Universidade Federal de Uberlândia

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Universidade Federal de Uberlândia

Relatório de Experimental de Circuitos Elétricos

2

Método dos dois wattímetros

Aluno: Henrique Santos de Lima - 11811ETE016

Professor: Wellington Maycon Santos Bernardes

Conteúdo

1	Obj	etivos													2
2	Intr	odução													2
3	Prep	oaração													6
	3.1	Materi	ais e ferramentas	 								 . .			6
	3.2	Montag	gem	 								 . .			6
		3.2.1	Ligação em Estrela	 								 . .			6
		3.2.2	Ligação em Delta .	 								 , .			7
4	Aná	lise sobi	re segurança												9
5	Aná	lise													10
	5.1	Cálcul	os Teóricos	 								, .			10
		5.1.1	Circuito em Estrela	 								 			10
		5.1.2	Circuito em Delta .	 								 			12
	5.2	Dados		 								 			14
		5.2.1	Ligação em estrela	 								 			14
		5.2.2	Ligação em delta .	 								 			14
	5.3	Questõ	es	 								 			15
		5.3.1		 								 			15
		5.3.2		 								 			15
		5.3.3		 								 			16
		5.3.4		 								 , .			16
6	Sim	ulação													20
7	Con	clusão													22

1 Objetivos

Medir as potência ativa e reativa usando o método dos dois wattímetros, averiguar se este método funciona comparando com os valores obtidos analiticamente.

2 Introdução

O Wattímetro analógico mostra com sua ponteira o resultado da parte real da multiplicação da tensão lida com o conjugado da corrente lida. $W=\Re\{V*I^*\}$. Para uma mesma fase essa leitura possui significado físico de potencia ativa, porém dependendo da ligação a medida apresentada pode não ter um significado físico.

O método dos dois wattímetros consiste em usar dois wattímetros para realizar a medida da potencia trifásica. Para realizar essa medida deve-se :

- Escolher duas fases.
- Medir a corrente que passa na fase escolhida e a tensão entre a mesma e a fase não escolhida.
- Fazer o mesmo com a segunda Fase escolhida.

Exemplo:

Figura 1: montagem usando 2 wattímetros

Para entender qual significado físico de cada medição: Considerando a sequencia ABC temos:

$$\begin{bmatrix} V_{AB} \\ V_{BC} \\ V_{CA} \end{bmatrix} = V_L \angle \theta \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} V_{AN} \\ V_{BN} \\ V_{CN} \end{bmatrix} = \frac{V_L}{\sqrt{3}} \angle (\theta - 30^\circ) \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = I_L \angle ((\theta - 30^\circ) - \theta_z) \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

$$W_{1} = \Re\{V_{AC} * I_{A}^{*}\}$$

$$W_{1} = \Re\{-\alpha * V_{L} \angle \theta * I_{L} \angle (-\theta + 30^{\circ} + \theta_{z})\}$$

$$W_{1} = \Re\{V_{L} * I_{L} \angle (\theta - \theta + 30^{\circ} + \theta_{z} - 60^{\circ})\}$$

$$W_{1} = \Re\{V_{L} * I_{L} \angle (\theta_{z} - 30^{\circ})\}$$

$$W_{1} = V_{L} * I_{L} * \cos(\theta_{z} - 30^{\circ})$$

$$W_{2} = \Re\{V_{BC} * I_{B}^{*}\}$$

$$W_{2} = \Re\{(\alpha^{2} * V_{L} \angle \theta) * (\alpha^{2} * I_{L} \angle (\theta - 30^{\circ} - \theta_{z})\})^{*}$$

$$W_{2} = \Re\{(V_{L} \angle \{\theta - 120^{\circ}\}) * (*I_{L} \angle (-\theta + 30^{\circ} + \theta_{z} + 120^{\circ})\})$$

$$W_{2} = \Re\{V_{L} * I_{L} \angle (\theta - \theta + 30^{\circ} + \theta_{z} - 120^{\circ} + 120^{\circ})\}$$

$$W_{2} = \Re\{V_{L} * I_{L} \angle (\theta_{z} + 30^{\circ})\}$$

$$W_{2} = V_{L} * I_{L} * \cos(\theta_{z} + 30^{\circ})$$

De modo que $W_1+W_2=\sqrt{3}*V_L*I_L*\cos(\theta_z)=P_{3\phi}$ que é a potencia trifásica da carga, e $W_1-W_2=V_L*I_L*\sin(\theta_z)=\frac{Q_{3\phi}}{\sqrt{3}}$

