



# Existence of Monge maps for the Gromov–Wasserstein distance

Stage de fin d'études – MVA & Mines Paris

Théo Dumont October 20<sup>th</sup> 2022

Laboratoire d'Informatique Gaspard Monge (LIGM) Supervisors: François-Xavier Vialard, Théo Lacombe (LIGM)

### Outline

#### 1. Introduction

- 2. Monge maps for GW
  - 2.1. A key lemma
  - 2.2. Application: inner product cost
  - 2.3. Application: quadratic cost
- 3. Complementary study of the quadratic cost in 1D
  - 3.1. Computation of non-monotone optimal plans
  - 3.2. Instability of the optimality of monotone optimal plans

1. Introduction



## Setup:

- $\mathcal{X}, \mathcal{Y}$  Polish spaces
- probability measures  $\mu \in \mathcal{P}(\mathcal{X})$  and  $\nu \in \mathcal{P}(\mathcal{Y})$
- cost function  $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$



### Monge problem [Monge, 1781]

We consider the following minimization problem:

$$\min_{T_{\#}\mu=\nu} \int_{\mathcal{X}} c(x, T(x)) d\mu(x).$$

where  $T_{\#}\mu(B) = \mu(T^{-1}(B))$  for all Borel  $B \subset \mathcal{Y}$ .

solutions T are called Monge maps or optimal maps

## Monge problem [Monge, 1781]

We consider the following minimization problem:

$$\min_{T_{\#}\mu=\nu}\int_{\mathcal{X}}c(x,T(x))\,\mathrm{d}\mu(x).$$

- problems:
  - 1. constraints are not linear!
  - 2. minimum not reached
  - 3. no maps s.t.  $T_{\#}\mu = \nu$



Figure 1: We need to "split"  $\delta_x$ : no map can do this.

## Optimal transport Kantorovich problem

#### Transport plan [Kantorovich, 1942]

A transport plan between  $\mu$  and  $\nu$  is a (probability) measure  $\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$  of marginals  $\mu$  and  $\nu$ :

$$\Pi(\mu,\nu) \triangleq \left\{ \pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \mid \mathsf{P}_{\#}^1 \pi = \mu, \mathsf{P}_{\#}^2 \pi = \nu \right\} \,.$$





Figure 2: Deterministic or non-deterministic transport plans.

### Kantorovich problem

We consider the following minimization problem:

$$\min_{\pi \in \Pi(\mu,\nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(\mathbf{x}, \mathbf{y}) \, \mathrm{d}\pi(\mathbf{x}, \mathbf{y}) \,. \tag{KP}$$

- always non-empty (contains  $\mu \otimes \nu$ ), existence of a minimizer
- linear program in  $\pi$ !
- if  $c(x,y) = |x-y|_p^p$ , p-Wasserstein distance  $W_p(\mu,\nu)^p$

#### Question

Is the relaxation tight? under some assumptions, yes!

## 1. Introduction

1.1. Map solutions of OT

## Map solutions of OT Brenier's theorem

## Brenier's theorem [Brenier, 1987]

Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$  and  $\mathbf{c}(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|^2$ . If  $\mu \ll \mathcal{L}^n$ , then there exists a unique solution to (KP) and it is induced by a **map**  $T = \nabla f$ , with f convex.

- generalize for manifolds  ${\mathcal X}$  and  ${\mathcal Y}$  and for other cost functions c

#### Twist condition [Villani, 2008, McCann and Guillen, 2011]

We say that c satisfies the **twist condition** if

for all 
$$x_0 \in \mathcal{X}, \quad y \mapsto \nabla_x c(x_0, y) \in T_{x_0} \mathcal{X}$$
 is injective. (Twist)

Suppose that c satisfies (Twist) and assume that any c-concave function is differentiable  $\mu$ -a.e. on its domain. If  $\mu$  and  $\nu$  have finite transport cost, then (KP) admits a unique optimal transport plan  $\pi^*$  and it is induced by a **map** which is the gradient of a c-convex function  $f: \mathcal{X} \to \mathbb{R}$ :

$$\pi^* = (\mathrm{id}, c\text{-}\exp_{\mathsf{x}}(\nabla f))_{\#}\mu$$
.

•  $c\text{-exp}_{x}(p)$  is the unique y such that  $\nabla_{x}c(x,y)+p=0$ :

$$c\text{-}\exp_{x}(p) = (\nabla_{x}c)^{-1}(x,-p).$$

• usual Riemannian exp when  $c(x,y) = d(x,y)^2/2$ 



## Map solutions of OT Twist condition

### Twist condition [Villani, 2008, McCann and Guillen, 2011]

We say that c satisfies the twist condition if

for all 
$$x_0 \in \mathcal{X}$$
,  $y \mapsto \nabla_x c(x_0, y) \in T_{x_0} \mathcal{X}$  is injective. (Twist)

Suppose that c satisfies (Twist) and assume that any c-concave function is differentiable  $\mu$ -a.e. on its domain. If  $\mu$  and  $\nu$  have finite transport cost, then (KP) admits a unique optimal transport plan  $\pi^*$  and it is induced by a **map** which is the gradient of a c-convex function  $f: \mathcal{X} \to \mathbb{R}$ :

$$\pi^* = (\mathrm{id}, c\text{-}\exp_{\mathsf{x}}(\nabla f))_{\#}\mu.$$

| • | examples:              |                   | twist |
|---|------------------------|-------------------|-------|
|   | $ x-y ^2$              | in $\mathbb{R}^n$ | ✓     |
|   | $\langle x, y \rangle$ | in $\mathbb{R}^n$ | ✓     |
|   | $\langle x, y \rangle$ | on $S^{n-1}$      |       |

· other formulation:

$$\forall y_1 \neq y_2, \quad x \mapsto c(x,y_1) - c(x,y_2)$$
 has no critical point.



