Un example par jour 4.5 nonorientable closed surfaces without boundary $\widetilde{\Sigma}_{l} := \underbrace{\mathbb{RP}^{l} \# \cdots \mathbb{RP}^{l}}_{\mathbb{RP}^{l}}$

Today: X = IRIP2

nonorientable \Rightarrow Scannot be embedded in IR3 embedded in IR4 can't be realized as a Lie group.

Universal cover of degree 2 $\pi:S^2 \to |R|P^2$

									_
۸	η	,	2	3	4	5	6	n>1	
9	πη (IR IP²)	Z/1Z	Z	7	Z/17/	2/2	2/2/	$\pi_n(S^2)$	_
cellular ho	mology	0 -	(→ C,		C	→ o	e°
			Z	e, ⊢	Z /e ²	•	Ze°		e' (e')
					e'	\longmapsto	0		X(IR[P')=1
_	n	0	1	2	,	1>2			
7	IT (IDID3)	7	7/-			Λ			

$$0 \leftarrow Hom_{\mathbb{Z}}(C_{1},\mathbb{Z}) \leftarrow Hom_{\mathbb{Z}}(C_{1},\mathbb{Z}) \leftarrow Hom_{\mathbb{Z}}(C_{0},\mathbb{Z}) \leftarrow 0$$

$$\mathbb{Z}'e^{2t} \qquad \mathbb{Z}'e^{t} \qquad \mathbb{Z}'e^{0t}$$

$$2e^{2t} \leftarrow -1 e^{t}$$

					0	6	
۔	n	0	1	2	n>2	⇒ H*(RIP`)=	7/[×]/
→	H"(IRIP3)	7/	0	2/17/	0	> M (K//)-	deg x = 2
							e e

Let X be a topo space.

Prop. Universal coefficient thm for cohomology (Z-coefficient) natural SES

(unnatural) splits

Prop. Lemma 3.8. Let A be a K-algebra, and let
$$(M_i)_{i\in I}$$
 be a family of A-modules.

There are natural isomorphisms

$$\operatorname{Ext}_{A}^{m}\left(\bigoplus_{i\in I}M_{i}, -\right) \to \prod_{i\in I}\operatorname{Ext}_{A}^{m}(M_{i}, -)$$

$$\operatorname{Ext}_{A}^{m}\left(-, \prod_{i \in I} M_{i}\right) \rightarrow \prod_{i \in I} \operatorname{Ext}_{A}^{m}(-, M_{i})$$

Cor. For Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree

we have
$$H_n(X) \stackrel{\text{torsion shift}}{\longleftrightarrow} H^n(X)$$

e.g. $H_n(X) \cong \mathbb{Z}^{bn} \oplus T_n \implies H^n(X) \cong \mathbb{Z}^{bn} \oplus T_{n-1}$

$$\frac{Z_{1/2}}{2} - \text{coefficient (co)homology}.$$

$$0 \longrightarrow C_{1}' \longrightarrow C_{1}' \longrightarrow C_{2}' \longrightarrow 0$$

$$\frac{Z_{1/2}'}{2} e^{2} \qquad \frac{Z_{1/2}'}{2} e^{2} \qquad \frac{Z_{1/2}'}{2} e^{2}$$

$$\Rightarrow \qquad \frac{n}{H_{n}(\mathbb{RP}^{2}, \mathbb{Z}_{1/2}')} \frac{Z_{1/2}'}{Z_{1/2}'} \frac{Z_{1/2}'}{Z_{1/2}'} \frac{Z_{1/2}'}{2} \qquad 0$$

$$0 \longleftarrow Hom_{2}(C_{1}', \mathbb{Z}_{1/2}') \longleftarrow Hom_{2}(C_{1}', \mathbb{Z}_{1/2}') \leftarrow Hom_{2}(C_{0}', \mathbb{Z}_{1/2}') \leftarrow 0$$

$$\frac{Z_{1/2}'}{Z_{1/2}'} e^{2\pi} \qquad \frac{Z_{1/2}'}{Z_{1/2}'} e^{2\pi}$$

$$0 \longleftarrow e^{2\pi}$$

				0 4	<u> </u>	e°*	
n	ο	1	2	n>2		H*(1RIP*, Z/2Z)=	Z/2[a]/.
H,(RP2, 2/2)	2/17/	2/2/	2/2/2	0	— → ↑		1
					— ' ,		deg a=1

Verify a = = 0 [Hatcher Ex3.8]

Example 3.8. The closed nonorientable surface Nof genus g can be treated in similar fashion if we use \mathbb{Z}_2 coefficients. Using the Δ -complex structure shown, the edges a_i give a basis for $H_1(N; \mathbb{Z}_2)$, and the dual basis elements $\alpha_i \in H^1(N; \mathbb{Z}_2)$ can be represented by cocycles with values given by counting intersections with the arcs labeled α_i in the figure. Then one computes that $\alpha_i \sim \alpha_i$ is the nonzero element of $H^2(N; \mathbb{Z}_2) \approx \mathbb{Z}_2$ and $\alpha_i \smile \alpha_j = 0$ for $i \neq j$. In particu-

lar, when g = 1 we have $N = \mathbb{R}P^2$, and the cup product of a generator of $H^1(\mathbb{R}P^2; \mathbb{Z}_2)$ with itself is a generator of $H^2(\mathbb{R}P^2; \mathbb{Z}_2)$.

