Convolutional Layers: Space and Time

In our introductory examples

- ullet The non-feature dimension of output $\mathbf{y}_{(l)}$
- ullet Is identical to the non-feature dimension of input $\mathbf{y}_{(l-1)}$

There are different choices we can make when "sliding" the kernel over the input.

These choices impact

- The size of the non-feature dimension of the output
- And, in turn, the time requirements of subsequent layers (because of the size)

Let's do some quick calculations and then show choices for controlling the space consumed by $y_{\left(l\right)}.$

CNN Math: Time versus number of parameters

In designing a Neural Network we are confronted with choices

- how many layers
- width (number of features) at each layer

When Convolutional layers are included, there are additional choices

- ullet size f of filter
- increment with which we slide the kernel over the non-feature dimensions locations

In the absence of a science defined optimal values for the choices

- we resort to empirical studies
- treat the choices as hyper-parameters
- establish a Performance Metric and a set of Benchmark examples
- examine the trade-off between Performance Metric and hyper-parameter choice.

One element in the trade-off involves external costs

- amount of space (memory)
- amount of time

We explore these costs in this section.

Consider input layer (l-1) with

- ullet N non-feature dimensions
- ullet $n_{(l-1)}$ feature maps/channels

$$||\mathbf{y}_{(l-1)}|| = (d_{(l-1),1} imes d_{(l-1),2} imes \ldots d_{(l-1),N} imes n_{(l-1)})$$

Layer l will apply a Convolution that preserves the non-feature dimensions

$$||\mathbf{y}_{(l)}|| = (d_{(l-1),1} imes d_{(l-1),2} imes \ldots d_{(l-1),N} imes n_{(l)})$$

For simplicity of presentation: consider the case when N=2.

How many weights/parameters does layer l consume (i.e, what is size of $\mathbf{W}_{(l)}$)?

- Each kernel $\mathbf{k}_{(l),j}$
 - lacksquare Has non-feature dimension $(f_{(l)} imes f_{(l)})$
 - And "depth" $n_{(l-1)}$ (to match the number of input feature maps/channels)
- ullet There are $n_{(l)}$ kernels in layer l

So the size of $W_{(l)}$ (ignoring the optional bias term per output feature map)

$$||\mathbf{W}_{(l)}|| = n_{(l)} * (n_{(l-1)} * f_{(l)} * f_{(l)})$$

The part of the product that most concerns us is ($n_{(l)} st n_{(l-1)}$)

- Values for $n_{(l)}, n_{(l-1)}$ in $\{32, 64, 256\}$ are not uncommon !
- ullet Hence $||\mathbf{W}_{(l)}||$ is often easily several thousand
- State of the art image recognition models use several hundred million weights!

How many multiplications (in the dot product) are required for layer l?

- We will ignore additions (the part of the dot product that reduces pair-wise products to a scalar, and for the bias)
- ullet Each kernel ${f k}_{(l),j}$ of dimension

$$(f_{(l)} imes f_{(l)} imes n_{(l-1)})$$

- ullet Applied over each location in the $(d_{(l-1),1} imes d_{(l-1),2})$ non-featuer dimension of the input layer (l-1)
- ullet There are $n_{(l)}$ kernels in layer l

So the number of multiplications

$$n_{(l)}*(d_{(l-1),1}*d_{(l-1),2})*(n_{(l-1)}*f_{(l)}*f_{(l)})$$

Consider a grey-scale image of size $(d_{(l-1),1}*d_{(l-1),2})=(1024 imes1024)$

- Lower than your cell-phones camera!
- Easily several million multiplications

Expect the time to train a Neural Network with Convolutional layers to be long!

- That's why GPU's are important in training
- But GPU's have limited memory so space is important too
 - Can control with batch size

All of this ignores the final layer ${\cal L}$

- Often a Fully Connected layer implementing Regression or Classification
- ullet With n_L output features
 - e.g., For Classification over classes in set C, $\mathbf{y}_{(L)}$ is a One Hot Vector of length $n_L=||C||$

Suppose layer
$$(L-1)$$
 has dimension
$$||\mathbf{y}_{(L-1)}||=(d_{(L-1),1}\times d_{(L-1),2}\times n_{(L-1)})$$

