Periodic solutions of Euler-Lagrange equations with "sublinear nonlinearity" in an Orlicz-Sobolev space setting

Sonia Acinas *
Instituto de Matemática Aplicada San Luis (CONICET-UNSL)
(5700) San Luis, Argentina
Universidad Nacional de La Pampa
(6300) Santa Rosa, La Pampa, Argentina
sonia.acinas@gmail.com

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales
Universidad Nacional de Río Cuarto
(5800) Río Cuarto, Córdoba, Argentina,
fmazzone@exa.unrc.edu.ar

Abstract

In this paper we....

1 Introduction

This paper is concerned with the existence of periodic solutions of the problem

$$\begin{cases} \frac{d}{dt}D_{y}\mathcal{L}(t,\boldsymbol{u}(t),\dot{\boldsymbol{u}}(t)) = D_{\boldsymbol{x}}\mathcal{L}(t,\boldsymbol{u}(t),\dot{\boldsymbol{u}}(t)) & \text{a.e. } t \in (0,T) \\ \boldsymbol{u}(0) - \boldsymbol{u}(T) = \dot{\boldsymbol{u}}(0) - \dot{\boldsymbol{u}}(T) = 0 \end{cases}$$
(1)

2010 AMS Subject Classification. Primary: . Secondary: . Keywords and phrases. .

^{*}SECyT-UNRC, UNSL and CONICET

[†]SECyT-UNRC and CONICET

where T>0, $\boldsymbol{u}:[0,T]\to\mathbb{R}^d$ is absolutely continuous and the Lagrangian $\mathcal{L}:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}$ is a Carathéodory function satisfying the conditions

$$|\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{y})| \leq a(|\boldsymbol{x}|) \left(b(t) + \Phi\left(\frac{|\boldsymbol{y}|}{\lambda} + f(t)\right)\right),$$
 (2)

$$|D_{\boldsymbol{x}}\mathcal{L}(t,\boldsymbol{x},\boldsymbol{y})| \leq a(|\boldsymbol{x}|)\left(b(t) + \Phi\left(\frac{|\boldsymbol{y}|}{\lambda} + f(t)\right)\right),$$
 (3)

$$|D_{\boldsymbol{y}}\mathcal{L}(t,\boldsymbol{x},\boldsymbol{y})| \leq a(|\boldsymbol{x}|)\left(c(t) + \varphi\left(\frac{|\boldsymbol{y}|}{\lambda} + f(t)\right)\right).$$
 (4)

In these inequalities we assume that $a \in C(\mathbb{R}^+, \mathbb{R}^+)$, $\lambda > 0$, Φ is an N-function (see section Preliminaries for definitions), φ is the right continuous derivative of Φ . The non negative functions b,c and f satisfy that $b \in L^1_1([0,T])$, $c \in L^\Psi_1([0,T])$ and $f \in E^\Phi_1([0,T])$, where the Banach spaces $L^1_1([0,T])$, $L^\Psi_1([0,T])$ and $E^\Phi_1([0,T])$ will be defined later.

It is well known that problem (1) comes from a variational one, that is, a solution of (1) is a critical point of the *action integral*

$$I(\boldsymbol{u}) = \int_0^T \mathcal{L}(t, \boldsymbol{u}(t), \dot{\boldsymbol{u}}(t)) dt.$$
 (5)

2 Preliminaries

For reader convenience, we give a short introduction to Orlicz and Orlicz-Sobolev spaces of vector valued functions and a list of results that we will use throughout the article. Classic references for Orlicz spaces of real valued functions are [1, 2, 3]. For Orlicz spaces of vector valued functions, see [4] and the references therein.

Hereafter we denote by \mathbb{R}^+ the set of all non negative real numbers. A function $\Phi: \mathbb{R}^+ \to \mathbb{R}^+$ is called an *N-function* if Φ is given by

$$\Phi(t) = \int_0^t \varphi(\tau) d\tau, \quad \text{for } t \ge 0,$$

where $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is a right continuous non decreasing function satisfying $\varphi(0) = 0$, $\varphi(t) > 0$ for t > 0 and $\lim_{t \to \infty} \varphi(t) = +\infty$.

Given a function φ as above, we consider the so-called right inverse function ψ of φ which is defined by $\psi(s) = \sup_{\varphi(t) \leqslant s} t$. The function ψ satisfies the same properties as the function φ , therefore we have an N-function Ψ such that $\Psi' = \psi$. The function Ψ is called the *complementary function* of Φ .

We say that Φ satisfies the Δ_2 -condition, denoted by $\Phi \in \Delta_2$, if there exist constants K>0 and $t_0\geq 0$ such that

$$\Phi(2t) \leqslant K\Phi(t) \tag{6}$$

for every $t \ge t_0$. If $t_0 = 0$, we say that Φ satisfies the Δ_2 -condition globally ($\Phi \in \Delta_2$ globally).

