Censored Models

Li and Racine (2007, Chapter 11)

Yasuyuki Matsumura (yasu0704xx [at] gmail.com)

January 20, 2025

Graduate School of Economics, Kyoto University

Parametric Censored Models

Type-1 Tobit Model

Consider the following latent variable model:

$$Y_i^{\star} = X_i^T \beta + \epsilon_i, \quad i = 1, \dots, n,$$

where $X_i \in \mathbb{R}^q$ is an explanatory vector, β is a $q \times 1$ vector of coefficients, and ϵ_i is a mean zero disturbance term.

• Y_i^{\star} is a latent variable, which we cannot observe. Instead, we observe

$$Y_i = Y_i^* 1(Y_i^* > 0)$$

= \text{max}\{X_i^T \beta + \epsilon_i, 0\}.

• Note that the "cutoff" is set equal to 0 without loss of generality. That is, we expect that Y_i (ϵ_i) is censored at 0 (resp. $-X_i^T\beta$).

2

Parametric Approach

- Popular parametric approaches include MLE and Heckit.
- These approaches demand the following distributional assumption:

$$\epsilon_i | X_i \sim \mathsf{Normal}(0, \sigma^2).$$

Since Y_i^\star is censored, for example, by top coding, the distribution of Y_i^\star cannot be identified without this assumption.

• In other words, these parametric approaches do not allow for the heteroscedasticity of ϵ_i (Arabmazar and Schmidt 1981).

¹Amemiya (1984):Tobit モデルのサーベイ論文;Amemiya (1985):教科書.

Semiparametric Type-1 Tobit

Models

Semiparametric Type-1 Tobit Models

 We introduce the following semiparametric type-1 Tobit model:

$$Y_i^* = X_i^T \beta + \epsilon_i,$$

$$Y_i = Y_i^* 1(Y_i^* > 0).$$

- For identifying the moments of Y_i^{\star} , we need additional assumptions.
- Powell (1984) proposes to assume that $med(\epsilon_i|X_i)=0$.
- Chen and Khan (2000) proposes a estimation procedure which requires weaker assumptions for identification than Powell (1984).

Semiparametric Censored Regression Models

Powell (1984): CLAD

Consider the semiparametric type-1 Tobit model:

$$Y_i^* = X_i^T \beta + \epsilon_i,$$

$$Y_i = Y_i^* 1(Y_i^* > 0) = \max\{Y_i^*, 0\}.$$

• Assume that $\operatorname{med}(\epsilon_i|X_i)=0$. Noting that the "monotonicity" of median 2 , we obtain $\operatorname{med}(Y_i|X_i)=\max\{\operatorname{med}(Y_i^\star|X_i),0\}=\max\{X_i^T\beta,0\}$, which implies that the above model can be rewritten as

$$Y_i = \max\{X_i^T \beta, 0\} + \epsilon_i,$$

$$\text{med}(\epsilon_i | X_i) = 0.$$

 $^{^{-2}}$ max と med の順番を入れ替えても大丈夫ということ. max でなくても,単調変換なら入れ替え可.

• Powell (1984) proposes the following censored least absolute deviations estimator:

$$\hat{\beta}_{clad} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} |Y_i - \max\{X_i^T \beta, 0\}|$$

$$= \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} 1(X_i^T \beta > 0) |Y_i - X_i^T \beta|.$$

- Computation is sometimes complex ³. See Buchinsky (1994); Khan and Powell (2001).
- Powell (1984) establishes the \sqrt{n} -consistency and asy. normality:

$$\sqrt{n}(\hat{\beta}_{clad} - \beta) \xrightarrow{d} \mathsf{Normal}(0, V_{clad}^{-1}),$$

where

$$V_{clad} = 4f^2(0)\mathbb{E}[1(X_i^T \beta > 0)X_i X_i^T]$$

and f(0) is the density of ϵ_i at the origin. $^3\beta$ が 2 つの役割をもつことに起因する:データの選択,係数の値の決定.

