Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, Stephane Deny Facebook AI Researcch

https://arxiv.org/pdf/2103.03230.pdf

발표자: 김진희

Contrastive learning?

Contrastive learning?

- (2019.11) Momentum Contrast for Unsupervised Visual Representation Learning. (MoCo)
- (2020.01) A Simple Framework for Contrastive Learning of Visual Representations (SimCLR)
- (2020.03) Improved Baselines with Momentum Contrastive Learning.(MoCo v2)
- (2020.06) Big Self-Supervised Models are Strong Semi-Supervised Learners.(SimCLR v2)
- (2020.06) Bootstrap your own latent: A new approach to self-supervised Learning (BYOL)
- (2020.06) Unsupervised Learning of Visual Features by Contrasting Cluster Assignments (SwAV)
- (2020.11) Exploring Simple Siamese Representation Learning (SimSiam)
- (2021.03) Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Method	Top-1	Top-5
Supervised	76.5	
МоСо	60.6	
PIRL	63.6	-
SIMCLR	69.3	89.0
MoCo v2	71.1	90.1
SIMSIAM	71.3	-
SWAV (w/o multi-crop)	71.8	-
BYOL	<u>74.3</u>	91.6
SWAV	<u>75.3</u>	-
BARLOW TWINS (ours)	<u>73.2</u>	91.0

Introduction

encoder fencoder fimage x

MoCo

Momentum encoder

SimCLR

Large batch size

SimSiam

Stop gradient

SwAV Non-differentiable operatorsBYOL Asymmetry between network architectures

• BARLOW TWINS does not require large batches nor asymmetry between the network twins such as a predictor network, gradient stopping, or a moving average on the weight updates

Method

$$\mathcal{L}_{\mathcal{BT}} \triangleq \underbrace{\sum_{i} (1 - \mathcal{C}_{ii})^2}_{\text{invariance term}} + \lambda \underbrace{\sum_{i} \sum_{j \neq i} \mathcal{C}_{ij}^2}_{\text{redundancy reduction term}}$$

$$C_{ij} \triangleq \frac{\sum_{b} z_{b,i}^{A} z_{b,j}^{B}}{\sqrt{\sum_{b} (z_{b,i}^{A})^{2}} \sqrt{\sum_{b} (z_{b,j}^{B})^{2}}}$$

- 1. Data augmentation $X \to Y^A, Y^B$
- 2. Forward propagation + normalization along batch axis $Z^A = Norm(f_{\theta}(Y^A))$, $Z^B = Norm(f_{\theta}(Y^B))$
- 3. Computation of cross-correlation matrix C
- 4. Loss calculation and backpropagation

Method

The representation vectors of distorted versions of a sample to be similar, while minimizing the redundancy between the components of these vectors.

Method

Algorithm 1 PyTorch-style pseudocode for Barlow Twins.

```
# f: encoder network
# lambda: weight on the off-diagonal terms
# N: batch size
 D: dimensionality of the representation
# mm: matrix-matrix multiplication
# off diagonal: off-diagonal elements of a matrix
# eve: identity matrix
for x in loader: # load a batch with N samples
    # two randomly augmented versions of x
    y_a, y_b = augment(x)
    # compute representations
    z a = f(y a) # NxD
    z b = f(v b) # NxD
    # normalize repr. along the batch dimension
    z_a_{norm} = (z_a - z_a.mean(0)) / z_a.std(0) # NxD
    z b norm = (z b - z b.mean(0)) / z b.std(0) # NxD
    # cross-correlation matrix
    c = mm(z_a_norm.T, z_b_norm) / N # DxD
    # loss
    c_{diff} = (c - eye(D)).pow(2) # DxD
    # multiply off-diagonal elems of c diff by lambda
    off_diagonal(c_diff).mul_(lambda)
    loss = c diff.sum()
    # optimization step
    loss.backward()
    optimizer.step()
```


$$\mathcal{L}_{\mathcal{BT}} \triangleq \underbrace{\sum_{i} (1 - \mathcal{C}_{ii})^{2}}_{\text{invariance term}} + \lambda \underbrace{\sum_{i} \sum_{j \neq i} \mathcal{C}_{ij}^{2}}_{\text{redundancy reduction term}}$$

$$C_{ij} \triangleq \frac{\sum_{b} z_{b,i}^{A} z_{b,j}^{B}}{\sqrt{\sum_{b} (z_{b,i}^{A})^{2}} \sqrt{\sum_{b} (z_{b,j}^{B})^{2}}}$$

Self-supervised learning / Semi-supervised learning

Table 1. Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet. All models use a ResNet-50 encoder. Top-3 best self-supervised methods are <u>underlined</u>.

Method	Top-1	Top-5
Supervised	76.5	
МоСо	60.6	
PIRL	63.6	-
SIMCLR	69.3	89.0
MoCo v2	71.1	90.1
SIMSIAM	71.3	-
SWAV (w/o multi-crop)	71.8	-
BYOL	<u>74.3</u>	91.6
SWAV	<u>75.3</u>	-
BARLOW TWINS (ours)	<u>73.2</u>	91.0

Table 2. Semi-supervised learning on ImageNet using 1% and 10% training examples. Results for the supervised method are from (Zhai et al., 2019). Best results are in **bold**.

Method	То	Top-1		Top-5	
	1%	10%	1%	10%	
Supervised	25.4	56.4	48.4	80.4	
PIRL	-	-	57.2	83.8	
SIMCLR	48.3	65.6	75.5	87.8	
BYOL	53.2	68.8	78.4	89.0	
SWAV	53.9	70.2	78.5	89.9	
BARLOW TWINS (ours)	55.0	69.7	79.2	89.3	

Transfer learning

Table 3. Transfer learning: image classification. We benchmark learned representations on the image classification task by training linear classifiers on fixed features. We report top-1 accuracy on Places-205 and iNat18 datasets, and classification mAP on VOC07. Top-3 best self-supervised methods are underlined.

Method	Places-205	VOC07	iNat18
Supervised	53.2	87.5	46.7
SimCLR	52.5	85.5	37.2
MoCo-v2	51.8	86.4	38.6
SwAV (w/o multi-crop)	52.8	86.4	39.5
SwAV	<u>56.7</u>	88.9	<u>48.6</u>
BYOL	<u>54.0</u>	86.6	<u>47.6</u>
BARLOW TWINS (ours)	<u>54.1</u>	86.2	46.5

Table 4. Transfer learning: object detection and instance segmentation. We benchmark learned representations on the object detection task on VOC07+12 using Faster R-CNN (Ren et al., 2015) and on the detection and instance segmentation task on COCO using Mask R-CNN (He et al., 2017). All methods use the C4 backbone variant (Wu et al., 2019) and models on COCO are finetuned using the 1× schedule. Best results are in **bold**.

Method	VOC07+12 det		COCO det		COCO instance seg				
	$\overline{AP_{\mathrm{all}}}$	AP_{50}	AP ₇₅	AP^{bb}	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	$\overline{AP^{\mathrm{mk}}}$	$\mathrm{AP^{mk}_{50}}$	AP ₇₅
Sup.	53.5	81.3	58.8	38.2	58.2	41.2	33.3	54.7	35.2
MoCo-v2	57.4	82.5	64.0	39.3	58.9	42.5	34.4	55.8	36.5
SwAV	56.1	82.6	62.7	38.4	58.6	41.3	33.8	55.2	35.9
SimSiam	57	82.4	63.7	39.2	59.3	42.1	34.4	56.0	36.7
BT (ours)	56.8	82.6	63.4	39.2	59.0	42.5	34.3	56.0	36.5

Ablation study

Loss function

Table 5. Loss function explorations. We ablate the invariance and redundancy terms in our proposed loss and observe that both terms are necessary for good performance. We also experiment with different normalization schemes and a cross-entropy loss and observe reduced performance.

Loss function	Top-1	Top-5
Baseline	71.4	90.2
Only invariance term (on-diag term) Only red. red. term (off-diag term)	57.3 0.1	80.5 0.5
Normalization along feature dim. No BN in MLP No BN in MLP + no Normalization	69.8 71.2 53.4	88.8 89.7 76.7
Cross-entropy with temp.	63.3	85.7

$$\mathcal{L}_{\mathcal{BT}} \triangleq \underbrace{\sum_{i} (1 - \mathcal{C}_{ii})^2 + \lambda}_{\text{invariance term}} \underbrace{\sum_{i} \sum_{j \neq i} \mathcal{C}_{ij}^2}_{\text{redundancy reduction term}}$$

Cross-entropy with temp.=
$$-\log \sum_{i} \exp(C_{ii}/\tau) + \lambda \sum_{i} \sum_{j\neq i} \exp(\max(C_{ij}, 0)/\tau)$$

Ablation study

Batch size

Removing Augmentations

Ablation study

Projector dimensionality

Asymmetric settings

case	stop-gradient	predictor	Top-1	Top-5
Baseline	-	-	71.4	90.2
(a)	✓	-	70.5	89.0
(b)	-	\checkmark	70.2	89.0
(c)	\checkmark	\checkmark	61.3	83.5

BYOL

SimSiam