ABSTRACT HOMOTOPY. III

By Daniel M. Kan

WEIZMANN INSTITUTE OF SCIENCE, REHOVOTH, ISRAEL, AND COLUMBIA UNIVERSITY, NEW YORK, NEW YORK

Communicated by P. A. Smith, April 6, 1956

1. Introduction.—In an earlier note¹ it was indicated how a homotopy theory may be developed for cubical complexes satisfying a certain extension axiom. In the same manner a homotopy theory may be developed for all c.s.s. complexes² which satisfy the following simplicial version of the extension axiom: A c.s.s. complex K is said to satisfy the extension axiom if for every pair of integers (k, n) with $0 \le k \le n$ and for every n (n - 1)-simplices $\sigma_0, \ldots, \sigma_{k-1}, \sigma_{k+1}, \ldots, \sigma_n \in K$ such that $\sigma_i \epsilon^{i-1} = \sigma_j \epsilon^i$ for i < j and $i \ne k \ne j$, there exists an n-simplex $\sigma \in K$ such that $\sigma \epsilon^i = \sigma_i$ for $i = 0, \ldots, \hat{k}, \ldots, n$. Let S denote the category of c.s.s. complexes, and let S_E be its full subcategory generated by the c.s.s. complexes which satisfy the extension axiom.

It is the purpose of this note to indicate how the homotopy theory on the category S_E mentioned above may be extended to a homotopy theory on the whole category S_E . This is done by defining a functor $S_E \times S_E$. All homotopy notions defined on the category S_E then apply by composition with the functor $S_E \times S_E$ also to the category $S_E \times S_E$.

Our main tool will be what we call the *extension* Ex K of a c.s.s. complex K, which is in a certain sense the dual of the (barycentric) subdivision of K.

2. The Standard Simplices and Their Subdivision.—We shall use the notation of Eilenberg-Zilber,² except that the standard n-simplex in the category 8 will be denoted by Δ_n instead of by K[n]. For each integer $n \geq 0$, we define a c.s.s. complex Δ_n' (the subdivision of Δ_n) and a c.s.s. map d_n : $\Delta_n' \to \Delta_n$ as follows. A q-simplex of Δ_n' is a sequence $(\sigma_0, \ldots, \sigma_q)$, where σ_i is a nondegenerate simplex of Δ_n and σ_i lies on σ_i if or all i. For each map σ_i : $\sigma_i = \sigma_i$, we define

$$(\sigma_0, \ldots, \sigma_q)\beta = (\sigma_{\beta(0)}, \ldots, \sigma_{\beta(p)}).$$

Let $(\sigma_0, \ldots, \sigma_q) \in \Delta_n'$. Then $d_n(\sigma_0, \ldots, \sigma_q)$ is the q-simplex of Δ_n , i.e., the map $[q] \rightarrow [n]$ determined by

$$(d_n(\sigma_0, \ldots, \sigma_n))i = \sigma_i(\dim \sigma_i)$$
 for $0 \le i \le q$.

For each map α : $[m] \to [n]$, we define c.s.s. maps Δ_{α} : $\Delta_m \to \Delta_n$ and Δ_{α}' : $\Delta_m' \to \Delta_n'$ as follows. For each $\sigma \in \Delta_m$, $\Delta_{\alpha}\sigma$ is the composite map $\alpha\sigma$. The map Δ_{α}' is the map induced by Δ_{α} (the *subdivision* of Δ_{α}).

2.1 For each map α : $[m] \rightarrow [n]$, commutativity holds in the following diagram:

$$\begin{array}{ccc}
\Delta_{m} & \xrightarrow{\Delta_{\alpha}} & \Delta_{n} \\
d_{m} & & \downarrow & \downarrow \\
\Delta_{m'} & \xrightarrow{\Delta_{\alpha'}} & \Delta_{n'}
\end{array}$$

3. The Extension.—For a c.s.s. complex K, its extension is the c.s.s. complex Ex K defined as follows. An n-simplex of Ex K is a c.s.s. map $\sigma: \Delta_n' \to K$. For

each map α : $[m] \to [n]$, $\sigma \alpha$ is the composite map $\sigma \Delta_{\alpha}'$. Similarly, for a c.s.s. map $f: K \to L$, a c.s.s. map $\operatorname{Ex} f: \operatorname{Ex} K \to \operatorname{Ex} L$ is defined by $(\operatorname{Ex} f)\sigma = f\sigma$ for $\sigma \in K$. Thus the resulting functor $\operatorname{Ex}: S \to S$ is covariant. By Ex^n we shall mean the functor Ex applied n times.

