

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

MCM-2906(OP)
Conf-820325--4

MASTER

DISCLAIMER

The book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MCM-2906(OP)

HYDROGEN DIFFUSION AND ELECTRONIC STRUCTURE

DE82 008460

IN CRYSTALLINE AND AMORPHOUS $Ti_y Cu_x H_z$

R. C. Bowman, Jr.*
Division of Chemistry and
Chemical Engineering
California Institute of
Technology
Pasadena, California 91125

W.-K. Rhim
Jet Propulsion Laboratory
California Institute of
Technology
Pasadena, California 91103

A. J. Maeland
Materials Research Center
Allied Chemical Corporation
Morristown, New Jersey 07960

J. F. Lynch**
Brookhaven National Laboratory
Upton, New York 11973

ABSTRACT

Hydrogen diffusion behavior and electronic properties of crystalline $TiCuH_{0.94}$, $Ti_2CuH_{1.90}$, and $Ti_2CuH_{2.63}$ and amorphous a- $TiCuH_{1.4}$ are studied using proton relaxation times, proton Knight shifts, and magnetic susceptibilities. Crystal structure and hydrogen site occupancy have major roles in hydrogen mobility. The density of electron states at E_F is reduced in amorphous a- $TiCuH_{1.4}$ compared to the crystalline hydrides.

The crystalline intermetallics $TiCu$ and Ti_2Cu and the amorphous $Ti_{1-y}Cu_y$ ($0.3 \leq y \leq 0.7$) alloys directly react with gaseous hydrogen to form crystalline and amorphous ternary hydrides,¹⁻⁴ respectively. providing the temperature is maintained below 200°C. A recent nuclear magnetic resonance (NMR) study of the proton relaxation times⁵ indicated a much higher hydrogen mobility in amorphous a- $TiCuH_{1.3}$ compared

*On leave from current address: Monsanto Research Corporation, Mound, Miamisburg, Ohio 45342.

**Current address is Materials Research Center, Allied Chemical Corporation, Morristown, New Jersey 07960.

to polycrystalline $TiCuH_{0.94}$. The increased disorder³ of interstitial hydrogen occupancy in α - $TiCuH_x$ has been suggested⁵ for the enhanced mobility in the amorphous phase. The present paper describes further NMR studies of diffusion in crystalline and amorphous $TiCuH_x$ as well as crystalline Ti_2CuH_x . Furthermore, the electronic structure has been investigated using magnetic susceptibility, proton spin-lattice relaxation time (T_1), and proton Knight shift (σ_K) measurements.

Table 1 summarizes the structural properties of the $TiCuH_x$ and Ti_2CuH_x samples as deduced from x-ray diffraction, neutron scattering, and proton lineshape parameters. The preparation procedures have been previously described.¹⁻⁵

Table 1. Descriptions of $TiCuH_x$ and Ti_2CuH_x and Hydrogen Diffusion Activation Energies (E_a)

Sample	Metal Sublattice Structure	Probable Hydrogen Site Occupancies	E_a (eV)	Temperature Range (K)
$TiCuH_{0.94}$	Tetragonal	94% Ti_4 only	0.84 ± 0.02	465 - 560
α - $TiCuH_{1.4}$	Amorphous	Mixed (mostly Ti_4 with some Ti_4-yCu_y and octahedral)	0.45 ± 0.02	357 - 410
			0.185 ± 0.01	208 - 357
$Ti_2CuH_{1.9}$	Orthorhombic (?)	$\sim 95\%$ Ti_4 (some Ti_2Cu_4 likely)	0.09 ± 0.01	150 - 207
			0.35 ± 0.02	290 - 519
$Ti_2CuH_{2.63}$	Orthorhombic (?)	100% Ti_4 and 63% Ti_2Cu_4	0.29 ± 0.02	290 - 395

Hydrogen diffusion behavior has been evaluated using the temperature dependence of the proton rotating-frame spin-lattice relaxation times⁶ (T_{1p}) where the spin-locking field was about 7.3G and the proton resonance frequency was 34.5 MHz. The temperature dependences of the T_{1p} data for Ti_xCuH_x are shown in Fig. 1. Table 1 summarizes the diffusion activation energies (E_a) that have been deduced from the T_{1p} data. Although a single E_a corresponding to Arrhenius behavior represents proton mobility in the crystalline $TiCuH_{0.94}$ and Ti_2CuH_x , three E_a values are required for amorphous α - $TiCuH_{1.4}$, which confirms the behavior previously seen⁵ in α - $TiCuH_{1.3}$. Furthermore, E_a is greatly reduced when protons occupy sites in addition to the tetrahedral Ti_4 interstitials. This effect is seen in both crystalline Ti_2CuH_x and amorphous α - $TiCuH_{1.4}$. From a consideration of the $TiCu$ and Ti_2Cu crystal structures,^{1,4} hydrogen diffusion in crystalline $TiCuH$ can only occur by nearest neighbor jumps between the Ti_4 sites,

while jumps through the intermediate Ti_2Cu_4 sites become possible in Ti_2CuH_x . This probably accounts for the lower E_F values for Ti_2CuH_x and similar (or even easier) jump-paths are available in the more disordered amorphous phase.

