Raport 2

Julia Krempińska, Filip Miśkiewicz

Czerwiec 2024

1 Wprowadzenie

W tym raporcie skupimy się na testowaniu hipotez dla różnych parametrów oraz wyznaczymy prawdopodobieństwo popełnienia błędów I i II rodzaju, a także sprawdzimy moc przeprowadzanych testów.

2 Przypadek nieznanej średniej

Z populacji generalnej o rozkładzie normalnym $N(\mu, 0.2)$ pobrano próbę o dłuści n. Zweryfikujemy prawdziwość hipotez alteratywnych przy założeniu hipotezy zerowej $H_0: \mu=1.5$.

2.1 Hipoteza alternatywna $H_1: \mu \neq 1.5$

W celu zweryfikowania hipotezy zerowej ustalamy statystykę testową

$$Z = \frac{\overline{X} - \mu_0}{\sigma \sqrt{n}} \tag{1}$$

Gdzie \overline{X} to średnia arytmetyczna ze wszystkich wartości jakie przyjmują dane, n=1000 to długość próby, $\mu_0=1.5$, a $\sigma=0.2$. Test przeprowadzimy na poziomie istotności $\alpha=0.05$.

Zbiór krytyczny definiujemy jako przedział wartości statystyki Z, dla którego odrzucamy hipotezę zerową i oznaczamy jako C. Dla przypadku hipotezy alternatywnej $H_1: \mu \neq 1.5$ zbiór krytyczny konstruujemy w następujący sposób

$$C = (-\infty, -z_{1-\frac{\alpha}{2}}] \cup [z_{1-\frac{\alpha}{2}}, \infty)$$
(2)

Gdzie $z_{1-\frac{\alpha}{2}}$ to kwantyl rzędu $1-\frac{\alpha}{2}$ rozkładu N(0,1). Dla naszych danych obliczamy wartość statystyki Z. Zaczynamy od policzenia średniej wartości

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{1000} \sum_{i=1}^{1000} X_i \approx 1.456$$
 (3)

Teraz podstawiamy do wzoru na statystykę testową

$$Z = \frac{1,456 - 1.5}{0.2 \cdot 31.623} = -7.042 \tag{4}$$

Aby sprawdzić czy wartość naszej statystyki znajduje się w zbiorze krytycznym wyznaczamy wartość kwantyla rozkładu normalnego standardowego rzędu 0.975. Otrzymujemy $z_{0.975}\approx 1.960$. Wiemy stąd, że

$$C = (-\infty, -1.960] \cup [1.960, \infty) \tag{5}$$

Wyznaczony zbiór krytyczny jest przedstawiony poniżej

Rysunek 1: Zbiór krytyczny dla hipotezy $H_1: \mu \neq 1.5$

Zatem otrzymane wcześniej Z zawiera się w zbiorze C i mamy podstawy do odrzucenia hipotezy zerowej oraz przyjęcia hipotezy alternatywnej $H_1: \mu \neq 1.5$. Teraz wyznaczymy p-wartość. Jest to najmniejszy poziom istotności α , przy którym zaobserwowana wartość statystyki prowadzi do odrzucenia hipotezy zerowej. Dla tej hipotezy alternatywnej p-wartość obliczamy ze wzoru

$$p = 2(1 - \Phi(|z|)) \tag{6}$$

gdzie $\Phi(x)$ to wartość dystrybuanty rozkładu normalnego standardowego w punkcie x.

Dla naszych danych p-wartość wynosi $p=1.9\times 10^{-12}$. Oznacza to, że dla $\alpha < p$ przyjęlibyśmy hipotezę zerową.

