Exercice 1 (Question de cours)

- 1. X est compact si tout recouvrement $\{U_i \mid i \in I\}$ de X par des ouverts U_i admet un sous-ensemble fini $\{U_{i_1}, \ldots, U_{i_n}\}$ qui recouvre X.
- 2. Si $\{U_i \mid i \in I\}$ est un recouvrement de $f(X) \subset Y$ par ouverts, alors $\{f^{-1}(U_i) \mid i \in I\}$ est un recouvrement de X (en fait la réunion des $f^{-1}(U_i)$ est égale à X) et les $f^{-1}(U_i)$ sont ouverts par la continuité de f. Donc il existe un sous-ensemble fini $\{i_1, \ldots, i_n\}$ de I tel que $\{f^{-1}(U_{i_1}), \ldots, f^{-1}(U_{i_n})\}$ recouvre X. Donc $\{U_{i_1}, \ldots, U_{i_n}\}$ recouvre f(X).

Exercice 2 (Compactifie d'Alexandrov de \mathbb{R}^n)

- 1. On a $\emptyset \in \mathcal{T}_{\infty}$ car l'ensemble vide est ouvert pour \mathcal{T} et $X \in \mathcal{T}_{\infty}$ car le complementaire de X est vide et donc compact dans \mathbb{R}^n . Si U_1 et U_2 sont ouverts, alors il y a trois possibilités : si $U_1, U_2 \subset \mathbb{R}^n$, leur intersection est aussi ouverte dans \mathbb{R}^n ; ceci est vrai aussi si $\infty \in U_1$ avec $\mathbb{R}^n \setminus U_1$ compact (donc fermé) et $U_2 \subset \mathbb{R}^n$ ouvert de \mathcal{T} car $U_1 \cap \mathbb{R}^n$ est ouvert en tant que complementaire d'un fermé; finalement si $\infty \in U_1, U_2$ alors $\mathbb{R}^n \setminus (U_1 \cap U_2) = (\mathbb{R}^n \setminus U_1) \cup (\mathbb{R}^n \setminus U_2)$ est compact et donc dans tout cas $U_1 \cap U_2 \in \mathcal{T}_{\infty}$. Pour montrer que \mathcal{T}_{∞} est stable par réunions arbitraire : une réunion arbitraire d'ouverts de la forme $U_i \subset \mathbb{R}^n$ est encore ouverte; une réunion arbitraire de U_i avec $\infty \in U_i$ et $\mathbb{R}^n \setminus U_i$ compact est encore de cette forme car elle contient ∞ et son complementaire est une intersection de fermées bornées dans \mathbb{R}^n donc encore fermée et bornée; pour conclure il suffit de considerer la réunion d'un ouvert U_1 du premier type et un ouvert U_2 du second type. Dans ce dernier cas, $U_1 \cup U_2$ contient ∞ et son complementaire est égale à $(\mathbb{R}^n \setminus U_1) \cap (\mathbb{R}^n \setminus U_2)$, donc compact.
- 2. Tout $U \subset \mathbb{R}^n$ ouvert pour \mathcal{T} est aussi ouvert pour \mathcal{T}_{∞} par définition. Vice versa, si $U = \mathbb{R}^n \cap V$ est ouvert pour la topologie induite, avec V ouvert pour \mathcal{T}_{∞} , alors soit $V \subset \mathbb{R}^n$ et alors U = V est un ouvert de \mathcal{T} , soit $\infty \in V$ et $\mathbb{R}^n \setminus V$ est compact, donc fermé, et donc U est ouvert dans \mathbb{R}^n en tant que complementaire d'un fermé.
- 3. Soient $x, y \in X$. Si $x, y \in \mathbb{R}^n$, alors ils sont séparés par des ouverts de \mathbb{R}^n , si disons $x \in \mathbb{R}^n$ et $y = \infty$, alors ils sont séparés par une boule ouverte B(x, 1) centrée en x et par $V = \{\infty\} \cup \overline{B(x, 2)}$.
