Anal avec python

Yehor Korotenko

January 26, 2025

Contents

1	cou	rs 1
	1.1	
		1.1.1 Modèle de croissance géomètrique
	1.2	Modèles continues
		1.2.1 Modèle de Malthus
		1.2.2 Modèle Verhulst
	1.3	Modèle de croissance logistique
2	cou	urs 2
	2.1	Notion de champ de vecteurs associée à une EDO
		2.1.1 Généralités et définitions
		2.1.2 Dessins de champs de vecteurs
		2.1.3 Recherche de solution approchée de modèles sous python
	2.2	Modèle de prédateur prose (lotka-voltena (1931))

Chapter 1

cours 1

1.1 Modèles discrètes

On diésigne par N(t) la population d'individus à l'instant t. Équation du modèle discret:

$$\underbrace{N(t+\Delta t)-N(t)}_{\text{variation de la population}} = \underbrace{n}_{\text{nombre de naissances}} - \underbrace{m}_{\text{nombre de décès}} + \underbrace{i}_{\text{immigration}} - \underbrace{e}_{\text{sol de migration}}$$

1.1.1 Modèle de croissance géomètrique

- hypothèse:
 - solde migration nul: i.e i e = 0
 - nombre de croissance proportionnel à la taille de la population $\underbrace{n = \lambda \Delta t N(t)}_{\text{taux de natalité}}$
 - -Idem pour le mobre de décès: $\underline{m = \mu \Delta t N(t)}_{\rm taux~de~mortalité}$
- Modèle: On pose $N_n = N(t_n)$ la taille de la population à l'instant t_n .

$$N_{n+1} - N_n = \lambda \Delta t N_n - \mu \delta t N_n$$

on pose $r = \lambda - \mu$

$$N_{n+1} = (1 + r\Delta t)N_n, \qquad n = 0$$
(1.1)

- Solution: $N_n = (1 + r\Delta t)^n N_0, \quad n \in \mathbb{N}$
- <u>Visualisation</u>: Δt fixé

(a) Natalité supérieure à la mortalité

- (b) Natalité égale à la mortalité
- (c) Natalité inférieure à la mortalité

Property. .

• Lorsque $t \to 0$, la population semble tendre vers une courbe $N(t) = N_0 e^{rt}$, solution de $\begin{cases} N'(t) = rN(t) \\ N(0) = N_0 \end{cases}$

• Si r > 0, la population croît indéfiniment

• Si r < 0, il y a extinction de l'éspèce.

Inconvenients:

1. Une croissance infinie n'est pas réaliste

2. Pour être rigoureux, on devrait écrire $E(rN_n)$ i.e partie entière.

1.2 Modèles continues

Motivation: L'observation qui prend Δt proche de 0 aura beaucoup plus d'information.

Remark 1.1. Le modèle de croissance géomètrique

$$\begin{split} N(t + \Delta t) - N(t) &= \lambda \Delta t N(t) - \mu \Delta t N(t) \\ \Rightarrow & \frac{N(t + \Delta t) - N(t)}{\Delta t} = \lambda N(t) - \mu N(t) \end{split}$$

en faisant $\Delta t \to 0$

$$N'(t) = \lambda N(t) - \mu N(t)$$

D'où l'équation des modèles continues:

$$\underbrace{N'(t)}_{\text{vitesse de variation}} = \underbrace{n(t)}_{\text{vitesse de naissance}} - \underbrace{m(t)}_{\text{vitesse de décès}} + \underbrace{i(t)}_{\text{vitesse d'immigration}} - \underbrace{e(t)}_{\text{vitesse d'émigration}}$$

1.2.1 Modèle de Malthus

• hypothèse:

- solde migration nul: i(t) - e(t) = 0

- vitesse de naissance proportionnel à la population à l'instant t: $n(t) = \lambda N(t)$

- vitesse de décès: $m(t) = \mu N(t)$

• Modèle:
$$\begin{cases} N'(t) = (\lambda - \mu)N(t) \\ N(0) = N_0 \end{cases}$$

• Solution: $N(t) = N_0 e^{(\lambda - \mu)t}$

Property. – Il peut être si comme limite du modèle de croissance géomètrique.

– Lorsque $r = \lambda - \mu > 0$ croissance est proportionnel.

– Lorsque $r = \lambda - \mu = 0$ la population n'évolue pas.

– Lorsque $r = \lambda - \mu < 0$ la population tend vers 0.

• <u>Inconvenients</u>:

- croissance exponentielle pas réaliste. Il faut prendre en compte:

* la limitation des ressources

* l'interaction avec l'environnement

1.2.2 Modèle Verhulst

Corrige le modèle de Malthus en prennant en compte la limitation de ressources.

