Challenging the Brain and Lungs: Impacts of acute stress on the brain, cortisol, and inflammatory responses in asthma

Estelle Higgins

Advisors: Melissa Rosenkranz, PhD; Richie Davidson, PhD Center for Healthy Minds

FYP Symposium 2023

Overall Roadmap

Overall Roadmap

Asthma interacts with the mind

U.S. Asthma Prevalence: 24,963,874 (~8%)

With Severe Asthma:

Currently experiencing anxiety

Currently experiencing depression

Brain and immune pathways are unknown

Initial evidence:

Stress/emotion neurocircuitry; Salience Network

Immune pathways that trigger asthma symptoms (e.g., Th17)

Motivation: Acute stress increases markers of airway inflammation

(Rosenkranz et al., Brain Behav Immun 2016)

Hypothesis: Acute stress will increase provoked airway inflammation

Background Methods Results Conclusions

Within-Subjects Design

STRESS Visit

Control Task

30min

CONTROL Visit

Control or Psychosocial Stress Task

Within-Subjects Design

Analyses: linear mixed models & permutation regressions (brain)

• N = 28 (18 F), 19-45y

PRIMARY OUTCOMES	MODERATORS	COVARIATES
Inflammatory Biomarkers (Airway): Immune cells involved in airway tightening and asthma response	Perceived Stress Cortisol	Antigen Dose
Brain Glucose Metabolism Index of brain activity during stress		

Background Methods Results Conclusions

Stress increases cortisol

Stats: t(24.7) = -3.46, p = .002

MODEL: Imer(cortisol ~ minutes*condition.c + minutes2*condition.c + (1 + minutes*condition.c + minutes2*condition.c || subid))

Stress does not significantly increase airway inflammation

Stress is associated with *increased* cerebellum activity

- Baumann & Mattingley, Neurolmage 2012
- Pierce et al., The Cerebellum 2023
- Nair et al., Brain Commun 2023
- Rosenkranz et al., unpublished data

Is acute stress associated with brain activity?

Stress is associated with *decreased* motor/premotor cortex activity

- Metz, Rev Neurosci 2007
- Kalin et al., Biol Psychiatry 2005

How are brain responses related to physiological responses to stress?

Cortisol response to stress is associated with brain response to stress

Do brain responses predict inflammatory responses?

Stress-related salience network activity predicts airway inflammation

Dorsal Anterior Cingulate Cortex (dACC)

Does inflammation vary with cortisol responses to stress?

Stress-induced cortisol correlates with airway inflammation

19

Background Methods Results Conclusions

Stress-sensitive asthma phenotype?

 Acute stress did not increase inflammatory response to challenge in the whole group

- Variability in stress response associated with inflammatory response:
 - More robust cortisol and brain responses to stress were associated with stronger inflammatory responses
 - Subpopulation with stress-sensitive asthma phenotype?

Need for integrative treatment and prevention

in asthma

stress & cortisol

Asthma-Related Inflammation

=> targeted, personalized interventions and prevention

e.g., mind-body interventions

(Higgins et al., Brain Behav Immun-Health 2022)

* first-year project committee

Gratitude

Work supported by NHLBI (R01 HL123284)

Melissa Rosenkranz, PhD *

Richard Davidson, PhD *

Lyn Abramson, PhD

John Curtin, PhD *

Stephane Esnault, PhD

William Busse, PhD

Danika Klaus, RN

...and many more!

