A NOTE ON LOGVINENKO-SEREDA THEOREM

YUNLEI WANG

ABSTRACT. This note is an introduction of Logvinenko-Sereda Theorem.

Contents

1. Introduction	1
2. Jensen's Inequalities and Poisson Operator	3
2.1. Jensen's Inequality for Plus-Functions on	$ lap{T}$
2.2. Jensen's Inequality for Plus-Functions on	\mathbb{R} 5
2.3. Poisson Operator	6
3. End of the Proof	7

1. Introduction

Before we introduce the Logvinenko-Sereda Theorem, we first give some definitions.

Definition 1.1. Let Σ be a measurable set and \mathscr{E} be a subspace of $L^2(\mathbb{R})$. A measurable set S is called \mathscr{E} -determining if there is a positive number c such that

$$f \in \mathscr{E} \Rightarrow c \|f\|_2^2 \le \int_S |f|^2 \, \mathrm{d}x.$$
 (1.1)

Furthermore, if S is $\mathscr{E}(\widehat{\Sigma})$ -determining for any bounded $\Sigma \subset \mathbb{R}$, we say S is determining. Here $\mathscr{E}(\widehat{\Sigma})$ denotes the subspace of all functions with spectrum contained in Σ .

Definition 1.2. Let S be a measurable set on \mathbb{R} . We say S is γ -thick if there exists an interval K = [-L, L] and a constant $\gamma > 0$ such that:

$$\forall h \in \mathbb{R} \implies |S \cap (K+h)| \ge \gamma.$$

We call S thick if the exact value of γ is not concerned.

E-mail address: wcghdpwyl@gmail.com.

Now we can state the theorem as following:

Theorem 1.1. Let S be a measurable set on \mathbb{R} . Then the following two assertions are equivalent:

- (a) S is determining;
- (b) S is thick.

The proof of (a) \Rightarrow (b) is much easier than the converse.

Proof of (a) \Rightarrow (b). Given bounded set Σ , then $\mathscr{E}(\widehat{\Sigma})$ is a shift invariant subspace of $L^2(\mathbb{R})$. Hence we only need to prove: If \mathscr{E} is a shift invariant non-trivial subspace of $L^2(\mathbb{R})$, then any \mathscr{E} -determining set is thick. Assume $f \in \mathscr{E}$ and define $\omega_f(\delta) := \sup\{\int_{\mathscr{E}} |f|^2 dx : |e| \leq \delta\}$. Let K = [-L, L] large enough so that

$$\int_{K'} |f|^2 \, \mathrm{d}x \le \frac{c}{2},$$

where c is the constant from (1.1). Set $f_h(x) := f(x-h), \forall h \in \mathbb{R}$ and we have

$$\int_{(K+h)'} |f_h|^2 \, \mathrm{d}x \le \frac{c}{2}.$$

Then

$$c = c \int |f_h|^2 dx \le \int_S |f_h|^2 dx = \left(\int_{S \cap (K+h)} |f_h|^2 dx + \int_{S \cap (K+h)'} |f_h|^2 dx \right)$$

$$\le \omega_f \left(|S \cap (K+h)| \right) + \frac{c}{2}.$$

Then we obtain $\omega_f(|S \cap (K+h)|) \geq \frac{c}{2}$, and this implies $|S \cap (K+h)|$ is bounded off zero for any $h \in \mathbb{R}$.

Definition 1.3. The Poisson measure is defined by

$$\Pi := \frac{1}{\pi(1+x^2)}m$$

where m is the Lebesgue measure on \mathbb{R} .

Furthermore, we define the probability measure with respect to x

$$\Pi_x(A) := \Pi(x - A) = \frac{1}{\pi} \int_A \frac{1}{1 + (x - t)^2} dt, \quad \forall A \subset \mathbb{R}.$$

Then we have the following property:

Proposition 1.2. Let S be a measurable set on \mathbb{R} . Then S is thick if and only if $\inf_{x \in \mathbb{R}} \Pi_x(S) > 0$.

