State	Te	we	w _e x _e	B _e	$\alpha_{ m e}$	D _e	r _e	Observed	Transitions	References
						(10 ⁻⁴ cm ⁻¹)		Design.	v 00	
⁴ He	2 2	μ = 2.0013016	,	$D_{e}^{0} = 0.00090$.P. = 22.22	23 eV ^C			NOV 1976 A
				$D_0(a^3\Sigma_u^+) = 1.8$ $D_0(A^1\Sigma_u^+) = 2.3$	355 eV ^b					
		10, 6, 1, 2,	p, r, s,		}			1		(23)(39)
				$3\Sigma_g^+$ levels s', t',)			(n - 0.777) ² ,	n = 312	•	(23)(39)
u ³ II _g 1	l0pπ 177291	[1628.6 ₉] ^e z	(35•2 ₅)	7.21 ₂ e	0.22 ₂ e	[5.03] ^e	1.081	u→a, R	33189.16 Z	(23)
$t' 3\Sigma_g^+ 1$.0p s [177969]	[1629.1 ₅] ^g z		[8.27] ^f				t'→a, V	33026.6 Z	(23)
t 3 _{ng}	9pm 177027	[1629.1 ₅] ^g Z	(35.2 ₅)	7.21 ₂ ^g	0.23 ₀ g	[5.07] ^g	1.081	t→a, R	32925 . 96 Z	(23)
s, 3 _Σ ⁺	9p 6 [177636]			[8.04] ^f				s'→a, V	32693.2 Z	(23)
		[1629.30] ^h z	(35.2 ₅)	7.213 ^h	0.223 ₄ h	5.1 ^h	1.0806	s→a, R	32556.66 Z	(23)
$r^{\cdot 3}\Sigma^{+}$	8p 6 [177154]		J	[7.78] ^f	•			r'→a, V	32211.7 Z	(23)
0	7pπ 176117	(1700.5 ₆) ⁱ	(35•2 ₅)	1	i	[5.08] ⁱ	[1.0889]	1	11625.3 Z 32016.56 Z	(39) (23)
p' $3\Sigma_{\sigma}^{+}$	7p 6 [176421]			[7.543] ^f				p'→a,	31478.6 Z	(23)
$\int_{\Delta_{11}}$	6d 8 [176195]]		[7.092] ^j		[5.0] ^j	[1.089 ₈]	$q \rightarrow c$, $\begin{cases} V \\ R \\ R \end{cases}$	20365 (20330) 20288	(1)(39)
$\left[3_{\Sigma_{\mathbf{u}}^{+}} \right]$	6dπ[(176169)] 6d 6 [176120]	J						$q \rightarrow b$, $\begin{cases} V \\ R \\ R \end{cases}$	26483 (26466) 26409	(1)(39)
$_{p}$ $_{\Pi_{g}}$	6pπ 175281	1701.18 Z	35.35	7.220 ^k	0.224	5.14	1.0801	1	10788.6 ₈ Z	(39)
							f	_	31179.93 Z	(23)
o Σ_{u}	6s6 [176001]			[7.109]		[5.1]	[1.088 ₅]	o → c, V o → b, R	20168.8 Z 26290.3 Z	(2)(39)

State	^Т е	w _e	^w e ^x e	B _e	α _e	D _e	r _e	Observed Transitions		References
						(10^{-4}cm^{-1})	(A)	Design.	v 00	
⁴ He ₂	(continued)									
		[1619.52] Z	(36 _{•5})	7.4754 ^l	0.2490	[7.2 ₁] ^m	1.0615	n→a,	30283.26 Z	(3)(67)
$\int_{0}^{3} \Delta_{\rm u} = 5 \mathrm{d} \delta$	[174863] [(174778)]			[7.09] ⁿ [7.07] ^o			[1.09 ₁]	$m \rightarrow c$, $\begin{cases} V \\ R \\ R \end{cases}$	(19039) (18944) 18899	(39)
1. ~	[174730]			[,•0,]				$m \rightarrow b$, $\begin{cases} V \\ R \\ R \end{cases}$	25152 (25070) 25019	(39)
ι ³ η _g 5ρπ	173884	[1633.9 ₆] ^p z	(35•2 ₅	7.226 ^p	0.222 ^p	[5.12] ^p	1.0797	$\ell \rightarrow d$, R $\ell \rightarrow a$, R		(39) (23)

