Calcul différentiel 2

Table des matières

. Inversion locale et fonctions implicites	2
1.1. Théorème d'inversion locale · · · · · · · · · · · · · · · · · · ·	 2
1.2. Théorème des fonctions implicites · · · · · · · · · · · · · · · · · · ·	 4
. Sous-variétés de \mathbb{R}^n	6
2.1. Sous-variétés · · · · · · · · · · · · · · · · · · ·	 6
2.2. Espace tangent à une sous-variété · · · · · · · · · · · · · · · · · ·	 7
. Extrema liés	8
. Équations différentielles	8
4.1. Résultats fondamentaux · · · · · · · · · · · · · · · · · · ·	 8
4.1.1. Équations différentielles du premier ordre · · · · · · · · · · · · · · · · · · ·	 8
4.1.2. Problème de Cauchy	 9

1. Inversion locale et fonctions implicites

1.1. Théorème d'inversion locale

Définition 1.1. Soit $k \in \mathbb{N} \setminus \{0\} \cup \{+\infty\}$, U et V deux ouverts de \mathbb{R}^n , et $f: U \to V$ une application. On dit que f est un C^k -difféomorphisme de U sur V si

- (1) f est bijective de U sur V,
- (2) f est de classe C^k sur U,
- (3) f^{-1} est de classe C^k sur V.

Remarque 1.2. Soit $f: U \to V$ un C^k -difféomorphisme, alors

$$\forall x \in U, f^{-1}(f(x)) = x$$

$$\forall y \in V, f(f^{-1}(y)) = y$$

de plus en appliquant le théorème de composition des différentielles

$$\mathrm{d}f^{-1}(f(x))\circ\mathrm{d}f(x)=\mathrm{id}_{\mathbb{R}^n}$$

$$\mathrm{d}f(f^{-1}(x))\circ\mathrm{d}f^{-1}(x)=\mathrm{id}_{\mathbb{R}^n}$$

donc df(x) est inversible avec $df(x)^{-1} = df^{-1}(f(x))$.

Exemples 1.3.

- 1. On considère $f: \mathbb{R}^n \to \mathbb{R}^n$; $x \mapsto Ax$ où $A \in \mathrm{GL}_n(\mathbb{R})$, alors f est C^{∞} comme fonction linéaire et bijective de réciproque $y \mapsto A^{-1}y$. On remarque que f^{-1} est C^{∞} comme fonction linéaire, donc f est un C^{∞} -difféomorphisme.
- 2. On considère $f: U \to V; (x, y) \mapsto (x + y, xy)$ où U et V sont définis par

$$U = \{(x, y) \in \mathbb{R}^2 \mid x > y\}$$

$$V = \{(s, t) \in \mathbb{R}^2 \mid s^2 - 4t > 0\}$$

alors f est un C^{∞} difféomorphisme de U sur V, en effet

a. f est bijective de U sur V, puisque pour $(x, y) \in U$ on a

$$(x + y)^2 - 4xy = x^2 - 2xy + y^2 = (x - y)^2 > 0$$

donc $f(U) \subset V$, réciproquement pour $(s, t) \in V$ on cherche $(x, y) \in U$ tels que

$$\begin{cases} x + y = s \\ xy = t \end{cases}$$

c'est-à-dire x et y sont racines du polynôme $X^2 - sX + t$, comme x > y on a

$$\begin{cases} x = \frac{s + \sqrt{s^2 - 4t}}{2} \\ y = \frac{s - \sqrt{s^2 - 4t}}{2} \end{cases}$$

donc $V \subset f(U)$, f est bijective,

- b. f est de classe C^{∞} sur U car polynômiale,
- c. f^{-1} est de classe C^{∞} sur V car $(s,t) \mapsto s^2 4t$ et $\sqrt{\cdot}$ sont C^{∞} sur V.
- 3. On considère $f: \mathbb{R} \to \mathbb{R}; x \mapsto x^3$, alors f est de classe C^{∞} sur \mathbb{R} et bijective. Mais son inverse $f^{-1}: \mathbb{R} \to \mathbb{R}; y \mapsto \sqrt[3]{y}$, n'est pas dérivable en 0 donc f n'est pas un C^{∞} -difféomorphisme.

