Семинар 1

Алексеев Василий

1 + 5 сентября 2022

Содержание

I	Матрицы и определители 2-го и 3-го порядков		1
	1.1	Операции с матрицами	1
	1.2	Определитель матрицы	3
2	Сис	темы линейных уравнений. Правило Крамера	5
3	Доп	Дополнение	
	3.1	"Интуитивное" матричное умножение	7
	3.2	Определитель порядка три по правилу треугольника	7
	3.3	Задание определителя с помощью формулы	8
	3.4	Свойства определителя	9
	3.5	Задание определителя через свойства	10
	3.6	"Программистское" матричное сложение	11

1. Матрицы и определители 2-го и 3-го порядков

Вещественная матрица A размера $m \times n$ — "таблица" из чисел $a_{ij} \in \mathbb{R}$ $(i = 1 \dots m, j = 1 \dots n)$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

1.1. Операции с матрицами

Определение 1.1 (Сложение матриц). Пусть $A, B \in \mathbb{R}^{m \times n}$. Суммой A + B называется матрица $C \in \mathbb{R}^{m \times n}$, такая что $c_{ij} = a_{ij} + b_{ij}$ $(i = 1 \dots m, j = 1 \dots n)$.

Определение 1.2 (Умножение матрицы на число). Пусть $A \in \mathbb{R}^{m \times n}$, $\alpha \in \mathbb{R}$. Произведением матрицы A на число α называется матрица $C \in \mathbb{R}^{m \times n}$, такая что $c_{ij} = \alpha \cdot a_{ij}$ $(i = 1 \dots m, j = 1 \dots n)$.

Замечание. Можно проверить, что введённые операции обладают следующими свойствами:

- 1. $A + (B + C) = (A + B) + C, \forall A, B, C \in \mathbb{R}^{m \times n}$ (ассоциативность сложения).
- 2. A + B = B + A, $\forall A, B \in \mathbb{R}^{m \times n}$ (коммутативность сложения).
- 3. $\exists 0_{m \times n} \in \mathbb{R}^{m \times n} : 0_{m \times n} + A = A, \forall A \in \mathbb{R}^{m \times n}$.
- 4. $\forall A \in \mathbb{R}^{m \times n} \exists -A \in \mathbb{R}^{m \times n} : A + (-A) = 0_{m \times n}$
- 5. $\alpha(\beta A) = (\alpha \beta) A$, $\forall \alpha, \beta \in \mathbb{R}$, $\forall A \in \mathbb{R}^{m \times n}$ (ассоциативность умножения на скаляр).
- 6. $1 \cdot A = A, \forall A \in \mathbb{R}^{m \times n}$.
- 7. $(\alpha + \beta)A = \alpha A + \beta A$, $\forall \alpha, \beta \in \mathbb{R}$, $A \in \mathbb{R}^{m \times n}$ (дистрибутивность умножения матрицы на число относительно сложения чисел).
- 8. $\alpha(A+B) = \alpha A + \alpha B$, $\forall \alpha \in \mathbb{R}$, $A, B \in \mathbb{R}^{m \times n}$ (дистрибутивность умножения матрицы на число относительно сложения матриц).

Определение 1.3 (Линейная комбинация матриц). Линейной комбинацией матриц $A_1, \ldots, A_n \in \mathbb{R}^{m \times n}$ называется их сумма с некоторыми коэффициентами $\alpha_i \in \mathbb{R}$:

$$\alpha_1 \cdot A_1 + \ldots + \alpha_n \cdot A_n$$

Задача (15.2(3)). Вычислить линейную комбинацию матриц:

$$2\begin{pmatrix} 1 & 8 & 7 & -15 \\ 1 & -5 & -6 & 11 \end{pmatrix} - \begin{pmatrix} 5 & 24 & -7 & -1 \\ -1 & -2 & 7 & 3 \end{pmatrix} = ?$$

Решение. Вычисляя линейные комбинации соответственных элементов матриц, получаем ответ:

$$\begin{pmatrix} 2-5 & 2\cdot8-24 & 2\cdot7-(-7) & 2\cdot(-15)-(-1) \\ 2-(-1) & 2\cdot(-5)-(-2) & 2\cdot(-6)-7 & 2\cdot11-3 \end{pmatrix} = \begin{pmatrix} -3 & -8 & 21 & -29 \\ 3 & -8 & -19 & 19 \end{pmatrix}$$

