Data Mining & Machine Learning

Yong Zheng

Illinois Institute of Technology Chicago, IL, 60616, USA

Getting to Know Data

Types of the Data

- Qualitative (Categorical/Nominal)
 - Nominal = Values are strings
 - Special Nominal Variable
 - Binary, such as gender
 - Ordinal, such as letter grade (A, B, C, F)
- Quantitative (Numerical)
 - Discrete, we need to count to get values Example: number of students in the class
 - Continuous, we need to measure to get values
 Example: the length of the table

LLINOIS TECH | College of Computing

Getting to Know Data

- If you observe that a column of numbers, it is not guaranteed that this variable is a numerical variable
- These numbers may be encoded for some reason, for example, 1 – India, 2 – China, 3-France, 4 – Spain
- You need to be careful about the data types in a data set

Week 2 - Schedule

- KDD Process
- Data Preprocessing
 - Why: Data Quality
 - Data Cleaning
 - Data Integration
 - Data Transformation
 - Data Reduction
 - Summary

(Knowledge Discovery in DB) KDD Process

Week 2 - Schedule

KDD Process: Data PreProcessing

- Why: Data Quality
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
- Summary

Week 2 - Schedule

KDD Process: Data PreProcessing

- Why: Data Quality
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
- Summary

Data Quality

- Measures for data quality: A multidimensional view
 - Accuracy: correct or wrong, accurate or not
 - Completeness: not recorded, unavailable, ...
 - Consistency: some modified but some not, dangling, ...
 - Timeliness: timely update?
 - Believability: how trustable the data are correct?
 - Interpretability: how easily the data can be understood?

Major Tasks in Data PreProcessing

Data Cleaning

Data Integration

Data Transformation

Week 2 - Schedule

KDD Process: Data PreProcessing

- Why: Data Quality
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
- Summary

Data Cleaning

- Real-world application data can be dirty:
 - Incomplete: missing values
 - Noisy: errors, outliers, e.g., salary = -10
 - Inconsistent: 80, 90, A, B, C
- Data cleaning attempts to:
 - Fill in missing values
 - Smooth out noisy data
 - Correct inconsistencies
 - Remove irrelevant data

Data Cleaning: Missing Values

- Data is not always available (missing attribute values in records)
 - equipment malfunction
 - deleted due to inconsistency or misunderstanding
 - not considered important at time of data gathering
- Solving Missing Data if it is numerical variable. Exp: age
 - Ignore the record with missing values;
 - Fill in the missing values manually;
 - Fill in the missing values automatically;
 - Use a global constant to fill in missing values
 - Use the attribute mean value to filling missing values of that attribute;
 - Use the attribute mean for all samples belonging to the same class to fill in the missing values;
 - Build a predictive model (e.g., regression model) to predict missing values

LLINOIS TECH | College of Computing 12

Data Cleaning: Missing Values

- Fill in Missing Data if it is numerical variable, Exp: age
 - Use a global constant to fill in missing values
 - Use the attribute mean value to filling missing values of that attribute;
 - Use the attribute mean for all samples belonging to the same class to fill in the missing values;
 - Build a predictive model (e.g., regression model) to predict missing values
- Fill in Missing Data if it is nominal variable, Exp: gender
 - Use a global constant to fill in missing values, e.g., NULL
 - Use the most frequent value to filling missing values of that attribute;
 - Use the most frequent value belonging to the same class to fill in the missing values;
 - Build a predictive model (e.g., classification model) to predict missing values

Solutions to reduce noisy data when the variance is large

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

ILLINOIS TECH College of Computing

Binning (when a numerical variable has large variance/outliers)

Original Data for "price" (after sorting): 4, 8, 15, 21, 21, 24, 25, 28, 34

Min and Max values in each bin are identified (boundaries). Each value in a bin is replaced with the closest boundary value.

Steps in Binning

- Step 1: Rank the values from smaller to larger
- Step 2: Make a decision how many bins you need, i.e., you need to decide a bin size if you want to create bins with equal length
- Step 3: Create bins equally (Note: the last bin may not have the equal length)
- Step 4: Choose a strategy (by means or boundaries) to transform value in each bin

Other Methods

Clustering

Similar values are organized into groups (clusters). Values falling outside of clusters may be considered "outliers" and may be candidates for elimination.

