WU #14 - Model Selection

Math 158 - Jo Hardin

Tuesday 3/22/2022

Name:	 -
Names of people you worked with:	

Consider the regression model handouts concerning the birth weight data.

Write down two versions of the same model:

- 1. The population model representing the variables which you've selected to use in the final model.
- 2. The sample model representing the same variables (which you've selected to use in the final model).

	(Intercept)	mage	mature	weeks	premie	gained	lowbirthweight	habit	marital
2	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
3	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE
4	TRUE	FALSE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
5	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
6	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
7	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE

р	r.squared	adj.r.squared	BIC	$mallows_cp$
2	0.4143466	0.4137229	-489.7666	177.888962
3	0.4844974	0.4833983	-602.9780	46.345096
4	0.4990304	0.4974264	-623.0407	20.679185
5	0.5072677	0.5051620	-631.7950	6.998072
6	0.5087428	0.5061158	-627.7694	6.189978
7	0.5093806	0.5062289	-622.1450	6.975775

Solution:

There isn't a single right answer. Always remember, modeling is an art. Seems like maybe a model with 4 or 5 (p = 5 or 6) variables will be a good balance of information and simplicity. I'll choose the four variable (p = 5) model (seems to be the biggest jump in information).

1. The population model:

$$E[\text{weight}] = \beta_0 + \beta_1 \text{mage} + \beta_2 \text{weeks} + \beta_3 \text{gained} + \beta_4 \text{lowbirthweight}$$

2. The sample model:

$$\widehat{\texttt{weight}} = b_0 + b_1 \texttt{mage} + b_2 \texttt{weeks} + b_3 \texttt{gained} + b_4 \texttt{lowbirthweight}$$

Which can also be written as (after running the model in R)

$$\widetilde{\text{weight}} = -1.67 + 0.02 \cdot \text{mage} + 0.15 \cdot \text{weeks} + 0.01 \cdot \text{gained} + 2.42 \cdot \text{lowbirthweight}$$

```
lm(weight ~ mage + weeks + gained + lowbirthweight, data = births14) %>%
tidy()
```

```
## # A tibble: 5 x 5
##
     term
                            estimate std.error statistic p.value
##
     <chr>>
                               <dbl>
                                          <dbl>
                                                    <dbl>
                                                              <dbl>
                             -1.67
                                        0.493
                                                    -3.38 7.49e- 4
## 1 (Intercept)
                              0.0201
                                                     3.96 8.21e- 5
## 2 mage
                                        0.00507
## 3 weeks
                              0.149
                                        0.0131
                                                    11.4 4.44e-28
## 4 gained
                              0.0103
                                        0.00191
                                                     5.43 7.29e- 8
## 5 lowbirthweightnot low
                              2.42
                                                    20.0 2.50e-74
                                        0.121
```