Support Vector Machine and Kernel Methods

Jiayu Zhou

¹Department of Computer Science and Engineering Michigan State University East Lansing, MI USA

Which Separator Do You Pick?

Robustness to Noisy Data

Being robust to noise (measurement error) is good (remember regularization).

Thicker Cushion Means More Robustness

We call such hyperplanes fat

Jiayu Zhou

Two Crucial Questions

- Can we efficiently find the fattest separating hyperplane?
- Is a fatter hyperplane better than a thin one?

Pulling Out the Bias

Before

$$\mathbf{x} \in \{1\} \times \mathbb{R}^d; \mathbf{w} \in \mathbb{R}^{d+1}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}; \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

Pulling Out the Bias

Before

$$\mathbf{x} \in \{1\} \times \mathbb{R}^d; \mathbf{w} \in \mathbb{R}^{d+1}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}; \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

After

$$\mathbf{x} \in \mathbb{R}^d; b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d$$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}; \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}$
bias b
signal $= \mathbf{w}^T \mathbf{x} + b$

Separating The Data

Hyperplane $h=(b,\mathbf{w})$ h separates the data means:

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$$

Separating The Data

Hyperplane $h=(b,\mathbf{w})$ h separates the data means:

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) > 0$$

By rescaling the weights and bias,

$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T \mathbf{x}_n + b) = 1$$

 \bullet w is normal to the hyperplane (why?)

• \mathbf{w} is normal to the hyperplane (why?) $\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{w}^T\mathbf{x}_2 - \mathbf{w}^T\mathbf{x}_1 = -b + b = 0$

- w is normal to the hyperplane (why?) $\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{w}^T\mathbf{x}_2 - \mathbf{w}^T\mathbf{x}_1 = -b + b = 0$
- Scalar projection:

$$\mathbf{a}^T \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\mathbf{a}, \mathbf{b})$$
$$\Rightarrow \mathbf{a}^T \mathbf{b} / \|\mathbf{b}\| = \|\mathbf{a}\| \cos(\mathbf{a}, \mathbf{b})$$

- w is normal to the hyperplane (why?) $\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{w}^T\mathbf{x}_2 - \mathbf{w}^T\mathbf{x}_1 = -b + b = 0$
- Scalar projection:

$$\mathbf{a}^T \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\mathbf{a}, \mathbf{b})$$
$$\Rightarrow \mathbf{a}^T \mathbf{b} / \|\mathbf{b}\| = \|\mathbf{a}\| \cos(\mathbf{a}, \mathbf{b})$$

• let \mathbf{x}_{\perp} be the orthogonal projection of \mathbf{x} to h, distance to hyperplane is given by projection of $\mathbf{x} - \mathbf{x}_{\perp}$ to \mathbf{w} (why?)

- w is normal to the hyperplane (why?) $\mathbf{w}^T(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{w}^T\mathbf{x}_2 - \mathbf{w}^T\mathbf{x}_1 = -b + b = 0$
- Scalar projection:

$$\mathbf{a}^T \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos(\mathbf{a}, \mathbf{b})$$
$$\Rightarrow \mathbf{a}^T \mathbf{b} / \|\mathbf{b}\| = \|\mathbf{a}\| \cos(\mathbf{a}, \mathbf{b})$$

 let x_⊥ be the orthogonal projection of x to h, distance to hyperplane is given by projection of x − x_⊥ to w (why?)

$$\begin{aligned} \mathsf{dist}(\mathbf{x}, h) &= \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \mathbf{x}_{\perp}| \\ &= \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} + b| \end{aligned}$$

Fatness of a Separating Hyperplane

$$\operatorname{dist}(\mathbf{x}, h) = \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} + b| = \frac{1}{\|\mathbf{w}\|} \cdot |y_n(\mathbf{w}^T \mathbf{x} + b)| = \frac{1}{\|\mathbf{w}\|} \cdot y_n(\mathbf{w}^T \mathbf{x} + b)$$

Fatness of a Separating Hyperplane

$$\operatorname{dist}(\mathbf{x}, h) = \frac{1}{\|\mathbf{w}\|} \cdot |\mathbf{w}^T \mathbf{x} + b| = \frac{1}{\|\mathbf{w}\|} \cdot |y_n(\mathbf{w}^T \mathbf{x} + b)| = \frac{1}{\|\mathbf{w}\|} \cdot y_n(\mathbf{w}^T \mathbf{x} + b)$$

Fatness

= Distance to the closest point

$$\begin{aligned} \mathsf{Fatness} &= \min_n \mathsf{dist}(\mathbf{x}_n, h) \\ &= \frac{1}{\|\mathbf{w}\|} \min_n y_n(\mathbf{w}^T \mathbf{x} + b) \\ &= \frac{1}{\|\mathbf{w}\|} \end{aligned}$$

• Formal definition of margin:

$$\mathsf{margin:}\ \gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

Formal definition of margin:

margin:
$$\gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

 \bullet NOTE: Bias b does not appear in the margin.

• Formal definition of margin:

margin:
$$\gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

- \bullet NOTE: Bias b does not appear in the margin.
- Objective maximizing margin:

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to:
$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T\mathbf{x}_n+b) = 1$$

Jiayu Zhou

10 / 50

Formal definition of margin:

margin:
$$\gamma(h) = \frac{1}{\|\mathbf{w}\|}$$

- \bullet NOTE: Bias b does not appear in the margin.
- Objective maximizing margin:

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to:
$$\min_{n=1,\dots,N} y_n(\mathbf{w}^T\mathbf{x}_n + b) = 1$$

• An equivalent objective:

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to: $y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1$ for $n = 1, \dots, N$

$$\begin{aligned} & \min_{b,\mathbf{w}} & \frac{1}{2}\mathbf{w}^T\mathbf{w} \\ \text{subject to: } & y_n(\mathbf{w}^T\mathbf{x}_n+b) \geq 1 \text{ for } n=1,\dots,N \end{aligned}$$

Training Data:

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix}$$

What is the margin?

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to: $y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1$ for $n=1,\ldots,N$

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \Rightarrow \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

$$\begin{cases} (1) + (3) & \to w_1 \ge 1 \\ (2) + (3) & \to w_2 \le -1 \end{cases} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} (w_1^2 + w_2^2) \ge 1$$

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
 subject to: $y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1$ for $n=1,\ldots,N$

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \Rightarrow \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

$$\begin{cases} (1) + (3) & \to w_1 \ge 1 \\ (2) + (3) & \to w_2 \le -1 \end{cases} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = \frac{1}{2} (w_1^2 + w_2^2) \ge 1$$

Thus: $w_1 = 1, w_2 = -1, b = -1$

$$\bullet \text{ Given data } X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

• Optimal hyperplane $g(\mathbf{x}) = \operatorname{sign}(x_1 - x_2 - 1)$

$$\bullet \text{ Given data } X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

- Optimal hyperplane $g(\mathbf{x}) = \operatorname{sign}(x_1 x_2 1)$
- margin: $\frac{1}{\|w\|} = \frac{1}{\sqrt{2}} \approx 0.707$

$$\bullet \text{ Given data } X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

- Optimal hyperplane $g(\mathbf{x}) = \operatorname{sign}(x_1 x_2 1)$
- margin: $\frac{1}{\|w\|} = \frac{1}{\sqrt{2}} \approx 0.707$

For data points (1), (2) and (3) $y_n(\mathbf{x}_n^T\mathbf{w}^* + b^*) = 1$

• Given data
$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}$$

Optimal solution

$$\mathbf{w}^* = \begin{bmatrix} w_1 = 1 \\ w_2 = -1 \end{bmatrix}, b^* = -1$$

- Optimal hyperplane $g(\mathbf{x}) = \operatorname{sign}(x_1 x_2 1)$
- margin: $\frac{1}{\|w\|} = \frac{1}{\sqrt{2}} \approx 0.707$

For data points (1), (2) and (3) $y_n(\mathbf{x}_n^T\mathbf{w}^* + b^*) = 1$ Support Vectors

Solver: Quadratic Programming

$$\min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2} \mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$
 subject to: $A \mathbf{u} \geq \mathbf{c}$

$$\mathbf{u}^* \leftarrow QP(Q, \mathbf{p}, A, \mathbf{c})$$

(Q=0 is linear programming.)

http://cvxopt.org/examples/tutorial/qp.html

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$

$$\min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2} \mathbf{u}^T Q \mathbf{u} + \mathbf{p}^T \mathbf{u}$$

subject to:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1, \forall n$$

subject to:
$$A\mathbf{u} \geq \mathbf{c}$$

$$\mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2} \mathbf{w}^T \mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u}$$

$$\begin{bmatrix} \mathbf{0}_d^T \\ I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}$$

$$\begin{aligned} & \min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} & \min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2}\mathbf{u}^TQ\mathbf{u} + \mathbf{p}^T\mathbf{u} \\ & \text{subject to: } y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1, \forall n & \text{subject to: } A\mathbf{u} \geq \mathbf{c} \\ & \mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2}\mathbf{w}^T\mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u} \\ & Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}, \mathbf{p} = \mathbf{0}_{d+1} \end{aligned}$$

$$\begin{aligned} & \min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} & \min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2}\mathbf{u}^TQ\mathbf{u} + \mathbf{p}^T\mathbf{u} \\ & \text{subject to: } y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1, \forall n & \text{subject to: } A\mathbf{u} \geq \mathbf{c} \\ & \mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2}\mathbf{w}^T\mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u} \\ & Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}, \mathbf{p} = \mathbf{0}_{d+1} \\ & y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1 = [y_n, y_n\mathbf{x}_n^T]\mathbf{u} \geq 1 \Rightarrow \begin{bmatrix} y_1 & y_1\mathbf{x}_1^T \\ \vdots & \vdots \\ y_{1} & y_1\mathbf{x}_1^T \end{bmatrix} \mathbf{u} \geq \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \end{aligned}$$

