Programmation Fonctionnelle (PF) INFO4

Cours 2 : fonctions, sommes et filtrage, récurrence

Jean-François Monin

Programmation Fonctionnelle (PF)
Un peu de théorie : informatique et logique

Plan

Un peu de théorie : informatique et logique

Sommes et filtrage Principes généraux

Quelques astuces pour programmer plus efficacement

La récurrence en informatique

Sommes récursives

Preuves: retour sur les listes

Une preuve par récurrence structurelle sur des arbres

Et la récurrence sur les entiers?

Programmation Fonctionnelle (PF)
Un peu de théorie : informatique et logique

Plan

Un peu de théorie : informatique et logique

Sommes et filtrage
Principes général

Quelques astuces pour programmer plus efficacement

La récurrence en informatique

Sommes récursives

Preuves: retour sur les listes

Une preuve par récurrence structurelle sur des arbres

Et la récurrence sur les entiers?

Structuration des données : sommes et produits

Deux formes essentielles de structuration de données

- Juxtaposition: un truc avec un machin couples, n-uplets, records, tableaux, produit cartésien Disponibles (primitifs) dans tous les langages de programmation
- ► Choix : un truc ou un machin grand oublié des langages usuels en tant que structure de composition
 - ▶ bit (chiffre binaire : booléen)
 - entiers, données atomiques
 - énumération
 - ▶ pointeur vide ou alloué (*)

Réhabilité (primitif) dans les langages fonctionnels typés comme OCaml

Structuration des données : sommes et produits

Connexion profonde avec la logique (*)

- ► Juxtaposition → conjonction Une preuve de A ∧ B est obtenue à partir d'une preuve de A juxtaposée avec une preuve de B
- Choix → disjonction Une preuve de A ∨ B est obtenue à partir d'une preuve de A ou d'une preuve de B

En pratique

Aide à la conception et au raisonnement

- ▶ Comment construire
- ► Comment utiliser
- ► Comment calculer

Comment construire

- ▶ un couple, un n-uplet, etc.
- une somme :

Comment construire

- ▶ un couple, un n-uplet, etc.
- une somme : constructeurs
- ▶ une fonction fun ... → ...

Comment construire

- ▶ un couple, un n-uplet, etc.
- ▶ une somme : constructeurs
- ▶ une fonction fun ... → ...

En logique (*): principe d'introduction

Comment utiliser (décomposer, analyser)

▶ un couple, un n-uplet, etc. :

Comment utiliser (décomposer, analyser)

- ► un couple, un n-uplet, etc. : projection récupération du premier, second,... composant
- ▶ une somme :

Comment utiliser (décomposer, analyser)

- ► un couple, un n-uplet, etc. : projection récupération du premier, second,... composant
- ▶ une somme : filtrage match
- ► une fonction :

Comment utiliser (décomposer, analyser)

- ► un couple, un n-uplet, etc. : projection récupération du premier, second,... composant
- ▶ une somme : filtrage match
- ▶ une fonction : application à un argument

Comment utiliser (décomposer, analyser)

- ► un couple, un n-uplet, etc. : projection récupération du premier, second,... composant
- ▶ une somme : filtrage match
- ▶ une fonction : application à un argument

En logique (*) : principe d'élimination

Comment calculer (réduire)

Confrontation d'une construction et d'une décomposition

- projection à partir un couple, un n-uplet, etc.
- ▶ filtrage d'une valeur dans un type somme
- ► fonctions : substitution des paramètres effectifs aux paramètres formels

Comment calculer (réduire)

Confrontation d'une construction et d'une décomposition

- projection à partir un couple, un n-uplet, etc.
- ▶ filtrage d'une valeur dans un type somme
- ► fonctions : substitution des paramètres effectifs aux paramètres formels

En logique (***) : simplification par élimination des coupures

Programmation Fonctionnelle (PF)
Un peu de théorie : informatique et logique

Sommes généralisées

Un cas peut embarquer plusieurs composants On a donc une somme de produits

Plan

Un peu de théorie : informatique et logique

Sommes et filtrage Principes généraux Quelques astuces pour programmer plus efficacement

La récurrence en informatique Sommes récursives Preuves : retour sur les liste

Une preuve par récurrence structurelle sur des arbres

Et la récurrence sur les entiers?