2

Théorème 1.4. (Théorème d'inversion locale) Soit U un ouvert non-vide de \mathbb{R}^n et $f: U \to \mathbb{R}^n$ une application de classe C^k . On suppose qu'il existe $x_0 \in U$ tel que $\mathrm{d} f(x_0)$ soit inversible. Alors il existe un voisinage ouvert U' de x_0 et un voisinage ouvert V' de x_0 tels que x_0 et un x_0 et un x_0 et un voisinage ouvert x_0 tels que x_0 tels que x_0 et un x_0 et un x_0 et un x_0 et un voisinage ouvert x_0 tels que x_0 tels que x_0 et un x_0 et un x_0 et un voisinage ouvert x_0 tels que x_0 et un x_0 et un voisinage ouvert x_0 tels que x_0 et un voisinage ouvert x_0 et un voi

Théorème 1.5. (Théorème d'inversion globale) Soit U un ouvert non-vide de \mathbb{R}^n et $f:U\to\mathbb{R}^n$ une application. On suppose que

- (1) f est de classe C^k sur U,
- (2) f est injective sur U,
- (3) $\forall x \in U, df(x)$ est inversible.

Alors f(U) est un ouvert de \mathbb{R}^n et $f:U\to f(U)$ est un C^k -difféomorphisme.

Démonstration. Soit x_0 in U, alors d'après le théorème d'inversion locale il existe un voisinage ouvert U_{x_0} de x_0 et un voisinage ouvert $V_{f(x_0)}$ de $f(x_0)$ tels que $f: U_{x_0} \to V_{f(x_0)}$ est un C^k -difféomorphisme. En particulier $V_{f(x_0)} = f(U_{x_0})$, et on a

$$f(U) = \bigcup_{x \in U} V_{f(x)}$$

est un ouvert de \mathbb{R}^n comme union d'ouverts. De plus puisque f est injective sur U, on en déduit que f est bijective de U sur f(U).

Soit $y_0 \in f(U)$, alors il existe un unique $x_0 \in U$ tel que $y_0 = f(x_0)$, et d'après le théorème d'inversion locale $f: U_{x_0} \to V_{y_0}$ est un C^k -difféomorphisme, on en déduit que f^{-1} est de classe C^k sur V_{y_0} . Donc f^{-1} est C^k sur f(U).

Exemples 1.6.

- 1. On considère $f: \mathbb{R}^2 \to \mathbb{R}^2$; $(r, \theta) \mapsto (f_1, f_2) = (r \cos(\theta), r \sin(\theta))$, alors
 - a. f est de classe C^{∞} sur \mathbb{R}^2 puisque cos et sin sont de classe C^{∞} .
 - b. On pose $U :=]0, +\infty[\times] \pi, \pi[$, qui est un ouvert de \mathbb{R}^2 sur lequel f est injective.
 - c. Soit $(r, \theta) \in U$, alors

$$J_f(r,\theta) = \begin{pmatrix} \frac{\partial f_1}{\partial r} & \frac{\partial f_1}{\partial \theta} \\ \frac{\partial f_2}{\partial r} & \frac{\partial f_2}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{pmatrix}$$

et $\det(J_f(r,\theta)) = r\cos^2(\theta) + r\sin^2(\theta) = r > 0$, donc $\mathrm{d}f_{(r,\theta)}$ est inversible.

Donc d'après le Théorème 1.5 $f: U \to f(U)$ est un C^{∞} -difféomorphisme.

