Apellidos:	GRUPO:
Nombre:	NIF:

ALEM

Grado en Ingeniería Informática 21 de diciembre 2017

- 1. Sean $X_1 = \{(1,3,2), (3,4,3)\}$ y $X_2 = \{(1,1,3), (2,1,2), (3,1,1), (0,1,2)\}$ dos subconjuntos de $(\mathbb{Z}_5)^3$.
 - a) Comprueba que los vectores de X_1 son linealmente independientes y amplía este conjunto una base de $(\mathbb{Z}_5)^3$ (llama a esta base B_1).
 - b) Comprueba que los vectores de X_2 forman un sistema de generadores de $(\mathbb{Z}_5)^3$. Toma una base que esté contenida en X_2 (llámala B_2).
 - c) Calcula la matriz del cambio de base de B_1 a B_2 .
 - d) Sea u el vector cuyas coordenadas en B_1 son (1, 1, 1). ¿Cuál es el vector u? ¿Cuáles son sus coordenadas en B_2 ?
- 2. Sean U y W los siguientes subespacios de $(\mathbb{Z}_3)^3$:

$$U = L[(1,2,1), (1,0,2)]; \quad W \equiv \begin{cases} x + 2y + z = 0 \\ x + y + 2z = 0 \end{cases}$$

- a) Calcula las ecuaciones cartesianas de U.
- b) Calcula las ecuaciones cartesianas de U + W.
- 3. Sea $f:(\mathbb{Z}_2)^3 \to (\mathbb{Z}_2)^2$ la aplicación lineal dada por f(x,y,z)=(x+z,y+z).
 - a) Calcula una base del núcleo de f.
 - b) Sean $B_1 = \{(1, 1, 0), (1, 0, 1), (0, 0, 1)\}$ y $B_2 = \{(0, 1), (1, 1)\}$. Calcula $M_{B_1, B_2}(f)$.

4. Sea
$$A = \begin{pmatrix} -2 & -4 \\ 1 & 3 \end{pmatrix} \in M_2(\mathbb{R}).$$

- a) Calcula los valores propios de A.
- b) Calcula una base de vectores propios de la matriz A.
- c) Calcula A^{11} .