He2: aAverage of two independent values for the well depth obtained from measurements of the total (44) and differential (45)(66) elastic scattering cross sections (0.888 and 0.905 meV, resp.). Ab initio values range from 0.78 to 1.04 meV (33)(43)(51)(53)(56)(64). Both experiment and theory agree that no bound vibrational level exists in the potential well, i.e. $D_0^0 = 0$; see (27)(63). A somewhat higher D_e value (0.99 meV) was derived (61) from the temperature dependence of the relaxation time in dilute ³He. For measurements of the short-range potential (0.49 $\langle r(\hat{A}) \langle 1.56 \rangle$ see (57); the long-range potential is discussed by (28)(29).

^bBased on $D_0^0(\text{He}_2^+)$. From a detailed interpretation of the Hopfield continuum and the 600 % absorption and emission bands (49) derives $D_e(A^1\Sigma_u^+) = 2.50 \text{ eV}$.

CRelative to $He(^1S) + He(^1S)$, i.e. I.P.(He₂) = I.P.(He) = $\frac{3}{4}$.

 $D_0^0(\text{He}_2^+)$. The I.P. for the lowest stable state (a $^3\Sigma_{11}^+$) is 4.25297 eV.

dGiving the v=0,N=0 levels (real or hypothetical) of np6

 $^3\Sigma_{\rm g}^+$ and npm $^3\Pi_{\rm g}^-$ relative to 2s6 $^3\Sigma_{\rm u}^+,\,\rm v=0,\,\rm N=0.$ $^{\rm e}$ Refers to $\Pi^-.$ $B_0(^3\Pi^+)\approx5.6,$ strongly affected by $\ell\text{-uncoup-}$

fEffective value, strongly affected by \(\ell\)-uncoupling. grefers to II. $B_0(3II^+) = 5.87$, strongly affected by ℓ -uncoup-

^hRefers to Π^- . $B_0(^3\Pi^+) = 6.13$, strongly affected by *l*-uncoup-

iConstants refer to Π^- ; $B_0(^3\Pi^+) = 6.37_5$ affected by ℓ -uncoupling. v=l is perturbed; approximate deperturbed constants for \mathbb{R}^{-} : $\mathbb{B}_{1} = 6.88_{6}$, $\Delta G(\frac{1}{2}) = 1629.7$.

Strong &-uncoupling. The rotational constants (1) refer to the average of Π^- and Δ^- .

^kRefers to Π^- . $B_0(^3\Pi^+) = 6.630$ affected by *l*-uncoupling.

 $^{\ell}$ Several small accidental perturbations. m D₁ = 6.8₂ x 10⁻⁴, H₀ = 14.₂ x 10⁻⁸, H₁ \approx - 26 x 10⁻⁸. Neverage of II and Δ as given by (39).

^oAverage of Σ^+ , Π^+ , Δ^+ as given by (39).

PRefers to II-.