Let d be a positive integer. We denote by $\mathcal{M}_d := \mathcal{M}_d([0,T])$ the set of all measurable functions defined on [0,T] with values on \mathbb{R}^d and we write $\boldsymbol{u}=(u_1,\ldots,u_d)$ for $\boldsymbol{u}\in\mathcal{M}_d$. In this paper we adopt the convention that bold symbols denote points in \mathbb{R}^d .

Given an N-function Φ we define the modular function $\rho_{\Phi}: \mathcal{M}_d \to \mathbb{R}^+ \cup \{+\infty\}$

$$\rho_{\Phi}(\boldsymbol{u}) := \int_{0}^{T} \Phi(|\boldsymbol{u}|) dt.$$

Here $|\cdot|$ is the euclidean norm of \mathbb{R}^d . The *Orlicz class* $C_d^{\Phi} = C_d^{\Phi}([0,T])$ is given by

$$C_d^{\Phi} := \{ \boldsymbol{u} \in \mathcal{M}_d | \rho_{\Phi}(\boldsymbol{u}) < \infty \}. \tag{7}$$

The Orlicz space $L_d^\Phi=L_d^\Phi([0,T])$ is the linear hull of $C_d^\Phi;$ equivalently,

$$L_d^{\Phi} := \{ \boldsymbol{u} \in \mathcal{M}_d | \exists \lambda > 0 : \rho_{\Phi}(\lambda \boldsymbol{u}) < \infty \}.$$
 (8)

The Orlicz space L_d^{Φ} equipped with the Orlicz norm

$$\|oldsymbol{u}\|_{L^\Phi} := \sup \left\{ \int_0^T oldsymbol{u} \cdot oldsymbol{v} \ dt ig|
ho_\Psi(oldsymbol{v}) \leqslant 1
ight\},$$

is a Banach space. By $u \cdot v$ we denote the usual dot product in \mathbb{R}^d between u and v. The following alternative expression for the norm, known as Amemiya norm, will be useful (see [2, Thm. 10.5] and [5]). For every $u \in L^{\Phi}$,

$$\|\boldsymbol{u}\|_{L^{\Phi}} = \inf_{k>0} \frac{1}{k} \left\{ 1 + \rho_{\Phi}(k\boldsymbol{u}) \right\}.$$
 (9)

The subspace $E_d^\Phi=E_d^\Phi([0,T])$ is defined as the closure in L_d^Φ of the subspace L_d^∞ of all \mathbb{R}^d -valued essentially bounded functions. It is shown that E_d^Φ is the only one maximal subspace contained in the Orlicz class C_d^Φ , i.e. $u\in E_d^\Phi$ if and only if $\rho_{\Phi}(\lambda \boldsymbol{u}) < \infty$ for any $\lambda > 0$.

A generalized version of Hölder's inequality holds in Orlicz spaces (see [2, Th. 9.3]). Namely, if $m{u}\in L_d^\Phi$ and $m{v}\in L_d^\Psi$ then $m{u}\cdot m{v}\in L_1^1$ and

$$\int_0^T \boldsymbol{v} \cdot \boldsymbol{u} \, dt \leqslant \|\boldsymbol{u}\|_{L^{\Phi}} \|\boldsymbol{v}\|_{L^{\Psi}}. \tag{10}$$

If X and Y are Banach spaces such that $Y \subset X^*$, we denote by $\langle \cdot, \cdot \rangle : Y \times X \to \mathbb{R}$ the bilinear pairing map given by $\langle x^*, x \rangle = x^*(x)$. Hölder's inequality shows that $L_d^\Psi \subset \left[L_d^\Phi\right]^*$, where the pairing $\langle \boldsymbol{v}, \boldsymbol{u} \rangle$ is defined by

$$\langle \boldsymbol{v}, \boldsymbol{u} \rangle = \int_0^T \boldsymbol{v} \cdot \boldsymbol{u} \, dt \tag{11}$$

with $u \in L_d^{\Phi}$ and $v \in L_d^{\Psi}$. Unless $\Phi \in \Delta_2$, the relation $L_d^{\Psi} = \left[L_d^{\Phi}\right]^*$ will not hold. In general, it is true that $\left[E_d^\Phi\right]^*=L_d^\Psi.$ Like in [2], we will consider the subset $\Pi(E_d^\Phi,r)$ of L_d^Φ given by

$$\Pi(E_d^{\Phi}, r) := \{ \boldsymbol{u} \in L_d^{\Phi} | d(\boldsymbol{u}, E_d^{\Phi}) < r \}.$$

