Jagiellonian University

Department of Theoretical Computer Science

Adrian Siwiec

Perfect Graph Recognition and Coloring

Master Thesis

Supervisor: dr inż. Krzysztof Turowski

September 2020

Abstract

TODO

Contents

ъ	
Re	cognizing Berge Graphs
2.1	Recognition algorithm Overview
2.2	Implementation
2.3	Parallelism with CUDA (?)
2.4	Experiments
Co	loring Berge Graphs
3.1	Ellipsoid method
3.2	Combinatorial Method
ppe	ndices

1 Perfect Graphs

All graphs in this paper are finite, undirected and have no loops or parallel edges. We denote the chromatic number of graph G by $\chi(G)$ and the cardinality of the largest clique of G by $\omega(G)$. Coloring of a graph means assigning every node of a graph a color. A coloring is valid iff every two nodes sharing an edge have different colors. An optimal coloring (if exists) is a valid coloring using only $\omega(G)$ colors.

Given a graph G=(V,E) and a set $X\subseteq V$ by G[X] we will denote a graph induced on X. A graph G=(V,E) is *perfect* iff for all $X\subseteq V$ we have $\chi(G[X])=\omega(G[X])$.

Give some examples why are these interesting, some subclasses, and problems that are solvable for perfect graphs, including recognition and coloring

Given a graph G, its $complement \overline{G}$ is a graph with the same vertex set and in which two distinct nodes u,v are connected in \overline{G} iff they are not connected in G. For example a clique in a graph becomes an independent set in its complement. A perfect graph theorem, first conjured by Berge in 1961 [Ber61] and then proven by Lovász in 1972 [Lov72] states that a graph is perfect iff its complement graph is also perfect.

1.1 Strong Perfect Graph Theorem

A hole is an induced chordless cycle of length at least 4. An antihole is an induced subgraph whose complement is a hole. A Berge graph is a graph with no holes or antiholes of odd length.

In 1961 Berge conjured that a graph is perfect iff it is Berge in what has become known as a strong perfect graph conjecture. In 2001 Chudnovsky et al. have proven it and published the proof in an over 150 pages long paper "The strong perfect graph theorem" [Chu+06].

2 Recognizing Berge Graphs

Cite the paper.

2.1 Recognition algorithm Overview

Recognizing simple structures (Diamonds, Jewels, T1, T2, T3).

Finding and Using Half-Cleaners.

Overview of proof of why algorithm using Half-Cleaners is correct.

Should we give some proof of that here?

2.2 Implementation

Anything interesting about algo/data structure?

Optimizations - Bottlenecks in performance (next path, are vectors distinct etc).

Validity tests - unit tests, tests of bigger parts, testing vs known answer and vs naive.

2.3 Parallelism with CUDA (?)

TODO

2.4 Experiments

Naive algorithm - brief description, bottlenecks optimizations (makes huge difference).

Description of tests used.

Results and Corollary - almost usable algorithm.

3 Coloring Berge Graphs

3.1 Ellipsoid method

Description.

Implementation.

Experiments and results.

3.2 Combinatorial Method

Cite the paper.

On its complexity - point to appendix for pseudo-code.

Appendices

A Perfect Graph Coloring algorithm

TODO

References

- [Ber61] C. Berge. "Färbung von Graphen, deren sämtliche beziehungsweise deren ungerade Kreise starr sind". In: Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg, Mathematisch-naturwissenschaftliche Reihe, 1961, p. 114.
- [Chu+06] Maria Chudnovsky et al. "The strong perfect graph theorem". In: Annals of Mathematics 164.1 (July 2006), pp. 51-229. DOI: 10.4007/annals.2006.164.51. URL: https://doi.org/10.4007/annals.2006.164.51.
- [Lov72] L. Lovász. "Normal hypergraphs and the perfect graph conjecture". In: Discrete Mathematics 2.3 (June 1972), pp. 253–267. DOI: 10. 1016/0012-365x(72)90006-4. URL: https://doi.org/10.1016/0012-365x(72)90006-4.