Q1 a) We have
$$T = \min_{x \in \mathbb{N}} \{n : S_n \le 0 \text{ or } S_n \ge K \}$$

Since $S_n = a + \sum_{k \ge 1} X_k$ we have $\{S_n < a\}$, $\{S_n > a\}$

in $\sigma(X_n, X_2, ..., X_n) = \widetilde{\tau}_n$ and so

 $\{0 < S_n \} \cap \{S_n < K \} = \{0 < S_n < K \} \in \widetilde{\tau}_n\}$

and so is its complemental $A_n = \{S_n \le 0 \text{ or } S_n \ge K \} \in \widetilde{\tau}_n$

Hence $\{T \le k\} = A_n \cup A_n \cup ... \cup A_k \in \widetilde{\tau}_k \text{ and}$
 T is a stopping time.

b) We compare, for $\widetilde{\tau}_n = \sigma(X_1, ..., X_n)$

$$\mathbb{E}(M_n - M_{n-1} \mid \widetilde{\tau}_{n-1}) = \mathbb{E}(S_n - \frac{1}{3} S_n + \frac{1}{3} S_{n-1} \mid \widetilde{\tau}_{n-1})$$

$$= \mathbb{E}(S_{n-1} + X_n - \frac{1}{3}(S_{n-1} + X_n)^2 + \frac{1}{3} S_{n-1} \mid \widetilde{\tau}_{n-1})$$

$$= S_{n-1} + \frac{1}{3} S_{n-1} + \mathbb{E}(X_n \mid \widetilde{\tau}_{n-1}) - \frac{1}{3} \mathbb{E}(S_n + 3S_n, X_n + 3S_n, X_n)$$

$$= S_{n-1} + \frac{1}{3} S_{n-1} + \mathbb{E}(X_n \mid \widetilde{\tau}_{n-1}) - \frac{1}{3} \mathbb{E}(X_n) - S_{n-1} \mathbb{E}(X_n) + \mathbb{E}(X_n)$$

$$= S_{n-1} + \frac{1}{3} S_{n-1} + \frac{1}{3} \cdot 0 = 0$$

Since further $\mathbb{E}(M_n) < 0$ and M_n is $\widetilde{\tau}_n$ measurable, M_n is a matricale.

c) Assume the DOST holds. Thun

$$E(M_T) = E(M_0) = S_0 - \frac{1}{3}S_0 = \alpha - \frac{\alpha^3}{3}$$

and $E(M_T) = E(\overline{Z}S_1 - \frac{1}{3}S_2^3) = E(\overline{Z}S_1) - \frac{1}{3}E(S_1^3)$
 $= E(\overline{Z}S_1) - \frac{1}{3}R(S_1 - K)K^3$.

From the course, we have seen that the probability that a symphic standard random walk sharing at 0 hils $b = K - \alpha$ before $c = -\alpha$ to $\overline{b} + (-c)$ i.e. \overline{K} . Hence,

 $\alpha - \frac{\alpha^3}{3} = E(\overline{Z}S_1) - \frac{1}{3}K$
 $\Rightarrow E(\overline{Z}S_1) = \alpha + \frac{\alpha K^2}{3} - \frac{\alpha^3}{3} = \frac{\alpha K^2 - \alpha^3}{3} + \alpha$

as required. It remains to Check that DOST is satisfied. However, this is a priori and true; while $E(T) < \infty$ (from course), we don't have

 $|M_{min} - M_n| = |S_{min} - S_{min}|_{S_1} + S_2|_{S_2}$ bounded.

Constable instead $M_n = M_{min} + C$. Here,

$$|\mathcal{M}_{n+1} - \mathcal{M}_{n}| = |S_{n+1}|_{T} - \frac{S_{n+1}|_{T}}{3} + \frac{S_{n+1}|_{T}}{3} |$$

$$\leq K + \frac{K^{3}}{3} + \frac{K^{3}}{3} < \infty.$$
Since Puller, $\mathcal{M}_{T} = \mathcal{M}_{T}$ we may apply DOST

to \mathcal{M} and have \mathcal{M} .

