主領線を

哈尔滨工业大学(深圳)2022 年夏季学期

计算机系统试题(A)

题 号	_	_	Ξ	四	五	总分
得 分						
阅卷人						

		风仓八						
		考生须知: 2	本次考试为 闭卷 考记	式,考试时间	可为 120 分年	钟,总分 10	00分。	
谷		1. 操作系统 () 是对	を 题(毎题2分,また 発題(毎 题2分,ま だ通过提供不同层だ 対实际处理器硬件的 B. 虚拟存储器 C.	次的抽象表示 的抽象。			夏杂性, 其中	
	密	补码的。	呈序中的整数常量、 是 B.编译		-	() 阶段 ³ D.执行	变成 2 进制	
	封	A.从 int B.从 int C.从 dou	可不同类型的数值过转换成 float 时,转换成 double 后ble 转换成 float 时ble 转换成 int 时	数值可能会》 ,数值虽然 ⁷ 寸,数值可能	溢出 下会溢出, 经会溢出			
班号	Д	A. 是非规5. 在 Y86-	EE float 类型的数 观格化数 B. 不能精 64 指令集体系结构 寄存器 B. 高速缓存	确表示 C.+	0.0 与-0.0 :可见的状态) 不同 D. 忘不包括 (唯一的	
	线	A. 循环道 B. 循环道 C. 数组道	图性的描述,不正确 通常具有很好的时间 通常具有很好的空间 通常具有很好的时间 通常具有很好的空间	司局部性 司局部性 司局部性				
小 選		A. 显示 B. 程序	《行到整数或浮点变除法溢出错直接退 除法溢出错直接退 不提示任何错误 用户程序确定处理	Щ	能发生()		

D. 以上都可能

	动态内存分配时产生内部碎片的原因不包括() A. 维护数据结构的开销 B. 满足对齐约束 C. 分配策略要求 D. 超出空闲块大小的分配请求
	链接过程中,赋初值的静态全局变量属于() A. 强符号 B. 弱符号 C. 可能是强符号也可能是弱符号 D. 以上都不是
	虚拟内存发生缺页的时候,正确的叙述是() A. 当发生虚拟内存缺页的时候,程序会直接退出。 B. 缺页产生的中断请求通常由 CPU 产生。 C. 当处理程序处理完缺页错误之后,会重新执行引发缺页的命令。 D.当一个程序先后重复执行两次的时候,会在相同的指令位置产生缺页错误
本 题	[得分
_,	填空题(每空2分,共20分)
1.	假定编译器规定 int 和 short 型长度分别为 32 位和 16 位,执行下列语句: unsigned short x=65530; unsigned int y=x; 得到 y 的机器数为。 (用 16 进制表示,勿省略前导 0)
2.	C语言程序定义了结构体 struct noname {int *a; char b; short c;}; 若该程序编译成 64 位可执行程序,则 sizeof (noname)的值是。
3.	- 1024 采用 IEEE 754 单精度浮点数格式表示的结果是。(16 进制形式)
4.	若高速缓存的块大小为 $B(B>8)$ 字节,向量 v 的元素为 int ,则对 v 的步长为 1 的应用的不命中率为。
5.	下面是 Y86-64 中的一段汇编程序,请指出 jne t 指令之后执行的那条指令的地址是。(16 进制表示)
	0x000: xorq %rax, %rax
	0x002: jne t
	0x019: t: irmovq \$3, %rdx
	0x023: irmovq \$4, %rcx
	0x02d: irmovq \$5, %rdx
6.	进程加载函数 execve,如调用成功则返回次。
7.	链接器经过和重定位两个阶段,将可重定位目标文件生成可执行目标文件。
8.	虚拟内存系统借助这一数据结构将虚拟页映射到物理页。
9.	虚拟内存发生缺页时,缺页中断是由触发。
10.	对于一个磁盘, 其平均旋转速率是 3600 RPM, 平均寻道时间是 5ms, 单个磁道上平均扇区数量是 900,则这个磁盘的平均访问时间是ms。(结果保留两位小数)

本题得分 三、简答题(15分) 1. 简述 Y86-64 流水线 CPU 中的冒险的种类与处理方法。(5 分) 2. 下列 C 程序存在安全漏洞,请给出攻击方法。如何修复或防范?(5分) int getbuf(char *s) { char buf[32]; strcpy(buf, s); } 3. 结合下图,简述虚拟内存地址翻译的过程。(5分) 缺页异常处理程序 2 PTEA CPU 芯片 牺牲页 1 VA PTE 高速缓 处理器 мми 磁盘 3 存/主存 新页 6

本题得分 四、系统分析题(10分) 1. C 程序 forkB 的源程序与进程图如下: (5分) void forkB() printf("L0\n"); (5) if(fork()!=0){ printf("L1\n"); if(fork()!=0){ (3) $printf("L2\n");$ (1) fork printf printf("Bye\n"); } 请写出上述进程图中空白处的内容 (1) _____(2) ____ (3) _____(5) ____ 2. 某 C 程序(64 位模式)的 main 函数参数 argv 地址为 0x0000413433323110, 其内容如 下: (5分) 0x0000413433323110: 30 31 32 33 34 41 00 00 33 31 32 33 34 41 00 00 0x0000413433323120: 35 31 32 33 34 41 00 00 00 00 00 00 00 00 00 00 0x0000413433323130: 30 43 00 30 00 32 42 00 38 00 31 31 32 32 00 30 0x0000413433323140: 32 33 00 61 41 00 31 00 32 00 33 00 31 00 00 31 _____,本程序的参数个数_ 请写出 程序名: 按顺序写出各个参数为 提示: int main(int argc, char *argv[]); 字符 0、A、a 的 ASCII 为 0x30、0x41、0x61

	mrmovq、addq 指令,合理设计 mraddq D(rB), rA 指令在各阶段的微操作。						
	C 0	rA	rB		D		
密 -	阶段名	称	mrmovq D(r	B), rA ret		mraddq D(rB), rA	
封							
_							
线							
_							

本题得分 _____

2. (8分)某处理器的虚拟地址为 32 位。虚拟内存的页大小是 4KB,物理地址为 48 位,Cache 块大小为 32B。物理内存按照字节寻址。其内部结构如下图所示,依据这个结构,回答下面几个问题:

(1) L1 数据 Cache 有多少组?相应的 Tag 位,组索引位和块内偏移位分别是多少?

(2)对于某数据,其访问的虚拟地址为 0x829358B,则该地址对应的 VPO 为多少?对应的 L1 TLBI 位为多少? (用 16 进制表示)

(3) 对于某指令,其访问的物理地址为 0x829358B,则该地址访问 L1 Cache 时,CT 位为多少? CO 位为多少? (用 16 进制表示)

- 3. (11分)关于程序优化,回答下列问题:
- 1)列举几种程序优化的方法,并简述其原理。(至少2种)
- 2) 程序优化: 矩阵 c[n][n] = a[n][n] * b[n][n] ,请针对该程序进行优化,写出优化后的程序,并说明优化的依据。

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```