Public Key Cryptography and the RSA Algorithm

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- Key is shared by both sender and receiver
- if the key is disclosed communications are compromised
- also known as symmetric, both parties are equal
 - hence does not protect sender from receiver forging a message & claiming is sent by sender

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public key and a private key
- asymmetric since parties are not equal
- uses clever application of number theory concepts to function
- complements rather than replaces private key cryptography

Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- is asymmetric because
 - those who encrypt messages or verify signatures
 cannot decrypt messages or create signatures

Public-Key Cryptography

Why Public-Key Cryptography?

- developed to address two key issues:
 - **key distribution** how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie & Martin Hellman at Stanford U. in 1976
 - known earlier in classified community

Public-Key Characteristics

- Public-Key algorithms rely on two keys with the characteristics that it is:
 - computationally infeasible to find decryption key knowing only algorithm & encryption key
 - computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption, with the other used for decryption (in some schemes)

Public-Key Cryptosystems

Figure 9.4 Public-Key Cryptosystem: Secrecy and Authentication

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large (>512bits)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the **hard** problem is known, its just made too hard to do in practise
- requires the use of very large numbers
- hence is **slow** compared to private key schemes

RSA Key Setup

- each user generates a public/private key pair by:
- selecting two large primes at random p, q
- computing their system modulus N=p.q
 - note \emptyset (N) = (p-1) (q-1)
- selecting at random the encryption key e
 - where $1 \le \emptyset (N)$, $gcd(e,\emptyset(N)) = 1$
- solve following equation to find decryption key d
 - e.d=1 mod \emptyset (N) and $0 \le d \le N$
- publish their public encryption key: KU={e,N}
- keep secret private decryption key: KR={d,p,q}

RSA Use

- to encrypt a message M the sender:
 - obtains public key of recipient KU={e, N}
 - computes: $C=M^e \mod N$, where $0 \le M < N$
- to decrypt the ciphertext C the owner:
 - uses their private key KR={d,p,q}
 - computes: M=Cd mod N
- note that the message M must be smaller than the modulus N (block if needed)

Why RSA Works

- because of Euler's Theorem:
- $a^{\emptyset(n)} \mod N = 1$
 - where gcd(a, N) = 1
- in RSA have:
 - \bullet N=p.q
 - \emptyset (N) = (p-1) (q-1)
 - carefully chosen e & d to be inverses mod Ø (N)
 - hence $e \cdot d = 1 + k \cdot \emptyset$ (N) for some k
- hence:

$$C^{d} = (M^{e})^{d} = M^{1+k \cdot \varnothing(N)} = M^{1} \cdot (M^{\varnothing(N)})^{q} = M^{1} \cdot (1)^{q}$$

= $M^{1} = M \mod N$

RSA Example

- 1. Select primes: p=17 & q=11
- 2. Compute $n = pq = 17 \times 11 = 187$
- 3. Compute $\emptyset(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e : gcd(e, 160) = 1; choose e=7
- 5. Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23×7=161= 10×160+1
- 6. Publish public key $KU = \{7, 187\}$
- 7. Keep secret private key KR={23,17,11}

RSA Example cont

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88<187)
- encryption:

$$C = 88^7 \mod 187 = 11$$

• decryption:

$$M = 11^{23} \mod 187 = 88$$

Exponentiation

- can use the Square and Multiply Algorithm
- a fast, efficient algorithm for exponentiation
- concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- look at binary representation of exponent
- only takes O(log, n) multiples for number n
 - eg. $7^5 = 7^4 \cdot 7^{1} = 3 \cdot 7 = 10 \mod 11$
 - eg. $3^{129} = 3^{128} \cdot 3^1 = 5 \cdot 3 = 4 \mod 11$

Exponentiation

```
c \leftarrow 0; d \leftarrow 1
for i ← k downto 0
        do c \leftarrow 2 \times c
               d \leftarrow (d \times d) \mod n
               if b_i = 1
                      then c \leftarrow c + 1
                                 d \leftarrow (d \times a) \mod n
return d
```

RSA Key Generation

- users of RSA must:
 - determine two primes at random p, q
 - select either e or d and compute the other
- primes p, q must not be easily derived from modulus N=p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use Inverse algorithm to compute the other

RSA Security

- three approaches to attacking RSA:
 - brute force key search (infeasible given size of numbers)
 - mathematical attacks (based on difficulty of computing $\emptyset(N)$, by factoring modulus N)
 - timing attacks (on running of decryption)

Factoring Problem

- mathematical approach takes 3 forms:
 - factor $N=p \cdot q$, hence find \emptyset (N) and then d
 - determine \emptyset (N) directly and find d
 - find d directly
- currently believe all equivalent to factoring
 - have seen slow improvements over the years
 - as of Aug-99 best is 130 decimal digits (512) bit with GNFS
 - biggest improvement comes from improved algorithm
 - cf "Quadratic Sieve" to "Generalized Number Field Sieve"
 - barring dramatic breakthrough 1024+ bit RSA secure
 - ensure p, q of similar size and matching other constraints

Timing Attacks

- developed in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or IF's varying which instructions executed
- infer operand size based on time taken
- RSA exploits time taken in exponentiation
- countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Summary

- have considered:
 - principles of public-key cryptography
 - RSA algorithm, implementation, security