3D Interacting Hand Pose Estimation by Hand De-occlusion and Removal

Hao Meng^{1,3*} Sheng Jin^{2,3*} Wentao Liu^{3,4} Chen Qian³

Mengxiang Lin¹ Wanli Ouyang^{4,5} Ping Luo²

¹ Beihang University ² The University of Hong Kong ³ SenseTime Research and Tetras.Al

⁵ The University of Sydney ⁴ Shanghai Al Lab

Task

3D Interacting Hand Pose Estimation

Estimating 3D keypoint localization of two interacting hands.

Motivation

Interacting hand pose estimation VS single hand pose estimation:

Occlusion between two hands

HDR (Hand De-occlusion and Removal):

Single hand pose estimation for every hand

De-occlusion: restore pixel values of occluded part of hand

Removal: remove the other hand, i.e., predict pixel values of background behind the other hand

Contributions

- We propose a novel Hand De-occlusion and Removal (HDR) framework to tackle the challenging task of 3D interacting hand pose estimation.
- We propose to explicitly handle the challenges of self-occlusion by hand de-occlusion and the homogeneous appearance ambiguity by distractor removal. To the best of our knowledge, we are the first to apply de-occlusion techniques to improve the downstream pose estimation accuracy.
- We propose the first large-scale synthetic Amodal InterHand Dataset (AIH) to settle the task of hand de-occlusion and removal. We envision that AIH will foster the development of the related research.

Hand De-occlusion and Removal Module (HDRM)

Amodal InterHand (AIH) Dataset

Experiment Results

Quantitative results

Comparisons on InterHand2.6M V1.0 Dataset

Methods		nterHand 2.6	iM - ALL brai				1 branch
Methods	IH26M-SH	IH26M-IH	IH26M-ALL	IH26M-Inter	IH26M-SH	IH26M-IH	IH26M-ALL
*Boukhayma et al. [4]	-	-	27.14	31.46	_	_	_
*Pose2Mesh [5]	_	-	27.10	32.11	_	_	_
*BiHand [35]	_	_	25.10	28.23	_	_	-
*Rong <i>et al.</i> [27]	_	-	17.12	20.66	_	_	-
DIGIT [7]	_	14.27	_	_	_	_	-
InterNet [21]	12.16	16.02	14.21	18.04	12.52	18.04	15.28
HDR (Ours)	8.51	13.12	10.97	14.74	8.52	14.98	11.74

Comparisons on Tzionas Dataset

Model	Boukhayma et al. [4]] Wang $et al.$ [31]] InterNet[21]	Kim $et al.$ [13]	SHPE	SHPE+HDR
EPE\	12.91	13.31	17.61	12.42	14.88	8.70

Comparisons on InterHand2.6M V1.0 dataset

(ALL branch)

(* :== :::::::::::::::::::::::::::::::::						
Methods	Train (ALI	., IH26M-SH)	Train (ALL, IH26M-SH +AIH)			
Memous	IH26M-IH	IH26M-ALL	IH26M-IH	IH26M-ALL		
SHPE [39]	39.96	25.90	30.23	20.93		
+HDR (Ours)	25.93	18.39	23.99	17.58		
	-					

Comparisons on InterHand2.6M V1.0 dataset (Machine annot branch)

Methods	Train (M,	IH26M-SH)	Train (M, IH26M-SH +AIH)			
	IH26M-IH	IH26M-ALL	IH26M-IH	IH26M-ALL		
SHPE [39]	40.98	25.78	32.27	21.66		
+HDR (Ours)	25.45	17.98	24.59	17.80		

Ablation Studies

		Methods	MPJPE (mm)	Δ
•	#1	SHPE [39] only	25.78	+7.80 (43.4%)
	#2	w/o Removal	24.16	+6.18 (34.4%)
	#3	w/o De-occlusion	19.69	+1.71 (9.5%)
	#4	w/o Discriminator	18.11	+0.13 (0.7%)
	#5	w/o Transformer Block	18.85	+0.87 (4.8%)
•	#6	AIH_Render only	18.10	+0.12 (0.7%)
	#7	AIH_Syn only	18.35	+0.37 (2.1%)
•	#8	Ours	17.98	_

Qualitative results

Time complexity analysis

Test on one Tesla P40 GPU in a single thread

