TRANSACTIONS AND CONCURRENCY CONTROL

Questions and Solutions

1. Consider the following schedule:

$$S_1: R_1(A); R_1(C); R_2(B); W_2(B); R_3(B); R_1(A); R_3(C); W_3(C); W_1(A)$$

$$S_2: R_2(A); R_1(C); R_2(B); R_3(B); W_2(B); R_1(A); R_3(C); W_3(C); W_1(A)$$

Which of the above schedules is conflict serializable?

- (a) S₁ only
- (b) S₂ only
- (c) Both S_1 and S_2 only
- (d) Neither S_1 nor S_2

Solution: Option (a)

Explanation:

S1:

<i>T</i> 1	T2	<i>T</i> 3
r(A)		
r(C)		
	r(B)	
	w(B)	
		R(B)
R(A)		
		R(C)
		w(C)
w(A)		

52:

<i>T</i> 1	T2	<i>T</i> 3
r(C)	r(A)	
, (0)	r(B)	
	w(B)	r(B)
r(A)	w(b)	
		r(C)
		w(C)
w(A)		

In the above precedence graph cycle is present. Therefore, \mathbf{S}_2 is not conflict serializable.

2. Consider the following schedule:

S:
$$r_2(A)$$
, $r_1(B)$, $w_2(A)$, $r_2(B)$, $r_3(A)$, $w_1(B)$, $w_3(A)$, $w_2(B)$

How many minimum numbers of moves (where a move consisting of changing the position of one of the operations) are required to convert S into a conflict serializable schedule?

- (a) 1
- (b) 2
- (b) 3
- (d) 4

Solution: Option (a)

Explanation:

Precedence graph for the given schedule is:

If $w_1(B)$ is shifted after $r_1(B)$ then the schedule is $r_2(A)$, $r_1(B)$, $w_1(B)$, $w_2(A)$, $r_2(B)$, $r_3(A)$, $w_3(A)$, $w_2(B)$, then precedence graph becomes:

Now S is serializable schedule.

- 3. Consider 2 schedules S_1 and S_2 with same set of transactions and precedence graph of S_1 is same as precedence graph of S_2 . Which of the following statement is True?
 - (a) Both S₁ and S₂ are conflict equal and conflict serializable schedule
 - (b) Both S₁ and S₂ are conflict equal but may not conflict serializable schedule
 - (c) Both S₁ and S₂ are conflict equal but may not equal schedules
 - (d) Both S_1 and S_2 are conflict equal and but may not view equivalent

Solution: Option (b)

Explanation:

Both S_1 and S_2 are conflict equal but may not conflict serializable schedule.

If either of S_1 or S_2 is serial schedule then S_1 and S_2 become conflict serializable schedule otherwise not.

4. Which of the following schedules are recoverable?

$$S_1 \colon r_1(x), \, r_2(z), \, r_1(z), \, r_3(x), \, r_3(y), \, w_1(x), \, C_1, \, w_3(y), \, C_3, \, r_2(y), \, w_2(y), \, w_2(z), \, C_2$$

$$S_2 \colon r_1(x), \, r_2(z), \, r_1(z), \, r_3(x), \, r_3(y), \, w_1(x), \, w_3(y), \, r_2(y), \, w_2(z), \, w_2(y), \, C_1, \, C_2, \, C_3$$

$$S_3\text{: }r_1(x),\,r_2(z),\,r_3(x),\,r_1(z),\,r_2(y),\,r_3(y),\,w_1(x),\,C_1,\,w_2(z),\,w_3(y),\,w_2(y),\,C_3,\,C_2$$

- (a) Only S₁
- (b) Only S₁, S₃
- (c) Only S₂, S₃
- (d) All S₁, S₂, S₃

Solution: Option (b)

Explanation:

We know that in recoverable, if T_i reads a value written by T_j , then T_i must commit after T_j commits.

In S_2 : w_3 (y) is first and r_2 (y) appears second. Hence, C_2 should appear after C_3 . But here C_3 is appearing after C_2 . So, S_2 is not recoverable. S_1 and S_3 are recoverable.

