MS211 - Cálculo Numérico

Aula 5 – Normas de Vetores e Matrizes. Condicionamento de uma Matriz.

Marcos Eduardo Valle

Na aula anterior, falamos sobre os erros de arredondamento na representação de ponto flutuante e suas operações aritméticas.

Em termos gerais, erros sempre existirão quando resolvemos um problema contínuo (e.g. em \mathbb{R}) num computador.

Consequentemente, um método numérico raramente produz a solução exata de um problema matemático contínuo.

Na aula de hoje, veremos quando o arredondamento em ponto flutuante e suas operações aritméticas influenciam na credibilidade do resultado produzido por um método numérico.

Iniciaremos apresentando a definição de norma, conceito matemático utilizado para medir tamanho ou distância.

Definição 1 (Norma)

Uma norma é uma função $\|\cdot\|$, de um espaço vetorial $\mathcal V$ no conjunto dos reais $\mathbb R$, que satisfaz as seguintes propriedades para quaisquer $u,v\in\mathcal V$ e $\alpha\in\mathbb R$:

- 1. $||v|| \ge 0$ com ||v|| = 0 se e somente se v = 0.
- **2.** $\|\alpha v\| = |\alpha| \|v\|$.
- 3. $||u+v|| \le ||u|| + ||v||$. (desigualdade triangular)

Não entraremos nos detalhes do que é um espaço vetorial. Por ora, basta saber que os conjuntos \mathbb{R}^n e $\mathbb{R}^{n \times n}$ dos vetores com n componentes e as matrizes $n \times n$ são ambos espaços vetoriais com a soma e multiplicação por escalar.

Uma norma $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$, que associa à um vetor de \mathbb{R}^n um número real, será chamada **norma vetorial**. Similarmente, uma função $\|\cdot\|:\mathbb{R}^{n\times n}\to\mathbb{R}$ é uma **norma matricial**.

Norma Vetorial

Muitas normas vetoriais são dadas pela equação

$$\|\mathbf{x}\|_{p} = \sqrt[p]{\sum_{i=1}^{n} |x_{i}|^{p}} = \sqrt[p]{|x_{1}|^{p} + |x_{2}|^{p} + \ldots + |x_{n}|^{p}}, \quad 1 \leq p < +\infty.$$

Exemplos de normas para $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ incluem:

•
$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| = |x_1| + |x_2| + \ldots + |x_n|.$$

•
$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$
. (norma Euclidiana)

•
$$\|\mathbf{x}\|_{\infty} = \max_{i=1:n} |x_i| = \max\{|x_1|, |x_2|, |x_n|\}.$$

Exemplo 2

Para o vetor $\mathbf{x} = [3-4]^T$, temos:

$$\begin{split} \|\boldsymbol{x}\|_1 &= |3| + |-4| = 7, \\ \|\boldsymbol{x}\|_2 &= \sqrt{3^2 + (-4)^2} = 5, \\ \|\boldsymbol{x}\|_\infty &= \text{max}\{|3|, |-4|\} = 4. \end{split}$$

No GNU Octave, podemos calcular as normas $\|\cdot\|_1$, $\|\cdot\|_2$ e $\|\cdot\|_\infty$ de um vetor **x** usando respectivamente os comandos:

- » norm(x,1)
 » norm(x) ou » norm(
- \rightarrow norm(x) ou \rightarrow norm(x,2)
- » norm(x,inf)

Interpretação Geométrica

O conjunto

$$\mathcal{B}_1 = \{ \mathbf{x} = (x, y) \in \mathbb{R}^2 : \|\mathbf{x}\|_1 \leqslant 1 \},$$

corresponde à figura geométrica

Interpretação Geométrica

O conjunto

$$\mathcal{B}_2 = \{ \mathbf{x} = (x, y) \in \mathbb{R}^2 : \|\mathbf{x}\|_2 \leqslant 1 \},$$

corresponde à figura geométrica

Interpretação Geométrica

O conjunto

$$\mathcal{B}_{\infty} = \{\mathbf{x} = (x, y) \in \mathbb{R}^2 : \|\mathbf{x}\|_{\infty} \leqslant 1\},$$

corresponde à figura geométrica

Normas Matriciais Subordinadas

Podemos identificar uma matriz A com uma transformação linear

$$x \mapsto Ax$$
.

