

| • | _        |   |
|---|----------|---|
| i | <u>₩</u> |   |
|   |          | Ì |
| < | <u>ر</u> | ) |
| £ | 7        |   |
| ü | Ξ        |   |
|   |          |   |
| Ē | 3        |   |
|   |          |   |

| SECURITY CLASSIFICATION OF THIS PAGE (When Data Fined)                                                                                                                                                                                                                                                                                | /. /                                                  |                                                                                                            | ,                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|
| REPORT DOCUMENTATION PAGE /                                                                                                                                                                                                                                                                                                           | 1                                                     | READ INSTRUCTIONS BEFORE COMPLETING F                                                                      | ;<br>OBM            |
| AFOSR-TR- 81-0207 AN AN                                                                                                                                                                                                                                                                                                               | N NO. 3 R                                             | ECIPIENT'S CATALOG NUMBE                                                                                   |                     |
| 7 7 10-7107                                                                                                                                                                                                                                                                                                                           | 697                                                   | 7                                                                                                          |                     |
| • TITLE (and Subtitle)  NOn Estimating Inter-Subject Variability of Cho                                                                                                                                                                                                                                                               | 1                                                     | nterim took a period c                                                                                     |                     |
| Probabilities under Observability Constraints.                                                                                                                                                                                                                                                                                        | 7                                                     | nterim technic                                                                                             | /_                  |
|                                                                                                                                                                                                                                                                                                                                       |                                                       | FORMING OPG. REPORT N                                                                                      | MBER                |
| 7. AUTHOR(s)                                                                                                                                                                                                                                                                                                                          | 1                                                     | N RACTION GRANT NUMBER                                                                                     | R(s)                |
| Robert/Bartoszyński 🎫 Madan L./Puri 🔑 🧜                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                            |                     |
| 9 PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                            |                                                       | OSK-76-2927 V                                                                                              | + +462              |
| Indiana University                                                                                                                                                                                                                                                                                                                    | , , ,                                                 | REA & WORK UNIT NUMBERS                                                                                    |                     |
| Department of Mathematics                                                                                                                                                                                                                                                                                                             |                                                       | (16) (1)                                                                                                   |                     |
| Bloomington, Indiana 47405                                                                                                                                                                                                                                                                                                            | 13                                                    | 61102F 72304/A5                                                                                            |                     |
| Air Force Office of Scientific Research                                                                                                                                                                                                                                                                                               |                                                       | eb <b>cuarus 19</b> 81                                                                                     |                     |
| Bolling Air Force Base, D.C. 20332                                                                                                                                                                                                                                                                                                    | 150                                                   | HUMBER OF PAGES                                                                                            | 17/                 |
| MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Off                                                                                                                                                                                                                                                                    | fice) 15. :                                           | ECURITY CLASS. (of this repo                                                                               | (11)                |
| 15) MAFOS R-76-29273                                                                                                                                                                                                                                                                                                                  | l                                                     | nclassified                                                                                                |                     |
|                                                                                                                                                                                                                                                                                                                                       | 15a.                                                  | DECLASSIFICATION DOWNGR                                                                                    | RADING              |
| NSF-MZ 5 76-0095'Y                                                                                                                                                                                                                                                                                                                    | <u>.                                    </u>          |                                                                                                            |                     |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ                                                                                                                                                                                                                                                            | ent from Rep                                          | on)                                                                                                        |                     |
|                                                                                                                                                                                                                                                                                                                                       | (                                                     | MAR 3 0 1981                                                                                               |                     |
| 18 SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                |                                                       | A                                                                                                          |                     |
| 19 KEY WORDS (Continue on reverse side if necessary and identify by block n                                                                                                                                                                                                                                                           | umber)                                                |                                                                                                            |                     |
| Choice probabilities, inter-subject variabilit                                                                                                                                                                                                                                                                                        | y, disc                                               | rimination experimen                                                                                       | nt.                 |
|                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                                                            |                     |
| 20 ABSTRACT (Continue on reverse side if necessary and identify by block no                                                                                                                                                                                                                                                           | imber)                                                |                                                                                                            |                     |
| This paper provides methods for estimating int probability of a given event defined in terms probability of a given choice in discrimination consist of using no more than two independent Estimators are provided forassessing the internallyzed probabilities; also, a test variable hypothesis that the average probability is the | of subj<br>on exper<br>observa<br>r-subjec<br>is give | ect's behavior (e.g<br>iment). The constr<br>tions for each subj<br>t variance of the<br>n for testing the | .,<br>aints<br>ect. |
| DD FORM 1473 // A A A A                                                                                                                                                                                                                                                                                                               |                                                       | Acces                                                                                                      |                     |

402525

SECURITY CLASSIFICATION OF THIS PAGE When Data Entered

On Estimating Inter-Subject Variability of Choice
Probabilities under Observability Constraints

Robert Bartoszyński\* and Madan L. Puri\*\*

Institute of Mathematics, Polish Academy of Sciences, Warszawa, Poland and Indiana University, Bloomington, Indiana

The paper provides methods for estimating inter-subject variability of the probability of a given event defined in terms of subject's behavior (e.g. probability of a given choice in discrimination experiment). The constraints consist of using no more than two independent observations for each subject. Estimators are provided for assessing the inter-subject "variance" of the analyzed probabilities; also, a test variable is given for testing the hypothesis that the average probability is the same for two groups of subjects.

Reproduction in whole or in part permitted for any purpose of the United States Government.

81 3 27

77

· tribution

<sup>\*</sup> Work supported by the National Science Foundation Grant No. MSC 76-00951.

<sup>\*\*</sup> Work supported by the Air Force Office of Scientific Research, AFSC USAF, Grant No. AFOSR-76-2927.

#### 1. Introduction

A practical problem in which the results of the present paper may be useful is as follows. The experimenter is interested in a certain event, say A, defined in terms of behavior of the subject (e.g., choice of one of the two displayed stimuli which are to be discriminated).

The experimenter needs the probability  $P_s(A)$ , where s denotes the subject. To estimate this probability one should make a series of independent observations on the same subject, a procedure often not feasible for reasons such as memory or learning effects, or simply subject's boredom.

In such cases, one often makes the assumption that  $P_s(A)$  does not depend on s, and proceeds to estimate P(A) using data for large groups of subjects, each tested once or twice.

The crucial issue in such a procedure is the inter-subject variability of  $P_S(A)$ . The present paper gives, among others, methods of assessing this variability, and testing the hypothesis of equality of average  $P_S(A)$  in two groups of subjects, under the constraint that at most two observations are taken for each subject. In a sense this paper constitutes a statistical counterpart of an earlier paper written by one of the authors (see Bartoszyński (1978)).

### 2. The General Scheme

We shall consider the following situation. Let  $G_n = \{G_1, \dots, G_n\}$  be a system of independent experiments. Assume that each experiment

may lead to a "success" or to a "failure", with (unknown) probability of success in experiment  $G_i$  equal  $p_i$ . Our problem will be to construct methods of inference about probabilities  $p_i$  in situations, when for some reasons one is allowed to make at most two independent observations of each experiment  $G_i$ .

Obviously, not much may be inferred about the individual values  $\,p_{i}^{}$  ; we shall therefore construct estimators of "moment-like" quantities

$$\bar{p} = \frac{1}{n} \sum_{i=1}^{n} p_i$$
,  $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} p_i^2 - \bar{p}^2$ . (1)

Let  $\mathbf{X_i}$  be 1 or 0 depending on whether the first trial in experiment  $\mathbf{G_i}$  leads to success or failure, and similarly, let  $\mathbf{Y_i}$  be the random variable coding the outcome of the second trial on  $\mathbf{G_i}$ .

