БАЗОВЫЕ ПРИНЦИПЫ МАШИННОГО ОБУЧЕНИЯ

на примере линейной регрессии

Регрессия

Дана обучающая выборка

$$X_{N} = \{(x_{1}, y_{1}), ..., (x_{N}, y_{N})\}, (x_{i}, y_{i}) \in \mathbb{R}^{P} \times \mathbb{R}$$

Цель: для всех новых значений **х** оценить значения У

Метод наименьших квадратов

• Линейная модель: рассмотрим линейную функцию

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^p x_j w_j = \mathbf{x}^\top \mathbf{w}, \quad \mathbf{x} = (1, x_1, \dots, x_p).$$

• Таким образом, по вектору входов $\mathbf{x}^{\top} = (x_1, \dots, x_p)$ мы будем предсказывать выход y как

$$\hat{y}(\mathbf{x}) = \hat{w}_0 + \sum_{j=1}^{p} x_j \hat{w}_j = \mathbf{x}^{\top} \hat{\mathbf{w}}.$$

Метод наименьших квадратов

- Как найти оптимальные параметры $\hat{\mathbf{w}}$ по тренировочным данным вида $(\mathbf{x}_i, y_i)_{i=1}^N$?
- Метод наименьших квадратов: будем минимизировать

$$RSS(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i^{\top} \mathbf{w})^2.$$

$$RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w}),$$

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y},$$

если матрица $\mathbf{X}^{\top}\mathbf{X}$ невырожденная.

Пример: прогнозирование стоимости домов

RMSE=6.6 R^2 =0.31

Измерение ошибки в задачах регрессии

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

$$L(y, \hat{y}) = |y - \hat{y}|$$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y}_{i})^{2}}$$

Многомерная регрессия

RMSE=4.7 R^2 =0.74

Регрессия, линейная по параметрам

$$f(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}).$$

Например:

$$f(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M$$
.

Полиномиальная регрессия

Значения RMSE

Значения коэффициентов

	M=0	M = 1	M = 6	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^\star				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^{\star}				-557682.99
w_9^\star				125201.43

L2- Регуляризация (гребневая регрессия)

• Было (для тестовых примеров $\{(x_i, y_i)\}_{i=1}^N$):

$$RSS(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2$$

Стало:

RSS(w) =
$$\frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$
,

где λ – коэффициент регуляризации

В регрессии, линейной по факторам:
$$\mathbf{w}^* = \left(\mathbf{X}^{\top}\mathbf{X} + \lambda\mathbf{I}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}.$$

L2- регуляризация

Коэффициенты гребневой регрессии

	λ=0	$\lambda = 0.000001$	λ =1
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^{\star}	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

L1- регуляризация (Lasso)

$$RSS(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{j=0}^{M} |w_j|.$$

Эластичная сеть:

$$RSS(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - y_i)^2 + \lambda \sum_{i=0}^{M} |w_i| + \frac{\lambda^2}{2} ||\mathbf{w}||^2$$

Пример использования Lasso и ElasticNet

Настройка гиперпараметров

- 1) три выборки обучающая (настраиваются параметры); валидационная (настраиваются гиперпараметры) и тестовая (анализируются результаты обучения)
- 2) кросс-валидация (перекрестная проверка):

Спасибо за внимание!

MOË XOBBU: ЭКСТРАПОЛИРОВАТЬ

