彭·葛毅

高等数学下期末试题集

(2012-2022)

彭康书院学业辅导与发展中心

2022 年高等数学下期末试题

一、选择题(共 5 题,每题 3 分)

1. 曲线
$$C:$$

$$\begin{cases} x^2+y^2-z^2=1\\ z=xy \end{cases}$$
 在点 $(2,1,2)$ 处的切线方程为 $()$

A.
$$\begin{cases} 2x - y + 2z = 2 \\ x - 2y + z = 1 \end{cases}$$
 B.
$$\begin{cases} x^2 + y^2 - z^2 = 1 \\ z = xy \end{cases}$$
 C.
$$\begin{cases} 2x - y + 2z = 1 \\ x - 2y + z = 2 \end{cases}$$
 D.
$$\begin{cases} 2x + y - 2z = 1 \\ x + 2y - z = 2 \end{cases}$$

2. 函数
$$f(x,y) = xy^3$$
 在椭圆 $2x^2 + 3y^2 \le 4$ 上的最大值为

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{1}{2}$$

3. 极限
$$\lim_{r \to 0^+} \iint_{x^2 + y^2 \le r^2} e^{x^2 + y^2} dx dy$$
 等于

A 0 B 1 C π D 2π

D
$$2\pi$$

4. 设有向曲面
$$Σ: x^2 + y^2 + (z - 1)^2 = 1, (z \ge 1)$$
, 定向为上侧,则第二类曲面积分

$$\iint_{\Sigma} 2xy \, dy \wedge dz - y^2 \, dz \wedge dx - z \, dx \wedge dy$$

B. $-\frac{2}{3}\pi$ C. $-\frac{\pi}{3}$

A.
$$-\frac{5}{3}\pi$$

B.
$$-\frac{2}{3}\pi$$

$$C. -\frac{\pi}{3}$$

D.
$$\frac{\pi}{3}$$

5. 已知幂函数
$$\sum_{n=0}^{+\infty} a_n x^n$$
 的收敛半径是 2,则数项级数 $\sum_{n=0}^{+\infty} a_n$ 是 ()

A. 绝对收敛

B. 条件收敛

C. 发散

D. 无法确定是否收敛

一、填空题(共 5 题,每题 3 分)

1. 设函数
$$u(x,y,z) = x^{\frac{y}{z}}$$
,则在点 $(e,1,1)$ 处沿方向 $\boldsymbol{l} = (1,-2,2)$ 的方向导数 $\left. \frac{\partial u}{\partial \boldsymbol{l}} \right|_{(e,1,1)} =$

2. 设
$$D = \{(x,y)||x| + |y|\}$$
, 则二重积分 $\iint_D (x+|y|) dxdy = _____.$

3. 设
$$L$$
 为圆 $x^2 + y^2 = 4$, 则 $\int_L (2x^2 - 3y^2) ds = _____.$

4. 级数
$$\sum_{n=0}^{+\infty} (-1)^n \frac{(x+1)^n}{n}$$
 的收敛域为 ______.

5. 若级数
$$\sum_{n=0}^{+\infty} \frac{a^n}{n^b}$$
, $(a > 0, b > 0)$ 收敛,则 a 和 b 满足的条件是 ______.

三、计算题

1. 求函数 $f(x,y) = x^2(2+y^2) + y \ln y$ 的极值.

2. 计算三次积分
$$\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^1 xe^{z^2} dz$$
.

3. 设曲线 $C: 2x^2+y^2=1$, 方向取逆时针方向. 求曲线积分 $\int\limits_C \frac{(x+y)\mathrm{d}x+(y-x)\mathrm{d}y}{x^2+y^2}$.

4. 计算曲面积分 $\iint_{\Sigma} y^2 dS$, 其中 $\Sigma = \{(x,y,z)|x+y+z=1, x\geq 0, y\geq 0, z\geq 0\}.$

5. 将 $f(x) = \arctan \frac{1+x}{1-x}$ 展开为 x 的幂级数.

6. 设 f(x) 为周期为 3 的周期函数,它在一个周期内的表达式为: $f(x) = \begin{cases} |x|, |x| \leq 1 \\ 1, 1 \leq |x| \leq \frac{3}{2} \end{cases}$ 出 f(x) 在一个周期内的 Fourier 级数及和函数 S(x) 的表达式,并求 $S(-2), S(3), S\left(\frac{9}{2}\right)$ 的值.

7. 设数列 $\{a_n\}$ 满足条件: $a_0 = 3, a_1 = 1, a_{n-2} - n(n-1)a_n = 0, (n \ge 2), S(x)$ 是幂级数 $\sum_{n=0}^{+\infty} a_n x^n$ 的和函数, 求 S(x) 的表达式.

四、设连续函数 f(x) 恒正, $\Omega=\{(x,y,z)|x^2+y^2+z^2\leq t^2\},$ $D=\{(x,y)|x^2+y^2\leq t^2\},$ $F(t)=\iint\limits_{\Omega}f(x^2+y^2+z^2)\mathrm{d}V$

$$\iiint_{\Omega} f(x^2 + y^2) d\sigma$$
, 试判断 $F(t)$ 在 $(0, +\infty)$ 的单调性.

 \mathbf{L} 、设函数 f(x,y,z) 具有二阶连续偏导数, 而且

$$\lim_{r \to +\infty} r \left(x \frac{\partial f}{\partial z} + y \frac{\partial f}{\partial y} + z \frac{\partial f}{\partial z} - 3 \right) = 1$$

其中 $r = \sqrt{x^2 + y^2 + z^2}$. 记

$$A_n = \iiint\limits_{B(n)} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \right) dx dy dz$$

其中 $B(n) = \{(x, y, z) | x^2 + y^2 + z^2 \le n^2 \}$. 试讨论级数 $\sum_{n=0}^{+\infty} \frac{(-1)^n}{A_n}$ 的敛散性, 若收敛, 指出收敛类型, 说明理由.