- 2. On considère $f: \mathbb{R}^3 \to \mathbb{R}^3$; $(r, \theta, \varphi) \mapsto (f_1, f_2, f_3) = (r \cos(\theta) \cos(\varphi), r \sin(\theta) \cos(\varphi), r \sin(\varphi))$.
 - a. f est de classe C^{∞} sur \mathbb{R}^3 puisque cos et sin sont de classes C^{∞} .
 - b. On pose $U :=]0, +\infty[\times] \pi, \pi[\times] \frac{\pi}{2}, \frac{\pi}{2}[$, qui est un ouvert de \mathbb{R}^3 sur lequel f est injective.
 - c. Soit $(r, \theta, \varphi) \in U$, alors

$$J_f(r,\theta,\varphi) = \begin{pmatrix} \cos(\theta)\cos(\varphi) & -r\sin(\theta)\cos(\varphi) & -r\cos(\theta)\sin(\varphi) \\ \sin(\theta)\cos(\varphi) & r\cos(\theta)\cos(\varphi) & -r\sin(\theta)\sin(\varphi) \\ \sin(\varphi) & 0 & r\cos(\varphi) \end{pmatrix}$$

et le déterminant de cette matrice est

$$\det(J_f(r,\theta,\varphi)) = \sin(\varphi)(r^2\sin^2(\theta)\cos(\varphi)\sin(\varphi) + r^2\cos^2(\theta)\cos(\varphi)\sin(\varphi))$$
$$+r\cos(\varphi)(r\cos^2(\theta)\cos^2(\varphi) + \sin^2(\theta)\cos^2(\varphi))$$
$$= \sin^2(\varphi)r^2\cos(\varphi) + \cos^2(\varphi)r^2\cos(\varphi) = r^2\cos(\varphi) \neq 0$$

donc d $f_{r,\theta,\omega}$ est inversible.

Donc d'après le Théorème 1.5 $f: U \to f(U)$ est un C^{∞} -difféomorphisme.

- 3. On pose $U := \mathbb{R}^2 \setminus \{(0,0)\}$ et on considère $f: U \to \mathbb{R}^2$; $(x,y) \mapsto (x^2 y^2, 2xy)$, alors
 - a. f est de classe C^{∞} sur U puisque f est polynômiale.
 - c. Soit $(x, y) \in U$, alors

$$J_f(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

et $det(J_f(x, y)) = 4(x^2 + y^2) > 0$ sur U, donc $df_{x,y}$ est inversible.

Donc d'après le Théorème 1.4 $f: U \to \mathbb{R}^2$ est un C^{∞} -difféomorphisme local en tout point de U. Mais f(-1,-1)=f(1,1), donc $f: U \to \mathbb{R}^2$ n'est pas C^{∞} -difféomorphisme global.

b. On pose $U' := \{(x, y) \in U \mid x > 0\}$, qui est un ouvert de \mathbb{R}^2 sur lequel f est injective. En effet si $f(x_1, y_1) = f(x_2, y_2)$, alors on pose

$$\begin{cases} (x_1, y_1) = r_1(\cos(\theta_1), \sin(\theta_1)) \\ (x_2, y_2) = r_2(\cos(\theta_2), \sin(\theta_2)) \end{cases} \quad \text{où } r_1, r_2 > 0 \text{ et } \theta_1, \theta_2 \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

et on trouve

$$\begin{cases} r_1^2 \cos(2\theta_1) = r_2^2 \cos(2\theta_2) \\ r_1^2 \sin(2\theta_1) = r_2^2 \sin(2\theta_2) \end{cases} \Rightarrow \begin{cases} r_1 = r_2 \\ \theta_1 = \theta_2 \mod 2\pi \end{cases} \Rightarrow \begin{cases} r_1 = r_2 \\ \theta_1 = \theta_2 \end{cases}$$

donc $(x_1, y_1) = (x_2, y_2)$ et f est bien injective.

Donc d'après le Théorème 1.5 $f: U' \to f(U')$ est un C^{∞} -difféomorphisme.

