2022 年期末考题

程

承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

注:本试卷共 8_ 大题, 共 5_ 页, 满分100分, 试题 解答在打印好的答题纸上手写完成, 然后拍照, 最后 以PDF文档的形式上传提交, 文件名: 学号+姓名。

(06分) 一、图 (a) 方框中是一个由理想二极管和电阻组成的电路,它的电压传输特性如图 (b) 所示,已知 44 =+10 16 时, 45 =0.5 16 和。试设计出方框中的电路(画出电路图,电阻要标明阻值)。

(14分) 二、已知图示电路中晶体管的 $\beta = 100$, $r_{tot} = 300\Omega$, $U_{BEQ} = 0.7V$, $U_{CES} = 0.5V$; 各电容的容量足够大,对交流信号可视为短路。

- (1)估算静态工作点 I_{co} 、 U_{CEQ} ;
 - (2)估算电压放大倍数原;
- (3) 为了获得更大的不失真输出电压, R_{b2} 应调整 到多大? 此时的最大不失真输出电压为多少?

- (12分) 三、电路如图所示。
- (1)写出4。与41、412的运算关系式;
- (2) 该电路具有什么功能?

- (18分) 四、由集成运放 A_1 、 A_2 等元器件组成的放大电路如图所示,设 A_1 、 A_2 均为理想运放。
- (1) 指出电路中的级间交流反馈通路,说明反馈极性及反馈组态。
- (2) 写出闭环电压放大倍数 4 4 4 的表达式
- (3) 当电阻 R_2 发生断路故障时,试问该电路能否实现放大?若不能,请简述理由;若能,写出 A_{m_i} 的表达式。

(12分) 五、已知图示放大电路中晶体管 β =100, r_{k} =2 $K\Omega$. 电压放大倍数的复数式如下:

$$A_{u} = \frac{-20 jf}{\left(1 + j \frac{f}{10}\right) \left(1 + j \frac{f}{10^{4}}\right)}$$
 (式中/的单位为Hz)

试求(1)中频电压放大倍数⁴,下限截止频率 九及上限截止频率⁶。

(2)确定 R_c 和 C_1 的值。

(16分) 六、电路如图所示。

- (1) 要求在不增加任何元器件的情况下,通过图中反馈电阻*R*,引入负反馈,以稳定输出电压,试画出反馈通路的连线,并说明该反馈是什么组态?
- (2) 写出闭环电压放大倍数 A_{uuf} 的表达式。
- (3) 已知 $R_1=R_2=1$ K Ω ,假设引入的反馈为深度负反馈,可忽略 T_1 、 T_2 管的饱和管压降。当输入电压幅值为200mV的正弦波信号时,负载 R_L 上获得最大不失真输出电压,则反馈电阻 R_1 应取多大?此时负载获得的功率有多大?

(1) 为满足相位余件, 请用 + 、 一号分别标出

(16分) 六、电路如图所示。

- (1) 要求在不增加任何元器件的情况下,通过图中反馈电阻*R_i*引入负反馈,以稳定输出电压,试画出反馈通路的连线,并说明该反馈是什么组态?
- (2) 写出闭环电压放大倍数 A_{uuf} 的表达式。
- (3) 已知 $R_1=R_2=1$ K Ω ,假设引入的反馈为深度负反馈,可忽略 T_1 、 T_2 管的饱和管压降。当输入电压幅值为200mV的正弦波信号时,负载 R_L 上获得最大不失真输出电压,则反馈电阻 R_i 应取多大?此时负载获得的功率有多大?

- (10分) 七、正弦波振荡电路如图所示,已知 $R=10K\Omega$, $C=0.1\mu F$ 问
- (1) 为满足相位条件,请用"+"、"-"号分别标出A,的同相输入端和反相输入端;
 - (2) 该电路的振荡频率是多少?
- (3) 为使电路满足起振条件, (R_2+R_3) 的大小应 满足什么条件?

- (12分) 八、串联型稳压电源如图所示。
- (1) 分别说明电容 C_1 、稳压管 VD_Z 的作用是什么?
 - (2)已知电网电压波动范围是 $\pm 10\%$,变压器副边电压有效值为 U_2 =30V,则图中 U_I (平均值)的变化范围是多少?
 - (3) 求输出电压 U_0 的调节范围。