We assume that different experiments and different trials on the same experiment are independent; moreover,

$$P(X_i = 1) = P(Y_i = 1) = p_i, i = 1,...,n$$
 (2)

Denote

$$\xi_{ij} = x_i Y_j \tag{3}$$

and put

$$U = \frac{1}{n} \sum_{i=1}^{n} X_{i}, V = \frac{1}{n} \sum_{i=1}^{n} Y_{i}, \qquad (4)$$

$$L = \frac{1}{2}(U + V) , Z = \frac{1}{n} \sum_{i=1}^{n} \xi_{ii} , W = Z - UV .$$
 (5)

The following proposition is an improvement of the similar proposition proved by Bartoszyński (1971):

PROPOSITION 1. The random variables L and W are unbiased estimates of  $\bar{p}$  and  $\sigma^2$  respectively. Moreover, Var L  $\leq$  1/8n , Var W < 3/4n and Var(W  $|\sigma^2$  = 0)  $\leq$  1/16n .

<u>Proof</u>: By (2), we have  $EX_i = EY_i = p_i$ . Consequently,

$$EU = EV = \frac{1}{n} \sum_{i=1}^{n} p_i = \bar{p}$$
, and also  $EL = \bar{p}$ . Since

 $E\xi_{ii} = EX_{i}Y_{i} = EX_{i}EY_{i} = p_{i}^{2}$ , we get, by independence of U and V

$$EW = \frac{1}{n} \sum_{i=1}^{n} E\xi_{ii} - EUV = \frac{1}{n} \sum_{i=1}^{n} p_{i}^{2} - EUEV = \frac{1}{n} \sum_{i=1}^{n} p_{i}^{2} - \bar{p}^{2}$$

$$= \sigma^{2}$$
(6)

which proves the unbiasedness.

Next,  $Var X_i = Var Y_i = p_i(1 - p_i) \le 1/4$ , and using the assumption of independence, we can write

Var U = Var V =  $\frac{1}{n^2} \sum_{i=1}^{n} \text{Var } X_i \le 1/4n$ . Since U and V are independent, we have

$$Var L = \frac{1}{2}(Var U + Var V) \le 1/8n . \tag{7}$$

It remains to evaluate the variance of W . We may write

$$\begin{aligned} & \text{Var W} = \text{Var } ( \ \frac{1}{n} \ \sum_{i=1}^{n} \ \xi_{ii} - \text{UV} \ ) \\ & = \frac{1}{n^2} \ \sum_{i=1}^{n} \ \text{Var } \xi_{ii} + \text{Var UV} - \frac{2}{n} \ \text{Cov} \ ( \sum_{i=1}^{n} \ \xi_{ii} \ , \ \text{UV} \ ) \\ & = \frac{1}{n^2} \ \sum_{i=1}^{n} \ \text{Var } \xi_{ii} + \frac{1}{n^4} \ \text{Var} \ \sum_{i,j=1}^{n} \ \xi_{ij} - \frac{2}{n^3} \ \text{Cov} \ ( \sum_{i=1}^{n} \ \xi_{ii}, \ \sum_{k,m=1}^{n} \ \xi_{km} \ ) \\ & = \frac{1}{n^2} \ \sum_{i=1}^{n} \ \text{Var } \xi_{ii} + \frac{1}{n^4} \ \sum_{i,j,k,m=1}^{n} \ \text{Cov} \ ( \xi_{ij}, \ \xi_{km} ) \\ & - \frac{2}{n^3} \ \sum_{i,k,m=1}^{n} \ \text{Cov} \ ( \xi_{ii}, \ \xi_{km} ) \ . \end{aligned}$$

Taking into account the fact that Cov  $(\xi_{ij}, \xi_{km})$  is zero unless i=k and/or j=m, we obtain after some transformations the formula

$$Var W = \frac{(n-1)^{2}}{n^{4}} \sum_{i=1}^{n} Cov (\xi_{ii}, \xi_{ii})$$

$$- \frac{4(n-1)}{n^{4}} \sum_{i=1}^{n} \sum_{j \neq i} Cov (\xi_{ii}, \xi_{ij})$$

$$+ \frac{1}{n^{4}} \sum_{i=1}^{n} \sum_{j \neq i} Cov (\xi_{ij}, \xi_{ij})$$

$$+ \frac{2}{n^{4}} \sum_{i=1}^{n} \sum_{j \neq i} \sum_{k \neq i} Cov (\xi_{ij}, \xi_{ik}) . \qquad (9)$$

