# EXERCICE N°1 (Le corrigé)

On se place dans un plan muni d'un repère orthonormé  $(O; \vec{i}; \vec{j})$ .

Par lecture graphique, décrire chacune des droites représentées ci-dessous, par un point et un vecteur directeur.





On <u>choisit</u> le point A(2; -1) et le vecteur  $\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$   $d_1$  est la droite passant par le point A(2; -1) et dirigée par le vecteur  $\vec{u} \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ .

On <u>choisit</u> le point B(-3; 3) et le vecteur  $\vec{v} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$   $d_2$  est la droite passant par le point e B(-3; 3) t dirigée par le vecteur  $\vec{v} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ .

On <u>choisit</u> le point C(0; 2) et le vecteur  $\vec{w} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$   $d_3$  est la droite passant par le point et C(0; 2) dirigée par le vecteur  $\vec{w} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ .

## EXERCICE N°2 (Le corrigé)

On se place dans un plan muni d'un repère orthonormé  $(O; \vec{i}; \vec{j})$ .

Soit d la droite de vecteur directeur  $\vec{u} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$  passant par le point A(-1; 2)

1) Donner les coordonnées de deux autres vecteurs directeurs de d

Donnons, par exemple, le vecteur  $\vec{v} = \frac{1}{4}\vec{u}$  et le vecteur  $\vec{w} = -\frac{\pi}{\sqrt{2}}\vec{u}$ 

Souvenez-vous, il faut et il suffit que les vecteurs soient non nuls et colinéaires à  $\vec{u}$ . (<u>définition n°9 page 5</u> si vous avez un doute)

On pouvait bien sûr choisir des vecteurs « plus simples » :  $\vec{a} = 2\vec{u}$  soit  $\vec{a} \begin{pmatrix} 6 \\ -4 \end{pmatrix}$  était « très bien aussi »

2) Décrire une droite (strictement) parallèle à la droite d

On va garder le vecteur  $\vec{u}$  (ou choisir un vecteur non nul qui lui est colinéaire) et on va choisir un point B n'appartenant pas à la droite d.

On a pas envie de faire un dessin mais on a pas envie de se tromper non plus...

Donc on réfléchit ...

L'abscisse du vecteur  $\vec{u}$  ne vaut pas zéro donc la droite n'est pas parallèle à l'axe des ordonnées, le point A(-1;2) est par conséquent le seul point d'abscisse -1 appartenant à d (il est important que vous compreniez bien cela, alors n'hésitez pas à prendre du temps sur cette remarque). Il nous suffit donc de garder l'abscisse et de changer l'ordonnée pour avoir un point n'appartenant pas à d. Par exemple : B(-1;3)

On peut donner la droite d' passant par le point B(-1;3) et dirigée par le vecteur  $\vec{u}$ .

## EXERCICE N°3 (Le corrigé)

On se place dans un plan muni d'un repère orthonormé  $\left(O~;~\vec{i}~;~\vec{j}\right)~.$ 

Représenter la droite d de vecteur directeur  $\vec{u} \binom{-1}{2}$  passant par le point A(-2;3) et la droite d' de vecteur directeur  $\vec{v} \binom{3}{1}$  passant par le point B(-1;2)



Pour d: on place le point A puis son image par la translation de vecteur  $\vec{u}$  (il suffit d'ajouter les coordonnées de  $\vec{u}$  à celles de A) et enfin on trace la droite passant par les deux points précédents.

## **EXERCICE** N°1

On se place dans un plan muni d'un repère orthonormé  $\left(O \; ; \; \vec{i} \; ; \; \vec{j} \right)$ .

Par lecture graphique, décrire chacune des droites représentées ci-dessous, par un point et un vecteur directeur.



### **EXERCICE** N°2

On se place dans un plan muni d'un repère orthonormé  $\left(O\;;\;\vec{i}\;;\;\vec{j}\right)$ . Soit d la droite de vecteur directeur  $\vec{u}{3\choose -2}$  passant par le point  $A(-1\;;\,2)$ 

- 1) Donner les coordonnées de deux autres vecteurs directeurs de d
- 2) Décrire une droite (strictement) parallèle à la droite d

#### **EXERCICE N°3**

On se place dans un plan muni d'un repère orthonormé  $\left(O \; ; \; \vec{i} \; ; \; \vec{j} \right)$ .

Représenter la droite d de vecteur directeur  $\vec{u} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$  passant par le point A(-2;3) et la droite d' de vecteur directeur  $\vec{v} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$  passant par le point B(-1;2)