DS n°3: fonctions, fonctions trigonométriques réciproques, DL (1h30)

Exercice 1 — Pour chaque question, une seule réponse est attendue. Mieux vaut ne pas répondre que donner une réponse fausse.

- 1. Soit f une fonction croissante sur $\mathbb R$ et g une fonction strictement décroissante sur $\mathbb R$. La composée $g\circ f$ est :
 - \Box strictement croissante \Box croissante \Box décroissante \Box strictement décroissante
 - \square aucune des propositions précédentes
- 2. On définit la fonction $f: x \in [-1, 1] \mapsto \arccos(\cos(x^2 1))$. On remarque que $x^2 1 \in [-1, 1]$ pour tout $x \in [-1, 1]$. Pour tout $x \in [-1, 1]$,
 - $\Box f(x) = x^2 1$ $\Box f(x) = 1 x^2$ \Box aucune des propositions précédentes
- 3. $(\ln(\cos(x)))' = ?$
 - $\Box \tan(x) \quad \Box \, \tan(x) \quad \Box \, -\frac{\cos(x)}{\sin(x)} \quad \Box \, \frac{\cos(x)}{\sin(x)}$
- **4.** On pose $f(x) = e^{\ln(\sin(x))}$. Alors $f\left(\frac{\pi}{2}\right) =$
 - $\square \ 0 \quad \square \ \frac{1}{2} \quad \square \ 1 \quad \square \ \frac{\pi}{2} \quad \square \ \pi$
- 5. $\lim_{x \to 0} \frac{\ln(1+x) \ln(1-x) 2x}{x^3} =$
 - $\square \infty \quad \square 1 \quad \square \ 0 \quad \square \ \frac{1}{2} \quad \square \ \frac{2}{3} \quad \square \ 1 \quad \square + \infty$

Exercice 2 — Résoudre l'équation

$$\arccos\left(\frac{3}{4}\right) + \arcsin\left(\frac{1}{5}\right) = \arccos(x).$$

Exercice 3 —

- 1. Donner le développement limité à l'ordre 3 en 0 de la fonction $f(x) = \frac{x^2}{\cos(x) 1}$.
- 2. En déduire la valeur de la limite $\lim_{x\to 0} \frac{f(x)+2}{x^2}$.

Exercice 4 — Étude et représentation graphique de $f(x) = \ln\left(\frac{1-x}{1+x^2}\right)$.

Correction de l'exercice 1 —

1.
$$g \circ f$$
 est décroissante.
2. $f(x) = 1 - x^2$ pour tout $x \in [-1, 1]$.
3. $(\ln(\cos(x)))' = -\tan(x)$.
4. $f\left(\frac{\pi}{2}\right) = 1$.

4.
$$f\left(\frac{\pi}{2}\right) = 1$$
.

5.
$$\lim_{x\to 0} \frac{\ln(1+x) - \ln(1-x) - 2x}{x^3} = \frac{2}{3}$$

Correction de l'exercice 2 — Puisque $\arccos\left(\frac{3}{4}\right)$ et $\arcsin\left(\frac{1}{5}\right)$ sont compris entre 0 et $\frac{\pi}{2}$, leur somme est bien comprise entre 0 et π . La fonction cosinus étant bijective sur $[0,\pi], x \in [-1,1]$ est solution de l'équation si et seulement si

$$\cos\left(\arccos\left(\frac{3}{4}\right) + \arcsin\left(\frac{1}{5}\right)\right) = \cos(\arccos(x)) = x.$$

On utilise alors la formule $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$. Soit $x \in [-1,1]$. C'est une solution de l'équation si et seulement si

$$\cos\left(\arccos\left(\frac{3}{4}\right)\right)\cos\left(\arcsin\left(\frac{1}{5}\right)\right) - \sin\left(\arccos\left(\frac{3}{4}\right)\right)\sin\left(\arcsin\left(\frac{1}{5}\right)\right) = x.$$

Puisque, pour tout $y \in [-1, 1]$, $\cos(\arcsin(y)) = \sqrt{1 - y^2}$ et $\sin(\arccos(y)) = \sqrt{1 - y^2}$, x est solution de l'équation si et seulement si

$$x = \frac{3}{4}\sqrt{1 - \left(\frac{1}{5}\right)^2} - \sqrt{1 - \left(\frac{3}{4}\right)^2}\frac{1}{5},$$

soit si et seulement si

$$x = \frac{6\sqrt{6} - \sqrt{7}}{20}.$$

Correction de l'exercice 3 —

1. On commence par donner le développement limité à l'ordre 5 en 0 de la fonction cosinus :

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{120} + x^5 \varepsilon(x),$$

avec ε une fonction de limite nulle quand x tend vers 0. On a donc que

$$f(x) = \frac{x^2}{-\frac{x^2}{2} + \frac{x^4}{120} + x^5 \varepsilon(x)} = \frac{1}{-\frac{1}{2} + \frac{x^2}{120} + x^3 \varepsilon(x)} = -2\frac{1}{1 - \frac{x^2}{60} + x^3 \varepsilon(x)}.$$

