Entrée [1]:

```
# Badr TADJER | Naoufal ARRADI | Leo TRAN
# M1-LS1-APP
```

Predict survival on the Titanic

In this Lab, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy

Dataset

The dataset contains 891 observations of 12 variables:

- · PassengerId: Unique ID for each passenger
- Survived: Survival (0 = No; 1 = Yes)
- **Pclass**: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
- Name: Name • Sex: Sex
- Age: Age
- Sibsp: Number of Siblings/Spouses Aboard • Parch: Number of Parents/Children Aboard
- Ticket: Ticket Number • Fare: Passenger Fare
- · Cabin: Cabin
- Embarked Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

Entrée [2]:

```
# imports
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
# your code here
```

Entrée [3]:

```
titanic = pd.read_csv('titanic.csv', index_col = 0)
titanic.head()
```

Out[3]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabir
Passengerld										
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8ŧ
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C128
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

Entrée [4]:

```
# print some info about the dataframe
# your code here
titanic.info
```

Out[4]:

<pre><bound method="" passengerid<="" pre=""></bound></pre>	d DataF	rame.in	fo of			Survived	Pclass	\
1		0	3					
2		1	1					
3		1	3					
4		1	1					
5		0	3					
		U	3					
0.07	•	• •	•••					
887		0	2					
888		1	1					
889		0	3					
890		1	1					
891		0	3					
								a .
Age \							Name	Sex
PassengerId								
1				Br:	aund	d, Mr. Owe	n Harric	male
22.0				ь	auno	i, Mi. Owe	n narris	mare
2	Cumina	s. Mrs.	John	Bradley (1	Flor	rence Brid	as Th	female
38.0	- Cum = 11 9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	001111	Diddie, (i		21100 2119	95 111111	10410
3				Не	eikk	inen, Mis	s. Laina	female
26.0						•		
4	F	utrelle	, Mrs.	Jacques I	Heat	h (Lily M	ay Peel)	female
35.0	Futrelle, Mrs. Jacques Heath (Lily May Peel) fema							
5				Alle	en,	Mr. Willi	am Henrv	male
35.0					,		· · · · · · · · · · · · · · · · · · ·	
• • •								
• • •								
887				1	Mont	vila, Rev	. Juozas	male
27.0						·		
888				Graham,	Mis	ss. Margar	et Edith	female
19.0								
889		John	ston.	Miss. Cath	neri	ne Helen	"Carrie"	female
NaN			,					
890				ī	Rehr	r, Mr. Kar	l Howell	male
26.0				•	50111	, III • Kai	I HOWCII	marc
891					Do	ooley, Mr.	Datrick	male
32.0					DC	ociey, Mi.	Patrick	mare
32.0								
	SibSp	Parch		Ticke	et.	Fare C	abin Emb	arked
PassengerId	21201	1 01 011		11010		1410 0		
1	1	0		A/5 211	7 1	7.2500	NaN	s
2	1							
		0	amon /	PC 1759		71.2833	C85	C
3	0	0	STON/	02. 310128		7.9250	NaN	S
4	1	0		11380			C123	S
5	0	0		37345		8.0500	NaN	S
	•••	•••			••	12 0000	· · ·	
887	0	0		21153		13.0000	NaN	S
888	0	0		11205		30.0000	B42	S
889	1	2		W./C. 660		23.4500	NaN	S
890	0	0		11136			C148	С
891	0	0		3703	76	7.7500	NaN	Q

[891 rows x 11 columns]>

Looks like there are some Nan values, let's see how many for each column

Entrée [5]:

```
titanic.isnull().sum()
Out[5]:
```

0 Survived Pclass 0 Name 0 n Sex 177 Age SibSp 0 0 Parch 0 Ticket Fare 0 687 Cabin Embarked 2

Cabin contains a lot of Nan values, we'll drop this column

We'll replace the Nan values in Age with the age's median, and the ones in Embarked with 'S', which is the most frequent one in this column

