Binomial	pbinom	qbinom	dbinom	rbinom
Geometric	pgeom	qgeom	dgeom	rgeom
Negative Binomial	pnbinom	qnbinom	dnbinom	rnbinom
Poisson	ppois	qpois	dpois	rpois
Beta	pbeta	qbeta	dbeta	rbeta
Beta	pbeta	qbeta	dbeta	rbeta
Exponential	pexp	qexp	dexp	rexp
Gamma	pgamma	qgamma	dgamma	rgamma
Studentt	pt	qt	dt	rt
Uniform	punif	qunif	dunif	runif

13.5 Exercises

1. Write R programs to generate Geometric(p) and Negative Binomial(i,p) random variables.

Solution: To generate a Geometric random variable, we run a loop of Bernoulli trials until the first success occurs. K counts the number of failures plus one success, which is equal to the total number of trials.

```
K=1;
p=0.2;
while(runif(1)>p)
K=K+1;
K
```

Now, we can generate Geometric random variable i times to obtain a Negative Binomial(i, p) variable as a sum of i independent Geometric (p) random variables.

```
K = 1;
p = 0.2;
r = 2;
success = 0;
while(success < r)
\{if \quad (runif(1) > p)
\{K = K + 1;
print = 0 \quad \#Failure
\}else
\{success = success + 1;
print = 1\}\} \quad \#Success
K + r - 1 \quad \#Number \quad of \quad trials \quad needed \quad to \quad obtain \quad r \quad successes
```

2. (Poisson) Use the algorithm for generating discrete random variables to obtain a Poisson random variable with parameter $\lambda = 2$.

Solution: We know a Poisson random variable takes all nonnegative integer values with probabilities

$$p_i = P(X = x_i) = e^{-\lambda} \frac{\lambda^i}{i!}$$
 for $i = 0, 1, 2, \dots$

To generate a $Poisson(\lambda)$, first we generate a random number U. Next, we divide the interval [0,1] into subintervals such that the jth subinterval has length p_j (Figure 13.2). Assume

$$X = \begin{cases} x_0 & \text{if } (U < p_0) \\ x_1 & \text{if } (p_0 \le U < p_0 + p_1) \\ \vdots \\ x_j & \text{if } \left(\sum_{k=0}^{j-1} p_k \le U < \sum_{k=0}^{j} p_k\right) \\ \vdots \end{cases}$$

Here $x_i = i - 1$, so

$$X = i$$
 if $p_0 + \dots + p_{i-1} \le U < p_0 + \dots + p_{i-1} + p_i$
 $F(i-1) \le U < F(i)$ F is CDF

$$lambda = 2;$$
 $i = 0;$
 $U = runif(1);$
 $cdf = exp(-lambda);$
 $while(U >= cdf)$
 $\{i = i + 1;$
 $cdf = cdf + exp(-lambda) * lambda^i/gamma(i + 1); \}$
 $X = i;$

3. Explain how to generate a random variable with the density

$$f(x) = 2.5x\sqrt{x}$$
 for $0 < x < 1$

if your random number generator produces a Standard Uniform random variable U. Hint: use the inverse transformation method.

Solution:

$$F_X(X) = X^{\frac{5}{2}} = U \quad (0 < x < 1)$$

 $X = U^{\frac{2}{5}}$

$$U = runif(1);$$
$$X = U^{\frac{2}{5}};$$

We have the desired distribution.

4. Use the inverse transformation method to generate a random variable having distribution function

$$F(x) = \frac{x^2 + x}{2}, \quad 0 \le x \le 1$$

Solution:

$$\frac{X^2 + X}{2} = U$$

$$(X + \frac{1}{2})^2 - \frac{1}{4} = 2U$$

$$X + \frac{1}{2} = \sqrt{2U + \frac{1}{4}}$$

$$X = \sqrt{2U + \frac{1}{4}} - \frac{1}{2} \quad (X, U \in [0, 1])$$

By generating a random number, U, we have the desired distribution.

$$U = runif(1);$$

$$X = sqrt\left(2U + \frac{1}{4}\right) - \frac{1}{2};$$

5. Let X have a standard Cauchy distribution.

$$F_X(x) = \frac{1}{\pi}\arctan(x) + \frac{1}{2}$$

Assuming you have $U \sim Uniform(0,1)$, explain how to generate X. Then, use this result to produce 1000 samples of X and compute the sample mean. Repeat the experiment 100 times. What do you observe and why?

Solution: Using Inverse Transformation Method:

$$U - \frac{1}{2} = \frac{1}{\pi} \arctan(X)$$
$$\pi \left(U - \frac{1}{2}\right) = \arctan(X)$$
$$X = \tan\left(\pi(U - \frac{1}{2})\right)$$

Next, here is the R code:

```
U = numeric(1000);

n = 100;

average = numeric(n);

for (i in 1:n)

\{U = runif(1000);

X = tan(pi * (U - 0.5));

average[i] = mean(X); \}

plot(1:n, average[1:n], type = "l", lwd = 2, col = "blue")
```

Cauchy distribution has no mean (Figure 13.6), or higher moments defined.

6. (The Rejection Method) When we use the Inverse Transformation Method, we need a simple form of the cdf F(x) that allows direct computation of $X = F^{-1}(U)$. When F(x) doesn't have a simple form but the pdf f(x) is available, random variables with density f(x) can be generated by the **rejection method**. Suppose you have a method

Figure 13.6: Cauchy Mean

for generating a random variable having density function g(x). Now, assume you want to generate a random variable having density function f(x). Let c be a constant such that

$$\frac{f(y)}{g(y)} \le c$$
 (for all y)

Show that the following method generates a random variable with density function f(x).

- Generate Y having density g.
- Generate a random number U from Uniform (0,1).
- If $U \leq \frac{f(Y)}{cg(Y)}$, set X = Y. Otherwise, return to step 1.

Solution: The number of times N that the first two steps of the algorithm need to be called is itself a random variable and has a geometric distribution with "success" probability

$$p = P\left(U \le \frac{f(Y)}{cg(Y)}\right)$$

Thus, $E(N) = \frac{1}{p}$. Also, we can compute p:

$$\begin{split} P\left(U \leq \frac{f(Y)}{cg(Y)}|Y=y\right) &= \frac{f(y)}{cg(y)} \\ p &= \int_{-\infty}^{\infty} \frac{f(y)}{cg(y)} g(y) dy \\ &= \frac{1}{c} \int_{-\infty}^{\infty} f(y) dy \\ &= \frac{1}{c} \end{split}$$
 Therefore, $E(N) = c$

Let F be the desired CDF (CDF of X). Now, we must show that the conditional distribution of Y given that $U \leq \frac{f(Y)}{cg(Y)}$ is indeed F, i.e. $P(Y \leq y|U \leq \frac{f(Y)}{cg(Y)}) = F(y)$. Assume $M = \{U \leq \frac{f(Y)}{cg(Y)}\}, K = \{Y \leq y\}$. We know $P(M) = p = \frac{1}{c}$. Also, we can compute

$$\begin{split} P(U \leq \frac{f(Y)}{cg(Y)} | Y \leq y) &= \frac{P(U \leq \frac{f(Y)}{cg(Y)}, Y \leq y)}{G(y)} \\ &= \int_{-\infty}^{y} \frac{P(U \leq \frac{f(y)}{cg(y)} | Y = v \leq y)}{G(y)} g(v) dv \\ &= \frac{1}{G(y)} \int_{-\infty}^{y} \frac{f(v)}{cg(v)} g(v) dv \\ &= \frac{1}{cG(y)} \int_{-\infty}^{y} f(v) dv \\ &= \frac{F(y)}{cG(y)} \end{split}$$

Thus,

$$P(K|M) = P(M|K)P(K)/P(M)$$

$$= P(U \le \frac{f(Y)}{cg(Y)}|Y \le y) \times \frac{G(y)}{\frac{1}{c}}$$

$$= \frac{F(y)}{cG(y)} \times \frac{G(y)}{\frac{1}{c}}$$

$$= F(y)$$

7. Use the rejection method to generate a random variable having density function Beta(2, 4). Hint: Assume g(x) = 1 for 0 < x < 1. Solution:

$$f(x) = 20x(1-x)^3 \quad 0 < x < 1$$
$$g(x) = 1 \quad 0 < x < 1$$
$$\frac{f(x)}{g(x)} = 20x(1-x)^3$$

We need to find the smallest constant c such that $f(x)/g(x) \le c$. Differentiation of this quantity yields

$$\frac{d\left(\frac{f(x)}{g(x)}\right)}{dx} = 0$$
Thus, $x = \frac{1}{4}$
Therefore, $\frac{f(x)}{g(x)} \le \frac{135}{64}$
Hence, $\frac{f(x)}{cg(x)} = \frac{256}{27}x(1-x)^3$

$$n = 1;$$
 $while \quad (n == 1)$
 $\{U1 = runif(1);$
 $U2 = runif(1);$
 $if \quad (U2 <= 256/27 * U1 * (1 - U1)^3)$
 $\{X = U1;$
 $n = 0;\}\}$

8. Use the rejection method to generate a random variable having the $Gamma(\frac{5}{2}, 1)$ density function. Hint: Assume g(x) is the pdf of the $Gamma\left(\alpha = \frac{5}{2}, \lambda = 1\right)$. Solution:

$$f(x) = \frac{4}{3\sqrt{\pi}} x^{\frac{3}{2}} e^{-x}, x > 0$$

$$g(x) = \frac{2}{5} e^{-\frac{2x}{5}} \quad x > 0$$

$$\frac{f(x)}{g(x)} = \frac{10}{3\sqrt{\pi}} x^{\frac{3}{2}} e^{-\frac{3x}{5}}$$

$$\frac{d\left(\frac{f(x)}{g(x)}\right)}{dx} = 0$$
Hence, $x = \frac{5}{2}$

$$c = \frac{10}{3\sqrt{\pi}} \left(\frac{5}{2}\right)^{\frac{3}{2}} e^{\frac{-3}{2}}$$

$$\frac{f(x)}{cg(x)} = \frac{x^{\frac{3}{2}} e^{\frac{-3x}{5}}}{\left(\frac{5}{2}\right)^{\frac{3}{2}} e^{\frac{-3}{2}}}$$

We know how to generate an Exponential random variable.

- Generate a random number U_1 and set $Y = -\frac{5}{2} \log U_1$.
- Generate a random number U_2 .

Solution:

- If $U_2 < \frac{Y^{\frac{3}{2}}e^{\frac{-3Y}{5}}}{\left(\frac{5}{2}\right)^{\frac{3}{2}}e^{\frac{-3}{2}}}$, set X = Y. Otherwise, execute the step 1.
- 9. Use the rejection method to generate a standard normal random variable. Hint: Assume g(x) is the pdf of the exponential distribution with $\lambda = 1$.

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \quad 0 < x < \infty$$

$$g(x) = e^{-x} \quad 0 < x < \infty \quad \text{(Exponential density function with mean 1)}$$
 Thus,
$$\frac{f(x)}{g(x)} = \sqrt{\frac{2}{\pi}}e^{x-\frac{x^2}{2}}$$
 Thus,
$$x = 1 \quad \text{maximizes} \quad \frac{f(x)}{g(x)}$$
 Thus,
$$c = \sqrt{\frac{2e}{\pi}}$$

$$\frac{f(x)}{cg(x)} = e^{-\frac{(x-1)^2}{2}}$$

- Generate Y, an exponential random variable with mean 1.
- Generate a random number U.
- If $U \leq e^{\frac{-(Y-1)^2}{2}}$ set X = Y. Otherwise, return to step 1.
- 10. Use the rejection method to generate a Gamma(2,1) random variable conditional on its value being greater than 5, that is

$$f(x) = \frac{xe^{-x}}{\int_5^\infty xe^{-x}dx}$$
$$= \frac{xe^{-x}}{6e^{-5}} \quad (x \ge 5)$$

Hint: Assume g(x) be the density function of exponential distribution.

Solution: Since Gamma(2,1) random variable has expected value 2, we use an exponential distribution with mean 2 that is conditioned to be greater than 5.

$$f(x) = \frac{xe^{(-x)}}{\int_5^\infty xe^{(-x)}dx}$$
$$= \frac{xe^{(-x)}}{6e^{(-5)}} \quad x \ge 5$$
$$g(x) = \frac{\frac{1}{2}e^{(-\frac{x}{2})}}{e^{-\frac{5}{2}}} \quad x \ge 5$$
$$\frac{f(x)}{g(x)} = \frac{x}{3}e^{-(\frac{x-5}{2})}$$

18CHAPTER 13. INTRODUCTION TO SIMULATION USING RA. RAKHSHAN AND H. PISHRO-NIK

We obtain the maximum in x=5 since $\frac{f(x)}{g(x)}$ is decreasing. Therefore,

$$c = \frac{f(5)}{g(5)} = \frac{5}{3}$$

- Generate a random number V.
- $Y = 5 2\log(V)$.
- Generate a random number U.
- If $U < \frac{Y}{5}e^{-(\frac{Y-5}{2})}$, set X = Y; otherwise return to step 1.