Po-Wei (George) HUANG

🕏 po-wei.huang@maths.ox.ac.uk | **in** huangpowei | 🎓 Google Scholar | 🔗 georgepwhuang.github.io

EDUCATION

University of Oxford

Oct 2024 - Present

DPhil in Mathematics (MATHEMATICAL PHYSICS)

- Research group: Quantum information and computation
- Advisors: Prof. Bálint Koczor, Prof. Simon Benjamin, and Prof. Artur Ekert

National University of Singapore

Aug 2020 - Jun 2023

BComp (Hons) in Computer Science (GPA 4.81/5.00)

- Second major in mathematics
- Dual specialization in algorithms and theory/artificial intelligence
- Advisors: Prof. Patrick Rebentrost and Prof. Rahul Jain

RESEARCH EXPERIENCE

Quantum Motion Technologies

Nov 2024 - Present

Graduate Researcher (Supervisor: Prof. Simon Benjamin, Dr. Thomas R. Bromley)

Entangled Computing Lab, Centre for Quantum Technologies

May 2023 – Sep 2024

Research Assistant (PI: Prof. Patrick Rebentrost)

Web IR/NLP Group, National University of Singapore

Apr 2021 - Jul 2022

Undergraduate Researcher (Advisor: Prof. Min-Yen Kan)

Department of Chemistry, National Cheng Kung University

Sep 2018 - Apr 2019

Student Researcher (Advisor: Prof. Hong-Ping Lin)

MANUSCRIPTS AND PUBLICATIONS

- [1] A. G. Rattew, **P.-W. Huang**, N. Guo, L. Pira, P. Rebentrost (2025). <u>Accelerating inference for multilayer</u> neural networks with quantum computers. arXiv:2510.07195 [quant-ph]
 - Accepted at QTML 2025 as a regular contributed talk. -
- [2] P.-W. Huang, G. Boyd, G.-L.R. Anselmetti, M. Degroote, N. Moll, R. Santagati, M. Streif, D. Marti-Dafcik, H. Jnane, S. Simon, N. Wiebe, T.R. Bromley and B. Koczor (2025). Fullqubit alchemist: Quantum algorithm for alchemical free energy calculation. arXiv:2508.16719 [quant-ph]
- [3] P.-W. Huang, P. Rebentrost (2024). Quantum algorithm for large-scale market equilibrium computation. In Advances in Neural Information Processing Systems 37, pages 10878–10907.
- [4] P. Ivashkov, P.-W. Huang, K. Koor, L. Pira, P. Rebentrost (2024). QKAN: Quantum Kolmogorov-Arnold Networks. arXiv:2410.04435 [quant-ph]
- [5] B. Y. Gan, P.-W. Huang, E. Gil-Fuster, P. Rebentrost (2024). Concept learning of parameterized quantum models from limited measurements. arXiv:2408.05116 [quant-ph]
 - Accepted at QTML 2024, AQIS 2024, and IPS 2024 as a regular contributed talk. -
- [6] P.-W. Huang, X. Li, K. Koor, P. Rebentrost (2023). <u>Hybrid quantum-classical and quantum-inspired</u> classical algorithms for solving banded circulant linear systems. arXiv:2309.11451 [quant-ph]
- [7] P.-W. Huang, P. Rebentrost (2023). <u>Post-variational quantum neural networks</u>. arXiv:2307.10560 [quant-ph]
 - Accepted at QTML 2023 as a regular contributed talk. -
- [8] P.-W. Huang (2022). <u>Domain specific augmentations as low cost teachers for large students</u>. In Proceedings of the First Workshop on Information Extraction from Scientific Publications, pages 84–90.
- [9] P.-W. Huang, A. Ramesh Kashyap, Y. Qin, Y. Yang, and M.-Y. Kan (2022). <u>Lightweight contextual logical structure recovery</u>. In Proceedings of the Third Workshop on Scholarly Document Processing, pages 37–48.

INDUSTRY EXPERIENCES

Continental Automotive Singapore

May 2022 - Jul 2022

Software Engineer Intern

Taiwan Semiconductor Manufacturing Company (TSMC)

Jul 2021 - Sep 2021

Information Technology Intern

TALKS

- [1] Quantum computing for drug development. Invited talk at ESxAI Seminar, Union Chimique Belge Pharmaceuticals. (Oct 30, 2025)
- [2] Quantum algorithm for alchemical free energy calculation. Quantum Nosh, Oxford. (Oct 24, 2025)
- [3] Post-variational quantum neural networks. Contributed talk at QTML 2023. (Nov 22, 2023)
- [4] Post-variational strategies for quantum machine learning. QML Seminar, QAISG. (Oct 24, 2023)
- [5] Post-variational quantum neural networks. CS Seminar, CQT. (Aug 30, 2023)
- [6] Domain specific augmentations as low cost teachers for large students. Contributed talk at WIESP 2022. (Nov 21, 2022)

Posters

- [1] Quantum algorithm for alchemical free energy calculation. SEEQA 2025. (Aug 27, 2024)
- [2] Quantum algorithm for large scale market equilibrium computation. NeurIPS 2024. (Dec 11, 2024)
- [3] Hybrid quantum-classical and quantum-inspired classical algorithms for solving banded circulant linear systems. QIP 2024. (Jan 15, 2024)
- [4] Lightweight contextual logical structure recovery. SDP 2022 (Oct 17, 2022)

TEACHING

B8.5 Graph Theory (Teaching Assistant)	Aut 2025
B7.3 Further Quantum Theory (Teaching Assistant)	Spr 2025
B8.4 Information Theory (Teaching Assistant)	Aut 2024
CS2040(S) Data Structures and Algorithms (Teaching Assistant)	7 terms throughout 2021 to 2023

ACHIEVEMENTS AND AWARDS

EPSRC Quantum Technologies DTP CASE Conversion Studentship	Oct 2024 – Mar 2028
Alan Tayler Scholarship in Mathematics, St. Catherine's College	$Oct\ 2025 - Sep\ 2027$
Taiwanese Government Scholarship to Study Aboard	${\rm Jun} 2025 - {\rm May} 2027$
Honours Bachelor's Degree with Highest Distinction	2023
NUS School of Computing Turing Research Programme	2023
NUS School of Computing Dean's List	Aut 2020, Spr 2021, Aut 2022
NUS School of Computing Honour List of Student Tutors	2022

ACADEMIC SERVICES

Journal Reviewer: Int. J. Quantum Inf, Quantum Mach. Intell., npj Quantum Inf.

Conference Reviewer: QTML 2023, TAMC 2024, TQC 2024, NeurIPS 2025, QIP 2026, ICLR 2026

Conference Volunteer: SEEQA 2025

SKILLS

Spoken Languages: English (full professional proficiency), Mandarin (native)

Programming Languages: C/C++, Java, Python

Machine/Deep Learning: PyTorch, JAX, Tensorflow, Keras, Sci-kit Learn, Huggingface

Quantum Computing: Qiskit, Pennylane, Cirq, Tensorflow Quantum