2

Posons $u = \frac{x^2}{60} + x^3 \varepsilon(x)$. La fonction f se réécrit

$$f(x) = -2\frac{1}{1-u}.$$

Puisque u tend vers 0 quand x tend vers 0, on écrit le développement limité de $\frac{1}{1-u}$ à l'ordre 1 (cela suffit pour obtenir le DL à l'ordre 3 pour x) :

$$\frac{1}{1-u} = 1 + u + u\varepsilon(u).$$

En repassant à x,

$$f(x) = -2\left(1 + \left[\frac{x^2}{60} + x^3\varepsilon(x)\right] + \left[\frac{x^2}{60} + x^3\varepsilon(x)\right]\varepsilon\left(\frac{x^2}{60} + x^3\varepsilon(x)\right)\right) = -2 - \frac{x^2}{30} + x^3\varepsilon(x).$$

2. D'après la question précédente,

$$\frac{f(x)+2}{x^2} = \frac{-\frac{x^2}{30} + x^3 \varepsilon(x)}{x^2} = -\frac{1}{30} + x\varepsilon(x).$$

On en déduit que

$$\lim_{x \to 0} \frac{f(x) + 2}{x^2} = -\frac{1}{30}.$$

Correction de l'exercice 4 —

• La fonction logarithme est définie sur \mathbb{R}_+^* . La fonction est donc définie pour tout $x \in \mathbb{R}$ tel que $\frac{1-x}{1+x^2} \in \mathbb{R}_+^*$. La fonction $x \mapsto 1+x^2$ étant strictement positive, $\frac{1-x}{1+x^2} \in \mathbb{R}_+^*$ si et seulement si $1-x \in \mathbb{R}_+^*$, soit si et seulement si $x \in]-\infty, 1[$. Donc,

$$D_f =]-\infty, 1[.$$

- \bullet La fonction f n'est ni paire ni impaire ni périodique.
- La fonction ln est dérivable sur tout son intervalle de définition, et $x \mapsto \frac{1-x}{1+x^2}$ est dérivable sur \mathbb{R} , donc f est bien dérivable sur $]-\infty,1[$.
- Calculons la dérivée de f. Posons $u = \frac{1-x}{1+x^2}$. On a $u'(x) = \frac{-(1+x^2)-2x(1-x)}{(1+x^2)^2} = \frac{-1-2x+x^2}{(1+x^2)^2}$. La dérivée de f est donc

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{-1 - 2x + x^2}{(1 + x^2)(1 - x)}.$$

• On effectue le tableau de variations de f. On cherche les valeurs pour lesquelles f' s'annule. Puisque $x \mapsto 1 - x$ et $x \mapsto 1 + x^2$ sont strictement positives sur $]-\infty, 1[, f']$ est du même signe que $-1-2x+x^2$. On cherche donc les racines de ce polynôme d'ordre deux.

Son discriminant est $\Delta = 2^2 - 4(-1) \times 1 = 8$. Les racines du polynômes sont donc $x_1 = \frac{-(-2) - \sqrt{\Delta}}{2} = 1 - \sqrt{2}$ et $x_2 = 1 + \sqrt{2}$.

Remarquons que puisque $1+\sqrt{2}>1$, cette racine n'est pas dans le domaine de définition de f.

x	$-\infty$		$1-\sqrt{2}$			1
f'		+	0	_		
			$f(1-\sqrt{2})$			
f		7		\searrow		
	$-\infty$				$-\infty$	

- Remarquons (pour le graphe) que f(0) = 0.
- On passe à l'étude des branches infinies (asymptotes à l'infini). On étudie donc f au voisinage de $-\infty$. Posons t = 1/x. On a

$$f(t) = \ln\left(\frac{1 - \frac{1}{t}}{1 + \frac{1}{t^2}}\right),$$
$$= \ln\left(\frac{\frac{t-1}{t}}{\frac{t^2+1}{t^2}}\right),$$
$$= \ln\left(\frac{(t-1)t}{t^2+1}\right).$$

Par propriétés du logarithme (qui transforme les produits en sommes), et en faisant attention au fait que t est négatif,

$$f(t) = \ln(-t) + \ln(1-t) - \ln(1+t^2).$$

Étudier f(x) au voisinage de $-\infty$ revient donc à étudier f(t) au voisinage de 0^- . On a d'une part que

$$ln(1-t) = -t + t\varepsilon(t),$$

et d'autre part que

$$\ln(1+t^2) = t^2 + t^2 \varepsilon(t) = t\varepsilon(t).$$

Donc,

$$f(t) = \ln(-t) - t + t\varepsilon(t).$$

En repassant à x,

$$f(x) = \ln\left(-\frac{1}{x}\right) - \frac{1}{x} + \frac{1}{x}\varepsilon(x).$$

Comme $\ln(-1/x) = -\ln(-x)$,

$$f(x) = -\ln(-x) - \frac{1}{x} + \frac{1}{x}\varepsilon(x).$$

On dessine finalement le graphe de f :

