Vessel enhancement and segmentation visualizer

Renzo Phellan Aro

What did I develop?

An application addressed to <u>analyze and compare</u> three dimensional <u>medical images of the brain</u> and their corresponding <u>segmentations</u> after <u>vessel</u>

enhancement.

Assumptions

You have **4 images**:

- 3D grayscale image of the **original** brain.
- 3D grayscale image of the **enhanced** brain.
- <u>Segmentation</u> of vessels corresponding to <u>original</u> brain. It can be manual or ground-truth segmentation.
- <u>Segmentation</u> of vessels corresponding to <u>enhanced</u> brain. It is a result of automatic segmentation.

Visual elements

One screen - 4 sections

- A. Normal brain
- **B.** Enhanced brain
- C. Load data
- D. Metrics

Section A. Original Brain

- Axial, Coronal and Sagittal views.
- Red bars to navigate slices.
- Blue bars to move the image.
- Segmentations corresponding to original and enhanced brains are overlaid.
- Control panel.

Section A. Control Panel

- Synchronize navigation in A original and B enhanced.
- Modify window and level.
- Check which segmentations are visible (matching colors) and control their <u>oppacity</u>.
- Show 3D rendering.

Section A. Interactive 3D rendering

Three dimensional visualization of selected segmentations, with **BoxWidget** to focus on a particular subsection.

Section B. Enhanced Brain

- Axial, Coronal and Sagittal views.
- Red bars to navigate slices.
- Blue bars to move the image.
- Segmentations corresponding to original and enhanced brains are overlaid.
- Control panel.

Section B. 3D rendering

Color coded:

- Green: Only original segmentation.
- Red: Only enhanced segmentation.
- Blue: Both.

Section B. Control Panel

- Modify window and level.
- Check which segmentations are visible (matching colors) and control their oppacity.
- Show 3D rendering with: voxels that belong only to original, only to enhanced, and to both.

Section C. Load Data.

Load original brain

Load enhanced brain

Load gold segmentation

Load segmentation

Section D. Metrics

Dice Coefficient to measure overlapping between segmentations.

1945: Lee Raymond Dice "Measures of the Amount of Ecologic Association Between Species"

Summarizing ...

Technology

Software	Version	Function
Nibabel [17]	2.0.2	To read Niftii images.
PyQt [18]	4.11.2	To program interfaces in Qt and handle them with Python.
Python [19]	2.7.9	Programming language.
Pyuic [20]	4.0	To translate the Qt code of QtDesigner into Python code.
Qt [21]	4.8.6	The programming language for user interfaces.
QtDesigner [22]	4.8	A graphical interface designing tool based in Qt.
VTK [23]	5.8.0	Image processing and visualization algorithms.

Improvements

- -Adding more characteristics to the interface: Zoom, Personalize colors.
- -New metrics can be added to Section D.
- -Detailed renderings with computationally expensive algorithms and GPU.
- *In this application, rendering is done by using the Marching Cubes algorithm, followed by a Decimation step to reduce the number of triangles generated by Marching Cubes algorithm and accelerate the response of the application to user interaction.