Outils bayésiens en traitement d'images

Jean-Baptiste Courbot
jean-baptiste.courbot@uha.fr

Présentation du cours

Contexte du traitement d'image :

- complexité
- nombre
- nouveauté

Problématiques :

- comment inférer?
- comment modéliser?
- comment faire sans exemple?

Organisation du cours

Organisation:

- 4 séances de 3h45
- 3 rapports de TP à rendre au fil de l'eau pour une note finale
- 2/3 de la note du cours "outils avancés en traitement d'image"

Organisation du cours

Organisation:

- 4 séances de 3h45
- 3 rapports de TP à rendre au fil de l'eau pour une note finale
- 2/3 de la note du cours "outils avancés en traitement d'image"

Moyens:

- Moodle pour les ressources (slides, énoncés) et dépôt de travail.
- Google Colaboratory pour les notebooks Jupyter

I. Généralités

II. Le cas indépendant

III. Chaînes de Markov cachées

IV. Champs de Markov Cachés

V. Éléments de conclusion

Généralités

Notations

Nous travaillerons avec :

- des variables aléatoires A et leur réalisations a
- des vecteurs aléatoires A de réalisation a
- la notation « générale » p(A = a) est abrégée en p(a) lorsqu'il n'y a pas confusion
- des paramètres Θ qui interviennent dans une loi ; on les fait apparaître sous la forme de $p_{\Theta}(a)$

Pourquoi?

On considère un couple (x, y) avec :

- ullet y un vecteur à valeurs dans ${\mathbb R}$
- x un vecteur « caché »
- y est l'image observée et on souhaite estimer x qui peut prendre :
 - des valeurs discrètes : on parle de segmentation d'images
 - des valeurs réelles : restauration d'images

Le cadre bayésien

Pour estimer x à partir de y il faut modéliser le problème.

Lien déterministe: x = f(y) i.e. f tient compte de tous les paramètres

Lien probabiliste:

- y est la réalisation observable d'une v.a. Y
- x est la réalisation invisible d'une v.a. X

Il faut donc modéliser p(X = x | Y = y)!

Le cadre bayésien (II)

La loi de Bayes nous permet d'écrire :

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)}$$

Comme p(y) est constante (l'image est connue, fixée) on note souvent

$$p(\boldsymbol{x}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{x})p(\boldsymbol{x})$$

Le cadre bayésien (II)

La loi de Bayes nous permet d'écrire :

$$p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)}$$

Comme p(y) est constante (l'image est connue, fixée) on note souvent

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

Tous ces termes portent un nom :

- p(x|y) est la probabilité a posteriori
- p(x) est la probabilité a priori
- p(y|x) est la densité conditionnelle de Y sachant X = x \rightarrow la vraisemblance
- p(x, y) est la densité du couple = la loi jointe

On dispose de données Y = y; et on veut déduire une segmentation X = x.

1. Établir le modèle a priori pour X : quelle est sa structure?

On dispose de données Y = y; et on veut déduire une segmentation X = x.

- 1. Établir le **modèle a priori** pour **X** : quelle est sa structure?
- 2. Établir un modèle d'observation pour lier Y à X.

On dispose de données Y = y; et on veut déduire une segmentation X = x.

- 1. Établir le **modèle a priori** pour **X** : quelle est sa structure?
- 2. Établir un modèle d'observation pour lier Y à X.
- 3. Les paramètres du modèle sont-ils connus?
 - si oui : on les note Θ
 - ullet sinon : il faudra estimer un $\hat{oldsymbol{\Theta}}$

On dispose de données Y = y; et on veut déduire une segmentation X = x.

- 1. Établir le **modèle a priori** pour **X** : quelle est sa structure?
- 2. Établir un modèle d'observation pour lier Y à X.
- 3. Les paramètres du modèle sont-ils connus?
 - si oui : on les note Θ
 - sinon : il faudra estimer un $\hat{\Theta}$
- 4. Estimer X = x à l'aide de $p_{\Theta}(X|Y)$ ou $p_{\hat{\Theta}}(X|Y)$.

Positionnement du cours

Problématique principale : segmentation d'image.

Nous allons étudier trois modèles a priori :

- sites (pixels) IID
- chaîne de Markov
- champs de Markov

... dans un contexte :

- supervisé : ⊖ connu
- non supervisé : Θ inconnu

Le cas indépendant

Le cas indépendant

Cadre

Modèle a priori

Le modèle le plus simple : tous les pixels sont indépendants.