This set is related to the Orlicz class C_d^{Φ} by means of inclusions, namely,

$$\Pi(E_d^{\Phi}, r) \subset rC_d^{\Phi} \subset \overline{\Pi(E_d^{\Phi}, r)}$$
(12)

for any positive r. If $\Phi \in \Delta_2$, then the sets L_d^{Φ} , E_d^{Φ} , $\Pi(E_d^{\Phi}, r)$ and C_d^{Φ} are equal. We define the *Sobolev-Orlicz space* $W^1L_d^{\Phi}$ (see [1]) by

 $W^1L_d^\Phi:=\{m{u}|m{u} ext{ is absolutely continuous and } \dot{m{u}}\in L_d^\Phi\}.$

 $W^1L_d^\Phi$ is a Banach space when equipped with the norm

$$\| \boldsymbol{u} \|_{W^1L^{\Phi}} = \| \boldsymbol{u} \|_{L^{\Phi}} + \| \boldsymbol{\dot{u}} \|_{L^{\Phi}}.$$

For a function $\boldsymbol{u} \in L^1_d([0,T])$, we write $\boldsymbol{u} = \overline{\boldsymbol{u}} + \widetilde{\boldsymbol{u}}$ where $\overline{\boldsymbol{u}} = \frac{1}{T} \int_0^T \boldsymbol{u}(t) \ dt$ and $\widetilde{\boldsymbol{u}} = \boldsymbol{u} - \overline{\boldsymbol{u}}$.

As usual, if $(X,\|\cdot\|_X)$ is a Banach space and $(Y,\|\cdot\|_Y)$ is a subspace of X, we write $Y\hookrightarrow X$ and we say that Y is *embedded* in X when the restricted identity map $i_Y:Y\to X$ is bounded. That is, there exists C>0 such that for any $y\in Y$ we have $\|y\|_X\leqslant C\|y\|_Y$. With this notation, Hölder's inequality states that $L_d^\Psi\hookrightarrow \left[L_d^\Phi\right]^*$; and, it is easy to see that for every N-function Φ we have that $L_d^\infty\hookrightarrow L_d^\Phi\hookrightarrow L_d^1$. Recall that a function $w:\mathbb{R}^+\to\mathbb{R}^+$ is called a *modulus of continuity* if w is a

Recall that a function $w: \mathbb{R}^+ \to \mathbb{R}^+$ is called a *modulus of continuity* if w is a continuous increasing function which satisfies w(0)=0. For example, it can be easily shown that $w(s)=s\Phi^{-1}(1/s)$ is a modulus of continuity for every N-function Φ . We say that $u:[0,T]\to\mathbb{R}^d$ has modulus of continuity w when there exists a constant C>0 such that

$$|\boldsymbol{u}(t) - \boldsymbol{u}(s)| \leqslant Cw(|t - s|). \tag{13}$$

We denote by $C^w([0,T],\mathbb{R}^d)$ the space of w-Hölder continuous functions. This is the space of all functions satisfying (13) for some C>0 and it is a Banach space with norm

$$\|m{u}\|_{C^w([0,T],\mathbb{R}^d)} := \|m{u}\|_{L^\infty} + \sup_{t
eq s} rac{|m{u}(t) - m{u}(s)|}{w(|t-s|)}.$$

An important aspect of the theory of Sobolev spaces is related to embedding theorems. There is an extensive literature on this question in the Orlicz-Sobolev space setting, see for example [6, 7, 8, 9, 10]. The next simple lemma is essentially known and we will use it systematically. For the sake of completeness, we include a brief proof of it.

Lemma 2.1. Let $w(s) := s\Phi^{-1}(1/s)$. Then, the following statements hold:

1. $W^1L^{\Phi} \hookrightarrow C^w([0,T],\mathbb{R}^d)$ and for every $\boldsymbol{u} \in W^1L^{\Phi}$

$$|\boldsymbol{u}(t) - \boldsymbol{u}(s)| \leqslant \|\dot{\boldsymbol{u}}\|_{L^{\Phi}} w(|t - s|), \tag{14}$$

$$\|u\|_{L^{\infty}} \leqslant \Phi^{-1}\left(\frac{1}{T}\right) \max\{1, T\} \|u\|_{W^{1}L^{\Phi}}$$
 (15)

2. For every $u \in W^1L^{\Phi}$ we have $\widetilde{u} \in L^{\infty}_d$ and

$$\|\widetilde{\boldsymbol{u}}\|_{L^{\infty}} \leqslant T\Phi^{-1}\left(\frac{1}{T}\right)\|\dot{\boldsymbol{u}}\|_{L^{\Phi}}$$
 (Sobolev's inequality). (16)

The next result is analogous to some lemmata in $W^1L_d^p$, see [11].

Lemma 2.2. If
$$\|u\|_{W^1L^{\Phi}} \to \infty$$
, then $(|\overline{u}| + \|\dot{u}\|_{L^{\Phi}}) \to \infty$.

