Introduction to Data Science

CS 5665
Utah State University
Department of Computer Science
Instructor: Prof. Kyumin Lee

MapReduce

Example 2: Language model

- Statistical machine translation
 - Need to count number of times every 5-word sequence occurs in a large collection of documents
- Solution
 - Map(doc_id, document) => [(5-word seq, count),...]
 - Reduce(5-word seq, [count1, ...]) => (5-word seq, sum([count1, ...]))

Example 3: Reverse Web-Link Graph

- Determine in-coming links (Page rank)
- Solution:
 - Map(src_page_url, page_html) => [(link1, src_page_url), ...]
 - Reduce(link, [src_page_url1, ...]) => (link, [src_page_url1, ...])

Introduction to Data Science

CS 5665
Utah State University
Department of Computer Science
Instructor: Prof. Kyumin Lee

Some Slides were adapted from Cloudera DO NOT SHARE THE SLIDES NOR UPLOAD THEM IN PUBLIC

Cloudera

 Cloudera Inc. is an American-based software company that provides <u>Apache Hadoop</u>-based software, support and services, and training to business customers.

Example: Indexing

- · Assume the input is a set of files containing lines of text
- Mapper:
 - For each word in the line, emit (word, filename)
- Reducer:
 - Collect together all values for a given key (i.e., all filenames for a particular word)
 - Emit (word, filename_list)

The Hadoop Ecosystem

Hadoop Components Sqoop Mahout Hive Pig Hadoop Ecosystem MapReduce MapReduce Hadoop Core Components Hadoop Distributed File System

[Data Storage] HBase

- · HBase is the Hadoop database
- HBASE

- · A 'NoSQL' datastore
- · Can store massive amounts of data
 - Petabytes+
- High write throughput
 - Scales to hundreds of thousands of inserts per second
- Handles sparse data well
 - No wasted spaces for empty columns in a row
- · Limited access model
 - Optimized for lookup of a row by key rather than full queries
 - No transactions: single row operations only
 - Only one column (the 'row key') is indexed

The Hadoop Ecosystem

- Ecosystem projects may be
 - Built on HDFS and MapReduce
 - Built on just HDFS
 - Designed to integrate with or support Hadoop
- Most are Apache projects or Apache Incubator projects
 - Some others are not managed by the Apache Software Foundation
 - These are open hosted on GitHub or a similar repository
- Following is an introduction to some of the most significant projects

When To Use HBase

- You only append to your dataset (no random write)
- You usually read the whole dataset (no random read)
- Use HBase if...

- You need random write and/or read
- You do thousands of operations per second on TB+ of data
- Use an RDBMS if...
 - Your data fits on one big node
 - You need full transaction support
 - You need real-time query capabilities

[Data Integration] Flume: Real-time Data Import

- · What is Flume?
 - A service to move large amounts of data in real time
 - Example: storing log files in HDFS
- · Flume imports data into HDFS as it is generated
 - Instead of batch-processing it later
 - For example, log files from a Web server
- Flume is
 - Distributed
 - Reliable and available
 - Horizontally scalable
 - Extensible

[Data Integration] Sqoop: Exchanging Data With RDBMSs

- · Sqoop transfers data between RDBMSs and HDFS
 - Does this very efficiently via a Map-only MapReduce job
 - Supports JDBC, ODBC, and several specific databases
 - "Sqoop" = "SQL to Hadoop"

*Collect data as it is produced *Files, syslogs, stdout or custom source *Process in place *e.g., encrypt, compress *Pre-process data before storing *e.g., transform, scrub, enrich *Write in parallel *Scalable throughput *Store in any format *Text, compressed, binary, or custom sink

[Data Processing] Apache Spark

- Apache Spark is a fast, general engine for large-scale data processing on a cluster
- · Originally developed UC Berkeley's AMPLab
- · Open source Apache project
- Provides several benefits over MapReduce
 - Faster
 - Better suited for iterative algorithms
 - Can hold intermediate data in RAM, resulting in much better performance
 - Easier API
 - · Supports Python, Scala, Java
 - Supports real-time streaming data processing

Spark vs Hadoop MapReduce

- MapReduce
 - Widely used, huge investment already made
 - Supports and supported by many complementary tools
 - Mature, well-tested
- Spark
 - Flexible
 - Elegant
 - Fast
 - Supports real-time streaming data processing
- MapReduce is still the dominant technology But losing ground to Spark fast

Hive

- · What is Hive?
 - HiveQL: An SQL-like interface to Hadoop

SELECT * FROM purchases WHERE price > 10000 ORDER BY storeid

[Data Analysis] Hive and Pig: High Level Data Languages

 The motivation: MapReduce is powerful but hard to master

- · The solution: Hive and Pig
 - Languages for querying and manipulating data
 - Leverage existing skillsets
 - · Data analysts who use SQL
 - · Programmers who use scripting languages
 - Open source Apache projects
 - · Hive initially developed at Facebook
 - · Pig Initially developed at Yahoo!
- Interpreter runs on a client machine
 - Turns queries into MapReduce jobs
 - Submits jobs to the cluster

Pig

- What is Pig?
 - Pig Latin: A dataflow language for transforming large data sets

[Data Analysis] Impala: High Performance Queries

- High-performance SQL engine for vast amounts of data
 - Similar query language to HiveQL
 - 10 to 50+ times faster than Hive, Pig, or MapReduce
- · Impala runs on Hadoop clusters
 - Data stored in HDFS
 - Does not use MapReduce
- Developed by Cloudera
 - 100% open source, released under the Apache so]ware license

What's the Difference between Hive and Impala?

- Hive has more features
 - E.g. Complex data types (arrays, maps) and ful support for windowing analytics

- Highly extensible
- Commonly used for batch processing
- · Impala is much faster
 - Specialized SQL engine offers 5x to 50x better performance

[Machine Learning] Mahout

- Mahout is a Machine Learning library written in Java
- Used for
 - Collaborative filtering (recommendations)
 - Clustering (finding naturally occurring "groupings" in data)
 - Classification (determining whether new data fits a category)
- Why use Hadoop for Machine Learning?
 - "It's not who has the best algorithms that wins. It's who has the most data."

Hue: The UI for Hadoop

- Hue = Hadoop User Experience
- HUE
- · Hue provides a Web front-end to a Hadoop
 - Upload and browse data
 - Query tables in Impala and Hive
 - Run Spark and Pig jobs and workflows
 - Search
 - And much more
- · Makes Hadoop easier to use
- Hue is 100% open-source
- · Created by Cloudera
 - Open source, released under Apache license

Where to Run a MapReduce Application?

A Typical Data Center With Hadoop APPLICATION FLUME SERVER MANATICS BRAILING DATA MANATICS BRAILING BOATS STORAGE STORAGE STORAGE data streamed continuously data pulsed on-demand data pulsed on-demand

Where to Run Your MapReduce Applications?

- In your local machine or Hadoop cluster
- In a Cloud Computing Platform

Hadoop Installation

- · In your local computer
 - Apache hadoop
 - https://hadoop.apache.org/
 - Time-consuming...
- Cloudera QuickStarts VM (Virtual Machine)
 - http://www.cloudera.com/content/www/enus/downloads.html
 - Hadoop is already set up and the VM contains various hadoop ecosystem components
 - Demo

Midterm (Oct. 27)

- The midterm exam is closed book.
- You may bring one standard 8.5" by 11" piece of paper with any notes you think appropriate or significant (front and back).
- · No electronic devices allowed.