Advanced Linear Algebra Week 10

Jamie Gabe

Let V be an \mathcal{F} -vector space, and let $U, W \subseteq V$ be subspaces.

$$U + W := \operatorname{Span}(U \cup W) = \{u + w \in V \mid u \in U, w \in W\}$$

is the sum of U and W. This is a subspace of V.

Definition

The sum U+W is direct if for every $v \in U+W$, there are unique $u \in U$ and $w \in W$ such that v=u+w. In this case, we write $U \oplus W$.

Let
$$V = \mathbb{R}^2$$
, $U = \{ \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \mid \alpha \in \mathbb{R} \}$, $W = \{ \begin{pmatrix} 0 \\ \beta \end{pmatrix} \mid \beta \in \mathbb{R} \}$.

Question: is U + W a direct sum?

- (1) Yes
- (2) No
- (3) Not enough information to determine this.

Let V be an \mathcal{F} -vector space, and let $U, W \subseteq V$ be subspaces.

$$U + W := \text{Span}(U \cup W) = \{u + w \in V \mid u \in U, w \in W\}$$

is the sum of U and W. This is a subspace of V.

Definition

The sum U+W is direct if for every $v \in U+W$, there are unique $u \in U$ and $w \in W$ such that v = u+w. In this case, we write $U \oplus W$.

Let
$$V = \mathbb{R}^2$$
, $U = \{ \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \mid \alpha \in \mathbb{R} \}$, $W = \{ \begin{pmatrix} 0 \\ \beta \end{pmatrix} \mid \beta \in \mathbb{R} \}$.

Any $v \in \mathbb{R}^2$ is of the form

$$v = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \underbrace{\begin{pmatrix} \alpha \\ 0 \end{pmatrix}}_{\in U} + \underbrace{\begin{pmatrix} 0 \\ \beta \end{pmatrix}}_{\in W}$$

and this decomposition is unique.

Hence $U + W = \mathbb{R}^2$ is direct, so $\mathbb{R}^2 = U \oplus W$.

Lemma (Example 5.2)

Suppose B is a basis for V, and write $B = C \cup D$ as a disjoint union. Let $U = \operatorname{Span} C$ and $W = \operatorname{Span} D$. Then $V = U \oplus W$.

Proof.

As $U + W = \operatorname{Span}(U \cup W) \supseteq \operatorname{Span}(C \cup D) = V$, it follows that V = U + W. So we should show that U + W is direct. Let $v \in U + W$. Write (uniquely)

$$v = \sum_{x \in B} \alpha_x x = \underbrace{\sum_{y \in C} \alpha_y y}_{+} + \underbrace{\sum_{z \in D} \alpha_z z}_{-}.$$

If v = u + w with $u \in U$ and $w \in W$, write $u = \sum_{y \in C} \beta_y y$ and $w = \sum_{z \in D} \gamma_z z$. Then

$$\sum_{y \in C} \alpha_y y + \sum_{z \in D} \alpha_z z = v = u + w = \sum_{y \in C} \beta_y y + \sum_{z \in D} \gamma_z z$$

By uniqueness, $\alpha_v = \beta_v$ for $y \in C$ and $\alpha_z = \gamma_z$ for $z \in D$.

Hence $u \in U$ and $w \in W$ are unique.

Theorem (5.3)

Let V be a vector space, and $U, W \subseteq V$ be subspaces. TFAE:

- (1) V = U + W and $U \cap W = \{0\};$
- (2) $V = U \oplus W$.

Proof.

- (1) \Rightarrow (2): Let $v \in V$. As V = U + W, there exist $u \in U$ and $w \in W$ so that v = u + w. If v = u' + w' with $u' \in U$ and $w' \in W$, then u + w = v = u' + w' implies
- $u u' = w' w \in U \cap W = \{0\}$, so u = u' and w = w'.
- Hence $U + W = U \oplus W$.
- (2) \Rightarrow (1): We have $V = U \oplus W = U + W$. Let $x \in U \cap W$.

