EXAM OF STATISTICS (DESCRIPTIVE STATISTICS AND REGRESSION)

2nd Physiotherapy Version A June, 07 2021

Duration: 1 hour.

(5 pts.) 1. To study the effectiveness of a new treatment for the polymyalgia rheumatica a sample of patients with polymyalgia was drawn and they were divided into two groups. The first group received the new treatment while the second one received a placebo. After a year following the treatment they filled out a survey. The chart below shows the distribution of the survey score of the two groups of patients (the greater the score the better the treatment).

Frequency distribution of scores

- (a) Construct the frequency table of the scores for the placebo group and plot the ogive.
- (b) Compute the interquartile range of the scores for the placebo group.
- (c) Are there outliers in the placebo group?
- (d) In which group the score mean represents better?
- (e) Which distribution is more normal regarding the kurtosis?
- (f) Which score is relatively better, a score of 5 in the placebo group or a score of 6 in the treatment group?

Use the following sums for the computations:

Placebo: $\sum x_i = 125.5$, $\sum x_i^2 = 680.25$, $\sum (x_i - \bar{x})^3 = 27.11$ and $\sum (x_i - \bar{x})^4 = 253.27$. Treatment: $\sum x_i = 131$, $\sum x_i^2 = 887$, $\sum (x_i - \bar{x})^3 = 2.66$ and $\sum (x_i - \bar{x})^4 = 88.03$.

Solution

(a)

Score	n_i	f_i	N_i	F_{i}
[2, 3]	1	0.04	1	0.0
(3, 4]	6	0.24	7	0.3
(4, 5]	7	0.28	14	0.6
(5, 6]	3	0.12	17	0.7
(6, 7]	7	0.28	24	1.0
(7, 8]	0	0.00	24	1.0
[8, 9]	1	0.04	25	1.0

- (b) $Q_1 = 3.875$, $Q_3 = 6.25$ and IQR = 2.375.
- (c) $f_1 = 0.3125$ and $f_2 = 9.8125$. Thus, there are no outliers in the placebo sample because all the values fall between the fences.
- (d) Placebo: $\bar{x}=5.02,\,s^2=2.0096,\,s=1.4176$ and cv=0.2824. Treatment: $\bar{x}=6.55,\,s^2=1.4475,\,s=1.2031$ and cv=0.1837.
- (e) Placebo: $g_2 = -0.4914$. Treatment: $g_2 = -0.8992$. Thus, the distribution of the placebo group is more normal as the coef. of kurtosis is closer to 0.
- (f) Standard score for the placebo: z(5) = -0.0141Standard score for the treatment: z(6) = -0.4571As the standard score of 5 in the placebo group is greater than the standard score of 6 in the treatment group, a score of 5 in the placebo group is better.
- (5 pts.) 2. We have applied different doses of an antibiotic to a culture of bacteria. The table below shows the number of residual bacteria corresponding to the different doses.

Dose (μg)	0.2	0.7	1	1.5	2	2.4	2.8	3
Bacteria	40	32	28	20	18	15	12	11

- (a) Which regression model explains better the number of residual bacteria as a function of the antibiotic dose, the linear or the exponential?
- (b) Use the best of the two previous regression models to predict the number of residual bacteria for an antibiotic dose of 3.5 μ g. Is this prediction reliable?
- (c) According to the linear regression model, what is the expected decrease in the number of residual bacteria per each μ g more of antibiotic?

Solution

(a) $\overline{x} = 1.7 \ \mu \text{g}, \ s_x^2 = 0.9075 \ \mu \text{g}^2.$ $\overline{y} = 22 \ \text{bacteria}, \ s_y^2 = 93.75 \ \text{bacteria}^2.$ $s_{xy} = -9.025 \ \mu \text{g-bacteria}.$ <u>Linear coefficient of determination $r^2 = 0.9574.$ </u> $\overline{\log(y)} = 2.9955 \ \log(\text{bacteria}), \ s_{\log(y)}^2 = 0.1908 \ \log(\text{bacteria})^2.$ $s_{x \log(y)} = -0.4147 \ \mu \text{g-} \log(\text{bacteria}).$

Exponential coefficient of determination $r^2 = 0.9928$.

Thus, the exponential model explains better the number of residual bacteria as a function of the antibiotic dose because the exponential coef. of determination is greater.

- (b) Exponential regression model: $y = e^{3.7723 + -0.4569x}$. Prediction: y(3.5) = 8.7845 bacteria. Although the coef. of determination is close to 1, the this prediction is not reliable because the sample size is very small.
- (c) $b_{ux} = -9.9449$, therefore the number of bacteria decreases -9.9449 per each μg more of antibiotic.