Chengdu,610065, Sichuan,P.R.China http://www.scu.edu.cn

13/ 3.

1) 第2行 - 第3行
$$\begin{vmatrix} 0 & 2 & -5 \\ 0 & -2 & -8 \end{vmatrix} = 2 \times (-1)^{34} \times \begin{vmatrix} 2 & -5 \\ -2 & 8 \end{vmatrix} = -52$$

$$= a \times a \times (H)^{3+3} \times \begin{vmatrix} a & b \\ b & a \end{vmatrix} + b \times b \times (H)^{+3} \times \begin{vmatrix} a & b \\ b & a \end{vmatrix}$$

$$= (a^2 - b^2)(a^2 - b^2) = (a^2 - b^2)^2$$

13. 3.2 Bo4. 1.

18 3.3 Bo4 2.

由行列式性度有: IATI= IAI, I-AI=FI)" IAI

即 |A|= +1)* |A| : |A|+0 : (H)*= | 即n为偶数

10135 BO4. 4 131 3.6 BO4. 5 10137 Box. 6

138 15-1, 3-2 x7 x-2 x2	75-2	1	O	7
35-3 362 465 30 C3-C1	2%-3 2%-3	1	0 X-2	-1
13/38 15-11, 5-2 17 15-2 18 C3-C1 28-3 282 485 285 C3-C1 415 415 587 488 C4-C1	4%	-3	ガフ	-3

11

川大學

Chengdu,610065, Sichuan,P.R.China http://www.scu.edu.cn

Sichuan

University

例 3.9					
7r/2 x -x 0 0 x-x3,	3 - 8 0 0 0 - 8 - 8 0 - 1 X-1	CstG >	3	0 C	0 v
一 1 一 州	- 1 - 1 x+1		-1	0 -1	X+
= × 0 × 1 = × 1 × 1 = × 1 × 1 = × 1 × 1 = × 1 × 1	7t1 = 3 [3-1)(]=7	54	

1別210

=
$$(\lambda-1)[(\lambda+4)(\lambda-4)-20]=0$$
. $(\lambda-1)[(\lambda+4)(\lambda-4)-20]=0$.

例 3 B 由 取得:
$$n=1$$
, $n=2$, $n=3$,

对 Da 按第一行展开:

页

11

大學

Chengdu,610065, Sichuan,P.R.China http://www.scu.edu.cn

Sichuan University

Dn= 5 Dn-1 -3x	2	3	٠.,		
`		``	` ` `	3	
			` .		1.(17-1)

= 5 DAY - 3x2 · DAY = 5 DAY - 6 DAY

科 >= 2 代入A式: Dn-2 Dn+=3(Pn+-2 Pn→)

N=3时, Da-1-2Da-2 = D3-2D1 = 19-2x5 = 9=32

· Dn-Dn 是以3°为首项, 3为公比的等比较到,

因为下标要从 |开始,即 n-12/ n22, 二首股 n=2.

- · Dn 2Dn-1 = 32×3^{m2} = 3ⁿ (等比通頂: 首頂×公比^{n-飯で标}) 同程 >= 3 时日推出 D-3Dn= 2ⁿ

 $0 - 2 : D_{n-1} = 3^n - 2^n$.

把 n-1 +夹为 n: Dn = 3m1-2m1

图 3.4解: 爪形行列式: 下楼	- 1 0 0 0	
$\gamma_1 - \frac{1}{3}\gamma_3$	1 2 0 0	
71-=72	1004	

 $=-\frac{1}{12}x_2x_3x_4=-2$

例3.15 解: CitCst…tcn QitQstin+Qn+b Q2 … Qn Y2-Y1

art Qut Qut Un + D Qut Un

(2)

四川大些

Sichuan, P.R. China

Sichuan

University

az an	
b ·· 0	
0 0	
0 , b	
	b · · · O

1813.16. 范德蒙行到式

13.17 解:按第一到展开:

原式= Q,	0. b 0 0	+ b. · (-1) ⁿ⁺¹	b, 0 0 0
	0 u3 0 0		0 Q2 ··· 0 D
	0 0 and born		0 93 0 0
	10000		
	,	•	U WING BONI

$$=\frac{n}{11} a_i + (-1)^{n+1} \int_{-1}^{n} b_i$$

例3.18

$$= (a_1 + x_1) x_1^3 + x_2^2 \begin{vmatrix} a_2 & a_3 \\ -x & x_1 \end{vmatrix} + x_2^2 \begin{vmatrix} a_2 & a_4 \\ \bar{p}x & x_1 \end{vmatrix}$$

$$= (a_1 + a_2 + a_3 + a_4) \times^3 + \times^4$$

Sichuan

Sichuan, P.R. China http://www.scu.edu.cn

02

1到3.19 C3+ Cz ant 50n and + 52an + 51an+ ... ant -(n+1)+x >n+. (a,+ a, x+ a, x-2+ ... + a, x-1+1) = a, x17+ a, xn-2+a3xn-3+ + + an x0+xn = > 1+ a1 > 1+ a2 > 1+ 11 + an = 31 + \frac{n}{2} ai x^{n-1}