Thiago Noronha – tfn@dcc.ufmg.br

Algoritmos vs. Heurísticas

Algoritmo computa a resposta exata para um problema específico

Algoritmos vs. Heurísticas

Heurística computa uma resposta aproximada para um problema específico

Paradigmas de projeto de heurísticas

NÃO resolvem um problema específico

Solucionam problemas através de uma amostragem do conjunto de soluções

Quanto mais eficaz e mais eficiente for esta amostragem melhor é a heurística resultante

Mecanismos fundamentais

- Intensificação
- Diversificação
- Memória

Características

Simplicidade

• Baseadas em princípios simples e claros

Generalidade

• Capazes de solucionar diferentes problemas

Características

Eficácia

Fornecem soluções quase ótimas

Eficiência

Baixo custo computacional

Robustez

• Performance consistente sobre várias instâncias

Metaheurísticas de busca em vizinhança

Espaço de Busca

Função de vizinhança

Função de vizinhança

- •Função $N: \Gamma \longmapsto 2^{\Gamma}$
 - Mapeia uma solução $S \in \Gamma$
 - a um subconjunto $N(S) \subseteq \Gamma$,
 - onde Γ é o conjunto de soluções

Grafo de vizinhança

- •Duas soluções em Γ podem ser vizinhas ou não
 - Dependendo da função de vizinhança

Grafo de Vizinhança

Vizinhança N¹

Vizinhança 2-opt

Vizinhança 2-opt

Vizinhança Reinsert

Swap

Heurísticas de busca em vizinhança

Exploram o espaço de soluções movendo-se entre soluções vizinhas

Heurística do passeio aleatório

- Início
 - Solução viável
- Iteração
 - Mover-se para um vizinho aleatoriamente
- Parada
 - Qualquer critério de convergência

Grafo de Vizinhança

Heurísticas de busca local

Inspirados em algoritmos de gradiente

Inspirados em algoritmos de gradiente

Princípio

Soluções semelhantes tendem a ter custo semelhante

Superfície definida pelo custo das soluções

Heurística de busca local

- Início
 - Solução viável
- Iteração
 - Mover-se para o vizinho melhor
- Parada
 - Nenhum vizinho melhor encontrado

Ótimo Local vs. Ótimo global

Região de Atração

Ótimo Local vs. Ótimo global

Um ótimo global é ótimo local de qualquer vizinhança

Busca local melhor aprimorante

$$f(0,0,0) = 5$$

Busca local melhor aprimorante

Busca local melhor aprimorante

$$f(0,1,0) = 2$$

$$f(0,1,1) = 1$$

$$f(0,0,0) = 5$$

$$f(0,0,0) = 5$$

 $f(1,0,0) = 4$ $f(0,0,1) = 5$

$$f(1,0,0) = 4$$

$$f(1,1,0) = 2$$

$$F(1,1,1) = 1$$

Estratégias de Busca

- Melhor aprimorante
 - Move-se para o melhor de todos os vizinhos
- Primeiro aprimorante
 - Mover-se para o primeiro vizinho aprimorante
 - A ordem de visitação é arbitrária

Estratégias de Busca

Questões fundamentais

- Densidade do grafo de busca
 - Quantidade de ótimos locais
 - Conexidade do espaço de soluções
- Custo de cada iteração
 - Número de vizinhos
 - Complexidade de avaliar cada vizinho

Limitações: Sensível à solução inicial

Limitações: Sensível à vizinhança utilizada

Limitações: Convergência prematura

Limitações: Exponencial no pior caso

Consideração Final

É um algoritmo de busca exaustiva na vizinhança

Dados uma instância e uma solução para o problema, encontrar um vizinho melhor

- Vizinhanças muito vizinhos
 - $\bullet |N(S)| = (n^4)$
 - $|N(S)| = (n^{10})$
 - $|N(S)| = (2^n)$
- •Não é computacionalmente viável resolver por inspeção

Resolve um problema de otimização semelhante ao original

Melhor vizinho de \bar{x} na vizinhança N^k

Melhor vizinho de \bar{x} na vizinhança N^k

$$I = \{1, 2, ..., |I|\}$$

$$a_{i} \cap N$$

$$c_{i} \cap N$$

$$B \cap N$$

$$\vdots \cap I$$

$$x_{i} \cap I$$

$$x_{i} \cap I$$

$$x_{i} \cap I$$

$$\vdots \cap I$$

$$x_{i} \cap I$$

$$\vdots \cap I$$

Considerações finais

- Balancear o tamanho da vizinhança com o incremento na qualidade da solução
- Este subproblema pode ser polinomial

Busca local em múltiplas vizinhanças

Inspirados em algoritmos de gradiente

Princípio

 Aplicar busca local na união de múltiplas vizinhanças

$$\bullet N(S) = N_1(S) \cup N_2(S) \cup \cdots \cup N_k(S)$$

- $\bullet \Psi(N) = \Psi(N_1) \cap \Psi(N_2) \cap \cdots \cap \Psi(N_k)$
 - Conjunto de ótimos locais

$$\bullet N(S) = N_1(S) \cup N_2(S) \cup N_3 \cup (S) \cup N_4(S)$$

$$\bullet N(S) = N_1(S) \cup N_2(S) \cup N_3 \cup (S) \cup N_4(S)$$

Considerações Finais

- Quanto maior número de vizinhanças
 - Melhor a qualidade dos ótimos locais
 - Maior é o custo computacional
- Só é eficiente se as vizinhanças forem suficientemente distintas

Considerações Finais

- Princípio fundamental do VND
 - Quando chegar em um ótimo local, trocar a vizinhança da busca local

Busca Tabu

Princípio

O que fazer quando chegar em um Ótimo Local?

Princípio

Continue fazendo busca local!

Problema de Ciclagem

Como evitar ciclos?

Lista Tabu

Armazena todas as soluções visitadas

Lista Tabu

Prefix Trees

• 1111

- 0011
- 1011
- 0110
- 0000

- Armazena as k últimas soluções
 - Reduz O(n) bits de memória
 - Evita apenas ciclos de tamanho $\leq k$

- Armazena as 5 últimas soluções
 - $L = [S_0]$

Armazena as 5 últimas soluções

• L =
$$[S_0, S_1]$$

- Armazena as 5 últimas soluções
 - L = $[S_0, S_1, S_2]$

- Armazena as 5 últimas soluções
 - L = $[S_0, S_1, S_2, S_3]$

- Armazena as 5 últimas soluções
 - L = $[S_0, S_1, S_2, S_3, S_4]$

- Armazena as 5 últimas soluções
 - L = $[S_1, S_2, S_3, S_4, S_5]$

Armazena as 5 últimas soluções

• L =
$$[S_2, S_3, S_4, S_5, S_6]$$

• Tabelas de *Hash*

- Tabelas de *Hash*
 - 1111

- Tabelas de *Hash*
 - 1111
 - 0011

- Tabelas de *Hash*
 - 1111
 - •0011
 - 1011

- •Tabelas de *Hash*
 - 1111
 - •0011
 - 1011
 - 1111

• Tabelas de *Hash*

• Tabelas de *Hash*

- Tabelas de *Hash*
 - 1111
 - 0011
 - 1011
 - <u>1111</u>
 - 0110

- Tabelas de *Hash*
 - 1111
 - 0011
 - 1011
 - <u>1111</u>
 - 0110
 - 0000

- Características das soluções como Hash
 - S₀ = [C, A, B, C, B, A, D, C]

	1	2	3	4	5	6	7	8
Α	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0
С	0	0	0	0	0	0	0	0
D	0	0	0	0	0	0	0	0

- S₀ = [C, A, B, C, B, A, D, C]
- S₁ = [C, A, B, A, B, A, D, C]

	1	2	3	4	5	6	7	8
Α	0	0	0	0	0	0	0	0
В	0	0	0	0	0	0	0	0
С	0	0	0	5	0	0	0	0
D	0	0	0	0	0	0	0	0

- $S_0 = [C, A, B, C, B, A, D, C]$
- S₁ = [C, A, B, A, B, A, D, C]
- S₂ = [C, A, B, A, D, A, D, C]

	1	2	3	4	5	6	7	8
Α	0	0	0	0	0	0	0	0
В	0	0	0	0	5	0	0	0
С	0	0	0	4	0	0	0	0
D	0	0	0	0	0	0	0	0

- $S_0 = [C, A, B, C, B, A, D, C]$
- S₁ = [C, A, B, A, B, A, D, C]
- S₂ = [C, A, B, A, D, A, D, C]
- $S_3 = [C, D, B, A, D, A, D, C]$

	1	2	3	4	5	6	7	8
Α	0	5	0	0	0	0	0	0
В	0	0	0	0	4	0	0	0
С	0	0	0	3	0	0	0	0
D	0	0	0	0	0	0	0	0

- S₁ = [C, A, B, A, B, A, D, C]
- S₂ = [C, A, B, A, D, A, D, C]
- $S_3 = [C, D, B, A, D, A, D, C]$
- S₄ = [C, D, B, D, D, A, D, C]

	1	2	3	4	5	6	7	8
Α	0	4	0	5	0	0	0	0
В	0	0	0	0	3	0	0	0
С	0	0	0	2	0	0	0	0
D	0	0	0	0	0	0	0	0

Implementação da Lista Tabu

Características das soluções como Hash

- S₂ = [C, A, B, A, D, A, D, C]
- S₃ = [C, D, B, A, D, A, D, C]
- S₄ = [C, D, B, D, D, A, D, C]
- $S_5 = [C, D, B, D, D, A, C, C]$

	1	2	3	4	5	6	7	8
Α	0	3	0	4	0	0	0	0
В	0	0	0	0	2	0	0	0
С	0	0	0	1	0	0	0	0
D	0	0	0	0	0	0	5	0

Implementação da Lista Tabu

Características das soluções como Hash

- S₃ = [C, D, B, A, D, A, D, C]
- S₄ = [C, D, B, D, D, A, D, C]
- $S_5 = [C, D, B, D, D, A, C, C]$
- $S_6 = [C, D, B, D, D, A, C, B]$

	1	2	3	4	5	6	7	8
Α	0	4	0	3	0	0	0	0
В	0	0	0	0	1	0	0	0
С	0	0	0	0	0	0	0	5
D	0	0	0	0	0	0	4	0

Critério de aspiração

- Move-se para o melhor vizinho mesmo que ele seja tabu
 - Caso ele seja a melhor solução conhecida
 - Quando todos os vizinhos são tabu

Considerações sobre a lista tabu

- •Impacto do tamanho da lista
- Formas de computar o tamanho
 - Estático, Aleatório, ou Reativo
- Múltiplas listas tabu

Mecanismos de Memória

- Curto prazo
 - Lista tabu
- Médio prazo
 - Utilizada para fazer intensificação
- Longo prazo
 - Utilizada para fazer diversificação

Memória de Médio Prazo

- Utilizada para fazer intensificação
- Enviesa a busca na direção de um conjunto de soluções elite

Memória de Médio Prazo: Exemplo

- •Seja $\mathcal{H} \subseteq \Gamma$ o conjunto de soluções elite
- $oldsymbol{\cdot}r_i$: frequência do elemento i nas soluções de \mathcal{H}

Memória de Médio Prazo: Exemplo

- Altera a função objetivo de acordo com r_i
 - min $F(x) = \sum_{i \in I} c_i x_i$
 - min $F(x) = \sum_{i \in I} (c_i g(r_i)) x_i$

Memória de Longo Prazo

- Utilizada para fazer diversificação
- Enviesa a busca na direção oposta das soluções já amostradas

Memória de Longo Prazo: Exemplo

- •Seja $\mathcal{B} \subseteq \Gamma$ o conjunto amostradas até então
- $ullet q_i$: frequência do elemento i nas soluções de ${\mathcal B}$

Memória de Longo Prazo: Exemplo

- Altera a função objetivo de acordo com q_i
 - min $F(x) = \sum_{i \in I} c_i x_i$
 - min $F(x) = \sum_{i \in I} (c_i + f(q_i)) x_i$

Considerações Finais

- Intensificação
 - Memória de médio prazo
- Diversificação
 - Memórias de curto e longo prazo

Considerações Finais

- Os mecanismos de memória são dependentes do problema
- Só encontra soluções na mesma componente conexa da solução inicial

GRASP

Greedy Randomized Adaptative Search Procedure

Princípio

O que fazer quando chegar em um Ótimo Local?

Princípio

Reinicie a partir de uma solução diferente

- Algoritmos estocásticos
- A cada iteração gera uma solução potencialmente diferente
- •Retorna a melhor solução amostrada

Regiões de atração

Grafo de Vizinhança

Grafo de Vizinhança

- A cada iteração
 - Fase construtiva
 - Constrói uma solução inicial
 - Fase de busca local
 - Amostra o ótimo local que atrai esta solução

Greedy randomized adaptive search procedure

- A cada iteração
 - Fase construtiva
 - Constrói uma solução inicial com de uma heurística gulosa aleatorizada e adaptativa
 - Fase de busca local
 - Amostra o ótimo local que atrai esta solução

Utilizam um mecanismo de aleatorização na função gulosa

Decisões erradas não necessariamente, são repetidas nas iterações subsequentes

- Cria-se uma lista de candidatos
 - melhores de acordo com a função gulosa
- Retorna um elemento desta lista
 - Escolhido aleatoriamente

A diversidade das soluções depende da cardinalidade da lista de candidatos

- Casos extremos
 - Algoritmo guloso puro (|L| = 1)
 - Solução aleatória (|L| = |C|)

Heurísticas Gulosas Aleatorizadas Adaptativas

A cardinalidade da lista de candidatos varia a cada iteração da heurística

Heurísticas Gulosas Aleatorizadas

Heurísticas Gulosas Aleatorizadas

Heurísticas Gulosas Aleatorizadas

Greedy randomized adaptive search procedure

- A cada iteração
 - Fase construtiva
 - Constrói uma solução inicial com de uma heurística gulosa aleatorizada e adaptativa
 - Fase de busca local
 - Amostra o ótimo local que atrai esta solução

- Parâmetro 0≤ α ≤1
 - $c^{\min} = \min_{e \in E} c(e)$
 - $c^{\max} = \max_{e \in E} c(e)$
 - $LRC = \{e \in E:$ $c(e) \le c^{min} + \alpha(c^{max} c^{min})\}$

Histograma

• da qualidade das soluções em função do valor de α

•
$$LRC = \{e \in E : c(e) \le c^{min} + \alpha(c^{max} - c^{min})\}$$

$$\infty = 0.5$$

$$c^{min} = 1$$

$$c^{min} = 103$$

$$LRC = \{e \in E : c(e) \le 52\}$$

$$LRC = \{a, b\}$$

•
$$LRC = \{e \in E : c(e) \le c^{min} + \alpha(c^{max} - c^{min})\}$$

 $LRC = \{a\}$

•
$$LRC = \{e \in E : c(e) \le c^{min} + \alpha(c^{max} - c^{min})\}$$

•
$$LRC = \{e \in E : c(e) \le c^{min} + \alpha(c^{max} - c^{min})\}$$

•
$$LRC = \{e \in E : c(e) \le c^{min} + \alpha(c^{max} - c^{min})\}$$

GRASP Reativo

- Prais & Ribeiro (2000)
- A cada iteração
 - •
 « é escolhido aleatoriamente a partir de um conjunto de valores
 - $\{ \alpha_1, \dots, \alpha_m \}$, $i \in \{1, \dots, m\}$
 - Cada valor está associado a uma probabilidade
 - $\{p_1, \cdots, p_m\}$

GRASP Reativo

•
$$p_i = \frac{1}{m}$$

- Mas são atualizadas periodicamente
 - de modo a favorecer valores de ∝ que levam a melhores soluções

GRASP Reativo

•Atualiza a cada k iterações

$$\bullet p_i = \frac{q_i}{\sum_{j=1}^m q_j}, \qquad i \in \{1, \cdots, m\}$$

• Onde,
$$q_i = \left(\frac{z^*}{A_i}\right)^{\delta}$$

Filtro de Hashing

Woodruff & Zemel (1993)

- Armazena todas as soluções iniciais
- Não aplica busca local a estas soluções

Filtro de qualidade

• Feo, Resende, & Smith (1994)

- Armazena a melhor solução conhecida
- Não aplica busca local a soluções baixa qualidade

Considerações Finais

- Intensificação
 - Busca local
- Diversificação
 - Heurística Gulosa Aleatorizada
- Memória
 - ullet Utilizada para computar o valor de lpha

Variable Neighborhood Search

Generalização de VND

O que fazer quando chegar em um Ótimo Local?

Reinicie a partir de uma solução diferente

Reinicia a partir de uma solução diferente, mas parecida com o ótimo local

Utiliza uma estratégia de destruir-e-reconstruir

Regiões de atração

Greedy randomized adaptive search procedure

- A cada iteração
 - Fase construtiva
 - Constrói uma solução inicial com de uma heurística gulosa aleatorizada e adaptativa
 - Fase de busca local
 - Amostra o ótimo local que atrai esta solução

Variable Neighborhood Search

• Faz busca local em uma única vizinhança

Lembra um VND

• Mas VND faz busca local em todas as vizinhanças

Consideração final

Se comporta como uma busca local no espaço de ótimo locais

Regiões de atração

Metaheurísticas de busca em vizinhança

Thiago Noronha – tfn@dcc.ufmg.br