AD-A282 052

DOT/FAA/CT-94/21

FAA Technical Center Atlantic City International Airport, N.J. 08405 Reanalysis of European Flight Loads Data

STIC SELECTE JUL 2 0 1984 F

94-22583

May 1994

Final Report

This document has been approved for public release and sale; its distribution is unlimited.

The document is available to the public through the National Technical information Service, Springfield, Virginia 22161.

U.S. Department of Transportation Federal Aviation Administration

94 7 19 081 DEC QUALITY INSPERIED 1

NOTICE

This document is disseminated under the sponsorship of the U. S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.				
DOT/FAA/CT-94/21						
4. Title and Subtitle		5. Report Date May 1994				
REANALYSIS OF EUROPEAN FLIG	HT LOADS DATA	6. Performing Organization Code				
7. Author(s)		8. Performing Organization Report No.				
J. B. de Jonge, P.A. Hol and	d P.A. van Gelder	NLR TP 93'535L				
9. Performing Organization Name and Address	10. Work Unit No. (TRAIS)					
National Aerospace Laborato	MNS-193, RPI 167					
P.O. Box 90502 1006 BM, Amsterdam The Netherlands	11. Contract or Grant No. OV/RLD-182					
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered				
U.S. Department of Transpor Federal Aviation Administra	Final Report					
Technical Center Atlantic City International						

15. Supplementary Notes

This work was performed under a memorandum of cooperation between the Federal Aviation Administration and the Netherlands Civil Aviation Department. As a part of this effort the National Aerospace Laboratory was contacted to participate in this research effort. The FAA technical manager is Tom DeFiore, ACD-220.

16. Abstract

The principle tasks of this research effort were to identify and acquire existing European flight loads data, to develop a unified procedure to reduce the acceleration data into gust statistics, and to reduce and analyze the data. Three data bases containing information on center of gravity acceleration experience of commercial transport aircraft were obtained and analyzed. A very large database containing data on aircraft operated by British Airways was obtained from the Office National d'etudes et de researches aerospatiales in France. A database kept at National Aerospace Laboratory, containing information on Boeing B-747 aircraft operated by KLM, SAS, and Swissair, was also used. The third database contains data collected several years ago by the Royal Aircraft Establishment for a wide variety of mainly piston-engine aircraft. The size of the combined database, corresponding to 870,000 flights, 1.6 billion kilometers, and 2 million flight hours.

A unified procedure was developed to reduce the data based on both discrete and continuous gust approaches. The results obtained show a considerably lower gust experience at higher altitude than predicted by currently used statistical models. At low altitudes, these results tended to agree with other statistical data. However, gust exceedance data at altitudes below 2000 feet were incomplete and partially biased by maneuver accelerations. Additional low altitude gust exceedance data are needed.

17. Key Words Flight Loads Commercial Aircraft Gusts (Ude, PSD) Data Base Normal Acceleration 18. Distribution Statement This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Form DOT F1700.7 (8-72)

78

TABLE OF CONTENTS

		Page
EXI	ECUTIVE SUMMARY	vii
1.	INTRODUCTION	1
2.	REVIEW OF DATA BASES 2.1 ONERA Data Base 2.2 The ACMS Data Base 2.3 Fatiguemeter Data Base 2.4 Data Base Compatibility	2 2 4 5 7
3.	REDUCTION OF ACCELERATION DATA 3.1 ONERA Data Base 3.2 ACMS Data Base 3.3 Fatiguemeter Data Base	8 9 10 11
4.	DEVELOPMENT OF STATISTICAL GUST MODELS	11
5.	DISCUSSION	13
6.	SUMMARY AND CONCLUSIONS	16
7.	REFERENCES	16

APPENDICES

- A SUMMARY OF REDUCTION PROCEDURES
- $_{\rm B}$ $_{\rm C_{L_{\alpha}}}\text{--CALCULATION}$ FOR REDUCTION OF ACMS B-747 DATA

Acces	ion For		\mathcal{T}				
DTIC	ounced		800				
By Distrib	ution/						
Availability Codes							
Dist	Avail a	and / or cial	,				
A-1							

LIST OF FIGURES

Figu	re	Page
1	ONERA Data Base: Load Factor Spectrum per Flight	45
2	ONERA Data Base: Δn_z Spectrum for B-747, Including $\Delta n_z > 0.3$	46
3	ACMS Data Base: Load Factor Spectrum per Flight	47
4	Fatiguemeter Data Base: Load Factor Spectrum per Flight	48
5	Comparison of Load Factor Spectra for Three Data Bases	49
6	Comparison of Load Factor Spectra for B-747	50
7	ONERA Data Base: U_{de} Exceedances per km for Four Altitude Bands	51
8	ONERA Data Base: Exceedance Frequencies of Three U_{de} Values as Function of Altitude	52
9	ACMS Data Base: U_{de} Exceedances per km for Four Altitude Bands	53
10	Fatiguemeter Data Base: U_{de} Exceedances per km for four Altitude Bands	54
11	Exceedance Frequencies of Two Gust Velocities as a Function of Altitude, Pertaining to Two Data Bases	55
12	Example of Fit of U_{de} Exceedance Curves from Three Data Bases: Smooth Fit of ONERA and ACMS Data	56
13	Example of Fit of U_{de} Exceedance Curves from Three Different Data Bases: Shift of ONERA Curve to the Right to Obtain Fit with ACMS Curve.	57
14	U_{de} Exceedance Curves for the Altitude Band 0-1500 Feet	58
15 a	\mathbf{U}_{de} Exceedance Curves for the Five Lowest Altitude Bands	59
15b	U _{de} Exceedance Curves for the Five Highest Altitude Bands	60
16	Estimation of Parameters P_1, P_2 and b_1, b_2 form the U_{σ} Exceedance Curve	61
17	Approximation of U. Exceedance Curve by Curve Defined through P-b Values	62
18	$\rm U_{o}$ Exceedance Curves for Five Lowest Altitude Bands $\rm N_{o}(o)=8KM^{-1}$	63
19	$\rm U_{o}$ Exceedance Curves for Five Highest Altitude Bands $\rm N_{o}(o)=8KM^{-1}$	64
20	Comparison of U_{de} Exceedance Figures with NACA TN4332	65
21	Comparison of P-Values with FAR Figures	66
22	Comparison of b-Values with FAR Figures	67

LIST OF TABLES

Tabl	<u>e</u>	Page
1	Overview of Onera Flight Load Data	18
2	Format of Peak/Valley Information in ONERA Data Base	19
3	ONERA Data BaseOverview of Acceleration Peak Data $ \Delta n_z > 0.5$	20
4	ONERA Data BaseAcceleration Data Including Peaks $\Delta n_z > 0.3$	21
5	Overview of Flights Contained in ACMS Data Base	22
6	ACMS Data BaseTime and Distances within each Altitude Band	23
7	ACMS Data BaseOverview of Acceleration Peak Data	24
8	Fatiguemeter Data BaseOverview of Distances and Flight Hours	25
9	Fatiguemeter Data BaseExample of Header File	26
10	Fatiguemeter Data BaseConversion of Level Crossings to Peaks/Valleys	27
11	Fatiguemeter Data BaseOverview of Acceleration Peak Data	28
12	Distances Flown in Different Altitude Bands for the Three Data Bases	29
13	Exceedance Frequencies of $\Delta n_z {=} 0.3$ and $\Delta n_z {=} 0.6$ for Various Aircraft	30
14	Geometric DataONERA, ACMS, and Fatiguemeter Data Bases	31-32
15	ONERA Data BaseU _{de} Exceedance Data	33
16	ONERA Data BaseU _o Exceedance Data	34
17	ONERA Data BaseEstimation of Flight Durations	35
18	ONERA Data BaseEstimated Mission Profiles	36-37
19	ACMS Data BaseU _{de} Exceedance Data	38
20	ACMS Data BaseU _g Exceedance Data	39
21	Fatiguemeter Data Base $U_{ m de}$ Exceedance Data	40
22	Fatiguemeter Data Base U_{σ} Exceedance Data	41
23	\mathbf{U}_{de} Exceedances for the Combined Data Base	42
24	Derived P ₁ , P ₂ and b ₁ , b ₂ Values	43
25	N/III) as a Function of H and Altitude	44

LIST OF SYMBOLS

A	= Aspect ratio = b^2/S	
Ā	= Spectral response ratio	(s/m)
b	= Wing span	(m)
b_1, b_2	= gust intensity parameters for non-storm turbulence and	
	storm turbulence (m/s EAS)	
С	= Wing chord	(m)
c	= Discrete response ratio	(s/m)
Ct	<pre>= Aircraft lift curve slope (rad-1)</pre>	
C	= Aircraft lift coefficient	
Δn_z	= incremental load factor	
$F(\mu_g)$	= gust alleviation factor	
F(PSD)	= spectral gust alleviation factor	
μ_{4}	= Mass ratio, $\frac{2m}{\rho c C_{L_{\alpha}} S}$	
h	= Altitude	(m or ft)
m	= Aircraft mass	(kg)
N(0)	= Number of zero crossings per km	(km ⁻¹)
N_0 (0)	= N(0) value at zero altitude	
ρ	= Air density	(kg/m³)
ρ_{0}	= Air density at zero altitude	(kg/m^3)
P_1, P_2	= PSD gust occurrence parameters; time fractions that	
	non-storm turbulence and storm turbulence occur	
S	= Wing area	(m²)
V	= True airspeed	(m/s)
\mathtt{U}_{de}	= Derived gust velocity	(m/s EAS)
U_{σ}	= PSD-gust velocity	(m/s EAS)
V _E	= Equivalent airspeed, $V * \sqrt{\frac{\rho}{\rho_0}}$	

EXECUTIVE SUMMARY

Existing European data sources on acceleration experience in commercial aircraft were acquired and combined into one data base. The acceleration peak/valley data were reduced to discrete gust velocities and related gust velocities. The data were further analysed to yield gust intensity parameters. The present report gives an overview of the different data sources and the format in which they were made available. The data reduction procedures are described and the results are presented both in tabular and graphical format. The resulting gust statistics are compared with existing models.

1. INTRODUCTION.

The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) have signed a Memorandum of agreement (MOA) in the area of alreaft structural integrity with specific reference to aging aircraft. As part of this MOA, the National Aerospace Laboratory (NLR) was contracted to participate in the Flight Loads Program that has been defined and is carried out by the FAA. The main task of NLR in this program was defined as follows:

- Identification and acquisition of existing European Flight Load Data Sources.
- Definition of a unified procedure to reduce acquired acceleration data toward gust statistics.
- Reduction of the acquired data and reporting of the results.

Three following data bases containing information about center of gravity (c.g.) vertical acceleration experience of commercial transport aircraft were identified and acquired for analysis:

- A very large data base containing data on c.g. acceleration peaks and valleys with $|\Delta n_z| => 0.5$ pertaining to 838,657 flights made by different aircraft operated by British Airways. This data base was kept at Office National d'etudes et de recherches aerospatiales (ONERA) and was acquired from that institute for the present investigation. This data base will be further indicated as ONERA data base.
- A data base kept at NLR containing detailed information about the aircraft flight profiles and acceleration peaks $|\Delta n_z| =>0.18$, referring to 24,358 flights made by Boeing B-747 aircraft operated by KLM, SAS and Swissair. The data were extracted from the Aircraft Condition Monitoring System (ACMS) data, and this data source will be further indicated as ACMS data base.
- A data base collected by several years ago by the Royal Aircraft Establishment (RAE), containing Fatiguemeter data in a wide variety of mainly piston-engined aircraft. This data base which includes 10,697 flights will be further indicated as Fatiguemeter data base.

In reference 1, a unified procedure to reduce these c.g. acceleration data towards gust statistics was defined. This procedure includes two methods: (a) reduction using a "discrete gust approach" and (b) reduction on the basis of a "continuous" or PSD-gust approach. The discrete approach makes use of the well-known "Pratt formula" to reduce Δn_z values to "derived gust velocities" U_{de} . It may be recalled that the Pratt formula is based on the assumption of a discrete gust with (1-cos) shape and a length of 25 wing chords and an aircraft that is infinitely stiff and responding only in plunge (no pitch). The "PSD" approach reduces recorded Δn_z peaks/valleys to U_o values. The method is based on a continuous-gust concept and a simplified expression for the aircraft response including both pitch and plunge as proposed by Dr. Houbolt (see reference 2). Also, the so-called N(0) effect is taken into account.

The present report starts with an overview and description of the three different data bases. Chapter 3 describes the reduction of the data and presents the results obtained for the three different data sets. In chapter 4, the three sets are compared and where applicable the data are merged to obtain one overall statistical base for U_{de} and U_{o} respectively. Also, from the U_{o} -exceedance curves obtained for the various altitude bands "best fit" P_{1}, P_{2} and b_{1}, b_{2} values pertaining to the well-known PSD-turbulence intensity model are derived. Chapter 5 is devoted to an overall discussion of the results obtained and a comparison with existing gust statistics. The report ends with conclusions and recommendations.

2. REVIEW OF DATA BASES.

2.1 ONERA DATA BASE.

This data base contains information about all c.g. acceleration peaks/valleys larger than $|\Delta n_z|=0.5$ that occurred in a batch of 838,657 flights. These data were gathered by British Airways over a period of 10 years during normal operation of a variety of aircraft types and with the collaboration of the British Civil Aviation Authority (CAA), made available to the ONERA for statistical analysis. Table 1 provides a general overview of the flights contained in the data base. This data base was provided by ONERA to the NLR for the present study on magnetic tape in a format as shown in table 2. Each line in this table, to be called "Record", refers to one specific peak or valley in the data base. In the context of the present study, it is useful to note that for

each peak/valley, apart from the Δn_z value, the aircraft mass, speed, altitude and C_{L_α} -value, at the instant of the peak occurrence, are provided. The peaks and valleys included in the data base were recognized using the so-called peak-between-means criterion, which states that between two crossings of the $(n_z=1)$ -level only one peak or one valley can be classified.

