第一章 气体、溶液和胶体分散系

习 题 解 析

1、在 90 g 质量分数为 0.15 的 NaCl 固体溶液里加入 10 g 水或 10 g NaCl,分别计算用这两种方法配制的 NaCl 溶液中 NaCl 的质量分数。

解:

加入 10 g 水后,NaCl 的质量分数为:
$$\omega(\text{NaCl}) = \frac{m(\text{NaCl})}{m(\text{NaCl}) + m(\text{H}_2\text{O})} = \frac{90\text{g} \times 0.15}{90\text{g} + 10\text{g}} = 0.135$$

加入 10 g NaCl 后,NaCl 的质量分数为:
$$\omega(\text{NaCl}) = \frac{90\text{g} \times 0.15 + 10\text{g}}{90\text{g} + 10\text{g}} = 0.235$$

4、静脉注射用 KCL 溶液的极限质量是 2.7 g·L^{-1} ,如果在 250 mL 葡萄糖溶液中加入 1 安瓿(10 mL) 100 g·L^{-1} KCL 溶液。所得混合溶液中 KCl 的质量浓度是否超过了极限值?

解:混合溶液中 KCI 的质量浓度为

$$\rho(\text{KCl}) = \frac{m(\text{KCl})}{\text{V}_{\text{obstable}}} = \frac{100g \cdot L^{-1} \times 0.010L}{0.250L + 0.010L} = 3.8g \cdot L^{-1} > 2.7g \cdot L^{-1}$$

所得混合溶液中 KCI 的质量浓度超过了极限值。

5、正常人血液中 Ca^{2+} 和 HCO_3^- 的质量浓度分别是 2.5 mmol·L⁻¹ 和 27 mmol·L⁻¹,化验测得某患者血液中 Ca^{2+} 和 HCO_3^- 的质量浓度分别是 300 mg·L⁻¹ 和 1.0 mg·L⁻¹。试通过判断计算该患者血液中这两种离子的浓度是否正常。

解:该患者血液中 Ca²⁺和 HCO₃-的浓度分别为

$$c\left(Ca^{2+}\right) = \frac{\rho(Ca^{2+})}{M(Ca^{2+})} = \frac{300\,\text{mg}\cdot L^{-1}}{40\,\text{mg}\cdot\text{mmol}^{-1}} = 7.5\,\text{mmol}\cdot L^{-1}$$

$$c(HCO_3^-) = \frac{\rho(HCO_3^-)}{M(HCO_3^-)} = \frac{1.0 \, mg \bullet L^{-1}}{61 \, mg \bullet mmol^{-1}} = 1.6 \times 10^{-2} \, mmol \bullet L^{-1}$$

该患者血液中 Ca²⁺和 HCO₃-的浓度均不正常。

7、某患者需补充 0.050 mol Na^+ ,应补充多少克 NaCl? 如果采用生理盐水(质量浓度为 9 g·L^{-1})进行补 Na $^+$,需要多少毫升生理盐水?M (NaCl) = 58.5 g·mol^{-1}

解:
$$m$$
 (NaCl) = $0.050 \times 58.5 = 2.93$ (g)

$$V_{\pm \pm \pi} = \frac{m(\text{NaCl})}{\rho_{\pm \pi}} = \frac{2.93}{9} = 0.325(\text{L}) = 325(\text{mL})$$

8、在 25℃时,质量分数为 9.47 %的稀 H_2SO_4 溶液的密度为 1.06×10³ kg·m³,在该温度下纯水的密度为 997 kg·m³。 计算: (1) H_2SO_4 的质量摩尔浓度; (2) H_2SO_4 溶液的浓度; (3) H_2SO_4 的摩尔分数。M (H_2SO_4) = 98 g·mol¹ M (H_2O_1) = 18 g·mol¹

#: (1)
$$b(\text{H}_2\text{SO}_4) = \frac{n(\text{H}_2\text{SO}_4)}{m(\text{H}_2\text{O})} = \frac{\frac{9.47}{98}}{(100 - 9.47) \times 10^{-3}} = 1.07 (\text{mol} \cdot \text{kg}^{-1})$$

(2)
$$c(\text{H}_2\text{SO}_4) = \frac{n(\text{H}_2\text{SO}_4)}{V_{\text{With}}} = \frac{\frac{9.47}{98}}{\frac{100}{1.06 \times 10^3}} = 1.02 (\text{mol} \cdot \text{L}^{-1})$$

(3)
$$x(\text{H}_2\text{SO}_4) = \frac{n(\text{H}_2\text{SO}_4)}{n(\text{H}_2\text{SO}_4) + n(\text{H}_2\text{O})} = \frac{\frac{9.47}{98}}{\frac{9.47}{98} + \frac{100 - 9.47}{18}} = 1.89 \times 10^{-2}$$

15、25℃时水的饱和蒸气压为 3.33 kPa,若一甘油水溶液中甘油的质量分数为 0.100,该甘油溶液的蒸气压为多少? M (H₂O) = 18 g·mol⁻¹ M (甘油) = 92 g·mol⁻¹

解: 25℃时,质量分数为 0.100 的甘油水溶液的蒸气压为

$$p = p * (H2O) \cdot x (H2O) = \frac{p * (H2O) \cdot n (H2O)}{n(H2O) + n} = \frac{3.33 kPa \times \frac{m_{\tilde{R}\tilde{R}} \times (1 - 0.100)}{18 \text{ g} \cdot \text{mol}^{-1}}}{\frac{m_{\tilde{R}\tilde{R}} \times (1 - 0.100)}{18 \text{ g} \cdot \text{mol}^{-1}} + \frac{m_{\tilde{R}\tilde{R}} \times 0.100}{92 \text{ g} \cdot \text{mol}^{-1}}} = 3.26 kPa$$

16、从某种植物中分离出一种未知结构的有抗白血球增多症的生物碱,为了测定其相对分子质量,将 19.0 g 该物质溶于 100 g 水中,测得溶液的凝固点降低了 0.220 K。计算该生物碱的相对分子质量。 $k_{\rm f}$ = 1.86 K·kg·mol⁻¹

解:
$$\triangle T_{\rm f} = k_{\rm f} b_{\rm B}$$
 $0.220 = 1.86 \times \frac{\frac{19.0}{\rm M}}{\frac{100}{1000}}$ $M = 1.6 \times 10^3 \, ({\rm g \cdot mol^{-1}})$

故该生物碱的相对分子质量为 1.6×103。

17、有几种昆虫能够耐寒,是由于这些昆虫的血液中含有大量的甘油。已知某种寄生黄蜂的血液中甘油的质量分数大约为 0.30,试估算这种黄蜂的血液的凝固点。

解: 这种黄蜂的血液的凝固点降低为

$$\Delta T_f = k_f \bullet b_{\pm \mathrm{in}} = \frac{k_f \times \frac{m_{\mathrm{mix}} \bullet \mathrm{w}_{\pm \mathrm{in}}}{M_{\pm \mathrm{in}}}}{m_{\mathrm{mix}} \times (1 - \mathrm{w}_{\pm \mathrm{in}})} = \frac{k_f \bullet \mathrm{w}_{\pm \mathrm{in}}}{M_{\pm \mathrm{in}} \times (1 - \mathrm{w}_{\pm \mathrm{in}})}$$

$$= \frac{1.86 \,\mathrm{K} \bullet \mathrm{kg} \bullet mol^{-1} \times 0.30}{9.2 \times 10^{-2} \,\mathrm{kg} \bullet mol^{-1} \times (1 - 0.30)} = 8.7 \,\mathrm{K} = 8.7 \,\mathrm{^{\circ}}C$$

这种黄蜂的血液的凝固点约为 $-8.7^{\circ}C$ 。

18、人体血浆的凝固点为 272.59 K, 计算在正常体温下血浆的渗透压力。 $k_{\rm f}$ = 1.86 K·kg·mol⁻¹

解:人体血液的质量渗透摩尔浓度和渗透浓度分别为

$$\begin{split} b_{0s, B} &= \frac{\Delta T_f}{k_f} = \frac{273.15 \, K - 272.59 \, k}{1.86 \, K \bullet kg \bullet mol^{-1}} = 0.301 mol \bullet kg^{-1} \\ c_{os, B} &= \frac{b_{os, B} \bullet c^{\theta}}{b^{\theta}} = \frac{0.301 mol \bullet kg^{-1} \times 1.0 \, mol \bullet L^{-1}}{1.0 \, mol \bullet kg^{-1}} = 0.301 mol \bullet L^{-1} \end{split}$$

正常体温下血液的渗透压为

$$\Pi = c_{os,B}RT = 0.301 \times 10^{3} \, mol \bullet m^{-3} \times 8.314 J \bullet mol^{-1} \bullet K^{-1} \times 310.15 K$$
$$= 7.76 \times 10^{5} \, Pa = 776 \, kPa$$

19、蛙肌细胞内液的渗透浓度为 240 mmol·L⁻¹,若把蛙肌细胞分别置于质量浓度分别为 10,7,3 g·L⁻¹ NaCl 溶液中,将各呈什么形态?

解:
$$c_{os} = 1000 i c$$

$$c_{os1}(\text{NaCl}) = 1000 \times 2 \times \frac{10}{58.5} = 342 \text{(mmol · L}^{-1})$$
 皱缩
$$c_{os2}(\text{NaCl}) = 1000 \times 2 \times \frac{7}{58.5} = 240 \text{(mmol · L}^{-1})$$
 正常
$$c_{os3}(\text{NaCl}) = 1000 \times 2 \times \frac{3}{58.5} = 103 \text{(mmol · L}^{-1})$$
 膨胀

20、把 100 mL 9 g·L⁻¹ 生理盐水和 100 mL 50 g·L⁻¹ 葡萄糖溶液混合,与血浆相比较,此混合溶液是高渗溶液、低渗溶液或等渗溶液?

M (NaCl) = 58.5 g⋅mol⁻¹ M(葡萄糖) = 180 g⋅mol⁻¹

解:混合溶液的渗透浓度为:

$$c_{os} = c_{os}(\text{NaCl}) + c \text{ mass} = 2 \times \frac{9 \times 100}{58.5 \times (100 + 100)} + \frac{50 \times 100}{180 \times (100 + 100)}$$

= 0.293 (mol·L⁻¹) = 293 (mmol·L⁻¹)

正常血浆的渗透浓度为 280~320 mmol·L-1,与血浆相比较,此混合溶液为等渗溶液。

- **21、**已知树身内部树汁上升是有渗透压力差造成的,若树汁为 0.20 mol·L¹ 糖溶液,树汁小管外部水溶液的渗透浓度为 0.010 mol·L¹。又知 10.2 cm 水柱产生的压力为 1 kPa,试估算 20℃时树汁上升的高度。
 - 解: 树汁与树汁小管外部水溶液的渗透压力差为

$$\Delta\Pi = \Delta c_{\text{os,B}}RT = (0.20 - 0.010) \times 10^3 \text{ mol·m}^{-1} \times 8.314 \text{ J·mol}^{-1} \cdot \text{K}^{-1} \times 293 \text{ K} = 4.63 \times 10^5 \text{ Pa}$$

293.15 K 时树汁上升的高度为

$$h = 4.63 \times 10^5 \text{ Pa} \div 1000 \text{ Pa} \times 10.2 \text{ cm} = 4.72 \times 10^3 \text{ cm} = 47.2 \text{ m}$$

- **23、**糖尿病患者和健康人的血液中葡萄糖的质量浓度分别为 1.80g·L⁻¹和 0.85 g·L⁻¹.假定糖尿病患者和健康人血液的渗透压的差异仅仅是由于糖尿病患者血液中含有较高浓度的葡萄糖,试计算在体温 37℃时此渗透压力的差值。
 - 解:糖尿病患者和健康人在正常体温时的渗透压力差为

$$\Delta\Pi = \Delta c_{\text{missin}} RT = \frac{(1.80 - 0.85) \times 10^{3} \text{ g} \cdot \text{m}^{-3}}{180 \text{ g} \cdot \text{mol}^{-1}} \times 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \times 310 \text{ K}$$
$$= 1.36 \times 10^{4} \text{ Pa} = 13.6 \text{ kPa}$$

24、将5.0g鸡蛋白溶于水并配制成1.0L溶液,25℃时测得该溶液的渗透压力为306Pa,计算鸡蛋 白的摩尔质量。

解:鸡蛋白的摩尔质量为:

$$M_{\rm B} = \frac{m_{\rm B}RT}{\Pi V} = \frac{5.0 \times 8.314 \times 298.15}{306 \times 1.0 \times 10^{-3}} = 4.05 \times 10^{4} (\text{g} \cdot \text{mol}^{-1})$$

故鸡蛋白的相对分子质量为 4.05×104。

25、将一动物筋肉内的某种细胞置于7g·L·l NaCl 溶液中,该细胞既不膨胀也不皱缩。计算该细胞 在25℃时的渗透压力。

解: 该细胞内液在 298.15 K 时的渗透压力为:

$$\Pi = c_{os}RT = c_{os}(\text{NaCl})RT = 2 \times \frac{7 \times 10^3}{58.5} \times 8.314 \times 298.15 = 5.93 \times 10^5(\text{Pa}) = 593(\text{kPa})$$

- **26、**用等体积的 0.0008 mol·L⁻¹ KI 溶液和 0.0010 mol·L⁻¹ AgNO₃ 溶液制成的 AgI 溶胶。下列电解质 溶液对此 AgI 溶胶的聚沉能力如何?
 - (1) AlCl₃
- (2) Na₃PO₄
- (3) MgSO₄
- 解: Na₃PO₄>MgSO₄>AlCl₃
- 28、把 10 mL 0.002 mol·L-1 AgNO3溶液与 100 mL 0.0005 mol·L-1 NaBr 溶液混合制备 AgBr 溶胶。 写出该溶胶的胶团结构简式,并指出胶粒的电泳方向。

补充题-1

- 1、分别计算下列常用试剂溶液的物质的量浓度和质量浓度:
 - ① 37%的浓盐酸,密度p为 1.19 g·mL⁻¹; ② 98%的浓硫酸,密度p为 1.84 g·mL⁻¹;
 - ③ 28%的浓氨水,密度ρ为 0.90 g·mL⁻¹。

M: $M(HC1) = 36.5 \text{ g} \cdot \text{mol}^{-1}$ $M(H_2SO_4) = 98.0 \text{ g} \cdot \text{mol}^{-1}$ $M(NH_3) = 17.0 \text{ g} \cdot \text{mol}^{-1}$

① c (HCl) =
$$\frac{1000\text{mL} \times 1.19\text{g} \cdot \text{mL}^{-1} \times 37\%}{36.5\text{g} \cdot mol^{-1}} = 12.06 \approx 12\text{mol} \cdot \text{L}^{-1}$$

$$\rho(HC1) = c(HC1) \times M(HC1) = 12.06 \times 36.5 = 440.2(g \cdot L^{-1})$$

同理:② $c (H_2SO_4) = 18.4 \text{ mol} \cdot L^{-1}$ $\rho(H_2SO_4) = 1803.2(g \cdot L^{-1})$

$$o(H_2SO_4) = 1803 \ 2(g \cdot L^{-1})$$

- ③ c $(NH_3) = 14.8 \text{ mol} \cdot L^{-1}$
- $\rho(NH_3) = 251.6(g \cdot L^{-1})$
- 2、输液用生理盐水的规格是 0.5 L, 其中含有 4.5 g NaCl, 则该生理盐水的质量浓度是 ,物质的量浓度是
- 3、1L 水中加入 NaHCO₃ (M = 84.0 g·mol⁻¹) 固体 117.6 g 溶解, 此溶液的质量摩尔浓度是 ,NaHCO3物质的量分数是______,溶剂水的物质的量分数是_
 - 4、物质的量浓度就是指每升溶液中含溶质的克数。(

补充题-2

- 1、医学上常用 来表示溶液的渗透压大小,它是指溶液中 的总浓度。
- 2、欲使被半透膜隔开的两种溶液间不发生渗透现象,其条件是()。

A、两溶液的酸度相同 B、两溶液的体积相同
C、两溶液的物质的量浓度相同 D、两溶液的渗透浓度相同
3、稀溶液的凝固点降低 、沸点升高 、渗透压都是蒸气压下降的必然结果。 ()
4、溶液的依数性是指、、、、、、。
5、渗透压力比较高的溶液,其物质的量浓度也一定比较大。()
补充题-3
1、溶胶和高分子溶液中分散相粒子的大小相同,因此,二者都可以产生丁铎尔现象。()
2、水包油型乳状液可表示为 W/O。()
3、什么叫分散系?按分散相粒子的大小可把分散系分为哪几种类型?
4、用过量 NaCl 和 AgNO3 溶液制备 AgCl 溶胶,胶核优先吸附离子而带电荷,电泳时,
胶粒向极移动;胶团结构式是。
单元测试题-1
一、填空题
1、定温下, 浓度为 $c(\frac{1}{2} Na_2CO_3) = 0.2 \text{ mol} \cdot L^{-1}$ 的溶液, 若用 $c(Na_2CO_3)$ 表示时, 其浓度为。
2、某一溶液的组成量度若用质量浓度 ρ (g·L ⁻¹)或物质的量浓度 c (mol·L ⁻¹)表示时,二者之间的换算式是。
3 、溶液的质量分数 ω 和物质的量浓度 c ($mol\cdot L^{-1}$)互相换算时要以作为桥梁。
4、从 1L 0.10 mol·L-1的 NaOH 溶液中取出 10mL,则此溶液的浓度是。
5、组成量度用 c (mol· L -1)、 ρ (g · L -1)表示的溶液,计算其稀释后的浓度时,可用公式。
6、0.2 mol·L ⁻¹ 的 CaCl ₂ 溶液中,Ca ²⁺ 的浓度是, Cl ⁻ 的浓度是。
7、某患者需补充 0.1 mol 的 Na ⁺ [M(NaCl)=58.5 g · mol ⁻¹],若用生理盐水,应输入mL。
二 、选择题
1、在溶液的各种组成标度中,不随温度变化而变化的有()。
① 物质的量浓度 ② 质量分数 ③ 质量浓度 ④ 质量摩尔浓度
A, 1)2(3) B, 1)(3) C, 2)(4) D, (4) E, 1)2(3)(4)
2、有 m 克 H_2SO_4 ,当取基本单元分别为 H_2SO_4 , ${}^{1}\!\!{}^{2}\!$
$A_{n} (H_{2}SO_{4}) = \frac{1}{2} n (2 H_{2}SO_{4}) = 2n (\frac{1}{2} H_{2}SO_{4}) B_{n} (2 H_{2}SO_{4}) = \frac{1}{2} n (2 H_{2}SO_{4}) = n (\frac{1}{2} H_{2}SO_$
$C_{5} = \frac{1}{2} n \left(\frac{1}{2} H_{2}SO_{4} \right) = n \left(H_{2}SO_{4} \right) = 2n \left(2 H_{2}SO_{4} \right) $ $D_{5} = \frac{1}{2} n \left(H_{2}SO_{4} \right) = 2n \left(2 H_{2}SO_{4} \right) = n \left(\frac{1}{2} H_{2}SO_{4} \right)$
3 、反应 $C(s) + O_2(g) = CO_2(g)$ 的标准平衡常数可表示为 ()。
$A_{N}K^{\theta} = \frac{([C]/c^{\theta})([O_{2}]/c^{\theta})}{([CO_{2}]/c^{\theta})} B_{N}K^{\theta} = \frac{([CO_{2}]/c^{\theta})}{([C]/c^{\theta})([O_{2}]/c^{\theta})} C_{N}K^{\theta} = \frac{[p_{O_{2}}/p^{\theta}]}{[p_{CO_{2}}/p^{\theta}]} D_{N}K^{\theta} = \frac{[p_{CO_{2}}/p^{\theta}]}{[p_{O_{2}}/p^{\theta}]}$
三、计算题
1、20℃时某物质(M=50g·mol ⁻¹)的饱和溶液 10.00mL 重 12.00g,将其蒸干后得溶质 2.000g。求:
(1)该溶液的质量分数ω。(2)该溶液的质量浓度 ρ (g·L-1)。(3)该溶液的质量摩尔浓度 b(mol·kg-1)。(4)该溶液的物质的量浓度 c (mol·L-1)。
2、某患者需补 0.3 mol 葡萄糖 ($M = 180$ g·mol ⁻¹), 应补多少克葡萄糖?若用ρ= 54 g·L ⁻¹ 的葡萄糖溶液,

需静滴多少毫升?

参考答案

一、填空题

1、0.1 mol·L⁻¹; 2、 $c_B = \rho_B / M_B$ 或 $c_B \times M_B = \rho_B$; 3、密度 (ρ); 4、0.10 mol·L⁻¹; 5、 $c_1 V_1 = c_2 V_2$ 、 $\rho_2 V_2 = \rho_1 V_1$; 6、0.2 mol·L⁻¹; 0.4 mol·L⁻¹; 7、650

二、选择题 1、C; 2、C; 3、D

三、计算题

1. **A:** (1)
$$\omega = \frac{2.000}{12.00} = 0.1667$$
 (2) $\rho = \frac{2.000}{10.00/1000} = 2.00.0 \text{ (g·L}^{-1})$

$$(3) \ b = \frac{2.000/50}{(12.00-2.00)/1000} = 4.000 \ (\text{mol} \cdot \text{kg}^{\text{-}1}) \\ (4) \ c = \frac{2.000/50}{10.00/1000} = 4.000 \ (\text{mol} \cdot \text{L}^{\text{-}1})$$

2、**解:** m (葡萄糖) = 0.3mol×180g·mol⁻¹ = 54g

V (葡萄糖) =
$$\frac{m(葡萄糖)}{\rho(葡萄糖)} = \frac{54g}{54g \cdot L^{-1}} = 1L = 1000mL$$

单元测试题-2

	, , , , , , , , , , , , , , , , , , , ,
<u> </u>	、填空题
1,	产生渗透现象的必要条件是和和。
2,	血浆的渗透压是由和组成的。前者决定内外水分子的转移,后者决定的平衡。
3、	难挥发性非电解质稀溶液的依数性与溶液的近似成正比,而与无关。
4、	某肝硬化病人由于肝功能衰竭,血液的渗透压下降, 使毛细血管中的向腹腔
渗透造	成肝腹水,要输入白蛋白进行缓解。
5、	产生渗透现象时,溶剂分子的渗透方向为。理想的半透膜是。
6,	$28.4 g \cdot L^{-1} Na_2 SO_4$ (M = 142 g·mol ⁻¹)溶液的物质的量浓度为。将红细胞置于该溶液中,
将产生	ː
<u> </u>	、选择题
1,	下列溶液中,能使红血球发生溶血现象的是()。
	A、5g·L-¹NaCl 溶液(M=58.5 g·mol-¹) B、0.1mol·L-¹Na ₂ CO ₃
	C、54g·L ⁻¹ 的葡萄糖(M=180 g·mol ⁻¹)溶液 D、0.3mol·L ⁻¹ 的蔗糖溶液
2,	下列液体中,同温下的蒸气压最高的是()。
	A、0.10mol·L ⁻¹ NaCl 溶液 B、0.1mol·L ⁻¹ 的葡萄糖溶液 C、纯水 D、11.1g·L ⁻¹ CaCl ₂ (M=111)溶液
3,	将 $10.6g$ 无水 $Na_2CO_3(M=106g\cdot mol^{-1})$ 溶于 $1000g$ 水中,该溶液开始结冰的温度是()。($K_f \bowtie =1.86$)
	A, -0.186°C B, -0.558°C C, -0.732°C D, 0°C
4、	将红血球置于()溶液中将会皱缩。
	A、 $9g\cdot L^{-1}$ NaCl(M=58.5)液 B、 0.15 mol· L^{-1} CaCl ₂ 液
	C、0.2mol·L ⁻¹ 葡萄糖液 D、12.5g·L ⁻¹ NaHCO ₃ (M=84.0)液
5、	非电解质稀溶液的蒸气压下降、沸点升高和凝固点降低的数值取决于()。
	A、溶质的本性 B、溶液的温度 C、溶液的质量摩尔浓度 D、溶液的体积
6.	在凝固点时,同一物质的液相蒸气压 p_1 与固相蒸气压 p_2 的关系是 ()。
	A 、 $p_1 > p_2$ B 、 $p_1 < p_2$ C 、 $p_1 = p_2$ D 、以上均正确
7、	欲测定高分子化合物的相对分子质量,最好采用()。
	A、蒸气压下降法 B、沸点升高法 C、凝固点下降法 D、渗透压法

8、正常外压下,0.45 mol·kg⁻¹NaI 水溶液(水的 $K_b = 0.512$ K·kg·mol⁻¹)的沸点值近似等于(

- A. 100.25°C B. 100.46°C C. 100.78 °C D. 101.51°C 9、用理想的半透膜将下列各组溶液隔开,水的渗透方向正确的是(
 - A、0.1 mol·L⁻¹NaCl 0.1mol·L⁻¹葡萄糖
 - B, 0.1 mol·L⁻¹NaCl : 0.1 mol·L⁻¹CaCl₂

 - D₂ 0.1 mol·L⁻¹NaCl 0.1mol·L⁻¹CaCl₂
- 10、下列电解质在水溶液中可解离的离子数 i=2 的是(
 - A、CaCl₂
- B、NaHCO₃
- $C \setminus NH_3 \cdot H_2O$
- D_v HAc

三、判断题

- 1、两溶液的渗透浓度相等时,其渗透压一定相等。(
- 2、计算强电解质溶液的依数性时,要用校正因子i来校正。(
- 3、为维持膜两侧稀浓两溶液的渗透平衡,在浓溶液上方施加的压力,即为浓溶液的渗透压。(
- 4、临床上的两种等渗溶液只有以相同体积混合时,才能得到等渗溶液。(
- 5、溶液的凝固点下降、沸点升高是蒸气压下降的必然结果。(
- 6、相同外压下,纯水沸腾时的蒸气压大于稀溶液沸腾时的蒸气压。(
- 7、正常沸点是指液体的蒸气压等于外压时的温度。(

四、计算题

- 1、将 11.1g CaCl₂(M=111g·mol⁻¹)固体溶解后,制成 1 升溶液。求该溶液的:
 - ① c (CaCl₂); ② ρ (CaCl₂); ③ c_{os},将红血球放入其中形状如何?
- 2、临床用于治疗碱中毒的针剂 NH₄Cl 溶液, 在标准态时实验测得其凝固点 T_f =-0.372℃, pH =5.00。 计算 NH₃ 的标准解离常数 K_b^θ (NH₃) (已知水的 K_f =1.86K·kg·mol⁻¹)。
- 3、现有 10 g·L^{-1} 尿素($M = 60 \text{ g·mol}^{-1}$),欲配制成 50 mL 生理等渗溶液[$\triangle T_f = 0.52 \text{ K}$, $K_f (H_2 O) = 1.86$ K·kg·mol-1],需加葡萄糖(M = 180 g·mol-1)多少克?

参考答案

一、填空题

- 1、半透膜; 膜两侧液体有浓度差 2、晶体渗透压; 胶体渗透压; 细胞; 毛细血管内外水、盐、电 解质: 3、质量摩尔浓度或溶质的颗粒数;溶质的性质;4、胶体;水、小分子物质;5、渗透浓度 大的方向转移; 只允许溶剂分子通过的薄膜; $6 \times 0.200 \text{ mol·L}^{-1}$; 皱缩
- 二、选择题 1、A; 2、C; 3、B; 4、B; 5、C; 6、C; 7、D; 8、B; 9、B; 10、B
- 三**、**判断题 1、×; 2、√; 3、×; 4、×; 5、√; 6、×; 7、×

四、计算题

- 1、解: ① c ($CaCl_2$) =
- 2_s **\mathbf{M}:** $T_f = 0.372$

b (NH₄Cl) =
$$\frac{0.372}{1.86}$$
 = 0.200 (mol·kg⁻¹) c (NH₄Cl) ≈0.200 (mol·L⁻¹)
pH = 5.00 [H⁺] = 1.00×10⁻⁵ (mol·L⁻¹)
K^{\theta}_a (NH₄Cl) = $\frac{[H^+]^2}{c(NH_4^+)}$ = $\frac{1.00 \times 10^{-10}}{0.200}$ = 5.0×10⁻¹⁰

$$K_b^{\theta}$$
 (NH₃) = $\frac{K_W}{K_a^{\theta}}$ = $\frac{1.0 \times 10^{-14}}{5.0 \times 10^{-10}}$ = 2 × 10⁻⁵

3、**解:** 设生理等渗液的组成量度为— $b_{\pm m}$,根据 $\Delta T_f = K_f(H_2O) \times b_{\pm m}$

$$b_{\pm m} = \frac{\Delta T_f}{K_f(H_2O)} = \frac{0.52}{1.86} = 0.279 \approx 0.28 \text{ (mol·kg}^{-1}\text{)} \text{ c}_{\pm m} = 0.28 \text{ (mol·L}^{-1}\text{)}$$

$$c_{\ \, {\rm Kg}} \ = \ \frac{10}{60} \ = 0.167 \approx 0.17 \ \ (\ \, {\rm mol\cdot L^{\text{-}1}}) \qquad \Delta c = c_{\ \, \pm \text{\tiny $\rm g$}} = 0.11 \ \ (\ \, {\rm mol\cdot L^{\text{-}1}})$$

需加葡萄糖质量 m = 0.11 mol·L⁻¹ × 0.050 L × 180 g·mol⁻¹ = 0.99 g

单元测试题-3

一、填空题
1、溶胶和高分子溶液中分散相粒子的大小同为nm,其中
2、用过量 AgNO ₃ 和 KI 溶液制备 AgI 溶胶,胶核结构式是,胶核优先吸附离子,
而带电荷。 胶粒结构式是,电泳时,胶粒向极移动,胶团结构式是。
3、在溶胶中加入足量的高分子溶液,溶胶的稳定性将会,这种现象称为。
4、乳化剂使乳状液稳定的原因是,降低了,形成了。
二、选择题
1、降低固体表面能的方式有 ()。
A、减少表面积 B、降低表面张力 C、两者兼有 D、两者兼无
2、鉴别高分子溶液和溶胶可借助于()。
A、布朗运动 B、丁铎尔现象 C、电泳 D、电渗
3、下列分散系中,有明显丁铎尔效应的是()。
A、NaCl 溶液 B、Fe(OH)3 溶胶 C、牛奶 D、蛋白质溶液
4、用过量 $AgNO_3$ 溶液与 KI 溶液制备溶胶时,下列电解质对该溶胶临界聚沉浓度最小的是()。
A、NaCl B、CaCl ₂ C、AlCl ₃ D、Na ₃ PO ₄
5、溶胶具有相对稳定性的因素是()。
①布朗运动 ②胶粒带电 ③溶胶表面的水合膜 ④胶粒的扩散
A, ①②③ B, ①③ C, ②④ D, ④ E, ①②③④
6、使溶胶聚沉的常用方法有 ()。
A、加入电解质 B、两带相反电荷的溶胶互相混合 C、两者兼有 D、两者兼无
7、关于电解质对溶胶的聚沉作用,下列说法中错误的是()。
A、 电解质中起聚沉作用的主要是与胶粒带相反电荷的离子
B、带相反电荷离子的价数越高,聚沉能力越强
C、电解质的聚沉值越大,其聚沉能力越大
D、 电解质的聚沉值越小,其聚沉能力越大
8、溶胶带电的原因有 ()。
A、胶粒选择性吸附溶液中的离子 B、胶粒表面分子部分解离
C、两者兼有 D、两者兼无
三、判断题
1、胶体分散系一定是多相体系。()
2、溶胶能稳定存在的主要原因是胶粒的布朗运动。()
四、完成下列各题

何谓分散系、分散相、分散介质?分散系如何分类?

