Polymères

Agrégation 2020

Où trouve-t-on les polymères?

Latex obtenu par « saignées » sur l'écorce du tronc de l'hévéa

Bouton en Galalithe

Polyester dans les vêtments

Sacs en polyethylène

Extraction de la caséine du lait

Exemple de polymères synthétiques

Polymère	Représentation	Monomère	Utilisation
Polychlorure de vinyle	$ \begin{bmatrix} H & CI \\ -C & -C \\ H & H \end{bmatrix}_{n} $	H CI C=C H	
Polystyrène	H-C-H-n	CH ₂	
Nylon 6-6	$\begin{bmatrix} 0 & H & N & N \\ N & N & N \\ N & N & N \\ N & N &$	H ₂ N NH ₂	

Synthèse du polystyrène

Synthèse du polystyrène

4 Etuvage à 80°C

5 Détermination du rendement

Observation de la polydispersité

Synthèse du Nylon 6-10

Structures des polymères

Polymère linéaire

$$\begin{array}{cccc} CH_3 & CH_3 \\ & | & | \\ CH_2 & CH_2 \\ & | & | \\ CH_3 - CH_2 - C - CH_2 - C - CH_2 - CH_3 \\ & | & | \\ CH_3 & CH_2 \\ & | & | \\ CH_2 & | & | \\ CH_2 & | & | \\ CH_2 & | & | \\ CH_3 & CH_3 \\ \end{array}$$

Polymère ramifié

$$\begin{array}{c|cccc} CH_3 & CH_3 \\ \hline & & & | \\ CH_3 - C - CH_2 - C - CH_3 \\ \hline & & | \\ CH_2 & CH_2 \\ \hline & | & | \\ CH_2 & CH_2 \\ \hline & | & | \\ CH_3 - C - CH_2 - C - CH_3 \\ \hline & | & | \\ CH_2 & CH_3 \\ \hline & | & | \\ CH_3 & CH_3 \\ \hline \end{array}$$

Polymère réticulé

Polymère réticulé : la Galalithe

Liaisons hydrogène : le Nylon 6-6

Propriétés mécaniques

Tests de traction.

1 : plastique dur ; 2 : plastique souple ; 3 : élastomère. L'élongation n'est réversible que pour les élastomères. Le point en haut de courbe correspond à la rupture.

L'essor vertigineux du plastique

Une pollution massive

TOTAL DES DÉCHETS PLASTIQUES ACCUMULÉS, EN MILLIARDS DE TONNES

Sources : Eurekalert, université de Géorgie