Grado en Ingeniería Información

Estructura de Datos y Algoritmos

Sesión 13

Curso 2022-2023

Marta N. Gómez

T3. Tipos Abstractos de Datos (TAD)

- Grafos.
 - Árbol de Recubrimiento o Expansión
 - Árbol de Recubrimiento Mínimo: ALGORITMO DE PRIM
 - Árbol de Recubrimiento Mínimo: ALGORITMO DE KRUSKAL
 - Cierre Transitivo: ALGORITMO DE WARSHALL
 - Caminos Mínimos: ALGORITMO DE FLOYD
 - Caminos Mínimos: ALGORITMO DE DIJKSTRA

• Sea G (V, E) un Grafo Conexo: $E(G) = T(G) \cup R(G)$

donde: $T(G) = \{arcos de un recorrido del grafo\}$

R(G) = {arcos del grafo pero no del recorrido }

 Los vértices V(G) junto con los arcos de T(G), constituyen un ÁRBOL:

<u>Árbol de Recubrimiento/Expansión del Grafo G</u> (Spanning Tree)

• Un árbol de recubrimiento es un subgrafo, G', de G tal que:

$$V(G') = V(G)$$
 $E(G') = T(G)$ y G' es conexo (sin ciclos).

 Todos los grafos conexos con N vértices y (N-1) arcos son ÁRBOLES.

$$A \rightarrow B \rightarrow D \rightarrow G$$

$$\downarrow$$

$$B \rightarrow A \rightarrow C \rightarrow G \rightarrow H$$

$$\downarrow$$

$$C \rightarrow B \rightarrow F \rightarrow H$$

$$\downarrow$$

$$D \rightarrow A \rightarrow E \rightarrow G$$

$$\downarrow$$

$$E \rightarrow D \rightarrow F \rightarrow G \rightarrow H$$

$$\downarrow$$

$$F \rightarrow C \rightarrow E \rightarrow H$$

$$\downarrow$$

$$G \rightarrow A \rightarrow B \rightarrow D \rightarrow E$$

$$\downarrow$$

$$H \rightarrow B \rightarrow C \rightarrow E \rightarrow F$$

$$A \rightarrow B \rightarrow D \rightarrow G$$

$$\downarrow$$

$$B \rightarrow A \rightarrow C \rightarrow G \rightarrow H$$

$$\downarrow$$

$$C \rightarrow B \rightarrow F \rightarrow H$$

$$\downarrow$$

$$D \rightarrow A \rightarrow E \rightarrow G$$

$$\downarrow$$

$$E \rightarrow D \rightarrow F \rightarrow G \rightarrow H$$

$$\downarrow$$

$$F \rightarrow C \rightarrow E \rightarrow H$$

$$\downarrow$$

$$G \rightarrow A \rightarrow B \rightarrow D \rightarrow E$$

$$\downarrow$$

$$H \rightarrow B \rightarrow C \rightarrow E \rightarrow F$$

$$A \rightarrow B \rightarrow D \rightarrow G$$

$$\downarrow$$

$$B \rightarrow A \rightarrow C \rightarrow G \rightarrow H$$

$$\downarrow$$

$$C \rightarrow B \rightarrow F \rightarrow H$$

$$\downarrow$$

$$D \rightarrow A \rightarrow E \rightarrow G$$

$$\downarrow$$

$$E \rightarrow D \rightarrow F \rightarrow G \rightarrow H$$

$$\downarrow$$

$$F \rightarrow C \rightarrow E \rightarrow H$$

$$\downarrow$$

$$G \rightarrow A \rightarrow B \rightarrow D \rightarrow E$$

$$\downarrow$$

$$H \rightarrow B \rightarrow C \rightarrow E \rightarrow F$$

$$A \rightarrow B \rightarrow D \rightarrow G$$

$$\downarrow$$

$$B \rightarrow A \rightarrow C \rightarrow G \rightarrow H$$

$$\downarrow$$

$$C \rightarrow B \rightarrow F \rightarrow H$$

$$\downarrow$$

$$D \rightarrow A \rightarrow E \rightarrow G$$

$$\downarrow$$

$$E \rightarrow D \rightarrow F \rightarrow G \rightarrow H$$

$$\downarrow$$

$$F \rightarrow C \rightarrow E \rightarrow H$$

$$\downarrow$$

$$G \rightarrow A \rightarrow B \rightarrow D \rightarrow E$$

$$\downarrow$$

$$H \rightarrow B \rightarrow C \rightarrow E \rightarrow F$$

Árbol de Recubrimiento Mínimo

Árbol de Recubrimiento Mínimo

Sea G es un grafo valorado y conexo.

Su árbol de recubrimiento mínimo es un árbol de recubrimiento que cumple que la suma de las etiquetas de sus aristas es la menor posible.

Se obtiene a través de los algoritmos: Kruskal y Prim

Consiste en añadir, en cada paso, una arista de peso mínimo a un árbol previamente construido y siempre haciendo que el subgrafo que se va formando sea conexo.

Pasos:

- Empezar en un vértice cualquiera v. El árbol consta inicialmente sólo del nodo v.
- 2. Del resto de vértices, buscar el que esté **más próximo a v** (la arista (v, w)) de **coste mínimo**. Añadir w y la arista (v, w) al árbol.
- 3. Buscar el **vértice más próximo a cualquiera de estos dos**. Añadir ese vértice y la arista al árbol de recubrimiento.
- 4. Repetir sucesivamente hasta añadir los n vértices y (n-1) aristas.

Supongamos el siguiente grafo conexo valorado

Coste total = 21 + 17 + 19 + 20 = 775 vértices y 4 aristas

Consiste en elegir las aristas de menor peso que no forman ciclos. Para poder elegir dichas aristas es necesario ordenarlas de menor a mayor peso.

Pasos:

- 1. Se marca la arista con menor valor. Si hay más de una, se elige cualquiera de ellas.
- 2. De las aristas restantes, se **marca la que tenga menor valor**, si hay más de una, se elige cualquiera de ellas.
- 3. Repetir el paso 2 siempre que la arista elegida no forme un ciclo con las ya marcadas.
- 4. El proceso termina cuando tenemos todos los nodos del grafo y (n-1) arcos, siendo n el número de nodos del grafo.

Supongamos el siguiente grafo conexo valorado

Coste total = 21 + 17 + 19 + 20 = 775 vértices y 4 aristas

Árbol de Recubrimiento Mínimo: Algoritmos de Prim y Kruskal

El problema consiste en dados dos vértices V_i y V_j de un grafo G, determinar si existe algún camino que conecte ambos vértices, independientemente de su coste.

El algoritmo comprobará si existe conexión entre V_i y V_i si:

- Inicialmente existía, o bien
- Si dado un nodo V_k, existe conexión entre V_i y V_k y también existe conexión entre V_k y V_i.

1.- Construir la Matriz de Adyacencia:

$$M(V_i, V_j) = \begin{cases} 1 & \text{si } [V_i, V_j] \in E(G) \\ 0 & \text{en caso contrario} \end{cases}$$

2.- Iterar con los diferentes vértices hasta obtener la Matriz de Cierre Transitivo:

Transitivo:
$$A[V_i, V_j] = \begin{cases} 1 & \text{si existe un camino de Vi a Vj en G} \\ 0 & \text{en caso contrario} \end{cases}$$

