随机算法复习纲要

1. 绪论

- Max-3-CNF 问题
- 动机:
 - 日常性: 微信红包(金额服从正态分布)
 - 简洁高效性:文档去重(k-gram 数字指纹)
 - 必须性:大数据可视化(抽样算法)
 - 创新必备性: PageRank (平稳分布、分布式计算)
 - 广泛性:数据降维、集合配置(完全随机生成,这也行,纳尼?)、物理 化学实验
- 集合相似性连接
 - 相似度
 - minHash
 - LSH

2. 随机算法及其分类

- 概率基础
 - 概率空间、容斥原理、合并界限、条件概率条件概率链、全概率公式、 随机变量、独立性、数学期望、期望的线性性质、方差、二项分布
 - Markov 不等式(积分证明)
 - Chebyshev 不等式(利用 Markov 不等式证明)
 - 尾概率界 (Tail Bound)
- 数值随机算法
 - 计算Ⅱ值
 - 计算定积分
- 随机选择算法
 - LAZYSELECT(S, k)算法及其性能分析
 - Las Vegas 算法
- 素数测试随机算法
 - 算法设计 (N进行 m次测试)、性能分析、蒙特卡罗算法
 - 概率放大
 - Monte Carlo vs. Las Vegas
- 随机排序算法
 - 划分、递归求解算法及其复杂度分析(O(n log n))
 - 舍伍德算法
- 最小割随机算法
 - CONTRACTION 算法及其复杂度分析(O(n^2),正确率 2/n^2 较低,错

误率 1-2/n^2 较高)

- 概率放大后的算法 Amplify 及其复杂度分析(O(n^4), 错误率 1/e)
- 混合精确算法得到 DetRan、Amplify2 及其复杂复分析(O(n^8/3), 错误率 1/e)
- 递归算法 RepTree 及其复杂度分析(O(n^2 log^2 n), 1/e)

3. 随机算法复杂度下界

- NOR 电路估值问题
 - 确定性算法(O(2^k))
 - 深度优先估值、随机估值算法 RandEval 及其时间复杂度引理(O(n^0.694))
 - 博弈范式、纳什均衡、囧徒困境、Matching Pennies、零和博弈、混合策略
 - 姚期智不等式、NOR 估值问题 Las Vegas 时间复杂度下界

4. 球和箱子模型

- Bernoulli 分布、几何分布、二项分布
- 桶排序及其时间复杂度分析
- 跳表及其分析
- 球和箱子模型
 - 模型概述
 - 生日悖论(单射)
 - 赠券收集(满射)
 - 占用问题与负载均衡
- 生日悖论的应用
 - 生日攻击
 - Leader 选举
- 通用散列函数
 - 独立性由强到弱:相互独立、k-独立、两两独立
 - 通用散列函数、与球和箱子模型的关系
 - ◆ 2-通用散列函数族
 - ◆ 2-强通用散列函数族
- 综合运用
 - 散列表及其分析
 - 数字指纹与 Bloom Filter

5. Chernoff 界

- Chernoff 界及其常用形式
 - 矩生成函数
 - Chernoff 界的导出

- Chernoff 界的常用形式
- 简单应用
 - 算法重复遍数 (比 Markov 不等式更加精确)
 - 参数估计(基因突变概率、II 估计、定积分估计)
- 特殊情况下更好的 Chernoff 界
- 集合平衡配置
- 超立方体上的随机路由算法
 - 超立方体拓扑结构
 - Bit Fixing 路由算法
 - 随机路由算法

6. 鞅

- 鞅的定义和基本性质
 - 条件概率、条件期望
 - 公平赌博、硬币正反面次数之差、Polya 壶
 - 鞅尾不等式、Azuma 不等式
- 鞅的一般形式
 - 随机变量的和、和的平方、杜比鞅、鞅的性质
 - 停时定理
 - 瓦尔德方程
 - ◆ 两轮骰子赌局
 - ◆ Las Vegas 算法的期望运行时间
 - ◆ 共享总线服务器通信
 - ◆ Azuma-Hoeffding 不等式
 - 鞅尾不等式随机抽样和随机舍入
- 鞅的应用
 - 模式匹配
 - 球和箱子模型中空箱子个数
 - 随机图的色数

7. 随机抽样和随机舍入

- 随机游走
 - SAT 问题的随机赋值算法分析
 - 马尔科夫链
 - 图上的随机游走
 - ◆ 二分图上的随机游走
 - ◆ 随机游走的稳定分布
 - lack Hitting Time $\ H(u, v)$
- 随机抽样
 - 搜寻非二次剩余

- ◆ 费马小定理、二次剩余和非二次剩余一样多
- ◆ 性能分析
- 水库抽样
 - ◆ 均匀抽样问题、选择抽样算法、水库抽样算法
- 蒙特卡罗方法
 - Ⅱ的计算
 - DNF 满足性赋值(使一个子句满足的赋值个数)的近似计数
 - ◆ 朴素算法
 - ◆ 改造样本空间后的 Buboly-Karp 算法
 - 从近似抽样到近似计数
 - ◆ 抽样的近似性
 - ◆ 近似抽样的可用性示例
 - 马尔科夫链-蒙特卡罗方法
 - ◆ 独立集均匀抽样
 - ◆ Metropolis 算法
- 随机舍入
 - 基本框架:松弛、小数解、整数解、近似
 - 顶点覆盖问题
 - 集合覆盖问题
- 混合随机算法
 - MAX-SAT (CNF 最大化同时满足子句个数) 的随机抽样算法 RandSample
 - MAX-SAT 的随机舍入算法 RandRound
 - MAX-SAT 的随机混合算法 RandMix

8. 概率方法与去随机化

- 概率论证法
 - 基本计数论证
 - ◆ 坏事件不发生:同色K_k子图不出现
 - 期望论证
 - ◆ 最大割问题、独立集大小、随机图的围长
 - 二阶矩方法
 - ◆ General Moment Method
 - Lovasz 局部引理
 - ◆ 直观含义: 坏事件都不发生, 独立性
 - ◆ 依赖图
 - ◆ Lovasz 引理的证明
 - ◆ 环着色、超图着色、k-SAT 可满足性
- 去随机化
 - MAX-SAT 问题随机算法的去随机化
 - ◆ RandSample 去随机化
 - ◆ RandRound 去随机化

- ◆ RandMix 去随机化
- 集合平衡配置随机算法的去随机化
- 随机电路去随机化

9. 代数指纹技术

- 代数指纹技术
 - 矩阵比对
 - 多项式比对
 - 位串比对
 - 字符串精确比对
- 代数指纹技术与交互式证明系统
 - 交互式证明系统
 - 图不同构问题
 - 3-SAT 问题