

ANÁLISIS DE CIRCUITOS

Ingeniería de Telecomunicación Examen septiembre de 2010

Duración: 2 horas 30 minutos Responda a cada pregunta en hojas separadas Lea detenidamente los enunciados antes de contestar

Nombre	D.N.I.	Grupo
NOTIBLE	D.N.I.	Grupo

- 1. En el circuito de la figura el interruptor ha permanecido desconectado en la posición que se indica durante un tiempo largo. En t=0s cambian de posición.
 - a) Calcule la tensión en el condensador en $t = 0^-$ s, en $t = 0^+$ s y en $t \rightarrow \infty$. (1 punto)
 - b) Calcule la corriente en las resistencias R_1 y R_2 en $t = 0^-$ s, en $t = 0^+$ s y en $t \rightarrow \infty$. (1 **punto**)
 - c) Calcule y represente la evolución de la corriente en la resistencia (R₂) en función del tiempo (2 puntos)

2. Para el circuito de la figura de la derecha calcule $v_o(t)$ (tensión en R2) si $v_i(t)=5\cos(\omega t+\pi/2)$ V ($\omega=2\cdot10^4$ rad/s, $R_I=R_2=1$ k Ω , $C_I=1$ μ F). (2 puntos)

3. Calcular el equivalente Thevenin del circuito de la figura entre los terminales A y B (2 puntos).

 Dado un circuito RC en configuración paso baja, ¿cuántos decibelios atenúa una señal de frecuencia 2kHz?. Datos R=1KΩ; C=10μF. (1 punto)

Transformadas de posible utilidad:

$$u(t) \xrightarrow{\frac{L}{s}}$$

$$u(t)e^{at} \qquad \frac{\frac{1}{s-a}}{\frac{s-a}{s^2+\omega^2}}$$

$$\cos \omega t \qquad \frac{s}{s^2+\omega^2}$$