+

Modeling Corporate Bond Returns Using The IPCA Model

Outline

- Introduction to Corp Bonds
 - How market works
 - Microstructure
 - Business value(buy side/sell side)
 - Overview of Terms
- IPCA Paper Summary and Model explained
- Data Explained
- Long-short portfolio
 - Strategy Explained
 - Performance
- Next Steps and Expectation

What Are Corporate Bonds?

Debt securities issued by companies to raise capital

Investors receive periodic interest payments (coupons) and principal repayment

Higher yields than government bonds but with greater risk

How the Market Works

- **Primary Market:** Companies issue new bonds via investment banks
- Secondary Market: Bonds are traded among investors
- Price influenced by interest rates, credit ratings, and demand
- **Key participants:** Corporations, institutional investors, retail investors, market makers

Microstructure of Corporate Bonds

- Pricing Factors: Interest rates, credit risk, market sentiment
- Market Participants: Traders, brokers, dealers facilitate transactions
- **Higher Inefficiency:** Traded at OTC

Business Value

Asset Allocation:

- Risk-Adjusted Portfolio Optimization:
 - Identifies cross-asset risk factors (e.g., equity-bond integration), enabling better diversification.
 - Supports dynamic adjustments using time-varying factor sensitivities, improving tactical allocation.
- Global Market Applications:
 - Extends to emerging markets, where data quality and market structure differ from developed markets.

Business Value

Buy-Side:

- Alpha Generation:
 - Enables factor-based strategies
 (e.g., exploiting mispriced bonds via IPCA-extracted factors).

Sell-Side:

- Product Innovation:
 - Improves pricing accuracy for structured products (e.g., credit derivatives).
 - Facilitates factor-based index design (e.g., bond ETFs targeting IPCAidentified risk premia).

Corporate Bonds Terms/Variables

OAS Spread Maturity Coupon Rate Risk-free rate

Yield to Maturity(YTM) Distance to Default(D2D) Rating Return

Summary of the Paper

The paper "Modeling Corporate Bond Returns" by Bryan Kelly, Diogo Palhares, and Seth Pruitt presents a conditional factor model for corporate bond returns using five factors and time-varying factor loadings. Their key contributions and findings include:

- Improved Risk-Return Modeling: Their model significantly outperforms previous factor models in explaining corporate bond risks and returns.
- **Higher Credit Risk Premium**: The model suggests a larger-than-expected credit risk premium, implying higher returns for taking on credit risk.
- Stronger Debt-Equity Market Integration: They find closer integration between bond and equity markets than previously documented.

Paper: Methodology

USES INSTRUMENTED
PRINCIPAL COMPONENTS
ANALYSIS (IPCA), WHICH
ESTIMATES LATENT (HIDDEN)
FACTORS RATHER THAN
RELYING ON PRESELECTED
OBSERVABLE ONES.

ALLOWS FACTOR BETAS TO VARY OVER TIME **BASED ON** FIRM AND BOND CHARACTERISTICS, IMPROVING EXPLANATORY POWER.

THEIR FIVE-FACTOR MODEL
EXPLAINS 51% OF THE
VARIATION IN INDIVIDUAL
BOND RETURNS OUT-OFSAMPLE, OUTPERFORMING
TRADITIONAL MODELS (E.G.,
FAMA-FRENCH FIVE-FACTOR
MODEL AND BAI, BALI, AND
WEN'S FOUR-FACTOR MODEL).

Paper: Performance & Implications

Their model yields a **high out-of-sample Sharpe ratio**, suggesting superior portfolio performance.

It highlights key bond characteristics influencing risk exposure, including bond spread, volatility, duration, and spread-to-default distance.

They find that **systematic (factor-related) bond returns are much more integrated with equity markets** than idiosyncratic (individual bond-specific) returns.

Paper: Conclusion

- Redefines corporate bond pricing by demonstrating the effectiveness of a dynamic factor approach.
- Better captures bond risks and expected returns compared to traditional models.
- Offers valuable insights for:
 - Investors seeking improved riskreturn strategies.
 - Portfolio managers optimizing bond allocations.
 - Researchers studying corporate credit markets.

