Equipos y Sistemas de Audio y Video (ESAV)

Tema 7a: Interfaces de video digital SDI

David Gualda Gómez david.gualda@urjc.es

Grado en Ingeniería en Sistemas Audiovisuales y Multimedia Curso 2024 – 2025

Escuela de Ingeniería de Fuenlabrada

Índice

Bloque II. Video

TEMA 7: Interfaces de video digital SDI

- 1. Formatos de producción de TV
- 2. Estándares SDI, HD-SDI, 3G-SDI, Dual Link, 6G-SDI, 12G-SDI
- 3. Ancillary data. Audio digital embebido
- 4. Medidas de calidad de video, WFM, Vectorscope, Diamond

1. Formatos de producción de TV

Recomendaciones del ITU-R

- Todos los formatos del producción del TV disponen de una normativa del ITU-R que describe los siguientes parámetros:
 - Coordenadas de cromaticidad de los primarios: R, G, B (x,y)
 - Coordenadas del blanco de referencia: D65
 - Función de transferencia óptico-electrónica: gamma (SDR:2.2, HDR: PQ,HLG)
 - Espacio de color: YCbCr (RGB)
 - Submuestreo de crominancia: 4:2:2 (4:4:4)
 - Profundidad de píxel: 10 bits/pixel y 12bit/pixel (8 bits/pixel obsoleto)
 - Rango de la señal de video: "Video Range" o "Full Range"
 - Niveles nominales máximo y mínimo (blanco y negro)
 - Niveles prohibidos: 0x3FF, 0x000
 - Resolución Espacial: SD, HD, UHD
 - Resolución Temporal: frames/s

1. Formatos de producción de TV

1. Formatos de producción de TV

Recomendaciones del ITU-R

- Parámetros colorimétricos:
 - Formato SD: ITU-R BT.601
 - Formato HD: ITU-R BT.709
 - Formato UHD(4K): ITU-R BT.2020

- Los formatos de video en TV se identifican por la siguiente nomenclatura:
 - Líneas i/p Frame Rate
 - o i: video entrelazado (Frame=2 campos)
 - p= video progresivo (1 Frame)

• Ejemplos:

- 576i25: formato SD de 720 pixeles x 576 líneas, entrelazado con 50 campos/s
- 720p60: formato HD de 1280 pixeles x 720 líneas, progresivo con 60 frames/s
- 1080i25: formato HD de 1920 pixeles x 1080 líneas, entrelazado con 25 frames/s
- 2160p50: formato UHD de 3640 pixeles x 2160 líneas, progresivo con 50 frames/s

1. Formatos de producción de TV

Estándar de SD: BT.601

Parámetro	Valor
Coordenadas cromáticas RGB (x,y) [NTSC]	R:(0.630,0.340), G:(0.310,0.595), B:(0.155,0.070)
Blanco de referencia (x,y) [D65]	(0.3127,0.3290)
Función de transferencia optoelectrónica [L: luminancia 0 ≤ L ≤ 1, E': señal eléctrica]	E' = $(1,099 L^{0,45} - 0,099)$ para $1,00 \ge L \ge 0,018$ E' = $4,500 L$ para $0,018 > L \ge 0$
Profundidad de píxel	8bits, y 10bits
Espacio de color RGB→YCbCr	Y' = 0,299 R' + 0,587 G' + 0,114 B' Cb'= 0.318 (B' – Y'), Cr ' = 0.7132(R' – Y')
Submuestreo componentes de color	4:4:4 y 4:2:2
Niveles nominales	8bits →RGB, Y: (16-235), Cb, Cr: (16,240) 10bits →RGB, Y: (64-940), Cb, Cr: (64,960)
Niveles Totales	8bits \rightarrow (1-254) 10bits \rightarrow (4-1019)
Resolución espacial / Temporal	625: 720x576, 525: 720x488 / 50 o 60 campos
Relación de aspecto display	4:3