The magnetic susceptibilities (χ_m) for Ti_xCuH_x were measured between 80 K and 300 K and are summarized in Fig. 2. Although the χ_m values in Fig. 2 have been extrapolated to infinite magnetic field, the field-dependent ferromagnetic contribution was negligible except for a- $TiCuH_{1.4}$, which appears to have some magnetic impurities as well as an opposite temperature dependence for χ_m . There are several contributions⁷ to χ_m , but only the paramagnetic term χ_p is directly related to $N(E_F)$, the density of electron states at the Fermi level E_F . Hence, caution should be exercised in correlating χ_m differences only to $N(E_F)$ changes. In particular, the larger χ_m for a- $TiCuH_{1.4}$ compared to $TiCuH_{0.54}$ probably reflects either ferromagnetic or orbital contributions^{7,8} and not a greater $N(E_F)$ for the amorphous phase. However, the unusual^{7,8} χ_m increase with hydrogen content for Ti_2CuH_x is believed to actually correspond to $N(E_F)$ becoming larger since the proton T₁ and σ_K parameters also indicate $N(E_F)$ increasing from $Ti_2CuH_{1.9}$ to $Ti_2CuH_{2.63}$.

Fig. 2. Magnetic susceptibility values for $TiCuH_x$ and Ti_2CuH_x .

The proton T_1 and σ_K were measured at 56.4 MHz using methods previously described.⁹ The σ_K values are referenced to tetramethylsilane. Table 2 summarizes the σ_K and $(T_1 \cdot T)^{-\frac{1}{2}}$ parameters, which are directly proportional^{6,8,9} to $N(E_F)$, at the upper and lower temperature limits of the present NMR measurements. The negative σ_K values in Table 2 indicate that core-polarization⁶ with d-electrons dominates proton hyperfine interactions in Ti_xCuH_x where the population of d-states is much larger than s-states as has been previously found in other Ti-based hydrides.^{8,9} Furthermore, the proton parameters suggest $N(E_F)$ is significantly reduced in a-TiCuH_{1.4} compared to crystalline TiCuH_{0.94}, while $N(E_F)$ increases with content in crystalline Ti_2CuH_x . However, a more detailed analysis based upon generalized Korringa relations⁶ shows increased s-electron contact hyperfine interactions in the Ti_2CuH_x samples.

More extensive discussions of hydrogen diffusion and the electronic structures of Ti_xCuH_x will be published elsewhere.

Table 2. Proton Parameters $(T_1 \cdot T)^{-\frac{1}{2}}$ and Knight Shifts σ_K

Sample	T (K)	$(T_1 \cdot T)^{-\frac{1}{2}}$ (sK) ^{-\frac{1}{2}}	σ_K (ppm)
TiCuH _{0.94}	300	0.163	-120
	80	0.150	-107
a-TiCuH _{1.4}	210	0.113	- 77
	80	0.108	- 87
$Ti_2CuH_{1.9}$	300	0.118	- 67
	115	0.115	- 69
$Ti_2CuH_{2.63}$	300	0.140	- 85
	80	0.145	- 91

ACKNOWLEDGEMENTS

This work was partially supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy, and the Caltech's President's Fund. Mound is operated by Monsanto Research Corporation for the U. S. Department of Energy under Contract No. DE-AC04-76-DP00053. Brookhaven National Laboratory is operated for the U. S. Department of Energy under Contract No. DE-AC-02-76-CH00016. Jet Propulsion Laboratory is operated for the National Aeronautics and Space Administration under Grant No. NAS7-100.

REFERENCES

1. A. Santoro, A. Maeland, and J. J. Rush, Acta Cryst. **B34**: 3059 (1978).
2. A. Maeland, L. E. Tanner and G. G. Libowitz, J. Less-Common Met. **74**: 279 (1980).
3. J. J. Rush, J. M. Rowe and A. J. Maeland, J. Phys. F: Metal Phys. **10**: L283 (1980).
4. A. J. Maeland and G. G. Libowitz, J. Less-Common Met. **74**: 295 (1980).
5. R. C. Bowman, Jr. and A. J. Maeland, Phys. Rev. **B24**: 2328 (1981).
6. R. M. Cotts, in "Hydrogen in Metals I: Basic Properties," G. Alefeld and T. Völkl, Ed., Springer-Verlag, Berlin, 1978, p. 227.
7. J. F. Lynch, R. Lindsay and R. O. Moyer, Jr., Solid State Commun. **41**: 9 (1982).
8. J. F. Lynch, J. R. Johnson and R. C. Bowman, Jr., Paper at this meeting.
9. R. C. Bowman, Jr. and W.-K. Rhim, Phys. Rev. **B24**: 2232 (1981).

-END-

DATE FILMED

4/16/82

Fig. 1. Proton T_{1ρ} relaxation times with H₁ = 7.3 G at ν_H = 34.5 MHz.