IPCA model vs PCA model

Aspect	PCA	IPCA
Data Inputs	Only Returns Data	Uses returns data along with bond features
Factor Loadings	Estimates static (time-invariant) factor loadings	Allows factor to vary over time
Noise & Error	May capture noise because it does not differentiate between signal and noise in features	Aggregates features to isolate true risk signals and reduce measurement error
Estimation Efficiency	Identifies the latent factor space solely based on return covariation	Uses an instrumented estimation approach using observable instruments to improve the consistency and efficiency of estimates

Data Explained - Variables

- We're building a series of pre-defined features to apply the model
- Bond-Based Variables
 - Coupon
 - Par Value
 - Face Value
 - Duration
 - Rating
 - Spread
 - Distance to Default

Data Explained - Variables

- Equity-Based Variables
 - Book-to-Price
 - Debt-to-EBITDA
 - o Earnings-to-Price
 - Market Cap
 - o Total Debt
 - Profitability

Data Explained - Variables

- Moments-Based Variables
 - Turnover Volatility
 - Equity Volatility
 - Bond Volatility
 - Bond Skewness
 - Value-at-Risk
- Beta Variables
 - OVIX
 - Bond Market Excess Return: LQD

How to define return?

- Excess Return = Return of Bonds Risk Free Rate (T-Bond)
 - We can understand this as the premium for investors take on more risks
 - By risks, we mean the possibility of a company defaulting
- Scaled Return = Excess Return / DtS
 - A risk-adjusted approach to standardize the return
 - This means that a bond earning a certain excess return with a lower DtS
 (i.e., lower risk exposure) is more attractive than one with a higher DtS
 yielding the same excess return.
 - DtS = Duration * option adjusted spread

Building a Long-Short Portfolio

Why People Use LS Strategies?

- Hedging Market Risk: By going long on assets expected to outperform and short on those expected to underperform, an LS portfolio can neutralize broad market movements.
- Exploiting Relative Mispricings: LS strategies allow investors to capture gains from mispriced assets, regardless of overall market direction.
- Enhanced Risk-Adjusted Returns: Ideally, the strategy can improve Sharpe ratio by balancing risk exposures across long and short positions.

Common Approaches:

- Equal Weight
- Signal-Strength Weight
- Risk Weight
- Market Cap Weight

Advantages and Weakness of a LS Portfolio

Advantages:

- Reduces sensitivity to systematic risk by offsetting long and short positions.
- Can be tailored using different weighting methods (equal weight, signal-strength, volatility-adjusted, etc.).
- Targets asset-specific mispricings that may be overlooked by strategies focusing solely on market beta.

Weaknesses:

- Frequent rebalancing may lead to more trading expenses.
- Potential for short squeezes and higher borrowing costs for short positions.
- Poor model signals can result in misallocation and loss

Why LS to Examine IPCA?

- It isolates the model's risk-return signal.
- The LS approach helps control for common market factors, enabling a clearer test of whether the model can explain crosssectional differences in bond returns.
- Using a long-short framework allows assess the pricing error and risk premium captured by conditional factor model in a market-neutral setting, which might be obscured in a full-portfolio weighting scheme.

Methodology

- Calculate the excess return
- Sort the value in descending order
- Select top and bottom 10% of the bonds to perform long/short
- The key question is: How to avoid Look-Ahead Bias?

We'll compare the performance of unlagged and lagged versions to address this issue.

Performance of the LS Portfolio - Unscaled

Performance of the LS Portfolio - Unscaled

Performance of the LS Portfolio - Scaled

Recall: Scaled Return = Excess Return / DtS

Performance of the LS Portfolio - Scaled

Recall: Scaled Return = Excess Return / DtS

Performance of the Unlagged LS Portfolio

The Issue of Look-Ahead Bias

- Definition of Look-Ahead Bias:
 - When a trading strategy is backtested using data or information that would not have been available at the time of making trading decisions.
 - Essentially gives the strategy an "unfair" advantage by using future knowledge into past performance evaluations.
- Why It Matters:
 - Inflated Performance: Backtests shows exaggerated returns
 - Misleading Viability: A strategy that appears profitable in simulation may fail in live trading due to reliance on unavailable information.
 - Risk Underestimation: It may mask the actual risk and volatility, causing traders to underestimate potential losses.
- How To Fix It?
 - Lag the data

Performance of the Lagged LS Portfolio - Unscaled

Performance of the Lagged LS Portfolio - Unscaled

Performance of the Lagged LS Portfolio - Scaled

Performance of the Lagged LS Portfolio - Scaled

Performance of the Lagged LS Portfolio

Next Steps

- Identify the factors causing extreme returns
- Implement the IPCA Model
- Benchmarking our Model
 - Did it outperform LQD?
- Benchmarking our Return with Kelly's Outcome
 - Target: Out-of-sample gross Sharpe ratio of 6.2
 - 2.5 net of trading costs

Thank You

Any Questions?