

1. Kollisionsdomäne und CSMA/CD

CSMA/CD: So ist der Zugriff auf das Datenkabel in einer Kollisionsdomäne geregelt.

Historisch: Einadrig (z.B. YellowCable): Bidirektional / Half-Duplex

Aktuell: Mehradrig, separate Sende- und Empfangsverbindungen: Bidirektional / Duplex

2. Geräte verbinden: Früher mit Hub, heute mit Switch

Der Hub ist veraltete Technologie und weitgehend aus dem IT-Alltag verschwunden. Falls noch ein Hub angetroffen wird, kann dieser 1:1 durch einen Switch ersetzt werden.

Kollisionsdomäne Hub:

überall

Kollisionsdomäne Switch:

nur in der Verbindung von Sender und Empfänger

Der Switch muss die eingehenden Pakete auf folgendes überprüfen: (Ist demzufolge protokolltransparent ab welchem ISO-OSI-Layer?)

Der Switch überprüft die eingehenden Pakete auf der zweiten Schicht des ISO-OSI-Modells, auch als Data Link Layer bekannt.

Die SAT-Tabelle des Switchs enthält:

Die SAT-Tabelle des Switches enthält MAC-Adressen und zugehörige Informationen, um den Datenverkehr an die richtigen Zielgeräte weiterzuleiten.

Bei der Inbetriebnahme eines Switchs muss dieser zuerst "angelernt" werden. Er verhält sich daher erst einmal wie ein:

Bei der Inbetriebnahme verhält sich ein Switch zunächst wie ein Hub, indem er eingehende Datenpakete an alle angeschlossenen Geräte weiterleitet, ohne sie gezielt zuzuordnen. Dadurch kann der Switch die MAC-Adressen der Geräte lernen und eine interne Tabelle erstellen, um den Datenverkehr später effizienter zu verteilen.

Wo ist der Bottle-Neck (Flaschenhals) bezüglich Übertragungsrate? (Tipp: Uplink)

Der Flaschenhals bezüglich der Übertragungsrate liegt normalerweise beim Uplink, der Verbindung zwischen dem Switch und dem restlichen Netzwerk.

3. Das ISO-OSI-Schichtenmodell

Router ist der Standart Gateway

ARJ Seite 3/6 Jun-23

Applikation (z.B. http)

♣↓

TCP-SEGMENT (mit Protokoll-Header Ausschnitt)

Informationstechnik

(16 Bit) z.B. 80	(16 Bit) z.B. 55607	Da diese in unter- chiedlicher Reihen- folge beim Empfänger ankommen können.		Die Nutzdaten sind in diesem Behälter!	Wird automatisch berechnet
		Sequence Nr. Reihenfolge der TCP-Segmente	Acknowledgement Nr. Im nächsten TCP-Paket erwartete Sequenz-Nr.	Daten Nutzlast max. 1460 Bytes	Checksum

IP-PAKET (mit Protokoll-Header Ausschnitt)

(IP v4: 32 Bit) z.B. 81.20.91.66	(IP v4: 32 Bit) z.B. 80.16.70.45		Die Nutzdaten sind in diesem Behälter!
		Time to Live	<u>Daten</u>
		Anz. Hop's Jede Router auf dem Weg des Pakets verringert diesen Wert um 1.	Nutzlast max. 1480 Bytes

ETHERNET-FRAME (mit Protokoll-Header Ausschnitt)

(48 Bit) z.B. 00:09:8C:00:46:17	(48 Bit) z.B. 00:09:8C:00:69:93		Die Nutzdaten sind in diesem Behälter!	Wird automatisch berechnet
		Verwendungszweck Typ Gibt Auskunft über das verwendete Protokoll der nächsthöheren Schicht	Daten Nutzlast max. 1500 Bytes	<u>Checksum</u> FCS

ARJ

4. Der Zugang zum Internet (WWW=WorldWideWeb)