2.2 Hipoteza alternatywna $H_1: \mu > 1.5$

W celu zweryfikowania hipotezy zerowej ustalamy statystykę testową taką jak dla poprzedniej hipotezy alternatywnej. Dla przypadku hipotezy alternatywnej

 $H_1: \mu > 1.5$ zbiór krytyczny konstruujemy w następujący sposób

$$C = [z_{1-\alpha}, \infty) \tag{7}$$

Wartość statystyki testowej pozostaje bez zmian, czyli Z=-7.042. Aby sprawdzić czy wartość naszej statystyki znajduje się w zbiorze krytycznym wyznaczamy wartość kwantyla rozkładu normalnego standardowego rzędu 0.95. Otrzymujemy $z_{0.95}\approx 1.645$. Wiemy stąd, że

$$C = [1.645, \infty) \tag{8}$$

Wyznaczony zbiór krytyczny jest przedstawiony poniżej

Rysunek 2: Zbiór krytyczny dla hipotezy $H_1: \mu > 1.5$

Zatem otrzymane wcześniej Z nie zawiera się w zbiorze C i przyjmujemy hipotezę zerową oraz odrzucamy hipotezę alternatywną $H_1: \mu > 1.5$. Dla tej hipotezy alternatywnej p-wartość obliczamy ze wzoru

$$p = 1 - \Phi(Z) \tag{9}$$

Dla naszych danych p-wartość wynosi $p=0.999\ldots$ Oznacza to, że dla $\alpha>p$ odrzucilibyśmy hipotezę zerową.

2.3 Hipoteza alternatywna $H_1: \mu < 1.5$

Postępujemy analogicznie jak w poprzednim przypadku . Zbiór krytyczny konstruujemy w następujący sposób

$$C = (-\infty, -z_{1-\alpha}] \tag{10}$$

Wartość statystyki testowej pozostaje bez zmian, czyli Z=-7.042. Wiemy z poprzedniego przypadku, że $z_{0.95}\approx 1.645$. Stąd mamy

$$C = (-\infty, -1.645] \tag{11}$$

Wyznaczony zbiór krytyczny jest przedstawiony poniżej

Rysunek 3: Zbiór krytyczny dla hipotezy $H_1: \mu < 1.5$

Zatem otrzymane wcześniej Z zawiera się w zbiorze C i mamy podstawy do odrzucenia hipotezy zerowej oraz przyjęcia hipotezy alternatywnej $H_1: \mu < 1.5$. Dla tej hipotezy alternatywnej p-wartość obliczamy ze wzoru

$$p = \Phi(Z) \tag{12}$$

Dla naszych danych p-wartość wynosi $p=9.51\times 10^{-13}$. Oznacza to, że dla $\alpha < p$ przyjęlibyśmy hipotezę zerową.

2.4 Wnioski

Z przeprowadzonych testów wynika, że $\mu < 1.5$. Wartości p pozwalają założyć dużą istotność statystyczną przeprowadzonych testów. Po przetestowaniu na poziomach istotności $\alpha = 0.1$ i $\alpha = 0.01$ otrzymaliśmy takie same wyniki.

2.5 Kod w Pythonie

Poniżej znajduje się kod napisany w języku Python rozwiązujący rozważany problem.

import numpy as np
from scipy.stats import norm
from urllib.request import urlopen
import matplotlib.pyplot as plt

url = "https://prac.im.pwr.edu.pl/~wyloman/ss_2023_2024/lista8_zad1.txt"

```
page = urlopen(url)
html_lines = page.readlines()
data = [float(line.decode("utf-8")) for line in html_lines]
np.array(data)
HO = 1.5
sig = 0.2
n = len(data)
alpha = 0.05
data_mean = np.mean(data)
z = (data_mean - H0) / (sig / np.sqrt(n))
Z_quantile = norm.ppf(1 - (alpha/2))
# p-wartości
p_g = 1 - norm.cdf(z)
p_n = 2 * (1 - norm.cdf(abs(z)))
p_1 = norm.cdf(z)
# mu != 1.5 <- hipoteza alternatywna</pre>
if z \le -Z_{quantile} or z \ge Z_{quantile}:
    print('Hipoteza mu != 1.5 prawdziwa')
else:
    print('Hipoteza mu != 1.5 falszywa')
Z_quantile = norm.ppf(1 - alpha)
# mu > 1.5 <- hipoteza alternatywna
if z > Z_quantile:
    print('Hipoteza mu > 1.5 prawdziwa')
else:
    print('Hipoteza mu > 1.5 falszywa')
# mu < 1.5 <- hipoteza alternatywna</pre>
if z < -Z_quantile:
    print('Hipoteza mu < 1.5 prawdziwa')</pre>
else:
    print('Hipoteza mu < 1.5 falszywa')</pre>
Kod zwrócił następujące wyniki
Hipoteza mu != 1.5 prawdziwa
Hipoteza mu > 1.5 fałszywa
Hipoteza mu < 1.5 prawdziwa
```

3 Przypadek nieznanej wariancji

Z populacji generalnej o rozkładzie normalnym $N(0.2, \sigma^2$ pobrano próbę o dłuści n. Zweryfikujemy prawdziwość hipotez alteratywnych przy założeniu hipotezy zerowej $H_0: \sigma^2 = 1.5$.