参考答案

一、填空题

- 二、选择题 1、B; 2、B; 3、B; 4、D; 5、A; 6、C; 7、C; 8、C
- 三、是非题 1、×; 2、×
- 四、完成下列各题
- **答:** 一种或几种物质以微粒的形式分散在另一种物质中所形成的系统叫分散系; 其中, 被分散的物质叫分散相, 容纳分散相的连续介质叫分散介质。

分散系按分散相粒子的大小可分为:

「颗粒直径>100nm 为粗分散系(有悬浊液和乳状液)

颗粒直径<1nm 为真溶液

└ 颗粒直径在 1~100nm 为胶体分散系 (有高分子溶液、溶胶、微乳液)

第五章 酸碱解离平衡

习题解析

- **1、**麻黄素($C_{10}H_{15}ON$)是一种弱碱, $K_b^{\theta}(C_{10}H_{15}ON) = 1.4 \times 10^{-4}$,常用作鼻喷剂,以减轻充血症状。(1)写出麻黄素的解离反应方程式;(2)计算麻黄素的共轭酸的标准解离常数。
- 解: (1) 麻黄素的解离反应方程式为

$$C_{10}H_{15}ON + H_2O \Leftrightarrow C_{10}H_{15}ONH^+ + OH^-$$

(2) 麻黄素的共轭酸为 C10H15ONH+, 其标准解离常数为

$$K_a = (C_{10}H_{15}ONH^+) = \frac{K_w^{\theta}}{K_b^{\theta}(C_{10}H_{15}ON)} = \frac{1.0 \times 10^{-14}}{1.4 \times 10^{-4}} = 7.1 \times 10^{-11}$$

- **2、**把下列溶液的 H_3O^+ 浓度换算成 pH: (1) 胃液中 H_3O^+ 浓度为 4.0×10^{-2} $mol \cdot L^{-1}$; (2) 人体血液中 H_3O^+ 浓度为 4.0×10^{-8} $mol \cdot L^{-1}$; (3) 人的泪液中 H_3O^+ 浓度为 3.2×10^{-8} $mol \cdot L^{-1}$ 。
 - 解: 溶液的 pH 与 H₃O⁺ 浓度的关系为 $pH = -\lg c (H_3O^+)$
 - (1) 胃液 pH 为 $pH = -\lg 4.0 \times 10^{-2} = 1.40$
 - (2) 血液 pH 为 $pH = -\lg 4.0 \times 10^{-8} = 7.40$
 - (3) 泪液 pH 为 $pH = -\lg 3.2 \times 10^{-8} = 7.49$
- **3、**健康人血液的 pH 为 7.35 ~7.45,患某种疾病的人的血液 pH 可暂时降到 5.90,问此时血液中 H_3O^+ 浓度是健康人的多少倍?
 - 解: 该患者血液中 H_3O^+ 浓度为 $c_2(H_3O^+)=10^{-pH}\ mol \bullet L^{-1}=10^{-5.90}\ mol \bullet L^{-1}=1.3\times 10^{-6}\ mol \bullet L^{-1}$

健康人血液的
$$H_3O^+$$
 浓度为 $c_1(H_3O^+)=10^{-7.45}\sim 10^{-7.35}\ mol \bullet L^{-1}=3.6\times 10^{-8}\sim 4.5\times 10^{-8}\ mol \bullet L^{-1}$

患者血液中 H₃O+ 浓度与健康人血液中 H₃O+ 浓度的比值为

$$\frac{c_2(H_3O^+)}{c_1(H_3O^+)} = \frac{1.3 \times 10^{-6} \, mol \bullet L^{-1}}{4.5 \times 10^{-8} \, mol \bullet L^{-1}} \sim \frac{1.3 \times 10^{-6} \, mol \bullet L^{-1}}{3.6 \times 10^{-8} \, mol \bullet L^{-1}} = 29 \sim 36$$

此时患某种疾病的人的血液中 H₃O+ 浓度是健康人血液中 H₃O+ 浓度的 29~36 倍。

- 7、已知琥珀酸(CH₂COOH)₂用(H₂A 表示)的 K_{a1}^{θ} = 6.5×10⁻⁵, K_{a2}^{θ} = 2.7×10⁻⁶。试计算在 pH 分别为 4.88 和 5.00 时 H₂A、HA⁻、A²⁻的分布分数。如果琥珀酸 H₂A 的总浓度为 0.01 mol·L⁻¹ ,计算 pH 为 4.88 时 H₂A、HA⁻、A²⁻的平衡浓度。
 - **解**: pH 为 4.88 时, $c_{eq}(H_3O^+) = 1.3 \times 10^{-5} \text{ mol} \cdot L^{-1}$,溶液中 H_2A 、 HA^- 和 A^2 -的分布分数分别为

$$\begin{split} \delta(H_2A) &= \frac{\left[c_{ep}(H_3O^+)\right]^2}{\left[c_{ep}(H_3O^+)\right]^2 + K_{a1}^{\theta}c_{ep}(H_3O^+) + K_{a1}^{\theta}K_{a2}^{\theta}} \\ &= \frac{(1.3 \times 10^{-5})^2}{(1.3 \times 10^{-5})^2 + 6.5 \times 10^{-5} \times 1.3 \times 10^{-5} + 6.5 \times 10^{-5} \times 2.7 \times 10^{-6}} = 0.14 \end{split}$$

$$\delta(HA^{-}) = \frac{K_{al}^{\theta} c_{ep}(H_{3}O^{+})}{\left[c_{ep}(H_{3}O^{+})^{2} + K_{al}^{\theta} c_{ep}(H_{3}O^{+}) + K_{al}^{\theta} K_{a2}^{\theta}\right]}$$

$$= \frac{6.5 \times 10^{-5} \times 1.3 \times 10^{-5}}{(1.3 \times 10^{-5})^{2} + 6.5 \times 10^{-5} \times 1.3 \times 10^{-5} + 6.5 \times 10^{-5} \times 2.7 \times 10^{-6}} = 0.70$$

$$\delta(A^{2-}) = \frac{K_{a1}^{\theta} K_{a2}^{\theta}}{\left[c_{ep}(H_3 O^+)\right]^2 + K_{a1}^{\theta} c_{ep}(H_3 O^+) + K_{a1}^{\theta} K_{a2}^{\theta}}$$

$$= \frac{6.5 \times 10^{-5} \times 2.7 \times 10^{-6}}{(1.3 \times 10^{-5})^2 + 6.5 \times 10^{-5} \times 1.3 \times 10^{-5} + 6.5 \times 10^{-5} \times 2.7 \times 10^{-6}} = 0.16$$

pH 为 5.00 时, $c_{eq}(H_3O^+) = 1.0 \times 10^{-5} \text{ mol·L}^{-1}$,溶液中 H_2A 、 $HA^-和$ A^2 -的分布分数分别为

$$\delta(H_2A) = \frac{(1.0 \times 10^{-5})^2}{(1.0 \times 10^{-5})^2 + 6.5 \times 10^{-5} \times 1.0 \times 10^{-5} + 6.5 \times 10^{-5} \times 2.7 \times 10^{-6}} = 0.11$$

$$\delta(HA^{-}) = \frac{6.5 \times 10^{-6} \times 1.0 \times 10^{-5}}{(1.0 \times 10^{-5})^{2} + 6.5 \times 10^{-5} \times 1.0 \times 10^{-5} + 6.5 \times 10^{-5} \times 2.7 \times 10^{-6}} = 0.70$$

$$\delta(A^{2-}) = \frac{6.5 \times 10^{-5} \times 2.7 \times 10^{-6}}{(1.0 \times 10^{-5})^2 + 6.5 \times 10^{-5} \times 1.0 \times 10^{-5} + 6.5 \times 10^{-5} \times 2.7 \times 10^{-6}} = 0.19$$

pH 为 4.88 时, H₂A、HA-和 A²⁻的平衡浓度分别为

$$c_{ep}(H_2A) = c(H_2A)\delta(H_2A) = 0.010 mol \bullet L^{-1} \times 0.14 = 1.4 \times 10^{-3} mol \bullet L^{-1}$$

$$c_{ep}(HA^{-}) = c(H_2A)\delta(HA^{-}) = 0.010 \, mol \bullet L^{-1} \times 0.70 = 7.0 \times 10^{-3} \, mol \bullet L^{-1}$$

$$c_{ep}(A^{2-}) = c(H_2A)\delta(A^{2-}) = 0.010 \, mol \bullet L^{-1} \times 0.16 = 1.6 \times 10^{-3} \, mol \bullet L^{-1}$$

8、计算下列溶液的 pH:

- (1) 0.10mol·L⁻¹NaAc 溶液; (2) 0.10mol·L⁻¹NH₄Cl 溶液;
- (3) 0.010mol·L⁻¹H₂SO₃溶液; (4) 0.10mol·L⁻¹Na₃PO₄溶液。

$$K_a^{\theta}$$
 (HAc)=1.8×10⁻⁵, K_b^{θ} (NH₃)=1.8×10⁻⁵, K_a^{θ} (H₂SO₃)=1.7×10⁻², K_a^{θ} 3(H₃PO₄)=4.5×10⁻¹³

解:
$$K_b^{\theta} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$
 $cK_b^{\theta} \rangle 20K_w^{\theta}$ $\frac{c}{K_b^{\theta}} \rangle 400$

(1)
$$\left[OH^{-}\right] = \sqrt{cK_{b}^{\theta}} = \sqrt{c\frac{K_{w}^{\theta}}{K_{a}^{\theta}}} = \sqrt{0.10 \times \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}} = 7.48 \times 10^{-6}$$

(2)
$$K_a^{\theta} = \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.6 \times 10^{-10}$$
 $cK_a^{\theta} \rangle 20K_w^{\theta}$ $\frac{c}{K_a^{\theta}} \rangle 400$
$$[H_3O^+] = \sqrt{cK_a^{\theta}} = \sqrt{c\frac{K_w^{\theta}}{K_a^{\theta}}} = \sqrt{0.10 \times \frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}} 7.48 \times 10^{-6}$$
 pH =5.13

(3)
$$cK_{a1}^{\theta}\rangle 20K_{w}^{\theta}$$
 $\frac{c}{K_{a1}^{\theta}} = 0.59\langle 400$

$$\left[H_{3}O^{+}\right] = \frac{-K_{a1}^{\theta} + \sqrt{K_{a1}^{\theta2} + 4cK_{a1}^{\theta}}}{2} = \frac{-1.7 \times 10^{-2} + \sqrt{(1.7 \times 10^{-2})^{2} + 4 \times 0.010 \times 1.7 \times 10^{-2}}}{2} = 7.06 \times 10^{-3}$$

pH = 3-lg7.06 = 2.15

(4)
$$K_{b1}^{\theta} = \frac{1.0 \times 10^{-14}}{4.5 \times 10^{-13}} = 2.2 \times 10^{-2}$$
 $cK_{b1}^{\theta} \rangle 20K_{w}^{\theta}$ $\frac{c}{K_{b1}^{\theta}} = 4.5\langle 400 \rangle 4.5 \langle 400 \rangle 10^{-13}$

$$[OH^{-}] = \frac{-K_{b1}^{\theta} + \sqrt{K_{b1}^{\theta 2} + 4cK_{b1}^{\theta}}}{2} = \frac{-2.2 \times 10^{-2} + \sqrt{(2.2 \times 10^{-2})^{2} + 4 \times 0.10 \times 2.2 \times 10^{-2}}}{2} = 3.72 \times 10^{-2}$$

10、现取样分析我国西南地区某次酸雨中 NH₄+、Cl⁻、Na⁺、NO₃-、SO₄²-的浓度分别为 2.0 × 10⁻⁵ mol·L⁻¹、6.0 × 10⁻⁵ mol·L⁻¹、3.2 × 10⁻⁵ mol·L⁻¹、2.3 × 10⁻⁵ mol·L⁻¹、2.8× 10⁻⁵ mol·L⁻¹,计算该酸雨的 pH。

解: 该次酸雨中, H₃O+ 浓度和 pH 分别为

$$c(H_3O^+) = 2c(SO_4^{-2-}) + c(NO_3^{--}) + c(Cl^-) - c(NH_4^{-+}) - c(Na^+)$$

$$= (2 \times 2.8 \times 10^{-5} + 2.3 \times 10^{-5} + 6.0 \times 10^{-6} - 2.0 \times 10^{-5} - 3.2 \times 10^{-6}) mol \bullet L^{-1}$$

$$= 6.2 \times 10^{-5} mol \bullet L^{-1}$$

$$pH = -\lg c_{ep}(H_3O^+) = -\lg(6.2 \times 10^{-5}) = 4.21$$

11、25°C时, K_a^θ 2(H₃PO₄) = 6.2×10⁻⁸, K_a^θ 3(H₃PO₄) = 4.5×10⁻¹³,试计算 0.10 mol·L⁻¹ Na₂HPO₄ 溶液的 pH。

#:
$$[H_3O^+] = \sqrt{K_{a_2}^{\theta}K_{a_3}^{\theta}} = \sqrt{6.2 \times 10^{-8} \times 4.5 \times 10^{-13}}$$
 pH =9.78

18、水杨酸(邻羟基苯甲酸, $C_7H_4O_3H_2$)是二元弱酸,**25** °C时, K_a^{θ} ₁= 1.06×10⁻³, K_a^{θ} ₂(H_3PO_4) = 3.6×10⁻¹⁴,。有时可用它作为止痛药而代替阿司匹林,但它有较强的酸性,能引起胃出血。计算 0.065 mol·L⁻¹ 水杨酸溶液的 pH。

解: 由于 $c\,K_{a}^{\,\theta}$ $_{1}$ > $20\,K_{w}^{\,\theta}$, $\sqrt{cK_{a1}^{\,\theta}}$ > $40K_{a2}^{\,\theta}$, 但 $c\,/\,K_{a1}^{\,\theta}$ = 61 < 400 ,需利用近似公式计算。0.065 mol·L⁻¹ 水杨酸溶液的 $H_{3}O^{+}$ 浓度和 pH 分别为

$$c_{ep}\left(H_{3}O^{+}\right) = \frac{-1.06\times10^{-3}+\sqrt{(1.06\times10^{-3})^{2}+4\times0.065\times1.06\times10^{-3}}}{2}\,mol\,\bullet L^{-1} = 7.8\times10^{-3}\,mol\,\bullet L^{-1}$$

$$pH = -\lg(7.8\times10^{-3}) = 2.11$$

20、解热镇痛药阿司匹林(乙酰水杨酸)是一元弱酸,结构式为:

已知 pK_a^{θ} 为 3.50,服用后以未解离的分子在胃中吸收。如果患者先吃了调节胃液酸度的药物,使胃液的 pH 保持在 2.95,此时再吃两片阿司匹林(共含 0.65g 阿司匹林)。假如服用后阿司匹林立即溶解,且不改变胃液的 pH,未解离的分子可完全被胃液所吸收。问此时能被吸收的阿司匹林有多少克?

解:用 HA 代替阿司匹林的分子式,则:

$$HA + H_2O \longrightarrow H_3^+O + A^-$$

$$K_a^{\theta}(HA) = \frac{\left[c_{ep}(A^-)/c^{\theta}\right]\left[c_{ep}(H_3O^+)/c^{\theta}\right]}{c_{ep}(HA)/c^{\theta}}$$

未解离的乙酰水杨酸在阿司匹林中的质量分数为:

$$\omega(HA) = \frac{c_{ep}(HA)}{c_{ep}(HA) + c_{ep}(A^{-})} = \frac{1}{1 + \frac{c_{ep}(A^{-})}{c_{ep}(HA)}} = \frac{1}{1 + \frac{K_a^{\theta}(HA)}{c_{ep}(H_3O^{+})/c^{\theta}}} = \frac{1}{1 + \frac{10^{-3.50}}{10^{-2.95}}} = 0.78$$

未解离的乙酰水杨酸的质量为: $m(HA)=0.65g\times0.78=0.51g$ 此时能被吸收的阿司匹林为 0.51g。

21、血浆和尿液中都含有 $H_2PO_4^- - HPO_4^{2-}$ 缓冲对,正常人血浆和尿液中 $\frac{c(HPO_4^{2-})}{c(H_2PO_4^-)}$ 分别为 4 和 1/9 。

已知 $H_2PO_4^-$ 的 $pK_a^{\theta'}$ 为 6.80(考虑了其他因素的影响校正后的数值),试计算血浆和尿液的pH。

解: 正常人血浆的 pH 为:

pH=
$$pK_{a2}^{\theta'}(H_3PO_4) + \lg \frac{c(HPO_4^{2-})}{c(H_2PO_4^{-})} = 6.80 + \lg 4 = 7.40$$

正常人尿液的 pH 为: $pH=6.80 + \lg \frac{1}{9} = 5.85$

23、血浆中 H_2CO_3 和 HCO_3 -离子的总浓度为 2.52×10^{-2} $mol\cdot L^{-1}$ 。 37 °C时 H_2CO_3 的 $pK_{a1}^{\theta'}=6.10$ (考虑温度及其他因素对 K_{a1}^{θ} 的影响,校正后的数值),血浆的 pH 为 7.40。试计算 37 °C时血浆中 $c(HCO_3^-)/c(H_2CO_3)$, $c(HCO_3^-)$ 和 $c(H_2CO_3)$ 。

解: 若血浆中
$$\frac{c(HCO_3^-)}{c(H_2CO_3)} = \gamma$$
,则血浆中 $c(HCO_3^-)$ 和 $c(H_2CO_3)$ 的比值为:

$$\lg \frac{c(HCO_3^-)}{c(H_2CO_3)} = \lg \gamma = pH - pK_{a1}^{\theta'}(H_2CO_3) = 7.40 - 6.10 = 1.30 \qquad \frac{c(HCO_3^-)}{c(H_2CO_3)} = \gamma = 20$$

血浆中 HCO_3^- 和 H_2CO_3 的浓度分别为:

$$c(HCO_3^-) = \frac{\gamma}{1+\gamma} \times \left[c(HCO_3^-) + c(H_2CO_3) \right] = \frac{20}{1+20} \times 2.52 \times 10^{-2} \text{mol} \cdot \text{L}^{-1} = 2.40 \times 10^{-2} \text{mol} \cdot \text{L}^{-1}$$

$$c(H_2CO_3) = \frac{1}{1+\gamma} \times \left[c(HCO_3^-) + c(H_2CO_3) \right] = \frac{1}{1+20} \times 2.52 \times 10^{-2} \text{mol} \cdot \text{L}^{-1} = 1.20 \times 10^{-3} \text{mol} \cdot \text{L}^{-1}$$

25、计算下列缓冲溶液的缓冲范围:

(1).NH₄Cl-NH₃溶液;(2).KH₂PO₄-K₂HPO₄溶液;(3).Na₂HPO₄-Na₃PO₄溶液
$$K_b^\theta$$
 (NH₃) =1.8×10⁻⁵, $K_{a,2}^\theta$ (H₃PO₄) = 6.2×10⁻⁸, $K_{a,3}^\theta$ (H₃PO₄) = 4.5×10⁻¹³

解: (1) pH=
$$pK_a^{\theta}(NH_4^+)$$
 ± 1=14.00+lg $K_b^{\theta}(NH_3)$ ± 1=14.00+lg1.8×10-5 ± 1=8.26~10.26

(2)
$$pH = pK_a^{\theta}(H_2PO_4^-) \pm 1 = -1g6.2 \times 10^{-8} \pm 1 = 6.21 \sim 8.21$$

(3)
$$pH = pK_a^{\theta}(HPO_4^{2-}) \pm 1 = -lg4.5 \times 10^{-13} \pm 1 = 11.35 \sim 13.35$$

26、由一元弱酸 HA(K_a^θ =5.0×10⁻⁶)和它的共轭碱 NaA 组成的缓冲溶液中,HA 的浓度为 0.25 mol·L⁻¹,若在 100 mL 此缓冲溶液中加入 5.0 mmol NaOH 固体,溶液的 pH 变为 5.60。计算加入 NaOH 固体前缓冲溶液的 pH。

解: 若加入 NaOH 固体前溶液中共轭碱的浓度为 $c_1(A^-)$,则加入 NaOH 后溶液中弱酸 HA 和其共轭碱 A^- 的浓度分别为:

$$c_2(HA) = \frac{0.25mol \cdot L^{-1} \times 0.10L - 5.0 \times 10^{-3} \, mol}{0.10L} \qquad c_2(A^-) = \frac{c_1(A^-) \times 0.10L + 5.0 \times 10^{-3} \, mol}{0.10L}$$

代入缓冲溶液 pH 的计算公式得:

$$5.60 = -\lg 5.0 \times 10^{-6} + \lg \frac{\left[0.10c_1(A^-)/c^{\theta}\right] + 5.0 \times 10^{-3}}{0.25 \times 0.10 - 5.0 \times 10^{-3}} \qquad c_1(A^-) = 0.35 mol \cdot L^{-1}$$

加入 NaOH 固体前,缓冲溶液的 pH 为:
$$pH = -\lg 5.0 \times 10^{-6} + \lg \frac{0.35 mol \cdot L^{-1}}{0.25 mol \cdot L^{-1}} = 5.45$$

27、正常人血浆中 H_2CO_3 和 HCO_3^- 浓度分别为 $0.0012 \, mol \cdot L^{-1}$ 和 $0.024 \, mol \cdot L^{-1}$,已知血浆中经校正后 H_2CO_3 的 $pK_{a1}^{\theta'}=6.10$ 。 试求:(1)正常人血浆的 pH 为多少?(2)若在 1 L 正常人血浆中加入 $0.010 \, mol \, H_3O^+$ 离子后,假设血浆体积保持不变,生成的 CO_2 全部溶解在血浆中以 H_2CO_3 存在,血浆的 pH 为多少?(3)若加入 H_3O^+ 离子后生成的 CO_2 全部从血浆中排出,且 H_2CO_3 浓度保持不变,血浆的 pH 又是多少?

解: (1) 正常人血浆的 pH 为:

$$pH = pK_{a1}^{\theta'} (H_2CO_3) + \lg \frac{c(HCO_3^-)}{c(H_2CO_3)} = 6.10 + \lg \frac{0.024mol \cdot L^{-1}}{0.0012mol \cdot L^{-1}} = 7.40$$

(2) 加入 H_3O^+ 离子后, HCO_3^- 离子和 H_2CO_3 的浓度分别为:

$$c(HCO_3^-)=0.024mol \cdot L^{-1}-0.010mol \cdot L^{-1}=0.014mol \cdot L^{-1}$$

$$c(H_2CO_3) = 0.0012 mol \cdot L^{-1} + 0.010 mol \cdot L^{-1} = 0.0112 mol \cdot L^{-1}$$

血浆的 pH 为:
$$pH = 6.10 + \lg \frac{0.014}{0.0112} = 6.20$$

(3) 加入 H_3O^+ 离子后, HCO_3^- 离子和 H_2CO_3 的浓度分别为:

c(
$$HCO_3^-$$
)= $0.024mol \cdot L^{-1} - 0.010mol \cdot L^{-1} = 0.014mol \cdot L^{-1}$ c(H_2CO_3)= $0.0012mol \cdot L^{-1}$ 血浆的 pH 为: $pH = 6.10 + \lg \frac{0.014}{0.0012} = 7.17$

29、计算 $0.10mol \cdot L^{-1}$ $NH_3 - 0.10mol \cdot L^{-1}$ NH_4Cl 缓冲溶液的 pH 和缓冲容量。 K_b^{θ} (NH₃) =1.8×10⁻⁵

解:
$$pH = pK_a^{\theta} + \lg \frac{c(\vec{w})}{c(\vec{w})}$$
 $pH = 14 + \lg 1.80 \times 10^{-5} + \lg \frac{0.10}{0.10} = 9.26$
$$\beta = 2.30 \frac{c(\vec{w}) \cdot c(\vec{w})}{c(\vec{w}) + c(\vec{w})} = 2.30 \times \frac{0.10 \times 0.10}{0.10 + 0.10} = 0.115 \left(mol \cdot L^{-1} \right)$$

30、配制 1.0 L pH = 10 的 NH_3 — NH_4Cl 缓冲溶液,用去 350 mL $15 \text{mol} \cdot L^{-1}$ 氨水,问需要 NH_4Cl 多少

克?
$$K_b^{\theta}$$
 (NH₃) =1.8×10⁻⁵ , M(NH_4Cl)=53.5 $g \cdot mol^{-1}$

解:
$$pH = pK_a^{\theta} + \lg \frac{c(\overline{w})}{c(\overline{w})}$$

 $10 = 14 + \lg 1.8 \times 10^{-5} + \lg \frac{0.350 \times 15}{m/53.5}$ 得到: $m = 51.1(g)$

31、三位住院患者的血液中 HCO_3^- 和 H_2CO_3 浓度的化验结果如下:

(1)
$$\forall$$
: $c(HCO_3^-) = 24.0 \text{ mol} \cdot L^{-1}$, $c(H_2CO_3) = 1.20 \text{ mmol} \cdot L^{-1}$

(2)
$$\angle$$
: $c(HCO_3^-) = 21.6 \text{ mol} \cdot L^{-1}$, $c(H_2CO_3) = 1.35 \text{ mmol} \cdot L^{-1}$

(3) 丙:
$$c(HCO_3^-)$$
 =56.0 $mol\cdot L^{-1}$, $c(H_2CO_3)$ =1.40 $mmol\cdot L^{-1}$

已知在在血液中校正后的 $pK_{a1}^{\theta'}(H_2CO_3)=6.10$,试计算三位患者血液中的 pH。并判断谁属正常,谁属酸中毒,谁属碱中毒?

解: 血液中 pH 的计算公式为
$$pH = pK_{a1}^{\theta'}(H_2CO_3) + \lg \frac{c(HCO_3^-)}{c(H_2CO_3)}$$

甲,乙,丙三位患者血液的 pH 分别为

$$pH_{\parallel} = 6.10 + \lg \frac{24.0}{1.20} = 7.40$$

$$pH_{\angle} = 6.10 + \lg \frac{21.6}{1.35} = 7.30$$

$$pH_{|\overline{\bowtie}} = 6.10 + \lg \frac{56.0}{1.40} = 7.70$$

血液的正常 pH 为 $7.35\sim7.45$,当 pH < 7.35 时属于酸中毒,当 pH > 7.45 时属于碱中毒。因此,甲属于正常,乙属于酸中毒,丙属于碱中毒。

32、利用二元弱酸 H_2A 与 NaOH 反应配制 pH 为 6.0 的缓冲溶液,已知 25°C时 $K_{a1}^{\theta}(H_2A)$ = 3.0×10^{-2} , $K_{a2}^{\theta}(H_2A)$ = 5.0×10^{-7} 。问在 450mL 0.10mol·L⁻¹ H_2A 溶液中需加入 0.20 $mol\cdot L^{-1}$ NaOH 溶液多少毫升?

解: 配制 pH=6.0 的缓冲溶液,应选择 $HA^- - A^{2-}$ 缓冲对。缓冲溶液的缓冲比为:

$$\lg \frac{n(A^{2-})}{n(HA^{-})} = \lg \gamma = pH - pK_{a2}^{\theta}(H_2A) = 6.0 + \lg 5.0 \times 10^{-7} = -0.30 \qquad \frac{n(A^{2-})}{n(HA^{-})} = \frac{1}{2}$$

据题意,有: $n(H_2A) = n(HA^-) + n(A^{2-})$

联立以上两式,解得:
$$n(A^{2-}) = \frac{1}{3}n(H_2A)$$
; $n(HA^-) = \frac{2}{3}n(H_2A)$

配制缓冲溶液时所发生的化学反应为:

 $H_2A + NaOH = NaHA + H_2O$; NaHA $+NaOH = Na_2A + H_2O$ 由反应式可知配制时所需 NaOH 的物质的量为:

$$n(NaOH) = n(HA^{-}) + 2n(A^{2-}) = \frac{2}{3}n(H_2A) + \frac{2}{3}n(H_2A) = \frac{4}{3}n(H_2A)$$

所需 NaOH 溶液的体积为:

$$V(NaOH) = \frac{n(NaOH)}{c(NaOH)} = \frac{\frac{4}{3}n(H_2A)}{c(NaOH)} = \frac{\frac{4}{3} \times 450mL \times 0.10mol \cdot L^{-1}}{0.20mol \cdot L^{-1}}$$
= 300 mL

补充题-1

- 1、计算 0.10 mol·L⁻¹NaAc 溶液 pH 时,可用______公式,pH =____。
- 2、计算 0.10 mol·L⁻¹NH₄Ac 溶液 pH 时,可用______公式,pH = _____。

补充题-2

- 1.血液中最主要的缓冲对是 , 其缓冲通式为 。
- 2.下列有关缓冲溶液的叙述中,错误的是()。

- A、缓冲容量β越大,溶液的缓冲能力越强 B、缓冲对的总浓度越大,β越大
- C、缓冲溶液稀释后,缓冲比不变,所以 pH 不变,β也不变
- D、总浓度一定,缓冲比等于 1 时, β 值最大

单元测试题-1

一、填空题			
1、按酸碱的质子理论,酸是	, 碱 是	<u></u>	, 两 性 物 质 是
	。共	:轭酸碱是指	0
2、联系弱电解质解离度,解离平衡常数与溶			
3、室温下,0.10mol·L ⁻¹ 的 HB(Ka=1.0× 10 ⁻⁵)			
的 Kb 等于			
4、室温下,某一元弱酸的 0.01mol·L-1 水溶	液的 pH 值是 4.0,	则 Ka为	,α为。
5、常温下,已知某弱酸 HB 的 Ka=1.0×10-			
升, 此溶液的 pH 值为。			
6、室温下,某三元弱酸 Ka ₁ =1.0×10 ⁻³ , Ka ₂ =1.	0×10 ⁻⁷ , Ka ₃ =1.0×10	-11, 其共轭碱 Kb3的	值等于
7、H ₂ PO ₄ -的共轭酸是, 共轭碱	或是。		
二、选择题			
1、在 HAc 溶液中加入盐酸,则有()。		
A、同离子效应 B、盐效应	C、二者兼有	D、二者兼无	
2、在某三元弱酸 H ₃ B 中, 其共轭酸碱对 K	a和 Kb 的关系式。	中,正确的是()。
$A \cdot Ka_1 \cdot Kb_1 = Kw$ $B \cdot Ka_1 \cdot Kb_3 = K$	$C \cdot Ka_1 \cdot Kb_2$	= Kw D, K	$a_2 \cdot Kb_3 = Kw$
3、在水溶液中属于二元弱碱的是()	0		
A、NH ₄ Cl B、NaHCO ₃	C、Na ₂ CO ₃	D, Na ₂ SO ₄	
4、按酸碱的质子理论,下列物质中属于两	性物质的有()。	
① H_2O ② NH_4^+ ③ N	IaHCO ₃ ④	Ac-	
A, 123 B, 13 C, 24	D, 4	E. 1234	
5、计算 0.1mol·L ⁻¹ Na ₂ HPO ₄ 溶液[H ⁺]的近化	(公式是 ()。		
A, $\sqrt{Ka_1C}$ B, $\sqrt{KaKa'}$	$C \cdot \sqrt{Ka_1Ka_2}$	D. $\sqrt{Ka_2Ka_3}$	
6、50mL0.12mol·L ⁻¹ 的 H ₃ PO ₄ 中加入 50n	nL0.16mol·L ⁻¹ 的N	aOH液后,溶液的	pH 值是()。
$[pK_{a1}=2.16, pK_{a2}=7.21, pK_{a3}=12.32]$,,•	,,	1 == , = ()
A ₂ 6.91 B ₂ 7.09 C ₂ 12.3	7 D、9.94		
7、在酸碱反应中:H₂PO₄-+H₂O			
A、HPO ₄ ² -和 H ₃ O ⁺ B、H ₂ PO ₄ -和 H ₃			₃ O ⁺ 和 H ₂ O
8、按质子论观点,下列几种对 NH ₄ Ac 水浴			
A、它是酸 B、它是碱 C、它是两	f性物质 D、以_	上说法都不正确	
9、下列溶液中,在常温下碱性最强的是(
A、pH=7 B、pH=4 C、pOH=10	D、pH=1和 pC)H=13 的等体积混合	計 液
三、判断题			
1、盐酸是强酸。()			
2、在酸碱质子理论中没有盐的概念。()		
3、稀 NaH ₂ PO ₄ 溶液的 pH 值与其浓度无关	. ()		
4、在不同溶剂中时,HAc 可能是弱酸,可	能是强酸,也可能	是弱碱。()	
四、完成下列各题			
1、将相同温度下 HAc 的解离度从大到小	排列:(加入少量词	(利假定体积不变)	

a、0.1 mol·L⁻¹HAc 溶液

- b、0.1 mol·L-1HAc 溶液加少量浓 HCl
- c、0.1 mol·L-¹HAc 溶液加入少量 KNO3 晶体 d、0.05 mol·L-¹HAc 溶液加入少量 KNO3 晶体
- 2、同温下,将 NH₃·H₂O 的解离度从大到小排列:
 - a、0.1mol·L-1的NH₃·H₂O

- b、0.1mol·L-1 NH₃·H₂O 加少量 NaCl 固体
- c、0.05mol·L⁻¹的 NH₃·H₂O 加少量 NaCl 固体 d、0.1mol·L⁻¹NH₃·H₂O 加少量 NH₄Cl 固体
- 3、将下列溶液在相同外压下的沸点从高到低排列:
 - a、5.85g·L-1NaCl(M=58.5g·mol-1)溶液
- b、0.15mol·L⁻¹ 蔗糖溶液

c、0.1mol·L⁻¹CaCl₂溶液

d、cos=100mmol·L-1的溶液

五、计算题

- 1、常温下,某二元羧酸 H_2A 的 K_{a1} (H_2A) =1.0×10⁻⁵, K_{a2} (H_2A) =3.0×10⁻⁸ 计算: (1) 0.10 mol·L⁻¹ 的 H_2A 溶液的 pH 值、[HA^-]和[A^2 -]的浓度; (2) 0.10 mol·L⁻¹ 的 Na_2A 溶液的 pH 值。
- 2、为纠正某病人酸中毒需输入 NaHCO₃(M=84.0g·mol⁻¹)0.1mol,若用等渗的 12.5g·L⁻¹ 的 NaHCO₃ 溶液,需输入多少毫升? 通过计算 NaHCO₃ 溶液的 pH 值,解释为什么可用 NaHCO₃ 纠正酸中毒。(H_2 CO₃: pK_{al}=6.35,pK_{a2}=10.33)

参考答案

一、填空题

1、给出质子的物质;接受质子的物质;既能给出质子,又能接受质子的物质;两对共轭酸碱之间的质子传递反应;在组成上只相差一个质子,其余部分完全相同的一对酸碱。

2、稀释定律即:
$$\alpha = \sqrt{\frac{K}{c}}$$
 3、1.0×10⁻³ mol·L⁻¹; 3.00; 1.0×10⁻⁹ 4、1×10⁻⁶; 1% 5、9.0

- 6, 1.0×10^{-11} 7, H_3PO_4 ; HPO_4^{2-}
- 二、选择题 1、C; 2、B; 3、C; 4、B; 5、D; 6、A; 7、B; 8、C; 9、A
- 三、判断题: 1、×; 2、√; 3、√; 4、√
- 四、完成下列各题 $1 \cdot d > c > a > b$; $2 \cdot c > b > a > d$; $3 \cdot c > a > b > d$

五 计算题

1、**解**: $K_{a1}/K_{a2} > 10^2$, 按一元酸计算:

[H⁺]=
$$\sqrt{K_a \times c_a} = \sqrt{1.0 \times 10^{-5} \times 0.10} = 1.0 \times 10^{-3}$$
 pH = 3.00

 $K_{a2} < K_{a1}$, $K_{a2} = [H^{+}] = 1.0 \times 10^{-3}$

$$K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]}, \quad :[A^{2-}] = K_{a2} = 3.0 \times 10^{-8}$$

Na₂A fb $K_{b1} = K_w/K_{a2} = 1.0 \times 10^{-14} / 3.0 \times 10^{-8} = 3.3 \times 10^{-7}$