Uma norma matricial subordinada $\|\mathbf{A}\|$ mede a maior distorção efetuada pela transformação linear $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$. Formalmente, temos

$$\|\mathbf{A}\| = \max_{\mathbf{x} \in \mathbb{R}^n} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}.$$

Equivalentemente, escrevendo $\mathbf{v} = \mathbf{x}/\|\mathbf{x}\|$, concluímos que

$$\|\mathbf{A}\| = \max\{\|\mathbf{A}\mathbf{v}\| : \|\mathbf{v}\| = 1\},\$$

ou seja, $\|\mathbf{A}\|$ é a maior distorção que \mathbf{A} faz em $\{\mathbf{v} : \|\mathbf{v}\| = 1\}$.

Observe que a norma matricial acima está subordinada ou é induzida pela norma vetorial!

Exemplo da $\|\cdot\|_1$

Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$. Geometricamente, temos

$$||A||_1 = \max\{||\mathbf{A}\mathbf{v}||_1 : ||\mathbf{v}||_1 = 1\} = 4.$$

A Norma Subordinada | | · | |₁

Pode-se mostrar que $\{\mathbf{A}\mathbf{v}: \|\mathbf{v}\|_1 = 1\}$ é um politopo (generalização de um polígono) e o valor máximo de $\|\mathbf{A}\mathbf{v}\|_1$, para $\|\mathbf{v}\|_1 = 1$, é obtido num dos vértices.

Os vértices do politopo { $\|\mathbf{A}\mathbf{v}:\|\mathbf{v}\|_1=1$ } são $\pm \mathbf{a}_1, \pm \mathbf{a}_2, \dots, \pm \mathbf{a}_n$, em que $\mathbf{a}_1, \dots, \mathbf{a}_n$ são as colunas de \mathbf{A} , i.e., $\mathbf{A}=[\mathbf{a}_1, \dots, \mathbf{a}_n]$.

Portanto, $\|\mathbf{A}\|_1$ é o valor máximo da soma dos valores absolutos das colunas de \mathbf{A} , ou seja,

$$\|\mathbf{A}\|_1 = \max\{\|\mathbf{a}_1\|_1, \dots, \|\mathbf{a}_n\|_1\} = \max_{j=1:n} \left\{ \sum_{i=1}^n |a_{ij}| \right\}.$$

Exemplo da $\|\cdot\|_{\infty}$

Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$. Geometricamente, temos

$$\|A\|_{\infty} = \max\{\|Av\|_{\infty} : \|v\|_{\infty} = 1\} = 3.$$

A Norma Subordinada $\|\cdot\|_{\infty}$

De um modo similar, pode-se mostrar que $\{Av : \|v\|_{\infty} = 1\}$ é um politopo e o valor máximo de $\|Av\|_{\infty}$ é obtido num dos vértices.

Contudo, os vértices do politopo $\{\|\mathbf{A}\mathbf{v}:\|\mathbf{v}\|_{\infty}=1\}$ são obtidos pelo produto $\mathbf{A}\mathbf{v}$, em que $\mathbf{v}=[\pm 1,\pm 1,\ldots,\pm 1]^T$.

Usando esse fato, podemos concluir que $\|\mathbf{A}\|_{\infty}$ é o valor máximo da soma dos valores absolutos das linhas de \mathbf{A} , ou seja,

$$\|\mathbf{A}\|_{\infty} = \max\{\|\mathbf{a}_{1}^{T}\|_{1}, \dots, \|\mathbf{a}_{n}^{T}\|_{1}\} = \max_{i=1:n} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\},$$

em que \mathbf{a}_{i}^{T} denota a *i*-ésima linha de \mathbf{A} .

Exemplo da $\|\cdot\|_2$

Considere a matriz $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$. Geometricamente, temos

$$||A||_2 = \max\{||\mathbf{A}\mathbf{v}||_2 : ||\mathbf{v}||_2 = 1\} = 2.92081.$$

A Norma Subordinada | | . ||2

Pode-se mostrar que $\{\mathbf{Av}: \|\mathbf{v}\|_2 = 1\}$ é um hiper-elipse (generalização de uma elipse) e o valor máximo de $\|\mathbf{Av}\|_2$, para $\|\mathbf{v}\|_1 = 2$, é a metade do maior eixo.

Formalmente, $\|\mathbf{A}\|_2$ é o maior valor singular de matriz \mathbf{A} .

No GNU Octave, podemos calcular as normas $\|\cdot\|_1$, $\|\cdot\|_2$ e $\|\cdot\|_\infty$ de uma matriz **A** usando respectivamente os comandos:

- \gg norm(A,1)
- \rightarrow norm(A) ou \rightarrow norm(A,2)
- » norm(A,inf)

Norma Consistente

Dizemos que uma norma matricial $\|\cdot\|$ é consistente se

$$\|\mathbf{AB}\| \leqslant \|\mathbf{A}\| \|\mathbf{B}\|,$$

para quaisquer matrizes A e B.

