FMI, Info, Anul I Logică matematică și computațională

Examen

(P1) [1 punct] Fie funcția $J: \{0,1\}^3 \to \{0,1\}$ ce verifică, pentru orice $x, y, z \in \{0,1\}$:

$$J(x, y, z) = 0 \Leftrightarrow x = y \cdot z.$$

Să se obțină o formulă a logicii propoziționale φ în FNC astfel încât $J=F_{\varphi}.$

Demonstrație: Alcătuim tabelul de valori al lui J.

$arepsilon_0$	ε_1	ε_2	$J(\varepsilon_0, \varepsilon_1, \varepsilon_2)$
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

Obținem, așadar, uitându-ne pe liniile cu 0 de pe coloana valorilor lui J și apoi aplicând raționamentul din demonstrațiile Teoremelor 1.73 și 1.74, obținem că un exemplu de φ este:

$$(\neg v_0 \vee \neg v_1 \vee \neg v_2) \wedge (v_0 \vee \neg v_1 \vee v_2) \wedge (v_0 \vee v_1 \vee \neg v_2) \wedge (v_0 \vee v_1 \vee v_2).$$

(P2) [2 puncte] Fie $e_1, e_2 : V \to \{0, 1\}$, definite, pentru orice $i \in \mathbb{N}$, prin:

$$e_1(v_i) = 1 \Leftrightarrow i \text{ este prim},$$

$$e_2(v_i) = 1 \Leftrightarrow i \text{ este par.}$$

Să se găsească $\Gamma \subseteq Form$ astfel încât $Mod(\Gamma) = \{e_1, e_2\}.$

Demonstrație: Rezolvăm problema pentru $Mod(\Gamma) = \{e_1, ..., e_n\}$, unde $e_1, ..., e_n$ sunt arbitrare și distincte.

Pentru orice $m \geq 1$, definim, folosind notațiile din Cursul 7, φ_m ca fiind:

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m} v_{j}^{e_{i}}.$$

Notăm $\Gamma := \{ \varphi_m \mid m \ge 1 \}$. Vrem $Mod(\Gamma) = \{ e_1, ..., e_n \}$.

Pentru orice $i \neq j$, notăm $l_{ij} := \min\{k \mid e_i(v_k) \neq e_j(v_k)\}\$ și $l := \max\{l_{ij} \mid i \neq j\}$.

Demonstrăm incluziunea " \subseteq ". Fie $e: V \to \{0,1\}$ cu $e \models \Gamma$. Atunci $e \models \varphi_l$ și deci:

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{l} e^{+}(v_{j}^{e_{i}}) = 1$$

şi deci există un $i_0 \in \{1,...,n\}$ cu $\bigwedge_{j=1}^{l} e^+(v_j^{e_{i_0}}) = 1$, de unde scoatem că pentru orice $j \in \{1,...,l\}$ avem $e^+(v_j^{e_{i_0}}) = 1 = e_{i_0}^+(v_j^{e_{i_0}})$, i.e. pentru orice $j \in \{1,...,l\}$ avem $e(v_j) = e_{i_0}(v_j)$ (*).

Vrem $e = e_{i_0}$, i.e. că și pentru un p > l avem $e(v_p) = e_{i_0}(v_p)$. Fie p > l.

Cum $e \vDash \varphi_p$, avem că

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{p} e^{+}(v_{j}^{e_{i}}) = 1,$$

de unde scoatem, similar, că există un $i_1 \in \{1, ..., n\}$ astfel încât pentru orice $j \in \{1, ..., p\}$ avem $e(v_j) = e_{i_1}(v_j)$ (**).

Presupunem că $i_0 \neq i_1$. Atunci, din definiția lui $l_{i_0i_1}$, avem $l_{i_0i_1} \leq l < p$ şi $e_{i_0}(v_{l_{i_0i_1}}) \neq e_{i_1}(v_{l_{i_0i_1}})$ (***).

Din (*), avem atunci $e_{i_0}(v_{l_{i_0i_1}}) = e(v_{l_{i_0i_1}})$, iar din (**), avem $e_{i_1}(v_{l_{i_0i_1}}) = e(v_{l_{i_0i_1}})$, ceea ce contrazice (***).

