Exercício 4. Sendo k um inteiro não-negativo e Σ um alfabeto qualquer, mostre por indução que $|\Sigma^k| = |\Sigma|^k$.

Base: k = 0

$$\begin{split} |\Sigma^0| &= |\{\epsilon\}| = 1 \\ |\Sigma|^0 &= 1 \\ \text{Logo } |\Sigma^k| &= |\Sigma|^k \text{ para } k = 0 \end{split}$$

Indução:

Todo $x \in \Sigma^{k+1}$ pode ser escrito como x = aw, tal que $a \in \Sigma$ e $w \in \Sigma^k$ para

Logo $|\Sigma||\Sigma^k| = |\Sigma^{k+1}|$

Usando essa igualdade podemos fazer:
$$|\Sigma|^{k+1} = |\Sigma||\Sigma|^k = |\Sigma||\Sigma^k| = |\Sigma^{k+1}|$$

Portanto $|\Sigma^k| = |\Sigma|^k$ para todo k inteiro não-negativo

Exercício 16. Construa um autômato finito determinístico A com alfabeto $\Sigma = \{a,b\}$ tal que $L(A) = \{aba, baba, baba, babaaba\}$. Construa ainda um autômato finito não-determinístico B com transições ϵ tal que L(B) = L(A), valendo-se do não-determinismo e das transições ϵ para a simplificação do autômato.

Autômato finito determinístico:

 $A = \{\{q_0,q_1,q_2,q_3,q_4,q_5,q_6,q_7,q_e\},\{a,b\},\delta,q_0,\{q_3,q_7\}\}, \text{ sendo } \delta \text{ definido por: }$

(q,s)	$\delta(q, s)$
(q_0, a)	q_1
(q_0,b)	q_4
(q_1,a)	q_e
(q_1,b)	q_2
(q_2,a)	q_3
(q_2,b)	q_e
(q_3,a)	q_e
(q_3,b)	q_e
(q_4,a)	q_5
(q_4,b)	q_e
(q_5,a)	q_e
(q_5,b)	q_6
(q_6,a)	q_7
(q_6,b)	q_e
(q_7,a)	q_1
(q_7,b)	q_e
(q_e, a)	q_e
(q_e, b)	q_e

Representação por grafo:

Autômato finito não-determinístico com transições $\epsilon \colon$

 $B = \{\{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7\}, \{a, b\}, \delta, q_0, \{q_7\}\}, \text{ sendo } \delta \text{ definido pelo grafo:}$

Exercício 20. Considere a linguagem L sobre $\Sigma := \{0, 1\}$ definida por $L := \{0^n 10^n : n \in \mathbb{Z}_{>0}\}$. Prove ou refute: L é uma linguagem regular.

Lema do bombeamento:

Existe um b inteiro positivo tal que para todo $w \in L$ tal que $|w| \ge b$, w pode ser escrito como w = xyz e

- 1. $y \neq \epsilon$
- $2. |xy| \leq b$
- 3. $xy^kz \in L$ para todo k inteiro não negativo

Suponhamos que L seja regular, logo existe um b tal que o lema do bombeamento é satisfeito. Tomando $w = 0^b 10^b$, é trivial que $w \in L$. Também é trivial que y do lema de bombeamento será do tipo $y = 0^i$ tal que $1 \le i \le b$ e também está antes do único 1 da palavra, caso contrário as partes 1 e 2 do lema não seriam satisfeitas.

Ao bombear y com k=2 (w'=xyyz), é possível perceber que a palavra não faz mais parte da linguagem, devido ao desbalanceamento de 0 antes e depois do 1 da palavra, isto é, w' não pode ser escrita como 0^n10^n tal que n é um inteiro não negativo. De modo explícito: $w'=0^{b+i}10^b$ e $i \geq 1$, então $w' \notin L$.

Logo a parte 3 do lema não é satisfeito e L não satisfaz o lema do bombeamento. Portanto L não é uma linguagem regular.