ARTIFICIAL INTELLIGENCE PyQ ANSWERS

Explain the role of discount factor in RL, considering $\gamma = 0$, 1 and varies b/w 0.2 to 0.8

The **discount factor** (γ) in Reinforcement Learning (RL) plays a crucial role in determining how much future rewards contribute to the agent's decision-making. It is a value between **0** and **1** that balances **immediate vs. future rewards** in the **return (cumulative reward)** calculation.

1. Mathematical Role of Discount Factor

The **return** at time step t:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

where:

- R_{t+1} is the reward at time t+1,
- γ determines how much the agent values future rewards.

A **higher** γ makes the agent **more future-focused**, while a **lower** γ makes it **short-sighted**.

2. Effects of Different Values of γ

(i) When $\gamma = 0$

- The agent only considers immediate rewards and completely ignores future rewards.
- The return simplifies to G Gt =Rt+1, meaning it behaves in a **greedy manner**, maximizing only the next reward.
- Useful in **one-step decision-making** problems where only the next action matters (e.g., reflex-based tasks).

(ii) When $\gamma = 1$

- The agent considers the entire future rewards without discounting.
- It aims for the **longest-term reward maximization**, making it **highly strategic**.
- However, in **infinite-horizon problems**, the return may **not converge**, making it computationally unstable.

(iii) When γ varies (0.2 to 0.8)

- $\gamma = 0.2 \rightarrow$ The agent values **immediate rewards much more** and slightly considers future rewards.
- $\gamma = 0.5 \rightarrow$ The agent balances short-term and long-term rewards.
- γ = 0.8 → The agent strongly considers future rewards, optimizing for a longer horizon while still discounting somewhat.

3. Practical Considerations

- Small γ (e.g., 0.2 0.4): Good for short-term tasks like robotic arms, where immediate feedback is crucial.
- **Medium γ (e.g., 0.5 0.7)**: Balanced strategy for **episodic tasks** like **board games**, where future outcomes matter but immediate actions are still important.

• **High γ (e.g., 0.8 - 0.99)**: Preferred for **long-horizon tasks** like **autonomous driving** or **stock trading**, where long-term success is critical.

4. Choosing γ in Practice

- If γ is **too low**, the agent acts **short-sighted** and may **miss optimal strategies**.
- If γ is **too high**, the agent may **struggle with long-term credit assignment** and may not learn efficiently.

Q.

(i) Initial and Final game trees are given below. Explain how the final game tree is achieved using appropriate algorithm.

Ans:

Q. Write the properties of MINIMAX game search algorithm

The **Minimax algorithm** is used in **two-player**, **zero-sum games** like Chess, Tic-Tac-Toe, and Checkers. It systematically explores possible moves, assuming both players play optimally.

1. Completeness

Minimax is complete if the search tree is finite.

It guarantees finding a solution if a terminal state exists.

Example: In **Tic-Tac-Toe**, Minimax explores all possible moves, ensuring it finds a winning or drawing strategy.

2. Optimality

Minimax is optimal if both players play perfectly.

It assumes the opponent plays optimally and chooses the best possible move to minimize the worst-case loss.

Example: In **Chess**, Minimax ensures the best possible outcome based on available information.

3. Time Complexity

Minimax has exponential time complexity of **O(b^d)**, where:

- b = branching factor (average number of moves per turn).
- d = depth of the game tree.

Example: In Chess (b \approx 35, d \approx 100), Minimax becomes infeasible without optimizations like Alpha-Beta Pruning.

4. Space Complexity

Depends on the implementation:

DFS-based Minimax \rightarrow O(d) (depth-first, stores only one path at a time).

BFS-based Minimax \rightarrow 0(b^d) (breadth-first, stores the entire tree).

Example:

- **Tic-Tac-Toe** (small tree) → Can store the full tree.
- Chess (huge tree) → Uses depth-limited search with Alpha-Beta pruning.

5. Deterministic & Zero-Sum

Minimax works in deterministic, zero-sum games.

- **Deterministic:** No randomness; every move leads to a known state.
- **Zero-Sum:** One player's gain is another's loss.

Example:

- Applicable → Chess, Tic-Tac-Toe (Fixed moves, no randomness).
- **Not applicable** → Poker (Random cards, bluffing).