Table 2 includes a column "idur", described as "duration of acceleration peak". This duration is actually the duration of the turbulence patch in which the particular peak/valley occurred (i.e., duration of the period in which accelerations in excess of $|\Delta n_z|=0.4$ were observed). As shown in table 2, these patches may last from a few seconds to several minutes. If more than one peak/valley were classified during one patch, the data base presented the additional aircraft data for the first peak only. The same additional aircraft values apply to the following peaks in the turbulence patch and are defined as zero in the data base (table 2).

The data received from ONERA were first subjected to a quality check, with specific reference to the presence of highly improbable data or missing data. From the total number of 10,648 records pertaining to peaks/valleys larger than $|\Delta n_z| > 0.5$, sixty-six had to be rejected. For forty-nine of these, data for either mass m, speed V, altitude h, $C_{\rm L_a}$ or Δn_z were missing and for the remaining seventeen, either unrealistically high or low values for $C_{\rm L}$ or V were recorded.

Table 3 presents a complete overview of all acceleration peaks/valleys in the data base as a function of altitude range. The load factor exceedance curve per flight is presented in figure 1.

During the last two years of data accumulation for the Boeing B-747, positive load factor peaks between Δn_z =0.3 and 0.5 were also accumulated. Because these additional data were available for a limited number of flights and only for positive peaks, they were unsuitable for the data analysis performed in the present study and hence deleted from the data base. For completeness, the acceleration data including the above mentioned peaks between Δn_z =0.3 and Δn_z =0.5 referring two years of B-747 measurements are provided in table 4. The associated load factor exceedance curve is depicted in figure 2.

The altitude bands defined for the present study are given in appendix A

2.2 THE ACMS DATA BASE.

During a period of about ten years, service load data had been retrieved from ACMS recordings made in Boeing B-747 aircraft operated by the KSSU group (KLM, Swissair and SAS). These data were stored at NLR in the so-called ACMS Fatigue data base. A full description of this data base and the procedures followed for its creation have been presented in reference 4. The following is a brief description of the ACMS data base structure.

The ACMS data base contains data that are relevant with regard to aircraft usage and aircraft load experience. The data are stored on a <u>flight-by-flight</u> basis and include:

- General flight data: Date, departure and arrival airport, type of flight,
 take off weight are kept.
- Mission profile data: Each flight is divided into a number of successive flight segments. For each flight segment the following data are kept: Time, speed, altitude, Mach number, and aircraft weight at the beginning of the segment.
- Acceleration peak data: The c.g. acceleration trace included in the original ACMS data has been searched for peaks and valleys; whereby a range-filter of dn=0.18 was maintained (recognized successive peaks and valleys differ at least 0.18g). The values of the successive peaks and valleys are stored in the data base, together with the following information:
 - Time at occurrence of peak/valley.
 - Flap position.
 - Bank angle (for a limited number of recorded flights only).

In the context of the present study, it is interesting to note that from the data stored, the weight, speed, and altitude at the instant of a peak/valley occurrence can be determined by interpolation from the mission profile data. Also, it is useful to note that the mission profile data contained sufficient information to calculate total time and distance flown within different altitude bands.

Table 5 provides an overview of the flights contained in the ACMS data base, including a distribution of flight durations. Note that the ACMS data base includes 24,358 flights and a total number of 121,894 flight hours (airborne time).

Table 6 presents a distribution of time spent and distance flown within the different altitude bands . For the present study, the acceleration peaks/valleys contained in the original ACMs data base were first "filtered" according to the "peak-between-means" criterion. The resulting data base appeared to contain a number of improbably high positive acceleration peaks, sometimes with a value Δn_z well above $\Delta n_z{=}1.00$. These high peaks were further analyzed; whereby the required C_L to obtain the recorded $\Delta n_z{-}$ value was determined and the peak/valleys occurring at about the same time in that flight were reviewed. Acceleration peaks above $|\Delta n_z|{=}1.1$ occurring in isolation (evidently not within a batch of heavy turbulence) sometimes requiring $C_L{-}$ values well above C_L_{\max} , were either considered as "spikes" or as isolated manoeuvres and deleted. Consequently twenty acceleration peaks were removed from the data base.

Table 7 gives an overview of the remaining peaks/valleys as a function of altitude band. The c.g. acceleration peak/valley exceedance curve per flight is presented in figure 3.

2.3 FATIGUEMETER DATA BASE.

During the fifties and early sixties, the United Kingdom collected a considerable amount of counting accelerometer data from a large number of different aircraft types. The data consisted of acceleration counter readings with speed and altitude, read out every ten minutes during flight. The Royal Aircraft Establishment (RAE) operated and maintained this specific data base. This data base was put on magnetic tape and was made available to all nations participating in a Working Group on Environmental Statistical Data of the Advisory Group for Aerospace Research and Development (AGARD) Structures and Materials Panel. Reference 5 presents an overview and analysis of these data. Unfortunately, the original data base was no longer available at RAE, but the magnetic tapes with the data that had been acquired by the Netherlands as a participant of the AGARD working group was available at NLR and the data was still reasonably readable. The data presented and analyzed in the present study have been obtained from these tapes.

Table 8 provides a general overview of the aircraft types involved and the number of flight hours and distances covered. Compared to the ONERA and ACMS bases, the Fatiguemeter data base is obviously relatively small. However, many of the data refer to piston-engined aircraft, some of them cruising at relatively very low altitude. The dearth of low altitude turbulence data was considered sufficient reason to include these data in the present study.

The format in which the data were grouped and presented on the magnetic tape are as follows:

- Data were presented separately for each aircraft type included.
- Data per aircraft started with a header file providing the aircraft type,
 the total flight time, distance flown, and data collection period.
- A number of "classes" pertaining to the specific aircraft were defined for the following variables:
 - Airspeed, altitude, weight, and flight condition.
 - Acceleration.

Table 9 gives as an example the header and class definition for the Boeing B-707.

- The acceleration data were grouped in separate "records", each record referring to one combination of weight, altitude, and speed. Information in each record includes:
 - Time spent and distance covered.
 - Number of acceleration level crossings within each defined acceleration class.

Reference 1 describes the operation of the "Fatiguemeters" that were used to obtain the counting accelerometer data. In addition, the method used in the present study to "translate" the acceleration level crossings into acceleration peaks and valleys is described in reference 1. Table 10 summarizes the conversion from level crossings to peaks/valleys. The Fatiguemeter data were grouped in altitude bands that differed from aircraft to aircraft and did not correspond with the altitude bands maintained in this study. Conversion of the

Fatiguemeter data to the present altitude band was carried out by linear interpolation. Table 11 gives an overview of all peaks/valleys pertaining to the Fatiguemeter data base. The Fatiguemeter data base did not contain information about the number of flights. However, using the route lengths for the various aircraft types given in reference 5, table CT1, and the distances flown in tables CT2 up to CT29, average numbers of flights were estimated. The resulting peak/valley exceedance curve per flight is presented in figure 4.

Acceleration data are presented per "record"; thus, each record refers to one specific aircraft type and one mass/altitude/speed bracket. The accelerations can then be reduced to "gust velocities" using the average mass, altitude, and speed pertaining to the particular bracket. However, looking at table 9, which is typical for all aircraft included in the Fatiguemeter data base, the brackets for mass, speed, and altitude are fairly wide; consequently, the accuracy of derived gust velocities is limited and considerably less that either the ONERA or ACMS data bases.

2.4 DATA BASE COMPATIBILITY.

The three data bases described in the previous sections were obtained using different techniques, over different periods, and largely from very different aircraft. In order to combine the gust statistics derived from these data bases into one gust data base, it was felt useful to perform an elementary check on the overall compatibility of the acceleration data. It is generally accepted that load factor spectra per flight for transport aircraft tend to show considerable resemblance, independent of flight duration and aircraft type (see reference 6). Figure 5 shows load spectra per flight pertaining to the three different data bases. The spectra for the ACMS data and the ONERA data show a remarkably good agreement, but the spectrum derived from the Fatiquemeter data is about an order of magnitude more severe. The ONERA base includes different aircraft types; whereas the ACMS base includes only B-747 aircraft. If one compares the ACMS spectrum with the ONERA spectrum for to B-747s only, the agreement is even slightly better, see figure 6. From figure 6, the load factor spectrum per flight for the B-747 is approximately the same as the average load spectrum per flight for all aircraft included in the ONERA data base. With regard to the Fatiguemeter data, one must consider that these data were obtained in a much earlier period when weather predictions were less accurate, resulting in more frequent turbulence encounters and consequently more severe load

spectra. More important, however, is that the Fatiguemeters were largely installed on piston-engined aircraft which cruise at lower altitude where more turbulence is encountered. Table 12 shows the distribution of flight distances over the different altitude bands for the three data sets, indicating that more than fifty percent of the Fatiguemeter data were collected at altitudes between 4,500 and 19,500 ft compared to approximately ten percent and four percent for the other two data sets. Table 13 gives the exceedance frequencies per flight for $\Delta n = 0.3$ and $\Delta n_i = 0.6$ for the different aircraft of the Fatiguemeter data base as well as for ONERA and ACMS data as a whole. The batches per aircraft type in the Fatiguemeter data base are pretty small, so one must be careful in drawing conclusions from such limited information. Note, however, that the figures for the Boeing B-707, which is the only aircraft comparable with types included in the ONERA and ACMS base with regard to wing load and cruising altitude are comparable with ONERA and ACMS values. The high load factor experience of the Comet 1 as indicated in table 13 is perhaps somewhat surprising but it must be realized that the Comet 1, although a "pure jet", had a relatively low wing loading (see table 14) with associated relatively high gust sensitivity. Finally, note that the Bristol Freighter is a major contributor to the overall exceedance figures of the Fatiquemeter data base. The high load factor experience of this low wing load transport aircraft with very short "hops", e.g. over the English Channel, is not surprising. In summary, one may conclude that the ACMS data and ONERA data appear very compatible. The Fatiguemeter data obviously pertain to a different era and a different generation of aircraft. The comparisons made above, however, give no reason to doubt the validity of these Fatiguemeter data.

3. REDUCTION OF ACCELERATION DATA.

As explained in the previous chapter, the three data bases consist essentially of a collection of acceleration peaks and valleys. Apart from the type of aircraft, for each acceleration peak or valley, the speed; altitude; and aircraft mass at the instant of acceleration peak occurrence are available (can be derived from available data) with a degree of accuracy that depends on the data base and is smallest for the Fatiguemeter data. The procedures to reduce these acceleration peak data to derived gust velocities $U_{\rm de}$ and $U_{\rm d}$ have been established in full detail in reference 1. The essential elements of the reduction procedure may be summarized as follows:

- U_{de} : Reduction on the basis of a "discrete" gust concept. U_{de} is calculated with the well known Pratt formula. This implies that a [1-cos]-shaped gust with 25 chords length and an aircraft response in heave only is assumed. Each Δn_2 -peak/valley results in one discrete gust with speed U_{de} .
- U_σ : Reduction on the basis of a "continuous" gust concept. U_σ is calculated using a simplified formula derived by John Houbolt and presented in reference 2. The formula is based on a PSD gust model with "von Karman" spectrum, and aircraft response in pitch and heave. Variation of N(0) as a function of aircraft response properties is accounted for by reducing each acceleration peak to N(0)_{ref}/N(0) "gusts". Again, for N(0) an expression is used which was derived by John Houbolt.

The equations used in the reduction procedure are summarized in appendix A.

Grouping the derived gust velocities according to altitude results in overall gust exceedance data for each altitude band in each data base. In order to reduce these overall exceedance data to exceedance figures "per unit distance", these figures must be divided by the total distance flown in each altitude band for all flights contained in the specific data base. In the following subchapters, the reduction performed for each of the three different bases will be reviewed, specific problems encountered are discussed, and the results obtained will be presented.

3.1 ONERA DATA BASE.

Table 14 presents the geometric data for the aircraft models included in the ONERA data base. This data, together with the data in each peak/valley record on instantaneous mass, altitude, speed, and $C_{L_{\alpha}}$ are sufficient to allow reduction of each acceleration peak/valley to gust velocities $U_{\rm de}$ and U_{σ} . The resulting "overall" gust exceedance data are presented in the tables 15 and 16. The ONERA data base does not include direct information about the distances flown within the various altitude bands but only presents total number of flight hours and total "block" time per aircraft type. Reference 7 contains information provided by British Airways about the average time per flight spent in taxi, takeoff, and roll out. Using this information, average airborne flight durations for each aircraft were estimated, see table 17. From the peak/valley data records, average speeds for each aircraft type within each altitude band were calculated. Using this data, estimating climb and descent speeds and using the limited

mission profile information from reference 7, mean flight profiles were estimated. The result is presented in table 18. Using data from this table along with the total number of flights per aircraft type, the total distance flown in each altitude band can be esitmated. The result is presented in table 12. Using these figures, the "overall" exceedance data can be converted to "exceedances per Kilometer" for each altitude band. U_{de} values for four altitude bands presented in figure 7. The "lower boundary" $|\Delta n_z|=0.5$ corresponds with different U_{de} values, depending on aircraft weight, speed, etc., but below values of approximately $U_{\rm de}$ =7 m/s the curves drop off, indicating that below that $U_{\rm de}$ value the curves have no statistical significance. Note that for all altitudes, except for the very low altitude bands, the curves are remarkably symmetrical, indicating that the original Δn , data contained little contributions due from manoeuvres. As expected, the frequency of exceedance of the same gust velocity decreases with increasing altitude. This is also illustrated in figure 8, where the exceedance frequency of specific gust velocities as a function of altitude are presented. At very low altitude the exceedance frequency drops off again. However, as will be discussed in the next chapter, the ONERA data in the altitude range below 4,500 feet appears improbably light compared to the other two data sources. The Uo data show the same trend and is not presented here. The lower boundary for valid U_a data is in the order of $|U_a|=11$ m/s for lower altitudes and 8 m/s for high altitudes.

