03/10/2025: Inclusion/Exclusion

CSCI 246: Discrete Structures

Textbook reference: Sec 19, Scheinerman

Graded Quiz Pickup

Quizzes are in the front of the room, grouped into four bins (A-G, H-L, M-R, S-Z) by last name. The quizzes are upside down with your last name on the back. Come find yours before, during, or after class. Only turn the quiz over if it's yours.

Today's Agenda

- Reading quiz (5 mins)
- Mini-lecture (\approx 20 mins)
- Group exercises (≈ 20 mins)

Reading Quiz

Reading Quiz (Inclusion-Exclusion)

1. Replace each ? with a + or - to make the equation correct.

$$|A \cup B \cup C| = |A| ? |B| ? |C| ? |A \cap B| ? |A \cap C| ? |B \cap C| ? |A \cap B \cap C|$$

- 2. (True or False.) Consider the length-k lists whose elements are chosen from the set $\{1, 2, \ldots, n\}$. The number of lists which use all of the elements in $\{1, 2, \ldots, n\}$ at least once is n^k .
- 3. (True or False.) Consider the length-n lists whose elements are chosen from the set $\{1,2,\ldots,n\}$ without repetition. A list is called a *derangement* if the number j does not occupy position j in the list for any $j=1,2,\ldots,n$. The number of derangements is n!.

Feedback on Friday's Quiz

Problems Quiz (Equiv. Relations, Partitions, Functions)

Figure 1: Median Score = 5/8 (62.5%)

Notes.

- 1. 3 points. Most people got full credit.
- 2. 2 points. Many people struggled here.
- 3. 3 points. Most people struggled on this one. A common mistake was proving that R was an equivalence relation.

Overview of inclusion-exclusion

Out of 40 people ski lift operators at Bridger Bowl, 18 like Led Zeppelin; 7 like Zeppelin and the Dead;

16 like the Grateful Dead; 5 like the Zeppelin and Taylor;

12 like Taylor Swift;
3 like the Dead and Taylor;

3 like the Dead and Taylor
2 like all three

How many lift operators don't like any of these performers?

Poll

Find the problems with the following claims:

• Claim. The answer is # operators - (# fans Zep + # fans Dead + # fans Swift) =40 -(18+16+12).

Out of 40 people ski lift operators at Bridger Bowl, 18 like Led Zeppelin; 7 like Zeppelin and the Dead;

16 like the Grateful Dead; 5 like the Zeppelin and Taylor;

12 like Taylor Swift; 3 like the Dead and Taylor;

2 like all three

How many lift operators don't like any of these performers?

Poll

Find the problems with the following claims:

• Claim. The answer is # operators - (# fans Zep + # fans Dead + # fans Swift) =40 -(18+16+12). **Analysis.** This gives -6. So clearly something is wrong. But what?

Out of 40 people ski lift operators at Bridger Bowl, 18 like Led Zeppelin; 7 like Zeppelin and the Dead; 16 like the Grateful Dead; 5 like the Zeppelin and Taylor;

12 like Taylor Swift; 3 like the Dead and Taylor;

2 like all three

How many lift operators don't like any of these performers?

Poll

Find the problems with the following claims:

- Claim. The answer is # operators (# fans Zep + # fans Dead + # fans Swift) =40 -(18+16+12). Analysis. This gives -6. So clearly something is wrong. But what? We subtracted some people twice e.g. those that like both Zeppelin and the Dead.
- Claim. We have to add back in the people who like two performers. So the answer is 40 (18+16+12) + (7+5+3).

of 40 people ski lift Bridger Bowl. Out operators at 18 like Led Zeppelin; 7 like Zeppelin and the Dead; 16 like the Grateful Dead: 5 like the Zeppelin and Taylor; 12 like Taylor Swift; 3 like the Dead and Taylor; 2 like all three

How many lift operators don't like any of these performers?

Poll

Find the problems with the following claims:

- Claim. The answer is # operators (# fans Zep + # fans Dead + # fans Swift) =40 -(18+16+12). Analysis. This gives -6. So clearly something is wrong. But what? We subtracted some people twice e.g. those that like both Zeppelin and the Dead.
- Claim. We have to add back in the people who like two performers. So the answer is 40 -(18+16+12) + (7+5+3). Analysis. We made the same mistake again! What happened to the 2 students who like all 3 performers? We subtracted them 3 times at the beginning, and then added them back in 3 times. So we must subtract them once more.

```
of
             40
                   people
                               ski
                                     lift
                                                               Bridger
                                                                           Bowl.
Out
                                            operators
                                                          at
 18 like Led Zeppelin;
                                       7 like Zeppelin and the Dead;
 16 like the Grateful Dead:
                                      5 like the Zeppelin and Taylor;
 12 like Taylor Swift;
                                       3 like the Dead and Taylor;
                                       2 like all three
```

How many lift operators don't like any of these performers?

