Exercício de aplicação para o capítulo 8

O Potencial de Helmholtz para o etanol, de acordo com o artigo "A Fundamental Equation of State for Ethanol" é obtido pela expressão

$$\frac{a(\rho, T)}{RT} = \alpha = \alpha^{0}(\delta, \tau) + \alpha^{r}(\delta, \tau)$$
(1)

Em que a é energia de Helmholtz, α a energia de Helmholtz adimensional, α^0 a contribuição de gás ideal da energia adimensional de Helmholtz e α^r a porção residual da energia. Onde

$$\delta = \rho/\rho_c \tag{2}$$

$$\tau = T_c/T \tag{3}$$

Sendo $\rho_c=5.93\ mol.\ dm^{-3}$ a densidade crítica e $T_c=514,71\ K$ a temperatura crítica. Os termos α^0 e α^r são escritos como

$$\alpha^{0} = \ln \delta + x_{1} \ln \tau + x_{2} + x_{3} \tau + \sum_{i=4}^{7} x_{i} \ln[1 - \exp(-y_{i}\tau)]$$
 (4)

$$\alpha^{r} = \sum_{i=1}^{6} N_{i} \delta^{d_{i}} \tau^{t_{i}} + \sum_{i=7}^{16} N_{i} \delta^{d_{i}} \tau^{t_{i}} \exp(\delta^{l_{i}}) + \sum_{i=17}^{25} N_{i} \delta^{d_{i}} \tau^{t_{i}} \exp[-\eta_{i} (\delta - \epsilon_{i})^{2} - \beta_{i} (\tau - \gamma_{i})^{2}]$$
(5)

As constantes x_i e y_i são dadas pela tabela 18.

TABLE 18. Constants of the ideal gas Helmholtz energy equation, Eq. (19)

i	x_i	y_i
1	3.430 69	_
2	-12.7531	_
3	9.390 94	_
4	2.143 26	0.816 771
5	5.092 06	2.591 75
6	6.601 38	3.804 08
7	5.707 77	8.587 36

E N_i , t_i , d_i , l_i , η_i , β_i , γ_i e ϵ_i pela tabela 19.

TABLE 19. Constants of the residual portion of the fundamental equation of state, Eq. (21)

i	N_i	t_i	d_i	l_i	η_i	β_i	γ_i	ϵ_i
1	0.058200796	1.00	4					
2	0.94391227	1.04	1					
3	-0.80941908	2.72	1					
4	0.55359038	1.174	2					
5	-1.4269032	1.329	2					
6	0.13448717	0.195	3					
7	0.42671978	2.43	1	1				
8	-1.1700261	1.274	1	1				
9	-0.92405872	4.16	1	2				
10	0.34891808	3.30	3	1				
11	-0.91327720	4.177	3	2				
12	0.022629481	2.50	2	1				
13	-0.15513423	0.81	2	2				
14	0.21055146	2.02	6	1				
15	-0.21997690	1.606	6	1				
16	-0.0065857238	0.86	8	1				
17	0.75564749	2.50	1		1.075	1.207	1.194	0.779
18	0.10694110	3.72	1		0.463	0.0895	1.986	0.805
19	-0.069533844	1.19	2		0.876	0.581	1.583	1.869
20	-0.24947395	3.25	3		1.108	0.947	0.756	0.694
21	0.027177891	3.00	3		0.741	2.356	0.495	1.312
22	-0.00090539530	2.00	2		4.032	27.01	1.002	2.054
23	-0.12310953	2.00	2		2.453	4.542	1.077	0.441
24	-0.089779710	1.00	2		2.300	1.287	1.493	0.793
25	-0.39512601	1.00	1		3.143	3.090	1.542	0.313

A condição de estabilidade para o potencial de Helmholtz é uma função côncava da temperatura de acordo com a equação

$$\frac{\partial^2 a}{\partial T^2} \le 0 \tag{6}$$

O desenvolvimento analítico foi realizado até a primeira derivada.

Utilizando a regra da cadeia

$$\frac{\partial a}{\partial T} = \frac{\partial a}{\partial \alpha} \frac{\partial \alpha}{\partial \tau} \frac{\partial \tau}{\partial T} \tag{7}$$

$$\frac{\partial a}{\partial \alpha} = RT \tag{8}$$

$$\frac{\partial \alpha}{\partial \tau} = \frac{\partial (\alpha^0 + \alpha^r)}{\partial \tau} \tag{9}$$

$$\frac{\partial \tau}{\partial T} = -\frac{T_c}{T^2} \tag{10}$$

Aplicando em α^0 e α^r

$$\frac{\partial \alpha^{0}}{\partial \tau} = \frac{x_{1}}{\tau} + x_{3} + \sum_{i=4}^{7} \frac{x_{i} y_{i} \exp(-y_{i} \tau)}{[1 - \exp(-y_{i} \tau)]}$$
(11)

$$\frac{\partial \alpha^{r}}{\partial \tau} = \sum_{i=1}^{6} N_{i} \delta^{d_{i}} t_{i} \tau^{t_{i}-1} + \sum_{i=7}^{16} N_{i} \delta^{d_{i}} t_{i} \tau^{t_{i}-1} \exp(-\delta^{l_{i}})
+ \sum_{i=17}^{25} N_{i} \delta^{d_{i}} (-2\tau^{t_{i}} \exp(-\eta_{i}(\delta - \epsilon_{i})^{2} - \beta_{i}(\tau - \gamma_{i})^{2}) \beta_{i}(\tau - \gamma_{i})
+ t_{i} \tau^{t_{i}-1} \exp(-\eta_{i}(\delta - \epsilon_{i})^{2} - \beta_{i}(\tau - \gamma_{i})^{2})$$
(12)

