CS-E4600 Algorithmic methods for data mining

Aristides Gionis dept of Computer Science

slide set 9: data clustering

reading assignment

LRU book : chapter 7

what is clustering?

a grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other groups

what is clustering?

a grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other groups

how to capture this objective?

a grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other groups

outliers

outliers are objects that do not belong to any cluster, or form very small clusters

sometimes, we are interested in discovering outliers, not clusters (outlier detection)

clustering — why care?

stand-alone tool to gain insight into the data visualization

preprocessing step for other algorithms indexing or compression often relies on clustering

applications of clustering

image processing

cluster images based on their visual content

market segmentation

cluster customers based on their behavior

bioinformatics

cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)

many more...

clustering — high-level definition

given a collection of data objects

find a grouping so that

similar objects are in the same cluster

dissimilar objects are in different clusters

clustering — basic questions

what does similar mean?

what is a good partition of the objects? i.e., how is the quality of a solution measured?

how to find a good partition?

notion of a cluster can be ambiguous

types of clusterings

partitional

each object belongs in exactly one cluster

hierarchical

a set of nested clusters organized in a tree

hierarchical clustering

Hierarchical Clustering

Hierarchical Clustering

Dendrogram

Dendrogram

partitional clustering

partitional algorithms

partition the n objects into k clusters

each object belongs to exactly one cluster

the number of clusters k is given in advance

the k-means problem

consider set $X=\{x_1,...,x_n\}$ of n points in R^d assume that the number k is given problem:

find k points $c_1,...,c_k$ (named centers or means)

so that the cost

$$\sum_{i=1}^{n} \min_{j} \left\{ L_2^2(x_i, c_j) \right\} = \sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2^2$$

is minimized

the k-means problem

consider set $X=\{x_1,...,x_n\}$ of n points in R^d assume that the number k is given problem:

find k points $c_1,...,c_k$ (named centers or means) and partition X into $\{X_1,...,X_k\}$ by assigning each point x_i in X to its nearest cluster center, so that the cost

$$\sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2^2 = \sum_{j=1}^{k} \sum_{x \in X_j} ||x - c_j||_2^2$$

is minimized

Chapman & Hall/CRC

the k-means algorithm

voted among the top-10 algorithms in data mining

one way of solving the k-means problem

Data Mining and Knowledge Discovery Series The Top Ten Algorithms in Data Mining Edited by Xindong Wu Vipin Kumar

the k-means algorithm

- I. randomly (or with another method) pick k cluster centers $\{c_1,...,c_k\}$
- 2. for each j, set the cluster X_j to be the set of points in X that are the closest to center c_j
- 3. for each j let c_j be the center of cluster X_j (mean of the vectors in X_j)
- 4. repeat (go to step 2) until convergence

sample execution

CS-E4600 - fall 2018 - slide set 9: data clustering

properties of the k-means algorithm

finds a local optimum

often converges quickly

but not always

the choice of initial points can have large influence in the result

effects of bad initialization

limitations of k-means: different sizes

Original Points

K-means (3 Clusters)

limitations of k-means: different density

Original Points

K-means (3 Clusters)

limitations of k-means: non-spherical shapes

Original Points

K-means (2 Clusters)

discussion on the k-means algorithm

finds a local optimum

often converges quickly

but not always

the choice of initial points can have large influence in the result

tends to find spherical clusters

outliers can cause a problem

different densities may cause a problem

initialization

random initialization

repeat many times and take the best solution helps, but solution can still be bad

pick points that are distant to each other

k-means++

provable guarantees

generalizations, variants

can we generalize to non Euclidean points?

yes, as long as we can compute means of clusters...

other problem formulations obtained by modifying the objective function

variant: the k-median problem

consider set $X=\{x_1,...,x_n\}$ of n points in R^d assume that the number k is given problem:

find k points $c_1,...,c_k$ (named medians)

and partition X into $\{X_1,...,X_k\}$ by assigning each point x_i in X to its nearest cluster median,

so that the cost

$$\sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2 = \sum_{j=1}^{k} \sum_{x \in X_j} ||x - c_j||_2$$

is minimized

the k-median problem

what about the I-median problem for Euclidean points?

also known as Fermat's problem

solution to the I-median problem (Torricelli point) can be approximated to a given precision by an iterative algorithm

the general k-median problem is NP-hard

there exist polynomial time approximation algorithms, assuming that the underlying distance is a metric

the k-medoids algorithm

or PAM (partitioning around medoids)

