Conteúdo

1	Visa	ão geral da rede teste	1
2	Res	ultados da rede teste	2
	2.1	Distribuição de G_{norm}	2
	2.2	Variação de $\overline{\mathbf{G}}$ por ω	3
	2.3	Seleção das espécies com maior G_{norm}	7

1 Visão geral da rede teste

A rede teste (Mucha et al., 2010) possui 2 camadas (2 e 1), 30 nós e 98 conexões. A tabela 1 mostra o resumo das propriedades da rede. A figura 1 apresenta uma visão geral da rede.

Tabela 1: Propriedades da rede teste

Propriedade	Valor
Número de Camadas	2
Tipo de conexões	2 e 1
Número de nós	30
Número de conexões	98

Figura 1: Visão geral da rede teste .

2 Resultados da rede teste

2.1 Distribuição de G_{norm}

A variável G foi calculada para 10 partições de ω , ou seja, o tamanho do passo dado dentro de ω foi de 0.1. O processo foi repetido para 16 partições de γ , com γ começando em 0.25, com passos de 0.25 até um γ máximo de 4. O cálculo de \overline{G} foi feito usando 100 iterações. A tabela 2 resume os parâmetros de execução do código e a figura 2 mostra a distribuição dos valores de G_{norm} médio obtidos.

Tabela 2: Parâmetros de execucao

Parâmetro	Valor
Iterações	100
Partições de omega	10

Distribuicao de G normalizado

Figura 2: Distribuição de ${\cal G}_{norm}$ médio da rede teste .

2.2 Variação de $\overline{\mathbf{G}}$ por ω

Como temos dados em 3 dimensões $(\overline{G}, \omega, \gamma)$ temos algumas formas diferentes para apresentar os valores de \overline{G} em relação a ω e γ , não sei dizer se devemos usar uma delas, as três ou alguma outra. A figura 3 mostra curvas de decaimento de \overline{G} por ω para diferentes nós com diferentes valores de G_{norm} e para diferentes valores de G_{norm} e par

Figura 3: Exemplos de curvas do decaimento de \overline{G} em relação a ω e γ para diferentes valores de γ da rede teste . (a) Curvas de \overline{G} da especie com maior valor de G_{norm} da rede. (b) Segundo maior valor de G_{norm} . (c) Valor de G_{norm} mais proximo da média geral da rede. (d) Curvas de \overline{G} referente a uma espécie com valor de G_{norm} abaixo da média da rede.

Figura 4: Exemplos de superfícies do decaimento de \overline{G} em relação a ω e γ para diferentes valores de γ da rede teste . (a) Superfície de \overline{G} da especie com maior valor de G_{norm} da rede. (b) Segundo maior valor de G_{norm} . (c) Valor de G_{norm} mais proximo da média geral da rede. (d) Superfície de \overline{G} referente a uma espécie com valor de G_{norm} abaixo da média da rede.

Figura 5: Exemplos de mapas de calor do decaimento de \overline{G} em relação a ω e γ para diferentes valores de γ da rede teste . (a) Mapa de calor de \overline{G} da especie com maior valor de G_{norm} da rede. (b) Segundo maior valor de G_{norm} . (c) Valor de G_{norm} mais proximo da média geral da rede. (d) Mapa de calor de \overline{G} referente a uma espécie com valor de G_{norm} abaixo da média da rede.

2.3 Seleção das espécies com maior G_{norm} .

A figura 6 e a tabela 3 mostram as espécies com valor de G_{norm} acima de 1.1, ou seja, aquelas com decaimento de G mais lento da rede teste.

Figura 6: Espécies com \mathbf{G}_{norm} maiores que 1.1 em destaque de tamanho e cor.

Tabela 3: Espécies com valores de G_{norm} maiores que 1.1

Espécie	G_{norm}
node25	1.254
node17	1.212
node21	1.193
node24	1.131
node26	1.130
node15 node14	1.109 1.108

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. *Science*, 328(5980), 876–878. https://doi.org/10.1126/science.1184819