Deci $i_0 = i_1$, iar din (**) obţin $e(v_p) = e_{i_1}(v_p) = e_{i_0}(v_p)$.

Demonstrăm incluziunea " \supseteq ". Fie $i' \in \{1, ..., n\}$. Vrem $e_{i'} \models \Gamma$, i.e. pentru orice $m \ge 1$, $e_{i'} \models \varphi_m$. Fie $m \ge 1$.

Avem:

$$e_{i'}^+(\varphi_m) = e_{i'}^+(\bigvee_{i=1}^n \bigwedge_{j=1}^m v_j^{e_i}) = \bigvee_{i=1}^n \bigwedge_{j=1}^m e_{i'}^+(v_j^{e_i}) \ge \bigwedge_{j=1}^m e_{i'}^+(v_j^{e_{i'}}) = 1.$$

(P3) [2 puncte] Să se ofere un exemplu justificat de mulţime infinită de formule din logica propoziţională a cărei mulţime de modele să fie nenumărabilă.

Demonstrație: Iau mulțimea $\Gamma = \{v_{2k} \mid k \in \mathbb{N}\}$. Clar, Γ este infinită, iar o evaluare

 $e: V \to \{0,1\}$ este model pentru Γ dacă și numai dacă ia valoarea 1 pentru toate variabilele de indice par, rămânând "spațiu de manevră" pe variabilele de indice impar. Construim bijecția $g: \mathcal{P}(\mathbb{N}) \to Mod(\Gamma)$, prin:

$$g(A)(v_n) := \begin{cases} 1, & \text{dacă } n \text{ este par;} \\ 1, & \text{dacă } n \text{ este impar şi } \frac{n-1}{2} \in A; \\ 0, & \text{dacă } n \text{ este impar şi } \frac{n-1}{2} \not\in A. \end{cases}$$

Cum $\mathcal{P}(\mathbb{N})$ este nenumărabilă, avem că şi $Mod(\Gamma)$ este nenumărabilă.

(P4) [1,5 puncte] Fie $\varphi, \psi \in Form$. Să se arate:

$$\vdash (\varphi \land \neg \varphi) \to \psi.$$

Demonstrație: Avem:

Demonstraţie: Avem:

$$(1) \quad \{\neg(\varphi \to \neg \neg \varphi)\} \quad \vdash \varphi \to \neg \neg \varphi \qquad (S7.2).(iv), P. 1.42.(ii)$$

$$(2) \quad \{\neg(\varphi \to \neg \neg \varphi)\} \quad \vdash \neg(\varphi \to \neg \neg \varphi) \qquad Prop. 1.40.(ii)$$

$$(3) \quad \{\neg(\varphi \to \neg \neg \varphi)\} \quad \vdash \neg(\varphi \to \neg \neg \varphi) \to ((\varphi \to \neg \neg \varphi) \to \psi) \qquad (S7.2).(ii), P. 1.42.(ii)$$

$$(4) \quad \{\neg(\varphi \to \neg \neg \varphi)\} \quad \vdash (\varphi \to \neg \neg \varphi) \to \psi \qquad (MP): (2), (3)$$

$$(5) \quad \{\neg(\varphi \to \neg \neg \varphi)\} \quad \vdash \psi \qquad (MP): (1), (4)$$

$$(6) \quad \vdash \neg(\varphi \to \neg \neg \varphi) \to \psi \qquad T. ded. pentru (5)$$

$$(7) \quad \vdash (\varphi \land \neg \varphi) \to \psi \qquad Definiţia lui "\lambda".$$

(P5) [2 puncte]

(i) Să se aplice algoritmul Davis-Putnam mulțimii de clauze:

$$\mathcal{S} := \{ \{ \neg v_0, \neg v_1, v_2 \}, \{ \neg v_3, v_1, v_4 \}, \{ \neg v_0, \neg v_4, v_6 \}, \{ \neg v_2, v_7 \}, \{ \neg v_6, v_7 \}, \{ \neg v_0, v_3 \}, \{ v_0 \}, \{ \neg v_7 \} \}.$$
 Ce concluzie tragem?

