Методы эволюционного программирования

ПОДГОТОВИЛ: ЛУШКИН А.А.

ЛЕКЦИИ: 1,2

Оптимизационная задача

$$\min_{x} f(x) \iff \max_{x} [-f(x)]$$

$$\max_{x} f(x) \iff \min_{x} [-f(x)].$$

$$\min_{x} f(x) \Rightarrow f(x)$$
 называется «стоимостью», или «целевым критерием» $\max_{x} f(x) \Rightarrow f(x)$ называется «приспособленностью», или «целевым критерием».

Оптимизационная задача

$$\min_{x} f(x)$$
, где $f(x) = x^4 + 5x^3 + 4x^2 - 4x + 1$.

В некоторых функциях min f(x) встречается при более чем одном значении x; если это происходит, то f(x) имеет несколько глобальных минимумов. Локальный минимум x* может быть определен как

$$f(x^*) < f(x)$$
 для всех x such that $||x - x^*|| < \varepsilon$,

В некоторых функциях minx f(x) встречается при более чем одном значении x; если это происходит, то f(x) имеет несколько глобальных минимумов. Локальный минимум x* может быть определен как

$$f(x^*) \le f(x)$$
 для всех x .

Ограниченная оптимизация

$$\min_{x} f(x)$$
, где $f(x) = x^4 + 5x^3 + 4x^2 - 4x + 1$ и $x \ge -1.5$.

Многокритериальная оптимизация

$$\min_{x} [f(x) \text{ и } g(x)], \quad \text{где} \quad f(x) = x^4 + 5x^3 + 4x^2 - 4x + 1$$
 $\text{ и } \quad g(x) = 2(x+1)^2.$

Многокритериальная оптимизация

Задача мультимодальной оптимизации – это задача, имеющая более одного локального минимума.

Интеллектуальные системы

Генетика

Генотип (или геном) — это уникальная комбинация генов человека, или индивидуальный набор генов. Таким образом, генотип — это полный комплект инструкций о том, как в организме данного человека должны синтезироваться белки и, следовательно, какое строение и функции *должны быть* у организма.

Фенотип — это фактическое строение и функция организма человека. Фенотип — это то, как генотип проявляется у человека: не все инструкции, заложенные в генотипе, могут проявляться (или выражаться). Выражен ли ген и то, как он выражен, определяется не только самим генотипом, но и окружающей средой (в том числе заболеваниями и питанием), а также другими факторами, часть которых до сих пор неизвестна.

Кариотип — это картина полного набора хромосом в клетках человека.

Всего у человека около 20 000-23 000 генов

Рассмотрим трех человек: Крис имеет два гена карих глаз Джули – два гена зеленых глаз Терри – их сын.

- Крис: карие / карие → карие глаза
- Джули : зеленые / зеленые -> зеленые глаза
- Терри: карие / зеленые -> карие глаза

Генетический алгоритм

Предположим, что наша задача предполагает конструирование мобильного робота малой массы, который обладает достаточной мощностью для навигации по пересеченной местности и достаточной дальностью, чтобы ему не приходилось возвращаться на свою базу слишком часто. Параметры, которые нам нужно определить в нашей конструкции робота, включают тип и размер двигателя, тип и размер источника питания.

000 = 5-вольтовый шаговый двигатель

001 = 9-вольтовый шаговый двигатель

010 = 12-вольтовый шаговый двигатель

011 = 24-вольтовый шаговый двигатель

100 = 5-вольтовый серводвигатель

101 = 9-вольтовый серводвигатель

110 = 12-вольтовый серводвигатель

111 = 24-вольтовый серводвигатель

000 = 12-вольтовая никель-кадмиевая батарея

001 = 24-вольтовая никель-кадмиевая батарея

010 = 12-вольтовая литий-ионная батарея

011 = 24-вольтовая литий-ионная батарея

100 = 12-вольтовая солнечная панель

101 = 24-вольтовая солнечная панель

110 = 12-вольтовый термоядерный реактор

111 = 24-вольтовый термоядерный реактор

Приспособленность = Дальность (часы) + Мощность (Вт) – Вес (кг).

- Особь 1 кодируется битовой строкой 010101, особь 2 битовой строкой 101001. Каждый бит называется аллелем.
- Последовательность бит в особи, которая содержит информацию о каком-то признаке этой особи, называется геном.
- Конкретные гены называются генотипами, а специфичный для конкретной задачи параметр, который представлен генотипом, называется фенотипом.

Скрещивание

Два родителя спарились (то есть пересеклись) и родили двух детей. Каждый ребенок получает некую генетическую информацию от одного родителя и другую — от другого. Родители умирают, а дети выживают и продолжают эволюционный процесс. Это событие называется одним генетико-алгоритмическим поколением. Как и в биологии, часть детей будет иметь высокую приспособленность, а другие — низкую. Низко приспособленные особи имеют высокую вероятность умереть в своем поколении; то есть в генетическом алгоритме они из симуляции извлекаются. Высоко приспособленные особи выживают и скрещиваются с другими высоко приспособленными особями и тем самым производят новое поколение особей. Этот процесс продолжается до тех пор, пока генетический алгоритм не найдет приемлемое решение оптимизационной задачи

Отбор

Особь 1: Приспособленность = 10

Особь 2: Приспособленность = 20

Особь 3: Приспособленность = 30

Особь 4: Приспособленность = 40

Одним из распространенных способов отбора родителей является отбор по принципу колеса рулетки, или рулеточный отбор, который еще также называется отбором пропорционально приспособленности. Предположим, в популяции есть четыре особи. (Реальный генетический алгоритм будет иметь гораздо больше четырех особей, но этот пример дан просто для иллюстрации.)

