Basics of Quantitative Genetics

Peter von Rohr

28 September 2018

Background

- Central Dogma of Molecular Biology
- \rightarrow Genotypes are the basis for phenotypic expression
 - Start with simple model
- ightarrow one locus that affects quantitative trait

Population

Terminology

- ▶ alleles: variants occuring at a given genetic Locus
- ▶ **bi-allelic**: only two alleles, e.g., G_1 and G_2 at a given locus G in population
- genotype: combination of two alleles at locus G in an individual
- **homozygous**: genotypes G_1G_1 and G_2G_2 where both alleles identical
- **heterozygous**: genotype G_1G_2 different alleles

Frequencies in Example Population

genotype frequencies

$$f(G_1G_1) = \frac{4}{10} = 0.4$$

$$f(G_1G_2) = \frac{3}{10} = 0.3$$

$$f(G_2G_2) = \frac{3}{10} = 0.3$$

allele frequencies

$$f(G_1) = f(G_1G_1) + \frac{1}{2} * f(G_1G_2) = 0.55$$

 $f(G_2) = f(G_2G_2) + \frac{1}{2} * f(G_1G_2) = 0.45$

Hardy-Weinberg Equilibrium

allele frequencies

$$f(G_1) = p, f(G_2) = q = 1 - p$$

genotype frequencies

Alleles	G_1	G_2
G_1 G_2	$f(G_1G_1) = p^2$ $f(G_1G_2) = p * q$	$f(G_1G_2) = p * q$ $f(G_2G_2) = q^2$

$$f(G_1G_1) = p^2$$
, $f(G_1G_2) = 2pq$, $f(G_2G_2) = q^2$

Genotypic Values

Population Mean

 Expected value of genotypic value V as discrete random variable

$$\mu = V_{11} * f(G_1G_1) + V_{12} * f(G_1G_2) + V_{22} * f(G_2G_2)$$

$$= a * p^2 + d * 2pq + (-a) * q^2$$

$$= (p - q)a + 2pqd$$

Breeding Values Definition

The breeding value of an animal i is defined as two times the difference between the mean value of offsprings of animal i and the population mean.

Derivation of Breeding value for G_1G_1

	Mates of S		
	$f(G_1)=p$	$f(G_2)=q$	
Parent <i>S</i>			
$f(G_1)=1$	$f(G_1G_1)=p$	$f(G_1G_2)=q$	

Computation of Breeding value for G_1G_1

$$\mu_{11} = p * a + q * d$$

The breeding value BV_{11} corresponds to

$$BV_{11} = 2 * (\mu_{11} - \mu)$$

$$= 2 (pa + qd - [(p - q)a + 2pqd])$$

$$= 2 (pa + qd - (p - q)a - 2pqd)$$

$$= 2 (qd + qa - 2pqd)$$

$$= 2 (qa + qd(1 - 2p))$$

$$= 2q (a + d(1 - 2p))$$

$$= 2q (a + (q - p)d)$$

Computation of Breeding value for G_2G_2

$$\mu_{22} = pd - qa$$

The breeding value BV_{22} corresponds to

$$BV_{22} = 2 * (\mu_{22} - \mu)$$

$$= 2 (pd - qa - [(p - q)a + 2pqd])$$

$$= 2 (pd - qa - (p - q)a - 2pqd)$$

$$= 2 (pd - pa - 2pqd)$$

$$= 2 (-pa + p(1 - 2q)d)$$

$$= -2p (a + (q - p)d)$$

Computation of Breeding value for G_1G_2

$$\mu_{12} = 0.5pa + 0.5d - 0.5qa = 0.5[(p - q)a + d]$$

The breeding value BV_{12} corresponds to

$$ZW_{12} = 2 * (\mu_{12} - \mu)$$

$$= 2 (0.5(p - q)a + 0.5d - [(p - q)a + 2pqd])$$

$$= 2 (0.5pa - 0.5qa + 0.5d - pa + qa - 2pqd)$$

$$= 2 (0.5(q - p)a + (0.5 - 2pq)d)$$

$$= (q - p)a + (1 - 4pq)d$$

$$= (q - p)a + (p^2 + 2pq + q^2 - 4pq)d$$

$$= (q - p)a + (p^2 - 2pq + q^2)d$$

$$= (q - p)a + (q - p)^2d$$

$$= (q - p)[a + (q - p)d]$$

Summary of Breeding Values

Genotype	Breeding Value	
G_1G_1	2qlpha	
G_1G_2	$(q-p)\alpha$	
G_2G_2	$-2p\alpha$	

with
$$\alpha = a + (q - p)d$$

Allele Substitution

$$BV_{12} - BV_{22} = (q - p)\alpha - (-2p\alpha)$$

$$= (q - p)\alpha + 2p\alpha$$

$$= (q - p + 2p)\alpha$$

$$= (q + p)\alpha$$

$$= \alpha$$

$$BV_{11} - BV_{12} = 2q\alpha - (q - p)\alpha$$
$$= (2q - (q - p))\alpha$$
$$= \alpha$$

Dominance Deviation I

$$V_{11} - BV_{11} = a - 2q\alpha$$

$$= a - 2q [a + (q - p)d]$$

$$= a - 2qa - 2q(q - p)d$$

$$= a(1 - 2q) - 2q^{2}d + 2pqd$$

$$= [(p - q)a + 2pqd] - 2q^{2}d$$

$$= \mu + D_{11}$$

Dominance Deviation II

$$V_{12} - BV_{12} = d - (q - p)\alpha$$

= $d - (q - p)[a + (q - p)d]$
= $[(p - q)a + 2pqd] + 2pqd$
= $\mu + D_{12}$

$$V_{22} - BV_{22} = -a - (-2p\alpha)$$

$$= -a + 2p [a + (q - p)d]$$

$$= [(p - q)a + 2pqd] - 2p^2d$$

$$= \mu + D_{22}$$

Summary of Values

Genotyp	genotypic value	Breeding Value	Dominance Deviation
G_iG_j	V_{ij}	BV_{ij}	D_{ij}
G_1G_1	а	$2q\alpha$	$-2q^2d$
G_1G_2	d	$(q-p)\alpha$	2pqd
G_2G_2	-a	$-2p\alpha$	$-2p^2d$

Decomposition of Genotypic Values

$$V_{ij} = \mu + BV_{ij} + D_{ij}$$