Exemples de type somme

```
type legume = Haricot | Carotte | Courge
type fleur = Rose | Hortensia
type fruit = Poire | Banane
type couleur = Rouge | Jaune | Blanc
type plante =
      | Legume of legume
      | Fleur of fleur * couleur
      I Fruitier of fruit
type objet =
      | Plante of plante
```

Exemples de type somme

```
type legume = Haricot | Carotte | Courge
type fleur = Rose | Hortensia
type fruit = Poire | Banane
type couleur = Rouge | Jaune | Blanc
type plante =
      | Legume of legume
      | Fleur of fleur * couleur
      I Fruitier of fruit
type objet =
      | Plante of plante
```

Représentation graphique (au tableau)

Arbres

Type somme et filtrage

Un type définit exhaustivement les valeurs possibles après réduction Le filtrage couvre toutes ces valeurs par des motifs

Motif

Arbre à trous, où chaque trou représente un sous-arbre quelconque (du type approprié)

Représentation graphique

Motif de filtrage arborescent

ninics of intruge

Principes généraux

Recette pour faire des motifs

Recette pour faire des motifs

Le bon, la brute et le truand

L'humanité est divisée en deux catégories : il y a ceux qui tiennent un pistolet chargé et il y a ceux qui creusent.

Recette pour faire des motifs

Le bon, la brute et le truand

L'humanité est divisée en deux catégories : il y a ceux qui tiennent un pistolet chargé et il y a ceux qui creusent. Toi, tu creuses

Recette pour faire des motifs

Le bon, la brute et le truand

L'humanité est divisée en deux catégories : il y a ceux qui tiennent un pistolet chargé et il y a ceux qui creusent. Toi, tu creuses

Recette

- ► Prendre un arbre
- Creuser

Recette pour faire des motifs

Le bon, la brute et le truand

L'humanité est divisée en deux catégories : il y a ceux qui tiennent un pistolet chargé et il y a ceux qui creusent. Toi, tu creuses

Recette

- ► Prendre un arbre
- Creuser
- ► Nommer les trous : x, y, n, 1...

Recette pour faire des motifs

Le bon, la brute et le truand

L'humanité est divisée en deux catégories : il y a ceux qui tiennent un pistolet chargé et il y a ceux qui creusent. Toi, tu creuses

Recette

- ► Prendre un arbre
- ► Creuser
- Nommer les trous : x, y, n, 1... (ou les laisser anonymes : _)

Avantage du filtrage sur le if

Assurance gratuite que l'on baigne dans le bon environnement

Voir plus loin

Ce qu'effectue le filtrage

- ► Reconnaissance de forme
- ► En cas de succès : nommage de sous-arbres (liaison de sous-arbres à des noms)

Exhaustivité

Toutes les valeurs possibles du type doivent être couvertes Rappel : une valeur est ce qu'on obtient après calcul

Match est ordonné

```
let foo y = match y with
| Nil -> ... (* 1er test *)
| Cons (a, e) -> ... (* 2eme test*)
| Cons (a, Nil) -> ... (* jamais atteint*)
```

En OCaml les motifs sont évalués de haut en bas

Motifs du match

Un motif ne peut contenir que des constructeurs

- constructeurs de somme
- couple, triplet ...
- ▶ listes : Cons et Nil (en bibliothèque : :: et [])

Motifs du match

Un motif ne peut contenir que des constructeurs

- constructeurs de somme
- ► couple, triplet ...
- ▶ listes : Cons et Nil (en bibliothèque : :: et [])

Un motif doit être linéaire : pas de Constr(... x ... x ...)

Motifs du match

Un motif ne peut contenir que des constructeurs

- constructeurs de somme
- ► couple, triplet ...
- ▶ listes : Cons et Nil (en bibliothèque : :: et [])

Un motif doit être linéaire : pas de Constr(... x ... x ...)

Pas d'opération nécessitant un calcul

- ▶ pas d'appel de fonction, y compris +, &&, @
- ▶ pas de if, de let, de match,...