Para determinar qual wattímetro corresponde ao W_1 e W_2 utiliza-se o método abaixo:

• Desenhar a sequencia de fase

Figura 2: Desenho para sequencia ABC

• Destacar fase que não possui Wattímetro

Figura 3: Fase C destacada

 $\bullet\,$ Girar no sentido Horário, o primeiro encontrado é o W_1 e o segundo é o W_2

Figura 4: W_A foi encontrado primeiro, logo $W_A = W_1$ e $W_B = W_2$

3 Preparação

3.1 Materiais e ferramentas

- Regulador de tensão(Varivolt)
- Resistores banana de 50Ω
- Indutor de 160 mH
- Capacitor de 45.9 μF
- Medidor Trifásico Kron Mult-K
- Amperímetro analógico AC
- Wattímetro analógico

3.2 Montagem

3.2.1 Ligação em Estrela

Figura 5: circuito em estrela a ser montado

Para realizar a montagem deve seguir a figura 5, antes de iniciar a montagem certifique-se que o circuito esteja desligado.

Figura 6: circuito estrela montado

3.2.2 Ligação em Delta

Figura 7: circuito em delta a ser montado

Para realizar a montagem deve seguir a figura 7, antes de iniciar a montagem certifique-se que o circuito esteja desligado.

Figura 8: circuito delta montado

4 Análise sobre segurança

Antes de montar o experimento é importante o uso de equipamentos de proteção, estar com calça, sapatos fechados, sem acessórios metálicos e se o cabelo for grande, este deve estar preso.

A bancada deve estar desenergizada durante a montagem. Durante o experimento não ter contato com nenhum fio ou elemento energizado do circuito além do risco de choque elétrico. Certifique-se de que os equipamentos estão na escala adequada para realizar as medições.

Para movimentar os indutores pegue pela parte inferior evitando riscos de que se desprenda e caia, assim evitando lesões e dano ao dispositivo. Deixe os capacitores na horizontal para que fique melhor apoiado na bancada, este é muito leve e pode cair com facilidade.

Realizar as medidas em um tempo curto evitando que o circuito fique energizado por um longo período de tempo, pois os resistores estarão dissipando potência assim esquentando.

Deve-se manter uma distância segura do circuito quando o mesmo está energizado assim evitando queimaduras e choque elétrico.

5 Análise

5.1 Cálculos Teóricos

5.1.1 Circuito em Estrela

I)- ABC

Correntes de linha:

$$I_{a} = \frac{V_{an}}{Z_{a}}$$

$$I_{a} = \frac{V_{L} \angle -30^{\circ}}{\sqrt{3} \cdot Z_{a}}$$

$$I_{a} = \frac{100 \angle -30^{\circ}}{\sqrt{3} \cdot (50 + 2\pi 60j \cdot 160E - 3)}$$

$$I_{a} = 0.737 \angle -80.34^{\circ} [A]$$

Como trata-se de um circuito equilibrado:

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = 0.737 \angle -80.34^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

Potencia:

$$P_{3\phi} = \sqrt{3} * V_L * I_L * cos(\theta_Z)$$

$$P_{3\phi} = \sqrt{3} * 100 * 0.737 * cos(tg^{-1}(\frac{2\pi \cdot 60 * 160E - 3}{50}))$$

$$P_{3\phi} = 81.47[W]$$

$$Q_{3\phi} = \sqrt{3} * V_L * I_L * sin(\theta_Z)$$

$$Q_{3\phi} = \sqrt{3} * 100 * 0.737 * sin(tg^{-1}(\frac{2\pi \cdot 60 * 160E - 3}{50}))$$

$$Q_{3\phi} = 98.28[Var]$$

$$S_{3\phi} = \sqrt{Q_{3\phi}^2 + P_{3\phi}^2}$$

 $S_{3\phi} = 127.5[VA]$

II)- CBA

Correntes de linha:

$$I_a = \frac{V_{an}}{Z_a}$$

$$I_a = \frac{V_L \angle 30^\circ}{\sqrt{3} \cdot Z_a}$$

$$I_a = \frac{100 \angle 30^\circ}{\sqrt{3} \cdot (50 + 2\pi 60j \cdot 160E - 3)}$$

$$I_a = 0.737 \angle -20.34^\circ$$

Como trata-se de um circuito equilibrado:

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = 0.737 \angle -20.34^{\circ} \begin{bmatrix} 1 \\ \alpha \\ \alpha^2 \end{bmatrix}$$

Potencia:

$$P_{3\phi} = \sqrt{3} * V_L * I_L * cos(\theta_Z)$$

$$P_{3\phi} = \sqrt{3} * 100 * 0.737 * cos(tg^{-1}(\frac{2\pi \cdot 60 * 160E - 3}{50}))$$

$$P_{3\phi} = 81.47[W]$$

$$Q_{3\phi} = \sqrt{3} * V_L * I_L * sin(\theta_Z)$$

$$Q_{3\phi} = \sqrt{3} * 100 * 0.737 * sin(tg^{-1}(\frac{2\pi \cdot 60 * 160E - 3}{50}))$$

$$Q_{3\phi} = 98.28[\text{Var}]$$

$$S_{3\phi} = \sqrt{Q_{3\phi}^2 + P_{3\phi}^2}$$

 $S_{3\phi} = 127.5[VA]$

5.1.2 Circuito em Delta

I)- ABC

Correntes de linha:

$$I_{a} = \frac{V_{ab}}{Z_{a}b} - \frac{V_{ca}}{Z_{c}a}$$

$$I_{a} = \frac{80 \angle 0^{\circ} - 80 \angle -120^{\circ}}{50 + \frac{1}{2\pi \cdot 60j \cdot 45E - 6j}}$$

$$I_{a} = 0.63 \angle 2.18^{\circ} [A]$$

Como trata-se de um circuito equilibrado:

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = 0.63 \angle 2.18^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

Potencia:

$$P_{3\phi} = \sqrt{3} * V_L * I_L * cos(\theta_Z)$$

$$P_{3\phi} = \sqrt{3} * 80 * 0.63 * cos(tg^{-1}(\frac{\frac{1}{2\pi \cdot 60 \cdot 45E - 6)}}{50}))$$

$$P_{3\phi} = 56.47[W]$$

$$Q_{3\phi} = \sqrt{3} * V_L * I_L * cos(\theta_Z)$$

$$Q_{3\phi} = \sqrt{3} * 80 * 0.63 * sin(tg^{-1}(\frac{\frac{1}{2\pi \cdot 60 \cdot 45E - 6)}}{50}))$$

$$Q_{3\phi} = 66.57[\text{Var}]$$

$$S_{3\phi} = \sqrt{Q_{3\phi}^2 + P_{3\phi}^2}$$

 $S_{3\phi} = 87.3[VA]$

II)- CBA

Correntes de linha:

$$I_{a} = \frac{V_{ab}}{Z_{a}b} - \frac{V_{ca}}{Z_{c}a}$$

$$I_{a} = \frac{80 \angle 0^{\circ} - 80 \angle 120^{\circ}}{50 + \frac{1}{2\pi \cdot 60j \cdot 45E - 6)}}$$

$$I_{a} = 0.63 \angle -0.39^{\circ} [A]$$

Como trata-se de um circuito equilibrado:

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = 0.63 \angle -0.39^{\circ} \begin{bmatrix} 1 \\ \alpha^2 \\ \alpha \end{bmatrix}$$

Potencia:

$$P_{3\phi} = \sqrt{3} * V_L * I_L * cos(\theta_Z)$$

$$P_{3\phi} = \sqrt{3} * 80 * 0.63 * cos(tg^{-1}(\frac{\frac{1}{2\pi \cdot 60 \cdot 45E - 6)}}{50}))$$

$$P_{3\phi} = 56.47[W]$$

$$Q_{3\phi} = \sqrt{3} * V_L * I_L * cos(\theta_Z)$$

$$Q_{3\phi} = \sqrt{3} * 80 * 0.63 * sin(tg^{-1}(\frac{\frac{1}{2\pi \cdot 60 \cdot 45E - 6)}}{50}))$$

$$Q_{3\phi} = 66.57[\text{Var}]$$

$$S_{3\phi} = \sqrt{Q_{3\phi}^2 + P_{3\phi}^2}$$

 $S_{3\phi} = 87.3[VA]$

5.2 Dados

5.2.1 Ligação em estrela

Sequencia	$V_L[V]$	$I_L[A]$	fp	$P_{3\phi}[W]$	$Q_{3\phi}[Var]$	$S_{3\phi}[VA]$
ABC	100	0.6	0.62	67.46	84.18	107.70
CBA	100	0.6	0.62	67.02	83.59	107.35