Proof. We have

$$\| \boldsymbol{u} \|_{L^{\Phi}} = \| \overline{\boldsymbol{u}} + \tilde{\boldsymbol{u}} \|_{L^{\Phi}} \leqslant \| \overline{\boldsymbol{u}} \|_{L^{\Phi}} + \| \tilde{\boldsymbol{u}} \|_{L^{\Phi}} = | \overline{\boldsymbol{u}} | \| 1 \|_{L^{\Phi}} + \| \tilde{\boldsymbol{u}} \|_{L^{\Phi}}$$

We know that Holder's inequality implies that $L_d^\infty \hookrightarrow L_d^\Phi$, that is, there exists C>0 such that for any $\tilde{\boldsymbol{u}} \in L_d^\infty$ we have

$$\|\tilde{\boldsymbol{u}}\|_{L^{\Phi}} \leqslant C \|\tilde{\boldsymbol{u}}\|_{L^{\infty}}$$

and, applying Sobolev's inequality to the previous formula, we get

$$\|\tilde{\boldsymbol{u}}\|_{L^{\Phi}} \leqslant C \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}$$

La desigualdad anterior sería del tipo Wirtinger's que no tenemos enunciada en ningún lado.

Therefore,

$$\|\boldsymbol{u}\|_{L^{\Phi}} \leqslant C(|\overline{\boldsymbol{u}}| + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}) \tag{17}$$

As $\|u\|_{W^1L^{\Phi}} = \|u\|_{L^{\Phi}} + \|\dot{u}\|_{L^{\Phi}}$, then

$$\|\boldsymbol{u}\|_{W^1L^{\Phi}} \leqslant C(|\overline{\boldsymbol{u}}| + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}})$$

and by hypothesis $\|\pmb{u}\|_{W^1L^\Phi} o\infty$, then $|\overline{\pmb{u}}|+\|\dot{\pmb{u}}\|_{L^\Phi} o\infty$.

Esta definición va así o requiere modificaciones/adaptaciones???

Definition 2.3. We say that a function $\mathcal{L}: [0,T] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a Carathéodory function if for fixed $(\boldsymbol{x},\boldsymbol{y})$ the map $t \mapsto \mathcal{L}(t,\boldsymbol{x},\boldsymbol{y})$ is measurable and for fixed t the map $(\boldsymbol{x},\boldsymbol{y}) \mapsto \mathcal{L}(t,\boldsymbol{x},\boldsymbol{y})$ is continuously differentiable for almost everywhere $t \in [0,T]$.

In [12] we proved the next results.

Theorem 2.4. Let \mathcal{L} be a Carathéodory function satisfying (2), (3) and (4). Then the following statements hold:

- 1. The action integral given by (5) is finitely defined on $\mathcal{E}_d^{\Phi}(\lambda) := W^1 L_d^{\Phi} \cap \{ \boldsymbol{u} | \dot{\boldsymbol{u}} \in \Pi(E_d^{\Phi}, \lambda) \}.$
- 2. The function I is Gâteaux differentiable on $\mathcal{E}_d^{\Phi}(\lambda)$ and its derivative I' is demicontinuous from $\mathcal{E}_d^{\Phi}(\lambda)$ into $\left[W^1L_d^{\Phi}\right]^*$. Moreover, I' is given by the following expression

$$\langle I'(\boldsymbol{u}), \boldsymbol{v} \rangle = \int_0^T \left\{ D_{\boldsymbol{x}} \mathcal{L}(t, \boldsymbol{u}, \dot{\boldsymbol{u}}) \cdot \boldsymbol{v} + D_{\boldsymbol{y}} \mathcal{L}(t, \boldsymbol{u}, \dot{\boldsymbol{u}}) \cdot \dot{\boldsymbol{v}} \right\} dt.$$
(18)

3. If $\Psi \in \Delta_2$ then I' is continuous from $\mathcal{E}_d^{\Phi}(\lambda)$ into $\left[W^1L_d^{\Phi}\right]^*$ when both spaces are equipped with the strong topology.

In [12] we derived the Euler-Lagrange equations associated to critical points of action integrals on the subspace of T-periodic functions. We denote by $W^1L_T^{\Phi}$ the subspace of $W^1L_d^{\Phi}$ containing all T-periodic functions. As usual, when Y is a subspace of the Banach space X, we denote by Y^{\perp} the annihilator subspace of X^* , i.e. the subspace that consists of all bounded linear functions which are identically zero on Y.

We recall that a function $f: \mathbb{R}^d \to \mathbb{R}$ is called *strictly convex* if $f\left(\frac{x+y}{2}\right) < \frac{1}{2}\left(f\left(x\right) + f\left(y\right)\right)$ for $x \neq y$. It is well known that if f is a strictly convex and differentiable function, then $D_x f: \mathbb{R}^d \to \mathbb{R}^d$ is a one-to-one map (see, e.g. [13, Thm. 12.17]).

