Esercitazioni di laboratorio del corso di Elettronica 2 – Anno 2006

Raddrizzatore veloce ad una semionda

Diodo ideale, o superdiodo

Un amplificatore operazionale ed un diodo possono essere combinati, come in Figura 1, per realizzare un raddrizzatore ad una semionda di precisione. L'uscita v_O rappresenta una replica <u>parziale rettificata</u> del segnale di ingresso v_S con caduta di tensione trascurabile, rispetto a quella che si avrebbe con l'utilizzo di un singolo diodo (pari a circa 0.6 V). Grazie all'elevato guadagno ad anello aperto dell'operazionale, A_V ($\square 200000$ in DC), la tensione di innesco del diodo, V_γ è ridotta a V_γ/A_V , quando il diodo è inserito nell'anello di retroazione <u>ed è in conduzione</u>. In tal caso l'elevato guadagno A_V forza la tensione ai terminali di ingresso dell'operazionale ad essere quasi zero.

Figura 1 Raddrizzatore con superdiodo

Per $v_S>0$, v_O eguaglia v_S , e i>0. In tal caso l'uscita dell'operazionale è positiva ed il diodo D_1 si trova in conduzione. Poiché la corrente nel piedino invertente, i_- , è idealmente zero, la corrente i_D è pari ad i, il diodo è in conduzione e l'anello di retroazione è chiuso proprio attraverso il diodo.

Per $v_S < 0$, l'uscita dell'operazionale è negativa ed il diodo non si trova in conduzione, quindi $i_D = 0$ e l'anello di retroazione è aperto: $v_O = 0$, poiché i = 0.

La transcaratteristica del circuito di Figura 1 è quindi quella riportata in Figura 2.

Sorgenti di errore principali:

- Guadagno finito dell'operazionale
- Guadagno dell'operazionale che diminuisce all'aumentare della frequenza
- Tensione di offset dell'operazionale

Figura 2 Transcaratteristica del circuito di figura 1

Problema di carattere pratico:

sebbene per tensioni di ingresso negative l'uscita del circuito † sia correttamente pari a zero, ai terminali di ingresso dell'operazionale ho una tensione negativa e l'uscita dell'operazionale, v_1 , è quindi saturata verso la tensione negativa di alimentazione: <u>l'anello</u> di retroazione è aperto e non vale quindi il principio della massa virtuale!

Lo stadio di ingresso dei moderni amplificatori operazionali è in grado di sopportare tensioni differenziali che si avvicinano (e talvolta anche superano) la tensione di alimentazione. Anche per lo stadio di uscita la situazione non pericolosa e non c'è quindi il rischio di danneggiare il dispositivo.

Domanda: quale limite di prestazioni mi determina la saturazione?

Figura 3 Configurazione senza saturazione

Configurazione rettificante senza saturazione

Il problema della saturazione può essere aggirato tramite la configurazione circuitale di Figura 3, che realizza sempre un raddrizzatore di precisione a singola semionda. L'operazionale è ora in configurazione invertente e viene raddrizzata la semionda negativa del segnale di ingresso:

$$\operatorname{per} v_{S} \ge 0 \quad v_{O} = 0 \qquad \operatorname{per} v_{S} \le 0 \quad v_{O} = -\frac{R_{2}}{R_{1}} v_{S}$$

La transcaratteristica del circuito è quella di figura 4.

Domanda: perché l'operazionale non entra in saturazione in questa configurazione circuitale?

Figura 4 Transcaratteristica del circuito di figura 3

[†] **NOTA BENE**: l'uscita del circuito è nel punto contrassegnato da v_0 e <u>non</u> coincide con l'uscita dell'operazionale

Esercitazione

Parte prima (da svolgere rapidamente):

- Montare il circuito di Figura 1
- Alimentare l'operazionale uA741 con tensione ±12 V
- Applicare come segnale di ingresso una sinusoide con ampiezza picco-picco di 10 V (nota: 5 V sul display del generatore di forme d'onda). Per avere un trigger stabile è vantaggioso portare il segnale di ingresso anche su di un canale dell'oscilloscopio tramite un attacco BNC a T ed un cavo coassiale
- Visualizzare l'uscita sull'oscilloscopio tramite una sonda compensata 10x
- Valutare, in modo rapido ed approssimato, la banda del circuito ed annotare la frequenza, a partire dalla quale, il segnale presenta una distorsione visivamente apprezzabile
- Impostata la frequenza di 1 kHz sul generatore di segnale, posizionare la sonda sull'uscita dell'operazionale e verificare che questo si trova in saturazione durante la semionda negativa del segnale di ingresso. Tracciare la forma d'onda sul grafico di figura 6 (impostare la base dei tempi dell'oscilloscopio in modo da visualizzare solo un paio di periodi del segnale)

Parte seconda:

- Montare il circuito di figura 3
- Utilizzare stessa alimentazione e segnale di ingresso
- Con la sonda compensata posizionata sull'uscita del circuito, valutare la banda passante della nuova configurazione circuitale e la frequenza a cui la distorsione è apprezzabile
- Alle frequenze più elevate (es. 20 kHz), quando il segnale di uscita è ancora apprezzabile, si nota una forte distorsione della sinusoide, che diviene in pratica un'onda triangolare (vedi Figura 5): la velocità di salita dell'onda triangolare (o pendenza), dV/dt, quanto vale (in volt/microsecondi)? A quale limite dell'operazionale è legata?
- Impostata la frequenza di 1 kHz sul generatore di segnale, spostare poi la sonda sull'uscita dell'operazionale e tracciare la forma d'onda sul grafico di Figura 6: come si spiega il segnale visualizzato, anche in confronto a quello che si otteneva con la configurazione precedente?

Figura 5 Uscita del circuito di Figura 3 con segnale di 20 kHz: si noti la forte distorsione

Figura 6

Banda a -3 dB per il circuito 1:	
Frequenza a cui la distorsione è già visibilmente apprezzabile per il circuito 1:	
Banda a -3 dB per il circuito 2:	
Frequenza a cui la distorsione è già visibilmente apprezzabile per il circuito 2:	

Componenti utilizzati nell'esercitazione:

- Amplificatore operazionale uA741 q.tà 1
- Resistore da 4.7 k Ω q.tà 2
- Diodo silicio pn 1N4148 q.tà 2

Diodo silicio 1N4148

Figura 7

Pinout operazionale uA741

Figura 8

Amplificatore logaritmico

Un'altra particolare configurazione dell'amplificatore operazionale è quella dell'amplificatore logaritmico. Nell'esercitazione è proposta la versione più semplice (Figura 9), anche se è quella meno utilizzata perché afflitta da diversi inconvenienti.

Quando il segnale di ingresso è positivo, il diodo nella catena di retroazione è in conduzione e il piedino di ingresso invertente si trova a massa virtuale. La corrente che scorre nel diodo è:

$$I_{D} = I_{S} \left(e^{qV_{D}/kT} + 1 \right) = I_{S} \left(e^{V_{D}/V_{T}} + 1 \right) \simeq I_{S} \left(e^{V_{D}/V_{T}} \right)$$

con I_D corrente del diodo, I_S corrente inversa del diodo, V_D tensione diretta ai capi del diodo, k costante di Boltzmann(1.38*10⁻²³J/K), T temperatura assoluta e q carica dell'elettrone.

Si ricorda poi che è:

$$\frac{kT}{q} = V_T$$

Trascurando la corrente nel piedino invertente e per il principio di massa virtuale si ha che:

$$\begin{split} V_O &\simeq -V_D \\ I_D &\simeq V_S/R \end{split}$$

da cui:

$$V_O \simeq -V_T \ln \left(\frac{V_S}{R I_S} \right)$$

Esercitazione

- Montare il circuito dell'amplificatore logaritmico come mostrato in Figura 9.
- Effettuare una prima misura di tipo qualitativo, impostanto il generatore di segnale su 8 V_{pp} (4 V_{pp} sul display), OFFSET di 4.1 V_{DC} (2.050 V_{DC} sul display) e frequenza 1 kHz. Per vedere meglio la risposta di tipo logaritmico si può impostare un'onda triangolare sul generatore di funzioni, invece della sinusoide.
- La seconda misura prevede invece di usare il generatore di funzioni come generatore di tensione continua variabile e di tracciare sul grafico semilogaritmico di Figura 13 (oppure in una tabella) l'uscita per valori di tensione continua in ingresso compresi tra 10 mV e 2 V.

NOTA: per impostare <u>la sola tensione continua</u> senza onda AC sovrapposta, tenere premuto il tasto "OFFSET" per qualche secondo.

Figura 9 Amplificatore logaritmico a diodo

Figura 10 montaggio suggerito per il circuito di Figura 1

Figura 11 montaggio suggerito per il circuito di Figura 3

Figura 12 montaggio suggerito per il circuito di Figura 9

Figura 13