

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Análisis Funcional

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

José Juan Urrutia Milán

Índice general

1.	$\mathbf{El} \; \mathbf{E}$	Espacio	Dual	5
	1.1.	Repaso	0	5
		1.1.1.	Ejemplos	6
	1.2.	Espaci	os de Lebesgue	8
		1.2.1.	Designaldades importantes	8
		1.2.2.	Definición de los espacios de Lebesgue	11
		1.2.3.	Más ejemplos de espacios de Banach	11
	1.3.	Espaci	o dual	12
		1.3.1.	Espacio dual de un espacio de Hilbert	20
	1.4.	Teoren	na de Hahn Banach	22
		1.4.1.	Lema de Zorn	23
		1.4.2.	Teorema	23
		1.4.3.	Versión geométrica del Teorema	26
		1.4.4.	Funcional de Minkowski de un conjunto	28

Análisis Funcional Índice general

1. El Espacio Dual

El objetivo de este capítulo es definir el concepto de espacio dual de un espacio normado, así como sus principales propiedades, que nos dotan de muchos ejemplos de espacios de Banach. Para ello, será necesario primero repasar conceptos básicos vistos ya en asignaturas anteriores de Análisis Matemático.

1.1. Repaso

Definición 1.1 (Espacio métrico). Un espacio métrico es una tupla (E, d) donde E es un conjunto no vacío y $d: E \times E \to \mathbb{R}$ es una aplicación que verifica:

- Designaldad triangular. $d(x,z) \leq d(x,y) + d(y,z)$ $\forall x,y,z \in E$
- Simetría. $d(x,y) = d(y,x) \quad \forall x,y \in E$
- No degeneración. $d(x,y) = 0 \iff x = y$

Definición 1.2 (Espacio normado). Un espacio normado es una tupla $(E, \|\cdot\|)$ donde E es un espacio vectorial y $\|\cdot\|: E \to \mathbb{R}$ es una aplicación que verifica:

- Desigualdad triangular. $||x + y|| \le ||x|| + ||y||$ $\forall x, y \in E$
- Homogeneidad por homotecia. $\|\lambda x\| = |\lambda| \|x\|$ $\forall \lambda \in \mathbb{R}, \forall x \in E$
- No degeneración. $||x|| = 0 \Longrightarrow x = 0$

A partir de estas propiedades pueden deducirse muchas otras, entre las cuales destacamos:

Proposición 1.1. Si $(E, \|\cdot\|)$ es un espacio normado, entonces:

- ||0|| = 0.
- $\blacksquare \|x\| \geqslant 0 \qquad \forall x \in E.$

Demostración. Veamos cada propiedad:

- Para la primera: $||0|| = ||0 \cdot 1|| = 0||1|| = 0$.
- Para la segunda, basta observar que si $x \in E$, entonces:

$$0 = ||0|| = ||x + (-x)|| \le 2||x|| \Longrightarrow ||x|| \ge 0$$

Proposición 1.2. Si $(E, \|\cdot\|)$ es un espacio normado y definimos la aplicación $d: E \times E \to \mathbb{R}$ dada por:

$$d(x,y) = \|y - x\| \qquad \forall x, y \in E$$

Se verifica que (E, d) es un espacio métrico.

Definición 1.3 (Espacio métrico completo). Sea (E, d) un espacio métrico, decimos que es completo (o que la distancia d es completa) si toda sucesión de Cauchy para la distancia d es también convergente a un elemento de E para la distancia d.

Hemos visto ya que cualquier espacio normado puede dotarse de estructura de espacio métrico, así como la definición de espacio métrico completo, ambos conceptos tratados ya en asignaturas previas.

Definición 1.4 (Espacio de Banach). Sea $(E, \| \cdot \|)$ un espacio normado, decimos que es de Banach si el espacio métrico (E, d) obtenido de la forma usual a partir de la norma $\| \cdot \|$ es un espacio métrico completo.

Definición 1.5 (Espacio prehilbertiano). Un espacio prehilbertiano es una tupla $(E, \langle \cdot, \cdot \rangle)$ donde H es un espacio vectorial y $\langle \cdot, \cdot \rangle : E \times E \to \mathbb{R}$ es una aplicación que verifica:

- Bilinealidad. La aplicación $\langle \cdot, \cdot \rangle$ es lineal en ambas variables.
- Simetría. $\langle x, y \rangle = \langle y, x \rangle$ $\forall x, y \in E$
- Definida positiva. $\langle x, x \rangle > 0$ $\forall x \in H \setminus \{0\}$

Proposición 1.3. Si $(E, \langle \cdot, \cdot \rangle)$ es un espacio prehilbertiano y definimos la aplicación $\|\cdot\|: E \to \mathbb{R}$ dada por:

$$||x|| = \sqrt{\langle x, x \rangle} \qquad \forall x \in E$$

Se verifica que $(E, \|\cdot\|)$ es un espacio normado.

Definición 1.6 (Espacio de Hilbert). Sea $(E, \langle \cdot, \cdot \rangle)$ un espacio prehilbertiano, decimos que es de Hilbert si el espacio normado $(E, \| \cdot \|)$ obtenido de la forma usual a partir del producto escalar $\langle \cdot, \cdot \rangle$ es un espacio métrico de Banach.

1.1.1. Ejemplos

■ Sea $N \in \mathbb{N}$, en \mathbb{R}^N podemos definir para cada $p \ge 1$ la aplicación $\|\cdot\|_p : \mathbb{R}^N \to \mathbb{R}$ dada por:

$$||x||_p = \left(\sum_{i=1}^N |x_i|^p\right)^{\frac{1}{p}} \quad \forall x \in \mathbb{R}^N$$

Que hace que $(\mathbb{R}^N, \|\cdot\|_p)$ sea un espacio normado, que de hecho es de Banach (hágase).

■ En el caso anterior, si tomamos p=2 se verifica que además si definimos $\langle \cdot, \cdot \rangle : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}$ dada por:

$$\langle x, y \rangle = \sum_{i=1}^{N} x_i y_i \qquad \forall x, y \in \mathbb{R}^N$$

Obtenemos que $(\mathbb{R}^N, \langle \cdot, \cdot \rangle)$ es un espacio prehilbertiano (compruébese) cuyo espacio normado canónico coincide con $(\mathbb{R}^N, \|\cdot\|_2)$, por lo que es un espacio de Hilbert.

■ Como otro ejemplo de espacio normado sobre \mathbb{R}^N , podemos definir $\|\cdot\|_{\infty}$: $\mathbb{R}^N \to \mathbb{R}$ dado por:

$$||x||_{\infty} = \sup\{|x_i| : i \in \{0, \dots, N\}\}$$

Se cumple igualmente que $(\mathbb{R}^N, \|\cdot\|_{\infty})$ es un espacio normado que además es de Banach (compruébese).

• Como primer ejemplo de espacio normado que no se construye sobre los vectores de un espacio de la forma \mathbb{R}^N , si tomamos un conjunto $A \subset \mathbb{R}^N$, y definimos¹:

$$C_b(A) = \{ f : A \to \mathbb{R} : f \text{ es continua y } f \text{ es acotada en } A \}$$

Junto con la aplicación $\|\cdot\|: \mathcal{C}_b(A) \to \mathbb{R}$ dada por:

$$||f|| = \sup\{||f(x)|| : x \in A\}$$

Se verifica que $(C_b(A), \|\cdot\|)$ es una espacio normado que de hecho es de Banach (compruébese).

• Sea ahora $K \subset \mathbb{R}^N$ un compacto, si definimos:

$$\mathcal{C}(K) = \{ f : K \to \mathbb{R} : f \text{ es continua} \}$$

resulta que podemos definir una aplicación $\langle \cdot, \cdot \rangle : \mathcal{C}(K) \times \mathcal{C}(K) \to \mathbb{R}$ dada por:

$$\langle f, g \rangle = \int_K f(x)g(x) \ dx$$

que hace que $(\mathcal{C}(K), \langle \cdot, \cdot \rangle)$ sea un espacio prehilbertiano, que nos induce un espacio normado donde la norma es:

$$||f||_2 = \left(\int_K f(x)^2 dx\right)^{\frac{1}{2}} \quad \forall f \in \mathcal{C}(K)$$

Sin embargo, este espacio prehilbertiano no es de Hilbert:

Por ejemplo, si tomamos $K = [0,2] \subset \mathbb{R}$, si tomamos $f_n : K \to \mathbb{R}$ de forma que la gráfica de f_n sea algo parecido a la de la Figura 1.1

¹El subíndice "b" de $C_b(A)$ viene de la palabra inglesa "bounded".

Figura 1.1: Gráfica de la función f_n .

Si definimos $f = \chi_{[1,2]}$ la función característica del intervalo [1,2] (que no pertence a C(K)), tenemos que:

$$||f - f_n||_2^2 = \int_0^2 (f(x) - f_n(x))^2 dx = \frac{1}{2n} \to 0$$

Por lo que f_n es una sucesión de Cauchy pero cuyo límite no está en el espacio que consideramos, por lo que no es convergente, luego $\mathcal{C}(K)$ no es un espacio completo.

1.2. Espacios de Lebesgue

Un ejemplo interesante de espacios de Banach son los espacios de Lebesgue, que ya se trabajaron un poco en la asignatura de Análisis Matemático II. En este documento volveremos a definir dicho espacio, puesto que la construcción es importante tenerla clara. En un primer lugar, hemos de repasar ciertas desigualdades para poder construir la estructura de espacio normado.

1.2.1. Desigualdades importantes

Para la primera desigualdad, es conveniente la siguiente motivación, que nos dará una breve justificación del origen de la desigualdad: sean $a, b \in \mathbb{R}_0^+$ dos números reales no negativos, es bien conocido que:

$$0 \geqslant (a-b)^2 = a^2 + b^2 - 2ab \Longrightarrow ab \leqslant \frac{a^2}{2} + \frac{b^2}{2}$$

Definición 1.7. Sea $p \ge 1$ un número real, definimos su "exponente conjugado" por:

$$p' = \begin{cases} \frac{p}{p-1} & \text{si } p \neq 1\\ \infty & \text{si } p = 1 \end{cases}$$

De esta forma (admitiendo el convenio de que $0 = 1/\infty$ de la recta real extendida), tenemos que:

$$\frac{1}{p} + \frac{1}{p'} = 1$$

Usaremos en esta sección la notación p' para denotar al exponente conjugado de p.

Proposición 1.4 (Desigualdad de Young). Sean $a, b \in \mathbb{R}_0^+$ y $p \in \mathbb{R}$ con p > 1, se verifica que:

$$ab \leqslant \frac{a^p}{p} + \frac{b^{p'}}{p'}$$

Demostración. La concavidad² del logaritmo nos dice:

$$\log\left(\frac{a^p}{p} + \frac{b^{p'}}{p'}\right) \geqslant \frac{1}{p}\log(a^p) + \frac{1}{p'}\log\left(b^{p'}\right) = \log(a) + \log(b) = \log(ab)$$

Y si ahora aplicamos la función exponencial y usamos que es creciente obtenemos:

$$ab \leqslant \frac{a^p}{p} + \frac{b^{p'}}{p'}$$

Recordemos que en Análisis Matemático I definíamos para cualquier conjunto $\Omega \subset \mathbb{R}$ medible el conjunto de las funciones integrables sobre Ω :

$$\mathcal{L}(\Omega) = \left\{ f : \Omega \to \mathbb{R} : \int_{\Omega} f < \infty \right\}$$

Pues bien, dado $p \ge 1$, podemos definir ahora:

$$\mathcal{L}_p(\Omega) = \left\{ f \in \mathcal{L}(\Omega) : \int_{\Omega} |f|^p < \infty \right\}$$

Teorema 1.5 (Desigualdad de Hölder). Sea p > 1, si $f \in \mathcal{L}_p(\Omega)$ y $g \in \mathcal{L}_{p'}(\Omega)$, entonces $fg \in \mathcal{L}(\Omega)$ y además:

$$\int_{\Omega} |fg| \leqslant \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}} \left(\int_{\Omega} |g|^{p'} \right)^{\frac{1}{p'}}$$

Demostración. Si notamos por comodidad:

$$\alpha = \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}}, \qquad \beta = \left(\int_{\Omega} |g|^{p'} \right)^{\frac{1}{p'}}$$

Si $\alpha = 0$, entonces $f^p = 0$ casi por doquier, de donde |fg| = 0 casi por doquier, luego:

$$\int_{\Omega} |fg| = 0$$

Si $\beta = 0$ la situación es simétrica. Suponiendo ahora que $\alpha, \beta \in \mathbb{R}^+$, la desigualdad de Young nos dice que:

$$\frac{|f(x)|}{\alpha}\frac{|g(x)|}{\beta}\leqslant \frac{|f(x)|^p}{p\alpha^p}+\frac{|g(x)|^{p'}}{p'\beta^{p'}}\qquad \forall x\in\Omega$$

²Recordamos que si f era una función cóncava, entonces $f(tx+(1-t)y) \geqslant tf(x)+(1-t)f(y)$, para cualquier $t \in [0,1]$, x,y en el dominio de definición de f.

Si ahora aplicamos la integral de Lebesgue a ambos lados usando el crecimiento de dicho funcional, obtenemos que (usando la definición de α y β):

$$\frac{1}{\alpha\beta} \int_{\Omega} |fg| \leqslant \frac{1}{p\alpha^p} \int_{\Omega} |f|^p + \frac{1}{p'\beta^{p'}} \int_{\Omega} |g|^{p'} = \frac{1}{p} + \frac{1}{p'} = 1$$

de donde $fg \in \mathcal{L}(\Omega)$ y despejando de la desigualdad:

$$\frac{1}{\alpha\beta}\int_{\Omega}|fg|\leqslant 1$$

Obtenemos la desigualdad buscada.

La desigualdad de Hölder nos proporcionará la desigualdad de Cauchy-Schwartz de la norma del futuro espacio normado, y nos permitirá probar la desigualdad de Minkowski.

Teorema 1.6 (Desigualdad de Minkowski). Para $p \in \mathbb{R}$ con $p \geqslant 1$ y $f, g \in \mathcal{L}_p(\Omega)$, se cumple que:

$$\left(\int_{\Omega} |f+g|^p\right)^{\frac{1}{p}} \leqslant \left(\int_{\Omega} |f|^p\right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^{p'}\right)^{\frac{1}{p'}}$$

Demostración. Si notamos por comodidad:

$$\alpha = \left(\int_{\Omega} |f|^p \right)^{\frac{1}{p}}, \qquad \beta = \left(\int_{\Omega} |g|^{p'} \right)^{\frac{1}{p'}}, \qquad \gamma = \left(\int_{\Omega} |f + g|^p \right)^{\frac{1}{p}}$$

Si p=1, entonces la desigualdad triangular nos dice que $|f+g| \leq |f| + |g|$, donde aplicamos el crecimiento de la integral y ya tenemos el Teorema demostrado. Sabemos por el resultado anterior que $\gamma < \infty$, puesto que $\mathcal{L}_p(\Omega) \subset \mathcal{L}(\Omega)$, y la desigualdad buscada es obvia si $\gamma = 0$. Supuesto ahora que p > 1 y $\gamma > 0$, si tomamos:

$$h = |f + g|^{p-1}$$

tenemos entonces que:

$$h^{p'} = |f + g|^{(p-1)p'} = |f + g|^p$$

luego:

$$\int_{\Omega} h^{p'} = \gamma^p < \infty$$

Por lo que $h \in \mathcal{L}_p(\Omega)$. Tenemos:

$$|f+g|^p = |f+g|h \leqslant |f|h + |g|h$$

Y por la desigualdad de Hölder:

$$\gamma^{p} \leqslant \int_{\Omega} |f|h + \int_{\Omega} |g|h \leqslant (\alpha + \beta) \left(\int_{\Omega} h^{p'} \right)^{\frac{1}{p'}} = (\alpha + \beta) \gamma^{\frac{p}{p'}}$$

Y si dividimos por $\gamma^{\frac{p}{p'}}$ tenemos la desigualdad buscada.

1.2.2. Definición de los espacios de Lebesgue

Fijado $p \geqslant 1$, podemos tratar de dotar a $\mathcal{L}_p(\Omega)$ de una norma. Pensamos en un principio en la aplicación $\varphi_p : \mathcal{L}_p(\Omega) \to \mathbb{R}$ dada por:

$$\varphi_p(f) = \left(\int_{\Omega} |f|^p\right)^{\frac{1}{p}} \quad \forall f \in \mathcal{L}_p(\Omega)$$

Que:

- Verifica la desigualdad triangular gracias a la desigualdad de Minkowski.
- Verifica la homegeneidad por homotecias, ya que:

$$\varphi_p(\alpha f) = |\alpha|\varphi_p(f) \quad \forall \alpha \in \mathbb{R}$$

• $\varphi_p(f) = 0 \iff f = 0$ casi por doquier.

Por lo que dicha función **no es una norma** en $\mathcal{L}_p(\Omega)$ al no verificar la no degeneración de la norma, puesto que la integral "es ciega" a la hora de diferenciar la función constantemente igual a 0 de otras funciones con integral cero.

Para solucionar el problema con el que nos acabamos de topar (el problema de no poder definir una norma de dicha forma), podemos constuir una relación de equivalencia \sim en $\mathcal{L}_p(\Omega)$ que identifique a las funciones que son iguales casi por doquier, pudiendo considerar el espacio cociente:

$$L_p(\Omega) = \frac{\mathcal{L}_p(\Omega)}{\sim}$$

Donde ya $(L_p(\Omega), \varphi_p)$ sí que es un espacio normado, donde denotaremos normalmente $\varphi_p = ||\cdot||_p$.

Teorema 1.7 (Riesz-Fischer). Sea $\Omega \subset \mathbb{R}^N$ un conjunto medible $y p \ge 1$, se cumple que $(L_p(\Omega), \|\cdot\|_p)$ es un espacio de Banach.

1.2.3. Más ejemplos de espacios de Banach

• Sea $\Omega \subset \mathbb{R}$ un conjunto medible, si definimos:

$$\sup_{\Omega} |f| = \inf\{M \geqslant 0 : |f(x)| \leqslant M \text{ casi para todo } x \in \Omega\}$$

El conjunto:

$$\mathcal{L}^{\infty}(\Omega) = \left\{ f : \Omega \to \mathbb{R} : f \text{ es medible y } \sup_{\Omega} |f| < \infty \right\}$$

junto con la norma:

$$||f||_{\infty} = \sup_{\Omega} |f|$$

es un espacio de Banach, donde la desigualdad de Hölder se comple considerando que $p=\infty$ y p'=1:

Si $f \in \mathcal{L}^{\infty}(\Omega)$ y $g \in \mathcal{L}(\Omega)$, entonces $fg \in \mathcal{L}(\Omega)$, con:

$$||fg||_1 \leq ||f||_{\infty} ||g||_1$$

■ Para $1 \leq p < \infty$ podemos considerar otro tipo de espacios:

$$l^p = \left\{ x : \mathbb{N} \to \mathbb{R} : \sum_{n=1}^{\infty} |x(n)|^p < \infty \right\}$$

que junto con la aplicación:

$$||x||_p = \left(\sum_{n=1}^{\infty} |x(n)|^p\right)^{\frac{1}{p}} \quad \forall x \in l^p$$

forman un espacio de Banach (compruébese).

En dichos espacios, se tiene que si $x \in l^p$ y $y \in l^{p'}$, entonces $xy \in l$, con:

$$||xy|| \le ||x||_p ||y||_{p'}$$

• En el caso anterior, si p=2, podemos definir la aplicación:

$$\langle x, y \rangle_2 = \sum_{n=1}^{\infty} x(n)y(n) \quad \forall x, y \in l^2$$

Con lo que $(l^2, \langle \cdot, \cdot \rangle_2)$ es un espacio de Hilbert.

 \blacksquare Al igual que sucedía con las normas p-ésimas en $\mathbb{R}^N,$ podemos considerar:

$$l^{\infty} = \{x : \mathbb{N} \to \mathbb{R} : x \text{ acotada}\}$$

junto con la aplicación $\|\cdot\|: l^{\infty} \to \mathbb{R}$ dada por:

$$||x||_{\infty} = \sup\{|x(n)| : n \in \mathbb{N}\}$$

y obtenemos un espacio de Banach.

- $C = \{x : \mathbb{N} \to \mathbb{R} : x \text{ es convergente}\}$ es un subespacio de l^{∞} .
- $C_0 = \{x : \mathbb{N} \to \mathbb{R} : x \text{ converge a } 0\}$ es un subespacio de C.

1.3. Espacio dual

Para introducir la nocíon de espacio dual, nos será necesario primero destacar unos resultados:

Proposición 1.8. Si H es un espacio prehilbertiano, entonces:

1. Se cumple la desigualdad de Cauchy-Schwartz:

$$|\langle u, v \rangle| \le ||u|| ||v|| \quad \forall u, v \in H$$

2. Se cumple la identidad del paralelogramo:

$$\left\| \frac{u+v}{2} \right\| + \left\| \frac{u-v}{2} \right\| = \frac{1}{2} (\|u\|^2 + \|v\|^2) \quad \forall u, v \in H$$

Teorema 1.9 (de la Proyección). Sea H un espacio de Hilbert, sea $\emptyset \neq K \subset H$ un conjunto convexo y cerrado, entonces $\forall f \in H \exists_1 u \in K$ de forma que:

$$||f - u|| = d(f, K) = \inf\{d(f, v) : v \in K\}$$

Además, dicho elemento u está caracterizado por:

- $u \in K$.

Por tanto, a dicho único elemento u lo notaremos por $P_K f$.

Demostración. Como $0 \le d(f,v) \quad \forall v \in K$, tenemos entonces que dicho ínfimo existe. Tenemos por tanto que existe $\{v_n\}$ una sucesión de elementos de K de forma que $\{d(f,v_n)\} \to d(f,K)$. Sean $n,m \in \mathbb{N}$ y usando la identidad del paralelogramo con $f - v_n$ y $f - v_m$, tenemos:

$$\left\| \frac{f - v_n + f - v_m}{2} \right\|^2 + \left\| \frac{f - v_n - (f - v_m)}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\left\| f - \frac{v_n + v_m}{2} \right\|^2 + \left\| \frac{v_m - v_n}{2} \right\|^2 = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right)$$

$$\frac{\|v_m - v_n\|^2}{4} = \frac{1}{2} \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

$$\|v_m - v_n\|^2 = 2 \left(\|f - v_n\|^2 + \|f - v_m\|^2 \right) - 4 \left\| f - \frac{v_n + v_m}{2} \right\|^2$$

Como K es convexo, tenemos que $\frac{v_n+v_m}{2} \in K$, por lo que:

$$\left\| f - \frac{v_n + v_m}{2} \right\| \geqslant d(f, K)$$

Por lo que:

$$0 \leqslant ||v_m - v_n||^2 \leqslant 2(||f - v_n||^2 + ||f - v_m||^2) - 4d(f, K)^2$$

Como $\{\|f-v_n\|^2\} \to d(f,K)^2$ y $\{\|f-v_m\|^2\} \to d(f,K)^2$, tenemos por el Lema del Sandwitch que $\{\|v_n-v_m\|^2\} \to 0$, por lo que $\{v_n\}$ es de Cauchy. Como H es completo, existe $u \in H$ de forma que $\{v_n\} \to u$, pero por ser K cerrado tendremos que $u \in K$.

Como $\{v_n\} \to u$, tenemos entonces que $\{d(f, v_n)\} \to d(f, v)$, pero $\{d(f, v_n)\}$ convergía también a d(f, K). No queda más salida que d(f, v) = d(f, K).

Una vez probada la existencia de u, veamos que:

$$u \in K \text{ con } ||f - u|| = d(f, K) \iff u \in K \text{ y } \langle f - u, v - u \rangle \leqslant 0 \quad \forall v \in K$$

 \Longrightarrow) Supongamos que $u \in K$ y sabemos que $||f - u|| \le ||f - v||$ para todo $v \in K$. Tomamos ahora $w \in K$ y consideramos el segmento que une u con w. Entonces $\forall w \in K$ y $\forall t \in [0, 1]$, al ser K convexo tendremos que

$$(1-t)u + tw \in K$$
 y $||f - u||^2 \le ||f - (1-t)u - tw||^2$

Aplicando la bilinealidad podemos reescribir esta última expresión como

$$||f - (1 - t)u - tw||^2 = \langle f - (1 - t)u - tw, f - (1 - t)u - tw \rangle =$$

$$= ||f - u||^2 + t^2||w - u||^2 - 2t(f - u, w - u)$$

Sustituyendo en la expresión que teníamos anteriormente nos queda que:

$$0 \le t^2 ||w - u||^2 - 2t \langle f - u, w - u \rangle \quad \forall t \in (0, 1]$$

Al dividir entre t nos queda

$$0 \le t ||w - u||^2 - 2\langle f - u, w - u \rangle \quad \forall t \in (0, 1]$$

y tomando ahora el límite cuando t tiende a 0 por la derecha queda que

$$0 \leqslant -2\langle f - u, w - u \rangle \Rightarrow \langle f - u, w - u \rangle \leqslant 0 \qquad \forall w \in K$$

 \iff

$$||f - v||^2 = ||f - u + u - v||^2 = ||f - u||^2 + 2\langle f - u, u - v \rangle + ||u - v||^2 \qquad \forall v \in K$$

De donde:

$$0 \geqslant 2\langle f - u, v - u \rangle - \|u - v\|^2 = \|f - u\|^2 - \|f - v\|^2$$

Luego:

$$||f - u||^2 \leqslant ||f - v||^2 \qquad \forall v \in K$$

Para probar finalmente la unicidad, supongamos que existen $u, w \in K$ de forma que:

$$\langle f - u, v - u \rangle, \langle f - w, v - w \rangle \leqslant 0 \qquad \forall v \in K$$

Entonces:

$$\langle f - u, w - u \rangle, \langle f - w, u - w \rangle = \langle u - f, w - u \rangle \leqslant 0$$

Por lo que:

$$\langle f - u, w - u \rangle + \langle w - f, w - u \rangle = \langle w - u, w - u \rangle \le 0$$

de donde $\langle w-u,w-u\rangle=0$, por lo que $\|w-u\|^2=d(w,u)^2=0$, luego w=u. \qed

Proposición 1.10. Dado $\emptyset \neq K \subset H$ un conjunto convexo y cerrado, tenemos que la aplicación

$$P_K: H \longrightarrow H$$
 $f \longmapsto P_K f$

es lipschitziana. De hecho:

$$||P_K f_1 - P_K f_2|| \le ||f_1 - f_2|| \quad \forall f_1, f_2 \in H$$

Demostración. Sean $f_1, f_2 \in H$, $u_1 = P_K f_1$, $u_2 = P_K f_2$, estos verifican:

$$\langle f_1 - u_1, v - u_1 \rangle, \langle f_2 - u_2, v - u_2 \rangle \leqslant 0 \quad \forall v \in K$$

Por lo que:

$$\langle f_1 - u_1, u_2 - u_1 \rangle \leqslant 0$$
$$\langle f_2 - u_2, u_1 - u_2 \rangle \leqslant 0 \Longrightarrow \langle f_2 - u_2, u_2 - u_1 \rangle \geqslant 0$$

De donde $\langle f_1 - u_2 - f_2 + u_2, u_2 - u_1 \rangle \leq 0$, por lo que:

$$\langle f_1 - f_2 + (u_2 - u_1), (u_2 - u_1) \rangle = \langle f_1 - f_2, u_2 - u_1 \rangle + \langle u_2 - u_1, u_2 - u_1 \rangle$$

Luego:

$$||u_2 - u_1||^2 = \langle u_2 - u_1, u_2 - u_1 \rangle \leqslant -\langle f_1 - f_2, u_2 - u_1 \rangle \stackrel{\text{Cauchy-Schwartz}}{\leqslant} ||f_1 - f_2|| ||u_2 - u_1||$$

Por lo que:

$$||u_2 - u_1|| \leqslant ||f_1 - f_2||$$

Si
$$||u_2 - u_1|| \neq 0$$
, cierto también si $||u_2 - u_1|| = 0$.

Pensemos ahora en un ejemplo de conjuntos convexos con propiedades interesantes, como lo son los espacios vectoriales:

Corolario 1.10.1 (Proyección Ortogonal). Sea $M \subset H$ un subespacio vectorial cerrado de H, un espacio de Hilbert, entonces:

$$\forall f \in H \ \exists_1 u \in M \ tal \ que \ ||f - u|| = d(f, M)$$

Además, la caracterización de u puede mejorarse por:

$$u \in M$$
 y $\langle f - u, w \rangle = 0 \quad \forall w \in M$

Demostración. Bajo las hipótesis de que M es un subespacio vectorial cerrado de un espacio de Hilbert H, basta probar:

$$u \in M \land \langle f - u, v - u \rangle \leqslant 0 \quad \forall v \in M \iff u \in M \land \langle f - u, w \rangle = 0 \quad \forall w \in M$$

- \iff Si $v \in M$, tenemos por ser M un espacio vectorial que $v u \in M$, de donde $\langle f u, v u \rangle = 0$, por lo que en particular es menor o igual que 0.
- \Longrightarrow) Si tomamos $v \in M$ y $t \in \mathbb{R}^*$, como M es un espacio vectorial tendremos que $v/t \in M$, por lo que:

$$\left\langle f - u, \frac{v}{t} - u \right\rangle \leqslant 0 \qquad \forall v \in M, \forall t \in \mathbb{R}^*$$

- Si t > 0, entonces $\langle f u, v tu \rangle \leq 0 \ \forall v \in M$, de donde tomando límite cuando $t \to 0$, tenemos que $\langle f u, v \rangle \leq 0 \ \forall v \in M$.
- Si t < 0, entonces $\langle f u, v tu \rangle \ge 0 \ \forall v \in M$, de donde tomando límite cuando $t \to 0$, tenemos que $\langle f u, v \rangle \ge 0 \ \forall v \in M$.

П

En consecuencia, tenemos que $\langle f - u, v \rangle = 0 \ \forall v \in M$.

Proposición 1.11. Sea $M \subset H$ un esubespacio vectorial cerrado de H, un espacio de Hilbert, la aplicación

$$\begin{array}{cccc} P_M: & H & \longrightarrow & H \\ & f & \longmapsto & P_M f \end{array}$$

es lineal.

Demostración. Sean $f_1, f_2 \in H$, $u_1 = P_M f_1$, $u_2 = P_M f_2$, $\lambda \in \mathbb{R}$, tenemos que:

$$\langle \lambda f_1 + f_2 - (\lambda u_1 + u_2), w \rangle = \langle \lambda f_1 - \lambda u_1 + f_2 - u_2, w \rangle$$
$$= \lambda \langle f_1 - u_1, w \rangle + \langle f_2 - u_2, w \rangle = 0 \qquad \forall w \in M$$

Por lo que por el Corolario anterior, tenemos que:

$$P_M(\lambda f_1 + f_2) = \lambda u_1 + u_2 = \lambda P_M(f_1) + P_M(f_2)$$

de donde P_M es lineal.

Definición 1.8. Sea $(E, \|\cdot\|)$ un espacio normado, definimos el <u>espacio dual topológico</u> de E por:

$$E^* = \{ f : E \to \mathbb{R} : f \text{ es lineal y continua} \}$$

Nos será necesaria la siguiente Proposición para comprender mejor las propiedades de las aplicaciones lineales. Más concretamente, la relación existente entre la acotación y la continuidad de una aplicación lineal.

Proposición 1.12. Sea $T: E \to F$ una aplicación lineal entre dos espacios normados E y F, las siquientes afirmaciones son equivalentes:

- (1) $\exists M \in \mathbb{R}^+ \ de \ forma \ que \ ||T(x)|| \leqslant M||x|| \quad \forall x \in E.$
- (2) T es lipschitziana.
- (3) T es continua.
- (4) T es continua en 0.
- (5) T es acotada (es decir, si $A \subset E$ es acotado, entonces T(A) es acotado).
- (6) $T(\overline{B}(0,1))$ es acotado.
- (7) T(B(0,1)) es acotado.

Demostración. Veamos la equivalencia entre todas ellas:

- $(1) \iff (2)$ Por doble implicación:
 - \implies) Sean $x, y \in E$, entonces $x y \in E$, de donde:

$$||T(x) - T(y)|| = ||T(x - y)|| \le M||x - y||$$

Por lo que T es lipschitziana con constante de Lipschitz menor o igual que M.

 \iff) Sea $x \in E$, si M es mayor o igual que la constante de Lipschitz de T, entonces:

$$||T(x)|| = ||T(2x - x)|| = ||T(2x) - T(x)|| \le M||2x - x|| = M||x||$$

- $(2) \Longrightarrow (3)$ Es conocida de Cálculo II.
- $(3) \Longrightarrow (4)$ Si T es continua, en particular lo es en 0.
- $(4) \Longrightarrow (1)$ Supuesto que T es continua en 0, es decir, que:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : ||T(x)|| < \varepsilon \ \forall x \in B(0, \delta)$$

Tomando $\varepsilon = 1$, la continuidad nos da un δ cumpliendo la afirmación anterior. Sea $x \in E$ arbitrario, tenemos:

$$||T(x)|| = \left| \left| T\left(\frac{x}{\|x\|} \frac{\delta}{2} \frac{2\|x\|}{\delta}\right) \right| = \frac{2\|x\|}{\delta} \left| \left| T\left(\frac{x}{\|x\|} \frac{\delta}{2}\right) \right| \right| < \frac{2}{\delta} ||x||$$

Ya que $\frac{x\delta}{2\|x\|} \in B(0,\delta)$, por lo que tomando $M = \frac{2}{\delta}$ tenemos la implicación.

- $(5) \Longrightarrow (6)$ Como $\overline{B}(0,1)$ es acotado, $T(\overline{B}(0,1))$ será acotado por ser T acotada.
- $(6) \Longrightarrow (7)$ Como $B(0,1) \subset \overline{B}(0,1)$, entonces $T(B(0,1)) \subset T(\overline{B}(0,1))$.
- (7) \Longrightarrow (4) Si $\exists R \in \mathbb{R}^+$ de forma que $||T(x)|| \leq R$ para todo $x \in B(0,1)$, dado $\varepsilon > 0$, si tomamos $\delta = \frac{\varepsilon}{2R}$, si $x \in B(0,\delta)$, entonces:

$$||T(x)|| = \left| \left| T\left(\frac{x}{2||x||} 2||x||\right) \right| = 2||x|| \left| \left| T\left(\frac{x}{2||x||}\right) \right| \le 2||x||R < 2\delta R = \varepsilon$$

(1) \Longrightarrow (5) Sea $A \subset E$ acotado, entonces $\exists r \in \mathbb{R}^+$ de forma que $A \subset B(0,r)$, por lo que:

$$||T(x)|| \leqslant M||x|| \leqslant Mr \qquad \forall x \in A$$

De donde $T(A) \subset B(0, Mr)$, por lo que es un conjunto acotado.