State	Тe	w _e	w _e x _e	B _e	$\alpha_{\rm e}$	D _e	D _e r _e		Observed Transitions	
						(10 ⁻⁴ cm ⁻¹)	(X)	Design.	* 00	
⁴ He ₂	(continued)									
	(173698)	[1635.3] Z		7.232	0.23		1.079	$k \rightarrow c$, V $k \rightarrow b$, R	18683.5 Z 24804. ₈ Z	(39) (39)
$k \cdot 3\Sigma_g^+$ 5p6	172236	1686.90 Z	38.10	7•379 ^a	0.349 ^b	[5.8]	1.0684	k'→a, R	28127.58 Z	(67)
$\int_{0}^{3} \Delta_{u}^{3} 4d\delta$	171573 171402	1702.2 ₄ ° Z 1680.9 ₄ ° Z	35.0 ₇	7.2088° 7.1860°	0.2248 ^d 0.2296 ^e	5.2°	1.0810 1.0827	j→c, { V R R	16583.18 ^c Z 16400.69 ^c Z 16316.54 ^f	(50)
1 2 4	171323	1669.79 ^f	39.09	Strongly pe and by inte	-	-		$j \rightarrow b$, $\begin{cases} V \\ R \end{cases}$	22704.5° Z 22522.0° Z 22437.8°	(50)
i ³ Π _g 4ρπ	171290	[1637.94] ^g Z	(35.2 ₅)	7.242 ^g	0.223 ^g	[5.1 ₄] ^g	1.0785	i→a, R	27193.01 Z	(23)(39)
h $3\Sigma_{\rm u}^{+}$ 4s6	(170884)	[1637.9] Z		7.26 ₄ h	0.23	(5.2 ₄)	1.077	$h \rightarrow c$, V $h \rightarrow b$, R	15870.7 Z 21992.2 Z	(2)(39)(50) (2)(39)(50)*
g ³ Σ _g 4p6	167714	[1589.92] Z	(41)	7.220 ₇	0.2478	[5.38] ⁱ	1.0801	g→a, R	23597.00 Z	(67)
∫³∆ _u 3db	166303 165877 ^m	1706.82 Z 1661.48 Z	35 . 10	7.230 ^j 7.136 ^j	0.227 ^k 0.235 ⁿ	[5.26] [£] [5.34]°	1.079 ₄ 1.086 ₅	f→c, { V	11316.06 Z 10864.53 Z 10659.33 Z	(17)
	165685	1635.77 Z	44.41	7.071 ^j	0.246 ^p	[5.31] ^q	1.0914	$f \rightarrow b, \begin{cases} V \\ R \end{cases}$	17437.3 Z 16985.8 Z 16780.6 Z	(13)* (13)(39)
е ³ П _д 3р¶т	165598	1721.22 Z	34.970°	7.283 ₈ °	0.2215 ^t	5.22	1.0754	e⇔a, ^u R	21507.26 Z	(36)
d ³ Σ _u 3s6	164479	1728.01 Z	36.13 ^v	7.3412	0.224 ₄ w	5•32	1.0712	$d \rightarrow c$, V $d \rightarrow b$, R_V	9502.7 Z 15623.1 Z	(13) (13)*
c ³ Σ _g ⁺ 3p6	155053	1583.85 Z	52.74 ^x	7.0048	0.310 ₅ y	[5.56] ^z	1.0966	c→a, R	10889.48 Z	(11)
b ³ Π _g 2p¶	148835	1769.07 Z	35.02ª°	7.4473 ^b	0.2196°	[5.30] ^d	1.0635	b→a, R	•	(5)(14)
	144048	1808.5 ₆ Z	38.21 e'f	7.7036 ^g	0.228 ₁ ^{h'}	5•56 ⁱ '	1.0457	(a-X)	144935 ^j *	

```
<sup>a</sup>Several small accidental perturbations.
b_{r_{e}} = + 0.030.
The vibrational and rotational constants refer to I and
 \Delta^- which are less affected by \ell-uncoupling.
^{d}\xi_{e} = -0.003_{8}.
e t = - 0.0046.
fConstants refer to N'=1.
gConstants refer to 311-.
h(50) give average effective constants for the four inter-
 acting components j(^3\Delta_{11}^+, ^3\Pi_{11}^+, ^3\Sigma_{11}^+) and h^3\Sigma_{11}^+.
^{i}H_{0} = 2_{\cdot 0} \times 10^{-8}.
These constants are corrected for &-uncoupling effects.
