Zusammenfassung Homologische Algebra

© M. Tim Baumann, http://timbaumann.info/uni-spicker

Def. Verklebedaten sind gegeben durch einen Funktor

$$X: \Delta^{\mathrm{op}}_{\mathrm{strikt}} \to \mathbf{Set}.$$

Dabei ist Δ_{strikt} die Kategorie mit den Mengen $[n] := \{0, 1, ..., n\}$ für $n \in \mathbb{N}$ als Objekten und streng monotonen Abbildungen.

Notation. $X_{(n)} := X([n])$ heißt Menge der n-Simplizes.

Def. Das Standard-n-Simplex $\Delta_n \subset \mathbb{R}^{n+1}$ ist die von den (n+1) Standardbasisvektoren aufgespannte lineare Hülle. Eine streng monotone Abb $f:[n] \to [m]$ induziert durch Abbilden des i-ten Basisvektors auf den f(i)-ten eine Inklusion $\Delta_f:\Delta_n \to \Delta_m$,

 ${\bf Def.}\,$ Die geometrische Realisierung von Verklebedaten X ist der topologische Raum

$$|X| := \left(\coprod_{n \in \mathbb{N}} (\Delta_n \times X_{(n)}) \right) / R$$

Dabei ist $X_{(n)}$ diskret. Die Äquivalenzrelation R wird erzeugt von $(\Delta_f(t), x) \sim (t, X(f)(x))$ mit $t \in \Delta_m, x \in X_{(n)}, f : [m] \to [n]$ s.m.s.

Def. Das k-Skelett $\operatorname{sk}_k X$ von Verklebedaten X ist definiert durch $(\operatorname{sk}_k X)_{(n)} \coloneqq \{x \in X_{(n)} \mid n \le k\}, \ (\operatorname{sk}_k X)(f) \coloneqq X(f)$ sofern möglich

Def. Eine simpliziale Menge ist ein Funktor

$$X: \Delta^{\mathrm{op}} \to \mathbf{Set}.$$

Dabei ist Δ die Kategorie mit den Mengen $[n]:=\{0,1,...,n\}$ für $n\in\mathbb{N}$ als Objekten und monotonen Abbildungen.

Notation. $X_n := X([n])$ heißt Menge der n-Simplizes.

Def. Die geometrische Realisierung einer simplizialen Menge X ist der topologische Raum

$$|X| := \left(\coprod_{n \in \mathbb{N}} (\Delta_n \times X_n) \right) / R$$

Die Äquivalenzrelation R wird dabei erzeugt von

$$(\Delta_f(t), x) \sim (t, X(f)(x))$$
 mit $t \in \Delta_m, x \in X_n$ u. $f \in \operatorname{Hom}_{\Delta}([m], [n])$.

Def. Ein topologischer Raum heißt **trianguliert**, wenn er die Realisierung von Verklebedaten ist.

Def. Der Nerv einer Überdeckung $X = \bigcup_{\alpha \in A} U_{\alpha}$ eines topologischen Raumes ist die simpliziale Menge

$$X_n := \{ (\alpha_0, ..., \alpha_n) \in A^{n+1} \mid U_{\alpha_0} \cap ... \cap U_{\alpha_n} \neq \emptyset \}$$

$$X(f)(\alpha_0, ..., \alpha_n) := (\alpha_{f(0)}, ..., \alpha_{f(m)}) \text{ für } f : [m] \to [n].$$

Bem. Falls die Überdeckung lokal endlich ist und alle nichtleeren, endlichen Schnitte $U_{\alpha_1}\cap\ldots\cap U_{\alpha_n}$ zusammenziehbar sind, so ist die geom. Realisierung des Nerves der Überdeckung homotopieäq. zu X.

Def. $\Delta[p]_n := \{g : [n] \to [p] \text{ monoton steigend } \}, \Delta[p](f)(g) := g \circ f$

Def. Der klassifizierende Raum einer Gruppe G ist gegeben durch die Realisierung der simpl. Menge BG mit $(BG)_n := G^n$ und

$$BG(f:[m] \to [n])(g_1,...,g_n) := (h_1,...,h_m), \quad h_i = \prod_{j=f(i-1)+1}^{f(i)} g_j$$

Def. Ein *n*-Simplex $x \in X_n$ heißt **degeneriert**, falls eine monotone surjektive Abbildung $f : [n] \to [m], n > m$ und ein Element $y \in X_m$ existiert mit x = X(f)(y).

