Força Bruta, Backtracking e Busca Exaustiva Paradigmas de projeto de algoritmos

José Elias Claudio Arroyo

Departamento de Informática Universidade Federal de Viçosa

INF 332 - 2022/2

Outline

- 🕕 Força Bruta
 - Ordenação
 - Busca Sequencial
 - Casamento de Strings
 - Subsequência Consecutiva
 - Closest-Pair
 - Problema da Envoltória Convexa
- Backtracking
 - Problema das n-Rainhas
 - Problema da Soma de Subconjuntos
- Busca Exaustiva
 - Problema do Caixeiro Viajante
 - Problema da Designação
 - Problema da Mochila

2/71

Força Bruta - Definição

- Estratégia mais simples para construção de algoritmos.
 - Força bruta geralmente utiliza diretamente a definição do problema em sua solução.

Força Bruta - Exemplo

Exemplo:

- Para calcular a^n ($a \neq 0$ e inteiro $n \geq 0$), $a^n = \underbrace{a \times a \times \cdots \times a}_{n \text{ vezes}}$
- Para calcular n! $(n \ge 1)$, n! = n * (n - 1) * ... * 2 * 1

Força Bruta - Exemplo

Exemplos:

- Busca sequencial
- Multiplicação de duas matrizes
- Verificação consecutiva de inteiros para determinar o MDC(m, n)

Força Bruta - Vantagens e Desvantagens

Pontos fracos:

- Raramente resulta em algoritmos eficientes;
- Podem ser tão lentos e inaceitáveis.

Pontos fortes:

- Simples;
- Ampla aplicabilidade;
- Algoritmos razoáveis para problemas importantes (e.g., multiplicação de matrizes, ordenação e busca);
- Útil para solucionar problemas com entradas pequenas;
- Base teórica para estudar outras técnicas de projeto de algoritmos.

Ordenar um arranjo [A[0], A[1], ..., A[n-2], A[n-1]] (ordem crescente)

Selection Sort

- Procure o menor elemento no arranjo e troque-o com o primeiro;
- Repita o processo anterior começando à direita do menor;
- De uma forma geral:
 - Na iteração i, com $(0 \le i \le n-1)$, encontre o menor elemento A[min] em A[i..n-1] e troque-o com A[i]:

$$A[0] \leq A[1] \leq \cdots \leq A[i-1], A[i], \cdots, A[min], \cdots, A[n-1]$$

elementos ordenados

(troque A[i] com A[min], onde min é a posição do menor elemento)

$$A[0] \le A[1] \le \cdots \le A[i-1] \le A[min], A[i+1], \cdots, A[I], \cdots, A[n-1]$$

elementos ordenados

89	45	68	90	29	34	17
17	45	68	90	29	34	89
17	29	68	90	45	34	89
17	29	34	90	45	68	89
17	29	34	45	90	68	89
17	29	34	45	68	90	89
17	29	34	45	68	89	90

Algoritmo para ordenar um vetor [A[0], A[1], ..., A[n-2], A[n-1]]:

- Tamanho da entrada: número de elementos n;
- Operação básica: comparação A[j] < A[min];
- O número de comparações executadas depende apenas do tamanho da entrada:

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} (n-1) - (i+1) + 1$$
$$= \sum_{i=0}^{n-2} (n-1-i) = \frac{(n-1)n}{2}.$$

Ordenação por seleção executa em $\Theta(n^2)$ para todas entradas. Repare que trocas no arranjo ocorrem apenas $\Theta(n)$ vezes.

- Compare elementos adjacentes e troque-os de lugar se estiverem fora de ordem.
- Em uma iteração completa o maior elemento vai para a última posição ("sobe até a superfície, como uma bolha").
- A próxima iteração faz com que o segundo maior elemento também suba até a superfície.
- Na *i*-ésima iteração ($0 \le i \le n-2$), temos:

$$A_0, \cdots, \underbrace{A_j \leftrightarrow A_{j+1}}_{\text{trocar?}}, \cdots, A_{n-i-1} | \underbrace{A_{n-i} \leq \cdots \leq A_{n-1}}_{\text{elementos ordenados}}$$

etc.

