7.01 Show that every set $A \subset \mathbb{R}$ is a compact subset of \mathbb{R} in the finite complement topology on \mathbb{R} .

Let $A \subset \mathbb{R}$ and $\{U_{\alpha}\}$ be an open cover. Notice, that any set in the cover it's complement has finitely many elements, namely $x_1, \dots x_n$ are not in this set. Then, $\{U_{\alpha}\}_i^n = 1$ is a finite subcover.

Therefore, A is a compact subset of \mathbb{R} in the finite complement topology on \mathbb{R} .

- 7.02 Prove Theorem 7.6: Let X be a topological space.
 - (a) If C_1, \ldots, C_n are each compact in X, then $U_{j=1}^n C_j$ is compact in X Let $\{C_1, \ldots, C_n\}$ be a collection of compact subspaces of X. We define $C = \bigcup_{j=1}^n C_j$. Suppose O is a cover for C. Then, notice each C_j is compact and so has a finite subcover O_j . We then will have $O' = \bigcup_{j=1}^n O_j$. Thus, O' is an open cover for C. Therefore, C is compact.
 - (b) If X is Hausdorff, and $\{C_{\alpha}\}_{{\alpha}\in A}$ is a collection of sets that are compact in X, then $\cap_{{\alpha}\in A}C_{\alpha}$ is compact in X. Notice, that each C_j in the collection is closed since it's in a Hausdorff space. Thus, the finite intersection of the collection is also closed. Since every C_{α} lives inside A for some ${\alpha}\in A$, we also have that the collection is bounded. Since the collection is both closed and bounded, we must have the collection is compact.
- 7.03 Provide an example demonstrating that an arbitrary union of compact sets in a topological space X is not necessarily compact.
 Let X be an infinite set with the discrete topology. Notice, the collection of singletons gives an open cover with no subcover. Thus, an arbitrary union of compact sets in a topological space X is not necessarily compact.
- 7.12 Show that the Tube Lemma does not necessarily hold if we drop the assumption that Y is compact. That is, provide an example of a noncompact space Y and an open set U in $X \times Y$ such that U contains a slice $\{x\} \times Y \subset X \times Y$ but does not contain an open tube $W \times Y$ containing the slice.
- 7.17 Use compactness to prove that the plane is not homeomorphic to the sphere. (Recall, in Section 6.2 we distinguished between a number of pairs of spaces, including the line and the plane and the line and the sphere, but we indicated that we were not yet in a position to distinguish between the plane and the sphere. With compactness, we can now make that distinction.)
 - Notice the sphere is compact. Suppose that there exists a continuous bijection from the sphere to the plane. Thus, the plane would have to be compact since we've supposed there exists a continuous function mapping the sphere to the plane. This is a contradiction as the plane is not compact. Since, the sphere is compact and the plane is not, we cannot have a homeomorphism.

- 7.18 In this exercise we demonstrate that if we drop the condition that X is Hausdorff in Theorem 7.6, then the intersection of compact sets in X is not necessarily a compact set. Define the extra-point line as follows. Let $X = \mathbb{R} \cup (p_e)$, where p_e is an extra point, not contained in \mathbb{R} . Let \mathcal{B} be the collection of subsets of X consisting of all intervals $(a, b) \subset \mathbb{R}$ and all sets of the form $(c, 0) \cup \{p_e\} \cup (0, d)$ for c < 0 and d > 0.
 - (a) Prove that \mathcal{B} is a basis for a topology on X.
 - (b) Show that the resulting topology on X is not Hausdorff.
 - (c) Find two compact subsets of X whose intersection is not compact. Prove that the sets are compact and that the intersection is not.
- 7.19 (a) Let (X, d) be a metric space. Prove that if A is compact in X, then A is closed in X and bounded under the metric d.

Suppose A is compact in X. Consider $\{B(0,n)|n\in\mathbb{N}\}$. Notice this is an open cover for X. This must also be an open cover for A since A is a subset of X. Thus, A is bounded.

Let $x \in A^{\complement}$. For every $y \in A$, there are open neighborhoods of y, U_y and V_y of x such that $U_y \cap V_y \varnothing$. Then, $\{U_y | y \in A\}$ is an open cover of A.. Since, A is compact we then have that U and Y are open and $U \cap V = \varnothing$. We then have that A^{\complement} is open. Thus, A is closed.

Therefore, if A is compact in X, then A is closed and bounded.

(b) Provide an example demonstrating that a subset of a metric space can be closed and bounded but not compact.

Let X be the integers and let our metric be defined as such:

$$d(x,y) = \{ \begin{array}{ll} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{array} \}$$

Notice, d(x, y) is bounded since each point is within a distance 1 of some other point. Notice, every subset of X is open and thus also closed. Thus, we are bounded and closed. It is not compact as there are no finite subcovers, since X is infinite.

Summary