Pablo F. Damasceno

(734) 926-8070

pablodamasceno@gmail.com

linkedin.com/in/pablo-damasceno

SKILLS:

- Science & Research:
 - Clear communication
 - Critical thinking
 - Initiative
 - Mentorship
 - Public speaking skills
 - Scientific writing
 - Self-motivation
- Machine Learning & AI:
 - Classification
 - Clustering
 - Image Processing
 - Neural Networks
 - Random Forest
 - Regression
- Modeling:
 - Genetic Algorithms
 - Molecular Dynamics
 - Monte Carlo
- Programming & Workflow
 - Python, Mathematica, git
 - C++, bash, pdb, Matlab
 - CUDA, AWS, Docker
- Bench work:
 - DNA folding
 - Electron microscopy
 - Nanop. functionalization

Education

Ph.D., Applied Physics (2015) University of Michigan Ann Arbor, MI

B.S., Physics (2009) University of São Carlos São Paulo, Brazil

Profile

I am a fast-learning, inter-disciplinary researcher who loves scientific challenges. With 18 peer-reviewed publications that together have over 1100 citations, I have a track record of initiating, refining, and completing projects with minimal guidance. I am a competent Python programmer proficient in the latest Machine Learning techniques: from data clustering and model classification to insight gathering and intuition building.

Experience

Postdoctoral Scholar in Radiology at UCSF | 2018-

- Machine Learning for neurodegenerative disease prediction
 - Spectral clustering classification of Alzheimer patients.
 - MCMC for modeling neurodegenerative disease propagation.
 - CNN / Autoencoder methods for classifying EEG spectra

Postdoctoral Scholar in Molecular Pharmacology at UCSF | 2015-2018

- Computational modeling in Python. I have built:
 - Workflows for microscopy image analysis.
 - Molecular Dynamics models of DNA folding and assembly.
 - Suites for geometrical manipulation and visualization of DNA.

PhD in Applied Physics, University of Michigan | 2009-2015

- Molecular modeling in Python. I have employed:
 - Monte Carlo simulations to identify the role of shape for nanoparticle self-assembly.
 - Evolutionary Algorithms (CMA-ES) to optimize nanoparticle shape for materials fabrication.
 - Molecular Dynamics simulations to evaluate how chemical interactions affect material's assembly propensity.
 - Markov Chain Monte Carlo to evaluate how geometry affects folding of objects in the nanoscale.
 - Finite Elements Method to optimize mechanical properties of origami-inspired flexible electronics.

Achievements

Publications / Places that featured my work:

- Nature Materials; Nature Communications; Science.
- Nature 'News & Views'; Physics.org; Reddit; Science Podcast.