Poll

Find the problems with the following claims:

- Claim. The answer is # operators (# fans Zep + # fans Dead + # fans Swift) =40 -(18+16+12). Analysis. This gives -6. So clearly something is wrong. But what? We subtracted some people twice e.g. those that like both Zeppelin and the Dead.
- Claim. We have to add back in the people who like two performers. So the answer is 40 -(18+16+12) + (7+5+3). Analysis. We made the same mistake again! What happened to the 2 students who like all 3 performers? We subtracted them 3 times at the beginning, and then added them back in 3 times. So we must subtract them once more

Formulaic solution

Let Z be the set of lift operators who like Zeppelin, D be the set of lift operators who like the Dead; and T be the set of lift operators who like Taylor swift. Then the number of lift operators who like at least one of those performers is given by

$$|Z \cup D \cup T| = |Z| + |D| + |T|$$
$$-|Z \cap D| - |Z \cap T| - |D \cap T|$$
$$+|Z \cap D \cap T|$$

Substituting in known values, we find 33 operators like at least one of those performers, and so 7 operators don't like any of them.

Formulaic solution

Let Z be the set of lift operators who like Zeppelin, D be the set of lift operators who like the Dead; and T be the set of lift operators who like Taylor swift. Then the number of lift operators who like at least one of those performers is given by

$$|Z \cup D \cup T| = |Z| + |D| + |T|$$
$$-|Z \cap D| - |Z \cap T| - |D \cap T|$$
$$+|Z \cap D \cap T|$$

Substituting in known values, we find 33 operators like at least one of those performers, and so 7 operators don't like any of them.

General formula

Theorem 19.1 (Inclusion-Exclusion) Let A_1, A_2, \dots, A_n be finite sets. Then

$$\begin{split} |A_1 \cup A_2 \cup \dots \cup A_n| &= |A_1| + |A_2| + \dots + |A_n| \\ &- |A_1 \cap A_2| - |A_1 \cap A_3| - \dots - |A_{n-1} \cap A_n| \\ &+ |A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + \dots + |A_{n-2} \cap A_{n-1} \cap A_n| \\ &- \dots + \dots \dots \\ &\pm |A_1 \cap A_2 \cap \dots \cap A_n|. \end{split}$$

El't	A_1	A_2	A3	$A_1 \cap A_2$	$A_1 \cap A_3$	$A_2 \cap A_3$	$A_1 \cap A_2 \cap A_3$
1	+						
2	+						
3	+	+		_			
4	+	+		-			
5		+					
6	+		+		_		
7	+	+	+	-	_	-	+
8	+	+	+	_	-	-	+
9		+	+			_	
10		+	+			_	
11		+	+			-	
12			+				

Let us form a chart. The rows are elements and the columns are terms in the formula.

- If an item is not in a set, the entry is blank.
- If the item is a member of the set,
 - We put a a + sign if the column label is an intersection of an odd number of sets.
 - We put a sign if the column label is an intersection of an even number of sets.

Poll

We want to count each element once. So each row should contain what?

El't	A_1	A_2	A_3	$A_1 \cap A_2$	$A_1 \cap A_3$	$A_2 \cap A_3$	$A_1 \cap A_2 \cap A_3$
1	+						
2	+						
3	+	+		_			
4	+	+		-			
5		+					
6	+		+		_		
7	+	+	+	_	-	-	+
8	+	+	+	_	_	_	+
9		+	+			_	
10		+	+			-	
11		+	+			_	
12			+				

Let us form a chart. The rows are elements and the columns are terms in the formula.

- If an item is not in a set, the entry is blank.
- If the item is a member of the set,
 - We put a a + sign if the column label is an intersection of an odd number of sets.
 - We put a sign if the column label is an intersection of an even number of sets.

Poll

We want to count each element once. So each row should contain what? Exactly one more + than -.

El	't	A_1	A_2	A3	$A_1 \cap A_2$	$A_1 \cap A_3$	$A_2 \cap A_3$	$A_1 \cap A_2 \cap A_3$
1		+						
2	:	+						
3	:	+	+		_			
4	-	+	+		-			
5	,		+					
1 6	;	+		+		_		
7	_	+	+	+	-	-	-	+
8	:	+	+	+	_	_	_	+
9)		+	+			_	
10	0		+	+			-	
1	1		+	+			-	
1:	2			+				

Each element x belongs to exactly k sets. And

the number of +s is
$$\binom{k}{1} + \binom{k}{3} + \binom{k}{5} + \dots$$

the number of
$$-s$$
 is $\binom{k}{2} + \binom{k}{4} + \binom{k}{6} + \dots$

If we sum up these (signed) binomial coefficients, we always get exactly 1!

