

#### AMERICAN INTERNATIONAL UNIVERSITY-BANGLADESH (AIUB)

Faculty of Science and Technology (FST)
Department of Computer Science (CS)
Undergraduate Program

COURSE PLAN SEMESTER: Fall 2023-2024

I. Course Core and Title

CSC4226: Artificial Intelligence and Expert System

II. Credit

3 credit hours (3 hours of Lab & 2 hour theory

per week)

III. Nature

Core Course for CS, CSE, CSSE, SE, CIS

IV. Prerequisite

**CSC2211: Algorithms** 

#### V. Vision:

Our vision is to be the preeminent Department of Computer Science through creating recognized professionals who will provide innovative solutions by leveraging contemporary research methods and development techniques of computing that is in line with the national and global context.

#### VI. Mission:

The mission of the Department of Computer Science of AIUB is to educate students in a student-centric dynamic learning environment; to provide advanced facilities for conducting innovative research and development to meet the challenges of the modern era of computing, and to motivate them towards a life-long learning process.

### **VII - Course Description:**

- Analyze four different types of intelligent agents and their environment.
- Explain and compare different searching techniques using BFS, DFS, UCS, DLS, and IDS.
- Illustrate informed search and exploration methods like A\* and Hill Climbing.
- Explain Constraint satisfaction problems and search techniques in game playing.
- Analyze Logic representation in propositional and first-order logic.
- Explain Genetic Algorithm for problem solving.
- Illustrate Neural Network notations and architectures and solve problems using perception learning rules.
- Explain Expert System for problem solving.

#### **VIII – Course outcomes (CO) Matrix:**

By the end of this course, students should be able to:

| COs*      | CO Description                                                                                                                                                                                                                                                                     |   | Level of Domain** |   |   | PO<br>Assessed*** |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------|---|---|-------------------|
|           |                                                                                                                                                                                                                                                                                    |   |                   | A | S | Assesseu          |
| CO1       | <b>Explain</b> various concepts from Artificial Intelligence and Expert System research domain using various complex problems considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.                            |   |                   | 3 |   | PO-f-1            |
| CO2       | <b>Understand</b> artificial intelligence and its related terms to gain the basic ideas of artificial intelligence so that students will be able to know about the metrics related to performance which will help them to differentiate between different types of Expert systems. |   |                   | 3 |   | PO-f-1            |
| CO3<br>** | <b>Apply</b> different Artificial Intelligence techniques such as search algorithms, genetic algorithm, CSP and uncertainty etc. to solve different real-life problems.                                                                                                            |   |                   | 3 |   | PO-f-1            |
| CO4<br>** | <b>Analysis and design</b> of different AI techniques to provide valid conclusions in real life problem solving.                                                                                                                                                                   | 5 |                   |   |   | PO-f-2            |

- CO assessment method and rubric of COs assessment is provided in later section
- COs will be mapped with the Program Outcomes (POs) for PO attainment
- The numbers under the 'Level of Domain' columns represent the level of Bloom's Taxonomy each CO corresponds to.
- \*\*\*\* The numbers under 'PO Assessed' column represent the POs each CO corresponds to.

# **IX – Topics to be covered in Theory class\*:**

| Week 1 CO1, CO2 Introduction to AI: Definition of AI, Approaches of AI, Turing Test Foundation of AI. Intelligent Agent: Agent and Environment, Types of Agents Learning agent Concept of Rationality, Components of Agent Program.  Week 2 CO1, CO2 Intelligent Agent: Agent and Environment, Types of Agents Learning agent Concept of | Exam /Project, |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Environment, Types of Agents answer, Lab Practice Quiz, Term l                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| Rationality, Components of Agent Program.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| Week 3 CO1, CO2 Uninformed Search: Problem-solving agent, Formulating problems, Example problems, Search strategies: BFS, Uniform Cost Search, DFS, Depth-limited search, Iterative deepening search, Bi-directional search.  CO1, CO2 Uninformed Search: Problem-solving agent, Question-answer, Lab Practice Quiz, Term II                                                                                                                                                                         |                |
| Week 4 CO1, CO2 Informed Search: Best first search, Greedy search, A* search, Heuristic functions, IDA* search, Iterative improvement algorithms, Hill- climbing Search, Simulated Annealing  Lecture, Question- answer, Lab Practice Quiz, Term I                                                                                                                                                                                                                                                   |                |
| Week 5 CO3  Adversarial search: Games, Optimal decisions in games, optimal strategies, the min-max algorithm, optimal decisions in multiplayer games  Assignment/Quiz, Term I                                                                                                                                                                                                                                                                                                                        |                |
| Week 6 CO3  Alpha-beta pruning, Imperfect decisions, Evaluation functions, cutting off search, Games including elements of chance.  Lecture, Question-answer, Lab Practice Quiz, Term I                                                                                                                                                                                                                                                                                                              |                |
| Week 7 CO1, CO2 Genetic Algorithm: Biological Background, Basic Outline, Encoding system, Crossover, Mutation, Selection. Solving Example Problems using GA  Lecture, Question-answer, Lab Practice Quiz, Term I                                                                                                                                                                                                                                                                                     |                |
| Midterm (Week 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| Week 9 CO3, CO4 Constraint Satisfaction Problems: Backtracking search for CSPs, Variable CSC4226: ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEM  Lecture, Questionanswer, Lab Practice Quiz, Term I                                                                                                                                                                                                                                                                                                      |                |

