Explicit method - Bender-Schmidt method

Bender-Schmidt method is used to solve the heat equation and similar partial equations.

The general equation of heat equation is

$$\frac{\partial^2 u}{\partial x^2} - a \frac{\partial u}{\partial t} = 0; \text{ where } \begin{cases} x & \to \text{ indicate distance} \\ y & \to \text{ indicate time} \end{cases}$$

General formula of Bender-Schmidt explicit method is

$$u_{i,j+1} = \frac{1}{2} \left[u_{i-1,j} + u_{i+1,j} \right]$$

- $u_{xx} = au_t$

Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$ given u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x), taking $\Delta x = 1$ and $\Delta t = 1$. Find the value of u upto t = 5 using Bender-Schmidt's explicit finite difference Scheme.

Given:

$$u_{xx} = 2u_t$$
 \Rightarrow $a = 2$
 $h = \Delta x = 1$ and $k = \Delta t = 1$
 $\lambda = \frac{k}{ah^2}$ \Rightarrow $\lambda = \frac{1}{2(1)^2} = \frac{1}{2}$

Using the boundary conditions

$$u(0,t) = 0$$
 \Rightarrow $u_{0,j} = 0$ First Column $u(4,t) = 0$ \Rightarrow $u_{4,j} = 0$ Last Column

x varies from 0 to 4 with h = 1.

x:	0	1	2	3	4
i:	0	1	2	3	4

Find the value of u upto t = 5 with k = 1.

<i>t</i> :	0	1	2	3	4	5
j:	0	1	2	3	4	5

Initial condition is given as,

$$u(x,0) = x(4-x)$$

The value of first row is given by,

$$u(0,0) = 0$$

$$u(1,0) = 1(4-1) = 3$$

$$u(2,0) = 2(4-2) = 4$$

$$u(3,0) = 3(4-3) = 3$$

$$u(4,0) = 4(4-4) = 0$$

General formula of Bender-Schmidt explicit method is

$$u_{i,j+1} = \frac{1}{2} \left[u_{i-1,j} + u_{i+1,j} \right]$$

The values of $u_{i,j}$ are tabulated below:

		x = 0	x = 1	x = 2	x = 3	x = 4
	j i	0	1	2	3	4
t = 0	0	0	3	4	3	0
t = 1	1	0				0
t=2	2	0				0
t=3	3	0				0
t=4	4	0				0
t=5	5	0				0

		x = 0	x = 1	x = 2	x = 3	x = 4
	j i	0	1	2	3	4
t = 0	0	0	3	4	3	0
t = 1	1	0	2	3	2	0
t=2	2	0	1.5	2	1.5	0
t=3	3	0	1	1.5	1	0
t = 4	4	0	0.75	1	0.75	0
t=5	5	0	0.5	0.75	0.50	0

Since,

Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ given u(0,t) = 0, u(5,t) = 0, $u(x,0) = x^2(25-x^2)$. Compute u(x,t) upto t=5 with $\Delta x=1$ using Benders-Schmidt's method.

Ans: Since λ value is not given, let us take $\lambda = \frac{1}{2}$. Given:

$$u_{xx} = u_t$$
 \Rightarrow $a = 1$
 $h = \Delta x = 1$

$$\frac{k}{ah^2} = \lambda \qquad \Rightarrow \qquad \frac{k}{1(1)^2} = \frac{1}{2} \qquad \Rightarrow \qquad k = 0.5$$

Using the boundary conditions

$$u(0,t) = 0$$
 \Rightarrow $u_{0,j} = 0$ First Column
 $u(5,t) = 0$ \Rightarrow $u_{5,j} = 0$ Last Column

x varies from 0 to 5 with h = 1.

3	r :	0	1	2	3	4	5
	i :	0	1	2	3	4	5

Find the value of u upto t = 5 with k = 0.5.

<i>t</i> :	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
j:	0	1	2	3	4	5	6	7	8	9	10

Next.

$$u(x,0) = x^2(25 - x^2)$$

The value of first row is given by,

$$u(0,0) = 0^{2}(25 - 0^{2}) = 0$$

$$u(1,0) = 1^{2}(25 - 1^{2}) = 24$$

$$u(2,0) = 2^{2}(25 - 2^{2}) = 84$$

$$u(3,0) = 3^{2}(25 - 3^{2}) = 144$$

$$u(4,0) = 4^{2}(25 - 4^{2}) = 144$$

$$u(5,0) = 5^{2}(25 - 5^{2}) = 0$$

General formula of Bender-Schmidt explicit method is

$$u_{i,j+1} = \frac{1}{2} [u_{i-1,j} + u_{i+1,j}]$$

The values of $u_{i,j}$ are tabulated below:

		x = 0	x = 1	x = 2	x = 3	x = 4	x = 5
	j	0	1	2	3	4	5
t = 0	0	0	24	84	144	144	0
t = 0.5	1						
t = 1	2						
t = 1.5	3						
t=2	4						
t = 2.5	5						
t=3	6						
t = 3.5	7						
t=4	8						
t = 4.5	9						
t=5	10						

Implicit method - Crank-Nicolson

Crank-Nicolson method is used to solve the heat equation and similar partial equations.