$$\begin{aligned} & \min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w} & \min_{\mathbf{u} \in \mathbb{R}^q} \quad \frac{1}{2}\mathbf{u}^TQ\mathbf{u} + \mathbf{p}^T\mathbf{u} \\ & \text{subject to: } y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1, \forall n & \text{subject to: } A\mathbf{u} \geq \mathbf{c} \\ & \mathbf{u} = \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix} \in \mathbb{R}^{d+1} \Rightarrow \frac{1}{2}\mathbf{w}^T\mathbf{w} = [b, \mathbf{w}^T] \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \begin{bmatrix} b \\ \mathbf{w}^T \end{bmatrix} = \mathbf{u}^T \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix} \mathbf{u} \\ & Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}, \mathbf{p} = \mathbf{0}_{d+1} \\ & y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1 = [y_n, y_n\mathbf{x}_n^T]\mathbf{u} \geq 1 \Rightarrow \begin{bmatrix} y_1 & y_1\mathbf{x}_1^T \\ \vdots & \vdots & \vdots \\ & I \end{bmatrix} \mathbf{u} \geq \begin{bmatrix} 1 \\ \vdots \\ \vdots \end{bmatrix} \end{aligned}$$

$$A = \begin{bmatrix} y_1 & y_1 \mathbf{x}_1^T \\ \vdots & \vdots \\ y_N & y_N \mathbf{x}_N^T \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Back To Our Example

Exercise:

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

Show the corresponding $Q, \mathbf{p}, A, \mathbf{c}$.

Back To Our Example

Exercise:

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

Show the corresponding $Q, \mathbf{p}, A, \mathbf{c}$.

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{p} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, A = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -2 & -2 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Back To Our Example

Exercise:

$$X = \begin{bmatrix} 0 & 0 \\ 2 & 2 \\ 2 & 0 \\ 3 & 0 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -1 \\ -1 \\ +1 \\ +1 \end{bmatrix} \qquad \begin{cases} (1): -b \ge 1 \\ (2): -(2w_1 + 2w_2 + b) \ge 1 \\ (3): 2w_1 + b \ge 1 \\ (4): 3w_1 + b \ge 1 \end{cases}$$

Show the corresponding $Q, \mathbf{p}, A, \mathbf{c}$.

$$Q = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{p} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, A = \begin{bmatrix} -1 & 0 & 0 \\ -1 & -2 & -2 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}, \mathbf{c} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Use your QP-solver to give

$$\boldsymbol{u}^* = [b^*, w_1^*, w_2^*]^T = [-1, 1, -1]$$

Primal QP algorithm for linear-SVM

• Let $p = \mathbf{0}_{d+1}$ be the (d+1)-vector of zeros and $c = \mathbf{1}_N$ the N-vector of ones. Construct matrices Q and A, where

$$A = \begin{bmatrix} y_1 & -y_1 \mathbf{x}_1^T - \\ \vdots & \vdots \\ y_N & -y_N \mathbf{x}_N^T - \end{bmatrix}, Q = \begin{bmatrix} 0 & \mathbf{0}_d^T \\ \mathbf{0}_d & I_d \end{bmatrix}$$

- The final hypothesis is $g(\mathbf{x}) = \operatorname{sign}(\mathbf{x}^T \mathbf{w}^* + b^*)$.

Link to Regularization

$$\min_{\mathbf{w}} \ E_{in}(\mathbf{w})$$
 subject to: $\mathbf{w}^T \mathbf{w} \leq C$

	optimal hyperplane	regularization
minimize	$\mathbf{w}^T\mathbf{w}$	E_{in}
subject to	$E_{in} = 0$	$\mathbf{w}^T \mathbf{w} \le C$

How to Handle Non-Separable Data?

(a) Few noisy data.

(b) Nonlinearly separable.

How to Handle Non-Separable Data?

- (a) Tolerate noisy data points: soft-margin SVM.
- (b) Inherent nonlinear boundary: non-linear transformation.

19 / 50

$$\begin{aligned} & \mathbf{\Phi}_1(\mathbf{x}) = (x_1, x_2) \\ & \mathbf{\Phi}_2(\mathbf{x}) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2) \\ & \mathbf{\Phi}_3(\mathbf{x}) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3) \end{aligned}$$

Jiayu Zhou

• Using the nonlinear transform with the optimal hyperplane using a transform $\Phi \colon \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$:

$$\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$$

• Using the nonlinear transform with the optimal hyperplane using a transform $\Phi \colon \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$:

$$\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$$

ullet Solve the hard-margin SVM in the \mathcal{Z} -space $(\tilde{\mathbf{w}}^*, \tilde{b}^*)$:

$$\begin{split} \min_{\tilde{b},\tilde{\mathbf{w}}} \quad & \frac{1}{2}\tilde{\mathbf{w}}^T\tilde{\mathbf{w}} \\ \text{subject to: } & y_n(\tilde{\mathbf{w}}^T\mathbf{z}_n+\tilde{b}) \geq 1, \forall n \end{split}$$

