Dinamica Non Lineare.

Edoardo Gabrielli

25 febbraio 2021

Indice

1	Intr	roduzione ai Sistemi Dinamici	3
	1	Definire un Sistema dinamico	3
	2	Esistenza ed unicità della soluzione di IVP	13
	3	Introduzione ai Manifold	17
	4	Mappe Ricorsive	18
	5	Spazio delle fasi esteso (SD a tempi continui)	21

Capitolo 1

Introduzione ai Sistemi Dinamici

Un sistema dinamico può essere descritto, a livello intuitivo, come un sistema fisico il cui stato evolve nel tempo.

1 Definire un Sistema dinamico

Prendiamo un insieme X^1 , lo stato x di un sistema al tempo iniziale è definito da $x_0=x(t=0)$.

Definizione 1.0.1: (Sistema Dinamico Deterministico). Un sistema dinamico si dice deterministico quando la sua evoluzione temporale segue regole deterministiche.

In Figura 1.1 abbiamo un esempio di sistema dinamico con evoluzione deterministica.

Prendiamo un altro sistema preparato ad un istante iniziale in x_0 . Se al tempo t il sistema è caratterizzato da una certa probabilità di trovarsi in x² allora il Sistema Dinamico si dice stocastico (o processo stocastico).

Un processo stocastico $\boldsymbol{x} \in \mathbb{R}^n$ è caratterizzato da due parametri: $\boldsymbol{x}(t,\omega)$. Il primo indica il tempo, il secondo è legato alla parte stocastica del processo.

Il parametro ω appartiene allo spazio degli eventi Ω :

 $\omega \in \Omega$.

Significa che $\forall \ \omega^* \in \Omega$ corrisponde un punto $\boldsymbol{x}(t,\omega^*)$ che è definito come la realizzazione di ω^* .

1 Che definiremo avanti come Spazio degli stati, Spazio degli eventi o Spazio delle fasi.

Figura 1.1: Evoluzione temporale deterministica di x all'interno di X.

² P diversa dalla distribuzione $\delta(x)$, altrimenti il processo è deterministico!

Figura 1.2: Evoluzione 1D di processo stocastico date le condizioni iniziali x_0 .

4

Definizione 1.0.2: (Processo stocastico). Collezione di funzioni $\forall t \ al \ variare \ di \ \omega \ nello \ spazio \ degli \ eventi.$

1.1 Rappresentazione di un Sistema Dinamico

Sistema dinamico a tempo continuo. Un SD a tempo continuo è rappresentato in generale da un sistema di equazioni differenziali:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t, \boldsymbol{u}); \qquad \boldsymbol{x} \in U \subset \mathbb{R}^n, \ \boldsymbol{u} \in \mathbb{R}^p.$$

La funzione F è definita nel seguente dominio:

$$F: U \times I \times \Gamma \to V \subset \mathbb{R}^n.$$

- U è il dominio della funzione x.
- *I* è l'intervallo di definizione della soluzione (non ché l'intervallo temporale studiato).
- Γ è il sottospazio dell'insieme dei parametri \mathbb{R}^p .
- V L'insieme in cui viene mappato il dominio iniziale dalla F.

Definizione 1.1.1: (Notazione semplificata). Nel seguito si sceglie di alleggerire la notazione dei sottospazi. Abuseremo del termine \mathbb{R} per definire tutti gli spazi

$$U, I, \Gamma, V$$
.

Con l'opportuna dimensionalità.

Sarà **importante** saper ricostruire i giusti insiemi di definizione di tutti i termini per i casi di studio analizzati.

Sistemi di equazioni differenziali Una equazione differenziale è definita dalla seguente:

$$E\left(\frac{\mathrm{d}^n x}{\mathrm{d}t^n}, \dots, \frac{\mathrm{d}x}{\mathrm{d}t}, x, t\right) = 0 \qquad x \in \mathbb{R}, \ t \in \mathbb{R}$$
 (1.1)

In cui si fa uso della notazione semplificata. Il grado di una equazione differenziale è l'ordine massimo delle sue derivate (n in questo caso).

Se è possibile riscrivere la 1.1 isolando il termine di ordine n:

$$\frac{\mathrm{d}^n x}{\mathrm{d}t^n} = G\left(\frac{\mathrm{d}^{n-1} x}{\mathrm{d}t^{n-1}}, \dots, x, t\right).$$

Allora l'equazione differenziale iniziale è scomponibile in n equazioni differenziali del primo ordine con il seguente cambio di variabili:

$$y_1(t) = x(t);$$
 ... $y_n(t) = \frac{d^{n-1}x}{dt^{n-1}}.$

Quindi è possibile definire un nuovo vettore di \mathbb{R}^n :

$$\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$$
.

In conclusione il sistema da risolvere è:

$$\frac{dy_1}{dt} = y_2$$

$$\frac{dy_2}{dt} = y_3$$

$$\vdots$$

$$\frac{dy_n}{dt} = G(y_n, y_{n-1}, \dots, y_1, t).$$

Esempio 1.1.1: (SD a tempo continuo: Oscillatore armonico) Prendiamo un sistema descritto dalla seguente Hamiltoniana:

$$H = \frac{1}{2}ky_1^2 + \frac{1}{2}my_2^2.$$

In questo caso lo stato del sistema è descritto dalla variabile x:

$$\boldsymbol{x}(t) = (y_1, y_2).$$

Il sistema è conservativo: fissate le condizioni iniziali la quantità H è conservata, questo di fatto significa che l'energia è conservata.

$$E = \frac{1}{2}ky_1^2 + \frac{1}{2}my_2^2 = \cos t.$$

Di conseguenza lo spazio delle fasi (o spazio degli stati) è definito in un sottoinsieme di \mathbb{R}^2 : un'ellisse.

$$\frac{y_1^2}{2E/k} + \frac{y_2^2}{2E/m} = 1.$$

I semiassi dell'ellisse sono:

$$a^2 = \frac{2E}{k} \qquad b^2 = \frac{2E}{m}.$$

Notiamo che l'orbita nello spazio delle fasi è chiusa: il sistema è periodico.

