CLUSTERING

CLASE 23

- El objetivo es realizar predicciones precisas para *nuevos datos* con características similares a los datos usados para construir el modelo → generalización
- Entrenamiento y testeo: el conjunto de datos de ejemplo \mathcal{D} se divide aleatoriamente en dos
 - Datos de entrenamiento $(\mathcal{D}_{train}) \rightarrow$ para entrenar el modelo
 - Datos de prueba (\mathcal{D}_{test}) \rightarrow para evaluar qué tan bien funciona el modelo frente a datos que no conoce. No se usa para el entrenamiento.
 - Etiquetas $(y) \rightarrow$ valores o categorías asignadas a los datos de ejemplo

$$\mathcal{D}_{\text{train}} = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$$

$$\mathcal{D}_{\text{test}} = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$$

$$\mathcal{D}_{\text{test}} = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$$

$$20 - 30\%$$

• Función de pérdida $(\mathcal{L}) \rightarrow$ función que mide la diferencia o pérdida entre la predicción y el valor real de una etiqueta o valor.

- El objetivo es realizar predicciones precisas para *nuevos datos* con características similares a los datos usados para construir el modelo → generalización
- Entrenamiento y testeo:
 - Hiperparámetros (θ) → parámetros libres del modelo que no son determinados por el algoritmo, sino entregados como input

Entrenamiento y testeo: el conjunto de datos de ejemplo \mathcal{D} se divide aleatoriamente en dos

- Datos de entrenamiento (\mathcal{D}_{train}) \rightarrow para entrenar el modelo
- Datos de prueba (\mathcal{D}_{test}) \rightarrow para evaluar qué tan bien funciona el modelo frente a datos que no conoce. No se usa para el entrenamiento.
- Etiquetas $(y) \rightarrow$ valores o categorías asignadas a los datos de ejemplo

```
\mathcal{D}_{\text{train}} = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}  70 - 80% 
 \mathcal{D}_{\text{test}} = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}  20 - 30%
```

```
#seleccionamos las variables predictoras y la variable dependiente
X = df[['Age','EstimatedSalary']]
y = df['Purchased']

#datos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5)
```

Datos de ejemplo (etiquetados) \mathcal{D}

```
#Creamos los datos de entrenamiento y prueba
from sklearn.model_selection import train_test_split

#datos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
```

train

Modelo o clasificador

#definimos el modelo y especificamos sus hiperparámetros classifier = KNeighborsClassifier(n_neighbors = 15)

 $\mathcal{A}_{\theta}(x_i)$

#ajustamos a los datos de entrenamiento
classifier.fit(X train, y train)

 $\mathcal{A}_{\theta_0}(x_i)$

Evaluación

#predecimos las categorías para el dataset de prueba
y_pred_test = classifier.predict(X_test)

 \mathcal{L}

from sklearn import metrics

#matriz de confusión
cm=metrics.confusion_matrix(y_test,y_pred_test) #true,pred

COMENTARIOS TAREA 4

• Regresión multilineal con regularización: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots + \beta_J X_J$

$$L_{LASSO}(\beta) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \beta^T Xi|^{2} + \alpha \sum_{m=1}^{M} |\beta_m|$$
$$L_{Ridge}(\beta) = \frac{1}{n} \sum_{i=1}^{n} |y_i - \beta^T Xi|^{2} + \alpha \sum_{m=1}^{M} \beta_m^{2}$$

Al combinar variables con distintos rangos de valores, se penalizará más fuertemente aquellas con mayor peso en la regresión (i.e. mayor β_i)

- → Es necesario **normalizar los datos** antes de entrenar el model (Ej: **StandardScaler**)
- Uds. deben determinar qué variables considerar en el modelo final.
- Analizar y justificar todas las decisiones y respuestas. Se evaluará la calidad de los argumentos.

