Algoritmos de Procura e de Ordenação III

04/10/2023

Sumário

- Recap
- Selection Sort Ordenação por seleção Conclusão
- Bubble Sort Ordenação por troca sequencial
- Insertion Sort Ordenação por inserção
- Sugestão de leitura

Recapitulação

Procura sequencial – Array ordenado

```
int search( int a[], int n, int x ) {
       int stop = 0; int i;
                                                       Comparações:
       for( i=0; i<n; i++ ) {
                                                               B(n) = 2
                                                               W(n) = n + 1
               if( x <= a[i] ) {
                       stop = 1; break;
                                                               A(n) \approx n/2
        if( stop \&\& x == a[i] ) return i;
        return -1;
```

Procura binária – Array ordenado

```
int binSearch( int a[], int n, int x ) {
        int left = 0; int right = n - 1;
        while( left <= right ) {
                                                              Iterações:
                int middle = (left + right) / 2;
                                                                 B(n) = 1
                if(a[middle] == x) return middle;
                                                                 W(n) = 1 + \lfloor \log_2 n \rfloor
                                                                 A(n) \approx W(n) - \frac{1}{2}
                if(a[middle] > x) right = middle - 1;
                else left = middle + 1;
        return -1;
```

Desempenho – Nº de comparações

Nº de	Procura S	equencial	Procura Binária	
elementos	A(n)	W(n)	A(n)	W(n)
$2^9 - 1 = 511$	256	512	17	18
$2^{10} - 1 = 1023$	512	1024	19	20
$2^{14} - 1 = 16383$	8192	16384	27	28
$2^{17} - 1 = 131071$	65536	131072	33	34
$2^{20} - 1 = 1048575$	524288	1048576	39	40
	O(n)	O(n)	O(log n)	O(log n)

- P. Binária : nº de comparações ≈ 2 x nº de iterações
- Caso médio : valores aproximados
- Valores procurados podem não estar no array (Cenário 2)

Selection Sort – Ordenação por Seleção

Ideia

- Procurar a última ocorrência do major elemento
 - Quantas comparações ?
- Colocá-lo na última posição, se necessário, efetuando uma troca
- Repetir o processo para os restantes elementos
 - Quantas comparações ?
- Algoritmo in-place
- Variante: procurar a primeira ocorrência do menor elemento

Lembram-se do exemplo?

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
3	2	6	4	7
3	2	4	6	7
3	2	4	6	7
2	3	4	6	7

5 elementos4 passos

- Nº de comparações = 4 + 3 + 2 + 1
- N° de trocas = 1 + 1 + 0 + 1

Selection Sort

```
void selectionSort( int a[], int n ) {
      for( int k = n - 1; k > 0; k--) {
             int indMax = 0;
             for( int i = 1; i <= k; i++ ) {
                    if(a[i] >= a[indMax]) indMax = i;
             if(indMax!= k) swap(&a[indMax], &a[k]);
```

Nº de Comparações

- Número fixo de comparações! --- Algoritmo "pouco inteligente"
- Mesmo que o array já esteja ordenado, continuamos a comparar !!

$$\sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

 $O(n^2)$

Nº de Trocas — Melhor Caso e Pior Caso

- Melhor Caso ?
- Bt(n) = 0

- Quando?

- Pior Caso ?
- Wt(n) = n 1 Quando?

O(n)

• Um array pela ordem inversa é uma configuração de pior caso ?

