Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -400.000 -600.000 -800.000 Radiell fart m/s -1000.000 -1200.000 -1400.000 -1600.000 500 ò 1000 1500 2000 2500 3000 3500 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 7.00e+08.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

STJERNE B) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE C) det finnes hovedsaklig helium men også noe karbon i stjer-

nas kjerne

STJERNE D) radiusen er 1000 ganger solas radius.

STJERNE E) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer hydrogen til helium i kjernen

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 6.312e+06 kg/m3̂ og temperatur 34 millioner K.

Kjernen i stjerne B har massetet
thet 2.576e+06 kg/m3̂ og temperatur 20 millioner K.

Kjernen i stjerne C har massetet
thet 5.057e+06 kg/m3̂ og temperatur 35 millioner K.

Kjernen i stjerne D har massetet
thet 2.344e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne E har massetet
thet 6.592e+06 kg/m3 og temperatur 17 millioner K.

Filen 1K/1K.txt

Påstand 1: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 2: den absolutte størrelseklassen (magnitude) med blått filter er betydelig større enn den absolutte størrelseklassen i rødt filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: denne stjerna er nærmest oss

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen~1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

Figur A tilsynelatende størrelseklasse 11.83

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 2.740e+05 kg/m3̂ og temperatur 19.15 millioner K.

Kjernen i stjerne B har massetet
thet $4.252\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 27.95 millioner K.

Kjernen i stjerne C har massetet
thet $3.516\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 21.68

millioner K.

Kjernen i stjerne D har massetet
thet 1.758e+05 kg/m3̂ og temperatur 33.13 millioner K.

Kjernen i stjerne E har massetet
thet 1.620e+05 kg/m3̂ og temperatur 23.36 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Observasjon er gjort 100.96 dager etter første observasjon.

0.93

0.88

0.88

0.73

0.68

0.2601

0.2611

0.2621

0.2631

0.2641

0.2651

0.2661

0.2661

0.2671

Bølgelengde (nm) minus 656nm

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen 2C/2C_Figur_1.png

Vinkelforflytning 3.43 buesekunder i løpet av et millisekund. 41.75 37.12 y-posisjon (10⁻⁶ buesekunder) 32.48 27.84 23.20 18.56 13.92 9.28 4.64 0.00 4.64 13.92 18.56 23.20 27.84 32.48 37.12 41.75 9.28 x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tromsø som ligger i en avstand av 1400 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 95.96040 km/t.

Filen 3E.txt

Tog1 veier 27800.00000 kg og tog2 veier 112800.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 509 km/s.

Filen 4E.txt

Massen til gassklumpene er 3300000.00 kg.

Hastigheten til G1 i x-retning er 53400.00 km/s.

Hastigheten til G2 i x-retning er 57780.00 km/s.

Filen 4G.txt

Massen til stjerna er 19.40 solmasser og radien er 1.12 solradier.