References

- Baumann, O., & Mattingley, J. B. (2012). Functional topography of primary emotion processing in the human cerebellum. NeuroImage, 61(4), 805–811. https://doi.org/10.1016/j.neuroimage.2012.03.044
- Centers for Disease Control and Prevention (CDC). (2023, June 23). Most Recent National Asthma Data | CDC. https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm
- Impact and Management of Asthma and Anxiety and Depression. (2019, September 19). Severe Asthma Toolkit. https://toolkit.severeasthma.org.au/co-morbidities/extra-pulmonary/anxiety-depression/
- Higgins, E. T., Davidson, R. J., Busse, W. W., Klaus, D. R., Bednarek, G. T., Goldman, R. I., Sachs, J., & Rosenkranz, M. A. (2022). Clinically relevant effects of Mindfulness-Based Stress Reduction in individuals with asthma. Brain, Behavior, & Immunity Health, 25, 100509. https://doi.org/10.1016/j.bbih.2022.100509
- Kalin, N. H., Shelton, S. E., Fox, A. S., Oakes, T. R., & Davidson, R. J. (2005). Brain regions associated with the expression and contextual regulation of anxiety in primates. Biological Psychiatry, 58(10), 796–804. https://doi.org/10.1016/j.biopsych.2005.05.021
- Kern, S., Oakes, T. R., Stone, C. K., McAuliff, E. M., Kirschbaum, C., & Davidson, R. J. (2008). Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor. Psychoneuroendocrinology, 33(4), 517–529. https://doi.org/10.1016/j.psyneuen.2008.01.010
- Metz, G. A. (2007). Stress as a Modulator of Motor System Function and Pathology. Reviews in the Neurosciences, 18(3-4). https://doi.org/10.1515/REVNEURO.2007.18.3-4.209
- McDonald, V. M., Clark, V. L., Cordova-Rivera, L., Wark, P. A. B., Baines, K. J., & Gibson, P. G. (2020). Targeting treatable traits in severe asthma: A randomised controlled trial. European Respiratory Journal, 55(3). https://doi.org/10.1183/13993003.01509-2019
- Menon, V. (2015). Salience Network. In Brain Mapping (pp. 597-611). Elsevier. https://doi.org/10.1016/B978-0-12-397025-1.00052-X
- Nair, A. K., Hulle, C. A. V., Bendlin, B. B., Zetterberg, H., Blennow, K., Wild, N., Kollmorgen, G., Suridjan, I., Busse, W. W., Douglas C Dean, I. I. I., & Rosenkranz, M. A. (2023). Impact of asthma on the brain: Evidence from diffusion MRI, CSF biomarkers and cognitive decline. Brain Communications, 5(3). https://doi.org/10.1093/braincomms/fcad180
- Pierce, J. E., Thomasson, M., Voruz, P., Selosse, G., & Péron, J. (2023). Explicit and Implicit Emotion Processing in the Cerebellum: A Meta-analysis and Systematic Review. The Cerebellum, 22(5), 852–864. https://doi.org/10.1007/s12311-022-01459-4
- Rosenkranz, M. A., Esnault, S., Christian, B. T., Crisafi, G., Gresham, L. K., Higgins, A. T., Moore, M. N., Moore, S. M., Weng, H. Y., Salk, R. H., Busse, W. W., & Davidson, R. J. (2016). Mind-body interactions in the regulation of airway inflammation in asthma: A PET study of acute and chronic stress. Brain, Behavior, and Immunity, 58, 18–30. https://doi.org/10.1016/j.bbi.2016.03.024

Questions?

Demographics

Why were there no effects of stress on airway inflammation?

Control

Less robust acute stress response

Sympathetic Nervous System moderation

Stress

• Acute stress does not prime inflammatory response to allergen challenge in those with average (not high, not low) chronic stress

TH17 Cells

- Adaptive (Humoral) Immune System [autoimmune disease] → IL-17 (neutrophils)
 - Associated with depression
- Differentiation: requires IL-6 and TGFβ; promoted by TNF-a, IL-1β, IL-21, IL-23
- Stress $\rightarrow \uparrow$ IL-1 β

Asthma:

- IL-17 in severe asthma ... role in mild asthma?
- Modulates Th2 responses
- EOS release IL-1 β \rightarrow IL-17 expression

PET

- Brain Glucose Metabolism: fluoro-18-deoxyglucose (FDG)-Positron Emission Tomography (PET)
 - Venous FDG injection → [uptake time: TSST] → Scan

(Rahman et al., 2019)

Analyses: Stress Neurocircuitry

Whole-Brain

+

- a priori ROIs
 - amygdala, infula/frontal opercular cortex (IFOC), dorsal anterior cingulate cortex (dACC)
- Paired t-tests with FSL's randomise
- Regressions with FSL's randomise
 - PET image with cortisol and inflammatory biomarkers

PET Processing

- Processing pipeline optimized for PET-T1 co-registration
 - FSL's FEAT; AFNI; ANTs

Study-specific T1 template

Example co-registration

PET template in MNI space

PET Processing

- 4D scaled, smoothed PET images co-registered to T1 template in MNI space: merge by condition
- Stress minus Control

Allergen challenge

FEV₁: Forced Expiratory Volume (1s) = Lung Function

FeNO: Fraction of Exhaled Nitric Oxide = Airway Inflammation

33

Allergen challenge dose conversion

- For safety, dose varied by challenge and by person
 - Ragweed Pollen (n = 5); Cat (n = 12); or Dust Mite (n = 12)

 Nonlinear least squares to extract optimal parameters used in conversion equation

Proximal and distal mechanisms

Distal Mechanism: brain [glucose metabolism]

In-Between Mechanisms: brainstem

Proximal Mechanisms:

HPA Axis

Sympathetic Nervous System

Neurogenic Inflammation (Sensory Neuropeptides)

Power: stress neurocircuitry

- Sensitivity Power Analysis:
 - For 80% power (N = 27) at α = .05:
 - Medium Effect Size d = .56

Prior evidence

Psychosocial Stressor → Increased Cortisol, associated with Airway Inflammation
 Biomarkers

Th17 path (IL-17A, IL-1R1)

Th2 path (EOS) moderated by chronic stress

