ИДЗ-19.1

Исходный ряд:

16.8	17.9	21.4	14.1	19.1	18.1	15.1	18.2	20.3	16.7
19.5	18.5	22.5	18.4	16.2	18.3	19.1	21.4	14.5	16.1
21.5	14.9	18.6	20.4	15.2	18.5	17.1	22.4	20.8	19.8
17.2	19.7	16.3	18.7	14.4	18.8	19.5	21.6	15.3	17.3
22.8	17.4	22.2	16.5	21.7	15.4	21.3	14.3	20.5	16.4
20.6	15.5	19.4	17.5	20.9	23.0	18.9	15.9	18.2	20.7
17.9	21.8	14.2	21.2	16.1	18.4	17.5	19.3	22.7	19.6
22.1	17.6	16.7	20.4	15.7	18.1	16.6	18.3	15.5	17.7
19.2	14.8	19.7	17.7	16.5	17.8	18.5	14.0	21.9	16.9
15.8	20.8	17.1	20.1	22.6	18.9	15.6	21.1	20.2	15.1

Вариационный ряд:

				· ·					
14.0	14.1	14.2	14.3	14.4	14.5	14.8	14.9	15.1	15.1
15.2	15.3	15.4	15.5	15.5	15.6	15.7	15.8	15.9	16.1
16.1	16.2	16.3	16.4	16.5	16.5	16.6	16.7	16.7	16.8
16.9	17.1	17.1	17.2	17.3	17.4	17.5	17.5	17.6	17.7
17.7	17.8	17.9	17.9	18.1	18.1	18.2	18.2	18.3	18.3
18.4	18.4	18.5	18.5	18.5	18.6	18.7	18.8	18.9	18.9
19.1	19.1	19.2	19.3	19.4	19.5	19.5	19.6	19.7	19.7
19.8	20.1	20.2	20.3	20.4	20.4	20.5	20.6	20.7	20.8
20.8	20.9	21.1	21.2	21.3	21.4	21.4	21.5	21.6	21.7
21.8	21.9	22.1	22.2	22.4	22.5	22.6	22.7	22.8	23.0

Размах варьирования и разбиение на интервалы:

$$\omega = x_{max} - x_{min} = 23.0 - 14.0 = 9.0$$

$$h = \frac{\omega}{l} = \frac{9.0}{9} = 1.0$$

Номер частичного интервала l_i	Границы интервала $x_{i} - x_{i+1}$	Середина интервала $x_{i}^{'} = \frac{x_{i}^{+}x_{i+1}}{2}$	Частота интервала n_i	Относитель ная частота $W_i = \frac{n_i}{n}$	Плотность относительн ой частоты $\frac{W_i}{h}$
1	14.0 – 15.0	14.5	8	0.08	0.08
2	15.0 – 16.0	15.5	11	0.11	0.11
3	16.0 – 17.0	16.5	12	0.12	0.12
4	17.0 – 18.0	17.5	13	0.13	0.13

5	18.0 – 19.0	18.5	16	0.16	0.16
6	19.0 – 20.0	19.5	11	0.11	0.11
7	20.0 – 21.0	20.5	11	0.11	0.11
8	21.0 – 22.0	21.5	10	0.10	0.10
9	22.0 – 23.0	22.5	8	0.08	0.08

Полигон частот, гистограмма относительных частот, график эмпирической функции распределения:

• Полигон частот:

• Гистограмма относительных частот:

• График эмпирической функции распределения:

$$F^{*}(x) = \frac{n_{x}}{n}$$

$$F^{*}(14.0) = 0.00; F^{*}(15.0) = 0.08; F^{*}(16.0) = 0.19$$

$$F^{*}(17.0) = 0.31; F^{*}(18.0) = 0.44; F^{*}(19.0) = 0.60$$

$$F^{*}(20.0) = 0.71; F^{*}(21.0) = 0.82; F^{*}(22.0) = 0.92$$

$$F^{*}(23.0) = 1.00$$

Числовые характеристики выборки:

m_{i}	Границы интервала $x_i - x_{i+1}$	Середина интервала x_i	Частота интервала n_{i}	$n_i x_i^{'}$	$(x_i^{'})^2$	$n_i(x_i)^2$
1	14.0 – 15.0	14.5	8	116.0	210.25	1682.00
2	15.0 – 16.0	15.5	11	170.5	240.25	2642.75
3	16.0 – 17.0	16.5	12	198.0	272.25	3267.00
4	17.0 – 18.0	17.5	13	227.5	306.25	3981.25
5	18.0 – 19.0	18.5	16	296.0	342.25	5476.00
6	19.0 – 20.0	19.5	11	214.5	380.25	4182.75