Algoritmo para ordenar um vetor [A[0], A[1], ..., A[n-2], A[n-1]]:

```
Bolha(A[], n) {
    Para i = 0 até n - 2:
        Para j = 0 até n - i - 2:
        Se(A[j] > A[j+1]):
        troca(A[j], A[j+1]);
}
```

O número de comparações é dado por:

$$T(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 = \sum_{i=0}^{n-2} (n-2-i) + 1 = \sum_{i=0}^{n-2} (n-1-i)$$
$$= \frac{(n-1)n}{2} \in \Theta(n^2).$$

O número de trocas depende da entrada.

Geralmente a aplicação do método de força bruta resulta em um algoritmo que **pode ser melhorado** sem muito esforço.

Geralmente a aplicação do método de força bruta resulta em um algoritmo que **pode ser melhorado** sem muito esforço.

Para o método da bolha:

 Se o algoritmo não fizer nenhuma troca em uma dada iteração, então o arranjo já está ordenado.

Embora o algoritmo fique mais rápido, a classe de complexidade permanece a mesma: $\Theta(n^2)$.

```
Bolha(A[], n) {
    Para i = 0 até < n-2:{
        trocou = false;
        Para j = 0 até n - i - 2:
            Se(A[j] > A[j+1]): {
                troca(A[i], A[i+1]);
                trocou = true;
        Se(!trocou) break;
```

O array é "dividido" em duas partes:

Parte Ordenada e Parte Não-Ordenada.

- No início, a Parte Ordenada é formada somente pelo primeiro elemento da lista. A Parte Não-Ordenada é formada pelos outros elementos (a partir da segunda posição).
- Um a um, os elementos da Parte Não-Ordenada são inseridos na posição correta da Parte Ordenada, fazendo o deslocamento necessário de elementos.
- O algoritmo termina quando n\u00e3o h\u00e1 mais elementos na Parte N\u00e3o-Ordenada.

89 I	45	68	90	29	34	17
45	89 I	68	90	29	34	17
45	68	89 I	90	29	34	17
45	68	89	90 I	29	34	17
29	45	68	89	90 I	34	17
29	34	45	68	89	90 I	17
17	29	34	45	68	89	90

```
ALGORITHM InsertionSort(A[0..n-1])
    //Sorts a given array by insertion sort
    //Input: An array A[0..n-1] of n orderable elements
    //Output: Array A[0..n-1] sorted in nondecreasing order
    for i \leftarrow 1 to n-1 do
         v \leftarrow A[i]
         i \leftarrow i - 1
         while j \ge 0 and A[j] > v do
             A[i+1] \leftarrow A[i]
             j \leftarrow j - 1
         A[i+1] \leftarrow v
```

Pseudocódigo retirado de: Introduction to the design & analysis of algorithms / Anany Levitin

Tempo de melhor caso (Quando o Array está em ordem crescente):

$$T(n) = \sum_{i=1}^{n-1} 1 = n-1$$
.

Tempo de pior caso (Quando o Array está em ordem decrescente):

$$T(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}.$$

Buscar um elemento *chave* numa lista [A[0], A[1], ..., A[n-2], A[n-1]]

O algoritmo de **busca sequencial** compara cada elemento da lista com a *chave* dada. Tem-se dois casos:

- a chave é encontrada;
- ou compara-se todos elementos na lista e chave não é encontrada.

Exemplo clássico de como a estratégia de força bruta pode ser simples.