Nº de Trocas — Caso Médio

- p(I_i) é a probabilidade de o elemento a[j] estar na posição correta
- Simplificação : Equiprobabilidade : $p(I_i) = 1 / (j + 1)$
- (1 p(I_j)) é a probabilidade de ser necessária uma troca para o elemento a[j] ficar na posição correta
- (n-1) passos

$$A_t(n) = \sum_{j=1}^{n-1} \left(1 - p(I_j)\right) \times \mathbf{1} = \sum_{j=1}^{n-1} 1 - \sum_{j=1}^{n-1} p(I_j)$$

Nº de Trocas — Caso Médio

$$A_t(n) = \sum_{j=1}^{n-1} \left(1 - p(I_j)\right) \times \mathbf{1} = \sum_{j=1}^{n-1} 1 - \sum_{j=1}^{n-1} p(I_j)$$

$$A_t(n) = n - 1 - \sum_{j=1}^{n-1} \frac{1}{j+1} = n - \left\{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right\} = n - H_n$$

$$A_t(n) = n - H_n \approx n - \ln n \qquad \qquad O(n)$$

Bubble Sort

Ordenação por Troca Sequencial

Ideia

- Percorrer o array da esquerda para a direita
- Trocar elementos adjacentes, se estiverem fora de ordem
 - Quantas comparações ?
- A última ocorrência do maior elemento fica na sua posição final
- Repetir o processo para os restantes elementos
 - Parar logo que possível!
- Algoritmo in-place
- Shaker Sort : alternar o sentido : esquerda-direita / direita-esquerda

0	1	2	3	4
7	2	6	4	3

7

6

4

3

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
2	7	6	4	3

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
2	7	6	4	3
2	6	7	4	3

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3
2	7	6	4	3
2	6	7	4	3
2	6	4	7	3

0	1	2	3	4
7	2	6	4	3

1ª iteração

7	2	6	4	3
2	7	6	4	3
2	6	7	4	3
2	6	4	7	3
2	6	4	3	7

• 4 comparações + 4 trocas

2	6	4	3	7

0	1	2	3	4
2	6	4	3	7

2	6	4	3	7
2	6	4	3	7

0	1	2	3	4
2	6	4	3	7

2	6	4	3	7
2	6	4	3	7
2	4	6	3	7

2ª iteração

2	6	4	3	7
2	6	4	3	7
2	4	6	3	7
2	4	3	6	7

• 3 comparações + 2 trocas

2	4	3	6	7
2	4	3	6	7

3ª iteração

2	4	3	6	7
2	4	3	6	7
2	3	4	6	7

• 2 comparações + 1 troca

2	3	4	6	7
2	3	4	6	7

- 1 comparação + 0 trocas
- TOTAL de comparações = 4 + 3 + 2 + 1
- TOTAL de trocas = 4 + 2 + 1 + 0

Tarefa 1

- Organizar configurações do array que correspondam:
- Ao melhor caso para as comparações
- Ao pior caso para as comparações
- Ao melhor caso para as trocas array ordenado
- Ao pior caso para as trocas array decrescente (SEM REPETIDOS)

• Alguns dos casos anteriores ocorrem em simultâneo ?

Nº de operações ?

- Nº de comparações = ?
- Melhor caso : Bc(n) = n 1

- Quando ?

O(n)

• Pior Caso : $Wc(n) = (n-1) + ... + 1 = n \times (n-1) / 2$

 $O(n^2)$

- Nº de trocas = ?
- Melhor caso : Bt(n) = 0

- Quando?

O(1)

• Pior caso : Wt(n) = Wc(n)

- Quando?

 $O(n^2)$

Bubble Sort

```
void bubbleSort( int a[], int n ) {
       int k = n; int stop = 0;
        while( stop == 0 ) {
               stop = 1; k--;
                for( int i = 0; i < k; i++)
                       if( a[i] > a[i + 1] ) {
                                swap( &a[i], &a[i + 1] );
                                stop = 0; -> + eficiente
```

Nº de Comparações – Melhor Caso e Pior Caso

- Melhor Caso? Array ordenado
- $B_c(n) = n 1$ tenho sempre de os comparar para ver se esta ordenado! O(n)
- Pior Caso ? Array pela ordem inversa, sem elementos repetidos

•
$$W_c(n) = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$
 O(n²)

Nº de Trocas – Melhor Caso e Pior Caso

- Melhor Caso? Array ordenado
- $\bullet B_t(n) = 0$

O(1)

Pior Caso ?

- Array pela ordem inversa, sem elementos repetidos
- 1 troca para cada comparação

•
$$W_t(n) = \sum_{k=1}^{n-1} k = \frac{n(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

 $O(n^2)$

Nº de Comparações – Caso Médio

Casos possíveis ?

	Nº de iterações do ciclo while	Nº de comparações realizadas	Probabilidade			
	1	(n – 1)				
	2	(n-1) + (n-2)				
						
	j	(n-1) + (n-2) + + (n-j)				
•						
	n – 2	(n - 1) + (n - 2) + + 2				
	n – 1	(n - 1) + (n - 2) + + 2 + 1				
) =	$=\sum_{i=1}^{j}(n-i)=\frac{j}{2}[(n-1)+(n-j)]=\frac{j}{2}[(2n-1)-j]$					

Nº de Comparações – Caso Médio

Probabilidade ? Simplificação...

a probabilidade é muito simplificada

Nº de iterações do ciclo while	Nº de comparações realizadas	Probabilidade	
1	(n – 1)	1 / (n – 1)	
2	(n-1) + (n-2)	1 / (n – 1)	
j	(n-1) + (n-2) + + (n-j)	1 / (n - 1)	
			habitualmente
n – 2	(n - 1) + (n - 2) + + 2	1 / (n — 1)	
n – 1	(n - 1) + (n - 2) + + 2 + 1	1 / (n – 1)	V

 Habitualmente, para arrays aleatórios, o número de iterações do ciclo while é próximo do seu número máximo

Nº de Comparações – Caso Médio

$$A_c(n) = \sum_{k=1}^{n-1} \frac{1}{n-1} C(k) = \dots = \frac{1}{2(n-1)} \sum_{k=1}^{n-1} [(2n-1)k - k^2]$$

Expressão auxiliar:
$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$A_c(n) = \frac{1}{3}n^2 - \frac{1}{6}n$$

 $O(n^2)$

• Façam o desenvolvimento e confirmem o resultado

Selection sort: $Ac(n) = 1/2 n^2$

Tarefa 2

- Efetuar a análise para o caso médio das trocas
- Possível cenário :
- Igualmente provável terminar após qualquer uma das iterações do ciclo externo (while)
- Em cada iteração do ciclo externo (while) fazem-se, em média, 50% do nº de trocas possíveis

Insertion Sort – Ordenação por Inserção

Ideia

- O elemento a[0] constitui um subconjunto de um só elemento
- Inserir ordenadamente o elemento a[1] nesse subconjunto
 - 1 comparação + 0 ou 1 troca de posição
- Temos agora um subconjunto ordenado com dois elementos
- Repetir o processo, um a um, para os restantes elementos do array
 - Casos possíveis? Quantas comparações? Quantos deslocamentos?
- Algoritmo in-place usamos o mesmo array
- Variante: começar na outra extremidade do array

0	1	2	3	4
7	2	6	4	3

7	2	6	4	3

6

4

3

1ª iteração

7	2	6	4	3
2	7	6	4	3

• 1 comparação + 1 deslocamento

2ª iteração

2	7	6	4	3
2	6	7	4	3

• 2 comparações + 1 deslocamento

2	6	7	4	3
2	6	4	7	3

3ª iteração

2	6	7	4	3
2	6	4	7	3
2	4	6	7	3

• 3 comparações + 2 deslocamentos

2	4	6	7	3
2	4	6	3	7

0	1	2	3	4
2	4	6	7	3

2	4	6	7	3
2	4	6	3	7
2	4	3	6	7

4ª iteração

2	4	6	7	3
2	4	6	3	7
2	4	3	6	7
2	3	4	6	7

4 comparações + 3 deslocamentos

Tarefa 3

- Organizar configurações do array que correspondam :
- Ao melhor caso para as comparações Já está ordenado
- Ao pior caso para as comparações
- Ao melhor caso para os deslocamentos
- Ao pior caso para os deslocamentos ordem inversa

• Alguns dos casos anteriores ocorrem em simultâneo ?

Nº de operações ?

- Nº de comparações = ?
- Melhor caso : Bc(n) = n 1

- Quando?

O(n)

• Pior Caso : $Wc(n) = 1 + ... + (n-1) = n \times (n-1) / 2$

 $O(n^2)$

- Nº de deslocamentos = ?
- Melhor caso : Bt(n) = 0

- Quando ?

Pior caso : Wt(n) = Wc(n)

- Quando?

 $O(n^2)$

Como efetuar os deslocamentos de modo eficiente?

Função Auxiliar – Inserção Ordenada

```
pega no elemento e coloca-o
                                                       no sitio certo do array já ordenado!
void insertElement( int sorted[], int n, int elem ) {
       // Array sorted está ordenado
       // Há espaço para acrescentar mais um elemento
       int i;
       for( i = n - 1; (i >= 0) && (elem < sorted[i]); i--)
               sorted[i + 1] = sorted[i]
       sorted[i + 1] = elem;
```

• Deslocamentos para a direita, para abrir espaço e inserir

Comparações – Melhor Caso e Pior Caso

- Melhor Caso
- B(n) = 1
- elem \geq sorted[n 1]

- Pior Caso
- W(n) = n
- elem < sorted[0] OU sorted[0] <= elem < sorted[1]

Comparações – Caso Médio

Casos possíveis	Nº de comparações	Probabilidade
elem < sorted[0]	n	1 / (n + 1)
sorted[0] <= elem < sorted[1]	n	1 / (n + 1)
sorted[1] <= elem < sorted[2]	n – 1	1 / (n + 1)
sorted[i] <= elem < sorted[i+1]	n – i	1 / (n + 1)
•••		
sorted[n-2] <= elem < sorted[n-1]	2	1 / (n + 1)
sorted[n-1] <= elem	1	1 / (n + 1)

$$A_c(n) = \frac{1}{n+1}[1+2+\dots+n+n] = \frac{n}{2} + \frac{n}{n+1} \approx \frac{n}{2} + 1$$

Tarefa 4

- Efetuar a análise para o caso médio dos deslocamentos, i.e., das atribuições efetuadas envolvendo elementos do array
- Possível cenário :
- Igualmente provável terminar após qualquer uma das iterações

Insertion Sort

- Deslocamentos (i.e., atribuições) são efetuados pela função auxiliar
- Contar as comparações feitas pela função auxiliar !!

Comparações – Melhor Caso e Pior Caso

- Melhor Caso
- $\bullet B_c(n) = n 1$
- Array ordenado: A função auxiliar nunca é chamada
- Pior Caso
- $W_c(n) = \sum_{i=1}^{n-1} (1+i) = \frac{n-1}{2} \times (n+2)$
- A função auxiliar é sempre chamada!!
- E tem sempre o comportamento de pior caso!!

Comparações – Caso Médio

- Análise simplificada!
- Considera-se que em cada iteração a função auxiliar tem sempre o comportamento do caso médio

$$A_c(n) \approx \sum_{i=1}^{n-1} \left[1 + \left(\frac{i}{2} + 1 \right) \right] = \left[2(n-1) + \frac{n(n-1)}{4} \right]$$

$$A_c(n) \approx \frac{n^2}{4} + \frac{7n}{4}$$

Comparar com o pior caso!

Tarefa 5

- Efetuar a análise para o caso médio dos deslocamentos, i.e., das atribuições efetuadas envolvendo elementos do array
- Possível cenário :
- Em cada iteração fazem-se, em média, 50% do nº de deslocamentos possíveis

Tarefa 6

- Construir uma tabela que agrupe as características dos algoritmos anteriores
- E outra tabela que mostre como evolui o número de comparações efetuadas, para sucessivos valores de n
- n = 100, 1000, 10000, 100000, 1000000, ...

Sugestão de leitura

Sugestão de leitura

- J. J. McConnell, Analysis of Algorithms, 1st Edition, 2001
 - Capítulo 3: secções 3.1 e 3.2