

When we say: We are given

a Regular Language $\,L\,$

We mean: Language L is in a standard

representation

Elementary Questions about Regular Languages

3

Membership Question

Question: Given regular language L

and string w

how can we check if $w \in L$?

Answer: Take the DFA that accepts L

and check if w is accepted

Question: Given regular language L

how can we check

if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) = \emptyset$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} \cap \overline{L_{2}} = \emptyset \quad \text{and} \quad \overline{L_{1}} \cap L_{2} = \emptyset$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} \subseteq L_{2} \qquad \qquad \downarrow$$

$$L_{2} \subseteq L_{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$L_{1} = L_{2}$$

Non-regular languages

13

$$\{a^n b^n: n \ge 0\}$$
$$\{vv^R: v \in \{a,b\}^*\}$$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language $\,L\,$ is not regular?

Prove that there is no DFA that accepts $\,L\,$

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

15

The Pigeonhole Principle

The Pigeonhole Principle and DFAs

21

DFA with 4 states

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

The Pumping Lemma

Take an infinite regular language $\,L\,$ There exists a DFA that accepts $\,L\,$ $\,m\,$ states

If string w has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk $\,w\,$

Let q be the first state repeated in the walk of w

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|x y| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$ i = 0, 1, 2, ...

Applications

of

the Pumping Lemma

Theorem: The language
$$L = \{a^n b^n : n \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

43

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^m b^m$$

45

Write: $a^m b^m = x y z$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...ab...b}_{x \quad y \quad z.}$$

Thus: $y = a^k$, $k \ge 1$

$$x \ y \ z = a^m b^m \qquad \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma:
$$x y^i z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...b}^{m+k} \in L$$

Thus:
$$a^{m+k}b^m \in L$$

$$a^{m+k}b^m \in L$$
 $k \ge 1$

BUT: $L = \{a^n b^n : n \ge 0\}$

 $a^{m+k}b^m \notin L$

CONTRADICTION!!!

40

Therefore: Our assumption that $\,L\,$

is a regular language is not true

Conclusion: L is not a regular language