Definizione 1.1.2: (Spazio delle fasi). Sottoinsieme di \mathbb{R}^n con le soluzioni (gli stati).

Figura 1.3: Spazio delle fasi con una soluzione per il sistema Hamiloniano (a tempo continuo).

³ Valida per i sistemi dinamici "fisici" che studieremo, più tardi daremo anche una definizione più generale ed astratta.

Figura 1.4: Andamento delle macchie solari (wikipedia).

Figura 1.5: Andamento della soluzione N al variare del parametro r.

Sistema dinamico a tempo discreto Una prima rappresentazione di SD a tempo discreto³ è la seguente:

$$\boldsymbol{x}_n = G(\boldsymbol{x}_{n-1}, \boldsymbol{u}); \quad \boldsymbol{x}_n \in U \subset \mathbb{R}^n, \ \boldsymbol{u} \in \mathbb{R}^p.$$

$$G: U \times \mathbb{R}^p \to V \subset \mathbb{R}^n.$$

Possiamo immaginare che tra lo step n e lo step n-1 vi sia un intervallo temporale Δt . Fisicamente può essere la distanza tra due osservazioni sperimentali oppure l'andamento giornaliero di una popolazione.

Ovviamente l'intervallo Δt dipende dal contesto e dal tipo di sistema sotto esame.

Esempio 1.1.2: (Osservazione delle macchie solari.)

Un SD a tempi discreti può essere realizzato con l'osservazione delle macchie solari ogni 6 mesi.

Nella pratica si ottengono degli andamenti come in Figura 1.4.

Esempio 1.1.3: (Andamento degli individui di una popolazione, modello lineare.)

Prendiamo una popolazione di individui descritta dallo stato N_i : il numero di individui al tempo $t = i \in \mathbb{N}$.

La dinamica dello stato è descritta dal legame tra N_i e N_{i-1} . Nota questa legge è possibile predire i futuri andamenti della popolazione.

Il modello più semplice da studiare è il modello lineare:

$$N_n = rN_{n-1} \qquad r \in \mathbb{R}^+.$$

Ipotizzando che il numero di individui all'istante iniziale (arbitrario) sia N_0 è possibile ricostruire una legge temporale che lega l'istante iniziale all'istante n:

$$N_1 = rN_0;$$
 $N_2 = rN_1 = r^2N_0$ \Longrightarrow $N_n = r^nN_0.$

Quindi lo stato n-esimo è definito tramite una rete deterministica legata allo stato iniziale. Dalla Figura 1.5 si può osservare come l'andamento delle soluzioni dipende esclusivamente dal parametro r: sono possibili soltanto 3 casi.

Il modello lineare è il più semplice che si possa costruire per studiare le popolazioni e, per quasi tutti i casi, non basta a spiegare i fenomeni fisici che ci circondano: è necessario elaborare un modello più complesso...

Principio di sovrapposizione Riprendiamo l'Esempio 1.1.3, abbiamo concluso che l'andamento dello stato del sistema (la popolazione) seguiva la legge:

$$N_n = r^n N_0$$
.

Ipotizziamo che l'analisi prenda in considerazione l'andamento di due distinte popolazioni che seguono tale legge:

$$N_n = r^n N_0; \qquad M_n = r^n M_0.$$

Se lo studio prevede che queste due popolazioni si uniscano⁴ allora si ottiene la nuova popolazione \overline{N} :

$$\overline{N}_n = N_n + M_n = r^n (N_n + M_n) = r^n \overline{N}.$$

Teorema 1.1.1: (Principio di sovrapposizione.). Dati due sistemi che evolvono linearmente con la stessa legge: l'evoluzione della somma dei due ha lo stesso andamento della evoluzione dei singoli.

Cosa avviene se i due sistemi non evolvono linearmente?

1.2 Introduzione al Modello Logistico

Prendiamo il seguente modello di popolazione:

$$N_{n+1} = r(N_n) \cdot N_n.$$

A differenza dell'esempio 1.1.3 il rate della popolazione r adesso non è costante: dipende dalla popolazione all'istante n.

Un caso particolare di questa classe di sistemi è stato al centro di molti studi, in particolare per la sua versatilità nel modellizzare sistemi in ogni branca scientifica:

Definizione 1.2.1: (Modello logistico). Il modello logistico descrive l'andamento di una popolazione N_n con il seguente rate r:

$$r(N_n) = \mu \left(1 - \frac{N_n}{k} \right).$$

Quindi lo stato del sistema si esprime con la legge:

$$N_{n+1} = \mu \left(1 - \frac{N_n}{k} \right) N_n.$$

Questo rappresenta un modello non lineare.

Nel modello logistico la dipendenza di r dalla popolazione permette un meccanismo di retroazione che sfavorisce la crescita della popolazione stessa.

Figura 1.6: Andamento del Rate in funzione della popolazione, notiamo l'antimonotonia di r che garantisce il fenomeno di retroazione.

Figura 1.7: Porzione di spazio considerata per il modello, la stella con il contorno rosso è una stella in procinto di esplodere. M è la quantità di materia totale all'interno di tale spazio, composta da stelle formate e gas interstellare.

Esempio 1.2.1: (Modello logistico a popolazioni stellari.)

Il modello logistico può essere utilizzato come "toy model" per descrivere il fenomeno di formazione delle stelle del tipo "Supernovae Triggered": stelle che nascono in seguito all'esplosione di supernovae.

Il modello prevede che le stelle neonate si trasformino in supernovae (al termine della loro vita) diventando anche loro sorgenti di stelle.