## Subtwist condition [Ahmad et al., 2011, Chiappori et al., 2010]

We say that c satisfies the subtwist condition if

$$\forall y_1 \neq y_2, \quad x \mapsto c(x, y_1) - c(x, y_2)$$
 has at most 2 critical points. (Subtwist)

Suppose that c satisfies (Subtwist). Under the same assumptions than before, (KP) admits a unique optimal transport plan  $\pi^*$  and it is induced by the **union of a map and an anti-map**:

$$\pi^* = (id, G)_\# \bar{\mu} + (H, id)_\# (\nu - G_\# \bar{\mu})$$

for G :  $\mathcal{X} \to \mathcal{Y}$ , H :  $\mathcal{Y} \to \mathcal{X}$  and  $0 \le \bar{\mu} \le \mu$  s.t.  $\nu - G_\# \bar{\mu}$  vanishes on the range of G.

|                        |              | twist | subtwist     |
|------------------------|--------------|-------|--------------|
| $\langle x, y \rangle$ | on $S^{n-1}$ |       | $\checkmark$ |



## Map solutions of OT m-twist condition

#### m-twist condition [Moameni, 2016]

We say that c satisfies a m-twist condition if

$$\forall \mathsf{x}_0 \in \mathcal{X}, \mathsf{y}_0 \in \mathcal{Y}, \quad \mathsf{card} \left\{ y \mid \nabla_\mathsf{x} \mathsf{c}(\mathsf{x}_0, \mathsf{y}) = \nabla_\mathsf{x} \mathsf{c}\left(\mathsf{x}_0, \mathsf{y}_0\right) \right\} \leq m \,. \tag{$m$-twist}$$

Suppose that c satisfies (m-twist) and is bounded. Under the same assumptions than before, each optimal plan  $\pi^*$  of (KP) is supported on the graphs of  $k \leq m$  measurable maps  $T_i: \mathcal{X} \to \mathcal{Y}$ :

$$\pi^{\star} = \sum_{i=1}^{k} \alpha_i \left( \mathsf{id}, \mathsf{T}_i \right)_{\#} \mu \,,$$

in the sense  $\pi^*(S) = \sum_{i=1}^k \int_{\mathcal{X}} \alpha_i(x) \mathbb{1}_S(x, T_i(x)) d\mu$  for any Borel  $S \subset \mathcal{X} \times \mathcal{Y}$ .

|               |                   | twist | subtwist | 2-twist      |   |
|---------------|-------------------|-------|----------|--------------|---|
| $1-\cos(x-y)$ | on $[0, 2\pi)$    |       | ✓        | <b>√</b>     |   |
| our cost!     | in $\mathbb{R}^n$ |       |          | $\checkmark$ |   |
|               |                   |       |          |              |   |
|               |                   |       |          |              | X |

# Map solutions of OT Recap



• all assumptions needed to apply them are satisfied when  $\mu$  and  $\nu$  have compact support and  $\mu$  has a density

## 1. Introduction

1.2. Gromov-Wasserstein

## Gromov–Wasserstein [Mémoli, 2011]

#### sup formulation

### L<sup>p</sup> formulation

Set couplings  $\mathcal{R}(A, B)$ 

$$\left\{ R \subset A \times B \mid P^{1}(R) = A, P^{2}(R) = B \right\}$$

Transport plans 
$$\Pi(\mu, \nu)$$

$$\left\{R\subset A\times B\mid P^1(R)=A, P^2(R)=B\right\} \qquad \left\{\pi\in \mathcal{P}(\mathcal{X}\times\mathcal{Y})\mid P_\#^1\pi=\mu, P_\#^2\pi=\nu\right\}$$

Hausdorff distance H<sub>Z</sub> between sets A, B

$$\inf_{R \in \mathcal{R}(A,B)} \left( \sup_{(a,b) \in R} d_{\mathcal{Z}}(a,b) \right)$$

Wasserstein distance W<sub>p</sub> between measures  $\mu, \nu$ 

$$\inf_{\pi \in \Pi(\mu,\nu)} \left( \int |x-y|^p \, \mathrm{d}\pi \right)^{1/p}$$

#### sup formulation

#### *L*<sup>p</sup> formulation

Set couplings  $\mathcal{R}(A, B)$ 

$$\left\{ R \subset A \times B \mid P^1(R) = A, P^2(R) = B \right\} \qquad \left\{ \pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \mid P^1_\# \pi = \mu, P^2_\# \pi = \nu \right\}$$

Transport plans 
$$\Pi(\mu, \nu)$$

**Hausdorff** distance  $H_Z$  between sets A, B

$$\inf_{R \in \mathcal{R}(A,B)} \left( \sup_{(a,b) \in R} d_{\mathcal{Z}}(a,b) \right)$$

Wasserstein distance  $W_p$ between measures  $\mu, \nu$ 

$$\inf_{\pi \in \Pi(\mu,\nu)} \left( \int |x-y|^p \, \mathrm{d}\pi \right)^{1/p}$$

Gromov-Hausdorff distance GH

between metric spaces  $\mathcal{X}, \mathcal{Y}$ 

$$\frac{1}{2}\inf_{R\in\mathcal{R}}\left(\sup_{(x,y),(x',y')\in R}|d_{\mathcal{X}}(x,x')-d_{\mathcal{Y}}(y,y')|\right)$$

## sup formulation

#### L<sup>p</sup> formulation

Set couplings  $\mathcal{R}(A, B)$ 

$$\left\{ R \subset A \times B \mid P^1(R) = A, P^2(R) = B \right\} \qquad \left\{ \pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \mid P^1_\# \pi = \mu, P^2_\# \pi = \nu \right\}$$

