IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Inventors:

Isamu YOSHII, et al.

Application No.:

New PCT National Stage Application

Filed:

December 1, 2004

For:

APPARATUS AND METHOD FOR DETERMINING TRANSMIT POWER

CLAIM FOR PRIORITY

Assistant Commissioner of Patents Washington, D.C. 20231

Dear Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified application and the priority provided in 35 USC 119 is hereby claimed:

Japanese Appln. No. 2002-376706, filed December 26, 2002.

The International Bureau received the priority document within the time limit, as evidenced by the attached copy of the PCT/IB/304.

It is requested that the file of this application be marked to indicate that the requirements of 35 USC 119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

Date: December 1, 2004

James E. Ledbetter Registration No. 28,732

JEL/ejw

Attorney Docket No. <u>L9289.04175</u> STEVENS DAVIS, MILLER & MOSHER, L.L.P. 1615 L STREET, NW, Suite 850 P.O. Box 34387

WASHINGTON, DC 20043-4387 Telephone: (202) 785-0100 Facsimile: (202) 408-5200

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2002年12月26日

出 願 番 号 Application Number: 特願2002-376706

[ST. 10/C]:

[JP2002-376706]

出 願 人
Applicant(s):

松下電器産業株式会社

RECEIVED
1 2 FEB 2004

WIPO

PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年 1月30日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

2900645290

【提出日】

平成14年12月26日

【あて先】

特許庁長官殿

【国際特許分類】

H04B 7/26

【発明者】

【住所又は居所】

神奈川県横浜市港北区綱島東四丁目3番1号 松下通信

工業株式会社内

【氏名】

吉井 勇

【発明者】

【住所又は居所】

神奈川県横浜市港北区綱島東四丁目3番1号 松下通信

工業株式会社内

【氏名】

上原 利幸

【発明者】

【住所又は居所】

神奈川県横浜市港北区綱島東四丁目3番1号 松下通信

工業株式会社内

【氏名】

西尾 昭彦

【特許出願人】

【識別番号】

000005821

【氏名又は名称】

松下電器産業株式会社

【代理人】

【識別番号】

100105050

【弁理士】

【氏名又は名称】

鷲田 公一

【手数料の表示】

【予納台帳番号】

041243

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9700376

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

送信電力決定装置および送信電力決定方法

【特許請求の範囲】

【請求項1】 誤り率が階層的に異なる第1階層符号系列と第2階層符号系列とを含むシンボルの送信電力を決定する決定手段と、

前記第1階層符号系列および前記第2階層符号系列の双方を誤りなく受信する 移動局の割合に対する目標値を記憶する記憶手段と、を具備し、

前記決定手段は、前記割合が前記目標値未満の場合に前記シンボルの送信電力を増加させることを決定する、

ことを特徴とする送信電力決定装置。

【請求項2】 前記第1階層符号系列の誤り率は前記第2階層符号系列の誤り率より小さく、

セル内の全移動局数と前記第2階層符号系列を誤りなく受信した移動局の数と から前記割合を算出する割合算出手段、をさらに具備する、

ことを特徴とする請求項1記載の送信電力決定装置。

【請求項3】 前記決定手段は、

前記割合が前記目標値以上の場合は、

複数の移動局の少なくとも1つから送信電力増加の指示があった場合に前記シンボルの送信電力を増加させることを決定する一方、複数の移動局のすべてから送信電力減少の指示があった場合に前記シンボルの送信電力を減少させることを決定する、

ことを特徴とする請求項1記載の送信電力決定装置。

【請求項4】 前記第1階層符号系列の誤り率は前記第2階層符号系列の誤り率より小さく、

複数の移動局における前記第2階層符号系列のBLERの平均値を前記割合と して算出する割合算出手段、をさらに具備する、

ことを特徴とする請求項1記載の送信電力決定装置。

【請求項5】 前記第1階層符号系列の誤り率は前記第2階層符号系列の誤り率より小さく、

前記決定手段は、移動局における受信品質と前記第2階層符号系列が誤りなく 受信されるために必要な受信品質との差に基づいて、前記シンボルの送信電力の 増加量を決定する、

ことを特徴とする請求項1記載の送信電力決定装置。

【請求項6】 前記決定手段は、

前記第2階層符号系列を誤りなく受信した移動局における受信品質のうち最低 の受信品質を、前記第2階層符号系列が誤りなく受信されるために必要な受信品 質とする、

ことを特徴とする請求項5記載の送信電力決定装置。

【請求項7】 誤り率が階層的に異なる第1階層符号系列と第2階層符号系 列とを含むシンボルの送信電力を決定する送信電力決定方法において、

前記第1階層符号系列および前記第2階層符号系列の双方を誤りなく受信する 移動局の割合が所望の目標値未満の場合に、前記シンボルの送信電力を増加させ ることを決定する、

ことを特徴とする送信電力決定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、移動体通信システムにおいて使用される送信電力決定装置および送 信電力決定方法に関する。

[0002]

