Service Manual

ORDER NO. CRT2276

UC, EW, ES

7 INCH WIDE AV SYSTEM DISPLAY /CD PLAYER

7000CD

7 INCH WIDE AV SYSTEM DISPLAY

UC.EW.ES

This service manual should be used together with the following manual(s):

Model	Order No.	Mech. Module	Remarks
AVX-P7000CD/UC,EW,ES	CRT2379		
AVX-7000/UC,EW,ES	CRT2380		

This manual contains the information on the LCD module and the Drive mechanism unit used in the AVX-P7000CD and AVX-7000. For the other information, refer to the main manuals listed above.

CONTENTS

1.	EXPLODED VIEWS AND PARTS LIST	2
2.	SCHEMATIC DIAGRAM	4
3.	PCB CONNECTION DIAGRAM	6
4.	ELECTRICAL PARTS LIST	.10
5.	GENERAL INFORMATION	.12
	5 1 DISASSEMBLY	11

PIONEER CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS SERVICE INC. P.O.Box 1760, Long Beach, CA 90801-1760 U.S.A. PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936

AVX-P7000CD,AVX-7000

1. EXPLODED VIEWS AND PARTS LIST

1.1 DRIVE MECHANISM UNIT

DRIVE MECHANISM UNIT SECTION PARTS LIST

Mark No.	Description	Part No.	MarkNo.D	escription	Part No.
111	ScrewM2X3	FB1521	136	Guide	376Y
112	ScrewM2X9	FB1523	137	ScrewM2.6X2.5	FB1519
113	Spring	FS1573	138	Shaft	FD1233
114	ScrewM2X5.5	FB1522	139	Worm Wheel	373V
115	Gear	FH1267	140	Gear Shaft	FD1232
116	Cover Unit(UC,EW model)	FK1850	141	Gear	373W
	Cover Unit(ES model)	FK1887	142	Gear	374F
117	Washer	FX1055	143	Gear	374G
118	Gear	374K	144	Gear	374H
119	ScrewM2.6X3.5	FB1520	145	Gear	374J
120	Collar	FH1268	146	Toe Gear	376W
121	Gear	374M	147	Guide	376Z
122	Torque Limiter	376F	148	Guide	376X
123	Gear	376J	149	ScrewM1.7X6	FB1524
124	Motor Assy	CXX1398	150	Try Assy	FK1847
125	Gear	376T	151	Spacer	HF1282
126	Gear	376U	152	Sheet	FX2482
127	Gear	376V	153	Motor Assy	CXX1399
128	Gear	FH1266	154	Worm Wheel	373T
129	Spring	FS1574	155	Nonwoven Fabric	FX2618
130 132 133 134 135	ScrewM2X3 Collar Pipe Cushion Guide	FB1031 FX2631 FX2619 FX2483 377A	156	Sheet	FX2594

1.2 LCD MODULE

● LCD MODULE SECTION PARTS LIST

Mark No. Description	Part No.
181 Video Unit	NMP70-8398-112
182 TFT-LCD Module	TFD70W14A
183 B/L Unit	NMP75-8376-211

3

4

В

С

2

7

6

5

_

В

С

D

5 **=** 6 **=** 7 **=**

5

3. PCB CONNECTION DIAGRAM

3.1 VIDEO UNIT

2

3

AVX-P7000CD,AVX-7000

Α

SIDE A

7

NOTE FOR PCB DIAGRAMS

6

5

- The parts mounted on this PCB include all necessary parts for several destination.
 For further information for respective destinations, be sure to check with the schematic diagram.
- 2. Viewpoint of PCB diagrams

_

5

6

7

8

D

8

2

7 ■ 8 AVX-P7000CD,AVX-7000

SIDE B

Α

В

С

 \bigcirc 0 \$0.88 \$0.89 \$0.89 00 \circ 0 LS02 0 0

6

5

6

5

9

8

7

D

5. ELECTRICAL PARTS LIST

NOTE:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

 $RS1/\bigcirc S\bigcirc\bigcirc J,RS1/\bigcirc\bigcirc S\bigcirc\bigcirc J$

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
Unit Number : Unit Name : Video Unit MISCELLANEOUS	RN2422	VR 203 VR 204 VR 205 VR 206 VR 207	
Q 101 Q 102 Q 103 Q 104 Q 105	2SC2712-Y TA78L05F NJM2403M 2SC4541-Y	VR 208 VR 209 VR 210 VR 211 VR 212	
O 106 O 107 O 108 O 201 O 202	2SC3303-Y 2SC3303-Y RN2422 NJW1300A 2SA1298-Y	VR 213 VR 851 X 201 X 202 Z 601	NR18-GW3.58 CSBF503JF502 FLE6911B
Q 203 Q 206 Q 207 Q 208 Q 601	2SC3265-Y RN1403 2SA1162-Y TC74HC4053AFS 2SA1162-Y	Z 603 JP 006 JP 007 JP 008 JP 009	FLE6910B RS1/16S0R0J RS1/16S0R0J RS1/16S0R0J RS1/16S0R0J
O 602 O 651 O 652 O 653 O 801	2SC2712-Y AN6308S 2SC2712-Y 2SC2712-Y FA7610N	JP 201 JP 204 JP 205 JP 206 JP 601	RS1/16S202J RS1/16S10R0F RS1/16S10R0F RS1/16S10R0F RS1/16S0R0J
Q 804 Q 881 D 101 D 851 D 852	2SC3074-Y TA79L05F	JP 602 JP 651 JP 851 JP 852 JP 853	RS1/16S0R0J RS1/16S0R0J RS1/16S0R0J RS1/16S0R0J RS1/16S0R0J
D 853 D 854 D 855 F 101 F 801	1SS250 CEK1173	JP 854 CN 001 CN 002 CN 003 CN 004	RS1/16S0R0J
L 101 L 102		RESISTORS	
L 201 L 202 L 251	LCTA150J3225 LCTA150J3225	R 101 R 102 R 103 R 104	RS1/16S124J RS1/16S203J RS1/16S101J
L 801 L 802 L 851 L 852 L 853	LCTA150J3225 LCTA101J3225 LCTA101J3225	R 104 R 105 R 106 R 107 R 108	RS1/16S103J RS1/16S1002F RS1/16S1003F RS1/16S1003F RS1/16S1003F
L 854 T 101 T 102 T 801 VR 201	LCTA101J3225 FLE6948 FLE6948 FLE6949	R 109 R 110	RS1/16S1002F RS1/16S1002F

AVX-P7000CD,AVX-7000

=====Circuit Symbol and No.===Part Name	Part No.	===	==Circui	t Symbol and No.===Part Na	ame	Part No.
R 111 R 112 R 113 R 114 R 201	RS1/16S105J RS1/16S272J RS1/8S561J RS1/4S122J RS1/16S101J	C C C C	207 208 209 210 212			CKSRYB103K50 CEHV4R7M50 CCSRCH030C50 CKSRYF104Z25 CEHV1R0M50
R 202 R 203 R 204 R 207 R 208	RS1/16S105J RS1/16S101J RS1/16S102J RS1/16S822J RS1/16S562J	C C C C C	213 215 218 219 222			CKSRYF104Z25 CKSRYF104Z25 CKSRYB103K50 CKSRYB103K50 CKSRYB103K50
R 209 R 210 R 211 R 212 R 214	RS1/16S182J RS1/16S272J RS1/16S222J RS1/16S62R0F RS1/16S62R0F	C C C C	230 231 232 233 234			CEHV1R0M50 CKSRYF104Z25 CKSRYB103K25 CEHV2R2M50 CKSRYB682K50
R 215 R 218 R 225 R 226 R 228	RS1/16S101J RS1/16S62R0F RS1/16S472J RS1/16S301J RS1/16S911J	C C C C	236 237 238 239 242			CEHV1R0M50 CEHV1R0M50 CEHV101M6R3 CKSRYB152K50 CEHV470M6R3
R 229 R 230 R 231 R 232 R 237	RS1/16S361J RS1/16S152J RS1/16S183J RS1/16S272J RS1/16S101J	C C C C C	246 247 251 252 253			CKSRYF104Z25 CEHV101M6R3 CCSRCH220J50 CCSRCH220J50
R 238 R 250 R 251 R 601 R 602	RS1/16S101J RS1/16S122J RS1/16S105J RS1/16S102J RS1/16S102J	C C C C	601 651 652 653 654			CEHV220M6R3 CEHV220M6R3 CEHV470M6R3 CKSRYF104Z25 CKSRYF104Z25
R 603 R 604	RS1/16S511J RS1/16S102J	C	655 801			CEHV220M6R3
R 621 R 622	RS1/16S102J RS1/16S102J	CCCCC	803 804			CKSRYB103K50
R 651 R 652	RS1/16S151J RS1/16S151J		805 815			CCSRCH751J25
R 652 R 653 R 654 R 655 R 656	RS1/16S750J RS1/16S750J RS1/16S732J RS1/16S751J	C C C C	851 852 853 854			CKSRYB102K50
R 657 R 658 R 659 R 802 R 803	RS1/16S332J RS1/16S751J RS1/16S332J RS1/16S105J RS1/16S473J	C C C C C	855 856 857 858 859			
R 804 R 805 R 851 R 853 R 854	RS1/16S754J RS1/16S184J RS1/16S621J RS1/16S153J RS1/16S221J	С	885			CKSRYB103K50
R 855 R 856	RS1/16S223J RS1/16S222J			1st production (TFD70W14-MM1)		ning change 070W14-MM2)
CAPACITORS	,	HPOS		JP007: 0Ω Resistor	JP00	08:0Ω Resistor
C 101 C 102 C 103 C 104 C 105	CEHV101M16 CKSRYF104Z25 CEHV330M10 CKSRYF104Z25 CKSRYF104Z25			(HPOS2=Hi)	(HP(OS3=Hi)
C 106 C 107 C 108 C 109 C 110	CKSRYB473K16 CKSRYF104Z25 CEHV100M16 CEHV101M16					
C 202 C 203	CKSRYB103K50					
C 203 C 204 C 205 C 206	CKSRYF104Z25 CKSRYF104Z25 CKSRYB473K16					

5. GENERAL INFORMATION

5.1 DISASSEMBLY

Removing the Back Light Unit

- 1. Remove the four screws.
- 2. Disconnect the two connectors.
- 3. Remove the rear shield and front shield.

4. Disconnect the connector and remove the PCB.

5. Remove the TFD-LCD Module.

CWX2389 LCD module troubleshooting

①No images with the composite signal

AVX-P7000CD,AVX-7000

3No power No power ⊌ NO NO F801 (fuse) is broken out? Replace F801. YES NO 18.5V is obtained at TP02? If not, the resistance Check 18.5V line to remove short-cirbetween TP02 and GND is 100k ohms or more? cuits. (CN003 and its periphery) 7V is obtained at TP03? if not, the resistance Check 7V line to remove short-circuits. between TP03 and GND is 500 ohms or more? (Q201, Q202, Q203, and their periphery) 5V is obtained at TP04? If not, the resistance Check 5V line to remove short-circuits. between TP04 and GND is 35 ohms or more? (Q201, Q208, Q651, and their periphery) (-15.5)V is obtained at TP05? If not, the resistance Check (-15.5)V line to remove short-circuits. between TP05 and GND is 950 ohms or more? (Q881, CN003, and their periphery) (-5)V is obtained at TP06? If not, the resistance Check (-5)V line to remove short-circuits. between TP06 and GND is 400 ohms or more? (Q201, Q202, Q203, and their periphery) Input voltage 9V is obtained at Check F801, input flexible cables, and their periphery. Pin-5 of Q801 (FA7610N)? Triangular waves are obtained at Check Q801 and its periphery. Pin-6 of Q801 (FA7610N)? Switching waves are obtained at Q804 (TR)? Check Q801 and its periphery. Check Transformer (T801) and replace it. **4**Out of Sync Out of Sync YES NO Check input flexible cables, Q651, and their periphery. Video signal is obtained at Q653 (TR)? Video signal is obtained at Pin-60 Check R229 (LPF, 360 ohms) and its periphery. of Q201 (NJW1300A)? Full-wave oscillating waveform is obtained at Check X202 (Ceramic resonator) and its periphery. Pin-55 and Pin-56 of Q201 (NJW1300A)? 5V is obtained at Pin-61 of Go to item3 No power. Q201 (NJW1300A)?

AVX-P7000CD,AVX-7000

Check Q201 (NJW1300A) and replace it.

