Machine Learning for IoT

LAB2: Pre-processing

LAB1-2: Smart Battery Monitoring (Simplified)

LAB2 Content

- Timeseries Processing:
 - Compression
 - Retention
 - Aggregation
- Audio Processing:
 - Resampling
 - Discrete Fourier Transform
 - Short-Time Fourier Transform
 - Mel Spectrogram
 - Mel-Frequency Cepstral Coefficients

LAB2 Content

• Timeseries Processing:

- Compression
- Retention
- Aggregation
- Audio Processing & Feature Extraction:
 - Resampling
 - Padding
 - Normalization
 - Fourier Transform
 - Short-Time Fourier Transform
 - Log-Mel Spectrogram
 - Mel-Frequency Cepstral Coefficients

Covered in lectures

Timeseries Processing

Redis TimeSeries Memory Model

- A Redis TimeSeries consists of a list of linked chunks
- Each chunk contains
 - Header
 - Information needed by Redis to manage the data
 - A set of Records
 - Each record consists of:
 - Timestamp: 64-bit (8 bytes)
 - Value: 64-bit (8 bytes)
- Chunk size is set when creating the TimeSeries
 - Default: 4 KB
 - Smaller → Less Memory, Slower Read/Write
 - Larger → More Memory, Faster Read/Write

CHUNK:

KB

TimeSeries Compression

Timestamp Compression:

- Lossless compression
 - Gorilla algorithm

Time 1 5000) 5000) 0 -- 10000) 5000) 0 -- 2000) 5000) 0

Value Compression:

E (2)	double		XOR
25	0x41c80000	1	0.000000
25	0x41c80000	2	0x000000
25.5	0x41cc0000	2	0x00040000
26.625	0x41d50000	2	0x00130000
26.14	0x41d11eb8	2	0x00043333

TimeSeries Compression

- Lossless compression
 - Gorilla algorithm
- Memory savings:
 - Depends on data

• Best-case: 98.4%

Worst-case: 113.3%

Memory increases! But rare.

• Average-case: 90.0%

• Compression improves performance due to a lower number of memory accesses

• **Note:** Compression is active by default

Example

- Which is the memory usage to store temperature every 5 seconds after 1 month?
 - 1 month = 30 days * 24 hours * 60 minutes * 60 seconds = 2592000 seconds
 - # of records = 2592000 / 5 = 518400
 - Uncompressed Memory \approx 518400 * 16 bytes = 8294400 bytes = 7.910 MB
 - Compressed Memory $\approx 7.910 \text{ MB} 90\% = 0.791 \text{ MB}$
 - Approximations:
 - We neglected the header size
 - We neglected that the memory usage is always a multiple of the chunk size
 - We considered the average compression ratio

TimeSeries Aggregation

- Lossy Compression
- Aggregation Parameters:
 - Bucket Duration

ML4IoT

- Aggregation type: avg, sum, min, max, range, count, first, last.
- Note: Aggregation never changes the original timeseries but creates a new one

TimeSeries Retention

- You can prevent your timeseries growing indefinitely by setting a maximum age for samples compared to the last event time (in milliseconds).
- By default, retention is 0
 - i.e., the timeseries will be never trimmed