Theorem 2.5. Let $u \in \mathcal{E}_d^{\Phi}(\lambda)$ be a T-periodic function. The following statements are equivalent:

- 1. $I'(\boldsymbol{u}) \in (W^1 L_T^{\Phi})^{\perp}$.
- 2. $D_{\boldsymbol{y}}\mathcal{L}(t, \boldsymbol{u}(t), \dot{\boldsymbol{u}}(t))$ is an absolutely continuous function and \boldsymbol{u} solves the following boundary value problem

$$\begin{cases} \frac{d}{dt} D_{\boldsymbol{y}} \mathcal{L}(t, \boldsymbol{u}(t), \dot{\boldsymbol{u}}(t)) = D_{\boldsymbol{x}} \mathcal{L}(t, \boldsymbol{u}(t), \dot{\boldsymbol{u}}(t)) & a.e. \ t \in (0, T) \\ \boldsymbol{u}(0) - \boldsymbol{u}(T) = D_{\boldsymbol{y}} \mathcal{L}(0, \boldsymbol{u}(0), \dot{\boldsymbol{u}}(0)) - D_{\boldsymbol{y}} \mathcal{L}(T, \boldsymbol{u}(T), \dot{\boldsymbol{u}}(T)) = 0. \end{cases}$$
(19)

Moreover if $D_{\boldsymbol{y}}\mathcal{L}(t,x,y)$ is T-periodic with respect to the variable t and strictly convex with respect to \boldsymbol{y} , then $D_{\boldsymbol{y}}\mathcal{L}(0,\boldsymbol{u}(0),\dot{\boldsymbol{u}}(0)) - D_{\boldsymbol{y}}\mathcal{L}(T,\boldsymbol{u}(T),\dot{\boldsymbol{u}}(T)) = 0$ is equivalent to $\dot{\boldsymbol{u}}(0) = \dot{\boldsymbol{u}}(T)$.

DECIR ALGO DE LOS ÍNDICES ACÁ O EN LA INTRO...????

Por acá aparecía la NOTACIÓN DE $J_{C,\nu}$, que usamos en alguna demostración más adelante. Me parece que no es necesaria, sólo hay que corregir la prueba donde se la usaba!!!!

Lemma 2.6. Let Φ and Ψ be complementary N-functions. Then:

- 1. $\|u\|_{L^{\Phi}} = O(\rho_{\Phi}(u))$.
- 2. If $\Psi \in \Delta_2$ globally, then there exists a constant $\alpha_{\Phi} > 1$ such that, for any $0 < \mu < \alpha_{\Phi}$,

$$\|\boldsymbol{u}\|_{L^{\Phi}}^{\mu} = o\left(\rho_{\Phi}\left(\boldsymbol{u}\right)\right). \tag{20}$$

Reciprocally, if (20) holds for $\mu \geq 1$ then $\Psi \in \Delta_2$.

Based on [14] we say that F satisfies the condition (A) if F(t, x) is a Carathéodory function and F is continuously differentiable with respect to x. Moreover, the next inequality holds

$$|F(t, \boldsymbol{x})| + |D_{\boldsymbol{x}}F(t, \boldsymbol{x})| \le a(|\boldsymbol{x}|)b_0(t), \quad \text{for a.e. } t \in [0, T], \forall \boldsymbol{x} \in \mathbb{R}^d.$$
 (21)

La continua diferenciabilidad implica la primera parte de la desigualdad???

3 Lagrangians with sublinear nonlinearity

The symbol C with will stand for a constant, not necessarily the same at each occurrence, which can depend (unless otherwise stated) on some constants displayed between brackets.

Like in [12] we assume that

$$\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{y}) \ge \alpha_0 \Phi\left(\frac{|\boldsymbol{y}|}{\Lambda}\right) + F(t, \boldsymbol{x}),$$
 (22)

where F satisfies the condition (A) or (21)???.

Now, we have another result about coercivity of I assuming some conditions on the nonlinearity ∇F .

Theorem 3.1. Let \mathcal{L} be a lagrangian function satisfying (2), (3), (4), (22) and (21). We assume the following conditions:

- 1. $\Psi \in \Delta_2$.
- 2. There exist non negative functions $b_1, b_2 \in L^1_1$ and a constant $1 < \mu < \alpha_{\Phi}$ such that for any $\mathbf{x} \in \mathbb{R}^d$ and a.e. $t \in [0,T]$

$$|\nabla F(t, \mathbf{x})| \le b_1(t)|\mathbf{x}|^{\mu - 1} + b_2(t).$$
 (23)

3. There exists a real positive number σ such that $\sigma > (\mu - 1)\beta_{\Psi}$ and

$$|\boldsymbol{x}|^{\sigma} = o\left(\int_0^T F(t, \boldsymbol{x}) dt\right) \quad as \quad |\boldsymbol{x}| \to \infty.$$
 (24)

Then the action integral I is coercive.

