Limite de e

Romain Lemahieu

December 2, 2023

Montrer que :

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e$$

$$f(x)=\left(1+\frac{1}{x}\right)^x$$

$$\ln(f(x))=\ln\left(\left(1+\frac{1}{x}\right)^x\right)$$

$$\ln(f(x))=x\ln\left(\frac{x+1}{x}\right)$$

$$\ln(f(x))=x(\ln(x+1)-\ln(x))$$

$$\ln(f(x))=x\int_x^{x+1}\frac{1}{t}\,dt$$
 Soit $t\in[x;x+1]$
$$\frac{1}{x+1}\leq\frac{1}{t}\leq\frac{1}{x}$$

$$(x+1-x)\frac{1}{x+1}\leq\int_x^{x+1}\frac{1}{t}\,dt\leq(x+1-x)\frac{1}{x}$$

$$\frac{1}{x+1}\leq\int_x^{x+1}\frac{1}{t}\,dt\leq\frac{1}{x}$$

$$\frac{x}{x+1}\leq\ln(f(x))\leq\frac{x}{x}$$

$$1-\frac{1}{x+1}\leq\ln(f(x))\leq1$$

$$\lim_{x\to+\infty}\frac{1}{1+x}=0 \text{ par soustraction }\lim_{x\to+\infty}\left(1-\frac{1}{1+x}\right)=1$$
 donc d'après le théorème des gendarmes
$$\lim_{x\to+\infty}\ln(f(x))=1$$
 or pour tout x réel posisif $e^{\ln(f(x))}=f(x)$
$$\lim_{x\to+\infty}e^x=e \text{ donc par composition }\lim_{x\to+\infty}f(x)=e$$