1. Formatos de producción de TV

Estándar de HD: BT.709

Parámetro	Valor
Coordenadas cromáticas RGB (x,y)	R:(0.640,0.330), G:(0.300,0.600), B:(0.150,0.060)
Blanco de referencia (x,y) [D65]	(0.3127,0.3290)
Función de transferencia optoelectrónica [L: luminancia 0 ≤ L ≤ 1, E': señal eléctrica]	E' = $(1,099 L^{0,45} - 0,099)$ para $1,00 \ge L \ge 0,018$ E' = $4,500 L$ para $0,018 > L \ge 0$
Profundidad de píxel	8bits, y 10bits
Espacio de color RGB→YCbCr	Y' = 0.2126 R' + 0.7152 G' + 0.0722 B' Cb ' = 0.5389 (B' – Y'), Cr ' = 0.6350 (R' – Y')
Submuestreo componentes de color	4:4:4 y 4:2:2
Niveles Nominales	8bits →RGB, Y: (16-235), Cb, Cr: (16,240) 10bits →RGB, Y: (64-940), Cb, Cr: (64,960)
Niveles Totales	8bits → (1-254) 10bits →(4-1019)
Resolución espacial / Temporal	1920x1080 → 60P, 30P, 30PsF, 60I, 50P, 25P, 25PsF, 50I, 24P, 24FpF
Relación de aspecto display	16:9

1. Formatos de producción de TV

Estándares de Ultra-HD (UHD): BT.2020

Parámetro	Valor
Coordenadas cromáticas RGB (x,y)	R:(0.708,0.292), G:(0.170,0.797), B:(0.131,0.046)
Blanco de referencia (x,y) [D65]	(0.3127,0.3290)
Función de transferencia optoelectrónica [L: luminancia 0 ≤ L ≤ 1, E': señal eléctrica]	E' = $(1,099 L^{0,45} - 0,099)$ para $1,00 \ge L \ge 0,018$ E' = $4,500 L$ para $0,018 > L \ge 0$
Profundidad de píxel	10bits, y 12bits
Espacio de color RGB→YCbCr	Y' = 0,2627R' + 0,6780G' + 0,0593B' Cb'= 0.5315 (B' – Y'), Cr ' = 0.678 (R' – Y')
Submuestreo componentes de color	4:4:4, 4:2:2, 4:2:0
Niveles Nominales	10bits →RGB, Y, Cb, Cr: (64-940), 12bits →RGB, Y, Cb, Cr: (256-3760)
Niveles Totales	10bits →(4-1019) 12bits → (16-4079)
Resolución espacial / temporal	UHD-1: 3840x2160 UHD-2: 7680x4320 120P, 60P, 50P, 30P, 25P, 24P
Relación de aspecto display	16:9

Índice

Bloque II. Video

TEMA 6: Interfaces de video digital SDI

- 1. Formatos de producción de TV
- 2. Estándares SDI, HD-SDI, 3G-SDI, Dual Link, 6G-SDI, 12G-SDI
- 3. Ancillary data. Audio digital embebido
- 4. Medidas de calidad de video, WFM, Vectorscope, Diamond

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

- Arquitectura interfaz SDI. Formatos de SD
- Lo habitual es que los interfaces de video SDI transporten siempre el formato 4:2:2 que implica que las componentes de color Cb y Cr tienen una resolución horizontal mitad a la de la componente de luminancia. Excepcionalmente pueden transportar RGB en 4.4:4
- El cuantificador lineal (Q) puede utilizar 8, 10 bits (excepcionalmente el UHD 12bits). Si se cuantifica con 8 bits se transportan 10 bits con los 2 últimos bit a 0.

- Arquitectura interfaz SDI. Formatos de SD
- TRS: Time Reference Signals. Permite la sincronización de la trama SDI. Se sitúa en el equivalente al borrado horizontal de la señal de vídeo analógica.
- Ancillary data: datos auxiliares distintos al vídeo activo. Se sitúan entre los TRS en el borrado horizontal, y en el borrado vertical de la señal de vídeo analógica.

- Arquitectura interfaz SDI. Formatos de SD
- trasmiten muestras tanto del equivalentes al borrado horizontal de video analógico como las que realmente transportan el video.
- El Mapeador inserta los sincronismos digitales denominados TRS en el Borrado Horizontal

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

II. Conversión del espacio de color.

- Incluye la transformación del espacio de color RGB al espacio YCbCr por medio de la transformación lineal definida por su Matriz de Transformación
- R'G'B' son las componentes RGB después de la corrección de gamma normalizadas (0,1)
- Ecuaciones de conversión RGB →Y'CbCr en analógico

$$O$$
 Y' = 0.299R' + 0.587G' + 0.114B'

$$\circ$$
 Cb' = 0.5/0.886 (B'-Y') = 0.564 (B'-Y')

o Cr
$$= 0.5/0.701 (R'-Y') = 0.713 (R'-Y')$$

- Y'CbCr son componentes continuas en rango Y' (0,1)
- La ponderación de Cb y Cr es para que su rango sea (±0.5)

$$\begin{pmatrix} Y' \\ Cb \\ Cr \end{pmatrix} = \begin{pmatrix} 0,299 & 0,587 & 0,114 \\ -0,168 & -0,3312 & 0,5 \\ 0,5 & -0,4186 & -0,081 \end{pmatrix} \begin{pmatrix} R' \\ G' \\ B' \end{pmatrix}$$

