ECEN325 Ref Sheet © Josh Wright February 26, 2017

Metric Prefixes
peta P 10¹⁵ 1 000 000 000 000 000 $\overline{10^{12}}$ $\overline{\mathrm{T}}$ 1 000 000 000 000 tera G 10^{9} 1 000 000 000 giga 10^{6} М 1 000 000 mega kilo 10^{3} 1 000 10^{2} h 100 hecto 10^{1} deca da 10 10^{0} 1 one 10^{-1} 0.1 deci d 10^{-2} 0.01 centi \mathbf{c} 10^{-3} 0.001 milli m 10^{-6} 0.000 001 micro μ 10^{-9} 0.000 000 001 nano 10^{-12} 0.000 000 000 001 pico

femto RC Filter

• Transmission Function: $T(s) = \frac{V_o(s)}{V_i(s)}$

 10^{-15}

- Corner frequency: frequency s at which $T(s) = \frac{1}{\sqrt{2}}$
- for simple circuit: ground \rightarrow source $\rightarrow R \rightarrow C \rightarrow$ ground

0.000 000 000 000 001

$$\begin{split} *T(s) &= \frac{1}{1 + RCs} \\ |T(j\omega)| &= \frac{1}{\sqrt{1 + R^2 C^2 s^2}} \\ |\angle T(j\omega)| &= \frac{1}{\sqrt{1 + R^2 C^2 s^2}} \end{split}$$

f

• low pass

*corner frequency: $s = \frac{1}{RC}$ (also pole)

high pass

 $*T(s) = \frac{V_o}{V_i} = \frac{RCs}{1 + RCs}$

*zero: s=0, pole: $s=\frac{1}{RC}$

Bode Plots

• magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20 \log_{10} |T(j\omega)|$

• starts on y-axis at DC offset with slope 0

- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1
- magnitude:
- *Pole/Zero at origin: constant slope $\pm 20db/dec$ for all ω ; 0dB at $\omega = 10^0 = 1$
- *Pole/Zero at ω_0 :

0 for $\omega < \omega_0$ slope $\pm 20 \frac{db}{dec}$ after

- *Constant C: constant line at $20 \log_{10}(|C|)$
- - *Pole at origin: constant $-\frac{\pi}{2}$ or -90° *Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$
- *Pole/Zero at ω_0 :
- $0 \text{ for } \omega < \frac{\omega_0}{10}$
- slope linearly ($\pm 45^{\circ}/dec$) until $10\omega_0$
- 0 slope for $\omega > 10\omega_0$
- *Constant C: no effect (0 for all ω)

Solving systems with Op Amps

- step 0: if the op amp is ideal, write out ideal properties:
- $V_{+} = V_{-}$ $V_{+} = V_{-}$ $V_{-} = 0, I_{+} = 0$
- $*A \approx \infty$
- avoid doing KCL/KVL directly on the output node of the op amp
- ignore resistors from a point at 0V to ground

Non-Ideal Op Amps

- $\bullet V_o = A(V_+ V_-)$
- *A: open-loop gain. Typically very large, 100,000 or
- open-loop gain dependent on frequency: $A(s) = \frac{A_0}{1-\frac{s}{s}}$
- *open-loop response drops off after ω_b (usually $2\pi \le \omega_b \le 2\pi 100$)
- $*A_0$: DC gain
- * ω_t : unity gain frequency: $dB(T(\omega_t)) = 1$ $\omega_t \approx A_o \omega_b$

AKA gain bandwidth product

- * in this case, we still assume $I_{-} = I_{+} = 0$ and $V_{-} = V_{+}$?
- slew rate
- *max rate at which the output can change
- * for a sinusoidal signal: (V_{pk}) : peak voltage) $SR > 2\pi f V_{pk}$ or $SR > \omega V_{pk}$ $\frac{dV_o}{dt}|_{MAX} < SR$

Op Amp Equations

- general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$
- $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response $*\omega_0 = \frac{\omega_t}{1+R_2/R_1}$

- * $\omega_0 \frac{1 + R_2}{\kappa_1}$ inverting op amp: * ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$ * non-ideal: $T(s) = \frac{V_o}{V_i} = \frac{-R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}}$

- non-inverting op-amp:
- * ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$ * non-ideal: $T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}}$

 $\bullet \, integrating$

*ideal:
$$V_o = -\int_0^t \frac{V_i}{RC} dt + C$$
% $C = V_o(t)$ at $t = 0$

• differentiating
$$*ideal: \ V_o = -RC\frac{dV_i}{dt}$$

 \bullet summing

*ideal:
$$V_o = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

• differential (subtracting)
* ideal:
$$V_o = \frac{(R_f + R_1)R_g}{(R_g + R_2)R_1}V_2 - \frac{R_f}{R_1}V_1$$

