7-9 Monday – 309-GD2

Xử lý ảnh INT3404 1

Giảng viên: TS. Nguyễn Thị Ngọc Diệp

Email: ngocdiep@vnu.edu.vn

Slide & code: https://github.com/chupibk/INT3404_1

Lịch trình

in	Nội dung	Yêu cầu đối với sinh viên
1	Giới thiệu môn học Làm quen với OpenCV + Python	Cài đặt môi trường: Python 3, OpenCV 3, Numpy, Jupyter Notebook
2	Phép toán điểm (Point operations) - Contrast adjustment	Làm bài tập 1: điều chỉnh gamma tìm contrast hợp lý
3	Histogram - Histogram equalization - Phân loại ảnh dùng so sánh histogram	Thực hành ở nhà
4	Ghép ảnh	Thực hành ở nhà
5	Phép lọc trong không gian điểm ảnh (linear processing filtering) - làm mịn, làm sắc ảnh - tìm cạnh (edge detection)	Thực hành ở nhà Tìm hiểu thêm các phép lọc
6	Các phép toán hình thái (Erosion, Dilation, Opening, Closing) - tìm biển số	Làm bài tập 2: tìm barcode
7	Chuyển đổi không gian - miền tần số (Fourier) - Hough transform	Thực hành ở nhà
8	Phân vùng (segmentation) - depth estimation - threshold-based - watershed/grabcut	Đăng ký thực hiện bài tập lớn
9	Mô hình màu Chuyển đổi giữa các mô hình màu	Làm bài tập 3: Chuyển đổi mô hình màu và thực hiện phân vùng
10	Mô hình nhiễu -Giảm nhiễu -Khôi phục ảnh -Giảm nhiễu chu kỳ - Ước lượng hàm Degration -Hàm lọc ngược, hàm lọc Wiener	Thực hành ở nhà
11	Template matching -Tìm ảnh	Làm bài tập 4: puzzle
	Nén ảnh	Thực hành ở nhà
13	Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
14	Hướng dẫn thực hiện đồ án môn học	Trình bày đồ án môn học
15	Tổng kết cuối kỳ	Ôn tập

1

Ôn lại tuần 2: Phép toán trên điểm ảnh

- Lấy mẫu, lượng tử hoá
- Biến đổi trên điểm ảnh → chỉnh độ sáng, độ tương phản
 - Gamma
 - Piecewise linear transformation
 - Negation
- Kết hợp ảnh
 - Tính trung bình
 - Trừ background
- Bài tập về nhà:
 - https://forms.gle/ALrnAWc3c6h3dMqU9

Xử lý ảnh - INT3404 1 - DiepNg - 2019 UET.VNU

3

Histogram

Cách tính histogram

- $\mathbf{r}_{\mathbf{k}}$ là mức xám của ảnh f(x, y)
- n_k là số điểm ảnh (pixels) có giá trị r_k
- Biểu đồ mức xám chưa chuẩn hoá (unnormalized histogram) của f được định nghĩa là:

$$h(r_k) = n_k$$
 for $k = 0, 1, 2, ..., L - 1$

• Biểu đồ chuẩn hoá (normalized histogram):

$$p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN}$$

Với M, N là chiều cao và rộng của f

Xác suất của mức xám trong ảnh

Histogram equalization

Cân bằng biểu đồ mức xám

Cân bằng histogram

For discrete values

$$s = T(r) = (L-1) \int_0^r p_r(w) dw$$

$$p_r(r_k) = \frac{n_k}{MN}$$

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

$$= p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right|$$

$$= \frac{1}{L-1} \qquad 0 \le s \le L-1$$

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$
 $k = 0, 1, 2, ..., L-1$

Ví dụ:

TABLE 3.1

Intensity distribution and histogram values for a 3-bit, 64 × 64 digital image.

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02
,		

$$s_0 = 1.33 \rightarrow 1$$
 $s_2 = 4.55 \rightarrow 5$ $s_4 = 6.23 \rightarrow 6$ $s_6 = 6.86 \rightarrow 7$ $s_1 = 3.08 \rightarrow 3$ $s_3 = 5.67 \rightarrow 6$ $s_5 = 6.65 \rightarrow 7$ $s_7 = 7.00 \rightarrow 7$

Source: Gonzalez et al.

- 1. Tính histogram $p_r(r)$
- 2. Chuẩn hoá histogram

$$p_r(r_k) = \frac{n_k}{MN}$$

3. Tính hàm mật độ xác xuất

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$
 $k = 0, 1, 2, ..., L-1$

4. Tính giá trị mức xám cho từng điểm ảnh O(x, y) = round(T(I(x,y)))

Source: Gonzalez et al.

Adaptive histogram equalization

Contrast Limited Adaptive Histogram Equalization (CLAHE)

Campos, Gabriel Fillipe Centini, et al. "Machine learning hyperparameter selection for Contrast Limited Adaptive Histogram Equalization." *EURASIP Journal on Image and Video Processing* 2019.1 (2019): 59.

Histogram Matching (Specification)

Biến đổi biểu đồ mức xám theo một biểu đồ mức xám định trước

Histogram matching

Cách thực hiện histogram matching

1. Tính histogram của source $p_{r}(r)$ và thực hiện histogram equalization

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$
 $k = 0, 1, 2, ..., L-1$

2. Tính histogram của template $p_z(z)$

$$G(z_q) = (L-1)\sum_{i=0}^{q} p_z(z_i)$$

- 3. Với mỗi giá trị s_k , tìm z_q theo (2) sao cho $G(z_q) \sim s_k$
- 4. Thực hiện biến đổi:

$$r \rightarrow s_k \rightarrow z_q$$

Image classification using histogram

Giới thiệu bài toán

• Tìm ảnh trong tập dữ liệu ảnh gần giống với ảnh đầu vào nhất

