Alexander B. Atanasov

11 Newcomb Street, Boston MA

Cell: (571) 268-4181 Email: atanasov@g.harvard.edu

Website: ABAtanasov.com Github: ABAtanasov Orcid: 0000-0002-3338-0324 arXiv: atanasov_a_1

Education

Harvard University

PhD. Theoretical Physics, 2018 – present.

Yale University

M.S. Mathematics, B.S. Mathematics, B.S. Physics, 2018.

Honors: Phi Beta Kappa, magna cum laude, distinction in the majors.

GPA: Physics 3.97; Mathematics 4.00; Total 3.92

• Advisors: David Poland (Physics), Philsang Yoo (Mathematics)

• Thesis: "Magnetic Monopoles, 't Hooft Lines, and Geometric Langlands"

Thomas Jefferson High School for Science and Technology

Concentration in Optics and Modern Physics, 2014.

GPA: 3.92 unweighted

Publications

- **5.** A.B. Atanasov, A.J. Hillman, and D. Poland. *Bootstrapping the Minimal 3D Superconformal Field Theory*. J. High Energy Physics. Nov 2018. (arXiv:1807.05702).
 - Results presented at Princeton's Hamilton Colloquium series and at the Simons Conformal Bootstrap Collaboration 2018 annual meeting.
- **4.** A.B. Atanasov and E. Schnetter. Sparse Grid Discretizations based on a Discontinuous Galerkin Method. October 2017. (arXiv:1710.09356)
- **3.** A.B. Atanasov and J.C. Ellenbogen. Simple, accurate electrostatics based formulas for calculating ionization potentials, electron affinities, and capacitances of fullerenes. Phys. Rev A95. March 2017.
- 2. A.B. Atanasov and Erik Schnetter. GalerkinSparseGrids.jl: A Module for Sparse Grid Discretization using Discontinuous Galerkin Bases. github.com/ABAtanasov/GalerkinSparseGrids.jl. August 2016.
- 1. A.B. Atanasov. Complex Analysis: In Dialogue & Appendix of Color Plots. CreateSpace Publishing. October 2013. (Amazon)

 A book written in high school, teaching complex analysis via Socratic dialogue.

Works in Progress:

* A.B. Atanasov. Representations of the Physical Universe. Expected Publication: Fall 2018. 200/550 Pages written. [link]

Intro to mathematical physics, based off lectures given at past summer schools.

Research

Undergraduate Researcher: 3D Conformal Bootstrap and the Ising Model Yale Dept. of Physics – Supervised by Prof. David Poland August 2016 - Present

- Developed a module to perform numerical investigations on 3D conformal field theories (CFTs) sharing similar operator structures to the 3D Ising model.
- Excluded a large portion of previously unexplored potential CFTs using a technique called θ -scan. Found new numerical bounds for the $\mathcal{N}=1$ supersymmetric Ising CFT. Published results.

Software Engineering Intern: Machine Learning and Computer Vision Google Inc. – Supervised by Dr. Nhat Vu Summer 2017

- Worked to port TensorFlow models onto embedded devices for real-time face detection and recognition, achieving a 6x speedup in run-through time for inference from the start of the project without loss in accuracy.
- Presented results to Hiroshi Lockheimer and the mobile machine vision teams.

Visiting Researcher: Sparse Grid Discretization for Relativistic Astrophysics Perimeter Institute for Theoretical Physics – Supervised by Dr. Erik Schnetter Summer of 2016, Winter of 2016-2017, Summer of 2018

- One of seven students selected internationally to participate in Perimeter's undergraduate program.
- Studied numerical solutions to Einstein's equations and Galerkin methods in hyperbolic differential equations.
- Designed and implemented a sparse-grid based solver for hyperbolic equations, decreasing cost at resolution N in d-dimensions from $O(N^d)$ to $O(N \log^{d-1} N)$. Successfully evolved a wave equation in 6+1 dimensions with high accuracy and low memory requirements.
- Improved this to handle non-linear equations over the summer of 2018. Paper recently submitted for publication.

Undergraduate Researcher: Dynamical Models of Recurrent Neural Networks Yale School of Medicine, Dept. of Psychiatry N3 Division – Under Dr. John Murray January 2016 - Present

- Built TensorFlow-based package for modeling neural dynamics in various cognitive tasks.
- Used CUDA, the Yale computing cluster, and tools in high-dimensional data science to generate results for upcoming publication.

