

Might

CHALLY OF

Children of Aller

NIIII THE THE PARTY OF THE PART

NIIII PA

WHAFT OF

Linux GPU 开发指南

11417

NIINTH ON

William Of

Willy EN OU

Willy Dy

WHAFT OF

rully the of

CHAFT OF

rally the of

版本号: 1.3

发布日期: 2022.4.26

William Control

nully to 1

CHAFT OF

10/13/11

rully the On

rally the On

CHINATA ON

NIIII THE REAL PROPERTY.

NUMPET C

版本历史

NIIN EN ON

版本号。	日期	制/修订人	内容描述〉
1.0	2020.7.2	AWA1639	初始化版本
1.1	2021.5.13	AWA1639	增加适配 Mali-G31
1.2	2022.4.25	AWA1831	增加适配 H618
1.3	2022.4.26	AWA1831	增加适配 Mali-400

RUMPER ST. RUMPER ST.

\lambda

NIIII PAR

nully to de

目 录

0	1	前言 1.1 文档简介
inptid of		1.1 文档简介
D.		1.2、口你凑有 \
		1.3 适用范围
	2	模块介绍 3
	_	2.1 模块功能介绍
		2.2 相关术语介绍
		2.2.1 硬件术语
		2.2.2 软件术语
		2.3 模块配置介绍
		2.3.1 Device Tree 配置说明
		2.3.1.1 GE8300
		2.3.1.2 Mali-G31
		2.3.1.3 Mali-400
inptid of		2.3.2 kernel menuconfig 配置说明
III)		
	3	2.4~驱动框架介绍、※ 8 模块接口说明 9 模块使用范例 10 FAQ 12 5.1 调试方法 12
	4	模块使用范例
	_	
	5	FAQ 12
		5.1 调试方法
		5.1.1 调试工具
		5.1.2 调试节点
10/13/11		White of White of White of White of White of
112/		

1 前言

MAN ON CHARA ON

AOT RUMPA

1.1 文档简介

介绍 Sunxi 平台上 GPU 驱动模块的一般使用方法及调试接口,为开发与调试提供参考。

1.2 目标读者

GPU 驱动开发人员及 GPU 应用开发和维护人员。

》 1.3 适用范围

MINITAL OF CHANGE OF

表 1-1: 适用产品列表

产品名称	内核版本	驱动文件	GPU 型号
T509	Linux-4.9	modules/gpu/img-rgx/*	GE8300
MR813	Linux-4.9	modules/gpu/img-rgx/*	GE8300
R818	Linux-4.9	modules/gpu/img-rgx/*	GE8300
A133	Linux-4.9&Linux-	modules/gpu/img-rgx/*	GE8300
	5.4		
A33	Linux-4.9	modules/gpu/mali-	Mali-400
Kity	"KIN"	utgard/*	THE WAR
H616	Linux-4.9	modules/gpu/mali-	Mali-G31
		bifrost/*	
H618	Linux-5.4	modules/gpu/mali-	Mali-G31
		bifrost/*	
T507	Linux-4.9	modules/gpu/mali-	Mali-G31
		bifrost/*	
Т507-Н	Linux-4.9	modules/gpu/mali-	Mali-G31
		bifrost/*	
Т517-Н	Linux-4.9	modules/gpu/mali-	Mali-G31
		bifrost/*	

0

NIIII PARIN

🗓 说明

mali-bifrost、mali-utgard、rgx 同时也代表着 GPU 的软件架构;

rully fel of

rullytel On

RUIN/EN ON

Rully EN ON

NIINFEY ON

Willy Co

NIII/EX

MINTE

Willyft JOY

NIINFEX ON

rullyft y O'

Number of State of St

NIIN EN ON

NIINEY ON

nuly ty of

WHAT OF

WHAT OF

NIIII ON

rully EX O

版权所有 © 珠海全志科技股份有限公司。保留一切权利

NIII PER C

2 模块介绍

2.1 模块功能介绍

GPU 是图形加速引擎,能够提供 2D 和 3D 加速,能够绘制普通 UI、游戏,能够做缩放、全景拼接、畸变矫正等处理,GPU 还能提供并行运算算力。

在有硬件做支撑的前提下,软件的兼容性显得特别重要。目前使用最为广泛的图形加速 API 是 Khronos 组织提出来的 OpenGL,在移动端产品中对应地叫 OpenGL ES。OpenGL ES 是在 OpenGL 的基础上做一些裁剪,以更好地适应移动端产品对功耗和成本限制的较高要求。除了 OpenGL 之外,Khronos 还定义了 Vulkan 这一套新的图形渲染 API,旨在替代 OpenGL/OpenGL ES。此外,Khronos 组织还定义了一套并行运算 API,即 OpenCL,开发者可以通过 OpenCL 接口来使用 GPU 硬件进行算法加速。