填空题

- 2. 设 $\sum_{n=0}^{\infty} a_n$ 条件收敛,则幂级数 $\sum_{n=0}^{\infty} \left(a_n + \frac{1}{n}\right) x^n$ 的收敛半径R等于 _______。
- 3. 若 \Box ²上的可微函数u(x, y)的梯度**grad** $u = (2x + e^x \sin y, e^x \cos y)$,且 $u(0, \pi) = 2$,则u(x, y) = 0

4. $\forall L: x = 2\cos t, y = 2\sin t, z = 2t(0 \le t \le \pi), \quad \text{M} \int_{L} \frac{z^2}{x^2 + v^2} ds = \underline{\hspace{1cm}}$

5. 设 $f(x) = \begin{cases} 2x, & -1 \le x \le 0 \\ x^2 + 1, & 0 \le x \le 1 \end{cases}$,将 f(x) 展开成以 2 为周期的傅里叶级数,其和函数记为 S(x),则

$$S\left(-\frac{15}{2}\right) = \underline{\hspace{1cm}}$$

选择题

1. 函数 $f(x, y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & x^2 + y^2 = 0 \\ 0, & x^2 + y^2 \neq 0 \end{cases}$ 在原点 (0, 0) 处)

- (A) 连续且偏导数存在
- (B) 沿各个方向的方向导数都存在,但不可微

(C) 可微

(D) 连续但偏导数不存在

2. 设空间区域 $\Omega = \{(x, y, z) \mid 0 \le z \le \sqrt{4 - x^2 - y^2}, x^2 + y^2 \le 1 \}$,则Ω的体积等于)

(A)
$$4 \int_{0}^{\pi/2} d\theta \int_{0}^{1} r \sqrt{4 - r^2} dr$$

(B)
$$\int_{0}^{2\pi} d\theta \int_{0}^{2} r \sqrt{4 - r^2} dr$$

(C)
$$4\int_0^{\pi/2} d\theta \int_0^1 \sqrt{4-r^2} dr$$

(D)
$$\int_0^{2\pi} d\theta \int_0^2 \sqrt{4 - r^2} dr$$

3. 设 $\Sigma: x^2 + y^2 + z^2 = a^2, z \ge 0$, 在以下四组积分中, 一组中两个积分同时为 0 的是

(A)
$$\iint_{\Sigma} z^2 dx dy$$
, $\iint_{\Sigma} z dx dy$

(B)
$$\iint_{\Sigma} xz dy dz$$
, $\iint_{\Sigma} z^2 dy dz$

(C)
$$\iint_{\Sigma} y dx dz, \iint_{\Sigma} y^2 dx dz$$

(D)
$$\iint_{\Sigma} y^2 dx dz$$
, $\iint_{\Sigma} 1 dx dz$

4. 二次积分 $\int_{1}^{2} dx \int_{1/x}^{1} y e^{xy} dy$ 的值为)

(A)
$$e^2 - e^2$$

(A)
$$e^2 - e$$
 (B) $\frac{1}{2}e^2 - e$

(C)
$$e^2 + e$$

(D)
$$\frac{1}{2}e^2 + e$$

)

5. 下列命题中正确的是

(A) 设正项级数
$$\sum_{n=1}^{\infty} a_n$$
 收敛,且 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ 存在,则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$

(B) 若正项级数
$$\sum_{n=1}^{\infty} a_n$$
 发散,必存在 $N \in \square_+$, 当 $n > N$ 时,恒有 $a_n > \frac{1}{n}$

(C) 设
$$f(x) = x - \sin x$$
,则 $\sum_{n=1}^{\infty} (-1)^n f\left(\frac{1}{\sqrt{n}}\right)$ 绝对收敛

(D) 若级数
$$\sum_{n=1}^{\infty} (a_{2n-1} + a_{2n})$$
 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛

三、 计算题

1. 设函数
$$f(u,v)$$
 具有连续二阶偏导数, $z = xf\left(xy, \frac{x}{y}\right)$,求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$ 。

2. 计算曲面积分
$$\iint_{\Sigma} xz dS$$
, 其中 Σ 是圆锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = 2ax(a > 0)$ 所截部分。

3. 求函数
$$z = \frac{x^3}{3} - xy + \frac{y^2}{2} - 2y$$
 的极值。

4. 计算曲线积分
$$\int_{C} \sqrt{x^2 + y^2} dx + \left[2x + y \ln(x + \sqrt{x^2 + y^2}) \right] dy$$
,其中有向曲线 $C: y = x \sin x$,方向: $A(\pi, 0) \to O(0, 0)$ 。

5. 计算第二类曲面积分 $\iint_{\Sigma} x^3 dy dz - 3x^2 y dz dx + (z^3 - 2) dx dy$, 其中 Σ 是曲面 $z = x^2 + y^2 (0 \le z \le 1)$ 的下 侧。

- 6. (1) 将函数 $f(x) = \frac{\ln(1+x)}{x}$ 展开成麦克劳林级数;
 - (2) 利用(1)中所得级数,求积分 $\int_0^1 f(x) dx$ 的值(注: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$)。

五、将函数 $f(x) = x - \frac{\pi}{2} + \left| x - \frac{\pi}{2} \right| (0 \le x \le \pi)$ 展成余弦级数。

六、求幂级数 $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} x^n$ 的和函数,并求 $\sum_{n=2}^{\infty} \frac{1}{(n^2 - 1)2^n}$ 的和。

七、函数 f(x,y)满足 $\frac{\partial f(x,y)}{\partial x} = (2x+1)e^{2x-y}$,且 f(0,y) = y+1, L_t 是从点 (0,0) 到点 (1,t) 的光滑曲线,计算曲线积分

$$I(t) = \int_{L_{t}} \frac{\partial f(x, y)}{\partial x} dx \frac{+\partial f(x, y)}{\partial y} dy$$

