The Porous Medium Equation

Moritz Egert, Samuel Littig, Matthijs Pronk, Linwen Tan

Coordinator: Jürgen Voigt

18 June 2010

Flow of an ideal gas through a homogeneous porous medium can be described by

$$\begin{cases} \varepsilon \partial_t \rho + \operatorname{div}(\rho \mathbf{v}) &= 0 & \text{mass balance} \\ \mu \mathbf{v} &= -k \nabla \mathbf{p} & \text{Darcy's law} \\ \mathbf{p} &= \mathbf{p_0} \ \rho^{\gamma} & \text{state equation} \end{cases}$$

$$arepsilon \partial_t
ho = -\operatorname{div}(
ho \mathbf{v}) = rac{k}{\mu}\operatorname{div}(
ho
abla \mathrm{p}) = rac{k \mathrm{p}_0}{\mu}\operatorname{div}(
ho
abla
ho^\gamma)$$

ho: density

p : pressure

▶ **v** : velocity

 \triangleright ε , k, μ > 0 : material constants

ho $\gamma \geq$ 1 : polytropic exponent

Flow of an ideal gas through a homogeneous porous medium can be described by

$$\begin{cases} \varepsilon \partial_t \rho + \operatorname{div}(\rho \mathbf{v}) &= 0 & \text{mass balance} \\ \mu \mathbf{v} &= -k \nabla p & \text{Darcy's law} \\ p &= p_0 \ \rho^\gamma & \text{state equation} \end{cases}$$

$$\varepsilon \partial_t \rho = -\operatorname{div}(\rho \mathbf{v}) = \frac{k}{\mu}\operatorname{div}(\rho \nabla p) = \frac{k p_0}{\mu}\operatorname{div}(\rho \nabla \rho^{\gamma})$$

ho : density

p : pressure

▶ **v** : velocity

 \triangleright ε , k, μ > 0 : material constants

ho $\gamma \geq$ 1 : polytropic exponent

Flow of an ideal gas through a homogeneous porous medium can be described by

$$\begin{cases} \varepsilon \partial_t \rho + \operatorname{div}(\rho \mathbf{v}) &= 0 & \text{mass balance} \\ \mu \mathbf{v} &= -k \nabla p & \text{Darcy's law} \\ p &= p_0 \ \rho^\gamma & \text{state equation} \end{cases}$$

$$\varepsilon \partial_t \rho = -\operatorname{div}(\rho \mathbf{v}) = \frac{k}{\mu} \operatorname{div}(\rho \nabla \mathbf{p}) = \frac{k \mathbf{p}_0}{\mu} \operatorname{div}(\rho \nabla \rho^{\gamma})$$

ho: density

p : pressure

▶ **v** : velocity

 \triangleright ε , k, μ > 0 : material constants

ho $\gamma \geq$ 1 : polytropic exponent

Flow of an ideal gas through a homogeneous porous medium can be described by

$$\begin{cases} \varepsilon \partial_t \rho + \operatorname{div}(\rho \mathbf{v}) &= 0 & \text{mass balance} \\ \mu \mathbf{v} &= -k \nabla \mathbf{p} & \text{Darcy's law} \\ \mathbf{p} &= \mathbf{p_0} \ \rho^{\gamma} & \text{state equation} \end{cases}$$

$$\varepsilon \partial_t \rho = -\operatorname{div}(\rho \mathbf{v}) = \frac{k}{\mu} \operatorname{div}(\rho \nabla p) = \frac{k p_0}{\mu} \operatorname{div}(\rho \nabla \rho^{\gamma})$$

ho: density

p : pressure

▶ **v** : velocity

 \triangleright ε , k, μ > 0 : material constants

ho $\gamma \geq$ 1 : polytropic exponent

Flow of an ideal gas through a homogeneous porous medium can be described by

$$\begin{cases} \varepsilon \partial_t \rho + \operatorname{div}(\rho \mathbf{v}) &= 0 & \text{mass balance} \\ \mu \mathbf{v} &= -k \nabla \mathbf{p} & \text{Darcy's law} \\ \mathbf{p} &= \mathbf{p_0} \ \rho^{\gamma} & \text{state equation} \end{cases}$$

