MARKING GUIDE FOR UNEB UACE BIOLOGY P2 2023

SECTION A. (40 MARKS)

1. (a) (i) Description of rate of photosynthesis

From 8 to 20°C, the rate photosynthesis increases gradually; and then rapidly from 20 to 30°C; it increases gradually to the peak at 37°C; and falls/decreases rapidly from 40 to 46°C; and then gradually decreases from 46 to 58°C;

max 04 marks

ACC. Any description award increase and decrease twice for gradual and rapid

(ii) Explanation of rate of respiration

The rate of respiration gradually increases with increase in temperature; because respiration is an enzyme controlled reaction; since increase in temperatures kinetic energy/frequency of collision for enzyme and substrate molecules; the rate reaches a peak at 45°C because enzyme activity is at its optimum;

The rate then gradually decreases as temperature rises above 45°C; due to denaturation;

06 marks

(iii) Explanation for the difference in rate of photosynthesis and respiration

From 40-47°C, there is a rapid drop/decrease in photosynthetic rate as rate of respiration increases gradually to a peak; because at high temperature stomata close; there is reduced carbon dioxide uptake/photosynthetic enzymes are denatured at lower temperatures;

From 47 to 58°C photosynthesis continues to decrease rapidly as respiration increases gradually; due to little oxygen still remaining in cells which continues to be used in aerobic respiration;

Beyond 58°C no photosynthesis takes place but respiration continues to decrease gradually to zero; because of anaerobic respiration; until when respiratory enzymes are all denatured;

08 marks

(iv) Explanation for the relationship between respiration and photosynthesis

The rate of respiration increases as rate of photosynthesis increases; because the by-products of photosynthesis (oxygen/glucose) are used during respiration; at 47°C rate of photosynthesis equals rate of respiration; and this point there is no net gas exchange between plant and environment; as all oxygen from photosynthesis is used by respiration and also all carbon dioxide from respiration is used up for photosynthesis; beyond 58°C, there is anaerobic respiration;

max 06 marks

(b) Comparison of carbon dioxide uptake by plant A and plant B

Similarities

In both amount of carbon/dioxide uptake increases with increase in temperature from 10 to 25°C;

- Both rates of uptake attain maximum/peak;
- From 40 to 45^oC, both show decrease in amount of carbon dioxide absorbed;
- At 30°C they have same amount of carbon dioxide absorbed; Max 04 marks

Differences

- Photosynthesis in B attains a higher peak/maximum than in plant A;
- Plat A reaches peak at a lower temperature of 25°C while plant B reaches peak at a higher temperature of 400°C
- At 10°C plant A absorbs more carbon dioxide than plant B/ from 10 to 30°C amount of carbon dioxide absorbed in plant A is higher than that in plant B;
- Beyond 30°C plant B absorbs more carbon dioxide than plant A;
- From 25 to 40°C absorption by plant A decreases while that of plant B decreases;
- Beyond 40°C absorption in A decreases gradually while for plant B decreases rapidly;

Max 04 marks

(c) Plant B /C4/CAM plant; rate of photosynthesis is highest at temperature of 40Oc; at same temperature plant B absorbs the highest amount of carbon dioxide; which implies increased rate of carbon dioxide; 04 marks

(d) Factors affecting rate of photosynthesis

- Carbon dioxide concentration; insufficient carbon dioxide limits rate of photosynthesis/high carbon dioxide concentration increases rate of photosynthesis;
- Amount of water available; water stress reduces rate of photosynthesis;
- Type/concentration of photosynthetic pigments; low concentration of pigments reduces rate of photosynthesis;
- Mineral nutrients;
- Wind velocity/speed;
- Wavelength of light;
- Leaf structure and positions;
- Oxygen partial pressures in C4; increases photorespiration lowering photosynthetic rate; Any 4, max 08 marks

(e) the carbon dioxide from atmosphere diffuses into mesophyll cells; and fixed into malate; the malate is then shunted into the bundle sheath cells; where it breaks down into pyruvate and carbon dioxide; carbon dioxide may be directly absorbed by bundle sheath cells and fixed by RuBP into sugars;

5X 1mark, max 4 marks

SECTION B: (60 MARKS)

- 2. (a) Ecological significance of instinct behaviors.
- (i) Territoriality
 - Reduces (intra/inter-specific) aggression;
 - Reduces (intra-specific) competition;
 - Avails enough resources to organisms;

- Ensures safe, undisturbed mating/pair formation;
- Ensures protection of vulnerable/sick/elderly members of species;
- Control diseases spread from outside the territory;
- Encourages inbreeding reducing variation/hybrid vigour;

