Part 1:

Introduction/Linear Systems

Linear Equation:

$$A\mathbf{x} = \mathbf{b} \Rightarrow a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$$

-"a" is a constant -"x" is a variable

Linear System: a set of Linear Equations Three Possibilities:

- Unique Solution
- Infinitely Many Solutions
- No Solution

Row Reduction

Elementary Row Operations

- 1. Interchange Rows
- 2. Multiply a row by a constant
- 3. Add a multiple of a row to another

Gaussian Elimination: Use elementary row operations on a matrix to reduce to "row echelon form"

Gauss-Jordan Elimination: Same as Gaussian, but reduce to "reduced row echelon form"

Steps:

- 1. Write System as Augmented Matrix
- 2. Reduce using Elementary Row Operations
- 3. Solve Using Back Substitution or in terms of other variables

$$2x_2 + 3x_3 = 8$$

Example $2x_1 + 3x_2 + x_3 = 5$

$$x_1 - x_2 - 2x_3 = -5$$

$$\begin{pmatrix} 0 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 5 \\ -5 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 3 & 8 \\ 2 & 3 & 1 & 5 \\ 1 & -1 & -2 & -5 \end{pmatrix}$$
 Interchange R1 and R3

$$\begin{pmatrix} 1 & -1 & -2 \begin{pmatrix} -5 \\ 2 & 3 & 1 & 5 \\ 0 & 2 & 3 & 3 \end{pmatrix}$$
 Subtract 2R1 from R2

$$\begin{pmatrix} 1 & -1 & -2\begin{pmatrix} -5\\ 0 & 5 & 5\\ 0 & 2 & 3 & 3 \end{pmatrix}$$
 Multiply R2 by constant $\frac{1}{5}$

$$\begin{pmatrix} 1 & -1 & -2 \begin{pmatrix} -5 \\ 0 & 1 & 1 & 3 \\ 0 & 2 & 3 & 3 \end{pmatrix}$$
Subtract R2 from R3

$$\begin{pmatrix} 1 & -1 & -2 & -5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \end{pmatrix} R2: R2-R3$$

This is "row echelon form."

(Gaussian: Use back substitution from here)

$$\begin{pmatrix}
1 & -1 & -2 & -5 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{pmatrix}$$
R1: R1+R2+2R3
$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{pmatrix}$$

This is "reduced row echelon form." (**Gauss-Jordan:** Use back substitution from here)

$$x_1 = 0, x_2 = 1, x_3 = 2$$
 -Or- $\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$

Vectors, Linear Combinations

Vector: $\mathbf{v} = \langle v_1, v_2, \dots, v_n \rangle$

Linear Combination: Vector, \mathbf{v} , is a linear combination of vectors: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ if

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

-"c" is a scalar and is called a coefficient

Linear Independence: A Set of vectors:

 $\{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$ is linearly dependent if

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n = 0$$

For some set of nontrivial coefficients $\{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$ is *linearly independent* if only the trivial solution exists.

Matrix Operations

Addition/Subtraction:

$$A = [a_{ij}]_{m \times n} \qquad B = [b_{ij}]_{m \times n}$$
$$A \pm B = [a_{ij} \pm b_{ij}]$$

(A and B must be the same size)

Multiplication:

$$A = [a_{ij}]_{m \times n} \qquad B = [b_{ij}]_{n \times r}$$
$$C = AB = [c_{ij}]_{m \times r}$$

Where,

$$c_{ii} = a_{i1}b_{1i} + a_{i2}b_{2i} + \ldots + a_{in}b_{ni}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
 (This is useful for proofs)

(A must have k columns, B must have k rows)

Transpose: The transpose of a matrix A is obtained by interchanging its rows and columns

