

Number System Ex 1.5 Q1

- (i) Every point on the number line corresponds to a <u>real</u> number which may be either <u>rational</u> or an <u>irrational</u> number.
- (ii) The decimal form of an irrational number is neither terminating nor repeating.
- (iii) The decimal representation of rational number is either terminating, recurring
- (iv) Every real number is either <u>rational</u> number or an <u>irrational</u> number because rational or an irrational number is a family of real number.

Number System Ex 1.5 Q2

Answer:

We are asked to represent $\sqrt{6}$, $\sqrt{7}$ and $\sqrt{8}$ on the number line

We will follow certain algorithm to represent these numbers on real line

We will consider point A as reference point to measure the distance

- (1) First of all draw a line AX and YY' perpendicular to AX
- (2) Consider AO = 2 unit and OB = 1 unit, so

$$AB = \sqrt{2^2 + 1^2}$$
$$= \sqrt{5}$$

- (3) Take A as center and AB as radius, draw an arc which cuts line AX at A_1
- (4) Draw a perpendicular line A_IB_I to AX such that $A_IB_I=1$ unit and
- (5) Take A as center and AB_1 as radius and draw an arc which cuts the line AX at A_2 . Here

$$AB_1 = AA_2$$

$$= \sqrt{AA_1^2 + A_1B_1^2}$$

$$= \sqrt{\left(\sqrt{5}\right)^2 + 1}$$

$$= \sqrt{6} \text{ unit}$$

So $AA_2 = \sqrt{6}$ unit

So A_2 is the representation for $\sqrt{6}$

- (1) Draw line A2B2 perpendicular to AX
- (2) Take A center and AB2 as radius and draw an arc which cuts the horizontal line at A3 such that

$$AB_2 = AA_3$$

= $\sqrt{AA_2^2 + A_2B_2^2}$
= $\sqrt{(\sqrt{6})^2 + 1}$
= $\sqrt{7}$ unit

So point A_3 is the representation of $\sqrt{7}$

(3) Again draw the perpendicular line A_3B_3 to AX

(4) Take A as center and AB3 as radius and draw an arc which cuts the horizontal line at A4 Here;

$$AB_3 = AA_4$$

$$= \sqrt{AA_3^2 + A_3B_3^2}$$

$$= \sqrt{\left(\sqrt{7}\right)^2 + 1^2}$$

$$= \sqrt{8} \text{ unit}$$

$$A4 \text{ is basically the representation of } \sqrt{8}$$

********* END *******