Wybrane wzory matematyczne

$$\begin{array}{c} a_{\frac{n+1}{2}}\mathcal{Y} = ax + b & b = f\left(x_{0}\right) - f'\left(x_{0}\right) \cdot x_{0} \\ P(A) = P(A|B_{1}) \cdot P(B_{1}) + P(A|B_{2}) \cdot P(B_{2}) + \dots + P(A|B_{n}) \cdot P(B_{n}) \\ \frac{1}{2}(a_{\frac{n}{2}} + a_{\frac{n}{2}+1}) & y = f'(x_{0}) \cdot (x - x_{0}) + f(x_{0}) & \text{SID} \ \alpha \ a_{1} < a_{2} < a_{3} < a_{3} < a_{3} < a_{4} < (x - y) \\ \text{tg} \ (\alpha + \beta) = \frac{1}{2} & \text{tg} \alpha + \text{tg} \beta & \text{af} \ 0 \text{ coss} \ \beta \text{tg} \ (\alpha - \beta) = \frac{1}{2} & \text{tg} \alpha - \text{tg} \beta \\ 1 - \text{tg} \alpha \cdot \text{tg} \beta & P = (x_{0}, y_{0}) & \frac{3}{3} \beta^{\left\lceil \cdot \right\rceil} & P = (x_{0}, y_{0}) & \frac{a_{n+1}}{2} & \text{tg} \alpha \\ \alpha^{\left\lceil \cdot \right\rceil} A^{1} = (x, -y) & P = (x_{0}, y_{0}) & y = \alpha x + b & P = (x_{0}, y_{0}) & \frac{3}{3} \beta^{\left\lceil \cdot \right\rceil} & P = (x_{0}, y_{0}) & \frac{a_{n+1}}{2} & \text{tg} \alpha \\ \sin(\alpha + k \cdot 360^{\circ}) = \sin \alpha & a_{n+1} \cos(\alpha + k \cdot 360^{\circ}) = \cos \alpha & \frac{2}{2} & \text{tg} (\alpha + k \cdot 180^{\circ}) = \text{tg} \alpha & k - \text{calkowite} \\ \frac{\sqrt{3}}{2} \sqrt{2} & \frac{n \cdot (n - 1) \cdot \dots \cdot (n - k + 1) = n! \beta^{\left\lceil \cdot \right\rceil}}{(AABC - \Delta DEF) AB \sin \alpha (n - k)!} & y \neq 0 & \text{tg} \alpha & P(B_{1}) > 0 & \text{dla} \ 1 \leq i \leq n \\ \log_{10} x & \frac{1}{AB} & (AABC - \Delta DEF) & \frac{3}{AB} & \frac{1}{(ABC - \Delta DEF)} & \frac{3}{AB} & \frac{3}{2} & \frac{3}{2} & \log \beta x \\ & \frac{1}{AB} & \frac{1}{(ABC - \Delta DEF)} & \frac{3}{A} & \frac{3}{2} & \log \beta x \\ & \frac{1}{AB} & \frac{1}{(ABC - \Delta DEF)} & \frac{3}{A} & \frac{3}{2} & \frac{3}$$

$$y = ax + b \sqrt{a_1 \cdot a_2 \cdot \dots \cdot a_n}$$

$$y = f'(x_0) \cdot (x - x_0) + f(x_0) \Delta \ge 0$$

$$\frac{1}{2} \begin{pmatrix} (\Delta ABC \sim \Delta DEF) \\ (P_{\text{suc}} = \frac{1}{2}(x_s - x_s)(y_c - y_s) - (y_s - y_s)(x_c - x_s)) \\ (A_{\frac{n}{2}} + A_{\frac{n}{2}} + a_s) \end{pmatrix}^{\frac{n}{2}} \Delta < 0$$

$$b \ge 0 \quad a + c = b + d \quad y = ax + b$$

$$\frac{w_1 \cdot a_1 + w_2 \cdot a_2 + \dots + w_n \cdot a_n}{a_1 = a_2} \frac{3}{4}$$

Spis treści

1.	Wartość bezwzględna liczby	1
2.	Potęgi i pierwiastki	1
3.	Logarytmy	2
4.	Silnia. Współczynnik dwumianowy	2
5.	Wzór dwumianowy Newtona	2
6.	Wzory skróconego mnożenia	3
7.	Ciągi	3
8.	Funkcja kwadratowa	4
9.	Geometria analityczna	4
10.	Planimetria	6
11.	Stereometria	12
12.	Trygonometria	14
13.	Kombinatoryka	16
14.	Rachunek prawdopodobieństwa	17
15.	Parametry danych statystycznych	18
16.	Granica ciągu	18
17.	Pochodna funkcji	19
18.	Tablica wartości funkcji trygonometrycznych	20

Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja jest dystrybuowana bezpłatnie.

1. WARTOŚĆ BEZWZGLĘDNA LICZBY

Wartość bezwzględną liczby rzeczywistej x definiujemy wzorem:

$$|x| = \begin{cases} x & \text{dla } x \ge 0 \\ -x & \text{dla } x < 0 \end{cases}$$

Liczba |x| jest to odległość na osi liczbowej punktu x od punktu 0.

Dla dowolnej liczby *x* mamy:

$$|x| \ge 0$$
 $|x| = 0$ wtedy i tylko wtedy, gdy $x = 0$ $|-x| = |x|$

Dla dowolnych liczb x, y mamy:

$$|x + y| \le |x| + |y|$$
 $|x - y| \le |x| + |y|$ $|x \cdot y| = |x| \cdot |y|$

Ponadto, jeśli
$$y \neq 0$$
, to $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$.