Todas as normas subordinadas são consistentes!

As normas subordinadas também satisfazem a desigualdade

$$\|\mathbf{A}\mathbf{x}\| \leqslant \|\mathbf{A}\| \|\mathbf{x}\|,$$

para quaisquer matriz **A** e vetor **x**.

Erro Absoluto e Erro Relativo

Suponha que resolvemos um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$, em que $\mathbf{A} \in \mathbb{R}^{n \times n}$ é uma matriz não-singular e $\mathbf{b} \in \mathbb{R}^n$, usando um método numérico como, por exemplo, o método da eliminação de Gauss.

Vamos denotar por $\tilde{\mathbf{x}}$ a solução encontrada pelo método numérico e $\mathbf{x}^* = \mathbf{A}^{-1}\mathbf{b}$ a solução exata.

Para avaliar a qualidade da solução produzida pelo método numérico, comparamos a solução numérica $\tilde{\mathbf{x}}$ com a solução exata \mathbf{x}^* usando uma norma vetorial. Especificamente, calculamos o erro absoluto E_a ou o erro relativo E_r dados por:

$$E_a = \|\mathbf{x}^* - \tilde{\mathbf{x}}\|$$
 e $E_r = \frac{\|\mathbf{x}^* - \tilde{\mathbf{x}}\|}{\|\mathbf{x}^*\|}$.

Resíduo

Uma desvantagem da análise que descrevemos anteriormente é que, na prática, não conhecemos a solução exata \mathbf{x}^* do sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$. Portanto, não podemos calcular o erro.

Como alternativa, calculamos o chamado **resíduo absoluto** R_a ou o **resíduo relativo** R_r definidos por

$$R_a = \|\mathbf{b} - \mathbf{A}\tilde{\mathbf{x}}\|$$
 e $R_r = \frac{\|\mathbf{b} - \mathbf{A}\tilde{\mathbf{x}}\|}{\|\mathbf{b}\|}$.

Em algumas situações, é conveniente definir os vetores

$$\mathbf{e} = \mathbf{x}^* - \tilde{\mathbf{x}}$$
 \mathbf{e} $\mathbf{r} = \mathbf{b} - \mathbf{A}\tilde{\mathbf{x}}$

chamados respectivamente erro e resíduo.

Matriz Gerada Aleatoriamente

Para valiar a qualidade da solução de um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ produzida pelo método da eliminação de Gauss, geramos uma matriz $\mathbf{A} \in \mathbb{R}^{100 \times 100}$ cujos elementos a_{ij} possuem distribuição normal padrão.

Além disso, definimos $\mathbf{x}^* = [1, \dots, 1]^T$ e $\mathbf{b} = \mathbf{A}\mathbf{x}^*$.

Determinamos a solução numérica $\tilde{\mathbf{x}}$ usando o método da eliminação de Gauss e calculamos o erro e o resíduo relativo.

Repetimos o processo 1000 vezes. A média dos erros e resíduos relativos foram 1.3×10^{-12} e 6.0×10^{-14} , respectivamente.

Note que o resíduo forneceu uma boa estimativa para o erro!

Comandos do GNU Octave

```
» for i=1:1000
    A = randn(100,100); xs=ones(100,1);
    b=A*xs; xt=A\b;
    E_r(i)=norm(xs-xt,inf);
    R_r(i)=norm(b-A*xt,inf)/norm(b,inf);
end
» [mean(E_r),mean(R_r)];
ans =
    1.6535e-13
    2.2155e-15
```

Matriz de Hilbert

Considere a matriz $\mathbf{A} \in \mathbb{R}^{100 \times 100}$ cujos elementos são

$$a_{ij}=\frac{1}{i+j-1}.$$

Definimos $\mathbf{x}^* = [1, ..., 1]^T$, $\mathbf{b} = \mathbf{A}\mathbf{x}^*$ e determinamos a solução numérica $\tilde{\mathbf{x}}$ usando o método da eliminação de Gauss.

O erro relativo e o resíduo relativo foram

$$E_r = \frac{\|\mathbf{x}^* - \tilde{\mathbf{x}}\|_{\infty}}{\|\mathbf{x}^*\|_{\infty}} = 1.38 \quad \text{e} \quad R_r = \frac{\|\mathbf{b} - \mathbf{A}\tilde{\mathbf{x}}\|_{\infty}}{\|\mathbf{b}\|_{\infty}} = 1.46 \times 10^{-15}.$$

Ao contrário do exemplo anterior, temos resíduo relativo muito pequeno mas um erro relativo grande.