Multi-scale Modeling of Carbon Nanomaterials

MITRE Corporation Student Program – Supervised by Dr. James Ellenbogen Summer of 2014 & 2015. Winter of 2014-2015 & 2015-2016

- Studied techniques in quantum chemistry and density functional theory.
- Developed electrostatic model with quantum modification from symmetry breaking to account for the scaling regularity of the capacitance trends of certain carbon nanostructures. Published results.

SEAP Program: Plasma Cloud Generation using Cavity Resonators Naval Research Laboratory – Supervised by Dr. Paul Bernhardt Summer of 2013

• Studied electromagnetic wave equations and impedance in transmission lines, cavity resonators, and waveguides. Built voltage amplifier and tuned impedance to generate plasma clouds in confined region.

Conferences Attended

"Conformal Bootstrap Program Annual Meeting 2018"

Simons Foundation, New York City NY, Nov 8-9 2018.

"Entanglement, Chaos, and Complexity in Field Theory and Gravity"

CUNY, New York City NY, Oct 26 2018.

"Conformal Bootstrap Workshop and Summer School 2018"

Caltech, Pasadena CA, June 2-14 2018.

"Gauge Theory, Geometric Langlands, and Vertex Operator Algebras"

Perimeter Institute, Waterloo ON, March 21-25 2018

Talks Introduction to Topological Quantum Field Theory

Harvard University Graduate Seminar, Sep. 2018

The Geometric Satake Correspondence in Physics

Seminar on the Langlands Program, Mar. 2017 (notes: [1][2])

Conformal Field Theories beyond Two Dimensions

Yale Graduate Representation Theory Seminar, Nov. 2017 (notes)

2D Conformal Field Theory and Lattice Models of BPZ

Seminar: Topics in Conformal Field Theory for Prof. David Poland, Dec. 2016 (notes)

Instantons on R⁴, Nakajima Quiver Varieties, and the Heisenberg Algebra

Seminar: Topics in Representation Theory for Prof. Igor Frenkel, Nov. 2016 (notes: [0][1][2])

6j-symbols and the Tetrahedron

Seminar in Modern Algebra for Prof. You Qi, Apr. 2016 (notes)

Phase Transitions in Graphs and the Margulis-Russo Theorem

Seminar in Modern Combinatorics under Prof. Van Vu, Dec. 2015

Teaching

Guest Mentor and Lecturer

Bulgaria HSSIMI Summer Research School, 2018

• Presented lectures on Hamiltonian mechanics, symplectic geometry, and the beginnings of quantum mechanics.

Grader and TA, Computer Science Department

Yale University

• Deep Learning Theory and Applications, Spring 2018

Grader and TA, Mathematics Department

Yale University

- Representation Theory, Spring 2018
- Intro. to Complex Analysis, Fall 2016 & Fall 2017
- Vector Analysis on Manifolds, Spring 2017 & Spring 2017
- Intro. to Abstract Algebra, Fall 2015

Guest Mentor and Lecturer

Perimeter International Summer School for Young Physicists, 2016

• Presented lecture on Covariance, Contravariance, Manifolds, and their Flows for high school audience (lecture video here).

Awards and Fellowships

J.M. Pierce Fellowship

2018, for first year graduate study at Harvard University.

Phi Beta Kappa

2018, for academic performance at Yale University

Howard L. Schultz Prize

2018, awarded to outstanding senior in the Yale physics department

Yale College Mellon Fellowship

2018, towards participating in an international conference on the geometric Langlands program in physics for senior thesis research

Yale Morse College Richter Fellowship

2016, towards international study at the Perimeter Institute

Yale Dean's Research Fellowship

2016, towards research in computational neuroscience

William L. Putnam Mathematics Competition, Top 300

2016, 2018

U.S.A. Physics Olympiad Semifinalist

2013

Languages and Skills

English (native), Bulgarian (native), Latin (proficient)

Programming Languages (most to least proficient):

Python, Mathematica, Julia, C, C++, Java, Matlab/Octave, HTML, Excel, R Parallel and High-Performance Computing Tools:

TensorFlow, OpenMP, MPI, CUDA, Julia Toolkit

Strong background in tutoring, public speaking, and academic lecturing.

Last but not least, LATEX.

References

James Ellenbogen

Nanosystems Group MITRE Corporation

ellenbgn@mitre.org

Erik Schnetter

Strong Gravity Group Perimeter Institute

eschnetter@perimeterinstitute.ca

Philsang Yoo

Dept. of Mathematics

Yale University

philsang.yoo@yale.edu

David Poland

Theory Group, Dept. of Physics

Yale University

david.poland@yale.edu

John Murray

Dept. of Psychiatry N3 Division

Yale School of Medicine

john.murray@yale.edu