Pioneer

Service Manual

ORDER NO. CRT2379

UC

7 INCH WIDE AV SYSTEM DISPLAY/CD PLAYER

AVX-P7000CD EW AVX-P7000CD ES

NOTE:

- See the separate manual CX-680(CRT2216) for the cassette mechanism description.
- The CD mechanism assy employed in this model is one of H1 series.
- For the details of the LCD module and the drive mech unit, refer to the separate manual CRT2276.

CONTENTS

1. SAFETY INFORMATION2	7. GENERAL INFORMATION	48
2. EXPLODED VIEWS AND PARTS LIST3	7.1 DIAGNOSIS	48
3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM12	7.1.1 TEST MODE	48
4. PCB CONNECTION DIAGRAM31	7.1.2 DISASSEMBLY	52
5. ELECTRICAL PARTS LIST41	7.1.3 PCB LOCATIONS	59
6. ADJUSTMENT46	7.2IC	60
	7.3 MECHANISM DESCRIPTIONS	66
	8 OPERATIONS AND SPECIFICATIONS	70

PIONEER ELECTRONIC CORPORATION
4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS SERVICE INC.
P.O.Box 1760, Long Beach, CA 90801-1760 U.S.A.
PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium
PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936

AVX-P7000CD

- CD Player Service Precautions
- For pickup unit(CXX1290) handling, please refer to "Disassembly" (see page 55).
 - During replacement, handling precautions shall be taken to prevent an electrostatic discharge(protection by a short pin).
- 2. During disassembly, be sure to turn the power off since an internal IC might be destroyed when a connector is plugged or unplugged.
- 3. Please checking the grating after changing the service pickup unit(see page 46).

1. SAFETY INFORMATION

CAUTION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should mot risk trying to do so and refer the repair to a qualified service technician.

WARNING

This product contains lead in solder and certain electrical parts contain chemicals which are known to the state of California to cause cancer, birth defects or other reproductive harm.

Health & Safety Code Section 25249.6 - Proposition 65

- 1. Safety Precautions for those who Service this Unit.
- When checking or adjusting the emitting power of the laser diode exercise caution in order to get safe, reliable
 results.

Caution:

- 1. During repair or tests, minimum distance of 13cm from the focus lens must be kept.
- 2. During repair or tests, do not view laser beam for 10 seconds or longer.
- 2. A "CLASS 1 LASER PRODUCT" label is affixed to the rear of the player.
- 3. The triangular label is attached to the mechanism unit frame.

4. Specifications of Laser Diode

Specifications of laser radiation fields to which human access is possible during service. Wavelength = 800 nanometers

2. EXPLODED VIEWS AND PARTS LIST

2.1 PACKING

AVX-P7000CD

NOTE:

- Parts marked by "*" are generally unavailable because they are not in our Master Spare Parts List.
- \bullet Screws adjacent to ∇ mark on the product are used for disassembly.
- PACKING SECTION PARTS LIST

				Part No.	
Mark I	No.	Description	AVX-P7000CD/UC	AVX-P7000CD/EW	AVX-P7000CD/ES
	1	Carton	CHG3804	CHG3802	CHG3803
	2	Contain Box	CHL3804	CHL3802	CHL3803
	3	Protector	CHP2163	CHP2163	CHP2163
	4	Protector	CHP2164	CHP2164	CHP2164
	5	Cord Assy	CDE5930	CDE5930	CDE5930
	6	Cord Assy	CDE5908	CDE5908	CDE5908
		Cord Assy	CDE6033	CDE6033	CDE6033
		Speaker Assy	CXB4203	CXB4203	Not used
		Accessory Assy	CEA2547	CEA2547	CEA2547
	10	Screw	CBA1002	CBA1002	CBA1002
	11	Handle	CNC5395	CNC5395	CNC5395
	12	Bush	CNV1917	CNV1917	CNV1917
×		Polyethylene Bag	E36-615	E36-615	E36-615
*	14	Polyethylene Bag	CEG-127	CEG-127	CEG-127
	15	Polyethylene Bag	CEG1173	CEG1042	CEG1042
1	6-1	Owner's Manual	CRD3011	CRD3013	CRD3044
1	6-2	Owner's Manual	Not used	CRD3014	Not used
1	6-3	Installation Manual	Not used	CRD3015	Not used
		Warranty Card	Not used	CRY1087	Not used
* 1		Card	ARY1048	Not used	Not used
	17	Polyethylene Bag	Not used	CEG1116	Not used
	18	Screw	CBA1468	CBA1468	CBA1468
	19	Screw	CMZ50P060FMC	CMZ50P060FMC	CMZ50P060FMC
	20	Screw	BMZ50P060FMC	BMZ50P060FMC	BMZ50P060FMC
	21	Cord Assy	CDE5939	CDE5939	CDE5939

Owner's Manual and Installation Manual

Model	Part No.	Language
AVX-P7000CD/UC	CRD3011	English,French
AVX-P7000CD/EW	CRD3013	English,Spanish,German
	CRD3014	French, Italian, Dutch
	CRD3015	English,Spanish,Dutch,German,French,Italian
AVX-P7000CD/ES	CRD3044	English,Spanish

2.2 EXTERIOR(1/2)

(1) EXTERIOR SECTION PARTS LIST

Mark No.	Description	Part No.	Mark N	No.	Description	Part No.
1	Screw	BMZ26P050FZK		46	IC(IC1)	SBX8035-H
	IC(IC24)	PNA4603H00LB			Spacer	CNM6200
	Screw	BSZ26P040FMC			Rack	CNV5737
	Screw	BSZ30P040FMC			Rack	CNV5737 CNV5738
=					Chassis Unit	
5	Transistor(Q1801,Q1809)	25D2396		50	Chassis Onit	CXB3769
	Screw(M2x2)	CBA1487			Screw	BPZ20P100FMC
	Connector	CDE5925			Screw	BPZ20P120FZK
	Cord Assy	CDE5930			Screw	BPZ26P050FMC
9	Fuse(4A)	CEK1001		54	Button(ANGEL,WIDE)	See Contrast table(2)
10	Сар	CNS1472		55	Screw	See Contrast table(2)
11	Screw	UFZ26P030FMC		56	Screw	CBA1481
12	Resistor	RS1/2PMF102J		57	Screw	CBA1482
13	Case	CNB2458		58	Screw	CBA1484
14	Holder	CNC6798		59	Connector	CDE5924
	Bracket	CNC8260			Case	CNC8405
						0.100.00
16	Bracket	CNC8261		61	••••	
17	Holder	CNC8359		62	Insulator	CNM6314
18	Holder	CNC8387		63	Insulator	CNM6315
19	Insulator	CNM6199		64	Insulator	CNM6339
20	Insulator	CNM6201		65	Insulator	CNM6340
21	PCB	CNP5539		66	PCB	CNP5449
22	Panel	See Contrast table(2)		67	PCB	CNP5451
23	Cord Assy	See Contrast table(2)		68	Cover	See Contrast table(2)
	Cord Assy	See Contrast table(2)			Holder	CNV5744
	Cord Assy	CDE6138			Holder	CNV5842
26	System Micro Computer Unit	See Contrast table(2)		71	Relay Unit	CWM6425
	Screw	ASZ26P100FMC			Connector(CN52)	CKS3124
	Clamper	CEF1009			Connector(CN53)	CKS3124
	Plug(CN1801)	CKS-461			Connector(CN57)	CKS3125
	Connector(CN1604)	CKS3125			Connector(CN51)	CKS3802
21	Connector(CN1601)	CKS4064		76	Connector(CN55)	CKS4132
		CKS4064				
	Connector(CN1602)				LCD Keyboard Unit	See Contrast table(2)
	Connector(CN1603)	CKS4066			Connector(CN21)	CKS4057
	Holder	CNC8259			Spacer	CNM6271
35	Heat Sink	CNC8262		80	Encoder Unit	CWM6587
	CD Micro Computer Unit	CWM6444			Screw	CBA1483
	Connector(CN2601)	CKS1968			Connector(CN56)	CKS3125
	Connector(CN2002)	CKS3132			Bracket	CNC8406
39	Connector(CN2001)	CKS3133		84	Gear	CNV5841
40	Connector(CN2901)	CKS3133		85	LCD Module	CWX2389
41	Connector(CN2902)	CKS3971		86	Grille Unit	See Contrast table(2)
	Connector(CN2602)	CKS4054		87	Drive Mechanism Unit	See Contrast table(2)
	Connector(CN2603)	CKS4063			Screw	BPZ20P060FMC
	Connector(CN2604)	CKS4063			Button	CAC6025
	Connector(CN2605)	CKS4065			Button	CAC6026
45		0.104000		50	Datton	J, 100020

AVX-P7000CD

Mark No.	Description	Part No.
	Cover	CNM6470
	Panel Keyboard Unit	See Contrast table(2)
	Connector(CN1)	CKS4054
	Spacer	CNM6272
95	Grille Unit	See Contrast table(2)
96	Detach Grille Assy	See Contrast table(2)
	Screw	BPZ20P060FZK
•	Button(Detach)	See Contrast table(2)
	Button(+)	See Contrast table(2)
	Button(-)	See Contrast table(2)
100	Button()	occ contrast table(2)
101	Button(CD EJECT)	See Contrast table(2)
102	Button(OPEN/CLOSE)	See Contrast table(2)
103	Button(RESET)	See Contrast table(2)
104	Spring	CBH2239
105	Spring	CBH2302
	_	
	Cover	See Contrast table(2)
	Grille	See Contrast table(2)
	CD Mechanism Module(H1)	
	Cord Assy	See Contrast table(2)
110	Cord Assy	See Contrast table(2)

(2) CONTRAST TABLE AVX-P7000CD/UC , AVX-P7000CD/EW and AVX-P7000CD/ES are constructed the same except for the following:

			Part No.	
Mark No.	Description	AVX-P7000CD/UC	AVX-P7000CD/EW	AVX-P7000CD/ES
22	Panel	CNS5427	CNS5427	CNS5550
23	Cord Assy	CDE5934	CDE5934	Not used
24	Cord Assy	CDE6030	CDE6030	Not Used
26	System Micro Computer Unit	CWM6430	CWM6431	CWM6430
54		CAC6107	CAC6107	CAC6024
55	Screw	CBA1477	CBA1477	CBA1475
68	Cover	CNS5499	CNS5499	CNS5420
77	LCD Keyboard Unit	CWM6426	CWM6427	CWM6426
86	Grille Unit	CXB4533	CXB4533	CXB4534
87	Drive Mechanism Unit	CXB4204	CXB4204	CXB4205
92	Panel Keyboard Unit	CWM6439	CWM6438	CWM6439
95	Grille Unit	CXB4554	CXB4554	CXB4551
96	Detach Grille Assy	CXB4227	CXB4226	CXB4228
98	Button	CAC6031	CAC6031	CAC6151
99	Button	CAC6108	CAC6108	CAC6027
100	Button	CAC6109	CAC6109	CAC6028
101	Button	CAC6110	CAC6110	CAC6029
102	Button	CAC6111	CAC6111	CAC6030
103	Button	CAC6112	CAC6112	CAC6032
106	Cover	CNS5503	CNS5503	CNS5424
107	Grille	CNS5504	CNS5502	CNS5505
109	Cord Assy	Not used	Not used	CDE5937
110	-	Not used	Not used	CDE6070

