# Week 3

# Molecular Parameters from Spectra

#### 3.1 Lecture 5: Quantum Principles for Spectroscopy (Part 2)

- 1/17: Today: How *light* interacts with molecules.
  - Review of the classical vs. quantum resonance criterion (driven harmonic oscillator vs. matching energy difference between states).
  - Reminder of spectroscopic notation: E'' (ground state) vs. E' (excited state).
  - Different types of transitions (electronic, vibrational, rotational) can be observed using different parts of the EM spectrum (UV/Vis, IR/Raman, FIR/µwave) as probes.
  - What does light actually do?
    - Quantum mechanically, it's coupling to the eigenstates of the system.
    - Quantum eigenstates are stationary.
    - Light couples two states, dragging them together and mathematically creating a superposition.
  - Example.





Figure 3.1: Light-induced coupling of quantum eigenstates.

– If we have two solutions to the particle in a box  $\psi_0, \psi_1$  corresponding to the first and second energy levels, what light does is gives you a time-dependent wavefunction

$$\psi(t) = c_0(t)\psi_0 + c_1(t)\psi_1$$

- The probability that the particle is in one state or the other oscillates: Since  $c_n(t) = c_n e^{-iE_n t/\hbar}$ ,

$$P_1 = |c_1(t)|^2 \approx \frac{\sin^2(E_1 - E_0)t}{\hbar}$$
  $P_2 = |c_0(t)|^2 \approx \frac{\cos^2(E_1 - E_0)t}{\hbar}$ 

- Electronic degrees of freedom can be discussed in the same way.
  - Light drives electrons back and forth (as per our classical molecule), but this time, we mathematically represent this change as a coupling of the s orbital and the more elongated p orbital.
- Factors governing absorption strength.
  - Beer's law.
  - Two important factors.
    - 1. Extinction coefficient.
    - 2. Concentration.
- Quantum mechanically, absorption strength depends on state population.
  - This is also a thermodynamic/statistical question.
  - Thermal energy is distributed via the Boltzmann distribution.
  - The probability of initially occupying an excited state increases with temperature.
- Thermal energy distributes molecules through states with different rotational and vibrational states.
- Worry if  $E''_{\rm rot}, E''_{\rm vib} \leq 2k_{\rm B}T$ .
- Populations at higher states will give rise to additional features in the absorption spectrum.
- Final states don't matter for us because  $E_{\rm final} \gg k_{\rm B}T$ .
  - The only place where final energy matters is NMR because changes are so small; this is also why NMR is performed at cryogenic conditions.
- Transition dipole moment.
  - Classical (we need a change to grab onto) v. quantum (we take our transition dipole operator and square ite expected value) again.
- Selection rules.
  - Light can drive a molecule to go up or down one vibrational quantum. This is not strictly true because most oscillators are *not* harmonic oscillators. Greater transitions are called **overtones**.
  - Rotations: Same type of thing with  $\Delta J = \pm 1$ .

## 3.2 Office Hours (Moe)

- No Results and Discussion / short text summary/response section needed, right?
  - Correct: none.
- Do we need to calculate the extinction coefficient based on the Ocean Optics data?
  - We don't.
- What is the second table requested?
  - Extend the reference data table.

- Birge-Sponer plot for just v' or both v' and v''?
  - Do present for the excited state.
  - Create a grouped scatter plot for the ground state (5-6 data points for the value of 1, and the value of 2). Where there is overlap (i.e., everywhere we can calculate  $\Delta\omega(v'')$ , we should).
- Deriving the relationships between the Morse potential and the spectroscopic constants?
  - You would have to do all of the stuff with the Laguerre polynomials and Schrödinger equation.
- Using the NIST database?
  - Multiple database entries, look at the citations therein, and check the references in the manual.
  - Worst case, contact them for values.
- What is the value of the mercury calibration line? 5461 Å? My peak is at 5483 Å. Is this within the realm of possibility?
  - Yes it is.
  - We don't have to show this method now in the short lab report, but we would in the full lab report.
- Help with Excel graph making: IodineHighRes plot.
  - See practice plot.
- Do we need to calculate errors?
  - Yes, to the best of our ability based on what's in the manual.

## 3.3 Lecture 6: Infrared Vibrational-Rotational Spectroscopy

- 1/19: This is what's directly relevant to our HCl experiment.
  - Point of the online lectures: Provide more context on quantum dynamics, which are often glossed over.
  - Review of the partitioning of quantum mechanical energies into electronic, vibrational, rotational, etc. DOFs.
    - Different energy scales per DOF.
    - We can treat electrons separately from nuclei using the BO approximation.
    - Tokmakoff: "BO is the most important concept in molecular quantum mechanics."
    - If we zoom into the bottom of the electronic potential well, we can see vibrational and rotational energy levels as per Figures 2.6-2.7.
      - Note that this is only for one nuclear configuration! If we change the bond length, we have to redo the whole calculation.
    - We've been ignoring translational energy; if we want to understand how that influences our HCl spectrum, come talk to Tokmakoff.
  - Up to this point, we've talked about how molecular parameters influence structure. Today, we do the opposite: Calculating said parameters from observables.
  - Mid-IR light can induce vibrational and also rotational transitions.
  - Typically, only one ground vibrational state is populated v'' = 0.
    - Several rotational levels may be populated.

- Simplest version of the spectrum.
  - Heteronuclear diatomic molecule modeled as a quantum harmonic oscillator and rigid rotator.
  - Under this approximation, we get equally spaced vibrational energy levels.
  - First information from vibrational spectroscopy: Strength of bonding and shape of the potential well.
  - Next, rotational energy: Gives bond length information.
- Now for the light.
  - Resonance condition:  $h\nu = \Delta E$  again. Full formulas from the lab manuals written out.
- Selection rules.
  - $-\Delta v = \pm 1$  and  $\Delta J = \pm 1$ .
  - Differing transition frequency expressions for the R- and P-branches.
  - If we're interested in the Q-branch, come talk to Tokmakoff.
- $\nu_e$  is the spacing between the ground and first vibrational energy.
- R-branch and P-branch schematic.



Figure 3.2: Vibrational and rotational excitations.

- Note the relationships between the selection rules and the transitions.
- On a molecular level, we'd expect all lines to have the same intensity.
  - In reality, occupation depends on temperature via the Boltzmann distribution.
  - Great graphical explanation of the rotational energy levels!
- Predicted vibrational-rotational spectrum.
  - See Figure 3.3.
  - The envelope gives you the classical structure (come talk to Tokmakoff about this).
  - There are some other things to consider, e.g., Doppler shifts.



Figure 3.3: Predicted and actual P/R-branch spacing.

- In practice, our dumbbells shapes are not equally distributed. This problem is particularly bad for HCl. Asymmetry induces this.
- Vibration and rotation aren't independent.
  - Vibration-rotation coupling if we resonantly excite a molecule, the bond length extends, the moment of inertial increases, and thus the molecules rotates more slowly.
  - The equation

$$\bar{B} = \bar{B}_e - \alpha_e \left( v + \frac{1}{2} \right)$$

is not theoretical;  $\alpha_e$  is the experimentalist's fudge factor to get a more accurate moleucle.

- $-\alpha_e$  is the vibrational-rotational coupling constant.
- Alternative: Centrifugal distortion. As the molecule spins faster, the bond length increases.

$$\bar{B} = \bar{B}_e - D_e J(J+1)$$

- $-D_e$  is the centrifugal distortion constant.
- Vibrations aren't harmonic.
  - Especially for strongly heteronuclear molecules such as HCl.
  - Atoms don't want to collide both because of the Coulombic repulsion between nuclei and the Pauli repulsion force between the electrons not wanting to occupy the same space.
  - We account for the anharmonicity difference with another fudge factor.
  - Overtone transitions.
- Analysis of vibrational-rotational transition frequencies.
  - We use a quadratic fit.
  - The index parameter m does allow us to analyze both branches at the same time. Procedure:
    - Assign transition frequencies to J'', J', m.
    - Quadratic fit allows us to extract  $\bar{v}_e, B_e, \alpha_e$ .
    - $B_e$  gives you  $r_e$ .
- Morse potential.

- It's hard to describe bonding with so few parameters, but the Morse potential does about as good a job as you can do. Additionally, there are analytical expressions relating our experimental parameters to  $D_e$ ,  $\beta$ .
- Raise in your long report discussion how much you trust (or don't trust) the Morse potential.
  - The potential gives you the dissociation energy  $D_e$  of the molecule, but we're making measurements of vibrational energy levels at the very bottom of the well. What might that do?
  - HCl has a fairly long relaxation. More weakly bonded molecules have much steeper slopes (usually  $\propto r^{-6}$ ).
- Next video: Polyatomic molecules, perhaps including CO<sub>2</sub>.
- The bending vibration of CO<sub>2</sub> has a Q-branch. Why? We should look into this.
- ullet Another in-person lecture next Tuesday; same thing as today but for the I<sub>2</sub> experiment.