UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

JNAM, Facultad de Ingeniería Autor: Santiago Cruz Carlos		21/10/2017 22:31 Titulo:
sábado, 21 de octubre	de 2017, Ciudad Unive	ersitaria, México, DF
	2 de 4	

TITULO: VALOR RMS DE UNA SEÑAL SENOIDAL

DESARROLLO: suponga que tenemos dos señales, una tensión senoidal y una tensión en dc, las cuales tienen conectada una resistencia entre sus terminales de igual valor, la idea es calcular la tensión en DC tal que disipe la misma potencia media que la de AC.

Potencia en DC	Potencia media en AC
$P_{DC} = V_{DC}I_{DC}$ $P_{DC} = V_{DC}\left(\frac{V_{DC}}{R}\right)$ $P_{DC} = \frac{V_{DC}^{2}}{R}$	$(P_{AC})_{media} = \frac{1}{T} \int_{o}^{T} [V(t)_{AC} i(t)_{AC}] dt$ $i(t)_{AC} = \frac{V(t)_{AC}}{R}$ $(P_{AC})_{media} = \frac{1}{T} \int_{o}^{T} \left(V(t)_{AC} \left[\frac{V(t)_{AC}}{R}\right]\right) dt$ $(P_{AC})_{media} = \frac{1}{T} \int_{o}^{T} \left[\frac{V(t)^{2}_{AC}}{R}\right] dt$
Igualando las potencias y la tensión en DC llamada eficaz	$\frac{V_{eficaz}^{2}}{R} = \frac{1}{T} \int_{0}^{T} \left[\frac{V(t)^{2} AC}{R} \right] dt$
Simplificando R y despejando V _{DC}	$V_{eficaz}^{2} = \frac{1}{T} \int_{0}^{T} \left[V(t)^{2} \right] dt$

$$V_{eficaz} = \sqrt{\frac{1}{T} \int_{o}^{T} V(t)^{2} dt}$$

Si V(t) es senoidal, que para nuestro estudio, casi siempre es senoidal, tenemos Como puede ver, es por eso que se le llama RMS, raíz cuadrática media.