2.3 CD MECHANISM MODULE

● CD MECHANISM MODULE SECTION PARTS LIST

	Description	Part No.		o. Description	Part No.
1	Control Unit	CWX2350	5	1 Spring	CBH2039
2	Connector(CN701)	CKS1968	5	2 Rack	CNV5471
	Connector(CN802)	CKS3477	5	3 Bracket Unit	CXB1674
	Connector(CN801)	CKS3481		4 Screw Unit	CXB1676
5	Connector(CN101)	CKS3486	b	5 Chassis Unit	CXB3042
6	Screw	BMZ20P025FMC	5	6 Washer	CBF1038
7	Screw(M2×2.5)	CBA1037	5	7 Spring	CBH2035
8	Screw(M2×5)	CBA1296	5	8 Spring	CBH2036
	Screw(M2×1.8)	CBA1340		9 Lever	CNV5078
	Screw(M2×4)	CBA1362		0 Lever Unit	CXB3207
10	Screw(IVIZ×4)	CDA 1302	C	o Lever Onit	CAB3207
11	Screw(M2×9)	CBA1440	6	1 Arm Unit	CXB1680
12	Spring	CBH2029	6	2 Washer	CBF1038
	Spring	CBH2030	6	3 Gear	CNV5083
	Spring			4 Gear	CNV5084
		CBH2031			
15	Spring	CBH2032	6	5 Bracket Unit	CXB1682
16	Spring	CBH2033	6	6 Bracket	CNC7292
17	Spring	CBH2207	6	7 ••••	
	Spring	CBH2040	6	8 LOAD Motor Unit(M2)	CXB1684
	Spring	CBH2041		9 Screw	JFZ14P020FNI
	Spring	CBH2042		0 Screw(M2×2)	CBA1451
20	Spring	CDFI2U42	,	U Screw(IVIZ×Z)	CDA 1431
21	Spring	CBH2052	7	1 Washer	CBF1037
22	Shaft	CLA3232	7	2 Washer	CBF1060
23	Frame	CNC8264	7	3 Screw	CBH2170
	Frame	CNC7286		4 Roller	CLA3222
	Lever	CNC7288		5 Roller	CNV3412
25	Levei	CINC/200	,	5 Notice	CIVV3412
26	Lever	CNC7289		6 Arm	CNV5075
27	Cover	CNC7294	7	7 Roller Gear Unit	CXB1686
28	Cover	CNC7304	7	8 Bracket Unit	CXB2627
29	Sheet	CNM5401		9 ••••	
	Sheet	CNM5402		0 •••••	
04	Charat	CNINAFOAA		4. \A/	VEGGELIC
	Sheet	CNM5814		1 Washer	YE20FUC
32	PCB	CNP4854		2 Guide Arm Assy	CXB1688
33	Belt	CNT1082	8	3 Photo-transistor(P1-3)	CPT-230S-X
34	Damper	CNV5855	8	4 Clamp Arm Assy	CXB3137
35	Gear	CNV5080		5 ••••	
26	Gear	CNV5081	* Q	6 Sheet	CNM5398
			U	7 •••••	CININIDAGO
	Gear	CNV5082	•	•	0)/1,44465
	Holder	CNV5098		8 Motor(M3)	CXM1129
	Guide	CNV5352		9 Washer	YE25FUC
40	Mechanism FPC Unit	CWX2191	9	0 Pickup Unit(Service)	CXX1290
41	Connector	CKS3767	q	1 Screw	IMS20P035FM
	PCB	CNP4852		2 Spring	CBH2206
43	Arm	CNC7287		3 Bracket	CNC7977
	•••••		-	4 ••••• 5 Sheet	CNM6055
75			J	5 5/1000	3.11113033
	•••••			6 CRG Motor Assy(M1)	CXB1670
47	Bracket	CNC7300	9	7 Spring	CBL1412
.,	000 14	CVD4074	_	0. 0	INACOODOOEENA
	CRG Motor Unit	CXB1671	9	8 Screw	IIVISZUPUZSFIVI
* 48	Screw	JFZ14P020FNI	9	8 Screw	IMS20P025FM

AVX-P7000CD

3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM

3.2 SYSTEM MICRO COMPUTER UNIT

Note: When ordering service parts, be sure to refer to "EXPLODED VIEWS AND PARTS LIST" or "ELECTRICAL PARTS LIST".

3

14

В

С

D

2

A

В

Α

В

С

D

3.3 CD MICRO COMPUTER UNIT

2

3

В

16

2

3

-

B

В

С

Α

В

С

D

3.4 RELAY UNIT AND ENCODER UNIT

2

3

4

2

3

C

В

С

AVX-P7000CD

3.5 LCD KEYBOARD UNIT

3

D

20

D

2

3

3

3.6 PANEL KEYBOARD UNIT

2

E J

3

⊃1

3.7 CD MECHANISM MODULE(GUIDE PAGE)

В

С

D

G-b

6

5

G CONTROL UNIT

7

G

23

5

6

AVX-P7000CD

Α

В

С

D

26

2

Note:1. The encircled numbers denote measuring pointes in the circuit diagram.

2. Reference voltage REFO:2.5V

Waveforms

NOTE FOR PCB DIAGRAMS

1. The parts mounted on this PCB include all necessary parts for several destination. For further information for respective destinations, be sure to check with the schematic diagram.

COMPUTER UNIT SYSTEM MICRO

DIAGRAM

Q1816 Q1815 ω

AVX-P7000CD

Q1812 Q1805 IC18Ø1Q18Ø3 Q1813 Q181Ø Q1811

Q16Ø3

Q16Ø2

Q1817

2. Viewpoint of PCB diagrams

C

SYSTEM MICRO COMPUTER UNIT

C

B CD MICRO COMPUTER UNIT

 \Box

AVX-P7000CD

SIDE B

В

С

4.3 RELAY UNIT

2

3

RELAY UNIT

4.4 ENCODER UNIT

CF

33

2

O

LCD KEYBOARD UNIT

C

SIDE A

ANGLE-IC,Q WIDE s21 ANGLE+ IC24 0

C CN55 0 051 052 IC' 0

SIDE B

LCD KEYBOARD UNIT

RESET

OPEN/CLOSE

IC,Q

IC1 Q2 Q3

0

BRIGHT- BRIGHT+

CD EJECT

TO IS SIDE B

PANEL KEYBOARD UNIT

C

DSEN

4

 Ω

O

4.7 CD MECHANISM MODULE

SIDE A

G CONTROL UNIT IC,Q •□• R3Ø1 •H• C3Ø1 Q1Ø3 C7Ø2 ‡ Q1Ø4 Q6Ø1 Q1Ø1 Q6Ø2 Q6Ø3 IC2Ø1 Q1Ø2 IC2Ø1 IC5Ø2 IC6Ø1 IC5Ø1 IC8Ø1

36 **C**

D

В

1 2 3 4

SIDE B

G

3

37

Α

В

С

D

20/2 \odot EJ2 R4 192 040 751 GND M1 CARRIAGE LOADING M2 •<u>R2</u> 080 BK **E** QA, 000000000 **G** CN801 751R5 MECHANISM FPC UNIT

38

1 2 = 3 = 4

■ 1 ■ 2 ■ 3 ■ 4
AVX-P7000CD

2

3

1

А

В

С

.

D

5. ELECTRICAL PARTS LIST

NOTE:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

 $\mathsf{RS1/} \bigcirc \mathsf{S} \bigcirc \bigcirc \cup \mathsf{J,RS1/} \bigcirc \cup \mathsf{S} \bigcirc \bigcirc \cup \mathsf{J}$

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

====	==Circu	iit Symbol and No.===Part Name	Part No.	===	==Circu	it Symbol and No.===Part Name	Part No.
C Unit Number : CWM6425 Unit Name : Relay Unit				A	7	it Number :CWM6430(U :CWM6431(E\	N model)
MIS	SCELL	ANEOUS				it Name :System Micro Co	mputer Unit
IC	51	IC	TC74VHC123AFT	MIS	SCELL	ANEOUS	
Q D	51 51	Transistor Diode	DTC124EU MA110		1601	IC	PE5038A
D	52	Diode	MA110 MA110	IC IC	1801 1802	IC IC	BA6247FP BA00ASFP
L	51	Inductor	CTF1379	Q	1602	Transistor	DTB122JK
Ļ	52	Inductor	CTF1379	Q	1603	Transistor	IMX2
L L	53 54	Inductor Inductor	CTF1379 CTF1379	Q	1801	Transistor	2SD2396
Ĺ	54 55	Inductor	CTF1379 CTF1379	Q	1802	Transistor	UMD12N
Ē	56	Inductor	CTF1379	Q Q	1803 1805	Transistor Transistor	IMD3A 2SD1760F5
				Q	1806	Transistor	2SA1036K
L	57	Inductor	CTF1379	_			
Ļ	58	Inductor	CTF1379	Q	1807	Transistor	2SC4081
Ļ	59 60	Inductor	CTF1306		1808	Transistor	UMD12N
L L	61	Inductor Inductor	CTF1306 CTF1306		1809	Transistor	2SD2396
-	01	madetor	011 1000	Q Q	1810 1811	Transistor Transistor	2SA1797 2SC4081
L	62	Inductor	CTF1379	Q	1011	11411313101	2004001
Ļ	63	Inductor	CTF1488	Q	1812	Transistor	DTC124EU
L L	64 65	Inductor Inductor	CTF1488 CTF1488	Q	1814	Transistor	UMX2N
Ĺ	66	Inductor	CTF1488		1815	Transistor	DTA114EU
-	00	madetor	011 1400	O D	1816 1601	Transistor Diode	DTC124EU MA8027(H)
L	67	Inductor	CTF1379		1001	Blode	1417-10027 (11)
L	68	Inductor	CTF1379	D	1602	Diode	MA8027(H)
S	51	Spring Switch(Back sensor SW)	CSN1033	D	1801	Diode	MA8091(L)
RES	SISTO	RS		D D	1802 1803	Diode Diode	SC016-2 UDZS5R6(B)
				D	1805	Diode	UDZS10(B)
R	51		RS1/16S332J	_			
R	52		RS1/16S102J	D	1806	Diode	MA8068(M)
R R	53 54		RS1/16S473J RA3C102J	D	1809	Diode	MA8075(H)
R	56		RS1/16S103J	D L	1810 1601	Diode Inductor	SC016-2 CTF1399
			,	Ĺ	1603	Inductor	CTF1399
R	57		RS1/16S102J	_			
R	58		RS1/10S102J	Ļ	1604	Inductor	CTF1399
R R	59 60		RS1/16S822J RS1/10S102J	Ļ	1605	Inductor	CTF1399
R	61		RS1/16S822J	L	1801 1801	Inductor Micro-Fuse 2A	CTF1487 CEK1190
			,		1802	Micro-Fuse 2A Micro-Fuse 400mA	CEK1184
CAF	CAPACITORS						
С	51		CCSRCH220J50	Х	1601	Radiator 6.290MHz	CSS1451
Č	52		CCSRCH220J50	RE	SISTO	RC	
č	53		CCSRCH220J50	nL.	31310	no	
C	54		CKSQYB105K10	R	1610		RS1/16S473J
С	63		CKSRYB102K50	R	1616		RS1/16S102J
_	64		CVCDVD 471VEO	R	1618		RS1/16S102J
C C	65		CKSRYB471K50 CCSRCH471J50	R	1620		RS1/16S473J
Č	66		CKSYB475K10	R	1624		RA2CQ473J
-				R	1625		RA2CQ223J
				R	1626		RA2CQ473J
				R	1629	(110 F0 1-1)	RS1/16S103J
				R	1630	(UC,ES model)	RS1/16S473J
				R	1631		RS1/16S473J

====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
R 1801 R 1802 R 1803 R 1805 R 1806	RS1/4S221J RS1/10S911J RS1/16S822J RS1/16S473J RS1/10S272J	O 2004 Transistor O 2601 Transistor O 2602 Transistor O 2603 Transistor O 2604 Transistor	DTA114EU 2SC4081 DTC114TU 2SC4081 UMD12N
R 1807 R 1809 R 1810 R 1811 R 1812	RS1/8S301J RS1/16S472J RS1/16S473J RS1/4S331J RS1/16S682J	Q 2606 Transistor Q 2607 Transistor Q 2608 Transistor Q 2609 Transistor Q 2611 Transistor	UMG1 2SC4081 2SC4081 DTA114EU DTB123EK
R 1813 R 1815 R 1816 R 1824 R 1825	RS1/16S473J RS1/16S471J RA4C102J RS1/16S223J RS1/16S473J	Q 2612 Transistor D 2601 Diode D 2602 Diode D 2603 Diode D 2604 Diode	DTC115EUA MA8082(M) MA110 MA110 MA110
R 1826 R 1827 R 1828 R 1829 R 1831	RS1/16S103J RS1/16S473J RS1/16S473J RS1/16S473J RS1/16S473J	D 2605 Diode D 2606 Diode D 2901 Diode D 2902 Diode D 2903 Diode	MA8075(H) MA110 MA8062(M) MA8062(M) MA8062(M)
R 1832 R 1833 R 1834 R 1835 CAPACITORS	RS1/16S103J RS1/16S474J RS1/16S163J RS1/16S222J	D 2904 Diode FU 2901 Micro-Fuse 2A FU 2902 Micro-Fuse 2A FU 2903 Micro-Fuse 1A EF 2901	MA8062(M) CEK1190 CEK1190 CEK1191 CCG1067
		EF 2902	CCG1067
C 1610 C 1611 C 1612 C 1616 C 1617	CKSRYB473K16 CKSRYB473K16 CKSRYB102K50 CKSRYB104K16 CKSRYB104K16	L 2601 Inductor L 2602 Inductor L 2901 L 2902 Inductor	LCTB2R2K2125 CTF1399 CTF1421 LCTB2R2K2125
C 1801 100μF/16V C 1802 C 1803 C 1804	CCH1228 CKSRYB473K16 CEHAT102M16 CKSRYB103K50	L 2905 Inductor X 2601 Radiator 4.19MHz RESISTORS	LCTB2R2K2125 CSS1436
C 1806 C 1807 C 1808 C 1809 100µF/16V C 1810	CKSRYB103K50 CEV220M6R3 CKSRYB103K50 CCH1228 CKSRYB473K16	R 2001 R 2002 R 2003 R 2004 R 2005	RS1/16S181J RS1/16S181J RS1/16S223J RS1/16S223J RS1/16S102J
C 1811 C 1812 C 1813 C 1814 C 1815	CEHAT102M16 CKSRYB223K25 CKSRYB223K25 CEV101M10 CKSQYB105K16	R 2006 R 2007 R 2008 R 2009 R 2010	RS1/16S102J RS1/16S821J RS1/16S821J RS1/16S223J RS1/16S223J
C 1816 C 1817 C 1818 C 1820 C 1821	CKSQYB105K16 CKSRYB104K16 CKSRYB104K16 CKSRYB104K16 CEHAT102M16	R 2011 R 2012 R 2013 R 2017 R 2018	RS1/16S104J RS1/16S103J RS1/16S103J RS1/16S104J RS1/16S104J
Unit Number: CWM6444 Unit Name: CD Micro Co	CEH100M16	R 2019 R 2025 R 2026 R 2027 R 2028	RS1/16S473J RS1/16S333J RS1/16S333J RS1/16S683J RS1/16S683J
IC 2001 IC IC 2002 IC IC 2601 IC IC 2602 IC	TA2050F BA3129F PE5046B CA0008AM	R 2029 R 2030 R 2601 R 2602 R 2604	RS1/16S433J RS1/16S433J RS1/16S472J RS1/16S473J RS1/16S101J
IC 2604 IC IC 2801 IC IC 2901 IC IC 2904 IC	S-80734ANDYI NJM78L08UA TC7W34FU BA7071F FMG12	R 2605 R 2606 R 2607 R 2608 R 2609	RS1/16S101J RS1/16S102J RS1/16S102J RS1/16S473J RS1/16S473J
Q 2001 Transistor Q 2003 Transistor	PMG12 DTC144EU	R 2610 R 2611 R 2612 R 2613 R 2614	RS1/16S472J RS1/16S223J RS1/16S473J RS1/16S472J RS1/16S392J