Substituindo na equação 12

$$\frac{\partial a}{\partial T} = \frac{x_1}{\tau} + x_3 + \sum_{i=4}^{7} \frac{x_i y_i \exp(-y_i \tau)}{[1 - \exp(-y_i \tau)]} + \sum_{i=1}^{6} N_i \delta^{d_i} t_i \tau^{t_i - 1} + \sum_{i=7}^{16} N_i \delta^{d_i} t_i \tau^{t_i - 1} \exp(-\delta^{l_i})
+ \sum_{i=17}^{25} N_i \delta^{d_i} (-2\tau^{t_i} \exp(-\eta_i (\delta - \epsilon_i)^2 - \beta_i (\tau - \gamma_i)^2) \beta_i (\tau - \gamma_i)
+ t_i \tau^{t_i - 1} \exp(-\eta_i (\delta - \epsilon_i)^2 - \beta_i (\tau - \gamma_i)^2)$$
(13)

Devido à complexidade dos termos, a tentativa de estimação das regiões de estabilidade foi realizada por meio da utilização de ferramentas numéricas. Para o problema, fez-se o uso de um algoritmo em Python.

A função na formulação do potencial de Helmholtz dada pela equação 1 descreve a superfície abaixo, com unidade de $J.mol^{-1}$.

A equação 6 determina a condição para que determinado sistema termodinâmico seja estável. Nas demais regiões, o sistema apresenta inomogeneidades internas, que são uma característica básica das transições de fase e identificam os estados de não equilíbrio.

A região limitada pela equação 4 obtida é demonstrada abaixo.

Os resultados foram obtidos numericamente utilizando uma discretização de 4000 elementos para cada variável independente. Nota-se que quanto maior o número de elementos utilizados, mais as curvas de nível se aproximam do ponto crítico nas coordenadas (ρ_c , T_c) = (5.93,514.71).

```
Código utilizado:

#%%

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

# %%

table18 = pd.read_csv('table18.txt', index_col = 'i', sep=' ', dtype={'xi': 'float', 'yi': 'float'})

table19 = pd.read_csv('table19.txt', index_col = 'i', sep=' ', dtype={'Ni': 'float', 'ti': 'float', 'di': 'float', 'li': 'float', 'hi': 'float', 'bi': 'float', 'ei': 'float'})

table19.columns = ['Ni', 'ti', 'di', 'li', 'bi', 'gi', 'ei']

# %%

# Constants

Tc = 514.71 # K
```

 $rho_c = 5.93 \# mol/dm^3$

```
R = 8.31446262 \, \#J/(mol.K)
# %%
T = np.linspace(100,700,4000)
rho = np.linspace(1, 22, 4000)
tau = Tc/T
delta = rho/rho c
# %%
xdelta, xtau = np.meshgrid(delta,tau)
# %%
def alpha_0(delta, tau): # J/mol
sum_alpha0 = np.cumsum([table18['xi'][i]*(1-np.log(1-np.exp(-table18['yi'][i]*tau))) for i in
range(4,8)], axis=1)[-1]
other\_terms0 = np.log(delta) + table18['xi'][1]*np.log(tau) + table18['xi'][2] + table18['xi'][3]*tau
return (other terms0 + sum alpha0)*T*R
def alpha_r(delta, tau):
sum\_r1 = np.cumsum([table19['Ni'][i]*delta**(table19['di'][i])*tau**(table19['ti'][i]) for i in
range(1,7)], axis=1)[-1]
sum_r^2 = np.cumsum([table19['Ni'][i]*delta**(table19['di'][i])*tau**(table19['ti'][i])*np.exp(-interval = np.cumsum([table19['Ni'][i])*np.exp(-interval = np.cumsum([table1
delta**(table19['li'][i])) for i in range(7,17)], axis=1)[-1]
sum_r3 = np.cumsum([table19['Ni'][i]*delta**(table19['di'][i])*tau**(table19['ti'][i])*np.exp((-interpretation of table19['Ni'][i])*np.exp((-interpretation of table19['Ni'][i])*np.exp((-interpretatio
table19['hi'][i]*(delta-table19['ei'][i])**2-table19['bi'][i]*(tau-table19['gi'][i])**2)) for i in
range(17,26)], axis=1)[-1]
return sum r1 + sum r2 + sum r3
def helm(delta, tau):
return alpha_0(delta, tau) + alpha_r(delta,tau)
```