

Програмиране с Arduino и eduArdu

July 2019

Съдържание

1. Инсталиране на Arduino IDE	3
2. Инсталиране на Olimex board support	
3. Как да конфигурираме Arduino IDE	
4. LED Matrix	
5. Масиви	10
6. Функции и Проверки	10
6.1 Функции	
6.2 Проверки	11
7. Цикли	12
7.1 Цикъл For ()	12
7.2 Цикъл While ()	13
7.3 Цикъл do Whìle ()	

1. Инсталиране на Arduino IDE

1.1 Използвайте линка за сваляне на Arduino IDE в зависимост от операционната система :

https://www.arduino.cc/en/Main/Software

Download the Arduino IDE

JUST DOWNLOAD

CONTRIBUTE & DOWNLOAD

- 2.1 Инсталирайте Arduino IDE
- 3.1 Използвайте линка за да свалите всички примери и библиотеки необходими за eduArdu чрез натискането на подчертания бутон :

https://github.com/OLIMEX/eduArdu

4.1 Стартирайте Arduino IDE. Влезте в Sketch-include Library-Add .ZIP Library

5.1 Изберете папката в която сте запазили сваленото от точка (3.) и започнете едно след друго да добавяте библиотеките, като следвате стъпки 4 и 5 . Файловете, който трябва да добавите ще се намират под Files а папката в която сте запализи файла от точка 3 ще се намира под Folders.

3a eduArdu:

Платката EduArdu е предназначена за обучение. Тя е снабдена с множество сензори като например:

- -осветление
- -инфрачервен диод
- -инфрачервен приемник
- -сензор за движение
- -сензор за температура

Платката разполага още и с:

- -LED матрица
- -микрофон
- -трицветен светодиод
- -два Servo входа
- -джойстик
- -UEXT вход
- -Buzzer

2. Инсталиране на Olimex board support

Влизате в file-preference.

Копирате линка:

https://raw.githubusercontent.com/OLIMEX/Arduino_configurations/master/AVR/package_olimex_avr_index.json

След това го поставяте в Additional board manager URLs:

Влезте в tools-board-boards manager : и инсталирайте Olimex AVR boards.

3. Как да конфигурираме Arduino IDE

Първо: Свържете платката с USB към компютър. Втора стъпка:конфигурирайте платката като за целта трябва да влезнете в Tools-Board и изберете eduArdu. След това Port и изберете вашата платка.

4. LED Matrix

```
#include <string.h>
#include "LED Matrix.h"
                                   // Използваме LED Matrix.h за да имаме достъп до SlideRight()
                                   // и SlideLeft().
#include "font.h"
                                  // Чрез font.h инициализираме азбуката и всички знаци.
#include "Joystick.h"
                                  // Инициализира джойстика.
#define JOYSTICK_X A0
#define JOYSTICK_Y A1
#define JOYSTICK_BUTTON 31
                                  // Където срещне OYSTICK\_X го заменя с аналогов вход A0. // Където срещне OYSTICK\_Y го заменя с аналогов вход A1.
                                  // Където срещне JOYSTICK_BUTTON го заменя с 31
// Където срещне SPEED го заменя с 110
#define SPEED 11\overline{0}
#define LED LATCH 11
                                  // Инициализираме LED матрицата.
#define LED DATA 16
#define LED CLOCK 15
                                                        // Задаваме стойност на функция Matrix
LED Matrix Matrix(LED LATCH, LED DATA, LED CLOCK);
                                                        // която приема като параметри LED
                                                        // Matrix pin.
Joystick Joy(JOYSTICK X, JOYSTICK Y);
                                                        // Използваме функцията за да взимаме
                                                        // стойностите на Х(лява/дясна граница) и на
                                                        // Ү(горна/долна граница) на джойстика.
unsigned char Text[STRING MAX CHAR] = "Olimex eduArdu LED matrix example!";
/*
       Използва се за изписването на текста върху LED matrix.Пример ако искаме да изпишем
       "Hello Olimex" трябва да го променим така :
       unsigned char Text[STRING MAX CHAR] = "Hello Olimex";
char Terminal Output[256];
                                                 // Използва се за изписване на резултатът в конзолата
                                                 // като дължината на символите зависи от цифрата
                                                 // която е в скобите "[]".
void setup()
  Serial.begin (115200);
                                                // Използва се за инициализиране.Т.е скоростта на
                                                // трансфера на данните.
                                                // Използва се за инициализиране на текста като
 Matrix.DisplayText (Text, 0);
                                                 // втория параметър е за да може текста да започне
                                                 // отначало.
}
static unsigned long Time=0, PrevTime=0;
                                                 // Задаваме стойности за променливи Time, PrevTim.
  Time = millis();
                                                 // Записваме в Time, изтеклото време в милисекунди от
                                                 // пускането на платката.
  if (Time-PrevTime > 110)
                                                 // Изважда от Time променливата PrevTime и провер
                                                 // дали е по малко от 110.
    PrevTime = Time:
                                                 // PrevTime взема стойността на Time.
    if (Joy.X () < 20)
                                                // Проверява дали джойстика е натиснат наляво.
      Matrix.SlideLeft (1);
                                                 // Ако е натиснат наляво. Функцията премества текста
                                                 // наляво.
    if (Joy.X () > 80)
                                                 // Проверява дали джойстика е натиснат надясно.
       Matrix.SlideRight (1);
                                                 // Ако е натиснат надясно.Функцията премества текста
                                                 // надясно.
    if (Joy.Y () < 20)
                                                 // Проверява дали джойстика е натиснат надолу. Ако е
                                                 // натиснат преминава на другия ред и извиква
```

```
// функцията която намалява светлината.
Matrix.ChangeBrightness (-10);
                                              // Проверява дали джойстика е натиснат нагоре. Ако е
if (Joy.Y () > 80)
                                              // натиснат преминава на другия ред и извиква
                                              // функцията която увеличава светлината.
Matrix.ChangeBrightness (10);
Serial.println ("---
                                                           // Изписва на конзолава намиращите
                                                            // се символи между кавичките в
                                                            // скобите.
sprintf (Terminal Output, "Joystick: X = %d%; Y = %d%; Button: %d", (int)Joy.X(), (int)Joy.Y(),
Joy.But());
                                              // Взима стойностите X,Y,Button и ги записва в
                                              // Terminal Output
Serial.println (Terminal_Output);
                                              //Изписва съдържанието на Terminal_Output.
  Matrix.UpdateText ();
                                              //Актуализира матрицата.
```