3.2 ACMS DATA BASE.

For each acceleration peak/valley and instantaneous mass, speed and altitude are contained in the data base. Geometric data of the B-747 aircraft involved are presented in table 14. The $C_{L_{\alpha}}$ -values have been calculated using the equations presented in reference 8 and reproduced in appendix B. The "overall" exceedance data per altitude band for U_{de} and U_{σ} are included in the tables 19 and 20 respectively. The ACMS data base includes complete information about the distances flown in each altitude band, see table 6. Hence, "overall" exceedance data can be directly converted to "exceedings per kilometer". Results for U_{de} for the four different altitude bands are presented in figure 9. Note that because of the much lower "boundary value" $|\Delta n_z|=0.18$ compared to the ONERA data, the lower bound for significant U_{de} values is considerably lower, i.e., 3 m/s for U_{de} and 5m/s for U_{de} . On the other hand, due to the much smaller batch size the upper boundary for significant U_{de} data is about 10 m/s.

3.3 FATIGUEMETER DATA BASE.

As explained in chapter 2, the acceleration peaks/valleys are available per mass/speed/altitude bracket for each aircraft. The geometric data of the different aircraft are given in table 14. C, values for the aircraft in the Fatiguemeter data base were not available and have been approximated according to:

$$C_{L_o} = 1.15 * 6A/(A + 2),$$

where A is the aspect ratio. The derived "overall" exceedance data per altitude band for $U_{\rm de}$ and $U_{\rm o}$ are presented in the tables 21 and 22 respectively. Each "record" in the Fatiguemeter data base contains the distance covered for one aircraft and one speed/mass/altitude bracket. Summation over all aircraft and all mass and speed brackets gives the total distance within each altitude bracket. Conversion of these data "per Fatiguemeter Altitude Bracket" towards the altitude bands maintained in the present study were performed by linear interpolation. The result is included in table 12. Exceedance curves for $U_{\rm de}$ pertaining to four altitude bands have been plotted in figure 10. The "lower boundary" for valid $U_{\rm de}$ values is in the order of 2 m/s, hence slightly lower than for the ACMS data, but due to the relatively very small batch size, the "upper boundary" for valid $U_{\rm de}$ values is limited in the higher altitude bands to about 6 or 7 m/s.

In general, the U_{de} exceedance values derived from the Fatiguemeter data are considerably higher than those pertaining to the ACMS data. Figure 11 shows that exceedance frequencies for the same U_{de} are about 10 times higher for the Fatiguemeter data than for the ACMS data.

4. DEVELOPMENT OF STATISTICAL GUST MODELS.

The previous chapter described the reduction of the c.g. acceleration data to "gust" data for the three different data bases. The ONERA data refer to a very large number of flights and very many kilometers travelled, but that, because of the restriction to $|\Delta n_-| > 0.5$, the derived gust data of relevance are restricted to gust velocities in the order of $|u_{de}| > 7$ m/s or $|U_{\sigma}| > 8-11$ m/s. The ACMS data give valid data for much lower $|U_{de}|$ values, 3m/s, $(U_{\sigma}>5$ m/s), but due to the

much smaller batch size, the statistical relevance of the ACMS data is restricted to $U_{\rm du}$ values below 10 m/s ($U_{\rm g} <$ 13 m/s).

The main objective of the present study is to <u>combine</u> the data of the different data sets into one unified "Discrete Gust Statistical Model" and to redetermine P_1 , P_2 and b_1 , b_2 values related to the PSD-gust model. The procedure followed in the present study for merging the respective data sets will be generally described for the case of the U_{de} statistics.

For each altitude band, the U_{de} exceedance data on a "per kilometer" pertaining to the three data bases are plotted in one figure. A typical example, relating to the altitude band from 34,500 to 39,500 feet, is shown in figure 12. The first observation to be made from these plots was that for all altitudes except the very lowest altitude bands the exceedance frequencies for the Fatiguemeter data were nearly an order higher than the figures from the ONERA and ACMS data. This fact was already documented in figure 11 where exceedance frequencies of two gust velocities pertaining to the ACMS data and the Fatiguemeter data respectively are plotted. A probable cause for this difference is the fact that the Fatiguemeter data come from considerably different aircraft operated in a different era when weather predictions and thus the means to avoid turbulence were considerably less effective. Since we are primarily interested in gust statistics that are relevant for current and future operations, and considering that the Fatiguemeter database is relatively small and has limited accuracy, it was decided not to include the Fatiguemeter data in the "combined" data set, except for the lowest altitude band. Returning to figure 12, one may observe that the curves pertaining to the ONERA and ACMS data can be fitted relatively easily into one smooth curve for both the upward and downward gusts. This was the case for most altitude bands except for a few cases like the one shown in figure 13 where, although the slope of the ACMS data and ONERA data were in good accordance, the curves did not line up. For the ONERA data the number of kilometers in each altitude band were derived on the basis of estimated mission profiles; hence, these figures may be somewhat inaccurate. On the basis of this consideration it was decided to obtain a smooth curve by a small shift of the ONERA curve towards the right. This means that it is assumed that the actual number of kilometers flown in the considered altitude band is less than originally estimated. For the lowest altitude band, the ONERA data appears improbably low and rather inconclusive, see figure 14. The reason for this apparent lack of representativeness could not be traced back but may have been related to some unknown restriction on data recording, e.g., in flap-out

conditions. To maintain a certain amount of conservatism, it was decided to generate the "combined" data set for the lowest altitude band from a combination of the ACMS data and the Fatiguemeter data. From the smoothed "combined" exceedance curves for both upward and downward gusts, "onesided" exceedance curves were derived by taking the geometric mean of the exceedance frequencies of the positive and negative gust velocities:

$$N(|U_{de}|) = \sqrt{N(U_{de}^+) + (U_{de}^-)}$$

The resulting curves are plotted in the figures 15a and 15b and are presented in tabular form on table 23. The same procedure as described above with regard to U_{de} was used to obtain "combined" and onesided exceedance curves for U_{σ} . The $\|U_{\sigma}\|$ curves obtained were used to estimate P_1, P_2 and b_1, b_2 values to be applied in the PSD-gust model. The method used is illustrated in figure 16 and may be described as finding the "best fit" approximation of the $\|U_{\sigma}\|$ curve by the sum of two straight lines in a semi-logarithmic grid. The resulting figures have been presented in tabular form on table 24. Note that P_2 and P_2 values could not be determined for the lowest altitude band (below 1,500 ft) and the highest altitude band (above 39,500 ft). Note: The parameter values P_1, P_2 and P_2 and P_3 define an P_3 exceedance curve of the form:

$$N(U_{\sigma}) = N(0) * \{P_1 * e^{-U_{\sigma}b_1} + P_2 * e^{-U_{\sigma}/b_2}\}$$
 (4.1)

Figure 17 shows, as an example, for the altitude band between 24,500 and 29,500 feet, the "original" combined U_{σ} exceedance curve and the "fitted" curve according to the above expression, illustrating the "goodness of fit" obtained. U_{σ} curves calculated from equation 4.1 for the various altitude bands are presented in figures 18 and 19. The associated U_{σ} exceedance values are presented in table 25. Note that the $|U_{\sigma}|$ statistics presented refer to a reference N(0) value equal to

$$N(0)_{ref} = N_0(0)_{ref} \times \left(\frac{\rho}{\rho_0}\right)^{.46}$$
 and $N_0(0)_{ref} = 8 \text{ km}^{-1}$.

5. DISCUSSION.

In this report, an attempt has been made to establish improved U_{de} exceedance data and improved values for the PSD related parameters P_1, P_2 and b_1, b_2 on the

basis of VGH type data available from European data sources. The improvement in comparison with existing descriptions is expected to be due to (a) the size of the available data batch, (b) the quality and resolution of the data, (c) the analysis techniques applied and, (d) the time period of the data recordings. The size of the present data batch, 1.6 billion kilometers and 2 million flight hours, is really impressive compared data availabe from other sources. For example, according to reference 9 the total sample size of data collected by NACA/NASA between 1947 and 1965 amounted to 42,000 hours VGH data and 507,000 hours of VG data. The data presented in the Engineering Science Data Unit (ESDU) sheets, reference 10, are based on 12 million kms in "cruise" and 4 million kms in "climb and descent". At an average air speed of 500 km/hour, about 32,000 flight hours were collected. In 1971, a relatively large data base (including the Fatiguemeter data covered in the present study) of about 152,000 flight hours were made available through an AGARD effort. These data were only reduced for PSD statistics and presented "per aircraft" only, see reference 11. With regard to the quality and resolution of the present data, there is no doubt that both the ACMS data as well as ONERA data were obtained with higher resolution and, for various parameters like weight, with a higher accuracy than other previous data bases investigated. With regard to the analysis technique applied, it is felt that specifically the reduction formula used for deriving U_{σ} values is an improvement compared to previous derivations whereby an A value was calculated assuming heave response freedom only. See reference 12. Finally, note that the present data largely refer to relatively recent operations with many aircraft models still in service. It has been observed already that because of less effective turbulence avoidance possibilities, older data tend to reflect a more severe turbulence environment than more recently collected aircraft operation data.

It is interesting to compare the presently derived gust statistics with older descriptions. Figure 20 compares exceedance frequencies of specific U_{de} gust velocities as a function of altitude from NACA TN4332, reference 12, resulting from the present analysis. For the lowest altitude band the current results are more severe, especially for higher gust velocities. The difference gets rapidly smaller with increasing altitude and at higher altitude the present data have a considerably lower exceedance frequency. Figures 21 and 22 show a comparison of P-values and b-values for the PSD model as derived in the present study and as described in the Airworthiness Requirements FAR25 and Appendix G (also: ACJ25.305) respectively. (For convenience, b-values presented in figure 22 are given as "TAS"values.) It is noted that the presently derived P-values are

generally lower for all altitudes. For altitudes above 10,000 feet, the "non-storm" component P is about ten times lower and the "storm" component P from two to six times lower. The intensity parameter for "non-storm" conditions, b, on the other hand, is approximately 1.5 times larger, while b₂ is about 10 percent lower than given in FAR25. In summary, the present data indicate that light turbulence is encountered considerably less frequently but that the intensity of such turbulence tends to be somewhat higher. Severe turbulence is encountered less frequently, and has a lower intensity than according to FAR25.

Despite the large size of the present data set, it should be noted that the information obtained has its limitations. For example, data for altitudes above 39,500 feet are scarce and probably unreliable. It should be realized that the data for these high altitude are severely biased; for most aircraft 40,000 feet is close to their ceiling, especially in heavy aircraft configuration. To avoid stall problems, aircraft flying very high reduce altitude when turbulence is expected, and hence recordings show little turbulence at these high altitudes. Also, data for the lowest altitude range in the present data set may contain a considerable amount of low altitude manoeuvres—which could not be identified and removed prior to the gust analysis.

Finally, it must be realized that the method followed to derive the PSD-gust intensity parameters P_1, P_2 and b_1, b_2 from the U_{σ} exceedance curves is an indirect procedure and, although generally applied in the past, theoretically not fully correct.

As part of the FAA Aging Aircraft Research Program, an extensive Flight Load data acquisition program is being developed, whereby in a number of US civil transport aircraft will be instrumented and a large number of flight load parameters will be continuously recorded. These recordings will present a considerable amount of statistical data on aspects like control surface usage and loading but equally important will offer the opportunity to extend our data base on gust experience at a very fast rate. In particular, the load experience at low altitude can be determined with considerably more accuracy than in our present study because from the continuous loads records due to gusts and due to (banking) manoeuvres can be separated. In addition, the continuous data offers the opportunity to determine the intensity parameters of the PSD-gust model in a more direct way. The procedure to be followed for this purpose can be described as follows: (a) From the continuous airplane parameter time history record, calculate the "instantaneous" RMS value for Δn_z , $\sigma(\Delta n_z)$ record. (b) Calculate the

instantaneous value of \tilde{A} . (c) Calculate the instantaneous value of $\sigma(w)$ as $\sigma(w) = \sigma(\Delta n_z)/\tilde{A}$. (d) Determine values for P,P and b,b that give "best fit" to the empirical $\sigma(w)$ probability function tabulated from instantaneous $\sigma(w)$ values.

6. SUMMARY AND CONCLUSIONS.

- 1. Available European data sources on center of gravity acceleration experience in commercial aircraft have been analysed and combined into one data base.
- 2. This data base includes about 870,000 flights, 2 million flight hours, and 1.6 billion kilometers flown.
- 3. Acceleration peak data were reduced towards discrete gust velocities U_{de} and PSD related gust velocities (U_{α}) .
- 4. PSD-gust velocity exceedance data were further reduced to yield PSD-gust intensity parameter values (P_1, P_2, b_1, b_2) .
- 5. The results obtained show a considerably lower gust experience at higher altitude than predicted by currently used statistical models. At low altitudes, current data tend to confirm the older statistical data.
- 6. Data about gust experience at low altitude (below 2,000 feet) are still incomplete and biased by manoeuvre induced accelerations.
- 7. The planned FAA flight load measurements for US commercial transport aircraft will provide additional and missing information and offer the opportunity to get better information on PSD-gust intensity distributions.

7. REFERENCES.

- 1. Jonge, J.B. de, Reduction of Δn_z Acceleration Data to Gust Statistics. NLR CR 92003 L, 1992.
- 2. Coupry, Gabriel, <u>Improved Reduction of Gust Loads Data for Gust Intensity.</u>
 In: AGARDograph 317: Manual on the Flight of Flexible Aircraft in Tubulence,
 1991, ISBN 92-835-0617-0.