For
$$A = [a_{ij}]_{m \times n} : A^T = [a_{ji}]_{n \times m}$$

$$A = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} A^{T} = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 2+1 & 0+1 \\ 3+2 & 1+5 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 5 & 6 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 2\cdot1+0\cdot2 & 2\cdot3+0\cdot5 \\ 3\cdot1+1\cdot2 & 3\cdot3+1\cdot5 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

$$AB = \begin{pmatrix} 2 & 6 \\ 5 & 14 \end{pmatrix}$$

Inverse of a Matrix

Inverse: The inverse of matrix A is some matrix: A^{-1} such that:

$$AA^{-1}=I$$

$$A^{-1}A = I$$

Invertible: A matrix is invertible if it has an inverse

Rule for 2×2 matrix:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Gauss-Jordan Method for Computing the Inverse:

$$[A \mid I] \rightarrow [I \mid A^{-1}]$$

Example

Example
$$A = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix} over \mathbb{Z}_{3}$$

$$A^{-1} : [A \mid I] = \begin{pmatrix} 2 & 2 \mid 1 & 0 \\ 2 & 0 \mid 0 & 1 \end{pmatrix} \underbrace{2R1}_{}$$

$$\begin{pmatrix} 1 & 1 \mid 2 & 0 \\ 2 & 0 \mid 0 & 1 \end{pmatrix} \underbrace{R2:R2+R1}_{}$$

$$\begin{pmatrix} 1 & 1 \mid 2 & 0 \\ 0 & 1 \mid 2 & 1 \end{pmatrix} \underbrace{R1:R1+2R2}_{}$$

$$\begin{pmatrix} 1 & 0 \mid 0 & 2 \\ 0 & 1 \mid 2 & 1 \end{pmatrix} = [I \mid A^{-1}]$$

$$A^{-1} = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix}$$

P^TLU Factorization

Matrix A can be written as

$$A = P^T L U$$

where L is a unit lower triangular matrix and U is a an upper triangular matrix

P is a permutation matrix (for row

$$A = P^{T} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ * & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & 1 \end{pmatrix} \begin{pmatrix} * & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & * \end{pmatrix}$$

Example

$$A = \overline{\begin{pmatrix} 0 & 0 & 6 \\ 1 & 2 & 3 \\ 2 & 1 & 4 \end{pmatrix}} R_1 \longleftrightarrow R_2$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 6 \\ 2 & 1 & 4 \end{pmatrix}} R_3 - 2R_1$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & -3 & -2 \end{pmatrix} R_2 \longleftrightarrow R_3$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & -3 & -2 \end{pmatrix} = U$$

$$P = P_2 P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$A = P^T L U = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -2 \\ 0 & 0 & 6 \end{pmatrix}$$

Part 2:

Determinants

Determinant: A function that assigns a scalar det(A) to an $n \times n$ matrix

Rules for 2×2 and 3×3 matrices

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c & a & b \\ d & e & f & e = \\ g & h & k & g & h \end{vmatrix}$$

$$aei+bfg+cdh-bdi-afh-ceg$$

Laplace Expansion Theorem:

Cofactor Expansion:

Along the *i*-th row:

$$\det A = a_{i1} \det A_{i1} - \dots + (-1)^{1+n} a_{in} \det A_{in}$$

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{ij} \det A_{ij}$$

Along the *j*-th column:

$$\det A = a_{1j} \det A_{1j} - \dots + (-1)^{1+n} a_{nj} \det A_{nj}$$

$$\det A = \sum_{i=1}^{n} (-1)^{1+i} a_{ij} \det A_{ij}$$

Example:

$$\begin{vmatrix} 5 & -3 & 2 \\ 1 & 0 & 2 \\ 2 & -1 & 3 \end{vmatrix} = 2 \begin{vmatrix} -3 & 2 \\ 0 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 5 & 2 \\ 1 & 2 \end{vmatrix} + 3 \begin{vmatrix} 5 & -3 \\ 1 & 0 \end{vmatrix} =$$

= 2(-6) + 8 + 3(3) = 5 (expansion along 3rd row)

Properties:

$$a. \det(AB) = (\det A)(\det B)$$

b.
$$\det(A^{-1}) = (\frac{1}{\det A})$$

$$c. \det(A^T) = \det A$$

Determinant of a matrix B:

Due to Elementary Row Operations on matrix A

1. Interchange two rows (or columns) of *A*;

$$\det B = -\det A$$

2. Multiply a row in A by a scalar, k;

$$\det B = k \det A$$

3. Add a multiple of one row of A to another;

$$\det B = \det A$$

Cramer's Rule: For a given linear

system: $A\mathbf{x} = \mathbf{b}$. The unique solution can be given by:

$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det A}$$
 for $i = 1, ..., n$