5. Масиви

Това са последователни клетки от паметта в който можем да запазваме различни данни от различен тип. Пример за това е в проекта Led Matrix, използването на :

```
Unsigned char Text[STRING_MAX_CHAR] = "Olimex eduArdu LED matrix example!";
char Terminal_Output[256];
```

При тези масиви искаме да запишем думи. Пример ако искаме да сменим текста който се изписва на матрицата ще променим текста в кавичките :

```
unsigned char Text[STRING_MAX_CHAR] = "Hello Olimex";
```

така текста на матрицата ще се промени.

6. Функции и Проверки

Тук ще разгледаме някой от функциите и проверките в примера за Led Matrix.

6.1 Функции

```
void setup()
{
   Serial.begin (115200);
   Matrix.DisplayText (Text, 0);
}
```

За пример можем да вземем Void Setup() тази функция не връща като резултат нищо.Използва се за инициализиране на входове/изходи. В тялото(т.е. намиращото се в { }) на тази функция имаме Serial.begin (115200); което инициализира скоростта на трансфер на данните.

Функцията Matrix.DisplayText (Text, 0); изписва на екрана записания текст в масива Text и откъде да започне текста като ако применим втория параметър (Text, 0) да не е 0 ще видим че текста се измества.

6.2 Проверки

Нека разгледаме

```
if (Time-PrevTime > SPEED)
{
   PrevTime = Time;
   if (Joy.X () < 20)
     Matrix.SlideLeft (1);
   if (Joy.X () > 80)
     Matrix.SlideRight (1);

   if (Joy.Y () < 20)
     Matrix.ChangeBrightness (-10);
   if (Joy.Y () > 80)
     Matrix.ChangeBrightness (10);
}
```

Тук имаме проверки " if () " при нея можем да сложим условие в (), проверяваме, ако условието е изпълнено (вярно е) програмата преминава на следващия ред и го изпълнява. При първият if (Time-PrevTime > SPEED) проверяваме Time-PrevTime дали е по-голямо от SPEED където SPEED е зададено като статична стойност чрез #define SPEED 110 намиращо се в началото на програмата. Пример за променянето на SPEED е :

```
#define SPEED 40
```

така след промяната на текста чрез натискане на джойстика, той ще се движи по-бързо.

Когато програмата навлезе в тялото на функцията:

```
{
    PrevTime = Time;
    if (Joy.X () < 20)
        Matrix.SlideLeft (1);
    if (Joy.X () > 80)
        Matrix.SlideRight (1);
    if (Joy.Y () < 20)
        Matrix.ChangeBrightness (-10);
    if (Joy.Y () > 80)
        Matrix.ChangeBrightness (10);
}
```

Тук отново имаме проверки от тип if () при тях обаче проверяваме дали сме натиснали джойстика if (Joy.X () < 20) наляво ако условието в скобите () е изпълнено, т.е. джойстика е натиснат, наляво програмата изпълнява Matrix.SlideLeft (1); .При изпълнението на тази функция можем да променим стойността с която текста преминава през матрицата:

Matrix.SlideLeft (3) СТОЙНОСТТА МОЖЕ ДА Е ПРОИЗВОЛНА.

Същото при Matrix.ChangeBrightness (-10); може да променяме колко да се увеличава осветителността.

7. Цикли

Тук ще се запознаем с основните цикли. For (), While(), do While.

7.1 Цикъл For ()

```
for(int i=0; i<50; i++)
{
//тяло на цикъла
}
```

В този пример операндите, който приема цикъла са нулиране на применливата "i" int i=0, приверка дали "i" е по-малко от 50 и увеличаване на "i" с едно. Програмата преминава през цикъла по следния начин :

- 1. Нулирането на "i" (int i=0)
- 2. Проверка дали "i" е по-малко от 50
- 3. Навлизане и изпълнение на тялото на цикъла
- 4.Увеличаване на "i" с едно

Пример за такъв цикъл ще дадем от програмата с използване на микрофона:

```
for(int i=0; i<50; i++)
{
   int Sample;
   Sample = analogRead(MICROPHONE);
   if (Sample > Max)
      Max = Sample;
   if (Sample < Min)
      Min = Sample;
   if((Max-Min) > THRESHOLD)
   {
      digitalWrite (LED, !digitalRead(LED));
      delay(100);
      break;
   }
}
```

За тялото на функцията и проверките в него, може да прочетете в глава 6.

7.2 Цикъл While ()

Тук цикъла има само един параметър и това е условието :

```
While ("условие")
{
//тяло на цикъла
}
```

При този цикъл докато условието е вярно ще се повтаря кода в тялото.

7.3 Цикъл do While ()

Тук цикъла има пак един параметър и това е условието но тук тялото се изпълнява и след това се прави проверката :

```
do
{
//тяло на цикъла
}While ("условие")
```

!! Внимание цикъла може да се изпълни поне един път.