الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية الدي

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة:الرياضيات المدة: 04 سا و30د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأوّل

يحتوي الموضوع الأول على 03 صفحات (من الصفحة 1 من 6 إلى الصفحة 3 من 6)

التمرين الأوّل: (04نقاط)

$$B(0;3;1)$$
 ، $A(1;1;4)$: لتكن النقط ($O;\vec{i},\vec{j},\vec{k}$) النجامد و المتعامد و المتعامد و المتعامد و المتعامد و $x-2y+z-3=0$ و المستقيم (A) الذي $C\left(\frac{4}{3};\frac{5}{3};5\right)$ و المستقيم (A) الذي $X=1-t$ تمثيلا وسيطيا له. $X=1-t$ تمثيلا وسيطيا له.

في كل سؤال توجد إجابة واحدة صحيحة من بين الاقتراحات الثلاثة ، حدّدها مع التعليل.

الإجابة ج)	الإجابة ب)	الإجابة أ)		
(AC)	(AB)	(Δ)	المستوي (P) يحوي المستقيم	1
متطابقان	متقاطعان	متوازيان تماما	ig(ABCig) و $ig(Pig)$	2
С	В	A	المسقط العمودي للنقطة O على المستقيم (Δ) هي النقطة	3
ليسا من نفس المستوي	متوازيان	متقاطعان	(AC) و (Δ)	4
مجموعة خالية	سطح كرة	مستو	مجموعة النقط M من الفضاء حيث $BM^2 - 9CM^2 = 0$ هي	5

التمرين الثاني: (04 نقاط)

- . $9z^2-6\sqrt{3}z+4=0$ المعادلة: $\mathbb C$ المعادلة: (1
- 2) في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$ ، لتكن النقطتين A و B لاحقتاهما على الترتيب:

$$z_{B} = \overline{z_{A}}$$
 $z_{A} = \frac{\sqrt{3}}{3} + \frac{1}{3}i$

أ- اكتب كلا من z_A و z_B على الشكل الأسي.

$$\left(\frac{z_A}{z_B}\right)^{2016} + \left(\frac{z_A}{z_B}\right)^{1437} = 0$$
 : بين أنّ

ج- عيّن قيم العدد الطبيعي n بحيث يكون $\left(\frac{z_A}{z_B}\right)^n$ عددا حقيقيا.

- . $z' = \left(\frac{z_A}{z_B}\right)$ حيث: z' حيث عند z' التحويل النقطي الذي يرفق بكل نقطة z' التحويل النقطي الذي يرفق بكل نقطة z' التحويل النقطي الذي يرفق بكل نقطة z'
 - أ- عيّن طبيعة التحويل النقطي f و عناصره المميّزة.

. f بالتحويل A النقطة C صورة النقطة C بالتحويل C

ABCD جـ- عيّن z_D لاحقة النقطة D حتى تكون D مركز ثقل الرباعي

التمرين الثالث: (05 نقاط)

. نعتبر المعادلة (E) ذات المجهول (x;y) نعتبر المعادلة و(E) عددان صحيحان

- . (E) المعادلة $(x_0;y_0)$ بحيث ، $x_0=y_0$ بحيث بالمعادلة $(x_0;y_0)$ بحيث ، ثم حل المعادلة (1
- . 42 هين باقي قسمة العدد λ و التي تُحقّق: $\lambda = 24[7]$ من عين باقي قسمة العدد λ على 42. $\lambda = 5[6]$
 - . $|x+y-1| \le 13$ عيّن جميع الثنائيات (x;y) حلول المعادلة (3
 - .7 على n أ- ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 5^n على 4

$$. \begin{cases} n-5^n \equiv 2020 \\ n \equiv 1437 \\ 6 \end{bmatrix}$$
: التي تُحقِّق الجملة: $n = 1437$

التمرين الرابع: (07 نقاط)

- . $g(x) = \frac{x-1}{x+1} + \ln(x+1)$: كما يلي: $g(x) = \frac{x-1}{x+1} + \ln(x+1)$ كما يلي: $g(x) = \frac{x-1}{x+1} + \ln(x+1)$
 - $\lim_{x\to +\infty} g(x)$ أ- احسب $\lim_{x\to -1} g(x)$ و أ

ب- ادرس اتجاه تغیّر الدالة g على المجال $g = -1; +\infty$ ثم شكّل جدول تغیّراتها.