7	20.0 – 21.0	20.5	11	225.5	420.25	4622.75
8	21.0 – 22.0	21.5	10	215.0	462.25	4622.50
9	22.0 – 23.0	22.5	8	180.0	506.25	4050.00
Σ			100	1843.0		34527.00

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{k} x_{i}^{'} n_{i} = \frac{1}{100} (116.0 + ... + 180.0) = \frac{1}{100} 1843.0 = 18.43$$

$$D_{B} = \frac{1}{n} \sum_{i=1}^{k} (x_{i}^{'} - \overline{x})^{2} n_{i} = \frac{1}{n} \sum_{i=1}^{k} n_{i} (x_{i}^{'})^{2} - \overline{x}^{2} = \frac{1682 + ... + 4050}{100} - 18.43^{2} = \frac{34527}{100} - 339.6649 = 5.605$$

$$\sigma_{B} = \sqrt{D_{B}} = \sqrt{5.605} = 2.368$$

$$\widehat{D_{B}} = \frac{n}{n-1} D_{B} = \frac{100}{99} 5.605 = 5.662$$

$$\widehat{\sigma_{B}} = \sqrt{\widehat{D_{B}}} = \sqrt{5.662} = 2.379$$

Проверка гипотезы:

i	Границы и	интервала	$x_i - \overline{x}$	$x_{i+1} - \overline{x}$	Границы интер	вала
	x_{i}	x_{i+1}			$z_{i} = \frac{x_{i} - \bar{x}}{\sigma_{B}}$	$z_{i+1} = \frac{x_{i+1} - \overline{x}}{\sigma_{\mathrm{B}}}$
1	14.0	15.0	-4.43	-3.43	-1.871	-1.448
2	15.0	16.0	-3.43	-2.43	-1.448	-1.026
3	16.0	17.0	-2.43	-1.43	-1.026	-0.604
4	17.0	18.0	-1.43	-0.43	-0.604	-0.182
5	18.0	19.0	-0.43	0.57	-0.182	0.241
6	19.0	20.0	0.57	1.57	0.241	0.663
7	20.0	21.0	1.57	2.57	0.663	1.085
8	21.0	22.0	2.57	3.57	1.085	1.508
9	22.0	23.0	3.57	4.57	1.508	1.930

i	Границы и	интервала	$\Phi(z_i)$	$\Phi(z_{i+1})$	$P = \Phi(z_{i+1}) - \Phi(z_i)$	$n_{i} = 100P_{i}$
	$\begin{bmatrix} z_i & & z_{i+1} \end{bmatrix}$					·
1	-1.871 -1.448		-0.469	-0.426	0.043	4.305

2	-1.448	-1.026	-0.426	-0.348	0.079	7.866
3	-1.026	-0.604	-0.348	-0.227	0.121	12.056
4	-0.604	-0.182	-0.227	-0.072	0.155	15.499
5	-0.182	0.241	-0.072	0.095	0.167	16.716
6	0.241	0.663	0.095	0.246	0.151	15.123
7	0.663	1.085	0.246	0.361	0.115	11.477
8	1.085	1.508	0.361	0.434	0.073	7.307
9	1.508	1.930	0.434	0.473	0.039	3.902

i	$n_{_i}$	$n_{i}^{'}$	$n_{i} - n_{i}$	$(n_i - n_i)^2$	$\frac{(n_i - n_i)^2}{n_i}$	n_i^2	$\frac{n_i^2}{n_i}$
1	8	4.305	3.695	13.653	3.171	64.000	14.866
2	11	7.866	3.134	9.822	1.249	121.000	15.383
3	12	12.056	-0.056	0.003	0.000	144.000	11.944
4	13	15.499	-2.499	6.245	0.403	169.000	10.904
5	16	16.716	-0.716	0.513	0.031	256.000	15.315
6	11	15.123	-4.123	16.999	1.124	121.000	8.001
7	11	11.477	-0.477	0.228	0.020	121.000	10.543
8	10	7.307	2.693	7.252	0.993	100.000	13.686
9	8	3.902	4.098	16.794	4.304	64.000	16.402
Σ					11.294		117.043

$$X_{_{
m Ha6}\pi}^2=\,11.\,294$$
 $X_{_{
m Kp}}^2=\,14.\,4$, при $lpha=\,0.\,025$

Так как $X_{_{\mathrm{Ha6}\Pi}}^2 < X_{_{\mathrm{Kp}}}^2$, то гипотеза $H_{_0}$ о нормальном распределении генеральной совокупности принимается.

