Лекция 6 от 30.09.2016. Разбор некоторых интересных задач по матроидам.

Здесь мы разберем 3 важных задачи, 2 из которых, скорее всего Глеб включит куда-нибудь (экзамен или что-то такое).

Я везде отождествляю элементы как одноэлементные множества.

Матроид паросочетаний

Лемма 1. Пара $\langle V, I \rangle$, где V — множество вершин некоторого графа G = (V, E), и $B \in I$, если существует паросочетание, покрывающее множество B, является матроидом. Также его называют матроидом паросочетаний.

Доказательство. Первые 2 свойства матроида и правда ясны без объяснения (проделайте сами).

Будем доказывать 3-е свойство.

Давайте возьмём 2 множества вершин $B_1, B_2 \in I$ такие, что $|B_1| < |B_2|$.

Пусть X_1, X_2 — паросочетания, насыщающие B_1 и B_2 соответственно.

Есть 2 случая:

- 1. Если существует элемент $x \in B_2 \backslash B_1$, насыщенный в X_1 , то всё отлично, так как X_1 насыщает $B_1 \cup x$
- 2. Теперь мы предполагаем, что все $x \in B_2 \backslash B_1$ не задействованы в вершинах в X_1 . Рассмотрим подграф $G' = X_1 \triangle X_2$ симметрическая разность ребер. Теперь степень каждой вершины не более 2, поэтому наш граф разбивается на циклы и цепочки, притом в циклах идёт чередование ребер, в цепочках тоже.

Ясно, что в каждой цепи концевые вершины будут в одном паросочении не насыщены, так как иначе будет четное число ребер, содержащую данную вершину в G', значит это не конец пути.

Так как ни одна вершина из $B_2 \setminus B_1$ (а их там хотя бы 1) не насыщена первым паросочетанием, то эти вершины могут быть только концами путей.

Докажем, что $|B_2 \setminus B_1| > |B_1 \setminus B_2|$. Пусть $|B_1 \cap B_2| = \alpha$, тогда $|B_2 \setminus B_1| = |B_2| - \alpha$, $|B_1 \setminus B_2| = |B_1| - \alpha$, так как из каждого множества мы убираем только элементы из пересечения, откуда $|B_2 \setminus B_1| > |B_1 \setminus B_2|$.

Так как $|B_2 \setminus B_1| > |B_1 \setminus B_2|$, то существует путь P (не цикл), начинающаяся в $B_2 \setminus B_1$ и заканчивающаяся **не** в $B_1 \setminus B_2$. Заканчиваться путь в $B_1 \cap B_2$ не может, так как в этом множестве все вершины имеют четную степень в G', значит этот путь заканчивается вне B_1 .

Докажем, что $X_1\triangle P$ будет паросочетанием, насыщающим $B_1\cup v_{start}$, где $v_{start}\in B_2\setminus B_1$ и начинает путь P с одного из концов. Фактически мы написали, что мы поменяем цвета этих рёбер, то есть те рёбра, которые были в $X_1\cap P$, больше не ребра паросочетания, а ребра из X_2 на этом пути будут теперь рёбрами $X_1\triangle P$. Все вершины из B_1 , лежащие внутри пути (не на концах) останутся быть вершинами паросочетания $X_1\triangle P$. Единственная проблема может возникнуть с концами — v_{start} теперь вершина паросочетания $X_1\triangle P$, а другой конец не входил в B_1 , значит даже если там не берется ребро, то ничего страшного, эта вершина нам и не нужна была.

Worst-out Greedy

Лемма 2 (Worst-out Greedy). Пусть дан некоторый матроид $M = \langle M \rangle$, элементам присвоены некоторые стоимости c(w), причём элементы w_1, \ldots, w_n упорядочены так, что $0 \leqslant c(w_1) \leqslant \ldots \leqslant c(w_n)$. Рассмотрим следующий экадный алгоритм:

Algorithm 1 Worst-out greedy

- 1: $F \leftarrow X$
- 2: for $i \leftarrow 1$ to n do
- 3: **if** $F \setminus w_i$ содержит базу **then**
- 4: $F \leftarrow F \setminus w_i$

Введем понятие двойственного матроида.

Двойственный матроид к $M = \langle X, I \rangle$ это матроид $M^* = \langle X, I^* \rangle$, где $I^* = \{A \mid \exists B \in \mathfrak{B} : A \cap B = \varnothing \}$.

Докажем, что это матроид:

Доказательство. Проверим все 3 свойства.