Рис. 3.3. Иллюстрация скрещивания популяции родителей для создания популяции детей. Исходная популяция из *N* особей слева проходит процесс отбора, возможно, рулеточный отбор, для того чтобы создать множество из *N* родителей. Некоторые особи, возможно, будут отобраны более одного раза, в то время как другие особи, возможно, не будут отобраны ни разу. Затем каждая пара родителей в середине скрещивается и создает пару детей. Взято из публикации [Whitley, 2001]

Мутация

Для того чтобы реализовать мутацию, мы выбираем мутационную вероятность, скажем, 1%. Это означает, что, после того как процесс скрещивания производит детей, каждый бит в каждом ребенке имеет 1%-ную вероятность переключиться на противоположное значение (1 меняется на 0 или 0 меняется на 1). Мутация проста, но важно выбрать разумную мутационную вероятность. Слишком высокая мутационная вероятность приводит к тому, что генетический алгоритм ведет себя как случайный поиск, что обычно не является отличным способом решения задачи. Слишком низкая мутационная вероятность приводит к проблемам, связанным с близкородственным скрещиванием и эволюционными тупиками, что также не позволяет генетическому алгоритму найти хорошее решение. Если у нас популяция из N особей хј, где каждая особь имеет п бит, а скорость мутации равна р, то в конце каждого поколения мы переворачиваем каждый бит в каждой особи с вероятностью р:

$$r \leftarrow U[0,1]$$

$$x_i(k) \leftarrow \begin{cases} x_i(k) & \text{если } r \geq \rho \\ 0 & \text{если } r < \rho \text{ и } x_i(k) = 1 \\ 1 & \text{если } r < \rho \text{ и } x_i(k) = 0 \end{cases}$$

Краткая формулировка генетического алгоритма

```
Родители ← {случайно сгенерированная популяция}
While not (критерий останова)
   Рассчитать приспособленность каждого родителя в популяции
   Дети \leftarrow Ø
   While | Дети | < | Родители |
       Применить приспособленности для вероятностного отбора пары
       родителей с целью их спаривания
       Спарить родителей для создания детей c_1 и c_2
       Дети ← Дети \cup {c_1, c_2}
   Loop
   Случайно мутировать нескольких детей
   Родители ← Дети
Next поколение
```

Регулируемые параметры

- Схема кодирования
- Функция приспособленности
- Размер популяции
- Метод отбора
- Скорость мутации
- Шкалирование приспособленности
- Тип скрещивания
- видообразование/инцест

Пример

$$\min_{x} f(x)$$
, где $f(x) = x^4 + 5x^3 + 4x^2 - 4x + 1$.

Пример

$$0000 = -4.0$$
, $0001 = -3.8$, $0010 = -3.6$, $0011 = -3.4$, $0100 = -3.2$, $0101 = -3.0$, $0110 = -2.8$, $0111 = -2.6$, $1000 = -2.4$, $1001 = -2.2$, $1010 = -2.0$, $1011 = -1.8$, $1100 = -1.6$, $1101 = -1.4$, $1110 = -1.2$, $1111 = -1.0$.

$$x_1 = 1100,$$

 $x_2 = 1011,$
 $x_3 = 0010,$
 $x_4 = 1001.$

$$\min_{x} f(x)$$
, где $f(x) = x^4 + 5x^3 + 4x^2 - 4x + 1$.

fitness(
$$x_1$$
) = $-f(-1.6) = -3.71$ $f_1 = -3.71 + 10 = 6.29$ $f_2 = -2.50 + 10 = 7.50$ $f_3 = -1.92 + 10 = 8.08$ $f_4 = +0.65 + 10 = 10.65$ $f_1 = -3.71 + 10 = 6.29$ $f_1 = f_1/(f_1 + f_2 + f_3 + f_4) = 0.19$ $f_2 = -2.50 + 10 = 7.50$ $f_3 = -1.92 + 10 = 8.08$ $f_4 = +0.65 + 10 = 10.65$ $f_4 = +0.65 + 10 = 10.65$

Номер особи	Генотип	Фенотип	Приспособленность	Вероятность отбора
	1100	-1.4	-4.56	0.19
<i>X</i> ₂	1011	-1.8	-2.50	0.23
X ₃	0010	-3.6	-1.92	0.25
<i>X</i> ₄	1001	-2.2	+0.65	0.33

Род	ители	Дети		
Особь	Генотип	Генотип	Приспособленность	
X_3	0010	0001	-8.11	
<i>X</i> ₄	1 001	1010	-1.00	
X_4	10 01	1000	+2.30	
<i>X</i> ₁	11 00	1101	-4.56	

Из табл. видно, что лучший ребенок имеет приспособленность 2.30, то есть лучше, чем лучший ребенок исходного поколения (0.65). Генетический алгоритм сделал значительный шаг к оптимизации f(x). Нет никаких гарантий, что дети будут лучше, чем родители, но этот простой пример иллюстрирует, как генетический алгоритм может нацеливаться на решение оптимизационной задачи.