Ipotizziamo che ad un istante i la popolazione di stelle sia S_i e la massa del gas interstellare sia M. Tutte le stelle del modello hanno la stessa massa m e sono identiche.

Vogliamo modellare la popolazione stellare ad un istante successivo: i+1.

La quantità di gas insterstellare disponibile (per la formazione di altre stelle) al tempo t è data dalla massa totale M meno la massa delle stelle presenti in tale istante:

$$m_{\text{gas}} = M - S_i \cdot m.$$

Quindi il numero di stelle al tempo i+1 può essere espresso tramite un modello logistico:

$$S_{i+1} = cS_i(M - S_i \cdot m).$$

Cambiando variabili si arriva ad un sistema avente una notazione "classica" nello studio dei modelli logistici:

$$x_i = \frac{mS_i}{M}$$
 $r = \frac{cM}{4}$ \Longrightarrow $x_{i+1} = 4rx_i(1 - x_i).$

1.3 Definizione Formale di Sistema Dinamico

Spazio metrico Prima di generalizzare le definizioni si SD è necessario definire uno spazio metrico:

Definizione 1.3.1: (Spazio metrico). L'inseme X è spazio metrico se $\exists d$:

$$d: X \times X \to \mathbb{R}^+ \cup \{0\}.$$

Che soddisfa le seguenti proprietà:

$$\begin{split} d(x,y) &\geq 0; & d(x,y) = d(y,x); \\ d(x,y) &= 0 \iff x = y; & d(x,y) \leq d(x,z) + d(z,y). \end{split}$$

Esempio 1.3.1: (Spazio metrico)

Prendiamo l'insieme di funzioni:

$$C(I) = \{f(x) | x \in I \subset \mathbb{R}; f \text{ continua} \}.$$

Possiamo definire una distanza d come:

$$d(f(x), g(x)) = \sup_{x \in I} |f(x) - g(x)|.$$

Definizione di SD a tempo discreto

Definizione 1.3.2: (SD a tempo discreto). Un sistema dinamico a tempo discreto è rappresentato da una mappa $G: X \to X$ tale che

- $G^{n+m} = G^n \circ G^m \ \forall n, m \in \mathbb{N}_0 \cup \{0\}.$
- Se G è invertibile $\Longrightarrow G^{-n} = G^{-1} \circ G^{-1} \circ \dots \circ G^{-1}$, in cui la composizione viene applicata n volte. In questo caso $n, m \in \mathbb{Z}$.

Esempio 1.3.2: (Shift Map)

Un esempio astratto di SD a tempo discreto è la Shift Map. L'insieme di partenza è così composto:

$$S_k = \{1, 2, \dots, k\};$$
 Insieme di k simboli.

Ci concentriamo su S_2^5 , definiamo uno spazio s come:

$$s = (s_1, s_2, \dots, s_\infty) \quad s_i \in S_2.$$

E chiamiamo l'insieme delle possibili stringhe Σ_2

$$\Sigma_2 = \{s | s = (s_1, s_2, s_3, \ldots); s_i \in \Sigma_2\}.$$

Su questo spazio definiamo un operatore $\sigma: \Sigma \to \Sigma$ tale che

$$\sigma(s) = (s_2, s_3, s_4 \ldots) \in \Sigma_2.$$

L'operatore σ definisce, insieme allo spazio Σ , il sistema dinamico. Siano $s,t \in \Sigma_2$, possiamo definire una distanza $d: \Sigma_2 \times \Sigma_2 \to \mathbb{R}^+ \cup \{0\}$ come:

$$d(s,t) = \sum_{j=0}^{\infty} \frac{|s_j - t_j|}{2^j}.$$

Notiamo che questa quantità è limitata, infatti:

$$d(s,t) \le \sum_{j=0}^{\infty} \frac{1}{2^j} = 2 \quad \forall \ t, s.$$

⁵ di fatto è uno spazio binario (a due simboli: 0,1)

Esercizio 1.3.1: (Σ_2 spazio metrico) Dimostrare che Σ_2 è uno spazio metrico.

Teorema 1.3.1: (Continuità di σ). Dati lo spazio metrico Σ_2 , la trasformazione σ e la distanza d allora la trasformazione σ è continua.

Esercizio 1.3.2: (Sulla continuità di σ) dimostrare che σ è continua in $\bar{s} = (0, 0, \dots, 0)$.

Cerchiamo i **punti fissi** della mappa iterata n volte: $s \in \Sigma_2$ tale che

$$\sigma^n(s) = s$$
.

Nel nostro sistema i punti sono stringe. Utilizziamo la notazione per indicare le stringhe fisse: $s^{n,j}$. Il primo indice corrisponde al numero di iterazioni per il quale la stringa s è punto fisso, il secondo indice corre tra tutte le possibili stringhe che sono fisse per la n-esima iterazione.

$$\sigma^n(s^{n,j}) = s^{n,j}.$$

Nel caso di n = 1 abbiamo (sempre per la shift map):

$$s^{1,1} = (0, 0, 0, \dots, 0)$$

 $s^{1,2} = (1, 1, 1, \dots, 1).$

Infatti shiftando verso sinistra la mappa queste due stringhe risultano invarianti.

Nel caso di n=2 le stringhe invarianti sono:

$$s^{2,1} = (0, 1, 0, 1...) \equiv (\overline{01})$$

 $s^{2,2} = (1, 0, 1, 0...) \equiv (\overline{10})$

Non è un caso che, per entrambi i casi, le stringhe fisse presentino una periodicità negli elementi (n-periodicità).

