SMART ROADS – VEHICLE COLLISION PREVENTION SYSTEM

Project Report Submitted by

Ms. Rithika Chowta (4NM14CS135)

Ms. Priya Shetty (4NM14CS117)

Ms. Sharan Preetha Noronha (4NM14CS146)

UNDER THE GUIDANCE OF

Ms. Swathi Pai M. Assistant Professor

in partial fulfillment of the requirements for the award of the Degree of

Bachelor of Engineering in Computer Science and Engineering

from Visvesvaraya Technological University, Belgaum

(An Autonomous Institution under VTU, Belgaum)
(AICTE approved, NBA Accredited, ISO 9001:2015 Certified)
NITTE -574 110, Udupi District, KARNATAKA

April 2018

i

N.M.A.M. INSTITUTE OF TECHNOLOGY 📶

(An Autonomous Institution under VTU, Belgaum)
(AICTE approved, NBA Accredited, ISO 9001:2015 Certified)
NITTE -574 110, Udupi District, KARNATAKA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

Certified that the project work entitled

"SMART ROADS – VEHICLE COLLISION PREVENTIONSYSTEM"

is a bonafide work carried out by

Rithika Chowta (4NM14CS135)

Priya Shetty (4NM14CS117)

Sharan Preetha Noronha (4NM14CS146)

in partial fulfilment of the requirements for the award of

Bachelor of Engineering Degree in Computer Science and Engineering

prescribed by Visvesvaraya Technological University, Belgaum

during the year 2017-2018.

It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the report deposited in the departmental library.

The project report has been approved as it satisfies the academic requirements in respect of the project work prescribed for the Bachelor of Engineering Degree.

Signature of Guide

Signature of HOD

Signature of Principal

Semester End Viva Voce Examination

	Name of the Examiners	Signature with Date
1		
2		

ACKNOWLEDGEMENT

We take this opportunity to express our heartfelt gratitude and appreciation to all those who provided us the support and encouragement to complete this project. Without their contributions, inputs and suggestions, we would not have succeeded in developing the idea and completing the project. We record our indebtedness to NMAM Institute of Technology for giving us a platform to learn and also initiate our project.

Our heartfelt thanks to our esteemed guide and mentor, Ms. Swathi Pai M., Assistant Professor, Department of CSE, for her valuable advice, endless support and motivation, constantly throughout. Without her encouragement and stimulating suggestions, we may have not overcome the hurdles we faced in developing the idea and executing it.

We would like to thank Dr. Niranjan Chiplunkar, Principal, NMAMIT and Dr. Udaya Kumar Reddy, Head, Department of CSE for their consistent support and providing us this opportunity to do the project.

We would like to thank our college, NMAMIT for providing us with facilities such as infrastructure, high performance computers and laboratories for carrying out our work.

We would also like to thank all the teaching and non-teaching staffs of Department of CSE whose support motivated us to complete the project. A heartfelt thanks to our parents and our families for their undeviating solace. We express our deep sense of gratitude to all our batch mates who have invariably contributed to our project with their inputs and suggestions. Our unflinching gratitude to everyone who has directly or indirectly contributed to the project.

Rithika Chowta (4NM14CS135)

Priya Shetty (4NM14CS117)

Sharan Preetha Noronha (4NM14CS146)

ABSTRACT

Blind curves are one of the leading causes of road accidents. Vehicles speeding along a curve are not aware of the presence of vehicles coming from the other direction. Here, a system is proposed to alert drivers going around a blind curve to the presence of oncoming vehicles. 2 poles are erected on either side of the curve, bearing cameras, red and green LED lights and piezoelectric buzzers. They are connected to a Raspberry Pi. The live video feed from the cameras is processed to detect the presence of vehicles. If vehicles are approaching on both sides of the curve, the buzzers and red lights are activated, thus alerting the drivers of the vehicle to slow down. Then the green LED is activated on one side to allow one vehicle to move forward. After it passes, the other vehicle is allowed to move by activating the green LED on the other side. Red LED is reactivated on the previous side, to stop any vehicles that were behind the first vehicle. After all vehicles pass, all LEDs are deactivated.