====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
R 2615	RS1/16S102J	C 2605	CKSRYB103K50
R 2616	RS1/16S473J	C 2606	CKSRYB103K50
R 2617	RS1/16S102J	C 2607	CCSRCH220J50
R 2618	RS1/16S473J	C 2608	CKSRYB102K50
R 2619	RS1/16S223J	C 2609	CCSRCH220J50
R 2620	RS1/16S223J	C 2610	CCSRCH220J50
R 2621	RS1/16S103J	C 2611	CCSRCH220J50
R 2622	RS1/16S223J	C 2612	CCSRCH220J50
R 2625	RS1/16S102J	C 2615	CKSQYB105K10
R 2626	RA3C221J	C 2801	CKSRYB473K16
R 2627	RS1/16S681J	C 2802	CEV100M16
R 2628	RA3C221J	C 2803	CEV100M16
R 2629	RA3C102J	C 2901	CKSRYB103K50
R 2630	RA3C221J	C 2902	CKSRYB103K50
R 2631	RA3C221J	C 2909	CKSRYB561K50
R 2632 R 2633 R 2634 R 2635 R 2636	RS1/16S472J RS1/16S222J RA2CO473J RA2CO222J RS1/16S473J	C 2910 C 2912 C 2913 Unit Number : CWM6439(UC	
R 2637 R 2638 R 2639 R 2640 R 2641	RS1/16S221J RS1/16S102J RA2CQ221J RA2CQ221J RS1/16S473J	Unit Name : Panel Keyboar	
R 2642	RS1/16S222J	IC	SBX8035-H
R 2645	RS1/16S473J		DTD114EK
R 2646	RS1/16S473J		DTD114EK
R 2647	RA2C0473J		FMG1A
R 2648	RA2C0473J		SML210LT
R 2649	RS1/16S224J	D 2 LED D 3 LED D 5 LED(EW model) S 1 Push Switch S 2 Push Switch	CL155DPGD
R 2650	RS1/16SS1003D		CL170PGCD
R 2652	RS1/16S221J		CL170DCD
R 2653	RS1/16S473J		CSG1122
R 2654	RA2CQ473J		CSG1122
R 2902 R 2903 R 2905	RA2CQ471J RS1/16S561J RA2CQ471J	S 3 Push Switch S 4 Push Switch S 5 Spring Switch S 6 Push Switch	CSG1122 CSG1122 CSN1046 CSG1111
CAPACITORS		RESISTORS	
C 2001	CKSQYB105K10	R 1	RS1/4S681J
C 2002	CKSQYB105K10	R 2	RS1/4S681J
C 2003	CKSQYB105K10	R 3	RS1/16S100J
C 2004	CKSQYB105K10	R 4	RS1/16S472J
C 2005	CKSQYB106K6R3	R 5	RS1/4S681J
C 2006	CKSYB106K6R3	R 6	RS1/4S681J
C 2007	CKSRYB222K50	R 7	RS1/4S681J
C 2008	CKSRYB222K50	R 8	RS1/4S681J
C 2009	CSZSR100M16	R 9	RS1/16S202J
C 2010	CSZSR100M16	R 10	RS1/16S182J
C 2011	CKSRYB104K16	R 11	RS1/16S302J
C 2012	CKSRYB104K16	R 12	RS1/16S622J
C 2013	CKSQYB105K10	R 13 (UC,ES model)	RS1/16S0R0J
C 2014	CKSQYB105K10	R 14 (UC,ES model)	RS1/16S0R0J
C 2015	CEV470M6R3	R 15	RS1/16S472J
C 2019 C 2020 C 2021 C 2022 C 2023	CKSQYB105K10 CKSQYB105K10 CKSRYB221K50 CKSRYB221K50 CCSRCH330J50	R 16 R 18 (EW model) CAPACITORS C 1	RS1/4S681J RS1/10S0R0J CKSQYB105K10
C 2024 C 2601 C 2602 C 2603 C 2604	CCSRCH330J50 CKSRYB102K50 CKSRYB102K50 CKSRYB104K16 CKSRYB103K50		CROCILITIONIU

====Circuit Symbol and No.===Part Name			Part No.	====Circuit Symbol and No.===Part Name	Part No.
D		it Number : CWM6426(UC CWM6427(EW it Name : LCD Keyboard	' model)	G Unit Number: CWX2350 Unit Name: Control Unit	
MIS	CELL	ANEOUS		MISCELLANEOUS	1100057000
IC IC Q Q D	21 24 21 22 25	IC IC Transistor(EW model) Transistor LED	BU2092FV PNA4603H00LB UMG1 DTC124EU SML020PDT	IC 101 IC IC 201 IC IC 301 IC IC 501 IC IC 601 IC	UPC2572GS UPD63702AGF BA6797FM PD4501B TA2063F
D D D D	26 27 28 29 30	LED LED LED LED LED	SML020PDT SML020PDT SML020PDT SML020PDT SML020PDT	C 702 C C R C C C R C C C	BA05SFP LB1930M 2SD1664 UMD2N 2SD1781K
L S S S	21 21 21 22 22	Inductor Push Switch(UC,ES model) Push Switch(EW model) Push Switch(UC,ES model) Push Switch(EW model)	LCTB2R2K2125 CSG1112 CSG1113 CSG1112 CSG1113	O 602 Transistor O 603 Transistor D 601 Diode D 701 Diode X 201 Ceramic Oscillator 16.93MHz RESISTORS	2SD1781K 2SB709A MA151WA 1SR154-400 CSS1363
s s RES	23 23 SISTO	Push Switch(UC,ES model) Push Switch(EW model) RS	CSG1112 CSG1113	R 101 R 102 R 104	RS1/8S100J RS1/8S120J RS1/16S822J
R	21		RS1/16SS102J	R 105 R 106	RS1/16S682J RS1/16S183J
R R R R	22 23 24 25		RS1/4S471J RS1/16S202J RS1/16S182J RS1/16S302J	R 107 R 108 R 109 R 110	RS1/16S822J RS1/16S333J RS1/16S683J RS1/16S134J
R R R R	27 28 29 31 32		RS1/16S101J RS1/16S104J RS1/16S102J RS1/16S473J RS1/10S181J	R 111 R 112 R 113 R 114	RS1/16S273J RS1/16S222J RS1/16S103J RS1/16S103J
R R R R	33 34 35 36 37	(UC,ES model)	RS1/10S181J RS1/10S181J RS1/10S181J RS1/10S181J RS1/16S0R0J	R 115 R 116 R 117 R 120 R 121	RS1/16S102J RS1/16S163J RS1/16S163J RS1/16S101J RS1/16S101J
R R R R	38 39 40 41 47	(UC,ES model) (EW model)	RS1/4S681J RS1/16S472J RS1/16SS102J RS1/16S0R0J RS1/16S0R0J	R 125 R 201 R 202 R 206 R 207 R 208	RS1/16S102J RS1/16S104J RS1/16S473J RS1/16S101J RS1/16S0R0J RS1/16S0R0J
CAF	PACIT	ORS		R 301	RS1/16S303J
C C C	21 23 24 28		CKSQYB105K10 CKSYB475K10 CKSQYB103K50 CKSRYB474K10	R 302 R 303 R 304 R 305 R 306	RS1/16S203J RS1/16S303J RS1/16S203J RS1/16S103J RS1/16S203J
MIS	Un	it Number: CWM6587 it Name: Encoder Unit ANEOUS		R 307 R 308 R 310 R 311	RS1/16S103J RS1/16S103J RS1/16S102J RS1/16S102J
VR	51	Volume 10k $\Omega(B)$	CCW1025	R 502	RS1/16S0R0J
J	Un	it Number: it Name : SW Unit ANEOUS		R 601 R 602 R 603 R 604 R 605	RS1/16S102J RS1/16S102J RS1/16S223J RS1/16S223J RS1/16S162J
S	52	Switch(SENSOR)	CSN1052	R 606 R 607 R 705 R 706 R 707	RS1/16S162J RS1/16S103J RS1/16S102J RS1/16S681J RS1/16S681J

===	==Circuit Symbol and No.===Part Name	Part No.	===:	==Circui	t Symbol and No.===Part Name	Part No.
R R R R R	708 709 710 714 716	RS1/16S681J RS1/16S681J RS1/16S102J RS1/16S102J RS1/16S0R0J	P P P	Unit Unit	Number: Name: Photo FPC Unit Photo-transistor Photo-transistor Photo-transistor	CPT-230S-X CPT-230S-X CPT-230S-X
R R	717 718	RS1/16S0R0J RS1/16S102J	Mis		eous Parts List	
CA ccccc cccc	PACITORS 101 102 103 104 105 106 107 108 109	CEVL101M6R3 CKSQYB104K16 CEVL470M6R3 CKSQYB334K16 CCSRCH330J50 CKSRYB103K25 CEVL4R7M35 CKSRYB273K25 CCSRCH101J50	M M M M	1 2 3 51 52	CRG Motor Assy(CARRIAGE) LOAD Motor Unit(LOADING) Motor(SPINDLE) Pickup Unit(Service) Motor(ANGLE) Motor(POSITION)	CXB1670 CXB1684 CXM1129 CXX1290 FX2484 FX2484
0 0000	110 111 112 113 114 115	CKSQYB104K16 CKSRYB332K50 CKSRYB473K16 CKSRYB103K25 CKSRYB391K50 CCSRCH121J50				
CCCC	116 117 118 119 120	CKSRYB682K25 CKSRYB333K16 CKSQYB334K16 CKSQYB334K16 CKSQYB334K16				
0000	121 122 123 124 125	CKSQYB334K16 CKSQYB104K16 CKSRYB472K50 CKSQYB104K16 CCSRCH6R0D50				
C C C C	126 127 201 202 203	CKSRYB153K25 CCSRCH102J25 CKSQYB334K16 CKSQYB104K16 CKSQYB104K16				
C C C C	204 303 305 306 309	CKSRYB471K50 CEVL470M16 CKSRYB103K25 CKSRYB103K25 CKSYB475K10				
C C C C	601 602 603 604 605	CEV101M6R3 CKSQYB104K16 CEV220M6R3 CEV4R7M35 CEV4R7M35				
C C C C	606 607 701 702 703 22µF/6.3V	CKLSRB152K50 CKLSRB152K50 CEV100M25 CKSQYB334K16 CCH1300				
С	⁷⁰⁴ ■ Unit Number:CWX2191	CEVL101M6R3				
D	Unit Name : Mechanism FF 1 LED	PC Unit CL200IRX				
D D S S	2 LED 3 LED 1 Spring Switch(CLAMP) 2 Spring Switch(HOME)	CL200IRX CL200IRX CSN1033 CSN1033				
R R R R	1 2 3 4 5	RS1/8S0R0J RS1/8S0R0J RS1/8S751J RS1/8S751J RS1/8S751J				

6. ADJUSTMENT

6.1 CHECKING THE GRATING AFTER CHANGING THE PICKUP UNIT

Note:

Unlike previous CD mechanism modules the grating angle of the PU unit cannot be adjusted after the PU unit is changed. The PU unit in the CD mechanism module is adjusted on the production line to match the CD mechanism module and is thus the best adjusted PU unit for the CD mechanism module. Changing the PU unit is thus best considered as a last resort. However, if the PU unit must be changed, the grating should be checked using the procedure below.