• Using the nonlinear transform with the optimal hyperplane using a transform $\Phi \colon \mathbb{R}^d \to \mathbb{R}^{\tilde{d}}$:

$$\mathbf{z}_n = \mathbf{\Phi}(\mathbf{x}_n)$$

ullet Solve the hard-margin SVM in the \mathcal{Z} -space $(\tilde{\mathbf{w}}^*, \tilde{b}^*)$:

$$\begin{split} \min_{\tilde{b},\tilde{\mathbf{w}}} \quad & \frac{1}{2}\tilde{\mathbf{w}}^T\tilde{\mathbf{w}} \\ \text{subject to: } & y_n(\tilde{\mathbf{w}}^T\mathbf{z}_n+\tilde{b}) \geq 1, \forall n \end{split}$$

• Final hypothesis:

$$g(\mathbf{x}) = \operatorname{sign}(\tilde{\mathbf{w}}^{*T} \mathbf{\Phi}(\mathbf{x}) + \tilde{b}^*)$$

SVM and non-linear transformation

The margin is shaded in yellow, and the support vectors are boxed.

Jiayu Zhou

SVM and non-linear transformation

The margin is shaded in yellow, and the support vectors are boxed.

ullet For $oldsymbol{\Phi}_2$, $ilde{d}_2=5$ and for $oldsymbol{\Phi}_3$, $ilde{d}_3=9$

SVM and non-linear transformation

The margin is shaded in yellow, and the support vectors are boxed.

- ullet For $oldsymbol{\Phi}_2$, $ilde{d}_2=5$ and for $oldsymbol{\Phi}_3$, $ilde{d}_3=9$
- \tilde{d}_3 is nearly double \tilde{d}_2 , yet the resulting SVM separator is not severely overfitting with Φ_3 (regularization?).

Jiayu Zhou

Support Vector Machine Summary

 A very powerful, easy to use linear model which comes with automatic regularization.

Support Vector Machine Summary

- A very powerful, easy to use linear model which comes with automatic regularization.
- Fully exploit SVM: Kernel
 - potential robustness to overfitting even after transforming to a much higher dimension
 - How about infinite dimensional transforms?
 - Kernel Trick

SVM Dual: Formulation

• Primal and dual in optimization.

SVM Dual: Formulation

- Primal and dual in optimization.
- The dual view of SVM enables us to exploit the kernel trick.

SVM Dual: Formulation

- Primal and dual in optimization.
- The dual view of SVM enables us to exploit the kernel trick.
- In the primal SVM problem we solve $\mathbf{w} \in \mathbb{R}^d, b$, while in the dual problem we solve $\boldsymbol{\alpha} \in \mathbb{R}^N$

$$\begin{aligned} \max_{\boldsymbol{\alpha} \in \mathbb{R}^N} \; \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m \\ \text{subject to} \; \sum_{n=1}^N y_n \alpha_n = 0, \alpha_n \geq 0, \forall n \end{aligned}$$

which is also a QP problem.

SVM Dual: Prediction

• We can obtain the primal solution:

$$\mathbf{w}^* = \sum_{n=1}^N y_n \alpha_n^* \mathbf{x}_n$$

where for support vectors $\alpha_n > 0$

Jiayu Zhou

SVM Dual: Prediction

We can obtain the primal solution:

$$\mathbf{w}^* = \sum_{n=1}^N y_n \alpha_n^* \mathbf{x}_n$$

where for support vectors $\alpha_n > 0$

• The optimal hypothesis:

$$\begin{split} g(\mathbf{x}) &= \mathrm{sign}(\mathbf{w}^{*T}\mathbf{x} + b^*) \\ &= \mathrm{sign}\left(\sum_{n=1}^N y_n \alpha_n^* \mathbf{x}_n^T \mathbf{x} + b^*\right) \\ &= \mathrm{sign}\left(\sum_{\alpha_n^*>0} y_n \alpha_n^* \mathbf{x}_n^T \mathbf{x} + b^*\right) \end{split}$$

Dual SVM: Summary

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^N} \; \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m \\ \text{subject to} \; \sum_{n=1}^N y_n \alpha_n = 0, \alpha_n \geq 0, \forall n \end{split}$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \alpha_n^* \mathbf{x}_n$$

Common SVM Basis Functions

- ullet $\mathbf{z}_k = \mathsf{polynomial}$ terms of \mathbf{x}_k of degree 1 to q
- $\mathbf{z}_k = \text{radial basis function of } \mathbf{x}_k$

$$\mathbf{z}_k(j) = \phi_j(\mathbf{x}_k) = \exp(-|\mathbf{x}_k - \mathbf{c}_j|^2/\sigma^2)$$

ullet $\mathbf{z}_k = \mathsf{sigmoid}$ functions of \mathbf{x}_k

Quadratic Basis Functions

$$\mathbf{\Phi}(\mathbf{x}) = \begin{bmatrix} 1\\ \sqrt{2}x_1\\ \vdots\\ \sqrt{2}x_d\\ x_1^2\\ \vdots\\ x_d^2\\ \sqrt{2}x_1x_2\\ \vdots\\ \sqrt{2}x_1x_d\\ \sqrt{2}x_2x_3\\ \vdots\\ \sqrt{2}x_{d-1}x_d \end{bmatrix}$$

- Including Constant Term, Linear Terms, Pure Quadratic Terms, Quadratic Cross-Terms
- The number of terms is approximately $d^{2}/2$.
- You may be wondering what those $\sqrt{2}$ s are doing. You'll find out why they're there soon.