Where $A_i(\mathbf{b})$ is the *i*-th row of A replaced by \mathbf{b}

Proof of Cramer's Rule:

$$AI_{i}(\mathbf{x}) = A[\mathbf{e}_{1} \cdots \mathbf{x} \cdots \mathbf{e}_{n}] = [A\mathbf{e}_{1} \cdots A\mathbf{x} \cdots A\mathbf{e}_{n}] = [A\mathbf{e}_{1} \cdots \mathbf{b} \cdots A\mathbf{e}_{n}] = [\mathbf{a}_{1} \cdots \mathbf{b} \cdots \mathbf{a}_{n}] = A_{i}(\mathbf{b})$$

$$(\det A)(\det I_{i}(\mathbf{x})) = \det(AI_{i}(\mathbf{x})) = \det(A_{i}(\mathbf{b}))$$

$$\det I_i(x) = \begin{pmatrix} 1 & 0 & \cdots & x_1 & \dots & \cdots & 0 & 0 \\ 0 & 1 & \cdots & x_2 & \cdots & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & & & \vdots & \vdots \\ 0 & 0 & \cdots & x_i & \cdots & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \ddots & & \vdots & \vdots \\ \vdots & \vdots & & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & x_{n-1} & \cdots & \cdots & 1 & 0 \\ 0 & 0 & \cdots & x_n & \cdots & \cdots & 0 & 1 \end{pmatrix} = X_i$$

$$(\det A)x_i = \det(A_i(\mathbf{b})) \Rightarrow x_i = \frac{\det(A_i(\mathbf{b}))}{\det A}$$

Eigenvectors

Eigenvector: The eigenvector, \mathbf{x} , of a matrix A is any vector such that

$$A\mathbf{x} = \lambda \mathbf{x}$$

Eigenvalue: λ , it is a constant

$$A\mathbf{x} = \lambda \mathbf{x} = \lambda (I\mathbf{x}) \Longrightarrow (A - I\lambda)\mathbf{x} = \mathbf{0}$$

Use $det(A-I\lambda) = 0$ to create a *characteristic* equation to find the Eigenvalues.

Example:

This is the characteristic equation: $\lambda^2 - 6\lambda + 8 = 0$ These are the eigenvalues: $\lambda = 2.4$

$$\bullet \quad \left[A - 4I \mid \mathbf{0} \right] = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$x_1 - x_2 = 0 \Rightarrow x_1 = x_2$$

$$\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 This is the corresponding eigenvector

for
$$\lambda = 4$$

•
$$[A-2I \mid \mathbf{0}] = \begin{pmatrix} 1 & 1 \mid 0 \\ 1 & 1 \mid 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \mid 0 \\ 0 & 0 \mid 0 \end{pmatrix}$$

 $x_1 + x_2 = 0 \Rightarrow x_1 = -x_2$

$$\mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{This is the corresponding eigenvector} \quad \lambda_1 = 4 \ \lambda_2 = 2 \ \textit{With} \ \mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ \mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

for
$$\lambda = 2$$

Diagonalization

Similarity: Two square matrices of the same size are said to be similar if for some matrix, P, $P^{-1}AP = D \Rightarrow AP = DP$

$$P^{-1}AP = B$$
 then $A \sim B$

Note an equivalent equation for similarity is:

$$AP = PB$$

Properties:

For all $A \sim B$,

- a. $\det A = \det B$
- b. A is invertible iff B is
- c. A and B have the same rank
- d. A and B have the same characteristic polynomial
- e. A and B have the same eigenvalues Proof of a.

By Definition, $P^{-1}AP = B$.

Taking determinants: $\det P^{-1}AP = \det B$

Taking determinants:
$$\det P^{-1}AP = \det B$$

$$(\frac{1}{\det P})(\det A)(\det P) = \det B \Rightarrow \det A = \det B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4^5 & 0 \\ 0 & 2^5 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix}$$

Example:

$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix}$$

Then $A \sim B$, since if $P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$

$$AP = PB \Longrightarrow$$

$$\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & -1 \end{pmatrix}$$

Diagonalizable: If a matrix A is similar to a diagonal matrix D, then A is diagonalizable.

$$P^{-1}AP = D$$

-Let A be an $n \times n$ matrix. A is diagonalizable iff A has n linearly independent eigenvectors.