- 3. Hutin, P.M., Recorded Acceleration Peak Data. ONERA Rapport Technique no. 7/3567 RY 011 R. January 1992.
- 4. Jonge, J.B. de; Spiekhout, D.J, <u>Use of AIDS Recorded Data for Assessing Service Load Experience</u>. In: Service Fatigue Loads Monitoring, Simulation and Analysis, ASTM SP 671, 1979.
- 5. Kaynes, I.W., A Summary of the Analysis of Gust Loads Recorded by Counting Accelerometers on Seventeen Types of Aircraft. AGARD Report no. 605.
- 6. Jonge J.B. de; D. Schuetz; H.Lowak; J.Schijve, <u>A Standardized Load Sequence</u>
 for Flight Simulation Tests on Transport Aircraft Wing Structures. LBFBericht FB 73-106, NLR Report TR 73029 U, 1973.
- 7. Coupry G., <u>Analyse Statistique de la Turbulence Atmosphérique</u>. ONERA Rapport Technique no. 4/3567 RY 050 R, Février 1986.
- 8. Jonge, J.B. de; Wekken, A.J.P. van der, Noback, R., Acquisition of Gust Statistics from AIDS-Recorded Data. In AGARD Report No. 734, 1987.
- 9. Coleman T.L., <u>Trends in Repeated Loads on Transport Airplanes.</u> NASA TN D-4586, may 1968.
- 10. Anon., Average Gust Frequencies Subsonic Transport Aircraft ESDU Data Sheet 69023, Engineering Science Data Unit, March 1989.
- 11. Peckham C.G., A Summary of Atmospheric Turbulence Recorded by NATO Aircraft.
- 12. Press, H.; Steiner, R., An Approach to the Problem of Estimating Severe and Repeated Gust Loads for Missile Operations. NACA TN 4332, september 1958.

TABLE 1. OVERVIEW OF ONERA FLIGHT LOAD DATA

Air raft type	(l) Flights	Flight hours	Period of recording	(1) Mean flight duration	(2) Total of pos. peaks	Total(2) of neg. peaks
Trident 1	6905	4760	1980-1982			
Trident 2	25975	23297	1980-1985			
Triden 3	109012	88656	1980-1986			
All Trident	137692	116713	1980-1986	0.85	162	150
Bac 1-11	132495	102500	1980-1986	0.77	1172	602
Tristar l	2:790	37844	1980-1985			
Tristar 100	8102	25612	1980-1984			
Tristar 200	20662	66865	1980-1985	<u> </u>		
Tristar 500	26335	47583	1980-1985			
All Tristar	76889	177904	1980-1985	2.31	665	565
B-747-136	106849	522439	1980-1990			
B-747-236	80007	488449	1980-1990			
All B-747	186856	1010888	1980-1990	5.41	1431	1315
B-737	274511	326591	1980-1988	1.19	1518	1483
B-757(1)	4819	10354	1981-1985			
B-757(2)	25395	36598	1983-1985			
All 8-757	30214	46952	1981-1985	1.55	654	665
All aircraft	838 6 57	1781548	1980-1990	2.12	5602	4980

Notes: Flight hours and flight duration $$^{(1)}$$ refer to the block time.

TABLE 2. FORMAT OF PEAK/VALLEY INFORMATION IN ONERA DATA BASE

Ē	10,5	9	2	121	0	0	262	66	66	146	35	163	248	258	12	224	361	158	166	162	173	262	94
SI	4	: 6	3	18	0	0	38	15	15	21	9	24	36 248	37	2	33	52	23	24	24	25	38	14
-	1	9	ō	4	0	0	6	4	4	5	2	9	6	6	1	8	12	9	9	9	9	6	4
dNz- nm	0 63	2	3	0.00	0.70	0.00	0.00	0.55	0.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00
dNz+	5	530	0.32	0.52	0.00	0.63	0.52	00.0	00.0	0.51	0.51	0.61	0.52	0.55	0.51	0.73	0.55	0.53	0.58	0.51	0.52	0.60	0.57
Cla	4 224	7 562	4.302	4.283	0.000	0.000	4.230	5.221	4.348	4.222	4.162	4.222	4.379	4.258	4.121	4.515	4.254	4.289	4.386	4.338	5.106	4.171	4.285
Σ	0.508	0.677	1/0.0	0.452	0.000	0.000	0.443	0.805	0.548	0.467	0.564	0.449	0.369	0.457	0.608	0.740	0.437	0.540	0.393	0.652	0.824	0.646	0.627
idur	- 5	L	2	157	0	0]	9	30	5	15	38	28	1	02	62	0/	2	10	10	2	17	10	4
=			9	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	-	0	0	0	0
Ņ	0	गुट	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
kaft	8390	25740	20/10	7680	0	0	4100	37160	16220	2590	0006	4150	2900	6780	7730	21830	3650	12880	9040	18190	31280	12040	15660
ktas	336		24	299	0	0	295	509	355	310	374	299	240	302	396	480	286	352	258	424	527	427	408
kias	206		407	266	0	0	278	268	276	285	326	281	220	273	352	340	271	289	225	319	314	355	320
mass	50280	70007	49300	43360	0	0	43600	52480	53330	48710	48730	56050	47096	47750	47096	48750	47456	44040	47450	48190	53860	46900	50410
arr	THE		N Y Y Y	1GVA	0	0	1INV	1ZAG	1LHR	1LHR	1INV	1LHR	1GVA	1LHR	1HEL	1LHR	1BUD	1GLA	1LHR	1LHR	1LHR	1ABZ	1HAM
deb	- H	֓֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	JUNK JAKN	1LHR	0	0	1LHR	1LHR	1ZAG 1LHR	1SNN 1LHR	1LHR 11NV	1BCN 1LHR	1LHR 1GVA	1MAN 1LHR	1LHR 1HE	1HAM 1LHR	1LHR 1BUD	1LHR	1MAN 1LHR	1LIS	11ST	1LHR	1LHR
Si	+	+	7	7	7	-	1	3	2	2	7	2	8	2	1/	1	7	7	5	7	3	1	7
<u>.</u> 2	-	,	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ë	ď	t	٥	7	-	7	-	8	80	8	6	6	5	10	11	11	11	13	13	14	14	14	16
Ιίλ	6	1	7	7	7	7	7	7	7	7	7	7	2	2	2	7	7	2	7	7	2	7	2
$oldsymbol{ol}}}}}}}}}}}}}}}}}}$					1	1	l	L	L.	1		l	ı	1	1	1		ı	1 '	1	1	l	L

.+ZND Cla: dNz-: indicated airspeed (knots) flap position (degrees) true airspeed (knots) flight altitude (feet) aircraft mass in kg kias: kalt mass: ktas: 1 acc. due to maneuvers 0 acc. due to turbulence aircraft number type of aircraft <u>≅</u> ∷ ∷ is: ep: arr:

leading edge flaps (in/out) duration of acc. pea. .<u>></u> ∺ idur: code for departure airport code for arrival airport flight mode

month since beginning data neg. incr. load factor pos. incr. load factor lift curve slope Mach Number Ë

week since beginning data days since beginning data :S: ::

TABLE 3. ONERA DATA BASE--OVERVIEW OF ACCELERATION PEAK DATA | An. | >0.5

Total number of flights: 838657 Total flight hours: 1781548 The mean flight duration: 2.12 hours

a]]	HHNNM	1000 1000 1000 1000 1000 1000 1000 100	641 1020 2109 3609 5602	40001 0001 00000 00000 0000 0000 0000 0
39500	00000	0000000	0000	Φυ1 ♥000000000000000000000000000000000000
34500 39500	00000	40m 40m 40m	48 65 125 371	621 621 621 8046669 80466069 80466069
29500 34500	00000	31177100C	53 76 171 303 497	4011 4008 4008 400 400 400 400 400 400 400 4
24500 29500	00000	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 64 148 391	404 1046 4086 4086 51100000000000000000000000000000000000
19500 24500	44886	# 75 P P P P P P P P P P P P P P P P P P	65 90 162 267 386	E 111 107345111 807680904117 94EE 2211110
14500 19500	00000	21172221C	52 81 161 263 421	1225 1226 1224 1224 12424 126 126 126 126 126 126 126 126 126 126
9500 14500	00000		109 188 370 622 925	988444 124885 124886 124
4500 9500	000001-	1 6 3 1 1 5 2 1 1 1 4 4 8 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	197 322 671 1155	151 955 440 66 66 74 66 60 60 60 60 60 60 60 60 60 60 60 60
1500 1500 4500	00000		73 128 293 496 795	10001 66621 1000 1000 1000 1000 1000 100
Altítud 1500	00000	0000000	37 37	000000000000000000000000000000000000000
Δη, >	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	<i>-</i> 6 6 8 8	-0.50 -0.55 -0.65 -0.65 -0.70 -0.95 -1.05 -1.15

TABLE 5. OVERVIEW OF FLIGHTS CONTAINED IN ACMS DATA BASE

1				fiol	flight duration intervals (hrs)	n interval	s (hrs)						
				0									all flight
	0 5-1 0	00.05 05.10 10.15	1 5-2 0	2.0-3.0	3.0-4.0	4.0-5.0	20-30 3.0-4.0 4.0-5.0 5.0-6.0 6.0-7.0 7.0-8.0 8.0-9.0 9.0-10.0 >10.0	6.0-7.0	7.0-8.0	8.0-9.0	9.0-10.0		durations
	1501 1730	1110	1	1347	1607	765	1651	4849	4696	1936	490	399	23757
			55	o	L	26	4	17	15	22	10	0	362
	f			3			C	C	C	C	0	0	3
		7	2]		2 9			7	2		·		36
	1	3	9		2	2	2	-	2	ין כ)	300
	23 37	9 (2	11	22	8	4	4	33	24	-			007
	1824 1824	1149	1653	1466	1668	795	1659	4906	4735	1975	505	399	
ı													

A = scheduled commercial
B = charter
C = test
D = training
X = miscellaneous

TABLE 4. ONERA DATA BASE -- ACCELERATION DATA INCLUDING PEAKS Dn, >0.3

Total number of flights: 20505 Total flight hours: 142861 The mean flight duration: 6.97 hours

ν° γ	Altitude	tude									
	1500	1500	4500 9500	9500 14500	14500 19500	19500	24500 29500	29500 34500	34500	39500	a11 a15
	0	0	0	0	0	0	0	0	-	0	-
•	0	0	0	0	0	0	0	•	ı ,	0	7
	0	0	0	0	0	0	0			0	~
	0	0	•	0	0	0	0		. ~	0	· ~
	0	0	0	~	0	0	. ~	4) m	0	· •
0.70	O	O	0	-	0	0	· ~	-7	· M	• •	•
	0	0	0	S	-	0		4	4	0	15
•	0	~	0	5	7	7	m	9	10	0	30
	0	~	~	13	7	4	φ	11	19	0	80
	0	9	7	25	6	•	15	56	60	٥	132
	0	11	27	43	21	σ	33	41	9	0	249
-	~	29	67	82	39	24	9	68	132	0	529
	m	53	139	140	74	45	121	167	221	, ,-1	964
	11	90	264	210	128	29	179	341	414	-	1705
									i	1)
-0.50	0	•	11	56	7	7	11	21	27	0	109
-0.55	0	~	7	16	9	7	7	14	20	0	73
-0.60	0	,	S	11	S	7	4	10	16		7.4
-0.65	0	0	-	7	S	0	. س	7	6		0
-0.70	0	0	0	e	m	0	, ,-	اب	, _	· c	17
-0.75	0	0	0	7	7	0	, _F	7	. ◀	• •	: =
-0.80	0	0	0	7	g4	0	H	~	~ ~	0	, cc
-0.85	0	0	0	0	-	0	-		•	0	•
-0.90	0	0	٥	0	~	0	0		•	0	ا م
-0.95	0	0	0	0	0	0	0			0	~

TABLE 6. ACMS DATA BASE--TIME AND DISTANCES WITHIN EACH ALTITUDE BAND

Altitude (ft)	Distance (km)	Time (hrs)
< 1500	366048	1228.2
1500 - 4500	972367	2582.0
4500 - 9500	1615754	3222.0
9500 - 14500	1760326	2756.0
14500 - 19500	1747858	2391.5
19500 -24500	2294179	2848.9
24500 - 29500	6340970	7178.9
29500 - 34500	37730084	41663.4
34500 - 39500	51915800	57626.9
> 39500	353491	395.6
all altitudes	105096877	121893.4

TABLE 7. ACMS DATA BASE -- OVERVIEW OF ACCELERATION PEAK DATA

Total number of flights: 24358 Total flight hours: 171893.37 The mean flight duration: 5.00 hours

	#11 #15	•	-	7	~	· ~	•	•		25	7	85	_	-	_	··	7	12	2	168	2	4159	141597	AKIKI	BASA	28179	10192	4166	1980	1011	614	367	346	136	8	e	3 6	67	C 7	• ~
	39500	0	0	0	0	0	0	0	0	0	•	0	0	0	0	-	7	00	24	99	~	0	302	Œ	•	101	•	16	•	7	~	-	0	0	c	-	> <	-	•	• 0
	39500	0	0	0	0	0	0	~	~	7	0	15	23	42	08	~			2	8	37	873	73	618	9	596	2273	6	459	232	139	25	2	22	_	e ve	•	• ^	• 0	• •
	29500 34500		-	7	~	~	4	•		'n	7	14	28	46	79	~	-	9	20	36	3	9	999	£ 8 3	83	533	~	8	0	198	~	9	75	22	x ·	7 -		→ ©	0	0
	24500 29500	0	0	0	0	0	0	0	0	~	4	•				57		~		92	93	•	99	9	6	0	3	O	S	9.6	47	\$2	15	•	•	~ ~		•	-	
	19500	0	0	0	0	0	0	0	0	~	7	13	17	77	04	99	97	4	257	25	7	~	82	9	0	8	348	4	67	38	50	77	30 ¢	77	•	1 ~	-	•0	•	•
	14500	0	0	0	0	-	-	-	e	m	~	7	16	23	33	65	92	9	332	20	9	~	7	60	6	œ	3	~	-	23	e :	9:	77	30 \	۔ ء	n 🗢	-	· ~	~	4
	9500 14500	0	٥	0	0	0	0	0	7	•	7	12	15	56	47	88	9	~	99	2	67	~	12	80	8	8	94	2	•	N .	9	4	9.	٠, د	• •	• 🕶	_	-	0	0
	4500	0	0	0	0	0	0	-	m	•	7	œ	15	23	s	111	~	S	S	20	963	8	148	168	89	422	26	~	~	~	74	9 (9;	71		, m	7	· ~	-	•
ltitude	1500	0	0	0	0	0	0	0	0	0	-	S	7	6	21	67	~	46	1301	421	314	8	9	678	78	429	2	g	œ							16				0
Al	1500	0	0	0	0	0	0	-	~	~		7	4	σ.	25	57	-	0	å,	7	306	S	912	139	39	4	62	~	77	60	ς.		.	8 (3	:	٦	-	-	0	0
ν , ν		ς:	~	ヿ	9	ς.	œ.	œ.	æ	۲.	Ľ.	0.65	બ	S.	S.	₹.	₹.	٠.	٠.	~'	~	٠:	•	0	٦.	0.2	0.7	۳. 0	0	•	* u			9 0	0.7	-0.75	8.0	8.0	6.0	σ.

