

Números Complejos

Departamento de Matemáticas http://selectividad.intergranada.com © Raúl González Medina

Sol: $a = \pm 1$; $b = \pm 2$

1.- Representa gráficamente los siguientes números complejos y di cuáles son reales, cuáles imaginarios y, de estos, cuáles son imaginarios puros:

a)
$$5-3i$$
 b) $\frac{1}{2} + \frac{5}{4}i$ c) $-5i$ d) 7
e) $\sqrt{3}i$ f) 0 g) $-1-i$ h) $4i$

2.- Representa gráficamente el opuesto y el conjugado de:

3.- Calcula:
$$\frac{3 \cdot i^{770} + i^{2043}}{1 + i^{4153}}$$

Sol: -2+i

4.- Calcula a para que el número complejo $z = \frac{-a+i}{2-i}$

a) Sea imaginario puro; b) tenga módulo 2.

Sol: a)
$$a=-1/2$$
; b) $a=\pm\sqrt{19}$

5.- Halla todos los números complejos cuyo cuadrado coincida con su conjugado.

Sol:
$$z_1 = 0$$
; $z_2 = 1$; $z_3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$; $z_4 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$

6.- a) ¿Qué relación existe entre el conjugado del opuesto de un número complejo, z=a+bi, y el opuesto del conjugado del mismo número?. Razona la respuesta. b)

calcula los números
$$x$$
 e y de modo que $\frac{3-xi}{1+2i} = y+2i$
Sol: a) Son iguales; b) x=-16, y=7

7.- Calcula en cada caso el valor que ha de tener k para que el resultado de la operación sea un número imaginario

a)
$$(2-3i)\cdot(1+ki)$$
 b) $(k+\sqrt{2}\cdot i)^2$ c) $\frac{k-2i}{8+2i}$

Sol: a) k=-2/3; b) $k=\pm\sqrt{2}$; c) k=1/2

8.- Escribe en forma binómica los siguientes números complejos:

a)
$$2_{45^{\circ}}$$
 b) $2_{\pi/6}$ c) $\sqrt{2}_{180^{\circ}}$ d) $1_{\pi/2}$ e) $5_{270^{\circ}}$ f) $1_{150^{\circ}}$ g) $17_{0^{\circ}}$ h) $4_{100^{\circ}}$

$$a)\sqrt{2} + i\sqrt{2};b)\sqrt{3} + i;c) - \sqrt{2};d)i;e) - 5i;f)\frac{-\sqrt{3}}{2} + \frac{1}{2}i;g)17;h) - 0,7 + 3,94i$$

9.- Efectúa estas operaciones y da el resultado en forma polar y en forma binómica:

a)
$$1_{150^{\circ}} \cdot 5_{30^{\circ}}$$
 b) $6_{45^{\circ}} : 3_{15^{\circ}}$ c) $2_{10^{\circ}} \cdot 1_{40^{\circ}} \cdot 3_{70^{\circ}}$

$$d)(1-\sqrt{3}i)^5$$
 e) $5_{2\pi/3}:1_{60^\circ}$ f) $(3+2i)\cdot(-3+2i)$

Sol: a)
$$-5;b)\sqrt{3}+i;c)-3+\sqrt{3}i;d)32_{60};e)\frac{5}{2}+\frac{5\sqrt{3}}{2}i;f)-13$$

10.- Dados los complejos $z = 5_{45^{\circ}}, w = 2_{15^{\circ}}, t = 4i$, obtén en forma polar:

a)
$$z \cdot t$$
 b) $\frac{z}{w^2}$ c) $\frac{z^3}{w \cdot t^2}$ d) $\frac{z \cdot w^3}{t}$
Sol: a) $20_{135}; b$) $\left(\frac{5}{4}\right)_{15}; c$) $\left(\frac{125}{32}\right)_{300}; d$) 10

11.- Halla las seis raíces sextas de 1. Represéntalas y <mark>exprésalas en forma bi</mark>nómica.

Sol: 1₀, 1₆₀, 1₁₂₀, 1₁₈₀, 1₂₄₀, 1₃₀₀.

12.- Resuelve la ecuación $z^3+27=0$. Representa sus soluciones.

Sol: 3₆₀, 3₁₈₀, 3₃₀₀.

13.- Calcular a y b para que se verifique: $(a+bi)^2=3+4i$.