Определение 1.4 (Умножение матриц). Пусть $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times n}$. Тогда матрица $C \in \mathbb{R}^{m \times n}$ называется произведением матриц A и B, если

$$\begin{cases} c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} \\ 1 \le i \le m \\ 1 \le j \le n \end{cases}$$

и обозначается C = AB.

$$\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \xrightarrow{\stackrel{\times}{\Rightarrow}} \begin{pmatrix} 1 & 0 & 1 \\ & \stackrel{\times}{\Rightarrow} & \\ & & \stackrel{\times}{\Rightarrow} & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

Рис. 1: Иллюстрация умножения матриц.

Задача (15.5(9)). Вычислить произведение матриц:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = ?$$

Решение.

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \\ 1 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \\ 0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 \\ 0 \cdot 1 + 0 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 1 \\ 2 \end{pmatrix}$$

Приведём ещё пару небесполезных определений, связанных с матрицами.

Определение 1.5 (Единичная матрица). Матрица $A \in \mathbb{R}^{n \times n}$ называется единичной, если она нулевая, кроме главной диагонали ($\{a_{ij} \mid i=j\}$), на которой стоят единицы. То есть $a_{ij}=1$ при i=j и $a_{ij}=0$ при $i\neq j$:

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

Единичная матрица обычно обозначается E или I.

Определение 1.6 (Транспонирование матрицы). Пусть $A \in \mathbb{R}^{m \times n}$. Тогда транспонированной по отношению к матрице A называется матрица $C \in \mathbb{R}^{n \times m}$, такая что $c_{ij} = a_{ji}$ $(i = 1 \dots n, j = 1 \dots m)$. Транспонированная матрица обозначается A^T .

Пример. О транспонировании можно думать как о замене строк матрицы на столбцы и наоборот. Либо как об отражении элементов матрицы относительно главной диагонали:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}^T$$

Задача (15.13(1)). Проверить справедливость тождества:

$$(\alpha A)^T = \alpha A^T$$

Решение. Пусть A размера 2 строки на 3 столбца (для наглядности, и чтоб меньше писать — для размера m строк на n столбцов всё будет аналогично):

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

Тогда мы можем записать:

$$(\alpha A)^T = \left(\alpha \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}\right)^T = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} \end{pmatrix}^T = \begin{pmatrix} \alpha a_{11} & \alpha a_{21} \\ \alpha a_{12} & \alpha a_{22} \\ \alpha a_{13} & \alpha a_{23} \end{pmatrix} = \alpha \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix} = \alpha A^T$$

Определение 1.7 (След матрицы). Следом квадратной матрицы $A \in \mathbb{R}^{n \times n}$ называется сумма элементов, находящихся на главной диагонали $\{a_{ij} \mid i=j, \ i=0 \dots n\}$:

$$\begin{cases} \operatorname{Sp}: \ \mathbb{R}^{n \times n} \to \mathbb{R} \\ \operatorname{Sp}: \ A \mapsto \sum_{i=1}^{n} a_{ii} \end{cases}$$

У следа есть несколько возможных обозначений. Ещё одно, например, Tr A.

1.2. Определитель матрицы

Об определителе можно думать как об особой числовой функции на множестве квадратных матриц, обозначаемой det или $|\cdot|$

$$\det: \ \mathbb{R}^{n \times n} \to \mathbb{R}$$

Существует несколько эквивалентных способов определения det: через свойства функции, конкретную формулу вычисления по элементам матрицы (3) при произвольном *n*. Мы пока опустим строгое определение det и просто посмотрим, как его можно вычислять для квадратных матриц размерностей 2 и 3.

