

Manual de Instruções

A-Portal Instituto Apontar

Controle do Documento

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
26/11	Davi Versan	1	Seções 1.1 e 1.2
28/11	Davi Versan	2	Seção 7
02/12	Davi Versan	3	Ajusta guia de operação e adiciona guia de instalação
03/12	Davi Versan	4	Adiciona guia de configuração
05/12	Davi Versan	5	Edita todo o manual

Índice

1. Componentes e Recursos (sprint 4)	2
1.1. Componentes externos	2
1.2. Requisitos de conectividade	3
2. Guia de Montagem (sprint 4)	3
3. Guia de Instalação (sprint 4)	4
4. Guia de Configuração (sprint 4)	5
5. Guia de Operação (sprint 4)	6
6. Como descartar este dispositivo	7
7. Troubleshooting (sprint 4)	7

1. Componentes e Recursos (sprint 4)

1.1. Componentes externos

Essa seção descreve os componentes eletrônicos utilizados para a montagem do dispositivo IoT e a forma como eles interagem entre si.

Componente	Descrição
1. Visor LCD	Mostra informações sobre o dispositivo IoT, como o status do usuário ("Cadastrado" / "Acesso Livre" / "Não cadastrado")
2. Microcontrolador ESP32	Serve como um processador de baixo custo energético para o dispositivo IoT, permitindo conexões WiFi e por cabo
3. Protoboard	Placa que permite a conexão de circuitos e dispositivos eletrônicos sem a necessidade de solda, geralmente usado para protótipos de projetos
4. Leitor biométrico	Dispositivo que permite a leitura de digitais.

6. LEDs	Dispositivo que emite luz através de um sinal elétrico
7. Resistores	Componente que impõe resistência elétrica a outros elementos do circuito, reduzindo a corrente elétrica
8. Cabos Jumper	Cabos que possibilitam a transferência de eletricidade entre os componentes do circuito
9. Botões	Mecanismo que pode ser programado para desempenhar diferentes ações ao ser pressionado
10. Buzzer	Dispositivo eletrônico usado para emitir sinais sonoros

1.2 Requisitos de conectividade

Essa seção explica as tecnologias que foram usadas ao longo do projeto, incluindo protocolos web e softwares de programação.

Tecnologia	Descrição	
Arduino IDE	Utilizado para enviar os códigos para o ESP32	
MQTT	Protocolo de mensagens entre dispositivos loT que necessita de baixa energia e pouco poder de processamento	
VSCODE	IDE utilizada para programar a aplicação web e o dispositivo IoT	
React	Framework Javascript para desenvolvimento web	
Javascript	Linguagem de programação de alto nível utilizada para gerar elementos dinâmicos e funcionalidades à aplicação web	

C++	Linguagem de programação de baixo nível utilizada para programar as funcionalidades do dispositivo IoT (Linguagem de máquina), se comunicando com o microcontrolador ESP32
Flask	Biblioteca do Python que permite a criação de aplicações web de forma estruturada
Python	Linguagem de programação de alto nível utilizada para gerar o backend da aplicação web
PostgreSQL	Banco de dados relacional que armazena as informações da aplicação web e registros dos usuários
HiveMQ	Broker MQTT que serve como um intermediário para gerenciar a comunicação entre dispositivos que publicam e consomem mensagens em um sistema loT

2. Guia de Montagem (sprint 4)

Essa seção visa descrever o processo de montagem do protótipo e como iniciar seu funcionamento.

Pensando em facilitar a montagem do projeto, criamos duas tampas parafusadas na traseira do dispositivo.

O dispositivo foi inteiramente desenhado com diferentes placas que são ligadas através de "dentes" nas extremidades. Para montá-las basta seguir os passos abaixo:

Organize as faces em uma estrutura plana para facilitar a identificação de todas. Utilize da imagem ao lado como referência:

Suporte para o leitor biométrico

Passo 1:

Para montar a caixa e adicionar seus componentes primeiro você deve colar com supercola ou cola para acrílico a ponte de sustentação do leitor biométrico (2) as laterais da caixa (1 e 5) passando as mesmas através um retângulo de mesma altura e largura.

