■ ■ série de livros didáticos informática ufrgs

Sistemas Operacionais

Rômulo Silva de Oliveira Alexandre da Silva Carissimi Simão Sirineo Toscani

Sumário

GERÊNCIA DO PROCESSADOR

- Escalonamento
 - Escalonadores não preemptivos
- Escalonamento
 - Escalonamento preemptivos

Escalonamento

- O escalonador é a entidade do sistema operacional responsável por selecionar um processo apto para executar no processador
- O objetivo é dividir o tempo do processador de forma justa entre os processos aptos a executar
- Típico de sistemas multiprogramados: batch, time-sharing, multiprogramado ou tempo real
 - Requisitos e restrições diferentes em relação a utilização da CPU
- Duas partes:
 - Escalonador: política de seleção
 - Dispatcher: efetua a troca de contexto

Fig. 8.1 Escalonamento.

Fig. 8.2 Escalonamento FIFO.

Objetivos do escalonamento

- Maximizar a utilização do processador
- Maximizar a produção do sistema (throughput)
 - Número de processos executados por unidade de tempo
- Minimizar o tempo de execução (turnaround)
 - Tempo total para executar um determinado processo
- Minimizar o tempo de espera
 - Tempo que um processo permanece na lista de aptos
- Minimizar o tempo de resposta
 - Tempo decorrido entre uma requisição e a sua realização

Situações típicas para execução do escalonador

- Dependem se o escalonador é preemptivo ou não, se considera prioridades ou não, etc...
 - Sempre que a CPU estiver livre e houver processos aptos a executar
 - Criação e término de processos
 - Um processo de mais alta prioridade ficar apto a executar
 - Interrupção de tempo
 - Processo executou por um período de tempo máximo permitido
 - Interrupção de dispositivos de entrada e saída
 - Interrupção por falta de página (segmento) em memória
 - Endereço acessado não está carregado na memória (memória virtual)
 - Interrupção por erros

Eventos de transição de estados

Chaveamento de contexto (dispatcher)

PCB: Process Control Block

Níveis de escalonamento

- Longo prazo
- Médio prazo
- Curto prazo

Escalonador longo prazo

- Executado quando um novo processo é criado
- Determina quando um processo novo passa a ser considerado no sistema, isto é, quando após sua criação ele passa a ser apto
 - Controle de admissão
- Controla o grau de multiprogramação do sistema
 - Quanto maior o número de processos ativos, menor a porcentagem de tempo de uso do processador por processo

Escalonador médio prazo

- Associado a gerência de memória
 - Participa do mecanismo de swapping
- Suporte adicional a multiprogramação
 - Grau de multiprogramação efetiva (diferencia aptos dos aptos-suspensos)

Escalonador de curto prazo

- Mais importante
- Determina qual processo apto deverá utilizar o processador
- Executado sempre que ocorre eventos importantes:
 - Interrupção de relógio
 - Interrupção de entrada/saída
 - Chamadas de sistemas
 - Sinais (interrupção software)

Diagrama de escalonamento

Sistemas Operacionais

14

Tipos de escalonador

- Um vez escalonado, o processo utiliza o processador até que:
 - Não preemptivo:
 - Término de execução do processo
 - Execução de uma requisição de entrada/saída ou sincronização
 - Liberação voluntária do processador a outro processo (yield)
 - Preemptivo:
 - Término de execução do processo
 - Execução de uma requisição de entrada/saída ou sincronização
 - Liberação voluntária do processador a outro processo (yield)
 - Interrupção de relógio
 - Processo de mais alta prioridade esteja pronto para executar

Algoritmos de escalonamento (1)

- Algoritmo de escalonamento seleciona qual processo deve executar em um determinado instante de tempo
- Existem vários algoritmos para atingir os objetivos do escalonamento
- Os algoritmos buscam:
 - Obter bons tempos médios invés de maximizar ou minimizar um determinado critério
 - Privilegiar a variância em relação a tempos médios

Algoritmos de escalonamento (2)

- Algoritmos não preemptivos (cooperativos)
 - First-In First-Out (FIFO) ou First-Come First-Served (FCFS)
 - Shortest Job First (SJF) ou Shortest Process Next (SPN)
- Algoritmos preemptivos
 - Round robin (circular)
 - Baseado em prioridades
- Existem outros algoritmos de escalonamento
 - High Response Ratio Next (HRRN)
 - Shortest Remaining Time (SRT)
 - etc...

