School of Computing and Information Systems COMP30026 Models of Computation Tutorial Week 12

Content: reducibility, mapping reducibility

Exercises

- T12.1 Show that each the following reduciblity relations hold by giving a computable mapping reduction: Show that each the following reduciblity relations hold by giving a computable mapping reduction:
 - (a) $A_{NFA} \leq_m A_{DFA}$
 - (b) $A_{DFA} \leq_m A_{NFA}$
 - (c) $A_{REX} \leq_m A_{DFA}$
 - (d) $EQ_{DFA} \leq_m E_{DFA}$

Remember to justify why your mapping reduction is correct and why your mapping reduction is computable. You can do the latter by referencing a procedure from slides/tutes.

- T12.2 Consider the languages $ALL_{CFG} = \{\langle G \rangle \mid G \text{ is a grammar and } L(G) = \Sigma^* \}$ and $EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ and } H \text{ are grammars and } L(G) = L(H) \}.$
 - (a) Show that $ALL_{CFG} \leq_m EQ_{CFG}$.
 - (b) It is a fact that ALL_{CFG} is undecidable. What can we conclude from this fact and the above?
- T12.3 Show that $E_{TM} \leq_m EQ_{TM}$. Using only the facts that $E_{TM} \leq_m EQ_{TM}$ and that E_{TM} is undecidable, can we conclude that EQ_{TM} is also undecidable?
- T12.4 Consider the problem of whether a given context-free grammar with alphabet $\{0,1\}$ is able to generate a string in $L(1^*)$. Is that decidable? In other words, is the language

$$\{\langle G \rangle \mid G \text{ is a context-free grammar over } \{0,1\} \text{ and } L(G) \cap L(1^*) \neq \emptyset\}$$

decidable? Show that it is decidable, using a decider E_{CFG} for the decidable language

$$\{\langle G \rangle \mid G \text{ is a context-free grammar over } \{0,1\} \text{ and } L(G)=\emptyset\}$$

Hint: consider known closure properties for context-free languages.

T12.5 Now continue with any other practice problems you may have missed.

Practice Problems

- P12.1 Show that $A_{DFA} \leq_m A_{CFG} \leq_m A_{TM}$.
- P12.2 Earlier, we gave a mapping reduction from an undecidable problem ALL_{CFG} to EQ_{CFG} and concluded that EQ_{CFG} is undecidable. Show that the language

$$\overline{EQ_{CFG}} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are grammars and } L(G) \neq L(H) \}$$

is Turing-recognisable. Conclude that EQ_{CFG} is in fact not Turing-recognisable.

- P12.3 Let $T = \{\langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w\}$. Show that T is undecidable.
- P12.4 Show that if A is Turing-recognisable and $A \leq_m \overline{A}$, then A is decidable.