Def. Seien X Verklebedaten. Wir konstruieren eine dazugehörende simpliziale Menge \hat{X} wie folgt:

$$\tilde{X}_n := \{(x,g) \mid x \in X_{(k)}, g : [n] \to [k] \text{ monoton und surjektiv}\},$$

Für eine monotone Abbildung $f:[m] \to [n]$ und $(x,g) \in \tilde{X}_n$ schreiben wir zunächst $g \circ f = f_1 \circ f_2$ mit einer Injektion f_1 und einer Surjektion f_2 und setzen $\tilde{X}(f)(x,g) := (X(f)(x), f_2)$.

Prop. Eine simpliziale Menge \tilde{X} kann genau dann aus (dann eindeutigen) Verklebedaten gewonnen werden, falls für alle nicht-degenerierten Simplizes $x \in \tilde{X}_n$ und streng monotonen Abbildungen $f:[m] \to [n]$ auch $\tilde{X}(f)(x) \in \tilde{X}_m$ nicht degeneriert ist.

Prop. Seien X Verklebedaten, \tilde{X} die entsprechende simpliziale Menge. Dann gilt $|X| \approx |\tilde{X}|$.

 $\mathbf{Def.}\;\mathrm{Das}\;k\text{-}\mathbf{Skelett}\;\mathrm{sk}_k\,X$ einer simplizialen MengeXist geg. durch

$$(\operatorname{sk}_k X)_n := \{X(f)(x) \, | \, p \leq k, f : [n] \to [p] \text{ monoton}, x \in X_p\}.$$

Def. Eine simpliziale Menge X hat **Dimension** n, falls $X = \operatorname{sk}_n X$.

Def. Eine simpliziale Abbildung zwischen simplizialen Mengen X und Y ist eine natürliche Transformation zwischen den beiden Funktoren $\Delta^{\text{op}} \to \mathbf{Set}$.

Def. Die Kategorie der simplizialen Mengen ist die Funktorkategorie $[\Delta^{\rm op}, \mathbf{Set}].$

Prop. Geom. Realisierung ist ein Funktor $|-|: [\Delta^{op}, \mathbf{Set}] \to \mathbf{Top}$.

Bspe. • Eine Überdeckung $(U_{\alpha})_{\alpha \in A}$ eines topologischen Raumes ist Verfeinerung von $(V_{\beta})_{\beta \in B}$, wenn es eine Abbildung $\psi: A \to B$ gibt, sodass $U_{\alpha} \subset V_{\psi(\alpha)}$ für alle $\alpha \in A$. Dies induziert eine simpliziale Abb. zwischen den Nerven der Überdeckungen durch

$$F_n(\alpha_0,...,\alpha_n) := (\psi(\alpha_0),...,\psi(\alpha_n)).$$

• Ein Gruppenhomomorphismus $\phi: G \to H$ stiftet eine Abbildung $BG \to BH$ zwischen den klassifizierenden Räumen durch

$$F(g_1, ..., g_n) := (\phi(g_1), ..., \phi(g_n)).$$

Def. Ein simplizialer topologischer Raum ist ein Funktor

$$X:\Delta^{\mathrm{op}}\to\mathbf{Top}.$$

Die geometrische Realisierung eines simplizialen topologischen Raumes definiert wie bei simplizialen Mengen mit dem Unterschied dass X_n im Allgemeinen nicht die diskrete Topologie trägt.

Def. Eine bisimpliziale Menge ist ein Funktor

$$X: \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \to \mathbf{Set}.$$

Notation. $X_{nm} := X([n], [m])$

 ${\bf Bsp.}\,$ Das direkte Produkt von simplizialen Mengen X und Y ist die bisimpliziale Menge

$$(X \times Y)_n := X_n \times Y_n, \quad (X \times Y)(f,g)(x,y) := (f(x),g(y)).$$

Def. Die **Diagonale** DX einer bisimplizialen Menge X ist die simpliziale Menge mit $(DX)_n := X_{nn}$ und DX(f) := X(f, f).

Def. Sei X eine bisimpliziale Menge.

- Setze $|X|^D := |DX|$.
- $\bullet\,$ Definiere einen simplizialen topologischen Raum X^I durch

$$X_n^I := |X_{\bullet n}|, \quad X^I(g) := |X(\mathrm{id}, g)|.$$

Setze $|X|^{I,II} := |II, I|$.