Transport plans 
$$\Pi(\mu, \nu)$$

Hausdorff distance H<sub>Z</sub> between sets A, B

$$\inf_{R \in \mathcal{R}(A,B)} \left( \sup_{(a,b) \in R} d_{\mathcal{Z}}(a,b) \right)$$

Wasserstein distance W<sub>p</sub> between measures  $\mu, \nu$  $\inf_{\pi \in \Pi(\mu,\nu)} \left( \int |x-y|^p d\pi \right)^{1/p}$ 

Gromov-Hausdorff distance GH

between metric spaces  $\mathcal{X}, \mathcal{Y}$ 

$$\frac{1}{2}\inf_{R\in\mathcal{R}}\left(\sup_{(x,y),(x',y')\in R}|d_{\mathcal{X}}(x,x')-d_{\mathcal{Y}}(y,y')|\right)\inf_{\pi\in\Pi}\left(\int|d_{\mathcal{X}}(x,x')-d_{\mathcal{Y}}(y,y')|^p\,\mathrm{d}\pi\otimes\pi\right)^{1/p}$$

Gromov–Wasserstein distance GW<sub>p</sub>

between measure metric spaces X, Y

$$\inf_{\pi\in\Pi} \left(\int |d_{\mathcal{X}}(x,x') - d_{\mathcal{Y}}(y,y')|^p d\pi\otimes\pi\right)^{1/p}$$

#### Gromov-Wasserstein

- match measure metric spaces  $(\mathcal{X}, d, \mu)$  (e.g. point clouds) up to isometry: no notion of transport here, but rather of correspondence
- applications in vision, biology...

### Gromov-Wasserstein problem

We consider the following quadratic minimization problem:

$$\inf_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} |c_{\mathcal{X}}(\mathbf{x},\mathbf{x}') - c_{\mathcal{Y}}(\mathbf{y},\mathbf{y}')|^p d\pi(\mathbf{x},\mathbf{y}) d\pi(\mathbf{x}',\mathbf{y}'). \tag{GW}$$



• distance between mm-spaces up to isometry, i.e.  $\mathrm{GW}(\mathbb{X},\mathbb{Y})=0$  iff  $\mathbb{X}=(\mathcal{X},d^q_{\mathcal{X}},\mu)$  and  $\mathbb{Y}=(\mathcal{Y},d^q_{\mathcal{Y}},\nu)$  are strongly isomorphic [Mémoli, 2011]

#### Gromov-Wasserstein problem

We consider the following quadratic minimization problem:

$$\inf_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} \left| c_{\mathcal{X}}(x,x') - c_{\mathcal{Y}}(y,y') \right|^p d\pi(x,y) d\pi(x',y'). \tag{GW}$$

- quadratic in  $\pi$  + non-convex  $\implies$  much harder than OT
- for p=2, discrete formulation: with  $D^{\mathcal{X}}$ ,  $D^{\mathcal{Y}}$  two similarity matrices on  $\mathcal{X}$  and  $\mathcal{Y}$ ,

$$\min_{P \in U(a,b)} \sum_{i,j,i',j'} |D^{\mathcal{X}}_{i,i'} - D^{\mathcal{Y}}_{j,j'}|^{P} P_{i,j} P_{i',j'} .$$

particular case of the quadratic assignment problem (QAP), NP-hard

· bonus: compare measures living in incomparable spaces

## Statement and relaxation

## Question

What can be said on the existence of Monge maps for the Gromov–Wasserstein distance?

• quadratic...

## 1. Introduction

1.3. Existing results and contributions

Let  $n \geq d$ . We consider the GW problem for  $\mu, \nu \in \mathbb{R}^n \times \mathbb{R}^d$  in 2 different settings:

1. the inner product case, where  $c_{\mathcal{X}} = c_{\mathcal{Y}} = \langle \cdot, \cdot \rangle$ :

$$\min_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} \left| \langle x, x' \rangle - \langle y, y' \rangle \right|^2 \, \mathrm{d}\pi(x,y) \, \mathrm{d}\pi(x',y') \,, \qquad \text{(GW inner prod)}$$

- e.g. on a d-dimensional sphere  $S^{d-1}$
- 2. the quadratic case, where  $c_{\mathcal{X}} = c_{\mathcal{Y}} = |\cdot|^2$ :

$$\min_{\pi \in \Pi(\mu,\nu)} \iint_{\mathcal{X} \times \mathcal{Y}} \left| \left| x - x' \right|^2 - \left| y - y' \right|^2 \right|^2 \, \mathrm{d}\pi(x,y) \, \mathrm{d}\pi(x',y') \,, \quad \text{(GW quadratic)}$$

- standard choice for  $c_{\mathcal{X}}$  and  $c_{\mathcal{Y}}$
- ightarrow both studied in the literature [Alvarez-Melis et al., 2019, Vayer, 2020]

In the following, n = d.

## **Existing results**

1. the inner product case, where  $c_{\mathcal{X}} = c_{\mathcal{Y}} = \langle \cdot, \cdot \rangle$ :

## [Vayer, 2020]

Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$  of finite second order moment with  $\mu \ll \mathcal{L}^n$ . Suppose that there exists a solution  $\pi^*$  such that  $\mathbf{M}^* = \int y \otimes x \, \mathrm{d} \pi^*(x,y)$  is of *full rank*. Then there exists an optimal map  $T = \nabla f \circ \mathbf{M}^*$  with  $f : \mathbb{R}^n \to \mathbb{R}$  convex.

2. the *quadratic case*, where  $c_{\mathcal{X}} = c_{\mathcal{Y}} = |\cdot|^2$ :

## [Sturm, 2020]

Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$  with density, rotationally invariant around their barycenter. Then optimal transport plans are induced by a map which is the monotone increasing rearrangement between the radial distributions of  $\mu$  and  $\nu$ .