Dla dowolnych liczb a oraz $r \ge 0$ mamy:

$$|x-a| \le r$$
 wtedy i tylko wtedy, gdy $a-r \le x \le a+r$

$$|x-a| \ge r$$
 wtedy i tylko wtedy, gdy $x \le a - r$ lub $x \ge a + r$

2. POTĘGI I PIERWIASTKI

Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n-tą potęgę:

$$a^n = \underbrace{a \cdot \dots \cdot a}_{n \text{ razy}}$$

Pierwiastkiem arytmetycznym $\sqrt[n]{a}$ stopnia n z liczby $a \ge 0$ nazywamy liczbę $b \ge 0$ taką, że $b^n = a$.

W szczególności, dla dowolnej liczby a zachodzi równość: $\sqrt{a^2} = |a|$.

Jeżeli a < 0 oraz liczba n jest nieparzysta, to $\sqrt[n]{a}$ oznacza liczbę b < 0 taką, że $b^n = a$. Pierwiastki stopni parzystych z liczb ujemnych nie istnieją.

Niech *m*, *n* będą liczbami całkowitymi dodatnimi. Definiujemy:

- dla
$$a \neq 0$$
: $a^{-n} = \frac{1}{a^n}$ oraz $a^0 = 1$

- dla
$$a \ge 0$$
:
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

$$- dla a > 0: \qquad a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}}$$

Niech r, s będą dowolnymi liczbami rzeczywistymi. Jeśli a > 0 i b > 0, to zachodzą równości:

$$a^r \cdot a^s = a^{r+s}$$
 $\left(a^r\right)^s = a^{r-s}$ $\frac{a^r}{a^s} = a^{r-s}$

$$(a \cdot b)^r = a^r \cdot b^r$$
 $\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$

Jeżeli wykładniki r, s są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb $a \neq 0$ i $b \neq 0$.

1

3. LOGARYTMY

Logarytmem $\log_a c$ dodatniej liczby c przy dodatniej i różnej od 1 podstawie a nazywamy wykładnik b potegi, do której należy podnieść a, aby otrzymać c:

$$\log_a c = b$$
 wtedy i tylko wtedy, gdy $a^b = c$

Równoważnie:

$$a^{\log_a c} = c$$

Dla dowolnych liczb x > 0, y > 0 oraz r zachodzą wzory:

$$\log_a (x \cdot y) = \log_a x + \log_a y \qquad \log_a x^r = r \cdot \log_a x \qquad \log_a \frac{x}{y} = \log_a x - \log_a y$$

Wzór na zamianę podstawy logarytmu:

jeżeli a > 0, $a \ne 1$, b > 0, $b \ne 1$ oraz c > 0, to

$$\log_b c = \frac{\log_a c}{\log_a b}$$

Logarytm $\log_{10} x$ można też zapisać jako $\log x$ lub $\lg x$.

4. SILNIA. WSPÓŁCZYNNIK DWUMIANOWY

Silnią liczby całkowitej dodatniej n nazywamy iloczyn kolejnych liczb całkowitych od 1 do n włącznie:

$$n! = 1 \cdot 2 \cdot ... \cdot n$$

Ponadto przyjmujemy umowę, że 0! = 1.

Dla dowolnej liczby całkowitej $n \ge 0$ zachodzi związek:

$$(n+1)! = n! \cdot (n+1)$$

Dla liczb całkowitych n, k spełniających warunki $0 \le k \le n$ definiujemy współczynnik dwumianowy $\binom{n}{k}$ (symbol Newtona):

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Zachodza równości:

$$\binom{n}{k} = \frac{n(n-1)(n-2) \cdot \dots \cdot (n-k+1)}{k!}$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{0} = 1 \qquad \binom{n}{n} = 1$$

5. WZÓR DWUMIANOWY NEWTONA

Dla dowolnej liczby całkowitej dodatniej *n* oraz dla dowolnych liczb *a*, *b* mamy:

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^{k} + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^{n}$$

2

6. WZORY SKRÓCONEGO MNOŻENIA

Dla dowolnych liczb a, b:

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

Dla dowolnej liczby całkowitej dodatniej n oraz dowolnych liczb a, b zachodzi wzór:

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + a^{n-k}b^{k-1} + \dots + ab^{n-2} + b^{n-1})$$

W szczególności:

$$a^{2}-b^{2} = (a-b)(a+b)$$

$$a^{2}-1 = (a-1)(a+1)$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

$$a^{3}-1 = (a-1)(a^{2}+a+1)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}+1 = (a+1)(a^{2}-a+1)$$

$$a^{n}-1 = (a-1)(a^{n-1}+a^{n-2}+...+a+1)$$

7. CIĄGI

Ciąg arytmetyczny

Wzór na n-ty wyraz ciągu arytmetycznego (a_n) o pierwszym wyrazie a_1 i różnicy r:

$$a_n = a_1 + (n-1)r$$

Wzór na sumę $S_n = a_1 + a_2 + ... + a_n$ początkowych n wyrazów ciągu arytmetycznego:

$$S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)r}{2} \cdot n$$

Między sąsiednimi wyrazami ciągu arytmetycznego zachodzi związek:

$$a_n = \frac{a_{n-1} + a_{n+1}}{2} \quad \text{dla} \quad n \ge 2$$

• <u>Ciag geometryczny</u>

Wzór na n-ty wyraz ciągu geometrycznego (a_n) o pierwszym wyrazie a_1 i ilorazie q:

$$a_n = a_1 \cdot q^{n-1}$$
 dla $n \ge 2$

Wzór na sumę $S_n = a_1 + a_2 + ... + a_n$ początkowych n wyrazów ciągu geometrycznego:

$$S_n = \begin{cases} a_1 \cdot \frac{1 - q^n}{1 - q} & \text{dla} \quad q \neq 1 \\ n \cdot a_1 & \text{dla} \quad q = 1 \end{cases}$$

Między sąsiednimi wyrazami ciągu geometrycznego zachodzi związek:

$$a_n^2 = a_{n-1} \cdot a_{n+1}$$
 dla $n \ge 2$

Procent składany

Jeżeli kapitał początkowy K złożymy na n lat w banku, w którym oprocentowanie lokat wynosi p% w skali rocznej i kapitalizacja odsetek następuje po upływie każdego roku trwania lokaty, to kapitał końcowy K_n wyraża się wzorem:

$$K_n = K \cdot \left(1 + \frac{p}{100}\right)^n$$

8. FUNKCJA KWADRATOWA

Postać ogólna funkcji kwadratowej: $f(x) = ax^2 + bx + c$, $a \ne 0$, $x \in R$. Wzór każdej funkcji kwadratowej można doprowadzić do postaci kanonicznej:

$$f(x) = a(x-p)^2 + q$$
, gdzie $p = -\frac{b}{2a}$, $q = -\frac{\Delta}{4a}$, $\Delta = b^2 - 4ac$

Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie o współrzędnych (p,q). Ramiona paraboli skierowane są do góry, gdy a > 0; do dołu, gdy a < 0.