TABLE 8. FATIGUEMETER DATA BASE--OVERVIEW OF DISTANCES AND FLIGHT HOURS

a/c type	Distance (km)	Time (hrs)
Ambassador	96178.0	892.58
B-707	526528.9	2231.34
Bristol	102274.3	1345.57
Brittania	196138.2	1227.84
Comet 1	329505.3	1807.19
Comet 4	257845.3	1184.56
Hermes 4	267898.3	2162.35
Hermes 4A	288230.7	2439.19
Stratocruiser	412900.5	3378.35
Constellation	488406.2	3765.94
Viking	124310.7	1324.27
Viscount	510443.3	3384.72

AIRCRAFT TYPE COUNTRY OF ORIGIN GREAT BRITAIN TOTAL TIME

BOEING 707 2,231 HOURS

TOTAL DISTANCE

975,100 NAUTICAL MILES

GEOGRAPHY

EUROPE, AFRICA, TRANSATLANTIC, AUSTRALASIA,

MIDDLE- AND FAR-EAST

DATE OF COLLECTION 1964-1965

INSTRUMENTATION

R.A.E. RECORDER

COUNTING METHOD

PRIMARY AND SECONDARY PEAKS

SYSTEM OF UNITS **ABARS**

FOOT-POUND-SECOND ONE-DEGREE-OF-FREEDOM

RANGE OF	VALUES	ACCELERA	ATION	AIRSPEED	ALTITUDE	WEIGHT	FUEL
		(G)		(KEAS)	(FT)	(LB)	(LB)
1		, ,		LESS	Ö	132250	N.A.
2		LESS	3	160	2000	154300	
3	}	-0.6 TO	-0.4	180	4000	176350	
4		-0.4 TO	-0.2	200	6000	198400	
5	•	-0.2 TO	0.0	220	8000	220450	
ϵ	i	0.0 TO	0.2	240	10000	242500	
7		0.2 TO	0.4	260	14000	264550	
8		0.4 TO	0.6	280	18000	286600	
9	1	0.6 TO	0.7	300	22000	308650	
10	l	0.7 TO	0.8	320	30000		
11		1.2 TO	1.3	340	38000		
12		1.3 TO	1.4				
13		1.4 TO	1.6				
14		1.6 TO	1.8				
15		1.8 TO	2.0				
16	;	2.0 TO	2.2				
17		2.2 TO	2.4				
18		2.4 TO	2.6				
19		MORE	3				

FLIGHT CONDITIONS

- 1. INITIAL ASCENT
 - 2. FINAL DESCENT
 - 4. OTHER ASCENT
 - 5. CRUISE
 - 6. OTHER DESCENT

TABLE 10. FATIGUEMETER DATA BASE--CONVERSION OF LEVEL CROSSINGS TO PEAKS/VALLEYS

MECHANICAL	INSTRUMENTS	ELECTRICAL INSTRUMENTS									
Cross level* ∆n	Equivalent peak (An+dAm	Cross level* ∆n	Equivalent peak (Δn+dΔn)								
0.23 0.33 0.43 0.52 0.62 0.72 0.82 0.92	0.27 0.37 0.47 0.56 0.66 0.76 0.86 0.96	0.20 0.30 0.40 0.60 0.80 1.00 1.20	0.24 0.34 0.466 0.666 1.066 1.266								

Example: (Electrical instruments)

 n_1 crossings of level n_z - 1.40 n_{z+1} crossings of level n_z = 1.60

conversion to (n_1-n_{1+1}) peaks at $n_2 = 1.466$

 n_k crossings of level $n_z = 0.70$ n_{k+1} crossings of level $n_z = 0.60$

 $_{x}$ conversion to $(n_{k}-n_{k+1})$ valleys at $n_{z}=0.66$

TABLE 11. FATIGUEMETER DATA BASE -- OVERVIEW OF ACCELERATION PEAK DATA

Total number of flights: 10697
Total flight hours: 25143,77
The mean flight duration: 2.35 hours

	all	,	1 -	9 4	1,5	138	274	611	743	1998	8158	9560	19	76	239	158872	011701	70005	21538	17392	5201	3879	1106	390	273	121	20	33	19	7	4	~
	39500	c	.	> C	, C	• 0	0	0	0	~	ഗ	v	21	23	71	85	9	, 4	7.5	15	4	~	~	-	-1	0	0	0	0	0	0	0
	34500 39500	<	> C	~ د	, 6	10	19	5 6	30	99	~	4	8	0	19	2168	Arcc Arcc	020	467	334	132	96	43	18	17	6	•	4	m	0	0	0
	29500 34500	· c	.	4	12	13	24	32	37	65	\sim	œ	~	0	32	2678	2811	1062	572	386	165	103	8.	22	19	11	9	و	S	-		1
	24500 29500	c	.	-	۱ ~	4	4	•	18	56	39	127	183	468	693	2201	2003	546	395	145	101	5 6	16	14	'n	₹	*	~		-	, ha	-
	19500	c	,	۱	٠.	· 🕜	7	13	34	57	139	263	479	837	67	3849	1732	1576	772	402	240	104	40	31	14	9	'n	7	7	~	, ,,,	0
	14500	c	• =	0		80	13	24	89	86	242	462	880	55	3174	23	5	85	9	76	461	Q,	6 6	51	22	14	10	S	m	7	0	0
	9500 14500	-	• -	• •	16	22	31	74	100	251	922	~	$\overline{}$	m	12482	96	45	10509	2	2686	962	682	228	96	29	58	13	&	m		ə (0
	4500 9500		ی (φ.	19	19	67	\sim	139	~	76	1	22	16	4	498	29025	22020	5980	5001	1360	1115	292	87	69	23	9	9	-	-1	~ (>
Altitude	1500	4	. 4	15	26	28	59	4	160	0	4	9	988	138	9	8	30417	23752	543	4621	1063	006	506	45	4 5	17	•	•	0	0	0 (>
Alti	1500	~	7	12	29	59	89	9	166	46	35	33	72	895	7	716	589	8	315	9	713	S	~	25	5 2	σ	~	7	-	0	0	>
۷۳' >		0	0	S	80	0.80	۲.	9.	9.	Ś	₹.	₹.	J.	٦.	?	7	~	0.2	0.3	6.3	4.	4.	9	9.0	9.	0.7	89. O	8 ·	ۍ ص	0.	-1.02	7

TABLE 11. DISTANCES FLOWN IN DIFFERENT ALTITUDE BANDS FOR THE THREE DATA BASES

Altitude band	Distance (km) ONERA data	•	Distance (km) ACMS data	•	Distance (km) Fatiguemeter data	8
- 1500	1.17e+07	ა.9	3.66e+05	0.3	6.12 e +04	1.7
1500 - 4500	3.89e+07	٥. و	9.72e+05	0.9	1.34e+05	3.7
4500 - 9500	4.95e+07	3.8	1.62e+06	i.5	4.22e+05	11.7
9500 - 14500	4.98e+0 ⁷	3.9	1.7 6e +06_	1.7	8.37e+05	23.2
14500 - 19500	4.79e+07	3.7	1.75e+06	1.7	6.63e+05	16.4
19500 - 24500	6.04 e +07	4.7	2.29e+06	2.2	4.11e+05	11.4
_ 24500 - 29500	1.08e+08	8.4	6.34e+06	6.0	2.01e+05	5.6
29500 - 34500	4.61e+08	35.7	3.77e+07	35.9	4.65e+05	12.9
34500 - 39500	4.46e+08	34.5	5.19e+07	49.4	3.91e+05	10.9
> 39500	1.91e+07	1.5	3.53e+05	0.3	1.51e+04	0.4
all altitudes	1.29e+09	100.0	1.05e+08	100.0	3.60e+06	100.0

TABLE 13. EXCEEDANCE FREQUENCIES OF Any 0.3 AND An, 0.6 FOR VARIOUS AIRCRAFT

		Exceeding	Exceedings ∆n _x =0.3	Exceedin	Exceedings Δn_{1} =0.6
type	No. of flights	total	per flight	total	per flight
Ambassador	655	1039	1.59	33	0.0504
B-707	610	510	0.84	m	0.0049
Bristol freighter	2745	14897	5.43	283	0.1031
Brittania	345	707	2.05	13	0.0377
Comer 1	681	2252	3.31	111	0.1630
Comet 4	439	1055	2.40	21	0.0478
Hermes 4	009	1789	2.98	27	0.0450
Hermes 4a	712	1365	1.92	53	0.0744
Stratocruiser	604	4336	7.18	20	0.0331
Super Constellation	611	1531	2.51	43	0.0704
Viking	750	4699	6.27	09	0.0800
Viscount	1945	3468	1.78	76	0.0391
All Flights, Fatiguemeter					ن ن
Data Base	10697	37648	3.52	743	0.0695
ONEDA Date	938667			2109	30000
ACMS Data Base	24.45	0666	0 30	144	6300.0
ACMS Data Dase	24.230	22/	00	771	0.000

TABLE 14. GEOMETRIC DATA--ONERA, ACMS, AND FATIGUEMETER DATA BASES

ONERA Data Base

a/c type	S	С	MTOW	m/S
	[m²]	[m]	[kg]	(kg/m²)
Trident 1	126.16	4.61	52163	413
Trident 2	135.73	4.54	64634	476
Trident 3	138.70	4.64	64634	466
BAC 1.11	95.78	3.36	44678	466
Tristar	320.00	6.76	224982	703
Tristar 500	329.00	6.57	224982	684
B-747	511.00	8.57	377840	739
B-737	105.40	3.65	62822	596
B-757	195.25	4.87	104325	534

ACMS Data Base

a/c type	S	С	MTOW	m/S
:	[m²)	(m)	[kg]	[kg/m²]
B-747	528.20	8.57	378000	716

TABLE 14. GEOMETRIC DATA--ONERA, ACMS, AND FATIGUEMETER DATA BASES (CONTIUNED.)

Fatiguemeter Data base

0/0 1000	s	С	MTOW	M/S	В	Aspect	Ct.,
A/c type	į m² j	[m]	[kg]	[kg/m²]	[m]	ratio_	[rad-l]
Ambassador	111.48	3.18	28032	251	35.00	10.99	5.837
B-707	148.60	6.92	143335	577	43.40	7.58	5.459
Bristol	138.15	4.20	20502	148	32.89	7.83	5.496
Brittania	192.70	3.21	80014	415	34.81	6.29	5.235
Comet 1	187.20	5.33	49986	267	35.00	6.54	5.285
Comet 4	196.95	5.62	73482	373	35.00	6.22	5.221
Hermes 4	130.81	4.20	44996	344	34.38	9.04	5.650
Hermes 4A	130.81	4.20	44996	344	34.38	9.04	5.650
Stratocruiser	164.35	3.81	72575	442	43.00	11.25	5.859
Constellation	153.29	4.47	62369	407	37.49	9.17	5.664
Viking	81.94	3.01	15966	195	27.20	9.03	5.649
Viscount	89.47	3.12	29257	327	28.70	9.21	5.669

*)
$$C_{L_{\alpha}} = 1.15 \cdot \frac{6A}{A+2}$$

ONERA DATA BASE -- U. -- EXCEEDANCE DATA TABLE 15.