06 marks

(ii) Courtship

- Minimises breeding between closely related species;
- Synchronises time of producing offsprings with availability of food;
- Allows pair bonding leading to successful mating;
- Provides protection to courting individuals;
- Stimulates mating of individuals;
- Provides parental care to offspring increasing chances of survival;
- Limits mating to sexually mature individuals;;

07 marks

(b) How organisms avoid predation

- Group protection; e.g. school of fish/buffalo herds;
- Chemical defence/venoms; e.g. snakes/birds/wasps;
- Alarm; e.g. rattle of snakes/puff adder/insects/birds/elephants;
- Distraction displays/flash colourations; e.g. lizards/millipedes/pangolin;
- Mechanical protection/mandibles/teeth/horns/scales/spines/shells; e.g. cows/porcupines/crocodiles;
- Visual protection/mimicry/camouflage; e.g. caterpillars/chameleon;
- Antibiosis/strong odour chemicals repel or worn other individuals against danger; e.g. in insects/molluscs;
- Electrical signals e.g. electric fish;
- Autotomy, where organisms run and leave behind body parts e.g. lizards leave behind tails;
- Sham death; e.g. tortoises;
- Faster locomotion/running away and migrations e.g. antelopes/rats;
- Hiding/burrowing/nocturnal e.g. rats/owls;
- Keen eye sight to easily detect predators; e.g. insects;
 @¹/₂ mark, max 07 marks

3. (a) Structure of vascular tissues

Consists of xylem; and phloem;

The xylem is made of tracheids; and vessels; tracheids are single celled; elongated; with tapering end walls;

The vessels are very long; and tubular structures of several cells; fused end to end in a row; Tracheids and vessels are made up of dead empty lumen; with lignified walls/patterns of lignification; and have pits;

The phloem consists of sieve tubes; companion cells; phloem parenchyma; fibres; and sclereids; and are living;

The sieve tubes are long; tube-like; fused sieve elements/cells/end-to-end; but with nucleus; the elements have sieve plates; adjoining neighbouring cells; with sieve pores; and cytoplasmic filaments;

The companion cells have dense cytoplasm; has plasmodesma; in between sieve tubes and companion cells; in between sieve tubes and companion cells;

 $26 \text{ x}^{-1}/_2$ mark, max 10 marks

ACC. Appropriate diagrams for phloem and xylem and mark accordingly

(b) How movement of water from the soil provides support

The soil water surrounding the root hair cells has a lower osmotic pressure/higher water potential/higher osmotic/solute potential; than the cell sap in the vacuoles of root hair cells; this creates a concentration gradient; which allows water to move from the soil into root hair cells by osmosis;

The entry of water into root hair cells lowers their osmotic pressure/increases the water/osmotic/solute potential;; than the neighbouring cells in the cortex of roots; which causes outflow of water by osmosis from the root hair cells to cortex cells; this builds a water potential gradient through the plant cells; until all cells of plant absorb water by osmosis; this leads to turgidity of the cells; and this turgidity provides support;

12 x1 mark, max 10 marks

4. (a) (i) Adaptations of placenta for exchange of materials

- Placenta has numerous microvilli to increase surface area for exchange of materials;
- Chorionic villi has a thin membrane to reduce diffusion distance;
- Trophoblastic cells produce anticoagulants this prevents this prevents blood clotting;
- Highly vascularised/numerous blood capillary supply for transport of metabolites and metabolic wastes;
- Material in foetus and mother flow in close proximity/counter-current flow for faster diffusion;
- Numerous mitochondria for ATP production for active transport;
- Trophoblastic cells contain numerous carrier/channel proteins which allows facilitated diffusion for transport of glucose from the maternal to foetal blood;

05 marks

(b) Advantages of internal embryo development

- The embryo is protected; against predation; and harsh weather conditions;
- The embryo receives constant supply of nutrients; gains immunity from the maternal antibodies; all of which increases its chances of survival; 06 marks

(c) Exchange mechanisms between foetus and the mother

• Simple diffusion; allows movement of oxygen and nutrients; from maternal into foetal blood; and removal of carbon dioxide/wastes from foetal blood to maternal blood; oxygen and nutrients are transported in umbilical vein; while wastes in umbilical artery; the rate of simple diffusion is increased by presence of numerous blood capillaries in placental veins and microvilli which further increases surface area;

