HoNLP Project: Sarcasm Detection

Presented by Maxim, Filip, Madi

Why we chose this topic?

Ex: "I just love it when my computer crashes right in the middle of an important project presentation. It's such a great way to take a break and destress!"

The challenge

Data

Each record consists of three attributes:

- is_sarcastic: 1 if the record is sarcastic otherwise 0
- headline: the headline of the news article
- article_link: link to the original news article. Useful for collecting supplementary data

Data

	headline	is_sarcastic
0	former versace store clerk sues over secret 'b	0
1	the 'roseanne' revival catches up to our thorn	0
2	mom starting to fear son's web series closest	1
3	boehner just wants wife to listen, not come up	1
4	j.k. rowling wishes snape happy birthday in th	0

Data Distribution

Word-cloud for text that is sarcastic

Word-cloud for text that is NOT sarcastic

Average word length in each text

Pre-processing

```
def strip_html(text):
    soup = BeautifulSoup(text, "html.parser")
    return soup.get_text()
def remove_between_square_brackets(text):
    return re.sub('\[[^]]*\]', '', text)
def remove_url(text):
    return re.sub('http\S+', '', text)
def remove stopwords(text):
    final text = []
    for i in text.split():
        if (i.strip().lower() not in stop):
            final_text.append(i.strip())
    return " ".join(final_text)
def denoise_text(text):
    text = strip_html(text)
    text = remove between square brackets(text)
    text = remove stopwords(text)
    return text
```

```
def remove_punctuation(text):
    return re.sub(r'[^\w\s]', '', text)
```

CountVectorizer

```
def algos_test_CountVectorizer(train_xs, test_xs, train_ys, test_ys):
     vectorizer = CountVectorizer()
     train xs = vectorizer.fit transform(train xs)
     test_xs = vectorizer.transform(test_xs)
     algos = [
         LogisticRegression(),
         MultinomialNB(),
         DecisionTreeClassifier(),
         RandomForestClassifier(),
         SVC(),
         xgb.XGBClassifier()
     results = []
     for algo in algos:
         print(algo)
         %timeit -n 1 -r 1 algo.fit(train_xs, train_ys)
         pred ys = algo.predict(test xs)
         results.append(
                 "algo": algo.
                 "accuracy": accuracy score(test ys, pred ys),
                 "precision": score(test_ys, pred_ys, average="macro")[0],
                 "recall": score(test ys, pred ys, average="macro")[1],
                 "f1": score(test ys, pred ys, average="macro")[2],
     return pd.DataFrame.from records(results)
 results CountVectorizer = algos test CountVectorizer(x train, x test, y train, y test)
```

CountVectorizer

	algo	accuracy	precision	recall	f1
0	LogisticRegression()	0.794584	0.795300	0.785976	0.788773
1	MultinomialNB()	0.803819	0.802650	0.797662	0.799508
2	DecisionTreeClassifier()	0.727942	0.724009	0.723677	0.723837
3	(DecisionTreeClassifier(max_features='sqrt', r	0.754773	0.767401	0.736998	0.740165
4	SVC()	0.791089	0.803113	0.775958	0.780513
5	XGBClassifier(base_score=None, booster=None, c	0.722326	0.756285	0.695473	0.693120

TfidfVectorizer

```
def algos_test_TfidVectorizer(train_xs, test_xs, train_ys, test_ys):
        vectorizer = TfidfVectorizer()
       train_xs = vectorizer.fit_transform(train_xs)
        test_xs = vectorizer.transform(test_xs)
        algos = [
            LogisticRegression(),
            MultinomialNB(),
            DecisionTreeClassifier(),
            RandomForestClassifier(),
            SVC().
            xgb.XGBClassifier()
        results = []
        for algo in algos:
            print(algo)
            %timeit -n 1 -r 1 algo.fit(train xs, train ys)
            pred_ys = algo.predict(test_xs)
            results.append(
                    "algo": algo,
                    "accuracy": accuracy score(test ys, pred ys),
                    "precision": score(test_ys, pred_ys, average="macro")[0],
                    "recall": score(test_ys, pred_ys, average="macro")[1],
                    "f1": score(test_ys, pred_ys, average="macro")[2],
        return pd.DataFrame.from_records(results)
    results_TfidVectorizer = algos_test_TfidVectorizer(x_train, x_test, y_train, y_test)
```

