Part 1: L19 Recap: SV and 1-d eigen-expansion for Laplace BVP's

- ullet Separation of variables trial soln: u(r, heta)=f(r)g(heta)
- ullet Laplace's eqn $abla^2 u = 0$ in polar coords:

$$\frac{1}{r}\partial_r(r\partial_r u) + \frac{1}{r^2}\partial_{\theta\theta}u = 0 \qquad \Longrightarrow \qquad \frac{r(rf')'}{f} = -\frac{g''}{g} = s_k$$

- Superposition, break-up into single-edge inhom BC problems
- ullet Dirichlet problems on separable domain $a \leq r \leq b$ and $0 \leq heta \leq \omega$
- ullet (a) BC's: u=A(heta) on r=a and u=0 on other edges
 - g(0)=0, $g(\omega)=0$ Hom BC's \Longrightarrow solve $g''+\lambda g=0$ first: $g_k(heta)=\sin(k\pi heta/\omega)$ with $\lambda_k=k^2\pi^2/\omega^2$
 - then CE problem for f(r), BC f(b)=0, shifted soln form: $^{
 m a}$

$$f_k(r) = (r/b)^{\sqrt{\lambda_k}} - (r/b)^{-\sqrt{\lambda_k}}$$

$$-\;u=\sum_k c_k f_k(r) g_k(heta)$$
 apply BC $u(r=a)=A(heta)$

$$c_k = rac{\langle A, g_k
angle}{f_k(a) \langle g_k, g_k
angle} = rac{2}{\omega f_k(a)} \int_0^\omega A(heta) g_k(heta) \, d heta$$

Laplace-Dirichlet BVP (concluded):
$$\frac{r(rf')'}{f} = -\frac{g''}{g} = s_k$$

- ullet (b) BC's: u=C(r) on $heta=\omega$ and u=0 on other edges
 - -f(a)=0, f(b)=0 Hom BC's \Longrightarrow solve f(r) ODE first:

$$rac{d}{dr}\left(rrac{df}{dr}
ight)=-rac{\lambda}{r}f$$
 SL: $p(r)=r,\sigma(r)=1/r$

and use its CE form: $r^2f'' + rf' + \lambda f = 0$ to get shifted soln form:

$$f(r) = c_1 \cos(\sqrt{\lambda} \ln(r/a)) + c_2 \sin(\sqrt{\lambda} \ln(r/a))$$

BC f(a) = 0 gives $c_1 = 0$ then BC f(b) = 0:

$$f_k(r) = \sin(\sqrt{\lambda_k}\,\ln(r/a)) \qquad \lambda_k = \left(rac{k\pi}{\ln(b/a)}
ight)^2.$$

– then LCC problem for $g(\theta)$: $g_k'' - \lambda_k g_k = 0$, BC g(0) = 0:

$$g_k(heta) = \sinh(\sqrt{\lambda_k}\, heta)$$

 $-\;u=\sum_k c_k f_k(r) g_k(heta)$ apply BC $u(heta=\omega)=C(r)$

$$c_k = rac{\langle C, f_k
angle_\sigma}{g_k(\omega) \langle f_k, f_k
angle_\sigma} = rac{2}{g_k(\omega) \ln(b/a)} \int_a^b C(r) f_k(r) \, rac{dr}{r}$$

Part 2: Special properties of polar coordinates

- What if sector angle is $\omega = 2\pi$?
 - No boundaries in the θ -direction
 - No BC's in θ needed on the whole donut?
 - NO, solution must be **periodic**: $g(\theta+2\pi)=g(\theta)$

Eigenfons become the full Fourier series on $0 \le \theta \le 2\pi$:

$$g_k(\theta) = a_k \sin(k\theta) + b_k \cos(k\theta)$$
 $\lambda_k = k^2$

- What if inner radius is a = 0 (the origin)?
 - Need to remove the $f_k(r)$ soln terms that would be singular at r=0:

$$f = c_1 r^{\sqrt{\lambda}} + c_2 r^{-\sqrt{\lambda}} \quad \Longrightarrow \quad c_2 = 0$$

Double root case too: $f_0(r) = c_1 + c_2 \ln(r)!$

Bounded solution reduces to:

$$f_k(r) = a_k r^{\sqrt{\lambda_k}} \qquad 0 \le r \le b$$

Reminder: Green's second identity

$$\underbrace{\iint_{D} v \nabla^{2} u \, dA}_{ \left\langle v, \mathbf{L} u \right\rangle} = \underbrace{\oint_{C} \left(v \frac{\partial u}{\partial n} - u \frac{\partial v}{\partial n} \right) \, ds}_{ \text{boundary terms}} + \underbrace{\iint_{D} u \nabla^{2} v \, dA}_{ \left\langle u, \mathbf{L}^{*} v \right\rangle}$$