COMENTARIOS 12

- Fecha: martes 15-11-2022, 18:30-20:30
- Sala: B22
- Contenidos: clases 13 22.
- Preguntas de desarrollo/alternativas + ejercicios de programación.
- Pueden consultar apuntes, material de clases, etc.
- Recomendaciones:
 - Estudiar clases y notebooks
 - Comprender conceptos
 - Asegurarse de comprender qué hace cada código/método utilizado
- Cargar su computador
- Traer enchufes/ alargadores

APRENDIZAJE NO SUPERVISADO

Algoritmos de aprendizaje de máquina donde **no existe un output conocido**, sino que se pide al algoritmo extraer conocimiento a partir de la data de entrada.

En general, hay dos grandes clases de algoritmos de aprendizaje no supervisado:

- **1. Clustering** → algoritmos para particionar la data en grupos disímiles pero con ítems similares.
- **2. Transformaciones** \Rightarrow algoritmos que crean una nueva representación de los datos que puede ser más fácil de entender para humano o máquinas en comparación a la representación original.
 - Reducción de dimensionalidad.
 - Extracción de tópicos

Desafío: evaluar si el algoritmo aprendió lo que se buscaba. Muchas veces se requiere inspeccionar o evaluar manualmente los resultados.

 Aprendizaje no supervisado se utiliza muchas veces en una etapa de exploración, o como parte del preprocesamiento para algoritmos supervisados.

CLUSTERING

- Algoritmos para particionar la data en grupos disímiles pero con ítems similares.
- Cada observación del dataset es asignada a sólo una categoría según el valor de las variables consideradas para la clasificación.
- Los clusters se definen de manera que cada uno agrupe observaciones similares entre sí, pero difieran entre grupos.
- El análisis se simplifica enfocándose sólo en los perfiles de cada cluster, que permiten interpretar la estructura de data multi-variable.

CLUSTERING: EJEMPLOS

A multi-objective gene clustering algorithm guided by apriori biological knowledge with intensification and diversification strategies

Jorge Parraga-Alava, Marcio Dorn & Mario Inostroza-Ponta ⊡

BioData Mining 11, Article number: 16 (2018) | Cite this article

CLUSTERING: EJEMPLOS

Affinio Deep Learning Social Network Analysis Clustering

by Mariya Yao | Mar 5, 2018

CLUSTERING: EJEMPLOS

MÉTODOS DE CLUSTERING

Existen **múltiples tipos de clustering** que difieren en:

- Cómo se define la similaridad entre observaciones y disimilaridad entre grupos
- Operacionalización del algoritmo de clasificación

A comparison of the clustering algorithms in scikit-learn

MÉTODOS DE CLUSTERING

Algunos de los métodos más usados son:

• Métodos de partición : requieren que el usuario especifique de antemano el número de clusters.

- **Métodos jerárquicos :** se busca crear una jerarquía para la fusión de observaciones fusionadas en clusters. No requiere que se pre-especifique el número de clusters.
 - Aglomerativos: el agrupamiento se inicia con todas las observaciones separadas, cada una formando un cluster individual. Los clusters se van combinado a medida que la estructura crece hasta converger en uno solo.
 - **Divisivo**: Se inicia con todas las observaciones contenidas en un mismo cluster y se suceden divisiones hasta que cada observación forma un cluster individual.
- **Métodos basados en densidad:** forma de identificar clusters siguiendo el modo intuitivo en el que lo hace el cerebro humano, identificando regiones con alta densidad de observaciones separadas por regiones de baja densidad.

09:56

CLUSTERING k-MEANS

- Método de partición: cada observación as asignada a uno de k clusters (predefinido), de manera que la observación que está más cerca del centro de su cluster, que de cualquier otro.
- El problema se resuelve mediante un **proceso iterativo** de asignación y actualización:
 - Primero, se genera un centro aleatorio para cada cluster.
 - Se calcula la media multivariada (centroide) de cada cluster.
 - Se calcula la distancia entre los centros y observaciones para asignar cada dato al cluster más cercano.
 - Se recalcula el centro de los clusters
 - El proceso de continúa hasta que no son necesarias nuevas reasignaciones.

CLUSTERING k-MEANS

El proceso continúa hasta que no son necesarias nuevas reasignaciones.

CLUSTERING k-MEANS

¿Cuándo termina el proceso?

