CPNA Lecture 21 - Curve Fitting

Mridul Sankar Barik

Jadavpur University

2023

Introduction I

- Problem to fit a unique curve to data points which are subject to error
- ▶ Techniques of Interpolation assume error free data
- ▶ Method of least squares is most of common technique

Method of Least Squared Error I

- Let the set of data points be (x_i, y_i) , i = 1, 2, ..., n
- Let the curve Y = f(x) be fitted to this data
- ▶ If e_i is the error of approximation at $x = x_i$, then we have

$$e_i = y_i - f(x_i)$$

Sum of the squares of the errors

$$S = e_1^2 + e_2^2 + \ldots + e_m^2$$

or,

$$S = [y_1 - f(x_1)]^2 + [y_2 - f(x_2)]^2 + \ldots + [y_m - f(x_m)]^2$$

Method of least squares tries to minimize S

Linear Regression I

- Assume $y = a_1x + a_0$ is the equation of the line
- \triangleright We need to choose values of a_1 and a_2 that gives the best straight line
- Sum of squared errors

$$\sum_{i=1}^{n} \{y_i - (a_1 x_i + a_0)\}^2$$

 \triangleright In order to minimize S, we take partial derivatives of S with respect to a_0 and a_1 and set them to zero

$$\frac{\partial S}{\partial a_0} = \sum_{i=1}^n 2(y_i - a_1 x_i - a_0)(-1) = 0$$

$$\frac{\partial S}{\partial a_1} = \sum_{i=1}^n 2(y_i - a_1 x_i - a_0)(-x_i) = 0$$

Linear Regression II

▶ Rearranging, we get two linear simultaneous equations for a_0 and a_1 (\sum is used as abbreviation for $\sum_{i=1}^n$):

$$na_0 + \left(\sum x_i\right) a_1 = \sum y_i$$
$$\left(\sum x_i\right) a_0 + \left(\sum x_i^2\right) a_1 = \sum x_i y_i$$

► The solutions are:

$$a_0 = \frac{\sum y_i \sum x_i^2 - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

 $ightharpoonup a_0$ and a_1 are called regression coefficients

Linear Regression III

Exercise: Fit a straight line to the following x and y values

X	У	
1	2	
2	5	
4	7	
5	10	
6	12	
8	15	
9	19	

▶ **Solution**: The following quantities are computed

$$n = 7 \qquad \sum x_i y_i = 453 \qquad \sum x_i^2 = 227$$
$$\sum x_i = 35$$

$$\sum y_i = 70$$

Linear Regression IV

$$a_0 = \frac{70 \times 227 - 35 \times 453}{7 \times 227 - 35^2} = \frac{35}{364} = 0.096$$

$$a_1 = \frac{7 \times 453 - 35 \times 70}{7 \times 227 - 35^2} = \frac{721}{364} = 1.98$$

Thus, y = 1.98x + 0.096 is the equation of the straight line that is a least squares linear approximation to the given data points

Polynomial Regression I

- In general it may be necessary to fit a higher degree polynomial
- ► To fit a second degree polynomial, let the equation of the curve be $y = a_2x^2 + a_1x + a_0$
- ► The sum of squares of the errors

$$S = \sum (y_i - a_2 x_i^2 - a_1 x_i - a_0)^2$$

▶ Differentiating S with respect to a_0 , a_1 , a_2 respectively and setting each to zero we get

$$na_0 + a_1 \sum x_i + a_2 \sum x_i^2 = \sum y_i$$

$$a_0 \sum x_i + a_1 \sum x_i^2 + a_2 \sum x_i^3 = \sum x_i y_i$$

$$a_0 \sum x_i^2 + a_1 \sum x_i^3 + a_2 \sum x_i^4 = \sum x_i^2 y_i$$

Polynomial Regression II

- ▶ These may be solved by Gauss Elimination
- ▶ In general, to fit n^{th} degree polynomial there will be (n+1) simultaneous equations in (n+1) unknowns
- Exercise: Fit a second degree polynomial to the following x and y values

X	У	
0	2.1	
1	7.7	
2	13.6	
3	27.2	
4	40.9	
5	61.1	

Polynomial Regression III

▶ **Solution**: From the given data

$$n = 6$$
 $\sum x_i = 15$ $\sum x_i^4 = 979$ $\sum y_i = 152.6$ $\sum x_i y_i = 585.6$ $\bar{x} = 2.5$ $\sum x_i^2 = 55$ $\sum x_i^2 y_i = 2488.8$ $\bar{y} = 25.433$ $\sum x_i^3 = 225$

We obtain three simultaneous equations as

$$6a_0 + 15a_1 + 55a_2 = 152.6$$

 $15a_0 + 55a_1 + 225a_2 = 585.6$
 $55a_0 + 225a_1 + 979a_2 = 2488.8$

Polynomial Regression IV

Solving these equations using Gauss elimination gives $a_0 = 2.47857$, $a_1 = 2.35929$, and $a_2 = 1.86071$.