 \bullet <u>Idée</u>: limiter la croissance à un seuil K appelé capacité biotique

Figure 1.2: Modèle de Malthus

Figure 1.3: Modèle de Verhulst

- hypothèse: Sole de migration nul
 - -taux de natalité fonction afiine décroissante de la population $\lambda \approx \lambda (1 \frac{N(t)}{K})$
 - -taux de mortalité fonction affine croissante de la population $\mu \approx -\mu(1-\frac{N(t)}{K})$

• Modèle:
$$\begin{cases} N'(t) = rN(t)(1 - \frac{N(t)}{K}) \\ N(0) = N_0 \end{cases}$$

- Solutions: $N(t) = \frac{K}{1 + (\frac{K}{N_0} 1)e^{-rt}}$ t > 0
- <u>Visualisation</u>:

Figure 1.4: Verhulst solution

Property. Si r > 0, on a:

- si $N_0 = 0$ $N_0 = K$ on a: $N(t) = N_0 \,\forall t > 0$
- $\sin 0 < N_0 < K, N$ croissante
- si $N_0 > K$, N décroissante
- $-\ N$ possède une limite si $N_0>0$

$$\lim_{t \to \infty} N(t) = K$$

1.3 Modèle de croissance logistique

C'est un modèle discrét

- <u>hypothèse</u>: i.e = 0 n-m est une fonction affine de la population, i.e $n-m=r\Delta t N(t)(1-\frac{N(t)}{K})$
- Modèle: On suppose $\Delta t = 1$: On pose $N_n = N(t_n)$

On a:
$$\begin{cases} N_{n+1} - N_n = rN_n(1 - \frac{N_n}{K}) \\ N_0 \text{ donn\'e} \end{cases}$$

Property. (À vérifier numeriquement)

- $-\sin r < 2$, la suite converge vers K
- si 2 < r < 2.449, la suite converge vers un cycle
- si 2.449 < r < 2.57, la suite est encore un cycle mais plus complèxe
- si r > 2.57, la suite devient chaotique

Chapter 2

cours 2

2.1 Notion de champ de vecteurs associée à une EDO

2.1.1 Généralités et définitions

Les modèles continus de la dynamique de populations sont des problèmes de Cauchy pour les EDO.

(EDO)
$$\begin{cases} y'(x) = f(t, y(t)) & t \in]0, \pi[\\ y(0) = y_0 \end{cases}$$

Οù

$$y:[0,\pi]\longrightarrow\mathbb{R}$$

 $t\longmapsto y(t).$

$$f:]0,\pi[\times\mathbb{R}\longrightarrow\mathbb{R}$$

$$(t,x)\longmapsto f(t,x).$$

- Si l'on sait résoudre analytiquement l'EDO (i.e donner l'expression de $t \mapsto y(y)$) alors c'est terminé car il suffit d'étudier la fonction $t \mapsto y(t)$
- Si l'on ne sait pas détérminer la solution analytique, on peut:
 - 1. s'assurer de **l'éxistence** et **l'unicité** de la solution et de sa **stabilité** vis à vis des données du problème.
 - 2. Puis analyser les propriétés qualitatives de cette solution pour simple analyse de f(t,x)

C'est ici qu'intervient les champs de vecteurs.

Illustations.

1. Prenons le modèle de Malthus

$$\begin{cases} N'(t) = rN(t), & t \in]0, \pi[\\ N(0) = N_0 \end{cases}$$

On sait que $N(t) = N_0 e^{rt}$

2. Voici ce que fait python pour traiter N.

Figure 2.1: Ce que fait python

- 3. Traitons les vecteurs tangents à la courbe $t\mapsto N(t)$ aux points $t_n,\,n=0$
- 4. Si l'on connaît les valeurs minimals et maximales de la solutions on peut avoir l'allure de la solution.

Figure 2.2: Une courbe sur des champs de vecteurs

Analysons ce que represente le vecteurs tangent:

- pour une courbe y = g(x)
- python et tout autre logiciel procède ainsi

Figure 2.3: Ce que represente vecteur

Le vecteur tangent à la courbe:

$$\vec{v} = (1, g'(x)) = (1, \frac{dy}{dx}) = (1, \frac{\frac{dy}{dt}}{\frac{dy}{dt}})$$

$$= \frac{1}{\frac{dy}{dt}} (\frac{dx}{dt}, \frac{dy}{dt}) = \frac{1}{\dot{x}(t)} \underbrace{(\dot{x}(t), \dot{y}(t))}_{\text{e}\mathbb{R}} \underbrace{\vec{v} = (\dot{x}(t), \dot{y}(t))}$$

$$\vec{v} = (\dot{x}(t), \dot{y}(t))$$

Càd \vec{v} est le vecteur vitesse au points M(x(t),y(t)) a la courbe parametrée $t\mapsto \begin{cases} x(t)=t\\ y(t)=g(t) \end{cases}$. On a le résultat.

