Best Practice for Bulk RNA-seq analysis

Ngày 08 tháng 12 năm 2024

TS. Lưu Phúc Lợi

Email: luu.p.loi@googlemail.com

Zalo: 0901802182

Content

- Aim of the methods
- Library prep for RNA-seq
- Upstream Analysis Workflow
- Downstream Analysis Workflow
- From BAM to Count
- Differential Gene Expression
- Enrichment of DEGs with Over Representation Analysis (ORA)
- RNA-seq databases

Aim of the methods

Bulk DNA-seq?

Bulk RNA-seq?

Aim of the methods

Bulk DNA-seq

4.2 Mapping reads to reference

Bulk RNA-seq

Different types of RNA

Different types of RNA

Sequencing library prep protocol depends on the RNA properties

It is not a one-size-fits-all situation!

- Abundance and stability
 - ▶rRNA: 90-95% (!)
 - ►tRNA: 3-5%
 - ►mRNA: 2%
 - ▶all other non-coding RNAs: well below 1%
- Cellular location
 - ▶ most are in the cytoplasm
- Size
 - ►miRNAs: 18-23bp
 - ▶mRNA: several 100 to 1000 bp
- Specific sequences/modifications
 - ▶poly(A) tails of mRNA
 - ▶2D structure
 - ► antisense transcripts

General steps of RNA-seq preparation

- RNA extraction (cell lysis, RNA purification)
- enrichment of the RNA of interest
 - ► mRNA: poly(A) enrichment vs. ribosomal-depletion
 - small RNAs: size-based enrichment
- fragmentation (ca. 200 bp)
- cDNA synthesis
- Iibrary prep to obtain cDNA with adapters for sequencing

General steps of RNA-seq preparation

Initial RNA pool Legend genomic DNA immature RNA which transcripts mature RNA are you interested in? non-coding RNA ribosomal RNA o Oog PolyA cDNA Total Selection/depletion selection reduction capture paired end reads what type of **noise XX** Griffith et al., (2015). doi: can you tolerate? 10.1371/journal.pcbi.1004393 Resulting RNA pool Sec. A. Total RNA D. cDNA capture Broad transcript representation* Limited transcript representation (targeted) **V**TACGTA exome High rRNAs total Very low rRNAs Abundant mRNAs dominate Abundant mRNAs de-emphasized High unprocessed RNA Moderate unprocessed RNA RNA array High genomic DNA Low genomic DNA rRNA protein coding B. rRNA reduction C. PolyA selection (strongly expressed) **V**rRNA Broad transcript representation Limited transcript representation (polyA) **V**rRNA **V**IIIIII Low rRNAs Very low rRNAs Abundant mRNAs dominate Abundant mRNAs dominate riboprotein coding Low unprocessed RNA High unprocessed RNA Very low genomic DNA (lowly expressed) depletion

Nonstranded

Stranded

Bulk DNA-seq

Bulk RNA-seq

Bulk DNA-seq

Bulk RNA-seq

Where are the References need? And what are these?

Bulk DNA-seq

Bulk RNA-seq

Where are the References need? And what are these?

Bulk DNA-seq

Bulk RNA-seq

Human Genome Sequences can be found at UCSC, NCBI and Ensembl and GENCODE as fasta format

The four most common gene annotation databases are currently RefSeq, UCSC, Ensembl and GENCODE as GTF format

Downstream Analysis Workflow

Downstream Analysis Workflow

Downstream Analysis Workflow

From BAM to Count

Gene	Sample 1 Healthy	Sample 2 Healthy	Sample 3 Healthy	Sample 4 Tumor	Sample 5 Tumor	Sample 6 Tumor
Α	100	101	105	160	163	154
В	10	8	9	1	2	3
С	45	45	45	46	46	46
D	0.11	0.12	0.13	0.0012	0.0014	0.0013

Differential Gene Expression

Gene	Sample 1 Healthy	Sample 2 Healthy	Sample 3 Healthy	Sample 4 Tumor	Sample 5 Tumor	Sample 6 Tumor
Α	100	101	105	160	163	154
В	10	8	9	1	2	3
С	45	44	45	46	47	46
D	0.11	0.12	0.13	0.0012	0.0014	0.0013


```
t.test(c(0.11, 0.12, 0.13), c(0.0012, 0.0014, 0.0013))

Welch Two Sample t-test

data: c(0.11, 0.12, 0.13) and c(0.0012, 0.0014, 0.0013)

t = 20.558, df = 2.0004, p-value = 0.002355
    alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.09386214 0.14353786
    sample estimates:
    mean of x mean of y
```

0.1200

0.0013

```
t.test(c(10, 8, 9), c(1, 2, 3))

Welch Two Sample t-test

data: c(10, 8, 9) and c(1, 2, 3)

t = 8.5732, df = 4, p-value = 0.001017

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

4.733042 9.266958

sample estimates:
mean of x mean of y

9 2

Gene B
```

```
t.test(c(45, 44, 45), c(46, 45, 46))

Welch Two Sample t-test

data: c(45, 44, 45) and c(46, 45, 46)
    t = -2.1213, df = 4, p-value = 0.1012
    alternative hypothesis: true difference in means is not equal to 0
    95 percent confidence interval:
    -2.3088288    0.3088288
    sample estimates:
    mean of x mean of y
    44.66667    45.66667
Gene C
```

Fisher's Exact Test: Example

Suppose we want to know whether or not gender is associated with political party preference. We take a simple random sample of 25 voters and survey them on their political party preference. The following table shows the results of the survey:

	Democrat	Republican	Total
Male	4	9	13
Female	8	4	12
Total	12	13	25

- **H**₀: Gender and political party preference are independent.
- **H**₁: Gender and political party preference are *not* independent.

Step 2: Calculated the two-tailed p value.

We can use the Fisher's Exact Test Calculator with the following input:

Group 1	Group 2
4	9
8	4
	4

One-tailed p value: **0.081178**

Two-tailed p value: 0.115239

Enrichment of DEGs with Over Representation Analysis (ORA)

Enrichment of DEGs with Over Representation Analysis (ORA)

	ID	Description	GeneRatio	BgRatio	
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	
GO:0016052	GO:0016052	carbohydrate catabolic process	23/238	112/6476	
GO:0044282	GO:0044282	small molecule catabolic process	25/238	145/6476	
GO:0005975	GO:0005975	carbohydrate metabolic process	34/238	277/6476	
GO:0032787	GO:0032787	monocarboxylic acid metabolic process	25/238	170/6476	
GO:0006091	GO:0006091	generation of precursor metabolites and energy		217/6476	
GO:0006979	GO:0006979	response to	16/238	103/6476	

oxidative stress

 $\label{eq:GeneRatio} GeneRatio = \frac{Number\ of\ genes\ from\ your\ input\ list\ associated\ with\ the\ GO\ term}{Total\ number\ of\ genes\ in\ your\ input\ list}$

 $BgRatio = \frac{Number\ of\ genes\ associated\ with\ the\ GO\ term\ in\ the\ background\ set}{Total\ number\ of\ genes\ in\ the\ background\ set}$

Enrichment of DEGs with Over Representation Analysis (ORA)

	ID	Description	GeneRatio	BgRatio	RichFactor	FoldEnrichment	zScore	pvalue	p.adjust	qvalue
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
GO:0016052	GO:0016052	carbohydrate catabolic process	23/238	112/6476	0.2053571	5.587785	9.566051	8.859134e- 12	6.856970e- 09	5.856354e- 09
GO:0044282	GO:0044282	small molecule catabolic process	25/238	145/6476	0.1724138	4.691394	8.780594	6.069770e- 11	2.349001e- 08	2.006219e- 08
GO:0005975	GO:0005975	carbohydrate metabolic process	34/238	277/6476	0.1227437	3.339866	7.774200	3.099557e- 10	7.996858e- 08	6.829902e- 08
GO:0032787	GO:0032787	monocarboxylic acid metabolic process	25/238	170/6476	0.1470588	4.001483	7.745849	2.010853e- 09	3.891001e- 07	3.323199e- 07
GO:0006091	GO:0006091	generation of precursor metabolites and energy	25/238	217/6476	0.1152074	3.134802	6.247708	2.930343e- 07	4.536170e- 05	3.874221e- 05
GO:0006979	GO:0006979	response to oxidative stress	16/238	103/6476	0.1553398	4.226809	6.447712	8.643298e- 07	9.716547e- 05	8.298642e- 05

The qvalue in the results table from enrichGO represents the adjusted p-value for multiple testing correction. It is typically calculated using the False Discovery Rate (FDR) method, which controls the proportion of false positives among the list of enriched terms.

RNA-seq databases

GTEX Portal ()

Cảm ơn các thầy cô và các bạn!

Ngày 08 tháng 12 năm 2024

TS. Lưu Phúc Lợi

Email: luu.p.loi@googlemail.com

Zalo: 0901802182