Passo 2:

Posicione o leitor juntamente ao suporte do leitor biométrico (10) e parafuse a ponte de sustentação (2) com o auxílio de uma chave philips e dois parafusos M2.

Passo 3:

Parafuse o leitor de cartão SD e a placa ilhada na base da caixa (4) com o auxílio de uma chave philips e quatro parafusos M2 para cada componente.

Passo 4:

Parafuse o LCD I2C na parte frontal da caixa (4) com o auxílio de uma chave philips e quatro parafusos M3.

Passo 5:

Posicione todos os leds e botões nos locais indicados na figura ao lado. Utilize supercola ou cola quente caso ache necessário.

Figura 1: Caixa finalizada

Passo 6:

Cole as laterais da caixa (1 e 5) juntamente com todos os componentes e a ponte de sustentação (2) na base inferior utilizando a supercola.

Passo 7:

Cole a face frontal da caixa (4) utilizando uma supercola. Lembre-se de colar todas as extremidades (isso inclui base, e laterais).

Passo 8:

Cola a base superior da caixa (7) utilizando supercola (antes desse passo verifique se todos os componentes já estão presos pois após esse passo seu acesso ficará restrito a duas aberturas traseira e lateral. Isso pode dificultar a adição de demais componentes).

Passo 9:

Cole a face traseira da caixa (8).

Passo 10:

Parafuse as tampas em suas respectivas posições. A tampa lateral (6) deverá ficar na lateral direita (5) e a tampa traseira (9) na face traseira (8).

Passo 11:

Após finalizar e adicionar todos os componentes a caixa, você verá a mesma como na Figura 1. Conecte o cabo de energia que vem junto e siga as instruções de instalação e uso.

3. Guia de Instalação

(sprint 4)

O Guia de Instalação fornece um passo a passo claro e detalhado para configurar o ambiente de desenvolvimento necessário para a utilização do dispositivo IoT. A configuração inclui a instalação do Arduino IDE, uma ferramenta essencial para programar o dispositivo ESP32, e a integração das bibliotecas necessárias para o funcionamento correto do sistema.

Este guia é especialmente útil para desenvolvedores e administradores que irão operar e manter o sistema. Ele aborda desde o download e instalação do Arduino IDE até a configuração das bibliotecas que permitem o reconhecimento e programação do dispositivo ESP32. Siga os passos indicados com atenção para garantir a instalação e funcionamento adequados.

Passo 1

- Instale o Arduino IDE de acordo com seu sistema operacional.
- Acesse o sequinte link: https://www.arduino.cc/en/software

Passo 2

- Instale as bibliotecas na IDE do arduino para reconhecimento da porta do ESP32.
- Acesse as bibliotecas necessárias através do link:
 https://raw.githubusercontent.com/espressif/arduino-esp32
 /qh-pages/package esp32 dev index.json
- Abra o Arduino IDE

• Faça um download do projeto em um arquivo .ZIP através do link: https://github.com/Inteli-College/2024-2B-T14-IN04-G02

 Extraia todo o conteúdo do arquivo .ZIP em uma nova pasta e siga o passo seguinte

Passo 3

- Conectar o dispositivo loT a um computador via cabo USB
- Selecione a porta do ESP e faça o upload do código no esp.
- Conecte o arduino no USB do computador.
- Clique em "Selecionar Placa" e logo em seguida em "Selecionar outra placa e porta...

 Selecione o "ESP32S3 Dev Module" e a porta conectada e clique em "OK".

- Selecione a Seta para esquerda como na imagem abaixo.
- Aguarde o código ser compilado e enviado para o ESP32

1.Em versões futuras, o dispositivo loT estará inserido dentro dessa caixa construída em máquina de corte à laser. O protótipo deverá estar instalado próximo a uma catraca de acesso para garantir o funcionamento proposto

2.Dispositivo loT conectado a um computador

4. Guia de Configuração

(sprint 4)

Este guia tem como objetivo fornecer instruções detalhadas para a configuração do sistema, equipamento ou software, assegurando que todas as etapas sejam realizadas de maneira eficiente e conforme as especificações recomendadas.