## [Vayer, 2020]

Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$  with compact support. Assume that  $\mu \ll \mathcal{L}^n$  and that both  $\mu$  and  $\nu$  are centered. Suppose that there exists  $\pi^*$  such that  $M^* = \int y \otimes x \, \mathrm{d} \pi^*(x,y)$  is of *full rank* and that there exists a differentiable convex  $F: \mathbb{R} \to \mathbb{R}$  such that  $|T(x)|_2^2 = F'(|x|_2^2)$ , then there exists an optimal map  $T = \nabla f \circ M^*$  with f convex.

#### Contributions

Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$  of compact support. Suppose  $\mu \ll \mathcal{L}^n$ .

- 1. **Theorem:** The (GW inner prod) problem admits a *map* as a solution.
- Theorem: The (GW quadratic) problem either admits a map or a bimap as a solution.
- 3. **Conjecture:** The second claim is *tight*: there exists cases where optimal solutions of (GW quadratic) are *not maps*.

Optimality of the monotone rearrangements  $\pi_{\text{mon}}^{\oplus}$  and  $\pi_{\text{mon}}^{\ominus}$  in 1D for (GW quadratic):

- 4. **Algorithm:** There exists measures  $\mu$  and  $\nu$  for which the  $\pi^{\oplus}_{\text{mon}}$  and  $\pi^{\ominus}_{\text{mon}}$  are **not optimal**; and having  $\pi^{\oplus}_{\text{mon}}$  or  $\pi^{\ominus}_{\text{mon}}$  as optimal is **not stable** by perturbations of  $\mu$  and  $\nu$ .
- 5. (Theorem: When measures  $\mu$  and  $\nu$  are composed of two distant parts,  $\pi^\oplus_{mon}$  or  $\pi^\ominus_{mon}$  is *optimal*.)

2. Monge maps for GW

### Trick: relaxation of GW into OT problem

- (GW) =  $\min_{\pi} F(\pi, \pi)$  with F symmetric bilinear
- first-order condition:  $\pi^*$  minimizes (GW)  $\implies$  minimizes  $\pi \mapsto 2F(\pi, \pi^*)$ :

$$\min_{\pi \in \Pi(\mu,\nu)} \int C_{\pi^\star}(x,y) \, \mathrm{d}\pi(x,y), \quad \text{ with } C_{\pi^\star}(x,y) = \int |c_{\mathcal{X}}(x,x') - c_{\mathcal{Y}}(y,y')|^p \, \mathrm{d}\pi^\star(x',y')$$

converse implication? [Séjourné et al., 2021]:

### **Tightness**

If  $\iint |c_{\mathcal{X}}(\mathbf{x},\mathbf{x}') - c_{\mathcal{Y}}(\mathbf{y},\mathbf{y}')|^p \,\mathrm{d}\alpha \otimes \alpha \leq 0$  for all (signed) measures  $\alpha \in \mathcal{M}(\mathcal{X} \times \mathcal{Y})$  with **null marginals**, then the relaxation of  $\mathsf{GW}_2^2$  is tight.

• twist conditions for our linearized costs?...

# 2. Monge maps for GW

2.1. A key lemma

"Let 
$$\mu, \nu \in \mathcal{P}(E)$$
.



"Let  $\mu, \nu \in \mathcal{P}(\mathsf{E})$ . If we can send  $\mu$  and  $\nu$  in a space  $\mathsf{B}$  by a function  $\varphi$ ,



"Let  $\mu, \nu \in \mathcal{P}(\mathsf{E})$ . If we can send  $\mu$  and  $\nu$  in a space  $\mathsf{B}$  by a function  $\varphi$ , s.t.

$$c(x,y) = \tilde{c}(\varphi(x), \varphi(y))$$
 for all  $x, y \in E$ 

with  $\tilde{c}$  a twisted cost on B,



"Let  $\mu, \nu \in \mathcal{P}(\mathsf{E})$ . If we can send  $\mu$  and  $\nu$  in a space  $\mathsf{B}$  by a function  $\varphi$ , s.t.

$$c(x,y) = \tilde{c}(\varphi(x), \varphi(y))$$
 for all  $x, y \in E$ 

with  $\tilde{c}$  a twisted cost on B, then we can construct an optimal map between  $\mu$  and  $\nu$ ."



## Theorem: existence of a Monge map, inner product cost

Let  $E_0$  be a measurable space and  $B_0$  and F be complete Riemannian manifolds. Let  $\mu, \nu \in \mathcal{P}(E_0)$  with compact support. Assume that there exists a set  $E \subset E_0$  s.t.  $\mu(E) = 1$  and that there exists a measurable map  $\Phi: E \to B_0 \times F$  that is injective and whose inverse on its image is measurable as well. Let  $\varphi \triangleq p_B \circ \Phi: E \to B_0$ . Let  $c: E_0 \times E_0 \to \mathbb{R}$  and suppose that there exists a twisted  $\tilde{c}: B_0 \times B_0 \to \mathbb{R}$  s.t.

$$c(x,y) = \tilde{c}(\varphi(x), \varphi(y))$$
 for all  $x, y \in E_0$ .

Assume that  $\varphi_{\#}\mu \ll \mathcal{L}_{B_0}$  and let thus  $t_{B}$  denote the unique Monge map between  $\varphi_{\#}\mu$  and  $\varphi_{\#}\nu$  for this cost. Suppose that there exists a disintegration  $((\Phi_{\#}\mu)_u)_u$  of  $\Phi_{\#}\mu$  by  $p_{B}$  s.t. for  $\varphi_{\#}\mu$ -a.e. u,  $(\Phi_{\#}\mu)_u \ll \text{vol}_{F}$ .

