# А2. Кратчайший блиц!

### Демченко Георгий Павлович, БПИ-235

# 1. DijkstraMULT(G, start)

#### Модифицированный алгоритм представлен в файле DijkstraMULT.cpp

Алгоритм будет корректно искать кратчайшие пути для графов G с весами ребер  $\geq 1$ , так как в ином случае:

• Если граф имеет ребра с весом  $\in [0,1)$ , то нарушается свойство подпутей



Пусть в данном случае длинна SV=5, SW=100,  $WV=\frac{1}{100}$ , по алгоритму мы возьмем путь SV как минимальный, но в действительности минимальный путь будет SW->WV. По алгоритму мы получим минимальный путь от вершины S до вершины V равному S, когда в действительности минимальный равен  $SW\cdot WV=1$ 

 Аналогично с графом с ребрами весом < 0, как и стандартный Дейкстра, данный алгоритм не сможет корректно обработать такой граф.

Пусть в данном случае длинна  $SV=-5,\,SW=100,\,WV=-1,$  по алгоритму мы возьмем путь SV как минимальный, но в действительности минимальный путь будет SW->WV. По

алгоритму мы получим минимальный путь от вершины S до вершины V равному -5, когда в действительности минимальный равен  $SW \cdot WV = -100$ 

# **2.** RestoreGraph(dist[][])

#### **А**лгоритм

#### Реализация алгоритма представлена в файле RestoreGraph.cpp

В матрице кратчайших путей dist[][] нам даны лишь их веса, а не информация о вершине, откуда мы попали в конечную на последнем шаге, поэтому восстановить мы можем только "прямые"/критические ребра между вершинами, которые и являются минимальным путем между ними.

Тогда, для каждого минимального пути dist[i][j], при условии что он существует, мы будем проверять, существует ли вершина k сумма весов путей через которую от вершины i до вершины j равна весу минимального пути от i до j (т.е dist[i][j] = dist[i][k] + dist[k][j]), если такая вершина k находится, то прямого ребра между i,j, скорее всего (так как может существовать несколько минимальных путей, один из которых можем быть "прямым" - ребром) нет и в множество ребер графа оно не добавляется , иначе добавляем ребро ij в множество ребер графа.

Ассимптотическая временная сложность алгоритма =  $O(V^3)$ 

# Случаи неоднозначного восстановления графа

Да, существует множество случаев, когда однозначное восстановление графа данным алгоритмом по матрице dist невозможно:

- Если в матрице существует несколько кратчайщих путей от вершины i до вершины j, в данном случае так как могут существовать несколько кобинаций ребер, дающих одинаковую матрицу dist, то восстановить исходные ребра полностью невозможно.
- Если в матрице существует несколько кратчайших путей от вершины i до вершины j, и один из них равен самому ребру ij, тогда ребро не будет восстановлено, так как по матрице весов кратчайщих путей мы никак не сможем узнать о его существовании, что уже упоминалось выше.
- Если в графе существует "тяжелые" ребра между вершинами i и j, вес которых превышает вес минимального пути между этими вершинами, то они никак не могут числиться в матрице dist и соответсвенно, будут упущены при востановлении.

• Дополнительные ребра, не влияющие на минимальные пути будут утеряны в ходе восстановления, так как информация о них не закреплена в матрице dist

Данный алгоритм восстанавливает граф с минимальным числом ребер, соответсвующих матрице dist, для однозначности необходимо, чтобы все рёбра графа входили в единственный кратчайший путь между своими концами, т.е каждое ребро являлось минимальным путем между вершинами.

# 3. FloydWarshallError

# Ошибочная реализация алгоритма Флойда-Уоршелла

```
for (int32_t i = 0; i < n; ++i) {
    for (int32_t j = 0; j < n; ++j) {
        for (int32_t k = 0; k < n; ++k) {
            dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])
        }
    }
}</pre>
```

Ошибка допущена в порядке выбора вершины k (порядке циклов), через которую должны считаться пути между вершинами.

Эта ошибка приводит к тому, что промежуточные вершины k не обрабатываются последовательно и минимальные пути через них могут не обновится.

#### Пример графа

$$G = \{\{V_0, V_1, V_2, V_3, V_5\}, ...\}$$

Изначальная матрица минимальных путей dist:

$$dist = egin{pmatrix} 0 & \infty & 8 & \infty & 8 \ 5 & 0 & 6 & 7 & \infty \ \infty & \infty & 0 & \infty & 9 \ 7 & \infty & 4 & 0 & 2 \ \infty & 2 & \infty & 4 & 0 \end{pmatrix}$$

# Частичная трассировка

Для сохранения пространства оставим только часть операций, влияющих на значение минимального пути.

