〈〈 문제지는 제출하지 말고 답안지만 제출 하십시오 〉〉

2018년 2학기 중간고사		과	물리학 2	학 과		학 년		감 독	
출 제	공동 출제	목		학 번				교수	
교수명	ㅇᆼ 돌세	명	문제지	성 명				확 인	
		0		0			점 수		
시험일시 2018. 10. 23							TO T		

[주의 사항] 계산기는 사용할 수 없습니다.

- 1. 학번마킹은 반드시 컴퓨터용 사인펜으로 기입할 것
- 2. 점수란은 절대 마킹하지 말 것
- 3. 단답식 문제는 답만 (6, 8, 9 번 단위포함) 쓰십시오.

(모든 문제는 필요한 경우 SI 단위 체계를 쓰십시오)

[단답식-각 5점]

 다음 그림과 같이 두 점전하 +Q와 -Q가 위치하고 있을 때, 검은 점으로 표시된 P 지점의 전기장의 방향을 a-h 기호를 이용해 순서대로 답하시오. (¬) +Q로 인 해 형성되는 전기장의 방향, (□) -Q로 인해 형성되는 전기장의 방향, (□) +Q 와 -Q로 인해 형성되는 전기장의 방향.

2. 오른쪽 그림과 같이 반지름이 R인 \underline{SM} 구에 총 전하 량 Q가 분포하고 있다. 구의 내부위치 r에서의 전기 장의 크기를 구하시오. (구의 내부, 즉 r < R 인 경우)

3. 오른쪽 그림과 같이 무한이 넓은 도체 평면 I, II, III이 평행하게 배치되어 있고, 평면은 $+2\sigma$, -2σ , $+\sigma$ 의 면전하 밀도로 균일하게 각각 대전되어 있다. 이때, 평면 II와 III 사이의 영역에서 전기장의 크기를 구하시오. (단, 평면 사이의 공간은 진공 상태이며 진공의 유전율은 ϵ)

4. 일정한 세기의 전기장 E가 고르게 분포되어 있는 어떤 공간에 전하량 +q와 -q, 사이 거리 d로 이루어진 전기 쌍극자가 그림과 같이 위치해 있다. 이 때 (a) 전기쌍극자의 크기와 (b)쌍극자에 작용하는 돌림힘의 크기를 $\frac{c}{c}$ 선대로 쓰시 오.

- 5. 한 변의 길이가 d인 정삼각형의 세 꼭지점에 각각 놓인 점전하 +q가 있다. 이 계의 전기 위치에너지를 구하시오. (유전율은 ϵ_0)
- 6. 한 변이 1.0 mm인 정사각형의 단면적을 갖고 있는 구리도선에 4.0 A의 전류가 흐르고 있을 때, 도선 내 전자의 유동속도를 구하라. (단위포함) 이 때, 전류 밀 도는 전자의 유동 속도 및 단위 부피당 전하량에 비례하며, 도선에는 1 m^3 당 10^{29} 개의 자유전자가 들어있다. (전자의 전하량 $e=1.6 \times 10^{-19} \text{ C}$)

- 7. 반지름이 r이고 길이가 L인 원기둥 모양의 구리 도선의 저항은 R이다. 동일한 구리로 만든 반지름이 r/2이고 길이가 2L인 원기둥 모양의 도선의 저항을 구하 시오.
- 8. 오른쪽 그림과 같이 표현된 회로에서 저항 R_2 에 흐르는 전류 I_2 와 저항 R_3 에 흐르는 전류 I_3 를 순서대로 구하시오. (단위, 부호 포함)

9. 아래 그림과 같이 간격 2.0 cm인 두 무한 도체판 사이에 존재하는 전기장 내에 질량 m을 가진 점전하 +q가 정지하고 있다. 두 도체판 사이의 전위차를 구하시 오. $(m=4.0\times10^{-13}\,\mathrm{kg},\,q=4.9\times10^{-18}\,\mathrm{C},\,$ 증력가속도 $\mathrm{g}=9.8\,\mathrm{m/s}^2,\,$ 단 위포함)

10. 아래의 그림과 같이 20 A의 전류가 흐르는 곧은 직선 도선이 지면과 나란하게 공중에 떠 있기 위한 자기장의 세기가 몇 T인지 구하여라. 자기장의 방향은 직선과 수직하며 중력과도 수직하다. 도선의 선질량밀도는 40~g/m 이며, 중력가속도는 $g=10~m/s^2$ 이다.

- 11. 두 개의 평행한 도선에 같은 방향으로 전류가 흐르고 있다. 두 도선에 흐르는 전류량이 각각 두 배로 늘어났을 때, 두 도선 사이에 작용하는 힘의 변화가 없으려면, 두 도선 사이의 거리를 몇 배로 늘려야 하는지 답하시오.

<뒷면에 주관식 문제 있음.>

- * 주관식 문제[총 40 점]는 상세한 풀이과정이 없으면 영점처리 됩니다. 필요시 SI 단위 체계에서 단위를 꼭 쓰십시오. 답안지의 답란을 폭 넓게 사용하고, 답안지의 뒷면도 사용하세요.
- 양의 도체가 감싸고 있다. 두 도체구의 중심은 같다. 안쪽 도체구가 +q 공껍질 모양의 바깥쪽 도체가 - q의 전하량으로 대전되어 있다. (단, 구 사이의 공간은 진공 상태이며 진공의 유전율은 ε_0)

- (가) [5점] 안쪽 도체구와 바깥쪽 도체 사이 공간에서의 전기장 세기를 중심에서의 거리 r의 함수로 나타내시오. (단, a < r < b)
- (나) [5점] 두 도체구 사이의 전위차 V_{ab} 를 구하시오.
- (다) [5점] 두 도체구를 축전기로 사용할 때 전기용량을 구하시오.
- (라) [5점] 바깥 공껍질이 없는 상황에서 안쪽 도체구를 축전기로 사용할 때 전기용량을 구하시오 (힌트: $b \rightarrow \infty$ 로 가정).

[주관식 1] (20점) 아래 그림과 같이 반지름이 a인 도체구를 반지름 b인 공껍질 모 │ [주관식 2] (20점) 아래 그림과 같이 반지름이 R인 무한히 긴 직선 도선의 단면적 을 통하여 균일한 전류 I가 흐르고 있을 때, 아래 물음에 답하시오. (단, 투과상 수는 μ₀)

- (가) [10점] 암페어 법칙을 이용하여, 도선의 중심으로부터 거리 r이 도선의 반지 름 R보다 클 때 (r>R), 자기장의 크기 *B(r)*를 구하시오
- (나) [10점] 암페어 법칙을 이용하여, 도선의 중심으로부터 거리 r이 도선의 반지름 R보다 작을 때 (r<R), 자기장의 크기 B(r)를 구하시오.