$$\varepsilon \partial_t \rho = -\operatorname{div}(\rho \mathbf{v}) = \frac{k}{\mu}\operatorname{div}(\rho \nabla p) = \frac{k\gamma p_0}{\mu}\operatorname{div}(\rho^{\gamma} \nabla \rho)$$

ho: density

p : pressure

▶ **v** : velocity

 \triangleright ε , k, μ > 0 : material constants

ho $\gamma \geq$ 1 : polytropic exponent

Flow of an ideal gas through a homogeneous porous medium can be described by

$$\begin{cases} \varepsilon \partial_t \rho + \operatorname{div}(\rho \mathbf{v}) &= 0 & \text{mass balance} \\ \mu \mathbf{v} &= -k \nabla p & \text{Darcy's law} \\ p &= p_0 \ \rho^\gamma & \text{state equation} \end{cases}$$

$$\varepsilon \partial_t \rho = -\operatorname{div}(\rho \mathbf{v}) = \frac{k}{\mu}\operatorname{div}(\rho \nabla p) = \frac{k\gamma p_0}{\mu(\gamma+1)}\Delta(\rho^{\gamma+1})$$

ho: density

p : pressure

▶ **v** : velocity

 \triangleright ε , k, μ > 0 : material constants

 $ightharpoonup \gamma \geq 1$: polytropic exponent

Flow of an ideal gas through a homogeneous porous medium can be described by

Definition

The porous medium equation (PME) is

$$\partial_t u(t,x) = \Delta_x u^m(t,x), \ u \geq 0, \ m > 1 \quad (t,x) \in (0,\infty) \times \mathbb{R}^n$$

$$\varepsilon \partial_t \rho = -\operatorname{div}(\rho \mathbf{v}) = \frac{k}{\mu}\operatorname{div}(\rho \nabla p) = \frac{k\gamma p_0}{\mu(\gamma+1)}\Delta(\rho^{\gamma+1})$$

ho: density

p : pressure

▶ **v** : velocity

 \triangleright ε , k, μ > 0 : material constants

 $ightharpoonup \gamma \geq 1$: polytropic exponent

Let

- ▶ *u* a classical solution of the PME in $(0, \infty) \times \mathbb{R}^n$
- ▶ $\alpha, \beta > 0$ constants with $\alpha(m-1) + 2\beta = 1$

Define for $\lambda > 0$

Let

- ▶ *u* a classical solution of the PME in $(0, \infty) \times \mathbb{R}^n$
- ▶ $\alpha, \beta > 0$ constants with $\alpha(m-1) + 2\beta = 1$

Define for $\lambda > 0$

 $U_{\lambda}(t,x) := \lambda^{\alpha} u(\lambda t, \lambda^{\beta} x) \Rightarrow \partial_{t} u_{\lambda} - \Delta u_{\lambda}^{m} = 0$

Idea

Scaling $u \to u_{\lambda}$ maps solutions of the PME to other solutions. Find a **scaling invariant** solution, that is $u_{\lambda} = u$ for all $\lambda > 0$.

Ansatz

$$U(t,x) = t^{-\alpha}U(1,t^{-\beta}x) =: t^{-\alpha}V(t^{-\beta}x), \quad V: \mathbb{R}^n \to \mathbb{R}$$

Reduction to one space variable

$$0 = -t^{\alpha+1}(\partial_t u - \Delta u^m) = \alpha v(t^{-\beta}x) + \beta Dv(t^{-\beta}x) \cdot t^{-\beta}x + \Delta v^m(t^{-\beta}x)$$

Let

- ▶ *u* a classical solution of the PME in $(0, \infty) \times \mathbb{R}^n$
- ▶ $\alpha, \beta > 0$ constants with $\alpha(m-1) + 2\beta = 1$

Define for $\lambda > 0$

Idea

Scaling $u \to u_{\lambda}$ maps solutions of the PME to other solutions. Find a **scaling invariant** solution, that is $u_{\lambda} = u$ for all $\lambda > 0$.

