

ENVC 24: Energy and Environment

Part-3: Non-conventional Energy Resources

Kanyakumari Windmills, India

Pelamis Wave Energy Converter, Scotland

Krafla Geo-thermal Enerrgy, Iceland

■ World energy usage/year ≥ 500 ExaJoules.

- World energy usage/year ≥ 500 ExaJoules.
- Major constituents of dry air by volume %
 - $N_2 = 78.084$, $O_2 = 20.946$, Ar = 0.934, $CO_2 = 0.04$,
 - Ne = 0.001818, He = 0.000524, $CH_4 = 0.000179$.

- World energy usage/year **3500** ExaJoules.
- Major constituents of dry air by volume %
 - $N_2 = 78.084$, $O_2 = 20.946$, Ar = 0.934, $CO_2 = 0.04$,
 - Ne = 0.001818, He = 0.000524, $CH_4 = 0.000179$.
- Water vapour is ~ 0.25% by mass over full atmosphere and 0.001-5% by volume, which also abruptly varies locally according to weather/season.

- World energy usage/year > 500 ExaJoules.
- Major constituents of dry air by volume %

$$N_2 = 78.084$$
, $O_2 = 20.946$, $Ar = 0.934$, $CO_2 = 0.04$,

- Ne = 0.001818, He = 0.000524, $CH_4 = 0.000179$.
- Water vapour is ~ 0.25% by mass over full atmosphere and 0.001-5% by volume, which also abruptly varies locally according to weather/season.
- Layers of the atmosphere <a>

Troposphere
$$\rightarrow 0-12 \, km$$

Stratosphere *
$$\rightarrow$$
 12-50 km

Mesosphere
$$\rightarrow$$
 50 – 80 km

Thermosphere
$$\rightarrow 80-700 \, km$$

Exosphere
$$\rightarrow$$
 700 – 10⁴ km

- World energy usage/year **3500** ExaJoules.
- Major constituents of dry air by volume %

$$N_2 = 78.084$$
, $O_2 = 20.946$, $Ar = 0.934$, $CO_2 = 0.04$,

- Ne = 0.001818, He = 0.000524, $CH_4 = 0.000179$.
- Water vapour is ~ 0.25% by mass over full atmosphere and 0.001-5% by volume, which also abruptly varies locally according to weather/season.
- Layers of the atmosphere

Troposphere
$$\rightarrow 0-12 km$$

Stratosphere *
$$\rightarrow$$
 12-50 km

Mesosphere
$$\rightarrow$$
 50 – 80 km

Thermosphere
$$\rightarrow 80-700 \, km$$

Exosphere
$$\rightarrow$$
 700 – 10⁴ km

Approximately 80% mass of Earth's atmosphere is in the Troposphere.

- World energy usage/year ≥ 500 ExaJoules.
- Major constituents of dry air by volume %

$$N_2 = 78.084$$
, $O_2 = 20.946$, $Ar = 0.934$, $CO_2 = 0.04$,

$$Ne = 0.001818$$
, $He = 0.000524$, $CH_4 = 0.000179$.

■ Water vapour is ~ 0.25% by mass over full atmosphere and 0.001-5% by volume, which also abruptly varies locally according to weather/season.

Layers of the atmosphere

sphere
$$\rightarrow$$
 Earth Radius(R) \rightarrow 6371 Km

 $\rightarrow 0-12 \, km$ **Troposphere**

$$0-12 km$$
 Earth+Troposphere Radius(R') → 6383 Km

Stratosphere * \rightarrow 12-50 km

Earth Volume
$$\Rightarrow \frac{4}{3}\pi R^3 \sim 1.083 \times 10^{21} m^3$$

Troposphere Volume $\Rightarrow \frac{4}{3}\pi R^{3} - \frac{4}{3}\pi R^3$

Mesosphere \rightarrow 50 - 80 km

$$=6.133 \times 10^{18} \, m^3$$

Thermosphere \rightarrow 80 – 700 km

Approximately 80% mass

 \rightarrow 700 – 10⁴ km **Exosphere**

of Earth's atmosphere is in

the Troposphere.

Atmosphere

As Volume of Troposphere is $6.133 \times 10^{18} \, m^3$, then 0.04% of CO_2 accounts for $2.453 \times 10^{15} \, m^3$. To moderate on Greenhouse gas, estimate have to add on this number!! 1 mole of CO_2 corresponds to 22.4 litre or $22.4 \times 10^{-3} \, m^3$ at S.T.P.(1atm P, 0°C T).

$$\frac{0.04}{100} \times 6.133 \times 10^{18} = 2.453 \times 10^{15} m^3.$$

Atmosphere

- As Volume of Troposphere is $6.133 \times 10^{18} \, m^3$, then 0.04% of CO_2 accounts for $2.453 \times 10^{15} \, m^3$. To moderate on Greenhouse gas, estimate have to add on this number!! 1 mole of CO_2 corresponds to 22.4 litre or $22.4 \times 10^{-3} \, m^3$ at S.T.P.(1atm P, 0°C T).
- World energy usage/year \triangleright 500 ExaJoules. So, heat of formation of CO_2 is $\triangle H = -394 \, kJ/mol$ and therefore CO_2 emission amounts to an energy release/year $\sim \frac{5 \, x \, 10^{20} \, x \, 22.4 \, x \, 10^{-3}}{3.94 \, x \, 10^5} = 2.843 \, x \, 10^{13} \, m^3$ of CO_2/yr .

Atmosphere

- As Volume of Troposphere is $6.133 \times 10^{18} \, m^3$, then 0.04% of CO_2 accounts for $2.453 \times 10^{15} \, m^3$. To moderate on Greenhouse gas, estimate have to add on this number!! 1 mole of CO_2 corresponds to 22.4 litre or $22.4 \times 10^{-3} \, m^3$ at S.T.P.(1atm P, 0°C T).
- World energy usage/year ≥ 500 ExaJoules. So, heat of formation of CO_2 is $\triangle H = -394 \, kJ/mol$ and therefore CO_2 emission amounts to an energy release/year $\sim \frac{5 \, x \, 10^{20} \, x \, 22.4 \, x \, 10^{-3}}{3.94 \, x \, 10^5} = 2.843 \, x \, 10^{13} \, m^3$ of CO_2/yr .
- Time required to double the amount of CO_2 in the atmosphere at the present usage is $\frac{2.453 \times 10^{15}}{2.843 \times 10^{13}} = \frac{86 \text{ years}}{2.843 \times 10^{1$