Koordinatni sustavi i

transformacije u

3D grafici

Lokalne koordinate

Zaslonske koordinate

Lokalne koordinate

Zaslonske koordinate

Globalne koordinate

Lokalne koordinate

Zaslonske koordinate

Globalne koordinate

Globalne koordinate

Zaslonske koordinate

Projicirane koordinate

Ortogonalna ili perspektivna projekcija

Koordinatni sustav kamere

Projicirane koordinate

(projection coordinates)

- 3D scenu projiciramo u ravninu, tj. pravokutnik u ravnini projekcija koji se potom preslikava na zaslon ili dio zaslona (engl. viewport – dio zaslona na koji se preslikava scena)
- projiciranje može biti paralelno ili centralno zavisi da li su zrake projiciranja međusobno paralelne ili sve izviru iz jedne točke - centra
- paralelno projiciranje može biti ortogonalno (okomito) ili klinogonalno (koso)
- za implementaciju najjednostavnije je ortogonalno projiciranje

Ortogonalno projiciranje

□ zrake projiciranja okomite su na ravninu projekcije

Na primjer: ako odaberemo xy ravninu kao ravninu projekcije, zrake projiciranja paralelne su s osi z, te su projicirane koordinate upravo koordinate x i y:

$$x_p = x$$
 $y_p = y$

Nema ovisnosti o z, ali to je upravo glavni nedostatak, jer objekti koji su udaljeniji ne postaju manji, kao što je to u stvarnosti!

Matrične reprezentacije geometrijskih transformacija u 3D

Iz 2D u 3D

□ priča viđena u 2D ponavlja se i u 3D: geometrijske transformacije imaju matričnu reprezentaciju, ali ponovo zbog translacije treba koristiti homogene koordinate, tj. reprezentacije su 4x4, a ne 3x3 matrice, a koordinate točaka imaju 4 komponente:

$$\vec{r}' = M\vec{r} \qquad \leftrightarrow \qquad \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & a_{02} & a_{03} \\ a_{10} & a_{11} & a_{12} & a_{13} \\ a_{20} & a_{21} & a_{22} & a_{23} \\ a_{30} & a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Translacija u 3D

$$x' = x + d_{x}$$

$$y' = y + d_{y}$$

$$z' = z + d_{z}$$

$$\begin{aligned}
 x' &= x + d_x \\
 y' &= y + d_y \\
 z' &= z + d_z
 \end{aligned}$$

$$\begin{aligned}
 x' &= 1 \cdot x + 0 \cdot y + 0 \cdot z + d_x \cdot 1 \\
 y' &= 0 \cdot x + 1 \cdot y + 0 \cdot z + d_y \cdot 1 \\
 z' &= z + d_z
 \end{aligned}$$

$$z' &= z + d_z
 \end{aligned}$$

$$z' &= 0 \cdot x + 0 \cdot y + 1 \cdot z + d_z \cdot 1 \\
 1 &= 0 \cdot x + 0 \cdot y + 0 \cdot z + 1 \cdot 1
 \end{aligned}$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\vec{r}' = T(d_x, d_y, d_z)\vec{r}$$

Kako bi translaciju također mogli implementirati preko množenja matrica koristimo se homogenim koordinatama.

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\vec{r}' = T(d_x, d_y, d_z) \vec{r}$$

$$T(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_x \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transponirane matrice

Iako je u matematici i fizici uobičajeno da su vektori stupci, ponekad su u računalnoj grafici vektori retci – tada sve matrice transformacija treba transponirati!

$$\begin{aligned} & \left(T(d_x, d_y, d_z) \vec{r} \right)^T = \vec{r}^T T^T (d_x, d_y, d_z) = \\ & = \begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ d_x & d_y & d_z & 1 \end{bmatrix} = \\ & = \begin{bmatrix} x + d_x & y + d_y & z + d_z & 1 \end{bmatrix} = (\vec{r}')^T \end{aligned}$$

Skaliranje u 3D

$$x' = s_{x} \cdot x$$

$$y' = s_{y} \cdot y$$

$$z' = s_{z} \cdot z$$

$$S(s_{x}, s_{y}, s_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Zrcaljenja u 3D

$$x' = -x$$

$$y' = y$$

$$z' = z$$

- u 2D promjena predznaka koordinate dovodila je do zrcaljenja na preostaloj osi
- u 3D zrcaljenje je na ravnini koju definiraju preostale dvije osi

Promjena predznaka x koordinate zapravo je zrcaljenje na ravnini koju definiraju osi y i z

$$Z_{yz} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Zrcaljenje na yz ravnini

Promjena predznaka x koordinate dovodi do zrcaljenja na ravnini definiranoj s dvije preostale koordinatne osi y i z.

... i još zrcaljenje na xz ravnini

Promjena predznaka x i y koordinate ekvivalentna je rotaciji za 180° oko osi z.

$$Z_{xz}Z_{yz} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotacija oko osi z

$$x' = x \cdot \cos(\varphi) - y \cdot \sin(\varphi)$$
$$y' = x \cdot \sin(\varphi) + y \cdot \cos(\varphi)$$
$$z' = z$$

$$R_{z}(\varphi) = \begin{bmatrix} \cos(\varphi) & -\sin(\varphi) & 0 & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotacija oko osi x

$$y' = y \cdot \cos(\varphi) - z \cdot \sin(\varphi)$$

$$z' = y \cdot \sin(\varphi) + z \cdot \cos(\varphi)$$

$$x' = x$$

$$R_{x}(\varphi) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) & 0 \\ 0 & \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotacija oko osi y

$$z' = z \cdot \cos(\varphi) - x \cdot \sin(\varphi)$$
$$x' = z \cdot \sin(\varphi) + x \cdot \cos(\varphi)$$
$$y' = y$$

$$R_{y}(\varphi) = \begin{bmatrix} \cos(\varphi) & 0 & \sin(\varphi) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotacija oko proizvoljne osi

Proizvoljna os može se zadati:

a) Dvjema točkama

b) Jednom točkom i vektorom

Rotacija oko proizvoljne osi

Proizvoljna os može se zadati dvjema točkama P₁ i P₂

U tom slučaju najprije translatiramo točku P_1 u ishodište pomoću $T(-x_1, -y_1, -z_1)$

Potom ćemo dvjema rotacijama, najprije oko osi x, a potom oko osi y dovesti os definiranu točkama P_1 i P_2 na os z

Zatim ćemo rotirati za kut φ oko osi z, te inverznim transformacijama, prvo rotacijama oko osi y i x, te konačno translacijom $T(x_1, y_1, z_1)$ vratiti os na njeno mjesto

$$R_{P_1P_2}(\varphi) = T(x_1, y_1, z_1)R_x(-\alpha)R_y(\beta)R_z(\varphi)R_y(-\beta)R_x(\alpha)T(-x_1, -y_1, -z_1)$$

Rotacija oko proizvoljne osi (2)

Zadane točke:

$$P_1(x_1, y_1, z_1)$$

 $P_2(x_2, y_2, z_2)$

$$a^2 + b^2 + c^2 = 1 \implies |\vec{u}| = 1$$

 \vec{u} je jedinični vektor duž osi rotacije

$$\vec{U} = \vec{P}_2 - \vec{P}_1 = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

$$\vec{u} = \frac{\vec{U}}{|\vec{U}|} \equiv (a, b, c)$$

$$a = \frac{x_2 - x_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

$$b = \frac{y_2 - y_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

$$c = \frac{z_2 - z_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

Rotacija oko proizvoljne osi (3)

Zakretanje oko osi x za kut α dovodi jedinični vektor smjera u ravninu xz

$$\sin(\alpha) = \frac{b}{d}$$

$$\cos(\alpha) = \frac{c}{d}$$

$$d = \sqrt{b^2 + c^2}$$

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{c}{d} & -\frac{b}{d} & 0 \\ 0 & \frac{b}{d} & \frac{c}{d} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotacija oko proizvoljne osi (4)

Zakretanje oko osi y za kut β dovodi os rotacije na os z

$$\sin(\beta) = a$$

$$\cos(\beta) = d$$

$$d = \sqrt{b^2 + c^2}$$

$$R_{y}(-\beta) = \begin{bmatrix} d & 0 & -a & 0 \\ 0 & 1 & 0 & 0 \\ a & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotacija oko proizvoljne osi

Proizvoljna os može se zadati dvjema točkama P₁ i P₂

U tom slučaju najprije translatiramo točku P_1 u ishodište pomoću $T(-x_1, -y_1, -z_1)$

Potom ćemo dvjema rotacijama, najprije oko osi x, a potom oko osi y dovesti os definiranu točkama P_1 i P_2 na os z

Zatim ćemo rotirati za kut φ oko osi z, te inverznim transformacijama, prvo rotacijama oko osi y i x, te konačno translacijom $T(x_1, y_1, z_1)$ vratiti os na njeno mjesto

$$R_{P_1P_2}(\varphi) = T(x_1, y_1, z_1)R_x(-\alpha)R_y(\beta)R_z(\varphi)R_y(-\beta)R_x(\alpha)T(-x_1, -y_1, -z_1)$$