Then

$$0 = \underbrace{0}_{\in U} + \underbrace{0}_{\in W} = \underbrace{x}_{\in U} + \underbrace{(-x)}_{\in W}$$

By uniqueness, x = 0 so $U \cap W = \{0\}$.

Consider \mathbb{R}^3 with subspaces

$$U = \left\{ \begin{pmatrix} \alpha \\ \beta \\ 0 \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}$$

$$W = \left\{ \begin{pmatrix} 0 \\ \alpha \\ \beta \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}$$

Question: Is $\mathbb{R}^3 = U \oplus W$?

- (1) Yes,
- (2) No,
- (3) Not enough information to determine this.

Consider \mathbb{R}^3 with subspaces

$$U = \left\{ \begin{pmatrix} \alpha \\ \beta \\ 0 \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}$$

$$V = \left\{ \begin{pmatrix} 0 \\ \alpha \\ \beta \end{pmatrix} \mid \alpha, \beta \in \mathbb{R} \right\}$$

Question: Is $\mathbb{R}^3 = U \oplus W$?

By Theorem 5.3 we want to check $\mathbb{R}^3 = U + W$ and $U \cap W = \{0\}$.

But
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in U \cap W$$
, so $U \cap W \neq \{0\}$. Hence $U + W$ is not

a direct sum.

Theorem (5.4)

Assume $V=U\oplus W$. Then $\dim U<\infty$ and $\dim W<\infty$ if and only if $\dim V<\infty$, and in this case $\dim V=\dim U+\dim W$.

"If": If V is finite-dimensional then so are all its subspaces. "Only if": If C and D are bases for U and W respectively, then $C \cap D = \emptyset$ since $U \cap W = \{0\}$. Hence

 $|C \cup D| = \dim U + \dim W$, so it remains to check that $C \cup D$ is a basis for V.

is a basis for V. Note $\operatorname{Span}(C \cup D) = \operatorname{Span}(U \cup W) = U + W = V$.

Let $v \in V$ and write it as

$$v = \sum_{x \in C} \alpha_x x + \sum_{y \in D} \alpha_y y = \sum_{x \in C} \beta_x x + \sum_{y \in D} \beta_y y.$$

As $V = U \oplus W$ we have $\sum_{x \in C} \overline{\alpha_x x} = \sum_{x \in C} \overline{\beta_x x}$ and thus

 $\alpha_x = \beta_x$ for $x \in C$ (as C is a basis).

Similar for D, so $C \cup D$ is a basis.

Let $U \subseteq V$ be a subspace.

Definition

A subspace $W \subseteq V$ is called a complement to U, if $V = U \oplus W$.

Remark: Complements are not unique (unless $U = \{0\}$ or U = V)!

Lemma (5.6)

If dim $V < \infty$ then every subspace $U \subseteq V$ has a complement.

Proof.

Let $C \subseteq U$ be a basis, and pick a basis $B \subseteq V$ such that $C \subseteq B$ (possiple by Theorem 1.25).

Let $W = \operatorname{Span}(B \setminus C)$. Then $V = U \oplus W$ by Example 5.2 (which we proved as a lemma).

Remark: also true if dim $V=\infty$,

but much deeper to prove.

Theorem (5.7)

Let $U, W \subseteq V$ be subspaces. Then $V = U \oplus W$ if and only if $\pi|_W \colon W \to V/U$ is an isomorphism, where $\pi \colon V \to V/U$ is the projection.

Proof.

We show: $\pi|_W$ is surjective if and only if V = U + W; and $\pi|_W$ is injective if and only if $U \cap W = \{0\}$. This will imply the result from Theorem 5.3.

We have V = U + W

 \Leftrightarrow every $v \in V$ is of the form u + w with $u \in U$ and $w \in W$

 \Leftrightarrow for every $v \in V$ there exists $w \in W$ so that $v - w \in U$

 \Leftrightarrow for every $v \in V$ there exists $w \in W$ such that

v + U = w + U,

 $\Leftrightarrow \pi|_W$ is surjective.

