

泛函分析课堂笔记

Notes on Functional Analysis

2022-2023学年第一学期 强基数学001 吉越坤

What is clear and easy to grasp attracts us; complications deter.

David Hilbert

目录

第一章	度	量空间与赋范空间	1
1.1	度量	空间, 完备与纲定理	1
	1.1.1	应用	7
	1.1.2	作业	8
1.2	完备	化	12
	1.2.1	作业	16
1.3	列紧	集	19
	1.3.1	列紧集, 完全有界集和可分空间	19
	1.3.2	紧集	24
	1.3.3	Arzela-Ascoli 定理	28
	1.3.4	作业	32
1.4	压缩	映像原理	40
	1.4.1	应用	41
	1.4.2	作业	45
1.5	赋范	线性空间	47
	1.5.1	基本概念	47
	1.5.2	有限维赋范空间	50
	1.5.3	商空间	55
	1.5.4	作业	57
1.6	内积	空间	66
	1.6.1	定义与基本性质	66
	1.6.2	正交与投影	71
	1.6.3	正交系	74
	1.6.4	作业	80

第二章	爸 线性	生算子与线性泛函	86
2.1	线性	算子的概念	86
	2.1.1	作业	94
2.2	Riesz	表示定理	97
2.3	开映	射定理及其推论	99
	2.3.1	开映射定理	99
	2.3.2	闭图像定理	102
	2.3.3	共鸣定理	04
	2.3.4	应用	107
	2.3.5	作业	109
2.4	Hahn	-Banach 定理	l 17
	2.4.1	线性泛函的延拓定理	l 17
	2.4.2	几何形式——凸集分离定理	123
	2.4.3	作业	127
2.5	共轭	空间	129
	2.5.1	共轭空间与共轭算子	129
	2.5.2	弱收敛和*弱收敛	134
	2.5.3	自反空间的性质	139
	2.5.4	作业	151
2.6	线性	算子的谱1	161
	2.6.1	定义和例子1	161
	2.6.2	算子谱的相关性质1	165
	2.6.3	谱半径和 Gelfand 定理	168
	2.6.4	作业	170
第三章	至 紧全	第子 1	73
		·····································	
		·Fredholm 理论	
		作业	

3.3	Riesz-Schauder 理论	84
3.4	Hilbert-Schmidt 定理	86
第四章	鱼 广义函数与 Sobolev 空间	90
4.1	广义函数的概念	90
	4.1.1 磨光算子及其逼近1	90
	4.1.2 基本空间和广义函数	95
	4.1.3 作业	98
4.2	速降函数与 Fourier 变换	00
4.3	Sobolev 空间2	80.
附录 A	、补充内容 2	20
A.1	度量空间中的拓扑2	20
A.2	Weierstrass 逼近定理	21
A.3	<i>L^p</i> 空间: 实变内容	23
A.4	<i>L^p</i> 空间中列紧集的刻画	26
A.5	内积空间2	29
A.6	线性空间的基本概念	31
A.7	凸集与不动点2	34
A.8	紧算子的不变子空间与紧算子结构2	41
A.9	Lebesgue 微分定理2	46
附录 B	3 教材习题答案 2	52
B.1	度量空间2	52
	B.1.1 压缩映像原理2	52
	B.1.2 完备化	54
	B.1.3 列紧集2	58
	B.1.4 赋范线性空间2	62
	B.1.5 凸集与不动点2	72
	B.1.6 内积空间	75

B.2 线性算子与线性泛	函
B.2.1 线性算子的概	既念
B.2.2 Riesz 表示定理	理及其应用
B.2.3 纲与开映射知	定理
B.2.4 Hahn-Banach	定理
B.2.5 共轭空间,弱	收敛, 自反空间306
B.2.6 线性算子的语	貲314
B.3 紧算子与 Fredholm	ı 算子317
B.3.1 紧算子的定义	义和基本性质317
B.3.2 Riesz-Fredholm	m 理论
B.3.3 紧算子的谱理	里论323
B.3.4 Hilbert-Schmi	dt 定理
B.3.5 对椭圆型方程	星的应用
B.4 广义函数与 Sobole	v 空间
B.4.1 广义函数的概	既念
B.4.2 B ₀ 空间	
参考文献	338

第一章 度量空间与赋范空间

1.1 度量空间,完备与纲定理

定义 1.1.1: 度量空间

设 X 是一个非空集合. X 叫做**度量空间**, 是指在 X 上定义了一个双变量的实值 函数 $\rho(x,y)$ 满足下列三个条件:

- (1) 正定性: $\rho(x, y) \ge 0$, 并且 $\rho(x, y) = 0$ 当且仅当 x = y;
- (2) 对称性: $\rho(x, y) = \rho(y, x)$;
- (3) 三角不等式: $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ ($\forall x, y, z \in X$).

这里 ρ 叫做 X 上的一个**距离**, 以 ρ 为度量的度量空间 X 记作 (X, ρ) .

例 1.1.2: Euclidean 空间

Euclidean 空间 \mathbb{R}^n 上的距离 (欧氏距离) 一般定义为

$$\rho(x,y) = \sqrt{\sum_{k=1}^{n} |x_k - y_k|^2}, \quad \forall x = (x_1, \dots, x_n), y = (y_1, \dots, y_n).$$

还可以定义其他距离,例如

$$\rho_1(x, y) = \sum_{i=1}^n |x_i - y_i|, \quad \rho_2(x, y) = \max_{1 \le i \le n} |x_i - y_i|.$$

例 1.1.3: 连续函数空间

[a,b] 上的连续函数空间 C([a,b]) 上的距离一般定义为

$$\rho(f,g) = \max_{t \in [a,b]} |f(t) - g(t)|.$$

其他常见距离还有

$$\rho'(f,g) = \int_a^b |f(t) - g(t)| dt.$$

例 1.1.4: ℝ 上的距离

除了最常见的 $\rho(x,y) = |x-y|$ 之外, 还有

$$\rho'(x, y) = \frac{|x - y|}{1 + |x - y|}$$

也构成一个 ℝ上的度量.

例 1.1.5: 几乎处处有界函数空间 S[a,b]

S[a,b] 表示 [a,b] 上几乎处处有界的可测函数全体. 其上的距离定义为

$$\rho(f,g) = \int_a^b \frac{|f-g|}{1+|f-g|} d\mu.$$

例 1.1.6: 实数列空间

S 表示一切实数列 $x = \{x_n\}_1^\infty$ 全体. 其上的距离为

$$\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{\left| x_n - y_n \right|}{1 + \left| x_n - y_n \right|}.$$

例 1.1.7: L^p 空间

设 $1 \le p < \infty$, $L^p[a,b]$ 是 [a,b] 上所有 p 次可积函数全体, 其上距离定义为

$$\rho(f,g) = \left(\int_a^b \left| f - g \right|^p dx \right)^{\frac{1}{p}}, \quad 1 \le p < \infty.$$

喀洋

 L^p 中的函数几乎处处相等的函数视作等同. 此外, 当 $p = \infty$ 时也有相应的 L^∞ 空间, 详细的定义见附录A.3.

例 1.1.8: 离散距离

在ℝ上定义

$$\rho(x, y) = \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

定义 1.1.9: 收敛和极限

度量空间 (X, ρ) 上的点列 $\{x_n\}$ 叫做**收敛**到 x_0 是指: $\lim_{n\to\infty} \rho(x_n, x_0) = 0$. 这时记作 $\lim_{n\to\infty} x_n = x_0$ 或者 $x_n \to x_0$, x_0 称为 $\{x_n\}$ 的**极限**.

喀 注

极限如果存在必唯一.

若对 X 上的两个度量 ρ_1 和 ρ_2 , 满足 $\forall x_n, x \in X$, 有 $\rho(x_n, x) \to 0 \iff \rho(x_n, x) \to 0$, 则称 ρ_1 和 ρ_2 等价.

定义 1.1.10: 闭集

度量空间 (X, ρ) 中的一个子集 E 称为**闭集**是指: $\forall \{x_n\} \subset E$, 若 $x_n \to x_0$, 则 $x_0 \in E$.

喀 注

度量空间中的其他基础拓扑概念见附录A.1.

定义 1.1.11: Cauchy 列

度量空间 (X,ρ) 上的点列 $\{x_n\}$ 叫做Cauchy 列(或基本列) 是指: $\rho(x_n,x_m) \to 0$ $(n,m\to\infty)$.

喀 注

此即 $\forall \varepsilon > 0$, 存在 N > 0, 当 m, n > N 时都有 $\rho(x_m, x_n) < \varepsilon$.

性质 1.1.12: Cauchy 列的性质

- (1) 收敛列一定是 Cauchy 列.
- (2) 若 $\{x_n\}$ 是 Cauchy 列且存在子列 $x_{n_k} \to x$, 则 $x_n \to x$.
- (3) 若 $\{x_n\}$ 是 Cauchy 列, 则 $\{x_n\}$ 有界 (存在 M > 0 和 $x_0 \in X$ 使得 $\rho(x_n, x_0) \le M(\forall n \ge 1)$.)

定义 1.1.13: 完备空间

如果空间中所有 Cauchy 列都收敛, 则称该空间是完备的.

喀淮

不是所有空间都完备,例如 Q(Euclidean 距离) 上趋于某个无理数的有理序列均是 Cauchy 列, 但在 Q 中不收敛.

定理 1.1.14: 完备度量空间的等价条件

设 (X,ρ) 是度量空间. 则 X 完备 \iff 若 $\{A_n\}$ 是 X 中的单调下降非空闭子集列且满足

$$\lim_{n\to\infty} \operatorname{diam} A_n = 0,$$

则 $\bigcap_{n=1}^{\infty} A_n$ 是单点集.

喀淮

单调下降即 $A_1 \supset A_2 \supset \cdots$.

 $\operatorname{diam} A = \sup_{x,y \in A} \rho(x,y)$, 不难证明 $\operatorname{diam} A = \operatorname{diam} \overline{A}$.

证明. 必要性: 首先证明 $\bigcap_{n=1}^{\infty} A_n$ 非空. 取 $x_n \in A_n$. 由于 $\lim_{n \to \infty} \operatorname{diam} A_n = 0$, 则

$$\rho(x_n, x_n) \le \operatorname{diam} A_n \to 0, \quad m > n \to \infty.$$

则 $\{x_n\}$ 是 Cauchy 列. 由于 X 完备, 有 $x_n \to x \in X$. 又因为 A_n 闭, 故 $x \in A_n(\forall n) \Longrightarrow x \in \bigcap_{n=1}^{\infty} A_n$.

下证 $\bigcap_{n=1}^{\infty} A_n$ 中只有一个元素. 设 $x_1, x_2 \in \bigcap_{n=1}^{\infty} A_n$, 则

$$\rho(x_1, x_2) \le \operatorname{diam} A_n \to 0,$$

故 $\rho(x_1, x_2) = 0 \Longrightarrow x_1 = x_2$.

充分性: 设 $\{x_n\}$ 是 X 中的 Cauchy 列, 令 $A_k = \overline{\{x_n\}_{n=k}^{\infty}}$, 则 $\{A_n\}$ 是闭子集列, 单调下降并且直径趋于 0. 则 $\bigcap_{n=1}^{\infty} A_n = \{x\}$. 因为

$$\rho(x_n, x) \leq \operatorname{diam} A_n \to 0$$
,

因此 $x_n \to x$. 故 X 完备.

定义 1.1.15: 稠密集

设 (X,ρ) 是度量空间, $E \subset X$. 若 $\forall x \in X$ 和 $\forall \varepsilon > 0$, 存在 $z \in E$ 使得 $\rho(x,z) < \varepsilon$, 则 称 $E \not\in X$ 中的**稠密集**.

喀 注

此即 $\forall x \in X$, 存在 $\{x_n\} \subset E$ 使得 $x_n \to x$, 也即 $\overline{E} = X$.

定义 1.1.16: 疏集

设 (X, ρ) 是度量空间, $E \subset X$. 若 \overline{E} 没有内点 $(\overline{E}^{\circ} = \emptyset)$, 则称 $E \in X$ 中的**疏集**.

命题 1.1.17: 疏集等价定义

以下三点等价:

- (1) E 是疏集.
- (2) E 不在 X 中的任何一个非空开集中稠密.
- (3) $\forall \overline{B}(x,r) = \{z \in X : \rho(z,x) \leq r\}$ 必存在开球 $B(x',r') \subset B(x,r)$ 使得 $\overline{B}(x',r') \cap \overline{E} = \emptyset$.

定义 1.1.18: 第一纲集与第二纲集

设 (X, ρ) 是度量空间, $A \subset X$. 若

$$A = \bigcup_{n=1}^{\infty} E_n$$
, 其中 E_n 是疏集,

则 A 是 X 中的第一纲集. 不是第一纲集的集合称为第二纲集.

定理 1.1.19: Baire 纲定理

完备的度量空间是第二纲集.

证明. 设 X 是完备度量空间, 反设 X 是第一纲集, 则存在疏集列 $\{E_n\}$ 使得

$$X = \bigcup_{n=1}^{\infty} E_n.$$

任取开球 $B(x_0,r_0) \subset X$, 由于 E_1 是疏集, 存在 $B(x_1,r_1) \subset B(x_0,r_0)$ 满足 $0 < r_1 < 1$ 使得

$$\overline{B}(x_1, r_1) \cap \overline{E_1} = \emptyset$$
.

由于 E_2 是疏集, 对于 $B(x_1,r_1)$, 存在 $B(x_2,r_2) \subset B(x_1,r_1)$ 满足 $0 < r_2 < \frac{1}{2}$ 使得

$$\overline{B}(x_2, r_2) \cap \overline{E_2} = \emptyset.$$

进而 $\overline{B}(x_2, r_2) \cap \bigcup_{i=1}^2 \overline{E_i} = \emptyset$. 以此类推, 存在 $B(x_n, r_n) \subset B(x_{n-1}, r_{n-1})$ 满足 $0 < r_n < \frac{1}{n}$ 使

$$\overline{B}(x_n, r_n) \cap \bigcup_{i=1}^n \overline{E_i} = \varnothing.$$

则 $\{\overline{B}(x_n,r_n)\}$ 是单调下降且直径趋于 0 的闭集列. 由于 X 是完备的, 则

$$\bigcap_{n=1}^{\infty} \overline{B}(x_n, r_n) = \{x\}.$$

则 $x \in \overline{B}(x_n, r_n), n \ge 1$. 故 $x \notin E_n (n \ge 1)$, 矛盾.

喀淮

使用 Baire 纲定理可以证明 [0,1] 不可数, 因为可数集是第一纲集, 但 [0,1] 是 完备的

1.1.1 应用

推论 1.1.20: 处处不可导的连续函数的存在性

C[0,1] 中处处不可导的函数全体 E 是非空的, 并且 E^c 是第一纲集.

证明. 由于 C[0,1] 是完备的赋范空间, 由 Baire 纲定理知它是第二纲的, 因此只需证明 E^c 是第一纲集即可. 记

$$A_n = \left\{ f \in C[0,1] : \exists x \in [0,1], \left| \frac{f(x+h) - f(x)}{h} \right| \leq n, \forall 0 < |h| \leq \frac{1}{n} \right\},$$

则 $E^c \subset \bigcup_{n=1}^{\infty} A_n$,下面证明 A_n 是疏集. 首先证明 A_n 是闭集. 若 $f \notin A_n$,则 $\forall x \in [0,1]$,存在 h_x 使得 $|f(x+h_x)-f(x)| > n|h_x|$ 且 $0 < |h_x| \le \frac{1}{n}$. 由 f 的连续性, 存在 x 的邻域 V_x 及 $\varepsilon_x > 0$ 使得

$$|f(y+h_x)-f(y)| > n|h_x| + 2\varepsilon_x, \quad \forall y \in V_x.$$

取 V_{x_1}, \dots, V_{x_m} 为 [0,1] 的开覆盖, 并记 $\varepsilon = \min_{1 \le k \le m} \varepsilon_{x_k}$, 则当 $\|g - f\| < \varepsilon$ 时, 任取 $x \in [0,1]$, 存在 k 使得 $x \in V_{x_k}$, 从而

$$\left| g(x+h_{x_k}) - g(x) \right| \ge \left| f(x+h_{x_k}) - f(x) \right| - 2\varepsilon > n \left| h_{x_k} \right|,$$

因此 $g \notin A_n$, A_n 是闭集.

再证 A_n 没有内点. 为此需要证明 $\forall f \in A_n$, 存在 $g \notin A_n$ 但 $\|f - g\|$ 可以任意 小. 由于多项式全体在 C[0,1] 上稠密, 只需证明对任意多项式 p 以及 $\varepsilon > 0$, 存在 $g \in C[0,1] \setminus A_n$ 且 $\|p - g\| < \varepsilon$ 即可.

由于 p 是光滑函数, 存在 M > 0 使得

$$|p(x+h) - p(x)| \le M|h|, \quad \forall |h| \le \frac{1}{n}.$$

取 q 为 [0,1] 上的分段线性函数, 满足 $\|q\| < \varepsilon$ 且每一段的斜率的绝对值均大于 M+n. 此时必有 $p+q \notin A_n$, 因为如果 $p+q \in A_n$, 则

$$|q(x+h) - q(x)| - M|h| \le |p(x+h) + q(x+h) - p(x) - q(x)| \le n|h|$$

$$\implies |q(x+h) - q(x)| \le (M+n)|h|, \quad \forall |h| \le \frac{1}{n},$$

与 q 的每段斜率绝对值大于 M+n 矛盾.

1.1.2 作业

△ **题目1.1.1**. 设 C[a,b] 上有两个距离

$$\rho_1(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| \quad \text{fil} \quad \rho_2(f,g) = \int_a^b |f(t) - g(t)| dt.$$

验证它们符合距离定义的三个条件, 判断并证明它们在 C[a,b] 上是否完备.

解答. 正定性: 由绝对值的非负性可得 ρ_1 和 ρ_2 都非负. 若 $\rho_1(f,g) = 0$, 则

$$|f-g| \le \rho_1(f,g) = 0 \implies f = g(\forall t \in [a,b]).$$

若 $\rho_2(f,g)=0$, 则 f=g a.e., 因为 f,g 都是连续函数, 此即 f=g.

对称性: 由于 $\forall x, y \in \mathbb{R}$, 都有 |x-y| = |y-x|, 因此 ρ_1, ρ_2 都满足对称性.

三角不等式: 由 $|x-y| \le |x-z| + |z-y| (\forall x, y, z \in \mathbb{R})$ 可得.

 ρ_1 是完备的. 设 $\{f_n\} \subset C[a,b]$ 为 Cauchy 列, 则 $\forall t \in [a,b], |f_m(t) - f_n(t)| \le \rho_1(f_m, f_n) \to 0 (m, n \to \infty)$. 由实数完备性可知存在 $f(t) \in \mathbb{R}$ 使得 $f_n(t) \to f(t), \forall t \in [a,b]$. $\forall \varepsilon > 0$, 存在 N 使得

$$|f_m(t) - f_n(t)| < \varepsilon, \quad \forall t \in [a, b], m, n > N.$$

在上式中令 $m \to \infty$, 则 $f_n \to f$.

 ρ_2 不是完备的, 因为若取 $f_n(t) = (1 - n \frac{t-a}{b-a}) \chi_{[a,a+\frac{b-a}{n}]}(t)$, 则

$$\rho_2(f_n, f_m) = \frac{b-a}{2} \left| \frac{1}{m} - \frac{1}{n} \right| \to 0, \quad m, n \to 0.$$

因此 $\{f_n\}$ 是 Cauchy 列. 并且

$$\rho_2(f, f_n) = \frac{b-a}{2n} \to 0,$$

其中 $f(t) = \chi_{\{a\}}(t) \notin C[a,b]$. 因此 $(C[a,b] \oplus \mathbb{R}f, \rho_2)$ 中 C[a,b] 不是闭集, 从而不完备.

题目1.1.2. 证明 \mathbb{R} 上的二元函数 $\rho_2(x,y) = \frac{|x-y|}{1+|x-y|}$ 是一个度量, 并且与 Euclidean 距离 $\rho_1(x,y) = |x-y|$ 等价.

解答. ρ₂ 满足正定性和对称性, 只需验证三角不等式. 注意到

$$\frac{a}{1+a} + \frac{b}{1+b} - \frac{a+b}{1+a+b} = \frac{ab(2+a+b)}{(1+a)(1+b)(1+a+b)} \ge 0, \quad \forall a, b \ge 0.$$

故在上式中取 a = |x-z|, b = |z-y| 可得 $\forall x, y, z \in \mathbb{R}$, 有

$$\rho_2(x,z) + \rho_2(z,y) \ge \frac{|x-z| + |z-y|}{1 + |x-z| + |z-y|} \ge \frac{|x-y|}{1 + |x-y|} = \rho_2(x,y).$$

此外,根据

$$x_n \xrightarrow{\rho_1} x \iff |x_n - x| \to 0 \iff \frac{1}{1 + |x - x_n|} \to 1$$

$$\iff \frac{|x - x_n|}{1 + |x - x_n|} \to 0 \iff x_n \xrightarrow{\rho_2} x,$$

故 ρ_1 和 ρ_2 等价.

△ 题目1.1.3. S[a,b] 表示 [a,b] 上几乎处处有界的可测函数全体. 其上的距离定义为

$$\rho(f,g) = \int_a^b \frac{\left|f-g\right|}{1+\left|f-g\right|} \mathrm{d}\mu.$$

验证 ρ 是一个距离, 并证明关于 ρ 收敛就是依测度收敛, 据此得到 ($S[a,b],\rho$) 完备. **解答**. 使用与上题同样的不等式可以验证 ρ 满足三角不等式.

下面验证依距离收敛当且仅当依测度收敛. 若 f_n 依测度收敛到 f,则 $\forall \varepsilon \in (0, b-a)$, 存在 N 使得当 n > N 时都有

$$\lim_{n\to\infty} m(|f-f_n| > \delta) < \delta, \quad \sharp \vdash b = \frac{\varepsilon}{b-a-\varepsilon}.$$

故

$$\rho(f, f_n) \le \int_a^b \frac{\delta}{1+\delta} = \varepsilon, \quad \forall n > N,$$

从而 f_n 依距离收敛到 f.

反之, 若 f_n 不依测度收敛到 f, 则存在子列, 不妨设还是 $\{f_n\}$ 使得

$$m(|f-f_n|>r)\geq r, \quad \forall n\geq 1.$$

故

$$\rho(f, f_n) \ge m(|f - f_n| > r) \frac{r}{1+r} \ge \frac{r^2}{1+r} > 0,$$

从而 f_n 也不依距离收敛到 f.

因此, 由于依测度 Cauchy 必然依测度收敛, 故 ρ 也是完备的.

题目1.1.4. 设 $1 \le p < \infty$ 证明 $L^p[a,b]$ 空间上的度量 ρ 满足度量定义的三个性质, 并证明 L^p 空间完备.

解答. 要证明 $L^p[a,b]$ 上的距离 ρ 是距离, 只需证明 Minkowski 不等式:

$$||f+g||_p \le ||f||_p + ||g||_p, \quad \forall f, g \in L^p[a,b],$$

上式的证明见附录A.3的定理A.3.5.

下面证明 $L^p[a,b]$ 完备. 由于 $L^p[a,b]$ 关于范数 $\|\cdot\|_p$ 构成赋范空间, 可以使用如下引理:

设
$$X$$
 是赋范空间, 并且由 $\sum\limits_{n=1}^{\infty}\|x_n\|<\infty(\{x_n\}\subset X)$ 可得出 $\sum\limits_{n=1}^{\infty}x_n\in X$. 则 X

完备.

证明: 设 $\{x_n\}$ 是一个基本列,则存在子列 $\{x_{n_k}\}$ 满足

$$||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k}, \quad \forall k.$$

由

$$\sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\| \leq \sum_{k=1}^{\infty} \frac{1}{2^k} = 1 < \infty$$

可知, 存在 $y = \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k})$, 也即 $x = y + x_{n_1} = \lim_{k \to \infty} x_{n_k}$, 因此 $\{x_{n_k}\}$ 收敛, 根据基本列的性质, $\{x_n\}$ 也收敛.

下面验证 L^p 满足引理条件. 设 $\{f_n\}\subset L^p$ 满足 $\sum\limits_{n=1}^\infty \|f_n\|_p < \infty$ (根据积分有限, 函数必几乎处处有限可得). 则 $\|\sum\limits_{n=1}^\infty |f_n|\|_p \leq \sum\limits_{n=1}^\infty \|f_n\|_p < \infty \Longrightarrow \sum\limits_{n=1}^\infty |f_n(x)| < \infty$ μ -a.e.

根据实数完备性, 存在 $f(x) = \sum_{n=1}^{\infty} f_n(x) \mu$ -a.e. 并且

$$||f - \sum_{n=1}^{N} f_n||_p = ||\sum_{n=N+1}^{\infty} f_n||_p \le \sum_{n=N+1}^{\infty} ||f_n||_p \to 0, \quad N \to \infty.$$

函数在某零测集上的取值不影响 LP 范数

因此 $\sum_{n=1}^{\infty} f_n$ 依范数 $\|\cdot\|_p$ 收敛, 从而 L^p 完备.

题目1.1.5. 设 (X, ρ) 是度量空间, $A \subset X$. 证明: A 是闭集 $(\forall x \in A^c, \text{ 存在 } B(x, r))$ 使得 $B(x, r) \subset A^c$ 的充要条件是若 $\{x_n\} \subset A$ 且 $x_n \to x \in A$, 则 $x \in A$.

解答. 必要性: 若 $\{x_n\} \subset A$ 并且 $x_n \to x \notin A$. 存在 r > 0 使得 $B(x,r) \subset A^c$, 而 $x_n \to x$, 故存在充分大的 N 使得 $x_N \in B(x,r)$, 矛盾.

充分性: 反设存在 $x \in A^c$ 但 $\forall r > 0$, 存在 $x_r \in B(x,r) \in A$. 则取 $r = \frac{1}{n}$ 可得趋于 x 的 A 中点列, 从而 $x \in A$, 矛盾.

题目1.1.6. 证明: 对度量空间 (X, ρ) 的任意子集 A, 都有 $diam A = diam \overline{A}$.

解答. 由于 $A \subset \overline{A}$, 有 diam $A \leq$ diam \overline{A} . 还需证明 diam $\overline{A} \leq$ diamA. 任取 $x, y \in \overline{A}$, 由于

A 在 \overline{A} 中稠密, $\forall \varepsilon > 0$, 存在 x_{ε} , $y_{\varepsilon} \in A$ 使得

$$\rho(x, x_{\varepsilon}) < \varepsilon, \quad \rho(y, y_{\varepsilon}) < \varepsilon.$$

从而

$$\rho(x,y) \le \rho(x,x_{\varepsilon}) + \rho(x_{\varepsilon},y_{\varepsilon}) + \rho(y_{\varepsilon},y) \le \operatorname{diam} A + 2\varepsilon,$$

由于上式对 $\forall x, y \in \overline{A}$, 成立, 故 diam $\overline{A} \leq \text{diam}A + 2\varepsilon$. 最后根据 ε 的任意性可得 diam $\overline{A} \leq \text{diam}\overline{A}$.

☎ 题目1.1.7. 证明以下三点等价:

- (1) E 是疏集, 也即 $\overline{E}^{\circ} = \emptyset$.
- (2) E 不在 X 的任何一个非空开集中稠密.
- (3) $\forall \overline{B}(x,r)$, 存在开球 $B(x',r') \subset B(x,r)$ 使得 $\overline{B}(x',r') \cap \overline{E} = \emptyset$.
- **解答**. (1) \Longrightarrow (2): 若存在非空开集 G 使得 $G \subset \overline{E}$, 则 $\overline{E} \neq \emptyset$, E 不是疏集.
- (2) ⇒ (3): 任取 $\overline{B}(x,r)$, 由于 E 不在 B(x,r) 中稠密, 故 $B(x,r) \not\subset \overline{E}$, 从而存在 $x' \not\in \overline{E}$ 但 $x' \in B(x,r)$. 而 \overline{E}^c 是开集, 故存在 r' 使得 $B(x',r') \subset \overline{E}^c$, 取 r' 充分小使得 $B(x',r') \subset B(x,r)$ 即可.
 - (3) ⇒ (1): 反设 $\overline{E}^{\circ} \neq \emptyset$, 则存在 $B(x,r) \subset \overline{E}$, 矛盾.

1.2 完备化

对任意度量空间,都存在一个它的完备化空间,并且这个完备的空间是唯一的.

例 1.2.1: 一些完备化的例子

- (1) 从 Q 到 ℝ 的完备化过程: 将有理数中的 Cauchy 列在某种意义下视作一个数, 就是实数.
- (2) 由 Riemann 积分到 Lebesgue 积分: 从 (几乎处处) 连续函数到 L^1 可积函数.
- (3) PDEs: 光滑函数到 Sobolev 空间.

1.2 完备化 · 13 ·

定义 1.2.2: 连续函数

设 (X_1, ρ_1) 和 (X_2, ρ_2) 是度量空间, $T: X_1 \to X_2$. 若对任意的 $\{x_n\} \subset X_1, x \in X_1$ 满足 $\rho_1(x_n, x) \to 0$, 都有 $\rho_2(Tx_n, Tx) \to 0$, 则称 T 是从 X_1 到 X_2 的**连续函数**.

喀洼

T 连续 $\iff \forall \varepsilon > 0$ 和 $x_0 \in X_1$, 存在 $\delta > 0$ 使得当 $\rho_1(x_0, x) < \delta$ 时都有 $\rho_1(Tx, Tx_0) < \varepsilon$.

定义 1.2.3: 等距映射

设 $(X_1, \rho_1), (X_2, \rho_2)$ 是度量空间, $T: X_1 \to X_2$. 若

$$\rho_1(x, x') = \rho_2(Tx, Tx'), \quad \forall x, x' \in X_1,$$

则称 T 是从 X_1 到 X_2 的**等距映射**. 若 T 还是满射,则 T 称为**等距同构映射**,此 时称 X_1 和 X_2 **等距同构**.

定义 1.2.4: 完备化空间

设 (X,ρ) 是度量空间. 若存在完备的度量空间 X_1 使得 X 等距同构于 X_1 的一个稠密子空间,则称 X_1 是 X 的**完备化空间**.

定理 1.2.5: 完备化定理

每个度量空间必存在一个完备化空间.

喀 注

在等距同构意义下,完备化空间是唯一的,也即任意两个完备化空间都等距同构.

证明过程需要使用等价关系的概念. 等价关系就是满足自反性 $(a \sim a)$, 对称性 $(a \sim b \implies b \sim a)$ 以及传递性 $(a \sim b, b \sim c \implies a \sim c)$ 的关系.

证明. 设 (X, ρ) 是度量空间. 令 X_1 是 X 中的所有 Cauchy 列组成的集合.

定义等价关系: $\forall \{x_n\}, \{y_n\} \in X_1$, 若 $\rho(x_n, y_n) \to 0$, 则称 $\{x_n\} \sim \{y_n\}$. 易验证 ~ 是一个等价关系, 记 X_1 按 ~ 分类形成 X_2 , 其中元素为等价类.

在 X₂ 中定义 X₂ 上的二元函数

$$\rho_2([x],[y]) := \lim_{n \to \infty} \rho(x_n,y_n), \quad \sharp \vdash x = \{x_n\}, \, y = \{y_n\}.$$

上述极限必存在, 因为

$$\left| \rho(x_n, y_n) - \rho(x_m, y_m) \right| \le \rho(y_n, y_m) + \rho(x_n, x_m)$$

以及 $\{x_n\}$ 和 $\{y_n\}$ 都是 Cauchy 列, 因此 $\rho(x_n, y_n)$ 是 \mathbb{R} 上的 Cauchy 列, 从而有极限. 取 $\{x_n'\} \in [x], \{y_n'\} \in [y]$, 则由

$$\left| \rho(x_n, y_n) - \rho(x'_n, y'_n) \right| \le \rho(x_n, x'_n) + \rho(y_n, y'_n)$$

以及右端两项均趋于 0 可知, ρ_2 的取值与代表元的选取无关. 易证 ρ_2 是 X_2 的一个度量.

对于 $x \in X$, 今 $\xi_x := (x, x, \dots)$, 则 $[\xi_x] \in X_2$. 作映射

$$T: X \to X_2, x \mapsto [\xi_x].$$

由于

$$\rho_2(Tx, Ty) = \rho_2([\xi_x], [\xi_y]) = \lim_{n \to \infty} \rho(x, y) = \rho(x, y),$$

则 T 是从 X 到 X_2 的等距映射.

下面证明 (X_2, ρ_2) 是 (X, ρ) 的完备化空间. 首先证明 R(T) = T(X)(R(T) 指 T 的值域, 即 Range of T) 在 X_2 中稠密. $\forall [x] \in X_2(x = \{x_n\})$, 由于

$$\rho_2(Tx_n,[\xi]) = \lim_{j \to \infty} \rho(x_n,x_j) \to 0, \quad n \to \infty,$$

故 $Tx_n \rightarrow [\xi]$.

最后证明 (X_2, ρ_2) 完备. 设 $[x^{(n)}]$ 是 X_2 中的 Cauchy 列. 由于 T(X) 在 X_2 中稠

1.2 完备化 · 15 ·

密, $\forall n \in \mathbb{N}$, 存在 $x_n \in X$ 使得 $\rho_2(Tx_n, [x^{(n)}]) < \frac{1}{n}$. 因为当 $m, n \to \infty$ 时,

$$\begin{split} & \rho_2(Tx_n, Tx_m) \leq \rho_2(Tx_n, [x^{(n)}]) + \rho_2([x^{(n)}], [x^{(m)}]) + \rho_2([x^{(m)}], Tx_m) \\ \leq & \frac{1}{n} + \rho_2([x^{(n)}], [x^{(m)}]) + \frac{1}{m} \to 0, \end{split}$$

故 $\rho(x_n, x_m) = \rho_2(Tx_n, Tx_m) \rightarrow 0$, 即 $\{x_n\}$ 是 X 中的 Cauchy 列. 记 $x = \{x_n\}$, 则

$$\rho_2([x^{(n)}],[x]) \leq \rho_2([x^{(n)}],Tx_n) + \rho_2(Tx_n,[x]) \leq \frac{1}{n} + \lim_{j \to \infty} \rho(x_n,x_j), \quad n \to \infty,$$

故 $[x^{(n)}] \rightarrow [x]$, 从而 X_2 完备.

例 1.2.6: 多项式空间的完备化

记 P[a,b] 为 [a,b] 上多项式全体, 其上定义距离 $\rho(f,g) = \max_{t \in [a,b]} \left| f(t) - g(t) \right|$, 根据 Weierstrass 逼近定理, P[a,b] 的完备化空间是 C[a,b].

喀 注

Weierstrass 逼近定理: 设 $-\infty < a < b < \infty$, 则 $\overline{P[a,b]} = C[a,b]$. 该定理的证明见 附录A.2.

例 1.2.7: $C_0^1(0,1)$

记 $C_0^1(0,1) := \{ f \in C^1(0,1) : \operatorname{supp} f \subset (0,1) \}$, 其中 $\operatorname{supp} f = \overline{\{ t \in (0,1) : f(t) \neq 0 \}}$ 为 f 的支集 (Support). 对 $x,y \in C_0^1(0,1)$, 定义

$$\rho(x,y) := \left(\int_0^1 |x(t) - y(t)|^2 dt + \int_0^1 |x'(t) - y'(t)|^2 dt \right)^{\frac{1}{2}}.$$

则 $(C_0^1(0,1),\rho)$ 是度量空间, 但不完备.

喀 注

 $C_0^1(0,1)$ 就是连续可微且在 0 以及 1 附近为 0 的函数.

1.2.1 作业

题目1.2.1. 设 (X_1, ρ_1) 和 (X_2, ρ_2) 是度量空间, $T: X_1 \to X_2$. 证明: T 连续 $\longleftrightarrow \forall \varepsilon > 0$ 和 $x_0 \in X_1$, 存在 $\delta > 0$ 使得当 $\rho_1(x_0, x) < \delta$ 时都有 $\rho_1(Tx, Tx_0) < \varepsilon$.

解答. 若 T 连续, 反设存在 $\varepsilon > 0$, $\{x_n\} \subset X$, 使得 $r(x_0, x_n) < \frac{1}{n}$, $r(Tx_0, Tx_n) \ge \varepsilon$. 此时 $x_n \to x_0$ 但 $Tx_n \not\to Tx_0$, 矛盾.

反之, 对于 X 中的点列 $\{x_n\}$ 和点 x_0 满足 $x_n \to x_0$, 任取 $\varepsilon > 0$ 以及对应的 δ , 存在 N 使得 n > N 时都有 $\rho(x_0, x_n) < \delta$, 从而 $r(Tx_0, Tx_n) < \varepsilon$, 由极限定义不难得出 $Tx \to Tx_0$.

△ **题目1.2.2**. 证明完备化定理中的 ρ_2 是 X_2 中的一个度量.

解答. 首先验证 ρ_2 满足正定性. 设 $\rho_2([x],[y]) = 0$, 此即

$$\lim_{n\to\infty}\rho(x_n,y_n)=0,$$

也即 $x \sim y$, [x] = [y]. 根据 ρ 的非负性和对称性可知 ρ_2 也是非负且对称的. 对 [x], [y], $[z] \in X_2$, 有

$$\rho_{2}([x], [y]) = \lim_{n \to \infty} \rho(x_{n}, y_{n}) \le \lim_{n \to \infty} (\rho(x_{n}, z_{n}) + \rho(z_{n}, y_{n}))$$

$$= \lim_{n \to \infty} \rho(x_{n}, z_{n}) + \lim_{n \to \infty} \rho(z_{n}, y_{n}) = \rho_{2}([x], [z]) + \rho_{2}([z], [y]),$$

因此满足三角不等式.

△ 题目1.2.3. 证明在等距同构意义下, 完备化空间是唯一的.

解答. 设 (X, ρ) 的完备化空间为 (X_1, ρ_1) 和 (X_2, ρ_2) . 则存在从 X 分别到 X_1, X_2 的等 距映射 T_1 和 T_2 , 并且 $\overline{T_1(X)} = \overline{T_2(X)}$. 任取 $y_1 \in X_1$, 存在 $x_n \in X$ 使得 $T_1x_n \to y_1$. 则

$$\rho_2(T_2x_n, T_2x_m) = \rho(x_n, x_m) \to 0, \quad m, n \to \infty,$$

故 $\{T_2x_n\}$ 是 X_2 中的 Cauchy 列, 由 X_2 完备知, 存在 $Y_2 \in X_2$ 使得 $T_2x_n \to Y_2$. 定义从

1.2 完备化 · 17·

 X_1 到 X_2 的映射 T 满足 $Ty_1 = y_2$. 则

$$\rho_1(y_1, y_1') = \lim_{n \to \infty} \rho(x_n, x_n') = \lim_{n \to \infty} \rho_2(T_2x_n, T_2x_n') = \rho_2(y_2, y_2'),$$

其中 $x_n, x_n' \in X$ 使得 $T_i x_n \to y_i, T_i x_n' \to y_i' (i=1,2)$. 故 $T \in X_1, X_2$ 之间的等距同构.

题目1.2.4. (本题中函数相等在几乎处处意义下讨论) 记 $C_0^1(0,1) := \{ f \in C^1(0,1) : \sup f \subset (0,1) \}$, 其中

$$supp f = \overline{\{t \in (0,1) : f(t) \neq 0\}}$$

为 f 的支集 (Support). 定义

$$\rho(x,y) := \left(\int_0^1 \left| x(t) - y(t) \right|^2 \mathrm{d}t + \int_0^1 \left| x'(t) - y'(t) \right|^2 \mathrm{d}t \right)^{\frac{1}{2}}, \quad x,y \in C_0^1(0,1).$$

- (1) 证明: $(C_0^1(0,1), \rho)$ 是度量空间, 但不完备.
- (2) 如何刻画 $(C_0^1(0,1), \rho)$ 的完备化空间?
- (3) 记 $X \in C_0^1(0,1)$ 的完备化空间, 证明 $X \subset C[0,1]$.

解答. 定义 $C_0^1(0,1)$ 中的范数

$$||x||^2 = \int_0^1 |x|^2 + |x'|^2, \quad x \in C_0^1(0,1),$$

与 ρ 的定义一致,即 $\rho(x,y) = ||x-y||$.

(1) 正定性和对称性显然满足,在

$$\left(\sqrt{\int_{0}^{1}|f|^{2}+|f'|^{2}}+\sqrt{\int_{0}^{1}|g|^{2}+|g'|^{2}}\right)^{2}$$

$$=\int_{0}^{1}|f|^{2}+|f'|^{2}+2\sqrt{\int_{0}^{1}|f|^{2}+|f'|^{2}}\sqrt{\int_{0}^{1}|g|^{2}+|g'|^{2}}+\int_{0}^{1}|g|^{2}+|g'|^{2}$$

$$\geq\int_{0}^{1}|f|^{2}+|f'|^{2}+\int_{0}^{1}|g|^{2}+|g'|^{2}$$

中取 f = x - z, g = z - y 可得三角不等式.

反例: 记

$$f(x) = \int_0^x \chi_{[\frac{1}{3}, \frac{2}{3}]}(t) dt,$$

以及

$$f_n(x) = \int_0^x \left((3nt - n + 1)\chi_{(\frac{1}{3} - \frac{1}{3n}, \frac{1}{3})}(t) + \chi_{[\frac{1}{3}, \frac{2}{3}]}(t) + (2n + 1 - 3nt)\chi_{(\frac{2}{3}, \frac{2}{3} + \frac{1}{3n})}(t) \right) dt.$$

则 $f_n \in C_0^1(0,1)$, $||f - f_n|| \to 0$ 但 $f \notin C_0^1(0,1)$.

(2) 下面证明

$$X = W_0^{1,2}[0,1] := \{x \in L^2[0,1]: x$$
 绝对连续且 $x(0) = x(1) = 0\}.$

对 $\forall x \in W_0^{1,2}[0,1]$, 定义

$$x_n(t) = x(\frac{nt-1}{n-2})\chi_{[\frac{1}{n},1-\frac{1}{n}]}(t), \quad t \in [0,1], n \ge 3.$$

则由 Lebebesgue 控制收敛定理和 x 绝对连续, $\|x-x_n\|\to 0$, 因此 $W_0^{1,2}[0,1]\subset X$.

下面分两步证明 $X \subset W_1^{1,2}[0,1]$. 首先证明 $\forall x \in X$, x 绝对连续. 取 $\{x_n\}$ 为 $C_0^1(0,1)$ 中的 Cauchy 列, 则 $\{x_n\}$ 和 $\{x_n'\}$ 都是 $L^2[0,1]$ 中的 Cauchy 列, 在 L^2 范数下的极限分别是 x 和 u^* , 并记

$$u(t) = \int_0^t u^*(s) ds, \quad \forall t \in [0, 1].$$

注意到 $\forall \varphi \in C_0^1(0,1)$, 有

$$\int_{0}^{1} u(t)\varphi'(t)dt = \int_{0}^{1} \int_{0}^{t} u^{*}(s)ds\varphi'(t)dt$$
$$= \int_{0}^{1} u^{*}(s) \int_{s}^{1} \varphi'(t)dtds = -\int_{0}^{1} u^{*}(s)\varphi(s)ds,$$

1.3 列紧集 · 19

而由与上式同样的推导以及强收敛必弱收敛可得

$$-\int_0^1 u^* \varphi = -\lim_{n \to \infty} \int_0^1 x'_n \varphi = \lim_{n \to \infty} \int_0^1 x_n \varphi' = \int_0^1 x \varphi' = \int_0^1 u \varphi',$$

上式对 $\forall \varphi \in C_0^1(0,1)$ 均成立, 因此 x = u + constant, 故 x 就是 $\{x_n\}$ 依范数 $\|\cdot\|$ 收敛的极限, 绝对连续.

最后证明 x(0) = x(1) = 0. 由 (3) 中的结论: $||x||_{\infty} \le \sqrt{2} ||x|| (\forall x \in X)$, 故 x 还是 $C_0^1(0,1)$ 中的一致收敛的极限, 因此由每个 x_n 在 0,1 处的函数值均为 0 可得 x 的这些值也为 0.

(3) 任取 $x \in C_0^1(0,1)$, 由积分中值定理, 存在 $t_0 \in (0,1)$ 使得

$$x(t_0) = \int_0^1 x(t) \mathrm{d}t,$$

从而 $\forall t \in [0,1]$,

$$|x(t)| = \left| x(t_0) + \int_{t_0}^t x'(s) ds \right| \le \int_0^1 |x| + \left| x' \right|$$

$$\le \left(\int_0^1 |x|^2 + \left| x' \right|^2 \right)^{\frac{1}{2}} \left(\int_0^1 1^2 + 1^2 \right)^{\frac{1}{2}} = \sqrt{2} ||x||.$$

故 $\|x\|_{\infty} \le \sqrt{2} \|x\| (\forall x \in X)$, 而 $(C[0,1], \|\cdot\|_{\infty})$ 完备, 因此 $X \subset C[0,1]$.

1.3 列紧集

1.3.1 列紧集, 完全有界集和可分空间

在 \mathbb{R}^n 中有界列必有收敛子列,但这一点其他度量空间中未必成立,下面是一些例子.

例 $1.3.1: l^2$ 中没有收敛子列的有界列

 $l^2 := \{\{x_n\} : \sum_{n=1}^{\infty} |x_n|^2 < \infty\}.$ 其上定义距离

$$\rho(x,y) := \left(\sum_{n=1}^{\infty} |x_n - y_n|^2\right)^{\frac{1}{2}}, \quad x = \{x_n\}, y = \{y_n\}.$$

则 l^2 中的有界列未必有收敛子列.

证明. 记

$$e^{(n)} := (\underbrace{0, \cdots, 0, 1}_{n}, 0, \cdots), \quad n \ge 1,$$

则 $e^{(n)} \in l^2$. 并记 $e := (0,0,\cdots) \in l^2$ 则 $e^{(n)} \in B(e,2)$, 故 $\{e^{(n)}\}$ 是 l^2 中的有界列, 并且

$$\rho(e^{(m)}, e^{(n)}) = \sqrt{2} > 0, \quad \forall m \neq n,$$

故 $\{e^{(n)}\}$ 有界但是没有收敛子列.

例 1.3.2: $L^2[0,2\pi]$ 中没有收敛子列的有界列

例 1.3.3: C[0,1] 中没有收敛子列的有界列

在 C[0,1] 定义距离

$$\rho(f,g) := \max_{t \in [0,1]} |f(t) - g(t)|,$$

则函数列

$$f_n(t) = (1 - nt)\chi_{[0, \frac{1}{n})}(t), \quad n \ge 1, t \in [0, 1]$$

有界但是没有收敛子列.

定义 1.3.4: 列紧集, 自列紧集与列紧空间

设 (X, ρ) 为度量空间, $A \subset X$. 若 A 中任意点列在 X 中均有收敛子列, 则称 A 是 X 中的**列紧集**. 若收敛的极限点仍在 A 中, 则称 A 是**自列紧集**. 若 X 是列紧的,则称 X 是**列紧空间**.

1.3 列紧集 · 21 ·

性质 1.3.5: 列紧集的性质

设 (X,ρ) 是度量空间.

- (1) 有限点集是列紧集.
- (2) 列紧集的子集是列紧集.
- (3) 列紧空间必完备.
- (4) \mathbb{R}^n 中, 有界集与列紧集等价, 有界闭集与自列紧集等价.

定义 1.3.6: ε -网与有穷 ε -网

设 (X, ρ) 为度量空间, $M \subset X$, $\varepsilon > 0$, $N \subset M$. 若 $\forall x \in M$, 存在 $y \in N$ 使得 $\rho(x, y) < \varepsilon$, 则称 $N \in M$ 的 ε -M, 若 N 还是有穷集, 则称 $N \in M$ 的**有穷** ε -M.

喀淮

N 是 M 的 ε -网相当于 $\bigcup_{y \in N} B(y, \varepsilon) \supset M$.

定义 1.3.7: 完全有界集

设 (X,ρ) 是度量空间, $M \subset X$. 若 $\forall \varepsilon > 0$, 总存在 M 的一个有穷 ε -网, 则称 M 是**完全有界集**.

喀 注

不难看出完全有界集一定有界,完全有界集的子列依然完全有界。

定理 1.3.8: 完全有界的充要条件

设 (X,ρ) 是度量空间, $A \subset X$. 则 A 是完全有界集当且仅当 A 中任何点列 $\{x_n\}$ 必有一个 Cauchy 子列.

证明. 必要性: 设 $\{x_n\} \subset A$, 不妨设其中元素两两互异. 由于 A 完全有界, 则对于有穷 1-网, 必存在 $y_1 \in A$ 使得 $B(y_1,1)$ 中含有 $\{x_n\}$ 中无穷多个元素 $\{x_n^{(1)}\}$, 对 $\frac{1}{k}$ — 网, 存在 $y_k \in A$ 使得 $B(y_k, \frac{1}{k})$ 中含有 $\{x_n^{(k-1)}\}$ 中的无穷多个元素 $\{x_n^{(k)}\}$, $k \ge 2$. 则 $\{x_n^{(n)}\}$ 是 $\{x_n\}$ 的子列, 满足

$$\rho(x_n^{(n)},x_{n+p}^{(n+p)}) \leq \rho(x_n^{(n)},x_n^{(n+p)}) + \rho(x_n^{(n+p)},x_{n+p}^{(n+p)}) \leq \frac{2}{n} + \frac{2}{n+p}, \quad \forall n,p \geq 1,$$

最后一个不等式成立是因为 $x_n^{(n)}$ 和 $x_n^{(n+p)}$ 都在 $B(y_n, \frac{1}{n})$ 中, $x_n^{(n+p)}$ 和 $x_{n+p}^{(n+p)}$ 都在 $B(y_{n+p}, \frac{1}{n+p})$ 中, 因此 $\{x_n^{(n)}\}$ 是 Cauchy 列.

充分性: 反证法. 假设 A 不是 X 中的完全有界集, 则存在 $\varepsilon_0 > 0$ 使得 A 没有有穷 $\varepsilon_0 -$ 网. 任取 $x_1 \in A$, 则存在 $x_2 \in A \setminus B(x_1, \varepsilon_0)$, 存在

$$x_k \in A \setminus \bigcup_{j=1}^{k-1} B(x_j, \varepsilon_0), \quad \forall k \ge 2,$$

由此得到点列 $\{x_k\}$ 使得其中任意两点距离均不小于 ε_0 , 因此没有 Cauchy 子列, 矛盾.

推论 1.3.9

在一般的度量空间中,列紧集一定完全有界. 在完备度量空间中,列紧集等价于完全有界集.

证明. 由定理1.3.8易得.

定理 1.3.10

设 (X, ρ) 是度量空间, 若 X 中的每个完全有界集都是列紧的, 则 X 必完备.

证明. 设 $\{x_n\}$ 是 X 中的 Cauchy 列, 则由定理1.3.8可知 $\{x_n\}$ 完全有界, 因此列紧, 从而 $\{x_n\}$ 有收敛子列. 而 Cauchy 列若子列收敛, 本身也收敛, 故 $\{x_n\}$ 收敛, X 完备.

定义 1.3.11: 可分空间

设 (X, ρ) 是度量空间, 若 X 中存在可数稠密子集, 则称 X 是**可分的**.

喀 注

也即存在点列 $\{x_n\}$ 使得 $\overline{\{x_n\}} = X$.

定理 1.3.12

设 (X, ρ) 是完全有界的度量空间,则 X 是可分的.

证明. 令 N_n 为 X 的有穷 $\frac{1}{n}$ – 网, 则

$$\bigcup_{n=1}^{\infty} N_n$$

是 X 的可数稠密子集.

1.3 列紧集 · 23 ·

例 1.3.13

 \mathbb{R}^n 是可分的, 因为 \mathbb{R}^n 中所有有理点 $(p_1, \dots, p_n), p_1, \dots, p_n \in \mathbb{Q}$ 构成一个可数稠密子集.

例 1.3.14

C[a,b] 是可分的,因为由 Weierstrass 逼近定理,多项式在 C[a,b] 中稠密,而有理多项式在多项式中稠密,因此也在 C[a,b] 中稠密.

例 1.3.15

 $L^p[a,b](1 \le p < \infty)$ 是可分的,因为阶梯型函数在 $L^p[a,b]$ 中稠密,分点为有理数的阶梯型函数是可数的,因此是可数稠密子集. 分点为有理点的阶梯型函数形式如下

$$f = \sum_{k=1}^{n} \alpha_k \chi_{(q_{k-1}, q_k)},$$

其中 $q_0 \le q_1 \le \cdots \le q_n$ 且均为有理数.

当 $p = \infty$ 时, $L^{\infty}[a,b]$ 不可分.

例 1.3.16

 $l^p(1 \le p < \infty)$ 可分, 但 l^∞ 不可分. 其中

$$l^{\infty} := \{\{x_n\} : \sup_{n \ge 1} |x_n| < \infty\},$$

其上的距离为

$$\rho(x, y) = \sup_{n \ge 1} |x_n - y_n|, \quad x = \{x_n\}, y = \{y_n\}.$$

证明. 当 $p < \infty$ 时, 见习题.

当 $p = \infty$ 时, 令

$$S := \{\{x_n\} : x_n = 0$$
 或 1, $\forall n \ge 1\}$,

则 $S \subset l^{\infty}$. 则 S 不可数并且 $\rho(x, y) = 1(\forall x \neq y \in S)$.

反设 l^{∞} 可分,则存在可数稠密子集 $\{e^{(n)}\}_{1}^{\infty}$,从而

$$S = \bigcup_{n=1}^{\infty} B(e^{(n)}, \frac{1}{3}) \cap S,$$

但 S 中任意两点间的距离均为 1, 不可能在同一个球 $B(e^{(n)}, \frac{1}{3})$ 内, 因此上式右侧至 S 可数, 而左侧不可数, 矛盾.

1.3.2 紧集

定义 1.3.17: 紧集

设 (X,ρ) 是度量空间, $A \subset X$. 若 A 的任意开覆盖都有有限子覆盖, 则称 A 是**紧 集**.

性质 1.3.18

度量空间中的紧集都是闭集.

证明. 设 A 是度量空间 (X, ρ) 中的紧集. 任取 $x_0 \in A^c$, 则

$$\bigcup_{x\in A}B(x,r_x)\supset A$$

构成一个 A 的开覆盖, 其中 $r_x = \frac{1}{3}\rho(x,x_0)$. 由 A 是紧集可知, 存在 $x_1, \dots, x_n \in A$ 以及 r_{x_1}, \dots, r_{x_n} 使得

$$A \subset \bigcup_{k=1}^n B(x_k, r_{x_k}).$$

对上式两边同时取余集可得

$$V = \bigcap_{k=1}^{n} B(x_k, r_{x_k})^c \subset A^c,$$

由于 $x_0 \notin B(x, r_x)$, $\forall x \in A$, 故 $x_0 \in V$, 而 V 包含 x_0 的一个开领域. 故 $x_0 \in (A^c)^\circ$, 从而 A^c 是开集, A 是闭集.

性质 1.3.19

度量空间中紧集的闭子集还是紧集.

1.3 列紧集

证明. 设 $A \in (X, \rho)$ 中的紧集, $B \in A$ 的闭子集. 设

$$\bigcup_{\alpha} B_{\alpha} \supset B$$

是 B 的开覆盖,则由 B 是闭集,

$$B^c \cup \bigcup_{\alpha} B_{\alpha} \supset A$$

是 A 的开覆盖. 根据 A 的紧性, 有

$$B^c \cup \bigcup_{k=1}^n B_{\alpha_k} \supset A$$

是 A 的有限覆盖, 从而

$$\bigcup_{k=1}^{n} B_{\alpha_k} \supset B$$

是 B 的有限覆盖. 因此 B 是紧集.

性质 1.3.20

设 $A \in (X, \rho)$ 中的紧集, $\{F_{\lambda}\}_{\lambda \in \Lambda} \subset A$ 为闭集, 并且其中任意有限个的交集非空, 也即

$$\bigcap_{k=1}^{n} F_{\lambda_k} \neq \emptyset, \quad \forall n \in \mathbb{N}, \forall \lambda_1, \cdots, \lambda_n \in \Lambda.$$

则 $\bigcap_{\lambda \in \Lambda} F_{\lambda} \neq \emptyset$.

证明. 反设 $\bigcap_{\lambda \in \Lambda} F_{\lambda} = \emptyset$, 则

$$\bigcup_{\lambda \in \Lambda} F_{\lambda}^{c} = X \supset A$$

构成 A 的开覆盖. 而 A 是紧集, 因此存在 $\lambda_1, \dots, \lambda_n \in \Lambda$ 使得

$$\bigcup_{k=1}^{n} F_{\lambda_k}^c \supset A,$$

对上式取余集可得

$$\bigcap_{k=1}^n F_{\lambda_k} \subset A^c.$$

而上式左侧是 A 的子集, 并且非空, 故存在 $x \in A$ 使得 x 在上式左侧中, 从而也属于上式右侧, 也即 $x \in A \cap A^c = \emptyset$, 矛盾.

引理 1.3.21

设 (X,ρ) 是度量空间, A 是 X 中的闭集. 若对于 A 的闭子集族 $\{F_{\lambda}\}_{\lambda \in \Lambda}$ 满足其中任意有限个的交集非空, 都有

$$\bigcap_{\lambda\in\Lambda}F_{\lambda}\neq\varnothing.$$

则 A 是紧集.

证明. 设 $\{V_{\sigma}\}_{\sigma\in\Sigma}$ 是 A 的开覆盖. 则

$$\bigcap_{\sigma\in\Sigma}V_{\sigma}^{c}\subset A^{c},$$

上式两侧同时与 A 取交集可得

$$A\cap \bigcap_{\sigma\in\Sigma}V_{\sigma}^{c}\subset\varnothing,$$

此即

$$\bigcap_{\sigma \in \Sigma} A \setminus V_{\sigma} = \varnothing.$$

而 $\{A \setminus V_{\sigma}\}_{\sigma \in \Sigma}$ 是 A 的闭子集族, 故必存在 $\sigma_1, \dots, \sigma_n \in \Sigma$ 使得

$$\bigcap_{k=1}^n A \setminus V_{\sigma_k} = \varnothing \implies A \cap \bigcap_{k=1}^n V_{\sigma_k}^c = \varnothing \implies \bigcap_{k=1}^n V_{\sigma_k}^c \subset A^c \implies A \subset \bigcup_{k=1}^n V_{\sigma_k}.$$

故存在有限子覆盖, A 是紧集.

引理 1.3.22

设 A 是度量空间 (X, ρ) 中的紧集, $\{x_n\} \subset A$ 两两互异, 则 $\{x_n\}$ 必存在聚点.

喀 注

点列有聚点即有收敛子列,从而紧集是列紧的,而紧集还是闭的,因此紧集必 是自列紧集. 1.3 列紧集

证明. 反证法. 反设 $\{x_n\}$ 没有聚点,则 $\forall q \in A$,存在 q 的领域 V_q 使得 $V_q \cap \{x_n\}$ 中至 多有一个元素. 注意到

$$A \subset \bigcup_{q \in A} V_q$$

以及 A 是紧集,则存在有限子覆盖

$$A \subset \bigcup_{k=1}^{n} V_{q_k}$$

而上式中,因为 $\{x_n\}$ 两两互异且包含于 A, A 中有 $\{x_n\}$ 中无穷多个点. 但右侧每个 V_{q_k} 至多有 $\{x_n\}$ 中一个点,从而右侧至多有 $\{x_n\}$ 中有限多个点,矛盾.

引理 1.3.23

设 (X,ρ) 是度量空间, $A \subset X$. 若 A 是自列紧集, 则 A 必是紧集.

喀淮

此引理及引理1.3.22可推出度量空间中紧集和自列紧集等价.

证明. 反证法. 对于 A 的一个开覆盖 $\bigcup_{\lambda} G_{\lambda} \supset M$,反设其不存在有限覆盖. 由于 A 是自列紧的,因此 A 作为一个度量空间是完备的,从而是完全有界的. 记 A 的一个有穷 $\frac{1}{n}$ 网为 N_n ,则

$$A \subset \bigcup_{y \in N_n} B(y, \frac{1}{n}).$$

因此, $\forall n$, 存在 $y_n \in N_n$ 使得 $B(y_n, \frac{1}{n})$ 不能被有限多个 G_λ 覆盖. 对于 $\{y_n\} \subset A$, 必然存在子列 $\{y_{n_k}\}$ 收敛到 A 中的点 $y_0 \in G_{\lambda_0}$. 由 G_{λ_0} 是开集知存在 $\delta > 0$ 使得 $B(y_0, \delta) \subset G_{\lambda_0}$. 取 k 使得 $n_k > \frac{2}{\delta}$, 并且 $\rho(y_{n_k}, y_0) < \frac{\delta}{2}$, 则

$$\rho(x,y_0) \leq \rho(x,y_{n_k}) + \rho(y_{n_k},y_0) \leq \frac{1}{n_k} + \frac{\delta}{2} < \delta, \quad \forall x \in B(y_{n_k},\frac{1}{n_k}).$$

因此

$$B(y_{n_k}, \frac{1}{n_k}) \subset B(y_0, \delta) \subset G_{\lambda_0},$$

这与每个 $B(y_n, \frac{1}{n})$ 不能被有限个 G_{λ} 覆盖矛盾.

定理 1.3.24

度量空间中,紧集与自列紧集等价.

证明. 由引理1.3.22和引理1.3.23可得.

1.3.3 Arzela-Ascoli 定理

定义 1.3.25: *M* 与 *C*(*M*)

设 (M,ρ) 是度量空间, 若 M 本身是一个紧集, 则称 M 为**紧度量空间**. 记 C(M) 为所有定义域为 M 的连续函数全体, 在其上定义距离为

$$d(x,y) = \max_{t \in M} \left| x(t) - y(t) \right|, \quad x, y \in C(M),$$

并且 C(M) 是完备的.

喀 注

连续函数在紧集上能取到最大值以及 C(M) 的完备性留作习题.

定义 1.3.26: 一致有界和等度连续

设 M 是紧度量空间, F ⊂ C(M).

若存在 $\alpha > 0$ 使得

$$|x(t)| \le \alpha, \quad \forall x \in F,$$

则称 F 是一**致有界的**.

若 $\forall \varepsilon > 0$, 存在 $\delta > 0$ 使得

$$|x(t_1) - x(t_2)| < \varepsilon$$
, $\forall t_1, t_2 \in M$, $\rho(t_1, t_2) < \delta$, $\forall x \in F$,

则称 F等度连续.

喀注

一致有界即 F 在 C(M) 中对于其中的度量 d 而言有界.

1.3 列紧集 · 29

定理 1.3.27: Arzela-Ascoli 定理

设 (M, ρ) 是紧度量空间, $F \subset C(M)$. 则 F 在 C(M) 中列紧的充要条件是 F 等度 连续并且一致有界.

证明. 必要性: 设 F 在 C(M) 中列紧, 则 F 完全有界, 从而一致有界. 还需证明等度连续. $\forall \varepsilon > 0$, 取 y_1, \dots, y_n 为 F 的 $\frac{\varepsilon}{3}$ 网. 存在 $\delta_k > 0$ 使得

$$|y_k(t) - y_k(t')| < \frac{\varepsilon}{3}, \quad \forall t, t' \in M, \rho(t, t') < \delta_k.$$

记 $\delta = \min_{1 \le k \le n} \delta_k$, 则 $\forall x \in F$, 存在 y_k 使得 $x \in B(y_k, \frac{\varepsilon}{3})$, 从而

$$\begin{aligned} \left| x(t) - x(t') \right| &\leq \left| x(t) - y_k(t) \right| + \left| y_k(t) - y_k(t') \right| + \left| y_k(t') - x(t') \right| \\ &\leq 2d(x, y_k) + \left| y_k(t) - y_k(t') \right| < \frac{2\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \quad \forall \rho(t, t') < \delta. \end{aligned}$$

因此 F 等度连续.

充分性: 由于 C(M) 完备的, 而完备空间中列紧与完全有界等价, 故只要证明 F 完全有界. 以下三种方法中, 方法一和方法二证明 F 完全有界, 方法三直接证明 F 列紧.

方法一. 由于 M 是紧度量空间, 则 $\forall \delta > 0$, 存在有穷 δ 网 $\{t_1, \dots, t_{N_\delta}\}$. 令

$$S := \{(x(t_1), \cdots, x(t_{N_\delta})) \in \mathbb{R}^{N_\delta} : x \in F\}.$$

由于 F 一致有界,则若 $\alpha > 0$ 是 F 的一个上界,则 $\sqrt{N_\delta}\alpha$ 是 S 的一个上界,S 在 \mathbb{R}^{N_δ} 是 有界的. 而有限维 Euclidean 中有界与完全有界等价,故 S 在 \mathbb{R}^{N_δ} 中完全有界. $\forall \varepsilon > 0$, S 存在有穷 ε 网

$$\left\{ \begin{matrix} (x_1(t_1),\cdots,x_1(t_{N_\delta})),\\ (x_2(t_1),\cdots,x_2(t_{N_\delta})),\\ \cdots,\dots,\dots,\\ (x_k(t_1),\cdots,x_k(t_{N_\delta})). \end{matrix} \right\}$$

下面证明 x_1, \dots, x_k 构成 F 的有穷 3ε 网. $\forall x \in F, (x(t_1), \dots, x(t_{N_\delta})) \in S$. 存在 x_i 使得

$$|x(t_i)-x_i(t_i)|$$

$$\leq \left| (x(t_1), \cdots, x(t_{N_\delta})) - (x_j(t_1), \cdots, x_j(t_{N_\delta})) \right|$$

$$= \sqrt{\sum_{i=1}^{N_\delta} \left| x(t_i) - x_j(t_i) \right|^2} < \varepsilon, \quad \forall i = 1, 2, \cdots, N_\delta.$$

则

$$\left|x(t)-x_j(t)\right| \leq |x(t)-x(t_i)| + \left|x(t_i)-x_j(t_i)\right| + \left|x_j(t_i)-x_j(t)\right| < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

其中, 为了使上式第一项和第三项 $< \varepsilon$, 取 δ 使得

$$|x(t) - x(t')| < \varepsilon, \quad \forall x \in F, \forall t, t' \in M, \rho(t, t') < \delta.$$

因此 x_1, \dots, x_k 的确构成 F 的 3ε 网, F 在 C(M) 中列紧.

方法二. 给定 ε > 0, 存在 δ > 0, 使得

$$|x(s)-x(t)| \leq \frac{\varepsilon}{4}, \quad \forall \rho(s,t) < \delta, x \in F.$$

取 M 中元素 t_1, t_2, \dots, t_n 构成 M 的一个 δ 网,由 F 一致有界知 $\bigcup_{k=1}^n F(t_k)$ 在 \mathbb{R} 中有界,其中 $F(t) = \{x(t) \in \mathbb{R}: x \in F\}$. \mathbb{R} 中的有界集一定是完全有界的,因此存在 $\bigcup_{k=1}^n F(t_k)$ 的一个有限 $\frac{\varepsilon}{4}$ 网 $\beta_1, \beta_2, \dots, \beta_m$.

记 L_{φ} 为所有从 $\{1,\cdots,n\}$ 到 $\{1,\cdots,m\}$ 的映射 φ 构成的集合. 又记

$$F_{\varphi} = \{x \in F : |x(t_k) - \beta_{\varphi(k)}| < \frac{\varepsilon}{4}, \forall 1 \le k \le n\}.$$

显然 $F = \bigcup_{\varphi \in L_{\varphi}} F_{\varphi}$. 任取 $x, y \in F_{\varphi}$, 则

$$\begin{split} &|x(t) - y(t)| \\ \leq &|x(t) - x(t_k)| + |x(t_k) - \beta_{\varphi(k)}| + |\beta_{\varphi(k)} - y(t_k)| + |y(t_k) - y(t)| < \varepsilon. \end{split}$$

因此同一个 F_{φ} 中任意两点距离小于 ε , 而 L_{φ} 是有限集, 因此从每个 F_{φ} 中取一个元

1.3 列紧集

· 31 ·

素 (有些 F_{ω} 可能为空集, 此时不取) 便得到 F 的一个 ε 网.

方法三. 因为紧度量空间 M 完全有界, 而由定理1.3.12知完全有界集可分, 故 M 是可分的, 记 $\{t_k\}$ 是 M 的一个可数稠密子集.

设 $\{x_n\} \subset F$, 要证明 $\{x_n\}$ 存在收敛子列. 对 t_1 , 因为 F 完全有界, 故

$$\sup_{n\geq 1}|x_n(t_1)|\leq \sup_{x\in F}\|x\|<\infty,$$

 $\{x_n(t_1)\}$ 是 \mathbb{R} 上的有界列, 必有子列 $\{x_n^{(1)}(t_1)\}$ 收敛于 $\alpha_1 \in \mathbb{R}$. 对 $\{x_n^{(1)}\}$ 和 t_2 重复该过程, 得到 $\{x_n^{(1)}\}$ 的子列使得 $\{x_n^{(2)}(t_2)\}$ 收敛于 $\alpha_2 \in \mathbb{R}$. 以此类推, 存在 $\{x_n^{(k)}\}$ 使得

$$x_n^{(k)}(t_k) \to \alpha_k, \quad \forall k \ge 1.$$

记 $y_n = x_n^{(n)}$ 为第 n 个子列的第 n 项, 则 $\forall t_k$, 当 $n \to \infty$ 时

$$y_n(t_k) \rightarrow \alpha_k$$
.

下面证明 $\{x_n\}$ 的子列 $\{y_n\}$ 收敛, 由于 C(M) 完备, 只需证明 $\{y_n\}$ 是 Cauchy 列. 由于 F 等度连续, 给定 $\varepsilon > 0$, 取 $\delta > 0$ 使得

$$\left| x(t) - x(t') \right| < \frac{\varepsilon}{3}, \quad \forall t, t' \in M, \rho(t, t') < \delta, \forall x \in F.$$

对此 $\delta > 0$, 由定理1.3.12的证明过程不难看出, 存在 $\{t_k\}$ 中的有限多个 t_1, \dots, t_{k_0} 使得 其构成 M 的 δ 网. 而 $\gamma_n(t_k) \to \alpha_k$, 故存在充分大的 N 使得

$$|y_n(t_k) - y_m(t_k)| < \frac{\varepsilon}{3}, \quad \forall m, n > N, \forall k \le k_0.$$

 $\forall t \in M$, 存在 $k \leq k_0$ 使得 $\rho(t, t_k) < \delta$, 故

$$|y_n(t) - y_m(t)|$$

$$\leq |y_n(t) - y_n(t_k)| + |y_n(t_k) - y_m(t_k)| + |y_m(t_k) - y_m(t)|$$

$$<\frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \quad \forall m, n > N.$$

上式即 $||y_n - y_m|| < \varepsilon, \forall m, n > N$, 故 $\{y_n\}$ 是 C(M) 中的 Cauchy 列.

定理 1.3.28: l^p 中列紧集等价条件

设 $1 \le p < \infty$, $A \subset l^p$. 则 A 列紧的充要条件为

- (1) A在 lp 中有界;
- (2) $\forall \varepsilon > 0$, 存在 N > 0 使得

$$\sum_{n=N+1}^{\infty}|x_n|^p<\varepsilon,\quad\forall x=\{x_n\}\in l^p.$$

证明. 留作习题, L^p 空间中列紧的等价条件见附录A.4.

1.3.4 作业

ዾ 题目1.3.1. 证明 $l^p(1 \le p < \infty)$ 可分.

解答. 记 E 为只有有限项不为 0 且所有项均为有理数的数列, 也即

$$E = \bigcup_{n=1}^{\infty} (\mathbb{Q}^n \times \{0\}^{\mathbb{N} \setminus \{1, 2, \dots, n\}}),$$

因此 E 是一个可数集. 下面证明对 $1 \le p < \infty$, E 在 l^p 中稠密. 设 $x = \{x_n\} \in l^p$, 令 $x_n^{(m)} = \frac{[2^m x_n]}{2^m}$, $n \le m$, $x_n^{(m)} = 0$, n > m. 则 $\{x^{(m)}\} \subset E$. 任取 $\varepsilon > 0$, 存在 M, 使得

$$\left(\sum_{n>m}|x_n|^p\right)^{\frac{1}{p}}<\varepsilon,\quad\forall\, m\geq M.$$

因此,

$$||x^{(m)} - x||_{p} \le \left(\sum_{n \le m} \left| \frac{[2^{m} x_{n}]}{2^{m}} - x_{n} \right|^{p} \right)^{\frac{1}{p}} + \left(\sum_{n > m} |x_{n}|^{p} \right)^{\frac{1}{p}}$$

$$\le \left(\sum_{n \le m} \frac{1}{2^{mp}} \right)^{\frac{1}{p}} + \varepsilon \le \frac{m^{\frac{1}{p}}}{2^{m}} + \varepsilon,$$

在上式中令 $m \to \infty$, 再由 ε 的任意性可得 $x^{(m)} \to x$. 从而 E 在 $l^p(1 \le p < \infty)$ 中稠密. **题目1.3.2**. 证明 $L^{\infty}[a,b]$ 不可分.

解答. 方法一. 记

$$f_{\alpha} = \sum_{n=1}^{\infty} \alpha_n \chi_{(\frac{1}{n+1}, \frac{1}{n})},$$

其中 $\alpha_n = 0$ 或 1, 则 $\{f_\alpha\}$ 不可数 (与 \mathbb{R} 等势), 但

$$||f_{\alpha} - f_{\beta}||_{\infty} = 1, \quad \forall \alpha \neq \beta.$$

记 F 为 f_{α} 全体,则如果 L^{∞} 有可数稠密子集 $\{g_n\}_1^{\infty}$,则

$$F = \bigcup_{n=1}^{\infty} B(g_n, \frac{1}{3}) \cap F,$$

由于 F 中任意两点间的距离为 1, 不可能在同一半径为 $\frac{1}{3}$ 的球内, 因此右侧每个球内至多有一个 F 中的元素, 从而右侧是可数的, 但左侧是不可能的矛盾. 因此 $L^{\infty}[a,b]$ 不可分.

方法二. 反设 $L^{\infty}[a,b]$ 可分,则存在可数稠密集 $\{x_n\}$. 注意到对每个 $\chi_{[a,t]}(t \in [a,b])$,存在 n(t) 使得

$$\|\chi_{[a,t]}-x_{n(t)}\|_{\infty}<\frac{1}{2},$$

并且 $\forall t_1, t_2 \in [a, b]$ 且 $t_1 \neq t_2$,有

$$\|\chi_{[a,t_1]} - \chi_{[a,t_2]}\|_{\infty} = 1.$$

故若 $n(t_1) = n(t_2)$,由

$$\|\chi_{[a,t_1]} - \chi_{[a,t_2]}\|_{\infty} \le \|\chi_{[a,t_1]} - \chi_{n(t_1)}\| + \|\chi_{n(t_2)} - \chi_{[a,t_2]}\| < 1$$

可知必有 $t_1 = t_2$ (否则左侧为 1). 因此 n(t) 是从 [a,b] 到 \mathbb{N} 的单射, 但不可数集到可数集不存在单射, 矛盾.

△ **题目1.3.3.** 设 F 是只有有限项不为 0 的实数列全体, 在 F 上引进距离

$$\rho(x, y) = \sup_{k \ge 1} |\xi_k - \eta_k|,$$

其中 $x = \{\xi_k\} \in F, y = \{\eta_k\} \in F, 求证: (F, \rho)$ 不完备, 并指出它的完备化空间.

解答. 反例: 令
$$x^{(k)} = \{1, \frac{1}{2}, \dots, \frac{1}{k}, 0, 0, \dots\}$$
, 则 $x^{(k)} \to \{\frac{1}{n}\}_{1}^{\infty} \notin F$.

F 的完备化空间是所有收敛于 0 的实数列全体 M. 设 (F_1, ρ_1) 为 (F, ρ) 中的基本列等价类组成的完备化空间, 下面证明 (F_1, ρ_1) 与 (M, ρ) 等距同构. 构造映射 $\sigma: M \to F_1$. 设 $\{x_n\} \in M$, 记 $x^{(k)} = \{x_1, \cdots, x_k, 0, \cdots\}$, 则

$$\rho(x^{(k)}, x^{(k+p)}) = \sup_{k+1 \le n \le k+p} |x_n| \to 0, \quad k \to \infty, \forall p,$$

因此 $x^{(k)}$ 为 F 中的基本列. 令 $\sigma(\{x_n\}) = \{x^{(k)}\} \in M$, 则

$$\rho_1(\sigma(\{x_n\}), \sigma(\{y_n\})) = \rho_1(\{x^{(k)}\}, \{y^{(k)}\}) = \lim_{k \to \infty} \rho(x^{(k)}, y^{(k)})$$

$$= \lim_{k \to \infty} \sup_{1 \le n \le k} |x_n - y_n| = \sup_{n \ge 1} |x_n - y_n| = \rho(\{x_n\}, \{y_n\}), \quad \forall \{x_n\}, \{y_n\} \in M,$$

并且显然 σ 是满射, 因此 σ 是一个等距同构映射, M 和 F 等距同构.

题目1.3.4. 在完备度量空间 (X, ρ) 中给定点列 $\{x_n\}$, 如果 $\forall \varepsilon > 0$, 存在基本列 $\{y_n\}$, 使

$$\rho(x_n, y_n) < \varepsilon, \quad \forall n \in \mathbb{N},$$

求证: $\{x_n\}$ 收敛.

解答. 任取 $\varepsilon > 0$, 存在基本列 $\{y_n\}$ 使得 $\rho(x_n, y_n) < \varepsilon, \forall n$. 从而

$$\rho(x_m,x_n) \leq \rho(x_m,y_m) + \rho(y_m,y_n) + \rho(y_n,x_n) \leq 2\varepsilon + \rho(y_m,y_n),$$

在上式中令 $m, n \to \infty$, 再由 ε 的任意性知 x_n 是基本列, 从而收敛.

题目1.3.5. 在完备的度量空间中求证: 子集 A 列紧的充要条件是对 $\forall \varepsilon > 0$, 存在 A 的 列紧的 ε 网.

1.3 列紧集

. 35 .

解答. 充分性显然, 下面证明必要性: 设 $\{x_n\}$ 为 A 中的点集. 在 A 的列紧的 1 网中存在点列 $\{y_n\}$ 使得 $\rho(x_n,y_n) < 1$, $\forall n$, 根据列紧性可知有子列 $\{y_n^{(1)}\}$ 收敛于 $y^{(1)}$, 因此从某项开始 (不妨设是第一项) 都有 $\rho(y_n^{(1)},y^{(1)}) \le 1$. 从而

$$\rho(x_n^{(1)},y^{(1)}) \leq \rho(x_n^{(1)},y_n^{(1)}) + \rho(y_n^{(1)},y^{(1)}) \leq 1+1 = 2, \forall n.$$

如此递归可以得到

$$\rho(x_n^{(k)}, y^{(k)}) \le \frac{2}{k}, \forall k.$$

从而

$$\rho(x_{n+p}^{(n+p)},x_n^{(n)}) \leq \rho(x_{n+p}^{(n+p)},y^{(n)}) + \rho(y^{(n)},x_n^{(n)}) \leq \frac{4}{n} \to 0,$$

 $\{x_n^{(n)}\}$ 是基本列, 根据完备性知也是收敛列.

▲ **题目1.3.6**. 在度量空间中求证: 紧集上的连续函数必是有界的, 并且达到它的上下确界.

解答. 设 (X, ρ) 是度量空间,M 是 X 的紧子集, $f: M \to \mathbb{R}$ 连续. 任取 f(M) 中的点列 $\{f(x_n)\}$, 存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 收敛到 M 中的点 x, 从而根据函数的连续性, $\{f_{n_k}\}$ 收敛到 u(M) 中的点 f(x), 故 f(M) 也是紧的, 因此是有界闭集. 记

$$m = \inf_{x \in M} f(x),$$

由于 f(M) 有界, 因此 $m \in \mathbb{R}$, 存在 M 中的点列 $\{y_n\}$ 使得 $f(y_n) \to m$, 从而存在子列 $\{y_{n_k}\}$ 收敛于 M 中的点 y, 且 $f(y) = \lim_k f(y_{n_k}) = m$. 令 g = -f, 则 g 的下确界也能取 到, 也就是 f 上确界能够达到.

题目1.3.7. 设 (X, ρ) 是度量空间, F_1, F_2 是它的两个紧子集, 求证: 存在 $x_i \in F_i (i = 1, 2)$ 使得 $\rho(F_1, F_2) = \rho(x_1, x_2)$, 其中

$$\rho(F_1, F_2) \stackrel{\Delta}{=} \inf \{ \rho(x, y) \mid x \in F_1, y \in F_2 \}.$$

解答. 任取 $x \in F_1, y \in F_2, \rho(F_1, F_2) \le \rho(x, y) < \infty$, 因此该定义有意义. 存在 $\{u_n\} \subset F_1$

 $F_1,\{v_n\}\subset F_2$,使得 $\rho(u_n,\rho v_n)-\rho(F_1,F_2)\leq \frac{1}{n}, \forall n$. 根据 F_1,F_2 的紧性, 存在子列 $\{u_{n_k}\}$ 收敛于 $x_1\in F_1$, 存在子列的子列 $\{v_{n_{k_i}}\}$ 收敛于 $x_2\in F_2$, 故

$$\rho(x_1,x_2) - \rho(F_1,F_2) \leq \rho(x_1,u_{n_{k_j}}) + \rho(u_{n_{k_j}}), v_{n_{k_j}}) + \rho(v_{n_{k_j}},x_2) \to 0 \\ (j \to \infty),$$

因此 $\rho(x_1, x_2) = \rho(F_1, F_2)$.

趣目1.3.8. 设 $E = \{\sin nt\}_1^{\infty}$, 求证 E 在 $C[0,\pi]$ 中不是列紧的.

解答. 考虑 E 的点列 $\{\sin 10^n t\}_1^{\infty}$, 其中任意两点间的距离

$$\begin{split} \rho(\sin 10^{n+p} t, \sin 10^n t) &= \sup_{t \in [0, \pi]} |\sin 10^{n+p} t, \sin 10^n t| \\ &= 2 \sup_{t \in [0, \pi]} |\cos \frac{10^{n+p} + 10^n}{2} t| \cdot |\sin \frac{10^{n+p} - 10^n}{2} t| \\ &\geq \sqrt{2} |\cos \frac{1 + 10^{-p}}{1 - 10^{-p}} \cdot \frac{\pi}{4}| \geq \frac{1}{2}, \end{split}$$

因此不存在收敛子列, E 不是列紧的.

题目1.3.9. 求证: S 空间的子集 A 列紧的充要条件是: $\forall n$, 存在 $C_n > 0$ 使得 $|x_n| \le C_n, \forall x \in A$.

解答. 必要性: 反设存在 $\{x^{(k)}\}\subset A$ 使得 $|x_n^{(k)}|\geq k, \forall k$. $\{x^{(k)}\}$ 的子列 $\{x^{(k_j)}\}$ 收敛于 x, 则 $\{x_n^{(k_j)}\}$ 收敛于 x_n , 但 $\{x_n^{(k_j)}\}$ 是无界的, 矛盾.

充分性: 对于 A 中的点列 $\{x^{(k)}\}$, 由于 $\{x_1^{(k)}\}$ 是有界的, 因此有收敛于 x_1 的子列 $\{x_1^{(k)(1)}\}$, 以此递归可知有收敛于 x_n 的子列 $\{x_n^{(k)(n)}\}$. 任取 $\varepsilon > 0$, 存在 m 使得 $\sum_{n > m} 2^{-n} < \frac{\varepsilon}{2}$. 存在 N_n 使得当 $k \ge N_n$ 时有

$$|x_n^{(k)(n)}-x_n|\leq \frac{\varepsilon}{2}.$$

令 $N = \max_{1 \le n \le m} N_n$, 则当 n > N 时有

$$\rho(x, x^{(n)(n)}) \le \sum_{n \le m} 2^{-n} \frac{|x_n^{(n)(n)} - x_n|}{1 + |x_n^{(n)(n)} - x_n|} + \sum_{n > m} 2^{-n}$$

$$\leq \sum_{n \leq m} 2^{-n} \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \leq \varepsilon,$$

因此 $\{x^{(n)(n)}\}$ 收敛于 x.

题目1.3.10. 证明 C(M) 关于距离 ρ 是良定义的完备度量空间 (良定义即证明对 $x \in C(M)$, |x(t)| 能在 M 上取到最大值).

解答. 首先证明 $x \in C(M)$ 能取到 |x(t)| 的最大值. 由于连续函数将紧集映为紧集, 而 \mathbb{R} 上的紧集有界, 故

$$\alpha = \sup_{t \in M} |x(t)| < \infty.$$

取 $\{t_n\}\subset M$ 使得

$$\alpha - \frac{1}{n} \le x(t_n) \le \alpha, \quad \forall n \ge 1.$$

由于紧集必自列紧, 则存在子列 $\{t_{n_k}\}$ 收敛于 $t_0 \in M$, 则在上式中将 n 替换为 n_k 并令 $k \to \infty$ 可得 $|x(t_0)| = \alpha$, 得证.

下面证明 C(M) 完备. 设 $\{x_n\}$ 是 C(M) 中的 Cauchy 列. 则对每个 $t \in M$, $\{x_n(t)\}$ 都是 \mathbb{R} 上的 Cauchy 列, 则其收敛, 记收敛于极限 $x(t) \in \mathbb{R}$. $\forall \varepsilon > 0$, 存在 N > 0 使得

$$|x_n(t) - x_m(t)| < \varepsilon, \quad \forall t \in M, n, m > N.$$

在上式中令 $m \to \infty$ 得

$$|x_n(t) - x(t)| < \varepsilon, \quad \forall t \in M, n > N.$$

此即 x_n 一致收敛于 x_n 而每个 x_n 都是连续的, 故 x 也是连续的, 并且 $d(x,x_n) \to 0$, 故 C(M) 完备.

- **趣目1.3.11.** 设 1 ≤ p < ∞, A ⊂ l^p . 证明: A 列紧的充要条件为
 - (1) A 在 l^p 中有界;
 - (2) $\forall \varepsilon > 0$, 存在 N > 0 使得

$$\sum_{n=N+1}^{\infty}|x_n|^p<\varepsilon,\quad\forall x=\{x_n\}\in l^p.$$

解答. 必要性: 若 A 列紧, 则必有界, 并且完全有界. 任取 $\varepsilon > 0$, 存在 A 的有限 $\frac{\varepsilon}{2}$ 网 $\{y^k\}_1^K$. 存在 $N_{\varepsilon} > 0$ 使得

$$\sum_{n=N_{\varepsilon}+1}^{\infty} \left| y_n^k \right|^p < \frac{\varepsilon}{2}, \quad k=1,\cdots,K.$$

 $\forall x \in A$, 存在 y_k 使得 $||x - y^k|| < \frac{\varepsilon}{2}$, 从而

$$\sum_{n=N_{\varepsilon}+1}^{\infty}|x_n|^p\leq \left\|x-y^k\right\|+\sum_{n=N_{\varepsilon}+1}^{\infty}\left|y_n^k\right|^p<\varepsilon.$$

充分性: 由于 l^p 完备, 只需证明 A 完全有界. $\forall \varepsilon > 0$, 取 N 使得

$$\sum_{n>N} |x_n|^p < \frac{\varepsilon}{3}, \quad \forall x \in A.$$

由于 A 有界, 故 A 在前 N 个坐标上的限制在 \mathbb{R}^N 上有界,而 \mathbb{R}^N 上有界即完全有界,故存在 $\{y^k\}_1^K \subset A$,它们前 N 个坐标组成的点在 \mathbb{R}^N 中是 A 的 $\frac{\epsilon}{3}$ 网. 因此 $\forall x \in A$,存在 y^k 使得

$$\left\|x - y^k\right\|^p \le \sum_{n \le N} \left|x_n - y_n^k\right|^p + \sum_{n \ge N} |x_n|^p + \left|y_n^k\right|^p < \varepsilon.$$

故 $\{y^k\}_1^K$ 构成 A 的 ε 网.