Algoritmo para buscar uma *chave* numa lista [A[0], ..., A[n-1]]:

```
Busca(A[], chave, n) {
    Para i = 0 até n-1:
        Se (A[i] == chave):
            return i;
    return -1;
}
```

Truque simples para busca sequencial:

- Se colocarmos a chave no final da lista a busca será sempre bem sucedida;
- Elimina a necessidade de checar pelo término da lista.

Truque simples para busca sequencial:

- Se colocarmos a chave no final da lista a busca será sempre bem sucedida;
- Elimina a necessidade de checar pelo término da lista.

Outra melhora simples se a lista estiver ordenada:

 Busca é interrompida assim que um elemento maior ou igual a chave é encontrado.

Truque simples para busca sequencial:

- Se colocarmos a chave no final da lista a busca será sempre bem sucedida;
- Elimina a necessidade de checar pelo término da lista.

Outra melhora simples se a lista estiver ordenada:

 Busca é interrompida assim que um elemento maior ou igual a chave é encontrado.

Algoritmo ainda é **linear** no pior caso e no caso médio.

Adicionando a chave ao final da lista reduz o número de comparações.

```
Busca(A[], chave, n) {
    A[n] = chave;
    i = 0;
    Enquanto(A[i] != chave):
        i = i+1;
    return i;
}
```

Casamento de strings

Comparação de Strings de Caracteres

Neste problema são fornecidos como entrada uma string T de n caracteres (**texto**) e uma string P de m caracteres (**padrão**), $m \le n$. O objetivo é encontrar uma substring de T que coincida com P.

Sejam T[0...n-1] e P[0...m-1] o texto e o padrão, respectivamente. O algoritmo que resolve o problema deve retornar o índice i do caracter mais à esquerda no texto que casa com o padrão, tal que:

$$T[i] = P[0], T[i+1] = P[1], \dots, T[i+j] = P[j], \dots, T[i+m-1] = P[m-1]$$

Casamento de strings

Exemplo:

$$T = [NOBODY_NOTICED_HIM]$$

 $P = [NOT]$

Para este exemplo, o algoritmo retornará i = 7 (posição inicial do casamento).

Algoritmo força bruta:

- Alinhe P no início de T;
- Movendo da esquerda para direita, compare cada caracter de P com o caracter correspondente de T até:
 - todos caracteres casarem (busca bem-sucedida);
 - um dos caracteres não casa com seu correspondente.
- Enquanto padrão não for encontrado e o texto não é completamente verificado, re-alinhe o padrão uma posição para direita e repita o passo 2.

```
N O B O D Y _ N O T I C E D _ H I M
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
```

```
Casamento(T[], n, P[], m) {
    for (i = 0; i < n - m; i++) {//Alinha
        j = 0;
        while(j < m && T[i+j] == P[j])
              j = j+1;
        if(j == m)//todos os caracteres casarem
              return i;
    }
    return -1;
}</pre>
```

- O algoritmo geralmente re-alinha o padrão após uma comparação. No entanto, o pior caso é muito pior:
- O algoritmo pode fazer todas as m comparações antes de re-alinhar; e isso pode ocorrer em todas tentativas;
- No **pior caso** o algoritmo roda em $\Theta(nm)$.

Exemplo (Pior Caso):

```
T = [NNNNNNNNNNNT]
P = [NNT]
```

Subsequência Consecutiva Máxima

Dada uma sequência $X = [x_1, x_2, ..., x_n]$ de n números reais. Encontrar uma subsequência consecutiva $Y = [x_i, x_{i+1}, ..., x_j]$ de X, $1 \le i \le j \le n$, tal que a soma dos elementos de Y seja máxima.

Exemplos:

- $X = [4, 2, -7, 3, 0, -2, 1, 5, -2] \Rightarrow \text{soma} = 7.$
- $X = [-2, 11, -4, 13, -5, 2] \Rightarrow \text{soma} = 20.$
- $X = [-1, -2, 0] \Rightarrow \text{soma} = 0.$
- $X = [4, 2, 8, 1] \Rightarrow \text{soma} = 15.$

Subsequência Consecutiva Máxima

Algoritmo Força Bruta:

Analisar todas as possíveis subsequências consecutivas, calcular as somas e selecionar a sequencia com maior soma.

Retornar as posições inicial (i) e final (j) da subsequência máxima.

$$X = [\underbrace{-2, 11, -4, 13, -5, 2}_{=======}]$$

$$X = [-2, \ \underline{11, -4, 13, -5, 2}]$$

$$X = [-2, 11, -4, 13, -5, 2]$$

Subsequência Consecutiva Máxima

```
Algoritmo Força Bruta:
SCM(X[], n)
   somaMax = 0:
   for (i = 0; i < n; i++) //para cada ponto de inicio
       for (j = i; j < n; j++){ //para cada ponto final
          soma = 0:
          for (k = i; k \le j; k++)
            soma = soma + X[k]:
          if (soma > somaMax){
            somaMax = soma; I = i; J = j;
   return (I, J, somaMax);
Complexidade: \Theta(n^3).
```

Subsequência Consecutiva Máxima

Algoritmo Força Bruta Melhorado:

```
SCM(X[], n)
  somaMax = 0;
  for (i = 0; i < n; i++)
      soma = 0:
      for (j = i; j < n; j++)
          soma = soma + X[i];
         if (soma \geq somaMax){
            somaMax = soma; I = i; J = j;
  return (I, J, somaMax);
```

Complexidade: $\Theta(n^2)$.

Os dois pontos de menor distância

- Seja um conjunto de n pontos em R²: {p₁, p₂, ..., pₙ} (n ≥ 2).
 Determinar os dois pontos mais próximos (pontos de menor distância).
- A distância entre dois pontos $p_i = (x_i, y_i)$ e $p_j = (x_j, y_j)$ é determinada pela distância Euclidiana:

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Os dois pontos de menor distância

Algoritmo Força Bruta:

- Calcular a distância entre todos os pares de pontos diferentes (p_i e p_i) e identificar os dois pontos com menor distância.
- Retornar os índices desses pontos.

```
ClosestPair (Pontos p[], n) {
dmim = infinito;
Para i = 1 até n-1:
 Para j = i+1 até n:{
   d = sqrt((p[i].x - p[j].x)^2 + (p[i].y - p[j].y)^2);
   Se(d < dmim):{}
       dmin = d; i1 = i; i2 = j;
return (dmin, i1, i2);
```

A complexidade de tempo: $\Theta(n^2)$.

- Seja S um conjunto de n pontos no plano \mathbb{R}^2 . A *Envoltória Convexa* ou *Casco Convexo* de S é o menor polígono convexo que contém todos os pontos de S (ou seja, todos os pontos de S devem estar dentro do polígono ou sobre sua borda).
- O problema consiste em encontrar os pontos que formam a Envoltória Convexa de S.

Polígono Convexo

Polígono Não Convexo

Algoritmo de Força Bruta:

- $Casco = \emptyset$.
- Para cada par de pontos p_i e p_j de S:
 - Determinar a reta L que passa pelos pontos p_i e p_i .
 - Se p_i e p_j são pontos extremos (i.e. se todos os outros pontos de S estão em um dos semiplanos determinados pela reta L):
 - $Casco = Casco \cup \{p_i, p_j\}.$
- Fim-Para
- Retorne Casco.

- p₅ e p₈ são pontos extremos, pois a reta L₁ (determinada por estes pontos) passa pela fronteira do polígono convexo, ou seja, todos os outros pontos estão no semiplano superior determinado por L₁.
- p₉ e p₁₀ não são pontos extremos, pois a reta L₂ (determinada por estes pontos) não passa pela fronteira do polígono convexo, ou seja, existem pontos nos dois semiplanos determinados por L₂.

