Álgebra lineal I, Grado en Matemáticas

Segunda PEC, Sistemas Lineales y Espacios Vectoriales.

19 de diciembre de 2023

En las preguntas 1 a 4 determine cuál es la opción correcta y justifique por qué. Todas las respuestas y resultados de los ejercicios tienen que estar suficientemente justificados. Si utiliza operaciones elementales en la resolución de los ejercicios indique explícitamente cuáles.

- 1. (1 punto) Sea AX = B es un sistema lineal de m > 3 ecuaciones y n incógnitas. Denotamos por $C_i(A)$ a la columna i-ésima de A. Si la forma de Hermite por filas de (A|B) tiene exactamente dos filas nulas, entonces
 - (a) el número de incógnitas del sistema es mayor que m-2.
 - (b) una condición necesaria para que sea compatible es $B = a_1C_1(A) + \cdots + a_{n-1}C_{n-1}(A)$.
 - (c) si $B = C_1(A) + C_n(A)$ y n = m 2 el sistema es compatible determinado.
- 2. (1 punto) Sea $S = \{v_1, \ldots, v_m\}$ un conjunto de vectores linealmente dependientes de un espacio vectorial V de dimensión mayor que 0. Entonces, la afirmación "suprimiendo algún vector de S se puede encontrar un subconjunto $\mathcal{B} \subset S$ que es una base de V" es
 - (a) cierta pues todo conjunto de vectores linealmente dependiente contiene un subconjunto linealmente independiente.
 - (b) cierta sólo si $m > \dim(V)$.
 - (c) es falsa salvo el caso en que S sea un sistema generador de V.
- 3. (1 punto) Si U y W son dos subespacios de un subespacio vectorial V tales que el número de ecuaciones implícitas de U es p y el de W es q, con $p < \dim(V)$ y $q < \dim(V)$; se cumple que
 - (a) si $p + q < \dim(V)$, entonces $U \cap W \neq \{0\}$
 - (b) si $p + q = \dim(V)$, entonces U + W = V
 - (c) Si $U \vee W$ son suplementarios en V, entonces $p+q > \dim(V)$
- 4. (1 punto) Sea P el plano de \mathbb{K}^4 de ecuaciones $\{x_1 + x_2 = 0, x_3 + x_4 = 0\}$ y \mathbb{K}^4/P el subespacio vectorial cociente \mathbb{K}^4 módulo P. Entonces, una base de \mathbb{K}^4/P es
 - (a) $\{(1,1,0,0)+P,(0,1,0,0)+P\}$
 - (b) $\{(1,1,0,0)+P,(0,0,1,1)+P\}$
 - (c) $\{(1,0,0,0) + P, (0,1,0,0) + P\}$

Ejercicio 1.(2.5 puntos) Discutir y resolver el sistema lineal AX = B para los distintos valores de los parámetros $a, b \in \mathbb{K}$, siendo

$$(A|B) = \begin{pmatrix} 1 & 2 & 0 & -1 & b \\ 3 & a & -5 & 2 & 3 \\ 1 & 0 & -5 & a & b \end{pmatrix}$$

Ejercicio 2. (2 puntos) Sean $\mathcal{B} = \{v_1, \dots, v_6\}$ una base de \mathbb{K}^6 y $S = \{u_1, \dots, u_6\}$ un conjunto de vectores de \mathbb{K}^6 cuya matriz de coordenadas por columnas respecto de \mathcal{B} es la matriz A de orden 6 con entradas

$$a_{ii} = 0$$
, $a_{ij} = 1$ si $i < j$, $a_{ij} = -1$ si $i > j$; para $i, j \in \{1, \dots, 6\}$.

Sabiendo que S es otra base de V, determine las coordenadas del vector $v_1 + \cdots + v_6$ respecto de S.

Ejercicio 3. (1.5 puntos) En el espacio vectorial \mathbb{K}^4 se consideran los subespacios U = L((1,0,1,1), (1,2,0,0)) y W = L((0,1,-1,0), (1,1,-1,2)). Determine una base y unas ecuaciones implícitas de los subespacios U + W y $U \cap W$.

Soluciones

1. Sea AX = B un sistema lineal de m > 3 ecuaciones y n incógnitas. Denotamos por $C_i(A)$ a la columna i-ésima de A. Si la forma de Hermite por filas de (A|B) tiene dos filas nulas, entonces rg(A|B) = m - 2 y rg(A) puede ser igual a m - 3 o m - 2. Entonces, el número de columnas de A, cumple $n \ge rg(A) \ge m - 3$ en el primer caso, o $n \ge rg(A) \ge m - 2$ en el segundo, lo que hace (a) falsa.

Una condición necesaria y suficiente para que AX = B sea compatible es que B sea combinación lineal de $C_i(A)$, pero no es necesaria una combinación lineal concreta, como se expresa en (b), que no es correcta.

Si $B = C_1(A) + C_n(A)$, entonces el sistema es compatible, es decir, según el Teorema de Rouché-Frobenius: $\operatorname{rg}(A) = \operatorname{rg}(A|B) = m-2$. Si, además, n = m-2, entonces es compatible determinado, es decir, (c) es la opción correcta.