CONTENTS

Title page	i
Certificate	ii
Acknowledgement	iii
Abstract	iv
Table of Contents	V
List of Figures	vii
CHAPTER 1 – INTRODUCTION	1
1.1 Overview	2
1.2 Problem Statement	2
1.3 Study Areas	3
1.4 Objective	3
1.5 Methodology	4
1.6 Organization of report	5
CHAPTER 2 - LITERATURE SURVEY	
2.1 Existing System	6
2.2. Proposed System	8
CHAPTER 3 - SYSTEM ANALYSIS AND REQUIREMENTS	
3.1 System Analysis	10
3.1.1 Relevance of platform	10
3.1.2 Relevance of programming lang	uage 10
3.2 Requirements Analysis	11
3.2.1 Scope and Boundary	11
3.2.2 Assumptions and Dependencies	12
3.3 Functional Requirements	12
3.3.1 Software Requirements	12
3.3.2 Hardware Requirements	12

CHAPTER 4	4 - HARDWARE APPROACH	17
	4.1 Physical Setup of Raspberry Pi	17
	4.2 GPIO Alarm Sub-System Circuitry	18
0114 5755	- 00===4.00004.011	
CHAPTER 5 - SOFTWARE APPROACH 5.1 OpenCV		22 22
	5.2 Cascade of Boosted Classifiers	23
	5.3 LBP Features	24
CHAPTER (6 - SYSTEM DESIGN	27
CHAPTER 7 – IMPLEMENTATION		30
	7.1 Training of Cascade Classifier	30
	7.2 Detecting the Vehicles	42
	7.3 GPIO Alarm Module	44
CHAPTER 8 - RESULTS AND DISCUSSION		50
	8.1 Result	50
	8.2 Discussion	55
CHAPTER 9 - CONCLUSION AND FUTURE WORK		57
	9.1 Conclusion	57
	9.2 Future Work	57
REFERENCES		58

LIST OF FIGURES

Figure 4.1 Connection setup of Pi	17
Figure 4.2 Pin diagram of Raspberry Pi, with USB ports facing downwards	18
Figure 4.3 Circuit diagram for GPIO alarm subsystem	19
Figure 4.4 Breadboard 1	21
Figure 4.5 Breadboard 2	21
Figure 5.1 Thresholding of 8-pixel neighborhood around center pixel	25
Figure 5.2 Converting binary neighborhood of center pixel into decimal form	25
Figure 5.3 The calculated LBP value is then stored in an output array	
with the same width and height as the original image	26
Figure 5.4 LBP representation of an image	26
Figure 6.1 Block diagram of the system	27
Figure 6.2 Activity diagram of the system	28
Figure 7.1 "neg" folder with all negative images	32
Figure 7.2 bg.txt	34
Figure 7.3 Cropping a positive image	34
Figure 7.4 Positive images	35
Figure 7.5 Sample creation command	36
Figure 7.6 Samples and annotation file generated	36
Figure 7.7 info.lst contents	37
Figure 7.8 Creating vector file from samples in info1	39
Figure 7.9 Training began	41
Figure 8.1 Output from the monitor when both the cars got detected	50
Figure 8.2 Both the red LEDs switched on upon detection	51
Figure 8.3 Both the vehicles stop when both red LEDs are on	52
Figure 8.4 Right side green LED on and left red LED on	53
Figure 8.5 Left green LED is on and right red LED is on	54
Figure 8.6 LEDs on the both of the sides of the curve are off	55
Figure 8.7 LBP features detected for test image in stage 2 of cascade classifier	56
Figure 8.8 LBP features detected for test image in stage 9 of cascade classifier	56