- Uma reta que passa pelos pontos $p_1 = (x_1, y_1)$ e $p_2 = (x_2, y_2)$ é definida como: ax + by c = 0, onde $a = (y_2 y_1)$, $b = (x_1 x_2)$ e $c = x_1y_2 y_1x_2$
- Todos os outros pontos (x, y) estão num mesmo semiplano se: $ax + by c \le 0$, ou $ax + by c \ge 0$, $\forall (x, y)$.

Exercício

Calcule a complexidade do algoritmo de força bruta que determina todos os pontos extremos (os pontos da envoltória covexa).

Backtracking

- Backtracking é um método de busca de possíveis soluções de um problema combinatório.
- Sistematicamente procura/constrói soluções, eliminando soluções inválidas (alternativas que não satisfaçam todas as condições do problema).
- A busca monta uma árvore (do espaço de estados) para organizar as soluções do problema.
- Produz soluções em tempo razoável para alguns problemas, mas o tempo de pior caso é exponencial.

Backtracking

- Na árvore do espaço de estados:
 - Nós: são soluções parciais
 - Arestas: são escolhas a partir de soluções parciais estendidas.
- Geralmente, a árvore é explorada usando busca em profundidade.
- Nós não promissores são podados:
 - Interrompa a exploração das subárvores enraizadas em um nó que não produzirão soluções viáveis e retorne ao pai desse nó para continuar a busca.

• Coloque *n* rainhas em um tabuleiro de xadrez *nxn*, de modo que nenhuma delas esteja na mesma linha, coluna ou diagonal.

Inserção de 4 rainhas: 1, 2, 3, 4

 Representação de uma solução: Uma solução do problema das n-rainhas pode ser representado por um vetor (x₁, ..., x_n) de tamanho n, onde x_i indica a coluna da rainha i (ou seja, a coluna onde a rainha i é inserida).

$$(x_1, x_2, x_3, x_4) = (2, 4, 1, 3)$$

Algoritmo backtracking

Árvore para o problema das 4-Rainhas


```
Backtrack_Rainhas(x[], r, n) {
Se(r == n) Imprima solucao x;
Senão
   Para c =1 até n:
        Se(Possivel(x, r+1, c)) {
            x[r+1] = c;
            Backtrack_Rainhas(x, r+1, n);
        }
}
```

- Chamada:
 Backtrack_Rainhas(x, 0, n); //x é um vetor de tamanho n.
- Possivel(x, r, c): testa se a rainha r pode ser inserida na coluna c.

Uma rainha r não pode ser inserida na coluna c se:

- Uma rainha i, inserida anteriormente (i < r), já está na coluna c se: x[i] = c;
- Ou, uma rainha i, inserida anteriormente, está na diagonal de (r, c) se: |r i| = |c x[i]| (distância das linhas igual à distância das colunas).

Problema

Dado um conjunto com n números positivos: $w = (w_1, ..., w_n)$ e um número M. Encontrar todos os subconjuntos de w cuja soma seja igual a M.

Exemplo

$$n = 4$$
, $w = (w_1, ..., w_n) = (11, 13, 24, 7)$ e $M = 31$.

- Existem 2 subconjuntos:
 - \bullet (11, 13, 7), 11 + 13 + 7 = 31
 - \bullet (24,7), 24 + 7 = 31.

- Representação de uma solução: uma solução pode ser representada por um vetor $(x_1,, x_n)$ de tamanho n, onde x_i é do tipo binário.
- $x_i = 1$ se w_i está no subconjunto, caso contrário $x_i = 0$.