Donc sur une image
$$\mathbf{x} = \{x_s\}_{s \in \mathcal{S}}$$
: $\triangleright \mathcal{S} = \text{ensemble des pixels (sites)}$

$$p(\mathbf{X} = \mathbf{x}) = \prod_{s \in \mathcal{S}} p(X_s = x_s)$$

Modèle a priori

Le modèle le plus simple : tous les pixels sont indépendants.

Donc sur une image
$$\mathbf{x} = \{x_s\}_{s \in \mathcal{S}}$$
 :

$$\triangleright \mathcal{S} = \text{ensemble des pixels (sites)}$$

$$p(\mathbf{X} = \mathbf{x}) = \prod_{s \in S} p(X_s = x_s)$$

Les classes sont discrètes :
$$\mathbf{x}_s \in \Omega \stackrel{\text{def.}}{=} \{\omega_1, \omega_2, \dots, \omega_K\}$$

Les lois a priori sont basées sur
$$p(X_s = \omega_k) \stackrel{\text{def.}}{=} \pi_k$$
.

$$\triangleright \sum_k \pi_k = 1$$

Modèle d'observation

On se donne une loi qui lie Y et X.

Hypothèse du bruit indépendant :

$$p(\mathbf{Y} = \mathbf{y}|\mathbf{X} = \mathbf{x}) = \prod_{s \in S} p(Y_s = y_s|X_s = x_s)$$

Modèle d'observation

On se donne une loi qui lie Y et X.

Hypothèse du bruit indépendant :

(Conservée sur le cours)

$$p(\mathbf{Y} = \mathbf{y}|\mathbf{X} = \mathbf{x}) = \prod_{s \in \mathcal{S}} p(Y_s = y_s|X_s = x_s)$$

On suppose $y_s \in \mathbb{R}$. Souvent (et pour ce cours) on utilise la loi normale :

$$\forall s, p(Y_s = y_s | X_s = x_s) \sim \mathcal{N}(\mu(x_s), \sigma(x_s))$$

En faisant le lien avec Ω on note plutôt :

$$\forall s, p(Y_s = y_s | X_s = \omega_k) \sim \mathcal{N}(\mu_k, \sigma_k)$$

Lois jointe et postérieure

Finalement:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

$$= \prod_{s \in \mathcal{S}} p(Y_s = y_s|X_s = x_s) \prod_{s \in \mathcal{S}} p(X_s = x_s)$$

$$= \prod_{s \in \mathcal{S}} p(Y_s = y_s|X_s = \omega_k)p(X_s = \omega_k)$$

$$= \prod_{s \in \mathcal{S}} \mathcal{N}(y_s; \mu_k, \sigma_k)p(X_s = \omega_k)$$

Lois jointe et postérieure

Finalement:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$

$$= \prod_{s \in \mathcal{S}} p(Y_s = y_s|X_s = x_s) \prod_{s \in \mathcal{S}} p(X_s = x_s)$$

$$= \prod_{s \in \mathcal{S}} p(Y_s = y_s|X_s = \omega_k)p(X_s = \omega_k)$$

$$= \prod_{s \in \mathcal{S}} \mathcal{N}(y_s; \mu_k, \sigma_k)p(X_s = \omega_k)$$

Paramètres du modèle :

$$\boldsymbol{\Theta} = \{\pi_1, \dots, \pi_k, \mu_1, \dots, \mu_k, \sigma_1, \dots, \sigma_k\}$$

Θ est supposé connu pour l'instant.

Simulation

- 1. Simuler $\boldsymbol{X} = \boldsymbol{x}$ à l'aide des π_k : on fait un tirage aléatoire en chaque site s
- 2. Simuler $\mathbf{Y} = \mathbf{y}$ conditionnellement à $\mathbf{X} = \mathbf{x}$: idem.

Simulation

- 1. Simuler $\boldsymbol{X} = \boldsymbol{x}$ à l'aide des π_k : on fait un tirage aléatoire en chaque site s
- 2. Simuler $\mathbf{Y} = \mathbf{y}$ conditionnellement à $\mathbf{X} = \mathbf{x}$: idem.

Le cas indépendant

Segmentation

Segmentation

Objectif: estimer X = x à partir de Y = y.

Pour cela il faut :

• connaître la loi à posteriori p(X = x | Y = y)

(vu à l'instant)

 \bullet connaître les paramètres Θ

(supposés connus pour l'instant)

• établir une fonction de perte de décision

Stratégie bayésienne, fonctions de perte

Une stratégie $\hat{\eta}: \mathbb{R}^S \to \Omega^S$ associe à une observation ${\it y}$ une estimée ${\it x}$.

