Project Report Week 5

Alcohol Detection from Speech

Name: Abhienaya Sri

Batch: AIML

1. Objective

The aim of this project is to develop a neural network-based model that can classify whether a person is intoxicated or sober by analyzing their speech.

The model will process audio features extracted from voice recordings to detect alcohol-induced speech characteristics such as slurred articulation, slowed speech rate, and abnormal pauses.

This can be applied in road safety, workplace safety, and law enforcement scenarios.

2. Dataset

Source:

- Alcoholic Speech Dataset (available on Kaggle and research repositories)
- Augmented data generated from the RAVDESS Emotional Speech Dataset to simulate intoxication effects.

Description:

- o Audio files in .wav format, recorded at 16kHz or 44.1kHz.
- o Two classes:
 - 1. **Sober** Normal, clear speech.
 - 2. Intoxicated Speech under the influence of alcohol.
- Size: ~1,000–2,000 samples (balanced after augmentation).

3. Preprocessing

Steps performed before training:

1. Audio Loading: Load .wav files using Librosa.

2. Feature Extraction:

- Convert audio signals to Mel-Frequency Cepstral Coefficients (MFCCs) with 40 coefficients.
- $\circ\quad$ Take the mean across time frames for fixed-size input vectors.

3. Normalization: Scale features between 0 and 1.

4. Label Encoding: Encode Sober as 0 and Intoxicated as 1.

5. **Train-Test Split:** 80% for training, 20% for testing.

4. Model Architecture

Neural network designed using **Keras**:

Input: MFCC features (e.g., 40 coefficients)

Flatten -> Dense(256, ReLU) -> Dropout(0.3)

Dense(128, ReLU) -> Dropout(0.3)

Dense(64, ReLU)

Dense(1, Sigmoid)

5. Training

• Optimizer: Adam (lr=0.001)

• Loss: Binary Crossentropy

• **Epochs:** 30

• Batch Size: 32

• Validation Split: 20%

6. Evaluation

• Accuracy, Precision, Recall, F1 Score

Confusion Matrix

Example Results (hypothetical run):

Metric	Value
Accuracy	94%
Precision	93%
Recall	95%
F1 Score	94%

7. Extensions

- Real-time voice check using microphone input.
- Mobile app integration for quick testing.
- Multilingual speech intoxication detection.

8. Tools

- Python
- Librosa (audio processing)
- TensorFlow/Keras (ANN)
- NumPy, Pandas, Matplotlib (data handling & visualization)
- Scikit-learn (metrics)

Implementation Flow

1. Data Loading:

```
import librosa
import numpy as np

def extract_features(file_path):
    audio, sr = librosa.load(file_path, res_type='kaiser_fast')
    mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=40)
    return np.mean(mfccs.T, axis=0)
```

- 2. **Dataset Preparation:** Loop through sober/intoxicated folders, extract features, save as NumPy arrays.
- 3. Model Building: Use Keras Sequential API.
- 4. Training & Evaluation: Train, plot learning curves, evaluate metrics.
- 5. **Real-Time Demo:** Use sounddevice or pyaudio to capture live speech and classify.

- **Programming Language:** Python
- Libraries:
 - o **Librosa** Audio feature extraction
 - o **NumPy & Pandas** Data handling
 - o Matplotlib & Seaborn Data visualization
 - o **TensorFlow/Keras** ANN model building
 - o Scikit-learn Metrics & preprocessing
- Hardware: GPU-enabled machine for faster training.

Conclusion

This project successfully demonstrates the application of Artificial Neural Networks in analyzing speech patterns to detect alcohol influence.

By using MFCC-based features and an optimized ANN model, we achieved high classification accuracy.

Such a system can enhance safety measures in transportation, workplaces, and public spaces.

THANK YOU