Estadística Multivariante

Sofía Almeida Bruno Daniel Bolaños Martínez José María Borrás Serrano Fernando de la Hoz Moreno Pedro Manuel Flores Crespo María Victoria Granados Pozo

16 de enero de 2020

- Objetivo: agrupar objetos similares.
- Dadas x₁, · · · ,x_n medidas de p variables en n objetos considerados heterogéneos. El objetivo del análisis clúster es agrupar estos objetos en k clases homogéneas, donde k es también desconocido.

Figura: Ejemplo de clustering. [Chi11]

Ejemplos de Clustering

- Biología: determinación de especies.
- Marketing: descubrimiento de grupos de clientes.

Figura: Ejemplo de clustering. [noa]

- Psicología: encontrar tipos de personalidad.
- Arqueología: datar objetos encontrados.
- Planificación urbana: identificar grupos de viviendas.

Para realizar un análisis clúster hay que:

- Elegir una medida de similitud.
- Elegir un algoritmo para construir los grupos.
 - Particionamiento.
 - ► Jerárquicos.

Número de clústeres

- En los algoritmos de *clustering*, uno de los problemas es determinar el número idóneo de clústeres *k*.
- Es un proceso ambiguo. Depende de las interpretaciones según la forma y la escala de de la distribución de los datos y la solución deseada.
- Como *k* decrece de *n* a 1, el valor de la distancia debería aumentar ya que tendría que ser mayor cuando dos clústeres distintos se agrupan en uno solo.

Número de clústeres-Método del codo

Consiste en dibujar la gráfica de las distancia a los centros de cada clúster en función del número de clústeres. Definimos:

$$SSE_k = \sum_{i=1}^{n_k} = \|\mathbf{y}_i - \bar{\mathbf{y}}_k\|^2,$$

y para cada k dibujamos

$$D_k = \sum_{i=1}^k SSE_k.$$

Número de clústeres-Método del codo

Figura: Ejemplo del método del codo.

Número de clústeres-Estadístico R²

Para n clústeres la suma total de las distancias al cuadrado es $T = \sum_{i=1}^{n} \|\mathbf{y}_i - \bar{\mathbf{y}}\|^2$. Así, para k clústeres definimos R^2 como

$$R_k^2 = \frac{T - \sum_k SSE_k}{T}.$$

Para n clústeres $SSE_k = 0$ por lo que $R^2 = 1$. Una gran disminución en R_k^2 representaría un agrupamiento diferente. También podríamos tener en cuenta el cambio en R^2 al unir los clústeres R y S como $SR^2 = R_k^2 - R_{k-1}^2$. El estadístico SR^2 representa, en función de T, la proporción de $SSE_t - (SSE_r + SSE_s)$ donde los clústeres C_R y C_S se han unido para formar el clúster C_T . Cuanto mayor sea el índice mayor será la pérdida de homogeneidad.

Número de clústeres-Varianza agrupada

Para un solo clúster

$$s^2 = \sum_{i=1}^n \|\mathbf{y}_i - \bar{\mathbf{y}}\|^2 / p(n-1).$$

Para el clúster Ck

$$s^{2} = \sum_{i=1}^{n_{k}} \|\mathbf{y}_{i} - \bar{\mathbf{y}}_{k}\|^{2} / p(n_{k} - 1).$$

Valores grandes de la varianza agrupada indica que los clústeres no son homogéneos. Por lo tanto, si tiende a cero para algún k < n indica la formación de un clúster homogéneo.

Número de clústeres-Pseudo estadísticos

El pseudo estadístico F se define como

$$F_k^* = \frac{(T - \sum_k SSE_k)/(k-1)}{\sum_k SSE_k/(n-k)}.$$

El pseudo estadístico t^2 se define como

pseudo
$$t^2 = \frac{[SSE_t - (SSE_r + SSE_s)](n_R + n_S - 2)}{SSE_r + SSE_s}$$
.

Número de clústeres-Silhouette method

Definimos el índice:

$$s(i) = \frac{b(i) - a(i)}{\max\{b(i), a(i)\}}, \quad \forall i = 1, \dots, n$$

donde

$$a(i) = \frac{1}{|C_i| - 1} \sum_{i \in C_i, i \neq i} d(i, j)$$

У

$$b(i) = \min_{k \neq i} \frac{1}{|C_k|} \sum_{i \in C_k} d(i, j).$$

Se escoge el k que maximice el valor medio de s(i).

Número de clústeres-Silhouette method

Silhouette coeff.
0.7049787496083262
0.5882004012129721
0.6505186632729437
0.5745566973301872
0.43902711183132426

Cuadro: Ejemplo silhouette method.

Vemos que se obtienen los mejores resultados con 2 o 4 clústeres.

Número de clústeres-Gap method

El k elegido será aquel que maximice el valor de:

$$Gap(k) = E_n^* \{ \log(W_k) \} - \log(W_k).$$

En la fórmula anterior E_n^* denota la media de una de muestra de tamaño n y

$$W_k = \sum_{R=1}^k \frac{1}{2n_R} \sum_{i: \in C} d(i, j).$$

Número de clústeres-Gap method

Figura: Ejemplo del método de la brecha.

Referencias I

Chire, Cluster analysis with optics on a density-based data set., https://commons.wikimedia.org/wiki/File: OPTICS-Gaussian-data.svg, October 2011.

Understanding data mining clustering methods.