60-354, Theory of Computation Fall 2013

Asish Mukhopadhyay
School of Computer Science
University of Windsor

Formal Definition of a DFA

- A DFA is a 5-tuple : $(Q, \Sigma, \delta, q_0, F)$
 - Q is the set of states
 - $-\sum$ is the input alphabet
 - $-\delta$ is the transition function
 - $\delta : Q X \Sigma \rightarrow Q$
 - F, a subset of Q, is the set of final states

Example

•
$$Q = \{q_0, q_1\}$$

•
$$\Sigma = \{0,1\}$$

•
$$F = \{q0\}$$

δ	0	1
q_0	q_1	q_0
q_1	q_0	q_1

Extended transition function

$$\hat{\delta}(q, e) = q$$

$$\hat{\delta}(q, aw) = \hat{\delta}(\delta(q, a), w)$$

Transition function Example

$$\hat{\delta}(q_0,001) = \hat{\delta}(\delta(q_0,0),01)$$

$$= \hat{\delta}(q_1,01)$$

$$= \hat{\delta}(\delta(q_1,0),1)$$

$$= \hat{\delta}(q_0,1)$$

$$= \hat{\delta}(\delta(q_0,1),\varepsilon)$$

$$= \hat{\delta}(q_0,\varepsilon)$$

$$= q_0$$

Language accepted by a DFA

• L = { w in $\sum^* |\hat{S}(q_0, w)$ is an accepting state of A}

Regular Language

Language accepted by a DFA

DFA Constructions

- Example 2
 - Construct a DFA that accepts all strings over {0,1}
 such that the reverse of w, when evaluated in decimal, is divisible by 5 (or, multiple of 5)

Reverse of a string

- If $w = x_1 x_2 ... x_k$ is a string, then $w^r = x_k x_{k-1},...,x_1$
- Thus if w = 1101, $w^r = 1011$

Main Observation

- The contribution, modulo 5, of a current 1 bit is periodic with respect to its position from the left.
- That's because:

```
-2^0 \mod 5 = 1 \quad 2^4 \mod 5 = 1
```

$$-2^1 \mod 5 = 2 \quad 2^5 \mod 5 = 2 \quad \dots$$

$$-2^2 \mod 5 = 4 \qquad 2^6 \mod 5 = 4$$

$$-2^3 \mod 5 = 3$$
 $2^7 \mod 5 = 3$

State description

- q _{i,i}
 - i is the current position in the string modulo 4
 - j is the cumulative reminder modulo 5 of the string seen so far

Transition function

- $\delta(q_{i,j}, 0) = q_{(i+1) \mod 4, j}$
- $\delta(q_{i,j}, 1) = q_{(i+1) \mod 4, (j+2)} \pmod{4} \mod 5$
- Start state: q_{-1.0}

DFA constructions

- Example 3
 - The set of all strings such that each block of five consecutive symbols contains at least two 0's.

Solution

- Build a DFA, maintaining 2 pieces of information
 - The decimal value of the current block of 5 bits
 - The number of 0's in it
- Updating the decimal value as we move one place right:
 - (oldValue * 2) mod 32 + decimal value of the new bit (this value tells us whether the leading bit of the block of 5 bits is a 1 or a 0)

DFA for modified Example 3

Example 4

Figure 2.4: A DFA that accepts all strings that end in 01

Example 4

Figure 2.5: A DFA that accepts all strings that begin with 01

Product automaton

- Let DFA $A_i = (Q_i, \sum, \delta_i, q_{i0}, F_i)$, for i = 1, 2, recognize language L_i over \sum .
- Then the automaton
 - $A_1 X A_2 = (Q_1 X Q_2, \Sigma, \delta, (q_{01}, q_{02}), F_1 X F_2)$, where $\delta((q_{1i}, q_{2j}), a) = (\delta_1(q_{1i}, a), \delta_2(q_{2j}, a))$, for all a in Σ is called the *product automaton* of A_1 and A_2
- The language accepted by $A_1 \times A_2$ is the set of all strings in $L_1 \cap L_2$

Solving the last problem

 Now use the idea of a product automaton to construct an automaton with 12 states that accepts all strings the begin with and end in 01.

A DFA accepting strings beginning with 01 *or* ending in 01

Nondeterministic Finite Automata

- NFA, for short
- Allow transitions from a given state on a given input to any one of a finite number of states or no state at all

Problem

• Construct an automaton that accepts all strings over $\Sigma = \{0, 1\}$ such that the tenth (10th) symbol from the right end is a 1

Example 5

An NFA that accepts strings such that the tenth symbol from the right end is a 1

Designing a DFA

- Not straightforward
- Simpler problem
 - Construct a DFA that accepts strings whose second digit from the right is a 1

Solution

- Compute modulo 4 the decimal value of the string seen thus far
- If the value is 2 or 3 when we come to the end of the string the second bit from the right is 1
- Update value as we advance one place right:
 - Multiply previous value by 2, add the current bit and compute the result modulo 4

Transition table

	0	1
$\rightarrow q_0$	q_0	q_1
q_1	q_2	q_3
$*q_2$	q_0	q_1
$*q_3$	q_2	q_3

The index j of q_i is the remainder modulo 4

Formal definition of an NFA

• A 5-tuple (Q, Σ , δ , q_0 , F) where

$$\delta: Q \times \Sigma \to 2^Q$$

Extended transition function

$$\hat{\delta}(q,\varepsilon) = \{q\}$$

$$\hat{\delta}(q,wa) = \bigcup_{r} \delta(r,a), \text{ where } r \in \hat{\delta}(q,w)$$

Language accepted by NFA

• L = {w in $\sum^* |\hat{\delta}(q_0, w)$ intersection F is not empty}

NFA to DFA reduction

- Subset construction technique
 - The states of the DFA are all possible subsets of the states of the NFA
 - The start state is: $\{q_0\}$
 - Final states:
 - All subsets that contain at least one of the accepting states of the NFA

Construction by example (1)

Construction by example (2)

• If δ_D () is the transition function of the DFA, and S is a subset of the states of the NFA then

$$\delta_D(S,a) = \bigcup_q \delta_N(q,a), q \in S$$

Equivalent DFA

Figure 2.10: A DFA equivalent to the NFA of Fig. 2.9

Transition table

δ_D	0	1
$\{q_0\}$	$\{q_0\}$	$\{q_0,q_1\}$
$\{q_0,q_1\}$	$\{q_0,q_2\}$	$\{q_0, q_1, q_2\}$
$*\{q_0, q_2\}$	$\{q_0\}$	$\{q_0,q_1\}$
$*\{q_0, q_1, q_2\}$	$\{q_0,q_2\}$	$\{q_0, q_1, q_2\}$

able 2.3: Transition table for the DFA of Fig.2.10

Proof sketch (1)

- Let L₁ be the language accepted by the given
 NFA
- Let L₂ be the language accepted by the constructed DFA
- We show $L_1 = L_2$
- For this we show that $\hat{\delta}_D(\{q_0\}, w)$ is an accepting state iff $\hat{\delta}_N(q_0, w)$ contains an accepting state of the given NFA.

Proof sketch (2)

We establish the stronger fact

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$
 for an arbitrary string w in \sum^*

Proof sketch (3)

- Induction on |w|
- Basis step: w = ε

$$\hat{\delta}_{D}(\{q_0\},\varepsilon) = \hat{\delta}_{N}(q_0,\varepsilon) = \{q_0\}$$

Inductive hypothesis

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w) = S$$

for some $|w| \ge 0$

Formal proof (4)

For a string wa:

```
\hat{\delta}_D(\{q_0\}, wa) = \delta_D(\hat{\delta}_D(\{q_0\}, w), a) (definition of \hat{\delta}_D)

= \delta_D(\hat{\delta}_N(q_0, w), a) (inductive hypothesis)

= \cup \delta_N(q, a), q \in S (definition of \delta_D)

= \hat{\delta}_N(q_0, wa) (by definition of \hat{\delta}_N)
```

Formal proof (5)

- Class of languages accepted by NFAs is contained in the class of languages accepted by DFAs
- Conversely, as every DFA is trivially an NFA the class of languages accepted by DFAs is contained in the class of languages accepted by NFAs

ε-NFA

- Allow transitions on ε
- Include ϵ in the alphabet Σ

Example

A new definition

- The ε-closure of a state q, ECLOSE(q), is the set of all states reachable from q by a finite number of transitions
- Thus, $ECLOSE(q_0) = \{q_0, q_1, q_2\}$
- For a set of states S:

$$ECLOSE(S) = \bigcup_{q} ECLOSE(q), q \in S$$

Extended transition function

$$\hat{\delta}_{NE}(q,\varepsilon) = ECLOSE(\{q\})$$

$$\hat{\delta}_{NE}(q,wa) = ECLOSE(\bigcup_{r} \delta_{NE}(r,a)), \text{ where } r \varepsilon \hat{\delta}_{NE}(q,w)$$

ε-NFA to DFA

- Same as the reduction: NFA to DFA
- With one additional step:

$$\delta_D(S, a) = ECLOSE(\bigcup_r \delta_{NE}(r, a)), \text{ where } r \in S$$

Example ε-NFA

$$\begin{split} & \delta_D(\{q_0,q_1,q_2\},a) = \{q_0,q_1,q_2\} \\ & \delta_D(\{q_0,q_1,q_2\},b) = \{q_1,q_2\} \\ & \delta_D(\{q_0,q_1,q_2\},c) = \{q_2\} \\ & \delta_D(\{q_1,q_2\},a) = \Phi \text{ (dead state)} \\ & \delta_D(\{q_1,q_2\},b) = \{q_1,q_2\} \\ & \delta_D(\{q_1,q_2\},c) = \{q_2\} \\ & \delta_D(\{q_2\},a) = \Phi \\ & \delta_D(\{q_2\},b) = \Phi \\ & \delta_D(\{q_2\},c) = \{q_2\} \end{split}$$

Equivalence proof for any ε-NFA

- Set $q_D = ECLOSE(q_0)$
- Prove by induction for an arbitrary string w that:

$$\hat{\delta}_D(q_D, w) = \hat{\delta}_{NE}(q_0, w) = S$$

Equivalence proof.....

• Base case: $w = \varepsilon$

$$\hat{\delta}_{D}(q_{D}, \varepsilon) = \hat{\delta}_{NE}(q_{0}, \varepsilon) = ECLOSE(q_{0})$$

Equivalence proof.....

Assume inductively

$$\hat{\delta}_D(q_D, w) = \hat{\delta}_{NE}(q_0, w) = S \text{ for some } |w| \ge 0$$

Equivalence proof.....

Then

```
\begin{split} \hat{\delta}_D(q_D, wa) &= \delta_D(\hat{\delta}_D(q_D, w), a) \text{ (definition of } \hat{\delta}_D()) \\ &= \delta_D(\hat{\delta}_{NE}(q_0, w), a) \text{ (inductive hypothesis)} \\ &= \text{ECLOSE}(\cup_r \delta_{NE}(r, a)), \ r \in \hat{\delta}_{NE}(q_0, w) \text{ (definition of } \delta_D()) \\ &= \hat{\delta}_{NE}(q_0, wa) \text{ (definition of } \hat{\delta}_{NE}()) \end{split}
```

Thus a string is accepted by the constructed DFA iff it is accepted by the ϵ -NFA

What we have shown...

