CUPID array

Joe Camilleri

Monte Carlo simulation of the CUPID array

Joe Camilleri

DNP October 2021

jcamilleri@vt.edu

September 30, 2021

CUPID experiment

Joe Camilleri

CHEI

- Proposed $0\nu\beta\beta$ search using bolometric array of 1596 lithium molybdate crystals, deployed in the CUORE¹ cryostat.
- Aims to eliminate dominant background of alpha particles present in CUORE.

protectunhboxvoidb@xprotect

Figure: rendering of proposed CUPID array of Li₂MoO₄ crystals

¹Clarke and Braginski 2004.

- Li₂MoO₄ crystals allow for discrimination of α backgrounds from $\beta\beta$ events (Q=3034keV) via high-light yield scintillation signals.
- relatively high isotopic abundance of ¹⁰⁰Mo (10%)
- enrichment above 95% already demonstrated in CUPID-Mo

protectunhboxvoidb@xprotect

Figure: CUPID bolometer and rejection scheme

CHEI

- With respect to coincidences, the rate of $2\nu\beta\beta$ events is not negligible in CUPID array (calculate this)
- Minimizing the distance cut helps avoid mis-labelling random $2\nu\beta\beta$ coincidences as multiplicity 2.
- Assuming a simple muon veto geometry, increasing the distance cut rejects more muon events.

protectunhboxvoidb@xprotect

- events within a trigger time window that are also within the specified distance cut are rejected
- man
- dude

distance cut in the CUPID array

gnarly

CLIBID

- guy
- man
- dude

Figure: gnarly

$2\nu\beta\beta$ efficiency and the muon background

Joe Camilleri

CLIDID

- guy
- man
- dude

Figure: gnarly