Liczba miejsc zerowych funkcji kwadratowej $f(x) = ax^2 + bx + c$ (liczba pierwiastków trójmianu kwadratowego, liczba rzeczywistych rozwiązań równania $ax^2 + bx + c = 0$), zależy od wyróżnika $\Delta = b^2 - 4ac$:

- jeżeli Δ < 0, to funkcja kwadratowa nie ma miejsc zerowych (trójmian kwadratowy nie ma pierwiastków rzeczywistych, równanie kwadratowe nie ma rozwiązań rzeczywistych),
- jeżeli $\Delta = 0$, to funkcja kwadratowa ma dokładnie jedno miejsce zerowe (trójmian kwadratowy ma jeden pierwiastek podwójny, równanie kwadratowe ma dokładnie jedno rozwiązanie rzeczywiste): $x_1 = x_2 = -\frac{b}{2a}$
- jeżeli $\Delta > 0$, to funkcja kwadratowa ma dwa miejsca zerowe (trójmian kwadratowy ma dwa różne pierwiastki rzeczywiste, równanie kwadratowe ma dwa rozwiązania rzeczywiste):

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} \qquad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Jeśli $\Delta \ge 0$, to wzór funkcji kwadratowej można doprowadzić do postaci iloczynowej:

$$f(x) = a(x - x_1)(x - x_2)$$

Wzory Viéte'a

Jeżeli $\Delta \ge 0$, to

$$x_1 + x_2 = \frac{-b}{a} \qquad \qquad x_1 \cdot x_2 = \frac{c}{a}$$

9. GEOMETRIA ANALITYCZNA

Odcinek

Długość odcinka o końcach w punktach

$$A = (x_A, y_A), B = (x_B, y_B)$$
 jest dana wzorem:

$$|AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Współrzędne środka odcinka AB:

$$\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$$

• Wektory

Współrzędne wektora \overline{AB} :

$$\overrightarrow{AB} = \left[x_B - x_A, y_B - y_A \right]$$

Jeżeli $\vec{u} = [u_1, u_2], \ \vec{v} = [v_1, v_2]$ są wektorami, zaś a jest liczbą, to

$$\vec{u} + \vec{v} = [u_1 + v_1, u_2 + v_2]$$
 $\vec{a \cdot u} = [a \cdot u_1, a \cdot u_2]$

$$\vec{a \cdot u} = [\vec{a} \cdot u_1, \vec{a} \cdot u_2]$$

Prosta

Równanie ogólne prostej:

$$Ax + By + C = 0,$$

gdzie $A^2 + B^2 \neq 0$ (tj. współczynniki A, B nie są równocześnie równe 0).

Jeżeli A=0, to prosta jest równoległa do osi Ox; jeżeli B=0, to prosta jest równoległa do osi Oy; jeżeli C = 0, to prosta przechodzi przez początek układu współrzędnych.

Jeżeli prosta nie jest równoległa do osi Oy, to ma ona równanie kierunkowe:

$$y = ax + b$$

Liczba a to współczynnik kierunkowy prostej:

$$a = \operatorname{tg} \alpha$$

Współczynnik b wyznacza na osi Oy punkt, w którym dana prosta ją przecina.

Równanie kierunkowe prostej o współczynniku kierunkowym a, która przechodzi przez punkt $P = (x_0, y_0)$:

5

$$y = a(x - x_0) + y_0$$

Równanie prostej, która przechodzi przez dwa dane punkty $A = (x_A, y_A), B = (x_B, y_B)$:

$$(y-y_A)(x_B-x_A)-(y_B-y_A)(x-x_A)=0$$

• Prosta i punkt

Odległość punktu $P = (x_0, y_0)$ od prostej o równaniu Ax + By + C = 0 jest dana wzorem:

$$\frac{\left|Ax_0 + By_0 + C\right|}{\sqrt{A^2 + B^2}}$$

· Para prostych

Dwie proste o równaniach kierunkowych:

$$y = a_1 x + b_1 \qquad \qquad y = a_2 x + b_2$$

spełniają jeden z następujących warunków:

- są równoległe, gdy
$$a_1 = a_2$$

- są prostopadłe, gdy
$$a_1a_2 = -1$$

- tworzą kąt ostry
$$\varphi$$
 i tg $\varphi = \left| \frac{a_1 - a_2}{1 + a_1 a_2} \right|$

Dwie proste o równaniach ogólnych:

$$A_1 x + B_1 y + C_1 = 0$$

$$A_2 x + B_2 y + C_2 = 0$$

- są równoległe, gdy $A_1B_2 - A_2B_1 = 0$

- są prostopadłe, gdy $A_1A_2 + B_1B_2 = 0$

- tworzą kąt ostry
$$\varphi$$
 i tg $\varphi = \left| \frac{A_1 B_2 - A_2 B_1}{A_1 A_2 + B_1 B_2} \right|$

• Trójkat

Pole trójkąta ABC o wierzchołkach $A = (x_A, y_A)$, $B = (x_B, y_B)$, $C = (x_C, y_C)$, jest dane wzorem:

$$P_{\Delta ABC} = \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (y_B - y_A)(x_C - x_A)|$$