Then there exists an optimal map T between  $\mu$  and  $\nu$  for the cost c that can be decomposed as

$$\Phi \circ \mathsf{T} \circ \Phi^{-1}(u,v) = (\mathsf{t}_{\mathsf{B}}(u),\mathsf{t}_{\mathsf{F}}(u,v)) = \left(\underbrace{\tilde{\mathsf{c}}\text{-}\mathsf{exp}_{u}(\nabla f(u))}_{\in \mathsf{B}},\underbrace{\mathsf{exp}_{v}(\nabla g_{u}(v))}_{\in \mathsf{fiber}}\right),$$

with  $f: B_0 \to \mathbb{R}$   $\tilde{c}$ -convex and  $g_u: F \to \mathbb{R}$   $d_F^2/2$ -convex for  $\varphi_\# \mu$ -a.e. u.

## A key lemma The proof



- 1. transport in B: c̃ satisfies (Twist) on B;
- 2. transport the fibers: choose a map for each couple of fibers  $(\mu_u, \nu_{t_B(u)})$
- 3. is  $T(u, x) = T_u(x)$  measurable? need theorem! adaptation of [Fontbona et al., 2010] to the manifold setting

**Take-home message:**  $c(x,y) = \tilde{c}(\varphi(x),\varphi(y))$  with  $\tilde{c}$  twisted  $\implies$  map

# 2. Monge maps for GW

2.2. Application: inner product cost

Let's work on (GW inner prod):

$$\min_{\pi \in \Pi(\mu,\nu)} \iint \left| \langle \mathbf{x}, \mathbf{x}' \rangle - \langle \mathbf{y}, \mathbf{y}' \rangle \right|^2 \, \mathrm{d}\pi(\mathbf{x},\mathbf{y}) \, \mathrm{d}\pi(\mathbf{x}',\mathbf{y}') \qquad \text{(GW inner prod)}$$

$$\iff \min_{\pi \in \Pi(\mu,\nu)} \iint -\langle \mathbf{x}, \mathbf{x}' \rangle \langle \mathbf{y}, \mathbf{y}' \rangle \, \mathrm{d}\pi(\mathbf{x},\mathbf{y}) \, \mathrm{d}\pi(\mathbf{x}',\mathbf{y}')$$

$$\implies \text{OT problem with } \mathbf{c}(\mathbf{x},\mathbf{y}) = -\int \langle \mathbf{x}, \mathbf{x}' \rangle \langle \mathbf{y}, \mathbf{y}' \rangle \, \mathrm{d}\pi^*(\mathbf{x}',\mathbf{y}') = \cdots = -\langle \mathbf{M}^*\mathbf{x}, \mathbf{y} \rangle$$

$$\text{where } \mathbf{M}^* \triangleq \int \mathbf{y}' \mathbf{x}'^\top \, \mathrm{d}\pi^*(\mathbf{x}',\mathbf{y}') \in \mathbb{R}^{n \times n}$$

| rk M*                  | = n          | $\leq n-1$ |
|------------------------|--------------|------------|
| twist                  | ✓            |            |
| subtwist               | $\checkmark$ |            |
| $m$ -twist, $m \geq 2$ | $\checkmark$ |            |

$$M^* = \begin{pmatrix} \sigma_1 & & & \\ & \sigma_h & & \\ & & 0 & \\ & & & 0 \end{pmatrix}$$

2. rephrase the cost:

$$c(x,y) = -\langle M^*x, y \rangle$$

$$= -\sum_{i=1}^h \sigma_i x_i y_i$$

$$\triangleq \tilde{c}(p(x), p(y)) \qquad \text{with } p \text{ the orthogonal projection on } \mathbb{R}^h.$$

- 3. apply key lemma!
  - B is  $\mathbb{R}^h$
  - fibers are  $\mathbb{R}^{n-h}$
  - $\tilde{c}$  is twisted on  $\mathbb{R}^h$
- ⇒ optimal map + structure!

for 
$$x = (u, v) \in \mathbb{R}^h \times \mathbb{R}^{n-h}$$
,  $T(u, v) = (\nabla f \circ M^*(u), \nabla g_u(v))$ .

# 2. Monge maps for GW

2.3. Application: quadratic cost

Similarly, we work on (GW quadratic) and relax to a classical OT problem with

$$c(x,y) = -|x|^2|y|^2 - 4\langle M^*x, y\rangle.$$

| rk M*                 | = n          | = n - 1      | $\leq n-2$ |
|-----------------------|--------------|--------------|------------|
| twist                 |              | •            |            |
| subtwist              | $\checkmark$ | •            |            |
| 2-twist               | $\checkmark$ | $\checkmark$ |            |
| $m$ -twist, $m \ge 3$ | •            | •            |            |

Similarly, we work on (GW quadratic) and relax to a classical OT problem with

$$c(x,y) = -|x|^2|y|^2 - 4\langle M^*x, y\rangle.$$

| rk M <sup>⋆</sup>      | = n          | = n - 1      | $\leq n-2$              |
|------------------------|--------------|--------------|-------------------------|
| twist                  |              |              |                         |
| subtwist               | $\checkmark$ |              |                         |
| 2-twist                | $\checkmark$ | $\checkmark$ |                         |
| $m$ -twist, $m \geq 3$ |              |              |                         |
|                        |              | $\downarrow$ | $\downarrow \downarrow$ |
|                        | map/anti-map | bimap        |                         |
|                        | & bimap      |              |                         |

### Theorem: quadratic cost

Let  $\mu, \nu \in \mathcal{P}(\mathbb{R}^n)$  of compact support. Suppose that  $\mu$  has a density. Let  $\pi^*$  be an optimal plan and  $M^* \triangleq \int y' x'^\top d\pi^*(x',y')$ . Then:

 $\checkmark$  if rk  $M^* = n$ , there is an optimal bimap with one map being one-to-one,

 $\checkmark$  if rk  $M^* = n - 1$ , there is an optimal bimap,

(!!) if  $rk M^* \le n - 2$ , there is an optimal map!

