

Introduzione alla gestione dei sistemi di rete

Davide Quaglia

Tipologie di doppino

Doppino non schermato: un-shielded twisted pair (UTP)

Doppino schermato: shielded twisted pair (STP)

Doppino in rame non schermato

- (a) UTP di categoria 3
- (b) UTP di categoria 5

Connettore RJ45

Connettori per doppino

Coppie in cavi UTP

UTP dritto e UTP incrociato

Dritto (Straight)

TX+ 1)	
TX- ②	——
RX+3	<u>_</u>
RX. 6	———— 6 TX.

RJ-45 JACK EIA/TIA 568A STANDARD

Incrociato (Cross)

Uso di UTP dritti e incrociati

Power over Ethernet (PoE)

- Modalità per portare alimentazione sullo stesso doppino UTP usato per i collegamenti Ethernet
 - Semplifica il cablaggio
- Due possibilità:
 - Potenza e dati sulle stesse coppie
 - l'energia è veicolata dal segnale di *modo comune* mentre il dato passa come segnale *differenziale*
 - Le due coppie non utilizzate per i dati sono usate per portare l'alimentazione

Architettura PoE

Fibra ottica

Utilizzi:

- Trasmissioni in ambienti con elevato rumore elettromagnetico (es. fabbriche)
- Necessità di disaccoppiamento elettrico (es. appl. mediche)
- Altissima capacità

Fibra ottica

Cavi in fibra

Tipi di fibra ottica

- Multimodale
 - 62.5/125 micron (core/cladding)
 - Step-index
 - Graded-index
 - LED
- Monomodale
 - 10/125 micron (core/cladding)
 - Laser

Tipi di fibra ottica (2)

Multimodale step-index

Multimodale graded-index

Monomodale

Switch/Bridge

- Commutazione tra porte
- Accodamento in memoria dei frame (store&forward)
- Eliminazione frame errati e frammenti di collisione
- Selective flooding se non si conosce l'associazione MAC/porta
- Algoritmo di backward learning
- Selective flooding dei frame multicast e broadcast
- Spezzano il dominio di collisione ma non di mcast/bcast
- Possono collegare reti 802 diverse
 - 802.3 e 802.11
 - 802.3 a 100 Mb/s e 802.3 a 1 Gb/s (velocità diverse!)

Switch/Bridge (2)

Selective flooding

- I frame che arrivano da una certa porta vengono trasmessi su tutte le altre
- Infatti non ha senso trasmetterli anche sulla porta dalla quale provengono

Backward learning

- Lo switch impara quali indirizzi MAC hanno le stazioni attaccate su una certa porta guardando il campo source MAC dei frame che arrivano su quella porta
 - L'associazione MAC/porta è molti-a-uno perché a quella porta può essere attaccato un intero sottoalbero della rete
- Le associazioni imparate si aggiornano dinamicamente nel tempo
- Nessun intervento umano è richiesto

Sicurezza degli switch

- Sicurezza debole: basta un analizzatore come Wireshark
 - Flooding iniziale rivela gli indirizzi MAC delle interfacce dei PC collegati
 - Si può re-innescare la modalità di flooding generando PDU ethernet con MAC diverso che sporca la tabella MAC/porta (poisoning)
 - Furto di identità (indirizzo MAC) → MAC spoofing
 - Furto di informazioni
 - Generando PDU ethernet con il MAC di un altro PC si falsa il backward-learning dello switch che quindi inoltra sulla mia interfaccia tutto il traffico diretto a quel PC

Affidabilità degli switch

- Cause di malfunzionamento
 - Crash di uno switch
 - Guasto di porte
 - Interruzione di link tra switch
 - Errore nel cablaggio a livello di armadio (cablaggio strutturato)
- Soluzione: introdurre switch e link ridondanti e loro gestione
 - Standard 802.1D

Standard 802.1D

- Standardizza le funzionalità degli switch /bridge
- Traduzione MAC (802.3-802.11-802.16)
- Supporto a topologie magliate
 - Collegamenti ridondanti per sopperire ad eventuali cadute di link
 - Problema: duplicazione frame
 - Soluzione: spanning tree

Topologia ridondante di switch

HSW-08

Esempio di albero ricoprente (spanning tree)

Altro esempio di albero ricoprente (spanning tree)

Algoritmo/protocollo spanning tree

- Algoritmo distribuito su tutti gli switch/bridge
- Scambio periodico di PDU ethernet con indirizzo MAC destinazione di tipo multicast (chiamate "bridge PDU") sullo stato dei propri link
- Copertura del grafo ciclico mediante un albero (che è privo di cicli)
 - disattivazione temporanea dei link ridondanti
- Riattivazione dei link disattivati in caso di guasti
 - Notifica esplicita del guasto
 - Bridge PDU periodiche di diagnostica

Algoritmo/protocollo spanning tree

- Ogni switch, porta, link hanno un peso assegnato dal gestore della rete
- Ogni porta ha uno stato (blocked, listening, learning, forwarding)
- Indirzzo MAC multicast usato nel campo DestinationMAC delle Bridge PDU
 - -01:80:C2:00:00:00

Virtual LAN (VLAN)

- Gli switch separano domini di collisione ma non di multicast/broadcast:
 - Protocollo ARP e malfunzionamenti generano traffico broadcast che occupa inutilmente banda
- Problemi di sicurezza (furto di info e di identità):
 - Selective flooding nel transitorio
 - Possibilità di poisoning
- Soluzione: partizionamento di una LAN in tante LAN da collegare tramite router IP (creando corrispondenti sottoreti IP)

Virtual LAN (2)

- Separazione di stazioni tra LAN diverse anche se collegati allo stesso switch
 - L'amministratore decide l'assegnazione delle porte tramite SW di network management
 - Assegnazione facile da cambiare senza bisogno di spostare cavi

Virtual LAN (3)

- Come distribuire VLAN su più switch?
 - Occorre scrivere un ID della VLAN nella trama ethernet (standard VLAN 802.1Q)
 - Può essere aggiunto o rimosso dagli switch LAN
 - Non crea problemi di compatibilità con le stazioni
 - Utile anche per dare priorità

VLAN 802.1Q

VLAN 802.1Q

Switch e Router

- Un insieme di switch e/o access point wifi crea una rete di livello 2
- Dal punto di vista IP una rete di livello 2 è considerata una sotto-rete IP (prefisso IP e netmask comune a tutte le interfacce)
- Le sotto-reti IP sono collegate tra loro tramite router
- Un insieme di sotto-reti IP forma Internet (inter-net)
 - I router tra loro comunicano per compilare le tabelle di routing e realizzare il routing su Internet