

Discerning Mouse Trajectory Features with the Drift Diffusion Model

ANTON LEONTYEV & TAKASHI YAMAUCHI TEXAS A&M UNIVERSITY, DEPARTMENT OF PSYCHOLOGICAL AND BRAIN SCIENCES

 $\rho = 0.12$

INTRODUCTION

Mouse-tracking is a new and popular action-based measure of behavior. However, its usage rests on two untested assumptions: (a) that keypress and mouse movement designs elicit the same decision processes; (b) that mouse movement features can be linked directly to the implicit processes in one's mind.

Questions:

- Do people use comparable decision processes in tasks with keypress and mouse movement designs?
- Do the mouse movement features link directly to decision process parameters?

DESIGN & MEASURES

Within-subjects design:

- Delay discounting task (mouse tracking & keypress)
- Stop-signal task (mouse tracking & key-press)

Drift diffusion model:

- Boundary separation (a)
- Drift rate (v)
- Nondecision time (t)

Figure 1: Drift Diffusion model

ACCURACY IN SST

Figure 3: Accuracy in mouse and keypress SST

TASKS & PARTICIPANTS

Mouse movement features:

- Area under curve
- Mean max velocity
- Mean max velocity time

Figure 2: Calculation of measures

N participants = 51 (23 male and 28 female)

AGREEMENT BETWEEN HDDM PARAMETERS IN DDT AND SST

Figure 4: DDM parameters in DDT (left); DDM parameters in SST (right)

Mouse movement measures and DDM parameters

Table 1: Mouse measures and DDM parameters in DDT

	k (key)	a (key)	v (key)	t (key)	
AUC_{ss}	36*	.44**	.33*	.04	
Vel_{ss}	.06	24	07	06	
$VelT_{ss}$	31*	.06	.29*	.09	
AUC_{ll}	.09	12	 11	03	
Vel_{ll}	.08	29*	10	27	
$VelT_{ll}$.04	.04	08	.20	
			*p<.05,**p<.01		

Table 2: Mouse measures and DDM parameters in SST

	a (key)	v (key)	t (key)
$\overline{AUC_{go}}$	07	.24	25
Vel_{go}	06	.11	04
$VelT_{go}$.33*	10	.41**
AUC_{stop}	17	.05	20
Vel_{stop}	17	.17	42**
$VelT_{stop}$.27	11	.29*
		*p<.05	5,**p<.01

DISCUSSION

- Task convergence was well preserved in the DDT, while SST was more prone to contextual factors
- AUC and other mouse measures had strong relationships with decision process parameters
- Both keypress and mouse movement versions of SST and DDT preserve individual variability associated with decision strategies well