[OH-]=
$$\sqrt{K_b \times c_b} = \sqrt{3.3 \times 10^{-7} \times 0.10} = 1.82 \times 10^{-4}$$

$$pOH = 4-0.26 = 3.74$$

$$pH = 10.26$$

2、**解:**0.1mol 的 NaHCO₃ 的质量是: m= 84.0g·mol⁻¹ ×0.1mol= 8.40g 需输入 12.5g·L⁻¹ 的 NaHCO₃ 溶液体积是:

$$V = \frac{m}{\rho} = \frac{8.4g}{12.5g \cdot L^{-1}} = 0.672 L = 672 mL$$

NaHCO₃ 是两性物质,pH = $\frac{1}{2}$ (6.35+10.33) = 8.34

由计算可知, NaHCO3溶液的 pH 是 8.34,呈弱碱性,因此可以用来纠正酸中毒。

单元测试题-2

一、填空题

1,	一般说来缓冲溶液是由足够浓度,适当比例的组成,其中,抗酸成分是。
2,	缓冲溶液的 pH 值是由和决定的,缓冲系的缓冲范围是。
	在 100mL0.1 mol·L ⁻¹ NH ₃ ·H ₂ O 和 50mL0.1 mol·L ⁻¹ HCl 的混合溶液中,其抗碱成分是,已知
pK_b (1	$\mathrm{NH_3\cdot H_2O}$)=4.75,缓冲范围是,因此缓冲比必须在之间。其中, pH =时,
缓冲能	定力最强,最大缓冲容量β是。
4、	配制缓冲溶液的基本原则是;;。
	若用等浓度的共轭酸碱(HB-NaB)配制缓冲溶液,当 pH> pKa 时,共轭碱的体积共轭酸
的体积	R,当 pH< pKa时,共轭酸的体积共轭碱的体积,当 pH= pKa时,共轭碱的体积共
轭酸的	7体积。
6,	缓冲溶液中加少量水稀释时,pH。
7、	一定浓度的强酸强碱有缓冲作用的原因是,所以,它们缓冲溶液。
二	、 选择题
1,	影响缓冲容量的因素有()。
	①pKa ②总浓度 ③缓冲系的本性 ④缓冲比
	A, 1)23 B, 1)3 C, 2)4 D, 4 E, 1)234
2,	配制 pH=9.25 的缓冲溶液,应选用的试剂是()。
	$A_{s}HAc \sim NaOH \ (pKa=4.75) \ B_{s}NH_{3} \cdot H_{2}O \sim HCl \ (pK_{b}=4.75) \ C_{s}NaH_{2}PO_{4} \sim Na_{2}HPO_{4} \ (pKa_{2}=7.21) \ C_{s}NaH_{2}PO_{4} \sim Na_$
	D, $H_3PO_4 \sim NaOH$ (pKa ₁ =2.12 pKa ₂ =7.21 pKa ₃ =12.76)
3,	下列情况下,具有明显缓冲作用的是()。
	A、1 升水中加入 HAc 和 NaAc 稀溶液各 1 滴
	B、0.1mol·L ⁻¹ HAc 和 0.1mol·L ⁻¹ NaAc 按体积 2: 1 混合
	C、0.1mol·L ⁻¹ HAc 和 0.1mol·L ⁻¹ NaAc 按体积 15: 1 混合
	D、0.1mol·L ⁻¹ HAc 和 0.1mol·L ⁻¹ NH ₃ ·H ₂ 0 等体积混合
4、	pKa=4.85 的某缓冲系,当 c & 一定时,欲使它的缓冲容量最大,其 pH 值应为 ()。
	A, 3.00 B, 2.85 C, 4.85 D, 3.85
5、	下列叙述中错误的是()。
	A、 中和同浓度等体积的 HAc 和 HCl 溶液,需要 NaOH 的量是相同的
	B、某弱酸溶液的浓度越小,其解离度越大
	C、血液中虽然[HCO ₃ -]/[H ₂ CO ₃]的比值大于 10/1,但是有缓冲作用
	D、 pH=1 的溶液中[H ⁺]浓度是 pH=3 的溶液中[H ⁺]浓度的 3 倍
6,	下列溶液中,缓冲容量最大的是()。
	A、0.2mol·L ⁻¹ NaH ₂ PO ₄ 和 0.2mol·L ⁻¹ Na ₂ HPO ₄ 等体积混合
	B、0.1mol·L ⁻¹ NaH ₂ PO ₄ 和 0.1mol·L ⁻¹ Na ₂ HPO ₄ 按体积 2: 1 混合
	C、0.1mol·L ⁻¹ NaH ₂ PO ₄ 和 0.1mol·L ⁻¹ Na ₂ HPO ₄ 等体积混合
7	D、0.2mol·L ⁻¹ NaH ₂ PO ₄ 和 0.2mol·L ⁻¹ Na ₂ HPO ₄ 按体积 1: 2 混合
/、	某缓冲溶液的共轭碱的 $K_b = 1.0 \times 10^{-6}$,从理论上推算其缓冲范围在()。
_	A、 $5{\sim}7$ B、 $6{\sim}8$ C、 $7{\sim}9$ D、 $8{\sim}10$
	、 判断题
	凡具有共轭酸碱对的体系都具有明显的缓冲作用。()
	没有共轭酸碱对的体系一定没有缓冲作用。()
	当缓冲比超过 10 ~ 1/10 范围时,在任何情况下均无缓冲作用。()
	0.10mol·L ⁻¹ NaOH 溶液具有缓冲作用。()
2,	缓冲容量越大的溶液,其缓冲范围也越大。()

四、完成下列各题

- 1、血浆中主要的缓冲系是什么?试以该缓冲对为例,说明缓冲作用原理。
- 2、给患者洗伤口时,为何用生理盐水而不用纯水?

五、计算题

- 1、今欲配制 pH=9.55 的 NH₃~NH₄Cl 缓冲溶液,应在 1000mL0.1mol·L⁻¹ 氨水中加入 NH₄Cl 固体多少克(设体积保持不变)? [已知 pK(NH₃)=4.75,M(NH₄Cl)=53.5g·mol⁻¹] (lg2=0.30,lg3=0.47,lg4=0.60,lg5=0.70)
- 2、如何配制 pH 等于 5.05 的缓冲溶液 600mL。(可供选择的缓冲系有 HAc \sim NaAc pK_a=4.75,NaH₂PO₄ \sim Na₂HPO₄ pK_{a2}=7.21,NH₄Cl \sim NH₃ pK_b=4.75)(lg2=0.30,lg3=0.48,lg4=0.60,lg5=0.70,lg6=0.78)
- 3、在 H_3PO_4 溶液中加入合适量的 NaOH 可配成几种缓冲系不同的缓冲溶液?它们的理论缓冲范围各是多少?在 $0.10mol\cdot L^{-1}$ 的 H_3PO_4 溶液中加入等体积的 NaOH 溶液后,如 NaOH 的浓度各约为 0.050 $mol\cdot L^{-1}$ 、0.15 $mol\cdot L^{-1}$ 、0.25 $mol\cdot L^{-1}$,试问它们的最大缓冲容量各是多少?

参考答案

一、填空题

- 1、一对共轭酸碱组成; 共轭碱 2、共轭酸的 pKa; 缓冲比; pKa±1
- 3、 NH_4^+ ; 9.25±1 即 8.25 \sim 10.25; 0.1 \sim 10; 9.25; 0.576 c 黨或 0.576×0.066 = 0.038
- 4、选择合适的缓冲系,使 pK_a= pH±1;缓冲容量要大即β大: c $_{\&}$ = 0.2~0.05mol·L⁻¹、缓冲比≈1;不干扰主反应,医用无毒、稳定
 - 5, >; >; =

- 6、几乎不变; 减小
- 7、强酸强碱中含 H+和 OH-浓度大,加少量强酸强碱不至于影响其 pH 值;不是
- 二、选择题
- 1, C; 2, B; 3, B; 4, C; 5, D; 6, A; 7, C

三、判断题

 $1, \times; 2, \times; 3, \times; 4, \sqrt{5}, \times$

四、完成下列各题

1、答: 血浆中主要的缓冲系是 $CO_{2(溶解)}/HCO_{3}$ 。

$$H_2CO_3 + H_2O \implies H_3O^+ + HCO_3^-$$

当 H^+ 浓度增大时,抗酸成分 HCO_3 -与 H^+ 结合,使平衡左移,达新的平衡时,溶液的 pH 值不降低。 当外加少量强碱时, H^+ 与 OH-作用, H^+ 减少,平衡右移,消耗掉的 H^+ 由抗碱成分 H_2CO_3 进一步解离补充,溶液的 pH 值不升高。稀释 pH 值也几乎不变。

2、**答:** 生理盐水与人的体液等渗, 纯水与人的体液相比是低渗, 如用纯水冲洗伤口会造成细胞涨大使人痛苦。另外,生理盐水有消毒作用。

五、计算题

1、**解:** 共轭酸是 NH₄Cl 其 pK_a= 14 - 4.75 = 9.25 n(NH₃)= 0.1×1

设需加入 NH₄Cl m 克,则 n(NH₄Cl)=
$$\frac{m}{M(NH_4Cl)} = \frac{m}{53.5}$$
,

9.55 = 9.25 +
$$\lg \frac{0.1 \times 1}{m/53.5}$$
 0.3 = $\lg \frac{0.1 \times 1}{m/53.5}$
2 = $\frac{0.1 \times 1}{m/53.5}$ m = 2.675 (克)

在 1000mL0.1mol·L-1 氨水中加入 NH4Cl 固体 2.675 克即可。

2、**解:**选择的缓冲系是 HAc-NaAc. 配制等浓度 0.1 mol·L⁻¹ 的 HAc 和 NaAc.

设:需 HAc 溶液 VmL,则 NaAc 溶液(600-V)mL pKa=4.75

 $c_{\text{M}} = [Na_2HPO_4] + [Na_3PO_4] = 0.025 + 0.025 = 0.050 \text{ (mol·L}^{-1})$

 $\beta_{\text{B}\pm} \ = 0.576 \times c_{\text{B}} = 0.576 \times 0.050 = 0.0288 = 0.029$

第七章 氧化还原反应和电极电势

习题解析

- 1、用离子-电子法配平下列氧化还原反应方程式:
 - (1) $KMnO_4 + K_2SO_3 + H_2O \rightarrow MnO_2 + K_2SO_4 + KOH$
 - (2) $KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + O_2 \uparrow + H_2O$
 - (3) $K_2Cr_2O_7 + H_2O_2 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + O_2 \uparrow + H_2O$
 - (5) $Cu + HNO_3 \rightarrow Cu(NO_3)_2 + NO\uparrow + H_2O$

M:
$$(1)\text{MnO}_4^- + \text{SO}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{MnO}_2 + \text{SO}_4^{2-} + \text{OH}_2^{-}$$

$$MnO_4^- + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^- \times 2$$

$$SO_3^{2-} + 2 OH^- \rightarrow SO_4^{2-} + H_2O + 2e^- \times OH^-$$

$$2MnO_4^- + 3SO_3^{2-} + H_2O = 2MnO_2 + 3SO_4^{2-} + 2OH^-$$

$$2KMnO_4 + 3K_2SO_3 + H_2O = 2MnO_2 + 3K_2SO_4 + 2KOH$$

$$(2)MnO_4^- + H_2O_2 + H^+ \rightarrow Mn^{2+} + O_2^+ + H_2O$$

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O \times 2$$

$$H_2O_2 - 2e^- \rightarrow O_2 + 2H^+$$

$$2MnO_4^- + 5H_2O_2 + 6H^+ = 2Mn^{2+} + 5O_2^+ + 8H_2O_2^-$$

$$2KMnO_4 + 5H_2O_2 + 3H_2SO_4 = 2MnSO_4 + K_2SO_4 + 5O_2 \uparrow + 8H_2O_2 \uparrow + 8H_2O_3 \uparrow + 8H_2$$

(3)
$$Cr_2O_7^{2-} + H_2O_2 + H^+ \rightarrow Cr^{3+} + O_2 \uparrow + H_2O$$

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$
 ×1

$$H_2O_2 \rightarrow O_2 \uparrow + 2H^+ + 2e^-$$

$$Cr_2O_7^{2-} + 3H_2O_2 + 8H^+ = 2Cr^{3+} + 3O_2 \uparrow + 7H_2O$$

$$K_2Cr_2O_7 + 3H_2O_2 + 4H_2SO_4 = Cr_2(SO_4)_3 + 3O_2 \uparrow + 7H_2O + K_2SO_4$$

$$(5)Cu + NO_3^- + H^+ \rightarrow Cu^{2+} + NO^{\uparrow} + H_2O$$

$$Cu \rightarrow Cu^{2+} + 2e^{-}$$
 ×3

$$NO_3^- + 4H^+ + 3e^- \rightarrow NO\uparrow + 2H_2O \times 2$$

$$3Cu + 2NO_3 + 8H = 3Cu^{2+} + 2NO^{4} + 4H_2O^{4}$$

$$3Cu + 8HNO_3 = 3Cu(NO_3)_2 + 2NO^{\uparrow} + 4H_2O$$

- 2、计算下列电极反应在 298.15 K 时的电极电势:
 - (1) $Fe^{3+}(0.10 \text{ mol} \cdot L^{-1}) + e^{-} \implies Fe^{2+}(0.010 \text{ mol} \cdot L^{-1})$
 - (2) $Hg_2Cl_2(s) + 2e^- \implies 2Hg(1) + 2Cl^-(0.010 \text{ mol} \cdot L^{-1})$
 - (3) $MnO_4^-(0.0010 \text{ mol}\cdot\text{L}^{-1}) + 8H^+(0.10 \text{ mol}\cdot\text{L}^{-1}) + 5e^- \longrightarrow Mn^{2+} (0.010 \text{ mol}\cdot\text{L}^{-1}) + 4H_2O(1)$ $E^\theta (Fe^{3+}/Fe^{2+}) = 0.796 \text{ V}, \quad E^\theta (Hg_2Cl_2/Hg) = 0.268 \text{ V}, \quad E^\theta (MnO_4^-/Mn^{2+}) = 1.512 \text{ V}$

解:
$$E(Ox/\text{Re }d) = E^{\theta}(Ox/\text{Re }d) + \frac{0.05916}{z} \lg \frac{c^{v_o}(Ox)}{c^{v_R}(\text{Re }d)}$$

$$E(Fe^{3+}/Fe^{2+}) = 0.769 + 0.059161g\frac{0.10}{0.010} = 0.828(V)$$

$$E (Hg_2Cl_2/Hg) = 0.2680 + 0.05916\lg \frac{1}{0.010} = 0.3863(V)$$

$$E (MnO_4^-/Mn^{2+}) = 1.512 + \frac{0.05916}{5} \lg \frac{0.0010 \times (0.10)^8}{0.010} = 1.406(V)$$

3、298.15 K 时,将铜片插入 0.10 mol·L⁻¹ CuSO₄ 溶液中,银片插入 0.10 mol·L⁻¹ AgNO₃ 溶液中组成原电池。(1) 写出该原电池的符号;(2) 写出电极反应和电池反应;(3) 计算原电池的电动势。

$$E^{\theta}$$
 (Cu²⁺/Cu) = 0.3394 V, E^{θ} (Ag⁺/Ag) = 0.7991 V

M:
$$E(Ox/\text{Re }d) = E^{\theta}(Ox/\text{Re }d) + \frac{0.05916}{z} \lg \frac{c^{\nu_o}(Ox)}{c^{\nu_R}(\text{Re }d)}$$

$$E(Cu^{2+}/Cu) = 0.3394 + \frac{0.05916}{2} \lg 0.10 = 0.310(V)$$
 负极

$$E(Ag^+/Ag) = 0.7991 + 0.059161g0.10 = 0.740(V)$$
 正极

- $(1) \ (\text{--}) \ Cu \ | \ Cu^{2+} (0.10 \ mol \cdot L^{-1}) \ || \ Ag^{+} (0.10 \ mol \cdot L^{-1}) \ || \ Ag \ (\text{+-})$
- (3) E = 0.740 0.310 = 0.430 (V)
- 16、已知下列氧化还原反应:

$$Ag^{+}(aq) + Fe^{2+}(aq) = Ag(s) + Fe^{3+}(aq)$$

- (1) 计算 298.15 K 时该反应的标准平衡常数;
- (2) 如果在 0.10 mol·L^{-1} Fe²⁺ 离子溶液中加入 AgNO₃,使 $c_{eq}(Ag^{+}) = 1.0 \text{ mol·L}^{-1}$,试计算 Fe³⁺ 的平衡浓度;
- (3) 若 Fe²⁺, Fe²⁺, Ag⁺ 的浓度分别是 1.0, 0.10, 0.10 mol·L⁻¹, 判断该反应自发进行的方向。

$$E^{\theta}(Ag^{+}/Ag) = 0.7991 \text{ V}, E^{\theta}(Fe^{3+}/Fe^{2+}) = 0.769 \text{ V}$$

解:
$$(1) \lg K^{\theta} = \frac{z[E^{\theta}(得) - E^{\theta}(失)]}{0.05916} = \frac{1 \times (0.7991 - 0.769)}{0.05916}$$
 $K^{\theta} = 3.2$

$$(2) K^{\theta} = \frac{[Fe^{3+}]}{[Ag^{+}][Fe^{2+}]} \qquad \frac{[Fe^{3+}]}{1.0 \times \{0.10 - [Fe^{3+}]\}} = 3.2 \qquad [Fe^{3+}] = 0.076 \text{ (mol} \cdot L^{-1})$$

(3)
$$E(Fe^{3+}/Fe^{2+}) = 0.769 + 0.05916 \lg \frac{1.0}{0.10} = 0.828(V)$$

$$E(Ag^+/Ag) = 0.7991 + 0.05916 \lg 0.10 = 0.7399(V)$$

Fe3+得电子, Ag 失电子, 反应逆向进行。

17、 25°C时,将过量的铁屑加入到 0.050 mol·L⁻¹ CdCl₂溶液中,计算 CdCl₂平衡浓度。

解: 25 °C时, E^{θ} (Fe²⁺/Fe) = -0.4089 V, E^{θ} (Cd²⁺/Cd) = -0.4022 V。有美反应式为

Fe (s) + Cd²⁺(ap)
$$\rightleftharpoons$$
 Fe²⁺ (ap) + Cd (s)

反应的标准平衡常数表达式为
$$K^{\theta} = \frac{c_{eq}(Fe^{2+})}{c_{eq}(Cd^{2+})}$$

25℃时,反应的标准平衡常数为

$$\lg K^{\theta} = \frac{z[E^{\theta}(Cd^{2+}/Cd) - E^{\theta}(Fe^{2+}/Fe)]}{0.05916 V} = \frac{2 \times [-0.4022 V - (-0.4089 V)]}{0.05916 V} = 0.23$$

$$K^{\theta} = 1.70$$

由反应方程式可知, 若 Fe^{2+} 的平衡浓度为 $C_{eq}(Fe^{2+})$, 则 Cd^{2+} 的平衡浓度为 0.050 $mol\cdot L^{-1}$ $-C_{eq}(Fe^{2+})$,

代入反应的标准平衡常数表达式: $\frac{c(Fe^{2+})}{0.050-c_{\infty}(Fe^{2+})}=1.70$

由上式解得 $c_{\rm eq} ({\rm Fe^{2+}}) = 0.031 \; {\rm mol \cdot L^{-1}}$

CdCl₂的平衡浓度为

$$c_{\text{eq}}(\text{CdCl}_2) = c_{\text{eq}}(\text{Cd}^{2+}) = 0.050 \text{ mol} \cdot \text{L}^{-1} = 0.031 \text{ mol} \cdot \text{L}^{-1} = 0.019 \text{ mol} \cdot \text{L}^{-1}$$

18、己知 298.15K 时:

$$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$$
 $E^{\theta} (MnO_4^-/Mn^{2+}) = 1.512 \text{ V}$

$$Cl_2+2e^{-}=2Cl^{-}$$
 E^{θ} $(Cl_2/Cl^{-})=1.360V$

- (1) 把上述两个电极组成原电池时, 计算原电池的标准电动势; (2) 计算当 H+离子浓度为 0.10 mol·L-1, 其他离子浓度均为 1.0 mol·L-1, Cl₂分压为 100 kPa 时原电池的电动势; (3) 计算 298.15 K 时该 原电池所对应的氧化还原反应的标准平衡常数。
- **解:** (1)由于 E^{θ} (MnO₄-/Mn²⁺)> E^{θ} (Cl₂/Cl-),因此在标准状态下将电对 MnO_4 -/Mn²⁺和 Cl_2 /Cl-组成原电 池时, 电对 MnO₄-/Mn²⁺为正极, 电对 Cl₂/Cl-为负极。原电池的标准电动势为:

$$E^{1} = E^{\theta} (MnO_4^{-1}/Mn^{2+}) - E^{\theta} (Cl_2/Cl^{-1}) = 1.512V - 1.360V = 0.152 V$$

(2) 当 c (H⁺) = 0.10 mol·L⁻¹,其他离子浓度为 1.0 mol·L⁻¹,p(Cl₂) = 100 kPa 时,电对 MnO₄-/Mn²⁺和 Cl₂/Cl⁻¹ 的电极电势分别为:

$$E(MnO_4^{-1}/Mn^{2+}) = E^{+}(MnO_4^{-1}/Mn^{2+}) + \frac{0.05916}{5}lg \frac{\frac{c(MnO_4^{-1})}{c^{+}} \times [\frac{c(H^{+})}{c^{+}}]^8}{\frac{c(MnO_4^{-1})}{c(Mn^{2+})}} = 1.512 + \frac{0.05916}{5}lg(0.10)^8 = 1.417 \text{ V}$$

$$E (Cl_2/Cl^-) = E^{\theta} (Cl_2/Cl^-) = 1.360 \text{ V}$$

原电池的电动势为: E=E (MnO₄-/Mn²⁺) - E^{θ} (Cl₂/Cl⁻) = 1.417 - 1.360 = 0.057 V

(3) 电池反应为: 2 MnO₄⁻ + 10Cl⁻ + 16 H⁺ = 2Mn²⁺ + 5Cl₂↑ + 8H₂O 298.15 K 时电池反应的标准平衡常数为:

$$\lg K^{\theta} = \frac{zE^{\theta}}{0.05916V} = \frac{10 \times 0.152V}{0.05916V} = 25.69$$
$$K^{\theta} = 4.9 \times 10^{25}$$

单元测试题

_	埴空颙
	央工

- 2、原电池中,盐桥的作用是______,______,______,______。 3 、 将 氧 化 还 原 反 应 $2Fe^{3+}+Cu=Cu^{2+}+2Fe^{2+}$ 设 计 成 原 电 池 , 其 原 电 池 的 符 号 为 _____,属于氧化剂的是_____。
- 4、298.15K 时,已知电极反应 $Cr_2O_7{}^2$ - (c_1) + $14H^+(c_2)$ + $6e^ 2Cr^{3+}(c_3)$ + $7H_2O$, φ和φ $^{\theta}$ 的关系式为
- 5、298.15K时, 电极 Pt, H₂(100kPa) | H⁺(0.01mol·L⁻¹) 的电极电位值为 。
- 6、当组成原电池的两电极的电极电位相等时,则该电池反应处于 状态。

二、选择题

- 1、标准态时,下列电对中,其还原型还原性最强的电对是()。
 - A, E^{θ} (Fe³⁺/Fe²⁺)=0.77V B, E^{θ} (Cd²⁺/Cd)=-0.40V
 - C, E^{θ} (Al³⁺/Al)=-1.66V D, E^{θ} (Cu²⁺/Cu)=0.34V

将上列电对中的氧化剂从强到弱排列: $Fe^{3+} > Cu^{2+} > Cd^{2+} > Al^{3+}$

- 2、在一定温度时,对于电对 Ag⁺/Ag,欲使电对中还原型的还原性增强应()。)。
 - A、加入配位剂使 Ag+形成配合物 B、加入沉淀剂使 Ag+形成沉淀
 - C、加入酸 D、增大氧化型的浓度,降低还原型的浓度
- 3、反应 $Zn+Fe^{2+}$ (0.1 $mo1\cdot L^{-1}$) = Zn^{2+} (0.01 $mo1\cdot L^{-1}$) +Fe 在 298.15K 时的 $1gK^{\theta}$ 等于())。

A,
$$\frac{2 \times [E^{\theta}(Fe^{2+}/Fe) - E^{\theta}(Zn^{2+}/Zn)]}{0.05916}$$
 B, $\frac{2 \times [E^{\theta}(Zn^{2+}/Zn) - E^{\theta}(Fe^{2+}/Fe)]}{0.05916}$

C.
$$\frac{2 \times [E(Fe^{2+}/Fe) - E(Zn^{2+}/Zn)]}{0.05916}$$
 D. $\frac{2 \times [E(Zn^{2+}/Zn) - E(Fe^{2+}/Fe)]}{0.05916}$

- 4、在酸度计中,常用的参比电极是 (),指示电极是 (),测定标准电极电位时,国际上选用的比较标准是 ()。
 - A、玻璃电极 B、氢电极 C、饱和甘汞电极 D、甘汞电极 E、标准氢电极

三、判断题

- 1、在氧化还原反应中,氧化剂失去电子,氧化值升高,发生氧化反应。()
- 2、已知 E^{θ} (Sn⁴⁺/Sn²⁺)=0.15V, E^{θ} (Fe²⁺/Fe)=-0.41V,则标准态时 Sn²⁺能将 Fe²⁺还原为 Fe。(
- 3、玻璃电极的 E^θ虽然是常数,但其具体值目前尚不可知。(

四、计算题

- 1、由反应 $\frac{1}{2}$ H₂(100kPa)+Fe³⁺(0.01mol·L⁻¹)=H⁺(0.1mol·L⁻¹)+Fe²⁺ (1mol·L⁻¹)组成原电池,(1) 计算 298.15K时电池电动势; (2) 判断反应进行方向; (3) 写出原电池的符号。已知E⁶Fe³⁺/Fe²⁺=0.771v
- 2、298.15K 时,将银片插入 0.1mol·L⁻¹AgNO₃溶液中和电极 $Mn^{2+}(0.1$ mol·L⁻¹), $H^+(0.1$ mol·L⁻¹) \mid MnO_2 ,Pt 组成原电池 (1)判断原电池的正、负极;(2)计算电池电动势;(3)写出原电池的符号;(4)写出电极和电池 反应式。已知 $E^{\theta}Ag^+/Ag=0.80v$ 、 $E^{\theta}MnO_2$, $H^+/Mn^{2+}=+1.26v$

参考答案

一、填空题

- 1、化学能转变成电能;氧化;还原;2、构成电流通路;保证溶液的电中性;消除液接电位差
- 3、(-)Cu|Cu²⁺(c₁)||Fe²⁺(c₂), Fe³⁺(c₃)| Pt (+); Fe³⁺和Cu²⁺

4.
$$E = E^{\theta} + \frac{0.0592}{6} \lg \frac{c_1 \cdot c_2^{14}}{c_2^2}$$
 5. -0.1184V

解:
$$2H^++2e^-=H_2$$
 $E=E^0+\frac{0.05916}{z}\lg\frac{c^{\nu_o}(Ox)}{c^{\nu_R}(Red)}$ $E=0+\frac{0.0592}{2}\lg\frac{(0.01)^2}{100/100}=-0.1184(V)$

6、平衡

- 二、选择题 1、C; 2、A、B; 3、A; 4、(C); (A); (E)
- 三**、**判断题 1、×; 2、×; 3、√

四、计算题

1. **解:**
$$E = E^{\theta} + \frac{0.05916}{z} \lg \frac{c^{v_o}(Ox)}{c^{v_R}(\text{Re } d)}$$

$$E(H^+/H_2) = 0 + \frac{0.05916}{2} \lg \frac{0.1^2}{100/100} = -0.059(V) \quad \text{ \it ft} \ W$$

 $E(Fe^{3+}/Fe^{2+}) = 0.771 + 0.05916 \lg 0.01 = 0.653(V)$ 正极

- (1) E = 0.653 (-0.059) = 0.712(V)
- (2) Fe³⁺得电子 H₂ 失电子 正向
- (3) (-)Pt, $H_2(100kPa)$ | $H^+(0.1mol\cdot L^{-1})$ | $Fe^{3+}(0.01mol\cdot L^{-1})$, $Fe^{2+}(1mol\cdot L^{-1})$ | Pt(+)

2、解:
$$E = E^{\theta} + \frac{0.05916}{z} \lg \frac{c^{v_o}(Ox)}{c^{v_R}(\text{Re } d)}$$

- (1) E(Ag⁺/Ag) = $0.80 + 0.0592 \, lg 0.1 = 0.74(V)$ 负极 E(MnO₂,H⁺/Mn²⁺)= $1.26 + \frac{0.0592}{2} \, lg \frac{0.1^4}{0.1} = 1.17(V)$ 正极
- (2) E = 1.17 0.74 = 0.43(V)
- (3) (-)Ag $|Ag^{+}(0.1\text{mol}\cdot L^{-1})||Mn^{2+}(0.1\text{mol}\cdot L^{-1}), H^{+}(0.1\text{mol}\cdot L^{-1})||MnO_{2},Pt(+)|$

第八章 原子结构和元素周期律

习题解析

- **4、**假设子弹的质量为 0.10 kg, 速率为 1.0×10³ m·s⁻¹, 若子弹速率的不确定量为 1.0×10⁻³ m·s⁻¹。
- (1) 试计算子弹位置运动的波长,把计算结果与波长最短的电磁波 γ 射线($\lambda = 1.0 \times 10^{-5}$ nm)相比较,可得到什么结论?
 - (2) 试计算子弹位置的不确定量, 计算结果说明了什么?
 - 解: (1) 根据德布罗意关系式, 子弹运动的波长为

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{6.626 \times 10^{-34} \ J \bullet s}{0.010 \ kg \times 1.0 \times 10^{3} m \bullet s^{-1}} = 6.626 \times 10^{-35} \ m = 6.626 \times 10^{-26} \ nm$$

已知波长最短的电磁波 γ 射线的波长为 1×10^{-5} nm,比子弹的波长大得多,可见子弹运动的波长太小,根本不可能进行测量,可以忽略子弹的波动性。

(2) 根据不确定性关系式,子弹位置的不确定量为 $\Delta x \ge h/\Delta P = h/m\Delta v$

代入数值得
$$\Delta x \ge \frac{6.626 \times 10^{-34} \ J \bullet s}{0.010 \ kg \times 1.0 \times 10^{3} \ m \bullet s^{-1}} = 6.626 \times 10^{-29} m$$

子弹位置的不确定量极小,可以忽略不计,因此可认为子弹运动时具有固定的轨道。

7、填充合理的量子数:

(1)
$$n = ?$$
, $l_i = 2$, $m_i = 0$, $s_i = +1/2$; (2) $n = 2$, $l_i = ?$, $m_i = -1$, $s_i = -1/2$;

(3)
$$n = 4$$
, $l_i = 2$, $m_i = 0$, $s_i = ?$; (4) $n = 2$, $l_i = 0$, $m_i = ?$, $s_i = +1/2$

- 答: (1) $n \ge 3$ 的任何一个正整数; (2) $l_i = 1$; (3) $s_i = +1/2$ 或-1/2; (4) $m_i = 0$ 。
- 8、已知某元素原子的电子具有下列量子数,试排列出它们能量高低的次序:
 - (1) 3, 2, +1, +1/2 (2) 2, 1, +1, -1/2 (3) 2, 1, 0, +1/2
- (4) 3, 1, -1, -1/2 (5) 3, 1, 0, +1/2
- (6) 2, 0, 0, -1/2

- 答: $E = n + 0.7l_i$
- (1)>(4)=(5)>(2)=(3)>(6)
- 9、下列元素基态原子的电子排布式,各违背了什么原理?写出改正后的电子排布式。(1) B: 1s²2s³ (2) Be: $1s^22p^2$ (3) N: $1s^22s^22p^2_x2p^1_y$
 - 答: (1) 泡利不相容原理。 B: 1s²2s²2p¹ (2) 能量最低原理。
- Be: $1s^22s^2$

- (3) 洪德规则。
- N: $1s^22s^22p_x^12p_y^12p_z^1$
- 10、下列电子层结构中, 那种属于基态? 那种属于激发态? 哪种是错误的?

 - (1) $1s^22s^12p^2$; (2) $1s^22s^22p^63s^13d^1$; (3) $1s^22s^22d^1$;
 - $(4) 1s^22s^22p^43s^1; (5) 1s^22s^32p^1;$
- (6) $1s^22s^22p^63s^1$.
- 答: (6) 属于基态: (1)、(2) 和 (4) 属于激发态; (3) 和 (5) 是错误的。
- 12、用 s, p, d 符号表示出原子序数分别为 13, 19, 26, 30 等元素原子的电子层结构,并指出它们分别 是属于哪一区,哪一族,哪一周期的元素。

答:原子序数	电子层结构	X	族	周期
13	$[Ne]3s^23p^1$	p	IIIA	3
19	[Ar]4s ¹	S	IA	4
26	$[Ar]3d^64s^2$	d	VIII	4
30	$[Ar]3d^{10}4s^2$	ds	IIB	4

- 14、已知 M²+离子的 3d 轨道中有 5 个电子, 试推出: (1) 基态 M 的核外电子排布式; (2) 基态 M 的 最外层和最高能级组中电子数各为多少?(3)M元素在周期表中的位置。
- **答:** (1) [Ar] 3d⁵4s²; (2) 2; 7; (3) M 元素为第四周期 d 区VIIB 族元素。
- 16、基态原子的电子构型满足下列条件之一是哪一类或哪一种元素?