|         |          | and value ordering, propagating information through constraints, Intelligent backtracking.                                                                                    |                                            |                                        |
|---------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|
| Week 10 | CO3, CO4 | Statistical Reasoning: Probability, Bayes<br>Theorem                                                                                                                          | Lecture, Question-<br>answer, Lab Practice | Assignment/Project,<br>Quiz, Term Exam |
| Week 11 | CO3, CO4 | Bayes Network, Application of Bayes<br>Theorem, Hidden Markov<br>Model(HMM)                                                                                                   | Lecture, Question-<br>answer, Lab Practice | Assignment/Project,<br>Quiz, Term Exam |
| Week 12 | CO3, CO4 | Introduction to Artificial Neural<br>Networks: Objectives, History,<br>Applications and Biological<br>Inspiration of Artificial Neural<br>Networks                            | Lecture, Question-<br>answer, Lab Practice | Assignment/Project,<br>Quiz, Term Exam |
| Week 13 | CO3, CO4 | Backpropagation Algorithm, Learning using Backpropagation                                                                                                                     | Lecture, Question-<br>answer, Lab Practice | Assignment/Project,<br>Quiz, Term Exam |
| Week 14 | CO3, CO4 | Knowledge & Reasoning: Representing Knowledge using Logic. Propositional vs. First-order Logic, Inference, Advantages of First-order Logic, Application of First-order Logic. | Lecture, Question-<br>answer, Lab Practice | Assignment/Project,<br>Quiz, Term Exam |
| Week 15 | CO3, CO4 | Expert System: Introduction, Architecture, Participants, and Components of Expert System. Review, Discussion, Open problems, and Brainstorming                                | Lecture, Question-<br>answer, Lab Practice | Assignment/Project,<br>Quiz, Term Exam |
|         |          | Final term (Week 16)                                                                                                                                                          |                                            |                                        |

<sup>\*</sup> The faculty reserves the right to change, amend, add or delete any of the contents.

# X – Mapping of PO/PLO and K, P, A of this course:

| PO Indicator<br>ID | PO Indicators Definition (As per the requirement of WKs)                                                     | Domain                               | K  | P              | A |
|--------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------|----|----------------|---|
| PO-f-1             | Apply information and concepts in natural science with the familiarity of issues.                            | Affective<br>Level 3<br>(Valuing)    |    |                |   |
| PO-f-1             | Apply information and concepts of mathematics with the familiarity of issues.                                | Affective<br>Level 3<br>(Valuing)    |    |                |   |
| PO-f-2             | Formulate solutions, procedures, and methods using first principles of mathematics for engineering sciences. | Cognitive<br>Level 5<br>(Evaluating) | K7 | P1<br>P3<br>P7 |   |
| PO-f-2             | Analyze solutions for complex engineering problem reaching substantiated conclusion.                         | Cognitive<br>Level 5<br>(Evaluating) | K7 | P1<br>P3<br>P7 |   |

# XI - K, P, A Definitions

| Indicator  | Title                  | Description                                                                                                                                                                                                                                                                                    |
|------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | engineering in society | Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability |
| <b>P</b> 1 | Depth of knowledge     | Cannot be resolved without in-depth engineering knowledge at the level                                                                                                                                                                                                                         |

|    | required                   | of one or more of K3, K4, K5, K6 or K8 which allows a fundamentals-based, first principles analytical approach |
|----|----------------------------|----------------------------------------------------------------------------------------------------------------|
| Р3 | Depth of analysis required | Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models   |
| P7 | Interdependence            | Are high level problems including many component parts or sub-<br>problems                                     |

