Table of Distributions

Distribution	Notation	Probability Function	Mean	Variance	Moment-Generating Function
$Discrete\ Distributions$					
Binomial	Bin(n,p)	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k = 0, 1, \dots, n$	np	np(1-p)	$\left[pe^t + (1-p)\right]^n$
Geometric	Geom(p)	$p_X(k) = p(1-p)^{k-1}, \ k = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$
Negative Binomial		$p_X(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \ k = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r$
HyperGeometric	$\operatorname{Hyp}(N,r,n)$	$p_X(k) = \frac{\binom{r}{k}\binom{N-r}{n-k}}{\binom{N}{n}}, \ k = 0, 1, \dots, \min(n, r)$	$rac{nr}{N}$	$\left(\frac{nr}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N}{N}\right)$	$\left(\frac{N-n}{N-1}\right)$
Poisson	$Pois(\lambda)$	$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k = 0, 1, 2, \dots$	λ	λ	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$
$Continuous\ Distributions$					
Uniform	$\mathrm{U}(a,b)$	$f_X(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$
Normal	$\mathcal{N}(\mu,\sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], -\infty < x < \infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2 \sigma^2}{2}\right)$
Exponential	$\operatorname{Exp}(\beta)$	$f_X(x) = \frac{1}{\beta} \exp(-x/\beta), \ x > 0$	β	eta^2	$(1-t\beta)^{-1}, \ t<1/\beta$
Gamma	$\mathrm{G}(lpha,eta)$	$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \ x > 0$	lphaeta	$lphaeta^2$	$(1-t\beta)^{-\alpha}, \ t<1/\beta$
Chi-Squared	$\chi^2_{ u}$	$f_X(x) = \frac{1}{\Gamma(\nu/2)2^{\nu/2}} x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}, \ x > 0$	ν	2ν	$(1-2t)^{-\nu/2}, \ t<1/2$
Beta	$\mathrm{Beta}(\alpha,\beta)$	$f_X(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	does not exist