 $\triangleleft S = |S|$ le nombre de sites

- $\hat{\eta}$ est déterministe
- $\hat{\eta}$ peut se tromper

Stratégie bayésienne, fonctions de perte

Une stratégie $\hat{\eta}: \mathbb{R}^S \to \Omega^S$ associe à une observation y une estimée x.

 $\triangleleft S = |S|$ le nombre de sites

- $\hat{\eta}$ est déterministe
- ullet $\hat{\eta}$ peut se tromper

Une fonction de perte donne un coût aux erreurs commises :

$$L(\omega_i, \omega_j) = \begin{vmatrix} 0 & \text{si } \omega_i = \omega_j \\ \lambda_{ij} & \text{sinon} \end{vmatrix}$$

On peut définir une perte moyenne (ou risque moyen) comme $\mathbb{E}\left[L(\hat{\eta}(Y),X]\right]$

Stratégie bayésienne, fonctions de perte (II)

La stratégie bayésienne $\hat{\eta}_{\mathrm{Bayes}}$ est celle qui minimise le risque moyen :

$$\mathbb{E}\left[L(\hat{\eta}_{\mathrm{Bayes}}(Y), X] = \min_{\hat{\eta}} \mathbb{E}\left[L(\hat{\eta}(Y), X)\right]$$

Stratégie bayésienne, fonctions de perte (II)

La stratégie bayésienne $\hat{\eta}_{\mathrm{Bayes}}$ est celle qui minimise le risque moyen :

$$\mathbb{E}\left[L(\hat{\eta}_{\mathrm{Bayes}}(Y), X] = \min_{\hat{\eta}} \mathbb{E}\left[L(\hat{\eta}(Y), X]\right]$$

On peut montrer que $\hat{\eta}_{\mathrm{Bayes}}$ est définie par :

$$\hat{\eta}_{\mathrm{Bayes}}(y) = \omega_{\mathbf{m}} \Leftrightarrow \sum_{i=1}^{k} \lambda_{\mathbf{m},i} p(x = \omega_{i}|y) \leq \sum_{i=1}^{k} \lambda_{j,i} p(x = \omega_{i}|y) \forall j \in \{1, \ldots, k\}$$

Interprétation : on minimise le coût pondéré par la probabilité a posteriori.

Stratégie bayésienne, fonctions de perte (III)

Deux fonctions de pertes sont très répandues. Soient deux images x^1 et x^2 :

• La fonction de perte 0-1 sur toute l'image :

$$L(\mathbf{x}^1, \mathbf{x}^2) = \begin{vmatrix} 0 & \text{si } \mathbf{x}^1 = \mathbf{x}^2 \\ 1 & \text{sinon} \end{vmatrix}$$

Stratégie bayésienne, fonctions de perte (III)

Deux fonctions de pertes sont très répandues. Soient deux images x^1 et x^2 :

• La fonction de perte 0-1 sur toute l'image :

$$L(\mathbf{x}^1, \mathbf{x}^2) = \begin{vmatrix} 0 & \text{si } \mathbf{x}^1 = \mathbf{x}^2 \\ 1 & \text{sinon} \end{vmatrix}$$

• La fonction de perte 0-1 sur chaque pixel avec somme des erreurs :

$$L(\mathbf{x}^1, \mathbf{x}^2) = \sum_{s \in S} \mathbb{1}_{\{x_s^1 \neq x_s^2\}}$$

Stratégie bayésienne, fonctions de perte (IV)

Ces deux fonctions se traduisent par deux critères bayésiens classiques :

Le maximum a posteriori (MAP) :

$$\hat{\pmb{x}}^{\mathsf{MAP}} = rg \max_{\pmb{x} \in \Omega^{\mathcal{S}}} p(\pmb{X} = \pmb{x} | \pmb{Y} = \pmb{y})$$

Stratégie bayésienne, fonctions de perte (IV)

Ces deux fonctions se traduisent par deux critères bayésiens classiques :

Le maximum a posteriori (MAP) :

$$\hat{\pmb{x}}^{\mathsf{MAP}} = rg \max_{\pmb{x} \in \Omega^{\mathcal{S}}} p(\pmb{X} = \pmb{x} | \pmb{Y} = \pmb{y})$$

Le maximum posterior mode (MPM), où $\forall s \in \mathcal{S}$:

$$\hat{x_s}^{\mathsf{MPM}} = \argmax_{x_s \in \Omega} p(X_s = x_s | \mathbf{Y} = \mathbf{y})$$

Dans le modèle indépendant, on montre facilement que $\hat{\pmb{x}}^{\mathsf{MAP}} = \hat{\pmb{x}}^{\mathsf{MPM}}$.

