BASIC QUALITY INSPECTION USING IMAGE PROCESSING

Arunkumar B Balachandra P Shetty

OBJECTIVE

 Build a Quality system which is capable of doing some of the quality inspection using image process techniques which are currently done manually by human

MACHINE TOOL

• A machine tool is a machine for machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations.

MACHINING PROCESS

 Machining is process where metal will be removed from the input material to get desired shape

QUALITY PROCESS

- Once machining process complete next is Quality process
- Quality ensure the correct finished product reaches the customer
- If Quality fails component needs to be send for for rework
 - Examining
 - Measuring
 - Testing

VISUAL INSPECTION

- Identify if all machining operation competed
- Checking for any physical damage to the component
- Checking for improper machining
- Checking for any corrosion /rust
- Checking for cutter mark

Why AI based visual inspection

https://www.ibm.com/in-en/topics/visual-inspection

DATA COLLECTION

- USB based camera is connected to Laptop which can capture
- Python code is made which request user to select location, number of images to acquire and select name for each class

• Based on the input data will be saved in the

location

DATA COLLECTION

LABELLING

- Downloaded open source labelling tool "LABELIMG"
- Compiled and used for Labelling all the images
- Its created xml which have selected box in it

LABELLING

LABELLING

- Totally 11 images collected for each segment
- Named under four classes
 - COMPA
 - COMPB
 - CLAMP
 - SCREW
- Created label file also with same name which will be used in further work
- o labels = [{'name':'CLAMP', 'id':1}, {'name':'COMPA', 'id':2}, {'name':'COMPB', 'id':3}, {'name':'SCREW', 'id':4}]

SPLITTING DATA

- Made a small python code which ask for location where data will be available, Number of data required for training and number of data required for testing
- Based on the data it will randomly split data for testing and training
- In this case I have selected 8 data fro training and 3 data for testing

ENVIRONMENT

- Following library/models is installed
 - Tensor flow
 - Object detection
 - Xml
 - Matplotlib

(Procedure for installation is added in python script)

- SSD MobileNet V2 FPNLite model is selected for this application
- There will be model_builder_tf2_test.py which will help to check all the needed dependency is available or not

MODEL SELECTION

- Got Numerous number of Model form
 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
- I have Selected SSD MobileNet V2
- SSD Stand for Single shot detection, Single image is required to detect image
- This model is very lite which can be deployed even in the low compute devices

TRAINING MODEL

tures

- Training image location, Label map file and converted TF record file is provided as input for training
- Pipe line config file is edited for all the configuration and path related

TRAINING MODEL

- Total time of 55 min taken for training
- Training has been done using only CPU

Organize	New	Open	Select		
PC > COMMON (D:) > PERSONAL > STUDY	> IISC > Code > PROJ	ECT > Quality > COI	DE > Tensorflow	> workspace >	models
Name	Date mo	odified Typ	ре	Size	
eval	29-11-2	022 21:06 File	e folder		
export	29-11-2	022 16:41 File	e folder		
tfjsexport	29-11-2	022 16:41 File	e folder		
tfliteexport	29-11-2	022 16:41 File	e folder		
📙 train	29-11-2	022 19:49 File	e folder		
checkpoint	29-11-2	022 20:46 File	е	1 KB	
ckpt-1.data-00000-of-0000	29-11-20	022 19:51 DA	TA-00000-OF-0	10,244 KB	
ckpt-1.index	29-11-2	022 19:51 INE	DEX File	26 KB	
ckpt-2.data-00000-of-0000	29-11-2	022 20:20 DA	ATA-00000-OF-0	20,300 KB	
ckpt-2.index	29-11-2	022 20:20 INE	DEX File	47 KB	
ckpt-3.data-00000-of-0000	29-11-2	022 20:46 DA	ATA-00000-OF-0	20,300 KB	
ckpt-3.index	29-11-2	022 20:46 INE	DEX File	47 KB	
pipeline.config	29-11-2	022 19:48 XM	1L Configuration	5 KB	

