```
In [1]:
                                                                              <>
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docke
r-python
# For example, here's several helpful packages to load
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list al
1 files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that gets p
reserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved out
side of the current session
```

Titanic EDA and Prediction

Importing all necessary libraries

In [2]:

```
import pandas as pd
import numpy as np
import xgboost as xgb
from scipy import stats
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC, LinearSVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVR
from lightqbm import LGBMRegressor
from xgboost import XGBRegressor
from mlxtend.regressor import StackingRegressor
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import RobustScaler
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import Lasso, Ridge
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import accuracy_score
pd.pandas.set_option("display.max_columns", None)
print("all necessary libraries are imported")
```

In [3]:

```
train=pd.read_csv("../input/titanic/train.csv")
train.head()
```

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	5
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	7
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	5
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	E,
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8
4										•

```
In [4]:
```

```
test=pd.read_csv("../input/titanic/test.csv")
test.head()
```

Out[4]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	С
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	N
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	N
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	N
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	N
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	N
4										•

```
In [5]:
```

train.shape, test.shape

Out[5]:

In [6]:

train_cat=list(train.select_dtypes(include='object')) train_cat

Out[6]:

```
In [7]:
train_num=list(train.select_dtypes(exclude='object'))
train_num
```

Out[7]:

Univariate Analysis

Target Feature

```
In [8]:
train['Survived'].value_counts().plot.bar(color=['r','g'])
 Out[8]:
```


it says that most of the people have dead

Categorical Feature

plt.figure(1)
plt.subplot(221)
train['Sex'].value_counts(normalize=True).plot.bar(figsize=(10,10),color=['b', 'r'])
plt.subplot(223)
train['Embarked'].value_counts(normalize=True).plot.bar(figsize=(10,10),color=['y','g','r'])

Out[9]:

- Around 80% of the passangers are male
- Around 75% of passangers have embarked as S

Numerical Feature

In [10]:

```
plt.figure(1)
plt.subplot(221)
train['Pclass'].value_counts(normalize=True).plot.bar(figsize=(10,10),title="Pcl
ass")
plt.subplot(223)
train['Pclass'].plot.box(figsize=(10,10))
```

Out[10]:


```
In [11]:

plt.figure(1)
plt.subplot(221)
train['SibSp'].value_counts(normalize=True).plot.bar(figsize=(10,10),title="SibSp")
plt.subplot(223)
train['SibSp'].plot.box(figsize=(10,10))
```

Out[11]:

In [12]:

plt.figure(1)
plt.subplot(221)
train['Parch'].value_counts(normalize=True).plot.bar(figsize=(10,10),title="Parch")
plt.subplot(223)
train['Parch'].plot.box(figsize=(10,10))

Out[12]:

Bivariate Analysis

Categorical vs Target Feature

In [13]:

train_cat

Out[13]:

In [14]:

```
sex=pd.crosstab(train['Sex'], train['Survived'])
sex.div(sex.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True, figsize=(4,4))
```

Out[14]:

More males have dead comapre to females as if 1 shows alive and 0 shows death

```
In [15]:
```

```
embarked=pd.crosstab(train['Embarked'],train['Survived'])
embarked.div(embarked.sum(1).astype(float),axis=0).plot(kind='bar',stacked=True,
figsize=(4,4))
```

Out[15]:

The survival rate of embarked 'C' is greater than the rest two and the lowest survival rate is associated with embarked 'S'

Numerical vs Target Feature

```
In [16]:
train_num
```

Out[16]:

```
In [17]:
```

```
pclass=pd.crosstab(train['Pclass'], train['Survived'])
pclass.div(pclass.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True, figs
ize=(4,4))
```

Out[17]:

class 1 has most survival rate and class 3 has least survival rate

```
In [18]:
```

```
sibsp=pd.crosstab(train['SibSp'],train['Survived'])
sibsp.div(sibsp.sum(1).astype(float),axis=0).plot(kind='bar',stacked=True,figsiz
e=(4,4))
```

Out[18]:


```
In [19]:
```

```
parch=pd.crosstab(train['Parch'], train['Survived'])
parch.div(parch.sum(1).astype(float), axis=0).plot(kind='bar', stacked=True, figsiz e=(4,4))
```