 - (1) 具有 2 个 p 电子; (2) 有 2 个 n=4, l=0 的电子, 6 个 n=3, l=2 的电子;
 - (3) 3d 轨道为全充满, 4s 轨道上只有1个电子。
- 答: (1) ns^2np^2 , IVA 族 (2) $3d^64s^2$, Fe (3) $3d^{10}4s^1$, Cu

- **22、**元素基态原子的最外层电子层只有一个电子,该电子的四个量子数分别为 n=4, l=0, m=0, $m_s = +1/2$ 。试回答下列问题: (1)符合上述条件的元素可以有几种?原子序数各为多少?
- (2) 写出相应元素基态原子的电子排布式,并指出这些元素在周期表中的位置。
 - 答: (1)符合上述条件的元素可以有三种,原子序数分别为 19,24 和 29。
 - (2) 相应元素基态原子的电子排布式及元素在周期表中的位置如下表所示:

原子序数	基态原子的电子排布式	周期	族	X
19	$1s^22s^22p^63s^23p^64s^1$	四	IA	S
24	$1s^22s^22p^63s^23p^63d^54s^1$	四	VIB	d
29	$1s^22s^22p^63s^23p^63d^{10}4s^1\\$	四	IB	ds

 、	埴空颙
•	~~~ I.ACA

1、一切原子光谱都是光谱,由此可以证明核外电子的能量具有特征,一切实物粒子都具有性,联系它们之间关系的关系式是 ,电子运动的位置和动量 (填能或不能)同时准确测定。
2 、在原子结构中,用符号 ψ 来代表电子的,用 $ \psi ^2$ 来代表电子的, $ \psi ^2$ 在空
间分布的图象就是。ψ和 ψ ² 的角度分布图的类似,重要区别是和。
3、当主量子数 n=3 时,轨道角动量量子数 l 可取的值有 ,它们依次代表 这几个亚层。3d
原子轨道在空间有种不同的取向, $3dz^2$ 轨道的量子数(n , l_i , m_i)是。
R(r)称为
5、n 和 l _i 相同,而 m 不同的原子轨道称为轨道。
6、同一原子中 E _{4s} <e<sub>4p<e<sub>4d可用解释,E_{3d}<e<sub>4d<e<sub>5d可用解释,多电子原子中</e<sub></e<sub></e<sub></e<sub>
出现能级交错可用解释。
7、在周期表中,s区元素的价层电子组态为,p区元素的价层电子组态为,d区元
素的价层电子组态为 ,ds 区元素的价层电子组态为 。
8、29Cu 元素原子的核外电子排布式, 它位于周期,族,区。
二、选择题
1、决定原子轨道在空间的伸展方向的量子数是 ()。
A_{s} n B_{s} l_{i} C_{s} m_{i} D_{s} s_{i}
2、描述原子轨道所需要的一组量子数是 ()。
A, n B, $n_i l_i$ C, $n_i l_i m_i$ D, $n_i l_i m_i s_i$
3、下列各组量子数(n,li,mi,si)中合理的是()。
1 D 201 1 D 201 1
A, 3,0,0, $\frac{1}{2}$ B, 3,0,1, $\frac{1}{2}$ C, 3,2,0,1 D, 3,3,1,- $\frac{1}{2}$
4、在氢原子的径向分布图中,3d轨道的峰数为()。
$A, 1 \uparrow B, 2 \uparrow C, 3 \uparrow D, 4 \uparrow$
5、下列电子钻穿能力最强的是()。
A、4s B、4p C、4d D、4f (4 3 2 1 峰数= $n-l_i$)
6、在氢原子中,各轨道能量之间的关系是()。
A, $E_{2s} < E_{2p}$ B, $E_{2s} > E_{2p}$ C, $E_{2s} = E_{2p}$ D, $E_{2s} \le E_{2p}$
7、洪德规则是()。
A、同一原子中,没有运动状态完全相同的电子存在
B、电子将尽可能自旋平行分占不同等价轨道
C、电子将尽可能填充到能量最低的轨道上 D、等价轨道全满、半满或全空时比较稳定
8、下列原子的电子排布中,违背了泡利不相容原理的是()。
A. $1s^22s^32p^1$ B. $1s^22p^1$ C. $1s^22s^22p_x^22p_y^1$ D. [Ar] $3d^44s^2$
9、某离子 M ³⁺ 的电子排布式为[Ar]d ⁶ ,则该元素属于()族。
A, IIIA B, 0 C, VIII D, IIIB
10 、基态 $_{19}$ K原子价层电子的四个量子数(n , l_i , m_i , s_i)是()。
A, 4, 1, 0, 1/2 B, 4, 1, 1, 1/2 C, 3, 0, 0, 1/2 D, 4, 0, 0, 1/2
19K [Ar]4s ¹ 价电子4s ¹ 4, 0, 0, 1/2
11、在具有下列外层电子组态的原子中,电负性最小的是(),电负性最大的是(),金属
性最强的是()。
A. $3s^1$ B. $4s^1$ C. $3d^54s^1$ D. $4d^{10}5s^1$ E. $4s^24p^5$ F. $5s^25p^5$
三、判断题
1、在讨论核外电子运动状态时,必然涉及到概率密度和概率两个概念。当前者较大时,后者一定较
大。()

- 2、在任何原子中, 3d 的能量均高于 4s 的能量。()
- 3、主量子数 n 相同的原子轨道属于同一能级组。() (原因 3s 3+0.7×0=3.0 3 3d 3+0.7×2=4.4 4)

四、完成下列各题

- 1、将下列各原子轨道,按轨道能量从大到小排列。
 - A, $\psi_{3, 2, 1}$ B, $\psi_{4, 1, 0}$ C, $\psi_{4, 0, 0}$ D, $\psi_{3, 1, 1}$
- 2、请列出硫的四个 3p 电子所有可能的各组量子数。

参考答案

一、填空题

- 1、线状; 量子化; 波粒二象; $\lambda = \frac{h}{mv} = \frac{h}{p}$; 不能;
- 2、原子轨道; 概率密度; 电子云; 形状; 前"胖"后"瘦"; 前有正负之分、而后者无;
- 3、0、1、2; 3s、3p、3d; 5; 3、2、0; 4、角度波函数; *l*_i、m; 径向波函数; n、*l*_i
- 5、等价 6、钻穿效应; 屏蔽效应; 钻穿效应和屏蔽效应
- 7、 ns^{1-2} ; ns^2np^{1-6} ; $(n-1)d^{1-9}ns^{1-2}$; $(n-1)d^{10}ns^{1-2}$ 8、[Ar]3 $d^{10}4s^1$; 四; IB; ds
- 二、选择题 1、C; 2、C; 3、A; 4、A; 5、A; 6、C; 7、B、D; 8、A; 9、C; 10、D; 11、(B); (E); (B)
 - 三**、**判断题 1、×; 2、×; 3、×
 - 四、完成下列各题 1、答: B>A>C>D
 - 2、答: n l_i m_i s_i
 - 3 1 1 $\pm 1/2$
 - 3 1 0 1/2
 - 3 1 -1 1/2

第九章 分子结构

习题解析

5、已知 BF_3 的空间构型为平面三角形,但 NF_3 的空间构型却是三角锥形,试用杂化轨道理论加以说明。

- 6、已知 NO2、CS2 和 SO2 键角分别为 132°、180°和 120°, 试判断它们的中心原子的轨道杂化的方式。
- 答: NO_2 分子的键角为 132° ,接近 120° ,故 N 原子采取 sp^2 杂化。 CS_2 分子的键角为 180° ,故 C 原子采取 sp 杂化。 SO_2 分子的键角为 120° ,故 S 原子采取 sp^2 杂化。
- 7、 PCl₃分子的空间构型是三角锥形,键角小于 109°28′; SiCl₄的空间构型是正四面体,键角为 109°28′。试用杂化轨道理论加以说明。
- 答: 中心原子 P 的价层电子构型为 $3s^23p^3$,成键时 P 用 $1 \land 3s$ 轨道和 $3 \land 3p$ 轨道进行 sp^3 不等性杂化,杂化轨道的构型为四面体。P 原子用其中各有 $1 \land 1$ 个电子的 $3 \land sp^3$ 成键杂化轨道分别与 $3 \land 1$ 个日 的 3p 轨道重叠,形成 $3 \land 1$ 个。P 原子另一个 3p 非键杂化轨道中有一对孤对电子,故 3p PCl 分子的空间构型为三角锥形。由于 3p 个成键 3p 杂化轨道中 3p 轨道的成分大于 3p 3/4,而 3p 8 轨道的成分小于 3p 1/4,因此 3p 7 P—Cl 键的键角小于 3p 109°28′。

中心原子 Si 的价层电子构型为 $3s^23p^2$,成键时 Si 用 1 个 3s 轨道和 3 个 3p 轨道进行 sp^3 等性杂化,每个杂化轨道个中各有 1 个电子。Si 用 4 个各有 1 个电子的 sp^3 杂化轨道分别与 4 个 Cl 的含有未成对电子的 3p 轨道重叠,形成 4 个 σ 键。由于中心原子所提供的 4 个成键的 sp^3 杂化轨道的构型为正四面体,因此形成 SiCl₄分子的构型为正四面体,键角为 $109^\circ28'$ 。

10、写出 O_2 , O_2^+ , O_2^- 和 O_2^2 -的分子轨道表示式,并指出它们的键能的相对大小。

答: O_2 的分子轨道表示式为 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2py})^2(\pi_{2pz})^2(\pi_{2py}^*)^1(\pi_{2pz}^*)^1$ 键级 $=\frac{10-6}{2}=2$ O_2 +的分子轨道表示式为 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2py}^*)^2(\pi_{2pz}^*)^2(\pi_{2py}^*)^1$ 键级 $=\frac{10-5}{2}=2.5$ O_2 -的分子轨道表示式为 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2py}^*)^2(\pi_{2pz}^*)^2(\pi_{2pz}^*)^2(\pi_{2pz}^*)^2$ 键级 $=\frac{10-7}{2}=1.5$ O_2 -的分子轨道表示式为 $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\pi_{2py}^*)^2(\pi_{2pz}^*)^2(\pi_{2pz}^*)^2(\pi_{2pz}^*)^2$ 键级 $=\frac{10-8}{2}=1$ 在双原子分子或离子中,键级越大,键能就越大。因此键能的相对大小为 O_2 + $>O_2$ > O_2 - $>O_2$ - $>O_2$ -=0

11、用分子轨道理论解释: (1) B2 为顺磁性物质; (2) Ne2 分子不存在。

答: (1) B₂ 分子的分子轨道表示为: $(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^2(2\sigma_u)^2(2\pi_u)^2$,由于 B₂ 分子中有两个未成对电子,所以为顺磁性物质。

(2) Ne₂分子的分子轨道表示为: $(\sigma_{ls})^2(\sigma_{ls}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p_x})^2(\pi_{2p_y})^2(\pi_{2p_y})^2(\pi_{2p_y}^*)^2(\pi_{2p_y}^*)^2(\sigma_{2p_x}^*)^2$ Ne₂分子的的键级= $\frac{10-10}{2}$ =0,故 Ne₂分子不存在。

- **18、**下列分子中, 哪些是极性分子, 哪些是非极性分子, 为什么? CCl₄, CHCl₃, BCl₃, NCl₃, H₂S, CS₂
- 答: CCl4 的空间构型为正四面体,结构对称,为非极性分子。

CHCl3的空间构型为四面体,结构不对称,为极性分子。

BCl₃的空间构型为平面正三角形,结构对称,为非极性分子。

NCl₃的空间构型为三角锥形,结构不对称,为极性分子。

 H_2S 的空间构型为角形,结构不对称,为极性分子。

CS₂的空间构型为直线型,结构对称,为非极性分子。

- 19、比较下列各组物质的分子电偶极矩的大小:
 - (1) CO₂和 SO₂
- (2) CCl₄和 CH₄
- (3) PH₃和 NH₃

- (4) BF₃和 NH₃
- (5) H₂O 和 H₂S
- 答: (1) CO_2 分子的空间构型为直线型,结构对称,分子的电偶极矩为零; SO_2 分子的空间构型为角形,结构不对称,分子的电偶极矩大于零。
- (2) CCl₄和 CH₄分子的空间构型均为正四面体,结构对称,分子的电偶极矩均为零。
- (3) PH_3 和 NH_3 分子的空间构型均为三角锥形,结构不对称,分子的电偶极矩均大于零。由于 N-H 键的极性大于 P-H 键,因此, NH_3 分子的电偶极矩大于 PH_3 。
- (4) BF_3 分子的空间构型为平面正三角形,结构对称,分子的电偶极矩为零; NH_3 分子的空间构型为三角锥形,结构不对称,分子的电偶极矩大于零。
- (5) H_2O 和 H_2S 分子的空间构型均为角形,结构不对称,分子的电偶极矩均大于零。由于 H_2O 键的极性大于 H_2S 键,因此, H_2O 分子的电偶极矩大于 H_2S 。
 - 22、判断下列各组分子之间存在什么形式的作用力?
 - (1) C₆H₆和 CCl₄
- (2) He 和 H₂O
- (3) CO₂气体

- (4) HBr 气体
- (5) CH₃OH 和 H₂O
- **答:**(1)色散力(2)色散力、诱导力(3)色散力(4)色散力、诱导力、取向力(5)色散力、诱导力、取向力和氢键
 - 23、下列化合物中是否存在氢键?若存在氢键,是属于分子间氢键,还是分子内氢键?
 - (1) NH₃
- (2) H₃BO₃
- (3) CFH₃

ОН (4) СООН

答: (1)、(2)、(4)、(5)中均存在氢键。(4)内氢键; (1)、(2)、(5)间氢键。

单元测试题

一、填空题

- 1、按现代价键理论,两原子形成共价键的条件是 、 、 、 、 。
- 2、根据形成共价键时原子轨道重叠方式的不同,共价键可以分为 和 两种类型。
- 3、 〇 cho 可形成分子 ____ 氢键。以 CCl4 作溶剂时,它的溶解度 ____ 于(填大或小) HO CHO 在相同温度下的溶解度。

二、选择题
1、对π的描述中,正确的是()。
A 、原子轨道沿键轴垂直方向以"肩并肩"方式重叠 B 、不能单独存在,必须与 σ 键共存
C、两原子间可形成 1 个或 2 个π键 D、键能大
2、SiF ₄ 分子的空间构型为()。
A、平面正方形 B、正四面体形 C、三角锥形 D、平面三角形 E、V 形 F、直线形
3、下列分子中,中心原子有sp ² 杂化的是(),键角最小的是(),键角最大的是()。
A、NH ₃ B、H ₂ O C、CH ₄ D、BF ₃ E、CH ₃ -CH=CH-C≡CH
F, C ₆ H ₆ G, BeCl ₂ H, CO ₂
4、下列分子中, 既是非极性分子又含π键的是 ()。
A、Cl ₂ B、C ₂ Cl ₄ C、CHCl ₃ D、CH ₂ Cl ₂ E、HgCl ₂
$F_{\lambda}H_3P$ $G_{\lambda}BF_3$ $H_{\lambda}CO_2$
5、下列分子之间只存在色散力的是 ()。
A, CCl_4 - $HCl(g)$ B, H_3P - CO_2 C, CO_2 - BF_3
D、CO-H ₂ S E、CH ₃ OH-H ₂ O F、HgCl ₂ -Cl ₂
6、甲醇和水之间存在的分子间作用力是 ()。
A、取向力 B、诱导力 C、色散力 D、氢键
7、下列说法错误的是 ()。
A、NH ₄ Cl 分子中含有离子键,共价键和配位键
B、NaCl 晶体中既不含范德华力又不含氢键和共价键
C、HNO3分子中存在分子内氢键
D、离子键和分子间力无饱和性和方向性
E、分子间力中最重要的是色散力
F、任何分子间都存在色散力
G、氢键、共价键和配位键具有方向性和饱和性
H、氢键是化学键
I、离子键、分子间力和氢键的实质都是静电作用力
J、以等性杂化轨道形成的分子,其空间构型不一定对称
8、下列物质中沸点最低的是(),沸点最高的是()。
A, HF B, HCl C, HBr D, HI
三、判断题
1、基态原子的未成对电子数就是该原子最多能形成的共价键数。()
2、杂化轨道的成键能力大于参与杂化的各原子轨道的成键能力。()
3、若多原子化合物分子的偶极矩为零,则其空间构型一定是对称的。()
4、由不同元素形成的双原子分子一定是极性分子。()
四、完成下列各题

1、用杂化轨道理论解释 H2O 和 CH4 的成键过程,并指出其分子构型。

2、填空

分子	C原子杂化类型	C-H 键合时所用轨 道及类型(σ、π)	C-C 键合时所用轨 道及类型
СН3-СН3			
CH ₂ =CH ₂			
СН≡СН			

参考答案

一、填空题

1、两原子有成单电子; 电子自旋方向相反; 2、σ; π; 3、内; 大

二、选择题

1, A, B, C; 2, B; 3, (D, E, F); (B); (G, H); 4, B, H; 5, C, F; 6, A, B, C, D; 7, H; 8, (B); (A)

三、判断题

 $1, \times; 2, \sqrt{3}, \sqrt{4}, \sqrt{4}$

四、完成下列各题

1、答: H₂O ₈O 1s²2s²2p⁴ ₁H 1s¹

 $CH_4 \quad {}_6C \quad 1s^22s^22p^2 \quad {}_1H \quad 1s^1$

2、答:

分子	C 原子杂	C-H 键合时所用轨	C-C 键合时所用轨道及类型	
	化类型	道及类型(σ、π)		
СН3-СН3	sp ³	6 ↑ σ (sp³-s)	$1 \uparrow \sigma (sp^3-sp^3)$	
CH ₂ =CH ₂	sp ²	4 ^σ (sp²-s)	$1 \uparrow \sigma (sp^2-sp^2)$, $1 \uparrow \pi (p-p)$	
СН≡СН	sp	2 Υσ (sp-s)	1 \(\daggerap \tau \) (sp-sp), 2 \(\daggerap \pi \) (p-p)	

第十章 配位化合物

习题解析

- 1、指出下列配合物的内界、外界、中心原子、配体、配位原子和中心原子的配位数:
 - (1) $[Co(NH_3)_6]_2(SO_4)_3$ (2) $Na_2[SiF_6]$ (3) $K_2[Pt(CN)_4(NO_2)_2]$ (4) $[Fe(CO)_5]$

答: 列表回答如下:

配位个体	[Co(en) ₃] ₂ (SO ₄) ₃	$Na_2[SiF_6]$	$K_2[Pt(CN)_4(NO_2)_2]$	[Fe(CO)5]
内 界	[Co(en) ₃] ³⁺	[SiF ₆] ²⁻	[Pt(CN) ₄ (NO ₂) ₂] ²⁻	[Fe(CO) ₅]
外 界	SO ₄ ² -	Na ⁺	K^+	无
中心原子	Co ³⁺	Si(IV)	Pt ⁴⁺	Fe
配体	en	F ⁻	CN-, NO ₂ -	CO
配位原子	N	F	C, N	C
配位数	6	6	6	5

- 2、命名下列配合物:

- **答:**(3)硫酸二(乙二胺)合镍(II) (4)氯化二亚硝酸根•二氨•二水合钴(III)

 - (5) 氯化氯•五水合铬(Ⅲ) (6) 氨基•硝基•二氨合铂(Ⅱ)
- 3、写出下列配合物的化学式:
 - (1) 二氯.四(异硫氰酸根)合铬(III)酸铵 (2) 三硝基•三氨合钴(III)
 - (3) 硫酸三(乙二胺) 合铬(Ⅲ)
- (4) 六氰合铁 (II) 酸钾
- (5) 二氨基·二硝基·二胺合铂(IV)
 - (6) 氯化二氯•三氨•一水合钴(Ⅲ)
- 答: (1) $(NH_4)_3[CrCl_2(NCS)_4]$ (2) $[Co(NO_2)_3(NH_3)_3]$ (3) $[Cr(en)_3]_2(SO_4)_3$ (4) $K_4[Fe(CN)_6]$
 - (5) $[Pt(NH_2)_2(NO_2)_2(NH_3)_2]$ (6) $[CoCl_2(NH_3)_3H_2O]Cl$
 - 6、根据实验测得的磁矩,判断下列配位个体的中心原子的杂化类型和空间构型。
 - (1) $[Fe(CN)_6]^{3}$, $\mu = 2.3 \, \mu_B$ (2) $[FeF_6]^{3}$, $\mu = 5.9 \, \mu_B$ (3) $[Ni \, (NH_3)_4]^{2+}$, $\mu = 3.2 \, \mu_B$
 - (4) $[Co(NH_3)_6]^{3+}, \mu = 0 \mu_B$ (5) $[CuCl_4]^{3-}, \mu = 0 \mu_B$
 - **答:** (1) ₂₆Fe³⁺[Ar]3d⁵,d²sp³,正八面体 (2) ₂₆Fe³⁺[Ar]3d⁵,sp³d²,正八面体
- - (3) ₂₈Ni²⁺[Ar]3d⁸, sp³, 正四面体
- (4) ₂₇Co³⁺[Ar]3d⁶, d²sp³, 正八面体
- (5) ₂₉Cu⁺[Ar]3d¹⁰, sp³, 正四面体
- 10、计算下列反应的标准平衡常数,并判断反应进行的方向:
 - (2) $[Cu(NH_3)_4]^{2+}+Cd^{2+} \longrightarrow [Cd(NH_3)_4]^{2+}+Cu^{2+}$
 - (3) $[HgCl_4]^2-+4I^- = [HgI_4]^2-+4Cl^-$
- 解: (2) 反应的标准平衡常数为:

$$K^{\theta} = \frac{\{c_{eq}(Cu^{2^{+}})/c^{\theta}\} \bullet c_{eq}\{[Cd(NH_{3})_{4}]^{2^{+}}\}/c^{\theta}}{\{c_{ea}(Cd^{2^{+}})/c^{\theta}\} \bullet c_{eq}\{[Cu(NH_{3})_{4}]^{2^{+}}\}/c^{\theta}} = \frac{K_{s}^{\theta}\{[Cd(NH_{3})_{4}]^{2^{+}}\}}{K_{s}^{\theta}\{[Cu(NH_{3})_{4}]^{2^{+}}\}} = \frac{2.78 \times 10^{7}}{2.30 \times 10^{12}} = 1.21 \times 10^{-5}$$

 K^{θ} 很小,配合反应逆向进行。

(3) 反应的标准平衡常数为:

$$K^{\theta} = \frac{\{c_{eq}(Cl^{-})/c^{\theta}\}^{4} \bullet c_{eq}\{[HgI_{4}]^{2-}\}/c^{\theta}}{\{c_{eq}(I^{-})/c^{\theta}\}^{4} \bullet c_{eq}\{[HgCl_{4}]^{2+}\}/c^{\theta}} = \frac{K_{s}^{\theta}\{[HgI_{4}]^{2-}\}}{K_{s}^{\theta}\{[HgCl_{4}]^{2-}\}} = \frac{5.66 \times 10^{29}}{1.31 \times 10^{15}} = 4.32 \times 10^{14}$$

 K^{θ} 很大,配合反应正向进行。

13、25 °C时, K_s^{θ} { [$Ag(S_2O_3)_2$] ³⁻ } = 2.9×10¹³。计算 25 °C时 0.010 mol·L⁻¹ [$Ag(S_2O_3)_2$] ³⁻溶液中 $S_2O_3^{2-}$ 、[$Ag(S_2O_3)_2$] ³⁻ 和 Ag^+ 的平衡浓度。

解: 设溶液中 Ag^+ 浓度为 $x \text{ mol} \cdot L^{-1}$,则有

设反应的标准平衡常数表达式为
$$\mathbf{K}^{\theta} = \frac{c_{eq}(Ag^+) \bullet [c_{eq}(S_2O_3^{2^-})]^2}{c_{eq}\{[Ag(S_2O_3)_2]^{3^-}\}} = \frac{1}{K_s^{\theta}\{[Ag(S_2O_3)_2]^{3^-}\}}$$

将配位个体,中心原子和配体的平衡浓度代入标准平衡常数表达式: $\frac{x \bullet (2x)^2}{0.010-x} = \frac{1}{2.9 \times 10^{13}}$ 由于 K^0 很小,反应正向进行的趋势很小,故 x 很小,因此有 $0.010-x \approx 0.010$ 。由上式可得

$$x = \sqrt[3]{\frac{0.010}{4 \times 2.9 \times 10^{13}}} = 4.4 \times 10^{-6}$$

Ag+、S₂O₃²-和 Ag(S₂O₃)₂]³-的平衡浓度分别为

$$c_{\text{eq}}(Ag^{+}) = x \text{ mol} \cdot L^{-1} = 4.4 \times 10^{-6} \text{ mol} \cdot L^{-1}$$

$$c_{\text{eq}} (S_2 O_3^{2-}) = 2x \text{ mol} \cdot L^{-1} = 2 \times 4.4 \times 10^{-6} \text{ mol} \cdot L^{-1} = 8.8 \times 10^{-6} \text{ mol} \cdot L^{-1}$$

$$c_{eq} \{Ag(S_2O_3)_2\}^{3-} = 0.010 \text{ mol} \cdot L^{-1} - 4.4 \times 10^{-6} \text{ mol} \cdot L^{-1} = 0.010 \text{ mol} \cdot L^{-1}$$

- **14、**已知 298.15 K 时[Cu(edta)]²-和[Cu(en)₂]²⁺ 的标准稳定常数分别为 5.0×10^{18} 和 4.0×10^{19} ,从标准稳定常数的大小能否说明[Cu(en)₂]²⁺ 的稳定性大于[Cu(edta)]²⁻? 为什么?
- **解:** 只有配体数相同的配位个体,才能利用标准稳定常数直接比较配位个体稳定性的大小。而对于配体数不相同的配位个体,必须通过计算求出溶液中中心原子的浓度,然后再比较配位个体稳定性的大小。为了讨论问题的方便,设[Cu(en)₂]²⁺和[Cu(edta)]²⁻的初始浓度均为 0.10 mol·L^{-1} 。

在[Cu(en)2]2+溶液中,存在下述解离平衡:

$$[Cu(en)_2]^{2+}$$
 = $Cu^{2+} + 2en$

反应的标准平衡常数表达式为:
$$\frac{C_{eq}(Cu^{2+}) \bullet [c_{eq}(en)]^2}{C_{eq}\{[Cu(en)_2]^{2+}\}} = \frac{1}{K^{\theta}\{[Cu(en)_2]^{2+}\}}$$

代入数据:

$$\frac{C_{eq}(Cu^{2+}) \bullet [2c_{eq}(Cu^{2+})]^2}{0.10 - C_{eq}(Cu^{2+})} = \frac{1}{K_s^{\theta}([Cu(en)]^{2+})}$$

由上式解得: $c_{eq}(Cu^{2+}) = 8.5 \times 10^{-8} \text{ mol} \cdot L^{-1}$

0.10 mol·L⁻¹ [Cu(en)₂]²⁺ 溶液中 Cu²⁺ 浓度为 8.5×10⁻⁸ mol·L⁻¹。

在 Cu(edta)2-溶液中,存在下述解离平衡:

$$[Cu(edta)]^{2-}$$
 \longrightarrow Cu^{2+} + $edta^{4-}$

反应的标准平衡常数表达式为: $\frac{C_{eq}(Cu^{2+}) \bullet c_{eq}(edta^{4-})}{C_{eq}\{[Cu(edta)]^{2-}\}} = \frac{1}{K_s^{\theta}\{[Cu(edta)]^{2-}\}}$

将数据代入:
$$\frac{[c_{eq}(Cu^{2+})]^2}{0.10-c_{eq}(Cu^{2+})} = \frac{1}{6.3\times10^{18}}$$

由上式解得: $C_{eq}(Cu^{2+}) = 1.3 \times 10^{-10} \text{ mol} \cdot L^{-1}$

0.10 mol·L⁻¹[Cu(edta)₂]²⁺ 溶液中 Cu²⁺ 浓度为 1.3×10⁻¹⁰ mol·L⁻¹。

计算结果表明,在相同浓度的[Cu(en)₂]²⁺ 溶液和[Cu(edta)]²⁻ 溶液中,[Cu(edta)]²⁻ 溶液中 Cu²⁺ 浓度较低,因此[Cu(edta)]²⁻ 比[Cu(en)₂]²⁺ 更稳定。

17、298.15 K 时, 1.0 L 某 NH₃ 溶液恰好溶解了 0.020 mol AgCl 固体, 此 NH₃ 溶液的浓度为多少?

解: AgCl 固体溶于 NH3 溶液的离子方程式为

$$2NH_3$$
 (aq) + AgCl (s) \rightleftharpoons [Ag(NH₃)₂]⁺ (aq) + Cl⁻ (aq)

反应的标准平衡常数为:
$$K^{\theta} = \frac{c_{eq}(Cl^{-}) \bullet c_{eq}\{[Ag(NH_3)_2]^{+}\}}{[c_{eq}(NH_3)]^2} = K_s^{\theta}\{[Ag(NH_3)_2]^{+}\} \bullet K_s^{\theta}(AgCl)$$

$$= 1.67 \times 10^{7} \times 1.8 \times 10^{-10} = 3.0 \times 10^{-3}$$

若该 NH₃ 溶液的起始浓度为 $c(NH_3)$,则[Ag(NH₃)₂]⁺ 和 Cl⁻ 的平衡浓度均为 0.020 mol·L⁻¹ ,NH₃ 的平衡浓度为 $c(NH_3)-2\times 0.020$ mol·L⁻¹。将平衡浓度代入标准平衡常数表达式:

$$3.0 \times 10^{-3} = \frac{0.020 \times 0.020}{\left[\left\{c(NH_3)\right\} - 0.040\right]^2}$$

由上式解得: $c(NH_3) = 0.41 \text{ mol} \cdot L^{-1}$ 此 NH_3 溶液的浓度为 $0.41 \text{ mol} \cdot L^{-1}$ 。

21、计算 298.15 K 时电对[Cu(NH₃)₄]²⁺/Cu 的标准电极电势,根据计算数据说明氨水能否储存在铜制容器中?

解: 电对[Cu(NH₃)₄]²⁺/Cu 的 Nernst 方程为:

$$E\{[Cu(NH_3)_4]^{2+}/Cu\} = E^{\theta}(Cu^{2+}/Cu) + \frac{0.05196}{2} \times \lg \frac{c_{eq}\{[Cu(NH_3)_4]^{2+}\}/c^{\theta}}{[c_{eq}(NH_3)/c^{\theta}]^4 \bullet K^{\theta}\{[Cu(NH_3)_4]^{2+}\}}$$

标准状态下,

 $c_{eq}\{[Cu(NH_3)_4]^{2+}\}=c_{eq}(NH_3)=c^{\theta},E\{[Cu(NH_3)_4]^{2+}/Cu\}=E^{\theta}\{[Cu(NH_3)_4]^{2+}/Cu\}.$ 由上式可得:

$$E^{\theta} \{ [Cu(NH_3)_4]^{2+} / Cu \} = E^{\theta} (Cu^{2+} / Cu) - \frac{0.05196V}{2} \lg K_s^{\theta} \{ [Cu(NH_3)_4]^{2+} \}$$

$$= 0.3394 V - \frac{0.05916}{2} \lg 2.3 \times 10^{12} = -0.026 V$$

在氨水溶液中,电对的标准电极电势由 0.3394 V 降低到-0.026 V, Cu 的还原性增强,容易被氧化。

因此,不能用铜器储存氨水。

22、298.15 K 时, E^{θ} (Zn²⁺/Zn)=-0.762 V, E^{θ} {[Zn(NH₃)₄]²⁺/Zn}=-1.01 V。计算 298.15K 时[Zn(NH₃)₄]²⁺ 离子的标准稳定常数。

解:
$$\lg K_s^{\theta} \{ [Zn(NH_3)_4]^{2+} \} = \frac{2 \times [-0.7621 - (-1.01)]}{0.05916} = 8.38$$
$$K_s^{\theta} \{ [Zn(NH_3)_4]^{2+} \} = 2.4 \times 10^8$$

		单元测	试 题			
一、境	真空题					
1、[Co	(NH ₃) ₃ (H ₂ O)Cl ₂]Cl 的名称是	=,配位数	数是,中心	心原子是,	配体是	
配位原子是	是,配离子空间构	型为。六	氰合铁(III)酢	俊 铵的化学式是		
2、[Co	o(NH ₃) ₂ (en) (NO ₂)CN]NO ₃ 的]名称是		,配位数	[是,中心	原子
是	_,配体是	,配位原子是		o		
3, 26F	e³+的电子排布式是	,当与 H ₂ C	O 形成[Fe(H ₂ C	D) ₆] ³⁺ (磁距μ=	5.88μ _B)时,则	由此
	(H ₂ O) ₆] ³⁺ 中 Fe ³⁺ 为					
	合物是配合物					
	合效应是,从 给					
	属指示剂与被测离子形成的	J MIn 的稳定性应_	(填大-	F、小于或等 于	广)MY 的稳定性	,且
要求 $\frac{K_s(N)}{K_s(N)}$	<u>4Y)</u> 的值。					
~	MIn)					
二、选						
	列说法错误的是 ()。	A D 10 0HI)	100 H-44/1.2		++ / <i>/</i> /	b.
	、配合物均由内界和外界组	- ` ′	-			Ė
	、配位数为配位原子的数目		北 体	大系走即位数2	21114数	
• •	列配合物中,配位数最大的		+ D [4 (6	D.T. 1		
	CaY^{2-} B, $\operatorname{Cu}(\operatorname{en})_2$ ²⁺	$C_{\times} [Zn(NH_3)_4]^2$	D, [Ag(C	[N) ₂]		
	列说法错误的是 ()。		深日邻首和定	2.60分析法		
	、形成配合物时,中心原子					
	、配合物的中心原子在成键					
	、形成配合物时,中心原子 、配位数为 2 的配合物一定		坦疋門宏机坦	L		
			'b			
	、配合物为四面体结构,中 配位数为 4 的内轨型配离	•				
	、配位数为 4 的内机室配内 、配位数为 6 的配合物如为		-			
4、已知	$\mathfrak{M}[_{26}\mathrm{Fe}(\mathrm{CN})_6]^3$ -的磁矩 μ = $\sqrt{3}$,Fe ³⁺ 采用(),己知[29Cu(NH3)4] ²⁺ 具有平	面正方形结构,	Cu ²
空轨道的名	杂化类型为 (),已知	「Ag(CN) ₂]·为外轨酉	己离子,Ag+采	用 ()。		
	、sp ³ 杂化 B、dsp ² 杂化		_			
	、d ² sp ³ 杂化 F、sp ³ d ² 杂化	-	-			
	些配位剂能增大难溶金属盐					
A	、产生盐效应 B、产生	主酸效应 C、	产生同离子效	应		
	、形成可溶性配合物,使沉				F、产生水解	效应
G	、产生配位效应					
6、已	知 Ksp(AgI)=a,Ks[Ag(CN)2]-	=b,则反应 AgI(s)+2	$2CN^{-} \rightleftharpoons [A_{\xi}]$	g(CN)2]-+I-的平	衡常数为(),

A, a/b B, b/a C, ab

D、a+b (沉淀易生成的条件是: a 小 b 小)

- 7、已知Ks[Ag(CN)₂] >> Ks[Ag(NH₃)₂] + 反应[Ag(CN)₂] +2NH₃ \Longrightarrow [Ag(NH₃)₂] +2CN-将()。 A、正向自发进行 B、处于平衡状态 C、逆向自发进行 D、无法判定 已知 Ks[Ag(CN)₂] =a 和 Ks[Ag(NH₃)₂] +=b,此反应的平衡常数 K= $\frac{b}{a}$
- 8、在[Cu(NH₃)₄]SO₄溶液中存在平衡[Cu(NH₃)₄]²⁺ \rightleftharpoons Cu²⁺⁺ 4NH₃若向该溶液中分别加入以下试剂,能使平衡右移的是()。
 - A、盐酸 B、氨水 C、Na₂S D、Na₂SO₄
 - 9、下列化合物可以作为有效螯合剂的是()。
 - A, H₂N-OH B, H₂N-NH₂ C, HO-OH D, H₂N-CH₂-CH₂-COOH
 - 10、相同条件下,下列配离子中最稳定的是()。
 - A, $[Cu(NH_3)_4]^{2+}$ B, $[Ag(NH_3)_2]^+$ C, $[Cu(en)_2]^{2+}$ D, $[CaY]^{2-}$

参考答案

一、填空题

- 1、氯化二氯·三氨·水合钴(III); 6; Co³⁺; Cl⁻、H₂O、NH₃; Cl、O、N; 八面体; (NH₄)₃[Fe(CN)₆]
- 2、硝酸氰·硝基·二氨·(乙二胺)合钴(III); 6; Co³+; CN-、NO2-、en、NH3; C、N、N、N
- 3、[Ar]3d⁵; sp³d²; 外
- 4、中心原子与多齿配体形成的环状;多齿配体;两个配位原子之间相隔 2~3 个其他原子
- 5、由于形成螯合环而使螯合物具有特殊稳定性的作用;螯合环的大小;螯合环的数目
- 6、小于; >102

二、选择题

1, A; 2, A; 3, C; 4, (E); (B); (G); 5, D; 6, C; 7, C; 8, A, C; 9, D; 10, D

第十一章 定量分析中的误差与有效数字

习题解析

2、如果分析天平的称量误差为±0.0002 g, 拟分别称取 0.1 g 和 1 g 左右试样, 称量的相对误差为多少? 这些结果说明了什么问题?