#### XII - Mapping of CO Assessment Method and Rubric

The mapping between Course Outcome(s) (COs) and The Selected Assessment method(s) and the mapping between Assessment method(s) and Evaluation Rubric(s) is shown below:

| COs | Description                                                                                                                                                                                                                                                                        | Mapped<br>POs | Assessment<br>Method             | Assessment<br>Rubric                                 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|------------------------------------------------------|
| CO1 | <b>Explain</b> various concepts from Artificial Intelligence and Expert System research domain using various complex problems considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.                            | PO-f-1        | Quiz / Term<br>Exam              | Rubric for Quiz / Term Exam                          |
| CO2 | <b>Understand</b> artificial intelligence and its related terms to gain the basic ideas of artificial intelligence so that students will be able to know about the metrics related to performance which will help them to differentiate between different types of Expert systems. | PO-f-1        | Quiz / Term<br>Exam              | Rubric for Quiz / Term Exam                          |
| CO3 | <b>Apply</b> different Artificial Intelligence techniques such as search algorithms, genetic algorithm, CSP and uncertainty etc. to solve different real-life problems.                                                                                                            | PO-f-1        | Assignment / Project / Term Exam | Rubric for Assignment / Project / Term Exam          |
| CO4 | <b>Analysis and design</b> of different AI techniques to provide valid conclusions in real life problem solving.                                                                                                                                                                   | PO-f-2        | Assignment / Project / Term Exam | Rubric for<br>Assignment /<br>Project / Term<br>Exam |

#### XIII - Evaluation and Assessment Criteria

**CO1: Explain** various concepts from Artificial Intelligence and Expert System research domain using various complex problems considering experimental design, data analysis and interpretation and information synthesis to provide valid conclusions.

| Assessment<br>Criteria         | Not Attended/<br>Incorrect (0)                                                                | Inadequate<br>(1-2) | Average (3)        | Good<br>(4) | Excellent (5) |
|--------------------------------|-----------------------------------------------------------------------------------------------|---------------------|--------------------|-------------|---------------|
| <b>Evaluation Criteria</b>     |                                                                                               | Eva                 | luation Definition | n           |               |
| Selection of Term              | Explaining suitable term of AI to derive complexity of the given algorithms                   |                     |                    |             |               |
| Content knowledge              | Demonstrates approptite knowledge of AI practice and principles                               |                     |                    |             |               |
| Selection and<br>Argumentation | Articulates a position or argument for the choosing the correct practice and principles of AI |                     |                    |             | e and         |

**CO2: Understand** artificial intelligence and its related terms to gain the basic ideas of artificial intelligence so that students will be able to know about the metrics related to performance which will help them to differentiate between different types of Expert systems.

| Assessment<br>Criteria         | Not Attended/<br>Incorrect (0)                                                                | Inadequate<br>(1-2)                                                         | Average (3) | Good<br>(4) | Excellent (5) |
|--------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------|-------------|---------------|
| <b>Evaluation Criteria</b>     |                                                                                               | Evaluation Definition                                                       |             |             |               |
| Selection of Term              | Explaining suital                                                                             | Explaining suitable term of AI to derive complexity of the given algorithms |             |             |               |
| Content knowledge              | Demonstrates approptite knowledge of AI practice and principles                               |                                                                             |             |             |               |
| Selection and<br>Argumentation | Articulates a position or argument for the choosing the correct practice and principles of AI |                                                                             |             |             | e and         |

**CO3: Apply** different Artificial Intelligence techniques such as search algorithms, genetic algorithm, CSP and uncertainty etc. to solve different real-life problems.

| Assessment<br>Criteria                                                                                                                       | Not Attended/<br>Incorrect (0)                                                                    | Inadequate (1-2)   | Average (3)        | Good<br>(4)       | Excellent (5) |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|--------------------|-------------------|---------------|
| <b>Evaluation Criteria</b>                                                                                                                   | <b>Evaluation Definition</b>                                                                      |                    |                    |                   |               |
| Problem Understand the problem context and nature of the problem. Describe appropriate algorithmic approach/paradigm to analyze the problem. |                                                                                                   |                    |                    | appropriate       |               |
| Content knowledge                                                                                                                            | Demonstrates approprite knowledge of AI practice and principles for application of AI algorithms. |                    |                    |                   |               |
| Applicability                                                                                                                                | Apply suitable al                                                                                 | gorithms for the g | iven problem for s | simulation of the | problem.      |

CO4: Analysis and design of different AI techniques to provide valid conclusions in real life problem solving.