The general equation of heat equation is

$$\frac{\partial^2 u}{\partial x^2} - a \frac{\partial u}{\partial t} = 0; \text{ where } \begin{cases} x & \to \text{ indicate distance} \\ y & \to \text{ indicate time} \end{cases}$$

Types:

- One step
- Two step

The Crank-Nicolson implicit formula is

$$u_{i,j+1} = \frac{1}{4} \left[u_{i+1,j+1} + u_{1-i,j+1} + u_{i+1,j} + u_{i-1,j} \right]$$

- $\bullet \ \lambda = \frac{k}{ah^2} \ [\because \lambda = 1], \text{ implies } \frac{k}{ah^2} = 1 \ \Rightarrow \ k = ah^2.$
- $u_{xx} = au_t$
- $b = \Delta x$
- First row value can be found from u(x, 0)

Use Crank-Nicholson scheme to solve $\frac{\partial^2 u}{\partial x^2} = 16 \frac{\partial u}{\partial t}$, 0 < x < 1 and t > 0 given u(x,0) = 0, u(0,t) = 0 and u(1,t) = 100t. Compute u(x,t) for one time step, taking $\Delta x = \frac{1}{4}$.

Given, $u_{xx} = 16u_t$, implies a = 16.

Since 0 < x < 1, x varies from 0 to 1 with $\Delta x = h = \frac{1}{4} = 0.25$. So,

$$x: 0 0.25 0.50 0.75 1$$

 $\Rightarrow i: 0 1 2 3 4$

To find k,

$$\lambda = \frac{k}{ah^2}$$

$$\frac{k}{ah^2} = 1 \qquad \Rightarrow \qquad k = ah^2$$

$$k = 16\left(\frac{1}{4}\right)^2 \qquad \Rightarrow \qquad k = 16\left(\frac{1}{16}\right) = 1$$

$$k = 1$$

To find the value of u(x, t) upto one step time with k = 1.

$$t = 0, 1$$

$$\Rightarrow j = 0, 1$$

Using the boundary conditions (i) u(0,t) = 0 and (ii) u(1,t) = 100t. From u(0,t) = 0, the values of first column is given by,

when
$$t = 0,$$
 $u(0,0) = 0$
when $t = 1,$ $u(0,1) = 0$

From u(1, t) = 100t, the values of last column is given by,

when
$$t = 0,$$
 $u(1,0) = 100(0) = 0$
when $t = 1,$ $u(1,1) = 100(1) = 100$

Using initial condition u(x, 0) = 0, we can find the first row values.

$$u(0,0) = 0$$
 $u(0.75,0) = 0$
 $u(0.25,0) = 0$ $u(1,0) = 0$

The Crank-Nicolson implicit formula is

$$u_{i,j+1} = \frac{1}{4} \left[u_{i+1,j+1} + u_{1-i,j+1} + u_{i+1,j} + u_{i-1,j} \right]$$
 (92)

		x = 0	x = 0.25	0.5	0.75	x = 1
	j i	0	1	2	3	4
t = 0	0	0	0	0	0	0
t = 1	1	0	u_1	u_2	и3	100

From (92),

$$u_1 = \frac{1}{4} [0 + 0 + 0 + u_2] = \frac{1}{4} u_2$$
 (93)

$$u_2 = \frac{1}{4} [0 + 0 + u_1 + u_3] = \frac{1}{4} [u_1 + u_3]$$
 (94)

$$u_3 = \frac{1}{4} [0 + 0 + u_2 + 100] = \frac{1}{4} [u_2 + 100]$$

Substitute equation (93) and (95) in (94)

$$u_{2} = \frac{1}{4} \left[\frac{1}{4} u_{2} + \frac{1}{4} [u_{2} + 100] \right]$$

$$= \frac{1}{16} [u_{2} + u_{2} + 100] = \frac{2u_{2} + 100}{16}$$

$$16u_{2} = 2u_{2} + 100$$

$$u_{2} = \frac{100}{14} = 7.1429$$
(96)

From equation (93)

$$u_1 = \frac{1}{4}u_2 = \frac{1}{4}(7.1428) = 1.7857$$

From equation (95)

$$u_3 = \frac{1}{4}[u_2 + 100] = \frac{1}{4}(u_2 + 100) = \frac{7.1429 + 100}{4} = 26.7857$$

The values are

$$u_1 = 1.7857,$$
 $u_2 = 7.1429,$ $u_3 = 26.7857.$

Solve by Crank-Nicholson method the equation $u_{xx} = u_t$ subject to u(0, t) = 0, u(1,t) = t and u(x,0) = 0 for 2 time steps with $h = \frac{1}{4}$, $k = \frac{1}{16}$.

