International Rectifier

SMPS MOSFET

IRLR3714 IRLU3714

HEXFET® Power MOSFET

Applications

- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use
- High Frequency Buck Converters for Computer Processor Power

Benefits

- Ultra-Low Gate Impedance
- $\bullet~$ Very Low $R_{DS(on)}$ at 4.5V V_{GS}
- Fully Characterized Avalanche Voltage and Current

V _{DSS}	R _{DS(on)} max	I _D
20V	20m $Ω$	36A

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	20	V
V_{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	36 ⑤	
$I_D @ T_C = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	31	Α
I _{DM}	Pulsed Drain Current①	140	
P _D @T _C = 25°C	Maximum Power Dissipation 3	47	W
P _D @T _C = 70°C	Maximum Power Dissipation 3	33	W
	Linear Derating Factor	0.31	W/°C
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 175	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		3.2	
$R_{\theta JA}$	Junction-to-Ambient		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient (PCB mount) @		110	

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.022		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		15	20	mΩ	$V_{GS} = 10V, I_D = 18A$ ③
1103(01)			21	28	11122	$V_{GS} = 4.5V, I_{D} = 14A$ ③
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	uА	$V_{DS} = 16V, V_{GS} = 0V$
200				100	μΛ	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125$ °C
I _{GSS}	Gate-to-Source Forward Leakage			200	۰,۸	V _{GS} = 16V
.000	Gate-to-Source Reverse Leakage			-200	nA	$V_{GS} = -16V$

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
9 _{fs}	Forward Transconductance	17			S	V _{DS} = 10V, I _D = 14A
Qg	Total Gate Charge		6.5	9.7		I _D = 14A
Q _{gs}	Gate-to-Source Charge		1.8		nC	V _{DS} = 10V
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.9			$V_{GS} = 4.5V$
Q _{oss}	Output Gate Charge		7.1			$V_{GS} = 0V, V_{DS} = 10V$
t _{d(on)}	Turn-On Delay Time		8.7			$V_{DD} = 10V$
t _r	Rise Time		78		ns	I _D = 14A
t _{d(off)}	Turn-Off Delay Time		10] ""	$R_G = 1.8\Omega$
t _f	Fall Time		4.5			V _{GS} = 4.5V ③
C _{iss}	Input Capacitance		670			V _{GS} = 0V
C _{oss}	Output Capacitance		470			V _{DS} = 10V
C _{rss}	Reverse Transfer Capacitance		68		pF	f = 1.0 MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		72	mJ
I _{AR}	Avalanche Current①		14	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current		36 ^⑤			MOSFET symbol	
	(Body Diode)		365		A	showing the	
I _{SM}	Pulsed Source Current		140		^	integral reverse	
	(Body Diode) ①					p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 18A$, $V_{GS} = 0V$ 3	
√ 3D	Blode Forward Voltage		0.88			$T_J = 125$ °C, $I_S = 18A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 25$ °C, $I_F = 18A$, $V_R = 10V$	
Q _{rr}	Reverse Recovery Charge		34	51	nC	di/dt = 100A/µs ③	
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 125$ °C, $I_F = 18A$, $V_R = 10V$	
Q _{rr}	Reverse Recovery Charge		35	53	nC	di/dt = 100A/µs ③	

International Rectifier

IRLR3714/IRLU3714

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International Rectifier

IRLR3714/IRLU3714

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFET® Power MOSFETs

International

TOR Rectifier

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120

WITH ASSEMBLY LOT CODE 1234

ASSEMBLED ON WW 16, 1999

IN THE ASSEMBLY LINE "A"

I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

I-Pak (TO-251AA) Part Marking Information

EXAMPLE: THIS IS AN IRFU120

LOT CODE 1789

ASSEMBLED ON WW 19, 1997

IN THE ASSEMBLY LINE "C"

International IOR Rectifier

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. OUTLINE CONFORMS TO EIA-481.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting T_{.1} = 25°C, L = 0.69 mH $R_G = 25\Omega$, $I_{AS} = 14A$.
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 4 When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- ⑤ Calculated continuous current based on maximum allowable junction temperature; Package limitation current is 30A

Data and specifications subject to change without notice. These products have been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.06/01

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/