- -The columns of P are the eigenvectors of A.
- -The diagonal entries of D are the eigenvalues of A (in the order that their corresponding eigenvectors appear in P)

Example:

For
$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$
 from Example #,

$$\lambda_1 = 4 \ \lambda_2 = 2 \ \textit{With} \ \mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ \mathbf{x}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \text{ and } D = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$

$$P^{-1}AP = D \Rightarrow AP = DP$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$

Note: Among other uses, Diagonalization is very useful for computing A^n :

$$A^2 = (PDP^{-1})(PDP^{-1}) =$$

$$PD(P^{-1}P)DP^{-1} = PDIDP^{-1} = PD^{2}P^{-1}$$

Further,
$$A^n = PD^nP^{-1}$$

Example:

$$\overline{\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}^5} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}^5 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1}$$

$$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4^5 & 0 \\ 0 & 2^5 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix}$$

$$= \begin{pmatrix} 4^5 & 2^5 \\ 4^5 & -2^5 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix} = \begin{pmatrix} 4^5 \cdot \frac{1}{2} + 2^5 \cdot \frac{1}{2} & 4^5 \cdot \frac{1}{2} - 2^5 \cdot \frac{1}{2} \\ 4^5 \cdot \frac{1}{2} - 2^5 \cdot \frac{1}{2} & 4^5 \cdot \frac{1}{2} + 2^5 \cdot \frac{1}{2} \end{pmatrix} =$$

$$\begin{pmatrix} 2^9 + 2^4 & 2^9 - 2^4 \\ 2^9 - 2^4 & 2^9 + 2^4 \end{pmatrix} = \begin{pmatrix} 528 & 496 \\ 496 & 528 \end{pmatrix}$$

Iterative Estimates for Eigenvalues

Power Method:

- 1. Let $\mathbf{x}_0 = \mathbf{y}_0$ be any initial vector in \mathbb{R}^n whose largest component is 1.
- 2. Repeat the following steps for k = 1, 2, ...:
 - (a) Compute $\mathbf{x}_k = A\mathbf{y}_{k-1}$.
 - (b) Let m_k be the component of \mathbf{X}_k with the largest absolute value.
 - (c) Set $\mathbf{y}_{k} = (1/m_{k})\mathbf{x}_{k}$.
- 3. For most choices of \mathbf{x}_0 ,

 $m_{\scriptscriptstyle L}$ will converge to the largest $|\lambda|$

 \mathbf{y}_0 will converge to the corresponding vector

Alterations on the Power Method:

Shifted Power Method:

Use $\mathbf{x}_k = (A - \lambda I)\mathbf{y}_{k-1}$ instead of

 $\mathbf{x}_{k} = A\mathbf{y}_{k-1}$ to find the second largest $|\lambda|$

• Inverse Power Method:

Use $\mathbf{x}_k = A^{-1}\mathbf{y}_{k-1}$ instead of $\mathbf{x}_k = A\mathbf{y}_{k-1}$ to find Thus $\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$ is an orthonormal set and forms the largest $1/|\lambda|$ or smallest $|\lambda|$.

• Shifted Inverse Power Method:

Use
$$\mathbf{x}_k = (A - \lambda I)^{-1} \mathbf{y}_{k-1}$$
 instead of

 $\mathbf{x}_k = A\mathbf{y}_{k-1}$ to find the second largest $1/|\lambda|$ or second smallest $|\lambda|$.

Gerschgorin's Disk Theorem: Let r_i be the sum of the absolute values of the off-diagonal If Q is an orthogonal matrix, then terms in the *i*-th row of $A = [a_{ij}]$. The *i*-th

Gerschgorin disk is a disk in the complex plane defined by:

$$D_i = \{ z \text{ in } \mathbb{C} : \mid z - a_{ii} \mid \le r_i \}$$

Center: a_{ii} Radius: r_{i}

Orthogonality

Orthogonal Set: A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ for which all pairs are orthogonal:

 $\mathbf{v}_i \cdot \mathbf{v}_i = 0$ whenever $i \neq j$ for i, j = 1, 2, ..., k

Orthogonal Basis: A basis of W that is an

orthogonal set, where W is a subspace of \mathbb{R}^n **Orthonormal Set:** A set of orthogonal unit