		34500 39500	0	0	0	-	2	i un	15	33	9	S	S	~	366	7	~	2	~	7	378	7	4	~	9	79	40	22	7	4	4	~	0	> c	0	0
		29500 34500	0	0	0	, ,	·	m	20	42	100	209	337	433	494	497	497	497	4	4	442	3	8	œ	o	0	45	15	7	7	7	 1 ,	- •	-	0	• •
		24500 29500	0	0	-	-	4	• • •	, ,	15	36	98	8	8	369	σ	ð	σ	_	-	414	σ	8	~	0	40	18	12	æ	4	7	. ,	 (> C	0	0
		19500 24500		٦	7		m		0	23	47	on	_	æ	364	w	w	w	~	-	317	6	~	3	74	40	25	14	6 0	7	m i	0	0	-	• •	0
		14500 19500	0	0	0		1 4	· vo	16	38	7.8	4	S	4	408	~	\sim	~	L/A	S	354	4	æ	0	~	75	38	19	10	7	9	4	⊣.	⊣ ¢	0	0
		9500 14500	0	0	0	4	11.	2,5	9 4	100	ð	4	4	\sim	006	~	2	\sim	•	S	950	~	9	9	8	~	~	57	25	13	ഗ	m) ,	- 0	-	0	0
838657 781548 12 hours		4500 9500	0	0	اب ،		1,	100	90	195	367	649	02	51	1753	77	77	77	51	51	1515	49	32	945	643	389	192	95	45	18	ထ (m	0	-	0	0
jhts: : 1 stion: 2	titude	1500 4500	0	-	4	7	20	, u'	87	160	8	\sim	~	$\overline{}$	791	O١	5	S.	S	S	551	4	~	~	~	\sim	\sim	81	54	59	17	11	~ `	٥ ٦	• ~	-
mber of flic ight hours flight dura	Alti	1500	7	7	7	1 77	• •	0	15	27	32	37	37	37	37	37	37	37			20									9	4	m (~ ~	→ C	0	0
Total numbe Total fligh The mean fl	ر <mark>ه</mark> ۷		16	15	14	. ~	12		10	, o n	80	7	9	Ś	4	٣	7	0	0	-7-	٠,	4-	٠ ئ	9-	-7	80	6	-10	~	~	-13	┛,	٠,	97-	• ~	-21

39500

44980 444980 449980 12004 12007 1344 1388 1448 1281 1448 1188

TABLE 16. ONERA DATA BASE--U3-EXCEEDANCE DATA

Total number of flights: 838657 Total flight hours: 1781548 The mean flight duration: 2.12 hours

U , >

G 2											
	1500	1500 4500	4500 9500	9500 14500	14500 19500	19500 24500	24500 29500	29500 34500	34500 39500	39500	411 41t
29. 27.	0.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.89 0.89
26.	2.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.16
24. 23.	2.16 2.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.16
22.	3.09	1.15 7.20	0.00 2.30	0.00	9.00 0.00	0.00 1.08	0.00 0.00	0.00	0.00 0.00	0.00	3.32 13.68
21.	5.24	8.96	3.21	0.00	0.00	1.06	0.83	0.00	0.00	0.00	19.32
20. 19.	7.77 10. 8 7	19.24 30.72	3.21 9.36	0.00 1.16	0.00	1.08 1.08	0.83	0.00	0.00	0.00	32.13
18.	14.40	63.74	16.17	6.40	4.04	4.23	0.83 0.83	0.00 0.00	0.00 2.00	0.00	54.03 109.81
17.	19.87	85.83	44.82	18.54	5.46	4.23	0.83	0.00	0.00	0.00	179.58
16. 15.	25.81 27.51	137.71 208.10	78.16 133.22	27.03 53.46	6.97 9.78	5.11 6.57	2.45 4.13	0.00 3.23	0.00 1.62	0.00	283.25
14.	33.16	277.95	243.44	95.53	21.16	9.54	5.93	8.54	1.62	0.00	447.61 695.88
13.	35.81	368.61	385.42	161.25	34.83	23.91	7.02	13.65	6.51	0.00	1037.00
12. 11.	35.81 35.81	446.98 524.54	615.84 913.00	254.94 405.48	75.63 133.70	35.35 62.71	12.29 25.05	29.79 59.19	16.36 37.06	0.00	1522.99 2196.55
10.	35.81	616.95	1208.02	596.04	211.71	107.50	48.32	111.57	67.17	0.00	3003.10
9. 8.	35.81 35.81	712.47 756.46	1534.75 1771.07	817.63 995.61	343.69 432.46	178.13 298.45	125.97	214.20	128.87	0.00	4091.52
7.	35.81	763.71	1855.01	1064.58	500.02	382.36	255.91 391.68	425.98 630.49	269.77 445.16	0.00	5241.52 6068.82
ó.	35.81	764.47	1856.69	1079.79	518.45	428.85	461.21	730.33	528.73	0.92	6415.27
5. 4.	35.81 35.81	764.47 764.47	1866.69 1866.69	1081.98 1081.98	522.48 522.48	437.59 437.59	476.09 476.09	737.27 737.27	540.51 542.91	0.92 0.92	6463.82 6465.22
o.	35.81	764.47	1856.69	1081.98	522.48	437.59	476.09	737.27	542.91	0.92	6465,22
0.	46.10	545.53	1640.65	1097.39	432.42	355.45	496.45	629.39	543.40	8.84	5795.62
-4. -5.	46.10 46.10	\$45.53 \$45.53	1640.65 1640.65	1097.39 1097.39	432.42 431.73	355.45	496.45	629.39	543.40	8.84	5795.62
-6.	46.10	545.53	1539.48	1095.21	430.99	355.45 343.34	496.45 479.80	629.39 622.26	542.24 533.01	8.84 8.84	5793.77 5743.57
-7.	46.10	544.78	1628.70	1080.37	413.59	303.88	400.17	559.42	473.94	7.62	5458.58
-8. -9.	46.10 46.10	537.52 518.05	1583.14 1408.55	1007.07 832.21	362.79 266.29	220.47 147.33	267.90 151.22	378.43 211.06	288.24 156.44	6.34 0.00	4698.00
-10.	46.10	467.44	1134.00	647.68	191.94	90.88	77.18	105.75	75.10	0.00	3737.26 2836.07
-11.	46.10	408.32	889.07	478.07	123.52	46.01	37.30	49.88	50.09	0.00	2129.37
-12. -13.	46.10 44.38	350.41 291.08	640.12 403.76	302.27 186.62	75.48 46.57	29.40 19.16	28.72 13.73	17.54 11.10	24.74 11.51	0.00	1514.79 1027.91
-14.	41.97	236.18	255.05	107.28	29.79	16.60	7.06	2.83	6.77	0.00	703.53
-15.	41.97	177.55	149.39	59.19	19.25	13.90	3.76	2.83	5.02	0.00	472.85
-16. -17.	37.71 29.53	126.43 93.08	75.16 46.47	39.21 17.96	13.65 9.18	10.41 6.08	3.76 0.00	2.83	3.38 0.00	0.00	312.54 295.13
-18.	23.51	63.40	26.38	7.81	5.31	0.88	0.00	0.00	0.00	0.00	127.29
-19. -20.	15.91 10.49	44.11 30.24	15.17 6.68	5.31 5.31	3.47	0.88 0.00	0.00	0.00	0.00	0.00	84.85
-21.	8.41	19.75	5.03	1.95	3.47 0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	56.19 35.13
-22.	5.76	15.08	0.81	1.95	0.00	0.00	0.00	0.00	0.00	0.00	23.60
-23. -24.	4.92 4.92	13.48 9.60	0.81 0.81	0.89 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00	20.10
-25.	1.17	8.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	15.33 9.76
-26.	1.17	8.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.76
-27. -28.	1.17	6.22 4.80	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	7.40 4.80
-29.	0.00	3.36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.36
-30.	0.00	2.27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.27
-31. -32.	0.00	2.27 1.48	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00	2.27 1.48
-33.	0.00	1.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.46
											-

TABLE 17. ONERA DATA BASE--ESTIMATION OF FLIGHT DURATIONS

	(1)	(2)	(3)
Alreroft Type	Block Time (hrs)	Taxi, Takeoff and Roll Out (hrs)	Airborne Flight Time (hrs)
B-747 B-737 B-757 Tristar Trident BAC 1-11	5.41 1.19 1.55 2.31 0.85 0.77	0.37 0.26 0.27 0.35 0.25 0.21	5.04 0.93 1.28 1.96 0.60 0.56

Legend:

- (1) From table 1
 (2) From reference 7, table II
 (3) = (1) (2)

TABLE 18. ONERA DATA BASE--ESTIMATED MISSION PROFILES

mean fl	ight pro	file B-74	17
altitude	time	speed	distance
[ft]	[hrs]	[m/s]	[km]
<1500	0.05	110	19.80
1500-4500	0.11	120	47.52
4500-9500	0.13	158	73.94
9500-14500	0.11	178	70.49
14500-19500	0.10	199	71.64
19500-24500	0.12	222	95.90
24500-29500	0.25	253	227.70
29500-34500	2.05	266	1963.08
34500-39500	2.05	267	1970.46
>39500	0.07	267	67.28
All altitudes	5.04		4607.82

Blocktime 5.41

mean fl	ight pro	file B-73	37
altitude	time	speed	distance
[ft]	[hrs]	[m/s]	[km]
<1500	0.05	79	14.22
1500-4500	0.10	124	44.64
4500-9500	0.10	157	56.52
9500-14500	0.09	174	56.38
14500-19500	0.08	193	55.58
19500-24500	0.08	217	62.50
24500-29500	0.17	223	136.48
29500-34500	0.17	226	138.31
34500-39500	0.09	227	73.55
>39500	0.00		0.00
All altitudes	0.93		638.17

Blocktime 1.19

mean fl	ight pro	file B-75	57
altitude	time	speed	distance
[ft]	[hrs]	[m/s]	[km]
<1500	0.05	81	14.58
1500-4500	0.10	119	42.84
4500-9500	0.10	154	55.44
9500-14500	0.09	174	56.38
14500-19500	0.08	199	57.31
19500-24500	0.09	214	69.34
24500-29500	0.18	233	150.98
29500-34500	0.18	247	160.06
34500-39500	0.37	250	333.00
>39500	0.04	255	36.72
All altitudes	1.28		976.64

Blocktime 1.55

TABLE 18. ONERA DATA BASE--ESTIMATED MISSION PROFILES (CONTINUED.)

mean fl	ight pro	file Trist	ar
altitude	time	speed	distance
[ft]	[hrs]	[m/s]	[km]
<1500	0.05	104	18.72
1500-4500	0.10	134	48.24
4500-9500	0.11	156	61.78
9500-14500	0.10	177	63.72
14500-19500	0.08	201	57.89
19500-24500	0.09	225	72.90
24500-29500	0.13	250	117.00
29500-34500	0.62	262	584.78
34500-39500	0.62	262	584.78
>39500	0.06	265	57.24
All altitudes	1.96		1667.05

Blocktime 2.31

mean fl	ight pro	ofile Trid	ent
altitude	time	speed	distance
[ft]	[hrs]	[m/s]	[km]
<1500	0.05	0	0.00
1500-4500	0.10	130	46.80
4500-9500	0.09	157	50.87
9500-14500	0.09	179	58.00
14500-19500	0.07	196	49.39
19500-24500	0.08	218	62.78
24500-29500	0.08	238	68.54
29500-34500	0.03	254	27.43
34500-39500	0.01	270	9.72
>39500	0.00		0.00
All altitudes	0.60		373.54

Blocktime 0.85

		<u> </u>	
mean fi	ight pro	file BAC	; 1-11
altitude	time	speed	distance
[ft]	[hrs]	[m/s]	[km]
<1500	0.05	91	16.38
1500-4500	0.10	132	47.52
4500-9500	0.09	157	50.87
9500-14500	0.08	171	49.25
14500-19500	0.07	188	47.38
19500-24500	0.09	208	67.39
24500-29500	0.05	220	39.60
29500-34500	0.02	229	16.49
34500-39500	0.01	231	8.32
>39500	0.00		0.00
All altitudes	0.56		342.19

Blocktime 0.77

TABLE 19. ACMS DATA BASE -- U. .- EXCEEDANCE DATA

Total number of flights: 24358 Total flight hours: 121893.37 The mean flight duration: 5.00 hours

all alt 05096864.0	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	200 200 200 200 200 200 200 200 200 200	
39500 353490.7 10	•••••	000000000000000000000000000000000000000	NN 889mrN000000000000000
34500 39500 51915800.0	000000	0 0 0 0 1 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3	FF 111486 WE 8848408E1
29500 34500 37730084.0	000000	12 2 2 2 18 18 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	36 887437 36 525
24500 29500 6340969.5	0000000	3 8 4 5 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 99080707
19500 24500 2294178.8	0000000	19 119 178 178 2012	~~ 00000000
14500 19500 1747857.9	000000	2884 1039 2601 2601 2601	66 666664
9500 14500 1760326.4	0000000	2669 269 269 269 269	77 00V9V98V1
4500 9500 1615754.0	0000000	11 11 130 130 1305 1244 1244 1244 1244 1244 1244	11 11162 24 24 24 24 24 24 24 24 24 24 24 24 24 2
ltitude 1500 4500 2 972367.4	00mmmm4	5 5 10 134 134 1253 1253 1264 10079	00
Al 1500 e 366048.2	111289911111111111111111111111111111111	22 41 73 130 244 269 1143 3027 8314 20898 27782 28156	88 14416 10 10 10 10 10 10 10 10 10 10 10 10 10 1
ua > distance	22 119 119 116 116	E1111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

TABLE 20. ACMS DATA BASE--U.-EXCEEDANCE DATA

Total number of flights: 24358
Total flight hours: 121893.37
The mean flight duration: 5.00 hours

