

Introduction: Motivation

28.8.18

PDR Algorithm: Preliminaries

PDR Algorithm: Basic Notions

PDR Algorithm: Description

> Starts with checking for a 0-Counter-Example

- > Repeats three phases until termination:
 - 1. Next Level Initialization Phase
 - 2. Blocking-Phase
 - 3. Propagation-Phase

Example: CFA

- 1. Step: Check for 0-Counter-Example
- $> \operatorname{ls} \ell_0 = \ell_E ?$
 - → No, continue with initialization

location	0
ℓ_0	
ℓ_1	
ℓ_2	
ℓ_3	
ℓ_4	

2. Step: Initialization of level 0

$$F_{0,\ell} = \begin{cases} T, & \ell = \ell_0 \\ F, & otherwise \end{cases}$$

location	0
ℓ_0	t
ℓ_1	f
ℓ_2	f
ℓ_3	f
ℓ_4	f

2. Step: Initialization of level 0

$$F_{0,\ell} = \begin{cases} T, & \ell = \ell_0 \\ F, & otherwise \end{cases}$$

location	0	1
ℓ_0	t	
ℓ_1	f	
ℓ_2	f	
ℓ_3	f	
ℓ_4	f	

- 3. Step: Level 1
- ➤ Initialize level 1 frames as true

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 3. Step: Level 1
- Initialize level 1 frames as true

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 3. Step: Level 1
- ➤ Get initial proof-obligation

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t
<i>t</i> ₄	J	t

- 4. Step: Level 1 Blocking-Phase:
- ightharpoonup Try to block $(p = 0, \ell_2, 1)$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- For Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :

${\bf Proof-Obligations:}$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_2, 1$)
- Predecessor ℓ_1 :

•
$$f \wedge n \geq 0 \wedge p' = 0$$

•
$$(p = 0, \ell_2, 1)$$

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	f	t
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- For Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :
 - $f \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable
 - \rightarrow Strengthen frames F_{0,ℓ_2} , F_{1,ℓ_2}

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 4. Step: Level 1 Blocking-Phase:
- > Try to block $(p = 0, \ell_2, 1)$
- Predecessor ℓ_1 :
 - $f \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable
 - \rightarrow Strengthen frames F_{0,ℓ_2} , F_{1,ℓ_2}

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Level 1 Propagation-Phase
- ➤ Is there a global fixpoint?

Proof-Obligations:

Ø

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Level 1 Propagation-Phase
- $\text{ Is there an } i \text{ where } F_{i-1,\ell} = F_{i,\ell} \text{ for } \\ \ell \in L \setminus \{\ell_E\} \ ?$

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 5. Step: Level 1 Propagation-Phase
- Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for $\ell \in L \setminus \{\ell_E\}$?
- → No. Continue with next level.

Proof-Obligations:

location	0	1
ℓ_0	t	t
ℓ_1	f	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$
ℓ_3	f	t
ℓ_4	f	t

- 6. Step: Level 2
- Initzialize new frames
- Add initial proof-obligation $(p = 0, \ell_2, 2)$

Proof-Obligations:

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 6. Step: Level 2
- Initzialize new frames
- Add initial proof-obligation $(p = 0, \ell_2, 2)$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- ightharpoonup Try to block ($p = 0, \ell_2, 2$)
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$

•
$$(p = 0, \ell_2, 2)$$

location	n 0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- For Try to block $(p = 0, \ell_2, 2)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Satisfiable!
 - $\rightarrow wp(n \ge 0, p' = 0) = (p = 0)$
 - \rightarrow New proof-obligation $(p = 0, \ell_1, 1)$

•
$$(p = 0, \ell_2, 2)$$

	location	0	1	2
	ℓ_0	t	t	t
\	ℓ_1	f	t	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t
	ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- > Try to block $(p = 0, \ell_2, 2)$
- Predecessor ℓ_1 :
 - $t \wedge n \geq 0 \wedge p' = 0$
 - → Satisfiable!
 - $\rightarrow wp(n \ge 0, p' = 0) = (p = 0)$
 - \rightarrow New proof-obligation $(p = 0, \ell_1, 1)$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	f	t	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_0 :
 - $t \wedge p \neq 0 \wedge p' = 0$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_0 :
 - $t \wedge p \neq 0 \wedge p' = 0$
 - → Unsatisfiable!
 - \rightarrow Strengthen frames $F_{0,\ell_1}, F_{1,\ell_1}$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_4 :

$$f \wedge n' = n - 1 \wedge p' = 0$$

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

location	0	1	2
ℓ_0	t	t	t
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
ℓ_3	f	t	t
ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_4 :
 - $f \wedge n' = n 1 \wedge p' = 0$
 - → Unsatisfiable!

- $(p = 0, \ell_2, 2)$
- $(p = 0, \ell_1, 1)$

	location	0	1	2
	ℓ_0	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t
	ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_1, 1)$
- Predecessor ℓ_4 :
 - $f \wedge n' = n 1 \wedge p' = 0$
 - → Unsatisfiable!

•
$$(p = 0, \ell_2, 2)$$

	location	0	1	2
	ℓ_0	t	t	t
\	ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t
	ℓ_3	f	t	t
	ℓ_4	f	t	t

- 7. Step: Level 2 Blocking-Phase:
- Try to block ($p = 0, \ell_2, 2$) again
- Predecessor ℓ_1 :
 - $t \wedge p \neq 0 \wedge n \geq 0 \wedge p' = 0$

${\bf Proof-Obligations:}$

•
$$(p = 0, \ell_2, 2)$$

location	0	1	2	
ℓ_0	t	t	t	
ℓ_1	$f \wedge p \neq 0$	$t \wedge p \neq 0$	t	
ℓ_2	$f \wedge p \neq 0$	$t \wedge p \neq 0$	$t \wedge p \neq 0$	
ℓ_3	f	t	t	
ℓ_4	f	t	t	

- 7. Step: Level 2 Blocking-Phase:
- Try to block $(p = 0, \ell_2, 2)$ again
- Predecessor ℓ_1 :
 - $t \wedge p \neq 0 \wedge n \geq 0 \wedge p' = 0$
 - → Unsatisfiable!
 - \rightarrow Strengthen frames F_{2,ℓ_2}

Proof-Obligations:

location	0	1	2	3	4	5
ℓ_0						
ℓ_1						
ℓ_2						
ℓ_3						
ℓ_4						

Text

6. Related Work

Implementation in Ultimate: Traceabstraction with PDR

Implemented Improvements

Evaluation: Data Comparison

Evaluation: Discussion

Future Work: Implementing Further Improvements

Conclusion 28.8.18 ⟨Nr.>