Purpose :

To check that the grating is within an acceptable range.

• Symptoms of Mal-adjustment :

If the grating is off by a large amount symptoms such as being unable to close tracking, being unable to perform track search operations, or track searching taking a long time, may appear.

• Method:

Measuring Equipment
 Oscilloscope, Two L.P.F.

Measuring Points
 E, F, REFOUT

DiscABEX TCD-784ModeTEST MODE

- Checking Procedure
- 1. In test mode, load the disc and switch the 5V regulator on.
- 2. Using the TR+ and TR- buttons, move the PU unit to the innermost track.
- 3. Press key 9 to close focus, the display should read "91". Press key 8 to implement the tracking balance adjustment the display should now read "81". Press key 9 4 times. The display will change, returning to "81" on the fourth press.
- 4. As shown in the diagram above, monitor the LPF outputs using the oscilloscope and check that the phase difference is within 75°. Refer to the photographs supplied to determine the phase angle.
- 5. If the phase difference is determined to be greater than 75° try changing the PU unit to see if there is any improvement. If, after trying this a number of times, the grating angle does not become less than 75° then the mechanism should be judged to be at fault.
- Note

Because of eccentricity in the disc and a slight misalignment of the clamping center the grating waveform may be seen to "wobble" (the phase difference changes as the disc rotates). The angle specified above indicates the average angle.

Hint

Reloading the disc changes the clamp position and may decrease the "wobble".

Grating waveform

 $\begin{aligned} & \text{Ech} \rightarrow \text{Xch} & 20\text{mV/div, AC} \\ & \text{Fch} \rightarrow \text{Ych} & 20\text{mV/div, AC} \end{aligned}$

GENERAL INFORMATION

7.1 DIAGNOSIS

7.1.1 TEST MODE

CD Test Mode

1)Precautions

• This unit uses a single power supply (+5V) for the regulator. The signal reference potential, therefore, is connected to REFO(approx. 2.5V) instead of GND.

If REFO and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the following.

Do not connect the negative probe of the measuring equipment to REFO and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to REFO with the channel 2 negative probe connected to GND.

Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status.

If by accident REFO comes in contact with GND, immediately switch the regulator or power OFF.

- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON,let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- This unit is adjusted in a combination with the CD control unit (KEH-P7000, etc.). Each regulator key should be operated at the unit.

With the KEH-P7000 taken up for reference, a description will be given below concerning how to enter into the test mode, including key operations. The key in the adjustment text is also one of the KEH-P7000 keys.

- How to enter into the test mode Switch ACC,back-up ON while pressing the 4 and 6 keys together.
- Resetting the test mode Switch ACC,back-up Off.

- Disc detection during loading and eject operations is performed by means of a photo transistor in this unit. Consequently, if the inside of the unit is exposed to a strong light source when the outer casing is removed for repairs or adjustment, the following malfunctions may occur.
 - *During PLAY, even if the eject button is pressed, the disc will not be ejected and the unit will remain in the PLAY mode.
 - *The unit will not load a disc.

 When the unit malfunctions this way, either reposition the light source, move the unit or cover the photo transistor.
- When loading and unloading discs during adjustment procedures, always wait for the disc to be properly clamped or ejected before pressing another key. Otherwise, there is a risk of the actuator being destroyed.
- Turn power off when pressing the button FF or the button REV key for focus search in the test mode. (Or else lens may stick and the actuator may be damaged.)
- SINGLE/4TRK/10TRK/32TRK will continue to operate even after the key is released. Tracking is closed the moment C-MOVE is released.
- JUMP MODE resets to SINGLE as soon as power is switched off.

Flow Chart

7.2.2 TEST MODE

Error Number Indication

The system enters error mode to display the cause of error with a number when the system cannot operate CD or stops operation because of an error. The purpose of this measure is to reduce frequency of calls from users asking help for problems that are caused by incorrect operation by user, as well as to assist analysis and repair in servicing.

(1) Basic means of display

• An error code will be written on DMIN (minute area for display) and DSEC (second area for display) when CSMOD (CD mode area for system) is SERBORM.

The same data will be written on DMIN and DSEC.

DTNO shall be blank as before.

• Display examples of the head unit

Error codes will be displayed as shown below, depending on the capability of LCD. An error number will be displayed in the place of "xx."

• 8-digit display ERROR-XX

With OEM products, display of error codes shall be according to the specificatins of the manufacturer.

(2) Error codes

(2) Elloi codes			
Error code	Classification	Description	Cause / Detail
10	ELECTRIC	Carriage home failure	Carriage doesn't move to or from the innermost position
			→Home switch failed and/or carriage immobile
11	ELECTRIC	Focus failure	Focus failed
			→Defects, disc upside-down, severe vibration
12	ELECTRIC	SETUP failure	Spindle failed to lock or subcode unreadable
		Subcode failure	→Spindle defective, defect, severe vibration
14	ELECTRIC	Mirror failure	Unrecorded CD-R
			The disc is upside-down, defects, vibration
17	ELECTRIC	Set up failure	AGC protect failed
			→Defects, disc upside-down, severe vibration
19	ELECTRIC	Improper T.BAL	Value of T.BAL adjustment is out of parameter.
		adjustment	
30	ELECTRIC	Search time out	Failed to reach target address
			→Carriage / tracking defective and/or defects
A0	SYSTEM	Power failure	Power overvoltage or short circuit detected
			→Switching transistor defective and/or power abnormal

(3) Number of error codes

One hundred error codes (00 to 99) will be available.

(4) Remarks

- Error codes are not displayed for the mechanism alone (because CD is OFF when an mechanical error is generated).
- When the system cannot read TOC, it is not deemed as an error, and the system continues operation to a certain extent.
- · Be sure to take measures as shown in the display examples whenever designing a new head unit.
- The first digit of an error code has a meaning as follows:

1X: Error related to setup

3X: Error related to the search function

AX: Other errors

New Test Mode

When S-CD is specified as the source, basically the system plays as normal operation. After setup, the system displays the cause and time (absolute time) of an error if focus search is improper, spindle lock is removed, subcode cannot be read, or sound is skipped. During setup, the system displays the operation status of CD control software (internal RAM : CPOINT). The purpose of these displays and functions are to detect aging of servicing, as well as to improve efficiency of defect analysis.

(1) How to enter NEW TEST Mode

- 1. Reset the system by pressing keys (depending on the product) to enter the conventional Test mode.
- 2. Select S-CD as the source by pressing the source or CD key, then inserting a disc. Confirm that the regulator is OFF. Press the Switch Jump Mode key.
 - 3. After that, the system will stay in the new Test mode, regardless of whether S-CD is OFF or ON. To exit from the new Test mode, reset the system.

See the test mode flow chart Page 49.

(2) Relations of keys

keys	Tes	Test Mode		New Test Mode		
	Regulator OFF	Regulator ON	PLAY in progress	Error Protection		
BAND	To Regulator ON	To Regulator OFF	_	Time / Err No.select		
FF	_	FWD-Kick	FF / TR+	_		
REV		_	REV-Kick	REV / TR- —		
7	_	Tracking Close	Scan	_		
8	_	Tracking Open	RPT	_		
9	_	Focus Close	RDM	_		
_	_	Focus Open	_	_		
_	_	Jump Off	_	_		
12	To New Test Mode	Jump Mode select	Auto / Manu	T.No. / Time select		

Operations, such as EJECT, CD ON/OFF are performed normal mode.

(3) Error Cause, Error Code

(3) Error Gadse, Error Gode				
Code	Classification	Description	Cause / Details	
40	ELECTRIC	Put out of focus	FOK=Low has continued for 100 msec	
			→Damaged or soiled disc. vibration, or detective servo	
41	ELECTRIC	Spindle unlock	LOCK=has continued for 100 msec	
			→Damaged or soiled disc. vibration, or detective servo	
42	ELECTRIC	Failed to read subcode	The system could not read subcode for 100 msec	
			→Damaged or soiled disc. vibration, or detective servo	
43	ELECTRIC	Sound skipped	The last-address-memory function activated	
			→Damaged or soiled disc. vibration, or detective servo	

There will be no mechanical error during aging. Error codes should be displayed in the same manner as in Normal mode.

7.1.2 DISASSEMBLY

- Removing the Detach Grille Assy (Fig.1)
- 1. Remove the detach grille assy.
- Removing the Grille Assy (Fig.1)
- 1. Remove the two screws.
- 2. Disengage the stopper eight of the grille assy.
- 3. Disconnect the connector.

- Removing the Display Assy (Fig.2)
- 1. Remove the five screws.
- 2. Remove the holder.
- 3. Remove the case.
- 4. Disconnect the connector.
- 5. Pull out the display assy.

- Removing the CD Mechanism Module (Fig.3)
- 1. Remove the four screws.
- 2. Disconnect the two connectors.
- 3. Remove the CD mechanism module.

- Removing the CD Micro Computer Unit (Fig.4)
- 1. Remove the solder at the 2 points marked with Arrow X in the figure.
- 2. Straighten the two tabs indicated by Arrow V.
- 3. Remove the two screws A.
- 4. Disconnect the three connectors indicated by Arrow Z.
- 5. Disconnect the connector B , the connector C , the connector D and the connector E.
- 6. Remove the CD micro computer unit.
- Removing the System Micro Computer Unit (Fig.4)
- 1. Remove the screw F.
- 2. Straighten the three tabs indicated by Arrow G.
- 3. Remove the system micro computer unit.

- 1. Remove the four screws.
- 2. Remove the case.

- Removing the Case (Fig.6)
- 1. Remove the four screws A.
- 2. Remove the two screws C.
- 3. Remove the case.
- 4. Remove the six screws B.

AVX-P7000CD

- Removing the Relay Unit (Fig.7)
- 1. Remove the connector B, connector C and connector D.
- 2. Straighten the two tabs indicated by Arrow (I).
- 3. Remove the relay unit.
- Removing the Angle Motor Section (Fig.7)
- 1. Remove the screw E and the screw F.
- 2. Remove the encoder unit and the holder.
- 3. Remove the screw H and the two screws G.
- 4. Remove the angle motor section.
- How to installing the Encoder Unit (Fig.7-1)
- 1. When mounting the gear, install it so that the A section faces in the direction shown in the Fig.7-1.

- Removing the Position Motor Section (Fig.8)
- 1. Loosen the two screws A (after completing the steps 1 to 3 of "Removing the Relay Unit").
- 2. Remove the position motor section.

- Removing the LCD Keyboard Unit (Fig.9)
- 1. Remove the screw.
- 2. Remove the holder.
- 3. Remove the connector and the LCD keyboard unit.

When removing the floating unit, stop the mechanism during playback (to unlock the mechanism).

- Removing the damper and frame (Fig.10)
- Removing the floating unit (Fig.10)

Fig.10

Fig.11

Removing the Loading motor (Fig.12)

Fig.12

• Removing the PU unit (Fig.13)

Fig.13

When tighten screw (1), tighten with a torque of 1.8 kg-cm. (Fig.14)

● How to hold the CD mechanism module (Fig.15,Fig.16)

Do not hold the parts indicated in dark color.

Fig.16

How to hold the module

AVX-P7000CD

- Cautions on assembling (Fig.17)
- 1. When installing the display assy in the case, use the reference scale on the surface of the case to set the display assy properly (not slantingly), as shown in the Fig.17.

