3D felhasználói felület kialakítása Kinect-tel

Diplomatervezés 1. beszámoló Pál Gábor

Konzulens: Dr. Vajda Ferenc

Eddig elért eredmények

- Kinect platform és programozási környezet megismerése
- Különböző eszközök és függvénykönyvtárak áttekintése
- OpenNI + NITE + Avin2 SensorKinect (Linux)
- OpenNI + NITE + Microsoft SDK (Windows)
- Példaalkalmazások készítése

Kinect

- 2010 Q3-tól elérhető
- IR Depth: monokróm CMOS,
 11 bites mélységi adatok
- Color sensor: VGA, 30 FPS
- Látószög: x: 43°, y: 57° IR Emitter
- Motor: ±27°
- Fogyasztás: 12 watt

OpenNI 2.0 (+ NITE 2.0)

Point Cloud Library

- BSD, C++
- Windows, Linux, MacOS, Android, iOS
- Moduláris architektúra

Használt PCL algoritmusok (Registration modul)

- Iterative Closest Point (ICP)
- Sample Consensus Initial Alignment (SAC-IA)
- Voxel Grid

Új alapokon nyugvó jelszókezelő alkalmazás készítése

- Azonosítási lehetőségek: tudás, birtok, biometria
- Problémák a jelszókezeléssel napjainkban
- Mit kínálnak a NUI eszközök?

Kinect, mint jelszóbeviteli eszköz

- Tárolni és követni lehet:
 - Bevitt alakzat felismerése
 - Az alakzat bevitelének sebessége
 - Különböző referenciapontok közti sebesség
 - Hajlítások szögének számítása
 - Alakzat bevitelének dinamikája
 - Jellemző gesztusok felismerése
 - Arcfelismerés???

További teendők

- A fenti pontok implementálása
- Súlyok meghatározása a pontok között
- További lehetőségek vizsgálata
- Jól használható felhasználói felület készítése
- Titkosítási eljárás készítése az adatok tárolásához

Github elérhetőség

• https://github.com/palgabor/Onlab--Kinect-

Köszönöm a figyelmet! Kérdések???