Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 15

- Dijkstra's algorithm cont'd
- Interval scheduling

Reflection on Dijkstra: greedy stays ahead

- Known region R: in which the shortest distance to s is known
- Growing R: adding v that has the shortest distance to s
- How to Identify v? The one that minimizes d(u) + l(u, v) for $u \in R$ Shortest path to some u in known region, followed by a single edge (u, v)


```
Dijk(G,s) // initialize d(s) = 0, d(u) = \infty, R=Ø
While R ≠ V
Pick v \notin R w. smallest d(v) // by Priority Q
Add v to R
For all edges (v,w) \in E
If d(v) > d(u) + l(u,v)
d(v) \leftarrow d(u) + l(u,v)
```

Contrast with Bellman-Ford

■ Dijkstra (Greedy) $O((m+n)\log n)$

$$\frac{d(v)}{d(v)} = \min_{u \in R} d(u) + l(u, v)$$

- Positive weight: no need to wait; more edges in a path do not help
- Bellman-Ford (Dynamic programming) O(mn)

$$\frac{\mathsf{OPT}(i,v)}{\mathsf{opt}(i-1,v)} = \min\left\{\mathsf{OPT}(i-1,v), \min_{v \to w \in E} \{\mathsf{OPT}(i-1,w) + l_{v \to w}\}\right\}$$

❖Global vs. Local

- Dijkstra's requires global information: known region & which to add
- Bellman-Ford uses only local knowledge of neighbors, suits distributed setting

Network routing: distance-vector protocol

Communication network

- Nodes: routers
- Edges: direct communication links
- Cost of edge: delay on link.

naturally nonnegative, but Bellman-Ford used anyway!

Distance-vector protocol ["routing by rumor"]

- Each router maintains a vector of shortest-path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs separate computations for each potential destination node.
- Path-vector protocol: coping with dynamic costs

Correctness of Dijkstra's algorithm

Known Region R

Invariant. For each node $u \in R$, d(u) is the length of a shortest s - u path

Proof. (By induction on size of R)

- Base case: |R| = 1 trivial
- Induction hypothesis: true for $|R| = k \ge 1$
 - Let v be the next node added to R and (u, v) be the chosen edge. Call this s u v path P.
 - Consider any s v path Q. [Next show it's no shorter than P]
 - Let (x, y) be the first edge in Q leaving R; let Q' be the S x segment
 - $l(Q) \ge l(Q') + l(x,y) \ge d(x) + l(x,y) \ge l(P)$; because Dijkstra's picked v in this iteration (node outside R with shortest distance to s)

Recall: weighted interval scheduling

- Input. n jobs; job j starts at s_j , finishes at f_j , weight w_j
- Output. Subset of mutually compatible jobs of maximum weight

Greedy strategies

Recall. DP recurrence.

OPT(j) = value of optimal solution to jobs 1,2, ..., j

$$\frac{OPT(j)}{OPT(j)} = \begin{cases}
0 & \text{if } j = 0 \\
max{OPT(j-1), } w_j + OPT(pre(j)) \end{cases} \text{ otherwise}$$

- Greedy: be lazy & pick the next compatible job that "looks nice"
 - Earliest start time: ascending order of s_i .
 - Earliest finish time: ascending order of f_i .
 - Shortest interval: ascending order of $f_i s_i$.
 - Fewest conflicts: the one that conflicts the least number of jobs go first.
- Exercise. Find counterexamples for each strategy (if possible)

Greedy: counterexamples

© Earliest start time: ⊗ Shortest interval: **©** Fewest conflicts:

© Earliest finishing time

Greedy Algorithm: earliest finishing time

```
IntScheduling (\{s_j, f_j\})

1. Sort by finishing time so that f_1 \leq f_2 \leq \cdots \leq f_n \longrightarrow O(n \log n)

2. A \leftarrow \emptyset // set of selected jobs

3. For j = 1, ..., n

If j compatible with A

A \leftarrow A \cup \{j\}
```

- Running time: $O(n \log n)$
- Correctness: proof by contradiction
 - Suppose greedy is not optimal
 - Consider an optimal strategy: one that agrees with Greedy for as many initial jobs as possible
 - Look at the first place that they differ: show a new optimal that agrees with greedy more

Greedy Algorithm: correctness

Proof (by contradiction): Suppose greedy is not optimal

- Let $i_1, i_2, ..., i_k$ denote set of jobs selected by greedy
- Let $j_1, j_2, ..., j_m$ be set of jobs in the optimal solution OPT where $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$ for the largest possible value of r
- Sub i_{r+1} for j_{r+1} in OPT: still feasible and optimal (OPT'); but agrees with Greedy at r+1 positions; contradicts the maximality of r

Interval Partitioning Problem

Scheduling classes

- Input. Lectures $\{s_j, f_j\}$
- Output. Minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Can you do better? 10 lectures scheduled in 4 classrooms

Interval Partitioning Problem

Scheduling classes

- Input. Lectures $\{s_j, f_j\}$
- Output. Minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Greedy algorithm

 Idea. Sort lectures in increasing order of start time: assign lecture to any compatible classroom.

```
IntPartition({s<sub>j</sub>, f<sub>j</sub>}) // r ← 0 # of allocated rooms
1. Sort by starting time so that s_1 \le s_2 \le \cdots \le s_n
2. For j = 1, ..., n

If j compatible with some classroom k
Schedule j in room k

Else allocate new classroom r + 1
Schedule j in room r + 1
r \leftarrow r + 1

OBS.# rm needed ≥ depth of input intervals (i.e., Max. number of
```

- Running time. $O(n \log n)$
- Optimality. #Rm allocated = depth of input intervals

lectures that overlap)