Линейная алгебра

Базис векторного пространства.

Глеб Карпов

МНаД ФКН ВШЭ

Базис

Определение

• Набор векторов v_1, \dots, v_n из $\mathbb V$ называется *базисом* пространства $\mathbb V$ тогда и только тогда, когда *любой* вектор $x \in \mathbb V$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

Базис

Определение

• Набор векторов v_1, \dots, v_n из $\mathbb V$ называется *базисом* пространства $\mathbb V$ тогда и только тогда, когда *любой* вектор $x \in \mathbb V$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

• Соответствующие уникальные коэффициенты α_1,\ldots,α_n мы называем координатами вектора x в базисе (v_1,\ldots,v_n) .

Базис

Определение

• Набор векторов v_1, \dots, v_n из $\mathbb V$ называется *базисом* пространства $\mathbb V$ тогда и только тогда, когда *любой* вектор $x \in \mathbb V$ может быть уникально представлен в форме линейной комбинации:

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

- Соответствующие уникальные коэффициенты α_1,\dots,α_n мы называем координатами вектора x в базисе (v_1,\dots,v_n) .
- Немного иначе: набор векторов v_1,\dots,v_n из $\mathbb V$ называется *базисом* пространства $\mathbb V$ тогда и только тогда, когда этот набор векторов линейно независим и $\mathrm{span}(v_1,\dots,v_n)=\mathbb V$, то есть мы можем 'дотянуться' до любого элемента из $\mathbb V$.

Базис. Примеры

Пример в координатном векторном пространстве

ullet Координатное пространство \mathbb{R}^2 . Возьмем вектор, например, $x=inom{5}{2}$:

Базис. Примеры

Пример в векторном пространстве полиномов

• Векторное пространство $\mathbb{R}[x,2]$. Возьмем вектор, например, $f(x) = 2x^2 - 7x + 4$ и посмотрим его представление в разных базисах:

$$\begin{split} f(x) &= 2 \cdot x^2 + -7 \cdot x + 4 \cdot 1, \quad [x]_S = \begin{pmatrix} 2 \\ -7 \\ 4 \end{pmatrix}, \quad S = \begin{pmatrix} x^2, \, x, \, 1 \end{pmatrix} \\ f(x) &= 0.5 \cdot (4x^2 - 2x) + -2 \cdot (3x) + 0.5 \cdot 8, \quad [x]_B = \begin{pmatrix} 0.5 \\ -2 \\ 0.5 \end{pmatrix}, \quad B = \begin{pmatrix} 4x^2 - 2x, \, 3x, \, 8 \end{pmatrix} \end{split}$$

Важный промежуточный вывод

• Если векторное пространство $\mathbb V$ имеет базис $\mathbf v_1, \dots, \mathbf v_n$, то любой вектор $\mathbf v$ однозначно определяется своими координатами α_k в этом базисе. Если мы упакуем α_k в вектор из $\mathbb R^n$, то можем оперировать им вместо оперирования над $\mathbf v$.

Если $\mathbf{v} = \sum_{k=1}^n \alpha_k \mathbf{v}_k$ и $\mathbf{w} = \sum_{k=1}^n \beta_k \mathbf{v}_k$, то $\mathbf{v} + \mathbf{w} = \sum_{k=1}^n \alpha_k \mathbf{v}_k + \sum_{k=1}^n \beta_k \mathbf{v}_k = \sum_{k=1}^n (\alpha_k + \beta_k) \, \mathbf{v}_k$

т.е. вместо сложения двух оригинальных векторов, можно сложить векторы координат.

• Аналогично, чтобы получить $\alpha \mathbf{v}$, можно умножить столбец координат \mathbf{v} на α и сразу получить

Линейная алгебра: единый язык для разных объектов координаты вектора $lpha {f v}$.