Proof. By the decomposition $u=\overline{u}+\tilde{u}$, Mean Value Theorem, Cauchy-Schwarz inequality and (23), we have

$$\left| \int_{0}^{T} F(t, \boldsymbol{u}) - F(t, \overline{\boldsymbol{u}}) dt \right| = \left| \int_{0}^{T} \int_{0}^{1} \nabla F(t, \overline{\boldsymbol{u}} + s \tilde{\boldsymbol{u}}(t)) \cdot \tilde{\boldsymbol{u}}(t) ds dt \right|$$

$$\leq \int_{0}^{T} \int_{0}^{1} b_{1}(t) |\overline{\boldsymbol{u}} + s \tilde{\boldsymbol{u}}(t)|^{\mu - 1} |\tilde{\boldsymbol{u}}(t)| ds dt + \int_{0}^{T} \int_{0}^{1} b_{2}(t) |\tilde{\boldsymbol{u}}(t)| ds dt$$

$$= I_{1} + I_{2}.$$
(25)

On the one hand, by Hölder's inequality and Sobolev's inequality, we estimate I_2 as follows

$$I_2 \leqslant \|b_2\|_{L^1} \|\tilde{\boldsymbol{u}}\|_{L^{\infty}} \leqslant C(\|b_2\|_{L^1}, T) \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}. \tag{26}$$

On the other hand, as $\overline{\boldsymbol{u}} \in \mathbb{R}$ and $s \in [0, 1]$, we have

$$|\overline{\boldsymbol{u}} + s\tilde{\boldsymbol{u}}(t)|^{\mu-1} \leqslant C(\mu)(|\overline{\boldsymbol{u}}|^{\mu-1} + ||\tilde{\boldsymbol{u}}||_{L^{\infty}}^{\mu-1}). \tag{27}$$

Now, inequality (27), Hölder's inequality and Sobolev's inequality imply that

$$I_{1} \leqslant C(\mu) \left(|\overline{\boldsymbol{u}}|^{\mu-1} \int_{0}^{T} b_{1}(t) |\tilde{\boldsymbol{u}}(t)| dt + ||\tilde{\boldsymbol{u}}||_{L^{\infty}}^{\mu-1} \int_{0}^{T} b_{1}(t) |\tilde{\boldsymbol{u}}(t)| dt \right)$$

$$\leqslant C(\mu) \left\{ |\overline{\boldsymbol{u}}|^{\mu-1} ||b_{1}||_{L^{1}} ||\tilde{\boldsymbol{u}}||_{L^{\infty}} + ||b_{1}||_{L^{1}} ||\tilde{\boldsymbol{u}}||_{L^{\infty}}^{\mu} \right\}$$

$$\leqslant C(\mu, T, ||b_{1}||_{L^{1}}) \left\{ |\overline{\boldsymbol{u}}|^{\mu-1} ||\tilde{\boldsymbol{u}}||_{L^{\infty}} + ||\dot{\boldsymbol{u}}||_{L^{\Phi}}^{\mu} \right\}.$$
(28)

Let μ' be a positive constant such that $1 < \mu \leqslant \mu' < \alpha_{\Phi}$. Next, using Young's inequality with conjugate exponents μ' and $\frac{\mu'}{\mu'-1}$ we get

$$|\overline{\boldsymbol{u}}|^{\mu-1} \|\tilde{\boldsymbol{u}}\|_{L^{\infty}} \leqslant \frac{(\mu'-1)}{\mu'} |\overline{\boldsymbol{u}}|^{\sigma} + \frac{1}{\mu'} \|\tilde{\boldsymbol{u}}\|_{L^{\infty}}^{\mu'}$$
(29)

where $\sigma=\frac{(\mu-1)\mu'}{\mu'-1}$ is a positive constant such that $\sigma>(\mu-1)b_\Psi$. From (28),(29) and (26), we have

$$I_{1} + I_{2} \leqslant C(\mu, T, \|b_{1}\|_{L^{1}}, \mu') \left\{ |\overline{\boldsymbol{u}}|^{\sigma} + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu'} + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu} + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}} \right\}.$$
(30)

In the subsequent estimates, we use the decomposition $u = \overline{u} + \tilde{u}$, (22), (25), (30) and we get

$$I(\boldsymbol{u}) \geq \alpha_{0} \rho_{\Phi} \left(\frac{\dot{\boldsymbol{u}}}{\Lambda}\right) + \int_{0}^{T} F(t, \boldsymbol{u}) dt$$

$$= \alpha_{0} \rho_{\Phi} \left(\frac{\dot{\boldsymbol{u}}}{\Lambda}\right) + \int_{0}^{T} \left[F(t, \boldsymbol{u}) - F(t, \overline{\boldsymbol{u}})\right] dt + \int_{0}^{T} F(t, \overline{\boldsymbol{u}}) dt$$

$$\geq \alpha_{0} \rho_{\Phi} \left(\frac{\dot{\boldsymbol{u}}}{\Lambda}\right) - C(\|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu'} + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu} + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}})$$

$$+ \int_{0}^{T} F(t, \overline{\boldsymbol{u}}) dt - C|\overline{\boldsymbol{u}}|^{\sigma}.$$
(31)