- Facilitated diffusion; that transports glucose into foetal circulation; due to presence of carrier proteins in surface membrane of foetus;
- Active transport; that transports ions and amino acids; across from maternal; to foetus; the energy is provided by mitochondria; in the chorionic villi;
- Osmosis; of water; from maternal into foetal blood;
- Pinocytosis; of amino acids/proteins/antibodies; from mother to foetus; due to presence of pinocytic vesicles in chorionic villi;

 $(a_0^{1}/2)$ mark, max 09 marks

5. (a) Functions of proteins

- Hydrolysis of food in the gut; e.g. trypsin enzyme;
- Storage of food in milk; e.g. casein;
- Transportation of oxygen; e.g. haemoglobin;
- Storage of oxygen in muscles; e.g. myoglobin;
- Blood clotting; e.g. fibrinogen;
- Defence against invasion of microorganisms; e.g. antibodies;
- Control of growth and metabolism; e.g. thyroxine;
- Catalyses reactions in ornithine cycle; e.g. urease/arginase;
- Structural support/strength/protection; e.g. ossein in bone/elastin in ligaments/ lipoproteins in cell membrane/chromo-proteins in chromosomes;
- Control of body activity; e.g. ACTH;
- Allows sensitivity to light by visual pigments in retina; e.g. rhodopsin;
- Induces milk production; e.g. prolactin;
- Buffers; e.g. plasma proteins;
- Protection against UV rays; e.g. melanin;
- Transport proteins; e.g. carrier and channel proteins in active transport and facilitated diffusion;
- Energy source during times of starvation; e.g. storage proteins;
- Receptors sites; e.g. proteins in cell membrane;
- Transport of lipids in plasma; e.g. lipoproteins;

 $(a^{1}/2)$ mark, max 10 marks

(b) Causes of protein denaturation

- Heat breaks hydrogen and ionic bonds;
- Acid additional hydrogen ions combine with COO group of amino acids breaking ionic bonds;
- Alkalis addition of hydroxide ions/decrease in hydrogen ion concentration causes NH₃⁺ group of amino acids to lose hydrogen ions hence breaking ionic bonds;
- Inorganic chemicals/highly electropositive ions combine with COO group and break ionic bonds/highly electronegative ions combine with NH₃⁺ group and break ionic bonds;
- Organic chemicals alter hydrogen bonding within a protein;
- Mechanical force break hydrogen bonds;

6x @1mark

6. (a) Distinguishing features of gaseous exchange in fish and terrestrial insects

- Respiratory medium in fish is water while in insects is air;
- Respiratory organ in fish are gills/with gill filaments while in insects it is tracheal system/with tracheoles as a respiratory surface;
- Respiratory pigment in fish is haemoglobin while in insects there is no respiratory pigment/haemoglobin oxygen diffuses directly into tissues;
- Ventilation in insects is achieved by contraction and relaxation of buccal and opercular/hypobranchial muscles while in insects is achieved by contraction and relaxation of abdominal muscles:
- In fish flow of air/water is unidirectional while in insects it is bidirectional/tidal flow; max 03 marks

(b) Differences between gas exchange in bony and cartilaginous fish

Bony fish	Cartilaginous fish
Counter-current exchange	Parallel flow exchange
mechanism	mechanism;
 Maintains a concentration 	 Concentration gradient not
gradient across gill plate	maintained across gill plate;
 Achieves a high exchange 	 Lower exchange efficiency of
efficiency of up to 80%	about 50%;
Water enter via mouth only	 Water enters via mouth and spiracles;
 The gas exchange surface/ gill 	 Gas exchange surface is open to
filament enclosed with	the atmosphere via gill slits;
operculum;	
 Ventilation due to adjustments in 	 Ventilation due to adjustments in
buccal, opercular and pharynx	buccal cavity and pharynx only;

Max 04 marks

(c) Control of ventilation in man

Ventilation movement is initiated by arise in carbon dioxide levels/low PH/high hydrogen in blood; which is detected by chemoreceptors located in carotid; aortic bodies; and in the medulla oblongata; in the respiratory centre; these send impulses to the phrenic; and (external) intercostal/thoracic nerves; which relay impulses to diaphragm muscles; and (external) intercostal muscles respectively; which contracts; and causes faster inspiration;

The lungs stretch and become inflated with air and expand; and impulses are sent to the expiratory centre in the medulla; via vagus nerve; which automatically switches off the inspiratory centre; and sends messages to the (external) internal and diaphragm muscles to relax; causing expiration;

16 X 1mark@, max 13 marks

OOOYAH OOOYAAH