Set Theory Exercise 2.2 MCQs with Solutions

Set Theory MCQs (Exercise 2.2)

The following multiple-choice questions test key set theory concepts from Exercise 2.2. Questions are divided into low, medium, and high difficulty levels.

Questions

- 1. What does it mean for two sets to be equivalent?
 - a) They have the same elements
 - b) They have the same number of elements
 - c) They are subsets of each other
 - d) They are disjoint
- 2. Which pair of sets is equal?

 - a) {1, 2} and {2, 3}b) {1, 2} and {2, 1}c) {1, 2, 3} and {1, 2}
 - d) $\{a, b\}$ and $\{1, 2, 3\}$
- **3.** In a Venn diagram, what does the rectangle represent?
 - a) A subset
 - b) The universal set
 - c) The intersection of sets
 - d) The empty set
- **4.** If $A = \{1, 2\}$ and $B = \{2, 3\}$, what is $A \cup B$?
 - a) {2}
 - b) $\{1, 2, 3\}$
 - c) $\{1, 3\}$
 - $d) \{\emptyset\}$
- **5.** If $A = \{1, 2\}$ and $B = \{2, 3\}$, what is $A \cap B$?

- a) $\{1, 2, 3\}$
- b) {2}
- c) $\{1, 3\}$
- $\mathbf{d}) \ \{\emptyset\}$
- **6.** What is the empty set?
 - a) $\{0\}$
 - b) {Ø}
 - c) {}
 - d) {1, 2}
- **7.** Which sets are disjoint?
 - a) $\{1, 2\}$ and $\{2, 3\}$
 - b) $\{1, 2\}$ and $\{3, 4\}$
 - c) $\{1, 2\}$ and $\{1, 2, 3\}$
 - d) $\{1, 2\}$ and $\{1\}$
- **8.** If $A = \{1, 2, 3\}$ and $B = \{2, 4\}$, what is A B?
 - a) {1, 3}
 - b) {2}
 - c) {1, 2, 3, 4}
 - d) {4}
- **9.** If $U = \{1, 2, 3, 4\}$ and $A = \{1, 2\}$, what is A'?
 - a) {1, 2}
 - b) $\{3, 4\}$
 - c) $\{1, 2, 3, 4\}$
 - $\mathbf{d})\ \{\emptyset\}$
- **10.** Which sets are overlapping?
 - a) $\{1, 2\}$ and $\{3, 4\}$
 - b) {1, 2} and {2, 3}
 - c) $\{1, 2\}$ and $\{1, 2\}$
 - d) $\{1, 2\}$ and $\{\emptyset\}$
- **11.** If $A \subseteq B$, what is $A \cap B$?
 - a) A
 - b) B

- c) Ø
- d) $A \cup B$

12. Which property states $A \cup B = B \cup A$?

- a) Associative property
- b) Commutative property
- c) Distributive property
- d) De Morgan's Law

13. If $A = \{1, 2\}$ and $B = \{3, 4\}$, what is $n(A \cup B)$?

- a) 2
- b) 4
- c) 0
- d) 6

14. If $U = \{1, 2, 3\}$, what is U'?

- a) $\{1, 2, 3\}$
- b) $\{\emptyset\}$
- $c) \{0\}$
- d) {}

15. If $A \subseteq B$, what is A - B?

- a) A
- b) B
- c) Ø
- d) $A \cup B$

16. Which is true according to De Morgan's Laws?

- a) $(A \cup B)' = A' \cup B'$
- b) $(A \cap B)' = A' \cap B'$
- c) $(A \cup B)' = A' \cap B'$
- $\mathrm{d})\ (\mathrm{A}\cap\mathrm{B})'=\mathrm{A}\cup\mathrm{B}$

17. If $A = \{1, 2\}$ and $B = \{2, 3\}$, what is $(A \cup B)$ if $U = \{1, 2, 3, 4\}$?

- a) {4}
- b) $\{1, 2, 3\}$
- c) $\{1, 3\}$
- $d) \{2\}$

- **18.** If $A \cap B = \emptyset$, what is $n(A \cup B)$?
 - a) n(A) + n(B)
 - b) n(A) n(B)
 - c) $n(A) \times n(B)$
 - $d) n(A \cap B)$
- **19.** If A = B', what is $A \cup B$?
 - a) Ø
 - b) A
 - c) B
 - d) U
- **20.** Which is true for $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$?
 - a) Commutative property
 - b) Associative property
 - c) Distributive property
 - d) De Morgan's Law

Solutions with Explanations

- 1. Answer: B Equivalent sets have the same number of elements (cardinality), not necessarily the same elements,
- 2. Answer: B {1, 2} and {2, 1} have the same elements, so they are equal (order doesn't matter).
- **3. Answer: B** In a Venn diagram, the rectangle represents the universal set containing all elements under consideration.
- **4. Answer: B** A \cup B combines all elements: $\{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}$.
- **5. Answer:** B A \cap B includes common elements: $\{1, 2\} \cap \{2, 3\} = \{2\}$.
- **6. Answer:** C The empty set has no elements, denoted $\{\}$ or \emptyset . $\{\emptyset\}$ contains one element, the empty set.
- **7. Answer:** B Disjoint sets have no common elements. $\{1, 2\} \cap \{3, 4\} = \emptyset$.
- **8. Answer:** A A B includes elements in A not in B: $\{1, 2, 3\}$ $\{2, 4\}$ = $\{1, 3\}$.
- **9. Answer: B** A' includes elements in U not in A: $\{1, 2, 3, 4\} \{1, 2\} = \{3, 4\}$.
- **10. Answer: B** Overlapping sets have at least one common element: $\{1, 2\} \cap \{2, 3\} = \{2\}.$
- **11. Answer: A** If $A \subseteq B$, all elements of A are in B, so $A \cap B = A$.
- 12. Answer: B $A \cup B = B \cup A$ is the commutative property of union.

- **13. Answer: B** A = $\{1, 2\}$, B = $\{3, 4\}$, A \cap B = \emptyset , so $n(A \cup B) = n(A) + n(B) = 2 + 2 = 4$.
- 14. Answer: D The complement of the universal set is empty: $U' = U U = \{\}$.
- **15. Answer:** C If $A \subseteq B$, all elements of A are in B, so $A B = \emptyset$ (no elements in A are outside B).
- **16. Answer: C** De Morgan's Law: $(A \cup B)' = A' \cap B'$. The other options are incorrect or incomplete.
- **17. Answer: A** $A \cup B = \{1, 2, 3\}$, so $(A \cup B)' = \{1, 2, 3, 4\} \{1, 2, 3\} = \{4\}$.
- **18. Answer:** A If $A \cap B = \emptyset$, then $n(A \cup B) = n(A) + n(B)$ by the cardinality rule for disjoint sets.
- **19. Answer: D** If A = B', then $A \cup B = B' \cup B = U$ (all elements in the universal set).
- **20.** Answer: $C A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ is the distributive property of intersection over union.