解: 当称取试样的质量为
$$0.1000$$
 g 时,称量的相对误差为 $E_r = \frac{\pm 0.0002 \, g}{0.1 \, g} \times 100\% = \pm 0.2\%$ 当称取试样的质量为 1.0000 g 时,称量的相对误差为 $E_r = \frac{\pm 0.0002 \, g}{1 \, g} \times 100\% = \pm 0.02\%$

计算结果表明,当称取的试样的质量越大时,称量的相对误差就越小。在分析工作中,从减小误差 的角度来看,称取试样的质量越大越好,但称样量过大时,处理不方便,也造成浪费。

3、滴定管的读书误差为±0.02 mL,如果滴定中分别用去标准溶液 2 mL 和 20 mL 左右,读数的相对误差各是多少?从相对误差的大小说明什么问题?

解: 滴定用去 2 mL 标准溶液时,读数的相对误差为
$$E_r = \frac{\pm 0.02 \, mL}{2 \, mL} \times 100\% = \pm 1\%$$

滴定用去 20 mL 标准溶液时,读数的相对误差为
$$E_r = \frac{\pm 0.02 \, mL}{20 \, mL} \times 100\% = 0.1\%$$

计算结果表明,滴定时消耗的标准溶液的体积越大,读数的相对误差就越小。在滴定分析中,为了使读数的相对误差不超过±0.1%,通常将消耗标准溶液的体积控制在20~30 mL的范围内。

5、甲同学测定ω(Fe)为 80.40%(真实值)的铁试样中铁的质量分数,测定的结果为 80.45%,乙同学测定ω(Fe)为 2.01%(真实值)的铁试样中铁的质量分数,测定的结果为 2.067%。计算甲、乙两同学测定的绝对误差和相对误差,并比较测定的准确度。

解:
$$E = 80.45\% - 80.40\% = 0.05\%$$

$$E_r = \frac{80.45\% - 80.40\%}{80.40\%} \times 100\% = 0.06\%$$

$$E = 2.067\% - 2.01\% = 0.06\%$$

$$E_r = \frac{2.067\% - 2.01\%}{2.01\%} \times 100\% = 2.8\%$$

甲同学测量结果的准确度较高。

10、已知某含铁试样中铁的质量分数为 55.19 %, 若甲的测量结果为 55.12 %, 55.15%, 55.18 %; 乙的测量结果分别为 55.20 %, 55.24 %, 55.29 %。试计算甲、乙两人测定结果的相对误差和相对标准偏差,比较两人测定结果的准确度和精密度。

解: (1) 甲的测定结果的平均值为
$$\varpi(Fe) = \frac{55.12\% + 55.15\% + 15.18\%}{3} = 55.15\%$$

甲的测定结果的相对误差
$$E_{r,\text{\tiny H}} = \frac{\varpi(Fe) - \omega_{\scriptscriptstyle T}(Fe)}{\omega_{\scriptscriptstyle T}(Fe)} \times 100\% = \frac{55.15\% - 55.19\%}{55.19\%} \times 100\% = -0.07\%$$

甲的测定结果的标准偏差和相对标准偏差分别为
$$s_{\text{\tiny H}} = \sqrt{\frac{\sum (\omega_{\text{\tiny i}} - \varpi)^2}{N-1}} = \sqrt{\frac{(-0.03\%)^2 + 0^2 + (0.03\%)^2}{3-1}} = 0.03\%$$

$$s_{\text{r, pp}} = \frac{s_{\text{pp}}}{\varpi} \times 100\% = \frac{0.03\%}{55.15\%} \times 100\% = 0.05\%$$

(2) 乙的测定结果的平均值为
$$\boldsymbol{\sigma}_{\mathbb{Z}} = \frac{55.20\% + 55.24\% + 55.29\%}{3} = 55.24\%$$

乙的测定结果的相对误差为 $E_{r,Z} = \frac{55.24\% - 55.19\%}{55.10\%} \times 100\% = 0.09\%$

乙的测定结果的标准偏差和相对标准偏差分别为

$$s_{\mathbb{Z}} = \sqrt{\frac{(0.01\%)^2 + (0.05\%)^2 + (0.10\%)^2}{3 - 1}} = 0.05\% \qquad s_{\mathbb{Z}} = \frac{0.05\%}{55.24\%} \times 100\% = 0.09\%$$

计算结果表明, $|\mathbf{E}_{r,\mathbb{H}}| < |\mathbf{E}_{r,\mathbb{Z}}|$,可知甲的测定结果的准确度比乙高; $\mathbf{s}_{r,\mathbb{H}} < \mathbf{s}_{r,\mathbb{H}}$,可知甲的测定结果 的精密度比乙高。

11、测定某铁矿中磷的质量分数,5次测定结果分别为0.057%,0.056%,0.057%,0.058%,0.055%。 试计算测定结果的算术平均值和标准偏差。

M:
$$\bar{x} = \frac{0.057\% + 0.056\% + 0.057\% + 0.058\% + 0.055\%}{5} = 0.057\%$$

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{N - 1}} = \sqrt{\frac{0 + (-0.001\%)^2 + 0 + (0.001\%)^2 + (-0.002\%)^2}{5 - 1}} = 0.0012\%$$

12、测定试样中蛋白质的质量分数,5次测定结果分别为35.10%,34.86%,34.92%,35.36%,35.11%。 计算测定结果的算术平均值、平均偏差、相对平均偏差和标准偏差。

解:
$$\bar{x} = \frac{35.10\% + 34.86\% + 34.92\% + 35.36\% + 35.11\%}{5} = 35.07\%$$

$$\bar{d} = \frac{\sum |x_i - \bar{x}|}{N} = \frac{0.03\% + 0.21\% + 0.15\% + 0.29\% + 0.04\%}{5} = 0.14\%$$

$$d_r = \frac{\bar{d}}{\bar{x}} \times 100\% = \frac{0.14\%}{35.07\%} \times 100\% = 0.40\%$$

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N - 1}} = \sqrt{\frac{(0.03\%)^2 + (-0.21\%)^2 + (-0.15\%)^2 + (0.29\%)^2 + (0.04\%)^2}{5 - 1}} = 0.20\%$$

14、将下列数字修约到小数点后第三位:

- (1) 3.14156 (2) 1.7166 (3) 0.50150 (4) 1.21450 (5) 25.3215

- (6) 0.112501 (7) 4.293499 (8) 2.5125

解: (1) 3.142; (2) 1.717; (3) 0.502; (4) 1.214; (5) 25.322; (6) 0.113; (7) 4.293; (8) 2.512。

15、根据有效数字的运算规则, 计算下列结果:

- $(1)8.563 \div 2.1 1.025 =$
- $(2)1.0x10^{-3} \times 2.635 + 0.053 =$ $(3)pK_a^{\theta} = 10.00, K_a^{\theta} =$

- (4) $c(H_3O^+)=1.00\times10^{-5}\text{mol}\cdot\text{L}^{-1}$, pH=
- $(5) 0.525 \times 3.124 \div 2.0 \times 25.28 =$

解: (1)
$$8.563 \div 2.1 - 1.025 = 8.6 \div 2.1 - 1.025 = 4.1 - 1.0 = 3.1$$

- (2) $1.0 \times 10^{-3} \times 2.635 + 0.053 = 2.6 \times 10^{-3} + 0.053 = 0.056$ (3) $K_a^{\theta} = 10^{-10.00} = 1.0 \times 10^{-10}$

- (4) pH=-lg1.00×10⁻⁵ = 5.000 (5) $0.525 \times 3.124 \div 2.0 \times 25.28 = 0.52 \times 3.1 \div 2.0 \times 25 = 20$

第十二章 滴定分析法

习题解析

7、称取基准物质邻苯二甲酸氢钾(KHP)0.5125~g,标定浓度约 $0.1~mol\cdot L^{-1}$ NaOH 溶液,消耗 25.00~mL NaOH 溶液。计算 NaOH 溶液的准确浓度。M(KHP)= $204.2g\cdot mol^{-1}$

解: n(KHP) = n(NaOH)

$$c(NaOH) = \frac{n(KHP)}{V(NaOH)} = \frac{m(KHP)/M(KHP)}{V(NaOH)} = \frac{05125/204.2}{25.00 \times 10^{-3}} = 0.1004(mol \cdot L^{-1})$$

8、用移液管量取 10.00 mL 食醋(密度为 1.055 g·cm⁻³)试样,用 0.3024 mol·L⁻¹ NaOH 标准溶液滴定,用去 20.17 mL。试计算食醋试样中醋酸的质量分数。M(HAc)=60.05g·mol⁻¹

解: n(NaOH) = n(HAc)

$$w(HAc) = \frac{m(HAc)}{m_{\text{\tiny ℓ}}} = \frac{c(NaOH) \cdot V(NaOH) \cdot M(HAc)}{V_{\text{\tiny ℓ}}} = \frac{0.3024 \times 20.17 \times 10^{-3} \times 60.05}{10.00 \times 1.055} = 0.03472$$

9、称取 1.000 g 粗铵盐,加过量 NaOH 溶液并加热,逸出的 NH₃ 用 50.00 mL 0.2500 mol·L⁻¹ H₂SO₄ 溶液吸收,过量的酸用 0.5000 mol·L⁻¹ NaOH 溶液回滴,用去 2.65 mL NaOH 溶液。计算试样中 NH₃ 的质量分数。

解: 有关反应方程式为
$$2NH_3 + H_2SO_4 = (NH_4)_2SO_4$$
 $H_2SO_4 + 2NaOH = Na_2SO_4 + 2H_2O$ 化学计量关系为 $\frac{1}{2}n(NH_3) + \frac{1}{2}n(NaOH) = n(H_2SO_4)$

NH3 的物质的量与 NaOH 的物质的量和 H2SO4 的物质的量之间的关系为

$$n(NH_3) = 2n(H_2SO_4) - n(NaOH)$$

试样中 NH₃ 的质量分数为
$$\omega(NH_3) = \frac{m(NH_3) \bullet M(NH_3)}{m_{\text{ix}#}} = \frac{[2n(H_2SO_4) - n(NaOH)] \bullet M(NH_3)}{m_{\text{ix}#}}$$

$$= \frac{[2c(H_2SO_4)V(H_2SO_4) - c(NaOH)V(NaOH)] \bullet M(NH_3)}{m_{\text{ix}#}}$$

$$= \frac{(2 \times 0.2500 \times 0.05000 - 0.5000 \times 0.00265) \times 17.03}{1.000} = 40.32\%$$

11、某试样含 Na_2CO_3 , $NaHCO_3$ 及其他惰性物质。称取 0.3010 g 试样,以酚酞为指示剂滴定时,用去 0.1060 mol·L⁻¹ HCl 溶液 20.10 mL。继续以甲基橙为指示剂滴定,共用去 47.70 mL HCl 溶液。计算试样中 Na_2CO_3 , $NaHCO_3$ 的质量分数。

 $M (Na_2CO_3) = 106.0 \text{ g} \cdot \text{mol}^{-1}$

$$M (NaHCO_3) = 84.01 \text{ g} \cdot \text{mol}^{-1}$$

解:

$$w(Na_{2}CO_{3}) = \frac{c(HCl) \bullet V_{1}(HCl) \bullet M(Na_{2}CO_{3})}{m_{\text{ix} \neq i}} = \frac{0.1060 \times 20.10 \times 10^{-3} \times 106.0}{0.3010} = 0.7503$$
$$w(NaHCO_{3}) = \frac{0.1060 \times (47.70 - 2 \times 20.10) \times 10^{-3} \times 84.01}{0.3010} = 0.222$$

15、取 NaCl 溶液 20.00 mL, 加入 K₂CrO₄ 指示剂,用 0.1023 mol·L⁻¹AgNO₃ 标准溶液滴定,用去

27.00 mL, 计算此 NaCl 溶液的浓度。

解: NaCl 标准溶液的浓度为:

$$c(\text{NaC1}) = \frac{c(AgNO_3) \bullet V(AgNO_3)}{V(NaCl)} = \frac{0.1023 \text{mol} \bullet L^{-1} \times 27.00 mL}{20.00 mL} = 0.1381 \text{mol} \bullet L^{-1} \times 27.00 mL$$

16、称取银合金试样 0.3000 g,溶解后加入铁铵矾指示剂,用 0.1000 mol·L⁻¹NH₄SCN 标准溶液滴定,用去 23.80 mL。计算试样中银的质量分数。

解: 试样中银的质量分数为:

$$w(Ag) = \frac{c(NH_4SCN) \bullet V(NH_4SCN) \bullet M(Ag)}{m_{\text{id} \nmid \text{f}}} = \frac{0.1000 \text{mol} \bullet L^{-1} \times 23.80 \times 10^{-3} L \times 107.9 \text{g} \bullet \text{mol}^{-1}}{0.3000 \text{g}} = 0.8560$$

18、准确量取 25.00 mL 过氧化氢试样溶液,置于 250 mL 容量瓶中,加水稀释至刻度,混匀。再准确量取 25.00 mL 稀释液,加 H_2SO_4 酸化后,用 0.02732 mol·L⁻¹KMnO₄溶液滴定,用去 35.86 mL。计算试样中过氧化氢的质量浓度。M(H_2O_2)=34.02 g·mol⁻¹

解:

$$\frac{1}{5}n(H_2O_2) = \frac{1}{2}n(KMnO_4)$$

$$\rho(H_2O_2) = \frac{m(H_2O_2)}{V_{ijk}} = \frac{\frac{5}{2} \times 0.02732 \times 0.03586 \times 34.02}{25.00 \times 10^{-3} \times \frac{25.00}{250.0}} = 33.33(g \bullet L^{-1})$$

19、准确称取 0.1936 g 基准物质 $K_2Cr_2O_7$ 溶于水,加酸酸化,再加入过量的 KI 溶液,充分反应后,用 $Na_2S_2O_3$ 溶液滴定,消耗 33.61 mL。计算 $Na_2S_2O_3$ 溶液的准确浓度。

解: 反应方程式为:

$$K_2Cr_2O_7+6KI+7H_2SO_4=4K_2SO_4+Cr_2(SO_4)_3+3I_2+7H_2O_4$$

 I_2+2 Na₂S₂O₃= Na₂S₄O₆+2NaI

由以上两个反应可得计量关系为:

$$n (Na_2S_2O_3) = 6n (K_2Cr_2O_7)$$

Na₂S₂O₃溶液的准确浓度为:

$$c(Na_2S_2O_3) = \frac{n(Na_2S_2O_3)}{V(Na_2S_2O_3)} = \frac{6n(K_2Cr_2O_7)}{V(Na_2S_2O_3)} = \frac{6 \times \frac{0.1936g}{294.2g \bullet mol^{-1}}}{33.61 \times 10^{-3}L} = 0.1175 mol \bullet L^{-1}$$

21、准确称取 0.1988 g 维生素 C ($C_6H_8O_6$)试样,加新煮沸过的 100 mL 冷蒸馏水和 10 mL 稀醋酸,以淀粉为指示剂,用 0.05000 mol·L-¹ I_2 标准溶液滴定至终点,用去 20.24 mL。计算试样中 $C_6H_8O_6$ 的质量分数。

解: 反应方程式为
$$C_6H_8O_6 + I_2 = C_6H_6O_6 + 2HI$$
 化学计量关系为 $n(C_6H_8O_6) = n(I_2)$

试样中维生素 C 的质量分数为
$$\omega(C_6H_8O_6) = \frac{m(C_6H_8O_6)}{m_{\text{tit}}} = \frac{c(I_2) \bullet V(I_2) \bullet M(C_6H_8O_6)}{m_{\text{tit}}}$$

$$= \frac{0.05000 \ mol \bullet L^{-1} \times 0.02024 \ L \times 176.1 \text{g} \bullet \text{mol}^{-1}}{0.1988 \ g} = 89.64\%$$

23、 测定血液中 Ca²⁺ 的浓度时,常将 Ca²⁺ 沉淀为 CaC₂O₄,然后将沉淀溶解于 H₂SO₄溶液中,用 KMnO4标准溶液进行滴定。现将 5.00 mL 血液稀释到 50.00 mL, 取 10.00 mL 稀释液, 按上述方法处理 后,用 0.02000 mol·L-1 KMnO4 溶液滴定,用去 11.50 mL。计算此血液中 Ca²⁺的浓度。

解:
$$\frac{1}{2}n(KMnO_4) = \frac{1}{5}n(Na_2C_2O_4) = \frac{1}{5}n(Ca^{2+})$$

$$c(Ca^{2+}) = \frac{n(Ca^{2+})}{V_{\text{miik}}} = \frac{\frac{5}{2} \times 0.02000 \times 11.50 \times 10^{-3}}{5.00 \times 10^{-3} \times \frac{10.00}{50.00}} = 0.575(mol \cdot L^{-1})$$

24、称取 0.2010 g 纯 CaCO3 固体,溶解后于 100 mL 容量瓶中定容。称取 10.00 mL 于锥形瓶中, 用 EDTA 标准溶液滴定,用去 24.00 mL。计算 EDTA 标准溶液的准确浓度。M(CaCO₃)=100.1 g·mol⁻¹

解:
$$n \text{ (EDTA)} = n(Ca^{2+}) = n(CaCO_3)$$

$$c(EDTA) = \frac{n(Ca^{2+})}{V(EDTA)} = \frac{\frac{0.2010}{100.1} \times \frac{10.00}{100.0}}{24.00 \times 10^{-3}} = 8.367 \times 10^{-3} \text{ (mol } \bullet L^{-1}\text{)}$$

25、用 EDTA 滴定法测定奶粉中钙含量时,将 1.50 g 奶粉试样经灰化处理后,制备成试液,然后 用 8.95x10⁻³ mol·L⁻¹ EDTA 标注溶液滴定,消耗 13.1 mL。计算奶粉中钙的质量分数。

解: 计量关系为: *n* (Ca²⁺) = *n* (EDTA)

2、下列数字中,有效数字为四位的是(

奶粉中钙的质量分数为:

$$w(Ca^{2+}) = \frac{n(Ca^{2+}) \bullet M(Ca^{2+})}{m_{\text{ix} \neq \pm}} = \frac{c(EDTA) \bullet V(EDTA) \bullet M(Ca^{2+})}{m_{\text{ix} \neq \pm}}$$
$$= \frac{8.95 \times 10^{-3} \,\text{mol} \bullet L^{-1} \times 0.0131L \times 40.1g \bullet mol^{-1}}{1.50g} = 3.13 \times 10^{-3}$$

单元测试题

	十首:	卒	川
`	人位	┰	TO

一、填空题
1、在酸碱滴定中,滴定突跃的大小与和
2、多元酸可被滴定的条件是,能否分别滴定的条件是。
3、用 HCl 标准溶液滴定 K_2CO_3 时,若用甲基橙($3.1\sim4.4$)作指示剂时,终点指示的是第化等
计量点。若消耗 HCl 标准溶液的体积为 24.82mL,在改用酚酞作指示剂(其它条件相同)时,则消耗 HCl 标
准溶液的体积是mL。
4、某酸碱指示剂的 pK _{Hin} =6.24, 其理论变色范围是,将该指示剂加入到 pH>7.24 的溶液中的
溶液将只显示指示剂成分的颜色。
5、滴定分析的一般程序是,,,,。
6、在酸碱滴定中,选择指示剂的原则是。
7、一级标准物质必须具备的条件是,,,,,,,,,,
8、在实验中,我们所用的 HCl 标准溶液是用标定的,而 NaOH 标准溶液是用标定的
9、在常量滴定分析中,相对平均偏差一般应控制在以内。
10、准确称取硼砂(Na ₂ B ₄ O ₇ ·10H ₂ O, M = 381.37) 0.4539 g 溶于水后,以甲基橙为指示剂,用 HC
溶液滴定,消耗 HCl 的体积为 23.20mL,则 HCl 的浓度为。
二、选择题
1、浓度均为 0.1 mol·L-1 的下列弱酸中,不能用 NaOH 标准溶液准确滴定的是()。

A、甲酸($Ka=1.80\times10^{-4}$) B、乙酸($Ka=1.75\times10^{-5}$)C、硼酸($Ka=7.30\times10^{-10}$) D、碘酸($Ka=1.69\times10^{-1}$)

A、 0.0328 B、 7.980 C、 pH=11.35 D、 pKa=3.756
3、某酸碱指示剂的 $pK_{HIn}=3.20$,欲使它在溶液中完全显示碱式成分的颜色,该溶液的 pH 值应为()。
A、3.20 B、2.20 C、小于 2.20 D、大于等于 4.20 E、大于 4.20
4、下列 0.1000mol·L ⁻¹ 的各酸中,可被 NaOH 标准溶液准确滴定的是 ()。
A、H ₂ S(K _a =8.9×10 ⁻⁸) B、H ₃ BO ₃ (K _a =5.37×10 ⁻¹⁰) C、HPr(丙酸 K _a =1.38×10 ⁻⁵) D、HBrO (K _a =3.0×10 ⁻⁹)
5、0.1000mol·L-1 的下列二元酸中,被 NaOH 标准溶液滴定时,有两个滴定突跃的是 ()。
A、 H_2SO_4 (K_{a2} =1.02×10 ⁻²) B、草酸 (K_{a1} =5.19×10 ⁻² , K_{a2} =6.46×10 ⁻⁵)
B、邻苯二甲酸(K _{al} =1.28×10 ⁻³ ,K _{a2} =3.09×10 ⁻⁶)D、H ₂ CrO ₄ (K _{al} =1.82×10 ⁻¹ ,K _{a2} =3.24×10 ⁻⁷)
6、下列 0.1000mol·L ⁻¹ 的各酸中,被 NaOH 标准溶液滴定时,滴定突跃最大的是 ()。
A, HF (K_a =6.31×10 ⁻⁴) B, HIO ₃ (K_a =1.66×10 ⁻¹)
C、HAc(K _a =1.75×10 ⁻⁵)
7、下列数据中,只含二位有效数字的是()。
A, 0.0210 B, pH=4.86 C, 20 D, 1.70×10 ⁻³
8、称取 0.3526g 一级标准物质 Na ₂ CO ₃ (M=106.0) 标定 HCl 溶液时,用甲基橙作指示剂。滴定至终
点时消耗 HCl 溶液 24.68mL,则计算 HCl 标准溶液浓度的公式是()。
A, c (HCl) = $\frac{0.3526 \times 2000}{106.0 \times 24.68}$ B, c (HCl) = $\frac{0.3526 \times 1000}{106.0 \times 24.68}$
0.3526×24.68 106.0×2000
C, c (HCl) = $\frac{0.3526 \times 24.68}{53.0 \times 2000}$ D, c (HCl) = $\frac{106.0 \times 24.68}{0.3526 \times 24.68}$
9、酸碱滴定中选择酸碱指示剂时,不必考虑的因素是()。
A、指示剂的摩尔质量 B、指示剂的变色范围 C、滴定的 pH 突跃范围 D、被滴定的对象
10、用 250mL 容量瓶配制溶液时,体积应记录为()。
A, 250mL B, 250.0mL C, 250.00mL D, 250.000mL
11、滴定分析中所用的玻璃仪器,使用前要用待装溶液润洗的是()。
①锥形瓶 ②移液管 ③容量瓶 ④滴定管
A, 123 B, 13 C, 24 D, 4 E, 1234
三、判断题
1、滴定终点就是化学计量点。()
2、任何酸都可以用 NaOH 标准溶液准确滴定。()
3、指示剂发生颜色变化时即达到化学计量点。()
4、测定的精密度高则其准确度一定高。()
5、标定待测溶液浓度的一级标准物质,其组成中不能含有结晶水。()
四、完成下列各题
1、用于滴定分析的化学反应的必备条件是什么?
2、用 0.1000mol·L ⁻¹ NaOH 滴定同浓度的下列各酸时,按滴定突跃从大到小排列。
a, $HNO_2(K_a=4.6\times10^{-4})$ b, $HIO_3(K_a=1.69\times10^{-1})$ c, $HC1$ d, $HAc(K_a=1.8\times10^{-5})$
3、名词解释: ①化学计量点 ②滴定终点 ③滴定突跃范围
五、计算题
1、某一含 Na ₂ CO ₃ (M=106.0)、NaHCO ₃ (M=84.02)和其它非碱性杂质的试样 0.6012g,用 0.1200
mol·L-¹HCl 标准溶液滴定, 当酚酞变色时, 耗去 HCl 溶液 20.00mL。继续滴定至甲基橙变色时, 又用去
HCl 溶滴 24 50ml 员或试样中 Na ₂ CO ₂ 及 NaHCO ₂ 的含量(w)

- 0 mol HCl 溶液 24.50mL。试求试样中 Na₂CO₃ 及 NaHCO₃ 的含量(w)。
- 2、在测定某草酸 (H₂C₂O₄) 试样时, 称取 1.6380g 试样配成 250.0mL 溶液, 吸取 25.00mL 进行滴定, 消耗 0.1050mol·L⁻¹ NaOH 标准溶液 26.00mL。计算试样中草酸纯度ω。[M(H₂C₂O₄)= 90.00 g·mol ⁻¹]
- 3、精密称取小苏打片 0.5600g 溶于蒸馏水中,以甲基橙为指示剂,用 0.1000mol·L-1HCl 滴定至终点 消耗 HCl 标准溶液 20.00mL。求小苏打片中 NaHCO₃ 的质量分数。[M (NaHCO₃) =84.00g·mol ⁻¹]
 - 4、取食醋 50.00mL,稀至 250.0mL,取稀释液 25.00mL,用 0.1000mol·L-1NaOH 标准溶液滴至终点

- 时,用去 NaOH 标准溶液 25.50mL。求食醋中 HAc 的质量浓度ρ (g·L⁻¹)。(M_{HAc}=60.00g·mol ⁻¹)
- 5、在 0.05060 mol·L⁻¹MgSO₄溶液 50.00mL 中,加入 0.2514 mol·L⁻¹NaOH 溶液 25.00mL,混匀后过滤。 滤液用 0.1046mol·L⁻¹HCl 溶液返滴定。试计算需用 HCl 溶液的体积?并说明应选用何种指示剂。
- 6、称取分析纯 Na₂CO₃1.3350g, 配成一级标准溶液 250.0mL, 用来标定近似浓度为 0.1 mol·L⁻¹HCl 溶液,测得一级标准物质溶液 25.00mL 恰好与 HCl 溶液 24.50mL 反应完全。试求此 HCl 溶液的准确浓 度。M (Na₂CO₃) =106.0 g·mol⁻¹

参考答案

一、填空题

- 1、酸碱的强度;酸碱的浓度
- $2 \cdot K_{a} \cdot c_a \ge 10^{-8}; K_{a1}/K_{a2} \ge 10^4$
- 3、二: 12.41
- 4、5.24~7.24; 碱式
- 5、标准溶液的配制;标准溶液浓度的标定;未知物含量的测定
- 6、指示剂的变色域部分或全部落入滴定突跃范围内
- 7、组成与化学式完全符合; 纯度高; 性质稳定; 无副反应发生或能消除副反应; 摩尔质量大
- 8、一级标准物质直接法;间接法(比较)
- 9, 0.2%
- 10, 0.1026 mol·L⁻¹
- 二、选择题
- 1, C; 2, B; 3, D; 4, C; 5, D; 6, B; 7, B; 8, A; 9, A; 10, B; 11, C
- 三、判断题
- $1, \times; 2, \times; 3, \times; 4, \times; 5, \times$

四、完成下列各题

- 1、答:反应按化学式所表示的计量关系进行完全;反应要迅速;无副反应或能消除副反应;有简便 可靠的确定滴定终点的方法。
 - 2、答: c>b>a>d
 - 3、答: ①化学计量点: 标准溶液与待测组分按化学反应的定量关系恰好反应完全时即为化学计量点。 ②滴定终点:滴定至指示剂正好变色即停止滴定时为滴定终点。
 - ③滴定突跃范围: 在化学计量点前后标准溶液少半滴(0.02mL)和过量半滴时溶液 pH 值发 生突变的范围称之。

五、计算题

1、解: Na₂CO₃ + HCl = NaHCO₃ + NaCl $NaHCO_3 + HCl = NaCl + CO_2 + H_2O$ 甲基橙变色

$$\omega \ (Na_2CO_3) = \frac{0.1200 \times \frac{20.00}{1000} \times 106.0}{0.6012} = 0.4232 = 42.32\%$$

$$\omega \text{ (NaHCO}_3) = \frac{0.1200 \times \frac{24.50 - 20.00}{1000} \times 84.00}{0.6012} = 0.07545 = 7.545\%$$

 $2 \cdot \mathbf{M}$: $H_2C_2O_4 + 2NaOH = Na_2C_2O_4 + 2H_2O$

$$\begin{aligned} &H_2C_2O_4 + 2NaOH = Na_2C_2O_4 + 2H_2O \\ &\omega \ (H_2C_2O_4) = \frac{0.1050 \times \frac{26.00}{2000} \times 90.00}{\frac{1.6380}{250.0} \times 25.00} = 0.7500 = 75.00\% \\ &NaHCO_3 + HCl = NaCl + CO_2 + H_2O \end{aligned}$$

3、解: NaHCO₃ + HCl = NaCl + CO₂ + H₂O

$$\omega \text{ (NaHCO}_3) = \frac{0.1000 \times \frac{20.00}{1000} \times 84.00}{0.5600} = 0.3000 = 30.00\%$$

4、解: $HAc + NaOH = NaAc + H_2O$

$$\rho = \frac{0.1000 \times \frac{25.50}{1000} \times 60.00}{\frac{50.00}{250.0} \times 25.00} \times 1000 = 30.60 \ (\text{g} \cdot \text{L}^{\text{-}1})$$

$$= 6.285 - 5.06 = 1.225$$
(m mol)

$$NaOH + HCl = NaCl + H_2O$$

$$n(NaOH) = n(HCl)$$

$$1.225 = c(HCl) \times V(HCl) = 0.1046 \times V(HCl)$$

6、解:
$$\frac{1}{2}$$
n (HCl) =n (Na₂CO₃)

$$\frac{1}{2}c \text{ (HC1)} \quad \frac{24.50}{1000} = \frac{1.3350 \times \frac{25.00}{250.0}}{106.0}$$

$$c (HC1) = 0.1028 (mol \cdot L^{-1})$$

第十三章 吸光光度法

习题解析

1、某有色溶液在 1 cm 吸收池测定 A_1 为 0.400,将此时溶液稀释到原浓度的 1/2 后,转移到 3cm 吸收池中,计算在相同波长下的 A_2 和 T_2 。

解: A=κdc_B

$$\frac{A_2}{0.400} = \frac{\kappa \times 3 \times \frac{1}{2} \times c}{\kappa \times 1 \times c}$$

$$A=pT \qquad 0.600=pT_2$$

$$A_2=0.600$$

$$T_2=25.1\%$$

2、已知某化合物的相对分子质量为 251,将此化合物用乙醇作溶剂配制成浓度为 $0.150~\text{mol·L}^{-1}$ 的溶液,在波长 480 nm 处用 2.0 cm 吸收池测得透光率为 39.8 %,求该化合物在上述条件下的摩尔吸收系数 κ 和质量吸收系数 α 。