$$Q2 \text{ a) Let } f_{1}(x) = \frac{5}{4}x + \frac{1}{4}x - \frac{1}{4}x^{3} - \frac{1}{4}x^{4}$$

$$f_{2}(x) = \frac{5}{6}x - \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \frac{1}{2}x^{4}$$

$$f_{3}(x) = \frac{1}{12}x + \frac{1}{4}x^{2} + \frac{1}{12}x^{3} - \frac{1}{4}x^{4}$$
and note that $f_{1}(0) = f_{2}(0) = f_{3}(0) = 0$,
$$f_{1}(-1) = f_{2}(-1) = f_{3}(-1) = -1, \text{ and}$$

$$f_{1}(x) = \frac{5}{4} + \frac{1}{2}x - \frac{3}{4}x^{2} - x^{3} \geq \frac{5}{4} + \frac{1}{2}x - x^{2} - x^{3}$$

$$\geq \frac{5}{4} + \frac{1}{2}x - x^{2} - x \qquad \text{for } x \in [-1, 1]$$

$$= \frac{5}{4} - x(\frac{1}{2} + x) > 0. \quad \text{Hence } f_{1}([-1, 0]] = [-1, 0]$$
and $f_{1}([0, 1]) = [0, 1]$. A similar amalysis establish,
the same result for f_{2} and f_{3} .

Given that $X_{0} \in [-1, 1]$, we have $X_{1} \in [-1, 1]$

for all n. In problem
$$X_n$$
 is bounded.

Since $\mathbb{E}(X_{nre} \mid Y_n)$

$$= \frac{1}{3} \delta_A(X_n) + \frac{1}{3} f_E(X_n) + \frac{1}{3} f_S(X_n) = X_n \quad [calc omitted]$$
 X_n is a bounded markingale. In porticular, if is a UJ markingale and $X_n \rightarrow X_{ab}$ a.s.

b) Since $X_0 = \lim_{n \to \infty} X_n = \lim_{n \to \infty} X_{n+1}$ we have
$$\lim_{n \to \infty} |X_n - X_{n+1}| = 0. \quad \text{Hence}, \quad |f_E(X_n) - X_n| \rightarrow 0$$

and $\begin{cases} \frac{1}{4} X_n + \frac{1}{4} X_n^2 - \frac{1}{4} X_n^3 - \frac{1}{4} X_n \rightarrow 0 \\ -\frac{1}{6} X_n + \frac{1}{4} X_n^2 + \frac{1}{4} X_n^3 + \frac{1}{4} X_n^4 \rightarrow 0 \end{cases}$

There have common solutions $\begin{cases} -1, 0, 1 \end{cases}$ and so $L = \begin{cases} -1, 0, 1 \end{cases}$.

c) Since X_n is a UJ markingale we have
$$\mathbb{E}(X_0) = \mathbb{E}(X_0) = 0. \quad \text{This gives}$$
 $O = (-1) \mathbb{P}(X_0 = -1) + (1) \mathbb{P}(X_0 = 1) + (0) \mathbb{P}(X_0 = 0)$ and $\mathbb{P}(X_0 = -1) = \mathbb{P}(X_0 = 1)$. Now consider the

Since
$$f_{i}$$
 [0, 1] = [0,1], we get that

$$E(X_{0} \mid A) = E(X_{0} \mid A) \text{ by using UI.}$$

Hance $f_{i} = E(X_{0} \mid A) = I_{i}(X_{0} \mid A) = 1 \cdot I_{i}(X_{0} = 1 \mid A)$

Hance $f_{i} = E(X_{0} \mid A) = I_{2} =$

event A = { X > 03. We have 19(A) = 12 and

For the course, first assume [Xa] is UI. The , for all E > 0 , there exists K > 0 such that E(1Xa1; 1Xa1 > K) < E. We have $E(|X_a|; |X_a| > K) = \int_{L}^{-a} a \times e = (\frac{1}{a} + K) e^{-aK}$ Thus $\frac{1}{\alpha} \in \mathcal{E}$. Now assume for a contradiction that inf A = 0. Then thre exists any s.f. an -> 0 as n -> 0, and e ank & an (letting e=1). But the LHS tails to 1, whereas the RHS tends to O, a contradiction. We must have inf A > 0.