- I. randomly (or with another method) choose k medoids $\{c_1,...,c_k\}$ from the original dataset X
- assign the remaining n-k points in X to their closest medoid c_j
- 3. for each cluster, replace each medoid by a point in the cluster that improves the cost
- 4. repeat (go to step 2) until convergence

discussion on the k-medoids algorithm

k-medoids is a practical algorithm (heuristic) for solving the k-median problem

no approximation guarantee

very similar to the k-means algorithm same advantages and disadvantages

how about efficiency?

it depends on how efficiently we can solve the 1-median problem for each cluster

yet another variant: the k-center problem

consider set $X=\{x_1,...,x_n\}$ of n points in R^d assume that the number k is given problem:

find k points c₁,...,c_k (named center)

and partition X into $\{X_1,...,X_k\}$ by assigning each point x_i in X to its nearest cluster center,

so that the cost

$$\max_{i=1}^{n} \min_{j=1}^{k} ||x_i - c_j||_2$$

is minimized

properties of the k-center problem

NP-hard for dimension $d \ge 2$

for d=1 the problem is solvable in polynomial time (how?)

a simple combinatorial algorithm works well

parenthesis... approximation algorithms

problem P:

given input I find solution S^* such that $P(I,S^*)$ is optimized (say, minimized)

assume finding S* is NP-hard

approximation algorithm A:

given input I of size n, finds A(I) in polynomial time, s.t.

$$P(I,A(I)) \leq f(n) P(I,S^*)$$

for all inputs I

approximation algorithms

given input I of size n, find A(I) s.t.

$$P(I,A(I)) \leq f(n) P(I,S^*)$$

P(I,S*): value of the objective function for solution S on input I

```
f(n): approximation factor (or approximation guarantee)
```

approximation scheme (arbitrarily close to Ι) I+ε

constant (independent of n) 1.5, 2, 3, ...

logarithmic, f(n)=logn, log²n,...

other, f(n) = sqrt(n),...

example

vertex cover problem

given a graph

find the smallest set of vertices that cover all the edges

vertex cover algorithm

find a maximal matching

take all the vertices of the matching

2-approximation!

what about greedy?

optimal has to cover the edges of the matching

(optimal) \geq (matching size) = (1/2)(solution of algo)

(solution of algo) ≤ 2 (optimal)

...parenthesis

recall: the k-center problem

consider set $X=\{x_1,...,x_n\}$ of n points in R^d assume that the number k is given problem:

find k points $c_1,...,c_k$ (named center)

and partition X into $\{X_1,...,X_k\}$ by assigning each point x_i in X to its nearest cluster center,

so that the cost

$$\max_{i=1}^{n} \min_{j=1}^{k} ||x_i - c_j||_2$$

is minimized

furthest-first traversal algorithm

```
pick any data point and label it I for i=2,...,k find the unlabeled point that is furthest from \{1,2,...,i-1\} // use d(x,S) = \min_{y \in S} d(x,y) label that point i assign the remaining unlabeled data points to the closest labeled data point
```

furthest-first traversal algorithm: example

furthest-first traversal algorithm: example

furthest-first traversal algorithm

furthest-first traversal algorithm gives a factor 2 approximation

furthest-first traversal algorithm

```
pick any data point and label it I
for i=2,...,k
     find the unlabeled point that is furthest from {1,2,...,i-1}
     // use d(x,S) = \min_{y \in S} d(x,y)
     label that point i
     p(i) = argmin_{i < i} d(i,j)
     R_i = d(i,p(i))
```

assign the remaining unlabeled data points to the closest labeled data point


```
claim I: R_2 \ge R_3 \ge ... \ge R_k
proof:
     consider indices i and j with j > i
     R_i = d(j,p(j))
        = d(j,\{1,2,...,j-1\})
        = d(j,\{1,2,...,i-1,...,j-1\})
        \leq d(i,\{1,2,...,i-1\}) // i > i
        \leq d(i,\{1,2,...,i-1\}) // j was present when i was selected
        = R_i
```

claim 2:

let C be the clustering produced by the FFT algorithm let R(C) be the cost of that clustering then $R(C) = R_{k+1}$

proof:

for any i>k we have:

$$d(i,\{1,2,...,k\}) \le d(k+1,\{1,2,...,k\}) = R_{k+1}$$

theorem

let C be the clustering produced by the FFT algorithm let C* be the optimal clustering