解:
$$A = \kappa dc_B = -lgT$$

$$- \lg 0.398 = \kappa \times 2cm \times 0.150 mol \cdot L^{-1} \qquad \kappa = 1.33(L \cdot mol^{-1} \cdot cm^{-1})$$

$$A = \alpha d\rho_B \qquad - \lg 0.398 = \alpha \times 2cm \times 0.150 mol \cdot L^{-1} \times 251g \cdot mol^{-1}$$

$$\alpha = 0.00531(L \cdot g^{-1} \cdot cm^{-1})$$

6、已知 KMnO₄溶液在 525 nm 波长处的摩尔吸收系数κ = 2.3×10^3 L·mol⁻¹·cm⁻¹,采用 2 cm 的吸收池,欲使透光率的读数范围控制在 $15\% \sim 70\%$,问 KMnO₄溶液的质量浓度应控制在什么范围? 若透光率超出了上述范围应采取何种措施? M(KMnO₄) = 158g·mol⁻¹

解:
$$T_1=15\%$$
 $A_1=0.824$ $c_1=\frac{-\lg 15\%}{2.3\times 10^3\times 2}=1.8\times 10^{-4} (\textit{mol}\cdot \textit{L}^{-1})$ $\rho_1=1.8\times 10^{-4}\times 158=2.8\times 10^{-2} (\textit{g}\cdot \textit{L}^{-1})$ $T_2=70\%$ $A_2=0.155$ $c_2=\frac{-\lg 70\%}{2.3\times 10^3\times 2}=3.4\times 10^{-5} (\textit{mol}\cdot \textit{L}^{-1})$ $\rho_1=3.4\times 10^{-5}\times 158=5.4\times 10^{-2} (\textit{g}\cdot \textit{L}^{-1})$ $T<15\%$ $(A>0.824)$ 减小 c 或 d $T>70\%$ $(A<0.155)$ 增大 c 或 d

9、 称取 1.00 g钢试样溶解于酸溶液中,将其中的锰氧化为高锰酸盐,准确配制成 250 mL 溶液,测得其吸光度为 1.00×10^{-3} mol·L⁻¹ KMnO₄ 溶液的吸光度的 1.5 倍。计算此钢试样中锰的质量分数。

解: 试液中 KMnO₄ 的浓度为

$$c_2(KMnO_4) = \frac{c_1(KMnO_4)A_2}{A_1} = \frac{1.00 \times 10^{-3} \, mol \bullet L^{-1} \times 1.5 A_1}{A_1} = 1.50 \times 10^{-3} \, mol \bullet L^{-1} \times 1.5 A_2 = 1.50 \times 10^{-3} \, mol \bullet$$

钢样中锰的质量分数为
$$\omega(Mn) = \frac{n(Mn) \bullet M(Mn)}{m_{\text{WH}}} \times 100\% = \frac{c_2(KMnO_4)V_2(KMnO_4)M(Mn)}{m_{\text{WH}}} \times 100\%$$

$$= \frac{1.50 \times 10^{-3} \, mol \bullet L^{-1} \times 0.250 \, L \times 54.9 \, g \bullet mol^{-1}}{1.00 \, g} \times 100\% = 2.06\%$$

13、未知相对分子质量的胺试样,通过用苦味酸(M=229 g·mol-1)处理后转化成胺苦味酸盐(1:

1 加成化合物)。在波长为 480 nm 时, 大多数胺苦味酸盐在 95%乙醇中的摩尔吸收系数大致相同, κ=1.35×10⁴ L·mol⁻¹·cm⁻¹。现将 0.033 g 胺苦味酸盐溶于 95%乙醇中,准确配制 1.000 L 溶液,在波长为 480 nm,d=1.0 cm 时测得 A=0.800。试计算此未知胺的相对分子质量。

解:根据 Lambert-Beer 定律,胺苦味酸盐的摩尔质量为:

$$M = \frac{\kappa \cdot d \cdot m}{A \cdot V} = \frac{1.35 \times 10^{4} \,\mathrm{L \cdot mo1^{-1} \cdot cm^{-1}} \times 1.0cm \times 0.033g}{0.800 \times 1.000L} = 557 \,\mathrm{g \cdot mol^{-1}}$$

胺苦味酸盐为胺与苦味酸的 1: 1 加成化合物,其相对分子质量为胺的相对分子质量与苦味酸的相对 分子质量之和。已知苦味酸的相对分子质量为229,故未知胺的相对分子质量为: M_r = 557-229 = 328

14、某催眠药物的浓度为 1.0×10-2 mol·L-1, 在 1.0 cm 吸收池中于波长 470 nm 处测得吸光度为 0.400, 在波长 545nm 处测得吸光度为 0.010。已知此药物在人体内的代谢产物的浓度为 1.0×10⁻⁴ mol·L-1 时, 在 470 nm 处无吸收, 而在 545 nm 处的吸光度为 0.460。现取尿样 10 mL, 稀释至 100 mL。同样条件下在 470 nm 处测得吸光度为 0.325, 在 545 nm 处测得吸光度为 0.720。试计算此尿样中代谢产物的浓度。

解: 催眠药物在 470 nm 和 545 nm 处的摩尔吸收系数分别为:

$$\kappa_{\rm Hym}(470 {\rm nm}) \, = \, \frac{0.\,400}{1.\,0 \times 10^{-2}\,{\rm mo}\,l \cdot L^{-1} \times 1.\,0 {\rm cm}} \, = \, 40 L \, \cdot \, {\rm mo}\,l^{-1} \, \cdot {\rm cm}^{-1}$$

$$\kappa_{\text{45}}(454\text{nm}) = \frac{0.010}{1.0 \times 10^{-2} \text{ mol} \cdot L^{-1} \times 1.0 \text{ cm}} = 1.0 L \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$$

此催眠药物的代谢产物在 545 nm 处的摩尔吸收系数为:

$$\kappa_{\text{ZSHy}}(545\text{nm}) = \frac{0.460}{1.0 \times 10^{-4} \, \text{mol} \cdot L^{-1} \times 1.0 \text{cm}} = 4.60 \times 10^{3} \, L \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$$

在 470 nm 处测定时,代谢产物不吸收。故尿样加水稀释后,催眠药物的浓度为:

$$c_{55\%} = \frac{0.325}{40L \cdot \text{moI}^{-1} \cdot \text{cm}^{-1} \times 1.0\text{cm}} = 8.1 \times 10^{-3} \text{moI} \cdot \text{L}^{-1}$$

原尿样中代谢产物的浓度为:

$$c_{j \approx \eta \eta} \ = \ \frac{A_{j \approx \eta \eta}}{\kappa_{j \approx \eta \eta} \times d} \times \frac{100 \, \text{mL}}{10 \, \text{mL}} \ = \ \frac{A_{\dot{\boxtimes}} - A_{\dot{\boxtimes} \eta \eta}}{\kappa_{j \approx \eta \eta} \times d} \times \frac{100 \, \text{mL}}{10 \, \text{mL}} \ = \ \frac{A_{\dot{\boxtimes}} - \kappa_{\dot{\boxtimes} \eta \eta} c_{\dot{\boxtimes} \eta \eta} d}{\kappa_{j \approx \eta \eta} \times d} \times \frac{100 \, \text{mL}}{10 \, \text{mL}}$$

单元测试题

一、填空题		
1、Lambert-Beer law 的数学表达式为, 适用条件是。		
2、κ称为, 其值越大,表明溶液对入射光越易,测定的灵敏度		
3、分光光度法中,必须采用空白溶液做对照。常用的空白溶液有,,	和	
4、吸收光谱是以为横坐标,以为纵坐标作图所得到的曲线。		
二、选择题		
1、影响有色溶液吸光系数的因素有 ()。		
①有色溶液的本性 ②有色溶液的浓度 ③入射光波长 ④液层厚度		
A, 1)23 B, 1)3 C, 2)4 D, 4 E, 1)23(4)		
2、在分光光度法中,通过浓度和液层厚度的调节,应将溶液的吸光度控制在()。	

- A, $0.2 \sim 0.7$ B, $0.1 \sim 0.5$ C, $0.2 \sim 1.0$ D, $0.4 \sim 0.8$ 3、分光光度法中,所选择的入射光应是()。
- A、待测液有最大吸收的单色光 B、待测液有最大透光度的单色光

C、白光

D、任何单色光

- 4、某有色溶液 50mL 含溶质 1.0mg, 用 1cm 吸收池在某波长的单色光照射下,测得透光率为 10%, 则其 α (dm²·g⁻¹) 是 ()。

- A, 50 B, 2.0×10^2 C, 5.0×10^2 D, 5.0×10^3
- 5、对吸收系数(κ)的大小没有影响的因素是 ()。
 - A、物质的本性 B、入射光的波长 C、溶剂的种类 D、溶液的浓度
- 6、某有色溶液对某单色光的透光率 T = 20%, 其相应的吸光度约为 (
- A, 0.1 B, 0.3 C, 0.7
- $D_{2} = 0.2$
- 7、在分光光度法中,吸光度 A 可表示为()。

 - A, $\frac{I_t}{I}$ B, $lg\frac{I_t}{I}$ C, $\frac{I_o}{I}$ D, $lg\frac{I_o}{I}$
- 8、分光光度法中,选择测定波长的依据是()。
 - A、标准曲线 B、吸收曲线 C、滴定曲线 D、吸收曲线和标准曲线
- 9、某有色物质的摩尔吸光系数(κ)很大,则表明()。
 - A、该物质溶液的浓度很大
- B、测定时所用的比色皿大
- C、该物质对某波长光的吸收能力很强 D、测定该物质的灵敏度低

三、是非题

- 1、符合朗伯-比尔定律的同一有色溶液,当浓度变化时,其最大吸收峰的位置不变,但峰高必然发
 - 2、分光光度法灵敏度高,特别适用于常量组分的测定。()
 - 3、物质选择性吸收某种颜色的光,则呈现的是吸收光色的互补色。(
 - 4、透光度与有色溶液的浓度成正比。()
 - 5、任何两种颜色的光按适当的强度比例混合,都可得到白光。()
 - 6、某物质的摩尔吸光系数κ很大,则表明该物质溶液的浓度很大。(

四、简答题

1、简述分光光度法中标准曲线法的操作步骤。

五、计算题

- 1、已知某化合物的相对分子质量为 180,在某波长下测得摩尔吸收系数为 5.00×10^3 L·mol⁻¹·cm⁻¹,则 此化合物在该波长下的质量吸收系数为多少 L· g-1 ·cm-1?
- 2、3.00×10-5 mol·L-1K₂CrO₄碱性溶液在其最大吸收波长 372nm 处,于 1.00cm 吸收池中测得 T=71.6%。 求(1)该 K_2CrO_4 溶液的吸光度;(2)该 K_2CrO_4 溶液的摩尔吸光系数。

参考答案

一、填空题

- 1、 A=κdc; 单色光、稀溶液 2、摩尔吸收系数; 吸收; 越高
- 3、溶剂空白; 试剂空白; 试样空白 4、λ; A
- 二、选择题 1、B; 2、A; 3、A; 4、C; 5、D; 6、C; 7、D; 8、B; 9、C
- 三、是非题 1、√: 2、×: 3、√: 4、×: 5、×: 6、×

四、简答题

1、答:(1)配制系列标准溶液和待测液;(2)绘制吸收光谱(吸收曲线),找出λmax。即测定某一标 准溶液在不同波长下的吸光度,以λ为横坐标,A 为纵坐标作图;(3)绘制标准曲线。即以λ_{max}为入射 光,测定系列标准溶液的 A,以 c 为横坐标,以 A 为纵坐标作图:(4)在相同条件下测定未知液的 A*, 在标准曲线上确定其 c *。

五、计算题

1、**解:**因为摩尔吸收系数 κ 与质量吸收系数 α 的关系是: $\kappa = \alpha M$

$$\alpha = \frac{\kappa}{M} = \frac{5.\ 00 \times 10^{3} \text{L} \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}}{180 \text{g} \cdot \text{mol}^{-1}} = 27.8 \text{ L} \cdot \text{g}^{-1} \cdot \text{cm}^{-1}$$

2、**解:** (1) A = -lgT = -lg0.716 = 0.145

(2)
$$\kappa = \frac{A}{dc} = \frac{0.145}{1.0 \times 3.00 \times 10^{-5}} = 4.83 \times 10^{3} (\text{ L·mol}^{-1} \cdot \text{cm}^{-1})$$

自测题(一)

一、填空题

	1、将 1.06gNa ₂ CO ₃ (M=106g·mol ⁻¹)配成 100mL 溶液, c(Na ₂ CO ₃)=mol·L ⁻¹ ,c(½ Na ₂ CO ₃)
=	mol·L ⁻¹ ,渗透浓度 cos=mmol·L ⁻¹ 。
	2、某患者需补 Na ⁺ (M=23.0g·mol ⁻¹)2.3g,应补 9.0g·L ⁻¹ NaCl(M=58.5g·mol ⁻¹)溶液 mL。
	3、难挥发非电解质稀溶液的各种依数性只与
	4、某难溶强电解质 A_2B 在常温下的 $Ksp=4.0 \times 10^{-12}$,则 A_2B 在该温度下的溶解度为 mol·L ⁻¹ 。
	5、某缓冲系的 pK _a =5.75,可用它配制 pH 在
pH:	=
	6、血浆中最重要的缓冲系是。
	7、核外电子的运动具有性,电子运动的坐标和动量(填能或不能)同时准确测定。
	8、30Zn 元素原子核外电子的排布式是
	9、H ₂ S 分子中的 S 原子采用杂化,其形状为。
	10、核外电子排布的规律可归纳为
	11、物质形成分子内氢键时,可使物质的熔沸点。
	12、[Co(NH ₃) ₂ (en) ₂]Cl ₃ 的名称是, 配位数是。
	13、有色溶液呈现的颜色是它所吸收光色的色。
	14、欲量取某一标准溶液 25.00mL,应使用
	1、下列溶液中,可使红血球发生皱缩现象的溶液是()。
	A, c (NaCl) =0.1 mol·L ⁻¹ B, c (2Na ₂ CO ₃) =0.1 mol·L ⁻¹
	C、ρ(NaCl) =0.5g·L-¹(M=58.5g·mol-¹) D、c(蔗糖)=0.3 mol·L-¹
	2、在水溶液中,下列物质属于两性物质的是 ()。
	A、NaAc B、NH4Cl C、氨基酸(NH3 ⁺ RCOO ⁻) D、NaCl
	3、配制 pH=7.00 的缓冲溶液,应选用的一组物质是 ()。 A、HAc (pK _a =4.75) ~ NaOH B、NH ₃ (pK _b =4.76) ~ HCl
	C. H_3PO_4 (pK _{a1} =2.06; pK _{a2} =7.21; pK _{a3} =12.21) ~ NaOH
	D、CH ₃ CH ₂ COOH(pK _a =4.86)~ NaOH E、都不能用
	4、用 NaOH 标准溶液滴定下列二元酸时,能准确分步滴定的是()。
	A、草酸(pK _{a1} =1.23; pK _{a2} =4.19) B、亚硫酸(pK _{a1} =1.85; pK _{a2} =7.00)
	C、邻苯二甲酸(pKa ₁ =2.89; pK _{a2} =5.51)D、柠檬酸(pK _{a1} =3.14; pK _{a2} =4.77)
	5、溶胶具有相对稳定性的因素是()。
	①布朗运动 ②胶粒带电 ③溶胶表面的水合膜 ④胶粒的扩散
	A, 1)23 B, 1)3 C, 2)4 D, 4 E, 1)234
	6、下列数据中,只包含四位有效数字的是()。
	A、3600 B、pK _{Hin} =6.300 C、0.0001% D、23.00
	7、硅胶(H_2SiO_3)胶粒带电的原因有()。

A、胶粒选择性吸附溶液中的离 B、胶粒表面分子部分解离 C、两者兼有 D、两者兼无 8、Cr₂O₇²-离子中, Cr 元素的氧化值是 ()。 $A_{5} + 3 \qquad B_{5} + 6 \qquad C_{5} + 4$ 9、标准状态下,下列物质氧化能力最强的是()。 $A_{\bullet} Cr_{2}O_{7}^{2-}[E^{\theta} (Cr_{2}O_{7}^{2-}, H^{+}/Cr^{3+}) = 1.23V] \qquad B_{\bullet} MnO_{4}^{-}[E^{\theta} (MnO_{4}^{-}, H^{+}/Mn^{2+}) = 1.50V]$ C, $Cl_2[E^{\theta} (Cl_2/Cl^{-}) = 1.36V)$ D, $Fe^{3+}[E^{\theta} (Fe^{3+}/Fe^{2+}) = 0.77V]$ 10、三元弱酸 H_3PO_4 ,其共轭酸碱的解离常数关系式正确的是()。 $A, \ K_{a1}K_{b1}\!\!=\!\!K_w \qquad B, \ K_{a2}K_{b2}\!\!=\!\!K_w \qquad C, \ K_{a3}K_{b3}\!\!=\!\!K_w \qquad D, \ K_{a1}K_{b2}\!\!=\!\!K_w$ 11、同一有色溶液的质量吸收系数α和摩尔吸收系数κ的正确关系式是()。 A, $\alpha = \frac{\kappa}{M}$ B, $\alpha = \frac{M}{\kappa}$ C, $\alpha = \kappa M$ D, $\alpha = \kappa + M$ 12、基态 24Cr 原子的电子排布式是 ()。 A, $[Ar]3d^44s^2$ B, $[Ar]3d^6$ C, $[Ar]3d^54s^1$ D, $[Ar]4s^24p^4$ 13、下列配离子中,其空间构型为正八面体的是()。 A, $[Ag(NH_3)_2]^+$ B, $[Cd(CN)_4]^{2-}$ C, $[Fe(en)_3]^{3+}$ D, $[CoCl_2(NH_3)_3H_2O]^+$ 14、相同条件下,下列配离子中最稳定的是()。 A, $[Cu(NH_3)_4]^{2+}$ B, $[Cu(en)_2]^{2+}$ C, $[CuY]^{2-}$ D, $[Ag(NH_3)_2]^{+}$ 15、下列分子间,只存在色散力的一组分子是()。 A、HCl—H₂O B、CO—O₂ C、CH₄—CO₂ D、H₂O—CH₃CH₂OH 16、由下列分子组成的物质,在非极性溶剂中溶解度增大的物质是()。 A, NH₃ B, HCl 17、对于 Fe(OH)3 正溶胶,下列电解质聚沉值最小的是()。 A, AlCl₃ B, CaCl₂ C, Na₂SO₄ D, Na₃PO₄ 18、下列配离子中属于外轨型配合物的是()。 $A \, , \, \, [Ag(CN)_2]^{\text{-}} \qquad B \, , \, \, [Fe(CN)_6]^{3\text{-}} \qquad C \, , \, \, [Co(CN)_6]^{3\text{-}} \qquad D \, , \, \, [Ni(CN)_4]^{2\text{-}}$ 19、基态 Na 原子价电子的四个量子数 (n, l_i, m_i, s_i) 为()。 A、4、1、0、 $+\frac{1}{2}$ (或 $-\frac{1}{2}$)
B、3、0、0、 $+\frac{1}{2}$ (或 $-\frac{1}{2}$) C、3、1、0、 $+\frac{1}{2}$ (或 $-\frac{1}{2}$) D、3、1、-1、 $+\frac{1}{2}$ (或 $-\frac{1}{2}$) 20、下列情况下,HCN 解离度最大的是()。 B、0.05mol·L-1HCN 溶液加少量 NaCl 晶体 A、0.1mol·L⁻¹HCN 溶液 C、0.1mol·L⁻¹HCN 溶液加少量 NaCN 晶体 D、0.1mol·L⁻¹HCN 溶液加少量 NaCl 晶体 21、已知电极反应式 MnO_4 + $2H_2O$ + $3e^ \longrightarrow$ MnO_2 + 4OH 在 298.15K 时,其下列能斯特(Nernst) 方程表达式中,正确的是()。 $A_{\text{\tiny N}} E = E^{\theta} + \frac{0.05916}{3} \lg \frac{c(MnO_2)c^4(OH^2)}{c(MnO_4^2)c^2(H_2O)} \quad B_{\text{\tiny N}} E = E^{\theta} + \frac{0.05916}{3} \lg \frac{c^4(OH^2)}{c(MnO_4^2)c^2(H_2O)}$

$$C_{\text{\tiny \circ}} E = E^{\theta} + \frac{0.05916}{3} \lg \frac{c(MnO_{4}^{\text{\tiny \circ}})}{c^{4}(OH^{\text{\tiny \circ}})} \quad D_{\text{\tiny \circ}} E = E^{\theta} + \frac{0.05916}{3} \lg \frac{c(MnO_{2}^{\text{\tiny \circ}})c^{4}(OH^{\text{\tiny \circ}})}{c(MnO_{4}^{\text{\tiny \circ}})}$$

22、用过量 AgNO₃ 溶液与 NaCl 溶液反应制备 AgCl 溶胶,其胶团结构式正确的是()。 A、[(AgCl)_m·nNa⁺·(n-x)Cl⁻]^{x+}·xCl⁻ B、[(AgCl)_m·nCl⁻·(n-x)Ag⁺]^{x-}·xAg⁺

 $C \cdot [(AgCl)_m \cdot nAg^+ \cdot (n-x)NO_3^-]^{x+} \cdot xNO_3^- \qquad D \cdot [(AgCl)_m \cdot nNO_3^- \cdot (n-x)Ag^+]^{x-} \cdot xAg^+ = 0$ 23、计算 NH₄CN 溶液 H⁺浓度的近似公式是 ()。

$$A \cdot [H^+] = \sqrt{\frac{K_w}{K_{NH_3}} \cdot K_{HCN}} \qquad B \cdot [H^+] = \sqrt{K_{NH_4^+} K_{CN^-}} \qquad C \cdot [H^+] = \sqrt{K_{NH_3} K_{HCN}} \qquad D \cdot [H^+] = \sqrt{K_{NH_4^+} K_{CN^-}} = \sqrt{K_{NH_4^+} K_{CN^-}}} = \sqrt{K_{NH_4^+} K_{CN^-}} = \sqrt{K_{NH_4^+} K_{$$

- 24、决定螯合物稳定性的因素有()。
 - A、螯合环的大小 B、螯合环的数目 C、两者兼有 D、两者兼无
- 25、在表面活性剂的结构中,含有(
 - A、亲水基 B、疏水基 C、两者兼有 D、两者兼无
- 26、计算 Na₂HPO₄溶液 H⁺浓度的近似公式是(

$$A_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a3$}} \cdot c} \quad B_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a2$}} \cdot K_{\text{\tiny $a3$}}} \quad C_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $a1$}} \cdot K_{\text{\tiny $a3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $A1$}} \cdot K_{\text{\tiny $A3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $A1$}} \cdot K_{\text{\tiny $A3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $A1$}} \cdot K_{\text{\tiny $A3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $A1$}} \cdot K_{\text{\tiny $A3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $A1$}} \cdot K_{\text{\tiny $A3$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $A1$}} \cdot K_{\text{\tiny $A1$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny H}}] = \sqrt{K_{\text{\tiny $A1$}} \cdot K_{\text{\tiny $A1$}}} \quad D_{\text{\tiny N}} [H^{\text{\tiny $A1$}}] = \sqrt{K_{\text{\tiny $$$

- 27、用一级标准物质 Na₂C₂O₄标定 KMnO₄溶液时,正确的滴定条件是(
 - ①用稀 H₂SO₄ 调节溶液为强酸性 ②开始只滴入 1—2 滴, 褪色后稍快滴定
 - ③温度为 70—80℃
- ④加入适当催化剂

A, 123 B, 13 C, 24 D, 4 E, 1234

三、判断题

- 1、缓冲比超过 $\frac{1}{10}$ —10范围时,任何情况下均无明显的缓冲作用。(
- 2、对于同一溶液,选用溶质的基本单元越小其物质的量浓度越大。(
- 3、盐效应伴有同离子效应。()
- 4、同一溶质不同浓度的几种有色溶液,其吸收曲线的形状和λ_{max}均相同。(
- 5、电位法测溶液 pH 值时,通常用甘汞电极作参比电极。(
- 6、在等性杂化中,中心原子杂化轨道的空间构型与所形成分子的空间构型相同。(
- 7、缔合胶体是热力学稳定体系。()
- 8、当氧化还原反应中两个半反应的标准电位很接近时,则浓度可以改变反应的方向。(

四、完成下列各题

- 1、配平方程式: MnO₄-+H₂O₂+H⁺→Mn²⁺+O₂+H₂O
- 2、简述一级标准物质的必备条件。
- 3、简述氢原子 s、p、d 原子轨道的角度分布图与相应电子云角度分布图的异同点。
- 4、试用杂化轨道理论解释 CH₄分子的正四面体结构。

五、计算下列各题

- 1、某弱酸 HA 的 K_a=1.0×10⁻⁵。求(1)0.10mol·L⁻¹ HA 溶液的 pH 值。(2)0.10mol·L⁻¹NaA 溶液的 pH 值。
- 2、欲配制 pH 值为 9.55 的缓冲液 500mL,需在 500mL0.10mol·L-1 的氨水中加入多少克 NH₄Cl 固体 (假设体积不变)。[pKb (NH₃) =4.75, M (NH₄Cl) =53.5, lg2=0.30, lg3=0.47, lg4=0.60]
- 3、称取药用 CaCl₂ (M=111.0) 2.000g 加水溶解后,准确稀释至 250.0mL。移取稀释液 25.00mL,加 NH₃—NH₄Cl 缓冲溶液 10mL, 以铬黑 T 为指示剂,用 0.08000 mol·L-1EDTA 标准液滴定至终点,消耗 EDTA 溶液 20.00mL。求药品中 CaCl₂ 的质量分数 (ω)。
- 4、298.15K 时,原电池: Cd|Cd²⁺ (0.10mol·L⁻¹) || Mn²⁺(0.010mol·L⁻¹),H⁺(0.10mol·L⁻¹) | MnO₂,Pt (1) 标明正、负极。(2) 计算该电池电动势 E。[E^{θ} (Cd^{2+}/Cd) = -0.40V, E^{θ} (MnO_2 , H^{+}/Mn^{2+}) = +1.26V]

参考答案

一、填空题

1, 0.100: 0.200: 300

解:
$$c \text{ (Na}_2\text{CO}_3) = \frac{\frac{1.06}{106}}{\frac{100}{1000}} = 0.1 \text{ (mol·L}^{-1})$$
 $c \text{ (}\frac{1}{2}\text{ Na}_2\text{CO}_3\text{)} = 0.100 \times 2 = 0.200 \text{ (mol·L}^{-1}\text{)}$

 $c_{OS}\!\!=\!\!3\!\times\!1000\!\times\!0.100\!\!=\!\!300~(mmol\!\cdot\!L^{\text{-}1})$

2、650 **解:** V(NaCl) =
$$\frac{\frac{2.3}{23.0} \times 58.5}{9.0} \times 1000 = 650 \text{ (mL)}$$
 3、溶质的质量摩尔浓度; 4、1.0×10⁻⁴;

5、4.75~6.75; 5.75 6、H₂CO₃-HCO₃-; 7、波粒二象; 不能; 8、[Ar]3d¹⁰4s²; 四; IIB;

- 9、sp³不等性; V形; 10、能量最低; 泡利不相容; 洪德; 11、降低;
- 12、氯化二氨·二(乙二胺)合钴(III); 6; 13、互补; 14、移液管
- 二、选择题 1、B; 2、C; 3、C; 4、B; 5、A; 6、D; 7、B; 8、B; 9、B; 10、B; 11、A; 12、C; 13、C; 14、C; 15、C; 16、C; 17、D; 18、A; 19、B; 20、B; 21、C; 22、C; 23、A; 24、C; 25、C; 26、B; 27、A

四、完成下列各题

- 1、答: $MnO_4^-+8H^++5e^- \rightarrow Mn^{2+}+4H_2O$ ×2 $H_2O_2-2e^- \rightarrow O_2+2H^+$ ×5 $2MnO_4^-+5H_2O_2+6H^+=2Mn^{2+}+5O_2+8H_2O_3$
- 2、答: (1)组成与化学式符合 (2)纯度高(3)稳定(4)定量反应(5)摩尔质量大
- 3、答:同:形状相似。 异:前"胖"后"瘦"和前有正负之分,而后者无。
- 4、答: CH₄ 6C 1s²2s²2p² 1H 1s¹

五、计算题

正四面体形

1. **#**:
$$cK_a > 20K_w$$
, $c/K_a > 400$ [H⁺]= $\sqrt{K_a c} = \sqrt{1.0 \times 10^{-5} \times 0.1}$ pH=3.00

Ck_b
$$\ge 20$$
K_w, c/K_b ≥ 500 [OH⁻]= $\sqrt{K_b c} = \sqrt{\frac{1.0 \times 10^{-14}}{1.0 \times 10^{-5}} \times 0.1}$ pH=9.00

2、**解:** pH=pK_a+lg
$$\frac{n(共轭碱)}{n$$
 (共轭酸) 9.55=9.25+lg $\frac{0.500\times0.1}{\frac{m}{53.5}}$ m=1.3 (g)

3、解:
$$\omega$$
 (CaCl₂) = $\frac{0.08000 \times \frac{20.00}{1000} \times 111.0}{2.000 \times \frac{25.00}{250.0}} = 0.8880$

$$\ \, \text{E} \, \, (\,\text{MnO}_2\text{, } \, \, \text{H}^{+\!/}\,\text{Mn}^{2+}\,) \, = \! 1.26 + \frac{0.05916}{2} \text{lg} \frac{(0.10)^4}{0.010} = \! 1.20 (\text{V}) \quad 正极 \, \text{E=}1.20 \, \text{--}0.43 = \! 1.63 \, \, (\,\text{V}\,) \, \, \, \text{TeV} \, \text{CeV} \, \, \text{TeV} \, \text{CeV} \, \, \text{TeV} \, \text$$

自测题(二)

_	捕卒	颞
•	~ ~	IPX

1、1.11g·L ⁻¹ 的 CaCl ₂ (M=111g·mol ⁻¹) 溶液的渗透浓	度(cos)是	_mmol·L ⁻¹ ,	生医学上	属于	
渗溶液。将红血球放入其中,将会发生	え 。				
2、按酸碱质子理论,酸碱反应的本质是		o			
3、将氢氧化钠加入过量醋酸中,所形成缓冲系的打	亢酸成分是	0			
4、某酸碱指示剂的 pK _{Hln} =4.1, 其理论变色范围的	pH 在	之间。			
5、26Fe ³⁺ 的核外电子排布是	它位于	周期,	族,	区。	

6、核外电子运动的特殊性是能量具有的特征和电子具有性。
7、NH ₃ 中 N 原子采用杂化, NH ₃ 分子的空间构型是。
8、[Co(NH ₃) ₃ (H ₂ O)Cl ₂]Cl 的名称是, 配位数是。
9、用电位法测定溶液的 pH 值时,最常用的指示电极是电极。
10 、溶液呈现的颜色是它所色光的互补色。某吸光物质($M=180$)的 $\kappa=5.0\times10^3 L\cdot mol^{-1}\cdot cm^{-1}$,
稀释 5 倍后,在 1cm 比色皿中测得 A=0.50,则原溶液的物质的量浓度为mol·L ⁻¹ 。
11、由 0.002mol·L⁻¹ 的 KI 溶液和 0.001 mol·L⁻¹ 的 AgNO₃ 溶液等体积混合制成的溶胶, 其胶团的结构
式是。
12、某酸碱滴定的突跃范围是 7.73~9.70,在甲基橙(3.1~4.4)和酚酞(8.0~9.6)两种指示剂中,应
选用作指示剂。
13、常温下,已知某弱酸 HB 的 Ka=1.0×10 ⁻⁵ 。现将 0.10molNaOH 和 0.10molHB 同时溶于水,稀释
至 1 升,此溶液的 pH 值为。
14、溶胶、高分子溶液和缔合胶体中分散相粒子的大小同为 nm。
15、欲测定高分子化合物的相对分子质量,最好采用
16、血浆中的胶体渗透压维持内外水的相对平衡。
17、计算 0.1 mol·L ⁻¹ NaH ₂ PO ₄ 溶液 H ⁺ 浓度的近似公式是[H ⁺]=。
18、0.10mol·L ⁻¹ NH ₃ -0.10mol·L ⁻¹ NH ₄ Cl 缓冲溶液的缓冲容量β=。
19、引起溶胶丁铎尔现象的是光的作用。
二、选择题
A型:在备选答案中选择一个答案,填入题干括号内
1、下列缓冲溶液中,缓冲容量最大的是()。
A、1L 溶液中含 0.30molHAc 和 0.10molNaAc B、1L 溶液中含 0.10molHAc 和 0.30molNaAc
C、1L 溶液中含 0.20molHAc 和 0.20molNaAc D、1L 溶液中含 0.10molHAc 和 0.10molNaAc
2、下列各组量子数中, (n, l_i, m_i, s_i) 合理的一组是 $($ $)$ 。
A, $(2, 1, 0, 0)$ B, $(3, 1, 2, -\frac{1}{2})$ C, $(3, 2, 0, +\frac{1}{2})$ D, $(1, 2, 0, -\frac{1}{2})$
3、带负电的 Sb ₂ S ₃ 溶胶在电泳时,移向正极的是()。
A、扩散层 B、胶粒 C、胶核 D、胶团
4、符合朗伯-比尔定律的某有色溶液,当其浓度改变时,其吸收曲线上的最大吸收峰的位置将如何
变化()。
A、向短波长方向改变 B、不变化,但峰高改变 C、向长波长方向改变 D、不变化,且峰高也不变
5、相同温度下,Ag ₂ CrO ₄ 的 Ksp 与它的溶解度 S(mol·L ⁻¹)的关系式是()。
A, $S=\sqrt[3]{\frac{Ksp}{4}}$ B, $S=\sqrt[3]{Ksp}$ C, $S=\sqrt[3]{\frac{Ksp}{2}}$ D, $S=\sqrt{Ksp}$
1 2
6、下列电子钻穿能力最强的是()。
A, 4s B, 4p C, 4d D, 4f
7、下列化合物可以作为有效螯合剂的是()。
A、 H_2N -OH B、 H_2N -N H_2 C、 HO -OH D、 H_2N -C H_2 -COOH
8、浓度均为 0.1mol·L-1 的下列弱酸中,不能用 NaOH 准确滴定的是 ()。
A、碘酸(Ka=1.69×10 ⁻¹)B、硼酸(Ka=7.30×10 ⁻¹⁰)C、乙酸(Ka=1.75×10 ⁻⁵)D、甲酸(Ka=1.80×10 ⁻⁴)
9、决定原子轨道在空间的伸展方向的量子数是()。
As n Bs l_i Cs m _i Ds s _i
10、在分光光度法中,所选择的入射光应是()。
A、待测液有最大透光度的单色光 B、白光 C、待测液有最大吸光度的单色光 D、任何色光
11、当加入某种沉淀剂而使某配合物解离时,沉淀易生成的条件是 ()。