Fig.17

7.1.3 PCB LOCATIONS

AVX-P7000CD

7.2 PARTS

7.2.1 IC

BA6247FP

BA00ASFP

LB1930M

BA7071F

● Pin Functions(PE5046B)

Pin No.	Pin Name	I/O	Format	Function and Operation	
	FOK	1/0	Format	Function and Operation	
1		I		Focus OK input	
2	MIRR	I		Mirror detect input	
3	LOCK	I		Spindle lock input	
4	AVss			A/D GND electric potential	
5	NC			Not used	
6	EMPH AVECTOR	0	С	Pre-emphasis output	
7	AVREF1	<u> </u>		A/D Reference electric potential input	
8	TSI	I		Decode IC serial data input	
9	NC			Not used	
10	TSCK	0	С	Decode IC serial clock output	
11	XSI	I		Serial data input from CD LSI	
12	XSO	0	С	Serial data output to CD LSI	
13	XSCK	0	С	Serial clock output to CD LSI	
14	XA0	0	С	CD LSI command/data control output	
15	XSTB	0	С	Strobe output to CD LSI	
16	NC			Not used	
17	BDATA	I/O	С	P-Bus serial data input/output	
18	BSCK	I/O	С	P-Bus serial clock input/output	
19	XRST	0	С	CD LSI reset output	
20	CONT	0	С	Servo driver voltage control output	
21	CD5VON	0	С	CD +5V power supply control output	
22	VDCONT	0	С	VD power supply control output	
23	CDMUTE	0	С	CD Mute control output	
24	CDEJET	0	С	Loading Motor Eject control output	
25	CDLOAD	0	С	Loading Motor Load control output	
26	BMUTE	0	С	Bus mute output	
27	CLAMP	ī		Disc clamp SW input	
28	CRST	0	С	Compressor IC reset output	
29	CBANK0	0	C	Compressor IC bank set output 0	
30	CBANK1	Ō	C	Compressor IC bank set output 1	
31	CBANK2	Ō	C	Compressor IC bank set output 2	
32	CCS	0	C	Compressor IC chip select	
33	Vss			GND electric potential	
34	DSET	0	С	Disc set indicator light output	
35	SCONT	0	C	Spindle double speed output	
36-54	NC			Not used	
55	ERREJ	ı		Disc eject select input at the error	
56	CSENS	i		Ope-fla close sense input	
57	TXARI	i		TX output select input	
58	BSRQ	I/O	С	P-Bus service request output	
59	BRXEN	I/O	C	P-Bus reception enable status	
60	RESET	1/0	<u> </u>	System reset input	
61	NC	I I		Not used	
62	BRST	ı		P-Bus Reset input	
	DOSY	I		TEXT decode read permission input	
63 64-66	NC NC	I		Not used	
		_			
67	ADENA	0	С	A/D reference voltage supply control input	
68	VDD			Positive power supply Main plack positive compaction pin	
69	X2			Main clock oscillator connection pin	
70	X1			Main clock oscillator connection pin	
71	IC(Vpp)			Internally Connected (Vss)	
72	NC			Not used	
73	TESTIN	I		Test program start input	
74	AVDD			A/D analog power supply	
75	AVREF0			A/D reference voltage input	
76	EJTENS			Disc eject position sense input	
77	DSCSNS			Disc set defect input	

Pin No.	Pin Name	I/O	Format	Function and Operation
78	VDSENS	I		VD short sense input
79	TEMP	I		Temperature sense input
80	NC			Not used

*PE5046B

Format	Meaning
С	C MOS

IC's marked by* are MOS type.

Be careful in handling them because they are very liable to be damaged by electrostatic induction.

BU2092FV

PNA4603H00LB

● Pin Functions (PE5038A)

	ons (PE5038A)	T	T _	
Pin No.	Pin Name	I/O	Format	Function and Operation
1-3	NC			Not used
4	AVSS			GND
5	BRIGHT		С	Bright control output
6	DIMMER		С	Dimmer control output
7	AVREF1			D/A converter reference voltage (Connects to VDD)
8	LEDDT	0	С	Data output for the WIDE MODE indicating LED driver
9	LEDCLK	0	С	Clock output for the WIDE MODE indicating LED driver
10	LEDLCK	0	С	Lock output for the WIDE MODE indicating LED driver
11	BSI(TSI)	I	С	P-BUS data input
12	BSO(TSO)	I/O	С	P-BUS data output
13	BSCK(TSCK)	I/O	С	P-BUS clock output
14	BSRQ	1	С	P-BUS communication command input
15	BRXEN	I/O	С	P-BUS communication
16	BRST	0	С	P-BUS bus-resetting output
17	LEDOE	0	С	LED activation authorizing output for the WIDE MODE indicating LED driver
18	DUALILM	0	С	Dual illumination color setting output (GREEN/AMBER)
19	NC NC		1	Not used
20	MTRS	0	С	Storage motor speed adjusting output
21	MTRSEL	0	C	Storage motor rotating direction designating output
22	MTR1	0	C	Storage motor changeover/brake-mode designating output 1
23	MTR2	0	C	Storage motor changeover/brake-mode designating output 2
24	MTRPW	0	C	Flap motor driver power switch output
25	ASEL	0	C	Audio select output (IP-BUS/SCD)
26-29	NC NC	-	1	Not used
30	PUSHSW	1	С	Monitor pushing-out end sensing switch input
31	PULLSW	<u> </u>	C	Monitor pulling back end sensing switch input
32	NC NC	+ '	-	Not used
33	VSS			GND
	PWSENS	1	С	
34 35	PWSAVE	1	C	Navigation/R513 power "ON" input
		0		Power save output
36	DSENS	+!	N	Detach input
37	ISENS	1	N	Illumination sensor input
38	DLED	0	N	Burglar alarm LED driving output
39	SWVDD	0	N	Remote controller power and external light sensing power outputs
40	BLTPW	0	С	LCD backlight output
41	VPOWER	0	С	Video circuit power output
42	NC			Not used
43	MONFLAME	0	С	Monitor frame control output (NTSC/PAL)
44	MODE1	0	С	Display mode changeover output 1
45	NC			Not used
46	MODE2	0	С	Display mode changeover output 2
47	MODE3	0	С	Display mode changeover output 3
48	MODELIN1	Ι	С	Model discriminating input for existence or not of CD (CD exists/CD does not exist)
49	NC			Not used
50	IPPW	0	С	IP-BUS power control output
51,52	NC			Not used
53	ILMPW	0	С	ILMPW output
54	MUTE	0	C	Integrated mute output
55	SYSPW	0	C	SYSPW output
56	TX	0	C	IP-BUS date output
57	RX	T T	C	IP-BUS data input
58,59	NC	† ·	1	Not used
60	RESET	1		Resetting
61	VSYNCIN	†i		Frame frequency 50/60Hz (VSINC) input
62	VSELIN1	ti	1	VSEL input 1
	1022		_1	

AVX-P7000CD

Pin No.	Pin Name	I/O	Format	Function and Operation
63	VSELIN2	I	С	VSEL input 2
64	REMIN			Remote controlling signal input
65	ASENS	I	С	ACC sensor input
66	BSENS	ı	С	Backup input
67	NC			Not used
68	VDD			VDD
69	X2			Oscillator output
70	X1			Oscillator input
71	IC			Connection to grounding circuit
72	XT2			Sub-clock terminal
73	TESTIN	I		Test mode
74	AVDD	ı		Analog power for A/D converter
75	AVREF0	I		Reference voltage input for A/D converter
76	LSENS		С	External light sensor input
77	KEYIN1		С	Key input 1
78	KEYIN2		С	Key input 2
79	ANGLEIN		С	Monitor angle controlling analog signal input
80	MODELIN2		С	Destination discriminating analog input

*PE5038A

Format	Meaning
С	C MOS
N	N channel open drain

Pin Functions (BA6797FM)

Pin No.	Pin Name	I/O	Function and Operation
1	OUT1-A	0	Driver CH1 output
2	OUT1-B	0	Driver CH1 output
3	PRE-OUT1	0	CH1 pre-amplifier output
4	IN1(-)	ı	CH1 pre-amplifier inverted input
5	IN1(+)	ı	CH1 pre-amplifier input
6	REG-B	0	External Tr base connection
7	REG-OUT	0	Fixed voltage output (External Tr collect connection)
8	BIAS-IN	I	Bias input
9	MUTE	I	Mute control
10	IN2(+)	I	CH2 pre-amplifier input
11	IN2(-)	I	CH2 pre-amplifier inverted input
12	PRE-OUT2	0	CH2 pre-amplifier output
13	OUT2-B	0	Driver H2 output
14	OUT2-A	0	Driver CH2 output
15	GND		Sub straight GND
16	OUT3-A	0	Driver CH3 output
17	OUT3-B	0	Driver CH3 output
18	PRE-OUT3	0	CH3 pre-amplifier output
19	IN3(-)	0	CH3 pre-amplifier inverted output
20	IN3(+)	0	CH3 pre-amplifier output
21	VCC		VCC
22	VCC		VCC
23	IN4(+)	0	CH4 pre-amplifier output
24	IN4(-)	0	CH4 pre-amplifier inverted output
25	PRE-OUT4	0	CH4 pre-amplifier output
26	OUT4-B	0	Driver CH4 output
27	OUT4-A	0	Driver CH4 output
28	GND		Sub straight GND

BA6797FM

7.3 MECHANISM DESCRIPTIONS

Outlines of the hardwares

Drive motors

Discharge (position) motor

Angle raising (angle) motor

Sensors

Angle detection rotary encoder

End of discharge detecting switch ("L" when detection is made)

Angle 0-degree detecting switch

End of storage detecting switch ("L" when detection is made)

Electric conditions

Sensor signals

Encoder

ANGLEIN: Angle sensing analog sensor

Sensor signals

(PUSH)

LIFT SW: End of discharge detecting sensor ("L"

when detection is made)

PULL SW: End of storage detecting sensor ("L"

when detection is made)

Control signals

MTRPW: Motor power control ("H" when

turned "ON")

MTR1 : Angle motor control signal ("H" when

turned "ON")

MTR2 : Position motor control signal ("H"

when turned "ON")

MTRS : Motor speed control ("L" for high

speed and "H" for low speed)

MTRSEL: Motor rotation direction control

(Horizontal IN: H/OUT: (Angled UP: H/DOWN: L

Motor terminal voltage

High speed mode: VMH = 7.0V Low speed mode: VML = 6.2V

Outline of the operation

- 1. The motor will run during the time while the ANGLE +/- key is being pressed and held.)
- 2. Two motors of the longitudinal direction drive motor and angle control motor work to drive the movements.
- 3. Analog potential being generated from the angle encoder will be detected to find out the angular movements and positions. Meanwhile, horizontal intermediate position detections will not be made.
- 4. When the operation is started after resetting, the system goes into the storage stage once, before proceeding to the discharging movement to be started up.
- 5. Angular adjustments can be performed by use of the angle adjusting keys.
- 6. By pressing the "OPEN" key once again (or by ACC OFF (While the automatic open-close setting is being turned "ON")), the system starts storage movement.

- Discharging operations
- When the OPEN key or the ACC is turned "ON" (or detach grille installing), (2 sec. after) the position motor will be activated under the high speed mode.
- When the longitudinal position sensing switch (PUSH SW)/(LIFT SW) turns H - L, the position motor will be stopped and, at the same time, the angle motor will be activated at high speed.
- 3. When the electric potential of the angle encoder reaches 90° (Reference 0° potential + 3.047V), the angle motor will be stopped. (Braking mode) However, if the preceding angle is being memorized, the angle motor will keep running until the memorized angle can be obtained.

Storage operation

- When the CLOSE key is operated (or 6 sec. after turning "OFF" the ACC while the automatic openclose setting is being turned "ON"), the angle motor will be activated at low speed.
- 2. At 750ms after the angle 0° potential has been reached, the angle motor will be stopped and the position motor will be activated at high speed. The system will go into stopping movement at the point where the PULL SW is turned "ON" by detection or when the error time is over.

AVX-P7000CD

Angle adjustment

1. For example, from the initial position (about 90°), when the UP key is pressed, the position motor will be activated at high speed for the time during the UP key is being pressed and held. When the UP key has been released, or when a second has passed after the hard-stopper is activated, the system will go under the braking mode.

The system will operate similarly when making DOWN movements. The lower end of the DOWN movements is at 60° and the system will go under the braking mode when the prescribed potential is exceeded or when the DOWN key is released.

Note:

Position motor: The motor which works to drive the

display in the longitudinal direction.

Angle motor : The motor which works to raise or

lower (angular direction movements) the display.