| Assessment<br>Criteria                                                              | Not Attended/<br>Incorrect (0)                                                                                                     | Inadequate (1-2) | Average (3)        | Good<br>(4) | Excellent (5) |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|-------------|---------------|
| <b>Evaluation Criteria</b>                                                          | 13                                                                                                                                 | Eva              | luation Definition | 1 27/       | /             |
| Problem Analysis                                                                    | Understand the problem context and nature of the problem. Describe appropriate method or approach/paradigm to analyze the problem. |                  |                    |             |               |
| Method Selection<br>based on problem<br>scenerio                                    | Explore different dimensions of problems in terms of method considering the platforms where the implementation will be done.       |                  |                    |             |               |
| Analysis the result of<br>the solution and find<br>the drawbacks and<br>constraints | nd To draw a conclusion describing the usage of the proposed techniques including the                                              |                  |                    |             |               |

### **XIV- Course Requirements**

- Students are expected to attend at least 80% class.
- Students are expected to participate actively in the class.
- For both terms, there will be at least 2 quizzes based on the theoretical knowledge and conceptual understanding of the topic covered discussed in the classes.
- Submit report based on the given course related problems.
- Submission of assignment and projects should be in due time.

#### XV – Evaluation & Grading System\*

The following grading system will be strictly followed in this class:

**Mid Term Exam:** 

Term Exam: 40% Quizzes: 30%

Attendance & Performance: 10%

Lab Evaluation: 20% Final Term Exam: Term Exam: 40% Ouizzes: 30%

Attendance & Performance: 10%

Lab Evaluation: 20%

**Semester grade:** 40% midterm + 60% final term

| Letter | Grade Point | Numerical %             |
|--------|-------------|-------------------------|
| A+     | 4.00        | 90-100                  |
| A      | 3.75        | 85 - < 90               |
| B+     | 3.50        | 80 - < 85               |
| В      | 3.25        | 75 - < 80               |
| C+     | 3.00        | 70 - < 75               |
| С      | 2.75        | 65 - < 70               |
| D+     | 2.50        | 60 - < 65               |
| D      | 2.25        | 50 - < 60               |
| F      | 0.00        | < 50                    |
| I      |             | Incomplete              |
| W      |             | Withdrawal              |
| UW     |             | Unofficially Withdrawal |

<sup>\*</sup> The evaluation system will be strictly followed as par the AIUB grading policy.

#### XII - Textbook/ References

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach," Fourth Edition, 2021.
- 2. John Paul Mueller, Luca Massaron, "Artificial Intelligence For Dummies", 2021.
- 3. Charu C. Aggarwal, "Neural Networks and Deep Learning", Springer, Cham, 2018.
- 4. Martin T. Hagan, Howard B. Demuth, Mark H. Beale, "Neural Network Design," 2014.
- 5. Randy L. Haupt and Sue Ellen Haupt, "Practical Genetic Algorithms," Second Edition, 2004.
- 6. J. Ross Quinlan, "Programming for machine learning," Morgan Kaufmann, 1993.
- 7. David E. Goldberg, "Genetic Algorithms in Search, optimization and Machine learning," Pearson Education, 1989.
- 8. http://www.perfectlogic.com/articles/AI/ExpertSystems/ExpertSystems.html

# **XIII - List of Faculties Teaching the Course**

| DR. ASHRAF UDDIN         |
|--------------------------|
| DR. ABDUS SALAM          |
| DR. MOUSHUMI ZAMAN BONNY |
| SUPTA RICHARD PHILIP     |

# **XIV – Verification:**

| Prepared by :                                   | Moderated by :                                                                          |                                      |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------|--|
| mi                                              |                                                                                         |                                      |  |
| <b>Dr. Moushumi Zaman Bonny</b> Course Convener | <b>Dr. Mohammad Mahmudul Hasan</b> Point Of Contact OBE Implementation Committee for CS |                                      |  |
| Date:                                           | Date:                                                                                   |                                      |  |
| Checked by:                                     | Certified by:                                                                           | Approved by:                         |  |
|                                                 | PRAESIDIUM                                                                              |                                      |  |
| Dr. Akinul Islam Jony                           | Dr. Md. Abdullah-Al-Jubair Director,                                                    | <b>Dr. Dip Nandi</b> Associate Dean, |  |
| Head,                                           | Faculty of Science &                                                                    | Faculty of Science &                 |  |
| Department of Computer Science                  | Technology                                                                              | Technology                           |  |
| Date:                                           | Date:                                                                                   | Date:                                |  |