14.- Calcula:

(a)
$$\sqrt[3]{-i}$$
 (b) $\sqrt[4]{-8+8\sqrt{3}i}$ (c) $\sqrt{-25}$ (d) $\left(\frac{-2+2i}{1+\sqrt{3}i}\right)^3$

Sol: a) 1_{90} , 1_{210} , 1_{330} ; b) 2_{30} , 2_{120} , 2_{210} , 2_{300} , c) 5_{90} , 5_{270} , d) $(2\sqrt{2})_{225}$

15.- Calcula el valor de *a* y *b* para que se verifique:

$$a - 3i = \frac{2 + bi}{5 - 3i}$$

16.- Calcula el valor de *b* para que el producto 6i)·(4+bi) sea: a) Un número imaginario puro. b) Un número real.

Sol: a) b=-2; b) b=8.

17.- Determina a para que $(a - 2i)^2$ sea un número imaginario puro.

Sol: a = +2.

18.- Calcula pasando a forma polar:

a)
$$\left(1+i\sqrt{3}\right)^5$$
 b) $\left(-1-i\sqrt{3}\right)^6 \cdot \left(\sqrt{3}-i\right)$ c) $\sqrt[4]{-2+2\sqrt{3}\cdot i}$

d)
$$\frac{8}{(1-5i)^5}$$
 e) $\sqrt[6]{-64}$ f) $\sqrt[3]{-i}$ g) $\frac{2-2i}{-3+3i}$

Sol: a)
$$32_{300}$$
, b) 4_{540} , c) $(\sqrt{2})_{30}$, $(\sqrt{2})_{120}$, $(\sqrt{2})_{210}$, $(\sqrt{2})_{300}$, d) $(\sqrt{26})_{225}$ e) 2_{30} , 2_{90} , 2_{150} , 2_{210} , 2_{270} , 2_{330} , f) 1_{90} , 1_{210} , 1_{330} , g) 0

19.- El producto de dos números complejos es -8 y uno <mark>de ellos</mark> es el cuadrado del otro. Calcúlalos.

$$w_1 = 2_{60^{\circ}} \rightarrow z_1 = 4_{120^{\circ}}; w_2 = 2_{180^{\circ}} \rightarrow z_2 = 4_0 = 4; w_3 = 2_{300^{\circ}} \rightarrow z_3 = 4_{240^{\circ}}$$

20.- De dos números complejos sabemos que:

Tienen el mismo módulo.

Sus argumentos suman $17\pi/6$

El primero es conjugado del cuadrado del segundo.

¿Cuáles son esos números?

Sol:
$$1_{11\pi/3}$$
 y $1_{7\pi/6}$

21.- La suma de dos números complejos conjugados es 8 y la suma de sus módulos es 10. ¿Cuáles son esos números?

Sol:
$$z = 4 + 3i$$
; $\bar{z} = 4 - 3i$

22.- Resuelve las siguientes ecuaciones:

a)
$$z^2 + 4 = 0$$
 b) $z^2 - 2z + 5 = 0$ c) $2z^2 + 10 = 0$
Sol: a) 2_{90} y 2_{270} ; b) $1 \pm 2i$; c) $\sqrt{5}_{90}$ y $\sqrt{5}_{270}$

23.- Resuelve estas ecuaciones y expresa las soluciones en forma binómica: $a)z^3 + 8i = 0$ b) $i \cdot z^4 + 4 = 0$

Sol: a)
$$2_{90}$$
, 2_{210} y 2_{330} ; b) $\sqrt{2}_{22,5}$, $\sqrt{2}_{112,5}$, $\sqrt{2}_{202,5}$, y $\sqrt{2}_{292,5}$

24.- Sean
$$z_1 = 3 - i\sqrt{3}$$
 y $z_2 = -2 - 2\sqrt{3}i$, calcula: **a)**

 $Z_1 \cdot Z_2$ (en forma polar); **b)** Z_1 / Z_2 (en forma binómica); **c)** $(Z_1)^4$ (en forma binómica); **d)** $(Z_2)^5$ (en forma polar); **e)**

 $\sqrt{Z_1}$ (en forma polar); **f**) $\sqrt{Z_2}$ (en forma polar).

Sol:

25.- Representa gráficamente las soluciones de los resultados de los apartados e) y f) del ejercicio anterior.

