Formulazione di problemi con valori assoluti

- funzioni convesse lineari a tratti
- problemi con valori assoluti
- regressione lineare

rif. BT 1.3

Max di funzioni convesse

Teorema

Siano $f_1,\ldots,f_m:\mathbb{R}^n\to\mathbb{R}$ funzioni convesse. Allora la funzione $f(\mathbf{x})=\max_{i=1,\ldots,m}f_i(\mathbf{x})$ è convessa

Dimostrazione Siano $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \lambda \in [0, 1]$. Si ha che:

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \max_{i=1,\dots,m} f_i(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$$

$$\leq \max_{i=1,\dots,m} (\lambda f_i(\mathbf{x}) + (1 - \lambda)f_i(\mathbf{y}))$$

$$\leq \max_{i=1,\dots,m} \lambda f_i(\mathbf{x}) + \max_{i=1,\dots,m} (1 - \lambda)f_i(\mathbf{y})$$

$$= \lambda f(\mathbf{x}) + (1 - \lambda f(\mathbf{y}))$$

Somma di funzioni convesse

Teorema

Siano $f_1,\ldots,f_m:\mathbb{R}^n\to\mathbb{R}$ funzioni convesse. Allora la funzione $f(\mathbf{x})=\sum_{i=1}^m f_i(\mathbf{x})$ è convessa

Dimostrazione Proviamo il risultato per m=2, il caso generale segue per induzione. Siano $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n, \lambda \in [0,1]$. Si ha che:

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = f_1(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) + f_2(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$$

$$\leq \lambda f_1(\mathbf{x}) + (1 - \lambda)f_1(\mathbf{y}) + \lambda f_2(\mathbf{x}) + (1 - \lambda)f_2(\mathbf{y})$$

$$= \lambda f(\mathbf{x}) + (1 - \lambda f(\mathbf{y}))$$

Funzioni convesse lineari a tratti

Una funzione del tipo $\max_{i=1,\dots,m}(\mathbf{c}_i^T\mathbf{x}+d_i)$ è detta funzione convessa lineare a tratti

$$f(x) = |x| = max\{x, -x\}$$

Generalizzazione del problema di PL

$$\min \max_{i=1,\dots,m} (\mathbf{c}_i^T \mathbf{x} + d_i)$$

s.t. $\mathbf{A} \mathbf{x} \ge \mathbf{b}$

Si osservi che $\max_{i=1,\dots,m}(\mathbf{c}_i^T\mathbf{x}+d_i)$ è uguale al minimo numero z che soddisfa $z\geq \mathbf{c}_i^T\mathbf{x}+d_i$. Quindi, è equivalente al seguente problema di PL

$$\min z$$
 s.t. $z \ge \mathbf{c}_i^T \mathbf{x} + d_i$ $\mathbf{A} \mathbf{x} \ge \mathbf{b}$

Allo stesso modo, un vincolo $f(\mathbf{x}) = \max_{i=1,\dots,m} (\mathbf{w}_i^T \mathbf{x} + g_i) \leq h$ può essere sostituito dagli m vincoli

$$\mathbf{w}_i^T \mathbf{x} + g_i \le h, \qquad , i = 1, \dots, m$$

Problemi con valori assoluti

$$\min \sum_{i=1,...,n} c_i |x_i|$$
 s.t. $\mathbf{A}\mathbf{x} \geq \mathbf{b}$

in cui assumiamo $c_i \geq 0$.

Osserviamo che $|x_i|$ è pari al più piccolo numero z_i tale che $z_i \geq x_i$ e $z_i \geq -x_i$. Quindi otteniamo il problema di PL equivalente:

$$\min \sum_{i=1,\dots,n} c_i z_i$$
s.t.
$$\mathbf{A}\mathbf{x} \ge \mathbf{b}$$

$$z_i \ge x_i$$

$$z_i \ge -x_i$$

Esercizio

$$\min 2x_1 + 3|x_2 - 10|$$
 s.t.
$$|x_1 + 2| + |x_2| \le 5$$

riformulazione lineare:

$$\min 2x_1 + 3z_1$$
s.t.
$$z_2 + z_3 \le 5$$

$$z_1 \ge x_2 - 10$$

$$z_1 \ge -x_2 + 10$$

$$z_2 \ge x_1 + 2$$

$$z_2 \ge -x_1 - 2$$

$$z_3 \ge x_2$$

$$z_3 \ge -x_2$$

Esercizio

Consideriamo un problema della forma:

$$\min \mathbf{c}^T \mathbf{x} + f(\mathbf{d}^T \mathbf{x})$$
s.t. $\mathbf{A} \mathbf{x} \ge \mathbf{b}$

Osserviamo che $f(x) = \max\{1 - x, 0, 2x - 4\}$. Quindi otteniamo la riformulazione lineare:

$$\min \mathbf{c}^{T}\mathbf{x} + z$$
s.t.
$$z \ge -\mathbf{d}^{T}\mathbf{x} + 1$$

$$z \ge 0$$

$$z \ge 2\mathbf{d}^{T}\mathbf{x} - 4$$

$$\mathbf{A}\mathbf{x} \ge \mathbf{b}$$

Regressione lineare

Nei problemi di classificazione un data-set composto da coppie $(\mathbf{a}_i,b_i), i=1,\ldots,m$, in cui $\mathbf{a}_i\in\mathbb{R}^n$ è un'osservazione e b_i il corrispondente risultato.

Un modello di regressione lineare consiste in un vettore ${\bf x}$ (da determinare) per cui il risultato di una generica osservazione ${\bf a}$ possa rappresentarsi come $b={\bf a}^T{\bf x}$

Tale vettore è scelto in modo da minimizzare l'errore sui campioni del data-set:

- ► criterio I: minimizzare lo scarto massimo $\max_{i=1,...,m} |b_i \mathbf{a}_i^T \mathbf{x}|$
- lacktriangle criterio II: minimizzare la somma degli scarti $\sum_{i=1}^m |b_i \mathbf{a}_i^T \mathbf{x}|$

Regressione lineare: formulazione di PL

criterio I:

s.t.
$$z \ge b_i - \mathbf{a}_i^T \mathbf{x}, i = 1, \dots, m$$
 $z \ge -b_i + \mathbf{a}_i^T \mathbf{x}, i = 1, \dots, m$

criterio II:

$$\min \sum_{i=1,\dots,m} z_i$$

s.t. $z_i \geq b_i - \mathbf{a}_i^T \mathbf{x}, i = 1,\dots,m$
 $z_i \geq -b_i + \mathbf{a}_i^T \mathbf{x}, i = 1,\dots,m$