 \Rightarrow

Prop. Universal coefficient thm for homology

natural SES $0 \longrightarrow H_n(X) \otimes_{\mathbb{Z}} R \xrightarrow{\mu} H_n(X,R) \longrightarrow \text{Tor}_{i}(H_{n-i}(X),R) \longrightarrow 0$ (unnatural) splits Torn (M, N) = Ha (M & P.)

 $H_n(X,R) \cong H_n(X) \otimes_{\mathbb{Z}} R \oplus Tor_i^{\mathbb{Z}}(H_{n-i}(X),R)$

E_{X}	n	0	1	2	N>2
- / .	Hn (IRIP')	7/	7/127/	0	0
	Ha (RIP', IR)	IR	0	0	0
	H, (IRIP2, C)	Э	0	0	0
	H, (IRIP2, 24,221)	72/274	2/22	2/27/	0
	H, (IRIP2, 242321)	Z/21/	7/27/	2/27/	υ
	H, (IRIP2,(24,226))	(Z/2Z/)33	(Z/2Z/ ⁶)*	(Z/ _{2Z/}) ⁶³	0

Remark S' -> RIP' is cover, but Hn (S', IR) & Hn (IRIP', IR), so for every cover we need to recompute its (co) homology group. X: topo spoce A: PID R: an A-module.

Prop. Universal coefficient thm for homology natural SES:

 $u \longrightarrow Ext'_{A}(H_{n-1}(X,A),R) \longrightarrow H^{n}(X,R) \xrightarrow{h} Hom_{A}(H_{n}(X,A),R) \rightarrow 0$ (unnotural) splits

 \Rightarrow $H^{n}(X,R) \cong Hom_{A}(H_{n}(X,A),R) \oplus Ext_{A}(H_{n-1}(X,A),R)$

e.p. when A=Z,

 $H^{n}(X,R) \cong Hom_{\mathbb{Z}}(H_{n}(X),R) \oplus Ext_{\mathbb{Z}}^{'}(H_{n-1}(X),R)$

when A=R is a field.

 $H^{n}(X,R) \cong Hom_{R}(H_{n}(X,R),R)$

Cor. For Hn(X) is finitely generated for all n, e.p. if X has the homotopy type of a CW-complex with finitely many cells in each degree.

we have $H_1(X,F) \cong H^n(X,F)$

Rmk F field,

 $b_i(F)_i = d_{im_F} H_i(x,F) = d_{im_F} H^i(x,F)$

b.(2/22) \$ b.(C) but \$\chi(2/22) = \chi(C) = V - e + f for swfaces.

Ex compute it twice!

n	0	1	2	N>2
Hn (IRIP')	7/	0	2/274	0
H"(RIP", IR)	IR	0	0	0
H"(IRIP2, C)	Ю	0	0	O
H"(IRIP2, 24,22)	Z/2Z/	2/2/2	2/27/	0
H^(IRIP2, 2432)	Z/23Z	21/2/2	71/271	0
H^(1RIP2,(21/20)8)	(Z/ _{2Z/}) ³³	(Z/ _{2Z/})33	(Z/27)°	0

Characteristic class I'm new in this field, so in the beginning we just pick up props special vector bundle S tautological line bundle S_2 on $IRIP^2$ and apply them. tangent bundle $T(IRIP^2) = TX$

Stiefel-Whitney class

$$\omega(\chi_1') = 1 + \alpha$$

Prop. for a real v.b. }, } is orientable (w. ()=0

 \S is spin $\iff \omega_1(\S) = 0, \omega_2(\S) = 0$

Cor For line bundle, orientable ⇒ spin ⇒ w(5)=0 ⇒ w(5)=1 ⇔ trivial

Cor. 82', TX is not orientable.

Thm (Pontryagin & Thom) fix a opt smooth mfld M (without boundary), then

∃ cpt smooth mfld N with boundary &N ≅M ⇒ all SW-numbers of Mare of Cor. IRP is not a boundary. || RP is not a boundary.

IRIP²ⁿ⁻¹ is a boundary.