- 1. Пустое множество лежит в этом множестве.
- 2. Пусть $A_1 \subseteq A_2$ и $A_2 \in I^*$, тогда $A_2 \cap B = \emptyset$, тогда $A_1 \cap B = \emptyset$, так как подмножество пустого множества будет пустым.
- 3. Возьмём произвольные A_1, A_2 такие, что $|A_1| < |A_2|$. Из определения следует, что $X \setminus A_2$ сожержит какую-то базу пусть это будет база B. Мы знаем, что $B \setminus A_1 \subseteq X \setminus A_1$, так как $B \subseteq X$.

Также пусть $B'_1 \subseteq X \setminus A_1$ — та база, которая содержится в дополнении A_1 .

Рассмотрим множества $B \setminus A_1$ и B_1' . Будем дополнять по 3 аксиоме матроида M первое множество, пока оно не станет базой. Пусть мы в итоге получили $B' = B \setminus A_1 \cup \{x_1, \dots, x_{|A_1|}\}$. Мы получили множество B', которое является базой, содержит $B \setminus A_1$ и содержится в $X \setminus A_1$, так как мы добавляли элементы только из B_1' , а $B_1' \subseteq X \setminus A_1$.

Отлично, мы нашли базу B', что $B \setminus A_1 \subseteq B' \subseteq X \setminus A_1$.

Предположим, что $A_2 \setminus A_1 \subseteq B'$.

Также нам понадобится факт $B \cap A_1 \subseteq A_1 \setminus A_2$, который объясняется тем, что B не имеет общих элементов с A_2 по определению.

Теперь выпишем цепочку неравенств и равенств и докажем каждое из них поочереди:

 $|B| = |B \cap A_1| + |B \setminus A_1|$ — простое свойство из теории множеств (это просто все элементы лежащие в B и в 1-ом случае и в A_1 , а во 2-ом не в A_1).

 $|B \cap A_1| + |B \setminus A_1| \le |A_1 \setminus A_2| + |B \setminus A_1| -$ см. свойство выше.

 $|A_1\setminus A_2|+|B\setminus A_1|<|A_2\setminus A_1|+|B\setminus A_1|$ — так как $|A_1\setminus A_2|<|A_2\setminus A_1|$, так как $|A_2|>|A_1|$ (см. факт из 1-ой леммы).

 $|A_2 \setminus A_1| + |B \setminus A_1| \leq |B'|$ — это так, так как 2 множества слева под модулями не пересекаются (так как B и A_2 не пересекаются). И каждое из этих множеств является подмножеством B' (1-ое по предположению, 2-ое доказано выше).

Откуда |B| < |B'|, что неверно, так как все базы равномощны между собой.

Значит $A_2 \setminus A_1 \not\subseteq B'$, откуда существует элемент $z \in A_2 \setminus A_1$ такой, что $z \not\in B'$, откуда $(A_1 \cup z) \cap B' = \emptyset$, что нам и требуется.

Теперь перейдём к доказательству леммы:

Доказательство. Свойство двойственности баз.

Понятно, что база матроида M^* будет дополнением всех элементов из базы \mathfrak{B} , потому что для каждого дополнения существует база, с которой он пересекается по пустому множеству. И если существует множество из I^* , которое по мощности больше, чем мощность дополнения любого элемента из \mathfrak{B} , то такое множество по принципу Дирихле пересекается со всеми элементами \mathfrak{B} , а значит это множество не лежит в I^* . И если есть элемент базы M^* , который является недополнением какого-то элемента из базы \mathfrak{B} , то такое множество тоже пересекается со всеми базами, так как базы имеют одинаковую мощность в обоих случаях.

Теперь чуточку перепишем алгоритм, данный в лемме.

Algorithm 2 Модификация алгоритма на матроиде M^* (именно на двойственном)

```
1: F^* \leftarrow \varnothing
```

- 2: for $i \leftarrow 1$ to n do
- 3: if $F^* \cup w_i \in I^*$ then
- 4: $F^* \leftarrow F^* \cup w_i$

Заметим, что этот алгоритм возьмёт все те и только те элементы, которые алгоритм из леммы выкинет. Докажем это по индукции:

Утверждение. На каждом шаге i от 0 до n выполняется $F^* \cup F = X, F \cap F^* = \emptyset$.

База i=0. На нулевом шаге у нас $F^* \cup F = X, F^* \cap F = \emptyset$.

Переход $i-1 \rightarrow i$:

Если F выкидывает w_i , то значит существует база B_i такая, что $B_i \subseteq F \setminus w_i$. А значит в двойственном матроиде $F^* \cup w_i \subseteq X \setminus B_i$ (здесь мы пользуемся предположением индукции), то есть $F^* \cup w_i$ является подмножеством какой-то базы матроида M^* , а значит $F^* \cup w_i \in I^*$. Это всё следует из свойств, которые мы доказывали выше. В обратную сторону аналогично — если w_i добавляется к F^* , то и F выкинет w_i . Переход доказан.

