In [5]: import seaborn as sns
import numpy as np
import matplotlib as plt
import pandas as pd

In [10]: df = pd.read_csv('car_crashes.csv')
df

Out[10]:		total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
	0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
	1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
	2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
	3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
	4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
	5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	CO
	6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
	7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
	8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
	9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
	10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
	11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
	12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
	13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
	14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
	15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
	16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
	17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
	18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
	19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
	20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
	21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
	22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
	23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
	24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
	25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
	26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
	27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
	28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV
	29	11.6	4.060	3.480	10.092	9.628	746.54	120.21	NH
	30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ

31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	ОК
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	SC
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

In [50]: type(df)

Out[50]: pandas.core.frame.DataFrame

In [11]: df.head()

Out[11]: total

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA

In [12]: df.tail()

Out[12]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI

50 17.4 7.308 5.568 14.094 15.660 791.14 122.04 WY

df.info In [13]: <bound method DataFrame.info of</pre> total speeding alcohol not distracted no previou Out[13]: s ins premium \ 0 18.8 7.332 5.640 18.048 15.040 784.55 1 18.1 7.421 4.525 16.290 17.014 1053.48 2 18.6 6.510 5.208 15.624 17.856 899.47 3 22.4 4.032 5.824 21.056 21.280 827.34 4 12.0 4.200 3.360 10.920 10.680 878.41 5 13.6 10.744 5.032 3.808 12.920 835.50 6 10.8 4.968 3.888 9.396 8.856 1068.73 7 16.2 6.156 4.860 14.094 16.038 1137.87 8 5.9 2.006 1.593 5.900 5.900 1273.89 9 17.9 16.826 3.759 5.191 16.468 1160.13 15.6 14.820 14.508 10 2.964 3.900 913.15 11 17.5 9.450 7.175 14.350 15.225 861.18 12 15.3 5.508 4.437 13.005 14.994 641.96 13 12.8 803.11 4.608 4.352 12.032 12.288 14 14.5 3.625 4.205 13.775 13.775 710.46 15 15.7 2.669 3.925 15.229 13.659 649.06 17.8 4.272 13.706 16 4.806 15.130 780.45 17 21.4 4.066 4.922 16.692 16.264 872.51 18 20.5 7.175 6.765 14.965 20.090 1281.55 19 15.1 5.738 4.530 13.137 12.684 661.88 20 12.5 4.250 4.000 8.875 12.375 1048.78 21 8.2 6.560 1011.14 1.886 2.870 7.134 22 14.1 3.384 3.948 13.395 10.857 1110.61 23 9.6 2.208 2.784 8.448 8.448 777.18 17.6 1.760 24 2.640 5.456 17.600 896.07 25 16.1 5.474 14.812 13.524 790.32 6.923 26 21.4 8.346 9.416 17.976 18.190 816.21 27 14.9 1.937 5.215 13.857 13.410 732.28 28 14.7 5.439 4.704 13.965 14.553 1029.87 29 11.6 4.060 3.480 10.092 9.628 746.54 30 11.2 1.792 3.136 9.632 8.736 1301.52 18.4 18.032 31 3.496 4.968 12.328 869.85 32 12.3 3.936 3.567 10.824 9.840 1234.31 33 16.8 6.552 5.208 15.792 13.608 708.24 34 23.9 5.497 10.038 23.661 20.554 688.75 35 14.1 11.562 3.948 4.794 13.959 697.73 36 19.9 6.368 5.771 18.308 18.706 881.51 37 12.8 4.224 3.328 8.576 11.520 804.71 18.2 16.016 38 9.100 5.642 17.472 905.99 39 11.1 3.774 4.218 10.212 8.769 1148.99 40 23.9 9.082 9.799 22.944 19.359 858.97 41 19.4 6.402 19.012 16.684 6.014 669.31 42 19.5 4.095 5.655 15.990 15.795 767.91 19.4 1004.75 43 7.760 7.372 17.654 16.878 44 11.3 4.859 1.808 9.944 10.848 809.38 45 13.6 4.080 4.080 13.056 12.920 716.20 12.7 11.049 46 2.413 3.429 11.176 768.95 47 10.6 4.452 3.498 8.692 9.116 890.03 48 23.8 8.092 6.664 23.086 20.706 992.61 49 13.8 4.968 4.554 5.382 11.592 670.31 50 17.4 7.308 5.568 14.094 15.660 791.14 ins losses abbrev

0 145.08 AL 1 133.93 AK 2 110.35 AZ 3 142.39 AR 4 165.63 CA

5	139.91	СО
6	167.02	CT
7	151.48	DE
8	136.05	DC
9	144.18	FL
10	142.80	GA
11	120.92	ΗI
12	82.75	ID
13	139.15	IL
14	108.92	IN
15	114.47	IA
16	133.80	KS
17	137.13	KY
18	194.78	LA
19	96.57	ME
20	192.70	MD
21	135.63	MA
22	152.26	MI
23	133.35	
24	155.77	MN
		MS
25	144.45	MO
26	85.15	MT
27	114.82	NE
28	138.71	NV
29	120.21	NH
30	159.85	NJ
31	120.75	NM
32	150.01	NY
33	127.82	NC
34	109.72	ND
35	133.52	ОН
36	178.86	OK
37	104.61	OR
38	153.86	PA
39	148.58	RI
40	116.29	SC
41	96.87	SD
42	155.57	TN
43	156.83	TX
44	109.48	UT
45	109.61	VT
46	153.72	VA
47	111.62	WA
48	152.56	WV
49	106.62	WI
50	122.04	WY

