COMPUTACIÓN II

Práctica 13 evaluable (clase 18) Ecuaciones diferenciales ordinarias

El movimiento del péndulo de Foucault sin fricción se describe mediante el siguiente sistema de ecuaciones diferenciales¹:

$$x^{tt} - 2\omega\sin(\psi)y^t + k^2x = 0$$
$$y^{tt} + 2\omega\sin(\psi)x^t + k^2y = 0,$$

donde ψ es la latitud del lugar de la Tierra donde se localiza el péndulo, $\omega=7.29\cdot 10^{-5}{\rm s}^{-1}$ es la velocidad angular de la Tierra y k=g/l, con $g=9.8{\rm m/s}^{-2}$ donde l es la longitud del péndulo:

1. Escribir un código en C++que utilice el método de Runge-Kutta de cuarto orden para integrar las ecuaciones del péndulo y obtener x(t) e y(t) para t entre 0 y 300 segundos, suponiendo que $\psi=\pi/4$ y $l=20\mathrm{m}$ y partiendo de las siguientes condiciones iniciales:

$$x(0) = 5m; y(0) = 0; x^{t}(0) = y^{t}(0) = 0.$$

- 2. Elegir el paso de tiempo Δt para la integración de modo que se garantice que la precisión de la solución sea mejor que 10^{-6} .
- 3. Representar gráficamente la trayectoria del péndulo, x(t), y(t), x(y) en el informe.

EXTRA: Teniendo en cuenta que el periodo propio del péndulo es $P=2\pi l/g\approx 9$ segundos, estimar el ángulo de rotación del plano del péndulo por efecto de Coriolis promediando a los tres primeros periodos. Para ello dibujar la gráfica con el ángulo como arcsin(y/x) frente a t/P. ¿Cuántas horas tardará en completar una rotación completa?.

¹Cáculo científico con Matlab y Octave Alfio Quarteroni, École Polytechnique Fédérale de Lausanne Fausto Saleri, MOX-Politecnico di Milano, Problema 7.19 pág. 243, Springer International, 2006.