Proposition 2.1.

(y obtient solution de l'EDO y'(t) = f(t, y(t)))

\$\psi\$ (vecteur vitesse de la courbe parametrée $t \mapsto (x(t), y(t))$ au point $M(t_0) = (t_0, y(t_0))$ si le vecteur $(1, f(t_0, y(t_0)))$)

Proposition 2.2.

$$V: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(t, y) \longmapsto V((t, y)).$

(si le champ de vecteur associé à l'EDO y'(t) = f(t, y(t))) $\Leftrightarrow V(t, y) = (1, f(t, y))$

2.1.2 Dessins de champs de vecteurs

Principe:

À chaque points $P = (p_x, p_y)$ on trace le vecteur $\varepsilon V(P)$ où ε est une constance positive choisi pour écrire les vecteurs trop longs.

Avec python on écrit $quiver(P_x, P_y, V_x, V_y, angles='xy')$ RQ 1: Cette fonction est vectorielle, i.e P_x, P_y, V_x, V_y , sont des numpy array de taille n. RQ 2: On peut ajouter un paramètre pour controles la longeur des vecteurs:

plt.quiver
$$(P_x, P_y, V_x, V_y, angles='xy', sacle=1)$$

Par conséquent, il faut normaliser les vecteurs (i.e le champ de vecteur)

Example 2.3. Champ de vecteur du modèle de Verhulst:

```
def f(t, y):
    return r * y * (1 - y/k)
```

la grille:

```
lt = np.linspace(tmin, tmax, N+1)
ly = np.linspace(ymin, ymax, M+1)
T, Y = np.meshgrid(lx, ly)
```

Construire les vecteurs:

```
Y = 1 + 0 * T
V = f(T, Y)
norm = np.sqrt(U*U + V*V)
U = U/norm
V = V/norm
```

On place les points:

```
plt.scatter(T, Y, marker='+', alpha = 0.5)
```

On place les vecteurs

```
plt.quiver(T, Y, U, V, angles='xy', scale=N)
```

2.1.3 Recherche de solution approchée de modèles sous python

On cherche une solution approchée de

$$\begin{cases} y'(t) = f(t, y(t)) & t \in]t_0, t_0 + T[\\ y(t_0) = y_0 \end{cases}$$

avec python. Pour cela il suffit de dire **en quels points** on veut cette solution. On se donne:

- une liste des instants $[t_0, t_1, \dots, t_N]$
- t_0, y_0
- Puis, on appelle la fonction <u>odeint</u> du module scipy.integrate de python.
- On obtient une liste $[y_0, y_1, \ldots, y_N]$

Example 2.4. Cas du modèle du Verhulst

• EDO:

```
def f(t, y):
    return \ldots
```

• Instants

```
t0, tf = a, b
N = 100
t = np.linspace(t0, tf, N)
```

• On appelle odeint

```
from scipy.integrate import odeint
yapp = odeint(f, t, y), rtol=None, atol=None, tfloat=False)
plt.plot(t, yapp, \ldots)
```

2.2 Modèle de prédateur prose (lotka-voltena (1931))

H(t): population de sardins P(t): pupulation de reguins

$$\frac{H'(t)}{H(t)} = \text{taux de variation de sardins} = \underbrace{a}_{\text{taux de croissance}} - \underbrace{bP(t)}_{\text{taux de mortalit\'e}}$$

$$\frac{P'(t)}{P(t)} = \text{taux d'arriv\'e des requetes} = \underbrace{-c}_{\text{taux de d\'ec\`es}} + \underbrace{dH(t)}_{\text{taux de croissance}}$$

D'où le modèle:

$$\begin{cases} H'(t) = H(t)(a - bP(t)) & t > 0 \\ P'(t) = P(t)(-c + dH(t)) \\ H(0) = H_0, & P(0) = P_0 \end{cases}$$

Si l'on désigne par $p \ge 0$ la proportion des requêtes en sardines pêchés

$$\begin{cases} H'(t) = H(t)(a - p - bP(t)) & t > 0 \\ P'(t) = P(t)(-c - p - dH(t)) \\ H(0) = H_0 \\ P(0) = P_0 \end{cases}$$