- 5. For the given schedule which of the following statement is true?
- S: $R_4(A)$, $R_2(A)$, $R_3(A)$, $W_1(B)$, $W_2(C)$, $R_4(B)$, $W_2(B)$
 - (a) The schedule cannot be serialized
 - (b) The schedule is equivalent to T_3 , T_4 , T_1 , T_2
 - (c) The schedule is equivalent to T₁, T₄, T₂, T₃
 - (d) The schedule is equivalent to T_2 , T_3 , T_1 , T_4

Solution: Option (c)

Explanation:

T ₁	T ₂	T ₃	T ₄
	D (4)		R ₄ (A)
	R ₂ (A)	R ₃ (A)	
W ₁ (B) ~	$W_2(C)$		
	W ₂ (B)		$R_4(B)$
	W ₂ (B)		

$$T_1 - T_4 - T_2 - T_3$$

COMMON DATA QUESTIONS

6. Consider the following schedules:

 $S_1: R_1(A), W_1(A), R_2(B), R_1(B), W_1(B), W_2(A), R_2(C), R_1(C)$

 S_2 : $R_2(B)$, $W_2(A)$, $R_1(A)$, $W_1(A)$, $R_1(B)$, $W_1(B)$, $R_2(C)$, $R_1(C)$

 S_3 : $R_1(A)$, $W_1(A)$, $R_2(B)$, $W_2(A)$, $R_1(B)$, $W_1(B)$, $R_1(C)$, $R_2(C)$

 S_4 : $R_2(B)$, $R_1(A)$, $W_2(A)$, $W_1(A)$, $R_1(B)$, $W_1(B)$, $R_2(C)$, $R_1(C)$

Which of the above schedule(s) is/are conflict serializable?

- (a) S_1 and S_2 only
- (b) S₂ only
- (c) S_1 only
- (d) None of these

Solution: Option (b)

Explanation:

 S_1 :

T_1	T ₂
$R_1(A)$ $W_1(A)$ $R_1(B)$ $W_1(B)$	$R_2(B)$ $W_2(A)$ $R_2(C)$

\therefore S_1 is not Conflict serializable

 S_2 :

 \therefore S_2 is Conflict serializable and S_2 is conflict serializable to $T_2 - T_1$.

 S_3 :

 \therefore S_3 is not Conflict serializable

S_4 :

	15.
T ₁	T ₂
	$R_2(B)$
$R_1(A)$	$W_2(A)$
$W_1(A)$	2.5
$R_1(B)$	
$W_1(B)$	
D (C)	$R_2(C)$
$R_1(C)$	

- \therefore S_4 is not Conflict serializable
- 7. Which of the following is TRUE with regards to the correct answer for the above question?
- (a) S_1 is conflict serializable to T_1 , T_2
- (b) S_2 is conflict serializable to T_2 , T_1
- (c) Both (A) and (B)
- (d) None of these

Solution: Option (b)

Explanation:

 S_1 :

T_1	T ₂
R ₁ (A) W ₁ (A) R ₁ (B) W ₁ (B)	$R_2(B)$ $W_2(A)$ $R_2(C)$

 \therefore S_1 is not Conflict Serializable.

 S_2 :

- \therefore S_2 is Conflict Serializable and S_2 is conflict serializable to $T_2 T_1$.
- 8. Which among the following 2-phase locking protocols is a deadlock free?
- (a) Basic 2PL
- (b) Strict 2PL
- (c) Rigorous 2PL
- (d) Conservative 2PL

Solution: Option (d)

Explanation:

Conservative 2-PL is Deadlock free and but it does not ensure Strict schedule

Given below are some transaction schedules that involve three transactions: T₁-T₂-T₃

Schedule 1:

$$T_2: R_x, T_2: R_y, T_1: W_x, T_3: W_y, T_3: W_z, T_1: R_z, T_2: W_y$$

Schedule2:

$$T_2: R_x, T_2: W_y, T_3: R_y, T_3: W_x, T_1: W_y, T_3: R_x, T_1: R_y, T_2: W_y$$

Schedule 3:

$$T_1: R_x, T_2: R_y, T_3: W_y, T_2: R_z, T_3: R_z, T_1: W_z, T_1: W_y, T_2: W_y$$

Schedule 4:

$$T_1 \!\!: R_x, \, T_3 \!\!: W_y, \, T_2 \!\!: R_z, \, T_3 \!\!: R_z, \, T_1 \!\!: W_y, \, T_2 \!\!: W_x, \, T_1 \!\!: R_y, \, T_2 \!\!: W_z$$

9. Which of the given schedules is conflict serializable?

- (a) Schedule 1
- (b) Schedule 2
- (c) Schedule 3
- (d) Schedule 4

Solution: Option (d)

Explanation:

Schedule 1:

There is a cycle in the precedence graph. Hence, schedule 1 is not conflict serializable.