TfidfVectorizer

	algo	accuracy	precision	recall	f1
0	LogisticRegression()	0.790715	0.794471	0.779658	0.783240
1	MultinomialNB()	0.792088	0.806503	0.776097	0.780818
2	DecisionTreeClassifier()	0.717210	0.713200	0.710382	0.711399
3	(DecisionTreeClassifier(max_features='sqrt', r	0.758767	0.763998	0.744812	0.748086
4	SVC()	0.796331	0.800844	0.785128	0.788904
5	XGBClassifier(base_score=None, booster=None, c	0.716461	0.749430	0.689298	0.686236

Word embedding

Capturing context of words, semantic, syntactic similarity

and relation with other words!

Cows lose their jobs as milk prices drop

is sarcastic

Sheeps lose their jobs as wool prices drop

should be sarcastic too!

How? Cosine Similarity between vectors! cos(O) close to 1 if angle close to 0

Put it in the correct format for gensim

```
words = []
for i in df.headline.values:
    words.append(i.split())
words[:5]
```

```
[['former',
  'versace',
  'store',
  'clerk',
  'sues',
  'secret',
 'black',
  'code',
  'minority',
  'shoppers'],
 ['roseanne',
  'revival',
  'catches',
  'thorny',
  'political',
  'mood',
  'better',
  'worse'],
```

Create a vector for each words

```
import gensim
#Dimension of vectors we are generating
EMBEDDING_DIM = 200

#Creating Word Vectors by Word2Vec Method (takes time...)
w2v_model = gensim.models.Word2Vec(sentences = words , vector_size=EMBEDDING_DIM , window = 5 , min_count = 1)
```

- #vocab size
 len(w2v_model.wv)
 #We have now represented each of 28359 words by a 200dim vector.
- 28359

Create the embedding matrix

```
# Function to create weight matrix from word2vec gensim model

def get_weight_matrix(model, vocab):
    # total vocabulary size plus 0 for unknown words
    vocab_size = len(vocab) + 1
    # define weight matrix dimensions with all 0
    weight_matrix = np.zeros((vocab_size, EMBEDDING_DIM))
    # step vocab, store vectors using the Tokenizer's integer mapping
    for word, i in vocab.items():
        weight_matrix[i] = model[word]
    return weight_matrix
```

Create the model: Recurrent Neural Network (RNN)

```
#Defining Neural Network
model = Sequential()
#Non-trainable embedding layer
model.add(Embedding(vocab_size, output_dim=EMBEDDING_DIM, weights=[embedding_vectors], input_length=20, trainable=True))
#LSTM
model.add(Bidirectional(LSTM(units=128 , recurrent_dropout = 0.3 , dropout = 0.3, return_sequences = True)))
model.add(Bidirectional(GRU(units=32 , recurrent_dropout = 0.1 , dropout = 0.1)))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate = 0.01), loss='binary_crossentropy', metrics=['acc'])
```

Trainable embedding matrix

LSTM: long-short-term memory

GRU: gated recurrent unit

Activation layer

solve the exploding and vanishing gradient problem

Tokenizing and padding before train/test split

```
tokenizer = text.Tokenizer(num_words=35000)
tokenizer.fit_on_texts(words)
tokenized_train = tokenizer.texts_to_sequences(words)
x = pad_sequences(tokenized_train, maxlen = 20)
```

Results

	precision	recall	f1-score	support
Not Sarcastic	0.79	0.83	0.81	4483
Sarcastic	0.77	0.73	0.75	3530
accuracy			0.78	8013
macro avg	0.78	0.78	0.78	8013
weighted avg	0.78	0.78	0.78	8013

derive semantic relationships between words from the co-occurrence matrix

The cat sat on the mat

How? Global statistics!