▲ **题目1.3.12**. 定义 $C_0^1(0,1)$ 上距离

$$\rho(f,g) = \left(\int_0^1 \left| f - g \right|^2 + \left| f' - g' \right|^2 \right)^{\frac{1}{2}}, \quad f,g \in C_0^1(0,1).$$

证明:

$$S := \{ u \in C_0^1(0,1) : \rho(u,0) < M < \infty \}$$

是 C[0,1] 中 (关于其上的度量 d) 的列紧集.

解答. 由 Arzela-Ascoli 定理, 只需验证 S 在 C[0,1] 中一致有界且等度连续. 由题目1.2.4(3) 可知

$$d(u,0) \leq \sqrt{2}\rho(u,0) < \sqrt{2}M,$$

1.3 列紧集 · 39 ·

故 S 一致有界. $\forall \varepsilon > 0$, 根据 Cauchy-Schwarz 不等式, $\forall t_1 < t_2$,

$$|u(t_2) - u(t_1)| = \left| \int_{t_1}^{t_2} u'(s) ds \right| \le \left(\int_{t_1}^{t_2} \left| u' \right|^2 \right)^{\frac{1}{2}} \left(\int_{t_1}^{t_2} 1^2 \right)^{\frac{1}{2}} < M\sqrt{|t_2 - t_1|},$$

故 S 等度连续.

△ 题目1.3.13. 证明: 集合

$$A = \left\{ \{x_n\} \in l^2 : \sum_{n=1}^{\infty} n^2 |x_n|^2 \le 1 \right\}$$

在 l^2 中紧.

解答. 首先证明 $A \propto l^2$ 中列紧,为此,分别验证 A 满足列紧的两个充要条件. 由

$$\sum_{n=1}^{\infty} |x_n|^2 \le \sum_{n=1}^{\infty} n^2 |x_n|^2 \le 1, \quad \forall x = \{x_n\} \in A$$

可知 A 有界. 对任意的 $\varepsilon > 0$, 取 N > 0 使得 $\frac{1}{N^2} < \varepsilon$, 则

$$\sum_{n=N+1}^{\infty} |x_n|^2 = \sum_{n=N+1}^{\infty} \frac{1}{n^2} \cdot |nx_n|^2 < \frac{1}{N^2} \sum_{n=N+1}^{\infty} |nx_n|^2 \le \frac{1}{N^2} < \varepsilon, \quad \forall x \in A.$$

故 A 在 l^2 中列紧.

由于自列紧集就是列紧集, 还需证明 A 是闭集. 设 $x^k = \{x_n^k\}_{n=1}^\infty \in A$ 并且 $x^k \to x \in l^2$. 注意到

$$\left|x_n - x_n^k\right| \le \left(\sum_{n=1}^{\infty} \left|x_n - x_n^k\right|^2\right)^{\frac{1}{2}},$$

故当 $k \to \infty$ 时, $x_n^k \to x^k (\forall n \ge 1)$. 给定 $N \ge 1$, 有

$$\sum_{n=1}^{N} n^2 \left| x_n^k \right|^2 \le 1,$$

在上式中令 $k \to \infty$ 可得

$$\sum_{n=1}^{N} n^2 |x_n|^2 \le 1, \quad \forall N \ge 1.$$

1.4 压缩映像原理

定义 1.4.1: 压缩映射与不动点

设 (X,ρ) 是度量空间, T 是从 X 到其本身的映射. 若存在 $\alpha \in (0,1)$ 使得

$$\rho(Tx, Ty) < \alpha \rho(x, y), \quad \forall x, y \in X,$$

则称 $T \in X$ 上的**压缩映射**.

对 X 到本身的任意的映射 T, 若存在 $x \in X$ 使得

$$x = Tx$$
,

则称 $x \in T$ 的不动点.

定理 1.4.2: Banach 不动点定理——压缩映像原理

设 (X, ρ) 是完备度量空间, $T \in X$ 上的压缩映射, 则 $T \in X$ 中存在唯一的不动点.

证明. 存在性: 任取 $x_0 \in X$, 记 $x_{n+1} = Tx_n$, 则

$$\rho(x_{n+1}, x_n) = \rho(Tx_n, Tx_{n-1}) \le \alpha \rho(x_n, x_{n-1}) \le \alpha^n \rho(x_1, x_0),$$

从而

$$\rho(x_{n+p}, x_n) \le \sum_{k=1}^{p} \rho(x_{n+k}, x_{n+k-1})$$

$$\le \sum_{k=1}^{\infty} \alpha^{n+k} \rho(x_1, x_0) = \frac{\alpha^{n+1}}{1 - \alpha} \rho(x_1, x_0) \to 0.$$

根据完备性可知, $x_n \to x \in X$, 此时 $Tx_n = x_{n+1} \Longrightarrow Tx = x$, 不动点存在. 唯一性: 若 y 也是不动点, 则

$$\rho(x,y) = \rho(Tx,Ty) \leq \alpha \rho(x,y) \implies \rho(x,y) = 0 \implies x = y.$$

定理 1.4.3

设 (X, ρ) 是完备度量空间, T 是从 X 到其本身的映射. 若存在 $n \in \mathbb{N}$ 使得 T^n 是 X 上的压缩映射, 则 T 在 X 中存在唯一的不动点.

证明. 存在性: 由定理1.4.2, T^n 在 X 上存在唯一的不动点 x, 即 $T^n x = x$. 从而 $T^n (Tx) = Tx$, 故 Tx 也是 T^n 的不动点, 但 T^n 的不动点是唯一的, 从而 Tx = x.

唯一性: 设还有 $y \in X$ 也是 T 的不动点. 则 $T^n y = y \Longrightarrow T^n y = y$,而 T^n 的不动点是唯一的, 故 x = y.

1.4.1 应用

定理 1.4.4: 解的存在唯一性定理

设函数 F(t,x) 在 $[-h,h] \times [\xi-\delta,\xi+\delta]$ 上连续且满足局部 Lipschitz 条件: $\exists L>0$ 使得

$$t \in [-h, h], x_1, x_2 \in [\xi - \delta, \xi + \delta] \implies |F(t, x_1) - F(t, x_2)| \le L|x_1 - x_2|.$$

记

$$M = \sup_{\substack{t \in [-h,h] \\ x \in [\xi - \delta, \xi + \delta]}} |F(t,x)|,$$

则当 $h < \min\{\frac{\delta}{M}, \frac{1}{L}\}$ 时, 初值问题

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = F(t, x), \\ x(0) = \xi, \end{cases}$$

在 [-h,h] 上存在唯一解.

证明. 初值问题等价于求连续函数 x 满足

$$x(t) = \xi + \int_0^t F(s, x(s)) ds.$$

_

 $\Rightarrow Tx(t) = \xi + \int_0^t F(s, x(s)) ds. \ \text{th} \ \ h < \frac{\delta}{M}$

$$|Tx(t) - \xi| = |\int_0^t F(s, x(s)) ds| \le hM < \delta,$$

因此 $T: C([-h,h], [\xi-\delta,\xi+\delta]) \to C([-h,h], [\xi-\delta,\xi+\delta])$. 只要证明 T 是一个压缩映射即可. 事实上,

$$\rho(Tx_1, Tx_2) = \sup_{|t| < h} \left| \int_0^t F(s, x_1(s)) - F(s, x_2(s)) ds \right| \le Lh\rho(x_1, x_2).$$

定理 1.4.5: 隐函数存在定理

设 $f(x,y) = (f_1, \dots, f_m): \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m, U \times V \subset \mathbb{R}^n \times \mathbb{R}^m$ 是 (x_0, y_0) 在 $\mathbb{R}^n \times \mathbb{R}^m$ 中的一个邻域. 设 f 和 $\frac{\partial f}{\partial y}$ 在 $U \times V$ 内连续, 并且 $f(x_0, y_0) = 0$, $\frac{\partial f}{\partial y}$ 非奇异, 则存在 (x_0, y_0) 的一个邻域 $U_0 \times V_0 \subset U \times V$ 以及唯一的连续函数 $\varphi: U_0 \to V_0$ 满足

$$\begin{cases} f(x, \varphi(x)) = 0, x \in U_0, \\ \varphi(x_0) = y_0. \end{cases}$$

证明. 令 $T\varphi(x) = \varphi(x) - f(x, \varphi(x))$. 不妨设 $\frac{\partial f}{\partial y}$ 为单位阵 I(否则令 $g = f \cdot \left[\frac{\partial f}{\partial y}\right]^{-1}$ 即可), 由 f 和 $\frac{\partial f}{\partial v}$ 连续知存在 $\delta, r > 0$,使得

$$||I - \frac{\partial f}{\partial y}|| < \frac{1}{2}, ||f(x, y_0)|| < \frac{1}{2}\delta, \quad \forall ||x - x_0|| \le r, ||y - y_0|| \le \delta,$$

其中 Ⅱ・Ⅱ 为任意一种相容的矩阵 (向量) 范数. 令

$$\rho(\varphi,\psi) = \sup_{\|x-x_0\| \le r} \|\varphi(x) - \psi(x)\|,$$

由微分中值定理得

$$\rho(T\varphi, T\psi) = \sup_{\|x - x_0\| \le r} \|\varphi(x) - \psi(x) - f(x, \varphi(x)) + f(x, \psi(x))\|$$

$$\begin{split} &= \sup_{\|x-x_0\| \le r} \|\varphi(x) - \psi(x) - \frac{\partial f}{\partial y} (\varphi(x) - \psi(y))\| \\ &= \sup_{\|x-x_0\| \le r} \|(I - \frac{\partial f}{\partial y}) (\varphi(x) - \psi(x))\| \\ &\le \sup_{\|x-x_0\| \le r} \|I - \frac{\partial f}{\partial y}\| \cdot \sup_{\|x-x_0\| \le r} \|\varphi(x) - \psi(x)\| \\ &\le \frac{1}{2} \rho(\varphi, \psi), \end{split}$$

其中 $\hat{y}(x) \in [\varphi(x), \psi(x)], \varphi, \psi \in X = \{\varphi \in C(\overline{B}(x_0, r), \overline{B}(y_0, \delta)) \mid \varphi(x_0) = y_0\}, \overline{B}(x_0, r) = \{x \in \mathbb{R}^n \mid ||x - x_0|| \le r\}.$ 下面还需证明 $T: X \to X$. 由 $\varphi(x_0) = y_0$ 和 $f(x_0, y_0)$ 容易得到 $T\varphi(x_0) = y_0$. 此外,

$$\rho(T\varphi, y_0) \le \rho(T\varphi, Ty_0) + \rho(Ty_0, y_0) \le \frac{1}{2}\rho(\varphi, y_0) + \sup_{\|x - x_0\| \le \delta} \|f(x, y_0)\|$$

$$\le \frac{1}{2}\delta + \frac{1}{2}\delta = \delta.$$

定理 1.4.6

设 Ω 是 \mathbb{R}^n 中的有界开集, β 是 \mathbb{R} 上的 Lipschitz 连续函数. 则存在 $\varepsilon_0 > 0$, 对任 意的 $f \in L^2(\Omega)$ 和 $\varepsilon \in (0, \varepsilon_0)$, 非线性 PDE

$$\begin{cases} -\Delta u + \varepsilon \beta(u) = f, & x \in \Omega, \\ u \Big|_{\partial \Omega} = 0 \end{cases}$$

存在唯一的弱解, 也即存在唯一的 $u \in H_0^1(\Omega)$ 使得

$$\int_{\Omega} Du \cdot Dv + \beta(u) v dx = \int_{\Omega} f v dx, \quad \forall v \in H_0^1(\Omega).$$

证明. 考虑映射 $A: H_0^1(\Omega) \to H_0^1(\Omega), u \mapsto w$, 其中 w 是 Dirichlet 问题

$$\begin{cases} -\Delta w = f - \varepsilon \beta(u), & x \in \Omega, \\ w \Big|_{\partial \Omega} = 0 \end{cases}$$

的唯一弱解 (根据定理4.3.9, 弱解对 $f(u) \in L^2(\Omega)$ 存在唯一). 设 $u_1, u_2 \in H^1_0(\Omega), w_1 := Au_1, w_2 := Au_2$, 则

$$\int_{\Omega} Dw_1 \cdot (Dw_1 - Dw_2) + \varepsilon \beta(u_1)(w_1 - w_2) dx = \int_{\Omega} (w_1 - w_2) f dx,$$

$$\int_{\Omega} Dw_2 \cdot (Dw_1 - Dw_2) + \varepsilon \beta(u_2)(w_1 - w_2) dx = \int_{\Omega} (w_1 - w_2) f dx.$$

两式相减可得

$$\int_{\Omega} |Dw_1 - Dw_2|^2 dx = \varepsilon \int_{\Omega} (w_2 - w_1)(\beta(u_1) - \beta(u_2)) dx.$$

若取 $H_0^1(\Omega)$ 中的范数为 $\|u\|_{H_0^1(\Omega)} := \left(\int_{\Omega} |Du|^2 dx\right)^{\frac{1}{2}}$, 则

$$\begin{split} \|w_1 - w_2\|_{H_0^1(\Omega)}^2 &= \varepsilon \int_{\Omega} (w_2 - w_1) (\beta(u_1) - \beta(u_2)) \mathrm{d}x \le \varepsilon L \int_{\Omega} |w_1 - w_2| \cdot |u_1 - u_2| \mathrm{d}x \\ &\le \varepsilon L \|w_1 - w_2\|_{L^2(\Omega)} \cdot \|u_1 - u_2\|_{L^2(\Omega)} \le \varepsilon C L \|w_1 - w_2\|_{H_0^1(\Omega)} \cdot \|u_1 - u_2\|_{H_0^1(\Omega)}. \end{split}$$

从而

$$\|\,w_1-w_2\,\|_{H^1_0(\Omega)}\leq \varepsilon CL \|\,u_1-u_2\,\|_{H^1_0(\Omega)}<\varepsilon_0 CL \|\,u_1-u_2\,\|_{H^1_0(\Omega)},$$

其中 L>0 是 β 的 Lipschitz 系数, 即 $\left|\beta(x)-\beta(y)\right| \leq L\left|x-y\right|$ ($\forall x,y \in \mathbb{R}$), C>0 是使得

$$\int_{\Omega} |u|^2 dx \le C \int_{\Omega} |Du|^2 dx, \quad \forall u \in H_0^1(\Omega)$$

成立的常数 (引理4.3.7). 故取 $\varepsilon_0 = (CL)^{-1}$, 对任意的 $\varepsilon \in (0, \varepsilon)$ 和 $f \in L^2(\Omega)$, A 都是压缩映射. 根据 Banach 不动点定理, A 有唯一的不动点, 就是定理中非线性 PDE 的唯一解.

1.4.2 作业

△ 题目1.4.1. 使用完备度量空间的充要条件证明 Banach 不动点定理.

解答. 设 (X,ρ) 是完备度量空间, T 是 X 上的压缩映射, 对应系数为 $\alpha \in (0,1)$. 记

$$A_n = \left\{ x \in X : \rho(x, Tx) \le \frac{1}{n} \right\}, \quad n \in \mathbb{N}.$$

则 $A_n \supset A_{n+1} (n \ge 1)$. 由于 $\rho(x, Tx)$ 是 $X \to \mathbb{R}$ 的连续函数, 故由 $(-\infty, \frac{1}{n}]$ 在 \mathbb{R} 中闭知 每个 A_n 都是闭集. 每个 A_n 必然非空, 因为任取 $x \in X$, 对充分大的 N, 有

$$\rho(T^N x, T^{N+1} x) < \alpha \rho(T^{N-1} x, T^N x) < \dots < \alpha^N \rho(x, T x) < \frac{1}{n},$$

故 N 充分大时 $T^N x \in A_n$. 此外, 对 $x, y \in A_n$, 有

$$\rho(x, y) \le \rho(x, Tx) + \rho(Tx, Ty) + \rho(Ty, y) \le \frac{2}{n} + \alpha \rho(x, y)$$

$$\Longrightarrow \rho(x, y) \le \frac{2}{(1 - \alpha)n},$$

故 $\{A_n\}$ 是一列单调下降的非空闭集列, 并且 $\operatorname{diam} A_n \to 0$, 由于 X 完备, 存在 $x_0 \in X$ 使得

$$\bigcap_{n=1}^{\infty} A_n = \{x_0\},\,$$

由 A_n 的定义不难看出 x_0 是 T 的唯一不动点.

题目1.4.2. 设 $K(\cdot,\cdot) \in L^2([a,b] \times [a,b])$. 对给定 $f \in L^2[a,b]$, 证明: 当 $\lambda \in \mathbb{R}$ 充分小时, 积分方程

$$x(t) = f(t) + \lambda \int_{a}^{b} K(t, s) x(s) ds$$

在 $L^2[a,b]$ 中存在唯一解.

解答. 定义 $L^2[a,b]$ 到本身的映射 T 满足

$$(Tx)(t) = f(t) + \lambda \int_a^b K(t, s) x(s) ds, \quad x \in L^2[a, b].$$

T 是良定义的, 因为

$$\begin{split} & \int_{a}^{b} \left| \int_{a}^{b} K(t,s) x(s) \mathrm{d}s \right|^{2} \mathrm{d}t \leq \int_{a}^{b} \left(\int_{a}^{b} |K(t,s)|^{2} \mathrm{d}s \right) \cdot \|x\|_{2}^{2} \mathrm{d}t \\ = & \|x\|_{2}^{2} \cdot \|K\|_{L^{2}([a,b] \times [a,b])}^{2}, \quad \forall x \in L^{2}[a,b]. \end{split}$$

应用上式可得,

$$\left\| Tx - Ty \right\|_2 \le |\lambda| \|K\|_{L^2([a,b] \times [a,b])} \cdot \left\| x - y \right\|_2, \quad \forall x,y \in L^2[a,b].$$

因此当 λ 充分小时, T 是压缩映射, 由 Banach 不动点定理, 存在唯一的不动点 $x \in L^2[a,b]$ 使得 Tx=x, 此即题中积分方程有 $L^2[a,b]$ 中的唯一解.

题目1.4.3. 设 $K(\cdot,\cdot) \in C([a,b] \times [a,b])$. 对给定的 $f \in C[a,b]$, 证明: $\forall \lambda \in \mathbb{R}$, 积分方程

$$x(t) = f(t) + \lambda \int_{a}^{t} K(t, s) x(s) ds$$

在 C[a,b] 中存在唯一解.

解答. 定义 C[a,b] 到本身的映射 T 满足

$$(Tx)(t) = f(t) + \lambda \int_a^t K(t, s) x(s) ds, \quad x \in C[a, b].$$

记 $\|\cdot\|$ 为 C[a,b] 上的范数,则

$$\begin{split} & \| T^{n} x - T^{n} y \| \\ = & |\lambda|^{n} \sup_{t \in [a,b]} \left| \int_{a}^{t} \int_{a}^{t_{n}} \cdots \int_{a}^{t_{2}} K(t,t_{n}) K(t_{n},t_{n-1}) \cdots K(t_{2},t_{1}) x(t_{1}) dt_{1} \cdots dt_{n-1} dt_{n} \right| \\ \leq & \frac{|M\lambda|^{n}}{n!} \| x - y \|, \quad \forall x, y \in C[a,b], \end{split}$$

其中 $M = \sup_{s,t \in [a,b]} |K(s,t)|$. 由于 $\frac{|M\lambda|^n}{n!} \to 0$,故存在某个充分大的 n 使得 T^n 是压缩映射,从而 T 存在唯一的不动点,也即题中积分方程存在唯一解.

1.5 赋范线性空间

1.5.1 基本概念

定义 1.5.1: 范数, 赋范空间与 Banach 空间

设 X 是数域 $\mathbb{K}(=\mathbb{R}$ 或 $\mathbb{C})$ 上的线性空间, $\|\cdot\|$ 是一个定义在 X 上的非负实值函数,满足

- (1) 正定性: $||x|| \ge 1 (\forall x \in X)$ 并且 $||x|| = 0 \iff x = 0$.
- (2) 三角不等式: $||x+y|| \le ||x|| + ||y|| (\forall x, y \in X)$.
- (3) 齐次性: $\|\alpha x\| = |\alpha| \|x\| (\forall \alpha \in \mathbb{K}, x \in X)$.

则称 $\|\cdot\|$ 是 X 上的一个**范数**, X 称为**赋范线性空间**或 B^* **空间**.

若 X 在其上范数诱导的度量下完备, 则称 X 是Banach 空间或B 空间.

喀 注

赋范线性空间显然也是度量空间,其上的度量为 $\rho(x,y) = \|x-y\|(x,y\in X)$. 反之,若度量 ρ 满足平移不变性 $(\rho(x,y) = \rho(x-y,0), \forall x,y\in X)$ 以及齐次性 $(\rho(\alpha x,0) = |\alpha|\rho(x,0), \forall \alpha\in\mathbb{K}, x\in X)$,则在 X 上可以定义范数 $\|x\| = \rho(x,0)$.

若 X 不完备,则存在在线性同构意义下 (满足线性性的同构映射) 的唯一的完备化空间 (证法与度量空间中完备化定理的证明类似,只是多出了线性空间上的加法与数乘运算需要验证).

例 1.5.2: C[a,b]

在 C[a,b] 上可以定义范数

$$||x|| := \max_{t \in [a,b]} |x(t)|, \quad x \in C[a,b].$$

例 1.5.3: $L^p[a,b]$

在 $L^p[a,b]$ (1 ≤ p < ∞) 上可以定义范数

$$||f||_p := \left(\int_a^b |f|^p\right)^{\frac{1}{p}}, \quad f \in L^p[a,b].$$

定义 1.5.4: 赋范空间中的无穷级数

设 $(X,\|\cdot\|)$ 是赋范空间, $\{x_n\}\subset X$. $\sum_{n=1}^{\infty}x_n$ 称为 X 中的**无穷级数**. 称 $S_n=\sum_{k=1}^nx_n$ 为级数的部分和.

若 $\{S_n\}$ 在 X 中依范数收敛, 则称 $\sum_{n=1}^{\infty} x_n$ 在 X 中收敛, 并记 $\sum_{n=1}^{\infty} x_n$ 为 $\{S_n\}$ 的极限.

若 $\{S_n\}$ 是 Cauchy 列, 则称 $\sum_{n=1}^{\infty} x_n$ 是Cauchy 级数.

若 $\sum_{n=1}^{\infty} \|x_n\|$ 收敛, 则称 $\sum_{n=1}^{\infty} x_n$ **绝对收敛**.

定理 1.5.5: Banach 空间等价条件

设X是赋范空间,则X是Banach空间的充要条件是:X中的任意绝对收敛的级数必收敛.

证明. 必要性: 设 X 是 Banach 空间, $\sum_{n=1}^{\infty} x_n$ 是 X 中绝对收敛的级数. 则

$$\left\| \sum_{n=1}^{N} x_n - \sum_{n=1}^{M} x_n \right\| = \left\| \sum_{n=M+1}^{N} x_n \right\| = \sum_{n=M+1}^{N} \|x_n\| \le \sum_{n=M+1}^{\infty} \|x_n\|, \quad \forall N > M \ge 1.$$

由于 $\sum_{n=1}^{\infty} x_n < \infty$, 故当 $M \to \infty$ 时, 上式右端趋于 0, 从而级数的部分和序列是 Cauchy 列, 而 X 是 Banach 空间, 故部分和序列收敛, 也即该级数收敛.

充分性: 设 X 中任意绝对收敛的级数均收敛. 对 X 中的 Cauchy 列 $\{x_n\}$, 要证明 $\{x_n\}$ 收敛, 只需证明 $\{x_n\}$ 存在收敛子列. 由于 $\{x_n\}$ 是 Cauchy 列, 故存在子列 $\{x_{n_k}\}$ 使得

$$||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k}, \quad \forall k \ge 1.$$

由上式可得 $\sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\| \le \sum_{k=1}^{\infty} \frac{1}{2^k} = 1 < \infty$,此即级数 $\sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k})$ 绝对收敛,从而该级数收敛,记其收敛的极限为 y. 则不难看出 $\lim_{k \to \infty} (x_{n_k} - x_{n_1}) = y$,从而 x_{n_k} 收敛于 $y + x_{n_1}$,子列 $\{x_{n_k}\}$ 收敛,故 Cauchy 列 $\{x_n\}$ 也收敛.

定义 1.5.6: 范数的强弱与等价

设线性空间 X 上有两个范数 ||⋅||₁ 和 ||⋅||₂. 若满足

$$\lim_{n\to\infty} \|x_n\|_2 = 0 \implies \lim_{n\to\infty} \|x_n\|_1 = 0,$$

则称||·||₂ 比 ||·||₁ 强.

若还有 ||・||1 比 ||・||2 强,则称两个范数等价.

命题 1.5.7: 范数强弱的等价条件

设线性空间 X 上有两个范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$.则 $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 强的充要条件为: 存在 常数 C>0 使得

 $||x||_1 \le C||x||_2$, $\forall x \in X$.

证明. 充分性显然, 只证明必要性. 使用反证法. 反设存在 $x_n \in X$ 满足

$$||x_n||_1 > n||x_n||_2$$
, $\forall n \ge 1$.

由上式, $x_n \neq 0 (\forall n \geq 1)$. 令 $y_n = \frac{x_n}{\|x_n\|_1}$, 则上式即

$$||y_n||_2 < \frac{1}{n}, \quad \forall n \ge 1.$$

故 $\|y_n\|_2 \to 0$, 因此由 $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 强可知 $\|y_n\|_1 \to 0$, 但根据 y_n 的定义, $\|y_n\|_1 = 1$, 矛盾.

推论 1.5.8: 范数等价的充要条件

设线性空间 X 上有两个范数 $\|\cdot\|_1$ 与 $\|\cdot\|_2$. 则 $\|\cdot\|_1$ 和 $\|\cdot\|_2$ 等价的充要条件为: 存在 $C_1, C_2 > 0$ 使得

$$C_1 ||x||_1 \le ||x||_2 \le C_2 ||x||_1, \quad \forall x \in X.$$

1.5.2 有限维赋范空间

定理 1.5.9: 有限维赋范空间上的范数等价

设 X 是有限维赋范空间, $\dim X = n$. 设 e_1, \dots, e_n 是 X 的一组基, 即 $\forall x \in X$, 存在唯一的 $x_1, \dots, x_n \in \mathbb{K}$ 使得

$$x = \sum_{k=1}^{n} x_k e_k.$$

存在 C1, C2 > 0 使得

$$C_1 \left(\sum_{k=1}^n |x_k|^2 \right)^{\frac{1}{2}} \le ||x|| \le C_2 \left(\sum_{k=1}^n |x_k|^2 \right)^{\frac{1}{2}}, \quad \forall x \in X.$$

喀 注

上面说明按照 $\left(\sum_{k=1}^{n}|x_k|^2\right)^{\frac{1}{2}}$ 定义的范数与 X 的任意范数等价,从而有限维赋范空间上的任意两个范数等价。

证明. 对于右半边不等式, $\forall x \in X$, 有

$$||x|| = \left\| \sum_{i=1}^{n} x_i e_i \right\| \le \sum_{i=1}^{n} |x_i| \cdot ||e_i|| \le \left(\sum_{i=1}^{n} ||e_i||^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} |x_i|^2 \right)^{\frac{1}{2}} = C_2 \left(\sum_{i=1}^{n} |x_i|^2 \right)^{\frac{1}{2}}.$$

下面证明左半边不等式成立, 只要证明

$$\left\| \sum_{i=1}^{n} \left(\frac{x_i}{\left(\sum\limits_{k=1}^{n} |x_k|^2\right)^{\frac{1}{2}}} \right) e_i \right\| \ge C_1 > 0, \quad \forall x \in X.$$

记 $S = \left\{ (x_1, \dots, x_n) \in \mathbb{K}^n : \sum_{i=1}^n |x_i|^2 \le 1 \right\}$ 为 \mathbb{K}^n 中的单位球面,则只需证明

$$f(x_1, \dots, x_n) = \left\| \sum_{i=1}^n x_i e_i \right\|, \quad (x_1, \dots, x_n) \in S$$

满足 $\inf_{(x_1,\cdots,x_n)\in S} f(x_1,\cdots,x_n) > 0$. 注意到对 $\forall (x_1,\cdots,x_n), (y_1,\cdots,y_n) \in S$, 都有

$$|f(x_1, \dots, x_n) - f(y_1, \dots, y_n)| = \left| \left\| \sum_{i=1}^n x_i e_i \right\| - \left\| \sum_{i=1}^n y_i e_i \right\| \right|$$

$$\leq \left\| \sum_{i=1}^n (x_i - y_i) e_i \right\| \leq C_2 \left(\sum_{i=1}^n |x_i - y_i|^2 \right)^{\frac{1}{2}},$$

故 f 连续, 而 S 是 \mathbb{K}^n 中的紧集, 故 f 在 K 上能取到最小值, 而在 K 上恒有 f > 0(因 为 $0 \notin S$), 故 $C_1 = \inf_{S} f > 0$.

推论 1.5.10

- 有限维赋范线性空间是 Banach 空间.
- 任意赋范空间的有限维子空间均是闭子空间.
- 有限维赋范空间中集合的列紧与有界等价.

证明. 见作业.

引理 1.5.11: Riesz 引理

设 X 是赋范空间, X_0 是 X 的真闭子空间. 则 $\forall \varepsilon \in (0,1)$, 存在 $y \in X$, ||y|| = 1 使得

$$||y-x|| \ge 1-\varepsilon, \quad \forall x \in X_0,$$

也即 $\rho(y, X_0) \ge 1 - \varepsilon$.

喀注

一般来说 ε 不能取 0, 但若 X_0 是有限维的, 则对 $\varepsilon = 0$ 也成立.

证明. 任取 $z \in X \setminus X_0$, 记 $d = \rho(x, X_0) > 0$. $\forall \varepsilon \in (0, 1)$. 存在 $x_0 \in X_0$ 使得

$$d \le \|z - x_0\| \le \frac{d}{1 - \varepsilon}.$$

令 $y = \frac{z - x_0}{\|z - x_0\|}$ 满足 $\|y\| = 1$, 并且 $\forall x \in X$,

$$||y-x|| = \left| \frac{z-x_0}{||z-x_0||} - x \right| = \frac{||z-(x_0+||z-x_0||x)||}{||z-x_0||} \ge \frac{d}{d/(1-\varepsilon)} = 1-\varepsilon,$$

其中不等式成立是因为 $x_0 + \|z - x_0\|x \in X_0$.

定理 1.5.12

设 X 是赋范空间. 若 X 中的有界集均是列紧集,则 $\dim X$ < ∞.

证明. 方法一(使用 Riesz 引理和反证法). 反设 $\dim X = \infty$. 取 $x_1 \in X$ 满足 $\|x_1\| = 1$. 记 $E_1 = \operatorname{span}\{x_1\}$. 由于 X 是无穷维的, E_1 是 X 的真闭子空间, 故对 E_1 和 $\varepsilon = \frac{1}{2}$ 使用 Riesz 引理可得存在 $\|x_2\| = 1$ 使得

$$\rho(x_2,E_1)\geq \frac{1}{2}.$$

记 $E_2 = \operatorname{span}\{x_k\}_{k=1}^2$, 对 E_2 使用 Riesz 引理, 存在 $\|x_3\| = 1$ 使得

$$\rho(x_3, E_2) \geq \frac{1}{2}.$$

由于 X 是无穷维的, 该过程可以无限次进行下去, 得到 $E_n = \text{span}\{x_k\}_{k=1}^n$, $\|x_k\| = 1(\forall k \geq 1)$, 并且

$$\rho(x_{k+1}, E_k) \ge \frac{1}{2}.$$

上式即

$$\left\|x_i-x_j\right\|\geq \frac{1}{2},\quad\forall\,i\neq j\quad \text{$\underline{\coprod}$}\quad \|x_k\|=1,\quad\forall\,k\geq 1.$$

由此得到的点列 $\{x_n\}$ 有界但不可能有收敛子列, 矛盾. 因此 X 是有限维的. **方法二 (拓扑的直接证明).** 由于 $\overline{B}(0,1)$ 是有界闭集, 故是 X 中的紧集. 由

$$\overline{B}(0,1) \subset \bigcup_{x \in B(0,1)} B(x,\frac{1}{2})$$

和 $\overline{B}(0,1)$ 的紧性可知, 存在 $x_1, \dots, x_m \in B(0,1)$ 使得

$$\overline{B}(0,1) \subset \bigcup_{k=1}^m B(x_k, \frac{1}{2}).$$

记 $Y = \text{span}\{x_k\}_1^m$ 是 X 的有限维子空间, 故 Y 是闭子空间. 根据上式, 有

$$B(0,1) \subset Y + B(0,\frac{1}{2}),$$

根据球的对称性和 Y 是线性空间可知,

$$B(0,2^{1-n}) \subset Y + B(0,2^{-n}), \quad \forall n \ge 1.$$

故

$$B(0,1) \subset Y + B(0,\frac{1}{2}) \subset Y + Y + B(0,\frac{1}{4})$$

= $Y + B(0,\frac{1}{4}) \subset \cdots \subset Y + B(0,2^{-n}), \quad \forall n \ge 1.$

因此

$$B(0,1) \subset \bigcap_{n=1}^{\infty} (Y + B(0,2^{-n})).$$

由于 Y 是闭子空间, 故 $\forall x \in \bigcap_{n=1}^{\infty} (Y + B(0, 2^{-n})) \Longrightarrow \exists x_n \in Y$ 使得 $\|x - x_n\| < 2^{-n} (\forall n \ge 1) \Longrightarrow x \in \overline{Y} = Y$. 故 $\bigcap_{n=1}^{\infty} (Y + B(0, 2^{-n})) = Y$. 从而

$$B(0,1)\subset Y \implies X=\bigcup_{n=1}^{\infty}B(0,n)=\bigcup_{n=1}^{\infty}nB(0,1)\subset\bigcup_{n=1}^{\infty}nY=Y,$$

从而 $X = Y = \text{span}\{x_k\}_1^m \Longrightarrow \dim X \le m$.

推论 1.5.13

设 X 是赋范空间, $S = \{x \in X : ||x|| = 1\}$ 为 X 中的单位球面. 则 $\dim X < \infty$ 当且 仅当 S 列紧.

证明. 若 $\dim X < \infty$, 则由推论1.5.10以及 S 有界知 S 列紧.

若 S 列紧, 由上一定理可得 X 必为有穷维.

定理 1.5.14: 有限维子空间最佳逼近元的存在性

设 $(X, \|\cdot\|)$ 是赋范空间, X_0 是 X 的有限维赋范空间. 则 $\forall x \in X$, 存在 $x_0 \in X_0$ 使 得 $\|x-x_0\| = \rho(x, X_0) := \inf_{v \in X_0} \|x-y\|$.

喀淮

设 $x \in X$, $A \subset X$, 若存在 $x_0 \in A$ 使得 $\rho(x, A) = \|x - x_0\|$, 则称 x_0 是 x 在 A 上的 最佳逼近元.

证明. 由下确界的定义可知, 存在 $\{x_n\} \subset X_0$ 使得

$$\rho(x, X_0) \le ||x - x_n|| \le \rho(x, X_0) + \frac{1}{n}, \quad \forall n \ge 1.$$

由上式不难看出 $\{x_n\}$ 是 X_0 中的有界列,而有限维赋范空间中的有界列必有收敛子列,故存在子列 $\{x_{n_k}\}$ 以及 $x_0 \in X_0$ 使得 $x_{n_k} \to x_0$. 从而在

$$\rho(x, X_0) \le ||x - x_{n_k}|| \le \rho(x, X_0) + \frac{1}{n_k}$$

中令 $k \to \infty$ 可得 $||x - x_0|| = \rho(x, X_0)$.

定义 1.5.15: 严格凸性

设 $(X, \|\cdot\|)$ 是赋范空间. 若对 X 中任意不同两点 x, y 满足 $\|x\| = \|y\| = 1$, 以及 $\alpha \in (0,1)$ 都有

$$\|\alpha x + (1-\alpha)y\| < 1,$$

则称 X 是严格凸空间.

例 1.5.16: 严格凸与不严格凸的例子

在 № 中赋予三个范数

$$\begin{aligned} & \| (x, y) \|_1 = |x| + |y|, \\ & \| (x, y) \|_2 = \sqrt{x^2 + y^2}, \\ & \| (x, y) \|_{\infty} = \max\{|x|, |y|\}, \end{aligned}$$

则容易验证 X 关于 ||·||₂ 是严格凸的, 关于其余两个范数都是不是严格凸的.

定理 1.5.17: 严格凸空间中最佳逼近元的唯一性

设 $(X, \|\cdot\|)$ 是严格凸的赋范空间. 若对 $x \in X$, 存在 $x_0 \in X_0$ 使得 $\|x - x_0\| = \rho(x, X_0)$, 则这样的 x_0 唯一.

证明. 设 $x_0, x_0' \in X_0$ 使得

$$||x - x_0|| = ||x - x_0'|| = \rho(x, X_0).$$

反设 $x_0 \neq x_0'$. 不妨设 $x \notin X_0$ (若 $x \in X_0$, 则 $\|x - x_0\| = \|x - x_0'\| = \rho(x, X_0) = 0 \implies x_0 = x_0' = x$.) 此时, 由严格凸性可知

$$1 > \left\| \frac{1}{2} \frac{x - x_0}{\|x - x_0\|} + \frac{1}{2} \frac{x - x_0'}{\|x - x_0'\|} \right\| = \frac{\left\| x - \frac{x_0 + x_0'}{2} \right\|}{\rho(x, X_0)} \ge 1,$$

矛盾.

1.5.3 商空间

设 X_0 是赋范空间 X 的闭子空间. 对于 $x, y \in X$, 若 $x - y \in X_0$, 则记作 $x \sim y$. 容易验证 ~ 是一个等价关系 (满足自反性, 对称性和传递性). 定义

$$X/X_0 := \{[x] = x + X : x \in X\},\$$

其中 $[x] := \{y \in X : x \sim y\}$. 在 X/X_0 上定义线性运算

$$\alpha[x]+\beta[y]=[\alpha x+\beta y],\quad x,y\in X,\alpha,\beta\in\mathbb{K},$$

容易验证上式与代表元 x,y 的选取无关. 按照如上定义, X/X_0 构成一个线性空间 (其中的零元是 $[0] = X_0$). 再定义

$$||[x]|| := \rho(x, X_0), \quad x \in X.$$

不难看出 $||[x]|| = \inf_{z \in X_0} ||x - z|| = \inf_{y \in [x]} ||y||$.

下面验证 $\|[x]\|$ 是 X/X_0 上的一个范数. 非负性是显然满足的, 若 $\|[x]\| = 0$, 则根据 $\|[x]\|$ 的定义, 存在 $\{x_n\} \subset [x]$ 使得 $x_n \to 0$. 由于 X_0 是闭子空间, 并且 $x - x_n \in X_0$, 故令 $n \to \infty$ 可得 $x \in X_0$, 从而 $[x] = X_0$ 是零元, 因此正定性满足.

||[x]|| 显然满足对称性. 下面验证三角不等式. 对

$$||[x] + [y]|| = ||[x + y]|| = \inf_{z \in [x + y]} ||z||,$$

取 $x_n \in [x], y_n \in [y]$ 使得

$$||x_n|| \to ||[x]||, ||y_n|| \to ||[y]||, n \to \infty.$$

此时 $x_n + y_n \in [x + y]$, 从而

$$||[x] + [y]|| \le ||x_n + y_n|| \le ||x_n|| + ||y_n||,$$

在上式中令 $n \to \infty$ 即可.

定义 1.5.18: 商空间

设 X 是赋范空间, X_0 是 X 的闭子空间, 则如上定义的赋范空间 X/X_0 称为 X 关于 X_0 的**商空间**.

曜 注

此处必须要求 X_0 是闭的, 否则对 $x \in \overline{X_0} \setminus X_0$ 有 $\|[x]\| = \rho(x, X_0) = 0$, 不满足正定性.

定理 1.5.19: Banach 空间的商空间仍是 Banach 空间

设 X_0 是 Banach 空间 X 的闭子空间. 则 X/X_0 也是 Banach 空间.

喀 注

反之, 若某个 X_0 闭子空间使得 X/X_0 是 Banach 空间, X 未必是 Banach 空间. 若对 X 的任意非平凡闭子空间 X_0 , X/X_0 都是 Banach 空间, 则 X 也是

Banach 空间.

证明. 由定理1.5.5, 只需证明若 $\sum_{n=1}^{\infty} \|[x_n]\| < \infty$, 则 $\sum_{n=1}^{\infty} [x_n]$ 收敛. 根据 $\|[x]\|$ 的定义, 存在 $y_n \in [x_n]$ 使得

$$||[x_n]|| \le ||y_n|| \le ||[x_n]|| + 2^{-n}, \quad n \ge 1.$$

因此

$$\sum_{n=1}^{\infty} \|y_n\| \le \sum_{n=1}^{\infty} (\|[x_n]\| + 2^{-n}) = \sum_{n=1}^{\infty} \|[x_n]\| + 1 < \infty,$$

由于 X 是 Banach 空间, 存在 $x \in X$ 使得 $x = \sum_{n=1}^{\infty} y_n$. 注意到 $[y_n] = [x_n], \forall n \ge 1$, 因此

$$\begin{aligned} & \left\| [x] - \sum_{n=1}^{N} [x_n] \right\| = \left\| [x] - \sum_{n=1}^{N} [y_n] \right\| \\ & = \left\| \left[x - \sum_{n=1}^{N} y_n \right] \right\| \le \left\| x - \sum_{n=1}^{N} y_n \right\| \to 0, \quad N \to \infty, \end{aligned}$$

故
$$[x] = \sum_{n=1}^{\infty} [x_n]$$
.

定义 1.5.20: 自然同态

设 X 是赋范空间, X_0 是 X 的闭子空间. 称 $\pi: X \to X/X_0, x \mapsto [x]$ 是 X 到 X/X_0 的**自然同态**,则 π 是线性,连续的开映射 (将 X 中的开集映为 X/X_0 中的开集).

证明. 线性性显然, 连续性因为对 $x_n \to x$, $\|\pi(x_n) - \pi(x)\| = \|[x_n - x]\| \le \|x_n - x\| \to 0$. 还需证明 π 是开映射. 注意到 $B_{X/X_0}([x], r) = \pi(B_X(x, r))$, 因为若 $[y] \in B_{X/X_0}([x], r)$,

则 $\|[x] - [y]\| = \|[x - y]\| \le \|x - y\| \implies y \in B(x, r) \implies [y] \in \pi(B_X(x, r)).$

对 X 中的开集 W, 任取 $[x] \in \pi(W)$, 存在 r > 0 使得 $B_X(x,r) \subset W$. 因此 $B_{X/X_0}([x],r) \subset \pi(B_X(x,r)) \subset \pi(W)$, 因此 $\pi(W)$ 也是开集.

1.5.4 作业

△ 题目1.5.1. 证明: 有限维赋范线性空间是 Banach 空间.

解答. 设 $(X,\|\cdot\|)$ 是有限维空间, X 的一组基为 e_1,\cdots,e_n . 记

$$\|x\|_e = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}, \quad \forall x = \sum_{i=1}^n x_i e_i \in X$$

为与 ||·|| 等价的范数, 也即存在 C, C' > 0 使得

$$C\|x\|_e \le \|x\| \le C'\|x\|_e, \quad \forall x \in X.$$

设 $\{x^k\}$ 为 X 中的 Cauchy 列, 满足 $x^k = \sum_{i=1}^n x_i^k e_i (k \ge 1)$. 则由

$$\left(\sum_{i=1}^{n} \left| x_i^k \right|^2 \right)^{\frac{1}{2}} \le \frac{1}{C} \left\| x^k \right\|_e$$

知 $\{(x_1^k,\cdots,x_n^k)\}_{k=1}^\infty$ 是 \mathbb{K}^n 中的 Cauchy 列. 由 \mathbb{K}^n 的完备性, $(x_1^k,\cdots,x_n^k)\to (x_1,\cdots,x_n)\in \mathbb{K}^n$. 记 $x=\sum_{i=1}^n x_ie_i$, 则

$$\left\|x - x^k\right\| \le C' \left\|x - x^k\right\|_e \to 0,$$

因此 x^k 依范数 $\|\cdot\|$ 收敛于 x, 从而 X 完备.

△ 题目1.5.2. 设 X 是赋范空间, 证明 X 的任意有限维子空间均是闭子空间.

解答. 由上题, X 的有限维子空间 X_0 是 Banach 空间, 因此在 X 中闭.

▲ 题目1.5.3. 证明: 有限维赋范空间中集合的列紧与有界等价.

解答. 设 $X \in \mathbb{R}$ 维赋范空间, $\{x^k\}$ 是 X 中的有界列, 满足

$$||x^k|| \le M, \quad \forall k \ge 1.$$

沿用上上题的记号,可得

$$\left\|x^k\right\|_e \le \frac{1}{C} \left\|x^k\right\| \le C'M, \quad \forall \, k \ge 1.$$

因此 \mathbb{K}^n 中的点列 $\{(x_1^k,\cdots,x_n^k)\}_{k=1}^\infty$ 有收敛子列 $\{(x_1^{k_j},\cdots,x_n^{k_j})\}_{j=1}^\infty$ 依 $|\cdot|$ 收敛于 (x_1,\cdots,x_n) \in

 \mathbb{K}^n . 记 $x = \sum_{i=1}^n x_i e_i \in X$,则由

$$\left\|x^{k_j} - x\right\| \le C' \left\|x^{k_j} - x\right\|_e$$

可知 $\{x^k\}$ 依范数 $\|\cdot\|$ 有收敛子列 $\{x^{k_j}\}$. 从而 X 中的有界集均是列紧的.

✍ 题目1.5.4. 记

$$X := \{ f \in C[0,1] : f(0) = 0 \},$$

其上的范数为

$$||f|| = \max_{x \in [0,1]} |f(x)|, \quad f \in X.$$

又记

$$X_0 := \left\{ f \in X : \int_0^1 f(t) dt = 0 \right\}.$$

证明: 不存在 $x_0 \in X$, $||x_0|| = 1$ 使得 $\rho(x_0, X_0) \ge 1$.

解答. 反设存在这样的 x_0 , 则 $x_0 \in X \setminus X_0$. 任取 $y \in X \setminus X_0$, 不难证明存在 $b \in \mathbb{K}$ 使得 $x_0 - by \in X_0$, 其中

$$b = \frac{\int_0^1 x_0(t) dt}{\int_0^1 y(t) dt}.$$

由于 $x_0 - b \in X_0$, $||x_0 - (x_0 - by)|| = ||by|| \ge \rho(x_0, X_0) \ge 1$. 故

$$||y|| \left| \int_0^1 x_0(t) dt \right| \ge \left| \int_0^1 y(t) dt \right|, \quad \forall y \in X \setminus X_0.$$

取 $y_n(t) = nt\chi_{[0,\frac{1}{n})}(t) + \chi_{[\frac{1}{n},1]}(t) \in X \setminus X_0$, 满足 $\|y_n\| = 1$ 且 $\int_0^1 y_n(t) dt \to 1$, $n \to \infty$, 代入 上式并令 $n \to \infty$ 可得

$$\left| \int_0^1 x_0(t) \mathrm{d}t \right| \ge 1.$$

注意到 $||x_0|| = 1$, 故 $x_0 = 1$, 矛盾.

▲ 题目1.5.5. 在二维空间 \mathbb{R}^2 中, 对每一点 z = (x, y), 令

$$||z||_1 = |x| + |y|;$$
 $||z||_2 = \sqrt{x^2 + y^2};$

 $||z||_3 = \max(|x|, |y|); \quad ||z||_4 = (x^4 + y^4)^{\frac{1}{4}}.$

- (1) 求证 $\|\cdot\|_i$ (i = 1, 2, 3, 4) 都是 \mathbb{R}^2 的范数.
- (2) 画出 $(\mathbb{R}^2, \|\cdot\|_i)$ (i = 1, 2, 3, 4) 各空间中的单位球面图形.
- (3) 在 \mathbb{R}^2 中取定三点 O = (0,0), A = (1,0), B = (0,1), 试在上述四种不同范数下求出 ΔOAB 三边的长度.

解答. (1) 正定性和齐次性均显然满足, 只需验证三角不等式, 由 Minkowski 不等式可知.

$$(|x_1 + x_2|^p + |y_1 + y_2|^p)^{\frac{1}{p}} \le (|x_1|^p + |y_1|^p)^{\frac{1}{p}} + (|x_2|^p + |y_2|^p)^{\frac{1}{p}},$$

因此 $\|\cdot\|_i$ (i=1,2,4) 满足三角不等式. 对 $\|\cdot\|_3$, 有

$$||z_1 + z_2||_3 = \max(|x_1 + x_2|, |y_1 + y_2|)$$

 $\leq \max(|x_1|, |y_1|) + \max(|x_2|, |y_2|) = ||z_1||_3 + ||z_2||_3.$

因此 $\|\cdot\|_i$ (i=1,2,3,4) 均为范数.

(2) 四个范数的单位球面如下图:

(3)

$$\|OA\|_1 = 1$$
, $\|OB\|_1 = 1$, $\|AB\|_1 = 2$, $\|OA\|_2 = 1$, $\|OB\|_2 = 1$, $\|AB\|_2 = \sqrt{2}$, $\|OA\|_3 = 1$, $\|OB\|_3 = 1$, $\|AB\|_3 = 1$,

$$||OA||_4 = 1$$
, $||OB||_4 = 1$, $||AB||_4 = \sqrt[4]{2}$.

△ **题目1.5.6.** 在 C¹[a,b] 中令

$$||f||_1 = \sqrt{\int_a^b (|f|^2 + |f'|^2) dx}, \quad \forall f \in C^1[a, b],$$

- (1) 求证 $\|\cdot\|_1$ 是 $C^1[a,b]$ 上的范数.
- (2) 问 ($C^1[a,b], \|\cdot\|_1$) 是否完备?

解答.

(1) 齐次性和正定性显然成立,对于三角不等式,有

$$\begin{split} &\|f+g\|_{1}^{2} = \int_{a}^{b} (|f+g|^{2} + |f'+g'|^{2}) \mathrm{d}x \\ \leq & \int_{a}^{b} (|f|^{2} + |f'|^{2}) \mathrm{d}x + 2 \int_{a}^{b} (|fg| + |f'g'|) \mathrm{d}x + \int_{a}^{b} (|g|^{2} + |g'|^{2}) \mathrm{d}x \\ \leq & \int_{a}^{b} (|f|^{2} + |f'|^{2}) \mathrm{d}x + 2 \sqrt{\int_{a}^{b} (|f|^{2} + |f'|^{2}) \mathrm{d}x} \sqrt{\int_{a}^{b} (|g|^{2} + |g'|^{2}) \mathrm{d}x} \\ & + \int_{a}^{b} (|g|^{2} + |g'|^{2}) \mathrm{d}x \\ & = \left(\sqrt{\int_{a}^{b} (|f|^{2} + |f'|^{2}) \mathrm{d}x} + \sqrt{\int_{a}^{b} (|g|^{2} + |g'|^{2}) \mathrm{d}x} \right)^{2} = (\|f\|_{1} + \|g\|_{1})^{2}. \end{split}$$

(2) 不完备, 若令

$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, \quad f(x) = |x|, \quad -1 \le x \le 1.$$

则

$$|f_n(x) - f(x)| = \frac{1}{n^2 \left(\sqrt{x^2 + \frac{1}{n^2}} + x^2\right)} \le \frac{1}{n},$$

$$|f'_n(x) - f'(x)| = \frac{1}{n^2 \sqrt{x^2 + \frac{1}{n^2}} \left(\sqrt{x^2 + \frac{1}{n^2}} + x^2\right)} \le \frac{1}{n} \cdot \frac{1}{\sqrt{x^2 + \frac{1}{n^2}}}.$$

故

$$||f - f_n||_1^2 \le \int_{-1}^1 \left(\frac{1}{n^2} + \frac{1}{n^2} \cdot \frac{1}{x^2 + \frac{1}{n^2}} \right) \mathrm{d}x = \frac{2}{n^2} + \frac{2 \arctan n}{n} \le \frac{2}{n^2} + \frac{\pi}{n} \to 0,$$

因此 $f_n \to f$, 但 $f \notin C^1[-1,1]$.

▲ 题目1.5.7. 在 C[0,1] 中, 对每一个 $f \in C[0,1]$, 令

$$||f||_1 = \sqrt{\int_0^1 |f(x)|^2 dx}, \quad ||f||_2 = \sqrt{\int_0^1 (1+x)|f(x)|^2 dx},$$

求证: $\|\cdot\|_1$ 和 $\|\cdot\|_2$ 是 C[0,1] 中的两个等价范数.

解答. 由 $1 \le 1 + x \le 2, \forall x \in [0,1]$ 可得 $||f||_1 \le ||f||_2 \le \sqrt{2}||f||_1$.

题目1.5.8. 设 $BC[0,\infty)$ 表示 $[0,\infty)$ 上连续且有界的函数 f(x) 全体, 对每个 $f \in BC[0,\infty)$ 及 a>0, 定义

$$||f||_1 = \sqrt{\int_0^\infty e^{-ax} |f(x)|^2 dx}.$$

- (1) 求证 $\|\cdot\|_a$ 是 $BC[0,\infty)$ 上的范数.
- (2) 若 $a,b>0,a\neq 0$, 求证 $\|\cdot\|_a$ 与 $\|\cdot\|_b$ 作为 $BC[0,\infty)$ 上的范数是不等价的.

解答.

- (1) 齐次性和正定性显然易见, 三角不等式由 Cauchy 不等式推得.
- (2) 不妨设 a < b, 令 $f_n(x) = e^{ax/2} \chi_{[0,n]}(x) + e^{an/2} (n+1-x) \chi_{(n,n+1)}(x) \in BC[0,\infty)$. 并且

$$\frac{\|f_n\|_a^2}{\|f_n\|_b^2} \ge (b-a)n,$$

因此 $\|\cdot\|_a$ 和 $\|\cdot\|_b$ 不等价.

题目1.5.9. 设 X_1, X_2 是两个 B^* 空间, 在 $X = X_1 \times X_2$ 上赋以范数

 $||x|| = \max(||x_1||_1, ||x_2||_2), \quad \forall x = (x_1, x_2), x_i \in X_i, ||\cdot||_i \not = X_i \perp \text{ in } \bar{n} \text{ in } (i = 1, 2).$

求证: 如果 X_1, X_2 是 B 空间, 那么 X 也是 B 空间.

解答. 设 $\{x^{(n)}\}$ 为 X 上的 Cauchy 列, 则

$$\|x_i^{(n)} - x_i^{(m)}\|_i \le \|x^{(n)} - x^{(m)}\| \to 0, \quad n, m \to \infty (i = 1, 2),$$

因此 $\{x_i^{(n)}\}$ 为 X_i 中的 Cauchy 列, 收敛于 $x_i \in X_i$. 令 $x = (x_1, x_2)$, 则

$$||x^{(n)} - x|| \le ||x_1^{(n)} - x_1||_1 + ||x_2^{(n)} - x_2||_2,$$

在上式中令 $n \to \infty$ 即可.

题目1.5.10. 记 [a,b] 上次数不超过 n 的多项式全体为 \mathbb{P}_n . 求证: $\forall f(x) \in C[a,b]$, $\exists P_0(x) \in \mathbb{P}_n$, 使得

$$\max_{a \le x \le b} |f(x) - P_0(x)| = \min_{P \in \mathbb{P}_n} \max_{a \le x \le b} |f(x) - P(x)|.$$

也就是说, 如果用所有次数不超过 n 的多项式对 f(x) 一致逼近, 那么 $P_0(x)$ 是最佳的.

解答. 由于 $\mathbb{P}_n = \text{span}\{1, x, \dots, x^n\}$, 因此 \mathbb{P}_n 是有限维线性子空间, 最佳逼近元必存在.

▲ 题目1.5.11. 在 \mathbb{R}^2 中, 对 $\forall x = (x_1, x_2) \in \mathbb{R}^2$, 定义范数

$$||x|| = \max(|x_1|, |x_2|),$$

并设 $e_1 = (1,0), x_0 = (0,1)$. 求 $a \in \mathbb{R}$ 适合

$$||x_0 - ae_1|| = \min_{\lambda \in \mathbb{R}} ||x_0 - \lambda e_1||,$$

并问这样的 a 是否唯一? 请对结果做出几何解释.

解答. 注意到

$$\min_{\lambda \in \mathbb{R}} \|x_0 - \lambda e_1\| = \min_{\lambda \in \mathbb{R}} \max(1, |\lambda|) = 1,$$

因此当 $|a| \le 1$ 时是最小逼近元,不唯一. 从 $(\mathbb{R}^2, \|\cdot\|)$ 中单位球面的图像 (见题目1.5.5的 $\|\cdot\|_3$) 不难看出,正方形两个相邻顶点的中点仍在单位球面上,因此该赋范空间不是

严格凸的,从而最佳逼近元不一定唯一.

▲ 题目1.5.12. 求证: 范数的严格凸性等价于下列条件:

$$||x + y|| = ||x|| + ||y|| (\forall x \neq 0, y \neq 0) \implies x = cy (c > 0).$$

解答. 必要性: 设 $\|x+y\| = \|x\| + \|y\|$, 则必有 $\frac{x}{\|x\|} = \frac{y}{\|y\|}$, 否则,

$$1 = \frac{\|x + y\|}{\|x\| + \|y\|} = \left\| \frac{\|x\|}{\|x\| + \|y\|} \cdot \frac{x}{\|x\|} + \frac{\|y\|}{\|x\| + \|y\|} \cdot \frac{y}{\|y\|} \right\| < 1,$$

矛盾.

充分性: 设 $\|x\| = \|y\| = 1$ 且 $x \neq y$, 若存在 $0 < \alpha < 1$ 使得 $\|\alpha x + (1 - \alpha)y\| = 1$ (该 范数不可能大于 1), 则 $\|\alpha x + (1-\alpha)y\| = \|\alpha x\| + \|(1-\alpha)y\| \implies \alpha x = c(1-\alpha)y$ (c > $0) \Longrightarrow x = y, 矛盾.$

▲ 题目1.5.13. 设 $X \in B^*$ 空间, $X_0 \in X$ 的线性子空间, 假定 $\exists c \in (0,1)$, 使得

$$\inf_{x \in X_0} \|y - x\| \le c \|y\| \quad (\forall y \in X).$$

求证: X_0 在 X 中稠密.

解答. 任取 $x \in X$, 存在 $x_1 \in X_0$ 使得 $\|x - x_1\| \le \left(\frac{c+1}{2}\right) \|x\|$, 如此递归, 存在 x_1, \dots, x_n , 使 得

$$\left\| x - \sum_{k=1}^{n} x_k \right\| \le \left(\frac{c+1}{2} \right)^n \|x\| \to 0,$$

因此 $\{x_1 + \cdots + x_n\} \subset X_0$ 并收敛于 x, 从而 X_0 在 X 中稠密.

△ **题目1.5.14.** 设 C_0 表示以 0 为极限的实数全体, 并在 C_0 中赋以范数

$$||x|| = \max_{n>1} |\xi_n| \quad (\forall x = (x_1, \dots, x_n) \in C_0).$$

又设
$$M \stackrel{\Delta}{=} \left\{ x = \{\xi_n\}_1^\infty \in C_0 : \sum_{n=1}^\infty \frac{\xi_n}{2^n} = 0 \right\}.$$

(1) 求证: $M \in C_0$ 的闭线性子空间.

(2) 设 $x_0 = (2,0,0,\cdots)$, 求证:

$$\inf_{z\in M}\|x_0-z\|=1,$$

但 $\forall y \in M$ 有 $\|x_0 - y\| > 1$.

解答.

(1) 设 $\{x^{(k)}\}\subset M$ 且 $x^{(k)}\to x\in C_0$. 则

$$\left|\sum_{n=1}^{\infty} \frac{x_n}{2^n}\right| \le \left|\sum_{n=1}^{\infty} \frac{x_n^{(k)}}{2^n}\right| + \left|\sum_{n=1}^{\infty} \frac{\left|x_n^{(k)} - x_n\right|}{2^n}\right| \le \left\|x - x^{(k)}\right\| \to 0,$$

令 $k \rightarrow 0$, 得 $x \in M$, 从而 M 是闭的. M 为线性子空间根据定义易得.

(2) 若存在 $y \in M$ 使得 $||x_0 - y|| \le 1$, 则 $|y_1| \ge 1$, $|y_n| \le 1$, $\forall n \ge 2$. 而 $\lim_{n \to \infty} y_n = 0$, 因此 $|y_n|$ 必然从某项开始小于 $\frac{1}{2}$, 从而

$$\sum_{n=1}^{\infty} \frac{y_n}{2^n} = 0 \implies \frac{1}{2} \le \left| \frac{y_1}{2} \right| = \left| \sum_{n=2}^{\infty} \frac{y_n}{2^n} \right| < \frac{1}{2},$$

矛盾, 因此 $\|x_0 - y\| > 1$, $\forall y \in M$. 下面证明 $\inf_{z \in M} \|x_0 - z\| = 1$. 任取 $\varepsilon > 0$, 存在 N 使得 $2^{1-N} < \varepsilon$, 令 y 满足 $y_1 = 1 - 2^{1-N}$, $y_n = -1(2 \le n \le N)$, $y_n = 0(n > N)$, 此时显然 $y \in C_0$, $\|x_0 - y\| = 2^{1-N} < \varepsilon$, 并且

$$\sum_{n=1}^{\infty} \frac{y_n}{2^n} = \frac{1 - 2^{1 - N}}{2} - \sum_{n=2}^{N} 2^{-n} = 0 \implies y \in M.$$

题目1.5.15. 设 X 是 B^* 空间, M 是 X 的有限维真子空间. 求证: 存在 $y \in X$, $\|y\| = 1$, 使得

$$||y-x|| \ge 1 \quad (\forall x \in M).$$

解答. 取 $y_0 \in M^c$, 存在 $x_0 \in M$ 使得 $||x_0 - y_0|| = \rho(y_0, M) > 0$, 令 $y = \frac{y_0 - x_0}{||x_0 - y_0||}$, 则

$$||y-x|| = \frac{||y_0 - (x_0 + ||x_0 - y_0||x)||}{||x_0 - y_0||} \ge \frac{||x_0 - y_0||}{||x_0 - y_0||} = 1, \forall x \in M.$$

1.6 内积空间

1.6.1 定义与基本性质

定义 1.6.1: 内积和内积空间

设 X 是数域 \mathbb{K} 上的线性空间, $(\cdot,\cdot): X \times X \to \mathbb{K}$ 满足

- (1) 共轭对称性: $(x,y) = \overline{(y,x)} (\forall x,y \in X)$.
- (2) (\cdot, z) 满足线性性: $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z) (\forall x, y, z \in X, \alpha, \beta \in \mathbb{K})$.
- (3) 正定性: $(x,x) \ge 0$ 且 $(x,x) = 0 \iff x = 0 (\forall x \in X)$.

则称 (\cdot,\cdot) 是 X 上的一个内积, X 称为内积空间.

命题 1.6.2: 内积的性质

设 $(X,(\cdot,\cdot)$ 是内积空间,则

(1) (z,·) 满足共轭线性性, 也即

$$(z, \alpha x + \beta y) = \overline{\alpha}(z, x) + \overline{\beta}(z, y), \quad \forall x, y, z \in X, \alpha, \beta \in K.$$

- (2) 若 x = 0 或 y = 0, 则 (x, y) = 0.
- (3) $||x|| = \sqrt{(x,x)}(x \in X)$ 是 X 上的范数.
- (4) (\cdot,\cdot) 关于 ||·|| 连续, 即若 $x_n \to x, y_n \to y$, 则 $(x_n, y_n) \to (x, y)$.

证明. (1) 由内积定义的 (1) 和 (2) 可得.

- (2) $2(x,0) = (x,2\cdot 0) = (x,0) \implies (x,0) = 0.$ $(0,y) = \overline{(y,0)} = 0.$
- (3) 正定性由内积定义(3) 可得, 齐次性由(1) 和内积定义的(2) 可得. 三角不等式:

$$||x+y||^2 = (x+y, x+y) = ||x||^2 + (x, y) + (y, x) + ||y||^2$$

$$\leq ||x||^2 + 2\sqrt{||x|| \cdot ||y||} + ||y||^2 = (||x|| + ||y||)^2.$$

其中不等号处使用了 Cauchy-Schwarz 不等式, 它的证明在下面给出.

1.6 内积空间 · 67·

(4) 由于 $\{y_n\}$ 收敛, 故存在 M > 0 使得 $\|y_n\| \le M(\forall n \ge 1)$, 则

$$|(x_n, y_n) - (x, y)| \le |(x_n - x, y_n)| + |(x, y_n - y)|$$

 $\le M||x_n - x|| + ||x|| \cdot ||y_n - y|| \to 0,$

上式中也使用了 Cauchy-Schwarz 不等式.

引理 1.6.3: Cauchy-Schwarz 不等式

设 X 是内积空间, 令 $||x|| = \sqrt{(x,x)}, x \in X$. 则

$$|(x,y)| \le ||x|| \cdot ||y||, \quad \forall x, y \in X,$$

等号成立当且仅当 x, y 线性相关.

证明. 对 $x, y \in X$, 不妨设 $y \neq 0$ (否则不等式显然成立). 任取 $\lambda \in \mathbb{K}$, 有

$$(x + \lambda y, x + \lambda y) = (x, x) + 2\operatorname{Re} \overline{\lambda}(x, y) + |\lambda|^2(y, y) \ge 0.$$

在上式中取 $\lambda = -\frac{(x,y)}{(y,y)}$, 则

$$(x,x)-2\frac{|(x,y)|^2}{(y,y)}+\frac{|(x,y)|^2}{(y,y)}\geq 0,$$

整理即得 $|(x,y)| \le ||x|| \cdot ||y||$.

若等号成立, 不妨设 $y \neq 0$, 则

$$\left(x - \frac{(x, y)}{(y, y)}y, x - \frac{(x, y)}{(y, y)}y\right) = (x, x) - \frac{|(x, y)|}{(y, y)} = 0 \implies x = \frac{(x, y)}{(y, y)}y.$$

命题 1.6.4: 平行四边形等式和极化恒等式

在赋范空间 $(X,\|\cdot\|)$ 中可以引入满足 $\sqrt{(x,x)}=\|x\|(\forall x\in X)$ 的内积, 当且仅当范

数满足

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in X,$$

上式称为平行四边形等式.

当 K=R时,引入的内积为

$$(x, y) = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2), \quad \forall x, y \in X.$$

当 K= C时,引入的内积为

$$(x,y) = \frac{1}{4} \Big(\|x+y\|^2 - \|x-y\|^2 + i \|x+iy\| - i \|x-iy\| \Big), \quad \forall x,y \in X.$$

上面两式称为极化恒等式.

证明. 必要性:

$$||x + y||^2 + ||x - y||^2$$

$$= ((x, x) + (x, y) + (y, x) + (y, y)) + ((x, x) - (x, y) - (y, x) + (y, y))$$

$$= 2(||x||^2 + ||y||^2), \quad \forall x, y \in X.$$

充分性: 若 ⋉ = ℝ, 下面证明由

$$(x, y) = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2), \quad \forall x, y \in X$$

是一个内积. 首先, 注意到

$$||2x + y||^2 = ||x + (x + y)||^2 = 2||x||^2 + 2||x + y||^2 - ||y||^2,$$

$$||2x - y||^2 = ||x + (x - y)||^2 = 2||x|| + 2||x - y||^2 - ||y||^2,$$

1.6 内积空间 · 69 ·

两式相减并乘 $\frac{1}{4}$ 可得 (2x, y) = 2(x, y), 从而

$$(x_{1} + x_{2}, y)$$

$$= 2\left(\frac{x_{1} + x_{2}}{2}, y\right)$$

$$= \frac{1}{4}\left(\left\|\frac{x_{1} + x_{2}}{2} + y\right\|^{2} - \left\|\frac{x_{1} + x_{2}}{2} - y\right\|^{2}\right)$$

$$= \frac{1}{4}\left(\left(\left\|x_{1} + y\right\|^{2} + \left\|x_{2} + y\right\|^{2} - \frac{1}{2}\left\|x_{1} - x_{2}\right\|\right)$$

$$-\left(\left\|x_{1} - y\right\|^{2} + \left\|x_{2} - y\right\|^{2} - \frac{1}{2}\left\|x_{1} - x_{2}\right\|^{2}\right)$$

$$= \frac{1}{4}\left(\left(\left\|x_{1} + y\right\|^{2} + \left\|x_{2} + y\right\|^{2}\right) - \left(\left\|x_{1} - y\right\|^{2} + \left\|x_{2} - y\right\|^{2}\right)\right)$$

$$= (x_{1}, y) + (x_{2}, y).$$

根据 (\cdot,\cdot) 的定义它显然是一个连续函数, 因此要证明 $(\alpha x, y) = \alpha(x, y), \forall \alpha \in \mathbb{R}$ 只需对 $\alpha \in \mathbb{Q}$ 证明该式即可. 事实上, 根据 $(x_1 + x_2, y) = (x_1, x_2, y)$ 易得

$$\begin{cases} q\left(\frac{p}{q}x,y\right) = pq\left(\frac{1}{q}x,y\right) = p(x,y), \forall p,q \in \mathbb{N}, \\ (x,y) + (-x,y) = (0,y) = 0, \end{cases}$$

故 $(\alpha x, y) = \alpha(x, y), \forall \alpha \in \mathbb{Q}.$ 最后, 再由 $(x, y) = (y, x), (x, x) = ||x|| \ge 0, (x, x) = 0 \iff x = 0$ 得到 (\cdot, \cdot) 的确是一个内积.

账 = € 的情形留作习题.

例 1.6.5: 平行四边形等式的反例

在 C[a,b] 中不可能引入一种内积 (·,·), 使其满足

$$\sqrt{(f,f)} = \max_{a \le x \le b} |f(x)|, \quad \forall f \in C[a,b].$$

证明. 若 C[a,b] 可以引入题设内积,则范数 ||·|| 满足三角恒等式,也即

$$\max_{a \le x \le b} |f + g|^2 + \max_{a \le x \le b} |f - g|^2 = 2 \left(\max_{a \le x \le b} |f|^2 + \max_{a \le x \le b} |g|^2 \right),$$

但显然 $f(x) = \frac{x-a}{b-a}, g(x) = 1(\forall x \in [a,b])$ 不满足上式.

定义 1.6.6: Hilbert 空间

若内积空间 $(X, (\cdot, \cdot))$ 关于内积诱导的范数完备, 则称 X 是Hilbert 空间.

定理 1.6.7: 内积空间的完备化

设 X 是内积空间, X 作为赋范空间的完备化空间记为 X_0 . $\forall x, y \in X_0$, 存在 $\{x_n\}, \{y_n\} \subset X$ 使得 $x_n \to x, y_n \to y$. 令

$$(x,y)_{X_0} := \lim_{n \to \infty} (x_n, y_n),$$

则上述极限存在且不依赖于 $\{x_n\}$ 和 $\{y_n\}$, 并且 $(X_0, (\cdot, \cdot)_{X_0})$ 是 Hilbert 空间.

证明. 首先验证极限由存在. 由

$$\begin{aligned} \left| (x_n, y_n) - (x_m, y_m) \right| &\leq \left| (x_n, y_n - y_m) \right| + \left| (x_n - x_m, y_m) \right| \\ &\leq \left(\sup_k \|x_k\| \right) \|y_n - y_m\| + \left(\sup_k \|y_k\| \right) \|x_n - x_m\| \end{aligned}$$

以及 $\{x_n\}$, $\{y_n\}$ 收敛可知 $\{(x_n,y_n)\}$ 是数域 \mathbb{K} 上的 Cauchy 列, 故收敛.

接下来验证该极限与 $\{x_n\}$, $\{y_n\}$ 的选取无关. 设还有 $x'_n \to x$, $y'_n \to y$. 则

$$|(x_n, y_n) - (x'_n, y'_n)|$$

$$\leq |(x_n - x, y_n)| + |(x, y_n - y)| + |(x - x'_n, y)| + |(x'_n, y_n - y)| \to 0,$$

因此 $\lim_{n\to\infty}(x_n,y_n)=\lim_{n\to\infty}(x'_n,y'_n).$

最后验证 $(\cdot,\cdot)_{X_0}$ 是 X_0 上的内积. 共轭对称性, 线性性以及非负性由 (\cdot,\cdot) 是内积容易得到. 由 $\|\cdot\|_{X_0}$ 的定义 (定理1.2.5) 可知 $\|x\|_{X_0}^2 = (x,x)_{X_0}$, 故也满足正定性.

 $(X_0,(\cdot,\cdot)_{X_0})$ 是 Hilbert 空间由 $\|x\|_{X_0}^2 = (x,x)_{X_0}$ 以及 $(X_0,\|\cdot\|_{X_0})$ 是 Banach 空间可得.

1.6 内积空间 · 71 ·

1.6.2 正交与投影

定义 1.6.8: 正交

设 X 是内积空间. 若 (x,y) = 0, 则称 x 与 y 正交, 记为 $x \bot y$.

设 $M \in X$ 的子集, 若 $x \perp y(\forall y \in M)$, 则称 $x \in M$ 正交, 记为 $x \perp M$.

设 M,N 都是 X 的子集, 若 $\forall x \in M, y \in N$, 都有 $x \perp y$, 则称 M 与 N 正交, 记为 $M \perp N$.

对 $M \subset X$, 称 $M^{\perp} := \{x \in X : x \perp M\}$ 为 M 的正交补.

命题 1.6.9: 正交和正交补的性质

- (1) $x \perp y \iff y \perp x$.
- (2) 对 X 的稠密子集 M, 若 $x \perp M$, 则 x = 0.
- (3) 若 $M \subset N$, 则 $N^{\perp} \subset M^{\perp}$.
- (4) 设 $M \in X$ 的子空间,则 $M \cap M^{\perp} = \{0\}$.
- (5) 设 $x \perp y$, 则 $||x + y||^2 = ||x||^2 + ||y||^2$ (勾股定理).
- (6) 设 $M \subset X$, 则 M^{\perp} 是 X 的闭子空间.
- (7) 设 $M \subset X$, 记 M 张成的线性空间为

$$\operatorname{span} M := \left\{ \sum_{i=1}^{\infty} \alpha_i x_i : x_i \in M, \alpha_i \in \mathbb{K}, n \in \mathbb{N} \right\}.$$

则 $(\operatorname{span} M)^{\perp} = (\overline{\operatorname{span} M})^{\perp} = M^{\perp}$.

证明. 每个都很显然, 只证明 (3), 由 *M* 稠密知存在 $x_n \to x$ 且 $\{x_n\} \subset M$ 满足 $(x_n, x) = 0$, 根据内积的连续性可知 (x, x) = 0, 从而 x = 0.

引理 1.6.10: Hilbert 空间中闭凸集最佳逼近元的存在唯一性

设 X 是 Hilbert 空间, M 是 X 的闭凸子集, 则 $\forall x \in X$, 存在唯一的 $y \in M$ 使得

$$||x-y|| = \rho(x,M).$$

喀 沣

若 M 满足 $\forall x, y \in M, \alpha \in [0,1]$ 都有 $\alpha x + (1-\alpha)y \in M$, 则称 M 是凸集

证明. 由 $\rho(x, M)$ 的定义, 存在 $\{z_n\} \subset M$ 使得

$$||x-z_n|| < \left(1+\frac{1}{n}\right)\rho(x,M), \quad n=1,2,3,\cdots.$$

 $\{z_n\}$ 是 Cauchy 列, 因为由平行四边形等式可得

$$\begin{aligned} &\|z_m - z_n\|^2 = \|(z_m - x) + (x - z_n)\|^2 \\ &= 2(\|z_m - x\|^2 + \|x - z_n\|^2) - \|z_m + z_n - 2x\|^2 \\ &= 2(\|z_m - x\|^2 + \|x - z_n\|^2) - 4\left\|\frac{z_m + z_n}{2} - x\right\|^2 \\ &\leq 2\left(1 + \frac{1}{m}\right)^2 \rho(x, M)^2 + 2\left(1 + \frac{1}{n}\right)^2 \rho(x, M)^2 - 4\rho(x, M)^2 \to 0, \end{aligned}$$

其中不等式成立是由于 M 是凸集, $\frac{z_m+z_n}{2} \in M$.

由 X 是 Hilbert 空间, 存在 $y \in X$ 使得 $z_n \to y$. 而 M 是闭集, 故 $y \in M$. 在

$$\rho(x,M) \le \|x - z_n\| < \left(1 + \frac{1}{n}\right)\rho(x,M)$$

中令 $n \to \infty$ 可得 $\rho(x, M) = ||x - y||$.

最后证明唯一性. 设 $y_1, y_2 \in M$ 满足

$$||x-y_1|| = ||x-y_2|| = \rho(x, M).$$

令 $y_{2n-1} = y_1, y_{2n} = y_2$,则 $\|x - y_n\| \to \rho(x, M)$,由上面的论证可知 $\{y_n\}$ 是 Cauchy 列,从而 $y_1 = y_2$.

引理 1.6.11: 投影定理

设 $X \in Hilbert$ 空间, $M \in X$ 的闭子空间, 则 $\forall x \in X$, 存在 $x_0 \in M$, $x_1 \in M^{\perp}$ 使得

$$x = x_0 + x_1$$

并且该分解是唯一的.

1.6 内积空间 · 73·

喀洋

 x_0 称为 x 在 M 上的投影.

证明. 由于 M 是闭子空间, 则 M 是闭凸集, 根据上一引理, $\forall x \in X$, 存在唯一的 $x_0 \in M$ 使得

$$||x - x_0|| = \rho(x, M).$$

下面证明 $x - x_0 \in M$. 任取 $y \in M$ 以及 $t \in \mathbb{R}$, 有 $x_0 + ty \in M$, 则

$$||x - (x_0 + ty)|| \ge \rho(x, M) = ||x - x_0||^2,$$

$$\implies ||x - x_0||^2 + t^2 ||y||^2 - 2t \operatorname{Re}(x - x_0, y) \ge ||x - x_0||^2$$

$$\implies 2t \operatorname{Re}(x - x_0, y) \le t^2 ||y||^2$$

$$\implies \operatorname{Re}(x - x_0, y) = 0.$$

若 ≤ = €,则

$$||x - (x_0 + ity)||^2 \ge ||x - x_0||^2$$

$$\Longrightarrow 2t \operatorname{Im}(x - x_0, y) \le t^2 ||y||^2$$

$$\Longrightarrow \operatorname{Im}(x - x_0, y) = 0.$$

综上可得 $(x-x_0, y) = 0 (\forall y \in M)$. 从而 $x-x_0 \perp M$. 取 $x_1 = x-x_0$ 即可.

最后证明唯一性. 若 $x = x'_0 + x'_1$, 由于还有 $x = x_0 + x_1$, 则 $x_0 - x'_0 = x'_1 - x_1 \in M \cap M^{\perp} = \{0\}$, 从而 $x_0 = x'_0$, $x_1 = x'_1$.

推论 1.6.12

设 X 是 Hilbert 空间, M 是 X 的闭子空间且 $M \neq X$, 则 $M^{\perp} \neq \{0\}$.

证明. 由于 $M \neq X$, 存在 $x \in X \setminus M$ 以及 $x_0 \in M$, $x_1 \in M^{\perp}$ 使得 $x = x_0 + x_1$, 则 $x_1 \neq 0$, 故 $M^{\perp} \neq \{0\}$.

推论 1.6.13

设 X 是 Hilbert 空间, M 是 X 的子空间. 则 $\overline{M} = (M^{\perp})^{\perp}$.

证明. 任取 $x \in M$, 则 $x \perp M^{\perp}$, 从而 $x \in (M^{\perp})^{\perp}$, 因此 $M \subset (M^{\perp})^{\perp}$. 再根据 $(M^{\perp})^{\perp}$ 是闭 集知, $\overline{M} \subset (M^{\perp})^{\perp}$.

反设 $M\overline{M} \neq (M^{\perp})^{\perp}$. 若记 $Y := (M^{\perp})^{\perp}$, 则 Y 是 Hilbert 空间. 由上一推论, 存在 非零元 $x_0 \in Y$, x_0 属于 \overline{M} 在 Y 中的正交补 $\overline{M}_Y^{\perp} \subset M^{\perp}$. 因此 $x_0 \in Y \cap M^{\perp} = (M^{\perp})^{\perp} \cap M^{\perp} \implies x = 0$, 与 x 是非零元矛盾.

曜 注

事实上,若 E 是任意集合,则 $M=\mathrm{span}E$ 是子空间,并且有 $E^\perp=M^\perp$,因此 $\overline{\mathrm{span}E}=(E^\perp)^\perp$.

推论 1.6.14

设 X 是 Hilbert 空间, M 是子空间. 若 $M^{\perp} = \{0\}$, 则 M 在 X 中稠密.

证明. 由上一推论, $\overline{M} = (M^{\perp})^{\perp} = \{0\}^{\perp} = X$.

定义 1.6.15: 直交合

设 M_1, M_2 是 Hilbert 空间的子空间. 若 $M_1 \perp M_2$, 则称 $M = M_1 + M_2 := \{x_1 + x_2 : x_1 \in M_1, x_2 \in M_2\}$ 为 M_1 与 M_2 的**直交和**, 记为 $M = M_1 \oplus M_2$.

推论 1.6.16

设 $X \in Hilbert$ 空间, $M \in X$ 的子集, 则 $X = \overline{\text{span}M} \oplus M^{\perp}$. 特别地, 若 $M \in M$ 是闭子空间, 则 $X = M \oplus M^{\perp}$.

1.6.3 正交系

定义 1.6.17: 正交系, 标准正交系和 Fourier 系数

设 X 是内积空间, S ⊂ X 是一族非零向量.

若S中任何两个不同的向量正交,则称S是X中的正交系.

若正交系 S 中每个向量的范数均为 1, 则称 S 是标准正交系.

设 S 为 X 中的标准正交系. 对于 $x \in X$, 称 $(x,e)(e \in S)$ 为 x 关于 e 的Fourier **系** 数.

由于在大多数情况下 (比如空间 L^2 和 l^2), S 是至多可数的, 因此下面只考虑这

1.6 内积空间 · 75 ·

种情况 (也即假设 S 都是至多可数的).

例 1.6.18: $L^2[0,2\pi]$

集合 $S:=\left\{\frac{e^{in\theta}}{\sqrt{2\pi}}\right\}_{n=-\infty}^{\infty}$ 为 $L^2[0,2pi]$ 中的标准正交系, 并且 $f\in L^2[0,2\pi]$ 的 Fourier 系数为

$$f_n := (f, \frac{e^{in\theta}}{\sqrt{2\pi}}) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(\theta) e^{in\theta} d\theta, \quad n \in \mathbb{Z}.$$

例 1.6.19: l²

 $S := \{e_n\}_{n=1}^{\infty}$ 是 l^2 中的标准正交系, 其中 e_n 是第 n 项为 0 其余为 1 的数列, $x = \{x_n\} \in l^2$ 的 Fourier 系数为 $(x, e_n) = x_n$.

定理 1.6.20: Bessel 不等式

设 X 是内积空间, $S = \{e_n\}_1^\infty$ 是 X 中的一个标准正交系, 则 $\forall x \in X$, 有

$$\sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2.$$

证明.

$$\left\| x - \sum_{n=1}^{m} (x, e_n) e_n \right\|^2 = \|x\|^2 - 2 \operatorname{Re} \left(x, \sum_{n=1}^{m} (x, e_n) e_n \right) + \left\| \sum_{n=1}^{m} (x, e_n) e_n \right\|^2$$

$$= \|x\|^2 - \sum_{n=1}^{m} \left| (x, e_n)^2 \right| \ge 0,$$

上式即

$$\sum_{n=1}^{m} |(x, e_n)|^2 \le ||x||^2, \quad \forall \, m \ge 1.$$

$$\diamondsuit m \to \infty, \ \iiint \sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2.$$

喀 注

若 S 是一般的标准正交系 (可能不可数), 则依旧有 $\sum_{e \in S} |(x,e)| \le ||x|| (\forall x \in X)$, 其中至多有可数个 (x,e) 非零, 证明见附录A.5.

推论 1.6.21

设 X 是 Hilbert 空间, $\{e_n\}_1^{\infty}$ 是标准正交系, 则 $\forall x \in X$, $\sum_{n=1}^{\infty} (x, e_n) e_n \in X$ 且

$$||x||^2 = \left||x - \sum_{n=1}^{\infty} (x, e_n)e_n||^2 + \left||\sum_{n=1}^{\infty} (x, e_n)e_n||^2\right|.$$

证明. 由 Bessel 不等式, $\forall x \in X$, $\sum_{n=1}^{\infty} |(x,e_n)|^2 \le ||x|| < \infty$, 因此当 $m \to \infty$ 时,

$$\left\| \sum_{n=m+1}^{m+p} (x, e_n) e_n \right\|^2 = \sum_{n=m+1}^{m+p} |(x, e_n)|^2 \to 0,$$

故由 X 是 Hilbert 空间知 $\sum_{n=1}^{\infty} (x, e_n) e_n$ 收敛. 推论中的等式由内积的连续性 (无穷求和与内积课交换) 不难证明.

定理 1.6.22: Riesz-Fisher 定理

设 X 是 Hilbert 空间, $\{e_n\}_1^{\infty}$ 是 X 中的标准正交系. 令 $\{c_n\}_1^{\infty} \in l^2$, 则存在唯一的 $x \in \overline{\text{span}\{e_n\}_1^{\infty}}$ 使得 $\{c_n\}_1^{\infty}$ 是 x 关于 e_n 的 Fourier 系数, 即

$$x = \sum_{n=1}^{\infty} c_n e_n$$
, $||x||^2 = \sum_{n=1}^{\infty} |c_n|^2$.

证明. $\Leftrightarrow x_m := \sum_{n=1}^m c_n e_n$, 由于 $\{c_n\} \in l^2$, 则

$$\|x_{m+p} - x_m\|^2 = \left\|\sum_{n=m+1}^{m+p} c_n e_n\right\|^2 = \sum_{n=m+1}^{m+p} |c_n|^2 \to 0, \quad m \to \infty,$$

因此 $\{x_m\}$ 是 X 中的 Cauchy 列, 根据完备性可知存在 $x \in X$ 使得 $x = \sum_{n=1}^{\infty} c_n e_n$. 另外,

$$(x,e_j) = \left(\sum_{n=1}^{\infty} c_n e_n, e_j\right) = c_j(e_j, e_j) = c_j,$$

因此 $||x||^2 = \sum_{n=1}^{\infty} |c_n|^2$.

由于点列 $\left\{\sum_{n=1}^{m} c_n e_n\right\}_{m=1}^{\infty}$ 的极限如果存在必唯一, 因此这样的 x 是唯一的. \Box

1.6 内积空间 .77.

