Random Forest

Aaryan CO21BTECH11001

Let number of features of dataset = n

Let number of training examples = m

Data consists of matrices X and y where i^{th} column of X represents the i^{th} feature of dataset and i^{th} element of y represents the value of variable dependent on set of features listed in i^{th} row of X.

Random forest is a bagging algorithm which consists of bagged decision trees, with a slightly modified splitting criteria.

The algorithm works as follows -

- 1. Sample p datasets $D_1, D_2, ..., D_p$ with replacement.
- 2. For each D_j , train a full decision tree $h_j()$ with one small modification: before each split, randomly subsample $k \le n$ features (without replacement) and only consider these for split i.e., the feature with least impurity among these for split.
- 3. The final classifier $h(x) = mode_i\{h_i(x)\}$

Questions -

- What kind of algorithm is Random Forest?
 Ans. It is a supervised learning algorithm widely used for classification/labeling problems.
- **2.** How do we choose the parameter k? **Ans.** k is supposed to be chosen by handpicking i.e., change and find the appropriate value suitable for the problem. But a good estimate for starting is to take the round off value of \sqrt{n}

- **3.** How do we choose the parameter m? **Ans.** This depends on requirement of problem, but for a higher accuracy, m is taken as a couple of thousands. And it can be as large as one can afford.
- **4.** What are the advantages of using Random Forest? **Ans.** It doesn't require any kind of pre-processing of data. Since it is a splitting algorithm, it works the same irrespective of scale. Also the result is extremely insensitive to parameters m and k.
- **5.** What are the disadvantages of using Random Forest? **Ans.** The main limitation is that large number of trees can make the algorithm too slow and ineffective for real-time predictions.
- **6.** How can we increase accuracy and decrease time complexity of Random Forest?
 - **Ans.** We should not grow each tree to its full depth, instead prune based on the leave out samples. This can further improve your bias/variance trade-off.