Orthonormal Set: A basis of W that is an

orthonormal set, where W is a subspace of \mathbb{R}^n

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 2(0) + 1(1) + (-1)(1) = 0$$

$$\mathbf{v}_2 \cdot \mathbf{v}_3 = 0(1) + 1(-1) + (1)(1) = 0$$

$$\mathbf{v}_1 \bullet \mathbf{v}_3 = 2(1) + 1(-1) + (-1)(1) = 0$$

Thus $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set and forms an orthogonal basis.

$$\mathbf{q}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\\1\\-1 \end{pmatrix}, \mathbf{q}_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \mathbf{q}_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$$

an orthonormal basis.

Note: An orthonormal set can be summarized by the following

$$\mathbf{q}_{i} \cdot \mathbf{q}_{j} = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$

Orthogonal Matrix: A matrix Q whose columns form an orthonormal set.

Properties:

a.
$$\|Q\mathbf{x}\| = \mathbf{x}$$
 For every \mathbf{x} in \mathbb{R}^n

b.
$$Q\mathbf{x} \cdot Q\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$$
 For every \mathbf{x} and \mathbf{y} in \mathbb{R}^n

c.
$$Q^{-1}$$
 is orthogonal

d.
$$\det Q = \pm 1$$

e. If is
$$\lambda$$
 an eigenvalue, then $|\lambda| = 1$

f. If
$$Q_1$$
 and Q_2 are orthogonal, then so is Q_1Q_2 .

g.
$$Q^T = Q^{-1}$$

Orthogonal Projection: The projection of vector **v** with respect to an orthogonal basis:

$$\operatorname{proj}_{W}(\mathbf{v}) = \left(\frac{\mathbf{u}_{1} \cdot \mathbf{v}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1} + \dots + \left(\frac{\mathbf{u}_{k} \cdot \mathbf{v}}{\mathbf{u}_{k} \cdot \mathbf{u}_{k}}\right) \mathbf{u}_{k}$$

The *component of* v *orthogonal to* W is the vector

$$\operatorname{perp}_{W}(\mathbf{v}) = \mathbf{v} - \operatorname{proj}_{W}(\mathbf{v})$$

Gram-Schmidt Process:

Let $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ be a basis for a subspace W of

$$\mathbb{R}^n$$
 and define the following:
 $\mathbf{v}_1 = \mathbf{x}_1$, $W_1 = \operatorname{span}(\mathbf{x}_1)$

$$\mathbf{v}_2 = \mathbf{x}_2 - \left(\frac{\mathbf{v}_1 \cdot \mathbf{x}_2}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1, \qquad W_2 = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$$

$$\mathbf{v}_k = \mathbf{x}_k - \left(\frac{\mathbf{v}_1 \cdot \mathbf{x}_k}{\mathbf{v}_1 \cdot \mathbf{v}_1}\right) \mathbf{v}_1 - \left(\frac{\mathbf{v}_2 \cdot \mathbf{x}_k}{\mathbf{v}_2 \cdot \mathbf{v}_2}\right) \mathbf{v}_2 - \cdots$$

$$-\left(\frac{\mathbf{v}_{k-1} \cdot \mathbf{x}_k}{\mathbf{v}_{k-1} \cdot \mathbf{v}_{k-1}}\right) \mathbf{v}_{k-1}, \ W_k = \operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_k)$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is an orthogonal basis for W.

QR factorization: Let A be an $m \times n$ matrix whose columns are linearly independent. Then A can be factored as A = QR where Q is an $\mathbf{q}_1 = \begin{pmatrix} 1/2 \\ -1/2 \\ 1/2 \end{pmatrix}$, $\mathbf{q}_2 = \begin{pmatrix} 3\sqrt{5}/10 \\ 3\sqrt{5}/10 \\ \sqrt{5}/10 \end{pmatrix}$, $\mathbf{q}_3 = \begin{pmatrix} -\sqrt{6}/6 \\ 0 \\ \sqrt{6}/6 \\ \sqrt{6}/3 \end{pmatrix}$ $m \times n$ matrix with orthonormal columns and R is an upper triangular invertible matrix.