Let $K \in \mathbb{S}$. For each n-simplex $\sigma \in K$, let φ_{σ} : $\Delta_n \to K$ denote the c.s.s. map defined by $\varphi_{\sigma}\alpha = \sigma\alpha$ for each $\alpha \in \Delta_n$. We then define a monomorphism (i.e., isomorphism into) $e_K : K \to \operatorname{Ex} K$ by $e_k\sigma = \varphi_{\sigma}d_n$ for $\sigma \in K$, dim $\sigma = n$. Clearly e_K is natural, i.e., $(\operatorname{Ex} f)e_K = e_{\operatorname{Ex} L}f$ for every c.s.s. map $f : K \to L$. We shall denote by e_K^n the composite monomorphism $e_K^n : K \to \operatorname{Ex}^n K$.

The functor Ex $S \rightarrow S$ has the following properties.

- 3.1. The functor Ex: $S \rightarrow S$ maps homotopic maps into homotopic maps.
- 3.2. The map $e_K: K \to \operatorname{Ex} K$ induces isomorphisms of the homology groups, i.e., $e_{K*}: H_*(K) \approx H_*(\operatorname{Ex} K)$.
 - 3.3. If $K \in S_E$, then $Ex K \in S_E$ and $e_K : K \to Ex K$ is a homotopy equivalence.
- 3.4. For every pair of integers (k, n) with $0 \le k \le n$ and for every n (n 1)-simplices $\sigma_0, \ldots, \sigma_{k-1}, \sigma_{k+1}, \ldots, \sigma_n \in \operatorname{Ex} K$ such that $\sigma_i \epsilon^{j-1} = \sigma_j \epsilon^i$ for i < j and $i \ne k \ne j$, there exists an n-simplex $\rho \in \operatorname{Ex}^2 K$ such that $\rho \epsilon^i = e_{\operatorname{Ex} K}^{\sigma_i}$ for $i = 0, \ldots, k, \ldots, n$.

A c.s.s. map $f: K \to L$ is called a *fiber map* if for each pair of integers (k, n) with $0 \le k \le n$, for every n (n - 1)-simplices $\sigma_0, \ldots, \sigma_{k-1}, \sigma_{k+1}, \ldots, \sigma_n \in K$ such that $\sigma_i \epsilon^{j-1} = \sigma_j \epsilon^i$ for i < j and $i \ne k \ne j$, and for every n-simplex $\tau \in L$ such that $\tau \epsilon^i = f \sigma_i$ for $i = 0, \ldots, \hat{k}, \ldots, n$, there exists an n-simplex $\sigma \in K$ such that $f \sigma = \tau$ and $\sigma \epsilon^i = \sigma_i$ for $i = 0, \ldots, \hat{k}, \ldots, n$. The *fiber of f over a 0-simplex* $\varphi \in L$ is the counterimage of φ and its degeneracies. It is denoted by $F(f, \varphi)$. We now may state one more property of the functor Ex.

- 3.5. If $f: K \to L$ is a fiber map and φ is a 0-simplex of L, then $\operatorname{Ex} f: \operatorname{Ex} K \to \operatorname{Ex} L$ is a fiber map and $\operatorname{Ex} F(f, \varphi) = F(\operatorname{Ex} f, e_L \varphi)$.
 - 4. The Functor Ex^{\infty}.—Consider the sequence

$$K \xrightarrow{e_K} Ex K \xrightarrow{e_{Ex K}} Ex^2 K \xrightarrow{}$$
.

Let $\operatorname{Ex}^{\infty} K$ be the direct limit of this sequence, and let $\operatorname{Ex}^{\infty}$ denote the resulting covariant functor. Similarly, let e_{K}^{∞} : $K \to \operatorname{Ex}^{\infty} K$ denote the (natural) limit monomorphism. The following properties of the functor $\operatorname{Ex}^{\infty}$ then follow from properties 3.1-3.5.

- 4.1. The functor Ex^{\infty} maps homotopic maps into homotopic maps.
- 4.2. The map e_K^{∞} : $K \to \operatorname{Ex}^{\infty} K$ induces isomorphisms of the homology groups, i.e., e_{K*}^{∞} : $H_*(K) \approx H_*(\operatorname{Ex}^{\infty} K)$.
 - 4.3. $\operatorname{Ex}^{\infty} K \in S_{E}$ for all $K \in S$, i.e., $\operatorname{Ex}^{\infty}$ is a functor $\operatorname{Ex}_{\infty}$: $S \to S_{E}$.
 - 4.4. If $K \in S_E$, then e_K^{∞} : $K \to \operatorname{Ex}^{\infty} K$ is a homotopy equivalence.
- 4.5. If $f: K \to L$ is a fiber map and φ is a 0-simplex of L, then $\operatorname{Ex}^{\infty} f: \operatorname{Ex}^{\infty} K \to \operatorname{Ex}^{\infty} L$ is a fiber map and $\operatorname{Ex}^{\infty} F(f, \varphi) = F(\operatorname{Ex}^{\infty} f, e_{L}^{\infty} \varphi)$.

