Universidad Industrial de Santander Numerical Analysis Department of Computer Science Ph.D. Henry Arguello Fuentes

Undergraduate Students

Homework #4

Interpolation and Polynomial Approximation / Curve Fitting

DATE: 26th January 2021 DUE: 14nd February 2021

Name:	Scholar ID:
	1 Indications
have to presen Answers with n	his sheet with just the answer to each problem and return it to the professor. However, you take the process on a separate exam sheet. To process are not valid . The ations with 5 decimal places of precision.
	2 Interpolation and Polynomial Approximation
	od the Taylor polynomial of degree $N=4$ and $N=6$ for $f(x)=e^{-x^2/2}$ about $x_0=0$
Process:	
${f P_4(x)}=$	
${f P_6}({f x}) =$	
	and the Taylor polynomial of degree $N=5$ for $f(x)=(3+x)^{1/2}$ about $x_0=3$, and use it to tion to $f=4^{1/2}$.
Process:	

${f P_5(x)}=$	
$4^{1/2} =$	

- 3. (0.6 points) Compute the divided difference table for each tabulated function.
 - a) $f(x) = (x+1)^{1/2}$

k	x_k	$f(x_k)$
0	8.0	3.00000
1	9.0	3.16227
2	10.0	3.31662
3	11.0	3.46410
4	12.0	3.60555

b) $f(x) = 7.8/x^2$

k	x_k	$f(x_k)$
0	6.0	0.21666
1	7.0	0.15918
2	8.0	0.12187
3	9.0	0.09629
4	10.0	0.07800

 $f(x) = (x+1)^{1/2}$

x_k	$f(x_k)$	1st divided difference	2nd divided difference	3th divided difference	4th divided difference
$x_0 =$					
$x_1 =$					
$x_2 =$					
$x_3 =$					
$x_4 =$					

 $f(x) = 7.8/x^2$

f(x) = 1.0/x					
x_k	$f(x_k)$	1st divided	2nd divided	3th divided	4th divided
		difference	difference	difference	difference
$x_0 =$					
$x_1 =$					
$x_2 =$					
$x_3 =$					
$x_A =$					

- 4. (0.6 points) Write down the Newton polynomial $P_1(x), P_2(x)$ and $P_3(x)$ for each function in Exercise 3.
 - a) $f(x) = (x+1)^{1/2}$

l)	$f(x) = (x+1)^{-\gamma}$
	$\mathbf{P_1}(\mathbf{x}) =$
	${f P_2(x)}=$
	${f P_3(x)}=$

b) $f(x) = 7.8/x^2$

$\mathbf{P_1}(\mathbf{x}) =$	
$\mathbf{P_2}(\mathbf{x}) =$	
${f P_3(x)}=$	

Process:		
$oxed{\mathbf{L_{1,0}}}=$	$\mathbf{L_{1,1}} =$	
$P_1(x) =$	$P_1(8.4) =$	
$\mathbf{L_{2,0}}=$	$\mathbf{L_{2,1}} =$	
$oxed{\mathbf{L_{2,2}}}=$	$P_2(8.4) =$	
$P_2(x) =$		
${f L_{3,0}}=$		
13,0 =		
$oxed{\mathbf{L_{3,1}}}=$		
$\mathbf{L_{3,2}}=$		
$\mathbf{L_{3,3}}=$		

b) $\mathbf{f}(-\frac{1}{3})$, if f(-0.75) = -0.0718125, f(-0.5) = -0.02475000, f(-0.25) = 0.33493750, f(0) = 1.10100000. Specify each Lagrange multiplier.

