1.	Consider a mobile application designed to monitor physical activity, which senses accelerometer data and uploads it to a central server through the 4G network. The upload operation is power hungry and consumes 60 mW of power when active and 1 mW when idle.	1 point
	Suppose there is a particular user who uses the application to track calorie burn during exercise. Every day, the user wears a Nike shoe with a piezo-electric device attached to it and goes for a one-hour run. The device generates electricity from each step at the rate of 7 mJ per step. The user takes approximately 8000 steps on every one-hour run. The user wants the exercise app to be energy neutral. "Energy neutrality" means that if the mobile battery level is By when the application <i>starts</i> executing, then the battery level is still B ₀ after the application <i>finishes</i> executing.	
	Does "energy neutral" imply that the app does not consume any battery power?	
	• false	
	O true	
2.	Consider a mobile application designed to monitor physical activity, which senses accelerometer data and uploads it to a central server through the 4G network. The upload operation is power hungry and consumes 60 mW of power when active and 1 mW when idle.	1 point
	Suppose there is a particular user who uses the application to track calorie burn during exercise. Every day, the user wears a Nike shoe with a piezo-electric device attached to it and goes for a one-hour run. The device generates electricity from each step at the rate of $7\mathrm{mJ}$ per step. The user takes approximately $8000\mathrm{steps}$ on every one-hour run. The user wants the exercise app to be energy neutral. "Energy neutrality" means that if the mobile battery level is $800\mathrm{mm}$ when the application $starts$ executing, then the battery level is still $800\mathrm{mm}$ after the application $starts$ executing.	
	What should be the duty cycle of the 4G radio so that the mobile application is energy neutral for 1 hour of appoperation?	
	100	
3.	Consider a mobile application designed to monitor physical activity, which senses accelerometer data and uploads it to a central server through the 4G network. The upload operation is power hungry and consumes 60 mW of power when active and 1 mW when idle.	1 point
	Suppose there is a particular user who uses the application to track calorie burn during exercise. Every day, the user wears a Nike shoe with a piezo-electric device attached to it and goes for a one-hour run. The device generates electricity from each step at the rate of $7\mathrm{mJ}$ per step. The user takes approximately $8000\mathrm{steps}$ on every one-hour run. The user wants the exercise app to be energy neutral. "Energy neutrality" means that if the mobile battery level is $800\mathrm{mm}$ the application $starts$ executing, then the battery level is still $800\mathrm{mm}$ after the application $starts$ executing.	
	Does the ability for energy neutral operation depend on the initial battery level?	
	No, the ability for energy neutral operation does not depend on anything.	
	Yes, but it does not depend on the application.	
	Maybe, but it depends solely on the initial battery level.	
	Maybe, but it depends on both battery level and power profile of the application.	
4.	Can the results of a single macro-benchmark be achieved by carefully combining multiple micro-benchmarks?	1 point
	O true	
	false	
5.	What are some of the problems with a model based power measurement software tool? Select all that apply.	1 point
	The models tend to provide a different granularity of data than sensors and introduce errors in the process.	
	The software tool measuring power can influence the power measurements.	
	The models are not accurate and only work for a small set of experiments.	
	The sensors are not accurate enough to guarantee good accuracy for the models.	
6.	Which statement <i>most accurately</i> describes how the number of wakelocks relates to power?	1 point
	O Lower number of wakelocks result in lower average power	
	Lower number of wakelocks result in lower instantaneous power	
	O Lower number of wakelocks result in higher instantaneous power	
	O Lower number of wakelocks result in higher average power	

7.	Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 4 seconds . In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution time in Eager Mode is 3 seconds (i.e., Eager Mode execution time is 75% of Lazy Mode execution time).	1 point
	After finishing computation, the app sends some data to the cloud, regardless of the mode it's in. The data size sent to the cloud is 50 MB . The bandwidth of communication is 5 MBps for WiFi and 4 MBps for 4G. Assume that the communication radio is idle during the computation time.	
	Assume that the communication radio for WiFi has a power consumption of 60 mW when active and 1 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 80 mW when active and 2 mW when idle. The Idle Power of the CPU is 0.5 mW , whereas the Active Power of the CPU is 1 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other words: P = (Idle Power) + (Utilization)*(Power per unit Utilization).	
	A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.	
	Which configuration is the <i>most</i> energy efficient?	
	○ Eager 4G	
	○ Lazy 4G	
	Eager Wifi	
	○ Lazy WiFi	
8.	Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 4 seconds . In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution time in Eager Mode is 3 seconds (i.e., Eager Mode execution time is 75% of Lazy Mode execution time).	1 point
	After finishing computation, the app sends some data to the cloud, regardless of the mode it's in. The data size sent to the cloud is 50 MB . The bandwidth of communication is 5 MBps for WiFi and 4 MBps for 4G. Assume that the communication radio is idle during the computation time.	
	Assume that the communication radio for WiFi has a power consumption of 60 mW when active and 1 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 80 mW when active and 2 mW when idle. The Idle Power of the CPU is 0.5 mW , whereas the Active Power of the CPU is 1 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other words: P = (Idle Power) + (Utilization)*(Power per unit Utilization).	
	A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.	
	Which configuration has the shortest execution time?	
	Eager Wifi	
	○ Lazy 4G	
	○ Lazy WiFi	
	○ Eager 4G	
9.	Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 4 seconds . In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution time in Eager Mode is 3 seconds (i.e., Eager Mode execution time is 75% of Lazy Mode execution time).	1 point
	After finishing computation, the app sends some data to the cloud, regardless of the mode it's in. The data size sent to the cloud is 50 MB . The bandwidth of communication is 5 MBps for WiFi and 4 MBps for 4G. Assume that the communication radio is idle during the computation time.	
	Assume that the communication radio for WiFi has a power consumption of 60 mW when active and 1 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 80 mW when active and 2 mW when idle. The Idle Power of the CPU is 0.5 mW , whereas the Active Power of the CPU is 1 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other words: P = (Idle Power) + (Utilization)*(Power per unit Utilization).	
	A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.	
	Which configuration has the highest maximum power consumption?	
	○ Eager Wifi	
	Lazy 4G	
	○ Lazy WiFi	
	C Eager 4G	
10.	Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 4 seconds . In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution	1 point
	time in Eager Mode is 3 seconds (i.e., Eager Mode execution time is 75% of Lazy Mode execution time).	
	After finishing computation, the app sends some data to the cloud, regardless of the mode it's in. The data size sent to the cloud is 50 MB . The bandwidth of communication is 5 MBps for WiFi and 4 MBps for 4G. Assume that the communication radio is idle during the computation time.	
	Assume that the communication radio for WiFi has a power consumption of 60 mW when active and 1 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 80 mW when	

active and 2 mW when idle. The Idle Power of the CPU is 0.5 mW, whereas the Active Power of the CPU is 1 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other

words: D = //dla Dawar) ± // Itilization */Dawar par unit | Itilization \

words. - pare cowery countainony trower per unicountainony.

A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.

Which configuration has the *highest* average power consumption?

Lazy 4G

Eager 4G

Lazy WiFi

Eager Wifi