Later Author Guidelines for CVPR Proceedings

Anonymous CVPR submission

Paper ID ****

Abstract

pass

1. Introduction

The importance of our research area

Some progress in sketch based image retrieval

Difficulty in Zero-shot setup and some possible solutions

Our proposed methods and their advantages

itemize our contributions in this paper

- 2. Related Work
- 2.1. Sketch-based image retrieval
- 2.2. Zero-Shot Learning
- 2.3. Cross-modal domain translation

3. Methodology

There will be five parts in this section. Sec. 3.1 defines the our targeted problem and briefly introduce our framework. Sec.3.2 introduce the feature extractor. Sec. 3.3 introduce the image cVAE-GAN. Sec. 3.4 introduce the sketch cVAE-GAN. Sec. 3.5 introduce the semantic preservation module. Sec. 3.6 introduce the design of loss functions during training procedure.

3.1. Problem Definition

In this paper, we focus on solving the problem of handfree sketch-based image retrieval under zero-shot setup, where only the sketches and images from seen class are used during training stage. Our proposed framework is expected to use the sketches to retrieve the images, the categories of which have never appeared during training. We first provide a definition of the SBIR in zero-shot setting. Given a dataset $S = \{(x_i^{img}, x_i^{ske}, x_i^{sem}, y_i) | y_i \in \mathcal{Y}\}$, where x_i^{img} , x_i^{ske} , x_i^{sem} and y_i are corresponding to the image, sketch, semantic representation and class label. Following the zero-shot setting in [2], we split all classes \mathcal{Y} into \mathcal{Y}_{train} and \mathcal{Y}_{test} according to whether the label exists in ImageNet[1], where no overlap exists between two label set, i.e. $\mathcal{Y}_{train} \cap \mathcal{Y}_{test} = \emptyset$. Based on the partition of label set \mathcal{Y} , we split dataset into S_{train} and S_{test} . Our model need to disentangle structure representations of image using data in S_{train} . During test, given x^{ske} from S_{test} , our model need to retrieve several images from test images candidate.

Our goal is to learn a two-way map between image feature domain to sketch feature domain. To this end, we propose a new deep network (shown in Figure $\ref{eq:condition}$), which contains two structure encoders $\{E_s^{img}, E^{ske}\}$, one appearance encoder E_a^{img} , two feature decoder $\{G^{img}, G^{ske}\}$, a semantic decoder and two domain discriminators $\{D^{img}, D^{ske}\}$. Note that, the overall model can be regarded as two cVAE-GANs working parallel, which target to reconstruct sketch features from image and reconstruct image features from both sketches and images. To better capture the semantics information inside the sketches and images, we also add a semantic decoder to preserve semantics information while reconstructing the image features.

3.2. Feature Extractor

Considering the abstractness and visual sparsity of sketch, it is challenging extract feature from sketch. To alleviate this issue, multi-channel and multi-scale model was proposed to extract more saint features [3]. Motivated by the visualization in [4], where different layers capture visual features at different levels, we follow [] and build our feature extractor using a multi-layer feature fusion network enrich feature representation capacity without adding any additional parameters.

108 109	3.3. Image cVAE-GAN	162 163
110	3.4. Sketch cVAE-GAN	164
111	3.5. Semantics Preservation	165
112	3.6. Loss Function	166
113 114		167 168
115	4. Experiment	169
116	4.1. Experiment Setup	170
117	4.1.1 Dataset	171
118 119		172 173
120	4.1.2 Implementation Details	174
121	4.2. Comparison	175
122	4.3. Ablation Study	176
123 124	4.4. Case study	177 178
125	5. Conclusion	179
126		180
127	6. To Discuss	181
128 129	Whether to generator the whole image/sketch.	182 183
130	• If the poses between the image and the sketch are dif-	184
131	ferent, can the model learn the sketch information be-	185
132	tween image and sketch.	186
133 134	Where to add the semantics information to further su-	187 188
135	pervise the model's training.	189
136		190
137	References	191
138 139	[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li	192 193
140	Fei-Fei. Imagenet: A large-scale hierarchical image database.	193
141	In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. IEEE, 2009. 1	195
142	[2] Sasi Kiran Yelamarthi, Shiva Krishna Reddy, Ashish Mishra,	196
143	and Anurag Mittal. A zero-shot framework for sketch based	197
144 145	image retrieval. In European Conference on Computer Vision, pages 316–333. Springer, 2018. 1	198 199
146	[3] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang,	200
147	and Timothy M Hospedales. Sketch-a-net: A deep neural net-	201
148	work that beats humans. <i>International journal of computer</i> vision, 122(3):411–425, 2017. 1	202
149 150	[4] Matthew D Zeiler and Rob Fergus. Visualizing and under-	203 204
151	standing convolutional networks. In European conference on	205
152	computer vision, pages 818–833. Springer, 2014. 1	206
153		207
154 155		208 209
156		210
157		211
158		212
159		213
160 161		214 215
101		213