FIFO - First In First Out (1)

- First-Come, First-Served (FCFS)
- Simples de implementar
 - Fila
- Funcionamento:
 - Processos que se tornam aptos são inseridos no final da fila
 - Processo que está no início da fila é o próximo a executar
 - Processo executa até que:
 - Libere explicitamente o processador
 - Realize uma chamada de sistema (bloqueado)
 - Termine sua execução

FIFO - First In First Out (2)

- Desvantagem:
 - Prejudica processos I/O bound
- Tempo médio de espera na fila de execução:
 - Ordem A-B-C-D = (0 + 12 + 20 + 35) / 4 = 16.75 u.t.
 - Ordem D-A-B-C = (0 + 5 + 17 + 25) / 4 = 11.7 u.t.

Processo	<u>Tempo</u>	Α	
Α	12	В	
В	8	С	
С	15	D	
D	5		
		U 	12 20 35 40

Processo	processador (u.t.)					
А	10					
В	4					
С	3					

Fig. 8.3 Escalonamento FIFO (exemplo).

SJF - Shortest Job First (1)

 Originário do fato que o menor tempo de médio é obtido quando se executa primeiro os processos de menor ciclo de processador (I/O bound)

		Α								
Processo	<u>Tempo</u>	В								
A	12	С								
В	8	D								
C	15									
D	5			шш	 		 		ш	
		C	5		13	2	25	4	0	

Tempo médio: (0 + 5 + 13 + 25)/4 = 10.75 u.t

Fig. 8.4 Escalonamento SJF (exemplo).

SJF - Shortest Job First (2)

- Algoritmo ótimo, isto é, fornece o menor tempo médio de espera para um conjunto de processos
- Processos I/O bound são favorecidos
- Dificuldade é determinar o tempo do próximo ciclo de CPU de cada processo, porém:
 - Pode ser empregado em processos batch (long term scheduler)
 - Prever o futuro com base no passado

Tipos de escalonador (lembrando...)

- Um vez escalonado, o processo utiliza o processador até que:
 - Não preemptivo:
 - Término de execução do processo
 - Execução de uma requisição de entrada/saída ou sincronização
 - Liberação voluntária do processador a outro processo (yield)
 - Preemptivo:
 - Término de execução do processo
 - Execução de uma requisição de entrada/saída ou sincronização
 - Liberação voluntária do processador a outro processo (*yield*)
 - Interrupção de relógio
 - Processo de mais alta prioridade esteja pronto para executar

Escalonadores preemptivos

- Por interrupção de tempo
 - Round robin (circular)
- Por prioridades

Um processo é dito preemptivo, se o mesmo pode perder o processador por algum motivo que não seja o término de seu ciclo de processador

RR - Round Robin (1)

- Similar ao algoritmo FIFO, só que:
 - Cada processo recebe um tempo limite máximo (time-slice, quantum) para executar um ciclo de processador
- Fila de processos aptos é uma fila circular
- Necessidade de um relógio para delimitar as fatias de tempo
 - Interrupção de tempo

Sistemas Operacionais

26

Fig. 8.6 Escalonamento circular (exemplo).

RR - Round Robin (2)

- Por ser preemptivo, um processo perde o processador quando:
 - Libera explicitamente o processador (yield)
 - Realize uma chamada de sistema (bloqueado)
 - Termina sua execução
 - Quando sua fatia de tempo é esgotada
- Se quantum → ∞ obtém-se o comportamento de um escalonador FIFO

Problemas com o Round Robin

- Problema 1: Dimensionamento do quantum
 - Compromisso entre overhead e tempo de resposta em função do número de usuários (1/k na presença de k usuários)
 - Compromisso entre tempo de chaveamento e tempo do ciclo de processador (quantum)
- Problema 2: Processos I/O bound são prejudicados
 - Esperam da mesma forma que processos CPU bound porém muito provavelmente não utilizam todo o seu quantum
 - Solução:
 - Prioridades: Associar prioridades mais altas aos processos I/O bound para compensar o tempo gasto no estado de espera (apto)

Escalonamento com prioridades

- Sempre que um processo de maior prioridade que o processo atualmente em execução entrar no estado apto deve ocorrer uma preempção
 - A existência de prioridades pressupõem a preempção
 - É possível haver prioridade não-preemptiva
- Escalonador deve sempre selecionar o processo de mais alta prioridade segundo uma política:
 - Round-Robin
 - FIFO (FCFS)
 - SJF (SPN)

Implementação de escalonador com prioridades

- Múltiplas filas associadas ao estado apto
- Cada fila uma prioridade
 - Pode ter sua própria política de escalonamento (FIFO, SJF, RR)

Filas dos processos no estado de pronto

Fig. 8.8 Escalonamento por prioridades.

