Часть 1. Тест.

Вопрос 1 🐥

Рассмотрим модель $Y_i = \mu + \varepsilon_i$, $E(\varepsilon_i) = 0$, $cov(\varepsilon_i, \varepsilon_j) = 0$, $i \neq j$, $Var(\varepsilon_i) = \sigma_{\varepsilon}^2/X_i$, $i = 1, \dots, 4$ при X=(1,2,3,4), оцененную обычным и обобщенным МНК. Во сколько раз дисперсия оценки коэффициента μ для модели, оцененной обобщенным МНК с учетом особенностей ковариационной матрицы ошибок, будет меньше дисперсии оценки, полученной обычным МНК?

- A 10
- B 30
- C 50

- D 100
- $\boxed{\mathsf{E}} \sqrt{10}$
- F Нет верного ответа.

Вопрос 2 🖺

Для модели $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\varepsilon$ известно, что $cor(X_1,X_3)=cor(X_2,X_3)=$ $(0,cor(X_1,X_2)=r$, где r=-0.9. Параметр обусловленности для матрицы $(\widetilde{X}^T\widetilde{X})$, где \widetilde{X} - матрица центрированных и нормированных значений регрессоров, равен

- A $\sqrt{(1-r)/(1+r)}$
- B $\sqrt{(1-r\sqrt{2})/(1+r\sqrt{2})}$
- $C \sqrt{(1+r^2)/(1-r^2)}$

- D $\sqrt{(1+r\sqrt{2})/(1-r\sqrt{2})}$
- $|E| \sqrt{(1+r)/(1-r)}$
- | F | *Нет верного ответа.*

Вопрос 3 🖺

При проверке гипотезы $H_0: g(\beta)=0$ для параметров модели $Y=\beta_0+\beta_1X_1+\ldots+\beta_kX_k+\varepsilon, \varepsilon \sim$ $N(0,\sigma_{\varepsilon}^2I_n)$ с помощью теста Вальда, необходимо знать оценки параметров

- А Регрессии на константу
- С Только модели без ограничений
- Е Как модели с ограничениями, так и модели без ограничений

- В Регрессии на все факторы, кроме константы
- D Только модели с ограничениями
- | F | *Нет верного ответа.*

Вопрос 4 🖺

Предельный эффект для непрерывной ј-ой объясняющей переменной в логит модели рассчитывается по формуле

 $\hat{\beta}_j \frac{\exp(-Z)}{(1+\exp(-Z))^2}$

 \widehat{C} $\hat{\beta}_j \frac{1}{(1+\exp(Z))^2}$

 $\hat{\beta}_j \frac{\exp(-Z)}{(1+\exp(Z))^2}$

- $\boxed{\mathbf{D}} \hat{\beta}_j \frac{1}{\sqrt{2\pi} \exp(-\frac{Z^2}{2})}$
- | F | *Нет верного ответа.*

Вопрос 5 🐥

Если площадь под ROC кривой для модели бинарного выбора равна 0.5, то качество предсказания модели

- А Не определяется этим показателем
- В Аналогично подбрасысимметричной ванию монетки
- С Лучше, чем подбрасывание симметричной монетки
- |D| Хуже, чем подбрасывание симметричной мо-

нетки

- Е Максимально возможное
- | F | *Нет верного ответа.*

Вопрос 6 🕹

Выборочная корреляция между переменными X_1 и X_2 равна 0.5. VIF для переменной X_1 в регрессии $Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_k X_k + \varepsilon, k > 4$

- | A | Не менее 4/3
- В Не более 4/3
- С Не менее 2

- D Не более 0.5
- Е Не более 2
- F Нет верного ответа.

Вопрос 7 🐥

Для получения оценок LASSO регрессии $Y=\beta_0+\beta_1X_1+\ldots+\beta_kX_k+\varepsilon$ используется критерий

$$\boxed{\mathbf{A}} \min_{\hat{\beta}} (RSS + \lambda \sum_{j=0}^{k} \hat{\beta}_{j}^{2})$$

$$\boxed{\mathbb{C}} \min_{\hat{\beta}}(RSS)$$

$$\boxed{\mathbb{E}} \ \min_{\hat{\beta}}(RSS + \lambda \sum_{j=0}^k |\hat{\beta}_j|)$$

Вопрос 8 🕹

Если функция плотности удовлетворяет условиям регулярности, оценки метода максимального правдоподобия

