Függvénysorozatok

Matematika G2 – Valós analízis Utoljára frissítve: 2025. május 5.

6.1. Elméleti Áttekintő

Definíció 6.1: Numerikus sor

Legyen $(a_n): \mathbb{N} \to \mathbb{R}$ numerikus sorozat, amelyből képezzük az alábbi sorozatot:

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i$$

Az így képzett (s_n) -t az (a_n) sorozatból képzett numerikus sornak mondjuk.

Azt mondjuk, hogy a $\sum a_n$ sor konvergens, ha az s_n sorozat konvergens, továbbá $\sum a_n$ sor divergens, ha s_n sorozat divergens.

Az s_n sorozat határértékét a $\sum a_n$ sor összegének hívjuk:

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sum_{i=1}^n a_i = \sum_{i=1}^\infty a_i.$$

Numerikus sorozat konvergencia tesztek:

Majoráns kritérium:

ha
$$\sum a_n < \sum b_n$$
 és $\sum b_n$ konvergens, akkor $\sum a_n$ is konvergens.

· Minoráns kritérium:

ha
$$\sum a_n > \sum b_n$$
 és $\sum b_n$ divergens, akkor $\sum a_n$ is divergens.

Hányadosteszt:

ha
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = q$$
 és $q < 1$, akkor $\sum a_n$ konvergens.

· Gyökteszt:

ha
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = q$$
 és $q < 1$, akkor $\sum a_n$ konvergens.

• Integrálkritérium: ha $x \ge 1$ esetén f(x) nemnegatív és csökkenő, akkor

$$\sum |f_n|$$
 konvergens, ha $\int_1^\infty f(x) dx$ konvergens.

Leibniz-sor:

 $\sum (-1)^n a_n$ konvergens, ha (a_n) monoton csökkenő nullsorozat.

A $\sum a_n$ sorozat abszolút konvergens, ha $\sum |a_n|$ is konvergens.

A $\sum a_n$ sorozat feltételesen konvergens, ha $\sum a_n$ konvergens, de $\sum |a_n|$ divergens.

Definíció 6.2: Függvénysorozat

Az $f_n: I \subset \mathbb{R} \to \mathbb{R}$ sorozatot függvénysorozatnak nevezzük.

Egy függvénysor értelmezése tartománya azon halmaz, ahol az összes f_n tagfüggvény értelmezve van:

$$\mathcal{D}_f = \bigcap_{n=0}^{\infty} \mathcal{D}_{f_n}.$$

Definíció 6.3: Függvénysorozat pontbeli konvergenciája

Ha az $x_0 \in I$ pontban az $(f_n(x_0))$ számsorozat konvergens, akkor azt mondjuk, hogy az (f_n) függvénysorozat konvergens az x_0 -ban. A konvergenciahalmaz:

$$K := \{ x \mid x \in I \land (f_n) \text{ konvergens az } x \text{ pontban } \}.$$

Definíció 6.4: Függvénysorozat határfüggvénye

Az f függvényt az (f_n) függvénysorozat határfüggvényének nevezzük:

$$f(x) := \lim_{n \to \infty} f_n(x), \quad x \in K.$$

Azt mondjuk, hogy az (f_n) függvénysorozat pontonként konvergál az f határfüggvényhez a K-n, ha $\forall \varepsilon > 0$ esetén $\exists N(\varepsilon; x)$, hogy $|f_n(x) - f(x)| < \varepsilon$, ha $n > N(\varepsilon; x)$.

Definíció 6.5: Függvénysorozat egyenletes konvergenciája

Az (f_n) egyenletesen konvergens az $E \subset H$ halmazon, ha $\forall \varepsilon > 0$ esetén létezik $N(\varepsilon)$ úgy, hogy $|f_n(x) - f(x)| < \varepsilon$, ha $n > N(\varepsilon)$ minden $x \in E$ esetén.

Ha az (f_n) függvénysorozat folytonos és egyenletesen konvergens, akkor

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx.$$

Ha az (f_n) függvénysorozat folytonos és az (f'_n) függvénysorozat is folytonos és egyenletesen konvergens, valamint az (f_n) függvénysorozat pontonként konvergens, akkor

$$\lim_{n\to\infty} f_n'(x) = \left(\lim_{n\to\infty} f_n(x)\right)'.$$

6.2. Feladatok

1. Konvergensek-e az alábbi numerikus sorok?

a)
$$\sum_{n=1}^{\infty} \frac{(\cos^n(\pi/2))^{4n}}{n^n+1}$$

$$d) \sum_{n=0}^{\infty} \frac{n!}{2^n + 1}$$

b)
$$\sum_{n=1}^{\infty} \frac{2n^2}{(2+1/n)^n}$$

e)
$$\sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{n^2 - 1}$$

c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(1 - \frac{1}{n}\right)^n$$

f)
$$\sum_{n=1}^{\infty} \frac{n}{e^n}$$

2. Határozza meg az alábbi függvénysorozatok értelmezési tartományát, konvergencia tartományát és határfüggvényét!

a)
$$f_n(x) = x^n$$

d)
$$f_n(x) = (\ln x)^n$$

b)
$$f_n(x) = \frac{x^{n+2} + 1}{x^n}$$

e)
$$f_n(x) = n \sin\left(\frac{x}{n}\right)$$

c)
$$f_n(x) = \frac{\sin nx}{n}$$

f)
$$f_n(x) = n \cos\left(\frac{x}{n}\right)$$

3. Egyenletesen konvergens-e az alábbi függvénysorozat a (2; 5) intervallumon?

$$f_n(x) = \frac{2x^3n^2}{x^2n^2 + 5}$$

4. Bizonyítsa be, hogy

$$\lim_{n \to \infty} \int_0^{2\pi} \frac{\sin(n^4 x^2 + 3)}{x^2 + n^3} \, \mathrm{d}x = 0$$

5. Létezik-e az alábbi függvénysorozat deriváltja?

$$f_n(x) = x^2 + \frac{1}{n}\sin\left[n\left(x + \frac{\pi}{2}\right)\right]$$

6. Adja meg az f_n függvénysorozat összegfüggvényét a [0; 2] intervallumon! Egyenletesen konvergens-e az összegfüggvény a konvergencia-intervallumon?

$$f_n = \begin{cases} n^2 x, & \text{ha} \quad 0 \le x \le 1/n \ \land \ n \in \mathbb{N}^+ \\ 1/x, & \text{ha} \quad 1/n \le x \le 2 \ \land \ n \in \mathbb{N}^+ \end{cases}$$