:0 dropped:0 overruns:0 frame:0
          TX packets:11 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:1000
          RX bytes:414 (414.0 b) TX bytes:630 (630.0 b)
          Interrupt:42 Base address:0x2000
lo
          Link encap:Local Loopback
          inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
          RX packets:14 errors:0 dropped:0 overruns:0 frame:0
          TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0
          RX bytes:1072 (1.0 Kb) TX bytes:1072 (1.0 Kb)
```

Настройка роутеров (интерфейсов gi0/1 и gi0/0):

На «Верхнем» роутере:

```
Router(config)#interface gi0/0
Router(config-if)#ip address 192.168.2.1 255.255.255.0
Router(config-if)#exit
Router(config)#interface gi0/l
Router(config-if)#ip address 192.168.3.1 255.255.255.0
Router(config-if)#no shutdown
Router(config-if)#exit
*Oct 15 09:18:51.859: %LINK-3-UPDOWN: Interface GigabitEthernetO/1, changed state to down
Router(config)#no shutdown
*Oct 15 09:18:55.219: %LINK-3-UPDOWN: Interface GigabitEthernetO/1, changed state to up
*Oct 15 09:18:56.219: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernetO/1, changed interface g
i0/0
Router(config-if)#ip address 192.168.2.1 255.255.255.0
Router(config-if)#no shutdown
Router(config-if)#exit
Router(config)#
*Oct 15 09:19:19.683: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to down
```

На «Нижнем» роутере:

```
Router>enable
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface gi0/1
Router(config-if)#ip address 192.168.5.4 255.255.255.0
Router(config-if)#interface gi0/0
Router(config-if)#ip address 192.168.^Z4 255.255.255.0
Router#
*0ct 15 08:07:11.195: %SYS-5-CONFIG_I: Configured from console by console
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface gi0/0
Router(config-if)#ip address 192.168.6.4 255.255.255.0
Router(config-if)#no shutdown
Router(config-if)#
```

Проверка пинга с первого на второй ПК – успешно

```
[root@host-1 ~]# ping 192.168.2.1
PING 192.168.2.1 (192.168.2.1) 56(84) bytes of data.
64 bytes from 192.168.2.1: icmp_seq=1 ttl=64 time=0.020 ms
64 bytes from 192.168.2.1: icmp_seq=2 ttl=64 time=0.021 ms
64 bytes from 192.168.2.1: icmp_seq=3 ttl=64 time=0.025 ms
^C
--- 192.168.2.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 1998ms
rtt min/avg/max/mdev = 0.020/0.022/0.025/0.002 ms
```

Ip route - Первый компьютер:

```
Router#ping 192.168.3.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.3.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Router#ping 192.168.2.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.2.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

Router#
```

Ip route (второй компьютер):

```
Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.6.2, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Router#ping 192.168.5.3

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.5.3, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Router#
```

Команда route

• С первого компьютера

```
[root@host-1 ~]# route add default gw 192.168.1.2

[root@host-1 ~]# route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.1.0 * 255.255.255.0 U 0 0 0 eth0

default 192.168.1.2 0.0.0.0 UG 0 0 0 eth0
```

• Со второго компьютера

```
[root@host-2 ~]# route add -net 192.168.3.0 netmask 255.255.255.0 dev eth1
[root@host-2 ~]# route add -net 192.168.5.0 netmask 255.255.255.0 dev eth1
[root@host-2 ~]# route add -net 192.168.4.0 netmask 255.255.255.0 dev eth1
[root@host-2 ~]# route
Kernel IP routing table
Destination Gateway
                                   Genmask
                                                     Flags Metric Ref
                                                                            Use Iface
                                    255.255.255.0 U
                                                                           0 eth2
192.168.6.0
                                    255.255.255.0 U
192.168.5.0
                                                                             0 eth1
192.168.4.0
                                   255.255.255.0 U
                                                                             0 ethl
                                   255.255.255.0 U
192.168.3.0
                                                                             0 ethl
192.168.2.0
                                   255.255.255.0 U
255.255.255.0 U
                                                                              0 eth1
192.168.1.0
                                                                              0 eth0
[root@host-2 ~]#
```

С третьего:

```
[root@host-4 ~]# route add -net 192.168.6.0 netmask 255.255.255.0 dev eth2
[root@host-4 ~]# route add -net 192.168.2.0 netmask 255.255.255.0 dev eth2
[root@host-4 ~]# route add -net 192.168.1.0 netmask 255.255.255.0 dev eth2
[root@host-4 ~]# route
Kernel IP routing table
Destination
               Gateway
                              Genmask
                                             Flags Metric Ref
                                                               Use Iface
192.168.6.0
                              255.255.255.0 U
                                                                0 eth2
                                                  0
                                                         0
192.168.5.0
                              255.255.255.0 U
                                                   0
                                                         0
                                                                 0 eth2
192.168.4.0
                              255.255.255.0 U
                                                   0
                                                         0
                                                                0 etho
192.168.3.0
                              255.255.255.0 U 0
                                                         0
                                                                0 eth1
                              255.255.255.0 U 0
                                                         0
                                                                0 eth2
192.168.2.0
                                            U
                                                         0
                                                                 0 eth2
192.168.1.0
                               255.255.255.0
                                                  0
```

• С четвертого:

```
[root@host-3 ~]# man route
[root@host-3 ~]# route add default gw 192.168.4.4
[root@host-3 ~]# route
Kernel IP routing table
Destination
               Gateway
                              Genmask
                                             Flags Metric Ref
                                                                Use Iface
192.168.4.0
                              255.255.255.0 U
                                                                  0 eth0
               192.168.4.4
                              0.0.0.0
                                             UG
                                                   0
                                                          0
                                                                  0 eth0
[root@host-3 ~]#
```

Задание маршрутов в нашей сети (на роутерах)

С первого:

```
Router(config)#ip route 192.168.4.0 255.255.255.0 192.168.3.3
Router(config)#
```

Со второго компьютера прописка маршрутов:

```
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip route 192.168.2.0 255.255.255.0 192.168.6.2
Router(config)#ip route 192.168.3.0 255.255.255.0 192.168.5.3
Router(config)#ip route 192.168.4.0 255.255.255.0 192.168.5.3
Router(config)#^Z
```

Тестирование с помощью передачи пакетов:

Пропинговали со второго компьютера 4-ый и выполнили traceroute.

Пропинговали с первого – третий:

```
[root@host-1 ~]# ping 192.168.3.3

PING 192.168.3.3 (192.168.3.3) 56(84) bytes of data.

64 bytes from 192.168.3.3: icmp_seq=1 ttl=62 time=2.40 ms

64 bytes from 192.168.3.3: icmp_seq=2 ttl=62 time=0.331 ms

64 bytes from 192.168.3.3: icmp_seq=3 ttl=62 time=0.363 ms

64 bytes from 192.168.3.3: icmp_seq=4 ttl=62 time=0.330 ms

^C
--- 192.168.3.3 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2999ms

rtt min/avg/max/mdev = 0.330/0.857/2.407/0.895 ms
```

```
[root@host-1 ~]# traceroute 192.168.3.3

traceroute to 192.168.3.3 (192.168.3.3), 30 hops max, 40 byte packets

1 192.168.1.2 (192.168.1.2) 0.091 ms 0.072 ms 0.043 ms

2 * * *

3 192.168.3.3 (192.168.3.3) 0.383 ms 0.381 ms 0.300 ms

[root@host-1 ~]# traceroute 192.168.4.4

traceroute to 192.168.4.4 (192.168.4.4), 30 hops max, 40 byte packets

1 192.168.1.2 (192.168.1.2) 0.118 ms 0.064 ms 0.045 ms

2 * * *

3 192.168.4.4 (192.168.4.4) 0.397 ms 0.391 ms 0.297 ms

[root@host-1 ~]# traceroute 192.168.4.4

traceroute to 192.168.4.4 (192.168.4.4), 30 hops max, 40 byte packets

1 192.168.1.2 (192.168.1.2) 0.089 ms 0.078 ms 0.042 ms

2 * * *

3 192.168.4.4 (192.168.1.2) 0.089 ms 0.078 ms 0.097 ms

[root@host-1 ~]# ■
```

Пропинговали с третьего первый:

```
lroot@host-4 ~]# ping 192.168.1.1 -c 3
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=62 time=3.44 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=62 time=0.358 ms
54 bytes from 192.168.1.1: icmp_seq=3 ttl=62 time=0.345 ms
--- 192.168.1.1 ping statistics -
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.345/1.381/3.440/1.455 ms
[root@host-4 ~]# ping 192.168.6.2 -c 3
PING 192.168.6.2 (192.168.6.2) 56(84) bytes of data.
64 bytes from 192.168.6.2: icmp_seq=1 ttl=63 time=3.53 ms
34 bytes from 192.168.6.2: icmp_seq=2 ttl=63 time=0.298 ms
64 bytes from 192.168.6.2: icmp_seq=3 ttl=63 time=0.296 ms
--- 192.168.6.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
tt min/avg/max/mdev = 0.296/1.375/3.531/1.524 ms
[root@host-4 ~]# traceroute 192.168.1.1
traceroute to 192.168.1.1 (192.168.1.1), 30 hops max, 40 byte packets
1 192.168.5.4 (192.168.5.4) 0.415 ms 0.250 ms 0.235 ms 2 192.168.2.2 (192.168.2.2) 0.350 ms 0.288 ms 0.272 ms 3 192.168.1.1 (192.168.1.1) 0.325 ms 0.303 ms 0.297 ms
root@host-4 ~1# route
```

Пропинговали с четвертого компьютера первый и выполнили traceroute

```
[root@host-3 ~]# ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=61 time=6.93 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=61 time=0.371 ms
64 bytes from 192.168.1.1: icmp seq=3 ttl=61 time=0.436 ms
64 bytes from 192.168.1.1: icmp seq=4 ttl=61 time=0.375 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=61 time=0.376 ms
64 bytes from 192.168.1.1: icmp seq=6 ttl=61 time=0.370 ms
^C
   192.168.1.1 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5005ms
rtt min/avg/max/mdev = 0.370/1.477/6.934/2.440 ms
root@host-3 ~]# traceroute 192.168.1.1
raceroute to 192.168.1.1 (192.168.1.1), 30 hops max, 40 byte packets
1 192.168.4.4 (192.168.4.4) 0.103 ms 0.072 ms 0.040 ms
2 192.168.5.4 (192.168.5.4) 0.408 ms 0.335 ms 0.252 ms 3 192.168.2.2 (192.168.2.2) 0.350 ms 0.363 ms 0.296 ms
  192.168.1.1 (192.168.1.1) 0.370 ms 0.401 ms 0.319 ms
```

Route

• со второго компьютера:

```
Router>show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
        N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
        El - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
        ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, + - replicated route
Gateway of last resort is not set
       192.168.1.0/24 [1/0] via 192.168.6.2
       192.168.2.0/24 [1/0] via 192.168.6.2
192.168.3.0/24 [1/0] via 192.168.5.3
192.168.4.0/24 [1/0] via 192.168.5.3
       192.168.5.0/24 is variably subnetted, 2 subnets, 2 masks
           192.168.5.0/24 is directly connected, GigabitEthernetO/1
           192.168.5.4/32 is directly connected, GigabitEthernetO/1
       192.168.6.0/24 is variably subnetted, 2 subnets, 2 masks
           192.168.6.0/24 is directly connected, GigabitEthernet0/0 192.168.6.4/32 is directly connected, GigabitEthernet0/0
Router>show ip int br
Interface
                                  IP-Address
                                                       OK? Method Status
                                                                                                 Protocol
GigabitEthernet0/0
                                  192.168.6.4
                                                       YES manual up
                                                                                                 up
GigabitEthernet0/l
                                  192.168.5.4
                                                      YES manual up
                                                                                                 up
Router>
```

Route -n:

С первого компьютера:

```
[root@host-l ~]# route -n
Kernel IP routing table
                                               Flags Metric Ref
Destination
               Gateway
                               Genmask
                                                                   Use Iface
192.168.1.0
               0.0.0.0
                               255.255.255.0
                                                     0
                                                            0
                                                                     0 eth0
0.0.0.0
                192.168.1.2
                               0.0.0.0
                                                     0
                                                            0
                                                                     0 eth0
[root@host-l ~]#
```

Со второго компьютера

```
[root@host-2 ~]# route -n
Kernel IP routing table
Destination
                                Genmask
                                                 Flags Metric Ref
                                                                     Use Iface
                Gateway
                                 255.255.255.0
192.168.6.0
                0.0.0.0
                                                                       0 eth2
192.168.5.0
                                255.255.255.0
                                                                       0 eth1
                0.0.0.0
192.168.4.0
                                 255.255.255.0
                                                                       0 eth1
                0.0.0.0
192.168.3.0
                                 255.255.255.0
                                                                       0 eth1
                0.0.0.0
                                 255.255.255.0
192.168.2.0
                0.0.0.0
                                                                       0 eth1
                                 255.255.255.0
192.168.1.0
                0.0.0.0
                                                       0
                                                              0
                                                                       0 eth0
[root@host-2 ~]#
```

ПРОТОКОЛ МАРШРУТИЗАЦИИ EIGRP

Цель работы: Изучить протокол EIGRP. Получить практические навыки в построения маршрутизирующих сетей на базе протокола EIGRP. Порядок выполнения работы:

1. Соберите топологию

Топология сети

Количество портов роутера ограничено, для построения данной сети был использован коммутатор, к которому были подключены все элементы.

Подключение к коммутатору

На коммутаторе было создано 6 vlan (Vlan 10,20...60).

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gi0/1, Gi0/2
2	VLAN0002	active	
3	VLAN0003	active	
10	VLAN0010	active	
20	VLAN0020	active	
30	VLAN0030	active	
40	VLAN0040	active	
50	VLAN0050	active	
60	VLAN0060	active	

Вывод команды show vlan

Далее мы настроили порты коммутатора. Порты подключенные к PC, т. е. конечным хостам, перевели в Access состояние, а подключенные к маршрутизаторам в Trunk.

```
Switch(config)#interface fa0/1
Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan 10
```

Настройка порта коммутатора в Access

```
Switch(config)#interface fa0/7
Switch(config-if)#switchport trunk encapsulation dotlq
Switch(config-if)#switchport mode trunk
Switch(config-if)#switchport trunk allowed vlan add 20
Switch(config-if)#switchport trunk allowed vlan add 30
Switch(config-if)#switchport trunk allowed vlan add 40
Switch(config-if)#no shutdown
Switch(config-if)#^Z
Switch#
```

Настройка порта коммутатора в Trunk

Чтобы убедиться, что порты в нужных **vlans используется команда**: show vlan. Порты, переведенные в Access, появились в выводе vlan'os:

2	VLAN0002	active	
3	VLAN0003	active	
10	VLAN0010	active	Fa0/1
20	VLAN0020	active	
30	VLAN0030	active	Fa0/3
40	VLAN0040	active	
50	VLAN0050	active	Fa0/2
60	VI ANOOGO	active	

Далее произведена настройка роутеров. Физический интерфейсы включены командой **no shutdown.** Далее произведена настройка **sub-interfaces**: После команды *encapsulation dot1Q* указали номер **vlan** и адрес с той же под-сети что и у оборудования, подключенного к портам коммутатора соответствующего **vlan**. Процесс изображен на рисунках:

```
Router(config)#int gi0/0.1
Router(config-subif)#encapsulation dot1q 10
Router(config-subif)#ip address 192.168.1.10
% Incomplete command.

