ABSTRACT

5

10

15

A light emitting device 1 has formed therein a light emitting layer section 24 based on a double heterostructure in which a p-type cladding layer 34, an active layer 33 and an n-type cladding layer 32, individually composed of a $Mg_aZn_{1-a}O$ ($0 \le a \le 1$) type oxide, are stacked in this order, and uses a face on the n-type cladding layer side as a light extraction surface. The device also has, as being provided on the main surface on the light extraction surface side of the n-type cladding layer 32, an n-type low resistivity layer 35 composed of a Mg_aZn_{1-a}O type oxide, and having a content of an n-type dopant larger than that in the n-type cladding layer 32. There is thus provided a light emitting device of Mg_aZn_{1-a}O-type oxide base, excellent in the light extraction efficiency, having the light emitting layer section composed of a $Mg_aZn_{1-a}O$ -type oxide, and a high conductivity MgZnO-base compound semiconductor layer disposed on the light extraction surface side.