- The class of languages accepted by DFAs is in the class of languages accepted by ε-NFAs
- Now to show the converse

Regular expressions

Definition

- -a, ε, φ are regular expressions (a in Σ)
- If r and s are regular expressions then so are r+s,
 r*s (usually written rs) and r*
- $r^* = \varepsilon + r + r^2 + r^3 +$

Languages and regular expressions

- There is a language corresponding to every regular expression
- {a}, $\{\epsilon\}$, ϕ for **a**, ϵ and ϕ respectively
- If L(r) and L(s) are the languages
 corresponding to r and s then L(r) UL(s),
 L(r)L(s) and (L(r))* are languages
 corresponding to the regular expressions r+s,
 rs and r*

Constructing re's ...

- Construct a regular expression for the set of all strings over $\Sigma = \{0,1\}$
- ε is the re for the empty string ε
- (0+1) for the strings 0 and 1 of length 1
- (0+1)(0+1) for all the strings of length 2
- •
- Thus: $(0+1)^* = \varepsilon + (0+1) + (0+1)^2 + (0+1)^3 + \dots$

More examples (1)

 Construct a regular expression from the following description: the language consisting of all strings of 0's and 1's whose tenth symbol from the right end is 1.

Solution

• $(0+1)*1(0+1)^9$

More examples (2)

 Construct a regular expression from the following description: the language consisting of all strings of 0's and 1's whose number of 0's is divisible by 5.

Solution

- Think backwards!
- Remove all 1's and block the 0's in groups of 5
- Reinsert the 1's
- The internal structure of a block of string with exactly five 0's is: 01*01*01*01*0
- These blocks are separated by zero or more 1's
- Thus the r.e.: (1 + 01*01*01*01*0)*

The other way round

 Give an English language description of the language corresponding to the following regular expression: (0 + 10)*1*

Solution

- Any string s in L((0 + 10)*1*) can be written as $\alpha\beta$, where
 - $-\alpha = \varepsilon$ or $\alpha \varepsilon L((0 + 10)^*)$ and
 - $-\beta = \varepsilon$ or $\beta \varepsilon L(1^*)$.
- When $\alpha = \varepsilon$ or $\beta = \varepsilon$, s cannot have 110 as a substring;
- Otherwise, consider
 - a substring $a_1a_2a_3$ of length 3 that spans both α and β .
 - If $a_1 a_2$ is a suffix of α , $a_1 a_2 = 10|00$; and $a_3 = 1$.
 - Hence $a_1a_2a_3 ≠ 110$.
 - If a_2a_3 is a prefix of , then $a_2a_3 = 11$ and $a_1 = 0$.
 - Hence $a_1 a_2 a_3 ≠ 110$.
 - This covers all the cases and hence the claim.

Regular expressions from a DFA

Idea:

- find a regular expression label for all paths from the start state to an accepting state, by eliminating all other states except these two
- If the start state is also accepting, we determine this regular expression by eliminating all states except the start state
- The regular expression corresponding to the language accepted by the DFA is the "sum" of all the regular expressions so obtained.

State Elimination

 If we remove the state q, the transition from the state p to the state r has to be labelled by the regular expression b + ab*a

Case 1

: Reduced DFA to start state p and final state r

Case 2

: Reduced DFA to final state p

Example DFA for state elimination

Removing state s

Reduced DFA

Figure 2.16: Reduced DFA on elimination of state \boldsymbol{s}

Removing state q

Reduced DFA

Reduced DFA on elimination of state q

Removing state r

: Reduced DFA on elimination of state r

$$\mathbf{R} = (1 + 00(10)^*0 + (00(10)^*11 + 01)(0 + 1(10)^*11)^*1(10)^*0)^*$$

Figure 2.19: ϵ -NFAs for the base expressions

ε-NFA for RS

ε-NFA for R+S

ε-NFA for R*

Example

Construct ε-NFA that accepts L((0 +10)*1*))

ϵ -NFA for L((0 +10)*1*))

ϵ -NFA for L((0 +10)*1*))

Summing up (1)

With this we have completed the sequence of reductions

$$NFA \rightarrow DFA \rightarrow RE \rightarrow \epsilon - NFA \rightarrow DFA \rightarrow NFA$$
,

Summing up (2)

 This establishes the equivalence of all the computational models in that they all recognize the class of regular languages