

Общероссийский математический портал

В. А. Курчатов, Ф. Х. Арсланов, О теореме Л.В. Канторовича для класса методов линеаризации приближенного решения функциональных уравнений, *Изв. вузов. Матем.*, 1980, номер 11, 56–59

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 109.172.15.33

28 января 2020 г., 01:45:53

1980

В. А. Курчатов, Ф. Х. Арсланов

УДК 517.988

О ТЕОРЕМЕ Л. В. КАНТОРОВИЧА ДЛЯ КЛАССА МЕТОДОВ ЛИНЕАРИЗАЦИИ ПРИБЛИЖЕННОГО РЕШЕНИЯ ФУНКЦИОНАЛЬНЫХ УРАВНЕНИИ

Одним из эффективных методов приближенного решения вещественных уравнений f(x) = 0 является метод Ньютона

$$x_{n+1} = x_n - f(x_n)/f'(x_n). (1)$$

Л. В. Канторович [1] обобщил метод Ньютона (1) на функциональные уравнения

$$P(x) = 0, (2)$$

когда оператор $P: X \to Y$, (X, Y -банаховы пространства), при этом была доказана основополагающая теорема об обобщенном методе Ньютона [1]:

$$x_{n+1} = x_n - [P'(x_n)]^{-1} P(x_n).$$
(3)

Доказанная Л. В. Канторовичем теорема является фундаментальной теоремой об обобщенном методе Ньютона (3): она обосновывает простой эффективный алгоритм приближенного решения функциональных уравнений (2). Однако, этим значение теоремы Л. В. Канторовича не исчерпывается: она имеет и теоретическое значение—на основе ее можно проводить исследования о существовании решения математических задач, области его расположения и единственности. Следует отметить, что оценки теоремы Л. В. Канторовича не улучшаемы—они являются точными для метода (3). Способ доказательства теоремы Л. В. Канторовича о сходимости метода (3) используется многими авторами при исследовании итерационных методов, близких к методу Ньютона.

Теорема Л. В. Канторовича о методе (3) в настоящее время широко применяется как в теоретических исследованиях, так и при решении многих практических задач.

В данной работе теорема Л. В. Канторовича о методе (3) доказывается для ранее неисследованного класса методов линеаризации второго порядка, определяемых формулой [2]:

$$x_{n+1} = x_n - H^{-1}(x_n, x_{n-1})P(x_n), (4)$$

где H(u, v) — некоторые ограниченные операторы, действующие из X в Y, удовлетворяющие в окрестности $r_1 \subset X$ искомого решения уравнения (2) неравенству

$$||H(u, v) - P'(u)|| \le \theta ||u - v||^2,$$
 (5)

где в - некоторая неотрицательная величина.

Как видно, класс методов линеаризации, определяемых формулой (4), содержит как метод Ньютона (при $\theta=0$), требующий вычисления производной Фреше $P'(x_n)$, так и методы разностной линеаризации (при $\theta\neq 0$), не требующие вычисления производных Фреше, вследствие чего они часто более удобны для применения [2], [3].

удобны для применения [2], [3]. Теорема. Пусть: 1) для начального приближения x_1 существует one-

ратор $[P'(x_1)]^{-1} = \Gamma_1 u \|\Gamma_1\| \leqslant B_1;$ 2) известна оценка $\|P(x_1)\| \leqslant \varepsilon_1;$

3) элемент x_0 выбран так, что $\eta_0 \leqslant \sqrt{2\varepsilon_1}$, $\eta_0 \geqslant ||x_1 - x_0||$;

 $r\partial e \quad \delta_1(\theta) =$ 4) $\partial \mathcal{A}\mathcal{A}$ $\theta cex u, v us observed <math>r_1(\theta) = \{\|x - x_1\| \leqslant \delta_1(\theta)\},$ $=N[h_1(\theta)]B_1\varepsilon_1$, $N[h_1(\theta)]=(1-\sqrt{1-2h_1(\theta)})/h_1(\theta)$, имеет место оценка (5) $u\sup_{x\in r_1(\theta)}\|P''(x)\|\leqslant M;$ 5) для постоянных B_1 , M, ε_1 , θ выполнено неравенство

$$h_1(\theta) = MB_1^2 \varepsilon_1 (1 + \sigma(\theta)) \leqslant 1/2, \tag{6}$$

 $2\partial e \ \sigma(\theta) = 4\theta \mu/B_1, \ \mu = \max_{i=1,2} \{M^{-i}\}.$

Тогда уравнение (2) имеет решение x^* , расположенное в области r_1 (θ), и метод (4) сходится к х* со скоростью, характеризуемой неравенством

$$\|x_{n+1} - x^*\| \le (B_1 \varepsilon_1 / 2^{n-1}) \{2h_1(\theta)\}^{2^{n-1}}, n = 1, 2, ...$$
 (7)

Доказательство. Покажем, что итерационный процесс вычисления приближений $\{x_n\}$ и связанных с ними соотношений

$$||H^{-1}(x_{k+1}, x_k)|| \le B_k/(1 - h_k(\theta)) = B_{k+1},$$
 (8)

$$||H^{-1}(x_{k+1}, x_k)P(x_{k+1})|| \leqslant h_k(\theta) \, \eta_k/(2(1-h_k(\theta))) = \eta_{k+1}, \tag{9}$$

где $h_k(\theta) = MB_k \eta_k (1 + \sigma(\theta)), \ \eta_1 = B_1 \varepsilon_1, \ k = 1, 2, ..., \ можно продолжить неогра$ ниченно, при этом все $x_{k+1} \in r_1(\theta)$.

Убедимся сначала в существовании оператора $H^{-1}(x_1, x_0)$. В силу (5), (6) и условия 3) имеем

$$||S|| = ||\Gamma_1(P'(x_1) - H(x_1, x_0))|| \le \theta B_1 \eta_0^2 = h \le h(\theta) \le 1/2.$$

Следовательно, существует ограниченный оператор $\{I-S\}^{-1}$ и соответственно оператор $\{I-S\}^{-1}\Gamma_1=H^{-1}(x_1,x_0)$, причем $\|H^{-1}(x_1,x_0)\|\leqslant B_1/(1-h)$. Это означает, что приближение x_2 определяется по формуле (4). Пусть $S_1=\Gamma_1(P'(x_1)-H(x_2,x_1))$. Тогда

$$||S_1|| \leqslant ||\Gamma_1(P'(x_1) - P'(x_2))|| + ||\Gamma_1(P'(x_2) - H(x_2, x_1))|| \leqslant$$

$$\leqslant \eta_1 B_1 M \left(1 + \frac{\theta}{M} \eta_1\right) \leqslant h_1(\theta).$$

Так как $\eta_1 \ll h_1/(MB_1)$, то $\|S_1\| \ll h_1(\theta) < 1/2$, следовательно, существует оператор $\{I-S_1\}^{-1}\Gamma_1=H^{-1}(x_2,\ x_1),\$ причем $\|H^{-1}(x_2,\ x_1)\|\leqslant B_1/(1-h_1(\theta))=B_2.$ Используя (4) и формулу Тейлора, получим

$$P(x_2) = [P'(x_1) - H(x_1, x_0)](x_2 - x_1) + \omega_1,$$

где $\|\omega_1\| \leqslant M\eta_1^2/2$. Отсюда находим, что $\|P(x_2)\| \leqslant \eta_1(\eta_1 M/2 + \theta\eta_0^2)$, и поэтому, учитывая, что $\eta_0 \leqslant \sqrt{2\varepsilon_1}$, получим

$$||H(x_2, x_1)P(x_2)|| \leq \frac{MB_1\eta_1^2}{2[1-h_1(\theta)]} \left(1+\frac{4\theta}{MB_1}\right) \leq \eta_2.$$

Положим теперь, что (8) и (9) выполняются при всех k=2, 3, ..., n-1, и докажем справедливость (8) и (9) при k = n. Как и прежде, имеем

$$||S_n|| = ||H^{-1}(x_n, x_{n-1})[H(x_n, x_{n-1}) - H(x_{n+1}, x_n)]|| \le [M\eta_n + \theta(\eta_{n-1}^2 + \eta_n^2)]B_n.$$

Так как $\eta_n < \eta_{n-1}$, то $||S_n|| \le B_n M (\eta_n + 2\theta \eta_{n-1}^2/M)$.