Definizione di SD a tempo continuo

Definizione 1.3.3: (Sistema dinamico a tempo continuo). Sia X uno spazio metrico e φ_t ($t \in \mathbb{R}$) una famiglia di mappe definite da:

$$\varphi_t: X \to X.$$

e tale per cui

- $\varphi_0 = \mathbb{I}$.
- $\bullet \ \varphi_{t+s} = \varphi_t \circ \varphi_s.$

Inoltre si possono distinguere due tipi di SD a tempo continuo:

- 1. $t \in \mathbb{R}^+ \implies Semi \ Dynamical \ System.$
- 2. $t \in \mathbb{R} \implies Dynamical System$.

Nel caso 2. la mappa è detta invertibile, infatti si ha che:

$$\varphi_{s+t} = \varphi_0 = \mathbb{I} \iff s = -t.$$

Esempio 1.3.3: (Traslazione)

Sia $y \in \mathbb{R}^n$ fissato; $t \in \mathbb{R}$. La mappa per il sistema agisce negli spazi:

$$\varphi_t : \mathbb{R}^n \to \mathbb{R}^n \quad \forall \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{x} \to \varphi_t(\boldsymbol{x}).$$

Operativamente la mappa è:

$$\varphi_t(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y}.$$

La mappa trasla il vettore \boldsymbol{x} di un fattore $t\boldsymbol{y}$, possiamo chiederci se questa rispecchia le proprietà di sistema dinamico:

- $\bullet \ \varphi_0(\boldsymbol{x}) = \boldsymbol{x}.$
- $t, s \in \mathbb{R}$;

$$\varphi_s(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y} \qquad \varphi_t(\boldsymbol{x}) = \boldsymbol{x} + t\boldsymbol{y}.$$

$$\varphi_t(\mathbf{x}) \circ \varphi_s(\mathbf{x}) = \varphi_t(\varphi_s)(\mathbf{x}) =
= \mathbf{x} + s\mathbf{y} + t\mathbf{y} = \varphi_{t+s}(\mathbf{x}).$$

Soluzione, grafico e orbita di SD a tempi continui Si dice sistema dinamico autonomo un SD a tempi continui indipendente in modo esplicito dal tempo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n, F : \mathbb{R}^n \to \mathbb{R}^n.$$

Per gli insiemi di appartenenza si è usata la notazione semplificata. Viceversa un sistema non autonomo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n, t \in I \subset \mathbb{R}, F : \mathbb{R}^n \to \mathbb{R}^n.$$

Supponiamo di avere il seguente problema alle condizioni iniziali

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t)$$
$$\boldsymbol{x}(t=0) = \boldsymbol{x}_0.$$

e supponiamo che la soluzione esista.

Definizione 1.3.4: (Soluzione del problema alle C.I.). La soluzione del problema alle condizioni iniziali $x(t, t_0, \mathbf{x}_0)$ è chiamata:

- Traiettoria per x_0 .
- Curva di Fase.

Ed ha l'ovvia proprietà:

$$x(t, t_0, \mathbf{x}_0): \qquad x(t_0, t_0, \mathbf{x}_0) = \mathbf{x}_0.$$

Definizione 1.3.5: (Grafico). Si definisce grafico della soluzione del problema alle CI l'insieme:

$$\Gamma(\boldsymbol{x}_0) = \{(\boldsymbol{x},t) \in \mathbb{R}^n \times \mathbb{R} | \boldsymbol{x} = x(t,t_0,\boldsymbol{x}_0) \}.$$

Definizione 1.3.6: (Orbita). Si definisce orbita della soluzione del problema alle CI:

$$O(\boldsymbol{x}_0) = (\boldsymbol{x} \in \mathbb{R}^n | \boldsymbol{x} = x(t, t_0, \boldsymbol{x}_0)).$$

Esempio 1.3.4: (Oscillatore armonico)

$$\begin{cases} \dot{u} = v \\ \dot{v} = -u \\ u_0 = 1 \\ v_0 = 0 \end{cases}$$

La variabile e le condizioni iniziali del problema sono:

$$\boldsymbol{x} = \begin{pmatrix} u(t) \\ v(t) \end{pmatrix}; \quad \boldsymbol{x}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Si può dimostrare (esercizio) che la soluzione è:

$$x(t, t_0, \mathbf{x}_0) = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}.$$

Figura 1.8: Soluzione, grafico e orbita per l'oscillatore armonico.

1.4 Linearità di un Sistema Dinamico

Prendiamo un sistema dinamico a tempi continui così definito:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}, t) \qquad \boldsymbol{x} \in \mathbb{R}^n; t \in \mathbb{R}; F : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$$

$$\boldsymbol{x} = (x_1, x_2, \dots, x_n) \qquad F = (F_1, F_2, \dots, F_n).$$
(1.2)

Definizione 1.4.1: (Condizione di linearità). Un SD a tempi continui come quello di equazione 1.2 è lineare se:

$$F(\boldsymbol{x} + \boldsymbol{y}, t) = F(\boldsymbol{x}, t) + F(\boldsymbol{y}, t) \qquad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n.$$

Questa condizione è necessaria ma non sufficiente.

Esempio 1.4.1: (Circuito RC)

Prendiamo il circuito RC come in figura 1.9, l'equazione che regola la carica nel circuito è la seguente:

$$\frac{\mathrm{d}q}{\mathrm{d}t} = \frac{V}{R} - \frac{q}{RC}.$$

In questo caso la variabile x corrisponde con la carica. Il sistema non rispetta la condizione 1.4.1, infatti nello sviluppare il calcolo per due correnti, q_1 e q_2 , rimane un termine 2V/R. Nonostante questo il sistema è ancora lineare.

Figura 1.9: Circuito RC.

Esempio 1.4.2: (Pendolo)

Prendiamo il sistema del pendolo classico, le equazioni del moto della massa m sono:

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} = -\frac{g}{l} \sin \theta \implies \begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{g}{l} \sin \theta \end{cases}.$$

Questo sistema è non lineare (c'è il seno).