Router(config-subif)#ip address 192.168.1.10 255.255.255.0
Router(config-subif)#exit
Router(config-subif)#encapsulation dot1q 20
Router(config-subif)#ip address 192.168.2.10 255.255.255.0
Router(config-subif)#exit
Router(config-subif)#exit
Router(config-subif)#exit
Router(config-subif)#encapsulation dot1q 60
Router(config-subif)#ip address 192.168.6.10 255.255.255.0
Router(config-subif)#ip address 192.168.6.10 255.255.255.0
Router(config-subif)#exit
```

Настройка роутера №1

```
GigabitEthernetO/O.1 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is 5475.d08d.e660 (bia 5475.d08d.e660)
  Internet address is 192.168.5.20/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation 802.10 Virtual LAN, Vlan ID 50.
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last clearing of "show interface" counters never
GigabitEthernetO/0.2 is up, line protocol is up

Hardware is CN Gigabit Ethernet, address is 5475.d08d.e660 (bia 5475.d08d.e660)

Internet address is 192.168.<mark>4.20</mark>/24
  MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation 802.1Q Virtual LAN, Vlan ID 40.
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
 Last clearing of "show interface" counters never
GigabitEthernetO/O.3 is up, line protocol is up
 Hardware is CN Gigabit Ethernet, address is 5475.d08d.e660 (bia 5475.d08d.e660)
 Internet address is 192.168.6.20/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation 802.10 Virtual LAN, Vlan ID 60.
```

Результат настройки роутера №2

```
Router#show interface gi0/0.1
GigabitEthernetO/O.1 is up, line protocol is up
 Hardware is CN Gigabit Ethernet, address is 5475.d08d.e2c0 (bia 5475.d08d.e2c0)
 Internet address is 192.168.3.30/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation 802.10 Virtual LAN, Vlan ID 30.
 Keepalive set (10 sec)
 ARP type: ARPA, ARP Timeout 04:00:00
 Last clearing of "show interface" counters never
Router#show interface gi0/0.2
GigabitEthernetO/0.2 is up, line protocol is up
 Hardware is CN Gigabit Ethernet, address is 5475.d08d.e2c0 (bia 5475.d08d.e2c0)
 Internet address is 192.168.4.30/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation 802.1Q Virtual LAN, Vlan ID 40.
 Keepalive set (10 sec)
 ARP type: ARPA, ARP Timeout 04:00:00
 Last clearing of "show interface" counters never
Router#show interface gi0/0.3
GigabitEthernetO/0.3 is up, line protocol is up
 Hardware is CN Gigabit Ethernet, address is 5475.d08d.e2c0 (bia 5475.d08d.e2c0)
 Internet address is 192.168.2.30/24
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation 802.10 Virtual LAN, Vlan ID 20.
 Keepalive set (10 sec)
 ARP type: ARPA, ARP Timeout 04:00:00
 Last clearing of "show interface" counters never
```

Результат настройки роутера №3

Далее была включена динамическая маршрутизация на каждом из роутеров для 3 сетей, пример для 1 сети:

Router(config)#router eigrp 1

Router(config-router)#network 192.168.1.0

Router(config-router)#network 192.168.2.0

Router(config-router)#network 192.168.6.0

После инкапсуляции «транковые» порты пропали из списка

Switch#show vlan					
VLAN Name	Status	Ports			
1 default	active	Fa0/4, Fa0/8, Fa0/9, Fa0/10 Fa0/11, Fa0/12, Fa0/13, Fa0/14 Fa0/15, Fa0/16, Fa0/17, Fa0/18 Fa0/19, Fa0/20, Fa0/21, Fa0/22 Fa0/23, Fa0/24, Gi0/1, Gi0/2			

Роутеры уже видят друг друга, а компьютеры нет.