Proposición 1.13. Sea E un espacio normado, observemos que E^* es un espacio vectorial, sobre el que definimos la aplicación $\|\cdot\|: E^* \to \mathbb{R}$ dada por:

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \qquad \forall f \in E^*$$

Se verifica que:

- 1. $(E^*, \|\cdot\|)$ es un espacio normado.
- 2. $(E^*, \|\cdot\|)$ es un espacio de Banach.

3. Sea $f \in E^*$, entonces:

$$\sup_{\|x\| \le 1} |f(x)| = \|f\| = \inf\{M \in \mathbb{R}_0^+ : |f(x)| \le M\|x\| \quad \forall x \in E\}$$

Demostración. Veamos cada una de las propiedades:

- 1. Para la primera, hemos de probar:
 - No degeneración. Sea $f \in E^*$ de forma que $\sup_{\|x\| \le 1} |f(x)| = \|f\| = 0$, entonces:

$$0 \le ||f(x)|| \le 0 \quad \forall x \in \overline{B}(0,1) \Longrightarrow f(x) = 0 \quad \forall x \in \overline{B}(0,1)$$

de donde:

$$f(x) = f\left(\frac{x}{\|x\|}\|x\|\right) = \|x\|f\left(\frac{x}{\|x\|}\right) = 0 \qquad \forall x \in E$$

Por lo que f = 0.

■ Homogeneidad por homotecias. Sea $f \in E^*$ y $\lambda \in \mathbb{R}A$:

$$\|\lambda f\| = \sup_{\|x\| \le 1} |\lambda f(x)| = \sup_{\|x\| \le 1} |\lambda| |f(x)| = |\lambda| \sup_{\|x\| \le 1} |f(x)| = |\lambda| \|f\|$$

■ Desigualdad triangular. Sean $f, g \in E^*$:

$$||f + g|| = \sup_{\|x\| \le 1} |f(x) + g(x)| \le \sup_{\|x\| \le 1} (|f(x)| + |g(x)|)$$
$$\le \sup_{\|x\| \le 1} |f(x)| + \sup_{\|x\| \le 1} |g(x)| = ||f|| + ||g||$$

2. Sea $\{f_n\}$ una sucesión de Cauchy de elementos de E^* , sean $\varepsilon, r > 0$, la condición de Cauchy para ε/r nos da $m \in \mathbb{N}$ de forma que si $p, q \geqslant m$, entonces:

$$\sup_{\|x\| \le 1} |f_p(x) - f_q(x)| = \|f_p - f_q\| < \frac{\varepsilon}{r}$$

de donde:

$$|f_p(x) - f_q(x)| < \frac{\varepsilon}{r} \quad \forall x \in \overline{B}(0,1)$$

pero entonces:

$$|f_p(rx) - f_q(rx)| = r|f_p(x) - f_q(x)| < \varepsilon$$
 $\forall x \in \overline{B}(0,1)$

lo que equivale a que:

$$|f_p(x) - f_q(x)| < \varepsilon \qquad \forall x \in \overline{B}(0, r)$$

Por tanto, la sucesión $\{f_n(x)\}$ es de Cauchy para todo $x \in \overline{B}(0,r)$, pero como r era arbitrario, dicha condición se cumple para todo $r \in \mathbb{R}^+$, tenemos que $\{f_n(x)\}$ es de Cauchy para todo $x \in E$. Como \mathbb{R} es completo, la sucesión

 $\{f_n(x)\}\$ es convergente para todo $x\in E$, lo que nos permite definir $f:E\to\mathbb{R}$ dada por:

$$f(x) = \lim\{f_n(x)\}$$
 $\forall x \in E$

Se verifica que f es lineal, ya que:

$$f(\lambda x + y) = \lim\{f_n(\lambda x + y)\} = \lim\{\lambda f_n(x) + f_n(y)\}$$
$$= \lambda \lim\{f_n(x)\} + \lim\{f_n(y)\} = \lambda f(x) + f(y)$$
$$\forall \lambda \in \mathbb{R}, \forall x, y \in E$$

Ahora, como $\{f_n\}$ era de Cauchy, tenemos que fijado $r \in \mathbb{R}^+$ y dado $\varepsilon > 0$, $\exists m \in \mathbb{N}$ de forma que para $p, q \ge m$ se tiene:

$$|f_p(x) - f_q(x)| < \frac{\varepsilon}{2} \quad \forall x \in \overline{B}(0, r)$$

Fijado ahora dicho p, tenemos:

$$|f_p(x) - f(x)| = \lim_{q \to \infty} |f_p(x) - f_q(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$$

Por lo que $\{f_n\}$ converge uniformemente a f en B(0,r), para todo $r \in \mathbb{R}^+$. En particular, $\{f_n\}$ converge uniformemente a f en cada conjunto acotado de E. Como $\{f_n\}$ es continua $\forall n \in \mathbb{N}$ y para cada $x \in E$ tenemos que $\{f_n\}$ converge uniformemente a f en B(x,1), entonces tenemos que f es continua en x, de donde f es continua en E. En consecuencia, $f \in E^*$.

Por último, para ver que $\{f_n\}$ converge a f, dado $\varepsilon > 0$, existe $m \in \mathbb{N}$ de forma que si $n \ge m$, entonces:

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2} \qquad \forall x \in \overline{B}(0,1)$$

de donde:

$$||f_n - f|| = \sup_{\|x\| \le 1} |f_n(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon$$

Por lo que $\{f_n\} \to f$.

3. Buscamos probar que:

$$\sup_{\|x\| \le 1} |f(x)| = \inf \{ M \in \mathbb{R}_0^+ : |f(x)| \le M \|x\| \quad \forall x \in E \}$$

Para ver que el supremo es mayor o igual que el ínfimo, veamos que el supremo pertence al conjunto de la derecha:

$$|f(x)| = ||x|| \left| f\left(\frac{x}{||x||}\right) \right| \le ||x|| \sup_{||x|| \le 1} |f(x)|$$

Por tanto, $\sup_{\|x\| \le 1} |f(x)| \in \{M \in \mathbb{R}_0^+ : |f(x)| \le M \|x\| \quad \forall x \in E\}.$

≪) Para ver el el ínfimo es mayor o igual que el supremo, veamos que el ínfimo
es un mayorante del conjunto de la izquierda, si tomamos:

$$M_0 = \inf\{M \in \mathbb{R}_0^+ : |f(x)| \le M||x|| \quad \forall x \in E\}$$

entonces:

$$|f(x)| \le M||x|| \le M \qquad \forall x \in \overline{B}(0,1)$$

Por lo que M_0 es un mayorante de $\{|f(x)| : ||x|| \le 1\}$, por lo que es mayor o igual que su supremo.

1.3.1. Espacio dual de un espacio de Hilbert

Proposición 1.14. Se verifica que si $v \in H$, entonces la aplicación

$$\varphi_v: H \longrightarrow \mathbb{R}$$

$$u \longmapsto \langle u, v \rangle$$

verifica que $\varphi_v \in H^*$ y en cuyo caso, $\|\varphi_v\| = \|v\|$.

Más aún, podemos definir

$$\Phi: H \longrightarrow H^*$$

$$v \longmapsto \varphi_v$$

que es una aplicación lineal e inyectiva.

Demostración. Como el producto escalar es bilineal es evidente que φ_v es lineal. Vemos que:

$$|\varphi_v(u) - \varphi_v(w)| = |\langle u, v \rangle - \langle w, v \rangle| = |\langle u - w, v \rangle| \leqslant ||u - w|| ||v|| \qquad \forall u, w \in E$$

Por lo que φ_v es lipschitziana, y por la última Proposición tenemos que $\|\varphi_v\| \leq \|v\|$. Si v = 0 tenemos la igualdad de forma obvia y si $v \neq 0$, entonces:

$$||v|| = \frac{||v||}{||v||^2} = \frac{\langle v, v \rangle}{||v||} = \left\langle \frac{v}{||v||}, v \right\rangle = \varphi_v \left(\frac{v}{||v||} \right)$$

luego:

$$||v|| \leqslant \sup_{\|x\| \leqslant 1} |f(x)| = ||\varphi_v||$$

Para ver que Φ es lineal, sean $\lambda \in \mathbb{R}$ y $u, v \in H$:

$$\Phi(\lambda u + v) = \varphi_{\lambda u + v} \stackrel{?}{=} \lambda \varphi_u + \varphi_v = \lambda \Phi(u) + \Phi(v)$$

donde la igualdad puede demostrarse por:

$$\varphi_{\lambda u+v}(w) = \langle w, \lambda u + v \rangle = \langle w, \lambda u \rangle + \langle w, v \rangle = \lambda \langle w, u \rangle + \langle w, v \rangle = \lambda \varphi_u(w) + \varphi_v(w)$$

Como $\|\varphi_v\| = \|v\|$, obtenemos de forma inmediata la continuidad de Φ , por ser una isometría.