Also, as $N(\pi) = U$, we have $N(\pi|_W) = U \cap W$ which is $\{0\}$ and only if $\pi|_W$ is injective.

Until now, it was required that U, W were subspaces of a bigger space V.

Hence U+W and $U\oplus W$ are sometimes called the internal sum and internal direct sum respectively, since everything is happening inside V.

We can also form direct sums even if U, W do not belong to a common space V. We define the external direct sum

$$U \oplus W := U \times W = \{(u, w) \mid u \in U, w \in W\}$$

with the obvious vector space structure (see Lemma 5.8).

Lemma

If U, W are subspaces of V then there is a canonical isomorphism from the exterior direct sum $U \oplus W$ to the interior direct sum given by $(u, w) \mapsto u + w$.

Proof.

The map is linear, and clearly surjective. Injectivity follows \mathbf{SD} from uniqueness of the sum u+w.

Let $V = U \oplus W$ (internally) where $U, W \subseteq V$ are subspaces.

The map $E: V \to V$ given by E(v) = u (where v = u + w is the unique decomposition) is easily seen to be linear.

Warning: E depends not just on U, but also on W!

Definition

The map $E \in \text{End}(V)$ is called the projection on U along W.

Let
$$V = \mathbb{R}^2$$
, $U = \{ \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \mid \alpha \in \mathbb{R} \}$, $W = \{ \begin{pmatrix} 0 \\ \beta \end{pmatrix} \mid \beta \in \mathbb{R} \}$.

Recall that $\mathbb{R}^2 = U \oplus W$.

Question: E be the proj. on U along W. What is $E\begin{pmatrix} 2\\3 \end{pmatrix}$?

- (2) 5
- $\begin{array}{ccc}
 (3) & \begin{pmatrix} 2 \\ 0 \end{pmatrix} \\
 (4) & \begin{pmatrix} 2 \\ 3 \end{pmatrix}
 \end{array}$

Let $V = U \oplus W$ (internally) where $U, W \subseteq V$ are subspaces.

The map $E \colon V \to V$ given by E(v) = u (where v = u + w is the unique decomposition) is easily seen to be linear.

Warning: E depends not just on U, but also on W!

Definition

The map $E \in \text{End}(V)$ is called the projection on U along W.

Let
$$V = \mathbb{R}^2$$
, $U = \{ \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \mid \alpha \in \mathbb{R} \}$, $W = \{ \begin{pmatrix} 0 \\ \beta \end{pmatrix} \mid \beta \in \mathbb{R} \}$.

Recall that $\mathbb{R}^2 = U \oplus W$.

Question: E be the proj. on U along W. What is $E\begin{pmatrix} 2\\3 \end{pmatrix}$?

$$\begin{pmatrix} 2 \\ 3 \end{pmatrix} = \underbrace{\begin{pmatrix} 2 \\ 0 \end{pmatrix}}_{GU} + \underbrace{\begin{pmatrix} 0 \\ 3 \end{pmatrix}}_{GW}.$$

So
$$E\left(\begin{array}{c}2\\3\end{array}\right)=\left(\begin{array}{c}2\\0\end{array}\right)$$
.

Let $V = U \oplus W$, and let $E \in \text{End}(V)$ be the projection on U along W.

Consider the map $I - E \in \text{End}(V)$.

For any $v \in V$ decompose it as v = u + w (so E(v) = u).

Then

$$(I-E)(v) = \underbrace{v}_{u+w} - \underbrace{E(v)}_{u} = w$$

so I - E is the projection on W along U.

Lemma (5.11)

If E is the projection on U along W then

(a)
$$U = R(E) = N(I - E);$$

(b)
$$W = N(E) = R(I - E)$$
.

Lemma (5.11)

If E is the projection on U along W then

- (a) U = R(E) = N(I E);
- (b) W = N(E) = R(I E).

Proof.