Exemplo

- $w = (w_1, ..., w_n) = (11, 13, 24, 7)$ e M = 31.
- Soluções:
 - x = (1, 1, 0, 1)
 - x = (0, 0, 1, 1)

Árvore completa da busca backtracking


```
SubsetSum(w[], M, x[], S, i, T):
 //gera filho esquerdo:
  x[i] = 1
  IF (S + w[i] == M): print (x[1..i])
  ELSE:
     IF ((S + w[i] + w[i+1]) \le M):
        SubsetSum(w, M, x, S + w[i], i+1, T - w[i])
  //gera filho direito:
  IF((S + w[i+1] \le M) and (S + T - w[i] \ge M):
      x[i] = 0
      SubsetSum(w, M, x, S, i+1, T - w[i])
 • w_1 < M, T = w_1 + w_2 + ... + w_n > M
 • S = 0 (soma parcial); i = 1;
 • Chamada: SubsetSum(w[ ], M, x[ ], S, i, T);
```

Busca Exaustiva

Definição: Busca exaustiva é um **método de força bruta** para problemas de otimização combinatorial (Ex. caixeiro viajante, problema da mochila, dentre outros).

Método:

- Gera-se uma lista de todas as potenciais soluções de forma sistemática;
- Avalia-se todas as soluções potenciais (calcula-se o custo), descartando soluções inválidas e armazenando a melhor solução encontrada.

Dadas *n* cidades (pontos ou vértices), onde são conhecidas as distâncias entre cada par de pontos. Encontrar o menor caminho que visite todos os pontos exatamente uma vez e retorna para o ponto de partida.

Essa é exatamente a definição de um **ciclo Hamiltoniano** em um grafo conectado e com valores nas arestas.

- Um ciclo Hamiltoniano pode também ser definido como uma sequência de n + 1 vértices adjacentes i₁, i₂,..., i_n, i₁, onde o primeiro e último vértices são iguais e todos os demais são distintos.
- É possível gerar todos os ciclos através da geração das permutações dos n - 1 vértices intermediários: i₂,...,i_n.
- Para cada permutação gerada, adicionar o vértice inicial i₁.
- Total de permutações geradas será (n-1)!.

Tour

Length

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$$
 $l = 2 + 8 + 1 + 7 = 18$
 $a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$ $l = 2 + 3 + 1 + 5 = 11$ optimal
 $a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$ $l = 5 + 8 + 3 + 7 = 23$
 $a \rightarrow c \rightarrow c \rightarrow b \rightarrow a$ $l = 5 + 1 + 3 + 2 = 11$ optimal
 $a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$ $l = 7 + 3 + 8 + 5 = 23$

 $a \longrightarrow d \longrightarrow c \longrightarrow b \longrightarrow a$ l = 7 + 1 + 8 + 2 = 18

Existem ciclos que diferem apenas pela direção. Por exemplo:

$$a \rightarrow c \rightarrow d \rightarrow a$$

 $a \rightarrow d \rightarrow c \rightarrow a$

- Pode-se reduzir o número de permutações pela metade.
- Não melhora muito a eficiência do algoritmo.
- O total de permutações ainda é (n-1)!/2.
- Força bruta é praticável apenas para valores muito pequenos de n.

Designação de tarefas

Dadas n tarefas e n pessoas, designar uma pessoa para cada tarefa. Cada pessoa é designada a exatamente uma tarefa, e cada tarefa é designada a exatamente uma pessoa.

• O custo de assinalar pessoa i para tarefa j é de C[i,j].

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

• O problema é encontrar a distribuição com menor custo.

Designação de tarefas

Força bruta: geram-se todas possíveis designações e calculam-se seus custos; a designação com menor custo é então selecionada.

- Soluções válidas podem ser descritas através de tuplas de tamanho n: $\langle j_1, \ldots, j_n \rangle$, onde o i-ésimo componente representa a tarefa designada a pessoa i.
- Busca exaustiva gera, portanto, todas permutações dos inteiros 1,2,...,n, calculando o custo total de cada permutação e selecionando aquela com menor custo.