. 0,4<lpha<0.5: مين أنّ المعادلة $g\left(x\right)=0$ تقبل حلاّ وحيدا lpha حيث (2

. $]-1;+\infty[$ على المجال g(x) ب- استنتج إشارة

- . $f(x)=1+(x-1)\ln(x+1)$ یلي: $f(x)=1+(x-1)\ln(x+1)$ کما یلي: $f(x)=1+(x-1)\ln(x+1)$ الدالة العددیة المعرّفة علی المجال
 - . $\lim_{x \to +\infty} f(x)$ احسب النتیجة هندسیا ثم احسب ا $\lim_{x \to -1} f(x)$ احسب (1
 - . ادرس اتجاه تغیّر الدالة f علی المجال $]-1;+\infty$ ، ثم شکّل جدول تغیّراتها (2

.(10
$$^{-2}$$
 النتائج إلى $f(\alpha) = -\alpha + 4 - \frac{4}{\alpha + 1}$: بيّن أنّ $f(\alpha) = -\alpha + 4 - \frac{4}{\alpha + 1}$.

ليكن a عدد حقيقي من المجال a المستوي ، a المستوي ، a المستوي المستوي المستوي عند المنسوب إلى المعلم المتعامد والمتجانس a عند النقطة ذات الفاصلة a

 $.h(x) = f(x) - [f'(a)(x-a) + f(a)] :]-1;+\infty[$ نضع من أجل كل عدد حقيقي x من المجال

 $.h'(x) = f'(x) - f'(a) :]-1;+\infty$ من أجل كل x من أجل كل أ- تحقّق أنّه من أجل كل x

.] $-1;+\infty$ على الدالة g ، عيّن إشارة h'(x) حسب قيم x واستنتج اتجاه تغيّر الدالة g ، عيّن إشارة h'(x) حسب قيم h'(x) والمستقيم h'(x) والمستقيم h'(x) والمستقيم h'(x)

. بيّن أنّه يوجد مماسان $\left(T_{a}
ight)$ يشملان النقطة Aig(1;0ig) يطلب تعيين معادلتيهما (4

 $\cdot(C)$ ب- ارسم المماسين والمنحنى

 $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$:ب $-1; +\infty$ المعرّفة على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$ على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$ على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$ على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$

x=2 و x=1، y=0 المستوي المحدّد بالمنحنى x=1 و المستقيمات التي معادلاتها:

الموضوع الثاني

يحتوي الموضوع الثاني على 03 صفحات (من الصفحة 4 من 6 إلى الصفحة 6 من 6)

التمرين الأوّل: (05 نقاط)

$$f(x) = \frac{x^2}{2x-1}$$
 :ب $[1;+\infty[$ المعرّفة على المجال f المعرّفة المعرّفة على المجال

- المتعامد والمتجانس $(C; \vec{i}, \vec{j})$ ، (الشكل المقابل).
 - . $[1;+\infty[$ بيّن أنّ الدالة f متزايدة تماما على المجال (1
 - بـ: $\mathbb N$ المعرّفة على المعددية (u_n) المعرّفة على (2
 - $u_{n+1} = f(u_n)$ ، $u_n = 6$ و من أجل كل عدد طبيعي $u_n = 6$ أ- انقل المنحنى المقابل ثم مثّل الحدود الأربعة الأولى للمتتالية (u_n) على حامل محور الفواصل (دون حسابها) مُوضّحا خطوط الانشاء.

ب- أعط تخمينا حول اتجاه تغير المنتالية (u_n) و تقاربها.

 $.1 \le u_n \le 6$: n ج- برهن أنّه من أجل كل عدد طبيعي

 (u_n) د- ادرس اتجاه تغیّر المنتالیة

 (u_n) المتتالية ه- برّر تقارب المتتالية

$$w_n = \ln(v_n)$$
 و $v_n = \frac{u_n - 1}{u_n}$: بعتبر المنتاليتين العدديتين (v_n) و (v_n) المعرّفتين على (3)

أ- برهن أنّ (w_n) متتالية هندسية أساسها 2 ، يطلب تعيين حدّها الأوّل.

n بدلالة n ثم v_n بدلالة v_n بدلالة

$$\cdot \lim_{n \to +\infty} u_n$$
 . ثم أحسب $u_n = \frac{1}{1 - \left(\frac{5}{6}\right)^{2^n}}$. ثم أحسب $1 - \left(\frac{5}{6}\right)^{2^n}$

$$S_n = \frac{1}{w_0} + \frac{1}{w_1} + \dots + \frac{1}{w_n}$$
 احسب بدلالة n المجموع التالي: (4

التمرين الثاني: (04,5 نقطة)

الآتية: $\mathbb C$ المجهول $\mathbb C$ الأتية: $\mathbb C$ المجهول $\mathbb C$ الآتية:

$$(z^2-2\sqrt{2}z+4)(2z-\sqrt{2})=0$$

2) اكتب الحلول على الشكل الأسى.

