Automatic Control Systems

Lag-lead alghoniemy@alexu.edu.eg

Frequency Domain Representations

Logarithmic plots (Bode Plots)

Polar plots (Nyquist Diagrams)

Log Magnitude-Phase (Nichols Charts)

Stability analysis with the log-magnitude and phase diagram

Stability analysis with the log-magnitude and phase diagram

- This is open-loop representation
- The critical point at $(0 dB, -180^{\circ})$

The **upper-right** corner is the **low frequency**, the **lower-left** is the **high frequency**

- The system is stable if, in the direction of increasing frequency, the curve intersects the $0\ dB$ line before the -180^{0} line
- Changing the gain K shifts the curve vertically
- Changing the **phase** ϕ shifts the curve **horizontally**

$$G(s) = \frac{0.1}{s(s+1)^2}$$

The system is stable.

Increasing the gain shifts the curve vertically

$$G(s) = \frac{K}{s(s+1)^2}$$

K	stability
K = 0.1	stable
K = 10	unstable

0.1

10

0.001

0.01

The Nichols chart

Constant M-circles and N-circles in the magnitude-phase plane

• The intersects between the constant M-loci and the $G(j\omega)$ trajectory gives the

value of **closed-loop** $|M(j\omega)|$

• The **resonance peak** M_r and the **resonant frequency** ω_r are found by locating the **smallest** M-locus that is tangent to the $G(j\omega)$ trajectory

• The **bandwidth** is the frequency at which $G(j\omega)$ curve intersects M = 0.707 locus

$$G(s) = \frac{1}{s(s+1)(0.2s+1)}$$

• <u>Closed-loop response</u>

M_r	2.67 <i>dB</i>
ω_r	0.811 <i>rad/sec</i>
ω_B	1.33 rad/sec

• <u>example</u>

$$G(s) = \frac{9(s^2 + 0.2s + 1)}{s(s^2 + 1.2s + 9)}$$

• $G.M = \infty$?

• $M_r = 0 dB$

b=9*[1 0.2 1]; a=[1 1.2 9 0]; sys=tf(b,a); nichols(sys)

Frequency domain design of control systems

- The low-frequency region of the open-loop locus indicates the steady state behavior of the closed-loop system
- The medium-frequency region of the locus indicates the relative stability
- The high-frequency region indicates the transient response

example:

$$G(s) = \frac{K}{s(1+s)(1+0.0125s)}$$

- We need the steady state error for a <u>unit ramp</u> must be less than 0.01
- We need to realize a resonant peak $M_p=1.25$

$$e_{ss} = \lim_{s \to 0} \frac{1}{sG(s)} = \frac{1}{K} \le 0.01$$

for $K > 100 \Rightarrow G_2(j\omega)$ "unstable"

for stability, we need K < 81

• In order for the curve to be tangent to $M=1.25 \implies K=1.2$ then the steady state error is compromised

 we need to obtain a compromise between steady state accuracy and relative stability.

 This is obtained by reshaping the open-loop frequency response plot.

M Circle

- The reshaped locus $G_c(j\omega)G(j\omega)$ should have a reasonable phase and gain margins or should be tangent to a certain $G_2(j\omega)$
- Reshaping is performed using compensation
- Reshaping is performed such that the **high-frequency** portion of the locus follows the $G_1(j\omega)$ while

the **low-frequency** portions follows the $G_2(j\omega)$ locus

• then the Nyquist plot should be reshaped to follow $G_1(j\omega)$ in the high-frequency region

this can be performed in using one of two approaches:

1. Starting with $G_2(j\omega)$ locus and reshaping the locus in the **high-frequency** region and keeping the low-frequency region unaltered

Im . M Circle Re $G_2(j\omega)$ $G_c(j\omega)G(j\omega)$ $G_1(j\omega)$

2. Starting with $G_1(j\omega)$ locus and reshaping the **low-frequency** portion to obtain a ramp-error constant of 100 while keeping the high-frequency region unaltered

Phase-lead compensation

• the **high-frequency** portion of $G_2(j\omega)$ is rotated in the **counter-clockwise** direction, i.e., by **adding phase** in the positive direction

Lead compensation yields an improvement in the transient response while and a small change in steady state accuracy

 lead compensation increases the system order by one-degree (unless cancellation occurs)

Phase-lag compensation

• the **low-frequency** portion of $G_1(j\omega)$ is shifted in the **clockwise** direction, i.e., by **subtracting phase**

• Lag compensation yields an improvement in the steady-state performance at the expense of increasing the transient response time $G_2(j\omega)$

lag compensation increases
 the system order by one-degree
 (unless cancellation occurs)