- |А| Всегда состоятельные
- В Несмещённые
- С Могут иметь произвольное асимптотическое распределение
- D Всегда неотрицательны
- Е Всегда имеют нормальное распределение
- | F | *Нет верного ответа.*

Вопрос 9 🦺

Если стандартные отклонения случайных возмущений в регрессии $Y=\beta_0+\beta_1X_1+\ldots+\beta_kX_k+\varepsilon$ пропорциональны регрессору Z, то гетероскедастичность можно устранить

- \fbox{A} Поделив все факторы в исходном уравнении на Z
- $\boxed{\mathrm{B}}$ Поделив все факторы в исходном уравнении на \sqrt{Z}
- $\lceil C \rceil$ Умножив все факторы в исходном уравнении на \sqrt{Z}
- $\boxed{\mathrm{D}}$ Умножив все факторы в исходном уравнении на Z
- [E] Поделив все факторы в исходном уравнении, кроме единичного столбца, на Z
- **F** Нет верного ответа.

Вопрос 10 🐥

Модель $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\varepsilon$ оценивается по 500 наблюдениям, $\varepsilon\sim N(0,\sigma_\varepsilon^2I_{500}).$ При проведении теста Уайта во вспомогательную регрессию входят исходные переменные, их квадраты и кросс-произведения. Дисперсия статистики Уайта при выполненной H_0 равна

- A 10 C 18 E 9
- $oxed{B}$ невозможно вычислить по имеющимся данным $oxed{D}$ 20 $oxed{F}$ Нет верного ответа.

Імя, фамилия и номер группы:	
	•

Таблица заполняется проверяющим работу!

Тест	Задача 1	Задача 2	Задача 3	Задача 4	

Отметьте верный ответ в каждом вопросе ниже:

Вопрос 1 : A B C D E F

Вопрос 2 : A B C D E F

Bonpoc 3: A B C D E F

Вопрос 4 : A B C D E F

Вопрос 5 : A B C D E F

Вопрос 6 : A B C D E F

Вопрос 7 : A B C D E F

Вопрос 8 : A B C D E F

Вопрос 9 : A B C D E F

Вопрос 10 : A B C D E F

Часть 2. Задачи.

1. На основании наблюдений получена МНК оценка уравнения регрессии $\hat{Y}_i=0.2Z_i+0.3W_i$ и оценка дисперсии ошибок $\hat{\sigma}^2=0.04$. Матрица наблюдений регрессоров имеет вид

$$X^T = \begin{pmatrix} 1 & 2 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 & 5 & 6 \end{pmatrix}.$$

Ошибки имеют нормальное распределение.

Постройте 95% предиктивный интервал (доверительный интервал для индивидуального прогноза) в точке Z=-1, W=3.

2. В модели множественной регрессии $Y=X\beta+\varepsilon$ выполнены все предпосылки классической линейной модели кроме предпосылки о гомоскедастичности. Вектор ошибок имеет нормальное распределение, а возможная гетероскедастичность имеет вид

$$\mathrm{Var}(arepsilon_i) = egin{cases} \sigma_1^2, \ \mathrm{при} \ i \leq m; \ \sigma_2^2, \ \mathrm{при} \ i > m. \end{cases}$$

Матрица X имеет размер n на k+1.

Выведите формулу статистики LR-теста для проверки гипотезы о гомоскедастичности.

3. Рассмотрим модель $Y_i=\beta X_i+\varepsilon_i$, где ε_i — независимые случайные величины с $\mathbb{E}(\varepsilon_i)=0$ и $\mathrm{Var}(\varepsilon_i)=2018i$.

Найдите наиболее эффективную оценку для параметра β в классе всех линейных по Y несмещённых оценок.

4. По 1000 наблюдений Винни-Пух оценил логистическую модель $\mathbb{P}(Y_i=1)=F(\beta_0+\beta_1X_i)$, где X_i — количество времени в часах, проведённое в гостях, а Y_i — факт застревания при выходе.

Оценки параметров равны $\hat{\beta}_0=1,\,\hat{\beta}_1=2,\, {\rm c}$ оценкой ковариационной матрицы

$$\begin{pmatrix} 0.25 & 0.1 \\ 0.1 & 0.36 \end{pmatrix}.$$

- а) Проверьте значимость отдельных коэффициентов при уровне значимости 5%;
- б) Найдите предельный эффект времени, проведённого в гостях, на вероятность застрять при выходе для получасового визита;
- в) Найдите максимально возможный предельный эффект.