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ نعتبر النقط B ، A و D من المستوي التي لواحقها (II

$$c = \sqrt{2} - i\sqrt{2}$$
 و $b = \sqrt{2} + i\sqrt{2}$ ، $a = \frac{\sqrt{2}}{2}$ على الترتيب:

- علّم النقط A و C في المعلم السابق. (1
- π نعتبر النقطة D صورة النقطة C بالتشابه S الذي مركزه A و نسبته D نعتبر (2

$$-rac{\pi}{2}$$
و النقطة C صورة النقطة C بالدوران C الذي مركزه و زاويته

الترتيب. E و D الترتيب d على الترتيب.

$$z = \frac{d-b}{e-b}$$
: نضع (III)

- 1) اكتب العدد المركب على الشكل المثلثي.
- I نعتبر النقطة I منتصف القطعة المستقيمة I نظيرة النقطة I نظيرة النقطة I بالنسبة إلى النقطة (2 I ما طبيعة الرباعي I المستقيمة I نظيرة النقطة I نظيرة الرباعي عبد المستقيمة المستق

التمرين الثالث: (04 نقاط)

في الفضاء المزوّد بالمعلم المتعامد و المتجانس $(O;\vec{i},\vec{j},\vec{k})$ ، نعتبر النقط C، B، C و C حيث:

.
$$D(0;1;1)$$
 و $C(6;-2;-1)$ ، $B(6;1;5)$ ، $A(3;-2;2)$

- ABC بيّن أنّABC مثلث قائم في
- . (AB) على الذي يشمل A و العمودي على (P)
 - ليكن (P') المستوي حيث: x-z-1=0 ، معادلة له.

أ- هل المستويان (P) و (P') متعامدان؟ برّر إجابتك.

.(P') و (P) و الذي يشمل النقطة A و u(1;-2;1) شعاع توجيه له هو تقاطع المستويين Δ الذي يشمل النقطة Δ

ا من الفضاء. $H\left(\frac{4}{3}; \frac{4}{3}; \frac{1}{3}\right)$ من الفضاء. (4

 (Δ) على المسقط العمودي لـ D على أنّ المسقط العمودي المسقط العمودي الم

 (Δ) و (Δ) و المسافة بين

. (Δ) أ- بيّن أنّ النقطة $E\left(0;4;-1
ight)$ تتتمي إلى المستقيم (5

ب- احسب حجم رباعي الوجوه ABCE

التمرين الرابع: (06,5 نقطة)

. $g(x) = x - x \ln x$: بعتبر الدالة العددية g المعرّفة على المجال $g(x) = x - x \ln x$ بعتبر الدالة العددية المعرّفة على المعرفة على ال

 $\lim_{x\to +\infty} g(x)$ اً- احسب $\lim_{x\to +\infty} g(x)$ و احسب (1

ب- ادرس اتجاه تغيّر الدالة g على المجال $]0;+\infty$ ثم شكّل جدول تغيّراتها.

 $3.5 < \alpha < 3.6$: حيث α حيث g(x) = -1 تقبل حلاً وحيدا (2

.]0;+ ∞ [استنتج إشارة العبارة g(x)+1 على المجال (3

 $f(x) = \frac{\ln x}{x+1}$:ب(11) بعتبر الدالة العددية f المعرّفة على المجال f

. $\|\vec{j}\| = 4cm$ و $\|\vec{i}\| = 2cm$: حيث مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد $\left(O;\vec{i},\vec{j}\right)$ ميثالها البياني في المستوي المنسوب إلى المعلم المتعامد المتع

y=0 و x=0 بیّن أنّ $\left(C_{f}
ight)$ یقبل مستقیمین مقاربین معادلتیهما (1

 $f'(x) = \frac{g(x)+1}{x(x+1)^2}$:]0;+∞[من المجال x من المجال عدد حقيقي x من المجال (2

ب- بيّن أنّ الدالة f متزايدة تماما على المجال $[\alpha;+\infty[$ و متناقصة تماما على $[\alpha;+\infty[$ ثم شكّل جدول تغيّراتها.