不同的平台使用的 GPU 硬件型号一般都是有差异的,型号不同其驱动也有所不同,但同一型号的 GPU 的配置方法一般都是一样的,同时不同型号的 GPU 也有共性方面的使用及配置,下面的说明如未分型号说明,则表明是所有 GPU 通用的。

2.2 相关术语介绍

2.2.1 硬件术语

表 2-1: 模块硬件相关术语介绍

相关术语 解释说明

GPU Graphics Processing Unit,图形处理单元,主要用于 2D 和 3D 加速

2.2.2 软件术语

表 2-2: 模块硬件相关术语介绍

相关术语	解释说明
DVFS	动态电压频率调整,用于根据不同需求动态调节频率及电压
GPU idle	根据 GPU 空闲与否自动开关电源及时钟

OTHALTY ON

hillyty O1

版权所有 © 珠海全志科技股份有限公司。保留一切权利

3

, JINYEN

2.3 模块配置介绍

White O

2.3.1 Device Tree 配置说明

runkty)

WHALLY O

Device Tree 主要用来配置模块相关的参数,例如中断、寄存器、时钟信息、vf 表等。 Device Tree 文件的路径为:

arch/arm64 (32 位平台为 arm)/boot/dts/sunxi/{CHIP}.dtsi(CHIP 为研发代号,如 sun50iw10p1等)

以及

device/config/chips/{IC}/configs/{BOARD}/board.dts(IC 为产品型号,如 T509,BOARD 为板型如 perf1)

其中,前者用于配置中断、寄存器、时钟信息等固定参数,后者则用于配置 vf 表、各种功能使能开关等可变参数。

WHALK ON

2.3.1.1 GE8300

THE PARTY OF

JIN'EY O

GE8300 的 Device Tree 配置信息如下:

```
gpu: gpu@0x01800000 {
    device_type = "gpu";
    compatible = "img,gpu";
    reg = <0x0 0x01800000 0x0 0x80000>;//寄存器地址
    interrupts = <GIC_SPI 97 IRQ_TYPE_LEVEL_HIGH>;//中断
    interrupt-names = "IRQGPU";
    clocks = <&clk_pll_gpu>, <&clk_gpu>;//时钟
    clock-names = "clk_parent", "clk_mali";
    power-domains = <&pd_gpu>;
};
```

GE8300 在 board.dts 中的配置参数说明如下:

WHATH ON

版权所有 © 珠海全志科技股份有限公司。保留一切权利

THE STAIL

表 2-3: board.dts 配置说明

参数名	说明	6	5 5
independent_power	GPU 是否独立供电	,0 表示非独立供电	,1表示独立供电
gpu_idle	是否打开 GPU idle	,0 表示否,1 表示	是
dvfs_status	是否打开 DVFS,0	表示关闭,1 表示技	J开
operating-points	GPU 的 vf 表		
gpu-supply	GPU 独立供电时使	用的 regulator 的 i	d

2.3.1.2 Mali-G31

Mali-G31 的 Device Tree 配置信息如下:

```
gpu: gpu@0x01800000 {
    device_type = "gpu";
    compatible = "arm,mali-midgard";
    reg = <0x0 0x01800000 0x0 0x10000>;//寄存器地址
 | interrupts = <GIC_SPI 95 IRQ_TYPE_LEVEL_HIGH>,//中断
             <GIC_SPI 96 IRQ_TYPE_LEVEL_HIGH>,
             <GIC_SPI 97 IRQ_TYPE_LEVEL_HIGH>;
    interrupt-names = "JOB", "MMU", "GPU";
    clocks = <&clk_pll_gpu>, <&clk_gpu0>, <&clk_gpu1>;//时钟
    clock-names = "clk_parent", "clk_mali", "clk_bak";
#cooling-cells = <2>;
    ipa_dvfs:ipa_dvfs {//温控ipa相关参数
        compatible = "arm,mali-simple-power-model";
        static-coefficient = <17000>;
        dynamic-coefficient = <750>;
        ts = <254682 9576 0xffffff98 4>;
        thermal-zone = "gpu_thermal_zone";
        ss-coefficient = <36>;
        ff-coefficient = <291>;
    };
};
```

```
gpu: gpu@0x01800000 {
        gpu_idle = <1>;
        dvfs_status = <0>;
        operating-points = <
             /* KHz
                     uV */
            600000 950000
            576000 950000
            540000 950000
            504000 950000
         >;
};
```

