CS 5003: Parameterized Algorithms Lectures 10-11

Krithika Ramaswamy

IIT Palakkad

Matching

Matching - set of edges that do not share any endpoint

Matching and Vertex Cover

Matching - set of edges that do not share any endpoint

Matching of size x => Any vertex cover has size >= x

Vertex Cover

Vertex cover - set of vertices that has at least one endpoint of each edge

Instance: A graph G on n vertices m edges and integer k Question: Does G have a vertex cover of size at most k?

Parameter: k

- * Kernel with k^2 edges and $2k^2/3$ vertices
- * $0(n^3+1.4656^k k^3)$ time algorithm

Crown Pecomposition

Crown C

Head H

Independent set

 $N(C) \subseteq H$

Rest R

Crown Pecomposition

Crown C

Head H

Independent set

 $N(C) \subseteq H$

Rest R

Matching saturating H

(G,k) is an yes-instance iff (G-(H∪C), k-IHI) is an yes-instance

Crown Lemma: Let G be a graph without isolated vertices and with at least 3k + 1 vertices. Then, there is a polynomial time algorithm that either finds a matching of size k + 1 in G, or finds a crown decomposition of G.

- Reduction Rule 1: Delete isolated vertices
- * Reduction Rule 2:
 - * If Crown Lemma finds a mat of size k+1, then (G,k) is a no-instance
 - * Otherwise, (C,H,R) is a crown
 - * Add H into the solution, delete $H \cup C$, reduce k by IHI
- * If Reduction Rules 1 & 2 can't be applied, then G has at most 3k vertices

* G is a graph without isolated vertices and with >= 3k+1 vertices

- * Find a maximal matching M in G
- * If IMI >= k+1, then (G,k) is a no-instance
- * Otherwise,

* Bipartite graph B

Kőnig's Theorem: For a bipartite graph, IMax Matl = IMin VCl

X: min vertex cover

M': max matching

- * Find a maximum matching M' and minimum vertex cover of B
- * If |M'| >= k+1, then (G,k) is a no-instance

* Otherwise, IM'l <= k

König's Theorem: For a bipartite graph, IMax Matl = IMin VCl

X: min vertex cover

M': max matching

|X| = |M'| < = k

Claim: X has at least one vertex from V(M)

* If $X \subseteq I$, then X = I. Then, $|V(M)| + |I| \le 2k + k$. A contradiction!

X = I because, o/w since we have no isolated vertices, there exist a vertex v in I which is not in X but has it

* X has at least one vertex from V(M)

X: min vertex cover

M': max matching

|X| = |M'| <= k

- * Every edge of M' has exactly one endpoint in X
- * $M'' \subseteq M'$ such that each edge in M'' has an endpoint in $X \cap V(M)$

* M" \subseteq M' such that each edge in M" has an endpoint in X \cap V(M)