.1 عند النقطة ذات الفاصلة $\left(C_{f}
ight)$ عند النقطة ذات الفاصلة

د- احسب $\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$ ، فسّر النتیجة هندسیا.

. $f(\alpha) = \frac{1}{\alpha}$: أ- بيّن أنّ (3

.(10^{-2} إلى أدوّر النتائج إلى $f\left(\alpha\right)$ ب- استنتج حصرا للعدد

 $\cdot (C_f)$ ج- ارسم

4) نعتبر المعادلة ذات المجهول الحقيقي الموجب تماما x و m وسيط حقيقى:

$$x^2 + x - 2m(x+1) = \ln(x^2) \dots (E)$$

. $f(x) = \frac{1}{2}x - m$: أ- تحقّق أنّ المعادلة (E) يؤول حلها إلى حل المعادلة

ب- عيّن بيانيا قيم m التي من أجلها تقبل المعادلة (E) حلّين متمايزين.

ور (C_h) منحناها البياني في المستوي. \mathbb{R}^* كما يلي: \mathbb{R}^* كما يلي: $h(x) = \frac{\ln|x|}{-|x|-1}$ كما يلي:

أ- بيّن أنّ الدالة h زوجية.

 $\cdot (C_f)$ مستعينا بالمنحنى المعلم المنحنى المنحنى بنا المنحنى المعلم المنحنى .

(مة	العلا	عناصر الإجابة (الموضوع الأوّل)
مجموع	مجزاة	,
		التمرين الأوّل: (04 نقطة)
	0,50	(P) الإجابة الصحيحة هي الاقتراح ج) لأنّ كل من النقطتين A و C تتتميان إلى (P)
	0,75	ل يُعامد (P) ل $(1;-2;1)$ لا يُعامد ((P) لا يُعامد ((P) لا يُعامد ((P) الإجابة الصحيحة هي الاقتراح ب)
		$\overrightarrow{AB}(-1;2;-3)$
	0,75	$\vec{u}(-1;1;3)$ يُعامد $\overrightarrow{OB}(0;3;1)$ و $B\in(\Delta)$ يُعامد $B\in(\Delta)$
0.4		شعاع توجیه (Δ) .
04	01	لإجابة الصحيحة هي الاقتراح أ) لأنّ C نقطة مشتركة بين AC و AC بينما AC
	V1	$A \not\in (\Delta)$ (أو بأيّ طريقة أخرى).
		آلاجابة الصحيحة هي الاقتراح ب) لأنّ العلاقة $BM^2 - 9CM^2 = 0$ تكافئ
		أي: $G = \overline{GM}.\overline{HM} = 0$ حيث $G = \overline{GM}.\overline{HM}$ حيث $G = \overline{GM}$ مرجح الجملة
	01	و H مرجح الجملة $\{(A;1);(B;3)\}$ إذن مجموعة النقط هي سطح $\{(A;1);(B;-3)\}$
		الكرة التي قطرها $\left[GH ight]$.
		التمرين الثاني: (04 نقاط)
	0,50	$z_2 = \frac{\sqrt{3}}{3} - \frac{1}{3}i$ و $z_1 = \frac{\sqrt{3}}{3} + \frac{1}{3}i$ هما: (1) حلا المعادلة هما
	0,50	
	0,50	$z_{B}=rac{2}{3}e^{-irac{\pi}{6}}$ و $z_{A}=rac{2}{3}e^{irac{\pi}{6}}$ الشكل الأسي (1) (2)
04	0,75	$\left(\frac{z_A}{z_B}\right)^{2016} + \left(\frac{z_A}{z_B}\right)^{1437} = e^{i2\pi(336)} + e^{i(2\pi(239) + \pi)} = 1 - 1 = 0$ ومنه $\frac{z_A}{z_B} = e^{i\frac{\pi}{3}}$ ادينا (ب
	0,50	$n=3k$; $k\in\mathbb{N}$ ومنه $n=3k$ يكون حقيقيا إذا كان $n=3k$ ومنه $\left(\frac{z_A}{z_B}\right)^n=e^{irac{n\pi}{3}}$ (ج
	0,75	$\frac{\pi}{3}$ ومنه f دوران مرکزه $z'=e^{i\frac{\pi}{3}}z$ تکافئ $z'=\left(\frac{z_A}{z_B}\right)z$ (أ (3
	0,50	$z_C = \frac{2}{3}i$ ومنه $f(A) = C$ (ب
	0,50	$z_D = -rac{2\sqrt{3}}{3} - irac{2}{3}$ ومنه $z_A + z_B + z_C + z_D = 0$ جـ) لدينا:
		التمرين الثالث: (05 نقاط)
03	0,50	$(x_0; y_0) = (-19; -19)$ الحل الخاص هو: (19
	0,75	$(x;y) = (7k-19;6k-19); k \in \mathbb{Z}$. هي (E) هي مجموعة حلول المعادلة
	0,75	الجملة $(\lambda \in \mathbb{Z})$ $\lambda \equiv 24[7]$ تكافئ المعادلة (E) . ومنه $\lambda \equiv 5[6]$ الجملة $(A \in \mathbb{Z})$
	0,25	$\lambda = 3$ ل $\lambda = 42$
	0,75	$(x;y) \in \{(-5;-7),(2;-1),(9;5)\}$ ومنه $k \in \mathbb{Z}$ ومنه $ x+y-1 \le 13$