Precautions

- 1. The angular position will be kept updated while the angle adjusting key is being pressed and held and the last angle will be memorized.
- 2. When the angular potential does not change toward the expected direction, the system deems it a functional failure to stop the movement at the position.
- Movements of the driving sections under preset modes

Mode settings

Automatic open-close setting: ON Setback: OFF

Setback	. 011			
ACC operation	While in OPEN state	During OPEN	During CLOSE	While in CLOSE state
mode		movements	movements	l
	Or, while the ACC is			
	being turned "OFF"	being turned "OFF"	being turned "OFF"	being turned "OFF"
$ACC\;OFF\toON$	OPEN state	_	_	CLOSE state
	↓ ↓			\
	Maintains the			OPEN movements
	OPEN state.			\
				Starts reverse
				movement.
$ACC\;ON\toOFF$	OPEN state	OPEN movements	CLOSE movements	CLOSE state
	↓	will continue	will continue	↓
	CLOSE	↓	\	Maintains the
		OPEN movements	CLOSE	CLOSE state.
		will continue		
		↓ ↓		
		CLOSE		
Last memory	OPEN	OPEN	CLOSE	CLOSE

Mode settings

Automatic open-close setting: OFF Setback: OFF

ACC operation	While in	During OPEN	During CLOSE	While in
mode	OPEN state	movements	movements	CLOSE state
	Or, while the ACC is	Or, while the ACC is	Or, while the ACC is	Or, while the ACC is
	being turned "OFF"	being turned "OFF"	being turned "OFF"	being turned "OFF"
ACC OFF → ON	OPEN state	_	-	CLOSE state
	Maintains the			Maintains the
	OPEN state.			CLOSE state.
ACC ON → OFF	OPEN state	OPEN movements will continue	CLOSE movements will continue	CLOSE state
	Maintains the	Will continue	↓ ↓	Maintains the
	OPEN state.		CLOSE	CLOSE state.
Last memory	OPEN	OPEN	CLOSE	CLOSE

The following diagram shows the display when it is deployed.

Note:

· Use the remote control products for the AUDIO VISUAL MASTER UNIT by pointing them at this product's signal receptor.

Remote Controller (e.g. AVM-P7000R)

Track Search and Fast Forward/Reverse

 You can select between Track Search or Fast forward/Reverse by pressing the **◄/►** button for a different length of time.

· Discs left partially inserted after ejection may

incur damage or fall out.

Track Search	0.5 seconds or less
Fast forward/Reverse	Continue pressing

Note:

- · If a disc cannot be inserted fully or playback fails, make sure the recorded side is down. Push the EJECT button and check the disc for damage before reinserting it.
- If a CD is inserted with the recorded side up, it will be ejected automatically after a few moments.

CONNECTION DIAGRAM

To vehicle (metal) body.

Connecting the Power Cord

- 1. This Product
- 2. Yellow

To terminal always supplied with power regardless of ignition switch position.

- 3. Orange
 - To lighting switch terminal.
- 4. Black (ground)
 - To vehicle (metal) body.
- 5. Fuse holder
- 6. Fuse resistor

8.2 SPECIFICATIONS

Power source 14.4 V DC (10.8 – 15.1 V allowable) Grounding system Negative type Dimensions (DIN) (mounting size) $178 \text{ (W)} \times 50 \text{ (H)} \times 160 \text{ (D)} \text{ mm}$ (mounting size) $178 \text{ (W)} \times 50 \text{ (H)} \times 165 \text{ (D)} \text{ mm}$ Weight 2.2 kg Display (effective display area: 154×87 mm) Type TFT active matrix, transmissive type Color system NTSC/PAL/SECAM Compatible Operating temperature range $-20 \text{ to } +60^{\circ}\text{C}$

Initial setting angle: 90°

CD player

1 3	
System	
Usable discs	Compact disc
Signal format	Sampling frequency: 44.1 kHz
-	Number of quantization bits: 16; linear
Frequency character	ristics $5 - 20,000 \text{ Hz} (\pm 1 \text{ dB})$
Signal-to-noise ratio	96 dB (1 kHz) (IEC-A network)
Dynamic range	
Number of channel	

Note:

 Specifications and the design are subject to possible modification without notice due to improvements.

Service Manual

ORDER NO. **CRT2216**

CD MECHANISM MODULE

- This Service Manual outlines operations of the CD mechanism module used in the models listed
- For repair, use this Service Manual and the Service Manual of the model used in the system.

Model	Service manual	CD mechanism module	CD mechanism unit
DEX-P1R/UC DEH-P946/ES DEX-P1/ES	CRT2206	CXK5101	CXB1699
DEH-P945R/EW DEX-P99R/EW	CRT2207	CXK5101	CXB1699

CONTENTS

1.	CIRCUIT DESCRIPTIONS	. 2
2.	MECHANISM DESCRIPTIONS	15
3	DISASSEMBLY	17

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS SERVICE INC. P.O.Box 1760, Long Beach, CA 90801-1760 U.S.A.
PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium
PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 501 Orchard Road, #10-00, Lane Wheelock Place, Singapore 238880

1. CIRCUIT DESCRIPTIONS

1.1 Preamplifier (UPC2572GS: IC101)

The preamplifier processes pickup output signals to generate signals to be sent to the servo, demodulator, and controller. The preamplifier with built-in photodetector converts signals from the pickup into intermediate voltage in the pickup. Then, addition is made in the RF amplifier (IC101) to obtain RF, FE, TE, and TE zero cross signals. The system consists of the UPC2572GS and other components explained below. The system uses a single power source (+5 V). Therefore, the reference voltage of IC101 and the reference voltage of the power unit and servo circuit are REFO (+2.5 V). REFO is obtained from REFOUT of servo LSI (IC201: UPD63702GF) via a buffer, and is output from Pin 19 of IC101. This REFO is used as reference for all measurements.

Note: Do NOT short-circuit REFO and GND during measurement.

Fig. 1 Block Diagram of UPC2572GS

1) Automatic Power Control (APC) circuit

Laser diode has negative temperature characteristics with great optical output when the diode is driven with constant current. Therefore, current must be controlled by a monitor diode to ensure constant output. Thus functions the APC circuit. LD current can be obtained by measuring the voltage between LD1 and GND. The current value is approximately 35 mA.

Fig. 2 APC Circuit

2) RF amplifier and RF AGC amplifier

Photodetector outputs (A+C and B+D) are added, amplified and equalized in IC101, and output to the RFI terminal as RF signal. (Eye pattern can be checked at this terminal.)

Low-frequency components of voltage RFI is:

$$RFI = (A + B + C + D) \times 3.22$$

where R111 is offset resistor to keep RFI signal within the output range of the preamplifier. RFI signal is goes under AC coupling, and is input to Pin 4 (RFIN terminal).

IC101 contains an RF AGC circuit. RFO output from Pin 2 is maintained to a constant level (1.2 \pm 0.2 Vp-p). The RFO signal is used in the EFM, DFCT, and MIRR circuits.

3) EFM circuit

The EFM circuit converts RF signal into digital signals of "0" and "1." RFO signal after AC coupling is input to Pin 1, and supplied to the EFM circuit.

Asymmetry caused during manufacturing of discs cannot be eliminated solely by AC coupling. Therefore, the system controls the reference voltage ASY of the EFM comparator by using the fact that probability to generate "0" and "1" is 50% in EFM signal. This reference voltage ASY is generated by output from the EFM comparator through L.P.F. EFM signal is output from Pin 35. As signal level, amplification is 2.5 Vp-p around REFO.

4) DFCT (defect) circuit

DFCT signal detects mirror defect in discs, and is output from Pin 33. The system outputs "H" when a mirror defect is detected.

If disc is soiled, the system determines it as lack of mirror. Therefore, the system inputs the DFCT signal output to the HOLD terminal of servo LSI. Focus and tracking servo drives change to Hold status only when DFCT output is in "H" so that performance of the system upon detection of defect can be improved.

5) RFOK circuit

The RFOK circuit outputs signal to show the timing of focus closing servo, as well as the status of focus closing during playback. The signal is output from Pin 32. The system inputs the RFOK signal output to the RFOK terminal of servo LSI. The servo LSI issues Focus Close command. The system outputs signal in "H" during focus closing and playback.

Fig. 3 RF AMP, RF AGC, EFM, DFCT, RFOK Circuit

6) Focus-error amplifier

The system outputs photodetector output (A+C and B+D) as FE signal (A+C-B-D) from Pin 28 via the difference amplifier, then via the error amplifier.

Low-frequency components of voltage FEY is:

$$\mbox{FEY=(A+C-B-D)X} \quad \frac{20k\Omega}{10k\Omega} \ \ X \quad \frac{90k\Omega}{68.8k\Omega} \ \ X \quad \frac{R108}{17.2k\Omega} \label{eq:feynman}$$

: (FE level of pickup unit x 5.02)

An S curve equivalent to approximately 1.6 Vp-p is obtained at FE output (Pin 28) by using REFO as reference. The cut-off frequency of the amplifier of the last layer is 12.4 kHz.

Fig. 4 Focus-error amplifier

7) Tracking-error amplifier

Outputs E and F from the photodetector are output as TE signal (E-F) from Pin 24 via the difference amplifier, then via the error amplifier.

Low-frequency components of voltage TEY is:

$$\mbox{TEY=(E-F)} \ X \ \frac{63 k\Omega}{31 k\Omega + 16 k\Omega} \ X \quad \frac{R109}{17 k\Omega}$$

: (TE level of pickup unit x 5.36)

TE waveforms equivalent to approximately 1.5 Vp-p are obtained at TE output (Pin 24) by using REFO as reference. The cut-off frequency of the amplifier of the last layer is 19.5 kHz.

8) Tracking zero-cross amplifier

Tracking zero-cross signal (TEC signal) is generated by amplifying TE waveforms (voltage at Pin 24) by a factor of four. The signal is used for detecting the zero-cross point of tracking error in the servo LSI UPD63702GF. The purposes of detecting the zero-cross point are as follows:

- (1) To be used for counting tracks for carriage move and track jump.
- (2) To be used for detecting the direction of lens movement when tracking is closed. (To be used in the tracking brake circuit mentioned later.)

The frequency range of TEC signal is from 500 Hz to $19.5\ kHz$.

In other words, the TEC signal level is calculated as 6 Vp-p. This level exceeds the D range of the operation amplifier, resulting in the signal to clip. However, there shall be no problem, since the servo LSI uses only zero-cross point.

Fig. 5 Tracking-error amplifier,
Tracking zero-cross amplifier

9) MIRR (mirror) circuit

MIRR signal shows ON and OFF track information. The signal is output from Pin 31.

The status of MIRR signal is as follows:

Laser beam ON track: MIRR = "L"

Laser beam OFF track: MIRR = "H"

The signal is used in the brake circuit mentioned later.

Fig.6 MIRR Circuit

Fig. 7 MIRR Circuit

10) 3T OUT circuit

The system detects flickering of RF signal when disturbance is input to the focus servo loop, and outputs the difference of phase between FE signal and RF-level fluctuation signal from Pin 30. The resulting signal is obtained through L.P.F. with a fc of 40 Hz. This signal is used for automatic adjustment of FE bias.

Fig. 8 3T OUT Circuit

1.2 Servo (UPD63702AGF: IC201)

The servo consists of mainly two parts. The first part is the servo processing unit to equalize error signals and control track jump, carriage move, in focus, etc. The second part is the signal processing unit to perform data decoding, error correction, and interpolation.

The system converts FE and TE signals from analog to digital in IC201, then outputs drive signals of the focus, tracking, and carriage systems via the servo block. The EFM signal input from the preamplifier is decoded by the signal processing unit, and eventually output as audio signal after conversion into analog from digital signals via the DA converter (IC201 contains audio DAC). Then, the system generates error signal for the spindle servo in the decoding process, sends the signal to the spindle servo to generate drive signal for spindle.

After that, drive signals for focus, tracking, carriage, and spindle are amplified in IC301 and BA6797FM, and supplied to respective actuators and motors.

1) Focus servo system

The main equalizer of focus servo is located in the UPD63702AGF. Fig. 9 shows block diagram of the focus servo.

For the focus servo system, the lens must be positioned within the focusing range in order to perform focus closing. To achieve this, the system moves the lens upward/downward by focus-search voltage of triangular waveform to detect the focusing point. During searching, the system kicks the SPDL motor to maintain rotation speed to set speed.

The servo LSI monitors FE and RFOK signals so that focus closing is performed automatically at an appropriate point.

Focus closing is performed when the following four conditions are satisfied:

- (1) When the lens moves nearer to the disc.
- (2) RFOK = "H"
- (3) FZD signal (in IC) is latched to "H."
- (4) FE = 0 (REFO as reference)

Fig. 9 Focus servo block diagram

When the conditions mentioned above are satisfied and focus is closed, the XSO terminal changes from "H" to "L." Then, the microcomputer starts monitoring RFOK signal through L.P.F after 40 ms.

If the system judges RFOK signal as "L," the microcomputer takes actions, including protection.

Fig. 10 shows operations related to focus closing. (The illustration shows when the system cannot perform focus closing.) S curve, search voltage, and actual lens behavior can be checked by pressing the Focus Close button when "01" is shown in Focus Mode Select in Test mode.

