

MECA 953 - Robotique MMT5

4. Cinématique Directe MGD

2020

Convention Denavit Hartenberg

Jacques **DENAVIT** (1930-2012)

Richard Scheunemann **HARTENBERG** (1907-1997)

Initialement introduite en 1955 par Jacques Denavit et Richard S. Hartenberg, la méthode DH permet de normaliser, simplifier et rationaliser la modélisation géométrique d'un robot.

Convention DH-KK: Denavit-Hartenberg modifiée (appelée aussi Khalil-Kleinfinger)

Wisama KHALIL

Jean-François KLEINFINGER

La convention de Denavit-Hartenberg modifiée, appelée aussi convention de Khalil-Kleinfinger, qui est préconisée depuis 1986.

(parce qu'elle permet un allègement du formalisme dans les exposés, portant sur les méthodes numériques par récurrence de la dynamique des robots).

Règles de paramétrage

- Les segments sont numérotés dans l'ordre croissant, de la base (0) à l'effecteur (n).
- Le repère \mathcal{R}_i $(O_i, \overrightarrow{X_i} \overrightarrow{Y_i} \overrightarrow{Z_i})$ est associé au segment i.
- L'axe \vec{Z}_i correspond à l'axe de l'articulation *i*. (pivot ou glissière).
- L'axe \vec{X}_i correspond à la perpendiculaire commune entre \vec{Z}_i et \vec{Z}_{i+1} . $(\vec{X}_i = \vec{Z}_i \land \vec{Z}_{i+1})$.
- L'axe \overrightarrow{Y}_i est placé de façon à créer un repère orthogonal direct. $(\overrightarrow{Y}_i = \overrightarrow{Z}_i \wedge \overrightarrow{X}_i)$.
- L'origine O_i est située à intersection de \vec{X}_i et \vec{Z}_i .

Numérotation des segments et liaisons & Définition des axes Zi

Numérotation des segments et liaisons & Définition des axes Zi

La normale commune entre deux droites est la droite qui contient le segment de distance minimale entre les deux droites.

Paramétrage d'un segment (convention DH-KK)

(cas où axes i-1 et i parallèles)

Paramétrage (a) d'une liaison pivot, (b) d'une liaison glissière. (convention DH-KK)

Effecteur pince

- Origine O_e : au centre de la pince
- $\overrightarrow{Z_e}$: en direction de l'objet à attraper.
- $\overrightarrow{Y_e}$: orthogonal à $\overrightarrow{Z_e}$, dans le plan de glissement des becs de la pince.
- \vec{X}_e : orthogonal au deux autres axes pour avoir un repère orthogonal direct $(\vec{X}_e = \vec{Y}_e \wedge \vec{Z}_e)$.

Le passage de (\mathcal{R}_{i-1}) à (\mathcal{R}_i) s'exprime en fonction des quatre paramètres DH modifiés suivants : $\boldsymbol{a_{i-1}}$ (excentricité), $\boldsymbol{\alpha_{i-1}}$ (torsion), $\boldsymbol{d_i}$ (longueur), $\boldsymbol{\theta_i}$ (angle).

 a_{i-1} : Distance de Z_{i-1} vers Z_i , le long de X_{i-1} .

 α_{i-1} : Angle entre Z_{i-1} et Z_i , autour de l'axe X_{i-1} .

 d_i : Distance de X_{i-1} vers X_i , le long de Z_i .

 θ_i : Angle entre X_{i-1} et X_i , autour de l'axe Z_i .

Paramètres de la convention DH-KK.

Algorithme de paramétrage

Symbol	Name	Description
a_{i-1}	Link Length	$Z_{i1} \xrightarrow{\bot, \operatorname{distance}} Z_i$
α_{i-1}	Twist Angle	$Z_{i\text{-}1} \xrightarrow{\mathfrak{D} \text{ rotation}} Z_i$
d_{i}	Joint Offset	$X_{i\text{-}1} \xrightarrow{\bot, \mathrm{distance}} X_i$
$oldsymbol{ heta}_i$	Joint Angle	$X_{i\text{-}1} \xrightarrow{\text{\mathfrak{D}} \text{ rotation}} X_i$

Paramètres de la convention DH-KK.

Convention DH modifiée (DH-KK)

Algorithme de paramétrage

- Étape 1 Identification des segments : Chaque repère (\mathcal{R}_i) est lié au segment i Identification des articulations de 1 à n : L'axe Z_i du repère (\mathcal{R}_i) coïncide avec l'articulations i. Le segment i possède 2 axes : Z_i et Z_{i+1} . L'axe Z_i est lié à l'articulation i et l'axe Z_{i+1} est lié à l'articulation i+1.
- Étape 2 Choisir Z_i le long de l'axe des articulations i.
- Étape 3 Identifier la normale commune entre Z_i et Z_{i+1} . L'origine du repère O_i est située à l'intersection de la normale commune a_i et l'axe Z_i .
 - Si Z_i et Z_{i+1} sont concourants, O_i est située au point d'intersection.
 - Si Z_i et Z_{i+1} sont parallèles, le choix de l'origine Z_i est arbitraire (on choisit généralement une solution qui donne $d_i=0$).
 - De même si il s'agit d'une articulation prismatique, la liberté est donnée quand à la position de l'origine du repère.

Algorithme de paramètrage

- Étape 4 Choisir X_i le long de la normale commune a_i et dirigé de Z_i vers Z_{i+1} .
 - Si Z_i et Z_{i+1} s'intersectent, X_i est perpendiculaire au plan contenant les deux axes et le choix de la direction de X_i est libre.
 - Si Z_i et Z_{i+1} sont parallèles, X_i est choisi de tel sorte qu'il intersecte X_{i-1} .

(a) $\overrightarrow{Z_i}$ et $\overrightarrow{Z_{i+1}}$ s'intersectent. (b,c) $\overrightarrow{Z_i}$ et $\overrightarrow{Z_{i+1}}$ sont parallèles.

Algorithme de paramètrage

- Étape 5 Choisir Y_i pour obtenir un trièdre direct avec Z_i et X_i soit $Y_i = Z_i \wedge X_i$. (Généralement on ne représente pas les axes Y_i pour ne pas encombrer le schéma)
- Étape 6 Assignation du repère de Base (\mathcal{R}_0) : Le repère de base est lié au segment 0. Le repère est placé arbitrairement mais le choix le plus simple consiste à prendre (\mathcal{R}_0) confondu avec (\mathcal{R}_1) quand $q_1 = 0$. (On a alors $d_0 = 0$ et $\alpha_0 = 0$, $r_1 = 0$ si l'articulation est rotoïde et $\theta_1 = 0$ si l'articulation est prismatique)

Algorithme de paramètrage

Étape 7 Assignation du repère de l'organe terminal n:

Si l'articulation n est rotoïde, la direction de x_n est choisie le long de x_{n-1} quand $\theta_n = 0$ et l'origine du repère n est choisie telle que $r_n = 0$.

Si l'articulation n est prismatique, la direction de x_n est choisie telle que $\theta_n = 0$ et l'origine du repère n est définie à l'intersection de x_{n-1} et z_n tel que $r_n = 0$.

Étape 8 Remplissage du tableau des paramètres

	segment i	σ_i	a_{i-1}	α_{i-1}	d_i	θ_i	
$^0T_1 \\ ^1T_2$	1						
1T_2	2						
	•••						
$^{n-1}T_n$	n						

Convention DH modifiée (DH-KK)

Variables articulaires : qi

$$q_i = (1 - \sigma_i)\theta_i + \sigma_i d_i$$

avec:

- $\sigma_i = 0$ si *i* est une articulation rotoïde.
- $\sigma_i = 1$ si *i* est une articulation prismatique.

autrement dit:

- si l'articulation est une rotation alors $q_i = \theta_i$ est variable, α_i , a_i , d_i sont constants.
- si l'articulation est une translation alors $q_i = d_i$ est variable, α_i , a_i , θ_i sont constants.