Motif universel (ou joker)

Une variable **x** est un motif universel : capture tous les cas (non encore capturés par un motif précédent)

Motif universel spécial : l'underscore _ à voir comme une variable "à oublier" (aucune liaison n'est créée)

Exemple:

```
| (x, _) -> ...
| _ -> ...
```

Match est exhaustif

Sinon Warning et exception!

```
Exemple
```

```
# let foo p = match p with Legume (1) -> 1
Warning P: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Fruitier (Poire)
val foo : plante -> int = <fun>
# foo (Fruitier (Poire))
Exception: Match failure ("", 1, 11).
```

Quelques astuces pour programmer plus efficacement

Match : partage de résultats pour plusieurs cas

```
match x with
| 0 | 2 | 4 | 6 | 8 -> x/2
| 1 | 3 | 5 | 7 | 9 -> (x+1)/2
| _ -> 0
```

Quelques astuces pour programmer plus efficacement

Match: nommage d'un sous-motif

Exemple

Match conditionnel (when) - DÉLICAT

Égalité

```
# let eg x = match x with
(a, b) when a = b -> true
|(a, b) -> false
```

- 1. évaluation de la condition du when
- 2. si vrai, l'expression associée est évaluée
- 3. sinon passage au cas suivant.

```
eg (1, 1)
- : bool =
true
eg (1,3)
- : bool =
false
```

Match implicite : let filtrant I

Somme à un cas

```
▶ type eb = EB of int × bool

match × with EB(n, b) → ... n ... b ...

≡

let EB(n, b) = × in ... n ... b ...
```

Attention à l'inversion de l'ordre

Match implicite: let filtrant II

Filtrage sur un couple

```
▶ match couple with (n, b) \rightarrow \dots n \dots b \dots

≡ let (n, b) = couple in \dots n \dots b \dots
```

Plan

Un peu de théorie : informatique et logique

Sommes et filtrage
Principes généraux
Quelques astuces pour programmer plus efficacement

La récurrence en informatique

Sommes récursives

Preuves: retour sur les listes

Une preuve par récurrence structurelle sur des arbres

Et la récurrence sur les entiers?

Type somme récursif : listes

```
type listent=
    | Nil
    | Cons of int * listent
```

```
Exemple: [5; 2; 4]
```

type listent=

Type somme récursif : listes

```
Nil
   Cons of int * listent
Exemple: [5; 2; 4]
Cons (5, Cons (2, Cons (4, Nil)))
        Cons
            Cons
```

Type somme récursif : listes

```
type listent=
   Nil
   Cons of int * listent
Exemple: [5; 2; 4]
Cons (5, Cons (2, Cons (4, Nil)))
        Cons
            Cons
               Cons
```

Un type récursif arbre binaire

Arbre binaire

Un arbre **binaire** est :

- ► soit l'arbre vide :
- ➤ soit un nœud constitué d'une *étiquette* et de 2 *sous-arbres* binaires (gauche et droit).

Un type récursif arbre binaire

Arbre binaire

Un arbre **binaire** est :

- ► soit l'arbre vide :
- ▶ soit un nœud constitué d'une étiquette et de 2 sous-arbres binaires (gauche et droit).

Un type récursif arbre binaire

Arbre binaire

Un arbre **binaire** est :

- ► soit l'arbre vide :
- ▶ soit un nœud constitué d'une étiquette et de 2 sous-arbres binaires (gauche et droit).

On suit cette définition pour modéliser les arbres en OCaml :

type arbre = FV | N of arbre * int * arbre

Programmation par analyse de cas

Canevas

- ► Chercher une solution pour chaque cas
- ► Dans chaque cas, on peut appliquer des fonctions auxiliaires sur ses composants

Programmation par analyse de cas

Exemples

- ► tester qu'une liste est vide
- ► tester qu'un arbre est vide
- ► queue et tête d'une liste
- ► sous-arbres gauche ou droit

Programmation par récursion structurelle

Canevas

- ► Chercher une solution pour chaque cas
- ▶ Dans chaque cas, on peut appliquer des fonctions auxiliaires ou la fonction en cours de définition sur ses composants
- ▶ idée sous-jacente : supposons le résultat obtenu sur
 - ► la queue de la liste considérée
 - les sous-arbres gauche et droit de l'arbre considéré
 - etc.

construisons le résultat de la liste (de l'arbre) considéré(e) au moyen de ces résultats intermédiaires

Programmation par récursion structurelle

Programmation impérative

Que faire (dans tel cas)?

