(I-frame) followed by a plurality of pair-of predictively encoded frames (PB-frame pairs), each PB-frame pair having a corresponding P-block:

dividing each I-frame or PB-frame pair into a plurality of spatially non-overlapping blocks of pixel data:

encoding the blocks from the I-frame (I-blocks) independently from any other frames in the group of pictures:

predictively encoding the blocks from the second frame of the PB-frame pair (P-blocks), based on the I-blocks in the previous I-frame or the P-blocks in the previous PB-frame pair:

10

15

bi-directionally predictively encoding the blocks from the first frame of the PB-frame pair (B-blocks), based on the I-blocks in the previous I-frame or the P-blocks in the previous PB-trame pair and the corresponding P-block in the current PB-frame pair:

deriving a scaled forward motion vector and a scaled backward motion vector for the B-block by scaling the motion vector of the corresponding P-block in the current PB-frame pair:

obtaining a final forward motion vector for the B-block by adding a delta motion vector to the scaled forward motion vector; and

obtaining a final backward motion vector for the B-block by subtracting the delta motion vector from the scaled backward motion vector.

2. A method for encoding a sequence of video image frames according to claim 1, wherein

the scaling of the motion vector is based on a temporal reference of the first and second frames of the PB-frame pair.

3. A method for encoding a sequence of video image frames according to claim 1. further comprising the step of forming an encoded output, wherein the encoded output is a bitstream comprising:

temporal reference information for the first and second frames of the PB-frame pairs:

motion vector information for the P-blocks:

quantized residual error information for the P-blocks: delta motion vector information for the B-blocks; and quantized residual error information for the B-blocks.

4. A method for encoding a sequence of video image frames according to claim 3, wherein

the output bitstream contains additional information to indicate the presence of at least one of:

the delta motion vector information for the B-blocks; and the quantized residual error information for the B-blocks. 5. A method for decoding a sequence of video image

frames comprising the steps of:

decoding the compressed video image sequence as a set of group of pictures, each group of pictures comprising an I-frame followed by a plurality of PB-frame pairs, each 55 PB-frame pair having a corresponding P-block:

decoding each I-frame or PB-frame pair into a plurality of spatially non-overlapping blocks of pixel data:

decoding the I-blocks from the I-frame independently from any other frames in the group of pictures:

predictively decoding the P-blocks from the second frame of the PB-trame pair based on the I-blocks in the previous I-frame or the P-blocks in the previous PB-frame pair:

63 bi-directionally predictively decoding the B-blocks from the first frame of the PB-frame pair based on the I-blocks in the previous I-frame or the P-blocks in the

previous PB-frame pair and the corresponding P-block in the current PB-frame pair: deriving a scaled forward motion vector and a scaled backward motion vector for the B-block by scaling the 5 motion vector of the corresponding P-block in the current PB-frame pair: obtaining a final forward motion vector for the B-block by adding a delta motion vector to the scaled forward motion vector; and obtaining a final backward motion vector for the B-block by subtracting the delta motion vector from the scaled backward motion vector. 6. A method for decoding a sequence of video image frames according to claim 5. further comprising the step of 15 forming a decoded output, wherein the decoded output is responsive to a bitstream comprising: temporal reference information for the first and second frames of the PB-frame pairs: motion vector information for the P-blocks: quantized residual error information for the P-blocks: the delta motion vector information for the B-blocks: and quantized residual error information for the B-blocks. 7. A method for decoding a sequence of video image 25 frames according to claim 6. wherein the bitstream contains additional information to indicate the presence of at least one of: the delta motion vector information for the B-blocks: and the quantized residual error information for the B-blocks. 8. A method of decoding a sequence of video image frames according to claim 5, wherein the scaling is based on a temporal reference of the first and second frames of the PB-frame pair. 9. An apparatus for encoding a sequence of video image frames comprising: means for encoding each frame in a sequence of video image frames into a set of group of pictures, each group of pictures comprising an I-frame followed by a plu- 40 rality of PB-frame pairs: means for dividing the I-frame and the PB-frame pair into a plurality of spatially non-overlapping blocks of pixel means for encoding and decoding the I-blocks of the 45 I-frame independently from any other frames in the group of pictures: means for storing the decoded I-blocks to predictively encode subsequent frames: means for predictively encoding and decoding the P-blocks of the second frame of the PB-frame pair based on the I-blocks in the previous I-frame or the P-blocks in the previous PB-frame pair: means for storing the decoded P-blocks to predictively 55 encode subsequent frames: means for deriving a scaled forward motion vector and a scaled backward motion vector for a B-block by scaling the motion vector of the corresponding P-block in the current PB-trame pair, the B-block being the first frame & of the PB-frame pair: means for obtaining a final forward motion vector for the B-block by adding a delta motion vector to the scaled forward motion vector: means for obtaining a final backward motion vector for 65 the B-block by subtracting the same delta motion vector from the scaled backward motion vector; and

means for encoding the B-blocks of the first frame of the PB-frame pairs based on the I-blocks in the previous I-frame or the P-blocks in the previous PB-frame pair and the corresponding P-block in the current PB-frame pair using the final forward motion vector and the final backward motion vector.

