Logique 2 2017-10-18

Logique

• Numero 2

· Prof: Hémon Sébastien

• Date: 18/10/2017

3 Critères algorithmiques de correction d'écriture dans F0 polonais

Procèdure de vérification d'une formule de F0

1. Entrée: mot = $\phi \in (\nu \cup C)^*$

2. Procédure: ϕ = s1, s2, ..., sn (concaténation)

valuation v des symboles:

$$v$$
: si $\in \nu$ -> -1 { \land , \lor , \Rightarrow , \Leftarrow } -> 1 \neg -> 0 \top , \bot -> -1

Sommes cumulées: $(\sum \lim_{i=1} \omega v(si) = (Sk)k \leq n)$ 3. Conditions d'arrêts: Stop si \exists k \leq n Sk = -1, renvoye k si Sn est calculé

Proposition: $\phi \in F0$ ssi la procédure s'arrête en remplissant mutuellement les deux conditions en polonais

Démonstration (correction de l'algo): Par induction sur la construction des formules * Atomes: Soit s $\in \nu \cup \{ \top, \bot \}$, on a $\phi = s = s1$ (n = 1) et $\upsilon(s) = -1$. Arrêt à -1, on accepte $\phi \in F0$. * Constructeurs: Supposons $\phi et \psi$ deux éléments de F0 validant le critère. *Par hypothèse d'induction*: Pour ϕ : s1 ... sn => $\upsilon(s1)$ -> -1 Pour ψ : θ 1 ... θ n => $\upsilon(\theta$ 1) -> -1 Considérons h = $\land \phi \psi$, en mettant h dans l'algo, on a Pour h: \land s1 ... sn θ 1 ... θ 2 => 11 + $\upsilon(s1)$ -> 0 $\upsilon(\theta$ 1) -> -1 Notons que pour $\upsilon(\land) = \upsilon(\lor)$ d'où le raisonnement est de même pour les autres opérateurs.

Réciproque: Les cas pathologiques (ϕ ! \in F0) * ϕ contient pour i preceq n un symbole si \in C tel que si reçoit un argument de moins que prévu * ϕ contient un supplément de symboles malgré la cloture de chaque connecteur

Dans le 1er cas, l'algo s'arrête en n'ayant pas rencontré de -1. Dans le 2ème cas, l'algo s'arrête sur -1, avec k < n

Sémantique de F0

 $||\phi||$ = sémantique de ϕ On opte pour le point de vue de Tarski, par induction de la construction de F0: * Atomes: $||\top||$ = vrai, $||\bot||$ = Faux Pour chaque λ : ν -> {vrai, faux}. On se donne $||A||\lambda = \lambda(A)$ λ est appelée assignation des valeurs aux variables

Auer Erwan 1

Logique 2 2017-10-18

N.B: on définit donc des classes de vérités et non une vérité unique Ainsi $|| \top || \lambda = \text{vrai et } || \bot || \lambda = \text{faux }$ qqsoit λ

• Constructeurs: $\land\lor=>=>\neq||\land\phi\psi||\lambda$ est vrai ssi $||\phi||\lambda$ est vrai et $||\psi||\lambda$ est vrai

On dit que ϕ et $\psi \in F0$ sont sémantiquement équivalentes si $||\phi||\lambda = ||\psi||\lambda$, on note $||\phi||\lambda \equiv ||\psi||\lambda$

Broccoli-logic

Une broccoli-logic est toute logique dans laquelle quel que soit \clubsuit connecteur, on a $||\clubsuit\phi\psi||\lambda$ = vrai ssi $||\phi||\lambda$ = vrai broccoli $||\psi||\lambda$ = vrai

Prop: Logique F0 est une broccoli-logique.

Auer Erwan 2