Matrice de passage homogène Denavit-Hartenberg

La matrice de transformation homogène (position et orientation) entre 2 repères adjacents $\{\mathcal{R}_{i-1}\}$, $\{\mathcal{R}_i\}$ peut être décomposée en 4 transformations élémentaires :

 $Trans_{x_{i-1}}(a_{i-1})$: Translation le long de X d'une distance a.

 $Rot_{x_{i-1}}(\alpha_{i-1})$: Rotation autour de X d'un angle α .

 $Trans_{z_i}(d_i)$: Translation le long de Z d'une distance d.

 $Rot_{z_i}(\theta_i)$: Rotation autour de Z d'un angle θ .

$$Trans_{x_{i-1}}(a_{i-1}) = \begin{bmatrix} I & \vec{t} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad Rot_{x_{i-1}}(\alpha_{i-1}) = \begin{bmatrix} R & \vec{0} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_{i-1} & -S\alpha_{i-1} & 0 \\ 0 & S\alpha_{i-1} & C\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{Rot}_{x_{i-1}}(\alpha_{i-1}) = \begin{bmatrix} R & \vec{0} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_{i-1} & -S\alpha_{i-1} & 0 \\ 0 & S\alpha_{i-1} & C\alpha_{i-1} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m{Trans}_{m{z_i}}(d_i) = egin{bmatrix} I & ar{t} \\ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$egin{aligned} m{Trans_{z_i}}(d_i) = egin{bmatrix} I & ec{t} & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & d_i \ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned} \qquad m{Rot_{z_i}}(heta_i) = egin{bmatrix} Rot_{z_i}(heta_i) = egin{bmatrix} C heta_i & -S heta_i & 0 & 0 \ S heta_i & C heta_i & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Le produit des matrices de passage successives donne l'expression de la matrice de transformation qui amène le repère $\{\mathcal{R}_{i-1}\}$ au le repère $\{\mathcal{R}_i\}$:

$$i^{-1}T_i = Trans_{x_{i-1}}(a_{i-1}) \cdot Rot_{x_{i-1}}(\alpha_{i-1}) \cdot Trans_{z_i}(d_i) \cdot Rot_{z_i}(\theta_i)$$

$$\mathbf{^{i-1}}\mathbf{T_{i}} = \begin{bmatrix} 1 & 0 & 0 & a_{i-1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_{i-1} & -S\alpha_{i-1} & 0 \\ 0 & S\alpha_{i-1} & C\alpha_{i-1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} C\theta_{i} & -S\theta_{i} & 0 & 0 \\ S\theta_{i} & C\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{i} = \begin{bmatrix}
C\theta_{i} & -S\theta_{i} & 0 & a_{i-1} \\
S\theta_{i} C\alpha_{i-1} & C\theta_{i} C\alpha_{i-1} & -S\alpha_{i-1} & -d_{i} S\alpha_{i-1} \\
S\theta_{i} S\alpha_{i-1} & C\theta_{i} S\alpha_{i-1} & C\alpha_{i-1} & d_{i} C\alpha_{i-1} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$$\mathbf{T}_{i} = \begin{bmatrix}
\mathbf{T}_{i} \mathbf{T}_{i} & \mathbf{T}_{i} \\
0 & 1
\end{bmatrix}$$

$$m{x}^{i-1}m{T_i} = egin{bmatrix} i^{-1}m{R_i} & i^{-1}m{O_i} \ 0 & 1 \end{bmatrix}$$

