۱- نشان دهید برای نرم فروبنیوس ماتریسها نامساوی زیر برقرار است:

 $||AB||_F^2 \le ||A||_F^2 ||B||_F^2$

ان را به صورت $A \in \mathbb{R}^{m imes n}$ در نظر بگیرید. نشان دهید: $A \in \mathbb{R}^{m imes n}$ در نظر بگیرید. نشان دهید:

 $||A||_1 = \max_{1 \le i \le n} ||a||_1$

۳- فرض کنید ماتریس A بی توان است. یعنی $A^2=A$ نشان دهید:

الف) مقدار دترمینان ماتریس A صفر یا یک است.

ب) اگر B = I - A باشد، ماتریس B نیز بی توان است.

 $x \in R^n$ و فرض کنید $A \in R^{n \times n}$ و $A \in R^{m \times m}$ باشد. اگر A یک مقدار ویژه ماتریس A متناظر با بردار ویژه $A \in R^{m \times m}$ باشد، آنگاه مقدار ویژه و بردار ویژه ماتریس $A \otimes B$ متناظر با بردار ویژه $A \otimes B$ باشد، آنگاه مقدار ویژه و بردار ویژه ماتریس $A \otimes B$ به دست آورید.

 $P(m,n) = P(m,n) \in R^{mn \times mn}$ به صورت $X \in R^{m \times n}$ تابت کنید:

 $P(m,n) = P(n,m)^T = P(n,m)^{-1}$

آیا می توان ماتریس P(m,n) را یک ماتریس جایگشت در نظر گرفت؟ چرا؟

اگر $p,q\in [1,\infty]$ به طوری که $1=rac{1}{p}+rac{1}{q}$ باشد ، برای هر $u,v\in R^n$ و برای همه ی مقادیر p,q ، ثابت-7

کنید:

 $|u^T v| \le ||u||_p ||v||_q$

٧- ثابت كنيد:

الف) اگر ماتریس $A \in \mathbb{R}^{n \times n}$ مثبت معین و متقارن باشد، آن گاه تمام مقادیر ویژه آن مثبت خواهند بود.

 $(A \otimes B)$ ثابت کنید اگر $(A \otimes B)$ ماتریسهای مثبت معین باشند، آن گاه ($(A \otimes B)$ مثبت معین خواهد بود.

۸- روابط زیر را اثبات کنید:

الف) برای ماتریسهای $A \in \mathbb{R}^{n \times n}$ داریم:

 $\det(A \otimes B) = \det(A)^n \det(B)^m$

برای ماتریس جایگشت $P \in \mathbb{R}^{n \times n}$ داریم:

 $\det(P \otimes P) = 1$

 $tr(A \otimes B) = tr(A).tr(B)$

 $tr(A^TH) = (vec(A))^T vec(H)$

9- الف) ماتریس مربعی A را nilpotent می نامیم اگر بهازای یک عدد طبیعی $A^k=0$ نشان دهید اگر A و B دو $n\times n$ ماتریس $n\times n$ و $n\times n$ باشند، آنگاه $n\times n$ نیز nilpotent است.

ب) ماتریس مربعی A را idempotent می نامیم اگر به ازای یک عدد طبیعی $A^k=A$ نشان دهید اگر A و B دو idempotent ماتریس n imes n و idempotent باشند، آنگاه a imes a نیز a imes a است.

۱۰ اگر $A \in \mathbb{R}^{(m \times n)}$ و ماتریسهای رتبه کامل باشند، روابط زیر را اثبات کید: $A \in \mathbb{R}^{(m \times n)}$

a. $(A \odot B)^T (A \odot B) = A^T A \cdot * B^T B$ b. $(A \odot B)^{\dagger} = [(A^T A) \cdot * (B^T B)]^{-1} (A \odot B)^T$

۱۱- ماتریس بلوکی قطری $A=diag(A_1,A_2,...,A_n)$ را که در آن A_k به ازای $A=diag(A_1,A_2,...,A_n)$ ماتریس مربعی است، در نظر نگیرند.

الف) رابطه $\det(A)$ و tr(A) و tr(A) الف) رابطه

ب) نشان دهید که ماتریس A معکوسپذیر است اگر و تنها اگر همه ماتریسهای A_k معکوسپذیر باشند. معکوس ماتریس A را برحسب بلوکها به دست آورید.

.dim $\left(\mathrm{null}(A)\right)+\mathrm{rank}(A)=n$ ماتریس $A\in\mathbb{R}^{m\times n}$ را در نظر بگیرید. ثابت کنید ماتریس

راهنمایی: ابتدا نشان دهید $\operatorname{null}(A) = \operatorname{ran}(A^T)^{\perp}$ و سپس از گزاره تساوی رتبه ستونی و سطری یک ماتریس استفاده کنید.