ASEN 2004: Vehicle Design and Performance
Aero Lab Milestone 2 Individual Glider
Design Concept

Peyton Early Section 013 Team 12

Aircraft Design Geometry and Key Parameters

- Swet = 0.3025 m^2
- Sref = 0.2085 m^2
- AR = 3.885
- Weight = 0.6034 kg

Aircraft Estimated Lift Curve and Whole Aircraft Drag Polar Analysis

Estimated Drag Polar C_D = 0.0120

Aircraft Performance Initial Estimates vs Requirements

Table 1. Summary of Glider Prototype Requirements

(7 m launch height, 1.5 km Standard Atmosphere)

System Requirements	Threshold	Objective	Min or	MY
			Max	DESIGN
Max Glide Range (meters)	70 m	100 m	Max	155 m
Max Glide Range Velocity	12 m/s	7 m/s	Min	4.54 m/s
(meters/second)				
Max Glide Endurance (seconds)	7 sec	10 sec	Max	22.2 s
Maximum Wingspan (meters)	1.0 m	N/A	Max	0.9 m
Unit Cost (Fake dollars) using the	No "limit", but will be used as a		Min	\$603.39
formula:	discriminator between designs.			
Empty Weight (in grams) * \$1 = Cost				