【従来の技術】

移動体通信の分野においては、最近、マルチメディア・ブロードキャスト/マ ルチキャスト・サービス (Multimedia Broadcast/Multicast Service:以下、M BMSという) に関する技術的な検討が行われている(例えば、非特許文献 1 参 照)。MBMSで行われる通信は、1対1(Point to Point:P-to-P)の通信で はなく、1対多 (Point to Muiti:P-to-M) の通信となる。すなわち、MBMS では、1つの基地局が複数の移動局に対して同時に同じ情報(例えば、音楽デー タやビデオ画像データ等)を送信する。

[0003]

MBMSには、ブロードキャストモード (Broadcast Mode) とマルチキャストモード (Multicast Mode) とがある。ブロードキャストモードが現在のラジオ 放送のように全移動局に対して情報送信するようなモードであるのに対し、マルチキャストモードはニュースグループ等そのサービスに加入している特定の移動 局に対してのみ情報送信するようなモードである。

[0004]

MBMSを行うことの利点としては以下のことが挙げられる。すなわち、ストリーミング・サービス等で、基地局から送信される情報をそれぞれの移動局が1チャネルずつ使用して受信すると、その情報を受信したい移動局が増えた場合に、無線回線にかかる負荷が大きくなってしまう。しかし、MBMSを使用すると、移動局が増えた場合でもそれらの移動局すべてが同じチャネルを使用して情報を受信するので、無線回線にかかる負荷を増加させることなく情報受信できる移動局を増加させることができる。現在、MBMSを用いたサービスとしては、交通情報の配信、音楽配信、駅でのニュース配信、スポーツ中継の配信等が考えられており、8~256kbps程度の伝送レートで行うことが検討されている。

[0005]

また、MBMSでは、情報の送信電力に関しては、基地局が、セル境界に位置 する移動局に対して最低限の品質を保証するような送信電力で情報を送信するこ とが検討されている。

[0006]

【非特許文献1】

3GPP TS 22.146 V6.0.0(2002-06): 3rd Generation Partnership Project; Te chnical Specification Group Services and System Aspects; Multimedia Broadcast/Multicast Service; Stage 1(Release 6) 2002年6月

[0007]

【発明が解決しようとする課題】

ここで、MBMSにおいて、基地局が、セル境界に位置する移動局に対して最 低限の品質を保証するような送信電力で情報を送信した場合、セル境界に位置す

る移動局等、基地局からの距離が遠い移動局では低品質の情報しか受信できないことになる。しかし、例えばMBMSを使用して商品の宣伝に関する広告情報を送信するような場合、広告主にとっては、基地局からの距離が遠い移動局にもある程度良い品質で情報を受信してもらい、セル内に存在する移動局のうち高品質で情報を受信できる移動局の割合を増加させたいことも考えられる。

[0008]

本発明はかかる点に鑑みてなされたものであり、MBMSにおいて、セル内に 存在する移動局のうち高品質で情報を受信できる移動局の割合を制御することが できる送信電力決定装置および送信電力決定方法を提供することを目的とする。

[0009]

【課題を解決するための手段】

本発明は、上記課題を解決し、目的を達成するために、誤り率が階層的に異なる複数の符号系列を含むシンボルに対し、セル内に存在する移動局のうち高品質で情報を受信している移動局の割合に応じて送信電力制御を行うことを特徴とする。

[0010]

この特徴により、セル内に存在する移動局のうち高品質で情報を受信できる移動局の割合を所望の割合に保つことができる。

[0011]

【発明の実施の形態】

以下、本発明の実施の形態について、図面を参照して詳細に説明する。

[0012]

(実施の形態1)

図1は、本発明の実施の形態1に係る基地局の構成を示すブロック図である。図1に示す基地局は、MBMSが行われるシステムにおいて使用され、複数の移動局に対して同じ内容のシンボルを送信するものである。この基地局は、階層符号化部101と、CRC (Cyclic Redundancy Check) 符号付加部102と、CRC (Cyclic Redundancy Check) 符号付加部102と、CRC (Cyclic Redundancy Check) 符号付加部102と、ERC符号付加部103と、変調部104と、送信電力制御部105と、無線部106と、アンテナ107と、割合算出部108と、送信電力決定部109と、目

標値記憶部110とから構成される。また、割合算出部108と、送信電力決定 部109と、目標値記憶部110とによって送信電力決定装置が構成される。

[0013]

階層符号化部101では、入力されるデータを2つの階層に分けて符号化し、 第1階層符号系列と第2階層符号系列が得られる。第1階層符号系列は、移動局 での復号化によって復号化データを得るために最低限必要な符号系列である。こ のため、第1階層はベースレイヤ (Base layer) と呼ばれることがある。また、 第2階層符号系列は、第1階層符号系列に付加的な符号系列であり、移動局での 復号化によって高品質な復号化データを得るために必要な符号系列である。この ため、第2階層はエンハンストレイヤ(Enhanced layer)と呼ばれることがある 。受信機側である移動局では、第1階層符号系列および第2階層符号系列の双方 、または、第1階層符号系列だけを用いて復号化が行われる。つまり、第1階層 符号系列と第2階層符号系列の双方を用いて復号化が行われる場合は、第1階層 符号系列だけを用いて復号化が行われる場合に比べて高品質の復号化データが得 られる。