We have, if different letters stand for different indices,

Cov 
$$(\xi_{ii}, \xi_{ii}) = p_i^2 (1 - p_i^2)$$
, (10)

$$cov (\xi_{ii}, \xi_{ij}) = p_i p_i^2 (1 - p_i)$$
, (11)

Cov 
$$(\xi_{ij}, \xi_{ij}) = p_i p_j (1 - p_i p_j)$$
, (12)

Cov 
$$(\xi_{ij}, \xi_{ik}) = p_j p_k p_i (1 - p_i)$$
. (13)

Thus, all terms in (9) are nonnegative, and all are bounded from above by 1/4. We may therefore write, omitting the second sum in (9)

$$Var W \le \frac{(n-1)^2}{n^4} \cdot \frac{n}{4} + \frac{1}{n^4} \cdot \frac{n(n-1)}{4} + \frac{2}{n^4} \cdot \frac{n(n-1)(n-2)}{4}$$

$$\le \frac{1}{4n} + \frac{1}{4n^2} + \frac{1}{2n}$$
(14)

which gives the asserted bound.

Finally, if  $\sigma^2 = 0$ , then all  $p_i$  are equal. Let their common value be p. Substituting (10) - (13) to (9), we obtain, after reduction

Var 
$$(W | \sigma^2 = 0) = \frac{n-1}{n^2} p^2 (1-p)^2$$
. (15)

The maximum is attained at  $p = \frac{1}{2}$  and is asymptotically equal to 1/16n, which completes the proof.

Thus, the bound for the conditional variance  $Var(W|\sigma^2=0)$  is sharp. One may conjecture that the general bound for Var W can be improved, even considerably. However, simple numerical data show that the maximum under constraint  $\sigma^2=0$  is not the overall

maximum. Indeed, if n=6 and  $p_1=\ldots=p_6=0.5$  (hence  $\sigma^2=0$ ), the variance of W equals  $1/16n=8.68\cdot 10^{-3}$ . If  $p_1=0.45$ ,  $p_2=\ldots=p_5=0.5$ ,  $p_6=0.55$  (hence  $\sigma^2=8.3\cdot 10^{-4}$ ) variance of W is  $8.69\cdot 10^{-3}$ . If  $p_1=p_2=p_3=0.45$ ,  $p_4=p_5=p_6=0.55$  (hence  $\sigma^2=2.5\cdot 10^{-3}$ ) variance of W is  $8.71\cdot 10^{-3}$ . Similarly, if  $p_1=p_2=p_3=0.4$ ,  $p_4=p_5=p_6=0.6$  (hence  $\sigma^2=0.01$ ), we have  $p_3=0.4$ ,  $p_4=p_5=p_6=0.6$  (hence  $p_5=0.01$ ), we have  $p_5=0.4$ .

To make Proposition 1 useful for practical applications, we shall complement it by specifying conditions under which the distribution of W is asymptotically normal

For that purpose, we assume that the system  $G_n$  is a beginning of a potentially infinite sequence of independent experiments  $G_1$ ,  $G_2$ ,.... In short, we assume that n may be chosen arbitrarily large.

We shall prove

PROPOSITION 2. If

$$\sum_{i=1}^{\infty} p_i^2 (1 - p_i^2) = \infty$$
 (16)

then the random variable W defined by (5) is asymptotically normal.

<u>Proof.</u> Since  $p_i^2(1 - p_i^2) \le 2p_i(1 - p_i)$ , we have also

$$\sum_{i=1}^{\infty} p_i (1 - p_i) = \infty$$
 (17)

and it follows that all three random variables U, V and Z

defined by (4) and (5) are asymptotically normal (see e.g. Fisz 1961).