6. Limited by Depth and Pruning

Minimax is inefficient for large trees but can be improved using:

- **Depth-limited Minimax** Stops at a fixed depth (d).
- **Alpha-Beta Pruning** Reduces explored nodes, improving efficiency.

Example: In Chess, Alpha-Beta Pruning reduces b^d complexity to b^d , making deeper searches feasible.

Q. When do you apply Alpha-Beta Pruning in the Minimax Tree?

Alpha-Beta Pruning is applied when we can **avoid evaluating parts of the Minimax tree** that won't affect the final decision. It helps **reduce the number of nodes explored**, making Minimax faster **without changing the result**.

1. Pruning Condition

Prune a branch if we find that it cannot influence the final decision.

- α (alpha) \rightarrow Best value for MAX (maximizing player) so far
- β (beta) \rightarrow Best value for MIN (minimizing player) so far
- If $\alpha \ge \beta$, further exploration is **useless**, and we prune that branch.

2. When to Apply Alpha-Beta Pruning?

Pruning occurs in two cases:

- 1. Beta Cutoff ($\beta \leq \alpha$) in the Maximizing Level
 - If a MAX node finds a move with a value $\geq \beta$, further children are ignored.
- 2. Alpha Cutoff ($\alpha \ge \beta$) in the Minimizing Level
 - If a MIN node finds a move with a value $\leq \alpha$, further children are ignored.

3. Benefits of Alpha-Beta Pruning

- Reduces nodes explored from $O(b^d)$ to $O(b^d)$ to $O(b^d)$ Huch faster!
- Works best when the tree is sorted (Best moves first).
- No change in the final Minimax decision.

4. When to Avoid Alpha-Beta Pruning?

- If the tree is unstructured/random, pruning may not help much.
- Not useful in non-deterministic games (like Poker, where chance affects outcomes).
- Sorting moves before searching increases efficiency but adds extra cost.

Q. What is the purpose of a Belief Network?

A Belief Network, also known as a Bayesian Network (BN), is a probabilistic graphical model that represents dependencies among random variables using Directed Acyclic Graphs (DAGs). It is used for reasoning under uncertainty in AI.

Purpose of a Belief Network

- 1. Probabilistic Reasoning
- Helps **infer hidden (unknown) variables** based on known evidence.
- Computes the **probability of events** occurring.

Example:

- **Medical Diagnosis:** If a patient has a fever, what is the probability they have the flu?
- **Spam Detection:** Given features like sender and keywords, what is the probability an email is spam?

2. Handling Uncertainty in AI

- Real-world AI applications involve uncertainty (e.g., noisy data, incomplete info).
- Bayesian Networks model relationships probabilistically, unlike deterministic logic.

Example:

• A **robotic system** must decide if an object in front is a wall or a door based on noisy sensor data.

3. Causal Relationship Representation

- Unlike simple probability models, BNs represent cause-and-effect relationships.
- Helps AI **predict outcomes** when conditions change.

Example:

- **Traffic Prediction:** If it rains, what is the probability of a traffic jam?
 - Rain \rightarrow Slippery Roads \rightarrow More Accidents \rightarrow Traffic Jam

4. Decision Making

- Used in **decision-making systems** to evaluate different actions and their probabilities.
- Supports decision trees, reinforcement learning, and AI agents.

Example:

• **Self-driving cars:** Given current road conditions and pedestrian movement, what is the best driving action to take?

5. Learning from Data

- Bayesian Networks can be **built from data** using **Bayesian inference**.
- Allows AI to **learn probabilistic dependencies** and improve over time.

Example:

 AI learns which symptoms are highly correlated with specific diseases by analyzing medical datasets.

Why is Probabilistic Reasoning Needed in AI?

What is Probabilistic Reasoning?

Probabilistic reasoning in AI deals with **uncertainty** by assigning probabilities to different outcomes. Instead of making rigid, deterministic decisions, AI can **infer and predict outcomes based on likelihoods**. It is used in **Bayesian networks**, **Hidden Markov Models**, **Decision Trees**, and **Reinforcement Learning**.

Why Do We Need Probabilistic Reasoning in AI?

1. Handling Uncertainty

- **Real-world data is incomplete, noisy, or ambiguous**—probabilistic reasoning allows AI to make the **best possible decision** even when full information isn't available.
- AI must **infer missing details** instead of assuming absolute truths.