مة	العلا			
مجزأة مجموع		عناصر الإجابة (الموضوع الأوّل)		
02	01	اً) لدينا: $5^{a} = 5^{a}$ حيث $\{0,1,2,3,4,5\}$ و $\alpha \in \{0,1,2,3,4,5\}$ الدينا: $\{0,1,2,3,4,5\}$		
	01	مجموعة البواقي هي: $\{1,5,4,6,2,3\}$.		
	01	$ \begin{cases} n = 6k + 3 \\ n = 7q + 3 \end{cases} $ ومنه $ \begin{cases} n - 6 = 4[7] \\ n = 6k + 3 \end{cases} $ تكافئ $ \begin{cases} n - 5^n = 2020[7] \\ n = 1437[6] \end{cases} $		
		$n = 42m + 3$; $m \in \mathbb{N}$ ومنه $m \in \mathbb{N}$ ومنه $m \in \mathbb{N}$. ومنه الراب و نقاط)		
	0,50	(7) نقاط) $(x) = (x)$ التمرين الرابع: $(x) = (x)$ التمرين الرابع: $(x) = (x)$		
	0,30	$\lim_{x \to +\infty} g(x) = +\infty \lim_{x \to -1} g(x) = -\infty (i) (I)$		
	0,75 0,25	.] $-1;+\infty$ بن g متزایدة تماما علی] $-1;+\infty$ بن $g'(x)=\frac{2}{(x+1)^2}+\frac{1}{x+1}$ با جدول التغیرات		
		-		
	0,50	g(0,4) = -0.09 مستمرة ورتبية تماما على $g(0,5) = [0.4;0.5]$ ولدينا $g(0,5) = 0.07$		
	0.05	و $g(0,5)=0.07$ ومنه المعادلة تقبل حلا وحيد $lpha$ حيث: $g(0,5)=0.07$		
	0,25	g(x) ب) إشارة $g(x)$		
	0,50	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = +\infty (1 (II)$		
	0,50	و $f'(x) = g(x)$ إذن f متناقصة تماما على $g(x) = -1; +\infty$ إذن f متناقصة تماما على $f'(x) = g(x)$		
	0.05	$\cdot \left[lpha; +\infty ight[$ و منزایدة تماما علی $lpha; +\infty ight[$		
	0,25	جدول التغيرات م		
	$0,25\times 2$. $f(\alpha)$ و الحصر لـ $f(\alpha) = -\alpha + 4 - \frac{4}{\alpha + 1}$ (ب)		
07	0,25	$h'(x) = f'(x) - f'(a)$ فإنّ $]-1;+\infty[$ من $]x$ من أجل كل $[x]$ فإنّ (3)		
		ب $x = a$ يعني $h'(x) = 0$ و بما $h'(x) = f'(x) - f'(a) = g(x) - g(a)$		
		$a;+\infty$ متزايدة تماما على $a;+\infty$ فإن $a;-0>$ فإن $a;+\infty$ على المجال $a;+\infty$		
	0,50	\cdot] $-1;a$ ا على المجال $h'(x)$		
		. $]-1;a]$ متزایدة تماما علی $[a;+\infty[$ و متناقصة تماما علی h		
		$h(a)=0$ و $f(x)-y=h(x)$ فإن $-1;+\infty$ و		
	0,25	ومنه $h(x) \geq 0$ وهذا يعني $h(x)$ يقع فوقُ المماس		
	0,75	a=3 أ $a=0$ ومنه $a=0$ أو $a=3$ أو $a=0$ يعني $a=0$ يعني $a=0$ يعني $a=0$		
		$(T_3): y = \left(\frac{1}{2} + \ln 4\right)(x-1)$ و $(T_0): y = -x+1$		
	0,75	$\cdot(C)$ و المنحني $\left(T_3 ight)$ و $\left(T_3 ight)$ و المنحني		
	0,25	.] $-1;+\infty$ على المجال $H'(x)=(x-1)\ln(x+1)$ (أ (5		
	0,25	$A \approx 1,48u.a$ أي $A = \left(\int_{1}^{2} f(x)dx\right)u.a = \left(-\frac{3}{2}\ln 3 + 2\ln 2 + \frac{7}{4}\right)u.a$ (ب		

العلامة			
مجزأة مجموع		عناصر الإجابة (الموضوع الثاني)	
		التمرين الأوّل: (05 نقاط)	
	0,50	$f'(x) = \frac{2x^2 - 2x}{(2x - 1)^2} : f \text{ i.i.} (1)$	
	0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0,25	الدالة f متزايدة تماما على $[1;+\infty[$. $[1;+\infty[$ $[1;+\infty[$ $[1;+\infty[$ $[1]]$ $[1]$ $[$	
	0,50	ب) المتتالية (u_n) يبدو أنها متناقصة تماما و متقاربة.	
	-	$1 \le u_n \le 6$: n عدد طبیعی $1 \le u_n \le 6$	
	0,50	\mathbb{N} المنتالية (u_n) متناقصة تماما على \mathbb{N}	
	0,50	ه) المعدد (u_n) متناقصة تماما على \mathbb{N} و محدودة من الأسفل بالعدد 1 فهي متقاربة إلى العدد 1.	
	0,25		
	0,25	$w_0 = \ln \frac{5}{6}$ أ $w_0 = \ln \frac{5}{6}$ متتالية هندسية أساسها 2 وحدها الأول w_n	
	0,25	$w_n = 2^n \ln \frac{5}{6}$ ومنه $w_n = w_0 2^n$ (ب	
		$v_n = \left(\frac{5}{6}\right)^{2^n}$ نجد $v_n = e^{w_n}$ نجد $w_n = \ln(v_n)$	
	0,25	$v_n = \begin{pmatrix} -6 \end{pmatrix}$ اي $v_n = e^n$ اي $w_n = \ln(v_n)$	
	0,50	$\lim u = 1 \cdot \lim \left(\frac{5}{2}\right)^{2^n} = 0 \text{a.} u = \frac{1}{2^n} = 0$	
	0,25	$\lim_{n \to +\infty} u_n = 1 \cdot \lim_{n \to +\infty} \left(\frac{5}{6}\right)^{2^n} = 0 \text{o} u_n = \frac{1}{1 - \left(\frac{5}{6}\right)^{2^n}} (\Rightarrow$	
05		$S_n = 1 - \left(\frac{5}{6}\right)^1 + 1 - \left(\frac{5}{6}\right)^2 + 1 - \left(\frac{5}{6}\right)^4 + \dots + 1 - \left(\frac{5}{6}\right)^{2^n} $ (4)	
	0,50	$S_n = n + \frac{30}{11} \left(\frac{5}{6}\right)^{2n+2} - \frac{19}{11}$ و منه $S_n = (n+1) - \left(\frac{5}{6}\right) \times \frac{1 - \left(\frac{5}{6}\right)^{2n+2}}{\frac{11}{36}}$	
		التمرين الثاني: (04,5 نقطة)	
03,75	01	$S = \left\{ \frac{\sqrt{2}}{2}; \sqrt{2} - \sqrt{2}i; \sqrt{2} + \sqrt{2}i \right\} $ (1 (I	
	0,75	$z = 2e^{i\frac{\pi}{4}}$ $z = 2e^{-i\frac{\pi}{4}}$ $z = \frac{\sqrt{2}}{2}e^{0i}$ (2)	
	0,50	2 (1 (II تعليم النقط.	
	0.50×2	$e = -\sqrt{2} - \sqrt{2}i$, $d = -\sqrt{2} + 3\sqrt{2}i$ (2)	
	0,50	$z = \cos\left(-\frac{\pi}{2}\right) + \sin\left(-\frac{\pi}{2}\right) $ (1 (III)	