Մ _տ >	Alt	itude									
distance	1500 366040.2	1500 4500 972367.4	4500 9500 1615754.0	9500 14500 1760326.4	14500 19500 1747857.9	19500 24500 2294178.8	24500 29500 6340969.5	29590 34500 37730084.0	34500 39500 51915800.0	39500 353490.7	all alt 135096864.0
33 29	1.49 1.49	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.20 0.20	0.00 0.00	0.00 0.00	0.09 0.09	1.49 1.49
28 26	4.60 4.60	1.69	0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	6.29
25	5.20	1.69	0.00	0.00	0.00	0.00	0.00	9.00	0.00	0.00	6.29 7.89
24 23	14.02 20.27	3.17 6.03	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.90 0.99	0.00 0.00	0.00 0.00	0.00	17.19 26.30
22	21.72	6.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	27.75
21 20	30.00 41.01	7.51 7.51	0.00	0.00 0.00	0.00	0.00	0.99	0.00	0.00 0.00	0.02	37.59
19	56.51	7.51	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	48.52 64.02
18 17	35.83 130.72	5.35 17.84	3.15 4.62	ů.0) 0.00	1.75 1.75	0.00 0.00	0.00	1.53	0.00	0.00	105.28
16	186.10	28.09	10.51	1.74	1.75	0.00	0.90 0.99	1.53 1.53	0.09 0.00	0.09	156.45 229.72
15	260.06 386.43	\$1.54 82.40	21.47 31.00	4.94 5.47	1.75	0.00	0.00	3.04	0.00	0.00	342.89
14 13	451.23	179.49	49.16	11.35	5.18 5.18	0.00 1.76	0.90	3.04 4.57	0.00 0.00	0.00	514.52 861.74
12	1058.89	289.94	79.56	17.44	5.10	6.82	0.00	7.76	1.58	0.00	1477.19
11 10	1805.79 3336.30	553.93 1182.65	144.31 283.24	34.88 62.97	11.79 27.86	13.46 26.01	4.84 8.02	14.26 17.55	6.18 10.76	0.00 0.00	2590.41 4955.36
9	6109.44	2417.78	628.50	129.06	40.88	30.96	12.57	39.51	32.19	0.00	9440.89
8 7	11430.99 21337.7\$	5198.93 10735.54	1403.47 3125.66	255.55 506.41	82.66 149.56	58.32 99.16	38.71 71.29	87.86 165.44	65.27 131.54	0.00	18521.76 36322.35
•	35986.83	22058.12	6936.31	1127.70	284.18	173.07	154.31	351.88	330.45	1.44	67414.29
\$	41911.08	40248.65 53640.26	14656.49 25436.21	2508.33 5510.52	679.49 1558.04	360.72 882.45	380.51 1011.48	948.74 2785.23	873.82 2660.38	7.28 39.22	192575.11 137229.97
3	42782.01	55675.51	32690.15	10568.58	3955.62	2379.84	3243.94	9989.03	9769.74	147.54	171212.06
2	42783.52 42783.52	55719.73 55719.73	33108.55 33119.05	12684.82 12684.82	5857.62 5860.57	4462.75	7425.23 7512.06	26378.55 26659.40	28549.73 28767.90	433.74 436.54	217404.25 218009.22
ō	42783.52	55719.73	33110.05	12684.82	5860.57	4474.62	7512.05	26659.40	28767.90		218009.22
0	17236.75	25490.35	19281.65	9125.81	4871.33	3651.77	6448.37	23831.95	24844.31		134197.58
-1 -2	17236.75 17236.75	25490.35 25490.35	18281.66	9125.81 9125.81	4971.33 4856.91	3651.77 3637.08	6448.37 6367.43	23831.95 23625.40	24844.31 24647.45	415.26	134197.58
-3	17236.75	25467.11	18000.84	7412.90	2989.08	1778.23	2713.76	8708.43	7859.56	103.87	92270.53
-4 -5	17225.31 16656.04	24414.84 17970.83	13919.79 7232.85	3580.82 1522.51	1031.49 441.61	578.62 191.16	859.78 339.02	2425.61 795.80	2192.34 735.75	24.43 4.41	66253.03 45890.98
-6	11955.07	9224.48	3218.39	705.31	184.76	03.92	131.37	331.71	306.34	2.91	26944.26
-7 -8	5493.85 2408.18	3830.79 1671.22	1443.15 667.57	352.36 191.54	82.55 35.75	43.33 29.30	62.31 32.81	147.18 71.05	147.89 64.86	0.00 0.00	11403.41 5172.28
-9	1173.29	781.45	331.63	96.34	25.76	24.75	13.24	35.52	24.70	0.00	2506.69
-19 -11	667.13 425.64	398.92 249.00	174.67 102.28	44.22 30.02	14.53 11.36	9.16 4.61	4.73 3.13	8.11 1.60	12.55 9.40	0.00	1334.12 #37.04
-12	263.09	189.29	66.88	23.59	9.74	1.56	3.13	0.00	3.09	0.00	\$60.37
-13 -14	170.64 107.58	153.91 133.12	46.49 28.74	6.31 3.05	4.97	0.00	1.50 0.00	0.00 0.00	1.61 0.00	0.00	785.34 277.46
-15	68.40	115.36	23.64	3.05	1.74	0.00	0.00	0.00	0.00	0.00	212.19
-16 -17	50.88 39.59	102.06 85.67	15.89 9.29	0.00 0.00	1.74 1.74	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	170.57
-18	34.66	65.50	7.61	0.00	1.74	0.00	0.00	0.00	0.00	0.00	136.29 109.59
-19 -20	24.97 23.24	47.37 37.29	6.21 6.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	78.55
-21	18.45	34.40	4.02	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	66.74 57.68
-22 -23	15.30	32.95	4.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	53.15
-21	9.34 7.98	30.07 21.42	3.37 3.37	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	9.00 0.00	0.00 0.00	0.00	42.78 32.77
- 25	6.47	10.37	1.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	26.52
-26 -27	4.80 3.16	10.82 6.36	1.68 1.68	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	17.30 11.20
- 20	3.16	4.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	8.05
-29 -30	3.16 1.49	4.89	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.00 0.00	8.05 1.49
- 52	1.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.49

TABLE 21. FATIGUEMETER DATA BASE--U, -EXCEEDANCE DATA

Total number of flights: 10697 Total flight hours: 175143.77 The mean flight duration: 2,35 hours

all alt 3600660.8	1134 L113 A 4 L113 A 4 L113 A 4 L113 A 6 6 6 6 6 6 8 6 6 8 6 6 6 6 6 6 6 6 6	1735 4480 11385 29453 74905 150973 158497	107110 106908 101765 52732 19167 6773 6773 119 128 128 128
39500 15130.1	00000000000	888 P.	A A 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34500 39500 391116.5	000000000	13 32 326 1610 2168 2168	1622 1622 1663 2941 2941 2941 2941 2941 2941 2941 2941
29500 34500 464611.2	0000000000	21 21 137 137 2045 2678 2678	22881 21811 44341 1326 1122 0000
24500 29500 201060.3	00000HHHMMW	28 44 114 259 667 2098 2201	20003 19003 2003 2003 2003 2003 2003 2003 2003
19500 24500 411309.2	0000174442110000111544451115	1126 306 731 731 3849 3849	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
14500 19500 662558.4	000000m4rm8	218 469 1183 3612 6916 7227	666 860 860 860 860 860 860 860 860 860
9500 14500 837051.3	00000044 00000044 00000044	157 385 1066 2810 9152 16712 17463	14456 114656 114656 2069 1152 2174 2174 200 200 200 200 200
4500 9500 422241.6		582 1220 3476 7436 18623 3486 3496	29025 27833 14702 4996 290 290 339 339 11
Altitude (1500 00 4500 .6 134413.5	0 7 7 7 7	1480 1503 1503 10785 25892 48689 50765	30417 293150 167333 167333 721 1825 173 173 174 174 175 176 177 178 179 179 179 179 179 179 179 179 179 179
A10 1500 61168.6	1 6 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	349 973 2369 6013 14232 35678 37165	15892 15892 15318 7002 3071 1173 139 139 0
≓ distance	0 0 0 1 1 1 1 1 1 1 1 0 0 8 0 0 0 0 0 0	16004WGHO	01111111111110000000000000000000000000

TABLE 22. FATIGUEMETER DATA BASE-- U_{σ} -EXCEEDANCE DATA

Total number of flights: 10697 Total flightshours: 25143.77 The mean flight duration: 2.35 hours

U _e >	Alt	itude									
	1500	1500 4500	4500 9500	9500 14500	14500 19500	19500 24500	24500 29500	29500 34500	34500 39500	39500	all alt
distance	61168.6	134413.5	422241.6	037051.3	662558.4	411309.2	201060.3			15130.1	3600660.8
49	0.57	0.19	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.70 0.70
36	0.57 1.14	0.19 0.38	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	1.50
35 33	1.14	0.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50
32	1.71	0.71	0.42	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	2.80 2.80
31 30	1.71 2.26	0.71 0.90	9.42 9.42	g. 09 9.63	0.00	0.00	0.00	0.00	0.00	0.00	3.50
20	2.26	0.90	0.42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.50 6.80
27	3.13	2.29	1.39 1.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.70
26 25	4.10 4.67	4.21 4.67	2.19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.50
21	5.81	7.54	3.60	0.19	ij.ijŊ	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	17.10 25.50
23	8.02 12.40	10.74 12.34	6.61 7.01	0.19 0.19	0.00 0.37	0.00 0.61	0.00	0.00	0.00	0.00	32.90
22 21	14.93	15.48	8.78	0.97	0.37	0.61	0.00	0.00	0.00	0.00	41.10 55.60
20	17.65	20.90	12.01	1.17	0.37 0.37	1.22	1.21	0.12 0.12	0.00	0.00	\$4.70
19 16	27.85 33.59	32.59 40.29	17.64 19.35	3.89 6.19	2.35	1.65	1.21	0.12	0.00	0.00	104.70
17	52.92	54.19	28.93	12.47	4.25	3.49	1.21	0.12 0.24	0.09	0.00 0.00	157.50 344.90
16	117.04	107.71 177.29	92.22 126.44	15.10 22.27	6.13 10.51	4.08 5.68	2.38 3.23	0.32	0.00	0.00	512.70
15 14	167.11 230.33	248.66	181.27	41.47	12.44	7.89	3.82	0.38	0.00	0.00	726.20
13	443.96	455.93	259.45	61.53	31.28	12.70 27.25	4.48 9.28	0.91	0.36 0.73	0.00	1310.60 2257.50
12 11	695.60 988.37	868.24 1320.90	493.93 982.12		50.30 90.23	40.46	13.96	3.29	1.47	0.00	3664.00
10	1557.73	2105.36	1489.07	474.54	142.97	85.67	22.65	19.51	6.41 10.92	0.00	5885.90 11331.80
•	3050.49	4631.71	2424.58	755.02 1438.54	278.46 443.49	144.38 257.59	38.22 100.26	17.87 33.75	19.07	0.20	
• 7	4758.27 7596.90	7257.10 12442.91	4434.37 7574.42	2429.94	772.30	425.84	151.90	54.09	31.49	0.41	31580.30
6	10303.43	18574.82	12937.87	4899.22	1442.18	726.71	266.34 545.38	111.45 241.60	71.56 159.94	1.86	49335.40 81802.20
\$	19234.73	28375.94			3223.17 5066.23	1580.69 2412.82	1145.39	559.37	386.86	13.63	102328.60
3	22691.36	33681.94	24958.48	13146.26	5993.44	3139.48	1693.11	1800.39	1424.49		108580.80
3		33764.05			6027.05 6027.35	3193.04 3193.04	1795.22 1795.22	2579.29 2579.29	2096.02		110658.00
1	22597.27	33768.08	25141.07	13284.23	6027.35	3193.04	1795.22	2579.29	2095.02	76.51	110658.00
0		20451.60			5233.13	3137.64	1664.02	2821.49	2263.38	66.10	
-1	9935.29	20451.60	20293.30	10954.23	5233.13	3137.64	1664.02	2821.49	2263.38	66.10 66.10	
- 2	9935.29	20449.37	20274.28	10935.22	5229.53 5197.95	3137.64 3063.59	1664.02 1526.52	2021.49 1892.58	2263.39 1485.20	43.98	
-3 -4	9931.70	20406.11	19473.79	10111.00	4391.20	2334.02	962.94	539.07	380.21	11.94	
- \$	#549.5E	17712.36	15921.12	7510.69	2907.86	1633.33	481.77 247.42	230.00 110.73	154.11 71.21	4.23	55105.00 34452.90
-6 -7	5420.50 3725.39	12162.39 7021.31		3942.69 1897.50	1346.00	749.77 394.73	131.46	46.96		0.41	20297.40
	2428.23	4224.26			427.45	248.23	86.23	19.10	9.45	0.41	11527.10 6769.10
- 9	1487.83				278.29 139.42	142.03 85.62	34.94 15.27	9.91 5.02		0.00	
-10 -11	569.57 350.49				89.20	43.66	11.17	3.72	2.03	0.00	1854.20
-12	248.07	419.90	235.01	113.58	54.44	27.40	7.04	2.36 1.72		0.00	
-13	155.29				36.72 15.21	14.96 10.07	5.36 4.24			0.00	
-14 -15	74. 99 55.52		51.09	18.43	10.30	5.12	2.43	0.96	0.56	0.00	217.10
-16	23.86	33.02	38.75	13.06	6.60	2.89 2.59	2.43 1.84	0.96 0.18		0.00	
-17 -18	11.69				3.40 2.24	1.98	1.84	0.18	0.00	0.00	26.90
-19	4.14		2.41	2.25	2.24	1.98	1.84	0.10		0.00	
-20	1.48	4.47			1.09	1.06 0.77	1.17			0.00 0.00	4.90
-21 -22	0.4 6 0.00				0.82		0.59	0.06	0.00	0.00	2.60
-23	0.00	0.00	0.00	0.00	0.00					0.00 0.00	
-30	0.00	0.00	0.00	0.00	0.00	0.29	0.59	0.04	0.00	J.00	7.70

TABLE 03. $\text{U}_{\text{de}}\text{-}\text{EXCEEDANCES}$ for the combined data base

	i de		Altitude [ft]		
(m/s	× 155	1500-4500	4500-9500	9506-14500	14500-19500
16		0.00	0.00	0.00	0.00
13.		2.04e-07	0.00	0.00	0.00
14	1.3.e-15	5.12e-07	6.06e-08	0.00	0.00
: \	4 ,	8.42e-07	1.28e-07	8.99e-08	1.08e-0
1.	, 1, 1, 1, 2 = -1,	1.86e-06	2.97e-07	2.40e-07	1.66e-0
1:	1.1999-3	n.00e-06	7.78e-07	5.34e-07	2.43e-0
: [1.554 - 4	1.61e-U5	2.20e-06	1.40e-06	5.46e-0
	1.096-4	4.23e-05	7.94e-06	3.01e-06	1.43e-0
.,	1.96←-14	9.82e-05	2.87e-05	8.69e-06	3.47e-0
**	1.~3e-03	2.79e-04	6.84e-05	2.00e-05	7.82e-0
ė	4.59e-03	7.42e-04	1.83e-04	5.33e-05	1.75e-0
5	1.32e-02	2.45e-03	5.58e-04	1.29e-04	4.38e-0
ä l	კ.73დ-02	8.20e-03	1.86e-03	3.87e-04	1.20e-0
3	6.47e-02	2.08e-02	5.69e-03	1.21e-03	4.04e-0
	9.67e-02	2.56e-02	9.64e-03	3.30e-03	1.46e-0.
	9.88e-02	2.56e-02	9.81e-03	3.90e-03	1.94e-0
5	3.88e-02	2.56e-02	9.81e-03	3.90e-03	1.94e-0