Lag-lead compensation

- Combines the characteristics of both lag and lead compensation
- The lag-lead compensation increases the system order by **two-degrees** (unless cancellation occurs), which increases system complexity.
- Rarely used

Phase-lead compensation

- Phase-lead adds a zero
- Phase lead is a high-pass filter (PD)
- may amplify high-frequency noise

$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K \frac{Ts+1}{\alpha Ts+1}$$

$$G_c(s) = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}} \qquad (0 < \alpha < 1)$$

The zero is closer to the origin than the pole (strong zero)

Polar plot of the phase lead compensator,

• The maximum phase ϕ_m the compensator can provide is given by

$$\sin \phi_m = \frac{1 - \alpha}{1 + \alpha} \qquad (0 < \alpha < 1)$$

- The minimum value of the attenuation factor $\alpha \approx 0.05$
- The maximum phase-lead that the compensator can provides is $oldsymbol{\phi}_m\cong \mathbf{65}^o$

dB

$$\sin \phi_m = \frac{1 - \alpha}{1 + \alpha} \qquad (0 < \alpha < 1)$$

• the maximum phase happens at ω_m :

$$\log \omega_m = \frac{1}{2} \left(\log \frac{1}{T} + \log \frac{1}{\alpha T} \right)$$

$$\Rightarrow \omega_m = \frac{1}{T\sqrt{\alpha}}$$

Design steps using the phase-lead compensator

$$G_c(s)G(s) = \frac{Ts+1}{\alpha Ts+1} KG(s) \qquad (0 < \alpha < 1)$$

- 1. Determine the value of K for a specific steady state error.
- 2. Evaluate the **phase margin** from Bode plot using the determined gain.
- 3. Determine the necessary phase-lead angle to be added to the system.
- 4. Add an additional 5° to 12° to be added to the required phase.
- 5. Determine the **attenuation factor** α from $\left(\sin\phi_m = \frac{1-\alpha}{1+\alpha}\right)$ $(0 < \alpha < 1)$
- 6. the new gain crossover frequency $\omega_m = 1/T\sqrt{\alpha}$ happens at the magnitude of the uncompensated system $KG(s) = -20log(1/\sqrt{\alpha})$.
- 7. Determine the corner frequencies:

zero @
$$\omega=1/T=\omega_m\sqrt{lpha}$$
, pole @ $\omega=1/lpha T=\omega_m/\sqrt{lpha}$

8. Determine the constant $K_c = K/\alpha$

• Example:

$$G(s) = \frac{4}{s(s+2)}$$

Design specs:

- 1. velocity error constant $K_v = 20 \text{ sec}^{-1}$
- 2. $P.M. \ge 50^{\circ}, G.M > 10 dB$
- 1. The velocity error constant

$$G_c(s)G(s) = \frac{Ts+1}{\alpha Ts+1} \frac{4K}{s(s+2)}$$

$$K_v = \lim_{s \to 0} sG_c(s)G(s) = 2K = 20$$

$$\Rightarrow K = 10 \Rightarrow KG(s) = \frac{40}{s(s+2)}$$

- The phase margin from Bode-plot $P.M.=18^o$
- The maximum phase to be added $\phi_m = (50^o 18^o) + 5^o = 37^o$

• the attenuation factor α

$$\sin \phi_m = \frac{1 - \alpha}{1 + \alpha}$$

$$\Rightarrow \alpha = 0.24$$

• the **new gain crossover** frequency

$$-20\log(1/\sqrt{\alpha}) = -6.2 \text{ dB},$$

happens at
$$\omega_m = 1/T\sqrt{\alpha} = 9 \ rad/sec$$

The pole and the zero of the lead network

• Zero:

@
$$1/T = \omega_m \sqrt{\alpha}$$

= 4.41 rad/sec

• Pole:

@
$$1/\alpha T = \omega_m/\sqrt{\alpha}$$

= 18.4 rad/sec

Bode-diagram

The bandwidth has increased

Nyquist plot:

		uncompensated	compensated
	M_r	3	1.29
	ω_r	6 rad/sec	7 rad/sec
	ω_B	6.3 rad/sec	9 rad/sec

$$\frac{C(s)}{R(s)} = \frac{4}{s^2 + 2s + 4}$$

$$\frac{C(s)}{R(s)} = \frac{166.8s + 735.588}{s^3 + 20.4s^2 + 203.6s + 735.588}$$

The original system that satisfies the steady state error

ξ	0.157 < 0.7
$P.M.\cong 100\xi$	$\approx 16^{o}$
G . M .	∞
B.W.	6.3 rad/sec

Nichols chart

	uncompensated	compensated	
P. M.	18^o @ $\omega = 6.17$ rad/sec	50.5^{o} @ ω = 8.89 rad/sec	
G . M .	∞	∞	8