Claims

1. A method of inhibiting tumor growth in a mammal, said method comprising orally administering a therapeutically effective amount of a composition comprising at least one pharmaceutically acceptable carrier and a taxane having the formula

5 wherein

10

 X_3 is 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, isopropyl, isobutenyl, cyclopropyl, cyclobutyl or cyclopentyl;

 X_5 is -COX₁₀ and X_{10} is 2-furyl, 2-thienyl, 3-pyridyl, 4-pyridyl, n-propyl, isobutyl, butenyl or isobutenyl or X_5 is -COOX₁₀ and X_{10} is ethyl, n-propyl, isopropyl or isobutyl;

R₂ is benzoyloxy;

 R_7 is $R_{7a}COO$ -;

R₁₀ is hydroxy; and

R_{7a} is heterosubstituted methyl.

- 2. The method of claim 1 wherein X_3 is 2-thienyl or 3-thienyl.
- 3. The method of claim 1 wherein X_3 is 2-furyl or 3-furyl.
- 4. The method of claim 1 wherein R_{7a} is acetoxymethyl, methoxymethyl, phenoxymethyl, ethoxymethyl or methylthiomethyl.
 - 5. The method of claim 4 wherein X₃ is 2-furyl or 3-furyl.
 - 6. The method of claim 4 wherein X_3 is 2-thienyl or 3-thienyl.
- 7. A method of inhibiting tumor growth in a mammal, said method comprising orally administering a therapeutically effective amount of a composition comprising

at least one pharmaceutically acceptable carrier and a taxane having the formula

$$X_5NH$$
 O R_7
 OH
 OH
 R_2
 OAC

5 wherein

X₃ is 2-furyl or 2-thienyl;

 X_5 is -COOX₁₀ and X_{10} is t-amyl;

R₂ is benzoyloxy;

 R_7 is $R_{7a}COO$ -;

10 R_{10} is hydroxy; and

 R_{7a} is methoxymethyl or acetoxymethyl.

- 8. The method of claim 7 wherein R_{7a} is methoxymethyl.
- 9. The method of claim 7 wherein X_3 is 2-furyl.
- 10. The method of claim 7 wherein X_3 is 2-thienyl.
- 11. A method for preparing a pharmaceutical composition comprising mixing at least one nonaqueous, pharmaceutically acceptable solvent and a taxane having the formula

wherein

5 R_2 is acyloxy;

FSUM 10467.21 PATENT

R₇ is heterosubstituted acetate;

R₉ is keto, hydroxy, or acyloxy;

 R_{10} is hydroxy;

R₁₄ is hydrido or hydroxy;

X₃ is substituted or unsubstituted alkyl, alkenyl, alkynyl or heterocyclo;

 X_5 is $-COX_{10}$, $-COOX_{10}$, or $-CONHX_{10}$;

 X_{10} is hydrocarbyl, substituted hydrocarbyl, or heterocyclo; and

Ac is acetyl.

10

5

5

- 12. The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl.
- 13. The method of claim 11 wherein R_7 is $R_{7a}COO$ and R_{7a} is a heterosubstituted methyl wherein the heteroatom is substituted to form a heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, oxy, acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester or ether.
- 14. The method of claim 11 wherein X_5 is -COX $_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, $C_1 C_8$ alkyl, $C_2 C_8$ alkenyl, or $C_2 C_8$ alkynyl, or $C_3 C_8$ alkynyl, or $C_4 C_8$ alkynyl.
- 15. The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, R_7 is $R_{7a}COO$ and R_{7a} is a heterosubstituted methyl wherein the heteroatom is substituted to form a heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, oxy, acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester or ether.
- 16. The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl or 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, X_5 is -COX $_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, or C_2 C_8 alkynyl, or C_2 C_8 alkynyl.

5

5

- 17. The method of claim 11 wherein R_7 is $R_{7a}COO$ -, R_{7a} is a heterosubstituted methyl wherein the heteroatom is substituted to form a heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, oxy, acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester or ether, X_5 is $-COX_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkynyl, or C_2 C_8 alkyl, C_3 C_8 alkyl, C_3 C_8 alkyl, C_9 C_8 alkyl, C_9 C_8 alkynyl, or C_9 C_8 alkynyl.
- 18. The method of claim 11 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, R_7 is $R_{7a}COO$ -, R_{7a} is a heterosubstituted methyl wherein the heteroatom is substituted to form a heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, oxy, acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester or ether, X_5 is -COX₁₀ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, C_1 C_8 alkyl, C_2 C_8 alkenyl, or C_2 C_8 alkynyl, or C_2 C_8 alkenyl, or C_2 C_8 alkynyl.
 - 19. The method of claim 13 wherein X₃ is 2-furyl, 3-furyl, 2-thienyl or 3-thienyl.
 - 20. The method of claim 14 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl or 3-thienyl.
- 21. The method of claim 19 wherein R_7 is $R_{7a}COO$ and R_{7a} is a heterosubstituted methyl wherein the heteroatom is substituted to form an alkoxy or acyloxy.