TESTING MODEL

- Test data folder, Label map is provided as input
- Got Average Precision of about 73%

```
Select Windows PowerShell
                                                                                                                                                                                                    σ
 DONE (t=0.02s).
Accumulating evaluation results...
DONE (t=0.00s).
 Average Precision
 Average Precision
Average Precision
Average Precision
                                    IoU=0.50
IoU=0.75
                                                         area=
                                                                           maxDets=100
                                                                                             = 0.889
                                                         area=
                                                                           maxDets=100
                                                                           maxDets=100
                                    IoU=0.50:0.95
                                                         area= small
 Average Precision
                                    IoU=0.50:0.95
                                                         area=medium
                                                                           maxDets=100
                                                         area= large
 Average Precision
Average Recall
                                    IoU=0.50:0.95
IoU=0.50:0.95
                                                                           maxDets=100
                                                                                             = 0.736
= 0.767
                                                         area=
                                                                           maxDets= 1
 Average Recall
                                    IoU=0.50:0.95
                                                         area=
                                                                           maxDets= 10
                                                                                             = 0.767
 Average Recall
                                    IoU=0.50:0.95
                                                         area=
                                                                           maxDets=100
                                                                                             = 0.767
 Average Recall
Average Recall
                                    IoU=0.50:0.95
IoU=0.50:0.95
                                                                                            = -1.000
= -1.000
                                                         area= small
                                                                           maxDets=100
                                                         area=medium
                                                                           maxDets=100
 Average Recall
                                   IoU=0.50:0.95
                                                         area= large
                                                                           maxDets=100
INFO: tensorflow: Eval metrics at step 2000 | 11129 | 21:06:36.425418 | 21840 model | 11b.v2.py:1015] Eval metrics at step 2000 | 11129 | 21:06:36.425418 | 21840 model | 1b.v2.py:eoinj/mAP: 0.735974
Ill129 21:06:36.441050 21840 model_lib_v2.py:1018] + DetectionBoxe
INFO:tensorflow: + DetectionBoxes_Precision/mAP@.50IOU: 1.000000
                                                                         + DetectionBoxes_Precision/mAP: 0.735974
INTO: Lensor | 11129 21:06:36.441050 21840 model_lib_v2.py:1018] + DetectionBoxes_Precision/mAP@.50IOU: 1.000000 INFO:tensorflow: + DetectionBoxes_Precision/mAP@.75IOU: 0.888614
 I1129 21:06:36.441050 21840 model_lib_v2.py:1018]
                                                                         + DetectionBoxes_Precision/mAP@.75IOU: 0.888614
INFO:tensorflow: + DetectionBoxes_Precision/mAP
II129 21:06:36.441050 21840 modellib_v2.py:1018]
INFO:tensorflow: + DetectionBoxes_Precision/mAP
                                                                       (small): -1.000000
                                                                         + DetectionBoxes_Precision/mAP (small): -1.000000
                                                                       (medium): -1.000000
I1129 21:06:36.441050
                            21840 model_lib_v2.py:1018]
+ DetectionBoxes_Precision/mAP
                                                                         + DetectionBoxes_Precision/mAP (medium): -1.000000
INFO:tensorflow:
I1129 21:06:36.441050 21840 model_lib_v2.py:1018]
INFO:tensorflow: + DetectionBoxes Recall/AR@1:
                                                                         + DetectionBoxes_Precision/mAP (large): 0.735974
                                                                     0.766667
I1129 21:06:36.441050 21840 model_lib_v2.py:1018]
                                                                         + DetectionBoxes_Recall/AR@1: 0.766667
                            + DetectionBoxes_Récall/AR@10: 0.766667
21840 model_lib_v2.py:1018] + Detect
+ DetectionBoxes_Recall/AR@100: 0.766667
INFO: tensorflow:
I1129 21:06:36.456678
                                                                         + DetectionBoxes_Recall/AR@10: 0.766667
INFO: tensorflow:
I1129 21:06:36.456678
                            21840 model_lib_v2.py:1018]
                                                                         + DetectionBoxes_Recall/AR@100: 0.766667
INFO: tensorflow:
                               + DetectionBoxes_Recall/AR@100
                                                                       (small): -1.000000
INFO:tensorflow: + DetectionBoxes_Recall/AR@100
                                                                         + DetectionBoxes_Recall/AR@100 (small): -1.000000
                                                                       (medium): -1.000000
I1129 21:06:36.456678
                            21840 model_lib_v2.py:1018]
                                                                         + DetectionBoxes_Recall/AR@100 (medium): -1.000000
+ DetectionBoxes_Recall/AR@100 (large): 0.766667
                                                                         + Loss/localization_loss: 0.080090
                                                                         + Loss/classification_loss: 0.245180
                                                                         + Loss/regularization_loss: 0.144708
INFO: tensorflow:
                            + Loss/total_loss: 0.469977
21840 model_lib_v2.py:1018]
11129 21:06:36.456678
                                                                         + Loss/total_loss: 0.469977
                                                                                                                                                                             へ ¶□ 信. ф)) ENG 29-11-2022
        Type here to search
```

EVALUATING MODEL

- Small python code is made to manually pass image to trained model
- Object in the model has been correctly identified got boxes and label around it

EVALUATING MODEL

• Small test python code is made which is acquire image from the camera and pass to model to identify if trained object is detected

EVALUATING MODEL

- Image will Multiple variety of component is passed and tested
- Image will multiple number of component is passed and tested

CONCLUSION

- If the required component is available
- How many number of components available
- Various variety of component available

FUTURE

- Check if machining process completed or not
- Check if there is physical damage in the component

REFERANCES

- https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zo_o.md
- o https://www.tensorflow.org/guide/model_garden
- o https://www.youtube.com/watch?v=yqkISICHH-U
- https://vidishmehta204.medium.com/objectdetection-using-ssd-mobilenet-v2-7ff3543d738d

Thank you!