[0014]

また、階層符号化部101は、第1階層符号系列と第2階層符号系列との間で 誤り率が階層的に異なるようにデータを符号化する。すなわち、第1階層符号系 列が第2階層符号系列よりも誤りにくくなるように(すなわち、第1階層符号系 列の誤り率が第2階層符号系列の誤り率よりも小さくなるように)符号化する。 このため、階層符号化部101は、第1階層符号系列の符号化率を第2階層符号 系列の符号化率よりも小さくする。

[0015]

また、ここでは一例として、第1階層符号系列および第2階層符号系列の双方 を伝送レート32kbpsの符号系列とする。また、32kbpsをMBMSにおいて最 低限保証すべき伝送レートとする。よって、移動局が第1階層符号系列と第2階 層符号系列の双方を用いて復号化を行うと 6 4 kbpsの高い伝送レートの復号化デ ータが得られ、また、第1階層符号系列だけを用いて復号化を行うと32kbpsの 最低限保証すべき伝送レートの復号化データが得られる。

第1階層符号系列はCRC符号付加部102に入力され、所定のブロック毎に 誤り検査のためのCRC符号を付加される。また、第2階層符号系列はCRC符 号付加部103に入力され、所定のブロック毎に誤り検査のためのCRC符号を 付加される。CRC符号が付加された第1階層符号系列および第2階層符号系列 は変調部104に入力される。

[0017]

変調部104は、第1階層符号系列および第2階層符号系列をシンボルに変調する。例えば、変調方式として16QAMを用いることとした場合、1シンボルは4ビットで構成されるため、変調部104は、第1階層符号系列の各ビットを1シンボルにおける上位2ビットに割り当て、第2階層符号系列の各ビットを1シンボルにおける下位2ビットに割り当てて変調する。

[0018]

送信電力制御部105は、送信電力決定部109での決定に従って、変調後のシンボルの送信電力を制御する。送信電力の具体的な決定方法については後述する。

[0019]

送信電力制御後のシンボルは、無線部106でアップコンバート等の無線処理を施された後、アンテナ107を介して、FACH(Forward Access Channel)またはDSCH(Downlink Shared Channel)を用いて複数の移動局に対して同時に送信される。つまり基地局から複数の移動局に対してMBMSが実施される

[0020]

なお、1シンボルに第1階層符号系列と第2階層符号系列の双方が含まれているため、第1階層符号系列の送信電力と第2階層符号系列の送信電力はほぼ等しくなる。また、FACHは、下り方向の共通チャネルで、制御情報およびユーザデータの送信に使用される。FACHは、複数の移動局で共有して使用され、上位レイヤからの比較的低レートのデータ送信などに使用される。また、DSCHは、下り方向の共通チャネルで、パケットデータの送信に使用される。DSCH

[0021]

割合算出部108には、アンテナ107によって複数の移動局から受信された ACK(ACKnowledgment:肯定応答)信号およびNACK(NegativeACKnowledg ment:否定応答) 信号が、無線部106でダウンコンバート等の無線処理を施さ れた後、入力される。そして、割合算出部108は、自セル内の全移動局のうち 、第1階層符号系列および第2階層符号系列の双方を誤りなく受信できた移動局 、すなわち、第2階層符号系列に対するACK信号を返信した移動局(髙品質移 動局)の割合を算出する。そして、この割合に基づいて送信電力決定部109が シンボルの送信電力を決定する。送信電力の具体的な決定方法については後述す る。

[0022]

図2は、本発明の実施の形態1に係る移動局の構成を示すブロック図である。 図2に示す移動局は、アンテナ201と、無線部202と、復調部203と、分 離部204と、誤り検査部205と、誤り検査部206と、階層復号化部207 と、ACK/NACK返信部208とから構成される。

[0023]

無線部202は、アンテナ201を介して受信されたシンボルに対してダウン コンバート等の無線処理を施して、受信シンボルを復調部203に入力する。

[0024]

復調部203は、基地局の変調方式に合わせて受信シンボルを復調する。例え ば上記のように基地局が変調方式として16QAMを用いることとした場合、復 調部203は、16QAMの復調方式を使用して受信シンボルを復調する。復調 後のシンボルは分離部204に入力される。

[0025]

復調部203で復調された各シンボルは4ビットで構成されるため、分離部2 04は、4ビットを上位2ビットと下位2ビットに分離する。上記のように、上 位2ビットには第1階層符号系列が割り当てられ、下位2ビットには第2階層符

号系列が割り当てられているので、この分離によって4ビットが第1階層符号系 列と第2階層符号系列に分離される。第1階層符号系列は誤り検査部205に入 力され、第2階層符号系列は誤り検査部206に入力される。

[0026]

誤り検査部205は、所定のブロック毎にCRCを行って、第1階層符号系列 に誤りがあるか否かを検査する。そして、誤りがある場合には、そのブロックに 含まれる符号系列を廃棄する。一方、誤りがない場合には、そのブロックに含ま れる符号系列を階層復号化部207に入力する。また、誤り検査部205は、第 1階層符号系列のCRC結果(誤り有無)をACK/NACK返信部208に入 力する。

