Math 101 HW 31

Jeff Carney

April 26, 2017

1

Q: Suppose $\{x_n\}$ is a sequence that diverges, but does not diverge to either $+\infty$ or $-\infty$. Either prove that at least one of $\limsup x_n$ and $\liminf x_n$ are real numbers and are defined or provide a counterexample.

Since $\{x_n\}$ does not diverge to either $+\infty$ or $-\infty$ it must be bounded. By lemma 1 in the presentation we know that if a sequence is bounded its lim inf is a real number. Thus, $\lim \inf x_n$ is a real number.

 $\mathbf{2}$

 \mathbf{Q} : Suppose $\{x_n\}$ is a sequence that converges. What is the relationship between $\lim\sup x_n$ and $\lim\inf x_n$? Be sure to prove this relationship

By lemma 5 in the presentation we know that a sequence converges iff its $\lim \sup x_n = \lim \inf x_n$.

Q: Suppose that $\{x_n\}$ and $\{y_n\}$ are sequences of real numbers such that $\forall n \in \mathbb{N} \ \{x_n\} \leq \{y_n\}$. Show that $\limsup x_n \leq \limsup y_n$ and $\liminf x_n \leq \liminf y_n$.

Let $\{a_n\}$ and $\{b_n\}$ be sequences s.t. $\forall n \in \mathbb{N} \ a_n = \sup\{x_n, x_{n+1}, ...\} \le b_n = \sup\{y_n, y_{n+1}, ...\}$. Then we have $\lim\sup x_n = \lim\sup a_n \le \lim\sup b_n = \lim\sup y_n$. So $\lim\sup x_n \le \lim\sup y_n$.

Now let $\{c_n\}$ and $\{d_n\}$ be sequences s.t. $\forall n \in \mathbb{N}$ $c_n = \inf\{x_n, x_{n+1}, ...\} \le d_n = \inf\{y_n, y_{n+1}, ...\}$. Then we have $\lim \inf x_n = \lim c_n \le \lim d_n = \lim \inf y_n$. So $\lim \inf x_n \le \lim \inf y_n$.