Process:	
$\mathbf{L_{1,0}}=$	$\mathbf{L_{1,1}} =$
$P_1(x) =$	$P_1(-\frac{1}{3}) =$
$\mathbf{L_{2,0}}=$	$\mathbf{L_{2,1}} =$
$\mathbf{L_{2,2}} =$	$P_2(-\frac{1}{3}) =$
$P_2(x) =$	
$\mathbf{L_{3,0}}=$	
$\mathbf{L_{3,1}} =$	
$\mathbf{L_{3,2}} =$	
$\mathbf{L_{3,3}} =$	
$P_3(x) =$	
$P_3(-\frac{1}{3}) =$	

Process:	
$\mathbf{L_{1,0}}=$	$\mathbf{L_{1,1}} =$
$P_1(x) =$	$P_1(0.25) =$
$\mathbf{L_{2,0}}=$	$\mathbf{L_{2,1}} =$
$\mathbf{L_{2,2}} =$	$P_2(0.25) =$
$P_2(x) =$	
$\mathbf{L_{3,0}}=$	
$\mathbf{L_{3,1}}=$	
$\mathbf{L_{3,2}} =$	
$\mathbf{L_{3,3}}=$	
$P_3(x) =$	
$P_3(0.25) =$	

c) $\mathbf{f(0.25)}$, if f(0.1)=0.62049958, f(0.2)=-0.28395668, f(0.3)=0.00660095, f(0.4)=0.24842440. Specify each Lagrange multiplier.

 $\mathbf{d)} \ \ \mathbf{f(0.9)}, \ \text{if} \ f(0.6) = -0.17694460, \ f(0.7) = 0.01375227, \\ f(0.8) = 0.22363362, \\ f(1.0) = 0.65809197.$ Specify each Lagrange multiplier. Process: $\mathbf{L_{1,0}} =$ $\mathbf{L_{1,1}} =$ $P_1(0.9) =$ $P_1(x) =$ $\mathbf{L_{2,0}} =$ $\mathbf{L_{2,1}} =$ $P_2(0.9) =$ $\mathbf{L_{2,2}} =$ $P_2(x) =$ $\mathbf{L_{3,0}} =$ $\mathbf{L_{3,1}} =$ $\mathbf{L_{3,2}} =$ $\mathbf{L_{3,3}} =$ $P_3(x) =$

 $P_3(0.9) =$

	points) Use the Lagrange polynomial error formula to find an error bound for the approximations in cise 5.
a)	f(8.4)
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	$\mathbf{E_3}(\mathbf{x}) =$
b)	$f(-\frac{1}{3})$
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	$\mathbf{E_3}(\mathbf{x}) =$
c)	f(0.25)
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	${f E_3(x)}=$
d)	f(0.9)
	$\mathbf{E_1}(\mathbf{x}) =$
	$\mathbf{E_2}(\mathbf{x}) =$
	$\mathbf{E_3}(\mathbf{x}) =$

3 CURVE FITTING

1. (0.4 points) For the following data, find the least-squares curve.

x_k	-1	0	1	2	3
y_k	6.62	3.94	2.17	1.35	0.89

a) $y=f_1(x)=Ce^{Ax}$, by using the change of variables X=x, $Y=\ln(y)$, and $C=e^B$ to linearize the data points.

•	
Process:	
C =	A =

b) $y = f_2(x) = 1/(Ax + B)$, by using the change of variables X = x and Y = 1/y to linearize the data points.

points.	
Process:	
A =	B =

c) Use $E_2(f)$ to determine which curve gives the best fit.

Process:	
$E_2(f_1) =$	$E_2(f_2) =$

2. (0.4 points) Find the Least-square line for y=Ax+B for the data and calculate $E_2(y)$.

x_k	-6.0	-2.0	0.0	2.0	6.0
y_k	-5.3	-3.5	-1.7	0.2	4.0

Process:		
A =	b =	$E_2(y) =$

3. (0.4 points) Find the least-squares parabola $f(x) = Ax^2 + Bx + C$ for the data and calculate $E_2(f)$.

x_k	-2.0	-1.0	0.0	1.0	2.0
y_k	2.8	2.1	3.25	6.0	11.5

Process:			
A =	B =	C =	$E_2(f) =$
			-2(J)