

Introduction

Sequential Circuit

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Introduction

How to realize Storage (Memory) Element

Basic Building Block for Storage/Memory

Latch

- Latch is level triggered single-bit memory element.
- Latch responds immediately to change in input(s)and (possibly in the presence of level enables control signal).
- Output can change multiple times during active enable (clock) signal.

Flip-flop

- Flip-flop is edge triggered single-bit memory element.
- Output can change only one time during clock cycle.

Basic Block for Storage/Memory

• Bi-stable Element

Bi-stable is the element/circuit having two stable states and is used to design latches and flip-flops.

Basic Bi-stable element

Cross-coupled inverters hold value Q and Q'

Cross-coupled inverters hold/store value Q and Q'

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

How to feed-in input or change state...?

Option1:

Write/Put opposite values on Q and Q' This requires Analog Overdriving.

Basic Hardware Designs for Storage/Memory Element

Storage using Cross-Coupled Inverters

Cross-coupled inverters hold value Q and Q'

Read: Get value from either Q or Q'

Storage: Maintains its state as long as power is applied.

- 1. How to hold/store even when power is removed...?
- 2. How to feed-in input or change state...?

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

How to feed-in input or change state...?

Option2:

Using Digital Convention Temporary break the feedback path.

stored bit

How to feed-in input or change state...?

Option3:

Using Digital Convention Storage and Setting output (O/P) using **NOR Gate** Logic

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Using Digital Convention Storage and Setting output (O/P) using **NOR Gate** Logic

So using SET (S) bit, output bit (Q) can either

- 1. Retain (store) the previous bit when S = '0' or
- 2. Set to logic high (1) when S = 1

Now, how to Reset output bit (Q = '0')....?

Inference: For S = '0', Q retains same logic in Next Stage. Hence acts as **storage** of O/P bit.

Inference: For S = '1', Q is always at logic high '1' in Next Stage. Hence acts as setting of O/P bit.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

How to feed-in input or change state...?

Option3:

Using Digital Convention

Storage and Re-setting output (O/P) using **NOR Gate** Logic

Inference: For $\mathbf{R} = \mathbf{0}^{\prime}$, Q retains same logic in Next Stage. Hence acts as **storage** of O/P bit.

Inference: For $\mathbf{R} = \mathbf{1}^{\prime}$, Q is always at logic low '0' in Next Stage. Hence acts as **re-setting** of O/P bit.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Cross-coupled NORs (S-R Latch)

Basic Hardware Designs for Storage/Memory Element

Using Digital Convention Storage and Re-setting output (O/P) using **NOR Gate** Logic

So using RESET (R) bit, output bit (Q) can either

- 1. Retain (store) the previous bit when R = '0' or
- 2. Re-set to logic low (0) when R = 1

Can you combine both 'S' and 'R' bits...?

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Operation: Cross-coupled NORs (S-R Latch)

(i) When S = '0', R = '0'

Initial State (n) Next State (n+1) Initial State (n)

Next State (n+1)

Inference: For S = 0 and R = 0, Q retains same logic in Next Stage. Hence acts as storage of O/P bit.

Operation: Cross-coupled NORs (S-R Latch)

Inference: For $S = \mathbf{0}$ and $R = \mathbf{1}$, Q is always low (logic $\mathbf{0}$) in Next Stage. Hence acts as \mathbf{re} -setting of O/P.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

17

19

Basic Hardware Designs for Storage/Memory Element

Operation: Cross-coupled NORs (S-R Latch)

Inference: For $S = {}^{\prime}1{}^{\prime}$ and $R = {}^{\prime}1{}^{\prime}$, Q goes to meta-stable (forbidden) in Next Stage. Hence this stage is invalid and not used.

Basic Hardware Designs for Storage/Memory Element

Operation: Cross-coupled NORs (S-R Latch)

Inference: For S = '1' and R = '0', Q is always high (logic '1') Next Stage. Hence acts as setting of O/P bit.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

18

Basic Hardware Designs for Storage/Memory Element

Cross-coupled NORs (S-R Latch)

Truth Table

Input of Latch Output of Latch

لثب			
S	R	Q_{n+1}	State
0	0	Previous State	No Change
0	1	0	Reset
1	0	1	Set
1	1	Undefined	Forbidden

^{*} Q'_{n+1} is complementary to Q_{n+1} .

