МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Московский государственный технический университет

им. Н.Э. Баумана

(МГТУ им. Н.Э. Баумана)

Кафедра «Информационная безопасность» (ИУ8)

Лабораторная работа № 1 Исследование методов прямого поиска экстремума унимодальной функции одного переменного

Выполнил: Броцкий К.А., студент группы ИУ8-32

Проверил: Коннова Н.С., доцент каф. ИУ8

Цель работы

Исследовать функционирование и провести сравнительный анализ различных алгоритмов прямого поиска экстремума (пассивный поиск, метод дихотомии, золотого сечения, Фибоначчи) на примере унимодальной функции одного переменного.

Постановка задачи

На интервале [a,b] задана унимодальная функция одного переменного f(x). Используя методы последовательного поиска (дихотомии, золотого сечения и Фибоначчи), найти интервал нахождения минимума f(x) при заданной наибольшей допустимой длине интервала неопределенности $\varepsilon = 0,1$. Провести сравнение с методом оптимального пассивного поиска (п. 2.2 в [1]). Результат, в зависимости от числа точек разбиения N, представить в виде таблицы.

Вариант 1:

№пп	Φ ункция $f(x)$	а	b	Метод поиска	
1	$-0.5\cos 0.5x - 0.5$	-5	2	опт. пассивный	дихотомия

График функции

Рис.1. График функции

Скриншот консоли

Variant 1. Function: $-0.5*\cos 0.5x-0.5$ Interval: [-5 2] Part 1. Finding minimum of the function with dichotomy method Start of | End of | Length of | | the interval | the interval | f(ak) | f(bk) (ak) | (bk) | (l) | -5 | 2 | 7 | -0.0994282 | -0.770151 | -1.49 | 2 | 3.49 | -0.867544 | -0.770151 | -1.49 | 0.245 | 1.735 | -0.867544 | -0.996253 | -1.49 | -1.49 -1... -0.6125 | 0.245 | -7775 | 0.245 | 0.8575 | -0.976735 | 0.245 | -0.996253 0.41875 | -0.998114 | -0.17375 | -0.996253 -0.17375 | 0.025625 | 0.199375 | -0.998114 | -0.999959 -0.0640625 | 0.025625 | 0.0896875 | l < epsilon |

Par	rt 2.	Finding minimum of the function with optimal pa	assive finding method
	ımhan	 of Value of x	
		(N) in the minimum	
	<u>-</u> -		
I	1	5.5 +- 3.5	
1	2	6.67 +- 2.33	
1	3	5.5 +- 1.75	
1	4	6.2 +- 1.4	
1	5	6.67 +- 1.17	
1	6	6 +- 1	
Π	7	6.38 +- 0.875	
Τ	8		
Τ	9		
Π	10		
1	11	6.08 +- 0.583	
Ι	12		
T	13		
	14		
T	15		
	16		
T	17		
	18		
	19		
T .	20		
	21 22		
_ -	23		
L	23		
i_	25		
i_	26		
i_	27		
i_	28		
i_	29		
	30		
Ī	31		
	32		
Ī	33		

Minimum is reached at the point x = -0.0192 + -0.045

T	34	ī	6.2	+-	0.2	1
i.	35		6.28	+-	0.194	
		!	6.35	+-	0.189	
!	36	!			0.184	
-	37	!	6.24	+-		!
!	38	!	6.31	+-	0.179	!
!	39	!	6.2	+-	0.175	!
!	40	!	6.27	+-	0.171	!
!	41	ļ	6.33	+-	0.167	!
!	42		6.23	+-	0.163	!
1	43	1	6.3	+-	0.159	1
!	44	1	6.36	+-	0.156	!
!	45	-	6.26	+-	0.152	1
1	46	١	6.32	+-	0.149	1
1	47	١	6.23	+-	0.146	1
1	48	١	6.29	+-	0.143	1
1	49	-	6.34	+-	0.14	1
1	50	-1	6.25	+-	0.137	1
1	51	-	6.31	+-	0.135	I
1	52	-1	6.23	+-	0.132	1
1	53	-1	6.28	+-	0.13	1
1	54	1	6.33	+-	0.127	1
1	55	1	6.25	+-	0.125	1
1	56	1	6.3	+-	0.123	1
1	57	1	6.22	+-	0.121	1
1	58	1	6.27	+-	0.119	1
1	59	1	6.32	+-	0.117	1
1	60	1	6.25	+-	0.115	1
1	61	Τ	6.29	+-	0.113	1
1	62	1	6.33	+-	0.111	1
1	63	1	6.27	+-	0.109	1
1	64	Τ	6.31	+-	0.108	1
1	65	Τ	6.24	+-	0.106	1
I	66	Ι	6.28	+-	0.104	1
I	67	Ι	6.32	+-	0.103	1
1	68	Τ	6.26	+-	0.101	1
Ι	69	Τ	6.3	+-	0.1	ı

