Gaussian Naive Bayes is a simple probabilistic classifier that uses Bayes theorem with independent assumptions between the features to classify data. Let, the classifier has m elements which is denoted with $X = X_1, X_2, ..., X_m$ and n classes which is denoted with $C = c_1, c_2, ..., c_n$. The Bayes theorem is stated in following equation,

$$P(C_i - X_j) = \frac{P(X_j|C_i) * P(X_i)}{P(X_j)}$$

Here,

 C_i = Denotes the class

 X_j = Denotes a single featured element

P(A - B) = Denotes the probability of observing A after B is observed.

P(A) = Denotes the probability of observing A

For multiple feature the equation is changed to,

$$\mathsf{P}(\mathsf{C}_{\mathsf{i}} - -\mathsf{x}_1,\!\mathsf{x}_2,\!\mathsf{x}_3, \; ... \; \; , \; \mathsf{x}_{\mathsf{n}}) = \!\! \frac{P(x_1|C_{\mathsf{i}}) * P(x_2|C_{\mathsf{i}}) * ... * P(x_{\mathsf{n}}|C_{\mathsf{i}})}{P(X_{\mathsf{j}})}$$

Here,

 $x_1, x_2, x_3, \dots, x_n$ are features of X_i .

Gaussian Naive Bayes is really fragile to over fitting without any regularization assumption. Also, it is based on naive assumptions that re not generally concordant with the data.

Gaussian Naive Bias