Środek ciężkości trójkąta ABC, czyli punkt przecięcia jego środkowych, ma współrzędne:

$$\left(\frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3}\right)$$

- Przekształcenia geometryczne
- przesunięcie o wektor $\vec{u} = [a,b]$ przekształca punkt A = (x,y) na punkt A' = (x+a,y+b)
- symetria względem osi Ox przekształca punkt A = (x, y) na punkt A' = (x, -y)
- symetria względem osi Oy przekształca punkt A = (x, y) na punkt A' = (-x, y)
- symetria względem punktu (a,b) przekształca punkt A = (x,y) na punkt A' = (2a-x,2b-y)
- jednokładność o środku w punkcie O i skali $s \neq 0$ przekształca punkt A na punkt A' taki, że $\overrightarrow{OA'} = s \cdot \overrightarrow{OA}$, a więc, jeśli $O = (x_0, y_0)$, to jednokładność ta przekształca punkt A = (x, y) na punkt $A' = (sx + (1-s)x_0, sy + (1-s)y_0)$

6

• Równanie okręgu

Równanie okręgu o środku w punkcie S = (a, b) i promieniu r > 0:

$$(x-a)^2 + (y-b)^2 = r^2$$

lub
$$x^2 + y^2 - 2ax - 2by + c = 0$$
 gdy $r^2 = a^2 + b^2 - c > 0$

10. PLANIMETRIA

• Cechy przystawania trójkątów

To, że dwa trójkąty ABC i DEF są przystające ($\Delta ABC \equiv \Delta DEF$), możemy stwierdzić na podstawie każdej z następujących **cech przystawania trójkątów**:

- cecha przystawania "bok bok": odpowiadające sobie boki obu trójkątów mają te same długości: |AB| = |DE|, |AC| = |DF|, |BC| = |EF|
- cecha przystawania "bok kąt bok": dwa boki jednego trójkąta są równe odpowiadającym im bokom drugiego trójkąta oraz kąt zawarty między tymi bokami jednego trójkąta ma taką samą miarę jak odpowiadający mu kąt drugiego trójkąta, np. |AB| = |DE|, |AC| = |DF|, $| \ll BAC | = | \ll EDF |$
- cecha przystawania "kąt bok kąt": jeden bok jednego trójkąta ma tę samą długość, co odpowiadający mu bok drugiego trójkąta oraz miary odpowiadających sobie kątów obu trójkątów, przyległych do boku, są równe, np. |AB| = |DE|, $| \lt BAC| = | \lt EDF|$, $| \lt ABC| = | \lt DEF|$
- Cechy podobieństwa trójkątów

To, że dwa trójkąty ABC i DEF są podobne ($\Delta ABC \sim \Delta DEF$), możemy stwierdzić na podstawie każdej z następujących **cech podobieństwa trójkątów**:

cecha podobieństwa "bok – bok":
 długości boków jednego trójkąta są proporcjonalne do odpowiednich długości boków drugiego trójkąta,

np.
$$\frac{|AB|}{|DE|} = \frac{|AC|}{|DF|} = \frac{|BC|}{|EF|}$$

cecha podobieństwa "bok – kąt – bok":
 długości dwóch boków jednego trójkąta są proporcjonalne do odpowiednich długości dwóch boków

drugiego trójkąta i kąty między tymi parami boków są przystające, np. $\frac{|AB|}{|DE|} = \frac{|AC|}{|DF|}$, $| \ll BAC | = | \ll EDF |$

cecha podobieństwa "kąt – kąt – kąt":
 dwa kąty jednego trójkąta są przystające do odpowiednich dwóch kątów drugiego trójkąta (więc też i trzecie kąty obu trójkątów są przystające): | ⟨*BAC*| = | ⟨*EDF*|, | ⟨*ABC*| = | ⟨*DEF*|, | ⟨*ACB*| = | ⟨*DEF*|

Przyjmujemy oznaczenia w trójkącie ABC:

a, b, c	 długości boków, leżących odpowiednio
	naprzeciwko wierzchołków A, B, C
2n=a+b+c	– obwód tróikata

$$2p = a + b + c$$
 – obwód trójkąta

$$\alpha, \beta, \gamma$$
 — miary kątów przy wierzchołkach A, B, C — wysokości opuszczone z wierzchołków A, B, C

Twierdzenie sinusów

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Twierdzenie cosinusów

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$

Wzory na pole trójkata

$$\begin{split} P_{\Delta ABC} &= \frac{1}{2} \cdot a \cdot h_a = \frac{1}{2} \cdot b \cdot h_b = \frac{1}{2} \cdot c \cdot h_c \\ P_{\Delta ABC} &= \frac{1}{2} a \cdot b \cdot \sin \gamma = \frac{1}{2} a \cdot c \cdot \sin \beta = \frac{1}{2} b \cdot c \cdot \sin \alpha \\ P_{\Delta ABC} &= \frac{1}{2} a^2 \frac{\sin \beta \cdot \sin \gamma}{\sin \alpha} = \frac{1}{2} b^2 \frac{\sin \alpha \cdot \sin \gamma}{\sin \beta} = \frac{1}{2} c^2 \frac{\sin \alpha \cdot \sin \beta}{\sin \gamma} \\ P_{\Delta ABC} &= \frac{abc}{4R} \qquad \qquad P_{\Delta ABC} &= 2R^2 \cdot \sin \alpha \cdot \sin \beta \cdot \sin \gamma \\ P_{\Delta ABC} &= rp \qquad \qquad P_{\Delta ABC} &= \sqrt{p(p-a)(p-b)(p-c)} \end{split}$$

Twierdzenie Pitagorasa (wraz z twierdzeniem odwrotnym do niego) W trójkącie ABC kąt γ jest prosty wtedy i tylko wtedy, gdy $a^2 + b^2 = c^2$.