Programmation fonctionnelle

Que vaut le résultat (dans tel cas)?

Programmation par récursion structurelle

Programmation impérative

Que faire (dans tel cas)?

Programmation fonctionnelle

Que vaut le résultat (dans tel cas)?

Exemples

- ► longueur d'une liste
- concaténation de 2 listes
- ► liste des clés d'un arbre
- ► taille d'un arbre (nombre de feuilles, nombre de nœuds)

Exemple : récursion structurelle sur une liste

Idée sous-jacente

On donne le résultat sur

- ► la liste vide
- ▶ une liste x :: q en supposant connu le résultat sur la queue q

On aura ainsi le résultat sur n'importe quelle liste.

Preuves: retour sur les listes

Raisonner par récurrence structurelle

C'est pareil que programmer par récursion structurelle.

Exemple : récurrence structurelle sur une liste

Idée sous-jacente

Si on peut démontrer une propriété sur

- ► la liste vide
- ▶ une liste x :: q en supposant la propriété démontrée sur la queue q

On aura ainsi une preuve de la propriété sur n'importe quelle liste.

reuves : retour sur les listes

Exemple : récurrence structurelle sur une liste

Idée sous-jacente

Si on peut démontrer une propriété sur

- ► la liste vide
- une liste x :: q en supposant la propriété démontrée sur la queue q

On aura ainsi une preuve de la propriété sur n'importe quelle liste.

Récurrence sur les listes

Soit P un prédicat sur les listes.

Si
$$P([])$$
 et $\forall x, q, P(q) \Rightarrow P(x :: q)$ on peut en déduire que $\forall I, P(I)$.

Preuves: retour sur les listes

Prouver que le bégaiement double la longueur

$$P(I) \stackrel{\text{def}}{=} long(begaie I) = 2 \times long I$$

Prouver : $\forall I P(I)$

$$\begin{array}{ll} P(I) & \stackrel{\mathrm{def}}{=} & \mathsf{long}(\mathsf{begaie}\ I) = 2 \times \mathsf{long}\ I \\ \\ | \mathbf{let}\ \mathsf{rec}\ \mathsf{begaie}\ | = \mathsf{match}\ |\ \mathsf{with} \\ & |\ [] \to [] \\ & |\ \mathsf{x} :: \ \mathsf{q} \to \mathsf{x} :: \mathsf{x} :: \ (\mathsf{begaie}\ \mathsf{q}) \end{array} \qquad \begin{array}{ll} | \mathbf{et}\ \mathsf{rec}\ \mathsf{long}\ | = \mathsf{match}\ |\ \mathsf{with} \\ & |\ [] \to 0 \\ & |\ \mathsf{x} :: \ \mathsf{q} \to 1 + (\mathsf{long}\ \mathsf{q}) \end{array}$$

Prouver: $\forall I P(I)$

long(begaie []) = long([]) =
$$0 = 2 \times 0 = 2 \times long$$
 []

$$\begin{array}{ll} P(I) & \stackrel{\mathrm{def}}{=} & \mathsf{long}(\mathsf{begaie}\ I) = 2 \times \mathsf{long}\ I \\ \\ \mathsf{let}\ \mathsf{rec}\ \mathsf{begaie}\ \mathsf{l} = \mathsf{match}\ \mathsf{l}\ \mathsf{with} \\ & |\ [] \to [] \\ & |\ \mathsf{x} :: \ \mathsf{q} \to \mathsf{x} :: \mathsf{x} :: \ (\mathsf{begaie}\ \mathsf{q}) \end{array} \qquad \begin{array}{l} \mathsf{let}\ \mathsf{rec}\ \mathsf{long}\ \mathsf{l} = \mathsf{match}\ \mathsf{l}\ \mathsf{with} \\ & |\ [] \to 0 \\ & |\ \mathsf{x} :: \ \mathsf{q} \to 1 + (\mathsf{long}\ \mathsf{q}) \end{array}$$

Prouver: $\forall I P(I)$

- long(begaie []) = long([]) = $0 = 2 \times 0 = 2 \times long$ []
- $ightharpoonup \forall q x$, hypothèse de récurrence : long(begaie q) = 2 × long q

```
P(I) \stackrel{\text{def}}{=} long(begaie\ I) = 2 \times long\ I
|et\ rec\ begaie\ | = match\ |\ with
|et\ rec\ long\ | = match\ |\ w
```

