PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 91/07492 (51) International Patent Classification 5: (11) International Publication Number: C12N 15/13, C07K 15/28 **A1** 30 May 1991 (30.05.91) (43) International Publication Date: C12P 21/08, A61K 39/395 G01N 33/80 (74) Agents: HOLMES, Michael, John et al.; Frank B. Dehn & PCT/EP90/01964 (21) International Application Number: Co., Imperial House, 15-19 Kingsway, London WC2B 6UZ (GB). (22) International Filing Date: 13 November 1990 (13.11.90) (81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), SE (European patent), IIS (30) Priority data: 13 November 1989 (13.11.89) GB 8925590.5 (71) Applicant (for all designated States except US): CENTRAL BLOOD LABORATORIES AUTHORITY [GB/GB]; The Crest, Dagger Lane, Elstree, Borehamwood, Hertfordshire WD6 3AU (GB). pean patent), US. Pahlished With international search report. (75) Inventor/Applicant (for US only): HUGHES-JONES, Nevin, Campbell [GB/GB]; 65 Orchard Road, Melbourn, Royston, Hertfordshire SG8 6BB (GB). (54) Title: MONOCLONAL ANTIBODIES

OLIGO2

OLIG01

OLIGO3

(57) Abstract

The present invention provides DNA sequences encoding complementarity determining regions of variable domains of human anti-RhD antibodies and their use in the production of recombinant chimaeric antibody molecules.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	ML	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom .	MW	Malawi ,
8F	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	SD	Sudan
CF	Central African Republic	KP	Democratic People's Republic	SE	Sweden
CG	Congo		of Korea	SN	Senegal
CH	Switzerland	KR	Republic of Korea	SU .	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Chad
CM	Cameroon	t.K	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DK	Denmark	MC	Monaco		
ES	Spain	MG	Madagascar		

10

15

20

25

30

35

Monoclonal Antibodies

This invention relates to novel monoclonal anti-RhD antibodies prepared by recombinant DNA methods.

The Rhesus blood group system is a major antigenic constituent of the human red blood cell membrane; of this group, the RhD antigen is of particular clinical importance in relation to isoimmune reactions. An Rh D-individual with anti-RhD who receives RhD+ blood is liable to suffer substantial red blood cell (RBC) destruction due to the RhD phenotype incompatibility, and thus blood of donors must routinely be classified as RhD+ or RhD-. Anti RhD monoclonal antibodies (antiD Mabs) are capable of providing blood-typing reagents of high specificity and reliability.

The RhD antigen is also responsible for haemolytic disease of the newborn (HDN). This condition arises in newborn RhD+ infants of RhD- mothers previously sensitised to RhD antigen as a result of IgG anti-RhD antibodies crossing the placenta during pregnancy and causing foetal red blood cell (RBC) destruction. Sensitization of the RhD- mother to RhD antigen often occurs during the birth of an earlier RhD+ child due to some foetal RBCs entering the maternal circulation and being recognised as foreign by the maternal immune To reduce the incidence of HDN, it is routine practice in the United Kingdom and many other countries to give anti-RhD antibodies to RhD- mothers immediately after the birth of an RhD+ infant so that any RhD+ RBCs which may have entered the maternal circulation are rapidly removed.

The search for the most effective anti D Mabs has proved to be extremely time consuming, involving the isolation of B-lymphocytes from humans immunised against RhD, usually Rh-ve mothers who have given birth to Rh+ve

10

15

20

25

30

35

children. Such lymphocytes are subjected to EBV treatment to provide an immortalised cell-line directly or the EBV-treated cells are hybridised with suitable mouse myeloma cells to provide a hydridoma: The cell-line or hybridoma may then be used to produce the anti-D Mab in the conventional way.

However, there are significant differences between anti-D Mabs in terms of their binding affinities for red cells, their ability to recognise D-variants such as D^u and D^{VI}, and their ability to destroy target cells by phagocylosis or cell-mediated lysis. It is desirable, therefore, to have available a method of combining the favourable parameters of different anti-D Mabs or, indeed of combining the most favourable features of selected anti-D Mabs with Mabs of quite different specificities which present particular advantages, in order to produce so-called chimaeric Mabs.

The concept of building chimaeric Mabs, has been described by Jones et al (Nature 321, 522-525 (1986)) and Riechmann et al (Nature 332, 323-327 (1988)). Three dimensional studies have shown that immunoglobulins comprise essentially constant regions common to most Mabs and terminally situated variable domains associated with antigen binding.

It has been shown that the variable domains consist of two β -sheets joined by a disulphide bridge with their hydrophobic faces in contact. Sequence comparisons among heavy- and light-chain variable domains (V_H and V_L respectively) have revealed that each of these domains comprises three hypervariable domains or complementarity determining regions (CDRs) set in a framework of four relatively conserved regions, the framework regions (FRs). The CDRs are primarily responsible for the recognition of specific antigens. The structure of the β -sheet framework is similar in different antibodies, as the packing together of V_L and V_H FRs is conserved and therefore the orientation of V_L with respect to V_H is

fixed.

10

15

20

25

30

35

Genes coding for a number of Mabs are now available and the sequences coding for the variable regions V_{l} and V_{H} have been determined. It is thus possible to replace the latter sequences by DNA coding for V_{l} and V_{H} from different Mabs and indeed to construct the latter by incorporating DNA coding for chosen CDRs into DNA coding for a standard set of FRs. It is thus possible to construct genes coding for chimeric anti-D Mabs having the CDRs from anti-D Mabs possessing particularly desirable specificities or other properties and framework and constant regions derived from Mabs having other desirable properties.

It is a prerequisite of such construction that the amino acid sequences of the CDR regions of the chosen anti-D Mabs and/or the genes coding for them, should be known. The specific CDR gene sequences can then be synthesised, conveniently by chemical synthesis of the appropriate oligonucleotides, and incorporated into DNA sequences coding for a standard set of FRs and the human (or other) constant region. Of course, the FRs may be identical with those of the Mab providing the constant region or, more conveniently, they may be a standard set of FRs which can be used generally in the synthesis of chimeric Mabs.

We have produced a number of anti-D Mabs of particular interest and have determined their amino acid sequences, thus making it possible for DNA sequences corresponding to their CDRs to be synthesised and incorporated into $V_{\rm H}$ and $V_{\rm L}$ sequences as described above. These may then be combined with DNA coding for the constant region to enable novel anti-D Mabs to be synthesised which may have lower, the same or higher binding ability.

Thus, according to one aspect we provide DNA sequences comprising oligonucleotides encoding CDR1, CDR2, and CDR3 regions of $V_{\rm H}$ and $V_{\rm L}$ domains of antibodies

10

15

20

25

30

35

shown in figures 6-14.

against the human RhD antigen, and functional equivalents thereof. In particular, we have investigated and sequenced eleven Mabs, namely a) FOG-B, b) PAG-1, c) MAD-2, d) FOG-1, e) FOM-1, f) FOM-A, g) BRAD-3, h) JAC-10, i) GAD-2, J) REG-A, K) HAM-B, whose heavy and light chain sequences are represented in figures 2-14, of the accompanying drawings, and which have both varied and particularly useful binding specificities. The figures 2 and 3 show the nucleotide and amino acid sequences of the light chain variable domains of the Mabs FOG-B and PAG-1. Corresponding sequences for the heavy chain variable domains of these two Mabs are shown in figures 4 and 5, and sequences of the heavy chain variable domains of the Mabs MAD-2, FOG-1, FOM-A, BRAD-3, JAC-10, GAD-2, REG-A and HAM-B are

Synthetic genes, for both heavy and light chains may be created by combining selected CDR 1, 2, and 3 regions, which may be selected from different antibody molecules having varied binding specificities.

Thus according to a further aspect, we provide DNA molecules coding for the heavy or light chain fragments of a monoclonal antibody or fragment thereof comprising CDR1, CDR2 and CDR3 encoding oligonucleotides from antibodies FOG-B, PAG-1, MAD-2, FOG-1, FOM-1, FOM-A, BRAD-3, JAC-10, GAD-2, REG-A and HAM-B as illustrated in figures 2-14.

In order to create functional genes, such oligonucleotides must be incorporated into a backbone sequence such that when expressed, functional proteins result.

Thus according to a further aspect, we provide DNA molecules comprising a gene coding for the framework regions of a human antibody light or heavy chain having inserted therein in the correct CDR region, oligonucleotides encoding CDR1, CDR2 and CDR3 regions according to the present invention.

30

35

In the synthesis of a chimeric Mab in accordance with the invention, single stranded DNA coding for the $V_{\rm H}$ region of a chosen Mab (not necessarily an anti-D Mab) is incorporated in single stranded form into a vector capable of producing single stranded DNA, such as the M13 bacteriophage. Fig. 1 shows diagrammatically the structure of a single stranded $V_{\rm H}$ DNA including framework regions FR1 to FR4 with complementarity determining regions CDR1 to CDR3 of a Mab. These steps can be accomplished by conventional techniques such as those described in Riechmann et al (Nature, 332, 323-327, (1988)).

Three oligonucleotides may then be prepared corresponding to the CDR regions of the chosen anti-D Mab variable domain, eg the $V_{\scriptscriptstyle H}$ region of FOG-B as shown 15 in Fig. 4, and will include several nucleotides on either side of each CDR region to permit hybridisation with the framework regions FR1 to FR4 (see figure 1). The sequences of the latter will normally be substantially homologous with those of the anti-D Mab 20 (e.g. FOG-B) but since the oligonucleotides will normally be synthesised chemically, hybridisation may be ensured by matching the overlapping nucleotides exactly to the FRs 1 to 4. It may also be beneficial to modify the oligonucleotides to express the CDRs more 25 efficiently in the eventual host cells.

The three oligonucleotides, shown in Fig 1 as oligo 1 to oligo 3, may then be annealed to a single stranded V_{H} DNA in the M13 vector and used as primers to synthesise second strand DNA containing the anti-D V_{H} CDR sequences. This may be achieved conventionally using a suitable polymerase. Since the antibody specificity is determined solely by the three CDR regions, the actual V_{H} gene chosen for the framework template is immaterial. All that is required is that there is sufficient homology of the three chosen oligonucleotides with the template. This is ensured by appropriate design of the

15

20

25

30

35

terminal nucleotides of the synthetic oligonucleotide primers. Thus the second strand may contain sequences from substantially any human antibody heavy chain gene, so long as the resulting expressed protein posesses the desired binding parameters.

The double stranded M13 vector may then be used to transform a suitable host microorganism e.g. a conventional $\underline{E.\ coli}$ and one or more clones selected which contain the required anti-D V_H specificity. The correct clone may be identified by DNA sequencing.

The corresponding $V_{\rm L}$ DNA (e.g. for FOG-B) may be prepared in the same way.

The DNA coding for the $V_{\mbox{\tiny H}}$ and $V_{\mbox{\tiny L}}$ regions may then be excised from the above vectors and introduced into other vectors.

According to a further aspect, we provide DNA molecules being synthetic genes for chimaeric antibody, heavy or light chains when incorporated into vectors capable of expressing such antibody chains. Preferred vectors include mammalian expression vectors, such as pSV2gpt (heavy chains) and pSV2neo (light chains) containing DNA coding for the human constant region. Such vectors are readily available from a number of laboratories, or can readily be prepared by incorporating DNA coding for human constant region into known mammalian vectors.

The expression vectors so constructed may then be co-transfected into an appropriate cell-line e.g. a non-secreting IgG myeloma, for large scale production.

Thus according to a yet further aspect, the present invention provides each of the CDR polypeptides of the Mabs FOG-B, PAG-1, MAD-2, FOG-1, FOM-1, FOM-A, BRAD-3, JAC-IO, GAD-2, REG-A and HAM-B shown in Figs. 2-14 of the accompanying drawings in single stranded or double stranded form in the absence of the constant and or framework regions of said Mabs.

According to a yet further aspect, the invention

10

15

20

25

provides chimaeric antibody heavy and light chains of the variable domains comprising CDR polypeptide sequences of the present invention.

Knowledge of the antibody sequences according to the invention enables new chimaeric anti-D antibody molecules to be prepared, having appropriately designed binding specificities. These antibodies may be used for both therapy and diagnosis using presently known techniques.

According to a yet further aspect, we provide anti-RhD reagents comprising at least one antibody molecule according to the invention.

According to a still yet further aspect, we provide pharmaceutical compositions for use in passive immunisation to prevent haemolytic disease of the newborn comprising an antibody of the present invention together with at least one phamacologically acceptable carrier or diluent.

A sterile solution of such an antibody for human injection may be formulated in any physiologically acceptable aqueous medium, for example isotonic phosphate buffered saline or serum. Alternatively, the antibody may be supplied in a freeze-dried formulation ready for reconstitution prior to use.

25

30

35

EXAMPLE

(1) Construction of Chimaeric Antibody Genes

Three oligonucleotide primers are synthesised using an Applied Biosystems machine according to the manufacturer's instructions and purified on an 8 M Urea/polyacrylamide gel (Sanger & Coulson, Febs Lett., 87, 107-110, 1978). The primers are designed to comprise in their central regions sequences complementary to the CDR1, CDR2 and CDR3 regions of the anti-RhD antibody PAG-1 heavy chain gene, as identified according to the criteria described by Kabat et al. (Sequences of Proteins of Immunological Interest, US Department of Health and Social Services, 1987).

The central sequences are flanked at both their 5'

and 3' termini by sequences of 10 nucleotides which hybridise to the termini of the corresponding framework region sequences adjacent to the CDR sequence of the heavy chain antibody gene NEWM (Poljack et al., Biochemistry 16, 3412-3420, 1977). The primers are then hybridised to the derived NEWM single stranded DNA heavy chain sequence in the M13 bacteriophage and the complementary strand of the heavy chain variable region extended using DNA polymerase (Neuberger et al., Nature 314, 268-270 (1985), Jones et al., Nature 321, 522-5 (1986)). The M13 vector also contains an appropriate arrangement for ultimate expression, i.e. a leader sequence, and unique HindIII and BamHI restriction sites.

A similar construct is prepared from oligonucleotide primers homologous to the CDR regions of the PAG-1 anti-RhD antibody light chain genes, and utilising the M13 vector in which $V_{\rm L}$ and $J_{\rm L}$ regions of the antibody gene PAV1 (Sun et al., Nucleic Acids Research 13, 4921-4934, 1985) are cloned.

