Mini Quizzes

Week 2 — Chapter 15	
Week 1 — Chapter 14	

Week 2 — Chapter 15

- 1. The reagent needed to convert 2-butyne to cis-2-butene is
 - ∘ H₂/Pd−C
 - o Li/NH₃
 - o Na/NHa
 - H₂/LindlarCatalyst
 - Complete hydrogenation of an alkyne:

$$R \longrightarrow R' \xrightarrow{H_2} R \xrightarrow{H} R'$$

 Alkyne → cis-alkene; use of lindlar catalyst (Pd-c poisoned with lead) limits further reduction by controlling hydrogens available:

$$R \longrightarrow R' \xrightarrow{H_2} \xrightarrow{H} \xrightarrow{R'}$$

Alkyne → trans-alkene; using generation of free radicals (•, single electron) that
pair up with another electron generated by the dissociation of Na → Na⁺+ e⁻ to
create a free pair of electrons that than receive a hydrogen from NH₃:

- 2. A mixture of 1-heptyne, 2-heptyne, and 3-heptyne was hydrogenated in the presence of a palladium catalyst until hydrogen uptake stopped. If one assumes that the hydrogenation went to completion for all the reactants present in the mixture, how many distinct seven-carbon isomers were produced?
 - Only 1
 - 0 2
 - 0 4
 - о б
 - H₂/Pd-c (palladium catalyst) generates completely saturated alkenes, thus the location of the double bond in a heptyne will make no difference overall.

3. Give the best reagents for the reaction

$$(\operatorname{CH}_3)_2\operatorname{CHCH}_2\operatorname{C} \Longrightarrow \operatorname{CH} \longrightarrow (\operatorname{CH}_3)_2\operatorname{CHCH}_2\operatorname{CH}_2\operatorname{CH}$$

- H₂O, H₂OSO₄, HgSO₄
- BH₃, H₂O₂, NaOH
- K₂Cr₂O₇
- H₂, Lindlar Catalyst
- First, this is a hydration reaction, so that limits just the first two options.
- Hydration using H₂O and H₂OSO₄ or HgSO₄ does have difference, but both follow Markovnikov's rule and end produce internal enols and thus internal ketones.
- Hydroboration-oxidation reaction follows anti-Markovnikov rule and produces a terminal enol and thus an aldehyde, which is the desired product.
- 4. Which of the alkyne addition reactions below involves an enol intermediate?
 - Hydroboration/oxidation
 - o dil. HaSO4 in HaSO4
 - Hydrogenation
 - $\circ~$ Both hydroboration/oxidation and dil. H $_2$ SO $_4$ in HgSO $_4$
 - See question three, both hydroboration/oxidation and dil. H_2SO_4 in $HgSO_4$ are used in hydration, which have enol intermediates.
 - Hydrogenation only has to do with adding hydrogens to saturate the alkyne through elimination reactions, which question one covers.

Week 1 - Chapter 14

Name the structure:

- 1-chloro-3-cycloheptene
- 4-chloro-1-cycloheptene
- 4-chloro-1-cyclohexene
- 6-chloro-1-cycloheptene
 - When numbering the parent chain, the double bond should receive the lowest number possible; k=1
 - Note: define the location *k* of the double bond as being the number of its first carbon, not at the end.
 - The locant (k) of the double bond should be placed right before the suffix of "ene," though, it was previously recommended before the parent (both are acceptable), e.g., 2-pentene = pent-2-ene; 1-cycloheptene
 - Name and the side groups (other than hydrogen) according to the appropriate rules; chloro
 - Define the position of each side group as the number of the chain carbon it is attached to; 4-
- Name the structure.

$$CICH_2CH_2$$
 H
 C
 H
 H

- 。(2E.4E)-7-chloro-2.4-heptadiene
- > (2Z,4Z)-7-chloro-2,4-heptadiene
- 。 (2Z,4E)-/-chloro-2,4-heptadiene
- 。(2E.4Z)-7-chloro-2.4-heptadiene
 - **E-Z notation**: recommended instead of *cis* and *trans* in order to account for cases that has more than two different groups attached to the double bond by first determining the priority using the Cahn-Ingold-Prelog System.
 - F entgegen "opposite"

- · Z, zusammen, "together"; "on ze zame zide."
- When numbering the parent chain, the double bond should receive the lowest number possible; k=2
 - The two highest priority groups are on opposite sides; 2E
- There is more than one double bond; $k_2 = 4$
 - The two highest priority groups are on zame side; 4Z
- How many stereoisomeric product(s) do you get in the reaction below.

- o Oxymercuration-demercuration reactions follow Markovnikov's rule, i.e., H^+ is added to the carbon with the greatest number of hydrogen atoms while the X^- component is added to the carbon with the fewest hydrogen atoms.
- Drawing the intermediate is not necessary, and no chiral centers are found in the products:

...
$$\frac{\text{Hg(OAc)}_2, \text{H}_2\text{O}, \text{THF}}{\text{NaBH}_4} + H$$

4. Which reaction intermediate is formed when Br2/CCI4 reacts with cyclohexene?

• **Halogenation**: a reaction that involves the addition of one or more halogens to a compound or material.

- The addition of halogens to alkenes proceeds via intermediate halonium ions.
- **Halonium ion**: any onium ion containing a halogen atom carrying a positive charge. This cation has the general structure: R·+X·R'
- **Onium ion**: a cation formally obtained by the protonation of mononuclear parent hydride of a pnictogen (group 15 of the periodic table), chalcogen (group 16), or halogen (group 17); Br^{\oplus} in our case.