[0027]

誤り検査部206は、所定のブロック毎にCRCを行って、第2階層符号系列 に誤りがあるか否かを検査する。そして、誤りがある場合には、そのブロックに 含まれる符号系列を廃棄する。一方、誤りがない場合には、そのブロックに含ま れる符号系列を階層復号化部207に入力する。また、誤り検査部206は、第 2階層符号系列のCRC結果(誤り有無)をACK/NACK返信部208に入 力する。

[0028]

階層復号化部207は、第1階層符号系列および第2階層符号系列の双方に誤 りがない場合には、第1階層符号系列と第2階層符号系列の双方が入力されるた め、第1階層符号系列と第2階層符号系列の双方を用いて復号化を行う。よって 、この場合には、6 4 kbpsの復号化データが得られる。また、第1階層符号系列 に誤りがなく、第2階層符号系列に誤りがある場合には、第1階層符号系列だけ が入力されるため、第1階層符号系列だけを用いて復号化を行う。よって、この 場合には、32kbpsの復号化データが得られる。

[0029]

なお、上記のように第1階層符号系列の誤り率が第2階層符号系列の誤り率よ りも小さくなるように符号化されているため、第1階層符号系列に誤りがあり、 第2階層符号系列に誤りがないということは、通常発生しない。換言すれば、第 2階層符号系列に誤りがなければ、当然、第1階層符号系列にも誤りがないと考 えられる。仮に、第1階層符号系列に誤りがあり、第2階層符号系列に誤りがな いということが発生したとしても、第2階層符号系列は第1階層符号系列に付加 的な符号系列であるため、第2階層符号系列だけでは復号化データは得られない 。また、第1階層符号系列および第2階層符号系列の双方に誤りがある場合には 、もちろん復号化データは得られない。

[0030]

ACK/NACK返信部208は、誤り検査部205および誤り検査部206 でのCRC結果に従って、第1階層符号系列および第2階層符号系列のそれぞれ に対するACK信号またはNACK信号を生成する。つまり、第1階層符号系列 に誤りがない場合は第1階層符号系列のACK信号を生成し、第1階層符号系列 に誤りがある場合は第1階層符号系列のNACK信号を生成する。また、第2階 層符号系列に誤りがない場合は第2階層符号系列のACK信号を生成し、第2階 層符号系列に誤りがある場合は第2階層符号系列のNACK信号を生成する。こ のようにして生成されたACK信号およびNACK信号は、無線部202に入力 され、無線部202でアップコンバート等の無線処理を施された後、アンテナ2 0 1を介して基地局に返信される。基地局からは複数の移動局に対して同じシン ボルが送信されているので、基地局には複数の移動局から第1階層符号系列のA CK信号/NACK信号および第2階層符号系列のACK信号/NACK信号が 返信される。

[0031]

ここで、図3に示すように、移動局#1 (MS#1)が基地局 (BS) の近傍 に位置し、移動局#2(MS#2)がセル境界に位置する場合にMBMSを行う ことを考える。なお、無線回線制御局(RNC)は、複数の基地局と有線等で接 続され、複数のセルから構成される無線ゾーンを統括し、無線回線の接続に関す る制御を行う。基地局からは、上記のように、誤り率が異なる第1階層符号系列 と第2階層符号系列が同時に同じ送信電力で移動局#1および移動局#2に送信 される。第2階層符号系列は第1階層符号系列に比べて誤り率特性が悪いため、 移動局#1と移動局#2が同じシンボルを受信しても、基地局からの距離が近い

[0032]

次いで、送信電力の具体的な決定方法について説明する。

[0033]

図1における割合算出部108には、複数の移動局から返信された、第1階層符号系列のACK信号/NACK信号および第2階層符号系列のACK信号/NACK信号が入力される。そして、割合算出部108は、以下の式(1)に従って、自セル内における高品質移動局の割合を算出する。

[0034]

高品質移動局の割合

= 第2階層符号系列のACK信号の数/自セル内の全移動局数 … (1)

[0035]

ここで、上記のように第2階層符号系列に誤りがなければ、当然、第1階層符号系列にも誤りがないと考えられるため、上式(1)では、特に第1階層符号系列のACK信号を用いず、第2階層符号系列のACK信号だけを用いて高品質移動局の割合を算出するようにした。

[0036]

なお、上式(1)において、自セル内の全移動局数は、返信されたACK信号およびNACK信号の総数として求めることができる。または、自セル内の全移動局数は無線回線制御局で既知であるため、基地局の割合算出部108は、無線回線制御局から自セル内の全移動局数を通知されるようにしてもよい。このように自セル内の全移動局数が無線回線制御局で既知である場合は、図2に示す移動局のACK/NACK返信部208は、第1階層符号系列のACK信号/NAC

