R Language 기초

1. 도움말 기능 1.1 도움말 1.4 함수 도움말 1.2 검색기능 1.3 패키지 도움말 edit(iris) method(as) _ 형변환 함수들 ??iris ? iris library(help="datasets") as.integer(1.25): [1] 1 help.search('iris') help(iris) $z \leftarrow pi * c(-1:1, 10)$ [1] -3.141593 0.0000 3.141593 31.415927 as.integer(z) 1.5 주석 1.6 정보 [1] -3 0 3 31 # 주석 iris data <- c(10, 20, 30) # 자동완성 : Tab edit(iris) mean(data) # data벡터에 속한 원소들의 평균 R.version attribute(iris) example(mean)

> attributes(iris)

\$names

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

\$class

[1] "data.frame"

\$row.	names	5																						
[1]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
[25]	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
[49]	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
[73]	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
[97]	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
[121]	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
[145]	145	146	147	148	149	150																		

> example(mean)

mean> x <- c(0:10, 50)

mean > xm <- mean(x)

mean> c(xm, mean(x, trim = 0.10)) [1] 8.75 5.50

Trimmed means

Trimmed means are robust estimators of central tendency. To compute a trimmed mean, we remove a predetermined amount of observations on each side of a distribution, and average the remaining observations.

https://garstats.wordpress.com/2017/11/28/trimmed-means/

Here is how we compute a 20% trimmed mean. Let's consider a sample of 20 observations:

39 92 75 61 45 87 59 51 87 12 8 93 74 16 32 39 87 12 47 50

First we sort them:

8 12 12 16 32 39 39 45 47 50 51 59 61 74 75 87 87 87 92 93

The number of observations to remove is floor(0.2 * 20) = 4. So we trim 4 observations from each end: $(8 \ 12 \ 12 \ 16) \ 32 \ 39 \ 39 \ 45 \ 47 \ 50 \ 51 \ 59 \ 61 \ 74 \ 75 \ 87 \ (87 \ 87 \ 92 \ 93)$

And we take the mean of the remaining observations, such that our 20% trimmed mean = mean(c(32,39,39,45,47,50,51,59,61,74,75,87)) = 54.92