- II. Conversión del espacio de color. Formatos de SD
- El espacio de color Y'CbCr es invertible aplicando la matriz inversa, por lo que puedo recuperar las componentes primarias R'G'B'. Ejemplo para SD:

$$\begin{pmatrix} \mathbf{R} \\ \mathbf{G} \\ \mathbf{B} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1,402 \\ 1 & -0,344 & -0,714 \\ 1 & 1,772 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{Y}' \\ \mathbf{Cb} \\ \mathbf{Cr} \end{pmatrix}$$

- o Pero eso no significa que todo los valores legales de Y'CbCr (0-1, \pm 0.5, \pm 0.5) producen un color válido en RGB (0-1)
- o La señal Y'CbCr = (0.3, -0.3, -0.3) es legal ya que está dentro de los valores nominales de Y'CbCr $(0-1, \pm 0.5, \pm 0.5)$
- Aplicando la matriz de transformación inversa obtenemos:
- o R'G'B'= (-0.12, 0.617, -0.23) es un color inválido al tener valores de RGB negativos
- Por lo tanto la señal YCbCr = (0.3, -0.3, -0.3) es legal pero genera un color INVALIDO en RGB
- o Es lo que se denomina ERROR de GAMUT en RGB.

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

III. Muestreo y cuantificación de las componentes

- Es la etapa responsable de obtener valores discretos de las componentes continuas de vídeo, para su posterior cuantificación.
- \circ La utilización de frecuencias de muestreo (Fm) distintas para la componente de luminancia y color genera los esquema de submuestreo de 4:2:2 y 4:2:0
- \circ 4:4:4: misma Fm para las tres componentes Y'CbCr \rightarrow misma resolución para las tres componentes Y'CbCr.
 - Se utiliza para el formato RGB no para YCbCr.
- 4:2:2: Fm de las componentes CbCr mitad a la Fm de Y' \rightarrow Cb y Cr con resolución horizontal mitad a las resolución horizontal de Y', e igual vertical.
 - Es el formato por defecto utilizado en los estudios de producción y los interfaces
 SDI por defecto.
- o 4:2:0: Fm de las componentes CbCr un cuarto a la Fm de Y' (mitad en horizontal y mitad en vertical \rightarrow Cb y Cr resolución horizontal y vertical mitad a la resolución de Y'.
 - Solo se utiliza para formatos de difusión. Si se desea introducir en el flujo de trabajo de un centro de producción se realiza una up-conversión a 4:2:2

2. Estándares SDI

III. Muestreo y cuantificación de las componentes

Y

4:2:2

Υ

4:2:0

Υ

Cb

Cb

Cb

Cr

Cr

 $P(pixels) = 3 \cdot w \cdot h$

 $P(pixels) = 2 \cdot w \cdot h$

 $P(pixels) = \frac{3}{2} \cdot w \cdot h$

- III. Muestreo y cuantificación de las componentes
- El régimen binario total del stream SDI viene determinado por la frecuencia de muestro de cada una de las componentes determina :

$$Rb_SDI(bps) = [Fm(Y) + Fm(Cb) + Fm(Cr)] * 10$$

- Para los principales formatos:
 - \circ SD: $Rb_{SDI}(bps) = 270 Mbps$
 - o HD entrelazado (1080i50 y 1080i60): $Rb_{HD-SDI}(bps) = 1.485Gbps$
 - o HD progresivo (1080p50 y 1080p60): $Rb_{3G-SDI}(bps) = 2.97Gbps$
 - UHD progresivo (2160p25 y 2160p30): $Rb_{6G-SDI}(bps) = 5.94 \ Gbps$
 - O UHD progresivo (2160p50 y 2160p60): $Rb_{12G-SDI}(bps) = 11.88 \ Gbps$

