Bandycki Streaming

Szybki skrót tego co mamy do zrobienia (więcej dopowie prowadzący;]).

Sprawy do zrobienia można podzielić na dwie sekcje. Pierwsza dotyczy implementacji poszczególnych metod. Druga dotyczy modyfikacji samego eksperymentu (i przygotowania eksperymentów dodatkowych). Zadania z obu sekcji można sobie dowolnie mieszać (ich kolejność nie jest sztywna!).

Implementacja metod

W ramach laboratorium będziemy zajmowali się testowaniem w praktyce różnych podejść do rozwiązywania problemu k-rękich bandytów. Dla uproszczenia skupimy się na jego bardzo prostym wariancie: przewidywaniu, który z utworów może stać się przyszłym hitem (a więc warto puszczać go kolejnym użytkownikom). Nagroda 1 oznacza słuchacza, który przesłuchał go w całości, nagroda 0 oznacza, że utwór został pominięty. Do zaimplementowania mamy następujące algorytmy.

Explore-Then-Commit

Zależny od parametru m - czasu przeznaczonego na eksplorację.

```
1: Input m.

2: In round t choose action A_t = \begin{cases} (t \mod k) + 1 \,, & \text{if } t \leq mk \,; \\ \operatorname{argmax}_i \hat{\mu}_i(mk) \,, & t > mk \,. \end{cases}
(ties in the argmax are broken arbitrarily)
```

Algorithm 1: Explore-then-commit.

Zachłanny

Omówiony w części wykładowej - warto rozważyć wariant czysto zachłanny, wariant eksplorujący (z różnym *experiment rate*) oraz wariant z optymistycznymi początkowymi estymatami.

```
 \begin{array}{l} \text{A simple bandit algorithm} \\ \\ \text{Initialize, for } a=1 \text{ to } k \text{:} \\ Q(a) \leftarrow 0 \\ N(a) \leftarrow 0 \\ \\ \text{Loop forever:} \\ A \leftarrow \left\{ \begin{array}{l} \operatorname{argmax}_a Q(a) & \text{with probability } 1-\varepsilon \\ \operatorname{a random action} & \text{with probability } \varepsilon \end{array} \right. \\ R \leftarrow bandit(A) \\ N(A) \leftarrow N(A) + 1 \\ Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[ R - Q(A) \right] \\ \end{array}
```

UCB₁

Omówiony na wykładzie. Warto przyjrzeć się działaniu parametru c wpływającego na siłę eksploracji.

Wariant gradientowy

Omówiony na wykładzie. Warto zastanowić się nad odpowiednią realizacją modelu decyzyjnego (czy potrzebujemy tutaj pełnej sieci neuronowej?) oraz skorzystać z ulubionego frameworku. Istotny będzie też wykorzystany *learning rate*.

Próbkowanie Thompsona

Na zamknięcie - algorytm z nieco innej rodziny, na wykładzie dopiero się pojawi. W uogólnionej wersji bywa niewygodny w praktyce (bez silnego polegania na aproksymowaniu rozkładów)...

```
\overline{\mathbf{Algorithm}} \ \mathbf{4} \ \mathrm{Thompson}(\mathcal{X}, p, q, r)
 1: for t = 1, 2, ... do
           #sample model:
 3:
           Sample \hat{\theta} \sim p
 4:
 5:
           #select and apply action:
           x_t \leftarrow \operatorname{argmax}_{x \in \mathcal{X}} \mathbb{E}_{q_{\hat{\theta}}}[r(y_t)|x_t = x]
 6:
 7:
           Apply x_t and observe y_t
 8:
 9:
           #update distribution:
            p \leftarrow \mathbb{P}_{p,q}(\theta \in \cdot | x_t, y_t)
10:
11: end for
```

...ale dla naszego problemu (tzw. bandyci Bernoulliego) i modelowania rozkładami beta znacząco się upraszcza!

Algorithm 2 BernTS (K, α, β)

```
1: for t = 1, 2, ... do
2:
          #sample model:
          for k=1,\ldots,K do
3:
               Sample \hat{\theta}_k \sim \text{beta}(\alpha_k, \beta_k)
4:
5:
          end for
6:
7:
          #select and apply action:
8:
          x_t \leftarrow \operatorname{argmax}_k \hat{\theta}_k
9:
          Apply x_t and observe r_t
10:
11:
           #update distribution:
           (\alpha_{x_t}, \beta_{x_t}) \leftarrow (\alpha_{x_t} + r_t, \beta_{x_t} + 1 - r_t)
12:
```

Realizacja eksperymentów

Podstawowy eksperyment to uruchomienie istniejącego już szkieletu kodu i badanie, jak będą kumulowały się w czasie nagrody otrzymane przez poszczególne algorytmy. Dla ciekawszych: kilka dodatkowych rzeczy do zrobienia.

Studium parametryczne

Jeżeli algorytm jest zależny od pewnych meta-parametrów, to warto ocenić go w pełnym przekroju ich wartości (patrz odpowiedni slajd na wykładzie). Dla zaimplementowanych przez nas rozwiązań warto przygotować analogiczne studium.

Losowe wartości oczekiwane prawdopodobieństw (oraz tzw. regret)

Badanie algorytmów dla tylko jednej instancji problemu utrudnia ich bardziej obiektywną ocenę. Rozszerz protokół testowy o generowanie za każdym razem nowego problemu (z osobnym układem prawdopodobieństw). Jak agregować wyniki uzyskane dla różnych problemów (w przypadku niektórych znacznie łatwiej o otrzymywanie nagród)? Opierając się o obserwację tego, na ile zgromadzone nagrody odbiegają od ich wartości oczekiwanej w sytuacji podejmowania za każdym razem optymalnej decyzji - jest to tzw. *regret*.

let $\mu^*(\nu) = \max_{a \in \mathcal{A}} \mu_a(\nu)$ be the largest mean of all the arms.

The regret of policy π on bandit instance ν is

$$R_n(\pi, \nu) = n\mu^*(\nu) - \mathbb{E}\left[\sum_{t=1}^n X_t\right],$$

where the expectation is taken with respect to the probability measure on outcomes induced by the interaction of π and ν .

Bandyci niestacjonarni

Zmodyfikuj problem tak, by symulował stopniowy dryf preferencji odbiorców muzyki - niech z każdym krokiem czasowym prawdopodobieństwa przesłuchania utworu do końca zmieniają się o pewną niewielką wartość (np. losowaną z użyciem rozkładu normalnego) - w praktyce jest to pewne błądzenie losowe. Jak taka zmiana wpłynęła na wzajemną skuteczność badanych algorytmów? PS. W tym przypadku warto zmodyfikować algorytm zachłanny tak, by korzystał z pewnego *learning rate* - czyli zrealizować średnią wykładniczo ważoną aktualnością.

Trudniejszy dodatkowy problem [+1 punkt bonusowy]

Kilka utrudniających założeń:

- utworów jest nieco więcej (+- kilkadziesiąt);
- inny algorytm, na który nie mamy wpływu, wygenerował zawierające je playlisty (playlist jest więcej niż utworów, +- kilkaset);
- ten sam utwór może być elementem wielu playlist (w różnych pozycjach na playliście);
- słuchaczom polecamy całe playlisty, nie pojedyńcze utwory;
- jeżeli słuchaczowi nie spodoba się utwór, to porzuca słuchanie całej playlisty;
- naszym celem jest, by słuchał playlistę jak najdłużej (najlepiej do końca).

Zaproponuj konkretne ramy eksperymentu i zmodyfikuj dwa z wymienionych wcześniej algorytmów tak, by radziły sobie z powyższą sytuacją. Sprawdź, który wypadnie lepiej.

Bibliografia

- Lattimore, Tor, and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
- Sutton, Richard S., and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- Russo, Daniel J., et al. "A tutorial on thompson sampling." *Foundations and Trends*® *in Machine Learning* 11.1 (2018): 1-96.
- https://cse442-17f.github.io/LinUCB/