Учитывая, что согласно (8) и (9) $\eta_n > \frac{1}{2} h_{n-1}(\theta) \eta_{n-1}$ и $B_{n-1} \gg B_1$, получим $\|S_n\| \leqslant MB_n \eta_n (1 + 4\theta/(M^2 B_1)) \leqslant h_n \leqslant h_1$. Это означает существование оператора $\{I-S_n\}^{-1}H^{-1}(x_n, x_{n-1})=H^{-1}(x_{n+1}, x_n)$, причем $\|H^{-1}(x_{n+1}, x_n)\| \leqslant B_n/(1-h_n(\theta))=B_{n+1}$. Используя формулу Тейлора и (4), имеем равенство $P(x_{n+1})=[P'(x_n)-H(x_n, x_{n-1})](x_{n+1}-x_n)+\omega_n$, где $\|\omega_n\| \leqslant M\eta_n^2/2$, которое приводит к оценке $\|P(x_{n+1})\| \leqslant \{\theta\eta_{n-1}^2 + (1/2)M\eta_n\}\eta_n$ и, следовательно,

$$||H^{-1}(x_{n+1}, x_n)P(x_n)|| \le \frac{MB_n\eta_n^2}{2[1-h_n(\theta)]} \left\{1 + \frac{4\theta}{M^2B_1}\right\} \le \eta_{n+1}.$$

Таким образом, (8) и (9) выполняются при любом k=1, 2, ...

Убедимся теперь, что используемое ранее утверждение: $x_{n+1} \in r_1(\theta)$ при каждом $n=1, 2, \ldots$ справедливо. Покажем, что область $r_{n+1}(\theta) \subset r_n(\theta)$, где $r_n(\theta) = \{\|x-x_n\| \le N[h_n(\theta)]\eta_n\}, n=1, 2, \ldots$ Пусть ξ —произвольный элемент области $r_{n+1}(\theta)$. Тогда, используя тождество [1]:

$$N[h_n(\theta)] \, \eta_n - N[h_{n+1}(\theta)] \, \eta_{n+1} = \eta_n \,, \tag{10}$$

получим $\|\xi - x_n\| \le \|\xi - x_{n+1}\| + \eta_n \le N[h_n(\theta)] \eta_n$, следовательно, $r_{n+1}(\theta) \subset r_n(\theta)$, и поэтому $x_n \in r_1(\theta)$, $n=1, 2, \ldots$ Из (8) и (9) имеем $h_{n+1}(\theta) \le 2h_n^2(\theta)$ и $\eta_{n+1} \le h_n(\theta) \eta_n$; вследствие этого

$$\eta_{n+1} \leqslant \frac{1}{2^n} \left[2h_1(\theta) \right]^{2^n - 1} \eta_1, \quad n = 1, 2, \dots$$
(11)

Поскольку $\|x_{n+1}-x_n\| \leqslant \eta_n$, то $\|x_{n+s}-x_{n+1}\| \leqslant \sum_{i=1}^{s-1} \eta_{n+i}$. Используя (10), устанавливаем, что

$$\|x_{n+s} - x_{n+1}\| \leqslant \eta_{n+1} N[h_{n+1}(\theta)] - \eta_{n+s} N[h_{n+s}(\theta)] \leqslant N[h_{n+1}(\theta)] \eta_{n+1}, \tag{12}$$

откуда в силу (11) имеем

$$\|x_{n+s} - x_{n+1}\| \le (1/2^{n-1}) \left[2h_1(\theta)\right]^{2^{n-1}} \eta_1. \tag{13}$$

Это означает, что существует предел $\lim_{n\to\infty} x_n = x^*$. Так как

$$||H(x_{n+1}, x_n)|| \le \theta \eta_1^2 + MN[h_1(\theta)] \eta_1 + ||P'(x_1)|| = b = \text{const},$$

 $n=1,\ 2,\dots$, то равенство (4) приводит к оценке $\|P(x_n)\|\leqslant b\eta_n$, переходя в которой к пределу при $n\to\infty$, получим $P(x^*)=0$, т. е. x^* — решение уравнения (1). Устремляя в неравенстве (13) $s \to \infty$, получим оценку (7) быстроты сходимости метода (4). Полагая в (12) n=0 и переходя к пределу при $s\to\infty$, убеждаемся, что x^* расположено в области $r_1(\theta)$. Теорема доказана.