- 1. Use the Gram-Schmidt Process to find an orthonormal basis for the columns of A.
- 2. Use these vectors to write $Q = [\mathbf{q}_1 \ \mathbf{q}_2 \ \cdots \ \mathbf{q}_n]$.
- 3. Multiply $Q^T A = R$ to find the upper triangular matrix R.

$$A = \begin{bmatrix} 1 & 2 & 2 \\ -1 & 1 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
So,
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

 $\mathbf{x}_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \mathbf{x}_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 2 \end{pmatrix}$

Using the Gram-Schmidt Process,

$$\mathbf{v}_{1} = \mathbf{x}_{1} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \left(\frac{\mathbf{v}_{1} \cdot \mathbf{x}_{2}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \right) \mathbf{v}_{1}$$

$$\mathbf{v}_{2} = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{2}{4} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3/2}{3/2} \\ \frac{1/2}{1/2} \end{pmatrix}, \mathbf{v}_{2}' = 2\mathbf{v}_{2} = \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \begin{pmatrix} \mathbf{v}_{1} \cdot \mathbf{x}_{3} \\ \mathbf{v}_{1} \cdot \mathbf{v}_{1} \end{pmatrix} \mathbf{v}_{1} - \begin{pmatrix} \mathbf{v}_{2} \cdot \mathbf{x}_{3} \\ \mathbf{v}_{2} \cdot \mathbf{v}_{2} \end{pmatrix} \mathbf{v}_{2}$$

$$\mathbf{v}_{3} = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{15}{20} \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{v}_{3} = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 2 \end{pmatrix} - \begin{pmatrix} \frac{1}{4} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{15}{20} \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 0 \\ 1/2 \\ 1 \end{pmatrix}, \mathbf{v}_{3}' = 2\mathbf{v}_{3} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal basis for the columns

After normalizing each vector, the orthonormal basis is obtained:

$$\mathbf{q}_{1} = \begin{pmatrix} 1/2 \\ -1/2 \\ -1/2 \\ 1/2 \end{pmatrix}, \mathbf{q}_{2} = \begin{pmatrix} 3\sqrt{5}/10 \\ 3\sqrt{5}/10 \\ \sqrt{5}/10 \\ \sqrt{5}/10 \end{pmatrix}, \mathbf{q}_{3} = \begin{pmatrix} -\sqrt{6}/6 \\ 0 \\ \sqrt{6}/6 \\ \sqrt{6}/3 \end{pmatrix}$$

So,
$$Q = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \mathbf{q}_3 \end{bmatrix} = \begin{bmatrix} 1/2 & 3\sqrt{5}/10 & -\sqrt{6}/6 \\ -1/2 & 3\sqrt{5}/10 & 0 \\ -1/2 & \sqrt{5}/10 & \sqrt{6}/6 \\ 1/2 & \sqrt{5}/10 & \sqrt{6}/3 \end{bmatrix}$$

$$Q^{T}A = R = \begin{pmatrix} 1/2 & 3\sqrt{5}/10 & -\sqrt{6}/6 \\ -1/2 & 3\sqrt{5}/10 & 0 \\ -1/2 & \sqrt{5}/10 & \sqrt{6}/6 \\ 1/2 & \sqrt{5}/10 & \sqrt{6}/3 \end{pmatrix} =$$

$$\begin{pmatrix} 1/2 & -1/2 & -1/2 & 1/2 \\ 3\sqrt{5}/10 & 3\sqrt{5}/10 & \sqrt{5}/10 & \sqrt{5}/10 \\ -\sqrt{6}/6 & 0 & \sqrt{6}/6 & \sqrt{6}/3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ -1 & 1 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix} =$$

$$\begin{pmatrix} 2 & 1 & 1/2 \\ 0 & \sqrt{5} & 3\sqrt{5}/2 \\ 0 & 0 & \sqrt{6}/2 \end{pmatrix} = R$$

Thus,

$$\begin{pmatrix} 1 & 2 & 2 \\ -1 & 1 & 2 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1/2 & 3\sqrt{5}/10 & -\sqrt{6}/6 \\ -1/2 & 3\sqrt{5}/10 & 0 \\ -1/2 & \sqrt{5}/10 & \sqrt{6}/6 \\ 1/2 & \sqrt{5}/10 & \sqrt{6}/3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1/2 \\ 0 & \sqrt{5} & 3\sqrt{5}/2 \\ 0 & 0 & \sqrt{6}/2 \end{pmatrix}$$

$$A = OR$$
.

