FEUILLE 5 : PRIMITIVES - EQUATIONS DIFFÉRENTIELLES

I EXERCICES TECHNIQUES

Exercice 1

Calculer les intégrales suivantes (où t désigne un réel, et n un entier naturel) :

1.
$$\int_{-1}^{1} \frac{e^x}{1+e^x} dx$$
 Chercher une primitive

2.
$$\int_0^{\pi} x \cos(x) dx$$
 Faire une IPP

3.
$$\int_{-1}^{0} (x+2)e^{x+2} dx$$
 Faire une IPP

4.
$$\int_0^{\frac{\pi}{2}} x^2 \sin(x) dx$$
 Faire 2 IPP

5.
$$\int_0^{2\pi} (x^2 + x)e^{2x} dx$$
 Faire 2 IPP

6.
$$\int_0^1 \frac{x}{\sqrt{1+x^2}} dx$$
 Chercher une primitive

7.
$$\int_0^t x\sqrt{1+x^2} dx$$
 Chercher une primitive

8.
$$\int_0^t \frac{1}{1+e^x} dx$$
 Faire le changement de variable $u = e^x$ ou faire apparaître la forme $\frac{u'}{u}$

9.
$$\int_{1}^{2} \ln(4x-1) dx$$
 Faire une IPP

10.
$$\int_0^1 x e^{x^2} dx$$
 Chercher une primitive

11.
$$\int_{1}^{e} \frac{1}{x + x (\ln x)^{2}} dx$$
 Faire le changement de variable $u = \ln x$

12.
$$\int_0^t \ln(1+x^2) dx$$
 Faire une IPP

13.
$$\int_0^1 x \ln(1+x^2) dx$$
 Faire une IPP

14.
$$\int_0^t \frac{e^{2x}}{1+e^x} dx$$
 Faire le changement de variable $u = e^x$

15.
$$\int_0^{\frac{\pi}{4}} \tan(x) dx$$
 Chercher une primitive

16.
$$\int_0^e (1+x+x^2)e^x dx$$
 Faire deux IPP

17.
$$\int_0^2 (1 - |1 - x|)^3 dx$$
 Utiliser la relation de Chasles

18.
$$\int_0^{\frac{\pi}{4}} x^2 \sin^2(x) dx$$
 Linéariser $\sin^2(x)$ puis faire des IPP

19.
$$\int_{-1}^{1} (1 + x + \sin^3(x)) dx$$
 Relie son cours!

20.
$$\int_{1}^{2} \frac{\ln x}{x^2} dx$$
 Faire une IPP

21.
$$\int_0^{\frac{\pi}{2}} \cos^5(x) dx$$
 Ecrire $\cos^5(x) = \cos^4(x) \cos(x)$ et faire apparaître des termes de la forme $u^n u'$

22.
$$\int_0^{\frac{\pi}{2}} \cos^4(x) dx$$
 Linéariser

23.
$$\int_0^t \sin^5(x) \cos^3(x) dx \quad \text{Ecrire } \cos^3(x) = \cos^2(x) \cos(x) \text{ et faire apparaître } u^n u'$$

24.
$$\int_0^t \sin^2(x) \cos^4(x) dx$$
 Linéariser

25.
$$\int_0^1 \sqrt{1-x^2} dx$$
 Faire le changement $x = \sin u$

26.
$$\int_0^{\frac{1}{2}} \frac{x^2}{\sqrt{1-x^2}} dx$$
 Faire le changement de variable $x = \sin u$

27.
$$\int_0^t e^{3x} \sin(5x) dx \quad \text{Ecrire } \sin(5x) = \text{Im}(e^{5ix})$$

28.
$$\int_{-1}^{0} \frac{x^2 + 3x + 1}{2x + 3} dx$$
 Ecrire
$$\frac{x^2 + 3x + 1}{2x + 3} = P(x) + \frac{C}{2x + 3}$$
 où P est polynômiale et $C \in \mathbb{R}$

29.
$$\int_{1}^{e} x^{n} \ln(x) dx$$
 Faire une IPP

30.
$$\int_{1}^{e} \frac{\ln(x)}{x + x (\ln x)^{2}} dx$$
 Faire un changement de variable

31.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1 + \cos(x)} dx$$
 Utiliser une formule de trigonométrie pour se ramener à une recherche de primitive

