Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-223. Вариант 21

- 1. Пусть $z = \frac{\sqrt{3}}{2} + \frac{i}{2}$. Вычислить значение $\sqrt[5]{z^3}$, для которого число $\frac{\sqrt[5]{z^3}}{2\sqrt{3} 2i}$ имеет аргумент $-\frac{14\pi}{15}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-6+10i) + y(-5-11i) = -132 - 258i \\ x(-9-14i) + y(-6-9i) = 184 + 90i \end{cases}$$

- 3. Найти корни многочлена $-2x^6+22x^5-132x^4+448x^3-990x^2+106x+1700$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=4-3i, x_2=1-4i, x_3=-1.$
- 4. Даны 3 комплексных числа: -15+3i, -4-8i, 2+28i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=-1, z_2=\frac{1}{2}-\frac{\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z - 2i| < 1\\ |arg(z + 6 - 4i)| < \frac{\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-6, 9, -8), b = (8, -10, 9), c = (-3, 0, 0). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-11, -4, 14) и плоскость P: -40x + 20y + 8z + 560 = 0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-12,1,5), $M_1(-2,-11,-1)$, $M_2(6,-3,-1)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 21x - 9y - 29z - 581 = 0 \\ 8x + 2y - 20z - 348 = 0 \end{cases} \qquad L_2: \begin{cases} 13x - 11y - 9z + 2364 = 0 \\ 6x + 5y - 18z + 1005 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.