喀洋

若 $S := \{e_{\lambda} : \lambda \in \Lambda\}$ 是标准正交系 (可能不可数), $\{c_{\lambda} : \lambda \in \Lambda\} \subset \mathbb{K}$ 满足 $\sum_{\lambda \in \Lambda} |c_{\lambda}|^2 < \infty$, 则存在 $x \in \overline{\text{span } S}$ 使得 c_{λ} 是 x 关于 e_{λ} 的 Fourier 系数.

喀淮

若 Bessel 不等式中的等号成立, 则称为 Parseval 等式, 即

$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|, \quad \forall x \in X.$$

定义 1.6.23: 正交系的完备与完全

设 $\{e_n\}_1^\infty$ 是内积空间 X 中的一个标准正交系, 若 $\forall x \in X$ 都有 Parseval 等式成立, 也即

$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2,$$

则称 $\{e_n\}$ 是完备的.

若对于 $x \in X$ 满足 $(x,e_n) = 0 (\forall n)$, 都有 x = 0, 则称 $\{e_n\}$ 是**完全的**.

定理 1.6.24: Hilbert 空间中正交系的完备与完全等价

设 X 是 Hilbert 空间, $\{e_n\}$ 是 X 中的标准正交系, 则下列条件等价:

- (1) {e_n} 完备.
- (2) $\forall x \in X, x = \sum_{n=1}^{\infty} (x, e_n) e_n.$
- (3) $\forall x, y \in X$, $(x, y) = \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)}$.
- (4) {e_n} 完全.

证明. (1) \Longrightarrow (2): 由于 $\{e_n\}$ 完备, 由定义知,

$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2, \quad x \in X.$$

则由推论1.6.21知 $\sum_{n=1}^{\infty} (x, e_n) e_n \in X$, 并且

$$||x||^2 = ||x - \sum_{n=1}^{\infty} (x, e_n)e_n||^2 + ||\sum_{n=1}^{\infty} (x, e_n)e_n||^2,$$

因此

$$\left\|x - \sum_{n=1}^{\infty} (x, e_n)e_n\right\| = 0 \implies x = \sum_{n=1}^{\infty} (x, e_n)e_n.$$

 $(2) \Longrightarrow (3)$:

$$(x,y) = \left(\sum_{n=1}^{\infty} (x,e_n)e_n, \sum_{m=1}^{\infty} (y,e_m)e_m\right) = \sum_{n=1}^{\infty} (x,e_n)\overline{(y,e_n)}, \quad \forall x,y \in X.$$

 $(3) \Longrightarrow (4)$: 设 $x \in X$ 满足 $(x, e_n) = 0, \forall n$. 则

$$(x, y) = \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)} = 0, \quad \forall y \in X,$$

从而 x=0.

 $(4) \Longrightarrow (1)$: $\forall x \in X$, 由 Bessel 不等式, 有 $\sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2$. 由 Riesz-Fisher 定理, 存在 $x_0 \in \text{span}\{e_n\}$ 使得

$$x_0 = \sum_{n=1}^{\infty} (x, e_n) e_n, \quad ||x_0||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2.$$

由于 $(x-x_0,e_n)=(x,e_n)-(x_0,e_n)=(x,e_n)-(x,e_n)=0(\forall n)$, 因此根据 $\{e_n\}$ 完全可知 $x-x_0=0$, 也即 $x=x_0$, 从而 Parseval 等式成立.

喀注

若 X 是内积空间,则 $(1) \Longleftrightarrow (2) \Longleftrightarrow (3) \Longrightarrow (4)$,但未必有 $(4) \Longrightarrow (1)$.

喀 注

设 X 是内积空间, 若 X 存在完备的可数标准正交系 $\{e_n\}$, 则 X 是可分的.

证明. 由 (2), $\forall x \in X, x = \sum_{n=1}^{\infty} (x, e_n) e_n \in \overline{\operatorname{span}\{e_n\}}$, 从而 $X = \overline{\operatorname{span}\{e_n\}}$, 则

$$\left\{ \sum_{k=1}^{n} q_k e_k : q_k \in \mathbb{Q} (1 \le k \le n), n \in \mathbb{N} \right\}$$

是 X 的可数稠密子集, 从而 X 可分.

1.6 内积空间 · 79 ·

定理 1.6.25: Hilbert 空间可分充要条件

设 X 是 Hilerbt 空间,则 X 可分的充要条件是: X 存在至多可数的完备正交系 S.

证明. 充分性由上一注记得到. 下面证明必要性. 由于 X 可分, 存在至多可数的稠密子集 $\{z_n\}_1^{\infty}$, 从而 $X = \overline{\operatorname{span}\{z_n\}_1^{\infty}}$, 取 $\{z_n\}$ 的线性无关子列 $\{x_n\}$ 使得 $\operatorname{span}\{z_n\}_1^{\infty} = \operatorname{span}\{x_n\}_1^{\infty}$. 使用 Gram-Schmidt 正交化, 令 $y_1 = x_1$, $y_n = x_n - \sum_{i=1}^{n-1} \frac{(x_n, y_i)}{(y_i, y_i)} y_i$, $e_n = \frac{y_n}{\|y_n\|}$, 如此得到的 $\{e_n\}_1^{\infty}$ 满足 $\operatorname{span}\{e_n\} = \operatorname{span}\{x_n\} = \operatorname{span}\{z_n\}$, 并且 $\{e_n\}_1^{\infty}$ 两两正交. 从而 $X = \overline{\operatorname{span}\{e_n\}_1^{\infty}}$, $\{e_n\}$ 是完备正交系.

定理 1.6.26: 无穷维可分 Hilbert 空间的刻画

设 X 是无穷维可分的 Hilbert 空间,则 X 与 l^2 等距同构.

喀淮

内积空间中的等距同构是指对 X_1, X_2 , 存在从 X_1 到 X_2 的线性满射 T 满足 $(x, y)_{X_1} = (Tx, Ty)_{X_2}$, 此时 T 称为等距同构映射.

证明. 由上一定理, X 有完备正交系 $\{e_n\}_1^\infty$. 令

$$T: X \to l^2$$
, $Tx = \{(x, e_n)\} \in l^2$.

则由完备正交系的等价条件(3)知

$$(x,y) = \sum_{n=1}^{\infty} (x,e_n)\overline{(y,e_n)} = (Tx,Ty), \quad \forall x,y \in X,$$

而 T 显然是线性映射. 最后验证 T 是满射. 任取 $\{c_n\} \in l^2$, 由 Riesz-Fisher 定理知存在 唯一的 $x \in X$ 使得 $(x, e_n) = c_n(\forall n)$, 此即 $Tx = \{c_n\}$, 从而 T 是满射.

因此 T 是等距同构映射, X 与 l^2 等距同构.

喀 注

该定理表明所有无穷维可分 Hilbert 空间彼此同构.

喀淮

若 $\dim X = n < \infty$, 则同样的论述可以得到 X 与 \mathbb{K}^n 等距同构.

定理 1.6.27

任何非零 Hilbert 空间均存在完备标准正交系.

证明. 该定理需要使用 Zorn 引理, 证明见附录A.5.

1.6.4 作业

▲ **题目1.6.1.** 设 $(X, \|\cdot\|)$ 是复赋范空间 (数域为 \mathbb{C}), 满足平行四边形等式:

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2), \quad \forall x, y \in X.$$

则 X 上可以引入内积 (\cdot,\cdot) 满足 $||x|| = \sqrt{(x,x)}, \forall x \in X$.

解答. 若 ≤ = €, 下面证明由

$$(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\| - i\|x-iy\|), \quad \forall x, y \in X$$

定义的函数是一个内积. 若记 $(x,y)_{\mathbb{R}} = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$, 则

$$(x, y) = (x, y)_{\mathbb{R}} + i(x, iy)_{\mathbb{R}},$$

从而

$$(x_1 + x_2, y)$$

$$= (x_1, y)_{\mathbb{R}} + i(x_1, iy)_{\mathbb{R}} + (x_2, y)_{\mathbb{R}} + i(x_2, iy)_{\mathbb{R}}$$

$$= (x_1, y) + (x_2, y).$$

再由 $(x, y) = \overline{(y, x)}$ 得 $(x, y_1 + y_2) = (x, y_1 + y_2)$. 从而

$$(\alpha x, y) = (\operatorname{Re} \alpha)(x, y) + (\operatorname{Im} \alpha)(ix, y) = (\operatorname{Re} \alpha)(x, y) + (\operatorname{Im} \alpha)\overline{(y, ix)}$$

1.6 内积空间 · 81·

$$= (\operatorname{Re} \alpha)(x, y) + (\operatorname{Im} \alpha)(y, x)_{\mathbb{R}} + (\operatorname{Im} \alpha)i(y, x)_{\mathbb{R}} = \alpha(x, y).$$

因此 (\cdot,\cdot) 是 X 上的内积.

▲ 题目1.6.2. 判断并证明 $l^p(1 \le p \le \infty)$ 是否满足平行四边形等式.

解答. p=2 时满足平行四边形等式, 因为

$$(x, y) = \sum_{n=1}^{\infty} x_n \overline{y}_n, \quad x = \{x_n\}, y = \{y_n\} \in l^2$$

是 l^2 上与范数相容的内积.

其余情况不满足平行四边形等式,因为若记 e_n 是第 n 分量为 1 其余为 1 的数列,则 $e_n \in l^p$ 且

$$\|e_1 + e_2\|^2 + \|e_1 - e_2\|^2 = 2^{\frac{2}{p}+1} \neq 4 = 2(\|e_1\|^2 + \|e_2\|^2).$$

题目1.6.3. 求证: 在 C[a,b] 中不可能引入一种内积 (·,·), 使其满足

$$\sqrt{(f,f)} = \max_{a \le x \le b} |f(x)|, \quad \forall f \in C[a,b].$$

解答. 若 C[a,b] 可以引入题设内积,则范数 $\|\cdot\|$ 满足三角恒等式,也即

$$\max_{a \le x \le b} |f + g|^2 + \max_{a \le x \le b} |f - g|^2 = 2 \left(\max_{a \le x \le b} |f|^2 + \max_{a \le x \le b} |g|^2 \right),$$

但显然 $f(x) = \frac{x-a}{b-a}, g(x) = 1(\forall x \in [a,b])$ 不满足上式.

▲ **题目1.6.4**. 在 L²[0, T] 中, 求证: 函数

$$x \mapsto \left| \int_0^T e^{-(T-\tau)} x(\tau) d\tau \right|, \quad \forall x \in L^2[0, T]$$

在单位球面上达到最大值,并求出此最大值和达到最大值的元素 x.

解答. 由 Cauchy-Schwarz 不等式, 对任意 $||x||_2 = 1$, 有

$$\left| \int_0^T e^{-(T-\tau)} x(\tau) d\tau \right|^2 \le \left(\int_0^T e^{-2(T-\tau)} d\tau \right) \left(\int_0^T |x(\tau)|^2 d\tau \right) = \frac{1}{2} (1 - e^{-2T}),$$

因此该函数在单位球面上的最大值为 $\sqrt{\frac{1-e^{-2T}}{2}}$, 由 Cauchy-Schwarz 不等式的取等条件, 达到最大值的元素为 $x(\tau) = \frac{e^{-(T-\tau)}}{\sqrt{\frac{1-e^{-2T}}{2}}}$, $\tau \in [0, T]$.

▲ **题目1.6.5**. 设 *M* 是 Hilbert 空间 *H* 的子集, 求证

$$(M^{\perp})^{\perp} = \overline{\operatorname{span} M}.$$

解答. 记 $E = \overline{\text{span}M}$ 为闭线性子空间, 显然 $(M^{\perp})^{\perp} = (E^{\perp})^{\perp}$, 只需证 $(E^{\perp})^{\perp} = E$ 即可. 任取 $x \in E$, 则 $\forall y \in E^{\perp}$, $y \perp x \Longrightarrow x \in E^{\perp} \Longrightarrow E \subset (E^{\perp})^{\perp}$.

下面证明若 $x \in E^c$, 则 $x \notin (E^{\perp})^{\perp}$. 由于 E 是闭子空间, 存在唯一正交分解 $x = y + z, y \in M, z \in M^{\perp}$. 如果 $x \perp E^{\perp}$, 则

$$(x, z) = (x, x - y) = (x - y, x - y) + (y, x - y) = (x - y, x - y) = 0,$$

从而 $x = y \in M$, 矛盾.

题目1.6.6. 在 $L^2[-1,1]$ 中, 问偶函数集的正交补是什么? 证明你的结论.

解答. 偶函数的正交补是奇函数, 也即 f 是奇函数当且仅当 $f \perp g$, $\forall g$ 为 $L^2[-1,1]$ 上的偶函数 (此处的偶函数与奇函数均为几乎处处意义下).

必要性:

$$(f,g) = \int_{-1}^{1} f(x)\overline{g(x)}dx$$

$$= \int_{0}^{1} f(x)\overline{g(x)}dx + \int_{-1}^{0} f(x)\overline{g(x)}dx$$

$$= \int_{0}^{1} f(x)\overline{g(x)}dx + \int_{0}^{1} f(-x)\overline{g(-x)}dx$$

$$= \int_{0}^{1} f(x)\overline{g(x)}dx + \int_{0}^{1} (-f(x))\overline{g(x)}dx = 0.$$

充分性: 令 $g(x) = \overline{f(x) + f(-x)}$ 为偶函数,则

$$(f,g) = ||f(x) + f(-x)||_2^2 = 0 \implies f(x) + f(-x) = 0$$
 a.e.

- **题目1.6.7.** 在 $L^2[a,b]$ 中, 考察函数集 $S = \{e^{2\pi i n x}\}$.
 - (1) 若 $|b-a| \le 1$, 求证: $S^{\perp} = \{0\}$;
 - (2) 若 |b-a| > 1, 求证: $S^{\perp} \neq \{0\}$.

解答. (1) |b-a|=1 由 Fourier 分析知识, 有 $S^{\perp}=\{0\}$. 若 |b-a|<1, 补充定义 f(x)=0, $x \in (b,a+1]$ 即可.

(2) 若 a < b - 2, 在 [a,b-2] 上定义 $f \equiv 0$, 在 [b-2,b-1] 上定义 $f \equiv -1$; 若 $b-2 \le a < b-1$, 在 [a,b-1] 上定义 $f \equiv -1$; 在 (b-1,b] 上定义

$$f(x) = \sum_{n \in \mathbb{Z}} \left(\int_a^{b-1} e^{2\pi i n t} dt \right) e^{2\pi i n x}, \quad x \in (b-1, b],$$

其中 $\left| \int_a^{b-1} e^{2\pi i n t} dt \right| \le \frac{1}{\pi n}$, 并且 $\sum_{n \in \mathbb{Z}} e^{2\pi i n x}$ 对 x 一致有界, 由数学分析知识知如上定义的 f 有意义, 显然有 $f \in S^{\perp}$ 且 $f \neq 0$.

△ 题目1.6.8. 设 H 表示闭单位圆上的解析函数全体, 内积定义为

$$(f,g) = \frac{1}{i} \int_{|z|=1} \frac{f(z)\overline{g}(z)}{z} dz, \quad \forall f, g \in H.$$

求证: $\left\{\frac{z^n}{\sqrt{2\pi}}\right\}$ 是一组正交规范集.

解答.

$$\left\| \frac{z^n}{\sqrt{2\pi}} \right\| \frac{1}{2\pi i} \int_{|z|=1} \frac{|z|^n}{z} dz = \frac{1}{2\pi i} \int_{|z=1|} \frac{dz}{z} = 1, \quad \forall n \ge 0,$$

$$2\pi i \left(\frac{z^m}{\sqrt{2\pi}}, \frac{z^n}{\sqrt{2\pi}} \right) = \int_{|z|=1} \frac{z^m \overline{z}^n}{z} dz = \int_{|z|=1} z^{m-n-1} dz = 0, \quad \forall m > n.$$

题目1.6.9. 设 $\{e_n\}_1^\infty$, $\{f_n\}_1^\infty$ 是 Hilbert 空间 H 中的两个正交规范集, 满足条件

$$\sum_{n=1}^{\infty} \|e_n - f_n\|^2 < 1.$$

求证: $\{e_n\}$ 和 $\{f_n\}$ 两者中一个完备蕴含另一个完备.

解答. 设 $\{e_n\}$ 完备. 若 $0 \neq x \perp f_n, \forall n \geq 1$, 则

$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2 = \sum_{n=1}^{\infty} |(x, e_n - f_n)| \le \sum_{n=1}^{\infty} ||x||^2 \cdot |e_n - f_n|^2 < ||x||^2,$$

矛盾, 因此 $\{f_n\}^{\perp} = \{0\}, \{f_n\}$ 也完备.

题目1.6.10. 设 H 是 Hilbert 空间, H_0 是 H 的闭线性子空间, $\{e_n\}$ 和 $\{f_n\}$ 分别是 H_0 和 H_0^{\perp} 的正交规范基. 求证: $\{e_n\} \cup \{f_n\}$ 是 H 的正交规范基.

解答. 设 $x \in H$, 由 $x - P(x) \in H_0^{\perp}$ 和 $P(x) \in H_0 \subset (H^{\perp})^{\perp}$ 知 $(x - P(x), e_n) = (P(x), f_n) = 0, \forall n \geq 1,$ 从而

$$x = P(x) + (x - P(x)) = \sum_{n=1}^{\infty} (P(x), e_n)e_n + (x - P(x), f_n)f_n$$
$$= \sum_{n=1}^{\infty} (x, e_n)e_n + (x, f_n)f_n.$$

题目1.6.11. 设 X 是内积空间, $\{e_n\}$ 是 X 中的正交规范集, 求证

$$\left| \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)} \right| \le ||x|| \cdot ||y||, \quad \forall x, y \in X.$$

解答.

$$\left|\sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)}\right| \leq \left(\sum_{n=1}^{\infty} |(x, e_n)|^2\right) \left(\sum_{n=1}^{\infty} \left|(y, e_n)\right|^2\right) \leq \|x\| \cdot \|y\|.$$

趣目1.6.12. 设 X 是一个内积空间, $\forall x_0 \in X, r > 0$, 令

$$C = \{x \in X : \|x - x_0\| \le r\}.$$

- (1) 求证: C 是 X 中的闭凸集.
- (2) $\forall x \in X$, \diamondsuit

$$y = \begin{cases} x_0 + \frac{r(x - x_0)}{\|x - x_0\|}, & x \notin C, \\ x, & x \in C. \end{cases}$$

1.6 内积空间 · 85 ·

求证: $v \neq x \in C$ 中的最佳逼近元.

解答.(1)直接验证即可.

(2) 若 $x \in C$, 显然成立. 若 $x \notin C$, 则

$$||x - z|| = ||(x - x_0) - (z - x_0)|| \ge ||x - x_0|| - ||z - x_0||$$

$$\ge ||x - x_0|| - r = ||x - y||, \quad \forall z \in C.$$

题目1.6.13. 求 $(a_0, a_1, a_2) \in \mathbb{R}^3$ 使得 $\int_0^1 \left| e^t - a_0 - a_1 t - a_2 t^2 \right|^2 dt$ 取最小值. **解答**. 考虑 $L^2[0,1]$ 空间上的内积, 有

$$\begin{cases} a_0(1,1) + a_1(t,1) + a_2(t^2,1) = (e^t,1) \\ a_0(1,t) + a_1(t,t) + a_2(t^2,t) = (e^t,t) \\ a_0(1,t^2) + a_1(t,t^2) + a_2(t^2,t^2) = (e^t,t^2) \end{cases} \implies \begin{cases} a_0 = 39e - 105 \\ a_1 = -216e + 588 \\ a_2 = 210e - 570 \end{cases}$$

趣目1.6.14. 设 $f ∈ C^2[a,b]$, 满足边界条件

$$f(a) = f(b) = 0$$
, $f'(a) = 1$, $f'(b) = 0$.

求证:

$$\int_{a}^{b} \left| f''(x) \right|^{2} \mathrm{d}x \ge \frac{4}{b-a}.$$

解答. 令 $f(x) \mapsto f\left(\frac{x-a}{b-a}\right)$ 后, 不妨设 a = 0, b = 1. 记 $g(x) = x(x-1)^2$, 则

$$4\int_{0}^{1} |f''(x)|^{2} dx \ge \left(\int_{0}^{1} |g''(x)|^{2} dx \right) \left(\int_{0}^{1} |f''(x)|^{2} dx \right)$$
$$\ge \left| \int_{0}^{1} f''(x)g''(x) dx \right| = \left| \int_{0}^{1} g''(x) df'(x) \right|$$
$$= \left| f'(1)g''(1) - f'(0)g''(0) - 6\int_{0}^{1} f'(x) dx \right| = 1.$$

第二章 线性算子与线性泛函

2.1 线性算子的概念

例 2.1.1: 微分和积分方程中的例子

对偏微分方程

$$\frac{\partial^2 u}{\partial t^2} - \Delta u = f,$$

 $H := \frac{\partial^2}{\partial t^2} - \Delta$ 是一个线性算子.

对积分方程

$$y(x) = y_0 + \int_{x_0}^{x} f(x, y(x)) dx,$$

定义线性算子 T 将函数 y 映射为上式右端的函数,则上述积分方程的解 y 就是线性算子 T 的不动点.

定义 2.1.2: 线性算子和线性泛函

设 X 与 Y 是数域 $\mathbb{K}(=\mathbb{R}$ 或 $\mathbb{C})$ 上的线性空间, D 是 X 中的子空间, T 是从 D 到 Y 的映射. 若

$$T(\alpha x + \beta y) = \alpha Tx + \beta Ty, \quad \forall x, y \in D, \alpha, \beta \in \mathbb{K},$$

则称 T 是线性算子.

喀 注

称 $D \in T$ 的定义域 (Domain), 记为 D(T).

R(T) 表示 T 的值域 (Range), 即 R(T) = T(X).

 $Ker(T) := \{x \in D : Tx = 0\}$ 称为 T 的零空间或核空间.

特别地, 取之于实数或复数的线性算子 (Y) 为数域) 称为 线性泛函, 通常记为 f(x) 或 $\langle f, x \rangle$.

例 2.1.3: 有限维空间上的线性泛函

设 X 是有限维线性空间. 若 e_1, \cdots, e_n 是 X 的一组基, 则 X 上的线性泛函可以表示为

$$f(x) = \sum_{j=1}^{n} \alpha_{j} x_{j}, \quad x = \sum_{j=1}^{n} x_{j} e_{j} \in X,$$

其中 $\alpha_i = f(e_i)$. 并且有

$$Ker(f) = \left\{ x = \sum_{j=1}^{n} x_j e_j \in X : \sum_{j=1}^{n} \alpha_j x_j = 0 \right\}.$$

定义 2.1.4: 算子的连续, 有界和无界

设 X 与 Y 均是赋范空间, $T:D(T) \to Y$. 若对 $x_n, x \in D(T)$, 当 $x_n \to x$ 时有 $Tx_n \to Tx$, 则称 T 在 x 点**连续**. 若 T 在 D(T) 中每一点都连续, 则称 T **连续**. 若 T 将 D 中的任一有界集映为 Y 中的有界集, 则称 T **有界**.

反之, 若存在 D 中的有界集 A, 使得 T(A) 在 Y 中无界, 则称 T 无界.

例 2.1.5: ℝ² 上的旋转变换

对 $\theta \in [0,2\pi)$, 定义 $T: \mathbb{R}^2 \to \mathbb{R}^2$ 为

$$T(x, y) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \quad (x, y) \in \mathbb{R}^2.$$

则 $T \in \mathbb{R}^2 \to \mathbb{R}^2$ 的有界线性算子, 并且是连续的.

例 2.1.6: C[a,b] 上的积分

定义

$$f(x) := \int_{a}^{b} x(t) dt, \quad \forall x \in C[a, b].$$

则 $f \in C[a,b]$ 上的连续且有界的线性泛函.

证明. 线性性显然. 若 $x_n \rightarrow x$, 则

$$|f(x) - f(x_n)| \le \int_a^b ||x - x_n|| dt = (b - a) ||x - x_n|| \to 0,$$

从而 f 是连续的. 设 A 是 C[a,b] 上的有界集, 满足 $|x(t)| \leq M(\forall x \in A, t \in [a,b], 则$

$$\left| f(x) \right| = \left| \int_a^b x(t) dt \right| \le (b - a) \|x\| \le (b - a) M,$$

故 f 是有界的.

例 2.1.7: Dirac 函数

定义 $\langle \delta, f \rangle := f(0), \forall f \in C[-1,1], 则 \delta 是 C[-1,1]$ 上的线性泛函, 并且是连续并且有界的.

证明. 线性性: 设 $\alpha, \beta \in \mathbb{K}$, $f, g \in C[-1,1]$, 则

$$\langle \delta, \alpha f + \beta g \rangle = (\alpha f + \beta g)(0)$$
$$= \alpha f(0) + \beta g(0) = \alpha \langle \delta, f \rangle + \beta \langle \delta, g \rangle.$$

连续性: 设 $f_n \to f$, 则 f_n 一致收敛于 f, 从而 $f_n(0) \to f(0)$, 也即 $\langle \delta, f_n \rangle \to \langle \delta, f \rangle$. 有界性: 设 A 在 C[-1,1] 上有界, 则存在 $M \rangle 0$ 使得 $\|f\| \le M(\forall x \in A)$, 而 $|\langle \delta, f \rangle| = |f(0)| \le \|f\| \le M(\forall x \in A)$, 从而 $\delta(A)$ 有界.

例 2.1.8: 有穷维赋范空间上的线性映射

设 T 是有穷维赋范空间 X 到赋范空间 Y 的线性映射,则 T 必是连续的.

证明. 设 e_1, \dots, e_n 为 X 的一组基, 则 $\forall x \in X$, 有

$$||Tx|| = \left||T\left(\sum_{k=1}^{n} x_k e_k\right)\right|| \le \sum_{k=1}^{n} |x_k| \cdot ||Te_k|| \le \max_{1 \le k \le n} ||Te_k|| \sum_{k=1}^{n} |x_k|,$$

根据有限维空间上范数的等价性, 存在 C>0 使得

$$\sum_{k=1}^{n} |x_k| \le C ||x||, \quad \forall x \in X,$$

从而

$$||Tx|| \le C \max_{1 \le k \le n} ||Te_k|| \cdot ||x||, \quad \forall x \in X,$$

故 T 连续.

例 2.1.9: 正交投影算子

Hilbert 空间 X 上的正交投影算子. 设 M 是 X 的一个闭线性子空间, 依投影定理 (引理1.6.11), $\forall x \in X$, 存在唯一的分解

$$x = y + z$$
,

其中 $y \in M, z \in M^{\perp}$. 对应 $x \mapsto y$ 称作由 X 到 M 的正交投影算子, 记作 P_M . 在不强调子空间 M 时, 我们省略 M 而简记为 P. P 为连续线性算子, 并且当 $M \neq \{0\}$ 时, $\|P\| = 1$.

定理 2.1.10: 线性泛函的有界性与连续性等价

设 X,Y 是赋范空间, T 是从 D(T) ⊂ X 到 Y 的线性泛函, 则以下四点等价:

- (1) T在0处连续;
- (2) T 连续;
- (3) 存在 M > 0 使得 $||Tx|| \le M||x||, \forall x \in D(T)$.
- (4) T有界.

证明. (1) \Longrightarrow (2): 设 $x_n, x \in D(T)$, 满足 $x_n \to x$, 则 $x_n - x \to 0$, 由于 T 在 0 处连续, 则 $T(x_n - x) \to 0$, 再由线性性易得 $Tx_n \to Tx$, 从而 T 连续.

(2) ⇒ (3): 反设存在非零的 $x_n \in D(T)$ 使得

 $||Tx_n|| > n||x_n||, \quad \forall n \ge 1.$

记 $y_n = \frac{x_n}{\|x_n\|}$,则 $\|y_n\| = 1$ 并且

$$||Ty_n|| > n \quad \forall n \ge 1,$$

则虽然 $\{y_n\}_1^\infty$ 在 X 中有界, 但 $\{Ty_n\}_1^\infty$ 在 Y 中无界, 矛盾.

- $(3) \Longrightarrow (4)$: 若 $A \subset D(T)$ 在 X 中有界, 则存在 r > 0 使得 $A \subset B_X(0,r)$, 从而 $T(A) \subset B_Y(0,rM)$.
- (4) ⇒ (1): 反设 T 在 0 处不连续, 则存在非零的 $x_n \in D(T)$ 和 $\varepsilon_0 > 0$ 使得 $x_n \to 0$ 但 $||Tx_n|| > \varepsilon_0 (\forall n)$. 记 $y_n = \frac{x_n}{||x_n||}$, 则 $||y_n|| = 1$, 但由 $x_n \to 0$ 知

$$||Ty_n|| > \frac{\varepsilon_0}{||x_n||} \to \infty,$$

此时 $\{y_n\}$ 有界但 $\{Ty_n\}$ 无界, 与有界性矛盾.

定义 2.1.11: 算子范数

设 X, Y 是赋范空间, $T: D(T) \to Y$ 是有界线性算子. 称

$$||T|| = \sup_{\substack{x \in D(T) \\ x \neq 0}} \frac{||Tx||}{||x||}$$

为 T 的算子范数.

喀淮

不难证明

$$||T|| = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \inf\{M > 0 : ||Tx|| \le M||x||, \forall x \in D(T)\}$$

$$= \sup_{||x|| = 1} ||Tx|| = \sup_{||x|| \le 1} ||Tx|| = \sup_{||x|| \le 1} ||Tx||.$$

此外还有

$$||Tx|| \le ||T|| \cdot ||x||, \quad \forall x \in D(T).$$

喀 注

为了方便期间, 此后若无特别说明, 均默认 D(T) = X, 这是对结果没有影响的, 因为 D(T) 本身也是一个赋范线性空间 (继承了 X 上的范数).

喀洋

用 L(X,Y) 表示从 X 到 Y 上的有界线性算子全体. 对 $S,T \in L(X,Y),\alpha,\beta \in \mathbb{K}$, 定义

$$(\alpha S + \beta T)(x) := \alpha Sx + \beta Tx, \forall x \in X,$$

则 $\alpha S + \beta T \in L(X,Y)$, 并且 L(X,Y) 依算子范数构成了一个赋范线性空间. 详细的证明留作习题.

特别地, 若 Y = X, 则记为 L(X) := L(X, X). 若 $Y = \mathbb{K}$, 则记 $X^* := L(X, \mathbb{K})$.

喀淮

设 $T_n, T \in L(X, Y)$, 则 $T_n \to T$ 即 $||T_n - T|| \to 0$, 该收敛有时称作一致收敛, 因为下一定理.

定理 2.1.12: 依算子范数收敛

设 X,Y 是赋范空间, $T_n,T \in L(X,Y)$, 则 $\|T_n - T\| \to 0$ 的充要条件为: T_n 在 X 的任一有界集上一致收敛于 T.

证明. 必要性: 设 $A \in X$ 中的有界集, 则存在 r > 0 使得 $A \subset B_X(0,r)$. $\forall \varepsilon > 0$, 存在 N 使得

$$||T_n - T|| < \frac{\varepsilon}{r}, \quad \forall n > N.$$

则对 $\forall x \in A, n > N$, 有

$$\|T_nx-Tx\|\leq \|T_n-T\|\cdot \|x\|\leq r\|T_n-T\|<\varepsilon.$$

充分性: 取有界集为 X 中的单位球面 $S := \{x \in X : ||x|| = 1\}$. 则

$$||T_n - T|| = \sup_{x \in S} ||T_n x - T x|| \to 0.$$

定理 2.1.13: L(X,Y) 的完备性

设 X 是赋范空间, Y 是 Banach 空间, 则 L(X,Y) 也是 Banach 空间.

证明. 设 $\{T_n\}$ 是 L(X,Y) 中的 Cauchy 列, 则 $\forall \varepsilon > 0$ 存在 N > 0 使得

$$||T_n - T_m|| < \varepsilon, \quad \forall n, m > N.$$

 $\forall x \in X$, 由 $\|T_n x - T_m x\| \le \|T_n - T_m\| \cdot \|x\|$ 知 $\{T_n x\}$ 是 Y 中的 Cauchy 列, 从而存在 $y \in Y$ 使得 $T_n x \to y$. 定义

$$T: X \to Y, Tx := \lim_{n \to \infty} T_n x (x \in X).$$

任取 $\alpha_1, \alpha_2 \in \mathbb{K}, x_1, x_2 \in X$, 有

$$T(\alpha_1 x_1 + \alpha_2 x_2) = \lim_{n \to \infty} T_n(\alpha_1 x_1 + \alpha_2 x_2)$$

= $\alpha_1 \lim_{n \to \infty} T_n(x_1) + \alpha_2 \lim_{n \to \infty} T_n(x_2) = \alpha_1 T x_1 + \alpha_2 T x_2.$

从而 T 是线性的. 此外, $\forall x \in X$, 有

$$||Tx|| \le ||Tx - T_nx|| + ||T_nx||,$$

由于 $\{T_n\}$ 是 Cauchy 列, 故存在 M > 0 使得 $\|T_n\| \le M(\forall n \ge 1)$. 则

$$\|Tx\| \leq \|Tx - T_nx\| + M\|x\|,$$

今 $n \to \infty$ 可得

$$||Tx|| \le M||x||,$$

即 T 有界, 因此 $T \in L(X, Y)$.

最后证明 $T_n \to T$. 任取 $\varepsilon > 0$, 存在 N > 0 使得

$$||T_m - T_n|| < \varepsilon$$
, $\forall m, > N$.

则对 m, n > N, 有

$$||T_n x - T x|| \le ||T_n x - T_m x|| + ||T_m x - T x|| \le \varepsilon ||x|| + ||T_m x - T x||,$$

 $\diamondsuit m \to \infty$, 得

$$||T_n x - T x|| \le \varepsilon ||x||, \quad \forall n > N.$$

因此 $||T_n - T|| \rightarrow 0$.

例 2.1.14: l^p 上的左平移算子

定义 $T_n: l^p \to l^p$, 满足

$$T_n x = (x_n, x_{n+1}, x_{n+2}, \cdots), \quad x = \{x_k\}.$$

由于 $||T_nx|| \le ||x||$, 故 $T \in L(l^p)$, 且 $||T|| \le 1$. 若取 x 为第 n 分量为 1 其余为 0 的 点列, 则 ||x|| = 1 且 $||T_nx|| = 1$, 因此 $||T_n|| = 1$.

 $\forall x \in l^p$, 有 $||T_n x|| \to 0$ $(n \to \infty)$, 这种收敛叫强收敛, 但有此时 $||T_n|| = 1$.

定义 2.1.15: 强收敛

设 X, Y 是赋范空间, $T_n, T \in L(X, Y)$. 若 $\forall x \in X$, 有

$$\lim_{n\to\infty} \|T_n x - Tx\| = 0,$$

则称 $\{T_n\}$ 强收敛于 T, 记作 $T_n \stackrel{s}{\longrightarrow} T$, 或 $\lim_{n \to \infty} T_n = T($ 强).

喀 注

若 $T_n \to T(||T_n - T|| \to 0)$, 必有 $T_n \stackrel{s}{\longrightarrow} T$. 这是因为

$$||T_nx-Tx|| \le ||T_n-T|| \cdot ||x||, \quad \forall x \in X.$$

但反之未必成立, 上面的左平移算子就是一个反例.

定义 2.1.16: 有界线性算子的乘法

设 X,Y,Z 是赋范空间, $S \in L(X,Y), T \in L(Y,Z)$, 定义 T 和 S 的**乘积** $T \circ S: X \to Z$ 为

$$T \circ S(x) = T(S(x)), \quad x \in X.$$

则 $TS \in L(X, Z)$.

证明.由

 $||TSx|| \le ||T|| \cdot ||Sx|| \le ||T|| \cdot ||S|| \cdot ||x||, \quad x \in X$

可得.

定理 2.1.17

设 $T \in L(X)$, 则

$$\lim_{n \to \infty} \| T^n \|^{\frac{1}{n}} = \inf_{n \ge 1} \| T^n \|^{\frac{1}{n}}.$$

证明. 首先,由

$$\liminf_{n \to \infty} \| T^n \|^{\frac{1}{n}} \ge \inf_{n \ge 1} \| T^n \|^{\frac{1}{n}} := r$$

可知只需证明 $\limsup_{n\to\infty} \le r$. 由下确界定义知 (r 显然是有限的, 因为 $r \le ||T||$), $\forall \varepsilon > 0$, 存在 $m \in \mathbb{N}$ 使得

$$\left\| T^m \right\|^{\frac{1}{m}} < r + \varepsilon.$$

当 n > m 时令 $n = km + q_n$, 其中 $0 \le q_n < m$, 则

$$\|T^n\|^{\frac{1}{n}} = \|T^{km+q_n}\|^{\frac{1}{n}} \le \|T^m\|^{\frac{k}{n}} \cdot \|T\|^{\frac{q_n}{n}}$$
$$\le (r+\varepsilon)^{\frac{mk}{n}} \cdot \|T\|^{\frac{q_n}{n}},$$

在上式中对 n 取上极限可得 $\limsup_{n\to\infty} \|T^n\|^{\frac{1}{n}} \le r$, 证毕.

2.1.1 作业

趣目2.1.1. 设 A ∈ L(X, Y), 求证:

(1) $\|A\| = \sup_{\|x\| \le 1} \|Ax\|$; (2) $\|A\| = \sup_{\|x\| < 1} \|Ax\|$. 解答. (1) $\|A\| = \sup_{\|x\| = 1} \|Ax\| \le \sup_{\|x\| \le 1} \|Ax\| \le \sup_{\|x\| \le 1} \|A\| \cdot \|x\| = \|A\|$.

(2) 任取 $\varepsilon \in (0,1)$, 存在 $\|x\| = 1$ 满足 $\|A\| - \delta \le \|Ax\| \le \|A\|$, 其中 $\delta = \frac{\varepsilon}{\|A\| + 1 - \varepsilon}$, 从 而 $y = \frac{x}{1+\delta}$ 满足 ||y|| < 1 并且

$$||Ay|| = \frac{||Ax||}{1+\delta} \ge \frac{||A|| - \delta}{1+\delta} = ||A|| - \varepsilon.$$

趣目2.1.2. 设 $f ∈ L(X, \mathbb{R})$, 求证:

(1)
$$||f|| = \sup_{\|x\|=1} f(x);$$
 (2) $\sup_{\|x\|<\delta} f(x) = \delta ||f||, \quad \forall \delta > 0.$

解答. (1) 只需注意到 $\forall x \in X$, $f(\text{sign}(\overline{f(x)})x) = \text{sign}(\overline{f(x)})f(x) = |f(x)|$.

- (2) 结合(1) 和上题(2) 易得.
- **题目2.1.3.** 设 $y(t) \in C[0,1]$, 定义 C[0,1] 上的泛函

$$f(x) = \int_0^1 x(t)y(t)dt, \quad \forall x \in C[0,1],$$

求 ||f||.

解答.

$$\begin{aligned} & \left\| f(x) \right\| \leq \left(\int_0^1 \left| y(t) \right| \mathrm{d}t \right) \|x\| \implies \left\| f \right\| \leq \int_0^1 \left| y(t) \right| \mathrm{d}t, \\ & f(\overline{\mathrm{sign}(y)}) = \int_0^1 \left| y(t) \right| \mathrm{d}t \implies \left\| f \right\| \geq \int_0^1 \left| y(t) \right| \mathrm{d}t. \end{aligned}$$

题目2.1.4. 设 $f \in X$ 上的非零有界线性泛函, 令

$$d = \inf\{\|x\| : f(x) = 1, x \in X\},\$$

求证: $||f|| = \frac{1}{4}$.

解答. 若 d=0, 则存在 x_n 满足 $f(x_n)=1$ 且 $||x_n||\to 0$, 由 f 的连续性知这是不可能

的, 因此 d > 0. 任取 x 满足 f(x) = 1, 有

$$\left| f\left(\frac{x}{\|x\|}\right) \right| = \frac{1}{\|x\|} \le \frac{1}{d} \implies \|f\| \le d.$$

取 y_n 满足 $f(y_n) = 1$ 并且

$$d \le ||y_n|| \le d + \frac{1}{n},$$

从而

$$f\left(\frac{y_n}{\|y_n\|}\right) = \frac{1}{\|y_n\|} \ge \frac{1}{d + \frac{1}{n}},$$

由 n 的任意性, $||f|| \ge \frac{1}{d}$.

题目2.1.5. 设 $f \in X^*$, 求证: $\forall \varepsilon > 0$, 存在 $x_0 \in X$, 使得 $f(x_0) = ||f||$, 且 $||x_0|| < 1 + \varepsilon$. **解答.** 取 x 满足 ||x|| = 1 且

$$||f|| - \delta < f(x) \le ||f||,$$

其中 $\delta = \frac{\|f\|\varepsilon}{1+\varepsilon}$. $\diamondsuit x_0 = \frac{\|f\|}{f(x)}x$,则

$$f(x_0) = ||f||, \quad ||x_0|| = \frac{||f||}{f(x)} < \frac{||f||}{||f|| - \delta} = 1 + \varepsilon.$$

△ **题目2.1.6.** 设 $T: X \to Y$ 是线性的, 令

$$N(T) \triangleq \{x \in X : Tx = 0\}.$$

- (1) 若 $T \in L(X, Y)$, 求证: N(T) 是 X 的闭线性子空间.
- (2) 问 N(T) 是 X 的闭线性子空间能否推出 $T \in L(X,Y)$?
- (3) 若 f 是线性泛函, 求证

$$f \in X^* \iff N(f)$$
 是闭线性子空间.

解答. (1) 设 $\{x_n\} \subset N(T), x_n \to x_0$, 则根据连续性以及 $Tx_n = 0$ 得 $Tx_0 = 0, x_0 \in N(T)$.

(2) 不能. 取赋范空间为
$$(l^1, \|\cdot\|_{\infty})$$
. 记 $f(x) = \sum_{n=1}^{\infty} x_n, x = \{x_n\}, a = (1, -1, 0, 0, \cdots)$.

又记

$$Tx = x - af(x)$$
.

f 显然是无界的, 因为 $f(x^{(m)}) = m$, 其中 $x_n^{(m)} = 1 (n \le m), x_n^{(m)} = 0 (n > m)$.

下面证明 N(T) 是闭线性子空间, 但 T 不是连续的.

先证 N(T) 是闭线性子空间. 事实上若 Tx = 0, 则由 $a_n = 0 (n > 2)$ 知 $x_n = (Tx)_n = 0 (n > 2)$. 并且 $(Tx)_1 = x_1 - a_1 f(x) = -x_2 = 0$, $(Tx)_2 = x_2 - a_2 f(x) = x_1 = 0$, 故 x = 0. 从而 $N(T) = \{0\}$, 为闭线性子空间.

再证 T 不是连续的. 为此, 反设 T 有界, 即存在 M>0 使得 $\|Tx\|_{\infty} \leq M\|x\|_{\infty}$, 从而

$$|f(x)| - 1 \le \max\{|x_1 - f(x)|, |x_2 + f(x)|\} \le 1, \forall x = \{x_n\} \in l^1, ||x||_{\infty} = 1.$$

但 f 是无界的矛盾.

(3) 只需证明充分性. 若 f 无界,则存在 $||x_n|| = 1$ 并且 $f(x_n) > n$. 令

$$y_n = \frac{x_n}{f(x_n)} - \frac{x_1}{f(x_1)},$$

则 $y_n \in N(f)$, 并且 $y_n \to -\frac{x_1}{f(x_1)} \not\in N(f)$, 矛盾.

2.2 Riesz 表示定理

在 Hilbert 空间中, (\cdot, y) 可以定义一个有界线性泛函, 过程如下: 设 X 是 Hilbert 空间, 任取 $y \in X$, 定义

$$f_y(x) := (x, y), \quad x \in X.$$

由于

$$|f_y(x) = |(x, y)|| \le ||x|| \cdot ||y|| \implies ||f_y|| \le ||y||,$$

并且

$$||f_y|| \ge \left| f_y \left(\frac{y}{||y||} \right) \right| = ||y||,$$

因此 $f_y \in X^*$ 并且 $||f_y|| = ||y||$.

定理 2.2.1: Riesz 表示定理

设 X 是 Hilbert 空间, $f \in X^*$. 则存在唯一的 $u \in X$ 使得

$$f(x) = (x, u), \forall x \in X \quad \mathbb{H} \quad ||f|| = ||u||.$$

反之, (\cdot, u) 定义了一个有界线性泛函 f_u 满足 $||f_u|| = ||u||$.

证明. 不妨设 $f \neq 0$, 则 Kerf 是 X 的真闭子空间. 则 $(Kerf)^{\perp} \neq \{0\}$. 取 $x_0 \in (Kerf)^{\perp}$ 且 $\|x_0\| = 1, f(x_0) \neq 0$. 任取 $x \in X$, 有

$$x = \frac{f(x)}{f(x_0)} x_0 + \left(x - \frac{f(x)}{f(x_0)} x_0\right) \in (\text{Ker } f)^{\perp} + \text{Ker } f.$$

则 $(x, x_0) = \frac{f(x)}{f(x_0)}$. 也即

$$f(x) = (x, \overline{f(x_0)}x_0), \quad \forall x \in X.$$

令 $u := \overline{f(x_0)}x_0$, 则 $f(x) = (x, u), x \in X$, 并且 ||f|| = ||u||.

下面证明唯一性. 若还存在 $u' \in X$ 使得 $f(x) = (x, u'), \forall x \in X, 则 (x, u - u') = 0, \forall x \in X, 从而 <math>u = u'$.

定理 2.2.2

设 X 是 Hilbert 空间, a(x,y) 是 X 上的共轭双线性函数 (关于 x 线性, 关于 y 共 轭线性), 且存在 M>0 使得

$$|a(x,y)| \le M||x|| \cdot ||y||, \quad \forall x, y \in X.$$

则存在唯一的 $A \in L(X)$ 使得 $a(x,y) = (x,Ay), \forall x,y \in X$. 并且

$$||A|| = \sup_{x,y \neq 0} \frac{|a(x,y)|}{||x|| \cdot ||y||}.$$

证明. $\forall y \in X$, $a(\cdot, y)$ 定义了 X 上的一个有界线性泛函:

$$f_{\mathcal{V}}(x) := a(x, y), \quad x, y \in X.$$

则由 Riesz 表示定理, 存在唯一的 $u_{\gamma} \in X$ 使得

$$f_y(x) = a(x, y) = (x, u_y)$$
 $\exists \|f_y\| = \|u_y\|.$

$$(x, A(\alpha y_1 + \beta y_2)) = a(x, \alpha y_1 + \beta y_2) = \overline{\alpha} a(x, y_1) + \overline{\beta} a(x, y_2)$$
$$= \overline{\alpha}(x, Ay_1) + \overline{\beta}(x, Ay_2) = (x, \alpha Ay_1 + \beta Ay_2), \quad \forall x \in X,$$

则 $A(\alpha y_1 + \beta y_2) = \alpha A y_1 + \beta A y_2$, A 是线性算子. 此外, 对 $y \in X$, 有

$$||Ay|| = ||u_y|| = ||f_y|| = \sup_{x \neq 0} \frac{|f_y(x)|}{||x||} = \sup_{x \neq 0} \frac{|a(x,y)|}{||x||} \le M||y||,$$

因此 $A \in L(X)$. A 的唯一性是显然的. ||A|| 的表达式从上式不难看出.

2.3 开映射定理及其推论

2.3.1 开映射定理

定理 2.3.1: 开映射定理

设 X 和 Y 都是 Banach 空间, $T \in L(X,Y)$. 若 T(X) 是 Y 中的第二纲集,则存在 c > 0 使得

$$B_Y(0,c) \subset TB_X(0,1)$$
.

证明. 由

$$X = \bigcup_{n=1}^{\infty} B_X(0, n), \quad TX = \bigcup_{n=1}^{\infty} TB_X(0, n)$$

以及 T(X) 是第二纲集知, 存在 $n_0 \in \mathbb{N}$ 使得 $\overline{B_X(0,n_0)}$ 包含内点, 记为 y_0 . 故存在 $\delta > 0$ 使得

$$B_Y(y_0,\delta) \subset \overline{TB_X(0,n_0)}$$
.

由于 $\overline{TB_X(0,n_0)}$ 是对称的, 因此还有 $y_0 \in \overline{TB_X(0,n_0)}$. 则

$$B_Y(0,\delta) = -y_0 + B_Y(y_0,\delta) \subset \overline{TB_X(0,n_0)} + \overline{TB_X(0,n_0)} \subset \overline{TB_X(0,2n_0)}.$$

从而

$$B_Y(0, \frac{\delta}{2n_0}) \subset \overline{TB_X(0, 1)}.$$

记 $r := \frac{\delta}{2n_0}$, 有 $B_Y(0,r) \subset \overline{TB_X(0,1)}$. 取 $c := \frac{r}{3}$, 下面证明

$$B_Y(0, \frac{r}{3}) \subset TB_X(0, 1).$$

由于 $B_Y(0,r) \subset \overline{TB_X(0,1)}$, 则 $\forall n \geq 1$,

$$B_V(0,3^{-n}r) \subset \overline{TB_V(0,3^{-n})}.$$

任取 $y \in B_Y(0, \frac{r}{3})$. 由于 $B_Y(0, \frac{r}{3}) \subset \overline{TB_X(0, 1)}$, 存在 $x_1 \in B_X(0, \frac{1}{3})$ 使得

$$||T - Tx_1|| < \frac{r}{3^2}.$$

上式即 $y-Tx_1\in B_Y(0,\frac{r}{3^2})$. 由于 $B_Y(0,\frac{r}{3^2})\subset\overline{TB_X(0,\frac{1}{3^2})},$ 则存在 $x_2\in B_X(0,\frac{1}{3^2})$ 使得

$$||y-Tx_1-Tx_2||<\frac{r}{3^3}.$$

上式即 $y-Tx_1-Tx_2\in B_Y(0,\frac{r}{3^3})$. 以此类推, 存在 $x_k\in B_X(0,3^{-k})$ 使得

$$\left\| y - \sum_{i=1}^{k} T x_i \right\| = \left\| y - T \left(\sum_{i=1}^{n} x_i \right) \right\| < \frac{r}{3^{k+1}}.$$

由于 $\sum_{i=1}^{\infty} \|x_i\| \le \sum_{i=1}^{n} 3^{-i} = \frac{1}{2} < 1$, 并且 X 是 Banach 空间, 存在 $x \in B_X(0,1)$ 使得

$$x = \sum_{i=1}^{\infty} x_i.$$

在
$$\left\| y - T\left(\sum_{i=1}^{k} x_i\right) \right\| < \frac{r}{3^k}$$
 中令 $k \to \infty$ 可得 $y = Tx$, 从而 $y \in TB_X(0,1)$.

喀 注

该定理还可以推出 T(X) = Y, 即 T 是满射, 这是因为

$$Y = \bigcup_{n=1}^{\infty} B_Y(0, n) \subset \bigcup_{n=1}^{\infty} TB_X(0, \frac{n}{c}) = TX.$$

推论 2.3.2

设 X,Y 是 Banach 空间, $T \in L(X,Y)$, 则要么 R(T) = Y, 要么 R(T) 是 Y 中的第一纲集.

定理 2.3.3

证明. 设 $U \not\in X$ 中的开集, 对 $\forall x \in U$, 下证 $Tx \not\in TU$ 的内点. 由于 U 是开集, 存在 $\delta > 0$ 使得

$$B_X(x,\delta) \subset U$$
.

由上一定理, 存在 c > 0 使得 $B_Y(0,c) \subset TB(0,1)$, 从而

$$B_Y(Tx,\delta c)=Tx+\delta B_Y(0,c\delta)\subset Tx+TB_X(0,\delta)=TB_X(x,\delta)\subset TU.$$

定理 2.3.4: Banach 逆算子定理

设 $X, Y \in Banach$ 空间, $T \in L(X, Y)$ 且 $T \in L(Y, X)$,

证明. 由于

$$B_Y(0,c) \subset TB_X(0,1)$$
,

则

$$T^{-1}B_Y(0,1) \subset B_X(0,c^{-1}),$$

上式即 $||T^{-1}|| \le c^{-1}$.

定理 2.3.5: 等价模定理

设 X 是线性空间, 其上有两个范数 $\|\cdot\|_1$ 和 $\|\cdot\|_2$ 使得 X 关于这两个范数都是 Banach 空间. 若 $\|\cdot\|_2$ 比 $\|\cdot\|_1$ 强, 则这两个范数等价.

证明. 由于 ||⋅||₂ 比 ||⋅||₁ 强,则存在 M>0 使得

$$||x||_1 \le M||x||_2, \quad \forall x \in X.$$

则单位映射 $I:(X,\|\cdot\|_2) \to (X,\|\cdot\|_1)$ 是有界线性算子, 并且是满射. 由 Banach 逆算子 定理, $I^{-1}:(X,\|\cdot\|_1) \to (X,\|\cdot\|_2)$ 是有界线性算子, 从而存在 M'>0 使得

$$\|x\|_2 \leq \|x\|_2, \quad x \in X,$$

故两个范数等价.

2.3.2 闭图像定理

定义 2.3.6: 乘积空间

设 X 与 Y 是赋范空间, 令

$$X\times Y=\{(x,y):x\in X,y\in Y\},$$

在其上定义范数

$$||(x, y)|| := ||x|| + ||y||, (x, y) \in X \times Y,$$

则称 $X \times Y$ 为 X 与 Y 的**乘积空间**.

定义 2.3.7: 线性算子的图像与闭算子

设 X, Y 是赋范空间, $T: D(T) \to Y$ 是线性算子, 称

 $G_T := \{(x, Tx) : x \in D(T)\}$

为 T 的 图像(Graph).

若 G_T 在 $X \times Y$ 中闭, 则称 T 是闭线性算子.

喀淮

 G_T 是 $X \times Y$ 的线性子空间.

定理 2.3.8: 闭算子等价定义

设 X,Y 是赋范空间, $T:D(T)\to Y$ 是线性算子, 则 T 是闭算子的充要条件为: $\forall \{x_n\}\subset D(T)$, 若 $x_n\to x$, $Tx_n\to y$, 都有 $x\in D(T)$ 以及 y=Tx.

证明. 该充要条件就是闭算子定义的等价论述.

定理 2.3.9: 闭图像定理

设 X,Y 是 Banach 空间, T 是从 X 到 Y 的闭算子, 则 $T \in L(X,Y)$.

证明. 由于 X 与 Y 都是 Banach 空间, 因此 $X \times Y$ 也是 Banach 空间, 而 G_T 是 $X \times Y$ 的闭子空间, 因此 G_T 本身还是 Banach 空间. 令 $T_x : G_T \to X$,

$$T_1(x,Tx)=x,\quad\forall (x,Tx)\in G_T.$$

则不难验证 T_1 是线性有界双射. 由 Banach 逆算子定理, $T_1^{-1} \in L(X, G_T)$. 从而对 $x \in X$, 有

$$||Tx|| \le ||(x, Tx)|| \le ||T_1^{-1}|| \cdot ||x||,$$

因此 $T \in L(X,Y)$.

喀洋

若 $D(T) \neq X$, 则 T 不一定有界.

例 2.3.10: 无界闭算子

设 $X = Y = C[0, 2\pi]$. 记

$$T := \frac{\mathrm{d}}{\mathrm{d}t} : C^1[0, 2\pi] \subset X \to Y.$$

若 $x_n \in C^1[0,2\pi]$, 且 $x_n \to x \in X$, $Tx_n \to y \in Y$, 则 x_n 一致收敛于 x, x'_n 一致收敛于 y, 根据数学分析知识不难得到 x 连续可导并且 y = x', 此即 $x = \epsilon D(T)$ 且 y = Tx. 从而 T 是闭算子.

但是 T 不是有界的, 因为若取 $x_n(t) = \sin nt$, 则 $||x_n|| = 1$, 但是

$$||Tx_n|| = n||\cos nt|| = n \rightarrow \infty.$$

2.3.3 共鸣定理

定理 2.3.11: 共鸣定理——一致有界定理

设 X 是 Banach 空间, Y 是赋范空间, $W \subset L(X,Y)$. 若

$$\sup_{A\in W}\|Ax\|<\infty,\quad\forall x\in X,$$

则 $\sup_{A \in W} ||A|| < \infty$.

证明. 方法一(等价模定理). 在 X 上定义范数

$$\|x\|_W = \|x\| + \sup_{A \in W} \|Ax\| < \infty, \quad \forall x \in X,$$

则 $\|\cdot\|_W$ 比 $\|\cdot\|_{\mathfrak{A}}$ 只需证明 $(X,\|\cdot\|_W)$ 构成 Banach 空间, 根据等价模定理就能得到结果.

设 $\|x_n - x_m\|_W \to 0$ $(m, n \to \infty)$, 则 $\|x_n - x_m\| \to \infty$ $(m, n \to \infty)$, 因此由 X 是 Ba-

nach 空间, 存在 $x \in X$ 使得 $||x - x_n|| \to 0$. 任取 $\varepsilon > 0$, 存在 N 使得

$$\sup_{A \in W} \|A(x_m - x_n)\| \le \|x_m - x_n\|_W < \varepsilon, \quad \forall m, n > N.$$

从而

$$||A(x-x_n)|| = \lim_{m \to \infty} ||A(x_m - x_n)|| \le \varepsilon, \quad \forall A \in W, n > N.$$

因此 $(X, \|\cdot\|_W)$ 的确是 Banach 空间.

方法二 (Baire 纲定理). 记

$$E_n = \{x \in X : ||Ax|| \le n, \forall A \in W\}, \quad n \ge 1,$$

显然每个 E_n 都是闭集, 并且 $X = \bigcup_{n=1}^{\infty} E_n$. 由 Baire 纲定理及 X 的完备性, 必存在某个 E_n 不是疏集, 也即 E_n 有内点 E_n 有内点 E_n 使得 E_n 由于每个 E_n 都是线性的, 不难看出 E_n 是对称的凸集, 从而 E_n 为 E_n 并且 E_n 是以 E_n 并且 E_n 是对称的凸集, 从而 E_n 为 E_n 并且 E_n 是以 E_n 为 E_n 和 E_n 是对称的凸集, 从而 E_n 为 E_n 并且 E_n 是以 E_n 为 E_n 和 E_n 是对称的凸集, 从而 E_n 为 E_n 和 E_n 是对称的凸集, 从而 E_n 为 E_n 和 E_n 和 E_n 是对称的凸集, 从而 E_n 和 E_n 和

$$||Ax|| \le n$$
, $\forall A \in W$, $\forall ||x|| < \delta$.

因此对任意的 $x \in X$ 且 $x \neq 0$,

$$\left\| A \left(\frac{\delta}{2\|x\|} x \right) \right\| \le n \implies \|Ax\| \le \frac{2n}{\delta} \|x\|, \quad \forall A \in W,$$

从而 $\sup_{A \in W} ||A|| \le \frac{2n}{\delta} < \infty$.

定理 2.3.12

设 X,Y 是 Banach 空间, $T_n \in L(X,Y)$. 则 $\{T_n\}$ 强收敛的充要条件是:

- (1) $\sup_{n>1} ||T_n|| < \infty;$
- (2) 存在 X 的稠密子集 G 使得 $\lim_{n\to\infty} T_n x$ 存在 $(\forall x \in G)$.

证明. 必要性: 若 T_n 强收敛于 $T \in L(X,Y)$, 则由 $T_n x \to T x (\forall x \in X)$ 时对每个 $x \in X$, $\sup_{n \ge 1} \|T_n x\| < \infty$, 根据共鸣定理 $\sup_{n \ge 1} \|A_n\| < \infty$. (2) 显然.

充分性: 记 (1) 中的上界为 M. 首先证明 $\{T_n x\}(x \in X)$ 是 Y 中的 Cauchy 列. 对任意的 $x \in X$ 以及 $\varepsilon > 0$,取 $x' \in G$ 使得 $\|x - x'\| < \frac{\varepsilon}{3M}$. 由 (2) 知 $\{T_n x'\}$ 是 Cauchy 列,则存在 N > 0 使得

$$||T_nx'-T_mx'||<\frac{\varepsilon}{3}, \quad \forall m,n>N.$$

从而对 m, n > N, 有

$$||T_n x - T_m x|| \le ||T_n (x - x')|| + ||T_n x' - T_m x'|| + ||T_m (x' - x)||$$

$$\le M \cdot \frac{\varepsilon}{3M} + \frac{\varepsilon}{3} + M \cdot \frac{\varepsilon}{3} = \varepsilon,$$

因此 $\{T_n x\}(x \in X)$ 是 Y 中 Cauchy 列. 由 Y 的完备性, $\{T_n x\}$ 收敛, 记其极限为 Tx. 则不难验证 $T \in L(X,Y)$ 且 T_n 强收敛于 T.

喀 注

该定理只有必要性的证明使用了 X 的完备性, 证明充分性只需 X 是赋范空间即可.

喀淮

在定理条件下, 若 T_n 强收敛于 $T \in L(X, Y)$, 则

$$||T|| \le \liminf_{n \to \infty} ||T_n||.$$

证明. 给定 $\varepsilon > 0$, 存在 $x_{\varepsilon} \in X$ 满足 $||x_{\varepsilon}|| = 1$ 并且

$$||T|| \le ||Tx_{\varepsilon}|| + \varepsilon.$$

由 $T_n x_{\varepsilon} \to T x_{\varepsilon}$ 可知存在 N 使得

$$||T_n x_{\varepsilon} - T x_{\varepsilon}|| < \varepsilon, \quad \forall n > N.$$

故对 n > N, 有

$$||Tx|| \le ||T_n x_{\varepsilon}|| + ||Tx_{\varepsilon} - T_n x_{\varepsilon}|| + \varepsilon \le ||T_n|| + 2\varepsilon,$$

在上式中对n取下极限即可.

定理 2.3.13

设 $X, Y \in Banach$ 空间, $\{T_n\} \subset L(X, Y)$ 且 $\forall x \in X$. 若 $\{T_n x\}$ 是 Y 中的 Cauchy 列, 则存在 $T \in L(X, Y)$ 使得 $T_n x \to T x (\forall x \in X)$.

证明. 由于 $\forall x \in X$, $\{T_n x\}$ 是 Cauchy 列, 故

$$\sup_{n\geq 1}\|T_nx\|<\infty,\quad\forall x\in X,$$

根据共鸣定理可得, $\sup_{n\geq 1} \|T_n\| < \infty$. 再由上一定理知,存在 $T \in L(X,Y)$ 使得 T_n 强收敛于 T.

2.3.4 成用

定理 2.3.14: Lax-Milgram 定理

设 X 是 Hilbert 空间, $a(\cdot,\cdot)$ 是 X 上的共轭双线性函数, 满足:

(1) 有界性: 存在 M>0 使得

$$|a(x, y)| \le M||x|| \cdot ||y||, \quad \forall x, y \in X;$$

(2) 强制性: 存在 $\delta > 0$ 使得

$$a(x, x) \ge \delta ||x||, \quad \forall x \in X.$$

则存在唯一的具有有界逆的有界线性算子 A 满足

$$a(x, y) = (x, Ay), \quad \forall x, y \in X,$$

并且 $||A^{-1}|| \leq \frac{1}{\delta}$.

证明. 由定理2.2.2, 存在唯一的有界线性算子 A 满足

$$a(x, y) = (x, Ay), \quad \forall x, y \in X.$$

若 $y \in X$ 使得 Ay = 0, 则 $a(y, y) = (y, Ay) = 0 \ge \delta \|y\| \Longrightarrow y = 0$, 因此 A 是单射. 下面证明 R(A) 是 X 的闭子空间. 设 $Ay_n \to z$, 则由

$$\delta \|y_m - y_n\|^2 \le a(y_m - y_n, y_m - y_n) = (y_m - y_n, A(y_m - y_n))$$

$$\le \|Ay_m - Ay_n\| \cdot \|y_m - y_n\|$$

知 $\delta \|y_m - y_n\| \le \|Ay_m - Ay_n\|$, 从而 $\{y_n\}$ 是 Cauchy 列. 根据 X 的完备性, $y_n \to y$, 从 而 $z = Ay \in R(A)$, R(A) 是闭的.

接下来证明 A 是满射. 由于 R(A) 是闭子空间, 只需证明 $R(A)^{\perp} = \{0\}$. 设 $x \perp R(A)$, 则 $x \perp Ax$, 从而

$$0 = (x, Ax) = a(x, x) \ge \delta ||x||^2,$$

故 x = 0, A 是满射.

由 Banach 逆算子定理以及 $A \in L(X)$ 是线性双射可知 A 存在有界逆. 在

$$\delta \|x\|^2 \le a(x, x) = (x, Ax) \le \|x\| \cdot \|Ax\|$$

中令 $x = A^{-1}y$ 可得

$$\delta \|A^{-1}y\| \le \|y\|, \quad \forall y \in X,$$

此即 $||A^{-1}|| \leq \frac{1}{\delta}$.

定理 2.3.15: Lax 等价定理

设 X, Y 为 Banach 空间, $T_n, T \in L(X, Y)$ 均为双射, 且 $T_n \to T$ (强收敛). 则

$$T_n^{-1} \to T^{-1} \quad \Longleftrightarrow \quad \sup_{n \ge 1} \left\| T_n^{-1} \right\| < \infty.$$

证明. 由 Banach 逆算子定理, T_n^{-1} , $T^{-1} \in L(Y, X)$.

必要性: 由共鸣定理不难得到.

充分性: 设 $\|T_n^{-1}\| \le M(\forall n \ge 1)$. 则 $\forall x \in X$, 记 $y = T^{-1}x$, 则

$$||T_n^{-1}x - T^{-1}x|| = ||T_n^{-1}x - T_n^{-1}(T_nT^{-1}x)||$$

$$\leq \sup_{n \geq 1} ||T_n^{-1}|| \cdot ||x - T_nT^{-1}x|| \leq M||Ty - T_ny|| \to 0,$$

因此 $T_n^{-1} \to T^{-1}$.

2.3.5 作业

题目2.3.1. 设 X 是 Banach 空间, X_0 是 X 的闭子空间. 映射 $\varphi: X \to X/X_0$ 定义为

$$\varphi: x \mapsto [x], \quad \forall x \in X.$$

求证 φ 是开映射.

解答. 显然 $\|\varphi(x)\| = \|[x]\|_0 \le \|x\|$ 且 φ 是满射, X/X_0 完备, 因此由开映射定理 φ 是开映射.

题目2.3.2. 设 X, Y 是 Banach 空间, 方程 Ux = y 对 $\forall y \in Y$ 有解 $x \in X$, 其中 $U \in L(X, Y)$, 并且存在 m > 0 使得

$$||Ux|| \ge m||x||, \quad \forall x \in X.$$

求证: U 有连续逆 U^{-1} 并且 $||U^{-1}|| \leq \frac{1}{m}$.

解答. U 显然是满射, 并且若 Ux = Uy, 则 $m||x - y|| \le ||Ux - Uy|| = 0 \Longrightarrow x = y$, 因此

U 是双射. 在 $||Ux|| \ge m||x||$ 中取 y = Ux 即得到

$$||U^{-1}y|| \le \frac{1}{m}||y||, \quad \forall y \in Y,$$

因此 U^{-1} 连续且 $||U^{-1}|| \le \frac{1}{m}$.

题目2.3.3. 设 H 是 Hilbert 空间, $A \in L(H)$, 并且存在 m > 0 使得

$$|(Ax, x)| \ge m||x||^2, \quad \forall x \in H.$$

求证: 存在 $A^{-1} \in L(H)$.

解答. 取 a(x,y) = (x,Ay) 为共轭双线性函数,满足

$$|a(x,y)| \le ||A|| \cdot ||x|| \cdot ||y||, \quad \forall x, y \in H,$$

由 Lax-Milgram 定理, 存在 $A^{-1} \in L(H)$.

- **题目2.3.4.** 设 X, Y 是赋范空间, $D \in X$ 的子空间, 并且 $A: D \to Y$ 是线性映射. 求证:
 - (1) 如果 A 连续且 D 是闭的, 那么 A 是闭算子;
 - (2) 如果 A 连续且是闭算子, 那么 Y 完备蕴含 D 闭;
 - (3) 如果 A 是单射的闭算子, 那么 A^{-1} 也是闭算子;
 - (4) 如果 X 完备, A 是单射的闭算子, R(A) 在 Y 中稠密, 并且 A^{-1} 连续, 那么 R(A) = Y.
 - **解答**. (1) 设 $D \ni x_n \to x$ 且 $Tx_n \to y$, 则由 D 是闭集知 $x \in D$, 由 T 的连续性知 $Tx_n \to Tx = y$, 故 A 是闭算子.
 - (2) 设 $D\ni x_n\to x$, 由 T 连续知 Tx_n 为 Y 中 Cauchy 列, 因此收敛于 $y\in Y$, 而 T 还是闭算子, 因此 $x\in D$, D 为闭集.
 - (3) 设 $A(D) \ni Ax_n \to y$ 并且 $A^{-1}(Ax_n) \to x \in X$, 则 $D \ni x_n \to x$ 且 $Ax_n \to y$, 由闭 算子定义, $x \in D$, y = Ax, 因此 $y \in A(D)$, $x = A^{-1}y$, A^{-1} 也是闭算子.
 - (4) 由于 A 是单射的闭算子, 因此由 (3) A^{-1} 也是闭算子. 而 A^{-1} 还是连续的, 由 (2), $R(A) = \overline{R(A)} = Y$.
- ▲ 题目2.3.5. 用等价范数定理证明: $(C[0,1], \|\cdot\|_1)$ 不是 Banach 空间, 其中 $\|f\|_1 = \int_0^1 \left|f(t)\right| \mathrm{d}t$, $\forall f \in$

C[0,1].

解答. 反设 C[0,1] 关于范数 $\|\cdot\|_1$ 构成 Banach 空间, 而其关于 $\|\cdot\|_{\infty}$ 也构成 Banach 空间, 并且 $\|\cdot\|_{\infty}$ 显然比 $\|\cdot\|_1$ 强, 因此由等价范数定理这两个范数等价, 但是

$$\left\| (1-nx)\chi_{[0,\frac{1}{n}]}(x) \right\|_{\infty} = n, \quad \left\| (1-nx)\chi_{[0,\frac{1}{n}]}(x) \right\|_{1} = \frac{1}{2},$$

矛盾.

- ▲ 题目2.3.6. (Gelfand 引理) 设 X 是 Banach 空间, $p: X \to \mathbb{R}$ 满足
 - (1) $p(x) \ge 0$, $\forall x \in X$;
 - (2) $p(\lambda x) = \lambda p(x), \quad \forall \lambda > 0, x \in X;$
 - (3) $p(x_1 + x_2) \le p(x_1) + p(x_2), \forall x_1, x_2 \in X$;
 - (4) $x_n \to x \Longrightarrow \liminf_{n \to \infty} p(x_n) \ge p(x)$.

求证: 存在 M > 0 使得 $p(x) \le M||x||, \forall x \in X$.

解答.

方法一(等价模定理)注意到

$$p(\alpha x) \le p(\operatorname{Re} \alpha x) + p(\operatorname{Im} \alpha i x) \le \max\{p(\pm x) + p(\pm i x)\}, \quad \forall x \in X, |\alpha| = 1,$$

因此可以定义范数

$$||x||_p = ||x|| + \sup_{|\alpha|=1} p(\alpha x), \quad \forall x \in X.$$

由等价模定理, 只需证明 X 关于 $\|\cdot\|_p$ 完备. 设 $\{x_n\}$ 是 X 上关于 $\|\cdot\|_p$ 的 Cauchy 列. 由于 $\|\cdot\|_p$ 比 $\|\cdot\|_p$ 出 $\|\cdot\|_p$ 也是 $\|\cdot\|_p$ 的 Cauchy 列, 再根据 X 的完备性, $\{x_n\}$ 收敛于 x. 从而

$$|p(x)-p(x_n)| \le p(x-x_n) \le \liminf_{m\to\infty} p(x_m-x_n) \to 0, \quad n\to\infty,$$

因此 $\{x_n\}$ 依范数 $\|\cdot\|_p$ 收敛于 x.

方法二.(Baire 纲定理) 记

$$E_n = \{x \in X : p(x) \le n \mid \exists p(-x) \le n\},$$

则 $X = \bigcup_{n=1}^{\infty} E_n$. 设 $x_n \to x$, 则

$$\begin{cases} p(x) \le \liminf_{n \to \infty} p(x_n) \le n \\ p(-x) \le \liminf_{n \to \infty} p(-x_n) \le n \end{cases} \implies x \in E_n,$$

故每个 E_n 都是闭集. 由 Baire 纲定理及 X 的完备性, 存在 E_n 不是疏集, 即存在 $B(x_0,r) \subset E_n$. 根据 E_n 的定义, $B(-x_0,r) \subset E_n$, 而 E_n 显然还是一个凸集, 因此 $B(0,r) = \frac{1}{2}B(x_0,r) + \frac{1}{2}B(-x_0,r) \subset E_n$. 任取 $x \neq 0$, 有

$$p\left(\frac{rx}{2\|x\|}\right) \le n \implies p(x) \le \frac{2n}{r}\|x\|,$$

取 $M = \frac{2n}{r}$ 即可.

题目2.3.7. 设 X 和 Y 是 Banach 空间, $\{A_n\} \subset L(X,Y)$. 又对 $\forall x \in X$, $\{A_nx\}$ 在 Y 中收敛. 求证: 存在 $A \in L(X,Y)$ 使得

$$A_n x \to A x$$
, $\forall x \in X$ \mathcal{H} $A \parallel A \parallel \le \liminf_{n \to \infty} \|A_n\|$.

解答. 记 $Ax = \lim_{n \to \infty} A_n x (\forall x \in X)$ 为线性算子. 由于 $A_n x$ 收敛, 因此 $\sup_{n \ge 1} \|A_n x\| < \infty$ ($\forall x \in X$), 由共鸣定理, $\liminf_{n \to \infty} \|A_n\| \le \sup_{n \ge 1} \|A_n\| < \infty$. 从而

$$\|Ax\| = \lim_{n \to \infty} \|A_n x\| \le \liminf_{n \to \infty} \|A_n\| \cdot \|x\|, \quad \forall x \in X.$$

题目2.3.8. 设 $1 并且 <math>\frac{1}{p} + \frac{1}{q} = 1$. 如果序列 $\{\alpha_k\}$ 使得对 $\forall x = \{x_k\} \in l^p$ 保证 $\sum_{k=1}^{\infty} \alpha_k x_k$ 收敛. 求证: $\{\alpha_k\} \in l^q$. 又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k x_k$,求证: f 作为 l^p 上的线性泛函,有

$$||f|| = \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{\frac{1}{q}}.$$

解答. 记 $f_n(x) = \sum_{k=1}^n \alpha_k x_k \in (l^p)^*$. 由于对每个 $x \in l^p$, $f_n(x) \to f(x)$, 因此 $\sup_{n \ge 1} |f_n(x)| < \infty$, 根据共鸣定理, 存在 M > 0 使得 $||f_n|| \le M(\forall n \ge 1)$.

又记 x 满足 $x_k = \text{sign}(\overline{\alpha}_k)|\alpha|^{q-1}(\forall k \ge 1), x^{(n)} \in l^p$ 为前 n 项与 x 相等, 其余项均为 0 的点. 因此

$$f(x^{(n)}) = \sum_{k=1}^{n} |\alpha_k|^q = f_n(x^{(n)}) \le M \|x^{(n)}\|_p = M \left(\sum_{k=1}^{n} |\alpha_k|^q\right)^{\frac{1}{p}},$$

整理得

$$\left(\sum_{k=1}^{n}|\alpha_{k}|^{q}\right)^{\frac{1}{q}}\leq M,\quad\forall\,n\geq1,$$

令 $n \to \infty$ 即得到 $\alpha \in l^q$. 由

$$f(x) = \|\alpha\|_q^q = \|\alpha\|_q \cdot \|x\|_p, \quad |f(y)| \le \|\alpha\|_q \cdot \|y\|_p, \quad \forall y \in l^p$$

得 $\|f\| = \|\alpha\|_q$.

题目2.3.9. 如果序列 $\{\alpha_k\}$ 对 $\forall x = \{x_k\} \in l^1$, 保证 $\sum_{k=1}^{\infty} \alpha_k x_k$ 收敛, 求证: $\{\alpha_k\} \in l^{\infty}$. 又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k x_k$ 作为 l^1 上的线性泛函, 求证:

$$||f|| = \sup_{k \ge 1} |\alpha_k|.$$

解答. 记 $f_n = \sum_{k=1}^n \alpha_k x_k \in (l^1)^*$. 由于对每个 $x \in l^1$, $f_n(x) \to f(x)$, 因此 $\sup_{n \ge 1} |f_n(x)| < \infty$, 根据共鸣定理, 存在 M > 0 使得 $||f_n|| \le M(\forall n \ge 1)$. 又记 $e^{(n)}$ 为第 n 项为 1 其余均为 0 的点, 因此

$$|f(e^{(n)})| = |\alpha_n| = f_n(e^{(n)}) \le M ||e^{(n)}||_1 = M, \quad \forall n \ge 1,$$

在上式左侧对 n 取上界得 $\alpha \in l^{\infty}$. 再由

$$|f(x)| \le ||\alpha||_{\infty} \cdot ||x||_1, \quad \forall x \in l^1,$$

以及存在 $\{n_k\}$ 使得

$$\lim_{k\to\infty}\left|\alpha_{n_k}\right|=\|\alpha\|_{\infty}\Longrightarrow\left|f(\alpha_{n_k}e_{n_k})\right|\to\|\alpha\|_{\infty}^2,$$

 $\mathfrak{A} \|f\| = \|\alpha\|_{\infty}.$

△ 题目2.3.10. 用 Gelfand 引理证明共鸣定理.

解答. 设 X 为 Banach 空间, Y 为赋范空间, $W \subset L(X,Y)$ 满足

$$\sup_{A \in W} \|Ax\| < \infty, \quad \forall x \in X.$$

令 $p(x) = \sup_{A \in W} ||Ax||$,则 p 显然满足 Gelfand 引理的条件 (1)(2)(3). 对 (4), 反设存在 $x_n \to x_0$ 但 $p(x_0) > \alpha > \liminf_{n \to \infty} p(x_n)$. 由下极限定义, 存在 $\{x_n\}$ 的子列 $\{y_n\}$ 使得

$$p(x_0) > \alpha \ge p(y_n), \quad \forall n \ge 1.$$

因为 $p(x_0) > \alpha$, 存在 $A_0 \in W$ 使得 $||A_0x_0|| > \alpha$, 从而

$$||A_0x_0|| > \alpha \ge p(y_n) \ge ||A_0y_n||, \quad \forall n \ge 1,$$

在上式中令 $n \to \infty$, 得到 $\|A_0x_0\| > \alpha \ge \|A_0x_0\|$, 矛盾. 因此 p 满足 Gelfand 引理所有条件, 故存在 M > 0 使得 $p(x) \le M\|x\|$, $\forall x \in X \implies \|A\| \le M$, $\forall A \in W$.

题目2.3.11. 设 X, Y 是 Banach 空间, $A \in L(X, Y)$ 是满射. 求证: 如果在 $Y 中 y_n \to y_0$, 则存在 C > 0 与 $x_n \to x_0$ 使得 $Ax_n = y_n$ 并且 $\|x_n\| \le C \|y_n\|$.

解答. 记 $N(A) = \{x \in X : Ax = 0\}$ 为闭子空间, $T : X/N(A) \to Y$, $[x] \to Ax$, 是良定义的双射, 因为 $[x] = [y] \iff [x-y] = N(A) \iff x-y \in N(A) \iff A(x-y) = 0 \iff Ax = Ay$. T 还是连续的, 因为

$$\|T[x]\| = \inf_{Ay = Ax} \|Ay\| \le \|A\| \inf_{y \in [x]} \|y\| = \|A\| \cdot \|[x]\|_0.$$

由 Banach 逆算子定理, T^{-1} 连续, 从而对 $Ax_0 = y_0$, 有

$$\inf_{Ax=y_n} \|x - x_0\| \le \|T^{-1}\| \cdot \|y_n - y_0\| \to 0,$$

存在 x_n 使得 $Ax_n = y_n$ 且

$$||x_n - x_0|| \le 2 \inf_{Ax = y_n} ||x - x_0|| \le 2 ||T^{-1}|| \cdot ||y_n - y_0|| \to 0,$$

因此 $x_n \to x_0$. 若 $y_0 = 0$, 取 $C = 2 \| T^{-1} \|$. 若 $y_0 \neq 0$, 存在 $\varepsilon_0 > 0$ 使得对充分大 (不妨设是所有) 的 n 有 $\| y_n \| > \varepsilon_0$. 因此

$$\begin{split} \|x_n\| & \leq \|x_n - x_0\| + \|x_0\| \leq 2 \|T^{-1}\| \cdot \|y_n - y_0\| + \|x_0\| \\ & \leq 2 \|T^{-1}\| \cdot \|y_n\| + 2 \|T^{-1}\| \cdot \|y_0\| + \|x_0\| \\ & \leq \left(2 \|T^{-1}\| + \frac{2 \|T^{-1}\| \cdot \|y_0\| + \|x_0\|}{\varepsilon}\right) \|y_n\|, \quad \forall n \geq 1. \end{split}$$

- **题目2.3.12**. 设 X, Y 是 Banach 空间, T 是闭线性算子, $D(T) \subset X, \mathbb{R}(T) \subset Y, N(T) \triangleq \{x \in X : Tx = 0\}$. 求证:
 - (1) N(T) 是闭线性子空间.
 - (2) 若 $N(T) = \{0\}$, 则 R(T) 在 Y 中闭的充要条件是: 存在 $\alpha > 0$ 使得

$$||x|| \le \alpha ||Tx||, \quad \forall x \in D(T).$$

(3) R(T) 在 Y 中闭的充要条件是: 存在 $\alpha > 0$ 使得

$$d(x,N(T)) \leq \alpha \|Tx\|, \quad \forall x \in D(T).$$

解答. (1) 设 $Tx_n = 0$ 且 $x_n \to x$, $Tx_n \to Tx$, 因此 Tx = 0, $x \in N(T)$, N(T) 是闭线性子空间.

(2) 由于 $N(T) = \{0\}$, 因此 T 是单射, $\|x\| \le \alpha \|Tx\| (\forall x \in D(T)) \iff \|T^{-1}y\| \le \beta \|T^{-1}y\|$

 $\alpha \|y\| (\forall y \in R(D)) \iff T^{-1}$ 连续 $\stackrel{T^{-1} \to R}{\Longleftrightarrow} R(T)$ 闭.

(3) 令 \tilde{T} : $D(T)/N(T) \to R(T)$, $[x] \mapsto Tx$ 为良定义的双射, 且 $R(\tilde{T}) = R(T)$, 因此由 (2), R(T) 在 Y 中闭的充要条件是: 存在 $\alpha > 0$ 使得

$$d(x, N(T)) = \|[x]\|_0 \le \alpha \|\tilde{T}[x]\| = \alpha \|Tx\|, \quad \forall x \in D(T).$$

- **题目2.3.13**. 设 a(x, y) 是 Hilbert 空间 H 上的一个共轭双线性泛函, 满足
 - (1) 存在 M > 0 使得 $|a(x,y)| \le M||x|| \cdot ||y||$, $\forall x, y \in H$;
 - (2) 存在 $\delta > 0$ 使得 $|a(x,x)| \ge \delta ||x||^2$, $\forall x \in H$.

求证: $\forall f \in H^*$, 存在唯一的 $y_f \in H$ 使得

$$a(x, y_f) = f(x), \quad \forall x \in H,$$

而且 y_f 连续地依赖于 f.

解答. 由 Lax-Milgram 定理, 存在唯一有连续逆的 $A \in L(H)$ 使得

$$a(x, y) = (x, Ay), \quad \forall x, y \in H.$$

由 Riesz 表示定理, 存在唯一的 z_f , $||z_f|| = ||f||$ 且

$$f(x) = (x, z_f) = a(x, A^{-1}z_f), \quad \forall x \in H,$$

若 ||f|| → 0, 则 $||z_f||$ → 0, $||y_f||$ → 0, 因此 $|y_f||$ 连续地依赖于 |f|.

2.4 Hahn-Banach 定理

2.4.1 线性泛函的延拓定理

定义 2.4.1: 延拓

设 X 为线性空间, G_1 , G_2 均为 X 的子空间, f_1 , f_2 分别是这两个子空间上的线性 泛函. 若

- (1) $G_1 \subset G_2$;
- (2) $f_2(x) = f_1(x), \forall x \in G_1$.

则称 f_2 是 f_1 在 G_2 上的**延拓**.

定义 2.4.2: 次线性泛函

设 X 是线性空间, $p:X\to \mathbb{R}$ 满足:

- (1) 正齐次性: $p(\lambda x) = \lambda p(x), \forall x \in X, \lambda > 0$.
- (2) 次可加性: $p(x+y) \le p(x) + p(y), \forall x, y \in X$.

则称 $p \in X$ 上的**次线性泛函**.

定理 2.4.3: 实线性空间 Hahn-Banach 定理

设 X 是实线性空间, p 是定义在 X 上的次线性泛函, X_0 是 X 的实线性子空间, f_0 是 X_0 上的实线性泛函并满足 $f_0(x) \leq p(x) (\forall x \in X_0)$. 那么 X 上必有一个实线性泛函 f, 满足:

- (1) $f(x) \le p(x)$ ($\forall x \in X$) (受 p 控制条件);
- (2) $f(x) = f_0(x)$ ($\forall x \in X_0$) (延拓条件).

喀 注

该定理的证明使用了 Zorn 引理, Zorn 引理及其背景知识见附录A.5的定理A.5.4.

在证明定理2.4.3之前, 先证明如下引理:

引理 2.4.4

在定理2.4.3的条件下,若 X_0 还是X的真子空间,则任取 $x_0 \in X \setminus X_0$,存在 $\mathbb{R} x_0 \oplus X_0$ 上的线性泛函 f 使得

$$f(\lambda x_0 + x) \le p(\lambda x_0 + x) (\forall x \in X_0, \lambda \in \mathbb{R})$$
 If $f|_{X_0} = f_0$.

证明. 注意到

$$\begin{split} f_0(x) + f_0(y) &= f_0(x+y) \leq p(x+y) \leq p(x-x_0) + p(x_0+y), \\ \Longrightarrow f_0(x) - p(x-x_0) \leq -f_0(y) + p(x_0+y), \quad \forall x, y \in X_0 \\ \Longrightarrow \exists \alpha \in \mathbb{R}, \sup_{x \in X_0} \Big(f_0(x) - p(x-x_0) \Big) \leq \alpha \leq \inf_{y \in X_0} \Big(-f_0(y) + p(x_0+y) \Big). \end{split}$$

则依

$$f(\lambda x_0 + x) \triangleq \lambda \alpha + f_0(x), \quad \forall x \in X_0, \lambda \in \mathbb{R}$$

定义的线性泛函 f 满足条件, 因为

$$\begin{cases} f(\lambda x_0 + x) = \lambda \left(\alpha + f\left(\frac{x}{\lambda}\right)\right) \le \lambda \cdot p\left(x_0 + \frac{x}{\lambda}\right) = p(\lambda x_0 + x), & \forall \lambda > 0, \\ f(\lambda x_0 + x) = -\lambda \left(-\alpha + f\left(-\frac{x}{\lambda}\right)\right) \le -\lambda \cdot p\left(-\frac{x}{\lambda} - x_0\right) = p(\lambda x_0 + x), & \forall \lambda < 0. \end{cases}$$

定理2.4.3的证明. 在集合

$$U = \left\{ (E, f) \left| \begin{array}{c} E \subset X \\ f \middle|_{X_0} = f_0 \\ f(x) \leq p(x) (\forall x \in E) \end{array} \right. \right\}$$

上定义偏序关系如下:

$$(E_1, f_1) \preceq (E_2, f_2) \iff E_1 \subset E_2 \perp f_2|_{E_1} = f_1.$$

任意全序集 $\{(E_{\alpha}, f_{\alpha}) \mid \alpha \in A\}$ 都有上界

$$(E^*, f^*), \quad \sharp \mapsto E^* = \bigcup_{\alpha \in A} E_\alpha, f^*(x) = f_\alpha(x), \forall x \in E_\alpha.$$

因此 U 存在极大元, 记为 (E,f). 下面证明 E=X. 反设 $E \subseteq X$, 则取 $x_0 \in X \setminus E$, 由引理2.4.4, 在 $\mathbb{R}x_0 \oplus E$ 上存在定义域更大的线性泛函, 与 (E,f) 是极大元矛盾, 因此 E=X.