Designação de tarefas

$$C = \left[\begin{array}{rrrr} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{array} \right]$$

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

$$\begin{array}{c} <1, 2, 3, 4> & \cos t = 9 + 4 + 1 + 4 = 18 \\ <1, 2, 4, 3> & \cos t = 9 + 4 + 8 + 9 = 30 \\ <1, 3, 2, 4> & \cos t = 9 + 3 + 8 + 4 = 24 \\ <1, 3, 4, 2> & \cos t = 9 + 3 + 8 + 6 = 26 \\ <1, 4, 2, 3> & \cos t = 9 + 7 + 8 + 9 = 33 \\ <1, 4, 3, 2> & \cos t = 9 + 7 + 1 + 6 = 23 \\ \end{array}$$

etc.

 O número de permutações é igual a n!, portanto uma abordagem força bruta é válida apenas para valores muito pequenos de n.

Gerando permutações

Exercício

Escreva o pseudocódigo de um algoritmo para gerar todas as permutações de $\{1, \dots, n\}$.

Dados n itens:

- Pesos: $w_1, w_2, ..., w_n$.
- Valores: v_1, v_2, \ldots, v_n .
- E capacidade W de uma mochila.

Retornar o subconjunto mais valioso de itens que cabem na mochila.

A busca exaustiva para o problema:

- Considere todos os subconjuntos dos *n* itens;
- Calcule o peso total de cada subconjunto para identificar soluções válidas;
- Encontre o subconjunto mais valioso dentre eles.

Subset	Total weight	Total value
Ø	0	\$ 0
{1}	7	\$42
{2}	3	\$12
{3}	4	\$40
{4}	5	\$25
{1, 2}	10	\$54
{1, 3}	11	not feasible
{1, 4}	12	not feasible
{2, 3}	7	\$52
{2, 4}	8	\$37
$\{3, 4\}$	9	\$65
{1, 2, 3}	14	not feasible
$\{1, 2, 4\}$	15	not feasible
{1, 3, 4}	16	not feasible
$\{2, 3, 4\}$	12	not feasible
$\{1, 2, 3, 4\}$	19	not feasible

O número de subconjuntos para n itens é 2^n . Portanto a busca exaustiva é $\Omega(2^n)$, independente de quão eficiente é a geração dos subconjuntos.

Como gerar os 2^n subconjuntos de $A = \{a_1, \dots, a_n\}$? (**conjunto de partes**)

Como gerar os 2^n subconjuntos de $A = \{a_1, \dots, a_n\}$? (**conjunto de partes**)

Gerar subconjuntos de $\{a_1, \dots, a_k\}$, $1 \le k \le n$ Os subconjuntos podem ser divididos em dois grupos: aqueles que contêm a_k , e aqueles que não contêm a_k .

Ao obter os subconjuntos de $\{a_1, \cdots, a_{k-1}\}$, os subconjuntos de $\{a_1, \cdots, a_k\}$ podem ser obtidos ao inserirmos a_k em cada um deles.

Exemplo: Gere o conjunto de partes de $\{a_1, a_2, a_3\}$

- **1** $k = 0: \emptyset$
- 2 $k = 1: \emptyset \{a_1\}$
- **3** k = 2: $\emptyset \{a_1\} \{a_2\} \{a_1, a_2\}$
- **4** k = 3: $\emptyset \{a_1\} \{a_2\} \{a_1, a_2\} \{a_3\} \{a_1, a_3\} \{a_2, a_3\} \{a_1, a_2, a_3\}$

Método da string de bits: crie uma correspondência entre os elementos do conjunto com uma string de bits.

Para o conjunto $\{a_1, a_2, a_3\}$ considere uma string com três bits.

Método da string de bits: crie uma correspondência entre os elementos do conjunto com uma string de bits.

Para o conjunto $\{a_1, a_2, a_3\}$ considere uma string com três bits.

```
string 000 001 010 011 100 101 110 111 subconjuntos \emptyset {a_3} {a_2} {a_2, a_3} {a_1} {a_1, a_3} {a_1, a_2} {a_1, a_2, a_3}
```