We shall prove that the joint distribution of (2,U,V) is asymptotically normal. Consider a linear combination

$$aZ + bU + cV \tag{18}$$

which may be written as

$$\frac{1}{n} \sum_{i=1}^{n} \left[ a x_{i} Y_{i} + b x_{i} + c Y_{i} \right] = \frac{1}{n} \sum_{i=1}^{n} \eta_{i}.$$
 (19)

Each of the random variables  $n_i$  assumes the values 0,b,c, and a+b+c with probabilities respectively equal to  $(1-p_i)^2$ ,  $p_i(1-p_i)$ ,  $p_i(1-p_i)$  and  $p_i^2$ . Consequently

$$E\eta_{i} = (a + b + c)p_{i}^{2} + (b + c)p_{i}(1 - p_{i})$$
 (20)

and also, after some reductions,

$$\operatorname{Var}_{\eta_{i}} = a^{2} p_{i}^{2} (1 - p_{i}^{2}) + 2a(b + c) p_{i}^{2} (1 - p_{i}) + (b^{2} + c^{2}) p_{i} (1 - p_{i}) . \quad (21)$$

Since the random variables  $\eta_i$  are bounded, it suffices to show that  $\sum var \eta_i$  diverges for any a,b,c which do not vanish simultaneously. If  $a \neq 0$ , this is true in view of (16), while if a = 0, we must have  $b^2 + c^2 > 0$ , and divergence is ensured by (17).

Using now theorem from Rao (1965), p. 319-340, we conclude that the random variable W is asymptotically normal, with mean  $\sigma^2$  and variance bounded by 3/4n .

## 3. Comparison of systems

Let us now consider two disjoint (hence independent) systems  $G^{(1)}$  and  $G^{(2)}$ , consisting respectively of  $n_1$  and  $n_2$  experiments. Let  $n=n_1+n_2$  and let  $G=G^{(1)}\cup G^{(2)}$  be the combined system.

In the sequel, we shall denote by  $\sum^{(1)}$  and  $\sum^{(2)}$  the summations extended over the indices in  $G^{(1)}$  and  $G^{(2)}$  respectively.

Let

$$\vec{p}^{(1)} = \frac{1}{n_i} \sum_{i}^{(1)} p_i, \quad \vec{p}^{(2)} = \frac{1}{n_2} \sum_{i}^{(2)} p_i, \quad (22)$$

$$\sigma_1^2 = \frac{1}{n_i} \sum_{i=1}^{(1)} (p_i - \bar{p}^{(1)})^2, \quad \sigma_2^2 = \frac{1}{n_2} \sum_{i=1}^{(2)} (p_i - \bar{p}^{(2)})^2, \quad (23)$$

and let  $\bar{p}$  and  $\sigma^2$  have the same meaning as before.

Under the constraints of the preceding section, namely that one can have at most two independent trials on each experiment, we shall construct a test for the hypothesis that  $\bar{p}^{(1)} = \bar{p}^{(2)}$ .

Let W , W and W be the random variables defined by (5) for systems G,  $G^{(1)}$  and  $G^{(2)}$ .

We shall prove

# PROPOSITION 3. The random variable

$$K = W - \frac{n_1}{n} W_1 - \frac{n_2}{n} W_2$$
 (24)

satisfies the condition  $EK \ge 0$ , with EK = 0 if, and only if

 $\bar{p}^{(1)} = \bar{p}^{(2)}$ . Moreover, if  $n \to \infty$ , then for any  $n_1$ ,  $n_2$  we have  $Var K \le c_n \sim \frac{2n_1n_2}{n^3}$ .

