Übung 2

Max Wisniewski, Alexander Steen

Auf	gabe	1.
1141	5000	

Aufgabe 2.

Zu zeigen: Ein Baum G mit Maximalgrad $\Delta(G)$ hat mindestens $\Delta(G)$ Blätter. Die Aussage ist offensichtlich falsch für Bäume mit unendlich vielen Knoten (man betrachte z.B. einen unendlichen Pfad). Darum beschränken wir uns auf eine endliche Anzahl von Knoten.

Beweis:

Sei G = (V, E) ein Baum mit $|V| < \omega$ und Maximalgrad $\Delta(G)$. Dh. es existiert ein Knoten $v \in V$ mit $d(v) = \Delta(G) =: d$. Falls $\Delta(G) = 0$ folgt die Behauptung direkt, also nehmen wir im folgenden $\Delta(G) \geq 1$ an. Seien G_1, \ldots, G_d die Unterbäume von v; dann gilt $1 \leq |G_i| < \omega$. Seien \tilde{G}_i die Bäume die man durch Hinzufügen von (1) v und (2) der Originalkante von v nach G_i aus G_i enthält. Nach dem "Blattlemma" (2.5) haben alle \tilde{G}_i jeweils mindestens 2 Blätter. Betrachten wir also wieder den Originalgraphen $G = \bigcup \tilde{G}_i$, kann jedes \tilde{G}_i höchstens ein Blatt verloren haben (nämlich v falls es nicht selber ein Blatt in G ist). Damit enthält G mindestens $\Delta(G)$ Blätter (in jedem G_i eines).

kann jedes G_i höchstens ein Blatt verloren haben (nämlich v falls es nicht selber	ein
Blatt in G ist). Damit enthält G mindestens $\Delta(G)$ Blätter (in jedem G_i eines).	
Aufgabe 3.	
Beweis:	
	П
	_
Aufgabe 4.	
Beweis:	