Fig. 10 Sequence of Focus Closing

2) Tracking servo system

The main equalizer of tracking servo is located in the UPD63702AGF. Fig. 11 shows block diagram of the tracking servo.

Fig. 11 Tracking servo block diagram

a) Track jump

Track jump is automatically performed by the auto sequence function in LSI when the LSI accepts command. The system has six types of jump (1, 4, 10, 32, 32x2, and 32x3) for truck jump during searching. In Test mode, the system can select and check these jump types and CRG move by selecting a mode. The microcomputer sets half of the total number of track jumps (two tracks if the total number of tracks are four), and counts the set number of tracks by using TEC signal. The system outputs brake pulse for a specified time (set by the microcomputer) from the point of time when the set number is counted, and stops the lens. Thus, tracking is closed, and the system can continue normal playback.

To improve servo withdrawal during track jump, the system sets the brake circuit to ON for 60 ms after brake pulse so that gain of the tracking servo can be increased.

FF/REV in normal mode is made by continuously performing single jump approximately ten times faster than in normal playback.

Fig. 12 Single track jump

Fig. 13 Multi track jump

b) Brake circuit

Servo withdrawal will deteriorate during setting and track jump. Thus, the system uses the brake circuit to provide stable withdrawal to servo loop.

The brake circuit detects the direction of lens movement, and outputs only drive signal in the opposite direction from the lens movement. Thus, the system delays the speed of the lens movement to stabilize withdrawal of the tracking servo.

The system judges sliding direction of track from TEC and MIRR signals, as well as the relationship of their phase.

Note: In the illustration, the phase of equalizer output is shown as the same as with that of TEC.

Fig. 14 Tracking Brake Circuit

3) Carriage servo system

Output from low-frequency components (lens position information) of the tracking equalizer is input to the carriage equalizer by the carriage servo. After obtaining a certain gain, the system outputs drive signal from the servo LSI. The signal is then applied to the carriage motor via the driver IC. More specifically, the pickup unit as a whole must be moved forward when lens offset during playback reaches a specified level. Therefore, gain of equalizer is set so that voltage higher than the activation voltage of the carriage motor is output. As actual operation, a certain threshold level is set for equalizer output in the servo LSI, and drive voltage is output from the servo LSI only when the equalizer output level exceeds that level. Thus, power consumption is reduced. Depending on eccentricity, etc. of disc, the equalizer output voltage may cross the threshold level several times before the pickup unit as a whole starts operation. At this time, waveforms of drive voltage from LSI are output as pulse.

Fig. 15 Carriage Servo Circuit

Fig. 16 Carriage Signal Waveforms

4) Spindle servo system

The spindle servo has the following modes:

- (1) Kick mode: To be used for accelerating disc rotation during setting.
- (2) Offset mode:
 - a) To be used after completion of kick until completion of spindle lock during setting.
 - b) If focus is out of range during playback, this mode is used until focus is recovered. In both cases, Offset mode is used for maintaining disc rotation to the speed close to specified rotation.
- (3) Adaptive Servo mode: CLV servo mode during normal operation. The system samples every WFCK in 16 cycles whether frame synchronous signal matches output from the internal frame counter in EFM demodulation block, and generates signal that shows matching/unmatching status. If signal showing unmatching status continues for 8 times, the system deems it as asynchronous status. Except this case, the system judges as synchronous. In Adaptive Servo mode, the system automatically selects withdrawal servo for asynchronous status, and steady-state servo for synchronous status.
- (4) Brake mode: Mode to stop the spindle motor. The microcomputer outputs brake voltage from the servo LSI. Waveforms of EFM are monitored inside the LSI. If the longest pattern of EFM exceeds specified intervals (if the rotation speed adequately slowed down), flag is activated in the LSI, and the microcomputer turns brake voltage to OFF. If no flag is activated after a specified time, the microcomputer changes from Brake to Stop mode. This status continues for a specified time. If the system changes to Stop mode during ejection, disc is ejected after the specified time mentioned above.
- (5) Stop mode: To be used when the power is turned to ON, and during ejection. In Stop mode, the end-to-end voltage of the spindle motor is 0 V.
- (6) Rough Servo mode: To be used when returning carriage (carriage move during long search, etc.). The system calculates linear speed from waveforms of EFM, and inputs either "H" or "L" level to the spindle equalizer. This mode is also used for confirmation of grating in Test mode.

Fig. 17 Spindle servo block diagram

1.3 Automatic Adjustment Function

With this system, all circuit adjustments are automatically performed by using the preamplifier (UPC2572GS) and servo LSI (UPD63702AGF). All adjustments are automatically performed whenever disc is inserted or CD mode is selected by the Source key. Details of automatic adjustments are as follows:

Fig. 18 Outline of Automatic Adjustment

1) Setting of FZD cancellation This setting ensures focus closing. T

This setting ensures focus closing. The system reads the FE offset level when the power is turned to ON, then writes the inverse voltage of offset value of that level to CRAM inside IC to cancel offset. Thus, the threshold level of FZD can be set to a constant value (+150 mV). As a result, "Latching FZD signal to H," which is one of the conditions required for focus closing in IC, is ensured.

2) TE offset automatic adjustment

Adjusts TE amplifier offset of the preamplifier to 0 V when the power is turned to ON.

Adjustment is made as follows:

- (1) The microcomputer reads TE offset in LD OFF status via the servo LSI (TE1).
- (2) The microcomputer calculates the voltage to be corrected using the TE1 value, and outputs from Pin 65 (pin name: TOFST) of the servo LSI. More specifically, calculation is made as follows: TOFST2 = TOFST1 + TE1 x R110 / R109

3) Tracking balance (T.BAL) automatic adjustment

To make the sensitivity of Ech of TE output equal to that of Fch. In fact, adjustment is made so that the upper and lower portions of TE waveforms are symmetric to REFO.

Adjustment is made in the following steps:

- (1) After focus close, the system kicks the lens in the radial direction to ensure TE waveforms to be generated.
- (2) The microcomputer reads the peak bottom of TE waveforms via the servo LSI.
- (3) The microcomputer calculates the amount of offset, then calculates the voltage to be corrected based on that offset. The system outputs the result from Pin 66 (pin name: TBAL) of the servo LSI.

(4) The voltage output from the servo LSI is input to Pin 37 of the preamplifier (IC101: UPC2572GS). Pin 37 is a control-voltage terminal of the TEVCA amplifier. According to voltage input, the system changes gain of Ech and Fch in the preamplifier, and adjusts the tracking balance to make the upper and lower portions of TE waveforms symmetric to REFO.

4) FE bias automatic adjustment

Maximizes the RFI level by optimizing focus point during playback. Adjustment is made by using 3T level waveforms of RF waveforms and the phase difference generated by input of disturbance of focus error. Since adjustment is made by inputting disturbance to focus loop, the system uses the same timing as with auto gain control (mentioned later~) for adjustment.

Adjustment is made in the following steps:

- (1) Disturbance is input to focus loop by the command from the microcomputer (inside the servo LSI).
- (2) The system detects flickering of 3T components of RF signal in the preamplifier.
- (3) The system checks the phase difference between 3T components mentioned above and FE signal caused by input of disturbance to detect the direction of focus deviation. The result is output as DC voltage from Pin 30 (3TOUT) of the preamplifier.
- (4) The 3TOUT voltage is input to Pin 75 (A/D port) of the servo LSI. The microcomputer reads this 3TOUT voltage via the servo LSI.
- (5) The microcomputer calculates the amount of correction required. The results are transferred to offset of focus loop in the servo LSI.

As with auto gain control, the system repeats the same adjustment process several times to improve adjustment precision.

5) Auto gain control (AGC)

AGC adjustment is already used in the CD modules of the previous generation. This function automatically adjusts servo loop gain of focus and tracking.

Adjustment is made in the following steps:

- (1) Disturbance is input to servo loop.
- (2) The system extracts error signals (FE and TE) upon input of disturbance via the B.P.F. and obtains signals of G1 and G2.
- (3) The microcomputer reads G1 and G2 signals via the servo LSI.
- (4) The microcomputer calculates required amount of correction to adjust loop gain in the servo LSI.

The system repeats the same adjustment process several times to improve adjustment precision.

6) Initial adjustment value

For all automatic adjustments, the system uses the previous adjustment value as initial values, except when the power of the microcomputer has been turned to OFF (backup is turned to OFF). If backup has been turned to OFF, the system uses initial set value to perform automatic adjustment.

7) Display of coefficients of adjustment results

Results of automatic adjustments can be displayed in Test mode for confirmation. Display of coefficients in each automatic adjustment is as follows:

- (1) FZD cancel, TE.OFST cancel, T.BAL, and FE bias Reference = 32 (32: No adjustment was required) Display is made in units of approximately 40 mV. Example: Coefficient of FZD cancel = 35 35 - 32 = 3 3 x 40 mV = 120 mV Corrected amount is approximately +120 mV. Thus, FE offset before adjustment is -120 mV.
- (2) Adjustment of F and T gain

Reference: Focus = 13, tracking = 20 The amount of reduced gain in comparison with the reference is known by looking at the coefficient displayed.

Example: AGC coefficient = 40 Amount of reduced gain = 20 log (20/40) = -6 dB

1.4 Power Supply and Loading Unit

The power supply of the system uses VD (8.3 V) supplied from the mother board, and generates power supply VM (7.6 V) for the loading motor driver and 5 V RegIC power supply (7.6 V). The system directly uses VD for power supplies for driving voltage of disc detection LED and CD driver IC. The microcomputer controls ON/OFF of the CD driver and laser diode by "CONT," and ON/OFF of 5 V by "CD5VON." The loading motor driver has no control terminal. However, "EJ" and "LOAD," which are input signals, play the same role as with control terminal.

Fig. 19 Power Supply and Loading Unit

2. MECHANISM DESCRIPTIONS

Disc loading

- 1. Three phototransistors are provided in front and rear of the rubber roller for disc transfer. Light is received from three LEDs corresponding the phototransistors. (Voltage of the phototransistors is "L" when receiving light.)
- 2. The voltage of the front phototransistor (P1) changes to "H" when disc is inserted and reaches immediately before the rubber roller. As a result, the loading motor is activated to drive.
- 3. The driving power of the motor is conveyed by the gear to rotate the rubber roller and transfer the disc. The rubber roller is located at an end of the loading arm, and in condition to lift the guide arm. The guide arm is driven by two springs so that the guide arm and rubber roller obtain appropriate pressure to transfer disc between them.
- 4. The clamper arm has the disc centering mechanism to determine disc size and clamp the disc to the center of the spindle motor. The centering arms are provided on the right and left of the clamper arm, and move around the supporting point. The end of centering arm has a lock arm (rotates around the centering pin, and is locked to the clamper arm when an 8-cm disc is inserted).
- 5. The lock arm is unlocked when a 12-cm disc is inserted, and moves to the position shown in Fig. 21. The position of the detection arm, having the center of rotation on the right centering arm as shown in Fig. below, is different for 8-cm and 12-cm discs. The detection arm moves clockwise according to outer diameter when disc is positioned on the spindle to move the detection lever downward as shown in the illustration.

Fig. 20

When 12-cm disc is inserted

Clamp operation

When the rack lever in contact with the detection lever is driven by the loading motor, the rack lever engages with the gear to move the clamp UP lever, mechanical lock arm, and mechanical lock lever toward the directions indicated with arrows in Fig. 22.

The clamper arm, that was lifted by the clamp UP lever, comes down to clamp disc. The clamp UP lever and mechanical lock lever L move the loading arm apart from the disc. When the mechanical lock lever has moved to a specified position, the system turns the clamp switch to ON to stop the loading motor.

Mechanical locking

During ejection, two mechanical lock levers slide into the teeth of the frame to resist the mechanical spring and push down the front of floating (chassis) unit. Thus, the system detects the height of disc insertion. During playback, the floating unit is released when the mechanical lock levers move and disengage from the frame teeth.

Ejection

Disc is ejected by the loading motor rotating in the inverse direction from loading to activate mechanical locking, release clamping, and press the roller. The system stops the loading motor when both phototransistors P2 and P3 in the rear of the rubber roller detect. (Voltage: L)

3. DISASSEMBLY

When removing the floating unit, stop the mechanism during playback (to unlock the mechanism).

Fig. 23

Fig. 24

Removing the Carriage Motor

Fig. 25

Removing the Loading motor

Fig. 26

Removing the PU unit

When tighten screw (1), tighten with a torque of 1.8 kg-cm.

How to hold the CD mechanism module

Fig. 28

Do NOT hold the parts indicated in dark color.

Fig. 29