Bias-Variance and Cross Validation

Nipun Batra and teaching staff

IIT Gandhinagar

July 29, 2025

As depth increases, train accuracy improves

As depth increases, train accuracy improves As depth increases, test accuracy improves till a point As depth increases, train accuracy improves
As depth increases, test accuracy improves till a point
At very high depths, test accuracy is not good (overfitting).

How does cross-validation help in model selection?

How does cross-validation help in model selection?

How does cross-validation help in model selection?

Why can't we directly optimize for test error?

▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise

▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ► **High Bias**: Underfitting, model too simple

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ► **High Bias**: Underfitting, model too simple

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ► **High Bias**: Underfitting, model too simple
- ► **High Variance**: Overfitting, model too complex

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ► **High Bias**: Underfitting, model too simple
- ► **High Variance**: Overfitting, model too complex

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ▶ **High Bias**: Underfitting, model too simple
- ▶ **High Variance**: Overfitting, model too complex
- Cross-Validation: Essential for proper model evaluation

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ▶ **High Bias**: Underfitting, model too simple
- ▶ **High Variance**: Overfitting, model too complex
- Cross-Validation: Essential for proper model evaluation

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ▶ **High Bias**: Underfitting, model too simple
- ▶ **High Variance**: Overfitting, model too complex
- Cross-Validation: Essential for proper model evaluation
- Model Selection: Choose complexity that balances bias and variance

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ▶ **High Bias**: Underfitting, model too simple
- ▶ **High Variance**: Overfitting, model too complex
- Cross-Validation: Essential for proper model evaluation
- Model Selection: Choose complexity that balances bias and variance

- ▶ Bias-Variance Decomposition: Total error = Bias² + Variance + Noise
- ► **High Bias**: Underfitting, model too simple
- ► **High Variance**: Overfitting, model too complex
- Cross-Validation: Essential for proper model evaluation
- Model Selection: Choose complexity that balances bias and variance
- ▶ No Free Lunch: Cannot reduce both bias and variance simultaneously

► How to combine various models?

- ► How to combine various models?
- ▶ Why to combine multiple models?

- ► How to combine various models?
- ▶ Why to combine multiple models?

- ► How to combine various models?
- ▶ Why to combine multiple models?
- ► How can we reduce bias?

- ► How to combine various models?
- ▶ Why to combine multiple models?
- ► How can we reduce bias?
- ► How can we reduce variance?