

LARGE-SCALE MEDIA ANALYTICS

Master of Science in Signal Theory and Communications TRACK: Signal Processing and Machine Learning for Big Data Large-Scale Media Analytics

Fernando Marcos Macías

Víctor Gutiérrez García

Contents

- 1. Preprocessing changes (In search of computational relief)
- 2. Vanilla classification
- 3. Classification Machine Learning approach
- 4. Deep Learning approach (SOTA)
- 5. Chordifier MLP v1.0 (model)

Preprocessing changes (In search of computational relief)

```
file_name,root_note,chord_type,instrument,0:C,1:C#,2:D,3:D#,4:E,5:F,6:F#,7:G,8:G#,9:A,10:A#,11:B
0000.wav,3,maj,non_guitar,0.904923,0.4398673,0.8172096,0.8267878,1.50597,0.48736066,0.65353477,2.0,0.78777236,0.45348868,0.55726534,1.0577536
0001.wav,3,maj/3,non_guitar,1.6517758,0.6860993,0.95392,0.92192984,1.8668052,0.7529041,0.7708566,2.0,0.7530966,0.4401064,0.48154235,1.1232809
0002.wav,3,maj/5,non_guitar,1.7701682,0.6261766,1.0550392,0.71275896,1.4523592,0.5825397,0.6273421,2.0,0.7860852,0.45420018,0.46564275,0.86736023
0003.wav,4,maj,non_guitar,0.9013666,0.901221,0.50261724,0.52798724,0.466196,1.3841572,0.7371292,0.68431073,2.0,0.8083938,0.42222685,0.44017124
0004.wav,4,maj/3,non_guitar,1.4220532,1.4964783,0.6301332,0.6197506,0.72147334,1.8278862,0.7115764,0.94909674,2.0,0.6106889,0.4562219,0.64709747
0005.wav,4,maj/5,non_guitar,0.92317677,1.6240267,0.6419565,0.6736475,0.5921629,1.5613351,0.6375462,0.5593946,2.0,0.9563987,0.50441194,0.52228177
0006.wav,5,maj,non guitar,0.6246598,1.105669,1.2053002,0.6230696,0.9705212,0.9220522,1.7968769,0.7509885,0.78538066,2.0,1.1025949,0.6147498
0007.wav,5,maj/3,non_guitar,0.5644562,1.1153225,1.6481037,0.7102196,0.91029847,0.9265121,1.995942,0.71109635,0.7616801,1.9183404,0.6897918,0.41157863
0008.wav,5,maj/5,non guitar,0.33601302,0.93069553,1.5698633,0.74803704,0.78145206,0.90817714,1.3852493,0.6011673,0.9646503,2.0,0.5469792,0.30162102
0009.wav,6,maj,non_guitar,0.40867317,0.47555226,1.0594431,1.3931407,0.7492863,0.86156034,0.7708069,1.8378762,0.77803093,0.7367356,1.9697325,0.84797
0010.wav,6,maj/3,non_guitar,0.35501137,0.4902497,1.0801834,1.5557756,0.8182808,1.0647993,0.99195266,2.0,0.9034375,0.7380421,1.8722719,0.7447258
0011.wav,6,maj/5,non_guitar,0.28565347,0.39132595,0.8467652,1.7040002,0.7176605,0.9545558,0.6531738,1.4612813,0.8841637,0.9919944,2.0,0.5862005
0012.wav,7,maj,non_quitar,0.62502134,0.31444705,0.3788839,0.9352263,1.9431742,1.018309,0.8927579,0.8416824,1.8922156,0.81661505,0.80637544,1.9673306
0013.wav,7,maj/3,non_guitar,0.7658702,0.3921622,0.425983,0.75483537,1.3915832,0.7040162,0.7301383,0.7366327,1.9662039,0.70304143,0.59069216,1.9770436
0014.wav,7,maj/5,non_guitar,0.7058693,0.45434034,0.5294031,1.061533,1.5841589,0.64182526,0.72633606,0.7073674,1.3034003,0.63075423,0.82638216,2.0
0015.wav,8,maj,non_guitar,2.0,0.7166803,0.38926315,0.39790806,0.96515167,1.3728478,0.6248592,0.5994758,0.7023922,1.3498169,0.48805326,0.67879236
```

- Precompute the features outside the dataloader.
- Added Chromagram values to each audio.
- Label enconding for root notes.

First features – Chromagram

ArgMax – Vanilla Approach

Total Test Set

Root notes Test Set

ArgMax – Vanilla Approach

Total Test Set Root notes Test Set Inversions Test Set

	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.42	0.28	0.33	136	0	0.67	0.56	0.61	54	0	0.17	0.10	0.13	82
1	0.34	0.31	0.33	105	1	0.51	0.49	0.50	45	1	0.20	0.18	0.19	60
2	0.37	0.39	0.38	137	2	0.54	0.63	0.58	60	2	0.22	0.21	0.21	77
3	0.33	0.47	0.39	118	3	0.55	0.70	0.61	50	3	0.20	0.29	0.24	68
4	0.29	0.41	0.34	103	4	0.51	0.60	0.55	48	4	0.15	0.24	0.18	55
5	0.22	0.29	0.25	114	5	0.37	0.50	0.43	46	5	0.11	0.15	0.13	68
6	0.38	0.39	0.39	122	6	0.67	0.58	0.62	59	6	0.19	0.22	0.20	63
7	0.39	0.36	0.38	132	7	0.60	0.55	0.58	65	7	0.19	0.18	0.18	67
8	0.35	0.32	0.33	130	8	0.58	0.55	0.57	56	8	0.16	0.14	0.14	74
9	0.46	0.36	0.40	134	9		0.58	0.62	57	9	0.27	0.19	0.23	77
10	0.31	0.26	0.28	127	10	0.52	0.42	0.47	52	10	0.17	0.15	0.16	75
11	0.33	0.30	0.32	122	11	0.62	0.56	0.59	50	11	0.14	0.12	0.13	72
accuracy			0.34	1480	accuracy			0.56	642	accuracy			0.18	838
macro avg	0.35	0.35	0.34	1480	macro avg		0.56	0.56	642	macro avq	0.18	0.18	0.18	838
weighted avg	0.35	0.34	0.34	1480	weighted avg	0.57	0.56	0.56	642	weighted avg	0.18	0.18	0.18	838

Random Forest – Machine Learning Approach

Random Forest – Machine Learning Approach

Total Test Set

Normal chords notes Test Set

	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.89	0.78	0.83	136	0	0.90	0.87	0.89	54	0	0.88	0.72	0.79	82
1	0.75	0.90	0.82	105	1	0.77	0.96	0.85	45	1	0.74	0.87	0.80	60
2	0.84	0.91	0.87	137	2	0.84	0.90	0.87	60	2	0.84	0.91	0.88	77
3	0.85	0.84	0.85	118	3	0.88	0.90	0.89	50	3	0.83	0.79	0.81	68
4	0.84	0.89	0.86	103	4	0.84	0.90	0.87	48	4	0.83	0.89	0.86	55
5	0.85	0.82	0.83	114	5	0.80	0.72	0.76	46	5	0.88	0.88	0.88	68
6	0.88	0.83	0.85	122	6	0.94	0.86	0.90	59	6	0.82	0.79	0.81	63
7	0.84	0.87	0.86	132	7	0.84	0.91	0.87	65	7	0.84	0.84	0.84	67
8	0.87	0.87	0.87	130	8	0.93	0.93	0.93	56	8	0.82	0.82	0.82	74
9	0.91	0.86	0.88	134	9	0.94	0.84	0.89	57	9	0.89	0.87	0.88	77
10	0.89	0.81	0.85	127	10	0.90	0.85	0.87	52	10	0.88	0.79	0.83	75
11	0.84	0.89	0.86	122	11	0.91	0.86	0.89	50	11	0.79	0.90	0.84	72
accuracy			0.85	1480	accuracy			0.88	642	accuracy			0.84	838
macro avg	0.85	0.86	0.85	1480	macro avg	0.88	0.87	0.87	642	macro avg	0.84	0.84	0.84	838
weighted avg	0.86	0.85	0.85	1480	weighted avg	0.88	0.88	0.88	642	weighted avg	0.84	0.84	0.84	838