{}^{k}V_{e} = -0.004_{6}.
{}^{k}D_{1} = 5.28 \times 10^{-4}, D_{2} = 5.5_{0} \times 10^{-4}, H_{0} = 2.5 \times 10^{-8}.
\frac{m_{Ab}}{ab} initio calculations of f ^{3}II_{11} and F ^{1}II_{12} (10)(26) yield
 excellent agreement with the observed constants and con-
 firm the presence of substantial potential maxima; see
  also (9).
{}^{n}_{be} = -0.0069.
{}^{0}_{D_{1}} = 5.34 \times 10^{-4}, D_{2} = 5.7_{4} \times 10^{-4}, H_{0} = 2.9 \times 10^{-8}.
q_0 = -0.0095.

q_{D_1} = 5.34 \times 10^{-4}, p_2 = 5.45 \times 10^{-4}, p_0 = 0.91 \times 10^{-8}.

q_{D_1} = 5.34 \times 10^{-4}, p_2 = 5.45 \times 10^{-4}, p_0 = 0.91 \times 10^{-8}.

p_1 = 0.91 \times 10^{-8}.
  ≈ + 0.072 . Slightly different constants were given by (4)
  who also derived constants for He2.
^{S}w_{\Delta}y_{\Delta} = -0.03_{8}. See also ^{r}.
t_{A} = -0.0013_{8}
```

```
Unbserved in absorption in a pulsed discharge (19).
  ^{\text{V}}\omega_{0}y_{0} = -0.126_{7}
  w_{Y_e} = -0.0027_3.

x_{w_e} y_e = -1.256_6, w_e z_e = -0.487_5.
  y + 0.162_9(v + \frac{1}{2})^2 - 0.065_5(v + \frac{1}{2})^3.
   ^{z}D_{1} = 5.76 \times 10^{-4}, D_{2} = 6.11 \times 10^{-4}, ...; H_{0} = 1.3_{2} \times 10^{-8},
H_1 = -0.4_0 \times 10^{-8}, H_2 = -5.3 \times 10^{-8}, \dots
b^* = 0.048_3
 b'The constants refer to 31 and were derived by (13) from
    the d,f \rightarrow b bands; B(^3\Pi^-) - B(^3\Pi^+) \approx + 0.026. The triplet
    splitting is partially resolved in the d \rightarrow b bands (13).
 c \cdot r_e = -0.00170

\overset{\text{d'D}}{D_1} = 5.34 \times 10^{-4}, \dots; H_0 = 2.8_0 \times 10^{-8}, H_1 = 3.6_0 \times 10^{-8}, \dots

\overset{\text{e'w}}{\text{e'w}} \text{ey}_{\text{e}} = -0.3_8 (36).

 f There is good experimental (20)(30) and theoretical (7)
     (21)(48) evidence for a potential maximum in this state.
     (20) place the maximum at 0.067 eV above the asymptote;
     the net dissociation energy is 1.850 eV.
 g From molecular beam magnetic resonance experiments (58)
     (65) have determined the triplet splitting for N=1 and 3.
    The splitting constants (extrapolated to N=0) are \lambda =
    - 0.03666, \gamma = -0.000080g cm<sup>-1</sup>. An <u>ab initio</u> calculation
     (55) gives \lambda = -0.04089.
h° V_e = -0.0046_2 (36).

i° \beta_e = +0.07 \times 10^{-4}; H_e \approx 2.7 \times 10^{-8} (36).

j° Energy of a ^3\Sigma_u^+, v=0, N=0 above He(^1S) + He(^1S), based on D_0^0(He_2^+) = 19073 cm<sup>-1</sup>. See also ° p. 297.
```