Therefore, the least-squares quadratic equation for this case is

$$y = 2.47857 + 2.35929x + 1.86071x^2$$

Fitting Other Non-Linear Functins I

- ► Many practical problems generate data from experiments that have forms other than linear or polynomial curve
- Exponential curve
- Power curve
- Saturation growth rate curve
- ► Trigonometric curve

Fitting an Exponential Curve I

- ▶ Let $y = \alpha_1 e^{\beta_1 x}$ be the curve to be fitted, where α_1 and β_1 are constants
- This model is used in many fields, i.e., population growth or radioactive decay etc.
- We take the transformation $z = \log y$
- $So, z = \log y = \log \alpha_1 + \beta_1 x$
- Let, $a_0 = \log \alpha_1$ and $a_1 = \beta_1$
- ▶ So, we have $z = a_0 + a_1x$, which is a linear equation and we can use equations for linear regression to have

$$a_0 = \frac{\sum \log y_i \sum x_i^2 - \sum x_i \sum x_i \log y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$a_1 = \frac{n \sum x_i \log y_i - \sum x_i \sum \log y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

▶ From a_0 and a_1 we obtain the value of α_1 and β_1 as $\alpha_1 = e^{a_0}$ and $\beta_1 = a_1$

Fitting a Power Curve I

- Let the curve to be fitted be $y = \alpha_2 x^{\beta_2}$
- ▶ Taking logarithm on both sides, we get $z = \log(y) = \log \alpha_2 x^{\beta_2} = \log \alpha_2 + \beta_2 \log x$ or $z = a_0 + a_1 t$, where $a_0 = \log \alpha_2$, $a_1 = \beta_2$ and $t = \log x$
- The normal equations for the above are

$$n\log\alpha_2 + \left(\sum\log x_i\right)\beta_2 = \sum\log y_i$$

$$\left(\sum \log x_i\right) \log \alpha_2 + \left(\sum (\log x_i)^2\right) \beta_2 = \sum \log x_i \log y_i$$

▶ Solving the two equations we get solutions for β_2 and $\log \alpha_2$

Fitting a Power Curve II

Fitting a Saturation Growth Rate Curve I

- ▶ The assumed equation is $y = \alpha_3 \frac{x}{\beta_3 + x}$
- ► Taking $z = \frac{1}{y}$ and $t = \frac{1}{x}$, we get z = a + bt, where $a = \frac{1}{\alpha_3}$ and $b = \frac{\beta_3}{\alpha_3}$
- This is a linear equation and linear regression approach can be used

Linearization of Nonlinear Relationship

Fitting a Trigonometric Function I

- Assume the equation of the curve be $y = A \sin(\omega x + \varphi)$, where ω is known
- $ightharpoonup y = A \cos \varphi \sin \omega x + A \sin \varphi \cos \omega x = a_1 \sin \omega x + a_2 \cos \omega x$
- ▶ We try to minimize the sum of squares of the errors, i.e., minimize $S = \sum (y_i a_1 \sin \omega x_i a_2 \cos \omega x_i)$
- ▶ Taking partial derivatives of S with respect to a_1 and a_2 , and setting them equal to zero, we get

$$a_1 \sum \sin^2 \omega x_i + a_2 \sum \sin \omega x_i \cos \omega x_i = \sum y_i \sin \omega x_i$$

$$\mathbf{a}_1 \sum \sin \, \omega \mathbf{x}_i \, \cos \, \omega \mathbf{x}_i + \mathbf{a}_2 \sum \cos^2 \, \omega \mathbf{x}_i = \sum \mathbf{y}_i \, \cos \, \omega \mathbf{x}_i$$

• We solve this two simultaneous linear equations for a_1 and a_2 , from which we obtain $A = \sqrt{a_1^2 + a_2^2}$, and $\varphi = tan^{-1} \left(\frac{a_2}{a_1}\right)$