1. a simplification: up to SVD,  $M^*$  is diagonal:

$$M^{\star} = \begin{pmatrix} \sigma_1 & & & & & \\ & \sigma_h & & & \\ & & 0 & & \\ & & & 0 \end{pmatrix}$$
. We note  $x = (\underbrace{x_1, \dots, x_h}_{x_H}, \underbrace{x_{h+1}, \dots, x_n}_{x_{\perp}})$ .

2. rephrase the cost:

$$\begin{split} -c(x,y) &= |x|^2 |y|^2 + 4 \langle M^* x, y \rangle \\ &= |x_H|^2 |y_H|^2 + |x_H|^2 |y_\perp|^2 + |x_\perp|^2 |y_H|^2 + |x_\perp|^2 |y_\perp|^2 + 4 \langle \tilde{M} x_H, y_H \rangle \\ &= |x_H|^2 |y_H|^2 + |x_H|^2 n(y) + n(x) |y_H|^2 + n(x) n(y) + 4 \langle \tilde{M} x_H, y_H \rangle \\ &\triangleq -\tilde{c}(\varphi(x), \varphi(y)) \,, \end{split}$$

with  $n: x \mapsto |x_{\perp}|^2$  and  $\varphi: x \mapsto (x_H, |x_{\perp}|^2)$ .

- 3. apply key lemma!
  - B is  $\mathbb{R}^h \times \mathbb{R}^+$
  - the fibers are spheres  $S^{n-h-1}$
  - $\tilde{\mathbf{c}}$  is twisted on  $\mathbb{R}^h \times \mathbb{R}^+$
- ⇒ optimal map + structure!

for 
$$\mathbf{x} \approx (\mathbf{u}, \mathbf{v}) \in \mathbb{R}^h \times \mathbb{R}^+ \times S^{n-h-1}$$
,  $T(\mathbf{u}, \mathbf{v}) = (\tilde{\mathbf{c}} - \exp_{\mathbf{u}}(\nabla f(\mathbf{u})), \exp_{\mathbf{v}}(\nabla g_{\mathbf{u}}(\mathbf{v})))$ .

3. Complementary study of the quadratic cost in 1D

## Preliminary remarks in 1D

- $\mu$ ,  $\nu$  centered
- linearized problem:

$$\min_{\pi \in \Pi(\mu,\nu)} \int (-x^2y^2 - 4mxy) \,\mathrm{d}\pi(x,y) \,, \quad \text{where } m = \int x'y' \,\mathrm{d}\pi^\star(x',y') = \langle C_{xy}, \, \pi^\star \rangle \,,$$

and  $m \in [m_{\min}, m_{\max}]$  with  $m_{\min} = \min_{\pi} \langle C_{xy}, \, \pi \rangle$  and  $m_{\max} = \max_{\pi} \langle C_{xy}, \, \pi \rangle$ 

• in 1D, submodularity [Carlier, 2008, Santambrogio, 2015]

#### Submodular cost

Let  $\mathcal{X},\mathcal{Y}\subset\mathbb{R}$ . We say that  $c\in\mathcal{C}^2:\mathcal{X}\times\mathcal{Y}\to\mathbb{R}$  is **submodular** if

$$\text{for all } x,y \in \mathcal{X} \times \mathcal{Y}, \quad \partial_{xy} c(x,y) \leq 0 \,. \tag{Submod}$$

Let  $\mu, \nu \in \mathcal{P}(\mathcal{X}) \times \mathcal{P}(\mathcal{Y})$  of finite transport cost. If c satisfies (Submod), then  $\pi_{\text{mon}}^{\oplus}$  is an optimal plan for (KP).

# Preliminary remarks in 1D



•  $c(x,y) = -x^2y^2 - 4mxy$  is submodular on the region  $S = \{(x,y) \mid xy \ge -m\}$  if  $m \ge 0$ 

 expect increasing on S and decreasing elsewhere?

# 3. Complementary study of the quadratic cost in 1D

3.1. Computation of non-monotone optimal plans

## Sub-optimality of the monotone rearrangements

## Theorem [Vayer, 2020]

In the discrete case in dimension 1 with N=M and  $a=b=\mathbb{1}_N$ , either  $\pi_{mon}^{\oplus}$  (eq. identity  $\sigma(i)=i$ ) or  $\pi_{mon}^{\ominus}$  (eq. anti-identity  $\sigma(i)=N+1-i$ ) is optimal for (GW quadratic).

- empirically: very often true when generating points at random
- **literature:** counter-example by [Beinert et al., 2022] for  $N \ge 7$  points
- here: procedure to automatically obtain additional counter-examples

# Sub-optimality of the monotone rearrangements

### Theorem [Vayer, 2020]

In the discrete case in dimension 1 with N=M and  $a=b=\mathbb{1}_N$ , either  $\pi_{mon}^{\oplus}$  (eq. identity  $\sigma(i)=i$ ) or  $\pi_{mon}^{\ominus}$  (eq. anti-identity  $\sigma(i)=N+1-i$ ) is optimal for (GW quadratic).

- empirically: very often true when generating points at random
- **literature:** counter-example by [Beinert et al., 2022] for  $N \ge 7$  points
- here: procedure to automatically obtain additional counter-examples



## Sub-optimality of the monotone rearrangements



(Left) Objective function  $\mathcal{F}$ . (Center) Initial plan  $\pi_0$ , generated at random. (Right) Final plan  $\pi_f$ .

