

Remote Sensing Laboratory

Dept. of Information Engineering and Computer Science

University of Trento

Via Sommarive, 14, I-38123 Povo, Trento, Italy

Digital Signal Processing Lecture 2-Supplementary

Prof. Begüm Demir

E-mail: demir@disi.unitn.it Web page: http://rslab.disi.unitn.it

General discrete-time (DT) sinusoid sequence:

$$x[n] = A\cos(\omega_o n + \emptyset), \quad -\infty < n < \infty$$

A - amplitude

Ø - phase (radians)

n - sample number (an integer)

 ω_o - frequency (radians/sample)

 $\omega_o = 2\pi f_o$, where f_o is the frequency (cycles/sample)

Discrete-Time Sinusoids: Frequency and Rate of Oscillation

Rate of oscillation increases as ω increases UP TO A POINT then decreases again and then increases again and then decreases again

The rate of oscillation of: 1) Decreases as goes from $-\pi$ to 0; 2) Increases as goes from 0 to π

Frequencies around $\omega = 2\pi k$ are "low" frequency; Frequencies around $\omega = \pi(2k+1)$ are "high" frequency.

Let

$$x_1[n] = A\cos(\omega_1 n + \phi)$$
 and $x_2[n] = A\cos(\omega_2 n + \phi)$

and $\omega_2 = \omega_1 + 2\pi k$ where $k \in \mathbb{Z}$:

$$x_{2}[n] = A\cos(\omega_{2}n + \phi)$$

$$= A\cos(\omega_{1} + 2\pi k)n + \phi)$$

$$= A\cos(\omega_{1}n + 2\pi kn + \phi)$$

$$= A\cos(\omega_{1}n + \phi) = x_{1}[n]$$

- For the sinusoid plot below:
 - What is the period of the sinusoid (call it N)?
 - · What is the discrete-time frequency of the sinusoid?
 - What is the phase shift in samples? In radians?

- The period can be determined by counting the number of samples per repeating cycle, N = 12
- There are 12 samples per 1 cycle:
 - f_o is 1 cycle/12 samples, $f_o = \frac{1}{12}$ cycles/sample
 - $\omega_o = 2\pi \frac{1}{12} = \frac{\pi}{6}$ radians/sample
- The phase shift is two samples to the left:
 - Phase shift = 2 samples * $\frac{\pi}{6}$ radians/sample = $\frac{\pi}{3}$ radians
 - Phase shift is positive as it is shifted to the left
- $x[n] = \cos\left(\frac{\pi}{6}n + \frac{\pi}{3}\right)$