26.- Hallar todas las soluciones que presenten las ecuaciones siguientes:

a)
$$x^3 - 27 = 0$$
 b) $x^4 + 16i = 0$

27.- Prueba que si z tiene de módulo 1, su conju<mark>gado</mark> <mark>coincid</mark>e con su inverso.

Números Complejos

Departamento de Matemáticas

28.- Hallar el valor de a para que el complejo z =

- a) Sea un número real; b) Sea un número imaginario puro;
- c) Tenga módulo 2.
- 29.- ¿Puede ser real el cociente de dividir un número complejo por su conjugado? ¿Puede ser imaginario puro?
- 30.- Halla los números complejos que cumplen que su cubo coincide con su conjugado.

31.- Prueba que
$$\arg\left(\frac{z}{\overline{z}}\right) = 2 \arg(z)$$
 y $\arg\left(\frac{z^{-1}}{\overline{z}}\right) = 0$

- **32.-** Determina los coeficientes complejos a, b, y c del polinomio $f(z)=z^3+az^2+bz+c$, sabiendo que f(1)=8+16i, f(-1)=16-8i y f(i)=0.
- **33.-** Si 1+3i es solución de la ecuación $ax^2+bx+c=0$, con coeficientes reales, ¿cuál es la otra solución?. Escribe la ecuación.
- **34.-** Calcula a y b para que $\frac{a+2i}{3+bi} = \sqrt{2}_{45^{\circ}}$
- **35.-** Demuestra que:

a)
$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
 b) $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$ c) $\overline{z^{-1}} = (\overline{z})^{-1}$

- **36.-** Calcula el valor de x para que el cociente $\frac{3-2xi}{4-3i}$
- a) Sea un número real. b) Sea imaginario puro. c) Tenga su afijo en la bisectriz del primer cuadrante.
- **37.-** Halla dos números complejos cuya suma sea 10, y su producto 26.
- **38.-** Cuales son las coordenadas del punto que se obtiene al girar 90°, en sentido anti horario alrededor del origen, el <mark>afijo d</mark>el complejo 2 <mark>+</mark> i.
- Sol: (-1.2) **39.-** Halla las coordenadas de los vértices de un cuadrado <mark>de centro</mark> el origen de coordenadas, sabiendo que uno de los vértices es el punto (0, -2).

Sol:
$$(2,0),(0,2),(-2,0),(0,-2)$$

40.- La suma de las componentes reales de dos números <mark>complejos conju</mark>gados es seis, y la suma de sus módulos es 10. Determínalos en forma binómica y polar.

Sol:
$$3 + 4i = 5_{53^{\circ}7'48''}$$
 y $3 - 4i = 5_{306^{\circ}52'11''}$

41.- Sean los complejos $z=4_{60^{\circ}}$ y $z'=2_{45^{\circ}}$ calcula:

a)
$$z + z'$$
 b) $z \cdot z'$ c) $\frac{z}{z'}$ d) $z^2 \cdot z'$ e) $z^2 \cdot \overline{z'}$ f) $(-z) \cdot z'$

Sol: a) $(2 + \sqrt{2}) + (2\sqrt{3} + \sqrt{2})i$; b) $8_{105^{\circ}}$; c) $2_{15^{\circ}}$; d) $32_{165^{\circ}}$; e) 32_{75} ; f) $8_{285^{\circ}}$

42.- Encuentra la ecuación que tiene por raíces:

a)
$$2 - i y + i$$
 b) $2, -3, i y - i$ Sol: a) $z^2 - 4z + 5 = 0$; b) $z^4 + z^3 - 5z^2 + z - 6 = 0$.