K信号および第2階層符号系列のACK信号/NACK信号のすべてを返信するのではなく、第2階層符号系列のACK信号およびNACK信号だけ、または、第2階層符号系列のACK信号だけを返信するようにしてもよい。また、自セル内の全移動局数が既知である場合は、その全移動局数から第1階層符号系列のACK信号および第2階層符号系列のNACK信号の合計数を減ずれば第2階層符号系列のACK信号の数が分かるため、図2に示す移動局のACK/NACK返信部208は、第1階層符号系列のACK信号/NACK信号および第2階層符号系列のNACK信号だけを返信するようにしてもよい。

[0037]

割合算出部108で算出された高品質移動局の割合は送信電力決定部109に入力される。送信電力決定部109では、割合算出部108で算出された高品質移動局の割合と、目標値記憶部110に予め記憶されている所望の割合目標値とが比較される。そして、比較結果に従って、送信電力が決定される。

[0038]

すなわち、送信電力決定部 1 0 9 は、高品質移動局の割合が目標値未満である場合は、予め設定されている送信電力の上限に達していない場合に限り、自セル内における高品質移動局の割合を高めるべく、シンボルの送信電力を所定量だけ増加させることを決定し、その旨の指示を送信電力制御部 1 0 5 に行う。送信電力制御部 1 0 5 は、送信電力決定部 1 0 9 からの指示に従って、変調後のシンボルの送信電力を所定量だけ増加させる。

[0039]

一方、高品質移動局の割合が目標値以上である場合は、自セル内における高品質移動局の割合を低めるべく、シンボルの送信電力を所定量だけ減少させることを決定し、その旨の指示を送信電力制御部105に行う。送信電力制御部105は、送信電力決定部109からの指示に従って、変調後のシンボルの送信電力を現在よりも所定量だけ減少させる。

[0040]

MBMSにおいてこのような送信電力制御を行うことにより、本実施の形態によれば、自セル内において、誤り率が互いに異なる第1階層符号系列および第2

[0041]

(実施の形態2)

本実施の形態では、高品質移動局の割合だけでなく、移動局からの送信電力増 減指示にも基づいて送信電力制御を行う点において実施の形態1と相違する。

[0042]

図4は、本発明の実施の形態2に係る移動局の構成を示すブロック図である。 図4に示す移動局は、実施の形態1の移動局(図2)にさらにCIR測定部20 9およびTPC(Transmission Power Control)信号生成部210を備えて構成 される。また、図5は、本発明の実施の形態2に係る基地局の構成を示すブロッ ク図である。図5に示す基地局は、実施の形態1の基地局(図1)の送信電力決 定装置においてさらにTPC信号判定部111を備えて構成される。なお、以下 の説明では、実施の形態1の構成と同一の部については詳しい説明を省略する。

[0043]

図4に示す移動局において、CIR測定部209は、受信シンボルの受信品質としてCIR (Carrier to Interference Ratio)を測定し、その値をTPC信号生成部210に入力する。TPC信号生成部210は、入力されたCIRに基づいてTPC信号を生成する。具体的には、TPC信号生成部210は、CIR測定部209で測定されたCIRが、最低限保証すべき伝送レート32kbpsが得られるための所定のCIR未満の場合は、送信電力増加を指示するためのTPC信号を生成する。一方、CIR測定部209で測定されたCIRが、最低限保証すべき伝送レート32kbpsが得られるための所定のCIR以上の場合は、送信電力減少を指示するためのTPC信号を生成する。このようにして生成されたTPC信号は、無線部202に入力され、無線部202でアップコンバート等の無線処理を施された後、アンテナ201を介して基地局に返信される。

[0044]

基地局からは複数の移動局に対して同じシンボルが送信されているので、図5に示す基地局では、複数の移動局からのTPC信号が受信される。図5において

ート等の無線処理を施された後、TPC信号判定部111に入力される。 【0045】

TPC信号判定部111は、複数の移動局からのTPC信号に基づいて、送信電力の増加か送信電力の減少かを判定する。そして、複数の移動局のうち1つでも送信電力増加の指示がある場合は、送信電力の増加と判定する。一方、複数の移動局のすべてから送信電力減少の指示がある場合は、送信電力の減少と判定する。判定結果は、送信電力決定部109に入力される。

[0046]

送信電力決定部109では、図6に示すようにして、変調後のシンボルの送信電力を決定する。すなわち、高品質移動局の割合が目標値未満である場合は、TPC信号判定部111での判定結果にかかわらず、シンボルの送信電力を所定量だけ増加させることを決定する。

[0047]

一方、高品質移動局の割合が目標値以上である場合は、TPC信号判定部111での判定結果に従って送信電力の増加または減少を決定する。すなわち、TPC信号判定部111において送信電力の増加と判定された場合(すなわち、複数の移動局のうち1つでも送信電力増加の指示がある場合)は、シンボルの送信電力を所定量だけ増加させることを決定し、逆に、TPC信号判定部111において送信電力の減少と判定された場合(すなわち、複数の移動局のすべてから送信電力減少の指示がある場合)は、シンボルの送信電力を所定量だけ減少させることを決定する。

[0048]

なお、本実施の形態では、受信品質としてCIRを用いたが、受信品質として 用いる値はこれに限られず、受信電力やSIR (Signal to Interference Ratio) であっても良い。以下の実施の形態においても同様である。

