Hidrodinamske nestabilnosti v tankih plasteh

Avtor: Miha Čančula Mentor: prof. dr. Alojz Kodre

21. marec 2012

Vsebina

Teorija

- Stabilnost
- Enačbe toka tekočin
- Lubrikacijski približek enačba tankega filma

Primeri

- Plast tekočine na klancu
- Razpad milnega mehurčka
- Nastanek kraških žlebičev

Stabilnost

Osnovna rešitev

Ohranja simetrijo enačbe

Motnja

- Krši simetrijo
- Majhna v primerjavi z osnovno rešitvijo

Stabilnost

Majhna motnja po dolgem času ostane majhna

Stabilnost

Enačbe hidrodinamike

Navier-Stokes

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \mu \Delta \mathbf{u}$$

Brezdimenzijska

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U} \cdot \nabla)\mathbf{U} = -\nabla P + R^{-1}\Delta \mathbf{U}$$

Nestisljivost

$$\nabla \mathbf{u} = 0$$

Lubrikacijski približek

Predpostavke

- Značilna dimenzija v smeri z mnogo manjša
- ▶ Hitrost v tej smeri majhna, $u_z \ll u_x, u_y$
- Odvodi po z so večji kot odvodi v ravnini xy

Učinek

- ▶ Povprečenje po $z \Rightarrow$ izgubimo profil v eni smeri
- ▶ Menjava spremenljivke $\mathbf{u}(x, y, z, t) \rightarrow h(x, y, t)$
- **>** 4 skalarne količine $(\mathbf{u},p) o 1$ skalarna količina.

Lineariziran problem

Osnovna rešitev + motnja

- $h(x,y,t) = h_0(x,t) + \varepsilon h_1(x,y,t), \quad \varepsilon \ll 1, \quad h_1 \sim h_0$
- lacktriangle Rešimo $h_0
 ightarrow$ enačba za h_1
- ightharpoonup Razvoj po arepsilon, obdržimo le do linearnega člena

Linearna enačba za h_1

- ▶ Konstanti koeficienti $h_0 \Rightarrow$ eksponentne rešitve
- lacktriangle Sistem je stabilen, če je $\Re \sigma \leq 0$ za vse lastne vrednosti σ

Plast tekočine na klancu

Osnovna rešitev

- Tekočina polzi po klancu z enakomerno hitrostjo
- ▶ Substitucija $\xi = x Ut \Rightarrow h_0(\xi, y)$ je konstanta
- ightharpoonup En parameter D: viskoznost \leftrightarrow površinska napetost

Nestabilnost

- ▶ h₁ zapišemo kot vsoto normalnih valovnih načinov
- Lastna vrednost σ odvisna od valovne dolžine motnje
- ightharpoonup Valovna dolžina z največjo $\sigma pprox$ razmik med curki

Razpad milnega mehurčka

Tanka opna

- Neuravnovešena površinska napetost
- Lubrikacijski približek
- ▶ Dve simetriji: y in x ct
- Nestabilnost = razpad na kapljice
- Ključen parameter: viskoznost

Neviskozna opna

- Razpad simetrije v smeri $x \Rightarrow$ razpad opne v valje
- Valji naprej razpadejo v kapljice

Viskozna opna

- Počasnejše umikanje roba
- ▶ Opna ne razpade

Kraški žlebiči

Kraški žlebiči

Nastanek

- Na kraških pobočjih pod vplivom dežja
- Počasen proces, težko izvajati eksperimente
- Enačbe za tok tekočine sklopljene s kemijskimi enačbami za topljenje apnenca

Nestabilnost

- Neenakomernost v obliki površja
- Blagi žlebič se s časom poglablja
- Zlom simetrije v vodoravni smeri

Zaključek

Hidrodinamika

- Navier-Stokesove enačbe
- Lubrikacijski približek $(\mathbf{u}, p) \to h$

Naravni pojavi

- ► Tekočina na klancu
- Razpad tanke opne
- Kraško površje

Nestabilnost

- Občutljivost na majhne motnje
- Zlom simetrije
- Linearizirana enačba
- Lastne vrednosti linearnega operatorja