• Definiere analog $|X|^{II,I}$.

Satz (Eilenberg-Zilber). $|X|^D \cong |X|^{I,II} \cong |X|^{II,I}$ kanonisch.

Def. • Ein Kettenkomplex C_{\bullet} ist eine Folge $(C_n)_{n\in\mathbb{N}}$ von abelschen Gruppen und Gruppenhomomorphismen $\partial_n:C_n\to C_{n-1}$ mit der Eigenschaft $\partial_{n-1}\circ\partial_n=0$.

• Ein Kokettenkomplex C^{\bullet} ist eine Folge $(C^n)_{n \in \mathbb{N}}$ von abelschen Gruppen und Gruppenhomomorphismen $\delta^n : C^n \to C^{n+1}$ mit der Eigenschaft $\delta^{n+1} \circ \delta^n = 0$.

Def. Sei C_{\bullet} ein Kettenkomplex.

- C_n heißt Gruppe der n-Ketten,
- $\partial: C_n \to C_{n-1}$ heißt Randabbildung,
- $Z_n(C_{\bullet}) := \ker \partial_n \subset C_n(C_{\bullet})$ heißt Gruppe der n-Zykel,
- $B_n(C_{\bullet}) := \operatorname{im} \partial_{n+1} \subset Z_n(C_{\bullet})$ heißt Gruppe der *n*-Ränder,
- $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$ heißt *n*-te Homologiegruppe.

Analog nennt man für einen Kokettenkomplex C^{\bullet}

- δ^n Korandabbildung, C^n n-Koketten,
- $Z^n := \ker \delta^n \ n\text{-Kozykel},$ $B^n := \operatorname{im} \delta^{n-1} \ n\text{-Koränder},$
- $H^n(C^{\bullet}) := Z^n(C^{\bullet})/B^n(C^{\bullet})$ n-te Kohomologiegruppe.

Def. Eine Morphismus $f:C_{\bullet}\to D_{\bullet}$ (bzw. $f:C^{\bullet}\to D^{\bullet}$) zwischen (Ko-)Kettenkomplexen ist eine Familie von Abbildungen

$$(f_n:C_n\to D_n)_{n\in\mathbb{N}}$$
 (bzw. $(f^n:C^n\to D^n)_{n\in\mathbb{N}}$),

die mit den Randabbildungen verträglich sind, d. h.

$$f_{n-1} \circ \partial_n^C = \partial_n^D \circ f_n$$
 (bzw. $f^{n+1} \circ \delta_C^n = \delta_D^n \circ f^n$) für alle n .

Prop. H_n (bzw. H^n) ist ein Funktor von der Kategorie der (Ko-)Kettenkomplexe in die Kategorie der abelschen Gruppen.

Def. Sei X eine simpl. Menge. Sei $C_n(X)$ die von den n-Simplizes X_n erzeugte abelsche Gruppe (d. h. die Gruppe der endl. formalen Linearkombinationen mit Koeffizienten in \mathbb{Z}). Sei $\delta_n^i:[n-1]\to[n]$ diejenige streng monotone Abb. mit $i \notin \text{im } \delta_n^i$. Definiere

$$\partial_n: C_n(X) \to C_{n-1}(X), \quad \sum_{\sigma \in X_n} \lambda_{\sigma} \cdot \sigma \mapsto \sum_{\sigma \in X_n} \lambda_{\sigma} \sum_{i=0}^n (-1)^i X(\partial_n^i)(\sigma).$$

Prop. $(C_{\bullet}(X), \partial_{\bullet})$ ist ein Kettenkomplex (d. h. $\partial_{n-1} \circ \partial_n = 0$)

Def. Sei X eine simpl. Menge und A eine ab. Gruppe. Dann ist ...

• ... der Kettenkomplex $(C_{\bullet}(X;A), \partial_{\bullet})$ von X mit **Koeffizienten** in A definiert durch

$$C_n(X;A) := C_n(X) \otimes_{\mathbb{Z}} A, \quad \partial_n := \partial_n \otimes \mathrm{id} : C_n(X;A) \to C_{n-1}(X;A).$$

• ... der Kokettenkomplex $(C^{\bullet}(X;A),\delta^{\bullet})$ von X mit Koeffizienten in A definiert durch

$$C^{n}(X; A) := \operatorname{Hom}(C^{n}(X), A),$$

$$\delta^{n} : C^{n}(X; A) \to C^{n+1}(X; A), \quad f \mapsto f \circ \delta_{n+1}.$$

