INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA	Curso: Técnico Integrado em Mecatrônica	Data: 11/06/25	Nota
	Período: Vespertino	Recuperação Paralela	
	Disciplina: Microcontroladores	Valor: 100%	
	Prof.: Marcos Aparecido Chaves Ferreira		
Aluno (a):		Revisão do Alu	ıno:

4) Utilize o código exemplo para realizar a seguinte.

Inicie definindo as entradas com *pull-up* interno ativado e configure os pinos correspondentes às saídas. (2,0) Utilize a **PORTA D** (registradores PIND, DDRD e PORTD) para especificar todos os pinos de entrada e saída (I/O), conforme a tabela apresentada a seguir.

PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Vsaida	Misturador	V3	V2	V1	S. Vazio	S. Max.	START

Ao pressionar o botão **START**, a **válvula de saída** será acionada para manter o recipiente fechado, enquanto a **válvula V1** (**saída**) será aberta por 5 segundos. (2,0) Em seguida, a **válvula V2** será ligada por 3 segundos, seguida da ativação do **misturador**, também por 2 segundos, a fim de homogeneizar a mistura. (2,0). Após esse período, a **válvula V3** será aberta e permanecerá acionada até que o **sensor de nível máximo** detecte a presença de líquido, seguida da ativação do **misturador**, também por 2 segundos (2,0). Por fim, a válvula de saída será desligada e o sistema monitorará até que o sensor de nível mínimo (vazio) seja acionado, retornando então ao estado inicial (2,0). (**Total: 10,0pts**)

#define V1 PD0 ORG 0x00

Inicio:

LDI R19, 0b01010101 OUT DDRC, R19 LDI R19, 0b10101010 OUT PORTC, R19 RJMP PRINCIPAL

MISTURAR:

CBI PORTB,0 SBI PORTB,2 RCALL ATRASO RCALL ATRASO CBI PORTB, 2 RJMP ESVAZIAR

ESVAZIAR:

SBI PORTD,1 SBIC PINC,1 RJMP ESVAZIAR RJMP PRINCIPAL

ENCHER:
SBI PORTB,0
SBIC PINB,3
RJMP ENCHER
RJMP MISTURAR

Principal: SBIC PINB,2 RJMP Principal RJMP ENCHER

OBS: Válvulas V1, V2 e V3 são NF(normalmente fechadas); Válvula de saída NA(normalmente aberta); Cada chamada ATRASO representa um *delay* de 1 segundo.

INSTRUÇÕES BÁSICAS ASSEMBLY - ATMEGA

Lógica e aritmética

ADD	Rd, Rr	Soma dois registradores	Rd ← Rd + Rr	Z, C, N, V, H	1
ADC	Rd, Rr	Soma dois registradores com Carry	Rd ← Rd + Rr + C	Z, C, N, V, H	1
SUB	Rd, Rr	Subtrai dois registradores	Rd ← Rd - Rr	Z, C, N, V, H	1
CLR	Rd	Limpa registrador	Rd ← Rd ⊗ Rd	Z, N, V	1
INC	Rd	Incrementa registrador	Rd ← Rd + 1	Z, N, V	1
DEC	Rd	Decrementa registrador	Rd ← Rd - 1	Z, N, V	1
AND	Rd, Rr	Lógica E entre registradores	Rd ← Rd • Rr	Z, N, V	1
ANDI	Rd, K	Lógica E entre registrador e constante	Rd ← Rd • K	Z, N, V	1
OR	Rd, Rr	Lógica OU entre registradores	Rd ← Rd v Rr	Z, N, V	1
ORI	Rd, K	Lógica OU entre registrador e constante	Rd ← Rd v K	Z, N, V	1

Desvios e chamadas

RJMP	k	Desvio relativo	PC ← PC + k + 1	Nenhum	2
RCALL	k	Chama de sub-rotina	PC ← PC + k + 1	Nenhum	3
RET		Retorno de sub-rotina	PC ← STACK	Nenhum	4
RETI		Retorno de interrupção	PC ← STACK	1	4

Movimentação de dados

MOV	Rd, Rr	Movimento entre registradores	Rd ← Rr	Nenhum	1
LDI	Rd, K	Carrega valor imediato	Rd ← K	Nenhum	1
IN	Rd, P	Leitura de registrador de I/O	Rd ← P	Nenhum	1
OUT	P, Rr	Escrita de registrador de I/O	P ← Rr	Nenhum	1
LDS	Rd, k	Carrega diretamente da SRAM	Rd ← (k)	Nenhum	2
STS	k, Rr	Carrega diretamente para SRAM	(k) ← Rd	Nenhum	2

Manipulação de bits

SBI	P, b	Ativa o bit no registrador de I/O	I/O(P,b) ← 1	Nenhum	2
CBI	P, b	Limpa o bit do registrador de I/O	I/O(P,b) ← 0	Nenhum	2

Teste de bit

BREQ	k	Desvia se igual	if(Z=1) PC ← PC + k + 1	Nenhum	1/2
BRNE	k	Desvia se diferente	if(Z=0) PC ← PC + k + 1	Nenhum	1/2
SBIC	P, b	Pula se o bit do registrador de I/O estiver limpo (0)	if(P(b)=0) PC ← PC + 2 ou 3	Nenhum	1/2/3
SBIS	P, b	Pula se o bit do registrador de I/O estiver ativo (1)	if(P(b)=1) PC ← PC + 2 ou 3	Nenhum	1/2/3