Siga as instruções apresentadas de forma criteriosa para garantir a funcionalidade adequada e a conformidade com os requisitos operacionais.

- 1. Instale o dispositivo loT próximo à catraca / porta de acesso, conforme descrito no guia de instalação.
- 2. Pressione o botão vermelho por 5 segundos, que estará posicionado no local indicado na imagem abaixo

- 3. O dispositivo loT irá emitir um sinal sonoro e todos os LEDs irão piscar simultaneamente, indicando que o protótipo entrou no modo "Configuração"
- 4. O display LCD irá informar o modo "Configuração". Em seguida, um administrador do instituto poderá configurar o dispositivo e conectar à sua rede WiFi]
- 5. O ESP32 (Microcontrolador que comanda o dispositivo) irá gerar um hotspot (ponto de acesso) com uma tag específica que irá aparecer no LCD para identificar o dispositivo, juntamente com seu endereço IP.
- 6. A partir dessas informações, o administrador poderá configurar a rede e conectar o dispositivo à plataforma A-Portal, como descrito no Guia de Operação.

5. Guia de Operação (sprint 4)

Este Guia de Operação foi desenvolvido para orientar administradores do Instituto Apontar no uso da plataforma A-Portal. O objetivo é detalhar as etapas necessárias para realizar o login e efetuar o cadastro de novos usuários no sistema, garantindo a inclusão de dados biométricos de forma eficiente e segura.

A plataforma A-Portal, integrada ao sistema de controle de acesso, permite que administradores gerenciem usuários de forma prática. Neste guia, são apresentadas as telas principais (login e cadastro) e as instruções passo a passo para completar cada tarefa. Após o cadastro, as informações dos usuários, incluindo as biometrias, são armazenadas localmente em um cartão SD, proporcionando maior segurança e acessibilidade aos dados.

Parte 1

Um administrador do Instituto Apontar irá fazer o Login em sua conta na plataforma A-Portal

- 1. Digite seu email
- 2. Digite sua senha
- 3. Clique no botão Login

1. Tela de Login

Parte 2

Após ter acessado sua conta, o administrador irá selecionar a opção "cadastro" para cadastrar a biometria de um novo aluno

2. Tela de cadastro

- 1. Coloque o nome do aluno
- 2. Coloque o sobrenome do aluno
- 3. Coloque o CPF do aluno
- 4. Clique no botão biometria
- 5. Clique no botão Enviar

Após o aluno inserir sua biometria, suas informações ficarão salvas localmente em um cartão SD de memória.

2. Tela de carregamento

Parte 3

Na tela de listagem, o administrador terá acesso a informações de todos os alunos cadastrados, podendo verificar seus dados de frequência e acesso ao Instituto

3. Tela de listagem de usuários

Parte 4

Caso o usuário tenha esquecido sua senha, ele deverá clicar no link "Redefinir senha" e inserir um email para criar uma nova. Após isso, um email de verificação será enviado e ele deverá fazer login na plataforma com a nova senha criada.

- 1. Digite seu email
- 2. Clique no botão Enviar link de recuperação

4. Tela de redefinição de senha 1

- 1. Digite sua nova senha
- 2. Reescreva sua nova senha
- 3. Clique em Enviar
- 5. Tela de redefinição de senha 2

6. Como descartar este dispositivo

Esta seção fornece orientações técnicas para o descarte adequado de materiais e componentes, alinhando-se às normas ambientais e regulamentações vigentes. O objetivo é assegurar que os procedimentos minimizem impactos ao meio ambiente, promovam a sustentabilidade e atendam às boas práticas de gestão de resíduos.

