Solutions for Midterm Exam (2010)

1. $Z_t = \beta_0 + a_t$ and $S_n = \omega Z_n + (1 - \omega) S_{n-1}$

i)
$$Var(S_n) = Var\{\omega Z_n + (1-\omega)S_{n-1}\} = \omega^2 Var(Z_n) + (1-\omega)^2 Var(S_{n-1})$$
 $\leftarrow Z_n \perp S_{n-1}$
= $\omega^2 \sigma^2 + (1-\omega)^2 Var(S_{n-1})$

⇒
$$Var(S_n) = \sigma^2 \omega^2 / \{1 - (1 - \omega)^2\} = \sigma^2 \omega^2 / (2\omega - \omega^2) = \frac{\sigma^2 \omega}{(2 - \omega)}$$

ii)
$$Var[e_n(3)] = Var[Z_{n+3} - S_n] = Var[Z_{n+3}] + Var[-S_n]$$

= $\sigma^2 + \sigma^2 \omega / (2 - \omega) = \frac{2\sigma^2}{(2 - \omega)}$

iii)
$$M_{t} = \begin{cases} \beta_{0} & t \leq T_{0} - 1 \\ \beta_{0} + (t - T_{0} + 1)\delta / m & T_{0} \leq t \leq T_{0} + m - 1 \\ \beta_{0} + \delta & t \geq T_{0} + m \end{cases}$$

 $t \leq T_0-1$ 에서 평균이 β_0 로 일정한 값으로 유지되지만, $T_0 \leq t \leq T_0+m-1$ 에서는 기울기가 δ/m 로 증가하다가, $t \geq T_0+m$ 에서 $\beta_0+\delta$ 로 유지된다.

2. $Z_t = T_t + S_t + I_t$ and $T_t = \beta_0 + \beta_1 t$ with s = 4

ii) Decomposition method에서는 각 요인을 각각 추정하고, Winters' method에서는 각 요인을 추정할 때 다른 요인의 추정 값을 결합적으로 적용하여 추정

3. 1) $Z_t = 2.0 + a_t + 0.2a_{t-1} - 0.48a_{t-1}$

→ $\psi_1 = 0.2$, $\psi_2 = -0.48$ 인 order가 2인 linear process

→ stationary process이다.

$$E[Z_t] = E\{2.0 + a_t + 0.2a_{t-1} - 0.48a_{t-1}\} = 2.0$$

$$Va[r \ Z = (1 \ 0.2 \ -(0.24 \ 8) =)$$

- 2) $Z_t = 2.0 + a_t + 0.2a_{t-1} 0.48a_{t-1}$
 - \rightarrow $\psi_1=0.2$, $\psi_2=-0.48$ 인 order가 2인 linear process이므로 stationary process이다.
- 4. Process의 level (평균 수준)이 t=80에서부터 증가하기 시작
 - → Winters' fitted value는 변경된 level 수준이 한동안 일부분만 반영되어 시계열의 변동을 충분히 반영하지 못함
 - → Level과 Trend의 평활상수를 0.05보다 높게, 예를 들어 0.20으로 설정하면 level과 trend의 변화를 좀 더 빠른 시간에 반영할 수 있을 것임.