CSE6706: Advanced Digital Image Processing

Dr. Md. Monirul Islam

Thresholding

Thresholding

Segment the image with the function

f(x, y) > T: Object

 $f(x, y) \le T$: Background

Thresholding

Multi-level thresholding:

 $T_1 < f(x, y) < T_2$: Object 1

 $f(x, y) > T_2$: Object 2

Otherwise: Background

Generalized Thresholding Equation

$$T = T[x, y, p(x, y), f(x, y)]$$

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

where,

f(x, y): gray level value at pixel (x, y)

p(x, y): neighborhood properties

Types of Thresholding

$$T = T[x, y, p(x, y), f(x, y)]$$

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) > T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

- Global: T depends on only f(x,y)
- Local: T depends on f(x,y) and p(x,y)
- Adaptive: T depends on x, y, and f(x,y) and p(x,y)

Global Thresholding

Original Image

Original Image

Thresholding Shadow disappears

Global Thresholding

- *T* is mid point between max and min gray value
- Visual Inspection

Automatic Determination of Threshold, *T*

- 1. Assume an initial *T*
- 2. Segment image using *T*
 - Produce two groups of pixels: G_1 and G_2
- 3. Find avg gray values in G_1 and G_2 . let them be μ_1 and μ_2
- 4. Update *T* as $T = (\mu_1 + \mu_2)/2$
- 5. Repeat 2 to 4 until no more significant change of T

Automatic Determination of Threshold, *T*

- Choice of initial *T*
 - Avg gray level
 - Mid point betn max and min gray level

Global Thresholding

T = 125.4

Limitation of Global Thresholding

- Works when background can be controlled
- Fixed illumination
- Low Noise
- Example: Industrial inspection

Role of Noise

No Noise

Role of Noise

No Noise

Added Gauss Noise (m=0, std=10)

Role of Noise

No Noise

Added Gauss Noise (m=0, std=10)

Added Gauss Noise (m=0, std=50)

Role of Illumination

Original image

Original histo.

Role of Illumination

Original image

Original histo.

Original image

Varying illumination

Role of Illumination

Original image

Original histo.

CSE-BUET

Global Thrsholding of image with non-uniform illumination

Eliminating Illumination Effect

- Illumination normalization
- Adaptive thresholding

We know from image formation model,

$$f(x,y) = i(x,y)r(x,y)$$

We know from image formation model,

$$f(x, y) = i(x, y)r(x, y)$$

- If illumination source is accessible
 - Project the source on a constant white surface to generate

$$g(x, y) = ki(x, y)$$

We know from image formation model,

$$f(x,y) = i(x,y)r(x,y)$$

- If illumination source is accessible
 - Project the source on a constant white surface to generate

$$g(x,y) = ki(x,y)$$

• Normalize the image, h(x,y) = f(x,y)/g(x,y) = r(x,y)/k

We know from image formation model,

$$f(x, y) = i(x, y)r(x, y)$$

- If illumination source is accessible
 - Project the source on a constant white surface to generate

$$g(x,y) = ki(x,y)$$

- Normalize the image, h(x,y) = f(x,y)/g(x,y) = r(x,y)/k
- If r(x, y) can be segmented by a global threshold, so we can h(x, y)

- Divide the image into sub-regions
- Apply thresholding separately in each region

- Some regions: no distinct boundary btn object and background
- most others: have distinct boundary

- Some regions: no distinct boundary btn object and background
 gray level variance ~75
- most others: have distinct boundary gray level variance >100

- Regions with gray level variance >100:
 - clearly have bimodal histograms
 - Find threshold separately for each region
 - Segment each of them separately

- Regions with gray level variance <100:
 - have unimodal histograms
 - Combine all regions
 - Find a single threshold for all
 - Segment them with the threshold

Optimal Thresholding

• Objective: Determine the optimal adaptive threshold which minimizes the segmentation error

- Background:
 - Gray level z can be assumed a random variable
 - Histogram p(z) or h(z) can assumed as pdf of z

Optimal Thresholding

- Two histograms in an image
 - $-p_2(z)$: for background
 - $p_1(z)$: for object
 - p(z): for overall pdf, $p(z) = P_1 p_1(z) + P_2 p_2(z)$

Optimal Thresholding

• If we know the form of $p_1(z)$ and $p_2(z)$, we can find optimal T that can segment the image

• Error1:

- background classified as Object:
$$E_1(T) = \int_{-\infty}^{\infty} p_2(z) dz$$

• Error1:

– background classified as Object: $E_1(T) = \int_{-\infty}^{\infty} p_2(z) dz$

Error2:

Overall Error:

$$E(T) = P_2 E_1(T) + P_1 E_2(T)$$

$$= \int_{-\infty}^{T} P_2 p_2(z) dz + \int_{T}^{\infty} P_1 p_1(z) dz$$

• Overall Error:

$$E(T) = P_2 E_1(T) + P_1 E_2(T)$$

$$= \int_{-\infty}^{T} P_2 p_2(z) dz + \int_{T}^{\infty} P_1 p_1(z) dz$$

• Minimize *E*(*T*) by Leibniz's formula:

$$P_1 p_1(T) = P_2 p_2(T)$$

- If we know the form of p1(z) and p2(z)
 - Let they are Gaussian

$$p_1(z) = \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{(z-\mu_1)^2}{2\sigma_1^2}} \text{ and } p_2(z) = \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{(z-\mu_2)^2}{2\sigma_2^2}}$$

• The formula: $P_1p_1(T) = P_2p_2(T)$ turns into

$$AT^2 + BT + C = 0$$

$$A = \sigma_1^2 - \sigma_2^2$$

$$B = 2(\mu_1 \sigma_2^2 - \mu_2 \sigma_1^2)$$

$$C = \mu_2^2 \sigma_1^2 - \mu_1^2 \sigma_2^2 + 2\sigma_1^2 \sigma_2^2 \ln(\frac{\sigma_2 P_1}{\sigma_1 P_2})$$

• We will find *two T* from

$$AT^{2} + BT + C = 0$$
 $A = \sigma_{1}^{2} - \sigma_{2}^{2}$

$$A = \sigma_1^2 - \sigma_2^2$$

$$B = 2(\mu_1 \sigma_2^2 - \mu_2 \sigma_1^2)$$

$$C = \mu_2^2 \sigma_1^2 - \mu_1^2 \sigma_2^2 + 2\sigma_1^2 \sigma_2^2 \ln(\sigma_2 P_1 / \sigma_1 P_2)$$

• If $\sigma_1^2 = \sigma_2^2 = \sigma^2$, only a single T is sufficient

$$T = \frac{\mu_1 + \mu_2}{2} + \frac{\sigma^2}{\mu_1 - \mu_2} \ln(\frac{P_2}{P_1})$$

- When histogram peaks are
 - tall
 - narrow
 - Symmetric and
 - separated by deep valleys

 Histogram should be less dependant on relative sizes of object and background

Histogram from pixels near the edge can reduce the dominance

Deep valley

Issues Related to Pixels Near Edges

• Can we predict edges before segmentation?

$$s(x,y) = \begin{cases} 0 & \text{if } \nabla f < T \\ + & \text{if } \nabla f \ge T \text{ and } \nabla^2 f \ge 0 \\ - & \text{if } \nabla f \ge T \text{ and } \nabla^2 f < 0 \end{cases}$$

$$s(x,y) = \begin{cases} 0 & \text{if } \nabla f < T \\ + & \text{if } \nabla f \ge T \text{ and } \nabla^2 f \ge 0 \\ - & \text{if } \nabla f \ge T \text{ and } \nabla^2 f < 0 \end{cases}$$

Object

starts ends

(···) (-,+) (0 or +) (+,-) (···)

interior

$$s(x,y) = \begin{cases} 0 & \text{if } \nabla f < T \\ + & \text{if } \nabla f \ge T \text{ and } \nabla^2 f \ge 0 \\ - & \text{if } \nabla f \ge T \text{ and } \nabla^2 f < 0 \end{cases}$$

Object

egmentation:

1: Internal

0: Other

A Bank Check

A Bank Check

Region Based Segmentation

- Let R =Entire image
- Objective: partition R into $R_1, R_2, ..., R_n$ so that

$$(a)\bigcup_{i=1}^{n} R_i = R$$

- (b) R_i is a connected region
- (c) $R_i \cap R_j = \emptyset$
- (d) $P(R_i) = \text{TRUE for } i = 1, 2, 3, ..., n$
- (e) $P(R_i \cup R_j) = \text{FALSE for } i \neq j$

Types of Region Based Segmentation

- Region growing
- Region splitting and merging

Region Growing

- Region grows from seed points
- Append to growing region those neighbors which are similar to the seed

Issues in Region Growing

• seed points:

- How to select
- Based on which property?
- Any prior knowledge helpful?
- What to do, if no prior knowledge available?

• Similarity:

– Color, texture, spatial, gray level values?

Issues in Region Growing

- Is connectivity an issue?
 - Needed to avoid a distorted set of pixels with similar values
- When to stop:
 - How and when to stop?
 - Any history of the prev data?
 - Size of the region so far grown
 - likeness of the new pixel
 - shape

Welding with breaks

Probable seed points: gray level 255

Cr1. gray level diff <65

Cr2. 8 Connectivity

Superimposed on the original

Initial seed points

Final seed points after morph. eroding

- Region growing criteria:
 - 1. 8 connectivity
 - 2. Abs_diff (seed gray, pixel gray) <= T

Diff (255, original image)

