Network Spike-and-slab GLM

Boyi Guo & Nengjun Yi

Department of Biostatistics University of Alabama at Birmingham

3/16/2021

Outlines

Outlines

- ► Motivation & Background
- Network Spike-and-slab GLM
 - Spike-and-slab prior review
 - ► Network spike-and-slab prior & GLM models
 - EM-based algorithms
- Numeric Studies

Motivation & Background

Motivation

- ▶ High-dimensional data analysis (p » n) requires extra assumptions to be feasible
 - Sparsity
- ▶ Additional assumptions can make the inference more stable and accurate
 - External knowledge
- ▶ To integrate complicated external information of predictor structures
 - Grouping: gene pathway
 - Network: gene network, phylogenetic tree

Network Structure

- Un-directed weighted graphs
- Normalized similarity matrix D
 - Similar to adjacency matrix in essence
 - $lacktriangledown d_{ij} \in [0,1], \ d_{ij} = 0$ means X_i and X_j are not related, $d_{ij} = 1$ means related
 - ▶ Strength of pairwise relationships or Degree of belief in pairwise relationships
 - ightharpoonup We define $d_{ii}=1$ for $i=1,\ldots p$
 - Naive example: absolute values of correlation matrix

Network Structure Example

► "Hub-and-spike" structure (C. Li and Li 2008)

$$\boldsymbol{D} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 1 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & \dots & 0 & 0 \\ \vdots & 0 & 0 & \ddots & 0 & 0 \\ 1 & 0 & 0 & \dots & 1 & 1 \\ 1 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$

Past solutions

- Grouped analysis
 - ► Group spike-and-slab lasso GLM and Cox models (Tang et al. 2018, 2019)
- Network analysis
 - ▶ Network constrained penalty (C. Li and Li 2008)
 - L_{γ}-norm penalty (Pan, Xie, and Shen 2010)
 - ▶ Ising Prior (F. Li and Zhang 2010)
 - Markov random field (Monni and Li 2010)

Network Spike-and-slab GLM

Spike and Slab Priors

- First coined by Mitchell and Beauchamp (1988)
- ▶ A mixture distribution $(1 \gamma_i)f_{spike}(\beta_i) + \gamma_i f_{slab}(\beta_i)$
 - $ightharpoonup f_{spike}(x)$: a spike density concentrate around 0 for small effects
 - $f_{slab}(x)$: a flat density for large effects
- Advantages:
 - Simultaneous variable selection and prediction
 - Robust estimation
- Examples:
 - Stochastic search variable selection (George and McCulloch 1993)
 - Spike-and-slab lasso (Ročková and George 2018)

Network Spike-and-slab GLM

► GLM Components

$$E(Y_i) = g^{-1}(\boldsymbol{\beta}^T \boldsymbol{X}_i), i = 1 \dots n, Y_i \sim EF_{\boldsymbol{\beta}, \phi}$$

Network Spike and Slab Priors

$$eta_j | \gamma_j, s_0, s_1 \sim (1-\gamma_j) DE(eta_j | 0, s_0) + \gamma_j DE(eta_j | 0, s_1), s_0 < s_1 \ \gamma_j | heta_j \sim Bin(\gamma_j | 1, heta_j) \ heta_j | oldsymbol{D}, oldsymbol{ heta}_{\{1:p\}/\{j\}} \sim Beta(a_j, b_j), j = 1 \dots p \ \ a_j = \sum_{k \in \{1:p\}/\{j\}} d_{jk} * heta_k, \qquad b_j = 1-a_j$$

Computation algorithm

We develop two Expectation-Maximization (EM) based algorithms

- EM Iterative weighted least square
 - Uncertainty inference
- EM Coordinate descent algorithm
 - Sparse Solution

EM Algorithm Recap

EM algorithm is an iterative algorithm to find local maximum a posterori estimates

- ► Treat nuisance parameters as "missing values"
- ► Calculate the expected likelihood with respect to the missing values
- Maximize the expected likelihood
- Iterate the process until convergence

