Discrete Math Problem Set 6

Will Krzastek

March 5th, 2024

All basic arithmetic and algebraic facts about \mathbb{N} and \mathbb{Z} are now yours to use.

1. (a) Show that $(c \neq 0 \land ac \mid bc) \Rightarrow (a \mid b)$ for all $a, b, c \in \mathbb{Z}$.

Proof. Let $a, b, c \in \mathbb{Z}$. Assume $c \neq 0 \land ac \mid bc$. By the definition of divisibility, we know $(\exists z \in \mathbb{Z})(ac \cdot z = bc)$.

Observe, $(acz = bc) \Leftrightarrow (az = b)$ by multiplicative cancellation. Thus $(\exists z \in \mathbb{Z})(az = b)$. $(\exists z \in \mathbb{Z})(az = b) \Leftrightarrow a \mid b$. Therefore, $a \mid b$. Because we derived $a \mid b$ from our initial assumption, we know $(c \neq 0 \land ac \mid bc) \Rightarrow (a \mid b)$.

(b) Show that $(n \mid x \land n \mid y) \Rightarrow (n \mid ax + by)$ for all $n, x, y, a, b \in \mathbb{Z}$.

Proof. Let $n, x, y, a, b \in \mathbb{Z}$. Assume $n \mid x \wedge n \mid y$. By the definition of divisibility, we know $(\exists z \in \mathbb{Z})(nz = x)$ and $(\exists h \in \mathbb{Z})(nh = y)$. Thus, we can express x and y in terms of n as: x = nz, y = nh. Now take the expression ax + by.

$$ax + by = a(nz) + b(nh)$$
 by equivalence
= $n(az + bh)$ by basic factoring

Since $a, b, z, h \in \mathbb{Z}$, we know that $az+bh \in \mathbb{Z}$. We can then say m=az+bh where $m \in \mathbb{Z}$. So, we can say ax+by=nm. Because $m \in \mathbb{Z}$, by the definition of divisibility, $n \mid ax+by$. Because we derived this from our initial assumption, we know $(n \mid x \land n \mid y) \Rightarrow (n \mid ax+by)$.

2. For all $z \in \mathbb{Z}$, show that z is even implies z is not odd.

Proof. Let $z \in \mathbb{Z}$. We want to show $(z \text{ is even}) \Rightarrow (z \text{ is not odd})$. By the definitions of even and odd, we can replace this with wanting to show $(2 \mid z) \Rightarrow (2 \nmid z - 1)$. To do so, assume $2 \mid z$.

We will now prove that gcd(z, z - 1) = 1.

T.A.C assume gcd (n, n + 1) > 1. By the FLA, there must be a prime $p \in \mathbb{N}$ such that $p \mid \gcd(n, n + 1)$. So, $p \mid \gcd(n, n + 1) \land \gcd(n, n + 1) \mid n$. This implies

that $p \mid n \land p \mid n+1$. We can combine these linearly to say $p \mid n+1-n$ which is equivalent to $p \mid 1$. Therefore $|p| \le |1| \Rightarrow p \le 1$. However, p > 1 because p is prime. $\frac{1}{2}$.

So, we know that gcd(z, z - 1) = 1. Therefore because $2 \mid z, 2 \nmid z - 1$.

3. (a) For all $n \in \mathbb{N}$, show that n is odd implies n+1 is even.

Proof. Let $n \in \mathbb{N}$. We want to show n is odd $\Rightarrow n+1$ is even. By the definitions of even and odd, we want to show $(2 \nmid n) \Rightarrow (2 \mid n+1)$. To do so, assume $2 \nmid n$. Now we want to show $2 \mid n+1$. As proven in 2, we know $\gcd(n, n+1) = 1$. Therefore, since $2 \nmid n$, $2 \mid n+1$.

(b) For all $n \in \mathbb{N}$, show that n is even implies n+1 is odd.

Proof. Let $n \in \mathbb{N}$. We want to show n is even $\Rightarrow n+1$ is odd. By the definitions of even and odd, we want to show $2 \mid n \Rightarrow 2 \nmid n+1$. To do so, assume $2 \mid n$. As proven in 2, we know $\gcd(n, n+1) = 1$. Since $2 \mid n$, we know that $2 \nmid n+1$.

4. Show that $3 \mid n^3 - n$ for all $n \in \mathbb{N}$.

Proof. We will use a proof by induction.

