## Artificial Intelligence: Modeling Human Intelligence with Networks

Jeová Farias Sales Rocha Neto jeova\_farias@brown.edu

## Machine Learning and Linear Classifiers

#### Machine Learning

- Studies how to automatically learn to make accurate predictions based on past observations.
- Two kinds kinds of problems in ML:
  - Supervised Learning: Observations + desired outputs. Ex.: Spam detection.
  - ▶ Usupervised Learning: Only the observations. Ex.: Clustering.
- Our focus in this course: Supervised Learning

#### Machine Learning

- Studies how to automatically learn to make accurate predictions based on past observations.
- Two kinds kinds of problems in ML:
  - Supervised Learning: Observations + desired outputs. Ex.: Spam detection.
  - ▶ Usupervised Learning: Only the observations. Ex.: Clustering.
- Our focus in this course: Supervised Learning/Classification.

#### Classification

Classify example into a given set of categories.

#### Machine Learning

- Studies how to automatically learn to make accurate predictions based on past observations.
- Two kinds kinds of problems in ML:
  - Supervised Learning: Observations + desired outputs. Ex.: Spam detection.
  - ▶ Usupervised Learning: Only the observations. Ex.: Clustering.
- Our focus in this course: Supervised Learning/Classification.

#### Classification

- Classify example into a given set of categories.
- What you have: Labeled examples.

#### Machine Learning

- Studies how to automatically learn to make accurate predictions based on past observations.
- Two kinds kinds of problems in ML:
  - Supervised Learning: Observations + desired outputs. Ex.: Spam detection.
  - ▶ Usupervised Learning: Only the observations. Ex.: Clustering.
- Our focus in this course: Supervised Learning/Classification.

#### Classification

- Classify example into a given set of categories.
- What you have: Labeled examples.
- What you want to do: Label (classify) the unlabeled data.

#### Machine Learning

- Studies how to automatically learn to make accurate predictions based on past observations.
- Two kinds kinds of problems in ML:
  - Supervised Learning: Observations + desired outputs. Ex.: Spam detection.
  - ▶ Usupervised Learning: Only the observations. Ex.: Clustering.
- Our focus in this course: Supervised Learning/Classification.

#### Classification

- Classify example into a given set of categories.
- What you have: Labeled examples.
- What you want to do: Label (classify) the unlabeled data.

■ You are given a bunch of fish!

■ You are given a bunch of fish! And someone tells you:



(a) "Look, these ones are bass...

■ You are given a bunch of fish! And someone tells you:





(a) "Look, these ones are bass... (b) and these are tuna."

- He asks you, "Would you mind tell me which kind of fish Jim is bringing?".
- What would you do?

- Possible steps:
  - Extract information about the fish you have.

- Possible steps:
  - Extract information about the fish you have. What info?

- Possible steps:
  - Extract information about the fish you have. What info? How about possible info?

- Possible steps:
  - Extract information about the fish you have. What info? How about possible info?
  - 2 Propose a rule based on that information!

- Possible steps:
  - Extract information about the fish you have. What info? How about possible info?
  - 2 Propose a rule based on that information! Which rule?

- Possible steps:
  - Extract information about the fish you have. What info? How about possible info?
  - 2 Propose a rule based on that information! Which rule?
  - 3 (Pray so that the you were given everything you needed...)

- Possible steps:
  - Extract information about the fish you have. What info? How about possible info?
  - 2 Propose a rule based on that information! Which rule?
  - (Pray so that the you were given everything you needed...)
  - 4 Classify the new fish!

- Possible steps:
  - Extract information about the fish you have. What info? How about possible info?
  - 2 Propose a rule based on that information! Which rule?
  - (Pray so that the you were given everything you needed...)
  - 4 Classify the new fish!
- Then, Jim brings you this:



■ What do you do?









#### This week for us!

- **Data** (for testing and for training) Points in  $\mathbb{R}^2$ .
- **Algorithm** Perceptron (tomorrow!)
- Classification In two classes (tomorrow), more than two (Thursday).
- Classifier Decision boudaries given by lines in  $\mathbb{R}^2$ .
- Loss Function Zero-one loss.

#### Linear Classifiers

 $\blacksquare$  Our problem: m points in the plane, i.e., points  $p^i$  =  $[x_1^i, x_2^i].$ 

#### Linear Classifiers

 $\blacksquare$  Our problem: m points in the plane, i.e., points  $p^i$  =  $[x_1^i, x_2^i].$ 



#### Linear Classifiers

■ Now, what is the class of this point? Blue square or red triangle?



#### The Neuron Model!



#### The Neuron Model!



#### Loss Function

■ Which of the following is the best?



■ Why?

#### Loss Function

■ Which of the following is the best?



■ Why? Which one is the second best?

#### Loss Function

■ Which of the following is the best?



- Why? Which one is the second best?
- Zero-one loss: # Number of misclassified examples.

$$\mathcal{L}_w(X) = \sum_{i=1}^n [f_w(x^i) \neq y_i]$$

$$[\cdot]: \{\text{False}, \text{True}\} \rightarrow \{0, 1\}$$

#### Non-Linearly separable data

■ What is decision boundary of the this:



- Could I use straight lines to separate it??
- What is Non-Linearly separable dataset?

# Python Notebooks!