Prouver : $\forall I P(I)$

```
    ▶ long(begaie []) = long([]) = 0 = 2 × 0 = 2 × long []
    ▶ ∀ q x, hypothèse de récurrence : long(begaie q) = 2 × long q long (begaie (x :: q)) = long (x :: x :: begaie q) = 1 + 1 + long (begaie q) = 1 + 1 + 2 × long q (hyp rec) = 2 × (1 + long q)
```

 $= 2 \times (long(x :: q))$

La récurrence en informatique

Une preuve par récurrence structurelle sur des arbres

Raisonnement par récurrence structurelle

Idée sous-jacente

On donne le résultat sur

- ► l'arbre élémentaire FV
- ▶ un arbre N(g, x, d) en supposant connu le résultat sur les sous-arbres g et d

On aura ainsi le résultat sur n'importe quel arbre binaire.

Raisonnement par récurrence structurelle

Idée sous-jacente

On donne le résultat sur

- ► l'arbre élémentaire FV
- ▶ un arbre N(g, x, d) en supposant connu le résultat sur les sous-arbres g et d

On aura ainsi le résultat sur n'importe quel arbre binaire.

Récurrence sur les arbres binaires

Soit P un prédicat sur les arbres binaires De $P(\mathsf{FV})$ et $\forall g, x, d, \ P(g) \land P(d) \Rightarrow P(\mathsf{N}(g, x, d))$ on infère $\forall a, \ P(a)$.

Raisonnement par récurrence structurelle

Idée sous-jacente

On donne le résultat sur

- ► l'arbre élémentaire FV
- ▶ un arbre N(g, x, d) en supposant connu le résultat sur les sous-arbres g et d

On aura ainsi le résultat sur n'importe quel arbre binaire.

Récurrence sur les arbres binaires

Soit P un prédicat sur les arbres binaires De $P(\mathsf{FV})$ et $\forall g, x, d, \ P(g) \land P(d) \Rightarrow P(\mathsf{N}(g, x, d))$ on infère $\forall a, \ P(a)$.

Ceci se généralise à tous les types somme inductifs.

Preuve sur le nombre de feuilles et de clés

$$P(a) \stackrel{\text{def}}{=} \text{nbf } a = \text{nbc } a + 1$$

Preuve sur le nombre de feuilles et de clés

$$\begin{array}{ll} P(a) & \stackrel{\mathrm{def}}{=} & \mathsf{nbf} \ a = \mathsf{nbc} \ a + 1 \\ \\ \textbf{let} \ \mathsf{rec} \ \mathsf{nbf} \ a = \mathsf{match} \ \mathsf{a} \ \mathsf{with} \\ | \ \mathsf{FV} \to 1 \\ | \ \mathsf{N} \ (\mathsf{g}, \, \mathsf{x}, \, \mathsf{d}) \to \mathsf{nbf} \ \mathsf{g} + \mathsf{nbf} \ \mathsf{d} \end{array} \qquad \begin{array}{ll} \textbf{let} \ \mathsf{rec} \ \mathsf{nbc} \ \mathsf{a} = \mathsf{match} \ \mathsf{a} \ \mathsf{with} \\ | \ \mathsf{FV} \to 0 \\ | \ \mathsf{N} \ (\mathsf{g}, \, \mathsf{x}, \, \mathsf{d}) \to \mathsf{nbc} \ \mathsf{g} + 1 + \mathsf{nbc} \ \mathsf{d} \end{array}$$

Prouver $\forall a \ P(a)$ par récurrence structurelle sur a.

