گزارش کار پروژه اول آنالیز عددی ۱

گروه ۶ ۴ اردیبهشت ۱۴۰۲

١ سوال ١

1.1 صورت سوال

فرض کنید fl(y) عدد k رقمی قطع شده و باشد، نشان دهید:

$$\frac{\left|y - fl(y)\right|}{\left|y\right|} \le 10^{-k+1}$$

۲.۱ ياسخ

اريم:

$$\frac{\left|0.d_{1}d_{2}...d_{n} \times 10^{n} - 0.d_{1}d_{2}...d_{k} \times 10^{n}\right|}{\left|y\right|}$$

$$= \frac{\left|0.000...d_{k+1}d_{k+2}...d_{n} \times 10^{n}\right|}{\left|y\right|}$$

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k} \times 10^{n-k}\right|}{\left|y\right|}$$

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k} \times 10^{n-k}\right|}{\left|0.d_{1}d_{2}...d_{n} \times 10^{n}\right|}$$

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k} \times 10^{n-k}\right|}{\left|0.d_{1}d_{2}...d_{n}\right|}$$

مخرج را تا یک رقم اعشار قطع میکنیم. داریم:

$$0.d_1 \le 0.d_1d_2... \le 1$$

پس:

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k} \times 10^{-k}\right|}{0.d_1}$$

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k} \times 10^{-k}\right|}{d_1 \times 0.1}$$

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k}\right|}{d_1} \times \frac{10^{-k}}{\frac{1}{10}}$$

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k}\right|}{d_1} \times 10^{-k+1}$$

چون که:

$$0 < 0.d_{k+1}d_{k+2}...d_{n-k} < 1$$

$$1 \le d_1 \le 9$$

$$0 < \frac{0.d_{k+1}d_{k+2}...d_{n-k}}{d_1} < 1$$

پس

$$= \frac{\left|0.d_{k+1}d_{k+2}...d_{n-k}\right|}{d_1} \times 10^{-k+1} \le 10^{-k+1}$$

۲ سوال ۲

1.۲ صورت سوال

فرض کنید $\lim_{x \to 0} \frac{f(x)}{x^p} = C \neq 0$ و $f(x) = \frac{2 \cdot log(1+x) + 2 \cdot itan^{-1}(ix) + x^2}{-x^4}$ با داشتن سری مکلورن توابع $tan^{-1}(x)$ و $tan^{-1}(x)$ مقادیر $tan^{-1}(x)$

۲.۲ ياسخ

همانطور که در فایل میپل حل این سوال قابل مشاهده است، در مرحله اول با تعریف ظابطه اصلی تابع و رسم نمودار آن سعی میکنیم در کی هندسی از رفتار آن بیابیم. نمودار اول نشان میدهد که تابع در \cdot به مقداری نزدیک به \cdot میل میکند. اما با برسی دقیق تر و محدود کردن دامنه نمایش نمودار مشاهده میشود که تابع در مقادیر نزدیک به صفر شدیدا نوسان میکند.

 $O(x^y)$ ارای حل سوال در ابتدا بسط مکلورن توابع را تا درجه ۱۰ محاسبه میکنیم. نرم افزار میپل از برای نمایش درجه خطا در یک سری تیلور استفاده میکند. یا این توصیف با افزایش تعداد جملات سری تیلور برای نمایش درجه آن میتوان خطا را تا حد توانایی مجاسباتی کامپیوتر کاهش داد. اما چون در این مورد x بسیار نزدیک به است میتوان با همین درجه پیش رفت چرا که وقتی x نزدیک به صفر است x^{11} بسیار کوچک خواهد بود.

برای این است که میپل سری هارا تا درجه حداکثر ۲۰ محاسبه کند و خطا کمی بیشتر Order=20 برای این است که میپل سری هارا تا درجه حداکثر کاهش پیدا کند. همانطور که گفته شد جملات O(21) و O(20) را از سری ها حذف میکنیم. تابعی به صورت زیر تعریف میکنیم:

$$Lim(n) = \lim_{x \to 0} \frac{f_2(x)}{x^n}$$

مقادیر Lim را برای n از ۱ تا ۱۰ محاسبه میکنیم و همانطور که مشاهده میشود بخشی از حدود تعریف نشده است. تابع Lim را این بار با اعمال قاعده هوپیتال تعریف میکنیم و دوباره مقادیر Lim را برای n از تا ۱۰ محاسبه میکنیم. میبینیم که

$$\lim_{x \to 0} \frac{f_2(x)}{x^2} = \frac{1}{3}$$

پس

$$L = \frac{1}{3}, p = 2$$

٣ سوال ٣

۱.۳ صورت سوال

با استفاده از یک برنامه عددی و تعریف دنباله ای سری ها نشان دهید سری های زیر به ترتیب همگرا و واگرا هستند.

$$\sum_{i=1}^{\infty} \frac{1}{n^2}$$

$$\sum_{i=1}^{\infty} \frac{1}{n}$$

۲.۳ ياسخ

طبق تعریف همگرایی دنباله ها داریم:

$$\exists \alpha \in \mathbb{R} \quad \forall \varepsilon > 0 \quad \exists N > 0 \quad \forall n > N \quad ; \quad |\alpha_n - \alpha| < \varepsilon$$

در صورت صدق گزاره بالا گوییم دنباله (α_n) به α همگراست. گوییم دنباله ای واگراست اگر همگرا نباشد. پس نقیض منطقی گزاره بالا را محاسبه میکنیم:

$$\forall\!\alpha\!\in\!\mathbb{R}\quad\exists\varepsilon\!>\!0\quad\forall N\!>\!0\quad\exists n\!>\!N\quad;\quad\left|\alpha_n-\alpha\right|\!\geq\!\varepsilon$$

با این توصیف الگوریتم را به این صورت می سازیم تا با گرفتن α و N به عنوان ورودی به دنبال کمترین میزان ε بگردد و به همراه اندیس عضو دنباله بر گرداند. این الگوریتم هم برای نشان دادن همگرایی و هم واگرایی قابل استفاده است.

فایل متلب $\frac{1}{n^2}$ تعریف دنباله است که میتوان با تغییری کوچک دنباله $\frac{1}{n}$ را به $\frac{1}{n^2}$ تبدیل کرد و برعکس. N و شایل الگوریتم است که تابعی است در متلب که با گرفتن α و α مقادیر خواسته شده را برمیگرداند. α فایل اجرایی است که مقادیر رندوم برای α انتخاب میکند و با اجرای الگوریتم مقادیر را گرفته و در یک آرایه ذخیره میکند.

C فایل های mat. در پوشه MATLAB ارایه های ذخیره شده برای اجرای های مختلف اند. پیشوند نمایش دهنده دنباله $\frac{1}{n^2}$ و نمایش دهنده D و نمایش دهنده دنباله و نمایش دهند دنباله و نمایش داد.

برای اثبات همگرایی دنباله ، طبق تعریف انتظار داریم برای هر مقدار α ای یا یک n با ε کوچک پیدا شود یا برای اثبات همگرایی دنباله ، طبق تعریف انتظار داریم برای مقادیر رندوم α اند. n اند.

	1	2	3		1	2	3
1	0.0052	1.2448	2	1	0.0115	1.2385	2
2	0.1958	1.0542	2	2	0.0672	1.1828	2
3	0.4445	0.8055	2	3	0.3576	0.8924	2
4	0.5497	0.7003	2	4	0.6799	0.5701	2
5	0.6359	0.6141	2	5	0.9082	0.3418	2
6	0.8995	0.3505	2	6	0.9111	0.3389	2
7	0.9382	0.3118	2	7	1.0580	0.1920	2
8	1.1171	0.1329	2	8	1.0970	0.1530	2
9	1.3629	0.0018	3	9	1.1921	0.0579	2
10	1.3887	0.0276	3	10	1.1940	0.0560	2
11	1.4761	0.0125	5	11	1.5272	2.1005e-04	8
12	1.5000	0.0086	6	12	1.5366	0.0032	9
13	1.5475	0.0022	10	13	1.7587	0.1139	8000
14	1.6725	0.0277	8000	14	1.8866	0.2418	8000
15	1.8971	0.2523	8000	15	1.9175	0.2726	8000

ستون اول مقادیر α ستون دوم مقادیر ε و ستون سوم مقادیر n است. همانطور که قابل مشاهده است برای مقادیری از α کوچک است و به صورت ناگهان مقادیر α به ω میرود که حد محاسبه اعضای دنباله است. این به این معنی است که دنباله همگرا به مقداری میان این دو ω است. برای اثبات واگرایی انتظار داریم برای هر ω یک ω کوچک و یک ω کوچک پیدا شود.

83	8.7898	1.1505e-04	3687	19	1.8379	0.0045	3
84	8.8972	9.6251e-05	4104	20	1.9792	0.1042	4
85	8.9096	1.5744e-05	4156	21	2.0600	0.0233	4
86	9.1281	3.7631e-05	5171	22	2.1015	0.0182	4
87	9.1503	3.1862e-05	5287	23	2.2076	0.0757	5
88	9.2183	1.5103e-05	5659	24	2.2605	0.0228	5
89	9.2450	5.4962e-05	5812	25	2.4771	0.0271	6
90	9.2507	5.3647e-05	5845	26	2.5600	0.0328	7
91	9.2928	6.3250e-05	6097	27	2.8418	0.0128	9
92	9.3483	6.5690e-05	6445	28	2.9157	0.0133	10
93	9.5179	3.5764e-06	7636	29	2.9427	0.0137	10
94	9.5845	0.0201	8000	30	2.9465	0.0175	10
95	9.7094	0.1449	8000	31	2.9506	0.0217	10
96	9.7542	0.1897	8000	32	2.9977	0.0222	11
97	9.7956	0.2311	8000	33	3.1779	0.0022	13
98	9.8988	0.3344	8000	34	3.3031	0.0151	15

فایل های تری نسبت به موارد D-ARR5.mat, C-ARR.mat فایل های تری نسبت به موارد ذکر شده در گزارش هستند اما همچنان ادعای مطرح شده را تصدیق میکنند.

منابع GitHub