Given, $u_{xx} = u_t$, implies $\alpha = 1$.

From u(0,t) = 0 and u(1,t) = t, x varies from 0 to 1 with $\Delta x = h = \frac{1}{4} = 0.25$. So.

$$x: 0 0.25 0.50 0.75 1$$

 $\Rightarrow i: 0 1 2 3 4$

To find k,

$$\lambda = \frac{k}{\alpha h^2}$$
 [By default $\lambda = 1$]
$$\frac{k}{\alpha h^2} = 1 \qquad \Rightarrow \qquad k = \alpha h^2$$

$$k = 1 \left(\frac{1}{4}\right)^2 \qquad \Rightarrow \qquad k = 1 \left(\frac{1}{16}\right) = \frac{1}{16}$$
Since, two time steps with $k = \frac{1}{16}$, we have $t = 0, 1 \left(\frac{1}{16}\right), 2 \left(\frac{1}{16}\right)$, i.e., $0, \frac{1}{16}, \frac{1}{16}$.

To find the value of u(x, t) upto two step time with $k = \frac{1}{16}$.

$$t = 0, \frac{1}{16}, \frac{2}{16}$$

 $\Rightarrow j = 0, 1, 2$

Using the boundary conditions (i) u(0,t) = 0 and (ii) u(1,t) = t. From u(0, t) = 0, the values of first column is given by,

when
$$t=0,$$
 $u(0,0)=0$ when $t=\frac{1}{16},$ $u\left(0,\frac{1}{16}\right)=0$ when $t=\frac{2}{16},$ $u\left(0,\frac{2}{16}\right)=0$

From u(1,t) = t, the values of last column is given by,

when
$$t = 0,$$
 $u(1,0) = (0) = 0$
when $t = \frac{1}{16},$ $u\left(1, \frac{1}{16}\right) = \left(\frac{1}{16}\right) = \frac{1}{16}$
when $t = \frac{2}{16},$ $u\left(1, \frac{2}{16}\right) = \left(\frac{2}{16}\right) = \frac{2}{16}$

Using initial condition u(x, 0) = 0, we can find the first row values.

$$u(0,0) = 0$$
 $u(0.75,0) = 0$
 $u(0.25,0) = 0$ $u(1,0) = 0$

The Crank-Nicolson implicit formula is

$$u_{i,j+1} = \frac{1}{4} \left[u_{i+1,j+1} + u_{1-i,j+1} + u_{i+1,j} + u_{i-1,j} \right]$$
(97)

		x = 0	x = 0.25	0.5	0.75	x = 1
	j i	0	1	2	3	4
t = 0	0	0	0	0	0	0
$t = \frac{1}{16}$	1	0	u_1	u_2	и3	$\frac{1}{16}$
$t = \frac{2}{16}$	2	0	<i>u</i> ₄	<i>u</i> ₅	<i>u</i> ₆	$\frac{2}{16}$

From (97),

$$u_1 = \frac{1}{4} \left[0 + 0 + 0 + u_2 \right] = \frac{1}{4} u_2 \tag{98}$$

$$u_2 = \frac{1}{4} [0 + 0 + u_1 + u_3] = \frac{1}{4} [u_1 + u_3]$$
 (99)

$$u_3 = \frac{1}{4} \left[0 + 0 + u_2 + \frac{1}{16} \right] = \frac{1}{4} \left[u_2 + \frac{1}{16} \right]$$

Substitute equation (98) and (100) in (99)

$$u_{2} = \frac{1}{4} \left[\frac{1}{4} u_{2} + \frac{1}{4} \left[u_{2} + \frac{1}{16} \right] \right]$$

$$= \frac{1}{16} \left[u_{2} + u_{2} + \frac{1}{16} \right] = \frac{2u_{2} + \frac{1}{16}}{16}$$

$$16u_{2} = 2u_{2} + \frac{1}{16}$$

$$u_{2} = \frac{1}{16} \times \frac{1}{14} = 0.0045$$
(101)

From equation (98)

$$u_1 = \frac{1}{4}u_2 = \frac{1}{4}(0.0045) = 0.0011$$

From equation (100)

$$u_3 = \frac{1}{4} \left[u_2 + \frac{1}{16} \right] = \frac{1}{4} \left(u_2 + \frac{1}{16} \right) = \frac{0.0045 + \frac{1}{16}}{4} = 0.0167$$

The values are $u_1 = 0.0011$, $u_2 = 0.0045$, $u_3 = 0.0167$. Similarly $u_4 = 0.0059$, $u_5 = 0.0191$, $u_6 = 0.0528$.