[0049]

また、本実施の形態では、受信シンボルのCIRに基づいてTPC信号を生成したが、このシンボルはFACHやDSCHを用いて基地局から送信されたシン

[0050]

このように、本実施の形態によれば、TPC信号による制御を行うため、より 確実に高品質移動局の割合を所望の割合に保つことができる。

[0051]

(実施の形態3)

本実施の形態では、複数の移動局において測定されたBLER (BLock Error Rate) の平均値を高品質移動局の割合として求める点において実施の形態1と相違する。

[0052]

図7は、本発明の実施の形態3に係る移動局の構成を示すブロック図である。 図7に示す移動局は、実施の形態1の移動局(図2)のACK/NACK返信部 208に代えてBLER測定部211を備えて構成される。なお、以下の説明で は、実施の形態1の構成と同一の部については詳しい説明を省略する。

[0053]

誤り検査部205は、所定のブロック毎にCRCを行って、第1階層符号系列に誤りがあるか否かを検査する。そして、第1階層符号系列のCRC結果(誤り有無)をBLER測定部211に入力する。

[0054]

誤り検査部206は、所定のブロック毎にCRCを行って、第2階層符号系列 に誤りがあるか否かを検査する。そして、第2階層符号系列のCRC結果(誤り 有無)をBLER測定部211に入力する。

[0055]

BLER測定部211は、誤り検査部205および誤り検査部206でのCR C結果を用いて、第1階層符号系列のBLERおよび第2階層符号系列のBLE Rを測定する。測定されたそれぞれのBLERを示す信号 (BLER信号) は、 無線部202に入力され、無線部202でアップコンバート等の無線処理を施さ

[0056]

本発明の実施の形態3に係る基地局の構成は、実施の形態1(図1)と同じである。但し、割合算出部108および送信電力決定部109における動作が異なる。また、目標値記憶部110には、目標BLERが予め記憶される。

[0057]

本実施の形態では、図1における割合算出部108には、複数の移動局から返信された、第1階層符号系列のBLER信号および第2階層符号系列のBLER信号が入力される。そして、割合算出部108は、以下の式(2)に従って、自セル内における高品質移動局の割合を算出する。すなわち、複数の移動局から返信された第2階層符号系列のBLERの平均値を高品質移動局の割合として算出する。

[0058]

高品質移動局の割合

= 第2階層符号系列のBLERの合計値/自セル内の全移動局数 … (2)

[0059]

割合算出部108で算出されたBLERの平均値は送信電力決定部109に入力される。送信電力決定部109では、割合算出部108で算出されたBLERの平均値と目標値記憶部110に記憶されている目標BLERとが比較される。そして、比較結果に従って、送信電力が決定される。

[0060]

すなわち、送信電力決定部109は、BLERの平均値が目標BLER未満である場合は、予め設定されている送信電力の上限に達していない場合に限り、自セル内における高品質移動局の割合を高めるべく、シンボルの送信電力を所定量だけ増加させることを決定し、その旨の指示を送信電力制御部105に行う。送信電力制御部105は、送信電力決定部109からの指示に従って、変調後のシ

[0061]

一方、BLERの平均値が目標BLER以上である場合は、自セル内における 高品質移動局の割合を低めるべく、シンボルの送信電力を所定量だけ減少させる ことを決定し、その旨の指示を送信電力制御部105に行う。送信電力制御部1 05は、送信電力決定部109からの指示に従って、変調後のシンボルの送信電 力を現在よりも所定量だけ減少させる。

[0062]

このように、本実施の形態によれば、BLERによる制御を行うため、より確 実に高品質移動局の割合を所望の割合に保つことができる。

[0063]

(実施の形態4)

本実施の形態では、移動局から通知された受信品質に基づいて送信電力を決定 する点において実施の形態1と相違する。

[0064]

図8は、本発明の実施の形態4に係る移動局の構成を示すブロック図である。図8に示す移動局は、実施の形態1の移動局(図2)にさらにCIR測定部209およびCIR信号生成部212を備えて構成される。また、図9は、本発明の実施の形態4に係る基地局の構成を示すブロック図である。図9に示す基地局は、実施の形態1の基地局(図1)の送信電力決定装置において、さらにランキング部112を備えて構成される。なお、以下の説明では、実施の形態1の構成と同一の部については詳しい説明を省略する。

[0065]

図8に示す移動局において、ACK/NACK返信部208は、誤り検査部205および誤り検査部206でのCRC結果に従って、第1階層符号系列および第2階層符号系列のそれぞれに対するACK信号またはNACK信号を生成する。生成されたACK信号およびNACK信号は、無線部202に入力され、無線部202でアップコンバート等の無線処理を施された後、アンテナ201を介して基地局に返信される。

CIR測定部209は、受信シンボルの受信品質としてCIRを測定し、その値をCIR信号生成部212に入力する。CIR信号生成部212は、測定されたCIRを通知するためのCIR信号を生成する。このようにして生成されたCIR信号は、無線部202に入力され、無線部202でアップコンバート等の無線処理を施された後、ACK信号およびNACK信号とともにアンテナ201を介して基地局に返信される。