```
Router#ping 192.168.6.20
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 192.168.6.20, timeout is 2 seconds:
 Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/1 ms
 Router#ping 192.168.6.20
 ype escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 192.168.6.20, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
 Router#ping 192.168.2.30
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 192.168.2.30, timeout is 2 seconds:
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
возможности передавать данные между компьютерами оставалось настроить
маршрут по умолчанию
     [root@host-2 ~]# ping 192.168.3.3
```

```
[root@host-2 ~]# ping 192.168.3.3
connect: Network is unreachable
[root@host-2 ~]# route add default gw 192.168.5.20
[root@host-2 ~]# ping 192.168.3.3
PING 192.168.3.3 (192.168.3.3) 56(84) bytes of data.
64 bytes from 192.168.3.3: icmp_seq=1 ttl=62 time=3.02 ms
64 bytes from 192.168.3.3: icmp_seq=2 ttl=62 time=0.637 ms
64 bytes from 192.168.3.3: icmp_seq=3 ttl=62 time=0.705 ms
^C
--- 192.168.3.3 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.637/1.456/3.027/1.111 ms
```

Для проверки динамической маршрутизации соединение между роутерами 1 и 3 было разорвано.

```
[root@host-1 ~]# traceroute 192.168.3.3 -n
traceroute to 192.168.3.3 (192.168.3.3), 30 hops max, 40 byte packets
1 192.168.1.10 0.334 ms 0.275 ms 0.270 ms
2 192.168.2.30 0.585 ms 0.521 ms 0.518 ms
3 192.168.3.3 0.614 ms 0.588 ms 0.579 ms
[root@host-1 ~]# traceroute 192.168.3.3 -n
traceroute to 192.168.3.3 (192.168.3.3), 30 hops max, 40 byte packets
1 192.168.1.10 0.364 ms 0.276 ms 0.267 ms
2 192.168.6.20 0.576 ms 0.511 ms 0.505 ms
3 * 192.168.4.30 0.876 ms 0.767 ms
4 192.168.3.3 0.858 ms 0.839 ms 0.829 ms
[root@host-1 ~]# traceroute 192.168.3.3 -n
traceroute to 192.168.3.3 (192.168.3.3), 30 hops max, 40 byte packets
1 192.168.1.10 0.327 ms 0.270 ms 0.270 ms
2 192.168.2.30 0.557 ms 0.512 ms 0.505 ms
3 192.168.3.3 0.607 ms 0.575 ms 0.576 ms
```

Пакет идет в обход разрыва и достигает конечной точки, пройдя через второй маршрутизатор. Затем мы восстановили соединение и все вернулось на свои места.

ПРОСМОТР СООБЩЕНИЙ EIGRP

1. Соберите топологию

Теперь разорвём соединение между 2 и 1 роутером и создадим соединение между ними через мост, в качестве которого выступает компьютер №4. Для того, чтобы настроить компьютер, как логический мост, используется команда brtcl:

brctl addbr br0 Определяем логический мост

brctl addif br0 eth0 Определяем интерфейс eth0

brctl addif br0 eth1 Определяем интерфейс eth1

Создание дополнительного vlan, настройка switch для работы с PC4

switch(config)#vlan 70

switch(config)# interface fa0/9

switch(config-if)# switchport mode access

switch(config-if)# switchport access vlan 70

Для роутера 2: Router(config)#int gi0/0.3 Router(config-subif)#encapsulation dot1q 70 Router(config-subif)#ip address 192.168.7.10 255.255.255.0 Router(config-subif)#exit

С помощью команды tcpdump прослушиваем канал, во время пинга по сети этправляются ICMP пакеты через логический мост

