Cecture 26 Quotient rives

If G is a group and $N \triangleleft G$ is a normal subgroup, we can form the quotient group G/N and a surjective group homomorphism $\pi: G \rightarrow G/N$ $\pi(a) = aN$

The parallel story for rings is as follows. Let $(R,+,\cdot)$ be a ring. An ideal $I \subseteq R$ is a subset such that \bullet (I,+) is a subgroup of (R,+) \bullet \forall $\alpha \in I$, $r \in R$, α $r \in I$ and $r \in I$.

R/I={r+I|rER} when r+I={r+a|a+I}

The addition is $(\Gamma+I)+(\Gamma'+I)=(\Gamma+\Gamma')+I$ Zero is O+I=I.

This structure weeks R/I into an abelian group. (quotient of an abelian group is abelian).

So fur, we have only used the fact that (I,+) is a subgrup of (R,+). To make R/T into a ring, we have to define the multiplication, and that is where we use the acend property of an ideal.

We define the multiplication on R/I by $(\Gamma_1+I)\cdot(\Gamma_2+I)=(\Gamma_1\cdot\Gamma_2)+I$.

We check it's well-defined: suppose $r_1+I=r_2'+I$. $r_2+I=r_2'+I$.

then $\Gamma_1' - \Gamma_1 = \alpha_1 \in I$ $\Gamma_2' - \Gamma_2 = \alpha_2 \in I$

50 $\Gamma_1'\Gamma_2' = (\Gamma_1 + \alpha_1)(\Gamma_2 + \alpha_2) = \Gamma_1\Gamma_2 + \alpha_1\Gamma_2 + \Gamma_1\alpha_2 + \alpha_1\alpha_2$

Γ'Γ' - ΓΓ = αι Γ + Για + Για = EI Becouse I is an ideal.

So rir2+I = rir2+II, and the definition is consistent.

Proposition R/I is a ring. If R hers 1, then

1+I is a multiplicative identity in R/I.

If R is cumulative, so is R/I.

There is a surjective ring homomorphism

 $\pi: R \rightarrow R/I \quad \pi(r) = rtI \quad \text{with } \ker(\pi) = I$

If R hus 1, then TT is unital.

Example $R = \mathbb{Z}$, $I = n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} = \{7, -n, 0, n, 2n, ...\}$ then $R/E = \mathbb{Z}n$, the ring of congruence classes modulo n. $\pi: \mathbb{Z} \to \mathbb{Z}n$ $\pi(k) = k + n\mathbb{Z} = [k]_n$

Exemple R = K[X], K a field let $f \in K[X]$ be a nonconstant polynomial, and consider $I = (f) := fK[X] = \begin{cases} fg \mid g \in K[X] \end{cases} = multiples of <math>f$

This is an ideal in K[X]. Consider the quotient R/T = K[X]/(f). We can describe all assets: By long division, any $g \in K[X]$ conbe written as

g = q + tr where $q, r \in K[x]$ and deg(r) < deg(t)and r is uniquely determined by these conditions. Since $q \in f(f)$, we find g + f(f) = q + f(f) = r + f(f)

So every coset is of the form r+(f) with deg(r) < deg(f)Also, these cosets one distinct for different r: r+(f)=r'+(f) with deg(r), deg(r') = deg(f) => r-r' is divisible by f and $deg(r-r') \leq max(deg(r), deg(r')) = deg(f)$ So r-r'=0 and r=r'.

Upshot: every coset in K(x)/(f) has a unique representative — with deg(r) < deg(f). We call this the canonical representative.

To add in K[X]/(f): $(r_1+(f))+(r_2+(f))=(r_1+r_2)+(f)$ If $deg(r_1)$ and $deg(r_2)$ are less than deg(f), then $deg(r_1+r_2) < deg(f)$

To multiply in K(x)/(f) $(r_1 + (f))(r_2 + (f)) = r_1 r_2 + (f) = r_3 + (f)$ where r_3 is the remainder of long division of $r_1 r_2$ by f.