Tabela 1: Medidas Para circuito em Estrela obtida pelo equipamento Kron

Sequencia	$w_1[W]$	$w_2[W]$	$W_1 + W_2$
ABC	5	55	60
CBA	55	5	60

Tabela 2: Medidas Para circuito em Estrela

Para Sequencia ABC W₂ corresponde ao W₁ teórico então, temos que:

$$Q_{3\phi} = \sqrt{3} * (w_2 - w_1)$$

$$Q_{3\phi} = \sqrt{3} * (55 - 5)$$

$$Q_{3\phi} = 86.6$$

Para Sequencia CBA W_1 corresponde ao W_1 teórico então, temos que:

$$Q_{3\phi} = \sqrt{3} * (w_1 - w_2)$$

$$Q_{3\phi} = \sqrt{3} * (55 - 5)$$

$$Q_{3\phi} = 86.6$$

5.2.2 Ligação em delta

Sequencia	$V_L[V]$	$I_L[A]$	$I_f[A]$	fp	$P_{3\phi}[W]$	$Q_{3\phi}[Var]$	$S_{3\phi}[VA]$
ABC	81	1.8	1	0.658	168.44	193.01	257.95
CBA	80	1.8	1	0.657	164	188.29	249.89

Tabela 3: Medidas Para circuito em Delta obtidas pelo equipamento Kron

Sequencia	$w_1[W]$	w ₂ [W]	$W_1 + W_2$
ABC	115	35	150
CBA	15	140	155

Tabela 4: Medidas Para circuito em Delta

Para Sequencia ABC W_2 corresponde ao W_1 teórico então, temos que:

$$Q_{3\phi} = \sqrt{3} * (w_2 - w_1)$$

$$Q_{3\phi} = \sqrt{3} * (35 - 115)$$

$$Q_{3\phi} = -138.6 \text{ V}_{ar}$$

Para Sequencia CBA W_1 corresponde ao W_1 teórico então, temos que:

$$Q_{3\phi} = \sqrt{3} * (w_1 - w_2)$$

$$Q_{3\phi} = \sqrt{3} * (15 - 140)$$

$$Q_{3\phi} = -216.5 \text{ V}_{ar}$$

5.3 Questões

5.3.1

Para os sistemas das Figuras 1 e 2, ao ser ligado, o que aconteceu com os wattímetros W_1 e W_2 quando a sequência de fases foi invertida? Algum deles marcou valor negativo? Explique. Encontre as potências usando as leituras.

R: Ao mudar a sequencia os wattímetros trocaram as leituras. Nenhum marcou e leitura negativa. O Angulo θ_z de ambas as cargas é menor que 60° e a ligação estava correta por isso não houve medição negativa. Potencia calculada acima.

5.3.2

Encontre o valor das leituras dos wattímetros usando as expressões analíticas.

Para circuito estrela:

$$W_{1} = V_{L} * I_{L} * \cos(\theta_{z} + 30^{\circ})$$

$$W_{2} = V_{L} * I_{L} * \cos(\theta_{z} - 30^{\circ})$$

$$\cos(\theta) = 0.62 \implies \theta = 51.68^{\circ}$$

$$W_{1} = 8.68$$

$$W_{2} = 55.76$$

Para circuito delta:

$$W_1 = V_L * I_L * \cos(\theta_z + 30^\circ)$$

 $W_2 = V_L * I_L * \cos(\theta_z - 30^\circ)$
 $\cos(\theta) = 0.658 \implies \theta = -48.85^\circ$
 $W_1 = 136.28$
 $W_2 = 27.85$

5.3.3

Mostre através de um diagrama fasorial que de acordo com as polaridades das bobinas de corrente e de potencial a leitura do wattímetro analógico é positiva para um ângulo $|\theta_z|$ menor que 60° . Mostre que a leitura será negativa se for maior que 60° .