(2) Expression of Antibody Polypeptides

The cloned genes for the V_H domains are excised

using HindIII and BamHI and cloned into pSV2gpt
(Mulligan and Berg, PNAS 78, 2072-6, 1981). The cloned
light chain genes are similarly excised and cloned into
pSV2neo (Southern and Berg, J. Molec. Appl. Genetics 1
327-381, 1981). Sequences encloding IgG1 constant
regions are then inserted into the vectors (Riechmann et
al., Nature 312, 323-7, (1988). Both vectors are then
transfected by electroporation (Potter et al., PNAS 81,
7161-3, 1984) into the rat myeloma cell line
YO (YB2/3.0 AG, 20) (Galfre and Milstein, Methods in
Enzymology 73, 1-46, 1981) for antibody production.

CLAIMS

10

- A DNA sequence comprising an oligonucleotide encoding a CDR1, CDR2 and/or CDR3 region of a V_H or V_L domain of an antibody against the human RhD antigen, and functional equivalents thereof.
 - 2. A DNA sequence as claimed in claim 1 encoding the CDR1 region of a $V_{\rm H}$ domain selected from:

AGTGGTGGTCTCTACTGGGGC; AGTTCCTACTGGAGC; GGTTACTACTGGAGC;

GTTTACTACTGGACC;

15 GGTTACTACTGGAAC;
GGTTACTACTGGAGC;
AGCTATGGCATGCAC;

AGTTACTGGATGCAC; AGCTATGGCATGCAC;

20 AATTATGGCATGCAC; and AGCTATGGCATGCAC,

optionally with extended terminal regions.

- 25 3. A DNA sequence as claimed in claim 1 encoding the CDR2 region of a $V_{\rm H}$ domain selected from:

GGC;
CGTATTAATAGTTATGGAATTAGCACAAGTTACGCGAACTCCGTGAAG
GGC;

- GTGATATGGTATGATGGAAGTAATAAGTACTATGCAGAGTCCGTGAAG GGC; GTTATATGGTATGATGGAAGTAATAAAAACTATGCAGACTCCGTGAAG GGC; and 5 GTTATTTGGTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAG GGC, optionally with extended terminal regions. A DNA sequence as claimed in claim 1 encoding the 10 CDR3 region of a V, domain selected from: CCAGGCTATGGCGACACCTCGGTACGGAAGAGGGTTTGGAATATGGAC CTC; GTTTTGGTTTCCCGTACCATTTCACAGTACTCCTATTACATGGACGTC; 15 GTTTTGGTTTCCCGTACGATTTCACAGTACTCCTATTACATGGACGTC; CTGTGGCTCGATGGACATGGGTACAAGTTTGACTAC; GGCCGGTCCCGTTATAGTGGTTACGGCTTCTACTCCGGCATGGACGTC; GGCTTAGAACGTCCGATTAGGAACCAGCTGCTAAACCGTCTCGGTTAC 20 TACATGGACGTC; GCCTTGGACTACATCTCCTTGGATTACGGTATGGACG C; GATAGTCCCAAAATGAGGGCTGGAAGTATGTTTCGCT \CTACTACATG GACGTC; GGAGAGCGCATAGCAGCTCGTCTCTTGTCGGGCGGGTACGGTATGGAC 25 GTC; GTCGTTAGCAGCAACCGGTACTCTCTAAGCTACTATTATTACTACATGGAC GAACGTACTACGATGTCTGGAGTGATCATTCCTCGCCGGTATTTTGAC TAC; and 30 GAAGTTACTATGGTTCGGGGAGTTAGGCGTTACTACGGTATGGACGTC, optionally with extended terminal regions. A DNA sequence as claimed in claim 1 encoding the 5. 35 CDR1 region of a V, domain selected from:
 - TCCGGAACCAGCTCCAACATTGGGAATAATTATGTATCC;

GGGGGAAACAACATTGGGCGTAAAAGTGTGCAC; and GGGGGAAACAACATTGGACGTAAAAGTGTGCAC,

optionally with extended terminal regions.

5

- 6. A DNA sequence as claimed in claim 1 encoding the CDR2 region of a V, domain selected from:
- GACAATAATAAGCGACCCTCA;

 10 GGTGCTAGCGAGCGGCCCTCA; and
 GGTGCTAGCGACCGGCCCTCA,

optionally with extended terminal regions.

15

- 7. A DNA sequence as claimed in claim 1 encoding the CDR3 region of a V_i domain selected from:
- GCAACATGGGATAGCAGCCTGAGTGCTGTGGTG; and

 CAGGTGTGGGATAGTAGTAGTCCTCATCCGGGGGTGGTA,

 optionally with extended terminal regions.
- 8. A DNA sequence as claimed in any one of claims 2 to
 7 wherein the said extended terminal regions
 hybridise with the terminal sequences of the
 framework regions of a human intibody heavy or
 light chain gene flanking the CDR region.
- 9. A DNA molecule for the synthesis of a synthetic gene coding for the heavy chain fragment of a monoclonal antibody or fragment thereof comprising a CDR1 encoding oligonucleotide as claimed in claim 2, a CDR2 encoding oligonucleotide as claim in claim 3 and a CDR3 oligonuclectide as claimed in claim 4.

PCT/EP90/01964

5

35

- 10. A DNA molecule for the synthesis of a synthetic gene coding for the light chain fragment of a monoclonal antibody or fragment thereof comprising a CDR1 encoding oligonucleotide as claimed in claim 5, a CDR2 encoding oligonucleotide as claimed in claim 6 and a CDR3 oligonucleotide as claimed in claim 7.
- 11. A DNA molecule comprising a gene coding for the

 framework region of a human antibody light or heavy
 chain having inserted therein for a heavy chain in
 the CDR1 position an oligonucleotide as claimed in
 claim 2, in the CDR2 position, an oligonucleotide
 as claimed in claim 3 and in the CDR3 position, an
 oligonucleotide as claimed in claim 4.
- 12. A DNA molecule comprising a gene coding for the framework region of a human antibody light or heavy chain having inserted therein for a light chain in the CDR1 position an oligonucleotide as claimed in claim 5, in the CDR2 position an oligonucleotide as claimed in claim 6 and in the CDR3 position an oligonucleotide as claimed in claim 7.
- 25 13. A DNA molecule as claimed in claim 11 or claim 12 when incorporated in a vector capable of expressing the said antibody heavy or light chain.
- 14. An expression vector as claimed in claim 13 which30 is replicable in mammalian cells.
 - 15. A polypeptide sequence encoded by a CDR nucleotide sequence as claimed in any one of claims 2 to 7, and functional equivalents thereof.
 - 16. A chimaeric antibody $V_{\rm H}$ or $V_{\rm L}$ chain or fragment thereof encoded by a DNA sequence as claimed

respectively in claim 11 or claim 12.

- 17. A chimaeric antibody molecule against the RhD antigen wherein the variable regions of the heavy and light chains comprise polypeptide sequences as claimed in claim 15.
- 18. An anti-RhD reagent comprising at least one antibody molecule as claimed in claim 17.

10

15

5

- 19. A pharmaceutical composition for use in passive immunisation to prevent haemolytic disease of the newborn comprising an antibody as claimed in claim 17 together with at least one pharmacologically acceptable carrier or diluent.
- 20. A method of Rh-typing wherein an antibody as claimed in claim 17 is employed.

1/14

FIG. 1

FR1

OLIGO1 OLIGO2 OLIGO3

CDR1 CDR2 CDR3 anti-D

FR3

FR4

FF2

2/14 FOG-B VL SEQUENCE

	CASTCTGTGTTGACGCARTTGCCCTCAGTWACTUCAGGCACAGGACAGGTCACCATC G S V L T G P P S V S A A P G O K V T I	90
∓ ≎	TCCTECTCCGGAACCAGCTCCAACATTGGGAATAATTATGTATGCTGGTATCAGCAGCTC S C S G T S S W I G N N Y V S W Y G G L	120
121	CCAGGAACACCCCCAAACTCCTCATTATGACAATAATAAGCGACCCTCAGGGATTCCT P	180
181	GACCEATICICIGETCÉAAGICTGECACCICACCCIGGGCATCACCGGACTCEGG D R F S G S K S G T S A T L G I T G L R	210
241	ACTGGGGGGGGCCGATTATTACTGGGAAGGCATAGCAGCCTGAG1GCTGTGGTG T b D S S L S A V V C A T W D S S L S A V V $^{\prime}$	200
301	TTEGGGGGGGGGCGAGCGTCCTAAGT 333 F G G G T K L T V L S	

3/14 pag-1 vl sequence

09	120	180	240	000 E
TCCTATGTGCTGACTCAGCCTCGGTGTCAGTGGCCCCAGGACT S Y V L T O P P S V S V A P G O T A R I	ACCTGTGGGGGAACAACATTGGACGTAAAGGTGTGCAACTGGTACCAGCAGAAGCCAGGGTTGTGCAACTGGTACCAGCAGAAGCCAGGGTTGTGCAACTGGTACCAGCAGAAGCCAGGG ${}^{\prime}$	CAGECECTIFICATESTE TOTATEST SCHOOGS CONTRACTS A SOLING SCHOOLS SOLING SCHOOLS	TTCTCTGGCTCCAACTCTGGGACACGGCCACCCTGACCATCAGCAGGGTCGCAGCCGGGGGGGG	GATCAGCCGACTATTACTGTCAGTGTGGGATAGTAGTGCTCCTCCGGGGGGGG
 1	61	E :	181	241

ACCACGGTCACCGTCTCGTCGT T V T V S S

-0 10

Y//Y FOG-B VH SEQUENCE

		٥	0	o :	0
60	120	180	240	002	099
CAGOTGOGGOTGOAGGOCTGGTGAAGCUTTCGGAGACCOTGTCCCTC σ L σ K F S E T L S L σ	ACCTGCAGTGTCTCTGGTGGTCGGTCGTGGTGGTCTCTACTGGGGCTGGGTCCGC T C S V S G G L Y W G W V R	CAGCCCCCAGGGAAGGGCTCGAATGGATTGGCAGTATATTTATAGTGGGAGCACCTAC O P P G K G L E W I G S I F Y S G S T Y <cdr2< td=""><td>TACANTECETECAGAGECGAGTEACCATATECGTAGACATGAGAATAAETTE Y N F S L K S K V T I S V D T L K N N F</td><td>TCCCTGAAGCTGTGTGTGACCGCCAGACACGGCTGTTTATTACTGTACGAGACCA ${\bf S}$ L K L ${\bf S}$ S V T A A D T A V Y Y C T R F ${\bf c}$</td><td>301 GECTATGECGACACCTCGGTACGGAGGGTTTGGAATATGGACCTCTGGGGCCAAGGG</td></cdr2<>	TACANTECETECAGAGECGAGTEACCATATECGTAGACATGAGAATAAETTE Y N F S L K S K V T I S V D T L K N N F	TCCCTGAAGCTGTGTGTGACCGCCAGACACGGCTGTTTATTACTGTACGAGACCA ${\bf S}$ L K L ${\bf S}$ S V T A A D T A V Y Y C T R F ${\bf c}$	301 GECTATGECGACACCTCGGTACGGAGGGTTTGGAATATGGACCTCTGGGGCCAAGGG
1	. 51	121	18 19	241	301

5/14
PAG-1 VH SEQUENCE

1	CAGGTGCAGCTGCAGGAGTCGGGACTGGTGAAGCCTICGGAGACCCTGTCCGTC $f 0$ \lor $f 0$ \to $f 0$ $f $		
61	ACCTGCACTGTCTCTGG1GGCTCCGTCAGTTCCTACTGGAGCTGGATCCGGCAGCCC T C T V S G G S V S S S Y W S W I R Q P	120	
121	CCAGGGAAGGGACCGGAGTGGGTATATCTATTACAGTGGGAGCACCAACTACAAC F G K G P E W I G Y I Y Y S G S T N Y N <cdr2< td=""><td>180</td><td></td></cdr2<>	180	
181	CCCTCCCTCAGGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTG F S L R S R V T I S V D T S K N O F S L 	240	
241	AAGCTGGGCTCTGTGACCGCGGCGGCGTGTATTACTGTGCGAGAGTTTTGGTT K L G S V T A A D T A V Y Y C A R V L V	300	
301	TCCCGTACGATTTCACAGTACTCCTATTACATGGACGTCTGGGGCAAAGGGACCACGGTCS R T I S 0 Y S Y Y M D V W G K G T T V	250	
361	261 ACCGTGTCCTCA 372 T V S S		

6/ΛΨ MAD-2 VH SEQUENCE

	·		09
	51		120
-	151		180
	181	CCGTCCTCAAGACTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTG PSLKTRVTISVDTSKN0FSL 	240
,	241	AAGCIGAGIICIGIGACCGCGGCGCGCIGIGIATTACIGIGGGGCTGTGGCTC K L S S V T A A D T A V Y Y C A R L W L	002
	301	GATGGACATGGGTACAAGTITGACTACTGGGGCCAGGGAAGCCTPCR primer D G H G Y K F D Y W G O G T L	09 10

1	CAGGTGCATCTACAGCAGTGGGGGGGGGTTGANGCCTTCGGAGAGCCTGTCCCTC $f o$	90
. 51	ACCTGCGCTGTCCATGGTCCTTCAATGTTTACTACTGGACCTGGATCCGCCAGCCC T C A V H G G S F N V Y W M T W I R O P	120
121	CCASGAAAGGCGCTGGAGTTGGGGAATCAATCATAGTGGAGGCGCCAACTACAAT F G K A L E W I G E I N H S G G A N Y N	180
181	CCGTCCCTCAAGAGTCGAGTCACCATGTCAGGACCAGGTTCTCCCTG F S L K S R V T M S A D T S K N O F S L 	240
241	AAACTGACCTCTGTGACGCCGCGGCTGTTTTTTTTTTTGCGAGAGGCCGGTCC K.L.T.S.V.T.A.A.D.T.A.V.F.Y.C.A.K.G.K.S.	002
301	CGTTATAGTGGTTACGGCTTCTACTCCGGCATGSACGTCTGGGGGCCCAGGGACCACGGTC R Y S G Y G F Y S G M D V W G F G T T V	250
361	361 ACC61C1CA 372	