Orthogonally Diagonizable: A square matrix A is **Orthogonally Diagonizable** if there exists an orthogonal matrix Q and a diagonal

matrix D such that $Q^T A Q = D$

Spectral Theorem: A matrix is invertible iff it is orthogonally diagonizable.

This leads to the spectral decomposition of a matrix $A = \lambda_1 \mathbf{q}_1 \mathbf{q}_1^T + \lambda_n \mathbf{q}_2 \mathbf{q}_2^T + \dots + \lambda_n \mathbf{q}_n \mathbf{q}_n^T$

Part 3:

Vector Spaces

Vector Space: A vector space is defined by the following properties for vectors **u**, **v**, and \mathbf{w} and scalars c and d in V.

1.
$$\mathbf{u} + \mathbf{v}$$
 is in V

2.
$$u + v = v + u$$

3.
$$(u + v) + w = u + (v + w)$$

4. There exists an element $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.

5. For each \mathbf{u} in V, there is an element $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.

6. $c\mathbf{u}$ is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

$$8.(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

$$9.c(d\mathbf{u}) = (cd)\mathbf{u}$$

10. 1**u**=**u**

Span: If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is a set of vectors in V, then the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ spans V.

Basis: A subset \mathcal{B} of a vector space V if: a. \mathcal{B} spans V

b. \mathcal{B} is linearly independent

Coordinates: Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be a

basis for a vector space V. Let \mathbf{v} be a vector in V, and write

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_n \mathbf{v}_n$$
. Then

 c_1, c_2, \dots, c_n are called the *coordinates with*

respect to \mathcal{B} , and the column vector is called the coordinate vector of v with respect to \mathcal{B}

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} \text{ is called the coordinate vector}$$

of **v** with respect to \mathcal{B} .

Dimension: The number of vectors in a basis for V. Denoted dim V.

Subspaces Associated with Matrix A:

row space: row(A) the subspace spanned by the rows of A

column space: col(A) the subspace spanned by

the columns of A

null space: null(A) the subspace spanned by the solutions to Ax = 0 See Kernel.

Rank: rank(A) The dimension of the row and column spaces of a matrix A

Subspace: A subset W of a vector space that is $T: V \to W$, itself a vector space with the same scalars,

addition, and scalar multiplication as V. W is a subset iff the following properties hold: a. If \mathbf{u} and \mathbf{v} are in W, then $\mathbf{u} + \mathbf{v}$ is in W. b. If \mathbf{u} is in W and c is a scalar, then $c\mathbf{u}$ is in W. (Same as Properties 1. and 6. for vector spaces) $\dim W \leq \dim V$

Change of Basis

Change of Basis Matrix: Let

$$\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$$
 and $\mathcal{C} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be

bases for a vector space V. An $n \times n$ matrix called the *change-of-basis matrix* whose columns are the coordinate vectors of the vectors in \mathcal{B} with respect to \mathcal{C} denoted

$$P_{C \leftarrow \mathcal{B}} = \left[\left[\mathbf{u}_1 \right]_C \left[\mathbf{u}_2 \right]_C \cdots \left[\mathbf{u}_n \right]_C \right]$$

Gauss-Jordan Method for Computing the Change of Basis matrix:

$$[C \mid B] \rightarrow [I \mid P_{C \leftarrow B}]$$

Linear Transformation

Linear Transformation: A mapping from a vector space vector space V to a vector space W

 $T: V \to W$ such that, for all **u** and **v** in V ...

1.
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$

2.
$$T(c\mathbf{u}) = cT(\mathbf{u})$$

Or Combining these two properties, Linear Combinations are preserved:

$$T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n) = c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \dots + c_kT(\mathbf{v}_k)$$

Inverse of a Linear Transformation: For a

linear transformation $T: V \to W$, T is invertible if there is a linear transformation

 $T': W \rightarrow V$ such that $T' \circ T = I_{w}$ and $T \circ T' = I_{w}$

where T' is the *inverse* for T

Kernel: The set of all vectors in V that are mapped by $T:V \to W$ to **0** in W $\ker(T) = \{ \mathbf{v} \text{ in } V : T(\mathbf{v}) = \mathbf{0} \}$

The dimension of the kernel of T is **nullity** (T).

