Privacy Protection within Machine Learning Models trained on Distributed Data

Carsten Stoffels

RWTH Aachen, Informatik 5 Lehrstuhl Prof. Decker

Motivation for Machine Learning

Supervised Machine Learning

"Learning to make predictions based on experience"

Motivation for Machine Learning

Use Cases Machine Learning Finance Intrusion Detection **Networks** Fraud **Health Care** Detection Di_{agnoses} **Machine Learning** Models S_{marter} S_{ervices} Recommendations Student **Analysis** E-Commerce

Education

Government

Motivation for Privacy in the Context of Machine Learning

Private Training Data

- Training data used for the machine learning model might be private
 - Finance models use information about investors
 - Diagnose prediction models use patient data

Age	Sex	Chest Pain	 Smoke	Exercise Protocol	 Blood pressure	 Diagnos es
28	Male	1	 Yes	7	 150	 1
73	Female	4	 No	5	 119	 0

Source: https://archive.ics.uci.edu/ml/datasets/Heart+Disease

Motivation for Privacy in the Context of Machine Learning

Machine Learning Models reveal private Information

Thesis Goal

Analyze the possibilities of Machine Learning in a Private Context

- Train machine learning models while protecting privacy
- Access to the model shouldn't enable the leakage of private information
- Combine distributed training data
 - Training data splitted along several parties
 - Contribution of each party to gain a more powerful model
- Try to guarantee privacy in each step of the process
 - Storage of data
 - Data transfer
 - Model training
 - Accessing the model
- Develop an evaluation method to balance privacy protection and performance decrease

6 of 18

Use Case - Scenario

Bank Marketing Scenario

Use Case – Dataset for Evaluation

Bank Marketing Scenario

- Classification task
- Predict if the client of a bank will subscribe a term deposit
- Dataset Info¹

- Number of instances: 41188

– Attributes : 20+

Types : Categorical, Numerical, Binary

Age	Job	Martial	Education	 Consume r price idx	Employm ent variation rate	 Outcome
56	Housemaid	Married	Basic.4y	 94.601	01.Jan	no
49	Technican	Married	Basic.9y	 93.994	01.Jan	 yes

¹ https://archive.ics.uci.edu/ml/datasets/bank+marketing

Conceptual Approach

Related Work – Privacy Metrics

k - Anonymity

A dataset has k-Anonymity if each set of quasi-identifiers can not be distinguished from at least k-1 other entries

	Age	Sex	ZIP	
k = 3	25-30	m	53***	
	25-30	m	53***	
	25-30	m	53***	

ϵ – differential Privacy

Add noise to data, algorithms or results in order to make it indistinguishable from other records

t – closeness

Protects against information leaks through similiar attributes within one equivalence class by calculating distances

Related Work – Private Aggregation of Teacher Ensembles (PATE)

Implementation

Milestones

Milestone 1 (5 weeks):

- Create an Evaluation framework in order to compare existing implementations of private Machine Learning
 - Train baseline model
 - Train private machine learning models
 - Adapt model inversion attack to evaluate the privacy protection

Milestone 2 (5 weeks):

- Analyze influence of privacy metrics to performance and privacy
- Try to increase performance by adapting metrics, input and structure of the model
 - How to deal with Hierachies
 - Word2Vec

Milestone 3 (4 weeks):

Design "best practice" anonymization procedure to guarantee privacy and maximizing performance

Thanks for your attention! **Any Questions?**

Private Training Data

- . Training data used for the machine learning model might be private
- Finance models use information about investors
- Diagnose prediction models use patient data

Use Case - Dataset for Evaluation

Age	Sex	Chest Pain		Smoke	Exercise Protocol		Blood pressure	 Diagnos es
28	Male	1		Yes	7		150	 1
73	Female	4		No	5		119	 0
		Sou	no https://	arrhive insuri o	du/ml/datasets/i	-loart+Dis	0200	

Thesis Goal

Analyze the possiblities of machine learning in a private context

- · Train machine learning models while protecting privacy
- · Access to the model shouldn't enable the leakage of private information
- · Combine distributed training data
- Training data splitted along several parties
 Contribution of each party to gain a more powerful model
- . Try to quarantee privacy in each step of the process
- Storage of data
 Data transfer
- Model training
- · Develop an evaluation method to balance privacy protection and performance decrease

Milestone 1 (5 weeks):

- Create an Evaluation framework in order to compare existing implementations of private Machine
- Train baseline model
- · Train private machine learning models
- · Adapt model inversion attack to evaluate the privacy protection

· Milestone 2 (5 weeks):

- Analyze influence of privacy metrics to performance and privacy
- Try to increase performance by adapting metrics, input and structure of the model
- · How to deal with Hierachies Word2Vec
- Milestone 3 (4 weeks): - Design "best practice" anonymization procedure to guarantee privacy and maximizing performance

Appendix - Requirements

Training Speed

- How long does it take to train the model
- Fast enough for real-world usage?

Privacy Protection

- Privacy protection should be **included in every step** of the procedure

Model Performance

How good do the private models perform compared to the non-private version

Data Distribution

Privatly combine distributed data trying to get a more powerful model

Amount of Data

- Data needed to achieve good performance
- Training data is expensive

Appendix – Model Inversion Attack

Attacker has access to:

 $(x_2, ..., x_n, y)$ Set of known attributes about the target (including label y), excluding one private Attribute ("background knowledge")

f(x) Prediction Model

Attacker wants to learn about:

 x_1 Missing (unknown) private attribute

1: for each possible value v for x_1 do

2:
$$x' = (v, x_2, ..., x_n)$$

3:
$$r_v = err(y, f(x')) * \prod p_i(x_i)$$

4: Return $\arg \max_{v} r_v$

Appendix - Project Plan

- Baseline Neural Network : 2 weeks
- Train first private models : 2 weeks
- Writing thesis: 1 week
- Implement Model Inversion Attack: 2 weeks
- Writing thesis: 1 week
- Additional privacy metrics + model improvement : 3 weeks
- Writing thesis: 1 week
- Evaluation: 2 weeks
- Writing thesis: 1 week
- Buffer: 3 weeks

Appendix – Model Inversion Attack

Model Inversion Attack

- Given
 - $-(x_2, ..., x_n, y)$ Set of known attributes about the target (including label y), excluding one sensitive Attribute
 - f Machine Learning Model
- Output
 - $-x_1$ Prediction for missing sensitive attribute
- Algorithm
 - 1: for each possible value v for $x_1 do$
 - **2:** $x' = (v, x_2, ..., x_n)$
 - 3: $r_v = err(y, f(x')) * \prod p_i(x_i)$
 - **4: Return** $\arg \max_{v} r_{v}$