Листинг программы с реализацией алгоритмов на С++

```
#include <cmath>
#include <iomanip>
#include <iostream>
#include <sstream>
using std::cin;
using std::cout;
double myFunctionFromTask(const double x) {
  return (-0.5)*std::cos(0.5*x)-0.5;
}
void beautifulPrintingForPart1(const double ak, const double bk) {
  cout << '|' << std::setw(13) << ak << ' '
     << '|' << std::setw(13) << bk << ' '
     << '|' << std::setw(13) << bk - ak << ' '
     << '|' << std::setw(13) << myFunctionFromTask(ak) << ' '
     << '|' << std::setw(13) << mvFunctionFromTask(bk) << ' ' << '|' << '\n';
}
void dichotomy(double lower, double upper,
     const double epsilon, const double delta) {
  cout << "\nPart 1. Finding minimum of the function with dichotomy
method\n"
      << std::string(76, ' ') << '\n'
      << '|' << std::string(3, ' ') << "Start of" << std::string(3, ' ')
      << '|' << std::string(4, ' ') << "End of" << std::string(4, ' ')
      << '|' << std::string(2, ' ') << "Length of" << std::string(3, ' ')
      << '|' << std::string(14, ' ')
      << '|' << std::string(14, ' ') << '|' << '\n'
      << '|' << std::string(1, ' ') << "the interval" << std::string(1, ' ')
      << '|' << std::string(1, ' ') << "the interval" << std::string(1, ' ')
      << '|' << std::string(1, ' ') << "the interval" << std::string(1, ' ')
      << '|' << std::string(4, ' ') << "f(ak)" << std::string(5, ' ')
      << '|' << std::string(4, ' ') << "f(bk)" << std::string(5, ' ') << '|' << '\n'
      << '|' << std::string(5, ' ') << "(ak)" << std::string(5, ' ')
      << '|' << std::string(5, ' ') << "(bk)" << std::string(5, ' ')
      << '|' << std::string(5, ' ') << "(I)" << std::string(6, ' ')
      << '|' << std::string(14, '')
      << '|' << std::string(14, ' ') << '|' << '\n'
      << std::string(76, '-') << '\n';
```

```
while (upper - lower > epsilon) {
     beautifulPrintingForPart1(lower, upper);
     double x1 = lower + (upper - lower) / 2 - delta,
           x2 = lower + (upper - lower) / 2 + delta;
     myFunctionFromTask(x1) < myFunctionFromTask(x2)
     ? upper = x1
     : lower = x2:
  }
  cout << '|' << std::setw(13) << lower << ' '
      << '|' << std::setw(13) << upper << ' '
      << '|' << std::setw(13) << upper - lower << ' '
      << '|' << std::string(9, ' ') << "I < epsilon" << std::string(9, ' ') << '|' <<
'\n'
      << std::string(76, '-') << '\n'
      << "Minimum is reached at the point x = " << std::setprecision(3)</pre>
        << lower + (upper - lower) / 2 << " +- " << std::setprecision(2)
        << (upper - lower) / 2 << '\n';
}
void optimalPassiveFinding(const double lower, const double upper,
                  const double epsilon) {
   cout << "\nPart 2. Finding minimum of the function with optimal passive
finding method\n"
     << std::string(27, '_') << '\n'
     << '|' << "Number of " << '|' << " Value of x " << '|' << "\n'
     << '|' << "points (N)" << '|' << "in the minimum" << '|' << '\n'
     << std::string(27, '-') << '\n';
  size t N = 1;
  double finding;
  while ((upper - lower) / N > epsilon) {
     double x = upper;
     finding = x;
     for (size_t i = 0; i < N; ++i) {
        x += (upper - lower) / (N + 1);
        if (myFunctionFromTask(x) > myFunctionFromTask(finding))
          finding = x;
     }
     std::ostringstream os;
     os << std::setw(5) << std::setprecision(3) << finding << " +- "
        << std::setprecision(3) << (upper - lower) / (N + 1);
     cout << '|' << std::setw(6) << N << std::setw(4) << " |"
        << std::left << std::setw(15) << os.str() << "|\n" << std::right;
```

```
++N;
}
cout << std::string(27, '-') << '\n';
}

const double LOWER_EDGE = -5.;
const double UPPER_EDGE = 2.;
const double EPSILON = .1;

int main() {
    cout << "Variant 1.\nFunction: -0,5*cos0,5x-0,5\nInterval: [" << LOWER_EDGE << " " << UPPER_EDGE << "]\n";
    dichotomy(LOWER_EDGE, UPPER_EDGE, EPSILON, .01); // Part 1. Dichotomy
    optimalPassiveFinding(LOWER_EDGE, UPPER_EDGE, EPSILON); // Part 2. Optimal passive finding
    return 0;
}</pre>
```

Вывод

Таким образом, в результате вычисления минимума унимодальной на данном отрезке функции различными методами, мы убедились в том, что количество итераций для метода золотого сечения меньше, чем для метода оптимального пассивного поиска, следовательно, он эффективнее.