Proof. Let us write

$$\sigma^{2} = \frac{1}{n} \sum_{i} (p_{i} - \bar{p})^{2}$$

$$= \frac{1}{n} \sum_{i} (1) (p_{i} - \bar{p}^{(1)} + \bar{p}^{(1)} + \bar{p})^{2} + \frac{1}{n} \sum_{i} (2) (p_{i} - \bar{p}^{(2)} + \bar{p}^{(2)} - \bar{p})^{2}$$

$$= \frac{1}{n} \sum_{i} (1) (p_{i} - \bar{p}^{(1)})^{2} + \frac{1}{n} \sum_{i} (2) (p_{i} - \bar{p}^{(2)})^{2}$$

$$+ \frac{n_{1}}{n} (\bar{p}^{(1)} - \bar{p})^{2} + \frac{n_{2}}{n} (\bar{p}^{(2)} - \bar{p})^{2}$$

$$= \frac{n_{1}}{n} \sigma_{1}^{2} + \frac{n_{2}}{n} \sigma_{2}^{2} + \frac{n_{1}}{n} (\bar{p}^{(1)} - \bar{p})^{2} + \frac{n_{2}}{n} (\bar{p}^{(2)} - \bar{p})^{2} .$$
(25)

By Proposition 1 the random variables W , W and W are unbiased estimators of  $\sigma^2$  ,  $\sigma_1^2$  and  $\sigma_2^2$  respectively. Consequently,

$$EK = EW - \frac{n_1}{n} EW_1 - \frac{n_2}{n} EW_2 = \frac{n_1}{n} (\bar{p}^{(1)} - \bar{p})^2 + \frac{n_2}{n} (\bar{p}^{(2)} - \bar{p})^2 \ge 0 , \quad (26)$$

with equality holding if and only if  $\bar{p}^{(1)}=\bar{p}^{(2)}$  , since then  $\bar{p}^{(1)}=\bar{p}=\bar{p}^{(2)}$  .

To evaluate the variance of K , let us write

$$W = \frac{1}{n} \sum_{i,j} \xi_{i,j} - UV = \frac{1}{n} \sum_{i,j} \xi_{i,j} - \frac{1}{n^2} \sum_{i,j} \xi_{j,k}$$
 (27)

and similar formulas hold for  $\mathbf{W}_1$  and  $\mathbf{W}_2$  .

Using (27) we may write

$$K = \frac{1}{n} \left\{ \frac{1}{n_1} \sum_{j,k}^{(1)} \xi_{jk} + \frac{1}{n_2} \sum_{j,k}^{(2)} \xi_{jk} - \frac{1}{n} \sum_{j,k}^{(2)} \xi_{jk} \right\} . \tag{28}$$

Consequently, we obtain

$$n^{2} \text{ Var } K = \frac{1}{n_{1}^{2}} \text{ Cov } (\sum^{(1)} \xi_{jk}, \sum^{(1)} \xi_{jk})$$

$$+ \frac{1}{n_{2}^{2}} \text{ Cov } (\sum^{(2)} \xi_{jk}, \sum^{(2)} \xi_{jk}) + \frac{1}{n^{2}} \text{ Cov } (\sum^{(\xi_{jk}, \sum \xi_{jk})}$$

$$- \frac{2}{nn_{1}} \text{ Cov } (\sum^{(1)} \xi_{jk}, \sum^{(\xi_{jk})} - \frac{2}{nn_{2}} \text{ Cov } (\sum^{(2)} \xi_{jk}, \sum^{(\xi_{jk})}, \sum^{(\xi_{jk})$$

since  $\sum_{jk}^{(1)} \xi_{jk}$  and  $\sum_{jk}^{(2)} \xi_{jk}$  are independent.

By taking into account only those covariances. Cov  $(\xi_{\mbox{jk}},\ \xi_{\mbox{rm}})$  which are not zero, we arrive, after considerable algebra, at the formula

$$n^{2} \text{ Var } K = \left(\frac{n_{2}}{nn_{1}}\right)^{2} \sum_{i}^{(1)} p_{i}^{2} (1 - p_{i}^{2}) + \left(\frac{n_{1}}{nn_{2}}\right)^{2} \sum_{i}^{(2)} p_{i}^{2} (1 - p_{i}^{2})$$

$$+ 4 \left(\frac{n_{2}}{nn_{1}}\right)^{2} \sum_{i}^{(1)} \sum_{j \neq i}^{(1)} p_{j} p_{i}^{2} (1 - p_{i})$$

$$+ 4 \left(\frac{n_{1}}{nn_{2}}\right)^{2} \sum_{i}^{(2)} \sum_{j \neq i}^{(2)} p_{j} p_{i}^{2} (1 - p_{i})$$

$$- \frac{4n_{2}}{n^{2}n_{1}} \sum_{i}^{(1)} \sum_{j}^{(2)} p_{j} p_{i}^{2} (1 - p_{i}) -$$
(cont.)