3.1 Hipoteza alternatywna $H_1: \sigma \neq 1.5$

W celu zweryfikowania hipotezy zerowej ustalamy statystykę testową

$$\chi = \frac{(n-1)s^2}{\sigma_0^2} \tag{13}$$

gdzie n=1000 jest długością próby, s^2 to wariancja wyznaczona z próby, $\sigma_0^2=1.5$. Test przeprowadzimy na poziomie istotności $\alpha=0.05$. Zbiór krytyczny definiujemy jako przedział wartości statystyki χ , dla którego odrzucamy hipotezę zerową i oznaczamy jako C. Dla przypadku hipotezy alternatywnej $H_1: \sigma^2 \neq 1.5$ zbiór krytyczny konstruujemy w następujący sposób

$$C = (-\infty, x_{\frac{\alpha}{2}, n-1}] \cup [x_{1-\frac{\alpha}{2}, n-1}, \infty)$$

$$\tag{14}$$

Gdzie $x_{\frac{\alpha}{2},n-1}$ to kwantyl rzędu $\frac{\alpha}{2}$ rozkładu χ^2 z n-1 stopniami swobody i analogicznie $x_{1-\frac{\alpha}{2},n-1}$ to kwantyl rzędu $1-\frac{\alpha}{2}$ rozkładu χ^2 z n-1 stopniami swobody . Dla naszych danych obliczamy wartość statystyki χ . Zaczynamy od policzenia wariancji ze wzoru

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \approx 1.667$$
 (15)

Teraz podstawiamy do wzoru na statystykę testową

$$\chi = \frac{999 \cdot 1.667}{1.5} \approx 1109.858 \tag{16}$$

Aby sprawdzić czy wartość naszej statystyki znajduje się w zbiorze krytycznym wyznaczamy wartość kwantyla rozkładu χ^2 rzędu 0.025 i 0.975. Otrzymujemy $x_{0.025}\approx 913.301$ i $x_{0.975}\approx 1088.487$. Wiemy stąd, że

$$C = (-\infty, 913.301] \cup [1088.487, \infty) \tag{17}$$

Wyznaczony zbiór krytyczny jest przedstawiony poniżej

Rysunek 4: Zbiór krytyczny dla hipotezy $H_1: \sigma^2 \neq 1.5$

Zatem otrzymane wcześniej χ zawiera się w zbiorze C i mamy podstawy do odrzucenia hipotezy zerowej oraz przyjęcia hipotezy alternatywnej $H_1: \sigma^2 \neq 1.5$.

Teraz wyznaczymy p-wartość ze wzoru

$$p = 2min(1 - F_{\chi, n-1}(x), F_{\chi, n-1}(x))$$
(18)

gdzie $F_{\chi,n-1}(x)$ to dystrybu
anta rozkładu χ zn-1stopniami swobody w punkcie
 x.

Dla naszych danych p-wartość wynosi p=0.016. Oznacza to, że dla $\alpha < p$ przyjęlibyśmy hipotezę zerową.

3.2 Hipoteza alternatywna $H_1: \sigma^2 > 1.5$

W celu zweryfikowania hipotezy zerowej ustalamy statystykę testową taką jak dla poprzedniej hipotezy alternatywnej. Dla przypadku hipotezy alternatywnej $H_1:\sigma^2>1.5$ zbiór krytyczny konstruujemy w następujący sposób

$$C = [x_{1-\alpha,n-1}, \infty) \tag{19}$$

Wartość statystyki testowej pozostaje bez zmian, czyli $\chi=1109.858$. Aby sprawdzić czy wartość naszej statystyki znajduje się w zbiorze krytycznym wyznaczamy wartość kwantyla rozkładu χ^2 rzędu 0.95. Otrzymujemy $x_{0.95}\approx 1073.643$. Wiemy stąd, że

$$C = [1073.643, \infty) \tag{20}$$

Wyznaczony zbiór krytyczny jest przedstawiony poniżej

Rysunek 5: Zbiór krytyczny dla hipotezy $H_1: \sigma^2 > 1.5$

Zatem otrzymane wcześniej χ awiera się w zbiorze C i mamy podstawy do odrzucenia hipotezy zerowej oraz przyjęcia hipotezy alternatywnej $H_1: \sigma^2 > 1.5$.

Dla tej hipotezy alternatywnej p-wartość obliczamy ze wzoru

$$p = 1 - F_{\chi, n-1}(x) \tag{21}$$

Dla naszych danych p-wartość wynosi p=0.008. Oznacza to, że dla $\alpha < p$ przyjęlibyśmy hipotezę zerową.

3.3 Hipoteza alternatywna $H_1: \sigma^2 < 1.5$

Postępujemy analogicznie jak w poprzednim przypadku . Zbiór krytyczny konstruujemy w następujący sposób

$$C = (-\infty, x_{\alpha, n-1}] \tag{22}$$

Wartość statystyki testowej pozostaje bez zmian, czyli $\chi=1109.858$. Aby sprawdzić czy wartość naszej statystyki znajduje się w zbiorze krytycznym wyznaczamy wartość kwantyla rozkładu χ^2 rzędu 0.05. Otrzymujemy $x_{0.05}\approx 926.631$. Wiemy stąd, że

$$C = (-\infty, 926.631] \tag{23}$$

Wyznaczony zbiór krytyczny jest przedstawiony poniżej

Rysunek 6: Zbiór krytyczny dla hipotezy $H_1: \sigma^2 < 1.5$

Zatem otrzymane wcześniej χ nie zawiera się w zbiorze C i przyjmujemy hipotezę zerową oraz odrzucamy hipotezę alternatywną $H_1:\sigma^2<1.5$. Dla tej hipotezy alternatywnej p-wartość obliczamy ze wzoru

$$p = F_{\chi, n-1}(x) \tag{24}$$

Dla naszych danych p-wartość wynosi p=0.992. Oznacza to, że dla $\alpha>p$ odrzucilibyśmy hipotezę zerową.

3.4 Wnioski

Z przeprowadzonych testów wynika, że $\sigma^2 > 1.5$. Wartości p pozwalają założyć dużą istotność statystyczną przeprowadzonych testów. Po przetestowaniu na poziomie istotności $\alpha = 0.1$ otrzymaliśmy takie same wyniki, ale dla $\alpha = 0.01$ należałoby przyjąć hipotezę zerową w przypadku $\sigma^2 \neq 1.5$ oraz $\sigma^2 < 1.5$.

3.5 Kod w Pythonie

Poniżej znajduje się kod napisany w języku Python rozwiązujący rozważany problem.

import numpy as np
from scipy.stats import chi2
from urllib.request import urlopen
import matplotlib.pyplot as plt

url = "https://prac.im.pwr.edu.pl/~wyloman/ss_2023_2024/lista8_zad2.txt"
page = urlopen(url)

```
html_lines = page.readlines()
data = [float(line.decode("utf-8")) for line in html_lines]
np.array(data)
H0 = 1.5
mu = 0.2
n = len(data)
alpha = 0.05
data_std = np.std(data)
x = ((n-1) * (data_std) ** 2) / H0
X_quantile_low = chi2.ppf(alpha/2, n-1)
X_quantile_high = chi2.ppf(1 - (alpha/2), n-1)
# p-wartości
p_n = 2 * min(1 - chi2.cdf(x, n-1), chi2.cdf(x, n-1))
p_g = 1 - chi2.cdf(x, n-1)
p_1 = chi2.cdf(x, n-1)
# sig2 != 1.5 <- hipoteza alternatywna
if x <= X_quantile_low or x >= X_quantile_high:
    print('Hipoteza sig != 1.5 prawdziwa')
else:
    print('Hipoteza sig != 1.5 falszywa')
X_quantile = chi2.ppf(1 - alpha, n-1)
# sig > 1.5 <- hipoteza alternatywna
if x > X_{quantile}:
    print('Hipoteza sig > 1.5 prawdziwa')
else:
    print('Hipoteza sig > 1.5 falszywa')
X_quantile = chi2.ppf(alpha, n-1)
# sig < 1.5 <- hipoteza alternatywna
if x < X_quantile:</pre>
    print('Hipoteza sig < 1.5 prawdziwa')</pre>
else:
    print('Hipoteza sig < 1.5 falszywa')</pre>
Kod zwrócił następujące wyniki
Hipoteza sig != 1.5 prawdziwa
Hipoteza sig > 1.5 prawdziwa
Hipoteza sig < 1.5 fałszywa
```

