Stwierdzenie 1. $C_i(\tilde{X}) \simeq (\ell_2(G))^{\alpha_i}$, gdzie α_i to liczba i-sympleksów X, więc $0 \leqslant \beta_i(X) \leqslant \alpha_i$.

Stwierdzenie 2. $p: \bar{X} \to X$ skończone nakrycie, to $\beta_i(\bar{X}) = m\beta_i(X)$.

Wniosek 3. Jeśli X nakrywa siebie nietrywialnie, to $\forall_i \beta_i(X) = 0$.

Twierdzenie 4.
$$\chi(X) = \sum_{i} (-1)^{i} \beta_{i}(X) (= \sum_{i} (-1)^{i} b_{i}(X) = \sum_{i} (-1)^{i} \alpha_{i})$$

Wniosek 5 (nierówność Morse'a). X spójny Δ -kompleks ze skończonym (k+1)-szkieletem, wtedy $\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \ge \beta_k - \beta_{k-1} + \ldots + (-1)^k \beta_0$

Twierdzenie 6. Istnieje model K(G,1) (przestrzeń Eilenberga-Maclane'a), który jest w każdym wymiarze skończonym kompleksem.

Definicja 7 (ℓ_2 -liczby Bettiego grupy G). $\beta_i(G) = \beta_i(K(G,1))$

Przykład 8.
$$K(\mathbb{Z}, 1) = S^1$$
, $K(\mathbb{Z}_2, 1) = \mathbb{R}P^{\infty}$, $K(\mathbb{F}_n, 1) = \bigwedge_1^n S^1$, $K(G \times H, 1) = K(G, 1) \times K(H, 1)$

Definicja 9. G ma typ F_n , jeśli istnieje model K(G,1), który ma skończone szkielety w wymiarach i dla $i \leq n$.

Gma typ $F_{\infty},$ jeśli ma typ F_n dla każdego n.

Wniosek 10. Z konstrukcji K(G,1) przez dolepianie komórek wynika, że

- G skończenie generowana, to G ma typ F_1 ,
- G skończenie prezentowalna, to G ma typ F_2 .

Wniosek 11. Dla G typu F_n możemy zdefiniować $\beta_i(G) = \beta_i(K(G,1)^{(n)})$ dla i < n. W szczególności $\beta_1(G)$ jest dobrze zdefiniowane, gdy G jest skończenie prezentowalna.

Dualność Poincaré

X spójny skończony Δ -kompleks, $\pi_1(X) = G$, $K(\tilde{X})$ kompleks łańcuchowy \tilde{X} .

Definicja 12. ${}^nDK_j(\tilde{X}) = \operatorname{Hom}_G(K_{n-j}(\tilde{X}), \mathbb{Z}[G]) - \operatorname{kompleks} G$ -modułów, $(xf)(c) = f(c)x^{-1}$ dla $x \in G, f \in {}^nDK_j(\tilde{X}).$

Definicja 13. X jest $wirtualnym\ PD^n$ -kompleksem, jeśli istnieje S < G, $[G:S] < \infty$ taka, że $K_*(\tilde{X})$ jest łańcuchowo homotopijny jako $\mathbb{Z}[S]$ -kompleks z $^nDK_*(\tilde{X})$.

Definicja 14. Grupa G jest wirtualnie PD^n , jeśli istnieje K(G,1), które jest wirtualnym PD^n -kompleksem.

Twierdzenie 15. X – skończony wirtualny PD^n -kompleks. Wówczas istnieje podgrupa skończonego indeksu $S < \pi_1(X)$ taka, że S-moduły Hilbertowskie $\bar{H}_i(\tilde{X})$ i $\bar{H}_{n-i}(\tilde{X})$ są izomorficzne.

W szczególności $\beta_i(X) = \beta_{n-i}(X)$ dla wszystkich $i \leq n$ oraz jeśli $\pi_1(X)$ nieskończona, to $\beta_n(X) = \beta_0(X) = 0$.

Twierdzenie 16. X to G- Δ -kompleks, Y to H- Δ -kompleks. Wtedy $\beta_i(X \times Y, G \times H) = \sum \beta_s(X, G)\beta_{i-s}(Y, H)$.

Przykład 17. Σ_g orientowalna powierzchnia genusu g > 0, Σ_g rozmaitość, czyli PD^2 -kompleks, czyli $\beta_0(\Sigma_g) = \beta_2(\Sigma_g) = 0$, ale $\chi(\Sigma_g) = 2 - 2g$, czyli $\beta_1(\Sigma_g) = 2g - 2$.

Coś ciekawego

Hipoteza 18 (A). Y spójny wolny kozwarty G-kompleks, wówczas wszystkie $\beta_i(Y,G)$ są wymierne.

Hipoteza 19 (B). $\phi : \mathbb{Z}[G]^m \to \mathbb{Z}[G]^n$ morfizm $\mathbb{Z}[G]$ -modułów, $\tilde{\phi}$ indukowany operator ograniczony $\ell_2(G)^m \to \ell_2(G)^n$, wtedy $\dim_G \ker \tilde{\phi}$ jest wymierny.

Hipoteza 20 (o dzielnikach zera). G beztorsyjna, wówczas $\mathbb{Q}[G]$ nie posiada żadnych dzielników zera różnych od 0.

Fakt 21. Hipotezy A i B są równoważne i implikują hipotezę o dzielnikach zera.

Definicja 22 (średnia na grupie G). To ciągły funkcjonał $m : \ell_{\infty}(G) \to \mathbb{R}$ taki, że $m(f) \ge 0$ dla $f \ge 0$ oraz $m(1_G) = 1$.

Definicja 23 (średnia niezmiennicza). To taka średnia, że m(f) = m(gf) (gdzie $(gf)(x) = f(g^{-1}x)$.

Definicja 24 (średniowalność). G jest średniowalna, jeśli istnieje średnia niezmiennicza na G.

Przykład 25. $|G| < \infty$, $m(f) = \frac{1}{|G|} \sum f(g)$

Przykład 26. Na \mathbb{Z} , $m_n(f) = \frac{1}{2n+1} \sum_{-n \leq x \leq n} f(x)$. Lub $m = w^* \lim_{k \to \infty} m_{n_k}$ (słaba granica).

Twierdzenie 27 (Følner). G średniowalna, generowana przez skończony zbiór S wtedy i tylko wtedy, $gdy \ \forall_{\varepsilon>0} \exists_{F\subset G \ sk.} \ taki, \ \dot{z}e \ \forall_{s\in S} \frac{|F\Delta sF|}{|F|} \leqslant \varepsilon.$

Lemat 28 (Mazura). $\alpha_i \to \alpha$ stabo, to istnieje ciąg $\alpha'_i = \sum_j c_{ij} \alpha_i$, $c_{ij} \ge 0$, $\sum_j c_{ij} = 1$, taki, $\dot{z}e \ \alpha'_i \to \alpha$ w normie.

Uwaga29. $0 \to N \to G \to Q \to 0$ dokładny, N,Qśredniowalne, to Gśredniowalna.

Podgrupa grupy średniowalnej jest średniowalna.

Iloraz grupy średniowalnej jest średniowalny.

Przykład 30. \mathbb{F}_k nie jest średniowalna dla $k \ge 2$.