Лекция 8

Ilya Yaroshevskiy

9 апреля 2021 г.

Содержание

1 Исчесление предиктов

1

1 Исчесление предиктов

Теорема 1.1 (Геделя о полноте ИП). У любого н.м.з.ф. (непротиворечивого множества замкнутых формул) ИП существует модель

Теорема 1.2. Если формула ϕ — замкнутая формула ИП

Доказательство. См. ДЗ

 $\Pi pumeчaнue$. Рассмотрим Γ — н.м.з.ф. — рассмотрим Γ' — полное расширение Γ . Пусть φ — фомула из Γ' , тогда найдется $\psi in\Gamma'$, что ψ — с поверхностными кванторами и $\vdash \varphi \to \psi$, $\vdash \psi \to \varphi$

Доказательство теоремы Геделя о полноте ИП. Рассмотрим множество констант (нуль местных функциональных символов) — d_i^i . Построим $\{\Gamma_j\}$:

$$\Gamma' = \Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \cdots \subseteq \Gamma_i \subseteq \cdots$$

Переход $\Gamma_j \Rightarrow \Gamma_{j+1}$: рассмторим все формулы из Γ_j : $\{\gamma_1, \gamma_2, \gamma_3, \dots\}$

- 1. γ_i формула без кванторов оставим на месте
- 2. $\gamma_i \equiv \forall x.\varphi$ добваим к Γ_{j+1} все формулы вида $\varphi[x:=\Theta]$, где Θ составлен из всех ф.с. ИП и констант вида d_1^k,\dots,d_j^k
- 3. $\gamma_i \equiv \exists x. \varphi$ добавим одну формулу $\varphi[x := d^i_{j+1}]$

Утв. 1 $Gamma_{i+1}$ непр., если Γ_i — непр.

Докажем от противного. $\Gamma_{i+1} \vdash \beta \& \neg \beta$

$$\Gamma_i, \gamma_1, \dots, \gamma_n \vdash \beta \& \neg \beta \quad \gamma_i \in \Gamma_{i+1} \setminus \Gamma_i$$

$$\Gamma_i \vdash \gamma_1 \to \gamma_2 \to \cdots \to \gamma_n \to \beta \& \neg \beta$$

 γ_i — замкнутое \implies т. о дедукции. Докажем что $\Gamma_i \vdash \beta \& \neg \beta$ по индукции.

$$\Gamma_i \vdash \gamma \to \varepsilon$$

Покажем $\Gamma_i \vdash \varepsilon$, т.е. γ получен из $\forall x.\xi$ или $\forall x.\xi \in \Gamma_i$

 $(\forall x.\xi)$ Заметим, что $\Gamma_i \vdash \forall x.\xi$

$$\begin{array}{ll} \vdots & \text{по условию} \\ \gamma \to \varepsilon & \text{по построению } \Gamma_{i+1} \\ \forall x.\xi \to (\underbrace{\xi[x:=\Theta]}_{\gamma}) & (\text{акс. } 11) \\ \\ (\forall x.\xi) \to \varepsilon & \left| \begin{matrix} \eta \to \xi \\ \xi \to \kappa \end{matrix} \right. \Longrightarrow \, \eta \to \kappa \\ \forall x.\xi \\ \varepsilon & (\text{M.P.}) \\ \end{array}$$

$$(\exists x.\xi)$$

$$\Gamma_i \vdash \overbrace{\xi[x := d_{i+1}^k]}^{\gamma} \to \varepsilon$$

Заметим, что d_{i+1}^k не входит в ε . Заменим все d_{i+1}^k в доказательстве на y — новая перменная

$$\begin{split} &\Gamma_i \vdash \xi[x := y] \to \varepsilon \\ \exists y. \xi[x := y] \to \varepsilon \\ &(\exists x. \xi x) \to (\exists t. \xi[x := y]) \\ &(\exists x. \xi) \to \varepsilon \\ \exists x. \xi \end{split}$$

Исправить

Утв. 2 Γ^* — непр. $\Gamma_0 \vdash \gamma_1 \to \cdots \to \gamma_n \to \beta \& \neg \beta$

$$\Gamma_{\max_i(0..n)} \vdash \beta \& \neg \beta$$

Значит Γ_{\max} — противоречиво, $\Gamma^{\triangle} = \Gamma^*$ без кванторов Значит у Γ^{\triangle} есть модель M

Утв. 3 $\gamma \in \Gamma'$, то $[\![\gamma]\!]_M = \mathcal{U}$

Индукция по количеству кванторов в γ . Рассмторим:

1. $\gamma \equiv \forall x.\delta$ $\llbracket \forall x.\delta \rrbracket$, если $\llbracket \delta \rrbracket^{x:=\kappa} = \mathsf{И}, \kappa \in D$. Рассмотри $\llbracket \delta \rrbracket^{x:=\kappa}$, $k \in D$. κ содержит константы и фс., κ осмысленно Γ_p . δ добавлена на шаге q. Рассмотрим шаг $\Gamma_{\max(p,q)} \ \forall x.\delta : \Gamma_{\max(p,q)+1}$

2. $\gamma \equiv \exists x.\delta$ — аналогично

Теорема 1.3. ИП неразрешимо

Определение. Язык — множество слов. Язык $\mathcal L$ разрешим, если существует A — алгоритм, что по слову w:

A(w) — останавливается в '1', если $w \in \mathcal{L}$ и '0', если $w \notin \mathcal{L}$

Примечание. Проблема останова: не существует алгоритма, который по программе для машина Тьюринга ответит, остановится она или нет.

Пусть \mathcal{L}' — язык всех останов программы для машины Тьюринга. \mathcal{L}' неразрешим

 Π римечание. [a, b, c, d, e] = cons(a, cons(b, cons(c, cons(d, cons(e, nil))))) A — алфавит ленты

добавлена $\delta[x:=\kappa]$. $\delta[x:=\kappa]$ — меньше на 1 квантор, $[\![\delta[x:=k]]\!]= H$

$$\left. egin{aligned} S_x, & x \in A \\ e-\mathrm{nil} \end{array} \right\} \, - 0$$
-местные функциональные символы

C(a,b)-2-местные функциональные символы

 $b_s, s \in \mathcal{S}$ — множество всех состояний, b_0 — начальное состояние.

$$C(s_c, C(s_b, C(s_a, e)))$$
 $C(s_d, C(s_e, e))$

Заведем предикат, которых отвечает было ли состояние в процессе. Начальное состояние — машина Тьюринга запущена на строке α :

$$R(\alpha, e, b_0)$$

Переход:

$$(s_x, b_s) \to (s_y, b_t, \leftrightarrow)$$

 $(s_x, b_s) \to (s_y, b_t, \leftarrow)$

Если пермещение законно, то можем построить для каждого такие правила:

$$\forall z. \forall w. R(C(s_x, z), w, b_s) \rightarrow R(C(s_y, z), w, b_t)$$

$$\dots R(z, C(s_u, w), b_t)$$

Сделаем коньюнкцию вех эти правил: $R(\dots)\&R(\dots)\&\dots\&R(\dots)\to\exists z.\exists.R(z,w,b_\triangle)$ Исправить

Π ример.

1. $R(C(s_k,e),e,b_0)$ — доказуемо(мы так сказали) Двинем голвку вправо:

$$\forall x. \forall y. R(C(s_k, x), y, b_0) \rightarrow R(x, C(s_k, y), b_1)$$