Facultad de Ciencias Exactas, Físicas y Naturales Universidad Nacional de Córdoba

Simulación de Tráfico de Internet

Algoritmos y Estructuras de Datos

Final Febrero 2022

Alumna:

CAREGGIO, Camila

Introducción

En el siguiente trabajo se realizó una simulación de tráfico de internet, utilizando estructuras como Listas, Colas, Grafos y el algoritmo de Floyd para encontrar los caminos óptimos en la red de routers. A continuación se explican las diferentes clases y más adelante el funcionamiento de la simulación.

Clases

Estructuras

En este archivo se implementan las clases Nodo, Lista y Cola, las cuales utilizamos a lo largo de la materia y serán la base de este trabajo, ya que aparecerán en todo momento.

Computadora

Cada computadora cuenta con su propio IP y está conectada a un único router. Se encarga de recibir las páginas.

Página

Cada página cuenta con un ID, además se le informa los IPs de las computadoras y routers de origen y destino. Tiene un tamaño determinado al azar, el cual hace referencia a la cantidad de paquetes en los que se deberá dividir más adelante.

Paquete

Cada página, al llegar al router se divide en Paquetes, los cuales se "moverán" a través de los canales. Cada paquete, además del ID de la página original, y los IPs de los routers y computadoras de origen y destino, tiene un número de orden, el cuál hace referencia al orden del paquete en la página.

Canal

Es la conexión entre routers vecinos, se le asigna un router de origen y destino y contiene una cola con los paquetes que se mandan por ese camino. El canal no puede contener mayor cantidad de paquetes que lo que el ancho de banda permite.

Router

Cada router tiene su propio IP y está informado de las computadoras conectadas a él y de los canales por los que recibe paquetes y por los que envía. Tiene una tabla de enrutamiento que le indica, según el destino final del paquete, a qué router vecino debe enviarlo. Tiene una Lista de Páginas, a donde las irá armando a medida que vayan llegando los paquetes cuyo destino sea el propio router.

El router, en definitiva, cumple las siguientes funciones:

- 1. Recibir una Página y dividirla en Paquetes
- 2. Recibir los Paquetes de routers vecinos a través de los canales de recibo
- 3. Enviar los Paquetes al canal de envío que indique la tabla de enrutamiento y según el ancho de banda permite.
- 4. Construir la Página cuando el destino de los paquetes sea el propio Router.
- 5. Enviar la Página construida a la Computadora destino.

Funcionamiento de la simulación

En primera instancia se deben definir el número de routers, el ancho de banda y el número de computadoras a las que estarán conectados cada uno de los routers en 'Estructuras.h'. Luego, se lee la matriz de adyacencia, que indica con 1 cuando hay conexión directa entre routers.

Se inicializan los routers de la red con sus respectivas computadoras y se crean los canales de conexiones entre ellos.

Se pedirá ingresar la cantidad de ciclos a simular y luego comienza la simulación de estos. En el primer ciclo (el número cero) y cada 2 ciclos se actualiza la matriz de adyacencia y se recalcula Floyd, es decir, se recalculan los caminos óptimos por donde enviar paquetes para cada combinación de origen-destino posible, estos datos se envían a cada router para que construyan su propia tabla de enrutamiento.

En el primer ciclo y luego cada cinco, se crean nuevas páginas en cada router.

En cada ciclo, por turnos, los routers reciben y envían paquetes según lo indicado en la tabla de enrutamiento actual. Pueden haber distintas situaciones:

Recibe una página creada, la divide en paquetes, y los envía por el canal correspondiente y según el ancho de banda lo permita. void Router::recibir_pagina(Pagina* pag recibida)

Recibe paquetes de los canales de recibo y los envía al canal correspondiente y según el ancho de banda lo permita. Los paquetes se envían intercalados, nunca todos los paquetes con un mismo destino juntos para no atorar el server *void Router::recibir()*

Si el destino del paquete es el propio router, espera a que lleguen todos los paquetes de la página, la arma y la envía a la computadora indicada *void Router::construir_pagina(Paquete* p)*

A medida que van llegando las páginas, la computadora avisa que han sido recibidas.

Ejemplo

Con 4 Computadoras conectadas a cada router, un ancho de banda de 20 y la siguiente red de routers:

La matriz de conexiones es la siguiente:

```
Matriz de conexiones:
 9000
       9000
                1 9000
                             1
                                9000
             9000
 9000
       9000
                                9000
       9000
             9000
    1
                    9000
                             1
                                   1
          1
 9000
              9000
                    9000
                             1
                                9000
    1
          1
                 1
                      1
                          9000
                                9000
 9000
       9000
                 1
                    9000
                          9000
                                9000
```

Los routers con sus respectivas computadoras:

```
Router nro: 3 IP: 0011
Router nro: 0 IP: 0000
PC nro: 0 con ip: 0000
                                PC nro: 0 con ip: 0000
                                PC nro: 1 con ip: 0001
PC nro: 1 con ip: 0001
                                PC nro: 2 con ip: 0010
PC nro: 2 con ip: 0010
PC nro: 3 con ip: 0011
                                PC nro: 3 con ip: 0011
                                Router nro: 4 IP: 0100
Router nro: 1 IP: 0001
                                PC nro: 0 con ip: 0000
PC nro: 0 con ip: 0000
                                PC nro: 1 con ip: 0001
PC nro: 1 con ip: 0001
                                PC nro: 2 con ip: 0010
PC nro: 2 con ip: 0010
PC nro: 3 con ip: 0011
                                PC nro: 3 con ip: 0011
                                Router nro: 5 IP: 0101
Router nro: 2 IP: 0010
                                PC nro: 0 con ip: 0000
PC nro: 0 con ip: 0000
                                PC nro: 1 con ip: 0001
PC nro: 1 con ip: 0001
                                PC nro: 2 con ip: 0010
PC nro: 2 con ip: 0010
                                PC nro: 3 con ip: 0011
PC nro: 3 con ip: 0011
```