Q4 a) Frost, we note that of Yn) & Fin and as f is measurable, so is $f(Y_n)$. By the boundedness of f, we puther have sup $\mathbb{E}(f(Y_4)) \leq K$. Finally, E(f(Know) / F) = E(f(Kn + Xnota) / Fn) = E(f(y+Xn+1)) (when y=Yn is fixed) = $\int_{\mathbb{R}} \int (y + x) d\mu(x) = \int (y) \qquad (by convolution eq.)$ = f(Yn) a.s. Hence f(Yn) is a matingale that conveges by Doob's convegence theore. That f(Yn) is UI follows immediately from f being bounded, e.g. using 1 f(Kn)1 & Kand the results in lecture.

5) Since the limit Mo of Mn = f(Yn) is independent of any finite primutation of X1, Xn, the Savage - Hewith O.1 law implies that the event & Mo > c } (and its · complement have probability O or 1. Since Mas comunges to some finte value, we must have some $C_0 \in \mathbb{R}$ s.t. $\mathbb{P}(M_0 \leq C_0 - E) = 0$ and P(Mo> Co+E) = 1 for all E>O. In other words Mo is constant almost surely. The UI condition implies F(Mo) = E(Mo) = $\mathbb{E} f(x) = f(x)$. And since Moo is constant a.s. we have $f(x) = E(M_0) = M = \lim_{n \to \infty} f(Y_n)$ as required. We can now conclude the "=>" direction of the Heore: Assume there exists positive probability that $f(x+y) \neq f(x)$, whose we assume P({ y & R : f(x+y) > f(x) + E }) = E2 for some E1, E2 > 0

but then, with positive probability, lin f(x+y+ 1/2+ 1/3+..+1) = f(x+y) = f(x)+E. > f(x) = lim f(x+1/4. +1/4). This is a contradiction as the LHS and RHS must be equal a.s.. The other implication af the theorem is trivial c) If we can show that a tail event is symmetric me ac done as the the o-algebra of symmetric events is larger. (Not nec. strictly) Recall that the tail algebra is defined by T= 1 To where To = o (Xn+1, Xn+2, ..). Hence, any EET must be in all In. Let N be the largest index of a permulation. Then, FE TNH implies that the order of the first N indices did not matter. Since N is orbitrary, we must have E also symmetric.

b d c) By the first d second fundamental theorem

I asset pricing the mobil is wickle since the exists an EMM. The mobil is not complete

Since the EMM is not unique.

Q6 Using Call-Pat posity, and the formale from the problem class,

$$P(E) = e^{-rT} K \Phi(-d) - S_0 \Phi(-d_+)$$
,

where $d_{\pm} = \frac{log}{3S_K} + (r \pm \frac{\sigma_z^2}{2})T$

Note that $\frac{\partial}{\partial S_0} = \frac{\partial}{\partial S_0} = \frac{1}{\sigma \sqrt{T}}S_0$ and the chain rule

gives $\Lambda = \frac{\partial P_0(E)}{\partial S_0} = -e^{-rT} K \Phi'(-d_-) \cdot \frac{1}{\sigma \sqrt{T}}S_0 - \Phi(-d_+)$

Since $\Phi'(x) = \frac{e^{-x_L^2}}{\sqrt{T}}$ is just the obusity of the

standard normal distribution, we can simplify:

$$\frac{e^{-rT}K\Phi'(-d_{+})}{S_{o}} = \frac{e^{-rT}K}{S_{o}} e^{\frac{d_{+}^{2}-d_{+}^{2}}{2}}$$

$$= e^{-rT}K e^{\frac{d_{+}^{2}(d_{+}-d_{+}^{2})}{S_{o}}} e^{-rT}K e^{\frac{d_{+}^{2}(d_{+}-d_{+}^{2})}{2}} e^{-rT}K e^{\frac{d_{+}^{2}(d_{+}-d_{+}^{2})} e^{-rT}K e^{-rT}K e^{\frac{d_{+}^{2}(d_{+}-d_{+}^{2})} e^{-rT}K e^{\frac{d_{+}^{2}(d_{+}-d_{+}^{2})} e^{-rT}K e^{\frac{d_{+}^{2}(d_{+}-d_{+}^{2})} e^{$$