ENS-LYON (René TARDIEUX) AGRÉGATION DE PHYSIQUE

Le : 20 février 2006

NOTICE D'UTILISATION DU PENDULE A OSCILLATIONS LIBRES OU FORCÉES

Matériel:

- Pendule complet + Boîtier électronique « Alimentation & Mesure »
- Générateur B.F. + PC avec logiciel « Synchronie »

Mécanisme:

Boîtier:

Electronique:

Chaîne d'acquisition:

La chaîne d'acquisition est composée du capteur de position angulaire ($\Delta\theta=100~^\circ$; s $\cong 90~\text{mV/}^\circ$) monté sur l'axe du pendule et relié au boîtier électronique d'alimentation et de mesure . Le pendule étant en position d'équilibre stable, on doit avoir une tension initiale de sortie $\mathbf{u}\cong 4.35~\mathbf{V}$.

Précaution d'utilisation:

- Le boîtier est relié au capteur de position angulaire par l'intermédiaire d'une prise mâle venant se raccorder à une prise femelle située sur une petite équerre à l'avant du bâti vertical du pendule.
 - => Attention au moment de la connection : DÉTROMPEUR.
- Pour éviter toute dérive de tension lors de l'utilisation du système, il est nécessaire que les composants électroniques soient en équilibre thermique.
 - => Mettre sous tension une dizaine de minutes avant toute utilisation.
- Pour la mise à zéro de la sortie (u_s = 0 V) lorsque le pendule est en équilibre stable, se servir du bouton de réglage prévu à cet effet sur le boîtier.

Manipulation:

On peut exercer sur le pendule séparément ou simultanément :

- => Un couple de frottement de type visqueux par courant de Foucault dont le moment s'écrit : $C_1 = -\alpha_1 \, d\theta/dt$. Le coefficient de frottement α_1 peut être modulé en approchant ou en éloignant l'aimant de la plaque métallique (par vissage ou dévissage).
- => A ce premier couple provoqué vient s'ajouter, de <u>façon incontournable</u>, un couple de frottement visqueux <u>très faible</u> noté C_0 tel que : $C_0 = -\alpha_0 \cdot d\theta/dt$ (petite vitesse). Le couple global de frottement visqueux s'exerçant sur le pendule sera donc : $C_{fv} = -(\alpha_0 + \alpha_1) \cdot d\theta/dt = -\alpha \cdot d\theta/dt$.
- => Un couple de frottement de type solide par pression plus ou moins forte d'une gaine de caoutchouc sur la partie circulaire mobile du pendule, portée par une vis en laiton située à gauche.

=> A ce couple provoqué vient s'ajouter, de <u>façon incontournable</u>, un couple de frottement de type solide <u>très faible</u> provenant principalement du roulement. Le couple global de frottement solide s'exerçant sur le pendule sera : $\mathbf{M_s} = \mathbf{s.C_{fs}}$ avec $\mathbf{s} = -1$ si $\mathrm{d}\theta/\mathrm{d}t > 0$ et $\mathbf{s} = +1$ si $\mathrm{d}\theta/\mathrm{d}t < 0$.

Oscillations libres sans frottement visqueux provoqué:

- => la plaque sera enlevée (attention à la vis de fixation),
- => la gaine de caoutchouc ne frottera pas sur la partie mobile du pendule.

Oscillations libres avec frottements visqueux:

=> la plaque sera remise en place

Dans le cas d'un frottement visqueux, les oscillations libres ont une amplitude décroissante exponentiellement avec le temps.

Oscillations forcées, résonance :

L'excitation se fait par l'intermédiaire d'une bobine qui attire périodiquement (règle du flux maximal) une tige métallique semi-circulaire (arceau) solidaire du pendule en utilisant le circuit approprié relatif à la partie « OSCILLATIONS FORCÉES » (voir boîtier).