- Variance estimation can be implemented as follows.
- Assume that ϵ_i is independent of X_i .
- Note that

$$f(0) = \lim_{h \to 0} \mathbb{P}(0 \le \epsilon_i < h)$$
$$= \lim_{h \to 0} \mathbb{P}(0 \le \epsilon_i < h | X_i^T \beta > 0).$$

ullet Powell suggests to estimate f(0) by

$$\hat{f}(0) = \frac{1(X_i^T \hat{\beta}_{clad} > 0)1(0 \le \hat{\epsilon}_i < h)}{h \sum_{i=1}^n 1(X_i^T \hat{\beta}_{clad} > 0)}.$$

Extension 1: Estimation of f(0)

- Horowitz and Neumann (1987) propose an alternative estimator of f(0).
- To estimate f(0), they use data with $X_i^T \hat{\beta}_{clad} \in \left[-\frac{h}{2}, \frac{h}{2} \right]$.
- Their estimator is given by

$$\hat{f}(0) = \frac{\sum_{i=1}^{n} 1 \left(-\frac{h}{2} \leq \hat{\epsilon}_i \leq \frac{h}{2}\right) 1 \left(Y_i > 0\right)}{h \left[\sum_{i=1}^{n} 1(X_i^T \hat{\beta}_{clad} > \frac{h}{2}) + \frac{1}{2} \left(1 + \frac{X_i^T \hat{\beta}_{clad}}{\frac{h}{2}}\right) 1 \left(-\frac{h}{2} < X_i^T \hat{\beta}_{clad} \leq \frac{h}{2}\right)\right]}.$$

• Hall and horowitz (1990) suggest to replace the indicator function by a kernel function.

Extension 2: Newey and Powell (1990)

Newey and Powell (1990) modify the objective function above:

$$\hat{\beta}_{np} = \arg\min_{\beta} \sum_{i=1}^{n} w_i |Y_i - \max\{X_i^T \beta, 0\}|.$$

- They show that the optimal weight is $w_i = 2f(0|X_i)$. The asy. variance is $\{4\mathbb{E}[1(X_i^T\beta>0)f^2(0|X_i)X_iX_i^T]\}^{-1}$.
- Their estimator achieves the semiparametric efficiency bound for the censored regression model under $med(\epsilon_i|X_i)=0$.
- If ϵ_i is independent of X_i , then $f(0|X_i)=f(0)$, which implies that $\hat{beta}_{np}=\hat{\beta}_{clad}$.

Extension 3: Other Approaches

- Powell (1986): Additionally assume the symmetry assumption.
- Newey (1991): GMM-based estimation. Assume the symmetry assumption for efficiency.
- Honore and Powell (1994): Identically CLAD; Identically censored least squares.

Nonparametric Heteroscedasticity

Problems Arising with Powell's CLAD

- Recall that Powell's CLAD requires $med(\epsilon_i|X_i) = 0$, which can be interpreted as restrictive ⁴.
- Avar (\hat{eta}_{clad}) is represented using $\mathbb{E}[1(X_i^Teta>0)X_iX_i^T]^{-1}$, which cannot be defined if $\mathbb{E}[1(X_i^Teta>0)X_iX_i^T]$ is not of full rank. This problem often arises under heavy censoring (i.e., when X_i^Teta is negative with high probability).

⁴とはいえ、中央値の識別は、期待値の識別よりもはるかに緩い条件で済むので、CLAD やそれを拡張した打ち切りデータに対する分位点回帰をやろうという話になる.

Chen and Khan (2000)

- Chen and Khan (2000) consider estimation procedures for heteroscedastic censored linear regression models.
- Their approach requires weaker identification conditions than Powell's CLAD.
- They also allow for various degrees of censoring.
- ullet Their main idea is that they model the error term as the product of a homoscedastic error and a scale function of X_i that can be estimated using kernel methods.

