66.70 Estructura del Computador

Sistemas numéricos

Sistemas para la representación de números

√ ¿Qué número representa "112"?

✓ Números en la tecnología digital

Sistemas para la representación de números

Para representar números necesitamos símbolos y una forma de organizarlos

 Desarrollo histórico: marcas en bastones, nudos en una cuerda,...

Problema con los valores altos

Sistemas para la representación de números

Solución al problema de valores altos:

- Con números pequeños se van agregando unidades por medio de marcas
- 2) Cuando se alcanza un determinado número se hace una marca distinta

 Históricamente el "punto de corte" usado por diversas culturas fue el 10 (cantidad de dedos en las manos)

Símbolos en el sistema egipcio

Han utilizado sistemas aditivos las civilizaciones:

- Egipcia
- sumeria (de base 60, sexagesimal)
- hitita, cretense,
- azteca (de base 20)
- romana
- las alfabéticas de los griegos, armenios, judíos y árabes

Sistema griego

Los números parecen palabras compuestas por letras

=> las palabras tienen un valor numérico (hay que sumar las cifras que corresponden a las letras que las componen)

Aparecer una nueva suerte de disciplina mágica que estudiaba la relación entre los números y las palabras.

En algunas sociedades como la judía y la árabe, que utilizaban un sistema similar, el estudio de esta relación ha tenido una gran importancia y ha constituido una disciplina aparte: la kábala, que persigue fines místicos y adivinatorios.

Símbolos en el sistema árabe

· 1 7 % £ 6 7 7 8 9

Sistemas de Numeración Posicionales

- El sistema decimal es posicional
- Desarrollado en India antes del siglo VII e introducido en Europa por los árabes.
- Entre el sistema actual y el de los Indios sólo hay diferencias en la forma que escribimos los 9 dígitos y el cero
- Babilonios, chinos y mayas en distintas épocas llegaron al mismo principio

Sistemas de Numeración Posicionales

- Símbolos
- Peso de cada posición

Ejemplos:

- Base 10
- Base cualquiera (base 3, octal, hexadecimal. etc.)

- Representar 42 en diferentes bases

Conversión entre diferentes bases

Casos:

- Conversión de cualquier base a base 10
- Conversión de base 10 a otra base
- Conversión entre dos bases diferentes de 10
- Bases potencias de otras bases

Conversión entre bases - Métodos

- A base 10 -> sumatoria
- De base 10 a otra base -> Divisiones sucesivas
- Estimación en base a los pesos a incluir en la sumatoria
- Base que es potencia de otra base:
 - Agrupar y convertir cada grupo en un dígito
 - Desagrupar dígito a dígito

Conversión entre bases

	Binary (base 2)	Octal (base 8)	Decimal (base 10)	Hexadecimal (base 16)
	0	0	0	0
	1	1	1	1
	10	2	2	2
	11	3	3	3
	100	4	4	4
	101	5	5	5
	110	6	6	6
	111	7	7	7
	1000	10	8	8
A	1001	11	9	9
	1010	12	10	A
	1011	13	11	В
	1100	14	12	C
	1101	15	13	D
	1110	16	14	E
	1111	17	15	F

Menor la base -> mayor cantidad de dígitos

- Representar 2532 en binario

Elección de un sistema de representación numérica

- Rango representable
 - Cuántos valores distintos?
 - Cuál es el valor máximo?
 - Cuál es el valor mínimo?

Precisión

Distancia entre valores sucesivos (tiene sentido en números con parte fraccionaria)

Ej.; Procesador de 16 bits

Números con parte fraccionaria sistema de punto fijo

- Base cualquiera
- Base binaria
- Conversión desde y hacia base 10
- Precisión de la conversión

Sistemas para representar números enteros con signo

- Magnitud y signo
- Complemento a la base menos 1
- Complemento a la base

Números enteros con signo

Decimal	Two's Complement	Ones' Complement	Signed Magnitude
-8	1000	J / 1.7%	/ · · · · · · · · · · · · · · · · · · ·
-7	1001	1000	1111
-6	1010	1001	1110
-5	1011	1010	1101
-4	1100	1011	1100
-3	1101	1100	1011
-2	1110	1101	1010
-1	1111	1110	1001
0	0000	1111 or 0000	1000 or 0000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111

Suma de números binarios

Indicadores (flags)

- C Carry
- V Overflow
- Z Cero
- N Signo
- P Paridad

Operación resta en binario

- Forma directa
- Como suma del complemento
- "Borrow"

Ley asociativa del algebra de números VS. Computadoras

El <u>álgebra</u> dice que:

$$a + (b + c) = (a + b) + c$$

$$a = 90$$
 $b = 165$
 $c = -50$

Procesador de 8 bits

Qué dice la computadora?

Suma de dos o más números definidos con distinta cantidad de bits

Enteros sin signo

Enteros con signo

"EXTENSIÓN" DEL SIGNO

Otras operaciones básicas

Multiplicación y **división** por desplazamientos a izquierda o derecha

- ✓ Implementación sencilla
- ✓ Alta velocidad de proceso

Caso general

Multiplicación

División

Dentro de pocas semanas...

Representación de Números con parte fraccionaria

