MATHEMATICS

ONE MARKS QUESTIONS (1-20)

- The dimension of the vector space $V = \{A = (a_{ij})_{n,n}, a_{ij} \in \mathbb{Q}, a_{ij} = -a_{ij}\}$ over field is
 - a. n2
 - b. n2-1
 - c. $n^2 n$
 - d. $\frac{n^2}{2}$
- 2. The minimal polynomial associated with the matrix $\begin{bmatrix} 0 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}$ is
 - a. $x^3 x^2 2x 3$
 - b. $x^3 x^2 + 2x 3$
 - c. $x^3 x^2 3x 3$
 - d. $x^3 x^2 + 3x 3$
- 3. For the function $f(z) = \sin\left(\frac{1}{\cos(1/z)}\right)$.

the point z = 0 is

- a. a removable singularity
- b. a pole
- c. an essential singularity
- d. a non-isolated singularity
- 4. Let $f(z) = \sum_{n=0}^{15} z^n \text{ for } z \in \mathbb{D}$. If C: |z-i| = 2then $\iint_C \frac{f(z)dz}{(z-i)^{15}} =$
 - a. $2\pi i (1+15i)$
 - b. 2πi(1-15i)
 - c. $4\pi i (1+15i)$
 - d 2πi
- 5. For what values of α and β , the quadrature formula $\int_{-1}^{1} f(x) dx \approx \alpha f(-1) + f(\beta)$ is exact for all polynomials of degree ≤ 1 ?

 a. $\alpha = 1, \beta = 1$

- b. $\alpha = -1, \beta = 1$
- c. $\alpha = 1, \beta = -1$
- d. $\alpha = -1, \beta = -1$
- Let f:[0,4]→□ be a three times continuously differentiable function. Then the value of f[1,2,3,4] is
 - a. $\frac{f''(\xi)}{3}$ for some $\xi \in (0,4)$
 - b. $\frac{f''(\xi)}{6}$ for some $\xi \in (0,4)$
 - c. $\frac{f'''(\xi)}{3}$ for some $\xi \in (0,4)$
 - d. $\frac{f^{m}(\xi)}{6}$ for some $\xi \in (0,4)$
- 7. Which one of the following is TRUE?
 - Every linear programming problem has a feasible solution.
 - If a linear programming problem has an optimal solution then it is unique.
 - The union of two convex sets is necessarily convex.
 - d. Extreme points of the disk $x^2 + y^2 \le 1$ are the point on the circle $x^2 + y^2 = 1$.
- The dual of the linear programming problem:

Minimize $c^T x$ subject to $Ax \ge b$ and $x \ge 0$ is

- a. Maximize $b^T w$ subject to $A^T w \ge c$ and $w \ge 0$
- b. Maximize $b^T w$ subject to $A^T w \le c$ and $w \ge 0$
- Maximize b^Tw subject to A^Tw≤c and w is unrestricted
- d. Maximize b^Tw subject to A^Tw≥c and w is unrestricted
- 9. The resolvent kernel for the integral equation $u(x) = F(x) + \int_{\log 2}^{x} f^{(t-x)} u(t) dt$ is
 - a. $\cos(x-t)$
 - b. 1
 - c. et-x

- d. $e^{2(t-1)}$
- 10. Consider the metrics $d_{z}(f,g) = \left(\int_{a}^{b} |f(t) g(t)|^{2} dt\right)^{1/2} \quad \text{and} \quad$

 $d_m(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|$ on the space

X = C[a,b] of all real valued continuous functions on [a,b]. Then which of the following is TRUE?

- Both (X,d₂) and (X,d_n) are complete.
- b. (X,d₂) is complete but (X,d_n) is NOT complete.
- e. (X,d_e) is complete but (X,d₂) is NOT complete.
- d. Both (X,d₂) and (X,d_∞) are NOT complete.
- A function f:□ →□ need NOT be Lebesgue measurable if
 - a. f is monotone
 - b. $\{x \in \square : f(x) \ge \alpha\}$ is measurable for each $\alpha \in \square$
 - c. $\{x \in \square : f(x) = \alpha\}$ is measurable for each $\alpha \in \square$
 - d. For each open set G is □, f⁻¹(G) is measurable
- 12. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H and let $x(\pm 0) \in H$. Then
 - a. $\lim \langle x, e_n \rangle$ does not exist
 - b. $\lim \langle x, e_n \rangle = |x|$
 - e. $\lim_{n\to\infty} \langle x, e_n \rangle = 1$
 - d. $\lim \langle x, e_a \rangle = 0$
- The subspace □ × [0,1] of □ 1 (with the usual topology) is
 - a. dense is D 1
 - b. connected
 - e, separable
 - d. compact
- 14. $\prod_{3} [x]/(x^3+x^2+1)$ is
 - a. a field having 8 elements
 - b. a field having 9 elements

- c. an infinite field
- d. NOT a field
- The number of element of a principal ideal domain can be
 - a. 15
 - b. 25
 - e. 35
 - d. 36
- 16. Let, F, G and H be pair wise independent events such that $P(F) = P(G) = P(H) = \frac{1}{3}$

and $(F \cap G \cap H) = \frac{1}{4}$ Then the probability

that at least one event among F, G and H occurs is

- a. 11/12
- b. $\frac{7}{12}$
- e. $\frac{5}{12}$
- d. $\frac{3}{4}$
- 17. Let X be a random variable such that $E(X^2) = E(X) = 1$. Then $E(X^{100}) =$
 - a. 0
 - b. 1
 - c. 2100
 - d. 2100 +1
- 18. For which of the following distributions, the weak law of large numbers does NOT hold?
 - a. Normal
 - b. Gamma
 - c. Beta
 - d. Cauchy
- 19. If $D = \frac{d}{dx}$ then the value of $\frac{1}{(xD+1)}(x^{-1})$
 - 10
 - a. log x
 - b. $\frac{\log x}{x}$
 - c. $\frac{\log x}{x^2}$
 - d. $\frac{\log x}{2}$
- 20. The equation

$$(\alpha xy^3 + y\cos x)dx + (x^2y^2 + \beta)dy = 0$$

is exact for

a.
$$\alpha = \frac{3}{2}, \beta 1$$

b.
$$\alpha = 1, \beta = \frac{3}{2}$$

c.
$$\alpha = \frac{2}{3}, \beta = 1$$

d.
$$\alpha = 1, \beta = \frac{2}{3}$$

TWO MARKS QUESTIONS (21-60)

21. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ i & \frac{-1+i\sqrt{3}}{2} & 0 \\ 0 & 1+2i & \frac{-1-i\sqrt{3}}{2} \end{pmatrix}$$
, then the

trace of A162 is

- a. 0
- b. 1
- 0. 2
- d. 3
- 22. Which of the following matrices is NOT diagonalizable?

$$\mathbf{a}, \ \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

b.
$$\begin{pmatrix} 1 & 0 \\ 3 & 2 \end{pmatrix}$$

c.
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

d.
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

23. Let V be the column space of the matrix $A = \begin{pmatrix} 1 & -1 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}$. Then the orthogonal

projection of
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 on V is

a.
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

b.
$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

e.
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

d.
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

24. Let $\sum_{n=-\infty}^{\infty} a_n (z=1)^n$ be the Laurent series

expansion of
$$f(z) = \sin\left(\frac{z}{z+1}\right)$$
. Then

$$a_{-2} =$$

- a. 1
- b. 0
- c. cos(1)
- d. $\frac{-1}{2}\sin(1)$
- 25. Let u(x, y) be the real part of an entire function f(z) = u(x, y) + iv(x, y) for $z = x + iy \in \mathbb{D}$. If C is the positively oriented boundary of a rectangular region

R in
$$\Box^3$$
, then $\iint_C \left[\frac{\partial u}{\partial y} dx - \frac{\partial u}{\partial x} dy \right] =$

- a. 1
- b. 0
- c. 2n
- d. π
- 26. Let φ:[0,1]→□ be three times continuously differentiable, Suppose that the iterates defined by x_{n+1} = φ(x_n), n≥0 converge to the fixed point ξ of φ. If the order of convergence is three then

a.
$$\phi'(\xi) = 0, \phi''(\xi) = 0$$

b.
$$\phi'(\xi) = 0, \phi''(\xi) = 0$$

c.
$$\phi'(\xi) = 0, \phi''(\xi) = 0$$

d.
$$\phi'(\xi) = 0, \phi''(\xi) \neq 0$$

- 27. Let $f:[0,2] \to \Box$ be a twice continuously differentiable function. If $\int_a^2 f(x) dx \approx 2f(1)$, then the error in the approximation is
 - a. $\frac{f'(\xi)}{12}$ for some $\xi \in (0,2)$
 - b. $\frac{f'(\xi)}{2}$ for some $\xi \in (0,2)$
 - c. $\frac{f^*(\xi)}{3}$ for some $\xi \in (0,2)$
 - d. $\frac{f''(\xi)}{6}$ for some $\xi \in (0,2)$
- 28. For a fixed t∈ □, consider the linear programming problem:

Maximize z = 3x + 4y

Subject to $x + y \le 100$

$$x+3y \le t$$

and

$$x \ge 0, y \ge 0$$

The maximum value of z is 400 for t =

- a. 50
- b. 100
- c. 200
- d. 300
- 29. The minimum value of

$$z = 2x_1 - x_2 + x_3 - 5x_4 + 22x_4$$
 subject to

$$x_1 - 2x_4 + x_4 = 6$$

$$x_1 + x_4 - 4x_5 = 3$$

$$x_1 + 3x_4 + 2x_5 = 10$$

$$x_1 \ge 0, f = 1, 2, ..., 5$$

20

- a. 28
- b. 19
- c. 10
- d. 9
- 30. Using the Hungarian method, the optimal value of the assignment problem whose cost matrix is given by

5	23	14	8
10	25	1	23
35	16	15	12
16	23	11	7

is

- b. 52
- c. 26
- d. 44
- 31. Which of the following sequence $\{f_a\}_{a=1}^{\infty}$ of functions does NOT converge uniformly on [0, 1]?
 - $\mathbf{a}, \quad f_n(x) = \frac{e^{-x}}{n}$
 - b. $f_n(x) = (1-x)^n$
 - $c. \quad f_n(x) = \frac{x^2 + nx}{n}$
 - d. $f_n(x) = \frac{\sin(nx+n)}{n}$
- 32. Let $E = \{(x, y) \in \square^{\pm} : 0 < x < y\}$. Then $\iint ye^{\gamma(x+y)} dxdy =$
 - a. $\frac{1}{4}$
 - b. $\frac{3}{2}$
 - c. $\frac{4}{3}$
 - d. $\frac{3}{4}$
- 33. Let $f_{\kappa}(x) = \frac{1}{n} \sum_{k=0}^{n} \sqrt{k(n-k)} {n \choose k} x^{k} (1-x)^{k-k}$

for $x \in [0,1], n = 1, 2, ...$ If

 $\lim_{n \to \infty} f_n(x) = f(x) \text{ for } x \in [0,1], \text{ then the }$ maximum value of f(x) on [0,1] is

- a. I
- b. $\frac{1}{2}$
- c. $\frac{1}{3}$
- d. $\frac{1}{4}$
- Let f: (c₀₀, ||. ||₁) → □ be a non zero continuous linear functional. The number of Hahn-Banach extensions of f to (f², ||. ||₁)
 - is
 - a. One
 - b. Two
 - c. Three

- d. infinite
- If $f:(I^i, \mathbb{H}_n) \to (I^i, \mathbb{H}_n)$ is the identity 35. map, then
 - Both I and I⁻¹ are continuous
 - b. I is continuous but Γ¹ is NOT continuous
 - e. I' is continuous but I is NOT continuous
 - d. Neither I and I'l is continuous
- Consider the topology $\tau = \{G \subseteq \square : \square \setminus G \}$ 36. is compact in $(\Box, r_{\perp})\} \cup \{\phi, \Box\}$ on \Box . where τ_{ij} is the usual topology on \square and ϕ is the empty set. Then $(\Box . \tau)$ is
 - a connected Hausdorff space
 - b. connected but NOT Hausdorff
 - hausdorff but NOT connected
 - d. neither connected nor Hausdorff
- 37. Let

 $r_i = \{G \sqsubseteq \square : G \text{ is finite or } \square \setminus G \text{ is finite}\}$ and

 $r_2 = \{G \subseteq \square : G \text{ is contable or } \square \setminus G \text{ is}$ contable}

Then

- a. neither τ₁ nor τ₂ is a topology on □
- t₁ is a topology on □ but τ₂ is NOT a topology on []
- c. τ₂ is a topology on but τ₁ is NOT a topology on []
- d. both τ₁ and τ₂ are topologies on □
- Which one of the following ideals of the 38. ring [1] of Gaussian integers is NOT maximal?
 - a. (1+i)
 - b. (1-1)
 - c. (2+i)
 - d. (3+1)
- If Z(G) denotes the centre of a group G, 39. then the order of the quotient group G/Z(G) cannot be

 - b. 6
 - c. 15
 - d. 25

- 40. Let Aut(G) denote the group automorphism of a group G. Which one of the following is NOT a cyclic group?
 - a. Aut()
 - b. Aut (...)
 - c. Aut (.)
 - d. Aut(Din)
- 41. Let X be a non-negative integer valued random variable with $E(X^2) = 3$

and
$$E(X) = 1$$
. Then $\sum_{i=1}^{\infty} iP(X \ge i) =$

- a. 1
- b. 2
- c. 3
- d. 4
- 42. Let X be a random variable with probability density function $f \in \{f_0, f_1\}$. where

$$f_0(x) = \begin{cases} 2x, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$
 and
$$f_1(x) = \begin{cases} 3x^2, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

$$f_1(x) = \begin{cases} 3x^2, & \text{if } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

For testing the null hypothesis $H_0: f = f_0$ against the alternative $H_1: f = f_1$ at level of significance $\alpha =$ 0.19, the power of the most powerful test

- a. 0.729
- b. 0.271
- c. 0.615
- d. 0.385
- 43. Let X and Y be independent and identically distributed U(0, 1) random

variables. Then
$$P\left(Y < \left(X - \frac{1}{2}\right)^2\right) =$$

44. Let X and Y be Banach spaces and let T: X → Y be a linear map. Consider the statements:

P: If $x_n \to x$ in X then $Tx_n \to Tx$ in Y.

Q: If $x_n \to x$ in X and $Ix_n \to y$ in Y then Ix = y.

Then

a. P implies Q and Q implies P

b. P implies Q but Q does not imply P

c. Q implies P but P does not imply Q

d. Neither P implies Q nor Q implies P

If y(x)=x is a solution of the differential equation

$$y'' - \left(\frac{2}{x^2} + \frac{1}{x}\right)(xy' - y) = 0, 0 < x < \infty$$
, then

its general solution is

a.
$$\left(\alpha + \beta e^{-2\gamma}\right) x$$

b.
$$(\alpha + \beta e^{2x})x$$

e.
$$\alpha x + \beta e^{i}$$

 Let P_n(x) be the Legendra polynomial of degree n such that P_n(1)=1,n=1,2,.... If

$$\int_{1}^{1} \left(\sum_{j=1}^{n} \sqrt{j(2j+1)} P_{j}(x) \right)^{2} dx = 20, \text{ then } n = 0$$

- a. 2
- b. 3
- c. 4
- d. 5

47. The integral surface satisfying the equation $y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial y} = x^2 + y^2 \text{ and passing through}$

the curve x = 1 - 1, y = 1 + t, $z = 1 + t^2$ is

a,
$$z = xy + \frac{1}{2}(x^2 - y^2)^2$$

b.
$$z = xy + \frac{1}{4}(x^2 - y^2)^2$$

e.
$$z = xy + \frac{1}{8}(x^2 - y^2)^2$$

d.
$$z = xy + \frac{1}{16}(x^2 - y^2)^2$$

48. For the diffusion problem $u_{xx} = u_x (0 < x < \pi, t > 0), \quad u(0,t) = 0,$

 $u(\pi,t)=0$ and $u(x,0)=3\sin 2x$, the solution is given by

- a. 3e sin 2x
- b. 3e-4 sin 2x
- c. 3e-9: sin 2x
- d. 3e-2 sin 2x

49. A simple pendulum, consisting of a bob of mass m connected with a string of length a, is oscillating in a vertical plane. If the string is making an angle θ with the vertical, then the expression for the Lagrangian is given as

a.
$$ma^2 \left(\theta^2 - \frac{2g}{a}\sin^2\left(\frac{\theta}{2}\right)\right)$$

b.
$$2mga \sin^2\left(\frac{\theta}{2}\right)$$

c.
$$ma^2 \left(\frac{\theta^2}{2} - \frac{2g}{a} \sin^2 \left(\frac{\theta}{2} \right) \right)$$

d.
$$\frac{ma}{2} \left(\theta^2 - \frac{2g}{a} \cos \theta \right)$$

50. The extremal of the functional

$$\int_{0}^{1} \left(y + x^{2} + \frac{y^{2}}{4} \right) dx, y(0) = 0, y(1) = 0 \text{ is}$$

- a. $4(x^2 x)$
- b. $3(x^2-x)$
- c. $2(x^2-x)$
- d. x1-x

Common Data for Questions (51 & 52)

Let $T: \mathbb{D}^3 \to \mathbb{D}^3$ be the linear transformation defined by

$$T(x_1, x_2, x_3) = (x_1 + 3x_2 + 2x_3 + 3x_1 + 4x_2 + x_3, 2x_1 + x_2 - x_3)$$

- 51. The dimension of the range space of T2 is
 - a. 0
 - b. 1
 - c. 2
 - A 3
- The dimension of the null space of T³ is
 - a. 0
 - b. I
 - c. 2
 - d. 3

Common Data for Questions (53 & 54)

Let $y_1(x) = 1 + x$ and $y_2(x) = e^x$ be two solutions of y''(x) + P(x)y'(x) + Q(x)y(x) = 0.

53.
$$P(x) =$$

e.
$$\frac{1+x}{x}$$

d.
$$\frac{-1-x}{x}$$

 The set of initial conditions for which the above differential equation has NO solution is

a.
$$y(0) = 2, y'(0) = 1$$

b.
$$y(1) = 0, y'(1) = 1$$

e.
$$y(1) = 1, y'(1) = 0$$

d.
$$y(2) = 1, y'(2) = 2$$

Common Data for Questions (55 & 56)

Let X and Y be random variables having the joing probability density function

$$f(x,y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{\frac{-1}{2y}(x-y)^2}, & \text{if } -\infty < x < \infty, 0 < y < 1 \\ 0, & \text{otherwise} \end{cases}$$

- 55. The variance of the random variable X is
 - a. $\frac{1}{12}$
 - b. $\frac{1}{4}$
 - c. $\frac{7}{12}$
 - d. $\frac{5}{12}$
- The covariance between the random variables X and Y is
 - a. $\frac{1}{3}$
 - b. $\frac{1}{4}$
 - c. $\frac{1}{6}$
 - d. $\frac{1}{12}$

Statement for Linked Answer Question (57 and 58)

Consider the function $f(z) = \frac{e^{iz}}{z(z^2+1)}$.

- 57. The residue of f at the isolated singular point in the upper half plane $\{z = x + iy \in \mathbb{D} : y > 0\}$ is
 - $a, \frac{-1}{2e}$
 - $b, \frac{-1}{\varepsilon}$
 - c. $\frac{e}{2}$
 - d. 2
- 58. The Cauchy Principal Value of the integral

$$\int_{0}^{\infty} \frac{\sin x dx}{x(x^2+1)}$$
 is

- a. $-2\pi (1+2e^{-1})$
- b. $\pi (1+e^{-1})$
- c. 2π(1+e)
- d. $-\pi (1+e^{-1})$

Statement for Linked Answer Question (59 and 60)

Let $f(x,y) = kxy - x^3y - xy^3$ for $(x,y) \in \mathbb{D}^2$, where k is a real constant. The directional derivative of f at the point (1, 2) in the direction of

the unit vector $u = \left(\frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ is $\frac{15}{\sqrt{2}}$.

- 59. The value of k is
 - a. 2
 - b. 4
 - c. 1
 - d. -2
- The value of f at a local minimum in the rectangular region

$$R = \left\{ (x, y) \in \mathbb{D}^{1} : |x| < \frac{3}{2}, |y| < \frac{3}{2} \right\}$$
 is

- a. 2
- b. -3
 - c. $\frac{-7}{8}$
 - d. 0.