1. What assumptions does linear regression make?

A	nswer:
1.	Linearity : The relationship between each predictor and the response is linear.
2.	Independence: Observations (and residuals) are independent.
3.	Homoscedasticity: Residuals have constant variance across predictor values.
4.	Normality of Errors: Residuals (errors) are normally distributed (important for inference).
5.	No or Low Multicollinearity: Predictors are not highly correlated with each other

2. How do you interpret the coefficients?

Answer:

•	A coefficient represents the expected change in the response variable for a one-unit increase in predictor , holding other predictors constant.				
•	Sign: Positive indicates a direct relationship; negative indicates an inverse relationship.				
•	Magnitude: Larger absolute values imply stronger effects (e.g., means each unit increase in increases the prediction by 2.5 units).				
3. What is R ² score and its significance?					
Answer:					

R² (coefficient of determination) measures the proportion of variance in the response explained by the model.

 $\label{eq:Adjusted R2} \textbf{Adjusted R2} \ \text{is preferred in multiple regression to account for the number of predictors}.$

Range: 0 to 1; values closer to 1 indicate a better fit.

4. When would you prefer MSE over MAE?

Answer:

- MSE (Mean Squared Error) penalizes larger errors more heavily (squaring amplifies outliers).
- MSE is differentiable, making it suitable for analytic solutions and gradient-based optimization.
- Use MAE (Mean Absolute Error) when robustness to outliers is more important.

5. How do you detect multicollinearity?

Answer:

Variance Inflation Factor (VIF): A VIF > 5-10 indicates problematic collinearity.

Correlation Matrix: L	ook for predictor pairs	s with high absolute	e correlation ().

Condition Number of the design matrix: Values > 30 signal ill-conditioning.

6. What is the difference between simple and multiple regression?

Answer:

Simple Regression: One predictor ().

Multiple Regression: Two or more predictors ().

Multiple regression models more complex relationships and controls for confounders.

7. Can linear regression be used for classification?

Answer:

- Not directly, as it predicts continuous outcomes.
- Thresholding its predictions can produce a classifier (e.g., >0.5 🛭 class 1), but this may yield values outside [0,1] and lacks probabilistic interpretation.
- Logistic regression is preferred for classification tasks.

8. What happens if you violate regression assumptions?

Answer:

Biased/Inefficient Estimates: E.g., heteroscedasticity inflates variance of estimates.

Invalid Inference: P-values and confidence intervals become unreliable.

Poor Generalization: Misspecified models may not predict well on new data.

Remedies: Transformations, robust methods, regularization, or revisiting model specification.