Определитель второго порядка:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

Определитель третьего порядка. Способ вычисления "разложением по первой строке" (перебираем элементы первой строки; чередуем знаки начиная с плюса; домножаем на

определитель матрицы, остающейся после вычёркивания строчки и столбца, где стоит текущий элемент первой строки):

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \cdot \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \cdot \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

$$= a_1 b_2 c_3 - a_1 b_3 c_2 - a_2 b_1 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 - a_3 b_2 c_1$$

$$(1)$$

Но и при более высоких порядках (четыре и далее) можно использовать тот же алгоритм разложения по первой строке, сводя вычисление определителя порядка n к вычислению нескольких определителей порядка n-1. Даже если мы ещё раз посмотрим на определитель второго порядка, то увидим, что он тоже может быть посчитан разложением по первой строке, если положить определитель матрицы размера 1×1 из одного элемента равным этому самому элементу:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot |d| - b \cdot |c| \xrightarrow{|x| \equiv x} ad - cb$$

Таким образом, мы уже фактически пришли к следующему варианту определить функцию det:

Определение 1.8 (Определитель (рекурсивный вариант определения)). Положим определитель матрицы из одного элемента равным этому самому элементу

$$\det(a) \equiv a$$

Пусть d_{ij} — определитель подматрицы D_{ij} матрицы $A \in \mathbb{R}^{n \times n}$, которая получается при вычёркивании i-ой строки и j-го столбца. Тогда

$$\det(A) = \sum_{j=1}^{n} a_{1j} (-1)^{1+j} d_{1j}$$

Задача (14.7(6)). Вычислить определитель третьего порядка:

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = ?$$

Решение.

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{vmatrix} = 1 \cdot (3 \cdot 5 - 4 \cdot 4) - 2 \cdot (2 \cdot 5 - 3 \cdot 4) + 3 \cdot (2 \cdot 4 - 3 \cdot 3) = -1 + 4 - 3 = 0$$

Получаем, что определитель матрицы равен нулю.

Определение 1.9 (Вырожденная матрица (возможный вариант определения)). Матрица A называется вырожденной, если $\det A = 0$. В противном случае матрица A называется невырожденной.

2. Системы линейных уравнений. Правило Крамера

Система m линейных уравнений с n неизвестными ($a_{ij} \in \mathbb{R}, b_i \in \mathbb{R}$):

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

В матричном виде:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Или так:

$$A_{m \times n} \mathbf{x}_{n \times 1} = \mathbf{b}_{m \times 1}, \quad A_{m \times n} \in \mathbb{R}^{m \times n}, \ \mathbf{b}_{m \times 1} \in \mathbb{R}^{m \times 1}$$
(2)

Определение 2.1 (Решение системы). Решением системы (2) называется совокупность наборов значений переменных, которые каждое уравнение системы обращают в верное числовое равенство:

$$\{x \in \mathbb{R}^n \mid Ax = b\}$$

Определение 2.2. Система называется совместной, если она имеет хотя бы одно решение, и несовместной, если у неё нет решений.

Определение 2.3. Говорят, что система B следует из системы A, если множество решений B содержит множество решений A.

Пример. Пусть дана система А:

$$\begin{cases} x + y = 1 \\ x - y = 1 \end{cases}$$

Можно, например, сложить уравнения системы A. Получим новую систему B (которая следует из A):

$$2x = 2$$

Её множество решений (наборов из $\partial вух$ компонент x, y), очевидно, шире множества решений системы A.

Теорема 2.1. Пусть число уравнений в системе т равно числу неизвестных n. Тогда если $\det A \neq 0$, то система Ax = b имеет решение, и притом только одно.

Теорема 2.2 (Правило Крамера). Пусть число уравнений в системе т равно числу неизвестных n. Тогда если $\det A \neq 0$, то решение можно найти по формулам:

$$\begin{cases} x_i = \frac{\Delta_i}{\Delta} \\ i = 1 \dots n \end{cases}$$

B обозначениях выше Δ — это просто $\det A$, а Δ_i — определитель матрицы, все столбцы которой такие же, как у A, кроме столбца с номером i, который есть столбец b:

$$\begin{cases} \Delta_i \equiv \det(\boldsymbol{a}_1, \dots, \boldsymbol{a}_{i-1}, \boldsymbol{b}, \boldsymbol{a}_{i+1}, \dots, \boldsymbol{a}_n) \\ i = 1 \dots n \end{cases}$$

где a_i , (i = 1 ... n) — это столбцы матрицы A.

Пример. Если определитель матрицы системы равен нулю, то решений может как не быть вообще, так и быть бесконечно много. Например:

$$\begin{cases} x + y = 2 \\ x + y = -1 \end{cases} \begin{cases} x + y = 2 \\ x + y = 2 \end{cases}$$

Задача (17.1(2)). *Решить систему*:

$$\begin{cases} 3x + 5y = 2\\ 5x + 9y = 4 \end{cases}$$

Решение. Перепишем систему в матричном виде:

$$\begin{cases} Ax = b \\ A = \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix} \\ b = \begin{pmatrix} 2 & 4 \end{pmatrix}^T \end{cases}$$

Расширенная матрица системы: $(A \mid b)$.

Матрица A квадратная. Её определитель |A|=2 отличен от нуля. Поэтому решение системы существует и единственно. И его можно найти по формулам:

$$\Delta = \det A = \det \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix} = 2$$

$$\Delta_x = \det \begin{pmatrix} 2 & 5 \\ 4 & 9 \end{pmatrix} = -2 \Rightarrow x = \frac{\Delta_x}{\Delta} = \frac{-2}{2} = -1$$

$$\Delta_y = \det \begin{pmatrix} 3 & 2 \\ 5 & 4 \end{pmatrix} = 2 \Rightarrow y = \frac{\Delta_y}{\Delta} = \frac{2}{2} = 1$$

И решение:

$$\mathbf{x} = \begin{pmatrix} x & y \end{pmatrix}^T = \begin{pmatrix} -1 & 1 \end{pmatrix}^T$$

Проверяем:

$$\begin{cases} -3 + 5 = 2 \\ -5 + 9 = 4 \end{cases}$$

3. Дополнение

В дополнении упомянем ещё один вариант матричного умножения ("интуитивный") и то, где он может применяться. Рассмотрим ещё один способ считать определитель третьего порядка. Приведём ещё несколько равносильных способов задать определитель (без доказательства равносильности). Отметим пару свойств определителя. И в конце — ещё пара слов про сложение (о возможности складывать "когда формально нельзя, но на практике удобно").

3.1. "Интуитивное" матричное умножение

Помимо "обычного" матричного умножения (1.4), о котором уже говорили ранее и которое далее всегда и будем использовать, существует ещё несколько вариантов определить операцию умножения между двумя матрицами.

Например — поэлементное умножение, "произведение Адамара". Пусть есть две матрицы одинакового размера $A, B \in \mathbb{R}^{m \times n}$. Тогда матрица $C \in \mathbb{R}^{m \times n}$ называется произведением Адамара матриц A и B, если

$$\begin{cases} c_{ij} = a_{ij}b_{ij} \\ i = 1 \dots m \\ j = 1 \dots n \end{cases}$$

Покомпонентное произведение обозначается как $C = A \odot B$.

Почему "умножение по умолчанию" выбрано не так просто и понятно, а по-другому (1.4), будет понятно далее в курсе (наверно). Поэлементное же умножение тоже используется. Например, в анализе изображений при свёртке с помощью фильтра (2). Изображение представляется как совокупность прямоугольных матриц (по матрице на каждый цвет: красный, зелёный и синий — если изображение цветное), где каждый элемент матрицы отвечает за "величину" соответствующего цвета в данном пикселе. Ядро свёртки — квадратная (как правило) матрица меньшего (как правило) размера. В процессе свёртки ядро как бы "скользит" по матрице изображения, адамарово умножаясь на подматрицу изображения, находящуюся в данный момент под ядром. Элементы матрицы, полученной в результате такого умножения, складываются, и результат записывается как значение цвета в пиксель матрицы преобразованного изображения. Таким образом, свёртка — это как ещё одна операция между матрицами, которая принимает на вход две матрицы (разных размеров) и возвращает одну матрицу. Размер матрицы-результата может быть такой же, как у исходной матрицы изображения, а может быть больше или меньше (в зависимости от того, как "скользит" ядро).

3.2. Определитель порядка три по правилу треугольника

При подсчёте определителя третьего порядка ещё можно пользоваться т.н. "правилом треугольника" (3).

Если сложить все тройки, сначала с плюсом, потом с минусом, то получаем (первая тройка в каждом "блоке" — диагональные элементы):

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 - a_3 b_2 c_1 - a_1 b_3 c_2 - a_2 b_1 c_3$$

Что совпадает, с точностью до перестановки троек, с формулой вычисления по первой строке (1).

Рис. 2: Ёжик в тумане после десятикратного применения сглаживающего фильтра $\frac{1}{13}\begin{pmatrix} 1 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

Рис. 3: Правило треугольника для вычисления определителя третьего порядка.

Ещё есть (возможно, не такое красивое, как с треугольниками) правило Саррюса (4).

3.3. Задание определителя с помощью формулы

Теорема 3.1 (Формула полного разложения определителя). *Пусть* $A \in \mathbb{R}^{n \times n}$. *Тогда определитель* det A матрицы равен

$$\det A = \sum_{(i_1, \dots, i_n)} (-1)^{N(i_1, \dots, i_n)} a_{1i_1} \dots a_{ni_n}$$
(3)

где $N(i_1,\ldots,i_n)$ — число нарушений порядка в перестановке чисел i_1,\ldots,i_n^{-1} . Сумма в формуле берётся по всем перестановкам чисел $1,\ldots,n^2$.

Пример. Вспомним формулу вычисления определителя для матрицы размера 3:

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 b_2 c_3 - a_1 b_3 c_2 - a_2 b_1 c_3 + a_3 b_1 c_2 + a_2 b_3 c_1 - a_3 b_2 c_1$$

¹Нарушение порядка — когда правее большего элемента стоит меньший элемент: $i_k > i_s$, но k < s.

 $^{^{2}}$ Например, перестановки чисел 1, 2, 3: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

Рис. 4: Правило Саррюса для вычисления определителя третьего порядка (картинка взята с русской страницы Википедии).

Элементы в каждом слагаемом упорядочены по номеру столбца. Поэтому посмотрим на число беспорядков по строкам (неважно, как считать беспорядки, по строкам или по столбцам, потому что $\det A = \det A^T$). В первом слагаемом: N(1,2,3) = 0. Во втором: N(1,3,2) = 1 (тройка и двойка). В третьем: N(2,1,3) = 1 (двойка и единица). В четвёртом: N(3,1,2) = 2 (два беспорядка с тройкой и единицей и тройкой и двойкой). В пятом: N(2,3,1) = 1+1 = 2 (для двойки и единицы и для тройки и единицы). В шестом: N(3,2,1) = 2+1 = 3 (тройка-двойка, тройка-единица, двойка-единица).

3.4. Свойства определителя

Теорема 3.2. Некоторые свойства определителя (матрицы в формулах ниже представляются столбцами $a_i \in \mathbb{R}^n$):

1. Линейность по столбцу (строке) — полилинейность:

$$\begin{cases}
\det(\boldsymbol{a}_{1}, \dots, \underbrace{\boldsymbol{p} + \boldsymbol{q}}_{a_{i}}, \dots, \boldsymbol{a}_{n}) = \det(\boldsymbol{a}_{1}, \dots, \boldsymbol{p}, \dots, \boldsymbol{a}_{n}) + \det(\boldsymbol{a}_{1}, \dots, \boldsymbol{q}, \dots, \boldsymbol{a}_{n}) \\
\det(\boldsymbol{a}_{1}, \dots, \underbrace{\alpha \boldsymbol{p}}_{a_{i}}, \dots, \boldsymbol{a}_{n}) = \alpha \det(\boldsymbol{a}_{1}, \dots, \boldsymbol{p}, \dots, \boldsymbol{a}_{n})
\end{cases} \tag{4}$$

2. При перестановке двух столбцов (строк) матрицы её определитель меняет знак (кососимметричность, антисимметричность по столбцам/строкам):

$$\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_n) = -\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_n) \tag{5}$$

3. Если два столбца (две строки) матрицы совпадают, то её определитель равен нулю:

$$\det(\boldsymbol{a}_1, \dots, \boldsymbol{p}, \dots, \boldsymbol{p}, \dots, \boldsymbol{a}_n) = 0 \tag{6}$$

Свойства можно доказать как следствия теоремы 3.1.

