Wykorzystanie zegarka Chronos ez430 jako urządzenia wejściowego typu joystick w systemie Linux

Autorzy: Adam Wójs, Marek Zając

Spis treści

1. Założenia projektu	2
2. Sprzęt	
3. Wykonanie	
4. Kompilacja i uruchomienie	

1. Założenia projektu

Założeniem projektu było napisanie modułu dla jądra systemu Linux, który umożliwiałby wykorzystanie zegarka Chronos ez430 firmy Texas Instruments w roli kontrolera gier typu joystick.

Moduł powinien tworzyć w systemie nowe urządzenie i odbierając sygnały z portu szeregowego, po którym zegarek komunikuje się z komputerem, przetwarzać je, a następnie wysyłać je jako sygnały tego nowo utworzonego urządzenia.

2. Sprzęt

Od strony sprzętowej, w projekcie mieliśmy do dyspozycji programowalny zegarek firmy Texas Instruments, model Chronos ez430.

Zegarek komunikuje się bezprzewodowo z access pointem podłączanym do komputera przy pomocy złącza USB.

Sam access point widoczny jest w systemie jako port szeregowy.

Zegarek wyposażony jest w kilka podzespołów takich jak termometr, barometr czy akcelerometr. W projekcie korzystaliśmy z danych odbieranych przez ostatni moduł czyli 3 osiowy akcelerometr. Pozwala on na odczyt danych dla osi X, Y oraz Z.

3. Wykonanie

Moduł jądra napisany został w języku C. Na samym początku rejestrowany jest w systemie nowy joystick, posiada on jedynie 3 analogowe osie. Następnie otwierany jest plik portu szeregowego, który umożliwia komunikację z zegarkiem.

Działanie modułu polega na odebraniu danych o przechyleniu od zegarka, następnie zamienieniu ich na liczby z przedziału 0-255 dla każdej z 3 osi, a na sam koniec wysłaniu ich jako zdarzenia naszego joysticka. Operacja ta jest stale powtarzana, do tego celu wykorzystany został timer.

Plik urządzenia przez który następuje komunikacja z access pointem ma nazwę ttyACMx (dla pierwszego podłączonego access pointu jest to ttyACM0).

Port szeregowy skonfigurowany został w następujący sposób (zmienna settings jest strukturą termios):

```
settings.c_iflag = IGNBRK | B115200;
```

```
settings.c_oflag = B115200;
settings.c_cflag = CS8 | CREAD | CLOCAL;
settings.c_lflag = 0;
settings.c_cc[VMIN] = 1;
```

Komendy jakie są wysyłane do urządzenia aby możliwe było odbieranie wartości wskazań akcelerometru:

ACCESS_POINT_START	xFF\x07\x03
ACCESS_POINT_STOP	xFF\x31\x16\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00
GET_POS	xFF\x08\x07\x00\x00\x00\x00
STATUS	xFF\x00\x04\x00
RESET	xFF\x01\x03

Do projektu dołączone jest również demo, które pozwala sprawdzić działanie modułu. Po jego uruchomieniu możliwe jest przesuwanie kółka po ekranie za pomocą joysticka.

4. Kompilacja i uruchomienie

Kompilacja modułu jest wykonywana za pomocą pliku makefile o poniższej treści:

```
obj-m := joystick_module.o
```

all:

make -C /lib/modules/\$(shell uname -r)/build M=\$(PWD) modules

clean:

make -C /lib/modules/\$(shell uname -r)/build M=\$(PWD) clean

Zaś samo uruchomienie odbywa się przy użyciu komendy:

insmod joystick_module.ko

Moduł można wyłączyć poleceniem:

rmmod joystick_module

Bibliografia

http://www.zpss.aei.polsl.pl/content/dydaktyka/SO/KernelModuleProgramming.pdf http://stackoverflow.com/questions/1184274/how-to-read-write-files-within-a-linux-kernel-module https://www.kernel.org/doc/Documentation/input/input-programming.txt