Combinatorics: Homework 7

Peter Kagey

October 11, 2018

Problem 21 (a). [2+]

Given numbers a_i for $i \in \mathbb{Z}$, with $a_i = 0$ for i < 0 and $a_0 = 1$, let $f(k) = \det[a_{j-i+1}]_1^k$. In particular, f(0) = 1. Show that

$$\sum_{k>0} f(k)x^k = \frac{1}{1 - a_1x + a_2x^2 - \dots}.$$

Solution. It is sufficient to show that

$$1 = (1 - a_1 x + a_2 x^2 - \dots) \sum_{k \ge 0} f(k) x^k$$
$$= \left(\sum_{n \ge 0} (-1)^n a_n x^n \right) \left(\sum_{k \ge 0} f(k) x^k \right)$$
$$= \sum_{n,k > 0} (-1)^n a_n f(k) x^{n+k}.$$

This means is enough to show that the coefficient of x^m is zero for all m > 0:

$$0 = \sum_{i=0}^{m} (-1)^{i} a_{i} f(m-i)$$

$$f(m) = \sum_{i=1}^{m} (-1)^{i-1} a_{i} f(m-i)$$

$$f(m) = a_{1} f(m-1) - a_{2} f(m-2) + a_{3} f(m-3) + \dots + (-1)^{m-1} a_{m} \underbrace{f(0)}_{i}.$$

This can be shown by Laplace expansion along the first row. Notice that $f(k) = \sum_{i=1}^{k} (-1)^{i-1} a_i \det(M_i)$ where M_i is the $k-1 \times k-1$ submatrix illustrated below.

a_1	a_2		a_{i-1}	$-q_i$	a_{i+1}		a_{k-1}	$\frac{a_k}{a_k}$
1	a_1		a_{i-2}	a_i 1	a_i		a_{k-2}	a_{k-1}
0	1		a_{i-3}	$a_i _{-2}$	a_{i-1}		a_{k-3}	a_{k-2}
:	:	:	:		:	:	:	:
0	0		1	a_1	a_2		a_{k-i}	a_{k-i+1}
0	0		0	+	a_1		a_{k-i-1}	a_{k-i}
0	0		0	ø	1		a_{k-i-2}	a_{k-i-1}
:	:	:	:		;	:	:	:
0	0		0	ф	0		1	a_1

In particular, the structure of this matrix is

- ullet the f(k-i) matrix in the bottom k-i rows and right k-i columns,
- ullet an upper triangular matrix in the top i-1 rows and left i-1 columns, and
- the zero matrix in the bottom k-i rows and left i-1 columns.

Thus, the determinant of M_i can be computed by Laplace expansion, along the i-1 upper-left 1s, until the f(k-i) matrix is reached. So

$$f(m) = \sum_{i=1}^{m} (-1)^{i-1} a_i f(m-i)$$

for all m > 0. Since f(0) = 1 when m = 0 (by hypothesis), the identity follows.

Problem 26. [2+]

Let $\pi \in \Pi_n$, the set of partitions of [n]. Let $S(\pi, r)$ denote the number of $\sigma \in \Pi_n$ such that $|\sigma| = r$ and $\#(A \cap B) \le 1$ for all $A \in \pi$ and $B \in \sigma$. Show that

$$S(\pi,r) = \frac{1}{r!} \sum_{i=0}^{r} \binom{r}{i} (-1)^{r-i} \prod_{A \in \pi} (i)_{\#A}.$$

Solution.

This can be counted with straightforward Inclusion-Exclusion. We will count the number of ordered partitions, and then divide by r! to get unordered partitions.

We will first count the number of ways to partition [n] into r-tuples that meet the above criteria and where some of the parts can be empty.

For sake of convenience, order π in the canonical way. Then the first element of the first set of π can go in any of the r "slots", because $\#(A \cap B) \leq 1$, the second element of the first set of π can go in r-1 slots, the kth in r-k+1. Thus the number of choices for the first set $A \in \pi$ is $(i)_{\#A}$.