• They assume that

$$\begin{split} \epsilon_i &= \sigma(X_i) v_i, \\ \mathbb{P}(v_i \leq \lambda | X_i) &\equiv \mathbb{P}(v_i \leq \lambda) \text{ for any } \lambda \in \mathbb{R}, X_i \ a.s., \\ \mathbb{E}(v_i) &= 0, \mathsf{Var}(v_i) = 1. \end{split}$$

• Recalling that $Y_i = \max\{X_i^T \beta + \epsilon_i, 0\}$, we obtain

For any
$$\alpha \in (0,1),$$

$$q_{\alpha}(X_i) = \max\{X_i^T \beta + c_{\alpha} \sigma(X_i), 0\},$$

where

 $q_{\alpha}(\cdot)$ denotes the α -th quantile of Y_i given X_i , c_{α} denotes the α -th quantile from the (unknown) distribution of v_i .

• Thus, for any $q_{\alpha_j}(X_i)>0$ for two distinct $\alpha_1\neq\alpha_2$, we have

$$q_{\alpha_j}(X_i) = X_i^T \beta + c_{\alpha_j} \sigma(X_i) \text{ for } j = 1, 2.$$

Chen and Khan (2000): Estimation

- Chen and Khan (2000) propose two estimators of β . One is assuming that v_i has a known parametric distribution. The other does not require such assumptions.
- Here we focus on the latter one.
- Notations:

$$\begin{split} \bar{q}_{\alpha}(\cdot) &= \frac{q_{\alpha_2}(\cdot) + q_{\alpha_1}(\cdot)}{2}, \\ \Delta q_{\alpha}(\cdot) &= q_{\alpha_2}(\cdot) - q_{\alpha_1}(\cdot), \\ \bar{c} &= \frac{c_{\alpha_2} + c_{\alpha_1}}{2}, \\ \Delta c &= c_{\alpha_2} - c_{\alpha_1}, \\ \gamma_1 &= \frac{\bar{c}}{\Delta c} \text{: we treat } \gamma_1 \text{ as a nuisance parameter.} \end{split}$$

• From $q_{\alpha_i}(X_i) = X_i^T \beta + c_{\alpha_i} \sigma(X_i)$, one can show that

$$\bar{q}_{\alpha}(X_i) = X_i^T \beta + \gamma_1 \Delta q_{\alpha}(X_i)$$
 for $j = 1, 2$.

- Chen and Khan (2000)'s estimation procedures include the following steps:
- 1st step: Estimate $q_{\alpha_j}(\cdot)$ nonpaeametrically. Let $\hat{q}_{\alpha_j}(\cdot)$ denote the nonparametric estimator of $q_{\alpha_j}(\cdot)$.
- 2nd step: Regress $\hat{q}_{\alpha}(\cdot)$ on X_i and $\Delta \hat{q}_{\alpha}(\cdot)$.
- That is, the estimators of β and γ_1 are given by minimizing (w.r.t. β and γ_1)

$$\frac{1}{n} \sum_{i=1}^{n} \tau(X_i) w \left(\hat{q}_{\alpha_1}(X_i) \right) \left[\hat{q}(X_i) - X_i^T \beta - \gamma_1 \Delta \hat{q}_{\alpha}(X_i) \right]^2,$$

where $w(\cdot)$ is a smoothing weight function ⁵, $\tau(\cdot)$ is a trimming function having compact support.

• Under certain regularity conditions, their estimator $\hat{\beta}$ have the parametric \sqrt{n} rate of convergence, and is distributed asymptotically normally.

asymptotically normally. ${}^51(\hat{q}_{\alpha_1}(X_i)>0)$ のかわりのようなもの.

Extension: Cosslett (2004)

- Cosslett (2004) proposes asymptotically efficient likelihood-based semiparametric estimators for censored and truncated regression models.
- See the paper for details.

