ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

30.1.2018

I група задачи (испитот трае 150 минути)

1. (12,5 поени) Даден е плочест кондензатор со површина на електродите S и растојание меѓу нив d. Дел од просторот меѓу електродите е исполнет со диелектрична плоча која има релативна диелектрична константа $\varepsilon_{\rm r}$ =4 која допира

до S/2 од површината на електродите, а останатиот простор е воздух. Разделната +Q површина меѓу диелектрикот и воздухот е нормална на електродите. Кондензаторот е оптоварен со количетво електрицитет Q.

a) Да се изведат изразите за интензитетите на векторите на јачина на електричното поле и електрично поместување во кондензаторот. Да се определи напонот, капацитивноста и енергијата на кондензаторот.

б) При истото оптоварување на кондензаторот под дејство на сила растојанието меѓу плочите се

зголемува на вредност d'=2d при што просторот меѓу електродите останува исполнет со диелектричната плоча на истиот начин како и под a). Врз база на решенијата под a) да се определат истите величини и да се споредат со претходните добиени вредности. Според новата вредност за енергијата на кондензаторот да се одговори кои сили ја извршиле работата за зголемување на растојанието меѓу електродите? (ε_0 =8,854· $10^{-12} \approx 10^{-9}/(36\pi)$ F/m)

2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни потенцијали во јазли. Да се постави и реши системот равенки и да се определат потенцијалите во јазлите.

Потоа да се определат моќностите на: отпорникот R_3 , струјниот извор $I_{\rm S}$ и напонскиот извор E_2 .

$$R_1 = R_2 = 10\Omega$$
 $R_3 = R_4 = 30\Omega$
 $R_5 = 20\Omega$ $R_6 = 40\Omega$
 $I_S = 1$ A
 $E_1 = 10$ V $E_2 = 15$ V $E_4 = 25$ V

3. (15 поени) Во колото дадено на сликата да се определи отпорноста на отпорникот R така што во него ќе се развие максимална моќност. Да се пресмета вредноста на максималната моќност. Потоа прекинувачот Π се затвора. Да се определат моќностите на двата отпорници R и 2R во оваа состојба.

- **4.** (*12*, *5* поени) Торусно јадро, со радиуси a и b, има трапезоиден напречен пресек со една висина h. Рамномерно и густо на јадрото е намотана намотка со N_1 навивки низ која тече константна струја I_1 . Околу торусот се поставува правоаголна контура со страни c и d низ која тече струја I_2 .
- б) Да се определи сопствената индуктивност на торусната намотка.
- в) Да се определи меѓусебната индуктивност на торусната намотка и правоаголната контура.

 R_5

ИСПИТ ПО ОСНОВИ НА ЕЛЕКТРОТЕХНИКА

30.1.2018

II група задачи (испитот трае 150 минути)

- 1. (12,5 поени) Даден е плочест кондензатор со површина на електродите S и растојание меѓу нив d. Дел од просторот меѓу електродите е исполнет со диелектрична плоча која има релативна диелектрична константа $\varepsilon_{\rm r}$ =4 која допира
- до S/2 од површината на електродите, а останатиот простор е воздух. Разделната површина меѓу диелектрикот и воздухот е нормална на електродите. Кондензаторот е оптоварен со количетво електрицитет Q.
- а) Да се изведат изразите за интензитетите на векторите на јачина на електричното поле и електрично поместување во кондензаторот. Да се определи напонот, капацитивноста и енергијата на кондензаторот.
- б) При истото оптоварување на кондензаторот под дејство на сила растојанието меѓу плочите се

намалува на вредност d'=d/2 при што просторот меѓу електродите останува исполнет со диелектричната плоча на истиот начин како и под a). Врз база на решенијата под a) да се определат истите величини и да се споредат со претходните добиени вредности. Според новата вредност за енергијата на кондензаторот да се одговори кои сили ја извршиле работата за намалување на растојанието меѓу електродите? (ε_0 =8.854·10⁻¹² \approx 10⁻⁹/(36 π) F/m)

2. (10 поени) Да се определи бројот на равенки и непознати за решавање на електричното коло со примена на методата на независни потенцијали во јазли. Да се постави и реши системот равенки и да се определат потенцијалите во јазлите.

Потоа да се определат моќностите на: отпорникот R_3 , струјниот извор $I_{\rm S}$ и напонскиот извор E_2 .

$$R_1 = R_2 = 10\Omega$$
 $R_3 = R_4 = 30\Omega$
 $R_5 = 20\Omega$ $R_6 = 40\Omega$
 $I_S = 1$ A
 $E_1 = 10$ V $E_2 = 15$ V $E_4 = 25$ V

3. (15 поени) Во колото дадено на сликата да се определи отпорноста на отпорникот R така што во него ќе се развие максимална моќност. Да се пресмета вредноста на максималната моќност. Потоа прекинувачот Π се затвора. Да се определат моќностите на двата отпорници R и R/2 во оваа состојба.

$R_1=6 \Omega$	$R_2=3 \Omega$	
$R_3=6 \Omega$	$R_4=10 \Omega$	
$R_5=10 \Omega$	$R_6=2 \Omega$	$\prod_{\mathbf{p}}$
$R_7=4 \Omega$	$R_8=5 \Omega$	$\bigcap_{I_{S1}} \bigcup_{K}$
$I_{S1}=1,5 A$	$I_{S2}=0,8 A$	Ψ^{n} \perp
$E_1 = 12 \text{ V}$	$E_2=3 V$	+
$E_3=8 V$	$E_4 = 10 \text{ V}$	\bigcap_{E_1}
	•	$I \rightarrow I$

- 4. (12,5 поени) Торусно јадро, со радиуси a и b, има трапезоиден напречен пресек со една висина h. Рамномерно и густо на јадрото е намотана намотка со N_1 навивки низ која тече константна струја
- I_1 . Околу торусот е поставена правоаголна контура со страни m и n низ која тече струја I_2 .
- a) Да се определи сопствената индуктивност на торусната намотка.
- b) Да се определи меѓусебната индуктивност на торусната намотка и правоаголната контура.