We can do a similar argument for the remaining sets in π , resulting in

$$\prod_{A \in \pi} (r)_{\#A}$$

possible tuples. However, as stated earlier, this includes r-tuples where some of the parts are empty. So we must subtract these off

$$\prod_{A\in\pi}(r)_{\#A}-\binom{r}{1}\prod_{A\in\pi}(r-1)_{\#A},$$

where $\binom{r}{1}$ is the number of ways to choose the empty position.

However, this subtracts off too many r-tuples. In particular, it double-counts those where two or more parts are empty, so we must add these back in, and so on by the Principle of Inclusion-Exclusion

$$\prod_{A \in \pi} (r)_{\#A} - \binom{r}{1} \prod_{A \in \pi} (r-1)_{\#A} + \binom{r}{2} \prod_{A \in \pi} (r-2)_{\#A} + \ldots + \binom{r}{r} \prod_{A \in \pi} (0)_{\#A} = \sum_{i=0}^{r} \binom{r}{i} (-1)^{r-i} \prod_{A \in \pi} (i)_{\#A}.$$

Lastly, since the parts of the r-tuple are distinct, we can divide by the number of permutations, so

$$S(\pi,r) = \frac{1}{r!} \sum_{i=0}^{r} \binom{r}{i} (-1)^{r-i} \prod_{A \in \pi} (i)_{\#A},$$

as desired.

Problem 3. Let E_{2n} be the number of "alternating" permuations, $w \in S_{2n}$ such that

$$w_1 > w_2 < w_3 > w_4 < \ldots > w_{2n}$$

Show that

$$\sum_{n} E_{2n} \frac{x^{2n}}{(2n)!} = \frac{1}{1 - x^2/2! + x^4/4! - x^6/6! + \dots} = \frac{1}{\cos(x)}.$$

Proof.

Using the technique from class, we'll instead count the case where each < is replaced with no relation. Then since the < are at all even positions, we can write

$$\underbrace{w_1 > w_2}_{s_1=2}, \underbrace{w_3 > w_4}_{s_2-s_1=2}, \dots \underbrace{w_{2n-1} > w_{2n}}_{s_n-s_{n-1}=2}.$$

In particular, $s_i - s_j = 2(j - i)$. So using the determinant technique:

$$E_{2n} = (2n)! \begin{vmatrix} \frac{1}{s_1!} & \frac{1}{s_2!} & \frac{1}{s_3!} & \cdots & \frac{1}{s_{n-1}!} & \frac{1}{s_n!} \\ 1 & \frac{1}{(s_2 - s_1)!} & \frac{1}{(s_3 - s_1)!} & \cdots & \frac{1}{(s_{n-1} - s_1)!} & \frac{1}{(s_{n-1} - s_1)!} \\ 0 & 1 & \frac{1}{(s_3 - s_2)!} & \cdots & \frac{1}{(s_{n-1} - s_2)!} & \frac{1}{(s_n - s_2)!} \\ 0 & 0 & 1 & \cdots & \frac{1}{(s_{n-1} - s_3)!} & \frac{1}{(s_n - s_3)!} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \frac{1}{(s_n - s_{n-1})!} \end{vmatrix} = (2n)! \begin{vmatrix} \frac{1}{2!} & \frac{1}{4!} & \frac{1}{6!} & \cdots & \frac{1}{(2n-2)!} & \frac{1}{(2n-2)!} \\ 1 & \frac{1}{2!} & \frac{1}{4!} & \cdots & \frac{1}{(2n-4)!} & \frac{1}{(2n-4)!} \\ 0 & 1 & \frac{1}{2!} & \cdots & \frac{1}{(2n-6)!} & \frac{1}{(2n-6)!} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \frac{1}{2!} \end{vmatrix}$$

This satisfies the property in problem 1, namely $\frac{E_{2n}}{(2n)!} = \det[a_{j-i+1}]_1^n$ with

$$a_i = \begin{cases} 0 & i < 0 \\ 1 & i = 0 \\ \frac{1}{(2i)!} & i > 0 \end{cases}.$$

Therefore substituting x^2 for x in problem 1 yields

$$\sum_{n} \frac{E_{2n}}{(2n)!} x^{2n} = \frac{1}{1 - (1/2!)x^2 + (1/4!)x^4 - (1/6!)x^6 + \dots}$$

as desired. \Box