 $8/\Lambda \checkmark$ FOM-1 VH SEQUENCE

	CAGGTSCASCTACAGCAGTGGGGGGGGGGCGTGTTEAAGCCTTCGGAGCCCTGTGCCTC Q V O L O O W G A G L L K r S E T L S L	50
51	ACCTGCGCTGTCTAGGGGTCCTTCAGTGGTTACTACTGGAACTGGATCCGCCAGCCC T C A V Y G G S F S G Y Y W N W I R Q F	120
121	CCAGGGAAGGGGCTGGAGTTGGGGAATCATTCATAGTGGAAGCACCAACTACAAC F G K G L E W I G E I I H S G S T N Y N <	180
191	CCGICCCTCAAGAGICGAGICACCATGICAGACACGICCAAGAACCAGITCTCCCTG FSLKSKVINSVDISKNOFSL	240
241	ААGCTGAGCTCTGTGACCGCGGGCCTGTGTGTTACTGTGCGAGAGGCTTAGAA К L S S V T A A D T A V Y Y C A R G L E	200
301	CGTCCGATTAGGAACCAGCTGCTCGGTTACTACATGGACG1CTGGGCAAA R F I R N O L L N R L G Y Y N D V H G K	092
7) M	361 665ACCACGTCACCTCA 384 6 T T V T V S S	

9/14 fom-a vh sequence

Ħ	CAGGIGCAGCIACAGCAGIGGGGGCGAGGGCTICGGAGACCCIGICCTC o v o L o o w G A G L L K F S E 1 L S L	99
61	ACCIGCGCTGTATGGTGGTCCTTCAGTGGTTACTACTGGAGCTGGATCCGCCAGCCC T C A V Y G G S F S G Y Y W S W I R D P	120
<u>15</u>	CCAGGGAAGGGGCTGGAGTTGGGGAATCAGTCGTCGTGGAAGCACCAACTACAAC F G K K G S T N Y N K K G S T N Y N K K G S T N Y N K K T G S T N Y N K K T T S K K G S T N T N Y N K K T T S K K T T S T N T N T N T N T N T N T N T N T	180
191	CCGTCCCTCAAGAGTCGCCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTG	240
241	AAGGTGAGGTCTGTGACCGCCGGGCTGTGTATTACTGTGCGAGAGCCTTGGAC KVRSVTAADTAVYCARRALD	200
301	TACATOTCOTTGGATTACGGTATGGACGTCTGGGGCCAGGGACCACGGTCACCGTCTCC Y 1 S L D Y G M G O G T Y Y G Y G G T Y G Y G G G T Y Y G	099 090
351	TCA 363	

M/ 14 BRAD-3 VH SEQUENCE

		2
61	TCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCT S C A A S G F T F S S Y G N N W R G A	120
121 21	CCAGGCNAGGGGCTGGAGTGGGTGGCAGTATGGTATGATGAGTAATANAGAAJAT $_{ m F}$ G $_{ m K}$ G $_{ m C}$ L $_{ m K}$ W $_{ m V}$ A $_{ m C}$ I W $_{ m V}$ D G S N $_{ m K}$ E $_{ m V}$	1.90
181	GCAGACTICGISAAGGGCCGAITCACCAICTCCAGAGAATTCCAAGAATACACIGIAI A D F V K G R F T I S R D N S K N T L Y	240
241	CTGCAAATGAACAGCCTGAGGCCGAGGCACGGCTGTGTATTACTGTGCGACAGATAGT LONNS LRÁEDT A $\dot{\rm V}$ Y C A T D $\ddot{\rm S}$	300
301	CCCANAATGAGGGCTGGAAGTATGTTTGGT7G1TRCATGGACGTCTGGGGGGGGG F K M K A G S N F R Y Y Y M D V W G K G	380
361	ACCACFCR primer 381	

ANIAY JAC-10 VH SEQUENCE

	FCR primerGGGAGGCTTAG.TCAGCCTGGGGGTCCCTGAGACTC	99
61	TCCTGTGCAGCCTCTGGATTCACCTTCAGTTACTGGATGCACTGGGTCCGCCAAGCT S C A A S G F T F S S Y W M H W V R O A $\langle\text{CDR}1 \rangle$	120
121	CCAGGGAAGGGGCTGGTGTCACGTATTAATAGTTATGGAATTAGCACAAGTTAC F G K G L V W V S R I N S Y G I S T S Y <	180
191	GCGAACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACACGCCAAGAACACGCTGTAT A N S V K G R F T I S R D N A K N T L Y 	240
241	CTGCAAATGAACACTCTGAGAGAGGACACGGGGGGGGGG	002 200
301	CGCATAGCAGCICGICTTTGTCGGGCGGGTACGGTATGGACGICTGGGGCCAAGGGACC R I A A R L L S G G Y G M D V W G O G T 	250
361	ACPCR primer 378	

