

Exploring Text Representations

Week #2 - 18 Sept '24 NLP Lab

NLP Lab Project : Build your own GPT

Text Processing and Bag of Words Mode1

Theory of Word Embeddings: Word2Vec, GloVe

Transformer Model, Advanced Transformers: GPT, BERT

Custom Language Model using Prompt Engineering, RAG

N-grams and

TF-IDF

RNNs: LSTM, GRU; Attention Mechanisms

Fine-Tuning, SFT, Continued Pretraining

1. Bag of Words (BoW) Model

1.1 Introduction to Bag of Words (BoW)

Definition: A BoW model represents text as a collection of word frequencies or occurrences without considering grammar and word order.

How it works:

- Vocabulary Creation: Create a list of all unique words (vocabulary) from the text corpus.
- Vectorization: Convert text documents into vectors of word counts or binary values (presence/absence).

1.1 Introduction to Bag of Words (BoW)

Example:

Documents:

- "NLP is fun"
- "I love NLP"

Vocabulary: ["NLP", "is", "fun", "I", "love"]

BoW representation:

- Doc 1: [1, 1, 1, 0, 0]
- Doc 2: [1, 0, 0, 1, 1]

1.2 Advantages and Limitations of BoW

Advantages

- Simple and easy to implement.
- Works well with smaller datasets.
- Effective for text classification tasks.

Limitations

- Ignores the order and semantics of words.
- Can lead to a sparse matrix for large vocabularies.
- Does not handle synonyms well.
- Sensitive to the presence of stopwords and noisy data.

1.3 Bow Model Practical Applications

Text Classification: Use BoW to convert text into numerical format for machine learning models (e.g., spam detection).

Sentiment Analysis: Analyze sentiment of reviews or social media posts using BoW and text preprocessing techniques.

Information Retrieval: Create search algorithms that match queries to documents based on word frequencies.

Recommendation Systems: Build simple recommendation systems based on text similarity using BoW vectors.

2. Term Frequency - Inverse Document Frequency

2.1 TF-IDF: Weighing words for Text Analysis

Term Frequency (TF): Measures how often a term appears in a document.

Inverse Document Frequency (IDF): Weights the term based on its rarity across all documents.

$$TF-IDF(t,d) = TF(t,d) * IDF(t)$$

Helps prioritize important, unique words in documents while downplaying common terms.

2.2 Term Frequency

$$\mathrm{TF}(t,d) = \frac{\mathrm{Frequency\ of}\ t\ \mathrm{in}\ d}{\mathrm{Total\ words\ in}\ d}$$

Example:

Documents	Text	Total number of words in a document
А	Jupiter is the largest planet	5
В	Mars is the fourth planet from the sun	8

Words	TF (for A)	TF (for B)	
Jupiter	1/5	0	
Is	1/5	1/8	
The	1/5	2/8	
largest	1/5	0	
Planet	1/5	1/8	
Mars	0	1/8	
Fourth	0	1/8	
From	0	1/8	
Sun	0	1/8	

2.3 Inverse Document Frequency

$$ext{IDF}(t) = \log \left(rac{ ext{Total Documents}}{1 + ext{Number of Documents containing } t}
ight)$$

Example:

Documents	Text	Total number of words in a document
А	Jupiter is the largest planet	5
В	Mars is the fourth planet from the sun	8

Words	TF (for A)	TF (for B)	IDF
Jupiter	1/5	0	In(2/1) = 0.69
Is	1/5	1/8	In(2/2) = 0
The	1/5	2/8	In(2/2) = 0
largest	1/5	0	In(2/1) = 0.69
Planet	1/5	1/8	In(2/2) = 0
Mars	0	1/8	In(2/1) = 0.69
Fourth	0	1/8	In(2/1) = 0.69
From	0	1/8	In(2/1) = 0.69
Sun	0	1/8	In(2/1) = 0.69

2.4 Advantages and Limitations of TF-IDF

Advantages

- Weighs words based on importance, discounts common words.
- Improves Search and Retrieval Relevance.

Limitations

- Context Ignorance
- Synonym Problem
- Cannot Handle Complex Relationships

3. N-Grams (Language Models)

3.1 What are N-grams in context of Text Representation?

Definition: An n-gram is a contiguous sequence of 'n' items (words or characters) from a given text or speech.

- Unigram (n = 1): Single words (e.g., "machine")
- Bigram (n = 2): Two-word sequences (e.g., "machine learning")
- Trigram (n = 3): Three-word sequences (e.g., "machine learning models")

Text Representation Intuition: We calculate the frequency of groups of words.

Advantage: Captures Semantic Meaning.

Disadvantage: Out of Vocabulary Words.

3.2 What are Language Models?

Definition: Models that assign a probability to each possible next word. Language models can also assign a probability to an entire sentence, telling us that the following sequence has a much higher probability of appearing in a text.

Goal: Compute the probability of a sentence or sequence of words.

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

Related Task: Probability of an upcoming word.

$$P(w_5|w_1,w_2,w_3,w_4)$$

3.3 How to compute P(W)?

• How to compute the joint probability:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

- Example P(its, water, is, so, transparent, that) ?
- Intuition: Chain Rule of Probability

$$P(w_1 w_2 ... w_n) = \prod_{i} P(w_i | w_1 w_2 ... w_{i-1})$$

P("its water is so transparent") = P(its) × P(water|its) × P(is|its water) × P(so|its water is) × P(transparent|its water is so) x P(that|its water is so transparent)

3.4 How to estimate these probabilities?

P(blue|The water of Walden Pond is so beautifully)

 $\frac{C(\text{The water of Walden Pond is so beautifully blue})}{C(\text{The water of Walden Pond is so beautifully})}$

Can we just count and divide?

- No! Too many possible sentences.
- > We will never see enough data to estimate these.

Solution: Markov Assumption!

We can approximate the history by just the last few words

3.5 What are N-Grams Language Models?

Definition: We also (in a bit of terminological ambiguity) use the word 'n-gram' to mean a probabilistic model that can estimate the probability of a word given the n-1 previous words, and thereby also to assign probabilities to entire sequences.

Unigram Model:

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

Bigram Model:

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx P(w_i | w_{i-1})$$

3.6 Key Points about N-Gram Language Model

 In general this is an insufficient model of language because language has long-distance dependencies.

Example: "The computer(s) which I had just put into the machine room on the fifth floor is(are) crashing."

- We can still get away with N-Grams as they :
 - Capture Local Context
 - Simple Intuitive
 - Computationally Efficient
- We do everything in log space :
 - Avoid underflow
 - Also adding is faster than multiplying
- As 'n' increases, the model needs a large amount of training data to cover all
 possible word combinations. Also, they don't capture the meaning or relationships
 beyond word proximity.

Kahoot Time!

Group Picture!