Probability and Ratio	k = solid	k = gas	k = water	k = fashion	
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}	
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}	
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96	

	the	cat	sat	on	mat
the	0	1	0	1	1
cat	1	0	1	0	0
sat	0	1	0	1	0
on	1	0	1	0	0
mat	1	0	0	0	0

(>1) or close to 1 or (<1)

Create the embedding matrix: Transfer learning!

for word, i in word_index.items():
 if i >= max features: continue

embedding_vector = embeddings_index.get(word)

```
EMBEDDING_FILE = '../input/glove-twitter/glove.twitter.27B.200d.txt'

def get_coefs(word, *arr):
    return word, np.asarray(arr, dtype='float32')
embeddings_index = dict(get_coefs(*o.rstrip().rsplit(' ')) for o in open(EMBEDDING_FILE))

word_index = tokenizer.word_index
nb_words = min(max_features, len(word_index))
#change below line if computing normal stats is too slow
```

embedding_matrix = embedding_matrix = np.random.normal(emb_mean, emb_std, (nb_words, embed_size))

if embedding_vector is not None: embedding_matrix[i] = embedding_vector

Create the model: Recurrent Neural Network (RNN)

```
#Defining Neural Network
model = Sequential()
#Non-trainable embeddidng layer
model.add(Embedding(nb_words, output_dim=embed_size, weights=[embedding_matrix], input_length=200, t
rainable=True))
#LSTM
model.add(Bidirectional(LSTM(units=128 , recurrent_dropout = 0.5 , dropout = 0.5)))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer=keras.optimizers.Adam(lr = 0.01), loss='binary_crossentropy', metrics=['ac c'])
```

Trainable embedding matrix LSTM: long-short-term memory Activation layer

Tokenizing and padding before train/test split

```
tokenizer = text.Tokenizer(num_words=35000)
tokenizer.fit_on_texts(words)
tokenized_train = tokenizer.texts_to_sequences(words)
x = pad_sequences(tokenized_train, maxlen = 20)
```

Results

	precision	recall	f1-score	support
Not Sarcastic	0.79	0.87	0.83	4483
Sarcastic	0.82	0.71	0.76	3530
accuracy			0.80	8013
macro avg	0.80	0.79	0.79	8013
weighted avg	0.80	0.80	0.80	8013

Transformers

- Attention mechanism
- Positional encoding
- Pre-training
- Scalability

The transformer architecture

BERT

- Transformer based model

- Pre-trained

- Able to learn general representations

The BERT Tokenizer

```
10 # Load the BERT tokenizer.
11 print('Loading BERT tokenizer...')
12 tokenizer = BertTokenizer.from pretrained('bert-base-uncased', do lower case=True)
14 # Print the original sentence.
15 print(' Original: ', sentences[0])
17 # Print the sentence split into tokens.
18 print('Tokenized: ', tokenizer.tokenize(sentences[0]))
20 # Print the sentence mapped to token ids.
21 print('Token IDs: ', tokenizer.convert tokens to ids(tokenizer.tokenize(sentences[0])))
oading BERT tokenizer...
Downloading (...)solve/main/vocab.txt: 100%
                                                                        232k/232k [00:00<00:00, 348kB/s]
Downloading (...)okenizer_config.json: 100%
                                                                        28.0/28.0 [00:00<00:00, 1.15kB/s]
Downloading (...)lve/main/config.json: 100%
                                                                       570/570 [00:00<00:00, 17.6kB/s]
Original: former versace store clerk sues secret black code minority shoppers
okenized: ['former', 'versa', '##ce', 'store', 'clerk', 'sue', '##s', 'secret', 'black', 'code', 'minority', 'shop', '##pers']
oken IDs: [2280, 18601, 3401, 3573, 7805, 9790, 2015, 3595, 2304, 3642, 7162, 4497, 7347]
```

The model

Training and validation

	Training	Loss	Valid.	Loss	Valid.	Accur.	Valid.	precision	Valid.	recall	Valid. Fl	Training Time	Validation Time
epoch													
1		0.44		0.34		0.85		0.88		0.76	0.81	0:03:39	0:00:18
2		0.25		0.33		0.87		0.87		0.82	0.84	0:03:38	0:00:18
3		0.14		0.40		0.87		0.87		0.82	0.84	0:03:38	0:00:18
4		0.09		0.51		0.88		0.86		0.85	0.85	0:03:38	0:00:18

Graph of the loss

False positives and negatives

In the last batch

```
False Positives: [21 27]
False Negatives: [12 24]
False Positives Text: 21 trump assures nation that decision for syrian airstrikes came after carefully considering all his passing whims ex-con back behind bar

Name: headline, dtype: object
False Negatives Text: 12 north korea praises trump and urges us voters to reject 'dull hillary'

24 ted cruz hits the panic button: 'we could lose both houses of congress'
```

Conclusion

- Good results for a task that seemed difficult

- Using a pre-trained model led to better performance