Minimização Lógica

Objetivo: reduzir o número de termos e literais de uma Função Booleana

Consequência:

Reduzir transistores -> reduz potência e tempo de propagação (atraso)

Termo (reduzir) → porta (reduz)

Literal (reduzir) → Fan-in da porta (reduz)

Fan-in → reduzir transistores e tempo de atraso

Minimização Lógica

Problema: NP-Completo > complexidade exponencial

Tipos de procedimento:

- 1) Algébrico
- 2) Gráfico -> mapa de Karnaugh
- 3) Algoritmo:
 - 3.1 Exato → Quine-McCluskey
 - 3.2 Heurístico → Espresso (Berkeley)

Evolução do MINI (IBM - 1974)

3.3 Estado da arte: Scherzo (1994)

Minimização Lógica

Problema: NP-Completo -> complexidade exponencial

Tipos de minimização lógica:

- 1) Dois níveis -> PLA, PAL, etc
- 2) Múltiplos níveis -> VLSI, FPGA, etc

Funções Booleanas podem ser:

- 3.1 Simples saída
- 3.2 Múltiplas saídas

É uma forma de representar uma dada função de maneira que cada mintermo ou cada maxtermo mantenha-se vizinho de todos aqueles dos quais diferem apenas por uma variável (1 ou 0 e vice-versa).

Teoremas básicos:

- 1) XY + X'Y=Y (absorção ou cobertura);
- 2) XY +X'Z + YZ=XY + X'Z (Consenso -> elimina redundância)

Procedimento gráfico: duas etapas

- 1) Etapa -> construir um mapa: função canônica SOP ou POS é descrita no mapa
- 2) Etapa > extrair do mapa o menor número de termos minimizados (implicantes primos) da função que cobrem todos os mintermos (maxtermos)

Definições:

- Mintermo → termo do mapa que representa 1
- Maxtermo → termo do mapa que representa 0
- Implicante -> grupo (cobre) de mintermos adjacentes (que só muda seu valor em uma variável)
- Implicante primo > Não há um outro implicante que o cobre.
- Implicante primo redundante > todo o mintermo que pertence a este implicante, também pertence a um outro implicante
- Implicante primo essencial -> existe pelo menos um mintermo em que somente este implicante o cobre

Definições mais rigorosas:

Mintermo: É um produto de literais em que cada variável aparece uma única vez, complementada ou não.

Maxtermo: É uma soma de literais em que cada variável aparece uma única vez, complementada ou não.

Conceito de implicante no mapa:

Implicante

É um mintermo do mapa de Karnaugh com 1, ou um grupo (potência de 2) que podem ser combinados.

Implicante primo
Aquele que não pode ser combinado com um outro implicante para a eliminação de um literal.

Implicante primo essencial → Aquele implicante primo que é o único a cobrir determinados mintermos do mapa de Karnaugh

Obs: alguns autores chamam de implicado quando é para os maxtermos

Procedimento gráfico: duas etapas

- 1) Etapa -> construir um mapa: função canônica SOP ou POS é descrita no mapa
- 2) Etapa -> extrair do mapa o menor número de termos minimizados da função

Exemplo-1: Seja a função Booleana de 3 variáveis descrita por uma tabela verdade

1) Etapa -> construir o Mapa-K de 3 variáveis

Tabela Verdade

Α	В	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Mapa de Karnaugh de 3 variáveis

Mintermo posição - célula \

Mapa de Karnaugh de 3 variáveis

Etapa 2: Geração de grupos (implicantes) e Cobertura mínima

- 1) Formar grupos de 2^N células adjacentes, onde o inteiro N>0. Grupos devem ser simétricos
- 2) Formar grupos maiores a partir de grupos menores
- 3) Todos os mintermos devem estar incluídos no mínimo em um grupo. Qualquer mintermo pode estar incluído em mais de um grupo.
- 4) Eliminar os grupos redundantes

Etapa 2: 5 grupos iniciais (mintemos); 4 grupos finais (implicantes); cobertura mínima com 3 implicantes primos.

Mapa de Karnaugh de 3 variáveis

C 00 01 11 10 0 1 1 0 1 1 0 0 1 1 Cobertura → Implicantes primos

C	0 0	0 1	1 1	1 0	_
0	1	1	0	1	
1	0	0	1	1	

Cobertura mínima → Implicantes primos

Há um implicante redundante

$$F_{min}=A'C'+AB'+AC$$

Exemplos: Map-K de 2 variáveis

$$F(A,B) = \overline{A} \overline{B} + A \overline{B} = \overline{B}$$

$$F(A,B) = (0,2,3) = A + B$$

Exemplo-1: Mapa-K de 4 variáveis

Cinco implicantes primos Não há implicante redundante

$$F_{min}$$
 = a' b' d' + a' c' + a' b d + c' d + a c d'

Exemplo-1: Mapa-K de 5 variáveis

Não há implicante redundante

Exemplo-1: Mapa-K de 6 variáveris

F_{min}=a'b'cdef + c'd'e'f' + b c e' + a c' d e

Quatro implicantes primos
Não há implicantes redundantes

Minimização Produto da Soma:

Usar conceitos: maxtermo e implicado

$$F_{min} = a'(c'+d')(b'+d')(b+c+d)$$

Minimização de Circuitos Combinatórios de Multiplas Saídas:

Objetivo: encontrar o maior número possível de implicantes primos comuns (maior prioridade)

Exemplo:

$$F_1(a,b,c) = \sum (0,2,3,5,6)$$

 $F_2(a,b,c) = \sum (1,2,3,4,7)$
 $F_3(a,b,c) = \sum (2,3,4,5,6)$

Minimização de Circuitos Combinatórios de Multiplas Saídas:

Exemplo:
$$F_1(a,b,c) = \sum (0,2,3,5,6)$$

 $F_2(a,b,c) = \sum (1,2,3,4,7)$
 $F_3(a,b,c) = \sum (2,3,4,5,6)$

Procedimento: a) F_1F_2 ; b) F_1F_3 ; c) F_2F_3 ; d) $F_1F_2F_3$

Minimização de Circuitos Combinatórios de Multiplas Saídas:

Exemplo:
$$F_1(a,b,c) = \sum (0,2,3,5,6)$$

 $F_2(a,b,c) = \sum (1,2,3,4,7)$
 $F_3(a,b,c) = \sum (2,3,4,5,6)$

$$F_{1min}$$
=a'c'+a'b + ab'c + bc'
 F_{2min} =a'b + a'c + bc + ab'c'
 F_{3min} = a'b + bc' + ab'c' + ab'c

Solução:

Número de literais=16 Número de termos=7

Minimização de Circuitos Combinatórios de Multiplas Saídas:

Solução de Múltiplas Saídas

Solução de Simples Saída

Comparação:

Solução: Multiplas Saídas:

Número de literais=16 Número de produtos=7 Número de literais=16 Solução: Simples Saída Número de literais=18

Número de produtos=8

08/03/2020 **Número de termos=7**

Prof. Duarte Lopes de Oliveira Divisão de Engenharia Eletrônica do ITA

Minimização de funções especificadas incompletamente:

$$F_{min}$$
= $AD' + BD' + CD'$