北京工业大学 2017——2018 学年第 II 学期 "概率论与数理统计"课程(工)考试试卷 (答案)

考试说明: 考试闭卷; 可使用文曲星除外的计算器。

承诺:本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:			学号:	班号:
注 :本试卷共	6	页,	满分 100 分;	考试时必须使用卷后附加的统一草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	-	二(1)	二(2)	二(3)	二(4)	二(5)	总成绩
满分	30	14	14	14	14	14	
得分							

- 一、 填空题(每空2分,共28分)
- 1. 设A 与 B 为事件,且 $\mathbf{P}(\mathbf{A}) = \mathbf{0.2}, \mathbf{P}(\mathbf{A} \cup \mathbf{B}) = \mathbf{0.6}$ 。则当A 与 B 互斥时, $\mathbf{P}(\mathbf{B}) = \underline{\qquad}; \quad A 与 B \text{ 相互独立时}, \quad \mathbf{P}(\mathbf{B}) = \underline{\qquad}$ 。**答案: 0.4; 0.5**
- 2. 若离散型随机变量 X 的概率分布为 $P(X = k) = \frac{k}{6}, k = 1, 2, 3.$ 令 $Y = (X 2)^2$ 。则

$$P(Y = 1) = ____, E(Y) = ____, Var(Y) = ____$$
答案: 2/3; 2/9

- 3. 设随机变量 X 服从参数为 λ 的指数分布,且 $\mathbf{P}(\mathbf{X} \leq \mathbf{2}) = \mathbf{1} \mathbf{e}^{-1}$,则 $\lambda = \underline{\qquad}$, $\mathbf{E}(\mathbf{X}) = \underline{\qquad}$, $\mathbf{Var}(\mathbf{X}) = \underline{\qquad}$ 。 **答案:** 0.5; 2; 4
- 4. 设随机变量 X,Y 相互独立,且 $X \sim N(2,2^2), Y \sim N(0,3^2)$ 。令 Z = 2X + Y则 $E(Z) = _______, Var(Z) = _______$ 。进一步,记 $\Phi(x)$ 为标准正态分布的分布函数,且 $\Phi(1) = 0.8413, \Phi(2) = 0.9772$,则 $P(-1 < Z \le 14) = _______$ 。答案: 4; 25; 0.8185
- 5. 若 X_1, X_2, \cdots, X_{10} 为抽自正态总体N(1, 10)的随机样本,分别记 \overline{X} 与 S^2 为样本均值与样本方差(无偏方差)。则 $\overline{X} \sim$ _______, $(n-1)S^2/\sigma^2 \sim$ ______。答案: N(1,1); χ^2_{n-1}
- 6. 设 $\mathbf{X_1},\mathbf{X_2},\cdots,\mathbf{X_{25}}$ 是 抽 自 总 体 $X\sim N(\mu,\sigma^2)$ 的 随 机 样 本 , 经 计 算 得

$\bar{\mathbf{x}} = 4, \mathbf{s^2} = 0.16$	根据本试卷第6页	上的 t 分布表与 χ^2 分布表,	得未知参数 μ 的置信系
数为 0.95 的置信	区间为[<u>,</u>], σ^2 的置信系	数为 0.95 的置信区间为
[]。 答案:	[3. 8349, 4. 1651]; [0. 0	976, 0. 3097]

二、解答题(共72分)

注: 每题要有解题过程,无解题过程不能得分!

- 1. (本小题 14 分) 有型号相同的产品两箱,第一箱装 12 件产品,其中两件为次品;第二箱装 8 件产品,其中一件为次品。先从第一箱中随机抽取两件产品放入第二箱,再从第二箱中随机抽取一件产品。
 - (1). 求从第二箱中取出次品的概率;
 - (2). 若从第二箱中取出了次品,求从第一箱中未取到次品的概率。

2.(本小题 15 分) 设随机变量 X 与 Y 独立同分布,且都服从参数为 1 的指数分布,令 $U=\min\{X,Y\}$, $V=\max\{X,Y\}$,求:

- (1). U的概率密度函数 $f_U(x)$;
- (2). U+V的概率密度函数 $f_{U+V}(x)$ 。

3. (本小题 15 分)设二维随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = {i \over i} c rac{i}{i} x$$
, 0 y ? x ? , 其他.

(1). 求常数 c;

- (2). 求X和Y的边缘概率密度 $f_X(x)$, $f_Y(y)$;
- (3). 问X和Y是否独立?为什么? (4). 求E(Y)。

- 4. (本小**题** 14 分) 设 $X_1, X_2, \cdots, X_n (n > 2)$ 为抽自正态总体 $N(\mu_0, \sigma^2)$ 的随机样本,其中 μ_0 已知, $\sigma^2 > 0$ 未知,求:
 - (1). σ² 的矩估计**%**;
 - (2). σ^2 的极大似然估计估计 \hat{s}^2 ;
 - (3). E(s²)和 Var(s²)。

- 5. (本小题 14 分) 设学生某次考试成绩服从正态分布 $N(\mu,\sigma^2)$,现从该总体中随机抽取 25 位的考试成绩,算得样本均值为 76. 5,标准差为 4. 05。问在显著性水平 0. 05 下,从样本看,
 - (1). 是否接受" $\mu = 75$ "的假设?
 - (2). 是否接受" $\sigma \leq 4.0$ "的假设?

 \mathbf{M} t 分布与 χ^2 分布表

$t_{24}(0.025) = 2.0639$	$t_{24}(0.05) = 1.7109$	$t_{25}(0.025) = 2.0595$	$t_{25}(0.05) = 1.7081$
$\chi_{24}^2(0.025) = 39.364$	$\chi_{24}^2(0.05) = 36.415$	$\chi_{25}^2(0.025) = 40.646$	$\chi_{25}^2(0.05) = 37.652$
$\chi_{24}^2(0.975) = 12.401$	$\chi_{24}^2(0.95) = 13.848$	$\chi^2_{25}(0.975) = 13.120$	$\chi^2_{25}(0.95) = 14.611$

	草	稿	纸	
姓夕・			学 是・	