A、Ks 和 Ksp 都大 B、Ks 和 Ksp 都小 C、Ks 小、Ksp 大 D、Ks 大、Ksp 小
12、配制 pH=9.25 的缓冲溶液,应选用的试剂是()。
A. $NaH_2PO_4\sim Na_2HPO_4$ (pKa ₂ =7.21) B. $NH_3\cdot H_2O\sim HCl$ (pKb=4.75)
C, $H_3PO_4\sim NaOH \ (pKa_1=2.12, pKa_3=12.76) \ D$, $HAc\sim NaOH \ (pKa=4.75)$
13、在下列各原子轨道中,能量最低的是()。
A, $\psi_{3, 2, 1}$ B, $\psi_{3, 0, 0}$ C, $\psi_{4, 0, 0}$ D, $\psi_{3, 1, 1}$
14、欲使 Fe(OH)3 正溶胶聚沉时,临界聚沉浓度最小的电解质是()。
A, Na_3PO_4 B, Na_2SO_4 C, $AlCl_3$ D, $MgCl_2$
15、下列分子之间只存在色散力的分子是 ()。
A, CO- H_2S B, NH_3 - CO_2 C, CH_4 - HCl D, CO_2 - BF_3
16、己知[Ag(CN)₂]⁻的Ks值为a,[Ag(NH₃)₂]⁺的Ks值为b,反应[Ag(CN)₂]⁻ + 2NH₃ ← [Ag(NH₃)₂
+2CN·的平衡常数为()。
A, a+b B, $\frac{b}{a}$ C, ab D, $\frac{a}{b}$
a b
B型:在备选答案中选出正确答案"对号入座"填入相应题的括号内,备选答案可重复选用。
备选答案
A、屏蔽效应 B 、螯合效应 C 、钻穿效应 D 、洪德规则 E 、同离子效应 F 、盐效应 C
泡利不相容原理
17 、基态 $_6$ C原子的电子排布式若写成 $1s^22s^22p_x^2$ 则违背了()。
18、[Cu(en) ₂] ² +的稳定性大于[Cu(NH ₃) ₄] ² +的稳定性是由()所致。
19、同一原子中,E _{3d} <e<sub>4d<e<sub>5d,可用()来解释。</e<sub></e<sub>
A、sp 杂化 B、sp ² 杂化 C、sp ³ 杂化 D、sp ³ 不等性杂化 E、dsp ² 杂化 F、dsp ² 不
性杂化 G、d ² sp ³ 杂化 H、sp ³ d ² 杂化
20 、[26FeF ₆] ³⁻ (磁矩 μ =5.9)中,Fe ³⁺ 采用()。
21 、已知[$_{29}$ Cu(NH $_{3}$) $_{4}$] ²⁺ 为内轨型配离子,Cu ²⁺ 空轨道的杂化类型为()。
K型:
22 、三元弱酸 H_3PO_4 的三对共轭酸碱的 Ka 和 Kb 的关系式中,正确的有()。
A, 123 B, 13 C, 24 D, 4 E, 1234
23、在溶液的各种组成标度中,与温度无关的有()。
①质量摩尔浓度 ②物质的量浓度 ③摩尔分数 ④渗透浓度
A, 123 B, 13 C, 24 D, 4 E, 1234
24、下列有效数字中,含有三位有效数字的是()。
①0.0256 ②pH=6.35 ③90.0 ④402.0
A, ①②③ B, ①③ C, ②④ D, ④ E, ①②③④
25、下列分子中,有sp ² 杂化原子的分子是()。
①CH ₃ -CH=CH-C≡CH ②C ₆ H ₆ ③BF ₃ ④H ₂ O
A, $(1/2)(3)$ B, $(1/3)$ C, $(2/4)$ D, (4) E, $(1/2)(3/4)$
26、按酸碱质子理论,下列物质属于两性物质的有 ()。
①NaHCO ₃ ② H_2O ③NH ₄ Ac $4Ac^-$
A, 123 B , 13 C , 24 D , 4 E , 1234
三、判断题
1、醋酸一定是弱酸。()
2、胶体分散系一定是多相体系。()
3、用半透膜将稀浓两溶液隔开,所产生的渗透压为浓稀两溶液的渗透压之差。()
4、指示剂发生颜色变化时,即是化学计量点。()

- 5、一般来说, π 键只能和 σ 键同时存在,在双键或叁键中必须也只能有一个 σ 键。(
- 6、同温度下, ◎ □ 在水中的溶解度大于 но □ へ 的溶解度。 ()
- 7、原电池中,正极电对的氧化态浓度越高,则电池反应的平衡常数越大。()
- 8、基态原子的未成对电子数就是该原子最多能形成的共价键数。()
- 9、因为 VA 族元素氢化物的色散力随分子量增大而递增, 所以 NH₃ 的沸点低于 PH₃ 和 AsH₃ 的沸点。

四、完成下列各题

- 1、将下列溶液在相同外压下的沸点从高到低排列。
 - A、5.85g·L-¹NaCl(M=58.5g·mol-¹)溶液 B、0.15mol·L-¹ 蔗糖溶液
 - C、0.1mol·L⁻¹CaCl₂溶液 D、cos=100mmol·L⁻¹的溶液
- 2、同温下,将 HAc 的解离度从大到小排列。
 - A、0.1mol·L⁻¹的 HAc B、0.1mol·L⁻¹ HAc 加少量 NaCl 固体
 - C、0.05mol·L⁻¹ 的 HAc 加少量 NaCl 固体 D、0.1mol·L⁻¹ HAc 加少量 NaAc 固体
- 3、写出基态 $_{7}$ N 原子价电子的四个量子数 (n, l_i, m_i, s_i) 。
- 4、已知 E^{θ} (Fe^{2+}/Fe) =-0.41V, E^{θ} (Ag^{+}/Ag) =0.80V, E^{θ} (Fe^{3+}/Fe^{2+}) =0.77V, E^{θ} (Cu^{2+}/Cu) =+0.34V,在标准状态下,电对中的还原剂的还原性从强到弱排列。

五、计算题

1、如何配制 pH 等于 9.55 的缓冲溶液 600mL。

- 2、利用反应 Cu (s) + $2Fe^{3+}$ (0.10 $mol\cdot L^{-1}$) $= Cu^{2+}$ (0.10 $mol\cdot L^{-1}$) + $2Fe^{2+}$ (0.010 $mol\cdot L^{-1}$) 组成原电池。(1)计算 298.15K 时该电池的电动势;(2)判断反应自发进行的方向;(3)写出电池组成式。[E^{θ} (Fe^{3+}/Fe^{2+}) =0.77 v, E^{θ} (Cu^{2+}/Cu) =0.34v]
- 3、某试样 0.3010g,其中含 Na₂CO₃、NaHCO₃ 和其它非碱性杂质,用 0.1060mol·L⁻¹HCl 滴定,当酚 酞变色时,耗 HCl 20.00mL,继续以甲基橙作指示剂滴至终点耗 HCl 24.20mL,计算试样中 Na₂CO₃ 和 NaHCO₃ 的含量。[M(NaHCO₃)=84.02,M(Na₂CO₃)=106.0]

参考答案

一、填空题

1、30; 低; 溶血; 2、两对共轭酸碱之间的质子传递反应; 3、NaAc; 4、3.1~5.1; 5、[Ar]3d⁵; 四; VIII; d; 6、量子化; 波粒二象; 7、sp³不等性; 三角锥; 8、氯化二氯·三氨·水合钴(III); 6; 9、玻璃; 10、吸收; 5.0×10^{-4} ; 11、[(AgI)_m·nI⁻·(n-x)K⁺]^x··xK⁺; 12、酚酞; 13、9.00; 14、1~100; 15、渗透压法; 16、毛细血管; 17、 $\sqrt{K_{al} \cdot K_{a2}}$;

18、0.12; **解:** β=2.3×
$$\frac{c$$
 (碱)× c (酸)}{c (总) =2.3× $\frac{0.10×0.10}{0.20}$ = 0.12; 19、散射

二、选择题

1、C; 2、C; 3、B; 4、B; 5、A; 6、A; 7、D; 8、B; 9、C; 10、C; 11、B; 12、B; 13、B; 14、A; 15、D; 16、B; 17、D; 18、B; 19、A; 20、H; 21、E; 22、D; 23、B; 24、B; 25、A; 26、A

三、判断题

 $1, \times; 2, \times; 3, \sqrt{}; 4, \times; 5, \sqrt{}; 6, \times; 7, \times; 8, \times; 9, \times$

四、完成下列各题

- 1、答: C>A>B>D; 2、答: C>B>A>D;
- 3、答: $n l_i m_i$ s_i

4、答: Fe>Cu>Fe²⁺>Ag

五、计算题

1、解: 选 NH₄Cl-NH₃·H₂O 缓冲系,取 HCl 和 NH₃·H₂O 浓度均为 0.10 mol·L⁻¹

$$pH = pKa + lg \frac{n(\vec{w})}{n(\vec{w})}$$

9.55=14.00-4.75+lg
$$\frac{600-2\times V(HCl)}{V(HCl)}$$

V (HCl) = 150 (mL) $V (NH_3 \cdot H_2O) = 600 \cdot 150 = 450 (mL)$ 分别取 $0.10 \text{ mol} \cdot L^{-1} \text{ HCl}$ 和 $NH_3 \cdot H_2O$ 150 mL 和 450 mL 混合即可。

2. **F**:
$$E = E^{\theta} + \frac{0.05916}{z} \lg \frac{c^{\nu_o}(Ox)}{c^{\nu_R}(\text{Re } d)}$$

E
$$(Cu^{2+}/Cu) = 0.34 + \frac{0.05916}{2} \lg 0.1 = 0.31 \text{ (V)}$$
 负极

E(Fe³⁺/Fe²⁺) = 0.77+0.05916 lg
$$\frac{0.10}{0.010}$$
 = 0.83(V) 正极

- (1) E=0.83-0.31=0.52 (V)
- (2) 得电子 Fe3+ 失电子 Cu 正向
- (3) (-) $\operatorname{Cu} \left| \operatorname{Cu}^{2+}(0.10 \operatorname{mol} \cdot \operatorname{L}^{-1}) \right| \operatorname{Fe}^{3+}(0.10 \operatorname{mol} \cdot \operatorname{L}^{-1}), \operatorname{Fe}^{2+}(0.010 \operatorname{mol} \cdot \operatorname{L}^{-1}) \right| \operatorname{Pt} (+)$

3、解: Na₂CO₃% =
$$\frac{0.1060 \times \frac{20.00}{1000} \times 106.0}{0.3010} \times 100\% = 74.66\%$$

$$NaHCO_3\% = \frac{0.1060 \times \frac{24.20 - 20.00}{1000} \times 84.02}{0.3010} \times 100\% = 12.43\%$$

自测题(三)

一、选择题(每题1分,共61分)

- 1、将红细胞置于体积比为 1:3 的生理盐水和 50 g·L·l 的葡萄糖溶液的混合溶液中, 红细胞的形态将()。
 - A、不变
- B、膨胀
- C、皱缩
- D、无法判断
- 2、下列与人体血浆不等渗的溶液是()。
 - A、9g·L⁻¹NaCl(M=58.5g·mol⁻¹)溶液
- B、12.5 g·L⁻¹ NaHCO₃(M=84 g·mol⁻¹)溶液
- C、17.5g·L⁻¹ 乳酸钠(M=112 g·mol⁻¹)溶液
- D、100 g·L-1 的葡萄糖(M=180 g·mol-1)溶液
- 3、同温下,下列液体中,渗透压力最高的是(
 -)。
 - A、0.10mol·L-1的 Na₂SO₄溶液
- B、cos(B)=200mmol·L⁻¹的溶液
- C、500g·L⁻¹的葡萄糖溶液(M=180g·mol⁻¹)
- D、纯水
- 4、产生渗透现象的必备条件是()。
 - A、有半透膜存在
- B、膜两侧相同体积内水分子数不相等
- C、两者兼有
- D、两者兼无

5、分散相粒子大小在 1~100 nm 的分散系为 ()。
A、氯化钠溶液 B、豆浆 C、葡萄糖溶液 D、碘化银溶胶
6、将 50mL 0.01 mol·L ⁻¹ AgNO ₃ 与 50 mL 0.02 mol·L ⁻¹ KCl 溶液混合制得 AgCl 溶胶, 在此溶胶中加入电解
质使其聚沉,用量最小的是()。
A、0.01 mol·L-1NaCl 溶液 B、0.01 mol·L-1MgSO ₄ 溶液
C、0.01 mol·L ⁻¹ AlF ₃ 溶液 D、0.01 mol·L ⁻¹ Na ₃ PO ₄ 溶液
7、溶胶具有相对稳定性的因素是 ()。
①布朗运动 ②胶粒带电 ③溶胶表面的水合膜 ④胶粒的扩散
A, 1)23 B, 1)3 C, 2)4 D, 4 E, 1)234
8、关于电解质对溶胶的聚沉作用,下列说法中错误的是()。
A、电解质的聚沉值越大,其聚沉能力越小
B、电解质的聚沉值越大,其聚沉能力越大
C、带相反电荷离子的价数越高,聚沉能力越强
D、电解质中起聚沉作用的主要是与胶粒带相反电荷的离子
9、溶胶带电的原因有 ()。
A、胶粒选择性吸附溶液中的离子 B、胶粒表面分子部分解离
C、两者兼有 D、两者兼无
10、用过量 AgNO₃溶液与 NaCl 溶液反应制备 AgCl 溶胶,其胶团结构式正确的是()。
$A_{\cdot} [(AgCl)_{m} \cdot nCl \cdot (n-x)Ag^{+}]^{x} \cdot xAg^{+}$
$B \cdot [(AgCl)_m \cdot nNa^+ \cdot (n-x)Cl^-]^{x+} \cdot xCl^-$
$C \cdot [(AgCl)_m \cdot nNO_3 \cdot (n-x) Ag^+]^x \cdot xAg^+$
D、[(AgCl) _m ·nAg ⁺ ·(n-x)NO ₃ ⁻] ^{x+} ·xNO ₃ ⁻
11、同温度、同浓度的 NaCN 溶液的 pH 比 NaF 溶液的要高,则 HCN 和 HF 的解离常数的相对大小为
().
A、 $K_a^{\theta}(\text{HCN}) > K_a^{\theta}(\text{HF})$ B、 $K_a^{\theta}(\text{HCN}) < K_a^{\theta}(\text{HF})$ C、 $K_a^{\theta}(\text{HCN}) = K_a^{\theta}(\text{HF})$ D、不能确定
12、醋酸(Ka=1.75×10-5) 在水和液氨中分别为()。
A、强酸和弱酸 B、强酸和弱碱 C、弱酸和强酸 D、弱酸和强碱
13、按酸碱质子理论,下列物质属于两性物质的有()。
① NaH_2PO_4 ② H_3O^+ ③ NH_4Ac ④ Ac^-
A, 123 B, 13 C, 24 D, 4 E, 1234
14 、某三元弱酸 H_3 A,其共轭酸碱对 K_a^{θ} 和 K_b^{θ} 的关系式中,正确的是()。
A, $K_{a1}^{\theta}K_{b1}^{\theta} = K_{w}^{\theta}$ B, $K_{a1}^{\theta}K_{b2}^{\theta} = K_{w}^{\theta}$ C, $K_{a1}^{\theta}K_{b3}^{\theta} = K_{w}^{\theta}$ D, $K_{a2}^{\theta}K_{b3}^{\theta} = K_{w}^{\theta}$
15、根据稀释定律,判断下列结论正确的是()。
A、在某温度下, 浓度 c 增大, 平衡常数 K 增大, 则解离度α不变
B、在某温度下,浓度 c 增大,平衡常数 K 不变,则解离度α减小
C、在某温度下,浓度 c 不变,平衡常数 K 增大,则解离度α增大
D、在某温度下,浓度 c 减小,平衡常数 K 减小,则解离度α不变
16、下列物质中,不属于共轭酸碱对的是()。
A、NH ₄ ⁺ —NH ₃ B、H ₃ O ⁺ —H ₂ O C、HAc—Ac ⁻ D、H ₂ PO ₄ ⁻ —PO ₄ ³⁻
17、同温下, NH ₃ ·H ₂ O 的解离度最小的是(加入少量试剂假定体积不变)()。
A、0.1mol·L ⁻¹ 的 NH ₃ ·H ₂ O B、0.1mol·L ⁻¹ 的 NH ₃ ·H ₂ O 加少量 NH ₄ Cl 晶体
C、0.1mol·L ⁻¹ 的 NH ₃ ·H ₂ O 加少量 NaCl 晶体 D、0.05mol·L ⁻¹ 的 NH ₃ ·H ₂ O 加少量 NaCl 晶体
18、下列各组等体积混合后的溶液,无缓冲作用的是()。
- 58 -

	A、0.2 mol·L ⁻¹ HCl 和 0.2 mol·L ⁻¹ NH ₃ B、0.2 mol·L ⁻¹ KH ₂ PO ₄ 和 0.2 mol·L ⁻¹ Na ₂ HPO ₄
	C、0.02 mol·L ⁻¹ NaOH 和 0.2 mol·L ⁻¹ HAc
	D、0.05 mol·L ⁻¹ CH ₃ CHOHCOOH 和 0.05 mol·L ⁻¹ CH ₃ CHOHCOONa
19、	人体血液中的最重要的缓冲对的抗碱成分是 ()。
	A, HPO_4^{2-} B, $H_2PO_4^{-}$ C, HCO_3^{-} D, H_2CO_3
20,	已知室温下 pKa(HCN)=9.21, pKb(NH ₃ ·H ₂ O)=4.75, 将 0.1mol·L ⁻¹ HCN 溶液与 0.1mol·L ⁻¹ NH ₃ ·H ₂ O
	溶液等体积混合,混合后溶液的 pH 为 ()。
	A, 4.75 B, 7.00 C, 9.21 D, 9.23
21	酸碱滴定达到终点时,下列说法正确的是()。
215	A、酸和碱的物质的量一定相等 B、溶液为中性
	C、指示剂颜色发生改变 D、溶液体积不变
22	用万分之一分析天平秤取试样,下列称量结果正确的是()。
225	
22	A、0.2g B、0.20g C、0.200g D、0.2000g
23 s	下列有效数字中,含有三位有效数字的是()。
	①0.0501 ②pH=4.76 ③1.79×10 ⁻³ ④258.0
	A, ①②③ B, ①③ C, ②④ D, ④ E, ①②③④
24、	按有效数字运算规则, $\frac{0.1023 \times (25.00 - 23.15)}{1.0238}$ 的计算结果有效数字的位数为 $($ $)$ $)$ $)$
	A、5 位 B、4 位 C、3 位 D、2 位
	下列物质均为"分析纯",可用直接法配制标准溶液的是()。
23 (A、NaOH 固体 B、浓盐酸 C、KMnO4 固体 D、硼砂
26	下列各酸溶液的浓度均为 0.10 mol·L ⁻¹ , 其中可按二元酸被分步滴定的是()。
	A、琥珀酸(Ka ₁ =6.52x10 ⁻⁵ ,Ka ₂ =2.2x10 ⁻⁶) B、柠檬酸(Ka ₁ =7.1×10 ⁻⁴ ,Ka ₂ =1.68×10 ⁻⁵)
	C 、亚磷酸(K_{a1} =5.0×10 ⁻² , pK_{a2} =2.5×10 ⁻⁷) D 、草酸(K_{a1} =5.4 x10 ⁻² , K_{a2} =5.4 x10 ⁻⁵)
	某碱液 25.00mL, 用 0.1 mol·L·l·HCl 标准液滴定至酚酞变色,消耗 20.00mL,再加入甲基橙指示剂
	后继续滴定至变色,又消耗了 6.50mL,此碱的组成是 ()。
	A、NaOH B、NaOH + Na ₂ CO ₃ C、NaHCO ₃ + Na ₂ CO ₃ D、Na ₂ CO ₃
	在分光光度法中,吸光度 A 可表示为 ()。
201	在月九九友位于,"双九友 A 可农小为(
,	$A_{s} = \frac{I_{t}}{I_{o}}$ $B_{s} = \frac{I_{o}}{I_{t}}$ $C_{s} = \lg \frac{I_{o}}{I_{t}}$ $D_{s} = \lg \frac{I_{t}}{I_{o}}$
F	$\frac{I_{\circ}}{I_{\circ}}$ $\frac{I_{\circ}}{I_{\circ}}$ $\frac{I_{\circ}}{I_{\circ}}$ $\frac{I_{\circ}}{I_{\circ}}$
20	田边区和园的黄色火测点田,才再次次度不同的园。种方色物质,共用浓浓田原度生1。 的比赛四
	用波长相同的单色光测定甲、乙两个浓度不同的同一种有色物质,若甲溶液用厚度为 1cm 的比色皿,
	乙溶液用厚度为 2cm 的比色皿进行测定,吸光度相同,则 ()。
	A, $c_{\parallel}=c_{\perp}$ B, $c_{\perp}=2c_{\parallel}$ C, $c_{\parallel}=1/4c_{\perp}$ D, $c_{\parallel}=2c_{\perp}$
	对有色溶液吸光系数的大小没有影响的因素是()。
	、吸光物质的本性 B、入射光的波长 C、溶剂的种类 D、溶液的浓度
	当高锰酸钾溶液的浓度改变时,其吸收曲线上的最大吸收峰的位置将()。
	、不变化,且峰高也不变 B、向长波长方向改变
	C、不变化,但峰高改变 D、向短波长方向改变
32、	高锰酸钾溶液呈现紫色是由于它吸收了白光中的()。
	A、蓝色光 B、绿色光 C、黄色光 D、紫色光
33、	在分光光度法中,应通过调节浓度和液层厚度,将溶液吸光度控制在()范围。
	A, $0.2 \sim 0.7$ B, $0.1 \sim 0.5$ C, $0.2 \sim 1.0$ D, $0.4 \sim 0.8$
34、	若已知 $E^{\theta}(Ag^{+}/Ag)=①$, $E^{\theta}(Sn^{4+}/Sn^{2+})=②$, $E^{\theta}(Cu^{2+}/Cu)=③$, 下列反应在标准状态下皆正向自发进
	行: Cu ²⁺⁺ Sn ²⁺⁼ Cu+ Sn ⁴⁺ , Cu+2 Ag ⁺⁼ Cu ²⁺ +2 Ag,则有关 Eθ的大小顺序是()。

35、下列电对中,溶液的酸碱度对其电极电势值影响最大的是()。 A, Zn^{2+}/Zn B, Cl_2/Cl^2 C, $Cr_2O_7^{2-}/Cr^{3+}$ D, O_2/H_2O_2 36、在 298.15K 有电池(-)Zn $| Zn^{2+}(c_1)| Ag^+(c_2) | Ag(+)$,若 c_1 增大为 10 倍,电池电动势 E 将比原来()。 A、降低 0.0296V B、增大 0.0292V C、不变 D、降低 0.0592 V 37、K MnO₄ 是常用的氧化剂, 其氧化能力与溶液 pH 的关系是 ()。 A、pH 越高,氧化能力越弱 B、pH 越高,氧化能力越强 C、氧化能力与 pH 无关 D、难以判断 38、已知 E^{θ} (Cl₂/Cl⁻)=+1.36V, 在下列电极反应中标准电极电势为+1.36V 的电极反应是()。 A、Cl₂+2e⁻=2Cl⁻ B、2Cl⁻-2e⁻=Cl₂ C、1/2Cl₂+e⁻=Cl⁻ D、都是 39、反应 $Zn+Fe^{2+}$ (0.1 $mo1\cdot L^{-1}$) = Zn^{2+} (0.01 $mo1\cdot L^{-1}$) +Fe 在 298.15K 时的 $1gK^{\theta}$ 等于(A, $\frac{2 \times [E^{\theta}(Zn^{2+}/Zn) - E^{\theta}(Fe^{2+}/Fe)]}{0.05916}$ B, $\frac{2 \times [E^{\theta}(Fe^{2+}/Fe) - E^{\theta}(Zn^{2+}/Zn)]}{0.05916}$ C. $\frac{2 \times [E(Fe^{2+}/Fe) - E(Zn^{2+}/Zn)]}{0.05916}$ D. $\frac{2 \times [E(Zn^{2+}/Zn) - E(Fe^{2+}/Fe)]}{0.05916}$ 40、Cr₂O₇²-离子中, Cr 元素的氧化值是 ()。 $A_{1} + 1$ $B_{1} + 3$ $C_{1} + 4$ D、+6 41、己知电极反应式 MnO₄⁻ + 2H₂O + 3e⁻ — MnO₂ + 4OH⁻ 在 298.15K 时,其下列能斯特(Nernst)方 程表达式中,正确的是(A, $E = E^{\theta} - \frac{0.05916}{3} \lg \frac{c(MnO_2)c^4(OH^2)}{c(MnO_4)c^2(H_2O)}$ B, $E = E^{\theta} - \frac{0.05916}{3} \lg \frac{c^4(OH^2)}{c(MnO_4)c^2(H_2O)}$ C, $E = E^{\theta} + \frac{0.05916}{3} \lg \frac{c^4 (OH^-)}{c(MnO^-)}$ D, $E = E^{\theta} + \frac{0.05916}{3} \lg \frac{c(MnO_2)c^4 (OH^-)}{c(MnO^-)}$ 42、关于电子运动状态,下列表述正确的是()。 A、原子轨道是指电子的运动轨迹 B、电子的动量与空间位置可以同时准确地测定 C、电子具有波粒二象性 D、原子核外电子的能级是连续的 43、下列哪个量子数可以决定原子轨道在空间的伸展方向,即决定具体轨道()。 $A_s m \qquad B_s m_s \qquad C_s n \qquad D_s l$ 44、描述原子轨道所需要的一组量子数是()。 A_{λ} n, l, m, m_s B_{λ} n, l, m C_{λ} n, l D_{λ} n45、以下各组量子数(n, l, m, s)中合理的是()。 A, 3, 2, 0, 1 B, 3, 0, 1, 1/2 C, 3, 3, 1, -1/2 D, 3, 0, 0, 1/2 46、电子钻穿能力最强的是()。 A, 4d B, 4p C, 4s D, 4f 47、在多电子原子中,具有下列各组量子数的电子中能量最高的是()。 A, 3, 1, 0, +1/2 B, 3, 2, 1, +1/2 C, 3, 1, -1, +1/2 D, 3, 1, 1, +1/248、在具有下列外层电子组态的原子中,电负性最小的是()。 A, $4s^1$ B, $4s^24p^5$ C, $3d^54s^1$ D, $4d^{10}5s^1$ 49、某元素原子的价电子构型为 5s¹,如果用量子数表示处于基态时该电子的运动状态,正确的是()。 A, 5, 1, -1, $\pm 1/2$ B, 5, 0, 0, $\pm 1/2$ C, 5, 0, -1, $\pm 1/2$ D, 5, 1, 1, $\pm 1/2$ 50、关于共价键,下列描述正确的是()。 A、两个原子间键长越长, 键越牢固 B、两个原子间键长越短,键越牢固 C、两个原子直径之和约等于所形成共价键的键长 D、键的强度与键角有关

A, 3>2>1 B, 2>1>3 C, 3>1>2 D, 1>3>2

51、下列说法错误的是()。
A、HNO ₃ 分子中存在分子内氢键 B、任何分子间都存在色散力
C、NaCl 晶体中既不含范德华力又不含氢键和共价键 D、氢键是化学键
52 、中心原子采取 sp^2 杂化的是()。
A, H_2O B, NH_3 C, BF_3 D, CH_4
53、在甲醇和水分子之间不存在的作用力是 ()。
A、取向力 B、色散力 C、化学键 D、氢键
54、沸点最低的物质是()。
A、HCl B、HI C、HBr D、HF
55、NH3分子的空间构型为()。
A、V 形 B、三角锥形 C、正四面体形 D、平面三角形
56、分子间能形成氢键的一对物质是()。
A, $CO_2 \sim BF_3$ B, $HBr \sim H_2O$ C, $C_6H_6 \sim CH_4$ D, $NH_3 \sim H_2O$
57、下列表述错误的是()。
A、配位数与配体数之间的关系是配位数≥配体数
B、形成配合物时,中心原子能够进行杂化的轨道是能量相近的空轨道
C 、配合物均由内界和外界组成 D 、配位数为 4 的内轨型配离子,中心原子采取 dsp^2 杂化
58、配位数最大的配合物是()。
A, $[Ag(CN)_2]^{-}$ B, $[Cu(en)_2]^{2+}$ C, $[Zn(NH_3)_4]^{2+}$ D, $[CaY]^{2-}$
59 、 $_{26}Fe^{3+}$ 的电子排布式是[Ar] $3d^{5}$,当与 $H_{2}O$ 形成[Fe($H_{2}O$) ₆] $^{3+}$ (磁距μ= 5.88 μB)时,则由此可判定
[Fe(H ₂ O) ₆] ³⁺ 是()配离子。
A、外轨型 B、内轨型 C、sp ³ 杂化 D、d ² sp ³ 杂化
60、一些配位剂能增大难溶金属盐的溶解度,其原因是()。
A、形成可溶性配合物,使沉淀平衡向溶解方向移动
B、产生酸效应 C、产生螯合效应 D、产生盐效应
61、下列化合物可以作为有效螯合剂的是()。
A、H ₂ N-OH B、H ₂ N-CH ₂ -CH ₂ -COOH C、H ₂ N-NH ₂ D、HO-OH
二、完成下列各题: (25分)
1、 配平下列方程式(离子-电子法,写明配平步骤):(2分)
$Cr_2O_7^{2-} + H_2O_2 + H^+ \rightarrow Cr^{3+} + O_2\uparrow + H_2O$
2、吸光光度法的特点是什么? (2分)
3、简述滴定分析的基本程序。(1.5 分)
4、将相同温度下 NH ₄ Cl- NH ₃ ·H ₂ O 缓冲溶液的缓冲容量从大到小排列(1.5 分)
A、0.10 mol·L ⁻¹ NH ₄ Cl-0.10 mol·L ⁻¹ NH ₃ ·H ₂ O 溶液
B、0.010 mol·L ⁻¹ NH ₄ Cl-0.010 mol·L ⁻¹ NH ₃ ·H ₂ O 溶液
C、0.15 mol·L ⁻¹ NH ₄ Cl-0.050 mol·L ⁻¹ NH ₃ ·H ₂ O 溶液
D、0.020 mol·L ⁻¹ NH ₄ Cl-0.18 mol·L ⁻¹ NH ₃ ·H ₂ O 溶液
5、用 0.1000mol·L-¹NaOH 滴定下列各酸时,按滴定突跃从大到小排列: (1.5 分)
A. $HNO_2(K_a=4.6\times10^{-4})$ B. $HIO_3(K_a=1.69\times10^{-1})$ C. HCl D. $HAc(K_a=1.8\times10^{-5})$
6、根据下列电对的标准电极电势,将还原剂还原能力从大到小排列: (1.5 分)
A, $E^{\theta}(Ni^{2+}/Ni) = -0.24V$ B, $E^{\theta}(Fe^{3+}/Fe^{2+}) = 0.77V$ C, $E^{\theta}(Cu^{2+}/Cu) = 0.34V$ D, $E^{\theta}(I_2/I^{-}) = 0.53V$
7、简述波尔理论的三个基本要点,意义及其局限性。(4分)
8、试写出基态 29Cu 的核外电子排布式,及其在周期表中属于第几周期?第几族? (2分)
9、按现代价键理论,两原子形成共价键需要满足哪两个条件?共价键的特征是什么? (2分)
10、什么叫σ键?什么叫π键?简述二者的主要特征。(4分)

三、计算题(要求有解题过程,包括公式表示,数据代入和运算结果):(14分)

- 1、计算下列溶液的 pH 值。(共 4 分)
 - (1) 0.20 mol·L-¹HAc 与 0.20 mol·L-¹NaOH 等体积混合,求混合溶液的 pH 值。(\pmb{K}^{θ}_{a} (HAc) =1.8×10-5。
 - (2分); (2) 将 100mL 浓度为 0.100 mol·L·l 的 HCl 溶液与 400mL 浓度为 0.100 mol·L·l 的 NH₃.H₂O 溶液混合,求混合溶液的 pH 值。(pK_b(NH₃)=4.75)(2 分)
- 2、某患者需要补 $0.2 \text{ mol} \cdot \hat{\mathbf{n}}$ 葡萄糖($\mathbf{M}=180 \text{ g·mol}^{-1}$),应补多少克葡萄糖?若用 50 g·L^{-1} 的葡萄糖溶液,需静滴多少毫升?(2 分)
- 3、在测定某草酸试样时($H_2C_2O_4$),称取 1.6380 克试样配成 250.0ml 溶液,吸取 25.00ml 溶液进行滴定,消耗 0.1050mol·L⁻¹ 的 NaOH 标准液 26.00ml。计算试样中草酸的纯度。(M_{H2C2O4} =90.00g/mol)(3 分)
- 4、在 298.15K 时,将银片插入 $0.10\text{mol} \cdot \text{L}^{-1}\text{AgNO}_3$ 溶液中,铂片插入 $0.50\text{mol} \cdot \text{L}^{-1}\text{Fe}_2(\text{SO}_4)_3$ 和 $0.10\text{mol} \cdot \text{L}^{-1}\text{Fe}\text{SO}_4$ 混合溶液中组成原电池。(1) 计算原电池的电动势;(2) 写出该原电池的符号;(3) 写出电极反应式和电池反应式。已知 $\text{E}^{\theta}(\text{Ag}^+/\text{Ag})=0.80\text{V}; \ \text{E}^{\theta}(\text{Fe}^{3+}/\text{Fe}^{2+})=0.77\text{V}(5\,\text{分})$