Before we can use it as input to the Fully Connected Layer ${\cal L}$ we flatten it to a vector of length

$$(d_{(L-1),1}*d_{(L-1),2}*n_{(L-1)})$$

The number of weights (ignoring biases) and multiplications is

$$||W_L|| = n_{(L)} * (d_{(L-1),1} * d_{(L-1),2} * n_{(L-1)})$$

- $\begin{array}{l} \bullet \ \ \, n_{(L)}*n_{(L-1)} \ {\rm on \ the \ order \ of \ several \ thousand} \\ \bullet \ \, (d_{(L-1),1}*d_{(L-1),2}) \ {\rm on \ the \ order \ of \ several \ million, \ for \ images} \\ \end{array}$

This may not even be feasible!

Padding

In our examples thus far

- When a location in a non-feature dimensions of the input
- Is such that, when the kernel is placed there, it extends beyond the input
- We have added "padding"

This is not strictly necessary

- But has advantage that the size of the non-feature dimension of output $\mathbf{y}_{(l)}$ is the same as the input $\mathbf{y}_{(l-1)}$
- One can simply *not* produce an output for such locations
- It just means the output non-feature dimension shrinks in each dimension by $f_{\left(l\right)}-1$
 - lacksquare Assuming $f_{(l)}$ is odd
 - The number of locations in which the kernel extends over the border
 - lacksquare Is Half of the filter size $(f_{(l)}-1)/2$ times two (for each edge)

Stride

Thus far, we have placed the kernel over *each* location in the non-feature dimensions of the input layer.

This, along with padding, ensures that the non-feature dimension of the input and output layers are identical.

In the diagram below

- ullet N=1 non-feature dimensions; length $d_1=5$
- n=1 feature
- ullet f=3 kernel size
- we slide the kernel over just the first two locations (for brevity)

Consider two adjacent locations in the non-feature dimension of the input layer

• The values of the input layer that appear in each dot product overlap

By placing the kernel over *every other* location of the non-feature dimension of the input layer

- We may still be able to recognize features
- And reduce the size of the non-feature dimension of the output layer by a factor of 2 for each dimension.

In the diagram below

- ullet we use stride S=2
- center the kernel over *every other* location reducing the size of the output non-feature dimension $d_1'=\frac{d_1}{2}$

In general, we can choose to choose to pass over (S-1) locations in the non-feature dimension of the input layer

- S is called the *stride*
- Up until now: S=1
- But you are free to choose

When the number N of non-feature dimensions is greater than 1

ullet we apply the stride S to each dimension

Size of output

We can combine choices of Padding and Stride to control the size of the non-feature dimension of the output layer l:

Let

- $d_{(l-1),j}$ denote the number of elements in non-feature dimension j of layer (l-1)
- ullet P denote the number of elements added as padding on each border
- \bullet S denote the stride
- ullet $f_{(l)}$ be the size of the filter (for each non-feature dimension)

Then the number of elements in non-feature dimension
$$j$$
 of output layer (l) is $d_{(l),j}=rac{d_{(l-1),j}+2P-f_{(l)}}{S}+1$

You can see that increasing the stride has the biggest impact on reducing the size of the non-feature dimension of the output.

Pooling layer

There is a layer type with the specific purpose of changing the size of the non-feature dimension of the output.

This is called a Pooling Layer.

A Pooling Layer combines the information from adjacent locations in the non-feature dimension of the input layer.

- The "combining" operation may be average or maximum
- Sacrificing the exact location in the non-feature dimension
- Often in exchange for reduced space

Pooling:

- ullet Selects an N-dimensional region in the non-feature dimensions
 - lacksquare where each dimension is of length $f_{(l)}$
- Centered at each location in the non-feature dimension
 - lacksquare Of a **single feature map** $m{j}$ of the input layer (l-1): $\mathbf{y}_{(l-1),\ldots,j}$

and produces a value in the corresponding location of output layer \boldsymbol{l}

- That summarizes the selected region by applying
 - lacksquare pooling operation $p_{(l)}$ to the selected region
 - typical pooling operations: maximum, average

Here is an illustration of Pooling

- ullet N=2 non-feature dimensions; $d_1=d_2=4$
- $\bullet \ \ n=2\, {\rm features}$
- $ullet f_{(l)}=2$
- ullet with $\operatorname{stride} S=2$

Conv 2D: Pooling (Max/Average)

A Pooling Layer is similar in *some* respects to a Convolution.