Chordifier MLP alphaV1.0

MLP – Deep Learning Approach

Root notes Test Set

MLP – Deep Learning Approach

Total Test Set

Normal chords notes Test Set

Classification Report:								
	precision	recall	f1-score	support				
0	0.91	0.87	0.89	506				
1	0.89	0.89	0.89	501				
2	0.95	0.88	0.91	469				
3	0.88	0.91	0.89	494				
4	0.91	0.90	0.91	503				
5	0.91	0.87	0.89	528				
6	0.88	0.90	0.89	484				
7	0.89	0.90	0.90	510				
8	0.90	0.94	0.92	488				
9	0.85	0.95	0.90	472				
10	0.90	0.92	0.91	479				
11	0.93	0.86	0.90	484				
accuracy			0.90	5918				
macro avg	0.90	0.90	0.90	5918				
weighted avg	0.90	0.90	0.90	5918				

Classification Report:								
Ctd33111cdc1c			£1					
	precision	recall	f1–score	support				
0	0.92	0.89	0.91	54				
1	0.88	0.96	0.91	45				
2	0.88	0.88	0.88	60				
3	0.94	0.94	0.94	50				
4	0.88	0.90	0.89	48				
5	0.83	0.83	0.83	46				
6	0.92	0.92	0.92	59				
7	0.87	0.89	0.88	65				
8	0.95	0.96	0.96	56				
9	0.93	0.88	0.90	57				
10	0.87	0.88	0.88	52				
11	0.91	0.84	0.87	50				
accuracy			0.90	642				
macro avg	0.90	0.90	0.90	642				
weighted avg	0.90	0.90	0.90	642				
<u>"</u>								

Classification Report:									
		precision	recall	f1-score	support				
	0	0.81	0.79	0.80	82				
	1	0.85	0.87	0.86	60				
	2	0.91	0.91	0.91	77				
	3	0.82	0.87	0.84	68				
	4	0.94	0.84	0.88	55				
	5	0.94	0.90	0.92	68				
	6	0.85	0.84	0.85	63				
	7	0.85	0.87	0.86	67				
	8	0.82	0.86	0.84	74				
	9	0.89	0.92	0.90	77				
	10	0.91	0.85	0.88	75				
	11	0.86	0.90	0.88	72				
accu	racy			0.87	838				
macro	avg	0.87	0.87	0.87	838				
veighted	avg	0.87	0.87	0.87	838				

Chordifier MLP v1.0

Architecture proposal:

Chordifier MLP v1.0

PyTorch Lightning

- High-level management of pytorch functionalities
- Dataset class incorporates feature extraction in a memory-efficient way

```
class CustomDataset(Dataset):
   def __init__(self, dataframe, root_dir, feature = 'Chromagram',transform=None):
        self.dataframe = dataframe['file name']
       self.root dir = root dir
       self.feature = feature
       self.transform = transform
        self.label = dataframe['root note']
   def len (self):
       return len(self.dataframe)
   def getitem (self, idx):
        audio_file = os.path.join(self.root_dir, self.dataframe.iloc[idx, 0])
       if self.transform:
           audio data = self.transform(audio data)
       x, sr = librosa.load(audio_file, sr=None)
       return self.label[idx], self.get features(x, sr, self.feature)
   def get features(self, x, sr, feature='Chromagram'):
       rerturned_feature = np.empty((0, 0))
       hop length = int(44.1e3*2)
       if feature == 'Chromagram':
           n \cdot chroma = 12
           n octaves =7
           rerturned feature = librosa.feature.chroma cqt(y=x, sr=sr, n chroma=n chroma, n octaves=n octaves, hop length=hop length)
       elif feature == 'Mel Spectrogram':
           n mels = 128
           n fft = hop length
           rerturned feature = librosa.feature.melspectrogram(y=x, sr=sr, n mels=n mels, n fft=n fft, hop length=hop length)
        else: pass # Implement other features
       return rerturned_feature
```


Chordifier MLP v1.0

DEMO VERSION ON GRADIO NEXT WEEK

Questions?