R: Se $|\theta_z|<60^\circ$ então $|\theta_z+30^\circ|<90^\circ$ e $|\theta_z-30^\circ|<90^\circ$ assim para $\theta<90$, $\cos(\theta)>0$, ambas leituras serão positivas.

Se $|\theta_z| > 60^\circ$ então $|\theta_z + 30^\circ| > 90^\circ$ e $|\theta_z - 30^\circ| < 90^\circ$ assim para $\theta > 90$, $\cos(\theta) < 0$, uma das leituras será negativa.

5.3.4

Mostre através de um diagrama fasorial que se a polaridade de uma das bobinas não for seguida a leitura terá um sinal oposto ao correto.

R: Pela definição caso uma das medidas fique errada, será lido a medida com angulo somado 180. conforme as figuras abaixo mostram. As figuras foram feita a partir de um código[1]

em javaScript escrito pelo autor deste relatório. A amplitude não afeta no sinal da medição por isso a mesma pode ser desconsiderada.

Figura 9: Fasores com a medição correta

Figura 10: Caso troque a medição V_{ca} por V_{ac} gerando uma leitura negativa

O mesmo acontece caso a bobina de corrente for invertida.

Figura 11: Fasores de corrente com a medição correta

Figura 12: Caso troque a medição I_a por $-I_a$ gerando uma leitura negativa

Os fasores acima mostram que se medir incorretamente, sera medido um fasor somado de 180° , invertendo o sinal da medição.

6 Simulação

Figura 13: Simulação em estrela ABC

Figura 14: Simulação em estrela CBA

Figura 15: Simulação em delta ABC

Figura 16: Simulação em estrela CBA

Sequência	$V_L[V]$	$I_L[A]$	$w_1[W]$	$w_2[W]$	$W_1 + W_2$
ABC	80	1.8	28.1	140	168
CBA	80	1.8	140	28.1	168

Tabela 5: Medidas Simuladas Para circuito em Delta

Sequência	$V_L[V]$	$I_L[A]$	$w_1[W]$	$w_2[W]$	$W_1 + W_2$
ABC	100	0.7	12.3	69.1	81.4
CBA	100	0.7	69.1	12.3	81.4

Tabela 6: Medidas Simuladas Para circuito em Estrela

A simulação apresentou dados com erros consideráveis em relação as medidas efetuadas. A impedância do wattímetro pode influenciar no circuito, porem na simulação o wattímetro é ideal.

7 Conclusão

A medição de potencia trifásica usando o método dos dois wattímetros é importante para conhecimentos didáticos porém não é comumente utilizado em meios práticos. Com o desenvolvimento da tecnologia foram feitos equipamentos digitais mais precisos e mais fáceis de manusear, estes também realizam outras medições.

Figura 17: Analisador de potência trifásica digital [2]

Os valores analíticos foram levemente diferentes dos obtidos experimentalmente, quando é feito os cálculos despreza-se os efeitos das bobinas.

Foi observado que ao trocar as sequencias de fases as medições inverteram, porém para quando o circuito era capacitivo as medições inverteram e foram diferentes, que leva a levantar a hipótese que os capacitores possuíam uma diferença considerável fazendo o circuito distanciar de um circuito perfeitamente equilibrado.

A simulação mostrou que ao invertei a sequencia de fase as medições dos wattímetros mudam, este também comprovando a teoria.

O método mostrou funcionar independente da ligação (estrela ou delta) e independente do tipo da carga (capacitiva ou indutiva) bastando ser equilibrada.

Referencias

ALEXANDER, C.K.; SADIKU, M.N. Fundamentos de Circuitos Elétricos. 5ª ed. Porto Alegre: Mc Graw-Hill, 2015

[1] - LIMA, H.S.; Desenhando Fasores https://xx220xx.github.io/FASORES/index.html acesso em 28/10/2018

[2] Analisador de potência trifásico PCE-PA 8000 - https://www.pce-medidores.com.pt/fichas-dados/analisador-potencia-trifasico-pce-pa-8000.htm acesso em 28/10/2018