Calculus I Homework

Trigonometry review

1. Convert from degrees to radians.

(a) 15° .

(b) 30°.

(c) 36°.

(d) 45°.

(e) 60° .

(f) 75°.

(g) 90°.

(h) 120° .

(i) 135°.

(j) 150° .

(k) 180°.

(1) 225° .

(m) 270°.

(n) 305°.

(o) 360°.

(p) 405° .

(q) 1200° .

(r) -900° .

(s) -2014° .

2. Convert from radians to degrees. The answer key has not been proofread, use with caution.

(a) 4π .

(b) $-\frac{7}{6}\pi$.

(c) $\frac{7}{12}\pi$.

(d) $\frac{4}{3}\pi$.

(e) $-\frac{3}{8}\pi$.

(f) 2014π .

(g) 5.

(h) -2014.

3. Prove the trigonometry identities.

(a) $\sin \theta \cot \theta = \cos \theta$.

(b) $(\sin \theta + \cos \theta)^2 = 1 + \sin(2\theta)$.

(c) $\sec \theta - \cos \theta = \tan \theta \sin \theta$.

(d) $\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$.

(e) $\cot^2 \theta + \sec^2 \theta = \tan^2 \theta + \csc^2 \theta$.

(f) $2\csc(2\theta) = \sec\theta \csc\theta$.

(g) $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$.

(h) $\frac{1}{1 - \sin \theta} + \frac{1}{1 + \sin \theta} = 2 \sec^2 \theta$.

(i) $\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$.

(j) $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$.

(k) $\sin(3\theta) + \sin \theta = 2\sin(2\theta)\cos \theta$.

(1) $\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$.

(m) $1 + \tan^2 \theta = \sec^2 \theta$.

(n) $1 + \csc^2 \theta = \cot^2 \theta$.

(o) $2\cos^2(2x) = 2\sin^4\theta + 2\cos^4\theta - \sin^2(2\theta)$.

(p) $\frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} = \tan\theta + \sec\theta.$

4. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.

(a) $2\cos x - 1 = 0$.

(b) $\sin(2x) = \cos x$.

(c) $\sqrt{3}\sin x = \sin(2x)$.

(d) $2\sin^2 x = 1$.

(e) $2 + \cos(2x) = 3\cos x$.

(f) $2\cos x + \sin(2x) = 0$.

(g) $2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0.$

(h) $|\tan x| = 1$.

(i) $3\cot^2 x = 1$.

(j) $\sin x = \tan x$.