Найти промежутки вогнутости определенного знака и точки перегиба графиков следующих функций:

1299.
$$y = 3x^2 - x^3$$
. 1300. $y = \frac{a^2}{a^2 + x^3}$ $(a > 0)$.
1301. $y = x + x^{5/3}$. 1302. $y = \sqrt{1 + x^3}$.
1303. $y = x + \sin x$. 1304. $y = e^{-x^2}$.
1305. $y = \ln(1 + x^3)$. 1306. $y = x \sin(\ln x)$ $(x > 0)$.

1307. $y = x^x$ (x > 0).

1308. Показать, что кривая

$$y = \frac{x+1}{x^2+1}$$

имеет три точки перегиба, лежащие на одной прямой. Построить график этой функции.

1809. При каком выборе параметра h «кривая вероятности»

$$y = \frac{h}{\sqrt{\pi}} e^{-h^2 x^2} \quad (h > 0)$$

имеет точки перегиба $x = \pm \sigma$?

1310. Исследовать направление вогнутости циклоиды

$$x = a (t - \sin t), y = a (1 - \cos t) (a > 0).$$

1311. Пусть функция f(x) дважды дифференцируема в промежутке $a \le x < + \infty$, причем: 1) f(a) = A > 0; 2) f'(a) < 0; 3) $f''(x) \le 0$ при x > a.

Доказать, что уравнение f(x) = 0 имеет один и только один действительный корень в интервале $(a, +\infty)$.

1312. Функция f(x) называется выпуклой снизу (сверху) на интервале (a, b), если для любых точек x_1 и x_2 из этого интервала и произвольных чисел λ_1 и λ_2 $(\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_1 + \lambda_2 = 1)$ имеет место неравенство

$$f(\lambda_1x_1+\lambda_2x_2)<\lambda_1f(x_1)+\lambda_2f(x_2)$$

(или соответственно противоположное неравенство

$$f(\lambda_1x_1+\lambda_2x_2)>\lambda_1f(x_1)+\lambda_2f(x_2)$$

Доказать, что: 1) функция f(x) выпукла снизу на (a, b), если $f^{tt}(x) > 0$, при a < x < b; 2) f(x) выпукла сверху на (a, b), если, $f^{tt}(x) < 0$, при a < x < b.