Для иллюстрации применения теоремы, рассмотрим нелинейное интеграль-

ное уравнение [4]:

$$x(s) = 1 + 0.5146s^2 + s^2 \int_0^1 t \arctan x(t) dt$$
 (14)

(точное решение $x^*(s) = 1 + s^2$ [4]). Как и в [4], в качестве начального приближения выберем $x_1(s) = 2,25$. Для уточнения приближения $x_1(s)$ используем метод симметричной разностной линеаризации [2], [3], по которому последовательные приближения $x_{n+1}(s)$ для уравнения (14) определяются из следующих линейных интегральных уравнений относительно $\Delta x_n(s) = x_{n+1}(s) - x_n(s):$

$$\Delta x_n(s) = \int_0^1 \frac{K(s, t, 2x_n(t) - x_{n-1}(t)) - K(s, t, x_{n-1}(t))}{2(x_n(t) - x_{n-1}(t))} \Delta x_n(t) dt + \varepsilon_n(s), \tag{15}$$

где

$$K(s, t, x(t)) = 1 + 0.5146s^2 + s^2t \operatorname{arctg} x(t), \ \epsilon_n(s) = \int_0^1 K(s, t, x_n(t)) dt - x_n(s).$$

Пусть $x_0(s) = 0.54$, тогда согласно (15) поправка $\Delta x_0(s)$ определится из интегрального уравнения

$$\Delta x_2(s) = \int_0^1 \frac{K(s, t, 2x_1(t) - x_0(t)) - K(s, t, x_0(t))}{2(x_1(t) - x_0(t))} \Delta x_2(t) dt + \varepsilon_2(s). \tag{16}$$

Решая (16), найдем, что $\Delta x_2(s) = -1.25 + 1.000067s^2$ и соответственно получим что $x_2(s) = 1 + 1,000067s^2$, погрешность которого характеризуется неравенством $\max |x^*(s) - x_2(s)| \le 7 \cdot 10^{-5}$. По методу Ньютона [1] и касательных гипер-

бол [4] получаются приближения $\tilde{x}_2(s) = 1 + 1,03s^2$ и $\tilde{x}_2(s) = 1 + 1,009s^2$, характеризуются соответственно неравенствами грешности которых

 $\max |\widetilde{x}_2(s) - x^*(s)| \leqslant 3 \cdot 10^{-2}$ и $\max |x^*(s) - \widetilde{x}_2(s)| \leqslant 9 \cdot 10^{-3}$. Как видно, метод (15) позволяет получить существенно более точное приближение по сравнению с методами Ньютона и касательных гипербол. Такое существенное уточнение приближения $x_1(s)$ по методу симметричной разностной линеаризации не случайно, т. к. элемент $x_0(s)$ в методе (15) выбран в соответствии с теоремой 3 из [3], которая устанавливает, что во многих случаях при определенном выборе элемента $x_0(s)$ по методу симметричной разностной линеаризации [3] получается приближение $x_2(s)$ с высокой точностью.

Убедимся теперь, что итерационный процесс (15) будет сходиться и далее. Для этого к методу (15) применим приведенную теорему. Как и в [1], положим $r_1(\theta) = C_{[0,1]}$, следовательно, $B_1 = 1,14$, $M = 3\sqrt{3}/8$. Так как в данном случае оператор $H(x_{n+1}, x_n) = P(2x_{n+1} - x_n, x_n)$, где P(u, v) — оператор разделенной разности по С. Ю. Ульму [5], то для всех u, v из $r_1(\theta)$ имеем $\|P'(u) - P(2u - v, v)\| \le \theta \|u - v\|^2$, где $\theta = \sup \|P'''(\xi)\|/6 = 1/3$. Поскольку

$$\max_{0 \leqslant s \leqslant 1} \left| \int_{0}^{1} K(s, t, x_{2}(t)) dt - x_{2}(s) \right| \leqslant 0,000087 = \varepsilon_{2},$$

то условия теоремы для x_2 выполняются и, следовательно, процесс (15) будет сходиться к точному решению уравнения (14).

ЛИТЕРАТУРА

- 1. Канторович Л. В. О методе Ньютона. Тр. Матем. ин-та АН СССР, 1949, т. 28,

- с. 104—144.

 2. Курчатов В. А. Об одном методе линейной интерполяции решения функциональных уравнений. ДАН СССР, 1971, т. 198, № 3, с. 524—526.

 3. Курчатов В. А. Об эффективности метода симметричной разностной линеаризации для решения функциональных уравнений. Изв. вузов. Матем., 1977, № 10, с. 86—99.

 4. Мертвецова М. А. Аналог процесса касательных гипербол для общих функциональных уравнений. ДАН СССР, 1953, т. 88, № 4, с. 611—614.

 5. Ульм С. Об обобщенных разделенных разностях, І.— Изв. АН ЭстССР. Сер. физ.-матем. н., 1967, т. 16, № 1, с. 13—26.