Jiayu Zhou

Dual SVM: Non-linear Transformation

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^N} \; \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m \pmb{\Phi}(\mathbf{x}_n)^T \pmb{\Phi}(\mathbf{x}_m) \\ \text{subject to} \; \sum_{n=1}^N y_n \alpha_n = 0, \alpha_n \geq 0, \forall n \end{split}$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \alpha_n^* \Phi(\mathbf{x}_n)$$

- Need to prepare a matrix Q, $Q_{nm} = y_n y_m \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}_m)$
- Cost?

Dual SVM: Non-linear Transformation

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^N} \; \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m \pmb{\Phi}(\mathbf{x}_n)^T \pmb{\Phi}(\mathbf{x}_m) \\ \text{subject to} \; \sum_{n=1}^N y_n \alpha_n = 0, \alpha_n \geq 0, \forall n \end{split}$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \alpha_n^* \Phi(\mathbf{x}_n)$$

- Need to prepare a matrix Q, $Q_{nm} = y_n y_m \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}_m)$
- Cost?
 - We must do $N^2/2$ dot products to get this matrix ready.
 - Each dot product requires $d^2/2$ additions and multiplications, The whole thing costs $N^2d^2/4$.

29 / 50

$$\mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}) = \begin{bmatrix} \frac{1}{\sqrt{2}a_1} \\ \vdots \\ \sqrt{2}a_m \\ a_1^2 \\ \vdots \\ a_m^2 \\ \sqrt{2}a_1a_2 \\ \vdots \\ \sqrt{2}a_1a_d \\ \sqrt{2}a_2a_3 \\ \vdots \\ \sqrt{2}a_{d-1}a_d \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ \sqrt{2}b_1 \\ \vdots \\ \sqrt{2}b_d \\ b_1^2 \\ \vdots \\ b_d^2 \\ \sqrt{2}b_1b_2 \\ \vdots \\ \sqrt{2}b_1b_d \\ \sqrt{2}b_2b_3 \\ \vdots \\ \sqrt{2}b_{d-1}b_d \end{bmatrix}$$

- Constant Term 1
- Linear Terms

$$\sum_{i=1}^{d} 2a_i b_i$$

Pure Quadratic Terms

$$\sum_{i=1}^{d} a_i^2 b_i^2$$

Quadratic Cross-Terms

$$\sum_{i=1}^{d} \sum_{j=i+1}^{d} 2a_i a_j b_i b_j$$

• Does $\Phi(\mathbf{a})^T \Phi(\mathbf{b})$ look familiar?

$$\mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}) = 1 + 2 \sum_{i=1}^d a_i b_i + \sum_{i=1}^d a_i^2 b_i^2 + \sum_{i=1}^d \sum_{j=i+1}^d 2a_i a_j b_i b_j$$

ullet Does $oldsymbol{\Phi}(\mathbf{a})^Toldsymbol{\Phi}(\mathbf{b})$ look familiar?

$$\mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}) = 1 + 2 \sum_{i=1}^d a_i b_i + \sum_{i=1}^d a_i^2 b_i^2 + \sum_{i=1}^d \sum_{j=i+1}^d 2a_i a_j b_i b_j$$

ullet Try this: $({m a}^T{m b}+1)^2$

31 / 50

• Does $\Phi(\mathbf{a})^T \Phi(\mathbf{b})$ look familiar?

$$\mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}) = 1 + 2 \sum_{i=1}^d a_i b_i + \sum_{i=1}^d a_i^2 b_i^2 + \sum_{i=1}^d \sum_{j=i+1}^d 2a_i a_j b_i b_j$$

ullet Try this: $({m a}^T{m b}+1)^2$

$$\begin{split} (\boldsymbol{a}^T \boldsymbol{b} + 1)^2 &= (\boldsymbol{a}^T \boldsymbol{b})^2 + 2\boldsymbol{a}^T \boldsymbol{b} + 1 \\ &= \left(\sum_{i=1}^d a_i b_i\right)^2 + 2\sum_{i=1}^d a_i b_i + 1 \\ &= \sum_{i=1}^d \sum_{j=1}^d a_i b_i a_j b_j + 2\sum_{i=1}^d a_i b_i + 1 \\ &= \sum_{i=1}^d a_i^2 b_i^2 + 2\sum_{i=1}^d \sum_{j=i+1}^d a_i a_j b_i b_j + 2\sum_{i=1}^d a_i b_i + 1 \end{split}$$