Basis step:

We know that every number divides 0 by Lemma 5.1. Therefore, $3 \mid 0$. By basic arithmetic we know $3 \mid 0 = 3 \mid (1 - 1)$. We know $1^3 - 1 = 1 - 1$ by more arithmetic. So, we know $3 \mid 0 \Leftrightarrow 3 \mid 1^3 - 1$.

Inductive step:

Let $k \in \mathbb{N}$. Assume $3 \mid k^3 - k$. Now, we need to show $3 \mid (k+1)^3 - (k+1)$. We can say $(k+1)^3 - (k+1) \Leftrightarrow (k^3 - k) + 3k^2 + 3k$ by basic factoring. In our inductive hypothesis, we assumed $3 \mid k^3 - k$. Thus, $3p = k^3 - k$ where $p \in \mathbb{Z}$. So, we can substitute our expression and say $(k^3 - k) + 3k^2 + 3k \Leftrightarrow 3p + 3k^2 + 3k$. We can factor 3 out here and see $3p + 3k^2 + 3k \Leftrightarrow 3(p + k^2 + k)$. Since $p, k \in \mathbb{Z}$, $(p + k^2 + k) \in \mathbb{Z}$. Now let $m = (p + k^2 + k)$ where $m \in \mathbb{Z}$. We then obtain $3(p + k^2 + k) \Leftrightarrow 3m$. We know that $3 \mid 3m$ because $3 \cdot m = 3m$. Thus, $3 \mid (k+1)^3 - (k+1)$.

Therefore by mathematical induction, we know $(\forall n \in \mathbb{N})(3 \mid n^3 - n)$.

5. The Fibonacci Sequence is the recursive function $\mathcal{F}: \mathbb{N} \to \mathbb{N}$.

$$\mathcal{F}(0) := 0$$

$$\mathcal{F}(1) := 1$$

$$\mathcal{F}(n+2) := \mathcal{F}(n+1) + \mathcal{F}(n)$$

Show that $1 + \sum_{i=0}^{n} \mathcal{F}(i) = \mathcal{F}(n+2)$ for all $n \in \mathbb{N}$.

Proof. We will use a proof by induction.

Basis step:

 $1 + \sum_{i=0}^{0} \mathcal{F}(i) = 1 + 0 = 1$ by the definitions of summation and addition.

 $\mathcal{F}(0+2) := \mathcal{F}(0+1) + \mathcal{F}(0)$. By the definition of the *Fibonacci Sequence*, we know $\mathcal{F}(1) = 1$ and $\mathcal{F}(0) = 0$. Therefore, $\mathcal{F}(0+2) = 1+0=1$ by simple addition.

Therefore,
$$1 + \sum_{i=0}^{0} \mathcal{F}(i) = \mathcal{F}(0+2)$$
.

Inductive step:

Let $k \in \mathbb{N}$. Assume $1 + \sum_{i=0}^{k} \mathcal{F}(i) = \mathcal{F}(k+2)$ because this is our inductive

hypothesis. Now, we need to show $1 + \sum_{i=0}^{k+1} \mathcal{F}(i) = \mathcal{F}(k+1+2)$.

By the definition of summation, $1 + \sum_{i=0}^{k+1} \mathcal{F}(i) = 1 + \sum_{i=0}^{k} \mathcal{F}(i) + \mathcal{F}(k+1)$. By

our inductive hypothesis, we know $1 + \sum_{i=0}^{k} \mathcal{F}(i) = \mathcal{F}(k+2)$. So, $1 + \sum_{i=0}^{k+1} \mathcal{F}(i) = \mathcal{F}(k+2) + \mathcal{F}(k+1)$. Now, by the definition of the Fibonacci Sequence, we know

 $\mathcal{F}(k+2) + \mathcal{F}(k+1)$. Now, by the definition of the *Fibonacci Sequence*, we know $\mathcal{F}(k+3) := \mathcal{F}(k+2) + \mathcal{F}(k+1)$. Because k+3=k+1+2 by addition, we know $1 + \sum_{i=0}^{k+1} \mathcal{F}(i) = \mathcal{F}(k+1+2)$.

Therefore, by mathematical induction, we know $1 + \sum_{i=0}^{n} \mathcal{F}(i) = \mathcal{F}(n+2)$.

3