Związki miarowe w trójkącie prostokatnym

Załóżmy, że kat γ jest prosty. Wówczas:

$$h_c^2 = |AD| \cdot |DB|$$

$$h_c = \frac{ab}{a}$$

$$h_c = \frac{ab}{c}$$

$$a = c \cdot \sin \alpha = c \cdot \cos \beta$$

$$a = b \cdot \lg \alpha = b \cdot \frac{1}{\lg \beta}$$

$$R = \frac{1}{2}c \qquad r = \frac{a+b-c}{2} = p-c$$

• Trójkąt równoboczny

$$h = \frac{a\sqrt{3}}{2} \qquad R = \frac{2}{3}h$$

$$P_{\Delta} = \frac{a^2\sqrt{3}}{4} \qquad r = \frac{1}{3}h$$

• <u>Twierdzenie Talesa</u> (wraz z twierdzeniem odwrotnym do niego)

Różne proste AC i BD przecinają się w punkcie P, przy czym spełniony jest jeden z warunków:

- punkt A leży wewnątrz odcinka PC oraz punkt B leży wewnątrz odcinka PD lub
- punkt A leży na zewnątrz odcinka PC oraz punkt B leży na zewnątrz odcinka PD.

Wówczas proste AB i CD są równoległe wtedy i tylko wtedy, gdy

$$\frac{|PA|}{|AC|} = \frac{|PB|}{|BD|}$$

Czworokąty

Trapez

Czworokąt, który ma co najmniej jedną parę boków równoległych.

Wzór na pole trapezu:

$$P = \frac{a+b}{2} \cdot h$$

9

Równoległobok

Czworokąt, który ma dwie pary boków równoległych.

Wzory na pole równoległoboku:

$$P = ah = a \cdot b \cdot \sin \alpha = \frac{1}{2} \cdot |AC| \cdot |BD| \cdot \sin \varphi$$

$A \xrightarrow{D} C$

Czworokąt, który ma wszystkie boki jednakowej długości. Wzory na pole rombu:

$$P = ah = a^{2} \cdot \sin \alpha = \frac{1}{2} \cdot |AC| \cdot |BD|$$

Deltoid

Czworokąt wypukły, który ma oś symetrii zawierającą jedną z przekątnych.

Wzór na pole deltoidu:

$$P = \frac{1}{2} \cdot |AC| \cdot |BD|$$

• Koło

Wzór na pole koła o promieniu *r*:

$$P = \pi r^2$$

Obwód koła o promieniu r:

$$L = 2\pi r$$

Wycinek koła

Wzór na pole wycinka koła o promieniu r i kącie środkowym α wyrażonym w stopniach:

$$P = \pi r^2 \cdot \frac{\alpha}{360^{\circ}}$$

Długość łuku AB wycinka koła o promieniu r i kącie środkowym α wyrażonym w stopniach:

$$l = 2\pi r \cdot \frac{\alpha}{360^{\circ}}$$

Kąty w okręgu

Miara kata wpisanego w okrąg jest równa połowie miary kata środkowego, opartego na tym samym łuku.

Miary kątów wpisanych w okrąg, opartych na tym samym łuku, są równe.

Miary kątów wpisanych w okrąg, opartych na łukach równych, są równe.

• Twierdzenie o kącie między styczną i cięciwą

Dany jest okrąg o środku w punkcie O i jego cięciwa AB. Prosta AC jest styczna do tego okręgu w punkcie A. Wtedy $| \not AOB | = 2 \cdot | \not CAB |$, przy czym wybieramy ten z kątów środkowych AOB, który jest oparty na łuku znajdującym się wewnątrz kąta CAB.

• Twierdzenie o odcinkach stycznych

Jeżeli styczne do okręgu w punktach A i B przecinają się w punkcie P, to

$$|PA| = |PB|$$

• Twierdzenie o odcinkach siecznej i stycznej

Dane są: prosta przecinająca okrąg w punktach A i B oraz prosta styczna do tego okręgu w punkcie C. Jeżeli proste te przecinają się w punkcie P, to

$$|PA| \cdot |PB| = |PC|^2$$

• Okrag opisany na czworokacie

Na czworokącie można opisać okrąg wtedy i tylko wtedy, gdy sumy miar jego przeciwległych kątów wewnętrznych są równe 180°:

$$\alpha + \gamma = \beta + \delta = 180^{\circ}$$

• Okrąg wpisany w czworokąt

W czworokąt wypukły można wpisać okrąg wtedy i tylko wtedy, gdy sumy długości jego przeciwległych boków są równe:

$$a+c=b+d$$

11. STEREOMETRIA

• Twierdzenie o trzech prostych prostopadłych

Prosta k przebija płaszczyznę w punkcie P. Prosta l jest rzutem prostokątnym prostej k na tę płaszczyznę. Prosta m leży na tej płaszczyźnie i przechodzi przez punkt P.

Wówczas prosta m jest prostopadła do prostej k wtedy i tylko wtedy, gdy jest prostopadła do prostej l.

Przyjmujemy oznaczenia:

P – pole powierzchni całkowitej

 P_p pole podstawy P_b pole powierzchni bocznej

V – objętość

Prostopadłościan

V = abc

P = 2(ab + bc + ac)

gdzie a, b, c są długościami krawędzi prostopadłościanu

Graniastosłup prosty

$$P_b = 2p \cdot h$$
$$V = P_p \cdot h$$

gdzie 2p jest obwodem podstawy graniastosłupa

$$V = \frac{1}{3} P_p \cdot h$$

gdzie h jest wysokością ostrosłupa

Walec

Stożek

Kula

$$P_b = 2\pi rh$$

$$P = 2\pi r (r+h)$$

$$V = \pi r^2 h$$

gdzie r jest promieniem podstawy, h – wysokością walca

$$P_b=\pi r l$$

$$P = \pi r (r + l)$$

$$V = \frac{1}{3}\pi r^2 h$$

gdzie r jest promieniem podstawy, h – wysokością, l – długością tworzącej stożka

$$P = 4\pi r^2$$

$$V = \frac{4}{3}\pi r^3$$

gdzie r jest promieniem kuli

12. TRYGONOMETRIA

Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym

$$\sin \alpha = \frac{a}{c} \qquad \qquad \sin \beta = \frac{b}{c}$$

$$\sin \beta = \frac{b}{a}$$

$$\cos \alpha = \frac{b}{c} \qquad \cos \beta = \frac{a}{c}$$

$$\cos \beta = \frac{a}{c}$$

$$tg \alpha = \frac{a}{b} \qquad tg \beta = \frac{b}{a}$$

$$tg \beta = \frac{b}{a}$$

• Definicje funkcji trygonometrycznych

$$\sin \alpha = \frac{y}{r}$$

$$\cos \alpha = \frac{x}{r}$$

$$\operatorname{tg} \alpha = \frac{y}{x}, \operatorname{gdy} x \neq 0$$

gdzie
$$r = \sqrt{x^2 + y^2} > 0$$
 jest

promieniem wodzącym punktu M

• Wykresy funkcji trygonometrycznych

Związki między funkcjami tego samego kąta

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\alpha \neq \frac{\pi}{2} + k\pi$$

dla $\alpha \neq \frac{\pi}{2} + k\pi$, k – całkowite

Niektóre wartości funkcji trygonometrycznych

	0°	30°	45°	60°	90°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg α	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nie istnieje

• Funkcje sumy i różnicy katów

Dla dowolnych kątów α , β zachodzą równości:

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$
$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

Ponadto mamy równości:

$$tg(\alpha + \beta) = \frac{tg \alpha + tg \beta}{1 - tg \alpha \cdot tg \beta} \qquad tg(\alpha - \beta) = \frac{tg \alpha - tg \beta}{1 + tg \alpha \cdot tg \beta}$$

które zachodzą zawsze, gdy są określone i mianownik prawej strony nie jest zerem.

Funkcje podwojonego kata

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$tg2\alpha = \frac{2tg \alpha}{1 - tg^2 \alpha}$$

• Sumy, różnice i iloczyny funkcji trygonometrycznych

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \qquad \sin \alpha \sin \beta = -\frac{1}{2} (\cos(\alpha + \beta) - \cos(\alpha - \beta))$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} \qquad \cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha + \beta) + \cos(\alpha - \beta))$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \qquad \sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

• Wybrane wzory redukcyjne

$$\sin(90^{\circ} - \alpha) = \cos \alpha \qquad \cos(90^{\circ} - \alpha) = \sin \alpha$$

$$\sin(90^{\circ} + \alpha) = \cos \alpha \qquad \cos(90^{\circ} + \alpha) = -\sin \alpha$$

$$\sin(180^{\circ} - \alpha) = \sin \alpha \qquad \cos(180^{\circ} - \alpha) = -\cos \alpha \qquad \text{tg}(180^{\circ} - \alpha) = \text{tg} \alpha$$

$$\sin(180^{\circ} + \alpha) = -\sin \alpha \qquad \cos(180^{\circ} + \alpha) = -\cos \alpha \qquad \text{tg}(180^{\circ} + \alpha) = \text{tg} \alpha$$

Okresowość funkcji trygonometrycznych

$$\sin(\alpha + k \cdot 360^\circ) = \sin \alpha$$
 $\cos(\alpha + k \cdot 360^\circ) = \cos \alpha$ $\tan(\alpha + k \cdot 180^\circ) = \tan \alpha$, $\tan(\alpha + k \cdot 360^\circ) = \tan \alpha$

13. KOMBINATORYKA

• Wariacje z powtórzeniami

Liczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z k niekoniecznie różnych wyrazów, jest równa n^k .

Wariacje bez powtórzeń

Liczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z k ($1 \le k \le n$) różnych wyrazów, jest równa

16

$$n \cdot (n-1) \cdot \dots \cdot (n-k+1) = \frac{n!}{(n-k)!}$$

Permutacie

Liczba sposobów, na które n ($n \ge 1$) różnych elementów można ustawić w ciąg, jest równa n!.

Kombinacje

Liczba sposobów, na które spośród n różnych elementów można wybrać k ($0 \le k \le n$) elementów, jest równa $\binom{n}{k}$.

14. RACHUNEK PRAWDOPODOBIEŃSTWA

Własności prawdopodobieństwa

$$0 \le P(A) \le 1$$
 dla każdego zdarzenia $A \subset \Omega$

$$P(\Omega) = 1$$
 Ω – zdarzenie pewne

$$P(\varnothing) = 0$$
 \varnothing – zdarzenie niemożliwe (pusty podzbiór Ω)

$$P(A) \leq P(B)$$
, gdy $A \subset B \subset \Omega$

$$P(A') = 1 - P(A)$$
, gdzie A' oznacza zdarzenie przeciwne do zdarzenia A

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
, dla dowolnych zdarzeń $A, B \subset \Omega$

$$P(A \cup B) \leq P(A) + P(B)$$
, dla dowolnych zdarzeń $A, B \subset \Omega$

Twierdzenie: Klasyczna definicja prawdopodobieństwa

Niech Ω będzie skończonym zbiorem wszystkich zdarzeń elementarnych. Jeżeli wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, to prawdopodobieństwo zdarzenia $A \subset \Omega$ jest równe

$$P(A) = \frac{|A|}{|\Omega|}$$

gdzie |A| oznacza liczbę elementów zbioru A, zaś $|\Omega|$ – liczbę elementów zbioru Ω .

