

TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research

Abir Harrasse*, Philip Quirke*, Clement Neo*, Dhruv Nathawani, Luke Marks, Amir Abdullah

WHY TEXT-TO-SQL? TEXT-TO-SQL: THE SWEET SPOT **User Query** (Natural Language): SELECT * FROM

"Show me employees earning over 50k"

From Toy Tasks:

- Formal structure (ground truth answers).
- Systematic patterns.

From Real World:

Natural language understanding

employees WHERE salary

- Schema grounding.
- Compositional reasoning.

> 50000

But, existing datasets are noisy...

THE TINYSQL DATASET

5 complexity levels, 3 model scales, 20 trained checkpoints...

We finetune TinyStories (33M), Qwen 2.5 (0.5B) and Llama 3.2 1B on each of the datasets

HOW WE STUDY CIRCUITS

Edge Attribution Patching based circuits

Create Causal Impact Corrupted **Prompts**

Original: "Show me

employees"

guests"

name and age from

Corrupted: "Show me

name and age from

Task-specific -

metric

Clean input x_c

Corrupted input x_d How does each edge E affect ● the model's behavior? $\Delta_E L = (e_d - e_c) \cdot
abla_e L(x_c)$

 $L = \frac{\ell(x_{\text{clean}}|\text{do}(E = e_{\text{patch}})) - \ell(x_{\text{corr}})}{\ell(x_{\text{clean}}) - \ell(x_{\text{corr}})}$

Circuit

Process 15 batches of 100 prompts. Selected 10 most important edges ranked by $|\Delta_E L|$.

Keep the top-k edges.

Sparse Autoencoders (SAEs) based circuits

WHAT WE DISCOVERED

- Minimal circuits use only 12-30% of model components.
- Small models (BM1): More compact circuits.
- Larger models (BM2): SAEs essential for fine granularity.
- Circuits are not uniquely identifiable.
- There's some shared causal structure but methods diverge.

Takeaways

- TinySQL is the first testbed that bridges toy tasks and real-world settings, letting us study circuits in controlled but realistic settings.
- We systematically compared EAP, SAE, and Logit Lens to see where each method works and where it breaks.
- Circuits exist, but they're not unique. Methods only agree ~60% of the time, showing models use distributed computation instead of clean modules.