Ú

ŋ

AGCAGCAACCGGTACTCTCTAAGCTACTATTACTACATGGACGTCTGGGGCAAAGGG

>-

L S -CDR3-

មា

z s

301

ACCAC---FCR primer---

36.1

12/14 GAD-2 VH SEQUENCE

13/14 REG-A VH SEQUENCE

61	CCAGGCGAGGGGCTGGAGGGTCCTGGGGGTCCTGGGGGTCCTGGGGGTCCTGGGCTCCTGGGGGTCCTGGGCTCCTGGGGGTCCTGGGCTCCTGGGCTCCGCTGGCTGGCTGGCTGGCTGGCTGGGGTTCGTGGGGGTTGTGGGGGTGGGGGTGGT	50 120 180
181	GCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGACTTCCAAGAACACGCTGTAT A D S V K G R F T I S R D N S K N T L Y 	240
241	CTGCAAATGAACGCCTGAGAGCCGAGGCTGTGTATTACTGTGCGAGAGGT LOMNSLRAER	300
301	301 ACTACGATGICIGAGIGATCATICCICGCGGTATITIGACTACTGGGGCCAGGGAACC I T R S G V I I P R R Y F D Y W G G G T	260

/4//4 HAM-B VH SEQUENCE

	361PCR orimer 375	361
092	ACTATGGTTCGGGGAGTTAGGTACGGTATGGACGTCTGGGGCCCCAGGGACCACTT N V R G V R R Y Y G M D V W G F G T .	301
00n	CTGCAAATGAACAGCCTGAGGACACGGCTGTGTATTACTGTGCGAGAGTT L O M N S L R A E D T A V Y Y C A R E V	241
240	GCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACTTCCAAGAACACGCTGTAT A D S V K G R F T I S R D N S K N T L Y 	181
180	CCAGGCAAGGGGCTGGAGTGGTGGTATTTGGTATGATGGAAGTAATAATACTAT F G K G L E W V A V I W Y D G S N K Y Y <cdr2< td=""><td>121</td></cdr2<>	121
120	TCCTGTGCAGCGTCTGAGTTCAGCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCT S C A A S G F , F S S Y	ć1
5 0	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	٦

International Application No

PCT/EP 90/01964

		ernational Application No			
I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 4 According to International Patent Classification (IPC) or to both National Classification and IPC C 12 N 15/13					
According t	o International Patent Classification (IPC) or to both National	Classification and IPC C 12 N	15/13		
IPC ⁵ :	C 07 K 15/28, C 12 P 21/08,	A 61 K 39/395, G	01 N 33/80		
FIELDS	SEARCHED				
Minimum Documentation Searched 7					
assificatio	System Class	sification Symbols			
IPC ⁵	C 12 N, C 12 P,	C 07 K			
	Documentation Searched other than to the Extent that such Documents are	Minimum Documentation Included in the Fields Searched *			
III. DOCK	MENTS CONSIDERED TO BE RELEVANT	the nithe relevant passages 12	Relevant to Claim No. 13		
ategory •	Citation of Document, 11 with Indication, where appropr	idit, Vi the relevant person			
х .	GB, A, 2189506 (CENTRAL BLC AUTHORITY) 28 October 1987 see the whole document	OOD LABORATORIES	15-20		
	see the whole document		1-14		
Y					
-			1-14		
Y	EP, A, 0239400 (G.P. WINTER 30 September 1987 see the whole document, 31				
A	Clinical Chemistry, volume September 1988, S.L. Morrison et al.: characterization of general engineered antibody mon 1668-1675 see the whole document	"Production and netically	1-14		
		"T" later document published after	the international filing date		
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed IV. CERTIFICATION Date of the Actual Completion of the international Search Date of the Actual Completion of the international Search Date of the Actual Completion of the international Search or priority date and not in combined to cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or theory underlying the cited to understand the principle or cannot be considered novel or cannot be considered to involve an inventive step document is combined to another cannot be considered to involve an inventive step document is combined to another cannot be considered to involve an invent					
1	5th February 1991		1747		
Internati	onal Searching Authority	Signature of Authorized Office	ST TATFIAAR		
EUROPEAN PATENT OFFICE			THE COLUMN		

Bio Essays, volume 8, no. 2, February/ March 1988, M. Verhoeyen et al.: "Engineering of antibodies", pages 74-78 see the whole document	
	-14
) .

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

EP 9001964

41668 SA

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 22/02/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A- 2189506	28-10-87	AU-A- 7196387 BE-A- 1001517 EP-A- 0251440 FR-A- 2601963 JP-A- 63044881 LU-A- 86855	29-10-87 21-11-89 07-01-88 29-01-88 25-02-88 07-12-87
EP-A- 0239400	30-09-87	GB-A,B 2188638 JP-A- 62296890	07-10-87 24-12-87