As $1<\mu\leqslant\mu'$, we have $\|\dot{\bm{u}}\|_{L^\Phi}\leq\|\dot{\bm{u}}\|_{L^\Phi}^{\mu'}+1$ and $\|\dot{\bm{u}}\|_{L^\Phi}^{\mu}\leq\|\dot{\bm{u}}\|_{L^\Phi}^{\mu'}+1$, then

$$-C(\|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu'} + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu} + \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}) \ge -C(3\|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu'} + 2). \tag{32}$$

In this way, from (31) and (32)

$$I(\boldsymbol{u}) \ge \alpha_0 \rho_{\Phi} \left(\frac{\dot{\boldsymbol{u}}}{\Lambda} \right) - C \|\dot{\boldsymbol{u}}\|_{L^{\Phi}}^{\mu'} + \int_0^T F(t, \overline{\boldsymbol{u}}) dt - K |\overline{\boldsymbol{u}}|^{\sigma} - C$$
$$= \alpha_0 J_{C, \mu'}(\dot{\boldsymbol{u}}) + \gamma(\overline{\boldsymbol{u}}) - C.$$

Let u_n be a sequence in $\mathcal{E}_d^{\Phi}(\lambda)$ with $\|u_n\|_{W^1L^{\Phi}} \to \infty$ and we have to prove that $I(u_n) \to \infty$.

On the contrary, suppose that for a subsequence, still denoted by u_n , $I(u_n)$ is upper bounded, that is, there exists M>0 such that $|I(u_n)|\leqslant M$. As $\|u_n\|_{W^1L^\Phi}\to\infty$, from Lemma 2.2, we have $|\overline{u}_n|+\|\dot{u}_n\|_{L^\Phi}\to\infty$. Then, there exists subsequence of the subsequence $\{u_n\}$, still denoted by u_n , which is not bounded. Then, $\overline{u}_n\to\infty$ or $\|\dot{u}_n\|_{L^\Phi}\to\infty$. Now, as the functionals $J_{C,\mu'(\dot{u}_n)}$ and $\gamma(\overline{u})$ are coercive, then $J_{C,\mu'(\dot{u}_n)}\to\infty$ or $\gamma(\overline{u}_n)\to\infty$. By (21), the functional $\gamma(\overline{u}_n)$ is lower bounded and $J_{C,\mu'(\dot{u}_n)}$ is also lower bounded on a bounded set because the modular $\rho_\Phi\left(\frac{u}{\Lambda}\right)$ is always bigger than zero. Therefore, $I(u_n)\to\infty$ as $\|u_n\|_{W^1L^\Phi}\to\infty$ which contradits the initial assumption on the behavior of $I(u_n)$.

REVISAR LA PRUEBA ANTERIOR Y MEJORAR LA ESCRITURA, y adaptar quitando J si fuera el caso!!!!

4 Limit case $\mu = \alpha_{\Phi}$

In [] coercivity was obtained even in the limit case $\mu=1$ and $\mu=p$ assuming additional conditions on ... This was possible because in L^p spaces, the norm and the modular coincides, that is, $\|\cdot\|_p^p = O(\int_0^T |\cdot|^p dt)$. In Orlicz spaces, $\|\cdot\|_{L^\Phi}^\mu$ can be upper controlled by a modular provided that $\mu<\alpha_\Phi$ for any N-function Φ . But, the limit case does not hold for any Φ , i.e. in general $\|\cdot\|_{L^\Phi}^{\alpha_\Phi} = O(\int_0^T \Phi(|u|) dt)$ is false as can be seen as follows.

Let $\Phi, \Psi \in \Delta_2$, then the next inequality $\Phi(tu) \ge t^{\alpha_{\Phi}} \Phi(u)$ for any u > 0 and for any $t \ge 1$ is false.

In fact, let
$$\Phi(u) = \begin{cases} \frac{p-1}{p} u^p & u \leqslant e \\ \frac{u^p}{\log u} - \frac{e^p}{p} & u > e \end{cases}$$

Theorem 4.1. If $p \ge \frac{1+\sqrt{2}}{2}$, then Φ is an N-function.

Proof. We have

$$\Phi'(u) = \begin{cases} (p-1)u^{p-1} =: \varphi_1(u) & u < e \\ \frac{u^{p-1}}{\log u} (p - \frac{1}{\log u}) := \varphi_2(u) & u > e \end{cases}$$

and Φ is differentiable at e because $\varphi_1(e) = \varphi_2(e) = (p-1)e^{p-1}$.