并求I(t)的最小值。

八、设函数 f(x) 在 $[0,+\infty)$ 上连续,且单调增加有上界。证明级数 $\sum_{n=1}^{\infty} \left[f(n) - \int_{n-1}^{n} f(x) dx \right]$ 收敛。

一、 选择题

二、 填空题

1. 设曲面 S: z = x + f(y - z) ,其中 f 可导,则该曲面在任一点处切平面的法向量 n 与向量 (1,1,1) 的 夹角 θ 为 _____。

- 3. 设曲面 Σ 是 $z = \sqrt{4 x^2 y^2}$ 的上侧,则 $\iint_{\Sigma} xydydz + xdzdx + x^2dxdy = ______$ 。
- 5. 幂级数 $\sum_{n=0}^{+\infty} \frac{1}{n!} x^{3n+4}$ 的和函数 S(x) 为 ________。

三、 计算题

1. 设u = f(x, y, z), $\varphi(x^2, e^y, z) = 0$, $y = \sin x$, 其中 f, φ 都具有一阶连续偏导数,且 $\frac{\partial \varphi}{\partial z} \neq 0$, 求 $\frac{du}{dx}$ °

2. 求函数 $f(x,y) = x^2 + 2y^2 - x^2y^2$ 在区域 $D = \{(x,y) | x^2 + y^2 \le 4, y \ge 0\}$ 上的最大值与最小值。

3. 设n为曲线 $\begin{cases} x^2 + y^2 + z^2 = 6^2 \\ x + y + z = 0 \end{cases}$ 在点(1,-2,1)处的单位切向量,且与OZ轴正向夹角呈锐角,求函数 $f(x,y,z) = \ln(x^2 + y^2 + z^2)$ 在点(0,1,2)处沿向量n的方向导数。

5. 计算曲线积分
$$\int_L (2xy^3 - y^2\cos x)dx + (1 - 2y\sin x + 3x^2y^2)dy$$
,其中 L 为抛物线 $2x = \pi y^2$ 从点 $(0,0)$ 到点 $(\frac{\pi}{2},1)$ 的一段弧。

6. 设
$$S$$
 是半空间 $x > 0$ 中任意有向封闭曲面,函数 $f(x)$ 在 $(0,+\infty)$ 内存在连续的一阶导数,满足
$$\lim_{x \to 0^+} f(x) = 1$$
,又 $\iint_S x f(x) dy \wedge dz - xy f(x) dz \wedge dx - e^{2x} z dx \wedge dy = 0$,求 $f(x)$ 。

7. 计算三重积分
$$\iint\limits_{(V)} (\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2 dv$$
, 其中 (V) 为球体 $x^2 + y^2 + z^2 \le R^2$, a,b,c 为正数。

四、设函数
$$f(x) = \begin{cases} \frac{1+x^2}{x} \arctan x, x \neq 0 \\ 1, x = 0 \end{cases}$$

- (1) 将函数 f(x) 展开为 x 的幂级数;
- (2) 求级数 $\sum_{n=1}^{+\infty} \frac{(-1)^n}{1-4n^2}$ 的和。

五、设
$$f(x)$$
 在 $\left[-\pi,\pi\right]$ 上具有二阶连续导数,且 $f(x)$ $\left[-\pi,\pi\right]$ $\left[-\pi,\pi\right]$ 上具有二阶连续导数,且 $f(x)$ $\left[-\pi,\pi\right]$ $\left[-\pi,\pi\right]$ $\left[-\pi,\pi\right]$ 上具有二阶连续导数,且 $\left[-\pi,\pi\right]$ $\left[-\pi,\pi\right]$

f(x) 的傅里叶系数, 求证: $\sum_{n=0}^{+\infty} a_n$ 绝对收敛。

2019 年高等数学下册期末试题

一、填空题 (每小题 3 分, 共 15 分)

- 1. 函数 $u = 2xy z^2$ 在点 (2, -1, 1) 处沿 I = (1, 2, -2) 的方向导数是_____.
- 2. 级数 $\sum_{n=0}^{\infty} \frac{\ln n}{2^n} (x+1)^n$ 的收敛域是_____.
- 3. 曲面 $z = x^2 + y^2 1$ 在点 $M_0(2,1,4)$ 处的切平面方程为______.
- 4. 设曲线 L 是从点 O(0,0,0) 到 A(1,2,2) 的直线段,则对弧长的曲线积分 $\int_{L} x e^{yz} ds = _____.$

二、计算题 (每小题 6 分, 共 18 分)

1. 设函数 u = f(x, y, z), f 具有连续的二阶偏导数, 且 $z = e^x \sin y$, 求 $\frac{\partial u}{\partial x}$, $\frac{\partial^2 u}{\partial x \partial y}$.

2. 计算 $\int_C -y^2 dx + x dy + z^2 dz$, 其中曲线 C 是平面 y + z = 4 与柱面 $x^2 + y^2 = 2y$ 的交线, 且从 z 轴正向往下看是 逆时针方向.

3. 计算曲面积分 $\iint\limits_{\Sigma} \left(x^2+y^2\right) \mathrm{d}S$, 其中 Σ 是锥面 $z=\sqrt{x^2+y^2}, 0 \le z \le 2$ 部分.

三、计算题 (每小题 7分, 共 21分)

1. 求曲面 $z = x^2 + y^2$ 与圆锥面 $z = 2 - \sqrt{x^2 + y^2}$ 所围空间闭区域 Ω 的体积.

2. 求幂级数 $\sum_{n=0}^{\infty} \frac{(2n+1)}{n!} x^{2n}$ 的和函数 S(x).

3. 计算 $\displaystyle\iint\limits_{\Omega}(2\sin y+z)\mathrm{d}V,$ 其中 $\Omega=\left\{(x,y,z)\mid x^2+y^2+z^2\leq 2z, z\geq \sqrt{x^2+y^2}\right\}.$

四、解答题 (每小题 8 分, 共 32 分)

1. 求曲线积分
$$\int\limits_{L} \frac{-y \, \mathrm{d}x + x \, \mathrm{d}y}{x^2 + y^2}$$
, 其中 L 为摆线
$$\begin{cases} x = t - \sin t - \pi, \\ y = 1 - \cos t \end{cases}$$
 由 $t = 0$ 到 $t = 2\pi$ 的一段.

