Image Super-Resolution Using Deep Convolutional Networks

Visual Computing Lab
YoungHoon Kwon

Order

- Main Idea
- Formulation
- Data Set
- Input Data
- Loss function
- Future works

Machine Learning

Machine Learning

Formulation

Data sets

woman_GT

Training Set 91 images 학습 데이터

Test Set 5 images 새로운 데이터

Change into YCbCr

Make Input Data

Original image

Input image

Formulation

Output image

Original image

Divide to 33x33 small images

Formulation

Central pixels

Loss Function

$$L(\Theta) = \frac{1}{n} \sum_{i=1}^{n} ||F(\mathbf{Y}_i; \Theta) - \mathbf{X}_i||^2$$

$$\Theta = \{W_1, W_2, W_3, B_1, B_2, B_3\}$$

Future works

• Tensorflow 구현