В 1-ой лекции было, что алгоритм из решения приносит максимальную сумму, если веса расположены в невозрастающем порядке. Дословно переносятся все утверждения, когда порядок неубывающий, только в итоге мы получим минимальную сумму множества.

Поэтому мы получили множество F^* , которое набрало минимальную сумму. Поэтому F наберет максимальную, так как $F \cup F^* = X, F \cap F^* = \varnothing$, откуда $c(F) + c(F^*) = c(X)$, а значит c(F) набирает максимум. Так как F^* будет элементом базы (из следствия на 1-ой лекции) в матроиде M^* , то и F будет элементом базы в M из-за свойства двойственности баз (см. выше).

Лемма об обмене

Лемма 3 (Лемма об обмене). Пусть имеются 2 базы B_1, B_2 , тогда $\forall x \in B_1 \setminus B_2 \exists y \in B_2 \setminus B_1$, такие, что $(B_1 \setminus x) \cup y \in I$ и $(B_2 \setminus y) \cup x \in I$.

Здесь у нас будет матроид $M = \langle S, I \rangle$

Введем понятие $uu\kappa na$. $Uu\kappa na$ это наименьшее по включению зависимое множество, то есть все собственные подмножества цикла принадлежат I.

Все ссылки на леммы, которые я делаю в этой теореме, это ссылки на леммы «задачи».

Докажем такие леммы:

Лемма задачи 1. $r(A) + r(B) \geqslant r(A \cup B) + r(A \cap B)$.

Доказательство. Пусть X максимальное независимое подмножество $A \cap B$. Возьмём Y' - максимальное независимое множество $A \cup B$. Заметим, что $|X| \leqslant |Y'|$, поэтому будем по 3 аксиоме матроидов добавлять к X элементы из $Y' \setminus X$. Получим максимальное независимое подмножество $A \cup B$, которое содержит X. Пусть это подмножество будет $Y \Rightarrow X \subseteq Y$.

Разделим Y на 3 категории множеств — $Y = X \cup V \cup W$ так, что $V \subseteq A \setminus B, W \subseteq B \setminus A$. Так и будет, потому что из пересечения мы не могли добавить к X больше элементов, иначе X был бы не максимальным по включению.

Получаем, что $X \cup V$ — независимо в A (аксиома 2), аналогично $X \cup W$ независимо в B, откуда $r(A) \geqslant |X \cup V|, r(B) \geqslant |X \cup W|.$

Откуда
$$r(A) + r(B) \geqslant |X \cup V| + |X \cup W| = |X| + |X| + |W| + |V| = r(A \cup B) + r(A \cap B).$$

Лемма задачи 2. Пусть C_1, C_2 — различные циклы одного матроида и $x \in C_1 \cap C_2$. Тогда существует цикл $C_3 \subseteq (C_1 \cup C_2) \setminus x$.

Доказательство. Покажем, что r(C') < |C'|, где $C' = (C_1 \cup C_2) \setminus x$.

Так как C_1, C_2 — различные циклы, то $C_1 \cap C_2$ является собственным подмножеством C_1 , то есть $r(C_1 \cap C_2) = |C_1 \cap C_2|$.

Также мы знаем, что $r(C_1) = |C_1| - 1, r(C_2) = |C_2| - 1$, так как это циклы.

По лемме 1 получаем

$$r(C_1 \cup C_2) \leqslant r(C_1) + r(C_2) - r(C_1 \cap C_2) = |C_1| + |C_2| - |C_1 \cap C_2| - 2 = |C_1 \cup C_2| - 2 < |C'|$$

Также мы знаем, что $r(C') \leqslant r(C_1 \cup C_2)$, так как $C' \subseteq C_1 \cup C_2$.

Откуда r(C') < |C'|. Значит существует цикл в таком множестве.

Лемма задачи 3. Если A независимое множество, а $x \in S$, тогда $A \cup x$ содержит не более 1 цикла.

Доказательство. Пусть есть 2 различных цикла $C_1, C_2 \subseteq (A \cup x)$. Они оба содержат x, иначе они независимы.

Рассмотрим множество $(C_1 \cup C_2) \setminus x$. По лемме 2 в этом множестве есть цикл, а значит $(C_1 \cup C_2) \setminus x$ зависимо. Но $(C_1 \cup C_2) \setminus x \subseteq A$, что противоречит независимости A.

Также введём ещё понятие для любого подмножества $A \subseteq S - span(A) = \{s \in S : r(A \cup s) = r(S)\}$. Тривиально, что $A \subseteq span(A)$.