1.2. Théorème des fonctions implicites

Théorème 1.7. (Théorème des fonctions implicites) Soit U un ouvert de $\mathbb{R}^n \times \mathbb{R}^p$, $(a,b) \in U$ et $f = (f_1, ..., f_p) : U \to \mathbb{R}^p$ une application de classe C^k . On suppose que f(a,b) = 0 et que la matrice jacobienne de f par rapport à la deuxième variable en (a,b) est inversible. Alors il existe un voisinage ouvert V de a, un voisinage ouvert W de b avec $V \times W \subset U$ et une application $\varphi : V \to W$ qui est C^∞ avec $\varphi(a) = b$, tels que

$$\begin{cases} (x,y) \in V \times W \\ f(x,y) = 0 \end{cases} \Longleftrightarrow \begin{cases} x \in V \\ y = \varphi(x) \end{cases}$$

de plus pour tout $x \in V$, $d\varphi(x) = -(d_v f(x, \varphi(x)))^{-1} \circ d_x f(x, \varphi(x))$.

Exemples 1.8.

1. On considère $f: \mathbb{R}^2 \to \mathbb{R}$; $(x,y) \mapsto x^2 + y^2 - 1$ et $\mathbb{S}^1 := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}$. Les dérivées partielles de f sont

$$\frac{\partial f}{\partial x}(x, y) = 2x \text{ et } \frac{\partial f}{\partial y}(x, y) = 2y.$$

On remarque que pour $(x, y) \in \mathbb{R}^2$ vérifiant

$$\begin{cases} (x,y) \in \mathbb{S}^1 \\ \frac{\partial f}{\partial y}(x,y) \neq 0 \end{cases} \Longleftrightarrow \begin{cases} (x,y) \in \mathbb{S}^1 \\ y \neq 0 \end{cases}$$

on a $(x, y) \in \mathbb{S}^1 \setminus \{(1, 0), (-1, 0)\}$. On peut donc appliquer le Théorème 1.7, au voisinage V de x, \mathbb{S}^1 est le graphe d'une application $\varphi : V \to \mathbb{R}$. De plus on a

$$\forall x \in V, x^2 + \varphi(x)^2 - 1 = 0$$

en dérivant on trouve

$$\forall x \in V, 2x + 2\varphi(x)\varphi'(x) = 0$$

et donc $\varphi'(x) = -\frac{x}{\varphi(x)}$. 2. On considère $f: \mathbb{R}^3 \to \mathbb{R}; (x, y, z) \mapsto x^2 + y^2 + z^2 - 1$, $\mathbb{S}^2 \coloneqq \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = 0\}$. Les dérivées partielles de f sont

$$\forall a \in \{x, y, z\}, \frac{\partial f}{\partial a}(x, y, z) = 2a.$$

On remarque que pour $(x, y, z) \in \mathbb{R}^3$ vérifiant

$$\begin{cases} (x, y, z) \in \mathbb{S}^2 \\ \frac{\partial f}{\partial z}(x, y, z) \neq 0 \end{cases} \iff \begin{cases} (x, y, z) \in \mathbb{S}^2 \\ z \neq 0 \end{cases}$$
$$\iff \begin{cases} (x, y, z) \in \mathbb{S}^2 \\ (x, y, z) \neq (a, b, 0) \text{ où } (a, b) \in \mathbb{S}^1 \end{cases}$$

on a $(x, y, z) \in \mathbb{S}^2 \setminus (\mathbb{S}^1 \times \{0\})$. On peut donc appliquer le Théorème 1.7, au voisinage V de (x, y), \mathbb{S}^2 est le graphe d'une application $\varphi: V \to \mathbb{R}$. De plus on a

$$\forall (x, y) \in V, x^2 + y^2 + \varphi(x, y)^2 - 1 = 0$$

en dérivant par rapport à x on trouve

$$\forall (x, y) \in V, 2x + 2\frac{\partial f}{\partial x}(x, y)\varphi(x, y) = 0$$

donc $\frac{\partial f}{\partial x}(x,y) = -\frac{x}{\omega(x,y)}$, et en dérivant par rapport à y on trouve

$$\forall (x, y) \in V, 2y + 2\frac{\partial f}{\partial y}(x, y)\varphi(x, y) = 0$$

donc
$$\frac{\partial f}{\partial y}(x, y) = -\frac{y}{\varphi(x, y)}$$
.