(ii) Folosind primul subpunct și eventual alte proprietăți, să se arate că:

$$\{(v_0 \land v_1) \to v_2, v_3 \to (v_1 \lor v_4), (v_0 \land v_4) \to v_6, (v_2 \lor v_6) \to v_7, v_0 \to v_3\} \vDash v_0 \to v_7.$$

Demonstrație:

(i)

$$\begin{array}{c} i:=1 \\ S_1:=\mathcal{S} \\ P1.1. \quad x_1:=v_0 \\ T_1^1:=\left\{\{v_0\}\right\} \\ T_0^1:=\left\{\left\{\neg v_0,\neg v_1,v_2\right\},\left\{\neg v_0,\neg v_4,v_6\right\},\left\{\neg v_0,v_3\right\}\right\} \\ P1.2. \quad U_1:=\left\{\left\{\neg v_1,v_2\right\},\left\{\neg v_2,v_7\right\},\left\{\neg v_6,v_7\right\},\left\{\neg v_7\right\},\left\{\neg v_1,v_2\right\},\left\{\neg v_4,v_6\right\},\left\{v_3\right\}\right\} \\ P1.3. \quad S_2:=\left\{\left\{\neg v_3,v_1,v_4\right\},\left\{\neg v_2,v_7\right\},\left\{\neg v_6,v_7\right\},\left\{\neg v_7\right\},\left\{\neg v_1,v_2\right\},\left\{\neg v_4,v_6\right\},\left\{v_3\right\}\right\} \\ P1.4. \quad i:=2; \ \text{goto} \ P2.1 \\ P2.1. \quad x_2:=v_1 \\ T_2^1:=\left\{\left\{\neg v_3,v_1,v_4\right\}\right\} \\ T_2^0:=\left\{\left\{\neg v_1,v_2\right\}\right\} \\ P2.2. \quad U_2:=\left\{\left\{\neg v_3,v_4,v_2\right\}\right\} \\ P2.3. \quad S_3:=\left\{\left\{\neg v_2,v_7\right\},\left\{\neg v_6,v_7\right\},\left\{\neg v_7\right\},\left\{\neg v_4,v_6\right\},\left\{v_3\right\},\left\{\neg v_3,v_4,v_2\right\}\right\} \\ P2.4. \quad i:=3; \ \text{goto} \ P3.1 \\ P3.1. \quad x_3:=v_2 \\ T_3^1:=\left\{\left\{\neg v_3,v_4,v_2\right\}\right\} \\ T_3^0:=\left\{\left\{\neg v_2,v_7\right\}\right\} \\ P3.2. \quad U_3:=\left\{\left\{\neg v_3,v_4,v_7\right\}\right\} \\ P3.3. \quad S_4:=\left\{\left\{\neg v_3,v_4,v_7\right\}\right\} \\ P3.4. \quad i:=4; \ \text{goto} \ P4.1 \\ P4.1. \quad x_4:=v_3 \\ T_4^1:=\left\{\left\{v_3\right\}\right\} \\ T_4^0:=\left\{\left\{\neg v_3,v_4,v_7\right\}\right\} \\ P4.2. \quad U_4:=\left\{\left\{v_4,v_7\right\}\right\} \\ P4.3. \quad S_5:=\left\{\left\{\neg v_6,v_7\right\},\left\{\neg v_7\right\},\left\{\neg v_4,v_6\right\},\left\{v_4,v_7\right\}\right\} \\ P4.4. \quad i:=5; \ \text{goto} \ P5.1 \\ \end{array}$$

Aşadar, \mathcal{S} este nesatisfiabilă.

(ii) Aplicând Propoziția 1.30.(i), condiția din enunț este echivalentă cu faptul că mulțimea de formule:

$$\{(v_0 \wedge v_1) \to v_2, v_3 \to (v_1 \vee v_4), (v_0 \wedge v_4) \to v_6, (v_2 \vee v_6) \to v_7, v_0 \to v_3, \neg(v_0 \to v_7)\}$$
 este nesatisfiabilă și, mai departe, din Propoziția 1.31.(i), cu faptul că formula:
$$((v_0 \wedge v_1) \to v_2) \wedge (v_3 \to (v_1 \vee v_4)) \wedge ((v_0 \wedge v_4) \to v_6) \wedge ((v_2 \vee v_6) \to v_7) \wedge (v_0 \to v_3) \wedge (\neg(v_0 \to v_7))$$
 este nesatisfiabilă. Aplicând transformări sintactice succesive, obținem că formula de mai sus este echivalentă, pe rând, cu:
$$(\neg(v_0 \wedge v_1) \vee v_2) \wedge (\neg v_3 \vee (v_1 \vee v_4)) \wedge (\neg(v_0 \wedge v_4) \vee v_6) \wedge (\neg(v_2 \vee v_6) \vee v_7) \wedge (\neg v_0 \vee v_3) \wedge (\neg(v_0 \vee v_7)),$$

