Mistplay Data Analysis

Aymen Rumi

Data Analysis for Mistplay Data Engineering Dataset

Data Visuzalization & Summary Statistic for Dataset given for Mistplay Data Engineering Challenge

- 1. Distribution of Location
- 2. Distribution of Age Group
- 3. Total Revenue by Location
- 4. Total Revenue by Age Group
- 5. Total Revenue by Location per Person
- 6. Mean Score by Location

Distribution for Location -Top 25

```
location_distribution<-data%>%group_by(location)%>%summarise(count=n())%>%mutate(prop=count/sum(count))
ggplot(location_distribution, aes(factor(location), count, fill = location)) +
    geom_col(position = 'dodge')
```


location_distribution%>%kable()

location	count	prop
China	175	0.175
Indonesia	126	0.126
Russia	58	0.058
Philippines	55	0.055
Brazil	40	0.040
Poland	40	0.040
France	32	0.032
Portugal	28	0.028
Colombia	21	0.021
Sweden	20	0.020
Ukraine	20	0.020
United States	20	0.020
Canada	18	0.018
Peru	15	0.015
Argentina	13	0.013
Mexico	13	0.013
Greece	12	0.012
Japan	12	0.012
Czech Republic	11	0.011
Thailand	11	0.011
Albania	9	0.009
Iran	9	0.009
Nigeria	9	0.009
Serbia	9	0.009
Finland	8	0.008

Distribution for Age Group

```
age_distribution<-data%>%group_by(age_group)%>%summarise(count=n())%>%mutate(prop=count/sum(count))%>%a
ggplot(age_distribution, aes(factor(age_group), count, fill = factor(age_group))) +
    geom_col(position = 'dodge')
```


Total Revenue by Location - Top 15

```
revenue_by_location<-data%>%group_by(location)%>%summarise(total_revenue=sum(revenue))%>%arrange(desc(t
ggplot(revenue_by_location, aes(factor(location), total_revenue, fill = factor(location))) +
    geom_col(position = 'dodge')
```


revenue_by_location%>%kable()

location	total_revenue
China	86934.94
Indonesia	65801.21
Russia	28640.84
Philippines	26957.02
Brazil	18978.00
France	17534.37
Poland	16799.83
Portugal	13215.37
Ukraine	12099.07
Sweden	11651.32
Colombia	10220.70
United States	9427.31
Canada	9033.20
Peru	8189.84
Greece	7227.59

Total Revenue by Age Group

revenue_by_age<-data%>%group_by(age_group)%>%summarise(total_revenue=sum(revenue))%>%arrange(desc(total_revenue=sum(revenue))%>%arrange(desc(total_revenue=sum(revenue))%>%arrange(desc(total_revenue=sum(revenue))%>%arrange(desc(total_revenue=sum(revenue))%>%arrange(desc(total_revenue=sum(revenue))%>%arrange(desc(total_revenue=sum(revenue))%>%arrange(desc(total_revenue=sum(revenue=sum(revenue)))%>%arrange(desc(total_revenue=sum(

```
ggplot(revenue_by_age, aes(factor(age_group), total_revenue, fill = factor(age_group))) +
    geom_col(position = 'dodge')
```


revenue_by_age%>%kable()

age_group	total_revenue
1	129846.5
2	128499.9
4	121559.7
3	113059.1

Total Revenue by Location per Person

```
revenue_by_location_per_person<-data%>%group_by(location)%>%summarise(total_revenue=sum(revenue),count=sum(revenue))
ggplot(revenue_by_location_per_person, aes(factor(location), revenue_per_count, fill = factor(location))
geom_col(position = 'dodge')
```


revenue_by_location_per_person%>%kable()

location	total_revenue	count	revenue_per_count
China	86934.94	175	496.7711
Indonesia	65801.21	126	522.2318
Russia	28640.84	58	493.8076
Philippines	26957.02	55	490.1276
Brazil	18978.00	40	474.4500
France	17534.37	32	547.9491
Poland	16799.83	40	419.9957
Portugal	13215.37	28	471.9775
Ukraine	12099.07	20	604.9535
Sweden	11651.32	20	582.5660
Colombia	10220.70	21	486.7000
United States	9427.31	20	471.3655
Canada	9033.20	18	501.8444
Peru	8189.84	15	545.9893
Greece	7227.59	12	602.2992

Mean Score by Location

mean_score_by_location<-data%>%group_by(location)%>%summarise(mean_score=mean(user_score))%>%arrange(de

ggplot(mean_score_by_location, aes(factor(location), mean_score, fill = factor(location))) +
 geom_col(position = 'dodge')

mean_score_by_location%>%kable()

location	mean_score
Jamaica	0.9685650
Cyprus	0.9623875
Bosnia and Herzegovina	0.9542814
Luxembourg	0.9427585
Sint Maarten	0.9019889
Kenya	0.8837372
Bulgaria	0.8634754
Sri Lanka	0.8478798
Haiti	0.8253762
American Samoa	0.8091314
Burkina Faso	0.7989472
Bahamas	0.7914026
Malawi	0.7813927
Israel	0.7511334
Venezuela	0.7383624
Mayotte	0.7320937
Slovenia	0.7275694
Ethiopia	0.6841800

location	mean_score
Vietnam	0.6754484
Czech Republic	0.6720100
Niger	0.6663162
Panama	0.6581854
Burundi	0.6558426
Cameroon	0.6551893
Guatemala	0.6536079