KKBox's Churn Prediction Challenge

Can you predict when subscribers will churn?

KKBOX is Asia's leading music streaming service

대회 설명

- Kkbox 유료 사용자가 3월에 이탈할 것인가? (Logloss 사용)

- 어머나? 정답셋 유출! 대회 폭파??

- 4월 이탈예측으로 변경

- 데이터 수정

데이터 설명

파생변수 생성

transactions				
msno				
payment_method_id				
payment_plan_days				
plan_list_price				
actual_amount_paid				
is_auto_renew				
transaction_date membership_expire_date				
				is cancel

파생변수										
msno pay_30days										
					pay_7days					
payday_sum_2015										
payday_sum_2016 payday_sum_2017 avg_auto_renew is_cancel										
						trans_cnt				
						fst_exp_date				
						lst_exp_date				
sum_paydays										
is_continuous										
cancel_0_to_1_cnt										
cancel_1_to_0_cnt										
last_exp_month unique_pay_method_cnt										
					max_pay_method					
mean_diff_trans_exp										
amt_per_day										

user_logs		파생변수
msno		msno
date		sum_weight_logs_day
num_25		lst_day
num_50		log_count
num_75		mean_num_25
num_985		mean_num_50
num_100		mean_num_75
num_unq		mean_num_985
total_secs		mean_num_100
		mean_total_secs
		mean_rate_25
		mean_rate_50
		mean_rate_75
		mean_rate_985
		mean_rate_100
		median_visit_days

최종 데이터셋

- X 변수 39개
- Y 변수 is_churn

고객[[

target

msno
is_churn
sum_weight_logs_day
lst_day
log_count
mean_num_25
mean_num_50
mean_num_75
mean_num_985
mean_num_100
mean_total_secs
mean_rate_25
mean_rate_50
mean_rate_75
mean_rate_985
mean_rate_100
median_visit_days
pay_30days
pay_7days
payday_sum_2015
payday_sum_2016
payday_sum_2017
avg_auto_renew
is_cancel
trans_cnt
fst_exp_date
lst_exp_date
sum_paydays
is_continuous
cancel_0_to_1_cnt
cancel_1_to_0_cnt
last_exp_month
unique_pay_method_cnt
max_pay_method
mean_diff_trans_exp
amt_per_day
city
bd .
gender
registered_via
registration_init_time

User_logs 파생변수 15개

transaction 파생변수 19개

members 변수 5개

고려해야 할 점

Unbalanced Data

Y변수 is_churn의 비율이 0:1 => 93:7

해결책: upsampling, downsampling, threshold 조정

=> 0,1을 나누는 것 때문에 시행한다고 생각. Logloss score에서는 필요 X

Feature Selection

해결책: Stepwise, forward, backward deletion, lasso.

⇒Tree based Model은 변수를 줄였을 때 성능향상이 일어나기보다는 성능이 조금이라도 떨어진다.

최종 모델

Gbm, Randomforest 두 모델의 조화평균 =>0.10246 (public) / 0.10389 (private) 13등!

- 왜 선택했나?

Deeplearning => 0.12212

Xgboost => 0.11408

Gbm = > 0.10376

Randomforest => 0.10322

최종 모델

Gbm, Randomforest 두 모델의 조화평균 =>0.10246 (public) / 0.10389 (private) 13등!

variable relative_importance scaled_importance percentage

Gradient Boosting Model

Variable Importances:

amt_per_day 155194.046875 1.000000 0.355432 max_pay_method 88679.320312 0.571409 0.203097 avg_auto_renew 60690.804688 0.391064 0.138997 payday_sum_2017 24875.697266 0.160288 0.056971 log_count 22305.449219 0.143726 0.051085 0.021763 pay_30days 9502.431641 0.061229 is_continuous 9329.525391 0.060115 0.021367 1st_day 9122.298828 0.058780 0.020892 9 is_cancel 0.020520 8959.684570 0.057732 10 sum_weight_logs_day 0.018360 8016.595703 0.051655 11 payday_sum_2016 7302.453613 0.047054 0.016724 12 fst_exp_date 6260.383301 0.040339 0.014338 unique_pay_method_cnt 5730.938477 0.036928 0.013125 14 0.008882 sum_paydays 3878.261475 0.024990 15 mean_diff_trans_exp 3149.848877 0.020296 0.007214 median_visit_days 16 2239.236816 0.014429 0.005128 17 1st_exp_date 1807.467285 0.011646 0.004140 18 pay_7days 1271.361450 0.008192 0.002912 19 trans_cnt 1238.784058 0.007982 0.002837 20 mean_rate_100 1101.769653 0.007099 0.002523