Definizione 1.4.2: (Criterio generale per la linearità). Un SD si dice lineare se la sua dipendenza dalle variabili di stato è lineare.

Figura 1.10:

2 Esistenza ed unicità della soluzione di IVP

Dato un SD a tempo continuo ed un IVP (initial value problem) vorremmo sapere, per studiare la dinamica, se:

- Il problema ha soluzione?
- La soluzione, se esiste, è unica?

In assenza di unicità il sistema non può essere deterministico. I sistemi dinamici che studiamo devono sempre essere deterministici.

Esempio 2.0.1: (Due soluzioni)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 3x^{2/3} = F(x) \\ x(0) = x_0 = 0 \end{cases}.$$

Il sistema non è lineare poiché

$$(x+y)^{2/3} \neq x^{2/3} + y^{2/3}$$

Possiamo subito notare che una prima soluzione è la nulla: $x_1(t) = 0$. Un'altra soluzione è invece $x_2(t) = t^3$, infatti sostituendo nella equazione per la derivata di x:

$$3t^2 = 3(t^3)^{2/3}.$$

Che è appunto verificata.

Possiamo notare che F(x) è continua in x_0 , tuttavia non lo è la sua derivata rispetto a x: diverge a $\pm \infty$. Questo fatto è strettamente correlato alla non unicità della soluzione.

La non unicità della soluzione non è l'unico problema nel caso di sistemi dinamici a tempo continuo, può anche accadere che la soluzione non esista per tutti i tempi $\in \mathbb{R}$.

Esempio 2.0.2: (Soluzione con discontinuità nel tempo)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2 = F(x) \\ x(0) = 1 \end{cases}$$

In questo caso F(x) è derivabile infinite volte e le sue derivata sono sempre continue. Cerchiamo la soluzione:

$$\int \frac{dx}{x} = \int dt \implies x(t) = -\frac{1}{t+c}.$$

Inserendo la condizione iniziale:

$$x(t) = \frac{1}{1 - t}.$$

Notiamo che la soluzione non è continua $\forall t \in \mathbb{R}$, infatti è definita in $]-\infty,1[\ \cup\]1,\infty[$.

La soluzione del problema di Cauchy non deve necessariamente esser definita in tutto \mathbb{R} , quello che conta per noi è che sia definita almeno asintoticamente.

Definizione 2.0.1: (Funzione C^r). Una funzione F(x):

$$F(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^n \qquad \boldsymbol{x} \in \mathbb{R}^n.$$

si dice C^r se è r volte derivabile e le derivate fino all'ordine r sono continue.

Teorema 2.0.1: (Esistenza locale della soluzione). Dato un SD a tempo continuo:

$$\begin{cases} \frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t) \\ \mathbf{x}(t_0) = \mathbf{x}_0 \end{cases}$$

Con $(\mathbf{x}_0, t_0) \in U \times \mathbb{R} \in$. Assumendo che:

- F(x,t) sia C^r rispetto a x con $r \ge 1$.
- F(x,t) continua in t.

Allora esiste un intorno di t_0 $(t_0 - \epsilon < t < t_0 + \epsilon)$ nel quale la soluzione dell'IVP esiste ed è unica.

Questo teorema è locale poiché ci assicura una soluzione in un intervallo temporale, non asintoticamente.

Alcuni libri sostituiscono la richiesta di avere F(x,t) funzione C^r con la richiesta che quest'ultima funzione sia Lipschitziana:

$$|F(\boldsymbol{x},t) - F(\boldsymbol{y},t)| \le k |\boldsymbol{x} - \boldsymbol{y}|.$$

In cui se k è una quantità indipendente dal punto \boldsymbol{x} considerato allora si ha una ed una sola soluzione all'IVP.

Esercizio 2.0.1: (Esercizio)

Studiare al variare del parametro x_0 il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2\\ x(0) = x_0 \end{cases}$$

Esercizio 2.0.2: (Esercizio)

Studiare al variare del parametro a il seguente IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{x} \\ x(0) = a \end{cases}$$

Teorema 2.0.2: (Esistenza Globale della soluzione). Supponiamo di avere il sistema di equazioni differenziali:

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t); \qquad \mathbf{x}(0) = \mathbf{x}_0.$$

Con le quantità definite nei seguenti intervalli:

$$x \in \mathbb{R}^n$$
; $t \in [a, \infty[$; $F : \mathbb{R}^n \times [a, \infty[\to \mathbb{R}^n.$

Se valgono i due sequenti:

- $F \stackrel{.}{e} C^r con r > 1 e continua in t.$
- $\exists h(t), k(t) con [h, k > 0 \forall t] tali che$:

$$|F(\boldsymbol{x},t)| \le h(t) |\boldsymbol{x}| + k(t); \quad per \, \boldsymbol{x}, t \in \mathbb{R}^n \times [a, \infty[.]]$$

Allora esiste ed è unica la soluzione dell'IVP definito in $\mathbb{R}^n \times [a, \infty[$.

Esempio 2.0.3: (Applicazione del teorema)

$$\begin{cases} \frac{dx}{dt} = \frac{3t^2x(t)}{1+x(t)^2} + x(t) = F(x,t) \\ x(t_0) = x_0 \end{cases}$$

La soluzione esiste? É unica?

La funzione F sicuramente è almeno C^1 in x ed è continua in t, quindi sicuramente la soluzione esiste almeno in un intorno del punto iniziale ed è unica sempre in questo intorno.

