Instituto Tecnológico Autónomo de México Análisis Aplicado I Salvador García González C.U. 119718

El presente reporte muestra los resultados de las 64 funciones de CUTEr en 3 partes:

- i) La primer parte presenta las características bajo las cuales fueron probados los métodos
- ii) La segunda parte presenta los perfiles comparando graficamente los métodos
- iii) La tercer parte presenta los resultados comparando gráficamente los métodos.
- iv) La cuarta parte presenta los resultados por función, valor de la función, iteraciones y tiempo del problema resolviéndolo por Búsqueda Lineal y por el método de región de confianza
- v) La quinta parte presenta los resultados individuales y como descienden en función a las iteraciones.

Los métodos fueron tomados del libro Numerical Optimization de los autores Nocedal & Wrigth El método en de búsqueda de linea fue presentado por el Dr. José Luis Morales en la clase de Análisis Aplicado 1 del ITAM, el método fue realizado por Michael Overton El método de comparación fue presentado en el mismo curso por el Dr. Morales.

PARTE I Reporte:

Búsqueda Lineal

Condición de Paro: $||g_k||/||g_0|| \le Tol$; $iter \le 100 \ Tol = 10e - 6$

Condición de Paro Gradiente Conjugado: $||r_k||/||r_0|| \le Tol$; $iter \le 50 \ Tol = 10e - 6$

 $C_1 = 10e - 4$ $C_2 = 0.9$

F óptima presentada para cada caso en la tabla de la parte 4

Región de Confianza

Condición de Paro: $iter \le 100 \ Tol = 10e - 6$

Condición de Paro Gradiente Conjugado: $||r_k||/||r_0|| \le Tol$; $iter \le 50 \ Tol = 10e - 6$

 $\eta = .2; \quad \Delta_0 = .5; \quad \Delta_{MAX} = 1000$

F óptima presentada para cada caso en la tabla de la parte 4

Probada en: MacOsX 10.9 Mavericks 2.3 Ghz Inter Core i5

Matlab 2011a

AMPL

PARTE II Perfiles

PARTE III Comparación Gráfica

Gráfica 1 En el eje vertical presenta los problemas resueltos, los datos se organizaron se menor a mayor antes de graficarlos. Vemos que el método de Búsqueda lineal toma más tiempo en resolver los problemas. En el eje vertical tomamos los tiempos que tardan en resolver los problemas.

Gráfica 2 En esta gráfica comparamos los tiempos que tardan en resolver para cada método. Funciona sólo para comparar 2 métodos . A la derecha se presenta el método de Búsqueda Lineal y a la izquierda el de Región de Confianza

PARTE IV

Comparativo de Método de Región de Confianza y Búsqueda en Linea para los 64 casos d∈ CUTEr (Constrained and Unconstrained Test Environment)

