

A pilha do Python

O que é NumPy?

Pacote para computação científica científica

Powerful N-dimensional arrays

Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.

Numerical computing tools

NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

Open source

Distributed under a liberal <u>BSD license</u>, NumPy is developed and maintained <u>publicly on GitHub</u> by a vibrant, responsive, and diverse community.

X

²yTorch

ensorFlc

Interoperable

NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.

Performant

The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.

Easy to use

NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.

Fonte: https://numpy.org/

Numpy - Instalação

- Python instalado v.3.13
 - Distribuição Anaconda ela inclui Python, NumPy e muitos outros pacotes comumente usados para computação científica e ciência de dados.
 - conda install conda-forge::numpy
- https://www.python.org/
 - pip install numpy

A estrutura de dados **ndarray**

- ndarray é um contêiner multidimensional (geralmente de tamanho fixo) de itens do mesmo tipo e tamanho.
- O número de dimensões e itens em um array é definido por sua forma (shape), que é uma tupla de N inteiros não negativos que especificam os tamanhos de cada dimensão.
- O tipo de itens no array é especificado por um objeto de tipo de rensorFic dados separado (dtype), um dos quais é associado a cada ndarray.
- Diferentes ndarrays podem compartilhar os mesmos dados, de modo que as alterações feitas em um ndarray podem ser visíveis em outro.

Exemplo: Criando um array

Criar um array:

O PyTorch

Alguns métodos ndarray

- CuPv
- ndarray.transpose() Retorna uma visualização da matriz com eixos transpostos.
- **₽**X

ndarray.copy() – Retorna uma cópia do array.

xarray

• ndarray.fill() - Preenche a matriz com um valor escalar.

- ndarray.max() Retorna o valor máximo ao longo de um eixo dado.
- TensorFlc
- ndarray.mean() Retorna a média dos elementos da matriz ao longo do eixo fornecido.

• ndarray.min() - Retorna o valor mínimo ao longo de um eixo dado.

 ndarray.nonzero() - Retorna os índices dos elementos que são diferentes de zero.

Algumas funções Numpy

- abs()
- add()
- binomial()
- cumprod()
- cumsum()
- floor()
- histogram()

- min()
- max()
- multipy()
- polyfit()
- randint()
- shuffle()
- transpose()

NumPy é um componente essencial no crescente cenário de visualização do Python, que inclui:

 Matplotlib, Seaborn, Plotly, Altair, Bokeh, Holoviz, Vispy, Napari e PyVista etc.

Bibliografía