17

Week 2 - Schedule

KDD Process: Data PreProcessing

- Why: Data Quality
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
- Summary

Data Integration

- Data analysis may require a combination of data from multiple sources into a coherent data store
- Challenges in Data Integration:
 - Schema integration: CID = C_number = Cust-id = cust#
 - Identity identification problem: Bill Clinton = William Clinton
 - Data value conflicts (different representations or scales, e.g., \$ and ¥)
 - Redundant attributes (redundant if it can be derived from other attributes) -- may be able to identify redundancies via correlation analysis:

19

ILLINOIS TECH College of Computing

What is correlation? If two variables have strong correlations, it means that they may change together!

Student	Gender	Dept	TimeStudy	TimeGame	Grade
1	M	ITMD	20	1	А
2	F	ITMS	25	2	Α
3	M	ITMD	5	20	С
4	F	ITMS	6	18	С

Can you observe some correlations in this table?

- Two numerical variables: Pearson correlation
- One numerical vs one nominal variable: ANOVA
- Two nominal variables
 - Conditional probabilities
 - Chi-square test

- Two numerical variables: Pearson correlation
- One numerical vs one nominal variable: ANOVA
- Two nominal variables
 - Conditional probabilities
 - Chi-square test

For Numeric Data Only: Pearson correlation

Perfect linear correlation between X and Y:

100% of the variation in Y is explained by variation in X

For Numeric Data Only: Pearson correlation

Weaker linear correlation between X and Y:

Some but not all of the variation in Y is explained by variation in X

For Numeric Data Only: Pearson correlation

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\overline{A}\overline{B}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, \overline{A} and \overline{B} are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

ILLINOIS TECH College of Computing 25

- Two numerical variables: Pearson correlation
- One numerical vs one nominal variable: ANOVA
- Two nominal variables
 - Conditional probabilities
 - Chi-square test

Between Nominal and Numerical Variables

ILLINOIS TECH College of Computing 27

Between Nominal and Numerical Variables: ANOVA

- 1. Be sure that the observations arise from independent groups!
- 2. Draw side-by-side box plots for the groups, to visualize the differences among the groups and the within-group variation
- 3. Estimate the ANOVA regression model for t=1,...,K
 - where the errors e_{it} are normally distributed and with constant standard deviation σ . Use the regression F-test to check the hypothesis that the averages are equal.
- 4. Examine the residuals to verify that the model assumptions are satisfied.

ILLINOIS TECH College of Computing

Between Nominal and Numerical Variables: ANOVA

Student	Gender	Dept	TimeStudy	TimeGame	Grade
1	M	ITMD	20	1	Α
2	F	ITMS	25	2	Α
3	M	ITMD	5	20	С
4	F	ITMS	6	18	С

How about Grade vs TimeStudy?

- Two numerical variables: Pearson correlation
- One numerical vs one nominal variable: ANOVA
- Two nominal variables
 - Conditional probabilities
 - Chi-square test

Dependency between values: Conditional probabilities

Correlation analysis: Pr(A,B) / (Pr(A).Pr(B))

= 1: independent,

> 1: positive correlation,

< 1: negative correlation.

Correlation between two nominal values

Student	Gender	Dept	TimeStudy	TimeGame	Grade
1	M	ITMD	20	1	А
2	F	ITMS	25	2	Α
3	M	ITMD	5	20	С
4	F	ITMS	6	18	С

How about Gender = M vs. Dept = ITMD?

Dependency between variables: Chi-square test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

The larger the X² value, the more likely the variables are related The cells that contribute the most to the X² value are those whose actual count is very different from the expected count

> The test is applied when you have two categorical variables from a single population. It is used to determine whether there is a significant association between the two variables.

For Nominal Data Only: Chi-square test

Example: "Which holiday do you prefer?"

	Hiking	Cruise	
Men	209	280	
Women	225	248	

Does Gender affect Preferred Holiday?

If Gender (Man or Woman) **does** affect Preferred Holiday we say they are **dependent**.

By doing some special calculations (explained later), we come up with a "p" value:

p value is 0.132

Now, p < 0.05 is the usual test for dependence. In this case p is greater than 0.05, so we believe the variables are **independent** (ie not linked together).

In other words Men and Women probably do **not** have a different preference for hiking Holidays or Cruises.

ILLINOIS TECH College of Computing 33

For Nominal Data Only: Chi-square test

	Vo	ting Prefere	Preferences		
	Republican	Democrat	Independent	Row total	
Male	200	150	50	400	
Female	250	300	50	600	
Column total	450	450	100	1000	

$$X^2 = \Sigma [(O_{r,c} - E_{r,c})^2 / E_{r,c}]$$

where $O_{r,c}$ is the observed frequency count at level r of Variable A and level c of Variable B, at $E_{r,c}$ is the expected frequency count at level r of Variable A and level c of Variable B.

DF =
$$(r - 1) * (c - 1) = (2 - 1) * (3 - 1) = 2$$

$$E_{r,c} = (n_r * n_c) / n$$

$$E_{1,1} = (400 * 450) / 1000 = 180000/1000 = 180$$

$$E_{1,2} = (400 * 450) / 1000 = 180000/1000 = 180$$

$$E_{1,3} = (400 * 100) / 1000 = 40000/1000 = 40$$

$$E_{2,1} = (600 * 450) / 1000 = 270000/1000 = 270$$

$$E_{2,2} = (600 * 450) / 1000 = 270000/1000 = 270$$

$$E_{2,3} = (600 * 100) / 1000 = 60000/1000 = 60$$

$$X^{2} = \Sigma \left[(O_{r,c} - E_{r,c})^{2} / E_{r,c} \right]$$

$$X^{2} = (200 - 180)^{2} / 180 + (150 - 180)^{2} / 180 + (50 - 40)^{2} / 40$$

$$+ (250 - 270)^{2} / 270 + (300 - 270)^{2} / 270 + (50 - 60)^{2} / 60$$

$$X^{2} = 400 / 180 + 900 / 180 + 100 / 40 + 400 / 270 + 900 / 270 + 100 / 60$$

$$X^{2} = 2.22 + 5.00 + 2.50 + 1.48 + 3.33 + 1.67 = 16.2$$

$$P(X^{2} > 16.2) = 0.0003.$$

http://stattrek.com/chi-square-test/independence.aspx?Tutorial=AP

ILLINOIS TECH

For Nominal Data Only: Chi-square test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- Null hypothesis: two variables are independent
- Tutorial and Example
 https://online.stat.psu.edu/stat500/lesson/8/8.1
- Coding by R and Python
 - http://www.r-tutor.com/elementary-statistics/goodnessfit/chi-squared-test-independence
 - https://thinkingneuron.com/how-to-measure-thecorrelation-between-two-categorical-variables-in-python/

ILLINOIS TECH College of Computing 35

- For Nominal Data Only: Chi-square test
 - P-value tells whether we should reject H0
 - P-value also tells the degree of significance
 - The contingency coefficient can tell the degree of dependency/correlation
 - Value ranges in [0, 1]
 - Larger value, larger dependency or correlation
 - N = number of observations

Week 2 - Schedule

KDD Process: Data PreProcessing

- Why: Data Quality
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
- Summary

ILLINOIS TECH | College of Computing 37

Data Transformation

Why we need transformation?

- Attribute values are at different scales.
- Difficult for comparison
- Different Data Formats
- Special requirements by specific data mining tasks

Data Transformation

What are the popular transformation tasks

- Smoothing by binning
- Data Normalization
- Data Discretization

Sometimes, we need to use values in the same scale

- Min-max Normalization
- Z-score Normalization
- Decimal Scaling for Normalization

Min-max Normalization

$$x'_{i} = \frac{x_{i} - \min x_{i}}{\max x_{i} - \min x_{i}} (new \max - new \min) + new \min$$

ID Gender		Age	Salary
1	F	27	19,000
2	М	51	64,000
3	М	52	100,000
4	F	33	55,000
5	М	45	45,000

ID	Gender	Age	Salary
1	1	0.00	0.00
2	0	0.96	0.56
3	0	1.00	1.00
4	1	0.24	0.44
5	0	0.72	0.32

Z-score Normalization: v' = (v - Mean) / Stdev

After transformation, mean = 0, Stdev = 1

ILLINOIS TECH College of Computing 42

Decimal Scaling for Normalization

 moves the decimal point of v by j positions such that j is the minimum number of positions moved so that absolute maximum value falls in [0..1].

$$-v'=v/10^{j}$$

- Ex: if v ranges between -56 and 9976, j=4=>v' ranges between -0.0056 and 0.9976

Normalization

- Min-Max → can produce values in any new scale
- Decimal scaling
 can produce values in [-1, 1]
- Z-score method \rightarrow no controls on the new scales

Data Conversion between Numeric and Nominal data

- From Numeric to Nominal/Ordinal Data
- From Nominal to Numeric Data

Data Conversion between Numeric and Nominal data

From Numeric to Nominal/Ordinal Data

ILLINOIS TECH College of Computing

46

Data Conversion between Numeric and Nominal data

From Nominal to Numeric Data

ID	Outlook	Temperature	Humidity	Windy
1	sunny	85	85	FALSE
2	sunny	80	90	TRUE
3	overcast	83	78	FALSE
4	rain	70	96	FALSE
5	rain	68	80	FALSE
6	rain	65	70	TRUE
7	overcast	58	65	TRUE
8	sunny	72	95	FALSE
9	sunny	69	70	FALSE
10	rain	71	80	FALSE
11	sunny	75	70	TRUE
12	overcast	73	90	TRUE
13	overcast	81	75	FALSE
14	rain	75	80	TRUE

OutLook	OutLook	OutLook	Temp	Humidity	Windy	Windy
overcast	rain	sunny			TRUE	FALSE
0	0	1	85	85	0	1
0	0	1	80	90	1	0
1	0	0	83	78	0	1
0	1	0	70	96	0	1
0	1	0	68	80	0	1
0	1	0	65	70	1	0
1	0	0	64	65	1	0
		•				

Data Conversion between Numeric and Nominal data

From Nominal to Numeric Data

ID	Outlook	Temperature	Humidity	Windy
1	sunny	85	85	FALSE
2	sunny	80	90	TRUE
3	overcast	83	78	FALSE
4	rain	70	96	FALSE
5	rain	68	80	FALSE
6	rain	65	70	TRUE
7	overcast	58	65	TRUE
8	sunny	72	95	FALSE
9	sunny	69	70	FALSE
10	rain	71	80	FALSE
11	sunny	75	70	TRUE
12	overcast	73	90	TRUE
13	overcast	81	75	FALSE
14	rain	75	80	TRUE

Assume there are N values in a variable, you just need to create N-1 new columns

OutLook	OutLook	OutLook	Temp	Humidity	Windy	Windy
overcast	rain	sunny			TRUE	FALSE
0	0	1	85	85	0	1
0	0	1	80	90	1	0
1	0	0	83	78	0	1
0	1	0	70	96	0	1
0	1	0	68	80	0	1
0	1	0	65	70	1	0
1	0	0	64	65	1	0
						•

Two columns are enough

Not necessary

Data Conversion between Numeric and Nominal data

- From Nominal to Numeric Data
- Special case: when a nominal variable is ordinal variable
 - In this case, you can encode them by numbers directly

Grade	Grade1	Grade2	Grade3
Α	0	0	4
В	1	1	3
С	2	3	2
F	3	5	1

Week 2 - Schedule

KDD Process: Data PreProcessing

- Why: Data Quality
- Data Cleaning
- Data Integration
- Data Transformation
- Data Reduction
- Summary

Data Reduction

- Data is often too large; reducing data can improve performance
- Data reduction consists of reducing the representation of the data set while producing the same (or almost the same) results
- Data reduction includes:
 - Data cube aggregation
 - Dimensionality reduction
 - Discretization
 - Numerosity reduction
 - Regression
 - Histograms
 - Clustering
 - Sampling

Data Reduction Techniques

- Data reduction is necessary in most of the data mining tasks
- Not all of the data are useful
- Irrelevant data may leave negative impact on DM
- We will have a special session "Feature Selection and Reduction" in the later class
- We briefly introduce it in this class

Summary

- Data Cleaning
 Missing values, smoothing by binning
- Data Integration
 Correlation analysis
- Data Transformation
 Normalization, Discretization
- Data Reduction
 We will introduce more later in the lecture
 "Feature Selection and Reduction"

ILLINOIS TECH | College of Computing 53