2. 求椭圆
$$\begin{cases} 5x^2 - 6xy + 5y^2 = 4 \\ z = 0 \end{cases}$$
 上的点到点 $M(0,0,2)$ 的最长距离和最短距离.

3. 求向量场 $\vec{A} = (2x + z)\mathbf{i} + y^2\mathbf{j} + z\mathbf{k}$ 通过抛物面 $\Sigma : z = x^2 + y^2 (0 \le z \le 1)$ 下侧的通量.

4. 将函数 $f(x) = \sin \frac{x}{2} (-\pi \le x \le \pi)$ 展开成傅里叶级数.

五、(8分)将 $f(x) = (1+x)\ln(1+x)$ 展开成 x 的幂级数,并求 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(n-1)}$ 的和.

六、(6 分) 设平面区域 $D = \{(x,y) \mid 0 \le x \le \pi, 0 \le y \le \pi\}$, L 为 D 的边界正向. 证明: $\int\limits_{L} x \mathrm{e}^{\sin y} \, \mathrm{d}y - y \mathrm{e}^{-\sin x} \, \mathrm{d}x \ge \frac{5}{2} \pi^2$.

一、单选题

- 1. 设函数 f(x,y) 在点 $P(x_0,y_0)$ 处的某个领域内有定义,则下列说法正确的是(

 - B. 若 f(x,y) 在点 P 处连续,则 f(x,y) 在该点的偏导数一定存在
 - C. 若 f(x,y) 在点 P 处有极限,则 f(x,y) 在该点一定连续
 - D. 若 f(x,y) 在点 P 处可微,则 f(x,y) 在该点连续且偏导数一定存在
- 2. 若 f(x,y) 在 D: $a \le x \le b, c \le y \le d$ 上有二阶连续偏导数,则 $\iint_{\Sigma} \frac{\partial^2 f(x,y)}{\partial x \partial y} dx dy = 0$
 - A. f(a,d) f(b,d) f(b,c) + f(a,c)
- B. f(b,d) f(a,d) f(b,c) + f(a,c)
- C. f(a,d) f(b,d) f(a,c) + f(b,c) D. f(b,d) f(a,d) f(a,c) + f(b,c)
- 3. 若 L 是球面 $x^2 + y^2 + z^2 = 4$ 与平面 x + y + z = 0 的交线,则 $I = \iint_I (x+1)^2 ds = (x+1)^2 ds$
 - A. $\frac{28}{2}\pi$

Β. 8π

- C. $\frac{19}{3}\pi$
- D. 12π

- 4. 微分方程 $y'' + 3y' + 2y = (ax + b)e^{-x}$ 的特解形式为(

 - A. $y = Axe^{-x}$ B. $y = (Ax + B)e^{-x}$ C. $y = (Ax + B)xe^{-x}$ D. $y = Ax^2e^{-x}$
- 5. 设 f(x) 为连续函数, $F(t) = \int_{1}^{t} dy \int_{y}^{t} f(x) dx$, 则 F'(2) = ()
 - A. 2f(2)
- B. f(2)

- C. -f(2)
- D. 0

二、计算题

1. 求曲面 $e^{z} - z + xy = 3$ 在点(2,1,0)处的切平面方程和法线方程.

3. 设
$$S$$
为上半球面 $x^2 + y^2 + z^2 = 4, z \ge 0$, 计算 $\iint_{(s)} (x + y + z) dS$.

4. 计算
$$I = \int_L (y^2 + \sin^2(x+y)) dx + (x^2 - \cos^2(x+y)) dy$$
, 其中 L 为曲线 $y = \sqrt{1-x^2}$ 从上点 $A(1,0)$ 到 $B(0,1)$ 的一段弧.

5. 计算积分 $I = \iint_C z dx + x dy + y dz$,其中 C 为 x + y + z = 1 被三个坐标面所截的三角形的边界,方向与三角形上侧的法向量构成右手法则.

6. 设 $f(x, y, z) = \ln(x^2 + y^2 + z^2)$, 计算 $\text{div}[grad \ f(x, y, z)]$ 和 $\text{rot}[grad \ f(x, y, z)]$.

7. 已知 $y_1 = x$, $y_2 = x + e^x$, $y_3 = 1 + x + e^x$ 是 $y'' + a_1(x)y' + a_2(x)y = Q(x)$ 的解,试求此方程的通解.

8. 计算
$$I = \int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy$$
.

三、解答题

1. 讨论函数 $f(x,y) = \begin{cases} xy \arctan \frac{1}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0 \\ 0 & \text{在点(0,0)} 处的连续性、偏导数存在性、可微性.} \end{cases}$

2. 在椭球面 $2x^2+2y^2+z^2=1$ 上求一点 P,使得函数 $u=x^2+y^2+z^2$ 在点 P 沿方向 n=(1,-1,0) 的方向导数最大,并求此方向导数的最大值.

3. 计算 $I = \iint_{(s)} (x - y + z) dy \wedge dz + (y - z + x) dz \wedge dx + (z^2 - x + y) dx \wedge dy$, 其中 S 为曲面 $x^2 + y^2 + z^2 = R^2$ 与 $x^2 + y^2 + (z - R)^2 = R^2$ 所围立体表面的外侧.

4. 求微分方程 $x'' + 2x' + 2x = te^{-t} \cos t$ 的通解.

5. 设L是不经过点(2,0),(-2,0)的分段光滑的简单正向闭曲线,试就L的不同情形计算曲线积分

$$I = \iint_{L} \left[\frac{y}{(2-x)^{2} + y^{2}} + \frac{y}{(2+x)^{2} + y^{2}} \right] dx + \left[\frac{2-x}{(2-x)^{2} + y^{2}} - \frac{2+x}{(2+x)^{2} + y^{2}} \right] dy$$

一、计算题

1. 求 $u = 4x^2 + y^2 + z^2$ 在点 M(1,0,2) 处的梯度及最大方向导数.

2. 求微分方程 y''' - y'' + 2y' - 2y = 0 的通解.

3. 设 $u = f(t), t = \varphi(xy, x)$, 其中f, φ 具有连续的二阶导数及偏导数, 求 $\frac{\partial u}{\partial x}, \frac{\partial^2 u}{\partial x \partial y}$.

4. 求曲线 $\begin{cases} x = t \\ y = -t^2 与 平面 x + 2y + z = 4 平 行 的 切 线 方程. \\ z = t^3 \end{cases}$

5. 求函数 $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的所有极值.

6. 计算累次积分 $I = \int_0^1 dx \int_x^1 x^2 e^{-y^2} dy$.

7. 计算二重积分
$$I = \iint_D (xy + |y|) dx dy$$
, 其中 $D = \{(x, y) : |x| + |y| \le 1\}$.

8. 计算曲面积分
$$I = \iint_{\sum} \frac{x^3}{r^3} dy \wedge dz + \frac{y^3}{r^3} dz \wedge dx + \frac{z^3}{r^3} dx \wedge dy$$
,其中 $r = \sqrt{x^2 + y^2 + z^2}$, \sum : $x^2 + y^2 + z^2 = a^2$ 的外侧.

9. 求第一型曲线积分
$$I = \int_{L} \sqrt{2y^2 + z^2} ds$$
, 其中 $L:\begin{cases} x^2 + y^2 + z^2 = a^2 \\ x - y = 0 \end{cases}$.

10. 求双曲抛物面(马鞍面) z = xy 被圆柱面 $x^2 + y^2 = R^2$ 所截下那部分的面积.

二、解答题

1. 讨论
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在点 $(0,0)$ 的偏导数存在性、可微性、偏导函数的连续性.

2. 计算第二型曲线积分 $I = \int_L \frac{x-y}{x^2+y^2} dx + \frac{x+y}{x^2+y^2} dy$,其中 L 是从点 A(-a,0) 经上半椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $(y \ge 0)$,到点 B(a,0) 的弧段.

3. 求微分方程 $y'' - 2y' + 2y = e^x \sin x$ 满足 y(0) = 1, y'(0) = 1 的特解.

- 4. (学习高数I的同学做(1), 其余的学生做(2))
- (1) 求解微分方程组 $\frac{d\vec{x}}{dt} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \vec{x}$.
- (2) 设曲线积分 $\int_{(C)} [f''(x) + 9f(x) + 2x^2 5x + 1]ydx + 2f'(x)dy$ 与路径无关,求 f(x).

5. 计算曲线积分 $\int_{(C)} (y^2+z^2)dx+(z^2+x^2)dy+(x^2+y^2)dz$,其中曲线 (C) 为球面 $x^2+y^2+z^2=4x$ 与柱面 $x^2+y^2=2x$ 的交线,其方向为从 oz 轴正向看进去为逆时针方向 $(z\geq 0)$.

一、填空题

1. 设函数
$$f(x,y)$$
满足 $\frac{\partial f}{\partial x} = x^2 + y + 1$, $\frac{\partial f}{\partial y} = ax + y^2 + 2$,则 $a = \underline{\qquad}$

2. 设三元函数
$$f(x, y, z) = \int_0^{x+y+z} \cos^2(t^2) dt$$
,则 $df|_{(1,0,-1)} = \underline{\qquad}$

3. 设
$$f(x) = \int_{x}^{1} e^{\frac{y^2}{2}} dy$$
,则 $\int_{0}^{1} f(x) dx =$ _______.

4. 函数
$$z = 3x + 4y$$
 在条件 $x^2 + y^2 = 1$ 下的最大值为______.

5. 微分方程
$$xdy + (y - \sin x)dx = 0$$
 满足 $y|_{x=\pi} = 1$ 的特解 $y = _____$.

二、单选题

1. 设函数 f(x,y) 在点 (x_0,y_0) 不可微,则必有(

A.
$$f(x, y)$$
 在点 (x_0, y_0) 不连续

B.
$$f(x,y)$$
在点 (x_0,y_0) 的两个偏导数不存在

C.
$$f(x,y)$$
在点 (x_0,y_0) 的两个偏导数至少有一个不连续

D.
$$f(x,y)$$
在点 (x_0,y_0) 沿某个方向的方向导数不存在

2. 设函数 f(x,y) 在有界闭区域 D 上连续,在 D 内偏导数存在. 若 f(x,y) 在 D 的边界上恒为零,且满

足等式
$$\frac{\partial f(x,y)}{\partial x} + 2\frac{\partial f(x,y)}{\partial y} = -f(x,y)$$
,则 $f(x,y)$ 在 D 上(

A. 存在非零的最大值

- B. 存在非零的最小值
- C. 只在边界上取得最大值和最小值
- D. 能在边界上取得最大值和最小值

3. 设
$$I_1 = \iiint\limits_{x^2 + y^2 + z^2 \le 1} e^{xyz} dv$$
, $I_2 = \iiint\limits_{|x| \le 1, |y| \le 1, |z| \le 1} e^{xyz} dv$, $I_3 = \iiint\limits_{|x| + |y| + |z| \le 1} e^{xyz} dv$, 则 ()

4. 质点在变力 $\overline{F} = \{P(x, y), 0\}$ 的作用下沿平面有向曲线 L 移动,则该力所做的功为(

A. 0

- B. $\int_{L} P(x, y) dx$ C. $\int_{L} P(x, y) dy$ D. $\int_{L} P(x, y) ds$

5. 设 L 是曲线 $x^2 + y^2 = a^2$, 则曲线积分 $\int_I (x+y)^2 ds$ 为(

A. a^2

B. a^3

- C. $2\pi a^3$
- D. πa^4

三、简答题

1. 设函数 $z = f(xy, \sin y)$, 其中 f 具有二阶连续的偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x \partial y}$.

2. 求曲线 $\begin{cases} 3x^2 + 2y^2 + 3z^2 = 12 \\ z = x \end{cases}$ 在点 $(1, \sqrt{3}, 1)$ 处的切线与法平面方程.

3. 求 $\iint_{D} \frac{x \cos y}{y} dx dy$, 其中 D 是由曲线 $y = x^{2} (x \ge 0)$ 和直线 x = 0, y = 4 围成的平面区域.

4. 求 $\iint_{\Omega} \sqrt{x^2 + y^2} dv$, 其中 Ω 是由曲面 $z^2 = x^2 + y^2$, z = 1与 z = 2 所围成的区域.

5. 求函数 $f(x, y)=2x^2-3xy+2y^2-x+2y$ 的极值.

6. 计算曲线积分 $\int_L (y + \frac{e^y}{x}) dx + e^y \ln x dy$,其中 L 为平面曲线 $x = 1 + \sqrt{2y - y^2}$ 上从点 (1,0) 到点 (2,1) 的一段有向弧段.

- 7. (学习高数Ⅰ的同学做(1), 学习高数Ⅱ的同学做(2)).
 - (1) 求解微分方程组 $\frac{dx}{dt} = Ax$ 的通解,其中 $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

(2) 求方程 $y'' + 2y' + y = 2xe^{-x}$ 的通解.

- 8. 设三元函数 P, Q, R在单连通区域 Ω 内有一阶连续偏导数, Γ 是 Ω 内的简单曲线.
 - (1) 写出曲线积分 $I = \int_{\Gamma} P dx + Q dy + R dz$ 与路径无关的一个充分条件.

(2) 计算积分 $I = \int_{\Gamma} (y+z)dx + (z+x)dy + (x+y)dz$,其中 Γ : $x = a\cos t$, $y = a\sin t$, z = t 上从点 (a,0,0) 到点 $(-a,0,\pi)$ 的一段.

9. 计算曲面积分 $I = \iint_S \frac{xdydz + ydzdx + zdxdy}{\sqrt{(x^2 + y^2 + z^2)^3}}$, 其中曲面 S 为: $1 - \frac{z}{7} = \frac{(x-2)^2}{25} + \frac{(y-1)^2}{16} (z \ge 0)$ 的上侧.

一、单选题

1. 设
$$f(x,y) = \frac{2x^2}{x^2 + y^2}$$
, 则 $f(x,y)$ 在 $(0,0)$ 处的二重极限 $($

- A. 等于 0
- B. 等于1
- C. 等于 2

D. 不存在

2. 设曲面
$$S: x^2 + y^2 + z^2 = R^2 (z \ge 0)$$
, 取上侧, $S_1 为 S$ 位于第一卦限部分, 则有()

A. $\iint_{S} x dS = 4 \iint_{S} x dS$

C. $\iint_{S} x dy dz = 4 \iint_{S} x dy dz$

B. $\iint_{S} ydS = 4 \iint_{S_{1}} ydS$ D. $\iint_{S} ydydz = 4 \iint_{S} ydydz$

3. 设曲线
$$C: x^2 + y^2 = 1$$
, 取逆时针方向,则 $\iint_C (y + \frac{y^3}{6}) dx + (2x - \frac{x^3}{3}) dy = ($

- C. $\frac{\pi}{2}$ D. $\frac{5\pi}{8}$

4.
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
, 则 $f(x,y)$ 在 $(0,0)$ 点沿方向 $\vec{l} = (1,\sqrt{3})$ 的方向导数 $\frac{\partial f}{\partial \vec{l}}\Big|_{(0,0)} = ($

A. 0

- C. $\frac{3\sqrt{3}}{8}$
- D. 3

二、填空题

1. 设
$$f(x, y) = x^3 y - \sin(x^2 - y^2)$$
,则 $\frac{\partial f}{\partial x}\Big|_{(1,3)} = _____.$

2. 空间曲线
$$\begin{cases} z = x^2 + 4y^2 \\ y = \frac{1}{2} \end{cases}$$
 在点 $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{7}{4}\right)$ 处的切线与 Ox 的夹角 $\alpha = \underline{\hspace{1cm}}$.

3. 二次积分
$$\int_0^1 dx \int_x^{\sqrt{x}} \frac{\cos y}{y} dy = \underline{\qquad}.$$

4. 设空间曲线
$$C$$
 为
$$\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x + y + z = \frac{3R}{2} \end{cases}$$
 , 其中常数 $R > 0$, 则 $\iint_C y ds = \underline{\hspace{1cm}}$.

三、解答题

1. 设函数
$$f(u,v)$$
 具有一阶连续偏导数, $z = \int_0^{xy} f(e^t,t)dt$, 求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x \partial y}$.

2. 设 z = z(x, y) 是由方程 $e^z - 2x + yz = e$ 在 (0,0,1) 点的某领域内确定的隐函数,求全微分 $dz\big|_{(0,0)}$.

- 3. (学工科分析者做(1),其余做(2))
 - (1) 求解微分方程组: $\frac{dx}{dt} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} x$.
- (2) 求一个以四个函数 $y_1 = e^x$, $y_2 = 2xe^x$, $y_3 = \cos 2x$, $y_4 = 3\sin 2x$ 为特解的齐次线性微分方程,并求方程的通解.

4. 求微分方程 $y'' - 5y' + 6y = 2xe^{2x}$ 的通解.

5. $I = \iint_D \sqrt{|y - x^2|} dxdy$, $\sharp + D = \{(x, y) | -1 \le x \le 1, 0 \le y \le 1\}$.

6. 设 Σ 是旋转抛物面 $z=1-x^2-y^2(z\geq 0)$,取上侧,计算第二类曲面积分:

$$I = \iint_{\sum} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$$

7. 设 f(x) 在 $(0,+\infty)$ 上具有连续的导数, L 是由点 $A(3,\frac{2}{3})$ 到点 B(1,2) 的直线段,求:

$$\int_{L} \left[\frac{x}{y^{2}} - xf(xy) \right] dy - \left[\frac{1}{y} + yf(xy) \right] dx$$

8. 在曲面 $z = 4 - x^2 - y^2$ 位于第一卦限部分上求一点 P,使 P点的切平面与三个坐标面围成的四面体体积最小,并求此最小体积.

10. 设函数 f(x,y) 在 $D: x^2 + y^2 \le 1$ 上有二阶连续的偏导数,且满足 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = e^{-(x^2 + y^2)}$,证明:

$$I = \iint\limits_{D} \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) dx dy = \frac{\pi}{2e}$$

一、计算题

1. 在曲面 $z = \frac{x^2}{2} + y^2$ 上求一点,使曲面在该点处的切平面平行与平面 2x + 2y - z = 0.

2. 设f 是连续函数,交换积分次序: $\int_{-6}^{2} dx \int_{\frac{1}{4}x^2-1}^{2-x} f(x,y) dy$.

3. 求微分方程 $x'' + 3x' + 2x = e^{-2t}$ 的通解.

4. 已知曲线 $L: y = x^2 (0 \le x \le 1)$ 上任意一点处的线密度在数值上与该点的横坐标相同,求曲线的质量.

- 5. (学工科分析者做(1), 其余做(2))
- (1) 验证微分方程组 $\frac{d}{dt} \binom{x_1}{x_2} = \begin{pmatrix} \cos^2 t & \frac{1}{2} \sin 2t 1 \\ \frac{1}{2} \sin 2t + 1 & \sin^2 t \end{pmatrix} \binom{x_1}{x_2}$ 通解为 $\vec{x} = C_1 \binom{e^t \cos t}{e^t \sin t} + C_2 \binom{-\sin t}{\cos t}, t \in \mathbb{R}$.

(2)	验证 $\mathbf{v}_1 = e^x$, $\mathbf{v}_2 = e^x$	= e ^x ln x 是微分方程 xy	'' - (2x - 1)v' + (2x - 1)v'	(x-1)y = 0 的解,	并求其通解.

6. 计算三重积分
$$\iint_V z dv$$
, 其中 V 是由不等式 $\sqrt{x^2+y^2} \le z \le \sqrt{2-x^2-y^2}$ 确定的空间区域.

7. 求向量场
$$\overline{A} = \{z + x^2, x, z^2 + 3y\}$$
 穿过曲面 Σ : $z = x^2 + y^2 (0 \le z \le 1)$ 下侧的通量.

8. 计算第一型曲面积分
$$\iint_{\Sigma} (x^2 + y^2) dS$$
,其中 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ 介于 $0 \le z \le 1$ 之间的部分.

9. 计算第二型线积分
$$\int_L y e^{y^2} dx + (xe^{y^2} + 2xy^2 e^{y^2}) dy$$
,其中 L 为 $y = \sqrt[3]{x}$ 上从 $O(0,0)$ 到 $A(1,1)$ 的曲线段.

10. $\vec{x} div[grad(\sqrt{x^2 + y^2 + z^2})]$.

- 11. (学工科分析者做(1),其余做(2))
 - (1) 求线性微分方程组 $\frac{d\bar{x}}{dt} = A\bar{x}$ 的通解,其中 $A = \begin{pmatrix} 8 & 4 & -1 \\ 4 & -7 & 4 \\ -1 & 4 & 8 \end{pmatrix}$.
- (2)已知函数 $y=e^{2x}+(x+1)e^x$ 是二阶常系数非齐次线性微分方程 $y''+ay'+by=ce^x$ 的一个特解,试确定 a,b,c,并求该方程的通解.

13. 计算 $\iint_{(D)} x[1+y\sin^2(x^2+y^2)]d\sigma$, 其中 (D) 是由 $y=x^3, y=1, x=-1$ 所围成的区域.

- 14. 设函数 $\varphi(y)$, $\psi(y)$ 具有连续导数,对平面内的任意分段光滑简单闭曲线C,有曲线积分 $\iint_C 2[x\varphi(y)+\psi(y)]dx + [x^2\psi(y)+2xy^2+2x\varphi(y)]dy = 0$,求:
- (1) 求满足条件 $\varphi(0) = -2, \psi(0) = 0$ 的函数 $\varphi(y), \psi(y)$.

(2) 计算 $\int_{(1,1)}^{(0,0)} 2[x\varphi(y) + \psi(y)]dx + [x^2\psi(y) + 2xy^2 + 2x\varphi(y)]dy$.

- (1) 计算 $A = \iint_D |xy-1| dxdy$.

(2) 设 f(x,y)在 D 上连续,且 $\iint_D f(x,y) dx dy = 0$, $\iint_D xy f(x,y) dx dy = 1$,证明存在 $(\xi,\eta) \in D$,使 $|f(\xi,\eta)| \ge \frac{1}{A}.$

1. 求函数 $u = x^2 + y^2 + z^4 - 3xz$ 在点 $M_0(1,1,1)$ 处 $\vec{l} = (1,2,2)$ 方向的方向导数.

2. 求曲面 $3x^2 + y^2 + z^2 = 16$ 在点M(2,2,0)处的切平面方程.

3. 设函数 z = z(x, y) 由方程 $z^2y - xz^3 = 1$ 所确定,求 $\frac{\partial z}{\partial x}\Big|_{(1,2,1)}$.

4. 求微分方程 y'' - 2y' + 5y = 0 的通解.

5. 设 L 是从点 A(1,0) 到 B(-1,2) 的直线段,计算曲线积分 $\int_L (x+y)ds$.

6. 设
$$z = xf(xy, \frac{x}{y})$$
, 其中 f 具有连续的二阶偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

7. 计算
$$\int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy$$
.