#### Procedure:

- $\pi = \frac{1}{N} \sum_{i=1}^{N} \delta_{(x_i,y_i)}$
- move away from measures of optimal plans  $\pi_{mon}^{\oplus}$  and  $\pi_{mon}^{\ominus}$  by gradient descent:

$$\mathcal{F}(\pi) \triangleq \underbrace{\mathsf{C}_{\mathsf{GW}}(\pi)}_{\mathsf{performance}} - \underbrace{\mathsf{min}\left\{\mathsf{c}_{\mathsf{GW}}(\pi_{\mathsf{mon}}^{\oplus}),\,\mathsf{c}_{\mathsf{GW}}(\pi_{\mathsf{mon}}^{\ominus})\right\}}_{\mathsf{performance of }\pi}$$

results similar to [Beinert et al., 2022]!

- still,  $\pi^{\oplus}_{\mathrm{mon}}$  and  $\pi^{\ominus}_{\mathrm{mon}}$  are very often optimal in practice: what happens?
- generate measures with N points at random and look at the optimal plan for GW! how to find it?
  - 1.  $\pi^*$  optimal for GW
  - 2.  $\implies$  optimal for linearized  $GW(m(\pi^*))$
  - 3. consider all linearized GW(m) for  $m \in [m_{\min}, m_{\max}]$  and take all optimal plans  $\pi_m^{\star}$  (easy, linear programs!)
  - 4.  $\pi^*$  is the one that performs best on GW

- still,  $\pi_{\text{mon}}^{\oplus}$  and  $\pi_{\text{mon}}^{\ominus}$  are very often optimal in practice: what happens?
- generate measures with N points at random and look at the optimal plan for GW! how to find it?
  - 1.  $\pi^*$  optimal for GW
  - 2.  $\implies$  optimal for linearized  $GW(m(\pi^*))$
  - 3. consider all linearized GW(m) for  $m \in [m_{\min}, m_{\max}]$  and take all optimal plans  $\pi_m^{\star}$  (easy, linear programs!)
  - 4.  $\pi^*$  is the one that performs best on GW



**Figure 3:** Graph of  $m \mapsto \mathsf{GW}(\pi_m^\star)$ .

- Note: sum of Diracs  $\mu=({\sf X},\mathbb{1}_{\sf N})\to {\sf density}\ \mu=(\hat{\sf X},a)$  by convolution with small Gaussian  $\sigma$
- evolution of  $\pi_m^*$  as a function of m
  - with N random points: [all], [zoom]

- Note: sum of Diracs  $\mu = (X, \mathbb{1}_N) \to \text{density } \mu = (\hat{X}, a)$  by convolution with small Gaussian  $\sigma$
- evolution of  $\pi_m^*$  as a function of m
  - with N random points: [all], [zoom]
  - with counter-examples of before: [all], [zoom]
- Note: a priori no reason to work, and indeed it does not work most of the time

## Computation of optimal bimaps

## Algorithm 1 Generating bimaps from adversarial examples.

**Input:** an adversarial plan  $\pi_f = id(X_f, Y_f)$ 

Parameters:  $\sigma$ ,  $N_{\Delta x}$ ,  $N_{\Delta m}$ 

### Algorithm:

```
1: a \leftarrow \text{convolution}(X_f, \sigma, N_{\Delta x})

2: b \leftarrow \text{convolution}(Y_f, \sigma, N_{\Delta x})

3: m_{\min} \leftarrow \min_{\pi \in U(a,b)} \langle C_{xy}, \pi \rangle

4: m_{\max} \leftarrow \max_{\pi \in U(a,b)} \langle C_{xy}, \pi \rangle

5: GW\_\text{scores} \leftarrow []

6: \text{for } m \in \{m_{\min}, \dots, m_{\max}\} \text{ do}

7: \pi_m^* \leftarrow \text{arg } \min_{\pi \in U(a,b)} \langle C_{GW(m)}, \pi \rangle

8: \text{append } GW(\pi_m^*) \text{ to } GW\_\text{scores}

9: \text{end for}

10: \pi^* \leftarrow \text{arg } \max_{\pi} GW\_\text{scores}
```

b take best plan for GW

 $\triangleright$  with  $N_{\Delta m}$  points

⊳ solve linear program

▷ (optional)

**Outputs:**  $\pi^*$  optimal for GW

11: return  $\pi^*$ 

# Computation of optimal bimaps



Figure 4: Optimal correspondence plan  $\pi^*$  (in log scale), (Left) starting from a plan with both marginals convolved or (Right) with only  $\mu$  convolved. Parameters:  $\sigma=5.10^{-3}$ ,  $N_{\Delta x}=150$ ,  $N_{\Delta m}=2000$ .

- small bimap region for (Right)?
- "but it's a map from  $\mathcal Y$  to  $\mathcal X!$ " no, in both cases, no map neither  $\mu \to \nu$  nor  $\nu \to \mu$

# 3. Complementary study of the quadratic cost in 1D $\,$

3.2. Instability of the optimality of monotone optimal plans

## Instability of the optimality of monotone rearrangements

### Question

Is having  $\pi_{\text{mon}}^{\oplus}$  or  $\pi_{\text{mon}}^{\ominus}$  as optimal stable?

• minimum are optimal correspondence plans



**Figure 5:** Graph of  $m \mapsto \mathsf{GW}(\pi_m^\star)$ .

## Instability of the optimality of monotone rearrangements

#### Question

Is having  $\pi_{\text{mon}}^{\oplus}$  or  $\pi_{\text{mon}}^{\ominus}$  as optimal stable?