Beobachtung. $C_n(X;\mathbb{Z}) = C_n(X)$

Notation. Sei X eine simpliziale Menge. Setze

- $H_n(X) := H_n(C_{\bullet}(X)),$ • $H^n(X) := H^n(C^{\bullet}(X; \mathbb{Z})).$
- $H_n(X;A) := H_n(C_{\bullet}(X;A)), \quad \bullet \quad H^n(X;A) := H^n(C^{\bullet}(X;A)).$

Prop. Für jede simpl. Menge X ex. ein kanonischer Isomorphismus

 $H_0(X,\mathbb{Z}) \cong$ freie ab. Gr. erzeugt von Zshgskomponenten von |X|

Def. Der Kegel CX über Verklebedaten X ist definiert durch

$$(CX)_{(0)} \coloneqq X_{(0)} \amalg \{\star\}, \quad (CX)_{(n)} \coloneqq X_{(n)} \amalg (X_{(n-1)} \times \{\star\})$$

$$(CX)(f)(x) \coloneqq X(f)(x)$$

$$(CX)(f)(x,*) := \begin{cases} X(i \mapsto f(i) - 1)(x), & \text{wenn } f(0) > 0, \\ (X(i \mapsto f(i+1) - 1)(x), *), & \text{wenn } f(0) = 0. \end{cases}$$

Def. Für Verklebedaten sind die (Ko-)Kettenkomplex (mit Koeffizienten) genauso definiert wie für simpliziale Mengen.

Prop. $H_0(CX) = \mathbb{Z}, H_{>0}(CX) = 0$

Def. Sei X eine simpliziale Menge.

• Ein homol. Koeffizientensystem A auf X ist ein Funktor

$$\mathcal{A}: (1 \downarrow X) \to \mathbf{AbGrp}.$$

Dabei ist $1: \Delta \to \mathbf{Set}$ der Funktor, der konstant $\{\star\}$ ist. Expliziter besteht ein Koeffizientensystem aus einer abelschen Gruppe \mathcal{A}_{σ} für jedes n-Simplex $\sigma \in X_n$ und Abbildungen $\mathcal{A}(f,\sigma):\mathcal{A}_{\sigma}\to\mathcal{A}_{X(f)(\sigma)}$ für alle $\sigma\in X_n,\,f\in\mathrm{Hom}_{\Delta}([m],[n])$ mit

$$\mathcal{A}(\mathrm{id},\sigma) = \mathrm{id}, \quad \mathcal{A}(f \circ g,\sigma) = \mathcal{A}(g,X(f)(\sigma)) \circ \mathcal{A}(f,\sigma).$$

• Ein kohomol, Koeffizientensystem \mathcal{B} auf X ist ein Funktor

$$\mathcal{B}: (1 \downarrow X)^{\mathrm{op}} \to \mathbf{AbGrp}.$$

 Ein Morphismus zw. (ko-)homologischen Koeffizientensystemen auf derselben simpl. Menge ist eine natürliche Transformation.

Bsp. Sei Y ein topol. Raum, $(U_{\alpha})_{\alpha \in A}$ eine offene Überdeckung und X deren Nerv. Dann definiert

$$\mathcal{F}_{\alpha_0,\ldots,\alpha_n} := \{U_{\alpha_0} \cap \ldots \cap U_{\alpha_n} \to \mathbb{R} \text{ stetig}\},$$

$$\mathcal{F}(f,(\alpha_0,...,\alpha_n))(\phi) := \text{passende Einschränkung von } \phi.$$

ein kohomologisches Koeffizientensystem auf X.

Def. Sei \mathcal{A} ein homologisches Koeffizientensystem auf einer simplizialen Menge X. Wir setzen

$$C_n(X;A) \coloneqq C_n(X) \otimes_{\mathbb{Z}} A, \quad \partial_n \coloneqq \partial_n \otimes \mathrm{id} : C_n(X;A) \to C_{n-1}(X;A) \cdot C_n(X;A) \coloneqq \{ \text{ formale endl. Linearkomb. } \sum_{\sigma \in X_n} \lambda_\sigma \cdot \sigma \text{ mit } \lambda_\sigma \in \mathcal{A}_\sigma \}$$

und definieren $\partial_n: C_n(X;\mathcal{A}) \to C_{n-1}(X;\mathcal{A})$ durch

$$\sum_{\sigma \in X_n} \lambda_{\sigma} \cdot \sigma \mapsto \sum_{\sigma \in X_n} \sum_{i=0}^n (-1)^i \mathcal{A}(\partial_n^i, \sigma)(\lambda_{\sigma}) \cdot X(\partial_n^i)(\sigma).$$

Die Homologiegruppen des so def. Kettenkomplexes $C_{\bullet}(X; A)$ heißen Homologiegruppen von X mit Koeffizienten in A.

Def. Sei \mathcal{B} ein kohomologisches Koeffizientensystem auf einer simplizialen Menge X. Wir setzen

$$C^n(X;\mathcal{B}) := \{ \text{ Funktionen } f : (\sigma \in X_n) \to \mathcal{B}_\sigma \}$$

und definieren $\delta_n: C^n(X;\mathcal{B}) \to C_{n+1}(X;\mathcal{B})$ durch

$$\delta^n(f)(\sigma) := \sum_{i=0}^{n+1} (-1)^i \mathcal{B}(\partial_{n+1}^i, \sigma) (f(X(\partial_{n+1}^i)(\sigma))).$$

Die Kohomologiegruppen des so def. Kokettenkomplexes $C^{\bullet}(X;\mathcal{B})$ heißen Kohomologiegruppen von X mit Koeffizienten in \mathcal{B} .

Bsp. Sei Y ein topol. Raum, $U = (U_{\alpha})_{\alpha \in A}$, X und \mathcal{F} wie im letzten Beispiel. Die Homologiegruppen $H^n(X,\mathcal{F})$ werden Čech-Kohomologiegruppen der Garbe der stetigen Funktionen auf Y bzgl. der Überdeckung U genannt.

Def. • Eine mengenwertige **Prägarbe** \mathcal{F} auf einem topol. Raum X ist ein Funktor $\mathcal{F}: \mathbf{Ouv}(X)^{\mathrm{op}} \to \mathbf{Set}$. Dabei ist $\mathbf{Ouv}(X)$ die Präordnungs-Kategorie der offenen Teilmengen von X geordnet durch Inklusion.

- Allgemeiner ist eine C-wertige Prägarbe ein Funktor $\mathcal{F}: \mathbf{Ouv}(X)^{\mathrm{op}} \to \mathcal{C}$ (z. B. $\mathcal{C} = \mathbf{AbGrp}, \mathbf{R}\text{-}\mathbf{Mod}, \mathbf{Top}$)
- Ein Morphismus zwischen Prägarben \mathcal{F} und \mathcal{G} auf demselben topol. Raum ist eine natürliche Transformation zwischen \mathcal{F} und \mathcal{G} .

Notation. Sei \mathcal{F} eine Prägarbe

- $\Gamma(U, \mathcal{F}) := \mathcal{F}(U)$ heißt Menge der Schnitte von \mathcal{F} über U.
- $r_{UV} := \mathcal{F}(V \subseteq U) : \mathcal{F}(U) \to \mathcal{F}(V)$ heißt **Restriktionsabb**.
- $x|_{V} := r_{UV}(x)$ für $V \subseteq U$ und $x \in \mathcal{F}(U)$ heißt **Einschränkung** von x auf V.

Def. Eine Garbe auf einem topol, Raum X ist eine Prägarbe \mathcal{F} , für die gilt: Für alle Familien $(U_i)_{i\in I}$ von offenen Teilmengen und Schnitten $(s_i \in \mathcal{F}(U_i))_{i \in I}$, die miteinander verträglich sind, d. h.

$$\forall i, j \in I : s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j},$$

gibt es genau einen Schnitt $s \in \mathcal{F}(\cup_{i \in I} U_i)$ mit $\forall i \in I : s_i = s|_{U_i}$. Ein Morphismus zw. Garben ist ein Morphismen zw. den Prägarben.

Bem. Sei \mathcal{F} eine (Prä-)Garbe auf X und $U \subseteq X$ offen. Dann definiert $(\mathcal{F}|U)(V) := \mathcal{F}(U \cap V)$ eine (Prä-)Garbe auf U.

Def. Eine Sequenz $\mathcal{F} \to \mathcal{G} \to \mathcal{H}$ von (Prä-)Garben abelscher Gruppen auf X heißt exakt bei \mathcal{G} , falls für alle offenen $U \subset X$ die Sequenz $\mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U)$ exakt bei $\mathcal{G}(U)$ ist.