$$A_{k}[i, j] = (A_{k-1}[i, j]) OR (A_{k-1}[i, k]) AND A_{k-1}[k, j]$$

	а	Ь	С	d	e
a	0	0	1	1	0
b	1	0	0	0	1
С	0	0	0	0	0
d	0	0	1	0	1
е	1	1	0	0	0

	а	b	С	d	е
а	0	0	1	1	0
b	1	0	1	1	1
С	0	0	0	0	0
d	0	0	1	0	1
е	1	1	1	1	0

	а	۵	U	а	Φ
а	0	0	1	1	0
b	1	0	1	1	1
С	0	0	0	0	0
d	0	0	1	0	1
е	1	1	1	1	0

Vértice intermedio: a

Vértice intermedio: b

	а	b	С	d	е
а	0	0	1	1	1
b	1	0	1	1	1
С	0	0	0	0	0
d	0	0	1	0	1
е	1	1	1	1	0

Vértice intermedio: c

	а	b	С	d	е
а	0	0	1	1	0
b	1	0	1	1	1
С	0	0	0	0	0
d	0	0	1	0	1
е	1	1	1	1	0

	а	b	С	d	е
a	0	1	1	1	1
b	1	0	1	1	1
С	0	0	0	0	0
d	1	1	1	0	1
е	1	1	1	1	0

Vértice intermedio: d

Vértice intermedio: e

Caminos Mínimos: ALGORITMO DE FLOYD

El problema es determinar todos los caminos mínimos dentro de un grafo. Es decir, todos los caminos mínimos que toman como partida cualquier vértice del grafo y toman como llegada cualquier otro vértice del grafo.

Pasos:

- 1. Construimos la matriz A, con los costes asociados a los arcos del grafo dado.
- 2. Realizamos n *iteraciones* (número de vértices del grafo), según se indica posteriormente.
- 3. Después de la *iteración k-ésima*, A contiene los costes de **los caminos mínimos** que sólo utilizan como vértices intermedios el conjunto {0, 1,..., k}.
- 4. Finalmente, tras la *iteración n-ésima*, se obtiene la matriz A con las longitudes de todos los caminos mínimos posibles del grafo.

Caminos Mínimos: ALGORITMO DE FLOYD

Para la *iteración k-ésima* para cada par de vértices (*i, j*), hay que comprobar si existe un camino que pasa por el *vértice k* que sea más corto que el mejor camino que se tenga y que únicamente pasa por {0, 1,..., k-1}, es decir:

$$A_{k}[i, j] = minimo \{(A_{k-1}[i, j]); A_{k-1}[i, k] + A_{k-1}[k, j]\}$$

- Un camino optimo que pasa por k, no lo hace 2 veces.
- En la k-ésima iteración no cambian los índices de la fila k ni los de la columna k, puesto que consideramos que A[k, k] = 0.
- Cuando dos vértices V_i y V_j no estén conectados el coste [V_i, V_j] será infinito (∞).

Caminos Mínimos: ALGORITMO DE FLOYD

Permite calcular caminos de longitud mínima en grafos no dirigidos, conexos y ponderados.

Pasos:

Paso 1.- Etiquetado de los vértices con L(v).

$$L(v) = \begin{cases} 0 \ si & v = x \\ \infty \ si & v \neq x \end{cases}$$

donde:

- x el vértice de inicio del camino
- w un número positivo arbitrariamente grande.

Paso 2.- Selección de la Etiqueta Mínima.

Se busca un vértice cuya etiqueta **L(v)** sea la mínima. Si hay varias iguales, entonces se elige un vértice cualquiera.

- Si v = y, siendo y el último vértice del camino, la longitud del camino más corto entre el vértice x de inicio y el vértice final y es L(y). En esta situación se acabó el algoritmo.
- Si v ≠ y, se pasa al siguiente paso del algoritmo.

Paso 3.- Nuevo etiquetado de los vértices.

Para cada vértice w, adyacente con el vértice v (cuya L(v) es mínima), se calcula el valor de una nueva etiqueta L_i(w) con el siguiente criterio:

$$L_i(w) = min. \{L(w), L(v) + p(v, w)\}$$

donde **p(v, w)** es la etiqueta o peso de la arista que tiene como extremos los vértices **v** y **w**.

Paso 4.- Simplificación del grafo.

Se eliminan del grafo el vértice v (cuya L(v) es mínima) y las aristas que contienen a v.

Volver al paso 2 hasta el final del algoritmo.

Vértice Mínimo	а	b	С	d	е	f	Arista del vértice mínimo