Para ver que Φ es invectiva, supongamos que $u, v \in H$ con $\Phi(u) = \Phi(v)$, de donde:

$$\langle u, w \rangle = \langle v, w \rangle \qquad \forall w \in H$$

Luego:

$$\langle u, w \rangle - \langle v, w \rangle = \langle u - v, w \rangle = 0 \qquad \forall w \in H$$

En particular, tomando w = u - v, tenemos que:

$$||u - v||^2 = \langle u - v, u - v \rangle = 0$$

Por lo que u = v, de donde Φ es inyectiva.

Teorema 1.15 (de Riesz-Fréchet, Representación del dual de un Hilbert). Sea H un espacio de Hilbert, $\forall \varphi \in H^* \exists_1 v \in H$ de forma que:

$$\varphi(u) = \langle u, v \rangle \qquad \forall u \in H$$

y además:

$$\|\varphi\| = \|v\|$$

Demostración. Si conseguimos probar la primera parte del Teorema, la segunda la tendremos ya probada gracias a la Proposición anterior. Sea por tanto $f \in H^*$, si f = 0 tomando v = 0 se tiene la tesis. Suponemos por tanto que $f \neq 0$, por lo que $M = f^{-1}(\{0\}) \subsetneq H$ es un espacio vectorial de H distinto del trivial. Como f es continua, tenemos además que M es un conjunto cerrado.

Como $M \subsetneq H$, podemos tomar $z_o \in H \setminus M$. Por el Teorema de la Proyección Ortogonal, tomamos $z_1 = P_M z_0 \in M$, que verifica:

$$\langle z_0 - z_1, v \rangle = 0 \qquad \forall v \in M$$

Como $z_0 \in H \setminus M$ y $z_1 \in M$, tenemos que $z_0 \neq z_1$, lo que nos permite definir:

$$z = \frac{z_0 - z_1}{\|z_0 - z_1\|}$$

Con esta definición, es claro que ||z|| = 1, así como que:

$$\langle z, v \rangle = \frac{1}{\|z_0 - z_1\|} \langle z_0 - z_1, v \rangle = 0 \qquad \forall v \in M$$

Como $z_0 \notin M$ la situación $z \in M$ es imposible, por lo que $z \notin M$, luego $f(z) \neq 0$. Veamos ahora que:

$$x - \frac{f(x)}{f(z)}z \in M \qquad \forall x \in H$$

ya que:

$$f\left(x - \frac{f(x)}{f(z)}z\right) = f(x) - \frac{f(x)}{f(z)}f(z) = 0$$

Por lo que tenemos que:

$$\left\langle z, x - \frac{f(x)}{f(z)} z \right\rangle = 0$$

Pero tenemos:

$$0 = \left\langle z, x - \frac{f(x)}{f(z)} z \right\rangle = \left\langle z, x \right\rangle - \frac{f(x)}{f(z)} \left\langle z, z \right\rangle = \left\langle z, x \right\rangle - \frac{f(x)}{f(z)} \|z\|^2$$

Por lo que podemos despejar f(x), obteniendo:

$$f(x) = f(z)\langle z, x \rangle = \langle x, zf(z) \rangle \quad \forall x \in H$$

En consecuencia, tomando v = zf(z) tenemos la existencia probada.

Para la unicidad, supongamos que $\exists v, w \in H$ de forma que:

$$\langle x, v \rangle = f(x) = \langle x, w \rangle \qquad \forall x \in H$$

En consecuencia:

$$\langle x, v - w \rangle = 0 \qquad \forall x \in H$$

Luego si tomamos x = v - w:

$$||v - w||^2 = \langle v - w, v - w \rangle = 0$$

Por lo que v = w.

A partir del Teorema anterior tenemos que $(\mathbb{R}^N, \|\cdot\|_2)$, l^2 y $L^2(\Omega)$ son todos isomorfos a sus duales.

Ejercicio 1.3.1. Calcular el dual de $(\mathbb{R}^N, \|\cdot\|_p)$, para $p>1, p\neq 2$.

Ejercicio 1.3.2. Encontrar una relación entre los duales de $(\mathbb{R}^N, \|\cdot\|_1)$ y $(\mathbb{R}^N, \|\cdot\|_{\infty})$.

Ejercicio 1.3.3. Calcular el dual de l^p , para p > 1, $p \neq 2$.

1.4. Teorema de Hahn Banach

El siguiente Teorema tiene la utildad de probar que $E^* \neq \{0\}$ para E un espacio normado. En dimensión finita podemos pensarlo, pero el problema es en dimensión infinita. El problema es el siguiente:

Sea E un espacio de Banach, $G \subset E$ un subespacio suyo y $g: G \to \mathbb{R}$ lineal y continua, ¿podemos garantizar entoences que existe $f: E \to \mathbb{R}$ lineal y continua tal que $f|_{G} = g$?

Que g sea continua significa que $\exists k$ de forma que $|g(x)| \leq k||x|| \ \forall x \in G$. Para resolver el problema, necesitamos encontrar k' de forma que:

$$|f(x)| \le k' ||x|| \qquad \forall x \in E$$

Ejercicio 1.4.1. Sea $p:(E,\|\cdot\|)\to\mathbb{R}$ dada por:

$$p(x) = k||x|| \quad \forall x \in E$$

La función p verifica:

- $p(x+y) \leqslant p(x) + p(y) \qquad \forall x, y \in E.$
- $p(\lambda x) = \lambda p(x) \qquad \forall \lambda \in \mathbb{R}^+, \forall x \in E.$

Demostración. Sean $x, y \exists E \ y \ \lambda \in \mathbb{R}^+$:

$$p(x+y) = k||x+y|| \le k(||x|| + ||y||) = k||x|| + k||y|| = p(x) + p(y)$$
$$p(\lambda x) = k||\lambda x|| = \lambda k||x|| = \lambda p(x)$$

El siguitente Teorema es equivalente al axioma de elección. Para realizar la demsotración es conveniente primero repasar el Lema de Zorn:

1.4.1. Lema de Zorn

Definición 1.9. Sea $\emptyset \neq P$ un conjunto con una relación \leq de orden, es decir, una relación reflexiva, antisimétrica y transitiva.

• Un subconjunto $Q \subset P$ es totalmente ordenado si:

$$\forall a, b \in Q \Longrightarrow a \leqslant b \lor b \leqslant a$$

• Si $Q \subset P$ y $x \in P$, decimos que x es cota superior de Q si y solo si:

$$a \leqslant x \qquad \forall a \in Q$$

• Si $m \in P$, decimos que m es un elemento maximal de P si y solo si:

$$\{x \in P : m \leqslant x\} = \{m\}$$

■ Diremos que P es inductivo si todo subconjunto $Q \subset P$ que sea totalmente ordenado posee una cota superior.

Lema 1.16 (de Zorn). Si P es un conjunto no vacío con una relación de orden \leq y P es inductivo, entonces P tiene un elemento maximal.

1.4.2. Teorema

Teorema 1.17 (Hahn-Banach, versión analítica). Sea E un espacio vectorial, sea $p: E \to \mathbb{R}$ tal que:

- $p(x+y) \leqslant p(x) + p(y) \qquad \forall x, y \in E.$
- $p(\lambda x) = \lambda p(x) \qquad \forall \lambda \in \mathbb{R}^+, \forall x \in E.$

Sea $G \subset E$ un subespacio vectorial y $g: G \to \mathbb{R}$ una aplicación lineal verificando:

$$q(x) \leqslant p(x) \qquad \forall x \in G$$

Entonces, $\exists f: E \to \mathbb{R} \text{ lineal verificando:}$

1.
$$f(x) \leq p(x) \quad \forall x \in E$$
.

2.
$$f|_{G} = g$$
.

Demostración. Sea:

$$P = \left\{ h : D(h) \to \mathbb{R} : \left\{ \begin{array}{l} G \subset D(h) \text{ subespacio vectorial de } E \\ h \text{ lineal y } h(x) \leqslant p(x) \quad \forall x \in D(h) \\ h(x) = g(x) \quad \forall x \in G \end{array} \right\}$$

es decir, "el conjunto de extensiones de g" a cualquier otro subespacio más grande que contenga a G, buscamos aplicar el Lema de Zorn sobre D(h), buscando E como elemento maximal.

