DUKELEC 1 概述

CD-BUS 介绍

DUKELEC

August 6, 2017

1 概述

CD-BUS 是一款基於 RS485 的通讯协议,它只定义了 ISO/OSI 模型的数据链路层。 CD-BUS 协议由 DUKELEC 公司於 2009 年设计,以便捷、多主对等、高速通讯为目标。

以下两个表格对比 CD-BUS 和传统常用现场总线:

OSI 层	Modbus	PROFIBUS	其它	CD-BUS	CAN 总线		
应用层	Modbus 应用协议	PROFIBUS DPV0,1,2	其它应用层协议	私有协议, Modbus, 其它	CAN 应用层协议 CANopen-Lift, J1939, 其它		
表现层					可选 譬如:CANopen		
会议层	空	空	大多为空	可选			
传输层	-		八夕乃至				
网路层							
资料连结层	Modbus 串行协议	PROFIBUS	其它串行协议	CD-BUS 控制器:	CAN 2.0 控制器	CAN FD 控制器	
	二进制 (RTU) 字符	(令牌传递)	二进制 (FF AA) 字符	CD485XX			
实体层	RS485 收发器 & 电缆 CAN 收发						

橙色:由软件实现;绿色:由硬件实现。

我们不与工业以太网做对比,因为它是更复杂、更昂贵,面向不同市场。

现场总线	最多设备	最高速率	装载数据	响应速度	多主支持	去中心化 (点对点)	CPU 消耗	独立控制器	易用程度
Modbus RTU	254	跟 RS485 收发 器有关	252 字节	慢(等待轮 询)	否	不支持	高	无	中等
PROFIBUS DP	126	12 Mbps	244 字节	中(等待令 牌)	支持 (令牌传递)	支持	高	无	困难
其它		跟 RS485 收发 器有关	1	慢或中	可能通过按字节 仲裁或数据帧校 验,或通过令牌 支持,或不支持	可能	高	无	中等
CD-BUS	255	典型为 9 Mbps, 可支持更高	253 字节	快	支持 (按位仲裁)	支持	低	有	简单
CAN 2.0	CANopen 最	1 Mbps	8 字节	快	支持 (按位仲裁)	支持	低	有	困难
多 127, 自身 可持更多	12 Mbps, 典型 最高 3.7 Mbps	64 字节	快	支持 (按位仲裁)	支持	低	暂无	困难	

DUKELEC 3 CD-BUS 协议

1.1 CAN 总线缺点补充

CAN 协议使用消息类型取代站地址,同一类型消息只能由单个节点发出,否则仲裁机制将会失效。 譬如:如果有3只限位开关可使电机停止,必须定义3个功能重复的消息:为开关1定义消息"STOP1",为开关2定义消息"STOP2",以此类推,最终当电机收到以上任意消息便停转。

总线上所有设备共享同一个消息分配空间,如果需要改变某个设备的消息定义,必须充分考虑是 否会影响其它所有设备。

1.2 软件数据链路层的缺点补充

数据帧由 "ff aa" 开头的缺点:这些标志常与其后数据重复,如果帧数据也含有一个 "ff aa",那么当数据出错可能会导致解析错位,接收方误以为帧数据中的 "ff aa" 是帧头标志,而且出错之后又会影响下一个数据包导致错误继续。

数据帧以空闲状态做区分的缺点:通常不可以使用 FIFO 和 DMA 接收数据,因为那样做会导致很多帧在内存中连接在一起,无法通过时间信息来区分。

如果不使用 FIFO 和 DMA, 不仅会增加 CPU 开销, 而且会对实时性有更高要求, 为不同中断制定优先级顺序时会十分困难: 如果接收的优先级更高, 那么每当总线有数据的时候, 其它任务就会被打断; 相反如果接收的优先级较低, 那么又可能会经常丢失数据。

数据帧由硬件来负责接收可避免这些问题。

2 特性

CD485B1 型号模块支持:

- 支持 CD-BUS 多主对等通讯协议,使用发送方地址按位仲裁
- 每个数据帧可装载 253 字节数据
- 8个接收缓冲页, 2个发送缓冲页, 每个页 256 字节
- 16 位硬件 CRC 校验
- 波特率范围 412 bps 至 9 Mbps (如果需要可以支持更高)
- 仲裁字段和后续数据可设定不同波特率
- 可兼容传统 RS485 总线设备
- 支持 SPI 和 I2C 接口
- 配置和使用简单

3 CD-BUS 协议

CD-BUS 示例时序:

DUKELEC 3 CD-BUS 协议

CD-BUS 协议只定义数据帧格式,不规定所装载数据格式;只支持单播和广播,不支持多播;只提供硬件避让、避让后自动重传,而应答及出错处理则由上层软件负责。

如果把两个波特率设置同等大小,便可以在保留仲裁机制的同时与传统 485 硬件进行通讯,传统硬件优先级设置高于 CD485 节点,由 CD485 节点主动避让传统节点。当然还可以关闭仲裁功能,完全使用传统通讯模式。

CD-BUS 和 CD485XX 控制器还适用于 RS485 之外的硬件媒介, 譬如单线 UART 总线。

DUKELEC 4 硬件

4 硬件

4.1 电路参考

4.2 内部结构

DUKELEC 4 硬件

4.3 尺寸规格

DUKELEC 5 版权说明

5 版权说明

CD-BUS(又或 CD485)是一个相当开放的协议,硬件实现也相对简单,除了芯片生产商需要支付少量版权费,其余任何人都可以免费使用此协议及其变种,只需要在产品说明中保留原始的版权信息。

联络: info@dukelec.com