$$-\frac{4n_1}{n^2n_2}\sum_{i}^{(2)}\sum_{j}^{(1)}p_{j}p_{i}^2(1-p_{i})$$

+ 
$$(\frac{n_2}{nn_1})^2 \sum_{i}^{(1)} \sum_{j \neq i}^{(1)} p_i p_j (1 - p_i p_j)$$

+ 
$$(\frac{n_1}{nn_2})^2 \sum_{i}^{(2)} \sum_{j \neq i}^{(2)} p_i p_j (1 - p_i p_j)$$

$$+ \frac{1}{n^2} \sum_{i}^{(1)} \sum_{j}^{(2)} p_{i} p_{j} (1 - p_{i} p_{j}) + \frac{1}{n^2} \sum_{i}^{(2)} \sum_{j}^{(1)} p_{i} p_{j} (1 - p_{i} p_{j})$$

+ 
$$2(\frac{n_2}{nn_1})^2 \sum_{i}^{(1)} \sum_{j \neq i}^{(1)} \sum_{\substack{k \neq i \\ k \neq j}}^{(1)} p_j p_k p_i (1 - p_i)$$

+ 
$$2(\frac{n_1}{nn_2})^2 \sum_{i}^{(2)} \sum_{j\neq i}^{(2)} \sum_{\substack{k\neq i \\ k\neq j}}^{(2)} p_j p_k p_i (1 - p_i)$$

+ 
$$\frac{2}{n^2}$$
 {  $\sum_{i}$   $\sum_{j \neq i}$   $\sum_{\substack{k \neq i \\ k \neq j}}$   $p_j p_k p_i (1 - p_i)$ 

$$-\sum_{i}^{(1)}\sum_{\substack{j\neq i\\k\neq j}}^{(1)}\sum_{\substack{k\neq i\\k\neq j}}^{(1)}p_{j}p_{k}p_{i}(1-p_{i})-\sum_{i}^{(2)}\sum_{\substack{j\neq i\\k\neq i\\k\neq j}}^{(2)}\sum_{\substack{k\neq i\\k\neq j}}^{(2)}p_{j}p_{k}p_{i}(1-p_{i})\}.$$

Using now the estimates  $p_i^2(1-p_i^2) \le \frac{1}{4}$ ,  $p_j p_i^2(1-p_i) \le 4/27$ ,  $p_j p_j (1-p_i^2) \le \frac{1}{4}$ , and  $p_j p_k p_i (1-p_i) \le \frac{1}{4}$ , we may write, omitting negative terms in (30):

$$n^{2} \text{ Var } K \leq \frac{n_{2}^{2}}{4n^{2}n_{1}} + \frac{n_{1}^{2}}{4n^{2}n_{2}}$$

$$+ 4 \cdot \frac{4}{27} \left(\frac{n_{2}}{nn_{1}}\right)^{2} n_{1}(n_{1}-1) + 4 \cdot \frac{4}{27} \left(\frac{n_{1}}{nn_{2}}\right)^{2} n_{2}(n_{2}-1)$$

$$+ \frac{1}{4} \left(\frac{n_{2}}{nn_{1}}\right)^{2} n_{1}(n_{1}-1) + \frac{1}{4} \left(\frac{n_{1}}{nn_{2}}\right)^{2} n_{2}(n_{2}-1)$$

$$+ \frac{n_{1}n_{2}}{4n^{2}} + \frac{n_{2}n_{1}}{4n^{2}} + 2 \cdot \frac{1}{4} \left(\frac{n_{2}}{nn_{1}}\right)^{2} n_{1}(n_{1}-1)(n_{1}-2)$$

$$+ 2 \cdot \frac{1}{4} \left(\frac{n_{1}}{nn_{2}}\right)^{2} n_{2}(n_{2}-1)(n_{2}-2)$$

$$+ \frac{1}{4} \cdot \frac{2}{n^{2}} \left(3n_{1}(n_{1}-1)n_{2} + 3n_{2}(n_{2}-1)n_{1}\right) . \tag{31}$$

