中国人民大学2023-2024秋季学期(概率论与数理统计C)期末考试试卷

- 一、单项选择题(本大题共 10 小题, 共 30 分) (本大颗共 10 小驗, 共 30 分)
- 1、设施机变量 X 的概率分布为 $P\{X=1\}=P\{X=-1\}=1/4, P\{X=0\}=1/2, Y 与 X 局分布、若满足 <math>P\{XY=0\}=1,$ 则 $P\{X=Y\}$ 为
- (A) 1/4
- (B) 0
- (C) 1/2
- (D) 3/4
- 2、设施机变量 X 在区间 (0,1) 上服从均匀分布,在 X=x(0<x<1) 的条件下,随机变量 Y 在区间 (0,x) 上服从均匀分布,则 (X,Y) 的联合概率密度函数为 (x,y)

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{#$\dot{\Xi}$.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & 0 < y < x < 1, \\ 0, & \text{#$\dot{\Xi}$.} \end{cases}$$

$$f(x,y) = \begin{cases} 1/x, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{#$\dot{\Xi}$.} \end{cases}$$

$$(D) f(x,y) = \begin{cases} 1/x, & 0 < y < x < 1, \\ 0, & \text{#$\dot{\Xi}$.} \end{cases}$$

$$(D) f(x,y) = \begin{cases} 1/x, & 0 < y < x < 1, \\ 0, & \text{#$\dot{\Xi}$.} \end{cases}$$

- ③. 随机变量 $X\sim U[1,2]$. 随机变量 $Y\sim U[0,2]$. X 与Y相互独立。 随机变量 Z=X+Y. 记 Z 的概率密度函数为 $f_Z(z)$. 则 $z\in (3.4,3.8)$ 时. $f_Z(z)$ 的表达式为
- $(A) \ \frac{1}{2}z \frac{1}{2}$
- (B) $\frac{1}{2}$
- (C) $2 \frac{z}{2}$
- (D) 8 2z

- 4、设X与Y相互独立X的分布为 $P\{X=1\}=P\{X=-1\}=0.5, Y$ 是[-1,1]上的约分布,则根率计算不正确的是
- (A) $P\{X+2Y<0\}=\frac{1}{2}$.
- (B) $P\{2X + Y > 0\} = \frac{1}{2} \checkmark$
- (C) $P\{X + 2Y < 3\} = 1$
- (D) $P\{2X + Y > 3\} = 1$.
- 5、下列说法正确的是(
- (A) 若随机变量X服从参数为3的泊松分布,随机变量Y服从参数为2的泊松分布,X与X相互独立、则X-Y 服从参数为1的泊松分布
- (B) 若随机变量X服从参数为3的指数分布,随机变量Y服从参数为2的指数分布,X与Y相互独立。则min{X,Y}服从参数为5的指数分布
- (C) 若随机向量(X,Y)服从区域 $G=\{(x,y)|0\leqslant y\leqslant x\leqslant 1\}$ 上的均匀分布,则 $\max\{X,Y\}$ 题从[0,1]上的均匀分布
- (D) 若随机向量(X,Y)服从二维正态分布 $N\left(3,rac{1}{3};2,rac{2}{3};0
 ight)$. 则X+Ym从正态分布N(5,1)
- 6、下列说法正确的是
- (A) 若随机变量列 $X_1^2, X_2^2, \cdots, X_n^2, \cdots$ 相互独立同 $X_1, X_2, \cdots, X_n, \cdots$ 满足辛钦大数定律
- (B) 若随机变量列 $X_1,X_2,\cdots,X_n,\cdots$ 相互独立且具有相同的分布函数,则 $X_1,X_2,\cdots,X_n,\cdots$ 满足辛钦大数定律
- (C) 若随机变量列 $X_1,X_2,\cdots,X_n,\cdots$ 相互独立,且对任意正整数n有 X_n 服从自由度为n的卡方分布、则 $X_1,X_2,\cdots,X_n,\cdots$ 满足切比雪夫大数定律
- (D) 若随机变量列 $X_1,X_2,\cdots,X_n,\cdots$ 相互独立,且对任意正整数n有 X_n 服从区间 $\left[0,rac{1}{n}
 ight]$ 上的均匀分类则 $X_1,X_2,\cdots,X_n,\cdots$ 满足切比雪夫大数定律
- 7、 $Y\sim E\left(\frac{1}{2}\right)$, (X_1,X_2,\cdots,X_n) 为取自标准正态总体 X 的一个样本,X 与 Y 独立,记 Z 为的二阶原点矩,则 $\frac{2Z}{Y}$ 服从的分布是
- (A) F(2, n)
- (B) F(n, 2)
- 190 t(n)
- (b) t(2)

) σ 的矩估计量为 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$.

- (B) σ^2 的极大似然估计量为 $\frac{1}{n-1}\sum_{i=1}^n (X_i \overline{X})^2$.
- \mathfrak{R}) σ^2 的矩估计量为 $\frac{1}{n}\sum_{i=1}^n (X_i \mu)^2$.
- (D) σ^2 的极大似然估计量为 $\frac{1}{n} \sum_{i=1}^n (X_i \mu)^2$.
- 9、设 (X_1,X_2,\cdots,X_n) 是正态总体 $X\sim N(\mu,\sigma^2)$ 的样本,其中 μ,σ^2 的 $1-\alpha$ 置信区间的置信上限与置信下限之比为(本小题3分

$$\bigvee_{n=1}^{\infty} \frac{\chi_{1-\alpha}^2(n-1)}{\chi_{\alpha}^2(n-1)}$$

$$\chi \frac{\chi_{\frac{\alpha}{2}}^{2}(n-1)}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}$$

$$\text{(D)}\,\frac{\chi_{1-\frac{\alpha}{2}}^2(n-1)}{\chi_{\frac{\alpha}{2}}^2(n-1)}$$

- 10、设总体X服从参数为 $\lambda(\lambda>0)$ 的泊松分布, (X_1,X_2,\cdots,X_{10}) 是取自X的样本,对假设检验问题: $H_0:\lambda=0.1\leftrightarrow H_1:\lambda=0.2$,当拒绝域为 $C=\left\{\sum\limits_{i=1}^{10}X_i=0\right\}$,则该检验犯<u>第一类错误</u>的概率为 (\bigcap) 0. (本小题3分)
- (A) e^{-4}
- (B) e^{-3}
- (C) e^{-2}
- (D) e^{-1}
- 二、填空题 (本大题共 5 小题, 共 20 分) (本大题共 5 小题, 共 20 分)

13,	若随机的	向量(X,Y)的取值点位于	F以坐标原点 $(0,0)$ 为圆心,半径为常数 r 的圆周上,则 X^2 与 $-Y^2$ 的	
烈	为	.(本小题4分)	Ŷ	

$$S = \{0.5\}$$
 15、设总体 $X \sim N(\mu, 8)$,其中 μ 为未知参数。设 (X_1, X_2, \cdots, X_n) 为来自总体 X 的一个样本,其均值为 \overline{X} .若假设检验: $H_0: \mu = \mu_0 \leftrightarrow H_1: \mu \neq \mu_0$ 在显著水平 $\alpha = 0.05$ 的拒绝域为 $|\overline{X} - \mu_0| \geq u_{0.025} = 1.96$,则样本容量 $n = \underline{\qquad}$ (本小题4分)

三、解答题 (本大题共 5 小题, 共 50 分) (本大题共 5 小题, 共 50 分)

16、已知A, B是同一个样本空间的两个事件,且P(A) = 0.6, P(B) = 0.7. 试求: (1) 什么条件下,P(AB) 取最大值,最大值是多少? (2) 什么条件下,P(AB) 取最小值,最小值是多少? (本小题8分)

17、设随机变量X服从区间 $[-\pi,\pi]$ 上的均匀分布,求 $E[\min(|X|,1)]$.(本小题8分)

试求: (1)
$$f_{Y|X}(y|x)$$
; (2) $P\left\{Y \leqslant \frac{1}{4}|X = \frac{1}{2}\right\}$; (3) $P\{X + Y > 1\}$.(本小题13分) $\frac{1}{4}$

19、设施机变量 X 与 Y 相互独立自分别服从正态分布 $N(\mu,\sigma^2)$ 与 $N(\mu,2\sigma^2)$,其中 σ 是大知多数,且 $\sigma>0$.设 Z=X-Y.(1)求Z的概率密度 $f_Z(z)$;(2)设 (Z_1,Z_2,\cdots,Z_n) 为来自总体Z的简单随机样本,求 σ^2 的最大似然估计量 σ^2 ;(3)证明 σ^2 为 σ^2 的无偏估计量。(本小题13分)

20、设二维随机向量(X,Y)的概率密度函数为 $f(x,y)=\left\{egin{array}{cccc} [(1+
ho y)(1+
ho x)ho]e^{-x-yho xy}, & x>0,y>0, \\ 0, & & \mbox{其中}
ho\in[0,1].$ 试求(1)X和Y的 边缘分布函数;(2)当ho=0时,相关系数 ho_x ;(3)当ho=0时,2(X+Y)满足什么分布?(本小题8分)