Statements for I - E follow by interchanging U and W, and E and I - E. So we only prove U = R(E) and W = N(E).

(a): By definition $R(E) \subseteq U$.

If $u \in U$, then u = u + 0 is the unique decomposition, so $Eu = u \in R(E)$. Hence $U \subseteq R(E)$, and thus R(E) = U.

(b): Let $w \in W$. Then w = 0 + w is the unique decomposition, so E(w) = 0. Hence $w \in N(E)$, and thus $W \subset N(E)$.

Let $v \in N(E)$. Write v = u + w. Then u = E(v) = 0 so $v = w \in W$. Hence $N(E) \subset W$.

Definition

A linear map $E \in \text{End}(V)$ is idempotent if $E^2 = E$.

Consider $V=\mathbb{R}^2$ and let $A,B\in \mathrm{End}(\mathbb{R}^2)$ be given by

$$A\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} -\alpha \\ 0 \end{pmatrix}, \qquad B\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}.$$

Question: which is true?

- (1) A and B are both idempotents
- (2) A is an idempotent, B is not an idempotent
- (3) A is not an idempotent, B is an idempotent
- (4) Neither A nor B is an idempotent.

Definition

A linear map $E \in \text{End}(V)$ is idempotent if $E^2 = E$.

Consider $V=\mathbb{R}^2$ and let $A,B\in\mathrm{End}(\mathbb{R}^2)$ be given by

$$A\left(\begin{array}{c}\alpha\\\beta\end{array}\right)=\left(\begin{array}{c}-\alpha\\0\end{array}\right),\qquad B\left(\begin{array}{c}\alpha\\\beta\end{array}\right)=\left(\begin{array}{c}\alpha\\0\end{array}\right).$$

$$A^{2} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = A(A \begin{pmatrix} \alpha \\ \beta \end{pmatrix}) = A \begin{pmatrix} -\alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

so $A \neq A^2$. Hence A is not an idempotent.

$$B^{2}\left(\begin{array}{c}\alpha\\\beta\end{array}\right)=B\left(\begin{array}{c}\alpha\\0\end{array}\right)=\left(\begin{array}{c}\alpha\\0\end{array}\right)=B\left(\begin{array}{c}\alpha\\\beta\end{array}\right).$$

So $B^2 = B$ and thus B is an idempotent.

Recall: $E \in \operatorname{End}(V)$ is an idempotent if $E^2 = E$.

Theorem (5.13)

Let V be a vector space and $E \in \operatorname{End}(V)$. Then E is an idempotent if and only if E is the projection on U along W for some internal direct sum $V = U \oplus W$. Moreover, in this case, U = R(E) and W = R(I - E).

Proof.

"If": Suppose $V = U \oplus W$ and E is the projection on U along W. For $v \in V$ we have $E(v) \in U$, so E(v) = E(v) + 0 is the unique decomposition. Hence $E^2(v) = E(E(v)) = E(v)$, so $E^2 = E$.

Recall: $E \in \text{End}(V)$ is an idempotent if $E^2 = E$.

Theorem (5.13)

Let V be a vector space and $E \in \operatorname{End}(V)$. Then E is an idempotent if and only if E is the projection on U along W for some internal direct sum $V = U \oplus W$. Moreover, in this case, U = R(E) and W = R(I - E).

Proof.

W=R(I-E). For any $v\in V$ we have $v=Ev+(I-E)v\in U+W$, so V=U+W. For any $u\in U=R(E)$, there exists $v\in V$ so that u=E(v). Hence $Eu=E^2v=Ev=u$. Hence if $x\in U\cap W$ then

"Only if": Suppose $E^2 = E$. Let U = R(E) and

$$x = Ex = E(I - E)v = (E - E^{2})v = (E - E)v = 0.$$

Ex = x. There also exists $v \in V$ so that x = (I - E)v. Hence

So
$$U \cap W = \{0\}$$
 and thus $V = U \oplus W$ (Thm 5.3).