• Does $\Phi(\mathbf{a})^T \Phi(\mathbf{b})$ look familiar?

$$\mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b}) = 1 + 2 \sum_{i=1}^d a_i b_i + \sum_{i=1}^d a_i^2 b_i^2 + \sum_{i=1}^d \sum_{j=i+1}^d 2a_i a_j b_i b_j$$

ullet Try this: $({m a}^T{m b}+1)^2$

$$\begin{split} (\boldsymbol{a}^T \boldsymbol{b} + 1)^2 &= (\boldsymbol{a}^T \boldsymbol{b})^2 + 2\boldsymbol{a}^T \boldsymbol{b} + 1 \\ &= \left(\sum_{i=1}^d a_i b_i\right)^2 + 2\sum_{i=1}^d a_i b_i + 1 \\ &= \sum_{i=1}^d \sum_{j=1}^d a_i b_i a_j b_j + 2\sum_{i=1}^d a_i b_i + 1 \\ &= \sum_{i=1}^d a_i^2 b_i^2 + 2\sum_{i=1}^d \sum_{j=i+1}^d a_i a_j b_i b_j + 2\sum_{i=1}^d a_i b_i + 1 \end{split}$$

ullet They're the same! And this is only O(d) to compute!

Jiayu Zhou

Dual SVM: Non-linear Transformation

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^N} \; \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m \pmb{\Phi}(\mathbf{x}_n)^T \pmb{\Phi}(\mathbf{x}_m) \\ \text{subject to} \; \sum_{n=1}^N y_n \alpha_n = 0, \alpha_n \geq 0, \forall n \end{split}$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \alpha_n^* \Phi(\mathbf{x}_n)$$

- Need to prepare a matrix Q, $Q_{nm} = y_n y_m \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}_m)$
- Cost?
 - ullet We must do $N^2/2$ dot products to get this matrix ready.
 - \bullet Each dot product requires d additions and multiplications.

Higher Order Polynomials

	$\Phi(\mathbf{x})$	Cost	100dim
Quadratic	$d^2/2$ terms	$d^2N^2/4$	$2.5kN^2$
Cubic	$d^3/6$ terms	$d^3N^2/12$	$83kN^2$
Quartic	$d^4/24$ terms	$d^4N^2/48$	$1.96mN^{2}$
	$\Phi(\mathbf{a})^T \Phi(\mathbf{b})$	Cost	100dim
Quadratic	$\frac{\Phi(\mathbf{a})^T \Phi(\mathbf{b})}{(\mathbf{a}^T \mathbf{b} + 1)^2}$	Cost $dN^2/2$	$\frac{100\mathrm{dim}}{50N^2}$
Quadratic Cubic	_		

Dual SVM with Quintic basis functions

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^N} \ \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m \underbrace{\pmb{\Phi}(\mathbf{x}_n)^T \pmb{\Phi}(\mathbf{x}_m)}_{(\mathbf{x}_n^T \mathbf{x}_m + 1)^5} \end{split}$$
 subject to
$$\sum_{n=1}^N y_n \alpha_n = 0, \alpha_n \geq 0, \forall n$$

Classification:

$$\begin{split} g(\mathbf{x}) &= \mathrm{sign}(\mathbf{w}^{*T}\mathbf{\Phi}(\mathbf{x}) + b^*) = \mathrm{sign}\left(\sum\nolimits_{\alpha_n^*>0} y_n \alpha_n^* \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}) + b^*\right) \\ &= \mathrm{sign}\left(\sum\nolimits_{\alpha_n^*>0} y_n \alpha_n^* (\mathbf{x}_n^T \mathbf{x} + 1)^5 + b^*\right) \end{split}$$

Dual SVM with general kernel functions

$$\begin{split} \max_{\pmb{\alpha} \in \mathbb{R}^N} \; \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m K(\mathbf{x}_n, \mathbf{x}_m) \\ \text{subject to} \; \sum_{n=1}^N y_n \alpha_n = 0, \alpha_n \geq 0, \forall n \end{split}$$

Classification:

$$\begin{split} g(\mathbf{x}) &= \mathrm{sign}(\mathbf{w}^{*T}\mathbf{\Phi}(\mathbf{x}) + b^*) = \mathrm{sign}\left(\sum\nolimits_{\alpha_n^*>0} y_n \alpha_n^* \mathbf{\Phi}(\mathbf{x}_n)^T \mathbf{\Phi}(\mathbf{x}) + b^*\right) \\ &= \mathrm{sign}\left(\sum\nolimits_{\alpha_n^*>0} y_n \alpha_n^* K(\mathbf{x}_n, \mathbf{x}_m) + b^*\right) \end{split}$$

• Replacing dot product with a kernel function

- Replacing dot product with a kernel function
- Not all functions are kernel functions!
 - ullet Need to be decomposable $K(\mathbf{a},\mathbf{b}) = oldsymbol{\Phi}(\mathbf{a})^T oldsymbol{\Phi}(\mathbf{b})$
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^3$ be a kernel function?
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^4 (\mathbf{a} + \mathbf{b})^2$ be a kernel function?