Exemple:
$$K=R$$
 $f=x^2+1 \in K[x]$
 $K[x]/(G) = R[x]/(x^2+1)$

Consolical representatives one (view (degree 1) polynomials
$$\mathbb{R}[x]/(x^2+1) = \frac{2}{3} a + bx + (f) | a, b \in \mathbb{R}$$

Multiplicedin:
$$(a+bx+(f))(a+b'x+(f))$$

= $aa'+(ab'+a'b)x+bb'x^2+(f)$

This is not in consider form, since it has an x^2 we could do long division by x^2+1 to reduce it, or we could observe $(x^2+1)+(f)=O+(f)$ so $x^2+(f)=-1+(f)$

=
$$aa' + (ab' + a'b)x + bb'x^2 + (7)$$

= $aa' + (ab' + a'b)x + bb'(-1) + (7)$
= $(aa' - bb') + (ab' + a'b)x + (7)$
which is in commonlant form.

Quick and Dirty way to compute in K(X]/(f):

· Don't wide the + (f) " everywhere

• pretend that f = 0 is a new rate we are allowed to use to simplify things:

Eq.
$$K = Q$$
, $f = x^3 - 2$ $K[x]/(f) = Q[x]/(x^3 - 2)$

ni
$$\mathbb{Q}[x]/(x^3-2)$$
, $x^3=2$ (really $x^3+(f)=2+(f)$)
So $(2+x+x^2)\cdot(x)=2x+x^2+x^3=2x+x^2+2$
really $(2+x+x^2+(f))(x+(f))=2+2x+x^2+(f)$

Homomorphism theorems for rings

Observe that if we forget multiplication, (R/I,+) is the quotient group of (R,+) by (I,+)

Theorem 6.3.4 (Homomorphism theorem for rings)

Let $\varphi: R \to S$ be a surjective homomorphism of rings.

Let $I = \ker(\varphi)$, and let $\pi: R \to R/I$ be the quotient humanorphism. Then there is an isomorphism of rings $\varphi: R/I \to S$ such that $\varphi \circ \pi = \varphi$ $\varphi(r+I) = \varphi(r)$.

Proof If we forget about multiplication, this is the hummorphin theorem for groups. So we apply that as we get that $\widetilde{\varphi}: (R/I, +) \longrightarrow (S, +)$ $\widetilde{\varphi}(r+I) = \varphi(r)$

is a well-defined isomorphism of groups.
To check it is an isomorphism of rings, we just check it respects multiplication:

 $\widetilde{\varphi}((a+I)(b+I)) = \widetilde{\varphi}(ab+I) = \varphi(ab) = \varphi(a)(\varphi(b))$ $= \widetilde{\varphi}(a+I)\widetilde{\varphi}(b+I).$

Example There is a humanuphum $\varphi_i: \mathbb{R}[x] \to \mathbb{C}$ such that $\varphi_i(r) = r$ for $r \in \mathbb{R}$, $\varphi_i(x) = i$ (by the substitution principle) for example, $\varphi(x^3-1) = i^3-1 = -1-i$.

The homomorphism is surjective since any $Z \in \mathbb{C}$ cen be written as Z = a+bi for $a,b \in \mathbb{R}$, and then $Q_i(a+bx) = a+bi = Z$

By the hymomorphism theorem for rings, there is an isomorphim $\widetilde{\varphi}_i: \mathbb{R}[x]/I \longrightarrow \mathbb{C}$, where $I = \ker(\varphi_i)$.

What is $I = \ker(\varphi_i)$? Certainly $x^2 + 1 \in \ker(\varphi_i)$, since $\varphi_i(x^2 + 1) = i^2 + 1 = -1 + 1 = 0$. Because $\ker(\varphi_i)$ is an ideal, it then also contains all multiples of $x^2 + 1$: $(x^2 + 1) := (x^2 + 1) R[x] = \{(x^2 + 1)g \mid g \in R[x]\}$ and $(x^2 + 1) \subseteq \ker(\varphi_i)$

In fact $\ker(Q_i) = (x^2+1)$: Take $g \in \ker(Q_i)$ Write $g = (x^2+1)p+r$ where $\deg(r) < \deg(x^2+1)=2$

Then r = atbx for some $a,b \in r$. Now apply Q_i $O = Q_i(g) = Q_i((x^2+1)p + a+bx) = Q_i((x^2+1)p) + a+bi$ $= O \cdot Q_i(p) + a+bi = a+bi$

50 a+bi=0 su a=b=0 su r=0, and x^2+1 divideg g su g $\in (x^2+1)R[x] = :(x^2+1)$.

This per(4;) 5 (x2+1) and they are equal.

Conclusión: $IR[x]/(x^2+1) \cong \mathbb{C}$ in particular $IR[x]/(x^2+1)$ is a field!