SD TSIA 204 Linear Models Intro to linear models

Ekhiñe Irurozki

Télécom Paris

A 2D starting example

A 2D starting example

A 2D starting example

Notation interpretation

- ightharpoonup n = 244
- ▶ p = 1
- $ightharpoonup y_i$: tip let by the *i*-th customer
- $ightharpoonup x_i$: total bill payed by the *i*-th customer
- \triangleright y: the observation is the tips, dependent variable
- \triangleright x: the feature/covariate, price of the bill, independent variable

Linear model / Linear regression hypothesis : assume that the price of the bill and the tip let are linearly correlated

Exo: use describe() from Pandas to get a rough data summary

Three questions to be covered: modeling, learning and predicting

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear model import LinearRegression
# Generate example data
np.random.seed(42)
X = np.random.rand(20, 1)*10 # Independent variable
y = 2 * X + 3 + np.random.randn(20, 1) # Dependent variable
# Fit linear regression model
model = LinearRegression()
model.fit(X, v)
# Predict y values using the model
X_{\text{new}} = \text{np.linspace}(0, 10, 100).\text{reshape}(-1, 1)
y_pred = model.predict(X_new)
# Create a scatter plot of the data points
plt.scatter(X, v, label='Data Points')
# Plot the linear regression line
plt.plot(X new, y pred, color='red', label='Linear Regression Line')
plt.xlabel('X')
nl + \pi lahel(!\pi!)
```

Modeling I, the 1D case

Given a sample :
$$(y_i, x_i)$$
, for $i = 1, ..., n$

Linear model or linear regression hypothesis assume :

$$y_i \approx \theta_0^{\star} + \theta_1^{\star} x_i$$

Model coefficients

- $ightharpoonup heta_0^{\star}$: intercept (unknown)
- $\blacktriangleright \theta_1^{\star} : \text{slope (unknown)}$

Rem: both parameters are unknown from the statistician

Data

- \triangleright y is an **observation** or a variable to explain
- \triangleright x is a **feature** or a covariate

Modeling II

Probabilistic model. Let us give a precise meaning to the sign \approx :

$$y_{i} = \theta_{0}^{\star} + \theta_{1}^{\star} x_{i} + \varepsilon_{i},$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \varepsilon, \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon) = 0$$

where i.i.d. means "independent and identically distributed"

Interpretation: $\varepsilon_i = y_i - \theta_0^* - \theta_1^* x_i$: represent the error between the theoretical model and the observations, represented by random variables ε_i centered (often referred to as **white noise**).

<u>Rem</u>: motivation for the random nature of the noise – measurement noise, transmission noise, in-population variability, etc.

Modeling III

$$y_i = \theta_0^{\star} + \theta_1^{\star} x_i + \varepsilon_i$$

We call

- ▶ intercept the scalar θ_0^* (\blacksquare : ordonnée à l'origine)
- ▶ slope the scalar θ_1^{\star} (■ : pente)

Our **goal in the learning stage** is to estimate θ_0^* and θ_1^* (unknown) by $\widehat{\theta}_0$ and $\widehat{\theta}_1$ relying on observations (y_i, x_i) for i = 1, ..., n

Rem: The "hat" notation is classical in statistics for referring to estimators

In **prediction time** $\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_i$

Least squares: visualization

Least squares: visualization

(Total) Least squares : visualization

(Total) Least squares : visualization

Learning: mathematical formulation of Least squares

The **least squares** estimator is defined as:

$$(\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

- ▶ Differentiate between θ^* , θ and $\widehat{\theta}$!!!!!
- ▶ it is also referred to as "ordinary least squares" (OLS)
- ▶ an original motivation for the squares is computational : first order conditions only require solving a linear system
- ▶ a solution always exists : minimizing a **coercive** continuous function (coercive : $\lim_{\|x\|\to+\infty} f(x) = +\infty$)

Rem: write $\ll \in \operatorname{argmin} \gg \operatorname{as} \log \operatorname{as} \operatorname{you} \operatorname{do} \operatorname{not} \operatorname{know} \operatorname{if} \operatorname{the solution} \operatorname{is} \operatorname{unique}$

Least square authorship (controversial)

Figure – Adrien-Marie Legendre and Carl Friedrich Gauss

Historical / robust detour

The **least absolute deviation** (LAD) estimator reads :

$$(\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n |y_i - \theta_0 - \theta_1 x_i|$$

<u>Rem</u>: hard to compute without computer; requires an optimization solver for non-smooth function (or a Linear Programming solver)

<u>Rem</u>: more robust to outliers (données aberrantes)

Least absolute deviation authorship

Figure – Ruđer Josip Bošković and Pierre-Simon de Laplace

Existence and uniqueness of the solution

Existence of a Local minimum : first order condition

Fermat's rule Theorem If f is differentiable, then at a local minimum x^* the gradient of f vanishes at x^* , *i.e.* $\nabla f(x^*) = 0$.

Existence and uniqueness of the solution

Existence of a Local minimum : first order condition

Fermat's rule Theorem If f is differentiable, then at a local minimum x^* the gradient of f vanishes at x^* , *i.e.* $\nabla f(x^*) = 0$.

Rem: sufficient condition when f is strongly convex!

Existence and uniqueness of the solution

Existence of a Local minimum : first order condition

Fermat's rule Theorem If f is differentiable, then at a local minimum x^* the gradient of f vanishes at x^* , *i.e.* $\nabla f(x^*) = 0$.

Rem: sufficient condition when f is strongly convex!

The Hessian Matrix and Gradients

The **gradient** ∇f is a vector of first-order partial derivatives :

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

The **Hessian Matrix H** of f is a square matrix of second-order partial derivatives:

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

The minimizer is unique when f its strictly convex

$$f$$
 is quadratic $\implies f$ is convex $\implies \nabla^2 f(\widehat{\boldsymbol{\theta}})$ positive semi definite.

$$\nabla^2 f(\hat{\boldsymbol{\theta}})$$
 positive definite \implies the minimizer is unique

Back to least squares

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

For least squares, minimize the function of two variables:

$$f(\theta_0, \theta_1) = f(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 x_i)^2$$

First order condition / Fermat's rule :

$$\begin{cases} \frac{\partial f}{\partial \theta_0}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) = 0\\ \frac{\partial f}{\partial \theta_1}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) x_i = 0 \end{cases}$$

Calculus continued

Usual mean notation :
$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$
 and $\overline{y}_n = \frac{1}{n} \sum_{i=1}^n y_i$

With that, Fermat's rule states (dividing by n):

$$\begin{cases} \frac{\partial f}{\partial \theta_0}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) = 0 \\ \frac{\partial f}{\partial \theta_1}(\widehat{\boldsymbol{\theta}}) = \sum_{i=1}^n (y_i - \widehat{\theta}_0 - \widehat{\theta}_1 x_i) x_i = 0 \end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases} \widehat{\theta}_0 = \overline{y}_n - \widehat{\theta}_1 \overline{x}_n & \text{(CNO1)} \\ \widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sum_{i=1}^n (x_i - \overline{x}_n)^2} & \text{(CNO2)} \end{cases}$$

Exo: Show that the solution to the OLS is unique iff $Var(x) \neq 0$

Center of gravity and interpretation

(CNO1)
$$\Leftrightarrow (\overline{x}_n, \overline{y}_n) \in \{(x, y) \in \mathbb{R}^2 : y = \widehat{\theta}_0 + \widehat{\theta}_1 x\}$$

- $ightharpoonup \overline{speed} = 15.4$
- $ightharpoonup \overline{dist} = 42.98$

Physical interpretation: the cloud of points' center of gravity belongs to the (estimated) regression line

Vector formulation

Notation:
$$\mathbf{x} = (x_1, \dots, x_n)^{\top}$$
 and $\mathbf{y} = (y_1, \dots, y_n)^{\top}$

$$(\text{CNO2}) \Leftrightarrow \widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sum_{i=1}^n (x_i - \overline{x}_n)^2}$$

$$(\text{CNO2}) \Leftrightarrow \widehat{\theta}_1 = \text{corr}_n(\mathbf{x}, \mathbf{y}) \cdot \frac{\sqrt{\text{var}_n(\mathbf{y})}}{\sqrt{\text{var}_n(\mathbf{x})}}$$
where
$$\text{corr}_n(\mathbf{x}, \mathbf{y}) = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sqrt{\text{var}_n(\mathbf{x})} \sqrt{\text{var}_n(\mathbf{y})}}$$
and
$$\text{var}_n(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^n (z_i - \overline{z}_n)^2 \text{ (for any } \mathbf{z} = (z_1, \dots, z_n)^{\top})$$

respectively empirical correlation, empirical variances

cars example

Braking distance for cars as a function of the speed

Line slope :
$$\operatorname{corr}_n(\mathbf{x}, \mathbf{y}) \cdot \frac{\sqrt{\operatorname{var}_n(\mathbf{y})}}{\sqrt{\operatorname{var}_n(\mathbf{x})}} = 3.932409.$$

Centering

Centered model:

Write for any
$$i = 1, ..., n$$
:
$$\begin{cases} x'_i = x_i - \overline{x}_n \\ y'_i = y_i - \overline{y}_n \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}' = \mathbf{x} - \overline{x}_n \mathbf{1}_n \\ \mathbf{y}' = \mathbf{y} - \overline{y}_n \mathbf{1}_n \end{cases}$$

and $\mathbf{1}_n = (1, \dots, 1)^{\top} \in \mathbb{R}^n$, then solving the OLS with $(\mathbf{x}', \mathbf{y}')$ leads to

$$\begin{cases} \widehat{\theta}'_0 = 0 \\ \widehat{\theta}'_1 = \frac{\frac{1}{n} \sum_{i=1}^n x'_i y'_i}{\frac{1}{n} \sum_{i=1}^n x'_i^2} \end{cases}$$

<u>Rem</u>: equivalent to choosing the cloud of points' center of mass as origin, *i.e.* $(\overline{x}'_n, \overline{y}'_n) = (0,0)$

Centering (II)

Centering and interpretation

Consider the coefficient $\hat{\theta}'_1$ ($\hat{\theta}'_0 = 0$) for centered points \mathbf{y}', \mathbf{x}' , then:

$$\widehat{\theta}_1' \in \operatorname{argmin}_{\theta_1} \sum_{i=1}^n (y_i' - \theta_1 x_i')^2 = \operatorname{argmin}_{\theta_1} \sum_{i=1}^n x_i'^2 \left(\frac{y_i'}{x_i'} - \theta_1 \right)^2$$

Interpretation: $\hat{\theta}'_1$ is a weighted average of the slopes $\frac{y'_i}{x'_i}$

$$\widehat{\theta}'_1 = \frac{\sum_{i=1}^n x_i'^2 \frac{y_i'}{x_i'}}{\sum_{i=1}^n x_j'^2}$$

Influence of extreme points: weights proportional to x_i^2 ; connected to the leverage (\blacksquare : levier) effect

${\bf Extreme\ points-leverage\ effect}$

Centering + scaling (standardization)

Centered-scaled model:

$$\forall i = 1, \dots, n : \begin{cases} x_i'' = (x_i - \overline{x}_n) / \sqrt{\text{var}_n(\mathbf{x})} \\ y_i'' = (y_i - \overline{y}_n) / \sqrt{\text{var}_n(\mathbf{y})} \end{cases} \Leftrightarrow \begin{cases} \mathbf{x}'' = \frac{\mathbf{x} - x_n \mathbf{1}_n}{\sqrt{\text{var}_n(\mathbf{x})}} \\ \mathbf{y}'' = \frac{\mathbf{y} - \overline{y}_n \mathbf{1}_n}{\sqrt{\text{var}_n(\mathbf{y})}} \end{cases}$$

Solving OLS with $(\mathbf{x''}, \mathbf{y''})$ then

$$\begin{cases} \widehat{\theta}_0'' = 0 \\ \widehat{\theta}_1'' = \frac{1}{n} \sum_{i=1}^n x_i'' y_i'' \end{cases}$$

Rem: equivalent to choosing the points cloud center of mass as origin and normalize **x** and **y** to have unit **empirical norm** $\|\cdot\|_n$:

$$\|\mathbf{x}''\|_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i'')^2 = 1$$

$$\|\mathbf{y}''\|_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i'')^2 = 1$$

Centering + scaling

When/why preprocessing?

Centering y or using an intercept (or adding a constant feature) is equivalent

Rem: for sparse (\blacksquare : creux) cases centering **y** adding a constant feature could be preferred

Scaling features is important:

- ▶ if you want to <u>interpret</u> the coefficients' amplitude in regression (better solution : t-tests)
- ightharpoonup if you want to <u>penalize</u> or <u>regularize</u> coefficients (*c.f.* Lasso, Ridge, etc.) a single scale is needed
- ightharpoonup for computing reasons (e.g. store scaling to improve efficiency, etc.)

<u>Rem</u>: in practice centering/scaling is useful for **estimation** not so much for **prediction** (see next courses)

What happens with the logarithm scaling?

Centering with Python

Use centering classes from sklearn, see preprocessing: http://scikit-learn.org/stable/modules/preprocessing.html

```
from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X)
print(np.isclose(scaler.mean_, np.mean(X)))
print(np.array_equal(scaler.std_, np.std(X)))
print(np.array_equal(scaler.transform(X),
                   (X - np.mean(X)) / np.std(X))
print(np.array_equal(scaler.transform([26]),
                   (26 - np.mean(X)) / np.std(X)))
```

Rem:most valuable with pipeline

Prediction

We call **prediction** function the function that associates an estimation of the variable of interest to a new sample. For least squares the prediction is given by : $\operatorname{pred}(x_{n+1}) = \widehat{\theta}_0 + \widehat{\theta}_1 x_{n+1}$

Rem: often written \hat{y}_{n+1} (implicit dependence on x_{n+1})

The **residual**: difference between observations and predicted values

$$\epsilon_i = y_i - \operatorname{pred}(x_i) = y_i - \widehat{y}_i = y_i - (\widehat{\theta}_0 + \widehat{\theta}_1 x_i)$$

<u>Rem</u>: observable estimate of the unobservable statistical error

Residuals (on cars, heteroscedasticity)

Residual histograms

Correlation, variance and R^2

Correlation, variance and R^2

Always visualize the data https:

//www.research.autodesk.com/publications/same-stats-different-graphs/

Least squares motivation

- ► Computing advantage : computationally heavy methods avoided before computers (e.g. iterative methods)
- ▶ Theoretical advantage : least square analysis easy under simple hypothesis
- ▶ Interpretability : how much does the regressor increase with the features

Example: under additive white Gaussian noise assumption i.e., $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ the maximum likelihood is equivalent to solving least squares to estimate (θ_0^*, θ_1^*)

Rem: for another noise model and/or to limit outliers influence one can solve (see e.g. QuantReg in statsmodels)

$$\widehat{\boldsymbol{\theta}} = (\widehat{\theta}_0, \widehat{\theta}_1) \in \operatorname{argmin}_{(\theta_0, \theta_1) \in \mathbb{R}^2} \sum_{i=1}^n |y_i - \theta_0 - \theta_1 x_i|$$

Discussion: toward multivariate cases

Physical laws (or your driving school memories) would lead to rather pick a **quadratic** model instead of a **linear** one: the OLS can be applied by choosing x_i^2 as features instead of x_i :

Web sites and books to go further

- ▶ Datascience in general: Blog + videos by Jake Vanderplas http://jakevdp.github.io/
 <u>Homework for next lesson</u>: watch the following videos http://jakevdp.github.io/blog/2017/03/03/reproducible-data-analysis-in-jupyter/
- ► A few notebooks of OLS with statsmodels
- ► McKinney (2012) about Python for statistics
- ► Lejeune (2010) about linear models (in French)
- ► Regression course by B. Delyon (in French, more technical)

Toward multivariate models

Tree volume as a function of height / girth (\blacksquare : circonférence)

Toward multivariate models

Tree volume as a function of height / girth (: circonférence)

Python commands

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# Generate example data
...

# Fit linear regression model
model = LinearRegression()
model.fit(X, y)
```

Model

One observes p features $(\mathbf{x}_1, \dots, \mathbf{x}_p)$. Model in dimension p

$$y_{i} = \theta_{0}^{\star} + \sum_{j=1}^{p} \theta_{j}^{\star} x_{i,j} + \varepsilon_{i}$$

$$\varepsilon_{i} \overset{i.i.d}{\sim} \varepsilon, \text{ pour } i = 1, \dots, n$$

$$\mathbb{E}[\varepsilon] = 0$$

Rem: we assume (frequentist point of view) there exists a "true" parameter $\boldsymbol{\theta}^{\star} = (\theta_0^{\star}, \dots, \theta_p^{\star})^{\top} \in \mathbb{R}^{p+1}$

Dimension pMatrix model

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}}_{\mathbf{y}} = \underbrace{\begin{pmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{pmatrix}}_{X} \underbrace{\begin{pmatrix} \theta_0^{\star} \\ \vdots \\ \theta_p^{\star} \end{pmatrix}}_{\boldsymbol{\theta}^{\star}} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{\boldsymbol{\epsilon}}$$
Equivalently:
$$\mathbf{y} = X\boldsymbol{\theta}^{\star} + \boldsymbol{\epsilon}$$

Column notation :
$$X = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_p)$$
 with $\mathbf{x}_0 = \mathbf{1}_n = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

Line notation :
$$X = \begin{pmatrix} x_1^{\top} \\ \vdots \\ x^{\top} \end{pmatrix} = (x_1, \dots, x_n)^{\top}$$

(1)

Matrix Notation and L_2 Norm

Matrix notation is a powerful way to represent mathematical operations involving vectors and matrices.

The Inner Product (dot product) of two vectors \mathbf{u} and \mathbf{v} is defined as:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} u_i v_i = \mathbf{u}^T \cdot \mathbf{v}$$

Let **A** be an $m \times n$ matrix and **B** be an $n \times p$ matrix. The **matrix product**

C = AB is an $m \times p$ matrix with elements :

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

The L_2 **Norm** (Euclidean norm) of a vector \mathbf{v} is defined as :

$$\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$$

Matrix notation simplifies operations and equations involving vectors and matrices.

Vocabulary

$$\mathbf{y} = X\boldsymbol{\theta}^* + \boldsymbol{\epsilon}$$

- $ightharpoonup \mathbf{y} \in \mathbb{R}^n$: observations vector
- ▶ $X \in \mathbb{R}^{n \times (p+1)}$: **design** matrix (with features as columns and a first column of 1s)
- ▶ $\tilde{X} \in \mathbb{R}^{n \times (p)}$: reduced design matrix (with features as columns and NO column of ones)
- $\blacktriangleright \theta^* \in \mathbb{R}^{p+1}$: (unknown) **true** parameter to be estimated
- $ightharpoonup \epsilon \in \mathbb{R}^n$: noise vector

Vocabulary (and abuse of terms)

We call **Gram matrix** the matrix

$$X^{\top}X$$

whose general term is $[X^{\top}X]_{i,j} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$

If the design matrix X is centered and scaled, the Gram matrix is proportional to the correlation between columns. $X^{\top}X$ is often referred to as the feature correlation matrix

Rem: when columns are scaled such that $\forall j \in [0, p], ||\mathbf{x}_j||^2 = n$, the Gramian diagonal is (n, \ldots, n)

The vector
$$X^{\top}\mathbf{y} = \begin{pmatrix} \langle \mathbf{x}_0, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_p, \mathbf{y} \rangle \end{pmatrix}$$
 represents the correlation between the

observations and the features

(Ordinary) Least squares

 $\underline{\mathbf{A}}$ least square estimator is \mathbf{any} solution of the following problem :

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \left(\|\mathbf{y} - X\boldsymbol{\theta}\|_{2}^{2} \right)$$

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} \left[y_{i} - \left(\theta_{0} + \sum_{j=1}^{p} \theta_{j} x_{i,j} \right) \right]^{2}$$

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} \left[y_{i} - \langle x_{i}, \boldsymbol{\theta} \rangle \right]^{2}$$

- ▶ Does the solution exist? A solution always exists, as we are minimizing a coercive continuous function (**coercive**: $\lim_{\|x\|\to+\infty} f(x) = +\infty$)
- ► Is the solution unique? not guaranteed

Exo how do we make the prediction?

Row / column interpretation

Row interpretation

Let $\tilde{x}_1^{\top}, \dots, \tilde{x}_{p+1}^{\top}$ be the rows of X. The residuals are $r_i = y_i - \tilde{x}_i \boldsymbol{\theta}$ and the OLS is equivalent to minimizing the sum of squares residuals

Column interpretation

Let $\mathbf{x}_0, \dots, \mathbf{x}_p$ be the columns of X. Then $\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 = \|(\theta_0 \mathbf{x}_0, \dots, \theta_p \mathbf{x}_p) - \mathbf{y}\|_2^2$, so OLS is to find a linear combination of columns of X that is closest to \mathbf{y} .

Hilbert projection theorem (HPT)

Let $C \subset \mathbb{R}^d$, $Y \in \mathbb{R}^d$. Let $\widehat{z} = \arg\min_{z \in C} ||Y - z||_2^2$. Then \widehat{z} always exists and is given by

$$< Y - \hat{z}, z >= 0 \qquad \forall z \in C$$

Hilbert projection theorem (HPT) and application to OLS

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{p+1}} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2$$

Note
$$col(X) = span([\mathbf{x}_0, ..., \mathbf{x}_p]) = \sum_{j=0}^p \mathbf{x}_j \theta_j = X\boldsymbol{\theta} \text{ OLS} :$$

 $\widehat{W} \in \operatorname{argmin}_{W \in col(X)} (\|\mathbf{y} - W\|_2^2)$

$$\langle \mathbf{y} - \widehat{W}, W \rangle = 0$$
$$(\mathbf{y} - \widehat{W})^{\top} W = 0$$
$$(\mathbf{y} - \widehat{W})^{\top} X \boldsymbol{\theta} = 0$$
$$(\mathbf{y} - \widehat{W})^{\top} X = 0$$
$$(\mathbf{y} - X \widehat{\boldsymbol{\theta}})^{\top} X = 0$$
$$X^{\top} (\mathbf{y} - X \widehat{\boldsymbol{\theta}}) = 0$$
$$X^{\top} X \widehat{\boldsymbol{\theta}} = X^{\top} \mathbf{y}$$

 $48 \, / \, 62$

(2)

OLS normal equations

The solution to the OLS problem is given by the solution to the normal equation

Normal equation :
$$X^{\top}X\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$$

As a consequence,

- ► a solution always exists.
- ▶ its unique if the solution to the normal equations is unique

Hilbert projection theorem, geometric interpretation

Figure – Souce : Wikipedia

Least squares and uniqueness

Let $\hat{\boldsymbol{\theta}}$ be a solution of $X^{\top}X\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$

Non uniqueness: happens for non trivial kernel, *i.e.* when $\ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$

Assume $\theta_K \in \ker(X)$ with $\theta_K \neq 0$, then

$$X(\widehat{\boldsymbol{\theta}} + \boldsymbol{\theta}_K) = X\widehat{\boldsymbol{\theta}}$$
 and then $(X^\top X)(\widehat{\boldsymbol{\theta}} + \boldsymbol{\theta}_K) = X^\top \mathbf{y}$

<u>Conclusion</u>: the set of least squares solutions is an affine sub-space

$$\widehat{\boldsymbol{\theta}} + \ker(X)$$

Interpretation for multivariate cases

Reminder: we write $X = (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p)$, the features being column-wise (each are of length n)

The property $\ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^{p+1} : X\boldsymbol{\theta} = 0 \} \neq \{0\}$ means that there exists a linear dependence between the features $\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p$,

<u>Reformulation</u>: $\exists \boldsymbol{\theta} = (\theta_0, \dots, \theta_p)^\top \in \mathbb{R}^{p+1} \setminus \{0\} \text{ s.t.}$

$$\theta_0 \mathbf{1}_n + \sum_{j=1}^p \theta_j \mathbf{x}_j = 0$$

Algebra reminder

Rank of a matrix : $\operatorname{rank}(X) = \dim(\operatorname{span}(\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p))$; $\operatorname{span}(\cdot)$: the space generated by \cdot

 $\underline{\text{Property}}: \text{rank}(X) = \text{rank}(X^{\top})$

Rank-nullity theorem:

- $ightharpoonup \operatorname{rank}(X) + \dim(\ker(X)) = p + 1$
- $ightharpoonup \operatorname{rank}(X^{\top}) + \dim(\ker(X^{\top})) = n$

$$\underline{\text{Property}}: \boxed{\text{rank}(X) \leq \min(n, p+1)}$$

See Golub and Van Loan (1996) for details

Algebra reminder (continued)

Matrix inversion : A square matrix $A \in \mathbb{R}^{m \times m}$ is invertible

- if and only if its kernel is trivial : $ker(A) = \{0\}$
- if and only if it is full rank rank(A) = m

OLS is unique iff $X^{\top}X$ is invertible

$$\Leftrightarrow \ker(X^{\top}X) = \{0\}$$

$$\Leftrightarrow \ker(X) = \{0\}$$

 $\Leftrightarrow X$ has full rank

Exo:
$$\ker(X) = \ker(X^{\top}X)$$

Non uniqueness : single feature case

Reminder:
$$X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix}$$

If $\ker(X) = \{ \boldsymbol{\theta} \in \mathbb{R}^2 : X\boldsymbol{\theta} = 0 \} \neq \{ 0 \}$ there exists $(\theta_0, \theta_1) \neq (0, 0)$:

$$\begin{cases} \theta_0 + \theta_1 x_1 &= 0\\ \vdots &\vdots &= \vdots\\ \theta_0 + \theta_1 x_n &= 0 \end{cases}$$
 (*)

- 1. If $\theta_1 = 0 : (\star) \Rightarrow \theta_0 = 0$, so $(\theta_0, \theta_1) = (0, 0)$, contradiction
- 2. If $\theta_1 \neq 0$:
 - 2.1 If $\forall i, x_i = 0 \text{ then } X = (\mathbf{1}_n, 0) \text{ and } \theta_0 = 0$
 - 2.2 Otherwise there exists $x_{i_0} \neq 0$ and $\forall i, x_i = -\theta_0/\theta_1 = x_{i_0}$, i.e. $X = [\mathbf{1}_n \quad x_{i_0} \cdot \mathbf{1}_n]$

Interpretation: $\mathbf{x}_1 \propto \mathbf{1}_n$, *i.e.* \mathbf{x}_1 is constant

Residuals and normal equation

Residual(s):
$$\hat{\boldsymbol{\varepsilon}} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - X\hat{\boldsymbol{\theta}} = (\mathrm{Id}_n - H_X)\mathbf{y}$$

Proposition

$$\langle \hat{\boldsymbol{\varepsilon}}, X \rangle = 0_n$$

 $\langle \hat{\boldsymbol{\varepsilon}}, \hat{\mathbf{y}} \rangle = 0$
 $\langle \hat{\boldsymbol{\varepsilon}}, \bar{\mathbf{y}} \mathbf{1}_n \rangle = 0$

Rem: The Normal equation is $(X^{\top}X)\hat{\boldsymbol{\theta}} = X^{\top}\mathbf{y}$. It follows that $X^{\top}(X\hat{\boldsymbol{\theta}} - \mathbf{y}) = 0 \Leftrightarrow X^{\top}\hat{\boldsymbol{\varepsilon}} = 0 \Leftrightarrow \hat{\boldsymbol{\varepsilon}}^{\top}X = 0$

With $X = (\mathbf{1}_n, \mathbf{x}_1, \dots, \mathbf{x}_p)$, this can be rewritten

$$\forall j = 1, \dots, p : \langle \widehat{\boldsymbol{\varepsilon}}, \mathbf{x}_j \rangle = 0 \text{ and } \overline{r}_n = 0$$

Interpretation: (1,2) residuals are \perp to features and (3) $\hat{\epsilon}$ is centered ($\sum \hat{\epsilon}_i = 0$)

How good is our model? RSS and the determination coefficient R^2

The ratio of the variation explained by the model and the total variation of the data $R^2 = \frac{\|\widehat{\mathbf{y}} - \overline{\mathbf{y}} \mathbf{1}_n\|^2}{\|\mathbf{y} - \overline{\mathbf{y}} \mathbf{1}_n\|^2}$ We can write also, by orthogonality:

$$\|\mathbf{y} - \bar{\mathbf{y}}\mathbf{1}_n\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \bar{\mathbf{y}}\mathbf{1}_n\|^2$$
(3)

Reordering

$$\|\widehat{\mathbf{y}} - \overline{\mathbf{y}}\mathbf{1}_n\|^2 = \|\mathbf{y} - \overline{\mathbf{y}}\mathbf{1}_n\|^2 - \|\mathbf{y} - \widehat{\mathbf{y}}\|^2$$

$$\tag{4}$$

So

$$R^{2} = 1 - \frac{\|\mathbf{y} - \widehat{\mathbf{y}}\|^{2}}{\|\mathbf{y} - \overline{\mathbf{y}}\mathbf{1}_{n}\|^{2}}$$

$$\tag{5}$$

Exo: Show that $0 \le R^2 \le 1$

Prediction

Prediction vector :
$$\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}}$$

Rem: $\hat{\mathbf{y}}$ depends linearly on the observation vector \mathbf{y}

Rem: an **orthogonal projector** is a matrix H such that

1. H is symmetric: $H^{\top} = H$

2. H is idempotent : $H^2 = H$

Proposition Writing H_X the orthogonal projector onto the space span by the columns of X, one gets $\hat{\mathbf{y}} = H_X \mathbf{y}$

If X is full (column) rank, then $H_X = X(X^{\top}X)^{-1}X^{\top}$ is called the **hat matrix**

Exo: Show that H_X is an orthogonal projector

Prediction (continued)

If a new observation $x_{n+1} = (x_{n+1,1}, \dots, x_{n+1,p})$ is provided, the associated prediction is:

$$\widehat{y}_{n+1} = \langle \widehat{\boldsymbol{\theta}}, (1, x_{n+1,1}, \dots, x_{n+1,p})^{\top} \rangle$$

$$\widehat{y}_{n+1} = \widehat{\theta}_0 + \sum_{i=1}^p \widehat{\theta}_i x_{n+1,i}$$

<u>Rem</u>: the normal equation ensures **equi-correlation** between observations and features:

$$(X^{\top}X)\widehat{\boldsymbol{\theta}} = X^{\top}\mathbf{y} \Leftrightarrow X^{\top}\widehat{\mathbf{y}} = X^{\top}\mathbf{y}$$

$$\Leftrightarrow \begin{pmatrix} \langle \mathbf{x}_{0}, \widehat{\mathbf{y}} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \widehat{\mathbf{y}} \rangle \end{pmatrix} = \begin{pmatrix} \langle \mathbf{x}_{0}, \mathbf{y} \rangle \\ \vdots \\ \langle \mathbf{x}_{p}, \mathbf{y} \rangle \end{pmatrix}$$

Polynomial regression and overfitting

Source : sklearn

References I

B. Delyon.

Régression, 2015.

https://perso.univ-rennes1.fr/bernard.delyon/regression.pdf.

G. H. Golub and C. F. van Loan.

Matrix computations.

Johns Hopkins University Press, Baltimore, MD, third edition, 1996.

M. Lejeune.

Statistiques, la théorie et ses applications.

Springer, 2010.

W. McKinney.

Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython.

O'Reilly Media, 2012.