Como $g \in P$, $P \neq \emptyset$. Definiremos una relación de orden en P por:

$$h_1 \leqslant h_2 \Longleftrightarrow \begin{cases} D(h_1) \subset D(h_2) \\ h_2|_{D(h_1)} = h_1 \end{cases} \quad \forall h_1, h_2 \in P$$

es decir, $h_1 \leq h_2$ si h_2 es una extensión de h_1 . Es fácil ver que esta relación es una relación de orden en P (que no es total).

Tratemos de probar que P es inductivo. Para ello, sea $Q \subset P$ totalmente ordenado, para buscar una cota superior, consideramos:

$$V_0 = \bigcup_{h \in Q} D(h)$$

Se verifica que V_0 es un espacio vectorial (comprobar). y definimos $h_0: V_0 \to \mathbb{R}$ dada por:

$$h_0(x) = h(x)$$
 si $x \in D(h)$

que está bien definida, ya que si $x \in D(h_1) \cap D(h_2)$, sucederá bien $h_1 \leqslant h_2$ bien $h_2 \leqslant h_1$, luego suponiendo que $h_1 \leqslant h_2$, tendremos que $h_2|_{D(h_1)} = h_1$, luego $h_1(x) = h_2(x)$.

Se cumple además que h es lineal (hacer). Así como que:

$$h_0(x) \leqslant p(x) \qquad \forall x \in V_0$$

Tenemos:

- $G \subset D(h)$ para toda $h \in P$, luego $G \subset V_0$.
- h es lineal.
- h verifica $h(x) \leq p(x)$.
- h es una extensión de q.

Por tanto, $h \in P$ y cualquier $h \in Q$ verifica que $h \leq h_0$. Por tanto, h_0 es cota superior de P, luego P es inductivo. Por el Lema de Zorn, existe $f \in P$ que es un elemento maximal de P. Por estar en P, $f: D(f) \to \mathbb{R}$ verifica:

- $G \subset D(f) \subset E$ como subespacios vectoriales.
- f es lineal y $f(x) \leq p(x) \quad \forall x \in D(f)$.
- $f|_G = g.$

Falta demostrar que f maximal $\Longrightarrow D(f) = E$. Para ello, supongamos por reducción al absurdo que fuese $D(f) \subsetneq E$, luego existe $x_0 \in E \setminus D(f)$. Si consideramos:

$$D(f) \oplus x_0 \mathbb{R}$$

Tenemos que si $v \in D(f) \oplus x_0 \mathbb{R}$, entonces $v = x + tx_0$, con $x \in D(f)$ y $t \in \mathbb{R}$, por lo que definiremos $\hat{f}: D(f) \oplus x_0 \mathbb{R} \to \mathbb{R}$ dada por:

$$\hat{f}(x + tx_0) = f(x) + t\alpha$$

Siendo α un número real que luego buscaremos, veamos que $\hat{f} \in P$:

- Es automático que $\hat{f}|_{D(f)} = f$.
- Tenemos que ver que $\hat{f}(x + tx_0) \leq p(x + tx_0)$ $\forall x \in D(f), \forall t \in \mathbb{R}$. Para ello, observemos que:

$$\hat{f}(x+tx_0) \leqslant p(x+tx_0) \ \forall x \in D(f), \forall t \in \mathbb{R} \iff \hat{f}(tz+tx_0) \leqslant p(tz+tx_0) \ \forall z \in D(f), \forall t \in \mathbb{R}$$

Que sucede si y solo si:

$$t\hat{f}(z+x_0) \leqslant p(t(z+x_0)) \qquad \forall z \in D(f), \forall t \in \mathbb{R}$$

Con:

$$p(t(z+x_0)) = \begin{cases} tp(z+x_0) & \text{si } t > 0\\ -tp(-z-x_0) & \text{si } t < 0 \end{cases}$$

De donde:

$$\begin{cases} f(z) + \alpha &= \hat{f}(z + x_0) \leq p(z + x_0) & \text{si } t > 0, z \in D(f) \\ -f(z) - \alpha &= -\hat{f}(z + x_0) \leq p(-z - x_0) & \text{si } t < 0, z \in D(f) \end{cases}$$

Luego:

$$\begin{cases} \alpha \leqslant -f(z) + p(z+x_0) & \forall z \in D(f) \\ -f(z) - p(-z-x_0) \leqslant \alpha & \forall z \in D(f) \end{cases}$$

Es decir:

$$\sup\{f(-z) - p(-z - x_0) : z \in D(f)\} \leqslant \alpha \leqslant \inf\{-f(z) + p(z + x_0) : z \in D(f)\}$$

Podemos cambuar el supremo:

$$\sup\{f(w) - p(w - x_0) : w \in D(f)\} \leqslant \alpha \leqslant \inf\{-f(z) + p(z + x_0) : z \in D(f)\}$$

Probemos ahora que dicho supremo se queda por debjo del ínfimo, con lo que tendremos libertad para elegir α dentro de dicho intervalo. Para ello, para todo $z, w \in D(f)$ se verifica:

$$f(z) + f(w) = f(z+w) \le p(z+w) = p(z+x_0-x_0+w) \le p(z+x_0) + p(w-x_0)$$

Despejando:

$$f(w) - p(w - x_0) \leqslant -f(z) + p(z + x_0) \qquad \forall z, w \in D(f)$$

Lo que demuestra que dicho supremo es menor o igual que el ínfimo. Elegimos dicho α entre dichas dos cantidades (puede suceder que sean iguales) y obtenemos la definición de \hat{f} , de forma que verifica la condición que buscábamos, por lo que $\hat{f} \in P$, lo que contradice que f era un elemento maximal, contradicción que viene de suponer que $D(f) \subsetneq E$, luego D(f) es un subconjunto propio no vacío de E, es decir, D(f) = E.

1.4.3. Versión geométrica del Teorema

La siguiente veresión del Teorema de Hahn Banach es equivalente a la ya vista. Para ello, será necesraio repasar ciertos conceptos:

Observación. Sea E un espacio normado, $f:E\to\mathbb{R},\ \alpha\in\mathbb{R}$ no nula, si f es lineal, tenemos que:

$${x \in E : f(x) = \alpha} = f^{-1}({\alpha})$$

Es un hiperplano, que denotamos por $[f = \alpha]$.

Observación. Si además f es continuo, tenemos que:

$${x \in E : f(x) = \alpha} = f^{-1}({\alpha})$$

Es un hiperplano cerrado.

Nos preguntamos ahora bajo qué condiciones cuando nos dan dos subconjuntos podemos separarlos mediante un hiperplano.

Definición 1.10. Si $A, B \subset E$, diremos que el hiperplano $H = [f = \alpha]$ separa A y B si $\exists \alpha \in \mathbb{R}$ tal que:

$$f(x) \leqslant \alpha \leqslant f(y) \qquad \forall x \in A, \qquad \forall y \in B$$

y diremos que el hiperplano $H = [f = \alpha]$ separa estrictamente A y B si $\exists \varepsilon > 0$ y $\alpha \in \mathbb{R}$ de forma que:

$$f(x) \leqslant \alpha - \varepsilon < \alpha + \varepsilon \leqslant f(y)$$
 $\forall x \in A, \forall y \in B$

Teorema 1.18 (Hahn Banach, primera versión geométrica). Sea E un espacio normado, $\emptyset \neq A, B \subset E$ con $A \cap B = \emptyset$, ambos convexos y uno de ellos (digamos A) abierto, entonces existe un hiperplano cerrado³ $H = [f = \alpha]$ que separa A y B.

Demostración. El Teorema se demuestra en varios pasos:

³Luego habrá una aplicación lineal y contina $f: E \to \mathbb{R}$, por lo que $E^* \neq \{0\}$.

Paso 1. Supongamos en una versión más débil que B se reduce a un punto, es decir, existe $x_0 \in E$ de forma que $B = \{x_0\}$ y que $A \subset E$ es un conjunto abierto y convexo de forma que $x_0 \notin A$.

