Choose the Correct Answer

1.	The statement " $x + 2 = 7$, for $x = 3$ " is
	A. Proposition False
	B. Proposition True
	C. Not a Proposition
	D. Proposition both True and False
2.	If p is false and q is true, then $(p \lor \neg q) \to (p \land q)$ is
	A. False
	B. True
	C. Neither true nor false
	D. Both true and false
3.	If p is true and q is false, then $p \rightarrow q$ is
	A. False
	B. True
	C. Neither true nor false
	D. Both true and false
4.	A compound proposition $(p \land q) \rightarrow p$ is
	A. Tautology
	B. Contradiction
	C. Contingency
	D. Equivalent
5.	Let p is a proposition, then $p \vee \neg p$ is logical equivalent to
	A. True
	B. False
	C. <i>p</i>
	D. <i>q</i>
6.	Express the statement "Every student in your class has taken a course in computer". Where $P(x)$ is
	" x has taken a course in computer". The domain of x is the set of the students in your class.
	A. $\forall x P(x)$
	B. $\exists x P(x)$
	C. $\forall x \neg P(x)$
	D. $P(x)$

_				
7	Find the out	out of the fall	awing gambin	atorial circuit.
/ •	r ma me out	սաւ ու աթ ւու	յայրջ Հայրադ	awi iai cii cuit.

A. $\neg (p \land q)$

- B. $\neg p \land \neg q$
- C. $\neg(p \lor q)$
- D. $p \wedge q$
- 8. Let p is a proposition and T stands for True, then $p \vee T$ is logical equivalent to _____.

A. True

- B. False
- C. *p*
- D. q
- 9. If A and B are sets, then A and B are equal if and only if ______.
 - A. $\forall x (x \in A \leftrightarrow x \in B)$.
 - B. $\forall x (x \in A \rightarrow x \in B)$
 - C. $\forall x (x \in A)$
 - D. $\exists x (x \in A)$
- 10. The power set of the set $S = \{a, \{b, c\}\}\$ is ______.
 - A. $\{\emptyset, \{a\}, \{\{b,c\}\}, \{a, \{b,c\}\}\}\}$
 - B. $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$
 - C. $\{\emptyset, a, \{b, c\}, \{a, b, c\}\}\$
 - D. Ø
- 11. The union of the sets A and B, $A \cup B$ is equal to_____.

A. $\{x | x \in A \lor x \in B\}$

- B. $\{x | x \in A \land x \in B\}$
- C. $\{x | x \in A \lor x \notin B\}$
- D. $\{x\}$
- 12. Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. The function f is ______.
 - A. One-to-one correspondence
 - B. One-to-one ONLY
 - C. Onto ONLY
 - D. Not bijection
- 13. The following double sums $\sum_{i=0}^{2} \sum_{j=0}^{3} j$ is equal ______.
 - A. 18
 - B. 6*i*
 - C. 6*j*
 - D. 12

14.	[-5.2] =
	<mark>A5</mark>
	B. 5
	C. 6 D6
	Binary search can be used when the list has terms occurring in
10.	A. Order of increasing size
	B. Unordered
	C. Even numbers
	D. Odd numbers
16.	The bubble sort comparing adjacent elements, interchanging them if they are in
	A. The wrong order
	B. The right order
	C. 1st location
	D. 2 nd location
	If p is true and q is false, then $p \oplus q$ is
	A. False
	B. True
	C. Neither true nor false
	D. Both true and false
18.	Let p and q be the propositions: p : The automated reply can be sent. q : The file system is full.
	Express the following statement using p and q and logical connectives.
	Express the following statement asing p and q and logical confidences.
	"The automated reply cannot be sent when the file system is full."
	"The automated reply cannot be sent when the file system is full."
	"The automated reply cannot be sent when the file system is full." A. $p \rightarrow q$
	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$
	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$
	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$
	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as
	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$
19.	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$
19.	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$
19.	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$
19.	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$ If A and B are sets, then A is said to be a subset of B if and only if
19.	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$ If A and B are sets, then A is said to be a subset of B if and only if A. $\forall x (x \in A \leftrightarrow x \in B)$.
19.	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$ If A and B are sets, then A is said to be a subset of B if and only if A. $\forall x (x \in A \leftrightarrow x \in B)$. B. $\forall x (x \in A \to x \in B)$
19.	"The automated reply cannot be sent when the file system is full." A. $p \to q$ B. $q \to \neg p$ C. $q \to p$ D. $p \to \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$ If A and B are sets, then A is said to be a subset of B if and only if A. $\forall x (x \in A \leftrightarrow x \in B)$. B. $\forall x (x \in A \to x \in B)$ C. $\forall x (x \in A)$
19.	"The automated reply cannot be sent when the file system is full." A. $p \rightarrow q$ B. $q \rightarrow \neg p$ C. $q \rightarrow p$ D. $p \rightarrow \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$ If A and B are sets, then A is said to be a subset of B if and only if A. $\forall x (x \in A \leftrightarrow x \in B)$. B. $\forall x (x \in A \rightarrow x \in B)$ C. $\forall x (x \in A)$ D. $\exists x (x \in A)$ The difference of the sets A and B (i.e., $A - B$) is equal to A. $\{x x \in A \lor x \in B\}$
19.	"The automated reply cannot be sent when the file system is full." A. $p \rightarrow q$ B. $q \rightarrow \neg p$ C. $q \rightarrow p$ D. $p \rightarrow \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$ If A and B are sets, then A is said to be a subset of B if and only if A. $\forall x (x \in A \leftrightarrow x \in B)$. B. $\forall x (x \in A \rightarrow x \in B)$ C. $\forall x (x \in A)$ D. $\exists x (x \in A)$ The difference of the sets A and B (i.e., $A - B$) is equal to A. $\{x x \in A \lor x \notin B\}$ B. $\{x x \in A \land x \notin B\}$
19. 20. 21.	"The automated reply cannot be sent when the file system is full." A. $p \rightarrow q$ B. $q \rightarrow \neg p$ C. $q \rightarrow p$ D. $p \rightarrow \neg q$ The set S of odd positive integers less than 7 can be expressed by using set builder notation as A. $S = \{x \in R^+ x \text{ is odd and } x < 7\}$ B. $S = \{x \in Z^+ x \text{ is odd and } x < 7\}$ C. $S = \{x x \text{ is odd and } x < 7\}$ D. $S = \emptyset$ If A and B are sets, then A is said to be a subset of B if and only if A. $\forall x(x \in A \leftrightarrow x \in B)$. B. $\forall x(x \in A \rightarrow x \in B)$ C. $\forall x(x \in A)$ D. $\exists x(x \in A)$ The difference of the sets A and B (i.e., $A - B$) is equal to A. $\{x x \in A \lor x \in B\}$

	[1	0	2]
22. The matrix $A =$	2	0	5, then the transpose of $\mathbf{A} = (\mathbf{A}^t) = \underline{}$
	2	5	-1

- A. $\begin{bmatrix} 1 & 0 & 2 \\ 2 & 0 & 5 \\ 2 & 5 & -1 \end{bmatrix}$
- B. $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 5 \\ 2 & 5 & -1 \end{bmatrix}$
- C. $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 5 \\ 2 & 5 & -1 \end{bmatrix}$
- D. $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 2 & 0 & -1 \end{bmatrix}$

23. The meet of the two metrices $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ is_____.

- A. $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$
- B. $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
- C. $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- D. $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$

24. An algorithm should produce the correct output values for each set of input values.

This means _____.

- A. Finiteness
- B. Definiteness
- C. Correctness
- D. Generality

25. (10011 ∨ 01010) ⊕ 11111 is _____.

- A. 11111
- B. 00000
- C. 00100
- D. 11011

26. Let p is a proposition and F stands for False, then $p \vee F$ is logical equivalent to _____.

- A. True
- B. False
- C. p
- D. q

27. Let p is a proposition and T stands for True, then $p \wedge T$ is logical equivalent to _____.

- A. True
- B. False
- C. p
- D. *q*

28.	Let v	and a	are two	propositions	s, then $p \rightarrow 0$	q is logical ed	quivalent to	
20.	$\mathbf{L}\mathbf{c}\mathbf{r}$	and t	arctwo	bi obosinons	p, then p	y is logical co	quivaicni to	

- A. $p \vee q$
- B. $p \wedge q$
- C. $\neg p \lor q$
- D. $q \rightarrow p$

29. The set $Z = \{..., -2, -1, 0, 1, 2, ...\}$ is the set of _____.

- A. Real Numbers
- B. Natural Numbers
- C. Integers Numbers
- D. Complex Numbers

30. If
$$2^S = \{\emptyset\}$$
, then $S =$ _____.

- A. $\{\{\emptyset\}\}$
- B. {Ø}
- C. Ø
- D. {{}}

31. Let *U* be the universal set. The complement of the set *A* is equal to_____.

- A. $\{x \notin U | x \notin A\}$
- B. $\{x | x \in A\}$
- C. $\{x \in U | x \notin A\}$
- D. $\{x\}$

32. The composition $f \circ g$ cannot be defined unless the range of g is a subset of the_____.

- A. Domain of g
- B. Co-Domain of f
- C. Domain of f
- D. Co-Domain of g

33. (01111 ∧ 10101) ∨ 01000 is _____.

- A. 10101
- B. 01001
- C. 01111
- D. 01101

34. Find the output of the following combinatorial circuit.

- A. $\neg p \lor \neg q$
- B. $\neg (p \lor p \land q)$
- C. $(\neg p \land q) \lor p$
- D. $\neg p \land (p \lor \neg q)$

- 35. Express the statement "Every student in FCAI has an email". Where P(x) is "x in FCAI", F(x) is "x has an email". The domain of x is the set of all students in Egypt.
 - A. $\forall x F(x)$
 - B. $\forall x P(x)$
 - C. $\forall x (P(x) \land F(x))$
 - D. $\forall x (P(x) \to F(x))$
- 36. Let $A = \{1, 2, 3, 4\}$, and $B = \{a, b, c\}$, the $|A \times B|$ is _____ elements.
 - A. 3
 - B. 4
 - C. 16
 - D. 12
- 37. The general term a_n of the sequence 15, 8, 1, -6, -13, -20, ... is_____.
 - A. $\{15 n\}$
 - B. $\{15 + 7n\}$
 - C. $\{7 15n\}$
 - D. $\{15 7n\}$
- $38. \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \\ 1 & 3 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 1 & 1 \end{bmatrix} = \underline{\hspace{1cm}}.$
 - A. $\begin{bmatrix} 9 & 2 \\ 3 & 1 \\ 9 & -2 \end{bmatrix}$
 - B. $\begin{bmatrix} 9 & 0 \\ 0 & 0 \\ 9 & -2 \end{bmatrix}$
 - C. $\begin{bmatrix} 9 & 1 \\ 0 & 1 \\ 9 & -2 \end{bmatrix}$
 - D. $\begin{bmatrix} 9 & 2 \\ 0 & 0 \\ 9 & -2 \end{bmatrix}$
- 39. [3. 5] = _____.
 - A. -4
 - B. 4
 - C. -3
 - D. 3
- **40.** A(an) _____ is a sequence of the form $a + ar + ar^2, ..., ar^n, ...$
 - A. Arithmetic progression
 - B. Floor function
 - C. Fibonacci
 - D. Geometric progression