32.
$$\int_1^2 \frac{1}{x + \sqrt{x - 1}} dx$$
 Faire le changement de variable $u = \sqrt{x - 1}$

33.
$$\int_{1}^{e} \sin(\ln(x)) dx$$
 Faire un changement de variable

Exercice 2

Déterminer les solutions des équations différentielles suivantes sur un intervalle I à préciser :

a.
$$y' + 2y = x^2$$

b.
$$y' + y = x - e^x + \cos x$$

c.
$$(1 + e^x) y' + e^x y = 1 + e^x$$

d.
$$x (1 + \ln^2(x)) y' + 2 \ln(x) y = 1$$

e.
$$(x^2+1)y'+2xy+1=0$$

f.
$$(1 + \cos^2 x) y' - \sin(2x)y = \cos(x)$$

Exercice 3

Déterminer les solutions réelles des équations différentielles suivantes :

a.
$$y'' + y = 0$$

b.
$$y'' - 3y' + 2y = 0$$

c.
$$y'' + y' - 2y = e^x$$

d.
$$y'' + 2y' + 2y = \sin x$$

II EXERCICES SUR LES PRIMITIVES

Exercice 4

Pour $n \in \mathbb{N}$, on considère $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$

- **a.** Calculer I_0 et I_1 .
- **b.** Trouver une relation de récurrence entre I_n et I_{n-2} .
- c. En déduire I_{2n} et I_{2n+1} pour tout entier naturel n. Faire un télescopage ou faire une démonstration par récurrence.

Exercice 5

a. Déterminer les réels a et b tels que

$$\frac{1}{x^2 - 1} = \frac{a}{x - 1} + \frac{b}{x + 1}$$

b. En déduire une primitive de f définie sur]-1,1[par

$$f(x) = \frac{1}{x^2 - 1}$$

c. Donner une primitive de g définie sur $\left]\frac{-\pi}{4}, \frac{\pi}{4}\right[$ par

$$g(x) = \frac{1}{\sin^2 x - \cos^2 x}$$

Faire apparaître $\tan x$ et faire une changement de variable

Exercice 6

a. A l'aide d'une intégration par parties, donner une primitive de la fonction f définie par

$$f(x) = \frac{x^2}{(1+x^2)^2}$$

b. En déduire une primitive de la fonction g définie par

$$g(x) = \frac{1}{(1+x^2)^2}$$

c. Retrouver le résultat précédent en effectuant le changement de variable $x = \tan u$.

III EXERCICES SUR LES EQUATIONS DIFFERENTIELLES

Exercice 7

Déterminer les solutions des équations différentielles suivantes sur un intervalle I à préciser :

a.
$$y' = 3y + (3x + 1)e^{2x}$$

b.
$$y' = 3y + \sin(3x)$$

c.
$$xy' - 2y = (x-1)(x+1)^3$$

$$\mathbf{d.} \quad y' + y \tan x = \cos^2 x$$

e.
$$y' - y \cos x = \sin(2x)$$

f.
$$y' - \frac{\sinh(x)}{1 + \cosh(x)}y = \sinh(x)$$

g.
$$(x+1)y'-2y=e^x(x+1)^3$$

h.
$$(1+x^2)y' + y = Arctan x$$

Exercice 8

Déterminer les solutions des équations différentielles suivantes :

a.
$$y'' + 5y' + 6y = x^2 + 1$$

b.
$$y'' - 5y' = (x+1)e^{-3x}$$
 avec $y(0) = 0$ et $y'(0) = 1$

c.
$$y'' + 6y' + 9y = (x+1)e^{-3x}$$
 avec $y(0) = 0$ et $y'(0) = 1$

d.
$$y'' + 4y' + 13y = e^{-2x}$$

e.
$$y'' + y = \sin x$$

$$\mathbf{f.} \quad y'' + iy = \sin x$$

g.
$$y'' + \omega^2 y = \cos(\omega_0 x)$$
 avec $y(0) = 1$ et $y'(0) = 0$, où ω et ω_0 sont des réels distincts.

LES BONS RÉFLEXES

- ₹ Les tableaux des primitives usuelles doivent être PARFAITEMENT connus.
- A Quand on veut calculer une intégrale, on cherche d'abord une primitive de la fonction à intégrer, si on n'en trouve pas, on tente une intégration par parties, ou un changement de variable.
- *Les équations différentielles se résolvent TOUJOURS sur des intervalles.