The Univariate Kaplan-Meier CDF

Estimator

Kaplan and Meier (1958): Product-Limit Estimator

- There exists a class of semiparametric estimators that employ the so-called Kaplan-Meier estimator of a CDF in the presence of censored data.
- Setup: Consider the following estimands:

CDF:
$$F(\cdot), \text{ or}$$
 Survival function: $S(\cdot) = 1 - F(\cdot).$

- Let $\{Y_i\}_{i=1}^n$ be the random sample of interest drawn from $F(\cdot)$.
- Let $\{L_i\}_{i=1}^n$ be random/fixed censoring variables, that are independent of $\{Y_i\}_{i=1}^n$.
- Define $Z_i = \min\{Y_i, L_i\}$, and $\delta_i = 1(Y_i \leq L_i)$. Suppose that we observe only Z_i and δ_i . By construction, we cannot observe the exact value of Y_i if $\delta_i = 0$.

- Define the ascending points c_0, c_1, \cdots, c_m at which the CDF $F(\cdot)$ or $S(\cdot)$ is to be evaluated.
- Define $I_j = 1(Y > c_j)$.
- Noting that c's are ascending and so that $I_{j-1}=1$ if $I_j=1$, we obtain conditional survival probability:

$$\mathbb{P}(I_j = 1 | I_{j-1} = 1) = \frac{\mathbb{P}(I_j = 1)}{\mathbb{P}(I_{j-1} = 1)} = 1 - \frac{\mathbb{P}(c_{j-1} < Y \le c_j)}{\mathbb{P}(Y > c_{j-1})}.$$

• By choosing c_0 small enough (say, below the smallest observation in the data), we can always ensure that $\mathbb{P}(I_0=1)=1$. That is, all items survive initially.

Estimation: In the Case of No Censoring

ullet We can estimate $\mathbb{P}(I_j=1|I_{j-1}=1)$ by the iteration of

$$\begin{split} \tilde{\mathbb{P}}(I_j = 1 | I_{j-1} = 1) &= \frac{\tilde{\mathbb{P}}(I_j = 1)}{\tilde{\mathbb{P}}(I_{j-1} = 1)} = \frac{\# \text{ of } Y_i > c_j}{\# \text{ of } Y_i > c_{j-1}} \\ &= 1 - \frac{\# \text{ of } c_{j-1} < Y_i \le c_j}{\# \text{ of } Y_i > c_{j-1}}, \end{split}$$

which leads to the following estimator of survival probability:

$$\tilde{\mathbb{P}}(I_j = 1) = \prod_{s=1}^{j} \tilde{\mathbb{P}}(I_s = 1 | I_{s-1} = 1)$$

$$= \frac{\# \text{ of } Y_i > c_j}{\# \text{ of } Y_i > c_0} = \frac{\# \text{ of } Y_i > c_j}{n} = 1 - \hat{F}^n(c_j)$$

where $\hat{F}^n(c_j) = \frac{\# \text{ of } Y_i \leq c_j}{r}$ is the empirical CDF ⁶.

 $^{^6}$ テキストでは s=2 から計算することになっているが,このスライドでは, c_0, \cdots という点の取り方に consistent な表記に統一した.

Estimation: With the Presence of Censoring

 Similar estimation procedures to above can be implemented: Iteration of

$$\hat{\mathbb{P}}(I_j = 1 | I_{j-1} = 1) = 1 - \frac{\# \text{ of uncensored } c_{j-1} < Y_i \leq c_j}{\# \text{ of } Y_i > c_{j-1}}$$

leads to the following estimator of survival probability:

$$\hat{S}(c_j) = \hat{\mathbb{P}}(I_j = 1) = \prod_{s=1}^j \hat{\mathbb{P}}(I_s = 1 | I_{s-1} = 1).$$

• The estimator of CDF is given by $\hat{F}(c_j) = 1 - \hat{S}(c_j)^{-7}$.

 $^{^7}$ Errata をみると、s=2 から計算することになっているが、このスライドでは、 c_0,\cdots という点の取り方に consistent な表記に統一した.

Disclaimer

以降の内容は手書きのノートで替えさせていただきます. 宿題や試験に追われスライドが間に合いませんでした. 余裕があったら春休みの間に Beamer にします…

The Multivariate Kaplan-Meier CDF

Estimator

Nonparametric Censored Regression