4 Wyznaczenie prawdopodobieństwa błędów

Za pomocą Pythona możemy symulacyjne wyznaczyć prawdopodobieństwa wystąpienia błędów I i II rodzaju dla rozpatrywanych testów. Rozpoczniemy od wyznaczenia prawdopodobieństw błędu I rodzaju, zaczynając dla średniej i następnie dla wariancji, dla odpowiednich wartosci α . Błąd pierwszego rodzaju wyznaczymy poprzez tysiąckrotne wygenerowanie próby losowej z odpowiedniego rozkładu (standardowego normalnego lub chi2). Po przeprowdzeniu symulacji, możemy łatwo policzyć stosunek liczby prób w których statystyka testowa znajduje sie w obszarze krytycznym do liczby wszystkich prób. Operację powtórzymy stukrotnie w celu uzyskania średniej wartości błedu. Obliczymy również medianę oraz odchylenie standardowe.

4.1 Błąd I rodzaju

4.1.1 Populacja o rozkładzie o normalnym $N(\mu, 0.2)$

Kod, który służy do wyznaczenia błędu I rodzaju dla

```
H_1: \mu \neq 1.5, \alpha = 0.05:
```

```
import numpy as np
from scipy.stats import norm
import seaborn as sns
sns.set_style('whitegrid')
import matplotlib.pyplot as plt
alpha = 0.05
n = 1000
               # długość pojedynczej próby
N = 1000
               # liczba iteracji do symulacyjego wyznaczenia błędu I rodzaju
M = 100
               # liczba wysymulowanych błędów I rodzaju
mu = 1.5
sigma = 0.2
def critical_values(alpha):
    return norm.ppf(alpha/2), norm.ppf(1 - alpha/2)
def simulate_type1_error(alpha=alpha, mu=mu, sigma=sigma, n=n, N=N, M=M):
    type1_errors = []
    for _ in range(M):
        rejections = 0
        c1, c2 = critical_values(alpha)
        for _ in range(N):
            X = norm.rvs(loc=mu, scale=sigma, size=n) # parametry zgodne z HO
            m = np.mean(X)
            Z = (m - mu) / (sigma / np.sqrt(n)) # statystyka testowa
            if not (c1 < Z < c2): # Z w obszarze krytycznym?
```

rejections += 1 type1_errors.append(rejections/N) return type1_errors

```
type1_error = simulate_type1_error(alpha=alpha, mu=mu, sigma=sigma, n=n, N=N, M=M)
print("Średnia: ", np.mean(type1_error), ", Mediana: ",
np.median(type1_error), ", Odchylenie standardowe: ", np.std(type1_error))

fig, (ax_box, ax_hist) = plt.subplots(2, sharex=True,
    gridspec_kw={"height_ratios": (.15, .85)}, figsize=(15, 7))
    sns.boxplot(x=type1_error, ax=ax_box, color="indigo")
    sns.histplot(data=type1_error, ax=ax_hist, color="indigo")
    ax_box.set(xlabel='')
    plt.suptitle(f'Symulacyjny rozkład błędu pierwszego rodzaju ($H_1 \; \colon \;
\mu \\neq 1.5, \; \\alpha = {alpha}$, N = {N}, M={M})', fontsize=20);
plt.axvline(x=alpha, linestyle='dashed')
```

Powyższy kod zwrócił wykres przedstawiony na Rysunku 7 oraz wartości: Średnia: 0.04991 , Mediana: 0.049 , Odchylenie standardowe: 0.00695427206830449

Rysunek 7: Błąd pierwszego rodzaju jest bliski teoretycznej wartości poziomu istotności testu.

