НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 4.7.3 «Изучение поляризованного света»

Шумаков Иван Игоревич студент группы Б01-009 3 курс ФРКТ **Цель работы:** исследовать модель АЧТ; измерить постоянные Стефана-Больцама и Планка по излучению накаленных тел. **В работе используются:** оптический пирометр, модель АЧТ, исследуемые тела, вольтметры.

1 Теоретические сведения

Для измерения температуры разогретых тел, удалённых от наблюдателя, применяют методы оптической пирометрии, основанные на использовании зависимости испускательной способности исследуемого тела от температуры. Различают три температуры, функционально связанные с истинной термодинамической температурой и излучательной способностью тела: радиационную T_{rad} , цветовую T_{col} и яркостную T_{br} .

В работе измеряется яркостная температура. Яркостная температура - это температура абсолютно чёрного тела, при которой его спектральная испускательная способность равна спектральной испускательной способности исследуемого тела при той же длине волны. Измерение яркостной температуры раскалённого тела производится при помощи оптического пирометра с исчезающей нитью, основанного на визуальном сравнении яркости раскалённой нити с яркостью изображения исследуемого тела.

Яркостная температура тела всегда ниже его термодинамической температуры. Это связано с тем, что любое нечёрное тело излучает меньше, чем АЧТ при той же температуре. Зависимость между яркостной и термодинамической температурами вольфрама приведена на рис. 1 По

Рис. 1. График зависимости $T = f(T_{br})$ для вольфрам

результатам измерений мощности излучения вольфрамовой нити можно судить о справедливости закона Стефана-Больцмана. Если бы нить излучала как АЧТ, то баланс потребляемой и излучаемой энергии определялся бы соотношением

$$W = \sigma S(T^4 - T_0^4), \tag{1}$$

где W - потребляемая нитью электрическая мощность, S - площадь излучающей поверхности нити, T - температура нити, T_0 - температура окружающей среды. Однако вольфрамовая нить излучает как серое тел, и излучение её ослаблено по сравнению с АЧТ в ε_T раз для любой волны при данной температуре тела Т. Тогда предположив, что нить излучает как серое тело и с учётом того, что $T_0 \ll T$, выражение (1) можно переписать в виде

$$W = \varepsilon_T S \sigma T^4 \tag{2}$$

В справедливости закона Стефана-Больцмана можно убедиться, построив график зависимости W(T) в логарифмическом масштабе и по углу наклона определить показатель степени n исследуемой температурной зависимости. В пределах погрешности показатель степени должен быть близок к четырём.

Также из формулы (2) можно определить постоянную Стефана-Больцмана.

2 Экспериментальная установка

Исследуемые в работе образцы:

- модель абсолютно чёрного тела керамическая трубка, закрытая с одного конца и окружённая для теплоизоляции внешним кожухом. Температура в трубке измеряется с помощью термопары хромель-алюмель
- керамическая трубка с набором колец из различных материалов, нагреваемая изнутри нихромовой спиралью. Материалы колец имеют различную излучательную способность
- вольфрамовая нить электрической лампочки

Рис. 2. Схема экспериментальной установки: 1 - блок питания; 2 - тумблер включения питания образцов; 3 - тумблер нагрева нити пирометра; 4 - кнопка "Нагрев нити"; 5 - кнопка "охлаждение нити"; 6 - тумблер переключения образцов; 7 - регулятор мощности нагрева образцов; 8 - окуляр пирометра; 9 - корпус пирометра; 10 - объектив пирометра; 11 - переключение диапазонов; 12 - ручка смещения красного светофильтра; 13 - регулировочный винт; 14 - вольтметр (напряжение на лампе накаливания); 15 - амперметр (ток через образцы); 16 - вольтметр в цепи термопары; 17 - модель АЧТ; 18 трубка с кольцами из материалов с различной излучательной способностью; 19 - лампа накаливания; 20 - неоновая лампочка

3 Ход работы

Данные для 3 пункта

При анализе всех данных коэффициент равен 4.2. Если анализировать только температуры начиная с $1300 \, \mathrm{K}$, то результат 4.02, но погрешность в районе 4 проыентов

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T [O0]	II [D]	T [A]
100 21.9 0.68 1100 29.5 0.774 1200 34.04 0.83 1300 41.7 0.91 1400 50.8 1.008 1500 63.76 1.132 1600 72.39 1.21 1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	$T_{bright}[C^0]$	U [MB]	I [A]
1100 29.5 0.774 1200 34.04 0.83 1300 41.7 0.91 1400 50.8 1.008 1500 63.76 1.132 1600 72.39 1.21 1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	900	19.3	0.65
1200 34.04 0.83 1300 41.7 0.91 1400 50.8 1.008 1500 63.76 1.132 1600 72.39 1.21 1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	100	21.9	0.68
1300 41.7 0.91 1400 50.8 1.008 1500 63.76 1.132 1600 72.39 1.21 1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1100	29.5	0.774
1400 50.8 1.008 1500 63.76 1.132 1600 72.39 1.21 1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1200	34.04	0.83
1500 63.76 1.132 1600 72.39 1.21 1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1300	41.7	0.91
1600 72.39 1.21 1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1400	50.8	1.008
1700 83.7 1.31 1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1500	63.76	1.132
1800 94.9 1.4 1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1600	72.39	1.21
1700 83.8 1.35 1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1700	83.7	1.31
1600 73.9 1.22 1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1800	94.9	1.4
1500 63.9 1.134 1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1700	83.8	1.35
1400 53.3 1.03 1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1600	73.9	1.22
1300 54.5 0.94 1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1500	63.9	1.134
1200 38.3 0.87 1100 30.8 0.78 1000 23.9 0.64	1400	53.3	1.03
1100 30.8 0.78 1000 23.9 0.64	1300	54.5	0.94
1000 23.9 0.64	1200	38.3	0.87
	1100	30.8	0.78
900 18.7 0.63	1000	23.9	0.64
	900	18.7	0.63