State	Тe	·we	w _e x _e	B _e	α _e	D _e	r _e	Observed	Transitions	References
						(10 ⁻⁴ cm ⁻¹)	(ℜ)	Design.	v 00	
⁴ He ₂	(continued)									
s ¹ n _g 8p	r [177515]			(7.21)	(0.22)		(1.08 ₁)	1	30228. ₆ Z	(39)
R [11] 7p'	m [176983] m [176160]			(7.22) (7.22)	(0.22) (0.22)		(1.08 ₀) (1.08 ₀)	$R \rightarrow A$, R $P \rightarrow A$, R	29696 ₄ Z 28873 ₉ Z	(39) (39)
$\int_{1}^{1} \Delta_{\mathbf{u}} = 5\mathbf{d}$	[[(174838)]			(7.22)	(0.22)		(1.000)		,	(39)
$M + II_u$ 5df	r[(174788)]			[7.09] ^a [7.07] ^b			[1.09 ₁]	$M \rightarrow B$,	(24050) (24000) (23960)	(39)
	5[(174748)]							1		
£	r [174794]			(7.23)	(0.22 ₂)		(1.07 ₉)	L→A, R	0	(39)
, u	[172416]			[7.097] ^c		[5.0]	[1.0894]	J→C. { V	14183.90° Z 14058.37° Z 13990.32°	(50)
j u	r [172290]			[7.080] ^c		[5.4]	[1.0908]	l R	13990.32 ^a	(32)
-	5 [172222] ^d	Strongly pe	rturbed by	ℓ-uncoupling a	ind interact	tion with H	$1^{1}\Sigma_{\mathbf{u}}^{+}$ e	$J \rightarrow B, \begin{cases} V \\ R \end{cases}$	21627.9° Z 21502.4° Z 21434.3°	(50)
	r [172266]			(7.24 ₂)	(0.22 ₃)		(1.078)	I→A, R	24979.6 Z	(39)
	[171951]			(7.26) ^e	(0.23)		(1.077)	1	13719.5 Z	(39)(50)
[1 ₄ 24]	3 166304	1706.59 Z	35.06	7•230 ^g	0.225 ^h	[5.20] ⁱ	1.0794	H → B, R	21163.5 Z	(39)(50)
$ \begin{cases} 1_{\Delta_{\mathbf{u}}} & 3d^{2} \\ 1_{\Pi_{\mathbf{u}}} & 3d^{2} \end{cases} $	r 165971 ^f	1670.57 Z	40.03	7.156 ^g	0.235	[5.24] ^j	1.0849	$F \rightarrow B, \begin{cases} V \\ \end{array}$	16360.9 Z 16008.3 Z 15837.5 Z	(12)(17)
1	r (165813)	[1564.25] Z	(40)	7.098 ^g	0.246	[5.21] ^k	1.0894	L R	15837.5 Z	
-	т 165911	1721.1 ₉ Z	34.76 ^l	7.2705 ^m	0.2156 ⁿ	5.20	1.0764	E→A, R	19476.61 Z	(36)
n 7	r 165085	1746.43 Z	35•54	7•365	0.21800	5.24 ^p	1.0694	$D \rightarrow B, q R_V$	15161.81 Z	(12)
		,	~		·	,,	•	D→X,r	continuum	
$C = \frac{1}{\Sigma_g^+} = 3pc$	157415	1653.43 Z	41.0 ₄ s	7.052	0.215 ^t	5.08 ^u	1.0929	1	10945.50 Z	(11)(39)
	r 149914	1765.76 Z	34•39 ^v	7.403 ^w	0.216 ^w	5.02 ^W	1.0667	(B-A)	3501.5 ^x	40.4-0.4
$A \stackrel{\perp}{\Sigma}_{u}^{+} 2se$	146365 ^y	1861.3 ₃ Z	35•2 ₈ ^z	7•778 ₉	0.216 ₆ a'	5.44	1.0406	A↔X, ^{b'} Hopfield c	147279 ^c ' ontinuum	(8)(18)(22) (38)