$$(\neg(v_0 \land v_1) \lor v_2) \land (\neg v_3 \lor (v_1 \lor v_4)) \land (\neg(v_0 \land v_4) \lor v_6) \land (\neg(v_2 \lor v_6) \lor v_7) \land (\neg v_0 \lor v_3) \land (\neg(\neg v_0 \lor v_7)),$$

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (\neg v_3 \lor v_1 \lor v_4) \land (\neg v_0 \lor \neg v_4 \lor v_6) \land ((\neg v_2 \land \neg v_6) \lor v_7) \land (\neg v_0 \lor v_3) \land v_0 \land \neg v_7)),$$

$$(\neg v_0 \lor \neg v_1 \lor v_2) \land (\neg v_3 \lor v_1 \lor v_4) \land (\neg v_0 \lor \neg v_4 \lor v_6) \land (\neg v_2 \lor v_7) \land (\neg v_6 \lor v_7) \land (\neg v_0 \lor v_3) \land v_0 \land \neg v_7)),$$

ultima formulă fiind în FNC și corespunzându-i forma clauzală:

$$S := \{ \{ \neg v_0, \neg v_1, v_2 \}, \{ \neg v_3, v_1, v_4 \}, \{ \neg v_0, \neg v_4, v_6 \}, \{ \neg v_2, v_7 \}, \{ \neg v_6, v_7 \}, \{ \neg v_0, v_3 \}, \{ v_0 \}, \{ \neg v_7 \} \},$$
despre care am arătat la primul punct al problemei că este nesatisfiabilă.

(P6) [1 punct] Să se definească, folosind Principiul recursiei pe formule, funcția *Mod* ce asociază fiecărei formule din logica propozițională mulțimea modelelor sale.

Demonstrație: Se observă că $Mod: Form \to \mathcal{P}(\{0,1\}^V)$ satisface următoarele condiții:

$$(R0) \qquad Mod(v) \qquad = \{e : V \to \{0,1\} \mid e(v) = 1\}$$

$$(R1) \quad Mod((\neg \varphi)) = \{0,1\}^V \setminus Mod(\varphi),$$

$$(R2) \quad Mod((\varphi \to \psi)) = (\{0,1\}^V \setminus Mod(\varphi)) \cup Mod(\psi).$$

Aplicăm Principiul recursiei pe formule pentru $A = \mathcal{P}(\{0,1\}^V)$ și pentru

$$G_0: V \to \{0, 1\}^V, \quad G_0(v) = \{e: V \to \{0, 1\} \mid e(v) = 1\}$$

$$G_{\neg}: \{0, 1\}^V \to \{0, 1\}^V, \qquad G_{\neg}(A) = \{0, 1\}^V \setminus A,$$

$$G_{\rightarrow}: \{0, 1\}^V \times \{0, 1\}^V \to \{0, 1\}^V, \qquad G_{\rightarrow}(A, B) = (\{0, 1\}^V \setminus A) \cup B.$$

pentru a concluziona că Mod este unica funcție care satisface (R0), (R1) şi (R2).

(P7) [2 puncte] Să se arate că pentru orice limbaj de ordinul I \mathcal{L} , orice formule φ , ψ ale lui \mathcal{L} și orice variabilă x, avem:

- (i) $\forall x \varphi \lor \forall x \psi \vDash \forall x (\varphi \lor \psi);$
- (ii) $\forall x(\varphi \to \psi) \vDash \exists x\varphi \to \exists x\psi$.

Demonstrație: Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$.

