11.1

Équation différentielle et primitives

Maths Spé terminale - JB Duthoit

11.1.1 Équation différentielle

De nombreux phénomènes de physique peuvent être modélisé par une relation entre une fonction g et sa dérivée g'.

Définition

Une **équation différentielle** est une équation pour laquelle l'inconnue recherchée n'est pas une valeur mais une fonction et pour laquelle l'égalité proposée fait intervenir la dérivée de cette fonction.

Résoudre une équation différentielle, c'est déterminer toutes les fonctions dérivables qui vérifient l'égalité.

Savoir-Faire 11.1

SAVOIR VÉRIFIER QU'UNE FONCTION EST SOLUTION D'UNE ÉQUATION DIFFÉRENTIELLE

- 1. Soit l'équation différentielle y' = 4x 3, pour tout réel x. Montrer que la fonction f définie sur \mathbb{R} par $f(x) = 2x^2 3x + 1$ est une solution de cette équation.
- 2. Soit l'équation différentielle y'-2y=4, pour tout réel x. Montrer que la fonction f définie sur \mathbb{R} par $f(x)=e^{2x}-2$ est une solution de cette équation.
- 3. Soit l'équation différentielle xy' + y = 6x + 1, pour tout réel x. Déterminer les réels a et b de telle sorte que la fonction f définie par f(x) = ax + b soit une solution de cette équation.

Exercice 11.1

- 1. Soit l'équation différentielle $y' = 6x^2 + 8x$, pour tout réel x. Montrer que la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 + 4x^2 5$ est une solution de cette équation.
- 2. Soit l'équation différentielle $x^2y' + (x-1)y = 2x^2 x$, pour tout réel x. Déterminer les réels a et b de telle sorte que la fonction f définie par f(x) = ax + b soit une solution de cette équation.
- 3. Soit l'équation différentielle $xy' + y = \frac{-1}{x^2}$, pour tout réel $x \neq 0$. Montrer que la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x^2}$ est une solution de cette équation.

11.1.2 Primitives

Définition

Soit f une fonction définie sur I. On dit que F est une **primitive** de f sur I lorsque F est dérivable sur I et que F' = f.

Autrement dit, toute fonction solution de l'équation différentielle y' = f est une **primitive** de f sur I.

Vocabulaire

y' = f signifie que, pour tout $x \in I$, y'(x) = f(x)

Propriété

- Toute fonction f continue sur un intervalle I admet des primitives sur cet intervalle.
- Soit f une fonction continue. Deux primitives de f diffèrent d'une constante.

^Démonstration 15- (Exigible) -

Montrer que deux primitives d'une même fonction continue f diffèrent d'une constante

Soit f une fonction continue sur I. Soit F et G deux primitives de la fonction f sur I. Monter que F et G diffèrent d'une constante.

Savoir-Faire 11.2

SAVOIR VÉRIFIER QU'UNE FONCTION EST PRIMITIVE D'UNE AUTRE FONCTION

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = xe^x$. Montrer que la fonction g définie sur \mathbb{R} par $g(x) = (x-1)e^x$ est une primitive de f, puis en déduire toutes les primitives de f.
- 2. Soit f la fonction définie sur $]2; +\infty[$ par $f(x) = \frac{2x+1}{x-2}$. Montrer que la fonction g définie sur $]2; +\infty[$ par g(x) = 2x + 5ln(x-2) est une primitive de f, puis en déduire la primitive de f qui s'annule en 3.

Exercice 11.2

Soient f et g deux fonctions définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x^2 + x}$ et $g(x) = -\ln\left(1 + \frac{1}{x}\right)$.

- 1. Montrer que g est une primitive de f sur $]0; +\infty[$.
- 2. Déterminer une primitive de f sur $]0; +\infty[$ qui s'annule en 1

Exercice 11.3

Soient F et f deux fonctions définie sur $]0; +\infty[$ par $f(x) = \sqrt{x}$ et $F(x) = \frac{2}{3}x\sqrt{x} + 5$. Montrer que F est une primitive de f sur $]0; +\infty[$.

Exercice 11.4

Soient F et f deux fonctions définie sur $]-1;+\infty[$ par $f(x)=\frac{x}{x+1}$ et $F(x)=x-\ln(x+1)$. Montrer que F est une primitive de f sur $]-1;+\infty[$.

Exercice 11.5

Soit F la fonction définie sur $]-\infty;2[$ par $F(x)=(x-2)\sqrt{2-x}.$

- 1. Calculer F'(x)
- 2. En déduire une primitive sur $]-\infty;2[$ de la fonction f définie sur $]-\infty;2[$ par $f(x)=\sqrt{2-x}$

• Exercice 11.6

Soit f une fonction définie sur [-3; 5]. La courbe ci-contre représente une primitive F de f.

Parmi les deux courbes ci-dessous, laquelle représente la fonction f ? Justifier !

courbe 1

courbe 2

Exercice 11.7

Soit f une fonction dont La courbe représentative est la droite d.

On considère également les courbes C_1 et C_2 représentatives de fonctions g et h. Laquelle des fonction, parmi g et h, est une primitive de f?