8. 设有一物体,它是由曲面
$$z=\sqrt{x^2+y^2}$$
 和 $z=\sqrt{8-x^2-y^2}$ 所围成,已知它在任意的点 (x,y,z) 处的密度 $\rho=z$,求此物体的质量 m .

9. 计算曲线积分
$$\int_{(\bar{A}B)} (e^x \sin y + y + 1) dx + (e^x \cos y - x) dy$$
,其中 $A\hat{B}$ 为曲线 $y = -\sqrt{-x^2 + 8x - 7}$ 从 $A(7,0)$ 到点 $B(1,0)$ 的一段弧.

10. 计算曲面积分
$$I = \iint_{\Sigma} x \cos^2(1+z) dy \Lambda dz + y \sin^2(1+z) dz \Lambda dx + 4(z+1) dx \Lambda dy$$
,其中 Σ 是下半球面 $z = -\sqrt{1-x^2-y^2}$ 的上侧.

- 11. (学工科分析者作(1),其余作(2))
- (1) 求线性微分方程组 $\frac{d\vec{x}}{dt} = A\vec{x}$ 的通解,其中 $A = \begin{bmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{bmatrix}$.
- (2) 设函数 u 的全微分 $du = [3f(x) + e^x]ydx + [2f'(x) + f(x)]dy$, 其中 $f(x) \in C^{(2)}$,且 f(0) = 1, $f'(0) = \frac{1}{5}$,求 f(x).

12. 讨论函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
, 在点 $(0,0)$ 的连续性、可导性、可微性.

14. 设对任意的分片光滑有向封闭曲面 S, 都有:

$$\iint\limits_{S} (y+1)f'(x)dy\Lambda dz + (y-y^2)f(x)dz\Lambda dx + [zyf'(x)-2ze^x]dx\Lambda dy = 0$$

其中函数 f(x) 在 $(-\infty, +\infty)$ 内具有连续的二阶导数,求 f(x).

15. 证明: $\oint_L [xf(y)+x^2]dy - [\frac{y}{f(x)}+2y^2]dx \ge 2\pi+6a\pi$,其中 L 为圆周曲线 $(x-a)^2+(y-a)^2=1$,(a>0)的正向,f(x)连续取正值.

一、计算题

1. 求曲线 $\vec{r}(t) = (\cos t, \sin t, \tan \frac{t}{2})$ 在点 (0,1,1) 处的切线方程.

2. 求曲面 $z - e^z + 2xy = 3$ 在点 (1,2,0) 处的切平面方程.

3. 设f 是连续函数, 交换下列积分次序 $\int_1^2 dx \int_{2-x}^{\sqrt{2x-x^2}} f(x, y) dy$.

4. 求微分方程 $\ddot{x} + 4\dot{x} + 5x = 0$ 的通解.

5. 设 L 为圆周 $x^2+y^2=ax$, (a>0) , 计算线积分 $\int_{L} \sqrt{x^2+y^2} \mathrm{d}s$.

6. 计算
$$\iint_D \sin \frac{x}{y} dxdy$$
, 其中 D 是由 $x = 0$, $y = \frac{\pi}{2}$, $y = \pi$ 及 $x = y^2$ 所围的平面区域.

8. 设有一物体, 由曲面
$$z = \sqrt{4 - x^2 - y^2}$$
 与 $z = \frac{1}{3}(x^2 + y^2)$ 所围成, 已知它在任意点 (x, y, z) 处的密度 $\mu = z$,求此物体的质量.

9. 计算曲线积分
$$\int_L e^x [\cos y dx + (y - \sin y) dy]$$
, 其中 $L \neq y = \sin x$ 从 $A(0,0)$ 到点 $B(\pi,0)$ 的弧段.

10. 计算第二型面积分 $\iint_{\Sigma} x dy \Lambda dz + y dz \Lambda dx + (z+1) dx \Lambda dy$,其中 Σ 为曲面 $z=1-x^2-y^2$ 在 xoy 平面上方部分,方向取上侧.

- 11. (学工科分析者作(1),其余作(2))
 - (1) 求线性微分方程组 $\frac{d\vec{x}}{dt} = A\vec{x}$ 的通解, 其中 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$.
 - (2) 求微分方程 $\ddot{x} 3\dot{x} + 2x = 4e^{t}$ 的通解.

12. 计算第一型曲面积分 $\iint_{\Sigma} z dS$, 其中曲面 Σ 是圆锥面 $z = \sqrt{x^2 + y^2}$ 上介于平面 z = 1 于 z = 2 之间的部分.

- 13. 设微分方程 y'' + P(x)y' + Q(x)y = 0
 - (1) 证明: 若1+P(x)+Q(x)=0,则方程有一特解 $y=e^x$;若P(x)+xQ(x)=0则方程有一特解y=x.

(2) 根据(1)的结论,求(x-1)y''-xy'+y=0的通解和满足初始条件y(0)=2,y'(0)=1的特解.

(3) 求 (x-1)y'' - xy' + y = 1满足初始条件 $\lim_{x\to 0} \frac{\ln[y(x)-1]}{x} = -1$ 的特解.

14. 求函数 u = x + y + z,在条件 $x^2 + y^2 + z^2 - 2ax - 2ay - 2az + 2a^2 = 0$ (a > 0) 下的最小值,并证明:若 Σ 为曲面 $x^2 + y^2 + z^2 = 2ax + 2ay + 2az - 2a^2$, $\iint_{\Sigma} (x + y + z + \sqrt{3}a)^3 dS \ge 108\pi a^5$.

本试题集由彭康学导团制作,所有题目均改编自往年 真题,鉴于教材改版和内容调整,已对部分题目进行了删 减和修改。本试题集的编制及发放属于公益服务活动,如 有打印店以此盈利,请勿购买。未经允许,请勿复印转载。

彭小帮 2.0: 397499749

搜索微信公众号"彭康书院学导团"或扫描下方二维码关注我们,了解更多学业动态,掌握更新学习资料。