- (i) Presupunem $\mathcal{A} \vDash (\forall x \varphi \lor \forall x \psi)[e]$, i.e. $\mathcal{A} \vDash (\forall x \varphi)[e]$ sau $\mathcal{A} \vDash (\forall x \psi)[e]$. Atunci, pentru orice $a \in A$, $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$ sau pentru orice $a \in A$, $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$. Vrem să arătăm $\mathcal{A} \vDash (\forall x (\varphi \lor \psi))[e]$, i.e. că pentru orice $a \in A$, $\mathcal{A} \vDash (\varphi \lor \psi)[e_{x \leftarrow a}]$. Fie $a \in A$. Atunci, din cele anterioare, $\mathcal{A} \vDash \varphi[e_{x \leftarrow a}]$ sau $\mathcal{A} \vDash \psi[e_{x \leftarrow a}]$. Deci $\mathcal{A} \vDash (\varphi \lor \psi)[e_{x \leftarrow a}]$.
- (ii) Presupunem $\mathcal{A} \vDash (\forall x(\varphi \to \psi))[e] \iff$ pentru orice $a \in A$, $\mathcal{A} \vDash (\varphi \to \psi)[e_{x\leftarrow a}]$ \iff pentru orice $a \in A$, dacă $\mathcal{A} \vDash \varphi[e_{x\leftarrow a}]$, atunci $\mathcal{A} \vDash \psi[e_{x\leftarrow a}]$. Vrem să arătăm $\mathcal{A} \vDash (\exists x\varphi \to \exists x\psi)[e]$, i.e. că dacă $\mathcal{A} \vDash (\exists x\varphi)[e]$, atunci $\mathcal{A} \vDash (\exists x\psi)[e]$. Presupunem $\mathcal{A} \vDash (\exists x\varphi)[e]$. Atunci există $b \in A$ cu $\mathcal{A} \vDash \varphi[e_{x\leftarrow b}]$. Din cele anterioare, avem $\mathcal{A} \vDash \psi[e_{x\leftarrow b}]$. Deci $\mathcal{A} \vDash (\exists x\psi)[e]$, ceea ce trebuia arătat.

(P8) [1,5 puncte] Fie \mathcal{L} un limbaj de ordinul I ce conține cel puțin un simbol de relație unar P și o constantă c. Să se arate:

$$\vDash (\forall v_0 P(v_0)) \to P(c).$$

Fie \mathcal{A} o \mathcal{L} -structură și $e:V\to A$ o evaluare. Vrem să arătăm că Demonstrație: $\mathcal{A} \vDash ((\forall v_0 P(v_0)) \to P(c))[e]$, i.e. $\operatorname{c\breve{a}} (\forall v_0 P(v_0))^{\mathcal{A}}(e) \to (P(c))^{\mathcal{A}}(e) = 1$. Presupunem că $(\forall v_0 P(v_0))^{\mathcal{A}}(e) = 1$ și cercetăm dacă și $(P(c))^{\mathcal{A}}(e) = 1$. Din faptul că $(\forall v_0 P(v_0))^{\mathcal{A}}(e) = 1$, avem că pentru orice $a \in A$, $(P(v_0))^{\mathcal{A}}(e_{v_0 \leftarrow a}) = 1$, deci pentru orice $a \in A$, $e_{v_0 \leftarrow a}(v_0) \in P^{\mathcal{A}}$, i.e. $a \in P^{\mathcal{A}}$. În particular, $c^{\mathcal{A}} \in P^{\mathcal{A}}$, deci $(P(c))^{\mathcal{A}}(e) = 1$.

(P9) [2 puncte] Fie \mathcal{L} un limbaj de ordinul I și φ un \mathcal{L} -enunț ce este satisfăcut de orice \mathcal{L} -structură infinită. Să se arate că există $k \in \mathbb{N}$ astfel încât orice \mathcal{L} -structură ce conține mai mult de k elemente satisface φ .

Presupunem prin absurd contrariul: pentru orice $k \in \mathbb{N}$ există o \mathcal{L} -Demonstrație: structură cu mai mult de k elemente ce nu satisface φ , i.e. satisface $\neg \varphi$. Aplicând (S14.3), există o \mathcal{L} -structură infinită ce satisface $\neg \varphi$, i.e. nu satisface φ . Aceasta contrazice ipoteza.