[0067]

基地局からは複数の移動局に対して同じシンボルが送信されているので、図9に示す基地局では、複数の移動局から、第1階層符号系列のACK信号/NACK信号/NACK信号、第2階層符号系列のACK信号/NACK信号、およびCIR信号が受信される。図9において、アンテナ107を介して受信されたACK信号/NACK信号およびCIR信号は無線部106でダウンコンバート等の無線処理を施された後、ランキング部112に入力される。

[0068]

ランキング部112は、複数の移動局から通知されたCIRを、図10に示すように、CIRの大きいものから順に、すなわち、受信品質が良いものから順に、第2階層符号系列のACK/NACKに関連づけて順位付けする。そして、このランキング結果を送信電力決定部109に入力する。なお、ここでは、自セル内に存在する移動局は移動局#1~#8の8つの移動局とする。

[0069]

また、実施の形態1のようにして割合算出部108で算出された高品質移動局の割合が送信電力決定部109に入力される。

[0070]

送信電力決定部109は、ランキング結果に従って、目標値記憶部110に記憶されている所望の割合目標値に合わせるように、第2階層符号系列のACK信号を返信した移動局のCIRのうち最も小さいCIR(図10では移動局#4のCIR=7[dB])と、NACK信号を返信した移動局のCIRとの差だけ送信電力を増加させることを決定する。

具体的には、例えば、図10では、8移動局中3移動局からしか第2階層符号 系列のACK信号が返信されていないので、現在の高品質移動局の割合は37. 5%である。目標値記憶部110に記憶されている目標値が50%である場合、 あと1移動局から第2階層符号系列のACK信号が返信されれば、8移動局中4 移動局から第2階層符号系列のACK信号が返信されることになり、高品質移動 局の割合が目標値に達する。つまり、図10において、移動局#1からもACK 信号が返信されるようにすればよい。今、図10において、ACK信号を返信し た移動局のうち最低のCIRを通知したのは移動局#4であり、そのCIRは7 [dB]である。よって、このランキング結果からは、第2階層符号系列が誤りなく 受信されるために必要な最低のCIRは7[dB]とみなすことができる。よって、 移動局#1からもACK信号が返信されるようにするために必要な送信電力の増 加量は、移動局#4のCIR=7[dB]と移動局#1のCIR=6[dB]との差であ る 1 [dB] であるとみなすことができる。そこで、送信電力決定部 1 0 9 は、 1 [d B]だけ送信電力を増加させることを決定する。ここで、移動局#1を対象にした のは、移動局#1は、NACK信号を返信した移動局のうち最も受信品質が良い 移動局であり、第2階層符号系列のACK信号が返信されるようにする(つまり 、第2階層符号系列が誤りなく受信されるようにする)ために必要な送信電力の 増加量が最も小さくて済むからである。

[0072]

また、例えば、目標値が 62.5%である場合、あと 28動局から第 2 階層符号系列の A C K 信号が返信されれば、 88 動局中 58 動局から第 2 階層符号系列の A C K 信号が返信されることになり、高品質移動局の割合が目標値に達する。つまり、図 10 において、移動局 +1 および移動局 +6 からも A C K 信号が返信されるようにすればよい。そのために必要な送信電力の増加量は、移動局 +4 の C I R = 7 [dB] と移動局 +6 の C I R = 3 [dB] との差である 4 [dB] とみなすことができる。そこで、送信電力決定部 109 は、 4 [dB] だけ送信電力を増加させることを決定する。

[0073]

[0074]

(実施の形態5)

本実施の形態は、実施の形態4とほぼ同一であり、送信電力決定部109に、 第2階層符号系列が誤りなく受信されるために必要な受信品質が予め設定されて いる点においてのみ実施の形態4と相違する。

[0075]

本実施の形態の移動局および基地局の構成は、実施の形態4(図8、図9)と同一であり、基地局の送信電力決定部109の動作だけが実施の形態4と異なる。以下、本実施の形態の送信電力決定部109の動作について説明する。

[0076]

送信電力決定部109は、ランキング結果に従って、目標値記憶部110に記憶されている所望の割合目標値に合わせるように、第2階層符号系列が誤りなく受信されるために必要なCIRと、NACK信号を返信した移動局のCIRとの差だけ送信電力を増加させることを決定する。第2階層符号系列が誤りなく受信されるために必要なCIRは予め測定され、送信電力決定部109に予め設定されている。

[0077]

具体的には、例えば、図10では、8移動局中3移動局からしか第2階層符号系列のACK信号が返信されていないので、現在の高品質移動局の割合は37.5%である。目標値記憶部110に記憶されている目標値が50%である場合、あと1移動局から第2階層符号系列のACK信号が返信されれば、8移動局中4移動局から第2階層符号系列のACK信号が返信されることになり、高品質移動局の割合が目標値に達する。つまり、図10において、移動局#1からもACK信号が返信されるようにすればよい。そのために必要な送信電力の増加量は、送信電力決定部109に予め設定されたCIRを7[dB]とした場合、その7[dB]と移動局#1のCIR=6[dB]との差である1[dB]である。よって、送信電力決定