Prawdopodobieństwo warunkowe

Niech A, B będą zdarzeniami losowymi zawartymi w Ω , przy czym P(B) > 0. Prawdopodobieństwem warunkowym P(A|B) nazywamy liczbę

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Twierdzenie o prawdopodobieństwie całkowitym

Jeżeli zdarzenia losowe $B_1, B_2, ..., B_n$ zawarte w Ω spełniają warunki:

1.
$$B_1, B_2, \dots, B_n$$
 są parami rozłączne, tzn. $B_i \cap B_j = \emptyset$ dla $i \neq j, \ 1 \leq i \leq n, \ 1 \leq j \leq n$,

$$2. \quad B_1 \cup B_2 \cup \ldots \cup B_n = \Omega ,$$

3.
$$P(B_i) > 0$$
 dla $1 \le i \le n$,

to dla każdego zdarzenia losowego A zawartego w Ω zachodzi równość

$$P(A) = P(A | B_1) \cdot P(B_1) + P(A | B_2) \cdot P(B_2) + ... + P(A | B_n) \cdot P(B_n)$$

17

15. PARAMETRY DANYCH STATYSTYCZNYCH

• Średnia arytmetyczna

Średnia arytmetyczna n liczb $a_1, a_2, ..., a_n$ jest równa:

$$\overline{a} = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Średnia ważona

Średnia ważona n liczb $a_1, a_2, ..., a_n$, którym przypisano dodatnie wagi – odpowiednio: $w_1, w_2, ..., w_n$ jest równa:

$$\frac{w_1 \cdot a_1 + w_2 \cdot a_2 + \dots + w_n \cdot a_n}{w_1 + w_2 + \dots + w_n}$$

• <u>Średnia geometryczna</u>

Średnia geometryczna n nieujemnych liczb $a_1, a_2, ..., a_n$ jest równa:

$$\sqrt[n]{a_1 \cdot a_2 \cdot ... \cdot a_n}$$

Mediana

Medianą uporządkowanego w kolejności niemalejącej zbioru n danych liczbowych $a_1 \le a_2 \le a_3 \le ... \le a_n$ jest:

- dla *n* nieparzystych: $a_{\frac{n+1}{2}}$ (środkowy wyraz ciągu)
- dla *n* parzystych: $\frac{1}{2} \left(a_{\frac{n}{2}} + a_{\frac{n+1}{2}} \right)$ (średnia arytmetyczna środkowych wyrazów ciągu)

• Wariancja i odchylenie standardowe

Wariancją n danych liczbowych $a_1, a_2, ..., a_n$ o średniej arytmetycznej \overline{a} jest liczba:

$$\sigma^{2} = \frac{\left(a_{1} - \overline{a}\right)^{2} + \left(a_{2} - \overline{a}\right)^{2} + \dots + \left(a_{n} - \overline{a}\right)^{2}}{n} = \frac{a_{1}^{2} + a_{2}^{2} + \dots + a_{n}^{2}}{n} - \left(\overline{a}\right)^{2}$$

Odchylenie standardowe σ jest pierwiastkiem kwadratowym z wariancji.

16. GRANICA CIĄGU

• Granica sumy, różnicy, iloczynu i ilorazu ciągów

Dane są ciągi (a_n) i (b_n) , określone dla $n \ge 1$.

Jeżeli
$$\lim_{n\to\infty} a_n = a$$
 oraz $\lim_{n\to\infty} b_n = b$, to

$$\lim_{n \to \infty} (a_n + b_n) = a + b \qquad \lim_{n \to \infty} (a_n - b_n) = a - b \qquad \lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

Jeżeli ponadto $b_n \neq 0$ dla $n \ge 1$ oraz $b \ne 0$, to

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}$$

• Suma wyrazów nieskończonego ciągu geometrycznego

Dany jest nieskończony ciąg geometryczny (a_n) , określony dla $n \ge 1$, o ilorazie q.

Niech (S_n) oznacza ciąg sum początkowych wyrazów ciągu (a_n) , to znaczy ciąg określony wzorem $S_n = a_1 + a_2 + ... + a_n$ dla $n \ge 1$. Jeżeli |q| < 1, to ciąg (S_n) ma granicę

$$S = \lim_{n \to \infty} S_n = \frac{a_1}{1 - q}$$

Tę granicę nazywamy sumą wszystkich wyrazów ciągu (a_n) .

17. POCHODNA FUNKCJI

• Pochodna sumy, różnicy, iloczynu i ilorazu funkcji

$$\begin{aligned} & \left[c \cdot f(x) \right]' = c \cdot f'(x) \text{ dla } c \in R \\ & \left[f(x) + g(x) \right]' = f'(x) + g'(x) \\ & \left[f(x) - g(x) \right]' = f'(x) - g'(x) \\ & \left[f(x) \cdot g(x) \right]' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \\ & \left[\frac{f(x)}{g(x)} \right]' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x) \right]^2}, \text{ gdy } g(x) \neq 0 \end{aligned}$$

• Pochodne niektórych funkcji

Niech a, b, c będą dowolnymi liczbami rzeczywistymi, n dowolną liczbą całkowitą.

funkcja	pochodna funkcji		
f(x) = c	f'(x) = 0		
f(x) = ax + b	f'(x) = a		
$f(x) = ax^2 + bx + c$	f'(x) = 2ax + b		
$f(x) = \frac{a}{x}, x \neq 0$	$f'(x) = \frac{-a}{x^2}$		
$f(x) = x^n$	$f'(x) = nx^{n-1}$		

Równanie stycznej

Jeżeli funkcja f ma pochodną w punkcie x_0 , to równanie stycznej do wykresu funkcji f w punkcie $(x_0, f(x_0))$ dane jest wzorem

$$v = ax + b$$

gdzie współczynnik kierunkowy stycznej jest równy wartości pochodnej funkcji f w punkcie x_0 , to znaczy $a = f'(x_0)$, natomiast $b = f(x_0) - f'(x_0) \cdot x_0$. Równanie stycznej możemy zapisać w postaci

