CSSE232 Computer Architecture

Fall 2013-2014

O1678th hour

Introduction

Reading

Better for you if done before class

- For today:
 - Ch 1 (esp 1.1-3, 10)
 - App. C
 - Sections 2.4, 3.1-2

Outline

- Introductions
- Class details
 - Syllabus, website, schedule
- History of computing
- Moore's Law
- Class outline
 - Parts of a computer
 - Program processing
 - Introduction to MIPS
 - Project

Introduction

- Introductions
 - Name/nickname
 - Location on campus
 - One thing you enjoy or are good at

Student assistants

Instructor

Class details

- Syllabus on course webpage
 - http://www.rose-hulman.edu/Class/csse/csse232/
- Submit homework hardcopies in class
- Submit labs through SVN
 - You will be given a repository
 - csse232-201320-yourusername
- Project submission will be discussed later

Quick poll

How many SE? CS? CPE?

Anyone else?

- Difference between hardware/software?
 - Both implement algorithms
- What is a computer?
 - Input, output, memory, processor
 - Processor : datapath, control
- How old is computing?
 - 1943, enigma, Alan Turing, Blechly Park, Colossus
 - 1830, Charles Babbage, Analytical engine
 - 1803, Jacquard loom
 - 1951, UNIVAC, 1st commercial computer

History of Computers

- Mechanical / Electromechanical
- Vacuum tube
- Transistor
- Integrated circuit
- Very Large Scale Integration (VLSI) / Microprocessor
- Ultra Large Scale Integration (ULSI) / Microprocessor

Mechanical/Electromechanical

Jacquard's Loom 1805

Babbage's engine 1833,1837,1853

Hollerith's Census Tabulator 1890

Vacuum Tubes

COLUSSUS 1943

ENIAC 1946

Transistors

TX-0 1955

CDC 1604 1960

Replica of first working transistor

Integrated Circuits

IBM 360 1965

Illiac IV 1976

VLSI and **ULSI**

- Thousands of transistors on chip
- Entire system on chip
- Parallel processing

1982 vs 2010 28.75 lbs/ 0.3 lbs = ~100 times heavier 4MHz / 1 GHz = 250 times slower \$2500 / \$500 = 5 times more expensive(52cm x 23cm x 33cm)/(11.5cm x 5.86cm x 0.93cm) = 629 times as large

Moore's Original Prediction

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Five classic components of a computer

- Same components for all kinds of computers (Desktop, server, embedded)
 - Input
 - Output
 - Memory stored program model (von Neumann)
 - Datapath performs arithmetic operations
 - Control tells the datapath, memory, and devices what to do

Datapath

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

What is an Instruction Set?

To command a computer, you must speak its language.

The words of a computer are called instructions, and its vocabulary is an instruction set.

The MIPS Instruction Set

- Used as the example throughout the book
- Stanford MIPS commercialized by MIPS Technologies (<u>www.mips.com</u>)
- Large share of embedded core market
 - Applications in consumer electronics, network/storage equipment, cameras, printers, ...
- Typical of many modern ISAs
 - See MIPS Reference Data tear-out card, and Appendixes B and E

Jelly Bean and MIPS

MIPS Design Principles

1. Simplicity favors regularity

- All instructions single size
- Always requires three register operands in arithmetic instructions
- Register fields always in the same place

2. Smaller is faster

Only 32 registers

3. Make the common case fast

- PC-relative addressing for conditional branches
- Immediate addressing for larger constant operands

4. Good design demands good compromise

 Compromise between providing for larger addresses and constants in instructions and keeping all instructions the same length

Course outline

- We will learn
 - CPU performance metrics
 - MIPS instruction set architecture
 - Assembly language programs
 - CPU datapath design
 - Types
 - Components
 - Project build CPU

Project

- Teamwork (3 or 4)
- Design a "miniscule instruction set" general purpose processor that can execute programs stored in an external memory
- Model your design, test it, debug it, assess its performance, and possibly implement it on a Field Programmable Gate Array (FPGA) microchip
- Maintain current documentation
- Presentations

Project (cont.)

- Your processor must be capable of executing programs stored in an external memory with which it communicates using:
 - A 16-bit address bus, and
 - A 16-bit data bus.
- Further, your processor should support:
 - Interrupts from two input devices,
 - Reading from a 4-bit input port,
 - Reading from and writing to a special 16-bit display register, and
 - Displaying the contents of the display register on the LCD display via a 16-bit output port.

Project (cont.)

- Your instruction set:
 - Must be capable of performing general computations, and
 - Must support parameterized and nested procedures.

LabO - ioBlockPart

- Install Xilinx Tools (ISE 13.4)
- Run ISE 13.4
- Test your installation
- Modify the project
- Due date on website

HW0

- Review of CSSE132
- Several questions from text
- Due date on website

Recap

- Introductions
- Class details
 - Syllabus, website, schedule
- History of computing
- Moore's Law
- Class outline
 - Parts of a computer
 - Program processing
 - Introduction to MIPS
 - Project