Recall that the One Dimensional Convolutional Layer (Conv1d) with a single input feature computes the following for output feature/channel j:

$$\mathbf{y}_{(l),j} = egin{pmatrix} a_{(l)} \left(\left. N(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l), j}, \mathbf{1}) \cdot \mathbf{W}_{(l)} \,
ight) \\ a_{(l)} \left(\left. N(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l), j}, \mathbf{2}) \cdot \mathbf{W}_{(l)} \,
ight) \\ dots \\ a_{(l)} \left(\left. N(\mathbf{y}_{(l-1)}, \mathbf{W}_{(l), j}, n_{(l-1)} \cdot \mathbf{W}_{(l)} \,
ight) \end{pmatrix}$$

The analogous One Dimensional Pooling Layer (Pooling1D) computes

$$\mathbf{y}_{(l),j} \! = \! egin{pmatrix} p_{(l)} \left(\, N'(\mathbf{y}_{(l-1)}, f_{(l)}, 1) \,
ight) \ p_{(l)} \left(\, N'(\mathbf{y}_{(l-1)}, f_{(l)}, 2) \,
ight) \ dots \ p_{(l)} \left(\, N'(\mathbf{y}_{(l-1)}, f_{(l)}, n_{(l-1)}) \,
ight) \end{pmatrix}$$

where
$$N'(|\mathbf{y}_{(l-1)}, f_{(l)}, j|)$$

- ullet selects a subsequence of $\mathbf{y}_{(l-1)}$ centered at $\mathbf{y}_{(l-1),\ldots,j}$
- ullet of length $f_{(l)}$

and $p_{\left(l
ight)}$ is a pooling operation

That is, similar to a Convolutional Layer, the Pooling Layer

- ullet Selects a region of length $f_{(l)}$
- ullet Centered at each location in the non-feature dimension of the input layer (l-1)

and produces a value in the corresponding location of output layer $oldsymbol{l}$

• That summarizes the selected region

Observe that

- There are no weights
- No dot product
- Just a pooling operation

Similar to Convolution, we can extend pooling to higher non-feature dimension (N>1) and higher number of input channels $n_{(l-1)}>1$.

Suppose the input
$$\mathbf{y}_{(l-1)}$$
 is $(N+1)$ dimensional of shape $||\mathbf{y}_{(l-1)}||=(d_{(l-1),1}\!\! imes d_{(l-1),2}\!\! imes \ldots d_{(l-1),N}\!\! imes n_{(l-1)})$

Pooling with a stride $S>1\,$

- "Down samples" the non-feature dimension
- Sacrificing some information about locality

It effectively asks the question

• Does the feature exist in a broader neighborhood of the non-feature dimension

The key difference between Pooling and Convolution (other than the absence of the dot product and kernel weights)

- The pooling operation is applied to each input feature map separately
- Versus all the input feature maps at a given location in the non-feature dimension of the input

Pooling operations

- Max pooling
 - Maximum over the selected region
 - Good for answering the question: "Does the feature exist" in the neighborhood
- Average pooling
 - average over the selected region
 - "blurs" the location in the non-feature dimension when it is unimportant or highly variable

Global Pooling

Each feature map j of the input layer ($\mathbf{y}_{(l-1),\ldots, j}$

- Is summarized by a single value produced by Max Pooling operation $p_{(l)}^{\prime}$
- eliminating the non-feature dimensions
- preserving the number of features

$$\mathbf{y}_{(l),j} \! = p_{(l)}'(\mathbf{y}_{(l-1),\ldots,j})$$

Conv 2D: Global Pooling (Max/Average)

Notice that each input feature map has been reduced to a single value in the output.

- No non-feature dimension in $\mathbf{y}_{(l)}$ (hence no " . . . ")

The Global Pooling operation effectively asks the question

- Does the feature occur anywhere in the feature map?
- Losing information about the exact location in the non-feature dimensions

Global pooling operations

- Global average pooling
 - Maximum over the feature map
- K-Max pooling
 - lacktriangledown replace one dimension of the volume with the $m{K}$ largest elements of the dimension

Review

Let's summarize our knowledge of controlling the size of $\mathbf{y}_{(l-1)}$;

- Controlling the size of non-feature dimensions
 - Increase stride
 - Pooling
 - o Global average pooling often used in final Convolutional Layer
- Control number of feature maps per layer
 - lacksquare Choice of $n_{(l),1}$
 - lacksquare Kernel size $f_{(l)}=1$
 - o preserve non-feature dimension
 - $\circ \;\;$ change number of feature maps from $n_{(l-1),1}$ to $n_{(l),1}$

Striding and Pooling

- increase receptive field
- $\dot{}$ typically small values (e.g., S=2)
 - limited reduction

Kernel size
$$f_{(l)}=\mathbf{1}$$

- reduction depends on the ratio of $n_{(l),1}$ to $n_{(l-1),1}$
 - unlimited reduction possible

Kernel size 1

A less obvious way to control the size of $\mathbf{y}_{(l)}$ is to use a kernel with $extbf{\emph{f}}_{(l)} = \mathbf{1}$

Why might that be?

Recall that a Convolutional Layer

- Preserves the non-feature dimension
- Replaces the channel/feature dimension (number of feature maps)

That is\

$$||\mathbf{y}_{(l-1)}|| = (d_{(l-1),1} \times d_{(l-1),2} \times \dots d_{(l-1),N} \mathbf{n}_{(l-1)})$$

 $||\mathbf{y}_{(l)}|| = (d_{(l-1),1} \times d_{(l-1),2} \times \dots d_{(l-1),N} \mathbf{n}_{(l)})$

So a kernel of size $oldsymbol{f}_{(l)}=oldsymbol{1}$ in all $oldsymbol{N}$ non-feature dimensions

- ullet With "depth" $n_{(l-1)}$
- Is just a way to resize $\mathbf{y}_{(l-1)}$ from $n_{(l-1)}$ feature maps to a \emph{single} feature map
 - That sums, across feature maps, the elements in each feature map at the same location

In other words:

• Yet another way to reduce the size of $\mathbf{y}_{(l)}$.

Receptive field

The filter size $m{f}_{(l)}$ also plays a role in the space and time requirements of a Convolutional Layer.

It turns out that

- ullet We can achieve the effect of a large $f_{(l)}$
- ullet With a smaller $f_{(l)}$ in conjunction with \emph{more} Convolutional Layers

Let's demonstrate this by examining the concept of <u>Receptive field</u> (<u>CNN Receptive Field.ipynb</u>)

CNN advantages/disadvantages

Advantages

- Translational invariance
 - feature can be anywhere
- Locality
 - feature depends on nearby features, not the entire set of features
 - reduced number of parameters compared to a Fully Connected layer

Disadvantages

- Output feature map is roughly same size as input
 - lots of computation to compute a single output feature
 - one per feature of input map
 - higher computation cost
 - training and inference
- Translational invariance not always a positive

How many feature maps to use (What value to choose for $n_{(l)}$)

Bag of Tricks for Image Classification with CNNs (https://arxiv.org/abs/1812.01187)

Remember that a larger value for $n_{(l)}$ will increase space and time requirements.

One rule of thumb:

- ullet For N=2
- With filter size $f_{(l)}$
- $\bullet\,$ The number of elements in the non-feature dimension of input $\mathbf{y}_{(l-1)}$ involved in the dot product is

$$e = (n_{(l-1)} * f_{(l)} * f_{(l)})$$

- It may not make sense to create more than e output features $n_{(l)} > e$
 - We would generate more features than input elements

Inverting convolution

The typical flow for multiple layers of Convolutions

- Is for the non-feature dimension of successive layers to get smaller
- ullet By using stride S>1
- By using Pooling Layers

This brings up the question: Can we invert the process?

 $\bullet\,$ That is, go from a smaller non-feature dimension back to the non-feature dimension of input layer 0

The answer is yes.

This process is sometimes called *Deconvolution* or *Transposed Convolution*.

- In a Deeper Dive, we relate Convolution to Matrix Multiplication
- So the inverting matrix's *dimensions* are the transpose of the matrix implementing the convolution

We will revisit this in the lecture addressing "What is a CNN looking for?"

Technical points

Convolution versus Cross Correlation

- math definition of convolution
 - dot product of input and reversed filter
 - we are doing <u>cross correlation</u>
 (https://en.wikipedia.org/wiki/Convolution)

```
In [4]: print("Done")
```

Done