

THE HIDE AND SEEK GAME OF VON NEUMANN

Merrill M. Flood

23 December 1968

The state of the s

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va 22151

SP-3274

S P a professional paper

THE HIDE AND SEEK GAME OF VON NEUMANN

BY

MERRILL M. FLOOD

23 December 1968

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA 90406

(Page 2 blank)

Abstract

John von Neumann (1953) has discussed a zerosum two-person game and he has shown how the extreme optimal strategies for one of the players (the hider) can be calculated by solving a related assignment problem. We now offer an alternative treatment of the problem that is simpler and easily yields optimal strategies for both players.

THE HIDE AND SEEK GAME OF VON NEUMANN

Merrill M. Flood

INTRODUCTION

John von Neumann (1953) has discussed a zero-sum two-person game and he has shown how the extreme optimal strategies for one of the players (the hider) can be calculated by solving a related assignment problem. We now offer an alternative treatment of the problem that is simpler and easily yields optimal strategies for both players.

THE GAME

Two players, a hider and a seeker, are given the n^2 values of a square array $||g_{ij}||$ of positive rational numbers. The hider chooses a cell (row and column indexes) and the seeker chooses a line (row or column index), each in ignorance of the choice made by the other player. If the seeker chooses a line that includes the cell chosen by the hider then the hider pays the seeker the amount for that cell, otherwise he pays 0. Thus, if the hider chooses cell (α,β) he pays $g_{\alpha\beta}$ to the seeker if and only if the seeker chooses row (α) or column (β) as his line. This completes one play of the game.

STRATEGIES AND VALUE

The hider has n^2 pure strategies corresponding to the n^2 cells. We let his mixed strategy be $n = (p_{ij})$ where Σ_{ij} $p_{ij} = 1$, and where p_{ij} denotes the probability that he hides in cell (i, j).

The seeker has 2n pure strategies corresponding to the 2n lines. We let his mixed strategy be $s = (p_i, q_i)$, where $\Sigma_i (p_i + q_i) = 1$, and where p_i denotes the probability that he seeks in row i and q_i in column i.

The expected value of the payoff from one play of the game, for the seeker, is $V(h, s) = \sum_{i,j} p_{i,j} g_{i,j} (p_i + q_j)$.

We shall solve the game by exhibiting specific values p_{ij}^* , p_i^* , q_j^* , V^* that satisfy the relation:

1)
$$\max_{s} V(h^{*}, s) = \min_{h} V(h, s^{*}) = V^{*}.$$

The value of the game is V, for the seeker, and -V for the hider.

ASSIGNMENT THEORY

The assignment problem is to find a permutation of the columns of a square matrix, whose elements are rational numbers, that minimizes its trace[†]. Many solutions to this problem have been published. The Hungarian Method of H. W. Kuhn (1955) is the one we favor. The interested reader can find one version of this method in our earlier paper (Flood, 1961). We shall make use of some theoretical properties of this method of solution, and record them now for present purposes.

We let $I = (i_1, i_2, ..., i_n)$ and $J = (j_1, j_2, ..., j_n)$ represent column permutations of a square matrix of order n. Thus, I carries column r into column i_r and J carries column r into column j_r , where the n distinct elements of I, and J, are the first n positive integers. Therefore, I solves the assignment

[†] The trace of a square matrix is the sum of its main diagonal elements.

problem with matrix $||g_{ij}||$ if and only if, for every J, we have the relation $\sum_{\alpha} g_{\alpha i_{\alpha}} = g_{1i_{1}} + g_{2i_{2}} + \cdots + g_{ni_{n}} \leq \sum_{\alpha} g_{\alpha j_{\alpha}}.$

The Hungarian Method yields a solution permutation I, and also yields values for 2n quantities u_i and v_i , that satisfy the following relations:

2)
$$g_{ij} + u_i - v_j \ge 0$$
, for i, $j = 1, 2, ..., n_s$

3)
$$g_{\alpha i_{\alpha}} + u_{\alpha} - v_{i_{\alpha}} = 0$$
, for $\alpha = 1, 2, ..., n$.

HIDE AND SEEK GAME THEORY

We shall show how optimal strategies h and s can be written directly in terms of a solution to the assignment problem with matrix $|-1/g_{i,1}|$.

We let J denote a solution of this assignment problem, and rewrite relations

4)
$$(-1/g_{i,j}) + x_i - y_j \ge 0$$
,

5)
$$(-1/g_{\alpha j_{\alpha}}) + x_{\alpha} - y_{j_{\alpha}} = 0$$
.

We also define a quantity E by the following relations:

6)
$$(1/E) = \Sigma_{\alpha}(1/g_{\alpha j_{\alpha}}) = \Sigma_{\alpha}(x_{\alpha}-y_{\alpha})$$
.

Finally, we define h and s by the following relations:

7)
$$p_{\alpha j_{\alpha}} = E/g_{\alpha j_{\alpha}}$$
, all other $p_{ij} = 0$,

8)
$$p_{\alpha}^* = E(x_{\alpha} - \min_{i} x_{i}), q_{\alpha}^* = E(\min_{i} x_{i} - y_{\alpha})$$
.

Theorem. The hide and seek game with matrix $||g_{ij}||$ has optimal strategies h and s, as defined in 4) - 8), and the value of the game to the hider is V = E.