Za pomocą analogicznego kodu dla pozostałych wartości α oraz hipotez, otrzymujemy wartości, które umieszczone zostały w tabeli.

H_1	α	Błąd I rodzaju			
111		Średnia	Mediana	Odchylenie st.	
	0.01	0.01	0.01	0.0031	
$\mu \neq 1.5$	0.05	0.051	0.051	0.0065	
	0.1	0.101	0.1	0.0094	
$\mu > 1.5$	0.01	0.0099	0.01	0.0031	
	0.05	0.051	0.051	0.0067	
	0.1	0.0993	0.099	0.0082	
	0.01	0.0104	0.01	0.0032	
$\mu < 1.5$	0.05	0.0505	0.05	0.0072	
	0.1	0.101	0.102	0.0101	

Rysunek 8: Tabela przedstawia otrzymane rezultaty dla poszczególnych hipotez oraz różnych wartości α .

4.1.2 Populacja o rozkładzie normalnym $N(0.2, \sigma^2)$

Kod potrzebny do wyznaczenia prawdopodobieństwa błędu I rodzaju w tym przypadku jest analogiczny jak dla pierwszego rozkładu, należy jednak pamiętać o podstawieniu rozkładu χ^2 oraz zastosowaniu odpowiedniej statystyki testowej. W wyniku przeprowadzonych symulacji, otrzymujemy wartości przedstawione w tabeli (Rysunek 9).

4.1.3 Wnioski

Obserwujemy, że dla każdej z wartości, błąd pierwszego rodzaju jest zbliżony do poziomu istotności testu, zatem uzyskane wyniki symulacyjne należy uznać za poprawne.

H_1	α	Błąd I rodzaju			
111		Średnia	Mediana	Odchylenie st.	
$\sigma^2 \neq 1.5$	0.01	0.0099	0.009	0.0031	
	0.05	0.05	0.05	0.0061	
	0.1	0.101	0.099	0.0096	
$\sigma^2 > 1.5$	0.01	0.0091	0.009	0.0029	
	0.05	0.047	0.0475	0.0077	
	0.1	0.094	0.093	0.0088	
$\sigma^2 < 1.5$	0.01	0.01	0.01	0.003	
	0.05	0.052	0.052	0.0065	
	0.1	0.102	0.1025	0.0083	

Rysunek 9: Tabela przedstawia otrzymane rezultaty dla poszczególnych hipotez oraz różnych wartości $\alpha.$

4.2 Błąd II rodzaju

4.2.1 Populacja o rozkładzie o normalnym $N(\mu, 0.2)$

Kod, który służy do wyznaczenia błędu II rodzaju dla

```
H_1: \mu \neq 1.5, \alpha = 0.05:
```

```
import numpy as np
from scipy.stats import norm
import seaborn as sns
sns.set_style('whitegrid')
import matplotlib.pyplot as plt
mu0 = 1.5
#-----
mu1 = 1.47
mu2 = 1.48
mu3 = 1.49
mu4 = 1.51
mu5 = 1.52
mu6 = 1.53
mus = [mu1, mu2, mu3, mu4, mu5, mu6]
alpha = 0.05
sigma = 0.2
n = 1000
N = 1000
M = 100
def critical_values(alpha):
    return norm.ppf(alpha/2), norm.ppf(1 - alpha/2)
def simulate_type2_error(alpha=alpha, mu=mu, mu0=mu0, sigma=sigma,
n=n, N=N, M=M):
    type2_errors = []
    for _ in range(M):
        acceptances = 0
        c1, c2 = critical_values(alpha)
        for _ in range(N):
            X = norm.rvs(loc=mu, scale=sigma, size=n) # parametry zgodne z HO
            m = np.mean(X)
            Z = (m - mu0) / (sigma / np.sqrt(n)) # statystyka testowa
            if (c1 < Z < c2): # Z poza obszarem krytycznym?
                acceptances += 1
        type2_errors.append(acceptances/N)
    return type2_errors
for mu in mus:
    type2_error = simulate_type2_error(alpha=alpha, mu=mu,
    sigma=sigma, n=n, N=N, M=M)
```

```
print("Średnia: ", np.mean(type2_error), ",
Mediana: ", np.median(type2_error), ",
Odchylenie standardowe: ", np.std(type2_error))

fig, (ax_box, ax_hist) = plt.subplots(2, sharex=True,
gridspec_kw={"height_ratios": (.15, .85)}, figsize=(15, 7))
sns.boxplot(x=type2_error, ax=ax_box, color="#0BCE9D")
sns.histplot(data=type2_error, ax=ax_hist, color="#0BCE9D")
ax_box.set(xlabel='')
plt.suptitle(f'Symulacyjny rozkład błędu drugiego rodzaju ($H_1 \;
colon \; \mu \\neq 1.5, \; \\alpha = {alpha}, \; \\mu = {mu}$$,
N = {N}, M={M})', fontsize=17);
fig.savefig(f"box2_H1neq_{alpha}_{mu}.pdf")
```