[0078]

また、例えば、目標値が62.5%である場合、あと2移動局から第2階層符号系列のACK信号が返信されれば、8移動局中5移動局から第2階層符号系列のACK信号が返信されることになり、高品質移動局の割合が目標値に達する。つまり、図10において、移動局#1および移動局#6からもACK信号が返信されるようにすればよい。そのために必要な送信電力の増加量は、送信電力決定部109に予め設定されたCIR=7[dB]と移動局#6のCIR=3[dB]との差である4[dB]である。よって、送信電力決定部109は、4[dB]だけ送信電力を増加させることを決定する。

[0079]

このように、本実施の形態によれば、受信品質に基づくランキング結果と所望 の受信品質の絶対値に基づいて送信電力の決定を行うため、高品質移動局の所望 の割合になるような送信電力に無駄なく設定することができる。

[0080]

なお、上記実施の形態では、送信電力決定装置を基地局に備え、基地局において送信電力を決定する構成とした。しかし、送信電力決定装置を基地局の代わりに無線回線制御局に備え、無線回線制御局おいて送信電力を決定し基地局に通知する構成としてもよい。

[0081]

また、上記実施の形態では、データを2つの階層に分けて符号化する階層符号化を基地局において行った。しかし、この階層符号化は、無線回線制御局で行ってもよいし、また、無線回線制御局と接続されたコンテンツサーバで行ってもよい。この場合、無線回線制御局やコンテンツサーバから、第1階層符号系列と第2階層符号系列が並列に出力される。

[0082]

また、上記実施の形態では階層符号化を2階層として行ったが、2階層には限られず複数の階層であればよい。例えば3階層に分けて符号化する場合には、変調方式に64QAM(1シンボル6ビット)を用いることにより、上記同様にして、誤り率を3階層に分けて符号化した複数の符号系列を1シンボルに2ビットずつ割り当てて変調することができる。

[0083]

【発明の効果】

以上説明したように、本発明によれば、MBMSにおいて、セル内に存在する 移動局のうち高品質で情報を受信できる移動局の割合を制御することができる。

【図面の簡単な説明】

【図1】

本発明の実施の形態 1 に係る基地局の構成を示すブロック図

【図2】

本発明の実施の形態1に係る移動局の構成を示すブロック図

【図3】

本発明の実施の形態1に係る符号系列の送信状態を示す図

【図4】

本発明の実施の形態2に係る移動局の構成を示すブロック図

【図5】

本発明の実施の形態2に係る基地局の構成を示すブロック図

【図6】

本発明の実施の形態2に係る送信電力の決定方法を示す図

【図7】

本発明の実施の形態3に係る移動局の構成を示すブロック図

[図8]

本発明の実施の形態4に係る移動局の構成を示すプロック図

【図9】

本発明の実施の形態 4 に係る基地局の構成を示すブロック図

【図10】

本発明の実施の形態4に係る順位付けの結果を示す図

【符号の説明】

- 101 階層符号化部
- 102 CRC符号付加部
- 103 CRC符号付加部
- 104 変調部
- 105 送信電力制御部
- 106 無線部
- 107 アンテナ
- 108 割合算出部
- 109 送信電力決定部
- 110 目標値記憶部
- 111 TPC信号判定部
- 112 ランキング部
- 201 アンテナ
- 202 無線部
- 203 復調部
- 204 分離部
- 205 誤り検査部
- 206 誤り検査部
- 207 階層復号化部
- 208 ACK/NACK返信部
- 209 CIR測定部
- 210 TPC信号生成部
- 211 BLER測定部
- 212 CIR信号生成部

図面

【図1】

【図6】

高品質移動局 の割合 TPC信号 の判定結果	目標値未満	目標値以上
増加	増加	増加
減少	増加	減少

【図7】

順位	移動局	CIR [dB]	第2階層符号系列の ACK/NACK信号
1	#3	10	ACK
2	#7	8	ACK
3	#4	7	ACK
4	#1	6	NACK
5	#6	3	NACK
6	#2	2	NACK
7	#8	1	NACK
8	#5	0	NACK

【書類名】

要約書

【要約】

【課題】 マルチメディア・ブロードキャスト/マルチキャスト・サービス (Multimedia Broadcast/Multicast Service) において、セル内に存在する移動局のうち高品質で情報を受信できる移動局の割合を制御すること。

【解決手段】 変調部104が、誤り率が階層的に異なる第1階層符号系列と第2階層符号系列とをそれらの双方を含むシンボルに変調し、目標値記憶部110が、第1階層符号系列および第2階層符号系列の双方を誤りなく受信する高品質移動局の割合に対する目標値を記憶し、送信電力決定部109が、割合算出部108で算出された高品質移動局の割合が目標値記憶部110に記憶された目標値未満の場合に送信電力を増加させることを決定し、送信電力制御部105が、その決定に従って、変調後のシンボルの送信電力を増加させる。

【選択図】 図1

特願2002-376706

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由] 住 所 氏 名 1990年 8月28日 新規登録 大阪府門真市大字門真1006番地 松下電器産業株式会社