Matrice de passage homogène Denavit-Hartenberg

Transformation inverse

La transformation inverse ${}^{i}T_{i-1}$ est donnée par :

$$^{i}T_{i-1} = Rot_{z_{i}}(-\theta_{i}) \cdot Trans_{z_{i}}(-d_{i}) \cdot Rot_{x_{i-1}}(-\alpha_{i-1}) \cdot Trans_{x_{i-1}}(-a_{i-1})$$

$${}^{i}T_{i-1} = \begin{bmatrix} & & -a_{i-1} C\theta_i \\ & & -a_{i-1} S\theta_i \\ & & -d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Comparaisons des paramètres de Denavit-Hartenberg classiques et modifiés

La méthode de Denavit-hartenberg "originale" est bien adaptée pour des structures ouvertes simples, mais présente des ambiguïtés lorsqu'elle est appliquée sur des robots à structures fermées ou arborescentes. La variante dite "modifiée" permet de définir les paramètres à partir de deux solides seulement (trois axes caractéristiques de liaison) au lieu de trois pour la convention DH classique.

Matrice de passage homogène Denavit-Hartenberg

Comparaisons des paramètres de Denavit-Hartenberg classiques et modifiés

Paramètres	Convention originale DH	Convention modifiée DH-KK				
axe de liaison	z_{i-1} pour l'articulation i	z_i pour l'articulation i				
longueur : a_i	distance de O_i à l'intersection de z_{i-1} et	distance de z_i à z_{i+1} , le long de x_i				
	x_i , le long de x_i					
torsion : α_i	angle de z_{i-1} à z_i , autour de x_i	angle de z_i à z_{i+1} , autour de x_i				
longueur : d_i	distance de O_{i-1} à l'intersection de z_{i-1}	distance de x_{i-1} à x_i , le long de z_i				
	et x_i , le long de z_{i-1}					
$angle: \theta_i$	angle de x_{i-1} à x_i , autour de z_{i-1}	angle de x_{i-1} à x_i , autour de z_i				
$^{i-1}T_i$	$\begin{bmatrix} C\theta_i & -C\alpha_i S\theta_i & S\alpha_i S\theta_i & d_i C\theta_i \\ S\theta_i & C\alpha_i C\theta_i & -S\alpha_i C\theta_i & d_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & a_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} C\theta_{i} & -S\theta_{i} & 0 & a_{i-1} \\ S\theta_{i} C\alpha_{i-1} & C\theta_{i} C\alpha_{i-1} & -S\alpha_{i-1} & -d_{i} S\alpha_{i-1} \\ S\theta_{i} S\alpha_{i-1} & C\theta_{i} S\alpha_{i-1} & C\alpha_{i-1} & d_{i} C\alpha_{i-1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$				
$^iT_{i-1}$	$\begin{bmatrix} C\theta_i & S\theta_i & 0 & -d_i \\ -C\alpha_i S\theta_i & C\alpha_i C\theta_i & S\alpha_i & -a_i S\alpha_i \\ S\alpha_i S\theta_i & -S\alpha_i C\theta_i & C\alpha_i & -a_i C\alpha_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} C\theta_{i} & S\theta_{i} C\alpha_{i-1} & S\theta_{i} S\alpha_{i-1} & -a_{i-1} C\theta_{i} \\ -S\theta_{i} & C\theta_{i} C\alpha_{i-1} & C\theta_{i} S\alpha_{i-1} & a_{i-1} S\theta_{i} \\ 0 & -S\alpha_{i-1} & C\alpha_{i-1} & -d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$				

Paramétrage

Tableau des paramètres DHKK - Robot Scara

i	σ_i	α_{i-1}	a_{i-1}	d_i	$ heta_i$
1	0	0	0	0	$ heta_1$
2	0	0	a_2	0	$ heta_2$
3	1	0	a_3	d_2	0
4	0	0	0	0	$ heta_4$

 d_3

Tableau des paramètres DHKK Robot Stäubli RX-90

i	σ_i	α_{i-1}	a_{i-1}	d_i	θ_i
		,			
		,			