Cross-domain Correspondence Learning for Exemplar-based Image Translation (CoCosNet)

CVPR 2020 oral

Pan Zhang, Bo Zhang, Dong Chen, Lu Yuan, Fang Wen

Prior image translation methods

Lack of fine-grain controllability

Edge → shoes
(MUNIT, ECCV 2018)

Significant artifacts in complex scenes

SPADE, CVPR 2019

Proposed exemplar-based solution

- Instance-level style control
- Significantly improve the image quality
- General translation solution

Relation with exemplar-based methods

Embed style with latent space

Style injection during AdaIN

Style discriminator

Motivation

How to establish correspondence for heterogeneous images?

What is the desired translation output given an exemplar?

Facilitate each other

Framework

Framework

Framework

$$\alpha_{h,w}^i(r_{y\to x}) \times \frac{F_{c,h,w}^i - \mu_{h,w}^i}{\sigma_{h,w}^i} + \beta_{h,w}^i(r_{y\to x}),$$

Translation network

Pseudo exemplar loss:

$$\mathcal{L}_{feat} = \sum_{l} \lambda_{l} \|\phi_{l}(\mathcal{G}(x_{A}, x_{B}')) - \phi_{l}(x_{B})\|_{1},$$

Pseudo exemplar pairs

Translation network

Contextual loss: let the output to mimic the appearance of the semantically corresponding patches of the exemplar.

$$\mathcal{L}_{context} = \sum_{l} \omega_{l} \left[-\log \left(\frac{1}{n_{l}} \sum_{i} \max_{j} A^{l}(\phi_{i}^{l}(\hat{x}_{B}), \phi_{j}^{l}(y_{B})) \right) \right],$$

pairwise affinities in the VGG feature space

Translation network

Translation network

Perceptual loss: the output should maintain the semantics as the input

$$\mathcal{L}_{perc} = \left\| \phi_l(\hat{x}_B) - \phi_l(x_B) \right\|_1.$$

Adversarial loss: make the output as realistic as possible

$$\mathcal{L}_{adv}^{\mathcal{D}} = -\mathbb{E}[h(\mathcal{D}(y_B))] - \mathbb{E}[h(-\mathcal{D}(\mathcal{G}(x_A, y_B)))]$$

$$\mathcal{L}_{adv}^{\mathcal{G}} = -\mathbb{E}[\mathcal{D}(\mathcal{G}(x_A, y_B))],$$

Cross-domain correspondence network

Domain alignment loss: the embeddings of inputs should lie in the same domain

$$\mathcal{L}_{domain}^{\ell_1} = \|\mathcal{F}_{A \to S}(x_A) - \mathcal{F}_{B \to S}(x_B)\|_1$$

Cross-domain correspondence network

Cycle warping regularization:

$$\mathcal{L}_{reg} = \left\| r_{y \to x \to y} - y_B \right\|_1,$$

Inputs Dense warping Final output

w/ \mathcal{L}_{reg}

w/o \mathcal{L}_{reg}

Total loss

$$\mathcal{L}_{\theta} = \min_{\mathcal{F}, \mathcal{T}, \mathcal{G}} \max_{\mathcal{D}} \psi_1 \mathcal{L}_{feat} + \psi_2 \mathcal{L}_{perc} + \psi_3 \mathcal{L}_{context} + \psi_4 \mathcal{L}_{adv}^{\mathcal{G}} + \psi_5 \mathcal{L}_{domain}^{\ell_1} + \psi_6 \mathcal{L}_{reg},$$

- Pseudo exemplar pairs:
 - VGG feature matching
- Real exemplar pairs:
 - Perceptual loss
 - Contextual loss
- Adversarial loss:
 - hinge loss
 - Discriminator feature matching
- Domain alignment loss
 - Domain I1 loss
- Correspondence regularization
 - Cyclic warping loss

Comparison with state-of-the-art

User preference

Results on ADE20k

Results on Celeb-A

Results on Deepfashion

Cross-domain correspondence

Weak supervised learning!

Application: interactive painter

Application: image editing

Application: image editing

Application: image editing

Application: makeup transfer

Thank you!

Project webpage: https://panzhang0212.github.io/CoCosNet/ Code will be released soon. Bringing photo back to life, CVPR 2020 oral Project page: http://raywzy.com/Old_Photo/

