论文阅读报告

2022 至 2023 学年第_二_学期

课程名	数值分析与最优化
学生学号	20214590
学生姓名	文红兵
任课教师	文 静
报告得分	

摘要

本文通过阅读相关论文,形成了一篇论文阅读报告,介绍了一种基于改进禁忌搜索算法求解 TSP 问题的方法。提出了一种将遗传算法与禁忌搜索算法相结合的改进方法,即先用遗传算法产生较好的初始解,再将该解作为禁忌搜索算法的初始解进行迭代优化。实验结果表明,改进后的算法能够得到更优的解,效果明显优于传统禁忌搜索算法。

关键词: 禁忌搜索算法; 遗传算法; TSP 问题

一、 论文简介

1.1 论文题目

主要阅读论文: 基于改进禁忌搜索算法求解 TSP 问题[1]

1.2 论文摘要

TSP 问题作为一个典型的组合优化问题,多年来众多学者都对其展开了深入研究,以期寻找到一个最优算法来应用到实际生活中。由于 TSP 问题是一个NP 难题,因此一般使用目前较为普遍的智能优化算法进行计算其最短路径,禁忌搜索算法便是其中之一。该算法通过引入禁忌表和特赦准则来避免搜索陷入局部最优,在各个行业中均获得了广泛应用。但是,该算法也存在一定的缺陷,比如对初始解的依赖性。因此,本文为了克服该缺点,将传统的禁忌搜索算法进行了改进,借助遗传算法来对初始解进行优化,进而得到更优解。通过案例仿真表明,加入遗传算法后,实验结果有了很大的改善,得到了更优的路线方案,缩短了总旅程的距离,验证了算法改进后的有效性和可行性。

1.3 研究的问题

通过传统的禁忌搜索算法和遗传算法相结合,达到求解 TSP 问题的算法优化。

二、 研究方法和结果

2.1 禁忌搜索算法

2.1.1 禁忌搜索算法简介

禁忌搜索(Tabu Search)算法是一种基于局部搜索的元启发式优化算法,由 美国科学家 Fred Glover 在 1986 年提出。它通过在搜索过程中维护一个禁忌表 (Tabu List)来避免在相邻解的搜索中重复走过之前已经搜索过的路径,以避免 陷入局部最优解。

2.1.2 禁忌搜索算法流程

禁忌搜索算法的主要流程如下:

- 1. 初始化一个初始解,并将其加入禁忌表中。
- 2. 在相邻解中选择一个最优解,并将其加入禁忌表中。
- 3. 更新当前解,并将其加入禁忌表中。
- 4. 如果达到停止条件,则输出当前解作为最优解;否则返回第2步。 如流程图 1 所示:

图 1

2.1.3 禁忌搜索算法优缺点

在执行搜索过程中,禁忌搜索算法会自适应地调整禁忌表的大小和禁忌期限, 以平衡搜索的多样性和收敛速度。

禁忌搜索算法在解决组合优化问题、函数优化问题、图论问题、排班问题等方面都具有良好的应用效果,尤其适用于那些具有大量局部最优解、搜索空间巨大或不易求解的优化问题。禁忌搜索算法已经被广泛应用于实际工程和科学领域,如交通调度、航班调度、生产调度、图像识别、电力系统优化等。同时,禁忌搜索算法也是其他元启发式算法的基础和灵感来源之一。

但是也存在一些不足,例如,该算法对初始解具有很大的依赖性,即当初始 解较好时,能够迅速找到最优解,当初始解不好时,则直接制约了禁忌搜索的速 度。

2.2 基于遗传算法对禁忌搜索算法的改进

首先利用遗传算法产生较好的初始解之后,再把该解作为禁忌搜索算法的初始解来进行迭代寻优,而非随机产生初始解。

2.3 研究的结果

假设城市规模 N=31, 城市坐标如表 1:

表 1: 31 座城市坐标

城市	X	y	城市	X	y
1	1304	2312	17	3918	2179
2	3639	1315	18	4061	2370
3	4177	2244	19	3780	2212
4	3712	1399	20	3676	2578
5	3488	1535	21	4029	2838
6	3326	1556	22	4263	2931
7	3238	1229	23	3429	1908
8	4196	1044	24	3507	2376
9	4312	790	25	3394	2643
10	4386	570	26	3439	3201
11	3007	1970	27	2935	3240
12	2562	1756	28	3140	3550
13	2788	1491	29	2545	2357
14	2381	1676	30	2778	2826
15	1332	695	31	2370	2975
16	3715	1678			