Per l'esistenza ed unicità globali invece è necessario qualche altro passaggio algebrico:

$$|F(x,t)| = \left| \frac{3t^2x(t)}{1+x^2(t)} + x(t) \right| \le |x| + \left| \frac{3t^2x}{1+x^2} \right| \le |x| \left| 3t^2 + 1 \right|.$$

Quindi scegliendo le funzioni:

$$k(t) = 0$$
 $h(t) = 3t^2 + 1.$

Abbiamo che le ipotesi del teorema di esistenza globale sono rispettate, quindi la soluzione esiste globalmente (asintoticamente). Un ulteriore esercizio (per il lettore) è quello di dimostrare che x(t) non diverge per $t \to \infty$. Un suggerimento: moltiplicare l'equazione differenziale a destra e sinistra per 2x, scrivere la nuova eq. differenziale per x^2 e minorare la $F(x^2)$...

Definizione 2.0.2: (Sistema deterministico). Un SD a tempo continuo descritto da

$$\frac{d\mathbf{x}}{dt} = F(\mathbf{x}, t); \qquad \mathbf{x}(t_0) = \mathbf{x}_0.$$

si dice deterministico se esiste ed è unica la corrispondente soluzione dell'IVP.

3 Introduzione ai Manifold

Abbiamo fin'ora affermato che lo stato di un sistema dinamico è descritto da un vettore di \mathbb{R}^n , in questa sezione cerchiamo di essere più precisi riguardo a questa quantità.

Esempio 3.0.1: (Pendolo nello spazio delle fasi)

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{g}{l}\sin\theta \end{cases}$$

In questo caso abbiamo che lo stato $\boldsymbol{x}=(\theta,y)$ non è un vettore di \mathbb{R}^n generico:

- θ è un angolo.
- \bullet y è una velocità angolare.

Lo stato è descritto in \mathbb{R}^2 , la dinamica del sistema giace su una superficie dello spazio delle fasi detto **Manifold**.

Il manifold per il problema del pendolo è una superficie cilindrica:

$$\theta \in S_1$$
 $y \in \mathbb{R}$ Con S_1 cerchio.

Anche se un manifold non coincide con \mathbb{R}^n localmente (sulla varietà) può essere caratterizzato da \mathbb{R}^n .

Definizione 3.0.1: (Omomorfismo). Sia $h: U \to V$ con $U, V \subset \mathbb{R}^n$. Supponiamo che $\exists h^{-1}$, allora h è omomorfismo se h e h^{-1} sono entrambe continue.

Definizione 3.0.2: (Manifold n-dimensionale). Sia $M \subset \mathbb{R}^n$ e $\mathbf{x} \in M$, sia W un intorno di \mathbf{x} . Diciamo che M è un manifold k-dimensionale (k < n) se \exists un omomorfismo $h : W \to \mathbb{R}^n$.

In pratica l'omomorfismo manda i punti appartenenti al manifold in un sottoinsieme $U \subset \mathbb{R}^n$. L'insieme U, in cui viene mappato l'intorno W di $\mathbf{x} \in M$ è detto carta del manifold: U = h(W).

Definizione 3.0.3: (Atlante di un manifold). Se è possibile costruire per tutti i punti di M un intorno in cui vale l'omomorfismo allora l'insieme $U \subset \mathbb{R}^n$ in cui i punti di M vengono mappati è detto Atlante di M.

La cosa importante è che tramite h è possibile introdurre le proprietà di differenziabilità sul manifold utilizzando le definizioni di differenziabilità su \mathbb{R}^n che sono ben definite.

Figura 1.11: Azione dell'omomorfismo sul manifold.

3.1 Mappare la dinamica di un Manifold in \mathbb{R}^n

Supponiamo di avere la mappa $G: W \to W$, ovvero manda punti di W (un intorno del punto $x \in M$) in punti di W.

Prendiamo $x_1 \in W$: $x_2 = G(x_1) \in W$.

Possiamo mappare la G in \mathbb{R}^n nel seguente modo:

$$y_1 = h(x_1); \qquad y_2 = h(x_2).$$

I punti $y_{1,2}$ appartengono a \mathbb{R}^n . Il modo in cui si trasporta la differenziabilità all'interno del manifold è il seguente:

$$y_2 = h(G(x_1)) = h(G(h^{-1}(y_1))).$$

Visto che h e G sono note, che h è omomorfismo e che $y_1, y_2 \in \mathbb{R}^n$ abbiamo che le proprietà di diff. sono applicabili ai funzionali sul manifold nello stesso modo in cui gli applichiamo su \mathbb{R}^n .

4 Mappe Ricorsive

Ricordiamo che una mappa ricorsiva è definita da:

$$oldsymbol{x}_{n+1} = G(oldsymbol{x}_n) \qquad oldsymbol{x}_n \in \mathbb{R}^n; \qquad G: \mathbb{R}^n o \mathbb{R}^n.$$

- 1. La mappa è invertibile se $\exists G^{-1}$.
- 2. La mappa è C^r se esistono e sono continue le derivate⁶ di G6 Intese come parziali in più fino all'ordine r.

Se valgono la 1) e la 2) allora si ha un **Diffeomorfismo** C^r .

4.1 Orbita per mappa ricorsiva invertibile

Se la mappa è invertibile allora preso un punto x_0 è possibile muoversi verso destra (con G) o verso sinistra con G^{-1} .

$$\ldots, G^{-1}(\boldsymbol{x}_0), G^{-1}(\boldsymbol{x}_0), \boldsymbol{x}_0, G(\boldsymbol{x}_0), G^2(\boldsymbol{x}_0), \ldots$$

Esempio 4.1.1: (Mappa lineare)

$$x_{n+1} = ax_n \qquad a \in \mathbb{R} - \{0\}.$$

Questa mappa è invertibile: basta spostare il parametro a a sinistra per ricavare la preimmagine.

Le mappe più studiate sono quelle non invertibili, questo perché al variare dei loro parametri si possono generare dei comportamenti particolari (caos).