喀洋

若 X 是复线性空间, f 是其上的 (复) 线性泛函. 若将其分解为实部和虚部: $f(x) = \varphi(x) + i\psi(x)$. 则由 f(ix) = if(x) 可得 $\varphi(ix) + i\psi(ix) = i\varphi(x) - \psi(x)$, 从而 $\psi(x) = -\varphi(ix)$, 故

$$f(x) = \varphi(x) - i\varphi(ix), \quad \forall x \in X.$$

此外,由 $\varphi = \frac{f+\overline{f}}{2}$, $\psi = \frac{f-\overline{f}}{2i}$ 不难得出 φ 和 ψ 是实线性泛函. 据此可以得到复线性空间的 Hahn-Banach 定理.

定理 2.4.5: 复线性空间 Hahn-Banach 定理

设 X 是复线性空间, p 是 X 上的半范数 (即去掉条件 $\|x\|=0 \iff x=0$ 的范数). X_0 是 X 的线性子空间, f_0 是 X_0 上的线性泛函, 并满足 $|f_0(x)| \le p(x), \forall x \in X_0$, 那么 X 上必有一个线性泛函 f 满足:

- (1) $|f(x)| \le p(x) \quad (\forall x \in X);$
- (2) $f(x) = f_0(x) \quad (\forall x \in X_0).$

喀 注

对实线性空间显然也有此结论,因为若 $f(x) \le p(x) (\forall x \in X)$,则对 f(x) < 0,有 $|f(x)| = f(-x) \le p(-x) = p(x)$.

证明. 记 $u_0 = \text{Re } f_0$ 为 X_0 上的实线性泛函,则由实 Hahn-Banach 定理,存在 X 上的实线性泛函 u 使得

$$u(x) \le p(x) (\forall x \in X), \quad u\big|_{X_0} = u_0.$$

令 $f(x) = u(x) - iu(ix) (\forall x \in X)$, 不难验证 $f|_{X_0} = f_0$, 并且 f 是 X 上的复线性泛函. 此

外, 任取 $x \in X$, 记 $\alpha = \text{sign } f(x)$, 则

$$|f(x)| = \operatorname{sign}(\overline{f(x)}) \cdot f(x) = \alpha f(x) = f(\alpha x) = u(\alpha x) \le p(\alpha x) = p(x),$$

其中 $f(\alpha x) = u(\alpha x)$, 因为 $f(\alpha x) = |f(x)| \in \mathbb{R}$.

定理 2.4.6: 赋范空间 Hahn-Banach 定理

设 X 是赋范空间, X_0 是 X 的线性子空间, f_0 是定义在 X_0 上的有界线性泛函, 则在X上必存在有界线性泛函f满足:

- (1) $f|_{X_0} = f_0$ (延拓条件),

(2) $\|f\| = \|f_0\|_{X_0}$ (保范条件), 其中 $\|f\|_{X_0} = \sup_{x \in X_0} \frac{|f_0(x)|}{\|x\|}$ 为 f_0 在 X_0 上的范数.

证明. 记 $p(x) = \|f_0\|_{X_0} \cdot \|x\|, \forall x \in X$, 则由线性空间 Hahn-Banach 定理, 存在 X 上的有 界线性泛函满足 $f|_{X_0} = f_0$ 且 $|f(x)| \le p(x) = ||f_0||_{X_0} \cdot ||x||, \forall x \in X$. 因此 $||f|| \le ||f_0||_{X_0}$. 并且由

$$||f|| = \sup_{x \in X} \frac{|f(x)|}{||x||} \ge \sup_{x \in X_0} \frac{|f(x)|}{||x||} = \sup_{x \in X_0} \frac{|f_0(x)|}{||x||} = ||f_0||_{X_0}$$

知 $||f|| = ||f_0||_{X_0}$.

推论 2.4.7

设 X 是赋范空间, 任取 $x_0 \in X \setminus \{0\}$, 必存在 $f \in X^*$ 使得

证明. 令 $f_0(\lambda x_0) = \lambda \|x_0\| (\forall \lambda \in \mathbb{K})$ 是定义在 $\mathbb{K} x_0$ 上的有界线性泛函, 满足 $\|f_0\|_{\mathbb{K} x_0} = 1$. 由定理2.4.6知, 存在 $f \in X^*$ 使得

取 $\lambda = 1$ 即得 $f(x_0) = ||x_0||$.

推论 2.4.8

设 x_1, x_2 是赋范空间 X 上不同的两点,则存在 $f \in X^*$ 使得 $f(x_1) \neq f(x_2)$. 也即 若 $f(x_1) = f(x_2)(\forall f \in X^*)$,则 $x_1 = x_2$.

喀淮

该推论可以用于判断赋范空间中的点 x 是否为零元: 只需验证是否有 $f(x) = 0, \forall f \in X^*$.

证明. 在推论2.4.7中取 $x_0 = x_1 - x_2$, 则

$$f(x_1) - f(x_2) = f(x_1 - x_2) = ||x_1 - x_2|| \neq 0,$$

满足条件.

定理 2.4.9

设 X 是赋范空间, M 是 X 的线性子空间. 若 $x_0 \in X$ 且

$$d = \rho(x_0, M) > 0,$$

则必存在 $f \in X^*$ 使得

$$f|_{M} = 0$$
, $f(x_0) = d$ \mathbb{H} $||f|| = 1$.

证明. 在定理2.4.6中取 $X_0 = \mathbb{K} x_0 \oplus M$,

$$f_0(\lambda x_0 + y) = \lambda d(\forall \lambda \in \mathbb{K}, y \in M),$$

则得到的 f 满足 $f|_{M} = 0, f(x_0) = d$. 此外,

$$||f_0||_{X_0} = \sup_{\substack{\lambda \in \mathbb{K} \\ y \in M}} \frac{|\lambda|d}{||\lambda x_0 + y||} = \sup_{z \in M} \frac{d}{||x_0 - z||} = \frac{d}{\inf_{z \in M} ||x_0 - z||} = \frac{d}{d} = 1,$$

因此 ||f|| = 1.

推论 2.4.10

设M是赋范空间X的子集, $x_0 \in X$.则

$$x_0 \in \overline{\operatorname{span} M}$$

的充要条件是: 任取 $f \in X^*$, 若 $f|_{M} = 0$, 则 $f(x_0) = 0$.

证明. 必要性: 若 $x_0 \in \overline{\text{span}M}$, 则存在 $\{x_n\} \subset M$ 和 $\{\alpha_n\} \subset \mathbb{K}$, 使得

$$x_0 = \sum_{n=1}^{\infty} \alpha_n x_n = \lim_{N \to \infty} \sum_{n=1}^{N} \alpha_n x_n.$$

任取 $f \in X^*$ 且 $f|_M = 0$, 有

$$f(x_0) = \lim_{N \to \infty} f\left(\sum_{n=1}^N \alpha_n x_n\right) = \lim_{N \to \infty} \sum_{n=1}^N \alpha_n f(x_n) = 0.$$

充分性: 反设 $x_0 \notin \overline{\text{span}M}$, 则由 $\overline{\text{span}M}$ 是闭子空间,

$$d = \rho(x_0, M) \ge \rho(x_0, \overline{\operatorname{span} M}) > 0.$$

由定理2.4.9, 存在 $f \in X^*$ 使得 $f|_M = 0$ 但 $f(x_0) = d \neq 0$, 矛盾.

喀 注

根据上面推论不难得到: 设 M 是赋范空间 X 的稠密子集, 若 $f \in X^*$ 满足 $f|_M = 0$, 则 $f \equiv 0$.

2.4.2 几何形式——凸集分离定理

定义 2.4.11: Minkowski 泛函

设 X 为线性空间, C 是 X 中的凸集, 则称

$$p(x) = \inf \left\{ \lambda > 0 : \frac{x}{\lambda} \in C \right\}, \quad x \in X$$

为 C 的Minkowski 泛函.

定义 2.4.12: 超平面

设 X 为线性空间, f 是 X 上的线性泛函, $c \in \mathbb{K}$, 称集合

$$H_f^c = \left\{ x \in X : f(x) = c \right\}$$

为 X 中的超平面.

本节接下来的内容若无特别说明只考虑数域 ≤ = ℝ 的情况.

引理 2.4.13

设 X 是赋范空间, f 是 X 上的线性泛函, 则 f 有界的充要条件为: 存在 $c \in \mathbb{N}$ 使 f 是闭集.

证明. 由2.1的题目2.1.6知 f 有界当且仅当 N(f) 闭, 而 H_f^c 是 N(f) 的平移, 因此 N(f) 闭当且仅当 H_f^c 闭.

定义 2.4.14: 分离与严格分离

设 A,B 是实赋范空间 X 中的凸集, $f \in X^*$. 若存在 $\alpha \in \mathbb{R}$ 使得

$$f(x) \le \alpha \le f(y), \quad \forall x \in A, y \in B,$$

则称超平面 H_f^{α} 分离 A 与 B.

若还存在 $\varepsilon > 0$ 使得

$$f(x) \leq \alpha - \varepsilon < \alpha + \varepsilon \leq f(y), \quad \forall \, x \in A, \, y \in B,$$

则称超平面 H_f^{α} 严格分离 A 与 B.

定理 2.4.15: Minkowski 泛函的性质

设X是赋范空间,C是X中包含0的开凸子集.则C的Minkowski泛函满足

- (1) $p(\alpha x) = \alpha p(x), \forall x \in X, \alpha > 0.$
- (2) $p(x+y) \le p(x) + p(y), \forall x, y \in X$.
- (3) 存在 M > 0 使得 $p(x) \le M||x||, \forall x \in X$.
- (4) $C = \{x \in X : p(x) < 1\}.$

证明. (1) 只需注意到对 $x \in X$, 有

$$p(\alpha x) = \inf\left\{\lambda > 0: \frac{\alpha x}{\lambda} \in C\right\} = \alpha \inf\left\{t > 0: \frac{x}{t} \in C\right\} = p(x).$$

(2) 对 $x, y \in X$, 任取 $\varepsilon > 0$, 都有

$$\frac{x}{p(x) + \varepsilon}, \frac{y}{p(y) + \varepsilon} \in C$$

$$\Rightarrow \frac{x + y}{p(x) + p(y) + 2\varepsilon}$$

$$= \frac{p(x) + \varepsilon}{p(x) + p(y) + 2\varepsilon} \cdot \frac{x}{p(x) + \varepsilon} + \frac{p(y) + \varepsilon}{p(x) + p(y) + 2\varepsilon} \cdot \frac{y}{p(y) + \varepsilon} \in C,$$

故 $p(x+y) \le p(x) + p(y) + 2\varepsilon$.

- (3) 由 $0 \in C$ 且 C 是开集, 则存在 r > 0 使得 $\overline{B}(0,r) \subset B(0,2r) \subset C$. 故对 $x \in X$ 都有 $\frac{rx}{\|x\|} \in B(0,r) \subset C$, 从而 $p(x) \leq \frac{1}{r} \|x\|$, $\forall x \in X$.
- (4) 若 p(x) < 1, 则根据 Minkowski 泛函的定义, $x = \frac{x}{1} \in C$. 若 $x \in C$, 则由 C 是开集 知存在 $\delta > 0$ 使得 $B(x,\delta) \subset C$. 从而存在 $\lambda_0 > 0$ 使得 $(1+\lambda_0)x \in C$, 因此 $p(x) \le \frac{1}{1+\lambda_0} < 1$.

引理 2.4.16

设 X 是实赋范空间, C 是非空开凸子集, $x_0 \in X \setminus C$. 则存在 $f \in X^*$ 使得

$$f(x) < f(x_0), \forall x \in C.$$

也即 $H_f^{f(x_0)}$ 分离 C 和 x_0 .

证明. 不妨设 $0 \in C$, 否则取 $c \in C$, 考虑 C - c 和 $x_0 - c$ 即可. 在子空间 $\mathbb{R}x_0$ 上定义线性泛函

$$f_0(\alpha x_0) = \alpha, \quad \forall \alpha \in \mathbb{R}.$$

则 $f_0(\alpha x_0) = \alpha \le \alpha p(x_0) = p(\alpha x_0), \forall \alpha \in \mathbb{R}$. 由 Hahn-Banach 定理, 存在 X 上的线性泛函 f 满足

$$f|_{\mathbb{R}x_0} = f_0 \quad \coprod \quad f(x) \le p(x), \quad \forall x \in X.$$

由上一定理知存在 M>0 使得

$$f(x) \le p(x) \le M||x||, \quad \forall x \in X.$$

故 $f ∈ X^*$. 并且有

$$f(x_0) = f_0(x_0) = 1 > p(x) \ge f(x), \quad \forall x \in C.$$

定理 2.4.17: Hahn-Banach 定理——第一几何形式

设 X 是实赋范空间, A, B 是非空凸子集满足 $A \cap B = \emptyset$. 若 A 是开集, 则存在闭超平面分离 $A \subseteq B$. 也即存在 $f \in X^*$ 使得

$$f(x) \le f(y), \quad \forall x \in A, y \in B.$$

喀淮

该定理对存在内点的凸集 A 也成立.

证明. 记 $x_0 = 0, C = A - B$, 则 C 是非空凸开集, $x_0 \notin C$, 使用上一引理, 则存在 $f \in X^*$

使得

$$f(x) < f(x_0), \forall x \in C.$$

此即 f(a) < f(b), $\forall a \in A, b \in B$.

引理 2.4.18

设 X 是赋范空间, A 是闭集, B 是紧集, 则 A+B 是闭集.

证明. 若 $a_n + b_n \to c$, 其中 $a_n \in A$, $b_n \in B$, $c \in X$. 则 $\{b_n\}$ 有收敛子列 $b_{n_k} \to b \in B$. 从而 $a_{n_k} \to c - b$. 由于 A 是闭集, $c - b \in A$. 因此 $c = (c - b) + b \in A + B$, A + B 是闭集.

定理 2.4.19: Hahn-Banach 定理——第二几何形式

设 X 是实赋范空间, A, B 是非空凸子集满足 $A \cap B = \emptyset$. 若 A 是闭集, B 是紧集,则存在闭超平面严格分离 A 与 B.

证明. 记 C = A - B, 则不难验证 C 是非空闭凸集, 并且 $0 \not\in C$. 故存在 r > 0 使得 $B(0,r) \cap C = \emptyset$. 对 C 和 B(0,r) 应用上一定理可得存在非零的 $f \in X^*$ 使得

$$f(a-b) < f(y), \quad \forall a \in A, b \in B, y \in B(0,r).$$

在上式中对 y 取下确界,得

$$f(a) - f(b) \le -r ||f||, \quad \forall a \in A, b \in B.$$

因此 $f(a) \le f(b) - r \|f\|$, $\forall a \in A, b \in B$. 记 $\alpha = \sup_{a \in A} f(a)$, $\beta = \inf_{b \in B} f(b)$, $\varepsilon = r \|f\|$, 则

$$f(a) \le \alpha \le \beta - \varepsilon < \beta \le f(b)$$
,

上式对 $\forall a \in A, b \in B$ 均成立.

2.4.3 作业

趣目2.4.1. 设 X_0 是赋范空间 X 的闭子空间, 求证:

$$\rho(x, X_0) = \sup\{|f(x)| : ||f|| = 1, f(X_0) = 0\}, \forall x \in X.$$

解答. 记等式右侧为 α . 由 $|f(x)| = |f(x-y)| \le ||f|| \cdot ||x-y|| = ||x-y||, \forall y \in X_0$ 知 $\alpha \le \rho(x, X_0)$.

下面证明 $\rho(x, X_0) \le \alpha$. 若 $x \in X_0$, 则 $\rho(x, X_0) = \alpha = 0$. 现设 $x \notin X_0$, 则 $\rho(x, X_0) > 0$, 由 Hahn-Banach 定理知存在 $f \in X^*$ 使得

$$f(x) = \rho(x, X_0), \quad ||f|| = 1 \quad \exists f(X_0) = 0,$$

因此 $\rho(x, X_0) \leq \alpha$.

题目2.4.2. 设 X 是赋范空间. 给定 X 中 n 个线性无关的元素 x_1, \dots, x_n 与数域 \mathbb{K} 中 的 n 个数 C_1, \dots, C_n , 及 M > 0. 求证: 存在 $f \in X^*$ 满足 $f(x_k) = C_k (1 \le k \le n)$ 并且 $\|f\| \le M$ 的充要条件是:

$$\left| \sum_{k=1}^{n} \alpha_k C_k \right| \le M \left\| \sum_{k=1}^{n} \alpha_k x_k \right\|, \quad \forall \alpha_1, \dots, \alpha_n \in \mathbb{K}.$$

解答. 必要性:

$$\left|\sum_{k=1}^{n} \alpha_k C_k\right| = \left|\sum_{k=1}^{n} \alpha_k f(x_k)\right| = \left|f\left(\sum_{k=1}^{n} \alpha_k x_k\right)\right| \le \left\|f\right\| \cdot \left\|\sum_{k=1}^{n} \alpha_k x_k\right\| \le M \left|\sum_{k=1}^{n} \alpha_k x_k\right|.$$

充分性: 定义

$$f_0\left(\sum_{k=1}^n \alpha_k x_k\right) = \sum_{k=1}^n \alpha_k C_k(\forall \alpha_1, \cdots, \alpha_k \in \mathbb{K}), \quad p(x) = M\|x\|(\forall x \in X),$$

并使用复 Hahn-Banach 定理即可.

题目2.4.3. 给定赋范空间 X 中的 n 个线性无关的元素 x_1, \dots, x_n , 求证: 存在 $f_1, \dots, f_n \in$

X* 使得

$$f_i(x_j) = \delta_{ij}, \quad 1 \le i, j \le n.$$

解答. 记

$$M_k = \text{span}\{x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n\}, \quad k = 1, \dots, n.$$

注意到 $\rho(x_k, M_k) > 0$, 因此由 Hahn-Banach 定理, 存在 $g_k \in X^*$ 使得

$$\|g_k\| = 1$$
, $g_k(x_k) = \rho(x_k, M_k)$, $g_k|_{M_k} = 0$, $k = 1, \dots, n$,

取 $f_k = \frac{g_k}{\rho(x_k, M_k)}$ 即可.

题目2.4.4. 设 M 是实赋范空间 X 中的闭凸集, 求证: 任取 $x \in X \setminus M$, 存在 $f_1 \in X^*$ 满足 $||f_1|| = 1$ 并且

$$\sup_{y \in M} f_1(y) \le f_1(x) - \rho(x, M).$$

解答. 记 $d = \rho(x, M) > 0$, 则 $B(x, d) \cap M = \emptyset$, 由凸集分离定理, 存在 $f \in X^*$ 使得

$$f(y) \le f(x+dz), \quad \forall y \in M, ||z|| < 1.$$

不妨设 $\|f\|=1$ (否则令 $f_1=\frac{f}{\|f\|}$ 依旧满足上式). 则 $\forall \varepsilon>0$, 存在 $\|z_0\|<1$ 使得

$$1 - \varepsilon \le f(z_0) \le 1,$$

从而

$$\sup_{y \in M} f(y) \le f(x - dz_0) = f(x) - df(z_0) \le f(x) - d(1 - \varepsilon).$$

由 ε 任意性, $\sup_{y \in M} f(y) \le f(x) - d$.

△ 题目2.4.5. 设 M 是实赋范空间 X 内的闭凸集, 求证:

$$\inf_{z \in M} \|x - z\| = \sup_{\|f\| = 1} \left(f(x) - \sup_{z \in M} f(z) \right), \quad \forall x \in X.$$

解答. 若记上式右侧为 α , 则

$$\alpha = \sup_{\|f\|=1} \inf_{z \in M} f(x-z) \le \sup_{\|f\|=1} \inf_{z \in M} \|f\| \cdot \|x-z\| = \inf_{z \in M} \|x-z\|.$$

另一方面, 由上题, 存在 $f_1 \in X^*$ 且 $||f_1|| = 1$ 使得

$$\rho(x,M) \le f_1(x) - \sup_{z \in M} f_1(z) \le \alpha,$$

因此 $\rho(x, M) = \alpha$.

2.5 共轭空间

2.5.1 共轭空间与共轭算子

定义 2.5.1: 共轭空间

设 X 是赋范空间, $X^* = L(X,\mathbb{K})$ 称为 X 的**共轭空间**或**对偶空间**, 则 X^* 是 Banach 空间.

定理 2.5.2: Banach 定理

设 X 是赋范空间, 若 X* 可分, 则 X 也可分.

证明. 设 $\{f_n\}$ 是 X^* 的可数稠密子集. 取 $\{x_n\}$ 满足

$$||x_n|| = 1$$
 $\underline{\mathbb{H}}$ $|f_n(x_n)| \ge \frac{1}{2} ||f_n||$, $\forall n \ge 1$.

记 $X_0 = \overline{\text{span}\{x_n\}_1^\infty}$,则 X_0 是 X 的可分闭子空间,只需证明 $X_0 = X$. 反设 $X_0 \neq X$,取 $x_0 \notin X_0$ 且 $\|x_0\| = 1$,由 Hahn-Banach 定理 (定理2.4.9),存在 $f \in X^*$ 使得 $\|f\| = 1$ 且 $f|_{X_0} = 0$. 取 $\{g_n\} \subset \{f_n\}$ 使得 $g_n \to f$,则

$$||g_n - f|| \ge |g_n(x_n) - f(x_n)| = |g_n(x_n)| \ge \frac{1}{2} ||g_n||, \quad \forall n \ge 1,$$

在上式中令 $n \to \infty$, 则 $0 \ge \frac{1}{2} \|f\| = \frac{1}{2}$, 矛盾.

定义 2.5.3: 第二共轭空间与自反性

设 X 为赋范空间, X^* 的共轭空间记为 X^{**} , 称作 X 的第二共轭空间. 称

$$\tau: X \to X^{**}, x \mapsto x^{**}$$
 满足 $\langle x^{**}, f \rangle = \langle f, x \rangle, \forall f \in X^*$

的映射 τ 为从 X 到 X^{**} 的**自然嵌入映射**, τ 保持范数, 也即

$$||x|| = ||\tau x||, \quad \forall x \in X.$$

如果 τ 是满射 (X 从 X^{**} 的等距同构), 则称 X 是**自反空间**.

证明. 需要证明 τ 保持范数. 一方面,

$$|\langle x^{**}, f \rangle| = |\langle f, x \rangle| \le ||x|| \cdot ||f||, \quad \forall f \in X^*,$$

故 $\|x^{**}\| \le \|x\|$. 另一方面, 由 Hahn-Banach 定理 (推论2.4.7), 存在 $f_0 \in X^*$ 使得

$$||f|| = 1$$
 $\exists f(x) = ||x||,$

故 $||x^{**}|| = ||x||$.

定义 2.5.4: 共轭算子

设 X, Y 是赋范空间, $T \in L(X, Y)$. $T^*: Y^* \to X^*$ 满足

$$\langle y^*, Tx \rangle = \langle T^*y^*, x \rangle, \quad \forall y^* \in Y^*, x \in X.$$

 T^* 称为 T 的共轭算子.

定理 2.5.5: 共轭算子的性质

设 X,Y,Z 是赋范空间, $S,T \in L(X,Y),\alpha,\beta \in \mathbb{K}$, 则

- (1) $T^* \in L(Y^*, X^*)$, 并且 $||T|| = ||T^*||$.
- (2) $(\alpha S + \beta T)^* = \alpha S^* + \beta T^*$.

2.5 共轭空间 · 131 ·

- (3) 若 $T_1 \in L(X,Y)$, $T_2 \in L(Y,Z)$, 则 $(T_2T_1)^* = T_1^*T_2^*$.
- (4) $I_X^* = I_{X^*}$, 其中 I_X 和 I_{X^*} 分别是 X 和 X^* 到本身的单位映射.
- (5) $T^{**} = (T^*)^* \in L(X^{**}, Y^{**})$ 并且 $\|T^{**}\| = \|T\|$, 因此在自然嵌入映射的意义下, T^{**} 可视作 T 的保范延拓.
- (6) 若 $T \in L(X,Y)$ 是双射,则 $T^{-1} \in L(Y,X)$ 且 $(T^{-1})^* = (T^*)^{-1}$.
- (7) 若 X 是 Banach 空间, $T \in L(X,Y)$ 并且 T^* 是双射,则 T 也是双射.

证明. 只证明 (1)(6)(7), 其余显然.

(1) 一方面,

 $||(T^*f)(x)|| = ||f(Tx)|| \le ||f|| \cdot ||Tx|| \le ||T|| \cdot ||f|| \cdot ||x||, \quad \forall x \in X, f \in X^*,$

故 $\|T^*f\| \le \|T\| \cdot \|f\| (\forall f \in X^*)$, 从而 $\|T^*\| \le \|T\|$, $T^* \in L(Y^*, X^*)$. 此外, $\forall \varepsilon > 0$, 存在 $\|x_{\varepsilon}\| = 1$ 使得

$$||T|| - \varepsilon \le ||Tx_{\varepsilon}|| \le ||T||.$$

并且由 Hahn-Banach 定理 (推论2.4.7), 存在 f_{ε} 使得

$$||f_{\varepsilon}|| = 1$$
 \exists $f(Tx_{\varepsilon}) = ||Tx_{\varepsilon}||$.

故

$$||T^*|| \ge ||T^*f_{\varepsilon}|| \ge ||(T^*f_{\varepsilon})(x_{\varepsilon})|| = ||f_{\varepsilon}(Tx_{\varepsilon})|| = ||Tx_{\varepsilon}|| \ge ||T|| - \varepsilon,$$

由 ε 的任意性, $||T|| = ||T^*||$.

(6) 由 Banach 逆算子定理 (定理2.3.4), 有 $T^{-1} \in L(Y, X)$. 由共轭算子的性质 (3) 以及 $T \circ T^{-1} = I_Y, T^{-1} \circ T = I_X$, 有

$$(T^{-1})^* \circ T^* = I_{Y^*}, \quad T^* \circ (T^{-1})^* = I_{X^*},$$

此即 $(T^{-1})^* = (T^*)^{-1}$.

(7) 由性质 (6) 知 T^{**} 是从 X^{**} 到 Y^{**} 的线性同构. 则存在 C > 0 使得

$$\frac{1}{C} \|x^{**}\| \leq \|T^{**}x^{**}\| \leq C \|x^{**}\|, \quad \forall x^{**} \in X^{**}.$$

在上式中取 $x^{**} = \tau x$, 其中 $x \in X$, $\tau: X \to X^{**}$ 是自然嵌入映射, 得

$$\frac{1}{C}\|x\| \leq \|Tx\| \leq C\|x\|, \quad \forall x \in X.$$

因此 T 是单射并且 R(T) 是闭的. 还需证明 R(T) = Y. 反设 $R(T) \neq Y$, 则由 Hahn-Banach 定理 (定理2.4.9) 知存在非零的 $y^* \in Y^*$ 使得 $y^*|_{R(T)} = 0$, 此即

$$\langle y^*, Tx \rangle = 0, \quad \forall x \in X.$$

从而 $\langle T^*y^*, x \rangle = 0, \forall x \in X$, 从而 $T^*y^* = 0$, 而 T^* 是单射, 因此 $y^* = 0$, 矛盾. 故 T 是 双射.

定义 2.5.6: Hilbert 空间上的共轭算子

设 $H \in Hilbert$ 空间, $T \in L(H)$, 其共轭算子T' 由下式定义:

$$(Tx, y) = (x, T'y), \forall x, y \in H.$$

喀注

由 Riesz 表示定理可知存在共轭等距线性同构 $\Psi: H \to H^*$,则容易验证 $T' = \Psi^{-1}T^*\Psi$,此外不难证明 T' 的唯一性, $T' \in L(H)$ 并且 $\|T\| = \|T'\|$.

此后为了保持一致性, Hilbert 空间和 Banach 空间上的共轭算子均记作 T^* . Hilbert 空间上的共轭算子还满足 $(\alpha S + \beta T)^* = \overline{\alpha} S^* + \overline{\beta} T^*$, $(ST)^* = T^* S^*$ 以及 $T = T^{**}$.

定义 2.5.7: Hilbert 空间之间的共轭算子

设 X, Y 是 Hilbert 空间, $T \in L(X, Y)$. 存在 $T^* \in L(Y, X)$ 使得

$$(Tx, y)_Y = (x, T^*y)_X, \quad \forall x \in X, y \in Y.$$

2.5 共轭空间 · 133 ·

则称 T^* 是 T 的共轭算子.

定义 2.5.8: Hilbert 空间上的自伴算子

设 H 是 Hilbert 空间, $T \in L(H)$. 若 $T^* = T$, 则称 T 是**自伴算子**, **自共轭算子**或对**称算子**, 也即满足

$$(Tx, y) = (x, Ty), \quad \forall x, y \in H.$$

定理 2.5.9

设 $X \in Hilbert$ 空间, $T \in L(X)$ 是自伴算子, 则 $Ker(T) = R(T)^{\perp}$.

证明. $x \in Ker(T) \iff Tx = 0 \iff (Tx, y) = 0(\forall y \in X) \iff (x, Ty) = 0(\forall y \in X) \iff x \in R(T)^{\perp}$.

定义 2.5.10

设 X 是赋范空间, M 是 X 的子空间, N 是 X^* 的子空间. 定义

$$^{\perp}M = \{ f \in X^* : f(x) = 0, \forall x \in M \},$$

$$N^{\perp} = \{ x \in X : f(x) = 0, \forall f \in N \}.$$

喀 注

 $^{\perp}M$ 和 N^{\perp} 都是闭子空间,因为 $^{\perp}M=\bigcap_{x\in M}Ker(\tau x), N^{\perp}=\bigcap_{f\in N}Ker(f).$ $(^{\perp}M)^{\perp}=\overline{M},$ 证明留作习题.

 $\overline{N} \subset {}^{\perp}(N^{\perp})$, 当 X 自反时二者相等.

定理 2.5.11

设 X, Y 是赋范空间, $T \in L(X, Y)$, 则

$$Ker(T^*) = {}^{\perp}R(T), \quad Ker(T) = R(T^*)^{\perp}.$$

证明. 留作习题.

喀 注

$$(Ker T^*)^{\perp} = (^{\perp}R(T))^{\perp} = \overline{R(T)}, \quad ^{\perp}(Ker T) = ^{\perp}(R(T)^{\perp}) \supset \overline{R(T^*)}.$$

2.5.2 弱收敛和*弱收敛

定义 2.5.12: 线性算子的三种收敛

设 X, Y 是赋范空间, $T_n, T \in L(X, Y)$.

- 1. 若 $||T_n T|| \to 0$, 则称 T_n 一致收敛于 T, 记作 $T_n \Rightarrow T$, T 称作 $\{T_n\}$ 的一致极限.
- 2. 若 $\|T_nx Tx\| \to 0 (\forall x \in X)$, 则称 T_n 强收敛于 T, 记作 $T_n \to T$, T 称作 $\{T_n\}$ 的强极限.
- 3. 若

$$\lim_{n\to\infty} f(T_n x) = f(Tx), \quad \forall x \in X, f \in Y^*,$$

也即 $T_n x \to T x (\forall x \in X)$, 则称 T_n 弱收敛于 T, 记作 $T_n \to T$, T 称作 $\{T_n\}$ 的**弱极限**.

喀淮

显然, 一致收敛 ⇒ 强收敛 ⇒ 弱收敛, 反之不一定成立.

三种极限如果存在都必唯一, 前两种显然, 对于弱收敛, 若 $T_n \to T_1$ 且 $T_n \to T_2$, 则如果 $T_1 \neq T_2$, 那么存在 $x \in X$ 使得 $T_1 x \neq T_2 x$. 而由 Hahn-Banach 定理 (推论2.4.8), 存在 $f \in X^*$ 使得 $f(T_1 x) \neq f(T_2 x)$, 与弱收敛的定义矛盾.

例 2.5.13: 强收敛但不一致收敛

l² 空间上的左推移算子

$$T:(x_1,x_2,\cdots)\mapsto(x_2,x_3,\cdots)$$

满足 $T^n \to 0$ 但 $T^n \not= 0$.

证明. 显然,

$$T^n: (x_1, x_2, \cdots) \mapsto (x_{n+1}, x_{n+2}, \cdots).$$

任取 $x = \{x_k\} \in l^2$, 有

$$||T^n x||^2 = \sum_{k=n+1}^{\infty} |x_k|^2 \to 0, \quad n \to \infty,$$

2.5 共轭空间 · 135 ·

因此 $T^n \rightarrow 0$. 但是

$$||T^n|| \ge ||T^n e_{n+1}|| = ||e_1|| = 1,$$

其中 e_k 表示第 k 分量为 1 其余为 0 的数列 ($k \ge 1$), 故 $T^n \ne 0$.

例 2.5.14: 弱收敛但不强收敛

l² 空间上的右推移算子

$$S:(x_1,x_2,\cdots)\mapsto (0,x_1,x_2,\cdots)$$

满足 $S^n \to 0$ 但 $S_n \neq 0$.

证明. 显然,

$$S^n: (x_1, x_2, \dots) \mapsto (\underbrace{0, 0, \dots, 0}_{n}, x_1, x_2, \dots).$$

由于 l² 是 Hilbert 空间, 故由 Riesz 表示定理和

$$\left| (S^n x, y) \right| = \left| \sum_{k=1}^{\infty} (S^n x)_k \overline{y_k} \right| = \left| \sum_{k=1}^{\infty} x_k \overline{y_{n+k}} \right|$$

$$\leq \left(\sum_{k=1}^{\infty} |x_k|^2 \right) \left(\sum_{k=n+1}^{\infty} |y_k|^2 \right) \to 0, \quad \forall x, y \in l^2$$

知 $S^n \to 0$. 但是 $||S^n x|| = ||x|| (\forall x \in l^2)$, 故 $S^n \to 0$.

定义 2.5.15: * 弱收敛

设 X 是赋范空间, $f_n, f \in X^*$. 若

$$\lim_{n\to\infty} f_n(x) = f(x), \quad \forall x \in X,$$

则称 $\{f_n\}$ * **弱收敛**到 f, 记作 $\omega^* - \lim_{n \to \infty} f_n = f$, f 称作 $\{f_n\}$ 的 * **弱极限**.

喀淮

* 弱收敛就是有界线性泛函的强收敛,而它们的弱收敛与强收敛等价 (因为 $X^* = L(X, \mathbb{K})$, \mathbb{K} 是一维的), 因此不作讨论.

命题 2.5.16

X 是赋范空间, f_n , $f \in X^*$, 若 $f_n *$ 弱收敛于 f, 则 $\{f_n\}$ 有界 (即 $\sup_{n \ge 1} \|f_n\| < \infty$) 并且

$$||f|| \le \liminf_{n \to \infty} ||f_n||.$$

证明. 由于 $f_n *$ 弱收敛于 f, 故 $\forall x \in X$, $f_n(x) \to f(x)$, 从而 $\{f_n(x)\}$ 在 \mathbb{K} 中有界, 从而 由共鸣定理可知 $\{f_n\}$ 有界. 任取 $\varepsilon > 0$, 存在 $\|x_{\varepsilon}\| = 1$ 使得 $|f(x_{\varepsilon})| \ge \|f\| - \varepsilon$, 而

$$||f|| - \varepsilon \le |f(x_{\varepsilon})| = \lim_{n \to \infty} |f_n(x_{\varepsilon})| \le \liminf_{n \to \infty} ||f_n||,$$

再由 ε 的任意性可得.

定理 2.5.17

设 X 是可分赋范空间, $\{f_n\} \subset X^*$ 有界, 则 $\{f_n\}$ 有 * 弱收敛子列.

证明. 由 X 可分知存在可数稠密子集 $\{x_k\} \subset X$. 由于 $\{f_n\}$ 有界, 故 $\{f_n(x_1)\}$ 在 \mathbb{K} 中有界, 从而有子列 $\{f_n^{(1)}\}$ 使得 $f_n^{(1)}(x_1) \to y_1$. 而 $\{f_n^{(1)}(x_2)\}$ 也有界, 有子列 $\{f_n^{(2)}\}$ 使得 $f_n^{(2)}(x_2) \to y_2$. 依次类推, 得到

$$f_n^{(k)}(x_j) \to y_j, \quad \forall 1 \le j \le k.$$

取对角列 $\{f_n^{(n)}\}$, 则 $f_n^{(n)}(x_k) \to y_k, \forall k \ge 1$. 最后由定理2.3.12的充分条件知 $\{f_n^{(n)}\}$ 弱 *收敛.

定义 2.5.18: 弱收敛

设 X 是赋范空间, $\{x_n\} \subset X$, $x \in X$. 若

$$\lim_{n\to\infty} f(x_n) = f(x), \quad \forall f \in X^*,$$

则称 $\{x_n\}$ 弱收敛到 x, 记作 $x_n \rightarrow x$, x 称作 $\{x_n\}$ 的弱极限.

喀 注

为了区分, 称 $x_n \to x$ (按范数收敛) 为 x_n 强收敛到 x, 或 $x \in \{x_n\}$ 的强极限.

2.5 共轭空间 · 137 ·

命题 2.5.19

(1) 弱极限如果存在必唯一. (2) 强极限若存在必是弱极限, 反之未必成立.

证明. (1) 设 $x_n \rightarrow x$ 且 $x_n \rightarrow y$, 则

$$f(x-y) = \lim_{n \to \infty} f(x_n) - \lim_{n \to \infty} f(x_n) = 0, \quad \forall f \in X^*,$$

由 Hahn-Banach 定理, 存在 $f \in X^*$ 使得 $\|x-y\| = f(x-y) = 0 \implies x = y$.

(2) 强极限如果存在, 根据 f 的连续性显然必是弱极限. 现举例说明反之未必成立. 在 $X = L^2[0,2\pi]$ 上考虑点列 $\{\sin nx\}_{\infty}^{\infty}$. 由 Riemann-Lebesgue 引理,

$$\lim_{n\to\infty} \int_0^{2\pi} f(x) \sin nx dx = 0, \quad \forall f \in L^2[0, 2\pi],$$

由于 L^2 共轭是其本身,上式即 $\sin nx \rightarrow 0$. 但是 $\|\sin nx\|_2 = \sqrt{\pi}$,因此 $\sin nx \not\rightarrow 0$.

命题 2.5.20

设 X 是赋范空间, $x_n, x \in X$ 且 $x_n \rightarrow x$, 则 $\{x_n\}$ 有界并且

$$||x|| \le \liminf_{n \to \infty} ||x_n||.$$

证明. 记 $\tau: X \to X^{**}$ 是自然嵌入映射. 由于 $\forall f \in X^*$, $f(x_n) \to f(x)$, 故 $\{f(x_n)\}$ 有界, 即 $\{\tau x_n(f)\}$ 有界, 从而由共鸣定理可得 $\{\tau x_n\}$ 有界, $\{x_n\}$ 有界. 由 Hahn-Banach 定理知存在 $f \in X^*$ 使得 $f(x) = \|x\|$ 且 $\|f\| = 1$, 从而

$$||f|| = f(x) = \lim_{n \to \infty} f(x_n) \le \liminf_{n \to \infty} ||x_n||,$$

定理 2.5.21

得证.

设 $X \in Banach$ 空间, $x_n, x \in X$. 则 $x_n \rightarrow x$ 的充要条件为

- (1) {x_n} 有界;
- (2) 存在 X^* 的稠密子集 M 使得 $\lim_{n\to\infty} f(x_n) = f(x)$, $\forall f \in M$.

证明. 必要性: 由上一命题立即得到.

充分性: 记 τ 是 X 到 X^{**} 的自然嵌入映射,则由定理2.3.12, $\{\tau x_n\}$ 有界和 $\langle \tau x_n, f \rangle$ 收敛 $(\forall f \in M)$ 可知 τx_n 弱 * 收敛,记其极限为 x^{**} . 而

$$\langle \tau x, f \rangle = \lim_{n \to \infty} \langle \tau x, f_n \rangle = \langle x^{**}, f \rangle, \quad \forall f \in M.$$

任取 $g \in X^*$, 存在 $\{f_n\} \subset M$ 使得 $\|g - f_n\| \to 0$, 从而

$$\langle \tau x, g \rangle = \lim_{n \to \infty} \langle \tau x, f_n \rangle = \langle x^{**}, g \rangle,$$

因此 $x^{**} = \tau x$, x_n 弱 * 收敛于 τx , 此即 $x_n \rightarrow x$.

定理 2.5.22: Mazur 定理

设X是一个赋范空间, $x_n \rightarrow x_0$,则

$$x_0 \in \overline{\operatorname{co}(\{x_n\}_1^\infty)},$$

也即存在 x_n 的凸组合序列强收敛于 x_0 .

喀 注

凸包和凸组合的定义见附录A.7的定义A.7.3.

证明. 记 $M = \overline{\operatorname{co}(\{x_n\}_1^\infty)}$, 反设 $x_0 \not\in M$. 由 Hahn-Banach 定理的第二几何形式, 存在 X 上的实有界线性泛函 u 使得

$$u(x) < \alpha < u(x_0), \quad \forall x \in M,$$

若 $\mathbb{K} = \mathbb{R}$, 则 $u \in X^*$, 上式已经与 $x_n \to x$ 矛盾.

若 $\mathbb{K} = \mathbb{C}$, 则 $f(x) = u(x) - iu(ix) \in X^*$. 由 $x_n \to x$ 知 $f(x_n) \to f(x_0)$, 从而 $u(x_n) \to u(x_0)$, 也与上式矛盾.

2.5 共轭空间 · 139 ·

定义 2.5.23: 弱闭集

设 X 是赋范空间, $A \subset X$. 若 A 满足 $\forall \{x_n\} \subset A$ 且 $x_n \to x \in X$ 都有 $x \in A$, 则 A 称为**弱闭集**.

命题 2.5.24

弱闭集一定是闭集,闭凸集一定是弱闭集.

证明. 若 A 是弱闭集, 则对 $\{x_n\} \subset A$ 且 $x_n \to x$, 有 $x_n \to x$, 故 $x \in A$, 从而 A 是闭集.

若 A 是闭凸集,则若 $\{x_n\} \subset A$ 且 $x_n \to x$,由 Mazur 定理, $x \in \overline{\operatorname{co}(\{x_n\}_1^\infty)} \subset A$,故 A 弱闭.

2.5.3 自反空间的性质

定理 2.5.25: Pettis 定理

自反空间 X 的闭子空间 X₀ 也是自反的.

证明. 任取 $x_0^{**} \in X_0^{**}$, 要证明存在 $x_0 \in X_0$ 使得

$$\langle x_0^{**}, x_0^* \rangle = \langle x_0^*, x_0 \rangle, \quad \forall x_0^* \in X_0^*.$$

令 $T: X^* \to X_0^*, x^* \mapsto x^*|_{X_0}$,则显然 $T \in L(X^*, X_0^*)$,并且由 Hahn-Banach 定理知 T 是满射. 令 $x^{**} = T^*x_0^{**}$,则由 X 自反知存在 $x \in X$ 使得 $\langle x^{**}, x^* \rangle = \langle x^*, x \rangle (\forall x \in X)$. 从而

$$\langle x_0^{**}, Tx^* \rangle = \langle T^*x_0^{**}, x^* \rangle = \langle x^{**}, x^* \rangle = \langle x^*, x \rangle, \quad \forall x^* \in X^*,$$

如果还有 $x \in X_0$, 则根据 $\langle Tx^*, x \rangle = \langle x^*, x \rangle$ 以及 T 是满射, 有

$$\langle x_0^{*\,*}, x_0^*\rangle = \langle x_0^*, x\rangle, \quad \forall x_0^* \in X_0^*.$$

下面证明 $x \in X_0$. 反设 $x \notin X_0$, 则由 Hahn-Banach 定理, 存在 $f \in X^*$ 使得 $f|_{X_0} = 0$ 且 $f(x) \neq 0$, 从而 Tf = 0, 故

$$0 = \langle x_0^{**}, Tf \rangle = \langle f, x \rangle,$$

与 $\langle f, x \rangle \neq 0$ 矛盾.

命题 2.5.26

设 X 是赋范空间,则:

- (1) 若 X 自反,则 X* 也自反.
- (2) 若 X 是 Banach 空间,则 X 自反当且仅当 X* 自反.

证明. 留作习题.

命题 2.5.27

设 X,Y 是赋范空间, X 与 Y 线性同构 (即存在双射 $T \in L(X,Y)$ 具有有界逆), 则 X 自反当且仅当 Y 自反.

证明. 由定理2.5.5的 (6) 以及 T 是线性同构知, T^* 也是线性同构, 从而 T^{**} 是 X^{**} 到 Y^{**} 的线性同构. 设 ϕ 是从 Y 到 Y^{**} 的自然嵌入映射. 若 Y 自反, 则对任意的 $x^{**} \in X^{**}$, 有

$$\langle x^*, T^{-1}\phi^{-1}T^{**}x^{**}\rangle = \langle x^*T^{-1}, \phi^{-1}T^{**}x^{**}\rangle$$

$$= \langle T^{**}x^{**}, x^*T^{-1}\rangle = \langle x^{**}, T^*x^*T^{-1}\rangle = \langle x^{**}, x^*\rangle, \quad \forall x^* \in X^*,$$

其中最后一个等式成立 (即 $x^* = T^*x^*T^{-1}$) 是因为

$$\langle T^* x^* T^{-1}, x \rangle = \langle x^* T^{-1}, T x \rangle = \langle x^*, x \rangle, \quad \forall x \in X.$$

因此 X 是自反的. 此时证明了充分性, 必要性由 T^{-1} 是从 Y 到 X 的线性同构以及充分性可得.

喀 注

设 X 上两个范数 $\|\cdot\|_1$ 和 $\|\cdot\|_2$ 等价, 则 $(X, \|\cdot\|_1)$ 自反当且仅当 $(X, \|\cdot\|_2)$.

定理 2.5.28: 商空间上的线性泛函

设 X 是赋范空间, M 是 X 的闭子空间, $\pi: X \to X/M$ 是自然映射. 则 π^* 是从 $(X/M)^*$ 到 $^\perp M$ 的等距同构映射.

2.5 共轭空间 · 141 ·

证明. 任取 $\nu^* \in (X/M)^*$, 有

$$\langle \pi^* \gamma^*, x \rangle = \langle \gamma^*, \pi x \rangle = 0, \quad \forall x \in M,$$

故 π^* 的确是 $(X/M)^*$ 到 $^\perp M$ 的映射.

还需证明 π^* 等距且是满射. 对于等距, 只需注意到对 $\forall \gamma^* \in (X/M)^*$, 都有

$$\|\pi^*y^*\| = \sup_{x \in X} |\langle \pi^*y^*, x \rangle| = \sup_{x \in X} |\langle y^*, \pi x \rangle| = \sup_{v \in X/M} |\langle y^*, y \rangle| = \|y^*\|.$$

为了证明 π^* 是满射, 取 $x^* \in M$, 定义

$$\langle y^*, \pi x \rangle := \langle x^*, x \rangle, \quad \forall x \in X.$$

 y^* 是良定义的, 因为如果 $\pi x_1 = \pi x_2$, 则 $x_1 - x_2 \in M$, 由于 $x^* \in {}^{\perp}M$, $\langle x^*, x_1 \rangle = \langle x^*, x_2 \rangle$. 不难证明 $y^* \in (X/M)^*$, 并且有 $\pi^* y^* = x^*$, 因此 π^* 是满射.

定理 2.5.29: 共轭空间的商空间

设 X 是赋范空间, M 是 X 的闭子空间, 则 $X^*/^{\perp}M$ 与 M^* 等距同构.

证明. 记 ϕ 是 X^* 到 $X^*/^{\perp}M$ 的自然嵌入映射. 定义映射 $\sigma: X^*/^{\perp}M \to M^*, \phi(x^*) \to x^*|_{M}$. σ 是良定义的, 因为若 $\phi(x_1^*) = \phi(x_2^*)$, 则 $x_1^* - x_2^* \in M^{\perp}$, 从而 $x_1^*|_{M} = x_2^*|_{M}$. σ 显然是线性的, 它也是等距映射, 因为

$$\begin{split} & \|\phi(x^*)\| = \inf_{y^* \in {}^\perp M} \|x^* - y^*\| = \inf_{y^* \in {}^\perp M} \sup_{x \in X, \|x\| = 1} \left| \langle x^* - y^*, x \rangle \right| \\ & = \sup_{x \in X, \|x\| = 1} \inf_{y^* \in {}^\perp M} \left| \langle x^* - y^*, x \rangle \right| = \sup_{x \in M, \|x\| = 1} \inf_{y^* \in {}^\perp M} \left| \langle x^* - y^*, x \rangle \right| \\ & = \sup_{x \in M, \|x\| = 1} \left| \langle x^*, x \rangle \right| = \|x^*|_M \|, \quad \forall x^* \in X^*, \end{split}$$

其中第二行第二个等号成立是由于, 若 $x \notin M$, 则由 Hahn-Banach 定理 (定理2.4.9), 存在 $y^* \in {}^\perp M$ 使得 $\langle y^*, x \rangle = \langle x^*, x \rangle$.

最后证明 σ 是满射, 取 $m^* \in M^*$, 由 Hahn-Banach 定理 (定理2.4.6) 知存在 $x^* \in M^*$

 X^* 为 m^* 的保范延拓, 此时 $\sigma(\phi x^*) = m^*$, 故 σ 是满射.

定理 2.5.30

设 X 是自反空间, M 是 X 的闭子空间, 则 X/M 是自反空间.

证明. 由于 X 是自反空间,则 X 完备 (若 $\{x_n\}$ 是 X 中 Cauchy 列,则 $\{\tau x_n\}$ 是 X^{**} 中 Cauchy 列,而 X^{**} 完备,因此收敛于 X^{**} ,而 X 自反,所以 $X_n \to \tau^{-1} X^{**}$),从而由定理1.5.19,X/M 也完备

根据命题2.5.26的 (1) 以及 X 自反知 X^* 也自反,而 $^{\perp}M$ 是 X^* 的闭子空间,由 Pettis 定理可得 $^{\perp}M$ 自反.再根据命题2.5.27和定理2.5.28得 (X/M)* 自反,最后再由命题2.5.26的 (2) 以及 X/M 是 Banach 空间知 X/M 自反.

喀 注

商空间的自反性也可以推出闭子空间的自反性,因为若 X 自反,M 是闭子空间,则 X^* 自反,从而由该定理可得 $X^*/^\perp M$ 自反,从而由上一定理 M^* 自反,从而 M 自反.

定理 2.5.31: Eberlein-Smulian 定理

设X是自反空间, $\{x_n\}$ 是X中的有界列, 则存在子列 $\{x_{n_k}\}$ 和 $x \in X$ 使得 $x_{n_k} \to x$ (自反空间中的有界集弱列紧).

证明. 令 $X_0 = \overline{\text{span}\{x_n\}_1^{\infty}}$, 由 Pettis 定理, X_0 也是自反的. 因此再由 X_0 是可分的, X_0^{**} 可分. 取 $z_n \in X_0^{**}$ 满足

$$\langle z_n, f \rangle = \langle f, x_n \rangle, \quad \forall f \in X_0^*.$$

则 $\{z_n\}$ 也是 X_0^{**} 中的有界列. 在 X_0^* 上应用定理2.5.17可得 $\{z_n\}$ 有子列 $\{z_{n_k}\}$ * 弱收敛于 $z \in X_0^{**}$, 即

$$\langle z_{n_k}, f \rangle \to \langle z, f \rangle, \quad \forall f \in X_0^*.$$

因为 X_0 是自反的, 存在 $x \in X_0$ 使得 $\langle z, f \rangle = \langle f, x \rangle (\forall f \in X_0^*)$, 故

$$\langle f, x_{n_k} \rangle = \langle z_{n_k}, f \rangle \rightarrow \langle z, f \rangle = \langle f, x \rangle, \quad \forall f \in X_0^*.$$

2.5 共轭空间 · 143 ·

对 $g \in X^*$, $g_0 = g|_{X_0} \in X_0^*$, 故也有

$$\langle g, x_{n_k} \rangle \rightarrow \langle g, x \rangle, \quad \forall g \in X^*.$$

因此 x_{n_k} 弱收敛于 x.

定义 2.5.32: 弱列紧和 * 弱列紧

设 X 为赋范空间. 若 $A \subset X$ 中任意点列都有收敛子列都有弱收敛子列,则称 A 是**弱列紧的**. 若 $B \subset X^*$ 中任意点列都有 * 弱收敛子列,则称 $B \in X^*$ 思见了。

喀 注

Eberlein-Smulian 定理说明自反空间中的单位球弱列紧.

此外, 自反空间中的单位闭球弱自列紧.

证明. 设 $\{x_n\}$ 满足 $\|x_n\| \le 1 (\forall n \ge 1)$. 则存在子列 $x_{n_k} \to x \in X$. 由 Hahn-Banach 定理 (推论2.4.7), 存在 $f \in X^*$ 使得

$$||f|| = 1$$
 \exists $f(x) = ||x||$.

则

$$||x|| = f(x) = \lim_{k \to \infty} f(x_{n_k}) \le \limsup_{k \to \infty} ||f|| \cdot ||x_{n_k}|| \le 1,$$

因此单位闭球弱自列紧.

定理 2.5.33: 自反空间中最佳逼近元的存在性

设 X 是自反空间, M 是 X 中的非空闭凸子集, 则 $\forall x \in X$, 存在 $y \in M$ 使得

$$||x-y|| = \rho(x, M) := \inf_{z \in M} ||x-z||.$$

证明. 不妨设 $x \in X \setminus M$, 否则是显然的. 由下确界定义知, 存在 $y_n \in M$ 使得 $\|x - y_n\| \to \rho(x, M)$. 不难证明 $\{y_n\}$ 是 X 中的有界列, 则由 X 自反以及定理2.5.31, 存在 $y \in X$ 以及子列 $\{y_{n_k}\}$ 使得 $y_{n_k} \to y$. 由 M 是闭凸集以及命题2.5.24, 有 $y \in M$.

此时必有 $||x-y|| = \rho(x, M)$, 因为

$$\rho(x,M) \leq \left\| x - y \right\| \leq \liminf_{k \to \infty} \left\| x - y_{n_k} \right\| = \rho(x,M),$$

其中第二个不等号成立, 根据命题2.5.20以及 $x-y_{n_k} \rightarrow x-y$.

定义 2.5.34: 一致凸

设 X 是赋范空间. 若 $\forall \varepsilon > 0$, 存在 $\delta > 0$ 使得当 $x, y \in X$ 满足 $\|x\|, \|y\| \le 1$ 并且 $\|x - y\| > \varepsilon$ 时, 都有

$$\left\|\frac{x+y}{2}\right\| < 1 - \delta,$$

则称 X 是一**致凸空间**.

例 2.5.35

不难验证 \mathbb{R}^2 上的 Euclidean 范数 $\|\cdot\|_2$ 是一致凸的,但其等价范数 $\|\cdot\|_1$ 和 $\|\cdot\|_\infty$ 都不是一致凸的.

喀淮

一致凸空间必是严格凸的.

命题 2.5.36: 一致凸空间等价条件

设 X 是赋范空间,则 X 一致凸的充要条件为:对 $\forall \{x_n\},\{y_n\} \subset X$,

$$\lim_{n\to\infty}\|x_n\|=\lim_{n\to\infty}\|y_n\|=1, \lim_{n\to\infty}\|x_n+y_n\|=2 \Longrightarrow \lim_{n\to\infty}\|x_n-y_n\|=0.$$

证明. 留作习题.

例 2.5.37

内积空间是一致凸的.

证明. 设 X 是内积空间, 若有

$$\lim_{n \to \infty} \|x_n\| = \lim_{n \to \infty} \|y_n\| = 1, \quad \lim_{n \to \infty} \|x_n + y_n\| = 2,$$

2.5 共轭空间 · 145 ·

则

$$\lim_{n\to\infty} \|x_n - y_n\|^2 = \lim_{n\to\infty} \left(2\|x_n\|^2 + 2\|y_n\|^2 - \|x_n + y_n\|^2\right) = 0,$$

故由上一命题, X 是一致凸空间.

推论 2.5.38

设X是一致凸空间. 若 $\{x_n\} \subset X$ 满足

$$\lim_{n\to\infty} \|x_n\| = 1 \quad \mathbb{L} \quad \lim_{m,n\to\infty} \|x_n + x_m\| = 2,$$

则 $\{x_n\}$ 是 Cauchy 列.

证明. 反设 $\{x_n\}$ 不是 Cauchy 列, 则存在子列 $\{x_{n_k}\}$ 和 $\{x_{m_k}\}$ 和 $\{x_{m_k}\}$

$$||x_{n_k}-x_{m_k}||>\varepsilon_0, \quad \forall k\geq 1.$$

而显然有

$$\lim_{k \to \infty} \|x_{n_k}\| = \lim_{k \to \infty} \|x_{m_k}\| = 1$$
 以及 $\lim_{k \to \infty} \|x_{n_k} + x_{m_k}\| = 2$,

故由一致凸空间的等价条件得 $\lim_{k\to\infty} \|x_{n_k} - x_{m_k}\| = 0$, 矛盾.

引理 2.5.39

设 X 为 Banach 空间, $f_1, \dots, f_n \in X^*$, $\alpha_1, \dots, \alpha_n \in \mathbb{K}$, $\gamma > 0$. 则对 $\forall \varepsilon > 0$, 存在 $x_{\varepsilon} \in X$ 使得

$$f_i(x_{\varepsilon}) = \alpha_i (i = 1, \dots, n)$$
 以及 $\|x_{\varepsilon}\| < \gamma + \varepsilon$

成立的充要条件为: 对任意的 $\beta_1, \dots, \beta_n \in \mathbb{K}$, 不等式

$$\left| \sum_{i=1}^{n} \beta_{i} \alpha_{i} \right| \leq \gamma \left\| \sum_{i=1}^{n} \beta_{i} f_{i} \right\|$$

成立.

证明. 必要性: 给定 $\beta_1, \dots, \beta_n \in \mathbb{K}$, 对任意的 $\varepsilon > 0$, 有

$$\left| \sum_{i=1}^{n} \beta_{i} \alpha_{i} \right| = \left| \sum_{i=1}^{n} \beta_{i} f_{i}(x_{\varepsilon}) \right| \leq \left\| \sum_{i=1}^{n} \beta_{i} f_{i} \right\| \cdot \|x_{\varepsilon}\| \leq (\gamma + \varepsilon) \left\| \sum_{i=1}^{n} \beta_{i} f_{i} \right\|,$$

再根据 ε 的任意性可得充分条件中不等式.

充分性: 不妨设 f_1, \dots, f_n 线性无关. 考虑映射

$$\varphi: X \to \mathbb{K}^n, x \mapsto (f_1(x), \cdots, f_n(x)).$$

 φ 一定是满射, 若不然, $\dim R(\varphi) < n$, 则根据线性代数知识, 存在非零的 $(y_1, \dots, y_n) \in \mathbb{K}^n$ 使得

$$\sum_{i=1}^{n} y_i f_i(x) = 0, \quad \forall x \in X,$$

与 f_1, \dots, f_n 线性无关矛盾. 根据开映射定理以及 φ 是满射可知 φ 是开映射. 记 $S_{\varepsilon} = \{x \in X : \|x\| < \gamma + \varepsilon\}$, 则由于 φ 是开映射, $\varphi(S_{\varepsilon})$ 是 \mathbb{K}^n 中的开集.

反设不存在必要条件中的 x_{ε} , 则 $(\alpha_1, \dots, \alpha_n) \not\in \varphi(S_{\varepsilon})$. 则由 Hahn-Banach 定理的第一几何形式, 存在 \mathbb{K}^n 上的有界线性泛函 F 使得

$$|F(\alpha_1, \dots, \alpha_n)| \ge \operatorname{Re} F(\alpha_1, \dots, \alpha_n) \ge \sup_{x \in S_{\varepsilon}} \operatorname{Re} F \circ \varphi(x) = \sup_{x \in S_{\varepsilon}} \left| F \circ \varphi(x) \right|.$$

由 Euclidean 空间 \mathbb{K}^n 的性质, 存在 $(\beta_1, \dots, \beta_n) \in \mathbb{K}^n$ 使得

$$F(y_1,\dots,y_n) = \sum_{i=1}^n y_i \beta_i, \quad \forall (y_1,\dots,y_n) \in \mathbb{K}^n.$$

故

$$\gamma \left\| \sum_{i=1}^{n} \beta_i f_i \right\| \ge \left| \sum_{i=1}^{n} \alpha_i \beta_i \right| \ge \left| \sum_{i=1}^{n} \beta_i f_i(x) \right|, \quad \forall x \in S_{\varepsilon}.$$

但不等式右侧的上极限是 $(\gamma + \varepsilon) \left\| \sum_{i=1}^{n} \beta_{i} f_{i} \right\|$, 矛盾.

定理 2.5.40

设X是一致凸的Banach空间,则X自反.

2.5 共轭空间 · 147 ·

证明. 给定 $x_0^{**} \in X^{**}$, 不妨设 $\|x_0^{**}\| = 1$. 对每个 $n \ge 1$, 存在 $x_n^* \in X^*$, $\|x_n^*\| = 1$ 使得

$$\left| \langle x_0^{**}, x_n^* \rangle \right| \ge \left\| x_0^{**} \right\| - \frac{1}{n} = 1 - \frac{1}{n}.$$

在上面引理中取 $f_i = x_i^*, \alpha_i = \langle x_0^{**}, x_i^* \rangle (1 \le i \le n), \gamma = \|x_0^{**}\| = 1$. 则对任意的 $\beta_1, \dots, \beta_n \in \mathbb{K}$, 不等式

$$\left| \sum_{i=1}^{n} \beta_i \langle x_0^{**}, x_i^{*} \rangle \right| = \left| \langle x_0^{**}, \sum_{i=1}^{n} \beta_i x_i^{*} \rangle \right| \le \left\| \sum_{i=1}^{n} \beta_i x_i^{*} \right\|$$

成立. 故若取 $\varepsilon = \frac{1}{n}$, 存在 $x_n \in X$ 使得

$$\langle x_0^{**}, x_i^* \rangle = \langle x_i^*, x_n \rangle (1 \le i \le n) \quad \text{#} \, \exists \quad \|x_n\| \le 1 + \frac{1}{n}.$$

于是

$$1 - \frac{1}{n} \le \left| \langle x_0^{**}, x_n^* \rangle \right| = \left| \langle x_n^*, x_n \rangle \right| \le \|x_n\| \le 1 + \frac{1}{n},$$

故 $\lim_{n\to\infty} \|x_n\| = 1$. 再由

$$2\left(1-\frac{1}{n}\right) \leq 2\left|\left\langle x_0^{**}, x_n^*\right\rangle\right| = \left|\left\langle x_n^*, x_n + x_{n+p}\right\rangle\right| \leq \left\|x_n + x_{n+p}\right\| \leq 2\left(1+\frac{1}{n}\right)$$

可得 $\lim_{m,n\to\infty} \|x_m + x_n\| = 2$. 故由一致凸空间等价条件的推论知 $\{x_n\}$ 是 Cauchy 列, 而 X 完备, 故 $\{x_n\}$ 收敛, 记其极限为 x_0 , 显然有 $\|x_0\| = 1$. 在

$$\langle x_0^{**}, x_i^* \rangle = \langle x_i^*, x_n \rangle, \quad 1 \le i \le n$$

中令 $n \to \infty$ 可得 $\langle x_0^{**}, x_i^* \rangle = \langle x_i^*, x_0 \rangle (\forall i \ge 1)$.

下面证明 x₀ 是满足

$$||x_0|| = 1$$
 \exists . $\langle x_0^{**}, x_n^* \rangle = \langle x_n^*, x_0 \rangle, \forall n \ge 2$

的唯一点. 若不然, 存在不同于 x_0 的点 $x_0' \in X$ 也满足该性质, 则由 X 的严格凸性 (一

致凸必严格凸), $||x_0 + x_0'|| < 2$. 但注意到

$$2\left(1-\frac{1}{n}\right) \leq 2\left|\left\langle x_0^{**},x_n^*\right\rangle\right| = \left|\left\langle x_n^*,x_0+x_0'\right\rangle\right| \leq \left\|x_0+x_0'\right\|, \quad \forall \, n \geq 2,$$

故 $||x_0 + x_0'|| \ge 2$, 矛盾.

故 x_0 与 x_1^* 的选取无关, 而由 x_1^* 的定义知它可以取作 X^* 中任意范数为 1 的点, 因此 $\langle x_0^{**}, x^* \rangle = \langle x^*, x_0 \rangle, \forall x^* \in X^*$, 该式说明 X 自反.

推论 2.5.41

Hilbert 空间均是自反的.

证明. 由 Hilbert 空间的完备性和一致凸性得到.

定理 2.5.42

设 X 是一致凸的 Banach 空间, $x_n, x \in X, x_n \rightarrow x$ 并且

$$\limsup_{n\to\infty}\|x_n\|\leq\|x\|,$$

则 $x_n \to x$.

证明. 由命题2.5.20, 还有 $\|x\| \le \liminf_{n \to \infty} \|x_n\|$, 故 $\|x_n\| \to \|x\|$. 不妨设 $x \ne 0$, 否则显然成立. 因为 $x_n \to x$ 并且 $\|x_n\| \to \|x\| \ne 0$, 故由

$$\begin{split} & \left| f \left(\frac{x_n}{\|x_n\|} - \frac{x}{\|x\|} \right) \right| \leq \left| f \left(\frac{x_n}{\|x_n\|} - \frac{x_n}{\|x\|} \right) \right| + \left| f \left(\frac{x_n}{\|x\|} - \frac{x}{\|x\|} \right) \right| \\ \leq & \left\| f \left\| \cdot \|x_n\| \right| \frac{1}{\|x_n\|} - \frac{1}{\|x\|} \right| + \frac{1}{\|x\|} \left| f(x_n) - f(x) \right| \to 0, \quad \forall f \in X^*, \end{split}$$

故 $\frac{x_n}{\|x_n\|} \rightarrow \frac{x}{\|x\|}$, 因而

$$\frac{x_n}{\|x_n\|} + \frac{x}{\|x\|} \to 2\frac{x}{\|x\|}.$$

由于

$$2 = 2 \left\| \frac{x}{\|x\|} \right\| \le \liminf_{n \to \infty} \left\| \frac{x_n}{\|x_n\|} + \frac{x}{\|x\|} \right\| \le \limsup_{n \to \infty} \left\| \frac{x_n}{\|x_n\|} + \frac{x}{\|x\|} \right\| \le 2,$$

故由一致凸空间的等价条件可得 $\frac{x_n}{\|x_n\|} \to \frac{x}{\|x\|}$, 因此根据

$$||x_n - x|| \le ||x_n - \frac{||x||}{||x_n||} x_n|| + ||\frac{||x||}{||x_n||} x_n - x||$$

$$= ||x_n|| - ||x||| + ||x|| \cdot ||\frac{x_n}{||x_n||} - \frac{x}{||x||}||$$

可知 $x_n \rightarrow x$.

定理 2.5.43

当 $1 时, <math>L^p$ 空间是一致凸空间, 进而是自反的.

证明. 当 $2 \le p < \infty$ 时, 有

$$\left\| \frac{f+g}{2} \right\|_{p}^{p} + \left\| \frac{f-g}{2} \right\|_{p}^{p} \le \frac{1}{2} \left(\left\| f \right\|_{p}^{p} + \left\| g \right\|_{p}^{p} \right), \quad \forall f, g \in L^{p},$$

该不等式的证明留作习题.

当 1 < p < 2 时,有

$$\left\| \frac{f+g}{2} \right\|_{p}^{q} + \left\| \frac{f-g}{2} \right\|_{p}^{q} \le \left(\frac{1}{2} \|f\|_{p}^{p} + \frac{1}{2} \|g\|_{p}^{p} \right)^{\frac{1}{p-1}}, \quad \forall f, g \in L^{p},$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$,该不等式的证明也留作习题.

根据上面两个不等式以及一致凸空间的等价条件, 立即得到 $L^p(1 空间的一致凸性.$

定理 2.5.44

当 1 < p < ∞ 时, $\forall \varphi \in (L^p)^*$, 存在唯一的 $u \in L^q$ 使得

$$\langle \varphi, f \rangle = \int u f d\mu, \quad \forall f \in L^p,$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$. 在此意义下, $(L^p)^* = L^q$.

喀 注

若测度 μ 是 σ 有限的,则该定理对 p=1 也成立.

证明. 今 $T: L^q \to (L^p)^*$, 满足

$$\langle Tu, f \rangle := \int u f d\mu, \quad \forall f \in L^p.$$

由 Holder 不等式,

$$\left| \langle Tu, f \rangle \right| \leq \|u\|_q \cdot \left\| f \right\|_p, \quad \forall f \in L^p,$$

故 $T \neq L^q$ 到 $(L^p)^*$ 上的有界线性算子. 若取 $f_0 = \text{sign}(u) \cdot |u|^{q-1}$, 则 $\|f_0\|_p^p = \|u\|_q^q$, 并且

$$\langle Tu, f_0 \rangle = \|u\|_q^q = \|u\|_q \cdot \|f_0\|_p,$$

因此 $||Tu|| = ||u||_q$. 还需证明 T 是满射. T 是等距映射, 故 R(T) 在 $(L^p)^*$ 中闭, 只需证明 $\overline{R(T)} = (L^p)^*$. 任取 $\psi \in (L^p)^{**}$ 使得 $\psi|_{R(T)} = 0$, 由于 $L^p(1 自反, 故存在 <math>\phi \in L^p$ 使得 $\psi = \tau \phi(\tau$ 是从 L^p 到 $(L^p)^{**}$ 的自然嵌入映射), 从而

$$0 = \langle \psi, Tu \rangle = \langle Tu, \phi \rangle = \int u\phi d\mu, \quad \forall u \in L^q,$$

从而 $\phi = 0$, $\psi = 0$. 故 $^{\perp}R(T) = \{0\}$, $\overline{R(T)} = (L^p)^*$.

推论 2.5.45

设 $1 , 则 <math>L^p[a,b]$ 中 $f_n - f$ 的充要条件为

$$\int_{a}^{t} f_{n} ds \rightarrow \int_{a}^{t} f ds, \quad \forall t \in [a, b].$$

证明. 充分条件就是 $\langle \chi_{[a,t]}, f_n \rangle \rightarrow \langle \chi_{[a,t]}, f \rangle$, 因此由 $\overline{\text{span}\{\chi_{[a,t]} : a \leq t \leq b\}} = L^p[a,b]$ (阶 梯函数在 $L^p[a,b]$ 中稠密) 立即得到.

定理 2.5.46

在 C[a,b] 中, $x_n \rightarrow x$ 的充要条件为

- (1) $\{x_n\}$ 在 C[a,b] 中有界;
- (2) $\forall t \in [a, b], x_n(t) \rightarrow x(t).$

证明. 必要性: (1) 显然, (2) 由 $\langle \delta_t, x \rangle := x(t)$ 定义的 δ_t 是 C[a,b] 上的有界线性泛, 因

此

$$\langle \delta_t, x_n \rangle = x_n(t) \rightarrow x(t) = \langle \delta_t, x \rangle, \quad \forall t \in [a, b].$$

充分性: 由 $(C[a,b])^*$ 为有界变差函数空间 BV[a,b] 以及 Lebesgue 控制收敛定理可得.

2.5.4 作业

题目2.5.1. 设 X 是复 Hilbert 空间, $T \in L(X)$, 证明 $T = T^* \iff (Tx, x) \in \mathbb{R}, \forall x \in X$.

解答. 必要性: 由 $(Tx,x) = (x,Tx) = \overline{(Tx,x)} (\forall x \in X)$ 可得.

充分性: 任取 $x, y \in X$, 有

$$(T(x+y), x+y) = \overline{(T(x+y), x+y)} = (x+y, T(x+y))$$
$$\Longrightarrow (Tx, y) + (Ty, x) = (x, Ty) + (y, Tx).$$

将上式中的 y 改为 iy, 再整理可得 (Tx, y) - (Ty, x) = (x, Ty) - (y, Tx), 将该式与上式相加即得 (Tx, y) = (x, Ty).

▲ **题目2.5.2**. 设 X 是 Hilbert 空间, $T_1, T_2 \in L(X)$ 都是自伴算子, 则

$$T_1 T_2 = T_2 T_1 \iff (T_1 T_2)^* = T_1 T_2.$$

解答. 只需注意到 $(T_1T_2)^* = T_2^*T_1^* = T_2T_1$.

题目2.5.3. 设 X 是 Hilbert 空间, $T \in L(X)$, 证明 $Ker(T^*) = R(T)^{\perp}$.

解答. $x \in Ker(T^*) \iff T^*x = 0 \iff (T^*x, y) = 0 (\forall y \in X) \iff (x, Ty) = 0 (\forall y \in X) \iff x \in R(T)^{\perp}$.

题目2.5.4. 设 X 是赋范空间, M 是 X 的子空间, 证明 $(^{\perp}M)^{\perp} = \overline{M}$.

解答. 由 $(^{\perp}M)^{\perp} = \{x \in X : f(x) = 0, \forall f \in X^* \text{ 且 } f|_{M} = 0\}$ 知 $M \subset (^{\perp}M)^{\perp}$, 而 $(^{\perp}M)^{\perp}$ 还是闭子空间, 因此 $\overline{M} \subset (^{\perp}M)^{\perp}$. 若 $\overline{M} \neq (^{\perp}M)^{\perp}$, 则由 Hahn-Banach 定理知存在 $f \in {}^{\perp}M$ 以及 $x_0 \in (^{\perp}M)^{\perp}$ 使得 $f(x_0) \neq 0$, 但根据 $(^{\perp}M)^{\perp}$ 的定义又有 $x_0 \notin (^{\perp}M)^{\perp}$, 矛盾.

趣目2.5.5. 设 X, Y 是赋范空间, $T \in L(X, Y)$, 证明:

$$Ker(T^*) = {}^{\perp}R(T), \quad Ker(T) = R(T^*)^{\perp}.$$

解答. $x^* \in Ker(T^*) \iff T^*x^* = 0 \iff \langle T^*x^*, y \rangle = 0 (\forall y \in Y) \iff \langle x^*, Ty \rangle = 0 (\forall y \in Y) \iff x^* \in {}^{\perp}R(T).$

 $x \in Ker(T) \iff Tx = 0 \iff \langle y^*, Tx \rangle = 0 (\forall y^* \in Y^*) \iff \langle T^*y^*, x \rangle = 0 (\forall y^* \in Y^*) \iff x \in R(T^*)^{\perp}.$

题目2.5.6. 设 $X = \{\{x_n\} \subset l^2 : \|x\| < \infty\}$, 其中 $\|x\| = \left(\sum_{n=1}^{\infty} |nx_n|^2\right)^{\frac{1}{2}}$. 记 T 是从 X 到 l^2 的 单位映射, 证明 $\overline{R(T)} = l^2$.

解答. 任取 $x \in X, y \in l^2$, 有 $(Tx, y)_{l^2} = (x, T^*y)_X$, 即

$$\sum_{n=1}^{\infty} \overline{x_n} y_n = \sum_{n=1}^{\infty} n^2 \overline{x_n} (T^* y)_n,$$

故 $(T^*y)_n = \frac{y_n}{n^2}$. 从而 $Ker(T^*) = \{0\} \Longrightarrow \overline{R(T)} = Ker(T^*)^{\perp} = l^2$.

△ 题目2.5.7. 设 X 是自反的赋范空间,证明 X^* 也自反.

解答. 记 τ 是从 X 到 X^{**} 的自然嵌入映射, 由于 X 自反, τ 是 X 到 X^{**} 的等距同构. 任取 $x^{***} \in X^{***}$, 则 $x^{***} \tau \in X^{*}$ 并且

$$\langle x^{**}, x^{***}\tau \rangle = \langle x^{***}\tau, \tau^{-1}x^{**} \rangle = \langle x^{***}, x^{**} \rangle,$$

因此 X* 自反.

▲ 题目2.5.8. 设 X 是 Banach 空间,则 X 自反当且仅当 X* 自反.

解答. 必要性: 由上题立即得到.

充分性: 若 X^* 自反,则由必要性条件知 X^{**} 自反. 记 τ 是 X 到 X^{**} 的自然 同构,则由 X 是 Banach 空间可得 $\tau(X)$ 在 X^{**} 中闭. 根据 Pettis 定理,自反空间的 闭子空间也自反,因此 τX 自反. 记 ϕ 是从 τX 到 $(\tau X)^{**}$ 的自然同构 (因为 τX 自反). 不难看出 $x^* \mapsto y^*$, $\langle y^*, \tau x \rangle := \langle x^*, x \rangle (x \in X)$ 是 X^* 到 $(\tau X)^*$ 的等距同构,从而

 $\psi: x^{**} \mapsto y^{**}, \langle y^{**}, y^{*} \rangle := \langle x^{**}, x^{*} \rangle (x^{*} \in X^{*})$ 是从 X^{**} 到 $(\tau X)^{**}$ 的等距同构. 故

$$\langle x^{**}, x^{*} \rangle = \langle y^{**}, y^{*} \rangle = \langle y^{*}, \phi^{-1} y^{**} \rangle$$
$$= \langle x^{*}, \tau^{-1} \phi^{-1} y^{**} \rangle = \langle x^{*}, \tau^{-1} \phi^{-1} \psi x^{**} \rangle,$$

因此 X 也自反.

题目2.5.9. 求证: $(l^p)^* = l^q \Big(1 \le p < \infty, \frac{1}{p} + \frac{1}{q} = 1 \Big).$ 解答. 令

$$T: l^q \to (l^p)^*, \{\alpha_n\} \mapsto f \quad \left(f(\{x_n\}) = \sum_{n=1}^{\infty} \alpha_n x_n \right),$$

由课本习题 2.3.8 和课本习题 2.3.9, T 是良定义的并且保持范数. 还需证明 T 是满射. 设 $f \in l^q$, 令 $\{\alpha_n\} = \{f(e_n)\}$, 其中 e_n 是第 n 分量为 1 其余为 0 的点. $\forall \{x_n\} \in l^p$, $\sum\limits_{n=1}^{\infty} \alpha_n x_n = f(\{x_n\})$ 收敛, 因此再由课本习题 2.3.8 和课本习题 2.3.9, $\{\alpha_n\} \in l^q$ 且 $T\{\alpha_n\} = f$, T 是满射.

题目2.5.10. 设 C 是收敛数列全体, 其上范数为 $\|\cdot\|_{\infty}$, 求证: $C^* = l^1$.

解答. 令

$$T: l^1 \to C^*, \alpha = \{\alpha_n\} \to f \quad \left(f(\{x_n\}) = \sum_{n=1}^{\infty} \alpha_n x_n\right).$$

首先证明 T 是良定义的,并且 $||f|| = ||\alpha||_1$. 注意到

$$\left|f(x)\right| = \left|\sum_{n=1}^{\infty} \alpha_n x_n\right| \le \|x\|_{\infty} \sum_{n=1}^{\infty} |\alpha_n| = \|\alpha\|_1 \cdot \|x\|_{\infty}, \quad \forall x = \{x_n\} \in C,$$

因此 $||f|| \le ||\alpha||_1$. 记

$$x^{(m)} \in C_0 \subset C: \quad x_n^{(m)} = \begin{cases} \operatorname{sign}(\alpha_n), & n \leq m, \\ 0, & n > m. \end{cases}$$

则

$$f(x^{(m)}) = \sum_{n=1}^{m} |\alpha_n| \to \|\alpha\|_1, \quad m \to \infty,$$

因此 $||f|| = ||\alpha||_1$.

再证明 T 是满射. 对 $f \in C^*$, 令 $\alpha = \{\alpha_n\} = \{f(e^{(n)})\}$. 下面证明 $\alpha \in l^1$.

$$\left| f(x^{(m)}) \right| = \left| \sum_{n=1}^{\infty} x_n^{(m)} f(e^{(n)}) \right| = \sum_{n=1}^{m} \left| f(e^{(n)}) \right| = \sum_{n=1}^{m} |\alpha_n| \le \|f\| \cdot \|x^{(m)}\| = \|f\|,$$

故 $\alpha \in l^1$, 再根据 $T\alpha = f$ 知 T 是满射.

- **题目2.5.11.** 设 C_0 是收敛于 0 的数列全体, 其上范数为 $\|\cdot\|_{\infty}$, 求证: $C_0^* = l^1$. **解答.** 与上题证明过程相同.
- ▲ 题目2.5.12. 求证: 有限维赋范空间是自反的.

解答. 设 X 的一组基为 x_1, \dots, x_n . 由习题 2.4.7, 存在 $f_1, \dots, f_n \in X^*$ 使得 $f_i(x_j) = \delta_{ij} (1 \le i, j \le n)$. 任取 $f \in X^*, x = \sum_{k=1}^n \alpha_k x_k$, 有

$$f(x) = f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = \sum_{k=1}^{n} \alpha_k f(x_k) = \sum_{k=1}^{n} \langle f, x_k \rangle f_k(x),$$

并且由于 $f_k(1 \le k \le n)$ 线性无关, 这种表示是唯一的, 因此 f_1, \dots, f_n 是 X^* 的一组基, $\dim X^* = n = \dim X$.

同理可得 $\dim X^{**} = \dim X^*$, 从而 $\dim X^{**} = \dim X$, 再由 $X \subset X^{**}$ 知 $X = X^{**}$.

题目2.5.13. 设 X 是赋范空间, τ 是 X 到 X^{**} 的自然映射, 求证: $R(\tau)$ 是闭的当且仅当 X 完备.

解答. 必要性: 设 $\{x_n\}$ 是 X 中的 Cauchy 列, 则 $\{\tau x_n\}$ 是 X^{**} 中的 Cauchy 列. 由 X^{**} 的完备性以及 $R(\tau)$ 是闭集, $\tau x_n \to \tau x \in R(\tau)$, 从而 $x_n \to x$, X 完备.

充分性: 设 $\tau x_n \to x^{**} \in X^{**}$, 则 $\{\tau x_n\}$ 是 X^{**} 中的 Cauchy 列, $\{x_n\}$ 是 X 中的 Cauchy 列. 根据 X 的完备性, $x_n \to x \in X$, 也即 $\tau x_n \to \tau x = x^{**} \in R(\tau)$, 因此 $R(\tau)$ 是闭的.

△ **题目2.5.14**. 在 *l*¹ 中定义算子

$$T:(x_1,x_2,\cdots)\mapsto (0,x_1,x_2,\cdots),$$

求证: $T \in L(l^1)$ 并求 T^* .

解答.由

$$||Tx|| = ||x||, \quad \forall x \in l^1$$

可知 $T \in L(l^1)$ 并且 ||T|| = 1. 注意到

$$\langle T^*f,x\rangle=\langle f,Tx\rangle=\sum_{n=1}^\infty f_n(Tx)_n=\sum_{n=1}^\infty f_{n+1}x_n,\quad\forall f\in l^\infty=(l^1)^*,x\in l^1,$$

故

$$T^*: l^{\infty} \to l^{\infty}, (f_1, f_2, \cdots) \mapsto (f_2, f_3, \cdots),$$

也即 T^* 是 I^∞ 上的左推移算子.

△ **题目2.5.15**. 在 *l*² 中定义算子

$$T: \{x_n\}_1^\infty \mapsto \left\{\frac{x_n}{n}\right\}_1^\infty,$$

求证: $T \in L(l^2)$ 并求 T^* .

解答.由

$$||Tx||^2 = \sum_{n=1}^{\infty} \frac{|x_n|^2}{n^2} \le \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right) \left(\sum_{n=1}^{\infty} |x_n|^2\right) = \zeta(2) ||x||, \quad \forall x \in l^2$$

可知 $T \in L(l^2)$ 并且 $||T|| = \zeta(2)$. 注意到

$$(T^*x, y) = (x, Ty) = \sum_{n=1}^{\infty} \frac{x_n y_n}{n} = (Tx, y), \quad \forall x, y \in l^2$$

可得 $T^* = T$.

题目2.5.16. 设 X, Y 是 Banach 空间, T 是从 X 到 Y 的线性算子, 并且 $\forall g \in Y^*$, $g(Tx) \in X^*$, 求证: $T \in L(X, Y)$.

解答. 定义 $T^*: Y^* \to X^*, g \mapsto g(Tx)$, 则

$$\sup_{\substack{x^{**} \in R(\tau) \\ \|x^{**}\| = 1}} \left\| (x^{**} \circ T^*) g \right\| = \sup_{\substack{x \in X \\ \|x\| = 1}} \left\| (T^* g)(x) \right\| < \infty, \quad \forall g \in Y^*,$$

由共鸣定理,

$$\sup_{\substack{x^{**} \in R(\tau) \\ \|x^{**}\| = 1}} \sup_{\substack{g \in Y^* \\ \|g\| = 1}} \left\| (x^{**} \circ T^*)(g) \right\| = \sup_{\substack{\|g\| = 1 \\ g \in Y^*}} \left\| T^* g \right\| = \left\| T^* \right\| < \infty,$$

故 $T^* \in L(Y^*, X^*)$, 从而 $||T|| = ||T^*|| < \infty$, $T \in L(X, Y)$.

- **题目2.5.17.** 设 H 是 Hilbert 空间, $\{e_n\}$ 是 H 的正交规范基, 求证: $x_n \to x_0$ 的充要条件 是
 - (1) $\|x_n\|$ 有界;
 - (2) $(x_n, e_k) \to (x_0, e_k), \forall k \ge 1.$

解答. 必要性: 由 Banach-Steinhaus 定理易得.

充分性: 由 Riesz 表示定理, 只需证明 $(x_n,x) \to (x_0,x) (\forall x \in H)$. 记 M 是 $\|x_n\|$ 的一个上界. $\forall \varepsilon > 0$, 存在 N 使得

$$\sqrt{\sum_{k=N+1}^{\infty}|(x,e_k)|^2} = \left\|\sum_{k=N+1}^{\infty}(x,e_k)e_k\right\| < \frac{\varepsilon}{M+\|x_0\|}.$$

从而

$$\begin{aligned} |(x_n - x_0, x)| &\leq \left| \left(x_n - x_0, \sum_{k=1}^N (x, e_k) e_k \right) \right| + \left| \left(x_n - x_0, \sum_{k=N+1}^\infty (x, e_k) e_k \right) \right| \\ &\leq \sum_{k=1}^N |(x, e_k)| \cdot |(x_n - x_0, e_k)| + (M + ||x_0||) \cdot \frac{\varepsilon}{M + ||x_0||} \\ &\leq \sum_{k=1}^N |(x, e_k)| \cdot |(x_n - x_0, e_k)| + \varepsilon, \end{aligned}$$

在上式中令 $n \to \infty$, 再由 ε 的任意性可知, $(x_n - x_0, x) \to 0$.