Out[19]:


```
In [20]:
train.isnull().any()
Out[20]:
```

```
In [21]:
train_missing_obj_col=[]
for col in train_cat:
    if train[col].isnull().any():
        train_missing_obj_col.append(col)
train_missing_obj_col
Out[21]:
```

Missing Values Imputation In Train Dataset

Imputation In Numerical Col

```
In [22]:

train_missing_num_col=[]

for col in train_num:
    if train[col].isnull().any():
        train_missing_num_col.append(col)

train_missing_num_col
Out[22]:
```

```
In [23]:
```

```
temp=train[['Age']]
temp
```

Out[23]:

	Age
0	22.0
1	38.0
2	26.0
3	35.0
4	35.0
886	27.0
887	19.0
888	NaN
889	26.0
890	32.0

891 rows × 1 columns

```
In [24]:
```

```
train.drop(['Age'],inplace=True,axis=1)
```

```
In [25]:
```

```
from sklearn.impute import SimpleImputer
my_imputer=SimpleImputer()
imputed_temp = pd.DataFrame(my_imputer.fit_transform(temp))
imputed_temp.columns = temp.columns
```

```
In [26]:
```

```
train=pd.concat([train,imputed_temp],axis=1)
```

In [27]:

train

Out[27]:

	Passengerld	Survived	Pclass	Name	Sex	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	1	0	A/5 21171	7.250
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	1	0	PC 17599	71.28
2	3	1	3	Heikkinen, Miss. Laina	female	0	0	STON/02. 3101282	7.925
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	1	0	113803	53.10
4	5	0	3	Allen, Mr. William Henry	male	0	0	373450	8.050
886	887	0	2	Montvila, Rev. Juozas	male	0	0	211536	13.00
887	888	1	1	Graham, Miss. Margaret Edith	female	0	0	112053	30.00
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	1	2	W./C. 6607	23.45
889	890	1	1	Behr, Mr. Karl Howell	male	0	0	111369	30.00
890	891	0	3	Dooley, Mr. Patrick	male	0	0	370376	7.750
4									•

891 rows × 12 columns

Imputation In Categorical Col

```
In [28]:
train['Embarked'].fillna(train['Embarked'].mode(),inplace=True)
```

```
In [29]:
dummy1=pd.get_dummies(train[['Sex','Embarked']],drop_first=True)
dummy1
```

Out[29]:

	Sex_male	Embarked_Q	Embarked_S
0	1	0	1
1	0	0	0
2	0	0	1
3	0	0	1
4	1	0	1
		•••	•••
886	1	0	1
887	0	0	1
888	0	0	1
889	1	0	0
890	1	1	0

891 rows × 3 columns

```
In [30]:
train.drop(train_missing_obj_col ,axis=1,inplace=True)
```

```
In [31]:
train=pd.concat([train,dummy1],axis=1)
```

```
In [32]:
train.drop(['Name','PassengerId','Sex','Ticket'],axis=1,inplace=True)
```

In [33]:

train

Out[33]:

	Survived	Pclass	SibSp	Parch	Fare	Age	Sex_male	Embarked_Q	Em
0	0	3	1	0	7.2500	22.000000	1	0	1
1	1	1	1	0	71.2833	38.000000	0	0	0
2	1	3	0	0	7.9250	26.000000	0	0	1
3	1	1	1	0	53.1000	35.000000	0	0	1
4	0	3	0	0	8.0500	35.000000	1	0	1
	•••				•••			•••	
886	0	2	0	0	13.0000	27.000000	1	0	1
887	1	1	0	0	30.0000	19.000000	0	0	1
888	0	3	1	2	23.4500	29.699118	0	0	1
889	1	1	0	0	30.0000	26.000000	1	0	0
890	0	3	0	0	7.7500	32.000000	1	1	0
4									•

891 rows × 9 columns

In [34]:

train.shape

Out[34]:

Removing the Skewness In the Train Data Col

```
In [35]:
```

train['Age']=np.log(train['Age']+1)

```
In [36]:
train['Fare']=np.log(train['Fare']+1)
```

```
In [37]:
  (train['Age']).plot(kind = 'density', title = 'Log Age distribution', fontsize=
14, figsize=(10, 6))
```

