

D-A075289

AFWL-TR-76-320

NOSC TD 116 Vol 1

Technical Document 116 Volume 1

NUMERICAL ELECTROMAGNETICS CODE (NEC) - METHOD OF MOMENTS

A user-oriented computer code for analysis of the electromagnetic response of antennas and other metal structures

Part I: Program Description-Theory
Part II: Program Description-Code
(Vol 2 contains Part III: User's Guide)

GJ Burke and AJ Pogio (Lawrence Livermore Laboratory)

January 1981

Prepared by LAWRENCE LIVERMORE LABORATORY (Report UCID 18834)

Prepared for NAVAL ELECTRONIC SYSTEMS COMMAND (NAVELEX 3041)

Approved for public release; distribution unlimited

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CALIFORNIA 92152 NOSC TD 116

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

SL GUILLE, CAPT, USN

Commander

HL BLOOD

Technical Director

ADMINISTRATIVE INFORMATION

Work was performed by GJ Burke and AJ Poggio, of the Lawrence Livermore Laboratory, under MIPR-N0095376MP, as part of Program Element 62543N, Project XF43453401 (NOSC 8105-CM41) for Naval Electronic Systems Command, NAVELEX 3041. This document covers work up to September 1980.

Released by
MS Kvigne, Head
Communications Research and
Technology Division

Under authority of HD Smith, Head Communications Systems and Technology Department

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
NOSC Technical Document 116 (TD 116) vol 1	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
4. TITLE (and Subtitle) NUMERICAL ELECTROMAGNETICS CODE (NEC) — METHOD OF MOMENTS; A user-oriented computer code for analysis of the electromagnetic response of antennas and		5. TYPE OF REPORT & PERIOD COVERED Technical document Up to September 1980				
other metal structures	6. PERFORMING ORG. REPORT NUMBER UCID 18834					
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)				
GJ Burke and AJ Poggio Lawrence Livermore Laboratory		MIPR-N0095376MP				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PE 62543N, Project				
Naval Ocean Systems Center (Code 8112) San Diego CA 92152		XF43453401 (NOSC 8105-CM41)				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
Naval Electronic Systems Command	January 1981 - latest revision					
NAVELEX 3041 Washington DC 20360		Part I-81; Part II-433 (as revised)				
14. MONITORING AGENCY NAME & ADDRESS(Il differen	nt from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified				
		154. DECLASSIFICATION/DOWNGRADING				

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Volume 1 contains Part I: Program Description - Theory (revised 2 January 1980)

Part II: Program Description - Code (revised January 1981)

Volume 2 contains Part III: User's Guide (revised 2 January 1980)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Numerical Electromagnetics Code (NEC-2)

Numerical analysis

Antenna response

Electromagnetic radiation

20. ABSTRACT (Continue on reverse elde if necessary and identify by block number)

The Numerical Electromagnetics Code (NEC-2) is a computer code for analyzing the electromagnetic response of an arbitrary structure consisting of wires and surfaces in free space or over a ground plane. The analysis is accomplished by the numerical solution of integral equations for induced currents. The solution includes a Numerical Green's Function for partitioned-matrix solution and a treatment for lossy grounds that is accurate for antennas very close to the ground surface. The excitation may be an incident plane wave or a voltage source on a wire, while the output may include current and charge density, electric or magnetic field in the vicinity of the structure, and radiated fields. Other options compute the maximum coupling between antennas and facilitate

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

structure input. Hence the code may be used for antenna analysis, EMP, or scattering studies.

Part I of the document includes the equations on which the code is based and a discussion of the approximations and numerical methods used in the numerical solution. Some comparisons to demonstrate the range of accuracy of approximations are also included. Details of the coding and a User's Guide are provided as parts II and III, respectively.

Technical Document 116

NUMERICAL ELECTROMAGNETIC CODE (NEC) – METHOD OF MOMENTS

Part I: Program Description-Theory

GJ Burke and AJ Poggio 18 July 1977

Prepared for NAVAL ELECTRONIC SYSTEMS COMMAND (ELEX 3041)

: Completed

January 1981

INSTRUCTIONS FOR REVISION OF TO 116

Slip the first Volume 2 title page into the outside front pocket of the Volume 2 binder. Discard the old binder title page. (Note: The original issue of TD 116 included a set of white binders with pockets for 'tle pages. Subsequent copies issued may not have included the bir. s.)

Insert the following pages at the beginning of Volume 2 in front of the title page for Part III:

insert	page description
(a)	Volume 2 title page (side 1) and Administrative Information page (side 2)
(b)	Report Documentation Page, DD Form 1473 (2 sides)
(c)	Volume 2 Revision Page (side 1; side 2 is blank)

- 3. Slip the first Volume 1 title page into the outside front pocket of the Volume 1 binder. (See note in step 1 above.)
- 4. Insert the following pages at the beginning of Volume 1 in front of the title page for Part I:

insert	page description
(a)	Volume 1 title page (side 1) and Administrative Information page (side 2)
(b)	Report Documentation Page, DD Form 1473 (2 sides)
(c)	Volume 1 Revision Page (side 1; side 2 is blank)

5. Insert all the remaining revision pages (listed below) in Volume 1 after page 81 of Part I.

insert	page description
(a)	.Part II title page (side 1; side 2 is blank)
(p) ··	Pages i through vii
(c)	Pages 1 through 433

6. This revision replaces all pages of Part II. Remove and discard all old pages of the old Part II.

VOLUME 1 REVISION PAGE

This volume contains

Part I - Revised 2 January 1980

Part II - Revised January 1981

Part I: Program Description - Theory (Revised 2 Jan 80)

Preface

The Numerical Electromagnetics Code (NEC) has been developed at the Lawrence Livermore Eaboratory, Livermore, California, under the sponsorship of the Naval Ocean Systems Center and the Air Force Weapons Laboratory. It is an advanced version of the Antenna Modeling Program (AMP) developed in the early 1970's by MBAssociates for the Naval Research Laboratory, Naval Ship Engineering Center, U.S. Army ECOM/Communications Systems, U.S. Army Strategic Communications Command, and Rome Air Development Center under Office of Naval Research Contract NO0014-71-C-0187. The present version of NEC is the result of efforts by G. J. Burke and A. J. Poggio of Lawrence Livermore Laboratory.

The documentation for NEC consists of three volumes:

Part I: NEC Program Description - Theory

Part II: NEC Program Description - Code

Part III: NEC User's Guide

The documentation has been prepared by using the AMP documents as foundations and by modifying those as needed. In some cases this led to minor changes in the original documents while in many cases major modifications were required.

Over the years many individuals have been contributors to AMP and NEC and are acknowledged here as follows:

R. W. Adams
R. J. Lytle
J. N. Brittingham
E. K. Miller
G. J. Burke
J. B. Morton
F. J. Deadrick
G. M. Pjerrou
K. K. Hazard
A. J. Poggio
D. L. Knepp
E. S. Selden

D. L. Lager

J. Castillo and TSgt. H. Goodwin.

The support for the development of NEC-2 at the Lawrence Livermore Laboratory has been provided by the Naval Ocean Systems Center under MIPR-N0095376MP.

Cognizant individuals under whom this project was carried out include:

J. Rockway and J. Logan. Previous development of NEC also included the support of the Air Force Weapons Laboratory (Project Order 76-090) and was monitored by

TOTAL COOK BEACOCCULT TOTAL STATE

Work was performed under the auspices of the U.S. Department of Energy under contract No. W-7405-Eng-48. Reference to a company or product name

does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

model the fill come of the control of the section o

Contents

Section								Page
I.	INTR	CODUCTION					•	1
II.	THE	INTEGRAL EQUATIONS FOR FREE SPACE						3
	1.	The Electric Field Integral Equation (EFIE)						3
	2.	The Magnetic Field Integral Equation (MFIE)						5
	3.	The EFIE-MFIE Hybrid Equation					•	7
III.	NUME	RICAL SOLUTION		۲.				9
	1.	Current Expansion on Wires			•			10
	2.	Current Expansion on Surfaces	•					18
	3.	Evaluation of the Fields				•	•	20
	4.	The Matrix Equation for Current						30
	5.	Solution of the Matrix Equation						31
IV.	EFFE	CCT OF A GROUND PLANE	•				•	37
	1.	The Sommerfeld/Norton Method				•		38
	2.	Numerical Evaluation of the Sommerfeld Integrals						50
	3.	The Image and Reflection-Coefficient Methods		•				55
٧.	MODE	ELING OF ANTENNAS					•	62
	1.	Source Modeling					•	62
	2.	Nonradiating Networks					•	67
	3.	Transmission Line Modeling					•	72
	4.	Lumped or Distributed Loading			•	•	•	74
	5.	Radiated Field Calculation				•	•	75
	6.	Antenna Coupling					•	78
REFERENC	ES .							79

List of Illustrations

Figur		Page
1.	Current Basis Functions and Sum on a Four Segment Wire	13
2.	Segments Covered by the i th Basis Function	13
3.	Detail of the Connection of a Wire to a Surface	20
4.	Current-Filament Geometry for the Thin-Wire Kernel	21
5.	Current Geometry for the Extended Thin-Wire Kernel	24
6.	Coordinates for Evaluating the Field of a Current Element Over Ground	39
7.	Real (a) and Imaginary (b) Parts of I_0^V for $\epsilon_1/\epsilon_0 = 4$, $\sigma_1 = 0.001$ mhos/m, frequency = 10 MHz	46
8.	Real (a) and Imaginary (b) Parts of I_z^V for $\varepsilon_1/\varepsilon_0 = 4$, $\sigma_1 = 0.001$ mhos/m, frequency = 10 MHz	47
9.	Real (a) and Imaginary (b) Parts of I_{ρ}^{H} for $\epsilon_{1}/\epsilon_{0} = 4$, $\sigma_{1} = 0.001$ mhos/m, frequency = 10 MHz	47
10.	Real (a) and Imaginary (b) Parts of IH for $\varepsilon_1/\varepsilon_0 = 4$, $\sigma_1 = 0.001$ mhos/m, frequency = 10 MHz	48
11.	Real (a) and Imaginary (b) Parts of IH for $\varepsilon_1/\varepsilon_0 = 16, \sigma_1 = 0$	49
12.	Grid for Bivariate Interpolation of I's	50
13.	Contour for Evaluation of Bessel Function Form of Sommerfeld Integrals	51
14.	Contour for Evaluation of Hankel Function Form of Sommerfeld Integrals	53
15.	Contour for Hankel Function Form when Real Part k1 is Large	
	and Imaginary Part k ₁ is Small	54
16.	Plane-Wave Reflection at an Interface	57
17.	Biconical Transmission Line Model of Source Region	64
18.	Field Plots for a Linear Dipole, $\Omega = 15 \dots \dots \dots$	67
19.	Voltage and Current Reference Directions at Network Ports	69
20.	Network Connection to Segments	69
21.	Network Port and Voltage Source Connected to a Segment	70
22.	Current Distribution on a Two-Wire Transmission Line from NEC Compared with the Ideal Transmission Line Solution	73

Section I Introduction

The Numerical Electromagnetics Code (NEC-2) is a user-oriented computer code for the analysis of the electromagnetic response of antennas and other metal structures. It is built around the numerical solution of integral equations for the currents induced on the structure by sources or incident fields. This approach avoids many of the simplifying assumptions required by other solution methods and provides a highly accurate and versatile tool for electromagnetic analysis.

The code combines an integral equation for smooth surfaces with one specialized to wires to provide for convenient and accurate modeling of a wide range of structures. A model may include nonradiating networks and transmission lines connecting parts of the structure, perfect or imperfect conductors, and lumped-element loading. A structure may also be modeled over a ground plane that may be either a perfect or imperfect conductor.

The excitation may be either voltage sources on the structure or an incident plane wave of linear or elliptic polarization. The output may include induced currents and charges, near electric or magnetic fields, and radiated fields. Hence, the program is suited to either antenna analysis or scattering and EMP studies. NEC and its predecessor AMP have been used successfully to model a wide range of antennas including complex environments such as ships. Results from modeling several antennas with NEC are shown in refs. 36, 37, and 38 with measured data for comparison.

The integral-equation approach is best suited to structures with dimensions up to several wavelengths. Although there is no theoretical size limit, the numerical solution requires a matrix equation of increasing order as the structure size is increased relative to wavelength. Hence, modeling very large structures may require more computer time and file storage than is practical on a particular machine. In such cases standard high-frequency approximations such as geometrical or physical optics, or geometric theory of diffraction may be more suitable than the integral equation approach used in NEC.

The code NEC-2 is the latest in a series of electromagnetics codes, each of which has built upon the previous one. The first in the series was the code BRACT which was developed at MBAssociates in San Ramon, California, under the funding of the Air Force Space and Missiles Systems Organization (refs. 1 and 2). BRACT was specialized to scattering by arbitrary thin-wire configurations.

The code AMP followed BRACT and was developed at MBAssociates with funding from the Naval Research Laboratory, Naval Ship Engineering Center, U.S. Army ECOM/Communications Systems, U.S. Army Strategic Communications Command, and Rome Air Development Center under Office of Naval Research Contract N00014-71-C-0187. AMP uses the same numerical solution method as BRACT with the addition of the capability of modeling a structure over a ground plane and an option to use file storage to greatly increase the maximum structure size that may be modeled. The program input and output were extensively revised for AMP so that the code could be used with a minimum of learning and computer programming experience. AMP includes extensive documentation to aid in understanding, using, and modifying the code (refs. 3, 4 and 5).

A modeling option specialized to surfaces was added to the wire modeling capabilities of AMP in the AMP2 code (ref. 6). A simplified approximation for large interaction distances was also included in AMP2 to reduce running time for large structures.

The code NEC-1 added to AMP2 a more accurate current expansion along wires and at multiple wire junctions, and an option in the wire modeling technique for greater accuracy on thick wires. A new model for a voltage source was added and several other modifications made for increased accuracy and efficiency.

NEC-2 retains all features of NEC-1 except for a restart option. Major additions in NEC-2 are the Numerical Green's Function for partitioned-matrix solution and a treatment for lossy grounds that is accurate for antennas very close to the ground surface. NEC-2 also includes an option to compute maximum coupling between antennas and new options for structure input.

Part I of this document describes the equations and numerical methods used in NEC. Part III: NEC User's Guide (ref. 7) contains instructions for using the code, including preparation of input and interpretation of output. Part II: NEC Program Description — Code (ref. 8) describes the coding in detail. The user encountering the code for the first time should begin with the User's Guide and try modeling some simple antennas. Part II will be of interest mainly to someone attempting to modify the code.

Reading part I will be useful to the new user of NEC-2, however, since an understanding of the theory and solution method will assist in the proper application of the code.

Section II The Integral Equations For Free Space

The NEC program uses both an electric-field integral equation (EFIE) and a magnetic-field integral equation (MFIE) to model the electromagnetic response of general structures. Each equation has advantages for particular structure types. The EFIE is well suited for thin-wire structures of small or vanishing conductor volume while the MFIE, which fails for the thin-wire case, is more attractive for voluminous structures, especially those having large smooth surfaces. The EFIE can also be used to model surfaces and is preferred for thin structures where there is little separation between a front and back surface. Although the EFIE is specialized to thin wires in this program, it has been used to represent surfaces by wire grids with reasonable success for far-field quantities but with variable accuracy for surface fields. For a structure containing both wires and surfaces the EFIE and MFIE are coupled. This combination of the EFIE and MFIE was proposed and used by Albertsen, Hansen, and Jensen at the Technical University of Denmark (ref. 9) although the details of their numerical solution differ from those in NEC. A rigorous derivation of the EFIE and MFIE used in NEC is given by Poggio and Miller (ref. 10). The equations and their derivation are outlined in the following sections.

1. THE ELECTRIC FIELD INTEGRAL EQUATION (EFIE)

The form of the EFIE used in NEC follows from an integral representation for the electric field of a volume current distribution \vec{J} ,

$$\vec{E}(\vec{r}) = \frac{-jn}{4\pi k} \int_{V} \vec{J}(\vec{r}') \cdot \vec{G}(\vec{r}, \vec{r}') dV', \qquad (1)$$

where

$$\begin{split} & \overline{\overline{G}}(\vec{r}, \ \vec{r}') = (k^2 \overline{\overline{I}} + \nabla \nabla) g(\vec{r}, \ \vec{r}'), \\ & g(\vec{r}, \ \vec{r}') = \exp(-jk|\vec{r} - \vec{r}'|)/|\vec{r} - \vec{r}'|, \\ & k = \omega \sqrt{\mu_o \varepsilon_o}, \\ & \eta = \sqrt{\mu_o/\varepsilon_o} \end{split}$$

and the time convention is $\exp(j\omega t)$. \overline{I} is the identity dyad $(\hat{x}\hat{x} + \hat{y}\hat{y} + \hat{z}\hat{z})$. When the current distribution is limited to the surface of a perfectly conducting body, equation (1) becomes

$$\vec{E}(\vec{r}) = \frac{-j\eta}{4\pi k} \int_{S} \vec{J}_{s}(\vec{r}') \cdot \vec{G}(\vec{r}, \vec{r}') dA', \qquad (2)$$

with \vec{J}_s the surface current density. The observation point \vec{r} is restricted to be off the surface S so that $\vec{r} \neq \vec{r}'$.

If r approaches S as a limit, equation (2) becomes

$$\vec{E}(\vec{r}) = \frac{-j\eta}{4\pi k} \int_{S} \vec{J}_{s}(\vec{r}') \cdot \vec{G}(\vec{r}, \vec{r}') dA', \qquad (3)$$

where the principal value integral, f, is indicated since g(r, r') is now unbounded.

An integral equation for the current induced on S by an incident field \vec{E}^{I} can be obtained from equation (3) and the boundary condition for $\vec{r} \in S$,

$$\hat{\mathbf{n}}(\mathbf{r}) \times \left[\vec{\mathbf{E}}^{\mathbf{S}}(\mathbf{r}) + \vec{\mathbf{E}}^{\mathbf{I}}(\mathbf{r}) \right] = 0, \tag{4}$$

where $\hat{n}(\vec{r})$ is the unit normal vector of the surface at \vec{r} and \vec{E}^s is the field due to the induced current \vec{J}_s . Substituting equation (3) for \vec{E}^s yields the integral equation,

$$-\hat{\mathbf{n}}(\mathbf{r}) \times \mathbf{E}^{\mathbf{I}}(\mathbf{r}) = \frac{-\mathbf{j}\mathbf{n}}{4\pi\mathbf{k}} \,\hat{\mathbf{n}}(\mathbf{r}) \times$$

$$\int_{\mathbf{c}} \mathbf{J}_{\mathbf{s}}(\mathbf{r}') \cdot (\mathbf{k}^{2}\mathbf{I} + \nabla\nabla) \mathbf{g}(\mathbf{r}, \mathbf{r}') \, dA'.$$
(5)

The vector integral in equation (5) can be reduced to a scalar integral equation when the conducting surface S is that of a cylindrical thin wire, thereby making the solution much easier. The assumptions applied for a thin wire, known as the thin-wire approximation, are as follows:

- a. Transverse currents can be neglected relative to axial currents on the wire.
- b. The circumferential variation in the axial current can be neglected.
- c. The current can be represented by a filament on the wire axis.

d. The boundary condition on the electric field need be enforced in the axial direction only.

These widely used approximations are valid as long as the wire radius is much less than the wavelength and much less than the wire length. An alternate kernel for the EFIE, based on an extended thin-wire approximation in which condition c is relaxed, is also included in NEC for wires having too large a radius for the thin-wire approximation (ref. 11).

From assumptions a, b and c, the surface current $\vec{J}_s(\vec{r})$ on a wire of radius a can be replaced by a filamentary current I where

$$I(s)\hat{s} = 2\pi a \hat{J}_{s}(\hat{r}),$$

s = distance parameter along the wire axis at r, and

 \hat{s} = unit vector tangent to the wire axis at \hat{r} .

Equation (5) then becomes

$$-\hat{\mathbf{n}}(\mathbf{r}) \times \dot{\mathbf{E}}^{\mathbf{I}}(\mathbf{r}) = \frac{-\mathbf{j}\eta}{4\pi\mathbf{k}} \,\hat{\mathbf{n}}(\mathbf{r}) \times$$

$$\int_{\mathbf{I}} \mathbf{I}(\mathbf{s}') \left(\mathbf{k}^2 \hat{\mathbf{s}}' - \nabla \frac{\partial}{\partial \mathbf{s}'} \right) \, \mathbf{g}(\mathbf{r}, \, \mathbf{r}') \, \, d\mathbf{s}', \tag{6}$$

where the integration is over the length of the wire. Enforcing the boundary condition in the axial direction reduces Eq. (6) to the scalar equation,

$$-\hat{\mathbf{s}} \cdot \hat{\mathbf{E}}^{\mathbf{I}}(\hat{\mathbf{r}}) = \frac{-j\eta}{4\pi k} \int_{\mathbf{L}} \mathbf{I}(\mathbf{s}') \left(k^2 \hat{\mathbf{s}} \cdot \hat{\mathbf{s}}' - \frac{\partial^2}{\partial \mathbf{s} \partial \mathbf{s}'} \right) g(\hat{\mathbf{r}}, \hat{\mathbf{r}}') d\mathbf{s}'. \tag{7}$$

Since \vec{r}' is now the point at s' on the wire axis while \vec{r} is a point at s on the wire surface $|\vec{r} - \vec{r}'| \ge a$ and the integrand is bounded.

2. THE MAGNETIC FIELD INTEGRAL EQUATION (MFIE)

The MFIE is derived from the integral representation for the magnetic field of a surface current distribution \vec{J}_a ,

$$\vec{H}^{S}(\vec{r}) = \frac{1}{4\pi} \int_{S} \vec{J}_{S}(\vec{r}') \times \nabla' g(\vec{r}, \vec{r}') dA', \qquad (8)$$

where the differentiation is with respect to the integration variable \vec{r}' . If the current \vec{J}_s is induced by an external incident field \vec{H}^I , then the total magnetic field inside the perfectly conducting surface must be zero. Hence, for \vec{r} just inside the surface S,

$$\vec{H}^{I}(\vec{r}) + \vec{H}^{S}(\vec{r}) = 0,$$
 (9)

where \vec{H}^I is the incident field with the structure removed, and \vec{H}^S is the scattered field given by equation (8). The integral equation for \vec{J}_S may be obtained by letting \vec{r} approach the surface point \vec{r}_O from inside the surface along the normal $\hat{n}(\vec{r}_O)$. The surface component of equation (9) with equation (8) substituted for \vec{H}^S is then

$$-\hat{n}(\vec{r}_{o}) \times \hat{H}^{I}(\vec{r}_{o}) = \hat{n}(\vec{r}_{o}) \times \frac{1}{4\pi} \lim_{\vec{r} \to \vec{r}_{o}} \int_{S} \vec{J}_{g}(\vec{r}') \times \vec{J}_{g}(\vec{r}, \vec{r}') dA',$$

where $\hat{n}(\hat{r}_0)$ is the outward directed normal vector at \hat{r}_0 . The limit can be evaluated by using a result of potential theory (ref. 12) to yield the integral equation

$$-\hat{\mathbf{n}}(\vec{\mathbf{r}}_{o}) \times \vec{\mathbf{H}}^{I}(\vec{\mathbf{r}}_{o}) = -\frac{1}{2} \vec{\mathbf{J}}_{s}(\vec{\mathbf{r}}_{o}) + \frac{1}{4\pi} \int_{S} \hat{\mathbf{n}}(\vec{\mathbf{r}}_{o}) \times \left[\vec{\mathbf{J}}_{s}(\vec{\mathbf{r}}') \times \nabla' \ \mathbf{g}(\vec{\mathbf{r}}_{o}, \vec{\mathbf{r}}') \right] dA'. \tag{10}$$

For solution in NEC, this vector integral equation is resolved into two scalar equations along the orthogonal surface vectors $\hat{\tau}_1$ and $\hat{\tau}_2$ where

$$\hat{t}_1(\vec{r}_0) \times \hat{t}_2(\vec{r}_0) = \hat{n}(\vec{r}_0).$$

By using the identity $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$ and noting that $\hat{t}_1 \times \hat{n} = -\hat{t}_2$ and $\hat{t}_2 \times \hat{n} = \hat{t}_1$, the scalar equations can be written,

$$\hat{\epsilon}_{2}(\vec{r}_{o}) \cdot \vec{H}^{I}(\vec{r}_{o}) = -\frac{1}{2} \hat{\epsilon}_{1}(\vec{r}_{o}) \cdot \vec{J}_{s}(\vec{r}_{o}) - \frac{1}{4\pi} \oint_{S} \hat{\epsilon}_{2}(\vec{r}_{o}) \cdot \left[\vec{J}_{s}(\vec{r}') \times \nabla' g(\vec{r}_{o}, \vec{r}') \right] dA'; \tag{11}$$

$$-\hat{\epsilon}_{1}(\vec{r}_{o}) \cdot \vec{H}^{I}(\vec{r}_{o}) = -\frac{1}{2} \hat{\epsilon}_{2}(\vec{r}_{o}) \cdot \vec{J}_{s}(\vec{r}_{o}) + \frac{1}{4\pi} \oint_{S} \hat{\epsilon}_{1}(\vec{r}_{o}) \cdot \left[\vec{J}_{s}(\vec{r}') \times \nabla' g(\vec{r}_{o}, \vec{r}') \right] dA'. \tag{12}$$

These two components suffice since there is no normal component of equation (10).

3. THE EFIE-MFIE HYBRID EQUATION

Program NEC uses the EFIE for thin wires and the MFIE for surfaces. For a structure consisting of both wires and surfaces, \vec{r} in equation (7) is restricted to the wires, with the integral for $\vec{E}(\vec{r})$, extending over the complete structure. The thin-wire form of the integral in equation (7) is used over wires while the more general form of equation (5) must be used on surfaces. Likewise, \vec{r}_0 is restricted to surfaces in equations (11) and (12), with the integrals for $\vec{H}(\vec{r})$ extending over the complete structure. On wires the integral is simplified by the thin-wire approximation. The resulting coupled integral equations are, for \vec{r} on wire surfaces,

$$-\hat{\mathbf{s}} \cdot \vec{\mathbf{E}}^{\mathbf{I}}(\vec{\mathbf{r}}) = \frac{-j\eta}{4\pi k} \int_{\mathbf{L}} \mathbf{I}(\mathbf{s}') \left(k^2 \hat{\mathbf{s}} \cdot \hat{\mathbf{s}}' - \frac{\partial^2}{\partial \mathbf{s} \partial \mathbf{s}'} \right) \mathbf{g}(\vec{\mathbf{r}}, \vec{\mathbf{r}}') d\mathbf{s}'$$

$$-\frac{j\eta}{4\pi k} \int_{S_1} \vec{\mathbf{J}}_{\mathbf{s}}(\vec{\mathbf{r}}) \cdot \left[k^2 \hat{\mathbf{s}} - \nabla' \frac{\partial}{\partial \mathbf{s}} \right] \mathbf{g}(\vec{\mathbf{r}}, \vec{\mathbf{r}}') dA', \qquad (13)$$

and for r on surfaces excluding wires

$$\hat{\mathbf{t}}_{2}(\vec{\mathbf{r}}) \cdot \vec{\mathbf{H}}^{\mathbf{I}}(\vec{\mathbf{r}}) = -\frac{1}{4\pi} \hat{\mathbf{t}}_{2}(\vec{\mathbf{r}}) \cdot \int_{\mathbf{L}} \mathbf{I}(\mathbf{s}') \left(\hat{\mathbf{s}}' \times \nabla' \mathbf{g}(\vec{\mathbf{r}}, \vec{\mathbf{r}}') \right) d\mathbf{s}'
- \frac{1}{2} \hat{\mathbf{t}}_{1}(\vec{\mathbf{r}}) \cdot \vec{\mathbf{J}}_{\mathbf{s}}(\vec{\mathbf{r}}) - \frac{1}{4\pi} \int_{\mathbf{S}_{1}} \hat{\mathbf{t}}_{2}(\vec{\mathbf{r}}) \cdot \left[\vec{\mathbf{J}}_{\mathbf{s}}(\vec{\mathbf{r}}') \times \nabla' \mathbf{g}(\vec{\mathbf{r}}, \vec{\mathbf{r}}') \right] d\mathbf{A}', (14)$$

and

$$-\hat{\epsilon}_{1}(\vec{r}) \cdot \vec{H}^{I}(\vec{r}) = \frac{1}{4\pi} \hat{\epsilon}_{1}(\vec{r}) \cdot \int_{L} I(s') \left(s' \times \nabla' g(\vec{r}, \vec{r}') \right) ds'$$

$$-\frac{1}{2} \hat{\epsilon}_{2}(\vec{r}) \cdot \vec{J}_{s}(\vec{r}) +$$

$$\frac{1}{4\pi} \int_{S_{1}} \hat{\epsilon}_{1}(\vec{r}) \cdot \left[\vec{J}_{s}(\vec{r}') \times \nabla' g(\vec{r}, \vec{r}') \right] dA'. \quad (15)$$

The symbol f_L represents integration over wires while f_{S_1} represents integration over surfaces excluding wires. The numerical method used to solve equations (13), (14) and (15) is described in section III.

Section III Numerical Solution

The integral equations (13), (14), and (15) are solved numerically in NEC by a form of the method of moments. An excellent general introduction to the method of moments can be found in R. F. Harrington's book, <u>Field</u>

<u>Computation by Moment Methods</u> (ref. 13). A brief outline of the method follows.

The method of moments applies to a general linear-operator equation,

$$Lf = e, (16)$$

where f is an unknown response, e is a known excitation, and L is a linear operator (an integral operator in the present case). The unknown function f may be expanded in a sum of basis functions, f, as

$$f = \sum_{j=1}^{N} \alpha_j f_j. \tag{17}$$

A set of equations for the coefficients α_j are then obtained by taking the inner product of equation (16) with a set of weighting functions $\left|w_i\right|$,

Due to the linearity of L equation (17) substituted for f yields,

$$\sum_{j=1}^{N} \alpha_{j} < w_{i}, Lf_{j} > = < w_{i}, e > ,$$

$$i = 1, ... N.$$

This equation can be written in matrix notation as

$$[G][A] = [E],$$
 (19)

where

$$A_j = \alpha_j$$

$$E_i = \langle w_i, e \rangle$$
.

The solution is then

$$[A] = [G]^{-1} [E]$$
.

For the solution of equations (13), (14), and (15), the inner product is defined as

$$\langle f, g \rangle = \int_{S} f(\vec{r})g(\vec{r})dA$$
,

where the integration is over the structure surface. Various choices are possible for the weighting functions $\{w_i\}$ and basis functions $\{f_j\}$. When $w_i = f_i$, the procedure is known as Galerkin's method. In NEC the basis and weight functions are different, w_i being chosen as a set of delta functions

$$w_i(\vec{r}) = \delta(\vec{r} - \vec{r}_i)$$
,

with $\{\vec{r}_i^{}\}$ a set of points on the conducting surface. The result is a point sampling of the integral equations known as the collocation method of solution. Wires are divided into short straight segments with a sample point at the center of each segment while surfaces are approximated by a set of flat patches or facets with a sample point at the center of each patch.

The choice of basis functions is very important for an efficient and accurate solution. In NEC the support of f_i is restricted to a localized subsection of the surface near $\dot{r_i}$. This choice simplifies the evaluation of the inner-product integral and ensures that the matrix G will be well conditioned. For finite N, the sum of f_i cannot exactly equal a general current distribution so the functions f_i should be chosen as close as possible to the actual current distribution. Because of the nature of the integral-equation kernels, the choice of basis function is much more critical on wires than on surfaces. The functions used in NEC are explained in the following sections.

1. CURRENT EXPANSION ON WIRES

Wires in NEC are modeled by short straight segments with the current on each segment represented by three terms — a constant, a sine, and a cosine. This expansion was first used by Yeh and Mei (ref. 14) and has been shown to provide rapid solution convergence (ref. 15 and 16). It has the added advantage that the fields of the sinusoidal currents are easily evaluated in closed form. The amplitudes of the constant, sine, and cosine terms are related such

that their sum satisfies physical conditions on the local behavior of current and charge at the segment ends. This differs from AMP where the current was extrapolated to the centers of the adjacent segments, resulting in discontinuities in current and charge at the segment ends. Matching at the segment ends improves the solution accuracy, especially at the multiple-wire junctions of unequal length segments where AMP extrapolated to an average length segment, often with inaccurate results.

The total current on segment number j in NEC has the form

$$I_{j}(s) = A_{j} + B_{j} \sin k(s-s_{j}) + C_{j} \cos k(s-s_{j}),$$
 (20)
 $|s-s_{j}| < \Delta_{j}/2,$

where s_j is the value of s at the center of segment j and Δ_j is the length of segment j. Of the three unknown constants A_j , B_j , and C_j , two are eliminated by local conditions on the current leaving one constant, related to the current amplitude, to be determined by the matrix equation. The local conditions are applied to the current and to the linear charge density, q, which is related to the current by the equation of continuity

$$\frac{\partial \mathbf{I}}{\partial \mathbf{s}} = -\mathbf{j}\omega\mathbf{q} . \tag{21}$$

At a junction of two segments with uniform radius, the obvious conditions are that the current and charge are continuous at the junction. At a junction of two or more segments with unequal radii, the continuity of current is generalized to Kirchoff's current law that the sum of currents into the junction is zero. The total charge in the vicinity of the junction is assumed to distribute itself on individual wires according to the wire radii, neglecting local coupling effects. T. T. Wu and R. W. P. King (ref. 17) have derived a condition that the linear charge density on a wire at a junction, and hence $\partial I/\partial s$, is determined by

$$\frac{\partial I(s)}{\partial s} \bigg|_{s \text{ at junction}} = \frac{Q}{\ln(\frac{2}{ka}) - \gamma}$$
, (22)

where a = wire radius,

 $k = 2\pi/\lambda$.

Q is related to the total charge in the vicinity of the junction and is constant for all wires at the junction.

At a free wire end, the current may be assumed to go to zero. On a wire of finite radius, however, the current can flow onto the end cap and hence be nonzero at the wire end. In one study of this effect, a condition relating the current at the wire end to the current derivative was derived (ref. 18). For a wire of radius a, this condition is

$$I(s) \Big|_{s \text{ at end}} = \frac{-(\hat{s} \cdot \hat{n}_c)}{k} \frac{J_1(ka)}{J_0(ka)} \frac{\partial I(s)}{\partial s} \Big|_{s \text{ at end}},$$

where J_0 and J_1 are Bessel functions of order 0 and 1. The unit vector $\hat{\mathbf{n}}_c$ is normal to the end cap. Hence, $\hat{\mathbf{s}} \cdot \hat{\mathbf{n}}_c$ is +1 if the reference direction, $\hat{\mathbf{s}}$, is toward the end, and -1 if $\hat{\mathbf{s}}$ is away from the end.

Thus, for each segment two equations are obtained from the two ends:

$$I_{j}(s_{j} \pm \Delta_{j}/2) = \frac{\pm 1}{k} \frac{J_{1}(ka_{j})}{J_{0}(ka_{j})} \frac{\partial I_{j}(s)}{\partial s} \bigg|_{s = s_{j} \pm \Delta_{j}/2}$$
(23)

at free ends, and

$$\frac{\partial I_{j}(s)}{\partial s} \bigg|_{s = s_{j} \pm \Delta_{j}/2} = \frac{Q_{j}^{\pm}}{\ln(\frac{2}{ka_{j}}) - \gamma}$$
 (24)

at junctions. Two additional unknowns Q_j^- and Q_j^+ are associated with the junctions but can be eliminated by Kirchoff's current equation at each junction. The boundary-condition equations provide the additional equation-per-segment to completely determine the current function of equation (20) for every segment.

To apply these conditions, the current is expanded in a sum of basis functions chosen so that they satisfy the local conditions on current and charge in any linear combination. A typical set of basis functions and their sum on a four segment wire are shown in figure 1. For a general segment i in figure 2, the ith basis function has a peak on segment i and extends onto

Figure 1. Current Basis Functions and Sum on a Four Segment Wire.

Figure 2. Segments Covered by the ith Basis Function.

every segment connected to i, going to zero with zero derivative at the outer ends of the connected segments.

The general definition of the ith basis function is given below. For the junction and end conditions described above, the following definitions apply for the factors in the segment end conditions:

$$a_{i}^{-} = a_{i}^{+} = \left[\ln \left(\frac{2}{k a_{i}} \right) - \gamma \right]^{-1},$$
 (25)

and

$$X_{i} = J_{1}(ka_{i})/J_{o}(ka_{i})$$
.

The condition of zero current at a free end may be obtained by setting $\mathbf{X}_{\hat{\mathbf{I}}}$ to zero.

The portion of the ith basis function on segment i is then

$$f_{i}^{o}(s) = A_{i}^{o} + B_{i}^{o} \sin k(s - s_{i}) + C_{i}^{o} \cos k(s - s_{i})$$
 (26)
 $|s - s_{i}| < \Delta_{i}/2$.

If $N \neq 0$ and $N \neq 0$, end conditions are

$$\frac{\partial}{\partial s} f_{i}^{o}(s) \Big|_{s = s_{i} - \Delta_{i}/2} = a_{i}^{-} Q_{i}^{-}, \qquad (27)$$

$$\frac{\partial}{\partial \mathbf{s}} \mathbf{f}_{\mathbf{i}}^{\mathbf{o}}(\mathbf{s}) \Big|_{\mathbf{s} = \mathbf{s}_{\mathbf{i}} + \Delta_{\mathbf{i}}/2} = \mathbf{a}_{\mathbf{i}}^{+} \mathbf{Q}_{\mathbf{i}}^{+}. \tag{28}$$

If N = 0 and $N^{+} \neq 0$, end conditions are

$$f_{i}^{o}(s_{i} - \Delta_{i}/2) = \frac{1}{k} X_{i} \frac{\partial}{\partial s} f_{i}^{o}(s) \Big|_{s = s_{i} - \Delta_{i}/2}$$
(29)

$$\frac{\partial}{\partial \mathbf{s}} \mathbf{f}_{\mathbf{i}}^{\mathbf{o}}(\mathbf{s}) \Big|_{\mathbf{s} = \mathbf{s}_{\mathbf{i}} + \Delta_{\mathbf{i}}/2} = \mathbf{a}_{\mathbf{i}}^{+} \mathbf{Q}_{\mathbf{i}}^{+}. \tag{30}$$

If $N \neq 0$ and $N \neq 0$, end conditions are

$$\frac{\partial}{\partial s} f_{i}^{o}(s) \Big|_{s = s_{i} - \Delta_{i}/2} = a_{i}^{-} Q_{i}^{-}, \qquad (31)$$

$$f_{i}^{o}(s_{i} + \Delta_{i}/2) = \frac{-1}{k} X_{i} \frac{\partial}{\partial s} f_{i}^{o}(s) |_{s = s_{i} + \Delta_{i}/2}$$
 (32)

Over segments connected to end 1 of segment i, the ith basis function is

$$f_{j}(s) = A_{j} + B_{j} \sin k(s - s_{j}) + C_{j} \cos k(s - s_{j})$$
 (33)
 $|s - s_{j}| < \Delta_{j}/2 \quad j = 1, \dots, N^{-}.$

End conditions are

$$f_{j}(s_{j} - \Delta_{j}/2) = 0$$
, (34)

$$\frac{\partial}{\partial s} f_{j}^{-}(s) \Big|_{s = s_{j} - \Delta_{j}/2} = 0 , \qquad (35)$$

$$\frac{\partial}{\partial s} f_{j}^{-}(s) \Big|_{s = s_{j} + \Delta_{j}/2} = a_{j}^{+} Q_{i}^{-}.$$
(36)

Over segments connected to end 2 of segment i, the ith basis function is

$$f_{j}^{+}(s) = A_{j}^{+} + B_{j}^{+} \sin k(s - s_{j}) + C_{j}^{+} \cos k(s - s_{j})$$

$$|s - s_{j}| < \Delta_{j}/2 \quad j = 1, \dots, N^{+}.$$
(37)

End conditions are

$$\frac{\partial}{\partial s} f_{j}^{+}(s) \Big|_{s = s_{j} - \Delta_{j}/2} = a_{j}^{-} Q_{i}^{+}, \qquad (38)$$

$$f_{j}^{+}(s_{j} + \Delta_{j}/2) = 0$$
, (39)

$$\frac{\partial}{\partial \mathbf{s}} \mathbf{f}_{\mathbf{j}}^{+}(\mathbf{s}) \Big|_{\mathbf{s} = \mathbf{s}_{\mathbf{j}} + \Delta_{\mathbf{j}}/2} = 0.$$
 (40)

Equations (26), (33), and (37), defining the complete basis function, involve $3(N^- + N^+ + 1)$ unknown constants. Of these, $3(N^- + N^+) + 2$ unknowns are eliminated by the end conditions in terms of Q_1^- and Q_1^+ which can then be determined from the two Kirchoff's current equations:

$$\sum_{j=1}^{N} f_{j}^{-}(s_{j} + \Delta_{j}/2) = f_{i}^{0}(s_{i} - \Delta_{i}/2) , \text{ and}$$
 (41)

$$\sum_{j=1}^{N^{+}} f_{j}^{+}(s_{j} - \Delta_{j}/2) = f_{i}^{0}(s_{i} + \Delta_{i}/2) .$$
 (42)

The complete basis function is then defined in terms of one unknown constant. In this case A_i^0 was set to -1 since the function amplitude is arbitrary, being determined by the boundary condition equations. The final result is given below:

$$A_{j}^{-} = \frac{a_{j}^{+} Q_{j}^{-}}{\sin k \Delta_{j}}, \qquad (43)$$

$$B_{j}^{-} = \frac{a_{j}^{+} Q_{i}^{-}}{2 \cos k \Delta_{j}/2} , \qquad (44)$$

$$C_{j}^{-} = \frac{-a_{j}^{+} Q_{i}^{-}}{2 \sin k \Delta_{j}/2} , \qquad (45)$$

$$A_{j}^{+} = \frac{-a_{j}^{-}Q_{i}^{+}}{\sin k \Delta_{j}} , \qquad (46)$$

$$B_{j}^{+} = \frac{a_{j}^{-} Q_{i}^{+}}{2 \cos k \Delta_{j}/2} , \qquad (47)$$

$$c_{j}^{+} = \frac{a_{j}^{-} Q_{i}^{+}}{2 \sin k \Delta_{j}/2} . \tag{48}$$

For $N \neq 0$ and $N \neq 0$,

$$A_{i}^{O} = -1 , \qquad (49)$$

$$B_{i}^{o} = \left(a_{i}^{-} Q_{i}^{-} + a_{i}^{+} Q_{i}^{+}\right) \frac{\sin k \Delta_{i}/2}{\sin k \Delta_{i}}, \qquad (50)$$

$$C_{i}^{o} = \left(a_{i}^{-} Q_{i}^{-} - a_{i}^{+} Q_{i}^{+}\right) \frac{\cos k \Delta_{i}/2}{\sin k \Delta_{i}},$$
 (51)

$$Q_{i}^{-} = \frac{a_{i}^{+}(1 - \cos k \Delta_{i}) - P_{i}^{+} \sin k \Delta_{i}}{\left(P_{i}^{-} P_{i}^{+} + a_{i}^{-} a_{i}^{+}\right) \sin k \Delta_{i} + \left(P_{i}^{-} a_{i}^{+} - P_{i}^{+} a_{i}^{-}\right) \cos k \Delta_{i}}, \quad (52)$$

$$Q_{i}^{+} = \frac{a_{i}^{-}(\cos k \Delta_{i}^{-} - 1) - P_{i}^{-} \sin k \Delta_{i}}{\left(P_{i}^{-} P_{i}^{+} + a_{i}^{-} a_{i}^{+}\right) \sin k \Delta_{i} + \left(P_{i}^{-} a_{i}^{+} - P_{i}^{+} a_{i}^{-}\right) \cos k \Delta_{i}}.$$
 (53)

For N = 0 and $N \neq 0$,

$$A_i^0 = -1 , \qquad (54)$$

$$B_{i}^{o} = \frac{\sin k \Delta_{i}/2}{\cos k \Delta_{i} - X_{i} \sin k \Delta_{i}} + a_{i}^{+} Q_{i}^{+} \frac{\cos k \Delta_{i}/2 - X_{i} \sin k \Delta_{i}/2}{\cos k \Delta_{i} - X_{i} \sin k \Delta_{i}},$$
(55)

$$C_{i}^{o} = \frac{\cos k \Delta_{i}/2}{\cos k \Delta_{i} - X_{i} \sin k \Delta_{i}} + a_{i}^{+} Q_{i}^{+} \frac{\sin k \Delta_{i}/2 - X_{i} \cos k \Delta_{i}/2}{\cos k \Delta_{i} - X_{i} \sin k \Delta_{i}},$$
(56)

$$Q_{i}^{+} = \frac{\cos k \Delta_{i} - 1 - X_{i} \sin k \Delta_{i}}{\left(a_{i}^{+} + X_{i} P_{i}^{+}\right) \sin k \Delta_{i} + \left(a_{i}^{+} X_{i} - P_{i}^{+}\right) \cos k \Delta_{i}}$$

$$(57)$$

For $N \neq 0$ and $N \neq 0$,

$$A_{\mathbf{i}}^{\mathbf{o}} = -1 , \qquad (58)$$

$$B_{i}^{O} = \frac{-\sin k \Delta_{i}/2}{\cos k \Delta_{i} - X_{i} \sin k \Delta_{i}} + a_{i}^{-} Q_{i}^{-} \frac{\cos k \Delta_{i}/2 - X_{i} \sin k \Delta_{i}/2}{\cos k \Delta_{i} - X_{i} \sin k \Delta_{i}},$$
(59)

$$c_{i}^{o} = \frac{\cos k \, \Delta_{i}/2}{\cos k \, \Delta_{i} - X_{i} \sin k \, \Delta_{i}} - a_{i}^{-} \, Q_{i}^{-} \frac{\sin k \, \Delta_{i}/2 + X_{i} \cos k \, \Delta_{i}/2}{\cos k \, \Delta_{i} - X_{i} \sin k \, \Delta_{i}},$$
(60)

$$Q_{i}^{-} = \frac{1 - \cos k \Delta_{i} + X_{i} \sin k \Delta_{i}}{\left(a_{i}^{-} - X_{i} P_{i}^{-}\right) \sin k \Delta_{i} + \left(P_{i}^{-} + X_{i} a_{i}^{-}\right) \cos k \Delta_{i}}.$$
 (61)

For all cases,

$$P_{i}^{-} = \sum_{j=1}^{N^{-}} \left(\frac{1 - \cos k \Delta_{j}}{\sin k \Delta_{j}} \right) a_{j}^{+}, \qquad (62)$$

$$P_{i}^{+} = \sum_{j=1}^{N^{+}} \left(\frac{\cos k \Delta_{j} - 1}{\sin k \Delta_{j}} \right) a_{j}^{-},$$
 (63)

where the sum for P_i^- is over segments connected to end 1 of segment i, and the sum for P_i^+ is over segments connected to end 2. If $N_i^- = N_i^+ = 0$, the complete basis function is

$$f_{i}^{0} = \frac{\cos k(s - s_{i})}{\cos k \Delta_{i}/2 - X_{i} \sin \Delta_{i}/2} - 1.$$
 (64)

When a segment end is connected to a ground plane or to a surface modeled with the MFIE, the end condition on both the total current and the last basis function is

$$\frac{\partial}{\partial s} I_{j}(s) \Big|_{s = s_{j} \pm \Delta_{j}/2} = 0$$
,

replacing the zero current condition at a free end. This condition does not require a separate treatment, however, but is obtained by computing the last basis function as if the last segment is connected to its image segment on the other side of the surface.

It should be noted that in AMP, the basis function $\mathbf{f_i}$ has unit value at the center of segment i and zero value at the centers of connected segments although it does extend onto the connected segments. As a result, the amplitude of $\mathbf{f_i}$ is the total current at the center of segment i. This is not true in NEC so the current at the center of segment i must be computed by summing the contributions of all basis functions extending onto segment i.

2. CURRENT EXPANSION ON SURFACES

Surfaces on which the MFIE is used are modeled by small flat patches. The surface current on each patch is expanded in a set of pulse functions except in the region of wire connection, as will be described later. The pulse function expansion for $N_{\rm D}$ patches is

$$\vec{J}_{s}(\vec{r}) = \sum_{j=1}^{N} (J_{1j} \hat{\epsilon}_{1j} + J_{2j} \hat{\epsilon}_{2j}) v_{j}(\vec{r}) , \qquad (65)$$

where

$$\hat{t}_{1j} = \hat{t}_{1}(\vec{r}_{j}) ,$$

$$\hat{t}_{2j} = \hat{t}_{2}(\vec{r}_{j}) ,$$

$$\vec{r}_{j} = \text{position of the center of patch number } j ,$$

$$V_{j}(\vec{r}) = 1 \text{ for } \vec{r} \text{ on patch } j \text{ and } 0 \text{ otherwise.}$$

The constants J_{1j} and J_{2j} , representing average surface-current density over the patch, are determined by the solution of the linear system of equations derived from the integral equations. The integrals for fields, due to the pulse basis functions, are evaluated numerically in a single step so that for integration, the pulses could be reduced to delta functions at the patch centers. That this simple approximation of the current yields good accuracy is one of the advantages of the MFIE for surfaces.

A more realistic representation of the surface current is needed, however, in the region where a wire connects to the surface. The treatment used in NEC, affecting the four coplanar patches about the connection point, is quite similar to that used by Albertsen et al. (ref. 9). In the region of the wire connection, the surface current contains a singular component due to the current flowing from the wire onto the surface. The total surface current should satisfy the condition,

$$\nabla_{\mathbf{g}} \cdot \hat{\mathbf{J}}_{\mathbf{g}}(\mathbf{x}, \mathbf{y}) = \mathbf{J}_{\mathbf{g}}(\mathbf{x}, \mathbf{y}) + \mathbf{I}_{\mathbf{g}} \delta(\mathbf{x}, \mathbf{y}) ,$$

where the local coordinates x and y are defined in figure 3, ∇_{s} denotes surface divergence, $J_{o}(x,y)$ is a continuous function in the region ABCD, and I_{o} is the current at the base of the wire flowing onto the surface. One expansion which meets this requirement is

$$\vec{J}_{s}(x,y) = I_{o}^{\dagger}(x,y) + \sum_{j=1}^{4} g_{j}(x,y) (\vec{J}_{j} - I_{o}^{\dagger} \vec{f}_{j}) , \qquad (66)$$

25544 電影の分子の個**できたの名間を**ののものは、

where

Figure 3. Detail of the Connection of a Wire to a Surface.

$$\vec{f}(x,y) = \frac{x\hat{x} + y\hat{y}}{2\pi(x^2 + y^2)},$$

$$\vec{J}_{j} = \vec{J}_{s}(x_{j}, y_{j}),$$

$$\vec{f}_{j} = \vec{f}(x_{j}, y_{j}), \text{ and}$$

 $(x_1,y_1) = (x,y)$ at the center of patch j. The interpolation functions $g_{i}(x,y)$ are chosen such that: $g_{i}(x,y)$ is differentiable on ABCD; g, (x, yi) = δ_{ij} ; and $\Sigma_{i=1}^{\infty} g_{j}(x,y) = 1$. The specific functions used in NEC are as follows:

$$g_1(x,y) = \frac{1}{4d^2} (d+x) (d+y)$$
 $g_2(x,y) = \frac{1}{4d^2} (d-x) (d+y)$

$$g_2(x,y) = \frac{1}{4d^2} (d-x) (d+y)$$

$$g_3(x,y) = \frac{1}{4d^2} (d-x)(d-y)$$

$$g_3(x,y) = \frac{1}{4d^2} (d-x)(d-y)$$
 $g_4(x,y) = \frac{1}{4d^2} (d+x)(d-y)$

Equation (66) is used when computing the electric field at the center of the connected wire segment due to the surface current on the four surrounding patches. In computing the field on any other segments or on any patches, the pulse-function form is used for all patches including those at the connection point. This saves integration time and is sufficiently accurate for the greater source to observation-point separations involved.

EVALUATION OF THE FIELDS

The current on each wire segment has the form

$$I_{i}(s) = A_{i} + B_{i} \sin k(s - s_{i}) + C_{i} \cos k(s - s_{i})$$

$$|s - s_{i}| < \Delta_{i}/2,$$
(67)

where $k = \omega \sqrt{\mu_0 \epsilon_0}$, and Δ_i is the segment length. The solution requires the evaluation of the electric field at each segment due to this current.

approximations of the integral equation kernel are used: a thin-wire form for most cases, an extended thin-wire form for thick wires, and a current element approximation for large interaction distances. In each case the evaluation of the field is greatly simplified by the use of formulas for the fields of the constant and sinusoidal current components.

The accuracy of the thin-wire approximation for a wire of radius a and length Δ depends on ka and Δ/a . Studies have shown that the thin-wire approximation leads to errors of less than 1% for Δ/a greater than 8 (ref. 11). Furthermore, in the numerical solution of the EFIE, the wire is divided into segments less than about 0.1λ in length to obtain an adequate representation of current distribution thus restricting ka to less than about 0.08. The extended thin-wire approximation is applicable to shorter and thicker segments, resulting in errors less than 1% for Δ/a greater than 2.

For the thin-wire kernel, the source current is approximated by a filament on the segment axis while the observation point is on the surface of the observation segment. The fields are evaluated with the source segment on the axis of a local cylindrical-coordinate system as illustrated in figure 4.

Figure 4. Current-Filament Geometry for the Thin-Wire Kernel.

Control of the second of the s

Then with

$$G_{o} = \exp(-jkr_{o})/r_{o}, \qquad (68)$$

$$\mathbf{r}_{o} = \left[\rho^{2} + (\mathbf{z} - \mathbf{z}')^{2} \right]^{1/2} , \tag{69}$$

the ρ and z components of the electric field at P due to a sinusoidal current filament of arbitrary phase,

$$I = \sin(kz' - \theta_0)$$
, $z_1 < z' < z_2$, (70)

are

$$E_{\rho}^{f}(\rho,z) = \frac{-i\eta}{2k^{2}\lambda\rho} \left[(z'-z) \ I \frac{\partial G_{o}}{\partial z'} + I \ G_{o} \right] - (z'-z) \ G_{o} \frac{\partial I}{\partial z'} \bigg]_{z_{1}}^{z_{2}},$$

$$(71)$$

$$E_{\mathbf{z}}^{\mathbf{f}}(\rho,\mathbf{z}) = \frac{\mathrm{jn}}{2\mathbf{k}^{2}\lambda} \left[G_{\mathbf{o}} \frac{\partial \mathbf{I}}{\partial \mathbf{z'}} - \mathbf{I} \frac{\partial G_{\mathbf{o}}}{\partial \mathbf{z'}} \right]_{\mathbf{z}_{1}}^{\mathbf{z}_{2}}.$$
 (72)

For a current that is constant over the length of the segment with strength I, the fields are

$$E_{\rho}^{f}(\rho,z) = \frac{I}{\lambda} \frac{j\eta}{2k^{2}} \left[\frac{\partial G_{o}}{\partial \rho} \right]_{z_{1}}^{z_{2}}, \qquad (73)$$

$$E_{\mathbf{z}}^{\mathbf{f}}(\rho,\mathbf{z}) = -\frac{\mathbf{I}}{\lambda} \frac{\mathrm{jn}}{2k^{2}} \left\{ \left[\frac{\partial G_{0}}{\partial \mathbf{z}'} \right]_{\mathbf{z}_{1}}^{\mathbf{z}_{2}} + k^{2} \int_{\mathbf{z}_{1}}^{\mathbf{z}_{2}} G_{0} \, d\mathbf{z}' \right\}. \tag{74}$$

These field expressions are exact for the specified currents. The integral over z' of G is evaluated numerically in NEC.

Substituting sine and cosine currents and evaluating the derivatives yields the following equations for the fields. For

$$I = I_{o} \begin{pmatrix} \sin kz' \\ \cos kz' \end{pmatrix} , \qquad (75)$$

$$E_{\rho}^{f}(\rho,z) = \frac{-I_{o}}{\lambda} \frac{i\eta}{2k^{2}\rho} G_{o} \left\{ k(z-z') \begin{pmatrix} \cos kz' \\ -\sin kz' \end{pmatrix} + \left[1 - (z-z')^{2} (1+jkr_{o}) \frac{1}{r_{o}^{2}} \right] \begin{pmatrix} \sin kz' \\ \cos kz' \end{pmatrix} \right\} \Big|_{z_{1}}^{z_{2}},$$
(76)

$$E_{\mathbf{z}}^{\mathbf{f}}(\rho,\mathbf{z}) = \frac{I_{o}}{\lambda} \frac{\mathrm{j}\eta}{2k^{2}} G_{o} \left\{ k \begin{pmatrix} \cos kz' \\ -\sin kz' \end{pmatrix} - (1+\mathrm{j}kr_{o})(z-z') \frac{1}{r_{o}^{2}} \begin{pmatrix} \sin kz' \\ \cos kz' \end{pmatrix} \right\} \Big|_{z_{1}}^{z_{2}}.$$
(77)

For a constant current of strength I,

$$E_{\rho}^{f}(\rho,z) = -\frac{I_{o}}{\lambda} \frac{j\eta\rho}{2k^{2}} \left[(1+jkr_{o}) \frac{G_{o}}{r_{o}^{2}} \right]_{z_{1}}^{z_{2}}, \qquad (78)$$

$$E_{z}^{f}(\rho,z) = -\frac{I_{o}}{\lambda} \frac{i\eta}{2k^{2}} \left\{ \left[(1+jkr_{o})(z-z') \frac{G_{o}}{r_{o}^{2}} \right]_{z_{1}}^{z_{2}} + k^{2} \int_{z_{1}}^{z_{2}} G_{o} dz' \right\}.$$
(79)

Despite the seemingly crude approximation, the thin-wire kernel does accurately represent the effect of wire radius for wires that are sufficiently thin. The accuracy range was studied by Poggio and Adams (ref. 11) where an

extended thin-wire kernel was developed for wires that are too thick for the thin-wire approximation.

The derivation of the extended thin-wire kernel starts with the current on the surface of the source segment with surface density,

$$J(z') = I(z')/(2\pi a)$$
,

where a is the radius of the source segment. The geometry for evaluation of the fields is shown in figure 5. A current filament of strength $Id\phi/(2\pi)$ is integrated over ϕ with

$$\rho' = [\rho^2 + a^2 - 2a\rho \cos \phi]^{1/2}, \qquad (80)$$

$$r = [\rho'^2 + (z-z')^2]^{1/2}.$$
 (81)

Thus, the z component of the field of the current tube is

$$E_{z}^{t}(\rho,z) = \frac{1}{2\pi} \int_{0}^{2\pi} E_{z}^{f}(\rho',z)d\phi$$
 (82)

Figure 5. Current Geometry for the Extended Thin-Wire Kernel.

For the ρ component of field, the change in the direction of $\hat{\rho}'$ must be considered. The field in the direction $\hat{\rho}$ is

$$E_{\mathbf{z}}^{\mathsf{t}}(\rho,\mathbf{z}) = \frac{1}{2\pi} \int_{0}^{2\pi} E_{\rho}^{\mathsf{f}}(\rho',\mathbf{z})(\hat{\rho}\cdot\hat{\rho}')d\phi , \qquad (83)$$

where

$$\hat{\rho} \cdot \hat{\rho}' = \frac{\rho - a \cos \phi}{\rho'} = \frac{\partial \rho'}{\partial \rho}$$

The integrals over ϕ in equations (82) and (83) cannot be evaluated in closed form. Poggio and Adams, however, have evaluated them as a series in powers of a^2 (ref. 11). The first term in the series gives the thin-wire kernel. For the extended thin-wire kernel, the second term involving a^2 is retained with terms of order a^4 neglected. As with the thin-wire kernel, the field observation point is on the segment surface. Hence, when evaluating the field on the source segment, ρ = a.

The field equations with the extended thin-wire approximation are given below. For a sinusoidal current of equation (70),

$$E_{\rho}(\rho, z) = \frac{-i\eta}{2k^{2}\lambda\rho} \left[(z'-z)I \frac{\partial G_{2}}{\partial z'} + IG_{2} - (z'-z)G_{2} \frac{\partial I}{\partial z'} \right]_{z_{1}}^{z_{2}},$$
(84)

$$E_{\mathbf{z}}(\rho, \mathbf{z}) = \frac{\mathrm{i}\eta}{2k^2\lambda} \left[G_{1} \frac{\partial I}{\partial \mathbf{z'}} - I \frac{\partial G_{1}}{\partial \mathbf{z'}} \right]_{z_{1}}^{z_{2}}, \tag{85}$$

For a constant current of strength I,

$$E_{\rho}(\rho,z) = \frac{I}{\lambda} \frac{j\eta}{2k^2} \left[\frac{\partial G_1}{\partial \rho} \right]_{z_1}^{z_2}, \qquad (86)$$

$$E_{\mathbf{z}}(\rho, \mathbf{z}) = -\frac{I}{\lambda} \frac{j\eta}{2k^{2}} \left\{ \left[\frac{\partial G_{1}}{\partial \mathbf{z}^{'}} \right]_{\mathbf{z}_{1}}^{\mathbf{z}_{2}} + k^{2} \left[1 - \frac{(k\mathbf{a})^{2}}{4} \right] \int_{\mathbf{z}_{1}}^{\mathbf{z}_{2}} G_{0} d\mathbf{z}' - \frac{(k\mathbf{a})^{2}}{4} \left[\frac{\partial G_{0}}{\partial \mathbf{z}'} \right]_{\mathbf{z}_{1}}^{\mathbf{z}_{2}} \right\}.$$

$$(87)$$

The term G_1 is the series approximation of

$$G_1^t = \frac{1}{2\pi} \int_0^{2\pi} G d\phi$$
, (88)

where

$$G = \exp(-jkr)/r$$
.

Neglecting terms of order a4,

$$G_{1} = G_{0} \left\{ 1 - \frac{a^{2}}{2r_{0}^{2}} (1 + jkr_{0}) + \frac{a^{2}\rho^{2}}{4r_{0}^{4}} \left[3(1 + jkr_{0}) - k^{2}r_{0}^{2} \right] \right\} , \qquad (89)$$

$$\frac{\partial G_1}{\partial z'} = \frac{(z-z')}{r_o^2} G_0 \left\{ (1+jkr_o) - \frac{a^2}{2r_o^2} \left[3(1+jkr_o) - k^2 r_o^2 \right] - \frac{a^2 \rho^2}{4r_o^4} \left[jk^3 r_o^3 + 6k^2 r_o^2 - 15(1+jkr_o) \right] \right\} , \tag{90}$$

$$\frac{\partial G_1}{\partial \rho} = -\frac{\rho G_0}{r_0^2} \left\{ (1+jkr_0) - \frac{a^2}{r_0^2} \left[3(1+jkr_0) - k^2 r_0^2 \right] - \frac{a^2 \rho^2}{4r_0^4} \left[jk^3 r_0^3 + 6k^2 r_0^2 - 15(1+jkr_0) \right] \right\} . \tag{91}$$

The term G2 is the series approximation of

$$G_2^t = \frac{1}{2\pi} \int_0^{2\pi} \frac{\rho - a \cos \phi}{\rho'^2} G d\phi$$
 (92)

To order a2,

$$G_{2} = \frac{G_{o}}{\rho} \left\{ 1 + \frac{a^{2}\rho^{2}}{4r_{o}^{4}} \left[3(1+jkr_{o}) - k^{2}r_{o}^{2} \right] \right\} , \qquad (93)$$

$$\frac{\partial G_2}{\partial z'} = \frac{(z-z')}{\rho r_0^2} G_0 \left\{ (1+jkr_0) - \frac{a^2 \rho^2}{4r_0^4} \left[jk^3 r_0^3 + 6k^2 r_0^2 - 15(1+jkr_0) \right] \right\}$$
(94)

Equation (86) makes use of the relation

$$(\hat{\rho} \cdot \hat{\rho}') \frac{\partial G}{\partial \rho'} = \frac{\partial G}{\partial \rho'} \frac{\partial \rho'}{\partial \rho} = \frac{\partial G}{\partial \rho} , \qquad (95)$$

while equation (87) follows from

$$G_{1} = \left[1 - \frac{(ka)^{2}}{4} - \frac{a^{2}}{4} \frac{\partial^{2}}{\partial z^{2}}\right] G_{0} . \tag{96}$$

When the observation point is within the wire $(\rho < a)$, a series expansion in ρ rather than a is used for G_0 and G_2 . For G_1 this simply involves interchanging ρ and a in equations (89) and (90). Then for $\rho < a$, with

$$r_{a} = \left[a^{2} + (z-z')^{2}\right]^{1/2}, \qquad (97)$$

$$G_a = \exp(-jkr_a)/r_a , \qquad (98)$$

the expressions for G_1 , G_2 and their derivatives are

$$G_{1} = G_{a} \left\{ 1 - \frac{\rho^{2}}{2r_{a}^{2}} \left(1 + jkr_{a} \right) + \frac{a^{2}\rho^{2}}{4r_{a}^{4}} \left[3(1 + jkr_{a}) - k^{2}r_{a}^{2} \right] \right\} , \qquad (99)$$

$$\frac{\partial G_1}{\partial z'} = \frac{(z-z')}{r_a^2} G_a \left\{ (1+jkr_a) - \frac{\rho^2}{2r_a^2} \left[3(1+jkr_a) - k^2 r_a^2 \right] - \frac{a^2 \rho^2}{4r_a^4} \left[jk^3 r_a^3 + 6k^2 r_a^2 - 15(1+jkr_a) \right] \right\} , \qquad (100)$$

$$\frac{\partial G_1}{\partial \rho} = -\frac{\rho}{r_a^2} G_a \left\{ (1+jkr_a) - \frac{a^2}{2r_a^2} \left[3(1+jkr_a) - k^2 r_a^2 \right] \right\} , \qquad (101)$$

$$G_2 = -\frac{\rho}{2r_a^2} G_a (1+jkr_a)$$
, (102)

$$\frac{\partial G_2}{\partial z'} = -\frac{(z-z')\rho}{2r_a^4} G_a \left[3(1+jkr_a) - k^2 r_a^2 \right] . \tag{103}$$

Special treatment of bends in wires is required when the extended thinwire kernel is used. The problem stems from the cancellation of terms evaluated at \mathbf{z}_1 and \mathbf{z}_2 in the field equations when segments are part of a continuous wire. The current expansion in NEC results in a current having a continuous value and derivative along a wire without junctions. This ensures that for two adjacent segments on a straight wire, the contributions to the \mathbf{z} component of electric field at \mathbf{z}_2 of the first segment exactly cancel the contributions from \mathbf{z}_1 , representing the same point, for the second segment. For a straight wire of several segments, the only contributions to $\mathbf{E}_{\mathbf{z}}$ with either the thin-wire or extended thin-wire kernel come from the two wire ends and the integral of \mathbf{G}_0 along the wire. For the ρ component of field or either component at a bend, while there is not complete cancellation, there may be partial cancellation of large end contributions.

The cancellation of end terms makes necessary a consistent treatment of the current on both sides of a bend for accurate evaluation of the field. This is easily accomplished with the thin-wire kernel since the current filament on the wire axis is physically continuous around a bend. However, the current tube assumed for the extended thin-wire kernel cannot be continuous around its complete circumference at a bend. This was found to reduce the solution accuracy when the extended thin-wire kernel was used for bent wires.

To avoid this problem in NEC, the thin-wire form of the end terms in equations (71) through (74) is always used at a bend or change in radius. The extended thin-wire kernel is used only at segment ends where two parallel segments join, or at free ends. The switch from extended thin-wire form to the thin-wire form is made from one end of a segment to the other rather than between segments where the cancellation of terms is critical.

When segments are separated by a large distance, the interaction may be computed with sufficient accuracy by treating the segment current as an infinitesimal current element at the segment center. In spherical coordinates, with the segment at the origin along the Θ = 0 axis, the electric field is

$$E_r(r,\Theta) = \frac{M\eta}{2\pi r^2} \exp(-jkr) \left(1 - \frac{j}{kr}\right) \cos \Theta$$
,

$$E_{\Theta}(r,\Theta) = \frac{M\eta}{4\pi r^2} \exp(-jkr) \left(1+jkr - \frac{j}{kr}\right) \sin \Theta$$
.

The dipole moment M for a constant current I on a segment of length $\Delta_{\mathbf{i}}$ is

$$M = I \Delta_i$$
.

For a current I $cos[k(s - s_i)]$ with $|s - s_i| < \Delta_i/2$,

$$M = \frac{2I}{k} \sin(k\Delta_i/2) ,$$

while for a current I sin[k(s - si)],

M = 0.

Use of this approximation saves a significant amount of time in evaluating the interaction matrix elements for large structures. The minimum interaction distance at which it is used is selected by the user in NEC. A default distance of one wavelength is set, however.

For each of the three methods of computing the field at a segment due to the current on another segment, the field is evaluated on the surface of the observation segment. Rather than choosing a fixed point on the segment surface, the field is evaluated at the cylindrical coordinates ρ' , z with the source segment at the origin. If the center point on the axis of the observation segment is at ρ , z, then

$$\rho' = \left[\rho^2 + a_o^2\right]^{1/2}$$
,

where a_0 is the radius of the observation segment. Also, the component of E_0 tangent to the observation segment is computed as

$$\dot{\vec{E}}_{\rho} \cdot \hat{s} = (\hat{\rho} \cdot \hat{s}) \frac{\rho}{\rho'} E_{\rho} .$$

Inclusion of the factor ρ/ρ' , which is the cosine of the angle between $\hat{\rho}$ and $\hat{\rho}'$, is necessary for accurate results at bends in thick wires.

4. THE MATRIX EQUATION FOR CURRENT

For a structure having N_s wire segments and N_p patches, the order of the matrix in equation (19) is $N=N_s+2N_p$. In NEC the wire segment equations occur first in the linear system so that, in terms of submatrices, the equation has the form

$$\begin{bmatrix} A & B \\ & & \\ & & \\ C & D \end{bmatrix} \begin{bmatrix} I_w \\ & \\ I_p \end{bmatrix} = \begin{bmatrix} E_w \\ & \\ H_p \end{bmatrix},$$

with equations derived from equation (14) in odd numbered rows in the lower set and equation (15) in even rows. $I_{\rm w}$ is then the column vector of segment

basis function amplitudes, and I_p is the patch-current amplitudes $(J_{1j}, J_{2j}, j=1,...,N_p)$. The elements of E_w are the left-hand side of equation (13) evaluated at segment centers, while H_p contains, alternately, the left-hand sides of equations (14) and (15) evaluated at patch centers.

A matrix element A_{ij} in submatrix A represents the electric field at the center of segment i due to the jth segment basis function, centered on segment j. A matrix element D_{ij} in submatrix D represents a tangential magnetic field component at patch k due to a surface-current pulse on patch ℓ where

$$k = Int [(i-1)/2] + 1$$
,
 $\ell = Int [(j-1)/2] + 1$,

and Int[] indicates truncation. The source pulse is in the direction \hat{t}_1 when j is odd, and direction \hat{t}_2 when j is even. When $k = \ell$ the contribution of the surface integral is zero since the vector product is zero on the flat patch surface, although a ground image may produce a contribution. However, for $k = \ell$, there is a contribution of $\pm 1/2$ from the coefficient of $\vec{J}_s(\vec{r})$ in equation (14) or (15). Matrix elements in submatrices B and C represent electric fields due to surface-current pulses and magnetic fields due to segment basis functions, respectively. These present no special problems since the source and observation points are always separated.

5. SOLUTION OF THE MATRIX EQUATION

The matrix equation,

$$[G][I] = [E],$$
 (104)

is solved in NEC by Gauss elimination (ref. 19). The basic step is factorization of the matrix G into the product of an upper triangular matrix U and a lower triangle matrix L where

$$G = [L][U]$$
.

The matrix equation is then

$$[L][U][I] = [E],$$
 (105)

from which the solution, I, is computed in two steps as

$$[L][F] = [E],$$
 (106)

and

$$[U][I] = [F]$$
 (107)

Equation (106) is first solved for F by forward substitution, and equation (107) is then solved for I by backward substitution.

The major computational effort is factoring G into L and U. This takes approximately 1/3 N³ multiplication steps for a matrix of order N compared to N³ for inversion of G by the Gauss-Jordan method. Solution of equations (106) and (107), making use of the triangular properties of L and U, takes approximately as many multiplications as would be required for multiplication of G^{-1} by the column vector E. The factored matrices L and U are saved in NEC since the solution for induced current may be repeated for a number of different excitations. This, then, requires only the repeated solution of equations (106) and (107).

Computation of the elements of the matrix G and solution of the matrix equation are the two most time-consuming steps in computing the response of a structure, often accounting for over 90% of the computation time. This may be reduced substantially by making use of symmetries of the structure, either symmetry about a plane, or symmetry under rotation.

In rotational symmetry, a structure having M sectors is unchanged when rotated by any multiple of 360/M degrees. If the equations for all segments and patches in the first sector are numbered first and followed by successive sectors in the same order, the matrix equation can be expanded in submatrices in the form

$$\begin{bmatrix} A_{1} & A_{2} & A_{3} & \cdots & A_{M-1} & A_{M} \\ A_{M} & A_{1} & A_{2} & \cdots & A_{M-2} & A_{M-1} \\ A_{M-1} & A_{M} & A_{1} & \cdots & A_{M-3} & A_{M-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{2} & A_{3} & A_{4} & \cdots & A_{M} & A_{1} \end{bmatrix} \begin{bmatrix} I_{1} \\ I_{2} \\ I_{3} \\ \vdots \\ I_{M} \end{bmatrix} = \begin{bmatrix} E_{1} \\ E_{2} \\ E_{3} \\ \vdots \\ E_{M} \end{bmatrix}$$

$$(108)$$

If there are N_c equations in each sector, E_i and I_i are N_c element column vectors of the excitations and currents in sector i. A_i is a submatrix of order N_c containing the interaction fields in sector 1 due to currents in sector i. Due to symmetry, this is the same as the fields in sector k due to currents in sector i + k, resulting in the repetition pattern shown. Thus only matrix elements in the first row of submatrices need be computed, reducing the time to fill the matrix by a factor of 1/M.

The time to solve the matrix equation can also be reduced by expanding the excitation subvectors in a discrete Fourier series as

$$E_i = \sum_{k=1}^{M} S_{ik} E_k$$
 $i=1,...,M$, (109)

$$E_{i} = \frac{1}{M} \sum_{k=1}^{M} S_{ik}^{*} E_{k}^{*} \quad i=1,...,M$$
, (110)

where

$$S_{ik} = \exp[j2\pi(i-1)(k-1)/M],$$
 (111)

 $j=\sqrt{-1}$, and * indicates the conjugate of the complex number. Examining a component in the expansion,

$$E = \begin{bmatrix} S_{1k} & E_k \\ S_{2k} & E_k \\ \vdots \\ \vdots \\ S_{Mk} & E_k \end{bmatrix}, \qquad (112)$$

it is seen that the excitation differs from sector to sector only by a uniform phase shift. This excitation of a rotationally symmetric structure results in a solution having the same form as the excitation, i.e.,

$$I = \begin{bmatrix} s_{1k} & I_k \\ s_{2k} & I_k \\ \vdots & \vdots & \vdots \\ s_{Mk} & I_k \end{bmatrix}$$
(113)

It can be shown that this relation between solution and excitation holds for any matrix having the form of that in equation (108). Substituting these components of E and I into equation (108) yields the following matrix equation of order N_C relating $I_{\bf k}$ to $E_{\bf k}$:

$$\left[s_{1k} A_1 + s_{2k} A_2 + \dots + s_{Mk} A_M \right] \left[I_k \right] = s_{1k} \left[E_k \right] .$$
 (114)

The solution for the total excitation is then obtained by an inverse transformation,

$$I_i = \sum_{k=1}^{M} S_{ik} I_k$$
 $i=1, ..., M$. (115)

The solution procedure, then, is first to compute the M submatrices $\mathbf{A}_{\mathbf{i}}$ and Fourier-transform these to obtain

$$A_{i} = \sum_{k=1}^{M} S_{ik} A_{k}$$
 $i=1, ..., M$. (116)

The matrices $A_{\bf i}$, of order N_c, are then each factored into upper and lower triangular matrices by the Gauss elimination method. For each excitation vector, the transformed subvectors are then computed by equation (110) and the transformed current subvectors are obtained by solving the M equations,

$$[A_{\underline{i}}] [I_{\underline{i}}] = [E_{\underline{i}}] . \tag{117}$$

The total solution is then given by equation (115).

The same procedure can be used for structures that have planes of symmetry. The Fourier transform is then replaced by even and odd excitations about each symmetry plane. All equations remain the same with the exception

that the matrix S with elements S_{ij}, given by equation (111), is replaced by the following matrices:

For one plane of symmetry,

$$\mathbf{S} = \begin{bmatrix} 1 & 1 \\ & \\ 1 & -1 \end{bmatrix};$$

For two orthogonal planes of symmetry,

and for three orthogonal symmetry planes,

For either rotational or plane symmetry, the procedure requires factoring of M matrices of order N_c rather than one matrix of order M_c . Each excitation then requires the solution of the M matrix equations. Since the time for factoring is approximately proportional to the cube of the matrix order and the time for solution is proportional to the square of the order, the symmetry results in a reduction of factor time by M^{-2} and in solution time by M^{-1} . The time to compute the transforms is generally small compared to the time for matrix operations since it is proportional to a lower power of N_c . Symmetry also reduces the number of locations required for matrix storage by M^{-1} since only the first row of submatrices need be stored. The transformed matrices, A_i , can replace the matrices A_i as they are computed.

NEC includes a provision to generate and factor an interaction matrix and save the result on a file. A later run, using the file, may add to the structure and solve the complete model without unnecessary repetition of calculations. This procedure is called the Numerical Green's Function (NGF) option since the effect is as if the free space Green's function in NEC were replaced by the Green's function for the structure on the file. The NGF is particularly useful for a large structure, such as a ship, on which various antennas will be added or modified. It also permits taking advantage of partial symmetry since a NGF file may be written for the symmetric part of a structure, taking advantage of the symmetry to reduce computation time. Unsymmetric parts can then be added in a later run.

For the NGF solution the matrix is partitioned as

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \end{bmatrix},$$

where A is the interaction matrix for the initial structure, D is the matrix for the added structure, and B and C represent mutual interactions. The current is computed as

$$I_2 = [D - CA^{-1}B]^{-1} [E_2 - CA^{-1} E_1]$$
,
 $I_1 = A^{-1} E_1 - A^{-1} BI_2$,

after the factored matrix A has been read from the NGF file along with other necessary data.

Electrical connections between the new structure and the old (NGF) structure require special treatment. If a new wire or patch connects to an old wire the current basis function for the old wire segment is changed by the modified condition at the junction. The old basis function is given zero amplitude by adding a new equation having all zeros except for a one in the column of the old basis function. A new column is added for the corrected basis function. When a new wire connects to an old patch the patch must be divided into four new patches to apply the connection condition of equation (51). Hence both the current basis function and match point for the old patch are replaced.

Section IV Effect of a Ground Plane

In the integral equation formulation used in NEC, a ground plane changes the solution in three ways: (1) by modifying the current distribution through near-field interaction; (2) by changing the field illuminating the structure; and (3) by changing the reradiated field. Effects (2) and (3) are easily analyzed by plane-wave reflection as a direct ray and a ray reflected from the ground. The reradiated field is not a plane wave when it reflects from the ground, but, as can be seen from reciprocity, plane-wave reflection gives the correct far-zone field. Analysis of the near-field interaction effect is, however, much more difficult.

In Section II, the kernels of the integral equations are free-space Green's functions, representing the E or H field at a point \vec{r} due to an infinitesimal electric current element at \vec{r} . When a ground is present the free space Green's functions must be replaced by Green's functions for the ground problem. The solution for the fields of current elements in the presence of a ground plane was developed by Arnold Sommerfeld (ref. 20). While this solution has been used directly in integral-equation computer codes, excessive computation time greatly limits its use. Numerous approximations to the Sommerfeld solution have been developed that require less time for evaluation but all have limited applicability.

The NEC code has three options for grounds. The most accurate for lossy grounds uses the Sommerfeld solution for interaction distances less than one wavelength and an asymptotic expansion for larger distances. To keep the solution time reasonable, a grid of values of the Sommerfeld solution is generated and interpolation is used to find specific values. This method is presently implemented only for wires in NEC but could be extended to patches. The solution for a perfectly conducting ground is much simpler since the ground may be replaced by the image of the currents above it. The third option models a lossy ground by a modified image method using the Fresnel plane—wave reflection coefficients. While specular reflection does not accurately describe the behavior of near fields, the approximation has been found to provide useful results for structures that are not too near to the ground (refs. 21, 22). The attraction of this method is its simplicity and speed of computation which are the same as for the image method for perfect ground.

1. THE SOMMERFELD/NORTON METHOD

The Sommerfeld/Norton ground option in NEC originated with the code WFLLL2A (ref. 23) which uses numerical evaluation of the Sommerfeld integrals for ground fields when the interaction distance is small and uses Norton's asymptotic approximations (ref. 24) for larger distances. Since evaluation of the Sommerfeld integrals is very time consuming, a code, SOMINT, was developed (ref. 25) which uses bivariate interpolation in a table of precomputed Sommerfeld integral values to obtain the field values needed for integration over current distributions. This method greatly reduces the required computation time. NEC uses a similar interpolation method with modifications to allow wires closer to the air-ground interface and to further reduce computation time. Although the code WFLLL2A allows wires both above and below the interface, both NEC and SOMINT are presently restricted to wires on the free-space side. The method used in NEC to evaluate the field over ground is described below, and the numerical evaluation of the Sommerfeld integrals to fill the interpolation grid is discussed in Section IV-2.

The electric field above an air-ground interface due to an infinitesimal current element of strength IL also above the interface, with parameters shown in figure 6, is given by the following expressions:

$$E_{\rho}^{V} = C_{1} \frac{\partial^{2}}{\partial \rho \partial z} \left[G_{22} - G_{21} + k_{1}^{2} V_{22} \right], \qquad (118)$$

$$E_{z}^{V} = C_{1} \left(\frac{\partial^{2}}{\partial z^{2}} + k_{2}^{2} \right) \left(G_{22} - G_{21} + k_{1}^{2} V_{22} \right) , \qquad (119)$$

$$\mathbf{E}_{\rho}^{H} = \mathbf{C}_{1} \cos \phi \left[\frac{\partial^{2}}{\partial \rho^{2}} \left(\mathbf{G}_{22} - \mathbf{G}_{21} + \mathbf{k}_{2}^{2} \mathbf{V}_{22} \right) + \mathbf{k}_{2}^{2} \left(\mathbf{G}_{22} - \mathbf{G}_{21} + \mathbf{U}_{22} \right) \right], (120)$$

$$E_{\phi}^{H} = -C_{1} \sin \phi \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(G_{22} - G_{21} + k_{2}^{2} V_{22} \right) + \right]$$

$$k_2^2 (G_{22} - G_{21} + U_{22})$$
, (121)

$$E_{z}^{H} = C_{1} \cos \phi \frac{\partial^{2}}{\partial z \partial \rho} \left(G_{22} + G_{21} - k_{1}^{2} V_{22} \right) , \qquad (122)$$

$$c_1 = \frac{-j\omega I \ell \mu_0}{4\pi k_2^2} , \qquad (123)$$

Figure 6. Coordinates for Evaluating the Field of a Current Element Over Ground.

$$k_1^2 = \omega^2 \mu_o \varepsilon_o \left(\frac{\varepsilon_1}{\varepsilon_o} - \frac{j\sigma_1}{\omega \varepsilon_o} \right),$$
 (124)

$$k_2^2 = \omega^2 \mu_o \varepsilon_o , \qquad (125)$$

where the superscript indicates a vertical (V) or horizontal (H) current element and the subscript indicates the cylindrical component of the field vector. The horizontal current element is along the x axis.

 ${\tt G}_{22}$ and ${\tt G}_{21}$ are the free space and image Green's functions

$$G_{22} = \exp(-jk_2R_2)/R_2$$
, (126)

$$G_{21} = \exp(-jk_2R_1)/R_1$$
, (127)

where

$$R_1 = \left[\rho^2 + (z + z')^2\right]^{1/2}, \qquad (128)$$

$$R_2 = \left[\rho^2 + (z - z')^2\right]^{1/2}, \qquad (129)$$

and \mathbf{U}_{22} and \mathbf{V}_{22} are Sommerfeld integrals involving the zeroth order Bessel function, \mathbf{J}_{22}

$$U_{22} = 2 \int_0^\infty \frac{\exp[-\gamma_2(z+z')] J_o(\lambda \rho) \lambda d\lambda}{\gamma_1 + \gamma_2} , \qquad (130)$$

$$v_{22} = 2 \int_{0}^{\infty} \frac{\exp[-\gamma_{2}(z+z')] J_{0}(\lambda \rho) \lambda d\lambda}{k_{1}^{2} \gamma_{2} + k_{2}^{2} \gamma_{1}} , \qquad (131)$$

where

$$\gamma_1 = \left(\lambda^2 - k_1^2\right)^{1/2} , \qquad (132)$$

$$\gamma_2 = \left(\lambda^2 - k_2^2\right)^{1/2} \,. \tag{133}$$

The free-space field has a similar singularity, but as discussed in Section III-3, the integral over a straight filament may be evaluated in closed form for a sinusoidal current with free-space wavelength and involves only a numerical integration of G_{22} for a constant current. The dominant singular component of the ground field may be integrated in the same way. The terms involving G_{22} in equation (118) through (122) are, in fact, the field of the current element in free space, and their integral is obtained from the free-space routines in NEC.

The remaining terms represent the field due to ground and are singular at R_1 = 0. The singularities in U_{22} and V_{22} result from the failure of the integrals in equations (130) and (131) to converge without the exponential and

Bessel functions as ρ and z+z' go to zero. The singular behavior of U_{22} and V_{22} as ρ and z+z' go to zero may be found by setting $\gamma_1=\gamma_2=\lambda$ since the dominant contributions to the integrals for small ρ and z+z' come from λ much greater than k_1 or k_2 . Here, however, we only replace γ_1 by γ_2 and use the integrals

$$v_{22} \approx 2 \int_{0}^{\infty} \frac{\exp[-\gamma_{2}(z+z')] J_{0}(\lambda \rho) \lambda d\lambda}{\gamma_{2}(k_{1}^{2}+k_{2}^{2})} = \frac{2G_{21}}{k_{1}^{2}+k_{2}^{2}} , \qquad (134)$$

$$U_{22} \approx \int_{0}^{\infty} \frac{\exp[-\gamma_{2}(z+z')] J_{0}(\lambda \rho) \lambda d\lambda}{\gamma_{2}} = G_{21}$$

$$|k_{1}|\rho \ll 1, |k_{1}|(z+z') \ll 1,$$
(135)

which have the correct singular behavior and can be combined with the G_{21} terms. The field components due to ground [equation (108) through (122) without the G_{22} terms] may then be written as

$$G_{\rho}^{V} = C_{1} \frac{\partial^{2}}{\partial \rho \partial z} k_{1}^{2} V_{22}^{\prime} + C_{1} \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \frac{\partial^{2}}{\partial \rho \partial z} G_{21}$$
, (136)

$$G_{z}^{V} = C_{1} \left(\frac{\partial^{2}}{\partial z^{2}} + k_{2}^{2} \right) k_{1}^{2} V_{22}^{I} + C_{1} \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \left(\frac{\partial^{2}}{\partial z^{2}} + k_{2}^{2} \right) G_{21}$$
 (137)

$$G_{\rho}^{H} = C_{1} \cos \phi \left(\frac{\partial^{2}}{\partial \rho^{2}} k_{2}^{2} V_{22}^{\prime} + k_{2}^{2} U_{22}^{\prime} \right)$$

$$- C_{1} \cos \phi \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \left(\frac{\partial^{2}}{\partial \rho^{2}} + k_{2}^{2} \right) G_{21} , \qquad (138)$$

$$\begin{split} G_{\varphi}^{H} &= -C_{1} \sin \! \varphi \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} k_{2}^{2} V_{22}^{\prime} + k_{2}^{2} U_{22}^{\prime} \right) \\ &+ C_{1} \sin \! \varphi \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} + k_{2}^{2} \right) G_{21} , \end{split}$$
 (139)

$$G_z^{H} = -\cos\phi G_Q^{V} , \qquad (140)$$

where

$$\begin{split} \mathbf{U}_{22}^{\prime} &= \mathbf{U}_{22} - \frac{2\mathbf{k}_{2}^{2}}{\mathbf{k}_{2}^{2} + \mathbf{k}_{1}^{2}} \quad \mathbf{G}_{21} \;\;, \\ &= 2 \int_{0}^{\infty} \left[\frac{1}{\gamma_{1} + \gamma_{2}} - \frac{\mathbf{k}_{2}^{2}}{\gamma_{2}(\mathbf{k}_{1}^{2} + \mathbf{k}_{2}^{2})} \right] \exp[-\gamma_{2}(\mathbf{z} + \mathbf{z}^{\prime})] \\ &\qquad \qquad \times \mathbf{J}_{0}(\lambda \rho) \lambda d\lambda \quad , \end{split} \tag{141}$$

$$V_{22}^{*} = V_{22} - \frac{2}{k_{1}^{2} + k_{2}^{2}} G_{21},$$

$$= 2 \int_{0}^{\infty} \left[\frac{1}{k_{1}^{2} \gamma_{2} + k_{2}^{2} \gamma_{1}} - \frac{1}{\gamma_{2} k_{1}^{2} + k_{2}^{2}} \right]$$
(142)

 $\times \exp[-\gamma_2(z + z')] J_o(\lambda \rho) \lambda d\lambda$.

In equations (136) through (140) the dominant singular component has been subtracted out of V_{22} and combined with G_{21} . The integral for V_{22}' converges without the exponential or Bessel function factors and remains finite as ρ and z+z' go to zero. The derivatives of V_{22}' in the field expressions have $1/R_1$ singularities, but this is much less of a problem for numerical integration than the previous $1/R_1^3$ singularity. The singularity could be taken out of U_{22} also, but, instead, a term is taken out that results in the final terms in equations (136) through (139) being the image field multiplied by $(k_1^2-k_2^2)/(k_1^2+k_2^2)$. The integral over the current filament of these image terms is evaluated by the free-space equations leaving only the U_{22}' and V_{22}' terms to be integrated numerically. U_{22}' still has a $1/R_1$ singularity, but that is no worse than the derivatives of V_{22}' . With the thin-wire approximation, R_1 is never less than the wire radius so the integration is not difficult in practical cases.

The components left for numerical integration over the current distribution are then

$$F_{\rho}^{V} = C_{1} \frac{\partial^{2}}{\partial \rho \partial z} k_{1}^{2} V_{22}^{\prime}$$
, (143)

$$F_{z}^{V} = C_{1} \left(\frac{\partial^{2}}{\partial z^{2}} + k_{2}^{2} \right) k_{1}^{2} V_{22}^{\prime} , \qquad (144)$$

$$F_{\rho}^{H} = C_{1} \cos \phi \left(\frac{\partial^{2}}{\partial \rho^{2}} k_{2}^{2} v_{22}^{\prime} + k_{2}^{2} v_{22}^{\prime} \right) , \qquad (145)$$

$$F_{\phi}^{H} = -C_{1} \sin \phi \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} k_{2}^{2} V_{22}^{\dagger} + k_{2}^{2} U_{22}^{\dagger} \right) , \qquad (146)$$

$$\mathbf{F}_{\mathbf{z}}^{\mathbf{H}} = -\cos\phi \ \mathbf{F}_{\rho}^{\mathbf{V}} \ . \tag{147}$$

Since the integrals in equations (141) and (142) cannot be evaluated in closed form the following terms must be evaluated by numerical integration over λ :

$$\frac{\partial^2 V_{22}'}{\partial \rho^2} = \int_0^\infty D_2 \exp\left[-\gamma_2(z+z')\right] J_0'' (\lambda \rho) \lambda^3 d\lambda , \qquad (148)$$

$$\frac{\partial^2 V_{22}^{\prime}}{\partial z^2} = \int_0^\infty D_2 \gamma_2^2 \exp\left[-\gamma_2(z+z^{\prime})\right] J_0 (\lambda \rho) \lambda d\lambda , \qquad (149)$$

$$\frac{\partial^2 V_{22}^{\prime}}{\partial \rho \partial z} = -\int_0^{\infty} D_2 \gamma_2 \exp \left[-\gamma_2 (z + z^{\prime}) \right] J_0^{\prime} (\lambda \rho) \lambda^2 d\lambda , \qquad (150)$$

$$\frac{1}{\rho} \frac{\partial^{V}_{22}}{\partial \rho} = \frac{1}{\rho} \int_{0}^{\infty} D_{2} \exp \left[-\gamma_{2}(z + z') \right] J_{0}' (\lambda \rho) \lambda^{2} d\lambda , \qquad (151)$$

$$V'_{22} = \int_0^\infty D_2 \exp\left[-\gamma_2(z+z')\right] J_0(\lambda\rho) \lambda d\lambda , \qquad (152)$$

$$U_{22}^{\prime} = \int_{0}^{\infty} D_{1} \exp \left[-\gamma_{2}(z+z^{\prime})\right] J_{0} (\lambda \rho) \lambda d\lambda , \qquad (153)$$

where

$$D_1 = \frac{2}{\gamma_2 + \gamma_2} - \frac{2 k_2^2}{\gamma_2 (k_1^2 + k_2^2)} , \qquad (154)$$

$$D_2 = \frac{2}{k_1^2 \gamma_2 + k_2^2 \gamma_1} - \frac{2}{\gamma_2 (k_1^2 + k_2^2)} . \tag{155}$$

Evaluating these integrals over λ for each point needed in the numerical integration over the current distribution is slow on even the fastest computers. Hence an interpolation technique is used for the remaining field components as was done in the code SOMINT for the total field due to ground. Since the integrals depend only on ρ and z+z' a grid of values is generated for the field components of equations (143) through (146) and bivariate interpolation is used to obtain values for integration over a current distribution.

To facilitate interpolation in the region of the $1/R_1$ singularity, the components are divided by a function having a similar singularity and interpolation is performed on the ratio. The field components of equations (143) through (146) are divided by $\exp(-jkR_1)/R_1$ for all values of R_1 to remove the singularity and the free-space phase factor before interpolation. The factors $\sin\phi$ or $\cos\phi$ are also omitted until after interpolation to avoid introducing the ϕ dependence. The surfaces to which interpolation is applied are then

$$I_0^V = C_1 R_1 \exp(jkR_1) \frac{\partial^2}{\partial \rho \partial z} k_1^2 V_{22}^{\prime}$$
, (156)

$$I_{z}^{V} = C_{1} R_{1} \exp(jkR_{1}) \left(\frac{\partial^{2}}{\partial z^{2}} + k_{2}^{2}\right) k_{1}^{2} V_{22}^{\prime},$$
 (157)

$$I_{\rho}^{H} = C_{1} R_{1} \exp(jkR_{1}) \left(\frac{\partial^{2}}{\partial \rho^{2}} k_{2}^{2} V_{22}^{\prime} + k_{2}^{2} U_{22}^{\prime} \right) ,$$
 (158)

$$I_{\phi}^{H} = -C_{1} R_{1} \exp(jkR_{1}) \left(\frac{1}{\rho} \frac{\partial}{\partial \rho} k_{2}^{2} V_{22}^{\prime} + k_{2}^{2} U_{22}^{\prime}\right) . \tag{159}$$

After interpolation on the smoothed surfaces the results are multiplied by the omitted factors to give the correct values.

With the singularity removed, interpolation may be used for arbitrarily small values of ρ and z+z'. The values for $R_1=0$ in the interpolation grid must be found as limits for R_1 approaching zero, however, since the integrals

do not converge in this case. When ρ and z+z' approach zero the dominant contributions in equations (148) through (153) come from large λ . Hence the singular behavior can be found by setting γ_1 and γ_2 equal to λ . First, however, it is necessary to approximate D_1 and D_2 for $|\lambda| >> |k_1|$ as

$$D_1 = C_2/\lambda$$
 , $C_2 = \frac{k_1^2 - k_2^2}{k_1^2 + k_2^2}$, (160)

$$D_2 = C_3/\lambda^3$$
, $C_3 = \frac{k_2^2(k_1^2 - k_2^2)}{(k_1^2 + k_2^2)^2}$. (161)

For $|\mathbf{k}_1| \rho \ll 1$ and $|\mathbf{k}_1| (\mathbf{z} + \mathbf{z}') \ll 1$ the integrals become

$$\frac{\partial^2 V_{22}^{\prime}}{\partial \rho^2} \approx C_3 \int_0^{\infty} \exp\left[-\lambda(z+z^{\prime})\right] J_0^{\prime\prime} (\lambda \rho) d\lambda , \qquad (162)$$

$$= c_3 \left[\frac{1 - \sin \theta}{\cos^2 \theta} - 1 \right] \frac{1}{R_1} ,$$

$$\frac{\partial^2 V_{22}'}{\partial z^2} \approx C_3 \int_0^\infty \exp\left[-\lambda(z+z')\right] J_0(\lambda \rho) d\lambda = \frac{C_3}{R_1}, \qquad (163)$$

$$\frac{\partial^{2} v_{22}^{\prime}}{\partial \rho \partial z} \approx - C_{3} \int_{0}^{\infty} \exp \left[-\lambda (z + z^{\prime})\right] J_{0}^{\prime}(\lambda \rho) d\lambda = \frac{C_{3}(1 - \sin \theta)}{R_{1} \cos \theta}, \quad (164)$$

$$\frac{1}{\rho} \frac{\text{V'}_{22}}{\partial \rho} \approx \frac{c_3}{\rho} \int_0^\infty \exp\left[-\lambda(z+z')\right] J_0' (\lambda \rho) \frac{1}{\lambda} d\lambda = \frac{-c_3(1-\sin\theta)}{R_1 \cos^2\theta}, \quad (165)$$

$$U_{22}^{\prime} \approx C_2 \int_0^{\infty} \exp\left[-\lambda (z + z^{\prime})\right] J_0^{\prime} (\lambda \rho) d\lambda = \frac{C_2}{R_1}, \qquad (166)$$

where

$$R_1 = \left[\rho^2 + (z + z')^2\right]^{1/2}, \qquad (167)$$

$$\theta = \tan^{-1} \left[(z + z')/\rho \right] . \tag{168}$$

 V_{22}^{1} remains finite as R_{1} goes to zero and hence is neglected. Equations (156) through (159) for R₁ approaching zero are then

$$I_{\rho}^{V} = C_{1}C_{3}k_{1}^{2} \left(\frac{1 - \sin\theta}{\cos\theta}\right) , \qquad (169)$$

$$I_z^V = c_1 c_3 k_1^2$$
, (170)

$$I_{\rho}^{H} = c_{1}k_{2}^{2} \left[c_{2} - c_{3} + c_{3} \left(\frac{1 - \sin\theta}{\cos^{2}\theta} \right) \right],$$
 (171)

$$I_{\phi}^{H} = C_{1}k_{2}^{2} \left[C_{2} - C_{3} \left(\frac{1 - \sin \theta}{\cos^{2} \theta} \right) \right]. \tag{172}$$

Since the limiting values as R_1 goes to zero are functions of θ it is necessary to use R_1 and θ as the interpolation variables rather than ρ and z+z'.

Figures 7 through 10 are plots of the surfaces to which interpolation is applied for typical ground parameters. The width of the region of relatively rapid variation along the R_1 axis appears to be proportional to the wavelength

(b) (a)

Max = 0Min = -137.9

Figure 7. Real (a) and Imaginary (b) Parts of I_{ρ}^{V} for $\epsilon_{1}/\epsilon_{0}$ = 4, σ_{1} = 0.001 mhos/m, frequency = 10 MHz.

$$Max = -16.31$$

Min = -163.8

Max = 219.9 Min = -98.16

Figure 8. Real (a) and Imaginary (b) Parts of I for $\epsilon_1/\epsilon_0 = 4$, $\sigma_1 = 0.001$ mhos/m, frequency = 10 MHz.

(a)

50

(b)

Figure 9. Real (a) and Imaginary (b) Parts of I_{ρ}^{H} for $\epsilon_{1}/\epsilon_{0} = 4$, $\sigma_{1} = 0.001$ mhos/m, frequency = 10 MHz.

Max = 102.1 Min = 14.77 Max = 109.8 Min = -75.86

Figure 10. Real (a) and Imaginary (b) Parts of I_{ϕ}^{H} for $\epsilon_{1}/\epsilon_{0}$ = 4, σ_{1} = 0.001 mhos/m, frequency = 10 MHz.

in the lower medium and hence is concentrated closer to R_1 = 0 for larger dielectric constants. At a finite R_1 , the functions approach zero as ε_1 and σ_1 become large. When loss is small the strong wave in the lower medium results in a significant evanescent wave along the interface in the upper medium as shown in figure 11.

In NEC the interpolation region from 0 to 1 wavelength in R_1 is divided into three grids, as shown in figure 12, on which bivariate cubic interpolation is used. For a given point, the correct grid region is determined and cubic surfaces in R_1 and θ , fit to a 4-point by 4-point region containing the desired point, are evaluated for each of the four quantities I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} , and I_{ϕ}^{H} . The grid point spacings used are:

Grid	ΔR_{1}	Δθ
1	0.02λ	10°
2	0.05λ	5°
3	0.1λ	10°

Figure 11. Real (a) and Imaginary (b) Parts of I_{ρ}^{H} for $\epsilon_{1}/\epsilon_{0} = 16$, $\sigma_{1} = 0$.

These were determined by numerical tests to keep relative errors of interpolation generally in the range of 10^{-3} to 10^{-4} . A smaller ΔR_1 could be needed in grid 2 for large ϵ_1 and small σ_1 to handle the rapidly oscillating evanescent wave, but this is easily changed in the code.

The field evaluation in NEC uses variable-interval-width Romberg integration over the current distribution. At each integrand evaluation, the components I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} , and I_{φ}^{H} are obtained by interpolation, and the field components are combined according to the direction of the current. The numerical integral is then combined with the free-space field and with the image field multiplied by $(k_{1}^{2}-k_{2}^{2})/(k_{1}^{2}+k_{2}^{2})$ to obtain the total field over ground.

When R_1 from the observation point to the center of a wire segment is greater than one wavelength, the field is evaluated by Norton's asymptotic approximations (ref. 26) rather than the above method. Norton's formulas are given in Part II of this manual under subroutine GWAVE. Although they are less accurate than the Sommerfeld integral forms and require longer to evaluate than the interpolation, their use permits truncating the interpolation tables. Another approximation used for R_1 greater than a wavelength is to treat the current distribution on a segment as a lumped current element with the correct moment rather than integrating over the current distribution.

Fig. 12. Grid for Bivariate Interpolation of I's.

2. NUMERICAL EVALUATION OF THE SOMMERFELD INTEGRALS

The integrals in equations (148) through (153) are evaluated by numerical integration along contours in the complex λ plane. Although these integrals differ from the usual Sommerfeld integrals in the D₁ and D₂ terms, they are the same in the properties important to numerical integration — the locations of poles and branch cuts and the exponential behavior of the Bessel and exponential functions. The behavior of the integrands and numerical methods for evaluating the integrals are discussed in detail by Lytle and Lager

(ref. 27). This section describes the particular method used in NEC, which is basically the same as in the code WFLLL2A.

Since the integrands of the six integrals are similar, V_{22}^{\prime} will be considered as typical. The integrands have branch cuts from $\pm k_1$ to infinity and $\pm k_2$ to infinity due to the square roots in γ_1 and γ_2 respectively. The branch cuts are chosen to be vertical, as shown in figure 13. The implications of this choice of branch cuts and the choice of Reimann sheets are discussed in ref. 27.

The key to rapid convergence in the numerical integration is to exploit the exponential behavior of the exponential and Bessel functions for large λ . The integration contour is deformed from the real axis into the complex plane, avoiding branch cuts and taking account of poles, to optimize convergence. With the vertical branch cuts chosen, there are no real poles on the primary Reimann sheet although virtual poles from D_1 or D_2 result in a near singularity in the region of $\pm k_2$ when k_1 approaches k_2 (free-space limit). Hence the integration contour should avoid the real axis in this region.

Figure 13. Contour for Evaluation of Bessel Function Form of Sommerfeld Integrals.

The contour used with the form of the integrals in equations (148) through (153) is shown in figure 13. The dominant factor for convergence in this case is the exponential function as λ_R increases. The Bessel function oscillates with slow convergence for increasing λ_R and grows exponentially as $|\lambda_I|$ increases. Hence it is of little help in convergence but restricts the contour to small $\rho |\lambda_I|$. The break in the contour is at λ = p + jp where p is the minimum of $1/\rho$ and 1/(z+z').

Integration along this contour becomes difficult when $(z+z')/\rho$ is small since there may be many oscillations of the Bessel function before convergence. In this case an alternate form of the integrals is used which for V_{22}^{\prime} is

$$V'_{22} = \frac{1}{2} \int_{-\infty}^{\infty} D_2 \exp \left[-\gamma_2 (z + z') \right] H_0^{(2)} (\lambda \rho) \lambda d\lambda$$
 (173)

Since the Hankel function of type 2 decays exponentially as $\lambda_{\rm I}$ becomes negative, it provides rapid convergence without the exp $-\gamma_2(z+z')$ factor. The behavior of the integrand can be seen from the large argument approximation

$$\exp\left[-\gamma_2(z+z')\right] H_o^{(2)}(\lambda\rho) \approx \sqrt{\frac{2j}{\pi\lambda\rho}} \left\{ \exp\left[-\lambda\left[\pm\left(z+z'\right)+j\rho\right]\right\} \; ,$$

where, for the vertical branch cuts, the ± sign is

+ for
$$\lambda_R > -k_2$$
 and $\lambda_I > 0$,

+ for
$$\lambda_R > k_2$$
 and $\lambda_I < 0$,

- otherwise.

Thus, an integration path having

$$\lambda_T < 0$$

and

$$\lambda_{I}/\lambda_{R} = -\rho/(z + z')$$
 for $\lambda_{R} > k_{2}$

or

$$\lambda_{I}/\lambda_{R} = \rho/(z + z')$$
 for $\lambda_{R} < k_{2}$

results in exponential convergence with little oscillation. The basic contour used with the Hankel function form is shown in figure 14 where

$$a = -j 0.4 k_2$$
,
 $b = (0.6 + j 0.2)k_2$,

Figure 14. Contour for Evaluation of Hankel Function Form of Sommerfeld Integrals.

c =
$$(1.02 + j \ 0.2)k_2$$
,
d = $1.01 k_{1_R} + j \ 0.99 k_{1_I}$,
 $\theta = \tan^{-1}(\frac{\rho}{z + z'})$.

To avoid the near singularity as k_1 approaches k_2 , the real part of d is not allowed to be less than 1.1 k_2 . This contour provides rapid convergence except when z+z' is small, $|k_1\rho|$ is large, and $k_1|/k_1|$ is small. There may then be many oscillations between c and d with little convergence. In such a case the contour in figure 15 is used where

$$e = k_1 + (-0.1 + j \ 0.2)$$
,
 $f = k_2 + (0.1 + j \ 0.2)$.

The Hankel function form of the integrals provides rapid convergence for small z+z' including the case of z=z'=0. For small ρ , however, the pole at $\lambda\rho=0$ requires special treatment. In NEC the Hankel function form with the contour of figure 14 or 15 is used when ρ is greater than (z+z')/2 and the Bessel function form is used otherwise.

Integration along the contours is accomplished by adaptive interval-width Romberg integration. On the sections going to infinity, adaptive Romberg

Figure 15. Contour for Hankel Function Form when Real Part k_1 is Large and Imaginary Part k_1 is Small.

integration is applied to successive subsections of length p, where p is the minimum of $0.2\pi/\rho$ or $0.2\pi/(z+z')$, and Shanks' nonlinear transformation (ref. 28) is applied to the sequence of partial sums to accelerate convergence. When ρ and z+z' are both small, the integration interval, p, may be large since the exponential and Bessel functions change slowly and the remaining factors are easily integrated once λ becomes large. For the Bessel function form of the integrals the minimum for $R_1 = [\rho^2 + (z+z')^2]^{1/2}$ is limited only by the maximum number size for the computer. For the Hankel function form the minimum R_1 is about 10^{-5} wavelengths due to the pole at $\lambda \rho = 0$. Either ρ or z+z' may be zero.

The numerical integration results for small R_1 were checked against results from a series approximation (ref. 25) and were in very close agreement. For larger values of R_1 the results from different integration contours were compared as a validation test. Results for the modified Sommerfeld integrals were also checked with normal integrals used in the code WFLLL2A. Earlier studies for the code WFLLL2A, which is capable of computing the field across

the interface, verified the continuity of the computed tangential E field across the interface (ref. 44).

The average time required to evaluate the integrals for a given ρ and z+z' on a CDC 7600 computer is about 0.06 s. Thus about 15 s are required to fill the interpolation grid. Once the grid has been computed and stored, the time to fill an interaction matrix, using interpolation and the Norton formulas, is about four times that for free space.

3. THE IMAGE AND REFLECTION-COEFFICIENT METHODS

The use of a reflected image is a simple and fast way to model the effect of a ground plane. If the ground is perfectly conducting, the structure and its image are exactly equivalent to the structure over the ground. Since use of the image only doubles the time to compute the field, it is always used with a perfect ground. NEC also includes an image approximation for a finitely conducting ground in which the image fields are modified by the Fresnel planewave reflection coefficients. Although this is far from exact for a finite ground, it has been shown to provide useful results for structures that are not too near to the ground (refs. 21 and 22). When it can be used, the reflection coefficient method is about twice as fast as the Sommerfeld/Norton method and avoids the need of computing the interpolation grid.

Implementation of the image and reflection coefficient methods in the code is very simple. The Green's function for a perfectly conducting ground is the sum of the free-space Green's function of the source current element and the negative of the free-space Green's function of the image of the source reflected in the ground plane. For the electric field, with free-space Green's dyad $\overline{\overline{G}}$ (r,r') defined in equation (1), the Green's dyad for a perfect ground is

$$\frac{\overline{\overline{G}}}{\overline{G}}(\overset{\uparrow}{r},\overset{\uparrow}{r'}) = \overline{\overline{G}}(\overset{\uparrow}{r},\overset{\uparrow}{r'}) + \overline{\overline{G}}_{\overline{I}}(\overset{\uparrow}{r},\overset{\uparrow}{r'}),$$
(174)

where

$$\overline{\overline{G}}_{I}(\overrightarrow{r},\overrightarrow{r'}) = -\overline{I}_{r} \cdot \overline{\overline{G}}(\overrightarrow{r},\overline{\overline{I}}_{r} \cdot \overrightarrow{r'}),$$

$$\overline{\overline{I}}_{r} = \hat{x}\hat{x} + \hat{y}\hat{y} - \hat{z}\hat{z}.$$
(175)

 \bar{I}_r is a dyad that produces a reflection in the z=0 plane when used in a dot product. For the magnetic field with free-space Green's dyad

$$\overline{\Gamma}(\vec{r},\vec{r}') = \overline{I} \times \nabla' g(\vec{r},\vec{r}')$$
(176)

the Green's dyad over a perfect ground is

$$\overline{\Gamma}_{pg} = \overline{\Gamma}(\overrightarrow{r}, \overrightarrow{r'}) + \overline{\Gamma}_{T}(\overrightarrow{r}, \overrightarrow{r'})$$
(177)

$$\overline{\overline{\Gamma}}_{I}(r,r') = -\overline{I}_{r} \cdot \overline{\overline{\Gamma}}(r,\overline{I}_{r} \cdot r')$$
(178)

The reflection coefficient method for finitely conducting ground uses the image fields modified by the Fresnel reflection coefficients. The Fresnel reflection coefficients, which are strictly correct only for an infinite plane-wave field, depend on the polarization of the incident field with respect to the plane of incidence (i.e., the plane containing the normal to the ground and the vector in the direction of propagation of the wave). The two cases are illustrated in figure 16 where the wave with E in the plane of incidence is termed vertically polarized and E normal to the plane of incidence as horizontally polarized. The Fresnel reflection coefficient for vertically polarized waves is

$$R_{V} = \frac{\cos \Theta - Z_{R} \sqrt{1 - Z_{R}^{2} \sin^{2} \Theta}}{\cos \Theta + Z_{R} \sqrt{1 - Z_{R}^{2} \sin^{2} \Theta}},$$
 (179)

where

$$\cos \Theta = -\hat{k} \cdot \hat{z}$$
,

$$z_{R} = \left(\frac{\varepsilon_{1}}{\varepsilon_{o}} - j \frac{\sigma_{1}}{\omega \varepsilon_{o}}\right)^{-1/2}$$
.

The reflected fields are then

$$\vec{E}_{R}^{V} = - R_{V} \left(\overline{I}_{R} \cdot \vec{E}^{V} \right)$$
,

$$\vec{H}_{R}^{V} = R_{V} \vec{H}^{V}$$
.

Reflection of Vertically Polarized Wave

Reflection of Horizontally Polarized Wave

Figure 16. Plane-Wave Reflection at an Interface.

For horizontally polarized waves, the reflection coefficient is

$$R_{H} = \frac{-\left(z_{R} \cos \Theta - \sqrt{1 - z_{R}^{2} \sin^{2} \Theta}\right)}{z_{R} \cos \Theta + \sqrt{1 - z_{R}^{2} \sin^{2} \Theta}},$$
(180)

and

$$\vec{E}_R^h = - R_H \vec{E}^h$$
,

$$\vec{H}_{R}^{h} = R_{H} \left(\vec{I}_{R} \cdot \vec{H}^{h} \right)$$
.

An arbitrarily polarized incident plane wave must be resolved into horizontal and vertical components to determine the reflected field. Thus, if \hat{p} is the unit vector normal to the plane of incidence, the reflected field due to an incident field \vec{E} is

$$\vec{E}_{R} = R_{H}(\vec{E}_{I} \cdot \hat{p})\hat{p} + R_{V} \left[\vec{E}_{I} - (\vec{E}_{I} \cdot \hat{p})\hat{p} \right]$$

$$= R_{V} \vec{E}_{I} + (R_{H} - R_{V})(\vec{E}_{I} \cdot \hat{p})\hat{p} , \qquad (181)$$

where \vec{E}_I is the incident field reflected in a perfectly conducting ground, or the field due to the image of the source. Use of the image field in equation (181) accounts for the changes in sign and vector direction of the incident field that were shown explicitly for the vertically and horizontally polarized cases. For the magnetic field,

$$\vec{H}_{R} = R_{H}\vec{H}_{I} + (R_{V} - R_{H})(\vec{H}_{I} \cdot \hat{p})\hat{p}$$
, (182)

with $\overrightarrow{H}_{\overline{I}}$ the field of the image of the source.

Applying the Fresnel reflection coefficients to the near fields, the electric field at \vec{r} due to the image of a current element at \vec{r} can be written

$$\overline{\overline{G}}_{R}(\vec{r}, \vec{r}') = R_{V}\overline{\overline{G}}_{I}(\vec{r}, \vec{r}')
+ (R_{H} - R_{V}) \left[\overline{\overline{G}}_{I}(\vec{r}, \vec{r}') \cdot \hat{p} \right] \hat{p} ,$$
(183)

where

$$\hat{p} = \vec{p}/|\vec{p}| ,$$

$$\vec{p} = (\vec{r} - \vec{r}') \times \hat{z} ,$$

and \overline{G}_{I} is the Green's function for the image of the source in a perfect ground as defined in equation (175). For magnetic field, the Green's dyad for the modified image is

$$\overline{\Gamma}_{R}(\vec{r},\vec{r}') = R_{H} \overline{\Gamma}_{I}(\vec{r},\vec{r}')
+ (R_{V} - R_{H}) \left[\overline{\Gamma}_{I}(\vec{r},\vec{r}') \cdot \hat{p} \right] \hat{p} .$$
(184)

The Green's functions for electric and magnetic fields over an imperfectly conducting ground, resulting from the reflection coefficient approximation are then

$$\overline{\overline{G}}_{g}(\overrightarrow{r},\overrightarrow{r'}) = \overline{\overline{G}}(\overrightarrow{r},\overrightarrow{r'}) + \overline{\overline{G}}_{R}(\overrightarrow{r},\overrightarrow{r'}) , \qquad (185)$$

$$\vec{\Gamma}_{g}(\vec{r}, \vec{r}') = \overline{\Gamma}(\vec{r}, \vec{r}') + \overline{\Gamma}_{R}(\vec{r}, \vec{r}') . \qquad (186)$$

Use of the Green's function's $\overline{\overline{G}}_g$ and $\overline{\overline{\Gamma}}_g$ results in a straightforward extension of the EFIE and MFIE for structures over an imperfect ground.

NEC also includes a reflection coefficient approximation for a radial wire ground screen, as used by Miller and Deadrick (ref. 29). This is based on an approximation developed by Wait (ref. 30) for the surface impedance of the radial-wire ground screen on an imperfectly conducting ground, as the parallel combination of the surface impedance, ζ_1 , of the ground plane

$$\zeta_1 = \left(\frac{j\mu_o\omega}{\sigma_1 + j\varepsilon_1\omega}\right)^{1/2}$$
,

and an approximate surface impedance Z of the ground screen

$$Z_{\mathbf{g}}(\rho) \; = \; \frac{j \mu_{o} \omega \rho}{N} \; \ln \left(\frac{\rho}{NC_{o}} \right) \; \; . \label{eq:Zg}$$

The ground screen impedance assumes a parallel wire grid having the wire spacing that the radial wires have at a distance ρ from the center. N is the number of radial wires in the screen, and C_0 is the radius of the wires. The surface impedance of the ground screen on an imperfect ground is then

$$\zeta_{e} = \frac{\zeta_{1} Z_{g}}{\zeta_{1} + Z_{g}}.$$

From the definition of surface impedance,

$$E_{tangential} = \zeta_e H_{tangential}$$

at the surface. Using the fact that E and H in the incident wave are related by η the free-space impedance, reflection coefficients are derived as

$$R_{H} = \frac{\eta - \zeta_{e} \cos \Theta}{\eta + \zeta_{e} \cos \Theta} ,$$

and

$$R_{V} = \frac{\eta \cos \theta - \zeta_{e}}{\eta \cos \theta + \zeta_{e}}.$$

This is the form the Fresnel reflection coefficients take when the index of refraction is large compared to unity $(|\mathbf{Z}_R|^2 << 1)$. This condition is satisfied in most realistic problems; furthermore, the surface-impedance boundary condition is a valid approximation only when the refractive index of the ground is large compared to unity. The surface impedance is used in conjunction with the reflection coefficient method previously discussed to provide an approximate model of a radial-wire ground screen.

Due to the assumption of specular reflection, only the properties of the ground directly under a vertical antenna will affect its current distribution. At the origin of the radial-wire ground screen, the impedance is zero (Z_g is not allowed to be negative) so the impedance and current distribution of a vertical antenna at the origin will be the same as over a perfect conductor. The far fields, however, will demonstrate the effect of the screen as the specular point moves away from the origin. For antennas other than the vertical

antenna, it should be pointed out that the inherent polarization sensitivity of the screen (i.e., E parallel or perpendicular to the ground wires) has not been considered in this approximation. When limited accuracy can be accepted this ground screen approximation provides a large time saving over explicit modeling with the Sommerfeld/Norton method since the ground screen does not increase the number of unknowns in the matrix equation.

Section V Modeling of Antennas

Previous sections have dealt with the problem of determining the current induced on a structure by an arbitrary excitation. We now consider some specific problems in modeling antennas and scatterers, including models for a voltage source on a wire, lumped and distributed loads, nonradiating networks, and transmission lines. Calculations of some observable quantities are also covered including input impedance, radiated field, and antenna gain.

1. SOURCE MODELING

The approach used in NEC is applicable to a number of electromagnetic analysis problems. For receiving antennas and EMP studies, the excitation is the field of an incident plane wave and the desired response is the induced current at one or more points on the structure. In scattering analysis the excitation is still an incident plane wave, but the desired response is the field radiated by the induced currents. In the case of a wire transmitting antenna, however, the excitation is generally a voltage source on the wire. The antenna source problem has received a considerable amount of attention in the literature. A rather thorough exposition on the appropriate source configuration for the linear dipole antenna has been given by King (ref. 31). The delta-function source, which may be visualized as an infinitesimally thin, circumferential belt of axially directed electric field [or, alternatively, as a frill of magnetic current at the antenna feed point (ref. 32)], is convenient mathematically, but of somewhat questionable physical realizability. Since the excitation can be specified only at discrete points in NEC, a delta-function source is not feasible.

A useful source model, however, is an electric field specified at a single match point. For a voltage source of strength V on segment i, the element in the excitation vector corresponding to the applied electric field at the center of segment i is set to

$$E_{i} = \frac{V}{\Delta_{i}} \quad , \tag{187}$$

where Δ_i is the length of segment i. The direction of E_i is toward the positive end of the voltage source so that it pushes charge in the same direction as the source. The field at other match points is set to zero.

The actual effective voltage is the line integral of the applied field along the wire. This cannot be determined beforehand since the field is known only at segment centers, but can be determined after the solution for current by integrating the scattered field produced by the current. For equal length segments in the vicinity of the source this field, which must be the negative of the applied field at every point on the wire, is nearly constant over segment i and drops sharply at the segment ends. This results in an actual voltage of approximately $\Delta_{1}E_{1}$ as assumed in equation (187). When the source segment and adjacent segments are not of equal length, however, the actual voltage, obtained by integrating the scattered field, may differ from the intended value.

Ideally, this source model applies a voltage V between the ends of the source segment. Hence, the antenna input admittance could be computed as the current at the segment ends or, in an unsymmetric case, the average of the current at the two ends, divided by the applied voltage. In practice the segment is sufficiently short so that the current variation over its length is small and the current at the center can be used rather than the ends. When segment lengths in the source region are unequal, the computed input admittance may be inaccurate due to the discrepancy between the actual and assumed voltages. Use of the actual voltage, obtained by integrating the near field, will generally give an accurate admittance although it will require additional effort for computation.

An alternate source model that is less sensitive to the equality of segment lengths in the source region is based on a discontinuity in the derivative of current. This source model is similar to one used by Andreasen and Harris (ref. 33), and its use in a program similar to NEC was reported by Adams, Poggio, and Miller (ref. 24). For this model, the source region is viewed as a biconical transmission line with feed point at the source location, as illustrated in figure 17. The voltage between a point at s and the symmetric point on the other side of the line is then related to the derivative of the current by the transmission line equation,

$$V(s) = -jZ_0 \frac{\partial I(ks)}{\partial (ks)} , \qquad (188)$$

where Z_0 is the characteristic impedance of the transmission line. The characteristic impedance of a biconical transmission line of half-angle Θ is

Figure 17. Biconical Transmission Line Model of Source Region.

$$Z_0 = 120 \ln \left(\cot \frac{\Theta}{2}\right)$$
,

or for small angles,

$$Z_o \approx 120 \ln \left(\frac{2}{\Theta}\right)$$
 (189)

For a source on a wire, however, the proper choice for δ in figure 17, defining the angle θ , is unclear. Adams at al. (ref. 24) used an average value of Z_0 obtained by averaging equation (189) for δ ranging from zero to d as

$$Z_{\text{avg}} = \frac{1}{d} \int_{0}^{d} 120 \ln \left(\frac{2\delta}{a}\right) d\delta$$
$$= 120 \left[\ln \left(\frac{2d}{a}\right) - 1 \right] ,$$

where d is set equal to the distance from the source location at the segment end to the match point at the segment center. The voltage across the line is then

$$V(s) = - j 120 \left[ln \left(\frac{2d}{a} \right) - 1 \right] \frac{\partial I(ks)}{\partial (ks)}.$$

Allowing for a current unsymmetric about the source, the voltage V_0 of a source at s is related to a discontinuity in current derivative as

$$\frac{\lim_{\epsilon \to 0} \left[\frac{\partial I(ks)}{\partial (ks)} \right]_{s = s_{o} + \epsilon} - \frac{\partial I(ks)}{\partial (ks)} \bigg|_{s = s_{o} - \epsilon} \bigg] = \frac{-jv_{o}}{60 \left[2n \left(\frac{2d}{a} \right) - 1 \right]}$$
(190)

This discontinuity in current derivative is introduced into NEC by modifying the current expansion on the wire. The normal expansion for N wire segments is

$$I(s) = \sum_{j=1}^{N} \alpha_j f_j(s) ,$$

where the basis functions, f_j , are defined in section III-1 such that I(s) has continuous value and derivative along wires, and satisfies Kirchoff's law and a condition on charge density at junctions.

For a current-slope-discontinuity source at the first end of segment ℓ , the current expansion is modified to

$$I(s) = \sum_{j=1}^{N} \alpha_j f_j(s) + \beta_{\ell} f_{\ell}^*(s) , \qquad (191)$$

where f_{ℓ}^{*} is a basis function for segment ℓ , as defined in section III-1, but computed as if the first end of segment ℓ were a free end and the segment radius were zero. Hence, f_{ℓ}^{*} goes to zero with nonzero derivative at the source location.

If f_{ℓ}^* on segment ℓ is

$$f_{\ell}^{*}(s) = A_{\ell}^{*} + B_{\ell}^{*} \sin k(s - s_{\ell}) + C_{\ell}^{*} \cos k(s - s_{\ell})$$

$$\times |s - s_{\ell}| < \Delta_{\ell}/2 ,$$

then

$$\frac{\partial}{\partial (ks)} f_{\ell}^{*}(s) \Big|_{s = s_{0} - \Delta_{0}/2} = B_{\ell}^{*} \cos(k\Delta_{\ell}/2) + C_{\ell}^{*} \sin(k\Delta_{\ell}/2) .$$

Since the sum of the normal basis functions has continuous value and derivative at $s = s_{\ell} - \Delta_{\ell}/2$, the current in equation (191) has a discontinuity in derivative of

$$\frac{\lim_{\varepsilon \to 0} \left\{ \frac{\partial}{\partial (\mathbf{k} \mathbf{s})} \, \mathbf{I}(\mathbf{s}) \Big|_{\mathbf{s} = \mathbf{s}_{\ell} - \Delta_{\ell}/2 + \varepsilon} - \frac{\partial}{\partial (\mathbf{k} \mathbf{s})} \, \mathbf{I}(\mathbf{s}) \Big|_{\mathbf{s} = \mathbf{s}_{\ell} - \Delta_{\ell}/2 - \varepsilon} \right\} = \beta_{\ell} \left\{ \mathbf{B}_{\ell}^{\star} \, \cos(\mathbf{k} \Delta_{\ell}/2) + \mathbf{C}_{\ell}^{\star} \, \sin(\mathbf{k} \Delta_{\ell}/2) \right\}.$$

Hence, from equation (190), a source voltage of V_0 requires a value of β_ℓ in the current expansion of

$$\beta_{\ell} = \frac{-jV_{o}}{60} \left\{ \left[\ln \left(\frac{\Delta_{\ell}}{a_{\ell}} \right) - 1 \right] \left[B_{\ell}^{\star} \cos(k\Delta_{\ell}/2) + C_{\ell}^{\star} \sin(k\Delta_{\ell}/2) \right] \right\}^{-1} . \tag{192}$$

The linear system for the current expansion constants, obtained by substituting equation (191) for f in equation (18), is

$$\sum_{j=1}^{N_s} \alpha_j \langle w_i, Lf_j \rangle = \langle w_i, e \rangle - \beta_{\ell} \langle w_i, f_{\ell}^* \rangle .$$

$$i = 1, \dots, N_s$$
(193)

In matrix notation, corresponding to equation (19),

[G] [A] = [E] +
$$\beta_{\ell}$$
 [F] , (194)

where F is the excitation for segment or patch equation number i due to the field of f_{ℓ}^* , and E_{i} is the excitation for segment or patch equation number i from other sources (if there are any). The interaction matrix G is independent of this source as it is of other sources. The solution for the expansion coefficients is then

$$[A] = [G^{-1}] \{ [E] + \beta_{\ell} [F] \}$$
,

where A supplies the coefficients α_i in equation (191) to determine the current. This method is easily extended to several sources. The modified basis function f appears to introduce an asymmetry into the current, but this is not the case since the other basis function amplitudes are free to adjust accordingly.

The current-slope-discontinuity source results in an effective applied field that is much more localized in the source region than that of the constant-field source defined by equation (187). The difference is shown in near-field plots for the two source models in figure 18, taken from Adams

Figure 18. Field Plots for a Linear Dipole, Ω=15.

et al. (ref. 24). The near fields are for a half wavelength dipole antenna with $\Omega=15$ [$\Omega=2\ln(L/a)$, L= length, a = radius] and with 10 segments on half of the antenna covered by the plots. The constantfield source is seen to result in a nearly rectangular field distribution in the source region while the field of the slope-discontinuity source approaches a delta function. The integrals of these two source-field distributions yield approximately the same voltages, however.

With the slope-discontinuitysource model, the input admittance is
the ratio of the current at the
segment end, where the source is
located, to the source voltage.
Adams et al. also present results
showing the effect on admittance of
varying the source-segment length
relative to the lengths of adjacent
segments, showing that the slopediscontinuity source is much less
sensitive to segment length than is
the constant-field source. The two

segments on opposite sides of the source must have equal lengths and radii, however. For very short segment lengths, the slope-discontinuity model may break down although, as with the constant-field source, the correct admittance can be obtained by integrating the near field to obtain the source voltage.

2. NONRADIATING NETWORKS

Antennas often include transmission lines, lumped circuit networks, or a combination of both connecting between different parts or elements. When the currents on transmission lines or at network ports are balanced, the resulting fields cancel and can often be neglected, greatly simplifying the modeling problem. The solution procedure used in NEC is to compute a driving-point-interaction matrix from the complete segment-interaction matrix. The driving-point matrix relates the voltages and currents at network connection points as required by the electromagnetic interactions. The driving-point-interaction equations are then solved together with the network or transmission line equations to obtain the induced currents and voltages. In this way the larger segment-interaction matrix is not changed by addition or modification of networks or transmission lines.

The solution described below assumes an electromagnetic interaction matrix equation of the form,

$$[G][I] = -[E],$$
 (195)

where \mathbf{E}_{i} is the exciting electric field on wire segment i and \mathbf{I}_{i} is the current at the center of segment i. In NEC the interaction equation has the form,

$$[G][A] = -[E],$$

where A is the amplitude of the ith basis function f in the current expansion,

$$I(s) = \sum_{i=1}^{N} A_i f_i(s)$$
.

The same solution technique can be used, however, by computing I from A whenever I is needed. This must be done in computing the elements of the inverse of G, G_{ij}^{-1} , which below represent the current on segment i due to a unit field on segment j.

A model consisting of N_s segments will be assumed with a general M-port network connected to segments 1 through M. The network is described by the admittance equations,

$$\sum_{j=1}^{M} Y_{ij} V_{j} = I_{i}^{t} \qquad i=1, ..., M, \qquad (196)$$

where V_{i} and I_{i}^{t} are the voltage and current at port i, with reference directions as shown in figure 19.

Figure 19. Voltage and current Reference Directions at Network Ports.

The connection of a network port to a segment is illustrated in figure 20. The segment is broken, and the port is connected so that

$$I_i^t = -I_i , \qquad (197)$$

where I_i is the segment current. Figure 21 shows a voltage source of strength V_i connected across the network port at segment i. In this case,

$$I_{i}^{t} = I_{i}^{g} - I_{i}$$
 (198)

In either case, the port voltage may be related to the applied field on the segment by the constant-field voltage source model of equation (187).

We will assume that segments 1 through M_1 are connected to network ports without voltage sources, and segments M_1 + 1 through M are connected to network ports with voltage sources. The remaining segments have no network

Figure 20. Network Connection to Segments.

Figure 21. Network Port and Voltage Source Connected to a Segment.

connections but may have voltage sources. In addition all of the segments may be excited by an incident field represented by $\mathbf{E}_{\mathbf{i}}^{\mathbf{I}}$ on segment i. The total field on segment i is then

$$E_{i} = \frac{V_{i}}{\Delta_{i}} + E_{i}^{I} ,$$

where $\mathbf{V_i}$ is a gap voltage, due either to a network port or voltage source, and $\boldsymbol{\Delta_i}$ is the segment length.

Equation (195) may be solved for current as

$$I_{i} = -\sum_{j=1}^{N_{s}} G_{ij}^{-1} E_{j} \qquad i=1, ..., N_{s}, \qquad (199)$$

where G_{ij}^{-1} is the $(i,j)^{th}$ element of the inverse of matrix G. Before evaluating equation (199), however, the unknown port voltages, V_i , for $i=1,\ldots,M_1$ must be determined. Hence, equation (199) is written with all known quantities on the right-hand side as

$$\sum_{j=1}^{M_1} G_{ij}^{-1} E_j^P + I_i = B_i \qquad i=1, \dots, M_1, \qquad (200)$$

where

$$E_j^P = \frac{v_j}{\Delta_j}$$
,

and

$$B_{i} = -\sum_{j=1}^{M_{1}} G_{ij}^{-1} E_{j}^{I} - \sum_{j=M_{1}+1}^{N_{s}} G_{ij}^{-1} E_{j}.$$

Similarly, the network equations (196) are written using equation (197) as

$$\sum_{j=1}^{M_1} Y_{ij}^{\prime} E_j^P + I_i = C_i \qquad i=1, \dots, M_1, \qquad (201)$$

where

$$Y'_{ij} = \Delta_j Y_{ij}$$
,

$$\mathbf{c_i} = -\sum_{\mathbf{j}=M_1+1}^{M} \mathbf{Y_{ij}} \ \mathbf{v_j} \ .$$

The current is then eliminated between equations (200) and (201) to yield

$$\sum_{j=1}^{M_1} \left(G_{ij}^{-1} - Y_{ij}' \right) E_j^P = B_i - C_i \qquad i=1, \dots, M_1. \qquad (202)$$

The solution procedure is then to solve equation (202) for E_j^P for $j=1,\ldots,M_1$. Then, with the complete excitation vector determined, use equation (199) to determine I_i for $i=1,\ldots,N_s$. Finally, the remaining network equations with equation (198) are used to compute the generator currents as

$$I_{i}^{g} = \sum_{j=1}^{M} Y_{ij} V_{j} + I_{i} \qquad i=M_{1}+1, \dots M.$$
 (203)

The currents I_i^g determine the input admittances seen by the sources.

In NEC the general M-port network used here is restricted to multiple

3. TRANSMISSION LINE MODELING

Transmission lines interconnecting parts of an antenna may be modeled either explicitly by including the transmission line wires in the thin-wire model, or implicitly by the method described in the preceding section for nonradiating networks. For an implicit model, the short-circuit-admittance parameters of the transmission line viewed as a two-port network are

$$Y_{11} = Y_{22} = -j Y_o \cot(kl)$$
,

$$Y_{12} = Y_{21} = j Y_o \csc(kl)$$
,

where Y_0 is the characteristic admittance of the line, k is the wave number $(2\pi/\lambda)$, and ℓ is the length of the line. If a separate admittance element is connected across the end of a transmission line, its admittance is added to the self-admittance of that network port.

The implicit model is limited, however, in that it neglects interaction between the transmission line and the antenna and its environment. This approximation is justified if the currents in the line are balanced, i.e., in a log periodic dipole antenna, and in general if the transmission line lies in an electric symmetry plane. The balance can be upset, however, if the transmission line is connected to an unbalanced load or by unsymmetric interactions. If the unbalance is significant, the transmission line can be modeled explicitly by including the wires in the thin-wire model. The explicit model is completely general, and yields accurate results since the sine, cosine, and constant current expansion in NEC is a good representation of the sinusoidal transmission line currents. The accuracy is demonstrated in figure 22 for transmission lines terminated in short circuit, open circuit, and matched loads.

The explicit transmission line model is, of course, less efficient in computer time and storage because of the additional segments required. In cases where the physical line presence does have a significant effect on the results, the effect may be modeled by explicitly modeling a single conductor of the line while using the implicit model to represent the balanced current component.

Figure 22. Current Distribution on a Two-Wire Transmission Line from NEC Compared with the Ideal Transmission Line Solution.

4. LUMPED OR DISTRIBUTED LOADING

Thus far, we have assumed that all structures to be modeled are perfect electric conductors. The EFIE is easily extended to imperfect conductors by modifying the boundary condition from equation (4) to

$$\hat{\mathbf{n}}(\mathbf{r}) \times \begin{bmatrix} \vec{\mathbf{r}} \cdot \mathbf{r} & + \vec{\mathbf{E}}^{\mathbf{I}} \cdot \mathbf{r} \\ \vec{\mathbf{r}} \cdot \mathbf{r} \end{bmatrix} = \mathbf{Z}_{\mathbf{S}}(\mathbf{r}) \begin{bmatrix} \hat{\mathbf{n}}(\mathbf{r}) \times \vec{\mathbf{J}}_{\mathbf{S}} \cdot \mathbf{r} \end{bmatrix},$$

where $Z_s(\vec{r})$ is the surface impedance at \vec{r} on the conducting surface. For a wire, the boundary condition is

$$\hat{s} \cdot \left[\stackrel{\rightarrow}{E}^{s} \stackrel{\rightarrow}{r} \right] + \stackrel{\rightarrow}{E}^{I} \stackrel{\rightarrow}{r} \right] = Z_{w}(s) I(s) ,$$

with \vec{r} and \hat{s} the position vector and tangent vector at s on the wire and $Z_w(s)$ the impedance per-unit-length at s. The matrix equation can then be written,

$$\sum_{j=1}^{N_s} G_{ij} \alpha_j = -E_i + \frac{Z_i}{\Delta_i} I_i \qquad i=1, ..., N_s , \qquad (204)$$

where

 α_{j} = amplitude of basis function j,

 E_{i} = the incident field on segment i,

 I_{i} = current at the center of segment i,

Z, = total impedance of segment i,

 Δ_{i} = length of segment i.

The impedance term can be viewed as a constant field model of a voltage source, as described in section V-1, where the voltage is proportional to current. It is assumed that the current is essentially constant, with value I_i, over the length of the segment, which is a reasonable assumption for the electrically short segments used in the integral equation solution.

The impedance term can be combined with the matrix by expressing I in terms of the $\boldsymbol{\alpha}_i$ as

$$I_{i} = \sum_{j=1}^{N_{s}} \alpha_{j} \left(A_{j}^{i} + C_{j}^{i} \right),$$

where A^i_j and C^i_j are the coefficients of the constant and cosine terms, respectively, in the section of basis function j extending onto segment i. If basis function j does not extend onto segment i, then A^i_j and C^i_j are zero. The matrix equation modified by loading is then

$$\sum_{j=1}^{N_{s}} G'_{ij} \alpha_{j} = -E_{i} \qquad i=1, ..., N_{s} , \qquad (205)$$

where

$$G'_{ij} = G_{ij} - \frac{Z_i}{\Delta_i} \left(A_j^i + C_j^i \right). \tag{206}$$

For a lumped circuit element, Z_i is computed from the circuit equations. For a distributed impedance, Z_i represents the impedance of a length Δ_i of wire, which in the case of a round wire of finite conductivity is given by

$$Z_{i} = \frac{j\Delta_{i}}{a_{i}} \sqrt{\frac{\omega\mu}{2\pi\sigma}} \left[\frac{\text{Ber}(q) + j \text{Bei}(q)}{\text{Ber}'(q) + j \text{Bei}'(q)} \right],$$

where

$$q = (\omega\mu\sigma)^{1/2} a_i$$
,
 $a_i = \text{wire radius}$,
 $\sigma = \text{wire conductivity}$,
Ber, Bei = Kelvin functions.

This expression takes account of the limited penetration of the field into an imperfect conductor.

5. RADIATED FIELD CALCULATION

The radiated field of an antenna or reradiated field of a scatterer can be computed from the induced current by using a simplified form of equation (1) valid far from the current distribution. The far-field approximation, valid when the distance from the current distribution to the observation point is large compared to both the wavelength and the dimensions of the current distribution, treats the distance $|\vec{r} - \vec{r'}|$ as constant within the integral except in the phase term, $\exp(-jk|\vec{r} - \vec{r'}|)$. For a structure consisting of a wire portion with contour L and current distribution $\vec{l}(s)$, and a surface portion S with current $\vec{J}_s(\vec{r})$, the far-zone field is

$$\vec{E}(\vec{r}_{o}) = \frac{jk\eta}{4\pi} \frac{\exp(-jkr_{o})}{r_{o}}$$

$$\times \left\{ \int_{L} \left[\left(\hat{k} \cdot \vec{I}(s) \right) \hat{k} - \vec{I}(s) \right] \exp(j\vec{k} \cdot \vec{r}) ds + \int_{S} \left[\left(\hat{k} \cdot \vec{J}_{s}(\vec{r}) \right) \hat{k} - \vec{J}_{s}(\vec{r}) \right] \exp(j\vec{k} \cdot \vec{r}) dA \right\}, \qquad (207)$$

where \vec{r}_0 is the position of the observation point $\hat{k} = \vec{r}_0/|\vec{r}_0|$, $k = 2\pi/\lambda$, and $\hat{k} = k\hat{k}$. The first integral can be evaluated in closed form over each straight wire segment for the constant, sine, and cosine components of the basis functions, and reduces to a summation over the wire segments. With the surface current on each patch represented by a delta function at the patch center, the second integral becomes a summation over the patches.

The radiation pattern of an antenna can be computed by exciting the antenna with a voltage source and using equation (207) to compute the radiated field for a set of directions in space. Alternatively, since the transmitting and receiving patterns are required by reciprocity to be the same, the pattern can be determined by exciting the antenna with plane-waves incident from the same directions and computing the currents at the source point. The solution procedure in NEC does not guarantee reciprocity, however, since the different expansion and weighting functions may produce asymmetry in the matrix. Large differences between the receiving and transmitting patterns or a significant lack of reciprocity in bistatic scattering are indications of inaccuracy in the solution, possibly from too coarse a segmentation of the wires or surfaces.

The power gain of an antenna in the direction specified by the spherical coordinates (Θ, ϕ) is defined as

$$G_{\mathbf{P}}(\Theta, \phi) = 4\pi \frac{\mathbf{P}(\Theta, \phi)}{\mathbf{P}_{in}}$$
,

where $P(\theta,\phi)$ is the power radiated per unit solid angle in the direction (θ,ϕ) , and P_{in} is the total power accepted by the antenna from the source. P_{in} is computed from the voltage and current at the source as

$$P_{in} = \frac{1}{2} \operatorname{Re}(VI^*) ,$$

and

$$P(\Theta,\phi) = \frac{1}{2} R^2 Re(\vec{E} \times \vec{H}^*) = \frac{R^2}{2\eta} (\vec{E} \cdot \vec{E}^*)$$
.

 \vec{E} is obtained from equation (207) with \vec{r}_0 in the direction (θ,ϕ) , and $\vec{r}_0 = R$. Directive gain is similarly defined as

$$G_{d}(\Theta,\phi) = 4\pi \frac{P(\Theta,\phi)}{P_{rad}}$$
,

where P is the total power radiated by the antenna,

and Ploss is the total ohmic loss in the antenna.

The radiated field of an antenna over ground is modified by the ground interaction, as discussed in section IV. When the range from the antenna to the observer, R, approaches infinity, the Sommerfeld formulation for the field reduces exactly to a direct field determined by equation (207) and a field from the image modified by the Fresnel reflection coefficient. In some cases, however, when the observer is at a finite distance from the antenna, the field components proportional to 1/R2 may be significant. While the 1/R terms are generally much larger than the 1/R2 terms at practical observation distances from an antenna, the 1/R terms vanish at grazing angles over an imperfect ground plane leaving only the 1/R2 terms, dominated by a term known as the ground wave. The ground wave is, of course, included in Sommerfeld's expressions. Norton's asymptotic approximations (ref. 26) are used, however, since they are more easily evaluated and give adequate accuracy. Norton's for ulas, which are in Part II of this manual under subroutine GWAVE, are valid for R greater than a few wavelengths and to second order in k_1^2/k_2^2 . When the ground wave is included, the field has radial as well as transverse components.

6. ANTENNA COUPLING

Coupling between antennas is often a parameter of interest, especially when a receiving system must be protected from a nearby transmitter. Maximum power transfer between antennas occurs when the source impedance and receiver load impedance are conjugate-matched to their antennas. Determination of this condition is complicated by the antenna interaction, however, since the input impedance of one antenna depends on the load connected to the other antenna. NEC-2 includes an algorithm for determining the matched loads and maximum coupling by a method that was added to special versions of the previous codes NEC-1 and AMP (ref. 34).

The coupling problem can be solved in closed form by the Linville method (ref. 35), a technique used in rf amplifier design. The first step is to determine the two-port admittance parameters for the coupled antennas by exciting each antenna with the other short-circuited and computing the self and mutual admittances from the currents computed by NEC. The maximum coupling is then

$$G_{MAX} = \frac{1}{L} \left[1 - (1-L^2)^{1/2} \right],$$

where

$$L = \frac{|Y_{12}Y_{21}|}{2Re(Y_{11}) Re(Y_{22}) - Re(Y_{12}Y_{21})}.$$

The matched load admittance on antenna 2 for maximum coupling is

$$Y_{L} = \left[\frac{1-\rho}{1+\rho} + 1\right] \text{Re}(Y_{22}) - Y_{22}$$
,

where

$$\rho = \frac{G_{\text{MAX}}(Y_{12}Y_{21})^*}{|Y_{12}Y_{21}|},$$

and the corresponding input admittance of antenna 1 is

$$Y_{IN} = Y_{11} - \frac{Y_{21}Y_{12}}{Y_{L} + Y_{22}}$$
.

References

- Miller, E. K. et al., Final Technical Report on the Log-Periodic Scattering Array Program, MBAssociates Report No. MB-R-70/105, Contract No. F04701-68-C-0188, 1970.
- RCS Computer Program BRACT, Log-Periodic Scattering Array Program II,
 MBAssociates Report No. MB-R-69/46, Contract No. F04701-68-C-0188, 1969.
- 3. Antenna Modeling Program Composite User's Manual, MBAssociates Report No. MB-R-74/46, 1974.
- 4. Antenna Modeling Program Engineering Manual, MBAssociates Report No. MB-R-74/62, 1974.
- 5. Antenna Modeling Program Systems Manual, MBAssociates Report No. MB-R-74/62, 1974.
- 6. Antenna Modeling Program Supplementary Computer Program Manual (AMP2), MBAssociates Report No. MB-R-75/4, 1975.
- 7. Numerical Electromagnetic Code (NEC-1) Part III: NEC User's Guide, Lawrence Livermore Laboratory, 1977.
- 8. Numerical Electromagnetic Code (NEC-1) Part II: NEC Program Description Code, Lawrence Livermore Laboratory, 1977.
- Albertsen, N. C., Hansen, J. E., and Jensen, N. E., Computation of Spacecraft Antenna Radiation Patterns, The Technical University of Denmark, Lyngby, Denmark, June 1972.
- 10. Poggio, A. J. and Miller, E. K., "Integral Equation Solutions of Three-Dimensional Scattering Problems," Chapt. IV in Computer Techniques for Electromagnetics, edited by R. Mittra, Pergamon Press, New York, 1973.
- 11. Poggio, A. J. and Adams, R. W., Approximations for Terms Related to the Kernel in Thin-Wire Integral Equations, UCRL-51985, Lawrence Livermore Laboratory, CA, December 19, 1975.
- 12. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, New York, 1964.
- 13. Harrington, R. F., Field Computation by Moment Methods, MacMillan, New York, 1968.
- 14. Yeh, Y. S. and Mei, K. K., "Theory of Conical Equiangular Spiral Antennas,"

 Part I Numerical Techniques, IEEE Trans. Ant. and Prop., AP-15, 1967,
 p. 634.

- 15. Neureuther, A. R. et al., "A Comparison of Numerical Methods for Thin Wire Antennas," Presented at the 1968 Fall URSI Meeting, Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley, 1968.
- 16. Miller, E. K. et al., An Evaluation of Computer Programs Using Integral Equations for the Electromagnetic Analysis of Thin Wire Structures, UCRL-75566, Lawrence Livermore Laboratory, CA, March 1974.
- 17. Wu, T. T. and King, R. W. P., "The Tapered Antenna and Its Application to the Junction Problem for Thin Wires," *IEEE Trans. Ant. and Prop.*, AP-24, No. 1, pp. 42-45, January 1976.
- 18. Poggio, A. J., Integral Representations for Fields Due to Sources on Open Surfaces with Applications to End Caps, UCRL-51723, Lawrence Livermore Laboratory, CA, December 16, 1974.
- 19. Ralston, A., A First Course in Numerical Analysis, McGraw-Hill, New York 1965.
- 20. Sommerfeld, A., Partial Differential Equations in Physics, Academic Press, New York, 1964.
- Burke, G. J., Miller, E. K., and Poggio, A. J., Dielectric Ground Interactions with a Log-Periodic Antenna, Final Report, ECOM-0285-F, U.S. Army Electronics Command, Fort Monmouth, N.J., 1971 (contract DAAB07-70-C-0285).
- 22. Miller, E. K., Poggio, A. J., Burke, G. J., and Selden, E. S., Analysis of Wire Antennas in the Presence of a Conducting Half Space: Part I.

 The Vertical Antenna in Free Space. Part II. The Horizontal Antenna in Free Space, UCRL-73217, Lawrence Livermore Laboratory, CA, 1972.

 (Also in Canadian J. Phys.)
- 23. Lager, D. L. and Lytle, R. J., Fortran Subroutines for the Numerical Evaluation of Sommerfeld Integrals Unter Anderem, UCRL-51821, Lawrence Livermore Laboratory, CA, May 21, 1975.
- 24. Adams, R. W., Poggio, A. J., and Miller, E. K., Study of a New Antenna Source Model, UCRL-51693, Lawrence Livermore Laboratory, CA, October 28, 1974.
- 25. Brittingham, J. N., Miller, E. K., and Okada, J. T., SOMINT: An Improved Model for Studying Conducting Objects Near Lossy Half-Spaces, UCRL-52423, Lawrence Livermore Laboratory, CA, February 24, 1978.

- 26. Norton, K. A., "The Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere," *Proceedings of the Institute of Radio Engineers*, Vol. 26, No. 9, Sept. 1937.
- 27. Lytle, R. J. and Lager, D. L., Numerical Evaluation of Sommerfeld Integrals, UCRL-51688, Lawrence Livermore Laboratory, CA, October 23, 1974.
- 28. Shanks, D., "Non-Linear Transformations of Divergent and Slowly Convergent Sequences," J. Math. Phys., 24, 1 (1955).
- 29. Miller, E. K. and Deadrick, F. J., Computer Evaluation of Loran-C Antennas, UCRL-51464, Lawrence Livermore Laboratory, CA, Oct. 17, 1973.
- 30. Wait, J. R., "Characteristics of Antennas Over Lossy Earth," Antenna Theory, Part II, R. E. Collin and F. J. Zucker, Eds., McGraw-Hill, New York, pp. 386-437, 1969.
- 31. King, R. W., The Theory of Linear Antennas, Harvard Univ. Press, Cambridge, Massachusetts, 1956.
- 32. Otto, D. V., "The Admittance of Cylindrical Antennas Driven from a Coaxial Line," Radio Sci., Vol. 2, No. 9, pp. 1031-1042, 1967.
- 33. Andreasen, M. G. and Harris, F. G., Analyses of Wire Antennas of Arbitrary Configuration by Precise Theoretical Numerical Techniques, Tech. Rept. ECOM 0631-F, Granger Associates, Palo Alto, California, Contract DAAB07-67-C-0631, 1968.
- 34. Logan, J. C. and Rockway, J. W., Computer Techniques for Shipboard Topside Antenna Modeling Below UHF, TN-3284, Naval Electronics Laboratory Center, November 17, 1976.
- 35. Rubin, D., The Linville Method of High Frequency Transistor Amplifier Design, Naval Weapons Center, Research Department, NWCCL TP 845, Corona Laboratories, Corona, California, March 1969.

Part II: Program Description - Code

Preface

The Numerical Electromagnetics Code (NEC) has been developed at the Lawrence Livermore Laboratory, Livermore, California, under the sponsorship of the Naval Ocean Systems Center and the Air Force Weapons Laboratory. It is an advanced version of the Antenna Modeling Program (AMP) developed in the early 1970's by MBAssociates for the Naval Research Laboratory, Naval Ship Engineering Center, U.S. Army ECOM/Communications Systems, U.S. Army Strategic Communications Command, and Rome Air Development Center under Office of Naval Research Contract N00014-71-C-0187. The present version of NEC is the result of efforts by G. J. Burke and A. J. Poggio of Lawrence Livermore Laboratory.

The documentaton for NEC consists of three parts:

Part I: NEC Program Description - Theory

Part II: NEC Program Description - Code

Part III: NEC User's Guide

The documentation has been prepared by using the AMP documents as foundations and by modifying those as needed. In some cases this led to minor changes in the original documents while in many cases major modifications were required.

Over the years many individuals have been contributors to AMP and NEC and are acknowledged here as follows:

R. W. Adams
R. J. Lytle
J. N. Brittingham
E. K. Miller
G. J. Burke
J. B. Morton
F. J. Deadrick
G. M. Pjerrou
K. K. Hazard
A. J. Poggio
D. L. Knepp
E. S. Selden

D. L. Lager

The support for the development of NEC-2 at the Lawrence Livermore Laboratory has been provided by the Naval Ocean Systems Center under MIPR-N0095376MP. Cognizant individuals under whom this project was carried out include: J. Rockway and J. Logan. Previous development of NEC also included the support of the Air Force Weapons Laboratory (Project Order 76-090) and was monitored by J. Castillo and TSgt. H. Goodwin.

Work was performed under the auspices of the U.S. Department of Energy under contract No. W-7405-Eng-48. Reference to a company or product name

does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

Contents

Section	<u>n</u>																			Page
	List of		11	lu	st	ra	ti	on	8											vii
	Abstrac	t																		viii
I.	INTRODU	CI	CIC	NC																1
II.	CODE DE	SC	CR	I P	TI	ON														2
	MAIN .																			3
	ARC .																			29
	ATGN2																			31
	BLCKOT																			32
	CABC .																			34
	CANG .																			38
	CMNGF																			39
	CMSET																			47
	CMSS .																			53
	CMSW .													:						57
	CMWS .																			63
	CMWW .																			67
	CONECT																			71
	COUPLE																			80
	DATAGN																			83
	DB10 .																			90
	EFLD .																			91
	EKSC .																			100
	EKSCX																			102
	ENF .																			105
	ETMNS																			106
	FACGF																			116
	FACIO																			120
	FACTR																			123
	FACTRS																			128
	FBAR .																			132
	FBLOCK																			135

		á	-	
4	a	e.	м	×
- 63	×	Λ	я	'n
- 12	٧.	W.	u	۸
-1.6	и.	ж	м	ĸ.

Section	<u>a</u>																		Page
	FBNGF					•		٠	٠	•			•						139
	FFLD .								•										142
	FFLDS																		151
	GF										•								153
	GFIL .																		155
	GFLD .																		159
	GFOUT																		169
	GH																		172
	GWAVE																		174
	GX																		183
	GXX .																		184
	HFK .																		186
	HINTG																		189
	HSFLD													•					194
	HSFLX																		198
	INTRP																		202
	INTX .																		209
	ISEGNO																		216
	LFACTR																· New		217
	LOAD .																		222
	LTSOLV																		227
	LUNSCR																		231
	MOVE .																		234
	NEFLD																		239
	NETWK																		244
	NFPAT																		258
	NHFLD																		261
	PATCH																		265
	PCINT																		271
	PRNT .											0.							278
	ODSRC				No														282

Section	<u>Pag</u>	<u>e</u>
	RDPAT	286
	REBLK	297
	REFLC	299
	ROM2	306
	SBF	310
	SECOND	314
	SFLDS	315
	SOLGF	321
	SOLVE	326
	SOLVES	329
	TBF	333
	TEST	339
	TRIO	341
	UNERE	343
	WIRE	348
	ZINT	351
III.	COMMON BLOCKS	355
IV.	SYSTEM LIBRARY FUNCTIONS USED BY NEC	370
v.	ARRAY DIMENSION LIMITATIONS	371
VI.	OVERVIEW OF NUMERICAL GREEN'S FUNCTION OPERATION	377
VII.	OVERVIEW OF MATRIX OPERATIONS USING FILE STORAGE	81
VIII.	NEC SUBROUTINE LINKAGE	85
IX.	SOMNEC	390
	1. SOMNEC Code Description	90
	SOMNEC	391
	BESSEL	397
	EVLUA	02
	GSHANK	+07
	HANKEL	13
	T.AMBDA	118

Section	Page
	ROM1
	SAOA
	SECOND
	TEST
2.	Common Blocks in SOMNEC
3.	Array Dimension Limitations
4.	SOMNEC Subroutine Linkage
Re	ferences

List of Illustrations

Figu		Page
1	Flow Diagram of Main Program Input Section	4
2	Flow Diagram of Main Program Computation Section	5
3	Structure for Illustrating Segment Connection Data	72
4	Coordinate Parameters for the Incident Plane Wave	108
5	Coordinate Parameters for Current Element	110
6	Coordinate Systems Used to Evaluate Norton's Expressions	
	for the Ground Wave Fields in the NEC Program	160
7	Coordinates for Evaluating H Field of a Segment	199
8	Options for Transmission Line Connection	247
9	Sorting Procedure for Segments Having Network Connection	248
10	Patches at a Wire Connection Point	272
11	Coordinates of Segment i	356
12	Matrix Structure for the NGF Solution	379
13	NGF File Usage for ICASX = 2	383
14	NGF File Usage for ICASX = 3 or 4	384
15	NEC Subroutine Linkage Chart	386
16	Block Definitions for NEC Subroutine Linkage Chart	388
17	SOMNEC Subroutine Linkage Chart	432

Abstract

The Numerical Electromagnetics Code (NEC-2) is a computer code for analyzing the electromagnetic response of an arbitrary structure consisting of wires and surfaces in free space or over a ground plane. The analysis is accomplished by the numerical solution of integral equations for induced currents. The excitation may be an incident plane wave or a voltage source on a wire, while the output may include current and charge density, electric or magnetic field in the vicinity of the structure, and radiated fields. Hence, the code may be used for antenna analysis or scattering and EMP studies.

This document is Part II of a three-part report. It contains a detailed description of the Fortran coding, including the definitions of variables and constants, and a listing of the code. The other two documents cover the equations and numerical methods (Part I) and instructions for use of the code (Part III).

KEY WORDS FOR DD FORM 1473: EM scattering

EMP

Wire Model
Method of moments

Section I Introduction

The Numerical Electromagnetics Code (NEC-2)* is a user-oriented computer code for the analysis of the electromagnetic response of antennas and other metal structures. It is built around the numerical solution of integral equations for the currents induced on the structure by sources or incident fields. This approach avoids many of the simplifying assumptions required by other solution methods and provides a highly accurate and versatile tool for electromagnetic analysis.

The code combines an integral equation for smooth surfaces with one specialized to wires to provide for convenient and accurate modeling of a wide range of structures. A model may include nonradiating networks and transmission lines connecting parts of the structure, perfect or imperfect conductors, and lumped-element loading. A structure may also be modeled over a ground plane that may be either a perfect or imperfect conductor.

The excitation may be either voltage sources on the structure or an incident plane wave of linear or elliptic polarization. The output may include induced currents and charges, near electric or magnetic fields, and radiated fields. Hence, the program is suited to either antenna analysis or scattering, and EMP studies.

This document is Vol. II of a three-part report on NEC. It contains a detailed description of the Fortran coding. Section II contains for each routine: (1) a statement of purpose, (2) a narrative description of the methodology, (3) definitions of variables and constants, and (4) a listing of the code. The remaining sections cover the common blocks, system library functions, array dimension limitations, and subroutine linkage.

The information in Vol. II will be of use mainly to persons attempting to modify the code or to use it on a computer system with which the delivered deck is not compatible.

Vol. I describes the equations and numerical methods used in NEC and Vol. III contains instructions for using the code, including preparation of input data and interpretation of output. Persons attempting to use NEC for the first time should start by reading Vol. III. Vol. I will help the new user to understand the capabilities and limitations of NEC.

*NEC-2 will be abbreviated to NEC elsewhere in this volume.

Section II Code Description

In this section, each routine in NEC is described in detail. The main program is described first and is followed by the subroutines in alphabetical order. For each routine, there is a brief statement of its purpose, a description of the code, an alphabetized listing and definition of important variables and constants, and a listing of the code. Variables that are in common blocks, and hence occur in several routines, are usually omitted from the lists for individual routines. They are defined in Section III under their common block labels.

Following line MA 495 in the main program, all quantities of length have been normalized to wavelength. Current is normalized to wavelength throughout the solution. This changes the appearance of many of the equations. In particular the wave number, $k = 2\pi/\lambda$, usually appears as 2π .

PURPOSE

To handle input and output and to call the appropriate subroutines.

METHOD

The structure of MAIN is shown in the flow charts of Figures 1 and 2 where Figure 1 represents the first half of the code to about line MA 459. Comment cards are read and printed after line MA 72 and subroutine DATAGN is called at MA 90 to read and process structure data. If a Numerical Green's Function (NGF) file was read in DATAGN then subroutine FBNFG is called to determine whether file storage is needed for the matrix and to allocate core storage. When a NGF has not been read the mode of matrix storage cannot be determined until line MA 464 since it depends on whether a NFG file is to be written.

The box labeled "Read data card" in Figure 1 refers to the READ statement at MA 139. Any of the types of data cards in Table 1 may be read at this point to set parameters or to request execution of the solution part of the code.

The integer variables IGØ and IFLOW are keys to the operation of the code. IGØ indicates the stage of completion of the solution as listed in Table 2. When a card requesting execution is read (NE, NH, RP, WG, or XQ) the solution part of the code (Figure 2) is entered at the point determined by IGØ (see MA 385, MA 420, MA 429, and MA 457). After the current has been computed IGØ is given the value five. If subsequent data cards change parameters, the value of IGØ is reduced to the value in Table 1 to indicate the point beyond which the solution must be repeated. For example, when an EX card is read IGØ is set equal to three if it was greater than three but is not changed if it was less than three. For cards that request execution "ex." is shown in Table 1.

IFLOW is used to indicate the type of the previous data card. When several cards of the same type can be used together (CP, LD, NT, TL, and EX for voltage sources) a counter is incremented and data is added to arrays if the card is the same as the previous card as indicated by IFLOW. If the previous card was different the counter is initialized and previous data in the arrays is destroyed. IFLOW is also used to indicate what type of card

Figure 1. Flow Diagram of Main Program Input Section

Figure 2. Flow Diagram of Main Program Computation Section

TABLE 1

), .	ī	AIN(I)	GO TO	Line	IGØ	IFLOW
1	21	CP	304	202	250	2
2	19	EK	320	194	2	1
3	13	EN	STØP	166	-	-
4	5	EX	24	275	3	5
5	2	FR	16	172	1	1
6	9	GD	34	389	-	9
7	4	GN	21	245	2	4
8	16	кн	305	187	2	1
9	3	LD	17	221	2	3
10	8	NE	32	370	ex.*	8
11	17	NH	208	368	ex.*	8
12	6	NT	28	321	3	6
13	12	NX	. 1	69	1	1
14	18	PQ	319	358		-
15	15	PT	31	348	-	-
16	· 10	RP	36	398	ex.	10
17	14	TL	28	321	3	6
18	20	WG	322	424	ex.	12
19	7	XQ	37	433	ex.	7 or 11

^{*} NE and NH do not cause execution when multiple frequencies have been requested on the FR card. This allows computation of both near fields and radiated fields in a frequency loop.

IGO	Completion Point
1	Start
2	Frequency has been set and geometry scaled to wavelength
3	Interaction matrix filled and factored
4,5	Current computed and printed

requested the solution (NE, RP, etc.). Cards such as RP may be stacked together but are not stored since they are acted upon as they are encountered.

The solution part of the code contains a loop over frequency starting at MA 463 and a loop over incident field direction starting at MA 562. FBLOCK is called at MA 465 to determine whether file storage is required for the matrix. From MA 466 to MA 493 the structure data are scaled from units of meters to wavelength or from one wavelength to the next when frequency is changed. Subroutine LOAD is called at MA 497 to fill array ZARRAY for the given frequency. At MA 520 the Sommerfeld interpolation tables are read from file TAPE21 if this option is used. NXA(1) is set to zero at MA 67 so the test ensures that the tape is read only once.

When the NGF option is not in use the matrix is filled by subroutine CMSET at MA 537 and factored by subroutine FACTRS at MA 540. When the NGF is used the equivalent steps are performed by CMNGF and FACGF. If a NGF file is to be written, subroutine GFOUT is called at MA 557 to write TAPE20.

Subroutine ETMNS, called at MA 582, fills the excitation array and the current is computed in subroutine NETWK called at MA 611. If transmission lines or two port networks are used NETWK combines the network equations with driving-point interaction equations derived from the primary interaction matrix. Otherwise the current is computed directly from the primary matrix.

The remainder of MAIN prints the currents and calls subroutines for near fields, radiated fields or coupling.

SYMBOL DICTIONARY:

AIN	= mnemonic from data card
ATST	= array of possible data card mnemonics
CMAG	= magnitude of the current in amperes
СОМ	= array to store text from comment cards
CURI	= current on segment I in amperes
CVEL	= (velocity of light) (10^{-6}) in meters/second
DELFRQ	= frequency increment (additive or multiplicative)
DPH	= far-field φ angle increment in degrees (input
	quantity)
DTH	= far-field θ angle increment in degrees (input

quantity)

= near-field observation point increments (input DXNR) quantities with multiple meanings -- see NE card) DYNR DZNR = current component in direction to on patch EPH = phase angle of EPH EPHA = magnitude of EPH EPHM = complex dielectric constant of ground $\varepsilon_c = \varepsilon_r$ -EPSC $j\sigma/\omega\varepsilon_{0}$.) = & read from file TAPE21 EPSCF EPSR = Er for outer ground region EPSR2 = current component in direction t1 on patch ETH = phase angle of ETH ETHA = magnitude of ETH ETHM = x component of current on a patch EX = time at start of run (seconds) EXTIM = ŷ component of current on a patch EY = 2 component of current on a patch EZ = \fi FJ = frequency in MHz FMHZ **FMHZS** = frequency in MHz = multiply used array; stores impedances for printing of FNORM the normalized impedance or stores currents in the receiving pattern case for printing normalized receiving pattern = (next frequency)/(present frequency) FR = (FR)(FR)FR2 GNOR = if non-zero, equals gain normalization factor (dB) from RP card = array containing polarization types (Hollerith) HPOL IAVP = input integer flag used in average gain logic (RP card) = input integer flag specifying gain type (RP card) IAX = location in array CM for start of storage of submatrix **IB11** B when NGF is used = location in array CM for start of storage of submatrix IC11 C when NGF is used

ID11	-	location in CM for submatrix D
IEXK	•	flag to select the extended thin-wire kernel
IFAR	-	input integer flag specifying type of field
		calculation and type of ground system in far field
		(RP card)
IFLOW	•	integer flag used to distinguish various input
		sections
IFRQ	•	input integer flag specifying type of frequency
		stepping (FR card)
IGO	-	integer to indicate stage of completion of the
		solution
INC	•	incident field loop index
INOR	•	input integer flag used for normalized gain request
		(RP card)
IPD	-	input integer flag selects gain type for
		normalization (RP card)
I PED	•	input integer flag used for impedance normalization
		request (EX card)
I PTAG	•	input integer for print control equal to segment tag
		number (PT card)
I PTAGF	-	input integer for print control specifying segment
		placement in a set of equal tags (PT card)
I PTAGT	-	same function as IPTAGF (input, PT card)
IPTFLG	-	input integer flag specifying type of print control
		(PT card)
IPTAQ)		
I PTAQF	•	same as above four variables but for PQ card
IPTAQT		
IPTFLQ		
IRESRV	-	length of array CM in complex numbers
IRNGF	-	storage in array CM that is reserved for later use
		when a NGF file is written
ISANT	•	array of segment numbers for voltage sources
ISAVE	-	segment number for normalized receiving pattern
		calculation

ISEG1 (I)		segment numbers of end 1 and end 2 of the ith
ISEG2 (I)		network connection
ITMPl to ITMP		temporary storage
IX		array for matrix pivot element information
IXII	or or	location in CM of the start of an array in the NGF
1411		solution
IXTYP		excitation type from EX card
KCOM	•	number of comment cards read
LDTAG		tag number of loaded segment
LDTAGF		number of first loaded segment in set of segments
		having given tag
LDTAGT	•	last loaded segment
LDTYP	*	loading type
LOADMX		maximum number of loading cards
MASYM	•	flag to request matrix asymmetry calculation
MHZ	•	frequency loop index
MPCNT	E propos	counter for data cards
NCOUP		number of excitation points for coupling calculation
ncseg)		excitation segment for coupling calculation
NCTAG		
NEAR	-	increment option for near field points
NEQ	-	order of the primary interaction matrix
NEQ2	•	number of new unknowns in NGF mode
NETMX		maximum number of network data cards
NFEH		O for near E field, 1 for near H
NFRQ		number of frequency steps
NONET	-	number of network data cards
NORMF		dimension of FNORM
NPHI		number of phi steps in incident field
NPHIC		loop index for phi in incident field
NPRINT	-	print control flag for subroutine NETWK
NRX)		
NRY		number of steps in near field evaluation loops
NRZ		
NSANT	-	number of voltage sources
NSMAX		maximum number of voltage sources

MAIN

NTHI number of theta steps in incident field loop index for theta in incident field NTHIC PH phase angle of current or charge (degrees) PHISS initial of value for incident field Pin = total power supplied to a structure by all PIN voltage sources (Σ Re(VI*)/2). For a Hertzian dipole source $P_{in} = \eta(\pi/3) I l l / \lambda l^2$. power lost in distributed and point structure loads PLOSS in watts PNET array contains Hollerith transmission line type RFLD if non-zero, equal to input far-field observation distance in meters RKH minimum separation for use of approximate interaction equations SCRWLT input length of radials in radial wire screen (GN card) in meters SCRWRT radius of wires in radial wire ground screen in meters SIG conductivity of ground (o in mhos/meter on GN card) SIG2 conductivity of second medium in mhos/meter (GN and GD card) $\pi/180$ TA THETIS initial θ for incident field initial 0 for radiated field THETS TIM matrix computation time (seconds) temporary input variables TMP1 to TMP6 XPR1 to XPR6 input quantities for incident field or Hertzian dipole illumination ZLC) ZLI input quantities for loading ZLR Z PNORM impedance normalization quantity

CONSTANTS

1.E-20 = used as small value test

1.745329252	7.	π/180
2367.067	•	2πη
59.96	-	1/(2πεε ₀)
299.8	-	c/10 ⁶
		A ANTONOMIC OR DOWN STREET OF STREET

natur eros, inclingente, ett it no un start i nort et en e

CONTRACTOR OF THE PROPERTY OF

```
PROGRAM NEC(INPUT, TAPES=INPUT, OUTPUT, TAPE11, TAPE12, TAPE13, TAPE14,
2
        1TAPE15, TAPE16, TAPE20, TAPE21)
                                                                                    MA
                                                                                         2
3 C
                                                                                    MA
                                                                                         3
 4 C
         NUMERICAL ELECTROMAGNETICS CODE (NEC2) DEVELOPED AT LAWRENCE
                                                                                    MA
5 C
         LIVERMORE LAB., LIVERMORE, CA. (CONTACT G. BURKE, 415-422-8414)
                                                                                    MA
                                                                                         5
  C
         FILE CREATED 4/11/80.
                                                                                    MA
                                                                                         6
7
  C
                                                                                    MA
                      **********NOTICE*******
 8
  C
                                                                                    MA
                                                                                         8
9
  C
         THIS COMPUTER CODE MATERIAL WAS PREPARED AS AN ACCOUNT OF WORK
                                                                                    MA
                                                                                         9
10
         SPONSORED BY THE UNITED STATES GOVERNMENT. NEITHER THE UNITED
                                                                                    MA
                                                                                        10
         STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF
11 C
                                                                                    MA
                                                                                        11
         THEIR EMPLOYEES, NOR ANY OF THEIR CONTRACTORS, SUBCONTRACTORS, OR
12 C
                                                                                    MA
                                                                                        12
         THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
13 C
                                                                                    MA
                                                                                        13
14 C
          ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY.
                                                                                    MA
                                                                                        14
15 C
         COMPLETENESS OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT
                                                                                        15
                                                                                    MA
16 C
         OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT
                                                                                    MA
                                                                                        16
17 C
          INFRINGE PRIVATELY-OWNED RIGHTS.
                                                                                    MA
                                                                                        17
18 C
                                                                                    MA
                                                                                        18
         INTEGER AIN, ATST, PNET, HPOL
19
                                                                                    MA
                                                                                        19
20
         COMPLEX CM, FJ, VSANT, ETH, EPH, ZRATI, CUR, CURI, ZARRAY, ZRATI2
                                                                                    MA
                                                                                        20
          COMPLEX EX, EY, EZ, ZPED, VQD, VQDS, T1, Y11A, Y12A, EPSC, U, U2, XX1, XX2
21
                                                                                    MA
                                                                                        21
22
          COMPLEX AR1, AR2, AR3, EPSCF, FRATI
                                                                                    MA
                                                                                        22
23
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),
                                                                                    MA
                                                                                        23
24
         1SI(300), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300),
                                                                                    MA
                                                                                        24
         2ITAG(300), ICONX(300), WLAM, IPSYM
25
                                                                                    MA
                                                                                        25
         COMMON /CMB/CM(4000)
26
                                                                                    MA
                                                                                        26
         COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT,
27
                                                                                    MA
                                                                                        27
28
         1 ICASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL
                                                                                    MA
                                                                                        28
29
          COMMON/SAVE/IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ
                                                                                    MA
                                                                                        29
         COMMON /CRNT/ AIR(300), AII(300), BIR(300), BII(300), CIR(300),
30
                                                                                    MA
                                                                                        30
31
         1 CII(300), CUR(900)
                                                                                        31
                                                                                    MA
32
          COMMON /GND/ZRATI.ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR,
                                                                                    MA
                                                                                        32
33
         1IPERF, T1, T2
                                                                                    MA
                                                                                        33
34
         COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF
                                                                                    MA
                                                                                        34
35
          COMMON/YPARM/NCOUP, ICOUP, NCTAG(5), NCSEG(5), Y11A(5), Y12A(20)
                                                                                    MA
                                                                                        35
          COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON,
36
                                                                                    MA
                                                                                        36
37
         1 IPCON(10), NPCON
                                                                                    MA
                                                                                        37
38
          COMMON/VSORC/VQD(30), VSANT(30), VQDS(30), IVQD(30), ISANT(30),
                                                                                        38
                                                                                    MA
39
         1 IQDS (30), NVQD, NSANT, NQDS
                                                                                    MA
                                                                                        39
40
          COMMON/NETCX/ZPED, PIN, PNLS, NEQ, NPEQ, NEQ2, NONET, NTSOL, NPRINT,
                                                                                    MA
                                                                                        40
41
         1MASYM, ISEG1(30), ISEG2(30), X11R(30), X11I(30), X12R(30), X12I(30),
                                                                                    MA
                                                                                        41
42
         1X22R(30), X22I(30), NTYP(30)
                                                                                    MA
                                                                                        42
43
          COMMON/FPAT/NTH, NPH, IPD, IAVP, INOR, IAX, THETS, PHIS, DTH, DPH,
                                                                                    MA
                                                                                        43
44
         1RFLD, GNOR, CLT, CHT, EPSR2, SIG2, IXTYP, XPR6, PINR, PNLR, PLOSS,
                                                                                    MA
                                                                                        44
45
         INEAR, NFEH, NRX, NRY, NRZ, XNR, YNR, ZNR, DXNR, DYNR, DZNR
                                                                                    MA
                                                                                        45
46
          COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),
                                                                                    MA
                                                                                        46
47
         1DYA(3), XSA(3), YSA(3), NXA(3), NYA(3)
                                                                                    MA
                                                                                        47
48
          COMMON/GWAV/U, U2, XX1, XX2, R1, R2, ZMH, ZPH
                                                                                        48
                                                                                    MA
          DIMENSION CAB(1), SAB(1), X2(1), Y2(1), Z2(1)
49
                                                                                    MA
                                                                                        49
50
          DIMENSION LDTYP(30), LDTAG(30), LDTAGF(30), LDTAGT(30), ZLR(30),
                                                                                    MA
                                                                                        50
51
         1ZLI(30),ZLC(30)
                                                                                    MA
                                                                                        51
52
          DIMENSION ATST(21), PNET(6), HPOL(3), IX(600)
                                                                                    MA
                                                                                        52
53
          DIMENSION FNORM(200)
                                                                                    AM
                                                                                        53
54
          DIMENSION T1X(1),T1Y(1),T1Z(1),T2X(1),T2Y(1),T2Z(1)
                                                                                    MA
                                                                                        54
55
          EQUIVALENCE (CAB, ALP), (SAB, BET), (X2,SI), (Y2,ALP), (Z2,BET)
                                                                                        55
                                                                                    MA
56
          EQUIVALENCE (TIX.SI), (TIY, ALP), (TIZ, BET), (T2X, ICON1), (T2Y, ICON2),
                                                                                    MA
                                                                                        56
57
         1 (TZZ, ITAG)
                                                                                        57
                                                                                    MA
58
          DATA ATST/2HCE, 2HFR, 2HLD, 2HGN, 2HEX, 2HNT, 2HXQ, 2HNE, 2HGD, 2HRP, 2HCM,
                                                                                    MA
                                                                                        58
59
         1 2HNX, 2HEN, 2HTL, 2HPT, 2HKH, 2HNH, 2HPQ, 2HEK, 2HWG, 2HCP/
                                                                                    MA
                                                                                        59
60
          DATA HPOL/6HLINEAR, 5HRIGHT, 4HLEFT/
                                                                                    MA
                                                                                        60
61
          DATA PNET/6H
                              ,2H ,6HSTRAIG,2HHT,6HCROSSE,1HD/
                                                                                    MA
                                                                                        61
          DATA TA/1.745329252E-02/, CVEL/299.8/
62
                                                                                    MA
                                                                                        62
63
          DATA LOADMX, NSMAX, NETMX/30,30,30/, NORMF/200/
                                                                                    MA
                                                                                        63
```



```
CALL SECOND(EXTIM)
                                                                                   MA
                                                                                       64
          FJ=(0.,1.)
65
                                                                                   MA
                                                                                       65
          LD=300
66
                                                                                   MA
                                                                                       66
          NXA(1)=0
67
                                                                                       67
                                                                                   MA
68
          IRESRY=4000
                                                                                   MA
                                                                                      68
69 1
          KCOM=0
                                                                                      69
          KCOM=KCOM+1
70 2
                                                                                   MA
                                                                                       70
71
          IF (KCOM.GT.5) KCOM=5
                                                                                   MA
                                                                                      71
          READ(5,125)AIN, (COM(I, KCOM), I=1,13)
72
                                                                                   MA
                                                                                       72
73
          IF(KCOM.GT.1)GO TO 3
                                                                                   MA
                                                                                       73
74
          PRINT 126
                                                                                   MA 74
75
          PRINT 127
                                                                                   MA
                                                                                       75
76
          PRINT 128
                                                                                   MA
                                                                                      76
77 3
          PRINT 129, (COM(I, KCOM), I=1,13)
                                                                                   MA
                                                                                       77
          IF (AIN.EQ.ATST(11)) GO TO 2
IF (AIN.EQ.ATST(1)) GO TO 4
78
                                                                                   MA
                                                                                       78
79
                                                                                   MA
          PRINT 130
80
                                                                                   MA
                                                                                       80
81
          STOP
                                                                                   MA
                                                                                      81
82 4
          CONTINUE
                                                                                   MA 82
          DO 5 I=1,LD
83
                                                                                      83
84 5
          ZARRAY(I)=(0.,0.)
                                                                                   MA
                                                                                      84
          MPCNT=0
85
                                                                                   MA
                                                                                      85
86
          IMAT=0
                                                                                   MA
                                                                                       86
87 C
                                                                                   MA
                                                                                       87
88 C
          SET UP GEOMETRY DATA IN SUBROUTINE DATAGN
                                                                                   MA
                                                                                      88
89 C
                                                                                   MA 89
90
          CALL DATAGN
                                                                                   MA
          IFLOW=1
91
                                                                                   MA
                                                                                      91
                                                                                   MA
92
          IF(IMAT.EQ.0)GO TO 326
                                                                                      92
93 C
                                                                                   MA
                                                                                      93
          CORE ALLOCATION FOR ARRAYS B, C, AND D FOR N.G.F. SOLUTION
94 C
                                                                                   MA
                                                                                       94
95 C
                                                                                   MA 95
                                                                                   MA 96
96
          NEQ=N1+2*M1
97
          NEQ2=N-N1+2*(M-M1)+NSCON+2*NPCON
                                                                                   MA 97
98
          CALL FBNGF(NEQ, NEQ2, IRESRY, IB11, IC11, ID11, IX11)
                                                                                   MA 98
99
          GO TO 6
                                                                                   MA 99
100 326
          NEQ=N+2°M
                                                                                   MA 100
          NEQ2=0
101
                                                                                   MA 101
102
          IB11=1
                                                                                   MA 102
103
          IC11=1
                                                                                   MA 103
104
          ID11=1
                                                                                   MA 104
105
          IX11=1
                                                                                   MA 105
106
          ICASX=0
                                                                                   MA 106
107 6
          NPEQ=NP+2 MP
                                                                                   MA 107
108
          PRINT 135
                                                                                   MA 108
109 C
                                                                                   MA 109
110 C
          DEFAULT VALUES FOR INPUT PARAMETERS AND FLAGS
                                                                                   MA 110
111 C
                                                                                   MA 111
          IG0=1
112
                                                                                   MA 112
          FMHZS=CVEL
113
                                                                                   MA 113
          NFRQ=1
114
                                                                                   MA 114
115
          RKH=1.
                                                                                   MA 115
          IEXK=0
116
                                                                                   MA 116
117
          IXTYP=0
                                                                                   MA 117
118
          NLOAD=0
                                                                                   MA 118
          NONET=0
119
                                                                                   MA 119
          NEAR=-1
120
                                                                                   MA 120
          IPTFLG=-2
121
                                                                                   MA 121
122
          IPTFLQ=-1
                                                                                   MA 122
123
           IFAR=-1
                                                                                   MA 123
          ZRATI=(1.,0.)
                                                                                   MA 124
124
125
          IPED=0
                                                                                   MA 125
          IRNGF=0
126
                                                                                   MA 126
          NCOUP=0
127
                                                                                   MA 127
```

MAIN

128	ICOUP=0		128
129	IF(ICASX.GT.0)GO TO 14	MA	129
130	FMHZ=CVEL	MA	130
131	NLODF=0	MA	131
132	KSYMP=1	MA	132
133	NRADL=0	MA	133
134	IPERF=0	MA	134
135 C		MA	135
136 C	MAIN INPUT SECTION - STANDARD READ STATEMENT - JUMPS TO APPRO-	MA	136
137 C	PRIATE SECTION FOR SPECIFIC PARAMETER SET UP	MA	137
138 C			138
139 14	READ(5,136)AIN, ITMP1, ITMP2, ITMP3, ITMP4, TMP1, TMP2, TMP3, TMP4, TMP5.		139
140	1TMP6	BOSE 157	140
141	MPCNT=MPCNT+1		141
142	PRINT 137, MPCNT, AIN, ITMP1, ITMP2, ITMP3, ITMP4, TMP1, TMP2, TMP3, TMP4,		142
143	1TMP5, TMP6		143
144	IF (AIN.EQ.ATST(2)) GO TO 16		144
145	IF (AIN.EQ.ATST(3)) GO TO 17		
146	IF (AIN.EQ.ATST(4)) GO TO 21		145
147			146
	IF (AIN.EQ.ATST(5)) GO TO 24		147
148	IF (AIN.EQ.ATST(6)) GO TO 28		148
149	IF (AIN.EQ.ATST(14)) GO TO 28		149
150	IF (AIN.EQ.ATST(15)) GO TO 31	2025	150
151	IF (AIN.EQ.ATST(18)) GO TO 319		151
152	IF (AIN.EQ.ATST(7)) GO TO 37		152
153	IF (AIN.EQ.ATST(8)) GO TO 32	MA	153
154	IF (AIN.EQ.ATST(17)) GO TO 208	MA	154
155	IF (AIN.EQ.ATST(9)) GO TO 34	MA	155
156	IF (AIN.EQ.ATST(10)) GO TO 36	MA	156
157	IF (AIN.EQ.ATST(16)) GO TO 305	MA	157
158	IF (AIN.EQ.ATST(19)) GO TO 320	MA	158
159	IF (AIN.EQ.ATST(12)) GO TO 1	MA	159
160	IF (AIN.EQ.ATST(20)) GO TO 322	MA	160
161	' IF (AIN.EQ.ATST(21)) GO TO 304	MA	161
162	IF (AIN.NE.ATST(13)) GO TO 15		162
163	CALL SECOND(TMP1)		163
164	TMP1=TMP1-EXTIM		164
165	PRINT 201, TMP1		165
166	STOP		166
167 15	PRINT 138		167
168	STOP		168
169 C			169
170 C	FREQUENCY PARAMETERS	1,10000	170
171 C	TREADEROT FARAMETERS	Section 1	171
172 16	IFRQ=ITMP1		
173	IF(ICASX.EQ.0)GO TO 8		172
174	PRINT 303,AIN		173
175	STOP		174
176 8	NFRQ=ITMP2		175
			176
177 178	IF (NFRQ.EQ.O) NFRQ=1		177
1 1	FMHZ=TMP1		178
179	DELFRQ=TMP2		179
180	IF(IPED.EQ.1)ZPNORM=0.		180
181	IGO=1		181
182	IFLOW=1		182
183	GO TO 14		183
184 C			184
185 C	MATRIX INTEGRATION LIMIT	MA	185
186 C		MA	186
187 305			187
188	IF(IGO.GT.2)IGO=2	MA	188
189	IFLOW=1	MA	189
190	GO TO 14	MA	190
191 C		MA	191

192		EXTENDED THIN WIRE KERNEL OPTION		192
193	San San			193
194	320	IEXK=1		194
195		IF(ITMP1.EQ1)IEXK=0		195
196		IF(IGO.GT.2)IGO=2		196
197		IFLOW=1		197
198		GO TO 14		198
199		MANTHUM COURT THE RETURNS ANTENNAS		199
200	Jan 19.	MAXIMUM COUPLING BETWEEN ANTENNAS		200
201	The same of the	75/751 MW NE 0/NONID-0	10000	201
	304	IF(IFLOW.NE.2)NCOUP=0		202
203		ICOUP=0 IFLOW=2		203
205		IF(ITMP2.EQ.0)GO TO 14		204
206		NCOUP=NCOUP+1		205
207		IF(NCOUP.GT.5)GO TO 312		206
208		NCTAG(NCOUP)=ITMP1		207
209		NCSEG(NCOUP)=ITMP2		209
210		IF(ITMP4.EQ.0)GO TO 14		210
211		NCOUP=NCOUP+1		211
212		IF(NCOUP.GT.5)GO TO 312	1000	212
213		NCTAG(NCOUP)=ITMP3	10.010.0	213
214		NCSEG(NCOUP)=ITMP4		214
215		GO TO 14		215
216	312	PRINT 313		216
217		STOP		217
218	C			218
219		LOADING PARAMETERS		219
220	C			220
221	17	IF (IFLOW.EQ.3) GO TO 18	MA	221
222		NLOAD=0	MA	222
223		IFLOW=3	MA	223
224		IF (IGO.GT.2) IGO=2	MA	224
225		IF (ITMP1.EQ.(-1)) GO TO 14	MA	225
226	18	NLOAD=NLOAD+1	MA	226
227		IF (NLOAD.LE.LOADMX) GO TO 19		227
228		PRINT 139	100000	228
229		STOP		229
230	19	LDTYP(NLOAD)=ITMP1	1000	230
231		LDTAG(NLOAD)=ITMP2		231
232		IF (ITMP4.EQ.0) ITMP4=ITMP3		232
233		LDTAGF(NLOAD)=ITMP3		233
234		LDTAGT(NLOAD)=ITMP4		234
235		IF (ITMP4.GE.ITMP3) GO TO 20		235
236		PRINT 140, NLOAD, ITMP3, ITMP4 STOP		236
	20			237
238	20	ZLR(NLOAD)=TMP1 ZLT(NLOAD)=TMP2		238
240		ZLI(NLOAD)=TMP2 ZLC(NLOAD)=TMP3		239
241		GO TO 14		241
242	c	30 10 14		242
243		GROUND PARAMETERS UNDER THE ANTENNA		243
244		THE AMELIAN CHEEK THE AMELINA		244
245		IFLOW=4		245
246		IF(ICASX.EQ.0)GO TO 10		246
247		PRINT 303.AIN		247
248		STOP		248
249	10	IF (IGO.GT.2) IGO=2		249
250		IF (ITMP1.NE.(-1)) GO TO 22	0.20	250
251		KSYMP=1		251
252		NRADL=0		252
253		IPERF=0		253
254		GO TO 14		254
255	22	IPERF=ITMP1	MA	255

```
256
          NRADL=ITMP2
                                                                                  MA 256
257
          KSYMP=2
                                                                                  MA 257
258
          EPSR=TMP1
                                                                                  MA 258
          SIG=TMP2
259
                                                                                  MA 259
260
           IF (NRADL.EQ.0) GO TO 23
                                                                                  MA 260
           IF(IPERF.NE.2)GO TO 314
261
                                                                                  MA 261
262
          PRINT 390
                                                                                  MA 262
           STOP
263
                                                                                  MA 263
264 314
           SCRWLT=TMP3
                                                                                  MA 264
          SCRWRT=TMP4
265
                                                                                  MA 265
266
           GO TO 14
                                                                                  MA 266
267 23
           EPSR2=TMP3
                                                                                  MA 267
          SIG2=TMP4
268
                                                                                  MA 268
269
          CLT=TMP5
                                                                                  MA 269
           CHT=TMP6
270
                                                                                  MA 270
           GO TO 14
271
                                                                                  MA 271
272 C
                                                                                   MA 272
273 C
           EXCITATION PARAMETERS
                                                                                  MA 273
274 C
                                                                                  MA 274
275 24
           IF (IFLOW.EQ.5) GO TO 25
                                                                                   MA 275
           NSANT=0
276
                                                                                   MA 276
           NVQD=0
277
                                                                                  MA 277
          IPED=0
278
                                                                                  MA 278
279
           IFLOW=5
                                                                                  MA 279
           IF (IGO.GT.3) IGO=3
280
                                                                                   MA 280
281 25
           MASYM=ITMP4/10
                                                                                   MA 281
           IF (ITMP1.GT.O.AND.ITMP1.NE.5) GO TO 27
282
                                                                                   MA 282
283
          IXTYP=ITMP1
                                                                                   MA 283
284
           NTSOL=0
                                                                                   MA 284
285
          IF(IXTYP.EQ.0)GO TO 205
                                                                                   MA 285
286
           NVQD=NVQD+1
                                                                                   MA 286
           IF(NVQD.GT.NSMAX)GO TO 206
287
                                                                                   MA 287
288
           IVQD(NVQD)=ISEGNO(ITMP2,ITMP3)
                                                                                   MA 288
          VQD(NVQD)=CMPLX(TMP1,TMP2)
289
                                                                                   MA 289
290
          IF(CABS(VQD(NVQD)).LT.1.E-20)VQD(NVQD)=(1.,0.)
                                                                                   MA 290
291
           GO TO 207
                                                                                   MA 291
          NSANT=NSANT+1
292 205
                                                                                   MA 292
           IF (NSANT.LE.NSMAX) GO TO 26
293
                                                                                   MA 293
294 206
           PRINT 141
                                                                                   MA 294
295
           STOP
                                                                                  MA 295
296 26
           ISANT(NSANT)=ISEGNO(ITMP2,ITMP3)
                                                                                  MA 296
297
           VSANT(NSANT)=CMPLX(TMP1,TMP2)
                                                                                  MA 297
           IF (CABS(VSANT(NSANT)).LT.1.E-20) VSANT(NSANT)=(1.,0.)
298
                                                                                   MA 298
299 207
           IPED=ITMP4-MASYM*10
                                                                                  MA 299
           ZPNORM=TMP3
300
                                                                                   MA 300
301
           IF (IPED.EQ.1.AND.ZPNORM.GT.0) IPED=2
                                                                                   MA 301
           GO TO 14
302
                                                                                   MA 302
303 27
           IF (IXTYP.EQ.O.OR.IXTYP.EQ.5) NTSOL=0
                                                                                   MA 303
304
           IXTYP=ITMP1
                                                                                   MA 304
305
           NTHI=ITMP2
                                                                                   MA 305
306
           NPHI=ITMP3
                                                                                   MA 306
307
           XPR1=TMP1
                                                                                   MA 307
308
           XPR2=TMP2
                                                                                   MA 308
           XPR3=TMP3
309
                                                                                   MA 309
                                                                                   MA 310
310
           XPR4=TMP4
311
           XPR5=TMP5
                                                                                   MA 311
312
           XPR6=TMP6
                                                                                   MA 312
           NSANT=0
                                                                                   MA 313
313
           NVQD=0
314
                                                                                   MA 314
315
           THETIS=XPR1
                                                                                   MA 315
           PHISS=XPR2
316
                                                                                   MA 316
317
           GO TO 14
                                                                                   MA 317
318 C
                                                                                   MA 318
           NETWORK PARAMETERS
319 C
                                                                                   MA 319
```


Secretary (Secretary) (Secretary) (Secretary) (Secretary)

320 C 321 28	MA 320 MA 321 MA 322 MA 323 MA 324 MA 325
322 NONET=0 323 NTSOL=0 324 IFLOW=6 325 IF (IGO.GT.3) IGO=3 326 IF (ITMP2.EQ.(-1)) GO TO 14 327 29 NONET=NONET+1 328 IF (NONET.LE.NETMX) GO TO 30 329 PRINT 142	MA 322 MA 323 MA 324
323 NTSOL=0 324 IFLOW=6 325 IF (IGO.GT.3) IGO=3 326 IF (ITMP2.EQ.(-1)) GO TO 14 327 29 NONET=NONET+1 328 IF (NONET.LE.NETMX) GO TO 30 329 PRINT 142	MA 323 MA 324
324 IFLOW=6 325 IF (IGO.GT.3) IGO=3 326 IF (ITMP2.EQ.(-1)) GO TO 14 327 29 NONET=NONET+1 328 IF (NONET.LE.NETMX) GO TO 30 329 PRINT 142	MA 324
325 IF (IGO.GT.3) IGO=3 326 IF (ITMP2.EQ.(-1)) GO TO 14 327 29 NONET=NONET+1 328 IF (NONET.LE.NETMX) GO TO 30 329 PRINT 142	
326 IF (ITMP2.EQ.(-1)) GO TO 14 327 29 NONET=NONET+1 328 IF (NONET.LE.NETMX) GO TO 30 329 PRINT 142	MA 325
327 29 NONET=NONET+1 328 IF (NONET.LE.NETMX) GO TO 30 329 PRINT 142	mn 323
328 IF (NONET.LE.NETMX) GO TO 30 329 PRINT 142	MA 326
329 PRINT 142	MA 327
	MA 328
	MA 329
330 STOP	MA 330
331 30 NTYP(NONET)=2	MA 331
332 IF (AIN.EQ.ATST(6)) NTYP(NONET)=1	MA 332
333 ISEG1(NONET)=ISEGNO(ITMP1,ITMP2)	MA 333
334 ISEG2(NONET)=ISEGNO(ITMP3,ITMP4)	MA 334
335 X11R(NONET)=TMP1	MA 335
336 X11I(NONET)=TMP2	MA 336
337 X12R(NONET)=TMP3	MA 337
338 X12I(NONET)=TMP4	MA 338
339 X22R(NONET)=TMP5	MA 339
340 X22I(NONET)=TMP6	MA 340
341 IF (NTYP(NONET).EQ.1.OR.TMP1.GT.O.) GO TO 14	MA 341
342 NTYP(NONET)=3	MA 342
343 X11R(NONET)=-TMP1	MA 343
344 GO TO 14	MA 344
345 C	MA 345
346 C PRINT CONTROL FOR CURRENT	MA 346
347 C	MA 347
348 31 IPTFLG=ITMP1	MA 348
349 IPTAG=ITMP2	
350 IPTAGF=ITMP3	MA 349
이 전략적이 되고 있는데 전략을 가게 전환하면 되었습니다. 그런데 이번 사람들이 되었다면 하나 되었다면 하는데	MA 350
그 전에서 마스 그리고 있는데 가는 경에서 점점을 하는데 되었다. 그리고 있는데 그리고 있다.	MA 351
352 IF(ITMP3.EQ.O.AND.IPTFLG.NE1)IPTFLG=-2	MA 352
353 IF (ITMP4.EQ.0) IPTAGT=IPTAGF	MA 353
354 GO TO 14	MA 354
355 C	MA 355
356 C PRINT CONTROL FOR CHARGE	MA 356
357 C	MA 357
358 319 IPTFLQ=ITMP1	MA 358
359 IPTAQ=ITMP2	MA 359
360 IPTAQF=ITMP3	MA 360
361 IPTAQT=ITMP4	MA 361
362 IF(ITMP3.EQ.O.AND.IPTFLQ.NE1)IPTFLQ=-2	MA 362
363 IF(ITMP4.EQ.0)IPTAQT=IPTAQF	MA 363
364 GO TO 14	MA 364
365 C	MA 365
366 C NEAR FIELD CALCULATION PARAMETERS	MA 366
367 C	MA 367
368 208 NFEH=1	MA 368
	MA 369
369 GO TO 209	MA 370
370 32 NFEH=0	MA 371
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33	
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143	MA 372
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1	MA 373
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2	MA 373 MA 374
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3	MA 373 MA 374 MA 375
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3 376 NRZ=ITMP4	MA 373 MA 374 MA 375 MA 376
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3 376 NRZ=ITMP4 377 XNR=TMP1	MA 373 MA 374 MA 375 MA 376 MA 377
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3 376 NRZ=ITMP4 377 XNR=TMP1 378 YNR=TMP2	MA 373 MA 374 MA 375 MA 376 MA 377 MA 378
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3 376 NRZ=ITMP4 377 XNR=TMP1 378 YNR=TMP2 379 ZNR=TMP3	MA 373 MA 374 MA 375 MA 376 MA 377 MA 378 MA 379
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3 376 NRZ=ITMP4 377 XNR=TMP1 378 YNR=TMP2 379 ZNR=TMP3 380 DXNR=TMP4	MA 373 MA 374 MA 375 MA 376 MA 377 MA 378
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3 376 NRZ=ITMP4 377 XNR=TMP1 378 YNR=TMP2 379 ZNR=TMP3 380 DXNR=TMP4 381 DYNR=TMP5	MA 373 MA 374 MA 375 MA 376 MA 377 MA 378 MA 379 MA 380 MA 381
370 32 NFEH=0 371 209 IF (.NOT.(IFLOW.EQ.8.AND.NFRQ.NE.1)) GO TO 33 372 PRINT 143 373 33 NEAR=ITMP1 374 NRX=ITMP2 375 NRY=ITMP3 376 NRZ=ITMP4 377 XNR=TMP1 378 YNR=TMP2 379 ZNR=TMP3 380 DXNR=TMP4	MA 373 MA 374 MA 375 MA 376 MA 377 MA 378 MA 379 MA 380

```
384
          IF (NFRQ.NE.1) GO TO 14
                                                                                  MA 384
          GO TO (41,46,53,71,72), IGO
385
                                                                                  MA 385
386 C
                                                                                  MA 386
387 C
          GROUND REPRESENTATION
                                                                                  MA 387
388 C
                                                                                  MA 388
389 34
          EPSR2=TMP1
                                                                                  MA 389
390
          SIG2=TMP2
                                                                                  MA 390
          CLT=TMP3
391
                                                                                  MA 391
392
          CHT=TMP4
                                                                                  MA 392
          IFLOW=9
393
                                                                                  MA 393
394
          GO TO 14
                                                                                  MA 394
395 C
                                                                                  MA 395
          STANDARD OBSERVATION ANGLE PARAMETERS
396 C
                                                                                  MA 396
397 C
                                                                                  MA 397
398 36
          IFAR=ITMP1
                                                                                  MA 398
399
          NTH=ITMP2
                                                                                  MA 399
400
          NPH=ITMP3
                                                                                  MA 400
401
          IF (NTH.EQ.0) NTH=1
                                                                                  MA 401
402
          IF (NPH.EQ.0) NPH=1
                                                                                  MA 402
403
          IPD=ITMP4/10
                                                                                  MA 403
404
          IAVP=ITMP4-IPD*10
                                                                                  MA 404
405
          INOR=IPD/10
                                                                                  MA 405
406
          IPD=IPD-INOR*10
                                                                                  MA 406
          IAX=INOR/10
407
                                                                                  MA 407
408
          INOR=INOR-IAX*10
                                                                                  MA 408
          IF (IAX.NE.0) IAX=1
409
                                                                                  MA 409
          IF (IPD.NE.O) IPD=1
410
                                                                                  MA 410
          IF (NTH.LT.2.OR.NPH.LT.2) IAVP=0
411
                                                                                  MA 411
          IF (IFAR.EQ.1) IAVP=0
412
                                                                                  MA 412
413
          THETS=TMP1
                                                                                  MA 413
414
          PHIS=TMP2
                                                                                  MA 414
          DTH=TMP3
415
                                                                                  MA 41.5
          DPH=TMP4
416
                                                                                  MA 416
417
          RFLD=TMP5
                                                                                  MA 417
          GNOR=TMP6
418
                                                                                  MA 418
          IFLOW=10
419
                                                                                  MA 419
          GO TO (41,46,53,71,78), IGO
420
                                                                                  MA 420
421 C
                                                                                  MA 421
422 C
          WRITE NUMERICAL GREEN'S FUNCTION TAPE
                                                                                  MA 422
423 C
                                                                                  MA 423
424 322
          IFLOW=12
                                                                                  MA 424
          IF(ICASX.EQ.0)GO TO 301
425
                                                                                  MA 425
          PRINT 302
426
                                                                                  MA 426
427
          STOP
                                                                                  MA 427
428 301
          IRNGF=IRESRV/2
                                                                                  MA 428
429
          GO TO (41,46,52,52,52),IGO
                                                                                  MA 429
430 C
                                                                                  MA 430
431 C
          EXECUTE CARD - CALC. INCLUDING RADIATED FIELDS
                                                                                  MA 431
432 C
                                                                                  MA 432
          IF (IFLOW.EQ.10.AND.ITMP1.EQ.0) GO TO 14
433 37
                                                                                  MA 433
          IF (NFRQ.EQ.1.AND.ITMP1.EQ.0.AND.IFLOW.GT.7) GO TO 14
434
                                                                                  MA 434
435
          IF (ITMP1.NE.0) GO TO 39
                                                                                  MA 435
          IF (IFLOW.GT.7) GO TO 38
436
                                                                                  MA 436
437
          IFLOW=7
                                                                                  MA 437
438
           GO TO 40
                                                                                  MA 438
439 38
          IFLOW=11
                                                                                  MA 439
           GO TO 40
                                                                                  MA 440
440
           IFAR=0
441 39
                                                                                  MA 441
442
           RFLD=0
                                                                                  MA 442
443
           IPD=0
                                                                                   MA 443
444
           IAVP=0
                                                                                  MA 444
445
           INOR=0
                                                                                  MA 445
           IAX=0
446
                                                                                  MA 446
           NTH=91
447
                                                                                  MA 447
```


324.64

MA 505

MA 507

MA 508

MA 509

MA 510

MA 511

MA 506

IF(SIG.LT.O.)SIG=-SIG/(59.96*WLAM)

EPSC=CMPLX(EPSR,-SIG*WLAM*59.96)

ZRATI=1./CSQRT(EPSC)

SCRWL=SCRWLT/WLAM

IF (NRADL.EQ.O) GO TO 47

U=ZRATI

U2=U*U

505

506

507

508

509

510

```
512
          SCRWR=SCRWRT/WLAM
                                                                                   MA 512
513
           T1=FJ*2367.067/FLOAT(NRADL)
                                                                                   MA 513
514
           T2=SCRWR*FLOAT(NRADL)
                                                                                   MA 514
515
           PRINT 170, NRADL, SCRWLT, SCRWRT
                                                                                   MA 515
516
           PRINT 149
                                                                                   MA 516
517 47
          IF(IPERF.EQ.2)GO TO 328
                                                                                   MA 517
518
           PRINT 391
                                                                                   MA 518
519
           GO TO 329
                                                                                   MA 519
520 328
           IF(NXA(1).EQ.O)READ(21)AR1, AR2, AR3, EPSCF, DXA, DYA, XSA, YSA, NXA, NYA
                                                                                   MA 520
521
           FRATI=(EPSC-1.)/(EPSC+1.)
                                                                                   MA 521
522
           IF(CABS((EPSCF-EPSC)/EPSC).LT.1.E-3)GO TO 330
                                                                                   MA 522
523
           PRINT 393, EPSCF, EPSC
                                                                                   MA 523
524
           STOP
                                                                                   MA 524
525 330
          PRINT 392
                                                                                   MA 525
526 329
           PRINT 150, EPSR, SIG, EPSC
                                                                                   MA 526
527
           GO TO 50
                                                                                   MA 527
528 48
           PRINT 151
                                                                                   MA 528
           GO TO 50
529
                                                                                   MA
                                                                                      529
530 49
           PRINT 152
                                                                                   MA 530
           CONTINUE
531 50
                                                                                   MA 531
532 C . .
                                                                                   MA 532
           FILL AND FACTOR PRIMARY INTERACTION MATRIX
533 C
                                                                                   MA 533
534 C
                                                                                   MA 534
           CALL SECOND (TIM1)
535
                                                                                   MA 535
           IF(ICASX.NE.0)GO TO 324
536
                                                                                   MA
                                                                                      536
537
           CALL CMSET(NEQ, CM, RKH, IEXK)
                                                                                   MA 537
           CALL SECOND (TIM2)
538
                                                                                   MA 538
539
           TIM=TIM2-TIM1
                                                                                   MA 539
540
           CALL FACTRS(NPEQ, NEQ, CM, IP, IX, 11, 12, 13, 14)
                                                                                   MA 540
          GO TO 323
541
                                                                                   MA 541
542 C
                                                                                   MA 542
543 C
           N.G.F. - FILL B, C, AND D AND FACTOR D-C(INV(A)B)
                                                                                   MA 543
544 C
                                                                                   MA 544
545 324
          CALL CMNGF(CM(IB11),CM(IC11),CM(ID11),NPBX,NEQ,NEQ2,RKH,IEXK)
                                                                                   MA 545
546
           CALL SECOND (TIM2)
                                                                                   MA 546
547
           TIM=TIM2-TIM1
                                                                                   MA 547
548
           CALL FACGF(CM,CM(IB11),CM(IC11),CM(ID11),CM(IX11),IP,IX,NP,N1,MP.
                                                                                   MA 548
          1M1 , NEQ , NEQ2)
549
                                                                                   MA 549
550 323
           CALL SECOND (TIM1)
                                                                                   MA 550
551
           TIM2=TIM1-TIM2
                                                                                   MA 551
           PRINT 153, TIM, TIM2
552
                                                                                   MA 552
553
           IGO=3
                                                                                   MA 553
554
           NTSOL=0
                                                                                   MA 554
555
           IF(IFLOW.NE.12)GO TO 53
                                                                                   MA 555
556 C
           WRITE N.G.F. FILE
                                                                                   MA 556
557 52
           CALL GFOUT
                                                                                   MA 557
558
           GO TO 14
                                                                                      558
                                                                                   MA
559 C
                                                                                   MA 559
560 C
           EXCITATION SET UP (RIGHT HAND SIDE, -E INC.)
                                                                                   MA 560
561 C
                                                                                   MA 561
           NTHIC=1
562 53
                                                                                   MA 562
563
           NPHIC=1
                                                                                   MA 563
564
           INC=1
                                                                                   MA 564
565
           NPRINT=0
                                                                                   MA
                                                                                      565
566 54
           IF (IXTYP.EQ.O.OR.IXTYP.EQ.5) GO TO 56
                                                                                   MA 566
           IF (IPTFLG.LE.O.OR.IXTYP.EQ.4) PRINT 154
567
                                                                                   MA 567
568
           TMP5=TA * XPR5
                                                                                   MA 568
569
           TMP4=TA*XPR4
                                                                                   MA 569
570
           IF (IXTYP.NE.4) GO TO 55
                                                                                   MA 570
571
           TMP1=XPR1/WLAM
                                                                                   MA 571
572
           TMP2=XPR2/WLAM
                                                                                   MA 572
573
           TMP3=XPR3/WLAM
                                                                                   MA 573
           TMP6=XPR6/(WLAM*WLAM)
574
                                                                                   MA 574
575
           PRINT 156, XPR1, XPR2, XPR3, XPR4, XPR5, XPR6
                                                                                   MA 575
```

COURT PROCESSOR (SESSENCE) PROGRAMMS (NECESSORS)

The state of the s

```
576
          GO TO 56
                                                                                  MA 576
577 55
          TMP1=TA+XPR1
                                                                                  MA 577
578
          TMP2=TA*XPR2
                                                                                  MA 578
579
          TMP3=TA*XPR3
                                                                                  MA 579
580
          TMP6=XPR6
                                                                                  MA 580
          IF (IPTFLG.LE.O) PRINT 155, XPR1, XPR2, XPR3, HPOL(IXTYP), XPR6
581
                                                                                  MA 581
582 56
          CALL ETMNS (TMP1, TMP2, TMP3, TMP4, TMP5, TMP6, IXTYP, CUR)
                                                                                  MA 582
583
    C
                                                                                  MA 583
584
    C
          MATRIX SOLVING (NETWK CALLS SOLVES)
                                                                                  MA 584
585 C
                                                                                  MA 585
          IF (NONET.EQ.O.OR.INC.GT.1) GO TO 60
586
                                                                                  MA 586
587
          PRINT 158
                                                                                  MA 587
          ITMP3=0
588
                                                                                  MA 588
589
          ITMP1=NTYP(1)
                                                                                  MA 589
          DO 59 I=1.2
590
                                                                                  MA 590
591
          IF (ITMP1.EQ.3) ITMP1=2
                                                                                  MA 591
          IF (ITMP1.EQ.2) PRINT 159
592
                                                                                  MA 592
593
          IF (ITMP1.EQ.1) PRINT 160
                                                                                  MA 593
594
          DO 58 J=1, NONET
                                                                                  MA 594
595
          ITMP2=NTYP(J)
                                                                                  MA 595
596
          IF ((ITMP2/ITMP1).EQ.1) GO TO 57
                                                                                  MA 596
597
          ITMP3=ITMP2
                                                                                  MA 597
598
          GO TO 58
                                                                                  MA 598
          ITMP4=ISEG1(J)
599 57
                                                                                  MA 599
          ITMP5=ISEG2(J)
600
                                                                                  MA 600
          IF (ITMP2.GE.2.AND.X11I(J).LE.O.) X11I(J)=WLAM*SQRT((X(ITMP5)-
601
                                                                                  MA 601
602
          1 X(ITMP4))**2+(Y(ITMP5)-Y(ITMP4))**2+(Z(ITMP5)-Z(ITMP4))**2)
                                                                                   MA 602
          PRINT 157, ITAG(ITMP4), ITMP4, ITAG(ITMP5), ITMP5, X11R(J), X11I(J),
603
                                                                                  MA 603
604
          1X12R(J),X12I(J),X22R(J),X22I(J),PNET(2*ITMP2-1),PNET(2*ITMP2)
                                                                                  MA 604
605 58
          CONTINUE
                                                                                   MA
                                                                                     605
          IF (ITMP3.EQ.0) GO TO 60
606
                                                                                  MA 606
607
          ITMP1=ITMP3
                                                                                  MA 607
          CONTINUE
608 59
                                                                                  MA 608
609 60
          CONTINUE
                                                                                  MA 609
610
          IF (INC.GT.1.AND.IPTFLG.GT.0) NPRINT=1
                                                                                  MA 610
611
          CALL NETWK(CM, CM(IB11), CM(IC11), CM(ID11), IP, CUR)
                                                                                   MA 611
612
          NTSOL=1
                                                                                  MA 612
613
           IF (IPED.EQ.0) GO TO 61
                                                                                  MA 613
          ITMP1=MHZ+4*(MHZ-1)
614
                                                                                  MA 614
615
           IF (ITMP1.GT.(NORMF-3)) GO TO 61
                                                                                  MA 615
616
           FNORM(ITMP1)=REAL(ZPED)
                                                                                  MA 616
           FNORM(ITMP1+1)=AIMAG(ZPED)
617
                                                                                  MA 617
618
           FNORM(ITMP1+2)=CABS(ZPED)
                                                                                  MA 618
619
           FNORM(ITMP1+3)=CANG(ZPED)
                                                                                  MA 619
620
           IF (IPED.EQ.2) GO TO 61
                                                                                  MA 620
           IF (FNORM(ITMP1+2).GT.ZPNORM) ZPNORM=FNORM(ITMP1+2)
621
                                                                                   MA 621
622 61
           CONTINUE
                                                                                  MA 622
623 C
                                                                                  MA 623
624 C
           PRINTING STRUCTURE CURRENTS
                                                                                   MA 624
625 C
                                                                                  MA 625
626
           IF(N.EQ.0)GO TO 308
                                                                                  MA 626
627
           IF (IPTFLG.EG.(-1)) GO TO 63
                                                                                  MA 627
628
           IF (IPTFLG.GT.0) GO TO 62
                                                                                  MA 628
629
           PRINT 161
                                                                                   MA 629
630
           PRINT 162
                                                                                   MA 630
631
           GO TO 63
                                                                                   MA 631
           IF (IPTFLG.EQ.3.OR.INC.GT.1) GO TO 63
                                                                                   MA 632
632 62
           PRINT 163, XPR3, HPOL(IXTYP), XPR6
633
                                                                                   MA 633
634 63
           PLOSS=0.
                                                                                   MA 634
635
           ITMP1=0
                                                                                  MA 635
636
           JUMP=IPTFLG+1
                                                                                   MA 636
637
           DO 69 I=1,N
                                                                                   MA 637
638
           CURI=CUR(I) *WLAM
                                                                                  MA 638
639
           CMAG=CABS(CURI)
                                                                                   MA 639
```

640		PH=CANG(CURI)	MA 64
641		IF (NLOAD.EQ.O.AND.NLODF.EQ.O) GO TO 64	MA 64
642		IF (ABS(REAL(ZARRAY(I))).LT.1.E-20) GO TO 64	MA 64
643		PLOSS=PLOSS+.5 CMAG CMAG REAL (ZARRAY(I)) SI(I)	MA 64
644	64	IF (JUMP) 68,69,65	MA 64
645		IF (IPTAG.EQ.0) GO TO 66	
646			MA 64
On Francis		IF (ITAG(I).NE.IPTAG) GO TO 69	MA 64
647	00	ITMP1=ITMP1+1	MA 64
648		IF (ITMP1.LT.IPTAGF.OR.ITMP1.GT.IPTAGT) GO TO 69	MA 64
649		IF (IPTFLG.EQ.0) GO TO 68	MA 64
650		IF (IPTFLG.LT.2.OR.INC.GT.NORMF) GO TO 67	MA 65
651		FNORM(INC)=CMAG	MA 65
652		ISAVE=I	MA 65
653	67	IF (IPTFLG.NE.3) PRINT 164, XPR1, XPR2, CMAG, PH, I	MA 65
654	The second	GO TO 69	
4.600			MA 65
655		PRINT 165, I, ITAG(I), X(I), Y(I), Z(I), SI(I), CURI, CMAG, PH	MA 65
656	93	CONTINUE	MA 65
657		IF(IPTFLQ.EQ.(-1))GO TO 308	MA 65
658		PRINT 315	MA 65
659		ITMP1=0	MA 65
660		FR=1.E-6/FMHZ	MA 66
661		DO 316 I=1.N	MA 66
662		IF(IPTFLQ.EQ.(-2))GO TO 318	MA 66
663		IF(IPTAQ.EQ.0)GO TO 317	
ELK.			MA 66
664		IF(ITAG(I).NE.IPTAQ)GO TO 316	MA 66
	317	ITMP1=ITMP1+1	MA 66
666		IF(ITMP1.LT.IPTAQF.OR.ITMP1.GT.IPTAQT)GO TO 316	MA 66
667	318	CURI=FR*CMPLX(-BII(I),BIR(I))	MA 66
668		CMAG=CABS(CURI)	MA 66
669		PH=CANG(CURI)	MA 66
670		PRINT 165,I,ITAG(I),X(I),Y(I),Z(I),SI(I),CURI,CMAG,PH	MA 67
	316	CONTINUE	MA 67
	308	IF(M.EQ.0)GO TO 310	
	900		MA 67
673		PRINT 197	MA 67
674		J=N-2	MA 67
675		ITMP1=LD+1	MA 67
676		DO 309 I=1,M	MA 67
677		J=J+3	MA 67
678		ITMP1=ITMP1-1	MA 67
679		EX=CUR(J)	MA 67
680		EY=CUR(J+1)	MA 68
681		EZ=CUR(J+2)	2000
			MA 68
682		ETH=EX*T1X(ITMP1)+EY*T1Y(ITMP1)+EZ*T1Z(ITMP1)	MA 68
683		EPH=EX*T2X(ITMP1)+EY*T2Y(ITMP1)+EZ*T2Z(ITMP1)	MA 68
684		ETHM=CABS(ETH)	MA 68
685		ETHA=CANG(ETH)	MA 68
686		EPHM=CABS(EPH)	MA 68
687		EPHA=CANG(EPH)	MA 68
688	309	PRINT 198, I, X(ITMP1), Y(ITMP1), Z(ITMP1), ETHM, ETHA, EPHM, EPHA, EX, EY,	MA 68
689		1 EZ	MA 68
	310	IF (IXTYP.NE.O.AND.IXTYP.NE.5) GO TO 70	MA 69
691	5.0	TMP1=PIN-PNLS-PLOSS	
			MA 69
692		TMP2=100.*TMP1/PIN	MA 69
693		PRINT 166, PIN, TMP1, PLOSS, PNLS, TMP2	MA 69
694		CONTINUE	MA 69
695		IGO=4	MA 69
696		IF(NCOUP.GT.0)CALL COUPLE(CUR, WLAM)	MA 69
697		IF (IFLOW.NE.7) GO TO 71	MA 69
698		IF (IXTYP.GT.O.AND.IXTYP.LT.4) GO TO 113	MA 69
699		IF (NFRQ.NE.1) GO TO 120	MA 69
700		PRINT 135	MA 70
701			
		GO TO 14	MA 70
702		IGO=5	MA 70
703	C		MA 70

704 C 705 C	NEAR FIELD CALCULATION		MA 704 MA 705
706 72	IF (NEAR.EQ.(-1)) GO TO 78		MA 705
707	CALL NFPAT		MA 707
708	IF (MHZ.EQ.NFRQ) NEAR=-1		MA 708
709	IF (NFRQ.NE.1) GO TO 78		MA 709
710	PRINT 135		MA 710
711	GO TO 14		MA 711
712 C			MA 712
713 C	STANDARD FAR FIELD CALCULATION		MA 713
714 C			MA 714
715 78	IF(IFAR.EQ:-1)GO TO 113		MA 715
716	PINR=PIN		MA 716
717	PNLR=PNLS		MA 717
718	CALL RDPAT		MA 718
719 113	IF (IXTYP.EQ.O.OR.IXTYP.GE.4) GO TO 119		MA 719
720	NTHIC=NTHIC+1		MA 720
721	INC=INC+1		MA 721
722	XPR1=XPR1+XPR4		MA 722
723	IF (NTHIC.LE.NTHI) GO TO 54		MA 723
724	NTHIC=1		MA 724
725	XPR1=THETIS		MA 725
726	XPR2=XPR2+XPR5		MA 726
727	NPHIC=NPHIC+1		MA 727
728	IF (NPHIC.LE.NPHI) GO TO 54		MA 728
729 730	NPHIC=1 XPR2=PHISS		MA 729
731	IF (IPTFLG.LT.2) GO TO 119		MA 730 MA 731
732 C	NORMALIZED RECEIVING PATTERN PRINTED		MA 732
733	ITMP1=NTHI*NPHI		MA 733
734	IF (ITMP1.LE.NORMF) GO TO 114		MA 734
735	ITMP1=NORMF		MA 735
736	PRINT 181		MA 736
737 114	TMP1=FNORM(1)		MA 737
738	DO 115 J=2,ITMP1		MA 738
739	IF (FNORM(J).GT.TMP1) TMP1=FNORM(J)		MA 739
740 115	CONTINUE		MA 740
741	PRINT 182, TMP1, XPR3, HPOL(IXTYP), XPR6, ISAN	E	MA 741
742	DO 118 J=1,NPHI		MA 742
743	ITMP2=NTHI*(J-1)		MA 743
744	DO 116 I=1,NTHI		MA 744
745	ITMP3=I+ITMP2		MA 745
746	IF (ITMP3.GT.ITMP1) GO TO 117		MA 746
747	TMP2=FNORM(ITMP3)/TMP1		MA 747
748	TMP3=DB20(TMP2)		MA 748
749 750	PRINT 183, XPR1, XPR2, TMP3, TMP2		MA 749
751 116	XPR1=XPR1+XPR4 CONTINUE		MA 750
752 117	XPR1=THETIS		MA 751 MA 752
753	XPR2=XPR2+XPR5		MA 753
754 118	CONTINUE		MA 754
755	XPR2=PHISS		MA 755
756 119	IF (MHZ.EQ.NFRQ) IFAR=-1		MA 756
757	IF (NFRQ.NE.1) GO TO 120		MA 757
758	PRINT 135		MA 758
759	GO TO 14		MA 759
760 120	MHZ=MHZ+1		MA 760
761	IF (MHZ.LE.NFRQ) GO TO 42		MA 761
762	IF (IPED.EQ.0) GO TO 123		MA 762
763	IF(NVQD.LT.1)GO TO 199		MA 763
764	PRINT 184, IVQD(NVQD), ZPNORM		MA 764
765	GO TO 204		MA 765
766 199	PRINT 184, ISANT(NSANT), ZPNORM		MA 766
767 204	ITMP1=NFRQ		MA 767

```
768
          IF (ITMP1.LE.(NORMF/4)) GO TO 121
                                                                               MA 768
769
          ITMP1=NORMF/4
                                                                               MA 769
770
          PRINT 185
                                                                               MA 770
771 121
          IF (IFRQ.EQ.0) TMP1=FMHZ-(NFRQ-1)*DELFRQ
                                                                               MA 771
772
          IF (IFRQ.EQ.1) TMP1=FMHZ/(DELFRQ**(NFRQ-1))
                                                                               MA 772
773
          DO 122 I=1, ITMP1
                                                                               MA 773
774
          ITMP2=I+4*(I-1)
                                                                               MA 774
          TMP2=FNORM(ITMP2)/ZPNORM
775
                                                                               MA 775
776
          TMP3=FNORM(ITMP2+1)/ZPNORM
                                                                               MA 776
777
          TMP4=FNORM(ITMP2+2)/ZPNORM
                                                                               MA 777
778
          TMP5=FNORM(ITMP2+3)
                                                                               MA 778
779
          PRINT 186, TMP1, FNORM(ITMP2), FNORM(ITMP2+1), FNORM(ITMP2+2),
                                                                               MA 779
780
         1FNORM(ITMP2+3), TMP2, TMP3, TMP4, TMP5
                                                                               MA 780
781
          IF (IFRQ.EQ.0) TMP1=TMP1+DELFRQ
                                                                               MA 781
782
          IF (IFRQ.EQ.1) TMP1=TMP1*DELFRQ
                                                                               MA 782
783 122
          CONTINUE
                                                                               MA 783
784
          PRINT 135
                                                                               MA 784
785 123
          CONTINUE
                                                                               MA 785
786
          NFRQ=1
                                                                               MA 786
787
          MHZ=1
                                                                               MA 787
788
          GO TO 14
                                                                               MA 788
          FORMAT (A2,13A6)
FORMAT (1H1)
789 125
                                                                               MA 789
790 126
                                                                               MA 790
          FORMAT (///,33X,36H******************************,//,36X,
791 127
                                                                               MA 791
792
         1 31HNUMERICAL ELECTROMAGNETICS CODE.//,33X,
                                                                               MA 792
         793
                                                                               MA 793
          FORMAT (///, 37X, 24H- - - - COMMENTS - - - - .//)
794 128
                                                                               MA 794
795 129
          FORMAT (25X,13A6)
                                                                               MA 795
796 130
          FORMAT (///,10X,34HINCORRECT LABEL FOR A COMMENT CARD)
                                                                               MA 796
797 135
          FORMAT (////)
                                                                               MA 797
798 136
          FORMAT (A2, 13, 315, 6E10.3)
                                                                               MA 798
799 137
          FORMAT (1X, 19H**** DATA CARD NO., 13, 3X, A2, 1X, 13, 3(1X, 15),
                                                                               MA 799
         1 6(1X,E12.5))
                                                                               MA 800
801 138
          FORMAT (///,10X,45HFAULTY DATA CARD LABEL AFTER GEOMETRY SECTION) MA 801
802 139
          FORMAT (///,10X,48HNUMBER OF LOADING CARDS EXCEEDS STORAGE ALLOTTE MA 802
803
                                                                               MA 803
804 140
          FORMAT (///,10X,31HDATA FAULT ON LOADING CARD NO.=,15,5X,11HITAG S MA 804
805
         1TEP1=, I5, 29H IS GREATER THAN ITAG STEP2=, I5)
                                                                               MA 805
806 141
          FORMAT (///,10X,51HNUMBER OF EXCITATION CARDS EXCEEDS STORAGE ALLO MA 806
807
         ITTED)
                                                                               MA 807
808 142
          FORMAT (///,10X,48HNUMBER OF NETWORK CARDS EXCEEDS STORAGE ALLOTTE MA 808
809
         1D)
810 143
          FORMAT(///,10x,79HWHEN MULTIPLE FREQUENCIES ARE REQUESTED, ONLY ON MA 810
811
         1E NEAR FIELD CARD CAN BE USED -,/,10x,22HLAST CARD READ IS USED)
                                                                               MA 811
812 145
          FORMAT (///,33X,33H- - - - - FREQUENCY - - - - -,//,36X,10HFR MA 812
         1EQUENCY=,E11.4,4H MHZ,/,36X,11HWAVELENGTH=,E11.4,7H METERS)
813
                                                                               MA 813
814 146
          FORMAT (///.30X.40H - - - STRUCTURE IMPEDANCE LOADING - - -)
                                                                               MA 814
          FORMAT (/ .35X, 28HTHIS STRUCTURE IS NOT LOADED)
815 147
                                                                               MA 815
          FORMAT (///.34X.31H- - - ANTENNA ENVIRONMENT - - -,/)
816 148
                                                                               MA 816
817 149
          FORMAT (40x,21HMEDIUM UNDER SCREEN -)
                                                                               MA 817
          FORMAT (40x,27HRELATIVE DIELECTRIC CONST.=,F7.3,/,40x,13HCONDUCTIV MA 818
818 150
819
         1ITY=,E10.3,11H MHOS/METER,/,40x,28HCOMPLEX DIELECTRIC CONSTANT=,
                                                                               MA 819
820
         12E12.5)
                                                                               MA 820
          FORMAT (
821 151
                    42X,14HPERFECT GROUND)
                                                                               MA 821
822 152
          FORMAT (
                   44X, 10HFREE SPACE)
                                                                               MA 822
          FORMAT (///,32X,25H- - - MATRIX TIMING - - -,//,24X,5HFILL=,F9.3,
823 153
                                                                               MA 823
         115H SEC. .
                     FACTOR=, F9.3,5H SEC.)
824
                                                                               MA 824
          FORMAT (///.40x.22H- - - EXCITATION - - -)
825 154
                                                                               MA 825
          FORMAT (/,4X,10HPLANE WAVE,4X,6HTHETA=,F7.2,11H DEG, PHI=,F7.2,
826 155
                                                                               MA 826
         1 11H DEG, ETA=,F7.2,13H DEG, TYPE -,A6,15H= AXIAL RATIO=,F6.3)
827
                                                                               MA 827
828 156
          FORMAT (/.31x,17HPOSITION (METERS),14x,18HORIENTATION (DEG)=/,28x, MA 828
         T1HX, 12X, 1HY, 12X, 1HZ, 10X, 5HALPHA, 5X, 4HBETA, 4X, 13HDIPOLE MOMENT, //
825
                                                                               MA 829
830
         2 ,4X,14HCURRENT SOURCE,1X,3(3X,F10.5),1X,2(3X,F7.2),4X,F8.3)
                                                                               MA 830
          FORMAT (4X,4(I5,1X),6(3X,E11.4),3X,A6,A2)
                                                                               MA 831
```



```
832 158
          FORMAT (///,44X,24H- - - NETWORK DATA - - -)
          FORMAT (/.6X.18H- FROM - - TO -.11X.17HTRANSMISSION LINE.15X.36 MA 833
833 159
834
         1H- - SHUNT ADMITTANCES (MHOS) - -.14X,4HLINE,/,6X,21HTAG SEG. MA 834
835
             TAG SEG., 6X, 9HIMPEDANCE, 6X, 6HLENGTH, 12X, 11H- END ONE -, 17X, 11H MA 835
         3- END TWO -, 12X, 4HTYPE,/
836
                                    ,6X,21HNO. NO. NO., 9X,4HOHMS MA 836
837
         4,8X,6HMETERS,9X, 4HREAL,10X,5HIMAG.,9X,4HREAL,10X,5HIMAG.)
                                                                                MA 837
838 160
          FORMAT (/,6X,8H- FROM -,4X,6H- TO -,26X,45H- - ADMITTANCE MATRIX MA 838
839
         1 ELEMENTS (MHOS) - -,/
                                      .6X,21HTAG SEG. TAG SEG.,13X,9H(ON MA 839
                       9H(ONE, TWO), 19X, 9H(TWO, TWO), /, 6X, 21HNO. NO.
840
         2E,ONE),19X,
                                                                            NO MA 840
841
              NO., 8X, 4HREAL, 10X, 5HIMAG., 9X, 4HREAL, 10X, 5HIMAG., 9X, 4HREAL,
                                                                                MA 841
842
         4 10X,5HIMAG.)
                                                                                MA 842
843 161
          FORMAT (///.29X.33H- - - CURRENTS AND LOCATION - - -.//.33X.24HDIS MA 843
         ITANCES IN WAVELENGTHS)
844
                                                                                MA 844
845 162
          FORMAT ( //,2X,4HSEG.,2X,3HTAG,4X,21HCOORD. OF SEG. CENTER,5X,
                                                                                MA 845
846
         1 4HSEG., 12X, 26H- - - CURRENT (AMPS) - - -,/,2X,3HNO.,3X,3HNO.,
                                                                                MA 846
847
         2 5X,1HX,8X,1HY,8X,1HZ.6X,6HLENGTH,5X,4HREAL,8X,5HIMAG.,7X,4HMAG.,
                                                                                MA 847
848
         3 8X, 5HPHASE)
                                                                                MA 848
          FORMAT (///,33X,40H- - - RECEIVING PATTERN PARAMETERS - - -,/
849 163
                                                                           ,43 MA 849
         1X,4HETA=,F7.2,8H DEGREES,/,43X,6HTYPE -,A6,/,43X,12HAXIAL RATIO=,
850
                                                                                MA 850
         2 F6.3,// ,11X,5HTHETA,6X,3HPHI,10X,13H- CURRENT -,9X,3HSEG,/
851
                                                                                MA 851
852
         3,11X,5H(DEG),5X,5H(DEG),7X,9HMAGNITUDE,4X,5HPHASE,6X,3HNO.,/)
                                                                                MA 852
853 164
          FORMAT (10X,2(F7.2,3X),1X,E11.4,3X,F7.2,4X,I5)
                                                                                MA 853
854 165
          FORMAT (1X,215,3F9.4,F9.5,1X,3E12.4,F9.3)
                                                                                MA 854
          FORMAT (///,40X,24H- - - POWER BUDGET - - -,//
855 166
                                                              ,43X,15HINPUT PO MA 855
               =,E11.4,6H WATTS,/ ,43X,15HRADIATED POWER=,E11.4,6H WATTS,/ MA 856
856
857
         2 ,43X,15HSTRUCTURE LOSS=,E11.4,6H WATTS,/ ,43X,15HNETWORK LOSS =, MA 857
858
         3 E11.4,6H WATTS,/,43X,15HEFFICIENCY
                                                  =, F7.2,8H PERCENT)
859 170
          FORMAT (40X,25HRADIAL WIRE GROUND SCREEN,/,40X, 15,6H WIRES,/,40 MA 859
         1X,12HWIRE LENGTH=,F8.2,7H METERS,/,40X,12HWIRE RADIUS=,E10.3,7H ME MA 860
861
862 181
          FORMAT (///,4X,51HRECEIVING PATTERN STORAGE TOO SMALL,ARRAY TRUNCA MA 862
863
         1TED)
                                                                                MA 863
          FORMAT (///,32X,40H- - - NORMALIZED RECEIVING PATTERN - - -,/,41X, MA 864
864 182
865
         1 21HNORMALIZATION FACTOR=,E11.4,/,41X,4HETA=,F7.2,8H DEGREES,/,41X MA 865
866
         2,6HTYPE -,A6,/,41X,12HAXIAL RATIO=,F6.3,/,41X,12HSEGMENT NO.=,I5,/ MA 866
867
         3/,21X,5HTHETA,6X,3HPHI,9X,13M- PATTERN -,/,21X,5H(DEG),5X,5H(DEG MA 867
868
          4),8X,2HDB,8X,9HMAGNITUDE./)
                                                                                MA 868
869 183
          FORMAT (20X,2(F7.2,3X),1X,F7.2,4X,E11.4)
                                                                                MA 869
                                                                    ,45X,18HSO MA 870
870 184
          FORMAT (///,36x,32H- - - INPUT IMPEDANCE DATA - - -,/
         1URCE SEGMENT NO., I4,/ ,45X,21HNORMALIZATION FACTOR=,E12.5,//
2,7X,5HFREQ.,13X,34H- - UNNORMALIZED IMPEDANCE - -,21X,
                                                                                MA 871
871
872
                                                                                MA 872
         3 - NORMALIZED IMPEDANCE - -./
873
                                                ,19X,10HRESISTANCE,4X,9HREACTA MA 873
         4NCE, 6X, 9HMAGNITUDE, 4X, 5HPHASE, 7X, 10HRESISTANCE, 4X, 9HREACTANCE, 6X,
874
                                                                               MA 874
875
         5 9HMAGNITUDE, 4X, 5HPHASE,/
                                      ,8X,3HMHZ,11X,4HOHMS,10X,4HOHMS,11X,
          6 4HOHMS, 5X, 7HDEGREES, 47X, 7HDEGREES, /)
876
          FORMAT (///,4X,62HSTORAGE FOR IMPEDANCE NORMALIZATION TOO SMALL, A MA 877
877 185
878
          IRRAY TRUNCATED)
                                                                                MA 878
879 186
          FORMAT (3X,F9.3.2X,2(2X,E12.5),3X,E12.5,2X,F7.2,2X,2(2X,E12.5),3X, MA 879
          1 E12.5,2X,F7.2)
880
                                                                                MA 880
                   ////,20X,55HAPPROXIMATE INTEGRATION EMPLOYED FOR SEGMENT MA 881
881 196
          FORMAT(
          15 MORE THAN, F8.3, 18H WAVELENGTHS APART)
882
                                                                                MA 882
883 197
          FORMAT( ///.41x.38H- - - - SURFACE PATCH CURRENTS - - - -.//.
                                                                                MA 883
          1 50x,23HDISTANCE IN WAVELENGTHS,/,50x,21HCURRENT IN AMPS/METER,
884
                                                                                MA 884
          1 //.28x.26H- - SURFACE COMPONENTS - -.19x.34H- - - RECTANGULAR COM MA 885
886
          1PONENTS - - -,/,6X,12HPATCH CENTER,6X,16HTANGENT VECTOR 1,3X,
                                                                                MA 886
          116HTANGENT VECTOR 2,11X,1HX,19X,1HY,19X,1HZ,/,5X,1HX,6X,1HY,6X,
887
                                                                                MA 887
888
          11HZ.5X,4HMAG.,7X,5HPHASE,3X,4HMAG.,7X,5HPHASE,3(4X,4HREAL,6X,
                                                                                MA 888
          1 6HIMAG. ))
889
                                                                                MA 889
890 198
          FORMAT(1X, I4, /, 1X, 3F7.3, 2(E11.4, F8.2), 6E10.2)
                                                                                MA 890
891 201
          FORMAT(/,11H RUN TIME =,F10.3)
                                                                                MA 891
          FORMAT(///.34x,28H- - - CHARGE DENSITIES - - -,//.36x,
892 315
                                                                                MA 892
893
          1 24HDISTANCES IN WAVELENGTHS,///,2X,4HSEG.,2X,3HTAG,4X,
                                                                                MA 893
         2 21HCOORD. OF SEG. CENTER, 5X, 4HSEG., 10X,
894
                                                                                MA 894
         3 31HCHARGE DENSITY (COULOMBS/METER),/,2X,3HNO.,3X,3HNO.,5X,1HX,8X, MA 895
```

896		4 1HY.8X,1HZ,6X,6HLENGTH,5X,4HREAL,8X,5HIMAG.,7X,4HMAG.,8X,5HPHASE)	MA	896
897	321	FORMAT(/.20X,42HTHE EXTENDED THIN WIRE KERNEL WILL BE USED)		897
898	303	FORMAT(/,9H ERROR - ,A2,32H CARD IS NOT ALLOWED WITH N.G.F.)	MA	898
899	327	FORMAT(/,35X,31H LOADING ONLY IN N.G.F. SECTION)	MA	899
900	302	FORMAT(48H ERROR - N.G.F. IN USE. CANNOT WRITE NEW N.G.F.)	MA	900
901	313	FORMAT(/.62H NUMBER OF SEGMENTS IN COUPLING CALCULATION (CP) EXCEE	MA	901
902		1DS LIMIT)		902
903	390	FORMAT (78H RADIAL WIRE G. S. APPROXIMATION MAY NOT BE USED WITH SO	MA	903
904		1MMERFELD GROUND OPTION)	MA	904
905	391	FORMAT(40X,52HFINITE GROUND. REFLECTION COEFFICIENT APPROXIMATION	MA	905
906		1)	MA	906
907	392	FORMAT(40X,35HFINITE GROUND. SOMMERFELD SOLUTION)	MA	907
908	393	FORMAT(/, 29H ERROR IN GROUND PARAMETERS -,/,41H COMPLEX DIELECTRIC	MA	908
909		1 CONSTANT FROM FILE IS,2E12.5,/,32X,9HREQUESTED,2E12.5)		909
910		END	MA	910-

STATE COSTAND BOLD STATE STATE OF THE STATE

ARC

PURPOSE

To fill COMMON/DATA/ with segment coordinates for a circular arc of segments.

METHOD

The formal parameters specify the number of segments, radius of the arc, starting angle, final angle and wire radius. Segment coordinates are computed for the arc in the x, z plane with a left hand rotation about the y axis.

SYMBOL DICTIONARY

ANG	= angle of point on the arc (radians, zero on x axis)
ANG1	= angle at first end
	그리고 있는 데 아름다면 하는데 되었다. 그리고 있는데 이번 사람들은 사람들이 되었다. 그리고 있는데 아름다면 하는데

ANG2 = angle at second end

DANG = angle covered by each segment

IST = number of initial segment

ITG = tag number assigned to each segment

NS = number of segments

RAD = wire radius RADA = arc radius TA = $\pi/180$

ZS2 = z coordinate of second end of segment

CONSTANTS

 $.01745329252 = \pi/180$

360.00001 = test for angle greater than 360 degrees

1 2		SUBROUTINE ARC (ITG,NS,RADA,ANG1,ANG2,RAD)	AR	1
3	77	AND DENEMATED SERVICION OF THE PARTY OF THE	AR	2
4		ARC GENERATES SEGMENT GEOMETRY DATA FOR AN ARC OF NS SEGMENTS	AR	3
5	•	COMMON (DATA (10 NA NO NA NO NA NO NA NO NA	AR	4
		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	AR	5
6		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(6
7		2300), WLAM, IPSYM	AR	7
8		DIMENSION X2(1), Y2(1), Z2(1)	AR	8
9		EQUIVALENCE (X2,SI), (Y2,ALP), (Z2,BET)	AR	9
10		DATA TA/.01745329252/	AR	10
11		IST=N+1	AR	11
12		N=N+NS	AR	12
13		NP=N	AR	13
14		MP=M	AR	14
15		IPSYM=0	AR	15
16		IF (NS.LT.1) RETURN	AR	16
17		IF (ABS(ANG2-ANG1).LT.360.00001) GO TO 1	AR	17
18		PRINT 3	AR	18
19		STOP	AR	19
20	1	ANG=ANG1 *TA	AR	20
21		DANG=(ANG2-ANG1) *TA/NS	AR	21
22		XS1=RADA*COS(ANG)	AR	22
23		ZS1=RADA*SIN(ANG)	AR	23
24		DO 2 I=IST,N	AR	24
25		ANG=ANG+DANG	AR/	25
26		XS2=RADA*COS(ANG)	AR	26
27		ZS2=RADA*SIN(ANG)	AR	27
28		X(I)=XS1	AR	28
29		Y(I)=0.	AR	29
30		Z(I)=ZS1	AR	30
31		X2(I)=XS2	AR	31
32		Y2(I)=0.	AR	32
33		Z2(I)=ZS2	AR	33
34		XS1=XS2	AR	34
35		ZS1=ZS2	AR	35
36		BI(I)=RAD	AR	36
37	2	ITAG(I)=ITG	AR	37
38		RETURN	AR	38
39	C		AR	39
40	3	FORMAT (40H ERROR ARC ANGLE EXCEEDS 360. DEGREES)	AR	40
41		FND	AP	41.

ATGN2

PURPOSE

To return zero when both arguments of a two-argument arctangent function are zero. (Most standard arctangent functions give an error return when both arguments are zero.)

METHOD

System function ATAN2 is used except when both arguments are zero, in which case the value zero is returned. The value returned is the angle (in radians) whose sine is X and cosine is Y.

SYMBOL DICTIONARY

X = first argument

Y = second argument

CODE LISTING

1		FUNCTION ATGN2 (X,Y)	AT	1
2	C		AT	2
3	C	ATGN2 IS ARCTANGENT FUNCTION MODIFIED TO RETURN 0. WHEN X=Y=0.	AT	3
4	C		AT	4
5		IF (X) 3,1,3	AT	5
6	1	IF (Y) 3,2,3	AT	6
7	2	ATGN2=0.	AT	7
8		RETURN	AT	8
9	3	ATGN2=ATAN2(X,Y)	AT	9
10		RETURN	AT	10
11		END	AT	11-

BLCKOT

BLCKOT

PURPOSE

To control the writing and reading of matrix blocks on files for the outof-core matrix solution. The routine also checks for the end-of-file condition during reading.

METHOD

The routine uses a binary read and write with implied DO loops for reading and writing variable length strings into and out of various core locations. The end-of-file condition is checked by a call to function ENF.

If an unexpected end of file is detected (governed by NEOF) the program stops.

CODING

BL9 - BL12 Write a record on file NUNIT.

BL14 - BL20 Read NBLKS records from NUNIT, and check for end of file.

BL21 - BL24 Code if end of file detected.

SYMBOL DICTIONARY

AR = matrix array

ENF = external function (checks end-of-file condition)

I = DO loop index

II = implied DO loop limits, inclusive matrix locations written from

I2 or read into

J = implied DO index

NBLKS = number of records to be read

NEOF = EOF check flag, also used to trace the call to BLCKOT

NUNIT = file number

CONSTANT

CONTRACTOR OF THE PROPERTY OF

777 = NEOF when EOF is expected by calling program

BLCKCT

1 2	C	SUBROUTINE BLCKOT (AR, NUNIT, IX1, IX2, NBLKS, NEOF)	BL BL	1
3		BLCKOT CONTROLS THE READING AND WRITING OF MATRIX BLOCKS ON FILES	BL	2
4		FOR THE OUT-OF-CORE MATRIX SOLUTION.	BL	4
5			BL	5
		LOGICAL ENF	BL	6
6		COMPLEX AR	BL	7
8		DIMENSION AR(1)	BL	8
9		I1=(IX1+1)/2	BL	9
10		I2=(IX2+1)/2	BL	10
11	1	WRITE (NUNIT) (AR(J), J=I1, I2)	Br.	11
12		RETURN	BL	12
13		ENTRY BLCKIN	BL	
14		I1=(IX1+1)/2	BL	13
15		I2=(IX2+1)/2		14
16		DO 2 I=1,NBLKS	BL	15
17		READ (NUNIT) (AR(J), J=I1, I2)	BL	16
18		IF (ENF(NUNIT)) GO TO 3	BL	17
19	2	CONTINUE	BL	18
20	-	RETURN	BL	19
21	7		BL	20
	3	PRINT 4, NUNIT, NBLKS, NEOF	BL	21
22		IF (NEOF.NE.777) STOP	BL	22
23		NEOF=0	BL	23
24	_	RETURN	BL	24
25			BL	25
26	4	FORMAT (13H EOF ON UNIT, 13,9H NBLKS= ,13,8H NEOF= ,15)	BL	26
27		END	BL	27-

CABC

PURPOSE

To compute the coefficients in the current function on each segment, given the basis function amplitudes. Surface current components are also computed.

METHOD

The total current on segment i is

$$I_{i}(s) = A_{i} + B_{i} \sin [k(s - s_{i})] + C_{i} \cos [k(s - s_{i})]$$

where s is distance along the wire, and $s = s_i$ at the center of segment i. The coefficients A_i , B_i , and C_i are the sums of the corresponding coefficients in the portion of each basis function that extends onto segment i.

CODING

CB35 Call to TBF computes components of basis function I.

CB36 - CB43 The basis function components are multiplied by the basis function amplitude from array CURX and summed for each segment.

CB45 - CB63 For a current slope discontinuity source, the special basis function with discontinuous slope, from which the exciting electric field was computed, is recomputed and added to the current coefficients. The call to TBF, with the second argument zero and ICON1(I) temporarily zero, computes a basis function going to zero with non-zero derivative at end one of segment I.

CB64 - CB65 Total current at the center of each segment is computed and stored in place of the basis function amplitudes.

CB68 - CB79 The \hat{t}_1 and \hat{t}_2 components of surface current for each patch are expanded to x, y, and z components.

SYMBOL DICTIONARY

CURD = amplitude of the special basis function for a current slope discontinuity source

CURX = input array of basis function amplitudes that are replaced by values of current at segment centers

J = number of a segment onto which a basis function extends

JC01 = array locations of the $\hat{\tau}_1$ and $\hat{\tau}_2$ surface current components
JC02 for a patch

JX = DO loop index; temporary storage of connection number

K = array location for patch geometry data

SH = (half segment length)/ λ

TP $= 2\pi$

```
SUBROUTINE CABC (CURX)
                                                                                                                                                                                        CB
 2 C
                                                                                                                                                                                       CB
                                                                                                                                                                                                    2
                     CABC COMPUTES COEFFICIENTS OF THE CONSTANT (A), SINE (B), AND
  3 C
                                                                                                                                                                                        CB
                                                                                                                                                                                                    3
  4 C
                     COSINE (C) TERMS IN THE CURRENT INTERPOLATION FUNCTIONS FOR THE
                                                                                                                                                                                        CB
                     CURRENT VECTOR CUR.
  5 C
                                                                                                                                                                                        CB
                                                                                                                                                                                                    5
  6
      C
                                                                                                                                                                                       CB
                                                                                                                                                                                                    6
                     COMPLEX CUR, CURX, VQDS, CURD, CCJ, VSANT, VQD, CS1, CS2
  7
                                                                                                                                                                                        CB
                                                                                                                                                                                                    7
  8
                     COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 CB
                                                                                                                                                                                                    8
                   1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(
 9
                                                                                                                                                                                       CB
                                                                                                                                                                                                    9
10
                  2300), WLAM, IPSYM
                                                                                                                                                                                                  10
                     COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300 CB
11
                                                                                                                                                                                                  11
                   1), CUR(900)
12
                                                                                                                                                                                                  12
13
                     COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP
                                                                                                                                                                                                  13
14
                   1CON(10), NPCON
                                                                                                                                                                                                  14
15
                     COMMON /VSORC/ VQD(30), VSANT(30), VQDS(30), IVQD(30), ISANT(30), IQDS(
                                                                                                                                                                                                  15
16
                   130), NVQD, NSANT, NQDS
                                                                                                                                                                                        CB
                                                                                                                                                                                                  16
17
                     COMMON /ANGL/ SALP(300)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  17
                     DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)
18
                                                                                                                                                                                        CB
                                                                                                                                                                                                  18
19
                     DIMENSION CURX(1), CCJX(2)
                                                                                                                                                                                                  19
20
                     EQUIVALENCE (TIX,SI), (TIY,ALP), (TIZ,BET), (T2X,ICON1), (T2Y,ICON CB
                                                                                                                                                                                                  20
21
                   12), (T2Z, ITAG)
                                                                                                                                                                                        CB
                                                                                                                                                                                                 21
22
                     EQUIVALENCE (CCJ,CCJX)
                                                                                                                                                                                        CB
                                                                                                                                                                                                 22
23
                     DATA TP/6.283185308/,CCJX/0.,-0.01666666667/
                                                                                                                                                                                        CB
                                                                                                                                                                                                  23
24
                     IF (N.EQ.0) GO TO 6
                                                                                                                                                                                        CB
                                                                                                                                                                                                  24
25
                     DO 1 I=1,N
                                                                                                                                                                                        CB
                                                                                                                                                                                                 25
26
                     AIR(I)=0.
                                                                                                                                                                                        CB
                                                                                                                                                                                                 26
27
                     AII(I)=0.
                                                                                                                                                                                        CB
                                                                                                                                                                                                 27
28
                     BIR(I)=0.
                                                                                                                                                                                        CB
                                                                                                                                                                                                 28
29
                     BII(I)=0.
                                                                                                                                                                                        CB
                                                                                                                                                                                                  29
30
                     CIR(I)=0.
                                                                                                                                                                                        CB
                                                                                                                                                                                                  30
                     CII(I)=0.
31 1
                                                                                                                                                                                        CB
                                                                                                                                                                                                  31
32
                     DO 2 I=1,N
                                                                                                                                                                                        CB
                                                                                                                                                                                                  32
33
                     AR=REAL(CURX(I))
                                                                                                                                                                                        CB
                                                                                                                                                                                                  33
34
                     AI=AIMAG(CURX(I))
                                                                                                                                                                                        CB
                     CALL TBF (I,1)
35
                                                                                                                                                                                        CB
                                                                                                                                                                                                  35
36
                     DO 2 JX=1, JSNO
                                                                                                                                                                                        CR
                                                                                                                                                                                                  36
37
                      J=JCO(JX)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  37
38
                     AIR(J)=AIR(J)+AX(JX)*AR
                                                                                                                                                                                        CB
                                                                                                                                                                                                  38
39
                     AII(J)=AII(J)+AX(JX)*AI
                                                                                                                                                                                        CB
                                                                                                                                                                                                  39
40
                     BIR(J)=BIR(J)+BX(JX)*AR
                                                                                                                                                                                        CB
                                                                                                                                                                                                  40
41
                     BII(J)=BII(J)+BX(JX)*AI
                                                                                                                                                                                        CB
                                                                                                                                                                                                  41
42
                     CIR(J)=CIR(J)+CX(JX)*AR
                                                                                                                                                                                        CB
                                                                                                                                                                                                  42
43 2
                     CII(J)=CII(J)+CX(JX)*AI
                                                                                                                                                                                        CB
                                                                                                                                                                                                  43
44
                     IF (NQDS.EQ.0) GO TO 4
                                                                                                                                                                                        CB
                                                                                                                                                                                                  44
45
                     DO 3 IS=1, NQDS
                                                                                                                                                                                        CB
                                                                                                                                                                                                  45
46
                     I=IQDS(IS)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  46
47
                      JX=ICON1(I)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  47
48
                      ICON1(I)=0
                                                                                                                                                                                        CB
                                                                                                                                                                                                  48
49
                      CALL TBF (I,0)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  49
50
                      ICON1(I)=JX
                                                                                                                                                                                        CR
                                                                                                                                                                                                  50
51
                      SH=SI(I) .5
                                                                                                                                                                                        CB
                                                                                                                                                                                                  51
52
                      CURD = CCJ \cdot VQDS(IS)/((ALOG(2. \cdot SH/BI(I)) - 1.) \cdot (BX(JSNO) \cdot COS(TP \cdot SH) + CX(ISNO) \cdot (BX(JSNO) \cdot COS(TP \cdot SH) + CX(ISNO) \cdot (BX(JSNO) \cdot CS(TP \cdot SH) + CX(
                                                                                                                                                                                        CB
                                                                                                                                                                                                  52
53
                    1JSNO) *SIN(TP*SH)) *WLAM)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  53
54
                      AR=REAL(CURD)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  54
55
                      AI=AIMAG(CURD)
                                                                                                                                                                                        CB
                                                                                                                                                                                                  55
56
                      DO 3 JX=1, JSNO
                                                                                                                                                                                        CB
                                                                                                                                                                                                  56
                      J=JCO(JX)
57
                                                                                                                                                                                        CB
                                                                                                                                                                                                  57
58
                      AIR(J)=AIR(J)+AX(JX)*AR
                                                                                                                                                                                        CB
                                                                                                                                                                                                  58
59
                      AII(J)=AII(J)+AX(JX)*AI
                                                                                                                                                                                                  59
                                                                                                                                                                                        CB
60
                      BIR(J)=BIR(J)+BX(JX)*AR
                                                                                                                                                                                        CB
                                                                                                                                                                                                  60
61
                      BII(J)=BII(J)+BX(JX)*AI
                                                                                                                                                                                        CR
                                                                                                                                                                                                  61
62
                      CIR(J)=CIR(J)+CX(JX)*AR
                                                                                                                                                                                        CB
                                                                                                                                                                                                  62
63 3
                      CII(J)=CII(J)+CX(JX)*AI
                                                                                                                                                                                        CB
                                                                                                                                                                                                  63
                                                                                                                                                                                        CB
64 4
                      DO 5 I=1,N
                                                                                                                                                                                                  64
```


65 5	CURX(I)=CMPLX(AIR(I)+CIR(I),AII(I)+CII(I))	СВ	65
66 6	IF (M.EQ.O) RETURN	CB	66
67 C	CONVERT SURFACE CURRENTS FROM T1,T2 COMPONENTS TO X,Y,Z COMPONENTS	CB	67
68	K=LD-M	CB	68
69	JC01=N+2*M+1	CB	69
70	JCO2=JCO1+M	CB	70
71	DO 7 I=1,M	CB	71
72	K=K+1	CB	72
73	JC01=JC01-2	CB	73
74	JC02=JC02-3	CB	74
75	CS1=CURX(JCO1)	CB	75
76	CS2=CURX(JC01+1)	CB	76
77	CURX(JCO2)=CS1+T1X(K)+CS2+T2X(K)	CB	77
78	CURX(JCO2+1)=CS1*T1Y(K)+CS2*T2Y(K)	CB	78
79 7	CURX(JC02+2)=CS1*T1Z(K)+CS2*T2Z(K)	CB	79
80	RETURN	CB	80
81	END	CB	81-

CANG

PURPOSE

To calculate the phase angle of a complex number in degrees.

METHOD

$$z = x + jy$$

 $\phi = [\arctan (y/x)] 57.29577951$

SYMBOL DICTIONARY

AIMAG = external routine (imaginary part of complex number)

ATGN2 = external routine (arctan for all quadrants)

CANG = ϕ

REAL = external routine (real part of a complex number)

Z = input complex quantity

CONSTANT

57.29577951 conversion from radians to degrees

CODE LISTING

1	FUNCTION CANG (Z)	CA	1
2 C		CA	2
3 C	CANG RETURNS THE PHASE ANGLE OF A COMPLEX NUMBER IN DEGREES.	CA	3
4 C		CA	4
5	COMPLEX Z	CA	5
6	CANG=ATGN2(AIMAG(Z), REAL(Z))*57.29577951	CA	6
7	RETURN	CA	7
8	END	CA	8-

CONTROL OF THE PROPERTY OF THE

CMNGF

PURPOSE

To compute and store the matrices B, C and D for the NGF solution.

METHOD

The structure of matrices B, C and D is described in Section VI. The coding to fill these matrices is involved due to their complex structure, as shown in Figure 12 of Section VI. The complexity is increased by the need to divide the matrices into blocks of rows when they are stored on files (see Section VII).

Much of the coding in CMNGF has to do with connections between new and NGF segments and patches. When a new segment or patch connects to a NGF segment the basis function associated with the NGF segment is modified due to the new junction condition. The amplitude of the modified basis function is a new unknown associated with the B' and D' sections of the matrix. The modified basis function may extend onto other NGF segments that may or may not connect directly to new segments. Also, the basis function of the new segment extends onto the NGF segment to which it connects. Hence fields must be computed for the currents on some NGF segments as well as all new segments.

Comments in the code should be of some help in understanding the procedure. The notation D(WS) in the comments corresponds to D_{SW} in Figure 12. Some parts of the code are explained below.

CG61 - CG70

TRIO computes the components of all basis functions on segment J, where J is a new segment, and stores the coefficients in COMMON/SEGJ/. The array JCO contains the basis-function numbers which ordinarily are the matrix columns associated with the basis functions. If the basis function is for a new segment then JCO is set at CG66 to the column relative to the beginning of the matrix B. If the basis function is for a NGF segment modified by the connection, then JCO is set at CG68 to the column in B relative to the beginning of B. Thus the calls to CMWW and CMWS may store contributions in B and B as well as B and B sw.

CG90 - CG108

In this section the fields are evaluated for NGF segments that connect to new segments or patches. TRIO finds all basis functions that contribute to the current on the segment. For a component of a new basis function IR is set to the column in B at CG95. For a component of a modified basis function IR is set to the column in B, relative to the start of B, at CG99. If the basis function component is for a NGF basis function that has not been modified the test at CG98 skips to the end of the loop. The arrays in COMMON/SEGJ/ are adjusted from CG101 to CG104 so that CMWW and CMWS will store the matrix element contributions in the correct locations.

CG109 - CG119 If a NGF segment connects to a new segment on one end and to a NGF patch on the opposite end the modified basis function extends onto the patch as a singular component . of the patch current. The field due to this component on the patch is added to the matrix element of the modified basis function at CG119.

CG122-CG136

This is similar to CG90 to CG108, but evaluates fields of NGF segments that get contributions from modified basis functions, but do not connect directly to new segments. TBF is called, rather than TRIO to compute modified basis function J on all segments on which it exists. New segments and NGF segments for which contributions have already been evaluated are skipped at CG133 and CG134.

CG165 - CG263 Filling C and D is similar to that for B but fields must be evaluated for all NGF segments and patches as well as new segments and patches.

SYMBOL DICTIONARY

= array for matrix B CB

CC = array for matrix C

CD = array for matrix D

IEXKX = flag to select extended thin-wire kernel

MIEQ = number of patch equations in NGF

= total number of patch equations MEQ

NB = row dimension of CB. CB will contain only one block of B when ICASX = 3 or 4

NC = row dimension of CC (C transposed)
ND = row dimension of CD (D transposed)

NEQN = starting column of Dws, relative to start of C

NEQP = starting column of zeros after D www, relative to start of D

NEQS = starting column of D , relative to start of D

NEQSP = starting column of Dww, relative to start of C

RKHX = minimum range for using the lumped current approximation for the field of a segment

CMNGF

```
SUBROUTINE CMNGF (CB,CC,CD,NB,NC,ND,RKHX,IEXKX)
                                                                                    CG
  C
2
         CMNGF FILLS INTERACTION MATRICIES B, C, AND D FOR N.G.F. SOLUTION
                                                                                    CG
                                                                                         2
 3
         COMPLEX CB,CC,CD,ZARRAY,EXK,EYK,EZK,EXS,EYS,EZS,EXC,EYC,EZC
                                                                                    CG
                                                                                         3
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300
                                                                                   CG
5
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( CG
 6
        2300), WLAM, IPSYM
                                                                                    CG
 7
         COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF
                                                                                    CG
                                                                                         7
 8
         COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP
                                                                                   CG
                                                                                         8
9
         1CON(10), NPCON
                                                                                         9
                                                                                    CG
10
         COMMON /DATAJ/ S.B.XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ
                                                                                   CG
                                                                                        10
11
         1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                    CG
                                                                                        11
         COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I
12
                                                                                        12
13
         1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL
                                                                                    CG
                                                                                        13
14
         DIMENSION CB(NB,1), CC(NC,1), CD(ND,1)
                                                                                    CG
                                                                                        14
15
         RKH=RKHX
                                                                                    CG
                                                                                        15
16
         IEXK=IEXKX
                                                                                    CG
                                                                                        16
17
         M1EQ=2*M1
                                                                                    CG
                                                                                        17
18
         M2EQ=M1EQ+1
                                                                                    CG
                                                                                        18
19
         MEQ=2°M
                                                                                    CG
                                                                                        19
20
         NEQP=ND-NPCON*2
                                                                                    CG
                                                                                        20
21
         NEQS=NEQP-NSCON
                                                                                    CG
                                                                                        21
22
         NEQSP=NEQS+NC
                                                                                    CG
                                                                                        22
23
         NEQN=NC+N-N1
                                                                                    CG
                                                                                        23
24
         ITX=1
                                                                                    CG
                                                                                        24
25
         IF (NSCON.GT.0) ITX=2
                                                                                    CG
                                                                                        25
26
         IF (ICASX.EQ.1) GO TO 1
                                                                                    CG
                                                                                        26
27
         REWIND 12
                                                                                    CG
                                                                                        27
28
         REWIND 14
                                                                                    CG
                                                                                        28
29
         REWIND 15
                                                                                    CG
                                                                                        29
30
         IF (ICASX.GT.2) GO TO 5
                                                                                    CG
                                                                                        30
31 1
          DO 4 J=1,ND
                                                                                    CG
                                                                                        31
         DO 2 I=1,ND
32
                                                                                    CG
                                                                                        32
33 2
         CD(I,J)=(0.,0.)
                                                                                    CG
                                                                                        33
34
         DO 3 I=1,NB
                                                                                    CG
                                                                                        34
35
         CB(I,J)=(0.,0.)
                                                                                    CG
                                                                                        35
36 3
                                                                                    CG
                                                                                        36
         CC(I,J)=(0.,0.)
37
          CONTINUE
                                                                                    CG
                                                                                        37
38
   5
          IST=N-N1+1
                                                                                    CG
                                                                                        38
39
          IT=NPBX
                                                                                    CG
                                                                                        39
40
          ISV=-NPBX
                                                                                    CG
                                                                                        40
41 C
          LOOP THRU 24 FILLS B. FOR ICASX=1 OR 2 ALSO FILLS D(WW), D(WS)
                                                                                    CG
                                                                                        41
42
          DO 24 IBLK=1,NBBX
                                                                                        42
                                                                                    CG
43
          ISV=ISV+NPBX
                                                                                    CG
                                                                                        43
          IF (IBLK.EQ.NBBX) IT=NLBX
44
                                                                                    CG
                                                                                        44
45
          IF
             (ICASX.LT.3) GO TO 7
                                                                                    CG
                                                                                        45
46
          DO 6 J=1,ND
                                                                                    CG
                                                                                        46
47
          DO 6 I=1,IT
                                                                                    CG
                                                                                        47
          CB(I,J)=(0.,0.)
48 6
                                                                                    CG
                                                                                        48
49 7
          I1=ISV+1
                                                                                    CG
                                                                                        49
50
                                                                                    CG
                                                                                        50
          I2=ISV+IT
51
          IN2=12
                                                                                    CG
                                                                                        51
          IF (IN2.GT.N1) IN2=N1
52
                                                                                    CG
                                                                                        52
53
          IM1=I1-N1
                                                                                    CG
                                                                                        53
54
          IM2=12-N1
                                                                                    CG
                                                                                        54
55
          IF (IM1.LT.1) IM1=1
                                                                                    CG
                                                                                        55
56
          IMX=1
                                                                                    CG
                                                                                        56
57
          IF (I1.LE.N1) IMX=N1-I1+2
                                                                                    CG
                                                                                        57
58
          IF (N2.GT.N) GO TO 12
                                                                                    CG
                                                                                        58
59
          FILL B(WW), B(WS). FOR ICASX=1,2 FILL D(WW), D(WS)
                                                                                    CG
                                                                                        59
60
          DO 11 J=N2,N
                                                                                    CG
                                                                                        60
61
          CALL TRIO (J)
                                                                                    CG
                                                                                        61
62
          DO 9 I=1.JSNO
                                                                                    CG
                                                                                        62
63
          JSS=JCO(I)
                                                                                    CG
                                                                                        63
64
          IF (JSS.LT.N2) GO TO 8
                                                                                    CG
                                                                                        64
```

65	C	SET JCO WHEN SOURCE IS NEW BASIS FUNCTION ON NEW SEGMENT	CG	65
66		JCO(I)=JSS-N1	CG	66
67		GO TO 9	CG	67
68	C	SOURCE IS PORTION OF MODIFIED BASIS FUNCTION ON NEW SEGMENT	CG	68
69	8	JCO(I)=NEQS+ICONX(JSS)	CG	69
70		CONTINUE	CG	70
71		IF (I1.LE.IN2) CALL CMMW (J,I1,IN2,CB,NB,CB,NB,O)	CG	71
72		IF (IM1.LE.IM2) CALL CMWS (J,IM1,IM2,CB(IMX,1),NB,CB,NB,0)	CG	72
73		IF (ICASX.GT.2) GO TO 11	CG	73
74		CALL CMWW (J,N2,N,CD,ND,CD,ND,1)	CG	74
75		IF (M2.LE.M) CALL CMWS (J,M2EQ,MEQ,CD(1,IST),ND,CD,ND,1)	CG	75
76	•	LOADING IN D(WW)		76
77		IF (NLOAD.EQ.0) GO TO 11	CG	
			CG	77
78		IR=J-N1	CG	78
79		EXK=ZARRAY(J)	CG	79
80		DO 10 I=1, JSNO	CG	80
81		JSS=JCO(I)	CG	81
	10	CD(JSS,IR)=CD(JSS,IR)-(AX(I)+CX(I))*EXK	CG	82
83		CONTINUE	CG	83
	12	IF (NSCON.EQ.0) GO TO 20	CG	84
85	C	FILL B(WW)PRIME	CG	85
86		DO 19 I=1,NSCON	CG	86
87		J=ISCON(I)	CG	87
88	C	SOURCES ARE NEW OR MODIFIED BASIS FUNCTIONS ON OLD SEGMENTS WHICH	CG	88
89	C	CONNECT TO NEW SEGMENTS	CG	89
90		CALL TRIO (J)	CG	90
91		JSS=0	CG	91
92		DO 15 IX=1, JSNO	CG .	92
93		IR=JCO(IX)	CG	93
94	1	IF (IR.LT.N2) GO TO 13	CG	94
95		IR=IR-N1	CG	95
96		GO TO 14 ·	CG	96
	13	IR=ICONX(IR)	CG	
98		IF (IR.EQ.0) GO TO 15	CG	98
99		IR=NEQS+IR	CG	99
100	14	JSS=JSS+1		100
101		JCO(JSS)=IR		101
102		AX(JSS)=AX(IX)		102
103			100/10	103
		BX(JSS)=BX(IX)		
104		CX(JSS)=CX(IX)		104
105	15	CONTINUE		105
106		JSNO=JSS		106
107		IF (I1.LE.IN2) CALL CMMW (J,I1,IN2,CB,NB,CB,NB,O)		107
108		IF (IM1.LE.IM2) CALL CMWS (J,IM1,IM2,CB(IMX,1),NB,CB,NB,0)		108
109	The second of	SOURCE IS SINGULAR COMPONENT OF PATCH CURRENT THAT IS PART OF		109
110		MODIFIED BASIS FUNCTION FOR OLD SEGMENT THAT CONNECTS TO A NEW		110
111		SEGMENT ON END OPPOSITE PATCH.		111
112		IF (I1.LE.IN2) CALL CMSW (J,I,I1,IN2,CB,CB,O,NB,-1)		112
113		IF (NLODF.EQ.0) GO TO 17		113
114		JX=J-ISV	CG	114
115			CG	
116		EXK=ZARRAY(J)	CG	116
117		DO 16 IX=1, JSNO	CG	117
118		JSS=JCO(IX)	CG	118
119	16	CB(JX, JSS)=CB(JX, JSS)-(AX(IX)+CX(IX))*EXK		119
120	C	SOURCES ARE PORTIONS OF MODIFIED BASIS FUNCTION J ON OLD SEGMENTS		120
121		EXCLUDING OLD SEGMENTS THAT DIRECTLY CONNECT TO NEW SEGMENTS.		121
122		CALL TBF (J,1)		122
123		JSX=JSNO		123
124		· · · · · · ·		124
125				125
126		ICO(1)=NFOS+T		126
127		IR=JCO(1) JCO(1)=NEQS+I DO 19 IX=1,JSX		127
128		IF (IX.EQ.1) GO TO 18		128
120		1 (11.64.1) 00 10 10	-	120

CMNGF

129	IR=JCO(IX)	CG 129
130	AX(1)=AX(IX)	CG 130
131	BX(1)=BX(IX)	CG 131
132	CX(1)=CX(IX)	CG 132
133 18	IF (IR.GT.N1) GO TO 19	CG 133
134	IF (ICONX(IR).NE.O) GO TO 19	CG 134
135	IF (I1.LE.IN2) CALL CMWW (IR,I1,IN2,CB,NB,CB,NB,O)	CG 135
136	IF (IM1.LE.IM2) CALL CMWS (IR,IM1,IM2,CB(IMX,1),NB,CB,NB,0)	CG 136
137 C	LOADING FOR B(WW)PRIME	CG 137
138	IF (NLODF.EQ.0) GO TO 19	CG 138
139	JX=IR-ISV	CG 139
140	IF (JX.LT.1.OR.JX.GT.IT) GO TO 19	CG 140
141	EXK=ZARRAY(IR) JSS=JCO(1)	CG 141
143	CB(JX, JSS)=CB(JX, JSS)-(AX(1)+CX(1))*EXK	CG 142 CG 143
144 19	CONTINUE	CG 143
145 20	IF (NPCON.EQ.0) GO TO 22	CG 145
146	JSS=NEQP	CG 146
147 C	FILL B(SS)PRIME TO SET OLD PATCH BASIS FUNCTIONS TO ZERO FOR	CG 147
148 C	PATCHES THAT CONNECT TO NEW SEGMENTS	CG 148
149	DO 21 I=1,NPCON	CG 149
150	IX=IPCON(I)*2+N1-ISV	CG 150
151	IR=IX-1	CG 151
152	JSS=JSS+1	CG 152
153	IF (IR.GT.O.AND.IR.LE.IT) CB(IR,JSS)=(1.,O.)	CG 153
154	JSS=JSS+1	CG 154
155	IF (IX.GT.O.AND.IX.LE.IT) CB(IX,JSS)=(1.,0.)	CG 155
156 21	CONTINUE	CG 156
157 22	IF (M2.GT.M) GO TO 23	CG 157
158 C	FILL B(SW) AND B(SS)	CG 158
159	IF (I1.LE.IN2) CALL CMSW (M2,M,I1,IN2,CB(1,IST),CB,N1,NB,0)	CG 159
160	IF (IM1.LE.IM2) CALL CMSS (M2,M,IM1,IM2,CB(IMX,IST),NB,0)	CG 160
161 23	IF (ICASX.EQ.1) GO TO 24	CG 161
162	WRITE (14) ((CB(I,J),I=1,IT),J=1,ND)	CG 162
163 24	CONTINUE	CG 163
164 C	FILLING B COMPLETE. START ON C AND D	CG 164
165	IT=NPBL	CG 165
166	ISV=-NPBL	CG 166
167 168	DO 43 IBLK=1,NBBL	CG 167 CG 168
169	ISV=ISV+NPBL ISVV=ISV+NC	CG 169
170	IF (IBLK.EQ.NBBL) IT=NLBL	CG 170
171	IF (ICASX.LT.3) GO TO 27	CG 171
172	DO 26 J=1,IT	CG 172
173	DO 25 I=1,NC	CG 173
174 25	CC(I,J)=(0.,0.)	CG 174
175	DO 26 I=1,ND	CG 175
176 26	CD(I,J)=(0.,0.)	CG 176
177 27	I1=ISVV+1	CG 177
178	I2=ISVV+IT	CG 178
179	IN1=I1-M1EQ	CG 179
180	IN2=I2-M1EQ	CG 180
181	IF (IN2.GT.N) IN2=N	CG 181
182	IM1=I1-N	CG 182
183	IM2=I2-N	CG 183
184	IF (IM1.LT.M2EQ) IM1=M2EQ	CG 184
185	IF (IM2.GT.MEQ) IM2=MEQ	CG 185
186	IMX=1	CG 186
187	IF (IN1.LE.IN2) IMX=NEQN-I1+2	CG 187
188	IF (ICASX.LT.3) GO TO 32	CG 188
189	IF (N2.GT.N) GO TO 32	CG 189
190 C	SAME AS DO 24 LOOP TO FILL D(WW) FOR ICASX GREATER THAN 2	CG 190
191	DO 31 J=N2,N	CG 191 CG 192
192	CALL TRIO (J)	CG 192


```
CMNGF
          DO 29 I=1, JSNO
193
                                                                                 CG 193
194
          JSS=JCO(I)
                                                                                 CG 194
                                                                                 CG 195
          IF (JSS.LT.N2) GO TO 28
195
196
          JCO(I)=JSS-N1
                                                                                 CG 196
197
          GO TO 29
                                                                                 CG 197
198 28
          JCO(I)=NEQS+ICONX(JSS)
                                                                                 CG 198
199 29
          CONTINUE
                                                                                 CG 199
200
          IF (IN1.LE.IN2) CALL CMWW (J,IN1,IN2,CD,ND,CD,ND,1)
                                                                                 CG 200
201
          IF (IM1.LE.IM2) CALL CMWS (J,IM1,IM2,CD(1,IMX),ND,CD,ND,1)
                                                                                 CG 201
202
          IF (NLOAD.EQ.O) GO TO 31
                                                                                 CG 202
203
          IR=J-N1-ISV
                                                                                 CG 203
204
          IF (IR.LT.1.OR.IR.GT.IT) GO TO 31
                                                                                 CG 204
205
          EXK=ZARRAY(J)
                                                                                 CG 205
206
                                                                                 CG 206
          DO 30 I=1, JSNO
207
          JSS=JCO(I)
                                                                                 CG 207
          CD(JSS, IR)=CD(JSS, IR)-(AX(I)+CX(I))*EXK
                                                                                 CG 208
208 30
209 31
          CONTINUE
                                                                                 CG 209
          IF (M2.GT.M) GO TO 33
                                                                                 CG 210
210 32
211 C
          FILL D(SW) AND D(SS)
                                                                                 CG 211
          IF (IN1.LE.IN2) CALL CMSW (M2,M,IN1,IN2,CD(IST,1),CD,N1,ND,1)
212
                                                                                 CG 212
          IF (IM1.LE.IM2) CALL CMSS (M2,M,IM1,IM2,CD(IST,IMX),ND,1)
213
                                                                                 CG 213
214 33
          IF (N1.LT.1) GO TO 39
                                                                                 CG 214
          FILL C(WW), C(WS), D(WW)PRIME, AND D(WS)PRIME.
215 C
                                                                                 CG 215
216
          DO 37 J=1,N1
                                                                                 CG 216
                                                                                 CG 217
          CALL TRIO (J)
217
          IF (NSCON.EQ.O) GO TO 36
                                                                                 CG 218
218
          DO 35 IX=1, JSNO
219
                                                                                 CG 219
220
          JSS=JCO(IX)
                                                                                 CG 220
221
          IF (JSS.LT.N2) GO TO 34
                                                                                 CG 221
          JCO(IX)=JSS+M1EQ
                                                                                 CG 222
222
223
          GO TO 35
                                                                                 CG 223
                                                                                 CG 224
224 34
          IR=ICONX(JSS)
          IF (IR.NE.O) JCO(IX)=NEQSP+IR
                                                                                 CG 225
225
226 35
          CONTINUE
                                                                                 CG 226
227 36
          IF (IN1.LE.IN2) CALL CMMW (J, IN1, IN2, CC, NC, CD, ND, ITX)
          IF (IM1.LE.IM2) CALL CMWS (J,IM1,IM2,CC(1,IMX),NC,CD(1,IMX),ND,ITX CG 228
228
                                                                                 CG 229
229
          1)
          CONTINUE
                                                                                 CG 230
230 37
231
          IF (NSCON.EQ.O) GO TO 39
                                                                                 CG 231
232 C
          FILL C(WW)PRIME
                                                                                 CG 232
233
          DO 38 IX=1,NSCON
                                                                                 CG 233
          IR=ISCON(IX)
                                                                                 CG 234
234
                                                                                 CG 235
235
           JSS=NEQS+IX-ISV
          IF (JSS.GT.O.AND.JSS.LE.IT) CC(IR,JSS)=(1.,O.)
                                                                                 CG 236
236
                                                                                 CG 237
237 38
          CONTINUE
238 39
          IF (NPCON.EQ.O) GO TO 41
                                                                                 CG 238
                                                                                 CG 239
239
           JSS=NEQP-ISV
240 C
          FILL C(SS)PRIME
                                                                                 CG 240
                                                                                 CG 241
241
          DO 40 I=1 .NPCON
                                                                                 CG 242
242
          IX=IPCON(I)*2+N1
                                                                                 CG 243
243
          IR=IX-1
244
          JSS=JSS+1
                                                                                 CG 244
245
          IF (JSS.GT.O.AND.JSS.LE.IT) CC(IR,JSS)=(1.,O.)
                                                                                 CG 245
                                                                                 CG 246
246
           JSS=JSS+1
                                                                                 CG 247
247
          IF (JSS.GT.O.AND.JSS.LE.IT) CC(IX,JSS)=(1.,0.)
248 40
          CONTINUE
                                                                                 CG 248
249 41
           IF (M1.LT.1) GO TO 42
                                                                                 CG 249
250 C
                                                                                 CG 250
           FILL C(SW) AND C(SS)
           IF (IN1.LE.IN2) CALL CMSW (1,M1,IN1,IN2,CC(N2,1),CC,0,NC,1)
251
                                                                                 CG 251
252
           IF (IM1.LE.IM2) CALL CMSS (1,M1,IM1,IM2,CC(N2,IMX),NC,1)
                                                                                 CG 252
                                                                                 CG 253
253 42
           CONTINUE
```

CG 254

CG 255

CG 256

IF (ICASX.EQ.1) GO TO 43

WRITE (12) ((CD(J,I),J=1,ND),I=1,IT)

WRITE (15) ((CC(J,I),J=1,NC),I=1,IT)

254 255

CMNGF

257 43	CONTINUE	CG 257
258	IF(ICASX.EQ.1)RETURN	CG 258
259	REWIND 12	CG 259
260	REWIND 14	CG 260
261	REWIND 15	CG 261
262	RETURN	CG 262
263	END	CG 263-

CMSET

PURPOSE

To control the filling of the interaction matrix.

METHOD

The linear equations resulting from the moment method solution of equations 13, 14 and the negative of equation 15 in Part I are written as

$$\sum_{j=1}^{N} a_{j} A_{ij} + \sum_{j=1}^{2M} b_{j} B_{ij} = E_{i}, \qquad i = 1, \dots N$$

$$\sum_{j=1}^{N} c_{j} c_{kj} + \sum_{j=1}^{2M} d_{j} D_{kj} = H_{k}, \qquad k = 1, \dots 2M$$

where N = number of segments

M = number of patches

$$A_{ij} = \hat{s}_i \cdot (\bar{E} \text{ at } \bar{r}_i \text{ due to segment basis function } j)$$

$$B_{ij} = \hat{s}_i \cdot (\bar{E} \text{ at } \bar{r}_i \text{ due to current on patch } [(j+1)/2] \text{ in }$$

$$\text{direction } \hat{u}_j)$$

$$C_{kj} = -\hat{v}_k \cdot (\bar{H} \text{ at } \bar{p}_{[(k+1)/2]} \text{ due to segment basis function } j)$$

$$\cdot s_{[(k+1)/2]}$$

$$D_{kj} = -\hat{v}_k \cdot (\bar{H} \text{ at } \bar{p}_{[(k+1)/2]} \text{ due to current on patch } [(j+1)/2]$$

$$\text{in direction } \hat{u}_j) s_{[(k+1)/2]} + \frac{1}{2} \sigma_{kj}$$

$$E_i = -\hat{s}_i \cdot (\text{incident electric field at } \bar{r}_i)$$

$$H_k = \hat{v}_k \cdot (\text{incident magnetic field at } \bar{p}_{[(k+1)/2]}) s_{[(k+1)/2]}$$

$$\bar{r}_i = \text{position of the center of segment } i$$

The basis function amplitudes a_j , b_j , c_j and d_j are determined later by solving the matrix equation of order N + 2M.

The matrix elements are computed by calling subroutines CMWW, CMSW, CMWS, and CMSS for the elements of A, B, C and D respectively. For A and C the components of all basis functions that extend across segment J are computed by calling TRIO at CM 52. CMWW and CMWS are then called to compute the components of A or C due to these basis function components on segment J.

If segment j, with length Δ_j , is loaded with impedance Z_j the elements of A are modified as $A_{jk} = A_{jk} - \frac{Z_j}{\Delta j} X$ (value of basis function k at the center of segment j) for k = the numbers of all basis functions that extend onto segment j. The summation over values of k (k = JSS) for loading on segment J occurs at CM 68.

The submatrices are stored in the array CM in transposed form. All references to rows and columns, here, apply to the nontransposed matrices. Thus "row" in this discussion refers to the second index of CM in the code.

For a structure without symmetry the submatrices are stored in the order

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

If the complete matrix is too large for the array CM then blocks of rows are filled and written on file 11. A block may then contain rows from A and B, rows from C and D or a combination. The row of CM at which C and D start is computed as IST.

For a structure having p symmetric sections the submatrices are stored in the form

$$\begin{bmatrix} A_1 & B_1 & A_2 & B_2 & A_p & B_p \\ C_1 & D_1 & C_2 & D_2 & C_p & D_p \end{bmatrix}$$

where
$$\begin{bmatrix} A_i & B_i \\ C_i & D_i \end{bmatrix}$$

represents A₁ in the first row of submatrices in equation 108 of Part I. Each call to CMWW and CMWS may fill elements of A₁ or C₁ for any value of i. The column indices in array JCO are adjusted at CM 55 to allow for the columns occupied by the B₁ and D₁ matrices. B₁ and D₂ are filled for each value of i in the loop from CM 75 to CM 81. The Fourier transform of the submatrices, or the transform for planar symmetry (equation 116 of Part I) is computed from CM 85 to CM 100.

SYMBOL DICTIONARY

CM = array for the matrix

Il = number of first equation in a block (patch equation +N for
 patches)

I2 = number of the last equation in a block

IEXXX = 1 to use extended thin wire kernel on wires, 0 otherwise

IMl = number of first patch equation in a block

CMSET

IM2 = number of last patch equation in a block

IN2 = number of the last segment equation in a block

IOUT = number of real numbers in a block for output

IPR = row in CM (second index) for segment J

IST = row in CM of the first patch equation

ISV = I1 - 1

IT = number of rows in a block

IXBLK1 = block number

JM1 = number of first patch in a symmetric section

JM2 = number of the last patch in a symmetric section

JST = column in CM of the first patch equation for a symmetric block

MP2 = number of patch equations

NEQ = total number of equations

NOP = number of symmetric sections

NPEQ = number of equations in a symmetric section

NROW = row dimensions of the transposed CM array

RKHX = minimum interaction distance at which the infinitesimal dipole

approximation is used for the field of a segment

 $ZAJ = Z_j/\Delta_j$

```
CMSET
         SUBROUTINE CMSET (NROW, CM, RKHX, IEXKX)
                                                                                     CM
2 C
                                                                                     CM
                                                                                          2
3
  C
         CMSET SETS UP THE COMPLEX STRUCTURE MATRIX IN THE ARRAY CM
                                                                                     CM
                                                                                          3
  C
4
                                                                                     CM
5
         COMPLEX CM, ZARRAY, ZAJ, ETK, ETS, ETC, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC.
                                                                                     CM
         1EZC, SSX, D, DETER
 6
                                                                                           6
          COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 CM
                                                                                           7
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( CM
8
                                                                                          8
 9
        2300), WLAM, IPSYM
                                                                                          9
10
          COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I CM
                                                                                          10
         1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL
11
                                                                                     CM
                                                                                         11
12
          COMMON /SMAT/ SSX(16,16)
                                                                                     CM
                                                                                         12
13
          COMMON /SCRATM/ D(600)
                                                                                     CM
                                                                                         13
          COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF
14
                                                                                     CM
                                                                                         14
15
          COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP
                                                                                     CM
                                                                                         15
16
         1CON(10), NPCON
                                                                                     CM
                                                                                         16
17
          COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ CM
                                                                                         17
18
         1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                         18
19
          DIMENSION CM(NROW, 1)
                                                                                     CM
                                                                                         19
20
          MP2=2*MP
                                                                                     CM
                                                                                         20
          NPEQ=NP+MP2
21
                                                                                     CM
                                                                                         21
22
          NEQ=N+2°M
                                                                                     CM
                                                                                         22
23
          NOP=NEQ/NPEQ
                                                                                         23
                                                                                     CM
24
          IF (ICASE.GT.2) REWIND 11
                                                                                     CM
                                                                                         24
25
          RKH=RKHX
                                                                                     CM
                                                                                         25
26
          TEXK=TEXKX
                                                                                     CM
                                                                                         26
          IOUT=2*NPBLK*NROW
27
                                                                                     CM
                                                                                         27
28
          IT=NPBLK
                                                                                     CM
                                                                                         28
29 C
                                                                                     CM
                                                                                         29
30 C
          CYCLE OVER MATRIX BLOCKS
                                                                                     CM
                                                                                         30
31 C
                                                                                     CM
                                                                                         31
32
          DO 13 IXBLK1=1,NBLOKS
                                                                                     CM
                                                                                         32
33
          ISV=(IXBLK1-1)*NPBLK
                                                                                     CM
                                                                                         33
34
          IF (IXBLK1.EQ.NBLOKS) IT=NLAST
                                                                                     CM
                                                                                         34
35
          DO 1 I=1, NROW
                                                                                     CM
                                                                                          35
36
          DO 1 J=1, IT .
                                                                                     CM
                                                                                          36
37 1
          CM(I,J)=(0.,0.)
                                                                                     CM
                                                                                          37
38
          I1=ISV+1
                                                                                     CM
                                                                                         38
39
          I2=ISV+IT
                                                                                     CM
                                                                                         39
40
          IN2=12
                                                                                     CM
                                                                                          40
41
          IF (IN2.GT.NP) IN2=NP
                                                                                     CM
                                                                                          41
          IM1=I1-NP
42
                                                                                     CM
                                                                                          42
43
          IM2=12-NP
                                                                                     CM
                                                                                          43
44
          IF (IM1.LT.1) IM1=1
                                                                                     CM
                                                                                          44
45
          IST=1
                                                                                     CM
                                                                                          45
46
          IF (I1.LE.NP) IST=NP-I1+2
                                                                                     CM
                                                                                          46
47
          IF (N.EQ.0) GO TO 5
                                                                                     CM
                                                                                          47
48 C
                                                                                     CM
                                                                                          48
49
   C
          WIRE SOURCE LOOP
                                                                                     CM
                                                                                          49
50
   C
                                                                                     CM
                                                                                         50
51
          DO 4 J=1.N
                                                                                     CM
                                                                                         51
52
          CALL TRIO (J)
                                                                                     CM
                                                                                         52
53
          DO 2 I=1, JSNO
                                                                                     CM
                                                                                         53
54
          IJ=JCO(I)
                                                                                     CM
                                                                                         54
55 2
          JCO(I)=((IJ-1)/NP)*MP2+IJ
                                                                                     CM
                                                                                         55
56
          IF (I1.LE.IN2) CALL CMWW (J, I1, IN2, CM, NROW, CM, NROW, 1)
                                                                                     CM
                                                                                         56
57
          IF (IM1.LE.IM2) CALL CMWS (J.IM1, IM2, CM(1, IST), NROW, CM, NROW, 1)
                                                                                     CM
                                                                                         57
          IF (NLOAD.EQ.O) GO TO 4
58
                                                                                     CM
                                                                                         58
59 C
                                                                                     CM
                                                                                         59
60
   C
          MATRIX ELEMENTS MODIFIED BY LOADING
                                                                                     CM
                                                                                         60
61 C
                                                                                     CM
                                                                                         61
62
          IF (J.GT.NP) GO TO 4
                                                                                     CM
                                                                                         62
63
          IPR=J-ISV
                                                                                     CM
                                                                                         63
          IF (IPR.LT.1.OR.IPR.GT.IT) GO TO 4
```

65		ZAJ=ZARRAY(J)	СМ	65
66		DO 3 I=1, JSNO	CM	66
67		JSS=JCO(I)	CM	67
68		CM(JSS, IPR)=CM(JSS, IPR)-(AX(I)+CX(I))*ZAJ	CM	68
69		CONTINUE	CM	69
70		IF (M.EQ.0) GO TO 7	CM	70
71	C	MATRIX ELEMENTS FOR PATCH CURRENT SOURCES	CM	71
72		JM1=1-MP	CM	72
73		JM2=0	CM	73
74		JST=1-MP2	CM	74
75		DO 6 I=1,NOP	CM	75
76		JM1=JM1+MP	CM	76
77		JM2=JM2+MP	CM	77
78		JST=JST+NPEQ	CM	78
79		IF (I1.LE.IN2) CALL CMSW (JM1, JM2, I1, IN2, CM(JST, 1), CM, 0, NROW, 1)	CM	79
80		IF (IM1.LE.IM2) CALL CMSS (JM1, JM2, IM1, IM2, CM(JST, IST), NROW, 1)	CM	80
81	6	CONTINUE	CM	81
82	7	IF (ICASE.EQ.1) GO TO 13	СМ	82
83		IF (ICASE.EQ.3) GO TO 12	СМ	83
84	C	COMBINE ELEMENTS FOR SYMMETRY MODES	CM	84
85		DO 11 I=1,IT	СМ	85
86		DO 11 J=1,NPEQ	CM	86
87		DO 8 K=1,NOP	СМ	87
88		KA=J+(K-1)*NPEQ	CM	88
89	8	D(K)=CM(KA,I)	СМ	89
90		DETER=D(1)	СМ	90
91		DO 9 KK=2,NOP	СМ	91
92	9	DETER=DETER+D(KK)	CM	92
93		CM(J,I)=DETER	CM	93
94		DO 11 K=2,NOP	СМ	94
95		KA=J+(K-1)*NPEQ	СМ	95
96		DETER=D(1)	CM	96
97		DO 10 KK=2.NOP	CM	97
	10	DETER=DETER+D(KK)*SSX(K,KK)	CM	98
99		CM(KA,I)=DETER	CM	99
300	11	CONTINUE		100
01		IF (ICASE.LT.3) GO TO 13		101
02	c	WRITE BLOCK FOR OUT-OF-CORE CASES.		102
	12	CALL BLCKOT (CM.11,1,IOUT,1,31)		103
	13	CONTINUE		104
05		IF (ICASE.GT.2) REWIND 11		105
06		RETURN		106
00		FUR		100

CMSS

To compute and store matrix elements representing the H field at patch centers due to the current on patches.

METHOD

CMSS computes the matrix elements D_{kj} defined in the description of subroutine CMSET. Subroutine HINTG is called to compute the magnetic field at the center of patch I due to current on patch J. H due to the current \hat{t}_1 on patch J is stored in EXK, EYK and EZK, while H due to current \hat{t}_2 is stored in EXS, EYS and EZS. The term $0.5~\sigma_{kj}$ in D_{kj} is added at CM 61 and CM 62 for odd and even equations. The matrix elements are stored in array CM from SS63 to SS78 in either normal or transposed order. Elements for both the even and odd equations are stored if both equations are within the block.

SYMBOL DICTIONARY

СМ	= array for matrix storage
G11	= D _{ki} for k odd, j odd
G12	= Dki for k odd, j even
G21	= D _{ki} for k even, j odd
G22	= D _{kj} for k even, j even
11	= patch number for first equation
12	= patch number for last equation
ICOMP	= equation number for the odd numbered equation for
	observation patch I
III	= location of the odd numbered equation in CM
112	= location of the even numbered equation in CM
IL	= array location for coordinates of petch I
IMI	= patch equation number for first equation in block
IM2	= patch equation number for last equation in block
ITRP	= 0 or 1 to select normal or transposed filling of CM
Jl	= number of first source patch
J2	= number of last source patch

= column in non-transposed matrix, of the first JJl equation for patch J = column of second equation for patch J JJ2 JL = array location for coordinates of patch J NROW = row dimension of CM TIXI, TIYI, TIZI T2XI, T2YI, T2ZI = x, y and z components of \hat{t}_1 or \hat{t}_2 for patch I TIXJ, TIYJ, TIZJ or J T2XJ, T2YJ, T2ZJ = coordinates of center of patch I XI, YI, ZI


```
CMSS
         SUBROUTINE CMSS (J1, J2, IM1, IM2, CM, NROW, ITRP)
                                                                                   SS
2 C
         CMSS COMPUTES MATRIX ELEMENTS FOR SURFACE-SURFACE INTERACTIONS.
                                                                                   SS
                                                                                         2
3
         COMPLEX G11,G12,G21,G22,CM,EXK,EYK,EZK,EXS,EYS,EZS,EXC,EYC,EZC
                                                                                   SS
                                                                                         3
         COMMON /DATA/ LD.N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 SS
5
        1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( SS
        2300), WLAM, IPSYM
6
7
         COMMON /ANGL/ SALP(300)
                                                                                         7
         COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ SS
8
                                                                                         8
9
         1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                   SS
                                                                                         9
         DIMENSION CM(NROW, 1)
10
                                                                                   SS
                                                                                        10
11
         DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)
                                                                                   SS
                                                                                        11
12
         EQUIVALENCE (TIX,SI), (TIY,ALP), (TIZ,BET), (T2X,ICON1), (T2Y,ICON SS
                                                                                        12
13
        12), (T2Z, ITAG)
14
         EQUIVALENCE (TIXJ, CABJ), (TIYJ, SABJ), (TIZJ, SALPJ), (T2XJ, B), (T2Y SS
15
        1J, IND1), (T2ZJ, IND2)
                                                                                        15
16
         LDP=LD+1
                                                                                   SS
                                                                                        16
         I1=(IM1+1)/2
17
                                                                                   SS
                                                                                        17
18
         I2=(IM2+1)/2
                                                                                   SS
                                                                                        18
19
         ICOMP=11 -2-3
                                                                                   SS
                                                                                        19
20
         II1=-1
                                                                                        20
21
         IF (ICOMP+2.LT.IM1) II1=-2
                                                                                   SS
                                                                                        21
22 C
         LOOP OVER OBSERVATION PATCHES
                                                                                   SS
                                                                                        22
23
         DO 5 I=I1,I2
                                                                                   SS
                                                                                        23
24
         IL=LDP-I
                                                                                   SS
                                                                                        24
25
         ICOMP=ICOMP+2
                                                                                   SS
                                                                                        25
26
         II1=II1+2
                                                                                   SS
                                                                                        26
27
         II2=II1+1
                                                                                        27
28
         T1XI=T1X(IL) *SALP(IL)
                                                                                   SS
                                                                                        28
29
         TIYI=TIY(IL) *SALP(IL)
                                                                                   SS
                                                                                        29
30
         TIZI=TIZ(IL) *SALP(IL)
                                                                                   SS
                                                                                        30
31
         T2XI=T2X(IL) *SALP(IL)
                                                                                        31
                                                                                   SS
         T2YI=T2Y(IL) *SALP(IL)
32
                                                                                   SS
                                                                                        32
33
         T2ZI=T2Z(IL) *SALP(IL)
                                                                                   SS
                                                                                        33
34
         XI=X(IL)
                                                                                   SS
                                                                                        34
35
         YI=Y(IL)
                                                                                   SS
                                                                                        35
         ZI=Z(IL)
36
                                                                                   SS
                                                                                        36
37
          JJ1=-1
                                                                                   SS
                                                                                        37
38 C
          LOOP OVER SOURCE PATCHES
                                                                                   SS
                                                                                        38
39
         DO 5 J=J1.J2
                                                                                   SS
                                                                                        39
40
          JL=LDP-J
                                                                                   SS
                                                                                        40
41
          JJ1=JJ1+2
                                                                                   SS
                                                                                        41
42
          JJ2=JJ1+1
                                                                                   SS
                                                                                        42
43
         S=BI(JL)
                                                                                   SS
                                                                                        43
         XJ=X(JL)
44
                                                                                   SS
                                                                                        44
45
          YJ=Y(JL)
                                                                                   SS
                                                                                        45
46
         ZJ=Z(JL)
                                                                                   SS
                                                                                        46
47
          T1XJ=T1X(JL)
                                                                                        47
                                                                                   SS
          T1YJ=T1Y(JL)
48
                                                                                   SS
                                                                                        48
49
          T1ZJ=T1Z(JL)
                                                                                   SS
                                                                                        49
50
          T2XJ=T2X(JL)
                                                                                   SS
                                                                                        50
51
          T2YJ=T2Y(JL)
                                                                                   SS
                                                                                        51
52
          T2ZJ=T2Z(JL)
                                                                                   SS
                                                                                        52
53
          CALL HINTG (XI,YI,ZI)
                                                                                   SS
                                                                                        53
          G11=-(T2XI*EXK+T2YI*EYK+T2ZI*EZK)
54
                                                                                   SS
                                                                                        54
55
          G12=-(T2XI*EXS+T2YI*EYS+T2ZI*EZS)
                                                                                   SS
                                                                                        55
56
          G21=-(T1XI*EXK+T1YI*EYK+T1ZI*EZK)
                                                                                   SS
                                                                                        56
57
          G22=-(T1XI*EXS+T1YI*EYS+T1ZI*EZS)
                                                                                   SS
                                                                                        57
58
          IF (I.NE.J) GO TO 1
                                                                                   SS
                                                                                        58
59
          G11=G11-.5
                                                                                   SS
                                                                                        59
          G22=G22+.5
60
                                                                                   SS
                                                                                        60
61 1
          IF (ITRP.NE.O) GO TO 3
                                                                                   SS
                                                                                        61
62 C
          NORMAL FILL
                                                                                   SS
                                                                                        62
```

SS 63

SS 64

IF (ICOMP.LT.IM1) GO TO 2

CM(II1, JJ1)=G11

63

65		CM(II1,JJ2)=G12				SS	65
66	2	IF (ICOMP.GE.IM2) GO	TO	5		SS	66
67		CM(II2, JJ1)=G21				SS	67
68		CM(II2, JJ2)=G22				SS	68
69		GO TO 5				SS	69
70	C	TRANSPOSED FILL				SS	70
71	3	IF (ICOMP.LT.IM1) GO	TO	4		SS	71
72		CM(JJ1, II1)=G11				SS	72
73		CM(JJ2, II1)=G12				SS	73
74	4	IF (ICOMP.GE.IM2) GO	TO	5		SS	74
75		CM(JJ1, II2)=G21				SS	75
76		CM(JJ2, II2)=G22				SS	76
77	5	CONTINUE			1	SS	77
78		RETURN				SS	78
79		END				SS	79-

PURPOSE

To compute and store matrix elements representing the electric field at segment centers due to the current on patches.

METHOD

SW30 - SW35 Coordinates of observation segment are stored.

SW36 - SW42 If either end of the observation segment connects to a surface IPCH is set to the number of the first of the four patches at the connection point.

SW48 - SW57 Coordinates of the source patch are stored in COMMON/DATAJ/.

SW61 - SW86

IF IPCH = J then patch J is the first patch at the point where segment I connects to the surface. Subroutine PCINT is called to integrate the current over the four patches at the connection point. The current on the patches includes the eight basis functions of the four patches and a portion of the basis function from the

segment. Hence contributions to nine matrix elements are generated and stored in array EMEL. The field due to the segment basis function extending onto the patches is stored in array CW at SW76 or SW78. The fields due to the first patch basis function, EMEL(1) and EMEL(5), are then stored in array CM at SW80 and SW81 or at SW83 and SW84. ICGO is then incremented. For the next three

stored.

SW88 - SW96

If segment I and patch J are not connected, subroutine UNERE is called to compute the electric field due to the current on the patch with the current treated as Hertzian dipoles in the directions \hat{t}_1 and \hat{t}_2 . The matrix elements are stored in CM.

times through the loop over J the call to PCINT is skipped at SW63 and the remaining values in EMEL are

CMSW

SW102 - SW138 This is a special section of code to compute the electric field due to the component of a segment basis function that extends onto connected patches. It is used at line CG112 of subroutine CMNGF for the case where the connected segment and patches are in the NGF file and a new segment is connected to the outer end of the NGF segment modifying its basis function. Subroutine PCINT is called to evaluate the nine matrix elements. Only EMEL(9) is used since the patch basis functions have not been modified.

SYMBOL DICTIONARY

* x component of i in direction of segment I CABI = array for E due to patch basis functions CM = array for E due to segment basis function extending onto CW surface at connection point EMEL = array of matrix elements from integrating over surface FSIGN = +1 depending on which end of segment connects to surface 11 = number of first observation segment 12 = number of last observation segment I CGØ = index for matrix elements at connection point IL = index for segment basis function in CW IP = 1 for direct field, 2 for image in ground IPCH = number of first patch connecting to a segment ITRP = 0 for normal matrix fill 1 for transposed fill -1 for special NGF case J = source patch J1 = first source patch J2 = last source patch JL = index for source patch in CM JS = index for patch coordinates = index in CM or CW for observation segment NCW = index offset for CW

NEQS = number of equations excluding NGF

NROW = row dimensions of CM and CW

PI = pi

PX = $\sin k(s - s_0)$ for s at the end of the segment

PY = $\cos k(s - s_0)$ connected to the surface

SABI = y component of î in direction of segment I

SALPI = z component of i in direction of segment I

XI, YI, ZI = center of observation segment

```
SUBROUTINE CMSW (J1, J2, I1, I2, CM, CW, NCW, NROW, ITRP)
          COMPUTES MATRIX ELEMENTS FOR E ALONG WIRES DUE TO PATCH CURRENT
2 C
                                                                                    SW
                                                                                          2
          COMPLEX CM, ZRATI, ZRATI2, T1, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, EME SW
                                                                                          3
         1L, CW, FRATI
5
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 SW
                                                                                          5
6
         1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX( SW
                                                                                          6
7
         2300), WLAM, IPSYM
                                                                                    SW
                                                                                          7
8
          COMMON /ANGL/ SALP(300)
                                                                                          8
9
          COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR, SW
                                                                                          9
         1 IPERF, T1, T2
10
                                                                                         10
          COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ SW
                                                                                         11
12
         1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                         12
          COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP SW
13
                                                                                         13
14
         1CON(10), NPCON
                                                                                         14
15
          DIMENSION CAB(1), SAB(1), CM(NROW,1), CW(NROW,1)
                                                                                         15
          DIMENSION TIX(1), TIY(1), TIZ(1), T2X(1), T2Y(1), T2Z(1), EMEL(9)
16
17
          EQUIVALENCE (TIX.SI), (TIY.ALP), (TIZ.BET), (TZX.ICON1), (TZY.ICON SW
                                                                                         17
18
         12), (T2Z, ITAG), (CAB, ALP), (SAB, BET)
                                                                                         18
19
          EQUIVALENCE (TIXJ, CABJ), (TIYJ, SABJ), (TIZJ, SALPJ), (T2XJ,B), (T2Y SW
                                                                                         19
20
         1J. IND1), (T2ZJ, IND2)
                                                                                         20
          DATA PT/3.141592654/
21
                                                                                     SW
                                                                                         21
22
          LDP= . +1
                                                                                    SW
                                                                                         22
23
          NEQS=N-N1+2*(M-M1)
                                                                                    SW
                                                                                         23
          IF (ITRP.LT.0) GO TO 13
24
                                                                                    SW
                                                                                         24
25
          K=0
                                                                                     SW
                                                                                         25
26
          ICGO=1
                                                                                     SW
                                                                                         26
27 C
          OBSERVATION LOOP
                                                                                    SW
                                                                                         27
          DO 12 I=I1,I2
28
                                                                                    SW
                                                                                         28
29
          K=K+1
                                                                                    SW
                                                                                         29
30
          XI=X(I)
                                                                                    SW
31
          YI=Y(I)
                                                                                    SW
                                                                                         31
          ZI=Z(I)
32
                                                                                    SW
                                                                                         32
33
          CABI=CAB(I)
                                                                                     SW
                                                                                         33
34
          SABI=SAB(I)
                                                                                     SW
                                                                                         34
35
          SALPI=SALP(I)
                                                                                         35
                                                                                    SW
36
          IPCH=0
                                                                                    SW
                                                                                         36
37
          IF (ICON1(I).LT.10000) GO TO 1
                                                                                         37
38
          IPCH=ICON1(I)-10000
                                                                                     SW
                                                                                         38
39
          FSIGN=-1.
                                                                                     SW
                                                                                         39
40 1
          IF (ICON2(I).LT.10000) GO TO 2
                                                                                     SW
                                                                                         40
41
          IPCH=ICON2(I)-10000
                                                                                     SW
                                                                                         41
42
          FSIGN=1.
                                                                                     SW
                                                                                         42
43 2
          JL=0
                                                                                    SW
                                                                                         43
44 C
          SOURCE LOOP
                                                                                         44
45
          DO 12 J=J1,J2
                                                                                     SW
                                                                                         45
46
          JS=LDP-J
                                                                                     SW
                                                                                         46
47
          JL=JL+2
                                                                                     SW
                                                                                         47
48
          T1XJ=T1X(JS)
                                                                                     SW
                                                                                         48
49
          T1YJ=T1Y(JS)
                                                                                     SW
                                                                                         49
50
          T1ZJ=T1Z(JS)
                                                                                         50
                                                                                     SW
51
          T2XJ=T2X(JS)
                                                                                         51
52
          T2YJ=T2Y(JS)
                                                                                     SW
                                                                                         52
53
          T2ZJ=T2Z(JS)
                                                                                     SW
                                                                                         53
54
          XJ=X(JS)
                                                                                     SW
                                                                                         54
55
          YJ=Y(JS)
                                                                                     SW
                                                                                         55
56
          ZJ=Z(JS)
                                                                                     SW
                                                                                         56
57
          S=BI(JS)
                                                                                     SW
                                                                                         57
58 C
          GROUND LOOP
                                                                                         58
59
          DO 12 IP=1,KSYMP
                                                                                     SW
                                                                                         59
60
          IPGND=IP
                                                                                         60
                                                                                     SW
61
          IF (IPCH.NE.J.AND.ICGO.EQ.1) GO TO 9
                                                                                     SW
                                                                                         61
62
          IF (IP.EQ.2) GO TO 9
                                                                                     SW
                                                                                         62
63
          IF (ICGO.GT.1) GO TO 6
                                                                                     SW
                                                                                         63
          CALL PCINT (XI, YI, ZI, CABI, SABI, SALPI, EMEL)
                                                                                     SW
                                                                                         64
```

ູນາ_ວ່າ ການປະຊາຊາ ເປັນ ໄດ້ປະຊາຊານ ໄດ້ປະຊາຊານ ໄດ້ປະຊາຊານ ໄດ້ປະຊາຊານ ໄດ້ປະຊາຊານ ໄດ້ປະຊາຊານ ໄດ້ປະຊາຊານ ໄດ້ປະຊາຊານ ໄດ້ປ


```
65
          PY=PI*SI(I)*FSIGN
                                                                                    SW
                                                                                        65
          PX=SIN(PY)
66
                                                                                    SW
                                                                                        66
67
          PY=COS(PY)
                                                                                    SW
                                                                                        67
68
          EXC=EMEL(9)*FSIGN
                                                                                    SW
                                                                                        68
69
          CALL TRIO (I)
                                                                                        69
                                                                                    SW
70
          IF (I.GT.N1) GO TO 3
                                                                                    SW
                                                                                        70
 71
          IL=NEQS+ICONX(I)
                                                                                    SW
                                                                                        71
 72
          GO TO 4
                                                                                    SW
                                                                                        72
          IL=I-NCW
73 3
                                                                                    SW
                                                                                        73
74
          IF (I.LE.NP) IL=((IL-1)/NP)*2*MP+IL
                                                                                    SW
                                                                                        74
 75 4
          IF (ITRP.NE.O) GO TO 5
                                                                                        75
                                                                                    SW
 76
           CW(K,IL)=CW(K,IL)+EXC*(AX(JSNO)+BX(JSNO)*PX+CX(JSNO)*PY)
                                                                                    SW
                                                                                        76
 77
           GO TO 6
                                                                                    SW
                                                                                        77
 78 5
          CW(IL,K)=CW(IL,K)+EXC*(AX(JSNO)+BX(JSNO)*PX+CX(JSNO)*PY)
                                                                                    SW
                                                                                        78
 79
           IF (ITRP.NE.O) GO TO 7
                                                                                    SW
                                                                                        79
 80
           CM(K, JL-1)=EMEL(ICGO)
                                                                                    SW
                                                                                        80
          CM(K, JL)=EMEL(ICGO+4)
81
                                                                                    SW
                                                                                        81
82
          GO TO 8
                                                                                    SW
                                                                                        82
 83 7
           CM(JL-1,K)=EMEL(ICGO)
                                                                                    SW
                                                                                        83
84
          CM(JL,K)=EMEL(ICGO+4)
                                                                                    SW
                                                                                        84
 85 8
           ICGO=ICGO+1
                                                                                    SW
                                                                                        85
 86
          IF (ICGO.EQ.5) ICGO=1
                                                                                    SW
                                                                                        86
 87
           GO TO 11
                                                                                    SW
                                                                                        87
          CALL UNERE (XI,YI,ZI)
 88 9
                                                                                    SW
                                                                                        88
 89
          IF (ITRP.NE.O) GO TO 10
                                                                                    SW
                                                                                        89
 90 C
           NORMAL FILL
                                                                                    SW
                                                                                        90
 91
           CM(K,JL-1)=CM(K,JL-1)+EXK*CABI+EYK*SABI+EZK*SALPI
                                                                                    SW
                                                                                        91
           CM(K, JL)=CM(K, JL)+EXS*CABI+EYS*SABI+EZS*SALPI
 92
                                                                                    SW
                                                                                        92
 93
           GO TO 11
                                                                                    SW
                                                                                        93
 94 C
           TRANSPOSED FILL
                                                                                    SW
                                                                                        94
 95 10
           CM(JL-1,K)=CM(JL-1,K)+EXK*CABI+EYK*SABI+EZK*SALPI
                                                                                        95
                                                                                    SW
 96
          CM(JL,K)=CM(JL,K)+EXS*CABI+EYS*SABI+EZS*SALPI
                                                                                    SW
                                                                                        96
 97 11
           CONTINUE
                                                                                    SW
                                                                                        97
98 12
          CONTINUE
                                                                                    SW
                                                                                        98
99
          RETURN
                                                                                        99
                                                                                    SW
100 C
          FOR OLD SEG. CONNECTING TO OLD PATCH ON ONE END AND NEW SEG. ON
                                                                                    SW 100
101 C
           OTHER END INTEGRATE SINGULAR COMPONENT (9) OF SURFACE CURRENT ONLY SW 101
102 13
           IF (J1.LT.I1.OR.J1.GT.I2) GO TO 16
                                                                                    SW
                                                                                       102
           IPCH=ICON1(J1)
103
                                                                                    SW 103
           IF (IPCH.LT.10000) GO TO 14
104
                                                                                    SW 104
           IPCH=IPCH-10000
105
                                                                                    SW 105
           FSIGN=-1.
106
                                                                                    SW 106
107
           GO TO 15
                                                                                    SW 107
108 14
           IPCH=ICON2(J1)
                                                                                    SW 108
           IF (IPCH.LT.10000) GO TO 16
109
                                                                                    SW 109
110
           IPCH=IPCH-10000
                                                                                    SW 110
111
           FSIGN=1.
                                                                                    SW 111
112 15
           IF (IPCH.GT.M1) GO TO 16
                                                                                    SW 112
           JS=LDP-IPCH
113
                                                                                    SW 113
114
           IPGND=1
                                                                                    SW 114
115
           TIXJ=TIX(JS)
                                                                                    SW 115
           T1YJ=T1Y(JS)
                                                                                    SW 116
116
117
           TIZJ=TIZ(JS)
                                                                                    SW 117
           T2XJ=T2X(JS)
118
                                                                                    SW 118
119
           T2YJ=T2Y(JS)
                                                                                    SW 119
120
           T2ZJ=T2Z(JS)
                                                                                    SW 120
121
           XJ=X(JS)
                                                                                    SW 121
122
           YJ=Y(JS)
                                                                                    SW 122
123
           ZJ=Z(JS)
                                                                                    SW 123
124
           S=BI(JS)
                                                                                    SW 124
125
           XI=X(J1)
                                                                                    SW 125
126
           YI=Y(J1)
                                                                                    SW 126
127
           ZI=Z(J1)
                                                                                    SW 127
128
           CABI=CAB(J1)
                                                                                    SW 128
```

CMSW

129	SABI=SAB(J1)	SW	129
130	SALPI=SALP(J1)		130
131	CALL PCINT (XI, YI, ZI, CABI, SABI, SALPI, EMEL)	SW	131
132	PY=PI*SI(J1)*FSIGN	SW	132
133	PX=SIN(PY)	SW	133
134	PY=COS(PY)	SW	134
135	EXC=EMEL(9)*FSIGN	SW	135
136	IL=JCO(JSNO)	SW	136
137	K=J1-I1+1	SW	137
138	CW(K,IL)=CW(K,IL)+EXC*(AX(JSNO)+BX(JSNO)*PX+CX(JSNO)*PY)	SW	138
139 16	RETURN	SW	139
140	END	SW	140-

CMWS

PURPOSE

To compute and store matrix elements representing the magnetic field at patch centers due to the current on wire segments.

METHOD

Matrix elements are computed for patch equations numbered Il through I2 with the source segment J. For odd numbered equations the matrix element represents the first term on the right side of equation 14 of Part I. For even numbered equations it is the negative of the first term on the right side of equation 15. For equation Il and for all odd numbered equations subroutine HSFLD is called to compute the H field at the center of the patch due to constant, $\sin k(s-s_0)$ and $\cos k(s-s_0)$ currents on segment J. The required component of the field, $-\hat{\mathbf{t}}_2 = \hat{\mathbf{H}}$ or $-\hat{\mathbf{t}}_1 = \hat{\mathbf{H}}$ for odd or even equations respectively, is computed from WS49 to WS51. Multiplication by SALP(JS) reverses the sign when $(\hat{\mathbf{t}}_1, \hat{\mathbf{t}}_2, \hat{\mathbf{n}})$ has a left-hand orientation on a patch formed by reflection. The field component for each basis function component on segment J is computed and stored for WS56 through WS75. Storage of the matrix elements is similar to that in subroutine CMWW.

SYMBOL DICTIONARY

CM = array for matrix elements

CW = array for matrix elements (NGF only)

ETK ETS $= -\hat{t}_{2} \cdot \vec{H} \text{ or } -\hat{t}_{1} \cdot \vec{H} \text{ due to current of constant,}$ $\sin k(s - s_{0}), \text{ or } \cos k(s - s_{0}) \text{ respectively}$ ETC

I = equation number

Il = number of first equation

I2 = number of second equation

IK = 0 if I is even, 1 if I is odd

IPATCH = patch number for equation I

IPR = relative matrix location for equation I. Position in complete matrix depends on the address of CM in the call to CMWS

= 0 for non-transposed fill ITRP 1 for transposed fill 2 for transposed fill for NGF = source segment number J = location in COMMON/DATA/ of parameters for patch J JS = matrix index for a particular basis function JX LDP = LD + 1= row dimension of CM NR = row dimension of CW NW TX) = x, y, and z components of \hat{t}_1 or \hat{t}_2 TY TZ) (IX = x, y and z coordinates of the center of the patch at YI which the field is computed ZI

```
SUBROUTINE CMWS (J, I1, I2, CM, NR, CW, NW, ITRP)
2 C
                                                                                    WS
                                                                                         2
 3 .C
          CMWS COMPUTES MATRIX ELEMENTS FOR WIRE-SURFACE INTERACTIONS
                                                                                    WS
                                                                                          3
 4
  C
                                                                                    WS
 5
         COMPLEX CM, CW, ETK, ETS, ETC, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC
                                                                                    WS
                                                                                          5
 6
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300
                                                                                   WS
                                                                                          6
 7
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(
                                                                                    WS
                                                                                          7
 8
        2300), WLAM, IPSYM
                                                                                          8
9
         COMMON /ANGL/ SALP(300)
                                                                                          9
10
          COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP
                                                                                   WS
                                                                                         10
11
         1CON(10), NPCON
                                                                                    WS
                                                                                         11
12
          COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ
                                                                                         12
13
         1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                    WS
                                                                                         13
14
          DIMENSION CM(NR,1), CW(NW,1), CAB(1), SAB(1)
                                                                                    WS
                                                                                         14
15
          DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)
                                                                                    WS
                                                                                         15
16
          EQUIVALENCE (CAB, ALP), (SAB, BET), (T1X,SI), (T1Y,ALP), (T1Z,BET)
                                                                                    WS
                                                                                         16
          EQUIVALENCE (T2X, ICON1), (T2Y, ICON2), (T2Z, ITAG)
17
                                                                                    WS
                                                                                         17
18
          LDP=LD+1
                                                                                    WS
                                                                                         18
          S=SI(J)
19
                                                                                    WS
                                                                                         19
20
          B=BI(J)
                                                                                    WS
                                                                                        20
21
          XJ=X(J)
                                                                                    WS
                                                                                        21
22
          YJ=Y(J)
                                                                                    WS
                                                                                        22
23
          ZJ=Z(J)
                                                                                    WS
                                                                                         23
24
          CABJ=CAB(J)
                                                                                    WS
                                                                                         24
25
          SABJ=SAB(J)
                                                                                    WS
                                                                                         25
26
          SALPJ=SALP(J)
                                                                                    WS
                                                                                         26
27 C
                                                                                    WS
                                                                                         27
28 C
          OBSERVATION LOOP
                                                                                    WS
                                                                                         28
29 C
                                                                                    WS
                                                                                        29
30
          IPR=0
                                                                                    WS
                                                                                        30
31
          DO 9 I=I1,I2
                                                                                    WS
                                                                                        31
32
          IPR=IPR+1
                                                                                    WS
                                                                                        32
33
          IPATCH=(I+1)/2
                                                                                    WS
                                                                                         33
34
          IK=I-(I/2)*2
                                                                                    WS
                                                                                         34
35
          IF (IK.EQ.O.AND.IPR.NE.1) GO TO 1
                                                                                    WS
                                                                                         35
36
          JS=LDP-IPATCH
                                                                                    WS
                                                                                        36
37
          XI=X(JS)
                                                                                    WS
                                                                                         37
38
          YI=Y(JS)
                                                                                    WS
                                                                                         38
39
          ZI=Z(JS)
                                                                                    WS
                                                                                         39
40
          CALL HSFLD (XI, YI, ZI, O.)
                                                                                    WS
                                                                                         40
41
          IF (IK.EQ.0) GO TO 1
                                                                                    WS
                                                                                         41
42
          TX=T2X(JS)
                                                                                    WS
                                                                                         42
43
          TY=T2Y(JS)
                                                                                    WS
                                                                                         43
44
          TZ=T2Z(JS)
                                                                                    WS
                                                                                         44
45
          GO TO 2
                                                                                    WS
                                                                                         45
          TX=T1X(JS)
46 1
                                                                                    WS
                                                                                         46
47
          TY=T1Y(JS)
                                                                                    WS
                                                                                         47
48
          TZ=T1Z(JS)
                                                                                    WS
                                                                                         48
49 2
          ETK=-(EXK*TX+EYK*TY+EZK*TZ)*SALP(JS)
                                                                                    WS
                                                                                         49
          ETS=-(EXS*TX+EYS*TY+EZS*TZ)*SALP(JS)
50
                                                                                    WS
                                                                                         50
51
          ETC=-(EXC*TX+EYC*TY+EZC*TZ)*SALP(JS)
                                                                                    WS
                                                                                         51
52 C
                                                                                    WS
                                                                                         52
53 C
          FILL MATRIX ELEMENTS. ELEMENT LOCATIONS DETERMINED BY CONNECTION
                                                                                    WS
                                                                                         53
54 C
                                                                                    WS
                                                                                         54
55 C
                                                                                    WS
                                                                                         55
56
          IF (ITRP.NE.O) GO TO 4
                                                                                    WS
                                                                                         56
57 C
          NORMAL FILL
                                                                                    WS
                                                                                         57
58
          DO 3 IJ=1, JSNO
                                                                                    WS
                                                                                         58
59
          JX=JCO(IJ)
                                                                                    WS
                                                                                         59
60 3
          CM(IPR,JX)=CM(IPR,JX)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)
                                                                                    WS
                                                                                         60
61
          GO TO 9
                                                                                    WS
                                                                                         61
          IF (ITRP.EQ.2) GO TO 6
62 4
                                                                                    WS
                                                                                         62
63 C
          TRANSPOSED FILL
                                                                                    WS
                                                                                         63
          DO 5 IJ=1.JSNO
                                                                                    WS
                                                                                         64
```

CMWS

65	JX=JCO(IJ)	WS	65
66 5	CM(JX, IPR)=CM(JX, IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WS	66
67	GO TO 9	WS	67
68 C	TRANSPOSED FILL - C(WS) AND D(WS)PRIME (=CW)	WS	68
69 6	DO 8 IJ=1, JSNO	WS	69
70	JX=JCO(IJ)	WS	70
71	IF (JX.GT.NR) GO TO 7	WS	71
72	CM(JX,IPR)=CM(JX,IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	ws	72
73	GO TO 8	WS	73
74 7	JX=JX-NR	ws	74
75	CW(JX, IPR)=CW(JX, IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WS	75
76 8	CONTINUE	WS	76
77 9	CONTINUE	WS	77
78	RETURN	ws	78
79	END	WS	79-

PURPOSE

To call subroutines to compute the electric field at segment centers due to current on other segments and to store matrix elements in array locations.

METHOD

WW17 - WW24 Parameters of source segment (J) are stored in COMMON/DATAJ/.

WW27 - WW43 First end of segment J is tested to determine whether the extended thin wire approximation can be used. It cannot be used at a junction of more than two wires (WW30), at a bend (WW37), at a change in radius (WW38), or at the base of a non-vertical segment connected to the ground (WW33).

WW44 - WW60 Second end of segment J is tested.

WW66 Loop over observation segments ranges from Il to I2. The index IPR starts at 1 so the matrix element for Il is stored in the first row or column of the array CM. The location in the complete matrix is determined by the address given for CM when CMWW is called.

wW76 EFLD computes the electric fields at (XI, YI, ZI) due to segment J and stores them in COMMON/DATAJ/.

WW84 - WW103 Matrix elements are formed by combining the field

components.

WW86 - WW88 Matrix elements are stored in non-transposed order.

WW92 - WW94 Matrix elements are stored in transposed order.

WW97 - WW104 When the source segment is from a NGF file the matrix elements will normally be stored in submatrix C of the NGF matrix structure. When the segment connects to a new segment, however, contributions to submatrix D result.

The C and D contributions are stored in CM and CW, respectively, in transposed order.

SYMBOL DICTIONARY

AI = radius of observation segment CABI = x component of unit vector in direction of segment CM = array for matrix elements CW = array for matrix elements (NGF only) ETK = E field tangent to segment I due to current of ETS constant, $\sin k(s - s_0)$ and $\cos k(s - s_0)$ ETC distribution, respectively, on segment J. = first observation segment 11 12 = final observation segment = 0 for special treatment when I = J IJ IPR = relative matrix location for observation point ITRP = 0 for non-transposed fill 1 for transposed fill 2 for transposed fill for NGF J = source segment number = matrix index for a particular basis function JX = row dimension of CM NR NW = row dimension of CW SABI = y component of unit vector in direction of segment = z component of unit vector in direction of segment SALPI XI, YI, ZI = coordinates of center of segment I.

CONSTANTS

0.999999 = test for collinear segments

```
SUBROUTINE CMWW (J, I1, I2, CM, NR, CW, NW, ITRP)
                                                                                  ww
 2 C
                                                                                  ww
                                                                                        2
 3 C
         CMMW COMPUTES MATRIX ELEMENTS FOR WIRE-WIRE INTERACTIONS
                                                                                   ww
                                                                                        3
 4 C
                                                                                  w
                                                                                        4
 5
         COMPLEX CM, CW, ETK, ETS, ETC, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC
                                                                                  ww
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 WW
 6
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( WW
7
 8
         2300), WLAM, IPSYM
         COMMON /ANGL/ SALP(300)
COMMON /SEGJ/ AX(30),BX(30),CX(30),JCO(30),JSNO,ISCON(50),NSCON,IP
 9
                                                                                        9
10
                                                                                       10
11
         1CON(10), NPCON
                                                                                       11
         COMMON /DATAJ/ S.B.XJ.YJ.ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ WW
12
                                                                                       12
         1S.EXC.EYC.EZC.RKH, IEXK, IND1, IND2, IPGND
13
                                                                                       13
14
         DIMENSION CM(NR,1), CW(NW,1), CAB(1), SAB(1)
                                                                                  WW
                                                                                       14
          EQUIVALENCE (CAB, ALP), (SAB, BET)
15
                                                                                  ww
                                                                                       15
         SET SOURCE SEGMENT PARAMETERS
16 C
                                                                                  w
                                                                                       16
17
         S=SI(J)
                                                                                  WW
                                                                                       17
         B=BI(J)
18
                                                                                  w
                                                                                       18
         XJ=X(J)
19
                                                                                  ww
                                                                                       19
20
          YJ=Y(J)
                                                                                  WW
                                                                                       20
         ZJ=Z(J)
21
                                                                                  WW
                                                                                       21
22
         CABJ=CAB(J)
                                                                                  ww
                                                                                       22
23
          SABJ=SAB(J)
                                                                                  w
                                                                                       23
          SALPJ=SALP(J)
24
                                                                                  WW
                                                                                       24
25
         IF (IEXK.EQ.0) GO TO 16
                                                                                  WW
                                                                                       25
          DECIDE WETHER EXT. T.W. APPROX. CAN BE USED
26 C
                                                                                  w
                                                                                       26
27
          IPR=ICON1(J)
                                                                                  W
                                                                                       27
28
          IF (IPR) 1,6,2
                                                                                  WW
                                                                                       28
29 1
          IPR=-IPR
                                                                                  ww
                                                                                       29
30
          IF (-ICON1(IPR).NE.J) GO TO 7
                                                                                  WW
                                                                                       30
31
         GO TO 4
                                                                                  WW
                                                                                       31
         IF (IPR.NE.J) GO TO 3
32 2
                                                                                  w
                                                                                       32
33
         IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 7
                                                                                  ww
                                                                                       33
34
          GO TO 5
                                                                                  ww
                                                                                       34
35 3
          IF (ICON2(IPR).NE.J) GO TO 7
                                                                                  W
                                                                                       35
36 4
         XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))
                                                                                  ww
                                                                                       36
          IF (XI.LT.0.999999) GO TO 7
37
                                                                                  ww
                                                                                       37
          IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 7
38
                                                                                  WW
                                                                                       38
          IND1=0
39 5
                                                                                  WW
                                                                                       39
40
          GO TO 8
                                                                                  ww
                                                                                       40
41 6
          IND1=1
                                                                                  w
                                                                                       41
          GO TO 8
42
                                                                                  WW
                                                                                       42
43 7
          IND1=2
                                                                                  ww
                                                                                       43
          IPR=ICON2(J)
44 8
                                                                                  w
                                                                                       44
45
          IF (IPR) 9,14,10
                                                                                  WW
                                                                                       45
46 9
          IPR=-IPR
                                                                                  w
                                                                                       46
47
          IF (-ICON2(IPR).NE.J) GO TO 15
                                                                                  ww
                                                                                       47
48
          GO TO 12
                                                                                   ww
                                                                                       48
49 10
          IF (IPR.NE.J) GO TO 11
                                                                                  WW
                                                                                       49
50
          IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 15
                                                                                  ww
                                                                                       50
51
          GO TO 13
                                                                                   ww
                                                                                       51
          IF (ICON1(IPR).NE.J) GO TO 15
52 11
                                                                                  WW
                                                                                       52
53 12
          XI=ABS(CABj=CAB(IPR)+SABJ+SAB(IPR)+SALPJ+SALP(IPR))
                                                                                  w
                                                                                       53
          IF (XI.LT.0.999999) GO TO 15
54
                                                                                   ww
                                                                                       54
55
          IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 15
                                                                                  ww
                                                                                       55
          IND2=0
56 13
                                                                                  WW
                                                                                       56
          GO TO 16
                                                                                   ww
57
                                                                                       57
58 14
          IND2=1
                                                                                  ww
                                                                                       58
          GO TO 16
59
                                                                                  WW
                                                                                       59
60 15
          IND2=2
                                                                                   ww
                                                                                       60
61 16
          CONTINUE
                                                                                   ww
                                                                                       61
62 C
                                                                                   WW
                                                                                       62
63 C
          OBSERVATION LOOP
                                                                                   ww
                                                                                       63
                                                                                       64
```

KANANININ KANIN KANIN MANANIN MANANINA KANIN KANIN

65		IPR=0	ww	65
66		DO 23 I=I1,I2	ww	66
67		IPR=IPR+1	WW	67
68		IJ=I-J	ww	68
69		XI=X(I)	WW	69
70		YI=Y(I)	WW	70
71		ZI=Z(I)	WW	71
72		AI=8I(I)	WW	72
73		CABI=CAB(I)	WW	73
74		SABI=SAB(I)	WW	74
75		SALPI=SALP(I)	WW	75
76		CALL EFLD (XI,YI,ZI,AI,IJ)	WW	76
77		ETK=EXK*CABI+EYK*SABI+EZK*SALPI	WW	77
78		ETS=EXS*CABI+EYS*SABI+EZS*SALPI	WW	78
79		ETC=EXC*CABI+EYC*SABI+EZC*SALPI	WW	79
80	C		WW	80
81	C	FILL MATRIX ELEMENTS. ELEMENT LOCATIONS DETERMINED BY CONNECTION	WW	81
82	C	DATA.	WW	82
83	C		WW	83
84		IF (ITRP.NE.O) GO TO 18	WW	84
85	C	NORMAL FILL	WW	85
86		DO 17 IJ=1, JSNO	WW	86
87		JX=JCO(IJ)	WW	87
88	17	CM(IPR, JX)=CM(IPR, JX)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WW	88
89		GO TO 23	WW	89
90	18	IF (ITRP.EQ.2) GO TO 20	WW	90
91	C	TRANSPOSED FILL	WW	91
92		DO 19 IJ=1, JSNO	WW	92
93		JX=JCO(IJ)	WW	93
94	19	CM(JX, IPR)=CM(JX, IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WW	94
95		GO TO 23	WW	95
96	C	TRANS. FILL FOR C(WW) - TEST FOR ELEMENTS FOR D(WW)PRIME. (=CW)	WW	96
97	20	DO 22 IJ=1, JSNO	WW	97
98		JX=JCO(IJ)	WW	98
99		IF (JX.GT.NR) GO TO 21	WW	99
00		CM(JX,IPR)=CM(JX,IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WW	100
01		GO TO 22	WW	101
02	21	JX=JX-NR	WW	102
03		CW(JX, IPR)=CW(JX, IPR)+ETK*AX(IJ)+ETS*BX(IJ)+ETC*CX(IJ)	WW	103
04		CONTINUE	ww	104
05	23	CONTINUE	ww	105
06		RETURN		106
07		CNA	1444/	107

CONECT

PURPOSE

To locate segment ends that contact each other or contact the center of a surface patch.

METHOD

The ends of each segment are identified as end 1 and end 2, defined during geometry input. The connection data for segment I is stored in array variables ICON1 (I) for end 1 and ICON2 (I) for end 2.

Four conditions are possible at each segment end: (1) no connection (a free end), (2) connection to one or more other segments, (3) connection to a ground plane, or (4) connection to a surface modeled with patches. These conditions are indicated in the following way for end 1 of segment I:

- (1) no connection ICON1 (I) = 0
- (2) connection to segment J ICON1 (I) = ±J
- (3) connection to a ground plane ICON1 (I) = I
- (4) connection to patch K ICON1 (I) = 10000 + k

In case 2, if segment J has the same reference direction as segment I (end 2 of segment J connected to end 1 of segment I), the sign is positive. For opposed reference directions (end 1 to end 1) the sign is negative. If several segments connect to end 1 of segment I, then J is the number of the next connected segment in sequence.

If segment I connects to patch K, the segment end must coincide with the patch center. Patch K is then divided into four patches numbered K through K + 3 by a call to subroutine SUBPH.

The connection data is illustrated in the following listing for the six segments in the structure in figure 3.

ICON1 (I)	I	ICON2	(I)
10000 + K	1	2	
1	2	. 3	
4	3	0	
0	4	-5	
0	5	6	
2	6	0	

Figure 3. Structure for Illustrating Segment Connection Data.

Connections between patches are not checked, since, except where a wire connects to a surface, the current expansion function on a patch does not extend beyond that patch.

CODING

- CN16 CN27 Initialize and adjust symmetry conditions if necessary when ground is present.
- CN40 CN46 Check whether end 1 of segment I is below ground plane

 (error) or contacting ground plane. If the separation of
 the segment end and the ground is less than SMIN multiplied
 by the segment length, ICON1 is set to I and the z coordinate of the segment end is set to exactly zero.
- CN49 CN60 Check other segments from I + 1 through N and then 1 through I 1, until a connected end is found. The separation of segment ends is determined by the sum of the separations in x, y, and z to save time.

- CN95 CN126 Search for segments connected to patches. Only new patches (not NGF) are checked. If a connection is found the patch is divided into four patches at its present location in the data arrays and patches following it are shifted up by three locations. This is done by calling SUBPH, an entry point of subroutine PATCH.
- CN129 CN162 Search for new segments connected to NGF patches. If a connection is found four patches, covering the area of the original patch, are added to the end of the data arrays by calling SUBPH. The original patch retains its location but the z coordinate at its center is changed to 10000.
- CN182 CN258 The loop through 44 locates segments connected to junctions.
- CN183 CN190 Parameters are initialized to find all segments connected to first end of segment J.
- CN191 CN215 Connected segments are located. If the number of any connected segment is less than J the loop is exited at CN200. Thus each junction is processed only once.
- CN216 CN230 The connected ends are set to the average of their previous values to ensure that they have identical values.
- CN232 CN244 If the junction includes new segments (NSFLG = 1) and IX
 is a NGF segment an equation number, NSCON, is assigned
 for the modified basis function of segment IX. The
 equation number is stored in array ICONX and the segment
 number is stored in ISCON.
- CN245 CN247 Segment numbers are printed for junctions of three or more segments.
- CN248 CN257 The loop is initialized for the second end of segment J and the steps from CN191 on are repeated.
- CN262 CN275 Equation numbers for modified basis functions are assigned for old segments that connect to new patches.

SYMBOL DICTIONARY

IGND = 1 to adjust symmetry for ground and set ICON (I) =

I; -1 to adjust symmetry only; 0 for no ground

JMAX	. = maximum number of segments connected to a junction	
NPMAX	maximum number of NGF patches connecting to new segments	
NSFLG	1 if the junction includes any new segments when NGF is in use	
NSMAX	= maximum number of NGF segments connecting to new segments	
SEP	approximate separation of segment ends	
SLEN	maximum separation allowed for connection	
SMIN XII)	maximum separation as a fraction of segment length	
Y11 Z11	= coordinates of end 1 of segment	
XI 2)		
Y 12	= coordinates of end 2 of segment	
212)		
xs	The state of the state of the second section in the second section is the second section of the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the second section is the second section in the second section in the second section is the second section in the second section in the second section is the second section in the section is section in the section in the section in the section is section in the section in the section in the section is section in the section in the section is section in the section in the section in the section is section in the section in the section is section in the section in the section in the section is section in the section in the section is section in the section	•
YS	= coordinates of patch center	
zs)		1

CONSTANT

A STATE OF THE PROPERTY OF THE

1.E-3 = maximum separation tolerance for connected segments as fraction of segment length.

```
1
         SUBROUTINE CONECT (IGND)
                                                                                  CN
2 C
                                                                                  CN
                                                                                       2
3 C
         CONNECT SETS UP SEGMENT CONNECTION DATA IN ARRAYS ICON1 AND ICON2
                                                                                       3
                                                                                  CN
4 C
         BY SEARCHING FOR SEGMENT ENDS THAT ARE IN CONTACT.
                                                                                       4
5 C
                                                                                  CN
                                                                                       5
6
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 CN
                                                                                       6
        1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX( CN
7
                                                                                       7
8
        2300), WLAM, IPSYM
9
         COMMON /SEGJ/ AX(30),BX(30),CX(30),JCO(30),JSNO,ISCON(50),NSCON,IP CN
                                                                                       9
10
        1CON(10), NPCON
                                                                                      10
                                                                                  CN
11
         DIMENSION X2(1), Y2(1), Z2(1)
                                                                                  CN
                                                                                      11
12
         EQUIVALENCE (X2,SI), (Y2,ALP), (Z2,BET)
                                                                                  CN
                                                                                      12
         DATA JMAX/30/, SMIN/1.E-3/, NSMAX/50/, NPMAX/10/
13
                                                                                  CN
                                                                                      13
14
         NSCON=0
                                                                                  CN
                                                                                      14
15
         NPCON=0
                                                                                      15
         IF (IGND.EQ.0) GO TO 3
16
                                                                                  CN
                                                                                      16
17
         PRINT 54
                                                                                  CN
                                                                                      17
18
         IF (IGND.GT.O) PRINT 55
                                                                                  CN
                                                                                      18
19
         IF (IPSYM.NE.2) GO TO 1
                                                                                  CN
                                                                                      19
20
         NP=2*NP
                                                                                  CN
                                                                                      20
         MP=2 *MP
21
                                                                                  CN
                                                                                      21
         IF (IABS(IPSYM).LE.2) GO TO 2
22 1
                                                                                  CN
                                                                                      22
23
         NP=N
                                                                                  CN
                                                                                      23
         MP=M
24
                                                                                  CN
                                                                                      24
25 2
         IF (NP.GT.N) STOP
                                                                                  CN
                                                                                      25
         IF (NP.EQ.N.AND.MP.EQ.M) IPSYM=0
                                                                                  CN
                                                                                      26
26
         IF (N.EQ.0) GO TO 26
27 3
                                                                                  CN
                                                                                      27
         DO 15 I=1,N
28
                                                                                  CN
                                                                                      28
         ICONX(I)=0
29
                                                                                  CN
                                                                                      29
30
         XI1=X(I)
                                                                                  CN
                                                                                      30
31
         YI1=Y(I)
                                                                                  CN
                                                                                      31
32
         ZI1=Z(I)
                                                                                  CN
                                                                                      32
33
         XI2=X2(I)
                                                                                  CN
34
         YI2=Y2(I)
                                                                                  CN
                                                                                      34
         ZI2=Z2(I)
35
                                                                                  CN
                                                                                      35
36
         SLEN=SQRT((XI2-XI1)**2+(YI2-YI1)**2+(ZI2-ZI1)**2)*SMIN
                                                                                  CN
                                                                                      36
37 C
                                                                                      37
                                                                                  CN
38 C
         DETERMINE CONNECTION DATA FOR END 1 OF SEGMENT.
                                                                                  CN
                                                                                      38
39 C
                                                                                  CN
                                                                                      39
40
         IF (IGND.LT.1) GO TO 5
                                                                                  CN
                                                                                      40
         IF (ZI1.GT.-SLEN) GO TO 4
41
                                                                                  CN
                                                                                      41
         PRINT 56, I
42
                                                                                  CN
                                                                                      42
43
         STOP
                                                                                  CN
                                                                                      43
44 4
         IF (ZI1.GT.SLEN) GO TO 5
                                                                                  CN
                                                                                      44
45
                                                                                      45
         ICON1(I)=I
                                                                                  CN
46
         Z(I)=0.
                                                                                  CN
                                                                                      46
47
         GO TO 9
                                                                                  CN
                                                                                      47
48 5
         IC=I
                                                                                  CN
                                                                                      48
         DO 7 J=2,N
49
                                                                                  CN
                                                                                      49
50
         IC=IC+1
                                                                                      50
                                                                                  CN
51
         IF (IC.GT.N) IC=1
                                                                                  CN
                                                                                      51
         SEP=ABS(XI1-X(IC))+ABS(YI1-Y(IC))+ABS(ZI1-Z(IC))
52
                                                                                  CN
                                                                                      52
53
         IF (SEP.GT.SLEN) GO TO 6
                                                                                  CN
                                                                                      53
         ICON1(I)=-IC
54
                                                                                  CN
                                                                                      54
55
         GO TO 8
                                                                                  CN
                                                                                      55
         SEP=ABS(XI1-X2(IC))+ABS(YI1-Y2(IC))+ABS(ZI1-Z2(IC))
56 6
                                                                                  CN
                                                                                      56
57
         IF (SEP.GT.SLEN) GO TO 7
                                                                                  CN
                                                                                      57
58
          ICON1(I)=IC
                                                                                  CN
                                                                                      58
59
         GO TO 8
                                                                                  CN
                                                                                      59
60 7
         CONTINUE
                                                                                  CN
                                                                                      60
61
          IF (I.LT.N2.AND.ICON1(I).GT.10000) GO TO 8
                                                                                  CN
                                                                                      61
62
          ICON1(I)=0
                                                                                  CN
                                                                                      62
63 C
                                                                                  CN
                                                                                      63
          DETERMINE CONNECTION DATA FOR END 2 OF SEGMENT.
                                                                                  CN
```

65	C		CN	65
66	8	IF (IGND.LT.1) GO TO 12	CN	66
67	9	IF (ZI2.GTSLEN) GO TO 10	CN	67
68		PRINT 56, I	CN	68
69		STOP	CN	69
70	10	IF (ZI2.GT.SLEN) GO TO 12	CN	70
71		IF (ICON1(I).NE.I) GO TO 11	CN	71
72		PRINT 57, I	CN	72
73		STOP	CN	73
74	11	ICON2(I)=I	CN	74
75		Z2(I)=0.	CN	75
76		GO TO 15	CN	76
77	12	IC=I	CN	77
78		DO 14 J=2,N	CN	78
79		IC=IC+1	CN	79
80		IF (IC.GT.N) IC=1	CN	80
81		SEP=ABS(XI2-X(IC))+ABS(YI2-Y(IC))+ABS(ZI2-Z(IC))	CN	81
82		IF (SEP.GT.SLEN) GO TO 13	CN	82
83		ICON2(I)=IC	CN	83
84		GO TO 15	CN	84
85	13	SEP=ABS(XI2-X2(IC))+ABS(YI2-Y2(IC))+ABS(ZI2-Z2(IC))	CN	85
86		IF (SEP.GT.SLEN) GO TO 14	CN	86
87		ICON2(I)=-IC	CN	87
88		GO TO 15	CN	88
89	14	CONTINUE	CN	89
90		IF (I.LT.N2.AND.ICON2(I).GT.10000) GO TO 15	CN	90
91		ICON2(I)=0 CONTINUE	CN	91
93	13	IF (M.EQ.0) GO TO 26	CN	92
94	•	FIND WIRE-SURFACE CONNECTIONS FOR NEW PATCHES	CN	93
95	•	IX=LD+1-M1	CN	95
96		I=M2	CN	96
97	16	IF (I.GT.M) GO TO 20	CN	97
98		IX=IX-1	CN	98
99		XS=X(IX)	CN	99
100		YS=Y(IX)		100
101		ZS=Z(IX)		101
102		DO 18 ISEG=1,N		102
103		XI1=X(ISEG)		103
104		YI1=Y(ISEG)	CN	104
105		ZI1=Z(ISEG)	CN	105
106		XI2=X2(ISEG)	CN	106
107		YI2=Y2(ISEG)	CN	107
108		ZI2=Z2(ISEG)	CN	108
109		SLEN=(ABS(XI2-XI1)+ABS(YI2-YI1)+ABS(ZI2-ZI1))*SMIN	CN	109
110	C	FOR FIRST END OF SEGMENT		110
111		SEP=ABS(XI1-XS)+ABS(YI1-YS)+ABS(ZI1-ZS)		111
112		IF (SEP.GT.SLEN) GO TO 17		112
113	C	CONNECTION - DIVIDE PATCH INTO 4 PATCHES AT PRESENT ARRAY LOC.		113
114		ICON1(ISEG)=10000+I		114
115		IC=0		115
116		CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)		116
117		GO·TO 19		117
118		SEP=ABS(XI2-XS)+ABS(YI2-YS)+ABS(ZI2-ZS)		118
119		IF (SEP.GT.SLEN) GO TO 18		119
120		ICON2(ISEG)=10000+I		120
121		IC=0		121
122		CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)		122
123		GO TO 19		123
125		CONTINUE		124
125	-	I=I+1 GO TO 16		125
197		MEPEAT SEARCH FOR NEW SEGMENTS CONNECTED TO NGF PATCHES.		127
- 19		IF (MI.EQ.O.OR.NZ.GT.N) GO TO 26		128
Sec.	-		011	

129	IX=LD+1	CN 129
130	I=1	CN 130
131 21	IF (I.GT.M1) GO TO 25	CN 131
132	IX=IX-1	CN 132
133	XS=X(IX)	CN 133
134	YS=Y(IX)	CN 134
135	ZS=Z(IX)	CN 135
136	DO 23 ISEG=N2,N	CN 136
137 138	XI1=X(ISEG) YI1=Y(ISEG)	CN 137
139	ZI1=Z(ISEG)	CN 138 CN 139
140	XI2=X2(ISEG)	CN 140
141	YI2=Y2(ISEG)	CN 141
142	ZI2=Z2(ISEG)	CN 142
143	SLEN=(ABS(XI2-XI1)+ABS(YI2-YI1)+ABS(ZI2-ZI1))*SMIN	CN 143
144	SEP=ABS(XI1-XS)+ABS(YI1-YS)+ABS(ZI1-ZS)	CN 144
145	IF (SEP.GT.SLEN) GO TO 22	CN 145
146	ICON1 (ISEG)=10001+M	CN 146
147	IC=1	CN 147
148	NPCON=NPCON+1	CN 148
149	IPCON(NPCON)=I	CN 149
150	CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)	CN 150
151	GO TO 24	CN 151
152 22	SEP=ABS(XI2-XS)+ABS(YI2-YS)+ABS(ZI2-ZS)	CN 152
153	IF (SEP.GT.SLEN) GO TO 23	CN 153
154	ICON2(ISEG)=10001+M	CN 154
155	IC=1	CN 155
156	NPCON=NPCON+1	CN 156
157	IPCON(NPCON)=I	CN 157
158	CALL SUBPH (I,IC,XI1,YI1,ZI1,XI2,YI2,ZI2,XA,YA,ZA,XS,YS,ZS)	CN 158
159	GO TO 24	CN 159
160 23	CONTINUE	CN 160
161 24	I=I+1	CN 161
162	GO TO 21	CN 162
163 25	IF (NPCON.LE.NPMAX) GO TO 26	CN 163
164	PRINT 62, NPMAX	CN 164
165	STOP	CN 165
166 26	PRINT 58, N,NP,IPSYM	CN 166
167	IF (M.GT.O) PRINT 61, M,MP	CN 167
168	ISEG=(N+M)/(NP+MP)	CN 168
169 170	IF (ISEG.EQ.1) GO TO 30 IF (IPSYM) 28,27,29	CN 169 CN 170
171 27	STOP	CN 1-71
172 28	PRINT 59, ISEG	CN 172
173	GO TO 30	CN 173
174 29	IC=ISEG/2	CN 174
175	IF (ISEG.EQ.8) IC=3	CN 175
176	PRINT 60, IC	CN 176
177 30	IF (N.EQ.0) GO TO 48	CN 177
178	PRINT 50	CN 178
179 .	ISEG=0	CN 179
180 C	ADJUST CONNECTED SEG. ENDS TO EXACTLY COINCIDE. PRINT JUNCTIONS	CN 180
181 C	OF 3 OR MORE SEG. ALSO FIND OLD SEG. CONNECTING TO NEW SEG.	CN 181
182	DO 44 J=1,N	CN 182
183	IEND=-1	CN 183
184	JEND=-1	CN 184
185	IX=ICON1(J)	CN 185
186	IC=1	CN 186
187	JCO(1)=-J	CN 187
188	XA=X(J)	CN 188
189	YA=Y(J)	CN 189
190	ZA=Z(J)	CN 190
191 31	IF (IX.EQ.0) GO TO 43	CN 191
192	IF (IX.EQ.J) GO TO 43	CN 192

193	IF (IX.GT.10000) GO TO 43	CN 193
194	NSFLG=0	CN 194
195 32	IF (IX) 33,49,34	CN 195
196 33	IX=-IX	CN 196
197	GO TO 35	CN 197
198 34	JEND=-JEND	CN 198
199 35	IF (IX.EQ.J) GO TO 37	CN 199
200	IF (IX.LT.J) GO TO 43	CN 200
201	IC=IC+1	CN 201
202	IF (IC.GT.JMAX) GO TO 49	CN 202
203	JCO(IC)=IX*JEND	CN 203
204	IF (IX.GT.N1) NSFLG=1	CN 204
205	IF (JEND.EQ.1) GO TO 36	CN 205
206	XA=XA+X(IX)	CN 206
207	YA=YA+Y(IX)	CN 207
208	ZA=ZA+Z(IX)	CN 208
209	IX=ICON1(IX)	CN 209
210	GO TO 32	CN 210
211 36	XA=XA+X2(IX)	CN 211
212	YA=YA+Y2(IX)	CN 212
213	ZA=ZA+Z2(IX)	CN 213
214	IX=ICON2(IX)	CN 214
215	GO TO 32	CN 215
216 37	SEP=IC	CN 216
217	XA=XA/SEP	CN 217
218	YA=YA/SEP	CN 218
219	ZA=ZA/SEP	CN 219
220	DO 39 I=1,IC	CN 220
221	IX=JCO(I)	CN 221
222	IF (IX.GT.0) GO TO 38	CN 222
223	IX=-IX	CN 223
224	X(IX)=XA	CN 224
225	Y(IX)=YA	CN 225
226	Z(IX)=ZA	CN 226
227	GO TO 39	CN 227
228 38	X2(IX)=XA	CN 228
229	Y2(IX)=YA	CN 229
230	Z2(IX)=ZA	CN 230
231 39	CONTINUE	CN 231
232	IF (N1.EQ.0) GO TO 42	CN 232
233	IF (NSFLG.EQ.0) GO TO 42	CN 233
234	DO 41 I=1,IC	CN 234
235	IX=IABS(JCO(I))	CN 235
236	IF (IX.GT.N1) GO TO 41	CN 236
237	IF (ICONX(IX).NE.O) GO TO 41	CN 237
238	NSCON=NSCON+1	CN 238
239	IF (NSCON.LE.NSMAX) GO TO 40	CN 239
2-0	PRINT 62, NSMAX	CN 240
241	STOP	CN 241
242 40	ISCON(NSCON)=IX	CN 242
243	ICONX(IX)=NSCON	CN 243
244 41	CONTINUE	CN 244
245 42	IF (IC.LT.3) GO TO 43	CN 245
246	ISEG=ISEG+1	CN 246
247	PRINT 51, ISEG,(JCO(I), I=1,IC)	CN 247
248 43	IF (IEND.EQ.1) GO TO 44	CN 248
249	IEND=1	CN 249
250	JEND=1	CN 250
251	IX=ICON2(J)	CN 251
252	IC=1	CN 252
253	JCO(1)=J	CN 253
254	XA=X2(J)	CN 254
255	YA=Y2(J)	CN 255
256	ZA=Z2(J) .	CN 256

257		GO TO 31	CN	257
258	44	CONTINUE	CN	258
259		IF (ISEG.EQ.O) PRINT 52	CN	259
260		IF (N1.EQ.O.OR.M1.EQ.M) GO TO 48	CN	260
261	C	FIND OLD SEGMENTS THAT CONNECT TO NEW PATCHES	CN	261
262		DO 47 J=1,N1	CN	262
263		IX=ICON1(J)	CN	263
264		IF (IX.LT.10000) GO TO 45	CN	264
265		IX=IX-10000	CN	265
266		IF (IX.GT.M1) GO TO 46	CN	266
267	45	IX=ICON2(J)	CN	267
268		IF (IX.LT.10000) GO TO 47	CN	268
269		IX=IX-10000	CN	269
270		IF (IX.LT.M2) GO TO 47	CN	270
271	46	IF (ICONX(J).NE.O) GO TO 47	CN	271
272		NSCON=NSCON+1	CN	272
273	1.000	ISCON(NSCON)=J	CN	273
274		ICONX(J)=NSCON	CN	274
275	47	CONTINUE	CN	275
276	48	CONTINUE	CN	276
277		RETURN	CN	277
278	49	PRINT 53, IX	CN	278
279		STOP	CN	279
280				280
281	50	FORMAT (//,9X,27H- MULTIPLE WIRE JUNCTIONS -,/,1X,8HJUNCTION,4X,36	CN	281
282		1HSEGMENTS (- FOR END 1, + FOR END 2))	CN	282
283	200	FORMAT (1X,15,5X,2015,/,(11X,2015))	CN	283
284	7 1000	FORMAT (2X,4HNONE)	CN	284
285		FORMAT (47H CONNECT - SEGMENT CONNECTION ERROR FOR SEGMENT, 15)	CN	285
286		FORMAT (/,3X,23HGROUND PLANE SPECIFIED.)		286
287	55	FORMAT (/,3X,46HWHERE WIRE ENDS TOUCH GROUND, CURRENT WILL BE ,38H	CN	287
288		1INTERPOLATED TO IMAGE IN GROUND PLANE.,/)		288
289	55	FORMAT (30H GEOMETRY DATA ERROR- SEGMENT, I5, 21H EXTENDS BELOW GRO		
290		1UND)		290
291		FORMAT (29H GEOMETRY DATA ERROR-SEGMENT, 15, 16H LIES IN GROUND , 6H		
292		1PLANE.)		292
293	58	FORMAT (/,3X,20HTOTAL SEGMENTS USED=,15,5X,12HNO. SEG. IN ,17HA SY		
294		1MMETRIC CELL=,15,5X,14HSYMMETRY FLAG=,13)	-	294
295		FORMAT (14H STRUCTURE HAS, 14, 25H FOLD ROTATIONAL SYMMETRY, /)	900	295
296		FORMAT (14H STRUCTURE HAS, 12, 19H PLANES OF SYMMETRY, /)		296
297		FORMAT (3X,19HTOTAL PATCHES USED=,15,6X,32HNO. PATCHES IN A SYMMET		
298		1RIC CELL=, I5)		298
299	62	FORMAT (82H ERROR - NO. NEW SEGMENTS CONNECTED TO N.G.F. SEGMENTSO		
300		1R PATCHES EXCEEDS LIMIT OF, 15)		300
301		END	CN	301-

COUPLE

COUPLE

PURPOSE

To compute the maximum coupling between pairs of segments.

METHOD

If a coupling calculation has been requested (CP card) subroutine COUPLE is called each time that the current is computed for a new excitation. The code from CP10 to CP12 checks that the excitation is a single applied-field voltage source on the segment specified in NCTAG and NCSEG. If the excitation is correct the input admittance and mutual admittances to all other segments specified in NCTAG and NCSEG are stored in Y11A and Y12A from CP13 to CP22.

When all segments have been excited (ICOUP = NCOUP) the second part of the code, from CP24 to CP58 is executed to evaluate the equations in Section V.6 of Part I.

SYMBOL DICTIONARY

C = L (see Part I, Section V.6)

CUR = array of values of current at the centers of segments

 $DBC = 10 \log(G_{MAX})$

GMAX = GMAX

ISG1 = segment number

ISG2 = segment number

J1 = index of Y₁₂ in array Y12A

J2 = index of Y₂₁ in array Y12A

K = segment number

RHO = ρ

WLAM = wavelength

Y11 = Y₁₁

 $Y12 = (Y_{12} + Y_{21})/2$

 $Y22 = Y_{22}$

YIN = YTM

YL = Y

 $ZIN = 1/Y_{IN}$

 $ZL = 1/Y_L$


```
SUBROUTINE COUPLE (CUR, WLAM)
1
                                                                                   CP
2 C
                                                                                   CP
                                                                                         2
3 C
         COUPLE COMPUTES THE MAXIMUM COUPLING BETWEEN PAIRS OF SEGMENTS.
                                                                                   CP
                                                                                         3
4 C
                                                                                   CP
5
         COMPLEX Y11A, Y12A, CUR, Y11, Y12, Y22, YL, YIN, ZL, ZIN, RHO, VQD, VSANT, VQDS CP
                                                                                         5
6
         COMMON /YPARM/ NCOUP, ICOUP, NCTAG(5), NCSEG(5), Y11A(5), Y12A(20)
                                                                                   CP
                                                                                         6
         COMMON /VSORC/ VQD(30), VSANT(30), VQDS(30), IVQD(30), ISANT(30), IQDS(
7
                                                                                   CP
                                                                                         7
8
         130) . NVQD . NSANT . NQDS
                                                                                   CP
                                                                                         8
9
         DIMENSION CUR(1)
                                                                                   CP
                                                                                         9
         IF (NSANT.NE.1.OR.NVQD.NE.0) RETURN
10
                                                                                   CP
                                                                                       10
11
         J=ISEGNO(NCTAG(ICOUP+1),NCSEG(ICOUP+1))
                                                                                   CP
                                                                                       11
         IF (J.NE. ISANT(1)) RETURN
12
                                                                                   CP
                                                                                       12
13
         ICOUP=ICOUP+1
                                                                                   CP
                                                                                       13
         ZIN=VSANT(1)
14
                                                                                   CP
                                                                                       14
         Y11A(ICOUP)=CUR(J)*WLAM/ZIN
15
                                                                                   CP
                                                                                       15
16
         L1=(ICOUP-1)*(NCOUP-1)
                                                                                   CP
                                                                                       16
17
         DO 1 I=1, NCOUP
                                                                                   CP
                                                                                       17
18
         IF (I.EQ.ICOUP) GO TO 1
                                                                                   CP
                                                                                       18
         K=ISEGNO(NCTAG(I),NCSEG(I))
19
                                                                                   CP
                                                                                       19
20
         L1=L1+1
                                                                                   CP
                                                                                       20
         Y12A(L1)=CUR(K)*WLAM/ZIN
21
                                                                                   CP
                                                                                       21
22 1
         CONTINUE
                                                                                   CP
                                                                                       22
23
         IF (ICOUP.LT.NCOUP) RETURN
                                                                                   CP
                                                                                       23
24
         PRINT 6
                                                                                   CP
                                                                                       24
25
         NPM1=NCOUP-1
                                                                                   CP
                                                                                       25
26
         DO 5 I=1 , NPM1
                                                                                   CP
                                                                                       26
27
         ITT1=NCTAG(I)
                                                                                   CP
                                                                                       27
         ITS1=NCSEG(I)
28
                                                                                   CP
                                                                                       28
29
         ISG1=ISEGNO(ITT1, ITS1)
                                                                                   CP
                                                                                       29
30
         L1=I+1
                                                                                   CP
                                                                                       30
31
         DO 5 J=L1, NCOUP
                                                                                   CP
                                                                                       31
32
         ITT2=NCTAG(J)
                                                                                   CP
                                                                                       32
33
         ITS2=NCSEG(J)
                                                                                   CP
                                                                                       33
34
         ISG2=ISEGNO(ITT2, ITS2)
                                                                                   CP
                                                                                        34
35
         J1=J+(I-1)*NPM1-1
                                                                                   CP
                                                                                       35
         J2=I+(J-1)*NPM1
36
                                                                                   CP
                                                                                       36
37
         Y11=Y11A(I)
                                                                                   CP
                                                                                       37
38
         Y22=Y11A(J)
                                                                                   CP
                                                                                       38
                                                                                   CP
39
         Y12=.5*(Y12A(J1)+Y12A(J2))
                                                                                       39
40
         YIN=Y12*Y12
                                                                                   CP
                                                                                        40
         DBC=CABS(YIN)
41
                                                                                   CP
                                                                                        41
         C=DBC/(2.*REAL(Y11)*REAL(Y22)-REAL(YIN))
42
                                                                                   CP
                                                                                       42
43
         IF (C.LT.O..OR.C.GT.1.) GO TO 4
                                                                                   CP
                                                                                       43
44
         IF (C.LT..01) GO TO 2
                                                                                   CP
                                                                                        44
45
         GMAX=(1.-SQRT(1.-C*C))/C
                                                                                   CP
                                                                                        45
46
         GO TO 3
                                                                                   CP
                                                                                        46
47 2
         GMAX=.5*(C+.25*C*C*C)
                                                                                   CP
                                                                                        47
48 3
         RHO=GMAX*CONJG(YIN)/DBC
                                                                                   CP
                                                                                        48
49
         YL=((1.-RHO)/(1.+RHO)+1.)*REAL(Y22)-Y22
                                                                                   CP
                                                                                        49
50
         ZL=1./YL
                                                                                   CP
                                                                                       50
         YIN=Y11-YIN/(Y22+YL)
51
                                                                                   CP
                                                                                       51
                                                                                   CP
52
         ZIN=1./YIN
                                                                                       52
53
         DBC=DB10(GMAX)
                                                                                   CP
                                                                                       53
54
         PRINT 7, ITT1, ITS1, ISG1, ITT2, ITS2, ISG2, DBC, ZL, ZIN
                                                                                   CP
                                                                                       54
55
         GO TO 5
                                                                                   CP
                                                                                       55
56 4
         PRINT 8, ITT1, ITS1, ISG1, ITT2, ITS2, ISG2, C
                                                                                   CP
                                                                                       56
57 5
         CONTINUE
                                                                                   CP
                                                                                       57
         RETURN
58
                                                                                   CP
                                                                                       58
59 C
                                                                                   CP
                                                                                       59
60
          FORMAT (///,36X,26H- - - ISOLATION DATA - - -,//,6X,24H- - COUPLIN CP
                                                                                        60
         1G BETWEEN - -,8X,7HMAXIMUM,15X,32H- - FOR MAXIMUM COUPLING - - CP
61
                                                                                        61
62
         2./,12X,4HSEG.,14X,4HSEG.,3X,8HCOUPLING,4X,25HLOAD IMPEDANCE (2ND S CP
                                                                                       62
         3EG.),7X,15HINPUT IMPEDANCE,/,2X,8HTAG/SEG.,3X,3HNO.,4X,8HTAG/SEG., CP
63
                                                                                       63
64
         43X,3HNO.,6X,4H(DB),8X,4HREAL,9X,5HIMAG.,9X,4HREAL,9X,5HIMAG.)
```

COUPLE

65 7 FORMAT (2(1X,I4,1X,I4,1X,I5,2X),F9.3,2X,2(2X,E12.5,1X,E12.5)) CP 65
66 8 FORMAT (2(1X,I4,1X,I4,1X,I5,2X)45H**ERROR** COUPLING IS NOT BETWEE CP 66
67 1N 0 AND 1. (=,E12.5,1H)) CP 67
68 END CP 68-

PURPOSE

To read structure input data and set segment and patch data.

METHOD

The main READ statement is at DA35. The READ statement at DA65 is for the continuation of wire data (GC card following GW), and the READ at DA133 is for the continuation of surface patch data (SC following SP or SM).

The first input parameter GM determines the function of the card as indicated in the following table:

GM	GØ TØ	FUNCTION
GA	8	define wire arc
GC	6	continuation of wire data
GE	29	end of geometry data
GF	27	read NGF file
GM	26	rotate or translate structure
GR	19	rotate about Z axis (symmetry)
GS	21	scale structure
GW	3	define straight wire
GX	18	reflect in coordinate planes (symmetry)
sc	10	continuation of patch data
SM	13	define multiple surface patches
SP	. 9	define surface patch

The functions of the other input parameters depend on the type of data card and can be determined from the data card descriptions in Part III of this manual.

Subroutines are called to perform many of the operations requested by the data cards. Coding in DATAGN performs other operations, prints information and checks for input errors. After a GE card is read subroutine CONECT is called at DA211 to find electrical connections of segments. Segment and patch data is printed from DA217 to DA256. Line DA241 tests for segments of zero length $(<10^{-20})$ or zero radius $(<10^{-101})$.

SYMBOL DICTIONARY

Variables have multiple uses which depend on the type of input card being processed.

esses Harrisons I acceptance I see seems!

Contract of

```
SUBROUTINE DATAGN
                                                                                     DA
2 C
                                                                                     DA
                                                                                          2
3
  C
          DATAGN IS THE MAIN ROUTINE FOR INPUT OF GEOMETRY DATA.
                                                                                     DA
                                                                                          3
 4
  C
                                                                                     DA
                                                                                          4
5
         INTEGER GM, ATST
                                                                                          5
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 DA
                                                                                          6
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( DA
                                                                                          7
8
        2300), WLAM, IPSYM
 9
          COMMON /ANGL/ SALP(300)
                                                                                          9
         DIMENSION X2(1), Y2(1), Z2(1), T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y DA 1(1), T2Z(1), ATST(12), IFX(2), IFY(2), IFZ(2), CAB(1), SAB(1), IPT DA
10
                                                                                         10
11
                                                                                         11
12
        2(4)
                                                                                         12
          EQUIVALENCE (T1X.SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON DA
13
                                                                                         13
14
         12), (T2Z, ITAG), (X2, SI), (Y2, ALP), (Z2, BET), (CAB, ALP), (SAB, BET) DA
                                                                                         14
15
          DATA ATST/2HGW, 2HGX, 2HGR, 2HGS, 2HGE, 2HGM, 2HSP, 2HSM, 2HGF, 2HGA, 2HSC, 2 DA
                                                                                         15
16
         1HGC/
                                                                                         16
17
          DATA IFX/1H .1HX/.IFY/1H .1HY/.IFZ/1H .1HZ/
                                                                                         17
18
          DATA TA/0.01745329252/, TD/57.29577951/, IPT/1HP, 1HR, 1HT, 1HQ/
                                                                                     DA
                                                                                         18
19
          IPSYM=0
                                                                                     DA
                                                                                         19
20
          NWIRE=0
                                                                                     DA
                                                                                         20
21
          N=0
                                                                                     DA
                                                                                         21
          NP=0
22
                                                                                     DA
                                                                                        22
23
          M=0
                                                                                     DA
                                                                                        23
24
          MP=0
                                                                                     DA
                                                                                        24
25
          N1=0
                                                                                     DA
                                                                                         25
26
          N2=1
                                                                                     DA
                                                                                         26
27
          M1=0
                                                                                     DA
                                                                                         27
28
          M2=1
                                                                                     DA
                                                                                         28
          ISCT=0
29
                                                                                     DA
                                                                                        29
30
          IPHD=0
                                                                                        30
31 C
                                                                                     DA
                                                                                        31
32 C
          READ GEOMETRY DATA CARD AND BRANCH TO SECTION FOR OPERATION
                                                                                     DA
                                                                                         32
33 C
          REQUESTED
                                                                                     DA
                                                                                         33
34 C
                                                                                     DA
                                                                                         34
35 1
          READ (5,42) GM, ITG, NS, XW1, YW1, ZW1, XW2, YW2, ZW2, RAD
                                                                                         35
                                                                                     DA
36
          IF (N+M.GT.LD) GO TO 37
                                                                                     DA
                                                                                         36
37
          IF (GM.EQ.ATST(9)) GO TO 27
                                                                                     DA
                                                                                         37
38
          IF (IPHD.EQ.1) GO TO 2
                                                                                     DA
                                                                                         38
39
          PRINT 40
                                                                                     DA
                                                                                         39
40
          PRINT 41
                                                                                     DA
                                                                                         40
          IPHD=1
41
                                                                                     DA
                                                                                          41
42 2
          IF (GM.EQ.ATST(11)) GO TO 10
                                                                                     DA
                                                                                         42
43
          ISCT=0
                                                                                     DA
                                                                                         43
44
          IF (GM.EQ.ATST(1)) GO TO 3
                                                                                     DA
                                                                                         44
45
          IF (GM.EQ.ATST(2)) GO TO 18
                                                                                     DA
                                                                                         45
46
          IF (GM.EQ.ATST(3)) GO TO 19
                                                                                     DA
                                                                                         46
          IF (GM.EQ.ATST(4)) GO TO 21
47
                                                                                     DA
                                                                                         47
          IF (GM.EQ.ATST(7)) GO TO 9
48
                                                                                     DA
                                                                                          48
49
          IF (GM.EQ.ATST(8)) GO TO 13
                                                                                     DA
                                                                                         49
50
          IF (GM.EQ.ATST(5)) GO TO 29
                                                                                     DA
                                                                                         50
51
          IF (GM.EQ.ATST(6)) GO TO 26
                                                                                     DA
52
          IF (GM.EQ.ATST(10)) GO TO 8
                                                                                     DA
                                                                                         52
53
                                                                                     DA
                                                                                        53
54 C
                                                                                     DA
                                                                                         54
          GENERATE SEGMENT DATA FOR STRAIGHT WIRE.
55 C
                                                                                     DA
                                                                                         55
56 C
                                                                                     DA
                                                                                         56
57 3
          NWIRE=NWIRE+1
                                                                                     DA
                                                                                         57
58
          I1=N+1
                                                                                     DA
                                                                                        58
59
          I2=N+NS
                                                                                     DA
                                                                                        59
60
          PRINT 43, NWIRE, XW1, YW1, ZW1, XW2, YW2, ZW2, RAD, NS, I1, I2, ITG
                                                                                     DA
                                                                                         60
61
          IF (RAD.EQ.0) GO TO 4
                                                                                     DA
                                                                                         61
62
          XS1=1.
                                                                                     DA
                                                                                         62
63
          YS1=1.
                                                                                     DA
                                                                                          63
          GO TO 7
                                                                                     DA
                                                                                         64
```

65	4	READ (5,42) GM, IX, IY, XS1, YS1, ZS1	DA	65
66		IF (GM.EQ.ATST(12)) GO TO 6	DA	66
67		PRINT 48	DA	67
68		STOP	DA	68
69	6	PRINT 61, XS1, YS1, ZS1	DA	69
70		IF (YS1.EQ.0.OR.ZS1.EQ.0) GO TO 5	DA	70
71		RAD=YS1	DA	71
72		YS1=(ZS1/YS1) •• (1./(NS-1.))	DA	72
73	7	CALL WIRE (XW1, YW1, ZW1, XW2, YW2, ZW2, RAD, XS1, YS1, NS, ITG)	DA	73
74		GO TO 1	DA	74
75			DA	75
76	1 2 3 1 1 1 1 1	GENERATE SEGMENT DATA FOR WIRE ARC	DA	76
77		MUZOC-MUZOC. 4	DA	77
78	•	NWIRE=NWIRE+1	DA	78
79		I1=N+1	DA	79
80		I2=N+NS	DA	80
81		PRINT 38, NWIRE, XW1, YW1, ZW1, XW2, NS, I1, I2, ITG	DA	81
83		GO TO 1	DA	82
84	•	90 10 1	DA	83
85	The state of the s	GENERATE SINGLE NEW PATCH	DA	84
86		VENERALE SERVEE REIL LATOR	DA DA	85 86
87	The second second	I1=M+1	DA	
88		NS=NS+1	DA	88
89		IF (ITG.NE.O) GO TO 17	DA	89
90		PRINT 51, I1, IPT(NS), XW1, YW1, ZW1, XW2, YW2, ZW2	DA	90
91		IF (NS.EQ.2.OR.NS.EQ.4) ISCT=1	DA	91
92		IF (NS.GT.1) GO TO 14	DA	92
93		XW2=XW2*TA	DA	93
94		YW2=YW2*TA	DA	
95		GO TO 16	DA	
96	10	IF (ISCT.EQ.0) GO TO 17	DA	
97		I1=M+1	DA	97
98		NS=NS+1	DA	98
99		IF (ITG.NE.0) GO TO 17	DA	99
100		IF (NS.NE.2.AND.NS.NE.4) GO TO 17	DA	100
101		XS1=X4	DA	101
102		YS1=Y4	DA	102
103		ZS1=Z4	DA	103
104		XS2=X3		104
105		YS2=Y3		105
106		ZS2=Z3		106
107		X3=XW1		107
108		Y3=YW1		108
109		Z3=ZW1		109
110		IF (NS.NE.4) GO TO 11 X4=XW2		110
112		Y4=YW2		111
113		Z4=ZW2		112
114	11	XW1=XS1		114
115		YW1=YS1		115
116		ZW1=ZS1		116
117		XW2=XS2		117
118		YW2=YS2		118
119		ZW2=ZS2		119
120		IF (NS.EQ.4) GO TO 12		120
121		X4=XW1+X3-XW2		121
122		Y4=YW1+Y3-YW2		122
123		Z4=ZW1+Z3-ZW2		123
124	12	PRINT 51, I1, IPT(NS), XW1, YW1, ZW1, XW2, YW2, ZW2		124
125		PRINT 39, X3, Y3, Z3, X4, Y4, Z4		125
126		GO TO 16	DA	126
127			DA	127
128	C	GENERATE MULTIPLE-PATCH SURFACE	DA	128


```
129 C
                                                                                    DA 129
130 13
          11=M+1
                                                                                    DA 130
131
           PRINT 59, I1, IPT(2), XW1, YW1, ZW1, XW2, YW2, ZW2, ITG, NS
                                                                                    DA 131
132
           IF (ITG.LT.1.OR.NS.LT.1) GO TO 17
                                                                                    DA 132
133 14
          MEAD (5,42) GM, IX, IY, X3, Y3, Z3, X4, Y4, Z4
                                                                                    DA 133
134
           IF (NS.NE.2.AND.ITG.LT.1) GO TO 15
                                                                                    DA 134
135
           X4=XW1+X3-XW2
                                                                                    DA 135
136
           Y4=YW1+Y3-YW2
                                                                                    DA 136
137
          Z4=ZW1+Z3-ZW2
                                                                                    DA 137
           PRINT 39, X3, Y3, Z3, X4, Y4, Z4
138 15
                                                                                    DA 138
139
           IF (GM.NE.ATST(11)) GO TO 17
                                                                                    DA 139
140 16
           CALL PATCH (ITG.NS, XW1, YW1, ZW1, XW2, YW2, ZW2, X3, Y3, Z3, X4, Y4, Z4)
                                                                                    DA 140
           GO TO 1
141
                                                                                    DA 141
142 17
          PRINT 60
                                                                                    DA 142
           STOP
143
                                                                                    DA 143
144 C
                                                                                    DA 144
145 C
           REFLECT STRUCTURE ALONG X,Y, OR Z AXES OR ROTATE TO FORM CYLINDER. DA 145
146 C
                                                                                    DA 146
147 18
           IY=NS/10
                                                                                    DA 147
           IZ=NS-IY*10
148
                                                                                    DA 148
149
           IX=IY/10
                                                                                    DA 149
150
           IY=IY-IX*10
                                                                                    DA 150
151
           IF (IX.NE.O) IX=1
                                                                                    DA 151
           IF (IY.NE.O) IY=1
152
                                                                                    DA 152
153
           IF (IZ.NE.O) IZ=1
                                                                                    DA 153
           PRINT 44, IFX(IX+1), IFY(IY+1), IFZ(IZ+1), ITG
154
                                                                                    DA 154
155
           GO TO 20
                                                                                    DA 155
156 19
           PRINT 45, NS, ITG
                                                                                    DA 156
157
           IX=-1
                                                                                    DA 157
158 20
           CALL REFLC (IX, IY, IZ, ITG, NS)
                                                                                    DA 158
           GO TO 1
159
                                                                                    DA 159
160 C
                                                                                    DA 160
           SCALE STRUCTURE DIMENSIONS BY FACTOR XW1.
161 C
                                                                                    DA 161
162 C
                                                                                    DA 162
163 21
           IF (N.LT.N2) GO TO 23
                                                                                    DA 163
164
           DO 22 I=N2,N
                                                                                    DA 164
165
           X(I)=X(I)*XW1
                                                                                     DA 165
166
           Y(I)=Y(I)*XW1
                                                                                    DA 166
           Z(I)=Z(I)*XW1
167
                                                                                    DA 167
168
           X2(I)=X2(I)*XW1
                                                                                    DA 168
169
           Y2(I)=Y2(I)*XW1
                                                                                    DA 169
170
           Z2(I)=Z2(I)*XW1
                                                                                    DA 170
171 22
           BI(I)=BI(I) *XW1
                                                                                    DA 171
           IF (M.LT.M2) GO TO 25
172 23
                                                                                     DA 172
           YW1=XW1 *XW1
173
                                                                                    DA 173
174
           IX=LD+1-M
                                                                                    DA 174
           IY=LD-M1
175
                                                                                    DA 175
176
           DO 24 I=IX.IY
                                                                                     DA 176
177
           X(I)=X(I)*XW1
                                                                                    DA 177
178
           Y(I)=Y(I) *XW1
                                                                                     DA 178
179
           Z(I)=Z(I)*XW1
                                                                                     DA 179
180 24
           BI(I)=BI(I) *YW1
                                                                                    DA 180
           PRINT 46, XW1
181 25
                                                                                    DA 181
           GO TO 1
182
                                                                                     DA 182
183 C
                                                                                     DA 183
           MOVE STRUCTURE OR REPRODUCE ORIGINAL STRUCTURE IN NEW POSITIONS.
184 C
                                                                                     DA 184
185 C
                                                                                     DA 185
186 26
           PRINT 47, ITG,NS,XW1,YW1,ZW1,XW2,YW2,ZW2,RAD
                                                                                     DA 186
           XW1=XW1 • TA
187
                                                                                    DA 187
           YW1=YW1 TA
188
                                                                                    DA 188
189
           ZW1=ZW1 * TA
                                                                                     DA 189
           CALL MOVE (XW1, YW1, ZW1, XW2, YW2, ZW2, INT(RAD+.5), NS, ITG)
190
                                                                                     DA 190
191
           GO TO 1
                                                                                    DA 191
192 C
                                                                                     DA 192
```

193 C	READ NUMERICAL GREEN'S FUNCTION TAPE	DA 19	
194 C		DA 19	
195 27	IF (N+M.EQ.0) GO TO 28	DA 19	
196	PRINT 52	DA 19	
197	STOP	DA 19	
198 28	CALL GFIL (ITG)	DA 19	
199	NPSAV=NP	DA 19	
200	MPSAV=MP	DA 20	
201	IPSAV=IPSYM	DA 20	
202	GO TO 1	DA 20	
203 C		DA 20	
204 C	TERMINATE STRUCTURE GEOMETRY INPUT.	DA 20	
205 C		DA 20	
206 29	IX=N1+M1	DA 20	
207	IF (IX.EQ.0) GO TO 30	DA 20	
208	NP=N	DA 20	
209	MP=M	DA 20	
210	IPSYM=0	DA 21	
211 30	CALL CONECT (ITG)	DA 21	
212	IF (IX.EQ.0) GO TO 31	DA 21	
213	NP=NPSAV	DA 21	
214	MP=MPSAV	DA 21	
215	IPSYM=IPSAV	DA 21	
216 31	IF (N+M.GT.LD) GO TO 37	DA 21	
217	IF (N.EQ.0) GO TO 33	DA 21	
218 219	PRINT 53 PRINT 54	DA 21	
220	DO 32 I=1,N	DA 21	
221	XW1=X2(I)-X(I)	DA 22	
222	YW1=Y2(I)-Y(I)	DA 22	
223	ZW1=Z2(I)-Z(I)	DA 22	
224	X(I)=(X(I)+X2(I))*.5	DA 22	
225	Y(I) = (Y(I) + Y2(I)) * .5	DA 22	
226	$Z(I)=(Z(I)+Z(I))^{*}.5$	DA 22	
227	XW2=XW1 * XW1 + YW1 * YW1 + ZW1	DA 22	
228	YW2=SQRT(XW2)	DA 22	
229	YW2=(XW2/YW2+YW2)*.5	DA 22	
230	SI(I)=YW2	DA 23	2050
231	CAB(I)=XW1/YW2	DA 23	
232	SAB(I)=YW1/YW2	DA 23	
233	XW2=ZW1/YW2	DA 23	
234	IF (XW2.GT.1.) XW2=1.	DA 23	34
235	IF (XW2.LT1.) XW2=-1.	DA 23	35
236	SALP(I)=XW2	DA 23	36
237	XW2=ASIN(XW2)*TD	DA 23	37
238	YW2=ATGN2(YW1,XW1)*TD	DA 23	38
239	PRINT 55, I,X(I),Y(I),Z(I),SI(I),XW2,YW2,BI(I),ICON1(I),I,ICON2(I)	DA 23	39
240	1,ITAG(I)	DA 24	40
241	IF (SI(I).GT.1.E-20.AND.BI(I).GT.1.E-101) GO TO 32	DA 24	41
242	PRINT 56	DA 24	42
243	STOP	DA 24	43
244 32	CONTINUE	DA 24	44
245 33	IF (M.EQ.0) GO TO 35	DA 24	45
246	PRINT 57	DA 24	
247	J=LD+1	DA 24	
248	DO 34 I=1,M	DA 24	
249	J=J-1	DA 24	
250	$XW1 = (T1Y(J) \cdot T2Z(J) - T1Z(J) \cdot T2Y(J)) \cdot SALP(J)$	DA 25	
251	YW1=(T1Z(J)*T2X(J)-T1X(J)*T2Z(J))*SALP(J)	DA 25	
252	ZW1=(T1X(J)*T2Y(J)-T1Y(J)*T2X(J))*SALP(J)	DA 25	
253	PRINT 58, I,X(J),Y(J),Z(J),XW1,YW1,ZW1,BI(J),T1X(J),T1Y(J),T1Z(J),		
254	1T2X(J),T2Y(J).T2Z(J)	DA 25	
255 34	CONTINUE	DA 25	
256 35	RETURN	DA 25	56

257	36	PRINT 48	DA	257
258		PRINT 49, GM, ITG, NS, XW1, YW1, ZW1, XW2, YW2, ZW2, RAD	DA	258
259		STOP	DA	259
260	37	PRINT 50	DA	260
261		STOP	DA	261
262	C		DA	262
263	38	FORMAT (1X,15,2X,12HARC RADIUS =,F9.5,2X,4HFROM,F8.3,3H TO,F8.3,8H	DA	263
264		1 DEGREES, 11X, F11.5, 2X, I5, 4X, I5, 1X, I5, 3X, I5)	DA	264
265	39	FORMAT (6X,3F11.5,1X,3F11.5)	DA	265
266	40	FORMAT (///,33x,35H STRUCTURE SPECIFICATION,//,37x,28H	DA	266
267		1COORDINATES MUST BE INPUT IN, /, 37X, 29HMETERS OR BE SCALED TO METER		
268		2S./.37X.31HBEFORE STRUCTURE INPUT IS ENDED.//)	DA	268
269	41	FORMAT (2X,4HWIRE,79X,6HNO. OF,4X,5HFIRST,2X,4HLAST,5X,3HTAG,/,2X,	DA	269
270		13HNO., 8X, 2HX1, 9X, 2HY1, 9X, 2HZ1, 10X, 2HX2, 9X, 2HY2, 9X, 2HZ2, 6X, 6HRADIUS	DA	270
271		2,3X,4HSEG.,5X,4HSEG.,3X,4HSEG.,5X,3HNO.)		271
272	42	FORMAT (A2, I3, I5, 7F10.5)		272
273	43	FORMAT (1X, 15, 3F11.5, 1X, 4F11.5, 2X, 15, 4X, 15, 1X, 15, 3X, 15)	DA	273
274	44	가게도 1요. (^) - 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		274
275		1GS INCREMENTED BY, I5)		275
276	45	FORMAT (6X,30HSTRUCTURE ROTATED ABOUT Z-AXIS,13,30H TIMES. LABLES	Carrier Control	
277		1 INCREMENTED BY, IS)		277
278	46	FORMAT (6X, 26HSTRUCTURE SCALED BY FACTOR, F10.5)		278
279	47	FORMAT (6X, 49HTHE STRUCTURE HAS BEEN MOVED, MOVE DATA CARD IS -/6X		
280		1, I3, I5, 7F10.5)		280
281	48	FORMAT (25H GEOMETRY DATA CARD ERROR)	-	281
282		FORMAT (1X,A2,I3,I5,7F10.5)		282
283		FORMAT (69H NUMBER OF WIRE SEGMENTS AND SURFACE PATCHES EXCEEDS DI		
284		1MENSION LIMIT.)		284
285	51	FORMAT (1X, I5, A1, F10.5, 2F11.5, 1X, 3F11.5)		285
286		FORMAT (44H ERROR - GF MUST BE FIRST GEOMETRY DATA CARD)		286
287	53	FORMAT (////33X,33H SEGMENTATION DATA,//,40X,21HCOO		
288		1RDINATES IN METERS, //, 25x, 50HI+ AND I- INDICATE THE SEGMENTS BEFOR		
289		2E AND AFTER I,//)		289
290	54	FORMAT (2X, 4HSEG , 3X, 26HCOORDINATES OF SEG. CENTER, 5X, 4HSEG., 5X, 18		
291		1HORIENTATION ANGLES, 4X, 4HWIRE, 4X, 15HCONNECTION DATA, 3X, 3HTAG, /, 2X,		
292		23HNO., 7X, 1HX, 9X, 1HY, 9X, 1HZ, 7X, SHLENGTH, 5X, 5HALPHA, 5X, 4HBETA, 6X, 6HR		
293		3ADIUS, 4X, 2HI-, 3X, 1HI, 4X, 2HI+, 4X, 3HNO.)		293
294	55	FORMAT (1X,15,4F10.5,1X,3F10.5,1X,3I5,2X,35)	DA	294
295		FORMAT (19H SEGMENT DATA ERROR)		295
296		FORMAT (///, 44X, 30H SURFACE PATCH DATA, //, 49X, 21HCOORD		
297		1INATES IN METERS, //, 1X, 5HPATCH, 5X, 22HCOORD. OF PATCH CENTER, 7X, 18H		
298		2UNIT NORMAL VECTOR, 6X, 5HPATCH, 12X, 34HCOMPONENTS OF UNIT TANGENT VE		
299		3CTORS,/,2X,3HNO.,6X,1HX,9X,1HY,9X,1HZ,9X,1HX,7X,1HY,7X,1HZ,7X,4HAR		
300		4EA,7X,2HX1,6X,2HY1,6X,2HZ1,7X,2HX2,6X,2HY2,6X,2HZ2)		300
301	58	FORMAT (1X, I4, 3F10.5, 1X, 3F8.4, F10.5, 1X, 3F8.4, 1X, 3F8.4)		301
302		FORMAT (1X, 15, A1, F10.5, 2F11.5, 1X, 3F11.5, 5X, 9HSURFACE -, 14, 3H BY, 13		
303		1,8H PATCHES)		303
304	60	FORMAT (17H PATCH DATA ERROR)		304
305		FORMAT (9X, 43HABOVE WIRE IS TAPERED. SEG. LENGTH RATIO =, F9.5,/,3		
306		13X,11HRADIUS FROM,F9.5,3H TO,F9.5)		306
307		END		307-

NUMERICAL ELECTROMAGNETIC CODE (NEC)-METHOD OF MOMENTS A USER-ORIENTED CO.. (U) NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA G J BURKE ET AL. 18 JUL 77 NOSC/TD-116-VOL-1 AFML-TR-76-320-VOL-1 F/G 12/5 3/6 AD-A075 289 NL UNCLASSIFIED 護 . - Allega

DB10

PURPOSE

To convert an input magnitude quantity (field) or magnitude squared quantity (power) into decibels.

METHOD

For a squared quantity, the decibel conversion is

$$Q_{db} = 10 \log_{10} Q^2$$
 (Q² input),

and for an unsquared quantity,

$$Q_{db} = 20 \log_{10} Q$$
.

DB10 is used for the squared quantity while the entry DB20 is used for the quantity which is not squared.

SYMBOL DICTIONARY

ALOG10 = external routine (log to the base 10)

DB10 = Qab

F = scaling term

X = input quantity

CONSTANT

-999.99 = returned for an input less than 10^{-20}

CODE LISTING

1	FUNCTION DB10 (X)	08	1
2 C		OB	2
3 C	FUNCTION DB- RETURNS DB FOR MAGNITUDE (FIELD) OR MAG**2 (POWER)	I DB	3
4 C		DB	4
5	F=10.	DB	5
6	GO TO 1	DB	6
7	ENTRY DB20	DB	7
8	F=20.	DB	8
9 1	IF (X.LT.1.E-20) GO TO 2	DB	9
10	DB10=F*ALOG10(X)	DB	10
11	RETURN	DB	11
12 2	DB10=-999.99	DB	12
13	RETURN	DB	13
14	END	DB	14-

EFLD

PURPOSE

To compute the near electric field due to constant, sine, and cosine current distributions on a segment in free space or over ground.

METHOD

The electric field is computed at the point XI, YI, ZI due to the segment defined by parameters in COMMON/DATAJ/. Either the thin wire or extended thin wire formulas may be used. When a ground is present, the code is executed twice in a loop. In the second pass, the field of the image of the segment is computed, multiplied by the reflection coefficients, and added to the direct field. The reflection coefficients for the reflected ray from the center of the source segment are used for the entire segment.

The field is evaluated in a cylindrical coordinate system with the source segment at the origin, along the z axis. The ρ coordinate of the field evaluation point is computed for the surface of the observation segment as

$$\rho' = (\rho^2 + a^2)^{1/2}$$

where ρ is the distance from the axis of the source segment to (XI, YI, ZI) and a is the radius of the observation segment. The field is computed in ρ and z components as

$$\vec{E} = E_{\rho}(\vec{\rho}/\rho') + E_{z}\hat{z} .$$

Use of ρ' avoids a singularity when (XI, YI, ZI) is the center of the source segment. In the addition of field components, $\bar{\rho}/\rho'$ is used rather than $\bar{\rho}$, since E_{ρ} is the field in the direction $\bar{\rho}'$ to one side of the observation segment.

When the Sommerfeld/Norton option is used for an antenna over ground the electric field at \bar{r} due to the current on a segment is evaluated in three terms as

$$\vec{E}(\vec{r}) = \vec{E}_D(\vec{r}) + \frac{k_1^2 - k_2^2}{k_1^2 + k_2^2} \vec{E}_I(\vec{r}) + \vec{E}_S(\vec{r})$$

 \bar{E}_D is the direct field of the segment in the absence of ground, and \bar{E}_I is the field of the image of the segment reflected in a perfectly conducting ground. These field comonents are evaluated in EFLD between EF19 and EF150. The factor $(k_1^2 - k_2^2)/(k_1^2 + k_2^2)$ is contained in the variable FRATI.

The field \bar{E}_S , due to the Sommerfeld integrals is evaluated from EF155 to EF227. If the separation of the observation point and the center of the source segment is less than one wavelength, subroutine ROM2 is called at EF191 to integrate over the segment. DMIN is set to the magnitude of the first two terms in \bar{E} divided by 100 as a lower limit on the denominator of the relative error test in the numerical integration. This relaxes the relative accuracy requirement when \bar{E}_S is small compared to the first two terms.

If the separation of the source segment and observation point is greater than a wavelength, SFLDS is called at EF197 to evaluate \bar{E}_S by the Norton approximation.

To compute \overline{E}_S with the thin wire approximation applied in a manner consistent with that for \overline{E}_I , the field is evaluated at a point displaced normal to the image of the source segment and normal to the separation \overline{R} . If the direction of the image of the source segment is \hat{J} the displacement is \overline{D} where

$$\vec{D} = +a\hat{d}$$
 for $\hat{z} \cdot \hat{d} \ge 0$
 $\hat{d} = (\hat{j} \times \vec{R})/|\hat{j} \times \vec{R}|$
 $a = radius$ of observation segment

This displaced observation point (XO, YO, ZO) is computed from EF166 to EF181. Some of the complexity is needed to make the result independent of orientation of segments relative to the coordinate axes.

To adjust the ρ component of field for the factor $|\bar{\rho}/\rho'|$ the field \bar{E}' is computed as

$$\vec{E}' = F\vec{E} + (1 - F)(\vec{E} \cdot \hat{j})\hat{j}$$
where $F = [\rho^2/(\rho^2 + a^2)]$

$$\rho^2 = |\vec{R}|^2 - (\vec{R} \cdot \hat{j})^2$$

This is done from EF204 to EF218 but is skipped if F (DMIN) is greater than 0.95.

CODING

EF23 Loop over direct and image fields.

EF29 - EF31 Components of ρ.

EF33 - EF40 Components of p/p' computed.

EF46 - EF62 Electric field of the segment computed by infinitesimal

dipole approximation.

EF68 Field computed by thin wire approximation.

EF70 . Field computed by extended thin wire approximation.

EF72 - EF80 Field converted to x, y, and z components.

EF89 - EF111 Reflection coefficients computed.

EF112 - EF129 Image fields modified by reflection coefficients.

EF130 - EF138 Reflected fields added to direct fields.

SYMBOL DICTIONARY

AI = radius of segment on which field is evaluated

CTH = $\cos \theta$; θ = angle from axis of infinitesimal dipole or angle between the reflecting ray and vertical

EGND = components of \bar{E}_S (see EQUIVALENCE statement)

EPX = x and y components of (E · p)p (see PX)

EPY

はなるないのです。 しょうしょうしょしき からいいからのいか 瀬でものできるしました

ETA = $\eta = (\mu_0/\epsilon_0)^{1/2}$

IJ = IJX = flag to indicate field evaluation point is on the
source segment (IJ = 0)

PI = T

```
PX
          = x and y components of unit vector normal to the plane of
PY
            incidence of the reflected wave (p)
          a distance from field evaluation point to the center of the
            source segment
REFPS
          = reflection coefficient for a horizontally polarized field
          = reflection coefficient for a vertically polarized field
REFS
RFL
          = +1 for direct field, -1 for reflected field
          = p'
RH
RHOSPC
         - distance from coordinate origin to the point where the ray
           from the source to (XI, YI, ZI) reflects from the ground
RHOX
          = x, y, and z components of \vec{\rho} or \vec{\rho}/\rho' or \hat{j} \times \vec{R}
RHOY
RHOZ
RMAG
         = 2MR or R or dipole moment for sin ks current
         = z component of unit vector in the direction of the source
SALPR
            segment or its image
SHAF
         = half of segment length
TERC
          = p component of field due to cos ks, sin ks,
TERS
           and constant currents, respectively
TERK
TEZC
         = z component of field due to cos ks, sin ks, and
TEZŞ
           constant current, respectively
TEZK
TP
         = 2\pi
TXC
TYC
TZC
TXS
TYS
         = x, y, and z components of field due to cos ks,
TZS
           sin ks, and constant current
TXK
TYK
TZK
XI)
YI
         = x, y, z coordinates of field evaluation point
ZI
```

XIJ = components of distance from source to observation
YIJ point

ZIJ

YO = coordinates of field evaluation point for E_S

XSPEC = x, y coordinates of ground plane reflection point

XYMAG = horizontal distance from center of source segment to observation point

ZP = projection of the vector from the source segment (XI, YI, ZI)
 onto the axis of the source segment

ZRATX = temporary storage for ZRATI

ZRSIN = $(1 - z_R^2 \sin^2 \theta)^{1/2}$ for ground

ZSCRN = quantity used in computing reflection coefficient for radial wire ground screen

CONSTANT

3.141592654 = π 376.73 = $\eta = \sqrt{\mu_0/\epsilon_0}$ 6.283185308 = 2π

1	SUBROUTINE EFLD (XI,YI,ZI,AI,IJ)	EF	1
2 C		EF	2
3 C	COMPUTE NEAR E FIELDS OF A SEGMENT WITH SINE, COSINE, AND	EF	3
4 C	CONSTANT CURRENTS. GROUND EFFECT INCLUDED.	EF	4
5 C		EF	5
6	COMPLEX TXK, TYK, TZK, TXS, TYS, TZS, TXC, TYC, TZC, EXK, EYK, EZK, EXS, EYS, EZ		6
7	1S, EXC, EYC, EZC, EPX, EPY, ZRATI, REFS, REFPS, ZRSIN, ZRATX, T1, ZSCRN, ZRATI2	EF	7
8	2, TEZS, TERS, TEZC, TERC, TEZK, TERK, EGND, FRATI	EF	8
9	COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ	EF	9
10	1S,EXC,EYC,EZC,RKH,IEXK,IND1,IND2,IPGND	EF	10
11	COMMON /GND/ ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR		11
12	1, IPERF, T1, T2	EF	12
13	COMMON /INCOM/ XO, YO, ZO, SN, XSN, YSN, ISNOR	EF	13
14	DIMENSION EGND(9)	EF	
15	EQUIVALENCE (EGND(1),TXK), (EGND(2),TYK), (EGND(3),TZK), (EGND(4),	Er	14
	EQUITALENCE (EGND(1),1AK), (EGND(2),17K), (EGND(3),12K), (EGND(4),		15
16	1TXS), (EGND(5), TYS), (EGND(6), TZS), (EGND(7), TXC), (EGND(8), TYC),	EF	16
17	2(EGND(9), TZC)	EF	17
18	DATA ETA/376.73/,PI/3.141592654/,TP/6.283185308/	EF	18
19	XIJ=XI-XJ	EF	19
20	YIJ=YI-YJ	EF	20
21	IJX=IJ	EF	21
22	RFL=-1.	EF	22
23	DO 12 IP=1,KSYMP	EF	23
24	IF (IP.EQ.2) IJX=1	EF	24
25	RFL=-RFL	EF	25
26	SALPR=SALPJ*RFL	EF	26
27	ZIJ=ZI-RFL•ZJ	EF	27
28	ZP=XIJ*CABJ+YIJ*SABJ+ZIJ*SALPR	EF	28
29	RHOX=XIJ-CABJ*ZP	EF	29
30	RHOY=YIJ-SABJ*ZP	EF	30
31	RHOZ=ZIJ-SALPR*ZP	EF	31
32	RH=SQRT(RHOX+RHOY+RHOY+RHOZ+RHOZ+AI+AI)		
33		EF	32
	IF (RH.GT.1.E-10) GO TO 1	EF	33
34	RHOX=0.	EF	34
35	RHOY=0.	EF	35
36	RHOZ=O.	EF	36
37	GO TO 2	EF	37
38 1	RHOX=RHOX/RH	EF	38
39	RHOY=RHOY/RH	EF	39
40	RHOZ=RHOZ/RH	EF	40
41 2	R=SQRT(ZP*ZP+RH*RH)	EF	41
42	IF (R.LT.RKH) GO TO 3	EF	42
43 C		EF	43
44 C	LUMPED CURRENT ELEMENT APPROX. FOR LARGE SEPARATIONS	EF	44
45 C	그들은 그들은 사람들이 얼마나 그렇게 살아왔다면 가장 아이들이 살아보다면 살아보다면 사람이 되었다면 사람이 되었다면 사람들이 얼마나 그렇게 하는 사람들이 살아지면 하는 사람들이 되었다면 하는 사람들이 되었다.	EF	45
46	RMAG=TP*R	EF	
47	CTH=ZP/R	EF	47
48	PX=RH/R	EF	48
49			
	TXK=CMPLX(COS(RMAG),-SIN(RMAG))	EF	49
50	PY=TP*R*R	EF	50
51	TYK=ETA*CTH*TXK*CMPLX(1.,-1./RMAG)/PY	EF	51
52	TZK=ETA*PX*TXK*CMPLX(1.,RMAG-1./RMAG)/(2.*PY)	EF	52
53	TEZK=TYK*CTH-TZK*PX	EF	53
54	TERK=TYK*PX+TZK*CTH	EF	54
55	RMAG=SIN(PI*S)/PI	EF	55
56	TEZC=TEZK*RMAG	EF	56
57	TERC=TERK*RMAG	EF	57
58	TEZK=TEZK*S	EF	58
59	TERK=TERK*S	EF	59
60	TXS=(0.,0.)	EF	60
61	TYS=(0.,0.)	EF	61
62	TZS=(0.,0.)	EF	62
63	GO TO 6	EF	63
64 3		FF	64


```
65 C
                                                                                 EF
                                                                                      65
66 C
          EKSC FOR THIN WIRE APPROX. OR EKSCX FOR EXTENDED T.W. APPROX.
                                                                                 EF
                                                                                      66
67 C
                                                                                  EF
                                                                                      67
68
          CALL EKSC (S,ZP,RH,TP,IJX,TEZS,TERS,TEZC,TERC,TEZK,TERK)
                                                                                 EF
                                                                                      68
69
                                                                                 EF
                                                                                      69
          CALL EKSCX (B.S.ZP,RH,TP,IJX,IND1,IND2,TEZS,TERS,TEZC,TERC,TEZK,TE EF
70 4
                                                                                      70
         1RK)
71
                                                                                      71
72 5
          TXS=TEZS*CABJ+TERS*RHOX
                                                                                 EF
                                                                                      72
          TYS=TEZS*SABJ+TERS*RHOY
73
                                                                                 EF
                                                                                      73
74
          TZS=TEZS*SALPR+TERS*RHOZ
                                                                                 EF
                                                                                      74
75 6
          TXK=TEZK*CABJ+TERK*RHOX
                                                                                 EF
                                                                                      75
76
          TYK=TEZK+SABJ+TERK+RHOY
                                                                                 EF
                                                                                      76
77
          TZK=TEZK*SALPR+TERK*RHOZ
                                                                                 EF
                                                                                      77
          TXC=TEZC*CABJ+TERC*RHOX
78
                                                                                      78
79
          TYC=TEZC*SABJ+TERC*RHOY
                                                                                 EF
                                                                                      79
          TZC=TEZC*SALPR+TERC*RHOZ
80
                                                                                 EF
                                                                                      80
81
          IF (IP.NE.2) GO TO 11
                                                                                 EF
                                                                                      81
          IF (IPERF.GT.0) GO TO 10
82
                                                                                  EF
                                                                                      82
83
          ZRATX=ZRATI
                                                                                 EF
                                                                                      83
          RMAG=R
84
                                                                                  EF
                                                                                      84
85
          XYMAG=SQRT(XIJ*XIJ+YIJ*YIJ)
                                                                                  EF
                                                                                      85
86 C
                                                                                  EF
                                                                                      86
          SET PARAMETERS FOR RADIAL WIRE GROUND SCREEN.
87 C
                                                                                  EF
                                                                                      87
88 C
                                                                                  EF
                                                                                      88
          IF (NRADL.EQ.0) GO TO 7
89
                                                                                  EF
                                                                                      89
          XSPEC=(XI*ZJ+ZI*XJ)/(ZI+ZJ)
90
                                                                                 EF
                                                                                      90
          YSPEC=(YI*ZJ+ZI*YJ)/(ZI+ZJ)
91
                                                                                 EF
                                                                                      91
92
          RHOSPC=SQRT(XSPEC+XSPEC+YSPEC+T2+T2)
                                                                                 EF
                                                                                      92
93
          IF (RHOSPC.GT.SCRWL) GO TO 7
                                                                                 EF
                                                                                      93
94
          ZSCRN=T1 *RHOSPC*ALOG(RHOSPC/T2)
                                                                                 EF
                                                                                      94
 95
          ZRATX=(ZSCRN*ZRATI)/(ETA*ZRATI+ZSCRN)
                                                                                  EF
                                                                                      95
96 7
          IF (XYMAG.GT.1.E-6) GO TO 8
                                                                                  EF
                                                                                      96
97 C
                                                                                  EF
                                                                                      97
          CALCULATION OF REFLECTION COEFFICIENTS WHEN GROUND IS SPECIFIED.
98 C
                                                                                 EF
                                                                                      98
99 C
                                                                                 EF
100
          PX=0.
                                                                                 EF 100
101
          PY=0.
                                                                                 EF 101
102
          CTH=1.
                                                                                 EF 102
103
          ZRSIN=(1.,0.)
                                                                                  EF 103
          GO TO 9
104
                                                                                 EF 104
105 8
          PX=-YIJ/XYMAG
                                                                                 EF 105
106 .
          PY=XIJ/XYMAG
                                                                                 EF 106
107
          CTH=ZIJ/RMAG
                                                                                 EF 107
108
          ZRSIN=CSQRT(1.-ZRATX*ZRATX*(1.-CTH*CTH))
                                                                                 EF 108
109 9
          REFS=(CTH-ZRATX*ZRSIN)/(CTH+ZRATX*ZRSIN)
                                                                                 EF 109
          REFPS=-(ZRATX*CTH-ZRSIN)/(ZRATX*CTH+ZRSIN)
110
                                                                                 EF 110
          REFPS=REFPS-REFS
111
                                                                                 EF 111
          EPY=PX*TXK+PY*TYK
                                                                                 EF 112
112
113
          EPX=PX*EPY
                                                                                  EF 113
          EPY=PY*EPY
114
115
          TXK=REFS*TXK+REFPS*EPX
                                                                                  EF 115
116
          TYK=REFS*TYK+REFPS*EPY
                                                                                  EF 116
117
          TZK=REFS*TZK
                                                                                  EF 117
          EPY=PX+TXS+PY+TYS
118
                                                                                  EF 118
          EPX=PX*EPY
119
                                                                                  EF 119
120
          EPY=PY*EPY
                                                                                  EF 120
          TXS=REFS*TXS+REFPS*EPX
121
                                                                                  EF 121
122
          TYS=REFS*TYS+REFPS*EPY
                                                                                  EF 122
123
          TZS=REFS*TZS
                                                                                  EF 123
          EPY=PX*TXC+PY*TYC
124
                                                                                  EF 124
125
          EPX=PX*EPY
                                                                                  EF 125
126
          ERY=PY*EPY
                                                                                  EF 126
127
          TXC=REFS*TXC+REFPS*EPX
                                                                                  EF 127
128
          TYC=REFS*TYC+REFPS*EPY
                                                                                  EF 128
```

129	TZC=REFS*TZC	EF 129
130 10	EXK=EXK-TXK*FRATI	EF 130
131	EYK=EYK-TYK*FRATI	EF 131
132	EZK=EZK-TZK*FRATI	EF 132
133	EXS=EXS-TXS*FRATI	EF 133
134	EYS=EYS-TYS*FRATI	EF 134
135	EZS=EZS-TZS*FRATI	EF 135
136	EXC=EXC-TXC*FRATI	EF 136
137	EYC=EYC-TYC*FRATI	EF 137
138	EZC=EZC-TZC*FRATI	EF 138
139	GO TO 12	EF 139
140 11	EXK=TXK	EF 140
141	EYK=TYK	EF 141
142	EZK=TZK	EF 142
143	EXS=TXS	EF 143
144	EYS=TYS	EF 144
145	EZS=TZS	EF 145
146	EXC=TXC	
147	EYC=TYC	EF 146
148	EZC=TZC	EF 147
	: [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	EF 148
149 12	CONTINUE	EF 149
150	IF (IPERF.EQ.2) GO TO 13	EF 150
151	RETURN	EF 151
152 C		EF 152
153 C	FIELD DUE TO GROUND USING SOMMERFELD/NORTON	EF 153
154 C		EF 154
155 13	SN=SQRT(CABJ+CABJ+SABJ+SABJ)	EF 155
156	IF (SN.LT.1.E-5) GO TO 14	EF 156
157	XSN=CABJ/SN	EF 157
158	YSN=SABJ/SN	EF 158
159	GO TO 15	EF 159
160 14	SN=0.	· EF 160
161	XSN=1.	EF 161
162	YSN=0.	EF 162
163 C		EF 163
164 C	DISPLACE OBSERVATION POINT FOR THIN WIRE APPROXIMATION	EF 164
165 C		EF 165
166 15	ZIJ=ZI+ZJ	EF 166
167	SALPR=-SALPJ	EF 167
168	RHOX=SABJ*ZIJ-SALPR*YIJ	EF 168
169	RHOY=SALPR*XIJ-CABJ*ZIJ	EF 169
170	RHOZ=CABJ*YIJ-SABJ*XIJ	EF 170
171	RH=RHOX*RHOX+RHOY*RHOY+RHOZ*RHOZ	EF 171
172	IF (RH.GT.1.E-10) GO TO 16	EF 172
173	XO=XI-AI*YSN	EF 173
174	YO=YI+AI*XSN	EF 174
175	ZO=ZI	EF 175
176	GO TO 17	EF 176
177 16	RH=AI/SQRT(RH)	EF 177
178	IF (RHOZ.LT.O.) RH=-RH	EF 178
179	XO=XI+RH*RHOX	EF 179
180	YO=YI+RH*RHOY	EF 180
181	ZO=ZI+RH*RHOZ	EF 181
182 17	R=XIJ*XIJ+YIJ*YIJ+ZIJ*ZIJ	EF 182
183	IF (R.GT95) GO TO 18	EF 183
184 C	(EF 184
185 C	FIELD FROM INTERPOLATION IS INTEGRATED OVER SEGMENT	EF 185
186 C	TELED INOM THIENLOCKITON TO THIENKHIED OVER DEGMENT	EF 186
187	ISNOR=1	
188	DMIN=EXK*CONJG(EXK)+EYK*CONJG(EYK)+EZK*CONJG(EZK)	EF 187
		EF 188
189	DMIN=.01°SQRT(DMIN)	EF 189
190	SHAF=.5°S	EF 190
191	CALL ROM2 (-SHAF, SHAF, EGND, DMIN)	EF 191
192	GO TO 19	EF 192

193 C		EF 193
194 C	NORTON FIELD EQUATIONS AND LUMPED CURRENT ELEMENT APPROXIMATION	EF 194
195 C		EF 195
196 18	ISNOR=2	EF 196
197	CALL SFLDS (0.,EGND)	EF 197
198	GO TO 22	EF 198
199 19	ZP=XIJ*CABJ+YIJ*SABJ+ZIJ*SALPR	EF 199
200	RH=R-ZP*ZP	EF 200
201	IF (RH.GT.1.E-10) GO TO 20	EF 201
202	DMIN=O.	EF 202
203	GO TO 21	EF 203
204 20	DMIN=SQRT(RH/(RH+AI*AI))	EF 204
205 21	IF (DMIN.GT95) GO TO 22	EF 205
206	PX=1DMIN	EF 206
207	TERK=(TXK*CABJ+TYK*SABJ+TZK*SALPR)*PX	EF 207
208	TXK=DMIN*TXK+TERK*CABJ	EF 208
209	TYK=DMIN*TYK+TERK*SABJ	EF 209
210	TZK=DMIN*TZK+TERK*SALPR	EF 210
211	TERS=(TXS*CABJ+TYS*SABJ+TZS*SALPR)*PX	EF 211
212	TXS=DMIN*TXS+TERS*CABJ	EF 212
213	TYS=DMIN*TYS+TERS*SABJ	EF 213
214	TZS=DMIN*TZS+TERS*SALPR	EF 214
215	TERC=(TXC*CABJ+TYC*SABJ+TZC*SALPR)*PX	EF 215
216	TXC=DMIN*TXC+TERC*CABJ	EF 216
217	TYC=DMIN*TYC+TERC*SABJ	EF 217
218	TZC=DMIN*TZC+TERC*SALPR	EF 218
219 22	EXK=EXK+TXK	EF 219
220	EYK=EYK+TYK	EF 220
221	EZK=EZK+TZK	EF 221
222	EXS=EXS+TXS	EF 222
223	EYS=EYS+TYS	EF 223
224	EZS=EZS+TZS	EF 224
225	EXC=EXC+TXC	EF 225
226	EYC=EYC+TYC	EF 226
227	EZC=EZC+TZC	EF 227
228	RETURN	EF 228
229	END	EF 229-

EKSC

PURPOSE

To compute the electric field due to current filaments with sin kz, cos kz and constant distributions.

METHOD

Equations 71 through 74 in Part I are used. The current filament is located at the origin of a cylindrical coordinate system, oriented along the z axis, and extending from $-\Delta/2$ to $\Delta/2$. The field is computed in ρ and z components.

SYMBOL DICTIONARY

 $= k\Delta/2$

SHK

CINT =
$$\int_{-\Delta/2}^{\Delta/2} \cos (kr)/r \, dz$$

CON = $\cos (k\Delta/2)$
ERS
EZS
ERC
EZC
ERK
EZK
EZC
ERK
EZK
GP1 | = $-(1 + jkr) G_0/r^2$ for $z = -\Delta/2$ and $\Delta/2$, respectively, where $GP2$ | $G_0 = \exp(-jkr)/r$
GZ1 | $G_0 = \exp(-jkr)/r$
GZ2 | $G_0 = \exp(-jkr)/r$
GZ1 | $G_0 = \exp(-jkr)/r$
GZ2 | $G_0 = \exp(-jkr)/r$
GZ3 | $G_0 = \exp(-jkr)/r$
GZ4 | $G_0 = \exp(-jkr)/r$
GZ5 | $G_0 = \exp(-jkr)/r$
GZ7 | $G_0 = \exp(-$

SINT =
$$\int_{-\Delta/2}^{\Delta/2} \sin (kr)/r \, dz$$
SS = $\sin (k\Delta/2)$
XK = $k = 2\pi/\lambda$, where $\lambda = 1$
Z = z coordinate of field point
Z1 = $-\Delta/2 - z$
Z2 = $\Delta/2 - z$
ZPK = kz

CONSTANT

 $4.771341189 = \eta/(8\pi^2)$

CODE LISTING

1		SUBROUTINE EKSC (S,Z,RH,XK,IJ,EZS,ERS,EZC,ERC,EZK;ERK)	EK	1
	C	COMPUTE E FIELD OF SINE, COSINE, AND CONSTANT CURRENT FILAMENTS BY		2
	C	THIN WIRE APPROXIMATION.	EK	3
4		COMPLEX CON, GZ1, GZ2, GP1, GP2, GZP1, GZP2, EZS, ERS, EZC, ERC, EZK, ERK	EK	4
5		COMMON /TMI/ ZPK, RKB2, IJX	EK	5
6		DIMENSION CONX(2)	EK	6
7		EQUIVALENCE (CONX,CON)	EK	7
8		DATA CONX/0.,4.771341189/	EK	8
9		IJX=IJ	EK	9
10		ZPK=XK*Z	EK	10
11		RHK=XK*RH	EK	11
12		RKB2=RHK*RHK	EK	12
13		SH=.5*S	EK	13
14		SHK=XK*SH	EK	14
15		SS=SIN(SHK)	EK	15
16		CS=COS(SHK)	EK	16
17		Z2=SH-Z	EK	17
18		Z1=-(SH+Z)	EK	18
19		CALL GX (Z1,RH,XK,GZ1,GP1)	EK	19
20		CALL GX (Z2,RH,XK,GZ2,GP2)	EK	20
21		GZP1=GP1 • Z1	EK	21
22		GZP2=GP2*Z2	EK	22
23		EZS=CON*((GZ2-GZ1)*CS*XK-(GZP2+GZP1)*SS)	EK	23
24		EZC=-CON*((GZ2+GZ1)*SS*XK+(GZP2-GZP1)*CS)	EK	24
25		ERK=CON*(GP2-GP1)*RH	EK	25
26		CALL INTX (-SHK,SHK,RHK,IJ,CINT,SINT)	EK	26
27		EZK=-CON*(GZP2-GZP1+XK*XK*CMPLX(CINT,-SINT))	EK	27
28		GZP1=GZP1 • Z1	EK	28
29		GZP2=GZP2*Z2	EK	29
30		IF (RH.LT.1.E-10) GO TO 1	EK	30
31		ERS=-CON*((GZP2+GZP1+GZ2+GZ1)*SS-(Z2*GZ2-Z1*GZ1)*CS*XK)/RH	EK	31
32		ERC=-CON*((GZP2-GZP1+GZ2-GZ1)*CS+(Z2*GZ2+Z1*GZ1)*SS*XK)/RH	EK	32
33		RETURN	EK	33
	1	ERS=(0.,0.)	EK	34
35		ERC=(0.,0.)	EK	35
36		RETURN	EK	36
37		END .	EK	37-

EKSCX

PURPOSE

To compute the electric field due to current distributions of sin kz, cos kz, and constant on the surface of a cylinder by the extended thin wire approximation.

METHOD

Equations 84 through 87 in Part I are used. The current tube is centered on the origin of a cylindrical coordinate system, oriented along the z axis and extending from $-\Delta/2$ to $\Delta/2$. The field is computed in ρ and z components.

If INX1 = 2, the field contributions from end 1 of the segment $(z = -\Delta/2)$ are evaluated by the thin wire approximation for a current filament on the cylinder axis. INX2 has the same meaning for end 2 of the segment $(z = \Delta/2)$. The thin-wire approximation is used at an end when there is a bend or change in radius from that end to the next segment.

When the ρ coordinate of the field point (RHX) is less than the radius of the current tube (BX), then RHX and BX are interchanged and a flag, IRA, is set to 1 to cause alternate forms for G_1 and its derivatives to be used in routine GXX.

SYMBOL DICTIONARY

$$A2 = B^2$$

BK = kB, where k =
$$2\pi/\lambda$$
, $\lambda = 1$

$$BK2 = (BK)^2/4$$

CINT =
$$\int_{-\Delta/2}^{\Delta/2} \cos (kr)/r \, dz$$

CON = CONX =
$$j\eta/(8\pi^2)$$
, where $\eta = \sqrt{\mu_0/\epsilon_0}$

CS =
$$\cos (k\Delta/2)$$

ERS

-102-

ERK extending from
$$z = -\Delta/2$$
 to $z = \Delta/2$.

GR1 | =
$$G_2$$
 for $z = -\Delta/2$ and $\Delta/2$, respectively GRK1 | = $\partial G_1/\partial \rho$ GRK1 | = $\partial G_2/\partial z'$ GRP1 | = $\partial G_2/\partial z'$ GRP2 | = $\partial G_1/\partial z'$ GRP2 | = $\partial G_1/\partial z'$ GRP2 | = $\partial G_0/\partial z'$ GRP3 | = $\partial G_0/\partial z'$ GRP4 | = $\partial G_0/\partial z'$ GRP5 | = $\partial G_0/\partial z'$ GRP5 | = $\partial G_0/\partial z'$ GRP5 | = $\partial G_0/\partial z'$ GRP6 | = $\partial G_0/\partial z'$ GRP6 | = $\partial G_0/\partial z'$ GRP6 | = $\partial G_0/\partial z'$ GRP7 | = ∂G

CONSTANT

$$4.77134118 = \eta/(8\pi^2)$$

EKSCX

1		SUBROUTINE EKSCX (8X.S.Z.RHX.XK,IJ.INX1.INX2.EZS.ERS.EZC.ERC.EZK.E		1
2	C	1RK) COMPUTE E FIELD OF SINE, COSINE, AND CONSTANT CURRENT FILAMENTS BY	EX	2 3
	c	EXTENDED THIN WIRE APPROXIMATION.	EX	4
5		COMPLEX CON, GZ1, GZ2, GZP1, GZP2, GR1, GR2, GRP1, GRP2, EZS, EZC, ERS, ERC, GR		5
6		1K1, GRK2, EZK, ERK, GZZ1, GZZ2	EX	6
7		COMMON /TMI/ ZPK,RKB2,IJX	EX	7
8		DIMENSION CONX(2)	EX	8
9		EQUIVALENCE (CONX,CON)	EX	9
10		DATA CONX/0.,4.771341189/	EX	10
11		IF (RHX.LT.BX) GO TO 1	EX	11
12		RH=RHX	EX	12
13		B=BX	EX	13
14		IRA=0	EX	14
15		GO TO 2	EX	15
16	1	RH=BX	EX	16
17		B=RHX	EX	17
18		IRA=1	EX	18
19	2	SH=.5*S	EX	19
20		IJX=IJ	EX	20
21		ZPK=XK*Z	EX	21
22		RHK=XK*RH	EX	22
23		RKB2=RHK*RHK	EX	23
24		SHK=XK*SH	EX	24
25		SS=SIN(SHK)	EX	25
26		CS=COS(SHK)	EX	26
27		Z2=SH-Z	EX	27
28		Z1=-(SH+Z)	EX	28
29		A2=8*B	EX	29
30		IF (INX1.EQ.2) GO TO 3	EX	30
31		CALL GXX (Z1,RH,B,A2,XK,IRA,GZ1,GZP1,GR1,GRP1,GRK1,GZZ1)	EX	31
32		GO TO 4	EX	32
33	3	CALL GX (Z1,RHX,XK,GZ1,GRK1)	EX	33
34		GZP1=GRK1*Z1	EX	34
35		GR1=GZ1/RHX	EX	35
36		GRP1=GZP1/RHX	EX	36 37
37		GRK1=GRK1*RHX	EX	38
38		GZZ1=(0.,0.)	EX	39
39 40		IF (INX2.EQ.2) GO TO 5	EX	40
41		CALL GXX (Z2,RH,B,A2,XK,IRA,GZ2,GZP2,GR2,GRP2,GRK2,GZZ2) GO TO 6	EX	41
42		CALL GX (Z2,RHX,XK,GZ2,GRK2)	EX	42
43		GZP2=GRK2*Z2	EX	43
44		GR2=GZ2/RHX	EX	44
45		GRP2=GZP2/RHX	EX	45
46		GRK2=GRK2*RHX	EX	46
47		GZZ2=(0.,0.)	EX	47
48		EZS=CON*((GZ2-GZ1)*CS*XK-(GZP2+GZP1)*SS)	EX	48
49		EZC=-CON*((GZ2+GZ1)*SS*XK+(GZP2-GZP1)*CS)	EX	49
50		ERS=-CON*((Z2*GRP2+Z1*GRP1+GR2+GR1)*SS-(Z2*GR2-Z1*GR1)*CS*XK)	EX	50
51		ERC=-CON*((Z2*GRP2-Z1*GRP1+GR2-GR1)*CS+(Z2*GR2+Z1*GR1)*SS*XK)	EX	51
52		ERK=CON*(GRK2-GRK1)	EX	52
53		CALL INTX (-SHK, RHK, IJ, CINT, SINT)	EX	53
54		BK=B*XK	EX	54
55		BK2=BK*BK*.25	EX	55
56		EZK=-CON*(GZP2-GZP1+XK*XK*(1BK2)*CMPLX(CINT,-SINT)-BK2*(GZZ2-GZZ		56
57		11))	EX	57
58		RETURN	EX	58
59		END	EX	59

ENF

PURPOSE

To check for an end of file.

METHOD

ENF uses the standard Fortran end-of-file test and returns the logical values .TRUE. or .FALSE. This separate function is used for convenience in adapting the code to particular computers, since the Fortran end-of-file test statements often differ between computers. The form of ENF here is for CDC computers.

SYMBOL DICTIONARY

ENF = logical value: .TRUE. if end of file was encountered; .FALSE. otherwise

NUNIT = logical unit number

CODE LISTING

1	LOGICAL FUNCTION ENF(NUNIT)	EN	1
2	IF (EOF, NUNIT) 1,2	EN	2
3 1	ENF=.TRUE.	EN	3
4	RETURN	EN	4
5 2	ENF=.FALSE.	EN	5
6	RETURN	EN	6
7	END	EN	7-

ETMNS

PURPOSE

To fill the array representing the right-hand side of the matrix equation with the negative of the electric field tangent to the segments and with the tangential magnetic field on the surfaces.

METHOD

The array E represents the right-hand side of the matrix equation. For the i^{th} segment, the right-hand side is the negative of the applied electric field component tangent to the segment, and is stored in location i in array E. For the i^{th} surface patch, there are two rows in the matrix equation (from the two components of the vector equations) with locations N+2i-1 and N+2i, where N is the total number of wire segments. The contents of E for these locations are

$$E (N + 2i - 1) = -\hat{t}_1 \cdot (\hat{n} \times \overline{H}_i) = \pm t_2 \cdot \overline{H}_i$$

$$E (N + 2i) = \hat{t}_2 \cdot (\hat{n} \times \overline{H}_i) = \pm t_1 \cdot \overline{H}_i$$

where \overline{H}_1 is the magnetic field applied to patch i. The forms on the right are used in the code with the plus sign applying when $(\hat{\tau}_1, \hat{\tau}_2, \hat{n})$ forms a right-hand system and the minus sign when left-hand. To avoid the need to check $(\hat{\tau}_1, \hat{\tau}_2, \hat{n})$, the sign is stored in array SALP where, for patch i, SALP (LD + 1 - i) = ±1 according to $(\hat{\tau}_1, \hat{\tau}_2, \hat{n})$, with LD the length of the arrays in COMMON/DATA/. If the structure has symmetry, the entries in E are reordered by subroutine SOLVES.

The parameter IPR selects the type of excitation; the meanings of other parameters depend on the option selected by IPR and are explained below. The excitations associated with IPR values are:

- IPR = 0 applied field voltage source
 - 1 incident plane wave, linear polarization
 - 2 incident plane wave, right-hand elliptic polarization
 - 3 incident plane wave, left-hand elliptic polarization
 - 4 infinitesimal current element source
 - 5 current slope discontinuity voltage source

ET29 - ET34 Applied field voltage source (IPR = 0).

ET36 - ET38 QDSRC is called for each current slope discontinuity voltage source (IPR = 5).

ET44 - ET160 Incident plane wave. The direction of propagation and polarization of the wave are illustrated in figure 4 in which \hat{p} is the unit vector normal to \hat{k} in the plane defined by \hat{k} and \hat{z} . The plane wave as a function of position \hat{r} is

$$\overline{E}^{I}(\overline{r}) = \overline{E}_{0} \exp(-j\overline{k}\cdot\overline{r})$$

$$\overline{H}^{I}(\overline{r}) = \frac{1}{\eta} \hat{k} \times \overline{E}_{0} \exp(-j\overline{k}\cdot\overline{r})$$

where

 $\bar{k} = (2\pi/\lambda) \hat{k}$

 \hat{k} = unit vector in direction of propagation

 $\overline{E}_0 = \hat{E}_1$ for linear polarization

= $(\hat{E}_1 - jA\hat{E}_2)$ for right-hand elliptical polarization

= $(\hat{\mathbf{E}}_1 + \mathbf{j}\mathbf{A}\hat{\mathbf{E}}_2)$ for left-hand elliptical polarization

A = ellipse axes ratio

$$\hat{\mathbf{E}}_2 = \hat{\mathbf{k}} \times \hat{\mathbf{E}}_1$$

ET44 - ET58 P1 = θ

 $P2 = \phi$

P3 = E

PX, PY, PZ = x, y, z components of \hat{E}_1

WX, WY, WZ = \hat{k}

QX, QY, QZ = \hat{E}_2 = $\hat{k} \times \hat{E}_1$

ET61 - ET68 Ground reflection coefficients computed:

RRH = reflection coefficient for E normal to the plane of incidence

RRV = reflection coefficient for E in the plane of incidence

ET70 - ET108 Linearly polarized wave (IPR = 1).

Figure 4. Coordinate Parameters for the Incident Plane Wave.

ET71 - ET73 Direct illumination of segments by E field. ARG = $-\vec{k} \cdot \vec{r}_i$, where \vec{r}_i = center point of segment I. $E(I) = -(\hat{E}_1 \cdot \hat{i})$ exp $(-j\vec{k} \cdot \vec{r}_i)$, where \hat{i} = unit vector in the direction of segment I.

ET75 - ET82 Illumination of segments by the ground reflected field.

CX, CY, CZ = reflected E field

ET84 - ET93 Direct H field illumination of patches.

ET95 - ET108 Illumination of patches by the ground reflected field.

CX, CY, CZ = reflected H field

ET113 - ET159 Elliptically polarized wave (IPR = 2 or 3).

P6 = ellipse axes ratio = A.

ET116 - ET121 Direct E field illumination of segments. CX, CY, $CZ = \hat{E}_1 \pm jA\hat{E}_2$ (+ for left-hand polarization, - for right-hand)

ET123 - ET130 Illumination of segments by the ground reflected E field.

ET132 - ET144 Illumination of patches by the direct H field. CX, CY, CZ = $\hat{k} \times \overline{E}_0$

ET146 - ET159 Illumination of patches by ground reflected H field.

ET164 - ET225 Infinitesimal current element source (IPR = 4). A current element of moment I_0^{ℓ} at the origin of a spherical coordinate system, as shown in figure 5, produces field components

$$\begin{split} \overline{E}_{R}(\overline{R}) &= I_{0} \ell \frac{\eta}{2\pi} \exp(-jkR) \left(1 - \frac{j}{kR}\right) \frac{1}{R^{2}} \cos \theta \ \widehat{R} \\ \overline{E}_{\theta}(\overline{R}) &= I_{0} \ell \frac{\eta}{4\pi} \exp(-jkR) \left[\frac{jk}{R} + \left(1 - \frac{j}{kR}\right) \frac{1}{R^{2}}\right] \sin \theta \ \widehat{\theta} \\ H_{\phi} &= \frac{I_{0} \ell}{4\pi} \exp(-jkR) \left(\frac{1}{R^{2}} + \frac{jk}{R}\right) \sin \theta \end{split}$$

If the location and orientation of segment i and the current element with respect to the x, y, z coordinate system are

r, = location of segment i

 \hat{i} = orientation of segment i

D = location of current element

d = orientation of current element

then

$$\overline{R} = \overline{r}_{i} - \overline{D}$$

$$\hat{R} = \overline{R} / |\overline{R}|$$

$$\cos \theta = \hat{R} \cdot \hat{d}$$

$$\sin \theta = [1 - \cos^{2} \theta]^{1/2}$$

The orientation of the current element is defined by its angle of elevation above the x-y plane, a, and the angle from the x axis to its projection on the x-y plane, b. Thus, $\hat{\mathbf{d}} = \cos a \cos b \hat{\mathbf{x}} + \cos a \sin b \hat{\mathbf{y}} + \sin a \hat{\mathbf{z}}$. The $\hat{\mathbf{R}}$ and $\hat{\boldsymbol{\theta}}$ field components are converted to $\hat{\boldsymbol{\rho}}$ and $\hat{\mathbf{d}}$ components $\mathbf{E}_{\hat{\mathbf{0}}}$ and $\mathbf{E}_{\hat{\mathbf{d}}}$, where

$$E_d = E_R \cos \theta - E_\theta \sin \theta$$

$$E_0 = E_R \sin \theta + E_{\theta} \cos \theta$$

and the excitation computed as

$$E(I) = -\hat{i} \cdot (E_{\hat{d}} + E_{\hat{\rho}} \hat{\rho}) .$$

Figure 5. Coordinate Parameters for Current Element.

ET164 - ET225 P1, P2, P3 = x, y, z coordinates of current element (\overline{D}) P4 = a

P4 = a

P5 = b

 $P6 = I_0 \ell/\lambda^2$

ET164 - ET169 WX, WY, WZ = x, y, and z components of \hat{d}

 $DS = (\eta/2\pi) I_0 \ell/\lambda^2$

 $DSH = (1/4\pi) I_0 \ell/\lambda^2$

ET173 Start of loop over all segments and patches.

ET176 - ET179 For patches,

IS = location of patch data in geometry arrays

I1, I2 = locations to be filled in E

ET180 - ET182 PX, PY, PZ = \overline{R}/λ

ET183 - ET193 R = $|\overline{R}/\lambda|$

PX, PY, $PZ = \hat{R}$

 $CTH = cos \theta$

 $STH = sin \theta$

QX, QY, QZ = \hat{R} - $(\hat{d} \cdot \hat{R})\hat{d}$

ET196 - ET204 QX, QY, QZ =
$$\hat{\rho}$$

$$T1 = \exp(-jk R)$$

ET206 - ET215 E field on segments

$$T2 = (1 - j/kR)\lambda^2/R^2$$

CX, CY, CZ = x, y, z components of total E field

ET216 - ET224 H field on patches

PX, PY, PZ =
$$\hat{d} \times \hat{p} = \hat{\phi}$$

$$T2 = \pm H_{\phi}$$

$$CX$$
, CY , $CZ = \pm \overline{H}^{I}$

CONSTANTS

1.E-30 = tolerance in test for zero

$$2.654420938E-3 = 1/\eta = \sqrt{\epsilon_0/\mu_0}$$

 $59.958 = \eta/2\pi$

 $6.283185308 = 2\pi$

1 2 C	SUBROUTINE ETMNS (P1,P2,P3,P4,P5,P6,IPR,E)	ET	1 2
3 C		ET	3
4 C		(A) (1)	
5 C		ET	4
6 C			5
		ET	6
7	COMPLEX E.CX.CY.CZ.VSANT.TX1.TX2.ER.ET.EZH.ERH.VQD.VQDS.ZRATI.ZRAT		7
8	112,RRV,RRH,T1,TT1,TT2,FRATI	ET	8
9	COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300		9
10	1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(10
11	2300),WLAM,IPSYM	ET	11
12	COMMON /ANGL/ SALP(300)	ET	12
13	COMMON /VSORC/ VQD(30), VSANT(30), VQDS(30), IVQD(30), ISANT(30), IQDS(13
14	130),NVQD,NSANT,NQDS	ET	14
15	COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR,		15
16	1IPERF,T1,T2	ET	16
17	DIMENSION CAB(1), SAB(1), E(600)	ET	17
18	DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)	ET	18
19	EQUIVALENCE (CAB, ALP), (SAB, BET)	ET	19
20	EQUIVALENCE (TIX,SI), (TIY,ALP), (TIZ,BET), (T2X,ICON1), (T2Y,ICON		20
21	12), (T2Z,ITAG)	ET	21
22	DATA TP/6.283185308/,RETA/2.654420938E-3/	ET	22
23	NEQ=N+2*M	ET	23
24	NODS=0	ET	24
25	IF (IPR.GT.O.AND.IPR.NE.5) GO TO 5	ET	25
26 C		ET	26
27 C	APPLIED FIELD OF VOLTAGE SOURCES FOR TRANSMITTING CASE	ET	27
28 C		ET	28
29	DO 1 I=1,NEQ	ET	29
30 1	1. 2. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ET	30
31	IF (NSANT.EQ.0) GO TO 3	ET	31
32	DO 2 I=1,NSANT	ET	32
33	IS=ISANT(I)	ET	33
34 2		ET	34
35 3	IF (NVQD.EQ.0) RETURN	ET	35
36	DO 4 I=1,NVQD	ET	36
37	IS=IVQD(I)	ET	37
38 4	CALL QDSRC (IS,VQD(I),E)	ET	38
39	RETURN	ET	39
40 5	IF (IPR.GT.3) GO TO 19	ET	40
41 C		ET	41
42 C	INCIDENT PLANE WAVE, LINEARLY POLARIZED.	ET	42
43 C		ET	43
44	CTH=COS(P1)	ET	44
45	STH=SIN(P1)	ET	45
46	CPH=COS(P2)	ET	46
47	SPH=SIN(P2)	ET	47
48	CET=COS(P3)	ET	48
49	SET=SIN(P3)	ET	49
50	PX=CTH*CPH*CET-SPH*SET	ET	50
51	PY=CTH*SPH*CET+CPH*SET	ET	51
52	PZ=-STH+CET	ET	52
53	WX=-STH+CPH	ET	53
54	WY=-STH*SPH	ET	54
55	WZ=-CTH	ET	55
56	QX=WY*PZ-WZ*PY	ET	56
57	QY=WZ*PX-WX*PZ	ET	57
58	QZ=WX*PY-WY*PX	ET	58
59	IF (KSYMP.EQ.1) GO TO 7	ET	59
60	IF (IPERF.EQ.1) GO TO 6	ET	60
61	RRV=CSQRT(1ZRATI*ZRATI*STH*STH)	ET	61
62	RRH=ZRATI*CTH	ET	62
63	RRH=(RRH-RRV)/(RRH+RRV)	ET	63
64	RRV=ZRATI*RRV	ET	64

STATES (STATESTAND REPORTED TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

```
65
           RRV=-(CTH-RRV)/(CTH+RRV)
                                                                                           ET
                                                                                                65
 66
           GO TO 7
                                                                                           ET
                                                                                                66
 67 6
           RRV=-(1.,0.)
                                                                                                67
                                                                                           ET
           RRH=-(1.,0.)
 68
                                                                                           ET
                                                                                                68
 69 7
           IF (IPR.GT.1) GO TO 13
                                                                                           ET
                                                                                                69
 70
           IF (N.EQ.0) GO TO 10
                                                                                           ET
                                                                                                70
71
           DO 8 I=1,N
                                                                                                71
           ARG=-TP*(WX*X(I)+WY*Y(I)+WZ*Z(I))
 72
                                                                                           ET
                                                                                                72
           E(I)=-(PX*CAB(I)+PY*SAB(I)+PZ*SALP(I))*CMPLX(COS(ARG),SIN(ARG))
 73
                                                                                            ET
                                                                                                73
 74
           IF (KSYMP.EQ.1) GO TO 10
                                                                                                74
           TT1=(PY*CPH-PX*SPH)*(RRH-RRV)
75
                                                                                            ET
                                                                                                75
           CX=RRV+PX-TT1+SPH
 76
                                                                                                76
                                                                                           ET
 77
           CY=RRV*PY+TT1*CPH
                                                                                           ET
                                                                                                77
 78
           CZ=-RRV*PZ
                                                                                            ET
                                                                                                78
           DO 9 I=1,N
 79
                                                                                           ET
                                                                                                79
 80
           ARG=-TP^{\bullet}(WX^{\bullet}X(I)+WY^{\bullet}Y(I)-WZ^{\bullet}Z(I))
                                                                                            ET
                                                                                                80
 81
           E(I)=E(I)-(CX*CAB(I)+CY*SAB(I)+CZ*SALP(I))*CMPLX(COS(ARG),SIN(ARG))
                                                                                                81
 82
                                                                                                82
           IF (M.EQ.O) RETURN
 83 10
                                                                                                83
                                                                                           ET
           I=LD+1
 84
                                                                                           ET
                                                                                                84
 85
           I1=N-1
                                                                                                85
                                                                                            ET
           DO 11 IS=1,M
 86
                                                                                            ET
                                                                                                86
 87
           I=I-1
                                                                                            ET
                                                                                                87
 88
           I1=I1+2
                                                                                            ET
                                                                                                88
 89
           I2=I1+1
                                                                                            ET
                                                                                                89
           ARG=-TP^*(WX^*X(I)+WY^*Y(I)+WZ^*Z(I))
 90
                                                                                            ET
                                                                                                90
           TT1=CMPLX(COS(ARG),SIN(ARG))*SALP(I)*RETA
                                                                                            ET
                                                                                                91
           E(I2)=(QX^{\bullet}T1X(I)+QY^{\bullet}T1Y(I)+QZ^{\bullet}T1Z(I))^{\bullet}TT1
 92
                                                                                                92
           E(I1)=(QX \cdot T2X(I)+QY \cdot T2Y(I)+QZ \cdot T2Z(I)) \cdot TT1
 93 11
                                                                                            ET
                                                                                                93
 94
           IF (KSYMP.EQ.1) RETURN
                                                                                            ET
                                                                                                94
 95
            TT1=(QY*CPH-QX*SPH)*(RRV-RRH)
                                                                                            ET
           CX=-(RRH*QX-TT1*SPH)
 96
                                                                                            ET
                                                                                                96
           CY=-(RRH*QY+TT1*CPH)
 97
                                                                                                97
                                                                                            ET
           CZ=RRH+QZ
 98
                                                                                            ET
                                                                                                98
 99
           I=LD+1
                                                                                                99
100
           I1=N-1
                                                                                            ET 100
101
           DO 12 IS=1,M
                                                                                            ET 101
102
           I=I-1
                                                                                            ET
                                                                                               102
           I1=I1+2
103
                                                                                            ET
                                                                                               103
104
           I2=I1+1
                                                                                               104
                                                                                            ET
           ARG=-TP*(WX*X(I)+WY*Y(I)-WZ*Z(I))
105
                                                                                               105
106
            TT1=CMPLX(COS(ARG),SIN(ARG))*SALP(I)*RETA
                                                                                            ET 106
            E(I2)=E(I2)+(CX*T1X(I)+CY*T1Y(I)+CZ*T1Z(I))*TT1
107
                                                                                            ET 107
108 12
            E(I1)=E(I1)+(CX*T2X(I)+CY*T2Y(I)+CZ*T2Z(I))*TT1
                                                                                            ET 108
109
                                                                                            ET
                                                                                               109
110 C
                                                                                            ET
                                                                                               110
    C
           INCIDENT PLANE WAVE, ELLIPTIC POLARIZATION.
111
                                                                                            ET 111
112 C
                                                                                            ET 112
113 13
            TT1=-(0.,1.)*P6
                                                                                            ET 113
            IF (IPR.EQ.3) TT1=-TT1
114
                                                                                            ET 114
115
            IF (N.EQ.0) GO TO 16
                                                                                            ET 115
116
            CX=PX+TT1 QX
                                                                                            ET
                                                                                               116
117
            CY=PY+TT1 •QY
                                                                                            ET
                                                                                               117
            CZ=PZ+TT1 ºQZ
118
                                                                                            ET 118
119
            DO 14 I=1,N
                                                                                            ET 119
            ARG=-TP^{\bullet}(WX^{\bullet}X(I)+WY^{\bullet}Y(I)+WZ^{\bullet}Z(I))
120
                                                                                            ET 120
            E(I)=-(CX \cdot CAB(I)+CY \cdot SAB(I)+CZ \cdot SALP(I)) \cdot CMPLX(COS(ARG), SIN(ARG))
121 14
                                                                                            ET 121
122
            IF (KSYMP.EQ.1) GO TO 16
                                                                                            ET 122
            TT2=(CY*CPH-CX*SPH)*(RRH-RRV)
123
                                                                                            ET
                                                                                               123
124
            CX=RRV*CX-TT2*SPH
                                                                                            ET
                                                                                               124
125
            CY=RRV*CY+TT2*CPH
                                                                                            ET 125
            CZ=-RRV+CZ
126
                                                                                            ET 126
127
            DO 15 I=1,N
                                                                                            ET 127
            ARG=-TP^{\bullet}(WX^{\bullet}X(I)+WY^{\bullet}Y(I)-WZ^{\bullet}Z(I))
                                                                                            ET 128
```

129 15	E(I)=E(I)-(CX*CAB(I)+CY*SAB(I)+CZ*SALP(I))*CMPLX(COS(ARG),SIN(ARG)	ET 129
130	1)	ET 130
131 16	IF (M.EQ.O) RETURN	ET 131
132	CX=QX-TT1*PX	ET 132
133	CY=QY-TT1 PY	ET 133
134	CZ=QZ-TT1+PZ	ET 134
135	I=LD+1	ET 135
136	I1=N-1	ET 136
137	00 17 IS=1,M	ET 137
138	I=I-1	ET 138
139	I1=I1+2	ET 139
140	I2=I1+1	ET 140
141	$ARG=-TP^{\bullet}(WX^{\bullet}X(I)+WY^{\bullet}Y(I)+WZ^{\bullet}Z(I))$	ET 141
142	TT2=CMPLX(COS(ARG),SIN(ARG))*SALP(I)*RETA	ET 142
143	E(I2)=(CX*T1X(I)+CY*T1Y(I)+CZ*T1Z(I))*TT2	ET 143
144 17	$E(I1) = (CX \cdot T2X(I) + CY \cdot T2Y(I) + CZ \cdot T2Z(I)) \cdot T72$	ET 144
145	IF (KSYMP.EQ.1) RETURN	ET 145
146	TT1=(CY*CPH-CX*SPH)*(RRV-RRH)	ET 146
147	CX=-(RRH+CX-TT1+SPH)	ET 147
148	CY=-(RRH*CY+TT1*CPH)	ET 148
149	CZ=RRH+CZ	ET 149
150	I=LD+1	ET 150
151	I1=N-1	ET 151
152	DO 18 IS=1.M	ET 152
153	I=I-1	ET 153
154	I1=I1+2	ET 154
155	I2=I1+1	ET 155
156	$ARG=-TP^*(WX^*X(I)+WY^*Y(I)-WZ^*Z(I))$	ET 156
157	TT1=CMPLX(COS(ARG),SIN(ARG))*SALP(I)*RETA	ET 157
158	$E(I2)=E(I2)+(CX^{\bullet}T1X(I)+CY^{\bullet}T1Y(I)+CZ^{\bullet}T1Z(I))^{\bullet}TT1$	ET 158
159 18	E(I1)=E(I1)+(CX*T2X(I)+CY*T2Y(I)+CZ*T2Z(I))*TT1	ET 159
160	RETURN	ET 160
161 C		ET 161
162 C	INCIDENT FIELD OF AN ELEMENTARY CURRENT SOURCE.	ET 162
163 C	SHOULD OF AN ELEMENTARY CONNECT.	ET 163
164 19	WZ=COS(P4)	ET 164
165	WX=WZ*COS(P5)	ET 165
166	WY=WZ*SIN(P5)	ET 166
167	WZ=SIN(P4)	ET 167
168	DS=P6*59.958	ET 168
169	DSH=P6/(2.*TP)	ET 169
170	NPM=N+M	ET 170
171	IS=LD+1	ET 171
172	I1=N-1	ET 172
173	DO 24 I=1,NPM	ET 173
174	II=I	ET 174
175	IF (I.LE.N) GO TO 20	ET 175
176	IS=IS-1	ET 176
177	II=IS	ET 177
178	I1=I1+2	ET 178
179	I2=I1+1	ET 179
180 20	PX=X(II)-P1	ET 180
181	PY=Y(II)-P2	ET 181
182	PZ=Z(II)-P3	ET 182
183	RS=PX*PX+PY*PY+PZ*PZ	ET 183
184	IF (RS.LT.1.E-30) GO TO 24	ET 184
185	R=SQRT(RS)	ET 185
186	PX=PX/R	ET 186
187	PY=PY/R	ET 187
188	PZ=PZ/R	ET 188
189	CTH=PX*WX+PY*WY+PZ*WZ	ET 189
190	STH=SQRT(1CTH*CTH)	ET 190
191	QX=PX-WX*CTH	ET 191
192	QY=PY-WY•CTH	ET 192

Designation (Secretary) (Secretary) (Secretary) (Secretary) (Secretary) (Secretary)

193	QZ=PZ-WZ*CTH	ET 193
194	ARG=SQRT(QX*QX+QY*QY+QZ*QZ)	ET 194
195	IF (ARG.LT.1.E-30) GO TO 21	ET 195
196	QX=QX/ARG	ET 196
197	QY=QY/ARG	ET 197
198	QZ=QZ/ARG	ET 198
199	GO TO 22	ET 199
200 21	QX=1.	ET 200
201	QY=0.	ET 201
202	QZ=0.	ET 202
203 22	ARG=-TP*R	ET 203
204	TT1=CMPLX(COS(ARG),SIN(ARG))	ET 204
205	IF (I.GT.N) GO TO 23	ET 205
206	TT2=CMPLX(1.,-1./(R*TP))/RS	ET 206
207	ER=DS*TT1*TT2*CTH	ET 207
208	ET=.5*DS*TT1*((0.,1.)*TP/R+TT2)*STH	ET 208
209	EZH=ER*CTH-ET*STH	ET 209
210	ERH=ER*STH+ET*CTH	ET 210
211	CX=EZH*WX+ERH*QX	ET 211
212	CY=EZH*WY+ERH*QY	ET 212
213	CZ=EZH*WZ+ERH*QZ	ET 213
214	E(I)=-(CX*CAB(I)+CY*SAB(I)+CZ*SALP(I))	ET 214
215	GO TO 24	ET 215
216 23	PX=WY*QZ-WZ*QY	ET 216
217	PY=WZ*QX-WX*QZ	ET 217
218	PZ=WX*QY-WY*QX	ET 218
219	TT2=DSH*TT1*CMPLX(1./R,TP)/R*STH*SALP(II)	ET 219
220	CX=TT2*PX	ET 220
221	CY=TT2*PY	ET 221
222	CZ=TT2*PZ	ET 222
223	E(I2)=CX*T1X(II)+CY*T1Y(II)+CZ*T1Z(II)	ET 223
224	E(I1)=CX*T2X(II)+CY*T2Y(II)+CZ*T2Z(II)	ET 224
225 24	CONTINUE	ET 225
226	RETURN	ET 226
227	END	ET 227-

FACGF

PURPOSE

To perform the steps in the NGF solution that do not depend on the excitation vector.

METHOD

The NGF solution procedure is discussed in Section VI. The steps performed in FACGF are to evaluate $A^{-1}B$ and $D - CA^{-1}B$. The matrix $D - CA^{-1}B$ is then factored into triangular matrices L and U. The procedure is complicated by the possible need to use file storage for the matrices. The comments in the code and the tables for ICASX = 2, 3 and 4 in Section VII offer a fairly complete description of the procedure.

SYMBOL DICTIONARY

- A = array for matrix A (L U factors) or block of A if file storage is used
- B = array for B or block of B
- BX = array for B when $A^{-1}B$ is being computed with ICASX = 2. The array B starts at the beginning of CM in this case. BX leaves room for $A_{\mathbb{R}}$ at the beginning of CM
- C = array for C or block of C (matrix transposed)
- D = array for D or block of D (matrix transposed)

IBFL = file on which B is stored

ICASS = saved value of ICASE

IP = pivot index array

IX = data on row interchanges in LFACTR

Ml = number of patches in the NGF

MP = number of patches in a symmetric section in the NGF

N1 = number of segments in the NGF

NIC = number of columns in C (same as order of A)

N1CP = N1C + 1

N2C = order of matrix D

NBLSYS = saved value of NBLSYM

NIC = index increment

NLSYS = saved value of NLSYM

NP = number of segments in a symmetric section in the NGF

NPSYS = saved value of NPSYM

SUM = summation variable for matrix products

1 2	c		SUBROUTINE FACGF (A,B,C,D,BX,IP,IX,NP,N1,MP,M1,N1C,N2C) FACGF COMPUTES AND FACTORS D-C(INV(A)B).	FG FG	1 2
3			COMPLEX A,B,C,D,BX,SUM	FG	3
4 5		V.	COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, ICASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL		4
6			DIMENSION A(1), B(N1C,1), C(N1C,1), D(N2C,1), BX(N1C,1), IP(1), IX	FG	5
7			1(1)	FG	7
8			IF (N2C.EQ.O) RETURN	FG	8
9			IBFL=14	FG	9
10			IF (ICASX.LT.3) GO TO 1	FG	10
11	•		CONVERT B FROM BLOCKS OF ROWS ON T14 TO BLOCKS OF COL. ON T16 CALL REBLK (B,C,N1C,NPBX,N2C)	FG FG	11
13			IBFL=16	FG	13
14			NPB=NPBL	FG	14
15			IF (ICASX.EQ.2) REWIND 14	FG	15
16	С		COMPUTE INV(A)B AND WRITE ON TAPE14	FG	16
17			DO 2 IB=1,NBBL IF (IB.EQ.NBBL) NPB=NLBL	FG FG	17
19			IF (ICASX.GT.1) READ (IBFL) ((BX(I,J),I=1,N1C),J=1,NPB)	FG	19
20			CALL SOLVES (A, IP, BX, N1C, NPB, NP, N1, MP, M1, 13, 13)	FG	20
21			IF (ICASX.EQ.2) REWIND 14	FG	21
22 23	•		IF (ICASX.GT.1) WRITE (14) ((BX(I,J),I=1,N1C),J=1,NPB)	FG	22
24	4		CONTINUE IF (ICASX.EQ.1) GO TO 3	FG FG	23
25			REWIND 11	FG	25
26			REWIND 12	FG	26
27			REWIND 15	FG	27
28			REWIND IBFL	FG	28
29 30			NPC=NPBL COMPUTE D-C(INV(A)B) AND WRITE ON TAPE11	FG FG	29 30
31			DO 8 IC=1,NBBL	FG	31
32			IF (IC.EQ.NBBL) NPC=NLBL	FG	32
33			IF (ICASX.EQ.1) GO TO 4	FG	33
34			READ (15) ((C(I,J),I=1,N1C),J=1,NPC)	FG	34
35 36			READ (12) ((D(I,J),I=1,N2C),J=1,NPC) REWIND 14	FG	35
37			NPB=NPBL	FG	37
38			NIC=0	FG	38
39			DO 7 IB=1,NBBL	FG	39
40			IF (IB.EQ.NBBL) NPB=NLBL	FG	40
41 42			IF (ICASX.GT.1) READ (14) ((B(I,J),I=1,N1C),J=1,NPB) DO 6 I=1,NPB	FG FG	41
43			II=I+NIC	FG	43
44			DO 6 J=1,NPC	FG	44
45			SUM=(0.,0.)	FG	45
46			DO 5 K=1,N1C	FG	46
47 48			SUM=SUM+B(K,I)*C(K,J) D(II,J)=D(II,J)-SUM	FG FG	47
49			NIC=NIC+NPBL	FG	49
50			IF (ICASX.GT.1) WRITE (11) ((D(I,J),I=1,N2C),J=1,NPBL)	FG	50
51			CONTINUE	FG	51
52			IF (ICASX.EQ.1) GO TO 9	FG	52
53 54			REWIND 11 REWIND 12	FG FG	53
55			REWIND 14	FG	55
56			REWIND 15	FG	56
57			N1CP=N1C+1	FG	57
58	1		FACTOR D-C(INV(A)B)	FG	58
59 60			IF (ICASX.GT.1) GO TO 10 CALL FACTR (N2C,D,IP(N1CP),N2C)	FG FG	59
61			GO TO 13	FG	61
	10		IF (ICASX.EQ.4) GO TO 12	FG	62
63			NPB=NPBL	FG	63
64			IC=0	FG	64

			FACGF
65	DO 11 IB=1,NBBL	FG	65
66	IF (IB.EQ.NBBL) NPB=NLBL	FG	66
67	II=IC+1	FG	67
68	IC=IC+N2C*NPB	FG	68
69 11	READ (11) (B(I,1), I=II, IC)	FG	69
70	REWIND 11	FG	70
71	CALL FACTR (N2C,B,IP(N1CP),N2C)	FG	71
72	NIC=N2C*N2C	FG	72
73	WRITE (11) (B(I,1), I=1, NIC)	FG	73
74	REWIND 11	FG	74
75	GO TO 13	FG	75
76 12	NBLSYS=NBLSYM	FG	76
77	NPSYS=NPSYM	FG	77
78	NLSYS=NLSYM	FG	78
79	ICASS=ICASE	FG	79
80	NBLSYM=NBBL	FG	80
81	NPSYM=NPBL	FG	81
82	NLSYM=NLBL	FG	82
83	ICASE=3	FG	83
84	CALL FACIO (B,N2C,1,IX(N1CP),11,12,16,11)	FG	84
85	CALL LUNSCR (B, N2C, 1, IP(N1CP), IX(N1CP), 12, 11, 16)	FG	85
86	NBLSYM=NBLSYS	FG	86
87	NPSYM=NPSYS	FG	87
88	NLSYM=NLSYS	FG	88
89	ICASE=ICASS	FG	89
90 13	RETURN	FG	90
91	END	EC.	01-

FACIO

FACIO

PURPOSE

To read and write matrix blocks needed for the LU decomposition.

METHOD

n1 - - l- -

Sequential access is used on all files. The matrix is initially stored on file IUI in blocks of columns of the transposed matrix. The block size is such that two blocks will fit into the array A for the Gauss elimination process. If the matrix were divided into four blocks, the order for reading the blocks into core would be

PIO	CKS	
1,	2	1 and 2 will be completely factored
1,	4	3 and 4 partially factored
2,	3	factorization of 3 completed
2,	4	4 partially factored
3,	4	factorization complete

IUl is the initial input file. Partially factored blocks are read from file IFILE3 and written to IFILE4 where IFILE3 = IU3 and IFILE4 = IU4 when IXBLK1 is odd, and IFILE3 = IU4 and IFILE4 = IU3 when IXBLK1 is even. Completed blocks are written to file IU2. Although the last block may be shorter than other blocks the same number of words is read or written. The excess words are ignored in subroutine LFACTR.

Subroutine LFACTR is called to perform the Gauss elimination. For a symmetric structure the loop from FOIS to FO43 factors each submatrix.

SYMBOL DICTIONARY

A	= array for matrix storage
11 .	= location in A of beginning of block 1
12	= location in A of end of block 1
13	= location in A of beginning of block 2
14	= location in A of end of block 2
IFILE3	■ input file
IFILE4	= output file
IP	= array for pivot element indices

IT = number of words in a matrix block

IU1, IU2, IU3, IU4 = file numbers

IXBLK1 = number of first block stored in A

IXBLK2 = number of second block stored in A

KA = first location in IP for submatrix KK

NBM = number of blocks minus one

NOP = number of submatrices for symmetry

NROW = number of rows in a block

T1, T2, TIME = variables to sum total time spent in LFACTR

FACIO

1		SUBROUTINE FACIO (A, NROW, NOP, IP, IU1, IU2, IU3, IU4)	FO	1
2			FO	2
3		FACIO CONTROLS I/O FOR OUT-OF-CORE FACTORIZATION	FO	3
4	C		FO	4
. 5		COMPLEX A	FO	5
6		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	FO	6
7		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	FO	7
8		DIMENSION A(NROW, 1), IP(NROW)	FO	8
9		IT=2*NPSYM*NROW	FO	9
10		NBM=NBLSYM-1	FO	10
11		I1=1	FO	11
12		12=17	FO	12
13		I3=I2+1	FO	13
14		I4=2*IT	FO	14
15		TIME=0.	FO	15
16		REWIND IU1	FO	16
17		REWIND IU2	FO	17
18		DO 3 KK=1,NOP	FO	18
19		KA=(KK-1)*NROW+1	FO	19
20		IFILE3=IU1	FO	20
21		IFILE4=IU3	FO	21
22		DO 2 IXBLK1=1, NBM	FO	22
23		REWIND IU3	FO	23
24		REWIND IU4	FO	24
25		CALL BLCKIN (A, IFILE3, I1, I2, 1, 17)	FO	25
26		IXBP=IXBLK1+1	FO	26
27		DO 1 IXBLK2=IXBP.NBLSYM	FO	27
•			FO	
28		CALL BLCKIN (A, IFILE3, I3, I4, 1, 18)		28
29		CALL SECOND (T1)	FO	29
30		CALL LFACTR (A, NROW, IXBLK1, IXBLK2, IP(KA))	FO	30
31		CALL SECOND (T2)	FO	31
32		TIME=TIME+T2-T1	FO	32
33		IF (IXBLK2.EQ.IXBP) CALL BLCKOT (A, IU2, I1, I2, 1, 19)	FO	33
34		IF (IXBLK1.EQ.NBM.AND.IXBLK2.EQ.NBLSYM) IFILE4=IU2	FO	34
35		CALL BLCKOT (A, IFILE4, I3, I4, 1, 20)	FO	35
36	1	CONTINUE	FO	36
37		IFILE3=IU3	FO	37
38		IFILE4=IU4	FO	38
39		IF ((IXBLK1/2)*2.NE.IXBLK1) GO TO 2	FO	39
40		IFILE3=IU4	FO	40
41		IFILE4=IU3	FO	41
42		CONTINUE	FO	42
43	3	CONTINUE	FO	43
44		REWIND IU1	FO	44
45		REWIND IU2	FO	45
46		REWIND IU3	FO	46
47		REWIND IU4	FO	47
48		PRINT 4, TIME	FO	48
49		RETURN	FO	49
50	C		FO	50
51	4	FORMAT (35H CP TIME TAKEN FOR FACTORIZATION = ,E12.5)	FO	51
52		FND	FO	52

FACTR

PURPOSE

To factor a complex matrix into a lower triangular and an upper triangular matrix using the Gauss-Doolittle technique. The matrix in this case is a transposed matrix. The factored matrix is used by subroutine SOLVE to determine the solution of the matrix equation Ax = B.

METHOD

The algorithm used in this routine is presented by A. Ralston (ref. 1). The decomposition of the matrix A is such that A = LU, where L is a lower triangular matrix with 1's down the diagonal, and U is an upper triangular matrix. The L and U matrices overwrite the matrix A. The computations to obtain L and U are done using one complex scratch vector (D) and one integer vector (IP) that keep track of row interchanges when elements are positioned for size. If positioning for size is not taken into account, the general procedure is

$$a_{11} = u_{11}$$

 $a_{11} = l_{11}u_{11}$ $i = 2, ..., n$

which gives the first column of the L and U matrices. Then

$$a_{12} = u_{12}$$
 $a_{22} = l_{21}u_{12} + u_{22}$
 $a_{12} = l_{11}u_{12} + l_{12}u_{22}$ $i = 3, ..., n$

gives the second column. The computations for the successive columns continue in this way. The general equations for the rth column are

There are only two differences in the coding used in FACTR and the coding suggested by Ralston. The first is that double precision variables are not used for the accumulation of sums, since for the size and conditioning of the matrices anticipated in core, the computer word length is sufficient to insure accuracy. The second difference is that the row and column indices of the A matrix in the routine have been interchanged to handle the transposed matrix.

CODING

The coding is divided into five steps which correspond to the steps given by Ralston.

FA14 Loop over columns (rows with the interchanged indices used in the routine).

FA18 - FA20 Fill D vector with column (row) of A.

FA24 - FA35 Solution for u (i = 1,...,r) in the above equations taking into account positioning.

FA40 - FA54 Selecting largest value for positioning.

FA58 - FA62 Solution for l_{ir} (i = r + 1,...,n) in the above equations.

FA64 - FA66 Printing of small pivot elements.

SYMBOL DICTIONARY

A = input transposed matrix overwritten with calculated L^T and U^T matrices

CONJG = external routine (conjugate of a complex number)

D = scratch vector

DMAX = maximum value in D

ELMAG = intermediate variable

I = DO loop index

IFLG = small pivot flag

IP = integer vector storing positioning information

J = DO loop index

JP1 = J + 1

K = DO loop index

N = order of matrix being factored

NDIM = dimensions of the array where the matrix is stored. NDIM \geq N

PJ = intermediate variable

PR = intermediate variable

R = DO loop index

REAL = external routine (real part of complex number)

RM1 = R - 1

RP1 = R + 1

1		SUBROUTINE FACTR (N,A,IP,NDIM)	FA	. 1
2			FA	2
3		SUBROUTINE TO FACTOR A MATRIX INTO A UNIT LOWER TRIANGULAR MATRIX	FA	3
4	C	AND AN UPPER TRIANGULAR MATRIX USING THE GAUSS-DOOLITTLE ALGORITHM	FA	4
5	C	PRESENTED ON PAGES 411-416 OF A. RALSTON-A FIRST COURSE IN	FA	5
6	C	NUMERICAL ANALYSIS. COMMENTS BELOW REFER TO COMMENTS IN RALSTONS	FA	6
7	C	TEXT. (MATRIX TRANSPOSED.	FA	7
8			FA	8
9		COMPLEX A,D,ARJ	FA	9
10				
		DIMENSION A(NDIM, NDIM), IP(NDIM)	FA	10
11		COMMON /SCRATM/ D(600)	FA	11
12		INTEGER R.RM1,RP1,PJ,PR	FA	12
13		IFLG=0	FA	13
14		DO 9 R=1,N	FA	14
15	C		FA	15
16	C	STEP 1	FA	16
17			FA	17
18		DO 1 K-1 N		
		DO 1 K=1,N	FA	18
19		D(K)=A(R,K)	FA	19
20		CONTINUE	FA	20
21	C		FA	21
22	C	STEPS 2 AND 3	FA	22
23	C		FA	23
24		RM1=R-1	FA	24
25		IF (RM1.LT.1) GO TO 4	FA	25
26		DO 3 J=1,RM1	FA	26
27		PJ=IP(J)	FA	27
28		ARJ=D(PJ)	FA	28
29		A(R, J)=ARJ	FA	29
30		D(PJ)=D(J)	FA	30
31		JP1=J+1	FA	31
32		DO 2 I=JP1.N	FA	32
33		D(I)=D(I)-A(J,I)*ARJ	FA	33
34	2	CONTINUE	FA	34
35		CONTINUE	FA	35
Section.	1711			
36		CONTINUE	FA	36
37			FA	37
38	C	STEP 4	FA	38
39	C		FA	39
40		DMAX=REAL(D(R)*CONJG(D(R)))	FA	40
41		IP(R)=R	FA	41
42		RP1=R+1	FA	42
43		IF (RP1.GT.N) GO TO 6	FA	43
44		DO 5 I=RP1,N	FA	44
45			FA	45
		ELMAG=REAL(D(I)*CONJG(D(I)))	_	-
46		IF (ELMAG.LT.DMAX) GO TO 5	FA	46
47		DMAX=ELMAG	FA	47
48		IP(R)=I	FA	48
49	5	CONTINUE	FA	49
50	6	CONTINUE	FA	50
51		IF (DMAX.LT.1.E-10) IFLG=1	FA	51
52		PR=IP(R)	FA	52
53		A(R,R)=D(PR)	FA	53
54			FA	54
55		D(PR)=D(R)	FA	55
	0.00	A-FA 4		
56		STEP 5	FA	56
57	1000		FA	57
58		IF (RP1.GT.N) GO TO 8	FA	58
59		ARJ=1./A(R,R)	FA	59
60		DO 7 I=RP1,N	FA	60
61		A(R,I)=D(I)*ARJ	FA	61
62		CONTINUE	FA	62
63		CONTINUE	FA	63
64		IF (IFLG.EQ.Q) GO TO 9		64

65	PRINT 10, R,DMAX	FA 6:	5
66	IFLG=0	FA 66	200
67 9	CONTINUE	FA 6	
68	RETURN	FA 68	
69 C		FA 69	1
70 10	FORMAT (1H ,6HPIVOT(,13,2H)=,E16.8)	FA 70	
71	END	FA 71	_

FACTRS

FACTRS

PURPOSE

To call the appropriate subroutines for the LU decomposition of a matrix.

METHOD

The operation of FACTRS depends on the mode of storage of the matrix as determined by the value of ICASE (see COMMON/MATPAR/ in Section III). For ICASE = 1 subroutine FACTR is called at FS16 to factor the matrix. For ICASE = 2 FACTR is called for each of the NOP submatrices. If ICASE = 3 FACIO and LUNSCR are called at FS23 and FS24. FACIO reads the matrix from file IU1 and writes the result on file IU2. LUNSCR leaves the final result on file IU3.

For ICASE = 4 (symmetry, submatrices fit in core) or ICASE = 5 (symmetry, submatrices do not fit in core) the matrix elements on file IU1 are written in a new order on file IU2 from FS29 to FS46. The sequence of data on file IU1 is

column 1 of submatrix 1 column 1 of submatrix 2

:

column 1 of submatrix NOP column 2 of submatrix 1

:

column 2 of submatrix NOP column 3 of submatrix 1

:

column NPBLK of submatrix NOP

The matrices are written onto file IU2 in the sequence

column 1 of submatrix 1 column 2 of submatrix 1

:

column NPBLK of submatrix 1 column 1 of submatrix 2

:

column NPBLK of submatrix NOP

For ICASE = 4 each submatrix is then read into memory at FS58 and decomposed into LU factors by calling FACTR at FS60. The factored matrices are written to file IU3 at FS61.

For ICASE = 5 the matrices are transferred from file IU2 to IU1 at FS76 to FS77. Subroutine FACIO is then called to factor all of the NOP submatrices. The result is left on file IU2. LUNSCR reorders the rows of each matrix and leaves the result on IU3.

SYMBOL DICTIONARY

	- allay for matrix storage
12	= number of words in a block
ICOLS	= number of columns in a block
IP	= array for pivot element indices
IR1, IR2, IRR1, IRR2	= row indices for reordering columns
IU1, IU2, IU3, IU4 ·	= file numbers
IX	= array of pivot element data
KA	= starting location of a submatrix in the array
NOP	= number of symmetric sections
NP	= number of equations for each symmetric section
	(order of submatrix)
NROW	= total number of equations (NP x NOP)

= array for matrix storage

1		SUBROUTINE FACTRS (NP.NROW, A, IP, IX, IU1, IU2, IU3, IU4)	FS	1
	C		FS	2
3	C	FACTRS, FOR SYMMETRIC STRUCTURE, TRANSFORMS SUBMATRICIES TO FORM	FS	3
	C	MATRICIES OF THE SYMMETRIC MODES AND CALLS ROUTINE TO FACTOR	FS	4
	C	MATRICIES. IF NO SYMMETRY, THE ROUTINE IS CALLED TO FACTOR THE	FS	5
6	C	COMPLETE MATRIX.	FS	6
7	C		FS	7
8		COMPLEX A	FS	8
9		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	FS	9
10		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	FS	10
11		DIMENSION A(1), IP(NROW), IX(NROW)	FS	11
12		NOP=NROW/NP	FS	12
13		IF (ICASE.GT.2) GO TO 2	FS	13
14		DO 1 KK=1,NOP	FS	14
15		KA=(KK-1)*NP+1	FS	15
16	1	CALL FACTR (NP,A(KA),IP(KA),NROW)	FS	16
17		RETURN	FS	17
18	2	IF (ICASE.GT.3) GO TO 3	FS	18
19	C		FS	19
20	C	FACTOR SUBMATRICIES, OR FACTOR COMPLETE MATRIX IF NO SYMMETRY	FS	20
21	C	EXISTS.	FS	21
22	C		FS	22
23		CALL FACIO (A, NROW, NOP, IX, IU1, IU2, IU3, IU4)	FS	23
24		CALL LUNSCR (A, NROW, NOP, IP, IX, IU2, IU3, IU4)	FS	24
25		RETURN	FS	25
26	C		FS	26
27	C	REWRITE THE MATRICES BY COLUMNS ON TAPE 13	FS	27
28	C		FS	28
29	3	I2=2*NPBLK*NROW	FS	29
30		REWIND IU2	FS	30
31		DO 5 K=1,NOP	FS	31
32		REWIND IU1	FS	32
33		ICOLS=NPBLK	FS	33
34		IR2=K*NP	FS	34
35		IR1=IR2-NP+1	FS	35
36		DÓ 5 L=1,NBLOKS	FS	36
37		IF (NBLOKS.EQ.1.AND.K.GT.1) GO TO 4	FS	37
38		CALL BLCKIN (A, IU1, 1, I2, 1, 602)	FS	38
39		IF (L.EQ.NBLOKS) ICOLS=NLAST	FS	39
40	4	IRR1=IR1	FS	40
41		IRR2=IR2	FS	41
42		DO 5 ICOLDX=1, ICOLS	FS	42
43		WRITE (IU2) (A(I), I=IRR1, IRR2)	FS	43
44		IRR1=IRR1+NROW	FS	44
45		IRR2=IRR2+NROW	FS	45
	5	CONTINUE	FS	46
47		REWIND IU1	FS	47
48		REWIND IU2	FS	48
49		IF (ICASE.EQ.5) GO TO 8	FS	49
50		REWIND IU3	FS	50
51		IRR1=NP*NP	FS	51
52		DO 7 KK=1, NOP	FS	52
53		IR1=1-NP	FS	53
54		IR2=0	FS	54
55		DO 6 I=1,NP	FS	55
56		IR1=IR1+NP	FS	56
57		IR2=IR2+NP	FS	57
	6	READ (IU2) (A(J), J=IR1, IR2)	FS	58
59		KA=(KK-1)*NP+1	FS	59
60		CALL FACTR (NP,A,IP(KA),NP)	FS	60
61	7	WRITE (IU3) (A(I), I=1, IRR1)	FS	61
63		CONTINUE REWIND IU2	FS	63
64		REWIND 102	FS	64

FACTRS

65	RETURN	FS	65
66 8	I2=2*NPSYM*NP	FS	66
67	DO 10 KK=1,NOP	FS	67
68	J2=NPSYM	FS	68
69	DO 10 L=1,NBLSYM	FS	69
70	IF (L.EQ.NBLSYM) J2=NLSYM	FS	70
71	IR1=1-NP	FS	71
72	IR2=0	FS	72
73	DO 9 J=1, J2	FS	73
74	IR1=IR1+NP	FS	74
75	IR2=IR2+NP	FS	75
76 9	READ (IU2) (A(I), I=IR1, IR2)	FS	76
77 10	CALL BLCKOT (A, IU1, 1, I2, 1, 193)	FS	77
78	REWIND IU1	FS	78
79	CALL FACIO (A,NP,NOP,IX,IU1,IU2,IU3,IU4)	FS	79
80	CALL LUNSCR (A,NP,NOP,IP,IX,IU2,IU3,IU4)	FS	80
81	RETURN	FS	81
82	END	FS	82-

FBAR

FBAR

PURPOSE

To compute the Sommerfeld attenuation function for Norton's asymptotic field approximations.

METHOD

The value returned for FBAR is

$$F(P) = 1 - j \sqrt{\pi P} \exp(-P) \left[1 - \operatorname{erf}(j\sqrt{P})\right]$$

where erf(z) is the error function. If $|j\sqrt{P}| \le 3$ the value of erf($j\sqrt{P}$) is computed from the series

$$erf(z) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{n!(2n+1)}$$

For $|j\sqrt{P}| > 3$, F(P) is evaluated from the first six terms of the asymptotic expansion

$$\sqrt{\pi} \ z \ \exp(z^2) \ (1 - \operatorname{erf}(z)) \approx 1 + \sum_{M=1}^{\infty} \ (-1)^M \ \frac{1 \cdot 3 \dots (2M-1)}{(2z^2)^M}$$

for $z + \infty$, $larg(z) < \frac{3\pi}{4}$

SYMBOL DICTIONARY

ACCS = relative convergence test value

FJ = j = √-I

MINUS = 1 if Re(z) < 0

P = P

POW = $(-1)^n z^{2n+1}/n!$

SMS = magnitude squared of series

SP = $\sqrt{\pi}$

SUM = series value

TERM = term in the series

TMS = |TERM|2

TOSP = $2/\sqrt{\pi}$

 $z = j\sqrt{P}$

 $zs = z^2$

FBAR

1	COMPLEX FUNCTION FBAR(P)	FR	1
2 C		FR	2
3 C	FBAR IS SOMMERFELD ATTENUATION FUNCTION FOR NUMERICAL DISTANCE P	FR	3
4 C		FR	4
5	COMPLEX Z,ZS,SUM,POW,TERM,P,FJ	FR	5
6	DIMENSION FJX(2)	FR	6
7	EQUIVALENCE (FJ, FJX)	FR	7
8	DATA TOSP/1.128379167/, ACCS/1.E-12/, SP/1.772453851/, FJX/0.,1./	FR	8
9	Z=FJ*CSQRT(P)	FR	9
10	IF (CABS(Z).GT.3.) GO TO 3	FR	10
11 C		FR	11
12 C	SERIES EXPANSION	FR	12
13 C		FR	13
14	ZS=Z*Z	FR	14
15	SUM=Z	FR	15
16	POW=Z	FR	16
17	DO 1 I=1,100	FR	17
18	POW=-POW*ZS/FLOAT(I)	FR	18
19	TERM=POW/(2.*I+1.)	FR	19
20	SUM=SUM+TERM	FR	20
21	TMS=REAL(TERM*CONJG(TERM))	FR	21
22	SMS=REAL(SUM*CONJG(SUM))	FR	22
23	IF (TMS/SMS.LT.ACCS) GO TO 2	FR	23
24 1	CONTINUE	FR	24
25 2	FBAR=1(1SUM*TOSP)*Z*CEXP(ZS)*SP	FR	25
26	RETURN	FR	26
27 C		FR	27
28 C	ASYMPTOTIC EXPANSION	FR	28
29 C		FR	29
30 3	IF (REAL(Z).GE.O.) GO TO 4	FR	30
31	MINUS=1	FR	31
32	Z=-Z	FR	32
33	GO TO 5	FR	33
34 4	MINUS=0	FR	34
35 5	ZS=.5/(Z*Z)	FR	35
36	SUM=(0.,0.)	FR	36
37	TERM=(1.,0.)	FR	37
38	DO 6 I=1,6	FR	38
39	TERM=-TERM*(2.*I-1.)*ZS	FR	39
40 6	SUM=SUM+TERM	FR	40
41	IF (MINUS.EQ.1) SUM=SUM-2.*SP*Z*CEXP(Z*Z)	FR	41
42	FBAR=-SUM	FR	42
43	RETURN	FR	43
44	ENO		

PURPOSE

To set parameters for storage of the interaction matrix.

METHOD

FBLOCK sets values of the parameters ICASE through NLSYM in COMMON/MATPAR/. The input parameters NROW and NCOL are the number of rows and columns in the non-transposed matrix. IMAX is the number of matrix elements that can be stored in the array in COMMON/CMB/. If a NGF file will be written (WG card) then IRNGF complex locations are reserved for future use. If a NGF file has not been requested then IRNGF is zero.

If (NROW)(NCOL) < IMAX - IRNGF the complete matrix can be stored in COMMON/CMB/. ICASE is then 1 for no symmetry or 2 for symmetry. If the structure has symmetry and one submatrix fits in core but not the complete matrix,

(NROW)(NCOL) > IMAX - IRNGF $NROW^2 \le IMAX - IRNGF$,

then ICASE is 4.

If the matrix cannot fit in core for the LU decomposition then it is divided into blocks of rows (columns of the transposed matrix) for transfer between core and file storage. The blocks are made as large as possible so that one block fits into IMAX - IRNGF locations and two blocks fit into IMAX locations. Since two blocks are needed in core only during the Gauss elimination process this makes at least IRNGF locations available during the NGF solution.

CODING

FB10 - FB17 ICASE = 1 or 2

FB20 - FB32 ICASE = 3

FB34 - FB40 ICASE = 4 or 5, block parameters for whole matrix

FB42 - FB48 ICASE = 4, block parameters for submatrices

FB49 - FB58 ICASE = 5, block parameters for submatrices

FB65 - FB71 S matrix for rotational symmetry (Equation III of Part I)

FB75 - FB88 S matrix for plane symmetry

6

SYMBOL DICTIONARY

ARG = $2\pi(I - 1)(J - 1)/NOP$

IMAX = number of complex numbers that can be stored in COMMON/CMB/

IMX1 = IMAX - IRNGF

IPSYM = parameter from COMMON/DATA/

IRNGF = array storage reserved for NGF

KA = number of planes of symmetry

NCOL = number of columns in matrix

NOP = number of symmetric sections

NROW = number of rows in matrix

 $PHAZ = 2\pi/NOP$

1		SUBROUTINE FBLOCK (NROW, NCOL, IMAX, IRNGF, IPSYM)	FB	1
2	C	FBLOCK SETS PARAMETERS FOR OUT-OF-CORE SOLUTION FOR THE PRIMARY	FB	2
3	C	MATRIX (A)	FB	3
4		COMPLEX SSX.DETER	FB	4
5		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I		5
6		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	FB	6
7		COMMON /SMAT/ SSX(16,16)	FB	7
8		IMX1=IMAX-IRNGF	FB	8
9		IF (NROW*NCOL.GT.IMX1) GO TO 2	FB	9
10		NBLOKS=1	FB	10
11		NPBLK=NROW	FB	0.000
			Total Control	11
12		NLAST=NROW	FB	12
13		IMAT=NROW*NCOL	FB	13
14		IF (NROW.NE.NCOL) GO TO 1	FB	14
15		ICASE=1	FB	15
16		RETURN	FB	16
17		ICASE=2	FB	17
18		GO TO 5		
		: 1988년 - 1988년 - 1988년 - 1988년	FB	18
19	1.771	IF (NROW.NE.NCOL) GO TO 3	FB	19
20		ICASE=3	FB	20
21		NPBLK=IMAX/(2*NCOL)	FB	21
22		NPSYM=IMX1/NCOL	FB	22
23		IF (NPSYM.LT.NPBLK) NPBLK=NPSYM	FB	23
24		IF (NPBLK.LT.1) GO TO 12	FB	24
25		NBLOKS=(NROW-1)/NPBLK		2000
			FB	25
26		NLAST=NROW-NBLOKS*NPBLK	FB	26
27		NBLOKS=NBLOKS+1	FB	27
28		NBLSYM=NBLOKS	FB	28
29		NPSYM=NPBLK	FB	29
30		NLSYM=NLAST	FB	30
31		IMAT=NPBLK*NCOL	FB	31
32		PRINT 14, NBLOKS, NPBLK, NLAST	FB	32
33		GO TO 11	100	
			FB	33
34	105	NPBLK=IMAX/NCOL	FB	34
35		IF (NPBLK.LT.1) GO TO 12	FB	35
36		IF (NPBLK.GT.NROW) NPBLK=NROW	FB	36
37		NBLOKS=(NROW-1)/NPBLK	FB	37
38		NLAST=NROW-NBLOKS*NPBLK	FB	38
39		NBLOKS=NBLOKS+1	FB	39
40		PRINT 14, NBLOKS, NPBLK, NLAST		-
41			FB	40
		IF (NROW*NROW.GT.IMX1) GO TO 4	FB	41
42		ICASE=4	FB	42
43		NBLSYM=1	FB	43
44		NPSYM=NROW	FB	44
45		NLSYM=NROW	FB	45
46		IMAT=NROW*NROW	FB	46
47		PRINT 15		
48		GO TO 5	FB	47
-			FB	48
	4	ICASE=5	FB	49
50		NPSYM=IMAX/(2*NROW)	FB	50
51		NBLSYM=IMX1/NROW	FB	51
52		IF (NBLSYM.LT.NPSYM) NPSYM=NBLSYM	FB	52
53		IF (NPSYM.LT.1) GO TO 12	FB	53
54		NBLSYM=(NROW-1)/NPSYM	FB	
55		NLSYM=NROW-NBLSYM*NPSYM		54
9/2			FB	55
56		NBLSYM=NBLSYM+1	FB	56
57		PRINT 16, NBLSYM, NPSYM, NLSYM	FB	57
58		IMAT=NPSYM*NROW	FB	58
59	5	NOP=NCOL/NROW	FB	59
60		IF (NOP*NROW.NE.NCOL) GO TO 13	FB	60
61		IF (IPSYM.GT.0) GO TO 7	FB	61
62			-	
63		SET UP SSX MATRIX FOR ROTATIONAL SYMMETRY.	FB	62
		SET OF SEA MAIRIA FOR ROTALIONAL SIMMETRI.	FB	63
64	C		FR	64

65		PHAZ=6.2831853072/NOP	FB	65
66		DO 6 I=2,NOP	FB	66
67		DO 6 J=I,NOP	FB	67
68		ARG=PHAZ*FLOAT(I-1)*FLOAT(J-1)	FB	68
69		SSX(I, J)=CMPLX(COS(ARG), SIN(ARG))	FB	69
70	6	SSX(J,I)=SSX(I,J)	FB	70
71		GO TO 11	FB	71
72	C		FB	72
73	C	SET UP SSX MATRIX FOR PLANE SYMMETRY	FB	73
74	C		FB	74
75	7	KK=1	FB	75
76		SSX(1,1)=(1.,0.)	FB	76
77		IF ((NOP.EQ.2).OR.(NOP.EQ.4).OR.(NOP.EQ.8)) GO TO 8	FB	77
78		STOP	FB	78
79	8	KA=NOP/2	FB	79
80		IF (NOP.EQ.8) KA=3	FB	80
81		DO 10 K=1,KA	FB	81
82		DO 9 I=1,KK	FB	82
83		DO 9 J=1,KK	FB	83
84		DETER=SSX(I, J)	FB	84
85		SSX(I,J+KK)=DETER	FB	85
86		SSX(I+KK, J+KK)=-DETER	FB	86
87	9	SSX(I+KK, J)=DETER	FB	87
88	10	KK=KK•2	FB	88
89	11	RETURN	FB	89
90	12	PRINT 17, NROW, NCOL	FB	90
91		STOP	FB	91
	13	PRINT 18, NROW, NCOL	FB	92
93		STOP	FB	93
94			FB	94
95	14		FB	95
96		1R BLOCK=, I5, 23H COLUMNS IN LAST BLOCK=, I5)	FB	96
97	15	FORMAT (25H SUBMATRICIES FIT IN CORE)	FB	97
98	16	FORMAT (38H SUBMATRIX PARTITIONING - NO. BLOCKS=, 15, 19H COLUMNS P	FB	98
99		1ER BLOCK=, 15, 23H COLUMNS IN LAST BLOCK=, 15)	FB	99
	17	FORMAT (40H ERROR - INSUFFICIENT STORAGE FOR MATRIX, 215)		100
	18	FORMAT (28H SYMMETRY ERROR - NROW, NCOL=, 215)	100	101
102		END	FB	102-

FBNGF

PURPOSE

To set parameters for storage of the matrices B, C and D for the NGF solution.

METHOD

The modes of matrix storage for the NGF solution are described in Section VIII. FBNGF choses the smallest ICASX (1 through 4) possible given the size of the matrices A, B, C and D and the space available in the array CM in COMMON/CMB/. If B, C and D must be divided into blocks (ICASX = 3 or 4) the blocks are chosen are large as possible to minimize the number of input and output requests. Parameters specifying the number and size of blocks are stored in COMMON/MATPAR/ (see Section III).

FBNGF also sets the locations in CM at which storage of B, C and D start. For example, CM(IC11) is passed from the main program to subroutines CMNGF and FACGF as the starting location of array C.

SYMBOL DICTIONARY

IBI1 = location in CM at which storage of B starts

IC11 = location in CM at which storage of C starts

ID11 = location in CM at which storage of D starts

IMAT = number of complex numbers in Ap

IR = space available (complex numbers) in CM when A_F is not being used.

IRESRV = total length of CM

IRESX = space availabe in CM when A is being used

IX11 = location in CM at which storage of B starts when A B is computed (A occupies space in CM)

NBCD = number of complex numbers in B, C and D combined

NBLN = number of complex numbers in B or C

NDLN = length of D

NEQ = number of rows in B, columns in C

NEQ2 = number of columns in B or D, rows in C or D

1 2	c	SUBROUTINE FBNGF (NEQ.NEQ2.IRESRV.IB11.IC11.ID11.IX11) FBNGF SETS THE BLOCKING PARAMETERS FOR THE B. C. AND D ARRAYS FOR	FN FN	1
	C	OUT-OF-CORE STORAGE. COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	FN	
5		1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL	FN	:
6		IRESX=IRESRY-IMAT	FN	6
8		NBLN=NEQ*NEQ2 NDLN=NEQ2*NEQ2	FN	7
9		NBCD=2*NBLN+NDLN	FN	
10		IF (NBCD.GT.IRESX) GO TO 1	FN	10
11		ICASX=1	FN	11
12		IB11=IMAT+1	FN	12
13		GO TO 2 IF (ICASE.LT.3) GO TO 3	FN	13
15		IF (NBCD.GT.IRESRY.OR.NBLN.GT.IRESX) GO TO 3	FN	15
16		ICASX=2	FN	16
17		IB11=1	FN	17
18		N88X=1	FN	18
19		NPBX=NEQ	FN	15
20		NLBX=NEQ NBBL=1	FN	21
22		NPBL=NEQ2	FN	22
23		NLBL=NEQ2	FN	23
24		GO TO 5	FN	24
25	3	IR=IRESRV	FN	25
26 27		IF (ICASE.LT.3) IR=IRESX ICASX=3	FN	26
28		IF (NDLN.GT.IR) ICASX=4	FN	27
29		NBCD=2*NEQ+NEQ2	FN	29
30		NPBL=IR/NBCD	FN	30
31		NLBL=IR/(2*NEQ2)	FN	31
32		IF (NLBL.LT.NPBL) NPBL=NLBL	FN	32
33		IF (ICASE.LT.3) GO TO 4	FN	33
34 35		NLBL=IRESX/NEQ IF (NLBL.LT.NPBL) NPBL=NLBL	FN	34
36		IF (NPBL.LT.1) GO TO 6	FN	36
37		NBBL=(NEQ2-1)/NPBL	FN	37
38		NLBL=NEQ2-NBBL*NPBL	FN	38
39		NBBL=NBBL+1	FN	39
40		NBLN=NEQ*NPBL	FN	40
41		IR=IR-NBLN NPBX=IR/NEQ2	FN FN	41
43		IF (NPBX.GT.NEQ) NPBX=NEQ	FN	43
44		NBBX=(NEQ-1)/NPBX	FN	44
45		NLBX=NEQ-NBBX*NPBX	FN	45
46		NBBX=NBBX+1	FN	46
47		IB11=1 IF (ICASE.LT.3) IB11=IMAT+1	FN	47
48 49		IC11=IB11+NBLN	FN	48
50		ID11=IC11+NBLN	FN	50
51		IX11=IMAT+1	FN	51
52		PRINT 11, NEQ2	FN	52
53		IF (ICASX.EQ.1) RETURN	FN	53
54 55		PRINT 8, ICASX PRINT 9, NBBX.NPBX.NLBX	FN	54
56		PRINT 10, NBBL,NPBL,NLBL	FN	56
57		RETURN	FN	57
58		PRINT 7, IRESRY, IMAT, NEQ, NEQ2	FN	58
59		STOP	FN	59
60		FORMAT / SELL FROOR - THE HET ATORIAL FOR THE PROPERTY ATORIAL FOR	FN	60
61 62	7	FORMAT (55H ERROR - INSUFFICIENT STORAGE FOR INTERACTION MATRICIES 1,24H IRESRY, IMAT, NEQ, NEQ2 = ,415)	FN	61
63		FORMAT (48H FILE STORAGE FOR NEW MATRIX SECTIONS - ICASX =,12)	FN	63
	9	FORMAT (19H B FILLED BY ROWS - 15X 12HNO. BLOCKS = T3.3X 16HROWS P		64

65	1ER BLOCK =, I3, 3X, 20HROWS IN LAST BLOCK =, I3)	FN	65
66 10	FORMAT (32H B BY COLUMNS, C AND D BY ROWS -, 2X, 12HNO. BLOCKS =, I3,	FN	66
67	14X,15HR/C PER BLOCK =, I3,4X,19HR/C IN LAST BLOCK =, I3)	FN	67
68 11	FORMAT (//, 35H N.G.F NUMBER OF NEW UNKNOWNS IS, 14)	FN	68
69	END	FN	69-

FFLD

PURPOSE

To calculate the radiated electric field due to the currents on wires and surfaces in free space or over ground. The range factor $\exp(-jkr_0)/(r_0/\lambda)$ is omitted.

METHOD

Equation (126) of Part I is used to evaluate the radiated field of wires and surfaces. The surface part of the equation is evaluated in subroutine FFLDS, however. For wires, the field equation is

$$\overline{E}(\overline{r}_0) = \frac{\text{jn } \exp(-\text{jkr}_0)}{4\pi \ r_0/\lambda} \ (\hat{k}\hat{k} - \overline{\overline{I}}) \cdot \overline{F}(\overline{r}_0)$$

$$\overline{F}(\overline{r}_0) = 2\pi \int_{L} \exp(j\overline{k} \cdot \overline{r}) [\overline{I}(s)/\lambda] ds/\lambda$$

where

$$\begin{array}{ccc} \mathbf{r}_0 = |\overline{\mathbf{r}}_0| \\ \vdots & = \overline{\mathbf{r}}_0 / |\overline{\mathbf{r}}_0| \end{array}$$

$$k = 2\pi/\lambda$$

$$\bar{k} = k\hat{k}$$

 $\overline{I}(s)$ = current on the wire at s

T = identity dyad

L = contour of the wire

r = position of the point at s on the wire

The dot product with the dyad $\hat{k}\hat{k} - \overline{\hat{I}}$ results in the component of \overline{F} transverse to \hat{k} . This is accomplished in the code by computing the dot products with the unit vectors $\hat{\theta}$ and $\hat{\phi}$, normal to \hat{k} .

For a wire structure consisting of N straight segments, r on segment i is replaced by

$$\bar{r} = \bar{r}_1 + \lambda t \hat{u}_1$$
,

where

r, = location of the center of segment i

u, = unit vector in the direction of segment i

Then, F is evaluated as

$$\overline{F}(\overline{r_0}) = \sum_{i=1}^{N} \exp(j\overline{k} \cdot \overline{r_i}) \overline{Q}_i$$

$$Q_{i} = 2\pi \hat{u}_{i} \int_{-\Delta_{i}/2}^{\Delta_{i}/2} \exp[j2\pi t(\hat{k} \cdot \hat{u}_{i})] I_{i}(t)/\lambda dt$$

where Δ_i is the length of segment i normalized to λ . With

$$I_{i}(t)/\lambda = A_{i} + B_{i} \sin (2\pi t) + C_{i} \cos (2\pi t)$$
,

the integral can be evaluated as

$$\begin{split} \overline{Q}_{i} &= \hat{u}_{i} \left\{ A_{i} \frac{2 \sin (\pi w_{i} \Delta_{i})}{w_{i}} - j B_{i} \left[\frac{\sin [\pi (1 - w_{i}) \Delta_{i}]}{(1 - w_{i})} - \frac{\sin [\pi (1 + w_{i}) \Delta_{i}]}{(1 + w_{i})} \right] + C_{i} \left[\frac{\sin [\pi (1 - w_{i}) \Delta_{i}]}{(1 - w_{i})} + \frac{\sin [\pi (1 + w_{i}) \Delta_{i}]}{(1 + w_{i})} \right] \right\}, \end{split}$$

where $w_i = -\hat{k} \cdot \hat{u}_i$.

The effect of a ground is included by computing the field of the image of each segment and modifying it by the Fresnel reflection coefficients. The coding here differs from section II-4 of Part I in some respects. Rather than reflecting each segment in the ground plane, the direction of observation, \hat{k} , is reflected for the image calculation. Thus, the sign of the z component of \hat{k} is changed at the start of the image calculation. The z component of the image field must also be changed in sign at the end of the calculation. Also, the change in sign of the image field due to the change in sign of charge on the image is combined with the reflection coefficients. Thus, the reflection coefficients are the negative of those in Part I.

The code allows for a change in ground height and electrical parameters at a fixed radial distance from the origin (circular cliff) or at a fixed distance in x (linear cliff). In these cases, the reflection point of the ray from the center of each segment is computed, and the reflection coefficients and phase lag are computed for the appropriate ground. Effects from the region of change, such as diffraction from the edge, are not included,

however. A radial wire ground screen may also be included by the reflection coefficient approximation described in section II-4 of Part I.

CODING

FF30 - FF164 Calculation of field due to segments.

FF34 - FF164 Loop over direct and image fields.

FF38 - FF63 Reflection coefficients computed.

FF64 k reflected in ground for image.

FF65 - FF70 Direct fields saved, and CIX, CIY, CIZ initialized before image calculation.

FF75 - FF96 Field of segment I computed.

FF102 - FF104 Summation of fields for direct field or uniform ground.

FF110 - FF149 Appropriate reflection coefficient determined and field summed for reflected field from two-medium ground or radial-wire ground screen.

FF156 - FF159 Image field multiplied by reflection coefficients for uniform ground and added to direct field.

FF161 - FF163 Reflected field added to direct field for two-medium ground or radial wire ground.

FF166 - FF167 Dot products of \overline{F} with $\hat{\theta}$ and $\hat{\phi}$ for wires only.

FF169 - FF208 Calculation of field due to surface patches.

FF177 - FF203 Loop over direct and image fields.

FF179 k reflected for image.

FF180 FFLDS calculates field.

FF186 - FF202 Field multiplied by reflection coefficients for uniform ground only.

SYMBOL DICTIONARY

A = $2 \sin (\pi w_i \Delta_i)/w_i$ (a series is used for small w_i)

 $ARG = \overline{k} \cdot \overline{r}_{i}$

B = coefficient of B_i in \overline{Q}_i

BOO = $\sin [\pi(1 - w_i)\Delta_i]/[\pi(1 - w_i)\Delta_i]$

BOT = $\pi(1 - w_i)\Delta_i$

 $C = coefficient of C_i in \overline{Q}_i$

CAB

SAB = x, y, z components of û;


```
CCX
CCY
           = variables for summation of x, y, and z components of F
CCZ
           = (\overline{F} \cdot \hat{\phi})(R_V - R_H)
CDP
CIX
CIY
           - variables for summation of x, y, and z components of F
CIZ
CONST
           = CONSX = -j\eta/4\pi
           - distance of ray reflection point from origin
DARG
           - phase increment due to change in ground level
           = \pi \Delta_{i}
EL
           = \phi component of (r_0/\lambda)\exp(jkr_0) \overline{E}(\overline{r_0})
EPH
           = \theta component of (r_0/\lambda)\exp(jkr_0) \overline{E}(\overline{r_0})
           = η = √µ/ε
ETA
EX
           = (r_0/\lambda) \exp(jkr_0) \overline{E}(\overline{r_0}) for patches
EY
EZ
           = Q,
EXA
GX
           = (r_0/\lambda)\exp(jkr_0) \overline{E}(\overline{r_0}) for direct and reflected fields of patches
GY
GZ
I
           = segment number
OMEGA
PHI
PHX, PHY = x and y components of \phi
PI
           = ±1 for direct or image field of patch
RFL
RI
           = imaginary part of Q,
ROX
           = x, y, and z components of k
ROY
ROZ
ROZS
           = saved value of ROZ
           = real part of Q,
RR
RRH
           = -R<sub>H</sub> for first ground medium
RRH1
           = -R<sub>H</sub> for second ground medium
RRH2
```

RRV = -R_V for first ground medium RRV1 = -R_V for second ground medium RRV2 = z component of k RRZ $= \pi w_{i}^{\Delta}$ SILL = θ (angle from vertical to \hat{k}) THET THX = ê THY THZ TIX = Q for image in ground TIY TIZ = $\sin[\pi(1 + w_i)\Delta_i]/[\pi(1 + w_i)\Delta_i]$ TOO $= \pi(1 + w_i)\Delta_i$ TOP TP $= 2\pi$ TTHET = $[\varepsilon_{r} - j\sigma/(\omega \varepsilon_{0})]^{-1/2}$ ε_{r} , σ = ground parameters ZRATI = $[1 - (ZRATI)^2 \sin^2 \theta]^{1/2}$ ZRSIN

= surface impedance of ground with radial wire ground screen

CONSTANTS

ZSCRN

 $-29.97922085 = -j\eta/(4\pi)$ $3.141592654 = \pi$ $376.73 = \eta$ $6.283185308 = 2\pi$

1

```
SUBROUTINE FFLD (THET, PHI, ETH, EPH)
                                                                                   FF
2 C
                                                                                   FF
                                                                                         2
3
  C
         FFLD CALCULATES THE FAR ZONE RADIATED ELECTRIC FIELDS.
                                                                                   FF
                                                                                         3
4
  C
         THE FACTOR EXP(J*K*R)/(R/LAMDA) NOT INCLUDED
                                                                                   FF
5
  C
                                                                                   FF
                                                                                         5
6
         COMPLEX CIX, CIY, CIZ, EXA, ETH, EPH, CONST, CCX, CCY, CCZ, CDP, CUR
                                                                                   FF
                                                                                         6
         COMPLEX ZRATI, ZRSIN, RRV, RRH, RRV1, RRH1, RRV2, RRH2, ZRATI2, TIX, TIY, TIZ FF
7
8
         1,T1,ZSCRN,EX,EY,EZ,GX,GY,GZ,FRATI
9
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 FF
                                                                                         9
10
         1).BI(300).ALP(300).BET(300).ICON1(300).ICON2(300).ITAG(300).ICONX( FF
                                                                                        10
11
        2300), WLAM, IPSYM
                                                                                        11
12
         COMMON /ANGL/ SALP(300)
                                                                                        12
13
         COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300 FF
                                                                                        13
14
         1), CUR(900)
                                                                                        14
15
         COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR, FF
                                                                                        15
16
         I IPERF, T1, T2
                                                                                        16
         DIMENSION CAB(1), SAB(1), CONSX(2)
17
                                                                                   FF
                                                                                        17
18
          EQUIVALENCE (CAB, ALP), (SAB, BET), (CONST, CONSX)
                                                                                   FF
                                                                                        18
          DATA PI, TP, ETA/3.141592654, 6.283185308, 376.73/
19
                                                                                   FF
                                                                                        19
20
          DATA CONSX/0.,-29.97922085/
                                                                                   FF
                                                                                        20
21
          PHX=-SIN(PHI)
                                                                                   FF
                                                                                        21
          PHY=COS(PHI)
22
                                                                                   FF
                                                                                        22
23
          ROZ=COS(THET)
                                                                                        23
          ROZS=ROZ
24
                                                                                   FF
                                                                                        24
25
          THX=ROZ*PHY
                                                                                   FF
                                                                                        25
26
          THY=-ROZ*PHX
                                                                                        26
27
          THZ=-SIN(THET)
                                                                                    FF
                                                                                        27
28
          ROX=-THZ*PHY
                                                                                   FF
                                                                                        28
29
          ROY=THZ*PHX
                                                                                   FF
                                                                                        29
30
          IF (N.EQ.0) GO TO 20
                                                                                        30
31 C
                                                                                   FF
                                                                                        31
          LOOP FOR STRUCTURE IMAGE IF ANY
32 C
                                                                                   FF
                                                                                        32
   C
33
                                                                                   FF
                                                                                        33
34
          DO 19 K=1, KSYMP
                                                                                    FF
                                                                                        34
35 C
                                                                                   FF
                                                                                        35
36 C
          CALCULATION OF REFLECTION COEFFECIENTS
                                                                                    FF
                                                                                        36
37 C
                                                                                    FF
                                                                                        37
38
          IF (K.EQ.1) GO TO 4
                                                                                        38
39
          IF (IPERF.NE.1) GO TO 1
                                                                                    FF
                                                                                        39
40 C
                                                                                    FF
                                                                                        40
41
   C
          FOR PERFECT GROUND
                                                                                        41
   C
42
                                                                                    FF
                                                                                        42
43
          RRV=-(1.,0.)
                                                                                    FF
                                                                                        43
          RRH=-(1.,0.)
44
                                                                                    FF
                                                                                        44
45
          GO TO 2
                                                                                        45
46 C
                                                                                   FF
                                                                                        46
47
   C
          FOR INFINITE PLANAR GROUND
                                                                                   FF
                                                                                        47
48
   C
                                                                                   FF
                                                                                        48
49 1
          ZRSIN=CSQRT(1.-ZRATI*ZRATI*THZ*THZ)
                                                                                    FF
                                                                                        49
50
          RRV=-(ROZ-ZRATI*ZRSIN)/(ROZ+ZRATI*ZRSIN)
                                                                                    FF
                                                                                        50
51
          RRH=(ZRATI*ROZ-ZRSIN)/(ZRATI*ROZ+ZRSIN)
                                                                                    FF
                                                                                        51
52 2
          IF (IFAR.LE.1) GO TO 3
                                                                                        52
53 C
                                                                                   FF
                                                                                        53
          FOR THE CLIFF PROBLEM, TWO REFLCTION COEFFICIENTS CALCULATED
54 C
                                                                                    FF
                                                                                        54
55
   C
                                                                                    FF
                                                                                        55
          RRV1=RRV
56
                                                                                   FF
                                                                                        56
57
          RRH1=RRH
                                                                                   FF
                                                                                        57
58
          TTHET=TAN(THET)
                                                                                   FF
                                                                                        58
          IF (IFAR.EQ.4) GO TO 3
59
                                                                                   FF
                                                                                        59
60
          ZRSIN=CSQRT(1.-ZRATI2*ZRATI2*THZ*THZ)
                                                                                   FF
                                                                                        60
61
          RRV2=-(ROZ-ZRATI2*ZRSIN)/(ROZ+ZRATI2*ZRSIN)
                                                                                   FF
                                                                                        61
62
          RRH2=(ZRATI2*ROZ-ZRSIN)/(ZRATI2*ROZ+ZRSIN)
                                                                                   FF
                                                                                        62
          DARG=-TP+2. +CH+ROZ
63
                                                                                   FF
                                                                                        63
          ROZ=-ROZ
64 3
                                                                                   FF
                                                                                        64
```

65		CCX=CIX		
66		10. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	FF	65
		CCY=CIY	FF	66
67		CCZ=CIZ	FF	67
68		CIX=(0.,0.)	FF	68
69		CIY=(0.,0.)	FF	69
70		CIZ=(0.,0.)	FF	70
71	C		FF	71
72	C	LOOP OVER STRUCTURE SEGMENTS	FF	72
73	C		FF	73
74		00 17 I=1,N	FF	74
75		OMEGA=-(ROX*CAB(I)+ROY*SAB(I)+ROZ*SALP(I))	FF	75
76		EL=PI*SI(I)	FF	76
77		SILL=OMEGA • EL	FF	77
78		TOP=EL+SILL	FF	78
79		BOT=EL-SILL	FF	79
80		IF (ABS(OMEGA).LT.1.E-7) GO TO 5	FF	80
81		A=2.*SIN(SILL)/OMEGA	FF	81
82		GO TO 6	FF	82
83	5	A=(2OMEGA*OMEGA*EL*EL/3.)*EL	FF	83
84		IF (ABS(TOP).LT.1.E-7) GO TO 7	FF	
85		TOO=SIN(TOP)/TOP		84
86		GO TO 8	FF	85
87	7	T00=1T0P*T0P/6.	FF	86
88	The state of the state of		FF	87
ALC: N	•	IF (ABS(BOT).LT.1.E-7) GO TO 9	FF	88
89		BOO=SIN(BOT)/BOT	FF	89
90		GO TO 10	FF	90
91		B00=1B0T*B0T/6.	FF	91
7.00	10	B=EL*(B00-T00)	FF	92
93		C=EL*(B00+T00)	FF	93
94		RR=A*AIR(I)+B*BII(I)+C*CIR(I)	FF	94
95		RI=A*AII(I)-B*BIR(I)+C*CII(I)	FF	95
96		ARG=TP*(X(I)*ROX+Y(I)*ROY+Z(I)*ROZ)	FF	96
97		IF (K.EQ.2.AND.IFAR.GE.2) GO TO 11	FF	97
98		EXA=CMPLX(COS(ARG),SIN(ARG))*CMPLX(RR,RI)	FF	98
99	C		FF	99
100	C	SUMMATION FOR FAR FIELD INTEGRAL	FF	100
101	C		FF	101
102		CIX=CIX+EXA*CAB(I)	FF	102
103		CIY=CIY+EXA*SAB(I)	FF	103
104		CIZ=CIZ+EXA*SALP(I)	FF	104
105		GO TO 17	FF	105
106	C		FF	106
107	C	CALCULATION OF IMAGE CONTRIBUTION IN CLIFF AND GROUND SCREEN	FF	107
108	C	PROBLEMS.	FF	108
109	C		FF	109
110	11	DR=Z(I)*TTHET		110
111	C			111
112	C	SPECULAR POINT DISTANCE		112
113	C			113
114		D=DR*PHY+X(I)		114
115		IF (IFAR.EQ.2) GO TO 13		115
116		D=SQRT(D*D+(Y(I)-DR*PHX)**2)	the same of	116
117		IF (IFAR.EQ.3) GO TO 13		117
118		IF ((SCRWL-D).LT.O.) GO TO 12		118
119				119
120	The second	RADIAL WIRE GROUND SCREEN REFLECTION COEFFICIENT		120
121		WASTE WASTE SHOOMS SOUTH WELL FESTIVITY COEFFICIENT		121
122		D=D+T2		
123		ZSCRN=T1*D*ALOG(D/T2)		122
124		ZSCRN=(ZSCRN*ZRATI)/(ETA*ZRATI+ZSCRN)		123
125		ZRSIN=CSQRT(1ZSCRN*ZSCRN*THZ*THZ)		124
125				125
127		RRV=(ROZ+ZSCRN*ZRSIN)/(-ROZ+ZSCRN*ZRSIN)		126
128		RRH=(ZSCRN*ROZ+ZRSIN)/(ZSCRN*ROZ-ZRSIN)		127

```
FFLD
          IF (IFAR.EQ.4) GO TO 14
IF (IFAR.EQ.5) D=DR*PHY+X(I)
129 12
                                                                                    FF 129
130
                                                                                    FF 130
131 13
          IF ((CL-D).LE.O.) GO TO 15
                                                                                    FF
                                                                                       131
132 14
                                                                                    FF
                                                                                       132
133
           RRH=RRH1
                                                                                    FF 133
          GO TO 16
134
                                                                                    FF 134
135 15
           RRV=RRV2
                                                                                    FF 135
           RRH=RRH2
136
                                                                                    FF 136
137
           ARG=ARG+DARG
                                                                                    FF
                                                                                       137
           EXA=CMPLX(COS(ARG),SIN(ARG)) *CMPLX(RR,RI)
138 16
                                                                                    FF
                                                                                       138
139 C
                                                                                    FF
                                                                                       139
           CONTRIBUTION OF EACH IMAGE SEGMENT MODIFIED BY REFLECTION COEF.
140 C
                                                                                    FF 140
           FOR CLIFF AND GROUND SCREEN PROBLEMS
141 C
                                                                                    FF 141
142 C
                                                                                    FF 142
143
           TIX=EXA*CAB(I)
                                                                                    FF 143
144
           TIY=EXA*SAB(I)
                                                                                    FF
                                                                                       144
145
           TIZ=EXA*SALP(I)
                                                                                       145
           CDP=(TIX*PHX+TIY*PHY)*(RRH-RRV)
146
                                                                                    FF
                                                                                       146
147
           CIX=CIX+TIX*RRV+CDP*PHX
                                                                                    FF 147
148
           CIY=CIY+TIY*RRV+CDP*PHY
                                                                                    FF 148
149
           CIZ=CIZ-TIZ*RRV
                                                                                    FF 149
150 17
           CONTINUE
                                                                                    FF 150
151
           IF (K.EQ.1) GO TO 19
                                                                                    FF 151
           IF (IFAR.GE.2) GO TO 18
152
                                                                                       152
153 C
                                                                                    FF 153
154 C
           CALCULATION OF CONTRIBUTION OF STRUCTURE IMAGE FOR INFINITE GROUND FF 154
155 C
                                                                                    FF 155
           CDP=(CIX*PHX+CIY*PHY)*(RRH-RRV)
156
                                                                                    FF 156
157
           CIX=CCX+CIX*RRV+CDP*PHX
                                                                                    FF 157
158
           CIY=CCY+CIY*RRV+CDP*PHY
                                                                                    FF 158
159
           CIZ=CCZ-CIZ*RRV
                                                                                    FF
                                                                                       159
           GO TO 19
160
                                                                                    FF
                                                                                       160
           CIX=CIX+CCX
161 18
                                                                                    FF 161
162
           CIY=CIY+CCY
                                                                                    FF 162
163
           CIZ=CIZ+CCZ
                                                                                    FF 163
164 19
           CONTINUE
                                                                                    FF 164
165
           IF (M.GT.0) GO TO 21
                                                                                    FF 165
166
           ETH=(CIX*THX+CIY*THY+CIZ*THZ)*CONST
                                                                                    FF
                                                                                       166
167
           EPH=(CIX*PHX+CIY*PHY)*CONST
                                                                                    FF
                                                                                        167
           RETURN
168
                                                                                    FF
                                                                                       168
169 20
           CIX=(0.,0.)
                                                                                    FF 169
170
           CIY=(0.,0.)
                                                                                    FF 170
           CIZ=(0.,0.)
171
                                                                                    FF 171
172 21
           ROZ=ROZS
                                                                                    FF 172
173 C
                                                                                    FF 173
174 C
           ELECTRIC FIELD COMPONENTS
                                                                                    FF
                                                                                       174
175 C
                                                                                    FF 175
                                                                                    FF 176
176
           RFL=-1.
177
           DO 25 IP=1,KSYMP
                                                                                    FF 177
           RFL=-RFL
178
                                                                                    FF 178
179
           RRZ=ROZ*RFL
                                                                                    FF 179
180
           CALL FFLDS (ROX, ROY, RRZ, CUR(N+1), GX, GY, GZ)
                                                                                    FF
                                                                                       180
           IF (IP.EQ.2) GO TO 22
181
                                                                                    FF
                                                                                        181
           EX=GX
182
                                                                                    FF 182
           EY=GY
183
                                                                                    FF 183
184
           EZ=GZ
                                                                                    FF 184
           GO TO 25
185
                                                                                    FF 185
186 22
           IF (IPERF.NE.1) GO TO 23
                                                                                    FF 186
187
           GX=-GX
                                                                                    FF 187
           GY=-GY
188
                                                                                    FF
                                                                                       188
           GZ = -GZ
189
                                                                                    FF 189
           GO TO 24
                                                                                    FF 190
190
191 23
           RRV=CSQRT(1.-ZRATI*ZRATI*THZ*THZ)
                                                                                    FF 191
192
           RRH=ZRATI • ROZ
                                                                                    FF 192
```

A CONTRACTOR OF THE PROPERTY O

193	RRH=(RRH-RRV)/(RRH+RRV)	FF 193
194	RRV=ZRATI*RRV	FF 194
195	RRV=-(ROZ-RRV)/(ROZ+RRV)	FF 195
196	ETH=(GX*PHX+GY*PHY)*(RRH-RRV)	FF 196
197	GX=GX*RRV+ETH*PHX	FF 197
198	GY=GY*RRV+ETH*PHY	FF 198
199	GZ=GZ*RRV	FF 199
200 24	EX=EX+GX	FF 200
201	EY=EY+GY	FF 201
202	EZ=EZ-GZ	FF 202
203 25	CONTINUE	FF 203
204	EX=EX+CIX*CONST	FF 204
205	EY=EY+CIY*CONST	FF 205
206	EZ=EZ+CIZ*CONST	FF 206
207	ETH=EX*THX+EY*THY+EZ*THZ	FF 207
208	EPH=EX*PHX+EY*PHY	FF 208
209	RETURN	FF 209
210	END	FF 210-

FFLDS

PURPOSE

To calculate the x, y, z components of the far electric field due to surface currents. The term $\exp(-jkr_0)/(r_0/\lambda)$ is omitted.

METHOD

The field is computed using the surface portion of equation (126) in Part I. With lengths normalized to the wavelength, the equation is

$$\overline{E}(\overline{r}_0) = \frac{j\eta}{2} \frac{\exp(-jkr_0)}{r_0/\lambda} (\hat{k}\hat{k} - \overline{\overline{I}}) \cdot \int_{S} \overline{J}_{S}(\overline{r}) \exp(j\overline{k} \cdot \overline{r}) dA/\lambda^2,$$

where

$$\begin{array}{l}
\mathbf{r}_0 = |\overline{\mathbf{r}}_0| \\
\hat{\mathbf{k}} = \overline{\mathbf{r}}_0 / |\overline{\mathbf{r}}_0|
\end{array}$$

$$\bar{k} = k\hat{k}$$

The dot product with the dyad $\hat{k}\hat{k}$ - \bar{l} results in the component of the integral

$$\overline{F}(\overline{r}_0) = \int_{S} \overline{J}_{S}(\overline{r}) \exp(j\overline{k} \cdot \overline{r}) dA/\lambda^2$$

transverse to k. The integral is evaluated by summation over the patches with the current assumed constant over each patch.

SYMBOL DICTIONARY

ARG =
$$\overline{k} \cdot \overline{r}_i$$
, \overline{r}_i = center of patch I

$$cons = consx = jn/2$$

CT =
$$\exp(j\vec{k} \cdot \vec{r_i}) dA/\lambda^2$$
 at FL18
= $\hat{k} \cdot \vec{F}(\vec{r_0})$ at FL24

$$\begin{bmatrix} EX \\ EY \end{bmatrix}$$
 = x, y, z components of $\overline{F}(\overline{r_0})$ at FL22

$$= (r_0/\lambda) \exp(jkr_0) \overline{E}(\overline{r_0}) \text{ at FL27}$$

```
ROX ROY = x, y, z components of \hat{k}
ROZ = x, y, z components of \hat{k}
S(I) = (area of patch I)/\lambda^2
SCUR = array containing surface current components
TPI = 2\pi
XS YS = arrays containing center point coordinates of patches normalized to wavelength.
```

CODE LISTING

```
SUBROUTINE FFLDS (ROX, ROY, ROZ, SCUR, EX, EY, EZ)
                                                                                  FL
2 C
         CALCULATES THE XYZ COMPONENTS OF THE ELECTRIC FIELD DUE TO
                                                                                  FL
                                                                                       2
3 C
         SURFACE CURRENTS
                                                                                  FL
         COMPLEX CT, CONS, SCUR, EX, EY, EZ
                                                                                  FL
5
         COMMON /DATA/ LD.N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 FL
6
        1).BI(300).ALP(300).BET(300).ICON1(300).ICON2(300).ITAG(300).ICONX( FL
7
        2300), WLAM, IPSYM
                                                                                  FL
8
         DIMENSION XS(1), YS(1), ZS(1), S(1), SCUR(1), CONSX(2)
                                                                                  FL
                                                                                       8
9
         EQUIVALENCE (XS,X), (YS,Y), (ZS,Z), (S,BI), (CONS,CONSX)
                                                                                  FL
                                                                                       9
10
         DATA TPI/6.283185308/, CONSX/0.,188.365/
                                                                                  FL
                                                                                      10
11
         EX=(0.,0.)
                                                                                  FL
                                                                                      11
         EY=(0.,0.)
12
                                                                                  FL
                                                                                      12
13
         EZ=(0.,0.)
                                                                                  FL
                                                                                      13
14
         I=LD+1
                                                                                  FL
                                                                                      14
         DO 1 J=1,M
15
                                                                                  FL
                                                                                      15
16
                                                                                  FL
                                                                                      16
         ARG=TPI*(ROX*XS(I)+ROY*YS(I)+ROZ*ZS(I))
17
                                                                                      17
         CT=CMPLX(COS(ARG)*S(I),SIN(ARG)*S(I))
18
                                                                                  FL
                                                                                      18
19
         K=3+J
                                                                                  FL
                                                                                      19
20
         EX=EX+SCUR(K-2) *CT
                                                                                  FL
                                                                                      20
         EY=EY+SCUR(K-1)*CT
21
                                                                                  FL
                                                                                      21
22
         EZ=EZ+SCUR(K) *CT
                                                                                  FL
                                                                                      22
23 1
         CONTINUE
                                                                                  FL
                                                                                      23
         CT=ROX*EX+ROY*EY+ROZ*EZ
24
                                                                                  FL
                                                                                      24
25
         EX=CONS * (CT *ROX-EX)
                                                                                  FL
                                                                                      25
         EY=CONS*(CT*ROY-EY)
                                                                                  FL
26
                                                                                      26
27
         EZ=CONS*(CT*ROZ-EZ)
                                                                                  FL
                                                                                      27
         RETURN
28
                                                                                  FL
                                                                                      28
29
         END
                                                                                      29-
```


GF

PURPOSE

To supply values of the integrated function exp(jkr)/(kr) to the numerical integration routine INTX.

METHOD

The geometry parameters for integration over a segment are shown in the following diagram.

in which

$$r(z') = [\rho^2 + (z' - z)^2]^{1/2}$$
.

If the field point (ρ,z) is not on the source segment, the integrand value is

$$G(z') = \frac{\exp[jkr(z')]}{kr(z')}.$$

If the field point is on the source segment (ρ = 0, z = 0), the integrand value is

$$G(z') = \frac{\exp[jkr(z')] - 1}{kr(z')}.$$

In the latter case, if kr is less than 0.2, then (cos kr)/kr is evaluated by the first three terms of its Taylor's series to reduce numerical error.

SYMBOL DICTIONARY

CO = real part of G(z')

COS = external function (cosine)

IJ = flag to indicate when field point is on source segment (by IJ = 0)

RK = kr

RKB2 = $(k\rho)^2$ SI = imaginary part of G(z')SIN = external function (sine)

SQRT = external function (square root)

ZDK = kz' - kzZK = kz'ZPK = kz

CONSTANTS

-1.38888889E-3 4.16666667E-2 } = constants in series for (cos kr - 1)/kr 0.5

CODE LISTING

1	SUBROUTINE GF (ZK,CO,SI)	GF	1
2 C		GF	2
3 C	GF COMPUTES THE INTEGRAND EXP(JKR)/(KR) FOR NUMERICAL INTEGRATION.	GF	3
4 C		GF	4
5	COMMON /TMI/ ZPK,RKB2,IJ	GF	5
6	ZDK=ZK-ZPK	GF	6
7	RK=SQRT(RKB2+ZDK+ZDK)	GF	7
8	SI=SIN(RK)/RK	GF	8
9	IF (IJ) 1,2,1	GF	9
10 1	CO=COS(RK)/RK	GF	10
11	RETURN	GF	11
12 2	IF (RK.LT2) GO TO 3	GF	12
13	CO=(COS(RK)-1.)/RK	GF	13
14	RETURN	GF	14
15 3	RKS=RK*RK	GF	15
16	CO=((-1.38888889E-3*RKS+4.16666667E-2)*RKS5)*RK	GF	16
17	RETURN	GF	17
18	END	GF	18-

PURPOSE

To read the NGF file and store parameters in the proper arrays.

METHOD

G122	Miscellaneous parameters are read.
G130 - G148	Segment coordinates were converted to the form involving
	the segment center, segment length, and orientation (see
	Section III, COMMON/DATA/) with dimensions of
	wavelength. They must be converted back to the
	coordinates of the segment ends so that subroutine
	CONNECT can locate connections. Dimensions are converted
	to meters.
G152 - G162	Patch coordinates are converted from units of wavelength
	to meters since they will be scaled back to wavelengths
	along with the new segments and patches.
GI63	Matrix blocking parameters are read.
G164	Interpolation tables for the Sommerfeld integrals are
	read if the Sommerfeld/Norton ground treatment was used.
G174	Matrix A _F is read for in-core storage (ICASE = 1 or 2).
G178 - G181	A _F is read for ICASE = 4.
G183 - G188	A _F is read for ICASE = 3 or 5.
G192 - G1113	A heading summarizing the NGF file is printed.

SYMBOL DICTIONARY

a nair segment length (meters)
= file number for NGF file
= number of elements in matrix
= 1 to print coordinates of ends of segments
= two times number of blocks in matrix A _F (since A _F is
stored twice, in ascending and descending order)
- order of the NGF matrix
= number of symmetric sections
= number of unknowns for a symmetric section
= coordinates of the center of a segment or patch

1		SUBROUTINE GFIL (IPRT)	GI	1
2			GI	2
3		GFIL READS THE N.G.F. FILE	GI	3
4	C		GI	4
5		COMPLEX CM.SSX,ZRATI,ZRATI2,T1,ZARRAY,AR1,AR2,AR3,EPSCF,FRATI	GI	. 5
6		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	GI	6
7		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(GI	7
8		2300), WLAM, IPSYM	GI	8
9		COMMON /CMB/ CM(4000)	GI	9
10		COMMON /ANGL/ SALP(300)	GI	10
11		COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR,	GI	11
12		1IPERF, T1, T2	GI	12
13		COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY		13
14		1A(3), XSA(3), YSA(3), NXA(3), NYA(3)	GI	14
15		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I		15
16		1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL	GI	16
17		COMMON /SMAT/ SSX(16,16)	GI	17
18		COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF	GI	18
19		COMMON /SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ	GI	19
20		DATA IGFL/20/	GI	20
21		REWIND IGFL	GI	21
22		READ (IGFL) N1, NP, M1, MP, WLAM, FMHZ, IPSYM, KSYMP, IPERF, NRADL, EPSR, SIG		22
23		1, SCRWLT, SCRWRT, NLODF, KCOM	GI	
24				23
		N=N1	GI	24
25		M=M1	GI	25
26		N2=N1+1	GI	26
27		M2=M1+1 T5 (W4 50 0) 00 T0 0	GI	27
28	DE PROPERTY.	IF (N1.EQ.0) GO TO 2	GI	28
29	C	READ SEG. DATA AND CONVERT BACK TO END COORD. IN UNITS OF METERS	GI	29
30		READ (IGFL) $(X(I), I=1, N1), (Y(I), I=1, N1), (Z(I), I=1, N1)$	GI	30
31		READ (IGFL) (SI(I), I=1, N1), (BI(I), I=1, N1), (ALP(I), I=1, N1)	GI	31
32		READ (IGFL) (BET(I), I=1, N1), (SALP(I), I=1, N1)	GI	32
33		READ (IGFL) (ICON1(I), I=1,N1), (ICON2(I), I=1,N1)	GI	33
34		READ (IGFL) (ITAG(I), I=1,N1)	GI	34
35		IF (NLODF.NE.O) READ (IGFL) (ZARRAY(I), I=1,N1)	GI	35
36		DO 1 I=1,N1	GI	36
37		XI=X(I)*WLAM	GI	37
38		YI=Y(I)*WLAM	GI	38
39		ZI=Z(I)*WLAM	GI	39
40		DX=SI(I) .5 WLAM	GI	40
41		X(I)=XI-ALP(I)*DX	GI	41
42		Y(I)=YI-BET(I)*DX	GI	42
43		Z(I)=ZI-SALP(I)*DX	GI	43
44		SI(I)=XI+ALP(I)*DX	GI	44
45		ALP(I)=YI+BET(I)*DX	GI	45
46		BET(I)=ZI+SALP(I)*DX	GI	46
47		BI(I)=BI(I)*WLAM	GI	47
48	1	CONTINUE	GI	48
49	2	IF (M1.EQ.0) GO TO 4	GI	45
50		J=LD-M1+1	GI	50
51	C	READ PATCH DATA AND CONVERT TO METERS	GI	5
52		READ (IGFL) $(X(I),I=J,LD),(Y(I),I=J,LD),(Z(I),I=J,LD)$	GI	52
53		READ (IGFL) (SI(I), I=J,LD), (BI(I), I=J,LD), (ALP(I), I=J,LD)	GI	53
54		READ (IGFL) (BET(I), I=J,LD), (SALP(I), I=J,LD)	GI	54
55		READ (IGFL) (ICON1(I), I=J,LD), (ICON2(I), I=J,LD)	GI	55
56		READ (IGFL) (ITAG(I), I=J,LD)	GI	56
57		DX=WLAM*WLAM	GI	5
58		DO 3 I=J,LD	GI	58
59		X(I)=X(I)*WLAM	GI	5
60		Y(I)=Y(I)*WLAM	GI	6
61		Z(I)=Z(I)*WLAM	GI	6
62		BI(I)=BI(I)*DX	GI	6
63		READ (IGFL) ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT	GI	6
64		IF (IPERF.EQ.2) READ (IGFL) AR1, AR2, AR3, EPSCF, DXA, DYA, XSA, YSA, NXA,		6


```
65
        1NYA
                                                                              GI
                                                                                  65
         NEQ=N1+2*M1
                                                                              GI 66
67
         NPEQ=NP+2*MP
                                                                              GI 67
68
         NOP=NEQ/NPEQ
69
         IF (NOP.GT.1) READ (IGFL) ((SSX(I,J),I=1,NOP),J=1,NOP)
                                                                              GI 69
70
         READ (IGFL) (IP(I), I=1, NEQ), COM
                                                                              GI 70
71 C
         READ MATRIX A AND WRITE TAPE13 FOR OUT OF CORE
                                                                                  71
         IF (ICASE.GT.2) GO TO 5
72
                                                                              GI
                                                                                  72
73
         IOUT=NEQ*NPEQ
                                                                              GI
                                                                                  73
74
          READ (IGFL) (CM(I), I=1, IOUT)
                                                                              GI 74
75
         GO TO 10
76 5
         REWIND 13
                                                                              GI 76
77
         IF (ICASE.NE.4) GO TO 7
                                                                              GI
                                                                                  77
78
          IOUT=NPEQ*NPEQ
                                                                              GI
                                                                                  78
79
         DO 6 K=1, NOP
                                                                              GI
                                                                                  79
          READ (IGFL) (CM(J), J=1, IOUT)
80
                                                                              GI 80
         WRITE (13) (CM(J), J=1, IOUT)
                                                                              GI 81
82
          GO TO 9
                                                                              GI 82
         IOUT=NPSYM*NPEQ*2
83 7
                                                                              GI 83
84
          NBL2=2*NBLSYM
                                                                              GI 84
85
          DO 8 IOP=1,NOP
                                                                              GI
                                                                                  85
86
          DO 8 I=1 ,NBL2
                                                                              GI
                                                                                  86
87
          CALL BLCKIN (CM, IGFL, 1, IOUT, 1, 206)
                                                                              GI 87
          CALL BLCKOT (CM, 13, 1, IOUT, 1, 205)
                                                                              GI 88
89 9
          REWIND 13
                                                                              GI 89
90 10
         REWIND IGFL
                                                                              GI 90
          PRINT N.G.F. HEADING
                                                                              GI 91
91 C
92
          PRINT 16
                                                                              GI
                                                                                  92
93
          PRINT 14
                                                                              GI 93
94
         PRINT 14
                                                                              GI 94
          PRINT 17
                                                                              GI 95
96
         PRINT 18, N1,M1
                                                                              GI 96
97
         IF (NOP.GT.1) PRINT 19, NOP
                                                                              GI 97
98
          PRINT 20, IMAT, ICASE
                                                                              GI 98
99
          IF (ICASE.LT.3) GO TO 11
                                                                              GI 99
100
          NBL2=NEQ*NPEQ
                                                                              GI 100
          PRINT 21, NBL2
101
                                                                              GI 101
102 11
          PRINT 22, FMHZ
                                                                              GI 102
103
          IF (KSYMP.EQ.2.AND.IPERF.EQ.1) PRINT 23
                                                                              GI 103
104
          IF (KSYMP.EQ.2.AND.IPERF.EQ.0) PRINT 27
                                                                              GI 104
105
          IF (KSYMP.EQ.2.AND.IPERF.EQ.2) PRINT 28
                                                                              GI 105
106
          IF (KSYMP.EQ.2.AND.IPERF.NE.1) PRINT 24, EPSR, SIG
                                                                              GI 106
107
          PRINT 17
                                                                              GI 107
108
          DO 12 J=1, KCOM
                                                                              GI 108
          PRINT 15, (COM(I,J), I=1,13)
109 12
                                                                              GI 109
110
          PRINT 17
                                                                              GI 110
          PRINT 14
111
                                                                              GI 111
          PRINT 14
112
                                                                              GI 112
113
          PRINT 16
                                                                              GI 113
114
          IF (IPRT.EQ.0) RETURN
                                                                              GI 114
115
          PRINT 25
                                                                              GI 115
          DO 13 I=1,N1
                                                                              GI 116
117 13
          PRINT 26, I,X(I),Y(I),Z(I),SI(I),ALP(I),BET(I)
                                                                              GI 117
118
          RETURN
                                                                              GI 118
119 C
                                                                              GI 119
120 14
          **************,3 GI 120
         121
                                                                              GI 121
          FORMAT (5X,3H** ,13A6,3H **)
122 15
                                                                              GI 122
          FORMAT (////)
123 16
                                                                              GI 123
          FORMAT (5x,2H**,80x,2H**)
124 17
          FORMAT (5x,29+ ** NUMERICAL GREEN'S FUNCTION,53x,2+ **,/,5x,17+ ** NO GI 125
125 18
          FORMAT (5X,27+00 NO. SYMMETRIC SECTIONS =,14,51X,2400)
FORMAT (5X,34+00 N.G.F. MATRY - CORP. CTC. 14,51X,2400)
126
         1. SEGMENTS =, I4, 10X, 13HNO. PATCHES =, I4, 34X, 2H**)
                                                                              GI 126
127 19
          FORMAT (5X,34H** N.G.F. MATRIX - CORE STORAGE =,17,23H COMPLEX NU GI 128
128 20
```

GFIL

129		1MBERS, CASE, I2, 16X, 2H**)	GI	129
130	21	FORMAT (5X,2H**,19X,13HMATRIX SIZE =, I7,16H COMPLEX NUMBERS,25X,2H		
131		1••)		131
132	22	FORMAT (5X,14H** FREQUENCY =,E12.5,5H MHZ.,51X,2H**)	GI	132
133	23		GI	133
134	24	FORMAT (5X,44H** GROUND PARAMETERS - DIELECTRIC CONSTANT =, E12.5,2	GI	134
135		16X,2H**,/,5X,2H**,21X,14HCONDUCTIVITY =,E12.5,8H MHOS/M.,25X,2H**)	GI	135
136	25	FORMAT (39X,31HNUMERICAL GREEN'S FUNCTION DATA,/,41X,27HCOORDINATE	GI	136
137		1S OF SEGMENT ENDS, /, 51X,8H(METERS), /, 5X,4HSEG., 11X,19H END ON	GI	137
138		2E,26X,19H END TWO,/,6X,3HNO.,6X,1HX,14X,1HY,14X,1	GI	138
139		3HZ,14X,1HX,14X,1HY,14X,1HZ)	GI	139
140	26	FORMAT (1X,17,6E15.6)	GI	140
141	27	FORMAT (5X,55H** FINITE GROUND. REFLECTION COEFFICIENT APPROXIMAT	GI	141
142		1ION,27X,2H**)	GI	142
143	28	FORMAT (5X,38H** FINITE GROUND. SOMMERFELD SOLUTION,44X,2H**)	GI	143
144		END	GI	144-

GFLD

PURPOSE

To compute the electric field at intermediate distances from a radiating structure over ground, including the surface-wave field component.

METHOD

Approximate expressions for the field of a horizontal or vertical current element over a ground plane were derived by K. A. Norton (ref. 2). These expressions are used to evaluate the field of each segment in a structure and the components summed for the total field of the structure. To evaluate Norton's expressions for segment i, a local coordinate system (x', y', z') is defined (fig. 6a) with origin on the ground plane and the vertical z axis passing through segment i. In the (x, y, z) coordinate system (fig. 6b) the location and orientation of segment i are

$$\vec{r}_{i} = x_{i}\hat{x} + y_{i}\hat{y} + z_{i}\hat{z}$$

$$\hat{i} = \cos \alpha \cos \beta \hat{x} + \cos \alpha \sin \beta \hat{y} + \sin \alpha \hat{z}$$

and the field observation point is at (ρ, ϕ, z) . The origin of the primed coordinate system is at $(x_i, y_i, 0)$ in the umprimed coordinates, and the x' axis is along the projection of the segment on the ground plane.

Norton's expressions give the electric field in ρ ', ϕ ', and z' components for infinitesimal current elements either vertical or horizontal, and directed along the x' axis. To evaluate the field of a segment, the segment current is decomposed into horizontal and vertical components, and the fields of the infinitesimal current elements are integrated over the segment. Each field component for the infinitesimal current element has the form

$$E_{\Delta}(\rho', \phi', z') = F_{1}(\rho', \phi', z') \exp(-jkR_{1}) + F_{2}(\rho', \phi', z') \exp(-jkR_{2})$$

for

$$R_1 = |\overline{R}_1|$$

$$R_2 = |\overline{R}_2|$$

Figure 6. Coordinate Systems Used to Evaluate Norton's Expressions for the Ground Wave Fields in the NEC Program.

where F_1 and F_2 are algebraic functions of R_1 and R_2 and can be considered constant for integration over the segment as long as R_1 and R_2 are much greater than the segment length. To integrate the exponential factors over the segment, R_1 and R_2 are approximated as

$$R_1 \approx R - \hat{R}_1 \cdot (\bar{r}_i + \hat{i}s)$$

$$R_2 \approx R - \hat{R}_2 \cdot (\bar{r}_i' + \hat{i}'s)$$

where $R = |\overline{R}|$, $\hat{R}_1 = \overline{R}_1/|\overline{R}_1|$, $\hat{R}_2 = \overline{R}_2/|\overline{R}_2|$; \overline{r}_1' , \hat{i}' = position and orientation of image of segment i, and s = variable of length along the segment (s = 0 at segment center). The current on the segment is

$$I_{i}(s) = A_{i} + B_{i} \sin ks + C_{i} \cos ks$$
.

With ${\bf F}_1$ and ${\bf F}_2$ considered constant, each vector component of the field produced by segment i involves an integral of the form

$$E = F_1' \int_{-\Delta/2\lambda}^{\Delta/2\lambda} \frac{I_1(s)}{\lambda} \exp(-jks\omega) d\frac{s}{\lambda} + F_2' \int_{-\Delta/2\lambda}^{\Delta/2\lambda} \frac{I_1(s)}{\lambda} \exp(-jks\omega') d(s/\lambda) ,$$

where

$$F_{1}' = \lambda^{2}F_{1} \exp[-jk(R - \hat{R}_{1} \cdot \overline{r}_{i})]$$

$$F_{2}' = \lambda^{2}F_{2} \exp[-jk(R - \hat{R}_{2} \cdot \overline{r}_{i}')]$$

$$\omega = -\hat{R}_{1} \cdot \hat{i}$$

$$\omega' = -\hat{R}_{2} \cdot \hat{i}'$$

$$\Delta = \text{segment length}$$

The integrals can be evaluated as

$$G_1 = \int_{-\Delta/2\lambda}^{\Delta/2\lambda} \frac{I_i(s)}{\lambda} \exp(-j2\pi \omega s/\lambda) d \frac{s}{\lambda}$$

GFLD

$$2\pi G_1 = \frac{A_i}{\lambda} \frac{2 \sin \pi \omega d}{\omega}$$

$$- j \frac{B_i}{\lambda} \left\{ \frac{\sin \left[\pi (1 - \omega)d\right]}{(1 - \omega)} - \frac{\sin \left[\pi (1 + \omega)d\right]}{(1 + \omega)} \right\}$$

$$+ \frac{C_i}{\lambda} \left\{ \frac{\sin \left[\pi (1 - \omega)d\right]}{(1 - \omega)} + \frac{\sin \left[\pi (1 + \omega)d\right]}{(1 + \omega)} \right\}$$

where $d = \Delta/\lambda$. The integral for G_2 (the coefficient of F_2^{\prime}) is the same with F_1^{\prime} and \hat{i} reflected in the ground plane. The terms G_1 and G_2 and other necessary quantities are passed to subroutine GWAVE through COMMON/GWAV/. GWAVE returns the field components

 $E_{\rho}^{V} = \rho'$ component of field due to vertical current component

 $E_z^V = z$ component of field due to vertical current component

 $E_0^h = \rho'$ component of field due to horizontal current component

 $E_{\varphi}^{h} = \varphi'$ component of field due to horizontal current component

 $E_z^h = z$ component of field due to horizontal current component

The common factor $\exp(-jkR)$ occurring in F_1' and F_2' is omitted from the field components and included in the total field after summation.

These field components are then combined to form the total field in x, y, z components and summed for each segment. The field is finally converted to r, θ , φ components in a spherical coordinate system coinciding with the x, y, z coordinate system.

The approximations involved in the calculation of the surface wave are valid to second order in \mathbf{u}^2 , where

 $u = k/k_2$

k = wave number in free space

k₂ = wave number in ground medium

The approximations are valid for practical ground parameters. To ensure that the expressions are not used in an invalid range, however, the surface wave is not computed if |u| is greater than 0.5. Rather, subroutine FFLD is called, and the resulting space wave is multiplied by the range factor $\exp(-jkR)/(R/\lambda)$. The radial field component will be zero in this case. FFLD is also called if R/λ is greater than 10^5 , or if there is no ground present.

SYMBOL DICTIONARY

```
= coefficient of A_i/\lambda in 2\pi G_1 and 2\pi G_2
        = external routine (absolute value)
        = argument of exp() for phase factor
ATAN
        = external routine (arctangent)
        = coefficient of B_4/\lambda in 2\pi G_1 and 2\pi G_2
B
        = sin (BOT)/BOT
        = \pi(1 - \omega)d
BOT
        = coefficient of C_1/\lambda in 2\pi G_1 and 2\pi G_2
CAB(I) = \cos \alpha \cos \beta for segment I
CABS
        = external routine (magnitude of complex number)
CALP
CBET
        = cos B
CIX
        = x, y, z components in summation for field
CIY
CIZ
CMPLX
        = external routine (forms complex number)
COS
        = external routine (cosine)
        = cos d'
CPH
DX
        = x, y, z components of î
DY
DZ
EL
        = E_{\phi}^{h} or E_{\phi}^{h} cos \alpha (\phi' component of total field of segment i)
EPH
        = $\phi$ component of field of structure
EPI
        = R component of field of structure
ERD
        = E and ρ' component of total field of segment i
ERH
ERV
        = θ component of field of structure
        = x component of field for segment i
EX
        = phase factor at GD30 and GD130:
EXA
          G_1 \exp(jk\hat{R}_1 \cdot \overline{r}_1) or G_2 \exp(jk\hat{R}_2 \cdot \overline{r}_1) at GD109
        = y component of field for segment i
        = Eh and z component of total field of segment i
EZH
```

```
FFLD
          = external routine (computes space wave)
GWAVE = external routine (computes E_0^V, E_0^h,...)
          = DO loop index (i)
K
          = DO loop index (loop over segment and image)
         = 1 if ground is present; 0 otherwise
OMEGA
PHI
         = ¢
PHX
         = x component of o
PHY
         = y component of ô
R
         = R/\lambda
RFL
         = sign factor to reflect segment coordinates in ground
RHO
         = \rho/\lambda
RHP
         = p'/\
         = (\rho'/\lambda)^2
RHS
         = x component of ô'
RHX
         y component of ρ'
RHY
         = imaginary part of 2πG<sub>1</sub> or 2πG<sub>2</sub>
RI
         = x component of \overline{R}_1/\lambda or \overline{R}_2/\lambda
RIX
RIY
         = y component of \overline{R}_1/\lambda or \overline{R}_2/\lambda
         = z component of \overline{R}_1/\lambda or \overline{R}_2/\lambda
RIZ
RNX
         = x, y, z components of \hat{\mathbf{R}}_1 or \hat{\mathbf{R}}_2 or \hat{\mathbf{R}}
RNY
RNZ
         = real part of 2\pi G_1 or 2\pi G_2
RR
         = x component of ρ/λ
RX
         = R_1/\lambda or R_2/\lambda (for s = 0)
RY

 y component of ρ/λ

RZ
         = z/\lambda
SAB(I) = \cos \alpha \sin \beta
SBET
         = sin B
SILL
         = \pi d\omega
SIN
         = external routine (sine)
SPH
         = sin o'
```

= external routine (square root) SQRT

= θ in spherical coordinate system THET

= x component of $\hat{\theta}$ THX

- y component of θ THY

THZ = z component of $\hat{\theta}$

= sin (TOP)/TOP TOO

TOP $=\pi(1+\omega)d$

TP

U

UX

U2

XX1

 $= G_1 \exp(jk\hat{R}_1 \cdot \overline{r}_i)$ = $G_2 \exp(jk\hat{R}_2 \cdot \overline{r}_i')$ XX2

CONSTANTS

1.E-20 = tolerance in test for zero

1.E-7 = tolerance in test for zero

= tolerance in test for zero 1.E-6

0.5 = upper limit for |u|

 $3.141592654 = \pi$

 $6.283185308 = 2\pi$

1.E+5 = upper limit for RA

```
SUBROUTINE GFLD (RHO, PHI, RZ, ETH, EPI, ERD, UX, KSYMP)
                                                                                    GD
2 C
                                                                                    GD
                                                                                         2
         GFLD COMPUTES THE RADIATED FIELD INCLUDING GROUND WAVE.
3 C
                                                                                    GD
                                                                                         3
4 C
                                                                                    GD
                                                                                         4
5
         COMPLEX CUR, EPI, CIX, CIY, CIZ, EXA, XX1, XX2, U, U2, ERV, EZV, ERH, EPH
                                                                                    GD
                                                                                         5
6
         COMPLEX EZH, EX, EY, ETH, UX, ERD
                                                                                         6
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 GD
7
                                                                                         7
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( GD
8
                                                                                         8
9
         2300), WLAM, IPSYM
                                                                                         9
         COMMON /ANGL/ SALP(300)
10
                                                                                        10
         COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300 GD
11
                                                                                        11
12
         1), CUR(900)
                                                                                    GD
                                                                                        12
         COMMON /GWAV/ U,U2,XX1,XX2,R1,R2,ZMH,ZPH
13
                                                                                    GD
                                                                                        13
         DIMENSION CAB(1), SAB(1)
14
                                                                                    GD
                                                                                        14
          EQUIVALENCE (CAB(1),ALP(1)), (SAB(1),BET(1))
15
                                                                                    GD
                                                                                        15
16
          DATA PI, TP/3.141592654,6.283185308/
                                                                                    GD
                                                                                        16
17
          R=SQRT(RHO*RHO+RZ*RZ)
                                                                                    GD
                                                                                        17
         IF (KSYMP.EQ.1) GO TO 1
18
                                                                                    GD
                                                                                        18
             (CABS(UX).GT..5) GO TO 1
19
                                                                                    GD
                                                                                        19
         IF (R.GT.1.E5) GO TO 1
20
                                                                                    GD
                                                                                        20
21
         GO TO 4
                                                                                    GD
                                                                                        21
22 C
                                                                                    GD
                                                                                        22
23 C
          COMPUTATION OF SPACE WAVE ONLY
                                                                                    GD
                                                                                        23
24 C
                                                                                    GD
                                                                                        24
25 1
         IF (RZ.LT.1.E-20) GO TO 2
                                                                                    GD
                                                                                        25
26
          THET=ATAN(RHO/RZ)
                                                                                    GD
                                                                                        26
27
         GO TO. 3
                                                                                    GD
                                                                                        27
28 2
          THET=PI*.5
                                                                                    GD
                                                                                        28
29 3
         CALL FFLD (THET, PHI, ETH, EPI)
                                                                                    GD
                                                                                        29
30
          ARG=-TP*R
                                                                                    GD
                                                                                        30
31
          EXA=CMPLX(COS(ARG),SIN(ARG))/R
                                                                                    GD
                                                                                        31
          ETH=ETH*EXA
32
                                                                                    GD
                                                                                        32
33
          EPI=EPI*EXA
                                                                                    GD
                                                                                        33
34
          ERD=(0.,0.)
                                                                                    GD
                                                                                        34
35
         RETURN
                                                                                    GD
                                                                                        35
36 C
                                                                                    GD
                                                                                        36
37 C
          COMPUTATION OF SPACE AND GROUND WAVES.
                                                                                    GD
                                                                                        37
38 C
                                                                                    GD
                                                                                        38
39 4
          U=UX
                                                                                    GD
                                                                                        39
40
          U2=U*U
                                                                                    GD
                                                                                        40
41
          PHX=-SIN(PHI)
                                                                                    GD
                                                                                        41
          PHY=COS(PHI)
42
                                                                                    GD
                                                                                        42
          RX=RHO+PHY
43
                                                                                    GD
                                                                                        43
44
          RY=-RHO*PHX
                                                                                    GD
                                                                                        44
45
          CIX=(0.,0.)
                                                                                    GD
                                                                                        45
          CIY=(0.,0.)
46
                                                                                    GD
                                                                                        46
47
          CIZ=(0.,0.)
                                                                                    GD
                                                                                        47
48 C
                                                                                    GD
                                                                                        48
49 C
          SUMMATION OF FIELD FROM INDIVIDUAL SEGMENTS
                                                                                    GD
                                                                                        49
50 C
                                                                                    GD
                                                                                        50
51
          DO 17 I=1.N
                                                                                    GD
                                                                                        51
52
          DX=CAB(I)
                                                                                    GD
                                                                                        52
53
          DY=SAB(I)
                                                                                    GD
                                                                                        53
54
          DZ=SALP(I)
                                                                                    GD
                                                                                        54
55
          RIX=RX-X(I)
                                                                                    GD
                                                                                        55
56
          RIY=RY-Y(I)
                                                                                    GD
                                                                                        56
57
          RHS=RIX*RIX+RIY*RIY
                                                                                    GD
                                                                                        57
58
          RHP=SQRT(RHS)
                                                                                    GD
                                                                                        58
59
          IF (RHP.LT.1.E-6) GO TO 5
                                                                                    GD
                                                                                        59
60
          RHX=RIX/RHP
                                                                                    GD
                                                                                        60
          RHY=RIY/RHP
61
                                                                                    GD
                                                                                        61
62
          GO TO 6
                                                                                    GD
                                                                                        62
          RHX=1.
63 5
                                                                                    GD
                                                                                        63
          RHY=0.
64
                                                                                    GD
                                                                                        64
```

CONTRACTOR ACCORDING TO THE PROPERTY OF THE PR

```
65 6
          CALP=1 .-DZ*DZ
                                                                                    GD
66
          IF (CALP.LT.1.E-6) GO TO 7
                                                                                    GD
                                                                                         66
67
          CALP=SQRT(CALP)
                                                                                    GD
                                                                                         67
68
          CBET=DX/CALP
                                                                                    GD
                                                                                         68
          SBET=DY/CALP
69
                                                                                    GD
                                                                                         69
70
          CPH=RHX * CBET+RHY * SBET
                                                                                    GD
                                                                                        70
71
          SPH=RHY*CBET-RHX*SBET
                                                                                    GD
                                                                                        71
          GO TO 8
72
                                                                                    GD
                                                                                         72
73 7
          CPH=RHX
                                                                                    GD
                                                                                         73
74
          SPH=RHY
                                                                                    GD
                                                                                        74
75 8
          EL=PI*SI(I)
                                                                                    GD
                                                                                        75
76
          RFL=-1.
                                                                                    GD
                                                                                         76
77 C
                                                                                        77
78 C
          INTEGRATION OF (CURRENT) * (PHASE FACTOR) OVER SEGMENT AND IMAGE FOR GD
                                                                                        78
79 C
          CONSTANT, SINE, AND COSINE CURRENT DISTRIBUTIONS
80 C
                                                                                    GD
                                                                                         80
81
          DO 16 K=1.2
                                                                                    GD
                                                                                        81
82
          RFL=-RFL
                                                                                    GD
                                                                                        82
83
          RIZ=RZ-Z(I)*RFL
                                                                                    GD
                                                                                        83
          RXYZ=SQRT(RIX*RIX+RIY*RIY+RIZ*RIZ)
84
                                                                                    GD
                                                                                         84
85
          RNX=RIX/RXYZ
                                                                                    GD
                                                                                        85
86
          RNY=RIY/RXYZ
                                                                                    GD
                                                                                         86
          RNZ=RIZ/RXYZ
87
                                                                                    GD
                                                                                         87
88
          OMEGA=-(RNX*DX+RNY*DY+RNZ*DZ*RFL)
                                                                                    GD
                                                                                         88
89
          SILL=OMEGA*EL
                                                                                    GD
                                                                                        89
90
          TOP=EL+SILL
                                                                                    GD
                                                                                         90
          BOT=EL-SILL
91
                                                                                    GD
                                                                                        91
92
          IF (ABS(OMEGA).LT.1.E-7) GO TO 9
                                                                                    GD
                                                                                        92
93
          A=2. *SIN(SILL)/OMEGA
                                                                                    GD
                                                                                         93
          GO TO 10
94
                                                                                    GD
                                                                                         94
95 9
          A=(2.-OMEGA*OMEGA*EL*EL/3.)*EL
                                                                                    GD
                                                                                         95
          IF (ABS(TOP).LT.1.E-7) GO TO 11
96 10
                                                                                    GD
                                                                                         96
97
          TOO=SIN(TOP)/TOP
                                                                                    GD
                                                                                         97
98
          GO TO 12
                                                                                    GD
                                                                                         98
99 11
          TOO=1 .-TOP*TOP/6.
                                                                                    GD
                                                                                        99
100
          IF (ABS(BOT).LT.1.E-7) GO TO 13
                                                                                    GD 100
          BOO=SIN(BOT)/BOT
101
                                                                                    GD
                                                                                       101
102
          GO TO 14
                                                                                    GD
                                                                                       102
          BOO=1 .-BOT*BOT/6.
103 13
                                                                                    GD 103
104 14
          B=EL*(BOO-TOO)
                                                                                    GD 104
105
          C=EL*(BOO+TOO)
                                                                                    GD 105
106
           RR=A*AIR(I)+B*BII(I)+C*CIR(I)
                                                                                    GD 106
107
           RI=A*AII(I)-B*BIR(I)+C*CII(I)
                                                                                    GD 107
108
           ARG=TP*(X(I)*RNX+Y(I)*RNY+Z(I)*RNZ*RFL)
                                                                                    GD 108
           EXA=CMPLX(COS(ARG),SIN(ARG))*CMPLX(RR,RI)/TP
109
                                                                                    GD 109
110
          IF (K.EQ.2) GO TO 15
                                                                                    GD 110
          XX1=EXA
111
                                                                                    GD 111
           R1=RXYZ
                                                                                    GD 112
112
           ZMH=RIZ
113
                                                                                    GD 113
           GO TO 16
114
                                                                                    GD 114
115 15
           XX2=EXA
                                                                                    GD 115
           R2=RXYZ
116
                                                                                    GD 116
117
           ZPH=RIZ
                                                                                    GD 117
118 16
           CONTINUE
                                                                                    GD 118
119 C
                                                                                    GD 119
120 C
           CALL SUBROUTINE TO COMPUTE THE FIELD OF SEGMENT INCLUDING GROUND
                                                                                    GD 120
121 C
                                                                                    GD 121
122 C
                                                                                    GD 122
123
           CALL GWAVE (ERV, EZV, ERH, EZH, EPH)
                                                                                    GD 123
           ERH=ERH+CPH+CALP+ERV+DZ
124
                                                                                    GD 124
125
           EPH=EPH+SPH+CALP
                                                                                    GD 125
126
           EZH=EZH*CPH*CALP+EZV*DZ
                                                                                    GD 126
           EX=ERH*RHX-EPH*RHY
127
                                                                                    GD 127
128
           EY=ERH*RHY+EPH*RHX
                                                                                    GD 128
```

GFLD

129	CIX=CIX+EX	GD	129
130	CIY=CIY+EY		130
131 17	CIZ=CIZ+EZH		131
132	ARG=-TP*R		132
133	EXA=CMPLX(COS(ARG),SIN(ARG))		133
134	CIX=CIX*EXA		134
135	CIY=CIY*EXA		135
136	CIZ=CIZ*EXA		
137	RNX=RX/R	GD	
138	RNY=RY/R	GD	138
139	RNZ=RZ/R		139
140	THX=RNZ*PHY	20.00	140
141	THY=-RNZ*PHX		141
142	THZ=-RHO/R		142
143	ETH=CIX+THX+CIY+THY+CIZ+THZ	70	143
144	EPI=CIX*PHX+CIY*PHY	GD	144
145	ERD=CIX*RNX+CIY*RNY+CIZ*RNZ	GD	
146	RETURN	GD	146
147	END	GD	147-

GFOUT

PURPOSE

To write the NGF file.

METHOD

The contents of the COMMON blocks in GFOUT are written to file 20. If ICASE is 3 or 5 the blocks of the LU decomposition of matrix A are on file 13 in ascending order and on file 14 in descending order. Both files are written to file 20.

SYMBOL DICTIONARY

IGFL = NGF file number

IOUT = number of elements in matrix

NEQ = order of matrix A

NOP = number of symmetric sections

NPEQ = number of unknowns for a symmetric section

```
SUBROUTINE GFOUT
                                                                                      GO
2 C
                                                                                      GO
                                                                                            2
3
  C
          WRITE N.G.F. FILE
                                                                                      GO
                                                                                            3
   C
                                                                                      GO
 5
          COMPLEX CM, SSX, ZRATI, ZRATI2, T1, ZARRAY, AR1, AR2, AR3, EPSCF, FRATI
                                                                                      GO
 6
          COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 GO
 7
         1).BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( GO
 8
         2300), WLAM, IPSYM
                                                                                            8
9
          COMMON /CMB/ CM(4000)
                                                                                      GO
                                                                                            9
10
          COMMON /ANGL/ SALP(300)
                                                                                      GO
                                                                                           10
11
          COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR,
                                                                                      GO
                                                                                           11
12
         1IPERF, T1, T2
                                                                                           12
          COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY
13
                                                                                           13
14
         1A(3), XSA(3), YSA(3), NXA(3), NYA(3)
                                                                                           14
15
          COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I
                                                                                          15
16
         1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL
                                                                                      GO
                                                                                           16
17
          COMMON /SMAT/ SSX(16,16)
                                                                                      GO
                                                                                          17
18
          COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF
                                                                                      GO
                                                                                          18
19
          COMMON /SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ
                                                                                      GO
                                                                                           19
20
          DATA IGFL/20/
                                                                                      GO
                                                                                           20
21
          NEQ=N+2*M
                                                                                      GO
                                                                                           21
22
          NPEQ=NP+2 MP
                                                                                      GO
                                                                                           22
23
          NOP=NEQ/NPEQ
                                                                                      GO
                                                                                           23
24
         WRITE (IGFL) N, NP, M, MP, WLAM, FMHZ, IPSYM, KSYMP, IPERF, NRADL, EPSR, SIG,
                                                                                      GO
                                                                                          24
25
         1SCRWLT, SCRWRT, NLOAD, KCOM
                                                                                      GO
                                                                                           25
26
          IF (N.EQ.0) GO TO 1
                                                                                      GO
                                                                                           26
27
          WRITE (IGFL) (X(I), I=1, N), (Y(I), I=1, N), (Z(I), I=1, N)
                                                                                      GO
                                                                                           27
          WRITE (IGFL) (SI(I), I=1,N), (BI(I), I=1,N), (ALP(I), I=1,N)
28
                                                                                      GO
                                                                                           28
29
          WRITE (IGFL) (BET(I), I=1,N), (SALP(I), I=1,N)
                                                                                      GO
                                                                                           29
          WRITE (IGFL) (ICON1(I), I=1, N), (ICON2(I), I=1, N)
30
                                                                                           30
31
          WRITE (IGFL) (ITAG(I), I=1,N)
                                                                                      GO
                                                                                           31
          IF (NLOAD.GT.O) WRITE (IGFL) (ZARRAY(I), I=1, N)
                                                                                      GO
32
                                                                                           32
33 1
          IF (M.EQ.0) GO TO 2
                                                                                      GO
                                                                                           33
34
                                                                                      GO
          J=LD-M+1
                                                                                           34
35
          WRITE (IGFL) (X(I), I=J, LD), (Y(I), I=J, LD), (Z(I), I=J, LD)
                                                                                      GO
                                                                                           35
36
          WRITE (IGFL) (SI(I), I=J, LD), (BI(I), I=J, LD), (ALP(I), I=J, LD)
                                                                                      GO
                                                                                           36
37
          WRITE (IGFL) (BET(I), I=J,LD), (SALP(I), I=J,LD)
                                                                                      GO
                                                                                           37
38
          WRITE (IGFL) (ICON1(I), I=J,LD), (ICON2(I), I=J,LD)
                                                                                      GO
                                                                                           38
                                                                                      GO
39
                                                                                           39
          WRITE (IGFL) (ITAG(I), I=J,LD)
          WRITE (IGFL) ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT
40 2
                                                                                      GO
                                                                                           40
41
          IF (IPERF.EQ.2) WRITE (IGFL) AR1, AR2, AR3, EPSCF, DXA, DYA, XSA, YSA, NXA GO
                                                                                           41
42
         1.NYA
                                                                                      GO
                                                                                           42
43
          IF (NOP.GT.1) WRITE (IGFL) ((SSX(I,J),I=1,NOP),J=1,NOP)
                                                                                      GO
                                                                                           43
44
          WRITE (IGFL) (IP(I), I=1, NEQ), COM
                                                                                      GO
                                                                                           44
45
          IF (ICASE.GT.2) GO TO 3
                                                                                      GO
                                                                                           45
46
                                                                                      GO
          IOUT=NEQ*NPEQ
                                                                                           46
47
                                                                                       GO
                                                                                           47
          WRITE (IGFL) (CM(I), I=1, IOUT)
48
          GO TO 12
                                                                                       GO
                                                                                           48
          IF (ICASE.NE.4) GO TO 5
49
                                                                                      GO
                                                                                           49
50
          REWIND 13
                                                                                      GO
                                                                                           50
51
          I=NPEQ*NPEQ
                                                                                      GO
                                                                                           51
52
          DO 4 K=1,NOP
                                                                                      GO
                                                                                           52
53
          READ (13) (CM(J), J=1, I)
                                                                                      GO
                                                                                           53
54 4
          WRITE (IGFL) (CM(J), J=1, I)
                                                                                       GO
                                                                                           54
55
                                                                                      GO
          REWIND 13
                                                                                           55
56
          GO TO 12
                                                                                      GO
                                                                                           56
57 5
          REWIND 13
                                                                                      GO
                                                                                           57
58
          REWIND 14
                                                                                       GO
                                                                                           58
59
          IF (ICASE.EQ.5) GO TO 8
                                                                                       GO
                                                                                           59
          IOUT=NPBLK*NEQ*2
                                                                                       GO
60
                                                                                           60
          DO 6 I=1, NBLOKS
61
                                                                                       GO
                                                                                           61
          CALL BLCKIN (CM,13,1,IOUT,1,201)
CALL BLCKOT (CM,IGFL,1,IOUT,1,202)
                                                                                       GO
62
                                                                                           62
63 6
                                                                                       GO
                                                                                           63
          DO 7 I=1, NBLOKS
                                                                                       GO
                                                                                           64
```


GFOUT

65		CALL BLCKIN (CM.14,1,10UT,1,203)	GO	65
66	7	CALL BLCKOT (CM, IGFL, 1, IOUT, 1, 204)	GO	66
67		GO TO 12	GO	67
68	8	IOUT=NPSYM*NPEQ*2	GO	68
69		DO 11 IOP=1,NOP	GO	69
70		DO 9 I=1,NBLSYM	GO	70
71		CALL BLCKIN (CM, 13, 1, IOUT, 1, 205)	GO	71
72	9	CALL BLCKOT (CM, IGFL, 1, IOUT, 1, 206)	GO	72
73		DO 10 I=1,NBLSYM	GO	73
74		CALL BLCKIN (CM, 14, 1, IOUT, 1, 207)	GO	74
75	10	CALL BLCKOT (CM, IGFL, 1, IOUT, 1, 208)	GO	75
76	11	CONTINUE	GO	76
77		REWIND 13	GO	77
78		REWIND 14	GO	78
79	12	REWIND IGFL	GO	79
80		PRINT 13, IGFL, IMAT	GO	80
81		RETURN	GO	81
82	C		GO	82
83	13	FORMAT (///.44H ****NUMERICAL GREEN'S FUNCTION FILE ON TAPE, 13,5H	GO	83
84		1 ****, /,5X,16HMATRIX STORAGE -, I7,16H COMPLEX NUMBERS, ///)	GO	84
85		END	GO	85-

GH

GH

PURPOSE

To compute the function that is numerically integrated for the near H field of a segment.

METHOD

The value returned by GH is

$$G = \left[\frac{1}{(kr)^3} + \frac{j}{(kr)^2}\right] \exp(-jkr) ,$$

where

$$r = \left[\rho'^2 + (z - z')^2\right]^{1/2}$$

ρ' = ρ coordinate of the field observation point in a cylindrical coordinate system with origin at the center of the source segment and z axis oriented along the source segment

z' = z coordinate of the field observation point in the cylindrical coordinate system

z = z coordinate of the integration point on the source segment

 $k = 2\pi/\lambda$

SYMBOL DICTIONARY

CKR = cos kr

HR = real part of G

HI = imaginary part of G

R * kr

RHKS = $(k\rho')^2$

 $RR2 = 1/(kr)^2$

 $RR3 = 1/(kr)^3$

 $RS = (kr)^2$

SKR = sin kr

ZK = kz

ZPK = kz'

1	SUBROUTINE GH (ZK,HR,HI)	GH	1
2 C	INTEGRAND FOR H FIELD OF A WIRE	GH	2
3	COMMON /TMH/ ZPK,RHKS	GH	3
4	RS=ZK-ZPK	GH	4
5	RS=RHKS+RS*RS	GH	5
6	R=SQRT(RS)	GH	6
7	CKR=COS(R)	GH	7
8	SKR=SIN(R)	GH	8
9	RR2=1./RS	GH	9
10	RR3=RR2/R	GH	10
11	HR=SKR*RR2+CKR*RR3	GH	11
12	HI=CKR*RR2-SKR*RR3	GH	12
13	RETURN	GH	13
14	END	GH	14-

GWAVE

PURPOSE

To compute the components of electric field due to an electric current element over a ground plane at intermediate distances, including the surface wave field.

METHOD

Approximate expressions for the electric field of a vertical or horizontal infinitesimal current element above a ground plane, including surface wave, were derived by K. A. Norton (ref. 2). The geometry is shown in figure 6a for a current element at height a above the ground plane and field observation point at p. The current element is located on the z' axis, and the horizontal current element is directed along the x' axis. The vertical current element produces z' and ρ' field components given by

$$\begin{split} E_{z}^{v} &= -\frac{\mathrm{j}\eta\mathrm{Id}\ell}{2\lambda} \left\{ \cos^{2}\psi' \frac{\exp(-\mathrm{j}kR_{1})}{R_{1}} + R_{v}\cos^{2}\psi \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \right. \\ &+ \left. (1 - R_{v}) \cos^{2}\psi \right. F \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \\ &+ u \sqrt{1 - u^{2}\cos^{2}\psi} \sin\psi 2 \frac{\exp(-\mathrm{j}kR_{2})}{\mathrm{j}kR_{2}^{2}} \\ &+ \frac{\exp(-\mathrm{j}kR_{1})}{R_{1}} \left(\frac{1}{\mathrm{j}kR_{1}} + \frac{1}{\left(\mathrm{j}kR_{1}\right)^{2}} \right) (1 - 3 \sin^{2}\psi') \\ &+ \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \left(\frac{1}{\mathrm{j}kR_{2}} + \frac{1}{\left(\mathrm{j}kR_{2}\right)^{2}} \right) (1 - 3 \sin^{2}\psi) \right\} , \end{split}$$

$$\begin{split} E_{\rho}^{V} &= \frac{\mathrm{j}\eta \mathrm{Id}\ell}{2\lambda} \; \left\{ \sin \psi' \; \cos \psi' \; \frac{\exp(-\mathrm{j}kR_{1})}{R_{1}} + R_{v} \; \sin \psi \; \cos \psi \; \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \right. \\ &- \cos \psi(1 - R_{v}) \; u \; \sqrt{1 - u^{2} \; \cos^{2} \psi} \; F \; \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \\ &- \sin \psi \; \cos \psi \; (1 - R_{v}) \; \frac{\exp(-\mathrm{j}kR_{2})}{\mathrm{j}kR_{2}^{2}} \\ &+ 3 \; \sin \psi' \; \cos \psi' \; \left(\frac{1}{\mathrm{j}kR_{1}} + \frac{1}{(\mathrm{j}kR_{1})^{2}} \right) \; \frac{\exp(-\mathrm{j}kR_{1})}{R_{1}} \\ &- \cos \psi \; u \; \sqrt{1 - u^{2} \; \cos^{2} \psi} \; (1 - R_{v}) \; \frac{\exp(-\mathrm{j}kR_{2})}{2\mathrm{j}kR_{2}^{2}} \\ &+ 3 \; \sin \psi \; \cos \psi \; \left(\frac{1}{\mathrm{j}kR_{2}} + \frac{1}{(\mathrm{j}kR_{2})^{2}} \right) \; \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \right\} \; , \end{split}$$

where

F = 1 - j
$$\sqrt{\pi w} \exp(-w) \operatorname{erfc}(j\sqrt{w})$$

 $\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)$
 $\operatorname{erf}(z) = 2/\sqrt{\pi} \int_{0}^{z} \exp(-t^{2}) dt \text{ (error function)}$
 $w = 4p_{1}/(1 - R_{v})^{2}$
 $p_{1} = -jkR_{2}u^{2} (1 - u^{2} \cos^{2} \psi)/(2\cos^{2} \psi)$
 $R_{v} = \frac{\sin \psi - u \sqrt{1 - u^{2} \cos^{2} \psi}}{\sin \psi + u \sqrt{1 - u^{2} \cos^{2} \psi}}$
 $u = k/k_{2}$
 $k = wave number in free space$
 $k_{2} = wave number in lower medium$
 $\sin \psi = (z + a)/R_{2}$
 $\sin \psi' = (z - a)/R_{1}$

The horizontal current element directed along the x' axis produces ρ ', ϕ ', and z' field components given by

$$\begin{split} E_{z}^{h} &= \frac{\mathrm{j}\eta \mathrm{Id}\ell}{2\lambda} \cos \phi \, ' \left\{ \sin \psi ' \, \cos \psi , \frac{\exp(-\mathrm{j}kR_{1})}{R_{1}} \right. \\ &- R_{v} \sin \psi \, \cos \psi , \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \\ &+ \cos \psi \, (1 - R_{v}) \, u \sqrt{1 - u^{2} \, \cos^{2} \psi} \, F \, \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \\ &+ \sin \psi \, \cos \psi \, (1 - R_{v}) \, \frac{\exp(-\mathrm{j}kR_{2})}{\mathrm{j}kR_{2}^{2}} \\ &+ 3 \, \sin \psi ' \, \cos \psi \, ' \left(\frac{1}{\mathrm{j}kR_{1}} + \frac{1}{(\mathrm{j}kR_{1})^{2}} \right) \frac{\exp(-\mathrm{j}kR_{1})}{R_{1}} \\ &+ \cos \psi \, (1 - R_{v}) \, u \sqrt{1 - u^{2} \, \cos^{2} \psi} \, \frac{\exp(-\mathrm{j}kR_{2})}{2\mathrm{j}kR_{2}^{2}} \\ &- 3 \, \sin \psi \, \cos \psi \left(\frac{1}{\mathrm{j}kR_{2}} + \frac{1}{(\mathrm{j}kR_{2})^{2}} \right) \, \frac{\exp(-\mathrm{j}kR_{2})}{R_{2}} \right\} \, , \end{split}$$

$$\begin{split} E_{\rho}^{h} &= \frac{-\mathrm{i} n \mathrm{I} d \ell}{2 \lambda} \; \cos \; \phi' \; \begin{cases} \sin^{2} \; \psi' \; \frac{\exp \left(-\mathrm{j} k R_{1}\right)}{R_{1}} - R_{v} \; \sin^{2} \; \psi \; \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{R_{2}} \\ &- \left(1 - u^{2} \mathrm{cos}^{2} \psi\right) \; u^{2} \; \left(1 - R_{v}\right) \; F \; \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{R_{2}} \\ &+ \left(\frac{1}{\mathrm{j} k R_{1}} + \frac{1}{\left(\mathrm{j} k R_{1}\right)^{2}}\right) \; \left(1 - 3 \; \cos^{2} \; \psi'\right) \; \frac{\exp \left(-\mathrm{j} k R_{1}\right)}{R_{1}} \; \\ &- \left(\frac{1}{\mathrm{j} k R_{2}} + \frac{1}{\left(\mathrm{j} k R_{2}\right)^{2}}\right) \; \left(1 - 3 \; \cos^{2} \; \psi\right) \; \left[1 - u^{2} \; \left(1 + R_{v}\right) - u^{2} \left(1 - R_{v}\right) F\right] \\ &\times \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{R_{2}} + u^{2} \; \cos^{2} \; \psi \; \left(1 - R_{v}\right) \; \left(1 + \frac{1}{\mathrm{j} k R_{2}}\right) \\ &\times \left[F\left(u^{2} \left(1 - u^{2} \; \cos^{2} \; \psi\right) - \sin^{2} \; \psi + \frac{1}{\mathrm{j} k R_{2}}\right) - \frac{1}{\mathrm{j} k R_{2}}\right] \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{R_{2}} \right] \; , \\ &E_{\phi}^{h} = \frac{\mathrm{i} \eta \mathrm{I} d \ell}{2 \lambda} \; \sin \; \phi' \; \left(\frac{\exp \left(-\mathrm{j} k R_{1}\right)}{R_{1}} - R_{h} \; \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{R_{2}} \right) \\ &+ \left(R_{h} + 1\right) \; G \; \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{R_{2}} + \left(1 + \frac{1}{\mathrm{j} k R_{1}}\right) \frac{\exp \left(-\mathrm{j} k R_{1}\right)}{\mathrm{j} k R_{1}^{2}} \\ &- \left(1 + \frac{1}{\mathrm{j} k R_{2}}\right) \left[1 - u^{2} \; \left(1 + R_{v}\right) - u^{2} \; \left(1 - R_{v}\right) F\right] \; \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{\mathrm{j} k R_{2}^{2}} \\ &- \frac{u^{2} \left(1 - R_{v}\right)}{2} \left[F\left(u^{2} \; \left(1 - u^{2} \; \cos^{2} \; \psi\right) - \sin^{2} \; \psi + \frac{1}{\mathrm{j} k R_{2}}\right) - \frac{1}{\mathrm{j} k R_{2}}\right] \\ &\times \frac{\exp \left(-\mathrm{j} k R_{2}\right)}{\mathrm{j} k R_{2}^{2}} \; , \end{split}$$

where

G =
$$[1 - j \sqrt{\pi v} \exp(-v) \operatorname{erfc}(j \sqrt{v})],$$

v = $4q_1/(1 + R_h)^2$
 $q_1 = -jkR_2 (1 - u^2 \cos^2 \psi)/(2u^2 \cos^2 \psi)$
 $R_h = \frac{\sqrt{1 - u^2 \cos^2 \psi} - u \sin \psi}{\sqrt{1 - u^2 \cos^2 \psi} + u \sin \psi}$

The approximations in these expressions are valid for R_1 and R_2 greater than about a wavelength and to second order in u^2 . In each equation, the first term represents the direct space wave field of the current element, the second term is the space wave field reflected from the ground, and the following higher order terms involving F and G represent the ground wave. It may be noted that the coefficients R_v and R_h are the Fresnel reflection coefficients for vertical and horizontal polarization, respectively.

To obtain the field due to a structure, these expressions are integrated over each segment and the fields of the segments are summed in subroutine GFLD. For integration, R_1 and R_2 are the distances from the integration point ℓ on the segment to point p. Since R_1 and R_2 are assumed large compared to the segment length, R_1 , R_2 , ψ , and ψ' are considered constant during integration over the segment except where jkR_1 and jkR_2 occur in exponential functions. Thus, if s represents distance along the segment, the integral of each expression over the segment is obtained by replacing $(Id\ell/\lambda^2)$ $\exp(-jkR_1)$ and $(Id\ell/\lambda^2)$ $\exp(-jkR_2)$ by XX1 and XX2 from subroutine GFLD. A factor of $\exp(-jkR)$ is omitted from the fields and is included after summation in GFLD. Including a factor of $1/\lambda^2$ in XX1 and XX2 makes a factor of λ available to normalize R_1 and R_2 in the denominators of the field expressions. The factors $\sin \phi'$ or $\cos \phi'$ are omitted from the fields due to a horizontal current element in GWAVE and are supplied later.

SYMBOL DICTIONARY

CPPP =
$$\cos \psi'$$

CPPP2 =
$$\cos^2 \psi'$$

CPP2 =
$$\cos^2 \psi$$

ECON =
$$-j\eta/2$$
 (η = impedance of free space)

EPH =
$$E_{\phi}^{h}/\sin \phi'$$

ERH =
$$E_{\rho}^{h}/\cos \varphi'$$

$$ERV = E_0^V$$

EZH =
$$E_z^h/\cos \phi'$$

$$EZV = E_Z^V$$

FJ =
$$j = \sqrt{-1}$$

$$OMR = 1 - R_{v}$$

$$P1 = p_1$$

$$q_1 = q_1$$

$$RH = R_h$$

$$RK1 = -jkR_1$$

$$RK2 = -jkR_2$$

$$R1 = R_1/\lambda$$

$$R2 = R_2/\lambda$$

SPP =
$$\sin \psi$$

SPPP =
$$\sin \psi'$$

SPPP2 =
$$\sin^2 \psi'$$

SPP2 =
$$\sin^2 \psi$$

TPJ =
$$2\pi j$$

T1 =
$$1 - u^2 \cos^2 \psi$$

$$T2 = \sqrt{T1}$$

T3 =
$$-[1/(jkR_1) + 1/(jkR_1)^2]$$

GWAVE

```
= -[1/(jkR_2) + 1/(jkR_2)^2]
T4
U
U2
V
        = XX1/(R/\lambda)
XR1
        = xx2/(R/\lambda)
XR2
        = G_1 \exp(jk\hat{R}_1 \cdot \bar{r}_i)
XX1
        = G_2 \exp(jk\hat{R}_2 \cdot \vec{r}_i')
XX2
X1)
X2
X3
        = first, second, ..., seventh term in each field expression
X4
X5
X6
X7
ZMH
ZPH
```

CONSTANTS

(0., 1.) = $j = \sqrt{-1}$ (0., 6.2831853) = $2\pi j$ (0., -188.363) = $-j\eta/2$ 3.1415926 = π

```
SUBROUTINE GWAVE (ERV, EZV, ERH, EZH, EPH)
                                                                                      GW
2 C
                                                                                      GW
                                                                                           2
         GWAVE COMPUTES THE ELECTRIC FIELD, INCLUDING GROUND WAVE, OF A
3
  C
                                                                                      GW
                                                                                           3
4
  C
         CURRENT ELEMENT OVER A GROUND PLANE USING FORMULAS OF K.A. NORTON
                                                                                      GW
                                                                                            4
5
  C
          (PROC. IRE, SEPT., 1937, PP.1203,1236.)
                                                                                      GW
                                                                                            5
6
  C
                                                                                      GW
                                                                                            6
 7
         COMPLEX FJ, TPJ, U2, U, RK1, RK2, T1, T2, T3, T4, P1, RV, OMR, W, F, Q1, RH, V, G, XR GW
                                                                                           7
        11.XR2,X1,X2,X3,X4,X5,X6,X7,EZV,ERV,EZH,ERH,EPH,XX1,XX2,ECON,FBAR
 8
                                                                                      GW
                                                                                           8
9
          COMMON /GWAV/ U,U2,XX1,XX2,R1,R2,ZMH,ZPH
                                                                                      GW
                                                                                           9
10
          DIMENSION FJX(2), TPJX(2), ECONX(2)
                                                                                      GW
                                                                                           10
         EQUIVALENCE (FJ,FJX), (TPJ,TPJX), (ECON,ECONX)
DATA PI/3.141592654/,FJX/0.,1./,TPJX/0.,6.283185308/
11
                                                                                      GW
                                                                                           11
12
                                                                                      GW
                                                                                           12
13
          DATA ECONX/0.,-188.367/
                                                                                      GW
                                                                                           13
          SPPP=ZMH/R1
14
                                                                                      GW
                                                                                          14
15
          SPPP2=SPPP+SPPP
                                                                                      GW
                                                                                          15
          CPPP2=1.-SPPP2
16
                                                                                      GW
                                                                                          16
17
          IF (CPPP2.LT.1.E-20) CPPP2=1.E-20
                                                                                      GW
                                                                                          17
18
          CPPP=SQRT(CPPP2)
                                                                                      GW
                                                                                          18
          SPP=ZPH/R2
19
                                                                                      GW
                                                                                          19
20
          SPP2=SPP*SPP
                                                                                      GW
                                                                                          20
21
          CPP2=1.-SPP2
                                                                                      GW
                                                                                          21
22
          IF (CPP2.LT.1.E-20) CPP2=1.E-20
                                                                                      GW
                                                                                          22
          CPP=SQRT(CPP2)
23
                                                                                      GW
24
          RK1=-TPJ+R1
                                                                                      GW
                                                                                          24
25
          RK2=-TPJ*R2
                                                                                      GW
                                                                                          25
26
          T1=1.-U2*CPP2
                                                                                      GW
                                                                                          26
27
          T2=CSQRT(T1)
                                                                                      GW
                                                                                          27
          T3=(1.-1./RK1)/RK1
28
                                                                                      GW
                                                                                          28
29
          T4=(1.-1./RK2)/RK2
                                                                                      GW
                                                                                          29
30
          P1=RK2*U2*T1/(2.*CPP2)
                                                                                      GW
                                                                                          30
31
          RV=(SPP-U*T2)/(SPP+U*T2)
                                                                                      GW
                                                                                          31
          OMR=1.-RV
32
                                                                                      GW
                                                                                          32
          W=1 . /OMR
33
                                                                                      GW
                                                                                          33
         W=(4.,0.)*P1*W*W
34
                                                                                      GW
                                                                                          34
35
          F=FBAR(W)
                                                                                      GW
                                                                                          35
36
          Q1=RK2*T1/(2.*U2*CPP2)
                                                                                      GW
                                                                                          36
37
          RH=(T2-U*SPP)/(T2+U*SPP)
                                                                                      GW
                                                                                          37
38
          V=1./(1.+RH)
                                                                                      GW
                                                                                          38
          V=(4.,0.)*Q1*V*V
39
                                                                                      GW
                                                                                          39
40
          G=FBAR(V)
                                                                                      GW
                                                                                          40
          XR1=XX1/R1
41
                                                                                      GW
                                                                                          41
42
          XR2=XX2/R2
                                                                                      GW
                                                                                          42
          X1=CPPP2*XR1
43
                                                                                      GW
                                                                                          43
          X2=RV*CPP2*XR2
44
                                                                                      GW
                                                                                          44
45
          X3=OMR*CPP2*F*XR2
                                                                                      GW
                                                                                          45
46
          X4=U*T2*SPP*2.*XR2/RK2
                                                                                      GW
                                                                                          46
47
          X5=XR1*T3*(1.-3.*SPPP2)
                                                                                      GW
                                                                                          47
48
          X6=XR2*T4*(1.-3.*SPP2)
                                                                                      GW
                                                                                          48
49
          EZV=(X1+X2+X3-X4-X5-X6) *ECON
                                                                                      GW
                                                                                          49
          X1=SPPP*CPPP*XR1
50
                                                                                      GW
                                                                                          50
51
          X2=RV*SPP*CPP*XR2
                                                                                      GW
                                                                                          51
52
          X3=CPP*OMR*U*T2*F*XR2
                                                                                      GW
                                                                                          52
          X4=SPP*CPP*OMR*XR2/RK2
53
                                                                                      GW
                                                                                          53
54
          X5=3. *SPPP*CPPP*T3*XR1
                                                                                      GW
                                                                                          54
55
          X6=CPP*U*T2*OMR*XR2/RK2*.5
                                                                                      GW
                                                                                          55
          X7=3. *SPP*CPP*T4*XR2
56
                                                                                      GW
                                                                                          56
57
          ERV=-(X1+X2-X3+X4-X5+X6-X7) *ECON
                                                                                      GW
                                                                                          57
58
          EZH=-(X1-X2+X3-X4-X5-X6+X7) *ECON
                                                                                      GW
                                                                                          58
59
          X1=SPPP2*XR1
                                                                                      GW
                                                                                          59
60
          X2=RV*SPP2*XR2
                                                                                      GW
                                                                                          60
61
          X4=U2*T1*OMR*F*XR2
                                                                                      GW
                                                                                          61
          X5=T3*(1.-3.*CPPP2)*XR1
62
                                                                                      GW
                                                                                          62
          X6=T4*(1.-3.*CPP2)*(1.-U2*(1.+RV)-U2*OMR*F)*XR2
63
                                                                                      GW
                                                                                          63
          X7=U2*CPP2*OMR*(1.-1./RK2)*(F*(U2*T1-SPP2-1./RK2)+1./RK2)*XR2
                                                                                      GW
                                                                                          64
```

GWAVE

65	ERH=(X1-X2-X4-X5+X6+X7) *ECON	GW	65
66	X1=XR1	GW	66
67	X2=RH*XR2	GW	67
68	X3=(RH+1.)*G*XR2	GW	68
69	X4=T3*XR1	GW	69
70	X5=T4*(1U2*(1.+RV)-U2*OMR*F)*XR2	GW	70
71	X6=.5*U2*OMR*(F*(U2*T1-SPP2-1./RK2)+1./RK2)*XR2/RK2	GW	71
72	EPH=-(X1-X2+X3-X4+X5+X6)*ECON	GW	72
73	RETURN	GW	73
74	END	GW	74-

GX

PURPOSE

To evaluate terms for the field contribution due to segment ends in the thin wire kernel.

SYMBOL DICTIONARY

GZ =
$$\exp(-jkr)/r = G_0$$

GZP = $-(1 + jkr) \exp(-jkr)/r^3$
R = r
R2 = $r^2 = \rho^2 + z^2$
RH = ρ
RK = kR
XK = $2\pi/\lambda$

CODE LISTING

1	SUBROUTINE GX (ZZ,RH,XK,GZ,GZP)	GX	1	
2 C	SEGMENT END CONTRIBUTIONS FOR THIN WIRE APPROX.	GX	2	
3	COMPLEX GZ,GZP	GX	3	
4	R2=ZZ*ZZ+RH*RH	GX	4.	
5	R=SQRT(R2)	GX	5	
6	RK=XK*R	GX	6	
7	GZ=CMPLX(COS(RK),-SIN(RK))/R	GX	7	
8	GZP=-CMPLX(1.,RK)*GZ/R2	GX	8	
9	RETURN	GX	9	
10	END	GX	10-	

GXX

PURPOSE

To evaluate terms for the field contribution due to segment ends in the extended thin wire kernel.

METHOD

Equations 89 through 94 in Part I are evaluated for $\rho > a$, and equations 99 through 103 for $\rho < a$. Several variables are used for storage of intermediate results before being set to their final values.

SYMBOL DICTIONARY

A = radius of source segment, a

$$A2 = a^2$$

$$C1 = 1 + jkr_0$$

$$c2 = 3(1 + jkr_0) - k^2r_0^2$$

$$C3 = (6 + jkr_0)k^2r_0^2 - 15(1 + jkr_0)$$

$$GIP = \partial G_1/\partial z'$$

$$G2 = G_2$$

$$G2P = \partial G_2/\partial z'$$

$$G3 = \partial G_1/\partial \rho$$

$$GZ = G_0$$

$$GZP = \partial G_0 / \partial z'$$

IRA = 1 to indicate $\rho < a$

$$R = r_0$$

$$R2 = r_0^2$$

$$R4 = r_0^4$$

$$RH = \rho$$

RH2 =
$$\rho^2$$

$$RK = kr_0$$

$$RK2 = k^2 r_0^2$$

$$T1 = a^2 \rho^2 / 4r^4$$

$$T2 = a^2/2r^2$$

$$XK = k = 2\pi/\lambda$$

$$ZZ = z' - z$$

2 C SEGMENT END CONTRIBUTIONS FOR EXT. THIN WIRE APPROX. 3 COMPLEX GZ,C1,C2,C3,G1,G1P,G2,G2P,G3,GZP 4 R2=ZZ*ZZ+RH*RH*RH 5 R=SQRT(R2) 6 R4=R2*R2 7 RK=XK*R 8 RK2=RK*RK 9 RH2=RH*RH 11 T2=.5*A2/R2 12 C1=CMPLX(1.,RK) 13 C2=3.*C1-RK2 14 C3=CMPLX(6.,RK)*RK2-15.*C1 15 GZ=CMPLX(0S(RK).~SIN(RK))/R 16 GZ=C2*(1.+T1**C2) 17 G1=G2-T2*C1*GZ 18 GZ=CZ*C2*GZ 21 G3=G2P+GZP 22 G1P=G3*ZZ 23 IF (IRA.EO.1) GO TO 2 24 G3=(G3+GZP)*RH 25 GZP=ZZ*C1*GZ 26 IF (RH.GT.1.E-10) GO TO 1 27 G2=Q2/RH 38 GZ=CZ/RH 39 GZ=CZPX(RH) 30 1 GZ=GZPZ/RH 31 GZ=GZ/RH 32 GZ=CZ*C1 GZ 33 GZ*C1 GZ 34 GZ=CZ*C1*GZ 35 GZ*C2*C1*GZ 36 GZ*C2*C1*GZ 37 GZ*C3*C2*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*	1/	SUBROUTINE GXX (ZZ,RH,A,A2,XK,IRA,G1,G1P,G2,G2P,G3,GZP)	GY	1
## R2=ZZ*ZZ*ZH******************************	2 C	SEGMENT END CONTRIBUTIONS FOR EXT. THIN WIRE APPROX.	GY	2
5 R=SQRT(R2) 6 R4=R2*R2 6 GY 6 7 RK=XK*R 7 RK=XK*R 8 RK2=RK*RK 9 RH2=RN*RH 9 RH2=RN*RH 6 GY 9 110 T1=.25*A2/R2 11 T2=.5*A2/R2 12 C1=CMPLX(1.,RK) 13 C2=3.*C1-RK2 14 C3=CMPLX(6.,RK)*RK2-15.*C1 15 G2=CMPLX(6.,RK)*RK2-15.*C1 16 G2=GZ*(1.+T1*C2) 17 G1=G2-T2*C1*GZ 18 GZ=GZ/R2 19 GZP=GZ*(T1*C3-C1) 19 G2P=GZ*(T1*C3-C1) 20 GZP=T2*C2*GZ 21 G3=GZP+GZP 22 G1P=G3*ZZ 23 IF (IRA.EQ.1) GO TO 2 24 G3=(G3+GZP)*RH 6 GZ=CZ*(1.E-10) GO TO 1 6 GZ=CZ*C1*C3 6 GZ CZ*C1*C3 6 GZ CZ*C3 6 GZ*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*C3*	3	COMPLEX GZ,C1,C2,C3,G1,G1P,G2,G2P,G3,GZP	GY	3
6 R4=R2=R2 7 RK=XK+R 8 RKZ=RK+RK 9 RHZ=RH+RH 6Y 9 10 T1=.25*A2*R4 11 T2=.5*A2/R2 6Y 11 12 C1=CMPLX(1.,RK) 6Y 12 13 C2=3.*C1-RK2 6Y 13 14 C3=CMPLX(6.,RK)*RK2-15.*C1 15 GZ=CMPLX(COS(RK)SIN(RK))/R 16 G2=GZ*(1.+T1*C2) 17 R1=G2=CZ*(1.+T1*C2) 18 GZ=GZ/R2 19 GZP=GZ*(1.+C3-C1) 19 GZP=GZ*(T1*C3-C1) 19 GZP=CZ*C2*C2 21 G3=GZP+GZP 22 G1P=G3*Z2 23 IF (IRA.EO.1) GO TO 2 24 G3=(G3+GZP)*RH 6Y 24 25 GZP=-ZZ*C1*GZ 6Y 27 28 GZP=0. 6Y 27 29 GY 27 30 1 GZ=GZ/RH 6Y 27 30 1 GZ=CZ/RH 6Y 27 30 1 GZ=CZ/RH 6Y 27 31 GZ=CZ/RH 6Y 27 32 GZ=CZ/RH 6Y 23 33 2 T2=.5*A 34 GZ=-T2*C1*GZ 6Y 35 36 GZ=RZ*CZ+C1*GZ 6Y 35 36 GZ=RZ*CZ+C2*CZ 6Y 35 36 GZ=RZ*CZ+C2*CZ 6Y 35 36 GZ=RZ*CZ+C2*CZ 6Y 35 36 GZ=CZ*CZ+C2*CZ 6Y 35 36 GZ=CZ*CZ+CZ+CZ+CZ 6Y 35 36 GZ=CZ*CZ+CZ+CZ+CZ+CZ 6Y 35 36 GZ=CZ*CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+C	4	R2=ZZ*ZZ+RH*RH	GY	4
6 R4=R2=R2 7 RK=XK+R 8 RKZ=RK+RK 9 RHZ=RH+RH 6Y 9 10 T1=.25*A2*R4 11 T2=.5*A2/R2 6Y 11 12 C1=CMPLX(1.,RK) 6Y 12 13 C2=3.*C1-RK2 6Y 13 14 C3=CMPLX(6.,RK)*RK2-15.*C1 15 GZ=CMPLX(COS(RK)SIN(RK))/R 16 G2=GZ*(1.+T1*C2) 17 R1=G2=CZ*(1.+T1*C2) 18 GZ=GZ/R2 19 GZP=GZ*(1.+C3-C1) 19 GZP=GZ*(T1*C3-C1) 19 GZP=CZ*C2*C2 21 G3=GZP+GZP 22 G1P=G3*Z2 23 IF (IRA.EO.1) GO TO 2 24 G3=(G3+GZP)*RH 6Y 24 25 GZP=-ZZ*C1*GZ 6Y 27 28 GZP=0. 6Y 27 29 GY 27 30 1 GZ=GZ/RH 6Y 27 30 1 GZ=CZ/RH 6Y 27 30 1 GZ=CZ/RH 6Y 27 31 GZ=CZ/RH 6Y 27 32 GZ=CZ/RH 6Y 23 33 2 T2=.5*A 34 GZ=-T2*C1*GZ 6Y 35 36 GZ=RZ*CZ+C1*GZ 6Y 35 36 GZ=RZ*CZ+C2*CZ 6Y 35 36 GZ=RZ*CZ+C2*CZ 6Y 35 36 GZ=RZ*CZ+C2*CZ 6Y 35 36 GZ=CZ*CZ+C2*CZ 6Y 35 36 GZ=CZ*CZ+CZ+CZ+CZ 6Y 35 36 GZ=CZ*CZ+CZ+CZ+CZ+CZ 6Y 35 36 GZ=CZ*CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+CZ+C	5	R=SQRT(R2)	GY	5
8 RK2=RK*RK GY 8 9 RH2=RH*RH GY 9 10 T1=.25*A2*RH2/R4 GY 10 11 T2=.5*A2/R2 GY 11 12 C1=CMPLX(1.,RK) GY 12 13 C2=3.*C1-RK2 GY 12 14 C3=CMPLX(6.,RK)*RK2-15.*C1 GY 14 15 GZ=CMPLX(COS(RK),-SIN(RK))/R GY 15 16 G2=GZ*(1.+T1*C2) GY 15 17 G1=G2-T2*C1*GZ GY 15 18 GZ=GZ*(R2 GY 16 19 G2P=GZ*(T1*C3-C1) GY 18 19 G2P=GZ*(T2*C3-C2) GY 29 20 GZP=T2*C3*GZ GY 29 21 G3=G3+GZP GY 29 22 G1P=G3*ZZ GY 22 23 IF (IRA.EQ.1) GO TO 2 GY 23 24 G3=(G3+GZP)*RH GY 24 25 GZP=ZZ*C1*GZ GY 25 26 IF (RH.GT.1.E-10) GO TO 1	6	R4=R2*R2	GY	6
9 RH2=RH*RH	7	RK=XK*R	GY	7
10	8	RK2=RK*RK	GY	8
11 T2=.5*A2/R2 GY 11 12 C1=CMPLX(1.,RK) GY 12 13 C2=3.*C1-RK2 GY 13 14 C3=CMPLX(6.,RK)*RK2-15.*C1 GY 14 15 GZ=CMPLX(COS(RK),-SIN(RK))/R GY 15 16 G2=GZ*(1.+T1*C2) GY 16 17 G1=G2-T2*C1*GZ GY 17 18 GZ=GZ/R2 GY 18 19 G2P=GZ*(T1*C3-C1) GY 19 20 GZP=T2*C2*GZ GY 19 21 G3=GZP+GZP GY 19 22 G1P=G3*ZZ GY GY 21 23 IF (IRA.EQ.1) GO TO 2 GY 23 24 G3=(G3+GZP)*RH GY 24 25 GZP=-ZZ*C1*GZ GY 27 26 IF (RK.GT.1.E-10) GO TO 1 GY 27 27 28 G2P=0. GY 27 29 RETURN GY 28 29 RETURN GY 29 30 1 G2=GZ/RH GY 30 31 G2=GZ/RH GY 31 32 RETURN GY 31 33 2 T2=.5*A GY 32 34 G2P=T2*C1*GZ GY 35 35 G2P=TZ*C1*GZ GY 35 36 G3=RH2*GZP-A*GZ*C1 GY 35 37 G2P=GZP*ZZ GY 39 38 RETURN GY 39	9	RH2=RH*RH	GY	9
12	10	T1=.25*A2*RH2/R4	GY	10
13	11	T2=.5*A2/R2	GY	11
14	12	C1=CMPLX(1.,RK)	GY	12
15	13	C2=3.*C1-RK2	GY	13
15	14	C3=CMPLX(6.,RK)*RK2-15.*C1	GY	14
17	15		GY	15
18 GZ=GZ/R2 GY 18 19 G2P=GZ*(T1*C3-C1) GY 19 20 GZP=TZ*CZ*GZ GY 20 21 G3=G2P+GZP GY 21 22 G1P=G3*ZZ GY 22 23 IF (IRA.EQ.1) GO TO 2 GY 23 24 G3=(G3+GZP)*RH GY 24 25 GZP=-ZZ*C1*GZ GY 25 26 IF (RH.GT.1.E-10) GO TO 1 GY 25 27 G2=0. GY 27 28 G2P=0. GY 28 29 RETURN GY 28 30 1 G2P=G2P*ZZ/RH GY 30 31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 33 34 G2=-T2*C1*GZ GY 35 35 G2=T2*G*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 35 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	16	G2=GZ*(1.+T1*C2)	GY	16
18 GZ=GZ/R2 GY 18 19 G2P=GZ*(T1*C3-C1) GY 19 20 GZP=TZ*CZ*GZ GY 20 21 G3=G2P+GZP GY 21 22 G1P=G3*ZZ GY 22 23 IF (IRA.EQ.1) GO TO 2 GY 23 24 G3=(G3+GZP)*RH GY 24 25 GZP=-ZZ*C1*GZ GY 25 26 IF (RH.GT.1.E-10) GO TO 1 GY 26 27 G2=Q. GY 25 28 G2P=Q. GY 27 28 G2P=O. GY 28 29 RETURN GY 28 29 RETURN GY 30 31 G2P=G2P*ZZ/RH GY 30 32 RETURN GY 31 33 2 T2=.5*A GY 35 34 G2=-T2*C1*GZ GY 35 35 G2P=T2*G2*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 35	17	G1=G2-T2*C1*GZ	GY	17
19	18	GZ=GZ/R2		
20	19	G2P=GZ*(T1*C3-C1)	GY	
21 G3=G2P+GZP GY 21 22 G1P=G3*ZZ GY 22 23 IF (IRA.EQ.1) GO TO 2 GY 23 24 G3=(G3+GZP)*RH GY 24 25 GZP=-ZZ*C1*GZ GY 25 26 IF (RH.GT.1.E-10) GO TO 1 GY 26 27 G2=0. GY 27 28 G2P=0. GY 28 29 RETURN GY 29 30 1 G2=G2/RH GY 30 31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 31 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 39 38 GZP=-ZZ*C1*GZ GY 39 39 RETURN GY 39	20			
22 G1P=G3*ZZ 23 IF (IRA.EQ.1) GO TO 2 24 G3=(G3+GZP)*RH 25 GZP=-ZZ*C1*GZ 26 IF (RH.GT.1.E-10) GO TO 1 27 G2=0. 28 G2P=0. 29 RETURN 30 1 G2=G2/RH 31 G2P=G2P*ZZ/RH 32 RETURN 33 2 T2=.5*A 34 G2=-T2*C1*GZ 35 G2P=C2/R2 36 G3=RH2*G2P-A*GZ*C1 37 G2P=G2P*ZZ 38 G2P=-ZZ*C1*GZ 39 RETURN 39 RETURN 39 RETURN 39 RETURN 39 RETURN 39 RETURN 39 GY 39	21	G3=G2P+GZP	GY	21
23	22	G1P=G3*ZZ	GY	
24 G3=(G3+GZP)*RH GY 24 25 GZP=-ZZ*C1*GZ GY 25 26 IF (RH.GT.1.E-10) GO TO 1 GY 26 27 G2=0. GY 27 28 G2P=0. GY 28 29 RETURN GY 29 30 1 G2=G2/RH GY 30 31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	23	IF (IRA.EQ.1) GO TO 2		
25	24			
26 IF (RH.GT.1.E-10) GO TO 1 GY 26 27 G2=0. GY 27 28 G2P=0. GY 28 29 RETURN GY 30 31 G2=G2/RH GY 31 32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	25			
27 G2=0. GY 27 28 G2P=0. GY 28 29 RETURN GY 29 30 1 G2=G2/RH GY 30 31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	26			
28 G2P=0. GY 28 29 RETURN GY 29 30 1 G2=G2/RH GY 30 31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39				
29 RETURN GY 29 30 1 G2=G2/RH GY 30 31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	28	G2P=0.		
30 1 G2=G2/RH GY 30 31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	29	RETURN	THE RESERVE	
31 G2P=G2P*ZZ/RH GY 31 32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39				U.S. Salara
32 RETURN GY 32 33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	31			
33 2 T2=.5*A GY 33 34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39	32			
34 G2=-T2*C1*GZ GY 34 35 G2P=T2*GZ*C2/R2 GY 35 36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39				
35				
36 G3=RH2*G2P-A*GZ*C1 GY 36 37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39				
37 G2P=G2P*ZZ GY 37 38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39				
38 GZP=-ZZ*C1*GZ GY 38 39 RETURN GY 39			7.7	
39 RETURN GY 39				4
		그리가 사람들이 얼굴하다 하면 이 중에 다 살아보니 아니라 아니라 아니라 아니라 아니라 아니라 아니라 아니라 아니라 아니		T. T.
	40	END	GY	40-

NUMERICAL ELECTROMAGNETIC CODE (NEC)-METHOD OF MOMENTS A USER-ORIENTED CO.. (U) NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA G J BURKE ET AL. 18 JUL 77 NOSC/TD-116-VOL-1 AFHL-TR-76-320-VOL-1 F/G 12/5 4/6 AD-A075 289 UNCLASSIFIED NL 調

HFK

HFK

PURPOSE

To compute the near H field of a uniform current filament by numerical integration.

METHOD

The H field of a current filament of length Δ with uniform current distribution of magnitude I = λ is

$$H_{\phi} = \frac{k\rho!}{2} \int_{-k\Delta/2}^{k\Delta/2} \left[\frac{1}{(kr)^3} + \frac{1}{(kr)^2} \right] \exp(-jkr) \ d(kz) ,$$

where r, ρ ', z' and z are defined in the description of subroutine GH. The numerical integration is performed by the method of Romberg quadrature with variable interval width, which is described in the discussion of subroutine INTX. The integral is multiplied by $k\rho$ '/2 at HF79 and HF80 in the code.

SYMBOL DICTIONARY

This listing excludes those variables used in the numerical quadrature algorithm, which are defined under subroutine INTX.

RHK = $k\rho'$

RHKS = $(kp')^2$

SGI = imaginary part of Ho

SGR = real part of Ho

ZPK = kz' (z' = z coordinate of observation point)

ZPKX = ZPK


```
SUBROUTINE HFK (EL1, EL2, RHK, ZPKX, SGR, SGI)
                                                                                      HF
 2 C
          HFK COMPUTES THE H FIELD OF A UNIFORM CURRENT FILAMENT BY
                                                                                      HF
                                                                                           2
3 C
          NUMERICAL INTEGRATION
                                                                                      HF
                                                                                           3
          COMMON /TMH/ ZPK, RHKS
                                                                                      HF
          DATA NX, NM, NTS, RX/1, 65536, 4, 1.E-4/
                                                                                      HF
 6
          ZPK=ZPKX
                                                                                      HF
 7
          RHKS=RHK * RHK
                                                                                           7
                                                                                      HF
 8
          Z=EL1
                                                                                      HF
                                                                                           8
 9
          ZE=EL2
                                                                                      HF
                                                                                           9
          S=ZE-Z
10
                                                                                      HF
                                                                                           10
          EP=S/(10. *NM)
11
                                                                                      HF
                                                                                           11
          ZEND=ZE-EP
12
                                                                                      HF
                                                                                           12
13
          SGR=0.0
                                                                                      HF
                                                                                           13
14
          SGI=0.0
                                                                                      HF
                                                                                           14
15
          NS=NX
                                                                                      HF
                                                                                          15
16
          NT=0
                                                                                      HF
                                                                                           16
17
          CALL GH (Z,G1R,G1I)
                                                                                      HF
                                                                                           17
          DZ=S/NS
18 1
                                                                                      HF
                                                                                          18
          ZP=Z+DZ
19
                                                                                      HF
                                                                                          19
20
          IF (ZP-ZE) 3,3,2
                                                                                      HF
                                                                                          20
21 2
                                                                                      HF
          DZ=ZE-Z
                                                                                          21
22
          IF (ABS(DZ)-EP) 17,17,3
                                                                                      HF
                                                                                          22
23 3
          DZOT=DZ*.5
                                                                                      HF
                                                                                           23
          ZP=Z+DZOT
24
                                                                                      HF
                                                                                           24
          CALL GH (ZP,G3R,G3I)
25
                                                                                      HF
                                                                                          25
          ZP=Z+DZ
26
                                                                                      HF
                                                                                          26
27
          CALL GH (ZP,G5R,G5I)
                                                                                      HF
                                                                                           27
28 4
          TOOR=(G1R+G5R)*DZOT
                                                                                      HF
                                                                                           28
29
          T00I=(G1I+G5I)*DZOT
                                                                                      HF
                                                                                           29
30
          TO1R=(TOOR+DZ*G3R)*0.5
                                                                                      HF
                                                                                           30
31
          T01I=(T00I+DZ*G3I)*0.5
                                                                                      HF
                                                                                           31
          T10R=(4.0*T01R-T00R)/3.0
32
                                                                                      HF
                                                                                           32
33
          T10I=(4.0 \cdot T01I-T00I)/3.0
                                                                                      HF
                                                                                          33
34
          CALL TEST (TOIR, TIOR, TEIR, TOII, TIOI, TEII, O.)
                                                                                      HF
                                                                                           34
35
          IF (TE11-RX) 5,5,6
                                                                                      HF
                                                                                           35
36 5
          IF (TE1R-RX) 8,8,6
                                                                                      HE
                                                                                           36
37 6
          ZP=Z+DZ*0.25
                                                                                      HF
                                                                                           37
38
          CALL GH (ZP,G2R,G2I)
                                                                                      HF
                                                                                           38
          ZP=Z+DZ*0.75
39
                                                                                      HF
                                                                                           39
40
          CALL GH (ZP,G4R,G4I)
                                                                                      HF
                                                                                           40
41
          TO2R=(TO1R+DZOT*(G2R+G4R))*0.5
                                                                                      HF
                                                                                           41
          TO2I=(T01I+DZOT*(G2I+G4I))*0.5
42
                                                                                      HF
                                                                                           42
43
          T11R=(4.0°T02R-T01R)/3.0
                                                                                      HF
                                                                                           43
44
          T11I=(4.0*T02I-T01I)/3.0
                                                                                      HF
                                                                                           44
45
          T20R=(16.0*T11R-T10R)/15.0
                                                                                      HF
                                                                                           45
          T20I=(16.0*T11I-T10I)/15.0
46
                                                                                      HF
                                                                                           46
          CALL TEST (T11R, T20R, TE2R, T11I, T20I, TE2I, 0.)
47
                                                                                      HF
                                                                                           47
48
          IF (TE2I-RX) 7.7.14
                                                                                      HF
                                                                                           48
          IF (TE2R-RX) 9,9,14
49 7
                                                                                      HF
                                                                                           49
          SGR=SGR+T10R
50 8
                                                                                      HF
                                                                                           50
51
          SGI=SGI+T10I
                                                                                      HF
                                                                                           51
52
          NT=NT+2
                                                                                      HF
                                                                                           52
          GO TO 10
53
                                                                                      HF
                                                                                           53
54 9
          SGR=SGR+T20R
                                                                                      HF
                                                                                           54
55
          SGI=SGI+T20I
                                                                                      HF
                                                                                           55
56
          NT=NT+1
                                                                                      HF
                                                                                           56
          Z=Z+DZ
                                                                                      HF
57 10
                                                                                           57
          IF (Z-ZEND) 11,17,17
                                                                                      HF
58
                                                                                           58
59 11
          G1R=G5R
                                                                                      HF
                                                                                           59
          G1 I=G5 I
60
                                                                                      HF
                                                                                           60
61
          IF (NT-NTS) 1,12,12
                                                                                      HF
                                                                                           61
          IF (NS-NX) 1,1,13
62 12
                                                                                      HF
                                                                                           62
                                                                                      HF
63 13
          NS=NS/2
                                                                                           63
64
          NT=1
                                                                                      HF
                                                                                           64
```

65	GO TO 1	HF	65
66 14	NT=0	HF	66
67	IF (NS-NM) 16,15,15	HF	67
68 15	PRINT 18, Z	HF	68
69	GO TO 9	HF	69
70 16	NS=NS+2	HF	70
71	DZ=S/NS	HF	71
72	DZOT=DZ*0.5	HF	72
73	G5R=G3R	HF	73
74	G5I=G3I	HF	74
75	G3R=G2R	HF	75
76	G31=G2I	HF	76
77	GO TO 4	HF	77
78 17	CONTINUE	HF	78
79	SGR=SGR*RHK*.5	HF	79
80	SGI=SGI*RHK*.5	HF	80
81	RETURN	HF	81
82 C		HF	82
83 18	FORMAT (24H STEP SIZE LIMITED AT Z=,F10.5)	HF	83
84	END	HF	84-

HINTG

PURPOSE

To compute the near magnetic field due to a single patch in free space or over ground.

METHOD

The magnetic field is computed at the point, XI, YI, ZI due to the patch defined by parameters in COMMON/DATAJ/. The H field at $r = (XI)\hat{x} + (YI)\hat{y} + (ZI)\hat{z}$ due to patch i, centered at r_i , is approximated as:

$$\overline{H}(\overline{r}) = -\frac{1}{4\pi} \left[(1 + jkR) \frac{\exp(-jkR)}{(R/\lambda)^3} \right] \left[(\overline{R}/\lambda) \times \overline{J}_i \right] A_i/\lambda^2$$

where $\overline{R} = \overline{r} - \overline{r}_i$, and A_i is the area of patch i. This expression treats the surface currents as lumped at the center of the patch. \overline{H} is computed for unit currents along the surface vectors \hat{t}_{1i} and \hat{t}_{2i} .

When a ground is present, the code is executed twice in a loop. In the second pass, the field of the image of the patch is computed, multiplied by the reflection coefficients, and added to the direct field.

SYMBOL DICTIONARY

$$CR = cos(kR)$$

CTH = $\cos \theta$, θ = angle between the reflected ray and the normal to the ground

EXC
EYC = x, y, and z components of
$$\overline{H}$$
 excluding $(\times \overline{J_i})$ term
EZC

$$\begin{array}{c} \text{EXK} \\ \text{EYK} \\ \text{EZK} \end{array} = \overline{H} \text{ for } \overline{J}_{1} = \hat{t}_{11}$$

$$\begin{array}{c} \text{EXS} \\ \text{EYS} \\ \text{EZS} \end{array} = \overline{H} \text{ for } \overline{J}_{i} = \hat{t}_{2i}$$

F1X
F1Y
F1Z =
$$\overline{H}$$
 for $\overline{J}_i = \hat{t}_{1i}$; direct or reflected field contribution

```
= \overline{H} for \overline{J}_1 = \hat{t}_{2i}; direct or reflected field contribution
F2Y
F2Z
FPI
       = \overline{H} excluding the term (\overline{R}/\lambda) \times \overline{J}_4
       = 1 for direct field, 2 for reflected field
IP
IPERF = 1 for perfect ground, 0 otherwise
KSYMP = 1 for free space, 2 for ground
PX
       = unit vector normal to plane of incidence for reflected ray ô
PY
       = R/\lambda
RFL
       = +1 for direct field, -1 for reflected field
RK
       = kR; k = 2\pi/\lambda
RRH
RRV
       = R^2/\lambda^2
RSQ
RX )
       = \overline{R}/\lambda
RY
RZ
       = A_4/\lambda^2
       = sin (kR)
SR
T1XJ
T1YJ
T1ZJ
T2XJ
T2YJ
TIZR = z component of \hat{t}_{1i} for patch i or for the image of patch i
         reflected in the ground
T2ZR = same as T1ZR for the t24
TP
       = 2\pi
XI)
YI
       = field evaluation point r/\lambda
ZI
```

YJ YJ= position of center of patch r_i/λ

XYMAG = magnitude of \overline{R}/λ projected on the x-y plane

CONSTANTS

 $12.56637062 = 4\pi$

 $6.283185308 = 2\pi$

HINTG

```
SUBROUTINE HINTG (XI,YI,ZI)
                                                                                    HI
2
         HINTG COMPUTES THE H FIELD OF A PATCH CURRENT
                                                                                    HT
                                                                                         2
3
         COMPLEX EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, ZRATI, ZRATI2, GAM, F1X, F
                                                                                    HI
                                                                                         3
         11Y,F1Z,F2X,F2Y,F2Z,RRV,RRH,T1,FRATI
         COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ HI
                                                                                         5
         IS, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
6
                                                                                    HI
                                                                                         6
7
         COMMON /GND/ZRATI,ZRATI2,FRATI,CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR, HI
8
        1IPERF, T1, T2
                                                                                    HI
                                                                                         8
9
         EQUIVALENCE (TIXJ, CABJ), (TIYJ, SABJ), (TIZJ, SALPJ), (T2XJ, B), (T2Y HI
                                                                                         9
         1J,IND1), (T2ZJ,IND2)
DATA FPI/12.56637062/,TP/6.283185308/
10
                                                                                    HI
                                                                                        10
11
                                                                                    HI
                                                                                        11
12
         RX=XI-XJ
                                                                                    HI
                                                                                        12
13
         RY=YI-YJ
                                                                                    HI
                                                                                        13
14
         RFL=-1.
                                                                                    HI
                                                                                        14
15
          EXK=(0.,0.)
                                                                                    HI
                                                                                        15
16
          EYK=(0.,0.)
                                                                                    HI
                                                                                        16
17
          EZK=(0.,0.)
                                                                                    HI
                                                                                        17
          EXS=(0.,0.)
18
                                                                                    HI
                                                                                        18
          EYS=(0.,0.)
19
                                                                                    HI
                                                                                        19
20
          EZS=(0.,0.)
                                                                                    HI
                                                                                        20
21
          DO 5 IP=1, KSYMP
                                                                                    HI
                                                                                        21
22
          RFL=-RFL
                                                                                    HI
                                                                                        22
23
          RZ=ZI-ZJ*RFL
                                                                                    HI
                                                                                        23
24
          RSQ=RX*RX+RY*RY+RZ*RZ
                                                                                    HT
                                                                                        24
25
          IF (RSQ.LT.1.E-20) GO TO 5
                                                                                    HI
                                                                                        25
          R=SQRT(RSQ)
26
                                                                                    HI
                                                                                        26
27
          RK=TP*R
                                                                                    HI
                                                                                        27
28
          CR=COS(RK)
                                                                                    HI
                                                                                        28
29
          SR=SIN(RK)
                                                                                    HI
                                                                                        29
30
          GAM=-(CMPLX(CR,-SR)+RK*CMPLX(SR,CR))/(FPI*RSQ*R)*S
                                                                                    HI
                                                                                        30
31
          EXC=GAM*RX
                                                                                    HI
                                                                                        31
32
          EYC=GAM*RY
                                                                                    HI
                                                                                        32
33
          EZC=GAM*RZ
                                                                                    HI
                                                                                        33
34
          T1ZR=T1ZJ*RFL
                                                                                    HI
                                                                                        34
35
          T2ZR=T2ZJ*RFL
                                                                                    HI
                                                                                        35
36
          F1X=EYC*T1ZR-EZC*T1YJ
                                                                                    HI
                                                                                        36
37
          F1Y=EZC*T1XJ-EXC*T1ZR
                                                                                        37
                                                                                    HI
38
          F1Z=EXC*T1YJ-EYC*T1XJ
                                                                                    HI
                                                                                        38
39
          F2X=EYC+T2ZR-EZC+T2YJ
                                                                                    HI
                                                                                        39
40
          F2Y=EZC*T2XJ-EXC*T2ZR
                                                                                    HI
                                                                                        40
        F2Z=EXC*T2YJ-EYC*T2XJ
41
                                                                                    HI
                                                                                        41
42
          IF (IP.EQ.1) GO TO 4
                                                                                    HI
                                                                                        42
43
          IF (IPERF.NE.1) GO TO 1
                                                                                    HI
                                                                                        43
44
          F1X=-F1X
                                                                                    HI
                                                                                        44
45
          F1Y=-F1Y
                                                                                    HI
                                                                                        45
46
          F1Z=-F1Z
                                                                                    HI
                                                                                        46
47
          F2X=-F2X
                                                                                    HI
                                                                                        47
48
          F2Y=-F2Y
                                                                                    HI
                                                                                        48
49
          F2Z=-F2Z
                                                                                    HI
                                                                                        49
50
          GO TO 4
                                                                                    HI
                                                                                        50
          XYMAG=SQRT(RX*RX+RY*RY)
51 1
                                                                                    HI
                                                                                        51
52
          IF (XYMAG.GT.1.E-6) GO TO 2
                                                                                    HI
                                                                                        52
53
          PX=0.
                                                                                    HT
                                                                                        53
54
          PY=0.
                                                                                    HI
                                                                                        54
          CTH=1.
55
                                                                                    HI
                                                                                        55
          RRV=(1.,0.)
56
                                                                                    HI
                                                                                        56
57
          GO TO 3
                                                                                    HI
                                                                                        57
58 2
          PX=-RY/XYMAG
                                                                                    HI
                                                                                        58
59
          PY=RX/XYMAG
                                                                                    HI
                                                                                        59
60
          CTH=RZ/R
                                                                                        60
                                                                                    HI
61
          RRV=CSQRT(1.-ZRATI*ZRATI*(1.-CTH*CTH))
                                                                                    HI
                                                                                        61
62 3
          RRH=ZRATI*CTH
                                                                                    HI
                                                                                        62
          RRH=(RRH-RRV)/(RRH+RRV)
63
                                                                                    HI
                                                                                        63
          RRV=ZRATI*RRV
                                                                                    HI
                                                                                        64
```

65	RRV=-(CTH-RRV)/(CTH+RRV)	HI	65
66	GAM=(F1X*PX+F1Y*PY)*(RRV-RRH)	HI	66
67	F1X=F1X*RRH+GAM*PX	HI	67
68	F1Y=F1Y*RRH+GAM*PY	2000	
69	F1Z=F1Z*RRH	HI	68
70		HI	69
	GAM=(F2X*PX+F2Y*PY)*(RRV-RRH)	HI	70
71	F2X=F2X*RRH+GAM*PX	HI	71
72	F2Y=F2Y*RRH+GAM*PY	HI	72
73	F2Z=F2Z*RRH	HI	73
74 4	EXK=EXK+F1X	E / / (120)	74
75	EYK=EYK+F1Y	HI	
76	EZK=EZK+F1Z	HI	75
	마리 마른 사람들은 프로젝트 전 프로그램 (China) 아니라 이번 10년 10년 12년 12년 12년 12년 12년 12년 12년 12년 12년 12	HI	76
77	EXS=EXS+F2X	HI	77
78	EYS=EYS+F2Y	HI	78
79	EZS=EZS+F2Z	HI	79
80 5	CONTINUE		
81	RETURN	HI	80
	187 MEDASAN NEW PARKETAN DE SERVICE DE LE LEGIO DE LE CONTRE DE LA CONTRE DE LA CONTRE DE LA CONTRE DE LA CONT	HI	81
82	END	HI	82-

HSFLD

PURPOSE

To compute the near magnetic field due to constant, sine, and cosine current distributions on a segment in free space or over ground.

METHOD

The magnetic field is computed at the point XI, YI, ZI due to the segment defined by parameters in COMMON/DATAJ/. The fields computed by routine HSFLX are stored in /DATAJ/. When a ground is present, the code is executed twice in a loop. In the second pass, the field of the image of the segment is computed, multiplied by the reflection coefficients, and added to the direct field.

The field is evaluated in a cylindrical coordinate system with the source segment at the origin. The radius of a segment on which the field is evaluated is treated in the same way as for the electric field in subroutine EFLD. When the field evaluation point is not on a segment, the observation segment radius is set to zero in the call to HSFLD. Thus, as for the electric field, the ρ coordinate of the field evaluation point is computed for the surface of the observation segment as $\rho' = (\rho^2 + a^2)^{1/2}$, where ρ is the distance from the axis of the source segment to (XI, YI, ZI) and a is the radius of the observation segment. The resulting H field is multiplied by ρ/ρ' .

SYMBOL DICTIONARY

AI = radius of observation segment, if any

CTH = $\cos \theta$, θ = angle between the ray reflected from the ground and vertical

ETA = $\eta = \sqrt{\mu/\epsilon}$

HPC 1

HPK = H_{ϕ} due to cosine, constant, and sine current, respectively

HPS .

PHX
PHY
PHZ

= $(\rho/\rho')\hat{\phi}$ in the cylindrical coordinates of the source segment or its image

PX = unit vector normal to the plane of incidence of the reflected PY ray, p

QX

QY = ρ/ρ' [$R_H^{\hat{\phi}} + (R_V - R_H)(\hat{\phi} \cdot \hat{p})\hat{p}$] for reflected ray QZ

RFL = +1 for direct field, -1 for reflected field

RH = ρ'

RHOSPC = distance from coordinate origin to the point where the ray from the source to (XI, YI, ZI) reflects from the ground

RHOX)

RHOY = $\overline{\rho}$ or $\overline{\rho}/\rho$ '

RHOZ

RMAG = distance from the field evaluation point to the center of the
source segment

RRH = R_H

 $RRV = R_V$

SALPR = z component of unit vector in the direction of the source segment or its image

XI

YI = x, y, z coordinates of the field evaluation point

ZIJ

YIJ = x, y, z components of distance from center of source segment to field observation point

XSPEC = x, y coordinates of the ground plane reflection
YSPEC point

XYMAG = horizontal distance from the source segment to the field
 observation point

ZP = projection of the vector (XIJ, YIJ, ZIJ) on the axis of the source segment

ZRATX = temporary storage for ZRATI

1	SUBROUTINE HSFLD (XI,YI,ZI,AI)	HS	1
2	C HSFLD COMPUTES THE H FIELD FOR CONSTANT, SINE, AND COSINE		2
3	C ON A SEGMENT INCLUDING GROUND EFFECTS.	HS :	3
4	COMPLEX EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, ZRATI, ZRATI2, T	1, HPK, HP HS	4
5	1S, HPC, QX, QY, QZ, RRY, RRH, ZRATX, FRATI		5
6	COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EX		6
7	1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND		7
8	COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSY	MP. IFAR. HS	8
9	1IPERF,T1,T2		9
10	DATA ETA/376.73/	HS 1	
11	XIJ=XI-XJ	HS 1	
12	YIJ=YI-YJ	HS 1:	
13	RFL=-1.	HS 1	
14	DO 7 IP=1,KSYMP	HS 1	
15	RFL=-RFL	HS 1	
16	SALPR=SALPJ*RFL	HS 1	
17	ZIJ=ZI-RFL*ZJ	HS 1	
18	ZP=XIJ*CABJ+YIJ*SABJ+ZIJ*SALPR	HS 1	
19	RHOX=XIJ-CABJ*ZP	HS 1	9
20	RHOY=YIJ-SABJ*ZP	HS 2	0
21	RHOZ=ZIJ-SALPR•ZP	HS 2	
22	RH=SQRT(RHOX*RHOX+RHOY*RHOY+RHOZ*RHOZ+AI*AI)	HS 2	2
23	IF (RH.GT.1.E-10) GO TO 1	HS 2	
24	EXK=0.	HS 2	
25	EYK=0.	HS 2	
26	EZK=0.	HS 2	
27	EXS=0.	HS 2	
28	EYS=0.	HS 2	
29	EZS=0.	HS 2	9
30	EXC=0.	HS 3	0
31	EYC=0.	HS 3	
32	EZC=0.	HS 3	
33	GO TO 7	HS 3	3
34	1 RHOX=RHOX/RH	HS 3	4
35	RHOY=RHOY/RH	HS 3	5
36	RHOZ=RHOZ/RH	HS 3	6
37	PHX=SABJ*RHOZ-SALPR*RHOY	HS 3	7
38	PHY=SALPR*RHOX-CABJ*RHOZ	HS 3	8
39	PHZ=CABJ*RHOY-SABJ*RHOX	HS 3	9
40	CALL HSFLX (S,RH,ZP,HPK,HPS,HPC)	HS 4	0
41	IF (IP.NE.2) GO TO 6	HS 4	1
42	IF (IPERF.EQ.1) GO TO 5	HS 4	2
43	ZRATX=ZRATI	HS 4	3
44	RMAG=SQRT(ZP*ZP+RH*RH)	HS 4	4
45	XYMAG=SQRT(XIJ*XIJ+YIJ*YIJ)	HS 4	5
46	C	HS 4	6
47	C SET PARAMETERS FOR RADIAL WIRE GROUND SCREEN.	HS 4	7
48	C	HS 4	8
49		HS 4	9
50		HS 5	0
51	YSPEC=(YI*ZJ+ZI*YJ)/(ZI+ZJ)	HS 5	1
52		HS 5	2
53	그는 그 그 그는 그 그들은 그 선생님은 아무리는 가게 되는 것이 아무리를 하는 것이 되었다. 그 아무리는 그는 그를 하는 것이 없다.	HS 5	3
54		HS 5	4
55		HS 5	5
56		HS 5	
57		HS 5	7
58	C CALCULATION OF REFLECTION COEFFICIENTS WHEN GROUND IS SPEC	CIFIED. HS 5	8
59		HS 5	9
60		HS 6	0
61		HS 6	1
62		HS 6	2
63			3
	CO TO 1	uc c	

65	3	PX=-YIJ/XYMAG	HS 65
66		PY=XIJ/XYMAG	HS 66
67		CTH=ZIJ/RMAG	HS 67
68		RRV=CSQRT(1ZRATX*ZRATX*(1CTH*CTH))	HS 68
69	4	RRH=ZRATX*CTH	HS 69
70		RRH=-(RRH-RRV)/(RRH+RRV)	HS 70
71		RRV=ZRATX*RRV	HS 71
72		RRV=(CTH-RRV)/(CTH+RRV)	HS 72
73		QY=(PHX*PX+PHY*PY)*(RRV-RRH)	HS 73
74		QX=QY*PX+PHX*RRH	HS 74
75		QY=QY*PY+PHY*RRH	HS 75
76		QZ=PHZ*RRH	HS 76
77		EXK=EXK-HPK*QX	HS 77
78		EYK=EYK-HPK+QY	HS 78
79		EZK=EZK-HPK*QZ	HS 79
80		EXS=EXS-HPS*QX	HS 80
81		EYS=EYS-HPS*QY	HS 81
82		EZS=EZS-HPS*QZ	HS 82
83		EXC=EXC-HPC*QX	HS 83
84		EYC=EYC-HPC*QY	HS 84
85		EZC=EZC-HPC*QZ	HS 85
86		GO TO 7	HS 86
87	5	EXK=EXK-HPK*PHX	HS 87
88		EYK=EYK-HPK*PHY	HS 88
89		EZK=EZK-HPK*PHZ	HS 89
90		EXS=EXS-HPS*PHX	HS 90
91		EYS=EYS-HPS*PHY	HS 91
92		EZS=EZS-HPS*PHZ	HS 92
93		EXC=EXC-HPC*PHX	HS 93
94		EYC=EYC-HPC*PHY	HS 94
95		EZC=EZC-HPC*PHZ	HS 95
96		GO TO 7	HS 96
97	6	EXK=HPK*PHX	HS 97
98		EYK=HPK+PHY	HS 98
99		EZK=HPK*PHZ	HS 99
100		EXS=HPS*PHX	HS 100
101		EYS=HPS*PHY	HS 101
102		EZS=HPS*PHZ	HS 102
103		EXC=HPC*PHX	HS 103
104		EYC=HPC+PHY	HS 104
105		EZC=HPC*PHZ	HS 105
106	7	CONTINUE	HS 106
107		RETURN	HS. 107
108		END	HS 108-

HSFLX

PURPOSE

To compute the near H field of filamentary currents of sine, cosine, and constant distribution on a segment.

METHOD

The wire segment is considered to be located at the origin of a local cylindrical coordinate system with the point at which the H field is computed being (ρ, ϕ, z) . The coordinate geometry for a filament of current of length Δ is shown in figure 7. For a sine or cosine current distribution, the field can be written in closed form. For a current

the field is

$$\begin{split} \mathbf{H}_{\phi} & (\rho, z) = \frac{-\mathrm{j}\mathbf{I}_{0}/\lambda}{2\mathrm{k}\rho} \left\{ \exp(-\mathrm{j}\mathrm{k}\mathbf{r}_{2}) \begin{bmatrix} \cos(\mathrm{k}\Delta/2) \\ -\sin(\mathrm{k}\Delta/2) \end{bmatrix} - \exp(-\mathrm{j}\mathrm{k}\mathbf{r}_{1}) \begin{bmatrix} \cos(\mathrm{k}\Delta/2) \\ \sin(\mathrm{k}\Delta/2) \end{bmatrix} \right. \\ & - \mathrm{j}(\mathrm{k}z - \mathrm{k}\Delta/2) \frac{\exp(-\mathrm{j}\mathrm{k}\mathbf{r}_{2})}{\mathrm{k}\mathbf{r}_{2}} \begin{bmatrix} \sin(\mathrm{k}\Delta/2) \\ \cos(\mathrm{k}\Delta/2) \end{bmatrix} \\ & + \mathrm{j}(\mathrm{k}z + \mathrm{k}\Delta/2) \frac{\exp(-\mathrm{j}\mathrm{k}\mathbf{r}_{1})}{\mathrm{k}\mathbf{r}_{1}} \begin{bmatrix} -\sin(\mathrm{k}\Delta/2) \\ \cos(\mathrm{k}\Delta/2) \end{bmatrix} \right\} . \end{split}$$

 $I_0/\lambda = 1$ is assumed in this routine.

For small values of ρ with $|z| > \Delta/2$, this equation may produce large numerical errors due to cancellation of large terms. Hence, for z > 0 and $\rho/(z - \Delta/2) < 10^{-3}$, a more stable approximation for small $\rho/(z \pm \Delta/2)$ is used:

$$\begin{split} H_{\varphi}(\rho,z) &= \frac{(\rho/\lambda) \left(\text{Io}/\lambda \right)}{8\pi} \, \exp\left(-\text{jk}z \right) \left\{ \left[\frac{2\pi}{(z+\Delta/2)/\lambda} - \frac{2\pi}{(z-\Delta/2)/\lambda} \right] \left[\frac{1}{-\text{j}} \right] \right. \\ &+ \left. \left[\frac{\exp\left(\text{jk}\Delta/2 \right)}{\left(z-\Delta/2 \right)^2/\lambda^2} \left(\frac{\sin\left(\text{k}\Delta/2 \right)}{\cos\left(\text{k}\Delta/2 \right)} \right) - \frac{\exp\left(-\text{jk}\Delta/2 \right)}{\left(z+\Delta/2 \right)^2/\lambda^2} \left(\frac{-\sin\left(\text{k}\Delta/2 \right)}{\cos\left(\text{k}\Delta/2 \right)} \right) \right] \right\} \, . \end{split}$$

For z < 0, the above equation is evaluated for $H_{\varphi}(\rho, -z)$. The field of a sin kz' current is multiplied by -1 in this case, since it is an odd function of z.

Figure 7. Coordinates for Evaluating H Field of a Segment.

The field due to a constant current is obtained by numerical integration, which is performed by subroutine HFK. If ρ is zero, all field quantities are set to zero, since $H_{\hat{0}}$ is undefined.

SYMBOL DICTIONARY

CDK $= \cos(k\Delta/2)$ CONS $= -j/(2k\rho)$ DH $= \Delta/2$ $= k\Delta/2$ DK $= \exp(-jkr_1)$ EKR1 $= \exp(-jkr_2)$ EKR2 FJ = j **FJK** $= -j2\pi$ HKR, HKI = real and imaginary parts of H due to a constant current HPC = H_{ϕ} due to cosine, constant, and sine currents, respectively HPK HPS HSS = sign of z PI8 $= 8\pi$ R1 R2 RH RH2 $= \rho/(z - \Delta/2)$ RHZ

s = A

SDK = $\sin(k\Delta/2)$

TP = 2π

 $z_1 = z + \Delta/2$

 $z_2 = z - \Delta/2$

ZP = 2

```
SUBROUTINE HSFLX (S,RH,ZPX,HPK,HPS,HPC)
 1
                                                                                    HX
 2
   C
         CALCULATES H FIELD OF SINE COSINE, AND CONSTANT CURRENT OF SEGMENT HX
                                                                                         2
 3
          COMPLEX FJ.FJK, EKR1, EKR2, T1, T2, CONS, HPS, HPC, HPK
                                                                                    HX
         DIMENSION FJX(2), FJKX(2)
 4
                                                                                    HX
          EQUIVALENCE (FJ,FJX), (FJK,FJKX)
 5
                                                                                    HX
                                                                                         5
 6
          DATA TP/6.283185308/,FJX/0.,1./,FJKX/0.,-6.283185308/
                                                                                    HX
                                                                                         6
 7
          DATA PI8/25.13274123/
                                                                                    HX
 8
          IF (RH.LT.1.E-10) GO TO 6
                                                                                    HX
                                                                                         8
 9
          IF (ZPX.LT.O.) GO TO 1
                                                                                    HX
                                                                                         9
10
          ZP=ZPX
                                                                                    HX
                                                                                        10
         HSS=1.
11
                                                                                    HX
                                                                                        11
          GO TO 2
12
                                                                                    HX
                                                                                        12
13 1
          ZP=-ZPX
                                                                                    HX
                                                                                        13
          HSS=-1.
14
                                                                                    HX
                                                                                        14
15 2
          DH=.5*S
                                                                                    HX
                                                                                        15
          Z1=ZP+DH
16
                                                                                    HX
                                                                                        16
17
          Z2=ZP-DH
                                                                                    HX
                                                                                        17
          IF (Z2.LT.1.E-7) GO TO 3
18
                                                                                    HX
                                                                                        18
19
          RHZ=RH/Z2
                                                                                    HX
                                                                                        19
20
          GO TO 4
                                                                                    HX
                                                                                        20
21 3
          RHZ=1.
                                                                                    HX
                                                                                        21
22 4
          DK=TP*DH
                                                                                    HX
23
          CDK=COS(DK)
                                                                                    HX
                                                                                        23
24
          SDK=SIN(DK)
                                                                                    HX
                                                                                        24
          CALL HFK (-DK, DK, RH+TP, ZP+TP, HKR, HKI)
25
                                                                                    HX
                                                                                        25
          HPK=CMPLX(HKR,HKI)
26
                                                                                    HX
                                                                                        26
27
          IF (RHZ.LT.1.E-3) GO TO 5
                                                                                    HX
                                                                                        27
          RH2=RH+RH
28
                                                                                    HX
                                                                                        28
29
          R1=SQRT(RH2+Z1 *Z1)
                                                                                    HX
                                                                                        29
30
          R2=SQRT(RH2+Z2*Z2)
                                                                                    HX
                                                                                        30
31
          EKR1=CEXP(FJK*R1)
                                                                                    HX
                                                                                        31
          EKR2=CEXP(FJK*R2)
32
                                                                                    HX
                                                                                        32
          T1=Z1 * EKR1 /R1
33
                                                                                    HX
                                                                                        33
34
          T2=Z2*EKR2/R2
                                                                                    HX
                                                                                        34
35
          HPS=(CDK*(EKR2-EKR1)-FJ*SDK*(T2+T1))*HSS
                                                                                    HX
                                                                                        35
36
          HPC=-SDK*(EKR2+EKR1)-FJ*CDK*(T2-T1)
                                                                                    HX
                                                                                        36
37
          CONS=-FJ/(2. *TP*RH)
                                                                                    HX
                                                                                        37
38
          HPS=CONS*HPS
                                                                                    HX
                                                                                        38
          HPC=CONS*HPC
39
                                                                                    HX
                                                                                        39
40
          RETURN
                                                                                    HX
                                                                                        40
41 5
          EKR1=CMPLX(CDK,SDK)/(Z2*Z2)
                                                                                    HX
                                                                                        41
42
          EKR2=CMPLX(CDK,-SDK)/(Z1+Z1)
                                                                                    HX
                                                                                        42
43
          T1=TP^{\bullet}(1./Z1-1./Z2)
                                                                                    HX
                                                                                        43
          T2=CEXP(FJK*ZP)*RH/PI8
44
                                                                                    HX
                                                                                        44
45
          HPS=T2*(T1+(EKR1+EKR2)*SDK)*HSS
                                                                                    HX
                                                                                        45
          HPC=T2*(-FJ*T1+(EKR1-EKR2)*CDK)
46
                                                                                    HX
                                                                                        46
47
          RETURN
                                                                                    HX
                                                                                        47
48 6
          HPS=(0.,0.)
                                                                                    HX
                                                                                        48
         HPC=(0.,0.)
49
                                                                                    HX
                                                                                        49
50
          HPK=(0.,0.)
                                                                                    HX
                                                                                        50
51
          RETURN
                                                                                    HX
                                                                                        51
52
          END
                                                                                    HX
                                                                                        52-
```

INTRP

PURPOSE

To evaluate the Sommerfeld integral contributions to the field of a source over ground by interpolation in precomputed tables.

METHOD

The interpolation region in R_1 and θ is covered by three grids as shown in Figure 12 of Part I. The interpolation tables and the number of data points and the boundaries of each grid are read from file 21 and stored in COMMON/GGRID/ by the main program. In subroutine INTRP the variable x corresponds to R_1 and y to θ .

The three interpolation tables are stored in the arrays AR1, AR2 and AR3 in COMMON/GGRID/. For grid i, ARi(I,J,K) is the value at

$$x_{I} = s_{i} + (I - 1) \Delta x_{i}, I = 1, ... N_{i}$$

 $y_{J} = t_{i} + (J - 1) \Delta y_{i}, J = 1, ... M_{i}$

where
$$s_i = XSA(i)$$
, $\Delta x_i = DXA(i)$, $N_i = NXA(i)$
 $t_i = YSA(i)$, $\Delta y_i = DYA(i)$, $M_i = NYA(i)$

Each array contains values for I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} and I_{φ}^{H} from equations 156 through 159 of Part I for K equal to 1 through 4, respectively. The grid boundaries and density of points can be varied but the relative positions of the three grids must be as shown in Figure 12 of Part I for the logic for choosing the correct grid to work correctly. In particular, XSA(1), YSA(1) and YSA(2) must be zero; and XSA(2) and XSA(3) must be equal.

For a given x and y the values of I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} and I_{φ}^{H} are found by bivariate cubic interpolation and returned in the variables F1, F2, F3 and F4. The grid containing (x,y) is determined and a four by four point region containing (x,y) is selected. If x_{i} and y_{k} are the minimum values of x and y in the four by four point region then four interpolation polynomials in x are computed for $y = y_{i}$ with j = k, k + 1, k + 2, k + 3. These are

$$f_{ij}(x) = a_{ij}\xi_i^3 + b_{ij}\xi_i^2 + c_{ij}\xi_i + d_{ij}$$
where $\xi_i = (x - x_{i+1})/\Delta x$

$$a_{ij} = \frac{1}{6} [F_{i+3,j} - F_{i,j} + 3(F_{i+1,j} - F_{i+2,j})]$$

$$b_{ij} = \frac{1}{2} [F_{i,j} - 2F_{i+1,j} + F_{i+2,j}]$$

$$c_{ij} = F_{i+2,j} - \frac{1}{6} [2F_{i,j} + 3F_{i+1,j} + F_{i+3,j}]$$

$$d_{ij} = F_{i+1,j}$$

$$F_{i,j} = F(x_i, y_j)$$

A cubic polynomial in y, fit to the points $f_{ij}(x)$ for j = k, ... k + 3 is then evaluated for the given y to obtain the interpolated value $\hat{F}(x,y)$

$$\hat{\mathbf{f}}(\mathbf{x}, \mathbf{y}) = \frac{1}{6} (p_1 \eta_k^3 + p_2 \eta_k^2 + p_3 \eta_k) + p_4$$

$$\eta_k = (\mathbf{y} - \mathbf{y}_{k+1}) / \Delta \mathbf{y}$$

$$p_1 = f_{i,k+3}(\mathbf{x}) - f_{ik}(\mathbf{x}) + 3 [f_{i,k+1}(\mathbf{x}) - f_{i,k+2}(\mathbf{x})]$$

$$p_2 = 3[f_{i,k}(\mathbf{x}) - 2f_{i,k+1}(\mathbf{x}) + f_{i,k+2}(\mathbf{x})]$$

$$p_3 = 6f_{i,k+2}(\mathbf{x}) - 2f_{i,k}(\mathbf{x}) - 3f_{i,k+1}(\mathbf{x}) - f_{i,k+3}(\mathbf{x})$$

$$p_4 = f_{i,k+1}$$

To reduce computation time the coefficients a_{ij} , b_{ij} , c_{ij} and d_{ij} are saved as long as successive points (x,y) fall in the same four by four point region of a grid. In addition the four by four point interpolation regions are restricted to starting indices i and k with values 3n + 1, n = 0, $1 \dots$ Thus the regions do not overlap. This is less accurate than centering the region on each x,y point but requires less frequent computation of the coefficients. At the outer edges of a grid the regions are chosen to extend to the edge but not beyond. If x,y is out of the entire three grid region the nearest four by four point region is used for extrapolation.

The coefficients a;, b;, c; and d; are stored in two dimensional arrays from IT 106 to IT 109. When they are used, from IT 118 to

INTRP

IT 149 they are used as simple variables $(A(1,1) \equiv A11)$ to save time. Also the three dimensional arrays AR1, AR2, and AR3 are used as linear arrays from IT 92 to IT 105. The equivalent three subscripts are shown in the comment at IT 91.

SYMBOL DICTIONARY

Aij	$= A(i,j) = a_{i,j}$
AR1	= ARL1 = grid 1
AR2	= ARL2 = grid 2
AR3	= ARL3 = grid 3
Bij	$= B(i,j) = b_{ij}$
Cij	$= C(i,j) = c_{ij}$
Dij	$= D(i,j) = d_{ij}$
DX	= Ax for grid being used
DXA	= array of Δx values for the three grids
DY	= Δy for grid being used
DYA	= array of Δy values
EPSCF	$= \epsilon_1 - j\sigma/\omega\epsilon_0$
Fl	$= \mathbf{r}_{\mathbf{\rho}}^{\mathbf{v}}$
F2	$= \mathbf{I}_{\mathbf{Z}}^{\mathbf{V}}$
F3	= I ^H _p
F4	$= \mathbf{I}_{\phi}^{H}$
FX1	$= f_{i,j}(x)$
FX2	$= f_{i,j+1}(x)$
FX3	$= f_{i,j+2}(x)$
FX4	$= f_{i,j+3}(x)$
IADD	= index for linear arrays ARL1, etc.
IADZ	= initial value for IADD
IGR	= grid number for present x,y
IGRS	= grid number for last x,y
IX	= x index of the grid coordinate just less than x
IXEG	= x index of the upper edge of the last normally

located interpolation patch when a patch out of the

```
normal locations is used at the outer edge of a grid,
                    -10000 otherwise
IXS
                  = 1 plus the x index of the lower edge of 4 by 4 point
                    interpolation patch
                  = same for y as IX, IXEG and IXS
IY, IYEG, IYS
                  = 1, 2, 3, 4 for I_{\rho}^{V}, I_{z}^{V}, I_{\rho}^{H}, I_{\phi}^{H}
ND
                  = NDA for the particular grid
                  = array containing the first dimensions of AR1, AR2 and
NDA
                  = NDPA for a particular grid
NDP
NDPA
                  = array containing the product of the first two
                    dimensions in AR1, AR2 and AR3
NXA
                  = number of x values in each grid
NXM2
                  = NXA - 2 for a particular grid
NXMS
                  = upper x index of the last normally located patch at
                    the edge of a grid
NYA, NYM2, NYMS
                  = same for y as NXA, NXM2 and NXMS
P1, P2, P3, P4
                  = P1, P2, P3, P4
X
                  = XSA for the present grid
XS
                  = XSA(2) through equivalence
XS2
XSA
                  = array of values of x at lower edge of each grid (s;)
XX
                  = x_{i+1} for computing \xi_i
XZ
Y
YS
                  = YSA for present grid
                  = YSA(3) through equivalence
YS3
YSA
                  = array of values of y at lower edge of each grid (t.)
YY
```

= yk+1 for computing nk

YZ

```
SUBROUTINE INTRP (X,Y,F1,F2,F3,F4)
                                                                                 IT
2 C
                                                                                 IT
                                                                                       2
3 C
         INTRP USES BIVARIATE CUBIC INTERPOLATION TO OBTAIN THE VALUES OF
                                                                                       3
                                                                                 IT
  C
 4
         4 FUNCTIONS AT THE POINT (X,Y).
                                                                                 IT
5
  C
                                                                                       5
 6
         COMPLEX F1,F2,F3,F4,A,B,C,D,FX1,FX2,FX3,FX4,P1,P2,P3,P4,A11,A12,A1 IT
                                                                                       6
        13,A14,A21,A22,A23,A24,A31,A32,A33,A34,A41,A42,A43,A44,B11,B12,B13, IT
                                                                                       7
 8
        2B14, B21, B22, B23, B24, B31, B32, B33, B34, B41, B42, B43, B44, C11, C12, C13, C1 IT
                                                                                       8
 9
        34,C21,C22,C23,C24,C31,C32,C33,C34,C41,C42,C43,C44,D11,D12,D13,D14, IT
                                                                                       9
10
        4D21, D22, D23, D24, D31, D32, D33, D34, D41, D42, D43, D44
                                                                                      10
11
         COMPLEX AR1, AR2, AR3, ARL1, ARL2, ARL3, EPSCF
                                                                                      11
12
         COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY IT
                                                                                      12
13
        1A(3), XSA(3), YSA(3), NXA(3), NYA(3)
                                                                                      13
14
         DIMENSION NDA(3), NDPA(3)
                                                                                      14
15
         DIMENSION A(4,4), B(4,4), C(4,4), D(4,4), ARL1(1), ARL2(1), ARL3(1 IT
                                                                                      15
16
                                                                                      16
17
          EQUIVALENCE (A(1,1),A11), (A(1,2),A12), (A(1,3),A13), (A(1,4),A14) IT
                                                                                      17
18
         EQUIVALENCE (A(2,1),A21), (A(2,2),A22), (A(2,3),A23), (A(2,4),A24) IT
                                                                                      18
19
          EQUIVALENCE (A(3,1),A31), (A(3.2),A32), (A(3,3),A33), (A(3,4),A34) IT
                                                                                      19
20
          EQUIVALENCE (A(4,1),A41), (A(4,2),A42), (A(4,3),A43), (A(4,4),A44) IT
                                                                                      20
21
          EQUIVALENCE (B(1,1),B11), (B(1,2),B12), (B(1,3),B13), (B(1,4),B14) IT
                                                                                      21
22
          EQUIVALENCE (B(2,1),B21), (B(2,2),B22), (B(2,3),B23), (B(2,4),B24) IT
                                                                                      22
          EQUIVALENCE (B(3,1),B31), (B(3,2),B32), (B(3,3),B33), (B(3,4),B34) IT
23
          EQUIVALENCE (B(4,1),B41), (B(4,2),B42), (B(4,3),B43), (B(4,4),B44) IT
24
                                                                                      24
25
          EQUIVALENCE (C(1,1),C11), (C(1,2),C12), (C(1,3),C13), (C(1,4),C14) IT
                                                                                      25
26
          EQUIVALENCE (C(2,1),C21), (C(2,2),C22), (C(2,3),C23), (C(2,4),C24) IT
                                                                                      26
27
          EQUIVALENCE (C(3,1),C31), (C(3,2),C32), (C(3,3),C33), (C(3,4),C34) IT
                                                                                      27
28
          EQUIVALENCE (C(4,1),C41), (C(4,2),C42), (C(4,3),C43), (C(4,4),C44) IT
                                                                                      28
29
          EQUIVALENCE (D(1,1),D11), (D(1,2),D12), (D(1,3),D13), (D(1,4),D14) IT
                                                                                      29
30
          EQUIVALENCE (D(2,1),D21), (D(2,2),D22), (D(2,3),D23), (D(2,4),D24)
                                                                                      30
                                                                                 IT
31
          EQUIVALENCE (D(3,1),D31), (D(3,2),D32), (D(3,3),D33), (D(3,4),D34)
                                                                                      31
32
          EQUIVALENCE (D(4,1),D41), (D(4,2),D42), (D(4,3),D43), (D(4,4),D44) IT
                                                                                      32
33
          EQUIVALENCE (ARL1,AR1), (ARL2,AR2), (ARL3,AR3), (XS2,XSA(2)), (YS3 IT
                                                                                      33
34
         1, YSA(3))
35
          DATA IXS, IYS, IGRS/-10,-10,-10/, DX, DY, XS, YS/1.,1.,0.,0./
                                                                                  IT
                                                                                      35
36
          DATA NDA/11,17,9/,NDPA/110,85,72/,IXEG,IYEG/0,0/
                                                                                      36
                                                                                  TT
37
          IF (X.LT.XS.OR.Y.LT.YS) GO TO 1
                                                                                  IT
                                                                                      37
38
          IX=INT((X-XS)/DX)+1
                                                                                  IT
                                                                                      38
39
          IY=INT((Y-YS)/DY)+1
                                                                                      39
                                                                                  IT
40 C
                                                                                      40
                                                                                  IT
41 C
          IF POINT LIES IN SAME 4 BY 4 POINT REGION AS PREVIOUS POINT, OLD
                                                                                  IT
                                                                                      41
42 C
          VALUES ARE REUSED
                                                                                  IT
                                                                                      42
43 C
                                                                                  IT
                                                                                      43
44
          IF (IX.LT.IXEG.OR.IY.LT.IYEG) GO TO 1
                                                                                  IT
                                                                                      44
45
          IF (IABS(IX-IXS).LT.2.AND.IABS(IY-IYS).LT.2) GO TO 12
                                                                                      45
                                                                                  IT
46 C
                                                                                  IT
                                                                                      46
47
   C
          DETERMINE CORRECT GRID AND GRID REGION
                                                                                  TT
                                                                                      47
48 C
                                                                                  IT
                                                                                      48
49 1
          IF (X.GT.XS2) GO TO 2
                                                                                  IT
                                                                                      49
50
          IGR=1
                                                                                      50
                                                                                  IT
51
          GO TO 3
                                                                                  IT
                                                                                      51
52 2
          IGR=2
                                                                                  IT
                                                                                      52
          IF (Y.GT.YS3) IGR=3
53
                                                                                  IT
                                                                                      53
          IF (IGR.EQ.IGRS) GO TO 4
54 3
                                                                                      54
                                                                                  IT
55
          IGRS=IGR
                                                                                  IT
                                                                                      55
56
          DX=DXA(IGRS)
                                                                                  IT
                                                                                      56
57
          DY=DYA(IGRS)
                                                                                  IT
                                                                                      57
58
          XS=XSA(IGRS)
                                                                                  IT
                                                                                      58
59
          YS=YSA(IGRS)
                                                                                  IT
                                                                                      59
60
          NXM2=NXA(IGRS)-2
                                                                                  IT
                                                                                      60
61
          NYM2=NYA(IGRS)-2
                                                                                  IT
                                                                                      61
62
          NXMS = ((NXM2 + 1)/3) \cdot 3 + 1
                                                                                  IT
                                                                                      62
63
          NYMS = ((NYM2 + 1)/3) \cdot 3 + 1
                                                                                  IT
                                                                                      63
64
          ND=NDA(IGRS)
                                                                                  IT
```

SOCIAL MANAGEMENT (MANAGEMENT) MANAGEMENT (MANAGEMENT)

```
NDP=NDPA(IGRS)
65
                                                                                   IT
                                                                                       65
66
          IX=INT((X-XS)/DX)+1
                                                                                   IT
                                                                                       66
          IY=INT((Y-YS)/DY)+1
67
                                                                                   IT
                                                                                       67
68 4
          IXS=((IX-1)/3)*3+2
                                                                                   IT
                                                                                       68
69
          IF (IXS.LT.2) IXS=2
                                                                                   IT
                                                                                       69
70
          IXEG=-10000
                                                                                   IT
                                                                                       70
71
          IF (IXS.LE.NXM2) GO TO 5
                                                                                   IT
                                                                                       71
72
          IXS=NXM2
                                                                                   IT
                                                                                       72
          IXEG=NXMS
73
                                                                                   IT
                                                                                       73
74 5
          IYS=((IY-1)/3)*3+2
                                                                                   IT
                                                                                       74
75
          IF (IYS.LT.2) IYS=2
                                                                                   IT
                                                                                       75
76
          IYEG=-10000
                                                                                   IT
                                                                                       76
77
          IF (IYS.LE.NYM2) GO TO 6
                                                                                   IT
                                                                                       77
          IYS=NYM2
78
                                                                                   IT
                                                                                       78
79
          IYEG=NYMS
                                                                                   IT
                                                                                       79
80 C
                                                                                   IT
                                                                                       80
81 C
          COMPUTE COEFFICIENTS OF 4 CUBIC POLYNOMIALS IN X FOR THE 4 GRID
                                                                                   IT
                                                                                       81
82 C
          VALUES OF Y FOR EACH OF THE 4 FUNCTIONS
                                                                                   IT
                                                                                       82
83 C
                                                                                   IT
                                                                                       83
84 6
          IADZ=IXS+(IYS-3)*ND-NDP
                                                                                   IT
                                                                                       84
85
          DO 11 K=1,4
                                                                                   IT
                                                                                       85
          TADZ=TADZ+NDP
86
                                                                                   IT
                                                                                       86
87
          IADD=IADZ
                                                                                   IT
                                                                                       87
88
          DO 11 I=1,4
                                                                                   IT
                                                                                       88
          IADD=IADD+ND
89
                                                                                   IT
                                                                                       89
          GO TO (7,8,9), IGRS
90
                                                                                   IT
                                                                                       90
          P1=AR1(IXS-1,IYS-2+I,K)
91 C
                                                                                   IT
                                                                                       91
92 7
          P1=ARL1(IADD-1)
                                                                                   IT
                                                                                       92
          P2=ARL1(IADD)
93
                                                                                   IT
                                                                                       93
          P3=ARL1(IADD+1)
94
                                                                                   IT
                                                                                       94
95
          P4=ARL1(IADD+2)
                                                                                   IT
                                                                                       95
          GO TO 10
96
                                                                                   IT
                                                                                       96
          P1=ARL2(IADD-1)
97 8
                                                                                       97
                                                                                   IT
98
          P2=ARL2(IADD)
                                                                                   IT
                                                                                       98
99
          P3=ARL2(IADD+1)
                                                                                   IT
                                                                                       99
          P4=ARL2(IADD+2)
                                                                                   IT 100
100
101
          GO TO 10
                                                                                   IT 101
102 9
          P1=ARL3(IADD-1)
                                                                                   IT 102
103
          P2=ARL3(IADD)
                                                                                   IT 103
          P3=ARL3(IADD+1)
104
                                                                                   IT 104
105
          P4=ARL3(IADD+2)
                                                                                   IT 105
106 10
          A(I,K)=(P4-P1+3.°(P2-P3))*.166666667
                                                                                   IT 106
          B(I,K)=(P1-2.*P2+P3)*.5
107
                                                                                   IT 107
108
          C(I,K)=P3-(2.*P1+3.*P2+P4)*.166666667
                                                                                   IT 108
          D(I,K)=P2
109 11
                                                                                   IT 109
110
          XZ=(IXS-1)*DX+XS
                                                                                   IT 110
111
          YZ=(IYS-1)*DY+YS
                                                                                   IT 111
112 C
                                                                                   IT 112
113 C
          EVALUATE POLYMOMIALS IN X AND THEN USE CUBIC INTERPOLATION IN Y
                                                                                   IT 113
          FOR EACH OF THE 4 FUNCTIONS.
                                                                                   IT 114
114 C
115 C
                                                                                   IT 115
116 12
          XX=(X-XZ)/DX
                                                                                   IT 116
117
          YY=(Y-YZ)/DY
                                                                                   IT 117
118
          FX1=((A11*XX+B11)*XX+C11)*XX+D11
                                                                                   IT 118
          FX2=((A21*XX+B21)*XX+C21)*XX+D21
                                                                                   IT 119
119
          FX3=((A31*XX+B31)*XX+C31)*XX+D31
FX4=((A41*XX+B41)*XX+C41)*XX+D41
120
                                                                                   IT 120
121
                                                                                   IT 121
122
          P1=FX4-FX1+3.*(FX2-FX3)
                                                                                   IT 122
123
          P2=3.*(FX1-2.*FX2+FX3)
                                                                                   IT 123
124
          P3=6. *FX3-2. *FX1-3. *FX2-FX4
                                                                                   IT 124
125
          F1=((P1*YY+P2)*YY+P3)*YY*.166666667+FX2
                                                                                   IT 125
126
          FX1=((A12*XX+B12)*XX+C12)*XX+D12
                                                                                   IT 126
127
          FX2=((A22*XX+B22)*XX+C22)*XX+D22
                                                                                   IT 127
          FX3=((A32*XX+B32)*XX+C32)*XX+D32
128
                                                                                   IT 128
```

INTRP

129	FX4=((A42*XX+842)*XX+C42)*XX+D42	IT 129
130	P1=FX4-FX1+3.*(FX2-FX3)	IT 130
131	P2=3.*(FX1-2.*FX2+FX3)	IT 131
132	P3=6.*FX3-2.*FX1-3.*FX2-FX4	IT 132
133	F2=((P1*YY+P2)*YY+P3)*YY*.1666666667+FX2	IT 133
134	FX1=((A13*XX+B13)*XX+C13)*XX+D13	IT 134
135	FX2=((A23*XX+B23)*XX+C23)*XX+D23	IT 135
136	FX3=((A33*XX+B33)*XX+C33)*XX+D33	IT 136
137	FX4=((A43*XX+B43)*XX+C43)*XX+D43	IT 137
138	P1=FX4-FX1+3.*(FX2-FX3)	IT 138
139	P2=3.*(FX1-2.*FX2+FX3)	IT 139
140	P3=6.*FX3-2.*FX1-3.*FX2-FX4	IT 140
141	F3=((P1*YY+P2)*YY+P3)*YY*.1666666667+FX2	IT 141
142	FX1=((A14*XX+B14)*XX+C14)*XX+D14	IT 142
143	FX2=((A24*XX+B24)*XX+C24)*XX+D24	IT 143
144	FX3=((A34*XX+B34)*XX+C34)*XX+D34	IT 144
145	FX4=((A44*XX+B44)*XX+C44)*XX+D44	IT 145
146	P1=FX4-FX1+3.*(FX2-FX3)	IT 146
147	P2=3.*(FX1-2.*FX2+FX3)	IT 147
148	P3=6.*FX3-2.*FX1-3.*FX2-FX4	IT 148
149	F4=((P1*YY+P2)*YY+P3)*YY*.1666666667+FX2	IT 149
150	RETURN	IT 150
151	END	IT 151-

INTX

PURPOSE

To numerically compute the integral of the function exp(jkr)/kr.

METHOD

For evaluation of the field due to a segment, a local cylindrical coordinate system is defined with origin at the center of the segment and z axis in the segment direction. This geometry is illustrated in the discussion of subroutine GF. Subroutine INTX is called by subroutine EFLD to evaluate the integral

$$G = \int_{-k\Delta/2}^{k\Delta/2} \frac{\exp(-jkr)}{kr} d(kz) ,$$

where

$$r = [\rho'^2 + (z - z')^2]^{1/2}$$
,

and other symbols are defined in the discussion of subroutine GF.

The numerical integration technique of Romberg integration with variable interval width is used (refs. 3 and 4). The Romberg integration formula is obtained from the trapezoidal formula by an iterative procedure (ref. 1). The trapezoidal rule for integration of the function f(x) over an interval (a, b) using 2^k subintervals is

$$T_{0k} = [(b-a)/N][(1/2) f_0 + f_1 + ... + f_{N-1} + (1/2)f_N]$$

where

$$N = 2^{k}$$

$$f_{i} = f(x_{i})$$

$$x_{i} = a + i(b - a)/N$$

These trapezoidal-rule answers are then used in the iterative formula

$$T_{m,n} = (4^m T_{m-1,n+1} - T_{m-1,n})/(4^m - 1)$$
.

The results $T_{m,n}$ may be arranged in a triangular matrix of the form

where the elements in the first column, T_{0k} , represent the trapezoidal rule results, and the elements in the diagonal, T_{k0} , are the Romberg integration results for 2^k subintervals.

Convergence to increasingly more accurate answers takes place down the first column and the diagonal, as well as towards the right along the rows. The row convergence generally provides a more realistic indication of error magnitude than two successive trapezoidal-rule or Romberg answers.

This convergence along the rows is used to determine the interval width in the variable interval-width scheme. The complete integration interval is first divided into a minimum number of subintervals (presently set to 1) and T_{00} , T_{01} , and T_{10} are computed on the first subinterval. The relative difference of T_{01} and T_{10} is then computed, and if less than the error criterion, Rx, T10 is accepted as the integral over that interval, and integration proceeds to the next interval. If the difference of Tol and Tio is too great, To2, T11 and T20 are computed. The relative difference of T11 and T_{20} is then computed, and if less than R_x , T_{20} is accepted as the integral over the subinterval. If the difference of T_{11} and T_{20} is too great, the subinterval is divided in half and the process repeated starting with T_{00} for the left hand, new subinterval. The subinterval is repeatedly halved until convergence to less than R is found. The process is repeated for successive subintervals until the right-hand side of the integration interval is reached. When convergence has been obtained with a given subinterval size for a few times, the routine attempts doubling the subinterval size to maintain the largest subinterval size that will give the required accuracy. Thus, the routine will use many points in a rapidly changing region of a function and fewer points where the function is smoothly varying.

Since the function to be integrated is complex, the convergence of both real and imaginary parts is tested and both must be less than R_{χ} . The same subinterval sizes are used for real and imaginary parts.

When the field of a segment is being computed at the segment's own center, the length r becomes

$$r = [b^2 + (z - z')^2]^{1/2}$$
,

where b is the wire radius. For small values of b, the real part of the integrand is sharply peaked and, hence, difficult to integrate numerically. Hence, the integral is divided into the components

$$G' = \int_{-k\Delta/2}^{k\Delta/2} \frac{\exp(-jkr) - 1}{kr} d(kz)$$

$$G'' = \int_{-k\Delta/2}^{k\Delta/2} \frac{1}{kr} d(kz)$$

$$G = G' + G''$$

G' must be computed numerically; however, the integrand is no longer peaked. G'', which contains the sharp peak, can be computed as

$$G'' = 2 \log \left(\frac{\sqrt{b^2 + \Delta^2} + \Delta}{b} \right)$$

To further reduce integration time for the self term, the integral of G' is computed from $-k\Delta/2$ to 0, and the result doubled to obtain G'.

SYMBOL DICTIONARY

ABS = external routine (absolute value)

ALOG = external routine (natural log)

B = wire radius, b/λ

DZ = subinterval size on which T_{00} , T_{01} , ... are computed

DZOT = 0.5 DZ

EL1 = $-k\Delta/2$

 $EL2 = k\Delta/2$

EP = tolerance for ending the integration interval

FNM = real number equivalent of NM

FNS = real number equivalent of NS

GF = external routine (integrand)

G1I = imaginary part of f1

GIR = real part of f,

G2I = imaginary part of f G2R = real part of f G3I = imaginary part of f G3R = real part of f3 G4I = imaginary part of f G4R = real part of f G5I = imaginary part of f5 G5R = real part of f = indication of self term integration when equal to zero IJ NM = minimum allowed subinterval size is k∆/NM NS = present subinterval size is kΔ/NS NT = counter to control increasing of subinterval size NTS = larger values retard increasing of subinterval size = maximum allowed subinterval size is kΔ/NX NX = R RX $= \Delta/\lambda$ SGI = imaginary part of G SGR = real part of G SQRT = external routine (square root) TEST = external routine (computes relative convergence) TEII = relative difference of T_{01} and T_{10} for imaginary part TEIR = relative difference of T_{01} and T_{10} for real part TE2I = relative difference of T_{11} and T_{20} for imaginary part TE2R = relative difference of T_{11} and T_{20} for real part TOOI = imaginary part Too TOOR = real part Too TOII = imaginary part Tol TOIR = real part Tol TO2I = imaginary part To2 TO2R = real part To2 T10I = imaginary part T10 T10R = real part of T10 TllI = imaginary part of T T11R = real part of T T20I = imaginary part of T20 T20R = real part of T20

Z = integration variable at left-hand side of subinterval

 $ZE = k\Delta/2$

ZEND = $k\Delta/2$ - EP; EP = tolerance term

ZP = integration variable

CONSTANTS

 $65536 = 2^{16} = 1$ imit of minimum subinterval size (NM)

1.E-4 = error criterion, R_x

1	SUBROUTINE INTX (EL1, EL2, B, IJ, SGR, SGI)	IN	1
3 (IN	2
4			3
5	그는 내가 있는 것이 없는 것이 없습니 없는 것이 없습니 없는 것이 없습니 없는 것이 없습니 없습니 없는 것이 없습니 없습니 없습니 없습니 없습니 없습니 없습니 없습니 없다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면 없었다면	IN	4
6	맛요요요요요. 하는데 이렇게 되었다. 하는데 하는데 하는데 이렇게 되었다면 하는데 이렇게 되었다. 그는데	IN	5
7	DATA NX,NM,NTS,RX/1,65536,4,1.E-4/	IN	7
8	Z=EL1	IN	8
9	ZE=EL2	IN	9
10	IF (IJ.EQ.0) ZE=0.	IN	10
11	S=ZE-Z	IN	11
12	FNM=NM	IN	12
13	EP=S/(10.*FNM)	IN	13
14	ZENO=ZE-EP	IN	14
15	SGR=0.	IN	15
16	SGI=0.	IN	16
17	NS=NX	IN	17
18	NT=0	IN	18
19	CALL GF (Z,G1R,G1I)	IN	19
20	1 FNS=NS	IN	20
21	DZ=S/FNS	IN	21
22	ZP=Z+DZ	IN	22
23	IF (ZP-ZE) 3,3,2	IN	23
24		IN	24
25	IF (ABS(DZ)-EP) 17,17,3	IN	25
26	3 DZOT=DZ*.5	IN	26
27	ZP=Z+DZOT	IN	27
28	CALL GF (ZP,G3R,G3I)	IN	28
29	ZP=Z+DZ	IN	29
30	CALL GF (ZP,G5R,G5I)	IN	30
31		IN	31
32	T00I=(G1I+G5I)*DZOT	IN	32
33	T01R=(T00R+DZ*G3R)*0.5	IN	33
34 35	T01I=(T00I+DZ*G3I)*0.5 T10R=(4.0*T01R-T00R)/3.0	IN	34
36	T10I=(4.0*T01I-T00I)/3.0	IN	35 36
37		IN	37
38		IN	38
39		IN	39
40	CALL TEST (TOIR,TIOR,TEIR,TOII,TIOI,TEII,O.)	IN	40
41	IF (TE1I-RX) 5,5,6	IN	41
42		IN	42
43	6 ZP=Z+DZ+0.25	IN	43
44	CALL GF (ZP,G2R,G2I)	IN	44
45	ZP=Z+DZ*0.75	IN	45
46	CALL GF (ZP,G4R,G4I)	IN	46
47	T02R=(T01R+DZOT*(G2R+G4R))*0.5	IN	47
48	TO2I=(T01I+DZOT*(G2I+G4I))*0.5	IN	48
49	T11R=(4.0*T02R-T01R)/3.0	IN	49
50	T11I=(4.0*T02I-T01I)/3.0	IN	50
51	T20R=(16.0*T11R-T10R)/15.0	IN	51
52	T20I=(16.0*T11I-T10I)/15.0	IN	52
53		IN	53
54		IN	54
55		IN	55
56	CALL TEST (T11R,T20R,TE2R,T11I,T20I,TE2I,O.)	IN	56
57 58	IF (TE2I-RX) 7.7.14 7 IF (TE2R-RX) 9.9.14	IN	57
59		IN	58 59
60	SGI=SGI+T10I	IN	60
61	NT=NT+2	IN	61
62	GO TO 10	IN	62
63		IN	63
64	SGI=SGI+T20I	IN	64

terrespond to a second of the consecution of the co

65		NT=NT+1	IN	65
66	10	Z=Z+0Z	IN	66
67		IF (Z-ZEND) 11,17,17	IN	67
68	11	G1R=G5R	IN	68
69		G1I=G5I	IN	69
70		IF (NT-NTS) 1,12,12	IN	70
71	12	IF (NS-NX) 1,1,13	IN	71
72			IN	72
73	C	DOUBLE STEP SIZE	IN	73
74	C		IN	74
75	13	NS=NS/2	IN	75
76		NT=1	IN	76
77		GO TO 1	IN	77
78	14	NT=0	IN	78
79		IF (NS-NM) 16,15,15	IN	79
	15	PRINT 20, Z	IN	80
81		GO TO 9	IN	81
82	C		IN	82
83	C	HALVE STEP SIZE	IN	83
84	C		IN	84
	16	NS=NS*2	IN	85
86		FNS=NS	IN	86
87		DZ=S/FNS	IN	87
88		DZOT=DZ*0.5	IN	88
89		G5R=G3R	IN	
90		G5I=G3I	IN	
91		G3R=G2R	IN	91
92		G3I=G2I	IN	92
93		GO TO 4	IN	93
	17	CONTINUE	IN	
95		IF (IJ) 19,18,19	IN	
96	C		. IN	
97	C .	ADD CONTRIBUTION OF NEAR SINGULARITY FOR DIAGONAL TERM	IN	
98			IN	
	18	SGR=2.*(SGR+ALOG((SQRT(B*B+S*S)+S)/B))	IN	99
100		SGI=2.*SGI		100
101	19	CONTINUE		101
102	Ka I ya	RETURN		102
103	C			103
104				
	20	FORMAT (24H STEP SIZE LIMITED AT Z=,F10.5)	IN	104

ISEGNO

PURPOSE

To determine the segment number of the mth segment ordered by increasing segment numbers in the set of segments with tag numbers equal to the given tag number. With a given tag of zero, segment number m is returned.

METHOD

Search segments consecutively and check their tag numbers against a given tag.

SYMBOL DICTIONARY

I = DO loop index

ICNT = counter

ITAGI = input tag number (given tag)

M = input quantity specifying the position in the set of segments with the given tag

CODE LISTING

1		FUNCTION ISEGNG (ITAGI.MX)	IS	1
2	C		IS	2
3	C	ISEGNO RETURNS THE SEGMENT NUMBER OF THE MTH SEGMENT HAVING THE	IS	3
4	C	TAG NUMBER ITAGI. IF ITAGI=0 SEGMENT NUMBER M IS RETURNED.	IS	4
5	C		IS	5
6		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	IS	6
7		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(IS	7
8		2300), WLAM, IPSYM	IS	8
9		IF (MX.GT.0) GO TO 1	IS	9
10		PRINT 6	IS	10
11		STOP	IS	11
12	1	ICNT=0	IS	12
13		IF (ITAGI.NE.O) GO TO 2	IS	13
14		ISEGNO=MX	IS	14
15		RETURN	IS	15
16	2	IF (N.LT.1) GO TO 4	IS	16
17		DO 3 I=1,N	IS	17
18		IF (ITAG(I).NE.ITAGI) GO TO 3	IS	18
19		ICNT=ICNT+1	IS	19
20		IF (ICNT.EQ.MX) GO TO 5	IS	20
21	3	CONTINUE	IS	21
22	4	PRINT 7, ITAGI	IS	22
23		STOP	IS	23
24	5	ISEGNO=I	IS	24
25		RETURN	IS	25
26			IS	26
27	6	FORMAT (4X,91HCHECK DATA, PARAMETER SPECIFYING SEGMENT POSITION IN	IS	27
28		1 A GROUP OF EQUAL TAGS MUST NOT BE ZERO)	IS	28
29	7	FORMAT (///,10x,26HNO SEGMENT HAS AN ITAG OF ,15)	IS	29
30		END	IS	30-

LFACTR

PURPOSE

To perform the Gauss-Doolittle factorization calculations on two blocks of the matrix in core storage. This routine in conjunction with FACIO factors a matrix that is too large for core storage into an upper and lower triangular matrix using the Gauss-Doolittle technique. The factored matrix is used by LUNSCR and LTSOLV to determine the solution of the transposed matrix equation $\mathbf{x}^{T}\mathbf{A}^{T}=\mathbf{B}^{T}$.

METHOD

The basic algorithm used in this routine is presented by Ralston in ref. 1 on pages 411-416. A brief discussion is also given under FACTR in this manual. The main difference between LFACTR and FACTR is that LFACTR is set up to perform the calculations on two blocks of columns of the transposed matrix that reside in core storage. This situation arises when the matrix is too large to fit in core at one time; thus, the matrix is divided into blocks of columns and stored on files. This matrix is then factored into a lower triangular matrix and an upper triangular matrix by the subroutines FACIO and LFACTR. The function of these two subroutines is closely tied together:

LFACTR performs the mathematical computations involved in the factorization, while FACIO controls the input and output of matrix blocks in core storage, and, thus, controls the necessary block ordering input to LFACTR. For clarification of the ordering of matrix blocks during factorization, refer to FACIO.

The computations performed in LFACTR are slightly different for three matrix block conditions: (1) block numbers 1 and 2, (2) adjacent matrix blocks, and (3) non-adjacent matrix blocks. If the blocks are numbers 1 and 2, both blocks are factored, and the computations proceed exactly as in FACTR. The only difference between LFACTR and FACTR here is that the two blocks do not form a square matrix, and the row and column indices in LFACTR have not been interchanged as in FACTR. At the end of this stage, both blocks 1 and 2 are completely factored. For case 2, where the blocks are adjacent in the matrix and other than 1 and 2, the first block is assumed factored and is used to complete the factorization of the partially factored second block. The computations start with the first column of the second block and proceed as in FACTR (with the exceptions noted above). If the blocks are not adjacent (case 3), the first block is assumed factored and is used to partially

factor the second block. Computations start with the first column of the second block. Factorization cannot be completed, since values from the intervening columns are necessary.

CODING

- LF20 LF39 Initialization of loop parameters for the various matrix block conditions.
- LF40 LF99 Loop over columns to be factored or partially factored.
- LF44 LF46 Write column of A in scratch vector D.
- LF49 LF62 Computations for uir (see FACTR), where positioning for size is taken into account. The range of i is determined by the matrix blocks used.
- LF69 LF71 For case 3, the partially factored column is stored in A, and a jump to LF100 is made.
- LF73 LF87 For cases 1 and 2, the maximum value in the column is found for positioning.
- LF92 LF94 For cases 1 and 2, l_{ir} (see FACTR) is calculated; limits on i are dependent on blocks.

SYMBOL DICTIONARY

- A = array which contains the two blocks of columns of the transposed matrix in some state of factorization
- CONJG = external routine (conjugate of complex numbers)
- D = scratch vector, temporary storage of one column
- DMAX = maximum value in column
- ELMAG = intermediate variable
- I = DO loop index
- IFLG = small pivot value flag
- IP = array containing positioning information
- IXJ = index
- IX1 = first block number, input
- IX2 = second block number, input
- J = DO loop index
- JP1 = J + 1
- J1 = DO loop limits
- J2
- J2P1 = J2 + 1

The transfer of the second

J2P2 = J2 + 2

K = DO loop index

L1 L2 = logical variables for testing L3

NCOL = number of columns

NROW = number of rows

PJ = intermediate variables
PR

R = DO loop index

REAL = external routine (real part of a complex number)

R1 = DO loop limits, relative column number limits for calculations

In programs using double precision accumulation in the matrix solution, the following double precision variables are used in LFACTR.

DAR1
DAI1
DAI2

= real and imaginary parts of a number for temporary storage
DAI2

DAI2

DR = real and imaginary vectors replacing the complex vector D in single precision programs

CONSTANT

1.E-10 = small value test

LFACTR

1 2	C	SUBROUTINE LFACTR (A.NROW, IX1, IX2, IP)	LF	1 2
3		LFACTR PERFORMS GAUSS-DOOLITTLE MANIPULATIONS ON THE TWO BLOCKS OF		3
4		THE TRANSPOSED MATRIX IN CORE STORAGE. THE GAUSS-DOOLITTLE	LF	4
5	1000	ALGORITHM IS PRESENTED ON PAGES 411-416 OF A. RALSTON A FIRST	-	
6		COURSE IN NUMERICAL ANALYSIS. COMMENTS BELOW REFER TO COMMENTS IN	LF	5
7		RALSTONS TEXT.	-	6
8	1000	RALSIONS TEXT.	LF	7
	•	COURT EX A D A ID	LF	8
9		COMPLEX A.D.AJR	LF	9
10		INTEGER R,R1,R2,PJ,PR	LF	10
11		LOGICAL L1,L2,L3	LF	11
12		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I		12
13		1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL	LF	13
14		COMMON /SCRATM/ D(600)	LF	14
15		DIMENSION A(NROW, 1), IP(NROW)	LF	15
16		IFLG=0	LF	16
17	120		LF	17
18	31.50	INITIALIZE R1,R2,J1,J2	LF	18
19	C		LF	19
20		L1=IX1.EQ.1.AND.IX2.EQ.2	LF	20
21		L2=(IX2-1).EQ.IX1	LF	21
22		L3=IX2.EQ.NBLSYM	LF	22
23		IF (L1) GO TO 1	LF	23
24		GO TO 2	LF	24
25	1	R1=1	LF	25
26		R2=2*NPSYM	LF	26
27		J1=1	LF	27
28		J2=-1	LF	28
29		GO TO 5	LF	29
30	2	R1=NPSYM+1	LF	30
31		R2=2*NPSYM	LF	31
32		J1=(IX1-1)*NPSYM+1	LF	32
33		IF (L2) GO TO 3	LF	33
34		GO TO 4	LF	34
35	3	J2=J1+NPSYM-2	LF	35
36		GO TO 5	LF	36
37	0.5	J2=J1+NPSYM-1	LF	37
38	5	IF (L3) R2=NPSYM+NLSYM	LF	38
39		DO 16 R=R1,R2	LF	39
40	C		LF	40
41	C	STEP 1	LF	41
42	C		LF	42
43		DO 6 K=J1,NROW	LF	43
44		D(K)=A(K,R)	LF	44
45		CONTINUE	LF	45
46			LF	46
47		STEPS 2 AND 3	LF	47
48	C		LF	48
49		IF (L1.OR.L2) J2=J2+1	LF	49
50		IF (J1.GT.J2) GO TO 9	LF	50
51		IXJ=0	LF	51
52		DO 8 J=J1,J2	LF	52
53		IXJ=IXJ+1	LF	53
54		PJ=IP(J)	LF	54
55		AJR=D(PJ)	LF	55
56		A(J,R)=AJR	LF	56
57		D(PJ)=D(J)	LF	57
58		JP1=J+1	LF	58
59		DO 7 I=JP1,NROW	LF	59
60		D(I)=D(I)-A(I,IXJ)*AJR	LF	60
61		CONTINUE	LF	61
62	1000	CONTINUE	LF	62
63		CONTINUE	LF	63
64	C		LF	64

CONTRACTOR - CONTRACTOR CONTRACTOR

LFACTR

85		STEP 4	LF	65
66	С		LF	66
67		J2P1=J2+1	LF	
68		IF (L1.OR.L2) GO TO 11	LF	68
69		IF (NROW.LT.J2P1) GO TO 16	LF.	69
70		DO 10 I=J2P1,NROW	LF	70
71		A(I,R)=D(I)	LF	71
72	10	CONTINUE	LF	
73		GO TO 16	LF	The second second
74	11	DMAX=REAL(D(J2P1)*CONJG(D(J2P1)))	LF	
75		IP(J2P1)=J2P1	LF	75
76		J2P2=J2+2	LF	
77		IF (J2P2.GT.NROW) GO TO 13	LF	
78		DO 12 I=J2P2,NROW	LF	
79		ELMAG=REAL(D(I)*CONJG(D(I)))	LF	
80		IF (ELMAG.LT.DMAX) GO TO 12	LF	80
81		DMAX=ELMAG	LF.	
82		IP(J2P1)=I	LF	
83	12	CONTINUE	LF	
84	13	CONTINUE	LF	
85		IF (DMAX.LT.1.E-10) IFLG=1	LF	85
86		PR=IP(J2P1)	LF	86
87		A(J2P1,R)=D(PR)	LF	87
88		D(PR)=D(J2P1)	LF	88
89	C		LF	89
90	C	STEP 5	LF	90
91	C		LF	91
92		IF (J2P2.GT.NROW) GO TO 15	LF	92
93		AJR=1./A(J2P1,R)	LF	93
94		DO 14 I=J2P2,NROW	LF	94
95		A(I,R)=D(I)*AJR	LF	95
	14	CONTINUE	LF	96
97	15	CONTINUE	LF	97
98		IF (IFLG.EQ.0) GO TO 16	LF	98
99		PRINT 17, J2,DMAX	LF	99
100		IFLG=0	LF	100
	16	CONTINUE	LF	101
102		RETURN	LF	102
103			LF	103
	17	FORMAT (1H ,6HPIVOT(,I3,2H)=,E16.8)	LF	104
105		END	LF	105-

LOAD

LOAD

PURPOSE

To compute the impedances at a given frequency for the loading specified by LD cards.

METHOD

The value of $\lambda Z/\Delta$, where Z is the total impedance on a segment and Δ is the length of the segment, is computed for each loaded segment and stored in the array ZARRAY. The proper impedance formula is chosen by the value of the input quantity LDTYP. These computations are performed from the sequence LO74 to LO96 of the program, and the formulas are:

LDTYP = 0 (series R, L, and C):

$$Z = R + j\omega L + \frac{1}{j\omega C}$$

$$Z' = \frac{\lambda Z}{\Delta} = \frac{R}{\frac{\Delta}{\lambda}} + j2\pi c \left(\frac{L}{\Delta}\right) + \frac{1}{j2\pi c \left(\frac{\Delta}{\lambda}\right)^2 \left(\frac{C}{\Delta}\right)}$$

where c is the speed of light and R, L, and C are input.

LDTYP = 1 (parallel R, L, and C; R, L, and C input):

$$Z' = \frac{1}{\left(\frac{\Delta}{\lambda}\right) \frac{1}{R} + \frac{\Delta}{j2\pi cL} + j2\pi c \left(\frac{\Delta}{\lambda}\right)^2 \left(\frac{C}{\Delta}\right)}$$

LDTYP = 2 and 3 (same as above, but R/Δ , L/Δ , C/Δ are input)

LDTYP = 4 (resistance and reactance input):

$$Z' = \frac{\text{resistance} + \text{j reactance}}{\frac{\Delta}{\lambda}}$$

LDTYP = 5 (call another subroutine for wire conductivity calculation)

SYMBOL DICTIONARY

ABS = external routine (absolute value of a real number)

AIMAG = external routine (imaginary part of a complex number)

CMPLX = external routine (forms a complex number)

ICHK = check flag in diagnosing data errors

ISTEP = loading card subscript

IWARN = flag checking for multiply loaded segments

JUMP = LDTYP + 1

LDTAG = tag number, input quantity

LDTAGF = input quantity

LDTAGS = LDTAG(ISTEP)

LDTAGT = input quantity

LDTYP = input quantity specifying loading type

NLOAD = number of input loading data cards

PRNT = external routine (prints the impedance data in a table)

REAL = external routine (takes the real part of a complex number)

TPCJ = $j2\pi c$, where c is the speed of light

ZARRAY = array containing $\lambda Z/\Delta$ for each segment, dimensioned to the maximum number of segments

ZLC = input quantities, the definitions are a function of the type of

ZLI loading specified. For the case of series RLC (LDTYP = 0):

ZT = $Z' = \lambda Z/\Delta$ for one segment; however, variable name is used during the calculation of this quantity

CONSTANTS

1.E-20 = floating point zero test

 $(0., 1.88365371E+9) = j2\pi c$, where c is the velocity of light

1 2	c	SUBROUTINE LOAD (LDTYP, LDTAG, LDTAGF, LDTAGT, ZLR, ZLI, ZLC)	LO	1 2
	C	LOAD CALCULATES THE IMPEDANCE OF SPECIFIED SEGMENTS FOR VARIOUS	LO	3
. 3	C	TYPES OF LOADING	LO	4
	C		LO	5
6		COMPLEX ZARRAY, ZT, TPCJ, ZINT	LO	6
7		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	1000	7
8		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(8
9		2300), WLAM, IPSYM	LO	9
10		COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF	LO	10
11		DIMENSION LDTYP(1), LDTAG(1), LDTAGF(1), LDTAGT(1), ZLR(1), ZLI(1)		11
12		1, ZLC(1), TPCJX(2)	LO	12
13		EQUIVALENCE (TPCJ, TPCJX)	LO	13
14		DATA TPCJX/0.,1.883698955E+9/	LO	14
15	C		LO	15
16	C	PRINT HEADING	LO	16
17	C		LO	17
18		PRINT 25	LO	18
19	C		LO	19
20	C	INITIALIZE D ARRAY, USED FOR TEMPORARY STORAGE OF LOADING	LO	20
21	C	INFORMATION.	LO	21
22	C		LO	22
23		DO 1 I=N2,N	LO	23
24	1	ZARRAY(I)=(0.,0.)	LO	24
25		IWARN=0	LO	25
26	C		LO	26
	C	CYCLE OVER LOADING CARDS	LO	27
	C		LO	28
29		ISTEP=0	LO	29
30	2	ISTEP=ISTEP+1	LO	30
31		IF (ISTEP.LE.NLOAD) GO TO 5	LO	31
32		IF (IWARN.EQ.1) PRINT 26	LO	32
33		IF (N1+2*M1.GT.0) GO TO 4	LO	33
34		NOP=N/NP	LO	34
35		IF (NOP.EQ.1) GO TO 4	LO	35
36		DO 3 I=1,NP	LO	36
37		ZT=ZARRAY(I)	LO	37
38 39		L1=I	LO	38
40		DO 3 L2=2,NOP L1=L1+NP	LO	39
41		ZARRAY(L1)=ZT	LO	40
42		RETURN	LO	41
43		IF (LDTYP(ISTEP).LE.5) GO TO 6	LO	43
44		PRINT 27, LDTYP(ISTEP)	LO	44
45		STOP	LO	45
	6	LDTAGS=LDTAG(ISTEP)	LO	46
47		JUMP=LDTYP(ISTEP)+1	LO	47
48		ICHK=0	LO	48
49	C		LO	49
50	C	SEARCH SEGMENTS FOR PROPER ITAGS	LO	50
51	C		LO	51
52		L1=N2	LO	52
53		L2=N	LO	53
54		IF (LDTAGS.NE.O) GO TO 7	LO	54
55		IF (LDTAGF(ISTEP).EQ.O.AND.LDTAGT(ISTEP).EQ.O) GO TO 7	LO	55
56		L1=LDTAGF(ISTEP)	LO	56
57		L2=LDTAGT(ISTEP)	LO	57
58		IF (L1.GT.N1) GO TO 7	LO	58
59		PRINT 29	LO	59
60	_	STOP	LO	60
61		00 17 I=L1,L2	LO	61
62		IF (LDTAGS.EQ.0) GO TO 8	LO	62
63		IF (LDTAGS NF ITAG(T)) GO TO 17	10	63

CONTROL OF CONTROL OF THE PROPERTY OF THE PROP

```
IF (LDTAGF(ISTEP).EQ.0) GO TO 8
64
                                                                                   LO
                                                                                       64
65
          ICHK=ICHK+1
                                                                                   LO
                                                                                       65
66
          IF (ICHK.GE.LDTAGF(ISTEP).AND.ICHK.LE.LDTAGT(ISTEP)) GO TO 9
                                                                                   LO
                                                                                       66
67
          GO TO 17
                                                                                   LO
                                                                                       67
68
          ICHK=1
    8
                                                                                   LO
                                                                                       68
69 C
                                                                                   10
                                                                                       69
70 C
         CALCULATION OF LAMDA * IMPED. PER UNIT LENGTH, JUMP TO APPROPRIATE
                                                                                   LO
                                                                                       70
          SECTION FOR LOADING TYPE
71 C
                                                                                   LO
                                                                                       71
72
                                                                                   LO
                                                                                       72
73
    9
          GO TO (10,11,12,13,14,15), JUMP
                                                                                   LO
                                                                                       73
          ZT=ZLR(ISTEP)/SI(I)+TPCJ*ZLI(ISTEP)/(SI(I)*WLAM)
74
     10
                                                                                   LO
75
          IF (ABS(ZLC(ISTEP)).GT.1.E-20) ZT=ZT+WLAM/(TPCJ*SI(I)*ZLC(ISTEP))
                                                                                   LO
                                                                                       75
          GO TO 16
76
                                                                                   LO
                                                                                       76
77
          ZT=TPCJ*SI(I)*ZLC(ISTEP)/WLAM
                                                                                   LO
                                                                                       77
78
          IF (ABS(ZLI(ISTEP)).GT.1.E-20) ZT=ZT+SI(I)*WLAM/(TPCJ*ZLI(ISTEP))
                                                                                       78
                                                                                   LO
          IF (ABS(ZLR(ISTEP)).GT.1.E-20) ZT=ZT+SI(I)/ZLR(ISTEP)
79
                                                                                   LO
                                                                                       79
80
          ZT=1./ZT
                                                                                   LO
                                                                                       80
          GO TO 16
81
                                                                                   LO
                                                                                       81
          ZT=ZLR(ISTEP) *WLAM+TPCJ*ZLI(ISTEP)
82
                                                                                   LO
                                                                                       82
83
          IF (ABS(ZLC(ISTEP)).GT.1.E-20) ZT=ZT+1./(TPCJ*SI(I)*SI(I)*ZLC(ISTE LO
                                                                                       83
         1P))
84
                                                                                   LO
                                                                                       84
85
          GO TO 16
                                                                                   LO
                                                                                       85
          ZT=TPCJ*SI(I)*SI(I)*ZLC(ISTEP)
86
     13
                                                                                   LO
                                                                                       86
87
          IF (ABS(ZLI(ISTEP)).GT.1.E-20) ZT=ZT+1./(TPCJ*ZLI(ISTEP))
                                                                                   10
                                                                                       87
88
          IF (ABS(ZLR(ISTEP)).GT.1.E-20) ZT=ZT+1./(ZLR(ISTEP)*WLAM)
                                                                                   LO
                                                                                       88
89
          ZT=1./ZT
                                                                                   LO
                                                                                       89
90
          GO TO 16
                                                                                   LO
                                                                                       90
91
          ZT=CMPLX(ZLR(ISTEP),ZLI(ISTEP))/SI(I)
                                                                                   LO
                                                                                       91
92
          GO TO 16
                                                                                   LO
                                                                                       92
          ZT=ZINT(ZLR(ISTEP) *WLAM, BI(I))
93
     15
                                                                                       93
                                                                                   LO
94
     16
          IF ((ABS(REAL(ZARRAY(I)))+ABS(AIMAG(ZARRAY(I)))).GT.1.E-20) IWARN= LO
                                                                                       94
95
                                                                                       95
                                                                                   LO
96
          ZARRAY(I)=ZARRAY(I)+ZT
                                                                                   LO
                                                                                       96
97
     17
          CONTINUE
                                                                                   LO
                                                                                       97
98
          IF (ICHK.NE.O) GO TO 18
                                                                                   LO
                                                                                       98
99
          PRINT 28, LDTAGS
                                                                                   LO
                                                                                       99
100
          STOP
                                                                                   LO 100
101 C
                                                                                   LO 101
102 C
          PRINTING THE SEGMENT LOADING DATA. JUMP TO PROPER PRINT
                                                                                   10 102
103 C
                                                                                   LO 103
    18
104
          GO TO (19,20,21,22,23,24), JUMP
                                                                                   LO 104
105
          CALL PRNT (LDTAGS, LDTAGF(ISTEP), LDTAGT(ISTEP), ZLR(ISTEP), ZLI(ISTEP LO 105
     19
106
         1), ZLC(ISTEP), 0., 0., 0., 7H SERIES, 7)
                                                                                   LO 106
107
          GO TO 2
108
     20
          CALL PRNT (LDTAGS, LDTAGF(ISTEP), LDTAGT(ISTEP), ZLR(ISTEP), ZLI(ISTEP LO 108
109
         1), ZLC(ISTEP), 0., 0., 0., 8HPARALLEL, 8)
                                                                                   LO 109
110
          GO TO 2
                                                                                   LO 110
          CALL PRNT (LDTAGS, LDTAGS (ISTEP), LDTAGT (ISTEP), ZLR (ISTEP), ZLI (ISTEP LO 111
111
112
         1), ZLC(ISTEP), 0., 0., 0., 18HSERIES (PER METER), 18)
                                                                                   LO 112
113
                                                                                   LO 113
114
          CALL PRNT (LDTAGS, LDTAGF(ISTEP), LDTAGT(ISTEP), ZLR(ISTEP), ZLI(ISTEP LO 114
115
         1).ZLC(ISTEP).O.,O.,O.,20HPARALLEL (PER METER).20)
                                                                                   LO 115
116
          GO TO 2
                                                                                   LO 116
          CALL PRNT (LDTAGS, LDTAGF(ISTEP), LDTAGT(ISTEP), 0., 0., 0., ZLR(ISTEP), LO 117
117
118
         1ZLI(ISTEP), 0., 15HFIXED IMPEDANCE, 15)
                                                                                   LO 118
119
          GO TO 2
                                                                                   LO 119
120
          CALL PRNT (LDTAGS, LDTAGF(ISTEP), LDTAGT(ISTEP), 0., 0., 0., 0., 0., ZLR(I LO 120
121
         1STEP), 6H WIRE, 6)
                                                                                   LO 121
          GO TO 2
122
                                                                                   LO 122
123 C
                                                                                   LO 123
124
          FORMAT (//,7X,8HLOCATION,10X,10HRESISTANCE,3X,10HINDUCTANCE,2X,11H LO 124
125
         1CAPACITANCE, 7X, 16HIMPEDANCE (OHMS), 5X, 12HCONDUCTIVITY, 4X, 4HTYPE, /, LO 125
126
         24X,4HITAG,10H FROM THRU,10X,4HOHMS,8X,6HHENRYS,7X,6HFARADS,8X,4HRE LO 126
127
         3AL, 6X, 9HIMAGINARY, 4X, 10HMHOS/METER)
                                                                                   LO 127
```

LOAD

128.	26	FORMAT (/,10X,74HNOTE, SOME OF THE ABOVE SEGMENTS HAVE BEEN LOADED	LO	128
129		1 TWICE - IMPEDANCES ADDED)	10	129
130	27	FORMAT (/,10X,46HIMPROPER LOAD TYPE CHOOSEN, REQUESTED TYPE IS ,13	LO	130
131		(1)	LO	131
132	28	FORMAT (/,10X,50HLOADING DATA CARD ERROR, NO SEGMENT HAS AN ITAG =	LO	132
133		1 ,15)		133
134	29	FORMAT (63H ERROR - LOADING MAY NOT BE ADDED TO SEGMENTS IN N.G.F.	LO	134
135		1 SECTION)		135
136		END		136-

PURPOSE

To solve the matrix equation $X^RLU = B^R$, where R denotes a row vector and L and U are the lower and upper triangular matrices stored as blocks on files.

METHOD

The L and U triangular matrices are written in a square array, where the l's on the diagonal of the L matrix are suppressed. The array is stored by blocks of columns in ascending order on file IFL1 and descending order on file IFL2. The solution procedure is as follows. First solve the equation

$$Y^{R}U = B^{R} \tag{1}$$

then

$$X^{R}L = Y^{R} , \qquad (2)$$

since $X^RLU = B^R$. The solutions of equations (1) and (2) are straightforward, since both matrices are triangular. In particular for equation (1),

$$y_j^R = \frac{1}{u_{jj}} \left(b_j^R - \sum_{i=1}^{j-1} y_i^R u_{ij} \right)$$
 $j = 1, ..., n$

and similarly for equation (2).

Several right-hand side vectors may be stored in the two dimensional array B. The forward and backward substitution is then done on each vector in the loops from LT 23 to LT 34 and LT 43 to LT 56. This can be much faster than calling LTSOLV for each vector since the files IFL1 and IFL2 are read only once. This feature is used in computing A⁻¹B for the NGF solution. It is not used with the multiple excitations for a receiving pattern or to compute the driving point interaction matrix in NETWK but could reduce the out-of-core solution time in these cases.

LTSOLV

Row interchanges were used to position elements for size in factoring the transposed structure matrix; therefore, the elements in the solution vector \mathbf{X}^R are not in the original locations. Using the IX array (filled by LUNSCR), the vector can be put back into the original order. The integer contained in IX(J) is the index of the original location of the parameter now in the jth location. The solution vector is overwritten on the input right-hand side vector \mathbf{B}^R .

SYMBOL DICTIONARY

A = array for matrix blocks

B = BR, right-hand side and solution

12 = number of words in a block

IFL1 = file with blocks in normal order

IFL2 = file with blocks in reversed order

IX = solution unscramble vector

IXBLK1 = block number

J = row index

JST = initial value for J

K2 = number of columns in a block

KP = column index

NEQ = total number of equations

NRH = number of right-hand side vectors in B

NROW = row dimension of A (number of equations in a symmetric section)

SUM = summation result

Property (National Property)

```
SUBROUTINE LTSOLV (A, NROW, IX, B, NEQ, NRH, IFL1, IFL2)
                                                                                    LT
1
2 C
                                                                                    LT
                                                                                         2
3 C
          LTSOLV SOLVES THE MATRIX EQ. Y(R) LU(T)=B(R) WHERE (R) DENOTES ROW LT
4
  C
         VECTOR AND LU(T) DENOTES THE LU DECOMPOSITION OF THE TRANSPOSE OF
                                                                                   LT
         THE ORIGINAL COEFFICIENT MATRIX. THE LU(T) DECOMPOSITION IS
5
  C
                                                                                    LT
         STORED ON TAPE 5 IN BLOCKS IN ASCENDING ORDER AND ON FILE 3 IN
 6
   C
                                                                                    LT
7 C
         BLOCKS OF DESCENDING ORDER.
                                                                                    LT
                                                                                         7
8 C
                                                                                    LT
                                                                                         8
9
         COMPLEX A,B,Y,SUM
                                                                                    LT
                                                                                         9
         COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I LT
10
                                                                                        10
         1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL
11
                                                                                    LT
                                                                                        11
12
         COMMON /SCRATM/ Y(600)
                                                                                    LT
                                                                                        12
13
          DIMENSION A(NROW, NROW), B(NEQ, NRH), IX(NEQ)
                                                                                    LT
                                                                                        13
14 C
                                                                                    LT
                                                                                        14
15 C
          FORWARD SUBSTITUTION
                                                                                    LT
                                                                                        15
16 C
                                                                                    LT
                                                                                        16
17
          I2=2*NPSYM*NROW
                                                                                    LT
                                                                                        17
         DO 4 IXBLK1=1, NBLSYM
18
                                                                                    LT
                                                                                        18
19
         CALL BLCKIN (A, IFL1, 1, 12, 1, 121)
                                                                                    IT
                                                                                        19
20
                                                                                    LT
                                                                                        20
21
          IF (IXBLK1.EQ.NBLSYM) K2=NLSYM
                                                                                    LT
                                                                                        21
          JST=(IXBLK1-1) *NPSYM
                                                                                    LT
22
                                                                                        22
23
          DO 4 IC=1 ,NRH
                                                                                    LT
                                                                                        23
24
          J=JST
                                                                                    LT
                                                                                        24
         DO 3 K=1.K2
25
                                                                                    LT
                                                                                        25
26
          L=1ML
                                                                                    LT
                                                                                        26
27
          J=J+1
                                                                                    LT
                                                                                        27
          SUM=(0.,0.)
                                                                                    LT
28
                                                                                        28
29
          IF (JM1.LT.1) GO TO 2
                                                                                    LT
                                                                                        29
                                                                                    LT
30
          DO 1 I=1, JM1
                                                                                        30
31 1
          SUM=SUM+A(I,K)*B(I,IC)
                                                                                    LT
                                                                                        31
32 2
          B(J,IC)=(B(J,IC)-SUM)/A(J,K)
                                                                                    LT
                                                                                        32
33 3
         CONTINUE
                                                                                    LT
                                                                                        33
34 4
          CONTINUE
                                                                                    LT
                                                                                        34
35 C
                                                                                    LT
                                                                                        35
          BACKWARD SUBSTITUTION
36 C
                                                                                    LT
                                                                                        36
37 C
                                                                                    LT
                                                                                        37
38
          JST=NROW+1
                                                                                    LT
                                                                                        38
39
          DO 8 IXBLK1=1 , NBLSYM
                                                                                    LT
                                                                                        39
          CALL BLCKIN (A, IFL2, 1, 12, 1, 122)
40
                                                                                    LT
                                                                                        40
          K2=NPSYM
41
                                                                                    LT
                                                                                        41
42
          IF (IXBLK1.EQ.1) K2=NLSYM
                                                                                    LT
                                                                                        42
43
          DO 7 IC=1,NRH
                                                                                    LT
                                                                                        43
          KP=K2+1
                                                                                    LT
44
                                                                                        44
45
          J=JST
                                                                                    LT
                                                                                        45
46
          DO 6 K=1,K2
                                                                                    LT
                                                                                         46
47
          KP=KP-1
                                                                                    LT
                                                                                        47
48
          JP1=J
                                                                                    LT
                                                                                        48
49
          J=J-1
                                                                                    LT
                                                                                        49
50
          SUM=(0.,0.)
                                                                                    LT
                                                                                        50
          IF (NROW.LT.JP1) GO TO 6
                                                                                    LT
51
                                                                                        51
52
          DO 5 I=JP1, NROW
                                                                                    LT
                                                                                        52
53 5
          SUM=SUM+A(I,KP)*B(I,IC)
                                                                                    LT
                                                                                        53
          B(J,IC)=B(J,IC)-SUM
                                                                                    LT
54
                                                                                        54
55 6
          CONTINUE
                                                                                    LT
                                                                                        55
          CONTINUE
56 7
                                                                                    LT
                                                                                        56
57 8
          JST=JST-K2
                                                                                    LT
                                                                                        57
58 C
                                                                                    LT
                                                                                        58
          UNSCRAMBLE SOLUTION
59 C
                                                                                    LT
                                                                                        59
60 C
                                                                                    LT
                                                                                        60
          DO 10 IC=1,NRH
                                                                                    LT
61
                                                                                        61
          DO 9 I=1 . NROW
                                                                                    LT
62
                                                                                        62
63
          IXI=IX(I)
                                                                                    LT
                                                                                        63
64 9
          Y(IXI)=B(I,IC)
                                                                                    LT
                                                                                        64
```

LTSOLV

65 DO 10 I=1,NROW 66 10 B(I,IC)=Y(I) 67 RETURN 68 END

LT 65 LT 66 LT 67 LT 68-

LUNSCR

PURPOSE

To unscramble the lower triangular matrix of the factored out-of-core matrix and to determine the appropriate ordering of the unknowns. The unscrambled factored matrix is written in blocks on file IU3 in ascending order and on file IU4 in descending order.

METHOD

During factorization by LFACTR, the elements in the lower triangular matrix L were not explicitly arranged in accordance with the row interchanges used in positioning for size during the calculations. Specifically, as the factorization proceeds by columns from left to right in the matrix, row rearrangements in the rth column are not explicitly performed in the left r - 1 columns; rather, positioning information is stored in the IP array. For the in-core calculations, these rearrangements are included during the final solution (subroutine SOLVE). For the out-of-core case, rearrangement during the solution (subroutine LTSOLV) is inconvenient, since the transposed system $x^TA^T = B^T$ is being solved, where r signifies a row vector.

The procedure for unscrambling the L matrix is as follows. p_k is the positioning information contained in IP(K). Then for the r^{th} column, let t be a temporary variable:

$$t = l_{k,r}$$

$$l_{p_k,r} \text{ overwrites } l_{k,r}$$

$$t \text{ overwrites } l_{p_k,r} \text{ for } k = r + 1, \dots, n - 1$$

Since row interchanges were used on the transposed matrix, the positions of the unknowns in the equations have changed. The final arrangement is determined by performing interchanges on a vector of integers. Specifically, let

$$x_i = i \quad i = 1, ..., n$$

then set

LUNSCR

t overwrites x_{p_k} for k = 1, ..., n

The integer now contained in x_i specifies the original placement of the i^{th} unknown.

SYMBOL DICTIONARY

A = array for matrix blocks

Il = first word of matrix block

I2 = last word of matrix block

IP = array of pivot index data

IU2 = input file

IU3 = output file, blocks in normal order

IU4 = output file, blocks in reversed order

IX = array x_i

IXBLK1 = block number

KA = increment to locate the KK th submatrix in case of symmetry

NOP = number of symmetric sections

NROW = row dimension of A

LUNSCR

CONTRACTOR OF THE PROPERTY OF

1		SUBROUTINE LUNSC	R (A,NROW,NOP,IX,IP,IU2,IU3,IU4)	LU	1
NOT THE OWNER.	C			LU	2
	C		MBLES, SCRAMBLED FACTORED MATRIX	LU	3
	C			LU	4
				LU	5
6			ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I		6
7		사기 보기 보다 그 아이들은 아이들이 되었다면 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다면	LBX, NBBL, NPBL, NLBL	LU	7
8		I1=1	(,1), IP(NROW), IX(NROW)	LU	8 9
10		I2=2*NPSYM*NROW		LU	10
11		NM1=NROW-1		LU	11
12		REWIND IU2		LU	12
13		REWIND IU3		LU	13
14		REWIND IU4		LU	14
15		DO 9 KK=1 NOP		LU	15
16		KA=(KK-1)*NROW		LU	16
17		DO 4 IXBLK1=1 NB	LSYM	LU	17
18		CALL BLCKIN (A.I	U2, I1, I2, 1, 121)	LU	18
19		K1=(IXBLK1-1)*NP	SYM+2	LU	19
20		IF (NM1.LT.K1) G	0 TO 3	LU	20
21		J2=0		LU	21
22		DO 2 K=K1,NM1		LU	22
23		IF (J2.LT.NPSYM)	J2=J2+1	LU	23
24		IPK=IP(K+KA)		LU	24
25		DO 1 J=1,J2		LU	25
26		TEMP=A(K,J)		LU	26
27		A(K,J)=A(IPK,J)		LU	27
28		A(IPK, J)=TEMP		LU	28
29				LU	29
30 31				LU	30
32	100	CONTINUE CALL BLCKOT (A.I	TIT T1 T2 1 122\	LU	31
33			.03,11,12,1,122)	LU	32
34		DO 5 IXBLK1=1,NB	I SYN	LU	34
35		BACKSPACE IU3		LU	35
36		IF (IXBLK1.NE.1)	BACKSPACE TU3	LU	36
37		CALL BLCKIN (A.I		LU	37
38		CALL BLCKOT (A.I		LU	38
39	5			LU	39
40		DO 6 I=1, NROW		LU	40
41		IX(I+KA)=I		LU	41
42	6	CONTINUE		LU	42
43		DO 7 I=1,NROW		LU	43
44		IPI=IP(I+KA)		LU	44
45		IXT=IX(I+KA)		LU	45
46		IX(I+KA)=IX(IPI+	·KA)	LU	46
47		IX(IPI+KA)=IXT		LU	47
48				LU	48
49 50		IF (NOP.EQ.1) GO NB1=NBLSYM-1	10.9	LU	49
	c		RECORDS FORWARD	LU	50
52		DO 8 IXBLK1=1,NB		LU	51 52
53		CALL BLCKIN (A,I		LU	53
1700110	8			LU	54
55				LU	55
56		REWIND IU2		LU	56
57		REWIND IU3		LU	57
58		REWIND IU4		LU	58
59		RETURN		LU	59
60		END		LU	60-

MOVE

PURPOSE

To rotate and translate a previously defined structure, either moving original segments and patches or leaving the original fixed and producing new segments and patches.

METHOD

The formal parameters ROX, ROY, ROZ are the angles of rotation about the x, y, and z axes, respectively, and XS, YS, ZS are the translation distances in the x, y, and z directions. Angles are in radians, and a positive angle represents a right-hand rotation. The structure is first rotated about the x axis by ROX, then about the y axis by ROY, then about the z axis by ROZ, and finally translated by XS, YS, ZS. These operations transform a point with coordinates x, y, z to x', y', z', where

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x_s \\ y_s \\ z_s \end{pmatrix}$$

where

 $T_{11} = \cos \phi \cos \theta$

 $T_{12} = \cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi$

 $T_{13} = \cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi$

 $T_{21} = \sin \phi \cos \theta$

 $T_{22} = \sin \phi \sin \theta \sin \psi + \cos \phi \cos \psi$

 $T_{23} = \sin \phi \sin \theta \cos \psi - \cos \phi \sin \psi$

 $T_{31} = -\sin \theta$

 $T_{32} = \cos \theta \sin \psi$

 $T_{33} = \cos \theta \cos \psi$

with

 $\psi = ROX$

 $\theta = ROY$

 $\phi = ROZ$

 $X_- = XS$

Y = YS

Z = ZS

This transformation is applied to those wire segments from segment number i to the last defined segment in COMMON/DATA/. Thus, if i is greater than 1, the segments from 1 to i - 1 are unaffected. All patches are transformed.

NRPT is the structure repetition factor. If NRPT is zero, the transformed segment and patch coordinates overwrite the original coordinates so that the structure is moved with nothing left in the original location. If NRPT is greater than zero, the transformed coordinates are written on the ends of the arrays in COMMON/DATA/ and the process repeated NRPT times so that NRPT new structures are formed, each shifted from the previous one by the specified transformation, while the original structure is unchanged.

CODING

MO18 Adjust symmetry flag if structure is rotated about the x or y axis. If the ground plane flag is also set on the GE card, symmetry will not be used in the solution.

MO19 - MO33 Compute transformation matrix.

MO37 - MO61 Transform segment coordinates.

MO63 - MO93 Transform patch coordinates.

MO94 - MO97 Set parameters to no-symmetry condition if NRPT > 0 or IX > 1.

SYMBOL DICTIONARY

ABS = external routine (absolute value)

COS = external routine (cosine)

CPH = $\cos \phi$

CPS = cos Y

CTH = $\cos \theta$

IR = DO loop index, array index for original patch

ISEGNO = external routine (searches segment tag numbers)

ITS = i is the first occurring segment in COMMON/DATA/ with tag ITS

IX = i

Il = lower DO loop limit for I (initially II = i)

K = increment to segment number for transformed segment

KR = array index for new patch

```
LDI
        = LD + 1
NRP
        = upper DO loop limit for IR
NRPT
        - repetition factor
ROX
        = Y (radians)
ROY
ROZ
SIN
        = external routine (sine)
SPH
        = sin ø
SPS
        = sin Y
STH
        = sin θ
TIX)
TIY
       = arrays containing components of \hat{t}_1 for patches
TIZ
T2X
       = arrays containing components of \hat{t}_2 for patches
T2Y
T2Z
XI
        - old x coordinate
XS
XX
       - T<sub>12</sub>
XY
XZ
       = x coordinate of end 2 of segment I
X2(I)
YI
       = old y coordinate
YS
YX
YY
YZ
Y2(I)
       = y coordinate of end 2 of segment I
ZI
       = old Z coordinate
       = Z<sub>s</sub>
ZS
       = T<sub>31</sub>
ZX
ZY
ZZ
Z2(I)
       = Z coordinate of end 2 of segment I
```

Control of the second of the second of the second

```
SUBROUTINE MOVE (ROX, ROY, ROZ, XS, YS, ZS, ITS, NRPT, ITGI)
                                                                                       MO
 2 C
                                                                                       MO
                                                                                             2
 3 C
          SUBROUTINE MOVE MOVES THE STRUCTURE WITH RESPECT TO ITS
                                                                                       MO
 4 C
          COORDINATE SYSTEM OR REPRODUCES STRUCTURE IN NEW POSITIONS.
                                                                                       MO
 5 C
          STRUCTURE IS ROTATED ABOUT X,Y,Z AXES BY ROX,ROY,ROZ
                                                                                       MO
                                                                                             5
 6 C
          RESPECTIVELY, THEN SHIFTED BY XS.YS.ZS
                                                                                       MO
                                                                                             6
 7
   C
                                                                                       MO
                                                                                            7
 8
          COMMON /DATA/ LD, N1, N2, N, NP, M1, M2, M, MP, X(300), Y(300), Z(300), SI(300 MO
                                                                                            8
         1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX( MO
 9
                                                                                            9
10
         2300), WLAM, IPSYM
                                                                                       MO
                                                                                            10
11
          COMMON /ANGL/ SALP(300)
                                                                                       MO
                                                                                           11
          DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1), X2(1), Y
12
                                                                                           12
13
         12(1), Z2(1)
                                                                                           13
          EQUIVALENCE (X2(1),SI(1)), (Y2(1),ALP(1)), (Z2(1),BET(1)) MO EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON MO
14
                                                                                           14
15
                                                                                           15
16
         12), (T2Z, ITAG)
                                                                                       MO
                                                                                            16
          IF (ABS(ROX)+ABS(ROY).GT.1.E-10) IPSYM=IPSYM+3
17
                                                                                       MO
                                                                                            17
          SPS=SIN(ROX)
18
                                                                                       MO
                                                                                           18
19
          CPS=COS(ROX)
                                                                                       MO
                                                                                           19
20
          STH=SIN(ROY)
                                                                                       MO
                                                                                           20
          CTH=COS(ROY)
21
                                                                                       MO
                                                                                           21
          SPH=SIN(ROZ)
22
                                                                                       MO
                                                                                           22
23
          CPH=COS(ROZ)
                                                                                       MO
                                                                                           23
          XX=CPH*CTH
24
                                                                                       MO
                                                                                           24
25
          XY=CPH*STH*SPS-SPH*CPS
                                                                                       MO
                                                                                           25
          XZ=CPH*STH*CPS+SPH*SPS
26
                                                                                       MO
                                                                                           26
27
          YX=SPH*CTH
                                                                                       MO
                                                                                           27
          YY=SPH*STH*SPS+CPH*CPS
28
                                                                                       MO
                                                                                           28
29
          YZ=SPH*STH*CPS-CPH*SPS
                                                                                       MO
                                                                                           29
30
          ZX=-STH
                                                                                       MO
                                                                                           30
          ZY=CTH*SPS
31
                                                                                       MO
                                                                                           31
32
          ZZ=CTH*CPS
                                                                                       MO
                                                                                           32
33
          NRP=NRPT
                                                                                       MO
                                                                                           33
34
          IF (NRPT.EQ.0) NRP=1
                                                                                       MO
                                                                                           34
35
          IF (N.LT.N2) GO TO 3
                                                                                       MO
                                                                                           35
36
          I1=ISEGNO(ITS,1)
                                                                                       MO
                                                                                           36
37
          IF (I1.LT.N2) I1=N2
                                                                                       MO
                                                                                           37
38
          IX=I1
                                                                                       MO
                                                                                           38
39
          K=N
                                                                                       MO
                                                                                           39
40
          IF (NRPT.EQ.0) K=I1-1
                                                                                       MO
                                                                                           40
41
          DO 2 IR=1 .NRP
                                                                                       MO
                                                                                           41
42
          DO 1 I=I1,N
                                                                                       MO
                                                                                           42
43
          K=K+1
                                                                                       MO
                                                                                           43
44
          XI=X(I)
                                                                                       MO
                                                                                           44
45
          YI=Y(I)
                                                                                       MO
                                                                                           45
46
          ZI=Z(I)
                                                                                       MO
                                                                                           46
47
          X(K)=XI*XX+YI*XY+ZI*XZ+XS
                                                                                       MO
                                                                                           47
48
          Y(K)=XI*YX+YI*YY+ZI*YZ+YS
                                                                                       MO
                                                                                           48
49
          Z(K)=XI*ZX+YI*ZY+ZI*ZZ+ZS
                                                                                       MO
                                                                                           49
50
          XI=X2(I)
                                                                                       MO
                                                                                           50
          YI=Y2(I)
51
                                                                                       MO
                                                                                           51
52
          ZI=Z2(I)
                                                                                       MO
                                                                                           52
53
          X2(K)=XI*XX+YI*XY+ZI*XZ+XS
                                                                                       MO
                                                                                           53
54
          Y2(K)=XI*YX+YI*YY+ZI*YZ+YS
                                                                                       MO
                                                                                           54
55
          Z2(K)=XI*ZX+YI*ZY+ZI*ZZ+ZS
                                                                                       MO
                                                                                           55
56
          BI(K)=BI(I)
                                                                                       MO
                                                                                           56
57
          ITAG(K)=ITAG(I)+ITGI
                                                                                       MO
                                                                                           57
58 1
          CONTINUE
                                                                                       MO
                                                                                           58
59
          I1=N+1
                                                                                       MO
                                                                                           59
60
          N=K
                                                                                       MO
                                                                                           60
61 2
          CONTINUE
                                                                                       MO
                                                                                           61
62 3
          IF (M.LT.M2) GO TO 6
                                                                                       MO
                                                                                           62
          I1=M2
63
                                                                                       MO
                                                                                           63
64
          K=M
                                                                                       MO
                                                                                           64
```

MOVE

65		LDI=LD+1	MO	65
66		IF (NRPT.EQ.0) K=M1	MO	66
67		DO 5 II=1,NRP	MO	67
68		DO 4 I=I1,M	MO	68
69		K=K+1	MO	69
70		IR=LDI-I	MO	70
71		KR=LDI-K	MO	71
72		XI=X(IR) .	MO	72
73		YI=Y(IR)	MO	73
74		ZI=Z(IR)	MO	74
75		X(KR)=XI*XX+YI*XY+ZI*XZ+XS	MO	75
76		Y(KR)=XI*YX+YI*YY+ZI*YZ+YS	MO	76
77		Z(KR)=XI*ZX+YI*ZY+ZI*ZZ+ZS	MO	77
78		XI=T1X(IR)	MO	78
79		YI=TIY(IR)	MO	79
80		ZI=T1Z(IR)	MO	80
81		T1X(KR)=XI*XX+YI*XY+ZI*XZ	MO	81
82		T1Y(KR)=XI*YX+YI*YY+ZI*YZ	MO	82
83		T1Z(KR)=XI*ZX+YI*ZY+ZI*ZZ	MO	83
84		XI=T2X(IR)	MO	84
85		YI=T2Y(IR)	MO	85
86		ZI=T2Z(IR)	MO	86
87		T2X(KR)=XI*XX+YI*XY+ZI*XZ	MO	87
88		T2Y(KR)=XI*YX+YI*YY+ZI*YZ	MO	88
89		T2Z(KR)=XI*ZX+YI*ZY+ZI*ZZ	MO	89
90		SALP(KR)=SALP(IR)	MO	90
91	4	BI(KR)=BI(IR)	MO	91
92		I1=M+1	MO	92
93	5	M=K	MO	93
94	6	IF ((NRPT.EQ.0).AND.(IX.EQ.1)) RETURN	MO	94
95		NP=N	MO	95
96		MP=M	MO	96
97		IPSYM=0	MO	97
98		RETURN	MO	98
99		END	MO	99-

NEFLD

PURPOSE

To compute the near electric field due to currents induced on a structure.

CODING

NE30 - NE93 Near E field due to currents on segments is computed.

NE30 - NE41 Each segment is checked to determine whether the field observation point (XOB, YOB, ZOB) falls within the segment volume. If it does, AX is set to the radius of that segment. AX is then sent to routine EFLD as the radius of the observation segment. If (XOB, YOB, ZOB) is on the axis of a segment at its center, the field calculation with AX set to the segment radius is the same as that used in filling the matrix.

NE42 - NE93 Loop computing the field contribution of each segment.

NE43 - NE50 Parameters of source segment are stored in COMMON/DATAJ/.

NE51 - NE85 When the extended thin wire approximation is used, IND1 is set to 0 if end 1 of segment I is connected to a single parallel segment of the same radius, 1 if it is a free end, and 2 if it connects to a multiple junction, a bend, or a segment of different radius. IND2 is the same for end 2. If IND1 or IND2 is 2, the extended thin wire approximation will not be used for that end.

NE87 EFLD stores the electric fields due to constant, sin ks, and cos ks currents in COMMON/DATAJ/.

NE88 - NE93 The field components are multiplied by the coefficients of the constant, sin ks, and cos ks components of the total segment current, and the field is summed.

NE95 - NE117 Near field due to patch currents is computed.

SYMBOL DICTIONARY

ACX = constant component of segment current at NE88; t

patch current at NE110

AX = segment radius when the field evaluation point falls within a segment volume

B = source segment radius

```
= sin ks component of segment current at NE89; t, component of
BCX
        patch current at NE111
CCX
      = cos ks component of segment current at NE90
EX
EY
      = x, y, and z components of total electric field
EZ
EXC
EYC
      = E field due to a cos ks current on a segment
EZC
EXK
      = E field due to a constant current at NE87; E field due to the t,
EYK
        component of patch current at NE114
EZK
EXS
      = E field due to a sin ks current at NE87; E field due to the t,
EYX
        component of patch current at NE114
EZS
IP
      = loop index for direct and reflected field (1, 2, respectively)
T1X
      = arrays for t,
T1Y
T1Z
T1XJ
T1YJ = \hat{t}_1 for source patch
T1ZJ
T2X
      = arrays for t,
T2Y
T2Z
T2XJ
T2YJ = î, for source path
T2ZJ
XI
      = cosine of the angle between segment I and the segment connected
        to its end
XOB
      = field evaluation point
YOB
ZOB
      = coordinates of the field evaluation point, z or \rho^2, in a
ZP
        cylindrical coordinate system centered on the source segment
```

CONSTANTS

- 0.5001 = fraction of segment length used to test whether the field evaluation point falls within a segment
- 0.9 = fraction of segment radius used to test whether the field evaluation point falls within a segment
- 0.999999 = minimum XI for extended thin wire kernel (maximum angle = 0.08 degree)

```
1
         SUBROUTINE NEFLD (XOB, YOB, ZOB, EX, EY, EZ)
                                                                                   NE
2 C
                                                                                   NE
                                                                                         2
3 C
         NEFLD COMPUTES THE NEAR FIELD AT SPECIFIED POINTS IN SPACE AFTER
                                                                                   NE
                                                                                         3
4 C
         THE STRUCTURE CURRENTS HAVE BEEN COMPUTED.
                                                                                   NE
5 C
6
         COMPLEX EX, EY, EZ, CUR, ACX, BCX, CCX, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, E NE
7
        1ZC, ZRATI, ZRATI2, T1, FRATI
                                                                                         7
8
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300
                                                                                         8
        1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( NE
9
                                                                                         9
10
        2300), WLAM, IPSYM
                                                                                   NE
                                                                                        10
         COMMON /ANGL/ SALP(300)
11
                                                                                   NE
                                                                                        11
12
         COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300
                                                                                        12
13
        1),CUR(900)
14
         COMMON /DATAJ/ S.B.XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ
                                                                                        14
        15, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
15
                                                                                   NE
                                                                                        15
16
         COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR.
                                                                                        16
                                                                                   NE
17
        1IPERF, T1, T2
                                                                                   NE
                                                                                        17
18
         DIMENSION CAB(1), SAB(1), T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1),
                                                                                   NE
                                                                                        18
19
        1T2Z(1)
                                                                                   NE
                                                                                       19
20
         EQUIVALENCE (CAB, ALP), (SAB, BET)
                                                                                       20
21
          EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON NE
                                                                                        21
22
        12), (T2Z, ITAG)
                                                                                       22
23
          EQUIVALENCE (TIXJ, CABJ), (TIYJ, SABJ), (TIZJ, SALPJ), (T2XJ, B), (T2Y NE
                                                                                        23
24
        1J, IND1), (T2ZJ, IND2)
                                                                                   NE
                                                                                        24
25
         EX=(0.,0.)
                                                                                   NE
                                                                                        25
          EY=(0.,0.)
26
                                                                                   NF
                                                                                       26
27
          EZ=(0.,0.)
                                                                                   NE
                                                                                        27
28
         AX=O.
                                                                                   NE
                                                                                        28
29
         IF (N.EQ.0) GO TO 20
                                                                                   NE
                                                                                       29
30
         DO 1 I=1,N
                                                                                   NE
                                                                                       30
31
         XJ = XOB - X(I)
                                                                                   NE
                                                                                        31
32
          YJ=YOB-Y(I)
                                                                                   NE
                                                                                        32
33
         ZJ=ZOB-Z(I)
                                                                                   NE
                                                                                        33
34
         ZP=CAB(I)*XJ+SAB(I)*YJ+SALP(I)*ZJ
                                                                                   NF
                                                                                       34
35
          IF (ABS(ZP).GT.0.5001*SI(I)) GO TO 1
                                                                                   NE
                                                                                        35
36
         ZP=XJ*XJ+YJ*YJ+ZJ*ZJ-ZP*ZP
                                                                                   NE
                                                                                        36
          XJ=BI(I)
37
                                                                                   NE
                                                                                       37
38
          IF (ZP.GT.O.9*XJ*XJ) GO TO 1
                                                                                   NE
                                                                                        38
39
          AX=XJ
                                                                                   NE
                                                                                        39
40
          GO TO 2
                                                                                   NE
                                                                                        40
41 1
          CONTINUE
                                                                                   NE
                                                                                        41
42 2
          DO 19 I=1,N
                                                                                   NE
                                                                                        42
43
          S=SI(I)
                                                                                   NE
                                                                                        43
          8=8I(I)
44
                                                                                   NE
                                                                                        44
45
          XJ=X(I)
                                                                                   NE
                                                                                        45
46
          YJ=Y(I)
                                                                                   NE
                                                                                        46
47
          ZJ=Z(I)
                                                                                   NE
                                                                                        47
48
          CABJ=CAB(I)
                                                                                   NE
                                                                                        48
49
          SABJ=SAB(I)
                                                                                   NE
                                                                                        49
50
          SALPJ=SALP(I)
                                                                                   NE
                                                                                        50
51
          IF (IEXK.EQ.0) GO TO 18
                                                                                   NE
                                                                                        51
          IPR=ICON1(I)
52
                                                                                   NE
                                                                                       52
53
          IF (IPR) 3,8,4
                                                                                   NE
                                                                                        53
54 3
          IPR=-IPR
                                                                                   NE
                                                                                        54
55
          IF (-ICON1(IPR).NE.I) GO TO 9
                                                                                   NE
                                                                                        55
56
          GO TO 6
                                                                                   NE
                                                                                        56
57 4
          IF (IPR.NE.I) GO TO 5
                                                                                   NE
                                                                                        57
          IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 9
58
                                                                                   NE
                                                                                        58
59
          GO TO 7
                                                                                   NE
                                                                                        59
          IF (ICON2(IPR).NE.I) GO TO 9
60 5
                                                                                   NE
                                                                                        60
61 6
          XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))
                                                                                   NE
                                                                                        61
62
          IF (XI.LT.0.999999) GO TO 9
                                                                                   NE
                                                                                        62
63
          IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 9
                                                                                   NE
                                                                                        63
64 7
          IND1=0
                                                                                   NE
                                                                                        64
```



```
65
          GO TO 10
                                                                                    NE
                                                                                        65
          IND1=1
66 8
                                                                                    NE
                                                                                        66
          GO TO 10
67
                                                                                    NE
                                                                                        67
          IND1=2
68 9
                                                                                    NE
                                                                                        68
69 10
          IPR=ICON2(I)
                                                                                    NE
                                                                                        69
          IF (IPR) 11,16,12
                                                                                        70
70
                                                                                    NE
          IPR=-IPR
71 11
                                                                                    NE
                                                                                        71
72
          IF (-ICON2(IPR).NE.I) GO TO 17
                                                                                    NE
                                                                                        72
73
          GO TO 14
                                                                                    NE
                                                                                        73
74
   12
          IF (IPR.NE.I) GO TO 13
                                                                                    NE
                                                                                        74
75
          IF
              (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 17
                                                                                    NE
                                                                                        75
          GO TO 15
76
                                                                                        76
                                                                                    NE
77 13
          IF (ICON1(IPR).NE.I) GO TO 17
                                                                                    NE
                                                                                        77
          XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))
                                                                                    NE
                                                                                        78
78 14
          IF (XI.LT.0.999999) GO TO 17
79
                                                                                    NE
                                                                                        79
80
          IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 17
                                                                                    NE
                                                                                        80
          IND2=0
81 15
                                                                                    NE
                                                                                        81
          GO TO 18
                                                                                    NE
                                                                                        82
82
          IND2=1
83 16
                                                                                    NE
                                                                                        83
          GO TO 18
84
                                                                                    NE
                                                                                        84
85 17
          IND2=2
                                                                                    NE
                                                                                        85
          CONTINUE
86 18
                                                                                    NE
                                                                                        86
          CALL EFLD (XOB, YOB, ZOB, AX, 1)
87
                                                                                    NE
                                                                                        87
          ACX=CMPLX(AIR(I),AII(I))
88
                                                                                    NE
                                                                                        88
89
          BCX=CMPLX(BIR(I),BII(I))
                                                                                    NE
                                                                                        89
          CCX=CMPLX(CIR(I),CII(I))
90
                                                                                    NE
                                                                                        90
          EX=EX+EXK*ACX+EXS*BCX+EXC*CCX
91
                                                                                    NE
                                                                                        91
          EY=EY+EYK*ACX+EYS*BCX+EYC*CCX
92
                                                                                        92
                                                                                    NE
93 19
          EZ=EZ+EZK*ACX+EZS*BCX+EZC*CCX
                                                                                    NE
                                                                                        93
          IF (M.EQ.O) RETURN
94
                                                                                    NE
                                                                                        94
          JC=N
                                                                                        95
95 20
                                                                                    NE
96
           JL=LD+1
                                                                                    NE
                                                                                        96
          DO 21 I=1,M
97
                                                                                    NE
                                                                                        97
98
           JL=JL-1
                                                                                    NE
                                                                                        98
          S=BI(JL)
99
                                                                                    NE
                                                                                        99
100
          XJ=X(JL)
                                                                                    NE 100
          YJ=Y(JL)
101
                                                                                    NE 101
          ZJ=Z(JL)
102
                                                                                    NE 102
103
           T1XJ=T1X(JL)
                                                                                    NE 103
104
          TIYJ=TIY(JL)
                                                                                    NE 104
           T1ZJ=T1Z(JL)
105
                                                                                    NE 105
           T2XJ=T2X(JL)
106
                                                                                    NE 106
107
          T2YJ=T2Y(JL)
                                                                                    NE 107
108
           T2ZJ=T2Z(JL)
                                                                                    NE 108
109
           JC=JC+3
                                                                                    NE 109
110
          ACX=T1XJ*CUR(JC-2)+T1YJ*CUR(JC-1)+T1ZJ*CUR(JC)
                                                                                    NE 110
           BCX=T2XJ*CUR(JC-2)+T2YJ*CUR(JC-1)+T2ZJ*CUR(JC)
111
                                                                                    NE 111
112
           DO 21 IP=1 , KSYMP
                                                                                    NE 112
           IPGND=IP
113
                                                                                    NE 113
114
           CALL UNERE (XOB, YOB, ZOB)
                                                                                    NE 114
           EX=EX+ACX*EXK+BCX*EXS
115
                                                                                    NE 115
           EY=EY+ACX*EYK+BCX*EYS
116
                                                                                    NE 116
117 21
           EZ=EZ+ACX*EZK+BCX*EZS
                                                                                    NE 117
           RETURN
118
                                                                                    NE 118
          END
119
                                                                                    NE 119-
```

NETWK

PURPOSE

To solve for the voltages and currents at the ports of non-radiating networks that are part of the antenna. This routine also is involved in the solution for current when there are no non-radiating networks, and computes the relative driving point matrix asymmetry when this option is requested.

METHOD

Driving Point Matrix Asymmetry (NT32 to NT84):

To satisfy physical reciprocity, the elements of the inverse of the interaction matrix should satisfy the condition

$$G_{ij}^{-1}/\Delta_{j} = G_{ji}^{-1}/\Delta_{i}$$
 i, j = 1, ..., n,

where Δ_i = length of segment i. This condition is not satisfied exactly, except on special structures, since the terms computed are not true reactions. The relative asymmetry of a matrix element is defined as

$$A = \left| \frac{\left(G_{ij}^{-1}/\Delta_{j} - G_{ji}^{-1}/\Delta_{i} \right)}{\left(G_{ij}^{-1}/\Delta_{j} \right)} \right|.$$

The code from NT32 to NT84 computes the relative asymmetries of matrix elements for i and j of all driving point segments: either voltage source driving points or network connection points. The maximum relative asymmetry is located, and the rms relative asymmetry of all elements used is computed.

LOCAL CODING STRUCTURE

NT32 - NT44 Determine numbers of segments that are network connection points.

NT46 - NT54 Determine numbers of segments that are voltage source driving points. Indices of segments with network connections or voltage sources are stored in array IPNT with no duplication of numbers.

NT59 - NT69 Compute $G_{k\ell}^{-1}/\Delta_{\ell}$ for k, ℓ = all segment numbers in IPNT.

NT70 - NT84 Compute relative asymmetries of elements computed above, search for maximum and compute rms asymmetry.

LOCAL SYMBOL DICTIONARY

ASA = sum of squares of relative asymmetries and rms value

ASM = Δ_{ISC1} before NT70; maximum relative asymmetry after NT69

 $CMN(J,I) = G_{k\ell}^{-1}/\Delta_{\ell}; k = IPNT(J), \ell = IPNT(I)$

CUR = temporary storage of $G_{\ell k}^{-1}/\Delta_{k}$

IPNT = array of driving point segment indices

IROW1 = number of entries in IPNT

ISC1 = temporary storage of segment index

MASYM = flag; if non-zero, matrix asymmetry is computed

NTEQ = row index of element having maximum asymmetry

NTSC = column index of element having maximum asymmetry

PWR = relative matrix asymmetry

RHS = vector for matrix solution used in obtaining $G_{k\ell}^{-1}$

Non-radiating Network Solution (NT89 to NT262):

The solution method when non-radiating networks are present is discussed in Part I.

Data for non-radiating networks is passed through the COMMON/NETCX/where

ISEG1(I) = number of the segment to which end 1 of Ith two-port network
is connected

ISEG2(I) = number of segment to which end 2 of Ith two-port network is connected

NONET = number of two-port networks for which data is given

Network parameters are contained in the arrays X11R, X11I, X12R, X12I, X22R, and X22I, and the type of network is determined by NTYP:

If NTYP is 1 -- the network parameters are the short-circuit admittance parameters of the network:

X11R, X11I = real and imaginary parts of Y11

X12R, X12I = real and imaginary parts of $Y_{12} = Y_{21}$

X22R, X22I = real and imaginary parts of Y22

If NTYP is 2 or 3 -- the network is a transmission line:

X11R = characteristic impedance of transmission line

X11I = length of transmission line in meters

X12R = real part of shunt admittance on end 1 of line

X12I = imaginary part of shunt admittance on end 1 of line

X22R = real part of shunt admittance on end 2 of line

X22I = imaginary part of shunt admittance on end 2 of line

If NTYP is 2 -- the transmission line runs straight between the segments with respect to the segment reference directions.

If NTYP is 3 -- the transmission line is twisted as shown in figure 8.

The short circuit admittance parameters of the transmission line, Y_{11} , Y_{12} , and Y_{22} , are computed from NT110 to NT120 in the code. When NTYP is 3, the sign of Y_{12} is reversed.

The code from NT99 to NT194 forms a loop that for each network: computes the network parameters Y₁₁, Y₁₂ and Y₂₂; sorts the segment indices involved; and adds the parameters Y₁₁, Y₁₂, and Y₂₂ to the appropriate network equations. The sorting procedure for the connection of end 1 of the network is described in figure 9. Decision 1 is made in the code from NT121 to NT126, decision 2 from NT128 to NT133, and decision 3 from NT138 to NT143. Segments having network connections only are assigned equation rows in the array CMN starting from the top in the order that the segments are encountered. Segments with both network and voltage source connections are assigned equation rows in CMN starting at the bottom and proceeding up. The former are eventually solved for the unknown gap voltages, while the latter are used to obtain source input admittances after the structure currents have been computed. The code from NT148 to NT174 assigns equation numbers for the connection of end 2 of the networks and sets IROW2 and ISC2.

The network short circuit parameters are added to the network equations from NT182 to NT193. The coefficient matrix is transposed in filling the CMN array, since the matrix solution routines operate on a transposed system. Hence, the first index should be considered the column number and the second index the row number. If a segment NSEG1 does not have a voltage source connected, the parameters Y₁₁ and Y₁₂ are added to column IROW1 at rows IROW1 and IROW2, respectively. IROW2 may be either (1) in the upper rows as part of the equations for the unknown gap voltages, or (2) if a voltage source is connected to segment NSEG2, in the lower rows for later determination of the source current. If a voltage source is connected to segment NSEG1, the

Figure 8. Options for Transmission Line Connection.

coefficients Y_{11} and Y_{12} are multiplied by the known source voltage and added to the right-hand side of the network equation in the rows IROW1 and IROW2. The parameters Y_{12} and Y_{22} are added to the equations in a similar manner.

The loop from NT199 to NT208 computes the elements of the inverse matrix G_{mn}^{-1} and adds them to the network equations. The network matrix is then factored at NT213. The code from NT218 to NT225 computes $B_i = RHS(I)$, where

$$B_{i} = \sum_{j=1}^{N} G_{ij}^{-1} E'_{j} \quad i = 1, ... N$$

with (-E') being the known applied field on segment j, not including unknown voltage drops at network ports. Those elements B for segments in the network equations are then added to the right-hand side of the network equations. At NT229 the network equations are solved for the excitation fields due to voltage drops at the network ports. The negatives of these fields are added to the excitation vector at NT234 to NT236, completing the definition of the excitation vector E_j. The structure equations are then solved for the induced currents.

$$I_{j} = \sum_{j=1}^{N} G_{ij}^{-1} E_{j}.$$

From NT241 to NT261, the voltage, current, admittance, and power seen looking into the structure at each network port are printed. This current does not include current through any voltage sources that are connected to the port.

Figure 9. Sorting Procedure for Segments Having Network Connections.

The code from NT269 to NT294 computes and prints the voltage, current, admittance, and power seen by each voltage source looking into the structure and parallel connected network port, if a network is present.

After the network equations have once been set up, they can be solved for various incident fields by entering the code at NT218. If the location of voltage sources is changed, however, the equations must be recomputed.

If a structure has no non-radiating networks, the currents are computed at NT266.

SYMBOL DICTIONARY

ASA = sum of squares of relative matrix asymmetries and rms value

ASM = segment length and maximum relative matrix asymmetry

CABS = external routine (magnitude of complex number)

CM = array of matrix elements G

CMN = array for network equation coefficients

CMPLX = external routine (forms complex number)

CONJG = external routine (conjugate)

COS = external routine (cosine)

CUR = current

EINC = excitation vector

FACTR = external routine (Gauss-Doolittle matrix factoring)

FLOAT = external routine (integer to real conversion)

I = DO loop index

IP = array of positioning data from factoring of CM

IPNT = array of positioning data from factoring of CMN

IROW1 = matrix element index

IROW2 = matrix element index

ISANT = array of segment numbers for voltage source connection

ISC1 = segment location in array ISANT

.ISC2 = segment location in array ISANT

ISEG1 = number of segment to which port 1 of network is connected

ISEG2 = number of segment to which port 2 is connected

IX = array of positioning data from factoring of CM

J = DO loop index

MASYM = flag to request matrix asymmetry calculation

NCOL = number of columns in CM

NDIMN = array dimension of CMN

NDIMNP = NDIMN + 1 NONET = number of networks NOP = N/NP = flag to control printing NPRINT = number of rows in CM NROW - number of voltage sources NSANT NSEG1 = array of segments to which port 1 of a network connects = array of segments to which port 2 of a network connects NSEG2 NTEQA(I) = segment number associated with Ith network equation - number of network-voltage source equations NTSC NTSCA(I) = segment number associated with I th network-voltage source equation NTSOL = flag to indicate network equations do not need to be recomputed = type of Ith network NTYP(I) PIN = total input power from sources PNLS = power lost in networks PWR - power = external routine (real part of complex number) REAL = vector for right-hand side of network equations RHNT RHNX = component of RHNT due to Y11, Y12, Y22 terms RHS - vector for right-hand side of structure interaction equation SIN = external routine (sine) = external routine (Gauss-Doolittle solution) SOLVE = external routine (Gauss-Doolittle solution of CM matrix) SORT = external routine (square root) TP $= 2\pi$ VLT = voltage VSANT(I) = voltage of source on segment NSANT(I) VSRC(I) = voltage of source on Ith segment in network-voltage source equations X111 X11R = network or transmission line specification X12I X12R parameters X22I X22R

YMIT = admittance

Y111 = imaginary part of Y11

Y11R = real part of Y

Y12I = imaginary part of Y12

Y12R = real part of Y₁₂

Y22I = imaginary part of Y22

Y22R = real part of Y22

ZPED = impedance

CONSTANTS

 $6.283185308 = 2\pi$

30 = row and column dimensions of CMN

31 = (row and column dimensions of CMN) + 1

1		SUBROUTINE NETWK (CM,CMB,CMC,CMD,IP,EINC)	NT	1
2	1000	SUBROUTINE NETWK SOLVES FOR STRUCTURE CURRENTS FOR A GIVEN	NT	2
3			NT	3
4		EXCITATION INCLUDING THE EFFECT OF NON-RADIATING NETWORKS IF	NT	4
5		PRESENT.	NT	5
6	С		NT	6
7		COMPLEX CMN, RHNT, YMIT, RHS, ZPED, EINC, VSANT, VLT, CUR, VSRC, RHNX, VQD, VQ	NT	7
8		1DS, CUX, CM, CMB, CMC, CMD	NT	8
9		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300	NT	9
0		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(NT	10
1		2300) WLAM, IPSYM	NT	11
2		COMMON /CRNT/ AIR(300), AII(300), BIR(300), BII(300), CIR(300), CII(300		12
3		1), CUR(900)	NT	13
4		COMMON /VSORC/ VQD(30), VSANT(30), VQDS(30), IVQD(30), ISANT(30), IQDS(14
5		130), NVQD, NSANT, NQDS	NT	15
6		COMMON /NETCX/ ZPED, PIN, PNLS, NEQ, NPEQ, NEQ2, NONET, NTSOL, NPRINT, MASY		16
7		1M, ISEG1(30), ISEG2(30), X11R(30), X11I(30), X12R(30), X12I(30), X22R(30)		17
8		2,X22I(30),NTYP(30)	NT	18
9		DIMENSION EINC(1), IP(1)	NT	19
20		DIMENSION CMN(30,30), RHNT(30), IPNT(30), NTEQA(30), NTSCA(30), RH	NT	20
21		1S(900), VSRC(10), RHNX(30)	NT	21
22		DATA NDIMN, NDIMNP/30, 31/, TP/6.283185308/	NT	22
23		PIN=0.	NT	23
24		PNLS=0.	NT	24
25		NEQT=NEQ+NEQ2	NT	25
26		IF (NTSOL.NE.O) GO TO 42	NT	26
27		NOP=NEQ/NPEQ	NT	27
28		IF (MASYM.EQ.0) GO TO 14	NT	28
29	C		NT	29
50		COMPUTE RELATIVE MATRIX ASYMMETRY	NT	30
51		Some of Regulate Marinar Administra	NT	31
52	7.70	IROW1=0	NT	32
33		IF (NONET.EQ.0) GO TO 5	NT	33
54		DO 4 I=1, NONET	NT	34
55		NSEG1=ISEG1(I)		
			NT	35
56		00 3 ISC1=1,2	NT	36
57		IF (IROW1.EQ.0) GO TO 2	NT	37
58		DO 1 J=1, IROW1	NT	38
59		IF (NSEG1.EQ.IPNT(J)) GO TO 3	NT	39
40		CONTINUE	NT	40
41	2	IROW1=IROW1+1	NT	41
42		IPNT(IROW1)=NSEG1	NT	42
43	The state of the s	NSEG1=ISEG2(I)	NT	43
44		CONTINUE	NT	44
45	5	IF (NSANT.EQ.3) GO TO 9	NT	45
46		DO 8 I=1, NSANT	NT	46
47		NSEG1=ISANT(I)	NT	47
48		IF (IROW1.EQ.0) GO TO 7	NT	48
49		DO 6 J=1,IROW1	NT	49
50		IF (NSEG1.EQ.IPNT(J)) GO TO 8	NT	50
51	6	CONTINUE	NT	51
52	7	IROW1=IROW1+1	NT	52
53		IPNT(IROW1)=NSEG1	NT	53
54	8	CONTINUE	NT	54
55	9	IF (IROW1.LT.NDIMNP) GO TO 10	NT	55
56		PRINT 59	NT	56
57		STOP	NT	57
	10	IF (IROW1.LT.2) GO TO 14	NT	58
59		DO 12 I=1,IROW1	NT	59
60		ISC1=IPNT(I)	NT	60
61		ASM=SI(ISC1)	NT	61
62		DO 11 J=1,NEQT	NT	62
-	11	RHS(J)=(0.,0.)	NT	63
84		Bue/Tec1-/1 0 \		64

STOCK STOCKED (SOCKED SOCKED) SECRECAL SOCKED SOCKE

```
65
          CALL SOLGF (CM, CMB, CMC, CMD, RHS, IP, NP, N1, N, MP, M1, M, NEQ, NEQ2)
                                                                                    NT
                                                                                        65
          CALL CABC (RHS)
66
                                                                                    NT
                                                                                        66
67
          DO 12 J=1, IROW1
                                                                                        67
                                                                                    NT
68
          ISC1=IPNT(J)
                                                                                    NT
                                                                                        68
69 12
          CMN(J,I)=RHS(ISC1)/ASM
                                                                                    NT
                                                                                        69
70
          ASM=0.
                                                                                    NT
                                                                                        70
71
          ASA=0.
                                                                                    NT
                                                                                        71
72
          DO 13 I=2, IROW1
                                                                                   NT
                                                                                        72
73
          ISC1=I-1
                                                                                    NT
                                                                                        73
74
          DO 13 J=1, ISC1
                                                                                        74
                                                                                    NT
75
          CUX=CMN(I,J)
                                                                                        75
                                                                                   NT
76
          PWR=CABS((CUX-CMN(J,I))/CUX)
                                                                                    NT
                                                                                        76
77
          ASA=ASA+PWR+PWR
                                                                                    NT
                                                                                        77
78
          IF (PWR.LT.ASM) GO TO 13
                                                                                    NT
                                                                                        78
79
          ASM=PWR
                                                                                    NT
                                                                                        79
          NTEQ=IPNT(I)
80
                                                                                    NT
                                                                                        80
          NTSC=IPNT(J)
81
                                                                                    NT
                                                                                        81
82 13
          CONTINUE
                                                                                    NT
                                                                                        82
          ASA=SQRT(ASA*2./FLOAT(IROW1*(IROW1-1)))
83
                                                                                    NT
                                                                                        83
          PRINT 58, ASM, NTEQ, NTSC, ASA
84
                                                                                    NT
                                                                                        84
85 14
          IF (NONET.EQ.0) GO TO 48
                                                                                        85
                                                                                    NT
   C
86
                                                                                    NT
                                                                                        86
          SOLUTION OF NETWORK EQUATIONS
87 C
                                                                                        87
                                                                                    NT
88 C
                                                                                    NT
                                                                                        88
89
          DO 15 I=1, NDIMN
                                                                                        89
                                                                                    NT
          RHNX(I)=(0.,0.)
90
                                                                                    NT
                                                                                        90
91
          DO 15 J=1, NDIMN
                                                                                        91
                                                                                    NT
92 15
          CMN(I, J)=(0.,0.)
                                                                                    NT
                                                                                        92
93
          NTEQ=0
                                                                                    NT
                                                                                        93
94
          NTSC=0
                                                                                    NT
                                                                                        94
95 C
                                                                                    NT
                                                                                        95
96 C
          SORT NETWORK AND SOURCE DATA AND ASSIGN EQUATION NUMBERS TO
                                                                                        96
                                                                                    NT
97 C
          SEGMENTS.
                                                                                    NT
                                                                                        97
98 C
                                                                                    NT
                                                                                        98
99
          DO 38 J=1, NONET
                                                                                    NT
                                                                                        99
          NSEG1=ISEG1(J)
100
                                                                                    NT 100
101
          NSEG2=ISEG2(J)
                                                                                    NT 101
102
          IF (NTYP(J).GT.1) GO TO 16
                                                                                    NT 102
103
          Y11R=X11R(J)
                                                                                    NT 103
104
                                                                                    NT 104
          Y111=X111(J)
105
          Y12R=X12R(J)
                                                                                    NT 105
106
          Y12I=X12I(J)
                                                                                    NT 106
          Y22R=X22R(J)
107
                                                                                    NT 107
108
          Y22I=X22I(J)
                                                                                    NT 108
109
          GO TO 17
                                                                                    NT 109
          Y22R=TP*X11I(J)/WLAM
110 16
                                                                                    NT 110
111
          Y12R=0.
                                                                                    NT 111
          Y12I=1./(X11R(J)*SIN(Y22R))
112
                                                                                    NT 112
113
          Y11R=X12R(J)
                                                                                    NT 113
114
           Y11I=-Y12I*COS(Y22R)
                                                                                    NT 114
115
           Y22R=X22R(J)
                                                                                    NT 115
116
           Y22I=Y11I+X22I(J)
                                                                                    NT 116
117
           Y11I=Y11I+X12I(J)
                                                                                    NT 117
118
          IF (NTYP(J).EQ.2) GO TO 17
                                                                                    NT 118
119
           Y12R=-Y12R
                                                                                    NT 119
120
          Y12I=-Y12I
                                                                                    NT 120
121 17
          IF (NSANT.EQ.0) GO TO 19
                                                                                    NT 121
           DO 18 I=1, NSANT
122
                                                                                    NT 122
           IF (NSEG1.NE.ISANT(I)) GO TO 18
123
                                                                                    NT 123
124
           ISC1=I
                                                                                    NT 124
125
          GO TO 22
                                                                                    NT 125
126 18
           CONTINUE
                                                                                    NT 126
127 19
           ISC1=0
                                                                                    NT 127
128
           IF (NTEQ.EQ.0) GO TO 21
                                                                                    NT 128
```

NETWK

129	DO 20 I=1,NTEQ	NT 129
130	IF (NSEG1.NE.NTEQA(I)) GO TO 20	NT 130
131	IROW1=I	NT 131
132	GO TO 25	NT 132
133 20	CONTINUE	NT 133
134 21	NTEQ=NTEQ+1	NT 134
135	요즘 교육으로 전혀 분들으로 하는 것이 되었다. 그는 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
	IROW1=NTEQ	NT 135
136	NTEQA(NTEQ)=NSEG1	NT 136
137	GO TO 25	NT 137
138 22	IF (NTSC.EQ.0) GO TO 24	NT 138
139	DO 23 I=1,NTSC	NT 139
140	IF (NSEG1.NE.NTSCA(I)) GO TO 23	NT 140
141	IROW1=NDIMNP-I	NT 141
142	GO TO 25	NT 142
143 23	CONTINUE	NT 143
144 24	NTSC=NTSC+1	NT 144
145	IROW1=NDIMNP-NTSC	NT 145
146	NTSCA(NTSC)=NSEG1	
		NT 146
147	VSRC(NTSC)=VSANT(ISC1)	NT 147
148 25	IF (NSANT.EQ.0) GO TO 27	NT 148
149	DO 26 I=1,NSANT	NT 149
150	IF (NSEG2.NE.ISANT(I)) GO TO 26	NT 150
151	ISC2=I	NT 151
152	GO TO 30	NT 152
153 26	CONTINUE	NT 153
154 27	ISC2=0	NT 154
155	IF (NTEQ.EQ.0) GO TO 29	NT 155
156	DO 28 I=1,NTEQ	NT 156
157		NT 157
	IF (NSEG2.NE.NTEQA(I)) GO TO 28	200000000000000000000000000000000000000
158	IROW2=I	NT 158
159	GO TO 33	NT 159
160 28	CONTINUE	NT 160
161 29	NTEQ=NTEQ+1	NT 161
162	IROW2=NTEQ	NT 162
163	NTEQA(NTEQ)=NSEG2	NT 163
164	GO TO 33	NT 164
165 30	IF (NTSC.EQ.0) GO TO 32	NT 165
166	DO 31 I=1,NTSC	NT 166
167	IF (NSEG2.NE.NTSCA(I)) GO TO 31	NT 167
168	IROW2=NDIMNP-I	NT 168
169	GO TO 33	
		NT 169
170 31	CONTINUE	NT 170
171 32	NTSC=NTSC+1	NT 171
172	IROW2=NDIMNP-NTSC	NT 172
173	NTSCA(NTSC)=NSEG2	NT 173
174	VSRC(NTSC)=VSANT(ISC2)	NT 174
175 33	IF (NTSC+NTEQ.LT.NDIMNP) GO TO 34	NT 175
176	PRINT 59	NT 176
177	STOP	NT 177
178 C		NT 178
179 C	FILL NETWORK EQUATION MATRIX AND RIGHT HAND SIDE VECTOR WITH	NT 179
180 C	NETWORK SHORT-CIRCUIT ADMITTANCE MATRIX COEFFICIENTS.	NT 180
181 C	METHORI CERCOLI ADMITTARCE MATRIX COEFFICIENTS.	NT 181
182 34	TE (TEC) NE 0) CO TO TE	
	IF (ISC1.NE.0) GO TO 35	NT 182
183	CMN(IROW1, IROW1)=CMN(IROW1, IROW1)-CMPLX(Y11R, Y11I)*SI(NSEG1)	NT 183
184	CMN(IROW1, IROW2)=CMN(IROW1, IROW2)-CMPLX(Y12R, Y12I)*SI(NSEG1)	NT 184
185	GO TO 36	NT 185
186 35	RHNX(IROW1)=RHNX(IROW1)+CMPLX(Y11R,Y11I)*VSANT(ISC1)/WLAM	NT 186
187	RHNX(IROW2)=RHNX(IROW2)+CMPLX(Y12R,Y12I)*VSANT(ISC1)/WLAM	NT 187
188 36	IF (ISC2.NE.0) GO TO 37 &	NT 188
189	CMN(IROW2, IROW2)=CMN(IROW2, IROW2)-CMPLX(Y22R, Y22I) *SI(NSEG2)	NT 189
190	CMN(IROW2, IROW1)=CMN(IROW2, IROW1)-CMPLX(Y12R, Y12I) *SI(NSEG2)	NT 190
191	GO TO 38	NT 191
192 37	RHNX(IROW1)=RHNX(IROW1)+CMPLX(Y12R,Y12I)*VSANT(ISC2)/WLAM	NT 192
	THE PROPERTY OF THE PARTY (1902) / WEAR	111 132


```
193
          RHNX(IROW2)=RHNX(IROW2)+CMPLX(Y22R,Y22I)*VSANT(ISC2)/WLAM
                                                                                   NT 193
194 38
          CONTINUE
                                                                                   NT 194
195 C
                                                                                   NT 195
          ADD INTERACTION MATRIX ADMITTANCE ELEMENTS TO NETWORK EQUATION
196 C
                                                                                   NT 196
          MATRIX
197 C
                                                                                   NT 197
198
                                                                                   NT 198
199
          DO 41 I=1,NTEQ
                                                                                   NT 199
          DO 39 J=1 , NEQT
200
                                                                                   NT 200
201 39
          RHS(J)=(0.,0.)
                                                                                   NT 201
202
          IROW1=NTEQA(I)
                                                                                   NT 202
203
           RHS(IROW1)=(1.,0.)
                                                                                   NT 203
204
          CALL SOLGF (CM, CMB, CMC, CMD, RHS, IP, NP, N1, N, MP, M1, M, NEQ, NEQ2)
                                                                                   NT 204
          CALL CABC (RHS)
205
                                                                                   NT 205
206
           DO 40 J=1.NTEQ
                                                                                   NT 206
           IROW1=NTEQA(J)
207
                                                                                   NT 207
208 40
           CMN(I, J)=CMN(I, J)+RHS(IROW1)
                                                                                   NT 208
209 41
           CONTINUE
                                                                                   NT 209
210 C
                                                                                   NT 210
          FACTOR NETWORK EQUATION MATRIX
211 C
                                                                                   NT 211
212 C
                                                                                   NT 212
213
          CALL FACTR (NTEQ, CMN, IPNT, NDIMN)
                                                                                   NT 213
214 C
                                                                                   NT 214
           ADD TO NETWORK EQUATION RIGHT HAND SIDE THE TERMS DUE TO ELEMENT
215 C
                                                                                   NT 215
216 C
          INTERACTIONS
                                                                                   NT 216
217 C
                                                                                   NT 217
218 42
           IF (NONET.EQ.0) GO TO 48
                                                                                   NT 218
          DO 43 I=1 , NEQT
219
                                                                                   NT 219
220 43
           RHS(I)=EINC(I)
                                                                                   NT 220
           CALL SOLGF (CM, CMB, CMC, CMD, RHS, IP, NP, N1, N, MP, M1, M, NEQ, NEQ2)
221
                                                                                   NT 221
222
           CALL CABC (RHS)
                                                                                   NT 222
223
          DO 44 I=1, NTEQ
                                                                                   NT 223
           IROW1=NTEQA(I)
224
                                                                                   NT 224
225 44
           RHNT(I)=RHNX(I)+RHS(IROW1)
                                                                                   NT 225
226 C
                                                                                   NT 226
227 C
           SOLVE NETWORK EQUATIONS
                                                                                   NT 227
228 C
                                                                                   NT 228
229
           CALL SOLVE (NTEQ, CMN, IPNT, RHNT, NDIMN)
                                                                                   NT 229
230 C
                                                                                   NT 230
           ADD FIELDS DUE TO NETWORK VOLTAGES TO ELECTRIC FIELDS APPLIED TO
231 C
                                                                                   NT 231
           STRUCTURE AND SOLVE FOR INDUCED CURRENT
232 C
                                                                                   NT 232
233 C
                                                                                   NT 233
                                                                                   NT 234
234
           DO 45 I=1,NTEQ
           IROW1=NTEQA(I)
235
                                                                                   NT 235
236 45
           EINC(IROW1)=EINC(IROW1)-RHNT(I)
                                                                                   NT 236
237
           CALL SOLGF (CM, CMB, CMC, CMD, EINC, IP, NP, N1, N, MP, M1, M, NEQ, NEQ2)
                                                                                   NT 237
238
           CALL CABC (EINC)
                                                                                   NT 238
239
           IF (NPRINT.EQ.0) PRINT 61
                                                                                   NT 239
240
           IF (NPRINT.EQ.O) PRINT 60
                                                                                   NT 240
           DO 46 I=1,NTEQ
241
                                                                                   NT 241
           IROW1=NTEQA(I)
242
                                                                                   NT 242
           VLT=RHNT(I) *SI(IROW1) *WLAM
243
                                                                                   NT 243
244
           CUX=EINC(IROW1) *WLAM
                                                                                   NT 244
245
           YMIT=CUX/VLT
                                                                                   NT 245
246
           ZPED=VLT/CUX
                                                                                   NT 246
247
           IROW2=ITAG(IROW1)
                                                                                   NT 247
248
           PWR=.5*REAL(VLT*CONJG(CUX))
                                                                                   NT 248
           PNLS=PNLS-PWR
249
                                                                                   NT 249
250 46
           IF (NPRINT.EQ.0) PRINT 62, IROW2, IROW1, VLT, CUX, ZPED, YMIT, PWR
                                                                                   NT 250
251
           IF (NTSC.EQ.O) GO TO 49
                                                                                   NT 251
           DO 47 I=1 ,NTSC
252
                                                                                   NT 252
          IROW1=NTSCA(I)
253
                                                                                   NT 253
254
           VLT=VSRC(I)
                                                                                   NT 254
255
           CUX=EINC(IROW1) *WLAM
                                                                                   NT 255
256
           YMIT=CUX/VLT
                                                                                   NT 256
```

257		ZPED=VLT/CUX	NT	257
258		IROW2=ITAG(IROW1)		258
259		PWR=.5*REAL(VLT*CONJG(CUX))		259
260				260
261	47			261
262		GO TO 49		262
263	C			263
264	C .	SOLVE FOR CURRENTS WHEN NO NETWORKS ARE PRESENT		264
265	C			265
266	48	CALL SOLGF (CM, CMB, CMC, CMD, EINC, IP, NP, N1, N, MP, M1, M, NEQ, NEQ2)		266
267				267
268				268
269	49			269
270		PRINT 63		270
271		PRINT 60		271
272		IF (NSANT.EQ.0) GO TO 56		272
273				273
274		ISC1=ISANT(I)		274
275		VLT=VSANT(I)		275
276		IF (NTSC.EQ.O) GO TO 51		276
277		DO 50 J=1,NTSC		277
278		IF (NTSCA(J).EQ.ISC1) GO TO 52		278
279	50	CONTINUE		279
280		CUX=EINC(ISC1)*WLAM		280
281		IROW1=0		281
282		GO TO 54		282
283	52	IROW1=NDIMNP-J		283
284	1	CUX=RHNX(IROW1)		284
285		DO 53 J=1,NTEQ		285
286	53	CUX=CUX-CMN(J, IROW1)*RHNT(J)		286
287		CUX=(EINC(ISC1)+CUX)*WLAM		287
288	54	YMIT=CUX/VLT		288
289		ZPED=VLT/CUX		289
290		PWR=.5*REAL(VLT*CONJG(CUX))		290
291		PIN=PIN+PWR		291
292		IF (IROW1.NE.O) PNLS=PNLS+PWR		292
293		IROW2=ITAG(ISC1)		293
294	55	PRINT 62, IROW2, ISC1, VLT, CUX, ZPED, YMIT, PWR		294
295	56	IF (NVQD.EQ.0) RETURN		295
296		DO 57 I=1,NVQD		296
297		ISC1=IVQD(I)		297
298		VLT=VQD(I)		298
299		CUX=CMPLX(AIR(ISC1),AII(ISC1))		299
300		YMIT=CMPLX(BIR(ISC1),BII(ISC1))		300
301		ZPED=CMPLX(CIR(ISC1),CII(ISC1))		30
302		PWR=SI(ISC1)*TP*.5		302
303		CUX=(CUX-YMIT*SIN(PWR)+ZPED*COS(PWR))*WLAM		303
304		YMIT=CUX/VLT		304
305		ZPED=YLT/CUX		30
306		PWR=.5*REAL(VLT*CONJG(CUX))		306
307		PIN=PIN+PWR		30
308		IROW2=ITAG(ISC1)		308
309	57	PRINT 64, IROW2, ISC1, VLT, CUX, ZPED, YMIT, PWR		309
310		RETURN		310
311	C			31
312		FORMAT (///, 3X, 47HMAXIMUM RELATIVE ASYMMETRY OF THE DRIVING POINT,		
313		121H ADMITTANCE MATRIX IS, E10.3, 13H FOR SEGMENTS, I5, 4H AND, I5, /, 3X,		
314		225HRMS RELATIVE ASYMMETRY IS,E10.3)		31
315		FORMAT (1X,44HERROR NETWORK ARRAY DIMENSIONS TOO SMALL)		31
316		FORMAT (/,3X,3HTAG,3X,4HSEG.,4X,15HVOLTAGE (VOLTS),9X,14HCURRENT (
317		1AMPS),9X,16HIMPEDANCE (OHMS),8X,17HADMITTANCE (MHOS),6X,5HPOWER,/,		
318		23X,3HNO.,3X,3HNO.,4X,4HREAL,8X,5HIMAG.,3(7X,4HREAL,8X,5HIMAG.),5X,		
319		37H(WATTS))		31
320		FORMAT (///.27X.66H STRUCTURE EXCITATION DATA AT NETWORK CONN		

NETWK

321	1ECTION POINTS)	NT	321	
322 62	FORMAT (2(1X,I5),9E12.5)	NT	322	
323 63	FORMAT (///, 42X, 36H ANTENNA INPUT PARAMETERS)	NT	323	
324 64	FORMAT (1X,15,2H *,14,9E12.5)	NT	324	
325	END	NT	325-	

NFPAT

NFPAT

PURPOSE

To compute and print the near E or H field over a range of points.

METHOD

The range of points in rectangular or spherical coordinates is obtained from parameters in COMMON/FPAT/. Subroutine NEFLD is called for near E field and NHFLD is called for near H field.

SYMBOL DICTIONARY

CPH = $\cos \phi$ CTH = $\cos \theta$

DXNR = increment for x in rectangular coordinates or R in spherical coordinates

DYNR = increment for y in rectangular coordinates or ϕ in spherical coordinates

DZNR = increment for z in rectangular coordinates or θ in spherical coordinates

EX, EY, EZ = x, y and z components of E or H

NEAR = 0 for rectangular coordinates

1 for spherical coordinates

NFEH = 0 for near E field 1 for near H field

NRX, NRY, NRZ = number of values for x, y and z or R, ϕ , θ

SPH = $\sin \phi$ STH = $\sin \theta$ TA = $\pi/180$

XNR = initial x or R

XNRT = x or R

XOB = x

YNR = initial y or ϕ

YNRT = y or ϕ

YOB = y

ZNR = initial z or θ

ZHINDHINDHINDHINDHINDHINDHINDHIN

ZNRT = z or θ

ZOB = z

を見るののはある。

of the state of the state of

10 to 10 to

The second second

```
SUBROUTINE NFPAT
                                                                                   NP
                                                                                        1
2 C
         COMPUTE NEAR E OR H FIELDS OVER A RANGE OF POINTS
                                                                                   NP
                                                                                        2
         COMPLEX EX, EY, EZ
                                                                                   NP
                                                                                        3
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 NP
5
        1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( NP
                                                                                        5
6
        2300), WLAM, IPSYM
                                                                                   NP
                                                                                        6
7
         COMMON /FPAT/ NTH, NPH, IPD, IAVP, INOR, IAX, THETS, PHIS, DTH, DPH, RFLD, GN NP
                                                                                        7
8
        10R,CLT,CHT,EPSR2,SIG2,IXTYP,XPR6,PINR,PNLR,PLOSS,NEAR,NFEH,NRX,NRY NP
                                                                                        8
9
        2, NRZ, XNR, YNR, ZNR, DXNR, DYNR, DZNR
                                                                                   NP
                                                                                        9
10
         DATA TA/1.745329252E-02/
                                                                                   NP
                                                                                        10
         IF (NFEH.EQ.1) GO TO 1
11
                                                                                   NP
                                                                                        11
12
         PRINT 10
                                                                                   NP
                                                                                        12
         GO TO 2
13
                                                                                   NP
                                                                                       13
14 1
         PRINT 12
                                                                                   NP
                                                                                        14
15
         ZNRT=ZNR-DZNR
                                                                                   NP
                                                                                        15
         DO 9 I=1,NRZ
16
                                                                                   NP
17
         ZNRT=ZNRT+DZNR
                                                                                   NP
                                                                                        17
18
         IF (NEAR.EQ.O) GO TO 3
                                                                                   NP
                                                                                        18
19
         CTH=COS(TA*ZNRT)
                                                                                   NP
                                                                                        19
20
         STH=SIN(TA*ZNRT)
                                                                                   NP
                                                                                       20
21 3
          YNRT=YNR-DYNR
                                                                                   NP
                                                                                       21
22
         DO 9 J=1,NRY
                                                                                   NP
                                                                                       22
23
          YNRT=YNRT+DYNR
                                                                                   NP
                                                                                        23
24
         IF (NEAR.EQ.O) GO TO 4
                                                                                   NP
                                                                                        24
25
         CPH=COS(TA*YNRT)
                                                                                   NP
                                                                                        25
         SPH=SIN(TA*YNRT)
26
                                                                                   NP
                                                                                       26
27 4
         XNRT=XNR-DXNR
                                                                                   NP
                                                                                       27
28
         DO 9 KK=1,NRX
                                                                                   NP
                                                                                       28
29
         XNRT=XNRT+DXNR
                                                                                   NP
                                                                                       29
30
         IF (NEAR.EQ.O) GO TO 5
                                                                                   NP
                                                                                        30
31
         XOB=XNRT*STH*CPH
                                                                                   NP
                                                                                        31
          YOB=XNRT+STH+SPH
32
                                                                                   NP
                                                                                        32
33
         ZOB=XNRT*CTH
                                                                                   NP
                                                                                        33
34
          GO TO 6
                                                                                   NP
                                                                                        34
35 5
          XOB=XNRT
                                                                                   NP
                                                                                        35
36
          YOB=YNRT
                                                                                   NP
                                                                                       36
37
          ZOB=ZNRT
                                                                                   NP
                                                                                        37
38
          TMP1=XOB/WLAM
                                                                                   NP
                                                                                        38
39
          TMP2=YOB/WLAM
                                                                                   NP
                                                                                        39
          TMP3=ZOB/WLAM
40
                                                                                   NP
                                                                                        40
41
          IF (NFEH.EQ.1) GO TO 7
                                                                                   NP
                                                                                        41
42
          CALL NEFLD (TMP1, TMP2, TMP3, EX, EY, EZ)
                                                                                   NP
                                                                                        42
43
          GO TO 8
                                                                                   NP
                                                                                        43
44 7
          CALL NHFLD (TMP1, TMP2, TMP3, EX, EY, EZ)
                                                                                   NP
                                                                                        44
45
          TMP1=CABS(EX)
                                                                                   NP
                                                                                        45
46
          TMP2=CANG(EX)
                                                                                   NP
                                                                                        46
47
          TMP3=CABS(EY)
                                                                                   NP
                                                                                        47
48
          TMP4=CANG(EY)
                                                                                   NP
                                                                                        48
          TMP5=CABS(EZ)
49
                                                                                   NP
                                                                                        49
50
          TMP6=CANG(EZ)
                                                                                   NP
                                                                                        50
51
          PRINT 11, XOB, YOB, ZOB, TMP1, TMP2, TMP3, TMP4, TMP5, TMP6
                                                                                   NP
                                                                                        51
52 9
          CONTINUE
                                                                                   NP
                                                                                        52
53
          RETURN
                                                                                   NP
                                                                                        53
54 C
                                                                                   NP
                                                                                        54
55 10
          FORMAT (///.35X,32H- - - NEAR ELECTRIC FIELDS - - -.//.12X,14H- L NP
                                                                                        55
         10CATION -,21X,8H- EX -,15X,8H- EY -,15X,8H- EZ -,/,8X,1HX,1 NP
56
57
         20X.1HY.10X.1HZ.10X.9HMAGNITUDE.3X.5HPHASE.6X.9HMAGNITUDE.3X.5HPHAS NP
                                                                                        57
58
         3E.6X,9HMAGNITUDE.3X,5HPHASE./.6X,6HMETERS.5X,6HMETERS,5X,6HMETERS, NP
                                                                                        58
59
         48X,7HVOLTS/M,3X,7HDEGREES,6X,7HVOLTS/M,3X,7HDEGREES,6X,7HVOLTS/M,3 NP
                                                                                        59
60
         5X.7HDEGREES)
                                                                                        60
61 11
          FORMAT (2X,3(2X,F9.4),1X,3(3X,E11.4,2X,F7.2))
                                                                                        61
          FORMAT (///.35X.32H- - - NEAR MAGNETIC FIELDS - - -.//.12X.14H- L NP
62 12
                                                                                        62
         10CATION -,21X,8H- HX -,15X,8H- HY -,15X,8H- HZ -,/,8X,1HX,1 NP
63
                                                                                        63
         20X, 1HY, 10X, 1HZ, 10X, 9HMAGNITUDE, 3X, 5HPHASE, 6X, 9HMAGNITUDE, 3X, 5HPHAS NP
64
```

NFPAT

65	3E,6X,9HMAGNITUDE,3X,5HPHASE,/,6X,6HMETERS,5X,6HMETERS,5X,6HMETERS,	NP	65
66	49X, 6HAMPS/M, 3X, 7HDEGREES, 7X, 6HAMPS/M, 3X, 7HDEGREES, 7X, 6HAMPS/M, 3X, 7		
67	SHDEGREES)	NP	
68	END	NP	68-

NHFLD

PURPOSE

To compute the near magnetic field due to currents induced on a structure.

CODING

NH28 - NH56 Near H field due to currents on segments is computed.

NH29 - NH40 Each segment is checked to determine whether the field observation point (XOB, YOB, ZOB) falls within the segment volume. If it does, AX is set to the radius of that segment. AX is then sent to routine HSFLD as the radius of the observation segment to avoid a singularity in the field.

NH41 - NH56 Loop computing the field contribution of each segment.

NH42 - NH49 Parameters of source segment are stored in COMMON/DATAJ/.

NH50 HSFLD stores the magnetic field due to constant, sin ks, and cos ks currents in COMMON/DATAJ/.

NH54 - NH56 The field components are multiplied by the coefficients of the constant, sin ks, and cos ks components of the total segment current, and the field is summed.

NH58 - NH78 Near H fields due to patch currents are computed.

NH62 - NH71 Parameters of source patch are set in COMMON/DATAJ/.

NH72 H field is computed by HINTG.

NH76 - NH78 H fields due to \hat{t}_1 and \hat{t}_2 current components are multiplied by the current strengths and summed.

SYMBOL DICTIONARY

ACX = constant component of the segment current at NH51; t₁ component of patch current at NH74

AX = segment radius when the field evaluation point falls within a segment volume

BCX = sin ks component of segment current at NH 52; t̂ component of patch current at NH 75

CCX = cos ks component of segment current at NH.53

HX

HY } = total H field

HZ

ZP = coordinates of the field evaluation point, z or ρ^2 , in a cylindrical coordinate system centered on the source segment.

CONSTANTS

- 0.5001 = fraction of segment length used to test whether the field evaluation point falls within a segment
- 0.9 = fraction of segment radius used to test whether the field evaluation point falls within a segment

```
1
          SUBROUTINE NHFLD (XOB, YOB, ZOB, HX, HY, HZ)
                                                                                       NH
2 C
                                                                                       NH
                                                                                             2
3
  C
          NHFLD COMPUTES THE NEAR FIELD AT SPECIFIED POINTS IN SPACE AFTER
                                                                                       NH
                                                                                             3
  C
          THE STRUCTURE CURRENTS HAVE BEEN COMPUTED.
4
                                                                                       NH
                                                                                             4
5 C
                                                                                       NH
                                                                                             5
          COMPLEX HX, HY, HZ, CUR, ACX, BCX, CCX, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, E NH
6
                                                                                             6
7
         1ZC
                                                                                             7
8
          COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300
                                                                                             8
9
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( NH
                                                                                            9
10
         2300), WLAM, IPSYM
                                                                                            10
          COMMON /ANGL/ SALP(300) NH
COMMON /CRNT/ AIR(300),AII(300),BIR(300),BII(300),CIR(300),CII(300 NH
11
                                                                                            11
12
                                                                                            12
         1), CUR(900)
13
                                                                                            13
14
          COMMON /DATAJ/ S,B,XJ,YJ,ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ NH
                                                                                            14
15
         1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                            15
          DIMENSION CAB(1), SAB(1)
16
                                                                                            16
17
          DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1), XS(1), Y NH
                                                                                            17
18
         1S(1), ZS(1)
                                                                                       NH
                                                                                            18
         EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON 12), (T2Z,ITAG), (XS,X), (YS,Y), (ZS,Z)
19
                                                                                            19
20
                                                                                            20
21
          EQUIVALENCE (TIXJ, CABJ), (TIYJ, SABJ), (TIZJ, SALPJ), (T2XJ, B), (T2Y NH
                                                                                            21
22
         1J, IND1), (T2ZJ, IND2)
                                                                                            22
23
          EQUIVALENCE (CAB, ALP), (SAB, BET)
                                                                                            23
                                                                                       NH
24
          HX=(0.,0.)
                                                                                       NH
                                                                                            24
25
          HY=(0.,0.)
                                                                                       NH
                                                                                            25
26
          HZ=(0.,0.)
                                                                                       NH
                                                                                            26
27
          AX=O.
                                                                                       NH
                                                                                            27
28
          IF (N.EQ.0) GO TO 4
                                                                                       NH
                                                                                            28
          DO 1 I=1,N
29
                                                                                       NH
                                                                                            29
30
          XJ=XOB-X(I)
                                                                                       NH
                                                                                            30
31
          YJ=YOB-Y(I)
                                                                                       NH
                                                                                            31
          ZJ=ZOB-Z(I)
32
                                                                                       NH
                                                                                            32
33
          ZP=CAB(I) *XJ+SAB(I) *YJ+SALP(I) *ZJ
                                                                                       NH
                                                                                            33
34
          IF (ABS(ZP).GT.0.5001*SI(I)) GO TO 1
                                                                                       NH
                                                                                            34
35
          ZP=XJ*XJ+YJ*YJ+ZJ*ZJ-ZP*ZP
                                                                                       NH
                                                                                            35
36
          XJ=BI(I)
                                                                                       NH
                                                                                            36
37
          IF (ZP.GT.O.9*XJ*XJ) GO TO 1
                                                                                       NH
                                                                                            37
38
          AX=XJ
                                                                                       NH
                                                                                            38
39
          GO TO 2
                                                                                       NH
                                                                                            39
          CONTINUE
40
                                                                                       NH
                                                                                            40
41
          DO 3 I=1.N
                                                                                       NH
                                                                                            41
          S=SI(I)
42
                                                                                       NH
                                                                                            42
43
          B=BI(I)
                                                                                       NH
                                                                                            43
44
          XJ=X(I)
                                                                                       NH
                                                                                            44
45
          YJ=Y(I)
                                                                                       NH
                                                                                            45
46
          ZJ=Z(I)
                                                                                       NH
                                                                                            46
47
          CABJ=CAB(I)
                                                                                       NH
                                                                                            47
48
          SABJ=SAB(I)
                                                                                       NH
                                                                                            48
49
          SALPJ=SALP(I)
                                                                                       NH
                                                                                            49
          CALL HSFLD (XOB, YOB, ZOB, AX)
50
                                                                                       NH
                                                                                            50
          ACX=CMPLX(AIR(I),AII(I))
51
                                                                                       NH
                                                                                            51
52
          BCX=CMPLX(BIR(I),BII(I))
                                                                                       NH
                                                                                            52
53
          CCX=CMPLX(CIR(I),CII(I))
                                                                                       NH
                                                                                            53
54
          HX=HX+EXK*ACX+EXS*BCX+EXC*CCX
                                                                                       NH
                                                                                            54
55
          HY=HY+EYK*ACX+EYS*BCX+EYC*CCX
                                                                                       NH
                                                                                            55
56 3
          HZ=HZ+EZK*ACX+EZS*BCX+EZC*CCX
                                                                                       NH
                                                                                            56
57
          IF (M.EQ.O) RETURN
                                                                                            57
                                                                                       NH
58 4
          JC=N
                                                                                       NH
                                                                                            58
59
          JL=LD+1
                                                                                       NH
                                                                                            59
60
          DO 5 I=1,M
                                                                                       NH
                                                                                            60
61
          JL=JL-1
                                                                                       NH
                                                                                            61
          S=BI(JL)
62
                                                                                       NH
                                                                                            62
63
          XJ=X(JL)
                                                                                       NH
                                                                                            63
          YJ=Y(JL)
64
                                                                                       NH
                                                                                            64
```

NHFLD

65	ZJ=Z(JL)	NH	65	
66	T1XJ=T1X(JL)	NH	66	
67	T1YJ=T1Y(JL)	NH	67	
68	T1ZJ=T1Z(JL)	NH	68	
69	T2XJ=T2X(JL)	NH	69	
70	T2YJ=T2Y(JL)	NH	70	
71	T2ZJ=T2Z(JL)	NH	71	
72	CALL HINTG (XOB, YOB, ZOB)	NH	72	
73	JC=JC+3	NH	73	
74	ACX=T1XJ*CUR(JC-2)+T1YJ*CUR(JC-1)+T1ZJ*CUR(JC)	NH	74	
75	BCX=T2XJ*CUR(JC-2)+T2YJ*CUR(JC-1)+T2ZJ*CUR(JC)	NH	75	
76	HX=HX+ACX*EXK+BCX*EXS	NH	76	
77	HY=HY+ACX*EYK+BCX*EYS	, NH	77	
78 5	HZ=HZ+ACX*EZK+BCX*EZS	NH	78	
79	RETURN	NH	79	
80	END	NH	80-	

PATCH (entry SUBPH)

PURPOSE

To generate patch data for surfaces.

METHOD

The code from PA14 to PA129 generates data for a single new patch or multiple patches. There are four options for defining a single patch, as illustrated in Figure 5 of Part III. For a single patch, NX is zero and NY is NS + 1 where NS is the parameter from the SP input card and is shown on Figure 5. Rectangular, triangular or quadrilateral patches are defined by the coordinates of three or four corners in the parameters Xl though Z4. In the arbitrary shape option (Figure 5A in Part III) the center of the patch is Xl, Yl, Zl; \alpha is X2; \alpha is Y2; and the area is Z2. The patch data is stored in COMMON/DATA/ from the top of the arrays downward (see Section III).

The code from PA131 to PA190 divides a patch into four patches and is used when a wire connects to a patch. If NY is equal to zero the patch NX is divided into four patches that become patches NX through NX + 3. Patches following NX are shifted in the arrays in COMMON/DATA/ to leave space for the three additional patches. If NY is greater than zero, patch NX is left in the arrays but four new patches to replace it are added to the end of the arrays. The z coordinate of patch NX is then changed to 10,000 at PA189.

SYMBOL DICTIONARY

MI = array index for patch data

MIA = array index for patch data

NTP = patch type (NY for a single patch)

NX = zero for a single patch. For multiple patches NX is defined in Figure 6 of Part III. After ENTRY SUBPH, NX

is the number of the patch to be divided

S1X, S1Y, S1Z = vector from corner 1 to corner 2

S2X, S2Y, S2Z = vector from corner 2 to corner 3

SALN = +1 from array SALP

SALPN = factor in computing center of mass of quadrilateral

PATCH

XA = $|\vec{S}_1 \times \vec{S}_2|$ = area of rectangle or twice area of triangle (PA53)

XN2, YN2, ZN2 = $\bar{S}_3 \times \bar{S}_4$ at PA79 to PA81. Line PA89 checks that the four corners are coplanar by the test $(\bar{S}_1 \times \bar{S}_2) \cdot (\bar{S}_3 \times \bar{S}_4) / |\bar{S}_1 \times \bar{S}_2| |\bar{S}_3 \times \bar{S}_4| > 0.9998$

XNV, YNV, ZNV = unit vector normal to the patch at PA54 to PA56

XS, YS, ZS = patch center at PA151 to PA153

XST = $1\overline{S}_1 \times \overline{S}_2$ at PA57

CONSTANTS

0.9998 ≈ cos(1.°) in test for planar patch

Contraction (Section) Township (Section)

Same of the same of

```
SUBROUTINE PATCH (NX,NY,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4)
                                                                                   PA
                                                                                        1
2 C
         PATCH GENERATES AND MODIFIES PATCH GEOMETRY DATA
                                                                                        2
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300
3
                                                                                   PA
                                                                                        3
        1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(
                                                                                   PA
5
        2300), WLAM, IPSYM
                                                                                   PA
6
         COMMON /ANGL/ SALP(300)
                                                                                   PA
7
         DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)
                                                                                   PA
                                                                                        7
         EQUIVALENCE (TIX,SI), (TIY,ALP), (TIZ,BET), (T2X,ICON1), (T2Y,ICON
8
                                                                                   PA
9
        12), (T2Z, ITAG)
                                                                                        9
10 C
         NEW PATCHES. FOR NX=0, NY=1,2,3,4 PATCH IS (RESPECTIVELY)
                                                                                   PA
                                                                                       10
         ARBITRARY, RECTAGULAR, TRIANGULAR, OR QUADRILATERAL.
11 C
                                                                                   PA
                                                                                       11
12
  C
         FOR NX AND NY .GT. O A RECTANGULAR SURFACE IS PRODUCED WITH
                                                                                   PA
                                                                                       12
         NX BY NY RECTANGULAR PATCHES.
13
                                                                                   PA
                                                                                       13
14
         M=M+1
                                                                                   PA
                                                                                       14
15
         MI=LD+1-M
                                                                                   PA
                                                                                       15
16
         NTP=NY
                                                                                   PA
                                                                                       16
         IF (NX.GT.0) NTP=2
17
                                                                                   PA
                                                                                       17
         IF (NTP.GT.1) GO TO 2
18
                                                                                   PA
                                                                                       18
         X(MI)=X1
19
                                                                                   PA
                                                                                       19
         Y(MI)=Y1
20
                                                                                   PA
                                                                                       20
         Z(MI)=Z1
21
                                                                                   PA
                                                                                       21
22
          BI(MI)=Z2
                                                                                   PA
                                                                                       22
23
         ZNV=COS(X2)
                                                                                   PA
                                                                                       23
         XNV=ZNV*COS(Y2)
24
                                                                                   PA
                                                                                       24
         YNY=Z:W SIN(Y2)
25
                                                                                   PA
                                                                                       25
         ZNV=SIN(X2)
26
                                                                                   PA
                                                                                       26
27
         XA=SQRT(XNV+XNV+YNV+YNV)
                                                                                   PA
                                                                                       27
28
         IF (XA.LT.1.E-6) GO TO 1
                                                                                   PA
                                                                                       28
29
         T1X(MI)=-YNV/XA
                                                                                   PA
                                                                                       29
30
          T1Y(MI)=XNV/XA
                                                                                   PA
                                                                                       30
31
          T1Z(MI)=0.
                                                                                   PA
                                                                                       31
         GO TO 6
32
                                                                                   PA
                                                                                       32
         T1X(MI)=1.
33 1
                                                                                   PA
                                                                                       33
         T1Y(MI)=0.
34
                                                                                   PA
                                                                                       34
35
         T1Z(MI)=0.
                                                                                   PA
                                                                                       35
36
         GO TO 6
                                                                                   PA
                                                                                       36
         S1X=X2-X1
37 2
                                                                                   PA
                                                                                       37
38
          S1Y=Y2-Y1
                                                                                   PA
                                                                                       38
39
         S1Z=Z2-Z1
                                                                                   PA
                                                                                       39
40
         S2X=X3-X2
                                                                                   PA
                                                                                       40
          S2Y=Y3-Y2
41
                                                                                   PA
                                                                                       41
42
          S2Z=Z3-Z2
                                                                                   PA
                                                                                       42
43
          IF (NX.EQ.O) GO TO 3
                                                                                   PA
                                                                                       43
44
          S1X=S1X/NX
                                                                                   PA
                                                                                       44
45
          SIY=SIY/NX
                                                                                   PA
                                                                                       45
46
          S1Z=S1Z/NX
                                                                                   PA
                                                                                       46
47
          S2X=S2X/NY
                                                                                   PA
                                                                                       47
48
          S2Y=S2Y/NY
                                                                                   PA
                                                                                       48
49
          S2Z=S2Z/NY
                                                                                   PA
                                                                                       49
50 3
          XNV=S1Y*S2Z-S1Z*S2Y
                                                                                   PA
                                                                                       50
51
          YNV=S1Z*S2X-S1X*S2Z
                                                                                   PA
                                                                                       51
52
          ZNV=S1X+S2Y-S1Y+S2X
                                                                                   PA
                                                                                       52
53
          XA=SQRT(XNV*XNV+YNV*YNV+ZNV*ZNV)
                                                                                   PA
                                                                                       53
          XNV=XNV/XA
54
                                                                                   PA
                                                                                       54
55
          YNV=YNV/XA
                                                                                   PA
                                                                                       55
56
          ZNV=ZNV/XA
                                                                                   PA
                                                                                       56
57
          XST=SQRT(S1X+S1X+S1Y+S1Z+S1Z)
                                                                                   PA
                                                                                       57
          T1X(MI)=S1X/XST
58
                                                                                   PA
                                                                                       58
          TIY(MI)=SIY/XST
59
                                                                                   PA
                                                                                       59
60
          T1Z(MI)=S1Z/XST
                                                                                   PA
                                                                                       60
61
          IF (NTP.GT.2) GO TO 4
                                                                                   PA
                                                                                       61
62
          X(MI)=X1+.5 \cdot (S1X+S2X)
                                                                                   PA
                                                                                       62
          Y(MI)=Y1+.5*(S1Y+S2Y)
63
                                                                                   PA
                                                                                       63
          Z(MI)=Z1+.5*(S1Z+S2Z)
                                                                                   PA
```

65	BI(MI)=XA	PA	65
66	GO TO 6	PA	66
67 4	IF (NTP.EQ.4) GO TO 5	PA	67
68			
	X(MI) = (X1 + X2 + X3)/3.	PA	68
69	Y(MI)=(Y1+Y2+Y3)/3.	PA	69
70	Z(MI)=(Z1+Z2+Z3)/3.	PA	70
71	BI(MI)=.5*XA	PA	71
72	GO TO 6	PA	72
73 5	S1X=X3-X1	PA	73
74	S1Y=Y3-Y1	PA	74
75	S1Z=Z3-Z1		
	[발표하고 원프로프트 [1] [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2] 12 [2]	PA	75
76	S2X=X4-X1	PA	76
77	S2Y=Y4-Y1	PA	77
78	S2Z=Z4-Z1	PA	78
	XN2=S1Y*S2Z-S1Z*S2Y		
79		PA	79
80	YN2=S1Z*S2X-S1X*S2Z	PA	80
81	ZN2=S1X*S2Y-S1Y*S2X	PA	81
82	XST=SQRT(XN2*XN2+YN2*YN2+ZN2*ZN2)	PA	82
83	SALPN=1./(3.*(XA+XST))	PA	83
84	X(MI)=(XA*(X1+X2+X3)+XST*(X1+X3+X4))*SALPN	PA	84
85	Y(MI)=(XA*(Y1+Y2+Y3)+XST*(Y1+Y3+Y4))*SALPN	PA	85
86	Z(MI)=(XA*(Z1+Z2+Z3)+XST*(Z1+Z3+Z4))*SALPN		
		PA	86
87	BI(MI)=.5*(XA+XST)	PA	87
88	S1X=(XNV+XN2+YNV+YN2+ZNV+ZN2)/XST	PA	88
89	IF (S1X.GT.0.9998) GO TO 6	PA	89
90	PRINT 14	PA	90
91	STOP	PA	91
92 6	T2X(MI)=YNV*T1Z(MI)-ZNV*T1Y(MI)	PA	92
93	T2Y(MI)=ZNV+T1X(MI)-XNV+T1Z(MI)	PA	93
94	T2Z(MI)=XNV*T1Y(MI)-YNV*T1X(MI)	PA	94
95	SALP(MI)=1.	PA	95
96	IF (NX.EQ.0) GO TO 8	PA	96
97	M=M+NX*NY-1		
		PA	97
98	XN2=X(MI)-S1X-S2X	PA	98
99	YN2=Y(MI)-S1Y-S2Y	PA	99
100	ZN2=Z(MI)-S1Z-S2Z		100
101	XS=T1X(MI)		101
102	YS=T1Y(MI)	PA	102
103	ZS=T1Z(MI)	PA	103
104	XT=T2X(MI)		104
105	YT=T2Y(MI)		105
106	ZT=T2Z(MI)	PA	106
107	MI=MI+1	PA	107
108			108
	DO 7 IY=1,NY		
109	XN2=XN2+S2X	PA	109
110	YN2=YN2+S2Y	PA	110
111	ZN2=ZN2+S2Z		111
112	DO 7 IX=1,NX		112
113	XST=IX	PA	113
114	MI=MI-1	PA	114
115	X(MI)=XN2+XST*S1X	PA	115
	Y(MI)=YN2+XST*S1Y		
116			116
117	Z(MI)=ZN2+XST*S1Z	PA	117
118	BI(MI)=XA	PA	118
119	SALP(MI)=1		119
120	TIX(MI)=XS		120
121	T1Y(MI)=YS	PA	121
122	TIZ(MI)=ZS	PA	122
	T2X(MI)=XT		123
123			
124	12Y(MI)=YT		124
125 7	72Z(WI)=ZT	PA	125
128 8	[PSYM=0		126
			127
197	MP-05		
128	F-10	PA	128

-268-


```
RETURN
129
                                                                                    PA 129
          DIVIDE PATCH FOR WIRE CONNECTION
130 C
                                                                                    PA 130
131
          ENTRY SUBPH(NX,NY,X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4)
                                                                                    PA 131
          IF (NY.GT.0) GO TO 10
132
                                                                                    PA 132
                                                                                    PA 133
133
          IF (NX.EQ.M) GO TO 10
134
          NXP=NX+1
                                                                                    PA 134
          IX=LD-M
135
                                                                                    PA 135
136
          DO 9 IY=NXP,M
                                                                                    PA 136
          IX=IX+1
137
                                                                                    PA 137
138
          NYP=IX-3
                                                                                    PA 138
139
          X(NYP)=X(IX)
                                                                                    PA 139
          Y(NYP)=Y(IX)
140
                                                                                    PA 140
          Z(NYP)=Z(IX)
                                                                                    PA 141
141
          BI(NYP)=BI(IX)
142
                                                                                    PA 142
143
          SALP(NYP)=SALP(IX)
                                                                                    PA 143
          T1X(NYP)=T1X(IX)
144
                                                                                    PA 144
          TIY(NYP)=TIY(IX)
                                                                                    PA 145
145
146
          T1Z(NYP)=T1Z(IX)
                                                                                    PA 146
147
           T2X(NYP)=T2X(IX)
                                                                                    PA 147
          T2Y(NYP)=T2Y(IX)
                                                                                    PA 148
148
149 9
          T2Z(NYP)=T2Z(IX)
                                                                                    PA 149
          MI=LD+1-NX
                                                                                    PA 150
150 10
151
          XS=X(MI)
                                                                                    PA 151
           YS=Y(MI)
                                                                                    PA 152
152
          ZS=Z(MI)
                                                                                    PA 153
153
          XA=BI(MI) . 25
                                                                                    PA 154
154
155
          XST=SQRT(XA) . 5
                                                                                    PA 155
                                                                                    PA 156
156
          S1X=T1X(MI)
157
          S1Y=T1Y(MI)
                                                                                    PA 157
158
          S1Z=T1Z(MI)
                                                                                    PA 158
159
          S2X=T2X(MI)
                                                                                    PA 159
          S2Y=T2Y(MI)
                                                                                    PA 160
160
          S2Z=T2Z(MI)
161
                                                                                    PA 161
           SALN=SALP(MI)
                                                                                    PA 162
162
                                                                                    PA 163
163
          XT=XST
                                                                                    PA 164
164
           YT=XST
165
           IF (NY.GT.0) GO TO 11
                                                                                    PA 165
166
           MIA=MI
                                                                                    PA 166
          GO TO 12
                                                                                    PA 167
167
           M=M+1
                                                                                    PA 168
168 11
           MP=MP+1
                                                                                    PA 169
169
170
           MIA=LD+1-M
                                                                                    PA 170
                                                                                    PA 171
171 12
           DO 13 IX=1,4
           X(MIA)=XS+XT*S1X+YT*S2X
                                                                                    PA 172
172
                                                                                    PA 173
173
           Y(MIA)=YS+XT*S1Y+YT*S2Y
174
           Z(MIA)=ZS+XT*S1Z+YT*S2Z
                                                                                    PA 174
                                                                                    PA 175
175
           BI(MIA)=XA
176
           T1X(MIA)=S1X
                                                                                    PA 176
177
           T1Y(MIA)=S1Y
                                                                                    PA 177
                                                                                    PA 178
178
           T1Z(MIA)=S1Z
179
           T2X(MIA)=S2X
                                                                                    PA 179
180
           T2Y(MIA)=S2Y
                                                                                    PA 180
181
           T2Z(MIA)=S2Z
                                                                                    PA 181
           SALP(MIA)=SALN
                                                                                    PA 182
182
                                                                                    PA 183
183
           IF (IX.EQ.2) YT=-YT
           IF (IX.EQ.1.OR.IX.EQ.3) XT=-XT
                                                                                    PA 184
184
185
           MIA=MIA-1
                                                                                    PA 185
           CONTINUE
                                                                                    PA 186
186 13
187
           M=M+3
                                                                                    PA 187
188
           IF (NX.LE.MP) MP=MP+3
                                                                                    PA 188
           IF (NY.GT.0) Z(MI)=10000.
189
                                                                                    PA 189
190
           RETURN
                                                                                    PA 190
191 C
                                                                                    PA 191
192 14
           FORMAT (62H ERROR -- CORNERS OF QUADRILATERAL PATCH DO NOT LIE IN
```

CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE

193 1A PLANE) 194 END

PA 193 PA 194-

PCINT

PURPOSE

To compute the interaction matrix elements representing the electric field, tangent to a segment connected to a surface, due to the current on the four patches around the connection point.

METHOD

The four patches at the base of a connected wire are located as shown in figure 10 with respect to the vectors $\hat{\mathbf{t}}_1$ and $\hat{\mathbf{t}}_2$, where patch numbers indicate the order of the patches in the data arrays. The position of a point on the surface is defined by $\overline{\rho}$ $(S_1,S_2) = \overline{\rho}_0 + S_1\hat{\mathbf{t}}_1 + S_2\hat{\mathbf{t}}_2$, where $\overline{\rho}_0$ is the position of the center of the four patches where the wire connects, and S_1 and S_2 are coordinates measured from the center. The current over the surface is represented by $\overline{J}(S_1,S_2)$, the currents at the centers of the four patches are

$$\overline{J}_{1} = \overline{J}(d,d)$$

$$\overline{J}_{2} = \overline{J}(-d,d)$$

$$\overline{J}_{3} = \overline{J}(-d,-d)$$

$$\overline{J}_{4} = \overline{J}(d,-d)$$

and the current at the base of the segment, flowing onto the surface, is I₀. The current interpolation function is then

$$\overline{J}(S_1,S_2) = \left[\overline{f}(S_1,S_2) - \sum_{i=1}^4 g_i(S_1,S_2) \overline{f}_i\right] I_0 + \sum_{i=1}^4 g_i(S_1,S_2) \overline{J}_i,$$

where

$$\overline{f}(S_1, S_2) = \frac{S_1 \hat{t}_1 + S_2 \hat{t}_2}{2\pi (S_1^2 + S_2^2)}$$

$$\overline{f}_1 = \overline{f}(d, d) = (\hat{t}_1 + \hat{t}_2)/(4\pi d)$$

$$\overline{f}_2 = \overline{f}(-d, d) = (-\hat{t}_1 + \hat{t}_2)/(4\pi d)$$

$$\overline{f}_3 = \overline{f}(-d, -d) = (-\hat{t}_1 - \hat{t}_2)/(4\pi d)$$

$$\overline{f}_4 = \overline{f}(d, -d) = (\hat{t}_1 - \hat{t}_2)/(4\pi d)$$

Figure 10. Patches at a Wire Connection Point.

$$g_1(s_1, s_2) = (d + s_1)(d + s_2)/(4d^2)$$

$$g_2(s_1, s_2) = (d - s_1)(d + s_2)/(4d^2)$$

$$g_3(s_1, s_2) = (d - s_1)(d - s_2)/(4d^2)$$

$$g_4(s_1, s_2) = (d + s_1)(d - s_2)/(4d^2)$$

If $\overline{\Gamma}_1(\overline{\rho})dA$ and $\overline{\Gamma}_2(\overline{\rho})dA$ are the electric fields at the center of the connected segment due to unit currents at $\overline{\rho}$ on the surface dA, flowing in the directions \hat{t}_1 and \hat{t}_2 , respectively, the nine matrix elements to be computed are

$$E_{1} = \int_{S} g_{1}(S_{1}, S_{2}) \hat{i} \cdot \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{2} = \int_{S} g_{2}(S_{1}, S_{2}) \hat{i} \cdot \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{3} = \int_{S} g_{3}(S_{1}, S_{2}) \hat{i} \cdot \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{4} = \int_{S} g_{4}(S_{1}, S_{2}) \hat{i} \cdot \overline{\Gamma}_{1}(\overline{\rho}) dA$$

$$E_{5} = \int_{S} g_{1}(S_{1}, S_{2}) \hat{i} \cdot \overline{\Gamma}_{2}(\overline{\rho}) dA$$

$$\begin{split} \mathbf{E}_{6} &= \int_{\mathbf{S}} \mathbf{g}_{2}(\mathbf{S}_{1}, \mathbf{S}_{2}) \ \hat{\mathbf{i}} \cdot \overline{\Gamma}_{2}(\overline{\rho}) d\mathbf{A} \\ \mathbf{E}_{7} &= \int_{\mathbf{S}} \mathbf{g}_{3}(\mathbf{S}_{1}, \mathbf{S}_{2}) \ \hat{\mathbf{i}} \cdot \overline{\Gamma}_{2}(\overline{\rho}) d\mathbf{A} \\ \mathbf{E}_{8} &= \int_{\mathbf{S}} \mathbf{g}_{4}(\mathbf{S}_{1}, \mathbf{S}_{2}) \ \hat{\mathbf{i}} \cdot \overline{\Gamma}_{2}(\overline{\rho}) d\mathbf{A} \\ \mathbf{E}_{9} &= \int_{\mathbf{S}} \left\{ \left[\overline{\mathbf{h}}(\mathbf{S}_{1}, \mathbf{S}_{2}) \cdot \hat{\mathbf{t}}_{1} \right] \left[\hat{\mathbf{i}} \cdot \overline{\Gamma}_{1}(\overline{\rho}) \right] + \left[\overline{\mathbf{h}}(\mathbf{S}_{1}, \mathbf{S}_{2}) \cdot \hat{\mathbf{t}}_{2} \right] \right. \\ &\left. \left[\hat{\mathbf{i}} \cdot \overline{\Gamma}_{2}(\overline{\rho}) \right] \right\} \ d\mathbf{A} \end{split}$$

where

$$\overline{h}(S_1,S_2) = \overline{f}(S_1,S_2) - \sum_{i=1}^{4} g_i(S_1,S_2)\overline{f}_i$$

and where î = the unit vector in the direction of the connected segment.

The integration is over the total area of the four patches and is performed by numerical quadrature. The number of increments in S₁ and S₂ used in integration is set by the variable NINT. When PCINT is called, the parameters in COMMON/DATAJ/ have the values for the first connected patch. During integration, these parameters are set for each integration patch. At the end of PCINT, they are reset to their original values.

SYMBOL DICTIONARY

CABI = x component of î

D = d

DA = area of the surface element used in integration

DS = width of the surface element of area DA

E = array used to return the values E_1, E_2, \ldots, E_9

 $\begin{array}{l} \text{EXK} \\ \text{EYK} \\ \text{EZK} \end{array} = \text{x, y, and z components of } \overline{\Gamma}_{1}(\overline{\rho}) \text{DA at PC50; at PC51, EXK is set} \\ \text{to } \hat{\mathbf{i}} \cdot \overline{\Gamma}_{1}(\overline{\rho}) \text{DA} \end{array}$

EXS EYS = x, y, and z components of $\overline{\Gamma}_2(\overline{\rho})DA$ at PC50; at PC52, EXS is set to $\hat{i} \cdot \overline{\Gamma}_2(\overline{\rho})DA$

```
E1
E2
       = E<sub>3</sub>
E3
E4
E5
       - E<sub>6</sub>
E6
       = E7
E7
E8
       = E8
E9
       = E.
     = 1/(4\pi d) factor in \overline{f}_1, \overline{f}_2, ...
       = \overline{h}(S_1, S_2) \cdot \hat{t}_1
Fl
       = \overline{h}(s_1, s_2) \cdot \hat{t}_2
F2
GCON = 1/(4d^2) factor in g_1(S_1, S_2), ...
G1
      = g1(S1,S2)
      = g,(S,,S,)
G2
     = g_3(S_1,S_2)
G3
     = g4(S1,S2)
G4
   = DO loop index
12
       = DO loop index
NINT = number of steps in S, and S, used in approximating the integrals
         for E1, E2, ..., Eq
     = area of each of the four patches at PCll; area of the surface
         element used in integration at PC20
SABI = y component of i
SALPI = z component of î
SI
S2
       = initial value of S,
TPI
       = 2\pi
T1XJ
     = x, y, and z components of \hat{t}_1
TIYJ
T1ZJ
T2XJ
T2YJ = x, y, and z components of \hat{t}_{2}
T2ZJ
XI
       = x coordinate of the center of the connected segment
```

```
XJ
       = center of first patch above PC41; center of integration element
YJ
          below PC41
ZJ
       = x component of \overline{\rho}(S_1, S_2)
XS
       = initial x coordinate of \overline{\rho}(S_1, S_2)
XSS
XXJ
       = initial value of XJ, YJ, ZJ saved
XYJ
XZJ
       = x component of \overline{\rho}(d,d) used as reference for computing \overline{\rho}(S_1,S_2)
X1
       - y coordinate of the center of the connected segment
YI
       = y component of \overline{\rho}(S_1, S_2)
YS
       = initial y component of \overline{\rho}(S_1, S_2)
       = y component of \rho(d,d)
Y1
       = z coordinate of the center of the connected segment
ZI
       = z component of \overline{\rho}(S_1, S_2)
ZS
       = initial z component of \overline{\rho}(S_1, S_2)
       = z component of ρ(d,d)
Z1
```

1	SUBROUTINE PCINT (XI,YI,ZI,CABI,SABI,SALPI,E)	PC	1
2 C	INTEGRATE OVER PATCHES AT WIRE CONNECTION POINT	PC	2
3	COMPLEX EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, E, E1, E2, E3, E4, E5, E6, E7		3
4	1, E8, E9	PC	
5	COMMON /DATAJ/ S.B.XJ.YJ.ZJ,CABJ,SABJ,SALPJ,EXK,EYK,EZK,EXS,EYS,EZ		4
	TO THE STATE OF TH		5
6	1S.EXC.EYC.EZC.RKH.IEXK.IND1.IND2.IPGND	PC	6
7	DIMENSION E(9)	PC	7
8	EQUIVALENCE (TIXJ, CABJ), (TIYJ, SABJ), (TIZJ, SALPJ), (T2XJ, B), (T2Y	PC	8
9	1J,IND1), (T2ZJ,IND2)	PC	9
10	DATA TPI/6.283185308/.NINT/10/	PC	10
11	D=SQRT(S)*.5	PC	11
12	DS=4.*D/FLOAT(NINT)		
13	DA=DS+DS	PC	12
		PC	13
14	GCON=1./S	PC	14
15	FCON=1./(2.*TPI*D)	PC	15
16	XXJ=XJ	PC	16
17	XYJ=YJ	PC	17
18	XZJ=ZJ	PC	18
19	XS=S	PC	19
20	S=DA	PC	20
21	S1=D+DS+.5	(A) (A)	
		PC	21
22	XSS=XJ+S1*(T1XJ+T2XJ)	PC	22
23	YSS=YJ+S1*(T1YJ+T2YJ)	PC	23
24	ZSS=ZJ+S1*(T1ZJ+T2ZJ)	PC	24
25	S1=S1+D	PC	25
26	S2X=S1	PC	26
27	E1=(00.)	PC	27
28	E2=(0.,0.)	PC	
29	E3=(0.,0.)	0.000	28
		PC	29
30	E4=(0.,0.)	PC	30
31	E5=(0.,0.)	PC	31
32	E6=(0.,0.)	PC	32
33	E7=(0.,0.)	PC	33
34	E8=(0.,0.)	PC	34
35	E9=(0.,0.)	PC	35
36	DO 1 I1=1,NINT	PC	36
37	S1=S1-DS	PC	37
38	\$2=\$2X		
202000		PC	38
39	XSS=XSS-DS*T1XJ	PC	39
40	YSS=YSS-DS*T1YJ	PC	40
41	ZSS=ZSS-DS*T1ZJ	PC	41
42	X J=XSS	PC	42
43	YJ=YSS .	PC	43
44	ZJ=ZSS	PC	44
45	DO 1 I2=1,NINT	PC	45
46	S2=S2-DS	PC	46
47	XJ=XJ-DS•T2XJ	PC	47
48	YJ=YJ-DS*T2YJ	PC	48
49	ZJ=ZJ-DS+T2ZJ	PC	49
50	CALL UNERE (XI,YI,ZI)	PC	50
51	EXK=EXK*CABI+EYK*SABI+EZK*SALPI	PC	51
52	EXS=EXS*CABI+EYS*SABI+EZS*SALPI	PC	52
53	G1=(D+S1)*(D+S2)*GCON	PC	53
54	G2=(D-S1)*(D+S2)*GCON	PC	
	G3=(D-S1)*(D-S2)*GCON		54
55		PC	55
56	G4=(D+S1)*(D-S2)*GCON	PC	56
57	F2=(S1*S1+S2*S2)*TPI	PC	57
58	F1=S1/F2-(G1-G2-G3+G4)*FCON	PC	58
59	F2=S2/F2-(G1+G2-G3-G4)*FCON	PC	59
60	E1=E1+EXK*G1	PC	60
61	E2=E2+EXK*G2	PC	61
62	E3=E3+EXK*G3	PC	62
63	E4=E4+EXK*G4	DIST NEW	
64	E5=E5+EXS*G1	PC	63
04	LJ-LJTLA3*UI	PC:	64

PCINT

65	E6=E6+EXS*G2	PC	65
66	E7=E7+EXS*G3	PC	66
67	E8=E8+EXS*G4	PC	67
68 1	E9=E9+EXK*F1+EXS*F2	PC	68
69	E(1)=E1	PC	69
70	E(2)=E2	PC	70
71	E(3)=E3	PC	71
72	E(4)=E4	PC	72
73	E(5)=E5	PC	73
74	E(6)=E6	PC	74
75	E(7)=E7	PC	75
76	E(8)=E8	PC	76
77	E(9)=E9	PC	77
78	XJ=XXJ	PC	78
79	YJ=XYJ	PC	79
80	ZJ=XZJ	PC	80
81	S=XS	PC	81
82	RETURN	PC	82
83	END	PC	83-

PRNT

PURPOSE

To set up the formats for printing a record of three integers, six floating point numbers, and a Hollerith string, where the variables equal to zero are replaced by blanks. This routine is used by LOAD in printing the impedance data table.

METHOD

A variable format is used to generate the record with arbitrary blank fill. Elements of the format are picked from the array IFORM in the DATA statement. Through IF statements operating on the subroutine input quantities, this routine chooses the desired format elements and builds the format in the array IVAR. The program is divided into two sections: the first builds the integer part of the format and the second the floating point part.

SYMBOL DICTIONARY

ABS = external routine (absolute value)

FL = elements of this array are set equal to the floating point input quantities FL1 - FL6

FLT = array of non-zero floating point input quantities to be printed

FL1

FL3

= input floating point quantities

FL4 FL5

FL6

HALL = 4H ALL (Hollerith ALL)

I = DO loop index

IA = input Hollerith string (array)

ICHAR = number of characters in the input Hollerith string

IFORM = array containing format elements

IN = array set equal to input integer quantities (IN1 - IN3)

INT = non-zero integer quantities to be printed

IN1

IN2 = input integer quantities

IN3

IVAR = variable format array

II = DO loop limit

J = implied PO loop index

K = index parameter

L = implied DO loop index

NCPW = number of Hollerith characters per computer word

NFLT = floating point print index, number of non-zero reals

NINT = integer print index; number of non-zero integers

NWORDS = number of computer words in the input Hollerith string

公司 日本 日本 日本

The state of the s

ESCOSOS RECOGNOS ESSESES

```
SUBROUTINE PRNT (IN1, IN2, IN3, FL1, FL2, FL3, FL4, FL5, FL6, IA, ICHAR)
                                                                                    PR
2 C
                                                                                    PR
                                                                                          2
3 C
         PRNT SETS UP THE PRINT FORMATS FOR IMPEDANCE LOADING
                                                                                    PR
                                                                                          3
4 C
                                                                                    PR
                                                                                          4
         DIMENSION IVAR(13), IA(1), IFORM(8), IN(3), INT(3), FL(6), FLT(6)
5
                                                                                    PR
6
         INTEGER HALL
                                                                                    PR
         DATA IFORM/5H(/3X,,3HI5,,3H5X,,3HA5,,6HE13.4,,4H13X,,3H3X,,5H2A10) PR
7
                                                                                          7
8
                                                                                    PR
                                                                                          8
9 C
                                                                                    PR
                                                                                          9
10 C
         NUMBER OF CHARACTERS PER COMPUTER WORD IS NCPW
                                                                                    PR
                                                                                         10
11 C
                                                                                    PR
                                                                                         11
12
          DATA NCPW/10/, HALL/4H ALL/
                                                                                    PR
                                                                                         12
13
          NWORDS=(ICHAR-1)/NCPW+1
                                                                                    PR
                                                                                         13
          IN(1)=IN1
14
                                                                                    PR
                                                                                         14
15
          IN(2)=IN2
                                                                                    PR
                                                                                         15
16
          IN(3)=IN3
                                                                                    PR
                                                                                         16
17
          FL(1)=FL1
                                                                                    PR
                                                                                         17
          FL(2)=FL2
18
                                                                                    PR
                                                                                         18
19
          FL(3)=FL3
                                                                                    PR
                                                                                         19
20
          FL(4)=FL4
                                                                                    PR
                                                                                         20
21
          FL(5)=FL5
                                                                                    PR
                                                                                         21
          FL(6)=FL6
22
                                                                                    PR
                                                                                         22
23 C
                                                                                    PR
                                                                                         23
24 C
          INTEGER FORMAT
                                                                                    PR
                                                                                         24
25 C
                                                                                    PR
                                                                                         25
26
          NINT=0
                                                                                    PR
                                                                                         26
          IVAR(1)=IFORM(1)
27
                                                                                    PR
                                                                                         27
28
          K=1
                                                                                    PR
                                                                                         28
29
          I1=1
                                                                                    PR
                                                                                         29
30
          IF (.NOT.(IN1.EQ.O.AND.IN2.EQ.O.AND.IN3.EQ.O)) GO TO 1
                                                                                    PR
                                                                                         30
          INT(1)=HALL
31
                                                                                    PR
                                                                                         31
32
          NINT=1
                                                                                    PR
                                                                                         32
33
          I1=2
                                                                                    PR
                                                                                         33
34
          K=K+1
                                                                                    PR
                                                                                         34
          IVAR(K)=IFORM(4)
35
                                                                                    PR
                                                                                         35
          DO 3 I=I1,3
36 1
                                                                                    PR
                                                                                         36
37
          K=K+1
                                                                                    PR
                                                                                         37
38
          IF (IN(I).EQ.0) GO TO 2
                                                                                    PR
                                                                                         38
39
          NINT=NINT+1
                                                                                    PR
                                                                                         39
40
          INT(NINT)=IN(I)
                                                                                    PR
                                                                                         40
41
          IVAR(K)=IFORM(2)
                                                                                    PR
                                                                                         41
42
                                                                                    PR
          GO TO 3
                                                                                         42
43 2
          IVAR(K)=IFORM(3)
                                                                                    PR
                                                                                         43
44 3
          CONTINUE
                                                                                    PR
                                                                                         44
45
          K=K+1
                                                                                    PR
                                                                                         45
46
          IVAR(K)=IFORM(7)
                                                                                    PR
                                                                                         46
47 C
                                                                                    PR
                                                                                         47
48 C
          FLOATING POINT FORMAT
                                                                                    PR
                                                                                         48
49 C
                                                                                    PR
                                                                                         49
50
          NFLT=0
                                                                                    PR
                                                                                         50
51
          DO 5 I=1,6
                                                                                    PR
                                                                                         51
                                                                                    PR
52
          K=K+1
                                                                                         52
53
          IF (ABS(FL(I)).LT.1.E-20) GO TO 4
                                                                                    PR
                                                                                         53
54
          NFLT=NFLT+1
                                                                                    PR
                                                                                         54
515
                                                                                    PR
          FLT(NFLT)=FL(I)
                                                                                         55
5€
          IVAR(K)=IFORM(5)
                                                                                    PR
                                                                                         56
57
                                                                                    PR
          GO TO 5
                                                                                         57
58 4
          IVAR(K)=IFORM(6)
                                                                                    PR
                                                                                         58
          CONTINUE
59 5
                                                                                    PR
                                                                                         59
60
          K=K+1
                                                                                    PR
                                                                                         60
61
          IVAR(K)=IFORM(7)
                                                                                    PR
                                                                                         61
62
          K=K+1
                                                                                    PR
                                                                                         62
63
          IVAR(K)=IFORM(8)
                                                                                     PR
                                                                                         63
64
          PRINT IVAR, (INT(I), I=1, NINT), (FLT(J), J=1, NFLT), (IA(L), L=1, NWORDS) PR
```

65 RETURN 66 END

PR 65 PR 66-

NUMERICAL ELECTROMAGNETIC CODE (NEC)-METHOD OF MOMENTS A USER-ORIENTED CO.. (U) NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA G J BURKE ET AL. 18 JUL 77 NOSC/TD-116-VOL-1 AFWL-TR-76-320-VOL-1 F/G 12/5 5/6 AD-A075 289 NL UNCLASSIFIED 調 -

QDSRC

PURPOSE

To fill the excitation array for a current slope discontinuity voltage source.

METHOD

The current slope discontinuity voltage source is described in section IV-1 of Part I.

CODING

QD22 - QD25 The connection number for end 1 of segment IS is temporarily set to 0, and TBF is called to generate the function $f_{\ell}^{*}(s)$ for ℓ - IS. The zero in the second argument of TBF causes f_{ℓ}^{*} to go to zero at the first end of segment IS rather than the usual non-zero value that allows for current flowing onto the wire end cap.

QD26 - QD31 β_0 is computed and other quantities set.

QD32 - QD119 This loop computes the fields due to each segment on which f_0^* is non-zero.

QD33 - QD77 Parameters of the source segment are stored in COMMON/DATAJ/. Flags for the extended thin wire approximation are set as in routine CMSET.

QD78 - QD91 This loop evaluates the electric field on each segment.

QD95 - QD116 This loop evaluates the magnetic field at each patch.

SYMBOL DICTIONARY

AI = radius of segment on which field is evaluated.

CABI = x component of unit vector in the direction of segment I

CCJ = CCJX = -j/60

 $CURD = \beta_0$

E = array of segment and patch excitation fields

ETC] = E field tangent to a segment or H field components on a patch

ETK due to cosine, constant, and sine current components,

ETS | respectively, on a segment

Il = array index for patch excitation

IJ = flag which, if zero, indicates that the field is being evaluated on the source segment

```
IPR = temporary storage of connection number
     = segment which has the source location on end 1
IS
J
     = source segment number
SABI = y component of unit vector in the direction of segment I
T1X
TIY
TIZ
     = arrays of components of \hat{t}_1 and \hat{t}_2 for patches
T2X
T2Y
T2Z
TP
     = 2\pi
TX
     = components of \hat{t}_1 or \hat{t}_2 for patches
TY
TZ
V
     = source voltage
     = coordinates of point where field is evaluated; XI is also
YI
       used in the test for the extended thin wire approximation
ZI
       for the electric field .
```

CONSTANTS

- 0.01666666667 = 1/60
- 0.999999 = minimum XI for the extended thin wire approximation (maximum angle = 0.08 degrees)
- $6.283185308 = 2\pi$

```
SUBROUTINE QDSRC (IS, V, E)
         FILL INCIDENT FIELD ARRAY FOR CHARGE DISCONTINUITY VOLTAGE SOURCE
2
  C
                                                                                    QD
                                                                                          2
3
         COMPLEX VQDS.CURD.CCJ.V.EXK.EYK.EZK.EXS.EYS.EZS.EXC.EYC.EZC.ETK.ET QD
                                                                                          3
         15, ETC, VSANT, VQD, E, ZARRAY
5
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 QD
                                                                                          5
6
        1).BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( QD
                                                                                          6
7
        2300), WLAM, IPSYM
                                                                                          7
8
         COMMON /VSORC/ VQD(30), VSANT(30), VQDS(30), IVQD(30), ISANT(30), IQDS(
                                                                                          8
9
        136), NVQD, NSANT, NQDS
                                                                                          9
10
         COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP QD
                                                                                         10
        1CON(10), NPCON
11
                                                                                         11
         COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ QD
12
                                                                                         12
13
        1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                    00
                                                                                         13
14
         COMMON /ANGL/ SALP(300)
                                                                                    QD
                                                                                         14
15
         COMMON /ZLOAD/ ZARRAY(300), NLOAD, NLODF
                                                                                    QD
                                                                                         15
         DIMENSION CCJX(2), E(1), CAB(1), SAB(1)
DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1)
16
                                                                                    QD
                                                                                         16
17
                                                                                    OD
                                                                                         17
18
          EQUIVALENCE (CCJ,CCJX), (CAB,ALP), (SAB,BET)
                                                                                         18
19
          EQUIVALENCE (T1X,SI), (T1Y,ALP), (T1Z,BET), (T2X,ICON1), (T2Y,ICON QD
                                                                                         19
20
         12), (T2Z, ITAG)
                                                                                    OD
                                                                                         20
21
         DATA TP/6.283185308/,CCJX/0.,-.0166666667/
                                                                                    QD
                                                                                         21
22
          I=ICON1(IS)
                                                                                    OD
                                                                                         22
23
          ICON1(IS)=0
                                                                                    QD
                                                                                         23
          CALL TBF (IS,0)
24
                                                                                    QD
                                                                                         24
          ICON1(IS)=I
25
                                                                                    QD
                                                                                         25
26
          S=SI(IS) .. 5
         CURD=CCJ*V/((ALOG(2.*S/BI(IS))-1.)*(BX(JSNO)*COS(TP*S)+CX(JSNO)*SI QD
27
                                                                                         27
28
         IN(TP*S)) *WLAM)
                                                                                         28
                                                                                    OD
29
          NQDS=NQDS+1
                                                                                    QD
                                                                                         29
          VQDS(NQDS)=V
30
                                                                                    QD
                                                                                         30
31
          IQDS(NQDS)=IS
                                                                                         31
                                                                                    QD
          DO 20 JX=1, JSNO.
32
                                                                                    QD
                                                                                         32
33
          J=JCO(JX)
                                                                                    OD
                                                                                         33
34
          S=SI(J)
                                                                                    QD
                                                                                         34
          B=BI(J)
35
                                                                                    OD
                                                                                         35
36
          XJ=X(J)
                                                                                     QD
                                                                                         36
37
          YJ=Y(J)
                                                                                     QD
                                                                                         37
38
          ZJ=Z(J)
                                                                                    QD
                                                                                         38
          CABJ=CAB(J)
39
                                                                                    QD
                                                                                         39
40
          SABJ=SAB(J)
                                                                                    QD
                                                                                         40
41
          SALPJ=SALP(J)
                                                                                    QD
                                                                                         41
42
          IF (IEXK.EQ.0) GO TO 16
                                                                                    QD
                                                                                         42
          IPR=ICON1(J)
43
                                                                                    QD
                                                                                         43
44
          IF (IPR) 1,6,2
                                                                                    QD
                                                                                         44
45 1
          IPR=-IPR
                                                                                         45
                                                                                    QD
46
          IF (-ICON1(IPR).NE.J) GO TO 7
                                                                                    OD
                                                                                         46
47
          GO TO 4
                                                                                    QD
                                                                                         47
48 2
          IF (IPR.NE.J) GO TO 3
                                                                                    QD
                                                                                         48
49
          IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 7
                                                                                    QD
                                                                                         49
50
          GO TO 5
                                                                                     QD
                                                                                         50
51 3
          IF (ICON2(IPR).NE.J) GO TO 7
                                                                                     QD
                                                                                         51
52 4
          XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))
                                                                                    ao
                                                                                         52
53
          IF (XI.LT.0.999999) GO TO 7
                                                                                    QD
                                                                                         53
54
          IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 7
                                                                                         54
                                                                                     OD
55 5
          IND1=0
                                                                                     OD
                                                                                         55
56
          GO TO 8
                                                                                     OD
                                                                                         56
57 6
          IND1=1
                                                                                     QD
                                                                                         57
          GO TO 8
58
                                                                                     QD
                                                                                         58
59 7
          IND1=2
                                                                                         59
                                                                                     OD
60 8
          IPR=ICON2(J)
                                                                                     QD
                                                                                         60
61
          IF (IPR) 9,14,10
                                                                                     QD
                                                                                         61
62 9
          IPR=-IPR
                                                                                     QD
                                                                                         62
          IF (-ICON2(IPR).NE.J) GO TO 15
63
                                                                                     OD
                                                                                         63
64
          GO TO 12
                                                                                     QD
```

```
65 10
          IF (IPR.NE.J) GO TO 11
                                                                                    QD
                                                                                        65
66
          IF (CABJ*CABJ+SABJ*SABJ.GT.1.E-8) GO TO 15
                                                                                    QD
                                                                                        66
67
          GO TO 13
                                                                                    QD
                                                                                        67
68 11
          IF (ICON1(IPR).NE.J) GO TO 15
                                                                                    QD
                                                                                        68
69
          XI=ABS(CABJ*CAB(IPR)+SABJ*SAB(IPR)+SALPJ*SALP(IPR))
   12
                                                                                    QD
                                                                                        69
          IF (XI.LT.0.999999) GO TO 15
70
                                                                                    QD
                                                                                        70
71
          IF (ABS(BI(IPR)/B-1.).GT.1.E-6) GO TO 15
                                                                                    QD
                                                                                        71
          IND2=0
72 13
                                                                                    QD
                                                                                        72
          GO TO 16
73
                                                                                    QD
                                                                                        73
74
          IND2=1
                                                                                    QD
                                                                                        74
75
          GO TO 16
                                                                                    QD
                                                                                        75
76
   15
          IND2=2
                                                                                    QD
                                                                                        76
          CONTINUE
                                                                                    QD
                                                                                        77
78
          DO 17 I=1.N
                                                                                    QD
                                                                                        78
79
          IJ=I-J
                                                                                    QD
                                                                                        79
80
          XI=X(I)
                                                                                    OD
                                                                                        80
81
          YI=Y(I)
                                                                                    QD
                                                                                        81
82
          ZI=Z(I)
                                                                                    QD
                                                                                        82
83
          AI=BI(I)
                                                                                    QD
                                                                                        83
          CALL EFLD (XI, YI, ZI, AI, IJ)
84
                                                                                    QD
                                                                                        84
85
          CABI=CAB(I)
                                                                                    QD
                                                                                        85
          SABI=SAB(I)
86
                                                                                    QD
                                                                                        86
          SALPI=SALP(I)
87
                                                                                    QD
                                                                                        87
88
          ETK=EXK*CABI+EYK*SABI+EZK*SALPI
                                                                                    QD
                                                                                        88
89
          ETS=EXS*CABI+EYS*SABI+EZS*SALPI
                                                                                    QD
                                                                                        89
90
          ETC=EXC*CABI+EYC*SABI+EZC*SALPI
                                                                                    QD
                                                                                        90
91 17
          E(I)=E(I)-(ETK*AX(JX)+ETS*BX(JX)+ETC*CX(JX))*CURD
                                                                                    00
                                                                                        91
92
          IF (M.EQ.0) GO TO 19
                                                                                    QD
                                                                                        92
93
          IJ=LD+1
                                                                                    QD
                                                                                        93
94
          II=N
                                                                                    QD
                                                                                        94
95
          DO 18 I=1,M
                                                                                    QD
                                                                                        95
96
          IJ=IJ-1
                                                                                        96
97
          XI=X(IJ)
                                                                                    QD
                                                                                        97
98
          YI=Y(IJ)
                                                                                    QD
                                                                                        98
99
          ZI=Z(IJ)
                                                                                    QD
                                                                                        99
100
          CALL HSFLD (XI, YI, ZI, O.)
                                                                                    QD
                                                                                       100
101
          I1=I1+1
                                                                                    QD
                                                                                       101
102
          TX=T2X(IJ)
                                                                                    QD 102
103
          TY=T2Y(IJ)
                                                                                    QD 103
104
          TZ=T2Z(IJ)
                                                                                    QD 104
105
           ETK=EXK*TX+EYK*TY+EZK*TZ
                                                                                    OD 105
106
          ETS=EXS*TX+EYS*TY+EZS*TZ
                                                                                    QD
                                                                                      106
          ETC=EXC*TX+EYC*TY+EZC*TZ
107
                                                                                    QD
                                                                                       107
108
          E(I1)=E(I1)+(ETK*AX(JX)+ETS*BX(JX)+ETC*CX(JX))*CURD*SALP(IJ)
                                                                                    OD 108
109
          I1=I1+1
                                                                                    QD 109
110
           TX=T1X(IJ)
                                                                                    QD 110
111
          TY=T1Y(IJ)
                                                                                    QD 111
112
           TZ=T1Z(IJ)
                                                                                    QD 112
113
           ETK=EXK*TX+EYK*TY+EZK*TZ
                                                                                    QD
                                                                                      113
          ETS=EXS*TX+EYS*TY+EZS*TZ
114
                                                                                    QD 114
           ETC=EXC*TX+EYC*TY+EZC*TZ
115
                                                                                    QD 115
116 18
           E(I1)=E(I1)+(ETK*AX(JX)+ETS*BX(JX)+ETC*CX(JX))*CURD*SALP(IJ)
                                                                                    QD 116
117 19
           IF (NLOAD.GT.O.OR.NLODF.GT.O) E(J)=E(J)+ZARRAY(J)*CURD*(AX(JX)+CX(
                                                                                    QD 117
          1JX))
118
                                                                                    QD 118
119 20
           CONTINUE
                                                                                    QD 119
           RETURN
120
                                                                                    QD 120
           END
121
                                                                                    QD 121-
```

RDPAT

RDPAT

PURPOSE

To compute and print radiated field quantities.

METHOD

The quantities computed and the output formats depend on the options selected by the first integer (IFAR) and fourth integer (IPD, IAVP, INOR, IAX) on the RP card (see Part III). These quantities are defined as follows:

(1) Power Gain

In the direction (θ, ϕ)

$$G_{p}(\theta,\phi) = 4\pi \frac{P_{\Omega}(\theta,\phi)}{P_{in}}$$
,

where $P_{\Omega}(\theta, \phi)$ is the power radiated per unit solid angle in the given direction, and P_{in} is the total power accepted by the antenna. Therefore, $P_{in} = (1/2) \text{Re}(VI^*)$, where V is the applied source voltage, and

$$P_{\Omega}(\theta,\phi) = (1/2) R^2 Re(\bar{E} \times \bar{H}^*) = \frac{R^2}{2\eta} \bar{E} \cdot \bar{E}^*,$$

where R is the observation sphere radius. Since the electric field calculated by FFLD (call it \bar{E}^{*}) does not include $\exp(-jkR)/(R/\lambda)$,

$$\bar{E} = \frac{\exp(-jkR)}{R/\lambda} \bar{E}$$

and

$$P_{\Omega} = \frac{\lambda^2}{2\eta} (\bar{E}' \cdot \bar{E}' *) .$$

Thus,

$$G_{p}(\theta, \phi) = \frac{2\pi\lambda^{2}}{\eta P_{in}} (\vec{E}' \cdot \vec{E}'*)$$

in terms of the program variables.

(2) Directive Gain

In the direction (θ, ϕ) ,

$$G_{d}(\theta,\phi) = 4\pi \frac{P_{\Omega}(\theta,\phi)}{P_{rad}}$$

where P_{rad} is the total power radiated by the antenna. The only difference from power gain is that P_{in} is replaced by P_{rad} , and $P_{rad} = P_{in} - P_{loss}$, where P_{loss} is calculated as the power lost in distributed and lumped loads on the structure and in the networks loads.

(3) Component Gain

The gains are also calculated for separate, orthogonal field components (u, v). In this case, \vec{E}' * \vec{E}' * is replaced by \vec{E}_u * or \vec{E}_v *, and the total gain is the sum of the two components.

(4) Average Gain

The user specifies a range and number of points in theta and phi that in turn specify the total solid angle covered, Ω , and the sampling density for the integral in the expression for average gain:

$$G_{av} = \frac{\int_{\Omega}^{G_p} d\Omega}{\Omega}$$

The trapezoidal rule is used in evaluating the integral.

(5) Normalized Gain

Normalized gain is simply the gain divided by its maximum value or some value specified by the user.

The discussion of gains applies only to the case of a structure used as a radiating antenna. For the case of an incident plane wave, the program constants are defined such that the value of σ/λ^2 is printed under the heading "GAIN." The calculation is

$$\frac{\sigma}{\lambda^2} = \frac{4\pi R^2}{\lambda^2} \frac{W_{\text{scat}}}{W_{\text{inc}}} = \frac{4\pi}{\tilde{E}_{\text{inc}} \cdot \tilde{E}^*_{\text{inc}}} (\tilde{E}'_{\text{scat}} \cdot \tilde{E}'_{\text{scat}}) ,$$

where W_{scat} is the scattered power per unit area at distance R in a given direction, W_{inc} is the power per unit area of the incident plane wave, and the primes on the electric fields specify the fields used in the program as defined above. For the case of a Hertzian dipole used as a source, the gain equations are used; however, P_{in} is equal to the total power radiated by the Hertzian source. That is

$$P_{in} = \frac{\pi \eta}{3} \left| \frac{IL}{\lambda} \right|^2$$
,

where the quantity Il is an input quantity.

(6) Elliptic Polarization Elliptic polarization parameters are calculated as follows:

$$M = [(E_{ym} \cos \gamma + E_{zm} \cos \xi \sin \gamma)^2 + E_{zm}^2 \sin^2 \xi \sin^2 \gamma]^{1/2},$$

$$N = \left[E_{ym} \sin \gamma - E_{zm} \cos \xi \cos \gamma\right]^2 + E_{zm}^2 \sin^2 \xi \cos^2 \gamma\right]^{1/2} ,$$

where

$$E_y = E_{ym} \exp[j(\omega t - kx)]$$
,

$$E_z = E_{zm} \exp[j(\omega t - kx + \xi)],$$

and Y is given by

$$\tan 2y = \frac{2E_{ym}E_{zm}\cos\xi}{E_{ym}^2 - E_{zm}^2}$$

In this routine, the coordinates y and z above are replaced by θ and ϕ , respectively.

The field is computed by FFLD at RD74 for space wave or by GFLD at RD76 for space and ground wave. Elliptic polarization parameters are computed from RD87 to RD18. RD127 to RD137 stores gain in the array GAIN for normalization. The integral of radiated power for the average gain calculation is summed at RD140 to RD147. Fields and gain are printed at RD162 for space wave or RD165 for ground wave. Average gain is computed and printed from RD168 to RD173. Normalized gain is printed from RD174 to RD208.

SYMBOL DICTIONARY AXRAT

CHT = height of cliff in meters

CLT = distance in meters of cliff edge from origin

DA = element of solid angle for average gain summation

DFAZ = phase difference between E_{θ} and E_{ϕ} for elliptic

= N/M (elliptic axial ratio)

RDPAT

= increment for \$\phi\$ DPH = increment for θ DTH $= M^2 (M = major axis)$ EMAJR2 EMINR2 EPH = E (phi component of electric field, with or without the term $\exp(-jkR)/(R/\lambda)$ depending on return from GFLD or FFLD) EPHA = phase angle of EPH = IEPHI E PHM $= |EPH|^2$ EPHM2 = relative dielectric constant EPSR = relative dielectric constant of second medium EPSR2 = radial electric field for ground wave ERD = phase of ERD ERDA = |ERD| ERDM = E₀ ETH = phase of EA ETHA = IEeI ETHM = IEBI2 ETHM2 = phase of exp(-jkR) EXRA EXRM = 1/R= factor multiplying |E|2 to yield gain or GCON σ/λ^2 GCOP = GCON except when GCON yields directive gain; then GCOP remains power gain GMAX = value used for normalized gain = horizontal gain in decibels, o component GNH = major axis gain in decibels GNMJ GNMN = minor axis gain in decibels GNOR = if non-zero, equals input gain quantity = vertical gain (θ) GNV GTOT = total gain IAVP = flag for average gain

= flag for gain type

= first integer from RP card

IAX

IFAR

INOR = integer to select normalized gain

IPD = flag to select power or directive gain

IXTYP = excitation type

NORMAX = dimension of FNORM (maximum number of gain values that

will be stored for normalization)

NPH = number of ϕ values NTH = number of θ values

PHA = φ in radians
PHI = φ in degrees
PHIS = initial φ

PI = π

PINR = input power for current element source

PINT = summation variable for average gain
PLOSS = power dissipated in structure loads

PNLR = power dissipated in networks and transmission lines

PRAD = power radiated by the antenna

RFLD = if non-zero, equal to the observation distance in meters

SIG = conductivity of ground (mhos/m)

SIG2 = conductivity of second medium (mhos/m)

STILTA = sin γ; γ is tilt angle of the polarization ellipse

TA = $\pi/180$ TD = $180/\pi$

THA = θ in radians THET = θ in degrees THETS = initial θ

TILTA = γ (tilt angle of ellipse)

XPR6 = minor axis of polarization ellipse or strength of current element source

CONSTANTS

 $1.745329252E-2 = \pi/180$

1.E-20 = small value test

1.E-5 = small value test

-1.E10 = near minus infinity

 $3.141592654 = \pi$

376.73 = $\eta_0 = \sqrt{\mu_0/\epsilon_0}$

394.51 = $\pi \eta_0/3$

 $57.2957795 = 180/\pi$

59.96 = η₀/(2π)

90.01 = test value for angle exceeding 90 degrees

```
SUBROUTINE ROPAT
                                                                                   RD
2 C
         COMPUTE RADIATION PATTERN, GAIN, NORMALIZED GAIN
                                                                                   RD
                                                                                         2
 3
         INTEGER HPOL, HBLK, HCIR, HCLIF
                                                                                   RD
                                                                                         3
         COMPLEX ETH, EPH, ERD, ZRATI, ZRATI2, T1, FRATI
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 RD
 5
                                                                                         5
 6
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( RD
                                                                                         6
         COMMON /SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ
 8
9
         COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR,
                                                                                   RD
                                                                                         9
10
         1IPERF, T1, T2
                                                                                   RD
                                                                                        10
11
         COMMON /FPAT/ NTH, NPH, IPD, IAVP, INOR, IAX, THETS, PHIS, DTH, DPH, RFLD, GN
                                                                                        11
         10R,CLT,CHT,EPSR2,SIG2,IXTYP,XPR6,PINR,PNLR,PLOSS,NEAR,NFEH,NRX,NRY
12
                                                                                   RD
                                                                                        12
        2, NRZ, XNR, YNR, ZNR, DXNR, DYNR, DZNR
13
                                                                                   RD
                                                                                        13
         COMMON /SCRATM/ GAIN(1200)
14
                                                                                   RD
                                                                                        14
15
         DIMENSION IGTP(4), IGAX(4), IGNTP(10), HPOL(3)
                                                                                   RD
                                                                                        15
16
         DATA HPOL/6HLINEAR, 5HRIGHT, 4HLEFT/, HBLK, HCIR/1H , 6HCIRCLE/
                                                                                   RD
                                                                                        16
17
         DATA IGTP/6H
                          - ,6HPOWER ,6H- DIRE,6HCTIVE /
                                                                                   RD
                                                                                        17
         DATA IGAX/6H MAJOR,6H MINOR,6H VERT.,6H HOR. /
18
19
         DATA IGNTP/6H MAJOR,6H AXIS ,6H MINOR,6H AXIS ,6H
                                                                  VER, 6HTICAL , 6
                                                                                   RD
                                                                                        19
         1H HORIZ, 6HONTAL , 6H
                                    ,6HTOTAL /
20
                                                                                        20
                                                                                   RD
         DATA PI, TA, TD/3.141592654, 1.745329252E-02, 57.29577951/
21
                                                                                   RD
                                                                                        21
22
          DATA NORMAX/1200/
                                                                                   RD
                                                                                        22
23
         IF (IFAR.LT.2) GO TO 2
                                                                                       23
                                                                                   RD
24
         PRINT 35
                                                                                   RD
                                                                                        24
25
          IF (IFAR.LE.3) GO TO 1
                                                                                   RD
                                                                                        25
26
         PRINT 36, NRADL, SCRWLT, SCRWRT
                                                                                   RD
                                                                                        26
27
         IF (IFAR.EQ.4) GO TO 2
                                                                                   RD
                                                                                        27
         IF (IFAR.EQ.2.OR.IFAR.EQ.5) HCLIF=HPOL(1)
28 1
                                                                                   RD
                                                                                        28
29
         IF (IFAR.EQ.3.OR.IFAR.EQ.6) HCLIF=HCIR
                                                                                   RD
                                                                                        29
30
         CL=CLT/WLAM
                                                                                        30
                                                                                   RD
31
          CH=CHT/WLAM
                                                                                   RD
                                                                                        31
32
          ZRATI2=CSQRT(1./CMPLX(EPSR2,-SIG2*WLAM*59.96))
                                                                                   RD
                                                                                        32
33
         PRINT 37, HCLIF, CLT, CHT, EPSR2, SIG2
                                                                                   RD
                                                                                        33
         IF (IFAR.NE.1) GO TO 3
34 2
                                                                                   RD
                                                                                        34
35
          PRINT 41
                                                                                   RD
                                                                                        35
36
          GO TO 5
                                                                                   RD
                                                                                        36
37 3
          I=2*IPD+1
                                                                                   RD
                                                                                        37
38
          J=I+1
                                                                                   RD
                                                                                        38
39
          ITMP1=2*IAX+1
                                                                                   RD
                                                                                        39
40
          ITMP2=ITMP1+1
                                                                                   RD
                                                                                        40
41
          PRINT 38
                                                                                   RD
                                                                                        41
42
          IF (RFLD.LT.1.E-20) GO TO 4
                                                                                   RD
                                                                                        42
43
          EXRM=1./RFLD
                                                                                   RD
                                                                                        43
44
                                                                                   RD
          EXRA=RFLD/WLAM
                                                                                        44
45
          EXRA=-360.*(EXRA-AINT(EXRA))
                                                                                   RD
                                                                                        45
46
          PRINT 39, RFLD, EXRM, EXRA
                                                                                   RD
                                                                                        46
47 4
          PRINT 40, IGTP(I), IGTP(J), IGAX(ITMP1), IGAX(ITMP2)
                                                                                        47
                                                                                   RD
48 5
          IF (IXTYP.EQ.O.OR.IXTYP.EQ.5) GO TO 7
                                                                                        48
                                                                                   RD
49
          IF (IXTYP.EQ.4) GO TO 6
                                                                                   RD
                                                                                        49
50
          PRAD=0.
                                                                                   RD
                                                                                        50
51
          GCON=4. *PI/(1.+XPR6*XPR6)
                                                                                   RD
                                                                                        51
          GCOP=GCON
52
                                                                                   RD
                                                                                        52
53
          GO TO 8
                                                                                   RD
                                                                                        53
          PINR=394.51*XPR6*XPR6*WLAM*WLAM
54 6
                                                                                   RD
                                                                                        54
55 7
          GCOP=WLAM*WLAM*2.*PI/(376.73*PINR)
                                                                                   RD
                                                                                        55
56
          PRAD=PINR-PLOSS-PNLR
                                                                                   RD
                                                                                        56
57
          GCON=GCOP
                                                                                   RD
                                                                                        57
58
          IF (IPD.NE.O) GCON=GCON*PINR/PRAD
                                                                                   RD
                                                                                        58
59 8
          I=0
                                                                                   RD
                                                                                        59
          GMAX=-1.E10
60
                                                                                   RD
                                                                                        60
61
          PINT=0.
                                                                                   RD
                                                                                        61
62
          TMP1=DPH+TA
                                                                                   RD
                                                                                        62
63
          TMP2=.5*DTH*TA
                                                                                   RD
                                                                                        63
64
          PHI=PHIS-DPH
                                                                                   RD
                                                                                        64
```

65		DO 29 KPH=1,NPH	RD	65
66		PHI=PHI+DPH	RD	66
67		PHA=PHI • TA	RD	67
68		THET=THETS-DTH	RD	68
69		DO 29 KTH=1,NTH	RD	69
70		THET=THET+DTH	RD	70
71		IF (KSYMP.EQ.2.AND.THET.GT.90.01.AND.IFAR.NE.1) GO TO 29	RD	71
72		THA=THET TA	RD	72
73		IF (IFAR.EQ.1) GO TO 9	RD	73
74		CALL FFLD (THA, PHA, ETH, EPH)	RD	74
75		GO TO 10	RD	75
76	9	CALL GFLD (RFLD/WLAM, PHA, THET/WLAM, ETH, EPH, ERD, ZRATI, KSYMP)	RD	76
77		ERDM=CABS(ERD)	RD	77
78		ERDA=CANG(ERD)	RD	78
79	10	ETHM2=REAL(ETH*CONJG(ETH))	RD	79
80		ETHM=SQRT(ETHM2)	RD	80
81		ETHA=CANG(ETH)	RD	81
82		EPHM2=REAL(EPH*CONJG(EPH))	RD	82
83		EPHM=SQRT(EPHM2)	RD	83
84		EPHA=CANG(EPH)	RD	84
85	•	IF (IFAR.EQ.1) GO TO 28	RD	85
86	•	ELLIPTICAL POLARIZATION CALC. IF (ETHM2.GT.1.E-20.OR.EPHM2.GT.1.E-20) GO TO 11	RD	86
87 88		TILTA=0.	RD	87
89		EMAJR2=0.	RD RD	88
90		EMINR2=0.	RD	90
91		AXRAT=0.	RD	91
92		ISENS=HBLK	RD	92
93		GO TO 16	RD	93
94	11	DFAZ=EPHA-ETHA	RD	94
95		IF (EPHA.LT.O.) GO TO 12	RD	95
96		DFAZ2=DFAZ-360.	RD	96
97		GO TO 13	RD	97
98	12	DFAZ2=DFAZ+360.	RD	98
99	13	IF (ABS(DFAZ).GT.ABS(DFAZ2)) DFAZ=DFAZ2	RD	99
100		CDFAZ=COS(DFAZ*TA)	RD	100
101		TSTOR1=ETHM2-EPHM2	RD	101
102		TSTOR2=2. *EPHM*ETHM*CDFAZ	RD	102
103		TILTA=.5*ATGN2(TSTOR2,TSTOR1)	RD	103
104		STILTA=SIN(TILTA)	RD	104
105		TSTOR1=TSTOR1*STILTA*STILTA	RD	105
106		TSTOR2=TSTOR2*STILTA*COS(TILTA)		106
107		EMAJR2=-TSTOR1+TSTOR2+ETHM2	RD	107
108		EMINR2=TSTOR1-TSTOR2+EPHM2		108
109		IF (EMINR2.LT.O.) EMINR2=O.		109
110		AXRAT=SQRT(EMINR2/EMAJR2)		110
111		TILTA=TILTA*TD		111
112		IF (AXRAT.GT.1.E-5) GO TO 14		112
113		ISENS=HPOL(1)		113
114		GO TO 16		114
115	14	IF (DFAZ.GT.O.) GO TO 15 ISENS=HPOL(2)		115
116		GO TO 16		116
118		ISENS=HPOL(3)		118
119		GNMJ=DB10(GCON*EMAJR2)		119
120		GNMN=DB10(GCON*EMINR2)		120
121		GNV=DB10(GCON*ETHM2)		121
122		GNH=DB10(GCON*EPHM2)		122
123		GTOT=DB10(GCON*(ETHM2+EPHM2))		123
124		IF (INOR.LT.1) GO TO 23		124
125		I=I+1		125
126		IF (I.GT.NORMAX) GO TO 23		126
127		GO TO (17,18,19,20,21), INOR		127
128		TSTOR1=GNMJ		128

129		GO TO 22	RD 1	29
130	18	TSTOR1=GNMN	RD 1	30
131		GO TO 22	RD 1	31
132	19	TSTOR1=GNV	RD 1	32
133		GO TO 22	RD 1	33
134	20	TSTOR1=GNH	RD 1	
135		GO TO 22	RD 1	
136	21	TSTOR1=GTOT	RD 1	
137		GAIN(I)=TSTOR1	RD 1	
138		IF (TSTOR1.GT.GMAX) GMAX=TSTOR1	RD 1	
139	23	IF (IAVP.EQ.0) GO TO 24	RD 1	
140	-	TSTOR1=GCOP*(ETHM2+EPHM2)	RD 1	
141		TMP3=THA-TMP2	RD 1	
142		TMP4=THA+TMP2	RD 1	
143		IF (KTH.EQ.1) TMP3=THA	RD 1	
144		IF (KTH.EQ.NTH) TMP4=THA	RD 1	
145		DA=ABS(TMP1+(COS(TMP3)-COS(TMP4)))		
146		IF (KPH.EQ.1.OR.KPH.EQ.NPH) DA=.5*DA	RD 1	
147		PINT=PINT+TSTOR1 *DA	RD 1	
			RD 1	
148	24	IF (IAVP.EQ.2) GO TO 29	RD 1	
	24	IF (IAX.EQ.1) GO TO 25	RD 1	
150		TMP5=GNMJ	RD 1	-
151		TMP6=GNMN	RD 1	
152		GO TO 26	RD 1	ALTE I
A STATE OF	25	TMP5=GNV	RD 1	0.00
154		TMP6=GNH	RD 1	-
	26	ETHM=ETHM*WLAM	RD 1	
156		EPHM=EPHM*WLAM	RD 1	56
157		IF (RFLD.LT.1.E-20) GO TO 27	RD 1	57
158		ETHM=ETHM*EXRM	RD 1	58
159		ETHA=ETHA+EXRA	RD 1	59
160				
100		EPHM=EPHM+EXRM	RD 1	60
161		EPHM=EPHM+EXRM EPHA=EPHA+EXRA	RD 1	
161		요즘 이 비슷하게 되었다면 무슨데 하다 그리고 살아보니 아니라 나는 아니라 나는 아니는 아니는 아니는 아니는 아니는 이 없었다. 아니라	RD 1	61
161	27	EPHA=EPHA+EXRA	RD 1	61 62
161 162	27	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM	RD 1 RD 1	61 62 63
161 162 163 164	27	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA	RD 1 RD 1 RD 1	61 62 63 64
161 162 163 164 165	27	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29	RD 1 RD 1 RD 1 RD 1	61 62 63 64 65
161 162 163 164 165	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA	RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66
161 162 163 164 165 166	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE	RD 1 RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66 67
161 162 163 164 165 166	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30	RD 1 RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66 67 68
161 162 163 164 165 166 167	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1)	RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66 67 68
161 162 163 164 165 166 167 168 169	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4)))	RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66 67 68 69 70
161 162 163 164 165 166 167 168 169	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3	RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66 67 68 69 70
161 162 163 164 165 166 167 168 169 170 171	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI	RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66 67 68 69 70 71
161 162 163 164 165 166 167 168 169 170 171 172 173	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73
161 162 163 164 165 166 167 168 169 170 171 172 173	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3 IF (INOR.EQ.O) GO TO 34	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74
161 162 163 164 165 166 167 168 169 170 171 172 173 174	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR	RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1 RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74
161 162 163 164 165 166 167 168 169 170 171 172 173 174	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX**GNOR ITMP1=(INOR-1)*2+1	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	27 28 29	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 78
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH	RD 1	61 62 63 64 65 66 66 67 70 71 72 73 74 75 77 77 78
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH IF (ITMP2.GT.NORMAX) ITMP2=NORMAX	RD 1	61 62 63 64 65 66 66 67 71 72 73 74 75 77 78 79 80
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 180 181	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3 IF (INOR.EQ.0) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1), IGNTP(ITMP2), GMAX ITMP2=NPH*NTH IF (ITMP2.GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 78 79 80 81
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 180 181 182	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET.PHI.TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD.PHI.THET,ETHM.ETHA,EPHM.EPHA,ERDM.ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT.TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH IF (ITMP2-GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3 ITMP2=ITMP1*3-ITMP2	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 78 79 80 81 82
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 180 181 182 183	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.0) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH IF (ITMP2.GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3 ITMP2=ITMP1*3-ITMP2 ITMP3=ITMP1*	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 77 77 78 79 80 81 82 83
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 177 178 180 181 182 183	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH IF (ITMP2.GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3 ITMP2=ITMP1*3-ITMP2 ITMP3=ITMP1 ITMP4=2*ITMP1 ITMP4=2*ITMP1	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 77 77 77 78 79 80 81 82 83 84
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 177 178 179 180 181 182 183 184	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMPS,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH IF (ITMP2.GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3 ITMP2=ITMP1*3-ITMP2 ITMP4=2*ITMP1 IF (ITMP2.EQ.2) ITMP4=ITMP4-1	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 77 77 77 77 77 80 81 82 83 84 85
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 180 181 182 183 184	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET.PHI.TMPS.TMP6.GTOT.AXRAT.TILTA.ISENS.ETHM.ETHA.EPHM 1.EPHA GO TO 29 PRINT 43. RFLD.PHI.THET.ETHM.ETHA.EPHM.EPHA.ERDM.ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44. PINT.TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45. IGNTP(ITMP1).IGNTP(ITMP2).GMAX ITMP2=NPH*NTH IF (ITMP2.GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3 ITMP2=ITMP1*3-ITMP2 ITMP3=ITMP1 IF (ITMP2.EQ.2) ITMP4=ITMP4-1 DO 31 I=1.ITMP1	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 77 77 77 77 77 80 81 82 83 84 85 86
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 180 181 182 183 184 185	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.0) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH IF (ITMP2.GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3 ITMP3=ITMP1* ITMP4=2*ITMP1 ITMP4=2*ITMP1 ITMP4=2*ITMP1 ITMP4=2*ITMP1 ITMP4=2*ITMP1 ITMP3=ITMP3+1	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 77 77 77 77 77 77 80 81 82 83 84 85 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 180 181 182 183 184 185 186	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.0) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=ITMP1+1 ITMP2=ITMP1+1 IF (ITMP2.GT.NORMAX) ITMP2=NORMAX ITMP1=(ITMP2+2)/3 ITMP2=ITMP1*3-ITMP2 ITMP4=ITMP4=1 ITMP4=ITMP4+1	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 77 77 77 77 77 77 77 77 77 77 77
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 180 181 182 183 184 185 186	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3 IF (INOR.EQ.0) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1), IGNTP(ITMP2), GMAX ITMP2=TMP1+1 PRINT 45, IGNTP(ITMP1), IGNTP(ITMP2), GMAX ITMP2=ITMP1+3-ITMP2 ITMP2=ITMP1*3-ITMP2 ITMP3=ITMP1 ITMP4=ITMP4+2)/3 ITMP4=ITMP4+1 ITMP4=ITMP4+1 J=(I-1)/NTH	RD 1	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 77 77 77 77 77 80 81 82 83 84 88 88 88 88 88 88 88 88 88 88 88 88
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET,PHI,TMP5,TMP6,GTOT,AXRAT,TILTA,ISENS,ETHM,ETHA,EPHM 1,EPHA GO TO 29 PRINT 43, RFLD,PHI,THET,ETHM,ETHA,EPHM,EPHA,ERDM,ERDA CONTINUE IF (IAVP.EQ.O) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT,TMP3 IF (INOR.EQ.O) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1),IGNTP(ITMP2),GMAX ITMP2=NPH*NTH IF (ITMP2-ETIMP1*) IF (ITMP2-ETIMP1*) IF (ITMP2-ETIMP1*) ITMP3=ITMP1 ITMP4=2*ITMP1 ITMP4=2*ITMP1 ITMP4=2*ITMP1 ITMP4=2*ITMP1 ITMP4=ITMP4+1 J=(I-1)/NTH TMP1=THETS*FLOAT(I-J*NTH-1)*DTH	RD 1	61 62 63 64 65 66 67 77 77 77 77 77 77 77 77 77 77 77
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 180 181 182 183 184 185 186	27 28 29 30	EPHA=EPHA+EXRA PRINT 42, THET, PHI, TMP5, TMP6, GTOT, AXRAT, TILTA, ISENS, ETHM, ETHA, EPHM 1, EPHA GO TO 29 PRINT 43, RFLD, PHI, THET, ETHM, ETHA, EPHM, EPHA, ERDM, ERDA CONTINUE IF (IAVP.EQ.0) GO TO 30 TMP3=THETS*TA TMP4=TMP3+DTH*TA*FLOAT(NTH-1) TMP3=ABS(DPH*TA*FLOAT(NPH-1)*(COS(TMP3)-COS(TMP4))) PINT=PINT/TMP3 TMP3=TMP3/PI PRINT 44, PINT, TMP3 IF (INOR.EQ.0) GO TO 34 IF (ABS(GNOR).GT.1.E-20) GMAX=GNOR ITMP1=(INOR-1)*2+1 ITMP2=ITMP1+1 PRINT 45, IGNTP(ITMP1), IGNTP(ITMP2), GMAX ITMP2=TMP1+1 PRINT 45, IGNTP(ITMP1), IGNTP(ITMP2), GMAX ITMP2=ITMP1+3-ITMP2 ITMP2=ITMP1*3-ITMP2 ITMP3=ITMP1 ITMP4=ITMP4+2)/3 ITMP4=ITMP4+1 ITMP4=ITMP4+1 J=(I-1)/NTH	RD 1	61 62 63 64 65 66 67 77 77 77 77 77 77 77 77 77 77 77

193		TMP3=THETS+FLOAT(ITMP3-J*NTH-1)*DTH	RD	193
194		TMP4=PHIS+FLOAT(J)*DPH	RD	194
195		J=(ITMP4-1)/NTH	RD	195
196		TMP5=THETS+FLOAT(ITMP4-J*NTH-1)*DTH	RD	196
197		TMP6=PHIS+FLOAT(J)*DPH	RD	197
198		TSTOR1=GAIN(I)-GMAX	RD	198
199		IF (I.EQ.ITMP1.AND.ITMP2.NE.0) GO TO 32	RD	199
200		TSTOR2=GAIN(ITMP3)-GMAX	RD	200
201		PINT=GAIN(ITMP4)-GMAX	RD	201
202	31	PRINT 46, TMP1, TMP2, TSTOR1, TMP3, TMP4, TSTOR2, TMP5, TMP6, PINT	RD	202
203		GO TO 34	RD	203
204	32	IF (ITMP2.EQ.2) GO TO 33	RD	204
205		TSTOR2=GAIN(ITMP3)-GMAX	RD	205
206		PRINT 46, TMP1, TMP2, TSTOR1, TMP3, TMP4, TSTOR2	RD	206
207		GO TO 34	RD	207
208	33	PRINT 46, TMP1, TMP2, TSTOR1	RD	208
209	34	RETURN	RD	209
210	C		RD	210
211	35	FORMAT (///,31X,39H FAR FIELD GROUND PARAMETERS,//)		211
212	36	FORMAT (40X, 25HRADIAL WIRE GROUND SCREEN, /, 40X, 15, 6H WIRES, /, 40X, 1		
213		12HWIRE LENGTH=, F8.2,7H METERS, /, 40X, 12HWIRE RADIUS=, E10.3,7H METER	RD	213
214		25)	RD	214
215	37	FORMAT (40X,A6,6H CLIFF,/,40X,14HEDGE DISTANCE=,F9.2,7H METERS,/,4	2000	
216		10X,7HHEIGHT=,F8.2,7H METERS,/,40X,15HSECOND MEDIUM -,/,40X,27HRELA	RD	216
217		2TIVE DIELECTRIC CONST.=,F7.3,/,40x,13HCONDUCTIVITY=,E10.3,5H MHOS)	RD	217
218	38	FORMAT (///,48x,30H RADIATION PATTERNS)		218
219	39	FORMAT (54X,6HRANGE=,E13.6,7H METERS,/,54X,12HEXP(-JKR)/R=,E12.5,9		
220		1H AT PHASE, F7.2,8H DEGREES,/)		220
221	40	FORMAT (/,2X,14H ANGLES,7X,2A6,7HGAINS -,7X,24H POLARI		
222		1ZATION,4X,20H E(THETA),4X,16H E(PHI),2H		222
223		2-,/,2X,5HTHETA,5X,3HPHI,7X,A6,2X,A6,3X,5HTOTAL,6X,5HAXIAL,5X,4HTIL		
224		3T.3X.5HSENSE,2(5X,9HMAGNITUDE,4X,6HPHASE),/,2(1X,7HDEGREES,1X),3(
225		46X,2HDB),8X,5HRATIO,5X,4HDEG.,8X,2(6X,7HVOLTS/M,4X,7HDEGREES))		225
226	41	FORMAT (///,28x,40H RADIATED FIELDS NEAR GROUND,//,8x,		
227		120H LOCATION,10X,16H E(THETA),8X,14H E(PHI) -		
228		2 -,8X,17H E(RADIAL),/,7X,3HRHO,6X,3HPHI,9X,1HZ,12X,3HMAG,6X		
229		3,5HPHASE,9X,3HMAG,6X,5HPHASE,9X,3HMAG,6X,5HPHASE,/,5X,6HMETERS,3X,		229
230		47HDEGREES, 4X, 6HMETERS, 8X, 7HVOLTS/M, 3X, 7HDEGREES, 6X, 7HVOLTS/M, 3X, 7H		
231		5DEGREES, 6X, 7HVOLTS/M, 3X, 7HDEGREES, /)		231
232		FORMAT (1X,F7.2,F9.2,3X,3F8.2,F11.5,F9.2,2X,A6,2(E15.5,F9.2))		232
233		FORMAT (3X,F9.2,2X,F7.2,2X,F9.2,1X,3(3X,E11.4,2X,F7.2))		233
234	44	FORMAT (//,3X,19HAVERAGE POWER GAIN=,E12.5,7X, 31HSOLID ANGLE USED		
235	45	1 IN AVERAGING=(4, F7.4, 16H)*PI STERADIANS.,//)		235
236	43	FORMAT (//,37X,31H NORMALIZED GAIN,//,37X,2A6,4HGAI	KU DO	236
237		1N,/,38X,22HNORMALIZATION FACTOR =,F9.2,3H DB,//,3(4X,14H ANGLES		
238 239		2,6X,4HGAIN,7X),/,3(4X,5HTHETA,5X,3HPHI,8X,2HDB,8X),/,3(3X,7HDE		238
240	46	3GREES,2X,7HDEGREES,16X)) FORMAT (3(1X,2F9.2,1X,F9.2,6X))		240
241	40	END		241-
471		LNU	KU	441-

50003 (100000000) (400000000

REBLK

PURPOSE

To read the matrix B by blocks of rows and write it by blocks of columns.

METHOD

When ICASX is 3 or 4 subroutine CMNGF writes B to file 14 by blocks of rows. Filling B by rows is convenient since the field of a single segment may contribute to several columns. However, blocks of columns are needed when A⁻¹B is computed. Hence the format is converted.

NBBX is the number of block of B stored by rows and NBBL is the number of blocks stored by columns. The loop from RB16 to RB23 reads file 14 and stores the elements for block NPB of columns. This process is repeated for each of the NBBL blocks of columns.

SYMBOL DICTIONARY

B = array for blocks of columns of B

BX = array for blocks of rows of B

N2C = number of columns in B

NB = number of rows in B

NBX = number of rows in blocks of rows of B (NPBX)

NPB = number of columns in blocks of columns (NPBL or NLBL for last block)

NPX = NPBX or NLBX for last block of rows

1		SUBROUTINE REBLK (B,BX,NB,NBX,N2C)	RB	1
2	C	REBLOCK ARRAY B IN N.G.F. SOLUTION FROM BLOCKS OF ROWS ON TAPE14	RB	2
3	C	TO BLOCKS OF COLUMNS ON TAPE16	RB	3
4		COMPLEX B.BX	RB	4
5		COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I	RB	5
6		1CASX,NBBX,NPBX,NLBX,NBBL,NPBL,NLBL	RB	6
7		DIMENSION B(NB,1), BX(NBX,1)	RB	7
8		REWIND 16	RB	8
9		NIB=0	RB	9
0		NPB=NPBL	RB	10
1		DO 3 IB=1,NBBL	RB	11
2		IF (IB.EQ.NBBL) NPB=NLBL	RB	12
3		REWIND 14	RB	13
4		NIX=0	RB	14
5		NPX=NPBX	RB	15
6		DO 2 IBX=1,NBBX	RB	16
7		IF (IBX.EQ.NBBX) NPX=NLBX	RB	17
8		READ (14) ((BX(I,J),I=1,NPX),J=1,N2C)	RB	18
9		DO 1 I=1.NPX	RB	19
0		IX=I+NIX	RB	20
1		DO 1 J=1.NPB	RB	21
2	1	B(IX,J)=BX(I,J+NIB)	RB	22
3		NIX=NIX+NPBX	RB	23
4		WRITE (16) ((B(I,J),I=1,NB),J=1,NPB)	RB	24
5	3	NIB=NIB+NPBL	RB	25
6		REWIND 14	RB	26
7		REWIND 16	RB	27
8		RETURN	RB	28
0		END	00	20

REFLC

PURPOSE

To generate geometry data for structures having plane or cylindrical symmetry by forming symmetric images of a previously defined structure unit.

METHOD

The first part of the code, from statement RE20 to RE153, forms plane symmetric structures by reflecting segments and patches in the coordinate planes. The reflection planes are selected by the formal parameters IX, IY, and IZ. If IZ is greater than zero, an image of the existing segments and patches is formed by reflection in the x-y plane, which will be called reflection along the z axis. Next, if IY is greater than zero, an image of the existing segments and patches, including those generated in the previous step by reflection along the z axis, is formed by reflection along the y axis. Finally, if IX is greater than zero, an image of all segments and patches, including any previously formed by reflection along the z and y axes, is formed by reflection along the x axis. Any combination of zero and non-zero values of IX, IY, and IZ may be used to generate structures with one, two, or three planes of symmetry. Tag numbers of image segments are incremented by ITX from tags of the original segments, except that tags of zero are not incremented. After each reflection in a coordinate plane, ITX is doubled. Thus, if ITX is initially greater than the largest tag of the existing segments, no duplicate tags will be formed by reflection in one, two, or three planes.

The code from RE157 to RE204 forms cylindrically symmetric structures by forming images of previously defined segments and patches rotated about the z axis. The number of images, including the original structure, is selected by NOP in the formal parameters. The angle by which each image is rotated about the z axis from the previous image is computed as $2\pi/\text{NOP}$, so that the images are uniformly distributed about the z axis. Tag numbers of segments are incremented by ITX, except that tags of zero are not incremented.

When REFLC is used to form structures with either plane or cylindrical symmetry, the data in COMMON/DATA/ is set so that the program will take advantage of symmetry in filling and factoring the matrix. This is done by setting N equal to the total number of segments but leaving NP equal to the number of segments in the original structure unit that was reflected or

rotated. The symmetry flag IPSYM is also set to indicate the type of symmetry: positive values indicating plane symmetry and negative values cylindrical symmetry. These symmetry conditions may later be changed if the structure is modified in such a way that symmetry is destroyed.

SYMBOL DICTIONARY

ABS = external routine (absolute value)

COS = external routine (cosine)

CS = $\cos (2\pi/NOP)$

El = segment coordinate (temporary storage)

E2 = segment coordinate (temporary storage)

FNOP = NOP

I = DO loop index

ITAGI = segment tag (temporary storage)

ITI = segment tag increment

ITX = segment tag increment

IX = flag for reflection along x axis

IY = flag for reflection along y axis

IZ = flag for reflection along z axis

J = array location for new patch data

K = segment index and array location for old patch data

NOP = number of sections in cylindrically symmetric structure

NX = segment index and array location for new patch data

NNX = array location for old patch

SAM = $2\pi/NOP$

SIN = external routine (sine)

SS = $\sin (2\pi/NOP)$

T1X T1Y

m1.7

T1Z = x, y, z components of \hat{t}_1 and \hat{t}_2

T2Y

T2Z

XK = x coordinate of segment

X2(I) = x coordinate of end two of segment I

YK = y coordinate of segment

Y2(I) = y coordinate of end two of segment I

Z2(I) = z coordinate of end two of segment I

CONSTANTS

1.E-6 = tolerance in test for zero

1.E-5 = tolerance in test for zero

 $6.283185308 = 2\pi$

```
SUBROUTINE REFLC (IX, IY, IZ, ITX, NOP)
                                                                                    RE
2 C
                                                                                    RE
                                                                                          2
3 C
         REFLC REFLECTS PARTIAL STRUCTURE ALONG X,Y, OR Z AXES OR ROTATES
                                                                                    RE
                                                                                          3
 4
   C
         STRUCTURE TO COMPLETE A SYMMETRIC STRUCTURE.
                                                                                    RE
5 C
                                                                                    RE
         COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 RE
         1), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX( RE
8
        2300), WLAM, IPSYM
9
         COMMON /ANGL/ SALP(300)
                                                                                    RE
                                                                                          9
10
         DIMENSION T1X(1), T1Y(1), T1Z(1), T2X(1), T2Y(1), T2Z(1), X2(1), Y RE
                                                                                         10
11
         12(1), Z2(1)
                                                                                    RE
                                                                                         11
12
         EQUIVALENCE (T1X.SI), (T1Y.ALP), (T1Z.BET), (T2X.ICON1), (T2Y.ICON
                                                                                         12
13
         12), (T2Z, ITAG), (X2, SI), (Y2, ALP), (Z2, BET)
                                                                                    RE
                                                                                         13
14
                                                                                    RE
                                                                                        14
15
         MP=M
                                                                                    RE
                                                                                        15
         IPSYM=0
16
                                                                                    RE
                                                                                        16
17
          ITI=ITX
                                                                                    RE
                                                                                         17
         IF (IX.LT.0) GO TO 19
IF (NOP.EQ.0) RETURN
18
                                                                                    RE
                                                                                         18
19
                                                                                    RE
                                                                                         19
         IPSYM=1
20
                                                                                    RE
                                                                                         20
21
         IF (IZ.EQ.0) GO TO 6
                                                                                    RF
                                                                                         21
22 C
                                                                                    RE
                                                                                         22
23 C
         REFLECT ALONG Z AXIS
                                                                                    RE
                                                                                         23
24 C
                                                                                    RF
                                                                                         24
25
          IPSYM=2
                                                                                    RE
                                                                                         25
26
          IF (N.LT.N2) GO TO 3
                                                                                    RE
                                                                                         26
27
          DO 2 I=N2,N
                                                                                    RE
                                                                                         27
28
          NX=I+N-N1
                                                                                    RE
                                                                                         28
29
          E1=Z(I)
                                                                                    RE
30
          E2=Z2(I)
                                                                                    RE
                                                                                         30
31
          IF (ABS(E1)+ABS(E2).GT.1.E-5.AND.E1*E2.GE.-1.E-6) GO TO 1
                                                                                    RF
                                                                                         31
32
          PRINT 24, I
                                                                                    RE
                                                                                         32
33
          STOP
                                                                                     RE
                                                                                         33
34 1
          X(NX)=X(I)
                                                                                    RE
                                                                                         34
          Y(NX)=Y(I)
35
                                                                                     RF
                                                                                         35
          Z(NX)=-E1
36
                                                                                     RE
                                                                                         36
37
          X2(NX)=X2(I)
                                                                                     RE
                                                                                         37
38
          Y2(NX)=Y2(I)
                                                                                     RE
                                                                                         38
          Z2(NX)=-E2
39
                                                                                     RE
                                                                                         39
40
          ITAGI=ITAG(I)
                                                                                     RE
                                                                                         40
          IF (ITAGI.EQ.0) ITAG(NX)=0
41
                                                                                     RE
                                                                                         41
          IF (ITAGI.NE.O) ITAG(NX)=ITAGI+ITI
42
                                                                                     RE
                                                                                         42
43 2
          BI(NX)=BI(I)
                                                                                     RE
                                                                                         43
44
          N=N+2-N1
                                                                                     RE
                                                                                         44
45
                                                                                     RE
          ITI=ITI*2
                                                                                         45
46 3
          IF (M.LT.M2) GO TO 6
                                                                                     RE
                                                                                         46
47
          NXX=LD+1-M1
                                                                                     RE
                                                                                         47
          DO 5 I=M2,M
48
                                                                                     RE
                                                                                         48
49
          NXX=NXX-1
                                                                                     RE
                                                                                         49
50
          NX=NXX-M+M1
                                                                                     RE
                                                                                         50
51
          IF (ABS(Z(NXX)).GT.1.E-10) GO TO 4
                                                                                     RE
                                                                                         51
52
          PRINT 25, I
                                                                                     RE
                                                                                         52
53
          STOP
                                                                                     RE
                                                                                         53
54 4
          X(NX)=X(NXX)
                                                                                     RE
                                                                                         54
55
          Y(NX)=Y(NXX)
                                                                                     RE
                                                                                         55
56
          Z(NX) = -Z(NXX)
                                                                                     RE
                                                                                         56
57
          T1X(NX)=T1X(NXX)
                                                                                     RE
                                                                                         57
58
          TIY(NX)=TIY(NXX)
                                                                                     RE
                                                                                         58
59
          T1Z(NX) = -T1Z(NXX)
                                                                                     RE
                                                                                         59
          T2X(NX)=T2X(NXX)
60
                                                                                     RE
                                                                                         60
61
          T2Y(NX)=T2Y(NXX)
                                                                                     RE
                                                                                         61
                                                                                     RF
62
          T2Z(NX) = -T2Z(NXX)
                                                                                         62
          SALP(NX)=-SALP(NXX)
63
                                                                                     RE
                                                                                         63
          BI(NX)=BI(NXX)
```



```
65
          M=M*2-M1
                                                                                    RE
                                                                                         65
66 6
          IF (IY.EQ.0) GO TO 12
                                                                                    RE
                                                                                         66
67 C
                                                                                    RE
                                                                                         67
68 C
          REFLECT ALONG Y AXIS
                                                                                    RE
                                                                                         68
69 C
                                                                                    RE
                                                                                         69
70
           IF (N.LT.N2) GO TO 9
                                                                                    RE
                                                                                         70
71
          DO 8 I=N2,N
                                                                                    RE
                                                                                         71
           NX=I+N-N1
72
                                                                                    RE
                                                                                         72
73
           E1=Y(I)
                                                                                    RE
                                                                                        73
74
           E2=Y2(I)
                                                                                    RE
                                                                                         74
75
           IF (ABS(E1)+ABS(E2).GT.1.E-5.AND.E1*E2.GE.-1.E-6) GO TO 7
                                                                                    RE
                                                                                         75
          PRINT 24, I
76
                                                                                    RE
                                                                                         76
77
           STOP
                                                                                    RE
                                                                                         77
78 7
          X(NX)=X(I)
                                                                                    RE
                                                                                         78
79
           Y(NX)=-E1
                                                                                    RE
                                                                                         79
           Z(NX)=Z(I)
80
                                                                                    RE
                                                                                         80
           X2(NX)=X2(I)
81
                                                                                    RE
                                                                                         81
82
           Y2(NX)=-E2
                                                                                    RE
                                                                                         82
          Z2(NX)=Z2(I)
83
                                                                                    RE
                                                                                         83
84
           ITAGI=ITAG(I)
                                                                                    RE
                                                                                         84
85
           IF (ITAGI.EQ.O) ITAG(NX)=0
                                                                                    RE
                                                                                         85
86
           IF (ITAGI.NE.O) ITAG(NX)=ITAGI+ITI
                                                                                    RE
                                                                                         86
87 8
           BI(NX)=BI(I)
                                                                                    RF
                                                                                         87
           N=N+2-N1
88
                                                                                    RE
                                                                                         88
89
           ITI=ITI*2
                                                                                    RE
                                                                                         89
           IF (M.LT.M2) GO TO 12
90 9
                                                                                    RE
                                                                                         90
91
           NXX=LD+1-M1
                                                                                    RE
                                                                                         91
92
           DO 11 I=M2,M
                                                                                    RE
                                                                                         92
93
           NXX=NXX-1
                                                                                    RE
                                                                                         93
 94
           NX=NXX-M+M1
                                                                                    RE
                                                                                         94
95
           IF (ABS(Y(NXX)).GT.1.E-10) GO TO 10
                                                                                    RE
                                                                                         95
          PRINT 25, I
96
                                                                                    RE
                                                                                         96
97
           STOP
                                                                                    RE
                                                                                         97
98 10
           X(NX)=X(NXX)
                                                                                    RE
                                                                                         98
99
           Y(NX) = -Y(NXX)
                                                                                    RE
                                                                                        99
100
           Z(NX)=Z(NXX)
                                                                                    RE 100
101
           T1X(NX)=T1X(NXX)
                                                                                    RE 101
           T1Y(NX) = -T1Y(NXX)
102
                                                                                    RE
                                                                                       102
103
           T1Z(NX)=T1Z(NXX)
                                                                                    RE
                                                                                        103
104
           T2X(NX)=T2X(NXX)
                                                                                    RE 104
105
           T2Y(NX)=-T2Y(NXX)
                                                                                    RE 105
          T2Z(NX)=T2Z(NXX)
106
                                                                                    RE 106
           SALP(NX)=-SALP(NXX)
107
                                                                                    RE 107
           BI(NX)=BI(NXX)
108 11
                                                                                    RE 108
           M=M+2-M1
109
                                                                                    RE 109
110 12
           IF (IX.EQ.0) GO TO 18
                                                                                    RE 110
111 C
                                                                                    RE 111
           REFLECT ALONG X AXIS
112 C
                                                                                    RE 112
113 C
                                                                                    RE 113
114
           IF (N.LT.N2) GO TO 15
                                                                                    RE 114
115
           DO 14 I=N2.N
                                                                                    RE 115
116
           NX=I+N-N1
                                                                                    RE
                                                                                       116
117
           E1=X(I)
                                                                                    RE 117
118
           E2=X2(I)
                                                                                    RE 118
119
           IF (ABS(E1)+ABS(E2).GT.1.E-5.AND.E1*E2.GE.-1.E-6) GO TO 13
                                                                                    RE 119
120
           PRINT 24, I
                                                                                    RE 120
121
           STOP
                                                                                    RE 121
122 13
           X(NX)=-E1
                                                                                    RE 122
123
           Y(NX)=Y(I)
                                                                                    RE 123
124
           Z(NX)=Z(I)
                                                                                    RE 124
125
           X2(NX)=-E2
                                                                                    RE 125
126
           Y2(NX)=Y2(I)
                                                                                    RE 126
127
           Z2(NX)=Z2(I)
                                                                                    RE 127
128
           ITAGI=ITAG(I)
                                                                                    RE 128
```

REFLC

129	IF (ITAGI.EQ.0) ITAG(NX)=0	RE 129
130	IF (ITAGI.NE.O) ITAG(NX)=ITAGI+ITI	RE 130
131 14	8I(NX)=8I(1)	RE 131
132	N=N*2-N1	RE 132
133 15	IF (M.LT.M2) GO TO 18	RE 133
134	NXX=LD+1-M1	RE 134
135	DO 17 I=M2,M	RE 135
136	NXX=NXX-1	RE 136
137	NX=NXX-M+M1	RE 137
138	IF (ABS(X(NXX)).GT.1.E-10) GO TO 16	RE 138
139	PRINT 25, I	RE 139
140	STOP	RE 140
	HE 및 프린터 CONTROL CONT	
141 16	X(NX) = X(NXX)	RE 141
142	Y(NX)=Y(NXX)	RE 142
143	Z(NX)=Z(NXX)	RE 143
144	T1X(NX) = -T1X(NXX)	RE 144
145	T1Y(NX)=T1Y(NXX)	RE 145
146	T1Z(NX)=T1Z(NXX)	RE 146
147	T2X(NX) = -T2X(NXX)	RE 147
148	T2Y(NX)=T2Y(NXX)	RE 148
149	T2Z(NX)=T2Z(NXX)	RE 149
150 -	SALP(NX)=-SALP(NXX)	RE 150
151 17	BI(NX)=BI(NXX)	RE 151
152	M=M*2-M1	RE 152
153 18	RETURN	RE 153
154 C		RE 154
155 C	REPRODUCE STRUCTURE WITH ROTATION TO FORM CYLINDRICAL STRUCTURE	RE 155
156 C		RE 156
157 19	FNOP=NOP	RE 157
158	IPSYM=-1	RE 158
159	SAM=6.283185308/FNOP	RE 159
160	CS=COS(SAM)	RE 160
161	SS=SIN(SAM)	RE 161
162	IF (N.LT.N2) GO TO 21	RE 162
163	N=N1+(N-N1)*NOP	RE 163
		RE 164
164	NX=NP+1	
165	DO 20 I=NX,N	RE 165
166	K=I-NP+N1	RE 166
167	XK=X(K)	RE 167
168	YK=Y(K)	RE 168
169	X(I)=XK*CS-YK*SS	RE 169
170	Y(I)=XK*SS+YK*CS	RE 170
171	Z(I)=Z(K)	RE 171
172	XK=X2(K)	RE 172
173	YK=Y2(K)	RE 173
174	X2(I)=XK*CS-YK*SS	RE 174
175	Y2(I)=XK*SS+YK*CS	RE 175
176	Z2(I)=Z2(K)	RE 176
177	ITAGI=ITAG(K)	RE 177
178	IF (ITAGI.EQ.0) ITAG(I)=0	RE 178
179	IF (ITAGI.NE.O) ITAG(I)=ITAGI+ITI	RE 179
180 20	BI(I)=BI(K)	RE 180
181 21	IF (M.LT.M2) GO TO 23	RE 181
182	M=M1+(M-M1)*NOP	RE 182
183	NX=MP+1	RE 183
184	K=LD+1-M1	RE 184
185	DO 22 I=NX,M	RE 185
186	K=K-1	RE 186
187	J=K-MP+M1	RE 187
188	XK=X(K)	RE 188
189	YK=Y(K)	RE 189
190	X(J)=XK*CS-YK*SS	RE 190
		RE 191
191	Y(J)=XK*SS+YK*CS	RE 192
192	Z(J)=Z(K)	KE 192

193		XK=T1X(K)	RE	193
194		YK=T1Y(K)	91.7	194
195		T1X(J)=XK*CS-YK*SS	RE	195
196		T1Y(J)=XK*SS+YK*CS	RE	196
197		T1Z(J)=T1Z(K)	RE	197
198		XK=T2X(K)	RE	198
199		YK=T2Y(K)	RE	199
200		T2X(J)=XK*CS-YK*SS	RE	200
201		T2Y(J)=XK*SS+YK*CS	RE	201
202		T2Z(J)=T2Z(K)	RE	202
203		SALP(J)=SALP(K)	RE	203
204	22	BI(J)=BI(K)	RE	204
205	23	RETURN	RE	205
206	C		RE	206
207	24	FORMAT (29H GEOMETRY DATA ERROR-SEGMENT, 15, 26H LIES IN PLANE OF S	RE	207
208		1YMMETRY)		208
209	25	FORMAT (27H GEOMETRY DATA ERROR-PATCH, 14, 26H LIES IN PLANE OF SYM	RE	209
210		1METRY)	RE	210
211		END 19 19 19 19 19 19 19 19 19 19 19 19 19	RE	211-

ROM2

PURPOSE

To numerically integrate over the current distribution on a segment to obtain the field due to the Sommerfeld integral term.

METHOD

ROM2 integrates the product of $\tilde{E}_s(r)$ (see discussion of EFLD) and the current over a segment. Separate integrals are evaluated for current distributions of constant, $\sin k(s-s_0)$ and $\cos k(s-s_0)$. With three vector components of the field, there are nine integrals evaluated simultaneously and stored in the array SUM. The integration method is the same as that described for subroutine INTX, but loops from one through nine are used at each step.

The parameter DMIN is set in EFLD to

DMIN = 0.01
$$[iE_x^{'}i^2 + iE_y^{'}i^2 + iE_z^{'}i^2]^{1/2}$$

where
$$\bar{E}' = \int_{\text{segment}} \left[\bar{E}_{D}(\bar{r}) + \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \bar{E}_{I}(\bar{r}) \right] ds$$
.

DMIN is passed to TEST as the lower limit for the denominator in the relative error evaluation to avoid trying to maintain relative accuracy in integrating the Sommerfeld integral when it is much smaller than the other terms.

SYMBOL DICTIONARY

= lower limit of integral = upper limit of integral

DMIN = minimum for denominator in relative
error test

DZ = subinterval size

DZOT = 0.5 DZ

EP = tolerance for hitting upper limit

G1, G2, G3, G4, G5	= integrand values at points within the
	subinterval
N	= number of functions (9)
NM	= minimum subinterval size is (B - A)/NM
NS	= present subinterval size is (B - A)/NS
NT	= counter to control increasing
	subinterval size
NTS	= larger values retard increasing
	subinterval size
NX	= maximum subinterval size is (B - A)/NX
RX	= relative error limit
S	= B - A
SUM	= array for integral values
T00, T01, T02, T10, T11, T20	= (see subroutine INTX)
TMAG1, TMAG2	= sum of the magnitudes of the integral
	contributions for the constant current
	distribution
Z	= integration variable at left side of
	subinterval .
ZE	= B
ZEND	= upper limit

CONSTANTS

1.E-4 = relative error criterion

65536 = limit for cutting subinterval size

```
SUBROUTINE ROM2 (A, B, SUM, DMIN)
                                                                                    RO
                                                                                         1
2 C
                                                                                    RO
                                                                                         2
3 C
         FOR THE SOMMERFELD GROUND OPTION, ROM2 INTEGRATES OVER THE SOURCE
                                                                                    RO
                                                                                         3
 4 C
         SEGMENT TO OBTAIN THE TOTAL FIELD DUE TO GROUND. THE METHOD OF
                                                                                    RO
5 C
         VARIABLE INTERVAL WIDTH ROMBERG INTEGRATION IS USED. THERE ARE 9
                                                                                    RO
6 C
         FIELD COMPONENTS - THE X, Y, AND Z COMPONENTS DUE TO CONSTANT.
                                                                                    RO
                                                                                         6
7
   C
         SINE, AND COSINE CURRENT DISTRIBUTIONS.
                                                                                    RO
                                                                                         7
8
   C
                                                                                    RO
                                                                                         8
9
         COMPLEX SUM, G1, G2, G3, G4, G5, T00, T01, T10, T02, T11, T20
                                                                                    RO
                                                                                         9
10
         DIMENSION SUM(9), G1(9), G2(9), G3(9), G4(9), G5(9), T01(9), T10(9 RO
                                                                                        10
        1), T20(9)
11
                                                                                   RO
                                                                                        11
         DATA NM, NTS, NX, N/65536, 4, 1, 9/, RX/1.E-4/
12
                                                                                    RO
                                                                                        12
13
         Z=A
                                                                                   RO
                                                                                        13
14
         ZE=B
                                                                                   RO
                                                                                        14
15
         S=B-A
                                                                                    RO
                                                                                        15
         IF (S.GE.O.) GO TO 1
16
                                                                                   RO
                                                                                        16
         PRINT 18
17
                                                                                   RO
                                                                                        17
18
         STOP
                                                                                   RO
                                                                                        18
19 1
         EP=S/(1.E4*NM)
                                                                                    RO
                                                                                        19
         ZEND=ZE-EP
20
                                                                                   RO
                                                                                        20
21
         DO 2 I=1,N
                                                                                   RO
                                                                                        21
22 2
         SUM(I)=(0.,0.)
                                                                                   RO
                                                                                        22
23
         NS=NX
                                                                                   RO
                                                                                        23
24
         NT=0
                                                                                   RO
                                                                                        24
25
         CALL SFLDS (Z,G1)
                                                                                   RO
                                                                                        25
26 3
         DZ=S/NS
                                                                                    RO
                                                                                       26
         IF (Z+DZ.LE.ZÉ) GO TO 4
27
                                                                                   RO
                                                                                        27
28
         DZ=ZE-Z
                                                                                   RO
                                                                                        28
29
         IF (DZ.LE.EP) GO TO 17
                                                                                    RO
                                                                                        29
30 4
         DZOT=DZ*.5
                                                                                    RO
                                                                                        30
         CALL SFLDS (Z+DZOT,G3)
31
                                                                                    RO
                                                                                        31
32
         CALL SFLDS (Z+DZ,G5)
                                                                                    RO
                                                                                        32
33 5
          TMAG1=0.
                                                                                    RO
                                                                                        33
34
          TMAG2=0.
                                                                                    RO
                                                                                        34
35 C
                                                                                    RO
                                                                                        35
36 C
         EVALUATE 3 POINT ROMBERG RESULT AND TEST CONVERGENCE.
                                                                                    RO
                                                                                        36
37
   C
                                                                                    RO
                                                                                        37
          DO 6 I=1,N
38
                                                                                    RO
                                                                                        38
39
          TOO=(G1(I)+G5(I))*DZOT
                                                                                    RO
                                                                                        39
          TO1(I)=(TOO+DZ*G3(I))*.5
40
                                                                                    RO
                                                                                        40
41
          T10(I)=(4.*T01(I)-T00)/3.
                                                                                    RO
                                                                                        41
42
          IF (I.GT.3) GO TO 6
                                                                                    RO
                                                                                        42
43
          TR=REAL(TO1(I))
                                                                                    RO
                                                                                        43
44
          TI=AIMAG(TO1(I))
                                                                                    RO
                                                                                        44
45
          TMAG1=TMAG1+TR*TR+TI*TI
                                                                                    RO
                                                                                        45
                                                                                    RO
46
          TR=REAL(T10(I))
                                                                                        46
47
          TI=AIMAG(T10(I))
                                                                                    RO
                                                                                        47
48
          TMAG2=TMAG2+TR*TR+TI*TI
                                                                                    RO
                                                                                        48
          CONTINUE
                                                                                    RO
49 6
                                                                                        49
50
          TMAG1=SQRT(TMAG1)
                                                                                    RO
                                                                                        50
51
          TMAG2=SQRT(TMAG2)
                                                                                    RO
                                                                                        51
          CALL TEST(TMAG1, TMAG2, TR, O., O., TI, DMIN)
                                                                                    RO
52
                                                                                        52
          IF(TR.GT.RX)GO TO 8
                                                                                    RO
                                                                                        53
53
          DO 7 I=1.N
                                                                                    RO
54
                                                                                        54
55 7
          SUM(I)=SUM(I)+T10(I)
                                                                                    RO
                                                                                        55
                                                                                    RO
          NT=NT+2
                                                                                        56
56
                                                                                    RO
57
          GO TO 12
                                                                                        57
          CALL SFLDS (Z+DZ*.25,G2)
58 8
                                                                                    RO
                                                                                        58
          CALL SFLDS (Z+DZ*.75,G4)
                                                                                    RO
                                                                                        59
59
60
          TMAG1=0.
                                                                                    RO
                                                                                        60
61
          TMAG2=0.
                                                                                    RO
                                                                                        61
                                                                                    RO
62 C
                                                                                        62
          EVALUATE 5 POINT ROMBERG RESULT AND TEST CONVERGENCE.
                                                                                    RO
63 C
                                                                                        63
64 C
                                                                                    RO
                                                                                        64
```

50000 B 500000 B 50000

TO SECURE CONTRACT CONTRACTOR OF THE CONTRACT CONTRACTOR OF THE CO

```
DO 9 I=1.N
65
                                                                                   RO
                                                                                        65
          TO2=(TO1(I)+DZOT*(G2(I)+G4(I)))*.5
66
                                                                                    RO
                                                                                        66
67
          T11=(4.*T02-T01(I))/3.
                                                                                   RO
                                                                                        67
          T20(I)=(16.*T11-T10(I))/15.
68
                                                                                   RO
                                                                                        68
69
          IF (I.GT.3) GO TO 9
                                                                                   RO
                                                                                        69
70
          TR=REAL(T11)
                                                                                   RO
                                                                                        70
71
          TI=AIMAG(T11)
                                                                                   RO
                                                                                       71
72
          TMAG1=TMAG1+TR+TI+TI
                                                                                   RO
                                                                                        72
73
          TR=REAL(T20(I))
                                                                                   RO
                                                                                        73
74
          TI=AIMAG(T20(I))
                                                                                   RO
                                                                                        74
75
          TMAG2=TMAG2+TR+TI+TI
                                                                                        75
                                                                                   RO
          CONTINUE
76 9
                                                                                   RO
                                                                                        76
77
          TMAG1=SQRT(TMAG1)
                                                                                    RO
                                                                                        77
78
          TMAG2=SQRT(TMAG2)
                                                                                    RO
                                                                                        78
79
          CALL TEST(TMAG1, TMAG2, TR, 0., 0., TI, DMIN)
                                                                                    RO
                                                                                        79
          IF(TR.GT.RX)GO TO 14
80
                                                                                    RO
                                                                                        80
          DO 11 I=1,N
81 10
                                                                                    RO
                                                                                        81
          SUM(I)=SUM(I)+T20(I)
82 11
                                                                                    RO
                                                                                        82
83
          NT=NT+1
                                                                                    RO
                                                                                        83
84 12
          Z=Z+DZ
                                                                                    RO
                                                                                        84
85
          IF (Z.GT.ZEND) GO TO 17
                                                                                    RO
                                                                                        85
86
          DO 13 I=1.N
                                                                                    RO
                                                                                        86
87 13
          G1(I)=G5(I)
                                                                                        87
                                                                                    RO
88
          IF (NT.LT.NTS.OR.NS.LE.NX) GO TO 3
                                                                                    RO
                                                                                        88
89
          NS=NS/2
                                                                                    RO
                                                                                        89
90
          NT=1
                                                                                    RO
                                                                                        90
91
          GO TO 3
                                                                                    RO
                                                                                        91
92 14
          NT=0
                                                                                    RO
                                                                                        92
93
          IF (NS.LT.NM) GO TO 15
                                                                                    RO
                                                                                       93
94
          PRINT 19, Z
                                                                                    RO
                                                                                        94
          GO TO 10
95
                                                                                    RO
                                                                                        95
96 15
          NS=NS+2
                                                                                    RO
                                                                                        96
97
          DZ=S/NS
                                                                                    RO
                                                                                       97
98
          DZOT=DZ*.5
                                                                                    RO
                                                                                       98
99
          DO 16 I=1,N
                                                                                    RO
                                                                                       99
100
          G5(I)=G3(I)
                                                                                    RO 100
          G3(I)=G2(I)
101 16
                                                                                    RO 101
          GO TO 5
102
                                                                                    RO 102
          CONTINUE
103 17
                                                                                    RO 103
104
          RETURN
                                                                                    RO 104
105 C
                                                                                    RO 105
106 18
          FORMAT (30H ERROR - B LESS THAN A IN ROM2)
                                                                                    RO 106
          FORMAT (33H ROM2 -- STEP SIZE LIMITED AT Z =, E12.5)
107 19
                                                                                    RO 107
108
                                                                                    RO 108-
```

SBF

PURPOSE

To evaluate the current expansion function associated with a given segment, returning only that portion on a particular segment.

METHOD

SBF is very similar to routine TBF. Both routines evaluate the current expansion functions. However, while TBF stores the coefficients for each segment on which a given expansion function is non-zero, SBF returns the coefficients for only a single specified segment.

In the call to SBF, I is the segment on which the expansion function is centered. IS is the segment for which the function coefficients A_j , B_j and C_i are requested. These coefficients are returned in AA, BB, CC, respectively.

Refer to TBF for a discussion of the coding and variables. One additional variable in SBF -- JUNE -- is set to -1 or +1 if segment IS is found connected to end 1 or end 2, respectively, of segment I. If I = IS and segment I is not connected to a surface or ground plane, then JUNE is set to 0.

```
SUBROUTINE SBF (I, IS, AA, BB, CC)
                                                                                      SB
 2
          COMPUTE COMPONENT OF BASIS FUNCTION I ON SEGMENT IS.
          COMMON /DATA/ LD.N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300 SB
 3
         1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX( SB
         2300), WLAM, IPSYM
                                                                                      SB
          DATA PI/3.141592654/, JMAX/30/
                                                                                      SB
 7
          AA=O.
                                                                                      SB
                                                                                            7
 8
          BB=0.
                                                                                      SB
                                                                                            8
 9
          CC=0.
                                                                                      SB
          JUNE=0
10
                                                                                      SB
                                                                                           10
11
          JSN0=0
                                                                                      SB
                                                                                           11
12
          PP=0.
                                                                                      SB
                                                                                           12
          JCOX=ICON1(I)
13
                                                                                      SB
                                                                                           13
          IF (JCOX.GT.10000) JCOX=I
                                                                                      SB
14
                                                                                           14
          JEND=-1
                                                                                      SB
                                                                                           15
15
          IEND=-1
16
                                                                                      SB
                                                                                           16
17
          SIG=-1.
                                                                                      SB
                                                                                           17
                                                                                      SB
18
          IF (JCOX) 1,11,2
                                                                                           18
          JCOX=-JCOX
19 1
                                                                                      SB
                                                                                           19
20
          GO TO 3
                                                                                       SB
                                                                                           20
21 2
          SIG=-SIG
                                                                                      SB
                                                                                           21
          JEND=-JEND
                                                                                      SB
                                                                                           22
22
          JSN0=JSN0+1
23 3
                                                                                      SB
                                                                                           23
          IF (JSNO.GE.JMAX) GO TO 24
24
                                                                                       SB
                                                                                           24
25
          D=PI*SI(JCOX)
                                                                                      SB
                                                                                           25
26
          SDH=SIN(D)
                                                                                       SB
                                                                                           26
27
          CDH=COS(D)
                                                                                       SB
                                                                                           27
          SD=2. *SDH*CDH
28
                                                                                       SB
                                                                                           28
          IF (D.GT.0.015) GO TO 4
                                                                                       SB
29
                                                                                           29
30
          OMC=4. *D*D
                                                                                       SB
          OMC=((1.3888889E-3*OMC-4.166666667E-2)*OMC+.5)*OMC
31
                                                                                       SB
                                                                                           31
          GO TO 5
                                                                                       SB
32
                                                                                           32
33 4
          OMC=1 .-CDH+CDH+SDH+SDH
                                                                                       SB
                                                                                           33
34 5
          AJ=1./(ALOG(1./(PI*BI(JCOX)))-.577215664)
                                                                                       SB
                                                                                           34
35
          PP=PP-OMC/SD*AJ
                                                                                       SR
                                                                                           35
          IF (JCOX.NE.IS) GO TO 6
36
                                                                                       SB
                                                                                           36
37
          AA=AJ/SD*SIG
                                                                                           37
                                                                                       SB
38
          BB=AJ/(2.*CDH)
                                                                                       SB
                                                                                           38
          CC=-AJ/(2. *SDH) *SIG
39
                                                                                       SB
                                                                                           39
40
          JUNE=IEND
                                                                                       SB
                                                                                           40
          IF (JCOX.EQ.I) GO TO 9 IF (JEND.EQ.1) GO TO 7
41 6
                                                                                       SB
                                                                                           41
42
                                                                                       SB
                                                                                           42
43
          JCOX=ICON1 (JCOX)
                                                                                       SB
                                                                                           43
44
          GO TO 8
                                                                                       SB
                                                                                           44
          JCOX=ICON2(JCOX)
45 7
                                                                                       SB
                                                                                           45
46 8
          IF (IABS(JCOX).EQ.I) GO TO 10
                                                                                       SB
                                                                                           46
          IF (JCOX) 1,24,2
IF (JCOX.EQ.IS) BB=-BB
47
                                                                                       SB
                                                                                           47
48 9
                                                                                       SB
                                                                                           48
          IF (IEND.EQ.1) GO TO 12
49 10
                                                                                       SR
                                                                                           49
50 11
          PM=-PP
                                                                                       SB
                                                                                           50
          PP=0. .
51
                                                                                       SB
                                                                                           51
52
          NJUN1=JSNO
                                                                                       SB
                                                                                           52
53
          JCOX=ICON2(I)
                                                                                       SB
                                                                                           53
54
          IF (JCOX.GT.10000) JCOX=I
                                                                                       SB
                                                                                           54
55
           JEND=1
                                                                                       SB
                                                                                           55
56
          IEND=1
                                                                                       SB
                                                                                           56
57
          SIG=-1.
                                                                                       SB
                                                                                           57
58
          IF (JCOX) 1,12,2
                                                                                       SB
                                                                                           58
59 12
                                                                                       SB
          NJUN2=JSNO-NJUN1
                                                                                           59
          D=PI*SI(I)
60
                                                                                       SB
                                                                                           60
61
          SDH=SIN(D)
                                                                                       SB
                                                                                           61
62
          CDH=COS(D)
                                                                                       SB
                                                                                           62
          SD=2. *SDH*CDH
63
                                                                                       SB
                                                                                           63
          CD=CDH+CDH-SDH+SDH
                                                                                       SB
```

```
65
          IF (D.GT.O.015) GO TO 13
                                                                                     SB
                                                                                         65
          OMC=4. *D*D
66
                                                                                     SB
                                                                                         66
67
          OMC=((1.3888889E-3*OMC-4.166666667E-2)*OMC+.5)*OMC
                                                                                         67
                                                                                     SB
68
          GO TO 14
                                                                                     SB
                                                                                         68
69 13
          OMC=1 .-CD
                                                                                     SB
                                                                                         69
70
          AP=1./(ALOG(1./(PI*BI(I)))-.577215664)
                                                                                     SB
                                                                                         70
71
          AJ=AP
                                                                                    SB
                                                                                         71
72
          IF (NJUN1.EQ.0) GO TO 19
                                                                                     SB
                                                                                         72
          IF (NJUN2.EQ.0) GO TO 21
73
                                                                                     SB
                                                                                         73
          QP=SD*(PM*PP+AJ*AP)+CD*(PM*AP-PP*AJ)
74
                                                                                         74
                                                                                    SB
75
          QM=(AP*OMC-PP*SD)/QP
                                                                                         75
                                                                                    SB
          QP=-(AJ*OMC+PM*SD)/QP
76
                                                                                    SB
                                                                                         76
          IF (JUNE) 15,18,16
77
                                                                                     SB
                                                                                         77
78
          AA=AA *QM
                                                                                    SR
                                                                                         78
          BB=BB*QM
79
                                                                                    SB
                                                                                         79
          CC=CC*QM
80
                                                                                         80
                                                                                     SB
81
          GO TO 17
                                                                                     SB
                                                                                         81
82 16
          AA=-AA*QP
                                                                                     SB
                                                                                         82
          BB=BB*QP
83
                                                                                     SB
                                                                                         83
          CC=-CC*QP
84
                                                                                     SB
                                                                                         84
85 17
          IF (I.NE.IS) RETURN
                                                                                    SB
                                                                                         85
 86
          AA=AA-1.
    18
                                                                                     SB
                                                                                         86
          BB=BB+(AJ*QM+AP*QP)*SDH/SD
87
                                                                                     SB
                                                                                         87
88
          CC=CC+(AJ+QM-AP+QP)+CDH/SD
                                                                                     SB
                                                                                         88
89
                                                                                         89
                                                                                     SB
90
    19
          IF (NJUN2.EQ.0) GO TO 23
                                                                                     SB
                                                                                         90
          QP=PI*BI(I)
91
                                                                                     SB
                                                                                         91
 92
          XXI=QP*QP
                                                                                     SB
                                                                                         92
          XXI=QP*(1.-.5*XXI)/(1.-XXI)
93
                                                                                     SB
                                                                                         93
          QP=-(OMC+XXI*SD)/(SD*(AP+XXI*PP)+CD*(XXI*AP-PP))
94
                                                                                     SB
                                                                                         94
95
          IF (JUNE.NE.1) GO TO 20
                                                                                     SB
                                                                                         95
96
          AA=-AA*QP
                                                                                         96
                                                                                     SR
 97
          BB=88*QP
                                                                                     SB
                                                                                         97
98
          CC=-CC*QP
                                                                                     SB
                                                                                         98
99
          IF (I.NE.IS) RETURN
                                                                                    SB
                                                                                         99
100 20
          AA=AA-1.
                                                                                     SB 100
          D=CD-XXI*SD
101
                                                                                     SB
                                                                                        101
          BB=BB+(SDH+AP*QP*(CDH-XXI*SDH))/D
102
                                                                                     SB 102
103
          CC=CC+(CDH+AP*QP*(SDH+XXI*CDH))/D
                                                                                     SB 103
104
          RETURN
                                                                                     SB 104
          QM=PI*BI(I)
105 21
                                                                                     SB 105
106
          XXI=QM*QM
                                                                                     SB 106
107
          XXI=QM^{\bullet}(1.-.5^{\bullet}XXI)/(1.-XXI)
                                                                                     SB 107
          QM=(OMC+XXI*SD)/(SD*(AJ-XXI*PM)+CD*(PM+XXI*AJ))
108
                                                                                     SB
                                                                                        108
109
          IF (JUNE.NE.-1) GO TO 22
                                                                                     SB 109
110
          AA=AA OM
                                                                                     SR 110
          BB=BB*QM
111
                                                                                     SB 111
          CC=CC*QM
112
                                                                                     SB 112
113
          IF (I.NE.IS) RETURN
                                                                                     SB 113
114 22
           AA=AA-1.
                                                                                     SB 114
115
           D=CD-XXI*SD
                                                                                     SB
                                                                                        115
           BB=BB+(AJ*QM*(CDH-XXI*SDH)-SDH)/D
116
                                                                                     SB 116
           CC=CC+(CDH-AJ*QM*(SDH+XXI*CDH))/D
117
                                                                                     SB 117
118
           RETURN
                                                                                     SB 118
119 23
           AA=-1 .
                                                                                     SB 119
           QP=PI*BI(I)
120
                                                                                     SB 120
121
           XXI=QP • QP
                                                                                     SB 121
122
           XXI=QP*(1.-.5*XXI)/(1.-XXI)
                                                                                     SB 122
           CC=1./(CDH-XXI*SDH)
123
                                                                                     SB 123
124
           RETURN
                                                                                     SB 124
125 24
           PRINT 25. I
                                                                                     SB 125
           STOP
126
                                                                                     SB 126
127 C
                                                                                     SB 127
128 25
           FORMAT (43H SBF - SEGMENT CONNECTION ERROR FOR SEGMENT, 15)
                                                                                     SB 128
```

55.53 **ESS 25.53**

129 END

SB 129-

SECOND

SECOND

PURPOSE

To obtain the time in seconds

METHOD

This subroutine acts as an interface of the computer system's time function and the NEC program. The system time function is called, the number is converted to seconds, and returned to the NEC program through the argument of subroutine SECOND. On CDC 6000 series computers, the system time function is SECOND and is called by the NEC program. This subroutine is, therefore, omitted on CDC 6000 computers.

CODE LISTING

SUBROUTINE SECOND (T)

SE

Call system time function and set T equal to time in seconds.

9 RETURN

E 9

10 END

SE 10-

SFLDS

PURPOSE

To evaluate the Sommerfeld-integral field components due to an infinitesimal current element on a segment.

METHOD

The coordinates of the segment are stored in COMMON/DATAJ/. The current element, at a distance T from the center of the segment is located at (XT, YT, ZT). From SL16 to SL42 the ρ , ϕ and z coordinates of the field evaluation point (X0, Y0, Z0) are computed in a coordinate system with the z axis passing through the current element and ϕ = 0 in the direction of the segment reference direction projected on the x,y plane. R2 is as shown in Figure 6 (page 160) and is the same as R1 in Section IV of Part I.

The Sommerfeld-integral field is computed from SL85 to SL111 by giving R2 and θ^{\prime} , with

$$\theta' = \tan^{-1} \left(\frac{z + z'}{\rho} \right) ,$$

to subroutine INTRP. INTRP returns the quantities in equations 156 through 159 of Part I as

$$ERV = I_{\rho}^{V}$$

$$EZV = I_{Z}^{V}$$

$$ERH = I_{\rho}^{H}$$

$$EPH = I_{\Phi}^{H}$$

These quantities are then multiplied by $\exp(-jkR_2)/R_2$. The components for a horizontal current element are multiplied by the appropriate factors of $\sin \phi$ or $\cos \phi$ and combined with the components for a vertical current element according to the elevation angle of the segment. Thus lines SL94 to SL96 are the ρ , z and ϕ components of the field of the current element. These are converted to x, y and z components and stored in E(1), E(2) and

E(3). They are also multiplied by sin(kT) and cos(kT) for the sine and cosine current distributions and stored in other elements of E.

when the separation of the source segment and observation point is large enough that the Norton approximation is used for the field, the code from SL49 to SL80 is executed. In this case SFLDS is called directly by EFLD, with T equal to zero, and returns an approximation to the field of the whole segment. The current is lumped at the center for a point source approximation.

GWAVE computes the total field including direct field and the asymptotic approximation of the field due to ground. Since EFLD has already computed

$$\vec{E}_{D}(\vec{r}) + \frac{k_{1}^{2} - k_{2}^{2}}{k_{1}^{2} + k_{2}^{2}} \vec{E}_{I}(\vec{r})$$

these terms must be removed from the field computed by GWAVE. The direct field \overline{E}_D is set to zero by setting XX1 to zero before calling GWAVE. The second term is substracted from the field returned by GWAVE from SL59 to SL63. The field components of a vertical (V) and horizontal (H) current element in the direction ϕ = 0 at the image point are

$$\begin{split} & \mathbf{E}_{\rho}^{V} = (\mathbf{E}_{\mathbf{R}} + \mathbf{E}_{\mathbf{T}}) \sin \theta \cos \theta \\ & \mathbf{E}_{\mathbf{Z}}^{V} = \mathbf{E}_{\mathbf{R}} \cos^{2} \theta - \mathbf{E}_{\mathbf{T}} \sin^{2} \theta \\ & \mathbf{E}_{\rho}^{H} = (\mathbf{E}_{\mathbf{R}} \sin^{2} \theta - \mathbf{E}_{\mathbf{T}} \cos^{2} \theta) \cos \phi \\ & \mathbf{E}_{\mathbf{Z}}^{H} = (\mathbf{E}_{\mathbf{R}} + \mathbf{E}_{\mathbf{T}}) \sin \theta \cos \theta \cos \phi \\ & \mathbf{E}_{\phi}^{H} = \mathbf{E}_{\mathbf{T}} \sin \phi \end{split}$$

where

$$E_{R} = \frac{-j\eta}{4\pi^{2}} \frac{\exp(-jkR_{2})}{(R_{2}/\lambda)^{3}} (1 + jkR_{2})$$

$$E_{T} = \frac{-j\eta}{8\pi^{2}} \frac{\exp(-jkR_{2})}{(R_{2}/\lambda)^{3}} (1 - k^{2}R_{2}^{2} + jkR_{2})$$

$$\cos \theta = (z + z')/R_{2}$$

$$\sin \theta = \rho/R_{2}$$

and current moment, $I\ell/\lambda^2 = 1$.

The sin ϕ and cos ϕ factors are omitted to match the quantities returned by GWAVE. Also, the fields of the horizontal current are reversed since the image of the source is in the direction ϕ = 180 degrees. These quantities are multiplied by FRATI and subtracted from the fields returned by GWAVE.

The total field, in x, y and z components, is stored from SL70 to SL72. S is the length of the segment in wavelengths. Hence it is $I\ell/\lambda^2$ when $I/\lambda = 1$. The current moment for a sine distribution is zero and for a cosine distribution is $\sin(\pi S)/\pi$.

SYMBOL DICTIONARY

CPH = cos
$$\phi$$

E = array for returning field components

EPH = E_{ϕ}^{H} or I_{ϕ}^{H}

ER = E_{R}

ERH = E_{ρ}^{H} or I_{ρ}^{H}

ERV = E_{ρ}^{V} or I_{ρ}^{V}

ET = E_{T}^{H}

EZH = E_{Z}^{H} or I_{Z}^{H}

EZV = E_{Z}^{V} or I_{Z}^{V}

FRATI = $(k_{1}^{2} - k_{2}^{2})/(k_{1}^{2} + k_{2}^{2})$

HRH = E_{ρ}^{H} for image of source current element

SFLDS

 $HRV = E_O^V$

 $HZV = H_2^V$

PHX = x component of \$\phi\$

PHY = y component of o

PI = π

POT = $\pi/2$

R1 = direct distance to source (set to arbitrary value)

R2 = distance to image

 $R2S = (R2)^2$

RHØ = ρ RHS = ρ^2

RHX = x component of ρ RHY = y component of ρ

RK = kR₂

SFAC = value of current or current moment

SPH = sin ϕ

T = distance from center of segment to current element

THET = θ' TP = 2π

XT, YT, ZT = coordinates of current element

 $ZPHS = (z + z')^2$

CONSTANTS

 $1.570796327 = \pi/2$

 $3.141592654 = \pi$

 $6.283185308 = 2\pi$

```
SUBROUTINE SFLDS (T.E)
                                                                                    SL
                                                                                          1
                                                                                    SL
                                                                                          2
3 C
          SFLDX RETURNS THE FIELD DUE TO GROUND FOR A CURRENT ELEMENT ON
                                                                                    SL
                                                                                          3
4 C
          THE SOURCE SEGMENT AT T RELATIVE TO THE SEGMENT CENTER.
                                                                                    SI
                                                                                          4
5
  C
                                                                                          5
 6
          COMPLEX E, ERV, EZV, ERH, EZH, EPH, T1, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, E SL
7
        1ZC, XX1, XX2, U, U2, ZRATI, ZRATI2, FRATI, ER, ET, HRV, HZV, HRH
                                                                                          7
8
          COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ SL
                                                                                          8
         1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
9
                                                                                    SL
10
          COMMON /INCOM/ XO, YO, ZO, SN, XSN, YSN, ISNOR
                                                                                    SL
                                                                                         10
         COMMON /GWAV/ U,U2,XX1,XX2,R1,R2,ZMH,ZPH
11
                                                                                    SL
                                                                                         11
          COMMON /GND/ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR, SL
12
                                                                                         12
13
         1IPERF, T1, T2
         DIMENSION E(9)
14
                                                                                         14
          DATA PI/3.141592654/, TP/6.283185308/, POT/1.570796327/
15
                                                                                    SL
                                                                                        15
16
          XT=XJ+T*CABJ
                                                                                    SI
                                                                                         16
          YT=YJ+T*SABJ
17
                                                                                    SL
                                                                                         17
         ZT=ZJ+T*SALPJ
18
                                                                                    SL
                                                                                         18
          RHX=XO-XT
19
                                                                                    SI
                                                                                         19
20
          RHY=YO-YT
                                                                                    SL
                                                                                        20
21
          RHS=RHX*RHX+RHY*RHY
                                                                                    SL
                                                                                        21
          RHO=SQRT(RHS)
22
                                                                                    SI
                                                                                        22
23
          IF (RHO.GT.O.) GO TO 1
                                                                                    SL
                                                                                        23
24
          RHX=1.
                                                                                    SL
                                                                                         24
          RHY=0.
25
                                                                                        25
                                                                                    SL
26
          PHX=0.
                                                                                    SL
                                                                                        26
27
          PHY=1.
                                                                                        27
          GO TO 2
28
                                                                                    SL
                                                                                        28
          RHX=RHX/RHO
29 1
                                                                                    SI
                                                                                        29
          RHY=RHY/RHO
30
                                                                                    SL
                                                                                        30
31
          PHX=-RHY
                                                                                    SL
                                                                                         31
          PHY=RHX
32
                                                                                    SL
                                                                                        32
33 2
          CPH=RHX*XSN+RHY*YSN
                                                                                    SI
                                                                                        33
34
          SPH=RHY *XSN-RHX *YSN
          IF (ABS(CPH).LT.1.E-10) CPH=0.
35
                                                                                    SL
                                                                                        35
          IF (ABS(SPH).LT.1.E-10) SPH=0.
36
                                                                                    SI
                                                                                        36
37
          ZPH=ZO+ZT
                                                                                    SL
                                                                                        37
38
          ZPHS=ZPH*ZPH
                                                                                    SL
                                                                                         38
39
          R2S=RHS+ZPHS
                                                                                    SL
                                                                                         39
          R2=SQRT(R2S)
40
                                                                                    SL
                                                                                         40
          RK=R2+TP
41
                                                                                         41
42
          XX2=CMPLX(COS(RK),-SIN(RK))
                                                                                    SL
                                                                                         42
43
          IF (ISNOR.EQ.1) GO TO 3
                                                                                    SI
                                                                                         43
44
                                                                                    SL
                                                                                         44
45
   C
          USE NORTON APPROXIMATION FOR FIELD DUE TO GROUND. CURRENT IS
                                                                                         45
                                                                                    SL
   C
          LUMPED AT SEGMENT CENTER WITH CURRENT MOMENT FOR CONSTANT, SINE,
46
                                                                                    SL
                                                                                         46
          OR COSINE DISTRIBUTION.
47
   C
                                                                                    SI
                                                                                         47
48 C
                                                                                         48
          ZMH=1 .
49
                                                                                    SL
                                                                                         49
          R1=1.
50
                                                                                        50
                                                                                    SI
51
                                                                                    SL
                                                                                         51
52
          CALL GWAVE (ERV, EZV, ERH, EZH, EPH)
                                                                                    SL
                                                                                         52
          ET=-(0.,4.77134)*FRATI*XX2/(R2S*R2)
53
                                                                                    SL
                                                                                         53
54
          ER=2. *ET *CMPLX(1.,RK)
                                                                                    SL
                                                                                        54
55
          ET=ET * CMPLX(1.-RK*RK,RK)
                                                                                    SL
                                                                                         55
56
          HRV=(ER+ET)*RHO*ZPH/R2S
                                                                                    SL
                                                                                         56
          HZV=(ZPHS*ER-RHS*ET)/R2S
57
                                                                                    SL
                                                                                        57
          HRH=(RHS*ER-ZPHS*ET)/R2S
58
                                                                                    SL
                                                                                         58
          ERV=ERV-HRV
59
                                                                                    SL
                                                                                         59
60
          EZV=EZV-HZV
                                                                                    SL
                                                                                         60
61
          ERH=ERH+HRH
                                                                                    SL
                                                                                         61
62
          EZH=EZH+HRV
                                                                                    SL
                                                                                         62
          EPH=EPH+ET
63
                                                                                    SL
                                                                                        63
64
          ERV=ERV*SALPJ
                                                                                    SI
                                                                                         64
```

SFLDS

	65	EZY=EZV*SALPJ	SL 65
	66	ERH=ERH*SN*CPH	SL 66
	67	EZH=EZH*SN*CPH	SL 67
	68	EPH=EPH+SN+SPH	SL 68
	69	ERH=ERV+ERH	SL 69
	70	E(1)=(ERH*RHX+EPH*PHX)*S	SL 70
8	71	E(2)=(ERH*RHY+EPH*PHY)*S	SL 71
	72	E(3)=(EZV+EZH)*S	SL 72
	73	E(4)=0.	SL 73
<u>G</u>	74	E(5)=0.	SL 74
	75	E(6)=0.	SL 75
	76	SFAC=PI*S	SL 76
8	77	SFAC=SIN(SFAC)/SFAC	SL 77
N .	78	E(7)=E(1)*SFAC	SL 78
8	79	E(8)=E(2)*SFAC	SL 79
	80 81	E(9)=E(3)*SFAC RETURN	SL 80
	82 C	RETORN	SL 81
6	83 C	INTERPOLATE IN SOMMERFELD FIELD TABLES	SL 82
	84 C	INTERPOLATE IN SOMMERFELD FIELD TABLES	SL 83
	85 3	IF (RHO.LT.1.E-12) GO TO 4	SL 84
	86	THET=ATAN(ZPH/RHO)	SL 85
N .	87	GO TO 5	SL 86
8	88 4	THET=POT	SL 87 SL 88
	89 5	CALL INTRP (R2, THET, ERV, EZV, ERH, EPH)	SL 89
8	90 C	COMBINE VERTICAL AND HORIZONTAL COMPONENTS AND CONVERT TO X,Y,Z	SL 99
	91 C	COMPONENTS. MULTIPLY BY EXP(-JKR)/R.	SL 90
37	92	XX2=XX2/R2	SL 91
	93	SFAC=SN*CPH	SL 92
ON .	94	ERH=XX2*(SALPJ*ERV+SFAC*ERH)	SL 94
9	95	EZH=XX2*(SALPJ*EZV-SFAC*ERV)	SL 95
18	96	EPH=SN*SPH*XX2*EPH	SL 96
	97 C	X,Y,Z FIELDS FOR CONSTANT CURRENT	SL 97
	98	E(1)=ERH*RHX+EPH*PHX	SL 98
60	99	E(2)=ERH*RHY+EPH*PHY	SL 99
N.	100	E(3)=EZH	SL 100
2000	101	RK=TP*T	SL 101
W .	102 C	X,Y,Z FIELDS FOR SINE CURRENT	SL 102
N .	103	SFAC=SIN(RK)	SL 103
	104	E(4)=E(1)*SFAC	SL 104
	105	E(5)=E(2)*SFAC	SL 105
8	106	E(6)=E(3)*SFAC	SL 106
	107 C	X,Y,Z FIELDS FOR COSINE CURRENT	SL 107
Ø	108	SFAC=COS(RK)	SL 108
No.	109	E(7)=E(1)*SFAC	SL 109
80	110	E(8)=E(2)*SFAC	SL 110
	111	E(9)=E(3)*SFAC	SL 111
	112	RETURN	SL 112
10	113	END	SL 113-
88			
80			
333			
No.			
KQ .			
88			
KQ .			
0			
8			
8			
00		-320-	
30000000000000000000000000000000000000		-520	
S			
000000000000000000000000000000000000000			
8			*
	Septention	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	KOKOKOKOK
	A STATE OF THE PARTY OF THE PAR	the state of the s	A A SALAR AND A SA

SOLGF

PURPOSE

To solve for the basis function amplitudes in the NGF procedure.

METHOD

The operations performed here are described in the NGF overview in Section VI. SOLGF is called for either a NGF solution or a normal solution. For the normal solution, or for a NGF solution when no new segments or patches have been added, the solution is obtained by calling SOLVES at SF14. Otherwise, the rest of the code is executed.

The excitation vector XY is filled in the subroutine ETMNS in the order

- 1. E on NGF segments (N1 elements)
- 2. E on new segments (N N1 elements)
- 3. H on NGF patches (2M1 elements)
- 4. H on new patches (2M 2Ml elements)

From SF18 to SF29 this vector is put in the order

to conform to the matrix structure. From SF30 to SF36, zeros are stored in XY in the locations opposite the rows of the C' matrix. Line SF37 then computes $A^{-1}E_1$ storing it in place of E_1 .

SF41 to SF52 computes $E_2 - C A^{-1}E_1$ and stores it in palce of E_2 . Matrix C is read from file 15 if necessary to form the product with $A^{-1}E_1$. From SF55 to SF80

SOLGF

$$I_2 = [D - CA^{-1}B]^{-1}[E_2 - CA^{-1}E_1]$$

is computed in the original location of E_2 . If ICASX is 4 the block parameters for the primary matrix are temporarily changed to those of $D-CA^{-1}B$ so that LTSOLV, which uses the primary block parameters, can perform the solution procedure. From SF84 to SF95

$$I_1 = A^{-1}E_1 - (A^{-1}B)I_2$$

is computed. The reordering step at the beginning of SOLGF is then reversed from SF98 to SF107 to put the solution vector in the order

- 1. amplitudes of NGF basis functions
- 2. amplitudes of new basis functions
- 3. NGF patch currents
- 4. new patch currents
- amplitudes of modified basis functions for NGF segments that connect to new segments
- 6. meaningless values associated with Bss

Finally, from SF109 to SF113 the amplitudes of the modified basis functions are stored in place of the NGF basis functions that were set to zero.

SYMBOL DICTIONARY

A = array for matrix Ap

B = array starting just after A in CM (used for factoring $D - CA^{-1}B$ for ICASX = 2, 3 or 4)

C = array for matrix C

D = array used for factoring D - $CA^{-1}B$ when ICASX = 1

ICASS = saved value of ICASE

IP = array of pivot element indices

M = number of patches

M1 = number of patches in NGF

MP = number of patches in one symmetric section of the NGF

structure

N = number of segments

N1 = number of segments in NGF

N1C = number of unknowns in NGF (N1 + 2M1)

N2 = N1 + 1

N2C = number of new unknowns (order of D)

NBLSYS = saved value of NBLSYM

NEQ = total number of unknowns (NGF and new)

NEQS = number of columns in B and B ss

NLSYS = saved value of NLSYM

NP = number of segments in a symmetric section of the NGF

structure

NPSYS = saved value of NPSYM

SUM = summation variable for matrix products

XY = excitation and solution vector

```
SUBROUTINE SOLGF (A,B,C,D,XY,IP,NP,N1,N,MP,M1,M,N1C,N2C)
                                                                                    SF
2 C
         SOLVE FOR CURRENT IN N.G.F. PROCEDURE
                                                                                          2
3
         COMPLEX A.B.C.D.SUM.XY.Y
                                                                                    SF
                                                                                          3
         COMMON /SCRATM/ Y(600)
                                                                                    SF
5
         COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP SF
6
        1CON(10), NPCON
         COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I SF
7
                                                                                          7
        1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL
8
                                                                                          8
9
         DIMENSION B(N1C,1), C(N1C,1), D(N2C,1), IP(1), XY(1)
                                                                                    SF
                                                                                          9
10
                                                                                    SF
                                                                                         10
11
         IF (ICASX.GT.0) IFL=13
                                                                                    SF
                                                                                         11
12
         IF (N2C.GT.0) GO TO 1
                                                                                    SF
                                                                                         12
13 C
         NORMAL SOLUTION. NOT N.G.F.
                                                                                    SF
                                                                                         13
         CALL SOLVES (A, IP, XY, N1C, 1, NP, N, MP, M, 13, IFL)
14
                                                                                    SF
                                                                                         14
15
          GO TO 22
                                                                                    SF
                                                                                         15
16 1
          IF (N1.EQ.N.OR.M1.EQ.0) GO TO 5
                                                                                    SF
                                                                                         16
17 C
          REORDER EXCITATION ARRAY
                                                                                    SF
                                                                                         17
18
         N2=N1+1
                                                                                    SF
                                                                                         18
          JJ=N+1
19
                                                                                    SF
                                                                                         19
20
          NPM=N+2ºM1
                                                                                    SF
                                                                                         20
21
         DO 2 I=N2, NPM
                                                                                    SF
                                                                                         21
22 2
          Y(I)=XY(I)
                                                                                    SF
                                                                                         22
23
          J=N1
                                                                                    SF
                                                                                         23
24
          DO 3 I=JJ, NPM
                                                                                    SF
                                                                                         24
25
          J=J+1
                                                                                    SF
                                                                                         25
26 3
         XY(J)=Y(I)
                                                                                    SF
                                                                                         26
27
          DO 4 I=N2,N
                                                                                    SF
                                                                                         27
28
          J=J+1
                                                                                    SF
                                                                                         28
29 4
         XY(J)=Y(I)
                                                                                    SF
                                                                                         29
          NEQS=NSCON+2*NPCON
30 5
                                                                                    SF
                                                                                         30
31
          IF (NEQS.EQ.0) GO TO 7
                                                                                    SF
                                                                                         31
          NEQ=N1C+N2C
32
                                                                                    SF
                                                                                         32
33
          NEQS=NEQ-NEQS+1
                                                                                    SF
                                                                                         33
34 C
          COMPUTE INV(A)E1
                                                                                     SF
                                                                                         34
35
          DO 6 I=NEQS, NEQ
                                                                                     SF
                                                                                         35
36 6
          XY(I)=(0.,0.)
                                                                                    SF
                                                                                         36
          CALL SOLVES (A, IP, XY, N1C, 1, NP, N1, MP, M1, 13, IFL)
37 7
                                                                                     SF
                                                                                         37
          NI=0
38
                                                                                     SF
                                                                                         38
39
          NPB=NPBL
                                                                                     SF
                                                                                         39
          COMPUTE E2-C(INV(A)E1)
40 C
                                                                                    SF
                                                                                         40
41
          DO 10 JJ=1, NBBL
                                                                                     SF
                                                                                         41
42
          IF (JJ.EQ.NBBL) NPB=NLBL
                                                                                     SF
                                                                                         42
          IF (ICASX.GT.1) READ (15) ((C(I,J),I=1,N1C),J=1,NPB)
43
                                                                                    SF
                                                                                         43
44
          II=N1C+NI
                                                                                    SF
                                                                                         44
45
          DO 9 I=1,NPB
                                                                                    SF
                                                                                         45
46
          SUM=(0.,0.)
                                                                                     SF
                                                                                         46
47
          DO 8 J=1,N1C
                                                                                     SF
                                                                                         47
48 8
          SUM=SUM+C(J,I)*XY(J)
                                                                                     SF
                                                                                         48
49
                                                                                     SF
                                                                                         49
50 9
          XY(J)=XY(J)-SUM
                                                                                     SF
                                                                                         50
51 10
          NI=NI+NPBL
                                                                                     SF
                                                                                         51
52
          REWIND 15
                                                                                     SF
                                                                                         52
53
          JJ=N1C+1
                                                                                     SF
                                                                                         53
54 C
          COMPUTE INV(D)(E2-C(INV(A)E1)) = I2
                                                                                     SF
                                                                                         54
55
          IF (ICASX.GT.1) GO TO 11
                                                                                     SF
                                                                                         55
          CALL SOLVE (N2C,D,IP(JJ),XY(JJ),N2C)
56
                                                                                     SF
                                                                                         56
57
          GO TO 13
                                                                                     SF
                                                                                         57
58 11
          IF (ICASX.EQ.4) GO TO 12
                                                                                     SF
                                                                                         58
59
          NI=N2C*N2C
                                                                                     SF
                                                                                         59
60
          READ (11) (B(J,1), J=1,NI)
                                                                                     SF
                                                                                         60
61
          REWIND 11
                                                                                     SF
                                                                                         61
62
          CALL SOLVE (N2C, B, IP(JJ), XY(JJ), N2C)
                                                                                     SF
                                                                                         62
63
          GO TO 13
                                                                                     SF
                                                                                         63
          NBLSYS=NBLSYM
64 12
                                                                                     SF
                                                                                         64
```

```
NPSYS=NPSYM
                                                                                          65
65
                                                                                      SF
66
          NLSYS=NLSYM
                                                                                      SF
                                                                                          66
 67
           ICASS=ICASE
                                                                                      SF
                                                                                          67
68
          NBLSYM=NBBL
                                                                                      SF
                                                                                          68
69
          NPSYM=NPBL
                                                                                      SF
                                                                                          69
 70
          NLSYM=NLBL
                                                                                      SF
                                                                                          70
71
           ICASE=3
                                                                                      SF
                                                                                          71
72
           REWIND 11
                                                                                          72
                                                                                      SF
73
           REWIND 16
                                                                                      SF
                                                                                          73
 74
           CALL LTSOLV (B, N2C, IP(JJ), XY(JJ), N2C, 1, 11, 16)
                                                                                          74
 75
           REWIND 11
                                                                                      SF
                                                                                          75
           REWIND 16
 76
                                                                                      SF
                                                                                          76
 77
           NBLSYM=NBLSYS
                                                                                          77
                                                                                      SF
           NPSYM=NPSYS
 78
                                                                                      SF
                                                                                           78
           NLSYM=NLSYS
 79
                                                                                      SF
                                                                                          79
 80
           ICASE=ICASS
                                                                                           80
                                                                                      SF
 81 13
           NI=0
                                                                                      SF
                                                                                          81
           NPB=NPBL
 82
                                                                                      SF
                                                                                           82
 83 C
           COMPUTE INV(A)E1-(INV(A)B)I2 = I1
                                                                                      SF
                                                                                           83
 84
           DO 16 JJ=1, NBBL
                                                                                      SF
                                                                                           84
 85
           IF (JJ.EQ.NBBL) NPB=NLBL
                                                                                      SF
                                                                                           85
           IF (ICASX.GT.1) READ (14) ((B(I,J), I=1,N1C), J=1,NPB)
 86
                                                                                      SF
                                                                                           86
 87
           II=N1C+NI
                                                                                           87
                                                                                      SF
 88
           DO 15 I=1,N1C
                                                                                      SF
                                                                                           88
 89
           SUM=(0.,0.)
                                                                                      SF
                                                                                           89
 90
           DO 14 J=1,NPB
                                                                                      SF
                                                                                          90
 91
           JP=II+J
                                                                                      SF
                                                                                           91
 92 14
           SUM=SUM+B(I, J) *XY(JP)
                                                                                      SF
                                                                                           92
 93 15
           XY(I)=XY(I)-SUM
                                                                                      SF
                                                                                           93
           NI=NI+NPBL
 94 16
                                                                                      SF
                                                                                           94
 95
           REWIND 14
                                                                                      SF
                                                                                           95
           IF (N1.EQ.N.OR.M1.EQ.0) GO TO 20
 96
                                                                                      SF
                                                                                           96
 97 C
           REORDER CURRENT ARRAY
                                                                                      SF
                                                                                           97
 98
           DO 17 I=N2, NPM
                                                                                      SF
                                                                                           98
 99 17
           Y(I)=XY(I)
                                                                                      SF
                                                                                           99
           JJ=N1C+1
                                                                                      SF
100
                                                                                         100
101
           J=N1
                                                                                      SF
                                                                                         101
102
           DO 18 I=JJ, NPM
                                                                                         102
103
           J=J+1
                                                                                         103
104 18
           XY(J)=Y(I)
                                                                                      SF 104
105
           DO 19 I=N2.N1C
                                                                                      SF
                                                                                         105
106
           J=J+1
                                                                                      SF
                                                                                         1.06
107 19
           XY(J)=Y(I)
                                                                                      SF
                                                                                         107
108 20
           IF (NSCON.EQ.0) GO TO 22
                                                                                      SF
                                                                                         108
109
           J=NEQS-1
                                                                                      SF 109
110
           DO 21 I=1, NSCON
                                                                                      SF 110
           J=J+1
                                                                                      SF 111
111
           JJ=ISCON(I)
                                                                                      SF
112
                                                                                         112
113 21
           XY(JJ)=XY(J)
                                                                                      SF
                                                                                         113
114 22
                                                                                      SF 114
           RETURN
115
           END
                                                                                      SF 115-
```

SOLVE

PURPOSE

To solve the system LUx = B, where L is a lower triangular matrix with ones on the diagonal, U is an upper triangular matrix, and B is the right-hand side vector (RHS).

METHOD

The algorithm used is described on pages 409-415 of ref. 1. The solution of the matrix equation LUx = B is found by first solving

$$Ly = B, (3)$$

and then

$$Ux = y, (4)$$

since

$$LUx = Ly = B$$
.

The solution of equations (3) and (4) is straightforward since the matrices are both triangular. The solution of equation (3) can be written

$$y_{i} = \frac{1}{\ell_{ii}} \left(b_{i} - \sum_{j=1}^{i-1} \ell_{ij} y_{j} \right) \quad i = 1, \dots, n$$

Equation (4) can be written similarly.

The L and U matrices are both supplied by the subroutine FACTR and are stored in the matrix A; the 1's on the diagonal of L are suppressed. Care must be exercised in the solution, since rows were interchanged during factorization, and this necessitates rearranging the RHS vector; furthermore, the L matrix itself is not completely rearranged. The information pertinent to the row rearrangements has been stored by FACTR in an integer array (IP), and it is used in the computations. The final solution of the equations is overwritten on the input RHS vector B.

The only differences between the coding in SOLVE and the coding suggested in ref. 1 are: (1) double precision variables are not used for the accumulation of sums, since, for the size of matrices anticipated in core, the computer word length is sufficient, and (2) the transposes of the L and U matrices are supplied in A by FACTR. Thus, the row and column indices used in the routine are reversed to account for this transposition.

CODING

SO15 - SO25 The solution for y in equation (3).

SO29 - SO39 The solution for x in equation (4) and the storage of the solution in B.

SYMBOL DICTIONARY

A = array contains the input L and U matrices

B = array contains the input RHS and is overwritten with the solution

I = DO loop index

IP = array contains row positioning information

IP1 = I + 1

J = DO loop index

K = DO loop index

N = order of the matrix being solved

NDIM = dimension of the array where the matrix is stored NDIM > N

PI = intermediate integer

SUM = intermediate variable

Y = scratch vector

1	SUBROUTINE SOLVE (N,A,IP,B,NDIM)	so	1
2 C		SO	
3 C	SUBROUTINE TO SOLVE THE MATRIX EQUATION LU-X=B WHERE L IS A UN		
4 C	LOWER TRIANGULAR MATRIX AND U IS AN UPPER TRIANGULAR MATRIX BO		
5 C	OF WHICH ARE STORED IN A. THE RHS VECTOR B IS INPUT AND THE	SO	
6 C	SOLUTION IS RETURNED THROUGH VECTOR B. (MATRIX TRANSPOSED.	so	6
7 C		so	7
8	COMPLEX A,B,Y,SUM	so	8
9	INTEGER PI	so	9
10	COMMON /SCRATM/ Y(600)	so	10
11	DIMENSION A(NDIM, NDIM), IP(NDIM), B(NDIM)	SO	11
12 C		so	12
13 C	FORWARD SUBSTITUTION	so	13
14 C		so	14
15	DO 3 I=1,N	so	15
16	PI=IP(I)	SO	
17	Y(I)=B(PI)	SO	
18	B(PI)=B(I)	SO	
19	IP1=I+1	so	0.000
20	IF (IP1.GT.N) GO TO 2	so	
21	DO 1 J=IP1.N	so	
22	$B(J)=B(J)-A(I,J)\bullet Y(I)$	SO	
23 1	CONTINUE	SO	
24 2	CONTINUE	SO	
25 3	CONTINUE	SO	
26 C		SO	
27 C	BACKWARD SUBSTITUTION	SO	The state of the s
28 C	BACKWARD SOUSTITUTION	SO	
29	DO 6 K=1.N	SO	
30	I=N-K+1	. SO	
31	SUM=(0.,0.)	SO	
	IP1=I+1		
32 33		SO	
	IF (IP1.GT.N) GO TO 5	SO	
34	DO 4 J=IP1,N	SO	
35	SUM=SUM+A(J,I)*B(J)	SO	
36 4	CONTINUE	SO	-
37 5	CONTINUE	SO	
38	B(I)=(Y(I)-SUM)/A(I,I)	SO	
39 6	CONTINUE	SO	
40	RETURN	SO	
44	CNO	60	44

SOLVES

PURPOSE

To control solution of the matrix equation, including transforming and reordering the solution vector.

METHOD

When SOLVES is called, the array B contains the excitation computed by subroutines ETMNS or NETWK. The exciting electric field on all segments is stored first in B, followed by the magnetic fields on all patches. In the case of a symmetric structure, however, the matrix is filled with the coefficients of all segment and patch equations in the first symmetric sector occurring first. These are followed by the coefficients for successive sectors in the same order. This order is required for the solution procedure for symmetric structures described in section III-5 of Part I. For the case of a symmetric structure with both segments and patches, SOLVES first rearranges the excitation coefficients in array B to correspond to the order of the matrix coefficients.

For symmetric structures, SOLVES then computes the transforms of the subvectors in B according to equation (88) of Part I. Subroutine SOLVE or LTSOLV is then called to compute the solution or solution subvectors. The procedure is selected by the parameter ICASE as follows.

- 1 No symmetry, matrix in core. SOLVE is called for the solution.
- 2 Symmetry, matrix in core. SOLVE is called for each subvector.
- 3 No symmetry, matrix out of core. LTSOLV is called for the solution.
- 4 Symmetry, complete matrix does not fit in core but submatrices do.

 SOLVE is called for each subvector after first reading the appropriate submatrix from file IFL1.
- 5 Symmetry, submatrices do not fit in core. LTSOLV is called for each subvector.

SOLVES then computes the total current by inverse transforming the subvectors by equation (115) of Part I. For a symmetric structure with segments and patches, SOLVES then rearranges the solution in array B to put all segment currents first, followed by all patch currents, which is the order of the original excitation coefficients.

SOLVES

Multiple right-hand-side vectors (NRH) may be processed simultaneously at each step in SOLVES. This reduces the time spent reading files when LTSOLV is called, and is used in computing $A^{-1}B$ in the NGF procedure.

CODING

SS22 - SS39 Rearrange excitation coefficients.

SS43 - SS56 Transform subvectors.

SS63 - SS75 Solve for each subvector.

SS81 - SS94 Inverse transform subvectors.

SS96 - SS113 Rearrange solution coefficients.

SYMBOL DICTIONARY

A = array set aside for in-core matrix storage, i.e., factored matrices

B = right-hand side; the solution is overwritten on this array also

FNOP = decimal form of NOP

FNORM = 1/FNOP

IFL1 = file with matrix blocks in normal order

IFL2 = file with matrix blocks in reversed order

IP = array containing positioning data used in SOLVE

M = number of patches

MP = number of patches in a symmetric sector

N = number of segments

NCOL = number of columns in array A

NEQ = order of complete matrix

NOP = number of symmetric sectors

NP = number of segments in a symmetric sector

NPEQ = order of a submatrix

NRH = number of right-hand-side vectors in B

NROW = number of rows in A

SSX = array containing the coefficients S_{ik} in equation (89) of Part I

SUM = summation variable

Y = scratch vector

```
SUBROUTINE SOLVES (A, IP, B, NEQ, NRH, NP, N, MP, M, IFL1, IFL2)
1
2 C
                                                                                   SS
                                                                                         2
3 C
         SUBROUTINE SOLVES, FOR SYMMETRIC STRUCTURES, HANDLES THE
                                                                                         3
                                                                                   SS
         TRANSFORMATION OF THE RIGHT HAND SIDE VECTOR AND SOLUTION OF THE
 4 C
5 C
         MATRIX EQ.
                                                                                   SS
                                                                                         5
 6
   C
                                                                                   55
                                                                                         6
 7
         COMPLEX A.B.Y.SUM.SSX
                                                                                   SS
                                                                                         7
         COMMON /SMAT/ SSX(16,16)
 8
                                                                                   SS
                                                                                         8
9
         COMMON /SCRATM/ Y(600)
                                                                                   SS
                                                                                         9
10
         COMMON /MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, I SS
                                                                                        10
11
         1CASX, NBBX, NPBX, NLBX, NBBL, NPBL, NLBL
         DIMENSION A(1), IP(1), B(NEQ,NRH)
12
                                                                                   SS
                                                                                        12
13
         NPEQ=NP+2*MP
                                                                                   SS
                                                                                        13
14
         NOP=NEQ/NPEQ
                                                                                   SS
                                                                                        14
15
         FNOP=NOP
                                                                                   SS
                                                                                        15
16
         FNORM=1./FNOP
                                                                                   SS
                                                                                        16
         NROW=NEQ
17
                                                                                   SS
                                                                                        17
18
         IF (ICASE.GT.3) NROW=NPEQ
                                                                                   SS
                                                                                        18
         IF (NOP.EQ.1) GO TO 11
19
                                                                                   SS
                                                                                        19
20
         DO 10 IC=1,NRH
                                                                                   55
                                                                                        20
21
         IF (N.EQ.O.OR.M.EQ.O) GO TO 6
                                                                                   SS
                                                                                        21
22
         DO 1 I=1 , NEQ
                                                                                   SS
                                                                                        22
23 1
         Y(I)=B(I,IC)
                                                                                   SS
                                                                                        23
24
         KK=2°MP
                                                                                   SS
                                                                                        24
25
         IA=NP
                                                                                   SS
                                                                                        25
         IB=N
26
                                                                                   SS
                                                                                        26
27
          J=NP
                                                                                   SS
                                                                                        27
28
          DO 5 K=1, NOP
                                                                                   SS
                                                                                        28
29
         IF (K.EQ.1) GO TO 3
                                                                                   SS
30
         DO 2 I=1,NP
                                                                                   SS
                                                                                        30
31
         IA=IA+1
                                                                                   SS
                                                                                       31
32
          J=J+1
                                                                                   SS
                                                                                        32
33 2
         B(J,IC)=Y(IA)
                                                                                   SS
                                                                                        33
34
         IF (K.EQ.NOP) GO TO 5
                                                                                   55
                                                                                        34
35 3
         DO 4 I=1.KK
                                                                                   SS
                                                                                       35
36
         IB=IB+1
                                                                                   SS
                                                                                      36
          J=J+1
37
                                                                                   SS
                                                                                       37
38 4
         B(J,IC)=Y(IB)
                                                                                   SS
                                                                                       38
39 5
         CONTINUE
                                                                                   SS
                                                                                        39
40 C
                                                                                   SS
                                                                                        40
41 C
          TRANSFORM MATRIX EQ. RHS VECTOR ACCORDING TO SYMMETRY MODES
                                                                                   SS
                                                                                        41
42 C
                                                                                   SS
                                                                                        42
43 6
          DO 10 I=1 , NPEQ
                                                                                        43
         DO 7 K=1, NOP
44
                                                                                   SS
                                                                                        44
45
          IA=I+(K-1) *NPEQ
                                                                                   SS
                                                                                        45
46 7
          Y(K)=B(IA,IC)
                                                                                   SS
                                                                                        46
          SUM=Y(1)
47
                                                                                   SS
                                                                                        47
48
         DO 8 K=2.NOP
                                                                                   SS
                                                                                        48
49 8
          SUM=SUM+Y(K)
                                                                                   SS
                                                                                        49
50
          B(I,IC)=SUM*FNORM
                                                                                   SS
                                                                                        50
51
          DO 10 K=2,NOP
                                                                                   SS
                                                                                        51
          IA=I+(K-1) *NPEQ
52
                                                                                   SS
                                                                                       52
53
          SUM=Y(1)
                                                                                   SS
                                                                                        53
          DO 9 J=2,NOP
54
                                                                                   SS
                                                                                        54
          SUM=SUM+Y(J)*CONJG(SSX(K,J))
55 9
                                                                                   SS
                                                                                        55
56 10
          B(IA;IC)=SUM*FNORM
                                                                                   SS
                                                                                        56
57 11
          IF (ICASE.LT.3) GO TO 12
                                                                                   SS
                                                                                        57
58
          REWIND IFL1
                                                                                   SS
                                                                                        58
59
          REWIND IFL2
                                                                                   SS
                                                                                        59
60 C
                                                                                   SS
                                                                                        60
61 C
          SOLVE EACH MODE EQUATION
                                                                                   SS
                                                                                        61
62 C
                                                                                   22
                                                                                        62
63 12
          DO 16 KK=1,NOP
                                                                                   SS
                                                                                        63
          IA=(KK-1)*NPEQ+1
64
                                                                                   SS
                                                                                        64
```

SOLVES

65		IB=IA	SS	65
66		IF (ICASE.NE.4) GO TO 13	SS	66
67		I=NPEQ*NPEQ	SS	67
68		READ (IFL1) (A(J), J=1,I)	SS	68
69		IB=1	SS	69
70	13	IF (ICASE.EQ.3.OR.ICASE.EQ.5) GO TO 15	SS	70
71		DO 14 IC=1,NRH	SS	71
72	14	CALL SOLVE (NPEQ,A(IB),IP(IA),B(IA,IC),NROW)	SS	72
73		GO TO 16	SS	73
74	15	CALL LTSOLV (A,NPEQ,IP(IA),B(IA,1),NEQ,NRH,IFL1,IFL2)	SS	74
75	16	CONTINUE	SS	75
76		IF (NOP.EQ.1) RETURN	SS	76
77	C		SS	77
78	C	INVERSE TRANSFORM THE MODE SOLUTIONS	SS	78
79	C		SS	79
80		DO 26 IC=1,NRH	SS	80
81		DO 20 I=1,NPEQ	SS	81
82		DO 17 K=1,NOP	SS	82
83		IA=I+(K-1)*NPEQ	SS	83
84	17	Y(K)=B(IA, IC)	SS	84
85		SUM=Y(1)	SS	85
86		DO 18 K=2,NOP	SS	86
87	18	SUM=SUM+Y(K)	SS	87
88		B(I,IC)=SUM	SS	88
89		DO 20 K=2,NOP	SS	89
90		IA=I+(K-1)*NPEQ	SS	90
91		SUM=Y(1)	SS	91
92		DO 19 J=2,NOP	SS	92
93	19	SUM=SUM+Y(J)*SSX(K,J)	SS	93
94		B(IA, IC)=SUM	SS	94
95		IF (N.EQ.O.OR.M.EQ.O) GO TO 26	SS	95
96		DO 21 I=1.NEQ	SS	96
97	21	Y(I)=8(I,IC)	SS	97
98		KK=2*MP	SS	98
99		IA=NP	SS	99
100		IB=N		100
101		J=NP		101
102		DO 25 K=1,NOP	-	102
103		IF (K.EQ.1) GO TO 23	SS	103
104		DO 22 I=1,NP		104
105		IA=IA+1	SS	105
106		J=J+1		106
107	22	B(IA,IC)=Y(J)	SS	107
108		IF (K.EQ.NOP) GO TO 25		108
109	23	DO 24 I=1,KK		109
110		IB=IB+1	1000	110
111		J=J+1		111
112	24	B(IB,IC)=Y(J)	7900.000	112
113		CONTINUE		113
114		CONTINUE		114
115		RETURN	SS	115
116		END	SS	116-

research (Accessor Accessor) (Accessor) (Accessor) (Accessor) (Accessor) (Accessor) (Accessor) (Accessor)

TBF

PURPOSE

To evaluate the current expansion function associated with a given segment.

METHOD

The current expansion function is described in section III-1 of Part I.

The parameter I is the number of the segment on which the function is centered.

On segment I and on all segments connected to either end of segment I, the function has the form

$$f_{j}(s) = A_{j} + B_{j} \sin [k(s - s_{j})] + C_{j} \cos [k(s - s_{j})],$$

where j is the segment number. TBF locates all connected segments and stores the segment numbers, j, in JCO in COMMON/SEGJ/. It computes A_j , B_j , and C_j and stores them in AX, BX, and CX, respectively, in the same location as was used in JCO. A_i , B_i , and C_i for j = I are stored last in the arrays.

If ICAP = 0, the function goes to zero at an end of segment I to which no other segment or surface is connected. If ICAP \neq 0, the function has a non-zero value at a free end, allowing for the current onto the wire end cap.

CODING

Equations and symbols refer to Part I.

TB9 - TB55 This code forms a loop that locates all segments connected to the ends of segment I, first for end 1 (IEND = -1) and then for end 2 (IEND = 1).

TB9 - TB16 Parameters are initialized to start search for segments connected to end 1 of segment I.

TB34 $PP = P_{i}^{-}$ for end 1 of segment I or P_{i}^{+} for end 2 of segment I.

TB35 - TB37 Equations (43) to (48) of Part I evaluated except for $Q_{\underline{i}}^{\pm}$: $AX(JSNO) = A_{\underline{j}}^{\pm}/Q_{\underline{i}}^{\pm}$ $BX(JSNO) = B_{\underline{j}}^{\pm}/Q_{\underline{i}}^{\pm}$ $CX(JSNO) = C_{\underline{j}}^{\pm}/Q_{\underline{i}}^{\pm}$ $JCO(JSNO) = \underline{i}$

TENS Exit from loop if segment I is connected to a surface or ground plane. Segment I will occur in COMMON/SEGJ/ twice

in this case, once for the center of the expansion function on segment I and once for the part of the function extending onto the image of segment I in the surface. Line TB45 changes the sign of B_j^{\pm} for the image term. The sum of the two parts of the function on segment I then has zero derivative at the end connected to the surface.

TB39 - TB42 Check appropriate end of segment j to determine whether it shows a connection to segment I (end of search) or connection to another segment (multiple junction).

TB44 Continue search for connected segments (multiple junction).

TB46 Exit from loop after finishing search for both ends of segment I.

TB47 - TB55 Store values for end 1 of segment I and initialize for end
2. Then return to previous loop.

TB59 - TB70 Evaluate functions of segment length and radius for segment I. For $k\Delta$ < 0.03, a series is used for 1 - $\cos k\Delta$, where Δ = segment length.

TB73 - TB86 Final calculations if neither end of segment I is a free end.

TB89 - TB102 Final calculations for free end on end 1 of segment I.

TB104 - TB117 Final calculations for free end on end 2 of segment I.

TB119 - TB126 Final calculations for free ends on both ends of segment I.

TB128 $A_i = -1$ for j = I in all cases.

SYMBOL DICTIONARY

 $AJ = a_j$

AP = a;

CD = $\cos k\Delta$

CDH = $cos(k\Delta_1/2)$

 $D = k\Delta_{i}/2 \text{ or } \cos k\Delta_{i} - X_{i} \sin k\Delta_{i}$

ICAP = flag to determine whether the function goes to zero at a free end

IEND = -1 during calculations for end 1 of segment I and +1 for end 2.

JCOX = connection index

JEND = -1 if end 1 of a segment is connected to segment I, +1 if end 2
is connected to segment I.

JMAX = maximum number of segments allowed in the expansion function.
This includes segment I and all segments connected to either end.

JSNOP = JSN + 1

NJUN1 = N

 $NJUN2 = N^{+}$

OMC = 1 - $\cos k\Delta_1$

 $PI = \pi$

 $PM = P_1$

 $PP = P_1^+$

 $QM = Q_1$

 $QP = Q_i^+$

SD = sin kA

SDH = $\sin (k\Delta_j/2)$

SIG = sign for calculation of A and C

XXI = $J_1(ka_i)/J_0(ka_i)$ (small argument series used for Bessel functions)

CONSTANTS

0.577215664 = Eulers constant

0.015 = 0.03/2

1.3888889E-3 = 1/720

 $3.141592654 = \pi$

4.1666666667E-2 = 1/24

1		SUBROUTINE TBF (I,ICAP)	TB	1
	C	COMPUTE BASIS FUNCTION I	TB	2
3		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300		3
4		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(4
5		2300), WLAM, IPSYM	TB	5
6		COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP		6
7			TB	7
		1CON(10),NPCON		
8		DATA PI/3.141592654/, JMAX/30/	TB	8
9		JSN0=0	TB	9
10		PP=0.	TB	10
11		JCOX=ICON1(I)	TB	11
12		IF (JCOX.GT.10000) JCOX=I	TB	12
13		JEND=-1	TB	13
14		IENO=-1	TB	14
15		SIG=-1.	TB	15
16		IF (JCOX) 1,10,2	TB	16
17	1	JCOX=-JCOX	TB	17
18		GO TO 3	TB	18
19		SIG=-SIG	TB	19
20		JEND=-JEND	TB	20
21		JSN0=JSN0+1	TB	21
22		IF (JSNO.GE.JMAX) GO TO 28	TB	22
			TB	23
23		JCO(JSNO)=JCOX		
24		D=PI*SI(JCOX)	TB	24
25		SDH=SIN(D)	TB	25
26		CDH=COS(D)	TB	26
27		SD=2.*SDH*CDH	TB	27
28		IF (D.GT.O.Q15) GO TO 4	TB	28
29		OMC=4.*D*D	TB	29
30		OMC=((1.3888889E-3*OMC-4.166666667E-2)*OMC+.5)*OMC	TB	30
31		GO TO 5	TB	31
32	4	OMC=1CDH+CDH+SDH+SDH	TB	32
33	5	AJ=1./(ALOG(1./(PI*BI(JCOX)))577215664)	TB	33
34		PP=PP-OMC/SD*AJ	TB	34
35		AX(JSNO)=AJ/SD*SIG	TB	35
36		BX(JSNO)=AJ/(2.°CDH)	TB	36
37		CX(JSNO)=-AJ/(2.*SDH)*SIG	TB	37
38			TB	38
		IF (JCOX.EQ.I) GO TO 8	TB	39
39		IF (JEND.EQ.1) GO TO 6		
40		JCOX=ICON1(JCOX)	TB	40
41		GO TO 7	TB	41
	6	JCOX=ICON2(JCOX)	TB	42
	7	IF (IABS(JCOX).EQ.I) GO TO 9	TB	43
44		IF (JCOX) 1,28,2	TB	44
	8	BX(JSNO)=-BX(JSNO)	TB	45
46	9	IF (IEND.EQ.1) GO TO 11	TB	46
47	10		TB	47
48		PP=0.	TB	48
49		NJUN1=JSNO	TB	49
50		JCOX=ICON2(I)	TB	50
51		IF (JCOX.GT.10000) JCOX=I	TB	51
52		JEND=1	TB	52
53		IEND=1	TB	53
54		SIG=-1.	TB	54
55		IF (JCOX) 1,11,2	TB	55
	11		TB	56
			TB	57
57		JSNOP=JSNO+1		
58		JCO(JSNOP)=I	TB	58
59		D=PI*SI(I)	TB	59
60		SDH=SIN(D)	TB	60
61		CDH=COS(D)	TB	61
62		.SD=2. *SDH*CDH	TB	62
63		CD=CDH+CDH-SDH+SDH	TB	63
64	1	IF (D.GT.0.015) GO TO 12	TB	64


```
65
           OMC=4. *D*D
                                                                                        TB
                                                                                            65
66
           OMC=((1.3888889E-3*OMC-4.166666667E-2)*OMC+.5)*OMC
                                                                                        TB
                                                                                            66
67
           GO TO 13
                                                                                        TB
                                                                                            67
68 12
           OMC=1.-CD
                                                                                        TB
                                                                                            68
69
    13
           AP=1./(ALOG(1./(PI*BI(I)))-.577215664)
                                                                                        TB
                                                                                            69
           AJ=AP
70
                                                                                        TB
                                                                                            70
71
           IF (NJUN1.EQ.0) GO TO 16
                                                                                        TB
                                                                                            71
72
           IF (NJUN2.EQ.0) GO TO 20
                                                                                            72
                                                                                        TR
           QP=SD*(PM*PP+AJ*AP)+CD*(PM*AP-PP*AJ)
73
                                                                                        TB
                                                                                            73
74
           QM=(AP*OMC-PP*SD)/QP
                                                                                        TB
                                                                                            74
75
           QP=-(AJ*OMC+PM*SD)/QP
                                                                                        TB
                                                                                            75
          BX(JSNOP)=(AJ*QM+AP*QP)*SDH/SD
CX(JSNOP)=(AJ*QM-AP*QP)*CDH/SD
76
                                                                                        TB
                                                                                            76
77
                                                                                        TB
                                                                                            77
78
           DO 14 IEND=1, NJUN1
                                                                                        TB
                                                                                            78
79
           AX(IEND)=AX(IEND)*QM
                                                                                        TR
                                                                                            79
80
           BX(IEND)=BX(IEND) *QM
                                                                                        TB
                                                                                            80
81 14
           CX(IEND)=CX(IEND) *QM
                                                                                        TB
                                                                                            81
82
           JEND=NJUN1+1
                                                                                        TB
                                                                                            82
83
           DO 15 IEND=JEND. JSNO
                                                                                        TB
                                                                                            83
           AX(IEND) =- AX(IEND) *QP
84
                                                                                        TB
                                                                                            84
85
           BX(IEND)=BX(IEND) *QP
                                                                                        TB
                                                                                            85
           CX(IEND) =-CX(IEND) *QP
86 15
                                                                                        TB
                                                                                            86
87
           GO TO 27
                                                                                        TB
                                                                                            87
88 16
           IF (NJUN2.EQ.0) GO TO 24
                                                                                        TB
                                                                                            88
89
           IF (ICAP.NE.O) GO TO 17
                                                                                        TB
                                                                                            89
90
           XXI=0.
                                                                                        TB
                                                                                            90
           GO TO 18
91
                                                                                        TB
                                                                                            91
92 17
           QP=PI*BI(I)
                                                                                        TB
                                                                                            92
93
           XXI=OP*OP
                                                                                        TB
                                                                                            93
94
           XXI=QP^{\bullet}(1.-.5^{\bullet}XXI)/(1.-XXI)
                                                                                        TB
                                                                                            94
           QP=-(OMC+XXI*SD)/(SD*(AP+XXI*PP)+CD*(XXI*AP-PP))
95 18
                                                                                        TB
                                                                                            95
96
           D=CD-XXI*SD
                                                                                        TB
                                                                                            96
 97
           BX(JSNOP)=(SDH+AP*QP*(CDH-XXI*SDH))/D
                                                                                        TB
                                                                                            97
           CX(JSNOP)=(CDH+AP*QP*(SDH+XXI*CDH))/D
98
                                                                                        TB
                                                                                            98
99
           DO 19 IEND=1, NJUN2
                                                                                        TB
                                                                                           . 99
100
           AX(IEND) =- AX(IEND) *QP
                                                                                        TB 100
101
           BX(IEND)=BX(IEND) *QP
                                                                                        TB
                                                                                           101
           CX(IEND) =- CX(IEND) *QP
102 19
                                                                                        TB 102
103
           GO TO 27
                                                                                        TB 103
           IF (ICAP.NE.O) GO TO 21
104 20
                                                                                        TB
                                                                                           104
105
           XXI=0.
                                                                                        TB
                                                                                           105
           GO TO 22
106
                                                                                        TB
                                                                                           106
107 21
           OM=PI*BI(I)
                                                                                        TB 107
108
           XXI=QM*QM
                                                                                        TB 108
109
           XXI=QM^{\bullet}(1.-.5^{\bullet}XXI)/(1.-XXI)
                                                                                        TB 109
           QM=(OMC+XXI*SD)/(SD*(AJ-XXI*PM)+CD*(PM+XXI*AJ))
                                                                                        TB 110
110 22
111
           D=CD-XXI*SD
                                                                                        TB
                                                                                           111
           BX(JSNOP)=(AJ*QM*(CDH+XXI*SDH)-SDH)/D
112
                                                                                        TB
                                                                                           112
           CX(JSNOP)=(CDH-AJ*QM*(SDH+XXI*CDH))/D
                                                                                        TB
                                                                                           113
113
114
           DO 23 IEND=1, NJUN1
                                                                                        TB
                                                                                           114
115
           AX(IEND)=AX(IEND) *QM
                                                                                           115
                                                                                        TB
116
           BX(IEND)=BX(IEND) *QM
                                                                                        TB 116
           CX(IEND)=CX(IEND) *QM
                                                                                        TB 117
117 23
           GO TO 27
118
                                                                                        TB
                                                                                           118
           BX(JSNOP)=0.
119 24
                                                                                        TB 119
           IF (ICAP.NE.O) GO TO 25
120
                                                                                        TB 120
           XXI=0.
121
                                                                                        TB 121
122
           GO TO 26
                                                                                        TB 122
           QP=PI*BI(I)
                                                                                        TB 123
123 25
           XXI=QP*QP
                                                                                        TB 124
124
125
           XXI=QP*(1.-.5*XXI)/(1.-XXI)
                                                                                        TB
                                                                                           125
           CX(JSNOP)=1./(CDH-XXI*SDH)
126 26
                                                                                        TB 126
127 27
           JSNO=JSNOP
                                                                                        TB 127
128
           AX(JSNO)=-1.
                                                                                        TB 128
```

129	RETURN	TB	129
130 28	PRINT 29, I	TB	130
131	STOP	TB	131
132 C		TB	132
133 29	FORMAT (43H TBF - SEGMENT CONNECTION ERROR FOR SEGMENT, 15)	TB	133
134	END	TB	134-

TEST

PURPOSE

To compute the relative difference of two numerical integration results for the Romberg variable-interval-width integration routines.

METHOD

The first numerical integration result is the complex number (F1R, F1I) and the second is (F2R, F2I). The real and imaginary parts of the two results are subtracted and the differences are divided by the largest of F2R, F2I, DMIN or 10^{-37} . The denominator is chosen to avoid trying to maintain a small relative error for a quantity that is insignificantly small.

SYMBOL DICTIONARY

ABS = external routine (absolute value)

DEN = largest of |F2R| and |F2I|

DMIN = minimum denominator

FII = imaginary part of first integration result

FIR = real part of first integration result

F2I = imaginary part of second integration result

F2R = real part of second integration result

TI = relative difference of imaginary parts

TR = relative difference of real parts

CONSTANT

1.E-37 = tolerance in test for zero

1	SUBROUTINE TEST (F1R,F2R,TR,F11,F21,T1,DMIN)	TE	1
2 C		TE	2
3 C	TEST FOR CONVERGENCE IN NUMERICAL INTEGRATION	TE	3
4 C		TE	4
5	DEN=ABS(F2R)	TE	5
6	TR=ABS(F2I)	TE	6
7	IF (DEN.LT.TR) DEN=TR	TE	7
8	IF (DEN.LT.DMIN) DEN=DMIN	TE	8
9	IF (DEN.LT.1.E-37) GO TO 1	TE	9
10	TR=ABS((F1R-F2R)/DEN)	TE	10
11	TI=ABS((F1I-F2I)/DEN)	TE	11
12	RETURN	TE	12
13 1	TR=O.	TE	13
14	TI=O.	TE	14
15	RETURN	TE	15
16	END	TE	16-

TRIO

PURPOSE

To evaluate each of the parts of current expansion functions on a single segment due to each of the segments connected to the given segment.

METHOD

TRIO consists of a loop that uses the connection data in arrays ICON1 and ICON2 to locate all segments connected to segment J. Subroutine SBF is called to evaluate the current expansion function centered on each connected segment and on segment J. Only the function coefficients for that part of each expansion function on segment J are returned and are stored in arrays AX, BX, and CX. The number of the segment with which each expansion function part is associated is stored in array JCO and the total number of expansion functions involved is stored as JSNO.

SYMBOL DICTIONARY

IEND = -1 during calculations for end 1 of segment J, and +1 for end 2

JCOX = number of a segment connected to segment J

JEND = -1 if end 1 of segment JCOX is connected to segment J; +1 if end
2 of segment JCOX is connected to segment J

JMAX = dimension of the arrays in COMMON/SEGJ/

1		SUBROUTINE TRIO (J)	TR	1
2	C	COMPUTE THE COMPONENTS OF ALL BASIS FUNCTIONS ON SEGMENT J	TR	2
3		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300		3
4		1).BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(TR	4
5		2300), WLAM, IPSYM	TR	5
6		COMMON /SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IP	TR	6
7		1CON(10), NPCON	TR	7
8		DATA JMAX/30/	TR	8
9		JSNO=0	TR	9
10		JCOX=ICON1(J)	TR	10
11		IF (JCOX.GT.10000) GO TO 7	TR	11
12		JEND=-1	TR	12
13		IEND=-1	TR	13
14		IF (JCOX) 1,7,2	TR	14
15	1	JCOX=-JCOX	TR	15
16		GO TO 3	TR	16
17	2	JEND=-JEND	TR	17
18	3	IF (JCOX.EQ.J) GO TO 6	TR	18
19		JSNO=JSNO+1	TR	19
20		IF (JSNO.GE.JMAX) GO TO 9	TR	20
21		CALL SBF (JCOX, J, AX(JSNO), BX(JSNO), CX(JSNO))	TR	21
22		JCO(JSNO)=JCOX	TR	22
23		IF (JEND.EQ.1) GO TO 4	TR	23
24		JCOX=ICON1(JCOX)	TR	24
25		GO TO 5	TR	25
26	4	JCOX=ICON2(JCOX)	TR	26
27	5	IF (JCOX) 1,9,2	TR	27
28		IF (IEND.EQ.1) GO TO 8	TR	28
29	7	JCOX=ICON2(J)	TR	29
30		IF (JCOX.GT.10000) GO TO 8	TR	30
31		JEND=1	TR	31
32		IEND=1	TR	32
33		IF (JCOX) 1,8,2	TR	33
34	8	JSNO=JSNO+1	TR	34
35		CALL SBF (J,J,AX(JSNO),BX(JSNO),CX(JSNO))	TR	35
36		JCO(JSNO)=J	TR	36
37		RETURN	TR	37
38		PRINT 10, J	TR	38
39		STOP	TR	39
40	C		TR	40
	10	FORMAT (44H TRIO - SEGMENT CONNENTION ERROR FOR SEGMENT, 15)	TR	41
42		END	TR	42-

UNERE

PURPOSE

To calculate the electric field due to unit currents in the \hat{t}_1 and \hat{t}_2 directions on a surface patch.

METHOD

The electric field due to a patch j is calculated by the expression

$$\begin{split} \overline{E}(\overline{r}_0) &= \frac{\eta_0}{i8\pi^2} \left[\left(\frac{-1 - i2\pi R/\lambda + 4\pi^2 (R/\lambda)^2}{(R/\lambda)^3} \right) \overline{J}_j \right. \\ &+ \left(\frac{3 + i6\pi R/\lambda - 4\pi^2 (R/\lambda)^2}{(R/\lambda)^5} \right) \overline{J}_j \cdot (\overline{R}/\lambda) (\overline{R}/\lambda) \right] \exp(-i2\pi R/\lambda) \frac{\Delta A_j}{\lambda^2} , \end{split}$$

where $i = \sqrt{-1}$, $\overline{J}_j = J_{1j}\hat{t}_{1j} + J_{2j}\hat{t}_{2j}$, \overline{R} is the vector from the source to the observation point, and ΔA_j is the area of the patch. For UNERE, J_{1j} and J_{2j} are unity. The expression above for a single patch is obtained from the surface integral in equation (3) in Part I where constant current and one step integration are used for the patch.

CODING

UE14 - UE20 z components of patch parameters are adjusted for direct
 or reflected fields.

UE25 - UE32 For R < 10^{-10} , the fields are set to zero.

UE34 - UE47 Expression for \overline{E} is evaluated for \overline{J}_j equal to \hat{t}_1 and \hat{t}_2 .

UE50 - UE55 For reflection in a perfect ground, \overline{E} is reversed in sign.

UE57 - UE79 For reflection in an imperfect ground, E is multiplied by the reflection coefficients.

SYMBOL DICTIONARY

$$CONST = \frac{\eta_0}{8\pi^2}$$

CTH = $\cos \theta$; θ is the angle between the reflected ray and the normal to the surface

EDP =
$$(\overline{E} \cdot \hat{p})(R_H - R_V)$$

ER =
$$\frac{\eta_0}{i8\pi^2} \exp(-i \ 2\pi \ R/\lambda) \ \Delta A_j/\lambda^2 \ \text{at UE37}$$

= Q2 ($\hat{t}_{1j} \cdot \overline{R}/\lambda$) at UE40
= Q2 ($\hat{t}_{2j} \cdot \overline{R}/\lambda$) at UE44
EXK
EYK | = \overline{E} due to current \hat{t}_{1j}
EXS | EYS | = \overline{E} due to current \hat{t}_{2j}

Q1 =
$$\left[\frac{-1 - i2\pi R/\lambda + 4\pi^2 (R/\lambda)^2}{(R/\lambda)^3} \right] (ER)$$
Q2 =
$$\left[\frac{3 + i6\pi R/\lambda - 4\pi^2 (R/\lambda)^2}{(R/\lambda)^5} \right] (ER)$$

$$R = R/\lambda$$

$$RRH = R_{u}$$

$$RRV = R_V$$

$$RT = (R/\lambda)^3$$

$$RT = (R/\lambda)^3$$

$$\begin{array}{c}
RX \\
RY \\
RZ
\end{array} = \overline{R}/\lambda$$

$$R2 = (R/\lambda)^2$$

R2 =
$$(R/\lambda)^2$$

S = $\Delta A_j/\lambda^2$

$$\left.\begin{array}{c}
 T2XJ \\
 T2YJ
 \end{array}\right\} = \hat{t}_{2j}$$

TPI =
$$2\pi$$

TT1 =
$$-2\pi R/\lambda$$

TT2 =
$$4\pi 2 (R/\lambda)^2$$

XYMAG = magnitude of the projection of \overline{R}/λ onto the x-y plane ZR = z component of \overline{R}/λ after reflection

CONSTANTS

$$4.771341188 = \frac{\eta_0}{8\pi^2}$$

$$6.283185308 = 2\pi$$

UNERE

```
SUBROUTINE UNERE (XOB, YOB, ZOB)
                                                                                    UN
         CALCULATES THE ELECTRIC FIELD DUE TO UNIT CURRENT IN THE T1 AND T2 UN
2 C
         DIRECTIONS ON A PATCH
3 C
         COMPLEX EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, ZRATI, ZRATI2, T1, ER, Q1, UN
5
        1Q2, RRV, RRH, EDP, FRATI
                                                                                    UN
         COMMON /DATAJ/ S.B.XJ.YJ.ZJ.CABJ.SABJ.SALPJ.EXK.EYK.EZK.EXS.EYS.EZ UN
6
7
        1S, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND
                                                                                    UN
                                                                                         7
8
         COMMON /GND/ZRATI.ZRATI2.FRATI.CL,CH,SCRWL,SCRWR,NRADL,KSYMP,IFAR, UN
                                                                                         8
9
        1IPERF,T1,T2
                                                                                    UN
                                                                                         9
         EQUIVALENCE (T1XJ, CABJ), (T1YJ, SABJ), (T1ZJ, SALPJ), (T2XJ, B), (T2Y UN
10
                                                                                        10
        1J, IND1), (T2ZJ, IND2)
11
                                                                                    UN
                                                                                        11
         DATA TPI, CONST/6.283185308, 4.771341188/
12
                                                                                    UN
                                                                                        12
13 C
         CONST=ETA/(8.*PI**2)
                                                                                        13
14
         ZR=ZJ
                                                                                    UN
                                                                                        14
15
         T1ZR=T1ZJ
                                                                                    UN
                                                                                        15
16
         T2ZR=T2ZJ
                                                                                    UN
                                                                                        16
17
         IF (IPGND.NE.2) GO TO 1
                                                                                    UN
                                                                                        17
18
         ZR=-ZR
                                                                                    UN
                                                                                        18
         T1ZR=-T1ZR
19
                                                                                    UN
                                                                                        19
20
         T2ZR=-T2ZR
                                                                                    UN
                                                                                        20
         RX=XOB-XJ
21 1
                                                                                    UN
                                                                                        21
22
         RY=YOB-YJ
                                                                                    UN
                                                                                        22
23
         RZ=ZOB-ZR
                                                                                    UN
                                                                                        23
         R2=RX*RX+RY*RY+RZ*RZ
24
                                                                                    UN
                                                                                        24
         IF (R2.GT.1.E-20) GO TO 2
25
                                                                                        25
                                                                                    UN
26
          EXK=(0.,0.)
                                                                                    UN
                                                                                        26
27
          EYK=(0.,0.)
                                                                                    UN
                                                                                        27
28
          EZK=(0.,0.)
                                                                                    UN
                                                                                        28
29
          EXS=(0.,0.)
                                                                                    UN
                                                                                        29
30
          EYS=(0.,0.)
                                                                                    UN
                                                                                        30
31
          EZS=(0.,0.)
                                                                                    UN
                                                                                        31
          RETURN
32
                                                                                    UN
                                                                                        32
33 2
          R=SQRT(R2)
                                                                                    UN
                                                                                        33
          TT1=-TPI*R
34
                                                                                    UN
                                                                                        34
35
         TT2=TT1+TT1
                                                                                    UN
                                                                                        35
         RT=R2*R
36
                                                                                    UN
                                                                                        36
37
          ER=CMPLX(SIN(TT1),-COS(TT1))*(CONST*S)
                                                                                    UN
                                                                                        37
38
          Q1=CMPLX(TT2-1.,TT1)*ER/RT
                                                                                    UN
                                                                                        38
39
         Q2=CMPLX(3.-TT2,-3.*TT1)*ER/(RT*R2)
                                                                                    UN
                                                                                        39
          ER=Q2*(T1XJ*RX+T1YJ*RY+T1ZR*RZ)
40
                                                                                    UN
                                                                                        40
          EXK=Q1 *T1XJ+ER*RX
41
                                                                                    UN
                                                                                        41
42
          EYK=Q1 *T1YJ+ER*RY
                                                                                    UN
                                                                                        42
          EZK=Q1 *T1ZR+ER*RZ
43
                                                                                    UN
                                                                                        43
44
          ER=Q2*(T2XJ*RX+T2YJ*RY+T2ZR*RZ)
                                                                                    UN
                                                                                        44
45
          EXS=Q1 *T2XJ+ER*RX
                                                                                    UN
                                                                                        45
          EYS=Q1 *T2YJ+ER*RY
46
                                                                                    UN
                                                                                        46
47
          EZS=Q1 * T2ZR+ER*RZ
                                                                                    LIN
                                                                                        47
48
          IF (IPGND.EQ.1) GO TO 6
                                                                                    UN
                                                                                        48
49
          IF (IPERF.NE.1) GO TO 3
                                                                                    UN
                                                                                        49
50
          EXK=-EXK
                                                                                    UN
                                                                                        50
51
          EYK=-EYK
                                                                                    UN
                                                                                        51
52
          EZK=-EZK
                                                                                    UN
                                                                                        52
          EXS=-EXS
53
                                                                                    UN
                                                                                        53
          EYS=-EYS
54
                                                                                    UN
                                                                                        54
55
          EZS=-EZS
                                                                                    UN
                                                                                        55
56
          GO TO 6
                                                                                    UN
                                                                                        56
57 3
          XYMAG=SQRT(RX*RX+RY*RY)
                                                                                    UN
                                                                                        57
58
          IF (XYMAG.GT.1.E-6) GO TO 4
                                                                                    UN
                                                                                        58
59
          PX=0.
                                                                                    UN
                                                                                        59
          PY=0.
60
                                                                                    UN
                                                                                        60
61
          CTH=1.
                                                                                    UN
                                                                                        61
62
          RRV=(1.,0.)
                                                                                    UN
                                                                                        62
          GO TO 5
63
                                                                                    UN
                                                                                        63
          PX=-RY/XYMAG
64 4
                                                                                    UN
                                                                                        64
```

65	PY=RX/XYMAG	UN	65
66	CTH=RZ/SQRT(XYMAG*XYMAG+RZ*RZ)	UN	66
67	RRY=CSQRT(1ZRATI*ZRATI*(1CTH*CTH))	UN	67
68 5	RRH=ZRATI*CTH	UN	68
69	RRH=(RRH-RRV)/(RRH+RRV)	UN	69
70	RRY=ZRATI*RRY	UN	70
71	RRV=-(CTH-RRV)/(CTH+RRV)	UN	71
72	EDP=(EXK*PX+EYK*PY)*(RRH-RRV)	UN	72
73	EXK=EXK*RRV+EDP*PX	UN	73
74	EYK=EYK*RRV+EDP*PY	UN	74
75	EZK=EZK*RRV	UN	75
76	EDP=(EXS*PX+EYS*PY)*(RRH-RRV)	UN	76
77	EXS=EXS*RRV+EDP*PX	UN	77
78	EYS=EYS*RRV+EDP*PY	UN	78
79	EZS=EZS*RRV	UN	79
80 6	RETURN	UN	80
81	END	UN	81-

WIRE

PURPOSE

To compute segment coordinates to fill COMMON/DATA/ for a straight line of segments.

METHOD

The formal parameters specify the beginning and ending points of the line and the number of segments into which it is to be divided. The code computes the coordinates of the end points of each segment. The lengths of successive segments are scaled by the factor RDEL if this factor is not one. For NS segments, the length of the first segment is

$$S_1 = \frac{L(1 - RDEL)}{1 - (RDEL)^{NS}}$$

or

$$S_1 = L/NS \text{ if RDEL} = 1$$

where L is the total length of wire.

The radius is RAD for the first segment and is scaled by RRAD.

SYMBOL DICTIONARY

DELZ = segment length

FNS = real number equivalent of NS

IST = initial segment number

ITG = tag number assigned to all segments of the line

NS = number of segments into which line is divided

RAD = radius of first segment

RADZ = segment radius

RD, RDEL = scaling factor for segment length

RRAD = scaling factor for segment radius

XD = increment to x coordinates

XS1 = x coordinate of first end of segment

XS2 = x coordinate of second end of segment

XW1 = x coordinate of first end of line

XW2 = x coordinate of second end of line

X2(I)	= x coordinate of end 2 of segment I
YD	= increment to y coordinates
YS1	= y coordinate of first end of segment
YS2	= y coordinate of second end of segment
YW1	= y coordinate of first end of wire
YW2	= y coordinate of second end of wire
Y2(I)	= y coordinate of end 2 of segment I
ZD	= increment to z coordinates
ZS1	= z coordinate of first end of segment
ZS2	= z coordinate of second end of segment
ZW1	= z coordinate of first end of line
ZW2	= z coordinate of second end of line
72(T)	= 2 coordinate of second end of segment I

1	С	SUBROUTINE WIRE (XW1, YW1, ZW1, XW2, YW2, ZW2, RAD, RDEL, RRAD, NS, ITG)	WI	1
	C	CURROUTING WIRE CONSPANSE SECURIT CONSTRUCTOR DATA SON A CITATUT	WI	2
		SUBROUTINE WIRE GENERATES SEGMENT GEOMETRY DATA FOR A STRAIGHT	WI	3
	C	WIRE OF NS SEGMENTS.	WI	4
	C	20140N (D.T.) (1.0 N/ NO N/ NO N/ NO N/ NO N/ TOO) T/TOO) T/TOO	WI	5
6		COMMON /DATA/ LD,N1,N2,N,NP,M1,M2,M,MP,X(300),Y(300),Z(300),SI(300		6
7		1),BI(300),ALP(300),BET(300),ICON1(300),ICON2(300),ITAG(300),ICONX(7
8		2300), WLAM, IPSYM	WI	8
9		DIMENSION X2(1), Y2(1), Z2(1)	WI	9
10		EQUIVALENCE (X2(1),SI(1)), (Y2(1),ALP(1)), (Z2(1),BET(1))	WI	10
11		IST=N+1	WI	11
12		N=N+NS	WI	12
13		NP=N	WI	13
14		MP=M	WI	14
15		IPSYM=0	WI	15
16		IF (NS.LT.1) RETURN	WI	16
17		XD=XW2-XW1	WI	17
18		YD=YW2-YW1	WI	18
19		ZD=ZW2-ZW1	WI	19
20		IF (ABS(RDEL-1.).LT.1.E-6) GO TO 1	WI	20
21		DELZ=SQRT(XD*XD+YD*YD+ZD*ZD)	WI	21
22		XD=XD/DELZ	WI	22
23		YD=YD/DELZ	WI	23
24		ZD=ZD/DELZ	WI	24
25		DELZ=DELZ*(1RDEL)/(1RDEL**NS)	WI	25
26		RD=RDEL	WI	26
27		GO TO 2	WI	27
28	1	FNS=NS	WI	28
29		XD=XD/FNS	WI	29
30		YD=YD/FNS	WI	30
31		ZD=ZD/FNS	WI	31
32		DELZ=1.	WI	32
33		RD=1.	WI	33
34	2	RADZ=RAD	WI	34
35		XS1=XW1	WI	35
36		YS1=YW1	WI	36
37		ZS1=ZW1	WI	37
38		DO 3 I=IST,N	WI	38
39		ITAG(I)=ITG	WI	39
40		XS2=XS1+XD*DELZ	WI	40
41		YS2=YS1+YD*DELZ	WI	41
42		ZS2=ZS1+ZD*DELZ	WI	42
43		X(I)=XS1	WI	43
45		Y(I)=YS1	WI	44
46		Z(I)=ZS1	WI	
47		X2(I)=XS2 Y2(I)=YS2	WI	46
48		Z2(I)=ZS2	WI	48
49		BI(I)=RADZ	WI	49
50		DELZ=DELZ*RD	WI	50
51		RADZ=RADZ+RRAD	WI	51
52		XS1=XS2	WI	52
53		YS1=YS2	WI	53
54		ZS1=ZS2	WI	54
55		X2(N)=XW2	WI	55
56		Y2(N)=YW2	WI	56
57		Z2(N)=ZW2	WI	57
58		RETURN	WI	58
59		END	WI	59-

ZINT

PURPOSE

To compute the internal impedance of a circular wire with finite conductivity.

METHOD

The internal impedance per unit length of a circular wire is given by

$$Z = \frac{i}{b} \sqrt{\frac{f\mu}{2\pi\sigma}} \left[\frac{Ber(q) + jBei(q)}{Ber'(q) + jBei'(q)} \right],$$

where

 $q = b\sqrt{2\pi f \mu \sigma}$

 σ = wire conductivity

 μ = permeability of free space

b = wire radius

f = frequency

Ber Bei = Kelvin functions

The term that modifies the diagonal matrix element G_{ii} in the interaction matrix is the total impedance of segment i divided by Δ_i/λ , where Δ_i = segment length. Thus, if G_{ii} is the diagonal matrix element without loading, the new element is

$$G_{ij} - Z\Delta_i/(\Delta_i/\lambda) = G_{ij} - Z\lambda$$
.

Normalized to wavelength, this term is

$$z_{i} = z\lambda = \frac{j}{(b/\lambda)} \sqrt{\frac{c\mu}{2\pi(\sigma\lambda)}} \left[\frac{Ber(q) + jBei(q)}{Ber'(q) + jBei'(q)} \right],$$

where

 $q = (b/\lambda) \sqrt{2\pi c\mu(\sigma\lambda)}$

c = velocity of light

The Kelvin functions and derivatives of Kelvin functions are computed from their polynomial approximations.

CODING

```
    ZI8 - ZI15 Functions θ, φ, f, and g for large argument polynomial approximations (see ref. 5).
    ZI19 - ZI26 Compute Ber(q) + jBei(q) for q ≤ 8.
```

ZI27 - ZI31 Compute Ber'(q) + jBei'(q) for
$$q \le 8$$
.

ZI32
$$[Ber(q) + jBei(q)]/[Ber'(q) + jBei'(q)].$$

ZI34 Ber(q) + jBei(q) for
$$8 < q \le 110$$
.

ZI35 Ber'(q) + jBei'(q) for
$$8 < q < 110$$
.

ZI38
$$[Ber(q) + jBei(q)]/[Ber'(q) + jBei'(q)]$$
 for $110 < q < \infty$.

SYMBOL DICTIONARY

BR1 =
$$Ber(q) + jBei(q)$$
 or $[Ber(q) + jBei(q)]/[Ber'(q) + Bei'(q)]$

$$BR2 = Ber'(q) + jBei'(q)$$

CMOTP =
$$c\mu/(2\pi)$$

CMPLX = external routine (forms complex number)

$$CN = (1 + i)/\sqrt{2}$$

D = function argument

$$F(D) = f(D)$$
 (see ref. 5)

FJ = j

$$G(D) = g(D)$$
 (see ref. 5)

$$PH(D) = \phi(X)$$
, $D = 8/X$ (see ref. 5)

 $PI = \pi$

POT = $\pi/2$

 $ROLAM = b/\lambda$

 $S = (X/8)^4$

 $SIGL = \sigma \lambda$

SQRT = external routine (square root)

 $TH(D) = \theta(X), D = 8/X \text{ (see ref. 5)}$

 $TP = 2\pi$

TPCMU =
$$2\pi c\mu$$
; c = velocity of light
X = q
Y = $(X/8)^2$
ZINT = Z_i

CONSTANTS

1.5707963 = $\pi/2$ 3.141592654 = π 6.283185308 = 2π 60. = $c\mu/2\pi$ 2.368705E+3 = $2\pi c\mu$ (0., 1.) = j (0.70710678, 0.70710678) = $(1 + j)/\sqrt{2}$ (0.70710678, -0.70710678) = $\lim_{n \to \infty} f(n) + j \cdot f(n)$ [Ber'(q) + j Bei'(q)]

Other constants are factors in the polynomial approximations.

1 2	_	COMPLEX FUNCTION ZINT(SIGL, ROLAM)	ZI ZI	1
3		ZINT COMPUTES THE INTERNAL IMPEDANCE OF A CIRCULAR WIRE	ZI	2
4		TENTO SOME OF THE ENTERINE SMILED NOT A SERVICE WITH	ZI	4
5			ZI	5
6		COMPLEX TH,PH,F,G,FJ,CN,BR1,BR2	ZI	6
7		COMPLEX CC1, CC2, CC3, CC4, CC5, CC6, CC7, CC8, CC9, CC10, CC11, CC12, CC13, CC		7
8		114	ZI	8
9		DIMENSION FJX(2), CNX(2), CCN(28)	ZI	9
10		EQUIVALENCE (FJ.FJX), (CN,CNX), (CC1,CCN(1)), (CC2,CCN(3)), (CC3,C		10
11		1CN(5)), (CC4,CCN(7)), (CC5,CCN(9)), (CC6,CCN(11)), (CC7,CCN(13)),	ZI	11
12		2(CC8,CCN(15)), (CC9,CCN(17)), (CC10,CCN(19)), (CC11,CCN(21)), (CC1	ZI	12
13		32,CCN(23)), (CC13,CCN(25)), (CC14,CCN(27))	ZI	13
14		DATA PI,POT,TP,TPCMU/3.1415926,1.5707963,6.2831853,2.368705E+3/	ZI	14
15		DATA CMOTP/60.00/,FJX/0.,1./,CNX/.70710678,.70710678/	ZI	15
16		DATA CCN/6.E-7,1.9E-6,-3.4E-6,5.1E-6,-2.52E-5,0.,-9.06E-5,-9.01E-5		16
17		1,0.,-9.765E-4,.0110486,0110485,0.,3926991,1.6E-6,-3.2E-6,1.17E	2000	17
18		2-5,-2.4E-6,3.46E-5,3.38E-3,5.E-7,2.452E-4,-1.3813E-3,1.3811E-3,-6.	210000000000000000000000000000000000000	18
19		325001E-2,-1.E-7,.7071068,.7071068/	ZI	19
20		TH(D)=((((CC1*D+CC2)*D+CC3)*D+CC4)*D+CC5)*D+CC6)*D+CC7	ZI	20
21		PH(D)=((((CC8*D+CC9)*D+CC10)*D+CC11)*D+CC12)*D+CC13)*D+CC14	ZI	21
22		F(D)=SQRT(POT/D)*CEXP(-CN*D+TH(-8./X))	ZI	22
23		G(D)=CEXP(CN*D+TH(8./X))/SQRT(TP*D)	ZI	23
24		X=SQRT(TPCMU*SIGL)*ROLAM	ZI	24
25		IF (X.GT.110.) GO TO 2	ZI	25
26		IF (X.GT.8.) GO TO 1	ZI	26
27		Y=X/8.	ZI	27
28		Y=Y*Y	ZI	28
29		S=Y•Y	ZI	29
30		BER=((((((-9.01E-6*S+1.22552E-3)*S08349609)*S+2.6419140)*S-32.36		30
31		13456)*S+113.77778)*S-64.)*S+1.	ZI	31
32		BEI=((((((1.1346E-4*S01103667)*S+.52185615)*S-10.567658)*S+72.81		32
33		17777)*S-113.77778)*S+16.)*Y	ZI	33
34		BR1=CMPLX(BER, BEI)	ZI	34
35		BER=(((((((-3.94E-6*S+4.5957E-4)*S02609253)*S+.66047849)*S-6.068		35
36		11481)*S+14.222222)*S-4.)*Y)*X	ZI	36
37		BEI=((((((4.609E-5*S-3.79386E-3)*S+.14677204)*S-2.3116751)*S+11.37		37
38		17778)*S-10.666667)*S+.5)*X	ZI	38
39		BR2=CMPLX(BER,BEI)	ZI	39
40		BR1=BR1/BR2	ZI	40
41		GO TO 3	ZI	41
42	1	BR2=FJ*F(X)/PI	ZI	42
43		BR1=G(X)+BR2	ZI	43
44		BR2=G(X)*PH(8./X)-BR2*PH(-8./X)	ZI	44
45		BR1=BR1/BR2	ZI	45
46		GO TO 3	ZI	46
47	2	BR1=CMPLX(.70710678,70710678)	ZI	47
48		ZINT=FJ*SQRT(CMOTP/SIGL)*BR1/ROLAM	ZI	48
49		RETURN	ZI	49
50		END	7.	50

Section III Common Blocks

Section of the sectio

This section discusses each labeled common block which is used in the NEC-2 code. For each common block, a list of the routines in which it is used is given along with a definition of the variables used in conjunction with the common block. The common blocks are presented in alphabetical order.

COMMON/ANGL/ SALP(300)

Routines Using /ANGL/

CABC, CMSS, CMSW, CMWS, CMWW, DATAGN, ETMNS, FFLD, GFLL, GFLD, GFOUT, MOVE, NEFLD, NHFLD, PATCH, QDSRC, REFLC

/ANGL/ Parameters for Wire Segments

SALP(I) = $\sin (\alpha)$, where α = elevation angle of segment I (see figure 11)

/ANGL/ Parameters for Surface Patches

SALP(LD-I+1) = +1 if
$$\hat{t}_1 \times \hat{t}_2 = \hat{n}$$
 for patch I, or -1 if $\hat{t}_1 \times \hat{t}_2 = -\hat{n}$ for patch I

The second case occurs when the patch has been produced by reflection of a patch originally input.

COMMON/CMB/ CM(4000)

Routines Using /CMB/

MAIN, GFIL, GFOUT

The interaction matrix is stored in array CM. If the matrix is too large to fit in CM, then pairs of blocks of the matrix are stored in CM as they are needed.

Figure 11. Coordinates of Segment i.

COMMON/CRNT/AIR(300), AII(300), BIR(300), BII(300), CIR(300), CII(300) CUR(900)

Routines Using /CRNT/

MAIN, CABC, FFLD, GFLD, NEFLD, NETWK, NHFLD

/CRNT/ Parameters for Wire Segments

Subroutine CABC fills the first six arrays in /CRNT/ with the real and imaginary parts of the constants in the current expansion of each segment,

$$I_{i}(s) = A_{i} + B_{i} \sin [k(s - s_{i})] + C_{i} \cos [k(s - s_{i})]$$

where $s = s_i$ at the center of segment i. Except during intermediate calculations for non-radiating networks, the current basis-function amplitudes are computed and stored in array CUR. CABC replaces the basis function amplitudes in CUR by the current at the center of each segment, $(A_i + C_i)$. For i = I,

AIR(I) $= A_i/\lambda \text{ (real, imaginary)}$ $BIR(I) \\ BII(I) \\ CIR(I) \\ CIR(I) \\ CUR(I) \\ = amplitude of i basis function going into CABC or <math display="block">(A_i + C_i)/\lambda \text{ at end of CABC}$

/CRNT/ Parameters for Surface Patches

Surface current components are stored in CUR. Before CABC is called, the surface current strengths in directions \hat{t}_1 and \hat{t}_2 on patch i are stored in CUR(N + 2I - 1) and CUR(N + 2I), respectively where N is the number of segments. After CABC, the x, y and z components of surface current are stored in CUR(N + 3I - 2), CUR(N + 3I - 1) and CUR(N + 3I), respectively.

COMMON/DATA/ LD, N1, N2, N, NP, M1, M2, M, MP, X(300), Y(300), Z(300), SI(300), BI(300), ALP(300), BET(300), ICON1(300), ICON2(300), ITAG(300), ICONX(300), WLAM, IPSYM

Routines Using /DATA/

MAIN, ARC, CABC, CMNGF, CMSET, CMSS, CMSW, CMWS, CMWW, CONECT, DATAGN, ETMNS, FFLD, FFLDS, GFIL, GFLD, GFOUT, ISEGNO, LOAD, MOVE, NEFLD, NETWK, NFPAT, NHFLD, PATCH, QDSRC, RDPAT, REFLC, SBF, TBF, TRIO, WIRE

/DATA/ Parameters for Wire Segments

The arrays in /DATA/ are used to store the parameters defining the segments. Two forms of the segment parameters are used.

During geometry input in routines ARC, CONECT, DATAGN, MOVE, REFLEC and WIRE, the coordinates of the segment ends are stored. The symbol meanings in the geometry routines are:

 $x(1) = x_1$ $y(1) = y_1$ $z(1) = z_1$ SI(I) = X₂ [equivalenced to X2(I)]
ALP(I) = Y₂ [equivalenced to Y2(I)]
BET(I) = Z₂ [equivalenced to Z2(I)]

where X_1 , Y_1 , Z_1 are the coordinates of the first end of the segment, and X_2 , Y_2 , Z_2 are the coordinates of the second end, as illustrated in figure 11. Coordinates may have any units but must be scaled to meters before data input is ended, since the main program requires meters.

In the main program, the segment data is converted to: the coordinates of the segment center, components of the unit vector in the direction of the segment, and the segment length. The symbol meanings after the geometry section are:

X(I) Y(I) = X_i, Y_i, Z_i (see figure 11) Z(I) = segment length ALP(I) = cos α cos β [equivalenced to CAB(I)] BET(I) = cos α sin β [equivalenced to SAB(I)]

The z component of the unit vector in the direction of the segment, $\sin \alpha$, is stored in /ANGL/.

The other symbol meanings in /DATA/ for segments are:

BI(I) = radius of segment I

ICON1(I) = connection number for end 1 of segment I. If k is a positive
integer less than 10,000, the meaning of ICON1 is as follows.

ICON1(I) = 0: no connection.

ICON1(I) = I: end 1 of segment I connects to a ground plane.

ICON1(I) = 10,000 + k: end 1 of segment I connects to a surface with the 4 patches around the connection point numbered k, k + 1, k + 2 and k + 3.

- ICON2(I) = connection number for end 2 of segment I.
- ITAG(I) = tag number of segment I. This number is assigned during structure input to permit later reference to the segment without knowing the segment index I in the data arrays.
- ICONX(I) = equation number for the new basis function when segment I
 is in a numerical Green's function file and a new segment
 connects to segment I modifying the old basis function.

/DATA/ Parameters for Surface Patches

Patch parameters are set in subroutine PATCH. The input parameters for a patch are the coordinates of the patch center, patch area, and orientation of the outward, normal unit vector, $\hat{\mathbf{n}}$. The parameters stored in /DATA/ are the center point coordinates, area, and the components of the two surface unit vectors, $\hat{\mathbf{t}}_1$ and $\hat{\mathbf{t}}_2$. The vector $\hat{\mathbf{t}}_1$ is parallel to a side of the triangular, rectangular, or quadrilateral patch. For a patch of arbitrary shape, it is chosen by the following rules:

For a horizontal patch, $\hat{t}_1 = \hat{x}$; For a nonhorizontal patch, $\hat{t}_1 = (\hat{z} \times \hat{n})/|\hat{z} \times \hat{n}|$; \hat{t}_2 is then chosen as $\hat{t}_2 = \hat{n} \times \hat{t}_1$

With J = LD + 1 - I, the parameters for patch I are stored as follows.

X(J)
Y(J)
Y(J)
Z(J)

SI(J)
ALP(J)
BET(J)
ICON1(J)
ICON2(J)
ITAG(J)

= x, y, and z components of t
2 (equivalenced to T1X, T1Y, T1Z)

T2Z)

BI(J) = patch area

Scalar variables in /DATA/ are:

IPSYM = symmetry flag. The meanings of IPSYM are:

IPSYM = 0: no symmetry

IPSYM > 0: plane symmetry

IPSYM < 0: cylindrical symmetry

IPSYM = 2: plane symmetry about Z = 0

IIPSYMI > 2: structure has been rotated about x or y axis. If ground plane is indicated by IGND # 0 in the call to subroutine CONECT and IPSYM = 2, symmetry about a horizontal plane is removed by multiplying NP by 2.

If IIPSYMI > 2 and IGND # 0, all symmetry is removed by setting NP = N and IPSYM = 0 in CONECT.

LD = length of arrays in /DATA/

N1 = number of segments in NGF. If NGF is not used N1 = 0

N2 = N1 + 1

N = total number of segments

NP = number of segments in a symmetric cell

M1 = number of patches in NGF. If NGF is not used M1 = 0

M2 = M1 + 1

M = total number of patches

MP = number of patches in a symmetric cell

WLAM = wavelength in meters

COMMON/DATAJ/ S, B, XJ, YJ, ZJ, CABJ, SABJ, SALPJ, EXK, EYK, EZK, EXS, EYS, EZS, EXC, EYC, EZC, RKH, IEXK, IND1, IND2, IPGND

Routines Using /DATAJ/

CMNGF, CMSET, CMSS, CMSW, CMWS, CMWW, EFLD, HINTG, HSFLD, NEFLD, NHFLD, PCINT, QDSRC, SFLDS, UNERE

/DATAJ/ is used to pass the parameters of the source segment or patch to the routines that compute the E or H field and to return the field components.

/DATAJ/ Parameters for Wire Segments

S = segment length

B = segment radius

XJ) = coordinates of segment center ZJ CABJ SABJ = x, y, and z, respectively, of the unit vector in the direction SALPJ of the segment EXK) EYK = x, y, and z components of the E or H field due to a constant EZK current EXS EYS = x, y, and z components of the E or H field due to a sin ks EZS current EXC EYC = x, y, and z components of the E or H field due to cos ks EZC) current RKH = minimum distance for use of the Hertzian dipole approximation for computing the E field of a segment IEXK = flag to select thin wire approximation or extended thin wire approximation for E field (IEXK = 1 for extended thin wire approximation) IND1 = flag to inhibit use of the extended thin wire approximation on end 1 of the source segment. This is used when there is a bend or change in radius at end 1. IND1 = 2 inhibits the extended thin wire approximation. IND2 = flag to inhibit use of the extended thin wire approximation on end 2 of the source segment IPGND = not used /DATAJ/ Parameters for Surface Patches S = patch area in units of wavelength squared = x component of \hat{t}_2 for the patch = x, y, and z components of the position of the patch center

CABJ * x, y, and z components of t1 SABJ SALPJ = x, y, and z components of E or H due to a current with unit EXK magnitude in the direction \hat{t}_1 on the patch EYK EZK EXS = \vec{E} or \vec{H} due to a current \hat{t}_2 on the patch EYS EZS EXC) EYC = not used; may serve as intermediate variables in some routines EZC IND1 = y component of t2 IND2 = z component of t, IPGND = flag to request calculation of the direct field or field reflected from the ground (two for ground)

COMMON/FPAT/ NTH, NPH, IPD, IAVP, INOR, IAX, THETS, PHIS, DTH, DPH, RFLD, GNOR, CLT, CHT, EPSR2, SIG2, IXTYP, XPR6, PINR, PNLR, PLOSS NEAR, NFEH, NRX, NRY, NRZ, XNR, YNR, ZNR, DXNR, DYNR, DZNR

Routines Using /FPAT/

MAIN, NFPAT, RDPAT

Variables are defined in subroutine descriptions.

COMMON/GGRID/ AR1(11, 10, 4), AR2(17, 5, 4), AR3(9, 8, 4), EPSCF, DXA(3), DYA(3), XSA(3), YSA(3), NXA(3), NYA(3)

Routines Using /GGRID/

MAIN, GFIL, GFOUT, INTRP

Variables are defined under subroutine INTRP.

COMMON/GND/ ZRATI, ZRATI2, FRATI, CL, CH, SCRWL, SCRWR, NRADL, KSYMP, IFAR, IPERF, T1, T2

Routines Using /GND/

MAIN, CMSW, EFLD, ETMNS, FFLD, GFIL, GFOUT, HINTG, HSFLD, NEFLD, RDPAT, SFLDS, UNERE

/GND/ contains parameters of the ground including the two-medium ground and radial-wire ground-screen cases. The symbol definitions are as follows.

ZRATI =
$$\left[\varepsilon_{r} - j\sigma/\omega\varepsilon_{0}\right]^{-1/2}$$

where σ is ground conductivity (mhos/meter), ε_r is the relative dielectric constant, ε_0 is the permittivity of free space (farads/meter), and ω = $2\pi f$.

ZRATI2 = same as ZRATI, but for a second ground medium

FRATI = $(k_1^2 - k_2^2)/(k_1^2 + k_2^2)$ where $k_2 = \omega \sqrt{\mu_0 \epsilon_0}$ and $k_1 = k_2/ZRATI$

CL = distance in wavelengths of cliff edge from origin

CH = cliff height in wavelengths

SCRAWL = length of wires in radial-wire ground screen (normalized to wavelength)

SCRWR = radius of wires in screen in wavelengths

NRADL = number of radials in ground screen; zero implies no screen (input quantity, GN card)

KSYMP = ground flag (=1, no ground; =2, ground present)

IFAR = input integer flag on RP card; specifies type of field computation or type of ground system for far fields

IPERF = flag to select type of ground (see GN card)

T1, T2 = constants for the radial-wire ground-screen impedance

COMMON/GWAV/ U, U2, XX1, XX2, R1, R2, ZMH, ZPH

Routines Using /GWAV/

MAIN, GFLD, GWAVE, SFLDS

Symbol Definitions:

 $u_2 = u^2$

XX1, XX2 : defined in GFLD and SFLDS

R1 = distance from current element to point at which field is

evaluated

R2 = distance from image of current element to point at which

field is evaluated

ZMH = Z - Z'

ZPH = Z + Z' where Z is height of the field evaluation point and

Z' is the height of the current element

COMMON/INCOM/ XO, YO, ZO, SN XSN, YSN, ISNOR

Routines Using /INCOM/

EFLD, SFLDS

Symbol Definitions:

XO, YO, ZO = point at which field due to ground will be evaluated

SN = cos a (see Figure 11)

 $XSN = \cos \beta$ $YSN = \sin \beta$

ISNOR = 1 to evaluate field due to ground by interpolation

O to use Norton's approximation

COMMON/MATPAR/ ICASE, NBLOKS, NPBLK, NLAST, NBLSYM, NPSYM, NLSYM, IMAT, ICASX, NBBX, NPBX, NLBX, NBBL NPBL, NLBL

Routines Using /MATPAR/

MAIN, CMNGF, CMSET, FACGF, FACIO, FACTRS, FBLOCK, FBNGF, GFIL, GFOUT, LFACTR, LTSOLV, LUNSCR, REBLK, SOLGF, SOLVES

/MATPAR/ contains matrix blocking parameters for cases requiring file storage of the matrix. Symbol definitions in /MATPAR/ are as follows.

ICASE = storage mode for primary matrix, defined as follows.

1 unsymmetric matrix fits in core

2 symmetric matrix fits in core

3 unsymmetric matrix out of core

4 symmetric matrix out of core, but submatrices fit in core

5 symmetric matrix out of core, submatrices also out of core

NBLOKS = number of blocks of columns of the computed matrix (in core matrix, NBLOKS = 1)

NPBLK = number of columns in the first (NBLOKS - 1) blocks

NLAST = number of columns in the last block

NBLSYM) = same function as the preceding three variables;

NPSYM \ however, in this case the parameters refer to

NLSYM | the submatrix in the symmetry case

IMAT = storage reserved in CM for the primary NGF matrix A or a block
 of A (number of complex numbers)

ICASX = storage mode for NGF solution (see Section VII)

NBBX = number of blocks in matrix B stored by blocks of rows

NPBX = number of rows in a block of B stored by rows

NLBX = number of rows in the last block of B

NBBL = number of blocks in matrix C stored by rows (and number of blocks in B stored by columns)

NPBL = number of rows (columns) in a block of C (B)

NLBL = number of rows (columns) in the last block of C (B)

COMMON/NETCX/ ZPED, PIN, PNLS, NEQ, NPEQ, NEQ2, NONET, NTSOL, NPRINT, MASYM, ISEG1(30), ISEG2(30), X11R(30), X11I(30), X12R(30), X12I(30), X22R(30), X22I(30), NTYP(30)

Routines Using /NETCX/

MAIN, NETWK

Variables are defined under subroutine NETWK.

COMMON/SAVE/ IP(600), KCOM, COM(13,5), EPSR, SIG, SCRWLT, SCRWRT, FMHZ

Routines Using /SAVE/

MAIN, GFIL, GFOUT, RDPAT

Symbol Definitions:

IP = vector of indices of pivot elements used in factoring the matrix

KCOM = number of CM or CE data cards (maximum 5)

COM = array storing the contents of CM or CE cards

EPSR = relative dielectric constant of the ground

SIG = conductivity of the ground

SCRWLT = length of radials in radial wire ground screen approximation (meters)

SCRWRT = radius of wires in radial wire ground screen approximation (meters)

FMHZ = frequency in MHz

COMMON/SCRATM/D(600)

in routines CMSET, FACTR, LFACTR

COMMON/SCRATM/Y(600)

in routines LTSOLV, SOLGF, SOLVE, SOLVES

COMMON/SCRATM/GAIN(1200)

in routine RDPAT

Symbol Definitions:

D and Y =

complex vectors used in matrix decomposition and solution

GAIN = array to store antenna gain for subsequent normalization

COMMON/SEGJ/ AX(30), BX(30), CX(30), JCO(30), JSNO, ISCON(50), NSCON, IPCON(10), NPCON

Routines Using /SEGJ/

MAIN, CABC, CMNGF, CMSET, CMSW, CMWS, CMWW, CONECT, QDSRC, SFLDS, TBF, TRIO

/SEGJ/ is used to store the parameters defining current expansion functions. The equations for the current expansion functions are given in Section III-1 of Part I. The ith current expansion function consists of a center section on segment i and branches on each segment connected to segment i. On segment j, where j is i or the number of a segment connected to segment i, the ith expansion function is

$$f_{j}^{i}(s) = A_{j}^{i} + B_{j}^{i} \sin [k(s - s_{j})] + C_{j}^{i} \cos [k(s - s_{j})]$$

with the constants defined in Part I to match conditions on the current. A superscript i has been added to indicate the number of the current expansion function.

When subroutine TBF is called for expansion function i, it locates each segment connected to segment i and stores the segment number, j, in array JCO. TBF also computes the constants A_j^i , B_j^i , and C_j^i for segment j and stores them in AX, BX, and CX, respectively.

After all connected segments have been found, i is stored in the next location in JCO, and A_i^i , B_i^i , and C_i^i are stored in the corresponding locations in AX, BX, and CX.

/SEGJ/ is also used by subroutine TRIO. When TRIO is called for segment j, it locates each segment i connected to segment j and stores i in array JCO. TRIO calls SBF to compute the constants A_j^i , B_j^i , and C_j^i for the branch of expansion function i that extends onto segment j and stores these in AX, BX, and CX. The total number of entries, including i = j, is stored in JSNO. The remaining parameters are used with the NGF solution.

NSCON = number of entries in ISCON

IPCON(I) = number of the patch in the NGF file having equation number I
 in the set of equations for modified patch basis functions.
 This is used when a new segment connects to the NGF patch

NPCON = number of entries in IPCON

COMMON/SMAT/ SSX(16,16)

Routines Using /SMAT/

CMSET, FBLOCK GFIL, GFOUT, SOLVES

The array SSX is described under subroutine FBLOCK. In some copies of NEC-2 the variable name S is used in FBLOCK rather than SSX.

COMMON/TMH/ ZPK, RHKS

Routines Using /TMH/

GH, HFK

/TMH/ is used to pass values from HFK to GH. The variables ZPK and RHKS are defined in the discussion of subroutine HFK.

COMMON/TMI/ ZPK, RKB2, IJX

Routines Using /TMI/

EKSC, EKSCX, GF

/TMI/ is used to pass values from EKSC or EKSCX to GF. The meanings of the variables are listed in subroutines EKSC and EKSCX.

COMMON/VSORC/ VQD(10), VSANT(10), VQDS(10), IVQD(10), ISANT(10), IQDS(10), NVQD, NSANT, NQDS

Routines Using /VSORC/

MAIN, CABC, COUPLE, ETMNS, NETWK, QDSRC

The arrays in /VSORC/ contain the strengths and locations of voltage sources on wires. Separate arrays are used for applied-field voltage sources and current-derivative discontinuity voltage sources. The variables are defined as follows.

- ISANT(I) = number of the segment on which the Ith applied-field
 source is located
- VQD(I) = VQDS(I) = voltage of the Ith current-slope discontinuity
 source
- VSANT(I) = voltage of the Ith applied-field voltage source

NSANT = number of applied-field voltage sources

NVQD = NQDS = number of current-slope discontinuity voltage sources NVQD, IVQD, and VQD are set in MAIN from the input data. NQDS, IQDS, and VQDS are set in subroutine QDSRC. The latter were included to allow for current-slope discontinuities other than voltage sources, such as lumped loads. Loading by this means has not been implemented in NEC-2 however.

COMMON/YPARM/ NCOUP, ICOUP, NCTAG(5), NCSEG(5), Y11A(5), Y12A(20)

Routines Using /YPARM/

MAIN, COUPLE

Symbol Definitions:

NCOUP = number of segments between which coupling will be computed

ICOUP = number of segments in the coupling array that have been excited. When ICOUP = NCOUP subroutine COUPLE completes the coupling calculation

NCTAG(I) = tag number of segment I

NCSEG(I) = number of segment in set of segments having tag NCTAG(I)

YllA(I) = self admittance of Ith segment specified

Y12A(I) = mutual admittances stored in order (1,2), (1,3), ... (2,3), (2,4), ... etc.

COMMON/ZLOAD/ ZARRAY(300)

Routines Using /ZLOAD/

MAIN, CMNGF, CMSET, GFIL, GFOUT, LOAD, QDSRC

ZARRAY(I) = $Z_I/(\Delta_I/\lambda)$, where Z_I is the total impedance on segment I, Δ_I is the length of segment I, and λ is the wavelength.

Section IV System Library Functions Used by NEC

ABS(X) = absolute value of X AIMAG(Z) = imaginary part of the complex number Z; result is real = integer truncation; result is real AINT(X) ALOG(X) = natural log of X = log to the base ten of X ALOG10(X) ASIN(X) = arcsine of X; result in radians = arctangent of X; result in radians ATAN(X) ATAN2(X_1, X_2) = arctangent of X_1/X_2 ; result in radians covering all four quadrants = magnitude of the complex number, Z CABS(Z) = complex exponential (e²) CEXP(Z) $CMPLX(X_1, X_2) = formation of a complex number, Z = X_1 + jX_2$ CONJG(Z) = conjugate of the complex number Z COS(X) = cosine of X CSQRT(Z) = square root of a complex number, \sqrt{z} = real number equivalent of integer K FLOAT(K) IABS(K) = absolute value of integer K INT(X) = X truncated to an integer REAL(Z) = real part of the complex number Z SIN(X) = sine of X

SQRT(X)

TAN(X)

= square root of X

= tangent of X

Section V Array Dimension Limitations

Array dimensions in the program limit the structure model in various ways. Any of these limits may be increased if necessary at the expense of core storage capacity, which may require reducing other array dimensions. The limits imposed by array dimensions are described below.

In-Core Matrix Storage, I_r = 4000.

Arrays:

COMMON/CMB/ CM(I_)

Limit constant:

IRESRV = I at MA68 of MAIN

 I_r is the number of words of core available for storage of the interaction matrix. The complete matrix will fit in core storage if (N + 2M) \times (NP + 2MP) is not greater than I_r . For out-of-core solution, I_r must be at least 2(N + 2M) and should be as large as possible to minimize file manipulation.

Maximum Segments and Patches

Minimum Dimensions for N segments and M patches:

COMMON/DATA/ X(N + M), Y(N + M), Z(N + M), SI(N + M), BI(N + M),

ALP(N + M), BET(N + M), ICON1(N + M), ICON2(N + M), ITAG(N + M), ICONX(N + M)

COMMON/CRNT/AIR (N), AII(N), BIR(N), BII(N), CIR(N), CII(N), CUR(N + 3M)

COMMON/ANGL/ SALP(N + M)

COMMON/SAVE/ IP (N + 2M)

COMMON/ZLOAD/ ZARRAY(N)

COMMON/SCRATM/ D(N + 2M) or Y(N + 2M)

MAIN: IX(N + 2M)

SUBROUTINE NETWK: RHS(N + 3M)

Limit Constant:

LD = N + M at MA66 of MAIN

All segments and patches resulting from reflection or rotation of a symmetric structure must be included in determining the limiting structure size.

Maximum Number of Non-radiating Networks, $N_n = 30$.

Arrays:

COMMON/NETCX/: ISEGI(N_n), ISEG2(N_n), X11R(N_n), X11I(N_n), X12R(N_n), X12I(N_n), X22R(N_n), X22I(N_n), X22I(N_n), X22I(N_n)

SUBROUTINE NETWK: RHNT(N_n), IPNT(N_n), NTEQA(N_n), NTSCA(N_n), RHNX(N_n), CMN(N_n , N_n)

Limit Constants:

NETMX = N_n at MA63 of MAIN NDIMN = N_n at NT22 of NETWK NDIMNP = N_n + 1 at NT22 of NETWK

 N_n is the limit for either the number of networks (including transmission lines) or the number of segments having one or more network ports connected, whichever is greater. When relative driving point matrix asymmetry is computed, N_n must also be greater than or equal to the sum of the number of segments with network ports connected plus the number of segments with voltage sources.

Maximum Number of Degrees of Symmetry, N = 16.

Arrays:

COMMON/SMAT/ S(Np, Np)

 N_{p} limits the number of symmetric cells in a structure. The number of symmetric cells is equal to the ratio of N to NP in COMMON/DATA/.

Maximum Number of Segments Joined at Junctions, $N_j = 30$ If N^- and N^+ are the numbers of segments connected to end 1 and end 2 of a segment, respectively, then the dimensions in COMMON/SEGJ/, N_{1} , must be at least N + N + 1.

 $COMMON/SEGJ/AX(N_1)$, $BX(N_1)$, $CX(N_1)$, $JCO(N_1)$, JSNO

Limit Constants:

JMAX = N, at SB6 in SBF

 $JMAX = N_{j}$ at TB8 in TBF

JMAX = N, at TR8 in TRIO

Maximum Number of Voltage Sources, N = 30.

Arrays:

COMMON/VSORC/ VQD(N_v), VSANT(N_v), VQDS(N_v), IVQD(N_v), ISANT(N_v), IQDS(N_v)

Limit Constant:

NSMAX = N at MA63 of MAIN

A model may use up to N applied field voltage sources and up to N $_{\rm V}$ current slope discontinuity voltage sources.

Maximum Number of Loading Cards, $N_1 = 30$

Arrays:

MAIN: LDTYP(N_1), LDTAG(N_1), LDTAGF(N_1), LDTAGT(N_1), ZLR(N_1), ZLI(N_1), ZLC(N_1)

Limit Constants:

LOADMX = N₁ at MA63 of MAIN

When the NGF option is used only new loading cards are counted, not those used in generating the NGF file.

Number of Comment Cards Saved, $N_c = 5$

Arrays:

COMMON/SAVE/: COM(13,N_)

Limit Constant:

Constants at MA71 of MAIN

Any number of comment cards may be placed at the beginning of a data deck and will be printed in the output. Only N $_{\rm C}$ of the cards will be saved in array COM for later use in labeling plots, however. The first N $_{\rm C}$ - 1 comment cards and the last comment card will be saved.

Maximum Field Points for Normalized Gain, Ng = 1200.

Arrays:

COMMON/SCRATM/ GAIN(Ng)

Limit Constant:

 $NORMAX = N_g$ at RD22 of SUBROUTINE RDPAT

N is the maximum number of field points from a single RP data card that can be stored for output in normalized form or for plotting if plotting is

implemented. If an RP card requesting more than N points calls for normalized gain, the gain will be computed and printed at all requested angles, but only the first N gains will be stored and normalized.

COMMON/SCRATM/ GAIN occurs in SUBROUTINE RDPAT. COMMON/SCRATM/ D and COMMON/SCRATM/ Y occur in certain other routines where D and Y are complex (see "Maximum Segments and Patches"). GAIN, D, and Y should be dimensioned so that each common statement contains the same number of words.

Maximum Number of Frequencies for Normalized Impedance or Maximum Number of Angles for Which Received Signal Strength Is Stored, $N_{\rm f}$ = 200

Array:

MAIN: FNORM(N_f)

Limit Constant:

NORMF = N_f at MA63 of MAIN

The maximum number of frequencies for which input impedance may be stored and normalized is $N_{\rm f}/4$, since the real and imaginary impedance and magnitude and phase are each stored. The receiving current can be stored for up to $N_{\rm f}$ angles.

Maximum Number of Points in Coupling Calculation, $N_c = 5$.

The maximum number of segments among which coupling can be computed (CP cards) is $N_{\rm c}$.

COMMON/YPARM/: $NCTAG(N_c)$, $NCSEG(N_c)$, $Y11A(N_c)$, $Y12A(N_c^2 - N_c)$

Limit Constants:

Constants at MA207 and MA212 of MAIN should equal N_c

Maximum Number of NGF Segments to Which New Segments or Patches Connect, $N_s = 50$

COMMON/SEGJ/: ISCON(Ng)

Limit Constant:

NSMAX = N at CN13 of CONECT

Maximum Number of NGF Patches to Which New Segments Connect, N = 10.

COMMON/SEGJ/: IPCON(Ng)

Limit Constant:

NPMAX = N at CN13 of CONECT

Section VI Overview of Numerical Green's Function Operation

NEC includes a provision to generate and factor an interaction matrix and save the result on a file. A later run, using the file, may add to the structure and solve the complete model without unnecessary repetition of calculations. This procedure is called the Numerical Green's Function (NGF) option since the effect is as if the free space Green's function in NEC were replaced by the Green's function for the structure on the file. The NGF is particularly useful for a large structure, such as a ship, on which various antennas will be added or modified. It also permits taking advantage of partial symmetry since a NGF file may be written for the symmetric part of a structure, taking advantage of the symmetry to reduce computation time. Unsymmetric parts can then be added in a later run.

For the NGF solution the matrix is partitioned as

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \end{bmatrix} ,$$

where A is the interaction matrix for the initial structure, D is the matrix for the added structure, and B and C represent mutual interactions. The current is computed as

$$I_2 = [D - CA^{-1}B]^{-1} [E_2 - CA^{-1}E_1]$$
,
 $I_1 = A^{-1}E_1 - A^{-1}BI_2$,

after the factored matrix A has been read from the NGF file along with other necessary data. Since the LU decomposition is obtained in NEC rather than the inverse, the multiplication by A^{-1} is accomplished by using the solution procedure in subroutine SOLVE on each column in the matrix to the right of A^{-1} .

To use the NGF option the parameters of the fixed, or NGF, part of the model are defined in the first run. A WG data card causes the matrix A to be computed (CMSET), factored (FACTRS), and written to file TAPE20 by subroutine

GFOUT. Other necessary data, such as segment and patch coordinates, frequency, loading, and ground parameters, are also written to TAPE20.

When the NGF file, TAPE20, is used the data are read into the usual arrays by subroutine GFIL and new segments and patches are added to the arrays in COMMON/DATA/. Subroutine CMNGF is then called to compute the matrix elements in B, C, and D. FACGF computes $A^{-1}B$, storing it in place of B, and computes $(D - CA^{-1}B)$, factors it into L and U parts, and stores the result in place of D. For each excitation E_1 and E_2 , SOLGF completes the procedure of solving for I_1 and I_2 .

The procedure is complicated by the connection of new segments or patches to NGF segments or patches. A connection to a segment modifies the current basis function (see Section III.1 of Part I). Since the elements in A cannot be changed, a modified basis function must be treated as a new basis function with a new column added to B and D and the new basis function amplitude added to the end of I₂. The amplitude of the original basis function is set to zero by adding a row containing all zeros except for a one in the column of C corresponding to the modified basis function. Since the segment is not modified the boundary condition equation is not altered in this case.

When a new segment connects to a NGF patch the patch must be divided into four new patches, after the user defined patches, requiring eight new rows and columns in B, C, and D. Two additional rows are added to set the two current components on the old patch to zero. Since the old patch is replaced by the four new patches, the condition on the field at the center of the patch should be removed. This is done by adding two new columns each containing all zeros except for a one in the row of the equation to be removed.

The matrix structure is further complicated by the division of each submatrix into sections for segment-to-segment, patch-to-patch, segment-to-patch and patch-to-segment interactions. The matrix structure is shown in Figure 12, where the subscript w denotes wire segments and s denotes surface patches. The elements of B and B are the E fields and H fields due to modified basis functions in the NGF section. Each column of B and row of C and C contains 0's and a single 1.

The subroutine ETMNS fills the excitation array with the E fields illuminating all segments, followed by the H fields on patches. These elements are reordered in SOLGF to correspond to the matrix structure. After

A	Aws	Bww	B _{ws}	B' ww	0
A _{sw}	A _{ss}	B sw	B	B' sw	B' ss
C _{ww}	C _{ws} .	D _{ww}	D ws	D 'ww	0
C _{sw}	C _{ss}	D sw	D ss	D' sw	0
C'ww	0	0	0	0	0
0	C' ss	0	0	0	0

Figure 12. Matrix Structure for the NGF Solution

the solution this reordering is reversed in SOLGF to put basis function amplitudes for segments first, followed by those for patches. If symmetry is used in the NGF section the matrix A is structured as submatrices for the symmetric sections. Each submatrix contains elements for segments and patches in that section, with the order as shown for A in Figure 12. In this case the excitation and solution vectors are ordered in SOLVES to correspond to the submatrix structure.

Section VII Overview of Matrix Operations Using File Storage

File storage is used when the matrix size exceeds the length of the array CM in COMMON/CMB/. For the basic solution (not NGF) there are five matrix storage modes associated with the integer ICASE as follows:

ICASE	Matrix Storage
1	Matrix fits in CM; no structure symmetry
2	Matrix fits in CM; structure symmetry used
3	Matrix stored on file; no symmetry
4	Matrix stored on file; symmetry; each submatrix fits into CM for LU decomposition
5	Matrix stored on file; symmetry;
	submatrices do not fit into CM.

For case 3 the matrix is initially written on file 11 by blocks of rows. The block size is chosen in subroutine FBLOCK so that two blocks will fit into CM for the Gauss elimination procedure. The block size and number of blocks is set by the parameters NBLOKS, NPBLK, and NLAST in COMMON/MATPAR/.

Subroutine FACIO reads file 11 and writes file 12 using 13 and 14 for scratch storage. LUNSCR then reads 12 and writes the blocks of the factored matrix on file 13 in forward order and on file 14 in reversed order. File 13 is then used for forward substitution in the solution and file 14 is used for backward substitution.

For case 4, FACTRS reads the matrix from file 11, where it was written by blocks of rows (columns of the transposed matrix), and writes it to file 12 by submatrices. The submatrices are then read from 12, factored, and written to 13.

In case 5, FACTRS reads the matrix from file 11 and writes it to file 12 by blocks of rows (columns of the transposed matrix) for each submatrix. File 12 is then copied back to file 11, and the procedure of case 3 is repeated for each submatrix.

When a NGF file is to be written, half of CM is reserved for matrix storage and manipulations of the matrices B, C, and D. Hence for cases 1, 2 or 4 the primary matrix A (or submatrix for case 4) must fit into half of CM.

There is no restriction for cases 3 or 5 since, with two matrix blocks fitting into CM for the LU decomposition, half of CM is available during the solution when blocks are used one at a time.

There are four modes for storing B, C, and D in the NGF solution. These are associated with the integer ICASX as follows:

A_F = matrix A factored into L and U

A_F for ICASE = 1 or 2

one block of A_F for ICASE = 3

one submatrix for ICASE = 4

one block of submatrix for ICASE = 5

A_X = A_F for ICASE = 1 or 2

nothing otherwise

ICASX	NGF Matrix Storage
	a presidente de la la companya de l
3 1 S	A _R , B, C, and D fit into CM
4.2	B, C, and D fit into CM but not with AR
	(ICASE = 3, 4, 5) AR and B must also fit
	into CM together
3	B, C, and D do not fit into CM, but AX
	and $F = D - CA^{-1}B$ fit into CM for the LU
	decomposition of F
4	Same as 3 but D - CA ⁻¹ B requires file
	storage for LU decomposition

When a NGF file (TAPE20) is written with ICASE = 3 or 5, files 13 and 14 are both written to TAPE20. When the NGF file is read these data are written on the single file 13 with the blocks in ascending order first and then in descending order. If A_F is stored on file 13 then space for A_R in CM is needed only when A_R is used in a solution in CM. This accounts for the definition of A_X .

File usage for ICASX = 2, 3, and 4 is outlined in Figures 13 and 14.

The value for ICASX is chosen in subroutine FBNGF as the smallest value possible. The number of blocks into which matrices B, C, and D are divided is also chosen in FBNGF.

NGF Procedure for ICASX = 2	Contents of CM	=	12	13 Fi	Files 14	15	16
				AF		-	1940 1940
1. (CMNGF) Compute B, C and D in CM. Write to files 12, 14 and 15.	в, с, р		Q	Ąķ	8	o	
2. (FACGF) Read 13 and 14. Compute A ⁻¹ B. Write 14.	AF, B		Q	γŁ	A-18	o	
3. Compute F = D - CA ⁻¹ B. Store over D in CM.	A ⁻¹ B, C, D		٥	ψ	A ⁻¹ B	o .	
4. Factor F. Write on 11.	A-18, C, F	ě.		AF	A-1B	ပ	
Solution for excitation (E ₁ , E ₂) ^T (SOLGF)							
1. Compute $I_1' = A^{-1}E_1$ 2. $I_2' = E_2 - CA^{-1}E_1 = E_2 - CI_1'$	A 0	ė. ė.		νŁ	A ⁻¹ B	ပ	penditud traden i
3. $I_2 = F^{-1}I_2^{'}$ 4. $I_1 = I_1^{'} - (A^{-1}B)I_2$	FF A-1B						

(Subscript F indicates that the matrix has been factored into L and U triangular parts)

Figure 13. NGF File Usage for ICASX = 2.

16				B C			×	Er Er	
15			æ	્રું ^ક	&	· · · · · · · · · · · · · · · · · · ·	æ	ď	। । ध्र ।
77		BR	a a	g.	A-1BC	A-1 _{BC}	A-1BC	A-1 _{BC}	A-1B _C
13	AF	Ap	Ą	¥	ψ	ď	AF	Ą	- - - 4 -
12			ď	ď	DR	D _R	- (Er		
						A	×	Er Er	
Contents of CM		Ax, BR	Ax, CR, DR	Ax, Bc, BR	AF, BC	Ax, A-1BC CR, DR	Ax and 2 blocks of F	Ax and block of F	AX, F
NGF Procedure for ICASX = 3,4		1. (CMNGF) Compute B by blocks of rows. Write to file 14.	2. Compute C and D by blocks by rows. Write to 15 and 12.	3. (REBLK) Read 14. Write B by blocks of columns on file 16.	4. (FACGF) Read 16; compute A-1B; write 14.	5. Read blocks from 12, 14 and 15 and compute $F = D - C(A^{-1}B)$ by blocks of rows. Write on 11.	6. For ICASX = 4 call FACIO to factor F. FACIO reads 11 and writes 12, using 11 and 16 as scratch storage.	7. LUNSCR reads 12 and writes blocks of FF on 111 in forward order and on 16 in reversed order.	6' For ICASX = 3, read all blocks of F into CM; Factor F; write to ll.

Figure 14. NGF File Usage for ICASX = 3 or 4.

Section VIII NEC Subroutine Linkage

Figures 15 and 16 show the organization of subroutines in the NEC-2 program. All possible subroutine calls are traced, although in a particular run only certain of the traces will be followed. Routines that are called at more than one point in the program are shown as separate blocks for each call.

For Block Definitions, see Figure 16 NEC Subroutine Linkage Chart. Figure 15.

Figure 15 (continued)

See Figure 15 Block Definitions for NEC Subroutine Linkage Chart. Figure 16.

Figure 16 (continued)

Section IX SOMNEC

1. SOMNEC CODE DESCRIPTION

SOMNEC is an independent code that generates the interpolation tables for the Sommerfeld/Norton ground option for NEC. The tables are written on file TAPE21 which becomes an input file to NEC. Coding of the routines in SOMNEC is described in this section.

SOMNEC (main program)

PURPOSE

To generate interpolation tables for the Sommerfeld/Norton ground option and write them on file TAPE21.

METHOD

The code from SN17 to SN51 reads the input data and sets parameters in COMMON/EVLCOM/. Since all equations are scaled to a free-space wavelength of one meter the results depend only on the complex dielectric constant

$$\varepsilon_{c} = \varepsilon_{1} - j\sigma_{1}/(\omega \varepsilon_{0})$$
.

In the routines that evaluate the Sommerfeld integrals the time dependence is $\exp(-j\omega t)$ rather than $\exp(+j\omega t)$ which is used in the remainder of NEC. Hence the conjugate of ε_c (EPSCF) is taken before computing the parameters in COMMON/EVLCOM/. The conjugate of the results is taken at the end of EVLUA, so the results returned to SOMNEC and written on TAPE21 are for $\exp(+j\omega t)$.

Three interpolation tables, as shown in Figure 12 of Part I, are generated in the code from SN55 to SN123. For each R_1 , θ pair in the tables the values of ρ and z+z' are computed and stored in COMMON/EVLCOM/. Subroutine EVLUA is then called and returns the quantities

$$ERV = \frac{\partial^{2}}{\partial \rho \partial z} k_{1}^{2} v_{22}^{'}$$

$$EZV = (\frac{\partial^{2}}{\partial z^{2}} + k_{2}^{2}) k_{1}^{2} v_{22}^{'}$$

$$ERH = (\frac{\partial^{2}}{\partial \rho^{2}} k_{2}^{2} v_{22}^{'} + k_{2}^{2} v_{22}^{'})$$

$$EPH = -(\frac{1}{\rho} \frac{\partial}{\partial \rho} k_{2}^{2} v_{22}^{'} + k_{2}^{2} v_{22}^{'})$$

These are multiplied by C_1 R_1 exp(jk R_1) to form the quantities in equation (156) through (159) in Part I. When R_1 is zero the limiting forms in equations (169) through (172) of Part I are used. The expressions from

SN116 to SN118 are obtained by letting θ go to zero in the expressions for R_1 = 0.

The data are stored in COMMON/GGRID/ which is identical to the common block in NEC. File 21 is written at SN127 and includes coordinates of the grid boundaries, number of points, and increments for R_1 and θ . Hence those grid parameters can be changed in SOMNEC without changing NEC. If the number of grid points is increased, however, the arrays in COMMON/GGRID/ must be increased in both SOMNEC and NEC. Also, the parameters NDA and NDPA in subroutine INTRP must be changed.

SYMBOL DICTIONARY

AR1 = array for grid 1

AR2 = array for grid 2

AR3 = array for grid 3

 $CK1 = k_1$

CKIR = real part of k1

 $CK1SQ = k_1^2$

CK2 = k_2 (= 2π since λ = 1)

 $CK2SQ = k_2^2$

CKSM = $k_2^2/(k_1^2 + k_2^2)$

CL1 = $k_2^2 c_1 c_3$ (see Part 1 for c_1 , c_2 , and c_3)

 $cl2 = k_2^2 c_1^2 c_2^2$

 $CON = C_1 R_1 exp(jkR_1)$

CT1 = $(k_1^2 - k_2^2)/2$

CT2 = $(k_1^4 - k_2^4)/8$

CT3 = $(k_1^6 - k_2^6)/16$

 $DR = \Delta R_1$

DTH = $\Delta\theta$

DXA = ΔR_1 for each grid

DYA = $\Delta\theta$ for each grid (radians)

EPH = EPH

EPR = ε_1

EPSCF = E

ERH = ERH

ERV = ERV

EZV = EZV

FMHZ = frequency in MHz

IPT = flag to control printing of grid

IR = index for R₁ values

IRS = starting value for IR

ITH = index for θ values

LCOMP = labels for output

NR = number of R₁ values

NTH = number of θ values

NXA = number of R₁ values for each grid

NYA = number of θ values for each grid

R = R₁

RHO = p

 $RK = k_2R$

sig = o1

TFAC1 = $(1 - \sin \theta)/\cos \theta$

TFAC2 = $(1 - \sin \theta)/\cos^2 \theta$

THET = θ

TIM = time to fill arrays

TKMAG = 100.1k,1

TSMAG = 100. 1k, 12

TST = starting time

WLAM = wavelength in free space

XSA = starting value of R in each grid

YSA = starting value of θ in each grid

ZPH = Z + Z'

CONSTANTS

299.8 = 10⁻⁶ times velocity of light in m/s

59.96 = $1/(2\pi c \epsilon_0)$, c = velocity of light

 $6.283185308 = 2\pi$

1		PROGRAM SOMNEC(INPUT,OUTPUT,TAPE21)	SN	.1
	C		SN	2
2 KD-	C	PROGRAM TO GENERATE NEC INTERPOLATION GRIDS FOR FIELDS DUE TO	SN	3
	C	GROUND. FIELD COMPONENTS ARE COMPUTED BY NUMERICAL EVALUATION	SN	4
	C	OF MODIFIED SOMMERFELD INTEGRALS.	SN	5
	C		SN	6
7		COMPLEX CK1, CK1SQ, ERV, EZV, ERH, EPH, AR1, AR2, AR3, EPSCF, CKSM, CT1, CT2, C	SN	7
8		1T3,CL1,CL2,CON	SN	8
9		COMMON /EVLCOM/ CKSM, CT1, CT2, CT3, CK1, CK1SQ, CK2, CK2SQ, TKMAG, TSMAG, C	SN	9
10		1K1R,ZPH,RHO,JH	SN	10
11		COMMON /GGRID/ AR1(11,10,4),AR2(17,5,4),AR3(9,8,4),EPSCF,DXA(3),DY	SN	11
12		1A(3), XSA(3), YSA(3), NXA(3), NYA(3)	SN	12
13		DIMENSION LCOMP(4)	SN	13
14		DATA NXA/11,17,9/,NYA/10,5,8/,XSA/0.,.2,.2/,YSA/0.,0.,.3490658504/	SN	14
15		DATA DXA/.02,.05,.1/,DYA/.1745329252,.0872664626,.1745329252/	SN	15
16		DATA LCOMP/3HERV, 3HEZV, 3HERH, 3HEPH/	SN	16
17	ACCOUNTS OF THE PARTY.		SN	17
18		READ GROUND PARAMETERS - EPR = RELATIVE DIELECTRIC CONSTANT	SN	18
19		SIG = CONDUCTIVITY (MHOS/M)	SN	19
20	C	FMHZ = FREQUENCY (MHZ)	SN	20
21		IPT = 1 TO PRINT GRIDS. =0 OTHERWISE.	SN	21
22		IF SIG .LT. O. THEN COMPLEX DIELECTRIC CONSTANT = EPR + J*SIG	SN	22
23	C	AND FMHZ IS NOT USED	SN	23
24	C		SN	24
25		READ 15, EPR,SIG,FMHZ,IPT	SN	25
26		IF (SIG.LT.O.) GO TO 1	SN	26
27		WLAM=299.8/FMHZ	SN	27
28		EPSCF=CMPLX(EPR,-SIG*WLAM*59.96)	SN	28
29		GO TO 2	SN	29
30	1	EPSCF=CMPLX(EPR,SIG)	SN	30
31	Street House	CALL SECOND (TST)	SN	31
32		CK2=6.283185308	SN	32
33		CK2SQ=CK2*CK2	SN	33
34			SN	34
35		HE NEW TREE IN THE TREE TO THE TREE IN TH	SN	35
36	C	HENCE NEED CONJG(EPSCF). CONJUGATE OF FIELDS OCCURS IN SUBROUTINE	SN	36
37		EVLUA.	SN	37
38			SN	38
39		CK1SQ=CK2SQ*CONJG(EPSCF)	SN	39
40		CK1=CSQRT(CK1SQ)	SN	40
41		CK1R=REAL(CK1)	SN	41
42		TKMAG=100. *CABS(CK1)	SN	42
43		TSMAG=100. *CK1 *CONJG(CK1)	SN	43
44		CKSM=CK2SQ/(CK1SQ+CK2SQ)	SN	44
45		CT1=.5*(CK1SQ-CK2SQ)	SN	45
46		ERV=CK1SQ*CK1SQ	SN	46
47		EZV=CK2SQ*CK2SQ	SN	47
48		CT2=.125*(ERV-EZV)	SN	48
49		ERV=ERV*CK1SQ	SN	49
50		EZV=EZV*CK2SQ	SN	50
51		CT3=.0625*(ERV-EZV)	SN	51
	C		SN	52
100	C	LOOP OVER 3 GRID REGIONS	SN	53
	C		SN	54
55		00 6 K=1,3	SN	55
56		NR=NXA(K)	SN	56
57		NTH=NYA(K)	SN	57
58		DR=DXA(K)	SN	58
59		DTH=DYA(K)	SN	59
60		R=XSA(K)-DR	SN	60
61		IRS=1	SN	61
62		IF (K.EQ.1) R=XSA(K)	SN	62
63		TF (K FO 1) TPS=2	SN	53

```
64 C
                                                                                      SN
                                                                                          64
65 C
          LOOP OVER R. (R=SQRT(RHO**2 + (Z+H)**2))
                                                                                      SN
                                                                                          65
66 C
                                                                                      SN
                                                                                           66
67
          DO 6 IR=IRS,NR
                                                                                      SN
                                                                                           67
68
          R=R+DR
                                                                                      SN
                                                                                           68
69
           THET=YSA(K)-DTH
                                                                                      SN
                                                                                           69
70
   C
                                                                                      SN
                                                                                           70
71
                               (THETA=ATAN((Z+H)/RHO))
    C
           LOOP OVER THETA.
                                                                                      SN
                                                                                           71
72
    C
                                                                                      SN
                                                                                           72
73
           DO 6 ITH=1.NTH
                                                                                      SN
                                                                                          73
74
           THET=THET+DTH
                                                                                      SN
                                                                                           74
75
           RHO=R*COS(THET)
                                                                                      SN
                                                                                           75
76
           ZPH=R*SIN(THET)
                                                                                      SN
                                                                                           76
77
           IF (RHO.LT.1.E-7) RHO=1.E-8
                                                                                      SN
                                                                                           77
78
           IF (ZPH.LT.1.E-7) ZPH=0.
                                                                                      SN
                                                                                           78
79
           CALL EVLUA (ERV, EZV, ERH, EPH)
                                                                                      SN
                                                                                           79
           RK=CK2*R
80
                                                                                      SN
                                                                                           80
81
           CON=-(0.,4.77147)*R/CMPLX(COS(RK),-SIN(RK))
                                                                                      SN
                                                                                           81
82
           GO TO (3,4,5), K
                                                                                      SN
                                                                                           82
83 3
           AR1(IR, ITH, 1)=ERV*CON
                                                                                      SN
                                                                                           83
 84
           AR1(IR, ITH, 2)=EZV*CON
                                                                                      SN
                                                                                           84
85
           AR1(IR, ITH, 3)=ERH+CON
                                                                                      SN
                                                                                           85
 86
           AR1(IR, ITH, 4)=EPH+CON
                                                                                      SN
                                                                                           86
 87
           GO TO 6
                                                                                      SN
                                                                                           87
 88 4
           AR2(IR, ITH, 1)=ERV*CON
                                                                                      SN
                                                                                           88
 89
           AR2(IR, ITH, 2)=EZV*CON
                                                                                      SN
                                                                                           89
           AR2(IR, ITH, 3)=ERH+CON
90
                                                                                      SN
                                                                                           90
91
           AR2(IR, ITH, 4)=EPH+CON
                                                                                      SN
                                                                                           91
92
           GO TO 6
                                                                                      SN
                                                                                           92
93 5
           AR3(IR, ITH, 1)=ERV*CON
                                                                                      SN
                                                                                           93
 94
                                                                                      SN
           AR3(IR, ITH, 2)=EZV*CON
                                                                                           94
 95
           AR3(IR, ITH, 3)=ERH+CON
                                                                                      SN
                                                                                           95
 96
           AR3(IR, ITH, 4)=EPH+CON
                                                                                      SN
                                                                                           96
 97 6
           CONTINUE
                                                                                      SN
                                                                                           97
 98 C
                                                                                      SN
                                                                                           98
 99 C
           FILL GRID 1 FOR R EQUAL TO ZERO.
                                                                                      SN:
                                                                                           99
100 C
                                                                                      SN 100
101
           CL2=-(0.,188.370)*(EPSCF-1.)/(EPSCF+1.)
                                                                                      SN 101
102
           CL1=CL2/(EPSCF+1.)
                                                                                      SN 102
103
           EZV=EPSCF *CL1
                                                                                      SN 103
104
           THET=-DTH
                                                                                      SN
                                                                                         104
105
           NTH=NYA(1)
                                                                                      SN
                                                                                          105
           DO 9 ITH=1,NTH
106
                                                                                      SN
                                                                                          106
107
           THET=THET+DTH
                                                                                      SN
                                                                                         107
108
           IF (ITH.EQ.NTH) GO TO 7
                                                                                         108
                                                                                      SN
109
           TFAC2=COS(THET)
                                                                                      SN
                                                                                         109
110
           TFAC1=(1.-SIN(THET))/TFAC2
                                                                                      SN 110
111
           TFAC2=TFAC1/TFAC2
                                                                                      SN 111
112
           ERV=EPSCF *CL1 *TFAC1
                                                                                      SN 112
113
           ERH=CL1 * (TFAC2-1.)+CL2
                                                                                      SN 113
           EPH=CL1 *TFAC2-CL2
114
                                                                                      SN
                                                                                         114
           GO TO 8
115
                                                                                      SN 115
116 7
           ERV=0.
                                                                                      SN 116
           ERH=CL2-.5°CL1
117
                                                                                      SN 117
118
           EPH=-ERH
                                                                                      SN 118
119 8
           AR1(1, ITH, 1)=ERV
                                                                                      SN 119
120
           AR1(1,ITH,2)=EZV
                                                                                      SN 120
121
           AR1(1, ITH, 3)=ERH
                                                                                      SN 121
122 9
           AR1(1, ITH, 4)=EPH
                                                                                      SN
                                                                                         122
123
           CALL SECOND (TIM)
                                                                                      SN 123
124 C
                                                                                      SN 124
125 C
           WRITE GRID ON TAPE21
                                                                                      SN 125
126 C
                                                                                      SN 126
127
           WRITE (21) ARI, AR2, AR3, EPSCF, DXA, DYA, XSA, YSA, NXA, NYA
                                                                                      SN 127
```

SOMNEC

128		REWIND 21	SN	128
129		IF (IPT.EQ.0) GO TO 14	SN	129
130	C		SN	130
131	C	PRINT GRID	SN	131
132	C		SN	132
133		PRINT 17, EPSCF	SN	133
134		DO 13 K=1,3	SN	134
135		NR=NXA(K)	SN	135
136		NTH=NYA(K)	SN	136
137		PRINT 18, K,XSA(K),DXA(K),NR,YSA(K),DYA(K),NTH	SN	137
138		00 13 L=1,4	SN	138
139		PRINT 19, LCOMP(L)	SN	139
140		DO 13 IR=1,NR	SN	140
141		GO TO (10,11,12), K	SN	141
142	10	PRINT 20, IR, (AR1(IR, ITH, L), ITH=1, NTH)	SN	142
143		GO TO 13	SN	143
144	11	PRINT 20, IR, (AR2(IR, ITH, L), ITH=1, NTH)	SN	144
145		GO TO 13	SN	145
146	12	PRINT 20, IR, (AR3(IR, ITH, L), ITH=1, NTH)	SN	146
147	13	CONTINUE	SN	147
148	14	TIM=TIM-TST	SN	148
149		PRINT 16, TIM	SN	149
150		STOP	SN	150
151	C		SN	151
152	15	FORMAT (3E10.3,15)	SN	152
153	16	FORMAT (6H TIME=,E12.5)	SN	153
154	17	FORMAT (30HINEC GROUND INTERPOLATION GRID./,21H DIELECTRIC CONSTAN	SN	154
155		1T=,2E12.5)	SN	155
156	18	FORMAT (///,5H GRID,12,/,4X,5HR(1)=,F7.4,4X,3HDR=,F7.4,4X,3HNR=,I3	SN	156
157		1,/,9H THET(1)=,F7.4,3X,4HDTH=,F7.4,3X,4HNTH=,I3,//)	SN	157
158	19	FORMAT (///,A3)	SN	158
159	20	FORMAT (4H IR=, I3,/,(10E12.5))	SN	159
160		END	SN	160-

BESSEL

PURPOSE

To compute the Bessel function of order zero and its derivative for a complex argument.

METHOD

For argument magnitudes less than a limit Z_s the functions are evaluated by the ascending series and for larger magnitudes by Hankel's asymptotic expansion (ref. 5). The ascending series are

$$J_0(z) = \sum_{k=0}^{\infty} \frac{(-z^2/4)^k}{(k!)^2}$$

$$J_0'(z) = -J_1(z) = -\frac{z}{2} \sum_{k=0}^{\infty} \frac{(-z^2/4)^k}{k!(k+1)!}$$

The number of terms used with an argument Z is M(IZ) where IZ = 1. + $|Z|^2$. The array M is filled for IZ from 1 to 101 on the first call to BESSEL by determining the value of k at which the term in the series for J_0 is less than 10^{-6} .

When |Z| is greater than Z_s Hankel's asymptotic expansions are used with two or three terms. These are

$$J_{\nu}(Z) = \sqrt{\frac{2}{\pi Z}} \left[P(\nu, Z) \cos \chi - Q(\nu, Z) \sin \chi \right] \qquad (larg Z | < \pi)$$

$$\chi = z - (\frac{1}{2}v + \frac{1}{4})\pi$$

$$P(\nu,Z) = 1 - \frac{(\mu-1)(\mu-9)}{2!(8Z)^2} + \frac{(\mu-1)(\mu-9)(\mu-25)(\mu-49)}{4!(8Z)^4}$$

BESSEL

$$Q(\nu,Z) = \frac{(\mu-1)}{8} - \frac{(\mu-1)(\mu-9)(\mu-25)}{3!(8Z)^3}$$

where $\mu = 4v^2$.

When $Z_s < |Z| < Z_s + \Delta$ both the series and asymptotic forms are evaluated and are combined as

$$J(Z) = \frac{1}{2} [J_s(Z)(1+C) + J_a(Z)(1-C)]$$

where $C = \cos \left(\frac{\pi}{\Delta} \left(|Z| - Z_s \right) \right)$

 $J_{\alpha}(Z)$ = result of series evaluation

 $J_a(Z)$ = result of asymptotic evaluation

This combination ensures a smooth transition between the two regions. In the code Z_{α} is 6 and Δ is 0.1.

SYMBOL DICTIONARY

A1 =
$$-1./(4k^2)$$

$$A2 = 1./(k + 1)$$

$$c_3 = \sqrt{2/\pi} = 0.7978845608$$

IB = 1 to indicate that both the series and asymptotic forms will be evaluated and combined

INIT = flag to indicate that initialization of constants has been
completed

IZ = 1. + |Z|2 truncated to an integer

 $JO = J_0(Z)$

$$JOP = J_0(Z)$$

JOPX = $J_0(Z)$ from series to be combined with asymptotic result

 $JOX = J_0(Z)$, same as JOPX

K = summation index k, summed from 1 to limit

```
= array of upper limits for k
M
       = upper limit for k
MIZ
       = P(0,z)
POZ
       = coefficient in POZ = 9/(2 \times 8^2)
P10
       = coefficient in P1Z = -(4-1)(4-9)/(2 \times 8^2)
P11
       = P(1,Z)
PIZ
       = coefficient in POZ = 9 \times 25 \times 49/(4!8^4)
P20
       = coefficient in P1Z = -(4-1)(4-9)(4-25)(4-49)/(4!8^4)
P21
PI
       = 1
POF
       = \pi/4
       = Q(0,Z)
QOZ
Q10
       = coefficient in Q(0,Z) = 1/8
Q11
       = coefficient in Q(1,Z) = 3/8
       = Q(1,Z)
Q1Z
       = coefficient in Q(0,Z) = 9 \times 25/(3!8^3)
Q20
       = coefficient in Q(1,Z) = (4-1)(4-9)(4-25)/(3!8^3)
Q21
SZ
       = sin X
       = magnitude of the term in the series
TEST
Z
       = z^2 or 1/z
       = 1/2^2 or exp(-ix)
ZI2
       = (-z^2/4)^k/(k!)^2 for series. Also temporary storage for
ZK
         asymptotic method
       = |Z|<sup>2</sup> or temporary storage
ZMS
```

CONSTANTS

$$31.41592654 = 10.\pi$$

 $36. = 6^2$
 $37.21 = 6.1^2$

1	SUBROUTINE BESSEL (Z, JO, JOP)	BE	1
2 C		BE	2
3 C	BESSEL EVALUATES THE ZERO-ORDER BESSEL FUNCTION AND ITS DERIVATIVE	BE	3
4 C	FOR COMPLEX ARGUMENT Z.	BE	4
5 C		BE	5
6	COMPLEX JO, JOP, POZ, P1Z, QOZ, Q1Z, Z, ZI, ZIZ, ZK, FJ, CZ, SZ, JOX, JOPX	BE	6
7	DIMENSION M(101), A1(25), A2(25), FJX(2)	BE	7
8	EQUIVALENCE (FJ, FJX)	BE	8
9	DATA PI,C3,P10,P20,Q10,Q20/3.141592654,.7978845608,.0703125,.11215		9
10	120996, .125, .0732421875/		
		BE	10
11	DATA P11, P21, Q11, Q21/.1171875, .1441955566, .375, .1025390625/	BE	11
12	DATA POF, INIT/.7853981635,0/,FJX/0.,1./	BE	12
13	IF (INIT.EQ.0) GO TO 5	BE	13
14 1	ZMS=Z*CONJG(Z)	BE	14
15	IF (ZMS.GT.1.E-12) GO TO 2	BE	15
16	J0=(1.,0,)	BE	16
17	JOP=5*Z	BE	17
18	RETURN	BE	18
19 2.	IB=0	BE	19
20	IF (ZMS.GT.37.21) GO TO 4	BE	20
21	IF (ZMS.GT.36.) IB=1	BE	21
22 C	SERIES EXPANSION	BE	22
23	IZ=1.+ZMS	BE	23
24	MIZ=M(IZ)	BE	24
25	J0=(1.,0.)	BE	25
26	J0P=J0	BE	17711-0
27	ZK=J0		26
	ZI=Z*Z	BE	27
28		BE	28
29	DO 3 K=1,MIZ	BE	29
30	ZK=ZK*A1(K)*ZI	BE	30
31	J0=J0+ZK	BE	31
32 3	JOP=JOP+A2(K)*ZK	BE	32
33	JOP=5*Z*JOP	BE	33
34	IF (IB.EQ.O) RETURN	BE	34
35	J0X=J0	BE	35
36	JOPX=JOP	BE	36
37 C	ASYMPTOTIC EXPANSION	BE	37
38 4	ZI=1./Z	BE	38
39	ZI2=ZI•ZI	BE	39
40	POZ=1.+(P20*ZI2-P10)*ZI2	BE	40
41	P1Z=1.+(P11-P21*ZI2)*ZI2	BE	41
42	Q0Z=(Q20*ZI2-Q10)*ZI	BE	42
43	Q1Z=(Q11-Q21*ZI2)*ZI	BE	43
44	ZK=CEXP(FJ*(Z-POF))	BE	44
45	ZI2=1./ZK	BE	45
46	CZ=.5*(ZK+ZI2)	BE	46
47	SZ=FJ*.5*(ZI2-ZK)	BE	47
48	ZK=C3*CSQRT(ZI)	BE	48
49	JO=ZK*(POZ*CZ-QOZ*SZ)	BE	49
50	JOP=-ZK*(P1Z*SZ+Q1Z*CZ)	BE	50
51	IF (IB.EQ.O) RETURN	BE	51
52	ZMS=COS((SQRT(ZMS)-6.)*31.41592654)	BE	52
53	JO=.5*(JOX*(1.+ZMS)+JO*(1ZMS))	BE	53
54	JOP=.5*(JOPX*(1.+ZMS)+JOP*(1ZMS))	BE	54
55	RETURN	BE	55
56 C	INITIALIZATION OF CONSTANTS	BE	56
57 5	DO 6 K=1,25	BE	57
58	A1(K)=25/(K*K)	BE	58
59 6	A2(K)=1./(K+1.)	BE	59
60	DO 8 I=1,101	BE	60
61	TEST=1.	BE	61
62	DO 7 K=1,24	BE	62
63	INIT=K	BE	63
64	TEST=-TEST*I*A1(K)	BE	64

65	IF (TEST.LT.1.E-6) GO TO 8	95	
66 7	CONTINUE	DE	65
		BE	66
67 8	M(I)=INIT		67
68	GO TO 1	DE	0/
	HT (2015) , 유럽 전 경기 (2015) 10 12 10 10 15 20 10 15 20 10 10 10 10 10 10 10 10 10 10 10 10 10	BE	68
69	END	RF	69-
			09-

EVLUA

PURPOSE

To control the evaluation of the Sommerfeld integrals.

METHOD

The integration contour of either Figures 13, 14 or 15 of Part I is used depending on the values of ρ , Z + Z' and k_1 . Figures 13, 14, and 15 should be inverted, however, since they are for a time dependence of $\exp(j\omega t)$ and the coding for the Sommerfeld integrals is for $\exp(-j\omega t)$. Thus the contours and branch cuts in EVALUA are the conjugate of those shown. The conjugate of the results is taken at the end of EVLUA to conform to the NEC time dependence of $\exp(j\omega t)$.

The code from EV 19 to EV 34 evaluates the Bessel function form of the Sommerfeld integrals using the contour of Figure 13 of Part I. ROM1 is called to integrate from $\lambda = 0$ to (p - jp) and GSHANK is called for the path from (p - jp) to infinity where p^{-1} is the maximum of ρ and Z + Z' (p = DEL). If p is greater than $100.1k_1$! then ROM1 is called for the interval 0 to $(p_1 - jp_1)$ where $p_1 = 10!k_1$!. This is done to avoid exceeding the limit by which ROM1 can cut the interval width. Larger steps can then be used from $(p_1 - jp_1)$ to (p - jp) since $\gamma_1 \approx \gamma_2 \approx \lambda$.

The code from EV 39 to EV 86 evaluates the Hankel function form of the integrals using either the contour of Figure 14 or 15. At EV 50 SUM is the negative of the integral from a* to c*. GSHANK is then called to integrate from a* to $-\infty$. The decision whether to use the contour of Figures 14 or 15 is made from EV 58 to EV 64. Figure 15 is used if the real part of $\rho(k_1 - k_2)$ exceeds $2k_2$ and

$$\frac{-u}{|v|} > \frac{4\rho}{2+2}$$

where $u + jv = [-(Z + Z') + j\rho][d* - c*]$ is the argument of the exponential function approximating the Sommerfeld integrand for large λ with $\lambda = d* - c*$. The left side of the inequality is proportional to the decay per cycle along the c to d path and $\rho/(Z + Z')$ is the same for the vertical path. This condition was chosen arbitrarily but gives some indication of when the contour of Figure 16 may be advantageous.

For the contour of Figure 15 GSHANK is called to integrate from e* to infinity. ROM1 is then called from e* to f*. The sign of the contribution from other parts of the path is switched since they were integrated in reverse direction. Finally, GSHANK is called for the paths from c* to infinity and f* to infinity.

For the contour of Figure 14 (GS 79 to GS 86) GSHANK is called to integrate from c* to d* and on to infinity. The increment changes from DELTA to DELTA2 if d* is reached before the integral converges.

From EV 89 to EV 92 the integrals are combined to form the field components and the conjugates are taken.

SYMBOL DICTIONARY

= start of integration interval A ANS = temporary storage = end of integration interval B BK = break point (d*) in path for GSHANK CK1 CK1SQ CK2 CK2SQ CP1 = b* CP2 CP3 = c* DEL DELTA = increment along path DELTA2 = alternate increment = (see SOMNEC) E PH = (see SOMNEC) ERH ERV = (see SOMNEC) = (see SOMNEC) EZV = 0 for Bessel function form, 1 for Hankel function form JH PTP $= 0.2\pi$ RHØ $= \rho$

EVLUA

RMIS = temporary storage

SLOPE = slope of paths to infinity

SUM = temporary storage

TKMAG = $100 \text{ k}_1 \text{ I}$ ZPH = Z + Z'


```
1
         SUBROUTINE EVLUA (ERV, EZV, ERH, EPH)
                                                                                    EV
2 C
                                                                                    EV
3 C
         EVALUA CONTROLS THE INTEGRATION CONTOUR IN THE COMPLEX LAMBDA
                                                                                    EV
                                                                                          3
4 C
         PLANE FOR EVALUATION OF THE SOMMERFELD INTEGRALS.
                                                                                    EV
5 C
                                                                                    EV
         COMPLEX ERV, EZV, ERH, EPH, A, B, CK1, CK1SQ, BK, SUM, DELTA, ANS, DELTA2, CP1,
7
        1CP2, CP3, CKSM, CT1, CT2, CT3
                                                                                    EV
8
         COMMON /CNTOUR/ A,B
9
         COMMON /EVLCOM/ CKSM, CT1, CT2, CT3, CK1, CK1SQ, CK2, CK2SQ, TKMAG, TSMAG, C EV
10
        1K1R, ZPH, RHO, JH
                                                                                         10
                                                                                    EV
11
         DIMENSION SUM(6), ANS(6)
                                                                                    EV
                                                                                         11
12
         DATA PTP/.6283185308/
                                                                                    EV
                                                                                         12
13
          DEL=ZPH
                                                                                    FV
                                                                                         13
14
          IF (RHO.GT.DEL) DEL=RHO
                                                                                    EV
                                                                                         14
         IF (ZPH.LT.2. RHO) GO TO 4
15
                                                                                    EV
                                                                                         15
16 C
                                                                                    EV
                                                                                         16
          BESSEL FUNCTION FORM OF SOMMERFELD INTEGRALS
17 C
                                                                                    EV
                                                                                         17
18 C
                                                                                    EV
                                                                                         18
          JH=0
19
                                                                                         19
20
          A=(0.,0.)
                                                                                    EV
                                                                                         20
21
          DEL=1./DEL
                                                                                    EV
                                                                                         21
22
          IF (DEL.LE.TKMAG) GO TO 2
                                                                                    EV
                                                                                         22
23
          B=CMPLX(.1*TKMAG, -.1*TKMAG)
                                                                                    EV
                                                                                         23
24
         CALL ROM1 (6,SUM,2)
                                                                                    EV
25
         A=B
                                                                                    EV
                                                                                         25
26
          B=CMPLX(DEL,-DEL)
                                                                                    EV
                                                                                         26
27
         CALL ROM1 (6,ANS,2)
                                                                                    EV
                                                                                        27
         DO 1 I=1,6
28
                                                                                        28
29 1
         SUM(I)=SUM(I)+ANS(I)
                                                                                    EV
                                                                                         29
30
         GO TO 3
                                                                                    EV
                                                                                        30
31 2
         B=CMPLX(DEL,-DEL)
                                                                                    EV
                                                                                        31
         CALL ROM1 (6,SUM,2)
32
                                                                                    EV
                                                                                         32
33 3
          DELTA=PTP+DEL
                                                                                    EV
                                                                                         33
34
          CALL GSHANK (B, DELTA, ANS, 6, SUM, 0, B, B)
                                                                                    EV
                                                                                         34
35
          GO TO 10
                                                                                    EV
                                                                                         35
36 C
                                                                                    EV
                                                                                         36
37 C
          HANKEL FUNCTION FORM OF SOMMERFELD INTEGRALS
                                                                                    EV
                                                                                         37
38 C
                                                                                    EV
                                                                                         38
39 4
                                                                                    EV
                                                                                         39
40
          CP1=CMPLX(0.,.4*CK2)
                                                                                    EV
                                                                                         40
          CP2=CMPLX(.6*CK2,-.2*CK2)
41
                                                                                    EV
                                                                                         41
42
          CP3=CMPLX(1.02*CK2,-.2*CK2)
                                                                                    EA.
                                                                                         42
43
          A=CP1
                                                                                    FV
                                                                                         43
44
          B≈CP2
                                                                                    EV
                                                                                         44
45
          CALL ROM1 (6,SUM,2)
                                                                                    EV
                                                                                         45
46
          A=CP2
                                                                                    EV
                                                                                         46
47
          B≈CP3
                                                                                    EV
                                                                                         47
          CALL ROM1 (6,ANS,2)
48
                                                                                    EV
                                                                                         48
49
          DO 5 I=1,6
                                                                                    EV
                                                                                         49
50 5
          SUM(I) = -(SUM(I) + ANS(I))
                                                                                    EV
                                                                                         50
          PATH FROM IMAGINARY AXIS TO -INFINITY
                                                                                    EV
                                                                                         51
52
                                                                                         52
                                                                                    EV
53
          IF (ZPH.GT..001 *RHO) SLOPE=RHO/ZPH
                                                                                    EV
                                                                                         53
          DEL=PTP/DEL
54
                                                                                    EV
                                                                                         54
55
          DELTA=CMPLX(-1.,SLOPE) *DEL/SQRT(1.+SLOPE*SLOPE)
                                                                                    EV
                                                                                         55
56
          DELTA2 =- CONJG (DELTA)
                                                                                    EV
                                                                                         56
57
          CALL GSHANK (CP1, DELTA, ANS, 6, SUM, 0, BK, BK)
                                                                                    EV
                                                                                         57
58
          RMIS=RHO*(REAL(CK1)-CK2)
                                                                                    EV
                                                                                         58
59
          IF (RMIS.LT.2. *CK2) GO TO 8
                                                                                    EV
                                                                                         59
60
          IF (RHO.LT.1.E-10) GO TO 8
                                                                                    FV
                                                                                         60
61
          IF (ZPH.LT.1.E-10) GO TO 6
                                                                                    EV
                                                                                         61
62
          BK=CMPLX(-ZPH,RHO)*(CK1-CP3)
                                                                                    EV
                                                                                         62
63
          RMIS=-REAL(BK)/ABS(AIMAG(BK))
                                                                                    EV
                                                                                        63
64
          IF(RMIS.GT.4. *RHO/ZPH)GO TO 8
                                                                                    EV
                                                                                         64
```

EVLUA

65 C	INTEGRATE UP BETWEEN BRANCH CUTS, THEN TO + INFINITY	EV	65
66 6	CP1=CK1-(.1,.2)	EV	66
67	CP2=CP1+.2	EV	67
68	BK=CMPLX(0.,DEL)	EV	68
69	CALL GSHANK (CP1, BK, SUM, 6, ANS, 0, BK, BK)	EV	69
70	A=CP1	EV	70
71	B=CP2	EV	71
72	CALL ROM1 (6,ANS,1)	EV	72
73	DO 7 I=1,6	EV	73
74 7	ANS(I)=ANS(I)-SUM(I)	EV	74
75	CALL GSHANK (CP3, BK, SUM, 6, ANS, 0, BK, BK)	EV	75
76	CALL GSHANK (CP2, DELTA2, ANS, 6, SUM, 0, BK, BK)	EV	76
77	GO TO 10	EV	77
78 C	INTEGRATE BELOW BRANCH POINTS, THEN TO + INFINITY	EV	78
79 8	00 9 I=1,6	EV	79
80 9	SUM(I)=-ANS(I)	EV	80
81	RMIS=REAL(CK1)*1.01	EV	81
82	IF (CK2+1GT.RMIS) RMIS=CK2+1.	EV	82
83	BK=CMPLX(RMIS,.99*AIMAG(CK1))	EV	83
84	DELTA=BK-CP3	EV	84
85	DELTA=DELTA+DEL/CABS(DELTA)	EV	85
86	CALL GSHANK (CP3, DELTA, ANS, 6, SUM, 1, BK, DELTA2)	EV	86
87 10	ANS(6)=ANS(6)*CK1	EV	87
88 C	CONJUGATE SINCE NEC USES EXP(+JWT)	EV	88
89	ERV=CONJG(CK1SQ*ANS(3))	EV	89
90	EZV=CONJG(CK1SQ*(ANS(2)+CK2SQ*ANS(5)))	EV	90
91	ERH=CONJG(CK2SQ*(ANS(1)+ANS(6)))	EV	91
92	EPH=-CONJG(CK2SQ*(ANS(4)+ANS(6)))	EV	92
93	RETURN	EV	93
94	END	FV	94-

GSHANK

PURPOSE

To apply the Shanks transformation (ref. 6) to accelerate the convergence of a semi-infinite integral.

METHOD

Six integrals (NANS = 6) are evaluated simultaneously in this routine. The integrals over semi-infinite sections of the contours (Figures 13, 14 and 15 of Part I) are evaluated by using the Romberg variable interval width integration method on subsections to obtain a converging sequence of partial sums

$$s_i = s_0 + \int_{A_0}^{A_0 + i\Delta} f(\lambda) d\lambda$$
 $i = 1, 2, ...$

where A_0 is the start of the semi-infinite path, S_0 is the contribution from other parts of the contour and Δ is a complex increment with

$$|\Delta| = \text{minimum of} \begin{cases} 0.2\pi/\rho \\ 0.2\pi/(Z+Z') \end{cases}$$
 arg(Δ) = direction of integration path in λ -plane

The Shanks interated first order transformation is applied to S_i to accelerate convergence. Starting with the sequence of M elements $Q_{i,0} = S_i$, $i = 1, \ldots M$ the j^{th} iterated transform is the sequence of M - 2j elements

$$Q_{ij} = \frac{Q_{i-1, j-1}Q_{i+1, j-1} - Q_{i, j-1}^{2}}{Q_{i-1, j-1} + Q_{i+1, j-1} - 2Q_{i, j-1}}$$

$$= Q_{i-1,j-1} - \frac{(Q_{i,j-1} - Q_{i-1,j-1})^2}{Q_{i-1,j-1} + Q_{i+1,j-1} - 2Q_{i,j-1}}$$

0

$$i = j + 1, ... M - j$$

 $j = 1, ... [(M - 1)/2].$

The second form for $Q_{i,j}$ is used since it suffers less numerical error as the sequence converges. Each iteration of the transform should produce a sequence that converges more rapidly to the limit of the original sequence.

In this subroutine the starting value S₀ comes in as SEED. With each pass through the loop over INT, starting at GS 21, two new values are added to the sequence by calling ROM1 to evaluate the integrals

$$s_{2N-1} = s_{2N-2} + \int_{A_0 + (2N-2)\Delta}^{A_0 + (2N-2)\Delta} f(\lambda) d\lambda$$

$$s_{2N} = s_{2N-1} + \int_{A_0 + (2N-1)\Delta}^{A_0 + (2N-1)\Delta} f(\lambda) d\lambda$$

where N = INT. The $(N-1)^{th}$ interated Shanks transformation, consisting of the two elements $Q_{N,N-1}$ and $Q_{N+1,N-1}$, is then computed. At the end of each pass through the loop over INT the arrays Q1 and Q2 contain the last two elements in each sequence. For function I,

$$Q1(I,J) = Q_{2N-J,J-1}$$

 $Q2(I,J) = Q_{2N-J+1,J-1}$, $J = 1, ... N$.

For the path from c to infinity in Figure 14 of Part I the point d is a break point at which Δ may change. If d is reached before convergence the Shanks transformation is started over with the final value of S_i becoming S_0 for the new sequence.

Convergence is tested from GS 78 to GS 89 by comparing the last two values in the transformed sequences. Although the last sequence, consisting of two elements, should have the highest convergence the last four sequences are tested to avoid a false indication of convergence. The relative difference is computed for each of the six functions and compared with CRIT. If convergence does not occur by INT = MAXH a message is printed and the average of the two values in the last sequence is used for each integral. In computing the relative difference for each function the denominator is not allowed to be less than 10⁻³ times the magnitude of the largest of the six functions to avoid convergence problems when one function goes to zero.

SYMBOL DICTIONARY

A = beginning of integration subinterval

Al = new value for Ql array

A2 = new value for Q2 array

AA = temporary storage

AMG = approximate magnitude of function

ANS1 = S; for i odd

ANS2 = S; for i even

AS1 = S; for i odd

AS2 = S; for i even

B = end of integration subinterval

BK = break point in integration contour

CRIT = limit for relative error in convergence test

DEL = A

DELA = Δ before break point

DELB = A after break point

DEN = approximate magnitude of the largest of the six functions
(GS 76)

DENM = minimum denominator for relative error test

IBK = 1 if path contains break point

IBX = 0 if path contains break point and it has not been passed

INT = N

GSHANK

INX = INT

JM = J - 1

MAXH = maximum for index J in Ql and Q2

NANS = number of functions (6)

Q1, Q2 = (see description of method)

RBK = real part of BK

SEED - S

START - A

SUM = increment to integral

```
SUBROUTINE GSHANK (START, DELA, SUM, NANS, SEED, IBK, BK, DELB)
                                                                                                   GS
                  2 C
                                                                                                   GS
                  3 C
                           GSHANK INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM START TO
                                                                                                   GS
                                                                                                        3
                    C
                           INFINITY (UNTIL CONVERGENCE) IN LAMBDA. AT THE BREAK POINT, BK,
                                                                                                   GS
                  5 C
                           THE STEP INCREMENT MAY BE CHANGED FROM DELA TO DELB. SHANK S
                                                                                                   GS
                  6
                    C
                           ALGORITHM TO ACCELERATE CONVERGENCE OF A SLOWLY CONVERGING SERIES
                                                                                                   GS
                  7
                    C
                           IS USED
                                                                                                   GS
                                                                                                        7
                  8
                    C
                                                                                                   GS
                                                                                                        8
                  9
                           COMPLEX START, DELA, SUM, SEED, BK, DELB, A, B, Q1, Q2, ANS1, ANS2, A1, A2, AS1, GS
                                                                                                        9
                 10
                                                                                                   GS
                                                                                                       10
                           COMMON /CNTOUR/ A, B
                 11
                                                                                                   GS
                                                                                                       11
                           DIMENSION Q1(6,20), Q2(6,20), ANS1(6), ANS2(6), SUM(6), SEED(6)
                 12
                                                                                                   GS
                                                                                                       12
                 13
                           DATA CRIT/1.E-4/,MAXH/20/
                                                                                                   GS
                                                                                                       13
                 14
                           RBK=REAL(BK)
                                                                                                   GS
                                                                                                       14
                 15
                           DEL=DELA
                                                                                                   GS
                                                                                                       15
                           IBX=0
                 16
                                                                                                   GS
                                                                                                       16
                 17
                           IF (IBK.EQ.0) IBX=1
                                                                                                   GS
                                                                                                       17
                  18
                           DO 1 I=1, NANS
                                                                                                   GS
                                                                                                       18
                  19 1
                           ANS2(I)=SEED(I)
                                                                                                   GS
                                                                                                        19
                 20
                           B=START
                                                                                                   GS
                                                                                                       20
                           DO 20 INT=1, MAXH
                 21 2
                                                                                                   GS
                                                                                                       21
                           INX=INT
                 22
                                                                                                   GS
                                                                                                       22
                 23
                           A=B
                                                                                                   GS
                                                                                                       23
                 24
                           B=B+DEL
                                                                                                   GS
                                                                                                       24
                 25
                           IF (IBX.EQ.O.AND.REAL(B).GE.RBK) GO TO 5
                                                                                                   GS
                                                                                                       25
                 26
                           CALL ROM1 (NANS, SUM, 2)
                                                                                                   GS
                                                                                                       26
                 27
                           DO 3 I=1, NANS
                                                                                                   GS
                                                                                                       27
                  28 3
                           ANS1(I)=ANS2(I)+SUM(I)
                                                                                                   GS
                                                                                                       28
                 29
                           A=R
                                                                                                   GS
                                                                                                       29
                 30
                           B=B+DEL
                                                                                                   GS
                                                                                                       30
                 31
                           IF (IBX.EQ.O.AND.REAL(B).GE.RBK) GO TO 6
                                                                                                   GS
                                                                                                       31
                  32
                           CALL ROM1 (NANS, SUM, 2)
                                                                                                   GS
                                                                                                       32
                  33
                           DO 4 I=1 , NANS
                                                                                                   GS
                                                                                                       33
                 34 4
                           ANS2(I)=ANS1(I)+SUM(I)
                                                                                                   GS
                                                                                                       34
                  35
                           GO TO 11
                                                                                                   GS
                                                                                                       35
                  36 C
                           HIT BREAK POINT. RESET SEED AND START OVER.
                                                                                                   GS
                                                                                                       36
                  37 5
                           IBX=1
                                                                                                   GS
                                                                                                       37
                           GO TO 7
                  38
                                                                                                   GS
                                                                                                       38
                  39 6
                           IBX=2
                                                                                                   GS
                                                                                                       39
                  40 7
                           B=BK
                                                                                                   GS
                                                                                                       40
                  41
                           DEL=DELB
                                                                                                   GS
                                                                                                       41
                           CALL ROM1 (NANS, SUM, 2)
                  42
                                                                                                   GS
                                                                                                       42
                  43
                           IF (IBX.EQ.2) GO TO 9
                                                                                                   GS
                                                                                                        43
                  44
                           DO 8 I=1, NANS
                                                                                                   GS
                                                                                                        44
                  45 8
                           ANS2(I)=ANS2(I)+SUM(I)
                                                                                                   GS
                                                                                                        45
                  46
                           GO TO 2
                                                                                                   GS
                                                                                                        46
                  47 9
                           DO 10 I=1, NANS
                                                                                                   GS
                                                                                                        47
                  48 10
                           ANS2(I)=ANS1(I)+SUM(I)
                                                                                                   GS
                                                                                                       48
                  49
                           GO TO 2
                                                                                                   GS
                                                                                                        49
                           DEN=0.
                  50 11
                                                                                                   GS
                                                                                                       50
                  51
                           DO 18 I=1, NANS
                                                                                                   GS
                                                                                                       51
                  52
                           AS1=ANS1(I)
                                                                                                   GS
                                                                                                       52
                  53
                           AS2=ANS2(I)
                                                                                                   GS
                                                                                                        53
                           IF (INT.LT.2) GO TO 17
                  54
                                                                                                   GS
                                                                                                        54
                           DO 16 J=2, INT
                  55
                                                                                                   GS
                                                                                                        55
                  56
                           JM=J-1
                                                                                                   GS
                                                                                                       56
                  57
                           AA=Q2(I,JM)
                                                                                                   GS
                                                                                                       57
                  58
                           A1=Q1(I,JM)+AS1-2. AA
                                                                                                   GS
                                                                                                       58
                  59
                           IF (REAL(A1).EQ.O..AND.AIMAG(A1).EQ.O.) GO TO 12
                                                                                                   GS
                                                                                                       59
                           A2=AA-Q1(I,JM)
                  60
                                                                                                   GS
                                                                                                       60
                           A1=Q1(I,JM)-A2*A2/A1
                  61
                                                                                                   GS
                                                                                                        61
62 GO TO 13 GS 62
63 12 A1=Q1(I,JM) GS 63
64 13 A2=AA+AS2-2.*AS1 GS 64
                           GO TO 13
                  62
                                                                                                   GS
                                                                                                        62
```

GSHANK

65		IF (REAL(A2).EQ.OAND.AIMAG(A2).EQ.O.) GO TO 14	GS	65
66		A2=AA-(AS1-AA)*(AS1-AA)/A2	GS	66
67		GO TO 15	GS	67
68	14	A2=AA	GS	68
69	15	Q1(I,JM)=AS1	GS	69
70		Q2(I,JM)=AS2	GS	70
71		AS1=A1	GS	71
72	16	AS2=A2	GS	72
73	17	Q1(I,INT)=AS1	GS	73
74		Q2(I,INT)=AS2	GS	74
75		AMG=ABS(REAL(AS2))+ABS(AIMAG(AS2))	GS	75
76		IF (AMG.GT.DEN) DEN=AMG	GS	76
77	18	CONTINUE	GS	77
78		DENM=1.E-3.DEN.CRIT	GS	78
79		JM=INT-3	GS	79
80		IF (JM.LT.1) JM=1	GS	80
81		DO 19 J=JM, INT	GS	81
82		DO 19 1=1,NANS	GS	82
83		A1=Q2(I, J)	GS	83
84		DEN=(ABS(REAL(A1))+ABS(AIMAG(A1)))*CRIT	GS	84
85		IF (DEN.LT.DENM) DEN=DENM	GS	85
86		A1=Q1(I,J)-A1	GS	86
87		AMG=ABS(REAL(A1))+ABS(AIMAG(A1))	GS	87
88		IF (AMG.GT.DEN) GO TO 20	GS	88
89	19	CONTINUE	GS	89
90		GO TO 22	GS	90
91	20	CONTINUE	GS	91
92		PRINT 24	GS	92
93		DO 21 I=1,NANS	GS	93
94	21	PRINT 25, Q1(I,INX),Q2(I,INX)	GS	94
95	22	DO 23 I=1, MANS	GS	95
96	23	SUM(I)=.5*(Q1(I,INX)+Q2(I,INX))	GS	96
97		RETURN'	GS	97
98	C		GS	98
99	24	FORMAT (46H **** NO CONVERGENCE IN SUBROUTINE GSHANK ****)	GS	99
100	25	FORMAT (10E12.5)	GS	100
101		END	GS	101-

HANKEL

PURPOSE

To compute the Hankel function of the first kind, zeroth order, and its derivative for a complex argument.

METHOD

For argument magnitudes less than a limit Z_s the functions are evaluated by the ascending series and for larger magnitudes by Hankel's asymptotic expansion (ref. 5). The series are

$$Y_0(z) = \frac{2}{\pi} \ln(z/2) J_0(z) - \frac{2}{\pi} \sum_{k=0}^{\infty} \psi(k+1) \frac{(-z^2/4)^k}{(k!)^2}$$

$$y_0'(z) = \frac{2}{\pi z} + \frac{2}{\pi} \ln(z/2) J_0'(z) + \frac{z}{2\pi} \sum_{k=0}^{\infty} [\psi(k+1) + \psi(k+2)] \frac{(-z^2/4)^k}{k!(k+1)!}$$
where $\psi(k+1) = -\gamma + \sum_{j=1}^{k} j^{-1}$

 $\psi(1) = -\gamma$

Y = Euler's constant = 0.5772156649

The Hankel functions are

$$H_0^{(1)}(z) = J_0(z) + j Y_0(z)$$

$$H_0^{(1)'}(z) = J_0'(z) + j Y_0'(z)$$

The series for $J_0(Z)$ and $J_0(Z)$ are given in the description of subroutine BESSEL. The number of terms used with an argument Z is M(IZ) where IZ = 1. + IZ|².

The array M is filled for IZ from 1 to 101 on the first call to HANKEL by determining the value of k at which the term in the series of Y_0 is less than 10^{-6} .

When |Z| is greater than Z_s Hankel's asymptotic expansions are used with two or three terms. These are

$$H_{V}^{(1)}(z) = \sqrt{\frac{2}{\pi Z}} [P(v,z) + jQ(v,z)]e^{jX}$$

$$\chi = z - (\frac{1}{2}v + \frac{1}{4})\pi$$

P(v,Z) and Q(v,Z) are given in the description of subroutine BESSEL.

When $Z_s < |Z| < Z_s + \Delta$ both the series and asymptotic forms are evaluated and are combined as in BESSEL to eliminate any discontinity. In HANKEL Z_s is 4 and Δ is 0.1.

SYMBOL DICTIONARY

A1 =
$$-1./(4k^2)$$

$$A2 = 1./(k+1)$$

$$A3 = 2\psi(k+1)$$

A4 =
$$[\psi(k+1) + \psi(k+2)]/(k+1)$$

C1 =
$$[\psi(1) + \psi(2)]/(2\pi)$$

C2 =
$$2\gamma/\pi$$
.

$$C3 = \sqrt{2/\pi}$$

$$CLOGZ = ln(Z)$$

$$FJX = FJ$$

$$GAMMA = \gamma$$

$$HO = H_0^{(1)}(z)$$

HOP =
$$H_0^{(1)}(z)$$

IB = 1 to indicate that both the series and asymptotic forms will be evaluated and combined

INIT = flag to indicate that initialization of constants has been
completed

$$IZ = 1. + |Z|^2$$

$$JO = J_0(Z)$$

$$JOP = J_0'(Z)$$

K = summation index k, summed from 1 to limit

M = array of upper limits for k

MIZ = upper limit for k

POZ, P10, P11, P1Z, P20, P21: see BESSEL

 $PI = \pi$

POF = $\pi/4$

 $PSI = \psi$

QOZ, Q10, Q11, Q1Z, Q20, Q21: see BESSEL

TEST = magnitude of term in the series

 $YO = Y_0(Z)$

 $YOP = Y_0(Z)$

Z = Z

 $zI = z^2 \text{ or } 1/z$

 $z_{12} = 1/z^2$

ZK = $(-Z^2/4)^k/(k!)^2$; also temporary storage

ZMS = $|Z^2|$ or temporary storage

CONSTANTS

16. = 42

16.81 = 4.12

 $31.41592654 = 10.\pi$

HANKEL

1		SUBROUTINE HANKEL (Z,HO,HOP)	HA	1
2			HA	2
3	700	HANKEL EVALUATES HANKEL FUNCTION OF THE FIRST KIND, ORDER ZERO,	HA	3
	C	AND ITS DERIVATIVE FOR COMPLEX ARGUMENT Z.	HA	4
5	C		HA	5
6		COMPLEX CLOGZ, HO, HOP, JO, JOP, POZ, P1Z, QOZ, Q1Z, YO, YOP, Z, ZI, ZIZ, ZK, FJ	HA	6
7		DIMENSION M(101), A1(25), A2(25), A3(25), A4(25), FJX(2)	HA	7
8		EQUIVALENCE (FJ, FJX)	HA	8
9		DATA PI, GAMMA, C1, C2, C3, P10, P20/3.141592654, .5772156649, 024578509	HA	9
10		15,.3674669052,.7978845608,.0703125,.1121520996/	HA	10
11		DATA Q10,Q20,P11,P21,Q11,Q21/.125,.0732421875,.1171875,.1441955566	HA	11
12		1,.375,.1025390625/	HA	12
13		DATA POF, INIT/.7853981635,0/,FJX/0.,1./	HA	13
14		IF (INIT.EQ.0) GO TO 5	HA	14
15	1	ZMS=Z*CONJG(Z)	HA	15
16		IF (ZMS.NE.O.) GO TO 2	HA	16
17		PRINT 9	HA	17
18		STOP	HA	18
19	2	IB=0	HA	19
20		IF (ZMS.GT.16.81) GO TO 4	HA	20
21		IF (ZMS.GT.16.) IB=1	HA	21
22	С	SERIES EXPANSION	HA	22
23		IZ=1.+ZMS	HA	23
24		MIZ=M(IZ)	HA	24
25		J0=(1.,0.)	HA	25
26		JOP=JO	HA	26
27		Y0=(0.,0.)	HA	27
28		YOP=YO	HA	28
29		ZK=J0	HA	29
30		ZI=Z*Z	HA	30
32		DO 3 K=1,MIZ ZK=ZK*A1(K)*ZI	HA	31
33		J0=J0+ZK	HA	33
34		JOP=JOP+A2(K)*ZK	HA	34
35		Y0=Y0+A3(K)*ZK	HA	35
36	3	YOP=YOP+A4(K)+ZK	HA	36
37		JOP=5*Z*JOP	HA	37
38		CLOGZ=CLOG(.5*Z)	HA	38
39		Y0=(2.*J0*CLOGZ-Y0)/PI+C2	HA	39
40		YOP=(2./Z+2.*JOP*CLOGZ+.5*YOP*Z)/PI+C1*Z	HA	40
41		H0=J0+FJ*Y0	HA	41
42		HOP=JOP+FJ*YOP	HA	42
43		IF (IB.EQ.O) RETURN	HA	43
44		Y0=H0	HA	44
45		YOP=HOP	HA	45
46	C	ASYMPTOTIC EXPANSION	HA	46
47	4	ZI=1./Z	HA	47
48		ZI2=ZI•ZI	HA	48
49		POZ=1.+(P20*ZI2-P10)*ZI2	HA	49
50		P1Z=1.+(P11-P21*ZI2)*ZI2	HA	50
51		QOZ=(Q20°ZI2~Q10)°ZI	HA	51
52		Q1Z=(Q11-Q21*ZI2)*ZI	HA	52
53		ZK=CEXP(FJ*(Z-POF))*CSQRT(ZI)*C3	HA	53
54		H0=ZK*(P0Z+FJ*Q0Z)	HA	54
55 56		HOP=FJ*ZK*(P1Z+FJ*Q1Z) IF (IB.EQ.O) RETURN	HA	55 56
57		ZMS=COS((SQRT(ZMS)-4.)+31.41592654)	HA	57
58		H0=.5*(Y0*(1.+ZMS)+H0*(1ZMS))	HA	58
59		HOP=.5*(YOP*(1.+ZMS)+HOP*(1ZMS))	HA	59
60		RETURN	HA	60
61	C	INITIALIZATION OF CONSTANTS	HA	61
62		PSI=-GAMMA	HA	62
63		DO 6 K=1,25	HA	63
64		$A1(K)=25/(K \cdot K)$	HA	64

HANKEL

65	A2(K)=1./(K+1.)	HA	65
66	PSI=PSI+1./K	HA	66
67	A3(K)=PSI+PSI	HA	67
68 6	A4(K)=(PSI+PSI+1./(K+1.))/(K+1.)	HA	68
69	DO 8 I=1,101	HA	69
70	TEST=1.	HA	70
71	DO 7 K=1,24	HA	71
72	INIT=K	HA	72
73	TEST=-TEST*I*A1(K)	HA	73
74	IF (TEST*A3(K).LT.1.E-6) GO TO 8	HA	74
75 7	CONTINUE	HA	75
76 8	M(I)=INIT	HA	76
77	GO TO 1	HA	77
78 C		HA	78
79 9	FORMAT (34H ERROR - HANKEL NOT VALID FOR Z=0.)	HA	79
80	END	НА	80-

LAMBDA

LAMBDA

PURPOSE

To compute the complex value of $\boldsymbol{\lambda}$ from the real integration parameter in ROM1.

METHOD

For integration along a straight path between the points a and b in the λ plane, λ and $d\lambda$ are

$$\lambda = a + (b - a)t$$

$$d\lambda = (b - a)dt$$

SYMBOL DICTIONARY

A = a

B = b

DXLAM = b - a

T = t

 $XLAM = \lambda$

1	SUBROUTINE LAMBDA (T, XLAM, DXLAM)	LA	1
2 C		LA	2
3 C	COMPUTE INTEGRATION PARAMETER XLAM=LAMBDA FROM PARAMETER T.	LA	3
4 C		LA	4
5	COMPLEX A,B,XLAM,DXLAM	LA	5
6	COMMON /CNTOUR/ A,B	LA	6
7	DXLAM=B-A	LA	7
8	XLAM=A+DXLAM*T	LA	8
9	RETURN	LA	9
10	END	LA	10-

ROM!

ROM1

PURPOSE

To integrate the Sommerfeld integrands between two points in λ by the method of variable interval-width Romberg integration.

METHOD

A and B in common block /CNTOUR/ are the ends of the integration path and are set before ROM1 is called. The integration parameter Z in ROM1 starts at zero and ends at one. The corresponding value of λ is determined by subroutine LAMBDA as

 $\lambda = A + (B - A)Z$

Subroutine SAOA returns six integrand values which are handled simultaneously in loops throughout the code. The Romberg variable interval-width integration method will not be described in detail since it is the same as that used in subroutine INTX in the main NEC program. The convergence test in ROM1 requires that all six components satisfy the relative error tests simultaneously.

```
SUBROUTINE ROM1 (N,SUM,NX)
                                                                                   RO
2 C
                                                                                   RO
                                                                                         2
         ROM1 INTEGRATES THE 6 SOMMERFELD INTEGRALS FROM A TO B IN LAMBDA.
3
  C
                                                                                   RO
                                                                                         3
  C
4
         THE METHOD OF VARIABLE INTERVAL WIDTH ROMBERG INTEGRATION IS USED.
                                                                                   RO
5 C
                                                                                   RO
6
         COMPLEX A,B,SUM,G1,G2,G3,G4,G5,T00,T01,T10,T02,T11,T20
                                                                                   RO
                                                                                         6
         COMMON /CNTOUR/ A,B
7
                                                                                   RO
                                                                                         7
         DIMENSION SUM(6), G1(6), G2(6), G3(6), G4(6), G5(6), T01(6), T10(6 RO
8
                                                                                         8
9
         1), T20(6)
                                                                                   RO
10
         DATA NM, NTS, RX/131072, 4, 1.E-4/
                                                                                   RO
                                                                                        10
11
         LSTEP=0
                                                                                   RO
                                                                                        11
         Z=0.
12
                                                                                   RO
                                                                                        12
13
         ZE=1 .
                                                                                   RO
                                                                                        13
14
         S=1.
                                                                                   RO
                                                                                        14
15
         EP=S/(1.E4*NM)
                                                                                   RO
                                                                                        15
16
         ZEND=ZE-EP
                                                                                   RO
                                                                                        16
17
         DO 1 I=1,N
                                                                                   RO
                                                                                        17
         SUM(I)=(0.,0.)
18 1
                                                                                   RO
                                                                                        18
         NS=NX
19
                                                                                   RO
                                                                                        19
20
         NT=0
                                                                                   RO
                                                                                        20
         CALL SAOA (Z,G1)
21
                                                                                   RO
                                                                                        21
22 2
         DZ=S/NS
                                                                                   RO
                                                                                        22
         IF (Z+DZ.LE.ZE) GO TO 3
23
                                                                                   RO
                                                                                        23
24
         DZ=ZE-Z
                                                                                   RO
                                                                                        24
25
         IF (DZ.LE.EP) GO TO 17
                                                                                   RO
                                                                                        25
26 3
         DZOT=DZ . 5
                                                                                   RO
                                                                                        26
27
         CALL SAOA (Z+DZOT,G3)
                                                                                   RO
                                                                                        27
28
         CALL SAOA (Z+DZ,G5)
                                                                                   RO
                                                                                        28
29 4
         NOGO=0
                                                                                   RO
                                                                                        29
30
         DO 5 I=1,N
                                                                                   RO
                                                                                        30
         T00=(Gt(I)+G5(I))*DZOT
31
                                                                                   RO
                                                                                        31
         TO1(I)=(TOO+DZ*G3(I))*.5
32
                                                                                   RO
                                                                                        32
33
         T10(I)=(4.*T01(I)-T00)/3.
                                                                                        33
                                                                                   RO
34 C
         TEST CONVERGENCE OF 3 POINT ROMBERG RESULT
                                                                                        34
                                                                                   RO
35
         CALL TEST (REAL(T01(I)), REAL(T10(I)), TR, AIMAG(T01(I)), AIMAG(T10(I)) RO
                                                                                        35
36
         1),TI,O.)
                                                                                   RO
                                                                                        36
37
         IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1
                                                                                   RO
                                                                                        37
38 5
         CONTINUE
                                                                                   RO
                                                                                        38
39
         IF (NOGO.NE.O) GO TO 7
                                                                                   RO
                                                                                        39
         DO 6 I=1,N
40
                                                                                   RO
                                                                                        40
         SUM(I)=SUM(I)+T10(I)
41
   6
                                                                                   RO
                                                                                        41
42
         NT=NT+2
                                                                                   RO
                                                                                        42
43
         GO TO 11
                                                                                   RO
                                                                                        43
44 7
         CALL SAOA (Z+DZ*.25,G2)
                                                                                   RO
                                                                                        44
         CALL SAOA (Z+DZ*.75,G4)
45
                                                                                        45
                                                                                   RO
46
         NOGO=0
                                                                                   RO
                                                                                        46
47
         DO 8 I=1,N
                                                                                   RO
                                                                                        47
         T02=(T01(I)+DZOT*(G2(I)+G4(I)))*.5
48
                                                                                   RO
                                                                                        48
49
          T11=(4.*T02-T01(I))/3.
                                                                                   RO
                                                                                        49
          T20(I)=(16.*T11-T10(I))/15.
50
                                                                                   RO
                                                                                        50
51 C
          TEST CONVERGENCE OF 5 POINT ROMBERG RESULT
                                                                                   RO
                                                                                        51
52
         CALL TEST (REAL(T11).REAL(T20(I)),TR,AIMAG(T11),AIMAG(T20(I)),TI,O RO
                                                                                        52
53
                                                                                        53
         1.)
                                                                                   RO
54
         IF (TR.GT.RX.OR.TI.GT.RX) NOGO=1
                                                                                   RO
                                                                                        54
55 8
          CONTINUE
                                                                                   RO
                                                                                        55
          IF (NOGO.NE.O) GO TO 13
56
                                                                                   RO
                                                                                        56
57 9
          DO 10 I=1,N
                                                                                   RO
                                                                                        57
58 10
          SUM(I)=SUM(I)+T20(I)
                                                                                   RO
                                                                                        58
59
         NT=NT+1
                                                                                   RO
                                                                                        59
          Z=Z+DZ
60 11
                                                                                   RO
                                                                                        60
61
          IF (Z.GT.ZEND) GO TO 17
                                                                                   RO
                                                                                        61
62
          DO 12 I=1,N
                                                                                   RO
                                                                                        62
63 12
          G1(I)=G5(I)
                                                                                   RO
                                                                                        63
          IF (NT.LT.NTS.OR.NS.LE.NX) GO TO 2
64
                                                                                   RO
                                                                                        64
```

ROM1

65	NS=NS/2	RO	65
66	NT=1	RO	66
67	GO TO 2	RO	67
68 13	NT=0	RO	68
69	IF (NS.LT.NM) GO TO 15	RO	69
70	IF (LSTEP.EQ.1) GO TO 9	RO	70
71	LSTEP=1	RO	71
72	CALL LAMBDA (Z,TOO,T11)	RO	72
73	PRINT 18, T00	RO	73
74	PRINT 19, Z,DZ,A,B	RO	74
75	DO 14 I=1,N	RO	75
76 14	PRINT 19, G1(I),G2(I),G3(I),G4(I),G5(I)	RO	76
77	GO TO 9	RO	77
78 15	NS=NS+2	RO	78
79	DZ=S/NS	RO	79
80	DZOT=DZ*.5	RO	80
81	DO 16 I=1,N	RO	81
82	G5(I)=G3(I)	RO	82
83 16	G3(I)=G2(I)	RO	83
84	GO TO 4	RO	84
85 17	CONTINUE	RO	85
86	RETURN	RO	86
87 C		RO	87
88 18	FORMAT (38H ROM1 - STEP SIZE LIMITED AT LAMBDA =, 2E12.5)	RO	88
89 19	FORMAT (10E12.5)	RO	89
90	END	RO	90-

PURPOSE

To compute the integrands for the Sommerfeld integrals.

METHOD

The input to SAOA is the integration parameter T and constants in common block /EVLCOM/. The integration variable λ corresponding to T is obtained by calling subroutine LAMBDA. The values returned in array ANS are

$$ANS(1) = D_2 H_0^{(1)"}(\lambda \rho) e^{-\gamma_2 (Z+Z')} \lambda^3 d\lambda/dT$$

ANS(2) =
$$D_2 \gamma_2^2 H_0^{(1)} (\lambda \rho) e^{-\gamma_2 (Z+Z')} \lambda d\lambda/dT$$

ANS(3) =
$$-D_2 \gamma_2 H_0$$
 (\lambda \rho)e $\lambda d\lambda/dT$

ANS(4) =
$$\rho^{-1}D_2H_0^{(1)}(\lambda\rho)e^{-\gamma_2(Z+Z')}\lambda^2d\lambda/dT$$

ANS(5) =
$$D_2H_0^{(1)}(\lambda\rho)e^{-\gamma_2(Z+Z')}\lambda d\lambda/dT$$

ANS(6) =
$$k_1^{-1}D_1H_0^{(1)}(\lambda\rho)e^{-\gamma_2(Z+Z')}\lambda d\lambda/dT$$

where
$$D_1 = \frac{1}{\gamma_1 + \gamma_2} - \frac{k_2^2}{\gamma_2(k_1^2 + k_2^2)}$$

$$D_{2} = \frac{1}{k_{1}^{2} \gamma_{2} + k_{2}^{2} \gamma_{1}} - \frac{1}{\gamma_{2}(k_{1}^{2} + k_{2}^{2})} = \frac{k_{2}^{2}(\gamma_{2} - \gamma_{1})}{\gamma_{2}(k_{1}^{2} + k_{2}^{2})(k_{1}^{2} \gamma_{2} + k_{2}^{2} \gamma_{1})}$$

$$\gamma_1 = [\lambda^2 - k_1^2]^{1/2}$$

$$\gamma_2 = [\lambda^2 - k_2^2]^{1/2}$$

$$k_1 = k_2(\varepsilon_1 - j\sigma_1/\omega\varepsilon_0)^{1/2}$$

$$k_2 = \omega \sqrt{\mu_0 \varepsilon_0}$$

The integrands given above are computed when JH >0. When JH ≤ 0 , $H_0^{(1)}(\lambda\rho)$ is replaced by $2J_0(\lambda\rho)$. The functions γ_1 and γ_2 are computed from SA 24 to SA 29 so that the branch cuts are vertical. This is not necessary from SA 17 to SA 20 since for the Bessel function form the integration contour is confined to a different quadrant than the branch cuts.

To avoid loss of accuracy due to cancellation when λ is large, D is computed from the approximation for γ_2 - γ_1 :

$$\gamma_2 - \gamma_1 \approx \pm \left[\frac{1}{2} \frac{k_1^2 - k_2^2}{\lambda} + \frac{1}{8} \frac{k_1^4 - k_2^4}{\lambda^3} + \frac{1}{16} \frac{k_1^6 - k_2^6}{\lambda^5} \right]$$

when $|\lambda|^2 \ge 100 \cdot |k_1|^2$.

The sign is:

- for
$$\lambda_{R} < k_{2_{R}}$$
, $\lambda_{I} \ge 0$
- for $\lambda_{R} < -k_{1_{R}}$, $\lambda_{I} < 0$
+ for $\lambda_{R} > k_{1_{R}}$, $\lambda_{I} \ge 0$
+ for $\lambda_{R} > -k_{2_{R}}$, $\lambda_{I} < 0$.

There is no cancellation and this approximation is not valid when

or
$$-k_{1_{r}}^{2} \le \lambda_{R} \le k_{1_{R}}^{2}$$
, $\lambda_{I} \ge 0$
or $-k_{1_{r}}^{2} \le \lambda_{R} \le -k_{2_{R}}^{2}$, $\lambda_{I} < 0$.

D₁ and D₂ are computed from SA 30 to SA 44.

SYMBOL DICTIONARY

```
= integrand values
ANS
             = 2J_0(\lambda\rho) or H_0^{(1)}(\lambda\rho)
= 2J_0(\lambda\rho)/\rho or H_0^{(1)}(\lambda\rho)/\rho
BO
BOP
CGAM1
             = Y2
CGAM2
             = k<sub>1</sub>
CKI
             = real part of k
CKIR
CKISQ
CK2
            = k_2^2
CK2SQ
            = k_2^2/(k_1^2+k_2^2)
CKSM
             = exp [-\gamma_2(Z+Z')]\lambda d\lambda/dT at SA 45
COM
             = (k_1^2 - k_2^2)/2
CTI
             = (k_1^4 - k_2^4)/8
CT2
             = (k_1^6 - k_2^6)/16
CT3
DEN1
             = D<sub>2</sub>
DEN2
DGAM
             = \gamma_2 - \gamma_1
             = d\lambda/dT
DXL
             = flag to select Bessel or Hankel function form
JH
RHO
             = sign in approximation for \gamma_2 - \gamma_1
SIGN
             = integration parameter
             = 100. lk, l
TKMAG
             = 100. |k1 |2
TSMAG
XL
XLR
             = real part of \u00e4
```

= Z + Z'

ZPH

1		SUBROUTINE SAGA (T,ANS)	SA	1
	C		SA	2
	C	SAOA COMPUTES THE INTEGRAND FOR EACH OF THE 6	SA	3
	C	SOMMERFELD INTEGRALS FOR SOURCE AND OBSERVER ABOVE GROUND	SA	4
5	C		SA	5
6		COMPLEX ANS, XL, DXL, CGAM1, CGAM2, BO, BOP, COM, CK1, CK1SQ, CKSM, CT1, CT2, C	SA	6
7		1T3, DGAM, DEN1, DEN2	SA	7
8		COMMON /EVLCOM/ CKSM, CT1, CT2, CT3, CK1, CK1SQ, CK2, CK2SQ, TKMAG, TSMAG, C	SA	8
9		1K1R,ZPH,RHO,JH	SA	9
10		DIMENSION ANS(6)	SA	10
11		CALL LAMBDA (T,XL,DXL)	SA	11
12		IF (JH.GT.0) GO TO 1	SA	12
13	C	BESSEL FUNCTION FORM	SA	13
14		CALL BESSEL (XL*RHO, BO, BOP)	SA	14
15		B0=2.*B0	SA	15
16		BOP=2.*BOP	SA	16
17		CGAM1=CSQRT(XL*XL-CK1SQ)	SA	17
18		CGAM2=CSQRT(XL*XL-CK2SQ)	SA	18
19		IF (REAL(CGAM1).EQ.O.) CGAM1=CMPLX(O.,-ABS(AIMAG(CGAM1)))	SA	19
20		IF (REAL(CGAM2).EQ.O.) CGAM2=CMPLX(O.,-ABS(AIMAG(CGAM2)))	SA	20
21		GO TO 2	SA	21
22	_	HANKEL FUNCTION FORM	SA	22
23		CALL HANKEL (XL*RHO, BO, BOP)	SA	23
24		COM=XL-CK1	SA	24
25		CGAM1=CSQRT(XL+CK1)*CSQRT(COM)		25
26		IF (REAL(COM).LT.OAND.AIMAG(COM).GE.O.) CGAM1=-CGAM1	SA	26
		COM=XL-CK2		
27 28		CGAM2=CSQRT(XL+CK2)*CSQRT(COM)	SA	27
29			SA	
		IF (REAL(COM).LT.OAND.AIMAG(COM).GE.O.) CGAM2=-CGAM2	SA	29
30	2	XLR=XL*CONJG(XL)	SA	30
31		IF (XLR.LT.TSMAG) GO TO 3	SA	31
32		IF (AIMAG(XL).LT.O.) GO TO 4	SA	32
33		XLR=REAL(XL)	SA	33
34		IF (XLR.LT.CK2) GO TO 5	SA	34
35		IF (XLR.GT.CK1R) GO TO 4	SA	35
36		DGAM=CGAM2-CGAM1	SA	36
37		GO TO 7	SA	37
38		SIGN=1.	SA	38
39		GO TO 6	SA	39
40		SIGN=-1.	SA	40
41	6	DGAM=1./(XL•XL)	SA	41
42		DGAM=SIGN*((CT3*DGAM+CT2)*DGAM+CT1)/XL	SA	42
43	7	DEN2=CKSM*DGAM/(CGAM2*(CK1SQ*CGAM2+CK2SQ*CGAM1))	SA	43
44		DEN1=1./(CGAM1+CGAM2)-CKSM/CGAM2	SA	44
45		COM=DXL*XL*CEXP(-CGAM2*ZPH)	SA	45
46		ANS(6)=COM+BO+DEN1/CK1	SA	46
47		COM=COM*DEN2	SA	47
48		IF (RHO.EQ.O.) GO TO 8	SA	48
49		BOP=BOP/RHO	SA	49
50		ANS(1)=-COM+XL+(BOP+BO+XL)	SA	50
51		ANS(4)=COM+XL+BOP	SA	51
52		GO TO 9	SA	52
53	8	ANS(1)=-COM+XL+XL+.5	SA	53
54		ANS(4)=ANS(1)	SA	54
55	9	ANS(2)=COM*CGAM2*CGAM2*BO	SA	55
56		ANS(3)=-ANS(4)*CGAM2*RHO	SA	56
57		ANS(5)=COM+BO	SA	57
58		RETURN	SA	58
50	V	END	CA	50-

SECOND - see SECOND in main NEC program.

TEST

TEST - see TEST in main NEC program.

2. COMMON BLOCKS IN SOMNEC

COMMON/CNTOUR/ A, B

Routines Using /CNTOUR/

EVLUA, GSHANK, LAMBDA, ROM1

Parameters

A = start of integration interval

B = end of integration interval

A and B are used by subroutine LAMBDA to compute the complex value of λ from the real parameter supplied by ROM1.

COMMON/EVLCOM/ CKSM, CT1, CT2, CT3, CK1, CK1SQ, CK2, CK2SQ, TKMAG, TSMAG, CK1R, ZPH, RHO, JH

Routines Using /EVLCOM/

SOMNEC, EVLUA, SAOA

Parameters

See symbol dictionaries for subroutines

COMMON/GGRID/ AR1 (11, 10, 4), AR2 (17, 5, 4), AR3 (9, 8, 4), EPSCF, DXA(3), DYA(3), XSA(3), YSA(3), NXA(3), NYA(3)

Routines Using /GGRID/

SOMNEC (main program)

Parameters

ARl = array for grid 1 (see Figure 12, Part I)

AR2 = array for grid 2

AR3 = array for grid 3

EPSCF = E

For grid i, ARi(j, k, m) is the value of I_{ρ}^{V} , I_{z}^{V} , I_{ρ}^{H} , or I_{ϕ}^{H} for M = 1, ... 4 respectively at the point

$$R_1/\lambda = S_i + (j-1)\Delta R_i$$
 $j = 1, \dots N_i$
 $\theta = T_i + (k-1)\Delta \theta_i$ $k = 1, \dots M_i$

where
$$S_i = XSA(i)$$

$$\Delta R_i = DXA(i)$$

$$N_i = NXA(i)$$

$$T_i = YSA(i)$$

$$\Delta\theta_i = DYA(i)$$

$$M_i = NYA(i)$$

XSA and DXA are in units of wavelength. YSA and DYA are in units of radians. The upper limit of grid 1 (XSA(2) = XSA(3)) and the upper limit of grid 2 (YSA(3)) may be changed and the densities of points may be changed. Boundaries that are zero should not be changed without modifying subroutine INTRP in NEC. The three grids must cover the region $0 \le R_1/\lambda \le 1$ and $0 \le \theta \le \pi/2$.

3. ARRAY DIMENSION LIMITATIONS

Number of Points in Interpolation Grids

Arrays:

COMMON/GGRID/AR1 (N₁, M₁, 4), AR2 (N₂, M₂, 4), AR3 (N₃, M₃, 4) where N_i \geq NXA(i) and M_i \geq NYA(i)

The dimensions in common /GGRID/ in SOMNEC must be the same as the dimension of /GGRID/ in NEC.

Maximum Number of Iterations in GSHANK

Arrays:

Subroutine GSHANK: Q1 (6, MAXH), Q2 (6, MAXH) where MAXH = maximum value of INT in GSHANK set at GS 13.

4. SOMNEC SUBROUTINE LINKAGE

Figure 17 shows the organization of subroutines in SOMNEC.

Figure 17. SOMNEC Subroutine Linkage Chart.

References

- 1. Ralston, A., A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.
- Norton, K. A., "The Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere," <u>Proceedings of the Institute of Radio</u> <u>Engineers</u>, Vol. 25, No. 9, Sept. 1937.
- 3. Miller, E. K., "A Variable Interval Width Quadrature Technique Based on Romberg's Method," <u>Journal of Computational Physics</u>, Vol. 5, No. 2, April 1970.
- 4. Miller, E. K., and G. J. Burke, "Numerical Integration Methods," IEEE Transactions, Vol. Ap-17, No. 5, Sept. 1969.
- 5. Handbook of Mathematical Functions, edited by M. Abramowitz, National Bureau of Standards (U.S.), Applied Mathematics Series 55, 1964.
- Shanks, D., "Non-Linear Transformations of Divergent and Slowly Convergent Sequences," J. Math. Phys. 24, 1, 1955.

END 10-81

DTIC