Computer Networks (part 1)

Rémi Emonet – 2021 Université Jean Monnet – Laboratoire Hubert Curien

Computer Networks: global overview

- 1. Introduction to computer networks
- 2. Networking application layer (HTTP, FTP, DNS, ...)
- 3. Data transfer layer (UDP, TCP, ...)
- 4. Network layer (routing, IP, ICMP, NAT, ...)
- 5. Lower layers, wireless and mobile (Ethernet, ARP, ...)
- 6. Security (SSL, ...)

/ 58 - Rémi Emonet - Computer Networks (part 1)

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

3 / 58 – Rémi Emonet – Computer Networ

4 / 58 - Rémi Emonet - Computer Networks (part 1

How do you use internet? (list your use cases)

5 / 58 – Rémi Emonet – Computer Networks (part 1)

What are the important properties of the network for each use case?

6 / 58 – Rémi Emonet – Computer Networks (part 1)

Internet

Internet: hardware aspects

- Millions or billions of interconnected hosts, executing applications
 - workstations, laptops, servers
 - phones, tablets, ...
 - fridges, scales, toasters, ...
 - host == machine == end system
- Communication links
 - wires, optical fibers, satellites, ...
- Routing nodes
 - routers and switches

68 - Rémi Emonet - Computer Networks (part 1)

Internet: some hosts and appliances

Machines/Hosts

© 0

Applications

9 / 58 – Rémi Emonet – Computer Networks (part

Internet: fundamentals

- A network of networks
 - interconnection of networks
 - multi-level hierarchy
- A set of protocols
 - communication rulesex: HTTP, FTP, TCP, IP, PPP
- A set of standards
 - « RFC » (Request For Comments)
 - « IETF » (Internet Engineering Task Force)

10 / 58 - Rémi Emonet - Computer Networks (part 1

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

"The Internet"
youtube://iDbyYGrswtg
youtube://UTBsm0LzSP0

(a) (b)

12 / 58 – Rémi Emonet – Computer Networks (part 1)

Meaning of the Word "Protocol"? Examples?

13 / 58 - Rémi Emonet - Computer Networks (part 1)

Protocols

- Human examples
 - asking the current time
 - ask a question in class
 - introduce someone to someone else
 - ..
- Elements of (human) protocols
 - etiquette, politeness, etc
 - communication rules
 - messages sent (content and sequence)
 - expected reactions

Computer protocols

- between machines
- all communications on Internet follow some protocols
- different levels (HTTP, TCP, ...)
- Definition of computer protocols
 - formats definition, and sequence (ordering)
 - ... of all messages (sent and received)
 - ... exchanged by connected hosts
 - + the actions taken after these messages

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

15 / 58 - Rémi Emonet - Computer Networks (part 1

16 / 58 - Rémi Emonet - Computer Networks (part 1)

The Network Edge Internet access

Internet Network Structure

- Network core
 - interconnections of routers
 - network of networks
- Physical links
 - wires, cables
 - wireless transmissions
- Network edge, network border
 - hosts (clients, servers)
 - access points (routers)

18 / 58 – Rémi Emonet – Computer Networks (part 1

© <u>0</u>

• Asymmetric: download (<25Mbps) vs upload (<2.5Mbps)

Wireless Access

- Wifi
 - residential
 - institutional
 - public spaces
 - limited range
 - bandwidth: 802.11n norm, <300Mbps
- Mobile networks: 2G, 3G, 4G, ...
 - mobile phone antennas
 - long range
 - bandwidth: 4G, 100Mbps

Sending Information from Host to Host

- Application level abstraction
 - messages can be big
 - ex: an audio or video file
- Work to be done by the host
 - splitting the message in "packets"
 - sending each packet on the network
 - sending data via a network link
- Network link properties
 - a given "binary bitrate" (or rate), e.g., 1Gbps
 - time/delay for transferring a packet of size as a function of the bandwidth

@ **①**

Types of Physical Links

- Cables etc
 - coaxial cables: multiple frequency channel
 - RJ45 cables (twisted pair), 10Gbps
 - optical fiber

 - glass fiber, light pulseslow error rates, 100Gbps
- Radio waves, etc
 - electromagnetic waves, multiple frequency channels
 - interference, occlusions, ...
 - different technologies
 - wifi: 54Mbps
 - 3G: 0.3 à 2Mbps
 - satellites: 45Mbps, latency (250ms)

Given a 5MB message (e.g., image). when sent from host to host what happens? How long does it take?

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

Layered Architecture

- Complexity of the network architecture
 - hosts, routers, links (cables, ...)
 - applications, protocols
 - mixing hardware and software
- Layered architectures general advantages
 - advantages for complex systems
 - specification of services/roles of each layer
 - isolation of abstraction levels easier maintenance
 - drawbacks?

