南京大学数学课程试卷 (商学院 17级)

2018/2019 学年 第 一 学期 考试形式 闭卷 课程名称 概率统计 (A 卷)

考试时间_2019.1.2 系别 ______ 学号 ______ 姓名_____

题号	— 48	二 12	三 10	四 10	五 10	六10	合计
得分							

 $\Phi(1.0)=0.8413$, $\Phi(1.28)=0.90$, $\Phi(1.5)=0.9332$ $\Phi(1.64)=0.95$. Φ (1.96) = 0.975, Φ (2)=0.977 $t_{0.025}(16) = 2.1199, t_{0.05}(16) = 1.7459$

一、填空题(共48分,每题4分)

- 1. 在房间里有 10 个人, 分别佩戴从 1 号到 10 号的记念章, 任选 3 人记录其 记念章的号码、则最大号码为 5 的概率是:。。
- 2. 假设 $X \sim N(\mu, 4)$, μ 为未知参数 , X_1, X_2, \dots, X_n 为来自 X 的一个样本,则

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \sum_{i=1}^{n-1} X_i - X_n, \sum_{i=1}^{n} (X_i - \mu)^2 / 4$$
 中为统计量的有______个

3. 已知 $T\sim t(n)$,则 $\frac{1}{T^2}\sim$ _______, X_1,\cdots,X_{10} 为来自正态总体 $X\sim N(\mu,\sigma^2)$ 的一个样本,

则
$$\frac{\displaystyle\sum_{i=1}^{10}\left(X_{i}-\overline{X}\right)^{2}}{\sigma^{2}}\sim$$

4. 设总体 $X \sim U(2,6)$, $X_1, X_2, \cdots X_n$ 为其样本,则样本均值的期望 $E(\overline{X}) =$ _______,

$$ES^2 =$$

5.设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3 为其样本,则当常数 $a = _____$ 时, $\mu = \frac{1}{3}X_1 + aX_2 + \frac{1}{6}X_3$

是未知参数 // 的无偏估计.

- 6. 设 总 体 $X \sim N(\mu, \sigma^2)$,并 且 μ 未 知, $X_1, X_2, \cdots X_n$ 为 一 个 样 本,则 对 假 设 $H_0: \sigma^2 = \sigma_0^2 \leftrightarrow H_1: \sigma^2 \neq \sigma_0^2$ 进行检验时,采用的统计量为
- 7. 设 $X \sim N(\mu,9)$, $X_1, X_2, \cdots X_n$ 为一个样本,则 μ 的一个置信度为 0.95 的置信区间为

9. 设 n_A 是 n 次独立重复试验中 A 发生的次数, P(A) = p,则对任意 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\{\left|\frac{n_A}{n}-p\right|\geq \varepsilon\}\leq \underline{\hspace{1cm}}$$

10. 设总体 X 的概率分布为

X	1	2	3
P	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0 < \theta < 1)$ 是未知参数,利用总体 X 的如下样本值 3, 2, 1, 1, 2, 2, 3;

则 θ 最大似然估计值为

11. 设 X_1,X_2,\cdots,X_{n+1} 是 来 自 正 态 总 体 N(12,4) 的 样 本 ,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i,S}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X}), 则 \frac{X_{n+1} - \overline{X}}{S} \sqrt{\frac{n}{n+1}}$$
 服从______ 分布。

12. 设 $X_1, \cdots X_{100}$ 是取自正态总体N(0,1) 的样本 ,则 $P(-0.1 < \overline{X} < 0.1) = _____$ 。

得 分			$\int A$	x < 1
	二、(12 分)设随机变量 X 的概率密度为	p(x)=	$\sqrt{1-x^2}$,	$ x \leq 1$
			0 ,	$ x \ge 1$

试求: (1) 系数 A; (2) X 落在 (-0.5, 0.5) 内的概率; (3) X 的分布函数 F(x); (4) Y=arcsin X 的密度函数,并说明 Y 服从什么分布.

得 分

三、(10分) 计算器在进行加法时将每个数舍入最靠近它的整数,设所有的误差相互独立且服从(-0.5,0.5)上的均匀分布,求:

- (1) 若将 1200 个数相加,误差总和的绝对值超过 15 的概率。
- (2) 最多多少个数相加使得误差总和的绝对值小于 10 的概率不小于 0.9。

得 分

四、(10 分)设 $X_1,\ldots X_n$ 是来自总体 $\mathbf X$ 的一个样本, $\mathbf X$ 的密度函数为

 $f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}} & x \ge \mu, \text{ 用矩估计法估计} \theta \pi_{\mu} \text{ 的估计量.} \\ 0 & x < \mu \end{cases}$

得 分

(10分)考察甲、乙两台包装机的包装质量有无差异、分别抽取了9袋产品、分别 测得两组数据(单位:kg),计算得甲包装机包装重量的均值 \overline{X} =22,样本方差 S_1^2 = 1.6,

乙包装机包装重量的均值 $\overline{Y}=20$,样本方差 $S_2^{\ 2}=2.4$,问在两台包装机的包装质量有无显著差异? (显著水平 α =0.05)设两台包装机的包装重量 X,Y 都服从正态分布,且方差相同。

六、(10 分) 已知 (X_1,\dots,X_n) 是取自正态总体 $N(0,\sigma^2)$ 的样本,其中 σ^2 未知。

已知 $\sigma_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$, $\sigma_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ (1) 证明: σ_1^2 , σ_2^2 都是 σ^2 的

无偏估计; (2) 比较 σ_1^2 , σ_2^2 哪个更有效,即均方误差较小; (3) 证明 σ_1^2 , σ_2^2 都 是 σ^2 的相合估计。