

Building a Movie Recommendation Engine

Vikrant Chaudhary

Under the guidance of

Mr. Sanjay Kumar Singh

PROJECT OBJECTIVES

- RecommendationSystems
- Revise Some Math
- Build it!

Machine Learning Pipeline

Supervised Machine Learning

	Features				
(House Size (Sq feet)	Location	Age (years)	Prize (Lakh Rs)	
	500	Mumbai	2	70	1
	1500	Pune	3	100	Training Data
	2000	Banglore	4	60	, J
	1000	Mumbai	2	?	Test Data
•	3000	Pune	10	?	J

What's Common?

1. Amazon 2. Netflix

Recommended for you, Thomas

QUIZ

Who are the **Users** and **Items** for RE in the following platforms?

- 1. LinkedIn Users: Members; Items: Members
- 2. Amazon Users: Members; Items: Products (E.g. Books, Electronics)
- 3. **Netflix** Users: Members; Items: Movie
- 4. Facebook Users: Members; Items: Members

Implementing A Recommender System

1. Popularity / Rating Based System

Implementing A Recommender System

2. Content Based

3. Collaborative Filtering

Similarity Between Content

Text A: London Paris London

Text B: Paris Paris London

Distance Between Two Vectors

When To Use Angular Distance?

Quiz

In which of the following scenarios you are most likely to use Cosine Similarity measure?

- 1. Determining gender based on shoe length, height, weight etc.
- 2. Comparing similarities between documents of uneven size
- 3. Predicting rainfall based on city location, temperature, humidity etc.

Quiz

Given the similarity matrix below, which movie is most similar to Movie

0?

Let's Build It

https://github.com/vikrant462/Building-a-Movie-Recommendation-Engine

Movies > [1,0.8,0.2,0.5] 0.8 0.2 0.5 <u>0</u> 1 0.3 0.6 1 0.1 (0,1), (1,0.8), (2,0.2), (3,0.5)[(0,1),(1,0.8),(3,0.5),(2,0.3)]

Thank you!

Building a Movie Recommendation Engine