In [14]: df.describe()

Out[14]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000
mean	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.493137
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.835922
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.750000
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.645000
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.050000
75%	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.870000
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.780000

```
df.shape
In [45]:
          (51, 8)
Out[45]:
          df.isnull().sum()
In [47]:
                               0
          total
Out[47]:
                               0
          speeding
          alcohol
                               0
          not distracted
          no previous
                               0
          ins premium
          ins losses
                               0
          abbrev
          dtype: int64
In [15]: ndf = df.select_dtypes(include=[np.number])
          ndf.head()
                   speeding alcohol not_distracted no_previous ins_premium ins_losses
Out[15]:
             total
             18.8
                      7.332
                               5.640
                                            18.048
                                                        15.040
                                                                     784.55
                                                                               145.08
              18.1
                      7.421
                               4.525
                                            16.290
                                                        17.014
                                                                    1053.48
                                                                               133.93
          2
              18.6
                      6.510
                               5.208
                                            15.624
                                                        17.856
                                                                     899.47
                                                                               110.35
              22.4
                      4.032
                               5.824
                                            21.056
                                                        21.280
                                                                     827.34
                                                                               142.39
              12.0
                      4.200
                               3.360
                                            10.920
                                                        10.680
                                                                     878.41
                                                                               165.63
          sns.scatterplot(x="alcohol", y="total", data=df)
In [16]:
          <Axes: xlabel='alcohol', ylabel='total'>
Out[16]:
              22.5
              20.0
              17.5
             15.0
              12.5
              10.0
               7.5
               5.0
                                                                           8
                          2
                                           4
                                                           6
                                                                                           10
                                                      alcohol
```

In [17]: sns.lineplot(x="alcohol", y="total", data=df)

Out[17]: <Axes: xlabel='alcohol', ylabel='total'>

In [18]: sns.distplot(df['alcohol'])

Out[18]:

C:\Users\tejbh\AppData\Local\Temp\ipykernel_11940\2398698211.py:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df['alcohol'])

<Axes: xlabel='alcohol', ylabel='Density'>

In [19]: sns.relplot(x="alcohol", y="total", data=df, hue="abbrev")

Out[19]: <seaborn.axisgrid.FacetGrid at 0x24f27ebe3d0>


```
In [20]: sns.barplot(data=df,x="alcohol",y="total")
```

Out[20]: <Axes: xlabel='alcohol', ylabel='total'>

In [21]: cor=df.corr()
cor

C:\Users\tejbh\AppData\Local\Temp\ipykernel_11940\3865792743.py:1: FutureWarning: The de
fault value of numeric_only in DataFrame.corr is deprecated. In a future version, it wil
l default to False. Select only valid columns or specify the value of numeric_only to si
lence this warning.
cor=df.corr()

Out[21]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	1.000000

In [24]: sns.heatmap(cor,annot=True,cmap="RdYlGn")

Out[24]: <Axes: >

In [25]: sns.barplot(x='abbrev', y='ins_losses', data=df)

Out[25]: Axes: xlabel='abbrev', ylabel='ins_losses'>

In [30]: dff=df[['abbrev', 'total', 'speeding', 'alcohol', 'not_distracted', 'no_previous']].sort
dff

]:		abbrev	total	speeding	alcohol	not_distracted	no_previous
	38	PA	18.2	9.100	5.642	17.472	16.016
	31	NM	18.4	3.496	4.968	12.328	18.032
	2	AZ	18.6	6.510	5.208	15.624	17.856
	0	AL	18.8	7.332	5.640	18.048	15.040
	41	SD	19.4	6.014	6.402	19.012	16.684
	43	TX	19.4	7.760	7.372	17.654	16.878
	42	TN	19.5	4.095	5.655	15.990	15.795
	36	ОК	19.9	6.368	5.771	18.308	18.706
	18	LA	20.5	7.175	6.765	14.965	20.090
	26	MT	21.4	8.346	9.416	17.976	18.190
	17	KY	21.4	4.066	4.922	16.692	16.264
	3	AR	22.4	4.032	5.824	21.056	21.280
	48	WV	23.8	8.092	6.664	23.086	20.706
	34	ND	23.9	5.497	10.038	23.661	20.554
	40	SC	23.9	9.082	9.799	22.944	19.359

Out[30

```
In [51]: sns.pointplot(x='abbrev', y='speeding', data=dff, color='brown')
sns.pointplot(x='abbrev', y='alcohol', data=dff, color='turquoise')
```

```
sns.pointplot(x='abbrev', y='not_distracted', data=dff, color='blue')
sns.pointplot(x='abbrev', y='no_previous', data=dff, color='violet')
```

Out[51]: <Axes: xlabel='abbrev', ylabel='no_previous'>

In []: