Matheus Peixolo Ribeiro Viero _ 22 1 4204

a) Faça a divisão de 44 por 5 usando o algoritmo Divide(x,y) do slide 5 da aula sobre Teste de primalidade.

, ,	3				
44 = 10 T 100 & = 10 T	diricle (L,S)	divide (2,5)	divide (5,5)	divide (LL,S)	divide (22,5):
duride (44,5)= (8,4)	g=0 z=0	q=0	q=0 n=2	q=1 x=0	g-2 n=1
direct (22,5)=(4,2)	Ω= 1	q=0 7=2	q=0 n=4	9°2 1°0	q=4 n=2
divide (11, 5)=(2, 1)	return (0,1)	return (0,2)	8=0 x=5	g=2 n=1	return (4,2)
divide (5,5) (1,0)			q=1 n=0	return (2,1)	
divide (2,5)=(0,2)			return (1,0)		
diriclo (1,5) = (0,1)	durich (44,5)				
divide (0,5)= (0,0)	q=4 22				
	Q=8 52=4				
	return (8,4)				

b) Faça a análise de complexidade da função modexp(x, y, N) do slide 7 no pior caso.

function mode exp (x, y, N)

ig Y=O: return 1 O(n): beryico ne todos os lito são zero

Z = moderys (x, [4/2], N) - realização do shipt que pomi custo O (n), e, como estamos analizando o pior caro, irro implio que o o bit mais rignificativo está como L. Logo, até

o número se ternar joro serão petas o chamadas recursivas

O (1)

return x. 2.2 mod N O(n2+n2+n2)=O(m2)

$$m \cdot O(m^2) = O(m^3)$$

c) Faça a análise de complexidade da função primality2(N) no pior caso (slide 15).
1- function primality 2 (N)
2- pick positive integers a, az,, a K < N at random
3- ig a; = 1 (mod N) for all i= 1,2,, k!
Y- return yes
5- elre;
6. return no
2-Considerando que a escolha de un número abestorio sejo O(1) e são Knolorer, logo K-O(1) = O(K) = O(1)
3- É realizado a chanado da função moderos que possui complexidade O(n3) no prior caso, todovir ela será chaneda
Kuezes, gerando um custo de K.O(n3), porém considerando K como constante teremos o custo de O(n3)
Anim, a complexidade da junção primality 2 e O(n3)
The proposition of the position of