

Wykonawcy: Wrocław, dnia 24.03.2025

Imię i nazwisko: Oskar Krawczyk, Kacper Wróblewski

Nr albumu: 273030, 272952

Grupa: 1

Kierunek Specjalność: ITE IMT Rok studiów: III, semestr: VI Stopień studiów: I stopnia

Prowadzący: dr. inż. Jacek Cichosz

Cyfrowe przetwarzanie sygnałów i obrazów Laboratorium 1

Spis treści:

1. Cwiczenie 1	3
1.1 Wstęp	3
1.2 Wyniki	3
2. Ćwiczenie 2	5
2.1 Wstęp	5
2.2 Generacja sygnału sinusoidalnego	5
2.3 Dyskretna transformata Fouriera	6
2.4 Generacja sygnału złożonego z dwóch sygnałów sinusoidalnych	6
2.5 Wpływ różnych częstotliwości próbkowania na sygnał	7
2.6 Odwrotna transformata Fouriera	8
3. Ćwiczenie 3	9
3.1 Wstęp	9
3.2 Wczytanie sygnału i wyświetlenie	9
3.3 Dyskretna transformata Fouriera	10
3.4 Odwrotna transformata Fouriera	10
4. Ćwiczenie 4	10
4.1 Wstęp	10
4.2 Wczytanie sygnału i analiza jego widma	11
4.3 Filtracja dolnoprzepustowa (60 Hz)	12
4.4 Filtracia górnoprzepustowa (5 Hz)	13

1. Ćwiczenie 1

1.1 Wstęp

Celem zadania było stworzenie skryptu w Pythonie umożliwiającego wczytywanie i wizualizację sygnałów. Program miał pozwalać na:

- Wczytanie danych sygnałowych z pliku,
- Wizualizację całego sygnału oraz wybranego przedziału czasowego,
- Skalowanie osi wykresów i ich opis,
- Zapis dowolnego wycinka sygnału do pliku o podanej nazwie.

1.2 Wyniki

2. Ćwiczenie 2

2.1 Wstęp

Celem ćwiczenia było zapoznanie się z działaniem transformaty Fouriera (FFT) oraz odwrotnej transformaty Fouriera (IFFT) w języku Python przy użyciu biblioteki NumPy.

2.2 Generacja sygnału sinusoidalnego

Generowanie sygnału sinusoidalnego o częstotliwości 50 Hz sinFrequency50Hz = 50 # Częstotliwość w Hz sinSignal50Hz = np.sin(2 * np.pi * sinFrequency50Hz * t)

2.3 Dyskretna transformata Fouriera

2.4 Generacja sygnału złożonego z dwóch sygnałów sinusoidalnych

```
# Generowanie sygnału mieszanego z 50 Hz i 60 Hz
sinFrequency60Hz = 60
sinSignal60Hz = np.sin(2 * np.pi * sinFrequency60Hz * t)
mixedSinSignal = sinSignal50Hz + sinSignal60Hz
```


2.5 Wpływ różnych częstotliwości próbkowania na sygnał

2.6 Odwrotna transformata Fouriera

3. Ćwiczenie 3

3.1 Wstęp

Celem ćwiczenia jest obserwacja widma sygnału EKG. Tak jak w zadaniu poprzednim wymagano również wykonania transformaty Fouriera w celu zbadania widma amplitudowego sygnału jak również odwrotnej transformaty Fouriera do zbadania zmian w rekonstrukcji sygnału.

3.2 Wczytanie sygnału i wyświetlenie

3.3 Dyskretna transformata Fouriera

3.4 Odwrotna transformata Fouriera

4. Ćwiczenie 4

4.1 Wstęp

Celem ćwiczenia było przetestowanie działania filtrów w celu eliminacji zakłóceń z sygnału EKG. Do tego celu użyto filtrów dolnoprzepustowych i górnoprzepustowych. Filtracja miała na celu usunięcie zakłóceń związanych z siecią zasilającą oraz eliminację pływania linii izoelektrycznej.

4.2 Wczytanie sygnału i analiza jego widma

W pierwszym kroku wczytaliśmy dane z pliku tekstowego zawierającego sygnał EKG z nałożonymi zakłóceniami. Sygnał zawierał zarówno zakłócenia o niskiej, jak i wysokiej częstotliwości, które należało usunąć.

Po wczytaniu danych, wykreśliliśmy wykres czasowy sygnału EKG z zakłóceniami, który obrazuje jego przebieg w funkcji czasu.

Zostały również obliczone i wykreślone jego widmo amplitudowe. Widmo amplitudowe zostało obliczone za pomocą szybkiej transformacji Fouriera, a następnie wyświetlone w zakresie dodatnich częstotliwości, ponieważ transformata jest symetryczna.

4.3 Filtracja dolnoprzepustowa (60 Hz)

Aby usunąć zakłócenia pochodzące z sieci zasilającej (częstotliwość 50 Hz), zastosowaliśmy filtr dolnoprzepustowy o częstotliwości granicznej 60 Hz. Zostały wyliczone parametry filtra (częstotliwość odcięcia oraz rząd), a następnie zastosowaliśmy filtr Butterwortha.

Wyniki filtracji przedstawiliśmy na poniższych wykresach. Analiza wykazała, że częstotliwości powyżej 60 Hz zostały znacząco wytłumione.

4.4 Filtracja górnoprzepustowa (5 Hz)

W ostatnim kroku zastosowaliśmy filtr górnoprzepustowy o częstotliwości granicznej 5 Hz, aby usunąć pływanie linii izoelektrycznej. Wykresy sygnału przed i po filtracji zostały porównane, a także obliczone widmo amplitudowe po zastosowaniu filtra górnoprzepustowego.

Łatwo można zauważyć, że w wyniku tych dwóch filtrowań uzyskaliśmy efekt filtracji pasmowej [5 Hz, 60 Hz]. Widmo i różnica sygnału po tej filtracji ukazana jest na poniższym wykresie.