参考答案

一、选择题: (61分)

1、A; 2、D; 3、C; 4、C; 5、D; 6、C; 7、A; 8、B; 9、C; 10、D; 11、B; 12、C; 13、B; 14、C; 15、B; 16、D; 17、B; 18、A; 19、D; 20、D; 21、C; 22、D; 23、B; 24、C; 25、D; 26、C; 27、B; 28、C; 29、D; 30、D; 31、C; 32、B; 33、A; 34、D; 35、C; 36、A; 37、A; 38、D; 39、B; 40、D; 41、B; 42、C; 43、A; 44、B; 45、D; 46、C; 47、B; 48、A; 49、B; 50、B; 51、D; 52、C; 53、C; 54、A; 55、B; 56、D; 57、C; 58、D; 59、A; 60、A; 61、B 二、完成下列各题(25 分)

1、答: $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ ×1 (0.5 分) $H_2O_2 \rightarrow O_2 \uparrow + 2H^+ + 2e^-$ ×3 (0.5 分) $Cr_2O_7^{2-} + 3H_2O_2 + 8H^+ = 2Cr^{3+} + 3O_2 \uparrow + 7H_2O$ (1 分)

- 2、答: 1. 灵敏度高。适用于微量组分的测定。(0.5 分); 2. 准确度较高。(0.5 分) 3.设备简单,操作简便、快速、选择性好。(0.5 分); 4.应用广泛。(0.5 分)
- 3、答: 1、标准溶液的配制; (0.5 分); 2、标准溶液的标定; (0.5 分); 3、被测组分含量的测定; (0.5 分)
- 4、答案: A>C>D>B
- 5、答案: C>B>A>D
- 6、答案: Ni>Cu>I->Fe²⁺
- 7、答: (1) 核外电子只能在一些符合特定量子化条件的圆形轨道上运动,在这些轨道上运动的电子既不吸收能力,也不放出能量; (1分)
 - (2) 在不同轨道上运动的电子具有不同的能量,电子离原子核越远能量越高,电子能级服从量子化 条件 $E_n = -13.6/n^2$ eV; (1分)
 - (3) 当电子在不同能级的轨道间跃迁时就会吸收或放出能量,且满足量子化条件: $v = (E_2-E_1)/h$; (1 分)
 - (4) 意义:玻尔理论冲破了经典物理学能量连续化的束缚,用核外电子运动量子 化观点正确解释了 氢原子光谱;解释了原子稳定存在。(0.5 分)

局限性:没有认识到电子运动的波动性。(0.5分)

8、答: 29Cu 的核外电子排布式为: [Ar]3d¹⁰4s¹ 或者 1s²2s²2p⁶3s²3p⁶3d¹⁰4s¹ (1分),

属于第四周期 (0.5 分); IB 族 (0.5 分)。

9、答:条件:(1)两原子有成单电子(未成对电子)(0.5分),电子自旋方向相反(0.5分); 特征:(1)饱和性(0.5分);(2)方向性(0.5分)。 10、答: σ键是成键的两个原子轨道沿键轴方向以"头碰头"的方式重叠形成。(1分) π 键是两原子轨道的对称轴相平行,以"肩并肩"的方式相重叠。(1分)

特征: σ 键重叠程度大(0.5 分), 稳定性高(0.5 分)。 π 键重叠程度小(0.5 分), 稳定性低(0.5 分)。

- 11、 答: [Co(NH₃)₂(en)(NO₂)CN]NO₃ 的名称是硝酸氰·硝基·二氨·(乙二胺)合钴(III), (1分) 配位数是 6 (0.5 分), 中心原子是 Co³+ (0.5 分), 配体是 CN-、NO₂-、en、NH₃ (0.5 分), 配位原子是 C、N、N、N (0.5 分)。
- 三、计算题(要求有解题过程,包括公式表示,数据代入和运算结果):(14分)
- 1、(1) 解: 此混合液为 $0.1 \text{mol} \cdot \text{L}^{-1} \text{NaAc}$ 溶液, $K_b = 10^{-14} / 1.8 \times 10^{-5} = 5.6 \times 10^{-10}$ (0.5 分) $cK_b \ge 20K_w$, $c/K_b \ge 400$ (0.5分)

[OH⁻]=
$$\sqrt{K_b c} = \sqrt{5.6 \times 10^{-10} \times 0.1} = 7.4 \times 10^{-6} \quad (0.5 \, \%)$$

pOH=5.13 pH=8.87 (0.5 分)

(2) 解: 此混合液含 0.03mol NH₃ 和 0.01mol NH₄Cl, 为缓冲液。

$$pH = pKa + lg \frac{n(碱)}{n(酸)}$$
 (0.5 分) $pH=14.00-4.75+lg \frac{0.03}{0.01}=9.73$

(pKa 代入正确得 0.5 分;分数部分代入正确得 0.5 分,计算结果正确得 0.5 分。)

2、解: m (葡萄糖) = 0.2mo1×180g·mo1⁻¹ = 36g

V (葡萄糖) =
$$\frac{m(葡萄糖)}{\rho(葡萄糖)} = \frac{36g}{50g \cdot L^{-1}} = 0.72L = 720mL$$
 (1分)

- 3、解: $H_2C_2O_4 + 2NaOH = Na_2C_2O_4 + 2H_2O$ (0.5 分)
 - n $(H_2C_2O_4) = 1/2n$ (NaOH) (0.5 分)

$$\omega \; (H_2C_2O_4) = \frac{0.1050 \times \frac{26.00}{2000} \times 90.00}{\frac{1.6380}{250.0} \times 25.00} = 0.7500 = 75.00\% \quad (2 \; \text{分,有效数字及结果各占 1 } \text{分})$$

4、解: $E(Ag^{+}/Ag)=0.80+0.05916 lg0.10=0.74(V)$ (0.5 分),负,(0.5 分)

- (1) E=0.83-0.74=0.09(v) (0.5 分)
- (2) (-)Ag | Ag+(0.10mo1·L⁻¹) Fe³⁺(1.0mo1·L⁻¹),Fe²⁺(0.10mo1·L⁻¹) | Pt(+) (1分) (3)正 Fe³⁺+e⁻ \rightarrow Fe²⁺ (0.5分);负 Ag \rightarrow Ag+e⁻ (0.5分);电池 Fe³⁺+Ag=Ag+Fe²⁺ (0.5分)

自测题(四)

- 一、选择题(每题1分,共62分)
- 1、 将红细胞置于体积比为 1:1 的 50 g·L¹ 的葡萄糖溶液和生理盐水的混合溶液中,红细胞的形态将 ().
 - A、 膨胀 B、皱缩 C、不变 D、无法判断
- 2、下列溶液中,能使红血球发生溶血现象的是() 。
 - A, $c(NaCl)=0.1mol \cdot L^{-1}$ B、cos(B)=300mmol·L-1 的溶液
 - C、c(CaCl₂)=0.2mol·L⁻¹ D、ρ(葡萄糖)=70g·L⁻¹(M=180g·mol⁻¹)
- 3、在室温下把青蛙的筋肉细胞放在 0.2 mol·L-1NaCl 水溶液中,观察到细胞皱缩,由此可得到的结论是

	B、NaCl 水溶液的浓度大于细胞内液的浓度
	C、NaCl 水溶液的渗透浓度大于细胞内液的渗透浓度
	D、两者的浓度相等
4、	用半透膜将两种不同浓度的蔗糖溶液隔开,为防止渗透现象的发生,必须在浓度较大的蔗糖溶液液
•	面上施加一超额的压力,此压力为 ()。
	A、浓度较大的蔗糖溶液的渗透压力 B、浓度较小的蔗糖溶液的渗透压力
	C、浓度较大的蔗糖溶液与浓度较小蔗糖溶液渗透压力之和
_	D、浓度较大的蔗糖溶液与浓度较小蔗糖溶液渗透压力之差
5、	分散相粒子小于 1 nm 的分散系为 ()。
	A、氢氧化铁溶胶 B、蔗糖水溶液 C、泥浆 D、蛋白质水溶液
6、	将 100mL 0.01 mol·L ⁻¹ AgNO ₃ 与 100 mL 0.02 mol·L ⁻¹ KI 溶液混合制得 AgI 溶胶,在此溶胶中加入电解
	质使其聚沉,用量最小的是()。
I	A、0.01 mol·L ⁻¹ Na ₃ PO ₄ 溶液 B、0.01 mol·L ⁻¹ AlF ₃ 溶液
(C、0.01 mol·L ⁻¹ MgSO ₄ 溶液 D、0.01 mol·L ⁻¹ NaCl 溶液
7、	用于区别溶胶与高分子溶液的方法是 ()。
	A、 丁铎尔现象 B、电泳 C、加电解质 D、加热
8、	使溶胶聚沉的常用方法有 ()。
	A、加入电解质 B、两带相反电荷的溶胶互相混合
	C、两者兼有 D、两者兼无
9、	在溶液组成的表示方法中,不随温度变化而变化的是()
	①物质的量浓度 ②质量分数 ③质量浓度 ④质量摩尔浓度
	A, 123 B, 13 C, 24 D, 4 E, 1234
10	、用过量 NaBr 溶液与 AgNO ₃ 溶液反应制备 AgBr 溶胶,其胶团结构式正确的是()。
10	A、[(AgBr) _m ·nBr··(n-x)Na ⁺] ^{x-} ·xNa ⁺ B、[(AgBr) _m ·nNa ⁺ ·(n-x)Br ⁻] ^{x+} ·xBr ⁻
1 1	$C \cdot [(AgBr)_m \cdot nNO_3^- \cdot (n-x)Ag^+]^{x-} \cdot xAg^+ \qquad D \cdot [(AgBr)_m \cdot nAg^+ \cdot (n-x)NO_3^-]^{x+} \cdot xNO_3^-$
11、	、下列物质中,只能作为酸的是()。
1.0	A、HS ⁻ B、NH ₄ ⁺ C、氨基酸(NH ₂ CH ₂ COOH) D、CH ₃ COO ⁻
12	、下列物质不属于共轭酸碱对的是()。
	A \cdot NH ₄ ⁺ —NH ₃ B \cdot HSO ₄ ⁻ —SO ₄ ² -
	C、 H_3O^+ — OH^- D、 $[Al(H_2O)_6]^{3+}$ — $[Al(H_2O)_5OH]^{2+}$
13.	、 二元弱酸 H_2CO_3 的两对共轭酸碱的 $K^{ heta}_a$ 和 $K^{ heta}_b$ 的关系式中,不正确的有()。
	A, ①②③ B, ①③ C, ②④ D, ④ E, ①②③④
14	、同温度、同浓度的 NaCN 溶液的 pH 比 NaAc 溶液的要高,则 HCN 和 HAc 的解离常数的相对大小
	为()。
	A, $K_a^{\theta}(HCN) > K_a^{\theta}(HAc)$ B, $K_a^{\theta}(HCN) < K_a^{\theta}(HAc)$
	$A_{n} K_{a} (HCN) > K_{a} (HAC)$ $B_{n} K_{a} (HCN) < K_{a} (HAC)$
	$C = V^{\theta} \text{(HCM)} = V^{\theta} \text{(HA)}$
	C 、 $K_a^{\theta}(HCN) = K_a^{\theta}(HAc)$ D、不能确定
15	、血浆中最重要的缓冲系是()。
	A、NaHCO ₃ —H ₂ CO ₃ B、Na ₃ PO ₄ —K ₂ HPO ₄
	C、Na ₂ HPO ₄ —KH ₂ PO ₄ D、Na ₂ CO ₃ —NaHCO ₃
16.	、已知室温下 pKa(HAc)=4.75,pKb(NH ₃ ·H ₂ O)=4.75,将 0.1mol·L ⁻¹ HAc 溶液与 0.1mol·L ⁻¹ NH ₃ ·H ₂ O

A、细胞内液的渗透浓度大于 NaCl 水溶液的渗透浓度

溶液等体积混合,混合后溶液的 pH 为 ()。
A, 4.75 B, 7.00 C, 9.25 D, 14.00
17、同温下, HAc 的解离度最大的是(加入少量试剂假定体积不变)()。
A、0.1 mol·L ⁻¹ 的 HAc B、0.1 mol·L ⁻¹ 的 HAc 加少量 NaAc 固体
C、0.1 mol·L ⁻¹ 的 HAc 加少量 NaCl 固体 D、0.05 mol·L ⁻¹ 的 HAc 加少量 NaCl 固体
18、缓冲溶液的缓冲容量大小与()有关。
①总体积 ②总浓度 ③ pK_a^{θ} ④ 缓冲比
A, 1)23 B, 1)3 C, 24 D, 4 E, 1)234
19、下列物质(均为 0.1 mol·L^{-1}),不能用强酸标准溶液直接滴定的是()。
A. $NaCN(K_a=6.2\times10^{-10})$ B. $C_6H_5ONa(K_a=1.1\times10^{-10})$
C. $HCOONa(K_a=1.8\times10^{-4})$ D. $C_9H_7N(K_a=6.30\times10^{-10})$
20 、按有效数字运算规则, $0.1103 \times (26.52 - 25.62)$ 的计算结果有效数字的位数为 ()。
1.2350
A、5 位 B、4 位 C、3 位 D、2 位
21、用万分之一分析天平秤取试样,下列称量结果正确的是()。
A, 0.5g B, 0.50g C, 0.500g D, 0.5000g
22、下列有效数字中,含有三位有效数字的是()。
①0.0101 ②pH= 4.00 ③1.51× 10^{-3} ④2510
A, 1)23 B, 1)3 C, 2)4 D, 4 E, 1)234
23、用浓度为 0.10 mol·L-1 的 HCl 滴定同浓度 NaOH 的溶液时, pH 突跃范围是 9.7~4.3。浓度为 0.010
mol·L-1 的 HCl 滴定同浓度的 NaOH 时,pH 突跃范围是()。
A, 9.7~4.2 B, 9.7~5.3 C, 8.7~4.3 D, 8.7~5.3
24、用已知浓度的 NaOH 标准溶液滴定相同浓度的不同弱酸时,若弱酸的 Ka 越大,则()。
A、消耗的 NaOH 越多 B、滴定突跃越大
A、消耗的 NaOH 越多 B、滴定突跃越大 C、滴定突跃越小 D、指示剂颜色变化越不明显
25、选择酸碱指示剂时可以不考虑的因素是 ()。
A、滴定突跃范围 B、指示剂颜色的变化和滴定方向
C、指示剂的变化范围 D、指示剂分子的摩尔质量
26、0.1000mol·L-1 的下列二元酸中,被 NaOH 标准溶液滴定时,有两个滴定突跃的是 ()。
A、 H_2SO_4 (K_{a2} =1.02×10 ⁻²) B、草酸(K_{a1} =5.19×10 ⁻² , K_{a2} =6.46×10 ⁻⁵)
C 、 H_2CrO_4 (K_{a1} =1.82×10 ⁻¹ , K_{a2} =3.24×10 ⁻⁷) D、邻苯二甲酸(K_{a1} =1.28×10 ⁻³ , K_{a2} =3.09×10 ⁻⁶)
27、滴定分析中所用的玻璃仪器,使用前不用待装溶液润洗的是()。
①移液管 ②锥形瓶 ③滴定管 ④容量瓶
A, ①②③ B, ①③ C, ②④ D, ④ E, ①②③④
28、硫酸铜溶液呈现蓝色是由于它吸收了白光中的()。
A、蓝色光 B、绿色光 C、黄色光 D、紫色光
29、符合朗伯-比尔定律的某有色溶液,当其浓度改变时,其吸收曲线上的最大吸收峰的位置(
A、向短波长方向改变 B、不变化,但峰高改变
C、向长波长方向改变 D、不变化,且峰高也不变
30、分光光度法中,选择测定波长的依据是()。
A、吸收曲线 B、标准曲线 C、滴定曲线 D、吸收曲线和标准曲线
31、同一有色溶液的质量吸光系数 a 和摩尔吸光系数 k的正确关系式是 ()。
$A \cdot a = \frac{M}{\kappa}$ $B \cdot a = \frac{\kappa}{M}$ $C \cdot a = \kappa M$ $D \cdot a = \kappa + M$
32、下列有关 Lambert-Beer 定律的数学表达式中,不正确的是 ()。

A, $-\lg \frac{1}{T} = kbc$ B, $-\lg T = kbc$ C, $T = 10^{-kbc}$ D, $\lg \frac{I_0}{I} = kbc$
33、有甲、乙两个不同浓度的同一有色物质的溶液,用同一厚度的吸收池在同一波长下测得甲的吸光度为 0.20,乙的吸光度为 0.30。若甲的浓度为 3.0×10 ⁻⁴ ,则乙的浓度为() mol·L ⁻¹ 。
A、6.0×10 ⁴ B、4.5×10 ⁴ C、3.0×10 ⁴ D、2.0×10 ⁴ 34、某有色物质的摩尔吸光系数(κ)很大,则表明()。 A、该物质溶液的浓度很大 B、测定时所用的比色皿大 C、该物质对某波长光的吸收能力很强 D、测定该物质的灵敏度低
B、 例是 B 初 , 例是 B 初 , 例是 B 初 , 例是 B 初 , 例是 B 。 B … B 。 B … B … B … B 。 B …
36 、下列反应中, Fe^{2+} 作为氧化剂的是()。 $A \times Ag^{+} + Fe^{2+} == Ag^{-} + Fe^{3+}$
B, $Zn + Fe^{2+} = Zn^{2+} + Fe$ C, $S^{2-} + Fe^{2+} = FeS$
D、 H ₂ O ₂ + 2Fe ²⁺ + 2H ⁺ == 2H ₂ O + 2Fe ³⁺ 37、 298K,将一铂丝浸入 0.10mol·L ⁻¹ Sn ²⁺ 和 0.01mol·L ⁻¹ Sn ⁴⁺ 的混合液中,电对 Sn ⁴⁺ / Sn ²⁺ 的电极电势是
() 。 。 0.05916
A, E^{θ} - $\frac{0.05916}{2}$ B, E^{θ} + $\frac{0.05916}{2}$ C, E^{θ} -0.05916 D, E^{θ}
38、已知 298K 时 $E^{\theta}(Cu^{2+}/Cu)=+0.35V$, $E^{\theta}(Fe^{3+}/Fe^{2+})=+0.77V$,反应 $Cu+Fe^{3+}(0.1mol\cdot L^{-1})=Cu^{2+}(0.01mol\cdot L^{-1})+Fe^{2+}$ 在 298K 时的平衡常数约为()。
A、10 ⁴ B、10 ⁷ C、10 ⁻¹⁴ D、10 ¹⁴ 39、下列有关氧化值的叙述中,不正确的是()。)。
A、在单质分子中,元素的氧化值为零 B、H 元素的氧化值总是+1, O 元素的氧化值总是-2 C、氧化值可以是整数或分数 D、在多原子分子中,各元素氧化值之和为零
40 、对于电池反应, $H_2O_2(c_1) + 2Fe^{2+}(c_2) + 2H^+(c_3) == 2H_2O + 2Fe^{3+}(c_4)$,欲使电池的电动势增大,可以采取的措施是()。
A 、增大 H_2O_2 B 、减小 H_2O_2 C 、增大 Fe^{3+} D 、减小 Fe^{2+} 41 、已知 $E^0(Ag^+/Ag)=+0.80V$,在下列电极反应中标准电极电势为+0.80V 的电极反应是()。 A 、 $Ag^++e^-=Ag$ B 、 $Ag=Ag^++e^ C$ 、 $2Ag^++2e^-=2Ag$ D 、都是
A、Ag +e-Ag B、Ag -Ag +e C、2Ag +2e-2Ag D、都是 42、若已知 E ^θ (Cu ²⁺ /Cu)=①,E ^θ (Sn ⁴⁺ /Sn ²⁺)=②,E ^θ (Fe ³⁺ /Fe ²⁺)=③,下列反应在标准状态下皆正向自发进行: Cu ²⁺ + Sn ²⁺ = Cu+ Sn ⁴⁺ ,Cu+2 Fe ³⁺ = Cu ²⁺ +2 Fe ²⁺ ,则有关 E ^θ 的大小顺序是()。 A、③>②>① B、②>①>③ C、③>①>② D、①>③>②
43、下列概念或观点的提出与原子光谱实验结果不符的是 ()。 A、卢瑟福建立的原子结构"行星模型" B、玻尔理论 C、电子能级分布的量子化 D、鲍林近似能级图
44、决定原子轨道的形状,同时也是影响电子能量的次要因素的量子数是()。
$A \times m_s$ $B \times m$ $C \times l$ $D \times n$ 45、下列各组量子数 (n, l, m, m_s) 中不合理的是 $($
A、2, 1, +1, +1/2 B 、3, 0, +1, -1/2 C . 2, 0, 0, -1/2 D . 3, 2, 0, -1/2 46 、根据徐光宪提出的多电子原子的原子轨道分组的定量依据,下列能量最低的原子轨道是()。
A 、 $ψ_{3,2,0}$ B 、 $ψ_{4,1,0}$ C 、 $ψ_{4,2,0}$ D 、 $ψ_{3,1,0}$ 47 、在氢原子的径向分布图中, $3d$ 轨道的峰数为(
A、1 个 B、2 个 C、3 个 D、4 个

48、基态 C 原子的电子排布式若写成 $1s^22s^22p_x^2$, 违背了 ()。
A、能量最低原理 B、泡利不相容原理 C、洪特规则 D、玻尔理论
49、在具有下列价层电子组态的基态原子中,电负性最大的是()。
A, $4s^24p^5$ B, $4d^{10}5s^1$ C, $4s^1$ D, $3d^54s^1$
50、泡利不相容原理是()。
A、电子将尽可能自旋平行分占不同等价轨道
B、同一原子中,没有运动状态完全相同的电子存在
C、电子将尽可能填充到能量最低的轨道上
D、等价轨道全满、半满或全空时比较稳定
51、关于对π键的描述,错误的是 ()。
A、原子轨道沿键轴垂直方向以"肩并肩"方式重叠 B、键能大
C 、不能单独存在,必须与 σ 键共存 D 、两原子间可形成 1 个或 2 个 π 键
52、水分子 H_2O 中氧原子采取的杂化方式是 ()。
A, sp B, sp^2 C, sp^3 D, dsp^2
53、SiF ₄ 分子的空间构型为 ()。
A、平面正方形 B、直线形 C、三角锥形 D、正四面体形
54、任意分子间普遍存在的作用为()。
A、取向力 B、色散力 C、化学键 D、氢键
55、既是非极性分子又含π键的分子是 ()。
A, CO_2 B, Cl_2 C, CH_2Cl_2 D, $HgCl_2$
56、下列表述中,正确的是()。
A、以等性杂化轨道形成的分子,其空间构型也一定对称
B、离子键和分子间力也具有方向性和饱和性
C、氢键、共价键和配位键都具有方向性和饱和性 D、氢键是一种化学键
57、下列化合物中有氢键存在的是()。
A, NH ₃ B, HCl C, C_6H_6 D, CH_3F
58、下列说法正确的是()。
A、配位数为 2 的配合物一定是内轨物 B、配合物均由内界和外界组成
C、形成配合物时,中心原子能够进行杂化的轨道是能量相近的空轨道
D、配位数为 4 的内轨型配离子,中心原子采取 sp ³ 杂化
59、下列关于螯合作用的说法,表述错误的是()。
A、起螯合作用的配体叫做螯合剂 B、有两个以上配原子的配体都可生成螯合物
C、螯合物通常比相同配原子的相应简单配合物稳定
D、螯合个体中的螯环越多,该螯合个体就越稳定
60、相同条件下,下列配离子中最稳定的是()。
A, $[CaY]^{2-}$ B, $[Ag(NH_3)_2]^+$ C, $[Cu(en)_2]^{2+}$ D, $[Cu(NH_3)_4]^{2+}$
61、已知 K _s ⁶ [Ag(CN) ₂] ⁻ >>K _s ⁶ [Ag(NH ₃) ₂] ⁺ ,反应[Ag(CN) ₂] ⁻ + 2 NH ₃ = [Ag(NH ₃) ₂] ⁺ + 2 CN ⁻ 将()。
A、无法判定 B、正向自发进行 C、处于平衡状态 D、逆向自发进行
62、已知[$_{26}$ Fe(CN) $_{6}$] ³⁻ 的磁矩 μ = $\sqrt{3}$,Fe ³⁺ 采用()杂化。
A, sp B, d^2sp^3 C, sp^3 D, sp^2
二、完成下列各题: (24分)
1、配平下列方程式(离子-电子法,写明配平步骤):(2分)
MnO_4 ⁻⁺ Cl ⁻⁺ H ⁺ $\to Mn^{2+}$ +Cl ₂ ↑+H ₂ O
2、丁铎尔现象的本质是什么?为什么溶胶会产生丁铎尔现象?(2分)

3、滴定分析对化学反应的要求是什么? (2分)

- 4、将相同温度下 HAc-NaAc 缓冲溶液的缓冲容量从大到小排列: (1.5 分)
 - A、0.10 mol·L⁻¹HAc-0.10 mol·L⁻¹NaAc 溶液
 - B、0.010 mol·L-1HAc-0.010 mol·L-1NaAc 溶液
 - C、0.15 mol·L-1HAc-0.050 mol·L-1NaAc 溶液
 - D、0.020 mol·L⁻¹HAc-0.18 mol·L⁻¹NaAc 溶液
- 5、 根据下列电对的标准电极电势,将氧化剂氧化能力从高到低排列: $(1.5\,
 m G)$ $E^{ heta}(Cu^{2+}/Cu)=+0.34v$; $E^{ heta}(Fe^{3+}/Fe^{2+})=+0.77v$; $E^{ heta}(Cl_2/Cl_1)=+1.36v$; $E^{ heta}(Ca^{2+}/Ca)=-2.868v$
- 6、原子光谱的特征是什么? 德布罗意提出的微观粒子的特性是什么,并写出联系微观粒子特性之间关系的德布罗意关系式。(2分)
- 7、 ψ 与 $|\psi|^2$ 的定义,及其角度分布图的异同点。(3 分)
- 8、已知某元素的原子序数为 35, 试写出基态该元素原子的电子排布式,并指出该元素在周期表中所属周期、族和区。(2分)
- 9、简述现代价键理论的三个基本要点。(3分)
- 10、从结构上解释为什么 H_2O 比 H_2S 具有更高的沸点? (2分)
- 11、写出[Co(NH₃)₃(H₂O)Cl₂]Cl 的名称、配位数、配体以及配位原子。(3 分)
- 三、计算题(要求有解题过程,包括公式表示,数据代入和运算结果):(14分)
- 1、常温下,已知某弱酸 HB 的 K_a^θ =1.0×10⁻⁵。现将 0.1mol NaOH 和 0.1mol HB 同时溶于水,稀释至 1 升,此溶液的 pH 值为多少?(2 分)
- 2、配制 300ml pH 为 7.51 的缓冲溶液。可供选择的缓冲系有: (1) HAc-NaAc, pKa=4.75; (2) NaH₂PO₄-Na₂HPO₄, pKa₂=7.21; (3) NaHCO₃-Na₂CO₃, pKa₂=10.33。

(lg2=0.30, lg3=0.47, lg4=0.60, lg5=0.70). (4 %)

- 3、测定某草酸试样时,称取 1.7240g 试样配成 250.0mL 溶液,取 25.00mL 溶液进行滴定,消耗 26.12mL 0.1084 mol·L-¹NaOH 溶液。计算试样中草酸的质量分数。[M(H₂C₂O₄)=90.00g·mol⁻¹](3 分)

参考答案

一、选择题: (62分)

1、C; 2、A; 3、C; 4、D; 5、B; 6、B; 7、A; 8、C; 9、C; 10、A; 11、B; 12、C; 13、C; 14、B; 15、A; 16、B; 17、D; 18、C; 19、C; 20、D; 21、D; 22、B; 23、D; 24、B; 25、D; 26、C; 27、C; 28、C; 29、B; 30、A; 31、B; 32、A; 33、B; 34、C; 35、D; 36、B; 37、A; 38、D; 39、B; 40、A; 41、D; 42、C; 43、A; 44、C; 45、B; 46、D; 47、A; 48、C; 49、A; 50、B; 51、B; 52、C; 53、D; 54、B; 55、A; 56、C; 57、A; 58、C; 59、B; 60、A; 61、D; 62、B 二、完成下列各题: (24 分)

1、答: $2 \times MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ (0.5分) $5 \times 2Cl^- \rightarrow Cl_2 \uparrow + 2e^-$ (0.5分) $2MnO_4^- + 10Cl^- + 16H^+ = 2Mn^{2+} + 5Cl_2 \uparrow + 8H_2O$ (1分)

2、答: 丁铎尔现象的本质是溶胶胶粒对光的散射作用(0.5分)。产生散射作用的必要条件是分散相粒子的直径(线性大小)略小于入射光波长(0.5分)。

溶胶粒子的直径在 1-100nm 范围内(0.5 分),略小于可见光波长(400-700nm)(0.5 分),故当可见光 照射溶胶时会发生散射产生丁铎尔现象。

- 3、答: 1. 反应按化学式所表示的计量关系进行完全; (0.5分); 2. 反应要迅速; (0.5分);
 - 3. 无副反应或能消除副反应; (0.5分) 4. 有简便可靠的确定滴定终点的方法。 (0.5分)
- 4、答: A>C>D>B

- 5、答: Cl₂>Fe³⁺>Cu²⁺>Ca²⁺
- 6、答: 原子光谱的特征是: 线状(0.5分)、不连续(量子化)(0.5分); 微观粒子的特性是:波粒二象性(0.5 分);关系式是: $\lambda = h/(mv) = h/p(0.5 分)$ 。
- 7、 答: ψ: 薛定谔方程的合理解一波函数 (原子轨道) (0.5 分); $|\psi|^2$: 电子在空间出现的概率密度(电子云)(0.5 分); 同:形状相似。(1分);异:(1)前有正负之分,而后者无;(2)前"胖"后"瘦"。(1分)
- 8、答: 35X 的核外电子排布式为: [Ar] $3d^{10}4s^24p^5$ 或者 $1s^22s^22p^63s^23p^63d^{10}4s^24p^5$ (1分), 属于第四周期 (0.5 分); VIIA族 (0.5 分)。
- 9、答:(1)当两个原子相互接近时,只有自旋方向相反的未成对电子可以配对形成共价键。 或(共价键的形成条件:两个未成对电子以相反的自旋方向配对):(1分)
 - (2) 一个原子含有几个未成对电子,就能与其他原子的几个自旋方向相反的未成对电子配对形成共 价键。或(共价键具有饱和性:一个原子的成键数目取决于该原子的未对电子数:)(1分)
 - (3) 当两个原子形成共价键时,其原子轨道要尽可能地发生最大程度重叠。或(共价键具有方向性 : 共价键的形成将沿原子轨道最大重叠的方向进行。)(1分)
- 10、答: H₂O 分子间除了范德华力外,还有较强的氢键(1分)。而 H₂S 分子间只有较弱的范德华力(1 分)。
- 11、答: [Co(NH₃)₃(H₂O)Cl₂]Cl 的名称是 氯化二氯·三氨·水合钴(III),(1分) 配位数是 6 (0.5 分), 中心原子是 Co3+ (0.5 分), 配体是 Cl⁻, H₂O, NH₃ (0.5 分), 配位原子是 Cl, O, N (0.5 分)。
- 三、计算题(要求有解题过程,包括公式表示,数据代入和运算结果):(14分)
- 1、解: 此混合液为 $0.1 \text{mol} \cdot \text{L}^{-1} \text{NaB}$ 溶液, $K_b = 10^{-14} / 1.0 \times 10^{-5} = 1.0 \times 10^{-9}$ (0.5 分) $cK_b \ge 20K_w$, $c/K_b \ge 400$ (0.5 分)

[OH⁻]=
$$\sqrt{K_b c} = \sqrt{10^{-9} \times 0.1} = 1.0 \times 10^{-5}$$
 (0.5 $\%$)

pOH=5.0 pH=9.0 (0.5 分)

2、解: 选择的缓冲系是 NaH₂PO₄-Na₂HPO₄, (0.5 分)

配制等浓度 0.1 mol·L-1 的 NaH₂PO₄ 和 Na₂HPO₄. (0.5分)

设:需 NaH₂PO₄ 溶液 VmL,则 Na₂HPO₄ 溶液(300-V)mL pK_a=7.21

pH = 7.21 + lg
$$\frac{[HPO_4^{2^{--}}]}{[H_2PO_4^{--}]}$$
 7.51 = 7.21+ lg $\frac{300 - V}{V}$ (1分)
 $0.3 = lg \frac{300 - V}{V}$
 $2 = \frac{300 - V}{V}$ $V = 100 (mL)$ —NaH₂PO₄体积 (1分)
 $300 - 100 = 200 (mL)$ —Na₂HPO₄体积 (1分)

配制:取 100mLNaH2PO4,200mL Na2HPO4混合即可。

3、解: $H_2C_2O_4 + 2NaOH = Na_2C_2O_4 + 2H_2O$ (0.5 分); $n (H_2C_2O_4) = 1/2n (NaOH)$ (0.5 分)

解:
$$H_2C_2O_4 + 2NaOH = Na_2C_2O_4 + 2H_2O$$
 (0.5 分); n ($H_2C_2O_4$) = $1/2n$ (NaOH) (0.5 ω ($H_2C_2O_4$) = $\frac{0.1084 \times \frac{26.12}{2000} \times 90.00}{\frac{1.7240}{250.0} \times 25.00} = 0.7391 = 73.91\%$ (2 分,其中有效数字占 1 分)

4、解:
$$E(Ox/Red) = E^{\theta}(Ox/Red) + \frac{0.05916}{z} \lg \frac{a_o^{\nu_o}}{a_p^{\nu_R}}$$