Congratulations! You passed!

Grade received 100%

To pass 80% or higher

Go to next item

Module 2 Quiz

Partition

Latest Submission Grade 100%

What are the different units of parallelism? (Select all that apply.)	
Core	
Correct A processor has many cores.	
✓ Task	
Correct A job can be divided into many tasks.	
Executor	
Correct An executor is one worker node in a cluster.	

A partition is a subset of data.

1 / 1 point

2.	What is a partition?	1 / 1 point
	A synonym with "task"	
	The result of data filtered by a WHERE clause	
	A division of computation that executes a query	
	A portion of a large distributed set of data	
	Correct Data distributed across the cluster is divided into different partitions.	
3.	What is the difference between in-memory computing and other technologies? (Select all that apply.)	1/1 point
	In-memory operates from RAM while other technologies operate from disk	
	Correct In-memory operation works using RAM.	
	In-memory operations were not realistic in older technologies when memory was more expensive	
	Correct The price of memory has come down drastically enabling Spark to rely on inmemory calculations.	
	In-memory computing is slower than other types of computing	
	Computation not done in-memory (such as Hadoop) reads and writes from disk in between each step	
	✓ Correct	

and write to disk between every step.

Hadoop (the precursor to Spark) was much slower because it had to read from

4.	Why is caching important?	1/1 point
	It always stores data in-memory to improve performance	
	It stores data on the cluster to improve query performance	
	It improves queries against data read one or more times	
	It reformats data already stored in RAM for faster access	
	Correct By storing data we know we'll see again, caching improves query performance.	
5.	Which of the following is a wide transformation? (Select all that apply.) ORDER BY	1 / 1 point
	Correct An ORDER BY transfers data across the network and is therefore a wide transformation.	
	WHERE	
	GROUP BY	
	Correct A GROUP BY transfers data across the network and is therefore a wide transformation.	
	SELECT	

6.	Broadcast joins	1 / 1 point
	Transfer the smaller of two tables to the larger, increasing data transfer requirements	
	Shuffle both of the tables, minimizing data transfer by transferring data in parallel	
	Transfer the smaller of two tables to the larger, minimizing data transfer	
	Shuffle both of the tables, minimizing computational resources	
	⊘ Correct	
7.	Adaptive Query Execution uses runtime statistics to:	1 / 1 point
	Dynamically coalesce shuffle partitions	
	Correct Please revisit the lesson: Adaptive Query Execution.	
	Dynamically switch join strategies	
	Correct Please revisit the lesson: Adaptive Query Execution.	
	✓ Dynamically optimize skew joins	
	Correct Please revisit the lesson: Adaptive Query Execution.	
	Dynamically cache data	

8.	Which of the following are bottlenecks you can detect with the Spark UI? (Select all that apply.)	1 / 1 point
	Incompatible data formats	
	Shuffle writes	
	Correct The Spark UI can show shuffles triggered by Spark actions.	
	Shuffle reads	
	Correct The Spark UI can show shuffles triggered by Spark actions.	
	✓ Data Skew	
	Correct Data skew is when partitions are not of similar sizes and can be detected by the Spark UI.	
9.	What is a stage boundary?	1 / 1 point
	When all of the slots or available units of processing have to sync with one another	
	Any transition between Spark tasks	
	An action caused by a SQL query is predicate	
	A narrow transformation	
	Correct A stage boundary is when all Spark tasks must come together to exchange a result.	

10. What happens when Spark code is executed in local mode?	1 / 1 point
A cluster of virtual machines is used rather than physical machines	
The code is executed against a local cluster	
The code is executed in the cloud	
The executor and driver are on the same machine	
Correct Local mode refers to when the executor and driver are the same machine, such	

as when prototyping Spark code on your laptop.