Jiayu Zhou

- Replacing dot product with a kernel function
- Not all functions are kernel functions!
 - Need to be decomposable $K(\mathbf{a}, \mathbf{b}) = \mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b})$
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^3$ be a kernel function?
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^4 (\mathbf{a} + \mathbf{b})^2$ be a kernel function?
- Mercer's condition
 - To expand Kernel function $K(\mathbf{a}, \mathbf{b})$ into a dot product, i.e., $K(\mathbf{a}, \mathbf{b}) = \Phi(\mathbf{a})^T \Phi(\mathbf{b})$, $K(\mathbf{a}, \mathbf{b})$ has to be positive semi-definite function.

- Replacing dot product with a kernel function
- Not all functions are kernel functions!
 - Need to be decomposable $K(\mathbf{a}, \mathbf{b}) = \mathbf{\Phi}(\mathbf{a})^T \mathbf{\Phi}(\mathbf{b})$
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^3$ be a kernel function?
 - Could $K(\mathbf{a}, \mathbf{b}) = (\mathbf{a} \mathbf{b})^4 (\mathbf{a} + \mathbf{b})^2$ be a kernel function?
- Mercer's condition
 - To expand Kernel function $K(\mathbf{a}, \mathbf{b})$ into a dot product, i.e., $K(\mathbf{a}, \mathbf{b}) = \Phi(\mathbf{a})^T \Phi(\mathbf{b})$, $K(\mathbf{a}, \mathbf{b})$ has to be positive semi-definite function.
 - kernel matrix K is always symmetric PSD for any given $\mathbf{x}_1, \dots, \mathbf{x}_N$.

CSE 847 Machine Learning

Kernel Design: expression kernel

- mRNA expression data:
 - Each matrix entry is an mRNA expression measurement.
 - Each column is an experiment.
 - Each row corresponds to a gene.

Kernel Design: expression kernel

- mRNA expression data:
 - Each matrix entry is an mRNA expression measurement.
 - Each column is an experiment.
 - Each row corresponds to a gene.

Kernel Design: expression kernel

- mRNA expression data:
 - Each matrix entry is an mRNA expression measurement.
 - Each column is an experiment.
 - Each row corresponds to a gene.
- Similar or dissimilar
 Similar
 - Dissimilar
- Kernel

$$K(x,y) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i} x_{i}} \sqrt{\sum_{i} y_{i} y_{i}}}$$

Kernel Design: sequence kernel

- Work with non-vectorial data
- Scalar product on a pair of variable-length, discrete strings?
 >ICYA_MANSE
 GDIFYPGYCPDVKPVNDFDLSAFAGAWHEIAKLPLENENQGKCTIAEYKY
 DGKKASVYNSFVSNGVKEYMEGDLEIAPDAKYTKQGKYVMTFKFGQRVVN
 LVPWVLATDYKNYAINYMENSHPDKKAHSIHAWILSKSKVLEGNTKEVVD
 NVLKTFSHLIDASKFISNDFSEAACOYSTTYSLTGPDRH

>LACB_BOVIN
MKCLLLALALTCGAQALIVTQTMKGLDIQKVAGTWYSLAMAASDISLLDA
QSAPLRVYVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTKIPAVFKI
DALNENKVLVLDTDYKKYLLFCMENSAEPEQSLACQCLVRTPEVDDEALE
KFDKALKALPMHIRLSFNPTQLEEQCHI

38 / 50

Commonly Used SVM Kernel Functions

- $K(\mathbf{a}, \mathbf{b}) = (\alpha \cdot \mathbf{a}^T \mathbf{b} + \beta)^Q$ is an example of a SVM kernel function.
- Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right Kernel Function
 - Radial-basis style kernel (RBF)/Gaussian kernel function

$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$$

Sigmoid functions

2nd Order Polynomial Kernel

$$K(\mathbf{a}, \mathbf{b}) = (\alpha \cdot \mathbf{a}^T \mathbf{b} + \beta)^2$$

 $1 + (\mathbf{x}^{\mathrm{T}}\mathbf{x}') + (\mathbf{x}^{\mathrm{T}}\mathbf{x}')^{2}$

 $(1 + 1000 \mathbf{x}^{\mathrm{T}} \mathbf{x}')^2$

Gaussian Kernels

$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$$

Gaussian Kernels

$$K(\mathbf{a}, \mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$$

When γ is large, we clearly see that even the protection of a large margin cannot suppress overfitting. However, for a reasonably small γ , the sophisticated boundary discovered by SVM with the Gaussian-RBF kernel looks quite good.

Gaussian Kernels

For (a) a noisy data set that linear classifier appears to work quite well, (b) using the Gaussian-RBF kernel with the hard-margin SVM leads to overfitting.

From hard-margin to soft-margin

 When there are outliers, hard margin SVM + Gaussian-RBF kernel result in an unnecessarily complicated decision boundary that overfits the training noise.