Mali-G31 在 board.dts 中的配置参数及含义与 GE8300 一致,详情可参考上一章节。

文档密级: 秘密

2.3.1.3 Mali-400

Mali-400 的 Device Tree 配置信息如下:

```
gpu_mali400_0: gpu@lc40000 {
    compatible = "arm,mali-400", "arm,mali-utgard";
    reg = <0x0 0x01c40000 0x0 0x10000>;
    interrupts = <GIC_SPI 97 4>, <GIC_SPI 98 4>, <GIC_SPI 99 4>, <GIC_SPI 100 4>, <
GIC_SPI 102 4>, <GIC_SPI 103 4>;
    interrupt-names = "IRQGP", "IRQGPMMU", "IRQPP0", "IRQPPMMU0", "IRQPP1", "IRQPPMMU1
";
    clocks = <&clk_pll_gpu>, <&clk_gpu>;
};
```

Mali-400 的 sys config.fex 配置信息如下:

```
;GPU parameters
                  : the regulator id GPU used.
;regulator_id
                  : dvfs status, if this is enabled, DVFS will work.
;dvfs status
;temp_ctrl_status : temperature control status, if this is enabled, the gpu frequency
                   will drop down if the temperature of gpu is too high.
scene ctrl_status: scene control status, if this is enabled, android layer can ask;
                    gpu driver to change frequency in certain scene.
                  : maximum level, which is used when thermal system does not restrict
;max_level
                    GPU power consumption.
                  : the corresponding frequency and voltage will be used during GPU
;begin_level
                    initialization.
                    frequency in MHz of certain level.
;lv<x>_freq
                    voltage in mV of certain level.
;lv<x> volt
[ugp]
dvfs_status
                            //是否打开dvfs
temp_ctrl_status
                = 1
                            //是否打开温控
                            //是否打开场景控制
scene\_ctrl\_status = 0
```

🛄 说明

Mali-400 对应的 SDK 版本较旧,部分配置信息在 sys_config.fex 中配置,sys_config.fex 文件的位置一般在 device/config/chips/{IC}/configs/{BOARD}/sys_config.fex(IC 为产品型号,如 T509,BOARD 为板型如 perf1)

2.3.2 kernel menuconfig 配置说明

进入内核根目录,执行 make ARCH=arm64 menuconfig GPU 配置路径如下:

```
Device Drivers —>
Graphics support —>
GPU support for sunxi —>
(ge8300) The GPU type
```

配置界面如下图所示:

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded <M> module <> module capable NIIN KHON NIINEN ON RUHYEY Rullyted 图 2-1: GPU 内核配置图

当需要编译 GPU 内核态驱动代码时,指定该项值为 "ge8300" 或 "mali-g31" 或 "mali-400" 即 可使能相应的驱动编译,当不需要 GPU 的内核驱动时,将上述配置项的值修改为 None 即可。

NIIII PARIN

Tully EN OT NIIIAFEY ON

NIIII ON

WHAT OF

版权所有 © 珠海全志科技股份有限公司。保留一切权利

0/

2.4 驱动框架介绍

Application

Application

Light of GPU device driver

Light of GPU

Application

GPU

Application

Applicatio

图 2-2: GPU 软件框架

针对 OpenGL ES 场景,GPU 软件框架如上图所示,应用通过调用 EGL 和 OpenGL ES 来使用 GPU 做硬件加速,而 EGL 和 OpenGL ES 则通过调用 GPU 内核态驱动(Device Driver)完成底层硬件操作。值得说明的是 EGL 和 OpenGL ES 代码闭源,以动态库 so 的形式提供。Vulkan、Open CL 等使用场景的代码框架与 OpenGL ES 场景基本一致,在此不赘述。

NIIINEN OT

JIN/EX

版权所有 ② 珠海全志科技股份有限公司。保留一切权利

Nilly EX

O Kilyfid O

模块接口说明

Miki of Miki of

MATEN

应用使用 GPU 硬件加速主要是通过 OpenGL ES、Vulkan、Open CL 等接口来实现,有关这些接口的详细说明请参考以下链接:

https://www.khronos.org/registry/EGL/

https://www.khronos.org/registry/OpenGL/index_es.php

https://www.khronos.org/registry/OpenCL/https://www.khronos.org/registry/vulkan/

rullyft y O'