趣 题目2.5.18. 设 S_n 是 $L^p(\mathbb{R}^n)$ 到自身的算子 $(1 \le p < \infty)$:

$$(S_n u)(x) = \begin{cases} u(x), & |x| \le n, \\ 0, & |x| > n, \end{cases}$$

求证: $S_n \to I \ \text{但} \ S_n \not\Rightarrow I$.

解答. 任取 $u \in L^p(\mathbb{R}^n)$,

$$||(I - S_n)u||^p = \int_{|x| > n} |u(x)|^p dx \to 0,$$

因此 $S_n \rightarrow I$. 但

$$||I - S_n|| = \sup_{\|u\|=1} \left(\int_{|x|>n} |u(x)|^p dx \right)^{\frac{1}{p}} \le 1,$$

对 $v = \chi_{n < |x| < 2n}$, 取 $u = \frac{v}{\|v\|}$ 带入上式, 得 $\|I - S_n\| = 1$, 故 $S_n \neq I$.

题目2.5.19. 设 H 是 Hilbert 空间, $x_n \to x_0$, $y_n \to y_0$, 求证: $(x_n, y_n) \to (x_0, y_0)$. **解答**. 设 M 是 $\|x_n\|$ 的上界, 则

$$|(x_n, y_n) - (x_0, y_0)| \le |(x_n, y_n - y_0)| + |(x_n - x_0, y_0)|$$

$$\le M ||y_n - y_0|| + |(x_n - x_0, y_0)|,$$

- **题目2.5.20.** 设 $\{e_n\}$ 是 Hilbert 空间 H 中的正交规范集, 求证: $e_n \to 0$ 但 $e_n \to 0$. **解答.** 由 Bessel 不等式, $(e_n, x) \to 0 (\forall x \in H)$, 再由 Riesz 表示定理, $e_n \to 0$. 但 $\|e_n\| = 1(\forall n)$, 故 $e_n \to 0$.
- **题目2.5.21**. 设 H 是 Hilbert 空间, 求证 $x_n \to x$ 的充要条件是
 - (1) $||x_n|| \to ||x||$;
 - (2) $x_n \rightarrow x$.

解答. 必要性显然, 只需证明充分性. 注意到

$$(x_n - x, x_n - x) = (x_n, x_n) - 2\operatorname{Re}(x_n - x, x) - (x, x),$$

题目2.5.22. 求证: 赋范空间中的闭凸集是弱闭的, 即若 M 是闭凸集, $\{x_n\} \subset M$ 且 $x_n \to x_0$, 则 $x_0 \in M$.

解答. 若 $x_n \to x_0$,由 Mazur 定理, 存在 $\{x_n\}$ 的凸组合序列 $\{y_n\}$ 强收敛与 x_0 ,而由 M 是闭集, $\{y_n\} \subset M$,因此由 M 是闭集, $x_0 \in M$.

题目2.5.23. 设 X 是自反的 Banach 空间, M 是 X 中的有界闭凸集, $f \in X^*$, 求证: f 在 M 上达到最大值和最小值.

解答. 设 $||x|| \le K(\forall x \in M)$, 则由

$$|f(x)| \le ||f|| \cdot ||x|| \le K ||f||, \quad \forall x \in M$$

知 f 在 M 上的上确界和下确界均是有限值. 设 $x_n \in M$ 使得 $f(x_n) \to \alpha = \sup_{x \in M} f(x)$, 由课本题目 2.5.20, $\{x_n\}$ 有弱收敛子列 $\{x_{n_k}\}$, 记弱极限为 x, 显然 $f(x) = \alpha$. 根据题目 2.5.21, $x \in M$, 因此 f 在 M 上能达到最大值, 同理也能达到最小值.

题目2.5.24. 设 X 是自反的 Banach 空间, M 是 X 中的非空闭凸集, 求证: 存在 $x_0 \in M$ 使得 $\|x_0\| = \inf_{x \in M} \|x\|$.

解答. 记 $d = \inf_{x \in M} \|x\|$, 任取 $y \in M$, 有 $\|y\| \ge d$. 令 $N = M \cap \overline{B}(0, \|y\|)$, 则 N 是有界闭凸集, 并且 $\inf_{x \in N} \|x\| = d$. 取 $x_n \in N$ 使得 $\|x_n\| \to d$, 则由课本题目 2.5.20, $\{x_n\}$ 有弱收敛子列 $\{x_{n_k}\}$, 弱极限为 x_0 . 取 $f \in X^*$ 使得 $\|f\| = 1$ 且 $f(x_0) = \|x_0\|$, 则

$$||x_0|| = f(x_0) = \lim_{k \to \infty} f(x_{n_k}) \le \lim_{k \to \infty} ||x_{n_k}|| = d.$$

由题目 2.5.21, $x_0 \in N \subset M$, 因此还有 $\|x_0\| \ge d$, 故 $\|x_0\| = d$.

趣目2.5.25. 设 *X* 是赋范空间, 证明 *X* 一致凸的充要条件为: 对 $\forall \{x_n\}, \{y_n\} \subset X$,

$$\lim_{n \to \infty} \|x_n\| = \lim_{n \to \infty} \|y_n\| = 1, \lim_{n \to \infty} \|x_n + y_n\| = 2 \implies \lim_{n \to \infty} \|x_n - y_n\| = 0.$$

解答. 必要性: 设 $\{x_n\}, \{y_n\} \subset X$, 满足

$$\lim_{n \to \infty} \|x_n\| = \lim_{n \to \infty} \|y_n\| = 1, \lim_{n \to \infty} \|x_n + y_n\| = 2.$$

2.5 共轭空间 · 159 ·

注意到

$$\left\| \frac{x_n}{\|x_n\|} - x_n \right\| = |1 - \|x_n\|| \to 0,$$

同理有 $\left\| \frac{y_n}{\|y_n\|} - y_n \right\| \to 0$, 因此

$$\lim_{n \to \infty} \left\| \frac{x_n}{\|x_n\|} + \frac{y_n}{\|y_n\|} \right\| = \lim_{n \to \infty} \|x_n + y_n\| = 2.$$

任取 $\varepsilon > 0$, $\delta > 0$ 由一致凸定义所给出. 根据上式可知存在 N > 0 使得

$$\left\| \frac{1}{2} \left(\frac{x_n}{\|x_n\|} + \frac{y_n}{\|y_n\|} \right) \right\| \ge 1 - \delta, \quad \forall n > N,$$

而 $\left\| \frac{x_n}{\|x_n\|} \right\| = \left\| \frac{y_n}{\|y_n\|} \right\| = 1$, 故必有

$$\left\| \frac{x_n}{\|x_n\|} - \frac{y_n}{\|y_n\|} \right\| \le \varepsilon, \quad \forall n > N.$$

因此 $\left\|\frac{x_n}{\|x_n\|} - \frac{y_n}{\|y_n\|}\right\| \to 0$, 再根据 $\|x_n\|, \|y_n\| \to 1$ 不难得出 $\|x_n - y_n\| \to 0$.

充分性: 同样使用反证法,反设 X 不是一致凸空间,则存在 $\varepsilon_0 > 0$ 以及 $\{x_n\}$, $\{y_n\} \subset X$ 满足

$$||x_n|| \le 1$$
, $||y_n|| \le 1$, $||x_n - y_n|| > \varepsilon_0$ \mathbb{H} $||\frac{x_n + y_n}{2}|| \ge 1 - \frac{1}{n}$,

由上式可得 $\|x_n\|, \|y_n\| \to 1, \|x_n + y_n\| \to 2$ 但是 $\|x_n - y_n\| \not\to 0$, 矛盾.

▲ **题目2.5.26.** 当 *p* ≥ 2 时, 证明:

$$\left\| \frac{f+g}{2} \right\|_{p}^{p} + \left\| \frac{f-g}{2} \right\|_{p}^{p} \le \frac{1}{2} \left(\left\| f \right\|_{p}^{p} + \left\| g \right\|_{p}^{p} \right), \quad \forall f, g \in L^{p}.$$

证明. 首先证明 $a^p + b^p \le (a^2 + b^2)^{\frac{p}{2}} (\forall a, b > 0)$. 不妨设 $b \ge a$, 令 $t = \frac{b}{a}$, 只需证 $x(t) = (1 + t^2)^{\frac{p}{2}} - t^p - 1 \ge 0 (\forall t \ge 1)$. 注意到 $x'(t) = pt((t^2 + 1)^{\frac{p}{2} + 1} - t^{p-2}) \ge 0 (\forall \ge 1)$, 故 $x(t) \ge x(1) = 2^{\frac{p}{2}} - 2 \ge 0$.

令 $a = \left| \frac{f+g}{2} \right|, b = \left| \frac{f-g}{2} \right|$, 再由 $x^{\frac{p}{2}}(x > 0)$ 是凸函数 $(p \ge 2)$ 可得

$$\left| \frac{f+g}{2} \right|^p + \left| \frac{f-g}{2} \right|^p \le \left(\frac{\left| f \right|^2 + \left| g \right|^2}{2} \right)^{\frac{p}{2}} \le \frac{\left| f \right|^p + \left| g \right|^p}{2},$$

对上式积分即可.

▲ 题目2.5.27. 当 1 < p < 2 时, 有

$$\left\| \frac{f+g}{2} \right\|_{p}^{q} + \left\| \frac{f-g}{2} \right\|_{p}^{q} \le \left(\frac{1}{2} \|f\|_{p}^{p} + \frac{1}{2} \|g\|_{p}^{p} \right)^{\frac{1}{p-1}}, \quad \forall f, g \in L^{p},$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$.

解答. 注意到对 0 < x < 1, 有 Taylor 展式

$$\frac{1}{2} \left((1+x)^p + (1-x)^p \right) - (1+x^q)^{p-1}$$

$$= \sum_{n=1}^{\infty} \frac{(2-p)(3-p)\cdots(2n-p)}{(2n-1)!} x^{2n} \left(\frac{1-x^{\frac{2n-p}{p-1}}}{\frac{2n-p}{p-1}} - \frac{1-x^{\frac{2n}{p-1}}}{\frac{2n}{p-1}} \right),$$

而对每个给定的 $x \in (0,1)$, $\frac{1-x^r}{r}$ 是 $(0,\infty)$ 上关于 r 的单调递减函数, 因此以上级数中每一项均非负, 从而有不等式

$$\frac{1}{2} \left((1+x)^p + (1-x)^p \right) \ge (1+x^q)^{p-1}, \quad \forall 0 < x < 1.$$

$$(1+c)^q + (1-c)^q \le 2(1+c^p)^{q-1}, \quad \forall 0 < c < 1.$$

从而有

$$|a+b|^q + |a-b|^q \le 2(|a|^p + |b|^p)^{q-1}, \quad \forall a, b \in \mathbb{R}.$$

注意到 $0 < \frac{p}{q} < 1$, 由反向 Minkowski 不等式, 对任意可测函数 u, v, 都有

$$\left(\int |u|^{\frac{p}{q}} \mathrm{d}\mu\right)^{\frac{q}{p}} + \left(\int |v|^{\frac{p}{q}} \mathrm{d}\mu\right)^{\frac{q}{p}} \le \left(\int |u+v|^{\frac{p}{q}} \mathrm{d}\mu\right)^{\frac{q}{p}},$$

取 $u = \left| \frac{f+g}{2} \right|^q$, $v = \left| \frac{f-g}{2} \right|^q$, 得

$$\left(\int \left|\frac{f+g}{2}\right|^p \mathrm{d}\mu\right)^{\frac{q}{p}} + \left(\int \left|\frac{f-g}{2}\right|^p \mathrm{d}\mu\right)^{\frac{q}{p}} \le \frac{1}{2^q} \left(\int \left(\left|f+g\right|^q + \left|f-g\right|^q\right)^{\frac{p}{q}} \mathrm{d}\mu\right)^{\frac{q}{p}},$$

在之前得到的不等式中取 a = f, b = g, 结合上式可得

$$\left(\int \left|\frac{f+g}{2}\right|^p \mathrm{d}\mu\right)^{\frac{q}{p}} + \left(\int \left|\frac{f-g}{2}\right|^p \mathrm{d}\mu\right)^{\frac{q}{p}} \le \left(\int \frac{1}{2} |f|^p + \frac{1}{2} |g|^p \mathrm{d}\mu\right)^{\frac{q}{p}},$$

上式即为所求.

2.6 线性算子的谱

本节中如非特别说明, X 均指复 Banach 空间.

2.6.1 定义和例子

定义 2.6.1: 线性算子的谱与正则值

设 X 是复 Banach 空间, $T \in L(X)$, $\lambda \in \mathbb{C}$.

- (1) 若 $\lambda I T$ 存在有界逆 (双射), 则 λ 称为 T 的正则值, 正则值全体称作 T 的正则集, 记为 $\rho(T)$. 此时, 称 $R_{\lambda} = (\lambda I T)^{-1}$ 为 T 的预解式.
- (2) 若 $\lambda \not\in \rho(T)$, 则 λ 称为 T 的**谱点**, 全体谱点称作 T 的**谱集**, 记为 $\sigma(T)$. T 的 谱点还分为三类:
 - a. 若存在非零的 $x \in X$ 使得 $(\lambda I T)x = 0$ (即 $\lambda I T$ 不是单射), 则称 λ 为 T 的**特征值**, x 称为 T 的**特征向量或特征元**, 特征值全体称为 T 的**点谱**, 记 为 $\sigma_p(T)$ (point).

- b. 若 $\lambda I T$ 是单射, 并且 $\overline{R(\lambda I T)} = X$, 则称 λ 为 T 的**连续谱点**, 连续谱点 全体称作**连续谱**, 记为 $\sigma_c(T)$ (continuous).
- c. 若 $\lambda I T$ 是单射, 并且 $\overline{R(\lambda I T)} \neq X$, 则称 λ 为 T 的**剩余谱点**, 剩余谱点 全体称作**剩余谱**, 记为 $\sigma_r(T)$ (residual).

喀 注

根据定义显然有 $\mathbb{C} = \rho(T) \cup \sigma(T)$, $\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T)$, 这些集合都是互不相交的.

根据线性代数知识,有限维空间上线性算子均不存在连续谱和剩余谱,因此这两类谱只存在于无穷维空间中。

喀淮

以上对有界线性算子谱的分类对闭算子同样适用,但闭算子的谱更加复杂(例如闭算子的谱未必是紧集),本节不作讨论.

例 2.6.2

设 X = C[0,1], $A: u(t) \mapsto t \cdot u(t)$. 则 $A \in L(X)$, 并且

$$\sigma(A)=\sigma_r(A)=[0,1].$$

证明. 注意到

 $||Au|| \le ||u||, \quad \forall u \in X,$

故 $A \in L(X)$. 显然 $N(\lambda I - A) = \{0\}(\forall \lambda \in \mathbb{C})$.

若 $\lambda \in \mathbb{C} \setminus [0,1]$, 则 $\forall v \in X$, 对于 $u(t) = \frac{v(t)}{\lambda - t} \in C[0,1]$, 有 $(\lambda I - A)u = v$, 因此 $\lambda I - A$ 是双射, $\lambda \in \rho(A)$.

若 $\lambda \in [0,1]$, 由于 $N(\lambda I - A) = \{0\}$, λ 不是特征值. 并且当 $\nu \in R(\lambda I - A)$ 时, $\nu(\lambda) = 0$, 因此 $1_{[0,1]} \notin \overline{R(\lambda I - A)}$, 故 $\lambda \in \sigma_r(A)$.

例 2.6.3

设 $X=L^2[0,1], \, A\colon u(t)\to t\,u(t).$ 则 $A\in L(X),$ 并且

$$\sigma(A) = \sigma_c(A) = [0, 1].$$

证明. 注意到

$$||Au|| \le ||u||, \quad \forall u \in X,$$

故 $A \in L(X)$. 显然 $N(\lambda I - A) = \{0\} (\forall \lambda \in \mathbb{C})$.

若 $\lambda \in \mathbb{C} \setminus [0,1]$, 则 $\forall \nu \in X$, 对于 $u(t) = \frac{v(t)}{\lambda - t} \in L^2[0,1]$, 有 $(\lambda I - A)u = v$, 因此 $\lambda I - A$ 是双射, $\lambda \in \rho(A)$.

若 $\lambda \in [0,1]$, 由于 $N(\lambda I - A) = \{0\}$, λ 不是特征值. 并且任取 $\nu \in L^2[0,1]$, 记

$$u_n(t) = \begin{cases} 0, & \lambda - \frac{1}{n} \le t \le \lambda + \frac{1}{n}, \\ \frac{1}{\lambda - t}, & 其他. \end{cases}$$

则 $u_n v \in L^2[0,1]$ 并且

$$\|v - (\lambda I - A)u_n v\|^2 = \int_{\lambda - \frac{1}{n}}^{\lambda + \frac{1}{n}} |v(t)|^2 dt \to 0.$$

因此 $v \in \overline{R(\lambda I - A)}$, $\lambda \in \sigma_c(A)$.

例 2.6.4

设 $X = L^1[0,1], T: X \to X$,

$$(Tf)(t) = tf(t) + \int_{t}^{1} f(s)ds, \quad \forall f \in X.$$

则 $T \in L(X)$ 并且 $\sigma_p(T) = \{0,1\}, \sigma_c(T) = \{0\}, \rho(T) = \mathbb{C} \setminus [0,1].$

证明. 对 $f,g \in X$, 考虑 $(\lambda I - T)f = g$, 此即

$$(\lambda - t) f(t) - \int_{t}^{1} f(s) ds = g(t), \quad t \in [0, 1].$$

若 $\lambda \in \mathbb{C} \setminus [0,1]$, 此时记 $h(t) = \frac{g(t)}{\lambda - t}$, 则

$$(\lambda - t)(f(t) - h(t)) - \int_{t}^{1} (f(s) - h(s)) ds = \int_{t}^{1} h(s) ds.$$

记 F(t) = f(t) - h(t), 求导得

$$(\lambda - t)F'(t) = -h(t), F(1) = 0.$$

以上常微分方程显然存在唯一解 F, 从而此时 $\lambda \in \rho(T)$.

若λε[0,1], 考虑

$$(\lambda - t)f(t) = \int_{t}^{1} f(s)ds.$$

由上式可知, f 在 $[0,\lambda)$ 和 $(\lambda,1]$ 上均为光滑函数. 对上式求导可得

$$(\lambda - t) f'(t) = 0 \implies f'(t) = 0, \quad t \in [0, \lambda) \cup (\lambda, 1].$$

因此 $f = C_1 \chi_{[0,\lambda)} + C_2 \chi_{(\lambda,1]}$. 由于 $\int_{\lambda}^{1} f(s) ds = 0$, 故 $C_2 = 0$. 从而当 $\lambda \in (0,1]$ 时, $\lambda \in \sigma_p(T)$, 并且此时有特征向量 $\chi_{[0,\lambda)}$. 当 $\lambda = 0$ 时, 由上述讨论可知 -T 是单射. 考虑

$$-tf(t) - \int_{t}^{1} f(s) ds = t^{-\frac{1}{2}},$$

此时 f 在 (0,1] 上光滑, 对上式求导并整理可得

$$f'(t) = \frac{1}{2}t^{-\frac{5}{2}}, t \in (0,1], \quad f(1) = -1.$$

解得 $f(t) = -\frac{1}{3}t^{-\frac{3}{2}} - \frac{2}{3} \not\in L^1[0,1]$. 因此 $t^{-\frac{1}{2}} \neq R(-T)$, 但是 $t^{-\frac{1}{2}} \in L^1[0,1]$. 因此 -T 不是 满射. 任取 $g \in C_c^{\infty}[0,1]$, 不难验证 $f(t) = -\frac{g(t)}{t} + \int_t^1 \frac{g(s)}{s^2} ds \in L^1[0,1]$ 满足 -Tf = g, 因此 $C_c^{\infty}[0,1] \subset R(-T)$, 而 $C_c^{\infty}[0,1]$ 在 $L^1[0,1]$ 中稠密, 因此 $\overline{R(-T)} = X$, $0 \in \sigma_c(T)$.

2.6.2 算子谱的相关性质

引理 2.6.5

设 X 是复 Banach 空间, $T \in L(X)$, $\lambda \in \mathbb{C}$. 若 $|\lambda| > ||T||$, 则 $(\lambda I - T)^{-1} \in L(X)$, 并且 满足

$$(\lambda I - T)^{-1} = \sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}} \quad \text{VLR} \quad \left\| (\lambda I - T)^{-1} \right\| \le \frac{1}{|\lambda| - \|T\|}.$$

喀淮

若 ||T|| < 1, 则 $(I - T)^{-1} \in L(X)$ 并且满足

$$(I-T)^{-1} = \sum_{n=0}^{\infty} T^n \quad \text{以及} \quad \left\| (I-T)^{-1} \right\| \le \frac{1}{1-\|T\|},$$

以上级数称为 Neumann 级数.

证明. 由于 X 是 Banach 空间, 故 L(X) 也是 Banach 空间. 因此由

$$\sum_{n=0}^{\infty} \frac{\|T^n\|}{|\lambda|^{n+1}} \le \sum_{n=0}^{\infty} \frac{\|T\|^n}{|\lambda|^{n+1}} = \frac{1}{|\lambda| - \|T\|}$$

知 $\sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}$ 收敛, 记其极限为 S, 有 $\|S\| \leq \frac{1}{|\lambda| - \|T\|}$. 注意到

$$S(\lambda I - T) = (\lambda I - T)S = \sum_{n=0}^{\infty} \frac{T^n}{\lambda^n} - \sum_{n=0}^{\infty} \frac{T^{n+1}}{\lambda^{n+1}} = I,$$

故 $(\lambda I - T)^{-1} = S \in L(X)$.

定理 2.6.6

设 X 是复 Banach 空间,则 L(X) 中可逆 (X) 算子全体是 L(X) 中的开集.

证明. 设 $T \in L(X)$ 并且满足 $T^{-1} \in L(X)$. 则对任意的 $S \in L(X)$ 满足 $\|S - T\| < \|T^{-1}\|^{-1}$,

$$S = T(I - T^{-1}(T - S)),$$

此时 $\|T^{-1}(T-S)\| \le \|T^{-1}\| \cdot \|T-S\| < 1$, 故由上一引理, $I-T^{-1}(T-S)$ 可逆, 因此 S 也可逆. 据此可得可逆算子全体在 L(X) 中是开集.

喀 注

由上一引理还能得到 $S^{-1} = \sum_{n=0}^{\infty} (T^{-1}(T-S))^n T^{-1}$, 以及估计

$$\left\| S^{-1} - T^{-1} \right\| = \left\| S^{-1} (T - S) T^{-1} \right\| \le \frac{\| T - S \| \cdot \left\| T^{-1} \right\|^2}{1 - \left\| T^{-1} (T - S) \right\|}.$$

定理 2.6.7

设 X 是复 Banach 空间, $T \in L(X)$. 则 $\rho(T)$ 是 \mathbb{C} 中的开集.

喀淮

该定理结合引理2.6.5可知, $\sigma(T)$ 是 \mathbb{C} 中的紧集, 并且 $\sigma(T) \subset \{|\lambda| \leq ||T||\}$.

证明. 任取 $\lambda_0 \in \rho(T)$, 则

$$\lambda I - T = (\lambda - \lambda_0)I + (\lambda_0 I - T)$$
$$= (\lambda_0 I - T)(I + (\lambda - \lambda_0)(\lambda_0 I - T)^{-1}).$$

由引理2.6.5, 当 $|\lambda - \lambda_0| < \|(\lambda_0 I - T)^{-1}\|^{-1}$ 时, $\lambda I - T$ 可逆, 故 $\rho(T)$ 是开集.

引理 2.6.8: 第一预解公式

设 $\lambda, \mu \in \rho(A)$, 则

$$R_{\lambda+h}(A) - R_{\lambda}(A) = -hR_{\lambda+h}(A)R_{\lambda}(A),$$

其中 $h = \mu - \lambda$.

证明. 对

$$(\lambda I - A) - ((\lambda + h)I - A) = -hI$$

等式两侧分别左乘 $R_{\lambda+h}(A)$, 再右乘 $R_{\lambda}(A)$ 即可.

定理 2.6.9

设 X 是复 Banach 空间, $T \in L(X)$. $R_{\lambda}(T)$ 是 $\rho(T)$ 上的算子值解析函数, 即满足

$$\lim_{\substack{h\to 0\\h\in\mathbb{C}}}\frac{R_{\lambda+h}(T)-R_{\lambda}(T)}{h}$$

对 $\forall \lambda \in \rho(T)$ 均存在, 并且 $\frac{d}{d\lambda}R_{\lambda}(T) = -R_{\lambda}(T)^{2}$.

证明. 首先注意到

$$||R_{\lambda+h}(T)|| = ||(I+h(\lambda I-T)^{-1})^{-1}(\lambda I-T)^{-1}||$$

$$= ||(I+hR_{\lambda}(T))^{-1}R_{\lambda}(T)||$$

$$\leq ||(I+hR_{\lambda}(T))^{-1}|| \cdot ||R_{\lambda}(T)||.$$

当 $|h| < \frac{1}{2||R_{\lambda}(T)||}$,有 $||-hR_{\lambda}(T)|| < \frac{1}{2}$,因此根据引理2.6.5,

$$\|R_{\lambda+h}\| \leq \left\| (I + h R_{\lambda}(T))^{-1} \right\| \cdot \|R_{\lambda}(T)\| \leq \frac{\|R_{\lambda}(T)\|}{1 - \|-h R_{\lambda}(T)\|} \leq 2 \|R_{\lambda}(T)\|.$$

由第一预解公式,此时

$$\begin{split} &\lim_{\substack{h\to 0\\h\in\mathbb{C}}}\left\|\frac{R_{\lambda+h}(T)-R_{\lambda}(T)}{h}+R_{\lambda}(T)^2\right\|=\lim_{\substack{h\to 0\\h\in\mathbb{C}}}\left\|R_{\lambda}(T)^2-R_{\lambda+h}(T)R_{\lambda}(T)\right\|\\ &=\lim_{\substack{h\to 0\\h\in\mathbb{C}}}\left\|hR_{\lambda+h}(T)R_{\lambda}(T)^2\right\|\leq \lim_{\substack{h\to 0\\h\in\mathbb{C}}}2|h|\|R_{\lambda}(T)\|^3=0, \end{split}$$

故
$$\lim_{\substack{h\to 0\\h\in\mathbb{C}}} \frac{R_{\lambda+h}(T) - R_{\lambda}(T)}{h} = -R_{\lambda}(T)^2.$$

定理 2.6.10

对复 Banach 空间 $X \neq \{0\}$ 的任意有界线性算子 T, $\sigma(T) \neq \emptyset$.

证明. 任取 $f \in (L(X))^*$, 由

$$\lim_{\substack{h \to 0 \\ h \in \mathbb{C}}} \frac{f(R_{\lambda+h}(T)) - f(R_{\lambda}(T))}{h} = f \left(\lim_{\substack{h \to 0 \\ h \in \mathbb{C}}} \frac{R_{\lambda+h}(T) - R_{\lambda}(T)}{h} \right)$$

知 $f(R_{\lambda}(T))$ 是 $\lambda \in \rho(T)$ 上的解析函数.

反设 $\sigma(T) = \emptyset$, 即 $\rho(T) = \mathbb{C}$. 此时由引理2.6.5, 当 $|\lambda| \ge 2||T||$ 时,

$$\|R_{\lambda}(T)\| = \left\|\frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^{n}\right\| \leq \frac{1}{\lambda} \sum_{n=0}^{\infty} \left\|\frac{T}{\lambda}\right\|^{n} = \frac{1}{|\lambda|} \cdot \frac{1}{1 - \frac{\|T\|}{|\lambda|}} \leq \frac{1}{\|T\|},$$

再由连续性, $R_{\lambda}(T)$ 在 \mathbb{C} 上有界, 因此 $f(R_{\lambda}(T))$ 在 \mathbb{C} 上有界, 由 Louville 定理, $f(R_{\lambda}(T))$ 是常值函数, 也即 $f(R_{\lambda}(T) - R_0(T)) = 0 (\forall f \in (L(X))^*, \lambda \in \mathbb{C})$. 由推论2.4.10可得 $R_{\lambda}(T) = R_0(T)(\forall \lambda \in \mathbb{C})$, 从而

$$(\lambda I - T)^{-1} = (-T)^{-1} \implies -T = \lambda I - T \implies \lambda I = 0, \forall \lambda \in \mathbb{C},$$

与 *X ≠* {0} 矛盾.

2.6.3 谱半径和 Gelfand 定理

定义 2.6.11: 谱半径

设 X 是复 Banach 空间, $T \in L(X)$, 称

$$r_{\sigma}(T) \triangleq \max_{\lambda \in \sigma(T)} |\lambda|$$

为 T 的谱半径.

喀 注

右边上确界能取到是因为 $\sigma(T)$ 是 \mathbb{C} 中的紧集.

定理 2.6.12: Gelfand 定理

设 X 是 Banach 空间, $T \in L(X)$, 则

$$r_{\sigma}(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}.$$

第一步.

$$r_{\sigma}(T) \ge \limsup_{n \to \infty} \|T^n\|^{\frac{1}{n}}.$$

证明. 记 $a = r_{\sigma}(T)$. 任取 $f \in (L(X))^*$, 由于 $a + \varepsilon \in \rho(T)$, 有

$$\sum_{n=0}^{\infty} \frac{\left| f(T^n) \right|}{(a+\varepsilon)^{n+1}} < \infty,$$

因此

$$\sup_{n>1} \left| f\left(\frac{T^n}{(a+\varepsilon)^{n+1}}\right) \right| < \infty, \quad \forall f \in (L(X))^*.$$

由共鸣定理, 存在 M 使得

$$\frac{\|T^n\|}{(a+\varepsilon)^{n+1}} \le M(\forall n) \implies \|T^n\|^{\frac{1}{n}} \le M^{\frac{1}{n}}(a+\varepsilon)^{1+\frac{1}{n}}(\forall n),$$

取上极限再由 ε 的任意性可得.

第二步.

$$\lambda^n \in \rho(T^n) \Longrightarrow \lambda \in \rho(T).$$

证明. 若 $\lambda^n \in \rho(T^n)$, 记

$$S = P_{\lambda}(T)(\lambda^{n}I - T^{n})^{-1} = (\lambda^{n}I - T^{n})P_{\lambda}(T), \quad P_{\lambda}(T) = \sum_{k=0}^{n-1} \lambda^{k}T^{n-1-k}.$$

则由 $P_{\lambda}(T)(\lambda I - T) = (\lambda I - T)P_{\lambda}(T) = \lambda^{n}I - T^{n}$ 知

$$S(\lambda I - T) = (\lambda I - T)S = I$$
,

因此
$$S = (\lambda I - T)^{-1}$$
, $\lambda \in \rho(T)$.

第三步.

$$r_{\sigma}(T) \leq \liminf_{n \to \infty} ||T^n||^{\frac{1}{n}}.$$

证明. 由引理2.6.5, 显然有 $r_{\sigma}(T) \leq ||T||$. 因此 $r_{\sigma}(T^n) \leq ||T^n||$. 若 $\lambda^n > ||T^n||_n^{\frac{1}{n}}$, $||\lambda^n|| > ||T^n||$, 则 $\lambda^n \in \rho(T^n)$, 由第三步, $\lambda \in \rho(T)$. 因此

$$r_{\sigma}(T) \leq ||T^n||^{\frac{1}{n}}, \quad \forall n \geq 1,$$

在上式中取下极限即可.

第四步.

$$r_{\sigma}(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}.$$

证明. 由第一步和第三步

$$\limsup_{n\to\infty} \|T^n\|^{\frac{1}{n}} \le r_{\sigma}(T) \le \liminf_{n\to\infty} \|T^n\|^{\frac{1}{n}},$$

上极限小于等于下极限, 因此极限存在并且等于 $r_{\sigma}(T)$.

2.6.4 作业

题目2.6.1. 设 A 是闭线性算子, $\lambda_1, \dots, \lambda_n \in \sigma_p(A)$ 两两互异, x_i 是对应于 λ_i 的特征元. 求证: x_1, \dots, x_n 线性无关.

解答. 若 $\sum_{k=1}^{n} \alpha_k x_k = 0$, 则分别左乘 $I, A, A^2, \dots, A^{n-1}$ 可得

$$\sum_{i=1}^{n} \lambda_{i}^{j}(\alpha_{i} x_{i}) = 0, \quad j = 0, 1, \dots, n-1.$$

上述线性方程组的系数行列式为

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix}.$$

由于 $\lambda_1, \dots, \lambda_n$ 互异, 上述行列式非零, 故 $\alpha_i x_i = 0 (i = 1, 2, \dots, n) \implies \alpha_1 = \dots = \alpha_n = 0 \implies x_1, \dots, x_n$ 线性无关.

▲ 题目2.6.2. 在双边 $l^2(\mathbb{Z})$ 空间 (从 $-\infty$ 到 ∞) 上, 考察右推移算子

$$A: x \mapsto Ax$$
, $(Ax)_n = x_{n-1} (\forall n \in \mathbb{Z})$.

求证: $\sigma_c(A) = \sigma(A) = 单位圆周$.

解答. 显然 ||A|| = 1, 故当 $|\lambda| > 1$ 时 $\lambda \in \rho(A)$. 并且 $||A^{-1}|| = 1$, $0 < |\lambda| < 1$ 时 $\frac{1}{\lambda} \in \rho(A^{-1})$, 从而由 $\lambda I - A = -\lambda(\lambda^{-1}I - A^{-1})A$ 知此时 $\lambda \in \rho(A)$.

当 $|\lambda| = 1$ 时, 若 $x \neq 0$ 但 $Ax = \lambda x$, 设 $x_m \neq 0$, 则

$$x_{n-1} = \lambda x_n (\forall n \in \mathbb{Z}) \implies x_{m-n} = \lambda^n x_m (\forall n \in \mathbb{Z}) \implies ||x|| = \infty,$$

矛盾. 因此 λ 不是特征值. 由于 $l^2(\mathbb{Z})$ 是 Hilbert 空间, 要证明 $\overline{R(\lambda I - A)} = l^2$ 只需证 $R(\lambda I - A)^{\perp} = \{0\}$. 为此, 只需注意到

$$x \in R(\lambda I - A)^{\perp} \iff (x, (\lambda I - A)y) = 0 (\forall y \in l^{2}(\mathbb{Z}))$$

$$\iff \sum_{n = -\infty}^{\infty} x_{n}(\overline{\lambda}\overline{y}_{n} - \overline{y}_{n-1}) = 0 (\forall y \in l^{2}(\mathbb{Z}))$$

$$\iff \sum_{n = -\infty}^{\infty} (\overline{\lambda}x_{n} - x_{n+1})\overline{y}_{n} = 0 (\forall y \in l^{2}(\mathbb{Z}))$$

$$\iff ((\overline{\lambda}I - A^{-1})x, y) = 0 (\forall y \in l^{2}(\mathbb{Z}))$$

$$\iff (\overline{\lambda}I - A^{-1})x = -\overline{\lambda}^{-1}A^{-1}(\overline{\lambda}I - A)x = 0$$

$$\iff (\overline{\lambda}I - A)x = 0 \iff x = 0.$$

△ 题目2.6.3. 在 l² 上考察左推移算子

$$A:(x_1,x_2,\cdots)\mapsto(x_2,x_3,\cdots).$$

求证: $\sigma_p(A) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}, \sigma_c(A) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}, 并且$

$$\sigma(A) = \sigma_p(A) \cup \sigma_c(A).$$

解答. 显然 ||A|| = 1, 故当 $|\lambda| > 1$ 时 $\lambda \in \rho(A)$.

当 $|\lambda|<1$ 时, $x_{\lambda}=(1,\lambda,\lambda^2,\cdots)$ 是关于 λ 的特征值, 因此 $\lambda\in\sigma_p(A)$.

当 $|\lambda| = 1$ 时, 若 $Ax = \lambda x$, 则

$$x_{n+1} = \lambda x_n (\forall n \ge 1) \implies x_n = \lambda^{n-1} x_1 (\forall n \ge 1) \implies \sum_{n=1}^{\infty} |x_1| < \infty \implies x = 0.$$

因此 λ 不是特征值. 此外,

$$x \in R(\lambda I - A)^{\perp} \iff (x, (\lambda I - A)y) = 0 (\forall y \in l^{2})$$

$$\iff \sum_{n=1}^{\infty} x_{n} (\overline{\lambda} \overline{y}_{n} - \overline{y}_{n+1}) = 0 (\forall y \in l^{2})$$

$$\iff \sum_{n=1}^{\infty} (\overline{\lambda} x_{n} - x_{n-1}) \overline{y}_{n} = 0 (\not \perp + x_{0}) = 0, \forall y_{n} \in l^{2},$$

在上式中令 $y_n = \overline{\lambda} x_n - x_{n-1} (\forall n \ge 1)$, 则 $\overline{\lambda} x_n = x_{n-1} (\forall n \ge 1)$, 从而 $x_n = \overline{\lambda}^{1-n} x_1$, 由 $\|x\|^2 = \sum_{n=1}^{\infty} |x_1|$ 知 x = 0, 从而 $R(\lambda I - A)^{\perp} = \{0\}$, $\overline{R(\lambda I - A)} = l^2$, $\lambda \in \sigma_c(A)$.

第三章 紧算子

3.1 紧算子的定义和基本性质

定义 3.1.1: 紧算子

设 X, Y 是 Banach 空间, A 是从 X 到 Y 的线性算子. 若 $\overline{A(B_1)}$ 在 Y 中是紧集 (B_1 是 X 中的单位球), 则称 A 是**紧算子**. 从 X 到 Y 的紧算子全体记作 $\mathfrak{C}(X,Y)$, 当 X = Y 时, 记作 $\mathfrak{C}(X)$.

命题 3.1.2: 紧算子等价定义

设 $X, Y \in Banach$ 空间, A 为 从 X 到 Y 的线性算子. 则以下三点等价:

- (1) $A \in \mathfrak{C}(X, Y)$;
- (2) ∀有界集 $B \subset X$, $\overline{A(B)}$ 在 Y 中是紧集;
- (3) \forall 有界点列 $\{x_n\}$ ⊂ X, $\{Ax_n\}$ ⊂ Y 有收敛子列.

证明. (1) \Longrightarrow (2): 设 $\|x\| \le r(\forall x \in B)$, 则 $A(B) \subset A(rB) = rA(B)$. 由 $\overline{A(B)}$ 是紧集可知, A(B) 是列紧的, 从而 RA(B) 也是列紧的, A(B) 是列紧的, 从而 $\overline{A(B)}$ 是自列紧的, 也即 $\overline{A(B)}$ 是紧集.

- $(2) \Longrightarrow (3)$: 取 $B = \{x_n\}$, 则由 $\overline{A}(B)$ 紧知 A(B) 列紧, 即 $\{Ax_n\}$ 有收敛子列.
- (3) \Longrightarrow (1): 任取 $\{x_n\} \subset B_1$, $\{x_n\}$ 有界, 从而有收敛子列, 故 $A(B_1)$ 是列紧的, 即 $\overline{A(B_1)}$ 是紧集.

例 3.1.3

有限维赋范空间到其本身的线性算子都是紧算子,因为此时 $\overline{A(B_1)}$ 是有界闭集, 而有限维赋范空间中有界闭集和紧集等价.

例 3.1.4

设 Ω 是 \mathbb{R}^n 中的紧集, $K \subset C(\Omega \times \Omega)$, 取 $X = Y = C(\Omega)$. 若记

$$T: u \mapsto \int_{\Omega} K(x, y) u(y) dy, \quad \forall u \in C(\Omega),$$

则 $T \in \mathfrak{C}(X)$.

证明. 记 $B = \{u \in C(\Omega) : ||u|| \le 1\}$ 只需证 TB 在 $C(\Omega)$ 中列紧. 记 $M = \sup_{x,y \in \Omega} |K(x,y)| < \infty$, 注意到

$$\sup_{x \in \Omega} \left| \int_{\Omega} K(x, y) u(y) dy \right| \le M \cdot m(\Omega) \|u\| \le M \cdot m(\Omega), \quad \forall u \in B,$$

因此 TB 是一致有界的. 任取 $\varepsilon > 0$, 存在 $\delta > 0$ 使得

$$\left|K(x_1,y)-K(x_2,y)\right|\leq \frac{\varepsilon}{m(\Omega)},\quad \forall |x_1-x_2|\leq \delta, x_1,x_2,y\in\Omega.$$

从而对 $\forall |x_1 - x_2| \leq \delta, x_1, x_2 \in \Omega$, 有

$$\left| \int_{\Omega} K(x_1, y) u(y) dy - \int_{\Omega} K(x_2, y) u(y) dy \right| \leq \frac{\varepsilon}{m(\Omega)} \cdot m(\Omega) \cdot ||u|| \leq \varepsilon, \quad \forall u \in B,$$

因此 TB 还是等度连续的. 由 Arzela-Ascoli 定理, TB 列紧.

定理 3.1.5: 紧算子的性质

设 X, Y, Z 是 Banach 空间.

- (1) $\mathfrak{C}(X,Y) \subset L(X,Y)$.
- (2) $A, B \in \mathfrak{C}(X, Y), \alpha, \beta \in \mathbb{K} \implies \alpha A + \beta B \in \mathfrak{C}(X, Y).$
- (3) C(X,Y) 在 L(X,Y) 中闭.
- (4) 设 $A \in \mathfrak{C}(X,Y)$, X_0 是 X 的闭线性子空间,则 $A|_{X_0} \in \mathfrak{C}(X_0,Y)$.
- (5) 若 $A \in \mathfrak{C}(X,Y)$, 则 R(A) 可分.
- (6) 若 $A \in L(X,Y)$, $B \in L(Y,Z)$, 且 $A \rightarrow B$ 中有一个是紧算子,则 $BA \in \mathfrak{C}(X,Z)$.
- (7) 若 X 是无穷维 Banach 空间, $A \in \mathfrak{C}(X)$, 则 A 没有有界逆.

- 证明. (1) 由有界线性算子将有界集映到有界集, 紧算子将有界集映到列紧集, 并且列紧集有界得到.
 - (2) 只需注意到列紧集 E_1 , E_2 的线性组合 $\alpha E_1 + \beta E_2$ 还是列紧集.
- (3) 设 $\{A_n\}\subset \mathfrak{C}(X,Y), A\in L(X,Y)$ 且 $A_n\Rightarrow A$. 由于 Y 是 Banach 空间, 要证 $\overline{A(B_1)}$ 是紧集, 只需证 $A(B_1)$ 完全有界. 任取 $\varepsilon>0$, 存在 n 使得 $\|A-A_n\|<\frac{\varepsilon}{2}$. 取 $A_n(B_1)$ 的 $\frac{\varepsilon}{2}$ 网 y_1,\cdots,y_m . 当 $x\in B_1$ 时, 存在 k 使得 $\|A_nx-y_m\|<\frac{\varepsilon}{2}$. 再由

$$||Ax - A_nx|| \le ||A - A_n|| < \frac{\varepsilon}{2}$$

知

$$\left\|Ax-y_m\right\|\leq \left\|Ax-A_nx\right\|+\left\|A_nx-y_k\right\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

故 y_1, \dots, y_m 是 $A(B_1)$ 的有穷 ε 网, $A(B_1)$ 完全有界.

- (4) 注意到 $A(B_1 \cap X_0)$ ⊂ $A(B_1)$, 因此由后者列紧, 前者也列紧.
- (5) 由于 $A(B_1)$ 是列紧的, 故是完全有界的, 从而由定理1.3.12(完全有界集可分) 知 $A(B_1)$ 可分. 再根据

$$R(A) = \bigcup_{n=1}^{\infty} nA(B_1)$$

得 R(A) 可分.

- (6) 由有界线性算子将有界集映为有界集,将列紧集映为列紧集,并且紧算子将有界集映到列紧集得到.
- (7) 反设 A 存在有界逆,则由 $A(B_1)$ 是列紧的, $B_1 = A^{-1}A(B_1)$ 也是列紧的,但无穷维空间中的单位球不可能列紧,矛盾.

例 3.1.6

设 Ω 是 \mathbb{R}^n 中的紧集, K(x,y) 是 Ω 上的二元函数, 在 $x \neq y$ 时连续, 并且存在 $\alpha \in [0,n)$ 和 M>0 使得

$$|K(x,y)| \le M|x-y|^{-\alpha}, \quad \forall x,y \in \Omega, x \ne y.$$

则

$$T: u \mapsto \int_{\Omega} K(x, y) u(y) dy, \quad \forall u \in C(\Omega)$$

是良定义的线性算子, 并且 $T \in \mathfrak{C}(X)$, 其中 $X = C(\Omega)$.

证明. 首先证明 T 良定义, 即例子中的积分有意义. 为此, 只需注意到对任意的 $u \in C(\Omega), x \in \Omega$, 都有

$$\begin{split} \int_{\Omega} \left| K(x,y) u(y) \right| \mathrm{d}y &\leq M \|u\| \int_{\Omega} \left| x - y \right|^{-\alpha} \mathrm{d}y \leq M \|u\| \int_{B(x,r)} \left| x - y \right|^{-\alpha} \mathrm{d}y \\ &= M \|u\| \int_{0}^{r} \int_{\partial B(x,\rho)} \left| x - y \right|^{-\alpha} \mathrm{d}S(y) \mathrm{d}\rho \\ &= M \|u\| \int_{0}^{r} m(\partial B(0,1)) \rho^{n-1-\alpha} \mathrm{d}\rho \\ &= \frac{M \|u\| r^{n-\alpha} m(\partial B(0,1))}{n-\alpha} < \infty, \end{split}$$

其中 $r = \operatorname{diam}(\Omega) := \sup_{x,y \in \Omega} |x-y|$. 由上式也不难得出 $T \in L(X)$. 记 $k_m(t) = (2mt-1)\chi_{[\frac{1}{2m},\frac{1}{m}]}(t) + \chi_{(\frac{1}{m},\infty)}(t), m \ge 1$. 记 $K_m(x,y) = k_m(|x-y|)K(x,y)$ $(x,y \in \Omega)$, 则 $K_m \in C(\Omega \times \Omega)$. 定义

$$T_m: u \mapsto \int_{\Omega} K_m(x, y) u(y) dy, \quad u \in C(\Omega),$$

则由例3.1.4, $T_m \in \mathfrak{C}(X)$. 给定 $u \in C(\Omega)$ 满足 ||u|| = 1, 任取 $x \in \Omega$, 有

$$\begin{split} &|Tu(x)-T_mu(x)|=\left|\int_{\Omega}(K(x,y)-K_m(x,y))u(y)\mathrm{d}y\right|\\ &=\int_{\Omega\cap B(x,\frac{1}{m})}\left(1-k_m(\left|x-y\right|)\right)\left|K(x,y)u(y)\right|\mathrm{d}y\leq \int_{B(x,\frac{1}{m})}\left|K(x,y)\right|\mathrm{d}y\\ &\leq M\int_{B(x,\frac{1}{m})}\left|x-y\right|^{-\alpha}\mathrm{d}y=\frac{M\cdot m(\partial B(0,1))}{n-\alpha}\left(\frac{1}{m}\right)^{n-\alpha}\to 0,\quad m\to\infty, \end{split}$$

从而 $\|T - T_m\| \to 0$,由上一定理, $\mathfrak{C}(X)$ 在 L(X)中闭可知 $T \in \mathfrak{C}(X)$.

命题 3.1.7

设 X,Y 是 Banach 空间. 若 $A \in \mathfrak{C}(X,Y)$, 则只要 $x_n \to x$, 就有 $Ax_n \to Ax$. 若 X 还是自反的, 则反之也成立.

证明. 若 $A \in \mathfrak{C}(X,Y)$, 反设 A 不是全连续算子, 也即存在 $x_n \to x$, 满足对子列有 (不妨设还是 $\{x_n\}$)

$$||Ax_n - Ax|| \ge \varepsilon_0 > 0, \quad \forall n \ge 1.$$

由于 $\{x_n\}$ 弱收敛, 故有界. 再由 A 是紧算子, 存在子列 $\{x_{n_k}\}$ 使得 $Ax_{n_k} \to y \in Y$. 注意

$$\langle y^*, Ax_n - Ax \rangle = \langle A^*y^*, x_n - x \rangle \to 0, \quad \forall y^* \in Y^*,$$

从而 $Ax_n \rightarrow Ax$. 由于还有 $An_k \rightarrow y$, 故 y = Ax 且 $Ax_{n_k} \rightarrow Ax$, 矛盾.

若 X 还是自反的, A 满足只要 $x_n \to x$, 就有 $Ax_n \to Ax$. 则由 Eberlein-Smulian 定理 (定理2.5.31) 知单位球 B_1 是弱列紧的, 再由 A 的条件知 A 将弱列紧集映为列紧集, $A(B_1)$ 是列紧的, 从而 $A \in \mathfrak{C}(X,Y)$.

定理 3.1.8

 $T \in \mathfrak{C}(X,Y) \iff T^* \in \mathfrak{C}(Y^*,X^*).$

证明. 必要性: 记 Y^* 中的单位球为 U_1^* . 将 U_1^* 看作 $C(\overline{TB_1})$ 的子集 (由 $T \in \mathfrak{C}(X,Y)$ 知 $\overline{TB_1}$ 是紧集). 注意到

$$||y^*||_{C(\overline{TB_1})} = \sup_{y \in \overline{TB_1}} |y^*(y)| \le \sup_{y \in \overline{TB_1}} ||y^*|| \cdot ||T|| \le ||T||, \quad \forall y^* \in U_1^*,$$

以及对 $\forall y^* \in U_1^*, y_1, y_2 \in \overline{TB_1}$,都有

$$||y^*(y_1) - y^*(y_2)|| \le ||y^*|| \cdot ||y_1 - y_2|| \le ||y_1 - y_2||,$$

故 U_1^* 一致有界且等度连续, 由 Arzela-Ascoli 定理, U_1^* 在 $C(\overline{TB_1})$ 中列紧. 从而任取

 $\{y_n^*\} \subset U_1^*$, 存在子列 $\{y_{n_k}^*\}$ 和 $y^* \in U_1^*$ 使得

$$\begin{split} \|T^*y_{n_k} - T^*y\| &= \sup_{\|x\| \le 1} \left| \langle T^*y_{n_k}^* - T^*y^*, x \rangle \right| = \sup_{\|x\| \le 1} \left| \langle y_{n_k}^* - y^*, Tx \rangle \right| \\ &= \sup_{y \in TB_1} \left| \langle y_{n_k}^* - y^*, y \rangle \right| \le \|y_{n_k}^* - y^*\|_{C(\overline{TB_1})} \to 0. \end{split}$$

从而 $T^*U_1^*$ 列紧.

充分性: 根据必要性, 若 $T^* \in \mathfrak{C}(Y^*, X^*)$, 则 $T^{**} \in \mathfrak{C}(X^{**}, Y^{**})$. 记 τ 为 X 到 X^{**} 的自然映射. 由于 X 是 Banach 空间, 因此 $\tau(X)$ 是 X^{**} 的闭子空间, 从而 $S = T^{**}\big|_{\tau(X)} \in \mathfrak{C}(\tau(X), Y)$, 因此 $T = S \circ \tau \in \mathfrak{C}(X, Y)$.

定义 3.1.9: 有穷秩算子

设 $T \in L(X,Y)$. 若 R(T) 是有限维的, 则称 T 是**有穷秩算子**. 有穷秩算子全体记作 F(X,Y).

喀 注

由于有界线性算子将有界集映为有界集,而有限维空间的有界集就是列紧集,因此有 $F(X,Y) \subset \mathfrak{C}(X,Y)$.

定理 3.1.10: 紧算子的逼近

设 X 是无穷维可分 Hilbert 空间, $\{e_n\}$ 是完备标准正交系, $T \in \mathfrak{C}(X)$. 记

$$S_N x := \sum_{n=1}^N (x, e_n) e_n, \quad x \in X,$$

则 $S_N T \in F(X)$ 并且 $||T - S_N T|| \to 0$, 从而 $\overline{F(X)} = \mathfrak{C}(X)$.

证明. 给定 $T \in \mathfrak{C}(X)$ 和 $\varepsilon > 0$. 由于 $\overline{T(B_1)}$ 是紧集, 存在有穷 $\frac{\epsilon}{3}$ 网 $\{y_1, \dots, y_m\}$. 又由 $\{e_n\}$ 是完备标准正交系, 存在 $N_0 > 0$ 使得对任意的 $N > N_1$ 都有

$$||y_j - S_N y_j|| < \frac{\varepsilon}{3}, \quad j = 1, 2, \dots, m.$$

故对任意的 $\|x\|=1$, 存在 y_j 使得 $\|Tx-y_j\|<\frac{\epsilon}{3}$, 因此结合以上不等式以及 $\|S_N\|\le$

1(由 Bessel 不等式可得), 有

$$\begin{split} & \|Tx - (S_N T)x\| \leq \|Tx - y_j\| + \|y_j - S_N y_j\| + \|S_N (y_j - Tx)\| \\ \leq & \|Tx - y_j\| + \|y_j - S_N y_j\| + \|y_j - Tx\| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \quad \forall N > N_0, \end{split}$$

上式即 $||T - S_N T|| < \varepsilon$, 因此 $||T - S_N T|| \rightarrow 0$.

例 3.1.11

设 Ω 是 \mathbb{R}^n 中的紧集, $K \in L^2(\Omega \times \Omega)$. 则

$$T: u \mapsto \int_{\Omega} K(x, y) u(y) dy, \quad u \in L^{2}(\Omega)$$

是 $X := L^2(\Omega)$ 上良定义的线性算子, 并且 $T \in \mathfrak{C}(X)$.

解答.由

$$\begin{split} &\|Tu\| = \left(\int_{\Omega} \left|\int_{\Omega} K(x,y) u(y) \mathrm{d}y\right|^2 \mathrm{d}x\right)^{\frac{1}{2}} \\ \leq &\left(\int_{\Omega} \left(\int_{\Omega} \left|K(x,y)\right|^2 \mathrm{d}y\right) \left(\int_{\Omega} \left|u(y)\right|^2 \mathrm{d}y\right) \mathrm{d}x\right)^{\frac{1}{2}} = \|K\|_{L^2(\Omega \times \Omega)} \cdot \|u\| \end{split}$$

知 T 是良定义的, 并且 $T \in L(X)$. 由于 X 是可分 Hilbert 空间, 存在 X 的完备标准正交系 $\{e_k\}$. 则 $\{e_k(x)e_l(y)\}$ 是 $L^2(\Omega \times \Omega)$ 的完备标准正交系, 因为首先,

$$||e_k(x)e_l(y)||_{L^2(\Omega \times \Omega)} = \int_{\Omega} \int_{\Omega} |e_k(x)e_l(y)| dxdy = ||e_k|| \cdot ||e_l|| = 1.$$

其次, 对 $k \neq i, l \neq j$, 有

$$\left(e_k(x)e_l(y),e_i(x)e_j(y)\right)_{L^2(\Omega\times\Omega)} = \int_{\Omega}\int_{\Omega}e_k(x)e_l(y)e_i(x)e_j(y)\mathrm{d}x\mathrm{d}y = (e_k,e_i)(e_l,e_j) = 0.$$

最后, 若 $f(\cdot,\cdot) \in L^2(\Omega \times \Omega)$ 并且 $(f,e_k(x)e_l(y))_{L^2(\Omega)} = 0 (\forall k,l \geq 1)$, 则

$$(f, e_k(x)e_l(y))_{L^2(\Omega)} = \int_{\Omega} \left(\int_{\Omega} f(x, y)e_k(x) dx \right) e_l(y) dy = (f_k, e_l) = 0, \quad \forall k, l \ge 1,$$

其中 $f_k(y) := \int_{\Omega} f(x,y) e_k(x) dx \in X$. 由于 $\{e_k\}$ 是 X 的完备正交系, 故上式可得 $f_k \equiv 0 (\forall k \geq 1)$. 若记 $f_y(x) := f(x,y)$, 则 $f_k(y) = (f_y, e_k) = 0 (\forall k \geq 1)$, 从而 $f_y \equiv 0 (\forall y \in \Omega)$, 故 $f \equiv 0$.

综合以上三点可知, $\{e_k(x)e_l(y)\}$ 是 $L^2(\Omega \times \Omega)$ 中的完备标准正交系. 从而存在数列 $\{\alpha_{kl}\}$ 使得在 L^2 范数意义下

$$K = \sum_{k,l=1}^{\infty} \alpha_{kl} e_k e_l.$$

记

$$K_m = \sum_{k,l=1}^m \alpha_{kl} e_k e_l,$$

并与题中类似定义 T_m ,则 $T_m \in F(X)$,并且对任意的 $u \in X$),有

$$||T_m u - T u|| = \left(\int_{\Omega} \left| \int_{\Omega} (K(x, y) - K_m(x, y)) u(y) dy \right|^2 dx \right)^{\frac{1}{2}} \le ||K - K_m||_{L^2(\Omega \times \Omega)} \cdot ||u|| \to 0,$$

因此 $||T_m - T|| \to 0$, $T \in \mathfrak{C}(X)$.

3.2 Riesz-Fredholm 理论

定理 3.2.1

设 X 是 Banach 空间. 若 $T \in L(X)$, 则 $\sigma(T) = \sigma(T^*)$.

证明. 只需证明 $\rho(T) = \rho(T^*)$.

若 $\lambda \in \rho(T)$, 则 $\lambda I - T$ 是双射. 根据 Banach 逆算子定理, 只需证明 $\lambda I^* - T^*$ 是 双射, 就有 $\lambda \in \rho(T^*)$. 设 $(\lambda I^* - T^*)x^* = 0$, 则 $\forall x \in X$,

$$\langle (\lambda I^* - T^*) x^*, (\lambda I - T)^{-1} x \rangle = \langle x^*, (\lambda I - T) (\lambda I - T)^{-1} x \rangle = \langle x^*, x \rangle = 0,$$

故 $x^* = 0$, $\lambda I - T^*$ 是单射. 任取 $y^* \in X^*$, 取 $x^* = (\lambda I - T)^{-1}y^*$, 则 $\forall x \in X$,

$$\langle (\lambda I^* - T^*)^* x^*, x \rangle = \langle x^*, (\lambda I - T) x \rangle = \langle y^*, (\lambda I - T)^{-1} (\lambda I - T) x \rangle = \langle y^*, x \rangle,$$

故 $(\lambda I^* - T^*)x^* = y^*$, $\lambda I^* - T^*$ 是满射. 因此 $\rho(T) \subset \rho(T^*)$.

若 $\lambda \in \rho(T^*)$, 则由于 $\rho(T^*) \subset \rho(T^{**})$, $\lambda I^{**} - T^{**}$ 是双射, 从而 $\lambda I - T = (\lambda I^{**} - T^{**}) \circ \tau$ 是双射, 其中 τ 是 X 到 X^{**} 的自然映射. 故 $\rho(T^*) \subset \rho(T)$.

定理 3.2.2

设 $X \in Banach$ 空间. 若 $A \in \mathcal{C}(X)$,则 T = I - A 是闭值域算子 (即 R(T) 是闭的).

证明. 令

$$\tilde{T}: X/N(T) \to R(T), x+N(T) \to Tx.$$

则 \tilde{T} 是线性双射. 下面证明 $\tilde{T}^{-1} \in L(R(T), X/N(T))$. 反设 \tilde{T}^{-1} 不是连续的, 则存在 $\{x_n\}$ 使得

$$||Tx_n|| < \frac{1}{n}$$
 $\underline{\square}$ $||x_n + N(T)|| \ge \varepsilon_0 > 0$, $\forall n \ge 1$.

令 $y_n + N(T) = \frac{x_n + N(T)}{\|x_n + N(T)\|}$,则 $\|y_n + N(T)\| = 1$ 且 $Ty_n \to 0$. 不妨设 $\|y_n\| < 2$,则由于 A 是紧算子,存在子列 $\{y_{n_k}\}$ 使得 $Ay_{n_k} \to z \in X$. 再由 $Ty_n = y_n - Ay_n \to 0$ 可得 $y_{n_k} \to z$. 而 $Ty_{n+k} \to 0$,因此 $Tz = 0 \Longrightarrow z \in N(T)$,故

$$||y_{n_k} + N(T)|| = ||y_{n_k} - z + N(T)|| \le ||y_{n_k} - z|| \to 0,$$

与 $||y_{n_k} + N(T)|| = 1$ 矛盾. 因此 \tilde{T}^{-1} 是连续线性算子.

由于 \tilde{T} 是单射闭算子, 故 \tilde{T}^{-1} 是闭算子, 而 \tilde{T}^{-1} 也是连续线性算子, 故定义域 R(T) 为闭集.

定理 3.2.3

设 X 是 Banach 空间. 若 $A \in \mathfrak{C}(X)$, T = I - A, $N(T) = \{0\}$, 则 R(T) = X.

证明. 反设 $R(T) \neq X$, 则存在 $x_0 \notin R(T)$. 记 $X_0 = X, X_k = T(X_{k-1})(k \ge 1)$. 由于 T 是单射, 故 $T^{k-1}x_0 \notin X_k$, 从而

$$X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots$$
.

由 Riesz 引理 (引理1.5.11), 存在 $y_k \in X_k$ 使得

$$\left\|y_k\right\|=1\quad \text{$\underline{\square}$}\quad \rho(y_k,X_{k+1})\geq \frac{1}{2},\quad \forall\, k\geq 1.$$

注意到 $Ty_n + y_{n+p} - Ty_{n+p} \in X_{k+1}$, 故

$$||Ay_n - Ay_{n+p}|| = ||y_n - (Ty_n + y_{n+p} - Ty_{n+p})|| \ge \frac{1}{2}, \quad \forall n, p \ge 1,$$

从而 {Ayn} 没有收敛子列,与 A 是紧算子矛盾.

引理 3.2.4

设 X 是 Banach 空间. 若 $T \in L(X)$, 则 $\overline{R(T)} = N(T^*)^{\perp} = \{x \in X : f(x) = 0, \forall f \in N(T^*)\}.$

证明. 设 $Tx \in R(T)$, 则 $\forall f \in N(T^*), f(Tx) = (T^*f)x = 0$, 故 $R(T) \subset N(T^*)^{\perp}$. 再由 $N(T^*)^{\perp}$ 是闭集, $\overline{R(T)} \subset N(T^*)^{\perp}$.

设 $\overline{R(T)} \neq N(T^*)^{\perp}$, 取 $x_0 \in N(T^*) \setminus \overline{R(T)}$, 由 Hahn-Banach 定理, 存在 $f \in X^*$ 使得

$$f(x_0) > 0$$
, $f(Tx) = 0$, $\forall x \in X$.

由于 $(T^*f)x = f(Tx) = 0 (\forall x \in X)$, 故 $T^*f = 0 \implies f \in N(T^*)$. 再由 $x_0 \in N(T^*)^{\perp}$, 有 $f(x_0) = 0$, 矛盾.

定理 3.2.5: Riesz-Fredholm 定理

设 X 是 Banach 空间, $A \in \mathfrak{C}(X)$, T = I - A, 则

- (1) $\dim N(T) = \dim N(T^*) < \infty$.
- (2) $R(T) = N(T^*)^{\perp} = \{x \in X : f(x) = 0, \forall f \in N(T^*)\},\$ $R(T^*) = {}^{\perp}N(T) = \{f \in X^* : f(x) = 0, \forall x \in N(T)\}.$

证明. (1) 的证明分为四步.

第一步. 若 $A \in \mathfrak{C}(X)$, T = I - A, 则

 $\dim N(T) < \infty$ \coprod $\dim N(T^*) < \infty$.

从而 $N(T) = \operatorname{span}\{x_i\}_1^n, N(T^*) = \operatorname{span}\{f_j\}_1^m.$

证明. 注意到

$$N(T) \cap B_1 = \{x \in X : ||x|| \le 1 \mid \underline{\exists} x = Ax\} \subset A(B_1),$$

因此由 A 是紧算子, $A(B_1)$ 列紧, 从而 $N(T) \cap B_1$ 列紧, 而其本身是闭集, 故 N(T) 中的单位球 $N(T) \cap B_1$ 是紧集, N(T) 是有限维空间.

由定理3.1.8, A^* 也是紧算子, 从而同理可得 $N(T^*)$ 是有限维空间. \square **第二步**. 对第一步中的 x_1, \dots, x_n , 存在 X 的闭线性子空间 X_1 使得

$$X = \operatorname{span}\{x_k\}_1^n \oplus X_1.$$

证明. 由题目 2.4.7, 存在 $g_1, \dots, g_n \in X^*$ 使得 $f_i(x_j) = \delta_{ij} (1 \le i, j \le n)$. 令 $X_0 = \bigcap_{i=1}^n N(g_i)$ 为闭线性子空间, 满足 $x_j \notin X_0 (j = 1, \dots, n)$, 并且

$$x - \sum_{i=1}^{n} g_i(x) x_i \in X_1, \quad \forall x \in X,$$

从而 $X = \operatorname{span}\{x_k\}_1^n \oplus X_1$.

第三步. 对第一步中的 $f_1, \dots, f_m \in X^*$, 存在 $y_1, \dots, y_m \in X \setminus R(T)$ 使得

$$f_i(y_j) = \delta_{ij}, \quad i, j = 1, 2, \cdots, m.$$

证明. 记 $F(x) = (f_1(x), \dots, f_n(x))^T : X \to \mathbb{K}^n$,首先证 F 是满射. 考虑在 \mathbb{K}^n 上考虑内积 $(x, y) = \overline{x}^T y$. 由于 f_1, \dots, f_n 线性无关, 注意到

$$y \perp F(X) \iff \overline{y}^T F(x) = 0 (\forall x \in X) \iff \sum_{k=1}^n \overline{y_k} f_k(x) = 0 (\forall x \in X)$$
$$\iff \sum_{k=1}^n \overline{y_k} f_k = 0 \iff y_1 = \dots = y_n = 0 \iff y = 0,$$

其中 $y = (y_1, \dots, y_n)^T$. 因此 $F(X)^{\perp} = \{0\}$, 由于 F(X) 必为有限维线性空间, 此即 $F(X) = \mathbb{K}^n$.

由于 F 是满射, 因此存在 y_k 使得 $F(y_k) = e_k (1 \le k \le m)$, 此时 $y_1, \dots, y_m \in X$ 满足 $f_i(y_j) = \delta_{ij}(i, j = 1, \dots, m)$. 若某个 $y_k \in R(T)$, 即存在 z_k 使得 $Tz_k = y_k$, 由于 $f_k \in N(T^*)$, 故 $f_k(y_k) = f_k(Tz_k) = (T^*f_k)(z_k) = 0$, 矛盾. 因此 $y_1, \dots, y_m \in X \setminus R(T)$. **第四步.** dim $N(T) = \dim N(T^*)$.

证明. 需要证明对第一步中的 m 和 n 相等. 首先, 假设 n < m. 由第二步和第三步, 考虑映射

$$\tilde{T}: X = N(T) \oplus X_1 \longrightarrow \operatorname{span}\{y_k\}_1^n \oplus R(T), \sum_{i=1}^n \lambda_i x_i + y \mapsto \sum_{i=1}^n \lambda_i y_i + Ty.$$

不难证明 $I-\tilde{T}$ 是紧算子, 并且 \tilde{T} 是单射, 故由定理3.2.3可知 $R(\tilde{T})=X$, 但 $y_m \notin R(\tilde{T})$, 矛盾. 因此 $\dim N(T) \geq \dim N(T^*)$.

同样可以得到 $\dim N(T^*) \ge \dim N(T^{**})$,而 $\dim N(T^{**}) \ge \dim N(T)$,联立以上不等式可得.

(2) $R(T) = N(T^*)^{\perp}$ 由引理3.2.4和定理3.2.2得到.

由 (1) 的第四步可知, $\dim N(T^{**}) = \dim N(T)$, 而 $N(T) \subset N(T^{**})$, 故 $N(T) = N(T^{**})$. 从而

$$R(T^*) = N(T^{**})^{\perp} = {}^{\perp}N(T),$$

以上涉及 X 和 X** 时在等距同构意义下讨论.

3.2.1 作业

题目3.2.1. 设 X 是 Banach 空间, $A \in \mathfrak{C}(X)$, T = I - A 是单射. 若 $R(T) \subsetneq X$, 证明 $R(T^2) \subsetneq R(T)$.

3.3 Riesz-Schauder 理论

定理 3.3.1

设 X 是 Banach 空间, $A \in \mathfrak{C}(X)$, 则

- (1) $\sigma(A)$ 要么是有限集, 要么是只以 0 为聚点的可数集. 此外, $\sigma(A)\setminus\{0\}=\sigma_p(A)\setminus\{0\}$, 并且当 $\dim X=\infty$ 时, $0\in\sigma(A)$.
- (2) A和 A* 对应于同一个特征值的特征向量构成的子空间具有相同的有限维数.
- (3) A和 A* 对应于不同特征值的特征向量正交.

证明. (1) 首先证明 $\sigma(A) \setminus \{0\} = \sigma_p(A) \setminus \{0\}$. 若 $\lambda \neq 0$ 且 $\lambda \notin \sigma_p(A)$, 则 $\lambda I - A$ 为单射. 由 定理3.2.3, $\lambda I - A$ 也是满射, 从而 $\lambda \in \rho(A)$.

接着证明当 $\dim X = \infty$ 时, $0 \in \sigma(A)$. 反设 $0 \notin \sigma(A)$, 则 $A^{-1} \in L(X)$, 从而 $I = AA^{-1} \in \mathfrak{C}(X)$, 从而 $I(\overline{B}(0,1)) = \overline{B}(0,1)$ 是紧集, 与 X 是无穷维的矛盾.

最后证明 $\sigma(A)$ 要么有限, 要么可数且以 0 为聚点. 由于 $\sigma(A)\setminus\{0\}\sigma_p(A)\setminus\{0\}$, 故只需对 $\sigma_p(A)$ 证明该论断.

设 $\lambda_n \in \sigma_p(A) \setminus \{0\}$ 且 $\lambda_n \to \lambda \neq 0$. 取 x_n 为 λ_n 的单位特征元, 由课本习题 2.6.2, $\{x_n\}_1^\infty$ 线性无关. 记 $E_n = \text{span}\{x_k\}_1^n$, 由 Riesz 引理, 存在 $y_{n+1} \in E_{n+1}$ 使得

$$\left\|y_{n+1}\right\|=1\quad \text{I.}\quad \rho(y_{n+1},E_n)\geq \frac{1}{2},\quad \forall\, n\geq 1.$$

由于 $\lambda_n \to \lambda \neq 0$, 故 $\left\{\frac{y_n}{\lambda_n}\right\}$ 有界, 根据 A 是紧算子, $\left\{\frac{Ay_n}{\lambda_n}\right\}$ 有收敛子列. 但注意到

$$y_{n+p} + \frac{Ay_n}{\lambda_n} - \frac{Ay_{n+p}}{\lambda_{n+p}} \in E_{n+p+1},$$

因此

$$\left\|\frac{Ay_{n+p}}{\lambda_{n+n}} - \frac{Ay_n}{\lambda_n}\right\| = \left\|y_{n+p} - \left(y_{n+p} + \frac{Ay_n}{\lambda_n} - \frac{Ay_{n+p}}{\lambda_{n+p}}\right)\right\| \ge \rho(y_{n+p}, E_{n+p}) \ge \frac{1}{2},$$

矛盾.

故如果 $\sigma_p(T)$ 有无穷多个元素,则由于它是 $\mathbb C$ 中的有界集,故至少有一个聚点,由上一段论述可知该聚点只能是 0.

- (2) 即 Riesz-Fredholm 定理 (定理3.2.5) 的 (2).
- (3) 设 x 是 T 对应于特征值 λ 的特征向量, x^* 是 T^* 对应于特征值 λ' 的特征向量, 并且 $\lambda \neq \lambda'$. 则

$$\lambda \langle x^*, x \rangle = \langle x^*, \lambda x \rangle = \langle x^*, Tx \rangle = \langle T^*x^*, x \rangle = \lambda' \langle x^*, x \rangle,$$

故
$$(\lambda - \lambda')\langle x^*, x \rangle = 0$$
, 从而 $\langle x^*, x \rangle = 0$.

3.4 Hilbert-Schmidt 定理

引理 3.4.1

设 $H \in Hilbert$ 空间, $A \in L(H)$ 并且 $A \in L(H)$ 并且 $A \in L(H)$ 并且 $A \in L(H)$ 如

$$\sup_{\|x\|=1} |(Ax, x)| = \|A\|.$$

喀淮

若 T 是 Hilbert 空间 H 上的有界自伴算子,并且 $(Th,h)=0(\forall h\in H)$,则 T=0. 设 H 是复 Hilbert 空间, $T\in L(H)$.若 $(Th,h)=0(\forall h\in H)$,则 T=0(因为复 Hilbert 空间上 $(Th,h)\in\mathbb{R}(\forall h\in H)$ 可以推出 T 自伴).

证明. 记 $c = \sup_{\|x\|=1} |(Ax, x)|$, 显然有 $c \le \|A\|$. 另一方面, 注意到对 $\forall \|x\| = \|y\| = 1$, 有

$$\operatorname{Re}(Ax, y) = \frac{1}{4} \Big((A(x+y), x+y) - (A(x-y), x-y) \Big)$$

$$\leq \frac{c}{4} (\|x+y\|^2 + \|x-y\|^2) \leq c,$$

并且 $\sup_{\|x\|=\|y\|=1} \operatorname{Re}(Ax, y) = \|A\|$, 因此 $\|A\| \le c$.

例 3.4.2

由上一引理可知,

- (1) $\sup_{\|f\|_{L^2[0,1]}=1} \left| \int_0^1 x f(x) dx \right| = \sup_{\|f\|_{L^2[0,1]}=1} \left| (x,f)_{L^2[0,1]} \right| = \|x\|_{L^2[0,1]}.$
- (2) $\sup_{\|f\|_{L^2[0,1]}=1} \left| \int_0^1 x f^2(x) dx \right| = \sup_{\|f\|_{L^2[0,1]}=1} \left| (Tf, f)_{L^2[0,1]} \right| = \|T\|, 其中 (Tf)(x) := x f(x).$

定理 3.4.3

若 A 是对称紧算子,则必有 $x_0 \in H$, $||x_0|| = 1$, 使得

$$(Ax_0, x_0) = \sup_{\|x\|=1} (Ax, x),$$

并且满足

$$Ax_0 = \lambda x_0$$
,

其中 $\lambda = (Ax_0, x_0)$.

喀淮

由该定理, $||A|| \in \sigma_p(A)$ 和 $-||A|| \in \sigma_p(A)$ 至少有一个成立.

若令 $A \mapsto -A$, 则将定理中的 sup 改为 inf 同样成立, 因此存在 $\|x_0\| = 1$ 使得 $|(Ax_0, x_0)| = \sup_{\|x\|=1} |(Ax, x)| = \|A\|$.

证明. 不妨设 $A \neq 0$, 因为 A = 0 时定理显然成立.

记 $\lambda = \sup_{\|x\|=1} (Ax, x)$. 取 $\|x_n\| = 1$ 使得 $(Ax_n, x_n) \to \lambda$. 由于 $\|x_n\| = 1$, 因此存在子列 $\{x_{n_k}\}$ 弱收敛于 $x_0 \in H$. 再由 A 是紧算子, $Ax_{n_k} \to Ax_0$, 从而 $(Ax_{n_k}, x_{n_k}) \to (Ax_0, x_0) = \lambda$.

下面证明 $\|x_0\| = 1$. 由于 H 上的单位闭球是弱自列紧的, 因此 $\|x_0\| \le 1$. 若 $\|x_0\| < 1$, 则

$$\lambda = (Ax_0, x_0) \le \lambda \|x_0\|^2 < \lambda,$$

矛盾.

最后证明 $Ax_0 = \lambda x_0$. 令

$$\varphi_x(t) = \frac{(A(x_0 + tx), x_0 + tx)}{(x_0 + tx, x_0 + tx)}, \quad \forall t \in \mathbb{R}.$$

由于 $(Ax_0, x) = \sup_{\|x\|=1} (Ax, x)$, 因此

$$\varphi'_{x}(0) = 2\Big(\operatorname{Re}(Ax_{0}, x) - (Ax_{0}, x_{0})\operatorname{Re}(x_{0}, x)\Big) = 0, \quad \forall x \in H.$$

此即

$$\operatorname{Re}(Ax_0 - \lambda x_0, x), \quad \forall x \in H,$$

因此
$$Ax_0 = \lambda x_0$$
.

定理 3.4.4: Hilbert-Schmidt 定理

若 A 是 Hilbert 空间 H 上的对称紧算子,则至多有可数个非零的,只可能以 0 为聚点的实数 λ_i ,它们是算子 A 的特征值. 并对应一组完备标准正交系 e_i , 使

$$x = \sum (x, e_i)e_i,$$

$$Ax = \sum \lambda(x, e_i)e_i.$$

证明. $\forall \lambda \in \sigma_p(A) \setminus \{0\}$, 记 $N(\lambda I - A)$ 的完备标准正交系为

$$\{e_i^{(\lambda)}\}_1^{m(\lambda)}, \quad m(\lambda) \triangleq \dim N(\lambda I - A) < \infty,$$

其中 $m(\lambda) < \infty$ 由 Riesz-Fredholm 定理可知. 此外, 若 $0 \in \sigma_p(A)$, 则记 N(A) 的完备标准正交系为 $\{e_i^{(0)}\}$, 否则令 $\{e_i^{(0)}\} = \emptyset$. 记

$$\{e_i\} \stackrel{\triangle}{=} \{e_i^{(0)}\} \cup \bigcup_{\lambda \in \sigma_n(A) \setminus \{0\}} \{e_i^{(\lambda)}\}_1^{m(\lambda)}.$$

再令 $M \triangleq \text{span}\{e_i\}$.

还需证明 $\overline{M}=H$. 若不然, 则 $M^{\perp}\neq\{0\}$. 记 $\triangleq A|_{M^{\perp}}$, 由定义, \widetilde{A} 没有特征值, 但上一定理说明 A 必然有特征值, 矛盾.

若将 A 的特征值按照正负排列起来,则可以记作

$$\lambda_1^- \le \lambda_2^- \le \dots < 0 \le \dots \le \lambda_2^+ \le \lambda_1^+$$
.

定理 3.4.5: 极小极大刻画

设 A 是 Hilbert 空间 H 上的对称紧算子, 对应有特征值

$$\lambda_1^- \leq \lambda_2^- \leq \cdots < 0 \leq \cdots \leq \lambda_2^+ \leq \lambda_1^+,$$

则

$$\lambda_n^+ = \inf_{E_{n-1}} \sup_{x \in E_{n-1}^{\perp}} \frac{(Ax, x)}{(x, x)}, \lambda_n^- = \sup_{E_{n-1}} \inf_{x \in E_{n-1}^{\perp}} \frac{(Ax, x)}{(x, x)},$$

其中 E_{n-1} 是 H 的任意 n-1 维闭线性子空间.

证明. 只需证关于 λ_n^+ 的等式 (令 $A \mapsto -A$ 即可得到 λ_n^- 的等式). 记 λ_n^+ 的等式右端为 μ_n .

首先证明 $\lambda_n^+ \leq \mu_n$. $\forall E_{n-1}$, 取非零的 $x_n \in \text{span}\{e_k^+\}_1^n$ 使得 $x_n \perp E_{n-1}$, 则

$$\sup_{x \perp E_{n-1}, x \neq 0} \frac{(Ax, x)}{(x, x)} \ge \frac{(Ax_n, x_n)}{(x_n, x_n)} = \frac{\sum_{j=1}^n \lambda_j^+ \left| a_j^+ \right|^2}{\sum_{j=1}^n \left| a_j^+ \right|^2} \ge \lambda_n^+,$$

从而 $\lambda_n^+ \leq \mu_n$.

接下来证明 $\lambda_n^+ \ge \mu_n$. 事实上, 若取 $E_{n-1} = \text{span}\{e_k^+\}_1^{n-1}$, 则

$$\lambda_n^+ = \sup_{x \perp E_{n-1}, x \neq 0} \frac{(Ax, x)}{(x, x)},$$

因此 $\lambda_n^+ \geq \mu_n$.

推论 3.4.6

若 Hilbert 空间 H 上的两个对称紧算子 A,B 满足

$$(Ax, x) \le (Bx, x), \quad \forall x \in H,$$

则

$$\lambda_j^+(A) \le \lambda_j^+(B) \quad (j=1,2,\cdots).$$

证明. 由上一定理立即得到.

第四章 广义函数与 Sobolev 空间

4.1 广义函数的概念

4.1.1 磨光算子及其逼近

定义 4.1.1

设 $\Omega \subset \mathbb{R}^n$, $u \in \overline{\Omega}$ 上的函数, 称

$$\operatorname{supp} u := \overline{\{x \in \Omega : u(x) \neq 0\}}$$

为 u 的关于 Ω 的**支集**. 对整数 $0 \le k \le \infty$, $C_0^k(\Omega)$ 表示支集在 Ω 内紧的全体 $C^k(\overline{\Omega})$ 函数所组成的集合.

喀 注

显然有 $C_0^\infty(\Omega) \subset \cdots \subset C_0^2(\Omega) \subset C_0^1(\Omega) \subset C_0^0(\Omega)$.

下面的例子表明 $C_0^{\infty}(\Omega)$ 是非空的.

例 4.1.2

记

$$j(x) := \begin{cases} C \exp\left(-\frac{1}{1 - |x|^2}\right), & |x| < 1, \\ 0, & |x| \ge 1, \end{cases}$$

其中 C 是使得 $\int_{\mathbb{R}^n} j(x) dx = 1$ 的常数. 则 $\operatorname{supp} j = \overline{B}(0,1)$ 并且 $j \in C_0^{\infty}(\mathbb{R}^n)$. 对 $\delta > 0$,记 $j_{\delta}(x) = \delta^{-n} j(\delta^{-1} x)$,则 $j_{\delta} \in C_0^{\infty}(\mathbb{R}^n)$, $\operatorname{supp} j_{\delta} = \overline{B}(0,\delta)$ 并且

 $\int_{\mathbb{R}^n} j_{\delta}(x) \mathrm{d}x = 1.$

定理 4.1.3

设 Ω 是 \mathbb{R}^n 中的开集, u是 Ω 上的可积函数并且在 Ω 的一个紧子集K外恒为0. 则对充分小的 $\delta > 0$, 函数

$$u_{\delta}(x) := \int_{\Omega} u(y) j_{\delta}(x - y) dy$$

是 $C_0^{\infty}(\Omega)$ 的函数.

证明. 记 $K_{\delta} := \{x \in \mathbb{R}^n : d(x, K) \leq \delta\}$, 便有当 δ 足够小时, $K_{\delta} \subset \Omega$ 并且 $u_{\delta}(x) = 0 (\forall x \notin K_{\delta})$. 而

$$\partial^{\alpha} u_{\delta}(x) = \int_{\Omega} u(y) \partial^{\alpha} j_{\delta}(x - y) dy, \quad \forall x \in K_{\delta}.$$

这是因为, 对指标 $\alpha_0 = (1,0,\dots,0)$,

$$\partial^{\alpha_0} u_{\delta}(x) = \lim_{h \to 0} \int_{\Omega} \frac{j_{\delta}(x + he_1 - y) - j_{\delta}(x - y)}{h} \cdot u(y) dy$$
$$= \lim_{h \to 0} \int_{\Omega} \partial^{\alpha_0} j_{\delta}(x + \theta he_1 - y) u(y) dy,$$

其中 $\theta=\theta(x,y)\in(0,1), e_1=(1,0,\cdots,0)\in\mathbb{R}^n$. 利用 j_δ 的连续可微性, 存在常数 M_{α_0} 使得

$$\left|\partial^{\alpha_0} j_{\delta}(z)\right| \leq M_{\alpha_0}, \quad \forall z \in \mathbb{R}^n.$$

再应用 Lebesgue 控制收敛定理, 即得

$$\partial^{\alpha_0} u_{\delta}(x) = \int_{\Omega} \lim_{h \to 0} \partial^{\alpha_0} j_{\delta}(x + \theta h e_1 - y) u(y) dy$$
$$= \int_{\Omega} \partial^{\alpha_0} j_{\delta}(x - y) u(y) dy.$$

逐次应用上述步骤可得 $\partial^{\alpha}u_{\delta}$ 的表达式对任意指标 α 均成立.

定理 4.1.4

设 Ω 是 \mathbb{R}^n 中的开集. 若 $u \in C_0^k(\Omega)$, 则 $\lim_{\delta \to 0} \|u_\delta - u\|_{C^k(\overline{\Omega})} = 0$, 其中 $\|u\|_{C^k(\overline{\Omega})} := \max_{|\alpha| \le k, x \in \overline{\Omega}} |\partial^\alpha u(x)|$.

证明. 把 u(x) 定义延拓到全空间 \mathbb{R}^n 中, 在 Ω 外补充为 0, 对 $\forall \alpha = (\alpha_1, \dots, \alpha_n)$, 当 $|\alpha| \leq k$ 时, 有

$$\partial^{\alpha} u_{\delta}(x) = \int_{\mathbb{R}^{n}} u(y) \partial_{x}^{\alpha} j_{\delta}(x - y) dy = (-1)^{|\alpha|} \int_{\mathbb{R}^{n}} u(y) \partial_{y}^{\alpha} j_{\delta}(x - y) dy$$
$$= \int_{\mathbb{R}^{n}} \partial_{y}^{\alpha} u(y) j_{\delta}(x - y) dy = \int_{\mathbb{R}^{n}} \partial^{\alpha} u(x - \delta y) j(y) dy,$$

从而

$$\left| \partial^{\alpha} u_{\delta}(x) - \partial^{\alpha}(x) \right| \leq \int_{\mathbb{R}^{n}} \left| \partial^{\alpha} u(x - \delta y) - \partial^{\alpha}(x) \right| j(y) dy.$$

注意到 $j(y) = 0(\forall |y| \ge 1)$, 而 $\partial^{\alpha} u(z)$ 在

$$(\operatorname{supp} u)_1 := \left\{ x \in \mathbb{R}^n : d(x, \operatorname{supp} u) \le 1 \right\}$$

上一致连续. 故对 $\forall \varepsilon > 0$, 存在 $0 < \delta_0 < \frac{1}{2}$, 当 $0 < \delta < \delta_0$ 时,

$$\left|\partial^{\alpha} u(x - \delta y) - \partial^{\alpha} u(x)\right| < \varepsilon, \quad \forall x \in \mathbb{R}^{n}, \left|y\right| \le 1,$$

所以有

$$\sup_{x \in \mathbb{R}^n} \left| \partial^{\alpha} u_{\delta}(x) - \partial^{\alpha} u(x) \right| < \varepsilon \int_{\mathbb{R}^n} j(y) dy = \varepsilon.$$

故
$$\lim_{\delta \to 0} \|u_{\delta} - u\|_{C^{k}(\overline{\Omega})} = 0.$$

定理 4.1.5

设 $1 \le p < \infty$, Ω 是 \mathbb{R}^n 中的有界开集, $u \in L^p(\Omega)$. 若在 Ω 外补充定义 u = 0, 并记

$$u_{\delta}(x) := \int_{\mathbb{R}^n} u(y) j_{\delta}(x - y) dy = \int_{\mathbb{R}^n} u(x - y) j_{\delta}(y) dy, \quad x \in \mathbb{R}^n,$$

则 $u_{\delta} \in C_0^{\infty}(\mathbb{R}^n)$,并且 $\lim_{\delta \to 0} \|u - u_{\delta}\|_{L^p(\Omega)} = 0$.

证明.

方法一. 由于 Ω 有界, $u \in L^p(\Omega) \subset L^1(\Omega)$, 故在定理4.1.3中取 $\Omega = \mathbb{R}^n, K = \overline{\Omega}$ 可得 $u_\delta \in C_0^\infty(\mathbb{R}^n)$.

给定 $\varepsilon>0$, 存在 $v\in C_0^0(\mathbb{R}^n)$ 使得 $\|u-v\|_{L^p(\mathbb{R}^n)}<\frac{\varepsilon}{3}$. 由 v 的连续性, 存在 $\delta_0>0$ 使得

$$\left| v(x) - v(x - y) \right| < \frac{\varepsilon}{3|\Omega|^{\frac{1}{p}}}, \quad \forall x \in \mathbb{R}^n, \left| y \right| \le \delta_0.$$

故对 $0 < \delta < \delta_0$, 有

$$\begin{split} &\int_{\Omega} |u(x) - u_{\delta}(x)|^{p} \mathrm{d}x = \int_{\Omega} \left| \int_{\mathbb{R}^{n}} (u(x - y) - u(x)) j_{\delta}(y) \mathrm{d}y \right|^{p} \mathrm{d}x \\ \leq &\int_{\Omega} \left(\int_{\mathbb{R}^{n}} \left| u(x - y) - u(x) \right| j_{\delta}(y)^{\frac{1}{p}} \cdot j_{\delta}(y)^{\frac{1}{p'}} \mathrm{d}y \right) \mathrm{d}x \\ \leq &\int_{\Omega} \left(\left| \int_{\mathbb{R}^{n}} \left(|u(x - y) - u(x)| j_{\delta}(y)^{\frac{1}{p}} \right)^{p} \mathrm{d}y \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^{n}} \left(j_{\delta}(y)^{\frac{1}{p'}} \right)^{p'} \mathrm{d}y \right)^{\frac{1}{p'}} \right)^{p} \mathrm{d}x \\ = &\int_{\Omega} \int_{\mathbb{R}^{n}} \left| u(x - y) - u(x) \right|^{p} j_{\delta}(y) \mathrm{d}y \mathrm{d}x \\ \leq &3^{p-1} \int_{\Omega} \int_{\mathbb{R}^{n}} \left| u(x) - v(x) \right|^{p} + \left| v(x) - v(x - y) \right|^{p} + \left| v(x - y) - u(x - y) \right|^{p} j_{\delta}(y) \mathrm{d}y \mathrm{d}x \\ \leq &3^{p-1} \left(2 \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |u(x) - v(x)|^{p} j_{\delta}(y) \mathrm{d}y \mathrm{d}x + \int_{\Omega} \int_{\mathbb{R}^{n}} \left| v(x) - v(x - y) \right|^{p} j_{\delta}(y) \mathrm{d}y \mathrm{d}x \right) \\ \leq &3^{p-1} \left(2 \int_{\mathbb{R}^{n}} |u(x) - v(x)|^{p} \mathrm{d}x + \int_{\Omega} \int_{\mathbb{R}^{n}} \left(\frac{\varepsilon}{3|\Omega|^{\frac{1}{p}}} \right)^{p} j_{\delta}(y) \mathrm{d}y \mathrm{d}x \right) \\ <&3^{p-1} \left(2 \cdot \left(\frac{\varepsilon}{3} \right)^{p} + \left(\frac{\varepsilon}{3} \right)^{p} \right) = \varepsilon^{p}, \end{split}$$

其中 p' 满足 $\frac{1}{p}+\frac{1}{p'}=1$ (当 p=1 时第二三行可以略去), 第三行使用了 Holder 不等式, 第五行使用了不等式 $(a+b+c)^p \leq 3^{p-1}(a^p+b^p+c^p)$. 故 $\|u-u_\delta\|_{L^p(\Omega)}<\varepsilon(\forall 0<\delta<\delta_0)$, 从而 $\lim_{\delta\to 0}\|u-u_\delta\|_{L^p(\Omega)}=0$.

接下来证明 u_δ 几乎处处收敛于 u.

方法二. 首先证明当 $\delta \rightarrow 0$ 时, u_δ 几乎处处收敛于 u. 注意到

$$\begin{split} |u(x) - u_{\delta}(x)| &\leq \int_{\mathbb{R}^{n}} \left| u(x) - u(x - y) \right| j_{\delta}(y) \mathrm{d}y \\ &= \delta^{-n} \int_{B(x, \delta)} |u(x) - u(z)| j\left(\frac{x - z}{\delta}\right) \mathrm{d}z \\ &\leq \left\| j \right\|_{C(B(0, 1))} |B(0, 1)| \cdot \frac{1}{|B(x, \delta)|} \int_{B(x, \delta)} |u(x) - u(z)| \mathrm{d}z, \end{split}$$

由 Lebesgue 微分定理 (附录A.9) 知, 上式几乎处处趋于 0.

下面证明 $\|u_{\delta}\|_{L^p(\mathbb{R}^n)} \leq \|u\|_{L^p(\mathbb{R}^n)}$. 若 p=1, 则显然成立. 若 1 , 则由 Holder 不等式,

$$\|u_{\delta}\|_{L^{p}(\mathbb{R}^{n})}^{p} \leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \left| u(x-y) \right| j_{\delta}(y)^{\frac{1}{p}} \cdot j_{\delta}^{\frac{1}{p'}}(y) dy \right)^{p} dx$$

$$\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \left| u(x-y) \right|^{p} j_{\delta}(y) dy \right) \left(\int_{\mathbb{R}^{n}} j_{\delta}(y) dy \right)^{\frac{p}{p'}} dx$$

$$\leq \int_{\mathbb{R}^{n}} j_{\delta}(y) \int_{\mathbb{R}^{n}} \left| u(x-y) \right|^{p} dx dy = \int_{\mathbb{R}^{n}} |u(x)|^{p} dx.$$

其中 p' 满足 $\frac{1}{p} + \frac{1}{p'} = 1$. 因此 $\|u_{\delta}\|_{L^p(\mathbb{R}^n)} \leq \|u\|_{L^p(\mathbb{R}^n)} = \|u\|_{L^p(\Omega)}$, 从而 $u_{\delta} \in L^p(\Omega)$. 再由 Lebesgue 控制收敛定理以及 $u_{\delta} \to u$ a.e. 知 $\|u - u_{\delta}\|_{L^p(\Omega)} \to 0$.

喀 注

由方法二的证明过程, 实际上在定理条件下还有 $u_\delta \rightarrow u$ a.e.

定理 4.1.6

设 $u \in \mathbb{R}^n$ 中的局部可积函数 (在任意紧集上积分有限), 则 $u_\delta \in C^\infty(\mathbb{R}^n)$.

- (1) 若 $u \in C_0(\mathbb{R}^n)$, 则在 u_δ 在 \mathbb{R}^n 上一致收敛于 $C_0(\mathbb{R}^n)$.
- (2) 设 $1 \le p < \infty$. 若 $u \in L^p(\mathbb{R}^n)$, 则 $\|u_{\delta} u\|_{L^p(\mathbb{R}^n)} \to 0$.

证明. 结合前两个定理不难得出.

4.1.2 基本空间和广义函数

定义 4.1.7: 空间 $\mathcal{D}(\Omega)$

设 Ω 是 \mathbb{R}^n 中的开集, 记 $\mathcal{D}(\Omega) := C_0^{\infty}(\Omega)$, 在其中定义收敛如下: 设 $\{\varphi_j\}_0^{\infty} \subset \mathcal{D}(\Omega)$, 若

- (1) 存在包含于 Ω 的紧集 K 使得 $\operatorname{supp}\varphi_i \subset K(\forall j \geq 1)$.
- (2) 对任意的 $\alpha = (\alpha_1, \dots, \alpha_n)$, 当 $j \to \infty$ 时, 有

$$\max_{x \in K} \left| \partial^{\alpha} \varphi_{j}(x) - \partial^{\alpha} \varphi_{0}(x) \right| \to 0.$$

则称 $\{\varphi_j\}$ 收敛于 φ_0 , 记作 $\varphi_j \rightarrow \varphi_0$.

喀淮

对 $\mathcal{D}(\Omega)$ 中的收敛不存在一个与之相容的范数, 甚至不存在与之相容的度量空间, 因此 $\mathcal{D}(\Omega)$ 不是赋范空间, 也不是度量空间.

引理 4.1.8: $\mathcal{D}(\Omega)$ 的序列完备性

若 $\{\varphi_i\}$ 满足

- (1) 存在包含于 Ω 的紧集 K 使得 $\operatorname{supp} \varphi_j \subset K$.
- (2) $\forall \varepsilon > 0, \alpha = (\alpha_1, \dots, \alpha_n)$, 存在 N > 0 使得

$$\max_{x \in K} \left| \partial^{\alpha} \varphi_k - \partial^{\alpha} \varphi_l(x) \right| < \varepsilon, \quad \forall k, l > N.$$

则存在 $\varphi \in \mathcal{D}(\Omega)$ 使得 $\varphi_i \to \varphi$.

证明. 留作习题.

定义 4.1.9: 广义函数

 $\mathscr{D}(\Omega)$ 上的线性连续泛函称为广**义函数**或**分布**,其全体称作 $\mathscr{D}'(\Omega)$. 也即 $f \in \mathscr{D}'(\Omega)$ 满足

- (1) 线性性: $\langle f, \lambda_1 \varphi_1 + \lambda_2 \varphi_2 \rangle = \lambda_1 \langle f, \varphi_1 \rangle + \lambda_2 \langle f, \varphi_2 \rangle (\forall \lambda_1, \lambda_2 \in \mathbb{K}, \varphi_1, \varphi_2 \in \mathcal{D}(\Omega).$
- (2) 连续性: 若 $\{\varphi_j\}$ $\subset \mathcal{D}(\Omega)$ 满足 $\varphi_j \to \varphi$, 则有 $\langle f, \varphi_j \rangle \to \langle f, \varphi \rangle$.

例 4.1.10: 局部可积函数

对 $f \in L^1_{loc}(\Omega)$ (Ω 上局部可积函数, 即 f 在任意包含于 Ω 的紧集上积分有限), 依

$$\langle f, \varphi \rangle := \int_{\Omega} f \varphi dx, \quad \varphi \in \mathscr{D}(\Omega)$$

定义的 f 是广义函数.

证明. 线性性显然, 下证连续性. 设 $\varphi_j \to 0$, 则存在紧集 $K \subset \Omega$ 使得 $\operatorname{supp} \varphi_j \subset K(\forall j)$ 并且 $\max_{K} |\varphi_j| \to 0$. 故

$$|\langle f, \varphi_j \rangle| \le \left(\int_K |f| dx \right) \max_K |\varphi_j| \to 0,$$

由于 f 是线性的, 此即 f 连续.

喀 注

上述的局部可积函数 f 与广义函数 f 是一一对应的,因为 $f_1 \equiv f_2$ 当且仅当 $\int_{\Omega} f_1 \varphi dx = \int_{\Omega} f_2 \varphi dx (\forall \varphi \in \mathcal{D}(\Omega)).$

例 4.1.11: Dirac 函数

对 $\varphi \in \mathcal{D}(\Omega)$, 定义 $\langle \delta, \varphi \rangle = \varphi(0)$, 则显然有 $\delta \in \mathcal{D}'(\Omega)$.

对 $\alpha = (\alpha_1, \dots, \alpha_n)$, 定义 $\langle \delta^{(\alpha)}, \varphi \rangle = (-1)^{|\alpha|} \partial^{\alpha} \varphi(0) (\varphi \in \mathcal{D}(\Omega))$, 则 $\delta^{(\alpha)} \in \mathcal{D}'(\Omega)$.

定理 4.1.12: 广义函数等价条件

 $f \in \mathcal{D}'(\Omega)$ 的充要条件为: 对任意紧集 $K \subset \Omega$, 存在常数 C > 0 和非负整数 m 使得

$$\left| \langle f, \varphi \rangle \right| \le C \cdot \sup_{\substack{x \in K \\ |\alpha| \le m}} \left| \partial^{\alpha} \varphi(x) \right|, \quad \forall \varphi \in \mathcal{D}(\Omega), \operatorname{supp} \varphi \subset K.$$

证明. 必要性: 反设存在紧集 $K \subset \Omega$, $\{\varphi_j\} \subset \mathcal{D}(\Omega)$ 并且 $\mathrm{supp} \varphi_m \subset K(\forall m \geq 1)$, 满足

$$\sup_{x \in K, |\alpha| \le m} \left| \partial^{\alpha} \varphi_m(x) \right| < \frac{1}{m} \left| \langle f, \varphi_m \rangle \right|, \quad \forall \, m \ge 1.$$

由 f 的线性性, 不妨设 $|\langle f, \varphi_m \rangle| = 1 (\forall m \ge 1)$. 则由以上不等式可得 $\varphi_m \to 0$, 而 $f \in \mathcal{D}'(\Omega)$, 故 $\langle f, \varphi_m \rangle \to 0$, 矛盾.

充分性: 设紧集 $K \subset \Omega$, $\{\varphi_j\} \subset \mathcal{D}(\Omega)$ 并且 $\sup \varphi_j \subset K(\forall j)$. 取与 K 对应的常数 C > 0 和非负整数 m, 如果 $\varphi_i \to 0$, 则根据收敛的定义,

$$\sup_{x\in K, |\alpha|\leq m}\left|\partial^{\alpha}\varphi_{j}(x)\right|\to 0,$$

再由定理中不等式易得 $\langle f, \varphi_i \rangle \rightarrow 0$. 从而 $f \in \mathcal{D}'(\Omega)$.

定义 4.1.13: $\mathcal{D}(\Omega)$ 上的 * 弱收敛

设 $\{f_j\}\subset \mathcal{D}'(\Omega)$, 若 $\langle f_j,\varphi\rangle \to \langle f,\varphi\rangle (\forall \varphi \in \mathcal{D}(\Omega))$, 则称 f_j* **弱收敛**于 <math>f, 简称 f_j 收敛于 f, 记作 $f_i \to f$.

例 4.1.14

设 $x_0 \in \Omega$, 对 $\varphi \in \mathcal{D}(\Omega)$, 定义 $\langle \delta_{x_0}, \varphi \rangle := \varphi(x_0)$. 则 $j_{\varepsilon}(\cdot - x_0) \to \delta_{x_0}$.

证明. 任取 $\varphi \in \mathcal{D}(\Omega)$, 则

$$\begin{aligned} &\left| \langle j_{\varepsilon}(\cdot - x_{0}), \varphi \rangle - \langle \delta_{x_{0}}, \varphi \rangle \right| \\ &= \left| \int_{\Omega} j_{\varepsilon}(x - x_{0}) \varphi(x) \mathrm{d}x - \varphi(x_{0}) \right| \\ &= \left| \int_{\Omega} j_{\varepsilon}(x - x_{0}) \left(\varphi(x) - \varphi(x_{0}) \right) \mathrm{d}x \right| \\ &\leq \int_{\Omega} j_{\varepsilon}(x - x_{0}) \left| \varphi(x) - \varphi(x_{0}) \right| \mathrm{d}x \\ &\leq \sup_{x \in K, |\alpha| = 1} \left| \partial^{\alpha} \varphi(x) \right| \cdot \sup_{x, y \in \Omega} \left| x - y \right| \cdot \int_{\Omega} j_{\varepsilon}(x - x_{0}) \mathrm{d}x \\ &= \operatorname{diam}\Omega \cdot \sup_{x \in K, |\alpha| = 1} \left| \partial^{\alpha} \varphi(x) \right| \to 0, \end{aligned}$$

其中 diamΩ := $\sup_{x,y \in \Omega} |x-y|$.

例 4.1.15

取 $\Omega = \mathbb{R}$, 记 $f_j(x) = \frac{\sin jx}{\pi x} (j \ge 1)$, 则 $f_j \to \delta$.

证明. 留作习题.

定理 4.1.16: 广义函数的正则化

设 $T \in \mathcal{D}'(\mathbb{R}^n)$,则 $T_{\varepsilon}(y) := \langle T, j_{\varepsilon}(y - \cdot) \rangle \in \mathbb{R}^n$ 上的 C^{∞} 函数,并且 $T_{\varepsilon} \to T$.

证明. 由 T 的连续性, 当 $h \rightarrow 0$ 时,

$$\frac{T_{\varepsilon}(y+he_1)-T_{\varepsilon}(y)}{h}=\left\langle T,\frac{j_{\varepsilon}(y-\cdot+he_1)-j_{\varepsilon}(y-\cdot)}{h}\right\rangle \to \langle T,\partial^{e_1}j_{\varepsilon}(y-\cdot)\rangle.$$

反复应用上式可得 $T_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$. 任取 $\varphi \in \mathcal{D}(\Omega)$, 则由积分的连续性,

$$\begin{aligned} \left| \langle T - T_{\varepsilon}, \varphi \rangle \right| &= \left| \langle T, \varphi \rangle - \int_{\mathbb{R}^n} \langle T, j_{\varepsilon}(y - \cdot) \rangle \varphi(y) \, \mathrm{d}y \right| \\ &= \left| \langle T, \varphi \rangle - \left\langle T, \int_{\mathbb{R}^n} j_{\varepsilon}(y - \cdot) \varphi(y) \, \mathrm{d}y \right\rangle \right| = \left| \langle T, \varphi \rangle - \langle T, \varphi_{\varepsilon} \rangle \right| \to 0, \end{aligned}$$

上式趋于 0 是因为由定理4.1.4知, $\varphi_{\varepsilon} \rightarrow \varphi$.

定义 4.1.17: 广义函数的导数

设 $T \in \mathcal{D}'(\Omega)$, 定义

$$\langle \partial^{\alpha} T, \varphi \rangle := (-1)^{|\alpha|} \langle T, \partial^{\alpha} \varphi \rangle, \quad \varphi \in \mathcal{D}(\Omega).$$

则 $\partial^{\alpha} T \in \mathcal{D}'(\Omega)$.

喀淮

不难验证广义导数 ∂^{α} 与求导次序无关, 该证明留作习题.

例 4.1.18: Heaviside 函数

记
$$H(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0, \end{cases}$$
 则 $\langle H', \varphi \rangle = -\langle H, \varphi' \rangle = -\int_0^\infty \varphi' dx = \varphi(0) = \langle \delta, \varphi \rangle (\forall \varphi \in \mathcal{D}(\mathbb{R})),$ 故 $H' = \delta$.

4.1.3 作业

题目4.1.1. 若 {φ_i} 满足

- (1) 存在包含于 Ω 的紧集 K 使得 $\operatorname{supp}\varphi_i \subset K$.
- (2) $\forall \varepsilon > 0, \alpha = (\alpha_1, \dots, \alpha_n)$, 存在 N > 0 使得

$$\max_{x \in K} \left| \partial^{\alpha} \varphi_k - \partial^{\alpha} \varphi_l(x) \right| < \varepsilon, \quad \forall k, l > N.$$

证明: 存在 $\varphi \in \mathcal{D}(\Omega)$ 使得 $\varphi_i \to \varphi$.

解答. 由题目, 对任意给定的 $m \ge 0$, $\{\varphi_j\}$ 是空间 $C^m(K)$ 中的 Cauchy 列, 依其中的范数收敛于 φ , 该函数与 m 无关, 因为 $\varphi(x) = \lim_{j \to \infty} \varphi_j(x)$ 极限唯一. 而 $C^m(K)$ 中的范数为

$$\|\psi\|_m := \max_{x \in K, |\alpha| \le m} |\partial^{\alpha} \psi_j|,$$

由范数定义不难看出, 在 $\mathcal{D}(\Omega)$ 中 $\varphi_i \rightarrow \varphi$.

题目4.1.2. 取 $\Omega = \mathbb{R}$, 记 $f_j(x) = \frac{\sin jx}{\pi x} (j \ge 1)$, 证明 $f_j \to \delta$. **解答**.

$$\langle f_j - \delta, \varphi \rangle = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\varphi(x) - \varphi(0)}{x} \sin jx dx \to 0, \quad \forall \varphi \in \mathcal{D}(\mathbb{R}),$$

上式趋于 0 是因为 $\int_{-\infty}^{\infty} \frac{\sin jx}{\pi x} dx = 1$, φ 在 0 处可导, 以及 Riemann-Lebesgue 引理, 因此 $f_i \to \delta$.

☎ 题目4.1.3. 证明广义导数与求导次序无关.

解答. 设 $T \in \mathcal{D}'(\Omega)$, $\varphi \in \mathcal{D}(\Omega)$, 则有

$$\begin{split} \langle \partial^{\alpha} \partial^{\beta} T, \varphi \rangle &= (-1)^{|\alpha|} \langle \partial^{\beta} T, \partial^{\alpha} \varphi \rangle \\ &= (-1)^{|\alpha+\beta|} \langle T, \partial^{\beta} \partial^{\alpha} \varphi \rangle = (-1)^{|\alpha+\beta|} \langle T, \partial^{\alpha} \partial^{\beta} \varphi \rangle \\ &= (-1)^{|\beta|} \langle \partial^{\alpha} T, \partial^{\beta} \varphi \rangle = \langle \partial^{\beta} \partial^{\alpha} T, \varphi \rangle. \end{split}$$

4.2 速降函数与 Fourier 变换

定义 4.2.1: Schwartz 空间 (速降函数)

若 $\varphi \in C^{\infty}(\mathbb{R}^n)$ 并且 $\forall \alpha, \beta$,

$$\lim_{|x|\to\infty} x^{\alpha} \partial^{\beta} \varphi(x) = 0,$$

其中 $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$. 则称 φ 是一个**速降函数**, 全体速降函数组成的空间称 为**Schwartz 空间**, 记作 $\mathcal{S}(\mathbb{R}^n)$.

在 $\mathscr{S}(\mathbb{R}^n)$ 中规定收敛如下: 设 $\{\varphi_j\}\subset\mathscr{S}(\mathbb{R}^n)$, 若 $\forall \alpha, \beta$, 都有

$$\sup_{x\in\mathbb{R}^n}\left|x^\alpha\partial^\beta(\varphi_j-\varphi_0)\right|\to 0,$$

则称 $\varphi_i \rightarrow \varphi_0$.

定义 4.2.2: 缓增分布

称 $\mathscr{S}(\mathbb{R}^n)$ 上的连续线性泛函为**缓增分布**, 缓增分布全体记作 $\mathscr{S}(\mathbb{R}^n)$.

引理 4.2.3: Schwartz 空间等价条件

设 φ ∈ $C^{\infty}(\mathbb{R}^n)$, 则以下三点等价:

- (1) $\varphi \in \mathcal{S}(\mathbb{R}^n)$;
- (2) $\forall \alpha, \beta, \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial^{\beta} \varphi(x)| < \infty;$
- (3) 对任意指标 β 和非负整数 k, $\sup_{x \in \mathbb{R}^n} (1 + |x|^2)^k \left| \partial^{\beta} \varphi(x) \right| < \infty$.

证明. (1) ⇒ (2): 由极限的有界性可得.

- (2) ⇒ (3): 只需注意到 $(1+|x|^2)^k$ 也是关于 x 的多项式即可.
- $(3) \Longrightarrow (1)$: $\forall \alpha, \beta, 取 k = |\alpha| + 1$, 则存在常数 C > 0 使得

$$(1+|x|^2)^{|\alpha|+1} |\partial^{\beta} \varphi(x)| \le C, \quad \forall x \in \mathbb{R}^n.$$

则

$$\left| x^{\alpha} \partial^{\beta} \varphi(x) \right| \leq |x|^{|\alpha|} \cdot \left| \partial^{\beta} \varphi(x) \right| \leq (1 + |x|^{2})^{|\alpha|} \cdot \left| \partial^{\beta} \varphi(x) \right| \leq \frac{C}{1 + |x|^{2}},$$

当 |x| → ∞ 时, 上式右端趋于 0, 故左端也趋于 0.

定理 4.2.4

对 $f \in \mathcal{S}(\mathbb{R}^n)$, 记

$$||f||_N = \sup_{x \in \mathbb{R}^n, |\alpha| \le N, |\beta| \le N} |x^{\alpha} \partial^{\beta} f(x)|.$$

对 $f,g \in \mathcal{S}(\mathbb{R}^n)$, 又记

$$\rho(f,g) = \sum_{N=1}^{\infty} \frac{1}{2^N} \cdot \frac{\|f - g\|_N}{1 + \|f - g\|_N}.$$

则 $\mathscr{S}(\mathbb{R}^n)$ 关于 ρ 构成一个完备度量空间, 并且关于 ρ 的收敛于以上定义的 $\mathscr{S}(\mathbb{R}^n)$ 中的收敛一致.

证明. ρ 显然是一个度量. 下面证明关于 ρ 收敛与 $\mathcal{S}(\mathbb{R}^n)$ 中定义的收敛一致. 若 $\rho(f_i,f) \to 0$, 则对每个 N,

$$\frac{1}{2^N} \cdot \frac{\|f_j - f\|_N}{1 + \|f_j - f\|_N} \le \rho(f_j, f) \to 0,$$

从而 $\|f_j - f\|_N \to 0$, 从而 $f_j \to f$. 反之, 若 $f_j \to f$, 则任取 $\varepsilon > 0$, 存在 N_0 使得

$$\sum_{N=N_0+1}^{\infty} \frac{1}{2^N} < \frac{\varepsilon}{2}.$$

又由于 $f_i \rightarrow f$, 故对每个 $N = 1, 2, \dots, N_0$, 存在 J 使得

$$||f_j - f||_N < \frac{\varepsilon}{2}, \quad \forall j > J.$$

从而对任意的 j > J, 有

$$\rho(f_{j}, f) \leq \sum_{N=1}^{N_{0}} \frac{1}{2^{N}} \cdot \frac{\left\| f_{j} - f \right\|_{N}}{1 + \left\| f_{j} - f \right\|_{N}} + \sum_{N=N_{0}+1}^{\infty} \frac{1}{2^{N}}$$

$$\leq \sum_{N=1}^{N_{0}} \frac{1}{2^{N}} \left\| f_{j} - f \right\|_{N} + \frac{\varepsilon}{2} \leq \sum_{N=1}^{N_{0}} \frac{1}{2^{N}} \cdot \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \leq \varepsilon,$$

因此 $\rho(f_i, f) \rightarrow 0$.

最后证明 $\mathscr{S}(\mathbb{R}^n)$ 关于度量 ρ 完备. 若 $\{f_i\}$ 是 Cauchy 列, 则

$$||f_j - f_i||_{C^N(\mathbb{R}^n)} \le ||f_j - f_i||_N \le 2^N \rho(f_j, f_i),$$

从而 $\{f_j\}$ 也是 $C^N(\mathbb{R}^n)$ 中的 Cauchy 列, 依其中的范数收敛到 $f \in C^N(\mathbb{R}^n)$. 而根据极限的唯一性不难验证此 f 与 N 无关, 故实际上 $f \in C^\infty(\mathbb{R}^n)$. 容易验证此时有 $f \in \mathcal{S}(\mathbb{R}^n)$ 并且 $\rho(f_i, f) \to 0$.

定义 4.2.5: Fourier 变换

设 $f \in \mathcal{S}(\mathbb{R}^n)$, 定义 f 的Fourier 变换为

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} dx.$$

上式也记作 $\mathscr{F}: f \mapsto \hat{f}$.

定理 4.2.6: Fourier 变换的性质

设 $f,g \in \mathcal{S}(\mathbb{R}^n), x_0 \in \mathbb{R}^n, \lambda > 0$, 则

- (1) $(f(x-x_0))(\xi) = e^{-ix_0\cdot\xi}\hat{f}(\xi);$
- (2) $(e^{ix_0 \cdot x} f(x))(\xi) = \hat{f}(\xi x_0);$
- (3) $(f * g)(\xi) = \hat{f}(\xi)\hat{g}(\xi), \not \pm \psi \quad (f * g)(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x y)g(y)dy;$
- (4) $(f(\frac{x}{\lambda}))(\xi) = \lambda^n \hat{f}(\lambda \xi);$
- (5) $(\partial^{\alpha} f)\hat{}(\xi) = (i\xi)^{\alpha} \hat{f}(\xi);$
- (6) $\partial^{\alpha} \hat{f}$ 存在并且 $(x^{\alpha} f)\tilde{f}(\xi) = i^{|\alpha|} \partial^{\alpha} \hat{f}(\xi)$.

证明. (1)

$$(f(x-x_0))(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x-x_0) e^{-ix\cdot\xi} dx = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) e^{-i(x+x_0)\cdot\xi} dx$$
$$= e^{-ix_0\cdot\xi} \cdot \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) e^{-ix\cdot\xi} dx = e^{-ix_0\cdot\xi} \hat{f}(\xi).$$

(2)

$$(e^{ix_0 \cdot x} f(x))(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{ix_0 \cdot x} f(x) \cdot e^{-ix \cdot \xi} dx$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) e^{-ix \cdot (\xi - x_0)} dx = \hat{f}(\xi - x_0).$$

(3)

$$(f * g)\hat{f}(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} (f * g)(x) e^{-ix \cdot \xi} dx = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x - y) g(y) e^{-ix \cdot \xi} dy dx$$

$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} g(y) \int_{\mathbb{R}^n} f(x - y) e^{-ix \cdot \xi} dx dy = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} g(y) \int_{\mathbb{R}^n} f(x) e^{-i(x + y) \cdot \xi} dx dy$$

$$= \left(\frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} g(y) e^{-iy \cdot \xi} dy \right) \left(\frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} dx \right) = \hat{f}(\xi) \hat{g}(\xi).$$

(4)

$$(f(\frac{x}{\lambda}))(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(\frac{x}{\lambda}) e^{-ix\cdot\xi} dx$$
$$= \frac{\lambda^n}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) e^{-i\lambda x\cdot\xi} dx = \lambda^n \hat{f}(\lambda \xi).$$

(5)

$$(\partial^{\alpha} f)(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \partial^{\alpha} f(x) e^{-ix\cdot\xi} dx = \frac{(-1)^{|\alpha|}}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) \partial^{\alpha} e^{-ix\cdot\xi} dx$$
$$= \frac{(-1)^{|\alpha|}}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) (-i\xi)^{\alpha} e^{-ix\cdot\xi} dx = \frac{(i\xi)^{\alpha}}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) e^{-ix\cdot\xi} dx = (i\xi)^{\alpha} \hat{f}(\xi).$$

(6)

$$(x^{\alpha}f)(\xi) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} x^{\alpha} f(x) e^{-ix \cdot \xi} dx = \frac{i^{|\alpha|}}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(x) \partial_{\xi}^{\alpha} e^{-ix \cdot \xi} dx$$
$$= \frac{i^{|\alpha|}}{(2\pi)^{\frac{n}{2}}} \partial_{\xi}^{\alpha} \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} dx = i^{|\alpha|} \partial^{\alpha} \hat{f}(\xi).$$

引理 4.2.7

Fourier 变换是将 $\mathcal{S}(\mathbb{R}^n)$ 映到 $\mathcal{S}(\mathbb{R}^n)$ 的连续映射.

证明. 首先证明任意速降函数 g 的 Fourier 变换 \hat{g} 是有界的. 为此, 只需注意到

$$\left| \hat{g}(\xi) \right| \leq \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \left| g(x) \right| \mathrm{d}x \leq \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \frac{C}{(1+|x|^2)^n} \mathrm{d}x < \infty.$$

设 $f \in \mathcal{S}(\mathbb{R}^n)$, 下面证明 $\hat{f} \in \mathcal{S}(\mathbb{R}^n)$. 由 Fourier 变换的性质 (6), $\hat{f} \in C^{\infty}(\mathbb{R}^n)$, 结合性质 (5)(6) 可知,

$$\xi^{\alpha}D^{\beta}\hat{f}(\xi) = \xi^{\alpha}i^{-|\beta|}(x^{\beta}f)(\xi) = i^{-(|\alpha|+|\beta|)}(i\xi)^{\alpha}(x^{\beta}f)(\xi) = i^{-(|\alpha|+|\beta|)}(\partial^{\alpha}x^{\beta}f)\xi,$$

注意到上式右端是常数乘一个速降函数的 Fourier 变换, 必是有界的. 从而 $\hat{f} \in \mathscr{S}(\mathbb{R}^n)$.

最后证明 Fourier 变换是连续的, 也即如果 $f_j \to f$, 则 $\hat{f}_j \to \hat{f}$. 设 $f_j \to f$, 则

$$\int_{\mathbb{R}^n} |f_j(x) - f(x)| dx \le \int_{\mathbb{R}^n} \frac{1}{(1+|x|^2)^n} dx \cdot \sup_{x \in \mathbb{R}^n} (1+|x|^2)^n |f_j(x) - f(x)| \to 0.$$

从而 $\sup_{\xi \in \mathbb{R}^n} \left| \hat{f}_j(\xi) - \hat{f}(\xi) \right| \le \int_{\mathbb{R}^n} \left| f_j - f \right| dx \to 0$. 注意到还有

$$\xi^{\alpha}D^{\beta}\hat{f}(\xi) = i^{-(|\alpha| + |\beta|)}(\partial^{\alpha}x^{\beta}f)(\xi),$$

以及 $\partial^{\alpha} x^{\beta} f_j \rightarrow \partial^{\alpha} x^{\beta} f$, 因此同理可得

$$\sup_{\xi\in\mathbb{R}^n}\left|\xi^{\alpha}D^{\beta}(f_j(\xi)-f(\xi))\right|\to 0,$$

从而
$$\hat{f}_j \rightarrow \hat{f}$$
.

引理 4.2.8

若记 $\psi(x) = e^{-\frac{|x|^2}{2}}$, 则 $\psi \in \mathcal{S}(\mathbb{R}^n)$, $\hat{\psi} = \psi$, 并且

$$\psi(0) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \hat{\psi}(\xi) d\xi.$$

证明. 显然有 $\psi \in \mathscr{S}(\mathbb{R}^n)$. 记 $\phi(t) = e^{-\frac{t^2}{2}}$, 则不难验证 ϕ 和 ϕ' 均满足微分方程

$$y' + xy = 0.$$

因此 $\frac{\hat{\phi}}{\phi}$ 为常数. 由于 $\phi(0) = 1$ 并且

$$\hat{\phi}(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi(t) dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt = 1,$$

故 $\hat{\phi} = \phi$. 注意到

$$\psi(x) = \phi(x_1) \cdots \phi(x_n), \quad x \in \mathbb{R}^n,$$

故作 Fourier 变换可得

$$\hat{\psi}(\xi) = \int_{\mathbb{D}^n} \phi(x_1) \cdots \phi(x_n) e^{-ix \cdot \xi} dx = \hat{\phi}(\xi_1) \cdots \hat{\phi}(\xi_n), \quad \xi \in \mathbb{R}^n.$$

故 $\hat{\psi} = \psi$. 最后, 由 $\hat{\psi} = \psi$ 以及

$$\hat{\psi}(0) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \psi(x) dx$$

容易得到引理中的等式.

定理 4.2.9: 反演公式

设 $f \in \mathcal{S}(\mathbb{R}^n)$, 则

$$f(x) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \hat{f}(\xi) e^{ix \cdot \xi} d\xi, \quad \forall x \in \mathbb{R}^n.$$

证明. 对任意的 $f,g \in \mathcal{S}(\mathbb{R}^n)$, 有

$$\frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \hat{f}(x)g(x) dx = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(y)g(x)e^{-ix\cdot y} dx dy = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} f(y)\hat{g}(y) dy.$$

在上式中取 $f(x) = \psi(\frac{x}{\lambda}), \lambda > 0$, 则由 Fourier 变换的性质 (4) 可得

$$\frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \psi\left(\frac{y}{\lambda}\right) \hat{g}(y) dy = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} g(x) \lambda^n \hat{\psi}(\lambda x) dx = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} g\left(\frac{x}{\lambda}\right) \hat{\phi}(x) dx.$$

当 $\lambda \to \infty$ 时, $g(\frac{x}{\lambda}) \to g(0)$, $\psi(\frac{y}{\lambda}) \to \psi(0)$, 故由 Lebesgue 控制收敛定理, 在上式用令 $\lambda \to \infty$ 可得

$$g(0) \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \psi(x) dx = \psi(0) \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \hat{g}(y) dy.$$

由上一引理, 上式即 $g(0) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} \hat{g}(y) dy$. 最后令 $g(\cdot) = f(\cdot + x)$, 则由 Fourier 变换的性质 (1),

$$f(x) = g(0) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \hat{g}(y) dy = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \hat{f}(y) e^{ix \cdot y} dy,$$

上式即为所求.

定理 4.2.10

若记 $\mathscr{F}: \varphi \mapsto \hat{\varphi}$ 是 Fourier 变换, 则它是将 $\mathscr{S}(\mathbb{R}^n)$ 映到其本身的线性连续双射, 并且 \mathscr{F}^{-1} 也是连续的.

证明. 根据引理4.2.7, \mathscr{F} 是将 $\mathscr{S}(\mathbb{R}^n)$ 映射到本身的线性连续映射. 由反演公式容易验证, $\mathscr{F}^2 f(x) = f(-x) (f \in \mathscr{S}(\mathbb{R}^n))$, 从而 $\mathscr{F}^4 = I$. 因此 \mathscr{F} 是双射, 并且逆映射 $\mathscr{F}^{-1} = \mathscr{F}^3$ 也是连续的.

定理 4.2.11: Parseval 等式

对 $f,g \in \mathcal{S}(\mathbb{R}^n)$, 有

$$\int_{\mathbb{R}^n} f(x)\overline{g}(x) dx = \int_{\mathbb{R}^n} \hat{f}(y)\overline{\hat{g}}(y) dy.$$

证明. 由反演公式,

$$\int_{\mathbb{R}^n} f(x)\overline{g}(x) dy = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \overline{g}(x) \int_{\mathbb{R}^n} \hat{f}(y) e^{ix \cdot y} dy dx$$

$$= \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \hat{f}(y) \int_{\mathbb{R}^n} \overline{g}(x) e^{ix \cdot y} dx dy = \int_{\mathbb{R}^n} \hat{f}(y) \overline{\hat{g}}(y) dy,$$

得证.

定义 4.2.12: $\mathscr{S}'(\mathbb{R}^n)$ 上的 Fourier 变换

对 $T \in \mathcal{S}'(\mathbb{R}^n)$, 定义它的Fourier 变换 $\mathcal{F}[T] \in \mathcal{S}'(\mathbb{R}^n)$ 为

$$\langle \mathscr{F}[T], \varphi \rangle = \langle T, \mathscr{F}\varphi \rangle, \quad \forall \varphi \in \mathscr{S}(\mathbb{R}^n).$$

喀淮

由于 \mathscr{F} 是 $\mathscr{S}(\mathbb{R}^n)$ 到其本身的同构,故如上定义的 $\mathscr{F}[T]$ 的确是缓增分布,并且不难证明如上定义的 Fourier 变换在 T 是一个速降函数时,与速降函数的 Fourier 变换的定义一致.

定义 4.2.13: 分布的乘积和平移

设 $T \in \mathcal{S}'(\mathbb{R}^n)$, $f \in C^{\infty}(\mathbb{R}^n)$, $x_0 \in \mathbb{R}^n$, 定义

$$\langle \tau_{x_0} T, \varphi \rangle := \langle T, \varphi(x+x_0) \rangle, \quad \langle fT, \varphi \rangle := \langle T, f\varphi \rangle, \quad \forall \varphi \in \mathcal{S}'(\mathbb{R}^n).$$

喀 注

当 $f \in L_{loc}(\mathbb{R}^n)$ 时, $\langle \tau_{x_0} f, \varphi \rangle = \int_{\mathbb{R}^n} f(x) \varphi(x + x_0) dx = \int_{\mathbb{R}^n} f(x - x_0) \varphi(x) dx = \langle f(x - x_0), \varphi \rangle$ ($\forall \varphi \in \mathscr{S}(\mathbb{R}^n)$, 因此该平移的定义与一般函数的平移一致.

定理 4.2.14: $\mathscr{S}'(\mathbb{R}^n)$ 上的 Fourier 变换的性质

设 $T \in \mathcal{S}(\mathbb{R}^n), x_0 \in \mathbb{R}^n, \lambda > 0, \alpha$ 是任意指标,则

- (1) $\mathscr{F}[\tau_{x_0}T] = e^{-ix_0 \cdot x} \mathscr{F}[T];$
- (2) $\mathscr{F}[e^{ix_0\cdot x}T] = \tau_{x_0}\mathscr{F}[T];$
- (3) $\mathscr{F}[\partial^{\alpha}T] = (ix)^{\alpha}\mathscr{F}[T];$
- (4) $\mathscr{F}[x^{\alpha}T] = i^{|\alpha|}\partial^{\alpha}\mathscr{F}[T].$

证明. 对 $\varphi \in \mathcal{S}(\mathbb{R}^n)$, 有

$$(1) \langle \mathcal{F}[\tau_{x_0}T], \varphi \rangle = \langle T, \hat{\varphi}(x+x_0) \rangle = \langle T, \left(e^{-ix_0 \cdot x}\varphi\right) \rangle = \langle e^{-ix_0 \cdot x}\mathcal{F}[T], \varphi \rangle;$$

(2)
$$\langle \mathcal{F}[e^{ix_0 \cdot x}T], \varphi \rangle = \langle T, e^{ix_0 \cdot x}\hat{\varphi} \rangle = \langle T, (\varphi(x+x_0)) \rangle = \langle \tau_{x_0} \mathcal{F}[T], \varphi \rangle;$$

$$(3) \langle \mathscr{F}[\partial^{\alpha} T], \varphi \rangle = (-1)^{|\alpha|} \langle T, \partial^{\alpha} \hat{\varphi} \rangle = (-1)^{|\alpha|} \langle T, (i^{-|\alpha|} x^{\alpha} \varphi) \rangle = \langle (ix)^{\alpha} \mathscr{F}[T], \varphi \rangle;$$

$$(4) \langle \mathscr{F}[x^{\alpha}T], \varphi \rangle = \langle x^{\alpha} \hat{\varphi} \rangle = \langle T, i^{-|\alpha|} (\partial^{\alpha} \varphi) \rangle = \langle i^{|\alpha|} \partial^{\alpha} \mathscr{F}[T], \varphi \rangle.$$

定理 4.2.15

 \mathcal{F} 是将 $\mathcal{S}'(\mathbb{R}^n)$ 映到其本身的线性连续双射, 并且 \mathcal{F}^{-1} 也是连续的.

证明. 首先证明 \mathscr{F} 是连续的, 若 $\{T_m\} \subset \mathscr{S}'(\mathbb{R}^n)$, $T_m \to T_0$, 则对 $\forall \varphi \mathscr{S}(\mathbb{R}^n)$

$$\langle \mathcal{F}[T_m], \varphi \rangle = \langle T_m, \hat{\varphi} \rangle \rightarrow \langle T_0, \hat{\varphi} \rangle = \langle \mathcal{F}[T_0], \varphi \rangle,$$

故 $\mathcal{F}[T_m] \to \mathcal{F}[T_0]$, \mathcal{F} 连续.

接下来证明 \mathscr{F} 是双射. 对 $T \in \mathscr{S}'(\mathbb{R}^n)$ 和 $\varphi \in \mathscr{S}(\mathbb{R}^n)$, 有

$$\langle \mathscr{F}^4[T], \varphi \rangle = \langle T, \mathscr{F}^4 \varphi \rangle = \langle T, \varphi \rangle,$$

故 $\mathcal{F}^4 = I$, \mathcal{F} 是双射, 并且 $\mathcal{F}^{-1} = \mathcal{F}^3$ 也连续.

例 4.2.16

 $\mathscr{F}[\delta] = (2\pi)^{-\frac{n}{2}}, \ \mathscr{F}[1] = (2\pi)^{\frac{n}{2}}\delta.$

证明. 对 $\forall \varphi \in \mathscr{S}(\mathbb{R}^n)$, 有

$$\langle \mathscr{F}[\delta], \varphi \rangle = \langle \delta, \mathscr{F} \varphi \rangle = \mathscr{F} \varphi(0) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \varphi(x) dx = \left\langle \frac{1}{(2\pi)^{\frac{n}{2}}}, \varphi \right\rangle,$$
$$\langle \mathscr{F}[1], \varphi \rangle = \int_{\mathbb{R}^n} \hat{\varphi}(x) dx = (2\pi)^{\frac{n}{2}} \varphi(0) = \langle (2\pi)^{\frac{n}{2}} \delta, \varphi \rangle,$$

故 $\mathcal{F}[\delta] = (2\pi)^{-\frac{n}{2}}, \mathcal{F}[1] = (2\pi)^{\frac{n}{2}}\delta.$

4.3 Sobolev 空间

在本节中, 如非特别说明, Ω 均指 \mathbb{R}^n 中的开集.

定义 4.3.1: 非负整数阶 Sobolev 空间

设 Ω 是 \mathbb{R}^n 中的开集, m 是非负整数, $1 \le p \le \infty$. 定义

$$W^{m,p}(\Omega) := \big\{ u \in \mathcal{D}'(\Omega) : \partial^{\alpha} u \in L^p(\Omega), \forall |\alpha| \le m \big\}.$$

当 $1 \le p < \infty$ 时, 定义范数为

$$\|u\|_{W^{m,p}(\Omega)} := \left(\sum_{|\alpha| \le m} \int_{\Omega} |\partial^{\alpha} u|^{p} dx\right)^{\frac{1}{p}},$$

当 $p=\infty$ 时, 定义范数为

$$||u||_{W^{m,\infty}(\Omega)} := \max_{|\alpha| \le m} ||\partial^{\alpha} u||_{L^{\infty}(\Omega)}.$$

特别地, 当 p=2 时, 记 $H^m(\Omega):=W^{m,2}(\Omega)$, 此时可以引入内积

$$(u,v)_{H^m(\Omega)} := \sum_{|\alpha| \le m} \int_{\Omega} (\partial^{\alpha} u)(\partial^{\alpha} v) dx.$$

喀 注

 $W^{m,p}(\Omega)$ 的定义中, $\partial^{\alpha}u$ 是指 u 的广义导数, 事实上根据广义导数的定义, $u \in W^{m,p}(\Omega)$ 当且仅当 $u \in L^p(\Omega)$, 并且对每个 $|\alpha| \leq m$, 存在 $u_{\alpha} \in L^p(\Omega)$ 使得

$$\int_{\Omega} u(x) \partial^{\alpha} \varphi(x) \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} u_{\alpha}(x) \varphi(x) \mathrm{d}x, \quad \forall \varphi \in \mathcal{D}(\Omega).$$

引理 4.3.2

设赋范空间 X,Y 均是自反的,则依范数 $\|(x,y)\| = \|x\| + \|y\|(x \in X, y \in Y)$ 定义的乘积空间 $X \times Y$ 也是自反的.

证明. 定义 $J: X^* \times Y^* \to (X \times Y)^*$ 为

$$\langle J(x^*,y^*),(x,y)\rangle = \langle x^*,x\rangle + \langle y^*,y\rangle, \quad x\in X, y\in Y, x^*\in X^*, y^*\in Y^*.$$

若 $J(x^*, y^*) = 0$, 则 $\langle x^*, x \rangle = -\langle y^*, y \rangle (\forall x \in X, y \in Y)$. 则 x^* 和 y^* 都是常值泛函, 而它 们都是线性的, 故 $x^* = 0, y^* = 0$, J 是单射. 对任意 $z^* \in (X \times Y)^*$, 定义

$$\langle x^*, x \rangle = \langle z^*, (x, 0) \rangle (\forall x \in X), \quad \langle y^*, y \rangle = \langle z^*, (0, y) \rangle (\forall y \in Y),$$

不难验证 $J(x^*, y^*) = z^*$, 故 J 是满射. 因此 J 是线性同构.

对
$$z^{**} \in (X \times Y)^{**}$$
, 定义 $x^{**} \in X^{**}$ 和 $y^{**} \in Y^{**}$ 如下:

$$\langle x^{**}, x^{*} \rangle := \langle z^{**}, J(x^{*}, 0) \rangle (\forall x^{*} \in X^{*}), \quad \langle y^{**}, y^{*} \rangle := \langle z^{**}, J(0, y^{*}) \rangle (\forall y^{*} \in Y^{*}).$$

由于 X 和 Y 均自反, 存在 $x \in X$ 和 $y \in Y$ 使得

$$\langle x^{**}, x^* \rangle = \langle x^*, x \rangle (\forall x^* \in X^*), \quad \langle y^{**}, y^* \rangle = \langle y^*, y \rangle (\forall y^* \in Y^*).$$

从而容易验证

$$\langle J(x^*,y^*),(x,y)\rangle = \langle z^{**},J(x^*,y^*)\rangle, \quad \forall x^* \in X^*,y^* \in Y^*.$$

由于 J 是线性同构, 上式即 $\langle z^*, (x, y) \rangle = \langle z^{**}, z^* \rangle (\forall z^* \in (X \times Y)^*)$, 因此 $X \times Y$ 是自反的.

定理 4.3.3

- (1) 对 $1 \le p \le \infty$, $W^{m,p}(\Omega)$ 是 Banach 空间.
- (2) 对 1≤p<∞, $W^{m,p}(\Omega)$ 是可分的.
- (3) 对 $1 , <math>W^{m,p}(\Omega)$ 是自反空间.

证明. (1) 设 $\{u_m\}$ 是 $W^{m,p}(\Omega)$ 中的 Cauchy 列, 则对 $|\alpha| \le m$, $\{\partial^{\alpha} u_m\}$ 是 $L^p(\Omega)$ 中的 Cauchy 列, 从而由 $L^p(\Omega)$ 的完备性依 L^p 范数收敛于 $u^{\alpha} \in L^p(\Omega)$ (当 $\alpha = 0$ 时记作 u). 此外, 注意到对任意的 $\varphi \in \mathcal{D}(\Omega)$,

$$(-1)^{|\alpha|}\langle u, \partial^{\alpha} \varphi \rangle = (-1)^{|\alpha|} \int_{\Omega} u(x) \partial^{\alpha} \varphi(x) dx = (-1)^{|\alpha|} \lim_{m \to \infty} \int_{\Omega} u_m(x) \partial^{\alpha} \varphi(x) dx$$

$$=\lim_{m\to\infty}\int_\Omega\partial^\alpha u_m(x)\varphi(x)\mathrm{d}x=\int_\Omega u^\alpha(x)\varphi(x)\mathrm{d}x=\langle u^\alpha,\varphi\rangle,$$

因此根据广义导数的定义, $\partial^{\alpha} u = u^{\alpha}$, 从而 $\{u_m\}$ 依 $W^{m,p}(\Omega)$ 中的范数收敛到 u.

(2) 由于当 $1 \le p < \infty$ 时, $L^p(\Omega)$ 可分, 而 $W^{m,p}(\Omega)$ 是 $L^p(\Omega)$ 的子空间, 故也可分.

(3) 由上一引理以及 $L^p(\Omega)$ 是自反空间, $X = L^p(\Omega) \times L^p(\Omega) \times \cdots \times L^p(\Omega)$ 也是

自反空间, 其中 k 是满足 $|\alpha| \le m$ 的指标 α 的个数. 则若将 $u \in W^{m,p}(\Omega)$ 视作 $(u,u_{x_1},\cdots,u_{x_n},\cdots) \in X$,则 $W^{m,p}(\Omega)$ 可以视作 X 的子空间, 而 $W^{m,p}(\Omega)$ 本身是 Banach 空间, 故 $W^{m,p}(\Omega)$ 是 X 的闭子空间, 由于自反空间的闭子空间仍然是自反空间, 故 $W^{m,p}(\Omega)$ 是自反的.

定理 4.3.4

- (1) $W^{0,p}(\Omega) = L^p(\Omega)$.
- (2) $m_1 \ge m_2 \ge 0$, $W^{m_1,p}(\Omega) \subset W^{m_2,p}(\Omega)$.
- (3) 若 Ω 有界并且 $p_1 \ge p_2 \ge 1$, 则 $W^{m,p_1}(\Omega) \subset W^{m,p_2}(\Omega)$.
- (4) 设 $u \in W^{m,p}(\Omega)$, $|\beta| \leq m$, 则 $\partial^{\beta} u \in W^{m-|\beta|,p}(\Omega)$.

证明. (1)(2)(4) 根据定义容易验证, (3) 是因为 $L^{p_1}(\Omega) \subset L^{p_2}(\Omega)$ (定理A.3.6的 (3)).

定义 4.3.5

对非负整数 m 和 $1 \le p \le \infty$, 记 $W_0^{m,p}(\Omega)$ 为 $C_0^\infty(\Omega)$ 在 $W_0^{m,p}(\Omega)$ 中的闭包.

喀 注

- (1) 事实上 $W_0^{1,p}(\Omega)$ 是某种意义下在 $\partial\Omega$ 上为 0 的 Sobolev 函数, 这里的某种意义是因为通常来说 $\partial\Omega$ 是一个零测集, 对一般的可测函数无法讨论其在 $\partial\Omega$ 上的取值. 这个某种意义可以理解为一个线性算子 (称为秩算子), 因为当 Ω 足够光滑时 $C^\infty(\Omega)$ 在 $W^{m,p}(\Omega)$ 中稠密, 而 $C^\infty(\Omega)$ 在 $\partial\Omega$ 的取值是有意义的.
- (2) $W_0^{m,p}(\Omega)$ 是某种意义下在 $\partial\Omega$ 上低于 m 阶的导数均为 0 的 Sobolev 函数.
- (3) 根据 $C_0^\infty(\Omega)$ 以及 Sobolev 空间范数的特性, $W_0^{1,p}(\Omega)$ 很自然的包含一些熟知的元素, 比如在边界上为 0 的 $C^1(\Omega)$ 函数.

定理 4.3.6: Sobolev 空间的紧嵌入

设 $1 \le p \le \infty$, Ω 是 \mathbb{R}^n 中的有界开集, 则 $W_0^{1,p}(\Omega)$ 到 $L^p(\Omega)$ 的单位映射是紧算子, 即 $W^{1,p}(\Omega)$ 中的有界列有在 $L^p(\Omega)$ 中收敛的子列.

喀淮

对于足够边界足够光滑的有界区域 Ω (比如 Ω 由光滑函数围成), 该定理对 $W^{1,p}(\Omega)$ 也成立.

该定理的证明以及下一个定理中会使用记号:

$$Du := (u_{x_1}, \dots, u_{x_n}), \quad |Du| := \left(\sum_{i=1}^n |u_{x_i}|^2\right)^{\frac{1}{2}}, \quad ||Du||_{L^p(\Omega)} := |||Du|||_{L^p(\Omega)}.$$

证明. 首先证明如果 $v \in W_0^{1,p}(\Omega)$, 则在 Ω 外补充定义为 0 后, $v \in W^{1,p}(\mathbb{R}^n)$. 事实上只需证明将广义导数 $v_{x_i}(1 \le i \le n)$ 在 Ω 外补充定义为 0 后, v_{x_i} 是 v 在 \mathbb{R}^n 中的广义导数. 取 $\{v^m\} \subset C_0^\infty(\Omega)$ 使得 $v^m \to v$, 注意到在 Ω 外补充定义为 0 后 $v^m \in C_0^\infty(\mathbb{R}^n)$, 从而对 $\forall \varphi \in C_0^\infty(\mathbb{R}^n)$ 和 $1 \le i \le n$, 有

$$\int_{\mathbb{R}^n} v_{x_i}(x) \varphi(x) dx = \lim_{m \to \infty} \int_{\mathbb{R}^n} v_{x_i}^m(x) \varphi(x) dx$$
$$= -\lim_{m \to \infty} \int_{\mathbb{R}^n} v^m(x) \varphi_{x_i}(x) dx = -\int_{\mathbb{R}^n} v(x) \varphi_{x_i}(x) dx,$$

因此 $\nu \in W^{1,p}(\mathbb{R}^n)$.

设 $\{u_m\}$ 是 $W_0^{1,p}(\Omega)$ 中的有界列, 若补充在 $\mathbb{R}^n \setminus \Omega$ 上补充定义函数为 0, 则 $\{u_m\} \subset W^{1,p}(\mathbb{R}^n)$. 则

$$\begin{split} &\left|u_m^{\varepsilon}(x)-u_m(x)\right| = \left|\int_{\mathbb{R}^n} \eta^{\varepsilon}(y)(u_m(x-y)-u_m(x))\mathrm{d}x\right| \\ &= \left|\int_{\mathbb{R}^n} \eta^{\varepsilon}(y)\int_0^1 Du_m(x-ty)\cdot (-y)\mathrm{d}t\mathrm{d}y\right| \leq \varepsilon \int_{\mathbb{R}^n} \eta^{\varepsilon}(y)\int_0^1 |Du_m(x-ty)|\mathrm{d}t\mathrm{d}y. \end{split}$$

从而当 $1 \le p < \infty$ 时,

$$\int_{\mathbb{R}^{n}} |u_{m}^{\varepsilon}(x) - u_{m}(x)|^{p} dx \leq \varepsilon^{p} \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \eta^{\varepsilon}(y) \int_{0}^{1} |Du_{m}(x - ty)| dt dy \right)^{p} dx$$

$$\leq \varepsilon^{p} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \eta^{\varepsilon}(y) \int_{0}^{1} |Du_{m}(x - ty)|^{p} dt dy dx = \varepsilon^{p} \int_{\mathbb{R}^{n}} |Du_{m}(x)|^{p} dx,$$

也即 $\|u_m^{\epsilon} - u_m\|_{L^p(\mathbb{R}^n)} \le \varepsilon \|Du_m\|_{L^p(\mathbb{R}^n)}$, 注意到 u_m 在 Ω 外恒为 0, 因此有 $\|u_m^{\epsilon} - u_m\|_{L^p(\Omega)}$ $\le \varepsilon \|Du_m\|_{L^p(\Omega)}$, 这个不等式在 $p = \infty$ 时显然也成立. 因此在 $L^p(\Omega)$ 中 $u_m^{\epsilon} \to u_m$, 该 收敛在 $\epsilon \to 0$ 时对 m 是一致的. 故对充分小的 ϵ , 有 $\|u_m^{\epsilon} - u_m\|_{L^p(\Omega)} \le \frac{1}{2}$.

对该 $\varepsilon > 0$, 容易验证 $\{u_m^{\varepsilon}\}$ 作为 $C(\overline{\Omega})$ 的子集是一致有界且等度连续的, 由 Arzela-Ascoli 定理, 存在子列 $\{u_{m,1}^{\varepsilon}\}$ 在 Ω 上一致收敛, 故

$$\begin{split} & \limsup_{m,l \to \infty} \|u_{m,1} - u_{l,1}\|_{L^p(\Omega)} \\ \leq & \limsup_{m,l \to \infty} \|u_{m,1} - u_{m,1}^{\varepsilon}\|_{L^p(\Omega)} + \|u_{m,1}^{\varepsilon} - u_{l,1}^{\varepsilon}\|_{L^p(\Omega)} + \|u_{l,1}^{\varepsilon} - u_{l,1}\|_{L^p(\Omega)} \leq 1. \end{split}$$

若已经有 $\limsup_{m,l\to\infty}\|u_{m,k}-u_{l,k}\|_{L^p(\Omega)}\leq \frac{1}{k}$,则取充分小的 ε 使得 $\|u_m^\varepsilon-u_m\|_{L^p(\Omega)}\leq \frac{1}{2(k+1)}$. 由 Arzela-Ascoli 定理,存在 $\{u_{m,k}^\varepsilon\}$ 的子列 $\{u_{m,k+1}^\varepsilon\}$ 在 Ω 上一致收敛. 重复上述运算可得

$$\limsup_{k,l \to \infty} \|u_{m,k+1} - u_{l,k+1}\|_{L^p(\Omega)} \le \frac{1}{k+1}.$$

取对角列 $\{u_{m,m}\}$, 则它显然是 Cauchy 列, 由 $L^p(\Omega)$ 的完备性, 收敛于 $u \in L^p(\Omega)$.

引理 4.3.7: Poincare 不等式

设 Ω 是 \mathbb{R}^n 中的有界开集,则存在只与 Ω 有关的常数C>0使得

$$\int_{\Omega} |u(x)|^2 dx \le C \int_{\Omega} |Du(x)|^2 dx, \quad \forall u \in H_0^1(\Omega).$$

喀 注

该引理说明, $H_0^1(\Omega)$ 中有等价范数 $\|u\|_* = (\int_{\Omega} |Du(x)|^2 dx)^{\frac{1}{2}} (u \in H_0^1(\Omega)).$

证明. 由于 Ω 是有界的, 存在 R > 0 使得 $\Omega \subset (-R,R)^n$. 则在 Ω 之外补充定义为 0

后, $H_0^1(\Omega) \subset H_0^1((-R,R)^n)$,再根据 C_0^∞ 在 H_0^1 中稠密,只需对 $\Omega = (-a,a)$ 以及 $u \in C_0^\infty((-a,a)^n)$ 证明该不等式即可. 注意到

$$\begin{aligned} &|u(x)|^2 = \left| \int_{-a}^{x_1} u_{x_1}(t_1, x_2, \cdots, x_n) \mathrm{d}t \right|^2 \le \left(\int_{-a}^{a} |Du(t_1, x_2, \cdots, x_n)| \mathrm{d}t_1 \right)^2 \\ \le \left(\int_{-a}^{a} 1^2 \mathrm{d}t_1 \right) \left(\int_{-a}^{a} |Du(t_1, x_2, \cdots, x_n)|^2 \mathrm{d}t_1 \right) = 2a \int_{-a}^{a} |Du(t_1, x_2, \cdots, x_n)|^2 \mathrm{d}t_1. \end{aligned}$$

在 $(-a,a)^n$ 上积分得

$$\int_{(-a,a)^n} |u(x)|^2 dx \le 2a \int_{(-a,a)^n} \int_{-a}^a |Du(t_1,x_2,\cdots,x_n)|^2 dt_1 dx = (2a)^2 \int_{(-a,a)^n} |Du(x)|^2 dx,$$

得证.

引理 4.3.8

设 $(X_1, \|\cdot\|_1)$ 和 $(X_2, \|\cdot\|_2)$ 均为赋范空间, $X_2 \subset X_1$, 并且存在 C > 0 使得

$$||x||_1 \le C||x||_2, \quad \forall x \in X_2.$$

若存在 $\{x_n\} \subset X_2$, $\{x_n\}$ 在 X_2 中弱收敛于 $x \in X_2$, 则 $\{x_n\}$ 在 X_1 中也弱收敛于 x.

喀 注

此即如果一个空间中的范数 2 比范数 1 强,则范数 2 的弱收敛可以推出范数 1 的弱收敛.

证明. 对 $f \in X_1^*$, 有

$$|f(x)| \le ||f||_1 \cdot ||x||_1 \le C ||f||_1 \cdot ||x||_2, \quad \forall x \in X_2$$

故也有 $f \in X_2^*$. 而 $\{x_n\}$ 在 X_2 中弱收敛于 x, 则 $f(x_n) \to f(x)$, 因此在 X_1 中也弱收敛于 x.

定理 4.3.9

设 Ω 是 \mathbb{R}^n 中的有界开集, $f \in L^2(\Omega)$, 则 Dirichlet 问题

$$\begin{cases} -\Delta u = f, & x \in \Omega, \\ u \Big|_{\partial \Omega} = 0, \end{cases}$$

存在唯一的弱解, 也即存在唯一的 $u \in H^1_0(\Omega)$ 使得

$$\int_{\Omega} Du(x) \cdot Dv(x) \mathrm{d}x = \int_{\Omega} f(x) v(x) \mathrm{d}x, \quad \forall \, v \in H^1_0(\Omega).$$

曜注

如果 $u \in C^2(\Omega)$ 是该 Dirichlet 问题的古典解, 则由边界条件, 显然有 $u \in H^1_0(\Omega)$. 设 $v \in C^\infty_0(\Omega)$, $-v\Delta u = fv$ 在 Ω 上积分再分布积分可得, $\int_\Omega Du \cdot Dv = \int_\Omega fv$, 再由 $C^\infty_0(\Omega)$ 在 $H^1_0(\Omega)$ 中的稠密性可知, 此时 u 也是弱解, 因此弱解是古典解的自然推广.

证明. 方法一. 该方法主要基于 Lax-Milgram 定理 (定理2.3.14). 令 $X := H_0^1(\Omega)$,其上内积定义为 $H^1(\Omega)$ 中的内积, $a(u,v) = \int_{\Omega} Du \cdot Dv \mathrm{d}x (u,v \in X)$,下面验证 X 和 $a(\cdot,\cdot)$ 满足定理条件. 由于 X 是 $H^1(\Omega)$ 的闭子集,而 $H_0^1(\Omega)$ 是 Hilbert 空间,故 X 也是 Hilbert 空间. $a(\cdot,\cdot)$ 显然是共轭双线性函数,并且有

$$|a(u,v)| \le \left(\int_{\Omega} |Du|^2 dx\right)^{\frac{1}{2}} \left(\int_{\Omega} |Dv|^2 dx\right)^{\frac{1}{2}} \le ||u|| \cdot ||v||, \quad \forall u, v \in X.$$

根据 Poincare 不等式, 还有

$$||u||^2 = \int_{\Omega} |u|^2 dx + \int_{\Omega} |Du|^2 dx \le (C+1) \int_{\Omega} |Du|^2 dx = (C+1)a(u,u), \quad \forall u \in X.$$

因此 $a(\cdot,\cdot)$ 满足 Lax-Milgram 定理的条件,从而存在唯一具有有界逆的有界线性算子 A 使得

$$a(u, v) = (u, Av), \quad \forall u, v \in X.$$

若定义

$$\langle f, v \rangle := \int_{\Omega} f(x) v(x) dx, \quad v \in H,$$

则 $f \in X^*$. 根据 Riesz 表示定理 (定理2.2.1), 存在 $\tilde{u} \in X$ 使得

$$\langle f, v \rangle = (v, \tilde{u}), \quad \forall v \in X.$$

记 $u := (A^*)^{-1} \tilde{u}$ (由于 A^* 可逆当且仅当 A 可逆, 并且 $(A^{-1})^* = (A^*)^{-1}$, 这样的 u 存在),则

$$a(u, v) = (u, Av) = (A^*u, v) = (\tilde{u}, v) = \langle f, v \rangle, \quad \forall X,$$

上式即 u 是弱解.

下证唯一性, 如果 u_1 和 u_2 都是弱解, 则

$$0 = \langle f, A^{-1}v \rangle - \langle f, A^{-1}v \rangle = a(u_1 - u_2, A^{-1}v) = (u_1 - u_2, AA^{-1}v) = (u_1 - u_2, v), \quad \forall v \in X,$$

因此 $u_1 = u_2$.

方法二. 定义 $H_0^1(\Omega)$ 中的内积为

$$(u,v)_{H_0^1(\Omega)} := \int_{\Omega} Du(x) \cdot Dv(x) dx, \quad u,v \in H_0^1(\Omega),$$

其中的范数仍记为 $\|\cdot\|_{H^1_0(\Omega)}$. 由 Poincare 不等式, 该范数与通常的范数等价, 因此此时 $H^1_0(\Omega)$ 还是 Hilbert 空间.

对 $w \in H_0^1(\Omega)$, 记

$$J(w) = \int_{\Omega} \left(\frac{1}{2} |Dw(x)|^2 - f(x)w(x) \right) dx.$$

首先证明存在 $u \in H^1_0(\Omega)$ 使得 $J(u) = \inf_{w \in H^1_0(\Omega)} J(w)$. 为此, 记 $I = \inf_{w \in H^1_0(\Omega)} J(w)$, 则存在 $u_m \in H^1_0(\Omega)$ 使得 $J(u_m) \to I$. 故存在 M > 0 使得 $J(u_m) \le M(\forall m \ge 1)$. 从而

$$\frac{1}{2}\|u_m\|_{H_0^1(\Omega)}^2 - \|f\|_{L^2(\Omega)} \cdot \|u_m\|_{H_0^1(\Omega)} \leq \frac{1}{2}\|u_m\|_{H_0^1(\Omega)} - \|f\|_{L^2(\Omega)} \cdot \|u_m\|_{L^2(\Omega)} \leq J(u_m) \leq M,$$

从而 $\{u_m\}$ 在 $H_0^1(\Omega)$ 中有界. 由于 $H_0^1(\Omega)$ 是自反空间 (Hilbert 空间均自反) 和 Eberlein-Smulian 定理 (定理:2.5.31), $\{u_m\}$ 存在弱收敛于 $u \in H_0^1(\Omega)$ 的子列 $\{u_{m_j}\}$. 而 $\{u_{m_j}\}$ 同样是 $H_0^1(\Omega)$ 中的有界列, 故由 Sobolev 紧嵌入定理, 存在 $w \in L^2(\Omega)$ 以及子列 $\{u_{m_{j_i}}\}$ L^2 收敛于 w.

记 $w_i := u_{m_{j_i}}$. 由 Poincare 不等式, $H_0^1(\Omega)$ 中的范数比 $L^2(\Omega)$ 中的范数更强, 故根据上一引理, w_i 在 $L^2(\Omega)$ 中弱收敛于 u.

因此由强收敛必弱收敛以及弱极限的唯一性, w = u, 从而 w_i 在 $H_0^1(\Omega)$ 中弱收敛于 u, 在 $L^2(\Omega)$ 中强收敛于 u. 由弱收敛可知,

$$||u||_{H_0^1(\Omega)} \le \liminf_{i \to \infty} ||w_i||_{H_0^1(\Omega)}.$$

而根据上式以及 $\|w_i - u\|_{L^2(\Omega)} \to 0$ 可得

$$J(u) = \int_{\Omega} \left(\frac{1}{2}|Du|^2 - fu\right) dx \le \liminf_{i \to \infty} \int_{\Omega} \left(\frac{1}{2}|Dw_i|^2 - fw_i\right) dx = \liminf_{i \to \infty} J(w_i) = I,$$

而由 I 的定义, $J(u) \ge I$, 故 J(u) = I.

接下来证明使得 $J(u)=\inf_{w\in H^1_0(\Omega)}J(w)$ 的 $u\in H^1_0(\Omega)$ 是唯一的. 若 $u_1,u_2\in H^1_0(\Omega)$ 均取到 J 的最小值. 对 $\tilde u:=\frac{u_1+u_2}{2}$,有

$$|D\tilde{u}|^2 = \frac{1}{4} (|Du|^2 + 2Du \cdot Dv + |Dv|^2) \le \frac{|Du_1|^2 + |Du_2|^2}{2},$$

从而 $I \leq J(\tilde{u}) \leq \frac{J(u_1) + J(u_2)}{2} \leq I$, 故以该不等式能取到等号, 从而 $Du_1 = Du_2$, 故 $\|u_1 - u_2\|_{H_0^1(\Omega)} = 0$, 因此 $u_1 = u_2$.

最后证明 $J(u) = \inf_{w \in H_0^1(\Omega)} J(w)$ 当且仅当 u 是定理中 Dirichlet 问题的弱解.

一方面, 如果 $J(u)=\inf_{w\in H_0^1(\Omega)}J(w)$, 则 $J(u)\leq J(w), \forall w\in H_0^1(\Omega)$. 任取 $v\in H_0^1(\Omega)$,

记

$$i(\tau):=J(u+\tau v)=\int_{\Omega}\left(\frac{1}{2}|Du|^2+\tau Du\cdot Dv+\frac{1}{2}\tau^2|Dv|^2-fu-\tau fv\right)\!\mathrm{d}x,\quad \tau\in\mathbb{R}.$$

则

$$i'(\tau) = \int_{\Omega} \left(Du \cdot Dv + \tau |Dv|^2 - fv \right) dx, \quad \tau \in \mathbb{R}.$$

注意到 0 是 $i(\cdot)$ 的最小值点, 故 i'(0) = 0, 也即

$$\int_{\Omega} Du \cdot Dv dx = \int_{\Omega} f v dx.$$

上式对任意的 $v \in H_0^1(\Omega)$ 均成立, 因此 u 是弱解.

另一方面, 如果 u 是弱解. 则对任意的 $w \in H_0^1(\Omega)$, 有

$$\begin{split} &J(u) - J(w) = \int_{\Omega} \left(\frac{1}{2} |Du|^2 - \frac{1}{2} |Dw|^2 - fu + fw \right) \mathrm{d}x \\ &= \int_{\Omega} \left(\frac{1}{2} |Du|^2 - \frac{1}{2} |Dw|^2 - |Du|^2 + Du \cdot Dw \right) \mathrm{d}x = -\frac{1}{2} \int_{\Omega} |Dw - Du|^2 \mathrm{d}x \le 0, \end{split}$$

因此 $J(u) = \inf_{w \in H_0^1(\Omega)} J(w)$.

以上分别证明了u取到J的最小值当且仅当u是弱解,以及J的最小值点存在唯一,因此弱解同样存在唯一.

喀淮

以上两种也适用于更加复杂的情况,比如方法一中可以将 $L = -\Delta$ 推广到

$$Lu := -\sum_{i,j=1}^n \left(a^{ij} u_{x_i}\right)_{x_j},$$

其中 $a^{ij} \in C^{\infty}(\overline{\Omega})$ 并且存在常数 $\theta > 0$ 使得

$$\sum_{i,j=1}^{n} a^{ij}(x)\xi_{i}\xi_{j} \ge \theta |\xi|^{2}, \quad \forall x \in \Omega, \xi \in \mathbb{R}^{n}.$$

此时弱解的定义为 $u \in H_0^1(\Omega)$ 使得

$$\sum_{i,j=1}^n \int_\Omega a^{ij}(x) u_{x_i}(x) v_{x_j}(x) \mathrm{d}x = \int_\Omega f(x) v(x) \mathrm{d}x, \quad \forall v \in H^1_0(\Omega).$$

推广后的证明过程并无本质区别. 方法二的推广较为复杂, 甚至能处理一些非线性的偏微分方程, 在此不作讨论.

附录 A 补充内容

A.1 度量空间中的拓扑

本节中若无特别说明, (X,ρ) 均表示度量空间.

定义 A.1.1: 开球与闭球

设 $x_0 \in X, r > 0$, 称

$$B(x_0, r) = \{x \in X : \rho(x, x_0) < r\}$$

为以 x_0 为球心, r 为半径的开球, 称

$$\overline{B}(x_0, r) = \{x \in X : \rho(x, x_0) \le r\}$$

为相应的闭球.

定义 A.1.2: 内点, 内部与开集

设 $A \subset X$. 对 $x_0 \in X$, 若存在 $\delta > 0$ 使得 $B(x_0, \delta) \subset A$, 则 x_0 称为 A 的**内点**. A 的 所有内点组成的集合称为 A 的**内部**, 记作 A° . 若 $A^\circ = A$, 则称 A 为**开集**.

性质 A.1.3: 开集的性质

- (1) 空集 Ø 和全集 X 均为开集.
- (2) 有限多个开集的交仍为开集.
- (3) 任意个开集的并仍为开集.

定义 A.1.4: 聚点, 导集, 闭包和闭集

设 $A \subset X$. 对于 $x_0 \in X$, 若 $\forall \varepsilon > 0$, 有

 $(B(x_0,\varepsilon)\setminus\{x_0\})\cap A\neq\emptyset$,

则称 x_0 是 A 的聚点. 称 A 的所有聚点组成的集合为 A 的导集, 记为 A'.

称 $A \cup A' = \overline{A}$ 为 A 的**闭包**.

若 $A = \overline{A}$, 则称 A 为闭集.

喀 注

A 的闭包是包含 A 的最小闭集, 也即包含 A 的所有闭集之交.

性质 A.1.5: 闭集的性质

- (1) 空集 Ø 和全集 X 均为闭集.
- (2) 有限多个闭集的并仍为闭集.
- (3) 任意个闭集的交仍为闭集.
- (4) A 是闭集当且仅当 $\forall \{x_n\} \subset A$ 且 $x_n \to x_0$ 都有 $x_0 \in A$.
- (5) A是闭集当且仅当 Ac 是开集.

A.2 Weierstrass 逼近定理

定理 A.2.1: Weierstrass 逼近定理

设 $-\infty < a < b < \infty$, 则 $\forall f \in C[a,b]$, 存在 [a,b] 上的多项式列 $\{P_n\}$ 使得 P_n 在 [a,b] 上一致收敛于 f.

证明. 不妨设 [a,b] = [0,1] 并且 f(0) = f(1) = 0, 否则作线性变换以及

$$g(x) = f(x) - f(0) - x(f(1) - f(0))$$

即可.

在此假设下, 补充定义 $f \equiv 0, x \notin [0,1]$, 则 f 在 R 上一致连续. 令

$$Q_n(x) = c_n(1-x^2)^n, \quad n \ge 1,$$

其中 c_n 满足

$$\int_{-1}^{1} Q_n(x) dx = 1, \quad \forall x \ge 1.$$

则由

$$\int_{-1}^{1} (1 - x^{2})^{n} dx = 2 \int_{0}^{1} (1 - x^{2})^{n} dx \ge 2 \int_{0}^{n^{-\frac{1}{2}}} (1 - x^{2})^{n} dx$$
$$\ge 2 \int_{0}^{n^{-\frac{1}{2}}} (1 - nx^{2}) dx = \frac{4}{3\sqrt{n}} > \frac{1}{\sqrt{n}}$$

可知 $c_n < \sqrt{n}$. $\forall \delta > 0$, 由 $c_n < \sqrt{n}$ 可得

$$Q_n(x) \le \sqrt{n}(1-\delta^2)^n$$
, $\delta \le |x| \le 1$.

令

$$P_n(x) = \int_{-1}^1 f(x+t)Q_n(t)dt = \int_{-x}^{1-x} f(x+t)Q_n(t)dt = \int_0^1 f(t)Q_n(t-x)dt,$$

则 P_n 是关于 x 的多项式. 给定 $\varepsilon > 0$, 由 f 一致连续, 存在 $\delta > 0$ 使得

$$|f(x)-f(y)|<\frac{\varepsilon}{2}, \quad \forall |x-y|<\delta.$$

记 $M = \sup |f|$, 则

$$\begin{split} & \left| P_n(x) - f(x) \right| = \left| \int_{-1}^1 (f(x+t) - f(x)) Q_n(t) \mathrm{d}t \right| \\ \leq & \int_{-1}^1 \left| f(x+t) - f(x) \right| Q_n(t) \mathrm{d}t \leq 2M \int_{|x| > \delta} Q_n(t) \mathrm{d}t + \frac{\varepsilon}{2} \int_{|x| \leq \delta} Q_n(t) \mathrm{d}t \\ \leq & 4M \sqrt{n} (1 - \delta^2)^n + \frac{\varepsilon}{2}, \end{split}$$

当 n 充分大时, 上式 $< \varepsilon$, 故 P_n 一致收敛于 f.

A.3 L^p 空间: 实变内容

定义 A.3.1: L^p 空间

设 $1 \le p \le \infty$, (E, μ) 是测度空间, $f \in E$ 上的可测函数, 定义

$$||f||_p := \begin{cases} \left(\int_E |f|^p d\mu \right)^{\frac{1}{p}}, & 1 \le p < \infty, \\ \inf_{\mu(E_0) = 0} \sup_{x \in E \setminus E_0} |f(x)|, & p = \infty. \end{cases}$$

记 $L^p(\mu)$ 为所有满足 $\|f\|_p < \infty$ 的可测函数 f. 特别地, 若 μ 是 Lebesgue 测度且 E 为 \mathbb{R}^n 中的 Lebesgue 可测子集, 则记为 $L^p(E)$. $\|f\|_{\infty}$ 还记作 $\operatorname{ess\,sup}_E|f|$, 称为 f 的本性上界 (Essential Supreme).

喀淮

在 L^p 空间中,几乎处处相等的函数被视作等同,因此 L^p 空间实际上是几乎处处相等函数的等价类,但为了方便期间通常不作区分。

定理 A.3.2: L^{∞} 范数等价定义

设(E, µ)是测度空间,则

$$||f||_{\infty} = \inf\{\alpha \ge 0 : \mu(|f| > \alpha) = 0\} = \inf_{\mu(E_0) = 0} \sup_{x \in E \setminus E_0} |f(x)|.$$

证明. 记上式中间为 ξ , 右侧为 η . 则取 $E_0 = \{|f| > \alpha\}$, 其中 $\alpha \ge 0$ 满足 $\mu(E_0) = 0$, 则

$$\eta \leq \sup_{E \setminus E_0} |f(x)| \leq \alpha,$$

对 α 取下确界, 得 $\eta \le \xi$. 对任意的 E_0 满足 $\mu(E_0) = 0$, 取 $\alpha_{E_0} = \sup_{x \in E \setminus E_0} |f(x)|$, 则 $\mu(|f| > \alpha_{E_0}) = 0$, 从而

$$\alpha_{E_0} \geq \xi$$
,

在上式中对 E_0 取下确界即得 $\eta \geq \xi$. 因此 $\eta = \xi$.

引理 A.3.3

设 $1 , q 满足 <math>\frac{1}{p} + \frac{1}{q} = 1$. 则对 $a, b \ge 0$, 有不等式

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

证明. 不妨设 a,b>0, 则由 $\log x$ 是凹函数,

$$\log\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\log a^p + \frac{1}{q}\log b^q = \log ab,$$

对上式两边取 e^x 即可.

定理 A.3.4: Holder 不等式

设 p,q 满足 $\frac{1}{p}+\frac{1}{q}=1$, 其中 $1\leq p\leq\infty$, f,g 是测度空间 (E,μ) 上的可测函数, 则

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$
.

证明. 不妨设 f,g 均不几乎处处为 0,则由上一引理,有

$$\frac{|f|}{\|f\|_{p}} \cdot \frac{|g|}{\|g\|_{q}} \le \frac{|f|^{p}}{p\|f\|_{p}^{p}} + \frac{|g|^{q}}{q\|g\|_{q}^{q}}.$$

上式在 E 上积分, 得

$$\frac{\|fg\|_{1}}{\|f\|_{p} \cdot \|g\|_{q}} \le \frac{\|f\|_{p}^{p}}{p\|f\|_{p}^{p}} + \frac{\|g\|_{q}^{q}}{q\|g\|_{q}^{q}} = 1,$$

整理上式就得到 $\|fg\|_1 \le \|f\|_p \cdot \|g\|_q$.

定理 A.3.5: Minkowski 不等式

设 $1 \le p \le \infty$, f,g 是测度空间 (E,μ) 上的可测函数,则

$$||f + g||_p \le ||f||_p + ||g||_p.$$

证明. 不妨设 1 (否则是显然的). 由 Holder 不等式,

$$\|f+g\|_p^p = \|(f+g)^p\|_1 \le \|f\cdot (f+g)^{p-1}\|_1 + \|g\cdot (f+g)^{p-1}\|_1$$

$$\leq \|f\|_p \cdot \|(f+g)^{p-1}\|_q + \|g\|_p \cdot \|(f+g)^{p-1}\|_q = (\|f\|_p + \|g\|_p) \|f+g\|_p^{p-1},$$

再将上式两端同时除以 $||f+g||_p^{p-1}$ 即可.

定理 A.3.6: L^p 空间的性质

设 0 , 则

- (1) $L^r \subset L^p + L^q$.
- (2) $L^p \cap L^q \subset L^r$.
- (3) 若 $\mu(E) < \infty$, 则 $L^q \subset L^p$.

证明.

- (1) \mathfrak{F}_{f} ∈ L^{r} , \mathfrak{F}_{f} $\mathfrak{F}_{f|f|>1}$ + $f\chi_{|f|\leq 1}$ ∈ L^{p} + L^{q} .
- (2) 设 $f \in L^p \cap L^q$. 若 $q < \infty$, 则

$$\int_{E} |f|^{r} \mathrm{d}\mu \leq \int_{|f| \leq 1} |f|^{p} \mathrm{d}\mu + \int_{|f| > 1} |f|^{q} \mathrm{d}\mu \leq \|f\|_{p}^{p} + \|f\|_{q}^{q} < \infty,$$

若 $q = \infty$, 则

$$\int_{E} |f|^{r} d\mu \le \|f\|_{\infty}^{r-p} \int_{E} |f|^{p} d\mu = \|f\|_{\infty}^{r-p} \cdot \|f\|_{p}^{p} < \infty.$$

(3) 设 $f \in L^q$,则

$$\int_{E} |f|^{p} \leq \begin{cases} \int_{|f| \leq 1} |f|^{p} + \int_{|f| > 1} |f|^{q} \leq \mu(E) + \|f\|_{q}^{q} < \infty, & q < \infty, \\ \mu(E) \|f\|_{\infty}^{p} < \infty, & q = \infty. \end{cases}$$

命题 A.3.7

设 $\frac{1}{p} + \frac{1}{q} = 1$, 其中 $1 \le q < \infty$. 则

$$||g||_q = \sup \left\{ \int fg : ||f||_p = 1 \right\}.$$

证明. 记命题中上确界为 M. 任取 $\|f\|_p = 1$, 则 $\int fg \le \|fg\|_1 \le \|g\|_q$, 故 $M \le \|g\|_q$. 若 $\|g\|_q = 0$, 则已经有 $M = \|g\|_q = 0$. 若 $\|g\|_q > 0$, 取 $f = \|g\|_q^{1-q} g^{q-1} \text{sign}(g)$, 有 $\|f\|_p = 1$

且 $\int fg = \|g\|_q$, 从而 $M \ge \|g\|_q$, Q.E.D.

$A.4 L^p$ 空间中列紧集的刻画

引理 A.4.1

设 [a,b] 是有界闭区间, $x \in C[a,b]$. 则 $\lim_{h \to 0^+} \|x - x_h\|_p = 0$, 其中 $\|\cdot\|_p$ 是 L^p 范数,

$$x_h(t) = \frac{1}{2h} \int_{t-h}^{t+h} x(s) ds, \quad t \in [a, b],$$

并且 x(s) 在 s < a 时取 x(a), 在 s > b 时取 x(b).

证明. 由第一积分中值定理, $x_h(t) = x(t + \theta_{h,t}), \theta_{h,t} \in [-1,1]$. 而 x 在 [a,b] 上一致连续的, 因此当 $h \to 0$ 时 x_h 在 [a,b] 上一致的趋于 x. 也即 $\forall \varepsilon > 0$, 存在 $\delta > 0$,

$$|x_h(t) - x(t)| < \varepsilon$$
, $\forall t \in [a, b], 0 < h < \delta$.

故

$$||x-x_h|| = \left(\int_a^b |x_h(t)-x(t)|^p \mathrm{d}t\right)^{\frac{1}{p}} \le \left(\int_a^b \varepsilon^p \mathrm{d}t\right)^{\frac{1}{p}} = (b-a)^{\frac{1}{p}}\varepsilon,$$

也即 $\lim_{h\to 0^+} \|x-x_h\|_p = 0.$

引理 A.4.2

沿用上题定义与记号,则 $\forall x \in L^p[a,b]$,都有

$$\|x_h\|_p \le \|x\|_p.$$

证明. 记 q 使得 $\frac{1}{p} + \frac{1}{q} = 1$, 则由 Holder 不等式,

$$\|x_h\|_p^p = \int_a^b \left| \frac{1}{2h} \int_{t-h}^{t+h} x(s) \cdot 1 ds \right|^p dt$$

$$\leq \left(\frac{1}{2h} \right)^p \int_a^b \left(\int_{t-h}^{t+h} |x(s)|^p ds \right)^{\frac{p}{p}} \left(\int_{t-h}^{t+h} 1^q ds \right)^{\frac{p}{q}} dt$$

$$= \frac{1}{2h} \int_{a}^{b} \int_{t-h}^{t+h} |x(s)|^{p} ds dt$$

$$= \frac{1}{2h} \int_{a}^{b} \int_{s-h}^{s+h} |x(s)|^{p} dt ds = ||x||_{p}^{p},$$

证毕.

定理 A.4.3: $L^p[a,b]$ 中集合列紧的充要条件

设 1 , <math>[a,b] 是有界闭区间, $A \subset L^p[a,b]$. 则 A 在 $L^p[a,b]$ 中列紧的充要 条件为
(1) $A \in L^p[a,b]$ 中有界;
(2) $\forall \varepsilon > 0$, 存在 $\delta > 0$ 使得 $\|x - x_h\|_p < \varepsilon (\forall x \in A, h \in (0,\delta))$.

证明. 必要性: 由于 A 列紧, 显然也有界. $\forall \varepsilon > 0$, 取 x^1, \dots, x^n 是 A 的 ε 网. 由于 C[a,b] 在 $L^p[a,b]$ 中稠密, 不妨设 $x^1, \dots, x^n \in C[a,b]$. 因为每个 x^k 都是连续的, 故由 引理A.4.1, 存在 $\delta > 0$ (由于 x^k 是有限个, 故这样的 δ 存在) 使得

$$\|x^k - x_h^k\|_p < \varepsilon, \quad \forall h \in (0, \delta), k = 1, 2, \dots, n.$$

任取 $x \in A$, 则存在 k 使得 $x \in B(x^k, \varepsilon)$, 从而

$$\left\| x - x_h \right\|_p \leq \left\| x - x^k \right\|_p + \left\| x^k - x_h^k \right\|_p + \left\| x_h^k - x_h \right\|_p \leq \varepsilon + \varepsilon + \varepsilon = 3\varepsilon,$$

其中第三项使用了引理A.4.2, 故 A 也满足 (2).

充分性: 首先证明

$$A_h = \{x_h \in L^p[a,b] : x \in A\}$$

对任意给定 h>0 是一致有界且等度连续的. 设 $\|x\|_p \leq M(\forall x \in A)$. 则由 Holder 不等 式可知

$$|x_{h}(t)| = \frac{1}{2h} \left| \int_{t-h}^{t+h} x(s) \cdot 1 ds \right| \le \frac{1}{2h} \left(\int_{t-h}^{t+h} |x|^{p} \right)^{\frac{1}{p}} \left(\int_{t-h}^{t+h} 1^{q} \right)^{\frac{1}{q}}$$

$$= \left(\frac{1}{2h} \int_{t-h}^{t+h} |x|^{p} \right)^{\frac{1}{p}} \le (2h)^{-\frac{1}{p}} M, \quad \forall t \in [a, b], x_{h} \in A_{h},$$

其中 $\frac{1}{p} + \frac{1}{q} = 1$, 故一致有界. 此外, 与上式同理可得

$$\left| x_h(t) - x_h(t') \right| \le \frac{1}{2h} \left(\int_{t'+h}^{t+h} |x| + \int_{t'-h}^{t-h} |x| \right) \le \frac{M}{h} \left| t - t' \right|^{1 - \frac{1}{p}}, \quad \forall \, t, \, t' \in [a, b],$$

故等度连续. 由 Arzela-Ascoli 定理, A_h 在 C[a,b] 中列紧, 而若点列在 C[a,b] 中收敛, 则必在 $L^p[a,b]$ 中收敛到同一极限, 故 A_h 在 $L^p[a,b]$ 也列紧.

任取 $\varepsilon > 0$, 取 $\delta > 0$ 使得

$$\|x - x_{\delta}\|_{p} < \frac{\varepsilon}{2}, \quad \forall x \in A.$$

上式即 A_δ 是 A 的 $\frac{\epsilon}{2}$ 网. 而 A_δ 本身存在有穷 $\frac{\epsilon}{2}$ 网 N, 故 N 还是 A 的有穷 ϵ 网. 因此 A 完全有界, 再由 $L^p[a,b]$ 完备知 A 列紧.

定理 A.4.4: Sobolev 空间的紧嵌入

记 $W_0^{1,2}[0,1]$ 为 $C_0^1(0,1)$ 在范数

$$||f|| := \left(\int_0^1 |f|^2 + |f'|^2\right)^{\frac{1}{2}}, \quad f \in C_0^1(0,1)$$

下的完备化空间. 则 $W_0^{1,2}[0,1]$ 中的单位球在 $L^2[0,1]$ 中是紧集.

证明. 由于集合列紧当且仅当它的闭包紧, 故只需证明

$$S := \{ f \in C_0^1(0,1) : ||f|| \le 1 \}$$

在 $L^2[0,1]$ 中列紧. 由题目1.3.12, S 在 C[0,1] 中列紧. 从而任取 $\{f_k\} \subset S$, 存在子列 $\{f_{k_j}\}$ 和 $f \in C[0,1]$ 使得 $\left\|f_{k_j} - f\right\|_{C[0,1]} \to 0$, 而 $\|\cdot\|_{L^2[0,1]} \le \|\cdot\|_{C[0,1]}$, 从而 $\left\|f_{k_j} - f\right\|_{L^2[0,1]} \to 0$, 因此 S 在 $L^2[0,1]$ 中列紧.

A.5 内积空间 · 229 ·

A.5 内积空间

定义 A.5.1: 任意项的求和

设 $X = \{x_{\alpha} \mid \alpha \in A\}$, f 为定义在 X 上的非负函数, 则记

$$\sum_{\alpha \in A} f(x_{\alpha}) = \sup \left\{ \sum_{k=1}^{n} f(x_{n}) : x_{1}, \dots, x_{n} \in X, \forall n \ge 1 \right\},\,$$

称为 f 在 A 上的求和.

喀淮

不难证明这一定义与有限项求和以及正项级数的定义是一致的。

引理 A.5.2

设 $X = \{x_{\alpha} \mid \alpha \in A\}, f$ 为定义在 X 上的非负函数, 满足

$$\sum_{\alpha\in A}f(x_\alpha)<\infty,$$

则至多有可数个 α 使得 $f(x_{\alpha}) > 0$.

证明. 反设有不可数个 α 使得 $f(x_{\alpha} > 0)$, 则由

$$\{\alpha\in A: f(x)>0\}=\bigcup_{n=1}^{\infty}\left\{\alpha\in A: f(x_{\alpha})>\frac{1}{n}\right\}$$

知右侧集合至少有一个含有无穷多项 (因为左侧是不可数的), 这是不可能的, 因为此时必有 $\sum_{\alpha \in A} f(x_{\alpha}) = \infty$, 矛盾.

定理 A.5.3: Bessel 不等式

设 X 是一个内积空间. 设 $S = \{e_{\alpha} \mid \alpha \in A\}$ 为标准正交系,则

$$\sum_{\alpha \in A} |(x, e_\alpha)|^2 \le \|x\|^2, \quad \forall x \in X,$$

此外, 对每个x, 至多有可数个 α 使得 (x,e_{α}) 非零.

证明. 任取 $e_1, \dots, e_n \subset S$, 注意到

$$\left(\sum_{k=1}^{n} (x, e_k) e_k, x - \sum_{j=1}^{n} (x, e_j) e_j\right) = 0,$$

因此

$$\|x\|^2 - \sum_{k=1}^n |(x, e_k)|^2 = \|x\| - \left\| \sum_{k=1}^n (x, e_k) e_k \right\|^2 = \left\| x - \sum_{k=1}^n (x, e_k) e_k \right\|^2 \ge 0.$$

则根据求和的定义必然有 $\sum_{\alpha \in A} |(x, e_{\alpha})|^2 \le ||x||^2$,从而由上一引理,使得 (x, e_{α}) 非零的 α 至多可数个.

引理 A.5.4: Zorn 引理

设X是一个半序集.如果它的每一个全序子集都有上界,那么X有一个极大元.

喀 注

半序集是其上赋予一个半序关系 \leq , 即满足自反性 $(x \leq x)$, 传递性 $(x \leq y, y \leq z)$ $\Rightarrow x \leq z$, 反对陈性 $(x \leq y, y \leq x)$ 的关系.

全序集: 对任意 $x, y \in X$, 要么 $x \leq y$, 要么 $y \leq x$.

上界: 设 $X_0 \subset X$, 称 $x \in X_0$ 的上界, 如果 $y \leq x(\forall y \in X_0)$.

极大元: 若 $\forall y \in X$ 满足 $x \preceq y$ 都有 x = y, 则称 x 是 X 的极大元.

命题 A.5.5: 完备正交集的存在性

非 {0} 的内积空间必有完备正交系.

证明. 将内积空间 X 上的所有正交系依据集合的包含关系构成一个半序集类. 每个全序子集必有上界, 就是这些集合之并. 由 **Zorn** 引理, 这个半序集必有极大元, 记为 S. 则 S 一定是完备的, 也即 S^{\perp} = {0}. 否则, 若存在 $x \neq 0$ 且 $x \perp S$, 则 $S \cup \{x\}$ 是一个比 S 更大的正交系, 与 S 是极大元矛盾.

A.6 线性空间的基本概念

定义 A.6.1: 线性空间

设 X 是一个非空集合. № 是实数或者复数域, 若满足下列条件:

- *X* 是 Abel 加法群;
- 定义数乘运算 $\mathbb{K} \times X \to X, (\alpha, X) \mapsto \alpha X$:

并且满足:

- $\alpha(\beta x) = (\alpha \beta) x$, $\forall \alpha, \beta \in \mathbb{K}, x \in X$;
- $1 \cdot x = x$, $\forall x \in X$;
- $(\alpha + \beta)x = \alpha x + \beta x$, $\forall \alpha, \beta \in \mathbb{K}, x \in X$;
- $\alpha(x + y) = \alpha x + \alpha y$, $\forall \alpha \in \mathbb{K}, \forall x, y \in X$.

则称 (X,\mathbb{K}) 是一个线性空间.

定义 A.6.2: 线性同构

设 $(X_1,\mathbb{K}),(X_2,\mathbb{K})$ 是两个线性空间, 若 $\exists T: X_1 \mapsto X_2$, 满足

- (1) T 是双射;
- (2) $T(\alpha x + \beta y) = \alpha Tx + \beta Ty$, $\forall \alpha, \beta \in \mathbb{K}, x, y \in X_1$.

则称 $T \in X_1$ 到 X_2 的一个线性同构.

喀 注

此时 $P = T^{-1}$ 也是线性的,因为 $P(\alpha x' + \beta y') = P(\alpha T(P(x')) + \beta T(P(y'))) = P(T(\alpha P(x') + \beta P(y'))) = \alpha P(x') + \beta P(y').$

下面如非特别说明, 均设 (X, K) 是一个线性空间.

定义 A.6.3: 线性子空间

设 $E \subset X$, 若 E 依 X 上的加法, 数乘运算构成线性空间, 则称 E 是 X 的一个**线性子空间**.

喀注

 $E \neq X$ 的线性子空间 $\iff E \neq X$ 中的加法和数乘运算封闭.

定义 A.6.4: 线性流形

设 $E \subset X$. 若 $\exists x_0 \in X$ 及线性子空间 $E_0 \subset X$ 使得

$$E = E_0 + x_0 \triangleq \{x + x_0 \mid x \in E_0\},\$$

则称 E 为一个线性流形(子空间对于某个向量的平移)

命题 A.6.5

线性流形 E 有如下三条等价定义:

- (1) $E = x_0 + E_0$, 其中 $x_0 \in X$, E_0 是线性子空间;
- (2) $\forall x, y \in E, \alpha x + (1 \alpha)y \in E$.
- (3) $\forall x_1, \dots, x_n \in E$, $\sum_{k=1}^n \alpha_k = 1$, 都有 $\sum_{k=1}^n \alpha_k x_k \in E$.

证明. (1) \Longrightarrow (2): 任取 $y,z \in E$, 存在 $y_0, z_0 \in E_0$ 使得 $y = x_0 + y_0, z = x_0 + z_0$, 从而 $\alpha y + (1 - \alpha)z = x_0 + (\alpha y_0 + (1 - \alpha)z_0) \in E$.

(2) ⇒ (3): 使用归纳法证明, n=1 和 n=2 的情形是显然的, 现假设对 n 成立. 任取 $x_1, \cdots, x_{n+1} \in E$, $\sum_{k=1}^{n+1} \alpha_k = 1$, 记

$$\beta_1 = 2\alpha_1 x_1 + (1 - 2\alpha_1) x_2, \quad \beta_2 = (2\alpha_1 + 2\alpha_2 - 1) x_2 + \sum_{k=3}^{n+1} 2\alpha_k x_k,$$

根据归纳假设, 显然有 $\beta_1, \beta_2 \in E$, 从而 $\sum_{k=1}^{n+1} \alpha_k x_k = \frac{1}{2} \beta_1 + \frac{1}{2} \beta_2 \in E$.

(3) ⇒ (1): 取 $x_0 \in E$, 记 $E_0 = E - x_0$, 只需证 E_0 是线性子空间. 事实上, 任取 $y, z \in E, \alpha, \beta \in \mathbb{K}$, 都有 $(1 - \alpha - \beta)x_0 + \alpha y + \beta z \in E$, 从而 $\alpha(y - x_0) + \beta(z - x_0) = ((1 - \alpha - \beta)x_0 + \alpha y + \beta z) - x_0 \in E_0$, 是线性子空间.

性质 A.6.6: 线性流形

- (1) 设 E, F 是线性流形,则 $E+F = \{x+y | x \in E, y \in F\}$ 是线性流形.
- (2) 设 $\{E_{\alpha}\}_{\alpha\in A}$ 是一族线性流形, 若它们的交集不空, 则交集 $\bigcap_{\alpha\in A} E_{\alpha}$ 仍是线性流形.

- (1) 任取 $z_1, z_2 \in E + F$, 存在 $x_1, x_2 \in E$, $y_1, y_2 \in F$ 使得 $z_1 = x_1 + y_1, z_2 = x_2 + y_2$. 故 $\alpha z_1 + (1 \alpha)z_2 = (\alpha x_1 + (1 \alpha)x_2) + (\alpha y_1 + (1 \alpha)y_2) \in E + F$.
- (2) 由线性流形的第二条等价定义易得.

定义 A.6.7: 线性相关与线性无关

设 $x_1, x_2, \dots, x_n \in X$ 是 X 中一组向量, 若 $\exists \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ 且它们不全为 0, 使

$$\lambda_1 x_1 + \lambda_2 x_2 + \dots + \lambda_n x_n = 0,$$

则称这组向量是线性相关的. 若不然, 称它们是线性无关的.

定义 A.6.8: 线性基

若 $A \not\in X$ 中一个极大线性无关向量组,即 A 中向量线性无关,且 $\forall x \in X, x$ 均可由 A 中向量线性表出,则称 $A \not\in X$ 的一组**线性基**.

定义 A.6.9: 维数

线性空间中任意一组线性基的势称为线性空间的维数.

定义 A.6.10: 线性包

设 Λ 是一个指标集, $\{x_{\lambda} \mid \lambda \in \Lambda\}$ 是 X 中的一族向量,则称集合

$$\{y = \alpha_1 x_{\lambda_1} + \dots + \alpha_n x_{\lambda_n} | \lambda_i \in \Lambda, \alpha_i \in \mathbb{K}, i = 1, 2, 3, \dots, n\}$$

为 $\{x_{\lambda} \mid \lambda \in \Lambda\}$ 的**线性包**,显然线性包是一个线性空间,而且是包含这族向量的最小线性子空间. 因此我们称线性包为这族向量张成的线性子空间,记为 $\mathrm{span}\{x_{\lambda} \mid \lambda \in \Lambda\}$.

定义 A.6.11: 线性和与直和

设 E_1 , E_2 是 X 的子空间, 称集合 $\{x+y \mid x \in E_1, y \in E_2\}$ 为 E_1 , E_2 的**线性和**, 记为 E_1+E_2 , 任意有限个子空间的线性和可以同理定义. 特别的, 如果 (E_1,E_2) 中的任意一对非零向量均线性无关, 则称 E_1+E_2 为**直和**, 记作 $E_1 \oplus E_2$. 此时 $E_1 \cap E_2 = 0$, 且 $\forall x \in E_1 \oplus E_2$, x 有唯一分解 $x = x_1 + x_2$, $x_1 \in E_1$, $x_2 \in E_2$.

喀淮

 (E_1, E_2) 中的任意一对非零向量线性无关 \iff 零向量的分解方式唯一 \iff $E_1 \cap E_2 = 0$ 且 $\forall x \in E_1 \oplus E_2$, x 有唯一分解.

A.7 凸集与不动点

定义与基本性质

定义 A.7.1: 凸集

设 X 是线性空间, $E \subset X$, 称 E 为一**凸集**, 如果

 $\lambda x + (1 - \lambda) y \in E$, $\forall 0 \le \lambda \le 1, \forall x, y \in E$.

命题 A.7.2

若 $\{E_{\lambda} | \lambda \in \Lambda\}$ 是线性空间 X 中一族凸集,则 $\bigcap_{\lambda \in \Lambda} E_{\lambda}$ 也是凸集.

证明. 根据凸集的定义易得.

定义 A.7.3: 凸包和凸组合

设 X 是线性空间, $A \subset X$. 若 $\{E_{\lambda} \mid \lambda \in \Lambda\}$ 为 X 中包含 A 的一切凸集全体, 那么称 $\bigcap_{\lambda \in \Lambda} E_{\lambda}$ 为 A 的**凸包**, 并记作 $\operatorname{co}(A)$. 又对 $\forall n \in \mathbb{N}, x_1, x_2, \cdots, x_n \in A$, 称 $\sum_{i=1}^n \lambda_i x_i$ 为 x_1, x_2, \cdots, x_n 的**凸组合**, 是指其中系数满足 $\lambda_i \geq 0$, $\sum_{i=1}^n \lambda_i = 1$.

命题 A.7.4

设X是线性空间, $A \subset X$,那么A的凸包是A中元素任意凸组合的全体,即

$$\operatorname{co}(A) = \left\{ \sum_{i=1}^{n} \lambda_i x_i \middle| \sum_{i=1}^{n} \lambda_i = 1, \lambda_i \ge 0, x_i \in A, i = 1, 2, \dots, n, \forall n \in \mathbb{N} \right\}.$$

证明. 记右侧集合为 B, 显然 B 是包含 A 的凸集, 因此 $co(A) \subset B$. 设 $\sum_{i=1}^{n} \lambda_i x_i \in B\left(\sum_{i=1}^{n} \lambda_i = 1, x_i \in A, \lambda_i \ge 0, 1 \le i \le n\right) \in B$, 则由 $x_i \in co(A)$ 且 co(A) 是凸集知 $\sum_{i=1}^{n} \lambda_i x_i \in co(A)$, 故 $B \subset co(A)$.

定义 A.7.5: Minkowski 泛函

设 X 是线性空间, C 是 X 上含有 0 的凸子集, 在 X 上规定一个取值于 $[0,\infty]$ 的函数

$$P(x) = \inf \left\{ \lambda > 0 \, \middle| \, \frac{x}{\lambda} \in C \right\}, \quad \forall x \in X$$

与 C 对应, 称函数 P 为 C 的Minkowski 泛函.

命题 A.7.6

设X是线性空间,C是X上含有0的凸子集,若P为C的Minkowski泛函,则P具有下列性质:

- (1) $P(x) \in [0, \infty], P(0) = 0;$
- (2) $P(\lambda x) = \lambda P(x)$ ($\forall x \in X, \forall \lambda > 0$) (正齐次性);
- (3) $P(x+y) \le P(x) + P(y)$ ($\forall x, y \in X$) (次可加性);

证明. 只需验证 (3). 任取 $\varepsilon > 0$, 都有

$$\frac{x}{P(x) + \varepsilon}, \frac{y}{P(y) + \varepsilon} \in C$$

$$\Rightarrow \frac{x + y}{P(x) + P(y) + 2\varepsilon}$$

$$= \frac{P(x) + \varepsilon}{P(x) + P(y) + 2\varepsilon} \cdot \frac{x}{P(x) + \varepsilon} + \frac{P(y) + \varepsilon}{P(x) + P(y) + 2\varepsilon} \cdot \frac{y}{P(y) + \varepsilon} \in C,$$

故 $P(x+y) \le P(x) + P(y) + 2\varepsilon$.

定义 A.7.7: 吸收与对称

线性空间 X 中, 含有 0 的凸集 C 称为是**吸收的**, 如果 $\forall x \in X, \exists \lambda > 0$, 使得 $\frac{x}{\lambda} \in C$; 称 C 是**对称的**, 如果 $x \in C \Longrightarrow -x \in C$.

命题 A.7.8

C 是吸收凸集 \iff 其 Minkowski 泛函 P(x) 是实值函数; 若 C 是对称凸集,则 P(x) 是实齐次的, 也即

$$P(\alpha x) = |\alpha| P(x), \quad \forall \alpha \in \mathbb{R}.$$

证明. 若 C 是吸收凸集, 则 $\forall x \in X$, 存在 $\lambda > 0$ 使得 $\frac{x}{\lambda} \in C$, 从而 $P(x) \le \lambda < \infty$, 故 P(x)

是实值函数.

若 P(x) 是实值函数, 则任取 $x \in X$, 取 $\lambda = P(x) + 1 > 0$, 有 $\frac{x}{\lambda} \in C$.

若 C 是对称的, 则 P(x) = P(-x), 再由正齐次性可得实齐次性.

定义 A.7.9: 均衡

复线性空间 X 的一个子集 C 称为是均衡的, 是指

$$x \in C \implies \alpha x \in C \quad (\forall \alpha \in \mathbb{C}, |\alpha| = 1).$$

命题 A.7.10

设X是一个 B^* 空间,C是一个含有0点的闭凸集. 如果P(x)是C的Minkowski泛函, 那么P(x)下半连续并且

$$\alpha C = \{x \in X \mid P(x) \le \alpha\}, \quad \forall \alpha > 0.$$

此外, 若 C 有界, 则 $P(x) = 0 \iff x = 0$. 若 $0 \in \mathbb{C}^{\circ}$, 那么 C 是吸收的, 并且一致连续.

证明. 若 $x \in \alpha C$, 则 $\frac{x}{\alpha} \in C$, 故 $P(x) \le \alpha$. 反之, 若 $P(x) \le \alpha$, 则 $\frac{x}{\alpha + \frac{1}{n}} \in C(\forall n)$, 由于 C 是 闭集, 令 $n \to \infty$ 可得 $\frac{x}{\alpha} \in C$, 即 $x \in \alpha C$. 由 C 为闭集可知, $\{x \in X \mid P(x) \le \alpha\} = \alpha C$ 也是 闭集, 从而 P 下半连续.

若 C 有界, 不妨设 $\|x\| < M$, $\forall x \in C$. 则 $P(x) = 0 \implies \lambda x \in C(\forall \lambda > 0) \implies M\frac{x}{\|x\|} \in C \implies x = 0$. 此时 P(x) 是一致连续的, 因为 P(x) 是满足 $P(x) = 0 \iff x = 0$ 的次线性泛函.

若 $0 \in C^{\circ}$, 则存在 r > 0, 使得 $\|x\| \le r \implies x \in C$. 则任取 $y \in X$, 都有 $\frac{y}{\frac{1}{r}\|y\|} \in C$. 此时 P(x) 也是一致连续的, 因为

$$|P(x) - P(y)| \le \max\{P(x - y), P(y - x)\} \le \frac{2}{r} ||x - y||, \quad \forall x, y \in X.$$

定义 A.7.11: 同胚

设 $(X_1, \|\cdot\|_1), (X_2, \|\cdot\|_2)$, 若存在双射 $f: X_1 \to X_2$ 使得 f 和 f^{-1} 都连续, 则称 X_1, X_2 同胚, 称 f 为同胚映射.

推论 A.7.12

若 $C \in \mathbb{R}^n$ 中的一个非空紧凸子集,则必存在正整数 $m \le n$,使得 C 同胚于 \mathbb{R}^m 中的闭单位球.

证明. 由于 \mathbb{R}^n 中的线性变换和平移变换均为同胚映射, 因此不妨设 $0 \in C^\circ$ 并且 $\mathrm{span}(C) = \mathbb{R}^n$ (否则取 $x \in C$, 并记 C' = C - x, 此时 $0 \in C'$. 再记 $E = \mathrm{span}(C')$, 维数 为 m, 必存在可逆线性变换 L 使得 $e_1, \cdots, e_m \in L(C') \subset L(E)$. 此时由 L(C') 的凸性, $\frac{1}{2m} \sum_{i=1}^m e_i \in L(C')$. 记 $C'' = L(C') - \frac{1}{2m} \sum_{i=1}^m e_i \ni 0$, 则当 $\sum_{i=1}^m |x_i|^2 \le \frac{1}{4m^2}$ 时有

$$x = \left(1 - \sum_{i=1}^{m} \left(\frac{1}{2m} + x_i\right)\right) \cdot 0 + \sum_{i=1}^{m} \left(\frac{1}{2m} + x_i\right) e_i - \frac{1}{2m} \sum_{i=1}^{m} e_i \in C'',$$

因此 $0 \in C''$ °, 在 L(E) 上考虑 C'' 即可).

下面证明

$$f(x) = \begin{cases} \frac{P(x)x}{|x|}, & x \in C \setminus \{0\} \\ 0, & x = 0 \end{cases}$$

是从 C 到 $D = \{|x| \le 1\}$ 的同胚映射.

首先, 由 $x \in C \iff P(x) \le 1$ 可知 $|f(x)| \le 1$, 因此 f 的确是从 C 到 D 的映射.

$$g(y) = \begin{cases} \frac{|y|y}{P(y)}, & 0 < |y| \le 1\\ 0, & y = 0 \end{cases},$$

不难验证 f(g(y)) = y, g(f(x)) = x, 因此 f 是双射且 $g = f^{-1}$.

其次证明 f 连续. 由 P(x) 连续知当 $x \neq 0$ 时 f(x) 连续, 当 x = 0 时,

$$x_n \to 0 \implies P(x_n) \to 0 \implies \lim_{n \to \infty} \left| \frac{P(x_n) x_n}{|x_n|} \right| = \lim_{n \to \infty} P(x_n) = 0,$$

因此在 0 处 f(x) 也连续.

最后证明 g 连续. 当 $y \neq 0$ 时 g 也显然连续. 当 y = 0 时, 设 $|x| < R, \forall x \in C$. 则 $\frac{Rx}{|x|} \notin C \implies P(x) \geq \frac{|x|}{R} (\forall x \in C)$, 故

$$y_n \to 0 \implies \lim_{n \to \infty} \left| \frac{|y_n| y_n}{P(y_n)} \right| \le \lim_{n \to \infty} \frac{|y_n|^2}{\frac{|y_n|}{R}} = R \lim_{n \to \infty} |y_n| = 0,$$

因此 g 连续.

Brouwer 与 Schauder 不动点定理

定理 A.7.13: Brouwer 不动点定理

设 $B \in \mathbb{R}^n$ 中的闭单位球, 又设 $T: B \to B$ 是一个连续映射, 那么 T 必有一个不动点 $x \in B$.

证明. 该定理属于拓扑的内容, 在此不作讨论.

推论 A.7.14

设 C 是有限维赋范线性空间 X 中的一个紧凸子集, $T: C \to C$ 是连续的, 则 T 必有一个在 C 上的不动点.

证明. 设 φ 是从 C 到 \mathbb{R}^m 中闭单位球 B 的同胚映射. 则 $T_{\varphi} = \varphi \circ T \circ \varphi^{-1}$ 是从 B 到本身的连续映射, 则必存在 $x \in B$ 使得 $T_{\varphi}(x) = x$, 从而 $T(\varphi^{-1}(x)) = \varphi^{-1}(x)$, $\varphi^{-1}(x)$ 是 T 的不动点.

定理 A.7.15: Schauder 不动点定理

设 $C \in B^*$ 空间 X 中的闭凸子集, $T: C \to C$ 连续且 T(C) 列紧,则 T 在 C 上必有一个不动点.

证明. 由 T(C) 列紧知, 对任意的 $n \ge 1$, 存在 T(C) 的有限 $\frac{1}{n}$ 网 N_n 使得

$$T(C) \subset \bigcup_{y \in N_n} B\left(y, \frac{1}{n}\right).$$

记 $E_n = \operatorname{span}(N_n)$ 为有限维子空间. 令 $T_n: C \to \operatorname{co}(N_n)$ 满足

$$T_n(x) = \frac{\sum\limits_{y \in N_n} \left(\left\| Tx - y \right\| + 1 \right) X i_{B(y, \frac{1}{n})}(Tx) y}{\sum\limits_{y \in N_n} \left(\left\| Tx - y \right\| + 1 \right) \chi_{B(y, \frac{1}{n})}(Tx)}.$$

则显然有

$$\|T(x) - T_n(x)\| \le \frac{\sum\limits_{y \in N_n} \left(\|Tx - y\| + 1 \right) \chi_{B(y, \frac{1}{n})}(Tx) \|T(x) - y\|}{\sum\limits_{y \in N_n} \left(\|Tx - y\| + 1 \right) \chi_{B(y, \frac{1}{n})}(Tx)} \le \frac{1}{n}, \quad \forall x \in C.$$

注意到 $co(N_n)$ 是有限维空间 E_n 中的有界闭凸集 (紧凸集), $T_n : co(N_n) \to co(N_n)$ 连续 ($\|T_n(x) - T_n(x')\| \le \|x - x'\|$, $\forall x, x' \in C$), 则存在 $x_n \in co(N_n)$ 使得 $T_n(x_n) = x_n$. 由于 T(C) 是列紧的, 存在子列 $\{x_{n_k}\}$ 使得 $T(x_{n_k}) \to x \in C$. 此外,

$$||x - x_{n_k}|| = ||x - T_{n_k}(x_{n_k})|| \le ||x - T(x_{n_k})|| + ||T(x_{n_k}) - T_{n_k}(x_{n_k})||$$

$$\le ||x - T(x_{n_k})|| + \frac{1}{n_k} \to 0, \quad k \to \infty.$$

因此 $x_{n_k} \to x$, 再由 T 的连续性, $T(x_{n_k}) \to T(x)$, 从而

$$||T(x) - T_{n_k}(x_{n_k})|| \le ||T(x) - T(x_{n_k})|| + ||T(x_{n_k}) - T_{n_k}(x_{n_k})||$$

$$\le ||T(x) - T(x_{n_k})|| + \frac{1}{n_k} \to 0, \quad k \to \infty.$$

最后, 在 $T_{n_k}(x_{n_k}) = x_{n_k}$ 等式两端令 $k \to \infty$ 可得 T(x) = x, 也即 $x \in C$ 的不动点.

定义 A.7.16: 紧映射

设 $X \in B^*$ 空间, $E \in X$ 的一个子集, 称映射 $T: E \to X$ 是**紧的**, 如果它是连续的, 并且把 E 中的任意有界集映为 X 中的列紧集.

推论 A.7.17

设 $C \in B^*$ 空间X中的有界闭凸子集, $T:C \to C$ 是紧的,则T在C上必有不动点.

证明. 由 T 是紧映射, C 有界知 T(C) 列紧, 从而由 Schauder 不动点定理知 T 在 C 上 存在不动点.

应用

定理 A.7.18: Caratheodory 定理

假设函数 f(t,x) 在 $[-h,h] \times [\xi-b,\xi+b]$ 上连续, $|f(t,x)| \leq M(\forall |t| \leq h, |x-\xi| \leq b,$ 那么当 $h \leq \frac{b}{M}$ 时,方程的初始值问题

$$\begin{cases} x'(t) = f(t, x(t)) \\ x(0) = \xi \end{cases}$$

在 [-h,h] 上存在解 x(t).

证明. 只需证明积分方程

$$x(t) = \xi + \int_0^t f(s, x(s)) ds$$

在 $t \in [-h,h]$ 上存在连续解 x(t). 记

$$X = \{x \in C([-h,h]) : |x(t) - \xi| \le b, \forall |t| \le h\},$$

并令 $T: X \to C([-h,h])$ 满足

$$Tx(t) = \xi + \int_0^t f(s, x(s)) \mathrm{d}s, \forall |t| \le h, x \in C([-h, h]).$$

下面证明 T 在 X 上存在不动点. X 显然是有界闭凸集, 并且由

$$|Tx(t) - \xi| = \left| \int_0^t f(s, x(s)) ds \right| \le hM \le b, \quad \forall |t| \le h, x \in X$$

知 $T: X \to X$. 注意到

$$\left|Tx(t) - Tx(t')\right| = \left|\int_{t'}^{t} f(s, x(s)) ds\right| \le M \left|t - t'\right|, \quad \forall t, t' \in [-h, h], x \in X,$$

故 T(X) 等度连续, 并且 T(X) 显然一致有界, 由 Arzela-Ascoli 定理可得 T(X) 列紧, 再由 Schauder 不动点定理得 T 在 X 上存在不动点, 也即初值问题有解.

A.8 紧算子的不变子空间与紧算子结构

不变子空间

定义 A.8.1: 不变子空间

设 X 为 Banach 空间, M 是 X 的子空间, $A \in L(X)$. 若 $A(M) \subset M$, 则称 M 是 A 的**不变子空间**.

命题 A.8.2

设 X 是 Banach 空间, $A \in L(X)$, 则

- (1) {0} 和 X 都是 A 的不变子空间.
- (2) 若 M 是 A 的不变子空间,则 \overline{M} 也是 A 的不变子空间.
- (3) 若 $\lambda \in \sigma_p(A)$, 即 λ 是 A的特征值, 则 $N(\lambda I A)$ 是 A的不变子空间.
- (4) $\forall y \in X$, 若记 $L_y \triangleq \{P(A)y: P$ 是任意多项式}, 则 L_y 是 A 的不变子空间.

证明. 显然.

定理 A.8.3

若 $\dim X \ge 2$, 则 $\forall A \in \mathfrak{C}(X)$, A 必有非平凡闭不变子空间.

证明. 不妨设 $\dim X = \infty, A \neq 0$ 且 $\sigma_p(A) \setminus \{0\} = \emptyset$ (否则定理显然成立). 由定理3.3.1, $\sigma(A) = \{0\}$. 若 A 没有非平凡闭不变子空间, 则

$$\overline{L_y} = X$$
, $\forall y \in X \setminus \{0\}$.

不妨设 ||A|| = 1, 那么存在 $x_0 \in X$ 使得

 $||Ax_0|| > 1$ \perp $||x_0|| > 1$.

令 $C \triangleq \overline{AB(x_0,1)}$, 则 C 是紧集并且 $0 \notin C$. $\forall y_0 \in C$, 由于 $\overline{L_{y_0}} = X$, 存在关于 A 的多项

式算子 Tyo 使得

$$||T_{y_0}y_0-x_0||<1,$$

从而由 $\delta_{y_0} > 0$ 使得

$$||T_{y_0}y - x_0|| < 1, \quad \forall y \in B(y_0, \delta_{y_0}).$$

由于 C 是紧集, 存在有限覆盖

$$C \subset \bigcup_{i=1}^{n} B(y_i, \delta_i), \quad \sharp + \delta_i \triangleq \delta_{y_i} (i = 1, \dots, n).$$

从而 $\forall y \in C$, 存在 i_1 使得

$$||T_{i_1}y-x_0||<1.$$

上式蕴含 $T_{i_1}y \in B(x_0,1)$, 故 $AT_{i_1}y \in C$, 因此存在 i_2 使得

$$||T_{i_2}AT_{i_1}y-x_0||<1.$$

由于 T_{i_1} 和 T_{i_2} 都是 A 的多项式, 因此可交换, 即

$$||T_{i_2}T_{i_1}Ay-x_0||<1.$$

以此类推,有

$$\left\| \prod_{j=1}^{k+1} T_{i_j}(A^k y) - x_0 \right\| < 1 \implies \left\| \prod_{j=1}^{k+1} T_{i_j}(A^k y) \right\| > \|x_0\| - 1.$$

记 $\mu = \max_{1 \leq i \leq n} \|T_i\| > 0$,则

$$||x_0|| - 1 \le \mu^{k+1} ||A^k y||,$$

因此

$$\frac{1}{\mu}\bigg(\frac{\left\|x_0\right\|-1}{\mu\|y\|}\bigg)^{\frac{1}{k}} \leq \left(\frac{\left\|A^ky\right\|}{y}\right)^{\frac{1}{k}}) \leq \left\|A^k\right\|^{\frac{1}{k}}.$$

在上式中令 $k \to \infty$, 根据 Gelfand 定理, $0 < \frac{1}{\mu} \le r_{\sigma}(A) = 0$, 矛盾.

紧算子的结构

命题 A.8.4

设 X 是赋范空间, $T \in L(X)$. 则

$$\{0\} \subset N(T) \subset N(T^2) \subset \cdots \subset N(T^k) \subset \cdots,$$

 $X \supset R(T) \supset R(T^2) \supset \cdots \supset R(T^m) \supset \cdots.$

并且一旦有 $N(T^k) = N(T^{k+1})$, 就有 $N(T^n) = N(T^k)$, $\forall n > k$; 一旦有 $R(T^m) = R(T^{m+1})$, 就有 $R(T^n) = R(T^m)$, $\forall n > m$.

证明. 第一部分的包含关系是显然的. 对于第二部分, 若 $N(T^k) = N(T^{k+1})$, 则

$$x \in N(T^{k+2}) \implies T^{k+1}(Tx) = 0 \implies Tx \in N(T^{k+1}) = N(T^k)$$
$$\implies T^{k+1}x = T^k(Tx) = 0 \implies x \in N(T^{k+1}) = N(T^k),$$

因此可以递推地得到 $N(T^n) = N(T^k), \forall n > k$.

若 $R(T^m)=R(T^{m+1})$, 则 $\forall T^{m+2}x\in R(T^{m+2})$, 存在 $y\in X$ 使得 $T^my=T^{m+1}x$, 从 而 $T^{m+2}x=T^{m+1}y\in R(T^{m+1})=R(T^m)$, 故 $R(T^n)=R(T^m)$, $\forall n>m$.

定义 A.8.5: 零链长和像链长

设 $T \in X$, 则使得 $N(T^p) = N(T^{p+1})$ 成立的最小整数 p 称为 T 的**零链长**, 记为 p(T). 使得 $R(T^q) = R(T^{q+1})$ 成立的最小整数 q 为**像链长**, 记为 q(T).

喀 注

为了方便起见, 记 $N(T^0) = \{0\}, R(T^0) = X$.

定义 A.8.6: 余维数

设 M⊂X 是一个闭子空间, 称

 $\operatorname{codim} M \stackrel{\triangle}{=} \dim(X/M)$

为 M 的余维数.

定理 A.8.7

设 $A \in \mathfrak{C}(X)$, T = I - A, 则

$$\dim N(T) = \operatorname{codim} R(T) < \infty$$
.

证明. 由 Riesz-Fredholm 定理 (定理3.2.5) 证明过程的第四步可知,

$$X = N(T) \oplus X_1 = \operatorname{span}\{y_k\}_1^n \oplus R(T), \quad n = \dim N(T).$$

因此

$$\operatorname{codim} R(T) = \dim(\operatorname{span}\{y_k\}_1^n) = n = \dim N(T).$$

引理 A.8.8

设 $A \in \mathfrak{C}(X)$, T = I - A. 则 $p = q < \infty$, 其中 p, q 分别为 T 的零链长和像链长.

证明. 首先证明 $q < \infty$. 反设 $q = \infty$, 则 $R(T^{k+1}) \subseteq R(T^k)$, $\forall k \ge 0$. 注意到

$$I - T^{k} = I - (I - A)^{k} = I - \sum_{j=0}^{k} {k \choose j} (-A)^{j} = -\left(\sum_{j=1}^{k} {k \choose j} (-1)^{j} A^{j-1}\right) A \in \mathfrak{C}(X),$$

故由定理3.2.2知每个 $R(T^k)$ 都是闭线性空间. 因此根据 Riesz 引理 (引理1.5.11) 知, 存在 $x_k \in R(T^k) \setminus R(T^{k+1})$ 使得

但是由于 $Tx_k - x_{k+j} + Tx_{k+j} \in R(T^{k+1})$,

$$||Ax_k - Ax_{k+j}|| = ||x_k - (Tx_k - x_{k+j} + Tx_{k+j})|| \ge \frac{1}{2},$$

与 A 是紧算子矛盾.

下面证明 p = q. 由定理A.8.7知,

 $\dim N(T^q) = \operatorname{codim} R(T^q) = \operatorname{codim} R(T^{q+1}) = \dim N(T^{q+1}),$

因此 $p \le q$. 同理可得 $p \ge q$, 因此 p = q.

定理 A.8.9

设 $A \in \mathfrak{C}(X)$, T = I - A, 则存在 $p \ge 0$ 使得 $X = N(T^p) \oplus R(T^p)$, 并且 $T_1 \triangleq T|_{R(T^p)}$ 存在有界线性逆算子.

证明. 取 p 为 T 的零链长, 由上一引理, 这也是 T 的像链长.

首先证明 $N(T^p)+R(T^p)$ 是直和, 也即 $N(T^p)\cap R(T^p)=\{0\}$. 设 $x\in N(T^p)\cap R(T^p)$, 则存在 $y\in X$ 使得 $x=T^py$, 并且 $T^px=0$. 因此 $T^{2p}y=T^px=0$, 也即 $y\in N(T^{2p})=N(T^p)$, 故 $x=T^py=0$.

下面证明 $X = N(T^p) \oplus R(T^p)$. 任取 $x \in X$, 由于

$$T^p x \in R(T^p) = R(T^{2p}),$$

因此存在 $u \in X$ 使得 $T^{2p}u = T^px$. 此即 $T^p(x - T^pu) = 0$, 从而 $x - T^pu \in N(T^p)$, $T^pu \in R(T^p)$.

最后证明 $T_1 riangleq T|_{R(T^p)}$ 存在有界线性逆算子. 注意到 $R(T_1) = T(R(T^p)) = R(T^{p+1}) = R(T^p) = D(T_1)$, 因此 T_1 是满射. 此外, 若 $T_1x = 0$, $x \in R(T^p)$, 则存在 $y \in X$ 使得 $x = T^p y$, 故 $T_1x = T^{p+1}y = 0 \implies y \in N(T^{p+1}) = N(T^p) \implies x = T^p y = 0 \implies T_1$ 是 单射. 由 Banach 逆算子定理, T_1 存在有界逆.

A.9 Lebesgue 微分定理

定义 A.9.1

设 $1 \le p \le \infty$, 记 $L_{loc}^p(\mathbb{R}^n)$ 为满足

$$\int_{K} |f(x)|^{p} dx < \infty, \quad \forall \ \S \notin K \subset \mathbb{R}^{n}$$

的可测函数 f 全体.

定义 A.9.2: Harddy-Littlewood 极大函数

设f为 \mathbb{R}^n 上的可测函数,记

$$M(f)(x) = \sup_{r>0} \frac{1}{B(x,r)} \int_{B(x,r)} |f(y)| dy,$$

并称为Hardy-Littlewood 极大函数.

定理 A.9.3: Lebesgue 微分定理

设
$$f \in L^p_{\text{loc}}(\mathbb{R}^n)$$
, $1 \le p \le \infty$, 则

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| dy = 0 \ a.e.$$

证明. 该定理的证明将分为七步进行.

第一步. 设 E 为 \mathbb{R}^n 中的可测集, $\{B_\alpha\}_{\alpha\in A}$ 为 \mathbb{R}^n 中的一族覆盖 E 的有界开球. 则存在 互不相交的至多可数个 $\{B_\alpha\}_{\alpha\in A}$ 中的开球 B_1, B_2, \cdots , 使得

$$\sum_{k=1}^{\infty} m(B_k) \ge 5^{-n} m(E). \tag{*}$$

证明. 取 B₁ 使得

$$\operatorname{diam} B_1 \ge \frac{1}{2} \sup \operatorname{diam} \{B_\alpha : \alpha \in A\},\$$

并取 $B_k(k>1)$ 使得

 $\operatorname{diam} B_k \geq \frac{1}{2} \sup \operatorname{diam} \{B_\alpha : \alpha \in A \perp B_\alpha = B_1, \cdots, B_{k-1} \subseteq \Lambda$ 相交}.

若 $\sum\limits_{n=1}^{\infty}m(B_k)=\infty$, 则 (*) 式显然成立. 若 $\sum\limits_{n=1}^{\infty}m(B_k)<\infty$, 则 $m(B_k)\to 0$. 记与 B_k 有相 同中心点但是半径扩大至 5 倍的开球为 B_k^* , 此时必有

$$B_{\alpha} \subset \bigcup_{k=1}^{\infty} B_k^*, \quad \forall \alpha \in A.$$

否则, 若 B_{α} 是不满足上述条件的开球, 则存在 k 使得 $\operatorname{diam} B_{k+1} < \frac{1}{2} \operatorname{diam} B_{\alpha}$. 从而

 $diam B_{\alpha} > 2 diam B_{k+1}$

≥ sup diam{ B_{α} : $\alpha \in A \perp B_{\alpha} = B_1, \dots, B_{k-1} \subseteq A$

故 B_{α} 必与某个 B_{k} 相交, 也就包含于某个 B_{k}^{*} , 矛盾. 从而

$$m(E) \le m(\bigcup_{\alpha \in A} B_{\alpha}) \le m(\bigcup_{k=1}^{\infty} B_k^*) = 5^n \sum_{k=1}^{\infty} m(B_k).$$

第二步. 设 $f \in L^1(\mathbb{R}^n)$, 则存在仅与 n 有关的常数 A 使得

$$m(\lbrace x: Mf(x) > \alpha \rbrace) \le \frac{A}{\alpha} ||f||_1, \quad \forall \alpha > 0.$$

证明. 给定 $\alpha > 0$, 记 $E_{\alpha} = \{x : Mf(x) > \alpha\}$, $\lambda(\alpha) = m(E_{\alpha})$. 任取 $x \in E_{\alpha}$, 则存在 $r_x > 0$ 使得

$$\int_{B(x,r_x)} |f(y)| \mathrm{d}y > \alpha B(x,r_x),$$

并且 $E_{\alpha} = \bigcup_{x \in E_{\alpha}} B(x, r_x)$. 从而由第一步知, 存在互不相交的开球 $B_1, B_2, \cdots, B_k, \cdots$, 使得

$$\sum_{k=1}^{\infty} m(B_k) \ge 5^{-n} m(E_{\alpha}).$$

故

$$||f||_1 \ge \sum_{k=1}^{\infty} \int_{B_k} |f(y)| dy > \alpha \sum_{k=1}^{\infty} B_k \ge 5^{-n} \alpha m(E_{\alpha}).$$

第三步. 设 $f \in L^p(\mathbb{R}^n)$, 1 , 则存在仅与 <math>n 和 p 有关的常数 A_p 使得

$$||Mf||_p \le A_p ||f||_p.$$

证明. 若 *p* < ∞, 令

$$f_{\alpha}(x) = \begin{cases} f(x), & |f(x)| \ge \frac{\alpha}{2} \\ 0, & |f(x)| < \frac{\alpha}{2} \end{cases},$$

则 $f_{\alpha} \in L^1$ 且 $|f| \le |f_{\alpha}| + \frac{\alpha}{2}$. 从而由第二步

$$m(E_{\alpha}) = m(\{x : Mf(x) > \alpha\})$$

$$\leq m(\{x : Mf_{\alpha}(x) > \frac{\alpha}{2}\})$$

$$\leq \frac{2A}{\alpha} \|f_{\alpha}\|_{1} = \frac{2A}{\alpha} \int_{|f| > \frac{\alpha}{2}} |f|.$$

记 $\lambda(\alpha)=m(E_{\alpha})$, 则

$$\begin{split} &\|Mf\|_p^p = -\int_0^\infty \alpha^p \mathrm{d}\lambda(\alpha) = p \int_0^\infty \alpha^{p-1}\lambda(\alpha)\mathrm{d}\alpha \\ &\leq p \int_0^\infty \alpha^{p-1} \frac{2A}{\alpha} \int_{|f| > \frac{\alpha}{2}} |f(x)| \mathrm{d}x \mathrm{d}\alpha \\ &= 2Ap \int_{\mathbb{R}^n} |f(x)| \int_0^{2|f(x)|} \alpha^{p-2} \mathrm{d}\alpha \mathrm{d}x \\ &= 2Ap \int_{\mathbb{R}^n} |f(x)| \cdot \frac{(2|f(x)|)^{p-1}}{p-1} \mathrm{d}x \\ &= 2^p \frac{Ap}{p-1} \|f\|_p^p. \end{split}$$

若 $p = \infty$, 显然有

$$Mf(x) \le ||f||_{\infty} \Longrightarrow ||Mf||_{\infty} \le ||f||_{\infty}.$$

第四步. 设 $f \in L^p(\mathbb{R}^n)$, 1 , 则存在仅与 <math>n 和 p 有关的常数 C_n 使得

$$m(\{x: Mf(x)>\alpha\}) \leq \left(\frac{C_p}{\alpha}\|f\|_p\right)^p, \quad \forall \alpha>0.$$

证明. p=1 的情形由第二步易知, 若 p>1, 由第三步,

$$\left(A_p\|f\|_p\right)^p \geq \|Mf\|_p^p \geq \int_{Mf>\alpha} (Mf)^p \geq \alpha^p m(\{x:Mf(x)>\alpha\}).$$

第五步. 设 $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, 则

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) dy = f(x) \text{ a.e.}$$

证明. 若 $p < \infty$, 记

$$A_r f(x) = \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) dy.$$

给定 $\varepsilon > 0$, 取 $g \in L^p(\mathbb{R}^n) \cap C(\mathbb{R}^n)$ 使得 $\|f - g\|_p < \varepsilon$. 由 g 的连续性可知, 任取 $x \in \mathbb{R}^n$, $\delta > 0$, 存在 r > 0 使得当 |x - y| < r 时都有 $|g(x) - g(y)| < \delta$. 从而

$$|A_r g(x) - g(x)| \le \frac{1}{m(B(x,r))} \int_{B(x,r)} |g(y) - g(x)| y < \delta,$$

令 $r \to 0$ 并由 δ 的任意性知当 $r \to 0$ 时 $A_r g(x) \to g(x)$. 故

$$\begin{aligned} &\limsup_{r \to 0} |A_r f(x) - f(x)| \\ & \leq \limsup_{r \to 0} (|A_r (f - g)(x)| + |A_r g(x) - g(x)| + |g(x) - f(x)|) \\ & \leq M(f - g)(x) + |f - g|(x). \end{aligned}$$

此外由第四步知,

$$\{x: M(f-g)(x)>\alpha\} \leq \left(\frac{C_p}{\alpha}\|f-g\|_p\right)^p \leq \left(\frac{C_p\varepsilon}{\alpha}\right)^p.$$

若记

$$F_{\alpha} = \{x : \limsup_{r \to 0} |A_r f(x) - f(x)| > \alpha \},$$

$$G_{\alpha} = \{x : M(f - g)(x) > \alpha \},$$

$$H_{\alpha} = \{|f - g|(x) > \alpha \},$$

则 $F_{\alpha} \subset G_{\frac{\alpha}{2}} \cup H_{\frac{\alpha}{2}}$. 注意到 $\alpha^p m(H_{\alpha}) \leq \int_{\mathbb{R}^n} |f - g|^p \leq \varepsilon^p$, 从而

$$m(F_\alpha) \leq m(G_\frac{\alpha}{2}) + m(H_\frac{\alpha}{2}) \leq \left(\frac{2C_p\varepsilon}{\alpha}\right)^p + \left(\frac{2\varepsilon}{\alpha}\right)^p.$$

由 ε 的任意性可知, $m(F_\alpha) = 0$, $\alpha > 0$, 此情形得证.

若 $p = \infty$, 任取 $\varepsilon > 0$, 存在 $g \in L^{\infty}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$ 使得 $\|f - g\|_{\infty} < \varepsilon$. 与上一种情形类似的讨论可知,

$$\begin{aligned} &\limsup_{r \to 0} |A_r f(x) - f(x)|| \\ & \leq M(f - g)(x) + |f - g|(x) \\ & \leq ||f - g||_{\infty} + |f - g|(x) \leq \varepsilon + |f - g|(x). \end{aligned}$$

此外, 注意到 $|f-g|(x) \le ||f-g||_{\infty} < \varepsilon$ a.e., 证毕.

第六步. 设 $f \in L^p_{loc}(\mathbb{R}^n)$, $1 \le p \le \infty$, 则

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} f(y) y = f(x) \text{ a.e.}$$

证明. 任取 \mathbb{R}^n 中紧集 K, 存在正整数 N 使得 $K \subset [-N,N]^n$, 则 $f\chi_{[-N,N]^n} \in L^p(\mathbb{R}^n)$. 记 $J_N = \{x : A_r(f\chi_{[-N,N]^n})(x) \to f(x)\}$. 由第五步知, $m(J_N) = 0$, 从而

$$m(\lbrace x: A_r f(x) \not\to f(x)\rbrace) \leq \sum_{N=1}^{\infty} m(J_N) = 0.$$

第七步. 设 $f \in L^p_{loc}(\mathbb{R}^n)$, $1 \le p \le \infty$, 则

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| y = 0 \text{ a.e.}$$

证明. 任取 $c \in \mathbb{Q}$, $|f - c| \in L^p_{loc}(\mathbb{R}^n)$. 由第五步,

$$\lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - c| y = |f(x) - c| \text{ a.e.}$$

记使得上式不成立的点所成集合为 L_c , 则 $m(L_c)=0$, $\forall c\in\mathbb{Q}$. 又记 $L=\bigcup\limits_{c\in\mathbb{Q}}L_c$, 则根据有理数集的可数性知 m(L)=0. 任取 $\varepsilon>0$, 存在 $c\in\mathbb{Q}$ 使得 $|f(x)-c|<\varepsilon$, 故

$$\limsup_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} |f(y) - f(x)| y$$

$$\leq \lim_{r \to 0} \frac{1}{m(B(x,r))} \int_{B(x,r)} (|f(y) - c| + |c - f(x)|) y$$

$$= 2|f(x) - c| \leq 2\varepsilon \text{ a.e.,}$$

最后由 ε 的任意性即得.

附录 B 教材习题答案

B.1 度量空间

B.1.1 压缩映像原理

▶ 题目1.1.1. 证明: 完备度量空间的闭子集是一个完备的子空间,而任一度量空间中的完备子空间必是闭子集.

解答. 设 X 是一个完备度量空间, X_1 是它的子空间. 若 X_1 是闭集, 设 x_n 是 X_1 中的基本列, 则必然收敛于 X 中的点 x, 由闭集定义知 $x \in X_1$, 因此 X_1 中的基本列收敛, X_1 是完备空间.

反之, 若 X_1 是完备的, 设 x_n 为 X_1 中的点列, 收敛于 X 中的点 x, 则当 $n \to \infty$ 时对任意的 p 都有 $\rho(x_n, x_{n+p}) \le \rho(x_n, x) + \rho(x_{n+p}, x) \to 0$, 故 x_n 是基本列.

题目1.1.2. 设 f 是定义在 [a,b] 上的二次连续可微实值函数, $\hat{x} \in (a,b)$ 使得 $f(\hat{x}) = 0$, $f'(\hat{x}) \neq 0$. 求证: 存在 \hat{x} 的邻域 $U(\hat{x})$, 使得 $\forall x_0 \in U(\hat{x})$, 迭代序列

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 $(n = 0, 1, 2, \dots)$

是收敛的,并且

$$\lim_{n\to\infty}x_n=\hat{x}.$$

解答. 令 $\varphi(x) = x - \frac{f(x)}{f'(x)}$,则 $\varphi' = \frac{ff''}{(f')^2}$. 由 $f(\hat{x}) = 0$, $f'(\hat{x}) \neq 0$ 且 f 二次连续可微知存在 r > 0 使得

$$|\varphi(y)|<\frac{1}{2},\quad\forall |y-\hat{y}|\leq\delta.$$

由微分中值定理,

$$|\varphi(x) - \varphi(y)| = |\varphi'(\theta x + (1 - \theta)y)| \cdot |x - y| \le \frac{1}{2}|x - y|, \quad \forall x, y \in [\hat{x} - r, \hat{x} + r].$$

此外, $\forall |x - \hat{x}| \leq r$,

$$|\varphi(x) - \hat{x}| = |\varphi(x) - \varphi(\hat{x})| = |\varphi(\theta x + (1 - \theta)\hat{x})| \cdot |x - \hat{x}| \le |x - \hat{x}| \le r.$$

因此 φ 是度量空间 ([$\hat{x}-r,\hat{x}+r$],|·|) 上的压缩映射, $x_n \to \hat{x}$.

趣目1.1.3. 设 (H, ρ) 是度量空间, 映射 $T: H \to H$ 满足

$$\rho(Tx, Ty) < \rho(x, y) \quad (\forall x \neq y),$$

并已知 T 有不动点, 求证: 此不动点是唯一的.

解答. 设 $x \neq y$ 都是 T 的不动点,则

$$\rho(x, y) = \rho(Tx, Ty) < \rho(x, y),$$

矛盾.

- △ 题目1.1.4. 设 T 是度量空间上的压缩映射, 求证:T 是连续的.
 - 解答. 若 $x_n \to x_0$, 则 $\rho(Tx_n, Tx_0) \le \alpha \rho(x_n, x_0) \to 0$.
- **题目1.1.5.** 设 T 是压缩映射, 求证: T^n 也是压缩映射, 并且说明逆定理不一定成立. **解答.** 若存在 $\alpha \in [0,1]$ 使得对任意的 x,y 都有 $\rho(Tx,Ty) \leq \alpha \rho(x,y)$, 则 $\rho(T^nx,T^ny) \leq \alpha^n \rho(x,y)$, 因此 T^n 也是压缩映射.

反例: 在度量空间
$$(\mathbb{R}^2, \|\cdot\|_{\infty})$$
 中 $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 不是压缩映射, 但 $A^2 = 0$ 是.

题目1.1.6. 设 M 是 (\mathbb{R}^n , ρ) 中的有界闭集, 映射 $T: M \to M$ 满足: $\rho(Tx, Ty) < \rho(x, y)$ ($\forall x, y \in M, x \neq y$). 求证: T 在 M 中存在唯一不动点.

解答. 显然 $\rho(x, Tx)$ 是 M 上的连续函数,则由 M 是 \mathbb{R}^n 中的有界闭集知存在 $x_0 \in M$

使得

$$\rho(x_0, Tx_0) = \inf_{x \in M} \rho(x, Tx).$$

则 x₀ 一定是唯一不动点 (由题目 1.1.3 知不动点至多一个), 否则

$$\rho(x_0, Tx_0) \le \rho(Tx_0, T^2x_0) < \rho(x_0, Tx_0).$$

△ 题目1.1.7. 对于积分方程

$$x(t) - \lambda \int_0^1 e^{t-s} x(s) ds = y(t),$$

其中 $y(t) \in C[0,1]$ 为一给定函数, λ 为常数, $|\lambda| < 1$, 求证: 存在唯一解 $x(t) \in C[0,1]$.

解答. 记 $Tx(t) = y(t) + \lambda \int_0^1 e^{t-s} x(s) ds$. 在 C[0,1] 上定义度量

$$\rho(x_1, x_2) = \sup_{t \in [0, 1]} e^{-t} |x_1(t) - x_2(t)|, \quad \forall x_1, x_2 \in C[0, 1].$$

任取 $x_1 \neq x_2 \in C[0,1]$, 则

$$\rho(Tx_1, Tx_2) = \sup_{t \in [0,1]} |\lambda \int_0^1 e^{-s} (x_1(s) - x_2(s)) ds| \le |\lambda| \rho(x_1, x_2),$$

因此 $T \in C[0,1]$ 上的压缩映射,有唯一不动点 $x \in C[0,1]$,也就是积分方程的唯一解.

B.1.2 完备化

▲ **题**目1.2.1. 令 S 为一切实 (或复) 数列

$$x = (\xi_1, \cdots, \xi_n, \cdots)$$

组成的集合,在8中定义距离为

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|},$$

其中 $x = (\xi_1, \dots), y = (\eta_1, \dots)$. 求证: S 为一个完备的度量空间.

解答. ρ 显然满足正定性和对称性, 三角不等式由

$$\frac{x+y}{1+x+y} \le \frac{x}{1+x} + \frac{y}{1+y}, \quad \forall x, y \ge 0$$

立即得到.

下面证明完备性: 设 $x^{(n)}$ 是 S 中的一个基本列, 则对任意的 k 都有

$$\lim_{m,n\to\infty} \frac{1}{2^k} \cdot \frac{|x_k^{(m)} - x_k^{(n)}|}{1 + |x_k^{(m)} - x_k^{(n)}|} \le \lim_{m,n\to\infty} \rho(x^{(m)}, x^{(n)}) = 0,$$

因此不难得出对每个 k, $\{x_k^{(n)}\}$ 都是 $\mathbb{R}(\mathbb{C})$ 中的基本列, 从而收敛于 x_k . 记 $x=(x_1,x_2,\cdots)$, 只需证明 $x^{(n)}\to x$. 任取 $\varepsilon>0$, 存在 m 使得 $\sum_{1}^{m}\frac{1}{2^k}<\varepsilon$. 并且存在 N 使得当 n>N 时都有

$$|x_k^{(n)} - x_k| \le \varepsilon, \quad 1 \le k < m.$$

从而

$$\rho(x^{(n)}, x) = \sum_{k < m} \frac{1}{2^k} \cdot \frac{|x_k^{(n)} - x_k|}{1 + |x_k^{(n)} - x_k|} + \sum_{k \ge m} \frac{1}{2^k} \cdot \frac{|x_k^{(n)} - x_k|}{1 + |x_k^{(n)} - x_k|}$$

$$\leq \sum_{k < m} \frac{|x_k^{(n)} - x_k|}{2^k} + \sum_{k \ge m} \frac{1}{2^k} \leq 2\varepsilon,$$

因此 $x^{(n)} \rightarrow x$.

► **题目1.2.2**. 在一个度量空间 (*X*, ρ) 上, 求证: 基本列是收敛列, 当且仅当存在一串收敛子列.

解答. 只需证充分性. 设 $\{x_n\}$ 是基本列, 且有收敛于 x 的子列 $\{x_{n_k}\}$, 则

$$\rho(x_k,x) \le \rho(x_{n_k},x_k) + \rho(x_{n_k},x) \to 0, \quad k \to \infty,$$

 x_n 也收敛到 x.

△ 题目1.2.3. 设F是只有有限项不为0的实数列全体,在F上引进距离

$$\rho(x, y) = \sup_{k \ge 1} |\xi_k - \eta_k|,$$

其中 $x = \{\xi_k\} \in F, y = \{\eta_k\} \in F,$ 求证: (F, ρ) 不完备, 并指出它的完备化空间.

解答. 反例: 令
$$x^{(k)} = \{1, \frac{1}{2}, \dots, \frac{1}{k}, 0, 0, \dots\}$$
, 则 $x^{(k)} \to \{\frac{1}{n}\}_{1}^{\infty} \notin F$.

F 的完备化空间是所有收敛于 0 的实数列全体 M. 设 (F_1, ρ_1) 为 (F, ρ) 中的基本列等价类组成的完备化空间, 下面证明 (F_1, ρ_1) 与 (M, ρ) 等距同构. 构造映射 $\sigma: M \to F_1$. 设 $\{x_n\} \in M$, 记 $x^{(k)} = \{x_1, \cdots, x_k, 0, \cdots\}$, 则

$$\rho(x^{(k)}, x^{(k+p)}) = \sup_{k+1 \le n \le k+p} |x_n| \to 0, \quad k \to \infty, \forall p,$$

因此 $x^{(k)}$ 为 F 中的基本列. 令 $\sigma(\{x_n\}) = \{x^{(k)}\} \in M$, 则

$$\begin{split} & \rho_1(\sigma(\{x_n\}), \sigma(\{y_n\})) = \rho_1(\{x^{(k)}\}, \{y^{(k)}\}) = \lim_{k \to \infty} \rho(x^{(k)}, y^{(k)}) \\ &= \lim_{k \to \infty} \sup_{1 \le n \le k} |x_n - y_n| = \sup_{n \ge 1} |x_n - y_n| = \rho(\{x_n\}, \{y_n\}), \quad \forall \{x_n\}, \{y_n\} \in M, \end{split}$$

并且显然 σ 是满射, 因此 σ 是一个等距同构映射, M 和 F 等距同构.

▲ 题目1.2.4. 求证: [0,1] 上的多项式全体按距离

$$\rho(p,q) = \int_0^1 |p(x) - q(x)| dx, \quad p, q \in P[0,1]$$

是不完备的,并指出它的完备化空间.

解答. 由 Weierstrass 逼近定理, 任取 $f \in C[0,1]$, 存在 $p_n \in P[0,1]$ 在 [0,1] 上一致收敛 到 f, 从而按 ρ 收敛到 f, 从而 $(P[0,1], \rho)$ 不完备.

P[0,1] 的完备化空间为 $L^{1}[0,1]$.

首先证明 $L^1[0,1]$ 是完备的. 设 $\{f_n\}$ 为 $L^1[0,1]$ 中的基本列,则由 Chebyshev 不 等式知 $\{f_n\}$ 依测度 Cauchy,从而在紧集 [0,1] 上 $\{f_n\}$ 几乎处处收敛到 f. 由于 f_n 为

基本列, 存在 N 使得 n > N 时

$$\int_0^1 |f_n - f_N| \le 1 \implies \int_0^1 |f_n| \le \int_0^1 |f_n - f_N| + \int_0^1 |f_N| \le 1 + \int_0^1 |f_N|, \forall n > N.$$

故根据 Fatou 引理

$$\int_0^1 |f| \leq \liminf_{n \to \infty} \int_0^1 |f_n| < \infty \implies f \in L^1[0,1].$$

从而从某项开始 $|f_n| \le 2|f|$ 且 $2|f| \in L^1[0,1]$, 由 Lebesgue 控制收敛定理,

$$\rho(f, f_n) = \int_0^1 |f - f_n| \to 0 \implies f_n \to f \in L^1[0, 1],$$

因此 $L^1[0,1]$ 是完备的.

下面证明 P[0,1] 在 $L^1[0,1]$ 中稠密. 事实上由于 P[0,1] 在 C[0,1] 中稠密, 只需证明 C[0,1] 在 $L^1[0,1]$ 上稠密. 设 $f \in L^1[0,1]$. 则必有 $\|f\|_{\infty} = \inf\{\alpha \geq 0 : m(\{|f| > \alpha\}) = 0\} < \infty$. 由 Lusin 定理, 存在 $g \in C[0,1]$ 和闭集 $F \subset [0,1]$ 满足 $m([0,1] \setminus F) < \frac{\varepsilon}{2\|f\|_{\infty}}$, 使得 $g|_F = f|_F$ 并且 $g(x) \leq f(x), \forall x \in [0,1]$. 故

$$\rho(f,g) = \int_0^1 |f - g| = \int_{[0,1] \setminus F} |f - g| \le \frac{\varepsilon}{2 \|f\|_{\infty}} \cdot 2 \|f\|_{\infty} = \varepsilon,$$

从而 C[0,1] 在 $L^1[0,1]$ 中稠密.

题目1.2.5. 在完备度量空间 (X, ρ) 中给定点列 $\{x_n\}$, 如果 $\forall \varepsilon > 0$, 存在基本列 $\{y_n\}$, 使

$$\rho(x_n, y_n) < \varepsilon, \quad \forall n \in \mathbb{N},$$

求证: $\{x_n\}$ 收敛.

解答. 任取 $\varepsilon > 0$, 存在基本列 $\{y_n\}$ 使得 $\rho(x_n, y_n) < \varepsilon, \forall n$. 从而

$$\rho(x_m, x_n) \le \rho(x_m, y_m) + \rho(y_m, y_n) + \rho(y_n, x_n) \le 2\varepsilon + \rho(y_m, y_n),$$

在上式中令 $m, n \to \infty$, 再由 ε 的任意性知 x_n 是基本列, 从而收敛.

B.1.3 列紧集

题目1.3.1. 在完备的度量空间中求证: 子集 A 列紧的充要条件是对 $\forall \varepsilon > 0$, 存在 A 的 列紧的 ε 网.

解答. 充分性显然, 下面证明必要性: 设 $\{x_n\}$ 为 A 中的点集. 在 A 的列紧的 1 网中存在点列 $\{y_n\}$ 使得 $\rho(x_n,y_n) < 1$, $\forall n$, 根据列紧性可知有子列 $\{y_n^{(1)}\}$ 收敛于 $y^{(1)}$, 因此从某项开始 (不妨设是第一项) 都有 $\rho(y_n^{(1)},y^{(1)}) \le 1$. 从而

$$\rho(x_n^{(1)},y^{(1)}) \leq \rho(x_n^{(1)},y_n^{(1)}) + \rho(y_n^{(1)},y^{(1)}) \leq 1+1 = 2, \forall n.$$

如此递归可以得到

$$\rho(x_n^{(k)}, y^{(k)}) \le \frac{2}{k}, \forall k.$$

从而

$$\rho(x_{n+p}^{(n+p)},x_n^{(n)}) \leq \rho(x_{n+p}^{(n+p)},y^{(n)}) + \rho(y^{(n)},x_n^{(n)}) \leq \frac{4}{n} \to 0,$$

 $\{x_n^{(n)}\}$ 是基本列, 根据完备性知也是收敛列.

▲ **题目1.3.2**. 在度量空间中求证: 紧集上的连续函数必是有界的, 并且达到它的上下确界.

解答. 设 (X, ρ) 是度量空间,M 是 X 的紧子集, $f: M \to \mathbb{R}$ 连续. 任取 f(M) 中的点列 $\{f(x_n)\}$, 存在 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 收敛到 M 中的点 x, 从而根据函数的连续性, $\{f_{n_k}\}$ 收敛到 u(M) 中的点 f(x), 故 f(M) 也是紧的, 因此是有界闭集. 记

$$m = \inf_{x \in M} f(x),$$

由于 f(M) 有界, 因此 $m \in \mathbb{R}$, 存在 M 中的点列 $\{y_n\}$ 使得 $f(y_n) \to m$, 从而存在子列 $\{y_{n_k}\}$ 收敛于 M 中的点 y, 且 $f(y) = \lim_k f(y_{n_k}) = m$. 令 g = -f, 则 g 的下确界也能取 到, 也就是 f 上确界能够达到.

▲ 题目1.3.3. 在度量空间中求证: 完全有界的集合是有界的, 并通过 l^2 的子集 $E = \{e_k\}_{+}^{\infty}$,

其中

$$e_k = \{\underbrace{0,0,\cdots,0,1}_{k},0,\cdots\},$$

来说明一个集合可以是有界但不完全有界的.

解答. 设 (X,ρ) 为度量空间, $A \in X$ 的一个完全有界子集, 则存在点 x_1,\dots,x_n 使得

$$A \subset \bigcup_{k=1}^{n} B(x_k, 1) \implies A \subset B(x_1, R+1), R = \max_{2 \le k \le n} \rho(x_k, x_1),$$

故 A 有界.

在 l^2 中显然有 $\rho(e_k,0)=1, \forall k$, 因此 E 是有界的. 但是 $\rho(e_m,e_n)=\sqrt{2}, \forall m\neq n$, 因此不可能存在有穷的 $\frac{1}{2}$ 网, E 不是完全有界的.

题目1.3.4. 设 (X, ρ) 是度量空间, F_1, F_2 是它的两个紧子集, 求证: 存在 $x_i \in F_i (i = 1, 2)$ 使得 $\rho(F_1, F_2) = \rho(x_1, x_2)$, 其中

$$\rho(F_1, F_2) \stackrel{\Delta}{=} \inf \{ \rho(x, y) \mid x \in F_1, y \in F_2 \}.$$

解答. 任取 $x \in F_1, y \in F_2$, $\rho(F_1, F_2) \le \rho(x, y) < \infty$, 因此该定义有意义. 存在 $\{u_n\} \subset F_1, \{v_n\} \subset F_2$, 使得 $\rho(u_n, \rho v_n) - \rho(F_1, F_2) \le \frac{1}{n}, \forall n$. 根据 F_1, F_2 的紧性, 存在子列 $\{u_{n_k}\}$ 收敛于 $x_1 \in F_1$, 存在子列的子列 $\{v_{n_{k_i}}\}$ 收敛于 $x_2 \in F_2$, 故

$$\rho(x_1,x_2) - \rho(F_1,F_2) \leq \rho(x_1,u_{n_{k_i}}) + \rho(u_{n_{k_i}}), v_{n_{k_i}}) + \rho(v_{n_{k_i}},x_2) \to 0 \\ (j \to \infty),$$

因此 $\rho(x_1, x_2) = \rho(F_1, F_2)$.

△ 题目1.3.5. 设 M 是 C[a,b] 中的有界集, 求证: 集合

$$E = \left\{ F(x) = \int_{a}^{x} f(t) dt : f \in M \right\}$$

是列紧集.

解答. 设 $|f(t)| \le M_1, \forall f \in M, t \in [a, b],$ 则

$$|F(x)| = |\int_{a}^{x} f(t)dt| \le (b-a)M_1, \forall F \in E, x \in [a,b],$$

从而 E 是一致有界的. 此外,

$$|F(x) - F(y)| \le |\int_{x}^{y} |f(t)| dt| \le M_1 |x - y|,$$

因此 E 还是等度连续的, 根据 Arzeta-Ascoli 定理, E 是列紧集.

▲ **题目1.3.6.** 设 $E = \{\sin nt\}_{1}^{\infty}$, 求证 E 在 $C[0,\pi]$ 中不是列紧的.

解答. 考虑 E 的点列 $\{\sin 10^n t\}_1^\infty$, 其中任意两点间的距离

$$\begin{split} \rho(\sin 10^{n+p} t, \sin 10^n t) &= \sup_{t \in [0, \pi]} |\sin 10^{n+p} t, \sin 10^n t| \\ &= 2 \sup_{t \in [0, \pi]} |\cos \frac{10^{n+p} + 10^n}{2} t| \cdot |\sin \frac{10^{n+p} - 10^n}{2} t| \\ &\geq \sqrt{2} |\cos \frac{1 + 10^{-p}}{1 - 10^{-p}} \cdot \frac{\pi}{4}| \geq \frac{1}{2}, \end{split}$$

因此不存在收敛子列, E 不是列紧的.

题目1.3.7. 求证: S 空间的子集 A 列紧的充要条件是: $\forall n$, 存在 $C_n > 0$ 使得 $|x_n| \le C_n, \forall x \in A$.

解答. 必要性: 反设存在 $\{x^{(k)}\}\subset A$ 使得 $|x_n^{(k)}|\geq k, \forall k.$ $\{x^{(k)}\}$ 的子列 $\{x^{(k_j)}\}$ 收敛于 x,则 $\{x_n^{(k_j)}\}$ 收敛于 x_n ,但 $\{x_n^{(k_j)}\}$ 是无界的,矛盾.

充分性: 对于 A 中的点列 $\{x^{(k)}\}$, 由于 $\{x_1^{(k)}\}$ 是有界的, 因此有收敛于 x_1 的子列 $\{x_1^{(k)(1)}\}$, 以此递归可知有收敛于 x_n 的子列 $\{x_n^{(k)(n)}\}$. 任取 $\varepsilon > 0$, 存在 m 使得 $\sum_{n \geq m} 2^{-n} < \frac{\varepsilon}{2}$. 存在 N_n 使得当 $k \geq N_n$ 时有

$$|x_n^{(k)(n)} - x_n| \le \frac{\varepsilon}{2}.$$

$$\rho(x, x^{(n)(n)}) \le \sum_{n \le m} 2^{-n} \frac{|x_n^{(n)(n)} - x_n|}{1 + |x_n^{(n)(n)} - x_n|} + \sum_{n > m} 2^{-n}$$
$$\le \sum_{n \le m} 2^{-n} \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon,$$

因此 $\{x^{(n)(n)}\}$ 收敛于 x.

▲ **题目1.3.8**. 设 (X,ρ) 是度量空间, $M \in X$ 中的列紧集, 映射 $f: X \to M$ 满足

$$\rho(f(x_1), f(x_2)) < \rho(x_1, x_2), \quad \forall x_1, x_2 \in X, x_1 \neq x_2.$$

求证: f 在 X 中存在唯一的不动点.

解答. 注意到

$$|\rho(x, f(x)) - \rho(y, f(y))| \le \rho(x, y) + \rho(f(x), f(y)) \le 2\rho(x, y), \quad \forall x, y \in X, x \ne y,$$

因此 $\rho(x, f(x))$ 为连续函数, 记 $d = \inf_{x \in M} \rho(x, f(x)) < \infty$, 存在 $x_0 \in X$ 使得 $d = \rho(x_0, f(x_0))$. x_0 必然是 f 的不动点, 否则若 $f(x_0) \neq x_0$, 则

$$d \le \rho(f(x_0), f^2(x_0)) < \rho(x_0, f(x_0)) = d$$

矛盾. 又设 y 是 f 在 X 中不同于 x_0 的不动点,则

$$\rho(x, y) = \rho(f(x), f(y)) < f(x, y),$$

矛盾.

题目1.3.9. 设 (M, ρ) 是一个紧度量空间, 又 $E \subset C(M)$, E 中的函数一致有界并满足下列 Holder 条件:

$$|x(t_1) - x(t_2)| \le C\rho(t_1, t_2)^{\alpha}, \quad \forall x \in E, \forall t_1, t_2 \in M,$$

其中 $0 < \alpha \le 1$, C > 0. 求证: $E \times C(M)$ 中是列紧集.

解答. 只需证 E 等度连续. 任取 $\varepsilon > 0$, 当 $\rho(t_1, t_2) < \left(\frac{\varepsilon}{C}\right)^{\frac{1}{\alpha}}$ 且 $t_1, t_2 \in M$ 时有

$$|x(t_1) - x(t_2)| \le C\rho(t_1, t_2)^{\alpha} < \varepsilon, \quad \forall x \in E,$$

因此 E 等度连续.

B.1.4 赋范线性空间

题目1.4.1. 在二维空间 \mathbb{R}^2 中, 对每一点 z = (x, y), 今

$$||z||_1 = |x| + |y|; ||z||_2 = \sqrt{x^2 + y^2};$$

$$||z||_3 = \max(|x|, |y|); ||z||_4 = (x^4 + y^4)^{\frac{1}{4}}.$$

- (1) 求证 $\|\cdot\|_i (i = 1, 2, 3, 4)$ 都是 \mathbb{R}^2 的范数.
- (2) 画出 $(\mathbb{R}^2, \|\cdot\|_i)$ (i = 1, 2, 3, 4) 各空间中的单位球面图形.
- (3) 在 \mathbb{R}^2 中取定三点 O = (0,0), A = (1,0), B = (0,1), 试在上述四种不同范数下求出 ΔOAB 三边的长度.

解答. (1) 正定性和齐次性均显然满足, 只需验证三角不等式, 由 Minkowski 不等式可知,

$$(|x_1 + x_2|^p + |y_1 + y_2|^p)^{\frac{1}{p}} \le (|x_1|^p + |y_1|^p)^{\frac{1}{p}} + (|x_2|^p + |y_2|^p)^{\frac{1}{p}},$$

因此 $\|\cdot\|_i$ (i=1,2,4) 满足三角不等式. 对 $\|\cdot\|_3$, 有

$$||z_1 + z_2||_3 = \max(|x_1 + x_2|, |y_1 + y_2|)$$

 $\leq \max(|x_1|, |y_1|) + \max(|x_2|, |y_2|) = ||z_1||_3 + ||z_2||_3.$

因此 $\|\cdot\|_i$ (i=1,2,3,4) 均为范数.

(2) 四个范数的单位球面如下图:

(3)

$$\|OA\|_1 = 1$$
, $\|OB\|_1 = 1$, $\|AB\|_1 = 2$, $\|OA\|_2 = 1$, $\|OB\|_2 = 1$, $\|AB\|_2 = \sqrt{2}$, $\|OA\|_3 = 1$, $\|OB\|_3 = 1$, $\|AB\|_3 = 1$, $\|OA\|_4 = 1$, $\|OB\|_4 = 1$, $\|AB\|_4 = \sqrt[4]{2}$.

- **题目1.4.2.** 令 $\|x\| = \sup_{x \in \mathcal{X}} |x(t)|, \forall x \in C(0,1]$. 求证:
 - (1) ||·|| 是 C(0,1] 上的范数;
 - (2) l^{∞} 与 C(0,1] 的一个子空间等距同构.

解答.

- (1) 直接根据定义验证即可.
- (2) 构造映射

$$\sigma: l^{\infty} \to C(0,1], \{x_n\} \mapsto x,$$

其中 x 满足 $x(\frac{1}{n})=x_n, \forall n$,并且 $\|x\|=\|\{x_n\}\|_{\infty}$ (根据 Tietz 延拓定理, 这样的 x 必然存在).

▲ 题目1.4.3. 在 C¹[a, b] 中令

$$||f||_1 = \sqrt{\int_a^b (|f|^2 + |f'|^2) dx}, \quad \forall f \in C^1[a, b],$$

- (1) 求证 $\|\cdot\|_1$ 是 $C^1[a,b]$ 上的范数.
- (2) 问 $(C^1[a,b], \|\cdot\|_1)$ 是否完备?

解答.

(1) 齐次性和正定性显然成立,对于三角不等式,有

$$\begin{split} &\|f+g\|_1^2 = \int_a^b (|f+g|^2 + |f'+g'|^2) \mathrm{d}x \\ & \leq \int_a^b (|f|^2 + |f'|^2) \mathrm{d}x + 2 \int_a^b (|fg| + |f'g'|) \mathrm{d}x + \int_a^b (|g|^2 + |g'|^2) \mathrm{d}x \\ & \leq \int_a^b (|f|^2 + |f'|^2) \mathrm{d}x + 2 \sqrt{\int_a^b (|f|^2 + |f'|^2) \mathrm{d}x} \sqrt{\int_a^b (|g|^2 + |g'|^2) \mathrm{d}x} \\ & + \int_a^b (|g|^2 + |g'|^2) \mathrm{d}x \\ & + \int_a^b (|f|^2 + |f'|^2) \mathrm{d}x + \sqrt{\int_a^b (|g|^2 + |g'|^2) \mathrm{d}x} \right)^2 = (\|f\|_1 + \|g\|_1)^2. \end{split}$$

(2) 不完备, 若令

$$f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}, \quad f(x) = |x|, \quad -1 \le x \le 1.$$

则

$$|f_n(x) - f(x)| = \frac{1}{n^2 \left(\sqrt{x^2 + \frac{1}{n^2}} + x^2\right)} \le \frac{1}{n},$$

$$|f'_n(x) - f'(x)| = \frac{1}{n^2 \sqrt{x^2 + \frac{1}{n^2}} \left(\sqrt{x^2 + \frac{1}{n^2}} + x^2\right)} \le \frac{1}{n} \cdot \frac{1}{\sqrt{x^2 + \frac{1}{n^2}}}.$$

故

$$\|f - f_n\|_1^2 \le \int_{-1}^1 \left(\frac{1}{n^2} + \frac{1}{n^2} \cdot \frac{1}{x^2 + \frac{1}{n^2}} \right) \mathrm{d}x = \frac{2}{n^2} + \frac{2 \arctan n}{n} \le \frac{2}{n^2} + \frac{\pi}{n} \to 0,$$

因此 $f_n \rightarrow f$, 但 $f \notin C^1[-1,1]$.

▲ 题目1.4.4. 在 C[0,1] 中, 对每一个 f ∈ C[0,1], 令

$$||f||_1 = \sqrt{\int_0^1 |f(x)|^2 dx}, \quad ||f||_2 = \sqrt{\int_0^1 (1+x)|f(x)|^2 dx},$$

求证: $\|\cdot\|_1$ 和 $\|\cdot\|_2$ 是 C[0,1] 中的两个等价范数.

解答. 由 $1 \le 1 + x \le 2, \forall x \in [0,1]$ 可得 $||f||_1 \le ||f||_2 \le \sqrt{2}||f||_1$.

题目1.4.5. 设 $BC[0,\infty)$ 表示 $[0,\infty)$ 上连续且有界的函数 f(x) 全体, 对每个 $f \in BC[0,\infty)$ 及 a>0, 定义

$$||f||_1 = \sqrt{\int_0^\infty e^{-ax} |f(x)|^2 dx}.$$

- (1) 求证 $\|\cdot\|_a$ 是 $BC[0,\infty)$ 上的范数.
- (2) 若 $a,b>0,a\neq 0$, 求证 $\|\cdot\|_a$ 与 $\|\cdot\|_b$ 作为 $BC[0,\infty)$ 上的范数是不等价的.

解答.

- (1) 齐次性和正定性显然易见, 三角不等式由 Cauchy 不等式推得.
- (2) 不妨设 a < b, 令 $f_n(x) = e^{ax/2}\chi_{[0,n]}(x) + e^{an/2}(n+1-x)\chi_{(n,n+1)}(x) \in BC[0,\infty)$. 并且

$$\frac{\|f_n\|_a^2}{\|f_n\|_b^2} \ge (b-a)n,$$

因此 ||·||_a 和 ||·||_b 不等价.

题目1.4.6. 设 X_1, X_2 是两个 B^* 空间, 在 $X = X_1 \times X_2$ 上赋以范数

 $||x|| = \max(||x_1||_1, ||x_2||_2), \quad \forall x = (x_1, x_2), x_i \in X_i, ||\cdot||_i \not = X_i \perp \text{的范数 } (i = 1, 2).$

求证: 如果 X_1, X_2 是 B 空间, 那么 X 也是 B 空间.

解答. 设 $\{x^{(n)}\}$ 为 X 上的 Cauchy 列, 则

$$\|x_i^{(n)} - x_i^{(m)}\|_i \le \|x^{(n)} - x^{(m)}\| \to 0, \quad n, m \to \infty (i = 1, 2),$$

因此 $\{x_i^{(n)}\}$ 为 X_i 中的 Cauchy 列, 收敛于 $x_i \in X_i$. 令 $x = (x_1, x_2)$, 则

$$||x^{(n)} - x|| \le ||x_1^{(n)} - x_1||_1 + ||x_2^{(n)} - x_2||_2,$$

在上式中令 $n \to \infty$ 即可.

题目1.4.7. 设 X 是 B^* 空间. 求证:X 是 B 空间, 必须且仅需对 $\forall \{x_n\}_1^\infty \subset X$, $\sum\limits_{n=1}^\infty \|x_n\| < \infty$

$$\implies \sum_{n=1}^{\infty} x_n \, \psi \, \hat{\otimes} .$$

解答. 必要性: 设 $\{x_n\}$ 满足 $\sum_{n=1}^{\infty} \|x_n\| < \infty$, 则

$$\|\sum_{k=1}^{n+p} x_k - \sum_{k=1}^{n} x_k\| \le \sum_{k=n+1}^{n+p} \|x_k\| \to 0, \quad n \to \infty, \forall p,$$

根据完备性有 $\sum_{n=1}^{\infty} x_n$ 收敛.

充分性: 设 $\{x_n\}$ 是一个基本列,则存在子列 $\{x_{n_k}\}$ 满足

$$||x_{n_{k+1}} - x_{n_k}|| < \frac{1}{2^k}, \quad \forall k.$$

由

$$\sum_{k=1}^{\infty} \|x_{n_{k+1}} - x_{n_k}\| \le \sum_{k=1}^{\infty} \frac{1}{2^k} = 1 < \infty$$

可知, 存在 $y = \sum_{k=1}^{\infty} (x_{n_{k+1}} - x_{n_k})$, 也即 $x = y + x_{n_1} = \lim_{k \to \infty} x_{n_k}$, 因此 $\{x_{n_k}\}$ 收敛, 根据基本列的性质, $\{x_n\}$ 也收敛.

