Total No.	of Questions	: 8	3]
-----------	--------------	-----	----

SEAT No.	:	

[Total No. of Pages: 4

P3921

[4758] - 543

T.E. (E & TC Engineering)

POWER ELECTRONICS

(2012 Pattern) (Semester - II)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6 and Q7 or Q8.
- 2) Neat diagrams and wave forms must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Using of nonprogrammable calculator is allowed.
- 5) Assume suitable data if necessary.
- Q1) a) Draw two transistor analogy of SCR and derive an expression for its anode current I_{Λ} ? [7]
 - b) Draw & explain single phase fully controlled rectifier (full converter) for R-L load with various o/p voltage waveforms.
 - Single phase full bridge inverter is operated from 48V dc supply, it has a resistive load of $R = 2.4 \Omega$. Find:
 - i) rms o/p voltage at fundamental frequency (VO1)
 - ii) rms o/p power
 - iii) rms o/p voltages at second & third harmonic (VO2 & VO3)

OR

- Q2) a) Draw construction diagram of n-channel enhancement type MOSFET and explain its steady state characteristics. [7]
 - b) Draw & explain three phase half controlled bridge converter for R load with o/p voltage waveforms. [7]

	c)	Compare 120° mode with 180° mode in three phase inverter for balanced star R load. [6]			
Q3)	a)	Explain operation of step up chopper with circuit diagram and derive an expression for its o/p voltage : $Vo = \frac{Vs}{(1-D)}$ where D is duty cycle. [6]			
	b)	A DC chopper with R-L load is operated from 220V dc supply. The load parameters are $R = 5\Omega$, $L = 7.5$ mH and chopping frequency Fc = 1KHz. If peak to peak load ripple current is maximum, calculate: [6]			
		i) Maximum instantaneous load current			
		ii) Minimum instantaneous load current			
		iii) Peak to peak load ripple current			
		iv) Average load current			
	c)	Explain various control strategies in DC chopper. [6]			
	OR				
Q4)	a)	Explain operation of four quadrant chopper with circuit diagram. [6]			
	b)	Explain with block schematic working of SMPS. What are its advantages over linear power supply. [6]			
	c)	A single phase full wave ac vlotage controller has a resistive load of R = 10Ω and the input voltage is Vs = 120 V(rms) , 50 Hz. The delay angles of thyristors T1 and T2 are equal : $\alpha 1 = \alpha 2 = \pi/2$. Determine [6]			
		i) the rms output voltage			
		ii) the rms output current			

iii)

the input PF

- **Q5)** a) Explain with block schematic working of On-line & off-line UPS. [8]
 - b) The speed of a separately excited dc motor (armature) is controlled by a 1ℓ semi-converter. The field current is also controlled by a 1ℓ semi-converter and is set to its maximum possible value. The ac supply to both armature & field converters is single phase 208V, 60Hz. The armature resistance Ra = 0.25 Ω , field resistance R_f = 147 Ω . The motor voltage constant Kv = 0.7032 V/A. rad/s, the armature & field currents are continuous & ripple free. If load torque T_L = 45 N-m at 1000 rpm, calculate:
 - i) Field current I_f
 - ii) Back emf Eg
 - iii) Firing angle of converter in armature circuit
 - iv) Input power factor of armature circuit converter.

OR

- Q6) a) Explain voltage & frequency control method for 3- ∉ induction motor drive in detail.[8]
 - b) What are advantages of electronic ballast over conventional ballast? Explain working of electronic ballast with block schematic. [8]
- **Q7)** a) What is EMI? Explain various sources & minimizing techniques of EMI. [6]
 - b) For a thyristor, Maximum junction temperature is 125° C. The thermal resistances are $\emptyset_{JC} = 0.16$, $\emptyset_{CS} = 0.08^{\circ}$ C/W. for heat sink temperature of 70° C, calculate total average power loss in thyristor sink combination. If heat sink temperature is reduced to 60° C, find new total average power loss in thyristor sink combination. [4]
 - c) Write a note on "over voltage protection" in power electronics. [6]

- **Q8)** a) What is the need of resonant converter? Explain ZCS resonant converter with circuit & waveforms. [8]
 - b) Explain SLR half bridge dc-dc converter in low frequency with suitable waveforms. [8]