2. Sous-variétés de \mathbb{R}^n

2.1. Sous-variétés

Définition 2.1. Soit X une partie de \mathbb{R}^n . On dit que X est une sous-variété de \mathbb{R}^n de classe C^k et de dimension $d \in \mathbb{N}$, si pour tout $x \in X$ il existe un voisinage ouvert V de x dans \mathbb{R}^n et un C^k -difféomorphisme φ d'un ouvert U de \mathbb{R}^n dans V, tels que

$$V \cap X = \varphi(U \cap (\mathbb{R}^d \times \{0\})).$$

On appelle *codimension* de X l'entier n - d.

Remarque 2.2. Une sous-variété de dimension 1 est une *courbe*, une sous-variété de dimension 2 est une *surface*, une sous-variété de dimension n-1 (codimension 1) est une *hypersurface*

Exemples 2.3.

- 1. Une courbe dans \mathbb{R}^2 est difféomorphe à un segment.
- 2. Un ouvert de \mathbb{R}^n est une sous-variété de dimension n.
- 3. On considère le cercle \mathbb{S}^1 , on pose $U' :=]0, +\infty[\times] \pi, \pi[, V = \mathbb{R}^2 \setminus \{] \infty, 0] \times \{0\}\}$, ainsi que $\psi : U' \to V; (r, \theta) \mapsto r(\cos(\theta), \sin(\theta))$ qui est un difféomorphisme de classe C^{∞} . On a

$$V \cap \mathbb{S}^1 = \mathbb{S}^1 \setminus \{(-1,0)\}$$
$$= \psi(\{1\} \times] - \pi, \pi[)$$
$$= \psi(U' \cap (\{1\} \times \mathbb{R}))$$

on prend alors $U:]-\pi,\pi[\times]0,+\infty[$ et $\varphi:U\to V;(\theta,r)\mapsto \psi(r+1,\theta),$ donc \mathbb{S}^1 est bien une sous-variété de \mathbb{R}^2 de classe C^∞ et de dimension 1.

Définition 2.4. Soit U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}^p$ une application de classe C^k . On dit que f est une *submersion* en $x_0\in U$ si $\mathrm{d}_{x_0}f$ est surjective.

Théorème 2.5. Soit X une partie de \mathbb{R}^n . Alors X est une sous-variété de \mathbb{R}^n classe C^k et de dimension $d \in \{0, ..., n\}$ si et seulement si pour tout $a \in X$, il existe un voisinage ouvert V de a dans \mathbb{R}^n et une submersion en $a f : V \to \mathbb{R}^{n-d}$ de classe C^k vérifiant $V \cap X = f^{-1}(f(a))$.

Démonstration.

 \Rightarrow : Supposons que X est une sous-variété de \mathbb{R}^n de classe C^k et de dimension d. Soit $a \in X$, alors il existe un voisinage ouvert V de a et un C^k -difféomorphisme φ d'un ouvert U de \mathbb{R}^n dans V, tels que

$$V \cap X = \varphi(U \cap (\mathbb{R}^d \times \{0\})).$$

On écrit $\varphi^{-1} = (g_1, ..., g_d, f_1, ..., f_{n-d})$, alors

$$V \cap X = \{x \in V \mid f_1(x) = \dots = f_{n-d}(x) = 0\}.$$

On pose $f := (f_1, ..., f_{n-d})$, puisque φ est un difféomorphisme on en déduit que $\mathrm{d}_a f$ est surjective, donc f est une submersion en a.