2. Estándares SDI

III. Muestreo y cuantificación de las componentes

CUANTIFICACIÓN

- En TV no se utiliza el rango completo o "Full range" de la profundidad de píxel,
 sino el denominado "Narrow range", "Video Range" o "Rango legal".
- Rango Nominal: es en el que deben estar comprendidas las componentes de
 YCbCr para los valores máximos y mínimos capturados (blanco y el negro)
- o Los valores de luminancia Y' que excedan del rango "Permitido" son considerados Out-of-Gamut. Ejemplo para Y'_{D} , R'_{D} , G'_{D} , B'_{D} :

Bit depth	Rango Total	Rango Permitido	Rango Nominal
8 bit	1 – 254	5 – 246	16 – 235
10 bit	4 – 1019	20 – 984	64 – 940
12 bit	16 – 4079	80 – 3936	256 – 3760
16 bit	256 – 65279	1280 - 62976	4096 - 60160

2. Estándares SDI

III. Muestreo y cuantificación de las componentes

 $Cb_{D}^{'} = Round[(224 \cdot Cb^{'} + 128) \cdot 2^{n-8}]$

 $Cr_{D}^{'} = Round[(224 \cdot Cr^{'} + 128) \cdot 2^{n-8}]$

- III. Muestreo y cuantificación de las componentes
- R', G', B', Y: componentes analógicas con un rango [0,1]
- Cb', Cr': componentes analógicas con un rango [-0.5,+0.5]
- o n: profundidad de pixel. 8b, 10b, 12b

CUANTIFICACIÓN
$$R', G', B' \rightarrow R'_{D} G'_{D} B'_{D}$$

$$R'_{D} = Round[(219 \cdot R' + 16) \cdot 2^{n-8}]$$

$$G'_{D} = Round[(219 \cdot G' + 16) \cdot 2^{n-8}]$$

$$B'_{D} = Round[(219 \cdot B' + 16) \cdot 2^{n-8}]$$
CUANTIFICACIÓN $Y', Cb', Cr' \rightarrow Y'_{D} Cb'_{D} Cr'_{D}$

$$Y'_{D} = Round[(219 \cdot Y' + 16) \cdot 2^{n-8}]$$

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

IV. Mapeador de fuente. Formato SD

- El Mapeador multiplexa las muestras de Y Cb y Cr en un orden determinado generando un stream serie con las muestras (pixeles) donde se alternan las componentes.
- Como hay muestras que no transportan video activo (borrado horizontal), se sustituyen por los TRSs y los datos auxiliares

2. Estándares SDI

IV. Mapeador de fuente. Formato SD

- La trama de una línea de video digital se estructura en el borrado horizontal y la línea de vídeo activo.
- Borrado Horizontal: se inicia y finaliza con los sincronismos denominados TRS, y el espacio entre ambos TRS se denomina HANC.
- o Ejemplo para SD:

2. Estándares SDI

IV. Mapeador de fuente

TRS

- Formados por 4 palabras, las tres primeras son 3FFh, 000h, 000h, y la cuarta denominada XYZ que incluye los bits F, V, H, PO, P1, P2 y P3:
 - F: es 1 cuando la actual línea pertenece al campo 1 y 0 en caso contrario.
 - V: se activa a 1 cuando la línea pertenece al conjunto de líneas de borrado vertical y es 0 cuando la línea transporta vídeo activo.
 - H: se activa a 1 si el sincronismo se corresponde con un EAV y a 0 en caso de pertenecer a un SAV.
 - P0, P1, P2 y P3: son los bits de protección de los bits F, V y H de la palabra XYZ.
 Proporcionan una función de DEDSEC (Double Error Detection Single Error Correction) para la corrección de 1 bit erróneo y la detección de 2 bits erróneos.
- TRS EAV (End Active Video): define el final del vídeo activo y el comienzo de una nueva línea, activando el flag H a 1.
- TRS SAV (Start Active Video): define el comienzo del vídeo activo de la actual línea activando el flag H a 0.

2. Estándares SDI

IV. Mapeador de fuente

TRS

Word	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
3FFh	1	1	1	1	1	1	1	1	1	1
000h	0	0	0	0	0	0	0	0	0	0
000h	0	0	0	0	0	0	0	0	0	0
XYZ	1	F	V	Н	P_0	P ₁	P_2	P_3	0	0

2. Estándares SDI

IV. Mapeador de fuente. Formato SD

VANC: Vertical Ancillary data. En todos los formatos existen líneas completas que no transportan video activo, se denominan líneas de borrado vertical.

