Introduction to Theoretical Computer Science, Fall 2024 Assignment 9 Solutions

Q1. Since $A \in \mathcal{P}$, A is decided by some deterministic Turing machine M_A with polynomial running time.

Construct a deterministic Turing machine $M_{\overline{A}}$ as follows.

```
M_{\overline{A}} = on input w:

1. Run M_A on w

2. If M_A accepts w

3. Reject w

4. Else (M_A rejects w)

5. Accept w
```

It is easy to see that $M_{\overline{A}}$ decides \overline{A} in polynomial time. Therefore, $\overline{A} \in \mathcal{P}$.

Q2. Since $A \in P$, there is some polynomial-time Turing machine M_A that decides A. We construct a Turing Machine M_{A^*} to decide A^* as follows. We use dp[i] to record whether or not $y_1 \cdots y_i \in A^*$.

```
M_{A^*} = \text{ on input "} y = y_1 \cdots y_n":
            1. For i = 1, ..., n:
                 Run M_A on y_1 \cdots y_i,
            3.
                 If M_A accepts y_i:
                     dp[i] = 1.
            4.
                  For j = 1, ..., i - 1:
            5.
                    If dp[j] = 1 and M_A accepts y_{j+1} \cdots y_i:
            6.
                          dp[i]=1.
           7.
            8. If dp[n] == 1:
                 accept.
            10. Else:
            11.
                   reject.
```

Since M_A runs in poly(n) time, M_{A^*} runs in $O(n^2poly(n))$ time.

- Q3. By the conclusion of Q1, we know that $A \in \mathcal{P}$ implies that $\overline{A} \in P$. Since $\mathcal{P} \subseteq \mathcal{NP}$, we have $A \in \mathcal{NP}$ and $\overline{A} \in \mathcal{NP}$. Therefore, $A \in \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
- Q4. It is easy to see that DOUBLE-SAT is in NP. We give a reduction from SAT to DOUBLE-SAT as follows.

Given an instance F of SAT with m clauses, say $C_1 \wedge \cdots \wedge C_m$, we do the following: We let y be a new Boolean variables, and construct an equivalent instance of DOUBLE-SAT by adding a new clause $y \vee \bar{y}$, that is, $F' = F \wedge (y \vee \bar{y})$. If F' has at least two satisfying assignments, it is straightforward that F must be satisfiable. If F is satisfiable, then by letting y = 0 or y = 1, F' has at least two satisfying assignments. So DOUBLE-SAT is NP-Complete.

Q5. It is easy to see that DOMINATING-SET is in NP. We give a reduction from VERTEX COVER problem to DOMINATING-SET as follows.

Given an instance (G = (V, E), k) of VERTEX COVER, we construct an equivalent instance $(G' = (V \cup V_E, E \cup E_V), k)$ of DOMINATING-SET, where $V_E = \{v_e : e \in E\}, E_v = \{(u, v_e) : e \in E\}$

 $e=(u,v)\in E\}$. That is, for each edge e=(u,v) of G, we construct a new vertex v_e and two edges (u,v_e) and $e_2=(v,v_e)$.

Now we prove that G' has a dominating set with k nodes if and only if G has a vertex cover with k nodes. If G has a vertex cover S with k nodes, it is easy to see that S is also a dominating set for G'. Suppose that G' has a dominating set S' with k nodes. S' may contain vertices from V_E and therefore, may not be a vertex cover for G. But we can replace any node $v_e \in S' \cap V_E$ with an endpoint of e. The resulting set would be a vertex cover for G. So DOMINATING-SET is NP-Complete.