Caractéristiques du pendule mécanique (février 2006) :

M₀: masse du pendule complet (y compris l'aimant) sans masse additionnelle :

 $=> M_0 = 0.7887 \text{ kg},$

a: distance du CDG de la masse M_0 à l'axe de rotation \Rightarrow a = 0,1738 m,

R: Rayon décrit par le centre de l'aimant \Rightarrow R = 0,5135 m,

 J_0 : moment d'inertie du pendule complet (masse M_0) \Rightarrow $J_0 = 0.053$ kg.m²,

 C_{fs} : Couple de frottement de type solide (roulement) $\implies C_{fs} = 1.10^4 \text{ N.m}$

Product Data

Angular Position Transducers

- Almost limitless life
- No electrical sliding contacts
- Infinite resolution
- Free from micro-linearity errors
- 🔳 d.c supply, d.c output
- Low operating torque
- 0-10, 0-20 or 4-20mA output versions available.

The Penny & Giles d.c/d.c angular position sensor is basically a transformer in which the output is governed by the angular position of the input shaft in relation to the transducer body. The output is electrically isolated from the input. The required input is a stabilised 10V d.c. from a source impedance of less than 1 ohm. The d.c. input is converted to an a.c. waveform by an integral oscillator and then fed to the transformer primary winding. The output from the secondary winding is converted to d.c. by an integral demodulator and filter.

Specification							
Mode!	3810/300	3810/200	3810/100	3810/60	3810/30	3810/20	3810/4
Effective electrical angle degrees	300	200	100	60	30	20	4
Output sensitivity per degree – nominal	33mV	50mV	90mV	140mV	240mV	340mV	470mV
Residual voltage – maximum at 0° arc	50mV	50mV	500mV	1.0V	1.4V	1.6V	3.6V
Linearity – deviation from best straight line	±0.5%						
Resolution	infinite	~					
Output ripple (> 1.2k Hz)	0.05% FS + 0.4% output						
Input current nominal	50mA at 10.00V d.c.						
Mean temperature coefficient	+10°C to +40°C ±0.8mV/°C			-20°C to +60°C ±2mV/°C			
Frequency response	at 40Hz output 1% down			at 80Hz output 10% down			
Temperature range – optional storage	−20°C to + 60°C −40°C to +100°C						
Mechanical angle	360 degrees continuous						
Torque – maximum	0.5gm cm						
Shaft rotation	clockwise for increasing output						
Options							
Current output	Alternative units with 0-10, 0-20 or 4-20mA are available. Please ask for details						
Shaft rotation	anti-clockwise for increasing output						
Sealing	Shaft seal can be specified (torque increases with this option)						
Absolute linearity	span and zero board available to provide absolute linearity accuracy						

Angular Position Transducers

Environmental specification

Terminal security and solderability	MIL-R-12934	
Vibration	20G - BS2G100 Grade A extended to 5000Hz	
Acceleration	17G - BS2G100 Grade C Class 1A (i)	
Tropical exposure	BS2G 100 Part 2 Clause 200 (b)	
Temperature and pressure	BS2G 100 Grade A Curves C, D and F	
Radio interference to	BS2G 100 Part 2 Clause 227	
Magnetic interference to	BS2G 100 Part 2 Clause 227	

Dimensional specification

Notes i) The performance specification is true only for a $10.00V \pm 1 \text{mV}$ d.c. input with a $10 \text{k}\Omega \pm 0.2\%$ load impedance on the output.

ii) A stabilised d.c. supply is necessary.

iii) There is no short circuit protection across the output.

iv) Setting up procedure: align ident groove on the shaft end with the spot on the case, then with a 10.00V d.c. supply and the output fed into a $10k\Omega$ load adjust the shaft with respect to the case until the output corresponds with the index voltage marked on the individual transducer. This will then give precise mid range.

Quality Status

Penny & Giles Potentiometers Limited carries design, manufacture and inspection approvals to Nato standard AQAP 1 Ed. 3 (previously MOD Def. Stan 05-21) and to Civil Aviation Authority requirements

Doc. ref. APT October 1986

Penny & Giles
Potentiometers Ltd.

Somerford Road Christchurch Dorset BH23 3RS United Kingdom Telephone Highcliffe (04252) 78821 Telex: 41266 Fax: (04252) 78828

A subsidiary of Penny & Giles International plc

Registered in England number 843904 Registered office as above