EM algoithms

- ightharpoonup Treat γ as "missing"
- \blacktriangleright $E(\cdot) \equiv E_{\gamma \mid \Theta^{(t)}}(\cdot)$ where $\Theta^{(t)} \equiv (\beta^{(t)}, \theta^{(t)}, \phi^{(t)})$

$$E[Q(\Theta)] = C + E[Q_1(\beta, \phi)] + E[Q_2(\theta)]$$

where

$$E[Q_1(\beta,\phi)] = \sum_{i=1}^n \log f(y_i|\beta,\phi) + \log f(\phi) + \sum_{j=1}^p |\beta_i| E[(1-\gamma_j)s_0 + \gamma_j s_1]^{-1}$$

$$E\left[Q_{2}(\theta)\right] = \sum_{j=1}^{p} \log(\frac{\theta_{j}}{1-\theta_{j}}) E\left[\gamma_{j}\right] + \sum_{j=1}^{p} \left[(a_{j}^{(t)}-1)\log(\theta_{j}) + (b_{j}^{(t)}+1-1)\log(1-\theta_{j})\right]$$

EM algoithms (Cont.)

Using Bayes' Theorem, we can have

$$\begin{split} & \rho_{j}^{(t)} \equiv f(\gamma_{j} = 1 | \beta_{j}^{(t)}, \theta_{j}^{(t)}) = E_{\gamma | \Theta^{(t)}} \gamma_{j} = \\ & = \frac{f(\beta_{j}^{(t)} | \gamma_{j} = 1, s_{1}) f(\gamma_{j} = 1 | \theta_{j}^{(t)})}{f(\beta_{j}^{(t)} | \gamma_{j} = 1, s_{1}) f(\gamma_{j} = 1 | \theta_{j}^{(t)}) + f(\beta_{j}^{(t)} | \gamma_{j} = 0, s_{1}) f(\gamma_{j} = 0 | \theta_{j}^{(t)})} \end{split}$$

It is trivial to show that the expectations with respect to $\gamma_j | \beta_j, \theta_j$

$$\lambda_j^{(t)} \equiv E([(1-\gamma_j)s_0 + \gamma_j s_1]^{-1})|\beta_j^{(t)}, \theta_j^{(t)}) = \frac{p_j^{(t)}}{s_1} + \frac{1-p_j^{(t)}}{s_0}$$

EM - Iterative Weighted Least Square

▶ Update β by maximizing the linear approximation to the normal likelihood using weighted least square (Yi and Ma 2012).

Equivalently, running the autmented weighted normal linear regression

$$z_* \approx N(X_*\beta, \phi \Sigma_*),$$

where
$$z_*=egin{pmatrix} z\\0 \end{pmatrix}$$
, $X_*=egin{pmatrix} X\\I_{p+1} \end{pmatrix}$, $\Sigma_*=diag(w_1^{-1},\ldots,w_n^{-1}, au_0^2/\phi,\ldots, au_p^2/\phi)$

ightharpoonup Update heta

EM - Coordinate Descent

• Update β , ϕ with coordinate descent algorithm (Friedman, Hastie, and Tibshirani 2010)

$$\{oldsymbol{eta}^{(t+1)}, \phi^{(t+1)}\} = \operatorname{argmax} \ Q_1(oldsymbol{eta}, \phi | oldsymbol{eta}^{(t)}, oldsymbol{ heta}^{(t)}, \phi^{(t)})$$

ightharpoonup Update heta

$$egin{aligned} m{ heta}^{(t+1)} &= ext{argmax } Q_2(m{ heta}|m{eta}^{(t)}, m{ heta}^{(t)}\phi^{(t)}) \ m{ heta}^{(t+1)}_j &= rac{a^{(t)}_j + p^{(t)}_j - 1}{a^{(t)}_j + b^{(t)}_j - 1} \end{aligned}$$

Numeric Studies

Continous Outcome

The simulation follows C. Li and Li (2008); Pan, Xie, and Shen (2010)