2. Sea S = {v₁,..., v_m} un conjunto de vectores linealmente dependientes de un espacio vectorial V con dim(V) = n ≥ 1. La afirmación "suprimiendo algún vector de S se puede encontrar un subconjunto B ⊂ S que es una base de V" es falsa salvo si S es un sistema generador de V. Si S es un sistema generador de V, entonces contiene una base de V y si no lo es, ningún subconjunto de S será sistema generador; es decir, (c) es la opción correcta y (a) falsa.

La condición $m > \dim(V)$ es necesaria para que S sea un sistema generador, pero no suficiente, es decir S puede tener más de $\dim(V)$ vectores pero no ser un sistema generador, por lo que (b) también es falsa.

3. Si U y W son dos subespacios de un subespacio vectorial V tales que el número de ecuaciones implícitas de U es p y el de W es q, con $p < \dim(V)$ y $q < \dim(V)$; entonces $\dim(U) = n - p$, $\dim(W) = n - q$ y

$$n \ge \dim(U+W) = \dim(U) + \dim(W) - \dim(U\cap W) \ge (n-p) + (n-q) - \dim(U\cap W) = 2n - (p+q) - \dim(U\cap W)$$

Si $p + q < \dim(V) = n$, entonces

$$n \ge 2n - (p+q) - \dim(U \cap W) > n - \dim(U \cap W)$$

de donde $\dim(U \cap W) > 0$, lo que hace (a) la opción correcta.

La opción (b) es falsa. Si $p+q=\dim(V)$, no tiene por qué ser U+W=V; por ejemplo, si U=W, o si $U\subset W$ se tiene $U+W=U\neq V$

Si U y W son suplementarios en V, entonces dim U+dim W = dim(V) = n, es decir (n-p)+(n-q) = n, de donde p+q=n, lo que hace (c) falsa.

4. Sea P el plano de \mathbb{K}^4 de ecuaciones $\{x_1 + x_2 = 0, x_3 + x_4 = 0\}$. Tomamos una base de U, por ejemplo: $\{u_1 = (1, -1, 0, 0), u_2 = (0, 0, 1, -1)\}$. Una base de \mathbb{K}^4/P está formada por dos vectores $\{v_1 + P, v_2 + P\}$ tales que $\{u_1, u_2, v_1, v_2\}$ son una base de \mathbb{K}^4 . Los únicos que cumplen esta condición son los vectores de la opción (b): $v_1 = (1, 1, 0, 0)$ y $v_2 = (0, 0, 1, 1)$.

Ejercicio 1. Transformamos el sistema lineal AX = B en escalonado para la discusión y posterior resolución. Haciendo las operaciones elementales de filas a (A|B): $f_2 \to f_2 - 3f_1$, $f_3 \to f_3 - f_1$, $f_2 \leftrightarrow f_3$ y $f_3 \to f_3 + \frac{a-6}{2}f_2$, se obtiene la matriz equivalente por filas

$$\begin{pmatrix}
1 & 2 & 0 & -1 & b \\
3 & a & -5 & 2 & 3 \\
1 & 0 & -5 & a & b
\end{pmatrix}
\sim_f
\begin{pmatrix}
1 & 2 & 0 & -1 & b \\
0 & -2 & -5 & a+1 & 0 \\
0 & 0 & 10 - \frac{5}{2}a & \frac{1}{2}a^2 - \frac{5}{2}a + 2 & 3 - 3b
\end{pmatrix}$$

Buscamos los valores de a y b que anulan entradas de la última fila

$$\begin{pmatrix}
1 & 2 & 0 & -1 & b \\
0 & -2 & -5 & a+1 & 0 \\
0 & 0 & -\frac{5}{2}(a-4) & \frac{(a-1)(a-4)}{2} & 3-3b
\end{pmatrix}$$

Se tiene los siguientes casos:

• Si $a \neq 4$ entonces $\operatorname{rg}(A) = \operatorname{rg}(A|B) = 3$ menor que el número de incógnitas, por lo que es compatible indeterminado. Llamando $x_4 = \lambda$ podemos simplificar la última ecuación multiplicándola por $\frac{2}{a-4}$ obteniendo $-5x_3 + (a-1)x_4 = \frac{6-6b}{a-4}$. Despejando las incógnitas principales obtenemos

$$\begin{array}{rcl} x_3 & = & -\frac{1}{5} \left(\frac{6-6b}{a-4} - (a-1)\lambda \right) = \frac{6b-6}{5(a-4)} + \frac{(a-1)}{5}\lambda \\ x_2 & = & \frac{3-3b}{a-4} + \lambda \\ x_1 & = & b - \frac{6-6b}{a-4} - \lambda = \frac{ba+2b-6}{a-4} - \lambda \end{array}$$

Nótese que el resultado es el mismo para todo $a \neq 4$, incluyendo el caso a = 1.