- O primeiro passo para realizar o descarte deste dispositivo é limpar todos os dados digitais armazenados para evitar violações de privacidade. É necessário desconectar o dispositivo de qualquer rede de internet (Seja via WiFi ou por cabo), e de contas de serviços que possam estar sendo utilizados.
- 2. o segundo passo é desconectar o dispositivo de uma fonte de alimentação (como uma tomada ou bateria)
- 3. Desconecte cabos ou outros conectores que ainda possam conduzir corrente elétrica.
- 4. Separe partes removíveis, de preferência em recipientes recicláveis, como sacolas biodegradáveis ou caixas de papelão
- 5. Leve os componentes até um centro de coleta de lixo eletrônico ou instituições que realizam processos de logística reversa

Material	Vida útil estimada	Método de descarte
Visor LCD	5 a 10 anos	Reciclar em centros especializados para resíduos eletrônicos (e-waste). Não descartar no lixo comum
Microcontrolado r ESP32	5 a 15 anos	Descartar como lixo eletrônico em pontos de coleta específicos.
Protoboard	3 a 10 anos	Reciclar plásticos e metais, caso possível. Caso contrário, descartar como resíduo sólido não reciclável

Leitor biométrico	5 a 10 anos	Descartar em centros de reciclagem de resíduos eletrônicos
Cabo USB	3 a 8 anos	Reciclar o cobre em cooperativas especializadas e o plástico em centros de reciclagem apropriados.
LEDs	25.000 a 50.000 horas	Reciclar em locais que aceitem lâmpadas ou equipamentos eletrônicos pequenos.
Cabos jumper	3 a 5 anos	Reciclar o cobre em cooperativas de reciclagem

		e descartar o plástico em locais apropriados.
. Botões (push-buttons)	5 a 15 anos	Separar metal e plástico, reciclando-os conforme a infraestrutura local.
Buzzer	5 a 10 anos	Reciclar como resíduo eletrônico em pontos de coleta especializados para este tipo de material.

O descarte incorreto de lixo eletrônico pode trazer diversos riscos ambientais, sociais e à saúde humana, entre os quais destacam-se:

- Contaminação ambiental
- Intoxicação
- Desperdício de recursos naturais
- Poluição do solo, água e ar
- Custos de remediação

7. Troubleshooting (sprint 4)

Este guia foi desenvolvido para ajudar na identificação e resolução dos problemas mais comuns relacionados ao sistema de controle de acesso baseado em IoT. Ele contém uma lista de situações frequentes de falha, possíveis causas e soluções práticas, visando garantir a operação eficiente do dispositivo e a experiência ideal do usuário. Utilize as instruções fornecidas para solucionar os problemas de maneira eficaz e segura

#	Problema	Possível solução
1	Instabilidade da rede WiFl	 Reinicie o roteador para restabelecer a conexão Posicione o dispositivo loT em um local mais

		próximo ao roteador para melhorar a intensidade do sinal. Certifique-se de que não há interferências (paredes grossas, dispositivos eletrônicos) entre o dispositivo loT e o roteador.
2	Leitor biométrico não registra novas biometrias	 Limpe a superfície do leitor com cuidado, utilizando um pano macio levemente umedecido, caso necessário. Teste o leitor com outra digital para verificar se o problema persiste. Confirme que o dispositivo loT está conectado ao banco de dados e ao broker MQTT.
3	Danos ao dispositivo loT	 Identifique o componente danificado (ex.: conectores, sensor biométrico, LEDs). Entre em contato com o suporte técnico ou

		•	fornecedor para adquirir peças de reposição. Substitua os componentes seguindo as instruções do manual técnico ou solicite a manutenção por profissionais capacitados
4 LEDS	s não ligam	•	Certifique-se de que os LEDs estão conectados corretamente ao circuito e recebem energia suficiente. Verifique a integridade dos fios e conectores associados aos LEDs. Substitua LEDs queimados por novos, compatíveis com o dispositivo

Contato para Suporte Técnico

Se os problemas persistirem após a aplicação das soluções, entre em contato com o para assistência adicional:

Para mais duvidas entre em contato com o Inteli e converse com o grupo A-Portal

• E-mail: inteli@inteli.edu.br

• Telefone: +55 11 97659-8258

• Horário de Atendimento: Segunda a Sexta, das 9h às 18h