Sistemas Operacionais

31

Fila dos processos no estado de pronto

Fig. 8.10 Escalonamento circular com prioridades.

Fig. 8.11 Escalonamento por múltiplas filas.

Exemplo: pthreads

- A política de escalonamento FIFO com prioridade considera:
 - Quando um processo em execução é preemptado ele é inserido no ínicio de sua fila de prioridade
 - Quando um processo bloqueado passa a apto ele é inserido no final da fila de sua prioridade
 - Quando um processo troca de prioridade ele é inserido no final da fila de sua nova prioridade
 - Quando um processo em execução "passa a vez" para um outro processo ele é inserido no final da fila de sua prioridade

Como definir a prioridade de um processo?

- Prioridade estática:
 - Um processo é criado com uma determinada prioridade e esta prioridade é mantida durante todo o tempo de vida do processo
- Prioridade dinâmica:
 - Prioridade do processo é ajustada de acordo com o estado de execução do processo e/ou do sistema
 - e.g; ajustar a prioridade em função da fração do quantum que foi realmente utilizada pelo processo:
 - q = 100 ms
 - Processo A utilizou 2ms □ nova prioridade = 1/0.02 = 50
 - Processo B utilizou 50ms □ nova prioridade = 1/0.5 = 2

Problemas com prioridades

- Um processo de baixa prioridade pode não ser executado
 - Postergação indefinida (starvation)
- Processo com prioridade estática pode ficar mal classificado e ser penalizado ou favorecido em relação aos demais
 - Típico de processos que durante sua execução trocam de padrão de comportamento (CPU bound a I/O bound e vice-versa)
- Solução:
 - Múltiplas filas com realimentação

Múltiplas filas com realimentação

- Baseado em prioridades dinâmicas
- Em função do tempo de uso da CPU a prioridade do processo aumenta e diminui
- Sistema de envelhecimento (agging) evita postergação indefinida

Possibilidade de trocar de fila

Estudo de caso: escalonamento Linux

- Duas classes em função do tipo de processos (threads)
 - Processos interativos e batch
 - Processos de tempo real
- Políticas de escalonamento do linux (padrão POSIX)
 - SCHED_FIFO: FIFO com prioridade estática
 - Válido apenas para processos de tempo real
 - SCHED_RR: Round-robin com prioridade estática
 - Válido apenas para processos de tempo real
 - SCHED_OTHER: Filas multinível com prioridades dinâmicas (time-sharing)
 - Processos interativos e *batch*

Escalonamento linux (timesharing)

- Baseado no uso de créditos e prioridade
- Sistema de créditos:
 - Cada processo executa um certo número de créditos
 - O processo com maior crédito é o selecionado
 - Cada interrupção de tempo o processo em execução perde um crédito
 - Processo que atinge zero créditos é suspenso (escalonador médio prazo)
 - Se no estado apto não existir processos com créditos é realizado uma redistribuição de créditos para todos os processos (qualquer estado)

$$Cr\'{e}ditos = \frac{Cr\'{e}ditos}{2} + prioridade$$

Escalonamento não preemptivo com prioridades

- SJF é um forma de priorizar processos
 - A prioridade é o inverso do próximo tempo previsto para ciclo de CPU
- Processos de igual prioridade são executados de acordo com uma política
 FIFO
- Problema de postergação indefinida (starvation)
 - Processo de baixa prioridade não é alocado a CPU por sempre existir um processo de mais alta prioridade a ser executado
 - Solução:
 - Envelhecimento
- O conceito de prioridade é mais "consistente" com preempção
 - Processo de maior prioridade interrompe a execução de um menos prioritário

SIMULADOR DE ALGORITMOS

http://cpuburst.com/ganttcharts.html

Leituras complementares

- R. Oliveira, A. Carissimi, S. Toscani; <u>Sistemas Operacionais</u>. Editora Sagra-Luzzato, 2001.
 - Capítulo 4, Capítulo 9 (seção 9.4), Capítulo 10 (seção 10.4)
- A. Silberchatz, P. Galvin; <u>Operating System Concepts</u>. (4th edition)
 Addison-Wesley, 1994.
 - Capítulo 5
- A. Silberchatz, P. Galvin, G. Gane; <u>Applied Operating System Concepts</u>. (1st edition). Addison-Wesley, 2000.
 - Capítulo 4, 5 e 6
- W. Stallings; <u>Operating Systems</u>. (4th edition). Prentice Hall, 2001.
 - Capítulo 9