P(a) $\stackrel{\text{def}}{=}$ nbf a = nbc a + 1

Preuve sur le nombre de feuilles et de clés

$$\begin{tabular}{ll} \textbf{let rec nbf a} &= \texttt{match a with} \\ &\mid \mathsf{FV} \to \mathbf{1} \\ &\mid \mathsf{N} \ (\mathsf{g}, \, \mathsf{x}, \, \mathsf{d}) \to \mathsf{nbf} \ \mathsf{g} + \mathsf{nbf} \ \mathsf{d} \\ \end{tabular} \begin{tabular}{ll} \textbf{let rec nbc a} &= \texttt{match a with} \\ &\mid \mathsf{FV} \to \mathbf{0} \\ &\mid \mathsf{N} \ (\mathsf{g}, \, \mathsf{x}, \, \mathsf{d}) \to \mathsf{nbc} \ \mathsf{g} + \mathbf{1} + \mathsf{nbc} \ \mathsf{d} \\ \end{tabular}$$

Prouver $\forall a \ P(a)$ par récurrence structurelle sur a.

▶
$$nbf FV = 1 = 0 + 1 = nbc FV + 1$$

 $P(a) \stackrel{\text{def}}{=} \text{nbf } a = \text{nbc } a + 1$

Preuve sur le nombre de feuilles et de clés

$$\begin{tabular}{ll} \textbf{let} \ \textbf{rec} \ \textbf{nbf} \ \textbf{a} = \texttt{match} \ \textbf{a} \ \textbf{with} \\ & | \ \textbf{FV} \to \textbf{1} \\ & | \ \textbf{N} \ (\texttt{g}, \, \texttt{x}, \, \texttt{d}) \to \textbf{nbf} \ \textbf{g} + \textbf{nbf} \ \textbf{d} \\ \end{tabular} \begin{tabular}{ll} \textbf{let} \ \textbf{rec} \ \textbf{nbc} \ \textbf{a} = \texttt{match} \ \textbf{a} \ \textbf{with} \\ & | \ \textbf{FV} \to \textbf{0} \\ & | \ \textbf{N} \ (\texttt{g}, \, \texttt{x}, \, \texttt{d}) \to \textbf{nbc} \ \textbf{g} + \textbf{1} + \textbf{nbc} \ \textbf{d} \\ \end{tabular}$$

Prouver $\forall a \ P(a)$ par récurrence structurelle sur a.

▶ nbf $\mathsf{FV} = 1 = 0 + 1 = \mathsf{nbc} \; \mathsf{FV} + 1$ ▶ Soient g, x et d tels que $\mathsf{nbf} \; g = \mathsf{nbc} \; g + 1$ et idem pour d.

nbf $\mathsf{N} \; (g, x, d) = \mathsf{nbf} \; g + \mathsf{nbf} \; d$ $= (\mathsf{nbc} \; g + 1) + (\mathsf{nbc} \; d + 1) \qquad (hyps \; rec)$ $= (\mathsf{nbc} \; g + 1 + \mathsf{nbc} \; d) + 1$ $= (\mathsf{nbc} \; \mathsf{N} \; (g, x, d)) + 1$

Et la récurrence sur les entiers?

Raisonnements par récurrence sur les entiers

Récurrence sur les listes

Soit P un prédicat sur les listes.

De P([]) et $\forall x, q, P(q) \Rightarrow P(x :: q)$ on infère $\forall I, P(I)$.

Et la récurrence sur les entiers?

Raisonnements par récurrence sur les entiers

Récurrence sur les listes

Soit P un prédicat sur les listes.

De P([]) et $\forall x, q, P(q) \Rightarrow P(x :: q)$ on infère $\forall I, P(I)$.

Récurrence sur les entiers naturels

Soit *P* un prédicat sur les entiers naturels.

De P(0) et $\forall n, P(n) \Rightarrow P(n+1)$ on infère $\forall n, P(n)$.

Raisonnements par récurrence sur les entiers

Récurrence sur les listes

Soit P un prédicat sur les listes.

De P([]) et $\forall x, q, P(q) \Rightarrow P(x :: q)$ on infère $\forall I, P(I)$.

Récurrence sur les entiers naturels

Soit *P* un prédicat sur les entiers naturels.

De P(0) et $\forall n, P(n) \Rightarrow P(n+1)$ on infère $\forall n, P(n)$.

Conceptuellement

type nat = Zero | Succ of nat

où Succ(n) représente n+1.

Programmation récursive sur les entiers

En pratique

Quelques différences entre int et nat

- ► représentation interne efficace
- ▶ int est borné
- ▶ int comprend des entiers négatifs

Programmation récursive sur int

Filtrage remplacé par :

- ► test à 0
- ▶ l'utilisation de n-1 lors d'un appel récursif