Лемма задачи 4. a) Если $A \subseteq B$, то $span(A) \subseteq span(B)$

b) Если $e \in span(A)$, то $span(A \cup e) = span(A)$.

Доказательство. a) Пусть $e \in span(A)$. Если $e \in B$, то отсюда сразу следует, что $e \in span(B)$ (см. тривиальное свойство). По лемме 1 следует, что $r(A \cup e) + r(B) \geqslant r((A \cup e) \cap B) + r((A \cup e) \cup B)$

Откуда сразу следует, что $r(A \cup e) + r(B) \geqslant r(A) + r(B \cup e)$, так как $e \not\in B$, поэтому $(A \cup e) \cap B = A$, $(A \cup e) \cup B = B \cup e$. Из определения следует, что $r(A \cup e) = r(A)$, значит

 $r(B) \geqslant r(B \cup e)$, но мы знаем, что все независимые подмножества B являются независимыми множествами $B \cup e$, значит в другую сторону неравенство выполняется очевидно.

Поэтому $r(B) = r(B \cup e)$, откуда $e \in span(B)$.

b) Из пункта a) следует, что $span(A) \subseteq span(A \cup e)$. Поэтому нам надо доказать для каждого $f \in span(A \cup e)$, что оно лежит в span(A). Опять воспользуемся леммой 1:

$$r(A \cup e) + r(A \cup f) \geqslant r((A \cup e) \cap (A \cup f)) + r(A \cup e \cup A \cup f)$$

Случай e = f очевиден, пусть $e \neq f$.

Тогла

$$r(A \cup e) + r(A \cup f) \geqslant r(A) + r(A \cup e \cup f)$$

 $r(A \cup e) = r(A)$ по определению. Значит

 $r(A \cup f) \geqslant r(A \cup e \cup f)$ откуда аналогично следует, что $r(A \cup f) = r(A \cup e \cup f)$.

Откуда $e \in span(A \cup f)$, но $e \in span(A)$ и $f \in span(A \cup e)$, значит $r(A) = r(A \cup e) = r(A \cup e \cup f) = r(A \cup f)$ — последнее равенство следует из выше доказанного. Поэтому $f \in span(A)$, что и требовалось.

Доказательство леммы.

Доказательство. Пусть $x \in B_1 \setminus B_2$, тогда $B_2 \cup x$ содержит ровно 1 цикл по лемме 3 (так как B_2 независимо, а $B_2 \cup x$ зависимо). Пусть этот цикл будет C. Мы знаем, что $x \in span(C \setminus x)$, так как добавление не меняет ранг. Поэтому $x \in span((B_1 \cup C) \setminus x)$ (см. лемма 4а). По лемме 4b следует, что $span((B_1 \cup C) \setminus x) = span(B_1 \cup C) = S$, так как B_1 является базой. Получается, что какой-бы элемент к максимально независимому множеству в $(B_1 \cup C) \setminus x$ ни добавляй, получим, что ранг меняться не будет. Это возможно только если $r((B_1 \cup C) \setminus x) = |B_1|$, иначе мы могли бы получить противоречие с аксиомой 3 матроидов.

Пусть B' — база, содержащаяся в $(B_1 \cup C) \setminus x$.

По аксиоме 3 (для $B_1 \setminus x$ и B') в $B' \setminus (B_1 \setminus x)$ существует y, что $(B_1 \setminus x) \cup y$ — база.

 $B' \setminus (B_1 \setminus x) \subseteq ((B_1 \cup C) \setminus x) \setminus (B_1 \setminus x)$ (см. 2 абзаца выше).

 $((B_1 \cup C) \setminus x) \setminus (B_1 \setminus x) \subseteq C \setminus x$ — легко проверяется кругами Эйлера. То есть $y \in C \setminus x$. Но $C \subseteq (B_2 \cup x)$, поэтому $C \setminus x \subseteq B_2$. Значит $y \in B_2$, значит $y \in B_2 \setminus B_1$ (см. выше, почему $y \notin B_1$). Также важно отметить, что $x \neq y$, так как $B' \subseteq (B_1 \cup C) \setminus x$.

Докажем, что $(B_2 \setminus y) \cup x$ — тоже база. Допустим, что это не так. Тогда существует цикл $C' \subseteq (B_2 \setminus y) \cup x \subseteq B_2 \cup x$. Причем $C' \neq C$, так как $y \in C$ (см. выше), но $y \notin C'$. Значит у $B_2 \cup x$ существовало 2 различных цикла, что невозможно по лемме 3. Что и завершает наше доказательство.