

Electronique Linéaire (Polytech Nancy PEIP 2, TD série 7) Transistors à Effet de Champ à Jonction

Exercice 1: Montage à JFET en « source commune

On considère un transistor à effet de champ (« FET » canal N) dont la caractéristique en région de

pincement (c.à.d. quand :
$$V_{DS} > V_{GS}-V_{GSoff}$$
) est : $I_D = I_{DSS}(1 - \frac{V_{GS}}{V_{GSoff}})^2$ (1)

avec : $V_{GSoff} < V_{GS} < 0$, $I_{DSS} = 10 \text{ mA}$ et $V_{GSoff} = -3V$

On donne $R_g = 1 M\Omega$, $R_D = R_S = 333\Omega$,

- 1- On considère le montage de la figure 2. Déterminer l'équation de la droite d'entrée I_D=f(V_{GS})
- 2- En utilisant l'équation (1), complétez le tableau suivant :

$V_{GS}(V)$	-3	-2,5	-2	-1,5	-1	-0,5	0
$I_D(mA)$							

- 3- Tracer la caractéristique I_D=f(V_{GS}) dans le même graphe que la droite de polarisation.
- 4- Déterminer le point de fonctionnement du circuit (V_{GSo,}I_{Do}) graphiquement et par calcul.
- 5- Déterminer l'équation de la droite de charge I_D=f(V_{DS}) en déduire le point de polarisation (V_{DS0}, I_{D0}).
- 6- En utilisant le réseau de caractéristiques de la figure 2, déterminer graphiquement le point de polarisation (V_{DSo} , I_{Do}). Comment expliquer l'erreur constatée.

Exercice 2: Amplificateur à source commune

On considère le montage de la figure 3.

- 1- Donner son circuit équivalent en statique.
- 2- Déterminer l'équation de la droite d'entrée $I_D = f(V_{GS})$ et de la droite de charge $I_D = f(V_{DS})$.

Figure 3 : Amplificateur à source commune.

3- Donnez ensuite son circuit équivalent en dynamique. Les condensateurs Cin, Cout et Cs sont d'impédances négligeables aux fréquences utilisées.

Le circuit équivalent du FET en petits signaux sera considéré comme étant :

- 4- Calculer les impédances d'entrée et de sortie du montage.
- 5- Exprimer v_{in} en fonction de $v_{\rm gs}$.
- 6- Exprimer la tension de sortie v_{out} en fonction de v_{gs}. En déduire le gain en tension Av= v_{out}/v_{in}.
- 7- Soit la résistance de charge $R_L=10k\Omega$. Quelle est la valeur de v_{out} si $v_{in}=1mV$.

A.N.: $R_1 = R_2 = 1 \text{ M}\Omega$, $R_D = 47 \text{ k}\Omega$, $R_S = 7.5 \text{ k}\Omega$, $r_S = 1 \text{ k}\Omega$, $g_M = 2000 \text{ }\mu\text{S}$ et $\rho \to \infty$

Exercice 3: Amplificateur à deux étages

Soit l'amplificateur de la figure 4.

- 1- Donner les circuits équivalents en statique et en dynamique.
- 2- Calculer l'impédance d'entrée et de sortie du montage.
- 3- Exprimer v₁ en fonction de v_{in}.
- 4- Exprimer v_{out} en fonction de v₁ en déduire v_{out} en fonction de v_{in}.
- 5- Calculer alors le gain en tension du montage.

A.N: Rg=10M Ω , R₁=8,2 k Ω , R₂=680 Ω , R₃=2 k Ω , R₄=220 Ω , g_{m1}=2850 μ S, g_{m2}=4275 μ S, $\rho \rightarrow \infty$

Figure 4 : Amplificateur à deux étages.