Out[37]:


```
In [38]:
   (train['Survived']).plot(kind = 'density', title = 'Survived', fontsize=14, fig
size=(10, 6))
```

Out[38]:

Feature Engineering on Test Dataset

```
In [39]:
```

```
test.head()
```

Out[39]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	С
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	N
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	N
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	N
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	N
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	N
4										•

```
In [40]:
test_cat_col=list(test.select_dtypes(include='object'))
test_cat_col
```

Out[40]:

```
In [41]:
test_num_col=list(test.select_dtypes(exclude='object'))
test_num_col
```

Out[41]:

```
In [42]:

test_missing_cat_col=[col for col in test_cat_col if test[col].isnull().any()]
test_missing_cat_col

Out[42]:

In [43]:

test_missing_num_col=[col for col in test_num_col if test[col].isnull().any()]
test_missing_num_col

Out[43]:
```

Missing Values Imputation In Test Dataset

Imputation In Numerical Col

```
In [44]:

temp1=test[['Age','Fare']]

In [45]:

imputer=SimpleImputer()
imputed_temp1=pd.DataFrame(imputer.fit_transform(temp1))
imputed_temp1.columns=temp1.columns

In [46]:

test.drop(['Age','Cabin','Name','Fare'],axis=1,inplace=True)
```

```
In [47]:
```

```
test=pd.concat([test,imputed_temp1],axis=1)
test
```

Out[47]:

	Passengerld	Pclass	Sex	SibSp	Parch	Ticket	Embarked	Age	Fa
0	892	3	male	0	0	330911	Q	34.50000	7.
1	893	3	female	1	0	363272	S	47.00000	7.
2	894	2	male	0	0	240276	Q	62.00000	9.
3	895	3	male	0	0	315154	S	27.00000	8.
4	896	3	female	1	1	3101298	S	22.00000	12
					•••				
413	1305	3	male	0	0	A.5. 3236	S	30.27259	8.
414	1306	1	female	0	0	PC 17758	С	39.00000	10
415	1307	3	male	0	0	SOTON/O.Q. 3101262	S	38.50000	7.
416	1308	3	male	0	0	359309	S	30.27259	8.
417	1309	3	male	1	1	2668	С	30.27259	22
4									•

418 rows × 9 columns

Imputation In Categorical Col

```
In [48]:
```

```
dummy2=pd.get_dummies(test[['Sex','Embarked']],drop_first=True)
dummy2
```

Out[48]:

	Sex_male	Embarked_Q	Embarked_S
0	1	1	0
1	0	0	1
2	1	1	0
3	1	0	1
4	0	0	1
			•••
413	1	0	1
414	0	0	0
415	1	0	1
416	1	0	1
417	1	0	0

418 rows × 3 columns

In [49]:

```
test.drop(['PassengerId','Sex','Embarked','Ticket'],axis=1,inplace=True)
```

In [50]:

```
test=pd.concat([test,dummy2],axis=1)
test
```

Out[50]:

	Pclass	SibSp	Parch	Age	Fare	Sex_male	Embarked_Q	Embarked_S
0	3	0	0	34.50000	7.8292	1	1	0
1	3	1	0	47.00000	7.0000	0	0	1
2	2	0	0	62.00000	9.6875	1	1	0
3	3	0	0	27.00000	8.6625	1	0	1
4	3	1	1	22.00000	12.2875	0	0	1
•••								
413	3	0	0	30.27259	8.0500	1	0	1
414	1	0	0	39.00000	108.9000	0	0	0
415	3	0	0	38.50000	7.2500	1	0	1
416	3	0	0	30.27259	8.0500	1	0	1
417	3	1	1	30.27259	22.3583	1	0	0

418 rows × 8 columns

```
In [51]:
```

test.shape

Out[51]:

Removing the Skewness In the Test Data Col

```
In [52]:
test['Age']=np.log(test['Age'])
```

```
In [53]:

test['Fare']=np.log(test['Fare']+1)
```

```
In [54]:
  (test['Age']).plot(kind = 'density', title = 'Log Age distribution', fontsize=1
4, figsize=(10, 6))
```

