Lista de Exercícios IV - Integração Numérica

MAT 271 - Cálculo Numérico - PER3/2021/UFV

Professor Amarísio Araújo

OBS.: Utilize arredondamento com 6 casas decimais após a virgula.

- 1) Calcule a integral $\int_1^2 \frac{\cos(x)}{x+2} dx$ pelas regras do Trapézio, 1/3 de Simpson e 3/8 de Simpson, considerando n=6 subintervalos.
- 2) Calcule a integral $\int_0^2 \sqrt{1+x^2} dx$ pela Regra do Trapézio, com n=4 subintervalos.
- 3) Calcule a integral $\int_0^1 \frac{4}{1+x^2} dx$ pela Regra 1/3 de Simpson, com n=10 subintervalos.
- 4) Calcule a integral $\int_1^4 ln(x^3 + \sqrt{e^x + 1}) dx$ pela Regra 3/8 de Simpson, com n = 6 subintervalos.
- 5) Seja a função f dada pela seguinte tabela:

Usando regras de Simpson, calcule $\int_0^1 f(x)dx$.

6) A partir de uma linha reta ao longo do terreno à beira de um rio, um agrimensor, considerando um ponto tomado como origem (0), determinou, de x em x metros, a distância de um ponto dessa linha até as duas margens M_1 e M_2 do rio. A tabela abaixo mostra os dados obtidos pelo agrimensor, onde $y(M_1)$ e $y(M_2)$ representam, respectivamente a distância de cada ponto x da linha reta até as margens M_1 e M_2 .

x(m)	0	10	20	30	50
$y(M_1)$ (m)	50.8	86.2	136	72.8	51
$y(M_2) (m)$	113.6	144.5	185	171.2	95.3

Usando integração numérica, determine de forma aproximada a área de superfície do rio no intervalo [0, 50].

Sugestão: Use a Regra 3/8 de Simpson no intervalo [0, 30] e a Regra do Trapézio no intervalo [30, 50].

- 7) Usando a Regra 1/3 de Simpson, com h = 0.1, calcule ntegral $\int_{0.1}^{0.7} (e^{-3x} + 7x) dx$ e determine um limitante superior para o erro.
- 8) Considere a seguinte integral: $\int_{1.6}^{5.6} (\ln(x+8) 2x) dx$. Para cada uma das regras (Regra do Trapézio, 1/3 de Simpson e 3/8 de Simpson), detrmine um número mínimo de subintervalos que garanta que, ao usar a regra para calcular a integral, o erro absoluto na aproximação seja menor que 10^{-6} .

9) Uma empresa criou uma linha de montagem para fabricar um novo modelo de aparelhos celulares. Os aparelhos são produzidos a uma taxa:

$$\frac{dP}{dt} = 1500(2 - \frac{t}{2t+5}) \quad (unidades/mes).$$

Assim, a quantidade de aparelhos produzidos durante um mês M é dada por:

$$P(M) - P(M-1) = \int_{M}^{M-1} (\frac{dP}{dt}) dt.$$

Usando a $Regra\ 3/8\ de\ Simpson$, com n=6, determine o número aproximado de aparelhos do novo modelo produzidos pela empresa no terceiro mês.

10) Calcule a integral dupla $\int_0^1 \int_0^5 e^{(x+y)} dy dx$ pela Regra do Trapézio, com n=5 subintervalos.

Respostas

- 1) Pela Regra 1/3 de Simpson: ≈ 0.026207 . Pela Regra 3/8 de Simpson: ≈ 0.026206 .
- 2) ≈ 2.976529 .
- 3) ≈ 3.141593 .
- 4) ≈ 8.563331 .
- 5) Usando a Regra 3/8 de Simpson nos 3 primeiros intervalos e a Regra 1/3 de Simpson nos 2 últimos intervalos: ≈ 1.378133 . Usando a Regra 1/3 de Simpson nos 2 primeiros intervalos e a Regra 3/8 de Simpson nos 3 últimos intervalos: ≈ 1.377992 .
- 6) ≈ 3238.625 .
- 7) Valor aproximado da integral: 1.8861298; $|E| \le 0.000020$.
- 8) Regra do Trapézio: n = 241; Regra 1/3 de Simpson: n = 8; Regra 3/8 de Simpson: n = 12.
- 9) Aproximadamente 2626 aparelhos.
- 10) ≈ 218.119698 .