Example:

- A self-driving car detects a blurry object ahead. Is it a pedestrian or just a shadow?
- Using probabilities, the AI can determine the **most likely scenario** and react accordingly.

2. Making Rational Decisions

- AI applications like **medical diagnosis**, **stock prediction**, **and robotics** require **decisionmaking under uncertainty**.
- Probabilistic models help AI **weigh different possibilities** and choose the **most rational action**.

Example:

- In **medical diagnosis**, if a patient has symptoms A, B, and C, what is the probability of **Disease X** vs. **Disease Y**?
- AI computes probabilities and recommends the most likely diagnosis.

3. Learning from Data

- AI can learn patterns and trends from data using probability distributions.
- Unlike rule-based systems, probabilistic models can **adapt and update** based on new information.

Example:

- A spam filter assigns a probability score based on words, sender, and email history to decide if a message is spam or not.
- If a user marks an email as spam, the AI **updates its probability model** to improve future predictions.

4. Modeling Cause-and-Effect

- Probabilistic reasoning allows AI to **understand causal relationships** rather than just correlations.
- Helps in **predictive modeling** where past events influence future outcomes.

Example:

- Traffic Prediction System:
 - If it **rains**, the probability of **traffic congestion** increases.
 - If it rains and there's an accident, congestion probability is even higher.

5. Optimizing AI Performance

- AI models like **Hidden Markov Models (HMMs)**, **Bayesian Networks**, and **Reinforcement Learning** use probability to **balance exploration vs. exploitation**.
- This improves AI's ability to adapt dynamically.

Example:

- Reinforcement Learning in Games
 - AI **chooses moves based on the probability** of winning.
 - Over time, it learns which actions are more **rewarding** and adjusts its strategy.

Applications of Probabilistic Reasoning in AI

- **Robotics** Navigate uncertain environments.
- Natural Language Processing (NLP) Understand speech and text ambiguities.
- Medical Diagnosis Predict diseases based on symptoms.
- Fraud Detection Identify suspicious transactions using probability.
- **Self-Driving Cars** Make safe driving decisions under uncertainty.
- Weather Forecasting Predict rain, storms, or temperature changes.

Difference Between Games and Search Problems in AI

Aspect	Games in AI	Search Problems in AI
Definition	Games involve two or more agents competing to achieve a goal, where each agent's actions affect the others.	Search problems involve finding a sequence of actions that leads to a desired goal state.
Number of Agents	Multi-agent environment with competing entities.	Single-agent environment, solving a problem independently.
Nature of Environment	Adversarial , as agents have conflicting objectives (e.g., one wins, the other loses).	Non-adversarial , as there is no competition, only finding an optimal solution.
Objective	To maximize an agent's utility while minimizing the opponent's success.	To find the best or optimal path from an initial state to the goal state.
Decision Process	Agents make strategic decisions based on the opponent's possible moves.	The search algorithm explores possible paths systematically to find a solution.
Types of Problems	Chess, Tic-Tac-Toe, Go, Poker, AlphaGo.	Route Planning, Puzzle Solving, Pathfinding, AI Planning.
Evaluation	Uses a utility function or evaluation function to decide the best move.	Uses heuristics , cost functions , and goal tests to evaluate paths.
Complexity	Often more complex due to the need to predict an opponent's moves (e.g., exponential growth in possibilities).	Complexity depends on the state space and branching factor but is usually deterministic .
Algorithms Used	Minimax, Alpha-Beta Pruning, Monte Carlo Tree Search (MCTS).	A*, BFS, DFS, Dijkstra's Algorithm, Greedy Best-First Search.
Example of States	In Chess, a state represents board positions of all pieces and the turn of a player.	In a pathfinding problem, a state represents the current location of an agent in a graph.

Exploration vs. Exploitation Dilemma in AI

1. Definition

The **exploration vs. exploitation dilemma** is a fundamental trade-off in **decision-making AI systems**, especially in **reinforcement learning (RL)** and **multi-armed bandit (MAB) problems**.

- **Exploration**: The AI **tries new actions** to discover **better long-term rewards**.
- Exploitation: The AI chooses the best-known action to maximize immediate reward.

The challenge is to **balance both**—too much exploration wastes time on suboptimal actions, while too much exploitation might prevent discovering better alternatives.

2. Why is this Important?

- If an AI **explores too much**, it wastes time trying bad choices.
- If an AI exploits too much, it might get stuck in a local optimum and miss better options.