43.- Halla las soluciones, reales o complejas, de las ecuaciones:

a)
$$z^2 - 2z + 5$$
 b) $z^4 - 256 = 0$ c) $z^4 + (1 - \sqrt{3}i) = 0$

 $Sol: a) 1 + 2i, \ 1 - 2i; \ b) 4, \ -4, \ 4i, -4i; \ c) \left(\sqrt[4]{2}\right)_{30^{\circ}}, \left(\sqrt[4]{2}\right)_{120^{\circ}}, \left(\sqrt[4]{2}\right)_{210^{\circ}} \left(\sqrt[4]{2}\right)_{300^{\circ}}, \left(\sqrt[4]{2}\right)_{120^{\circ}}, \left(\sqrt[4]{2}\right)_$

44.- Resuelve las siguientes ecuaciones:

a)
$$z^5 - 1 = 0$$
 b) $z^3 + 8 = 0$

Sol: a) 1_{0°}; 1_{72°}; 1_{144°}; 1_{216°} y 1_{288°}; b) 2_{60°}; 2_{180°} y 2_{300°};

45.- Se considera el complejo $2+2\sqrt{3}i$, se gira 45° alrededor del origen de coordenadas en sentido contrario a las agujas del reloj. Hallar el complejo obtenido después del giro.

46.- Halla las coordenadas de los vértices de un hexágono regular de centro el origen de coordenadas, sabiendo que uno de los vértices es el afijo del complejo 190°.

$$\mathsf{Sol:}\ \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)\!,\!\left(0,1\right)\!,\!\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)\!,\!\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)\!,\!\left(0,-1\right)\!,\!\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$$

47.- Dados $z_1 = 3 - 2i$, $z_2 = -3 + i$, $z_3 = 5i$, calcula:

$$a)z_1 + z_2 + z_3$$
 $b)z_1 + 2z_2 - z_3$ $c)z_1(z_2 + z_3) + z_3$

$$d)\frac{z_2 - z_1}{z_3} \qquad e = (z_1 + 2z_3)(z_2 - z_1)$$

Sol: a)
$$4i$$
; b) $-3-5i$; c) $3+29i$; d) $\frac{3}{5}+\frac{6}{5}i$; e) $-42-39i$.

48.- Efectúa las siguientes operaciones:

a)
$$\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^8$$
 b) $\left(2\sqrt{3} - 2i\right)^5$ c) $\frac{2}{3-i}$ d) $\frac{1+i}{1-i}$

Sol: a)1; b)
$$-512\sqrt{3} - 512i$$
; c) $\frac{3}{5} + \frac{1}{5}i$; d) i

49.- Completa la tabla:

	Z	-z	$\overline{\mathcal{Z}}$	1/z
	2-3i	-2+3i	2+3i	2/13 +
,				2i/13
	1 – 4i	-1 + 4i	1+4i	1/17 +
				4i/17
	3+3i	-3 – 3i	3 – 3i	1/6 - i/6
	-i	i	i	i

50.- Un hexágono regular, con centro en el origen de coordenadas, tiene uno de sus vértices en el punto $(\sqrt{3},1)$

. Halla los otros vértices.

Sol:
$$(0,2)$$
; $(-\sqrt{3},1)$, $(-\sqrt{3},-1)$, $(0,-2)$, $(\sqrt{3},-1)$

51.- Halla el módulo y el argumento de $\left(\frac{1-i}{1+i}\right)^{-1}$

52.- Halla e interpreta gráficamente las soluciones.

Sol: Las cinco raíces son: $1_{36}, 1_{108}, 1_{180}, 1_{252}, 1_{324}$

53.- Expresa $cos(3\alpha)$ y $sen(3\alpha)$ en función del seno y del coseno de α, ayudándote de la fórmula de Moivre.

Sol: $\sin(3a) = \sin(a)(4\cos^2 a - 1)$; $\cos(3a) = 4\cos^3(a) - 3\cos a$

54.- Halla las razones trigonométricas de 15° conociendo las de los ángulos de 45 y 30 mediante 1_{45} : 1_{30}

55.- Si el producto de dos números complejos es -8 y dividiendo el cubo de uno de ellos entre el otro obtenemos de resultado 2, ¿Cuánto valen el módulo y el argumento de cada uno?

56.- Calcula el área del pentágono cuyos vértices son los afijos de las soluciones de la ecuación $z^5-1=0$.

Números Complejos

Departamento de Matemáticas http://selectividad.intergranada.com

Sol: A=2,4 u.a

57.- Un cuadrado con centro en el origen tiene uno de sus vértices en el punto (1,2). Calcula los demás vértices.

Sol: B(-2,1), C(-1,-2), D(2,-1)

58.- ¿Es cierto que, siempre que multiplicas un número real por un número complejo z, el resultado tiene el mismo argumento que z? Si no es cierto, enuncia una propiedad correcta.

Área de Ciencias

http://selectividad.intergranada.com