Def. Sei $f: \mathcal{F} \to \mathcal{G}$ ein Morphismus von Prägarben auf X. Definiere Prägarben K und C auf X durch

$$\mathcal{K}(U) := \ker(f_U : \mathcal{F}(U) \to \mathcal{G}(U)), \quad \mathcal{C}(U) := \mathcal{G}(U) / \operatorname{im}(f_U).$$

Prop. Sei $f: \mathcal{F} \to \mathcal{G}$ sogar ein Morphismus von Garben. Dann ist auch K eine Garbe.

Achtung. Aber C ist im Allgemeinen keine Garbe!

Def. Sei \mathcal{F} eine Garbe auf Y. Der **Halm** von \mathcal{F} in $y \in Y$ ist

$$\mathcal{F}_y := \{(U, s) \mid U \subseteq Y \text{ offen}, y \in U, s \in \mathcal{F}(U)\}/\sim,$$

$$(U,s) \sim (V,t) : \iff \exists W \subset U \cap V \text{ offen, } y \in W : s|_W = t|_W.$$

Notation. $s_y := [(U, s)]$ für $s \in \mathcal{F}(U)$ mit $y \in U$.

Sprechweise. Elemente $[t] \in \mathcal{F}_y$ heißen **Keime** in y.

Def. Sei \mathcal{F} eine Garbe auf $Y, Z \subseteq Y$ beliebig. Definiere

$$\Gamma(Z, \mathcal{F}) := \lim_{Z \to \mathcal{F}} \Gamma(U, \mathcal{F}),$$

wobei der Limes über alle offenen $U \subset X$ mit $Z \subseteq U$ läuft.

Beobachtung. $\mathcal{F}_y = \Gamma(\{y\}, \mathcal{F})$

Def. Der **Totalraum** F einer Prägarbe \mathcal{F} auf Y ist

$$F := \coprod_{y \in Y} \mathcal{F}_y$$

mit der Topologie erzeugt durch die Mengen

$$\{s_u \mid y \in U\}$$
 für $U \subseteq X$ offen, $s \in \mathcal{F}(U)$.

Bem. Mit dieser Topologie ist die Projektion $\pi: F \to Y$ stetig und ein lokaler Homöomorphismus.

Def. Sei \mathcal{F} eine Prägarbe auf Y. Die Garbifizierung \mathcal{F}^+ von \mathcal{F} ist die Garbe der lokal stetigen Schnitte von $\pi: F \to Y$, also

$$\mathcal{F}^+(U) := \{ f : U \to F \mid \pi \circ f = (i : U \hookrightarrow Y) \}.$$

Prop. Es ex. ein kanonischer Morphismus $f: F \to F^+$ def. durch $s \in \mathcal{F}(U) \mapsto (y \mapsto s_y : Y \to F).$

$$s \in \mathcal{F}(\mathcal{O}) \mapsto (y \mapsto s_y : I \to I').$$

Wenn \mathcal{F} schon eine Garbe ist, dann ist f ein Isomorphismus.

Def. Sei A eine Menge (oder ab. Gruppe, ...), Y ein topol. Raum.

 \bullet Die konstante Prägarbe A mit Faser A auf Y ist def. durch

$$\mathbf{A}(U) \coloneqq A, \quad r_{UV} \coloneqq \mathrm{id}_A \quad \text{für alle } V \subseteq U \subseteq Y.$$

• Die konstante Garbe mit Faser A ist die Garbifizierung $A = A^+ \text{ von } A.$

Def. Eine Garbe \mathcal{F} auf Y heißt lokal konstant, falls jeder offene Punkt in Y eine offene Umgebung U besitzt, sodass F|U isomorph zu einer konstanten Garbe ist.

Def. Eine Garbe \mathcal{F} auf einem topologischen Raum Y heißt ...

• ... welk (flabby, flasque), wenn die Einschränkungsabbildungen

$$\Gamma(Y,\mathcal{F}) \to \Gamma(U,\mathcal{F})$$

für alle offenenen $U \subseteq Y$ surjektiv sind.

• ... weich (soft, mou), wenn die Einschränkungsabbildungen

$$\Gamma(Y,\mathcal{F}) \to \Gamma(A,\mathcal{F})$$

für alle abaeschlossenen $A \subseteq Y$ surjektiv sind.