И ещё пара более частных утверждений, которые следуют из/являются подслучаями свойств выше:

• Общий множитель элементов строки (столбца) можно выносить за знак определителя:

$$\det(\boldsymbol{a}_1,\ldots,\alpha\boldsymbol{p},\ldots,\boldsymbol{a}_n) = \alpha \cdot \det(\boldsymbol{a}_1,\ldots,\boldsymbol{p},\ldots,\boldsymbol{a}_n)$$

• К любой строке (столбцу) матрицы можно прибавлять линейную комбинацию других строк (столбцов) — определитель при этом не изменится:

$$\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i,\ldots,\boldsymbol{a}_n) = \det(\boldsymbol{a}_1,\ldots,\sum_{\substack{1 \leq j \leq n \\ i \neq i}} \alpha_j \boldsymbol{a}_j + \boldsymbol{a}_i,\ldots,\boldsymbol{a}_n)$$

• При вычислении определителя матрицы вида αA скаляр α можно выносить за знак det следующим образом:

$$\det \alpha A = \alpha^n \det A$$

Пример. Определитель единичной матрицы:

$$\det E = 1^n = 1$$

Теорема 3.3. Определитель транспонированной матрицы

$$\det A^T = \det A$$

Теорема 3.4. Определитель произведения двух квадратных матриц:

$$\det(AB) = \det A \cdot \det B$$

3.5. Задание определителя через свойства

Как отмечалось выше, существует несколько эквивалентных определений det. Один из способов — с помощью формулы (3). Приведём далее ещё пару, основанных на перечислении свойств, которыми должна обладать функция det.

Определение 3.1 (Вариант 1^3). Функция $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ называется определителем (детерминантом) и обозначается det, если

• Функция f является линейным однородным многочленом от элементов любой строки:

$$\begin{cases} f(A) = h_1 a_{i1} + \dots + h_n a_{in} \\ 1 \le i \le n \\ h_j = h_j (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n), \ 1 \le j \le n \end{cases}$$

то есть коэффициенты в разложении по элементам строки не зависят от этой самой строки.

- Значение f на вырожденной матрице 4 равно нулю 0.
- Значение f на единичной матрице $E_{n \times n}$ равно единице 1.

Определение 3.2 (Вариант 2^5). Функция $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ называется определителем (детерминантом) и обозначается det, если

- Функция f полилинейна по строкам матрицы $A \in \mathbb{R}^{n \times n}$ (4).
- Функция f кососимметрична по строкам матрицы A (5).

³Беклемишев Д. В. «Курс аналитической геометрии и линейной алгебры»

⁴Если определять вырожденную матрицу как такую, у которой строки линейно зависимы.

⁵https://en.wikipedia.org/wiki/Determinant

• Значение f на единичной матрице $E_{n \times n}$ равно единице 1.

Определение 3.3 (Вариант 3^6). Функция $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ называется определителем (детерминантом) и обозначается det, если

- Функция f полилинейна по строкам матрицы $A \in \mathbb{R}^{n \times n}$ (4).
- Значение f на матрице с двумя одинаковыми строками равно нулю 0 (6).
- Значение f на единичной матрице $E_{n \times n}$ равно единице 1.

3.6. "Программистское" матричное сложение

Помимо "математических" операций сложения и умножения матриц, стоит отметить ещё такое явление, как "программистское" сложение и умножение. Так, программные пакеты, реализующие действия с матрицами, могут ради удобства давать возможность складывать и поэлементно умножать матрицы разных размеров. В рамках библиотеки numpy Питона это называется Broadcasting (5). Но, хоть размеры матриц при сложении с помощью broadcasting и могут отличаться, они всё равно должны соотноситься определённым образом.

⁶Hans Schneider, George Phillip Barker. «Matrices and Linear Algebra»

```
A = np.array([
    [1, 2],
    [3, 4],
    [5, 6]
])
x = np.array([
    [-1],
    [-1],
    [-1]
])
result = A + x
print(f'Matrix:\n{A}\n')
print(f'Vector:\n{x}\n')
print(f'Sum:\n{result}')
# Output:
#
# Matrix:
# [[1 2]
# [3 4]
# [5 6]]
# Vector:
# [[-1]
# [-1]
# [-1]]
# Sum:
# [[0 1]
# [2 3]
# [4 5]]
```

import numpy as np

Рис. 5: Пример сложения матриц разных размеров в Питоне. Матрица меньшего размера в процессе сложения как бы увеличивается, самокопируясь вдоль определённой размерности.