Out[54]:

Removing Target Variable from the Train Dataset

```
In [55]:
y=train['Survived']
```

```
In [56]:
train.drop(['Survived'], axis=1, inplace=True)
```

In [57]:

train.head()

Out[57]:

	Pclass	SibSp	Parch	Fare	Age	Sex_male	Embarked_Q	Embarked_S
0	3	1	0	2.110213	3.135494	1	0	1
1	1	1	0	4.280593	3.663562	0	0	0
2	3	0	0	2.188856	3.295837	0	0	1
3	1	1	0	3.990834	3.583519	0	0	1
4	3	0	0	2.202765	3.583519	1	0	1

In [58]:

test.head()

Out[58]:

	Pclass	SibSp	Parch	Age	Fare	Sex_male	Embarked_Q	Embarked_S
0	3	0	0	3.540959	2.178064	1	1	0
1	3	1	0	3.850148	2.079442	0	0	1
2	2	0	0	4.127134	2.369075	1	1	0
3	3	0	0	3.295837	2.268252	1	0	1
4	3	1	1	3.091042	2.586824	0	0	1

In [59]:

train.shape,test.shape

Out[59]:

Model Building

Logistic Regression

```
In [60]:
x_train, x_test, y_train, y_test=train_test_split(train, y, random_state=42)
```

```
In [61]:

logistic=LogisticRegression(max_iter=100, random_state=1, n_jobs=-1)
logistic.fit(x_train, y_train)
pred1=logistic.predict(x_test)
pred1
```

Out[61]:

print(f'The train accuracy is {logistic.score(x_train,y_train)}')
from sklearn.metrics import accuracy_score
print('Logistic Regresson model accuracy score: {0:0.4f}'. format(accuracy_score
(y_test, pred1)))

Random Forest Classifier

Hyperparameter tuning

Now buliding the model with best parameters

In [64]:

```
print('Random Forest Classifier model accuracy score: {0:0.4f}'. format(accuracy _score(y_test, pred2)))
```

Stochastic Gradient Descent (SGD)

```
In [66]:

sgd = SGDClassifier(random_state=42)
sgd.fit(x_train, y_train)
pred3 = sgd.predict(x_test)

sgd.score(x_train, y_train)

acc_sgd = round(sgd.score(x_train, y_train) * 100, 2)
acc_sgd

Out[66]:
```

```
In [67]:

print('Stochastic Gradient Descent (SGD) model accuracy score: {0:0.4f}'. format
(accuracy_score(y_test, pred3)))
```

Hyperparameter tuning

Now buliding the model with best parameters

```
In [69]:

sgd = SGDClassifier(random_state=0,alpha=0.01,loss='log',penalty='12')
sgd.fit(x_train, y_train)
pred3 = sgd.predict(x_test)
pred3

Out[69]:
```

```
In [70]:
print('Stochastic Gradient Descent (SGD) tuned model accuracy score: {0:0.4f}'.
```

format(accuracy_score(y_test, pred3)))

K Nearest Neighbor (KNN)

```
In [71]:

knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(x_train, y_train)
pred4 = knn.predict(x_test)
acc_knn = round(knn.score(x_train, y_train) * 100, 2)
print('Stochastic Gradient Descent (SGD) model train accuracy score: {0:0.4f}'.
format(acc_knn))
print('Stochastic Gradient Descent (SGD) model accuracy score: {0:0.4f}'. format
(accuracy_score(y_test, pred4)))
```

Linear Support Vector Machine

Linear Support Vector Machine

```
In [72]:

linear_svc = LinearSVC(max_iter=100000, dual=True)
linear_svc.fit(x_train, y_train)

pred5 = linear_svc.predict(x_test)

acc_linear_svc = round(linear_svc.score(x_train, y_train) * 100, 2)
print('Linear Support Vector Machine model train accuracy score: {0:0.4f}'. form at(acc_linear_svc))
print('Linear Support Vector Machine model accuracy score: {0:0.4f}'. format(acc_uracy_score(y_test, pred5)))
```

Decision Tree

```
In [73]:

decision_tree = DecisionTreeClassifier()
decision_tree.fit(x_train, y_train)
pred6 = decision_tree.predict(x_test)
acc_decision_tree = round(decision_tree.score(x_train,y_train) * 100, 2)
print('Decision Tree model train accuracy score: {0:0.4f}'. format(acc_decision_tree))
print('Decision Tree model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, pred6)))
```

Hyperparameter tuning

In [74]: grid_param = { 'criterion' : ['gini', 'entropy'], 'max_depth' : [3, 5, 7, 10], 'splitter' : ['best', 'random'], 'min_samples_leaf' : [1, 2, 3, 5, 7], 'min_samples_split' : [1, 2, 3, 5, 7], 'max_features' : ['auto', 'sqrt', 'log2'] } $decision = GridSearchCV(decision_tree, grid_param, cv = 5, n_jobs = -1, verbose$ decision.fit(x_train, y_train) print(decision.best_params_) print(decision.best_score_)

Now buliding the model with best parameters

In [75]:

Adaboost Classifier

```
In [76]:

from sklearn.ensemble import AdaBoostClassifier
adb = AdaBoostClassifier(base_estimator = decision_tree)
adb.fit(x_train,y_train)
adb_pred=adb.predict(x_test)
acc_adb=adb.score(x_train,y_train)
print('Adaboost Classifier model train accuracy score: {0:0.4f}'. format(acc_adb))
print('Adaboost Classifier model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, adb_pred)))
```

Hyperparameter Tuning

In [77]:

```
grid_param = {
    'n_estimators' : [100, 120, 150, 180, 200],
    'learning_rate' : [0.01, 0.1, 1, 10],
    'algorithm' : ['SAMME', 'SAMME.R']
}
ada = GridSearchCV(adb, grid_param, cv = 5, n_jobs = -1, verbose = <u>True</u>)
ada.fit(x_train, y_train)
print(ada.best_params_)
print(ada.best_score_)
```

In [78]:

Gradient Boosting

```
In [79]:
```

```
from sklearn.ensemble import GradientBoostingClassifier

gb = GradientBoostingClassifier()
gb.fit(x_train, y_train)
pred8=gb.predict(x_test)
acc_gb=gb.score(x_train,y_train)
print('Gradient Boosting model train accuracy score: {0:0.4f}'. format(acc_gb))
print('Gradient Boosting model accuracy score: {0:0.4f}'. format(accuracy_score(y_test, pred8)))
```

LightGBM

```
import lightgbm as lgb
lgbm= lgb.LGBMClassifier()
lgbm.fit(x_train,y_train)
lgbm_pred=lgbm.predict(x_test)
acc_lgbm=lgbm.score(x_train,y_train)
print('lgbm model train accuracy score: {0:0.4f}'. format(acc_lgbm))
print('lgbm model accuracy score: {0:0.4f}'. format(accuracy_score(y_test,lgbm_p red)))
```

Hyperparameter Tuning

In [83]:

```
from sklearn.model_selection import RandomizedSearchCV
clf = lgb.LGBMClassifier(max_depth=-1, random_state=42, silent=True, metric='Non
e', n_jobs=4, n_estimators=100)
gs = RandomizedSearchCV(
    estimator=clf, param_distributions=param_test,
    n_iter=100,
    scoring='roc_auc',
    cv=3,
    refit=True,
    random_state=314,
    verbose=True)
```

```
In [84]:
```

```
gs.fit(x_train, y_train, **fit_params)
print('Best score reached: {} with params: {} '.format(gs.best_score_, gs.best_p
arams_))
```

```
In [86]:

clf_sw = lgb.LGBMClassifier(**clf.get_params())

#set optimal parameters

clf_sw.set_params(**opt_params)

Out[86]:
```

```
clf_sw.fit(x_train,y_train)
pred9=clf_sw.predict(x_test)
print('lgbm model accuracy score: {0:0.4f}'. format(accuracy_score(y_test,pred9)))
```

CatBoost Classifier

In [88]:

```
from catboost import CatBoostClassifier
cat = CatBoostClassifier(iterations=10)
cat.fit(x_train, y_train)
pred10=cat.predict(x_test)
acc_cat=cat.score(x_train,y_train)
print('CatBoostClassifier model accuracy score: {0:0.4f}'. format(accuracy_score
(y_test,pred10)))
```

Voting Classifier

In [89]:

```
from sklearn.ensemble import VotingClassifier
classifiers = [('Gradient Boosting Classifier', gb), ('Stochastic Gradient Boost
ing', sgd), ('Cat Boost Classifier', cat),
                ('Decision Tree', decision_tree), ('Light Gradient', clf_sw),
               ('Random Forest', random_forest), ('Ada Boost', adb), ('Logistic'
, logistic)]
vc = VotingClassifier(estimators = classifiers)
vc.fit(x_train, y_train)
voting_pred = vc.predict(x_test)
accuracy = accuracy_score(y_test, voting_pred)
print('Voting Classifier: {:.3f}'.format(accuracy))
```

In [90]:

```
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
print(f"{confusion_matrix(y_test, vc.predict(x_test))}\n")
print(classification_report(y_test, vc.predict(x_test)))
```

Important Features

```
In [91]:
```

```
importances = pd.DataFrame({'feature':train.columns,'importance':np.round(random
_forest.feature_importances_,3)})
importances = importances.sort_values('importance', ascending=False).set_index('f
eature')
importances.head(15)
```

Out[91]:

	importance
feature	
Sex_male	0.317
Fare	0.240
Age	0.204
Pclass	0.106
SibSp	0.056
Parch	0.043
Embarked_S	0.024
Embarked_Q	0.010

```
In [92]:
```

```
importances.plot.bar()
```

Out[92]:

Model Comaprison

In [93]:

```
models = pd.DataFrame({
    'Model' : ['Logistic Regression', 'Random Forest Classifier', 'Stochastic Grad
ient Boosting', 'KNN', 'LSVM', 'Decision Tree Classifier', 'Ada Boost Classifier',
             'Gradient Boosting Classifier', 'Lightgbm', 'Cat Boost', 'Voting Cl
assifier'],
    'Score' : [accuracy_score(y_test,pred1), accuracy_score(y_test,pred2), accur
acy_score(y_test, pred3),
               accuracy_score(y_test,pred4),accuracy_score(y_test,pred5), accura
cy_score(y_test,pred_6),
               accuracy_score(y_test,pred7), accuracy_score(y_test,pred8), accur
acy_score(y_test,pred9)
               ,accuracy_score(y_test,pred10),accuracy]
})
models.sort_values(by = 'Score', ascending = False)
```

Out[93]:

	Model	Score
8	Lightgbm	0.834081
1	Random Forest Classifier	0.825112
10	Voting Classifier	0.820628
7	Gradient Boosting Classifier	0.816143
9	Cat Boost	0.816143
3	KNN	0.811659
0	Logistic Regression	0.807175
5	Decision Tree Classifier	0.802691
4	LSVM	0.798206
6	Ada Boost Classifier	0.784753
2	Stochastic Gradient Boosting	0.757848

Final Prediction

```
In [94]:
final_pred=vc.predict(test)
```

```
In [95]:
```

submission=pd.read_csv('../input/titanic/gender_submission.csv')

In [96]:

submission

Out[96]:

	Passengerld	Survived	
0	892	0	
1	893	1	
2	894	0	
3	895	0	
4	896	1	
•••			
413	1305	0	
414	1306	1	
415	1307	0	
416	1308	0	
417	1309	0	

418 rows × 2 columns

In [97]:

submission['Survived']=final_pred

In [98]:

submission

Out[98]:

	Passengerld	Survived
0	892	0
1	893	0
2	894	0
3	895	0
4	896	0
413	1305	0
414	1306	1
415	1307	0
416	1308 0	
417	1309	0

418 rows × 2 columns

```
In [99]:
```

pd.DataFrame(submission,columns=['PassengerId','Survived']).to_csv('titanic_new. csv',index=False)

In [100]:

```
pd.read_csv('titanic_new.csv')
```

Out[100]:

	Passengerld	Survived	
0	892	0	
1	893	0	
2	894	0	
3	895	0	
4	896	0	
	•••		
413	1305	0	
414	1306	1	
415	1307	0	
416	1308	0	
417	1309	0	

418 rows × 2 columns

In []:			

In []:		