- 4. Si $\infty \in U_{i_0}$, alors les autres ouverts U_i , avec $i \neq i_0$ recouvrent le complementaire de U_{i_0} et les $U_i \cap \mathbb{R}^n$ sont ouverts dans \mathbb{R}^n par le point 2.
- 5. Si $\{U_i \mid i \in I\}$ est un recouvrement ouvert de X, alors il existe i_0 tel que $\infty \in U_{i_0}$. Donc par le point précedent, $\{U_i \cap \mathbb{R}^n \mid i \neq i_0\}$ est un recouvrement de $\mathbb{R}^n \setminus U_{i_0}$, qui est compact par définition de \mathcal{T}_{∞} , par ouverts de \mathbb{R}^n . Il existe alors un sous-recouvrement fini $\{U_{i_1} \cap \mathbb{R}^n, \dots, U_{i_n} \cap \mathbb{R}^n\}$ de $\mathbb{R}^n \setminus U_{i_0}$. En conclusion $\{U_{i_0}, \dots, U_{i_n}\}$ recouvre X.
- 6. Comme par hypothèse la topologie induite sur \mathbb{R}^n est \mathcal{T} , pour $U \subset \mathbb{R}^n$ on a $U = U \cap \mathbb{R}^n$ et donc U et ouvert pour \mathcal{T}' si et seulement s'il est pour \mathcal{T} .
- 7. Si une famille $\mathcal{U} = \{U_i \mid i \in I\}$ est donnée et on fixe i_0 , la condition que \mathcal{U} recouvre X est équivalente à ce que les U_i , $i \neq i_0$ recouvrent le complementaire de U_{i_0} .
- 8. Si $\infty \in U$ et U est ouvert, soit $\{U_i \mid i \in I\}$ une famille d'ouverts de \mathbb{R}^n (pour la topologie induite ou pour \mathcal{T} , c'est équivalent) qui recouvre $\mathbb{R}^n \setminus U$. Par le point 7, $\{U\} \cup \{U_i \mid i \in I\}$ recouvre X et donc par hypothèse il existe un sous-recouvrement fini $\{U, U_{i_1}, \ldots, U_{i_n}\}$. Ça montre que $\{U_{i_1}, \ldots, U_{i_n}\}$ recouvre $\mathbb{R}^n \setminus U$ qui est donc compacte. Vice versa, si $\mathbb{R}^n \setminus U$ est compacte, alors il est un fermé de \mathbb{R}^n pour la topologie \mathcal{T} et donc aussi pour \mathcal{T}' , et donc son complementaire U est ouvert.
- 9. Par les points précedents, un ensemble $U \subset \mathbb{R}^n$ est ouvert pour \mathcal{T}' si et seulement s'il est ouvert pour \mathcal{T} , si et seulement s'il est ouvert pour \mathcal{T}_{∞} . Si par contre $\infty \in U$, U est ouvert pour \mathcal{T}' si et seulement si $\mathbb{R}^n \setminus U$ est compact, ce qui est équivalent à ce que U est ouvert pour \mathcal{T}_{∞} par définition.
- 10. On peut donner un bijection $f: S^1 \to \mathbb{R} \cup \{\infty\}$ qui est un homéomorphisme entre $S^1 \setminus f^{-1}(\infty)$ et \mathbb{R}^n . Donc la topologie \mathcal{T}' induite sur $\mathbb{R} \cup \{\infty\}$ par la topologie de S^1 et la bijection f a la propriété que $(\mathbb{R} \cup \{\infty\}, \mathcal{T}')$ est compacte et la topologie induite sur \mathbb{R} coïncide avec celle de \mathbb{R} . Donc par l'unicité ci-dessus, \mathcal{T}' coïncide avec \mathcal{T}_{∞} . Comme f est un homéomorphisme entre S^1 et $(\mathbb{R} \cup \{\infty\}, \mathcal{T}')$ par construction, S^1 est homéomorphe à $(\mathbb{R} \cup \{\infty\}, \mathcal{T}_{\infty})$.
- 11. Le compactifié de \mathbb{R}^n est homéomorphe à S^n pour le même argument.