$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

18. TABLICA WARTOŚCI FUNKCJI TRYGONOMETRYCZNYCH

$\alpha [\circ]$	$\sin \alpha$	$\left[\begin{array}{c c} \operatorname{tg}\alpha & \beta & \circ\end{array}\right]$	
LJ	$\cos \beta$	l igu	, _[
0	0 0,0000		90
1	0,0175	0,0000 0,0175	89
2	0,0349	0,0349	88
3	0,0523	0,0524	87
4	0,0698	0,0699	86
5	0,0872	0,0875	85
6	0,1045	0,1051	84
7	0,1219	0,1228	83
8	0,1392	0,1405	82
9	0,1564	0,1584	81
10	0,1736	0,1763	80
11	0,1908	0,1944	79
12	0,2079	0,2126	78
13	0,2250	0,2309	77
14	0,2419	0,2493	76
15	0,2588	0,2679	75
16	0,2756	0,2867	74
17	0,2924	0,3057	73
18	0,3090	0,3249	72
19	0,3256	0,3443	71
20	0,3420	0,3640	70
21	0,3584	0,3839	69
22	0,3746	0,4040	68
23	0,3907	0,4245	67
24	0,4067	0,4452	66
25	0,4226	0,4663	65
26	0,4384	0,4877	64
27	0,4540	0,5095	63
28	0,4695	0,5317	62
29	0,4848	0,5543	61
30	0,5000	0,5774	60
31	0,5150	0,6009	59
32	0,5299	0,6249	58
33	0,5446	0,6494	57
34	0,5592	0,6745	56
35	0,5736	0,7002	55
36	0,5878	0,7265	54
37	0,6018	0,7536	53
38	0,6157	0,7813	52
39	0,6293	0,8098	51
40	0,6428	0,8391	50
41	0,6561	0,8693	49
42	0,6691	0,9004	48
43	0,6820	0,9325	47
44	0,6947	0,9657	46
45	0,7071	1,0000	45

$\alpha \lceil \circ \rceil$	$\sin \alpha$	$tg \alpha$	$\beta \lceil \circ \rceil$
LJ	$\cos \beta$	igα	/ L]
46	0,7193	1,0355	44
47	0,7314	1,0724	43
48	0,7431	1,1106	42
49	0,7547	1,1504	41
50	0,7660	1,1918	40
51	0,7771	1,2349	39
52	0,7880	1,2799	38
53	0,7986	1,3270	37
54	0,8090	1,3764	36
55	0,8192	1,4281	35
56	0,8290	1,4826	34
57	0,8387	1,5399	33
58	0,8480	1,6003	32
59	0,8572	1,6643	31
60	0,8660	1,7321	30
61	0,8746	1,8040	29
62	0,8829	1,8807	28
63	0,8910	1,9626	27
64	0,8988	2,0503	26
65	0,9063	2,1445	25
66	0,9135	2,2460	24
67	0,9205	2,3559	23
68	0,9272	2,4751	22
69	0,9336	2,6051	21
70	0,9397	2,7475	20
71	0,9455	2,9042	19
72	0,9511	3,0777	18
73	0,9563	3,2709	17
74	0,9613	3,4874	16
75	0,9659	3,7321	15
76	0,9703	4,0108	14
77	0,9744	4,3315	13
78	0,9781	4,7046	12
79	0,9816	5,1446	11
80	0,9848	5,6713	10
81	0,9877	6,3138	9
82	0,9903	7,1154	8
83	0,9925	8,1443	7
84	0,9945	9,5144	6
85	0,9962	11,4301	5
86	0,9976	14,3007	4
87	0,9986	19,0811	3
88	0,9994	28,6363	2
89	0,9998	57,2900	1
90	1,0000	_	0

Centralna Komisja Egzaminacyjna ul. Józefa Lewartowskiego 6, 00-190 Warszawa tel. (22) 53-66-500, fax (22) 53-66-504 www.cke.edu.pl, e-mail: ckesekr@cke.edu.pl

Okręgowa Komisja Egzaminacyjna w Gdańsku ul. Na Stoku 49, 80-874 Gdańsk tel. (58) 32-05-590, fax (58) 32-05-591 www.oke.gda.pl, e-mail: komisja@oke.gda.pl

Okręgowa Komisja Egzaminacyjna w Łodzi ul. Praussa 4, 94-203 Łódź tel. (42) 63-49-133, fax (42) 63-49-154 www.oke.lodz.pl, e-mail: komisja@komisja.pl

Okręgowa Komisja Egzaminacyjna w Jaworznie ul. Adama Mickiewicza 4, 43-600 Jaworzno tel. (32) 78-41-615, fax (32) 78-41-608 www.oke.jaw.pl, e-mail: oke@oke.jaw.pl

Okręgowa Komisja Egzaminacyjna w Poznaniu ul. Gronowa 22, 61-655 Poznań tel. (61) 85-40-160, fax (61) 85-21-441 www.oke.poznan.pl, e-mail: sekretariat@oke.poznan.pl

Okręgowa Komisja Egzaminacyjna w Krakowie os. Szkolne 37, 31-978 Kraków tel. (12) 68-32-101, fax (12) 68-32-100 www.oke.krakow.pl, e-mail: oke@oke.krakow.pl

Okręgowa Komisja Egzaminacyjna w Warszawie Plac Europejski 3, 00-844 Warszawa tel. (22) 45-70-335, fax (22) 45-70-345 www.oke.waw.pl, e-mail: info@oke.waw.pl

Okręgowa Komisja Egzaminacyjna w Łomży Al. Legionów 9, 18-400 Łomża tel. (86) 47-37-120, fax (86) 47-36-817 www.oke.lomza.pl, e-mail: sekretariat@oke.lomza.pl

Okręgowa Komisja Egzaminacyjna we Wrocławiu ul. Zielińskiego 57, 53-533 Wrocław tel. (71) 78-51-894, fax (71) 78-51-866 www.oke.wroc.pl, e-mail: sekretariat@oke.wroc.pl

Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja jest dystrybuowana bezpłatnie.