State	Тe	w _e	^w e ^x e	^B e	$\alpha_{ m e}$	D _e	r _e	Observed	Fransitions	References
						(10 ⁻⁴ cm ⁻¹)	(⅙)	Design.	v ₀₀	
⁴ He ₂	(continued)									
$x ^{1}\Sigma_{g}^{+}$	0	Repulsive po	tential wi	th very small	well ($D_e = 0$.90 meV).	2.97 ^d			

```
<sup>a</sup>Average of \Pi and \Delta as given by (39).
  <sup>b</sup>Average of \Sigma^+, \Pi^+, \Delta^+ as given by (39).
   <sup>C</sup>These constants refer to \Pi^- and \Delta^- which are less affected
      by &-uncoupling.
  dRefers to N=1.
 e(50) give average effective constants for the four inter-
     acting components J(^{1}\Delta_{1}^{+}, ^{1}\Pi_{1}^{+}, ^{1}\Sigma_{1}^{+}) and H^{1}\Sigma_{1}^{+}.
 fSee m p. 295.
  gThese constants are corrected for L-uncoupling effects.
^{\ell}w_{e}^{-}y_{e} = -0.02_{3}.
 The rotational constants refer to \Pi^- (36); B(\Pi^-) - B(\Pi^+) \approx
      + 0.044.
  ^{n}\gamma_{e} = -0.0022_{7}.
 {}^{\circ} {
  qFranck-Condon factors (25).
  The weak maximum near 676 A in the Hopfield continuum is
       ascribed by (37) to the transition D \rightarrow X.
 ^{\text{S}}w_{\text{e}}y_{\text{e}} = +0.354_{9}, w_{\text{e}}z_{\text{e}} = -0.131_{5}. Calculations of (47)
     give a potential hump of 0.22 eV at 2.09 %; see also (59)
  t_{\chi_{p}} = -0.0111.
                                                                                                                                                                                                                                  and (60).
```

```
{}^{u}\beta_{0} = + 0.1_{0} \times 10^{-4}; H_{0} = 1.7_{2} \times 10^{-8}, ...
v_{\text{w}}^{\text{g}} = v_{\text{w}}^{\text{g}} = -0.026_{7} (12).

v_{\text{w}}^{\text{g}} = -0.026_{7} (12).

v_{\text{e}}^{\text{g}} = -0.026_{7} (12).

v_{\text{e}}^{\text{g}} = -0.019; v_{\text{e}}^{\text{g}} = -0.001_{5}, v_{\text{e}}^{\text{g}} = -0.05 \times 10^{-4} (12).
 YRKR potential curve (34)[see also (39)]; ab initio poten-
  tial (42). The latter gives vibrational and rotational
  levels in good agreement with the experimental values. (8)
  have established, from the absorption and emission bands
  near 600 ^{\text{A}}, a potential maximum of 0.059 eV in the A ^{1}\Sigma_{11}^{+}
  state. Theoretical work by (15)(16)(47) gives maxima of
  0.084, 0.153, 0.061 eV, respectively; see also (59)(60).
 ^{\mathbf{z}}_{\mathbf{e}}\mathbf{y}_{\mathbf{e}}^{\mathbf{z}} = -0.13_{6} (36).
a' \gamma_e^- = -0.0027_3 (36).
b' Transitions from the low vibrational levels of A ^1\Sigma_u^+ to X
  ^{1}\Sigma_{\rm g}^{+} give rise to the Hopfield continuum; see MOLSPEC 1,404.
  Transitions from the high vibrational levels as well as the
  continuous range of energy levels of A ^{1}\Sigma_{11}^{+} to X ^{1}\Sigma_{\sigma}^{+} give
  rise to diffuse bands near 600 A observed in emission (18)
   (22) and absorption (8)(38) with quite different intensity
   distribution. See also (6)(37) and (31)(52)(54). Observed
  absorption coefficients near 600 A (38) agree fairly well
  with those predicted by (41).
c'Energy of the v=0,N=0 level of A ^{1}\Sigma_{11}^{+} relative to He(^{1}S) +
  He(^{1}S), calculated from the corresponding value for a ^{3}\Sigma_{11}^{+} by
```

(continued p. 299)