Lending Club

Can we predict default vs. paid in full accounts based on customer information?

What I will cover:

- Business Overview
- Dataset Introduction
- Question I am trying to answer
- Model Selection Process
- Ideal Model
- Shortcomings of this process
- Next steps

Business Overview:

- LendingClub is a peer-to-peer lending company that offers loan trading on a secondary market. According to the company, it has made about \$15.98 billion in loans through its platform as of 2015.
- An individual investor can create unsecured personal loans between \$1,000 to \$40,000 in their platform.
 LendingClub also makes traditional direct to consumer loans.
- LendingClub offers alternative to traditional borrowing (some borrowers may have been closed off to the traditional banking system due to credit history or lack thereof).

Question

<u>Question</u>: Can we predict if a borrower will default on a loan based on their financial history and variables provided?

<u>Target</u>: This would help investors decide if they should lend to clients based on previous financial history with LendingClub

Dataset Information

- The data looks at 2007 2011 loans issued by LendingClub.
- The dataset contained over 42,000 rows* and 143 features.
- A lot of features were empty which were deleted
- Columns without at least 35,000 values without NaN were deleted
- Confidential information about the borrower were not provided by the company hence, were empty (customer ID etc)

Dataset Information

- Categorical values were converted to booleans
- Only relevant features were selected by reviewing the dataset and picking features that seemed most relevant to the analysis
- NaN values were filled with 0 (please note only rows with at least 35,000 column values with non-Nans were kept)
- There is a clear class imbalance (as with most of financial datasets regarding defaults - majority of borrowers pay back their loans)

Benchmark

Fully Paid: 86%

Charged Off: 14%

Predictor Variables in Dataset

The predictor variables that were kept were:

- Loan Amount
- Funded Amount
- Term (Length of the Loan)
- Interest Rate
- Grade of the Loan
- Employment Length of Borrower
- Home Ownership Status (Rent / Mortgage etc)
- Annual Income
- Last Payment Amount
- Open Accounts

Target Variables

The target variable in my dataset was Loan Status. It has two different Values: Fully Paid v. Charged Off.

- Fully Paid: Loan has been paid fully
- Charged Off: Loan is not expected to be paid off

Since our goal is to predict if a borrower will default on a loan, I am looking at these two factors only. I changed Fully Paid to 1 and Charged Off to 0.

Class Imbalance

Models Applied & Reasoning

- Naive Bayes
 - Simplistic model
 - Easy to start and understand at the beginning
- Random Forest with Grid Search
 - Reduces bias based on single important feature (in this case: loan payment status with feature importance of 30%)
- Logistic Regression with Grid Search
 - Easy to understand and the algorithm can be regularized to avoid overfitting
- SVM with Grid Search
 - Easy to see distinction between data (good visualization)
 - Once a hyperplane is found, data is easy to understand (outside of hyperplane is redundant)
- KNN Neighbors
 - Addresses the classification problem and low computational power

Accuracy Scores (Before & After Grid Search)

Models	Train	Test	GridSearch
Naive Bayes	0.8574	0.8614	-
Random Forest	0.8607	0.8566	0.8752
Logistic Regression	0.8606	0.8571	0.8601
KNN	1	0.8069	0.8608
SVM	Too large to run	Too large to run	Too large to run

Best Performer

The best model appears to be Random Forest in this case because, it has a higher Test Score than the Train Score. After applying the Grid Search, the accuracy score is 87% which is the highest accuracy score.

This also takes into account of one single feature importance (last_pymnt_amnt) which has an importance of over 30%. Random Forest reduces bias based on one single importance.

Random Forest Classification Report

		precision	recall	f1-score	support
	0	0.00	0.00	0.00	1108
	1	0.86	1.00	0.93	6850
micro	avg	0.86	0.86	0.86	7958
macro	avg	0.43	0.50	0.46	7958
weighted	avg	0.74	0.86	0.80	7958

Class Imbalance with weights (Random Forest):

When I ran it with class weights as balanced:

Train Score	Test Score	
0.9949	0.8589	

Classification Report:

weighted avg

		precision	recall	f1-score	support
	0	0.73	0.01	0.01	1108
	1	0.86	1.00	0.93	6850
micro a	avg	0.86	0.86	0.86	7958
macro a	avg	0.79	0.50	0.47	7958

0.86

0.80

7958

0.84

Class Imbalance with weights (Log Reg):

When I ran it with class weights as balanced:

Train Score	Test Score	
0.6928	0.6883	

Classification Report

		precision	recall	f1-score	support
	0	0.31	0.85	0.45	902
	1	0.97	0.68	0.80	5464
micro	avg	0.70	0.70	0.70	6366
macro	avg	0.64	0.77	0.62	6366
weighted	avg	0.87	0.70	0.75	6366

Limitations

- Class Imbalance is an issue
 - Most of the data says the loan status is "Fully Paid" so, model is likely to predict "Fully Paid" instead of "Default"
 - Class weights is not perfect

 SVM model did not work as it require large computational power / time

Application

0

- Can be used by investors looking to lend again to repeat individuals / businesses in the LendingClub platform
- Can be used by LendingClub to evaluate risk based on financial history of a business / individual
- Similar model can be used by companies in the alternative lending space

Next steps:

 Collecting more samples would be beneficial as it would allow us to address the class imbalance in a more applicable way

• Other models might be more efficient that were not run due to computational problems