- minimum are optimal correspondence plans
  - small  $\sigma$ : optimal plan not monotone by construction;
  - large  $\sigma$ : monotone are optimal again.
  - phase transition: landscape of  $m\mapsto \mathsf{GW}(\pi_m^\star)$  while increasing  $\sigma$



**Figure 5:** Graphs of  $m \mapsto \mathsf{GW}(\pi_m^{\star})$  with [Beinert et al., 2022], N=7 points.

# 3. Complementary study of the quadratic cost in 1D $\,$

3.3. (A positive result for measures with two components)

## (A positive result for measures with two components)

Let  $\mu_1, \mu_2, \nu_1, \nu_2$  probability measures on  $A \subset \mathbb{R}$  compact. Fix  $t \in (0, 1)$  and K > diam(A). Let  $\tau_K : x \mapsto x + K$ . Introduce measures

$$\mu = (1 - t)\mu_1 + t\tau_{K\#}\mu_2$$
 and  $\nu = (1 - t)\nu_1 + t\tau_{K\#}\nu_2$ .



#### Theorem

For *K large enough*, the unique optimal plan for the quadratic cost between  $\mu$  and  $\nu$  is given by one of the two monotone maps (increasing or decreasing).

4. Summary & discussion

## Summary & discussion

#### Contributions

- 1. Thm: always a map for (GW inner prod)
- 2. **Thm:** a map or bimap for (GW quadratic)
- 3. Conj: this second claim is tight
- 4. Algo: non-optimality of monotone + instability for (GW quadratic)
- 5. (Thm: monotone rearrangement optimal for (GW quadratic) between measures composed of *two distant parts*)

### Very soon:

- remove assumption of compact support
- try to show decomposition  $\pi_{\mathrm{mon}}^{\oplus} + \pi_{\mathrm{mon}}^{\ominus}$  for (GW quadratic)

#### Future work:

- · quadratic cost:
  - better understanding of the 1d case (maybe simpler)
- inner product cost:
  - is (GW inner prod) computationally tractable?
- · other cost functions
  - apply key lemma to other costs  $c_{\mathcal{X}}$  and  $c_{\mathcal{Y}}$ ?

#### Links

- preprint on HAL and arxiv: "On the existence of Monge maps for the Gromov-Wasserstein distance" https://hal.archives-ouvertes.fr/hal-03818500
- (soon) code on GitHub at https://github.com/theodumont/monge-gromov-wasserstein



#### References i



Ahmad, N., Kim, H. K., and McCann, R. J. (2011).

 $Optimal\ transportation, topology\ and\ uniqueness.$ 

Bulletin of Mathematical Sciences, 1(1):13–32.



Alvarez-Melis, D., Jegelka, S., and Jaakkola, T. S. (2019).

Towards optimal transport with global invariances.

In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1870-1879. PMLR.



Beinert, R., Heiss, C., and Steidl, G. (2022).

On assignment problems related to gromov-wasserstein distances on the real line.

arXiv preprint arXiv:2205.09006.



Brenier, Y. (1987).

Décomposition polaire et réarrangement monotone des champs de vecteurs. *CR Acad. Sci. Paris Sér. I Math.*, 305:805–808.

#### References ii



Carlier, G. (2008).

Remarks on toland's duality, convexity constraint and optimal transport.

Pacific Journal of Optimization, 4(3):423–432.



Chiappori, P.-A., McCann, R. J., and Nesheim, L. P. (2010).

Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness.

Economic Theory, 42(2):317–354.



Fontbona, J., Guérin, H., and Méléard, S. (2010).

Measurability of optimal transportation and strong coupling of martingale measures.

Electronic communications in probability, 15:124–133.



Kantorovich, L. (1942).

On the translocation of masses.

Dokl. Akad. Nauk. USSR, 37(7-8):227-229.

#### References iii



McCann, R. J. and Guillen, N. (2011).

Five lectures on optimal transportation: geometry, regularity and applications.

Analysis and geometry of metric measure spaces: lecture notes of the séminaire de Mathématiques Supérieure (SMS) Montréal, pages 145–180.



Mémoli, F. (2011).

**Gromov—wasserstein distances and the metric approach to object matching.** *Foundations of computational mathematics*, 11(4):417–487.



Moameni, A. (2016).

A characterization for solutions of the monge-kantorovich mass transport problem.

 ${\it Mathematische\ Annalen,\ 365(3):} 1279-1304.$ 



Monge, G. (1781).

Mémoire sur la théorie des déblais et des remblais.

Mem. Math. Phys. Acad. Royale Sci., pages 666-704.

#### References iv



Peyré, G., Cuturi, M., et al. (2019).

Computational optimal transport: With applications to data science.

Foundations and Trends® in Machine Learning, 11(5-6):355–607.



Santambrogio, F. (2015).

Optimal transport for applied mathematicians.

Birkäuser, NY, 55(58-63):94.



Séjourné, T., Vialard, F.-X., and Peyré, G. (2021).

The unbalanced gromov wasserstein distance: Conic formulation and relaxation.

Advances in Neural Information Processing Systems, 34:8766–8779.



Sturm, K.-T. (2020).

The space of spaces: curvature bounds and gradient flows on the space of metric measure spaces.

arXiv preprint arXiv:1208.0434.

#### References v



Vayer, T. (2020).

A contribution to optimal transport on incomparable spaces. arXiv preprint arXiv:2011.04447.



Villani, C. (2008).

Optimal transport: old and new, volume 338.

Springer.

# Inspiration for figures

- the figure on slides 3 and 4, as well as the ones on slide 5 are adapted from a talk by Lénaïc Chizat;
- the GW figure on slide 13 is adapted from [Peyré et al., 2019];
- all other figures are my own.