Exercise

Verify that this is true with three different elements.

	El't	A_1	A_2	A3	$A_1 \cap A_2$	$A_1 \cap A_3$	$A_2 \cap A_3$	$A_1 \cap A_2 \cap A_3$
Γ	1	+						
	2	+						
	3	+	+		_			
Γ	4	+	+		-			
	5		+					
	6	+		+		-		
Γ	7	+	+	+	-	_	-	+
	8	+	+	+	_	-	_	+
	9		+	+			_	
Γ	10		+	+			_	
	11		+	+			_	
L	12			+				

Each element x belongs to exactly k sets. And

the number of +s is
$$\binom{k}{1} + \binom{k}{3} + \binom{k}{5} + \dots$$

the number of
$$-s$$
 is $\binom{k}{2} + \binom{k}{4} + \binom{k}{6} + \dots$

If we sum up these (signed) binomial coefficients, we always get exactly 1!

Exercise

Verify that this is true with three different elements.

Why does this property always hold?

Proposition (Scheinerman Exercise 17.15)

For any integer n > 0,

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \ldots \pm \binom{n}{n} = 0$$

9

Proposition (Scheinerman Exercise 17.15)

For any integer n > 0,

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \ldots \pm \binom{n}{n} = 0$$

Remark

Moving all the negative terms over to the right-hand side gives

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

In other words, the number of subsets of an n-set with an even number of elements is the same as the number of subsets with an odd number of elements

9

Proposition (Scheinerman Exercise 17.15)

For any integer n > 0,

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \ldots \pm \binom{n}{n} = 0$$

Remark

Moving all the negative terms over to the right-hand side gives

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

In other words, the number of subsets of an n-set with an even number of elements is the same as the number of subsets with an odd number of elements

Group activity (5 minutes)

Explain why this formula holds.

Hint: Revisit some of theorems and propositions from Sec. 17 (Binomial Coefficients).

A justification via Pascal's Triangle

Remark

The intermediate number in any row is formed by adding the two numbers just to its left and just to its right in the previous row.

Pascal's Identity

Let k and n be integers with 0 < k < n. Then

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

aaron loomis: 12 evan.schoening: 19 adam.wyszynski: 17 griffin.short: 20 alexander.goetz: 8 jack.fry: 14 alexander knutson: 14 jacob.ketola: 13 anthony.mann: 12 iacob.ruiz1: 2 blake leone: 1 jacob.shepherd1: 21 bridger.voss: 10 iada.zorn: 4 caitlin hermanson: 13 jakob.kominsky: 8 cameron wittrock: 13 iames.brubaker: 2 carsten.brooks: 15 jeremiah.mackey: 2 carver wambold: 17 jett.girard: 16 colter.huber: 7 john.fotheringham: 5 conner reed1: 1 ionas.zeiler: 18 connor.mizner: 10 joseph.mergenthaler: 21 joseph.triem: 19 connor.yetter: 11 derek.price4: 18 iulia.larsen: 12 devon.maurer: 3 justice.mosso: 21 emmeri.grooms: 7 kaden.price: 6 erik.moore3: 9 lucas.jones6: 1 ethan.johnson18: 4 luka.derry: 14 evan.barth: 7 luke donaldson1: 15

lynsey.read: 17 mason.barnocky: 3 matthew.nagel: 4 micaylyn.parker: 5 michael oswald: 20 nolan.scott1: 6 owen obrien: 8 pendleton.johnston: 5 peter.buckley1: 3 reid.pickert: 9 rvan.barrett2: 11 samuel hemmen: 18 samuel mosier: 11 samuel.rollins: 20 sarah.periolat: 16 timothy.true: 16 tristan.nogacki: 19 tyler.broesel: 10 william.elder1: 6 yebin.wallace: 15 zeke.baumann: 9

Group exercises

 A professor in a discrete mathematics class passes out a form asking students to check all the math and computer science courses they have recently taken. She found that, out of a total of 50 students in the class,

round that, out or a total or of stadents	,				
30 took precalculus;	16 took both precalculus and Python;				
18 took calculus;	8 took both calculus and Python;				
26 took Python;	47 took at least one of the three courses;				
9 took both precalculus and calculus					

- a. How many students did not take any of the three courses?
- b. How many students took all three courses?
- c. How many students took precalculus and calculus but not Python? How many students took precalculus but neither calculus not Python?
- 2. Of the integers between 1 and 1,000,000 (inclusive), how many are *not* divisible by 2, 3, or 5?
- 3. The squares of a 4 \times 4 checkerboard are colored black or white. Use inclusion-exclusion to find the number of ways the checkerboard can be colored so that no row is entirely one color.