Odpowiedzi i schematy oceniania

Arkusz 13

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	C.	$\left(-\frac{1}{2}\right)^{-2} = (-2)^2 = 4$	
2.	A.	Jeśli x – wyjściowa cena towaru, to po pierwszej obniżce cena	
		wynosi $0.8x$, a po drugiej obniżce $0.7 \cdot 0.8x = 0.56x$, czyli cenę	
		obniżono o 44%.	
3.	C.	Liczbami wymiernymi są 0, (28), $\sqrt[3]{64} = 4, \frac{2}{3}$.	
4.	В.	$\log_2 2 < \log_2 3 < \log_2 4 \Rightarrow 1 < \log_2 3 < 2 \Rightarrow \log_2 3 \in (1, 2)$	
5.	C.	Odejmujemy przedział otwarty, zatem do różnicy będą należały	
		liczby 0 i 4.	
6.	A.	$ x+9 = 4 \Leftrightarrow x+9 = 4 \lor x+9 = -4 \Leftrightarrow x = -5 \lor x = -13$	
7.	В.	Skorzystaj ze wzoru skróconego mnożenia na różnicę sześcianów.	
8.	C.	$f(-3) = -(-3)^2 + 1 = -8$	
9.	C.	Ramiona paraboli będącej wykresem trójmianu po lewej stronie	
		nierówności skierowane są do dołu, a miejscami zerowymi są liczby	
		$x_1 = -2, x_2 = 5.$	
10.	A.	Skorzystaj z własności wartości bezwzględnej.	
11.	C.	$x_W = 3 \Rightarrow -\frac{b}{4} = 3 \Rightarrow b = -12$	
12.	B.	$(2m+1)(-3)-9=0 \Rightarrow -6m-3-9=0 \Rightarrow m=-2$	
13.	A.	Wzór wyrazu ogólnego można przekształcić do postaci $a_n = 1 + \frac{12}{n}$,	
		więc wyrazy całkowite mają wskaźniki będące dodatnimi dzielnikami	
		liczby 12. Wyrazami całkowitymi są zatem wyrazy: pierwszy, drugi,	
		trzeci, czwarty, szósty, dwunasty.	
14.	C.	$a_n = 5 + (n-1)3 \Rightarrow a_n = 3n + 2$	

15.	В.	$x^2 = (x-5)(x+6) \Rightarrow x = 30$
16.	D.	$\cos^2 \alpha = 1 - (2\sqrt{3} - 3)^2 = 1 - 12 + 12\sqrt{3} - 9 \Rightarrow \cos \alpha = \sqrt{12\sqrt{3} - 20}$
17.	C.	$ BC = \sqrt{169 - 144} = 5 \Rightarrow tg\alpha = \frac{5}{12}$
18.	A.	$\frac{a\sqrt{3}}{3} = 4\sqrt{3} \Rightarrow a = 12 \Rightarrow P = 36\sqrt{3}$
19.	C.	Kąt OAB ma miarę 20° , a kąt między prostą l i promieniem OA jest prosty.
20.	B.	$V_1 = \frac{1}{3}\pi r^2 h \wedge V_2 = \frac{1}{3}\pi \cdot 4r^2 \cdot \frac{1}{2}h \Rightarrow V_2 = 2V_1$
21.	В.	$\bar{x}_{w} = \frac{5 \cdot (-2) + 5 \cdot 4 + 8 \cdot (-1) + 8 \cdot 3}{2 + 4 + 1 + 3} = 2,6$

Zadania otwarte

Numer zadania	Modelowe etapy rozwiązywania zadania	Liczba punktów
22.	Zapisanie równań: $\frac{-4+x}{2} = 5 \wedge \frac{-7+y}{2} = -1.$	1
	Rozwiązanie równań i podanie odpowiedzi: $B = (14, 5)$.	1
23.	Wyznaczenie równania prostej $AB: y = 3x - 1$.	1
	Sprawdzenie, że punkt C należy do prostej $AB:11=3\cdot 4-1$.	1
24.	Wyznaczenie współczynników kierunkowych prostych: $a_l=-2,a_k=-\frac{m}{3}.$	1
	Wyznaczenie parametru m , tak aby proste były prostopadłe: $m = -\frac{3}{2} .$	1
25.	Zastosowanie wzorów skróconego mnożenia: $4x^2 - 12x + 9 < 9x^2 + 24x + 16 - 5(x^2 - 4)$.	1
	Zredukowanie wyrazów podobnych i podanie	1

	odpowiedzi: $x \in \left(-\frac{3}{4}, +\infty\right)$.	
26.	Zapisanie układu równań: $\begin{cases} a_1 + r = -3 \\ a_1 + 9r = 21 \end{cases}$	1
	Rozwiązanie układu równań: $\begin{cases} a_1 = -6 \\ r = 3 \end{cases}$.	1
27.	Narysowanie wykresu funkcji. krzywa wykładnicza przesunięta o	1
	3 jednostki w dół.	
	Zapisanie zbioru wartości funkcji: $W = (-3, +\infty)$.	1
28.	Wykorzystanie wzoru na tangens i doprowadzenie lewej strony	1
	nierówności do wspólnego	
	mianownika: $L = \frac{\cos^2 \alpha + \sin \alpha (1 + \sin \alpha)}{(1 + \sin \alpha)\cos \alpha}$.	
	Wykazanie tezy zadania: $L = \frac{\sin \alpha + 1}{(1 + \sin \alpha)\cos \alpha} = \frac{1}{\cos \alpha} = P$.	1
29.	Wprowadzenie oznaczeń i zapisanie układu równań:	2 (po 1
	x, y – długości przekątnych rombu,	punkcie za
	α – kąt ostry rombu,	każde
	$\int x + y = 34$	równanie)
	$\begin{cases} x + y = 34 \\ \left(\frac{x}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = 169 \end{cases}$	
	Doprowadzenie układu do równania kwadratowego:	1
	$x^2 - 34x + 240 = 0.$	
	Rozwiązanie układu równań: $\begin{cases} x = 10 \\ y = 24 \end{cases} \lor \begin{cases} x = 24 \\ y = 10 \end{cases}$	1
	Wyznaczenie pola rombu: $P = 120$.	1
	Wyznaczenie sinusa kąta ostrego rombu: $\sin \alpha = \frac{120}{169}$.	1
30.	Wprowadzenie oznaczeń i zapisanie układu równań:	2 (po 1
	V – rzeczywista prędkość Marcina,	punkcie za
	$\begin{cases} (V+x) \cdot 6 = 24 \\ (V-x) \cdot 8 = 24 \end{cases}$	każde
	$\int (V-x)\cdot 8 = 24$	równanie)

	Wyznaczenie prędkości Marcina: V = 3,5 km/godz.	1
31.	Wykonanie rysunku z oznaczeniami lub wprowadzenie	1
	dokładnych oznaczeń:	
	a − druga krawędź podstawy,	
	d − przekątna podstawy,	
	h – wysokość graniastosłupa.	
	Wyznaczenie przekątnej podstawy: $d = 12$.	
	Wyznaczenie drugiej krawędzi podstawy: $a = 4\sqrt{5}$.	1
	Wyznaczenie wysokości graniastosłupa: $h = 12\sqrt{3}$.	1
	Wyznaczenie objętości graniastosłupa: $V = 384\sqrt{15}$.	1
	Wyznaczenie pola powierzchni całkowitej	1
	prostopadłościanu: $P_c = 32(2\sqrt{5} + 6\sqrt{3} + 3\sqrt{15})$.	