sine basis 01

Statistics: p-values adjusted for search volume

p raided adjusted in volume												
set-l	evel	cluster-level				peak-level					mm mm mm	
р	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	$p_{ m uncorr}$	p_{FWE-c}	g corrFDR-co	T orr	$(Z_{\equiv}) p_{\text{uncorr}}$			
		1.000 1.000	0.777 0.777	13 9	0.248 0.336	1.000	0.999	2.94 2.93	2.93 2.91	0.002 0.002	54 -36	26 32 -10 48
		0.999	0.290	52	0.030	1.000 1.000 1.000	0.999 0.999 0.999	2.92 2.89 2.70	2.91 2.88 2.69	0.002 0.002 0.004	50 48 52	-66 -2 -64 10 -72 10
		1.000	0.777	9	0.116 0.336	1.000 1.000	0.999	2.91 2.89	2.90 2.88	0.002 0.002	-20 22	-84 26 -74 22
		1.000 1.000 1.000	0.777 0.777 0.777	9 6 7	0.336 0.435 0.398	1.000 1.000 1.000	0.999 0.999 0.999	2.88 2.87 2.87	2.87 2.86 2.86	0.002 0.002 0.002	20 -52 56	60 -10 4 20 4 46
		1.000	0.777 0.777	9 7	0.336 0.398	1.000	0.999	2.82 2.82	2.81	0.003	-38 -12	38 -10 -72 -10
		1.000 1.000 1.000	0.777 0.777 0.777	5 4 7	0.478 0.530 0.398	1.000 1.000 1.000	0.999 0.999 0.999	2.81 2.81 2.79	2.80 2.80 2.78	0.003 0.003 0.003	68 38 6	-28 26 -52 -8 -18 -34
		1.000	0.777	13 8	0.248 0.365	1.000	0.999	2.79 2.79 2.79	2.78 2.77	0.003	28 26	48 -4 10 -8
		1.000 1.000 1.000	0.777 0.777 0.777	15 13 1	0.216 0.248 0.777	1.000 1.000 1.000	0.999 0.999 0.999	2.77 2.77 2.75	2.76 2.76 2.74	0.003 0.003 0.003	28 -42 -50	-54 0 34 18 -22 -30
		1.000	0.777	7 15	0.398 0.216	1.000	0.999	2.74 2.74	2.73 2.73	0.003	-20 -32	-10 62 12 -6

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Φ) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels FWHM = 6.7 6.5 6.8 mm mm mm; 3.3 3.2 3.4 {voxels}

Expected voxels per cluster, <k> = 10.503 Volume: 1672656 = 209082 voxels = 5297.5 resels

Expected number of clusters, <c> = 224.71Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 36.50 voxels)

FWEp: 5.102, FDRp: Inf, FWEc: 297, FDRc?aga 3