Proof. We note that

$$\max_{\mathbf{s}} V (\mathbf{h}^{\bullet}, \mathbf{s}) = \max_{\mathbf{s}} \Sigma_{\alpha} (\mathbf{E}/\mathbf{g}_{\alpha \mathbf{j}_{\alpha}}) \mathbf{g}_{\alpha \mathbf{j}_{\alpha}} (\mathbf{p}_{\alpha} + \mathbf{q}_{\mathbf{j}_{\alpha}}) = \mathbf{E} .$$

Also, using 4) and 5), that

$$\max_{h} V(h, s^{*}) = \max_{h} \Gamma_{ij} p_{ij} g_{ij} (x_{i} - y_{j}) E \ge \max_{h} \Gamma_{ij} p_{ij} E = E.$$

It remains to show that h and s are mixed strategies. Obviously, since $g_{i,j} > 0$, the following quantities are non-negative: E, $p_{i,j}$, p_{α} . Since, by (4), $x_i - y_j \ge (1/g_{i,j}) > 0$ it follows immediately that $q_{\alpha} \ge 0$. Next, $E_{i,j} p_{i,j} = E_{\alpha}(E/g_{\alpha j_{\alpha}}) = 1$. Finally, $E_{\alpha} (p_{\alpha} + q_{\alpha}) = E_{\alpha}E(x_{\alpha} - y_{\alpha}) = E_{\alpha}E(x_{\alpha} - y_{\alpha}) = 1$. This completes our proof. We conclude with a simple illustrative example.

Numerical Example . We apply these results to solve the following 2x2 hide and seek game:

$$\left|\left|g_{i,j}\right|\right| = \left|\left|\frac{2}{2}\right|$$
, and $\left|-\frac{1}{2}\right| = \left|\left|\frac{-1}{2}\right| - \frac{1}{10}\right|$.

Obviously J = (21), since -11/10 < -1, and then clearly

x = (1/2, 1), y = (0, 2/5) satisfy 4) and 5).

Since E = 10/11, the non-zero values of p_{ij}^* are: $p_{12}^* = 1/11$ and $p_{21}^* = 10/11$.

Finally, $p_1^* = 0$, $p_2^* = 5/11$, $q_1^* = 5/11$, and $q_2^* = 1/11$. It is easily verified that $V(h^*, s) = 10/11$ and we find that $V(h, s^*) = (10/11) + (2/11) p_{22} \ge 10/11$.

References.

Flood, M. M. "A transportation algorithm and code," <u>Naval Research Logistics</u> <u>Quarterly</u>, Vol. 8, September 1961, pp.257-276.

Kuhn, H. W. "The Hungarian Method for the assignment problem," Naval Research Logistics Quarterly, Vol. 2, March-June 1955, pp. 83-97.

von Neumann, John. "A certain zero-sum two-person game equivalent to the optimal assignment problem." In: H. W. Kuhn and A. W. Tucker (Eds.) Contributions to the theory of games, Vol. II, Princeton University Press, 1953, pp. 5-12.

[†] Historical Note. These results were first obtained in late 1955, and presented in various lectures. We recently programmed the procedure (in JOVIAL) for the Q-32 time-shared computer at System Development Corporation, to provide a demonstration game on this system, because the hide and seek game is complex enough to be interesting to players but easily solved on the Q-32.

line assified Security Classification					
DOCUM	ENT CONTROL DATA - R	-			
(Security classification of title, body of abstract a DRIGINATING ACTIVITY (Corporate author)	and indexing annotation must be e		SECURITY CLASSIFICATION		
System Development Corporation		Uncla	ssified		
Santa Monica, California		26. GROUP			
		<u> </u>			
S REPORT TITLE					
The Hide and Seek Game of Yon Neu	lann.				
4 DESCRIPTIVE NOTES (Type of report and Inclusive dat	••)				
S AUTHORISI (First name, middle initial, last name)					
Flood Merrill M.	TOTAL NO. O		Trb. NO. OF REFS		
	72. 10122 45. 0		75. NO. OF REFS		
23 December 1968	M. ORIGINATOR	REPORT NU	MBER(8)		
Independent Research					
b. PROJECT NO	CD 2071				
c		SP-3274 Sb. OTHER REPORT NO(S) (Any other numbers that may be assigned)			
	this report)	A THOTOT (MILL)	one nelsere also say be serigined		
d					
Distribution of this document is a	inlimited.	ALLITARY AC	TIVITY		
John won Neumann (1953) has discus	end a same sum two		me and he has		
shown how the extreme optimal stra					
be calculated by solving a related					
treatment of the problem that is s					
for both players.					
A.					

DD FORM 1473

Unclassified
Security Classification

Unclassified

Security Classification		4 A	LIN	K B	LINK C		
	KEY WORDS	ROLE	WT	ROLE	wT	ROLE	WT
						ļ	
von Neumann							
Gaming							i
Strategies						 	
Operations Research							
-							
						1	
			'			ļ	
			1				
			í				
		į				1	
						İ	
							ľ
		ì	!	•	ł	ŀ	
			ĺ	ļ	İ	1	1
				Ì		ļ	
]		1	
				ì			
			Į.		ļ		
		1			Ì		Ì
			ļ		1		
					•	1	
					1	1	}
					1		
			1				
					ļ		
			L			1	1

Unclassified
Security Classification