En effet,
$$p(\mathbf{x}|\mathbf{y}) = \prod_{s \in S} p(x_s|y_s)$$
.

Stratégie bayésienne, fonctions de perte (V)

Pour résumer, segmenter (MAP ou MPM) dans le modèle indépendant c'est :

- calculer $p(X_s = \omega_k | y_s)$ pour tout site s et classe k
- pour tout site s : choisir la classe la plus probable.

Remarque : on a supposé Θ connu!

Le cas indépendant

Segmentation non supervisée

Segmentation non supervisée

Contexte. On ne connaît pas toujours les paramètres Θ .

Objectif: estimer conjointement x et Θ à partir de Y = y uniquement.

Optimisation alternée avec les algorithmes SEM et EM :

• estimer \hat{x} à partir de y, $\hat{\Theta}$

∨u précédemment

- estimer $\hat{\Theta}$ à partir de \hat{x}, y
- ... et répéter jusqu'à convergence.

Estimer $\hat{\Theta}$ à partir de (x,y): estimateurs du max. de vraisemblance (EMV)

Avec les données complètes (x, y), et pour toutes les classes $\omega_k \in \Omega$, on peut estimer :

• la proportion :

$$\hat{\pi}_k = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \mathbb{1}_{\{\mathsf{x}_s = \omega_k\}}$$

Estimer $\hat{\Theta}$ à partir de (x,y): estimateurs du max. de vraisemblance (EMV)

Avec les données complètes (x, y), et pour toutes les classes $\omega_k \in \Omega$, on peut estimer :

• la proportion :

$$\hat{\pi}_k = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}}$$

• la moyenne :

$$\hat{m}_k = \frac{\sum\limits_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}} y_s}{\sum\limits_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}}}$$

Estimer $\hat{\Theta}$ à partir de (x,y): estimateurs du max. de vraisemblance (EMV)

Avec les données complètes (x, y), et pour toutes les classes $\omega_k \in \Omega$, on peut estimer :

• la proportion :

$$\hat{\pi}_k = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}}$$

• la moyenne :

$$\hat{m}_k = \frac{\sum\limits_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}} y_s}{\sum\limits_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}}}$$

• la variance :

$$\hat{\sigma}_k^2 = \frac{\sum\limits_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}} (y_s - \hat{m_k})^2}{\sum\limits_{s \in \mathcal{S}} \mathbb{1}_{\{x_s = \omega_k\}}}$$

Algorithme SEM

Algorithme Stochastic Expectation-Maximization (SEM):

- On se donne une estimation initiale $\hat{\mathbf{x}}^{(0)}$.
- On répète ensuite à chaque itération q :
 - Estimer $\hat{\boldsymbol{\Theta}}^{(q)}$ avec $(\boldsymbol{x}^{(q-1)}, \boldsymbol{y})$
 - ullet Simuler $\mathbf{x}^{(q)}$ avec $(\hat{m{\Theta}}^{(q)},\mathbf{y})$ i.e. avec $p_{\hat{m{\Theta}}^{(q)}}(\mathbf{x}|\mathbf{y})$
- Jusqu'à observer une « stabilité » des $\hat{\Theta}^{(q)}$.

Algorithme SEM

Algorithme Stochastic Expectation-Maximization (SEM):

- On se donne une estimation initiale $\hat{x}^{(0)}$.
- On répète ensuite à chaque itération q :
 - Estimer $\hat{\boldsymbol{\Theta}}^{(q)}$ avec $(\boldsymbol{x}^{(q-1)}, \boldsymbol{y})$
 - ullet Simuler $oldsymbol{x}^{(q)}$ avec $(\hat{oldsymbol{\Theta}}^{(q)},oldsymbol{y})$ i.e. avec $p_{\hat{oldsymbol{\Theta}}^{(q)}}(oldsymbol{x}|oldsymbol{y})$
- Jusqu'à observer une « stabilité » des $\hat{\Theta}^{(q)}$.

- → Intérêt : simple avec les outils déjà vus
- → Inconvénient : stochastique

Algorithme EM

Pour éviter l'aspect stochastique : revenir à l'objectif = estimer Θ .