Tendríamos que ver que φ_1, φ_2 son crecientes y que $\varphi_2 \to \infty$ cuando $u \to \infty$???? o basta con ver que φ_2 es creciente????

 φ_1 is an increasing function provided that p>1 and $\varphi_1(u)\to 0$ as $u\to 0$. In addition, $\varphi_2(u)\to \infty$ as $u\to \infty$ provided that p>1. And

$$0 < \varphi_2'(u) = \frac{u^{p-2}}{\log u} \left(p^2 - p - \frac{2p}{\log u} + \frac{1}{\log u} + \frac{2}{\log^2 u} \right)$$

on $[e, \infty)$ if and only if

$$\left(p^2 - p - \frac{2p}{\log u} + \frac{1}{\log u} + \frac{2}{\log^2 u}\right) > 0.$$

If we take $\alpha := \frac{1}{\log u}$, then we need

$$2\alpha^2 + (1 - 2p)\alpha + (p^2 - p) \ge 0$$

which is true if and only if $p \notin (\frac{1-\sqrt{2}}{2}, \frac{1+\sqrt{2}}{2})$. Therefore, φ_2 is an icreasing function when $p \geq \frac{1+\sqrt{2}}{2}$.

Theorem 4.2. There exists a constant C > 0 such that

$$\Phi(tu) \leqslant ct^p \Phi(u) \quad t \ge 1, u > 0. \tag{33}$$

For every $\varepsilon > 0$ there exists a constant $C = C(\varepsilon, p)$ such that

$$\Phi(tu) \ge Ct^{p-\varepsilon}\Phi(u) \quad t \ge 1, u > 0. \tag{34}$$

Proof. Resumir la prueba

Remark 4.3. The inequality

$$\Phi(tu) \ge Ct^p\Phi(u)$$

is false for every C because for every $u \ge e$ we have

$$\lim_{t \to \infty} \frac{\Phi(tu)}{t^p \Phi(u)} = 0$$

Theorem 4.4. $\alpha_{\Phi} = \beta_{\Phi} = p$

Proof. Resumir la prueba.

Now, we are able to see that

$$\rho_{\Phi}(u) = \int_{0}^{T} \Phi(|u|) \, dx \ge C \|u\|_{L^{\Phi}}^{\alpha_{\Phi}} = C \|u\|_{L^{\Phi}}^{p}$$

is false.

If we take $u\equiv t>0$, then $\|u\|_{L^\Phi}^p=C_1t^p$ where $C_1=\|1\|_{L^\Phi}$ and $\int_0^T\Phi(|u|)\,dx=C_2\Phi(t)$ with $C_2=T$. Then, if $\rho_\Phi(u)\geq C\|u\|_{L^\Phi}^p$ were true, then $\Phi(t)\geq Ct^p$ were also true but this last inequality is false.

Acknowledgments

The authors are partially supported by a UNRC grant number 18/C417. The first author is partially supported by a UNSL grant number 22/F223.

No sé por qué pero parece que funciona...., en realidad quité el .bib... Y recién ahora me doy cuenta que las referencias se ordenan de acuerdo al orden de mención/aparición....

References

- [1] R. Adams, J. Fournier, Sobolev spaces, Elsevier/Academic Press, Amsterdam, 2003.
- [2] M. A. Krasnosel'skiĭ, J. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.
- [3] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, Vol. 146, Marcel Dekker, Inc., New York, 1991.
- [4] G. Schappacher, A notion of Orlicz spaces for vector valued functions, Appl. Math. 50 (4) (2005) 355–386.
- [5] H. Hudzik, L. Maligranda, Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (4) (2000) 573–585.
- [6] A. Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math. 196 (2) (2000) 283–295.
- [7] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in: Nonlinear analysis, function spaces and applications, Vol. 6 (Prague, 1998), Acad. Sci. Czech Repub., Prague, 1999, pp. 50–92.
- [8] N. Clavero, Optimal Sobolev embeddings and Function Spaces, http://www.maia.ub.edu/~soria/sobolev1.pdf, last accessed: 2014-12-22. (2011).
- [9] D. Edmunds, R. Kerman, L. Pick, Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal. 170 (2) (2000) 307–355.
- [10] R. Kerman, L. Pick, Optimal Sobolev imbeddings, Forum Math. 18 (4) (2006) 535–570.
- [11] B. Xu, C.-L. Tang, Some existence results on periodic solutions of ordinary *p*-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007) 1228–1236.
- [12] S. Acinas, L. Buri, G. Giubergia, F. Mazzone, E. Schwindt, Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Analysis, TMA.(to appear).
- [13] R. T. Rockafellar, R. Wets, Variational analysis, Springer-Verlag, Berlin, 1998.
- [14] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989.