Bernstein-Vazirani Algorithm

Huichen Sun

The Bernstein-Vazirani Problem

Given a function $f: \{0, 1\}^n \rightarrow \{0, 1\}$

An unknown string $s \in \{0, 1\}^n$ $f(x) = x \cdot s = (x_1s_1 + x_2s_2 + ... + x_ns_n) \mod 2$

Find the string s

Classical Algorithm

Requiring n queries to confirm s

Let
$$v_i = 0_1 0_2 ... 1_i ... 0_n$$
,
 $f(v_i) = s_i \mod 2 = s_i$

Intuition: string s contains n bits information, and 1 query provides 1 bit information

Quantum Algorithm

Requiring only 1 query to confirm s

Red box: prepare superposition of computational basis

Green box: phase kickback
Blue box: measurement

State preparation and Phase kickback

Red box: uniform superposition

Green box: phase kickback

Initial state: $|0\rangle^{\otimes n}|0\rangle$ State before U_f : $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

 $U_f = \sum_{x \in \{0, 1\}^n} \sum_{y \in \{0, 1\}} |x\rangle \langle x| \otimes |y \oplus f(x)\rangle \langle y|$

State after U_f : $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0, 1\}^n} (-1)^{x \cdot s} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$ \leftarrow Phase Kickback!

Define the first n-qubit state as $|\psi_s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot s} |x\rangle$

Orthogonality of $|\psi_s\rangle$

Property of
$$|\psi_s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0, 1\}^n} (-1)^{x \cdot s} |x\rangle$$

Orthogonality: $\langle \psi_s | \psi_t \rangle = \delta_{s,t}$

$$\langle \psi_s | \psi_t \rangle = \frac{1}{2^n} \sum_{x \in \{0, 1\}^n} (-1)^{x \cdot s} \langle x | \sum_{y \in \{0, 1\}^n} (-1)^{y \cdot t} | y \rangle = \frac{1}{2^n} \sum_{x \in \{0, 1\}^n} (-1)^{x \cdot s + x \cdot t}$$

$$(-1)^{x \cdot s + x \cdot t} = (-1)^{(x \cdot s + x \cdot t) \bmod 2}$$

 $(x\cdot s+x\cdot t) \mod 2$

=
$$((x_1s_1 + x_2s_2 + ... + x_ns_n) \mod 2 + (x_1t_1 + x_2t_2 + ... + x_nt_n) \mod 2) \mod 2$$

=
$$(x_1s_1 + x_2s_2 + ... + x_ns_n + x_1t_1 + x_2t_2 + ... + x_nt_n) \mod 2$$

$$= x \cdot (s \oplus t)$$

$$\langle \psi_s | \psi_t \rangle = \frac{1}{2^n} \sum_{x \in \{0, 1\}^n} (-1)^{x \cdot (s \oplus t)}$$

If
$$s = t$$
, $s \oplus t = 0$, $\langle \psi_s | \psi_t \rangle = 1$; $g(x) = (-1)^{x \cdot (s \oplus t)}$ is "constant" for x

If
$$s \neq t$$
, $s \oplus t \neq 0$, $\langle \psi_s | \psi_t \rangle = 0$; $g(x) = (-1)^{x \cdot (s \oplus t)}$ is "balanced" for x

Measurement

Orthogonality: $\langle \psi_s | \psi_t \rangle = \delta_{s,t}$ $\{|\psi_s\rangle|\ s\in\{0,1\}^n\}$ is an orthogonal basis for the n-qubit system Each s is uniquely related to a state $|\psi_{\rm s}\rangle$

Measure in basis { $|\psi_s\rangle$ }, then problem solved!

Measurement

Measure in basis {| ψ_s }} = Change of Basis + Measure in computational basis A unitary operator U changes one basis into another $\{|\psi_s\rangle\} \stackrel{U}{\Longleftrightarrow} \{|x\rangle \mid x \in \{0, 1\}^n\}$

 $H^{\otimes n}$ is just the unitary operator we need!

Measurement

$$\begin{split} H &= \frac{1}{\sqrt{2}} \sum_{x,y \in \{0,1\}} (-1)^{xy} |y\rangle \langle x| \\ H^{\otimes n} &= (\frac{1}{\sqrt{2}} \sum_{x_1,y_1 \in \{0,1\}} (-1)^{x_1y_1} |y_1\rangle \langle x_1|) \otimes \dots \otimes (\frac{1}{\sqrt{2}} \sum_{x_n,y_n \in \{0,1\}} (-1)^{x_ny_n} |y_n\rangle \langle x_n|) \\ &= \frac{1}{\sqrt{2^n}} \sum_{x,y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle \langle x| = \sum_{y \in \{0,1\}^n} (|y\rangle \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} \langle x|) \end{split}$$

Recall that
$$|\psi_s\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0, 1\}^n} (-1)^{x \cdot s} |x\rangle$$

$$H^{\otimes n} = \sum_{y \in \{0, 1\}^n} |y\rangle \langle \psi_y|$$

$$H^{\otimes n} |\psi_s\rangle = \sum_{y \in \{0, 1\}^n} |y\rangle \langle \psi_y| \psi_s\rangle = |s\rangle$$

Thus measure after $H^{\otimes n}$ gives the string s!

Comparison with Deutsch-Jozsa problem

DJ problem:

Classical exact: $\Omega(2^{n-1})$

Classical bounded error: O(C)

Quantum exact: O(1)

BV problem:

Classical exact: $\Omega(n)$

Classical bounded error: $\Omega(n)$

Quantum exact: O(1)

Recursive BV problem:

Classical bounded error: $\Omega(n^{\log(n)})$

Quantum exact: O(n)

References

- [1] J. D. Hidary, "Quantum Computing: An applied Approach".
- [2] D. Bacon, "The Recursive and Nonrecursive Bernstein-Vazirani Algorithm".
- [3] P. Kaye, , R. Laflamme and M. Mosca, "An Introduction to Quantum Computing".

Thank you!