Ansatz

$$U(t,x) = t^{-\alpha}U(1,t^{-\beta}x) =: t^{-\alpha}V(t^{-\beta}x), \quad V: \mathbb{R}^n \to \mathbb{R}$$

Reduction to one space variable

Let

- ▶ *u* a classical solution of the PME in $(0, \infty) \times \mathbb{R}^n$
- ▶ $\alpha, \beta > 0$ constants with $\alpha(m-1) + 2\beta = 1$

Define for $\lambda > 0$

Idea

Scaling $u \to u_{\lambda}$ maps solutions of the PME to other solutions. Find a **scaling invariant** solution, that is $u_{\lambda} = u$ for all $\lambda > 0$.

Ansatz

$$U(t,x) = t^{-\alpha}U(1,t^{-\beta}x) =: t^{-\alpha}V(t^{-\beta}x), \quad V: \mathbb{R}^n \to \mathbb{R}$$

Reduction to one space variable

Ansatz

ightharpoonup v is radial, *i.e.* $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} (\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y))$$

= $(\alpha r^{n-1} w + \beta r^{n} \partial_{r} w) + (r^{n-1} \partial_{r}^{2} w^{m} + (n-1)r^{n-2} \partial_{r} w^{m})$

Ansatz

ightharpoonup v is radial, *i.e.* $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} (\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y))$$

= $(\alpha r^{n-1} w + \beta r^{n} \partial_{r} w) + (r^{n-1} \partial_{r}^{2} w^{m} + (n-1)r^{n-2} \partial_{r} w^{m})$

Ansatz

ightharpoonup v is radial, *i.e.* $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} \left(\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y) \right)$$
$$= \left(\frac{n\beta}{r^{n-1}} w + \beta r^{n} \partial_{r} w \right) + \left(r^{n-1} \partial_{r}^{2} w^{m} + (n-1) r^{n-2} \partial_{r} w^{m} \right)$$

 $=\beta\partial_r(r^nw)$

Ansatz

► v is radial, i.e. $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$ $0 = r^{n-1} (\alpha v(y) + \beta D v(y) \cdot y + \Delta v^m(y))$ $= (n\beta r^{n-1} w + \beta r^n \partial_r w) + (r^{n-1} \partial_r^2 w^m + (n-1)r^{n-2} \partial_r w^m)$

 $=\partial_r(r^{n-1}\partial_r w^m)$

Ansatz

►
$$v$$
 is radial, $i.e.$ $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} (\alpha v(y) + \beta D v(y) \cdot y + \Delta v^m(y))$$

$$= \underbrace{\left(n\beta r^{n-1} w + \beta r^n \partial_r w\right)}_{=\beta \partial_r(r^n w)} + \underbrace{\left(r^{n-1} \partial_r^2 w^m + (n-1)r^{n-2} \partial_r w^m\right)}_{=\partial_r(r^{n-1} \partial_r w^m)}$$

$$= \partial_r (\beta r^n w + r^{n-1} \partial_r w^m) = \partial_r (\beta r^n w + r^{n-1} \frac{m}{m-1} w \partial_r w^{m-1})$$

Ansatz

ightharpoonup v is radial, *i.e.* $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} (\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y))$$

$$= \underbrace{\left(n\beta r^{n-1} w + \beta r^{n} \partial_{r} w\right)}_{=\beta \partial_{r}(r^{n} w)} + \underbrace{\left(r^{n-1} \partial_{r}^{2} w^{m} + (n-1)r^{n-2} \partial_{r} w^{m}\right)}_{=\partial_{r}(r^{n-1} \partial_{r} w^{m})}$$

$$= \partial_{r}(\beta r^{n} w + r^{n-1} \partial_{r} w^{m}) = \partial_{r}(\beta r^{n} w + r^{n-1} \frac{m}{m-1} w \partial_{r} w^{m-1})$$

• $w, \partial_r w \to 0$ as $r \to \infty$ and $w \ge 0$ seems appropriate

$$\partial_r w^{m-1} = -\frac{m-1}{m} \beta r \implies w^{m-1} = C - \frac{m-1}{2m} \beta r^2, \ C > 0$$

Ansatz

▶ v is radial, i.e. v(y) = w(|y|) := w(r), $w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} (\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y))$$

$$= \underbrace{\left(n\beta r^{n-1} w + \beta r^{n} \partial_{r} w\right)}_{=\beta \partial_{r}(r^{n} w)} + \underbrace{\left(r^{n-1} \partial_{r}^{2} w^{m} + (n-1)r^{n-2} \partial_{r} w^{m}\right)}_{=\partial_{r}(r^{n-1} \partial_{r} w^{m})}$$

$$= \partial_{r}(\beta r^{n} w + r^{n-1} \partial_{r} w^{m}) = \partial_{r}(\beta r^{n} w + r^{n-1} \frac{m}{m-1} w \partial_{r} w^{m-1})$$

• $w, \partial_r w \to 0$ as $r \to \infty$ and $w \ge 0$ seems appropriate

$$\partial_r w^{m-1} = -\frac{m-1}{m} \beta r \Rightarrow w^{m-1} = C - \frac{m-1}{2m} \beta r^2, C > 0$$

Ansatz

▶ v is radial, i.e. v(y) = w(|y|) := w(r), $w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} \left(\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y) \right)$$

$$= \underbrace{\left(n \beta r^{n-1} w + \beta r^{n} \partial_{r} w \right)}_{=\beta \partial_{r}(r^{n} w)} + \underbrace{\left(r^{n-1} \partial_{r}^{2} w^{m} + (n-1) r^{n-2} \partial_{r} w^{m} \right)}_{=\partial_{r}(r^{n-1} \partial_{r} w^{m})}$$

$$= \partial_{r}(\beta r^{n} w + r^{n-1} \partial_{r} w^{m}) = \partial_{r}(\beta r^{n} w + r^{n-1} \frac{m}{m-1} w \partial_{r} w^{m-1})$$

• $w, \partial_r w \to 0$ as $r \to \infty$ and $w \ge 0$ seems appropriate

$$\partial_r w^{m-1} = -\frac{m-1}{m} \beta r \Rightarrow w^{m-1} = C - \frac{m-1}{2m} \beta r^2, C > 0$$

$$u(t,x)=t^{-\alpha}v(t^{-\beta}x)$$

Ansatz

ightharpoonup v is radial, *i.e.* $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} \left(\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y) \right)$$

$$= \underbrace{\left(n \beta r^{n-1} w + \beta r^{n} \partial_{r} w \right)}_{=\beta \partial_{r}(r^{n} w)} + \underbrace{\left(r^{n-1} \partial_{r}^{2} w^{m} + (n-1) r^{n-2} \partial_{r} w^{m} \right)}_{=\partial_{r}(r^{n-1} \partial_{r} w^{m})}$$

$$= \partial_{r}(\beta r^{n} w + r^{n-1} \partial_{r} w^{m}) = \partial_{r}(\beta r^{n} w + r^{n-1} \frac{m}{m-1} w \partial_{r} w^{m-1})$$

• $w, \partial_r w \to 0$ as $r \to \infty$ and $w \ge 0$ seems appropriate

$$\partial_r w^{m-1} = -\frac{m-1}{m} \beta r \Rightarrow w^{m-1} = C - \frac{m-1}{2m} \beta r^2, C > 0$$

$$u(t,x)=t^{-\alpha}w(|t^{-\beta}x|)$$

Ansatz

ightharpoonup v is radial, *i.e.* $v(y) = w(|y|) := w(r), \quad w : \mathbb{R} \to \mathbb{R}$

$$0 = r^{n-1} \left(\alpha v(y) + \beta D v(y) \cdot y + \Delta v^{m}(y) \right)$$

$$= \underbrace{\left(n \beta r^{n-1} w + \beta r^{n} \partial_{r} w \right)}_{=\beta \partial_{r}(r^{n} w)} + \underbrace{\left(r^{n-1} \partial_{r}^{2} w^{m} + (n-1) r^{n-2} \partial_{r} w^{m} \right)}_{=\partial_{r}(r^{n-1} \partial_{r} w^{m})}$$

$$= \partial_{r}(\beta r^{n} w + r^{n-1} \partial_{r} w^{m}) = \partial_{r}(\beta r^{n} w + r^{n-1} \frac{m}{m-1} w \partial_{r} w^{m-1})$$

• $w, \partial_r w \to 0$ as $r \to \infty$ and $w \ge 0$ seems appropriate

$$\partial_r w^{m-1} = -\frac{m-1}{m} \beta r \Rightarrow w^{m-1} = C - \frac{m-1}{2m} \beta r^2, C > 0$$

$$u(t,x) = t^{-\alpha} \left(\left(C - \frac{\beta(m-1)}{2m} \frac{|x|^2}{t^{2\beta}} \right)^+ \right)^{\frac{1}{m-1}}$$

Barenblatt's solution

Definition

Let $\alpha = \frac{n}{n(m-1)+2}$, $\beta = \frac{\alpha}{n}$, C > 0. Barenblatt's solution to the PME is

$$U_m(t,x;C):=t^{-\alpha}\left(\left(C-\frac{\beta(m-1)}{2m}\frac{|x|^2}{t^{2\beta}}\right)^+\right)^{\frac{1}{m-1}}$$

It is also known as **ZKB solution** in literature.

- ▶ U_m is a smooth solution where $U_m > 0$
- Finite propagation speed
- Non-smoothness on $|x| = t^{\beta} \left(\frac{C}{\beta} \frac{2m}{(m-1)} \right)^{\frac{1}{2}} =: r(t)$ for $m \ge 2$
- Scaling invariance
- Which role does C play?

Elimination of the free parameter

Lemma (Mass conservation)

Fix C > 0. As a map $(0, \infty) \to L^1(\mathbb{R}^n)$, U_m is mass preserving, i.e. $M := \|U_m(t, \cdot; C)\|_{L^1(\mathbb{R}^n)}$ is independent of t and is called **mass** of U_m .

Proof

- Let $t_1, t_2 > 0$ and $\lambda = \frac{t_1}{t_2}$
- ▶ Scaling invariance: $U_m(t_1, x; C) = \lambda^{\alpha} U_m(t_2, \lambda^{\beta} x; C)$
- $\|U_m(t_1,\cdot;C)\|_1 = \lambda^{\alpha}\lambda^{-n\beta} \|U_m(t_2,\cdot;C)\|_1 = \|U_m(t_2,\cdot;C)\|_1$

Elimination of the free parameter

Lemma (Mass conservation)

Fix C > 0. As a map $(0, \infty) \to L^1(\mathbb{R}^n)$, U_m is mass preserving, i.e. $M := \|U_m(t, \cdot; C)\|_{L^1(\mathbb{R}^n)}$ is independent of t and is called **mass** of U_m .

Proof

- ▶ Let $t_1, t_2 > 0$ and $\lambda = \frac{t_1}{t_2}$
- ▶ Scaling invariance: $U_m(t_1, x; C) = \lambda^{\alpha} U_m(t_2, \lambda^{\beta} x; C)$
- $\|U_m(t_1,\cdot;C)\|_1 = \lambda^{\alpha}\lambda^{-n\beta} \|U_m(t_2,\cdot;C)\|_1 = \|U_m(t_2,\cdot;C)\|_1$

Definition (Mass as parameter)

Let $\gamma = \frac{1}{m-1} + \frac{n}{2}$. The mass M and the free parameter C are related by

$$M = a(m, n) \cdot C^{\gamma}$$

Write $U_m(t, x; M)$ for Barenblatt's solution with mass M.

Elimination of the free parameter

Lemma (Mass conservation)

Fix C > 0. As a map $(0, \infty) \to L^1(\mathbb{R}^n)$, U_m is mass preserving, i.e. $M := \|U_m(t, \cdot; C)\|_{L^1(\mathbb{R}^n)}$ is independent of t and is called **mass** of U_m .

Proof

- Let $t_1, t_2 > 0$ and $\lambda = \frac{t_1}{t_2}$
- ▶ Scaling invariance: $U_m(t_1, x; C) = \lambda^{\alpha} U_m(t_2, \lambda^{\beta} x; C)$
- $\|U_m(t_1,\cdot;C)\|_1 = \lambda^{\alpha}\lambda^{-n\beta} \|U_m(t_2,\cdot;C)\|_1 = \|U_m(t_2,\cdot;C)\|_1$

Definition (Mass as parameter)

Let $\gamma = \frac{1}{m-1} + \frac{n}{2}$. The mass M and the free parameter C are related by

$$M = a(m,n) \cdot C^{\gamma} = \pi^{\frac{n}{2}} \cdot \left(\frac{m\alpha - m}{2mn}\right)^{-\frac{n}{2}} \cdot \frac{\Gamma(\frac{m}{m-1})}{\Gamma(\frac{m}{m-1} + \frac{n}{2})} \cdot C^{\gamma}$$

Write $U_m(t, x; M)$ for Barenblatt's solution with mass M.

Comparison to the heat equation

Note

For m = 1 the PME becomes the heat equation

$$\partial_t u - \Delta u = 0$$
 (HE)

Fundamental solution for the HE given by the Gaussian kernel $G(t,x)=(4\pi t)^{-\frac{n}{2}}\exp(-\frac{|x|^2}{4t})$

Comparison to the heat equation

Note

For m = 1 the PME becomes the heat equation

$$\partial_t u - \Delta u = 0$$
 (HE)

Fundamental solution for the HE given by the Gaussian kernel $G(t,x)=(4\pi t)^{-\frac{n}{2}}\exp(-\frac{|x|^2}{4t})$

Comparison to the heat equation

Note

For m = 1 the PME becomes the heat equation

$$\partial_t u - \Delta u = 0$$
 (HE)

Fundamental solution for the HE given by the Gaussian kernel $G(t,x)=(4\pi t)^{-\frac{n}{2}}\exp(-\frac{|x|^2}{4t})$

What happens to Barenblatt's solution in the limit $m \rightarrow 1$?

Asymptotics of Barenblatt's solution

Theorem

Let $U_m(t, x; M)$ Barenblatt's solution with mass M. We have the limits

$$\lim_{\substack{t\to 0\\ m\to 1}} U_m(t,\cdot M) = M\delta_0 \quad \text{in the sense of distributions}$$

Proof

- ▶ supp $U_m(t, \cdot; M) \subseteq B(0, t^{\beta} \left(\frac{C}{\beta} \frac{2m}{(m-1)}\right)^{\frac{1}{2}})$
- ▶ By mass preservation: $\lim_{t\to 0} U_m(t,\cdot M) = M\delta_0$

Asymptotics of Barenblatt's solution

Theorem

Let $U_m(t, x; M)$ Barenblatt's solution with mass M. We have the limits

$$\lim_{\substack{t\to 0\\ m\to 1}} U_m(t,\cdot M) = M\delta_0 \quad \text{in the sense of distributions}$$

$$\lim_{\substack{t\to 0\\ m\to 1}} U_m(t,x;M) = MG(t,x) \quad \text{pointwise on } (0,\infty)\times\mathbb{R}^n$$

Proof

- ▶ supp $U_m(t, \cdot; M) \subseteq B(0, t^{\beta} \left(\frac{C}{\beta} \frac{2m}{(m-1)}\right)^{\frac{1}{2}})$
- ▶ By mass preservation: $\lim_{t\to 0} U_m(t,\cdot M) = M\delta_0$
- Limit for $m \rightarrow 1$ is a truly marvelous calculation but this margin is to narrow to contain it

The Cauchy Dirichlet problem (CDP)

Let

- $\Omega \subseteq \mathbb{R}^n$ bounded with $\partial \Omega$ smooth, $T \in (0, \infty]$
- $ightharpoonup Q := \mathbb{R}_+ imes \Omega, \ Q_T := (0, T) imes \Omega$
- $u_0 \in L^1(\Omega), f \in L^1(Q)$
- $\Phi \in C(\mathbb{R})$ strictly increasing with $\Phi(\pm \infty) = \pm \infty$, $\Phi(0) = 0$

Consider

$$(CDP) \begin{cases} \partial_t u - \Delta(\Phi(u)) &= f & \text{in } Q_T \\ u(0,x) &= u_0(x) & \text{in } \Omega \\ u(t,x) &= 0 & \text{on } [0,T) \times \partial \Omega \end{cases}$$

The Cauchy Dirichlet problem (CDP)

Let

- ▶ $\Omega \subseteq \mathbb{R}^n$ bounded with $\partial \Omega$ smooth, $T \in (0, \infty]$
- $ightharpoonup Q := \mathbb{R}_+ imes \Omega, \ Q_T := (0, T) imes \Omega$
- $u_0 \in L^1(\Omega), f \in L^1(Q)$
- ullet $\Phi \in C(\mathbb{R})$ strictly increasing with $\Phi(\pm \infty) = \pm \infty$, $\Phi(0) = 0$

Consider

$$(CDP) \begin{cases} \partial_t u - \Delta(\Phi(u)) &= f & \text{in } Q_T \\ u(0,x) &= u_0(x) & \text{in } \Omega \\ u(t,x) &= 0 & \text{on } [0,T) \times \partial \Omega \end{cases}$$

▶ Choose $\Phi(u) = |u|^{m-1}u$ and f = 0 for the PME

Definition

A weak solution of CDP in Q_T is a function $u \in L^1(Q_T)$ s.t.

- **1** $w := \Phi(u) \in L^1(0, T; W_0^{1,1}(\Omega))$

holds for any $\eta \in C^1(\overline{Q_T})$ which vanishes on $[0, T) \times \partial \Omega$ and for t = T

- Integration by parts shows: smooth solutions are weak solutions
- What about initial data...?

Definition

A weak solution of CDP in Q_T is a function $u \in L^1(Q_T)$ s.t.

- **1** $w := \Phi(u) \in L^1(0, T; W_0^{1,1}(\Omega))$

holds for any $\eta \in C^1(\overline{Q_T})$ which vanishes on $[0, T) \times \partial \Omega$ and for t = T

- Integration by parts shows: smooth solutions are weak solutions
- What about initial data...?

Definition

A weak solution of CDP in Q_T is a function $u \in L^1(Q_T)$ s.t.

- **1** $w := \Phi(u) \in L^1(0, T; W_0^{1,1}(\Omega))$

holds for any $\eta \in C^1(\overline{Q_T})$ which vanishes on $[0, T) \times \partial \Omega$ and for t = T

- Integration by parts shows: smooth solutions are weak solutions
- What about initial data...?

Definition

A weak solution of CDP in Q_T is a function $u \in L^1(Q_T)$ s.t.

- **1** $w := \Phi(u) \in L^1(0, T; W_0^{1,1}(\Omega))$

holds for any $\eta \in C^1(\overline{Q_T})$ which vanishes on $[0, T) \times \partial \Omega$ and for t = T

- Integration by parts shows: smooth solutions are weak solutions
- What about initial data...?
- ▶ satisfied in the sense that for any $\varphi \in C^1(\overline{\Omega})$ with $\varphi = 0$ on $\partial\Omega$

$$\lim_{t\to 0}\int\limits_{\Omega}u(t)\varphi\,dx=\int\limits_{\Omega}u_0\varphi\,dx$$

A well-known weak solution

Modify Barenblatt's solution

- ▶ Take $x_0 \in \Omega$, $\tau > 0$
- ► Set $v(t,x) := U_m(t + \tau, x x_0; M)$
- ▶ Let T > 0 be small enough so that v = 0 on $[0, T) \times \partial \Omega$

Theorem

Define v(t,x) as above. Then v is a weak solution of the CDP for the PME in Q_T . If $m \ge 2$, then v is not a classical solution of that problem.

Proof

- v has the stated regularity
- ▶ Let $P := \{(t, x) \in Q_T \mid v(t, x) > 0\}$
- ightharpoonup v is smooth solution within P and v^m is C^1 up to |x| = r(t)
- Integration by parts yields the integral equality (2)