Entrée [6]:

dtype: int64

```
# your code here to drop Cabin
titanic = titanic.drop(columns = "Cabin")
# check the fillna documentation: http://pandas.pydata.org/pandas-docs/stable/general
titanic["Age"] = titanic["Age"].fillna(titanic["Age"].median())
titanic["Embarked"].fillna('S', inplace = True)
titanic.isnull().sum()
```

Out[6]:

```
Survived
             0
Pclass
             0
Name
             0
             0
Sex
             0
Age
SibSp
Parch
             0
Ticket
             0
Fare
             0
Embarked
dtype: int64
```

Visualization

Entrée [7]:

```
%matplotlib inline
import matplotlib.pyplot as plt
print ('survival rate =', titanic.Survived.mean())
(titanic.groupby('Survived').size() / titanic.shape[0]).plot(kind = "bar", title =
```

survival rate = 0.3838383838383838

Out[7]:

<AxesSubplot:title={'center':"Label's Balance"}, xlabel='Survived'>

Entrée [8]:

```
# make a function to plot survival against passenger attribute
def survival_rate(column, t):
    df = pd.DataFrame()
    df['total'] = titanic.groupby(column).size()
    df['survived'] = titanic.groupby(column).sum()['Survived']
    df['percentage'] = round(df['survived'] / df['total'] * 100,2)
    print(df)
    df['survived'].plot(kind = t)
    df['total'].plot(kind = t, alpha = 0.5, title = "Survivors per " + str(column))
    plt.show()
```

Entrée [9]:

```
# Draw survival per Sex
survival_rate("Sex", "barh")
```

	total	survived	percentage
Sex			
female	314	233	74.20
male	577	109	18.89

Entrée [10]:

```
# Draw survival per Class
survival_rate("Pclass", "barh")
```

	total	survived	percentage
Pclass			
1	216	136	62.96
2	184	87	47.28
3	491	119	24.24

Entrée [11]:

Graph survived per port of embarkation survival_rate("Embarked", "bar")

	total	survived	percentage
Embarked			
С	168	93	55.36
Q	77	30	38.96
S	646	219	33.90

Entrée [12]:

```
# Draw survived per Number of Parents/Children Aboard (Parch)
survival_rate("Parch", "barh")
```

	total	survived	percentage
Parch			
0	678	233	34.37
1	118	65	55.08
2	80	40	50.00
3	5	3	60.00
4	4	0	0.00
5	5	1	20.00
6	1	0	0.00

Entrée [13]:

```
# Draw survived per Number of Siblings/Spouses Aboard (SibSp)
survival_rate("SibSp", "barh")
```

	total	survived	percentage
SibSp			
0	608	210	34.54
1	209	112	53.59
2	28	13	46.43
3	16	4	25.00
4	18	3	16.67
5	5	0	0.00
8	7	0	0.00

Model training

Some of the columns don't have predictive power, so let's specify which ones are included for prediction

```
Entrée [14]:
```

```
predictors = ["Pclass", "Sex", "Age", 'SibSp', 'Parch', "Fare", "Embarked"]
```

We need now to convert text columns in **predictors** to numerical ones

Entrée [15]:

```
for col in predictors: # Loop through all columns in predictors
    if titanic[col].dtype == 'object': # check if column's type is object (text)
        titanic[col] = pd.Categorical(titanic[col]).codes # convert text to numeric
titanic.head()
```

Out[15]:

	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embark
Passengerld										
1	0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500	
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.2833	
3	1	3	Heikkinen, Miss. Laina	0	26.0	0	0	STON/O2. 3101282	7.9250	
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.1000	
5	0	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.0500	

Entrée [16]:

test shape (268, 7) (268,)

```
# Split the data into a training set and a testing set. Set: test size=0.3, random s
from sklearn.model selection import train test split
# your code here
y = titanic["Survived"]
X = titanic[predictors]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_st
print ("train shape", X train.shape, y train.shape)
print ("test shape", X_test.shape, y_test.shape)
train shape (623, 7) (623,)
```

Entrée [17]:

```
# import LogisticRegression from: http://scikit-learn.org/stable/modules/generated/s
# your code here
from sklearn.linear model import LogisticRegression
clf = LogisticRegression(random state = 1)
clf = clf.fit(X_train, y_train)
# your code here
train score = clf.score(X train, y train)
test score = clf.score(X test, y test)
print ('train accuracy =', train score)
print ('test accuracy =', test_score)
```

```
train accuracy = 0.8073836276083467
test accuracy = 0.7723880597014925
```

Let's print the model's parameters

Entrée [18]:

```
coeff = pd.DataFrame()
coeff['Feature'] = X_train.columns
coeff['Coefficient Estimate'] = pd.Series(clf.coef [0])
coeff.loc[len(coeff)]=['Intercept', clf.intercept_[0]]
print(coeff)
```

```
Feature Coefficient Estimate
0
      Pclass
                          -1.158693
1
         Sex
                          -2.708761
                          -0.040634
2
         Age
3
                          -0.334012
       SibSp
4
       Parch
                           0.071939
5
        Fare
                          -0.000570
6
   Embarked
                          -0.223307
                           5.391545
   Intercept
```

We now need to predict class labels for the test set. We will also generate the class probabilities

Entrée [19]:

[0.92813017 0.07186983] [0.93745225 0.06254775]

```
# predict class labels for the test set
y pred = clf.predict(X test)
print (y pred)
[1\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 0
1 0
0 0
0 0
1 1 0 1 1 0 0 1 0]
Entrée [20]:
# generate class probabilities : http://scikit-learn.org/stable/modules/generated/sk
y probs = clf.predict proba(X test)
print (y_probs)
[[0.13931138 0.86068862]
[0.91545699 0.08454301]
[0.12666421 0.87333579]
[0.36591842 0.63408158]
[0.07784301 0.92215699]
[0.89067951 0.10932049]
[0.80772606 0.19227394]
[0.11922783 0.88077217]
[0.49862954 0.50137046]
[0.44730682 0.55269318]
[0.90553194 0.09446806]
[0.39942792 0.60057208]
[0.75883959 0.24116041]
[0.7731844 0.2268156 ]
[0.36586717 0.63413283]
[0.51884413 0.48115587]
[0.92555342 0.07444658]
```

As you can see, the classifier outputs two probabilities for each row. It's predicting a 1 (Survived) any time the probability in the second column is greater than 0.5. Let's visualize it all together.

Entrée [21]:

```
pred = pd.DataFrame({
        "Survived_original": y_test,
        "Survived predicted": y pred,
        "Survived proba": np.transpose(y probs)[1]
pred["Comparison"] = pred.Survived_original == pred.Survived_predicted
pred.head()
```

Out[21]:

				Passengerld
True	0.860689	1	1	863
True	0.084543	0	0	224
True	0.873336	1	1	85
False	0.634082	1	0	681
True	0.922157	1	1	536

Confusion matrix

Entrée [22]:

```
from sklearn import metrics
print (metrics.confusion_matrix(y_test, y_pred))
print (metrics.classification_report(y_test, y_pred))
```

```
[[129 24]
 [ 37 78]]
                          recall f1-score
              precision
                                              support
           0
                   0.78
                             0.84
                                       0.81
                                                  153
                   0.76
                             0.68
                                       0.72
                                                  115
                                       0.77
                                                  268
    accuracy
   macro avg
                   0.77
                             0.76
                                       0.76
                                                  268
                   0.77
                             0.77
                                       0.77
                                                  268
weighted avg
```

As you can see, we can have the classification report for each class

K-Fold Cross Validation

Entrée [23]:

```
# import cross validation from: http://scikit-learn.org/stable/modules/generated/skl
# your code here
from sklearn.model selection import cross val score
clf = LogisticRegression(random state = 1)
scores = cross val score(clf, titanic[predictors], titanic["Survived"], scoring = 'a
## see model
print(scores)
# Take the mean of the scores (because we have one for each fold)
print(scores.mean())
```

```
[0.7877095  0.78651685  0.78089888  0.76966292  0.82022472]
0.7890025735986442
```

When you are improving a model, you want to make sur that you are really doing it and not just being lucky. This is why it's good to work with cross validation instead of one train/test split.

Entrée []: