

[GB 020197]

**REMARKS****I. INTRODUCTION**

No new matter has been added. Thus, claims 1-4 remain pending in this application. It is respectfully submitted that based on the following remarks that all of the presently pending claims are in condition for allowance.

**II. THE 35 U.S.C. § 102(e) REJECTION SHOULD BE WITHDRAWN**

The Examiner has rejected claims 1-4 under 35 U.S.C. § 103(a) as unpatentable over U.S. Pat. No. 7,013,391 (Herle). (See 8/7/06 Office Action, pp. 2-4).

Herle describes a mobile station location server that determines the mobile station's location through various location techniques or by receiving the location information from the mobile station over an encrypted channel. The server stores the location in memory that may be accessed by authorized client access devices. A requesting client access device transmits a request to the server. The server authenticates the request to verify that the client access device is authorized to receive the location information. If the client access device is authorized, the server can then transmit the information in either an encrypted or decrypted form to the device. (See Herle, abstract). The server also holds within its memory profile fields of the mobile stations, authorized client profile fields, and encryption-decryption keys. (See *Id.*, col. 5, ll. 55-57). Using the different fields and keys, the server authenticates and transmits the location information. (See *Id.*, col. 5, l. 59 – col. 6, l. 8).

Claim 1 of the present application recites "sharing the predetermined encryption key between the mobile device and the remote terminal but *not* with the server." This recitation highlights the server's minimal interaction when a remote terminal queries the server for the location of the mobile device. For example, if the mobile device and the remote terminal are cellular telephones MS1, MS2, an encryption key may be appended to messages exchanged between the cellular telephones. (See Specification, p. 4, ll. 1-3). Thus, when the remote

[GB 020197]

terminal receives the encrypted location data, "the user of telephone MS1 [is] able to determine the location of telephone MS2 without a third part being able to do the same." (See Id., p. 4, ll. 22-23). In this manner, the server only provides a route to send the encrypted location data from the mobile device to the remote terminal. That is, only the mobile device and the remote terminal possess the means to determine the location of the mobile device.

The system of Herle provides a different approach to providing the location data. Initially, two sets of encryption-decryption keys are utilized. The first set of encryption-decryption keys stored in the memory of the mobile stations is used to allow decoding of the location data. The second set of encryption-decryption keys stored in the server is used to authenticate remote terminals prior to transmission of the location data. In contrast, the present application utilizes a single encryption key for each query of location data.

In addition, the server of Herle plays a larger role in the location data exchange. Specifically, the *server* of Herle authenticates remote terminals prior to transmission of the mobile station location data. Using the second set of encryption-decryption keys in the mobile station record contained in the memory of the server, the server pre-authenticates the querying terminal prior to transmission of the location data. That is, the server controls the authentication process once the location data is stored in its memory. One embodiment taught by Herle allows the server to decrypt the location data and transmit unencrypted position data to the authenticated client device. (See Herle, col. 6, ll. 56-60). In contrast, claim 1 recites the single encryption key that is only shared between the mobile device and remote terminal. Thus, no authentication procedure is required at the server. Furthermore, no authentication procedure is required at the mobile devices because only the remote terminal that has the shared encryption key can decode the encrypted location data. The use of the server in Herle does not require any exchange (*i.e.*, sharing) of encryption keys.

Thus, it is respectfully submitted that Herle does not disclose or suggest "sharing the predetermined encryption key between the mobile device and the remote terminal but *not* with the server," as recited in claim 1. Accordingly, it is respectfully requested that the Examiner should withdraw the 35 U.S.C. § 102(e) rejection of claim 1.

[GB 020197]

Claim 2 recites a “mobile device configured to...share the predetermined encryption key with a remote terminal but not the server.” Thus, it is respectfully submitted that this claim is also allowable for the same reasons discussed above with reference to claim 1. Accordingly, it is respectfully requested that the Examiner should withdraw the 35 U.S.C. § 102(e) rejection of claim 2.

Claim 3 recites a server “wherein between receipt and transmission of the encrypted location by the server, the server is not in possession of the encryption key.” Thus, it is respectfully submitted that this claim is also allowable for the same reasons discussed above with reference to claim 1. Accordingly, it is respectfully requested that the Examiner should withdraw the 35 U.S.C. § 102(e) rejection of claim 3.

Claim 4 recites a “terminal configured to query a remote server for the location of a particular mobile device with which it has shared an encryption key independently of the server.” Thus, it is respectfully submitted that this claim is also allowable for the same reasons discussed above with reference to claim 1. Accordingly, it is respectfully requested that the Examiner should withdraw the 35 U.S.C. § 102(e) rejection of claim 4.

[GB 020197]

**CONCLUSION**

In view of the above remarks, it is respectfully submitted that all the presently pending claims are in condition for allowance. All issues raised by the Examiner having been addressed, an early and favorable action on the merits is earnestly solicited.

Please direct all future correspondence to:

Paul Im, Esq.  
IP Counsel

Philips Intellectual Property & Standards  
P.O. Box 3001  
Briarcliff Manor, NY 10510-8001  
Phone: (914) 333-9602  
Fax: (914) 332-0615  
Email: Paul.im@philips.com

Respectfully submitted,

By:   
Michael J. Marcin (Reg. No. 48,198)

Fay Kaplun & Marcin, LLP  
150 Broadway, Suite 702  
New York, New York 10038  
Tel: (212) 619-6000  
Fax: (212) 619-0276