Elegimos $z_0 \in A$ y definimos $C = A - z_0$. Se verifica (compruébese) que C es convexo, abierto y $0 \in C$. El punto $y_0 = x_0 - z_0 \notin C$, de donde $y_0 \neq 0$. Por lo que $y_0\mathbb{R}$ es un subespacio vectorial de E de dimensión 1. Definimos $G = \mathbb{R}y_0$ subespacio vectorial de E, y tomamos

$$g: \quad G \quad \longrightarrow \quad \mathbb{R}$$
$$ty_0 \quad \longmapsto \quad t$$

que es una aplicación lineal y verificando $g(y_0) = 1$. La función g nos permite "separar" el corte de C con G y el punto y_0 . Si consideramos el funcional de Minkowski del conjunto C, observamos que:

• Si $t \ge 0$, como $y_0 \notin C$, entonces $p(y_0) \ge 1$, de donde:

$$g(ty_0) = t \leqslant tp(y_0) \stackrel{(1)}{=} p(ty_0)$$

• Si t < 0, tenemos que:

$$g(ty_0) = t < 0 \leqslant p(ty_0)$$

En cualquier caso, $g(ty_0) \leq p(ty_0) \ \forall t \in \mathbb{R}$. Reunimos las hipótesis del Teorema de Hahn-Banach, por lo que $\exists f : E \to \mathbb{R}$ lineal tal que:

$$f|_G = g$$

y $f(y) \leq p(y)$ $\forall y \in E$. La propiedad 2 del funcional nos dice que:

$$f(y) \leqslant p(y) \leqslant M||y|| \quad \forall y \in E$$

Si aplicamos esta propiedad para -y:

$$-f(y) = f(-y) \leqslant M||-y|| = M||y||$$

De donde:

$$|f(y)| \le M||y|| \quad \forall y \in E$$

Como f es lineal, una Proposición que vimos anteriormente nos dice que f es continua.

Paso 2. Volviendo al caso que nos plantea el Teorema siendo B un conjunto convexo y disjunto de A. Tomamos:

$$A-B=\{a-b:a\in A,b\in B\}$$

Observemos que $0 \notin A - B$, ya que $A \cap B = \emptyset$. Si conseguimos probar que A - B es abierto y convexo, sabemos ya separar A - B de $\{0\}$, y será sencillo terminar la prueba. Para ver que A - B es abierto, se expresa de forma sencilla como unión de abiertos:

$$A - B = \bigcup_{b \in B} (A - b)$$

Aplicamos el paso 1 a este caso, lo que nos permite separar $\{0\}$ de A-B. Como lo hacemos con una aplicación f lineal, obtendremos que podemos separar A de B.

1.4.4. Funcional de Minkowski de un conjunto

Sea E un espacio normado y $C \subset E$ convexo, abierto y que contiene al origen, definimos $p: E \to \mathbb{R}$ por:

$$p(x) = \inf \left\{ \alpha \in \mathbb{R}^+ : \frac{x}{\alpha} \in C \right\} \quad \forall x \in E$$

observamos que p(0) = 0. Veamos que tiene las siguiente propiedades:

1.
$$p(\lambda x) = \lambda p(x)$$
 $\forall x \in E, \forall \lambda > 0$

$$p(\lambda x) = \inf \left\{ \alpha \in \mathbb{R}^+ : \frac{x}{\alpha/\lambda} = \frac{\lambda x}{\alpha} \in C \right\} \stackrel{\lambda \geq 0}{=} \lambda \inf \left\{ \alpha \in \mathbb{R}^+ : \frac{x}{\alpha} \in C \right\} = \lambda p(x)$$

2.
$$\exists M > 0 : 0 \leq p(x) \leq M||x|| \quad \forall x \in E$$

Como C es abierto y $0 \in C$, $\exists r > 0$ de forma que $B(0,r) \subset C$. Si tomamos:

$$\alpha > \frac{\|x\|}{r} \Longrightarrow \left\|\frac{x}{\alpha}\right\| < r \Longrightarrow \frac{x}{\alpha} \in B(0,r) \subset C$$

Por tanto, $\left|\frac{\|x\|}{r}, +\infty\right| \subset \left\{\alpha > 0 : \frac{x}{\alpha} \in C\right\}$. De donde el ínfimo de la izaquierda será menor o igual que el ínfimo de la derecha:

$$p(x) \leqslant \frac{\|x\|}{r}$$

- 3. $C = \{x \in E : p(x) < 1\}$ Por doble inclusión:
 - C) EJERCICIO $((1+\varepsilon)x)$. Si $x \in C$, como C es abierto, $\exists r > 0$ de forma que $B(x,r) \subset C$. Sea $\varepsilon > 0$, vemos que:

$$\left\| \frac{x}{1+\varepsilon} - x \right\| = \left\| \frac{-\varepsilon x}{1+\varepsilon} \right\| = \frac{\varepsilon}{1+\varepsilon} \|x\|$$

Elegimos $\varepsilon_0 > 0$ de forma que $\frac{\varepsilon_0}{1+\varepsilon_0} < \varepsilon_0 < \frac{r}{\|x\|+1}$ (podría ser $\|x\| = 0$), entonces:

$$\left\| \frac{x}{1+\varepsilon} - x \right\| < r \qquad \forall \varepsilon \in]0, \varepsilon_0]$$

Por tanto, $\frac{x}{1+\varepsilon} \in B(x,r) \subset C$, $\forall \varepsilon \in]0, \varepsilon_0]$, es decir, en la definición de p podemos tomar $\alpha = 1 + \varepsilon_0$, de donde el ínfimo puede ser más pequeño:

$$p(x) \leqslant 1 + \varepsilon \quad \forall \varepsilon \in]0, \varepsilon_0]$$

 \supset) A partir de la definición de p, si p(x) < 1, tenemos entonces que:

$$\exists \alpha_0 < 1 : \frac{x}{\alpha_0} \in C$$

Como C es convexo y $0 \in C$, tenemos entonces que:

$$x = \alpha_0 \frac{x}{\alpha_0} + (1 - \alpha_0)0 \in C$$

4. $p(x+y) \leq p(x) + p(y)$ Por la definición de p(x), sabemos que el conjunto que usamos para definir p8x es un intervalo desde p(x) (no sabemos si abierto o cerrado) hasta $+\infty$. Lo que sí sabemos, es que:

$$\left\{\alpha > 0 : \frac{x}{\alpha} \in C\right\} = [p(x), +\infty[\quad \forall \varepsilon > 0]$$

Es decir:

$$\frac{x}{p(x) + \varepsilon} \in C \qquad \forall \varepsilon > 0$$

Usando el apartado 3:

$$p\left(\frac{x}{p(x)+\varepsilon}\right) < 1$$

Como C es convexo, si tomamos $\frac{y}{p(y)+\varepsilon}\in C$ y $t=\frac{p(x)+\varepsilon}{p(x)+p(y)+2\varepsilon}\leqslant 1$, tenemos entonces que:

$$\frac{x+y}{p(x)+p(y)+2\varepsilon}=t\frac{x}{p(x)+\varepsilon}+(1-t)\frac{y}{p(y)+\varepsilon}\in C \qquad \forall x,y\in E$$

Usando de nuevo la propiedad 3:

$$p(x+y) \leqslant p(x) + p(y) + 2\varepsilon \qquad \forall x, y \in E, \quad \forall \varepsilon > 0$$

De donde deducimos la propiedad buscada.

Ejemplo. Si C = B(0,1), entonces $p(x) = ||x|| \quad \forall x \in E$.

Ejercicio 1.4.2. Parece ser que p tiene propiedades deseables para ser una norma para cualquier conjunto C, ¿qué tiene que verificar un conjunto C para conseguir que p sesa na norma? El conjunto C parece ser la bola unidad a partir de la norma p.

Teorema 1.19 (Hahn Banach, segunda versión geométrica). Sea E un espacio normado, $\emptyset \neq A, B \subset E, A \cap B = \emptyset$, ambos convexos, A cerrado y B compacto, entonces existe un hiperplano que separa estrictamente A y B: $(\exists f: E \to \mathbb{R} \text{ lineal } y \text{ continua}, \exists \alpha \in \mathbb{R}, \exists \varepsilon > 0)$ de forma que:

$$f(a) \leqslant \alpha - \varepsilon < \alpha < \alpha + \varepsilon \leqslant f(b)$$
 $\forall a \in A, \forall b \in B$

Antes teníamos que: $(\exists f : E \to \mathbb{R} \text{ lineal y continua, } \exists \alpha \in \mathbb{R} \text{ tales que } f(a) \leqslant \alpha \leqslant f(b) \quad \forall a \in A, b \in B)$ Es decir, que no estaban separados estrictamente

Demostración. Sea C = A - B, como ambos son convexos, vimos en la demostración del otro teorema que entonces C es convexo.

$$\left. egin{array}{l} A \ {
m cerrado} \\ B \ {
m compacto} \end{array} \right\} \Longrightarrow C \ {
m cerrado}$$

Sabemos además, al igual que antes, que $0 \notin C$. Como C es cerrado, $E \setminus C$ es abierto y $0 \in E \setminus C$, de donde $\exists r > 0$ de forma que $B(0,r) \cap C = \emptyset$. Si usamos la primera versión geométrica del Teorema de Hahn Banach para los conjuntos B(0,r) y C, podemos decir entonces que estos dos conjuntos podemos separarlos por un hiperplano (aunque no estrictamente, pero la bola B(0,r) nos dará la propiedad).

Parece un Teorema muy interesante, pero en dimensión infinita apenas hay conjuntos compactos.

En el libro de Brezis después da una serie de consecuencias del Teorema de Hahn Banach. Hacer como ejercicios los corolarios.