Encapsulation and Routing

The Network Stack: the 5 layer model

- 5-layer model
 - application
 - ex: HTTP, FTP, SMTP (mails), DNS
 - transport ex: TCP, UDP
 - network
 - ex: IP, ICMP
 - link
 - ex: Ethernet, 802.11 (wifi)
 - physical ex: telephone, ADSL, satellite
- Other well known model: OSI (7 layers)

application transport network link physical

destination application H, M segment М pplication transport H, H, M datagram H, M transport network н н м link H, H, H, M frame н, н, н, м physical H, H, M нн м н н н м

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

Network Security

- Security area
 - identify possible means of attack
 - find ways to protect from these
 - conceive architectures that are immune to attacks
- Internet
 - original vision
 - a network of trusted users
 - transparent communications
 - need to add security at every layer

ter Networks (part 1)

- spying of transmitted packets
- sensitive data, passwords, ...
- Spoofing
 - sending new packets
 - falsifying the packet source
 - pass for someone else

37 / 58 – Rémi Emonet – Computer Networks (part 1)

Part 1: General Introduction

• Goal

© 0

- have a tour of the main concepts
- that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

38 / 58 – Rémi Emonet – Computer Networks (part 1)

Internet: a few key dates

- 1961: packet switching (Kleinrock)
- 1967: conception of ARPAnet
- 1969: ARPAnet is operational
- 1977
 - public demonstration of ARPAnet
 - 15 nodes
 - first emails
- 1976: Ethernet at Xerox
- 1979: ARPAnet has 200 nodes
- 1970's: many other networks than ARPAnet

Internet: a few key dates

- 1969: ARPAnet is operational
- 1982: SMTP
- 1983: TCP/IP, DNS
- 1985: FTP
- 1988: congestion control for TCP
- 1980's: even more networks
 - including the Minitel
 - 100k hosts

@ <u>①</u>

@ **①**

Internet: last decades

- early 1990's: public internet, web, HTTP, HTML
- late 1990's
 - instant messaging, peer to peer file sharing
 - importance of security
 - 50M hosts
 - network core uses Gbps links
- 2000+
 - high-speed internet: democratization of internet access
 - ubiquity: mobile access on smart-phones, tablets
 - more and more online services (google, facebook, ...)
 - dedicated network in parallel to internet
 created by content providers (Google, Microsoft, ...)
 - created by contonline education
 - Iaas, PaaS, SaaS, BaaS
 - many companies externalize their services
 - in the "cloud"

© 0

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

monet – Computer Networks (part 1)

Given a 5MB message (e.g., image).
when sent from host → host what happens?
How long does it take?

Sending Messages from Host to Host

- Applications
 - splitting of the message in « packets », sent on the network
- Network link capacity
 - capacity == binary rate == bitrate == rate (language shortcut) == bandwidth
 - transmission delay (1 packet): $t = \frac{\text{packet size}}{\text{bitrate}} = \frac{L}{R}$

3 packets de L bits

45 / 58 – Rémi Emonet – Computer Networks (part 1

43 / 58 – Rémi Emonet – Computer Networks (part

@ <u>0</u>

Why Doesn't Internet Use Circuit Switch.?

- Packet switching allows for more simultaneous users
- Example
 - a link at 1Mbps
 - a typical user behavior

 - active only 10% of the time
 using 100kbps when active
- · Circuit switching
 - max 10 users
- · Packet switching
 - how often do we queue?
 - probability of congestion
 - ex: 10 users (or less)
 - $p(n_{\text{active}} > 10) = 0$
- · Packet switching
 - ex: 11 users
 - $p(n_{\text{actif s}} > 10) = 10^{-11}$
 - ex: 35 users
 - $p(n_{\text{active}} > 10) < 0.0004$
 - ex: 50 users
 - $p(n_{\text{active}} > 10) \approx 0.01$

Internet Structure: a network of networks

- Tiers
 - Tier1 (~12)

 - the network corefree data exchange
 - Tier2 (numerous)
 - buys bandwidth to Tier1 actorssells bandwidth
 - Tier3 (numerous)
 - buy only

• Interconnections and agreements

- PoP: Point of Presence
- IXP: Internet Exchange Point
- peering agreements

Part 1: General Introduction

- Goal
 - have a tour of the main concepts
 - that will be seen in details later
- Overview
 - what is internet
 - what is a protocol
 - the network edge
 - layers and encapsulation
 - security
 - some history
 - the network core
 - performance: latency, bandwidth, throughput, etc.

@ **①**

Buffering/Queuing and Packet Loss

- Cause
 - input bitrates are greater than the capacity of the output link
 - a temporary situation
 - but long enough to fill the buffer ⇒ need to drop packets
- Effects
 - delay due to the queuing
 - necessity to handle (at higher levels) the loss

Four Sources of Delay

- Sources of delay/latency
 - d_{proc} : < 1ms
 - d_{queue} : depending on router congestion

$$d_{trans} = \frac{L}{R} = \frac{\text{size}}{\text{capacity}}$$

$$d_{prop} = \frac{d}{s} = \frac{\text{distance}}{\text{speed}}$$

• Total delay d_{total} includes $d_{proc} + d_{queue} + d_{trans} + d_{prop}$

- How much time does it take to transfer
 - a single 125 kB packet
 - over a 100 Mbps link
 - supposing there is no congestion
- 1. To a computer in the classroom next-door?
- 2. To a computer in San Francisco? (~ 9000 km)

© <u>0</u>