	Uge		Altitude [ft]		
[m/s	19500-24500	24500-29500	29500-34500	34500-39500	> 39500
10	0.30	9.00	0.00	0.00	0.00
15	00	0.00	0.00	0.00	0.00
14	1.00	9.24e-09	0.00	0.00	0.00
1.3	9.94e-08	1.31e-08	3.07e-09	4.49e-09	0.00
12	1.52e-07	2.61e-08	6.87e-09	6.34e-09	0.00
11	2.10e-07	5.23e-08	1.72e-08	1.33e-08	0.00
10	3,72e-07	8.47e-08	3.76e-08	4.41e-08	0.00
9	7.956-07	2.09e-07	9.44e-08	9.44e-08	0.00
i.	1.90e-06	4.58e-07	2.41e-07	2.21e-07	0.00
7	5.16e-06	1.26e-06	8.29e-07	6.26e-07	0.00
Ġ.	1.12e-05	4.72e-06	2.25e-06	1.59e-06	0.00
5	2.37e-05	1.19e-05	5.90e-06	4.19e-06	1.13e-05
;	5.89e-05	3.54e-05	1.79e-05	1.34e-05	4.96e-05
3	0.33e-04	1.20e-04	7.05e-05	5.28e-05	2.62e-04
<u>.</u>	7.846+04	4.96e-04	3.27e-04	2.53e-04	1.14e-03
: 1	1.11e-03	6.82e-04	4.17e-04	3.35e-04	1.67e-03
i	1.11e-03	6.82e-04	4.17e-04	3.35e-04	1.67e-03

TABLE 24. DERIVED P, P, AND D, b, VALUES

1	0.70	1	1.40	•	4.764e-03	40000	> 39500
1.51	0.83	2.84	1.55	2.229e-05	1.337e-03	37000	34500- 39500
1.56	0.90	2.65	1.52	2.033e-05	1.220e-03	32000	29500- 34500
1.90	0.96	2.94	1.49	1.682e-05	1.869e-03	27000	24500- 29500
2.24	1.04	5.17	1.47	3,4460-05	2.757e-03	22000	19500- 24500
2.29	1.11	2.98	1.44	5.8196-05	4.783e-03	17000	14500- 19500
1.99	1.23	2.39	1.48	2,959e-04	8.877e-03	12000	9500- 14500
1.87	1.24	2.08	1.38	8.761e-04	5.094e-02	7000	4500- 9500
2.27	1.30	2.37	1.36	1.628e-03	1.888e-01	3000	1500- 4500
•	1.56	-	1.58	ţ	3.797e-01	750	< 1500
b, [m/s EAS]	b, [m/s EAS]	b, (π/s TAS)	b, [m/s TAS]	P ₂	P ₁	Altitude (ft)	Altitude band [ft]

TABLE 25. N(IU, I) AS A FUNCTION OF U, AND ALTITUDE

 $[N_0(0)_{ref} - 8 \text{ km}^{-1}]$

° '					Altitude bend [ft]	[£f]			
[< 1500	1500- 4500	4500- 9500	9500- 14500	14500- 19500	19500- 24500	24500- 29500	29500- 34500	34500- 39500
25	3.290E-07	2.1255-07	1.003E-08	7.089E-09	6.628E-09	2.845E-09	1.738E-10	1.0972-11	6.453E-12
24	6.247E-07	3.341E-07	1.746E-08	1.177E-08	1.026E-08	4.446E-09	2.942E-10	2.084E-11	1.2512-11
23	1.186E-06	5.274E-07	3.058E-08	1.9582-08	1.589E-08	6.949E-09	4.982E-10	3.957E-11	2.427E-11
22	2.251E-06	8.375E-07	S.394E-08	3.263E-08	2.462E-08	1.086E-08	8.438E-10	7.5182-11	4.707E-11
21	4.274E-06	1.340E-06	9.597E-08	5.455E-08	3.8172-08	1.699E-08	1.430E-09	1.429E-10	9.129E-11
20	8.114E-06	2.167E-06	1.725E-07	9.156E-08	5.924E-08	2.658E-08	2.423E-09	2.718E-10	1.7712-10
19	1.540E-05	3.549E-06	3.140E-07	1.545E-07	9.208E-08	4.161E-08	4.112E-09	5.175E-10	3.438E-10
16	2.924E-05	5.907E-06	S.797E-07	2.624E-07	1.4352-07	6.522E-08	6.990E-09	9.870E-10	6.6752-10
17	5.551E-05	1.003E-05	1.087E-06	4.496E-07	2.246E-07	1.024E-07	1.191E-08	1.888E-09	1.298E-09
16	1.054E-04	1.741E-05	2.076E-06	7.790E-07	3.537E-07	1.614E-07	2.040E-08	3.6272-09	2.527E-09
15	2.001E-04	3.101E-05	4.034E-06	1.369E-06	5.624E-07	2.557E-07	3.519E-08	7.015E-09	4.936E-09
17	3.798E-04	5.672E-05	7.986E-06	2.445E-06	9.075E-07	4.088E-07	6.143E-08	1.371E-08	9.690E-09
13	7.211E-04	1.066E-04	1.610E-05	4.452E-06	1.496E-06	6.629E-07	1.093E-07	2.723E-08	1.9192-06
12	1.369E-03	2.053E-04	3.299E-05	8.287E-06	2.539E-06	1.099E-06	2.000E-07	5.535E-08	3.8532-06
11	2.599E-03	4.049E-04	6.868E-05	1.579E-05	4.484E-06	1.881E-06	3.811E-07	1.1612-07	7.912E-06
10	4.934E-03	8.144E-04	1.449E-04	3.081E-05	8.301E-06	3.369E-06	7.656E-07	2.541E-07	1.6818-07
6	9.366E-03	1.665E-03	3.094E-04	6.157E-05	1.620E-05	6.3891-06	1.637E-06	S.846E-07	3.751E-07
8	1.778E-02	3.450E-03	6.671E-04	1.257E-04	3.333E-05	1.292E-05	3.740E-06	1.420E-06	8.9112-07
7	3.376E-02	7.223E-03	1.450E-03	2.619E-04	7.191E-05	2.788E-05	9.075E-06	3.639E-06	2.2742-06
9	6.408E-02	1.524E-02	3.172E-03	S.548E-04	1.613E-04	6.368E-05	2.314E-05	9.772E-06	6.231E-06
5	1.2172-01	3.236E-02	6.976E-03	1.192E-03	3.729E-04	1.521E-04	6.120E-05	2.725E-05	1.816E-05
*	2.310E-01	6.899E-02	1.540E-02	2.590E-03	8.804E-04	3.753E-04	1.660E-04	7.816E-05	5.5492-05
3	4.385E-01	1.4762-01	3.4132-02	5.678E-03	2.109E-03	9.464E-04	4.580E-04	2.287E-04	1.7532-04
2	8.324E-01	3.165E-01	7.580E-02	1.253E-02	5.102E-03	2.420E-03	1.277E-03	6.780E-04	3.6552-04
1	1.580E+00	6.799E-01	1.687E-01	2.782E-02	1.2422-02	6.244E-03	3.583E-03	2.026E-03	1.8502-03
0	3.0002+00	1.463E+00	3.760E-01	6.200E-02	3.036E-02	1.620E-02	1.0092-02	6.100E-03	6.096E-03

FIGURE 1. ONERA DATA BASE: LOAD FACTOR SPECTRUM PER FLIGHT

FIGURE 2. ONERA DATA BASIS: Anz-SPECTRUM FOR B-747, INCLUIDING Anz-0.3.

FIGURE 3. ACMS DATA BASE: LOAD FACTOR SPECTRUM PER FLIGHT.

FIGURE 4. FATIGUEMETER DATA BASE: LOAD FACTOR SPECTRUM PER FLIGHT.

FIGURE 5. COMPARISON OF LOAD FACTOR SPECTRA FOR THREE DATA BASES.

FIGURE 6. COMPARISON OF LOAD FACTOR SPECTRA FOR B-747.

FIGURE 7. ONERA DATA BASIE. U .- EXCEEDANCES PER KM FOR FOUR ALTITUDE BANDS.

FIGURE 8. ONERA DATA BASE. EXCEEDANCE FREQUENCIES OF THREE Us. VALUES AS FUNCTION OF ALTITUDE.

FIGURE 9. ACMS DATA BASIE. U. LEXCEEDANCES PER KM FOR FOUR ALTITUDE BANDS.

FIGURE 10. FATIGUEMETER DATE BASE: U4-EXCHEDANCES PER KM FOR FOUR ALTITUDE BANDS.

FIGURE 11. EXCEEDANCE FREQUENCIES OF TWO GUST VELOCITIES AS A FUNCTION OF ALTITUDE, PERTAINING TO TWO DATA BASES.

FIGURE 12. EXAMPLE OF FIT OF U₄ EXCEEDANCE CURVES FROM THREE DATA BASES. SMOOTH FIT OF ONERA AND ACMS DATA.

FIGURE 13. EXAMPLE OF EIT OF U. EXCEEDANCE CURVES FROM TITREE DIFFERENT DATA BASES: SHIFT OF ONERA CURVE TO THE RIGHT TO OBTAIN FIT WITH ACMS CURVE.

FIGURE 14. U₄ EXCEEDANCE CURVES FOR THE ALTITUDE BAND 0-1500 FT.

FIGURE 15A. U. EXCEEDANCE CURVES FOR THE FIVE LOWEST ALTITUDE BANDS.

FIGURE 15B. U. EXCEEDANCE CURVES FOR THE FIVE HIGHEST ALTITUDE BANDS.

FIGURE 16. ESTIMATION OF PARAMETERS $P_1,\ P_2$ AND $b_1,\ b_2$ FROM THE U_o EXCEEDANCE CURVE.

FIGURE 17. APPROXIMATION OF U, EXCEEDANCE CURVE BY CURVE DEFINED THROUGH P-b VALUES.

FIGURE 18. U, EXCEEDANCE CURVES FOR FIVE LOWEST ALTITUDE BANDS [N₆(o)=8 KM⁺].

FIGURE 19. U, EXCEEDANCE CURVES FOR FIVE HIGHEST ALTITUDE BANDS [N,(0)=8 KM⁻¹].

FIGURE 20. COMPARISON OF UL EXCEEDANCE FIGURES WITH NACA TN4332.

FIGURE 21. COMPARISON OF P-VALUES WITH FAR FIGURES.

FIGURE 22. COMPARISON OF b-VALUES WITH FAR FIGURES.

APPENDIX A-SUMMARY OF REDUCTION PROCEDURES

1. REDUCTION OF ACCELERATIONS TO GUST VELOCITIES.

The classified acceleration peaks and valleys An, are reduced to "derived gust velocities", following a discrete gust approach and a PSD-gust approach respectively:

1.1 DISCRETE SUST.

Each single $\Delta n_{\rm r}$ is reduced to one "gust" U_{de} according to:

$$U_{de} = \frac{\Delta n_z}{\overline{C}} \tag{A.1}$$

with:
$$\overline{C} = \frac{\rho_0 V_E C_{L_\alpha}}{2 \text{ mg/s}} \bullet F_{(\mu_g)}$$
 (A.2)

where
$$F_{i}\mu_{gj} = \frac{.88 \,\mu_{g}}{5.3 + \mu g}$$
 (A.3)

1.2 PSD-GUST.

Each single Δn_z is reduced to $\frac{N_0(0)\,\mathrm{ref}}{N_0(0)}$ "gusts" with magnitude U_σ , according to

$$U_{o} = \frac{\Delta n_{z}}{\Delta n_{z}} \tag{A.4}$$

with
$$\overline{A} = \frac{\rho_0 \ V_E \ C_{L_{\alpha}}}{2 \ mg/s} \bullet F(PSD)$$

where
$$F(PSD) = \frac{11.8}{\sqrt{\pi}} \left(\frac{c}{2L}\right)^{\frac{1}{3}} \sqrt{\frac{\mu_g}{110 + \mu_g}}$$
 (A.6)

3. DEFINITION OF ALTITUDE HANDE.

The altitude conduction of interest in the present analysis are the same as those that will be considered in the analysis of the 10 Fight Load Data to be gathered in the FAA Flight Loads Program. Note that these rands are so intly different from those originally proposed in reference 1.

Astitude Bands (feet):

		<1500
15.00	-	4500
1500	-	9500
** 1, 1	-	14500
14530	-	19500
194. 7	-	24500
1.450	-	29500
1. Yo 1. T	-	34500
3450	-	39500
395		

$$C_{L_{\alpha}} \text{ is calculated as a function of M, } \rho a^{2}, C_{L} \text{ and flap position:}$$

$$C_{L_{\alpha}} = \frac{C_{L_{\alpha \, rig}}}{1 + C_{L_{\alpha \, rig}}} + \Lambda C_{L_{\alpha \, flap}}$$

with, for the B-74° aircraft, K_{L} = 1.23 x 10°4 (m².N°1, degrees) $K_n = 0.31$ (degrees)

where $C_{L_{\alpha\,\,\mathrm{rig}}}$ is the following function of Mach number:

ж	C _L oraș
	(degree ⁻¹)
0.30	0.087
0.40	0.088
0.50	0.090
0.60	0.092
ე. 7 ი	0.093
0.80	0.094
0.85	0.101
0.90	0.118

In the confidential with flaps down the $C_{\rm b}$ value is considerably higher than with flaps up. To the character in lift curve slope as a function of flap angle the following table is used:

flap angle (degrees)	ΔC; α flap (degree ⁻¹)
)	0.000
:	0.005
5	0.015
10	0.017
20	0.019
25	0.020
30	0.020

QU.S. GOVERNMENT PRINTING OFFICE: 1994-504-078-00065