Se inicializan los canales y se calculan las tablas de enrutamiento:

```
Tabla de enrutamiento del Router nro 0 IP: 0000
                                          Tabla de enrutamiento del Router nro 3 IP: 0011
Destino--->Enviar a
                                           Destino--->Enviar a
 0 -----> 0
                                            0 ----- 4
 1 ----- 4
 2 -----> 2
                                            3 ----- 3
                                            4 -----> 4
Tabla de enrutamiento del Router nro 1 IP: 0001
                                          Tabla de enrutamiento del Router nro 4 IP: 0100
Destino--->Enviar a
                                           Destino--->Enviar a
 0 ----> 4
 1 ----- 1
   -----> 4
                                            2 -----> 2
 4 -----> 4
Tabla de enrutamiento del Router nro 2 IP: 0010
                                          Tabla de enrutamiento del Router nro 5 IP: 0101
Destino--->Enviar a
                                           Destino--->Enviar a
 0 ----> 0
 1 ----- 4
                                            1 ----- 2
                                                        2
   -----> 4
   -----> 4
                                            5 ----->
```

Luego, al ser el ciclo número cero, se crean páginas en cada router y estos las reciben, las dividen en paquetes y las envían al canal que corresponda.

A partir del ciclo número 5 podemos ver claramente esto, ya que aquí se crean páginas nuevamente

```
Pagina CREADA ID: 6 size: 22
                                  Pagina CREADA ID: 9 size: 17
ORIGEN: PC nro 1 Router nro 0
                                  ORIGEN: PC nro 3 Router nro 3
DESTINO: PC nro 0 Router nro 4
                                  DESTINO: PC nro 2 Router nro 1
Pagina CREADA ID: 7 size: 8
                                  Pagina CREADA ID: 10 size: 23
ORIGEN: PC nro 3 Router nro 1
                                  ORIGEN: PC nro 2 Router nro 4
DESTINO: PC nro 2 Router nro 5
                                  DESTINO: PC nro 1 Router nro 3
Pagina CREADA ID: 8 size: 11
                                  Pagina CREADA ID: 11 size: 3
ORIGEN: PC nro 1 Router nro 2
                                  ORIGEN: PC nro 1 Router nro 5
DESTINO: PC nro 0 Router nro 0
                                  DESTINO: PC nro 3 Router nro 2
```

Y en el ciclo 6 se recalcula Floyd, la matriz de adyacencia y las tablas de enrutamiento:

```
Matriz de adyacencia para el ciclo 6
  9000
        9000
                  1
                      9000
                                1
                                   9000
        9000
  9000
               9000
                                   9000
                         1
                                1
    14
        9000
               9000
                                4
                      9000
  9000
           18
               9000
                      9000
                                   9000
                                1
                            9000
            1
                  9
                        21
                                   9000
  9000
                  4
                            9000
                                   9000
        9000
                      9000
```

```
Tabla de enrutamiento del Router nro 0 IP: 0000
                                               Tabla de enrutamiento del Router nro 3 IP: 0011
                                               Destino--->Enviar a
Destino--->Enviar a
 0 ----> 0
                                                0 ----- 4
 1 -----> 4
                                                5 -----> 4
Tabla de enrutamiento del Router nro 1 IP: 0001
                                               Tabla de enrutamiento del Router nro 4 IP: 0100
Destino--->Enviar a
                                               Destino--->Enviar a
 1 ----- 1
 2 -----> 4
 3 ----- 3
                                                3 -----> 1
 4 ----- 4
                                                5 ----- A
Tabla de enrutamiento del Router nro 2 IP: 0010
                                               Tabla de enrutamiento del Router nro 5 IP: 0101
Destino--->Enviar a
                                               Destino--->Enviar a
   -----> 2
```

Vemos que algunos valores de la tabla cambian con respecto a la calculada inicialmente. Por ejemplo, en la tabla del Router número 2, en una primera instancia los paquetes con destino al router 0, se enviaban directamente a dicho router, pero con la actualización de la matriz de adyacencia, ese camino tiene un coste de 14, mientras que enviarlo al router 4 y luego al 0 tiene un coste total de 5 y por ello, al recalcular la tabla de enrutamiento, los paquetes del router 2 con destino al router 0 se enviarán al router 4.

Y así se van recibiendo las páginas:

```
PAGINA RECIBIDA ID: 8 en PC nro 0 Router nro 0
Viene desde PC nro 1 Router nro 2 de tamanio 11

PAGINA RECIBIDA ID: 9 en PC nro 2 Router nro 1
Viene desde PC nro 3 Router nro 3 de tamanio 17

PAGINA RECIBIDA ID: 11 en PC nro 3 Router nro 2
Viene desde PC nro 1 Router nro 5 de tamanio 3

PAGINA RECIBIDA ID: 6 en PC nro 0 Router nro 4
Viene desde PC nro 1 Router nro 0 de tamanio 22

PAGINA RECIBIDA ID: 7 en PC nro 2 Router nro 5
Viene desde PC nro 3 Router nro 1 de tamanio 8

Press any key to continue . . .

PAGINA RECIBIDA ID: 10 en PC nro 1 Router nro 3
Viene desde PC nro 2 Router nro 4 de tamanio 23
```