Ci sono casi in cui anche le mappe all'apparenza invertibili possono generare situazioni complicate, ad esempio quelle che presentano un modulo come vedremo negli esempi di questa sezione.

4.2 Orbita per mappa ricorsiva non invertibile

Preso un punto x_0 per una mappa non invertibile è possibile spostarsi soltanto verso destra tramite la G.

$$x_0, G(x_0), G^2(x_0), \ldots$$

Esempio 4.2.1: (Mappa logistica)

$$x_{n+1} = 3.5x_n (1 - x_n)$$
 $x_n \in [0, 1]$.

Questa mappa non è invertibile: la preimmagine non è univoca (un'equazione del secondo grado ha due soluzioni).

Esempio 4.2.2: (Mappa di Bernoulli)

$$x_{n+1} = 2x_n \mod(1).$$

Questa mappa è parente della shift-map poiché, scegliendo di rappresentare x in base due, la mappa agisce allo stesso modo sui

Figura 1.12: Mappa di Bernoulli, si vede come la linea rossa non rappresenti una funzione iniettiva: non può essere invertibile.

Figura 1.13: Rappresentazione della Circle Rotation Map.

coefficienti della espansione (di base due) di come agiva con i simboli la shift map.

L'operazione di modulo 1 invece si occupa di traslare in [0,1] il punto x_{n+1} ogni volta che esce dall'intervallo a causa all'applicazione della mappa.

L'operazione di traslazione avviene tramite un intero n tale che:

$$n = \min(k \in \mathbb{Z}): \ 0 \le x + n \le 1.$$

Pur essendo lineare (all'apparenza) questa mappa può esibire un comportamento complesso. La presenza del modulo infatti fa si che la mappa non sia invertibile, come si può vedere in figura 1.12.

Esempio 4.2.3: (Circle Rotation Map)

Prendiamo una classe di mappe generale del seguente tipo:

$$x_{n+1} = G(x_n) \qquad x_n \in S_1.$$

 S_1 rappresenta il cerchio di raggio unitario, quindi i punti della mappa appartengono tutti al cerchio e sono rappresentati da una variabile: l'angolo di rotazione $x \cdot 2\pi$ (con $x \in [0, 1]$).

La Circle Rotation Map è un caso particolare di queste mappe, ovvero:

$$x_{n+1} = x_n + \alpha \mod(1); \qquad \alpha \in [0, 1[.$$

La caratteristica principale di questa mappa è che può essere:

- k-periodica se α razionale: le orbite degli x_n si richiudono.
- Quasi periodica se α irrazionale: i punti della mappa si distribuiscono uniformemente sul cerchio unitario (questo è il caso mostrato in figura 1.13).

La mappa è sempre invertibile.

Esempio 4.2.4: (Mappa di Arnold)

$$x_{n+1} = x_n + \omega - \frac{k}{2\pi}\sin(2\pi x_n) \quad \text{mod}(1).$$

 k,ω sono costanti e k>0,la mappa non è lineare a causa della presenza del sin.

Il parametro ω può essere interpretato come il rapporto tra due frequenze: una intrinseca del sistema ed una forzante esterna.

$$\omega \sim \frac{\omega_{\mathrm{int}}}{\omega_{\mathrm{ext}}}; \qquad \omega \in [0, 1].$$

La mappa mostra le seguenti peculiarità:

- $0 \le k \le 1$: la mappa di comporta come la Circle Map, presenta orbite periodiche o quasi periodiche a seconda della razionalità di ω .
- k > 1: la mappa può esibire comportamenti caotici.

Nel caso di k = 1 la mappa inizia a riscontrare alcune "anomalie", è il valore per il quale iniziano a rompersi le "lingue di Arnold".

Esercizio 4.2.1: (Sulla mappa di Arnold)

Dimostrare che la mappa di Arnold è invertibile se $0 \le k \le 1$.

Soluzione: Come possiamo vedere in figura 1.14 la mappa non presenta criticità (è invertibile) se non nell'intorno di $x_n = 0$ oppure $x_n = 1$.

Prendiamo ad esempio la mappa con k=0.1 e valutiamo⁷ il punto $x_n=0$: la linea rossa, che rappresenta la mappa, a destra di questo punto vale $\omega + \epsilon$, a sinistra di questo punto vale $\omega - \epsilon$. La pendenza della curva in questo punto è quindi positiva.

La presenza della perturbazione oscillante fa si che i due "rami" della mappa si avvicinino l'un l'altro, di conseguenza se la perturbazione è abbastanza forte è possibile che in un punto tra 0 e 1 il ramo in alto e quello in basso abbiano la stessa x_{n+1} : si perde l'iniettività e quindi l'invertibilità.

Nel grafico la perdita di iniettività si ha quando la mappa oltrepassa la linea tratteggiata (che rappresenta la separatrice tra i rami). Per capire quando questo succede possiamo studiare la pendenza della mappa nei pressi di $x_n=0$ (considerandola di fatto come una funzione continua).

$$x_{n+1} = x_n + \omega + kx_n = (1 - k)x_n + \omega.$$

Se in un intorno (destro) di questo punto la pendenza della curva è negativa allora significa che la mappa è scesa sotto ω e quindi ha perso l'iniettività: deve essere $k \leq 1$ per avere pendenza positiva.

5 Spazio delle fasi esteso (SD a tempi continui)

Si prende un sistema dinamico a tempi continui autonomo e lo si perturba con una componente dipendente dal tempo (un fattore esterno). Il sistema in questo modo diventa non autonomo, l'equazione generale che regola questo tipo di sistema è:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x},t) \qquad \boldsymbol{x} \in \mathbb{R}^n; \ F : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n.$$

Figura 1.14: Mappa di Arnold al variare di k con $\omega = 0.4$ fissato.