then $R(C) \leq 2R(C^*)$

proof:

let $C^*_1,...,C^*_k$ be the clusters of the optimal k-clustering if these clusters contain points $\{1,...,k\}$ then

$$R(C) \leq 2R(C^*)$$

otherwise suppose that one of these clusters contains two or more of the points in {1,...,k}

these points are at distance at least R_k from each other this (optimal) cluster must have radius at least

$$\frac{1}{2} R_k \ge \frac{1}{2} R_{k+1} = \frac{1}{2} R(C)$$

$R(C) \leq 2R(C^*)$

$$R(C) = \max x \le z + R(C^*) \le 2R(C^*)$$

k-means++

optional reading assignment

David Arthur and Sergei Vassilvitskii

k-means++: The advantages of careful seeding

SODA 2007

k-means algorithm: random initialization

k-means algorithm: random initialization

k-means algorithm: initialization with further-first traversal

k-means algorithm: initialization with further-first traversal

but sensitive to outliers

but sensitive to outliers

here random may work well

we want to select seeds that that are:

- I. far from existing seeds (explore a new area of the data)
- 2. have many near-by points (potentially discover a new cluster) how do we accomplish both objectives?

k-means++ algorithm

interpolate between the two methods (furtherst and random)

let D(x) be the distance between x and the nearest center selected so far

choose next center with probability proportional to

$$(D(x))^a = D^a(x)$$

- a = 0 random initialization
- $a = \infty$ furthest-first traversal
- a = 2 k-means++

k-means++ algorithm

initialization phase:

choose the first center uniformly at random choose next center with probability proportional to $D^2(x)$

iteration phase:

iterate as in the k-means algorithm until convergence

k-means++ initialization

k-means++ initialization

k-means++ provable guarantee

theorem:

k-means++ is O(logk) approximate in expectation

k-means++ provable guarantee

approximation guarantee comes just from the first iteration (initialization)

subsequent iterations can only improve cost

k-means++ analysis

consider optimal clustering C*

assume k-means++ selects a center from a new optimal cluster then

k-means++ is 8-approximate in expectation

intuition: if no points from a cluster are picked, then it probably does not contribute much to the overall error

an inductive proof shows that the algorithm is O(logk) approximate

k-means++ proof: first cluster

fix an optimal clustering C*

first center is selected uniformly at random

bound the total error of the points in the optimal cluster of the first center

k-means++ proof: first cluster

let A be the first cluster

each point $a_0 \in A$ is equally likely to be selected as center

expected error:

$$E[\phi(A)] = \sum_{a_0 \in A} \frac{1}{|A|} \sum_{a \in A} ||a - a_0||^2$$
$$= 2 \sum_{a \in A} ||a - \bar{A}||^2 = 2\phi^*(A)$$

k-means++ proof: other clusters

suppose next center is selected from a new cluster in the optimal clustering C*

bound the total error of that cluster

k-means++ proof: other clusters

let B be the second cluster and bo the center selected

$$E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \sum_{b \in B} \min\{D(b), ||b - b_0||^2\}$$

triangle inequality:

$$D(b_0) \le D(b) + ||b - b_0||$$

$$D^{2}(b_{0}) \leq 2D^{2}(b) + 2||b - b_{0}||^{2}$$

k-means++ proof: other clusters

$$D^{2}(b_{0}) \leq 2D^{2}(b) + 2||b - b_{0}||^{2}$$

average over all points b in B

$$D^{2}(b_{0}) \leq \frac{2}{|B|} \sum_{b \in B} D^{2}(b) + \frac{2}{|B|} \sum_{b \in B} ||b - b_{0}||^{2}$$

recall

$$E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \sum_{b \in B} \min\{D(b), ||b - b_0||^2\}$$

$$\leq 4 \sum_{b \in B} \frac{1}{|B|} \sum_{b_0 \in B} ||b - b_0||^2 = 4 \sum_{b \in B} 2||b - \bar{B}||^2 = 8\phi^*(B)$$

k-means++ analysis

if that k-means++ selects a center from a new optimal cluster then

k-means++ is 8-approximate in expectation

an inductive proof shows that the algorithm is O(logk) approximate

lesson learned

no reason to use k-means and not k-means++

```
k-means++:
```

easy to implement

provable guarantee

works well in practice