章节 PART TWO

> 系统总体设计 方案

系统总体设计方案

系统硬件框图

软件设计方案

软件功能框图

03

章节 PART THERE

系统硬件设计

3.1 MCU模块

STC8
1 P1.2 2 P1.3 P1.4/I2CSDA P1.5/I2CSCL P1.6 P1.7 P5.4 VCC P5.5 GND/ADC_VREF-

STC8F2K16S2原理图

本设计三部分均采用了STC公司生产的 STC8F2K16S2型号单片机,采用TSS0P20封装。针 对本项目其有以下优点:

- 1. 内置高精度可调时钟。
- 2. 带有硬件IIC,方便控制OLED屏等外设。
- 3. 可使用USB直接下载程序无需任何外围芯片。
- 4. 2.0-5.5V宽工作电压。
- 5. 带有丰富的定时器、中断系统、ADC等。
- 6. 有大量实际应用,可靠性较高。成本极低。

3.2 无线通信模块

LC12S无线通讯模块原理图和实物图

监控端、测量端、控制端之间的无线通信采用LC12S串口透传模块,LC12S是深圳市凌承芯电子有限公司生产的无线串口通信模块。针对本项目其优点如下:

- 1. 2.4G频段,可设置128个信道。
- 2. 通讯距离为视距120米,满足目前应用场景。
- 3. 采用串口透明传输,开发方便。
- 4. 有大量实际应用,可靠性较高。
- 5. 采购成本低。

3.3.1 OLED显示模块

OLED屏幕外围电路及实物图

采用驱动芯片为SSD1306的0LED屏幕作为显示模块,采用IIC与单片机进行通信,具有自发光、体积小巧、外围电路简单的特点,用于监控端显示当前系统状态、液位数据、提示信息、菜单等。

3.3.2 电源模块

监控端电源模块电路原理图

采用Micro USB接口输入5V电源,使用AMS1117实现降压至3.3V,为MCU和无线通讯模块供电。

3.3.3 蜂鸣器模块

蜂鸣器模块电路原理图

采用SS8550三极管驱动有源蜂鸣器,因蜂鸣器为感性元件,反向并联二极管1N4148保护电路。

3.3.5 监控端外壳

监控端外壳设计图及实物图

采用SolidWorks绘制监控端外壳,使用光固化3D打印机制作了实物。

监控端外壳分为上壳和后盖,根据PCB外形设计主体外形,根据OLED的规格尺寸、按键的规格尺寸设计了对应的PCB安装台,根据蜂鸣器的规格尺寸在后盖上设计了开孔,根据micro USB数据线的外形规格设计了对应的开孔。两部分外壳及PCB通过四颗螺丝连接固定。

3.4 测量端硬件设计

3.4.1 超声波测距模块

超声波测距模块原理图及实物图

采用HC-SR04超声波测距模块, 针对本项目优点:

- 1. 探测距离为2cm-450cm,精度为3mm,性能满足要求。
- 2. 使用电压为5V,方便与本项目所使用单片机连接开发使用。
- 3. 应用较多,有大量资料供参考。
- 4. 低成本。

3.4 测量端硬件设计

3.4.3 信道选择模块

信道选择模块原理图及实物图

采用拨码开关选择信道,上电后MCU读取拨码开关数据,设置通讯模块的频道,实现同一区域内多套设备同时工作相互不干扰的作用。

3.5 控制端硬件设计

3.5.1 电源部分

控制端电源部分电路图

控制端电源部分采用了一个220V转5V模块为继电器供电等,同时使用了AMS1117将5V降压至3.3V给无线通讯模块和MCU供电。

章节 PART FOUR

系统软件设计

4.1.1 监控端主程序

测量端主程序流程图

4.1.2 数据接收处理相关子程序

串口中断子程序流程图

数据接收处理子程序流程图

4.1.3 数据发送子程序

监控端、测量端和控制端之间的通信协议如下表所示。

起始码	起始码	本机类型	目标类型	数据	数据	重复发送2次	结束码	结東码
0xAA	0x5A	0xAB	0xCD	0x12	0x34		0xCC	0xC3
		监控端:(测量端:(控制端:(DxCD			除起始码和结 束码的有效数 据重复发三遍		

监控端、测量端和控制端之间的通信协议

4.1.4 业务逻辑子程序

监控端业务子程序根据实际使用场景设计,只据实际使用场景设计,只操作相应标志,OLED提示语显示、蜂鸣器报警、发送水泵控制命令等操作的实际执行,由后续相应子程序完成。

4.1.4 业务逻辑子程序

4.1.5 OLED显示子程序

OLED显示子程序流程图

4.1.6 按键扫描子程序

按键扫描子程序流程图

4.2 测量端软件设计

4.2.1 测量端主程序

测量端主程序流程图

4.2 测量端软件设计

4.2.2 超声波测距子程序

超声波测距模块时序图

超声波测距子程序流程图

4.3 控制端软件设计

- 1. 完善通信频道修改功能
- 2. 增加简易模式
- 3. 优化代码、增加自检功能
- 4. 监控端供电方式改进
- 5. 控制端驱动方式改进