Range: The set of all vectors in W that are images of vectors in V under $T:V \to W$. range(T) = {T(\mathbf{v}): \mathbf{v} in V}

= {
$$\mathbf{w}$$
 in $W : \mathbf{w} = T(\mathbf{v})$ for some \mathbf{v} in V }

The dimension of the range of T is rank(T).

Rank Theorem: For linear transformation

rank(T) + nullity(T) = dim V

One-to-One and Onto: A linear

transformation $T:V \to W$ is **one-to-one** if T maps distinct vectors in V to distinct vectors in W.

If range(T) = W, then T is onto.

Matrix of a Linear Transformation

For vector spaces V and W with respective bases \mathcal{B} and C, where $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ with

 $T: V \to W$, then matrix

$$A = \left[\left[T(\mathbf{v}_1) \right]_C \left[T(\mathbf{v}_2) \right]_C \cdots \left[T(\mathbf{v}_n) \right]_C \right]$$

Which satisfies $A[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{C}}$

A is called the *matrix of T with respect to the* bases \mathcal{B} and C.

Inverse of a Linear Transformation Matrix:

$$\left(\left[T \right]_{C \leftarrow \mathcal{B}} \right)^{-1} = \left[T^{-1} \right]_{\mathcal{B} \leftarrow \mathcal{C}}$$

Change of Basis Matrix: A matrix P such that $[T]_C = P^{-1}[T]_B P$

P is called the *change-of-basis matrix from* C *to* \mathcal{B} .

Inner Product Spaces

Inner Product: An operation on a vector space V that assigns a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ to every pair of vectors in V. The following properties hold:

1.
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

2.
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$

3.
$$\langle c\mathbf{u}, \mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$$

4.
$$\langle \mathbf{u}, \mathbf{u} \rangle \ge 0$$
 and $\langle \mathbf{u}, \mathbf{u} \rangle = 0$ iff $\mathbf{u} = \mathbf{0}$

A vector space with an inner product is called an *inner product space*.

Length, Distance, and Orthogonality:

The *length* (or *norm*) of \mathbf{v} is $\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$

The *distance* between \mathbf{u} and \mathbf{v} is

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

 \mathbf{u} and \mathbf{v} are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Norm: A mapping on a vector space V that associates with each vector \mathbf{v} a real number $\|\mathbf{v}\|$, called the *norm* of \mathbf{v} with the following properties:

1.
$$\|\mathbf{v}\| \ge 0$$
 and $\|\mathbf{v}\| = 0$ iff $\mathbf{v} = 0$.

2.
$$||c\mathbf{v}|| = |c|||\mathbf{v}||$$

3.
$$\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$$

A vector space with a norm is called a *normed linear space*.

Examples of Norms:

$$\|\mathbf{v}\| = (|v_1|^p + \dots + |v_n|^p)^{1/p}$$

For p = 1: Sum norm

For p = 2: Euclidean Norm (dot product)

For $p = \infty$: Max norm

Matrix Norm: A mapping on that associates with each $n \times n$ matrix a real number ||A||, called the **norm** of A with the following properties:

1.
$$||A|| \ge 0$$
 and $||A|| = 0$ iff $A = 0$.

2.
$$||cA|| = |c|||A||$$

3.
$$||A + B|| \le ||A|| + ||B||$$

4.
$$||AB|| \le ||A|| ||B||$$

Least Squares Approximation

Best Approximation Theorem: If W is a subspace of a normed linear space V, the **best approximation to v in** W is the vector \mathbf{v} such that

$$\|\mathbf{v} - \overline{\mathbf{v}}\| < \|\mathbf{v} - \overline{\mathbf{w}}\|$$

for every vector \mathbf{w} in W different from $\overline{\mathbf{v}}$. "proj_W(\mathbf{v}) is the best approximation to \mathbf{v} in W."

Least Squares Solution: A vector $\overline{\mathbf{x}}$ such that $\|\mathbf{b} - A\overline{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$ is called the *least squares* solution of $A\mathbf{x} = \mathbf{b}$. It is unique and given by $\overline{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.

If
$$A = QR$$
, then $\overline{\mathbf{x}} = R^{-1}Q^T\mathbf{b}$