10. An apparatus for decoding a sequence of video image frames comprising:

means for decoding each frame in a sequence of video image frames into a set of group of pictures, each group of pictures comprising an I-frame followed by a plurality of PB-frame pairs:

means for decoding the I-blocks of the I-frame independently of any other frames in the group of pictures:

means for storing the decoded I-blocks to predictively decode subsequent frames:

means for decoding the P-blocks of the second frame of the PB-frame pair based on the I-blocks in the previous I-frame or the P-blocks in the previous PB-frame pair:

means for storing the decoded P-blocks to predictively decode subsequent frames:

means for deriving a scaled forward motion vector and a scaled backward motion vector for a B-block by scaling the motion vector of the corresponding P-block in the current PB-frame pair, the B-block being the first frame of the PB-frame pair.

means for obtaining a final forward motion vector for the B-block by adding a delta motion vector to the scaled forward motion vector;

means for obtaining a final backward motion vector for the B-block by subtracting the delta motion vector to the scaled backward motion vector; and

means for decoding the B-blocks of the first frame of the PB-frame pairs based on the I-blocks in the previous I-frame of the P-blocks in the previous PB-frame pair and the corresponding P-block in the current PB-frame pair using the final forward motion vector and the final backward motion vector.

11. A method for encoding a sequence of video image frames comprising the steps of:

dividing a source sequence into a plurality of groups of pictures, each group of pictures comprising a fir frame (I-frame) followed by a plurality of pairs of predictively encoded frames (PB-frame pairs):

dividing each I-trame or PB-trame pair into a plurality of blocks:

so encoding the blocks from the I-frame:

predictively encoding the blocks from the second frame of the PB-frame pair:

bi-directionally predictively encoding the blocks from the first frame of a PB-frame pair (B-blocks):

deriving a scaled forward motion vector and a scaled backward motion vector for the B-block:

obtaining a final forward motion vector for the B-block by adding a delta motion vector to the scaled forward motion vector; and

obtaining a final backward motion vector for the B-block by subtracting the delta motion vector from the scaled backward motion vector.

12. An apparatus for encoding a sequence of video image

65 frames comprising:

means for dividing a source sequence into a plurality of groups of pictures, each group of pictures comprising a

first frame (I-frame) followed by a plurality pairs of predictively encoded frames (PB-frame pairs):

means for dividing each I-frame or PB-frame pair into a plurality of blocks:

means for encoding the blocks from the I-frame:

means for predictively encoding the blocks from the second frame of the PB-frame pair;

means for bi-directionally predictively encoding the blocks from the first frame of a PB-frame pair (B-blocks);

means for deriving a scaled forward motion ved scaled backward motion vector for the B-block

means for obtaining a final forward motion vector for the B-block by adding a delta motion vector to the scaled forward motion vector; and

means for obtaining a final backward motion vector for the B-block by subtracting the delta motion vector from the scaled backward motion vector.

1	13. A method for decoding a
2	compressed video image sequence of a
3	group of pictures including an I-frame
4	followed by a plurality of P-frames and B-
5	frames, comprising the steps of:
6	decoding a block in the I-
7	frame independently from any other frames
8	in the group of pictures;
9	predictively decoding a block
10	in a P-frame based on the previous I-frame
11	or a previous P-frame;
12	bi-directionally predictively
13	decoding a block in a B-frame based on the
14	previous I-frame or a previous P-frame and
15	a block in a P-frame positioned after the B-
16	frame;
17	deriving a scaled forward
18	motion vector and a scaled backward motion
19	vector for the block in the B-frame by
20	scaling a motion vector of the block in the
21	P-frame positioned after the B-frame;
22	obtaining a final forward
23	motion vector for the block in the B-frame
24	by adding a delta motion vector to the scaled
25	forward motion vector; and

26	obtaining a final backward
27	motion vector for the block in the B-frame
28	by adding the delta motion vector to the
29	scaled backward motion vector.
	14 4
1	14. A method of decoding a
2	sequence of video image frames according
3	to claim 13, wherein the deriving step
4	includes:
5	scaling of the forward and
6	backward motion vectors is based on a
7	temporal reference of the B-frame and the P
8	frame.
1	15. A method for decoding a
2	sequence of video image frames according
3	to claim 13, further comprising the step of
4	forming a decoded output, wherein the
5	decoded output is responsive to a bitstream
6	comprising:
7	temporal reference
8	information for the B-frame and the P-
9	frame;
10	motion vector information for
11	the block in the P-frame;
12	quantized residual error
13	information for the block in the P-frame;

14	the delta motion vector
15	information for the block in the B-frame;
16	<u>and</u>
17	quantized residual error
18	information for the block in the B-frame.
1	16. A method for decoding a
2	sequence of video image frames according
3	to claim 15, wherein
4	the bitstream contains
5	additional information indicating a presence
6	of at least one of
7	the delta motion vector
8	information for the block in the B-frame;
9	and
10	the quantized residual error
11	information for the block in the B-frame.