Advances in Robotics (AIR 2017)

3rd International Conference of Robotics Society of India June 28-July 2, 2017 Indian Institute of Technology Delhi, New Delhi, India

Robotic cloth manipulation for clothing assistance task using Dynamic Movement Primitives

Ravi P. Joshi^a, Nishanth Koganti^{a,b}, and Tomohiro Shibata^a

 a Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan

 b Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan

June 29, 2017

Outline

- 1 Introduction
- 2 Related Works
- 3 Dynamic Movement Primitives
- 4 Setup and Experiment
- **5** Experiments and results
- 6 Conclusion and Discussion
- 7 Future work

Introduction

- Clothing assistance is a basic and important assistance activity in the daily life of the elderly and disabled people
- Need of robotic clothing assistance is growing

Major challenges involved

- Close interaction of the robot with non-rigid clothing article
- Safe human-robot interaction
- Accurate estimation of human-cloth relationship

Ravi P. Joshi AIR 2017 1 / 12

Related Works

Towner et al.¹, Identifying and manipulating clothing article by dual-arm robot

- ✓ Used Hidden Markov Model for tracking
- ✓ Triangulated mesh model for simulating clothing article
- × Highly depends on simulated contour information.

Tamei et al.², Clothing assistance with dual-arm robot

- ✓ Used Reinforcement learning (RL)
- ✓ Topology coordinates for human and cloth extremities relationship
- × Limited generalization capability for new postures

¹Marco Cusumano-Towner et al. "Bringing clothing into desired configurations with limited perception". In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE. 2011, pp. 3893–3900.

²Tomoya Tamei et al. "Reinforcement learning of clothing assistance with a dual-arm robot". In: *Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on.* IEEE. 2011, pp. 733–738.

Dynamic Movement Primitives (DMP)

DMP in a nutshell

- It is used for generating a control signal to guide the real system³
- It can represent *nonlinear* motion with a set of differential equations

The system is defined as

$$\ddot{y} = \alpha_y(\beta_y(g-y) - \dot{y}) + f \tag{1}$$

where:

- \bullet y is system state and g is goal state
- α and β are gain terms
- \bullet f is nonlinear function defined over time

f is a function of canonical system, denoted by x as $\dot{x} = -\alpha_x x$

Ravi P. Joshi AIR 2017 3 / 12

³Stefan Schaal. "Dynamic movement primitives-a framework for motor control in humans and humanoid robotics". In: Adaptive Motion of Animals and Machines. Springer, 2006, pp. 261–280.

Forcing function f

f is defined as

$$f(x,g) = \frac{\sum_{i=1}^{N} \psi_i w_i}{\sum_{i=1}^{N} \psi_i} x(g - y_0)$$
 (2)

where:

- y_0 is the initial state of the system
- w_i is a weighting for a given basis function ψ_i
- $\psi_i = \exp\left(-h_i(x-c_i)^2\right)$ is Gaussian with mean c_i and variance h_i

Weighted Summation

Ravi P. Joshi AIR 2017 4 / 12

Imitating a desired path

The desired forcing term f which affects the system acceleration, is written as

$$\mathbf{f}_d = \ddot{\mathbf{y}}_d - \alpha_y (\beta_y (g - \mathbf{y}) - \dot{\mathbf{y}}) \tag{3}$$

where

• \mathbf{y}_d is desired trajectory, given by $\ddot{\mathbf{y}}_d = \frac{\partial}{\partial t} \dot{\mathbf{y}}_d = \frac{\partial}{\partial t} \frac{\partial}{\partial t} \mathbf{y}_d$

Choose the weights over the basis functions i.e., minimize⁴

$$\sum_{t} \psi_{i}(t) \left[f_{d}(t) - w_{i} \left\{ x(t)(g - y_{0}) \right\} \right]^{2}$$
(4)

⁴Stefan Schaal, Christopher G Atkeson, and Sethu Vijayakumar. "Scalable techniques from nonparametric statistics for real time robot learning". In: *Applied Intelligence* 17.1 (2002), pp. 49–60.

Ravi P. Joshi AIR 2017

Workflow of Robotic cloth manipulation task

Setup

Experiments and results

Old & modified posture of mannequin

Left arm trajectories of Baxter Robot

Video demonstration

Accuracy measurement

Angle of Inclination measures the bending of arms w.r.t. horizontal line in two-dimensional space

Failure detection using end-effector forces

Procedure

- Each trajectory is computed by calculating the mean.
- ② The force value is norm of force applied in all three Cartesian directions.

A failure scenario

Forces acting on left arm of Baxter

Ravi P. Joshi AIR 2017 10 / 12

Conclusion and Discussion

- Baxter APIs⁵ are used to get the end-effector forces. Raw forces are found noisy in nature.
- Result shows that DMPs are able to generalize the movement trajectory
- Proposed failure detection method by using force information can detect failures
- DMP should incorporate orientation information as well

Ravi P. Joshi AIR 2017 11 / 12

⁵Cliff Fitzgerald. "Developing baxter". In: Technologies for Practical Robot Applications (TePRA), 2013 IEEE International Conference on. IEEE, 2013, pp. 1-6.

Future work

- Make approach more robust by using combination of visual and force information
- Need for designing an adaptive controller
 - For real-time tracking of mannequin
 - To adapt various failure scenarios

Acknowledgments

This work was supported in part by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 16H01749).

Ravi P. Joshi AIR 2017 12 / 12

References

Bishop, Christopher M. Pattern Recognition and Machine Learning. Springer, 2006.

Cusumano-Towner, Marco et al. "Bringing clothing into desired configurations with limited perception". In: Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE. 2011, pp. 3893-3900.

Fitzgerald, Cliff. "Developing baxter". In: Technologies for Practical Robot Applications (TePRA), 2013 IEEE International Conference on. IEEE. 2013, pp. 1-6.

Ijspeert, AJ, J Nakanishi, and S Schaal. "Learning control policies for movement imitation and movement recognition". In: Neural information processing system. Vol. 15, 2003, pp. 1547-1554.

Ijspeert, Auke Jan, Jun Nakanishi, and Stefan Schaal. "Movement imitation with nonlinear dynamical systems in humanoid robots". In: Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on. Vol. 2. IEEE. 2002, pp. 1398-1403.

Schaal, Stefan. "Dynamic movement primitives-a framework for motor control in humans and humanoid robotics". In: Adaptive Motion of Animals and Machines. Springer, 2006, pp. 261– 280.

Schaal, Stefan, Christopher G Atkeson, and Sethu Vijayakumar. "Scalable techniques from non-parametric statistics for real time robot learning". In: Applied Intelligence 17.1 (2002), pp. 49–60.

Tamei, Tomoya et al. "Reinforcement learning of clothing assistance with a dual-arm robot". In: Humanoid Robots (Humanoids), 2011 11th IEEE-RAS International Conference on. IEEE. 2011, pp. 733-738.

Ravi P. Joshi AIR 2017 12 / 12

Thanks for your attention!

Any questions?

www.ravijoshi.xyz