Avec x connu, les EMV résolvent :

$$\hat{m{\Theta}} = rg \max_{m{\Theta}} \, p_{m{\Theta}}(m{x}|m{y})$$

Algorithme EM

Pour éviter l'aspect stochastique : revenir à l'objectif = estimer Θ .

Avec x connu, les EMV résolvent :

$$\hat{m{\Theta}} = rg \max_{m{\Theta}} \, p_{m{\Theta}}(m{x}|m{y})$$

À partir d'un Θ^t connu : calcul de **l'espérance conditionnelle** de la vraisemblance de Θ , étant donné $p_{\Theta^t}(x|y)$.

$$Q(\boldsymbol{\Theta}|\boldsymbol{\Theta}^t) = \mathbb{E}_{\boldsymbol{X}|\boldsymbol{Y},\boldsymbol{\Theta}^t} \left[p_{\boldsymbol{\Theta}}(\boldsymbol{x}|\boldsymbol{y}) \right]$$

On alterne à une itération t:

- Calcul de l'espérance conditionnelle $Q(\Theta|\Theta^t)$
- Choix de $\mathbf{\Theta}^{t+1} = \arg\max_{\mathbf{\Theta}} \ Q(\mathbf{\Theta}|\mathbf{\Theta}^t)$

⊲ Expectation

 \triangleleft Maximisation

On alterne à une itération t:

- Calcul de l'espérance conditionnelle $Q(\Theta|\Theta^t)$
- Choix de $\mathbf{\Theta}^{t+1} = \underset{\mathbf{\Theta}}{\operatorname{arg max}} \ \mathit{Q}(\mathbf{\Theta}|\mathbf{\Theta}^t)$

⊲ Expectation

⊲ Maximisation

Dans le cas indépendant :

- Calcul de tous les $p(x_s = \omega_k | y_s, \mathbf{\Theta}^t)$, pour tout s et k
- ullet Estimation de $oldsymbol{\Theta}^{t+1}$ par les estimateurs empiriques pondérés

Estimation de $\Theta^{(t+1)}$ par les estimateurs empiriques pondérés avec $p(x_s = \omega_k | y_s, \Theta^t)$ et y.

$$\hat{\pi}_k^{(t+1)} = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} p(x_s = \omega_k | y_s, \mathbf{\Theta}^t)$$

Estimation de $\Theta^{(t+1)}$ par les estimateurs empiriques pondérés avec $p(x_s = \omega_k | y_s, \Theta^t)$ et y.

$$\hat{\pi}_{k}^{(t+1)} = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})$$

$$\hat{m}_{k}^{(t+1)} = \frac{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t}) y_{s}}{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})}$$

Estimation de $\Theta^{(t+1)}$ par les estimateurs empiriques pondérés avec $p(x_s = \omega_k | y_s, \Theta^t)$ et y.

$$\hat{\pi}_{k}^{(t+1)} = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})$$

$$\hat{m}_{k}^{(t+1)} = \frac{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t}) y_{s}}{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})}$$

$$(\hat{\sigma}_{k}^{2})^{(t+1)} = \frac{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t}) \left(y_{s} - \hat{m}_{k}^{(t+1)}\right)^{2}}{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})}$$

Estimation de $\Theta^{(t+1)}$ par les estimateurs empiriques pondérés avec $p(x_s = \omega_k | y_s, \Theta^t)$ et y.

$$\hat{\pi}_{k}^{(t+1)} = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})$$

$$\hat{m}_{k}^{(t+1)} = \frac{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t}) y_{s}}{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})}$$

$$(\hat{\sigma}_{k}^{2})^{(t+1)} = \frac{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t}) \left(y_{s} - \hat{m}_{k}^{(t+1)}\right)^{2}}{\sum_{s \in \mathcal{S}} p(x_{s} = \omega_{k} | y_{s}, \mathbf{\Theta}^{t})}$$

Remarque : similarité avec les EMV ; en remplaçant $\mathbb{1}_{\{x_s=\omega_k\}}$ par $p(x_s=\omega_k|y_s,\mathbf{\Theta}^t)$.

Le cas indépendant, pour résumer

Nous avons vu:

- les hypothèses du modèle indépendant et la loi jointe
- les fonctions de pertes et les critères du MAP, du MPM
- l'estimation des paramètres dans le cas indépendant
- EM et SEM

- ▷ généralisables
 - ▷ réutilisables
- ▷ généralisables