

AN X-RAY FEL OSCILLATOR FOR NOVEL SCIENCES

KWANG-JE KIM

ANL and U. Chicago

March 5-9, 2018 Equatorial Hotel, Shanghai, China

X-RAY FREE-ELECTRON LASER OSCILLATOR (XFELO)

- Bragg reflectors for hard x-rays
 - R. Collela and A. Luccio (1983)
- Revived in 2008
 - KJK, Y. Shvyd'ko, S. Reiche
- Much progress in
 - Theory/sim: R. Lindberg & W. Fawley
 - X-ray optics exp: S. Stoupin & T. Kolodziej

X-RAY FREE-ELECTRON LASER OSCILLATOR (XFELO)

Beam Diamond Crystal Reflectors

Tunable X-ray Optical Cavity

Experiment

- Bragg reflectors for hard x-rays
 - R. Collela and A. Luccio (1983)
- Revived in 2008
 - KJK, Y. Shvyd'ko, S. Reiche
- Much progress in
 - Theory/sim: R. Lindberg & W. Fawley
 - X-ray optics exp: S. Stoupin & T. Kolodziej

X-RAY FREE-ELECTRON LASER OSCILLATOR

(XFELO)

- Bragg reflectors for hard x-rays
 - R. Collela and A. Luccio (1983)
- Revived in 2008
 - KJK, Y. Shvyd'ko, S. Reiche
- Much progress in
 - Theory/sim: R. Lindberg & W. Fawley
 - X-ray optics exp: S. Stoupin & T. Kolodziej

XFELO WITH 8 GEV 8-GEV 1 MHZ SCRF LINAC \rightarrow % ~10²⁸ #/(MM² MR² 0.1%BW)

XFELO WITH 8 GEV 8-GEV 1 MHZ SCRF LINAC \rightarrow % ~10²⁸ #/(MM² MR² 0.1%BW)

@14.4 keV

XFELO WITH 8 GEV 8-GEV 1 MHZ SCRF LINAC \rightarrow % ~10²⁸ #/(MM² MR² 0.1%BW)

@14.4 keV

	#/pulse	Δε/ε	Δτ[fs]	Bave	B _{peak}
XFELO	1.2×10 ¹⁰	2.4×10 ⁻⁷	600	2.7×10 ²⁸	4.0×10 ³⁴
SASE	5.0×10 ¹⁰	6.0×10 ⁻³	30	4.4×10 ²⁵	1.5×10 ³³

ADVANCED SCHEMES

- XFELO +(harmonic generation) +high gain amplifier
 - Ultrashort X-ray pulses, higher photon energy up t0 60 keV (MaRIE)
 - KJK, R. Lindberg, J. H. Wu, W. Qin

X-ray spectral comb generation

- Stabilize the roundtrip path length to fraction of wavelength FB referenced to
 - narrow nuclear resonance ⁵⁷Fe
 - stabilized optical laser (optical comb)
- $-\sim 10^6$ spectral lines of neV width separated by 12 neV.
- B. Adams and KJK, PRSTAB (2015)

XFELO SCIENCE RETREAT AT SLAC (6/29-7/1, 2016)

Sciences for high spectral brightness and ultra-fine spectral resolution

- Enhanced application of techniques developed at 3rd gen and SASE sources
 - IXS, XPCS, NRS
 - Smaller samples, faster data collection, high resolution..
- Techniques in infancy at current sources
 - Medical applications of NRS
 - X-ray NLO, study of red cells without enriching the excited states of Fe
- Emergence of new areas
 - X-ray spectral comb→ fundamental sciences with extreme metrology, quantum optics with nuclear states

XFELO SCIENCE RETREAT AT SLAC (6/29-7/1,

2016)

Sciences for high spectral brightness and ultra-fine spectral resolution

- Enhanced application of techniques developed at 3rd gen and SASE sources
 - IXS, XPCS, NRS
 - Smaller samples, faster data collection, high resolution..
- Techniques in infancy at current sources
 - Medical applications of NRS
 - X-ray NLO, study of red cells without enriching the excited states of Fe
- Emergence of new areas
 - X-ray spectral comb→ fundamental sciences with extreme metrology, quantum optics with nuclear states

XFELO SCIENCE RETREAT AT SLAC (6/29-7/1, 2016)

Sciences for high spectral brightness and ultra-fine spectral resolution

- Enhanced application of techniques developed at 3rd gen and SASE sources
 - IXS, XPCS, NRS
 - Smaller samples, faster data collection, high resolution..
- Techniques in infancy at current sources
 - Medical applications of NRS
 - X-ray NLO, study of red cells without enriching the excited states of Fe
- Emergence of new areas
 - X-ray spectral comb→ fundamental sciences with extreme metrology, quantum optics with nuclear states

LINAC-BASED XFELO

- Several high-energy CW SCRF linac will be available soon.
 - 8 GeV LCLS-II-HE
 - -8 GeV SCLF
 - Euro-XFEL (17.5 GeV pulsed, or 7 GeV CW retrofit)
- They are for SASE but may have room for an XFELO.

$$c\Delta au imes rac{\Delta arepsilon}{arepsilon} = rac{\lambda}{2}$$

$$c\Delta au imesrac{\Deltaarepsilon}{arepsilon}=rac{\lambda}{2}$$

$$c\Delta au imesrac{\Deltaarepsilon}{arepsilon}=rac{\lambda}{2}$$

$$c\Delta au imesrac{\Deltaarepsilon}{arepsilon}=rac{\lambda}{2}$$

- Diamond crystal BW at hard X-rays ~ 10 meV
- \rightarrow For ε =14.4 keV, $\Delta \tau$ =200 fs
- → Electron bunch length should be at least 200 fs
- If $\Delta \tau$ =600 fs $\rightarrow \Delta \varepsilon \sim 3$ meV; $\Delta \varepsilon / \varepsilon \sim 2 \times 10^{-7}$
 - → Need electron beam with flat energy profile Flatness of current is less important
- Similar requirement in transverse plane → normalized emittance ~ 0.25 μm

OPTIMIZATION OF INJECTOR-LINAC PARAMETERS

- The electrons' energy profile (as a function of t) should be flat (within incoherent spread)
- Shape the current profile →linear slope in energy versus time → a de-chirper to remove the slope (K. Bane and G. Stupakov)
- Obtain 600 fs of flat energy portion (W. Qin)

OPTIMIZATION: APEX-II & LCLS-II-HE (W. QIN)

@ undulator entrance

- Over 600 fs flat part, 120 A peak current
- Low slice emittance and slice energy spread
- Projected energy spread 0.02%

XFELO MODELING

- The first GENESIS run took > 1 month
- Faster with GINGER (add x-ray propagation and crystal reflection)
- Transverse-temporal coupling is not included yet.

XFELO MODELING

- The first GENESIS run took > 1 month
- Faster with GINGER (add x-ray propagation and crystal reflection)
- Transverse-temporal coupling is not included yet.

■ For 14.4 keV λ_U =2 cm, K=1.49 \rightarrow SC NbTi : Kmax=3.1 \rightarrow 5.2 keV

Parameter	Description	Value	
\mathcal{C}_{ring}	circumference	2234.21 m	
$\gamma_0 mc^2$	beam energy	6.0 GeV	
$\varepsilon_{x,y}$	x,y emittances	5.2, 5.2 pm-rad	
σ_{η}	energy spread	1.39×10^{-3}	
σ_z	bunch length	0.60 mm	
$ au_{x,y,z}$	damping times	13, 15, 9 ms	

Parameter	Description	Value	
\mathcal{C}_{ring}	circumference	2234.21 m	
$\gamma_0 mc^2$	beam energy	6.0 GeV	
$\varepsilon_{x,y}$	x,y emittances	5.2, 5.2 pm-rad	
σ_{η}	energy spread	1.39×10^{-3}	
σ_z	bunch length	0.60 mm	
$ au_{x,y,z}$	damping times	13, 15, 9 ms	

T. Smith, et al.

Parameter	Description	Value
\mathcal{C}_{ring}	circumference	2234.21 m
$\gamma_0 mc^2$	beam energy	6.0 GeV
$\varepsilon_{x,y}$	x,y emittances	5.2, 5.2 pm-rad
σ_{η}	energy spread	1.39×10^{-3}
σ_z	bunch length	0.60 mm
$ au_{x,y,z}$	damping times	13, 15, 9 ms

T. Smith, et al.

Parameter	Description	Value	
\mathcal{C}_{ring}	circumference	2234.21 m	
$\gamma_0 mc^2$	beam energy	6.0 GeV	
$arepsilon_{x,y}$	x,y emittances	5.2, 5.2 pm-rad	
σ_{η}	energy spread	1.39×10^{-3}	
σ_z	bunch length	0.60 mm	
$ au_{x,y,z}$	damping times	13, 15, 9 ms	

Parameter	Description	Value	
\mathcal{C}_{ring}	circumference	2234.21 m	
$\gamma_0 mc^2$	beam energy	6.0 GeV	
$arepsilon_{x,y}$	x,y emittances	5.2, 5.2 pm-rad	
σ_{η}	energy spread	1.39×10^{-3}	
σ_z	bunch length	0.60 mm	
$ au_{x,y,z}$	damping times	13, 15, 9 ms	

- Fill 1117 buckets (every 10th bucket, 6.4 ns spaced)
- Every 93rd bunch kicked into FEL (0.65 μs)
- All bunches are used after 0.69 ms
- Cool for 3 damping time (45 ms) → ~ 1% duty factor
- ~10⁹ photons/pulse, but BW 0.7 meV !!

$$\rightarrow$$
B_{ave} $\sim 10^{26}$

We are looking into the PETRA IV case

Parameter	Description	Value
\mathcal{C}_{ring}	circumference	2234.21 m
$\gamma_0 mc^2$	beam energy	6.0 GeV
$\varepsilon_{x,y}$	x,y emittances	5.2, 5.2 pm-rad
σ_{η}	energy spread	1.39×10^{-3}
σ_z	bunch length	0.60 mm
$ au_{x,y,z}$	damping times	13, 15, 9 ms
	2020	

• Fill 1117	buckets (ever	y 10 th	bucket,	6.4	ns
spaced)					

- All bunches are used after 0.69 ms
- Cool for 3 damping time (45 ms) → ~ 1% duty factor
- ~10⁹ photons/pulse, but BW 0.7 meV !!

$$\rightarrow$$
B_{ave} $\sim 10^{26}$

We are looking into the PETRA IV case

e-Beam		Undulator	
I	20 A	N_u	2500
σ_z/c	2 ps	λ_u	1.63 cm
$\gamma_0 mc^2$	6 GeV	L_u	40.75 m
σ_{η}	0.14 %	K_0	1.0
$\varepsilon_x = \varepsilon_y$	5.2 pm	α	34 /m
D	8.8 cm	ave gap	7 mm
eta_y^*	7.3 m		
Dadieties		EDI	

Radiation		FEL output		
λ_1	0.886 Å	$P\left(G=0.2\right)$	19 MW	
Z_{R_x}	105 m	Est. $\Delta\omega/\omega_1$	$< 10^{-7}$	
Z_{R_y}	7.3 m	Est. P_{out}	$\sim 1\mathrm{MW}$	
linear G	0.44	Est. $N_{\rm ph}$ out	$\sim 10^9$	

DIAMOND CRYSTAL FOR XFELO MIRROR

- With the zig-zag configuration, diamond can cover all wavelengths
- High-reflectivity (>99%) with synthetic diamond demonstrated (Y. Shvyd'ko, et al.)
- High diffusivity and small expansion coefficient at <100 K</p>
 - Uneven heating of the surface does not lead to XFELO degradation
- Stability in the crystal orientation
 - Null-position FB at APS demonstrated 15 nrad stability at ~ 1 Hz BW
 - Need to improve < 10 nrad and 1 kHz BW