43 / 50

From hard-margin to soft-margin

- When there are outliers, hard margin SVM + Gaussian-RBF kernel result in an unnecessarily complicated decision boundary that overfits the training noise.
- Remedy: a soft formulation that allows small violation of the margins or even some classification errors.

From hard-margin to soft-margin

- When there are outliers, hard margin SVM + Gaussian-RBF kernel result in an unnecessarily complicated decision boundary that overfits the training noise.
- Remedy: a soft formulation that allows small violation of the margins or even some classification errors.
- Soft-margin: margin violation $\varepsilon_n \geq 0$ for each data point (\mathbf{x}_n, y_n) and require that

$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \varepsilon_n$$

 \bullet ε_n captures by how much (\mathbf{x}_n,y_n) fails to be separated.

Soft-Margin SVM

We modify the hard-margin SVM to the soft-margin SVM by allowing margin violations but adding a penalty term to discourage large violations:

$$\begin{aligned} & \min_{b, \mathbf{w}, \varepsilon} & & \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \varepsilon_n \\ & \text{subject to: } & y_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1 - \varepsilon_n \text{ for } n = 1, \dots, N \\ & & \varepsilon_n \geq 0, \text{ for } n = 1, \dots, N \end{aligned}$$

The meaning of C?

Soft-Margin SVM

We modify the hard-margin SVM to the soft-margin SVM by allowing margin violations but adding a penalty term to discourage large violations:

$$\begin{aligned} & \min_{b, \mathbf{w}, \varepsilon} & & \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{n=1}^N \varepsilon_n \\ & \text{subject to: } & y_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1 - \varepsilon_n \text{ for } n = 1, \dots, N \\ & & \varepsilon_n \geq 0, \text{ for } n = 1, \dots, N \end{aligned}$$

The meaning of C?

- When C is large, it means we care more about violating the margin, which gets us closer to the hard-margin SVM.
- When C is small, on the other hand, we care less about violating the margin.

Soft Margin Example

(a)
$$C = 1$$

(b) C = 500

Soft Margin and Hard Margin

$$\min_{b,\mathbf{w},\varepsilon} \quad \underbrace{\tfrac{1}{2}\mathbf{w}^T\mathbf{w}}_{\text{margin}} + \underbrace{C\sum\nolimits_{n=1}^{N}\varepsilon_n}_{\text{error tolerance}}$$

subject to:
$$y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \varepsilon_n, \varepsilon_n \ge 0, \forall N$$

• The trade-off sounds very similar, right?

47 / 50

- The trade-off sounds very similar, right?
- We have $\varepsilon_n \geq 0$, and that $y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1 \varepsilon_n \Rightarrow \varepsilon_n \geq 1 y_n(\mathbf{w}^T\mathbf{x}_n + b)$

- The trade-off sounds very similar, right?
- We have $\varepsilon_n \geq 0$, and that $y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1 \varepsilon_n \Rightarrow \varepsilon_n \geq 1 y_n(\mathbf{w}^T\mathbf{x}_n + b)$
- The SVM loss (aka. Hinge Loss) function

$$E_{\mathsf{SVM}}(b, \mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T \mathbf{x}_n + b), 0)$$

- The trade-off sounds very similar, right?
- We have $\varepsilon_n \geq 0$, and that $y_n(\mathbf{w}^T\mathbf{x}_n + b) \geq 1 \varepsilon_n \Rightarrow \varepsilon_n \geq 1 y_n(\mathbf{w}^T\mathbf{x}_n + b)$
- The SVM loss (aka. Hinge Loss) function

$$E_{\mathsf{SVM}}(b, \mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \max(1 - y_n(\mathbf{w}^T \mathbf{x}_n + b), 0)$$

• The soft-margin SVM can be re-written as the following optimization problem:

$$\min_{b,\mathbf{w}} E_{\mathsf{SVM}}(b,\mathbf{w}) + \lambda \mathbf{w}^T \mathbf{w}$$

Dual Soft-Margin SVM

$$\begin{aligned} \max_{\pmb{\alpha} \in \mathbb{R}^N} \; \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m=1}^N \sum_{n=1}^N \alpha_n \alpha_m y_n y_m \mathbf{x}_n^T \mathbf{x}_m \\ \text{subject to} \; \sum_{n=1}^N y_n \alpha_n = 0, 0 \leq \alpha_n \leq C, \forall n \end{aligned}$$

$$\mathbf{w}^* = \sum_{n=1}^N y_n \alpha_n^* \mathbf{x}_n$$

Summary of Dual SVM

- Deliver a large-margin hyperplane, and in so doing it can control the effective model complexity.
- Deal with high- or infinite-dimensional transforms using the kernel trick.
- Express the final hypothesis $g(\mathbf{x})$ using only a few support vectors, their corresponding dual variables (Lagrange multipliers), and the kernel.
- Control the sensitivity to outliers and regularize the solution through setting C appropriately.

Support Vector Machine