العلامة	عنام الأحلية المعضوع الثان		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	
0,75	0,75	2) الرباعي BDFE مربع.	
		التمرين الثالث: (04 نقاط)	
	0,50	A مثلث قائم في A . A	
	0,50	(P): x + y + z - 3 = 0 (2)	
,	0,50	$\overline{n_{(P)}}(1;1;1):(P')$ و $\overline{n_{(P)}}(1;1;1)$ ناظمي لـ $\overline{n_{(P)}}(1;1;1)$ دراسة تعامد P	
		$\overrightarrow{n_{(P')}}.\overrightarrow{n_{(P')}}=0$: (P') شعاع ناظمي له $\overrightarrow{n_{(P')}}(1;0;-1)$	
04	0,75	ب) تبيان أن المستقيم (Δ) هو مستقيم تقاطع (P) و (P') . (تُقبل كل الطرق).	
	0,50	$\overrightarrow{HD} \perp \overrightarrow{V}$ أ $H \in (\Delta)$ معناه $H \in (\Delta)$ معناه $H \in (A)$ و $H \in (A)$	
	0,50	$d(D;(\Delta)) = HD = \sqrt{\frac{16}{9} + \frac{1}{9} + \frac{4}{9}} = \frac{\sqrt{21}}{3}$ (ب	
	0,25	(Δ) تنتمي إلى المستقيم $E(0;4;-1)$ (أ (5)	
	0,50	$V_{ABCE} = \frac{1}{3} \times \frac{1}{2} \times AB \times AC \times EA = 27 u.v$ (ب	
		التمرين الرابع: (06,5 نقطة)	
	0,50	$\lim_{x \to +\infty} f(x) = -\infty \cdot \lim_{x \to +\infty} g(x) = 0 \text{ (i (1 (I))}$	
	0,75	ب) $g'(x) = -\ln x$ و إشارة $g'(x)$ ثم استنتاج اتجاه تغير g . تشكيل جدول التغيّرات	
	0,50	$3;5 تبيان المعادلة g\left(x ight) =-1 تقبل حلا وحيدا وحيدا (2$	
	0,25	$[0;+\infty[$ على $g(x)+1$ على $g(x)$	
	0,25	$x=0$ نستنتج أن (C_f) يقبل مستقيم مقارب معادلته $\lim_{x \stackrel{>}{\longrightarrow} 0} f(x) = -\infty$ (1 (II	
	0,25	$y=0$ نستنتج أن C_f يقبل مستقيم مقارب معادلته $\lim_{x o +\infty}f(x)=0$	
	0,50	$f'(x) = \frac{g(x)+1}{x(x+1)^2}$) أ)برهان أنّ: $f'(x) = \frac{g(x)+1}{x(x+1)^2}$	
05,5	0,25	$]lpha;+\infty[$ ب) الدالة f متزایدة تماما علی المجال $[lpha;+\infty[$ و متناقصة تماما علی المجال f	
	0,25	جدول التغيرات	
	0,50	$(T): y = \frac{1}{2}x - \frac{1}{2} \iff$	
	0,50	د) $\frac{1}{x} = \frac{f(x) - f(\alpha)}{x - \alpha}$ ، المنحنى $\frac{f(x) - f(\alpha)}{x - \alpha} = 0$) الممثل للدالة $\frac{f(x) - f(\alpha)}{x - \alpha} = 0$ معادلته : $y = f(\alpha)$: معادلته	
	0,25	$\cdot f(\alpha) = \frac{1}{\alpha}$: نبیان أنّ (3	
	0,25	$.0,28 < f(\alpha) < 0,29$ (ب	
	0,50	ج) الرسم.	

العلامة		عناصر الإجابة (الموضوع الثاني)	
مجموع	مجزأة	عاصر الإجاب (الموصوع التاتي)	
	0,25	$f(x) = \frac{1}{2}x - m$ أ) التحقق من أن (E) يؤول حلها إلى حل المعادلة أ	
01	0,25	$m\in \left]rac{1}{2};+\infty ight[$ ب $m<-rac{1}{2};+\infty$ أي ألمعادلة تقبل حلين متمايزين معناه	
	0,25	5) أ) تبيان أن الدالة h زوجية.	
	0,25	ب) الرسم.	