Ejemplo para SD:

2. Estándares SDI

IV. Mapeador de fuente. Formato SD

VANC: en estas muestras se transportan datos como el Código de Tiempos (TC), el Teletexto,...

Ejemplo para SD:

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

V. Interfaz Eléctrico. Formato SD

- La salida es una forma de onda conformada por un pulso digital en banda base
- Para todos los formatos con una amplitud 800mv.
- Como canal de transmisión se utiliza un cable coaxial d 75ohm.

	Parámetros SD	Valor		
1	Impedancia de salida	75 Ω no balanceada		
2	Offset DC	0.0v ± 0.5v		
3	Amplitud de salida	800mVpp ± 10%		
4	Pérdidas de retorno	>15dB (5-270Mhz)		
5	Tiempos de subida y bajada	0.75ns – 1.5ns (20%-80%)		
6	Jitter de salida	1 UI (10Hz) 0.2 UI (1Khz) UI = 673ps		

- V. Interfaz Eléctrico, Formato SD
- Ejemplo de parámetros eléctricos interfaz SDI (formato SD)

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

VI. Interfaz SD-SDI. SMPTE 259

Define el interfaz para el formato SD tanto de 625 líneas como de 525 líneas, en 4:2:2,
 con una bit rate de 270Mbps.

2. Estándares SDI

VI. Interfaz SD-SDI. SMPTE 259

 El formato SDI es exclusivamente entrelazado, se transmiten primero las líneas del campo 1 (F1) y después las del campo 2 (F2), con líneas de borrado vertical entre ambos

campos..

2. Estándares SDI

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

VII. Interfaz HD-SDI. SMPTE 292

 Puede transportar los dos formato de 1080 líneas entrelazadas y de 720 líneas progresivas, con una amplia variedad de frame rates.

2. Estándares SDI

VII. Interfaz HD-SDI. SMPTE 292

- LN: Line Number. Después de EAV introduce 2 Word con el número de línea
- o CRC: Cyclic Redundancy Check. CRC que permite la detección de errores de la línea

2. Estándares SDI

VII. Interfaz HD-SDI. SMPTE 292

o Los TRS mantienen la misma sintaxis que para SD

Line Number

Word	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
LN0	Not b8	L6	L5	L4	L3	L2	L1	L0	0	0
LN1	Not b8	0	0	0	L10	L9	L8	L7	0	0

o CRC

Word	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
CRC0	Not b8	CRC8	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0
CRC1	Not b8	CRC17	CRC16	CRC15	CRC14	CRC13	CRC12	CRC11	CRC10	CRC9

2. Estándares SDI

VII. Interfaz HD-SDI. SMPTE 292

Dual Link HD

- El interface que utiliza dos cables HD-SDI, estandarizado como SMPTE 372M, surge como soporte para formatos que requieren de un ancho de banda superior a los 1.485Gbps:
 - Soporte para el formato 1080p50/60 que requiere de doble ancho de banda
 - Esquema de submuestreo de color superior al 4:2:2 (4:4:4)
 - Profundidades de píxel de más de 10 bits/pixel (12-bits/pixel)
 - Canal alpha para aplicar transparencias o recortes
 - Soporte para formatos 3D plano-estereoscópicos en HD (dos vistas L y R)

2. Estándares SDI

VII. Interfaz HD-SDI. SMPTE 292

Dual Link HD

Resolución	Espacio de color	Submuestreo	Resolución muestra	Frame Rate	Data rate neto
1920 x 1080	YCbCr	4:2:2	10 bits	60P y 50P	1920x1080x2x60x10 = 2.488Gbps
1920 x 1080	RGB RGBA	4:4:4 4:4:4:4	10 bits	24P, 25P, 30P, 50i, 60i	1920x1080x4x30x10 = 2.488Gbps
1920 x 1080	RGB	4:4:4	12 bits	24P, 25P, 30P, 50i, 60i	1920x1080x3x30x12 = 2.239Gbps
1920 x 1080	YCbCr YCbCrA	4:4:4 4:4:4:4	10 bits	24P, 25P, 30P, 50i, 60i	1920x1080x4x30x10 = 2.488Gbps
1920 x 1080	YCbCr	4:4:4	12 bits	24P, 25P, 30P, 50i, 60i	1920x1080x3x30x12 = 2.239Gbps
1920 x 1080	YCbCr	4:2:2	12 bits	24P, 25P, 30P, 50i, 60i	1920x1080x2x30x12 = 1.492Gbps
2048 x 1080	XYZ	4:4:4	12 bits	24P	2048x1080*3*24*12 = 1.911 Gbps

2. Estándares SDI

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

VIII. Interfaz 3G-SDI. SMPTE 424

- El interface Dual-Link son dos interfaces SMPTE 292 para el transporte del formato HD progresivo a 50fps o 60fps, que requiere duplicar el cableado incrementando los costes e instalación
- Se deben tener ciertas precauciones como el utilizar longitudes iguales para ambos cables, que aseguren la correcta sincronización
- El SMPTE aprobó un nuevo interfaz SMPTE 425, para el transporte de formatos de HD que requiera mayor ancho de banda (HD progresivos a 50fps y 60fos).
- Define dos niveles operativos:
 - LEVEL A (SMPTE 425-A): Mapeo directo de una trama con estructura HD-SDI a doble frame rate (doble régimen binario)
 - LEVEL B (SMPTE 425-B): Mapeo de 2x HD-SDI (Incluido Dual-Link)
 - Hay dispositivos que soportan ambos niveles (SMPTE 425-AB)

2. Estándares SDI

VIII. Interfaz 3G-SDI. SMPTE 424

 SMPTE 425M-A: define el "DIRECT IMAGE FORMAT MAPPING", definiendo los mismos 7 formatos que soporta el Dual-Link, agrupados en 4 "Mapping Structures"

Resolución	Espacio de color	Submuestreo	Resolución muestra	Frame Rate	Mapping Structure
1920 x 1080	YCbCr	4:2:2	10 bits	60P y 50P	1
1920 x 1080	RGB RGBA	4:4:4 4:4:4:4	10 bits	24P, 25P, 30P, 50i, 60i	2
1920 x 1080	RGB	4:4:4	12 bits	24P, 25P, 30P, 50i, 60i	3
1920 x 1080	YCbCr YCbCrA	4:4:4 4:4:4:4	10 bits	24P, 25P, 30P, 50i, 60i	2
1920 x 1080	YCbCr	4:4:4	12 bits	24P, 25P, 30P, 50i, 60i	3
1920 x 1080	YCbCr	4:2:2	12 bits	24P, 25P, 30P, 50i, 60i	6
2048 x 1080	XYZ	4:4:4	12 bits	24P	3

2. Estándares SDI

VIII. Interfaz 3G-SDI. SMPTE 424

- SMPTE 425M-B: Multiplexa 2 streams HD-SDI de 1.485Gbps, sobre un único interfaz de 2.97Gbps:
- o Los streams pueden ser 2 señales cualesquiera o las pertenecientes a un Dual-Link
- Es el utilizado para transportar las 2 vistas estereoscópicas con un único interfaz eléctrico.

2. Estándares SDI

- I. Arquitectura interfaz SDI
- II. Conversión del espacio de color
- III. Muestreo y cuantificación de las componentes
- IV. Mapeador de fuente
- V. Interfaz Eléctrico
- VI. Interfaz SD-SDI. SMPTE 259
- VII. Interfaz HD-SDI. SMPTE 292
- VIII. Interfaz 3G-SDI. SMPTE 424
- IX. Interfaz 6G-SDI y 12G-SDI. SMPTE 2081 y SMPTE 2082

2. Estándares SDI

VIII. Interfaz 6G-SDI y 12G-SDI.

- UHD@25/30P: requiere de un interfaz de 6Gbps (SMPTE ST 2081-1), o dos interfaces
 3G-SDI (Dual Link 3G-SDI).
- UHD@50/60P: requiere de un interfaz de 12Gbps, tres opciones:
 - Interfaz 12G-SDI (SMPTE ST 2082-1)
 - Interfaz Dual Link 6G-SDI
 - Interfaz Quad Link 3G-SDI
- Las distancias de los cables para el interfaz 6G-SDI es ≈ 100m
- Las distancias de los cables para el interfaz 12G-SDI es ≈ 50m, se estima que los cables de nueva generación podrán alcanzar los 100m
- Existen versiones de interfaces ópticos que amplían las distancias >> Km

Bibliografía

- "Colour reproduction in electronic imaging systems", Michael S Tooms, John Wiley & Sons, 2016.
- "Video Engineering", C. Luther & F. Inglis
- "Video Demystified", Keith Jack. HighText Publications, 1996.