Доверительный интервал:
$$\overline{x}=18.43; \, \widehat{\sigma_{_{\rm B}}}=2.379; \, n=100; \, \gamma=0.9$$
 $t_{_{\Upsilon}}=1.660$

Доверительный интервал для \overline{x}

$$(\bar{x} - \frac{\widehat{G}_B}{\sqrt{n}}t_{\gamma}; \bar{x} + \frac{\widehat{G}_B}{\sqrt{n}}t_{\gamma}) = (18.43 - \frac{2.379}{\sqrt{100}}1.660; 18.43 + \frac{2.379}{\sqrt{100}}1.660) = (18.035; 18.825)$$

Доверительный интервал для σ

$$q = 0, 143$$

$$\widehat{(\sigma_{B}(1-q); \sigma_{B}(1+q))} = (2.379(1-0.143); 2.379(1+0.143)) = (2.0388; 2.7192)$$

ИДЗ-19.2

Исходный ряд:

X\Y	2.3	3.8	5.3	6.8	7.3	8.8	10.3	11.8	$m_{_{\chi}}$
210		4	3	5					12
340		6	7	8					21
470			10	12	11				33
600					5	4	3		12
730						6	8		14
860							3	5	8
m_y		10	20	25	16	10	14	5	100

Уравнение прямой регрессии у на х:

	j	1	2	3	4	5	6	7	8					
i	X\Y	2.3	3.8	5.3	6.8	7.3	8.8	10.3	11.8	m_{x_i}	$m_{x_i}^{x}$	$\sum_{j=1}^{k} m_{y_j} y_j$	$x_i^2 m_{x_i}$	$x_{i} \sum_{j=0}^{k} m_{ij} y_{i}$
1	210		4	3	5					12	2520	65,1	529200	13671
2	340		6	7	8					21	7140	114,3	2427600	38862
3	470			10	12	11				33	15510	214,9	7289700	101003
4	600					5	4	3		12	7200	102,6	4320000	61560
5	730						6	8		14	10220	135,2	7460600	98696
6	860							3	5	8	6880	89,9	5916800	77314
	m_{y_j}		10	20	25	16	10	14	5	100	49470	722	27943900	391106
	$m_{y_j} y_j$		38	106	170	116.8	88	144.2	59	722				
	$\sum_{i=1}^{m} m_{ij} x_{i}$		2880	7710	9410	8170	6780	10220	4300	49470				
	$y_j^2 m_{ij}$	0	144,4	561,8	1156	852,64	774,4	1485,2 6	696,2	5670,7				
	$y_{j} \sum_{i=0}^{k} m_{ij} x_{j}$	0	10944	40863	63988	59641	59664	105266	50740	391106				

Выборочные средние:

$$\overline{x} = \frac{\sum \sum m_{ij} x_i}{n} = \frac{\sum m_{x_i} x_i}{n} = \frac{49470}{100} = 494,7$$

$$\overline{y} = \frac{\sum m_{y_j} y_j}{n} = \frac{722}{100} = 7,22$$

Выборочные дисперсии:

$$s_{x}^{2} = \frac{1}{n-1} \left(\sum m_{x_{i}}^{2} x_{i}^{2} - \frac{1}{n} \left(\sum m_{x_{i}}^{2} x_{i}^{2} \right)^{2} \right) = \frac{1}{99} \left(27943900 - \frac{1}{100} \left(49470 \right)^{2} \right) = 35061.525$$

$$s_{y}^{2} = \frac{1}{n-1} \left(\sum m_{y_{i}}^{2} y_{j}^{2} - \frac{1}{n} \left(\sum m_{y_{i}}^{2} y_{j}^{2} \right)^{2} \right) = \frac{1}{99} \left(5670, 7 - \frac{1}{100} \left(722 \right)^{2} \right) = 4.625$$

Корреляционный момент:

$$s_{xy} = \frac{1}{n-1} \left(\sum \sum m_{ij} x_i y_j - \frac{1}{n} \left(\sum m_{x_i} x_i \right) \left(\sum m_{y_j} y_j \right) \right) = \frac{1}{99} \left(391106 - \frac{1}{100} \left(49470 * 722 \right) \right) = 342.754$$

Уравнение регрессии:

$$s_{x} = \sqrt{35061.525} = 187.24723$$

$$s_{y} = \sqrt{4.625} = 2.15058$$

$$r_{xy} = \frac{s_{xy}}{s_{x}s_{y}} = \frac{342.754}{187.24723*2.15058} = 0.851$$

$$y = \overline{y} + r_{xy} \frac{s_{y}}{s_{x}} (x - \overline{x})$$

$$y = 7,22 + 0.851 \frac{2.15058}{187.24723} (x - 494,7)$$

$$y = 0.00977394 x + 2.38483$$

Линия регрессии:

