MÓDULO III

Regressão Outros modelos

Alexandre Loureiros Rodrigues

Professor do departamento de Estatística - UFES

ESPECIALIZAÇÃO

INTELIGÊNCIA ARTIFICIAL SCIÊNCIA DE DADOS

ÍNDICE

- l. Introdução
- 2. KNN
- 3. Árvore de decisão
- 4. Floresta aleatórias
- 5. Considerações finais

Introdução

Métodos não paramétricos

- Até agora nos restringimos a métodos paramétricos para realizar previsões
 - Muitas vezes este métodos são muito restritivos
- Forma linear pode não ser adequada para vários problemas
- Vamos explorar métodos menos interpretativos, mas com maior poder de previsão.

2. K vizinhos mais próximos

KNN

- Proposto por Stone (1977), métodos muito popular em machine learning
- Motivação: uso de médias locais
- Previsão dada pela média dos K
 vizinhos mais próximos nos espaço de características

Efeito do K

Como escolher o melhor K?

Validação cruzada

3. Árvore de decisão

Árvore de decisão

- Estrutura Modelo hierárquico com nós internos (condições) e folhas (previsões).
- Critérios de Divisão: Gini (impureza), Entropia (ganho de informação), Redução de variância (regressão).
- Poda e Overfitting: Pré-poda (limita profundidade) Pós-poda (remove ramos irrelevantes).

4. Florestas aleatórias

Florestas Aleatórias

- Conjunto de várias árvores de decisão treinadas com amostras aleatórias (bagging).
 - Vantagens: Reduz overfitting, funciona bem com grandes volumes de dados.
 - Desvantagens: Alto custo computacional, menos interpretável.
- Cada árvore recebe uma amostra aleatória do dataset e usa um subconjunto de variáveis para decisões. A predição final é feita por média (regressão)

5. Considerações finais

Pontos de atenção

- Em aplicações nas quais as observações são dependentes é ideal que pelo menos os conjuntos de teste e treino sejam independentes (evitar bias de similaridade).
- Usar validação cruzada pareada para comparar diferentes métodos de regressão em uma mesma base.
- Usar média, desvio padrão e boxplot para comparar performance dos diferentes métodos
 - Para maior rigor, usar testes estatísticos (t-pareado, Wilcoxon, Friedman)

Comparação de regressores

Problema: Previsão do consumo de energia

METRICS OF THE BEST CONFIGURATION OF EACH MODEL VARIATION

Model	MAE	MAPE	MdAPE
Baseline	47.32 ± 0.12	97.91 ± 0.92	16.71 ± 0.03
$FC + CW^a$	34.85 ± 0.39	62.67 ± 2.12	12.43 ± 0.13
CNN + CW ^a + Meta ^b	34.59 ± 0.42	62.90 ± 0.53	12.78 ± 0.30
LSTM + STD ^c + Meta ^b	30.93 ± 0.18	46.53 ± 0.28	10.68 ± 0.03