

BVRIT HYDERABADCollege of Engineering for Women

CRIME CLASSIFICATION

TEAM - 8
TEAM MEMBERS:

20wh1a1238 , P.Anusha 20wh1a1239 , S.Swathi 20wh1a1240 , A.Shivani 20wh1a1241 , N.Saivarshini 20wh1a1242 , U.Sree Lakshmi.K

AGENDA

- Problem statement
- Python Packages used
- Algorithm
- Output
- Comparison table
- Execute the Code

Problem Statement

 Dataset provides nearly 12 years of crime reports from across all of San Francisco's neighborhoods. Given time and location, you must predict the category of crime that occurred.

Dataset Description:

This dataset contains incidents derived from SFPD Crime Incident Reporting system. The data ranges from 1/1/2003 to 5/13/2015. The training set and test set rotate every week, meaning week 1,3,5,7... belong to test set, week 2,4,6,8 belong to training set.

Data Fields:

- Dates timestamp of the crime incident
- Category category of the crime incident (only in train.csv). This
 is the target variable you are going to predict.

Problem Statement

- Descript detailed description of the crime incident (only in train.csv)
- DayOfWeek the day of the week
- PdDistrict name of the Police Department District
- Resolution how the crime incident was resolved (only in train.csv)
- Address the approximate street address of the crime incident
- X Longitude
- Y Latitude

.

Python Packages used

- pandas
- numpy
- matplotlib.pyplot
- seaborn
- sklearn

Algorithm

- Random Forest
- Decision Tree
- XGBClassifier
- K-Nearest Neighbour

Random Forest

- Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML.
- It is based on the concept of ensemble learning, which is a process of combining multiple classifiers to solve a complex problem and to improve the performance of the model.
- Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset.
 Why use Random Forest?
- It takes less training time as compared to other algorithms.
- It predicts output with high accuracy, even for the large dataset it runs efficiently.
- It can also maintain accuracy when a large proportion of data is missing.

Decision Tree

- Decision Tree is a Supervised learning technique that can be used for both classification and Regression problems, but mostly it is preferred for solving Classification problems.
- It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome.
- It is a graphical representation for getting all the possible solutions to a problem/decision based on given conditions.
- In order to build a tree, we use the CART algorithm, which stands for Classification and Regression Tree algorithm.
 Why use Decision Trees?
- Decision Trees usually mimic human thinking ability while making a decision, so it is easy to understand.
- The logic behind the decision tree can be easily understood because it shows a tree-like structure.

XGBClassifier

- XGBoost classifier is a Machine learning algorithm that is applied for structured and tabular data.
- XGBoost is an implementation of gradient boosted decision trees designed for speed and performance.
- XGBoost works with large, complicated datasets. XGBoost is an ensemble modelling technique.

Why use XGBClassifier

- Performance: XGBClassifier has a strong track record of producing high-quality results in various machine learning tasks.
- Scalability: XGBClassifier is designed for efficient and scalable training of machine learning models, making it suitable for large datasets.

- Customizability: XGBClassifier has a wide range of hyperparameters that can be adjusted to optimize performance, making it highly customizable.
- Handling of Missing Values: XGBClassifier has built-in support for handling missing values, making it easy to work with real-world data that often has missing values.
- Interpretability: Unlike some machine learning algorithms that can be difficult to interpret, XGBClassifier provides feature importances, allowing for a better understanding of which variables are most important in making predictions.

K-Nearest Neighbour

- KNN is a simple, supervised machine learning (ML) algorithm that can be used for classification or regression tasks - and is also frequently used in missing value imputation.
- It is based on the idea that the observations closest to a given data point are the most "similar" observations in a data set, and we can therefore classify unforeseen points based on the values of the closest existing points.
- By choosing K, the user can select the number of nearby observations to use in the algorithm.
 Why use KNN Algorithm
- It is simple to implement.
- It is robust to the noisy training data
- It can be more effective if the training data is large.

Visualization

Scatter Plot

Comparison Table

ALGORITHM	ACCURACY RATE
XGBClassifier	95%
Random Forest	86%
Decision Tree	95%
K-Nearest Neighbour	46%

Output

San Francisco Crime Predictor

THANK YOU