Atomic Form Factors and X Ray – Atom Scattering

Michael Papasimeon 1998 Proposed Honours Project Supervisor : Dr. Chris Chantler

Photon-Atom Scattering

- Interested at how X ray scatter off a single atom
- The types of scattering processes include
 - Elastic (Rayleigh) Scattering
 - Inelastic (Compton) Scattering
 - Photo Effect
 - Pair Production
 - Nuclear Thomson Scattering

Theoretical Cross Section for Photon Scattering for Carbon

PHOTON ENERGY

3

Scattering Amplitudes

Schrödinger Equation for a scattering process

$$[H_0 + H']\psi = E\psi$$

ullet Scattering Wave Function as $r \to \infty$ can be considered as an incident and scattered wave.

$$\psi(r) = \psi_i(r) + \psi_s(r)$$

$$\psi(r) = A \left[e^{ik \cdot r} + f(k, \theta, \phi) \frac{e^{ikr}}{r} \right]$$

- $f(k, \theta, \phi)$ is the scattering amplitude
- Differential Cross Section

$$\frac{d\sigma}{d\Omega} = |f(k, \theta, \phi)|^2$$

Relevance of Atomic Form Factors

- The scattering amplitude depends on the atomic form factor
- Scattering amplitude form factor relationship depends on how atom-radiation interaction is modeled
- Atomic Form Factors are used to determine diffraction, scattering and attenuation processes of X ray interactions with matter.

Definition of Atomic Form Factors

Total Atomic Form Factor

$$f = f_0 + f' + if''$$

Away from absorption edges (for a spherically symmetric atom)

$$f_0(q) = \int e^{iqr} \rho(r) dr = 4\pi \int_0^\infty \rho(r) \frac{\sin qr}{qr} r^2 dr$$

- $q=k_f-k_i=2|k|\sin\left(\frac{\theta}{2}\right)$ is the change in the photon's momentum and θ is the scattering angle.
- ullet $ho(r)=\psi^*(r)\psi(r)$ is the electron density.
- The real and imaginary components f' and f'' describe the situation when the photon energy is close to one of the atom's energy levels an absorption edge.

Examples of Atomic Form Factors

Scattering from Multiple Atoms

Experiments deal with many atoms, and there are a number of effects which cannot be explained by treating the atom as an isolated system.

- Extended X-ray Anomalous Fine Structure (EXAFS)
- X-ray Anomalous Near Edge Structure (XANES)

Existing Theoretical And Experimental Results

THEORY

- Partially-Relativistic Quantum Mechanics
 - * Hubbel, Scofield
- Relativistic Quantum Mechanics
 - * Dirac-Hartree-Fock, S-Matrix, Relativistic Multipole etc.
 - * Cromer and Liberman, Kissel and Pratt, Creagh, Chantler
- **EXPERIMENT** Errors of 10% –20% for best data
 - Experimental Synthesis
 - * Henke, Gullikson
 - Experimental Compilation
 - * Hubbel

Main Project Aims

- Develop the theory for atomic form factors for low Z atoms.
- Determine atomic form factors for low Z atoms and compare with existing theories and experimental results.
- Investigate and develop the theory of anomalous X ray resonance scattering (EXAFS, XANES, DAFS) effects of local interactions on the atomic form factor.

Proposed Approach

- Atom Relativistic Quantum Mechanics (Dirac)
- X Ray Classical Radiation Field using electric dipole and/or electric quadrupole approximation
- Investigate the effect of local interactions on the atomic form factor
- Use a Dirac-Hartree-Fock computational approach to determine for multi-electron atoms the
 - Energy eigenvalues of the atom
 - Corresponding wave functions
- Use these wave functions to determine the atomic form factors for the different atoms over a range of X ray energies.
 - Angular dependent component of the atomic form factor f_0
 - Energy dependent components of the atomic form factor f' and f''