

3D ISOLATED ROTOR IN HOVER

Aditya Raman

Federico Di Verniere

Luca Parisotto

Matteo Freschi

Tutor:

Dr. Myles Morelli

INTRODUCTION

- Rotorcrafts a unique vehicle with a capability of VTOL
- Many codes developed by institutions and academia. Eg: FUN3D, ROSITA etc.
- Perks of Open-source softwares

REFERENCE EXPERIMENT

- A hallmark experiment by F. X.
 Caradonna and C.Tung
- Symmetric NACA0012 profile

Features

Chord	Aspect Ratio	Rotor radius
0.19114 m	6	1.143 m

DESIGN AND SETUP

Goal: To computationally reproduce the experiment by F. X. Caradonna and C. Tung with SU2

Procedure:

- Mesh generation (Gmsh)
- Mesh convergence
- Verification and Validation of results
- Comparison of Numerical schemes

COMPUTATIONAL MODEL: Problem specifications (1)

Surface Geometry

(a) Rotor diameter.

(b) Blade geometry.

COMPUTATIONAL MODEL: Problem specifications (2)

Farfield Geometry

(a) External boundary height.

(b) External boundary diameter.

COMPUTATIONAL MODEL: Problem specifications (3)

Rotor radius	Disk Area	Aspect Ratio	Cutoff Length	Blade Length
1.143 m	4.104 sq m	6	0.2286 m	0.9144 m

Free-stream values

Gas constant	287.058 Nm/kgK
Spec. heat ratio	1.4
Static pressure	101325 Pa
Density	$1.22498 kg/m^3$
Temperature	288.15 K
Total energy per unit mass	$206789 m^2/s^2$

MESH GENERATION

- Surface mesh
- Volume mesh

spanwise mesh section

Unstructured blade surface mesh

MESH GENERATION – FIELD MESHING

Parameters $\begin{cases} h \\ dim \\ C \end{cases}$

reference dimension of surface elements reference dimension of farfield elements exponential profile constant number of spanwise elements at C/2

Exponential profile:
$$h - C + e^{F1 - \frac{5}{2}}$$

C/2 lines

Wing planform perimeter

MESH GENERATION – 4 MESHES

Parameters

h dim c reference dimension of surface elements reference dimension of farfield elements exponential profile factor number of spanwise elements at C/2

	MESH 1	MESH 2	MESH 3	MESH 4
h	0.0075	0.0055	0.003	0.0025
Dim	2	2	2	2
N	75	105	150	175
С	0.065	0.0775	0.079	0.08
Elements	469804	1476898	2744096	3558951

NUMERICAL IMPLEMENTATION

Numerical approach

Finite Volume Method (FVM)

Governing equations: COMPRESSIBLE EULER

ROTATING FRAME

$$\begin{cases} \nabla \cdot F_r(U) - S_r = 0 & \text{in } \Omega \\ (u - u_r) \cdot n_s = 0 & \text{on } \Gamma_s \\ W_+ = W_\infty & \text{on } \Gamma_\infty \end{cases}$$

$$S_r = \begin{cases} S_{\rho} \\ S_{\rho u} - \rho(\boldsymbol{\omega} \times \boldsymbol{u}) \\ S_E \end{cases}$$

$$\begin{cases} \nabla \cdot F_r(U) - S_r = 0 & \text{in } \Omega \\ (u - u_r) \cdot n_s = 0 & \text{on } \Gamma_s \\ W_+ = W_\infty & \text{on } \Gamma_\infty \end{cases} \qquad F_r = \begin{cases} \rho(u - u_r) \\ \rho u \otimes (u - u_r) + \mathcal{I}P \\ E(u - u_r) + Pu \end{cases}$$

$$u_r = \omega \times \eta$$

1750 RPM: Mesh Convergence

1750 RPM: Cp Plot, 2° CPA

1750 RPM: Cp Plot, 5° CPA

1750 RPM: Cp Plot, 12° CPA

1750 RPM: Cp error %

1750 RPM: Sectional lift coefficient

1750 RPM: Thrust Coefficient

	2°	5°	8°	12°
C&T	NA	0.00218	0.00455	0.00807
Euler	0.00103	0.00251	0.00413	0.00418

1750 RPM: JST vs ROE 2° order (1)

1750 RPM: JST vs ROE 2° order (2)

Sectional lift coefficients

r/R	0.50	0.68	0.8	0.89	0.96
C&T	0.2374	0.2728	0.2690	0.2865	0.3125
JST	0.3566	<mark>0.2857</mark>	<u>0.2825</u>	<u>0.2735</u>	0.2088
ROE	<mark>0.2831</mark>	0.3481	0.3986	0.3832	<mark>0.2948</mark>

1500 RPM Case

JST 2nd order
 CPA = 2°, 5°, 8°, 12°

ROE 1st order
 CPA = 8°

1500 RPM: 2nd order JST, Mesh convergence

1500 RPM: 1st order ROE, mesh convergence

1500 RPM: 1st order ROE, Pressure coefficient results

1500 RPM, 1st order ROE, lift and thrust coefficients

 $CPA = 8^{\circ}$

r/R [-]	С&Т	CFD	Error [%]
0.50	0.2409	0.6475	169
0.68	0.2638	0.6158	133
0.80	0.2633	0.5738	118
0.89	0.2760	0.5053	83
0.96	0.3052	0.4067	33

CFD	0.00771
C&T 1750 RPM	0.00459
C&T 1250 RPM	0.00455

Thrust coefficient Comparison CFD results vs. empirical data.

Sectional lift coefficient

Comparison CFD results vs. empirical data.

1500 RPM: 2nd order JST vs 1st order ROE

Conclusions

- Generally most accurate results for small CPAs
- Numerical issues
 - Strucutred mesh for blades are unfeasible with the meshing software used
 - Limitated computational power
 - Problem geometry simplification
 - Euler numerical scheme not accurate

Thank you for attention!

Aditya Raman

Luca Parisotto

Matteo Freschi

Federico Di Verniere