- i = 0 i = 0
  - Ничего не меняется
- i = 0 j = 1
  - Ничего не меняется
  - $\circ$  k = 4 dist[0][1] = min( dist[0][1], dist[0][4] + dist[4][1]) = min(inf, 8 + 2) = 10
- i = 0 j = 2
  - Ничего не меняется
- i = 0 j = 3
  - $\circ$  k = 0 dist[0][3] = min( dist[0][3], dist[0][0] + dist[0][3]) = min(inf, 0 + inf) = inf
  - $\circ$  k = 1 dist[0][3] = min( dist[0][3], dist[0][1] + dist[1][3]) = min(inf, 10 + 7) = 17
  - $\circ$  k = 2 dist[0][3] = min( dist[0][3], dist[0][2] + dist[2][3]) = min(17, 8 + inf) = 17
  - $\circ$  k = 3 dist[0][3] = min( dist[0][3], dist[0][3] + dist[3][3]) = min(17, 17 + 0) = 17
  - $= 4 \text{ dist}[0][3] = \min(\text{ dist}[0][3], \text{ dist}[0][4] + \text{ dist}[4][3]) = \min(17, 8 + 4) = 12$
- i = 0 j = 4
  - Ничего не меняется
- i = 1 i = 0
  - Ничего не меняется
- i = 1 i = 1
  - Ничего не меняется
- i = 1 i = 2
  - Ничего не меняется
- i = 1 i = 3
  - Ничего не меняется
- i = 1 j = 4
  - $\circ$  k = 0 dist[1][4] = min( dist[1][4], dist[1][0] + dist[0][4]) = min(inf, 5 + 8) = 13
  - k = 1 dist[1][4] = min( dist[1][4], dist[1][1] + dist[1][4]) = min(13, 0 + 13) = 13
  - $\circ$  k = 2 dist[1][4] = min( dist[1][4], dist[1][2] + dist[2][4]) = min(13, 6 + 9) = 13
  - $\circ$  k = 3 dist[1][4] = min( dist[1][4], dist[1][3] + dist[3][4]) = min(13, 7 + 2) = 9
  - $\circ$  k = 4 dist[1][4] = min( dist[1][4], dist[1][4] + dist[4][4]) = min(9, 9 + 0) = 9
- i = 2i = 0
  - $\circ$  k = 0 dist[2][0] = min( dist[2][0], dist[2][0] + dist[0][0]) = min(inf, inf + 0) = inf
  - $\circ$  k = 1 dist[2][0] = min( dist[2][0], dist[2][1] + dist[1][0]) = min(inf, inf + 5) = inf
  - $\circ$  k = 2 dist[2][0] = min( dist[2][0], dist[2][2] + dist[2][0]) = min(inf, 0 + inf) = inf

- $\circ$  k = 3 dist[2][0] = min( dist[2][0], dist[2][3] + dist[3][0]) = min(inf, inf + 7) = inf
- $\circ$  k = 4 dist[2][0] = min( dist[2][0], dist[2][4] + dist[4][0]) = min(inf, 9 + inf) = inf

Как мы видим dist[2][0] = inf и результат больше не сможет обновиться (так как каждый элемент dist[ i ] [ j ] мы проходим V раз в внутреннем цикле по k и больше не обновляем ), хотя реальный минимальный путь от  $V_2$  до  $V_0$  = 16

Полученый (неправильный) результат:

$$\begin{pmatrix} 0 & 10 & 8 & 12 & 8 \\ 5 & 0 & 6 & 7 & 9 \\ \infty & 11 & 0 & 13 & 9 \\ 7 & 4 & 4 & 0 & 2 \\ 7 & 2 & 8 & 4 & 0 \end{pmatrix}$$

Корректный результат:

$$\begin{pmatrix}
0 & 10 & 8 & 12 & 8 \\
5 & 0 & 6 & 7 & 9 \\
16 & 11 & 0 & 13 & 9 \\
7 & 4 & 4 & 0 & 2 \\
7 & 2 & 8 & 4 & 0
\end{pmatrix}$$

# 4. Одна дуга на кратчайших путях

**Да, возможно** определить ориентированный взвешенный граф G=(V,E), в котором некоторе ребро  $(v_i,v_j)$  лежит как на кратчайшем пути из вершины  $a\in V$  в вершину  $b\in V$ , так и на кратчаейшем пути из вершины b в вершину a.

### Структура графа

В графе G=(V,E) должен существовать минимальный путь между вершинами  $a\in V$  ,  $b\in V$  :

$$p_{ab}=\overline{ab}=\{a\dots v_iv_j\dots b\}$$
 , содержащий такое ребро  $(v_i,v_j):a
eq v_i,v_j\ \&\ b
eq v_i,v_j,$ 

что существует путь из вершины b в вершину  $v_i$  -  $\overline{bv_i}$  и существует путь из вершины  $v_j$  в вершину a -  $\overline{v_ja}$ , при этом длинна пути  $\overline{bv_i} + v_iv_j + \overline{v_ja}$  является минимальной среди путей из b в a, т.е данный путь является минимальным.

Тогда ребро  $(v_iv_j)$  будет лежать как на минимальном пути из a в b, так и на минимальном пути из b в a.



Т.е существует такой цикл относительно вершины a, содержащий ребро  $(v_i,v_j):a\neq v_i,v_j\&b\neq v_i,v_j$ , лежащее на минимальном пути из a в b, и существует такой цикл относительно вершины b, содержащий то же ребро  $(v_i,v_j)$ , что сумма длинны путя из b в  $v_i$  по циклу, реба  $v_iv_j$ , путя из  $v_j$  в a по циклу является минимальной среди длин путей из b в a.

Описание данной структуры графа также включает в себя случай с циклом отрицательной длинны на минимальном пути из a в b, но при этом он не является единственным. Данная структура более общая.

# Ограничение применимости известных алгоритмов поиска кратчайших путей

Даная структура графа не накладывает ограничения на применимость известных алгоритмов поиска кратчайших путей, за исключением уже имеющихся у них общих/глобальных ограничений.

Т.е к примеру мы можем пользоваться алгоритмом Дейкстры для данного графа, покуда в нем нет ребер отрицательного веса, но структура это не контролирует / не задает.