2.3.1 改进前的结果

在该问题中,设置禁忌长度 L=22,候选解的个数 M=200,分别设置迭代次数为 100、300、500、800 和 1000,运行 5 次,得到结果如表 2:

迭代次数 实验次数	100	300	500	800	1000
1	18642	16984	18654	16758	16342
2	18931	16581	17076	16868	16544
3	18498	17584	16575	16333	16126
4	18370	17220	18378	17623	16310
5	19609	16756	16649	16434	16322

表 2: 改进前不同迭代次数实验结果

在迭代次数为 1000 时,优化最短距离为 16126,最优路径如图 2,适应度进化曲线如图 3:

图 2: 改进前最短距离

图 3: 改进前适应度进化曲线

2.3.2 改进后的结果

先通过遗传算法进行求解,设置群体数量 NP=200,染色体基因维数 N=31,最大进化迭代次数 G=1000,产生初始种群,计算每个个体的适应度值和最短距离,再通过选择、交叉、变异操作进行下一次遗传,直到迭代次数达到最大值,将此时得到的最短路线方案作为初值传给禁忌搜索算法。在实验中,分别设置迭代次数为 100、500 和 1000,在不同的迭代次数下,重复运行 5 次程序,得到

的结果如表 3:

实验次数	100	500	1000
1	16905	16526	15800
2	17609	16587	16037
3	17703	16550	15382
4	17152	16852	16006
5	17394	17178	15824

表 3: 改进后不同迭代次数实验结果

在迭代次数为 1000 时,优化最短距离为 15382,最优路径如图 **4**,适应度进化曲线如图 **5**:

图 5: 改进后的适应度进化曲线

三、 总结和个人感悟

3.1 总结

本文简要阐述了禁忌搜索算法的基本思想、求解步骤以及实现过程等,并对比了两种方式对 TSP 问题的求解的结果,实验结果表明,改进前的禁忌搜索算法能够找到相对最优解,但需要较大的迭代次数,且初始解较差时,求解速度缓慢,结果不够稳定。通过遗传算法进行改进后,结果有了较大的提高,从实验数据可以看出,在改进前,当迭代次数为 1000 时,优化最短距离为 16126,改进以后,优化最短距离为 15382,缩短了总的行程距离,得到了更优的路线方案,实验结果得到了明显的改善,算法有效并且可行。

3.2 个人感悟

禁忌搜索算法作为一种常用的元启发式优化算法,在解决组合优化问题方面 具有广泛应用和良好表现,但其也存在一些不足,如对初始解的依赖性、参数设 置的困难等。通过本文所述的改进方法,即将遗传算法与禁忌搜索算法相结合, 可以有效地克服禁忌搜索算法的缺陷,提高算法的求解效率和求解精度。此外, 本文还介绍了禁忌搜索算法的基本流程和优缺点,对于理解和掌握该算法有很大 的帮助。总之,在实际应用中,需要根据具体问题的特点和需求进行适当的调整 和优化,以达到更好的求解效果。

参考文献

[1]唐文秀.基于改进禁忌搜索算法求解 TSP 问题[J].科学技术创新,2022(04):154-157.

[2]包 强 . 一 种 求 解 旅 行 商 问 题 的 混 合 遗 传 模 拟 退 火 算 法 [J]. 中 国 储运,2021(11):204-205.DOI:10.16301/j.cnki.cn12-1204/f.2021.11.120.

[3]梅俊. 基于混合遗传算法的 TSP 优化问题求解[D].安庆师范大学,2018.

[4]施泰龙,郑悠,王蔚,邵润润.引入外来种群的禁忌遗传混合算法求解 TSP 问题[J].宁波工程学院学报,2017,29(03):20-25+42.

[5]张 洪 艳 . 改 进 禁 忌 搜 索 算 法 在 TSP 问 题 中 的 应 用 [J]. 科 技 资 讯,2013(32):4-5.DOI:10.16661/j.cnki.1672-3791.2013.32.160.

[6]程林辉.禁忌搜索算法及其在 TSP 问题中的应用研究[J].大众科技,2013,15(05):13-14.

[7]彭茂.一种求解 TSP 问题的改进禁忌搜索算法[J].计算技术与自动化,2012,31(01):78-81.