Example:

Imagine an **AI-powered investment system** that picks stocks:

- **Exploration**: Invests in new stocks to **test their profitability**.
- **Exploitation**: Continues investing in **the best-performing stocks so far**. Balancing both helps the AI find the **most profitable portfolio** over time.

3. Consequences of More Exploration or More Exploitation

Scenario	Effect	
Too much exploration	The AI keeps trying new, uncertain choices , leading to inconsistent rewards and slow learning.	
Too much exploitation	The AI sticks to known best choices , missing better opportunities and getting trapped in suboptimal strategies .	

Example: In a **self-driving car**, choosing between two routes:

- **Exploration:** Tries different roads to find a faster route.
- **Exploitation:** Always takes the current best-known route.
- **Risk:** If it never explores, it might never discover a **better traffic-free road**.

4. Strategies to Balance Exploration and Exploitation

Strategy	Description	
ε-Greedy	AI selects a random action $\varepsilon\%$ of the time (exploration) and the best-known	
Algorithm	action (1-ε)% of the time (exploitation).	

Q. How many number of nodes are generated in Depth Limited Search and Iterative Depth Search Algorithms considering depth d=4 and branching factor b=12

$$b = 12, d = 4$$

$$N_{DLS} = b^{0} + b^{1} + \cdots + b^{d}$$

$$= 12^{0} + 12^{1} + \cdots + 12^{d}$$

$$= 1 + 12 + 144 + 1728 + 20736$$

$$= 22621$$

$$N_{IDS} = (d+1)b^{0} + db^{1} + (d-1)b^{2} + \cdots + 2b^{d-1} + b^{d}$$

$$= 5 \times 1 + 4 \times 12^{1} + 3 \times 12^{2} + 2 \times 12^{3} + 1 \times 12^{4}$$

$$= 5 + 48 + 432 + 3456 + 20736$$

$$= 24677$$

Q. Difference Between Uniform Cost Search (UCS) and Breadth-First Search (BFS)

Aspect	Uniform Cost Search (UCS)	Breadth-First Search (BFS)
Definition	A search algorithm that expands the least-cost node first.	A search algorithm that expands nodes level by level.
Type of Algorithm	Informed Search (uses path cost).	Uninformed Search (no cost consideration).
Expansion Strategy	Expands the node with the lowest total path cost (g(n)) .	Expands all nodes at the current depth before moving to the next level.
Uses a Cost Function?	Yes, it considers the cumulative cost (g(n)) from the start node.	No, it treats all edge costs as equal (assumes unit cost).
Queue Type (Data Structure)	Priority Queue (sorted by path cost).	FIFO Queue (First In, First Out).
Optimality	Yes , UCS finds the optimal path when costs are positive.	Yes, BFS finds the optimal path only if all edges have the same cost.
Completeness	Yes , UCS is complete if costs are non-negative.	Yes , BFS is complete in a finite state space.
Time Complexity	$O(b^{1+floor(C^*/\epsilon)})$	O(bd)
Space Complexity	$O(b^{1+floor(C^*/\epsilon)})$	O(bd)
When to Use?	When path costs vary and we need the least-cost solution .	When all edge costs are equal , and we need the shortest path in terms of steps .
Example Use Cases	Finding the cheapest flight between two cities, shortest path in a weighted graph.	Solving mazes, shortest path problems with uniform cost (e.g., unweighted graphs).

Q. Define evaluation function or heuristic function to solve an informed search problem

1. Evaluation Function (f(n)):

- In **informed search**, the **evaluation function** determines the desirability of expanding a node.
- It guides the search by assigning a numerical value to each node.
- The most common form is: f(n)=g(n)+h(n) where:
 - g(n) = Cost from the start node to n
 - h(n) = Heuristic estimate of the cost from n to the goal.

2. Heuristic Function (h(n)):

- A **heuristic function** is an approximation of the remaining cost to the goal.
- It is problem-specific and helps the algorithm prioritize nodes.
- A good heuristic function is **efficient to compute and leads the search efficiently towards the goal**.

Example: A Search in a Grid (Manhattan Distance Heuristic)*

Consider a **grid-based pathfinding problem**, where you must move from **start (2,2)** to **goal (6,6)** using up, down, left, or right moves.