Nombrel	Iter RC	f RegionC	g RegionC	tiempo	Iter BL	f BusquedaL	g BusquedaL	tiempo
arglina	5	+1.00000000e+02	+4.25898061e-14	5.00854640e-021	øi	+1.00000000e+02	+1.05116027e-13	1.92297000e-02
bard	8	+8.21487731e-03	+2.60165245e-13	5.89235000e-03	13	+8.21487731e-03	+2.49432060e-10	2.19322810e-02
beale	9 j	+6.48296941e-24	+1.97857732e-12	6.39749800e-03	6 i	+4.04189089e-16	+6.19138468e-08	8.29374800e-03
biggs6	36 İ	+7.48705280e-19	+5.05354556e-10	2.64614630e-02	41	+5.20513158e-03	+1.05230884e-03	6.76373210e-02
box3	7 j	+3.56691421e-21	+3.66737655e-11	8.21816500e-03	7 j	+1.11405938e-15	+2.14096908e-08	7.60762700e-03
brkmcci	зі	+1.69042679e-01	+1.86107292e-15	2.68539700e-03	2 į	+1.69042679e-01	+5.45172515e-13	2.51119600e-03
brownalj	6	+2.88729113e-22	+3.59957319e-11	4.62191100e-03	100	+1.33343238e-06	+2.11309392e-04	1.45240808e-01
brownbsj	100 j	+9.33528757e+11	+1.93238754e+06	5.84603630e-02	3 į	+1.09040184e+07	+5.56266335e+04	5.32552500e-03
browndenj	10	+8.58222016e+04	+3.99199542e-08	9.79768900e-03	7	+8.58222016e+04	+3.97501801e-06	2.48385130e-02
chnrosnbj	76	+3.73872373e-21	+4.66876349e-10	7.79346570e-02	100	+6.96984720e-13	+8.84183717e-06	3.74624472e-01
cliff	26	+1.99786614e-01	+1.60858485e-10	1.58794470e-02	14	+1.93492644e+03	NaN	2.22578140e-02
cube	31	+2.68040955e-19	+2.51059050e-08	2.02392380e-02	26	+1.31405160e-22	+7.24411427e-10	2.68134000e-02
deconvu	100	+4.29832599e-11	+5.46379446e-06	2.89302456e-01	100	+3.88959270e-03	+4.22747232e-02	4.44589413e-01
denschna	5	+5.42943216e-19	+1.47363393e-09	3.86090500e-03	5	+1.10283709e-23	+6.64177165e-12	4.76147400e-03
denschnb	5	+2.12812647e-17	+9.47032308e-09	4.07785200e-03	0	NaN	+Inf	1.40186780e-02
denschnc	10	+1.03345709e-27	+1.85563408e-13	7.29994900e-03	10	+3.78937644e-24	+1.03277378e-11	9.69264200e-03
denschnd	36	+1.35259109e-11	+8.28334312e-08	2.30690020e-02	42	+3.20552698e-12	+7.28169285e-08	3.87332130e-02
denschnf	6	+1.51929084e-64	+2.78904448e-31	4.64141800e-03	5	+6.51255013e-22	+6.28825085e-10	5.38398400e-03
dixon3dq	4	+1.06003184e-30	+3.95962252e-15	3.87700300e-03	0	+1.85382313e-29	+1.61345622e-14	1.59605500e-03
djtl	100	-8.89566611e+03	+1.18604440e+03	5.02295930e-02	3	-8.21992371e+03	+1.92504541e+04	2.32478850e-02
eigenals	18	+6.28359207e-22	+6.38046305e-10	1.07774409e-01	100	+1.00442823e+00	+1.00928557e+01	1.28120135e+00
eigenbls	100	+3.28846973e-04	+1.87348540e-02	6.88826454e-01	100	+3.04652290e-06	+1.02066585e-03	1.68341894e+00
engval2	20	+1.81754785e-27	+2.39178519e-12	1.29739320e-02	100	+4.94177453e-06	+1.97314950e-03	9.76140380e-02
errinros	48	+3.99041539e+01	+1.03739195e-10	6.18897680e-02	100	+3.99041539e+01	+1.89245217e-03	2.51775247e-01
expfit	12	+2.40510594e-01	+3.89859971e-12	7.64391900e-03	6	+2.40510594e-01	+6.20649025e-06	5.68701700e-03
extrosnb	0	+0.00000000e+00	+0.00000000e+00	5.30700000e-06	0	+0.00000000e+00	+0.00000000e+00	6.88000000e-06
fletcbv2	2	-5.14006786e-01	+1.98745856e-11	1.58004090e-02	1	-5.14006786e-01	+8.53167350e-11	2.46959940e-02
fletchcr	0	+9.90000000e+03	+2.82842712e+02	6.00117000e-04	0	+9.90000000e+03	NaN	1.35842720e-02
genhumps	82	+2.00445034e-16	+8.59440334e-09	4.64270230e-02	58	+1.00899898e-21	+1.72185399e-11	5.51429890e-02
growthls	100	+1.24323841e+01	+3.27308973e-01	8.88592510e-02	100	+2.75148547e+01	+3.03382135e+00	1.45227660e-01
hairy	100	+1.77391400e+02	+2.13419983e+02	5.47857550e-02	15	+2.00000000e+01	+5.89310520e-07	2.10555730e-02
hatfldd	11	+6.61511392e-08	+3.24592587e-09	1.21754610e-02	15	+2.54689462e-07	+8.20101157e-09	1.59258050e-02
hatflde	24	+4.43440071e-07	+1.17039183e-12	1.84300580e-02	18	+4.90785484e-07	+3.33213812e-08	2.21490410e-02
heart6ls	100	+4.06101014e-01	+3.18239185e-01	6.26036170e-02	12	+1.90818726e+01	+3.83576031e+02	2.32678760e-02
hilberta	3	+5.77032630e-10	+1.68348681e-08	3.38088600e-03	1	+8.59133871e-12	+2.71653689e-10	2.79521500e-03
hilbertb	6	+7.08911523e-27	+3.97530737e-13	9.03230200e-03	1	+7.41023279e-22	+1.23640193e-10	3.30768700e-03
himmelbb	19	+7.69900603e-13	+3.22777787e-08	1.23762860e-02	3	+3.72773104e-26	+1.02138754e-11	7.07592200e-03