RUMPER OF RUMPER

rullyft y Or

nully fix

WEST OF

版权所有 © 珠海全志科技股份有限公司。保留一切权利

· III/II

111/12/ 9

以下是一个使用 GPU 进行渲染的 OpenGL ES 程序(基于 fbdev)。

```
#include <stdio.h>
#include <EGL/egl.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
int main(int argc, char **argv)
{
            EGLBoolean egl ret;
            EGLContext context;
            EGLSurface window_surface;
                                                                                                                   Counter of the counte
            EGLConfig config;
            EGLint num_config;
           EGLDisplay dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY);
            EGLint context_attribs[] = {
                       EGL_CONTEXT_CLIENT_VERSION, 2,
                       EGL_NONE
           };
            EGLint attrib list[] = {
                       EGL RED SIZE, 8,
                       EGL GREEN SIZE, 8,
                       EGL_BLUE_SIZE, 8,
                       EGL_ALPHA_SIZE, 8,
                       EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
                       EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
                       EGL_NONE
           };
            if (dpy == EGL_NO_DISPLAY) {
                       printf("eglGetDisplay returned EGL_NO_DISPLAY\n");
                       return -1;
           }
            egl_ret = eglInitialize(dpy, NULL, NULL);
            if (egl_ret != EGL_TRUE) {
                       printf("eglInitialize failed\n");
                       return -1;
           }
            egl ret = eglChooseConfig(dpy, attrib list, &config, 1, &num config);
            if (egl ret != EGL TRUE) {
                       printf("eglChooseConfig failed\n");
                       return 0;
           }
           window_surface = eglCreateWindowSurface(dpy, config, (NativeWindowType)NULL, NULL);
            if (window_surface == EGL_NO_SURFACE) {
                       printf("gelCreateWindowSurface failed\n");
                       return 0;
```

文档密级: 秘密


```
}
context = eglCreateContext(dpy, config, EGL_NO_CONTEXT, context_attribs);
if (context == EGL_NO_CONTEXT) {
    printf("eglCreateContext failed\n");
return 0;
egl_ret = eglMakeCurrent(dpy, window_surface, window_surface, context);
if (egl ret != EGL TRUE) {
    printf("eglMakeCurrent failed\n");
    return 0;
}
glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
eglSwapBuffers(dpy, window_surface);
eglDestroySurface(dpy, window_surface);
eglDestroyContext(dpy, context);
eglTerminate(dpy);
```

rullyft y O'

LLWI rullyft y Or

5 FAC

5.1 调试方法

5.1.1 调试工具

Systrace

Systrace 是 Android4.1 版本之后推出的,对系统性能分析的工具,实现原理是在系统的一些关键路径(比如 System Service, 虚拟机,Binder 驱动)插入一些信息收集,从而获取系统关键路径的运行时间信息,进而得到整个系统的运行性能信息。Systrace 的功能包括跟踪系统的 I/O 操作、内核工作队列、CPU 负载以及 Android 各个子系统的运行状况等。借助该工具能有效提升对显示绘制通路的分析调试效率,具体的使用说明可参照以下链接:

https://developer.android.google.cn/studio/profile/systrace?hl=zh_cn

• PVRTrace

PVRTrace 是 PowerVR 提供的用于性能分析、鉴定瓶颈、修改应用程序等功能的工具集 PowerVR Graphics Tools 中的一部分。PVRTrace 一般用于完成记录与分析操作,具体而言,PVRTrace 可以捕获 OpenGL ES 应用程序的 API 调用,方便溯源分析代码流程。通过 PVRTrace,可以抓取每个 OpenGL ES 调用接口及每一帧绘制的图像,并可将抓取的调用进行回放操作。具体的使用说明可参考以下链接:

https://docs.imgtec.com/PVRTune/Manual/topics/pvrtune introduction.html

5.1.2 调试节点

 /sys/kernel/debug/sunxi_gpu/dump 该节点用于打印出当前 GPU 的状态信息,包括当前 GPU 的 idle 功能使能状态、DVFS 使能 状态、是否独立供电、GPU 当前电压频率等。 使用方法:

cat /sys/kernel/debug/sunxi_gpu/dump

11/2/01

版权所有 © 珠海全志科技股份有限公司。保留一切权利

ž_{III}

著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。

10 12