APS TEST FOR DIAMOND ENDURANCE AT X-RAY POWER DENSITY 10-20 KW/MM²

- Steel will melt in < mili-seconds</p>
- But far below theoretical estimates of damage fluence (N. Medvedev)
- Irradiation up to 4 hours at APS
 - 9 kW/mm² in 30x120 μm^2 spots (K-B mirror focusing) under medium vacuum
 - 12.5 kW/mm² in 30x40 μm^2 spots (BeCRL focusing) under UHV (~10-8)
- High-resolution (meV) topography
- T. Kolodziej, et al (submitted for pub)

- UHV (10-8 Torr): No structural damage & no reflectivity change
- 10-6 Torr: Carbon deposits and shift of Bragg peak by ~ 1 meV

 $\delta E/E=\delta d/d=1.6 meV/24 keV$ Relative d-spacing change =7 10^{-8}

BERYLLIUM CRL AS A COMPACT, LOW-LOSS FOCUSING ELEMENT

- CRL normally used with many-lens set for tight focusing → high loss
- For XFELO, f ~ 50 m→ at most two-face unit
- Test Be-CRL, R=100 μm at APS
 - T > 98% @ 14.4 keV
 - Metrology & Talbot interferometry → deviation from parabolic surface < 1 μm
 - Excellent imaging quality
 - Can withstand the intense intra-cavity xray power (10-20 kW/mm²)

- An XFELO is feasible from beam dynamics and X-ray optics
- Several projects for construction of ~8 GeV SCRF linac exist
 - LCLS-II-HE, SCLF, EuroXFEL,...
- Linac-based XFELO with an optimized injector will producing fully coherent x-rays with $\mathfrak{G}_{\omega} \sim 10^{28}$
- USR-based pulsed XFELO might be feasible with 🗓 ~10²⁶
- Scientific cases exist for narrow BW, coherent X-rays
 - An XFELO will drive the techniques already developed to a new level of capabilities (IXS, XPCS..)
 - Novel techniques can be developed for novel sciences
 - Quantum optics with nuclear states,...

- An XFELO is feasible from beam dynamics and X-ray optics
- Several projects for construction of ~8 GeV SCRF linac exist
- LCLS-II-HE, SCLF, EuroXFEL,...
- Linac-based XFELO with an optimized injector will producing fully coherent x-rays with $\Re_{\omega} \sim 10^{28}$
- USR-based pulsed XFELO might be feasible with 🗓 ~10²⁶
- Scientific cases exist for narrow BW, coherent X-rays
 - An XFELO will drive the techniques already developed to a new level of capabilities (IXS, XPCS..)
 - Novel techniques can be developed for novel sciences
 - Quantum optics with nuclear states,...

An XFELO is a real laser!

- An XFELO is feasible from beam dynamics and X-ray optics
- Several projects for construction of ~8 GeV SCRF linac exist
 - LCLS-II-HE, SCLF, EuroXFEL,...
- Linac-based XFELO with an optimized injector will producing fully coherent x-rays with $\Re \omega \sim 10^{28}$
- USR-based pulsed XFELO might be feasible with 🗓 ~10²⁶
- Scientific cases exist for narrow BW, coherent X-rays
 - An XFELO will drive the techniques already developed to a new level of capabilities (IXS, XPCS..)
 - Novel techniques can be developed for novel sciences
 - Quantum optics with nuclear states,...

An XFELO is a real laser!

COLLABORATORS:

- ANL: W. Grizolli, S. Kearney, R. Lindberg, T. Kolodziej, X. Shi, D. Shu, Y. Shvyd'ko
- SLAC: K. Bane, Z. Huang, Y. Ding, P. Emma, W. Fawley, J. Hastings, J. Krzywinski, G. Marcus, T. Maxwell
- Peking U./SLAC (student): W. Qin
- DESY: J. Zemella
- Cornell U.: S. Stoupin
- TISNCM: V. Blank, S. Terentyev
- CAS: N. Medvedev