- El objetivo es lograr una agrupación que minimice la disimilaridad dentro de cada cluster.
- **Disimilaridad** → suma de distancias euclideanas o errores cuadráticos (SSE) entre cada observación y el centroide de su cluster. También se denomina **inercia** de clusters.

$$SSE = \sum_{i=1}^{n} \sum_{j=i}^{k} w^{i,j} ||x^{i} - \mu^{j}||^{2}$$

- $\triangle \mu^j$: centroide del cluster j
- \mathbf{o} x^i : observación i

$$w^{i,j} = \begin{cases} 1 \text{ si la observación } x^i \text{ está en el cluster } j \\ 0 \text{ en otro caso} \end{cases}$$

→ El algoritmo continúa hasta que ya no es posible reducir SSE.

CLUSTERING k-MEANS: PREPROCESAMIENTO

- La función objetivo o disimilaridad es sensible a la escala de las variables:
 - Variables de un dataset pueden tener unidades no-comparables (Ej: dimensiones, m, kg, \$)
 - Variables con las mismas unidades pueden tener muy distintas escalas de valores y varianzas
- Si una variable tiene una escala mucho mayor que el resto, determinará en gran medida el valor de distancia/similitud obtenido al comparar las observaciones, dirigiendo así la agrupación final.
- Para evitar que las variables con mucha varianza dominen la función objetivo, es común estandarizar las variables antes de clusterizar:
 - **Estandarización z →** restar la media y dividir por la desviación estándar

$$z = \frac{x - \mu}{\sigma}$$

CLUSTERING k-MEANS: IMPLEMENTACIÓN

sklearn.cluster.KMeans

class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init=10, max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='auto')

[source]

Attributes:

cluster_centers_: ndarray of shape (n_clusters, n_features)

Coordinates of cluster centers. If the algorithm stops before fully converging (see tol and max_iter), these will not be consistent with labels_.

labels_: ndarray of shape (n_samples,)

Labels of each point

inertia_: float

Sum of squared distances of samples to their closest cluster center, weighted by the sample weights if provided.

CLUSTERING k-MEANS: SELECCIÓN DE k

- El algoritmo requiere definir a priori el número de clusters (k): ¿cómo lo elegimos?
- Típicamente, se consideran varios valores para k, y se comparan los clusters resultantes en términos de la función objetivo (SSE).

Método del codo:

- Se grafica la función objetivo vs. valores crecientes de k
- Mientras no se alcance el número óptimo de clusters, la función objetivo sigue mejorando sustancialmente,
- Cuando se excede k óptimo, la curva se aplana.

CLUSTERING k-MEANS: LIMITACIONES

- El algoritmo requiere definir a priori el número de clusters (k) → no siempre lo sabremos.
- Los clusters se inicializan aleatoriamente → puede que el algoritmo no converja, o que el resultado sea inestable.
 - > sklearn realiza 10 iteraciones por defecto
- El algoritmo asume que cada punto pertenece al cluster más cercano, y que todas las direcciones son igualmente importantes
 - → Permite identificar clusters esféricos, pero no funciona bien para datos con geometrías complejas.
- En sensible a outliers.
- Puede ser lento para grandes cantidades de observaciones, ya que en cada paso hay que calcular todos los pares de distancias.

CLUSTERING AGLOMERATIVO (JERÁRQUICO)

Familia de algoritmos en que se construyen clusters anidados a partir de **fusiones sucesivas** de clusters.

- Primero, todos los puntos son considerados como clusters individuales
- Se calculan las distancias entre todos los pares de centroides (matriz de distancias) de clusters y se unen los dos más cercanos.
- Se recalcula el centro del cluster fusionado.
- El proceso de unión de clusters continua hasta llegar al número deseado de clusters.

CLUSTERING AGLOMERATIVO

Clusters individuales

Se calculan las distancias entre todos los pares de centroides de clusters y se fusionan los más cercanos.

CLUSTERING AGLOMERATIVO (JERÁRQUICO)

 Para datasets multidimensionales, el proceso de fusión de clusters puede visualizarse mediante un dendograma:

- Cada observación (leaf) es inicialmente un cluster.
- Los nodos muestra fusiones de clusters.
- La distancia vertical (branch) representa la distancia entre los clusters que se fusionan.