Def. Eine Garbe \mathcal{F} ab. Gruppen auf einem topol. Raum Y heißt fein (fine, fin), wenn für je zwei disjunkte, abgeschlossene Teilmengen $A_1, A_2 \subseteq Y$ ein Garbenmorphismus $\alpha : \mathcal{F} \to \mathcal{F}$ existiert, sodass α auf einer offenen Umgebung von A_1 Null und auf einer offenen Umgebung von A_2 die Identität ist.

Def. Eine (lange) exakte Sequenz ab. Gruppen ist ein (Ko-)Ketten- komplex mit verschwindenden Homologiegruppen, d. h.

$$\operatorname{im} \partial_n = \ker \partial_{n-1}$$
 für alle n .

Def. Eine kurze ex. Sequenz (k. e. S.) ist eine ex. Seq. der Form

$$0 \to A \to B \to C \to 0.$$

Def. Sei $0 \to A \to B \to C \to 0$ eine k. e. S. in einer abelschen Kategorie A. Die Sequenz heißt **spaltend**, falls sie isomorph zur k. e. S. $0 \to A \to A \oplus C \to C$ ist.

Prop. Für eine Sequenz $0 \to A \xrightarrow{f} B \to \xrightarrow{g} C \to 0$ sind äquivalent:

- Die Sequenz spaltet.
- Es existiert eine Retraktion $r: B \to A$ mit $r \circ f = \mathrm{id}_A$.
- Es existiert ein Schnitt $s: C \to B$ mit $g \circ s = \mathrm{id}_C$.

Def. Eine Sequenz $0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$ von Komplexen heißt **exakt**, wenn für alle n die Seq. $0 \to A_n \to B_n \to C_n \to 0$ exakt ist.

Prop. Eine kurze exakte Sequenz $0 \to A^{\bullet} \xrightarrow{i^{\bullet}} B^{\bullet} \xrightarrow{p^{\bullet}} C^{\bullet} \to 0$ von Kokettenkomplexen induziert eine lange exakte Sequenz

$$\dots \to H^n(A^\bullet) \xrightarrow{H^n(i^\bullet)} H^n(B^\bullet) \xrightarrow{H^n(p^\bullet)} H^n(C^\bullet) \xrightarrow{\delta^n} H^{n+1}(A^\bullet) \to \dots \text{ und damit auch entsprechende lange exakte Sequenzen.}$$

Lemma. Sei $0 \to A \to B \to C \to 0$ eine k. e. S. ab. Gruppen und X eine simpl. Menge. Dann sind ebenfalls exakt:

$$0 \to C_{\bullet}(X; A) \to C_{\bullet}(X; B) \to C_{\bullet}(X; C) \to 0,$$

$$0 \to C^{\bullet}(X; A) \to C^{\bullet}(X; B) \to C^{\bullet}(X; C) \to 0.$$

Korollar. Sei $0 \to A \to B \to C \to 0$ eine k. e. S. ab. Gruppen und X eine simpl. Menge. Dann existieren lange exakte Sequenzen

...
$$\rightarrow H_n(X; A) \rightarrow H_n(X; B) \rightarrow H_n(C) \rightarrow H_{n-1}(X; A) \rightarrow ...$$

... $\rightarrow H^n(X; A) \rightarrow H^n(X; B) \rightarrow H^n(C) \rightarrow H^{n+1}(X; A) \rightarrow ...$

Def. Eine Sequenz $0 \to \mathcal{B}' \to \mathcal{B} \to \mathcal{B}'' \to 0$ von (ko-)homologischen Koeffizientensystemen auf einer simpl. Menge X heißt exakt, falls

$$0 \to \mathcal{B}'_{\sigma} \to \mathcal{B}_{\sigma} \to \mathcal{B}''_{\sigma} \to 0$$
 für alle $\sigma \in X_n$ exakt ist.

Lemma. Eine kurze exakte Sequenz $0 \to \mathcal{B}' \to \mathcal{B} \to \mathcal{B}'' \to 0$ von (ko-)homologischen Koeff'systemen induziert kurze ex. Sequenzen

$$0 \to C_{\bullet}(X; \mathcal{B}') \to C_{\bullet}(X; \mathcal{B}) \to C_{\bullet}(X; \mathcal{B}'') \to 0,$$

$$0 \to C^{\bullet}(X; \mathcal{B}') \to C^{\bullet}(X; \mathcal{B}) \to C^{\bullet}(X; \mathcal{B}'') \to 0$$