Proof. \Rightarrow : Assume S is γ -thick for some $\gamma > 0$ and K = [-L, L] defined in Definition 1.2. Then for all $x \in \mathbb{R}$, we obtain

$$\Pi_x(S) = \int_S d\Pi_x \ge \int_{(K+x)\cap S} d\Pi_x = \frac{1}{\pi} \int_{x-L}^{x+L} \chi_S(t) \frac{dt}{1 + (x-t)^2}
= \frac{1}{\pi} \int_L^L \chi_S(t+x) \frac{dt}{1+t^2} \ge \frac{1}{\pi} (1+L^2)^{-1} |S \cap (K+x)| \ge \pi^{-1} (1+L^2)^{-1} \gamma.$$

 \Leftarrow : Assume $\Pi_x(S) \ge \sigma > 0$ for all $x \in \mathbb{R}$. Let K = [-L, L] and L is defined later. We have

$$\pi \sigma \leq \pi \Pi_{x}(S) = \int_{\mathbb{R}} \chi_{S}(t) \frac{1}{1 + (x - t)^{2}} dt$$

$$= \int_{x - L}^{x + L} \chi_{S}(t) \frac{1}{1 + (x - t)^{2}} dt + \int_{|x - t| > L} \chi_{S}(t) \frac{1}{1 + (x - t)^{2}} dt$$

$$\leq |S \cap (K + x)| + 2 \int_{L}^{\infty} \frac{1}{1 + t^{2}} dt$$

$$\leq |S \cap (K + x)| + 2 \left(\frac{\pi}{2} - \arctan L\right).$$

Choose L large enough so that $\gamma = \pi \sigma - 2\left(\frac{\pi}{2} - \arctan L\right) > 0$, then we have $|S \cap (K+x)| \ge \gamma > 0$.

2. Jensen's Inequalities and Poisson Operator

Definition 2.1. We call a distribution $f \in S'(\mathbb{R})$ a plus-function (resp. a minus-function) if $\widehat{f}|_{(-\infty,0)} = 0$ (resp. $\widehat{f}|_{(0,\infty)} = 0$). A distribution $f \in S'(\mathbb{T}) (= D'(\mathbb{T})$ is called a plus-function (resp. a minus-function) if $\widehat{f}|_{\mathbb{Z}\cap(-\infty,0)} = 0$ (resp. $\widehat{f}|_{\mathbb{Z}\cap[0,\infty)} = 0$).

Definition 2.2. The set of all plus-functions $f \in L^p(X, m)$ where $p \in [1, \infty)$ is denoted by the symbol $H^p(X)$ and is called the Hardy class (with the index p).

2.1. **Jensen's Inequality for Plus-Functions on** \mathbb{T} **.** For Jensen's inequality, we are most familiar with

$$\exp \int \log |f| \, \mathrm{d}\mu \le \int |f| \, \mathrm{d}\mu,$$

where μ is any probability measure and $f \in L^1(\mu)$. Now we introduce another Jensen's inequality:

$$f \in H^1(\mathbb{T}) \Rightarrow \log |\widehat{f}(0)| \le \int_{\mathbb{T}} \log |f| \, \mathrm{d}m.$$
 $(J_{\mathbb{T}})$

Here m is the normalized Lebesgue measure on \mathbb{T} . Compaired with the trivial estimate $\left| \int f \, \mathrm{d}m \right| \leq \int |f| \, \mathrm{d}m$, $(J_{\mathbb{T}})$ is an essential refinement.

Let $C_+ := H^1(\mathbb{T}) \cap C(\mathbb{T})$. We first have the following lemma:

Lemma 2.1. Any function in C_+ satisfies $(J_{\mathbb{T}})$.

Proof. Take $f \in C_+$ and $\varepsilon > 0$. By density of trigonometric polynomials in $C(\mathbb{T})$, there is a real trigonometric polynomial t such that

$$t(\zeta) - \varepsilon < \log(|f(\zeta)| + \varepsilon) < t(\zeta) + \varepsilon, \quad \forall \zeta \in \mathbb{T}.$$

Put $s := t + i\widetilde{t}$, where $\widetilde{t} := \frac{1}{i} \sum_{k \in \mathbb{Z}} \operatorname{sgn} k \cdot \widehat{t}(k) z^k$ and \widetilde{t} is also real. Then $s \in C_+$. Then we obtain

$$\left|f(\zeta)e^{-s(\zeta)}\right| = |f(\zeta)|e^{-t(\zeta)} < e^{\log(|f(\zeta)|+\varepsilon)-t(\zeta)} < e^{\varepsilon}, \quad \forall \zeta \in \mathbb{T}.$$

Hence

$$|\widehat{fe^{-s}}(0)| = \left| \int_{\mathbb{T}} fe^{-s} \, \mathrm{d}m \right| \le e^{\varepsilon}.$$

On the other hand, $|\widehat{fe^{-s}}(0)| = |\widehat{f}(0)||e^{-\widehat{s}(0)}| = |\widehat{f}(0)|e^{-\widehat{t}(0)}|$, hence

$$|\widehat{f}(0)| \le e^{\varepsilon + \widehat{t}(0)} = e^{\varepsilon + \int t \, \mathrm{d}m} \le e^{2\varepsilon + \int \log(|f| + \varepsilon) \, \mathrm{d}m}.$$

The right hand side tends to $\exp \int \log |f| dm$ as $\varepsilon \to 0$, then we obtain $(J_{\mathbb{T}})$.

Now we can give the proof of $(J_{\mathbb{T}})$ for any $f \in H^1(\mathbb{T})$. Proof of $(J_{\mathbb{T}})$. If $f \in H^1(\mathbb{T})$ m then $f = \lim_{j \to \infty} f_j$ (in $L^1(\mathbb{T})$) for a sequence (f_j) of plus-polynomials. Thus, for any $\varepsilon > 0$,

$$\int_{\mathbb{T}} \log(|f| + \varepsilon) dm = \lim_{j \to \infty} \int_{\mathbb{T}} \log(|f_j| + \varepsilon) dm,$$

since $\left|\log(|f|+\varepsilon)-\log(|f_j|+\varepsilon)\right| \leq \frac{1}{\varepsilon} ||f|-|f_j||$. Since $(J_{\mathbb{T}})$ is valid for $f \in C_+$, we obtain

$$\log |\widehat{f}_j(0)| \le \int_{\mathbb{T}} \log(|f_j| + \varepsilon) \, \mathrm{d}m,$$

and then passing to the limit we obtain

$$\log |\widehat{f}(0)| \le \int_{\mathbb{T}} \log(|f| + \varepsilon) \, \mathrm{d}m.$$

Now using the Monotone Convergence Theorem we obtain

$$\lim_{\varepsilon \to +0} \int_{\mathbb{T}} \log(|f| + \varepsilon) \, \mathrm{d}m = \int_{\mathbb{T}} \log|f| \, \mathrm{d}m.$$

2.2. Jensen's Inequality for Plus-Functions on \mathbb{R} . We have an analogue of $(J_{\mathbb{T}})$ for plus-functions on \mathbb{R} :

$$f \in H^1(\mathbb{R}, \Pi) \Rightarrow \log \left| \int_{\mathbb{R}} f \, d\Pi \right| \le \int_{\mathbb{R}} \log |f| \, d\Pi.$$
 (J_R)

Here we define $H^{p}(\mathbb{R},\Pi):=\{f\in L^{p}(\mathbb{R},\Pi): f \text{ is a plus-function}\}\ \text{for }p\in[1,\infty).$

Lemma 2.2. Let $f \in H^1(\mathbb{R}, m)$, $\omega := \frac{x-i}{x+i}$. Then

$$\int_{\mathbb{R}} f\omega^n \, d\Pi = 0 \tag{2.1}$$

holds for all $n \in \mathbb{N}_+$

Lemma 2.3. Let $f \in H^1(\mathbb{R}, \Pi)$. Then (2.1) still holds for all $n \in \mathbb{N}_+$.

Proof of $(J_{\mathbb{R}})$. Suppose $f \in H^1(\mathbb{R}, \Pi)$. Define

$$F(e^{i\theta}) := f\left(-\cot\frac{\theta}{2}\right), \quad \theta \in (0, 2\pi).$$

The variables θ and $x = -\cot \frac{\theta}{2}$ are connected by the following equalities:

$$x = -i\frac{e^{i\theta} + 1}{e^{i\theta} - 1}, \quad d\theta = \frac{2dx}{1 + x^2}.$$

Hence

$$\int_0^{2\pi} \left| F(e^{i\theta}) \right| d\theta = 2 \int_{\mathbb{R}} |f(t)| \frac{1}{1+t^2} dt < \infty.$$

Then by Lemma 2.3 we have

$$\widehat{F}(-n) = \frac{1}{2\pi} \int_0^{2\pi} F(e^{i\theta}) e^{in\theta} d\theta = \int_{\mathbb{R}} f\omega^n d\Pi = 0.$$

Thus $F \in H^1(\mathbb{T})$ and hence satisfies $(J_{\mathbb{T}})$, which is equivalent to $(J_{\mathbb{R}})$.

Remark 2.1. Indeed, the transformation $F(e^{i\theta}) = f\left(-\cot\frac{\theta}{2}\right)$ comes from conformal maping between the upper half plane and the disk:

$$\eta = -i\frac{z+1}{z-1}.$$

So $(J_{\mathbb{R}})$ and $(J_{\mathbb{T}})$ are essentially the same inequality.

2.3. **Poisson Operator.** We define an operator on $L^1(\mathbb{R},\Pi)$ by

$$P(f)(x) := \int_{\mathbb{R}} f \, d\Pi_x = \int_{\mathbb{R}} f(x+t) \, d\Pi(t), \quad x \in \mathbb{R}.$$

The operator P is called Poisson transformation.

If $f \in H^1(\mathbb{R}, \Pi)$, then the same is true for the function $t \mapsto f(x+t)$. Hence we can rewrite the inequality in $(J_{\mathbb{R}})$ as

$$\log |P(f)(x)| \le P(\log |f|)(x). \tag{J_{\mathbb{R}}'}$$

If f > 0, then

$$\int_{\mathbb{R}} P(f)(x) \, \mathrm{d}x = \int_{\mathbb{R}} \left[\int_{\mathbb{R}} f(x+t) \, \mathrm{d}x \right] \, \mathrm{d}\Pi(t) = \int_{\mathbb{R}} f(x) \, \mathrm{d}x. \tag{2.2}$$

In particular, for any measurable $S \subset \mathbb{R}$, we have

$$\int_{\mathbb{R}} \left(\int_{S} f \, d\Pi_{x} \right) \, dx = \int_{\mathbb{R}} P\left(\chi_{S} f \right) (x) \, dx = \int_{S} f(x) \, dx. \tag{2.3}$$

Lemma 2.4. Let $p \in [1, +\infty)$, $\gamma > 0$. Let $S \subset \mathbb{R}$ be a measurable set and $\Pi_x(S) \geq \gamma$ for all $x \in \mathbb{R}$ and a constant $\gamma > 0$. If $f \in H^p(\mathbb{R})$, then

$$\int_{\mathbb{R}} |P(f)|^p \, \mathrm{d}x \le 2 \left(\int_{S} |f|^p \, \mathrm{d}x \right)^{\gamma} \|f\|_p^{p(1-\gamma)}. \tag{2.4}$$

Proof. Fix $x \in \mathbb{R}$ and define

$$k := \Pi_x(S), k' := \Pi_x(S'),$$

 $\lambda(A) := k^{-1}\Pi_x(A \cap S), \lambda'(A) := (k')^{-1}\Pi_x(A \cap S'), \forall A \subset \mathbb{R}.$

Then we obtain

$$\begin{aligned} &p \log |P(f)(x)| \leq p P \left(\log |f|\right)(x) \\ &= p \int_{S} \log |f| \, \mathrm{d}\Pi_{x} + p \int_{S'} \log |f| \, \mathrm{d}\Pi_{x} \\ &\leq k \log \left(\int_{S} |f|^{p} \, \mathrm{d}\lambda\right) + k' \log \left(\int_{S'} |f|^{p} \, \mathrm{d}\lambda\right) \\ &= k \log \frac{1}{k} + k' \log \frac{1}{k'} + k \log \int_{S} |f|^{p} \, \mathrm{d}\Pi_{x} + k' \log \int_{S'} |f|^{p} \, \mathrm{d}\Pi_{x} \\ &\leq \log 2 + \gamma \log \int_{S} |f|^{p} \, \mathrm{d}\Pi_{x} + (k - \gamma) \log \int_{S} |f|^{p} \, \mathrm{d}\Pi_{x} + k' \log \int_{S'} |f|^{p} \, \mathrm{d}\Pi_{x} \\ &\leq \log 2 + \gamma \log \int_{S} |f|^{p} \, \mathrm{d}\Pi_{x} + (k - \gamma + k') \log \int_{\mathbb{R}} |f|^{p} \, \mathrm{d}\Pi_{x} \\ &= \log 2 + \gamma \log \int_{S} |f|^{p} \, \mathrm{d}\Pi_{x} + (1 - \gamma) \log \int_{\mathbb{R}} |f|^{p} \, \mathrm{d}\Pi_{x}. \end{aligned}$$

Hence we obtain

$$|P(f)(x)|^p \le 2\left(\int_S |f|^p d\Pi_x\right)^{\gamma} \left(\int_{\mathbb{R}} |f|^p d\Pi_x\right)^{1-\gamma}.$$

Integrating both sides together with (2.2) and (2.3) we obtain (2.4).

3. End of the Proof

Let $f \in L^p(\mathbb{R})$, Poissson transformation P(f) can be rewritten as convolution

$$P(f) = f * k,$$

where
$$k:=\frac{1}{\pi(1+x^2)}$$
. Since $\widehat{k}(\xi)=e^{-|\xi|}/2\pi, \xi\in\mathbb{R}$, we have $\widehat{P(f)}(\xi)=e^{-|\xi|}\widehat{f}(\xi)$.

We introduce a lemma below, which is used in L^p -version $(p \in [1, \infty))$ of the Logvinenko-Sereda Theorem:

Lemma 3.1. Let
$$p \in [1, \infty], f \in L^p(\mathbb{R}), \text{ then } P(f) \in L^p(\mathbb{R}) \text{ and }$$

$$||P(f)||_p \le ||f||_p$$
.

Proof. The case p=1 or ∞ is simple, hence we suppose 1 and <math>q:=p/(p-1). Then

$$|P(f)(x)|^{p} \le \left(\int (k(x-t))^{1/p} |f(t)| (k(x-t))^{1/q} dt \right)^{p}$$

$$\le \left(\int k(x-t)|f(t)|^{p} dt \right) \cdot \left(\int k(x-t) dt \right)^{p/q} = P(|f|^{p})(x).$$

Integrating this estimate with respect to x and use the equality $\int P(|f|^p) = \int |f|^p$, we obtain the desired result.

Lemma 3.2. If $f \in H^2(\mathbb{R})$ and ess spec $f \subset (0, l)$, then

$$||f||_2 \le e^l ||P(f)||_2. \tag{3.1}$$

Proof. Since $f \in H^2(\mathbb{R})$, we have $\widehat{P(f)}(\xi) = e^{-\xi}\widehat{f}(\xi)$. Hence

$$|\widehat{f}(\xi)| = e^{\xi} |\widehat{P(f)}(\xi)| \le e^{l} |\widehat{P(f)}(\xi)|, \quad \xi \in \mathbb{R}. \tag{3.2}$$

Then use the Plancherel Theorem we obtain the desired inequality. \Box

Now we finish the proof of Theorem 1.1.

Proof of (b) \Rightarrow (a). Suppose $f \in L^2(\mathbb{R})$ and ess spec $f \subset (a,b), l = b-a$. We transform f into a plus-function by

$$\varphi := f e^{-iax}.$$

Then $\varphi \in H^2(\mathbb{R})$ and $\operatorname{ess\,spec} \varphi \subset (0,l), \, |\varphi| \equiv |f|.$ By Lemma 3.2,

$$\int_{\mathbb{R}} |f|^2 dx = \int_{\mathbb{R}} |\varphi|^2 dx \le e^{2l} \int_{\mathbb{R}} |P(\varphi)|^2.$$
 (3.3)

Then by Proposition 1.2 we know $\Pi_x(S) \ge \sigma$ for any $x \in \mathbb{R}$, where $\sigma > 0$ does not depend on x. Hence we can apply Lemma 2.4 and obtain

$$\|P(\varphi)\|_2^2 \leq 2 \left(\int_S |\varphi|^2 \right)^{\sigma} \|\varphi\|_2^{2(1-\sigma)} = 2 \left(\int_S |f|^2 \right)^{\sigma} \|f\|_2^{2(1-\sigma)}.$$

This estimate combined with (3.3) gives

$$||f||_2^{2\sigma} \le 2e^{2l} \left(\int_S |f|^2 \right)^{\sigma} \Rightarrow ||f||_2^2 \le (2e^{2l})^{1/\sigma} \int_S |f|^2 dx.$$