Exercice 3 (Compact de Banach-Mazur)

1. Soit $x \neq 0$. Si L(x) = 0, on a $M \circ L(x) = 0$ et donc $||M \circ L(x)||_Z = 0$. Sinon,

$$\frac{\|M \circ L(x)\|_Z}{\|x\|_X} = \frac{\|M \circ L(x)\|_Z}{\|L(x)\|_Y} \cdot \frac{\|L(x)\|_Y}{\|x\|_X} \leq \left(\sup_{y \neq 0} \frac{\|M(y)\|_Z}{\|y\|_Y}\right) \cdot \left(\sup_{x \neq 0} \frac{\|L(x)\|_Y}{\|x\|_X}\right) = \|M\| \circ \|L\|$$

donc

$$|||M \circ L||| := \sup_{x \neq 0} \frac{||M \circ L(x)||_Z}{||x||_X} \le |||M||| \circ |||L|||.$$

- 2. $\|\operatorname{id}\| = \|L \circ L^{-1}\| \le \|L\| \cdot \|L^{-1}\|$ par le point 1 et $\|\operatorname{id}\| = 1$ en appliquant la définition, donc $\|L\| \cdot \|L^{-1}\| \ge 1$ et $\log(\|L\| \cdot \|L^{-1}\|) > 0$, ce qui implique $\delta(X, Y) > 0$.
- 3. Si $L: X \to Y$ est un isomorphisme isométrique, alors $||L(x)||_Y = ||x||_X$ pour tout $x \in X$, donc $||L|| = \sup_{x \neq 0} ||L(x)||_Y/||x||_X = 1$. Analoguement $||L^{-1}|| = 1$ et alors $||L|| \cdot ||L^{-1}|| = 1$. Du coup $\delta(X,Y) \leq 0$ et $\delta(X,Y) = 0$ par le point 2.
- 4. Si $L \in \mathcal{L}(X,Y)$ est isomorphisme, alors $L^{-1} \in \mathcal{L}(Y,X)$ est isomorphisme aussi. Donc pour tout élément dans l'ensemble $\{\log (\|L\| \cdot \|L^{-1}\|) : L \in \mathcal{L}(X,Y) \text{ isomorphisme}\}\ dont \ \delta(X,Y)$ est la borne inférieure, il existe un élément dans l'ensemble $\{\log (\|L\| \cdot \|L^{-1}\|) : L \in \mathcal{L}(Y,X) \text{ isomorphisme}\}\ avec la même valeur. Cela montre que <math>\delta(X,Y)$ et $\delta(Y,X)$ sont la borne inférieure du même sous-ensemble de \mathbb{R} et donc ils coïncident.
- 5. Pour tout $L: X \to Y$ et $M: Y \to Z$, soit $N = M \circ L$. Par le point 1, $|||N||| \le |||L||| \cdot |||M|||$ et analoguement $|||N^{-1}||| \le |||L^{-1}||| \cdot |||M^{-1}|||$. En multipliant les deux inégalitées, $|||N||| \cdot |||N^{-1}||| \le (|||L||| \cdot |||L^{-1}|||)(|||M||| \cdot |||M^{-1}|||)$. En prenant le logarithme, $\log(|||N||| \cdot |||N^{-1}|||) \le \log(|||L||| \cdot |||L^{-1}|||) + \log(|||M||| \cdot |||M^{-1}|||)$. Donc par définition de borne inférieure, $\delta(X, Z) \le \log(|||L||| \cdot |||L^{-1}|||) + \log(|||M||| \cdot |||M^{-1}|||)$ pour tour isomorphisme $L: X \to Y$ et $M: Y \to Z$. En prenant la borne inférieure sur les L et M, $\delta(X, Z) \le \delta(X, Y) + \delta(Y, Z)$.
- 6. Si $L' = \lambda L$, alors $(L')^{-1} = \lambda^{-1} L^{-1}$, donc $\|L'\| \cdot \|(L')^{-1}\| \| = (|\lambda| \|L\|) (|\lambda|^{-1} \|L^{-1}\|) = \|L\| \cdot \|L^{-1}\|$.
- 7. Par le point précédent, il suffit de diviser L par |||L|||, de telle façon que (quitte à remplacer L par son multiple) |||L||| = 1, $|||L||| \cdot |||L^{-1}||| = 1$ et donc $|||L^{-1}||| = 1$ aussi.
- 8. Si $0 = \delta(X,Y) = \log(\|L\| \cdot \|L^{-1}\|)$, alors $\|L\| \cdot \|L^{-1}\| = 1$ et par les deux points précedents on trouve un isomorphisme $L: X \to Y$ (un multiple de L, mais qu'on denote encore par L) telle que $\|L\| = \|L^{-1}\| = 1$. Cela implique que pour tout $x \neq 0$ en X, $\|L(x)\|_Y \leq \|x\|_X$ parce que $\|L\| = 1$, mais d'autre côté $\|x\|_X = \|L^{-1}(L(x))\|_X \leq \|L(x)\|_Y$ parce que $\|L^{-1}\| = 1$. Donc $\|L(x)\|_Y = \|x\|_X$ pour tout x (pour x = 0 c'est trivial), c'est-à-dire L est isomorphisme isométrique.
- 9. Comme la suite $\log(\|L_n\| \cdot \|L_n^{-1}\|)$ converge, elle est bornée (disons par C > 0), donc $\|L_n\| \cdot \|L_n^{-1}\| \le e^C$. En utilisant le point 6, si on remplace L_n par $L_n/\|L_n\|$ on n'affecte pas la quantité $\|L_n\| \cdot \|L_n^{-1}\|$, donc on obtient une nouvelle suite avec $\|L_n\| = 1$ et $\|L_n^{-1}\| \le e^C$.
- 10. En étant $\mathcal{L}(X,Y)$ un espace vectoriel de dimension finie, et $\|\cdot\|$ une norme sur $\mathcal{L}(X,Y)$, les boules fermées sont compactes. Donc avec les conditions obtenues dans le point 9, la suite L_n est dans la boule unité de $\mathcal{L}(X,Y)$, et L_n^{-1} dans la boule de rayon e^C . On peut donc extraire des sous-suites convergentes par compacité des boules fermées.
- 11. Soit L_{∞} la limite de la sous-suite convergente de L_n , et M_{∞} la limite de la sous-suite de L_n^{-1} . Comme $L_n \circ L_n^{-1} = \mathrm{id}$, à la limite $L_{\infty} \circ M_{\infty} = \mathrm{id}$, c'est-à-dire $M_{\infty} = L_{\infty}^{-1}$. De plus, par continuité de la norme, $\|L_n\| \to \|L_{\infty}\| = \|L_n\| \to \|L_{\infty}\| = \|L_n\| \to \|L_{\infty}\| = \|L_n\| = \|L$