Denoting  $n_1/n = x$ ,  $n_2/n = 1 - x$ , we obtain finally from (31):

Var K ~ 
$$\frac{1}{n} \cdot 2x(1-x) + \frac{1}{n^2} \left\{ \frac{1}{4} + \frac{16}{27} \left[ x^2 + (1-x)^2 \right] \right\}$$
  
+  $\frac{1}{n^3} \left\{ \frac{(1-x)^2}{4x} + \frac{x^2}{4(1-x)} \right\}$ ,

which yields the asserted asymptotic bound  $2n_1n_2/n^3$  , valid for all sufficiently large n .

Maximizing with respect to x we obtain

COROLLARY. As  $n \rightarrow \infty$ , we have regardless of  $n_1$  and  $n_2$ 

$$Var K \leq \alpha_n \sim 1/2n . \qquad (32)$$

Similarly as in the preceding section, we have

PROPOSITION 4. Under condition (16), the asymptotic (as  $n \rightarrow \infty$ ) distribution of K is normal.

The proof is analogous to the proof of Proposition 2 and will be omitted.

Propositions 3 and 4 provide means of testing the hypothesis that  $\bar{p}^{(1)} = \bar{p}^{(2)}$ : one may take the random variable K as the test variable, and use one-sided critical region, large values suggesting rejection.

# 4. Applications

A typical application, for assessing the inter-subject variability of choice probabilities, has already been described in the Introduction. Somewhat more generally, one may consider the following situation.

Suppose that the subjects are trained to perform some classification task, e.g., classify some objects into binary categories. Taking one of these categories as "success", and classifying the same set of objects twice by the same group of subjects, one obtains a variety of possibilities of applying the results of this paper. Let  $p_{i,j}$  be the probability that i-th subject will classify j-th

object to the chosen category, and let  $X_{ij}$ ,  $Y_{ij}$  be 0 or 1 depending on how the j-th object was classified by the i-th subject on the first and second trial.

Fixing i, and taking a large set of objects, one can estimate the variability of  $p_{ij}$  under changes of j; if this variability is large, one may want to identify objects which are easier, or more difficult, to classify.

On the other hand, fixing j, and varying i, one can test whether there exists sufficient homogeneity among classifying subjects; one can also test the hypothesis, using Propositions 3 and 4, that the two groups of subjects are equally well trained, etc.

If there are more than two categories in the classification, one can apply the same technique by fixing one category. However, if one can ensure not two, but four independent classifications for each person, then one can define "success" as the event "identical classifications on two successive trials".

Letting  $p_{ijk}$ , k=1,2,... denote the probability that i-th subject will classify j-th object into k-th category, the probability of success in this case is

$$\sum_{k} p_{ijk}^{2} = v_{ij}.$$

Again, one can test variability of  $\mathbf{v}_{ij}$  under changes of subjects and objects.

Finally, observe that the above ways of testing the quality of classification by human classifiers is independent of the concept of "true category" of the object, and applies equally well

to classification schemes in which such concept makes no sense (e.g. grading students' papers, etc.).

### REFERENCES

- BARTOSZYŃSKI, R. On the construction and evaluation of subjective classifications. <u>Applications Mathematicae</u>, 1971, XII, 1-21.
- BARTOSZYŃSKI, R. On linear classifications under varying choice probabilities. <u>Journal of Mathematical Psychology</u>, 1978, 18, 249-259.
- FISZ, M. <u>Probability Theory and Mathematical Statistics</u>. New York: Wiley, 1961.
- RAO, C.R. <u>Linear Statistical Inference and Its Applications</u>.

  New York: Wiley, 1965.