- ▶ Number of Predictors: 2 settings: p=110/ p=1100
- ► Sample Size for Training Data: 100/1000
- ► Sample Size for Testing Data: 1000
- **X** has the hub-and-spike structure for every 11 predictors
- \blacktriangleright 5 settings of β s for various directions and magnitudes of signals
- Model

$$y = X\beta + N(0, \frac{1}{2}\sum_{i}\beta_{i}^{2}),$$

▶ Number of Iteration: 1000

Methods & Metrics

- Other methods of comparison
 - Least absolute shrinkage and selection operator (LASSO)
 - Elastic net regularization
 - Network constrained penalty (GRACE) (C. Li and Li 2008) via glmgraph¹
 - Spike-and-slab GLM (Tang et al. 2017) via BhGLM
 - ▶ 10-fold cross-validation
- Metrics Evaluated
 - Sensitivity: Number of true positive predictors / Number of positive predictors
 - Specificity: Number of true negative predictors / Number of negative predictors
 - Prediction mean squared error + mean absolute error

¹glmgraph: Graph-Constrained Regularization for Sparse Generalized Linear Models. R package version 103

Simulation Results

An interactive R Shiny app to browser simulation result is available via https://boyiguo1.shinyapps.io/Network_Result_Browser/.

Selected Results

Coefficients

$$\beta = (5, \underbrace{\frac{5}{\sqrt{10}}, \dots, \frac{5}{\sqrt{10}}}_{5}, \underbrace{0, \dots, 0}_{5}, -5, \underbrace{-\frac{5}{\sqrt{10}}, \dots, -\frac{5}{\sqrt{10}}}_{5}, \underbrace{0, \dots, 0}_{5})$$

$$3, \underbrace{\frac{3}{\sqrt{10}}, \dots, \frac{3}{\sqrt{10}}}_{5}, \underbrace{0, \dots, 0}_{5}, -3, \underbrace{-\frac{3}{\sqrt{10}}, \dots, -\frac{3}{\sqrt{10}}}_{5}, \underbrace{0, \dots, 0}_{5})$$

$$0, \dots, 0)^{T}$$

 $p = 1100, n_{train} = 100$

Performance

Method	MSE	MAE	Sensitivity	Specificity
LASSO	25.032	3.930	0.644	0.990
Elastic Net	26.002	4.013	0.547	0.995
GRACE	16.734	3.233	0.332	0.990
Spike-and-slab	19.261	3.447	0.788	0.983
Network Spike-and-slab	22.868	3.767	0.588	0.985

Variable Selection

Binary Outcome Results

Coefficients

$$\beta = (1, \underbrace{-0.7, \dots, -0.7}_{3}, \underbrace{0.7, \dots, 0.7}_{7}, -1, \underbrace{0.7, \dots, 0.7}_{3}, \underbrace{-0.7, \dots, -0.7}_{7}, \underbrace{0.5, \dots, -0.3}_{7}, \underbrace{0.3, \dots, 0.3}_{7}, \underbrace{-0.3, \dots, -0.3}_{7}, \underbrace{-0.3, \dots, -0.3$$

$$p = 110, n_{train} = 100$$

Performance

Method	AUC	MSE	MAE	Sensitivity	Specificity
LASSO	0.918	0.127	0.290	0.891	0.672
Elastic Net	0.932	0.118	0.279	0.845	0.730
GRACE	0.745	0.247	0.494	0.800	0.617
Spike-and-slab	0.911	0.127	0.237	0.910	0.614
Network Spike-and-slab	0.910	0.128	0.237	0.924	0.615

Variable Selection

Conclusion

Conclusion

- ▶ Bayesian models for simultaneous variable selection and prediction
- ▶ Fast computing algorithms to establish maximum a posteriori estimates
- ► All-in-one analysis toolkit for GLM and Cox models
 - ► BhGLM via https://github.com/nyiuab/BhGLM
- Future steps
 - More simulations
 - Study prior set-up s₀, s₁
 - Improve package documentation

Ackowledgement

Dr. Nengjun Yi

Dr. D. Leann Long

References

References

- Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent." Journal of Statistical Software 33 (1): 1.
- George, Edward I., and Robert E. McCulloch. 1993. "Variable Selection via Gibbs Sampling." Journal of the American Statistical Association 88 (423): 881–89. https://doi.org/10.1080/01621459.1993.10476353.
- Li, Caiyan, and Hongzhe Li. 2008. "Network-constrained regularization and variable selection for analysis of genomic data." Bioinformatics 24 (9): 1175-82. https://doi.org/10.1093/bioinformatics/btn081.
- Li, Fan, and Nancy R Zhang. 2010. "Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics." Journal of the American Statistical Association 105 (491): 1202–14.