Comandos do GNU Octave

```
» A = hilb(100); xs=ones(100,1);
» b=A*xs; xt=A\b;
warning: matrix singular to machine precision,
rcond = 1.14558e-21
» R_r=norm(b-A*xt,inf)/norm(b,inf)
R_r = 1.4554e-15
» E_r=norm(xs-xt,inf)
E r = 1.3774
```

Sistemas Lineares Mal-Condicionados

Em termos gerais, um sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ é mal-condicionado se pequenas perturbações na matriz \mathbf{A} ou no vetor \mathbf{b} causam grandes variações na solução.

Nesse caso, devido aos erros na representação e operações de pontos flutuantes, não devemos esperar uma solução precisa de um método numérico!

Além disso, num sistema linear mal-condicionado, o resíduo pode não revelar a natureza do erro!

O condicionamento de uma matriz **A** é definido em termos de sua norma e a norma de sua inversa.

Sabemos que os vetores **e** (erro) e **r** (resíduo) satisfazem:

$$r = Ae e e = A^{-1}r.$$

Sendo | · | uma norma subordinada, tem-se:

$$\|\boldsymbol{r}\|\leqslant \|\boldsymbol{A}\|\|\boldsymbol{e}\|\quad \boldsymbol{e}\quad \|\boldsymbol{e}\|\leqslant \|\boldsymbol{A}^{-1}\|\|\boldsymbol{r}\|\quad \Longrightarrow\quad \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\|}\leqslant \|\boldsymbol{e}\|\leqslant \|\boldsymbol{A}^{-1}\|\|\boldsymbol{r}\|.$$

Analogamente, das equações $\mathbf{b} = \mathbf{A}\mathbf{x}^* \mathbf{e} \mathbf{x}^* = \mathbf{A}^{-1}\mathbf{b}$, obtemos

$$\|\mathbf{b}\| \leqslant \|\mathbf{A}\| \|\mathbf{x}^*\| \ e \ \|\mathbf{x}^*\| \leqslant \|\mathbf{A}^{-1}\| \|\mathbf{b}\| \quad \Longrightarrow \quad \frac{1}{\|\mathbf{A}^{-1}\| \|\mathbf{b}\|} \leqslant \frac{1}{\|\mathbf{x}^*\|} \leqslant \frac{\|\mathbf{A}\|}{\|\mathbf{b}\|}.$$

Combinamos as inequações, obtemos:

$$\frac{1}{\|\mathbf{A}\|\|\mathbf{A}^{-1}\|} \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} \leqslant \frac{\|\mathbf{e}\|}{\|\mathbf{x}^*\|} \leqslant \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}.$$

Número de Condição de uma Matriz

O número de condição de uma matriz **A**, também chamado condicionamento de **A**, é definido por

$$cond(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|.$$

Vale a seguinte relação entre o erro relativo e o resíduo relativo:

$$\frac{R_r}{cond(\mathbf{A})} \leqslant E_r \leqslant cond(\mathbf{A})R_r.$$

- Se cond(A) é próximo de 1, o erro relativo E_r e o resíduo relativo R_r são próximos.
- Se cond(A) é grande, o erro relativo pode ser muito maior que o resíduo relativo.

O número de condição de uma matriz **A** pode ser calculada no GNU Octave usando o comando:

» cond(A)

O comando

» rcond(A)

fornece o recíproco $1/cond(\mathbf{A})$, obtido usando a norma-1. Note que \mathbf{A} é mal-condicionada se $rcond(\mathbf{A})$ é próximo de zero.

Calculamos o condicionamento da matriz de Hilbert como segue:

 \Rightarrow cond(hilb(100)) ans = 5.9832e+19

Com base nos números do exemplo anterior, temos

$$\underbrace{1.38}_{E_r} \leqslant \underbrace{5.98 \times 10^{19}}_{cond(\mathbf{A})} \underbrace{1.46 \times 10^{-15}}_{R_r} = 8.71 \times 10^4.$$

Considerações Finais

Na aula de hoje apresentamos os conceitos de norma vetorial e norma matricial subordinada.

Vimos como esses conceitos podem ser usados para determinar o erro relativo de um sistema linear.

Vimos também o conceito de resíduo relativo e mostramos que ele representa o erro relativo se o condicionamento de **A** for próximo de 1.

Se $cond(\mathbf{A})$ é grande, dizemos que a matriz é mal-condicionada. Nesse caso, não podemos confiar na solução fornecida por um método numérico.

Muito grato pela atenção!