Random Forest

Variable Importances:

v cu	rabic importantes.			
	variable	relative_importance	scaled_importance	
1	amt_per_day	2183857.250000	1.000000	0.133806
2	payday_sum_2017	1859294.625000	0.851381	0.113920
3	max_pay_method	1443778.625000	0.661114	0.088461
4	sum_paydays	1426693.125000	0.653290	0.087414
5	avg_auto_renew	1128250.125000	0.516632	0.069128
6	pay_30days	1080356.250000	0.494701	0.066194
7	trans_cnt	719900.625000	0.329646	0.044109
8	payday_sum_2016	655629.187500	0.300216	0.040171
9	log_count	478663.656250	0.219183	0.029328
10	sum_weight_logs_day	457376.312500	0.209435	0.028024
11	lst_day	367648.468750	0.168348	0.022526
12	pay_7days	314521.781250	0.144021	0.019271
13	is_continuous	305252.093750	0.139777	0.018703
14	mean_diff_trans_exp	298999.812500	0.136914	0.018320
15	fst_exp_date	274157.718750	0.125538	0.016798
16	lst_exp_date	237266.640625	0.108646	0.014537
17	mean_rate_100	236352.453125	0.108227	0.014481
18	registered_via	231842.625000	0.106162	0.014205
19	city	213360.703125	0.097699	0.013073
20	unique_pay_method_cnt	211144.453125	0.096684	0.012937

- 0.10065 -> 10등 -> 다함께 한것
- 0.10389 -> 13등 -> 발표는 나 혼자 한 걸로
- 단, 10등에서 말소!!! ㅠㅠ
- 응??? 이유는?
- 계정 3개 사용
- 룰을 제대로 안 읽은 잘못.
- 그리고 10등까지 할 줄 몰랐음.
- 그래서 열심히 했지만 기록으로 남는게 없어요!
- 경험은 했지만~ 코드도 있지만~ 기록이 안남네요 ㅠㅠ

작업환경

〈실제 작업환경〉

- RAM 8G
- CPU i5
- Macbook pro
- Rstudio
- H20 packages

〈대회 후 작업환경〉

- RAM 64G
- CPU i7-8700K 12 cores
- OS Windows10
- Rstudio
- H20 packages
- docker

한계

Testset: 907,471

Trainset: 10,394,394

(2016년 2월 - 2017년 2월)

User_logs : 410,502,906

Members: 6,769,473

- 데이터가 너무 커서 시간이 너무 오래 걸린다.
- 캐글 대회 1등은 데이터 핸들링을 MS SQL로 했다고 한다.
- 데이터 핸들링 코드 짜는 거 제외 모두 돌리는데 최소 12시간은 걸렸음. 맥북으로는 transaction만 처리하는데 12시간 걸렸음.
- 모델을 한번 fitting 하는 시간도 한번에 40분 정도 걸려서 nfolds=3이 한계 지. 맥북으로는 2시간 정도?!(3배 차이)
- 그래서 모델 튜닝을 많이 못해본 것이 가장 아쉽다.
- 모델 튜닝하지 않고 기본 ntree=200, nfolds=3을 기본으로 피팅.
- 파생변수 만드는 것에 더 집중.

최종 결과 및 느낀점

- 어떤 것이든 룰을 먼저 확인.
- 모델 튜닝 부분이 부족.
- Docker를 활용하여 rstudio작업환경 구성법을 배움.
- 파생변수를 만들면서 dplyr을 아주 잘 활용할 수 있게 되었음.
- 코드를 짤 때부터 주석을 잘 달아둬야 한다.

Thank you