Fundamentals of Mathematical Logic by Hinman

Noah Lewis

October 6, 2025

Contents

1	Propositional Logic and Other Fundamentals	1
	1.1 The Propositional Language	1

1 Propositional Logic and Other Fundamentals

1.1 The Propositional Language

Problem 10

Give a precise definition of the set of sentences using infix notation and prove unique readability for your definition.

Solution:

Definition of infix sentences:

- 1. S_0 := the set of L-atomic sentences.
- 2. For each $n \in \omega$,

$$\begin{split} S_{n+1} &:= S_n \cup \{ \neg \phi : \phi \in S_0 \} \cup \{ (\neg \phi) : \phi \in S_n \sim S_0 \} \\ & \cup \{ (\phi) \bullet (\psi) : \phi, \psi \in S_n \sim S_0, \bullet \in \{ \land, \lor, \rightarrow, \leftrightarrow \} \} \\ & \cup \{ (\phi) \bullet \psi : \phi \in S_n \sim S_0, \psi \in S_0, \bullet \in \{ \land, \lor, \rightarrow, \leftrightarrow \} \} \\ & \cup \{ \phi \bullet (\psi) : \phi \in S_0, \psi \in S_n \sim S_0, \bullet \in \{ \land, \lor, \rightarrow, \leftrightarrow \} \} \\ & \cup \{ \phi \bullet \psi : \phi, \psi \in S_0, \bullet \in \{ \land, \lor, \rightarrow, \leftrightarrow \} \} \end{split}$$

3. Let
$$S_f := \bigcup_{n \in \omega} S_n$$
.

Definition 1 (Parenthesization of binary connectives). *Let* ϕ *and* ψ *be sentences, and let* • *be any binary connective. Then the four possible parenthesizations of* ϕ • ψ *are:*

- 1. $(\phi) \cdot (\psi)$
- 2. $(\phi) \cdot \psi$
- 3. $\phi \cdot (\psi)$
- 4. φ ψ

Proposition 1 (Unique readability for propositional sentences). *For any sentence* $\theta \in S_f$, *exactly one of the following holds:*

- 1. θ is atomic;
- 2. for some sentence ϕ , $\theta = \neg \phi$;
- 3. θ is a **conjunction** $\phi \wedge \psi$ for some sentences ϕ and ψ , with one of the four parenthesizations from Definition 1;
- 4. θ is a **disjunction** $\phi \lor \psi$ for some sentences ϕ and ψ , with one of the four parenthesizations from Definition 1;
- 5. θ is an *implication* $\phi \rightarrow \psi$ for some sentences ϕ and ψ , with one of the four parenthesizations from Definition 1;
- 6. θ is a **bi-implication** $\phi \leftrightarrow \psi$ for some sentences ϕ and ψ , with one of the four parenthesizations from Definition 1.

Proof of unique readability:

Proof.

Problem 11

For any expression $\phi = s_0 \dots s_k$, a **proper initial segment** of ϕ is any sequence of symbols $s_0 \dots s_l$ with l < k. Prove that no proper initial segment of a sentence is a sentence, and show that this can be used as an alternative to (4) as a technical lemma for the proof of Proposition 1.1.5.

Problem 12

Give a careful proof of Proposition 1.1.9, and show how Theorem 1.1.7 is an application of it.