2.4 Varme og 1. hovedsetning	[LHL 15; YF 19.4] (7)
Første hovedsetning slår fast	hva varme er:
Varme er energioverfør skyldes temperaturfo	ring som rskjeller
Mekanismer for varmetransport stråling og konveksjon (stræ	ter varmeledning, imning). Mer senere.
Alle andre former for energi Dermed, pga energibevarelse	overføring er abeid.
DAU DECLÉTOR	Q = DU + W 1 endring i t endring i arbeid e cindre energi arbeid
For små endninger: d	Q = dU + dW
Dus, Q og W er prose og &W er ikke totale	ssvariable, og dQ differensialer.
Energienheten kalori:	
1 cal = energimengden : til 15.5 °C i = 4.184 3	som øker T fra 14.5 1 g HzO ved p=1 atm.
	= 4184 3/NA = 6.95.10 ⁻²¹ 3 } pr partikkel = 43.4 meV } pr partikkel

2.5 Kretsprosesser. Adiabatisk prosess

[LHL 15.1; YF 19.4 + 19.5]

Kretsprosesser er sentrale i diverse praktiske innretninger, som kjøleskap, varmepumper, forbrenningsmotorer etc.

Starter og ender i samme tilstand

$$\Rightarrow \Delta U = 0$$

 $\Rightarrow \Delta U = 0$ (da U er tilstandsfunksjon)

Q = W for en kretsprosess

Arbeid pr syklus:

Dus: Netto arbeid W utfort av systemet på omgivelsens tilsvarer omsluttet areal i pV-planet. W>O når omløp med klokka.

Adiabatisk prosess: Q=0 (ingen varmentveksling mellom system og omgivelser). Da er $\Delta U = -W$ (1. Lov) Mye mer om kretsprosesser og adiabatiske prosesser senere.

cm = C/n = molar varmekap. (3/K-mol)

(20) 2.7 Differansen G - C [LHL 15.2; YF 19.7] dQ = dU + dW = dU + pdV (1. low med) $= \left(\frac{\partial \Gamma}{\partial U}\right)^{V} dT + \left(\frac{\partial V}{\partial U}\right)^{L} dV + P dV \quad \left(U = U(T, V)\right)$ $= > \left(\frac{d\Omega}{dL}\right)^{b} = \left(\frac{\partial L}{\partial \Omega}\right)^{c} + \left[\left(\frac{\partial \Lambda}{\partial \Omega}\right)^{L} + b\right] \left(\frac{\partial L}{\partial \Lambda}\right)^{b} = \left(\frac{\partial L}{\partial \Lambda}\right)^{b} = \left(\frac{\partial L}{\partial \Lambda}\right)^{b}$ \overrightarrow{C}_{p} \overrightarrow{C}_{v} Gjelder $\Rightarrow \left[C_{p} - C_{v} = \left[p + \left(\frac{\partial U}{\partial V} \right)_{T} \right] \left(\frac{\partial V}{\partial T} \right)_{p} \right]$ generelt. Væsker og faste stoffer: Liten 3V (se s. 8) Dermed er Gp & Gv. (Men Gp> Cv) · Gasser: Større OV/OT. Dermed Gp > Gv. Ideell gass: U=U(T) => QU/OV = O Dessuten er OV/OT = O(nRT/p)/OT = nR/p Dermed: Gp-Gv=nR; Cpm-Cvm=R Stemmer godt for de fleste gasser, så lenge tetcheten er lav. Eksperimenter gir videre: • Atomære gasser (edelgasser): $C_{Vm} \approx \frac{3}{2}R$ · Toatomige -11 - (N2, O2, ...): Cvm ≈ \frac{5}{2}R · Metaller (Al, Cu,...) : c ≈ 3R Dette forklarer vi senere i kurset!

Merk at temperaturen er konstant ved faseovergangen. Tilført varme omdanner mer is til vann uten at Tøker. Is og vann er i likevekt ved smellelemperaturen, O°C ved normalt trykk. Tilsvarende ved fordamping og sublimasjon.

Is ved $0^{\circ}C$: $L_{sm} = 333 \text{ kJ/kg}$ (evt J/g) Vann ved $100^{\circ}C$: $L_{f} = 2260 \text{ kJ/kg}$ Is under $0^{\circ}C$: $L_{sub} \approx 2800 \text{ kJ/kg}$

dus L_{sub} ≈ L_{sm} + L_f , ikke så uventet.

Latent varme pr mol angis gjerne med liten l:

lsm, lf, lsub

Varmepumper (Lab) og kjøleskap: Kjølemediet gjennomgår kretsprosess som involverer både fordamping og kondensasjon.

>> Lf en viktig storrelse i slike "maskiner"