Combination of the naturality of e^{∞} with property 4.4 yields the result that on the category S_E the homotopy notions induced by the functor Ex^{∞} coincide with the original ones, i.e., the homotopy theory on the whole category S induced by the functor Ex^{∞} is an *extension* of the original homotopy theory on the category S_E .

- 5. Geometrical Realization.—By the geometrical realization |K| of a c.s.s. complex K we mean the CW-complex of which the n-cells are in one-to-one correspondence with the nondegenerate n-simplices of K. For a c.s.s. map $f: K \to L$, let $|f|: |K| \to |L|$ denote the induced continuous map. Let S be the functor which assigns to every topological space X its simplicial singular complex SX. We now want to compare the complexes $\operatorname{Ex}^{\infty} K$ and S|K|.
 - 5.1. $S|e_K|: S|K| \to S|ExK|$ is a homotopy equivalence for all $K \in S$. Let $jK: K \to S|K|$ denote the natural monomorphism defined by $(jK)\sigma =$
 - 5.2. If $K \in S_E$, then $jK: K \to S|K|$ is a homotopy equivalence.

Now consider the diagram

 $|\varphi_{\sigma}|$ for $\sigma \in K$. Then⁴

$$K \xrightarrow{e_{K}} \operatorname{Ex} K \xrightarrow{e_{\operatorname{Ex} K}} \operatorname{Ex}^{2} K \xrightarrow{} \operatorname{Ex}^{2} K \xrightarrow{} \operatorname{Ex}^{\infty} K$$

$$\downarrow_{jK} \downarrow_{j\operatorname{Ex} K} \downarrow_{j\operatorname{Ex}^{2} K} \downarrow_{j\operatorname{Ex}^{2} K} \downarrow_{j\operatorname{Ex}^{\infty} K}$$

$$S|K| \xrightarrow{S|e_{K}|} S|\operatorname{Ex} K| \xrightarrow{S|e_{\operatorname{Ex} K}|} S|\operatorname{Ex}^{2} K| \xrightarrow{} \operatorname{S}|\operatorname{Ex}^{\infty} K|$$

Then properties 4.3 and 5.2 imply that $j \to K$ is a homotopy equivalence, and it follows from property 5.1 that $S|e_K^{\infty}|$ is also a homotopy equivalence. Thus we have, for each $K \in S$,

- 5.3. S|K| and $Ex^{\infty}K$ have the same homotopy type.
- 6. Subdivision and Extension.—It is possible to generalize the usual definition of the (barycentric) subdivision of simplicial complexes to c.s.s. complexes. Let $\operatorname{Sd} K$ denote the subdivision of a c.s.s. complex K, and let $d_K \colon \operatorname{Sd} K \to K$ be the natural epimorphism (i.e., c.s.s. map onto) which for $K = \Delta_n$ is the map $d_n \colon \Delta_n' \to \Delta_n$. Write $\operatorname{Sd}^n K$ for the *n*-fold subdivision of K, and let $d_K^n \colon \operatorname{Sd}^n K \to K$ denote the corresponding composite epimorphism. The duality between subdivision and extension then may be illustrated by the following lemma.
- 6.1. Let K, $L \in S$. For every integer n > 0, there exists (in a natural way) a one-to-one correspondence between the c.s.s. maps $\mathrm{Sd}^n K \to L$ and the c.s.s. maps $K \to \mathrm{Ex}^n L$.

A c.s.s. complex K is called *finite* if it has a finite number of nondegenerate simplices. It now follows from property 5.3 that

6.2. If $K, L \in \mathbb{S}$ and K is finite, then for every continuous map $f: |K| \to |L|$, there exists an integer n > 0 and a c.s.s. map $g: K \to \operatorname{Ex}^n L$ such that $|g| \simeq |e_L^n| f$.

Combining Lemma 6.2 with Lemma 6.1, we get the following version of the simplicial approximation theorem.

- 6.3. If K, $L \in \mathbb{S}$ and K is finite, then for every continuous map $f: |K| \to |L|$, there exists an integer n > 0 and a c.s.s. map $h: \operatorname{Sd}^n K \to L$ such that $|h| \simeq f|d_K^n|$.
 - ¹ Cf. D. M. Kan, these Proceedings, 41, 1092-1096, 1955.
- ² Cf. S. Eilenberg and J. A. Zilber, Ann. Math., 51, 499–513, 1950, and Am. J. Math., 75, 200–204, 1953.
 - ³ Another such functor was found by A. Heller.
 - ⁴ This result is due to J. Milnor.
 - ⁵ Cf. S. Lefschetz, Introduction to Topology, p. 112.