Cross-coupled NORs (S-R Latch)

For **Combinational logic, truth table** is an important visualization and analyzing the function.

For **Sequential logic**, along with truth table, **state diagram** is an important visualization and analyzing the function.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

21

Basic Hardware Designs for Storage/Memory Element

State diagram: Cross-coupled NORs (S-R Latch)

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Cross-coupled NANDs
(S-R Latch)

Cross-coupled NANDs
(S'-R' Latch)

R'
Q'
S'
Q

It responds to active-High inputs

It responds to active-Low inputs

Basic Hardware Designs for Storage/Memory Element

How to feed-in input or change state...?

Option4:

Using Digital Convention
Storage and Setting output (O/P) using NAND Gate Logic

Storage and Setting output (O/P) using NAND Gate Logic

When S' = '0'

Initial State (n) Meta stable State Next State (n+1) Initial State (n) Next State (n+1)

Inference: For S' = 0, Q is always at logic high 1 in Next Stage. Hence acts as **setting** of O/P bit.

Initial State (n)

Next State (n+1)

S'=1

Inference: For S' = '1', Q retains same logic in Next Stage. Hence acts as **storage** of O/P bit.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

25

Basic Hardware Designs for Storage/Memory Element

How to feed-in input or change state...?

Option4:

Using Digital Convention
Storage and Re-setting output (O/P) using NAND Gate Logic

Basic Hardware Designs for Storage/Memory Element

Using Digital Convention Storage and Setting output (O/P) using **NAND Gate** Logic

So using SET (S') bit, output bit (Q) can either

- 1. Retain (store) the previous bit when S' = 1 or
- 2. Set to logic high (1) when S' = 0

Now, how to Reset output bit (Q = '0')....?

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•

Basic Hardware Designs for Storage/Memory Element

Inference: For $\mathbf{R'} = \mathbf{`0'}$, Q is always at logic low '0' in Next Stage. Hence acts as \mathbf{re} -setting of O/P bit.

Inference: For $\mathbf{R'} = \mathbf{1'}$, Q retains same logic in Next Stage. Hence acts as **storage** of O/P bit.

Using Digital Convention Storage and Re-setting output (O/P) using **NAND Gate** Logic

So using RESET (R') bit, output bit (Q) can either

- 1. Retain (store) the previous bit when R' = 1 or
- 2. Re-set to logic low (0) when R' = '0'

Can you combine both S' and R' bits...?

Dr. Yash Agrawal @ DA-IICT Gandhinagar

20

t

Basic Hardware Designs for Storage/Memory Element

Operation: Cross-coupled NANDs (S'-R' Latch)

Next State (n+1) S' = 0 $Q'_{n+1} = 1$ $Q'_{n+1} = 1$

Initial State (n) $S' = 0 \qquad Q_n = 1$ $R' = 0 \qquad Q'_n = 0$

Next State (n+1) $S' = 0 \qquad Q_{n+1} = 0$ $R' = 0 \qquad Q'_{n+1} = 0$

Inference: For $S' = {}^{\circ}0{}^{\circ}$ and $R' = {}^{\circ}0{}^{\circ}$, Q goes to meta-stable (forbidden) in Next Stage. Hence this stage is invalid and not used.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Cross-coupled NANDs (S'-R' Latch)

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Operation: Cross-coupled NANDs (S'-R' Latch)

(ii) When $S' = {}^{\circ}0'$, $R' = {}^{\circ}1'$ Initial State (n) Meta stable State $S' = 0 \qquad Q_n = 0 \qquad S' = 0 \qquad Q_{n+1} = 1$ $Q' = 1 \qquad P' = 1 \qquad Q' = 1$ $Q' = 1 \qquad P' = 1 \qquad Q' = 1$

Initial State (n) Next State (n+1) $S' = 0 \qquad Q_{n+1} = 1$

Inference: For S' = 0 and R' = 1, Q is always high (logic 1) in Next Stage. Hence acts as setting of O/P bit.

Operation: Cross-coupled NANDs (S'-R' Latch)

Initial State (n) Meta stable State Next State (n+1)
$S' = 1$ $Q_n = 1$ $S' = 1$ $Q = 1$ $Q_{n+1} = 0$
$R' = 0$ $Q'_n = 0$ $R' = 0$ $Q' = 1$ $Q'_{n+1} = 1$

Inference: For S' = '1' and R' = '0', Q is always low (logic '0') in Next Stage. Hence acts as re-setting of O/P.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

22

Basic Hardware Designs for Storage/Memory Element

Operation: Cross-coupled NANDs (S'-R' Latch)

(iv) When S' = '1',	R' = '1'	! !	
Initial State (n)	Next State (n+1)	Initial State (n)	Next State (n+1)
$S' = 1$ $Q_n = 0$ $Q'_n = 1$	$S' = 0$ $Q_{n+1} = 0$ $Q'_{n+1} = 1$	$S' = 1$ $Q_n = 1$ $R' = 1$ $Q'_n = 0$	$S' = 0$ $Q_{n+1} = 0$ $Q'_{n+1} = 0$

Inference: For S' = '1' and R' = '1', Q retains same logic in Next Stage. Hence acts as storage of O/P bit.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

34

Basic Hardware Designs for Storage/Memory Element

Cross-coupled NANDs (S'-R' Latch)

Input of Latch	Output of Latch
----------------	-----------------

لـئــ	\Box			
S'	R'	Q_{n+1}	State	
0	0	Undefined	Forbidden	
0	1	1	Set	
1	0	0	Reset	
1	1	Previous State	No Change	

^{*} Q'_{n+1} is complementary to Q_{n+1} .

S'-R' hence acts as Negative logic latch.

Dr. Yash Agrawal @ DA-HCT Gandhinagar

Assignment-7

1. Draw state diagram if cross-coupled NANDs (S'-R' latch).

Cross-coupled NORs (S-R Latch)

Cross-coupled NANDs (S'-R' Latch)

How to add controllability in it...?

Gated S-R Latch

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

Truth Table

Input of Latch Output of Latch

	^_) [
En	S	R	Q_{n+1}	State
1	0	0	Previous State	No Change
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	Undefined	Forbidden
0	X	X	Previous State	No Change

* Q'_{n+1} is complementary to Q_{n+1} .

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Basic Hardware Designs for Storage/Memory Element

ın	putor	Laten	Output	of Latch	
En	S	R	Q_{n+1}	State	
1	0	0	Previous State	No Change	
1	0	1	0	Reset	
1	1	0	1	Set	m 11.1
1	1	J	Undefined	Forbidden <	This condition
0	x	x	Previous State	No Change	is undestrable

How to avoid it...?

Gated D Latch

Basic Hardware Designs for Storage/Memory Element

Gated D Latch

- D-Latch also known as transparent or delay latch.
- There is no '00' or '11' condition in this latch.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Gated D Latch

Truth Table

* Q^{\prime}_{n+1} is complementary to Q_{n+1} .

Dr. Yash Agrawal @ DA-IICT Gandhinagar

-

Exemplary Systems

1. Flight Attendant Call Button

1. Call button pressed - light turns on

2. Call button released - light stays on

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Numericals

Implement Positive and Negative logic based D latch using 2:1 Multiplexer.

Numericals

Implement Positive and Negative logic based D latch using 2:1 Multiplexer.

Positive logic based D-latch

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Numericals

Implement Positive and Negative logic based D latch using 2:1 Multiplexer.

Negative logic based D-latch

Dr. Yash Agrawal @ DA-IICT Gandhinagar

45

Issues/Limitations with Latches

Latches are level sensitive circuits. Output changes for entire period of logic high/low signal.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•

Issues/Limitations with Latches

Latches are level sensitive circuits. Output changes for entire period of logic high/low signal.

Many times this is not desirables like in memories, processors.

How to resolve this timing issues..?

Flip-flops (edge triggered circuits)

This we will discuss Next....

Assignment-7

1. Draw state diagram if cross-coupled NANDs (S'-R' latch).