Schedule 2:

There is a cycle in the precedence graph. Hence, schedule 2 is not conflict serializable.

Schedule 3:

There is a cycle in the precedence graph. Hence, Schedule 3 is not conflict serializable.

Schedule 4:

There is no cycle in the precedence graph. Hence, schedule 4 is conflict serializable and equivalent serial schedule possible is $T_3 - T_1 - T_2$.

- 10. For the conflict serializable schedule found in the previous question, the equivalent serial schedule possible:
- (a) $T_3 T_1 T_2$
- (b) $T_2 T_1 T_3$
- (c) $T_3 T_2 T_1$
- (d) None of these

Solution: Option (a)

 $\underline{Explanation}:$

Schedule 4:

There is no cycle in the precedence graph. Hence, schedule 4 is Conflict Serializable and equivalent serial schedule possible is $T_3 - T_1 - T_2$.

11. Which of the following is True about the given schedule 'S'?

T_1	T ₂
R(A)	
A=A+100	
	R(A)
	A=A*2
	W(A)
W(A)	
207 22	R(B)
	B=B/2
	W(B)
R(B)	
B = B - 100	
W(B)	

- (a) It is conflict serializable
- (b) It is view serializable but not conflict serializable
- (c) It is conflict serializable but not view serializable
- (d) It is not serializable

Solution: Option (d)

Explanation:

The given schedule is not serializable, since it is not conflict serializable, not view serializable.

12. Which among the following schedules is an irrecoverable schedule?

(a)

T ₁	T ₂
	R(A)
	W(A)
R(A)	
W(A)	
	Commit
Abort	

(b)

T ₁	T ₂
R(A)	
W(A)	
	R(A)
	W(A)
Abort	
	Abort

(c)

T ₁	T ₂
R(A)	
W(A)	
Abort	
	R(A)
	W(A)
	Commit

(d)

T ₁	T ₂
R(A)	
W(A)	
	R(A)
	W(A)
	Commit
Abort	

Solution: Option (d)

Explanation:

For option (d), in the schedule the transaction T2 is performing a dirty read operation from an uncommitted transaction T1 and committing before the transaction from which it has read the value. Hence, it is irrecoverable schedule.

13. Suppose a schedule with 2 transactions T_1 and T_2 :

T_1	T_2
Read(A)	
Write(A)	
	Read(A)
	Commit
Read(A)	
Abort	

The above schedule is:

- (a) Cascadeless schedule
- (b) Recoverable schedule
- (c) Irrecoverable schedule
- (d) None of these

Solution: Option (c)

Explanation:

As the value of a data is read by transaction who has committed but thereafter the transaction, which changed the value of data got aborted, so it is Irrecoverable schedule.

- 14. There are 2 transactions, T_1 with 2 instructions and T_2 with 5 instructions. Find the number of Serial and concurrent schedules respectively.
- (a) 2, 2
- (b) 21, 21
- (c) 2, 20
- (d) 21, 2

Solution: Option (c)

Explanation:

No. of serial schedules = No. of transactions = 2

No. of concurrent schedules $= \frac{(5+2)!}{5!2!} - 2! = 21 - 2 = 20$

- 15. Which of the following statements are true about recoverable and cascadeless schedules?
- (P) All cascadeless schedules are also recoverable
- (Q) All recoverable schedules are also cascadeless schedules
- (R) All strict schedules are cascadeless and recoverable
- (S) All cascadeless and recoverable schedules are strict schedule
- (a) P and R are correct
- (b) P and S are correct
- (c) P, R and S are correct
- (d) P, Q and S are correct

Solution: Option (a)

Explanation:

