Python ile Veri Analizi

Gösterge Paneli / Dersler / Çeşitli / Python ile DA / pandalar / Pandalar Bölüm-2

Pandalar Bölüm-2

Yapılacaklar: Aktivitenin sonuna kadar gidin

Metin ve Zaman Yöntemleri

Birçok veri parçası, salt sayılar yerine metin biçimindedir. Bu, dizenin incelenmeden, algoritmalar tarafından işlenmeden veya halka gösterilmeden önce temizlenmesi ve ön işleme tabi tutulması gerektiği anlamına gelir. Neyse ki pandas kitaplığında, dize verileriyle çalışmayı kolaylaştıran dize işlemeye ayrılmış bir bölüm vardır.

Diziler ve Dizinler, dizinin her bir öğesi üzerinde çalışmayı kolaylaştıran bir dizi dizi işleme yöntemiyle donatılmıştır. Belki de en önemlisi, bu yöntemler eksik/NA değerlerini otomatik olarak hariç tutar. str Bunlara öznitelik aracılığıyla erişilir .

```
df=sns.load_dataset('titanic')
df.head(3)
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	no	False
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	yes	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	yes	True

• lower(): Dizeleri küçük harfe dönüştürür

```
df.embark_town =df.embark_town.str.lower()
df.embark_town.head(3)
0    southampton
```

1 cherbourg

2 southampton

Name: embark_town, dtype: object

• upper(): Dizeleri büyük harfe dönüştürür.

```
df.sex=df.sex.str.upper()
df.sex.head(3)

0     MALE
1     FEMALE
2     FEMALE
Name: sex, dtype: object
```

• islower(): Her dizedeki tüm karakterlerin küçük harf olup olmadığını kontrol eder. Boole değerini dönc 🛧

```
df.sex.head(2).str.islower()

0    True
1    True
Name: sex, dtype: bool
```

• isupper(): Her dizedeki tüm karakterlerin büyük harf olup olmadığını kontrol eder. Boole değerini döndürür

```
df.sex.head(2).str.isupper()

0   False
1   False
Name: sex, dtype: bool
```

• isdigit(): Her dizedeki tüm karakterlerin rakam olup olmadığını kontrol edin.

```
df.pclass.astype('string').str.isdigit().head(2)

0    True
1    True
Name: pclass, dtype: boolean
```

• isnumeric(): Her dizedeki tüm karakterlerin sayısal olup olmadığını kontrol eder. Boole değerini döndürür.

```
df.pclass.astype('string').str.isnumeric().head(2)

0    True
1    True
Name: pclass, dtype: boolean
```

replace():a değerini b değeriyle değiştirir

```
df['age']=df['age'].replace(np.nan,'UNKNOWN')
```

contains(): Alt dize öğede varsa, her öğe için bir Boolean değeri True, yoksa False döndürür.

```
df[df.sibsp.astype('string').str.contains('1')].head(2)
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alc
0	0	3	MALE	22.0	1	0	7.2500	S	Third	man	True	NaN	southampton	no	Fa
1	1	1	FEMALE	38.0	1	0	71.2833	С	First	woman	False	С	cherbourg	yes	Fa

split(): Her dizeyi verilen desenle böler

```
df.sex.str.split('MALE').head(2)

0    [, ]
1    [FE, ]
Name: sex, dtype: object
```

• strip(): Her dizeden boşluk (yeni satır dahil) çıkarmaya yardımcı olur

```
df.sex.str.strip('LE').head(2)

0     MA
1     FEMA
Name: sex, dtype: object
```

• find(): Modelin ilk oluşumunun ilk konumunu döndürür

```
df.embark_town.str.find('southampton').head(2)
0  0.0
1  -1.0
Name: embark_town, dtype: float64
```

• findall(): Modelin tüm oluşumlarının bir listesini döndürür.

```
df.embark_town.str.findall('southampton').head(2)

0    [southampton]
1         []
Name: embark_town, dtype: object
```

Bu soru buraya gömülemez.

How do I use string methods in pandas?

Zaman serisi verileri şu anda çok çeşitli endüstrilerde zaman serisi tahmini, mevsimsellik analizi, trend tespiti ve kritik iş ve araştırma seçimleri yapmak için kullanılmaktadır. Sonuç olarak, bir veri bilimcisi veya veri analistinin zaman serisi verilerini doğru bir şekilde anlaması kritik öneme sahiptir.

datetimemodül, Python'da zaman serisi verileriyle çalışmak için temel nesneleri içerir.

```
df=sns.load_dataset('flights')
df.head(3)
```

	year	month	passengers
0	1949	Jan	112
1	1949	Feb	118
2	1949	Mar	132

• to_datetime()Timestamp yöntem, bir nesneyi döndüren birçok farklı türde tarih temsilini ayrıştırır .

```
df['year']=pd.to_datetime(df['year'],format='%Y' )
df.year.head(3)

0    1949-01-01
1    1949-01-01
2    1949-01-01
Name: year, dtype: datetime64[ns]
```

• strftime - nesneyi belirli bir formata göre bir dizgeye dönüştürün

```
from datetime import datetime
current_date=datetime.now()
current_date

datetime.datetime(2022, 4, 8, 14, 50, 37, 470978)

date=current_date.strftime(('%d'+' '+'%b'+' '+'%Y'))
date
```

'08 Apr 2022'

strptime - bir dizgiyi datetime karşılık gelen bir formatta verilen bir nesneye ayrıştırın

```
datetime.strptime(date, '%d %b %Y')
datetime.datetime(2022, 4, 8, 0, 0)
```

• timedelta- zaman farkı verir

```
from datetime import timedelta
two_days_before=current_date.now()-timedelta(days=2)
two_days_before

datetime.datetime(2022, 4, 6, 14, 52, 13, 368791)
```

Bu soru buraya gömülemez.