himmelbf	11	+3.18571749e+02	+2.45770745e-13	8.30512300e-03	38	+8.46974578e+02	+8.95816952e-08	4.30152220e-02	
himmelbg	6	+2.31537343e-29	+1.48346509e-14	4.66800000e-03	5	+2.61539873e-27	+1.55131568e-13	4.69966700e-03	
himmelbh	5	-1.00000000e+00	+3.19744231e-14	3.67421900e-03	0	+2.00000000e+00	NaN	1.16342950e-02	
humps	100	+2.25204646e+04	+5.82080132e+01	5.39459790e-02	100	+8.44269891e-04	+2.15393050e-02	1.21660375e-01	
jensmp	9 į	+1.24362182e+02	+2.73794162e-12	6.39154300e-03	14	+1.24362182e+02	+1.80045635e-04	1.05926240e-02	
kowosb	12	+3.07505604e-04	+8.61210082e-11	1.03185790e-02	5	+3.07505604e-04	+6.58668060e-09	7.82694000e-03	
loghairy	100	+6.54836822e+00	+1.42875074e-03	5.26599790e-02	100	+6.35689587e+00	+1.69466235e-03	1.85901143e-01	
mancino	9	+0.00000000e+00	+0.00000000e+00	7.38601400e-03	2	+2.85027811e-02	+4.69724599e+02	1.75305430e-02	
maratosb	9 į	-1.00000006e+00	+9.34182731e-11	5.33842300e-03	0	+1.00000000e+06	+1.00000000e+00	2.63776000e-04	
mexhat	3 į	-4.01000000e-02	+1.56575509e-14	2.64675400e-03	100	-4.00036466e-02	+3.06390965e-04	9.29771760e-02	
osborneb	17	+4.01377363e-02	+3.39482735e-09	2.16112390e-02	100	+1.04815633e-01	+6.43847521e-02	2.22057967e-01	
palmer1c	10	+9.75979913e-02	+5.84203716e-08	9.74462100e-03	6	+1.65078867e+02	+1.31458315e+01	9.73753100e-03	
palmer2c	32	+1.44213912e-02	+4.62566148e-08	2.89503660e-02	6 j	+4.37223266e+00	+1.79871107e-01	9.15001900e-03	
palmer3c	9 į	+1.95376385e-02	+4.16689206e-09	1.60537810e-02	8	+3.25213889e+00	+1.84881440e+00	2.45742350e-02	
palmer4c	9 į	+5.03106958e-02	+5.82442698e-08	8.59926300e-03	8	+4.68193376e+00	+2.10565234e+02	1.50847390e-02	
palmer5c	6	+2.12808667e+00	+1.02756124e-13	4.92064200e-03	0	+2.12808667e+00	+3.58529293e-13	1.43033600e-03	
palmer6c	10	+1.63874216e-02	+2.32670301e-10	9.34429300e-03	8	+8.87493863e-01	+6.99831516e-01	1.53938430e-02	
palmer7c	12	+6.01985672e-01	+8.04240202e-09	1.25379670e-02	8	+5.45590981e+00	+3.16718985e-01	1.37460020e-02	
palmer8c	10	+1.59768063e-01	+4.48008420e-09	9.36776400e-03	8	+3.11233277e+00	+5.48525278e-01	2.37599090e-02	
powellsq	0	+0.00000000e+00	+0.00000000e+00	5.25700000e-06	0	+0.00000000e+00	+0.00000000e+00	6.79600000e-06	
rosenbr	24	+2.61140693e-26	+3.32598971e-12	1.52847620e-02	21	+2.01711525e-16	+1.40253386e-07	1.81293430e-02	
sineval	51	+5.48767908e-25	+6.39900079e-11	3.01260970e-02	42	+1.01545521e-19	+2.04534071e-08	4.32246550e-02	
sisser	15	+1.55276990e-11	+4.14814917e-08	1.16022340e-02	15	+1.52842510e-11	+4.12185033e-08	1.52653780e-02	
tointqor	6	+1.17547222e+03	+5.39994796e-12	6.72410400e-03	3	+1.17547222e+03	+1.02167855e-07	2.51776590e-02	
vardim	13	+6.22671493e-20	+9.80512512e-09	1.84637660e-02	13	+2.91423675e-24	+6.69556050e-11	1.12658530e-02	
watson	12	+1.27047006e-12	+2.49816984e-08	2.42614710e-02	100	+9.78655320e-05	+1.99965545e-02	1.97741074e-01	
yfitu	45	+6.66972047e-13	+3.37036752e-12	2.98853740e-02	100	+2.11108039e-02	+8.41083345e+01	1.60349842e-01	
	·	•	•	·	•	·	•	·	

PARTE V (en rojo se presenta el método de región de confianza y en azul el de Búsqueda en Lineal, se cortan en 100 iteraciones)