Powyższy kod zwraca kilka wykresów oraz wartości w zależności od parametru μ . Przykładowy wykres dla $\mu=1.51$ przedstawiony został na Rysunku 10. Analogicznie prezentuje się to dla pozostałych hipotez. Za pomocą otrzymanych wartości możemy wyznaczyć moc testu, którą definiujemy wzorem

$$1 - P(B_{II}),$$

gdzie $P(B_{II})$ to prawdopodobieństwo błędu II rodzaju. Uzyskane wartości zostały przedstawione w tabeli na Rysunku 11.

Rysunek 10: Przykładowy wykres dla błędu II rodzaju.

H_1	μ	Błąd II rodzaju			Moc testu
		Średnia	Mediana	Odchylenie st.	WIOC testu
$\mu \neq 1.5$	1.47	0.0026	0.003	0.0015	0.9974
	1.48	0.114	0.115	0.01	0.886
	1.49	0.645	0.646	0.016	0.355
	1.51	0.647	0.647	0.014	0.353
	1.52	0.113	0.114	0.010	0.887
	1.53	0.0024	0.002	0.0015	0.9976
$\mu > 1.5$	1.51	0.525	0.527	0.015	0.475
	1.52	0.065	0.066	0.0069	0.935
	1.53	0.0009	0.001	0.0008	0.9991
$\mu < 1.5$	1.47	0.001	0.001	0.001	0.999
	1.48	0.0649	0.065	0.0073	0.9351
	1.49	0.523	0.522	0.016	0.477

Rysunek 11: Tabela przedstawia otrzymane rezultaty dla poszczególnych hipotez oraz różnych wartości $\mu.$

4.3 Populacja o rozkładzie normalnym $N(0.2, \sigma^2)$

Tę samą procedurę (z uwzględnieniem wymaganych zmian parametrów) stosujemy dla rozkładu $N(0.2,\sigma^2)$. Otrzymane wyniki przedstawione zostały w tabeli na Rysunku 12.

H_1	σ^2	Błąd II rodzaju			Moc testu
		Średnia	Mediana	Odchylenie st.	Moc testu
$\sigma^2 \neq 1.5$	1.3	0.108	0.108	0.009	0.892
	1.4	0.664	0.665	0.014	0.334
	1.45	0.882	0.883	0.010	0.118
	1.55	0.886	0.885	0.009	0.113
	1.6	0.695	0.695	0.013	0.305
	1.7	0.202	0.203	0.011	0.798
$\sigma^2 > 1.5$	1.55	0.821	0.821	0.013	0.179
	1.6	0.580	0.581	0.014	0.420
	1.7	0.126	0.126	0.010	0.874
$\sigma^2 < 1.5$	1.45	0.810	0.812	0.010	0.189
	1.4	0.537	0.538	0.017	0.462
	1.3	0.057	0.0575	0.006	0.943

Rysunek 12: Tabela przedstawia otrzymane rezultaty dla poszczególnych hipotez oraz różnych wartości $\sigma^2.$

4.3.1 Wnioski

Zarówno dla testu wariancji jak i testu średniej, obserwujemy, że im blizej wartosci o której mówi hipoteza zerowa, tym wieksze prawdopodobienstwo błędu II rodzaju i mniejsza moc testu. Dzieje się tak niezaleznie od wybranej hipotezy alternatywnej.