• Si a = 4 y b = 1, la matriz del sistema equivalente es

$$\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & -1 & b \\
0 & -2 & -5 & a+1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)$$

que es compatible indeterminado. La solución general es

$$\left(1+5\mu-4\lambda, -\frac{5}{2}\mu+\frac{5}{2}\lambda, \mu, \lambda\right), \text{ con } \lambda, \mu \in \mathbb{K}$$

• Si a = 4 y $b \neq 1$, entonces rg(A) = 3 < rg(A|B) = 4 y el sistema es incompatible.

Ejercicio 2. Dadas las bases de \mathbb{K}^6 $\mathcal{B} = \{v_1, \dots, v_6\}$ y $S = \{u_1, \dots, u_6\}$, la matriz A de coordenadas por columnas se S respecto de \mathcal{B} es la matriz de cambio de coordenadas de S a \mathcal{B}

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & -1 & -1 & 0 \end{pmatrix}$$

Las coordenadas del vector $v = v_1 + \cdots + v_6$ respecto de \mathcal{B} son (1, 1, 1, 1, 1, 1). Si las coordenadas de v respecto de S son (x_1, \ldots, x_6) se cumple

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 & 0 & 1 \\ -1 & -1 & -1 & -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Resolvemos el sistema para calcular las coordenadas y para ello lo transformamos en escalonado. Hacemos las operaciones: $f_i \to f_i - f_{i+1}$ para i = 1, 2, 3, 4.

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 0 & 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & 0 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & 0 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 & 0 & 1 & 1 \\ -1 & -1 & -1 & -1 & -1 & 0 & 1 \end{pmatrix} \sim_f \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ -1 & -1 & -1 & -1 & 0 & 1 \end{pmatrix}$$

A continuación hacemos $f_5 \rightarrow f_5 + f_1 + f_3$

De donde ya podemos despejar fácilmente la solución

$$(x_1,\ldots,x_6)=(-1,1,-1,1,-1,1)$$

Ejercicio 3. Dados los subespacios

$$U = L(u_1 = (1, 0, 1, 1), u_2 = (1, 2, 0, 0)), W = L(w_1 = (0, 1, -1, 0), w_2 = (1, 1, -1, 2))$$

Un sistema generador de U+W es $S=\{u_1,u_2,w_1,w_2\}$ y $\dim(U+W)=\operatorname{rg}\{u_1,u_2,w_1,w_2\}$. Determinamos el rango y una base de U+W $U\cap W$.

$$\begin{pmatrix}
1 & 0 & 1 & 1 & u_1 \\
1 & 2 & 0 & 0 & u_2 \\
0 & 1 & -1 & 0 & w_1 \\
1 & 1 & -1 & 2 & w_2
\end{pmatrix}
\sim
\begin{pmatrix}
1 & 0 & 1 & 1 & u_1 \\
0 & 2 & -1 & -1 & u_2 - u_1 \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2}u_1 - \frac{1}{2}u_2 + w_1 \\
u_2 - 2u_1 - 3w_1 + w_2
\end{pmatrix}$$

El rango es 3, por lo que $\dim(U+W)=3$ y una base de este hiperplano de \mathbb{K}^4 está formada por los tres primeros vectores de la última matriz. Los utilizamos para determinar unas ecuaciones implícitas, que se obtienen de la condición:

$$\operatorname{rg}\left(\begin{array}{cccc} 1 & 0 & 1 & 1\\ 0 & 2 & -1 & -1\\ 0 & 0 & -\frac{1}{2} & \frac{1}{2}\\ x_1 & x_2 & x_3 & x_4 \end{array}\right) = 3 \Leftrightarrow \det\left(\begin{array}{cccc} 1 & 0 & 1 & 1\\ 0 & 2 & -1 & -1\\ 0 & 0 & -\frac{1}{2} & \frac{1}{2}\\ x_1 & x_2 & x_3 & x_4 \end{array}\right) = 2x_1 - x_2 - x_3 - x_4 = 0$$

La dimensión del subespacio intersección se obtiene de la fórmula de dimensiones

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U\cap W) \iff 3 = 2 + 2 - \dim(U\cap W) \iff \dim(U\cap W) = 1$$

Una base de este subespacio la obtenemos de la condición $u_2 - 2u_1 - 3w_1 + w_2 = 0$ de donde

$$u_2 - 2u_1 = 3w_1 - w_2$$

es un vector que pertenece tanto a U como a W. Se obtiene el vector $u_2 - 2u_1 = (-1, 2, -2, -2)$ y unas ecuaciones implicitas de la recta $\dim(U \cap W)$ se tienen de la condición:

$$\operatorname{rg} \left(\begin{array}{ccc} -1 & 2 & -2 & -2 \\ x_1 & x_2 & x_3 & x_4 \end{array} \right) = 1 \iff \operatorname{det} \left(\begin{array}{ccc} -1 & 2 \\ x_1 & x_2 \end{array} \right) = \operatorname{det} \left(\begin{array}{ccc} -1 & -2 \\ x_1 & x_3 \end{array} \right) = \operatorname{det} \left(\begin{array}{ccc} -1 & -2 \\ x_1 & x_4 \end{array} \right) = 0$$

Unas ecuaciones implícitas de dim $(U \cap W)$ son $\{2x_1 + x_2 = 0, 2x_1 - x_3 = 0, 2x_1 - x_4 = 0\}$