Questa corrisponde (circa) alla circle rotation map

Possiamo ricondurre questo sistema ad un sistema autonomo tramite una trasformazione nella variabile temporale:

$$t = m(s) = s \implies \frac{\mathrm{d}}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}s}.$$

Inserendo nella equazione del moto:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \frac{\mathrm{d}s}{\mathrm{d}t} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}s} = F(\boldsymbol{x}, t).$$

Possiamo definire il differenziale di t rispetto a s: dt/ds = 1.

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}(s)}{\mathrm{d}s} = F(\boldsymbol{x}, t) \\ \frac{\mathrm{d}t}{\mathrm{d}s} = 1 \end{cases}$$

Definizione 5.0.1: (Spazio delle fasi esteso). Si definisce spazio delle fasi esteso la quantità:

$$\mathbf{y} = (\mathbf{x}, t) \in \mathbb{R}^n \times \mathbb{R}.$$

In questo modo, definendo anche il funzionale esteso:

$$H = (F(x, t), 1).$$

Si possono generalizzare le equazioni del moto come:

$$\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}s} = H(\boldsymbol{y}).$$

Per quanto il problema sia formalmente risolto si deve tenere in considerazione che il nuovo spazio delle fasi potrebbe non essere più un compatto.

Questa mancanza potrebbe diventare un problema nei nostri scopi in quanto siamo spesso interessati alla soluzione asintotica del sistema (che potrebbe smettere di esistere).

In ogni caso aggiungiamo che, se la forzante è periodica, il sistema può essere sempre gestito con questo metodo.

Esempio 5.0.1: (Forzante oscillante)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -x + A\sin(\omega t).$$

Come sempre si riporta l'equazione ad una di primo ordine:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x + A\sin(\omega t) \end{cases}$$

Adesso si introduce la variabile $\theta(t) = \omega t$. Il nuovo sistema, con questa variabile, è descritto nello spazio delle fasi generalizzato e le equazioni sono le seguenti:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}x}{\mathrm{d}t} = -x + A\sin\theta\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega \end{cases}$$

Si noti che la variabile θ non è limitata, quindi lo spazio delle fasi non è più un compatto.

5.1 Flusso di fase

Dato un sistema dinamico a tempo continuo in \mathbb{R}^2 :

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = A\boldsymbol{x}.$$

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad A = \begin{pmatrix} -\Gamma & 0 \\ 0 & \Gamma \end{pmatrix}; \ \Gamma \in \mathbb{R}.$$

Studiamone l'evoluzione risolvendo il problema alle condizioni iniziali:

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t} = -\Gamma x_1\\ \frac{\mathrm{d}x_2}{\mathrm{d}t} = \Gamma x_2\\ \boldsymbol{x}(0) = \boldsymbol{x}_0 \end{cases}$$

La soluzione può essere espressa tramite il seguente vettore:

$$\boldsymbol{x}(t) = \begin{pmatrix} x_{10}e^{-\Gamma t} \\ x_{20}e^{\Gamma t} \end{pmatrix}.$$

Oppure possiamo scriverla in termini di matrice:

$$\boldsymbol{x}(t) = \begin{pmatrix} e^{-\Gamma t} & 0 \\ 0 & e^{\Gamma t} \end{pmatrix} \begin{pmatrix} x_{10} \\ x_{20} \end{pmatrix} \equiv \varphi_t(\boldsymbol{x}_0).$$

Definizione 5.1.1: (Flusso di fase). L'operatore φ_t definito come

$$\varphi_t : \mathbb{R}^2 \to \mathbb{R}^2; \quad \varphi_t = \begin{pmatrix} e^{-\Gamma t} & 0 \\ 0 & e^{\Gamma t} \end{pmatrix}.$$

Si dice flusso di fase del sistema.

Proprietà del flusso di fase

- 1. $\varphi_t(\boldsymbol{x}_0)$ è una soluzione dell'IVP.
- 2. $\varphi_0(x_0) = x_0$
- 3. $\varphi_{t+s}(\boldsymbol{x}_0) = \varphi_t(\varphi_s(\boldsymbol{x}_0))$

Esercizio 5.1.1: (Sul flusso di fase)

Verificare la validità delle 3 proprietà per:

$$\varphi_t = \begin{pmatrix} e^{-\Gamma t} & 0\\ 0 & e^{\Gamma t} \end{pmatrix}.$$

Notiamo che se φ_t è invertibile allora il suo inverso è φ_{-t} .

Esempio 5.1.1: (Flusso unodimensionale)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x^2 - 1\\ x(0) = x_0 \end{cases}.$$

Prima di ricavare il flusso di fase determiniamo la soluzione:

$$\frac{dx}{x^2-1}=dt \implies dx\left[\frac{1}{x-1}-\frac{1}{x+1}\right]=dt.$$

Integrando a destra e sinistra:

$$\log(\frac{|x-1|}{|x+1|}) = 2t + c.$$

Per ricavare x(t) è necessario uno studio di funzione all'interno del logaritmo per capire quando è necessaria una inversione di segno nel suo argomento.

Per |x| > 1 l'argomento è positivo, possiamo procedere in tal caso a risolvere con l'elevamento a potenza:

$$\frac{x-1}{x+1} = e^{2t}B.$$

La costante B si determina imponendo la condizione iniziale $x(0) = x_0$:

$$B = \frac{x_0 - 1}{x_0 + 1}.$$

In conclusione la soluzione è:

$$x(t) = \frac{(x_0 + 1) + e^{2t}(x_0 - 1)}{(x_0 + 1) - e^{2t}(x_0 - 1)} = \varphi_t(x_0).$$

In questo caso abbiamo un flusso che non è rappresentato da una matrice ma da un funzionale. Possiamo dimostrare che è un flusso: le prime due richieste sono ovvie. La terza invece è lasciata per esercizio, si tratta di fare tanti conti.