

ATTACHMENT A

Claims 1 - 11: (Cancelled)

12. (Previously Presented) A process for preparing cyclopentadienyl system anions of the formula (VII),

$$A \xrightarrow{R^{4B}} R^{1A}$$

$$R^{4B}$$

$$R^{4B}$$

$$R^{3A}$$

$$R^{3A}$$

where the variables have the following meanings: $R^{1A}-R^{4A}$ are each, independently of one another,

hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_2 , $N(SiR^{6A}_3)_2$, OR^{6A} , $OSiR^{6A}_3$, or SiR^{6A}_3 where the organic radicals R^{1A} - R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A} - R^{4A} may also be joined to form a five- or sixmembered ring, and/or two vicinal radicals R^{1A} - R^{4A} are joined to form a heterocycle which contains at least one atom selected from the group consisting of N, P, O and S,

 R^{6A} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl,\ C_2\text{-}C_{20}\text{-}alkenyl,\ C_6\text{-}C_{20}\text{-}aryl,\ or}$ alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,

A is an unsubstituted, substituted or fused, heteroaromatic ring system,

 R^{4B} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_6\text{-}C_{20}\text{-}aryl$, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_{3} , where the organic radicals R^{4B} may also be substituted by halogens and two geminal or vicinal radicals R^{4B} may also be joined to form a five- or six-membered ring and

 R^{3B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

which comprises the step a) or a'), where, in step a), an A⁻ anion is reacted with a fulvene of the formula (VIIIa)

$$R^{4B}$$
 R^{4B}
 R^{4A}
 R^{3A}
 R^{4A}
 R^{4A}
 R^{4B}
 R^{4A}

or,

in step a'), an organometallic compound $R^{4B}M^BX^B_b$ where M^B is a metal of group 1 or 2 of the Periodic Table of the Elements,

 X^B is halogen, $C_1\text{-}C_{10}\text{-}alkyl$, alkoxy having from 1 to 20 carbon atoms in the alkyl radical and/or from

6 to 20 carbon atoms in the aryl radical, or $\ensuremath{\text{R}}^{4B}$ and

b is 0 when $\mathbf{M}^{\mathbf{B}}$ is a metal of group 1 of the Periodic Table of the Elements and is 1

when \boldsymbol{M}^{B} is a metal of group 2 of the Periodic Table of the Elements,

is reacted with a fulvene of the formula (VIIIb):

$$R^{4B}$$
 R^{4A}
 R^{3A}
 R^{4A}
 R^{4A}
 R^{4A}
 R^{4A}

13. (Previously Presented) A process for preparing cyclopentadiene systems of the formula (VIIa)

$$A = C = E^{10A} = E^{10A$$

where the variables have the following meanings: $E^{6A}-E^{10A} \text{ are each carbon, where in each case four }$ adjacent $E^{6A}-E^{10A}$ form a conjugated diene system and the remaining $E^{6A}-E^{10A}$ additionally bears a hydrogen atom,

 $R^{1A}-R^{4A}$ are each, independently of one another, hydrogen, $C_1-C_{20}-alkyl$, $C_2-C_{20}-alkenyl$, $C_6-C_{20}-aryl$,

alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_{2} , $N(SiR^{6A}_{3})_{2}$, OR^{6A} , $OSiR^{6A}_{3}$, or SiR^{6A}_{3} , where the organic radicals $R^{1A}-R^{4A}$ may also be substituted by halogens and two vicinal radicals $R^{1A}-R^{4A}$ may also be joined to form a five- or sixmembered ring, and/or two vicinal radicals $R^{1A}-R^{4A}$ are joined to form a heterocycle which contains at least one atom selected from the group consisting of N, P, O and S,

- R^{6A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring,
- A is an unsubstituted, substituted or fused, heteroaromatic ring system,
- R^{2B} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{3B}_3 , where the organic radicals R^{2B} may also be substituted by halogens and R^{2B} and A may also be joined to form a five- or six-membered ring,
- R^{3B} are each, independently of one another, hydrogen, $C_1\text{-}C_{20}\text{-}alkyl$, $C_2\text{-}C_{20}\text{-}alkenyl$, $C_6\text{-}C_{20}\text{-}aryl$ or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{3B} may also be joined to form a five- or six-membered ring,

which comprises the following step:

a'') reaction of an $A-CR^{2B}R^{2B-}$ anion with a cyclopentenone system of the formula (IX)

- 14. (Cancelled)
- 15. (Cancelled)
- 16. (New) The process as claimed in claim 12, wherein the negative charge of the A^- anion is on a carbon atom adjacent to a heteroatom.
- 17. (New) The process as claimed in claim 12, wherein A has the formula (III):

$$\begin{array}{c|c}
R_{p}^{2C} \\
R_{p}^{1C} \\
E & E^{2C} \\
E & E^{3C} \\
E & E^{3C} \\
R_{p}^{3C}
\end{array}$$
(III)

wherein

 $E^{1C}-E^{4C}$ are each carbon or nitrogen;

 $R^{1C}-R^{4C}$ are each, independently of one another, hydrogen, C_1-C_{20} -alkyl, C_2-C_{20} -alkenyl, C_6-C_{20} -aryl, alkylaryl comprising from 1 to 10 carbon atoms in the alkyl

part and 6-20 carbon atoms in the aryl part, or SiR^{5C}_{3} , wherein $R^{1C}-R^{4C}$ are optionally substituted by at least one halogen, nitrogen, C_1-C_{20} -alkyl group, C_2-C_{20} -alkenyl group, C_6-C_{20} -aryl group, alkylaryl group comprising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_{3} , and two vicinal $R^{1C}-R^{4C}$ or R^{1C} and Z are optionally joined to form a five- or six-membered ring;

 R^{5C} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl comrising from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, and two R^{5C} are optionally joined to form a five- or six-membered ring; and

p is 0 when $E^{1C}-E^{4C}$ is nitrogen, and is 1 when $E^{1C}-E^{4C}$ is carbon.