

Sinais e Sistemas

Problemas Propostos

Aula TP11

José M. Cabral cabral@dei.uminho.pt
Dezembro de 2021

Exercícios sobre Amostragem de Sinais

1. A amostragem por trem de impulsos de x[n] é usada para obter:

$$g[n] = \sum_{k=-\infty}^{\infty} x[n]\delta[n-kN].$$

- Se $X(e^{jw}) = 0$ para $3\pi/7 < w < \pi$, determine o maior valor para o intervalo de amostragem N que garante que não ocorra nenhum aliasing durante a amostragem x[n].
- **2.** Considere o sistema mostrado na Figura abaixo, com entrada x[n] e a saída y[n]. O sistema de inserção de zeros insere dois pontos com amplitude zero entre cada um dos valores de sequência em x[n].

A decimação é definida por:

$$y[n] = w[5n]$$

onde w[n] é a sequência de entrada para o sistema de decimação. Se a entrada for da forma:

$$x[n] = \frac{\sin \omega_1 n}{\pi n}$$

- Determine a saída y[n] para os seguintes valores de w_1 :
- **a)** $w_1 \le 3\pi/5$
- **b)** $w_1 > 3\pi/5$

3. A figura abaixo mostra o sistema geral para filtrar um sinal de tempo contínuo usando um filtro de tempo discreto. Se $X_c(jw)$ e $H(e^{jw})$ são como é mostrado na figura (b), com 1/T = 20kHz, esboce $X_p(jw)$, $X(e^{jw})$, $Y(e^{jw})$, $Y_p(jw)$, e $Y_c(jw)$