Heuristic Calculation (Manhattan Distance)

One common heuristic for grid-based search is the **Manhattan Distance**, given by:

$$h(n)=|x_{goal}-x_n|+|y_{goal}-y_n|$$

For a node at (2,2) with a goal at (6,6):

$$h(2,2)=|6-2|+|6-2|=4+4=8$$

If a move costs **1 unit**, this heuristic gives a reasonable estimate of how far we are from the goal.

Choosing a Good Heuristic

A heuristic should be:

- **1.** Admissible \rightarrow Never overestimates the actual cost.
- **2.** Consistent (Monotonicity Condition) \rightarrow If moving from node A to B incurs cost c $h(A) \le h(B) + c$
- 3. Computationally Efficient \rightarrow Should be quick to compute.

Q. Design the heuristic functions for the 8 puzzle problem and show that the heuristic functions are admissible

The **8-puzzle problem** consists of a **3×3 grid** with 8 numbered tiles and one empty space. The goal is to reach a specific arrangement from a given initial configuration by sliding tiles into the empty space.

Two Common Heuristic Functions

- 1. Misplaced Tiles Heuristic (h1 (n))
 - Counts the number of tiles not in their goal position.
 - Example:

$$h_1(n) = \sum_{i=1}^8 \mathbb{I}(tile_i
eq goal_position_i)$$

• I is an indicator function (1 if true, 0 otherwise).

2. Manhattan Distance Heuristic (h2 (n))

- Computes the sum of **horizontal and vertical** moves needed for each tile to reach its goal position.
- Given by:

$$h_2(n) = \sum_{i=1}^8 (|x_i - x_{\mathrm{goal}}| + |y_i - y_{\mathrm{goal}}|)$$

Proof of Admissibility

A heuristic is **admissible** if it **never overestimates** the actual cost to the goal.

1. Misplaced Tiles Heuristic (h1 (n))

- Each misplaced tile requires at least **one move** to reach the correct position.
- Since each move costs exactly 1, the heuristic never overestimates the number of moves.
- Thus, h1 (n) is admissible.

2. Manhattan Distance Heuristic (h2 (n))

- Each tile must move at least as many steps as Manhattan Distance suggests.
- No tile can reach its goal in fewer moves than its Manhattan Distance.
- Since **tile swaps are not allowed**, h2 (n) is a **lower bound** on the actual cost.
- Thus, h2 (n) is admissible.

Which Heuristic is Better?

- h1 (n) (Misplaced Tiles) → Simpler but less accurate.
- h2 (n) (Manhattan Distance) → More informative and generally performs better in A* search.

Q. Difference Between A* and AO* Search Algorithm

Aspect	A* Search Algorithm	AO* Search Algorithm
Type of Search	Finds the shortest path in a state-space graph.	Finds the optimal solution in an AND-OR graph.
Search Space	Works in state-space graphs or trees .	Works in AND-OR graphs , where nodes represent decisions and subproblems .
Graph Type	Uses single-path search .	Uses graph search with AND-OR nodes (useful in problem decomposition).
Node Type	Each node represents a state .	Nodes can be AND nodes (subproblems must be solved together) or OR nodes (one subproblem is sufficient to solve the problem).
Expansion	Expands the most promising node based on $f(n)=g(n)+h(n)$.	Expands nodes recursively based on subproblem dependencies.
Heuristic Function	Uses a heuristic function h(n) to estimate the cost from node n to the goal.	Uses a heuristic function that guides search in AND-OR graphs , considering both subproblems and their dependencies.
Cost Function	Uses $f(n)=g(n)+h(n)$, where: - $g(n) = \cos t$ from start to n. - $h(n) = \operatorname{estimated} \cos t$ from n to goal.	Uses a cost function based on aggregated cost of all subproblems in AND-OR graphs.
Purpose	Used for pathfinding and shortest path problems .	Used in hierarchical problem-solving and game trees.
Applicatio n Areas	- Pathfinding (e.g., Google Maps, Robotics) Game AI (minimax search) Planning and scheduling.	- Expert systems Hierarchical problem- solving (e.g., medical diagnosis) Decision-making in uncertain environments.
Optimality	Guaranteed optimal solution if h(n) is admissible and consistent .	Finds an optimal solution in an AND-OR graph but depends on how problems decompose .
Computati onal Efficiency	Can be computationally expensive for large state spaces.	Efficient in hierarchical problem- solving but can be complex when AND- OR dependencies are large.