 \Leftarrow : Supposons que les hypothèses soient vérifiées. Sans perte de généralité on suppose que f(a) = 0 et que $\det(\operatorname{Jac}_f(a)) \neq 0$. On pose $\psi: V \to \mathbb{R}^n$ définie par

$$\psi(x_1,...,x_n)=(x_1-a_1,...,x_d-a_d,f_1(x_{d+1}),...,f_{n-d}(x_n))$$

alors $\det(\operatorname{Jac}_{\psi}(a)) = \det(\operatorname{Jac}_{f}(a)) \neq 0$, quitte à restreindre V, ψ est un C^k -difféomorphisme de V sur $U := \psi(V)$. En prenant $\varphi := \psi^{-1}$, on a bien

$$V\cap X=\varphi\big(U\cap\big(\mathbb{R}^d\times\{0\}\big)\big).$$

Exemple 2.6. On considère le cercle \mathbb{S}^2 décrit par $f: \mathbb{R}^3 \to \mathbb{R}$; $(x, y, z) \mapsto x^2 + y^2 + z^2$. Alors f est de classe C^k sur \mathbb{R}^3 et $\det(\operatorname{Jac}_f) \neq 0$ sur \mathbb{S}^2 , donc f est une submersion en tout point de \mathbb{S}^2 . On en déduit que \mathbb{S}^2 est une sous-variété de \mathbb{R} de classe C^k et de dimension 3 - 1 = 2.

2.2. Espace tangent à une sous-variété

Définition 2.7. Soit X une sous-variété de \mathbb{R}^n de classe C^k et de dimension $d, a \in X$ un point et v un vecteur de \mathbb{R}^n . On dit que v est *tangent* à X en a s'il existe $\varepsilon > 0$ et une courbe $\gamma :] - \varepsilon, \varepsilon [\to \mathbb{R}^n$ de classe C^k vérifiant :

- (1) $\gamma(0) = a$,
- (2) $\gamma'(0) = v$,
- (3) $\operatorname{im}(\gamma) \subset X$.

On appelle *espace tangent* à X en a, noté T_aX , l'ensemble des vecteurs tangents à X en a.

Exemples 2.8. Soit *X* une sous-variété de \mathbb{R}^n de classe C^k et de dimension d et $a \in X$ un point.

- 1. Le vecteur nul est tangent à X en tout point, avec $\gamma : t \mapsto a$.
- 2. Pour tout vecteur v tangent à X en a, pour tout $\lambda \in \mathbb{R}$, λv est tangent à X en a.
- 3. Si *X* est un ouvert de \mathbb{R}^n , alors pour tout $v \in \mathbb{R}^n$, v est tangent à *X* en a.
- 4. Si X est un point, alors le seul vecteur tangent à X en a est 0.

Théorème 2.9. Soit X une sous-variété de \mathbb{R}^n classe C^k et de dimension d et $a \in X$ un point. Alors l'espace tangent T_aX est un espace vectoriel de dimension d et on a les caractérisations :

- (1) S'il existe un voisinage ouvert V de a et un C^k -difféomorphisme φ d'un ouvert U de \mathbb{R}^n dans V vérifiant $V \cap X = \varphi(U \cap (\mathbb{R}^d \times \{0\}))$, alors $T_a X = \mathrm{d}_{\varphi^{-1}(a)} \varphi(\mathbb{R}^d \times \{0\})$.
- (2) S'il existe un voisinage ouvert V de a et une submersion en a $f: V \to \mathbb{R}^{n-d}$ de classe C^k vérifiant $V \cap X = f^{-1}(f(a))$, alors $T_aX = \ker(d_af)$.

Démonstration.

(1) Supposons sans perte de généralité que $\varphi^{-1}(a) = 0$. Soit $v \in T_a X$, alors il existe $\varepsilon > 0$ et une courbe $\gamma :] - \varepsilon, \varepsilon[\to V \cap X$ de classe C^k vérifiant $\gamma(0) = a$ et $\gamma'(0) = v$. On pose $\delta := \varphi^{-1}(\gamma)$, alors on a im $(\delta) \subset U \cap (\mathbb{R}^d \times \{0\}), \delta(0) = 0$ et

$$\delta'(t) = \mathrm{d}_{\gamma(t)} \varphi^{-1}(\gamma'(t))$$

d'où $\delta'(0) = d_a \varphi^{-1}(v)$ et $v = d_{\varphi^{-1}(a)} \varphi(\delta'(0))$, donc $T_a X \subset d_{\varphi^{-1}(a)} \varphi(\mathbb{R}^d \times \{0\})$. Réciproquement on montre de la même manière que $d_{\varphi^{-1}(a)} \varphi(\mathbb{R}^d \times \{0\}) \subset T_a X$. Donc $T_a X = d_{\varphi^{-1}(a)} \varphi(\mathbb{R}^d \times \{0\})$, on en déduit que $T_a X$ est un espace vectoriel de dimension d.

(2) Soit $v \in T_a X$, alors il existe $\varepsilon > 0$ et une courbe $\gamma :] - \varepsilon, \varepsilon [\to V \cap X$ de classe C^k vérifiant $\gamma(0) = a$ et $\gamma'(0) = v$. Soit $t \in] - \varepsilon, \varepsilon [$, alors

$$\gamma(t) \in V \cap X \Rightarrow (f \circ \gamma)(t) = f(a) \Rightarrow (f \circ \gamma)'(t) = 0$$

or $(f \circ \gamma)(t) = d_{\gamma(t)}f(\gamma'(t))$ et $d_a f(v) = 0$, donc $T_a X \subset \ker(d_a f)$. L'égalité des dimensions entraine l'égalité des espaces.

Remarque 2.10. S'il existe un voisinage ouvert V de a et une submersion en a $f: V \to \mathbb{R}^{n-d}$ de classe C^k vérifiant $V \cap X = f^{-1}(f(a))$, alors $T_aX = \text{Vect}\big(\nabla_{f_1}(a), ..., \nabla_{f_{n-d}}(a)\big)^{\perp}$

3. Extrema liés

Théorème 3.1. (Théorèmes des extrema liés) Soit X une sous-variété de \mathbb{R}^n de classe C^k et de dimension d, U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}$ une fonction de classe C^k . Alors s'il existe une submersion $g: U \to \mathbb{R}^{n-d}$ de classe C^k et $a \in \mathbb{R}^{n-d}$ tels que $X = g^{-1}(a)$, et si $f|_X$ admet un extremum local en $x_0 \in X$, il existe des uniques $\lambda_1,...,\lambda_{n-d} \in \mathbb{R}$, appelés multiplicateurs de Lagrange, tels que $\nabla_f(x_0) = \sum_{i=1}^{n-d} \lambda_i \nabla_{g_i}(x_0).$

Démonstration. П

Exemple 3.2. On cherche les extrema de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$; $(x, y) \mapsto x + y$, que l'on restreint à l'ensemble $M := \{(x, y) \in \mathbb{R}^2 \mid x^4 + y^4 = 1\}.$

On remarque que M est une sous-variété de \mathbb{R}^2 de classe C^{∞} , en effet $f: \mathbb{R}^2 \to \mathbb{R}$; $(x,y) \mapsto x^4 + y^4$ est une submersion en tout point de M. Si $f|_M$ admet un extremum local en un point $(a,b) \in M$, alors il existe $\lambda \in \mathbb{R}$ tel que $\nabla(f)(a,b) = \lambda \nabla(g)(a,b)$. On a donc le système suivant

$$\begin{cases} 1 = \lambda 4a^3 \\ 1 = \lambda 4b^3 \end{cases}$$

et on en déduit que $\lambda \neq 0$ et $a^3 = b^3 = \frac{1}{4\lambda}$, d'où a = b. Comme $(a,b) \in M$ on a $a^4 + b^4 = 1$, d'où $2a^4 = 1$, donc $a = b = \pm \frac{1}{\sqrt{2}}$. On a deux extrema possibles

$$m_1 := \left(\frac{1}{\sqrt[4]{2}}, \frac{1}{\sqrt[4]{2}}\right)$$
 et $m_2 := \left(-\frac{1}{\sqrt[4]{2}}, -\frac{1}{\sqrt[4]{2}}\right)$

comme f est continue et M est compact (comme fermé borné de \mathbb{R}^2), f admet au moins un minimum global et un maximum global, elle en a donc exactement deux : m_1 et m_2 .

On a $f(m_1) = -f(m_2) = \frac{2}{\sqrt{2}}$, donc f atteint son minimum en m_2 et son maximum en m_1 .

4. Équations différentielles

4.1. Résultats fondamentaux

4.1.1. Équations différentielles du premier ordre

Définition 4.1. Soit U un ouvert de $\mathbb{R} \times \mathbb{R}^n$ et $f: U \to \mathbb{R}^n$ une fonction continue. On appelle équation différentielle d'ordre 1 dans \mathbb{R}^n une équation de la forme suivante :

$$v' = f(t, v)$$

on dit que t est la variable de temps et que y est la variable d'état.

Définition 4.2. Soit (E) une équation différentielle d'ordre 1. On appelle solution de (E) un couple de la forme (I, y) où I est un intervalle de \mathbb{R} et $y : I \to \mathbb{R}^n$ est une fonction dérivable sur I vérifiant :

- (1) $\forall t \in I, (t, y(t)) \in I$,
- (2) $\forall t \in I, y'(t) = f(t, y(t)).$

Remarque 4.3. Dans le cas où I n'est pas ouvert, la dérivabilité s'entend comme la dérivabilité à droite ou à gauche (selon l'extrémité).

Exemples 4.4.

- 1. On considère l'équation différentielle d'ordre 1 donnée par y' = y. Le couple $(]1, 2[, t \mapsto e^t)$ est une solution de cette équation.
- 2. L'équation donnée par $y' = y^2 + t$ est une équation différentielle d'ordre 1 sur \mathbb{R} .

3. L'équation donnée par $y' = \frac{y+1}{t \ln(t)}$ est une équation différentielle d'ordre 1 sur \mathbb{R} . Le couple $(]0,1[,t\mapsto -1+\ln(t))$ est une solution de cette équation.

4.1.2. Problème de Cauchy

Définition 4.5. Soit (E) une équation différentielle et $(t_0, y_0) \in \mathbb{R} \times \mathbb{R}^n$. On appelle *problème de Cauchy* avec donnée (t_0, y_0) l'équation (E) à laquelle on impose la condition $y(t_0) = y_0$. On dit que la condition $y(t_0) = y_0$ est la condition initiale (ou de Cauchy).

Exemple 4.6. La fonction $y : \mathbb{R} \to \mathbb{R}$; $t \mapsto 2e^{-t}$ est une solution de l'équation différentielle y' = -y de condition initiale y(0) = 2.

Définition 4.7. Soit U un ouvert de $\mathbb{R} \times \mathbb{R}$ et y' = f(x,y) une équation différentielle d'ordre 1. Soit M un point de U, on note \mathcal{D}_M la droite passant par M et de coefficient directeur f(M). On appelle *champ des tangentes* l'application $M \mapsto \mathcal{D}_M$ associée à l'équation y' = f(x,y). On appelle *courbe intégrale* une courbe \mathcal{C} de $\mathbb{R} \times \mathbb{R}$ qui a pour tangente en chaque point M la droite \mathcal{D}_M du champ des tangentes.

Remarque 4.8. Soit $(x_0, y_0) \in \mathbb{R} \times \mathbb{R}$. Alors $\mathcal{D}_{(x_0, y_0)}$ a pour équation $y - y_0 = f(x_0, y_0)(x - y_0)$.

Exemples 4.9.

- 1. On considère l'équation différentielle y'=0, ici $f\equiv 0$. Soit $M:=(x_0,y_0)\in \mathbb{R}\times \mathbb{R}$. Alors \mathcal{D}_M est la droite d'équation $y=y_0$ et les courbes intégrales sont les droites \mathcal{D}_M .
- 2. On considère l'équation différentielle y'=y, ici f(x,y)=y. Soit $M:=(x_0,y_0)\in\mathbb{R}\times\mathbb{R}$. Alors \mathcal{D}_M est la droite d'équation $y=y_0+y_0(x-x_0)$.