Kotlin∇: A Shape-safe DSL for Differentiable Programming

Breandan Considine, Michalis Famelis, Liam Paull

Main Idea

- We create an embedded DSL for differentiable programming in Kotlin
- Supports shape checking and inference for multi-dimensional arrays
- Implementable in any language with first-class functions and generics

Shape errors

There are three broad strategies for handling shape errors:

- Perform type coercion by implicitly broadcasting or reshaping arrays
- Raise a runtime error (e.g. tf.errors.InvalidArgumentError)
- Do not allow programs which can result in a shape error to compile

In Kotlin ∇ , we prefer the last strategy. Consider the following scenario:

```
a = np.array('0 1 2 3 4 5')
b = np.array('6 7 8 9')
c = a + b
```

Similarly, when the inner dimensions of two matrices do not match:

We can detect the presence and location of the error within the editor.

Type system

Math	Infix	Prefix	Postfix	Operator Type Signature
$\mathbf{A}(\mathbf{B})$, $\mathbf{A} \circ \mathbf{B}$	a(b)			$(a: \mathbb{R}^{ au} o \mathbb{R}^{\pi}, \ b: \mathbb{R}^{\lambda} o \mathbb{R}^{ au}) o (\mathbb{R}^{\lambda} o \mathbb{R}^{\pi})$
$\mathbf{A}\pm\mathbf{B}$	a + b, a - b	plus(a, b)		(a: $\mathbb{R}^{\tau} \to \mathbb{R}^{\pi}$, b: $\mathbb{R}^{\lambda} \to \mathbb{R}^{\pi}$) \to ($\mathbb{R}^{?} \to \mathbb{R}^{\pi}$)
\mathbf{AB}	a * b, a.times(b)	times(a, b)		(a: $\mathbb{R}^{\tau} \to \mathbb{R}^{m \times n}$, b: $\mathbb{R}^{\lambda} \to \mathbb{R}^{n \times p}$) $\to (\mathbb{R}^? \to \mathbb{R}^{m \times p})$
$\mathbf{A}\mathbf{B}^{-1}$	a/b a.div(b)	div(a, b)		(a: $\mathbb{R}^{\tau} \to \mathbb{R}^{m \times n}$, b: $\mathbb{R}^{\lambda} \to \mathbb{R}^{p \times n}$) $\to (\mathbb{R}^? \to \mathbb{R}^{m \times p})$
$\log_b \mathbf{A}$	a.log(b)	log(a, b)		(a: $\mathbb{R}^{\tau} \to \mathbb{R}^{m \times m}$, b: $\mathbb{R}^{\lambda} \to \mathbb{R}^{m \times m}$) $\to (\mathbb{R}^? \to \mathbb{R})$
\mathbf{A}^b	a.pow(b)	pow(a, b)		(a: $\mathbb{R}^{\tau} \to \mathbb{R}^{m \times m}$, b: $\mathbb{R}^{\lambda} \to \mathbb{R}$) \to ($\mathbb{R}^? \to \mathbb{R}^{m \times m}$)
∇a		grad(a)	a.grad()	$\left(\mathbf{a} \colon C(\mathbb{R}^{\tau} \to \mathbb{R})\right) \to (\mathbb{R}^{\tau} \to \mathbb{R}^{\tau})$
$\nabla_{\mathbf{B}}a$	a.d(b) a.grad(b)	grad(a, b)		$\left(\mathbf{a}:C(\mathbb{R}^{ au} o\mathbb{R}),\;\mathbf{b}:C(\mathbb{R}^{\lambda} o\mathbb{R}^n) ight) o(\mathbb{R}^? o\mathbb{R}^n)$

Visualization

Kotlin ∇ is capable of computing arbitrarily high order derivatives.

```
val y = sin(sin(x))) / x
val z = y + sin(x) * x + cos(x) + x
val d1 = d(z) / d(x)
val d2 = d(d1) / d(x)
val d3 = d(d2) / d(x)
val d4 = d(d3) / d(x)
val d5 = d(d4) / d(x)
plot2D(-6..6, z, d1, d2, d3, d4, d5)
```


Testing

Differentiable Programming

Double Pendulum

$$\dot{\theta}_{1} = \frac{6}{ml^{2}} \frac{2p_{\theta_{1}} - 3\cos(\theta_{1} - \theta_{2})p_{\theta_{2}}}{16 - 9\cos^{2}(\theta_{1} - \theta_{2})}$$

$$\dot{\theta}_{2} = \frac{6}{ml^{2}} \frac{8p_{\theta_{2}} - 3\cos(\theta_{1} - \theta_{2})p_{\theta_{1}}}{16 - 9\cos^{2}(\theta_{1} - \theta_{2})}.$$

$$\dot{p}_{\theta_{1}} = \frac{\partial L}{\partial \theta_{1}} = -\frac{1}{2}ml^{2} \left(\dot{\theta}_{1}\dot{\theta}_{2}\sin(\theta_{1} - \theta_{2}) + 3\frac{g}{l}\sin\theta_{1}\right)$$

$$\dot{p}_{\theta_{2}} = \frac{\partial L}{\partial \theta_{2}} = -\frac{1}{2}ml^{2} \left(-\dot{\theta}_{1}\dot{\theta}_{2}\sin(\theta_{1} - \theta_{2}) + \frac{g}{l}\sin\theta_{2}\right).$$