题目1.4.8. 记 [a,b] 上次数不超过 n 的多项式全体为 \mathbb{P}_n . 求证: $\forall f(x) \in C[a,b]$, $\exists P_0(x) \in \mathbb{P}_n$, 使得

$$\max_{a \le x \le b} |f(x) - P_0(x)| = \min_{P \in \mathbb{P}_n} \max_{a \le x \le b} |f(x) - P(x)|.$$

也就是说, 如果用所有次数不超过 n 的多项式对 f(x) 一致逼近, 那么 $P_0(x)$ 是最佳的.

解答. 由于 $\mathbb{P}_n = \text{span}\{1, x, \dots, x^n\}$, 因此 \mathbb{P}_n 是有限维线性子空间, 最佳逼近元必存在.

▲ 题目1.4.9. 在 \mathbb{R}^2 中, 对 $\forall x = (x_1, x_2) \in \mathbb{R}^2$, 定义范数

$$||x|| = \max(|x_1|, |x_2|),$$

并设 $e_1 = (1,0), x_0 = (0,1)$. 求 $a \in \mathbb{R}$ 适合

$$||x_0 - ae_1|| = \min_{\lambda \in \mathbb{R}} ||x_0 - \lambda e_1||,$$

并问这样的 a 是否唯一? 请对结果做出几何解释.

解答. 注意到

$$\min_{\lambda \in \mathbb{R}} \|x_0 - \lambda e_1\| = \min_{\lambda \in \mathbb{R}} \max(1, |\lambda|) = 1,$$

因此当 $|a| \le 1$ 时是最小逼近元,不唯一. 从 (\mathbb{R}^2 , $\|\cdot\|$) 中单位球面的图像 (见题目1.5.5的 $\|\cdot\|_3$) 不难看出,正方形两个相邻顶点的中点仍在单位球面上,因此该赋范空间不是严格凸的,从而最佳逼近元不一定唯一.

▲ 题目1.4.10. 求证: 范数的严格凸性等价于下列条件:

$$||x + y|| = ||x|| + ||y|| (\forall x \neq 0, y \neq 0) \implies x = cy (c > 0).$$

解答. 必要性: 设 $\|x+y\| = \|x\| + \|y\|$, 则必有 $\frac{x}{\|x\|} = \frac{y}{\|y\|}$, 否则,

$$1 = \frac{\|x + y\|}{\|x\| + \|y\|} = \left\| \frac{\|x\|}{\|x\| + \|y\|} \cdot \frac{x}{\|x\|} + \frac{\|y\|}{\|x\| + \|y\|} \cdot \frac{y}{\|y\|} \right\| < 1,$$

矛盾.

充分性: 设 $\|x\| = \|y\| = 1$ 且 $x \neq y$, 若存在 $0 < \alpha < 1$ 使得 $\|\alpha x + (1 - \alpha)y\| = 1$ (该 范数不可能大于 1), 则 $\|\alpha x + (1 - \alpha)y\| = \|\alpha x\| + \|(1 - \alpha)y\| \implies \alpha x = c(1 - \alpha)y$ (c > 0) $\implies x = y$, 矛盾.

趣目1.4.11. 设 X 是赋范线性空间, 函数 $\varphi: X \to \mathbb{R}$ 称为凸的, 如果不等式

$$\varphi(\lambda x + (1 - \lambda)y) \le \lambda \varphi(x) + (1 - \lambda)\varphi(y) \quad (\forall 0 \le \lambda \le 1)$$

成立. 求证: 凸函数的局部极小值必然是全空间极小值.

解答. 设 $x_0 \in X$ 和 r > 0 满足 $\varphi(x) \ge \varphi(x_0), \forall \|x - x_0\| \le r$. 若 x_0 不是全局极小点, 也即

存在 $x_1 \in X$ 使得 $\varphi(x_1) < \varphi(x_0)$, 则

$$\begin{split} & \left\| x_0 - \left(\frac{r}{\|x_1 - x_0\|} x_1 + \left(1 - \frac{r}{\|x_1 - x_0\|} \right) x_0 \right) \right\| \le r \\ \Longrightarrow & \varphi(x_0) \le \varphi \left(\frac{r}{\|x_1 - x_0\|} x_1 + \left(1 - \frac{r}{\|x_1 - x_0\|} \right) x_0 \right) \\ & \le \frac{r}{\|x_1 - x_0\|} \varphi(x_1) + \left(1 - \frac{r}{\|x_1 - x_0\|} \right) \varphi(x_0) < \varphi(x_0), \end{split}$$

矛盾.

题目1.4.12. 设 $(X, \|\cdot\|)$ 是一赋范线性空间, $M \in X$ 的有限维子空间, $\{e_1, \dots, e_n\}$ 是 M 的一组基, 给定 $g \in X$, 引进函数 $F: \mathbb{K}^n \to \mathbb{R}$, 对 $\forall c = (c_1, \dots, c_n) \in \mathbb{K}^n$ 规定

$$F(c) = F(c_1, \dots, c_n) = \| \sum_{i=1}^n c_i e_i - g \|.$$

- (1) 求证: F是一个凸函数.
- (2) 若 F(c) 的最小值点是 $c = (c_1, \dots, c_n)$, 求证:

$$f \stackrel{\Delta}{=} \sum_{i=1}^{n} c_i e_i$$

给出 g 在 M 中的最佳逼近元.

解答.

(1) 任取 $a,b \in \mathbb{K}^n, \lambda \in [0,1]$, 有

$$F(\lambda a_i + (1 - \lambda)b_i) = \left\| \sum_{i=1}^n (\lambda a + (1 - \lambda)b)e_i - g \right\|$$

$$= \left\| \lambda \left(\sum_{i=1}^n a_i e_i - g \right) + (1 - \lambda) \left(\sum_{i=1}^n b_i e_i - g \right) \right\|$$

$$\leq \lambda F(a) + (1 - \lambda)b.$$

趣目1.4.13. 设 X 是 B^* 空间, X_0 是 X 的线性子空间, 假定 ∃c ∈ (0,1), 使得

$$\inf_{x \in X_0} \|y - x\| \le c \|y\| \quad (\forall y \in X).$$

求证: X₀ 在 X 中稠密.

解答. 任取 $x \in X$, 存在 $x_1 \in X_0$ 使得 $\|x - x_1\| \le \left(\frac{c+1}{2}\right)\|x\|$, 如此递归, 存在 x_1, \dots, x_n , 使

$$\left\| x - \sum_{k=1}^{n} x_k \right\| \le \left(\frac{c+1}{2} \right)^n \|x\| \to 0,$$

因此 $\{x_1 + \cdots + x_n\} \subset X_0$ 并收敛于 x, 从而 X_0 在 X 中稠密.

△ **题目1.4.14**. 设 C_0 表示以 0 为极限的实数全体, 并在 C_0 中赋以范数

$$||x|| = \max_{n>1} |\xi_n| \quad (\forall x = (x_1, \dots, x_n) \in C_0).$$

又设
$$M \stackrel{\Delta}{=\!\!\!=} \left\{ x = \{\xi_n\}_1^\infty \in C_0 : \sum_{n=1}^\infty \frac{\xi_n}{2^n} = 0 \right\}.$$

- (1) 求证: $M \in C_0$ 的闭线性子空间
- (2) 设 $x_0 = (2,0,0,\cdots)$, 求证:

$$\inf_{z \in M} \|x_0 - z\| = 1,$$

但 $\forall y \in M$ 有 $\|x_0 - y\| > 1$.

解答.

(1) 设 $\{x^{(k)}\}\subset M$ 目 $x^{(k)}\to x\in C_0$. 则

$$\left| \sum_{n=1}^{\infty} \frac{x_n}{2^n} \right| \le \left| \sum_{n=1}^{\infty} \frac{x_n^{(k)}}{2^n} \right| + \left| \sum_{n=1}^{\infty} \frac{\left| x_n^{(k)} - x_n \right|}{2^n} \right| \le \left\| x - x^{(k)} \right\| \to 0,$$

令 $k \rightarrow 0$, 得 $x \in M$, 从而 M 是闭的. M 为线性子空间根据定义易得.

(2) 若存在 $y \in M$ 使得 $||x_0 - y|| \le 1$, 则 $|y_1| \ge 1$, $|y_n| \le 1$, $\forall n \ge 2$. 而 $\lim_{n \to \infty} y_n = 0$, 因此 $|y_n|$ 必然从某项开始小于 $\frac{1}{2}$, 从而

$$\sum_{n=1}^{\infty} \frac{y_n}{2^n} = 0 \implies \frac{1}{2} \le \left| \frac{y_1}{2} \right| = \left| \sum_{n=2}^{\infty} \frac{y_n}{2^n} \right| < \frac{1}{2},$$

矛盾, 因此 $||x_0 - y|| > 1$, $\forall y \in M$. 下面证明 $\inf_{z \in M} ||x_0 - z|| = 1$. 任取 $\varepsilon > 0$, 存在 N 使得 $2^{1-N} < \varepsilon$, 令 y 满足 $y_1 = 1 - 2^{1-N}$, $y_n = -1(2 \le n \le N)$, $y_n = 0(n > N)$, 此时显然 $y \in C_0$, $||x_0 - y|| = 2^{1-N} < \varepsilon$, 并且

$$\sum_{n=1}^{\infty} \frac{y_n}{2^n} = \frac{1 - 2^{1 - N}}{2} - \sum_{n=2}^{N} 2^{-n} = 0 \implies y \in M.$$

题目1.4.15. 设 X 是 B^* 空间, M 是 X 的有限维真子空间. 求证: 存在 $y \in X$, $\|y\| = 1$, 使得

$$||y-x|| \ge 1 \quad (\forall x \in M).$$

解答. 取 $y_0 \in M^c$, 存在 $x_0 \in M$ 使得 $||x_0 - y_0|| = \rho(y_0, M) > 0$, 令 $y = \frac{y_0 - x_0}{||x_0 - y_0||}$, 则

$$||y-x|| = \frac{||y_0 - (x_0 + ||x_0 - y_0||x)||}{||x_0 - y_0||} \ge \frac{||x_0 - y_0||}{||x_0 - y_0||} = 1, \forall x \in M.$$

☎ 题目1.4.16. 若 f 是定义在区间 [0,1] 上的复值函数, 定义

$$\omega_{\delta}(f) = \sup\{|f(x) - f(y)| : \forall x, y \in [0, 1], |x - y| \le \delta\}.$$

如果 $0 < \alpha \le 1$ 对应的 Lipschitz 空间 Lip α , 由满足

$$||f|| \stackrel{\Delta}{=} |f(0)| + \sup_{\delta > 0} \{\delta^{-\alpha} \omega_{\delta}(f)\} < \infty$$

的一切 f 组成, 并以 ||f|| 为范数. 又设

$$\operatorname{lip} f \stackrel{\Delta}{=\!\!\!\!=} \{ f \in \operatorname{Lip} \alpha : \lim_{\delta \to 0} \delta^{-\alpha} \omega_{\delta}(f) = 0 \}.$$

求证: $Lip\alpha$ 是 B 空间, 而且 $lip\alpha$ 是 $Lip\alpha$ 的闭子空间.

解答. 由题 1.4.7, 只需对 $\{f_n\} \subset \operatorname{Lip}\alpha$, $\sum_{n=1}^{\infty} \|f_n\| < \infty$ 证明 $\sum_{n=1}^{\infty} f_n$ 收敛. 注意到

$$\sum_{n=1}^{\infty} |f_n(x)| \le \sum_{n=1}^{\infty} (|f_n(0)| + |f_n(x) - f_n(0)|)$$

$$\leq \sum_{n=1}^{\infty} \left(\left| f_n(0) \right| + \left(\left\| f_n \right\| - \left| f_n(0) \right| \right) |x| \right)$$

$$\leq \sum_{n=1}^{\infty} \left(\left| f_n(0) \right| + \left(\left\| f_n \right\| - \left| f_n(0) \right| \right) \right) = \sum_{n=1}^{\infty} \left\| f_n \right\| < \infty,$$

故存在 $f(x) = \sum_{n=1}^{\infty} f_n(x)$. 此时

$$\left\| f - \sum_{n=1}^{N} f_n \right\| = \left\| \sum_{n=N+1}^{\infty} f_n \right\| \le \sum_{n=N+1}^{\infty} \left\| f_n \right\| \to 0, \quad N \to \infty,$$

因此 Lipα 完备.

下面证 $lip\alpha$ 是闭的. 设 $\{g_n\} \subset lip\alpha, g_n \rightarrow g \in Lip\alpha$. 则

$$\lim_{\delta \to 0} \delta^{-\alpha} \omega_{\delta}(f) \leq \lim_{\delta \to 0} \left(\delta^{-\alpha} \omega_{\delta}(f - f_n) + \delta^{-\alpha} \omega_{\delta}(f_n) \right) \leq \left\| f - f_n \right\|,$$

在上式中令 $n \to \infty$ 即可.

- △ 题目1.4.17. 设有商空间 X/X₀.
 - (1) 设 $[x] \in X/X_0$, 求证: 对 $\forall x \in [x]$, 有

$$\inf_{z \in X_0} \|x - z\| = \|[x]\|_0.$$

(2) 定义映射 $\varphi: X \to X/X_0$ 为

$$\varphi(x) = [x] \stackrel{\Delta}{=\!\!\!=\!\!\!=} x + X_0 \quad (\forall x \in X),$$

求证: φ 是连续线性映射.

(3) $\forall [x] \in X/X_0$, 求证: 存在 $x \in X$, 使得

$$\varphi(x) = [x], \quad \exists \quad ||x|| \le 2||[x]||_0.$$

$$X/X_0 \cong \mathbb{K}$$
,

其中记号"≅"表示等距同构.

解答.

- (1) $\|[x]\|_0 = \inf_{y \in [x]} \|y\| = \inf_{w \in X_0} \|x + w\| = \inf_{z \in X_0} \|x z\|.$ (2) $\lim_{n \to \infty} x_n = 0 \Longrightarrow \lim_{n \to \infty} \|\varphi(x_n)\|_0 = \lim_{n \to \infty} \|[x_n]\|_0 \le \lim_{n \to \infty} \|x_0\| = 0.$
- (3) 由定义, 存在 $y \in [x]$, 使得 $||y|| \le 2||[x]||_0 = 2||[y]||_0$, 并且 $\varphi(y) = [y]$.
- (4) 构造映射 $\sigma: X/X_0 \to \mathbb{K}, f+X_0 \mapsto f(0)$, 容易验证 σ 是一个双射, 并且

$$||[f]||_0 = \inf_{g(0)=f(0)} \sup_{x \in [0,1]} |g(x)| = |f(0)|,$$

因此 σ 是一个等距同构.

B.1.5 凸集与不动点

- **题目1.5.1.** 设 $X \in B^*$ 空间, $E \in U$ 0 为内点的真凸子集, $P \in E$ 产生的 Minkowski 泛函, 求证:
 - (1) $x \in E^{\circ} \iff P(x) < 1$;
 - (2) $\overline{E^{\circ}} = \overline{E}$.

解答. (1) $x \in E^{\circ}$ ⇒ 存在 r > 0 使得 $B(x,r) \subset E$ ⇒ $\left(1 + \frac{r}{2\|x\|}\right)x \in B(x,r) \subset E$ ⇒ $P(x) \le \frac{1}{1 + \frac{r}{2^{||}-1|}} < 1.$

由 $0 \in E^{\circ}$ 知存在 r > 0 使得 $B(0,r) \subset E$. 则 $P(x) < 1 \implies cx \in E(c = \frac{2}{P(x)+1} >$ 1) $\Longrightarrow \forall \|x-y\| < (1-\frac{1}{c})r$ 有

$$y = \frac{1}{c} \cdot cx + \left(1 - \frac{1}{c}\right) \cdot \frac{x - y}{1 - \frac{1}{c}},$$

而 $cx \in C$, $\frac{x-y}{1-\frac{1}{c}} \in B(0,r) \subset E$, 因此 $y \in E$, 从而 $B(x,(1-\frac{1}{c})r) \subset E \Longrightarrow x \in E^{\circ}$. (2) 只需证 $\overline{E} \subset \overline{E}^{\circ}$. $x \in \overline{E} \implies \exists \{x_n\} \subset E, x_n \to x \implies (1 - \frac{1}{n})x_n \to x, P((1 - \frac{1}{n})x_n) = x$

$$\left(1-\frac{1}{n}\right)P(x_n) \leq 1-\frac{1}{n} < 1 \implies \{y_n\} \subset E^\circ, \ y_n \to x \left(y_n = \left(1-\frac{1}{n}\right)x_n\right) \implies x \in \overline{E^\circ}.$$

▲ 题目1.5.2. 求证: 在 B 空间中, 列紧集的凸包是列紧集.

解答. 设 E 为一列紧集, 则任取 $\varepsilon > 0$, 存在 $x_1, \dots, x_m \in X$ 构成 E 的 $\frac{1}{n}$ 网. 令

$$N = \left\{ \sum_{k=1}^{m} \lambda_k x_k : \sum_{k=1}^{m} \lambda_k = 1, \lambda_k \ge 0 \right\},\,$$

则 N 显然是列紧的, 而完备空间中集合列紧当且仅当存在列紧的 ε 网, 因此 $\cos(E)$ 列紧.

题目1.5.3. 设 $C \neq B^*$ 空间 X 中的一个紧凸集, 映射 $T: C \to C$ 连续, 求证: T 在 C 上有一个不动点.

解答. 由于 C 是紧集并且 T 连续, 因此 T(C) 也是紧集, 故由 Schauder 不动点定理可得 T 在 C 上有不动点.

- **题目1.5.4.** 设 $C \neq B$ 空间 X 中的一个有界闭凸集, 映射 $T_i: C \rightarrow X(i=1,2)$ 适合
 - (1) $\forall x, y \in C \Longrightarrow T_1 x + T_2 y \in C$;
 - (2) T_1 是一个压缩映射, T_2 是一个紧映射.

求证: $T_1 + T_2$ 在 C 上至少有一个不动点.

解答. 首先证明 $I - T_1(I)$ 为恒等映射) 为从 C 到 C 的双射. 任取 $x \in C$, $T_1 + x$ 仍为压缩映射, 因此存在唯一的 $y \in C$ 使得 $T_1y + x = y$, 也即 $x = (I - T_1)y$, 故 $(I - T_1)(C) = C$, $I - T_1$ 为满射. 又设 $(I - T_1)(x) = (I - T_1)y \implies x - y = T_1(x) - T_1(y) \implies \|x - y\| = \|T_1(x) - T_1(y)\| \le \alpha \|x - y\|$, $\alpha \in (0,1) \implies x = y \implies T_1$ 为单射.

 $(I-T_1)^{-1}$ 是连续的, 因为 $\forall x, y \in C$, 若记 $x' = (I-T_1)^{-1}(x), y' = (I-T_1)^{-1}(y)$, 有

$$||x - y|| = ||(I - T_1)(x') - (I - T_1)(y')||$$

$$= ||(x' - y') - (T_1(x') - T_1(y'))|| \ge ||x' - y'|| - ||T_1(x') - T_1(y')||$$

$$\ge ||x' - y'|| - \alpha ||x' - y'|| = (1 - \alpha) ||(I - T_1)^{-1}(x) - (I - T_1)^{-1}(y)||.$$

再由 T_2 紧知 $(I - T_1)^{-1}T_2$ 是紧映射, 因此在有界闭凸集 C 上必有不动点 x, 也即 $(I - T_1)^{-1}T_2(x) = x \Longrightarrow (T_1 + T_2)(x) = x$.

题目1.5.5. 设 $A \neq n \times n$ 矩阵, 其元素 $a_{ij} > 0 (1 \leq i, j \leq n)$, 求证: 存在 $\lambda > 0$ 及各分量 非负但不全为零的向量 $x \in \mathbb{R}^n$, 使得

$$Ax = \lambda x$$
.

解答. 设赋范空间为 (\mathbb{R}^n , $\|\cdot\|_1$). 记

$$C = \{x = (x_1, \dots, x_n) \mathbb{R}^n : x_k \ge 0 (1 \le k \le n), ||x||_1 = 1\},\$$

则 C 为紧凸集. 由 Schauder 不动点定理, 连续映射 $x\mapsto \frac{Ax}{\|Ax\|_1}$ 在 C 上必有不动点 (由 $x\mapsto Ax$ 及 $x\mapsto \frac{x}{\|x\|_1}$ 在 C 上连续可得), 也即存在 $x\in C$ 使得 $Ax=\|Ax\|_1 x$.

题目1.5.6. 设 K(x, y) 是 $[0,1]^2$ 上的正值连续函数, 定义映射

$$(Tu)(x) = \int_0^1 K(x, y) u(y) dy, \quad \forall u \in C[0, 1].$$

求证: 存在 $\lambda > 0$ 及非负但不恒为零的连续函数 u, 满足

$$Tu = \lambda u$$
.

解答. 设赋范空间为 $(C[0,1],\|\cdot\|_{\infty},\mathbb{R})$. 记 $M = \sup_{0 \le x,y \le 1} K(x,y) > 0$, $m = \inf_{0 \le x,y \le 1} K(x,y) > 0$. 再记

$$C = \{u \in C[0,1]: u \geq 0, \|u\|_1 = 1\},$$

则 C 为闭凸集, 考虑连续映射 $T_1u = \frac{Tu}{\|Tu\|_1} : C \to C$ (由 $u \mapsto Tu$ 和 $u \mapsto \frac{u}{\|u\|_1}$ 在 C 上连续可得). 由

$$\|T_1 u\|_{\infty} = \frac{\sup_{x \in [0,1]} \int_0^1 K(x,y) u(y) dy}{\iint_{[0,1]^2} K(x,y) u(y) dx dy} \le \frac{M}{m}, \quad \forall u \in C$$

知 $T_1 u$ 一致有界. 任取 $\varepsilon > 0$, 存在 $\delta > 0$ 使得

$$|K(x_1, y) - K(x_2, y)| < \varepsilon, \quad \forall |x_1 - x_2| < \delta, x_1, x_2, y \in [0, 1],$$

从而

$$\begin{split} \left| T_1 u(x) - T_1 u(x') \right| &\leq \frac{\int_0^1 \left| K(x, y) - K(x', y) \right| u(y) \mathrm{d}y}{\iint\limits_{[0, 1]^2} K(t, y) u(y) \mathrm{d}t \mathrm{d}y} \\ &\leq \frac{\varepsilon \int_0^1 u(y) \mathrm{d}y}{m \int_0^1 u(y) \mathrm{d}y} = \frac{\varepsilon}{m}, \quad \forall \left| x - x' \right| < \delta, x, x' \in [0, 1], \end{split}$$

因此 $T_1(C)$ 等度连续. 由 Arzeta-Ascoli 定理, $T_1(C)$ 列紧, 再由 Schauder 不动点定理, T_1 在 C 上存在不动点 u, 也即 $Tu = ||Tu||_1 u$.

B.1.6 内积空间

△ **题目1.6.1.** 设 a 是复线性空间 X 上的共轭双线性函数, q 是由 a 诱导的二次型, 求证:

$$a(x,y) = \frac{1}{4} \big(q(x+y) - q(x-y) + i \, q(x+iy) - i \, q(x-iy) \big), \quad \forall x,y \in X.$$

解答.

$$q(x + y) - q(x - y) + i q(x + iy) - i q(x - iy)$$

$$= a(x, x) + a(x, y) + a(y, x) - (x, x) + a(x, y) + a(y, x) - a(y, y)$$

$$+ i a(x, x) + a(x, y) - a(y, x) + i a(y, y) - i a(x, x) + a(x, y)$$

$$- a(y, x) + i a(y, y)$$

$$= 4a(x, y).$$

△ 题目1.6.2. 求证: 在 C[a,b] 中不可能引入一种内积 (·,·), 使其满足

$$\sqrt{(f,f)} = \max_{a \le x \le b} |f(x)|, \quad \forall f \in C[a,b].$$

解答. 若 C[a,b] 可以引入题设内积,则范数 $\|\cdot\|$ 满足三角恒等式,也即

$$\max_{a \le x \le b} |f + g|^2 + \max_{a \le x \le b} |f - g|^2 = 2 \left(\max_{a \le x \le b} |f|^2 + \max_{a \le x \le b} |g|^2 \right),$$

但显然 $f(x) = \frac{x-a}{b-a}, g(x) = 1(\forall x \in [a,b])$ 不满足上式.

▲ **题目1.6.3**. 在 L²[0, T] 中, 求证: 函数

$$x \mapsto \left| \int_0^T e^{-(T-\tau)} x(\tau) d\tau \right|, \quad \forall x \in L^2[0, T]$$

在单位球面上达到最大值,并求出此最大值和达到最大值的元素 x.

解答. 由 Cauchy-Schwarz 不等式, 对任意 $||x||_2 = 1$, 有

$$\left| \int_0^T e^{-(T-\tau)} x(\tau) d\tau \right|^2 \le \left(\int_0^T e^{-2(T-\tau)} d\tau \right) \left(\int_0^T |x(\tau)|^2 d\tau \right) = \frac{1}{2} \left(1 - e^{-2T} \right),$$

因此该函数在单位球面上的最大值为 $\sqrt{\frac{1-e^{-2T}}{2}}$, 由 Cauchy-Schwarz 不等式的取等条件, 达到最大值的元素为 $x(\tau) = \frac{e^{-(T-\tau)}}{\sqrt{\frac{1-e^{-2T}}{2}}}$, $\tau \in [0, T]$.

△ 题目1.6.4. 设 *M*, *N* 是内积空间中的两个子集, 求证:

$$M \subset N \implies N^{\perp} \subset M^{\perp}$$
.

解答. $x \perp N \Longrightarrow x \perp M \Longrightarrow x \perp M$.

△ 题目1.6.5. 设 M 是 Hilbert 空间 H 的子集, 求证

$$(M^{\perp})^{\perp} = \overline{\operatorname{span} M}.$$

解答. 记 $E = \overline{\text{span}M}$ 为闭线性子空间, 显然 $(M^{\perp})^{\perp} = (E^{\perp})^{\perp}$, 只需证 $(E^{\perp})^{\perp} = E$ 即可. 任取 $x \in E$, 则 $\forall y \in E^{\perp}$, $y \perp x \implies x \in E^{\perp} \implies E \subset (E^{\perp})^{\perp}$. 下面证明若 $x \in E^c$, 则 $x \notin (E^{\perp})^{\perp}$. 由于 E 是闭子空间, 存在唯一正交分解 $x = E^c$ $y+z, y \in M, z \in M^{\perp}$. 如果 $x \perp E^{\perp}$, 则

$$(x, z) = (x, x - y) = (x - y, x - y) + (y, x - y) = (x - y, x - y) = 0,$$

从而 $x = y \in M$, 矛盾.

题目1.6.6. 在 $L^2[-1,1]$ 中, 问偶函数集的正交补是什么? 证明你的结论.

解答. 偶函数的正交补是奇函数, 也即 f 是奇函数当且仅当 $f \perp g$, $\forall g$ 为 $L^2[-1,1]$ 上的偶函数 (此处的偶函数与奇函数均为几乎处处意义下).

必要性:

$$(f,g) = \int_{-1}^{1} f(x)\overline{g(x)}dx$$

$$= \int_{0}^{1} f(x)\overline{g(x)}dx + \int_{-1}^{0} f(x)\overline{g(x)}dx$$

$$= \int_{0}^{1} f(x)\overline{g(x)}dx + \int_{0}^{1} f(-x)\overline{g(-x)}dx$$

$$= \int_{0}^{1} f(x)\overline{g(x)}dx + \int_{0}^{1} (-f(x))\overline{g(x)}dx = 0.$$

充分性: $\Diamond g(x) = \overline{f(x) + f(-x)}$ 为偶函数,则

$$(f,g) = ||f(x) + f(-x)||_2^2 = 0 \implies f(x) + f(-x) = 0$$
 a.e.

- **题目1.6.7.** 在 $L^2[a,b]$ 中, 考察函数集 $S = \{e^{2\pi i n x}\}$.

 - (2) 若 |b-a| > 1, 求证: $S^{\perp} \neq \{0\}$.

解答. (1) |b-a|=1 由 Fourier 分析知识, 有 $S^{\perp}=\{0\}$. 若 |b-a|<1, 补充定义 f(x)=0, $x \in (b,a+1]$ 即可.

(2) 若 a < b - 2, 在 [a,b-2] 上定义 $f \equiv 0$, 在 [b-2,b-1] 上定义 $f \equiv -1$; 若 $b-2 \le a < b-1$, 在 [a,b-1] 上定义 $f \equiv -1$; 在 (b-1,b] 上定义

$$f(x) = \sum_{n \in \mathbb{Z}} \left(\int_a^{b-1} e^{2\pi i n t} dt \right) e^{2\pi i n x}, \quad x \in (b-1, b],$$

其中 $\left| \int_a^{b-1} e^{2\pi i n t} \mathrm{d}t \right| \leq \frac{1}{\pi n}$,并且 $\sum_{n \in \mathbb{Z}} e^{2\pi i n x}$ 对 x 一致有界,由数学分析知识知如上定义的 f 有意义,显然有 $f \in S^{\perp}$ 且 $f \neq 0$.

△ 题目1.6.8. 设 H 表示闭单位圆上的解析函数全体, 内积定义为

$$(f,g) = \frac{1}{i} \int_{|z|=1} \frac{f(z)\overline{g}(z)}{z} dz, \quad \forall f, g \in H.$$

求证: $\left\{\frac{z^n}{\sqrt{2\pi}}\right\}$ 是一组正交规范集.

解答.

$$\left\| \frac{z^n}{\sqrt{2\pi}} \right\| \frac{1}{2\pi i} \int_{|z|=1} \frac{|z|^n}{z} dz = \frac{1}{2\pi i} \int_{|z=1|} \frac{dz}{z} = 1, \quad \forall n \ge 0,$$

$$2\pi i \left(\frac{z^m}{\sqrt{2\pi}}, \frac{z^n}{\sqrt{2\pi}} \right) = \int_{|z|=1} \frac{z^m \overline{z}^n}{z} dz = \int_{|z|=1} z^{m-n-1} dz = 0, \quad \forall m > n.$$

题目1.6.9. 设 $\{e_n\}_1^\infty$, $\{f_n\}_1^\infty$ 是 Hilbert 空间 H 中的两个正交规范集, 满足条件

$$\sum_{n=1}^{\infty} \|e_n - f_n\|^2 < 1.$$

求证: $\{e_n\}$ 和 $\{f_n\}$ 两者中一个完备蕴含另一个完备.

解答. 设 $\{e_n\}$ 完备. 若 $0 \neq x \perp f_n, \forall n \geq 1$, 则

$$||x||^2 = \sum_{n=1}^{\infty} |(x, e_n)|^2 = \sum_{n=1}^{\infty} |(x, e_n - f_n)| \le \sum_{n=1}^{\infty} ||x||^2 \cdot |e_n - f_n|^2 < ||x||^2,$$

矛盾, 因此 $\{f_n\}^{\perp} = \{0\}, \{f_n\}$ 也完备.

题目1.6.10. 设 H 是 Hilbert 空间, H_0 是 H 的闭线性子空间, $\{e_n\}$ 和 $\{f_n\}$ 分别是 H_0 和 H_0^{\perp} 的正交规范基. 求证: $\{e_n\} \cup \{f_n\}$ 是 H 的正交规范基.

解答. 设 $x \in H$, 由 $x - P(x) \in H_0^{\perp}$ 和 $P(x) \in H_0 \subset (H^{\perp})^{\perp}$ 知 $(x - P(x), e_n) = (P(x), f_n) = 0$, $\forall n \geq 1$, 从而

$$x = P(x) + (x - P(x)) = \sum_{n=1}^{\infty} (P(x), e_n)e_n + (x - P(x), f_n)f_n$$

$$=\sum_{n=1}^{\infty}\Big((x,e_n)e_n+(x,f_n)f_n\Big).$$

- **题目1.6.11**. 设 $H^2(D)$ 为开单位圆上所有 $\|\cdot\|_2$ 有限的解析函数构成的内积空间.
 - (1) 如果 $u \in H^2(D)$ 的 Taylor 展开式是 $u(z) = \sum_{k=0}^{\infty} b_k z^k$, 求证:

$$\sum_{k=0}^{\infty} \frac{|b_k|^2}{1+k} < \infty.$$

(2) 设 $u, v \in H^2(D)$, 并且

$$u(z) = \sum_{k=0}^{\infty} a_k z^k, \quad v(z) = \sum_{k=0}^{\infty} b_k z^k,$$

求证:

$$(u, v) = \pi \sum_{k=0}^{\infty} \frac{a_k \overline{b}_k}{k+1}.$$

(3) 设 $u \in H^2(D)$, 求证

$$|u(z)| \le \frac{\|u\|}{\sqrt{\pi}(1-|z|)}, \quad \forall |z| < 1.$$

(4) 验证 *H*²(*D*) 是 Hilbert 空间.

证明. (1) 记 $\varphi_n(x) = \sqrt{\frac{n+1}{\pi}} z^n (n \ge 0)$ 为 $H^2(D)$ 的一组正交规范基. 则

$$\sum_{k=0}^{\infty} \frac{|b_k|^2}{1+k} = \frac{1}{\pi} \sum_{k=0}^{\infty} \left| (u, \varphi_k) \right|^2 = \frac{1}{\pi} \|u\|^2 < \infty.$$

(2)

$$\pi \sum_{n=0}^{\infty} \frac{a_n \overline{b}_n}{n+1} = \sum_{n=0}^{\infty} (u, \varphi_n)(v, \varphi_n) = \left(\sum_{n=0}^{\infty} (u, \varphi_n) \varphi_n, \sum_{m=0}^{\infty} (v, \varphi_m) \varphi_m\right) = (u, v).$$

(3)

$$|u(z)|^2 = \left|\sum_{n=0}^{\infty} (u, \varphi_n) \varphi_n(z)\right|^2 \le \left(\sum_{n=0}^{\infty} \left| (u, \varphi_n) \right|^2 \right) \left(\sum_{n=0}^{\infty} \left| \varphi_n(z) \right|^2 \right)$$

$$\leq \left(\sum_{n=0}^{\infty} \left| (u, \varphi_n) \right|^2 \right) \left(\sum_{n=0}^{\infty} \frac{n+1}{\pi} \left| z^n \right| \right) = \frac{\|u\|^2}{\pi (1-|z|)^2}, \quad |z| < 1.$$

(4) 若 $\{u_n\}$ 为 $H^2(D)$ 中的 Cauchy 列, 则由 (3), u_n 在 |z| < 1 上内壁收敛于函数 u, 故 $u \in H^2(D)$ 并且 $u_n \to u$.

△ **题目1.6.12**. 设 X 是内积空间, $\{e_n\}$ 是 X 中的正交规范集, 求证

$$\left| \sum_{n=1}^{\infty} (x, e_n) \overline{(y, e_n)} \right| \le ||x|| \cdot ||y||, \quad \forall x, y \in X.$$

解答.

$$\left|\sum_{n=1}^{\infty}(x,e_n)\overline{(y,e_n)}\right| \leq \left(\sum_{n=1}^{\infty}|(x,e_n)|^2\right)\left(\sum_{n=1}^{\infty}\left|(y,e_n)\right|^2\right) \leq \|x\|\cdot \|y\|.$$

趣目1.6.13. 设 *X* 是一个内积空间, $\forall x_0 \in X, r > 0$, 令

$$C = \{x \in X : ||x - x_0|| \le r\}.$$

- (1) 求证: C 是 X 中的闭凸集.
- (2) $\forall x \in X$, ♦

$$y = \begin{cases} x_0 + \frac{r(x - x_0)}{\|x - x_0\|}, & x \notin C, \\ x, & x \in C. \end{cases}$$

求证: $y \in x$ 在 C 中的最佳逼近元.

- 解答. (1) 直接验证即可.
 - (2) 若 $x \in C$, 显然成立. 若 $x \notin C$, 则

$$||x - z|| = ||(x - x_0) - (z - x_0)|| \ge ||x - x_0|| - ||z - x_0||$$

$$\ge ||x - x_0|| - r = ||x - y||, \quad \forall z \in C.$$

题目1.6.14. 求 $(a_0, a_1, a_2) \in \mathbb{R}^3$ 使得 $\int_0^1 \left| e^t - a_0 - a_1 t - a_2 t^2 \right|^2 dt$ 取最小值.

解答. 考虑 $L^2[0,1]$ 空间上的内积, 有

$$\begin{cases} a_0(1,1) + a_1(t,1) + a_2(t^2,1) = (e^t,1) \\ a_0(1,t) + a_1(t,t) + a_2(t^2,t) = (e^t,t) \\ a_0(1,t^2) + a_1(t,t^2) + a_2(t^2,t^2) = (e^t,t^2) \end{cases} \implies \begin{cases} a_0 = 39e - 105 \\ a_1 = -216e + 588 \\ a_2 = 210e - 570 \end{cases}$$

题目1.6.15. 设 $f \in C^2[a,b]$, 满足边界条件

$$f(a) = f(b) = 0$$
, $f'(a) = 1$, $f'(b) = 0$.

求证:

$$\int_{a}^{b} \left| f''(x) \right|^{2} \mathrm{d}x \ge \frac{4}{b-a}.$$

解答. 令 $f(x) \mapsto f(\frac{x-a}{b-a})$ 后, 不妨设 a = 0, b = 1. 记 $g(x) = x(x-1)^2$, 则

$$4\int_{0}^{1} |f''(x)|^{2} dx \ge \left(\int_{0}^{1} |g''(x)|^{2} dx \right) \left(\int_{0}^{1} |f''(x)|^{2} dx \right)$$

$$\ge \left| \int_{0}^{1} f''(x)g''(x) dx \right| = \left| \int_{0}^{1} g''(x) df'(x) \right|$$

$$= \left| f'(1)g''(1) - f'(0)g''(0) - 6\int_{0}^{1} f'(x) dx \right| = 1.$$

题目1.6.16. 设 H 是一个 Hilbert 空间, a(x,y) 为共轭双线性函数, 并且存在 $M,\delta>0$ 使得

$$\delta \|x\|^2 \le a(x, x) \le M \|x\|^2$$
, $\forall x \in H$.

又设 $u_0 \in H$, C 是 H 上的一个闭凸子集. 求证: 函数

$$x \mapsto a(x, x) - \operatorname{Re}(u_0, x)$$

在 C 上达到最小值, 并且达到最小值的点 x_0 唯一, 满足

$$\text{Re}(2a(x_0, x - x_0) - (u_0, x - x_0)) \ge 0, \quad \forall x \in C.$$

解答. 由题目条件易知 $a(\cdot,\cdot)$ 也是 H 上的内积. 注意到

$$a(x, x) - \text{Re}(u_0, x) \ge \delta ||x||^2 - ||u_0|| \cdot ||x|| > -\infty,$$

因此 $\alpha = \inf_{x \in C} (a(x, x) - \text{Re}(u_0, x))$ 存在. 取 $\{x_n\} \subset C$ 使得

$$\alpha \le a(x_n, x_n) - \operatorname{Re}(u_0, x_n) \le \alpha + \frac{1}{n}, \quad \forall n \ge 1.$$

因此

$$\frac{1}{\delta} \|x_n - x_m\|^2 \le a(x_n - x_m, x_n - x_m)$$

$$= 2a(x_n, x_n) + 2a(x_m, x_m) - 4a\left(\frac{x_n + x_m}{2}, \frac{x_n + x_m}{2}\right)$$

$$\le 2\left(\text{Re}(u_0, x_n) + \alpha + \frac{1}{n}\right) + 2\left(\text{Re}(u_0, x_m) + \alpha + \frac{1}{m}\right)$$

$$-4\left(\text{Re}(u_0, \frac{x_n + x_m}{2}) + \alpha\right)$$

$$= \frac{2}{n} + \frac{2}{m} \to 0, \quad n, m \to \infty,$$

由 H 是 Hilbert 空间及 C 为闭集知, $x_n \to x_0 \in C$, x_0 达到最小值. 如果还有 $y_0 \in C$ 也取到最小值, 则

$$\begin{split} &\frac{1}{\delta} \left\| x_0 - y_0 \right\|^2 \leq a(x_0 - y_0, x_0 - y_0) \\ = &2a(x_0, x_0) + 2a(y_0, y_0) - 4a\left(\frac{x_0 + y_0}{2}, \frac{x_0 + y_0}{2}\right) \\ \leq &2\left(\operatorname{Re}(u_0, x_0) + \alpha\right) + 2\left(\operatorname{Re}(u_0, y_0) + \alpha\right) - 4\left(\operatorname{Re}(u_0, \frac{x_0 + y_0}{2}) + \alpha\right) = 0, \end{split}$$

从而 $x_0 = y_0$. 为了证明题中不等式, 令

$$\varphi_x(t) = a(tx + (1-t)x_0, tx + (1-t)x_0) - \text{Re}(u_0, tx + (1-t)x_0)$$
$$-a(x_0, x_0) + \text{Re}(u_0, x_0) \ge 0, \quad \forall t \in [0, 1], x \in C.$$

则必有

$$\varphi'_x(1) = \text{Re}(2a(x_0, x - x_0) - (u_0, x - x_0)) \ge 0, \quad \forall x \in C.$$

B.2 线性算子与线性泛函

B.2.1 线性算子的概念

(本节各颗中, X, Y 均指 Banach 空间)

▲ 题目2.1.1. 求证: $T \in L(X,Y)$ 的充要条件是 T 为线性算子, 并将 X 中的有界集映为 Y中的有界集.

解答. 必要性: 设 M 为 X 中的有界集, 满足 $\|x\| \le R, \forall x \in M$. 则

$$|T(x)| \le ||T|| \cdot ||x|| \le R||T||, \quad \forall x \in X,$$

因此 T(M) 也有界.

充分性: $\{x \in X : ||x|| = 1\}$ 为 X 中的有界集, 因此

$$||T|| = \sup_{||x||=1} |Tx| < \infty,$$

也即 T 连续.

- △ 题目2.1.2. 设 $A \in L(X, Y)$, 求证:

(1) $\|A\| = \sup_{\|x\| \le 1} \|Ax\|$; (2) $\|A\| = \sup_{\|x\| < 1} \|Ax\|$. **解答**. (1) $\|A\| = \sup_{\|x\| = 1} \|Ax\| \le \sup_{\|x\| \le 1} \|Ax\| \le \sup_{\|x\| \le 1} \|A\| \cdot \|x\| = \|A\|$.

(2) 任取 $\varepsilon \in (0,1)$, 存在 $\|x\| = 1$ 满足 $\|A\| - \delta \le \|Ax\| \le \|A\|$, 其中 $\delta = \frac{\varepsilon}{\|A\| + 1 - \varepsilon}$, 从 而 $y = \frac{x}{1+8}$ 满足 ||y|| < 1 并且

$$||Ay|| = \frac{||Ax||}{1+\delta} \ge \frac{||A|| - \delta}{1+\delta} = ||A|| - \varepsilon.$$

趣目2.1.3. 设 $f ∈ L(X, \mathbb{R})$, 求证:

(1)
$$||f|| = \sup_{\|x\|=1} f(x);$$
 (2) $\sup_{\|x\|<\delta} f(x) = \delta ||f||, \forall \delta > 0.$

解答. (1) 只需注意到 $\forall x \in X$, $f(\text{sign}(\overline{f(x)})x) = \text{sign}(\overline{f(x)})f(x) = |f(x)|$.

- (2) 结合(1) 和上题(2) 易得.
- **趣 题目2.1.4.** 设 y(t) ∈ C[0,1], 定义 C[0,1] 上的泛函

$$f(x) = \int_0^1 x(t)y(t)dt, \quad \forall x \in C[0,1],$$

求 ||f||.

解答.

$$\begin{split} & \left\| f(x) \right\| \leq \left(\int_0^1 \left| y(t) \right| \mathrm{d}t \right) \|x\| \implies \left\| f \right\| \leq \int_0^1 \left| y(t) \right| \mathrm{d}t, \\ & f(\overline{\mathrm{sign}(y)}) = \int_0^1 \left| y(t) \right| \mathrm{d}t \implies \left\| f \right\| \geq \int_0^1 \left| y(t) \right| \mathrm{d}t. \end{split}$$

△ 题目2.1.5. 设 f 是 X 上的非零有界线性泛函, 令

$$d = \inf\{\|x\| : f(x) = 1, x \in X\},\$$

求证: $||f|| = \frac{1}{d}$.

解答. 若 d = 0, 则存在 x_n 满足 $f(x_n) = 1$ 且 $||x_n|| \to 0$, 由 f 的连续性知这是不可能的, 因此 d > 0. 任取 x 满足 f(x) = 1, 有

$$\left| f\left(\frac{x}{\|x\|}\right) \right| = \frac{1}{\|x\|} \le \frac{1}{d} \implies \|f\| \le d.$$

取 y_n 满足 $f(y_n) = 1$ 并且

$$d \le ||y_n|| \le d + \frac{1}{n},$$

从而

$$f\left(\frac{y_n}{\|y_n\|}\right) = \frac{1}{\|y_n\|} \ge \frac{1}{d + \frac{1}{n}},$$

由 n 的任意性, $||f|| \ge \frac{1}{d}$.

题目2.1.6. 设 $f \in X^*$, 求证: $\forall \varepsilon > 0$, 存在 $x_0 \in X$, 使得 $f(x_0) = ||f||$, 且 $||x_0|| < 1 + \varepsilon$. **解答.** 取 x 满足 ||x|| = 1 且

$$||f|| - \delta < f(x) \le ||f||,$$

其中 $\delta = \frac{\|f\|\varepsilon}{1+\varepsilon}$. 令 $x_0 = \frac{\|f\|}{f(x)}x$,则

$$f(x_0) = ||f||, \quad ||x_0|| = \frac{||f||}{f(x)} < \frac{||f||}{||f|| - \delta} = 1 + \varepsilon.$$

ዾ 题目2.1.7. 设 $T: X \to Y$ 是线性的, 令

$$N(T) \triangleq \{x \in X : Tx = 0\}.$$

- (1) 若 $T \in L(X, Y)$, 求证: N(T) 是 X 的闭线性子空间.
- (2) 问 N(T) 是 X 的闭线性子空间能否推出 $T \in L(X,Y)$?
- (3) 若 f 是线性泛函, 求证

$$f \in X^* \iff N(f)$$
 是闭线性子空间.

解答. (1) 设 $\{x_n\} \subset N(T), x_n \to x_0$,则根据连续性以及 $Tx_n = 0$ 得 $Tx_0 = 0, x_0 \in N(T)$.

(2) 不能. 取赋范空间为 $(l^1, \|\cdot\|_{\infty})$. 记 $f(x) = \sum_{n=1}^{\infty} x_n$, $x = \{x_n\}$, $a = (1, -1, 0, 0, \cdots)$. 又记

$$Tx = x - af(x).$$

f 显然是无界的, 因为 $f(x^{(m)}) = m$, 其中 $x_n^{(m)} = 1 (n \le m), x_n^{(m)} = 0 (n > m)$.

下面证明 N(T) 是闭线性子空间, 但 T 不是连续的.

先证 N(T) 是闭线性子空间. 事实上若 Tx=0,则由 $a_n=0 (n>2)$ 知 $x_n=(Tx)_n=0 (n>2)$.并且 $(Tx)_1=x_1-a_1f(x)=-x_2=0$, $(Tx)_2=x_2-a_2f(x)=x_1=0$,故 x=0.从而 $N(T)=\{0\}$,为闭线性子空间.

再证 T 不是连续的. 为此, 反设 T 有界, 即存在 M > 0 使得 $\|Tx\|_{\infty} \le M\|x\|_{\infty}$,

从而

$$|f(x)| - 1 \le \max\{|x_1 - f(x)|, |x_2 + f(x)|\} \le 1, \forall x = \{x_n\} \in l^1, ||x||_{\infty} = 1.$$

但 f 是无界的矛盾.

(3) 只需证明充分性. 若 f 无界, 则存在 $||x_n|| = 1$ 并且 $f(x_n) > n$. 令

$$y_n = \frac{x_n}{f(x_n)} - \frac{x_1}{f(x_1)},$$

则 $y_n \in N(f)$, 并且 $y_n \to -\frac{x_1}{f(x_1)} \notin N(f)$, 矛盾.

△ **题目2.1.8.** 设 f 是 X 上的线性泛函, 记

$$H_f^{\lambda} \triangleq \{x \in X : f(x) = \lambda\}, \quad \forall \lambda \in \mathbb{K}.$$

如果 $f \in X^*$, 并且 ||f|| = 1, 求证:

- (1) $|f(x)| = \inf_{z \in H_f^0} ||x z||, \quad \forall x \in X;$
- (2) $\forall \lambda \in \mathbb{K}$, H_f^{λ} 上的任一点 x 到 H_f^0 的距离都等于 $|\lambda|$. 并对 $X = \mathbb{R}^2$, $\mathbb{K} = \mathbb{R}$ 情形解释 (1) 和 (2) 的几何意义.

解答. (1) 首先, $|f(x)| = |f(x-z)| \le ||f|| \cdot ||x-z|| = ||x-z||, \forall f(z) = 0$, 因此 $|f(x)| \le \inf_{z \in H_f^0} ||x-z||$.

其次, $\forall \varepsilon > 0$, 取 $||x_0|| = 1$ 且 $1 - \varepsilon \le f(x_0) \le 1$, 则

$$\inf_{z \in H_f^0} \|x - z\| \le \left\| x - \left(x - \frac{f(x)}{f(x_0)} x_0 \right) \right\| = \frac{\left| f(x) \right|}{\left| f(x_0) \right|} \|x_0\| \le \frac{\left| f(x) \right|}{1 - \varepsilon},$$

由 ε 的任意性, $\inf_{z \in H_f^0} \|x - z\| \le |f(x)|$.

(2)
$$\pm$$
 (1), $\rho(x, H_f^0) = |f(x)| = |\lambda|$.

几何意义: \mathbb{R}^2 上范数为 1 的线性泛函为 $f(x,y) = x\cos\theta + y\sin\theta$, 则 $H_f^0 = \{(x,y) \in \mathbb{R}^2 : ax + by = 0\}$ 为过零点的直线. (1) 也即空间上任意一点 (x,y) 到直线 ax + by = 0 的距离等于 $|f(x,y)| = \sqrt{x^2\cos^2\theta + y^2\sin^2\theta}$ (点到直线距离公式).

题目2.1.9. 设 X 是实赋范空间, f 是 X 上的非零实值线性泛函, 求证: 不存在开球

 $B(x_0,\delta)$, 使得 $f(x_0)$ 是 f(x) 在 $B(x_0,\delta)$ 中的极大值或极小值.

解答. 反设 f 使得

$$f(x_0) \le f(x), \quad \forall x \in B(x_0, \delta).$$

$$f(y) \ge 0$$
, $\forall ||y|| < 1$.

这是不可能的, 因为存在 $\|y_0\| < 1$ 使得 $f(y_0) \neq 0$, 分别将 y_0 和 y_0 带入上式得到 $f(y_0)$ 既正又负, 矛盾.

B.2.2 Riesz 表示定理及其应用

(本节各题中的 H 均指 Hilbert 空间)

题目2.2.1. 设 f_1, \dots, f_n 是 H 上的一组有界线性泛函,

$$M \stackrel{\triangle}{=} \bigcap_{k=1}^{n} N(f_k), \quad N(f_k) \stackrel{\triangle}{=} \{x \in H : f_k(x) = 0\}, \quad k = 1, \dots, n.$$

 $\forall x_0 \in H$, 记 y_0 为 x_0 在 M 上的正交投影, 求证: 存在 $y_k \in N(f_k)^{\perp} (1 \le k \le n)$ 及 $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ 使得

$$y_0 = x_0 - \sum_{k=1}^n \alpha_k y_k.$$

解答. 取 $y_k \in H$ 满足 $f_k(x) = (x, y_k), \forall x \in H, 1 \le k \le n$. 则

$$M = \{y_1, \dots, y_n\}^{\perp},$$

$$M^{\perp} = (\{y_1, \dots, y_n\}^{\perp})^{\perp} = \operatorname{span}\{y_1, \dots, y_n\},$$

$$N(f_k)^{\perp} = \{f_k\}^{\perp},$$

$$N(f_k) = (\{f_k\}^{\perp})^{\perp} = \mathbb{K}y_k.$$

再由 $x_0 - y_0 \in M^{\perp}$ 知题中所求 $\alpha_k (1 \le k \le n)$ 必存在.

△ 题目2.2.2. 设 $l \neq H$ 上的实值有界线性泛函, $C \neq H$ 中的一个闭凸子集. 又设

$$f(v) = \frac{1}{2} ||v||^2 - l(v) \quad \forall v \in C.$$

(1) 求证: 存在 u* ∈ H 使得

$$f(v) = \frac{1}{2} \|u^* - v\|^2 - \frac{1}{2} \|u^*\|^2, \quad \forall v \in C.$$

(2) 求证: 存在唯一的 $u_0 \in C$ 使得 $f(u_0) = \inf_{v \in C} f(v)$.

解答. (1) 取 $u^* \in H$ 使得 $l(v) = (v, u^*), \forall v \in H$. 则对 $\forall v \in C$, 有

$$f(v) = \frac{1}{2} \Big(\|v\|^2 - 2(v, u^*) + \left\|u^*\right\|^2 - \left\|u^*\right\|^2 \Big) = \frac{1}{2} \left\|u^* - v\right\|^2 - \frac{1}{2} \left\|u^*\right\|^2.$$

- (2) $\inf_{v \in C} f(v) = \frac{1}{2} \rho(u^*, C) \frac{1}{2} \|u^*\|$, 有正交分解, 必能唯一取到.
- ▲ 题目2.2.3. 设 H 的元素是定义在集合 S 上的复值函数. 又若 $\forall x \in S$, 由

$$J_x(f) = f(x), \quad \forall f \in H$$

定义的映射 $J_x: H \to \mathbb{C}$ 是 H 上的连续线性泛函. 求证: 存在 $S \times S$ 上的复值函数 K(x, y), 适合条件:

- (1) 对任意固定的 $y \in S$, 作为 x 的函数有 $K(x,y) \in H$;
- (2) $f(y) = (f, K(\cdot, y)), \forall f \in H, y \in S.$

满足如上条件的函数 K(x,y) 称为 H 的再生核.

解答. 对给定的 $x \in S$, 由 Riesz 表示定理, 存在 $K_x \in H$ 使得

$$(f,K_x)=J_x(f), \quad \forall f\in H.$$

令 $K(x,y) = (K_y,K_x)(\forall x,y \in S)$, 则对任意固定的 $y \in S$,

$$K(x, y) = (K_y, K_x) = J_x(K_y) = K_y(x) \in H.$$

并且.

$$f(y) = J_{\gamma}(f) = (f, K_{\gamma}) = (f, K(\cdot, y)), \quad \forall f \in H, y \in S.$$

△ 题目2.2.4. 求证: H²(D)(开单位球上所有平方可积解析函数) 的再生核为

$$K(z, w) = \frac{1}{\pi (1 - z\overline{w})^2}, \quad \forall z, w \in D.$$

解答. 记 $\varphi_n(z) = \sqrt{\frac{n}{\pi}} z^{n-1} (z \in D), n = 1, 2, \cdots, 则 {\varphi_n}$ 是 $H^2(D)$ 的一组正交规范基. 注意到

$$K_z = \sum_{n=1}^{\infty} (K_z, \varphi_n) \varphi_n = \sum_{n=1}^{\infty} \overline{\varphi_n(z)} \varphi_n, \quad \forall z \in D.$$

故

$$K(z, w) = (K_w, K_z) = \sum_{n=1}^{\infty} \varphi_n(z) \overline{\varphi_n(w)}$$
$$= \frac{1}{\pi} \sum_{n=1}^{\infty} n(z\overline{w})^{n-1} = \frac{1}{\pi (1 - z\overline{w})^2}, \quad \forall z, w \in D.$$

- △ 题目2.2.5. 设 L, M 是 H 上的闭线性子空间, 求证:
 - (1) $L \perp M \iff P_L P_M = 0$;
 - (2) $L = M^{\perp} \iff P_L + P_M = I$ (恒等映射);
 - (3) $P_L P_M = P_{L \cap M} \iff P_L P_M = P_M P_L$.

解答. 根据正交投影算子的定义, 有 $P_M(x) = x(\forall x \in M)$, $P_M^2 = P_M$, 以及 $x \perp M \iff P_M(x) = 0$.

- (1) $L \perp M \iff x \perp L(\forall x \in M) \iff P_L(x) = 0(\forall x \in M) \iff P_L P_M = 0.$
- (2) 若 $L = M^{\perp}$, 则任取 $x \in H$, 有 $P_L(x) \perp M$, 由正交分解的唯一性, $x P_L(x) = P_M(x)$.

若 $P_L + P_M = I$, 则任取 $x \in L$, 有 $x = P_L(x) + P_M(x) = x + P_M(x) \implies P_M(x) = 0$ ($\forall x \in L$) $\Longrightarrow x \perp M(\forall x \in L) \implies L \perp M$.

(3) 注意到 $(P_M x, y) = (P_M x, P_M y + (y - P_M y)) = (P_M x, P_M y) = (P_M x + (x - P_M x), P_M y) = (x, P_M y), \forall x, y \in H$, 因此 $(P_M x, y) = (x, P_M y)$.

若 $P_L P_M = P_{L \cap M}$, 则

$$(P_M P_L x, y) = (P_L x, P_M y) = (x, P_L P_M y) = (x, P_{L \cap M} y) = (P_{L \cap M} x, y), \quad \forall x, y \in H,$$

故 $P_M P_L = P_{L \cap M} = P_L P_M$.

对任意的 P_L 和 P_M ,由 $M \cap L \subset M \perp I - P_M$ 并且 $M \cap L \subset L \perp P_M - P_L P_M$,知 $I - P_L P_M = (I - P_M) + (P_M - P_L P_M) \perp L \cap M$. 同理也有 $I - P_M P_L \perp L \cap M$.

若 $P_L P_M = P_M P_L$, 则 $P_L P_M = P_M P_L \in L \cap M$, 并且 $x - P_L P_M \perp L \cap M$, 因此 $P_L P_M = P_{L \cap M}$.

B.2.3 纲与开映射定理

题目2.3.1. 设 X 是 Banach 空间, X_0 是 X 的闭子空间. 映射 $\varphi: X \to X/X_0$ 定义为

$$\varphi: x \mapsto [x], \quad \forall x \in X.$$

求证 φ 是开映射.

解答. 显然 $\|\varphi(x)\| = \|[x]\|_0 \le \|x\|$ 且 φ 是满射, X/X_0 完备, 因此由开映射定理 φ 是开映射.

题目2.3.2. 设 X, Y 是 Banach 空间, 方程 Ux = y 对 $\forall y \in Y$ 有解 $x \in X$, 其中 $U \in L(X, Y)$, 并且存在 m > 0 使得

$$||Ux|| \ge m||x||, \quad \forall x \in X.$$

求证: U 有连续逆 U^{-1} 并且 $||U^{-1}|| \leq \frac{1}{m}$.

解答. U 显然是满射, 并且若 Ux = Uy, 则 $m||x - y|| \le ||Ux - Uy|| = 0 \Longrightarrow x = y$, 因此 U 是双射. 在 $||Ux|| \ge m||x||$ 中取 y = Ux 即得到

$$||U^{-1}y|| \le \frac{1}{m}||y||, \quad \forall y \in Y,$$

因此 U^{-1} 连续且 $||U^{-1}|| \leq \frac{1}{m}$.

题目2.3.3. 设 H 是 Hilbert 空间, $A \in L(H)$, 并且存在 m > 0 使得

$$|(Ax, x)| \ge m||x||^2, \quad \forall x \in H.$$

求证: 存在 $A^{-1} \in L(H)$.

解答. 取 a(x, y) = (x, Ay) 为共轭双线性函数, 满足

$$|a(x,y)| \le ||A|| \cdot ||x|| \cdot ||y||, \quad \forall x, y \in H,$$

由 Lax-Milgram 定理, 存在 $A^{-1} \in L(H)$.

- △ **题目2.3.4.** 设 X, Y 是赋范空间, $D \in X$ 的子空间, 并且 $A: D \to Y$ 是线性映射. 求证:
 - (1) 如果 A 连续且 D 是闭的, 那么 A 是闭算子;
 - (2) 如果 A 连续且是闭算子, 那么 Y 完备蕴含 D 闭;
 - (3) 如果 A 是单射的闭算子, 那么 A^{-1} 也是闭算子;
 - (4) 如果 X 完备, A 是单射的闭算子, R(A) 在 Y 中稠密, 并且 A^{-1} 连续, 那么 R(A) = Y.
 - **解答**. (1) 设 $D \ni x_n \to x$ 且 $Tx_n \to y$, 则由 D 是闭集知 $x \in D$, 由 T 的连续性知 $Tx_n \to Tx = y$, 故 A 是闭算子.
 - (2) 设 $D\ni x_n\to x$, 由 T 连续知 Tx_n 为 Y 中 Cauchy 列, 因此收敛于 $y\in Y$, 而 T 还是闭算子, 因此 $x\in D$, D 为闭集.
 - (3) 设 $A(D) \ni Ax_n \to y$ 并且 $A^{-1}(Ax_n) \to x \in X$, 则 $D \ni x_n \to x$ 且 $Ax_n \to y$, 由闭 算子定义, $x \in D$, y = Ax, 因此 $y \in A(D)$, $x = A^{-1}y$, A^{-1} 也是闭算子.
 - (4) 由于 A 是单射的闭算子, 因此由 (3) A^{-1} 也是闭算子. 而 A^{-1} 还是连续的, 由 (2), $R(A) = \overline{R(A)} = Y$.
- **题目2.3.5.** 用等价范数定理证明: $(C[0,1],\|\cdot\|_1)$ 不是 Banach 空间, 其中 $\|f\|_1 = \int_0^1 |f(t)| dt$, $\forall f \in C[0,1]$.

解答. 反设 C[0,1] 关于范数 $\|\cdot\|_1$ 构成 Banach 空间, 而其关于 $\|\cdot\|_{\infty}$ 也构成 Banach 空间, 并且 $\|\cdot\|_{\infty}$ 显然比 $\|\cdot\|_1$ 强, 因此由等价范数定理这两个范数等价, 但是

$$\left\| (1-nx)\chi_{[0,\frac{1}{n}]}(x) \right\|_{\infty} = n, \quad \left\| (1-nx)\chi_{[0,\frac{1}{n}]}(x) \right\|_{1} = \frac{1}{2},$$

矛盾.

趣目2.3.6. (Gelfand 引理) 设 X 是 Banach 空间, $p: X \to \mathbb{R}$ 满足

- (1) $p(x) \ge 0$, $\forall x \in X$;
- (2) $p(\lambda x) = \lambda p(x), \quad \forall \lambda > 0, x \in X;$
- (3) $p(x_1 + x_2) \le p(x_1) + p(x_2), \forall x_1, x_2 \in X$;
- (4) $x_n \to x \Longrightarrow \liminf_{n \to \infty} p(x_n) \ge p(x)$.

求证: 存在 M > 0 使得 $p(x) \le M||x||, \forall x \in X$.

解答.

方法一.(等价模定理) 注意到

$$p(\alpha x) \le p(\operatorname{Re} \alpha x) + p(\operatorname{Im} \alpha i x) \le \max\{p(\pm x) + p(\pm i x)\}, \quad \forall x \in X, |\alpha| = 1,$$

因此可以定义范数

$$||x||_p = ||x|| + \sup_{|\alpha|=1} p(\alpha x), \quad \forall x \in X.$$

由等价模定理, 只需证明 X 关于 $\|\cdot\|_p$ 完备. 设 $\{x_n\}$ 是 X 上关于 $\|\cdot\|_p$ 的 Cauchy 列. 由于 $\|\cdot\|_p$ 比 $\|\cdot\|_p$ 以 $\|\cdot\|_p$ 也是 $\|\cdot\|_p$ 的 Cauchy 列, 再根据 X 的完备性, $\{x_n\}$ 收敛于 x. 从而

$$|p(x) - p(x_n)| \le p(x - x_n) \le \liminf_{m \to \infty} p(x_m - x_n) \to 0, \quad n \to \infty,$$

因此 $\{x_n\}$ 依范数 $\|\cdot\|_p$ 收敛于 x.

方法二.(Baire 纲定理) 记

$$E_n = \{x \in X : p(x) \le n \mid \exists p(-x) \le n\},$$

则
$$X = \bigcup_{n=1}^{\infty} E_n$$
. 设 $x_n \to x$, 则

$$\begin{cases} p(x) \leq \liminf_{n \to \infty} p(x_n) \leq n \\ p(-x) \leq \liminf_{n \to \infty} p(-x_n) \leq n \end{cases} \implies x \in E_n,$$

故每个 E_n 都是闭集. 由 Baire 纲定理及 X 的完备性, 存在 E_n 不是疏集, 即存在 $B(x_0,r) \subset E_n$. 根据 E_n 的定义, $B(-x_0,r) \subset E_n$, 而 E_n 显然还是一个凸集, 因此 $B(0,r) = \frac{1}{2}B(x_0,r) + \frac{1}{2}B(-x_0,r) \subset E_n$. 任取 $x \neq 0$, 有

$$p\left(\frac{rx}{2\|x\|}\right) \le n \implies p(x) \le \frac{2n}{r}\|x\|,$$

取 $M = \frac{2n}{r}$ 即可.

题目2.3.7. 设 X 和 Y 是 Banach 空间, $\{A_n\} \subset L(X,Y)$. 又对 $\forall x \in X$, $\{A_n x\}$ 在 Y 中收敛. 求证: 存在 $A \in L(X,Y)$ 使得

解答. 记 $Ax = \lim_{n \to \infty} A_n x (\forall x \in X)$ 为线性算子. 由于 $A_n x$ 收敛, 因此 $\sup_{n \ge 1} \|A_n x\| < \infty$ ($\forall x \in X$), 由共鸣定理, $\liminf_{n \to \infty} \|A_n\| \le \sup_{n \ge 1} \|A_n\| < \infty$. 从而

$$\|Ax\| = \lim_{n \to \infty} \|A_n x\| \le \liminf_{n \to \infty} \|A_n\| \cdot \|x\|, \quad \forall x \in X.$$

题目2.3.8. 设 $1 并且 <math>\frac{1}{p} + \frac{1}{q} = 1$. 如果序列 $\{\alpha_k\}$ 使得对 $\forall x = \{x_k\} \in l^p$ 保证 $\sum_{k=1}^{\infty} \alpha_k x_k$ 收敛. 求证: $\{\alpha_k\} \in l^q$. 又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k x_k$, 求证: f 作为 l^p 上的线性泛函, 有

$$||f|| = \left(\sum_{k=1}^{\infty} |\alpha_k|^q\right)^{\frac{1}{q}}.$$

解答. 记 $f_n(x) = \sum_{k=1}^n \alpha_k x_k \in (l^p)^*$. 由于对每个 $x \in l^p$, $f_n(x) \to f(x)$, 因此 $\sup_{n \ge 1} |f_n(x)| < \infty$, 根据共鸣定理, 存在 M > 0 使得 $||f_n|| \le M(\forall n \ge 1)$.

又记 x 满足 $x_k = \text{sign}(\overline{\alpha}_k)|\alpha|^{q-1}(\forall k \ge 1), x^{(n)} \in l^p$ 为前 n 项与 x 相等, 其余项均为 0 的点. 因此

$$f(x^{(n)}) = \sum_{k=1}^{n} |\alpha_k|^q = f_n(x^{(n)}) \le M \|x^{(n)}\|_p = M \left(\sum_{k=1}^{n} |\alpha_k|^q\right)^{\frac{1}{p}},$$

整理得

$$\left(\sum_{k=1}^{n} |\alpha_k|^q\right)^{\frac{1}{q}} \le M, \quad \forall n \ge 1,$$

令 $n \to \infty$ 即得到 $\alpha \in l^q$. 由

$$f(x) = \left\|\alpha\right\|_q^q = \left\|\alpha\right\|_q \cdot \left\|x\right\|_p, \quad \left|f(y)\right| \le \left\|\alpha\right\|_q \cdot \left\|y\right\|_p, \quad \forall \, y \in l^p$$

得 $||f|| = ||\alpha||_q$.

题目2.3.9. 如果序列 $\{\alpha_k\}$ 对 $\forall x = \{x_k\} \in l^1$, 保证 $\sum_{k=1}^{\infty} \alpha_k x_k$ 收敛, 求证: $\{\alpha_k\} \in l^{\infty}$. 又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k x_k$ 作为 l^1 上的线性泛函, 求证:

$$||f|| = \sup_{k>1} |\alpha_k|.$$

解答. 记 $f_n = \sum_{k=1}^n \alpha_k x_k \in (l^1)^*$. 由于对每个 $x \in l^1$, $f_n(x) \to f(x)$, 因此 $\sup_{n \ge 1} |f_n(x)| < \infty$, 根据共鸣定理, 存在 M > 0 使得 $||f_n|| \le M(\forall n \ge 1)$. 又记 $e^{(n)}$ 为第 n 项为 1 其余均为 0 的点, 因此

$$|f(e^{(n)})| = |\alpha_n| = f_n(e^{(n)}) \le M ||e^{(n)}||_1 = M, \quad \forall n \ge 1,$$

在上式左侧对 n 取上界得 $\alpha \in l^{\infty}$. 再由

$$|f(x)| \le ||\alpha||_{\infty} \cdot ||x||_1, \quad \forall x \in l^1,$$

以及存在 $\{n_k\}$ 使得

$$\lim_{k \to \infty} \left| \alpha_{n_k} \right| = \|\alpha\|_{\infty} \Longrightarrow \left| f(\alpha_{n_k} e_{n_k}) \right| \to \|\alpha\|_{\infty}^2,$$

知 $||f|| = ||\alpha||_{\infty}$.

△ **题目2.3.10**. 用 Gelfand 引理证明共鸣定理.

解答. 设 X 为 Banach 空间, Y 为赋范空间, $W \subset L(X,Y)$ 满足

$$\sup_{A \in W} \|Ax\| < \infty, \quad \forall x \in X.$$

令 $p(x) = \sup_{A \in W} \|Ax\|$, 则 p 显然满足 Gelfand 引理的条件 (1)(2)(3). 对 (4), 反设存在 $x_n \to x_0$ 但 $p(x_0) > \alpha > \liminf_{n \to \infty} p(x_n)$. 由下极限定义, 存在 $\{x_n\}$ 的子列 $\{y_n\}$ 使得

$$p(x_0) > \alpha \ge p(y_n), \quad \forall n \ge 1.$$

因为 $p(x_0) > \alpha$, 存在 $A_0 \in W$ 使得 $||A_0x_0|| > \alpha$, 从而

$$||A_0x_0|| > \alpha \ge p(y_n) \ge ||A_0y_n||, \quad \forall n \ge 1,$$

在上式中令 $n \to \infty$, 得到 $\|A_0x_0\| > \alpha \ge \|A_0x_0\|$, 矛盾. 因此 p 满足 Gelfand 引理所有条件, 故存在 M > 0 使得 $p(x) \le M\|x\|$, $\forall x \in X \implies \|A\| \le M$, $\forall A \in W$.

题目2.3.11. 设 X, Y 是 Banach 空间, $A \in L(X, Y)$ 是满射. 求证: 如果在 $Y 中 y_n \to y_0$, 则存在 C > 0 与 $x_n \to x_0$ 使得 $Ax_n = y_n$ 并且 $\|x_n\| \le C\|y_n\|$.

解答. 记 $N(A) = \{x \in X : Ax = 0\}$ 为闭子空间, $T : X/N(A) \to Y, [x] \to Ax$, 是良定义的双射, 因为 $[x] = [y] \iff [x-y] = N(A) \iff x-y \in N(A) \iff A(x-y) = 0 \iff Ax = Ay$. T 还是连续的, 因为

$$\|T[x]\| = \inf_{A\gamma = Ax} \|Ay\| \le \|A\| \inf_{\gamma \in [x]} \|\gamma\| = \|A\| \cdot \|[x]\|_0.$$

由 Banach 逆算子定理, T^{-1} 连续, 从而对 $Ax_0 = y_0$, 有

$$\inf_{Ax=y_n} \|x - x_0\| \le \|T^{-1}\| \cdot \|y_n - y_0\| \to 0,$$

存在 x_n 使得 $Ax_n = y_n$ 且

$$||x_n - x_0|| \le 2 \inf_{Ax = y_n} ||x - x_0|| \le 2 ||T^{-1}|| \cdot ||y_n - y_0|| \to 0,$$

因此 $x_n \to x_0$. 若 $y_0 = 0$, 取 $C = 2 \| T^{-1} \|$. 若 $y_0 \neq 0$, 存在 $\varepsilon_0 > 0$ 使得对充分大 (不妨设是所有) 的 n 有 $\| y_n \| > \varepsilon_0$. 因此

$$||x_{n}|| \leq ||x_{n} - x_{0}|| + ||x_{0}|| \leq 2||T^{-1}|| \cdot ||y_{n} - y_{0}|| + ||x_{0}||$$

$$\leq 2||T^{-1}|| \cdot ||y_{n}|| + 2||T^{-1}|| \cdot ||y_{0}|| + ||x_{0}||$$

$$\leq \left(2||T^{-1}|| + \frac{2||T^{-1}|| \cdot ||y_{0}|| + ||x_{0}||}{\varepsilon}\right)||y_{n}||, \quad \forall n \geq 1.$$

- **题目2.3.12.** 设 X, Y 是 Banach 空间, T 是闭线性算子, $D(T) \subset X$, $\mathbb{R}(T) \subset Y$, $N(T) \triangleq \{x \in X : Tx = 0\}$. 求证:
 - (1) N(T) 是闭线性子空间.
 - (2) 若 $N(T) = \{0\}$, 则 R(T) 在 Y 中闭的充要条件是: 存在 $\alpha > 0$ 使得

 $||x|| \le \alpha ||Tx||, \quad \forall x \in D(T).$

(3) R(T) 在 Y 中闭的充要条件是: 存在 $\alpha > 0$ 使得

$$d(x, N(T)) \le \alpha ||Tx||, \quad \forall x \in D(T).$$

解答. (1) 设 $Tx_n = 0$ 且 $x_n \to x$, $Tx_n \to Tx$, 因此 Tx = 0, $x \in N(T)$, N(T) 是闭线性子空间.

- $(2) 由于 <math>N(T) = \{0\},$ 因此 T 是单射, $\|x\| \le \alpha \|Tx\| (\forall x \in D(T)) \iff \|T^{-1}y\| \le \alpha \|y\| (\forall y \in R(D)) \iff T^{-1}$ 连续 $\overset{T^{-1} \to D(T)}{\xrightarrow{Y \hookrightarrow R}} R(T)$ 闭.
- (3) 令 \tilde{T} : $D(T)/N(T) \to R(T)$, $[x] \mapsto Tx$ 为良定义的双射, 且 $R(\tilde{T}) = R(T)$, 因此由 (2), R(T) 在 Y 中闭的充要条件是: 存在 $\alpha > 0$ 使得

$$d(x, N(T)) = \|[x]\|_0 \le \alpha \|\tilde{T}[x]\| = \alpha \|Tx\|, \quad \forall x \in D(T).$$

- **题目2.3.13**. 设 a(x, y) 是 Hilbert 空间 H 上的一个共轭双线性泛函, 满足
 - (1) 存在 M > 0 使得 $|a(x,y)| \le M||x|| \cdot ||y||$, $\forall x, y \in H$;

(2) 存在 $\delta > 0$ 使得 $|a(x,x)| \ge \delta ||x||^2$, $\forall x \in H$.

求证: $\forall f \in H^*$, 存在唯一的 $y_f \in H$ 使得

$$a(x, y_f) = f(x), \quad \forall x \in H,$$

而且 y_f 连续地依赖于 f.

解答. 由 Lax-Milgram 定理, 存在唯一有连续逆的 $A \in L(H)$ 使得

$$a(x, y) = (x, Ay), \quad \forall x, y \in H.$$

由 Riesz 表示定理, 存在唯一的 z_f , $||z_f|| = ||f||$ 且

$$f(x) = (x, z_f) = a(x, A^{-1}z_f), \quad \forall x \in H,$$

若 ||f|| → 0, 则 $||z_f||$ → 0, $||y_f||$ → 0, 因此 y_f 连续地依赖于 f.

题目2.3.14. 设 Ω 是 \mathbb{R}^2 中边界光滑的开区域, $\alpha:\Omega\to\mathbb{R}$ 有界可测并满足 $0<\alpha_0\leq\alpha$, $f\in L^2(\Omega)$. 规定:

$$\begin{split} a(u,v) &\triangleq \int_{\Omega} (\boldsymbol{\nabla} u \cdot \boldsymbol{\nabla} v + \alpha u v) \mathrm{d}x \mathrm{d}y, \quad \forall u,v \in H^1(\Omega), \\ F(v) &\triangleq \int_{\Omega} f \cdot v \mathrm{d}x \mathrm{d}y, \quad \forall v \in L^2(\Omega). \end{split}$$

求证: 存在唯一的 $u \in H^1(\Omega)$ 满足

$$a(u, v) = F(v), \quad \forall v \in H^1(\Omega).$$

解答. H¹(Ω) 关于内积

$$(u, v) = \int_{\Omega} \nabla u \cdot \nabla v dx dy, \quad \forall u, v \in H^{1}(\Omega)$$

构成一个 Hilbert 空间, 且由 Poincare 不等式知存在 C > 0 使得

$$||u||_2 = \sqrt{\int_{\Omega} |u|^2} \le C||u||, \quad \forall u \in H^1(\Omega).$$

设 $M \in \alpha$ 的上界, 则 $a(x,y) \in H^1(\Omega)$ 上的共轭双线性函数, 满足

- $(1) \ |a(u,v)| \leq \|u\| \cdot \|v\| + M\|u\|_2 \cdot \|v\|_2 \leq (C^2M+1)\|u\| \cdot \|v\|, \quad \forall u,v \in H^1(\Omega);$
- (2) $|a(u,u)| \ge \int_{\Omega} |\nabla u|^2 dx dy = ||u||^2$, $\forall u \in H^1(\Omega)$.

注意到

$$|F(v)| \leq \left\|f\right\|_2 \cdot \left\|v\right\| \leq C \left\|f\right\|_2 \cdot \left\|v\right\|, \quad \forall \, v \in H^1(\Omega),$$

因此可以 F 视作 $H^1(\Omega)$ 上的连续线性泛函, 则由上一题结论, 存在唯一的 $u \in H^1(\Omega)$ 满足

$$a(u, v) = F(v), \quad \forall v \in H^1(\Omega).$$

B.2.4 Hahn-Banach 定理

- **题目2.4.1.** 设 p 是实线性空间 X 上的次线性泛函, 求证:
 - (1) p(0) = 0;
 - $(2) p(-x) \ge -p(x);$
 - (3) 任意给定 $x_0 \in X$, 在 X 上必有实线性泛函 f, 满足 $f(x_0) = p(x_0)$ 以及 $f(x) \le p(x)(\forall x \in X)$.

证明. (1) 由正齐次性, $p(0) = p(2 \cdot 0) = 2p(0) \Longrightarrow p(0) = 0$.

- (2) $p(x) + p(-x) \ge p(x + (-x)) = p(0) = 0$.
- (3) 对 $\mathbb{R}x_0$ 上的线性泛函 $f_0(\lambda x_0) = \lambda p(x_0)$ 使用 Hahn-Banach 定理即可.
- **题目2.4.2.** 设 X 是由实数列 $x = \{x_n\}$ 全体组成的实线性空间,其元素间相等和线性运算都按坐标定义,并定义

$$p(x) = \limsup_{n \to \infty} \alpha_n, \quad \forall x = \{x_n\} \in X.$$

求证: p(x) 是次线性泛函.

解答. 只需验证 $p(x+y) \le p(x) + p(y)$, 也即

$$\limsup_{n\to\infty} (x_n + y_n) \le \limsup_{n\to\infty} x_n + \limsup_{n\to\infty} y_n.$$

对

$$\sup_{k \ge n} (x_k + y_k) \le \sup_{k \ge n} x_k + \sup_{k \ge n} y_k$$

不等式两边同时取 inf 即可.

- **题目2.4.3.** 设 X 是复线性空间, p 是 X 上的半范数. 又设 $x_0 \in X$ 满足 $p(x_0) \neq 0$. 求证: 存在 X 上的线性泛函 f 满足
 - (1) $f(x_0) = 1$;
 - (2) $|f(x)| \le \frac{p(x)}{p(x_0)}, \quad \forall x \in X.$

解答. 记 $f_0(\lambda x_0) = \lambda(\forall \lambda \in \mathbb{C})$, 则

$$|f_0(\lambda x_0)| = |\lambda| = \frac{p(|\lambda|x_0)}{p(x_0)}, \quad \forall \lambda \in \mathbb{C},$$

再使用复 Hahn-Banach 定理即可.

题目2.4.4. 设 X 是赋范空间, $\{x_n\} \subset X$. 如果 $\forall f \in X^*$, $\{f(x_n)\}$ 都有界, 求证: $\{x_n\}$ 在 X 内有界.

证明. 记 $J: X \to X^{**}$ 满足 $< Jx, f > = < f, x > (\forall f \in X^*)$. 下面证明 J 是等距映射. 由

$$|\langle Jx, f \rangle| = |\langle f, x \rangle| \le ||x|| \cdot ||f||, \quad \forall f \in X^*$$

可得 ||Jx||||x||. 由 Hahn-Banach 定理, 对每个 $x \in X$, 存在 $f \in X^*$ 使得

$$f(x) = ||x||$$
 \exists $||f|| = 1,$

因此 ||Jx|| = ||x||, J 是等距映射.

注意到

$$\sup_{n\geq 1} \left| \langle Jx_n, f \rangle \right| = \sup_{n\geq 1} \left| f(x_n) \right| < \infty, \quad \forall f \in X^*,$$

因此由共鸣定理, $\sup_{n>1} \|Jx_n\| < \infty$, 也即 $\sup_{n>1} \|x_n\| < \infty$.

▲ **题目2.4.5**. 设 X₀ 是赋范空间 X 的闭子空间, 求证:

$$\rho(x, X_0) = \sup\{|f(x)| : ||f|| = 1, f(X_0) = 0\}, \quad \forall x \in X.$$

解答. 记等式右侧为 α . 由 $|f(x)| = |f(x-y)| \le ||f|| \cdot ||x-y|| = ||x-y||, \forall y \in X_0$ 知 $\alpha \le \rho(x, X_0)$.

下面证明 $\rho(x, X_0) \le \alpha$. 若 $x \in X_0$, 则 $\rho(x, X_0) = \alpha = 0$. 现设 $x \notin X_0$, 则 $\rho(x, X_0) > 0$, 由 Hahn-Banach 定理知存在 $f \in X^*$ 使得

$$f(x) = \rho(x, X_0), \quad ||f|| = 1 \quad \exists. \quad f(X_0) = 0,$$

因此 $\rho(x, X_0) \leq \alpha$.

题目2.4.6. 设 X 是赋范空间. 给定 X 中 n 个线性无关的元素 x_1, \dots, x_n 与数域 \mathbb{N} 中 的 n 个数 C_1, \dots, C_n , 及 M > 0. 求证: 存在 $f \in X^*$ 满足 $f(x_k) = C_k (1 \le k \le n)$ 并且 $\|f\| \le M$ 的充要条件是:

$$\left| \sum_{k=1}^{n} \alpha_k C_k \right| \le M \left\| \sum_{k=1}^{n} \alpha_k x_k \right\|, \quad \forall \alpha_1, \cdots, \alpha_n \in \mathbb{K}.$$

解答. 必要性:

$$\left|\sum_{k=1}^{n}\alpha_kC_k\right| = \left|\sum_{k=1}^{n}\alpha_kf(x_k)\right| = \left|f\left(\sum_{k=1}^{n}\alpha_kx_k\right)\right| \le \left\|f\right\| \cdot \left\|\sum_{k=1}^{n}\alpha_kx_k\right\| \le M\left|\sum_{k=1}^{n}\alpha_kx_k\right|.$$

充分性: 定义

$$f_0\left(\sum_{k=1}^n \alpha_k x_k\right) = \sum_{k=1}^n \alpha_k C_k(\forall \alpha_1, \cdots, \alpha_k \in \mathbb{K}), \quad p(x) = M \|x\| (\forall x \in X),$$

并使用复 Hahn-Banach 定理即可.

题目2.4.7. 给定赋范空间 X 中的 n 个线性无关的元素 x_1, \dots, x_n , 求证: 存在 $f_1, \dots, f_n \in$

X* 使得

$$f_i(x_j) = \delta_{ij}, \quad 1 \leq i, j \leq n.$$

解答. 记

$$M_k = \text{span}\{x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n\}, \quad k = 1, \dots, n.$$

注意到 $\rho(x_k, M_k) > 0$, 因此由 Hahn-Banach 定理, 存在 $g_k \in X^*$ 使得

$$||g_k|| = 1$$
, $g_k(x_k) = \rho(x_k, M_k)$, $g_k|_{M_k} = 0$, $k = 1, \dots, n$,

取 $f_k = \frac{g_k}{\rho(x_k, M_k)}$ 即可.

题目2.4.8. 设 X 是线性空间, 求证: M 是 X 的极大线性子空间当且仅当 $\dim(X/M)$ = 1.

解答. 必要性: 取 $M = [0] \neq x_0 + M \in X/M$, 则 $x_0 \notin M$. 由于 M 是极大线性子空间, $X = \mathbb{K} x_0 \oplus M$. 任取 $x + M \in X/M$, 存在 $\alpha \in \mathbb{K}$, $y \in M$ 使得

$$x = \lambda x_0 + y \implies x + M = \lambda x_0 + M \implies X/M = \mathbb{K}(x_0 + M),$$

故 $\dim(X/M) = 1$.

充分性: 任取 $x_0 \notin M$, $x_0 + M \neq [0] = M$, 由于 X/M 是一维的,

$$X/M = \mathbb{K}(x_0 + M).$$

故 $\forall x \in X$, 存在 $\lambda \in K$ 使得 $x + M = \lambda x_0 + M \implies x - \lambda x_0 \in M \implies X = \mathbb{K} x_0 \oplus M \implies M$ 是极大线性子空间.

题目2.4.9. 设 X 是复线性空间, E 是 X 中的非空均衡集合 (即 $E = \alpha E, \forall |\alpha| = 1$), f 是 X 上的线性泛函. 求证:

$$|f(x)| \le \sup_{y \in E} \operatorname{Re} f(y), \quad \forall x \in E.$$

解答. 任取 $x \in E$, 有 $y = (\text{sign } f(x))x \in E$ 并且

$$|f(x)| = f(y) = \operatorname{Re} f(y) \Longrightarrow |f(x)| \le \sup_{y \in E} \operatorname{Re} f(y).$$

题目2.4.10. 设 X 是赋范空间, $E \subset X$ 是非空均衡闭凸集, $x_0 \in X \setminus E$. 求证: 存在 $f \in X^*$ 和 $\alpha > 0$ 使得

$$|f(x)| < \alpha < |f(x_0)|, \quad \forall x \in E.$$

解答. 由 Ascoli 定理, 存在 X 上的实有界线性泛函 u 和 $s \in \mathbb{R}$ 使得

$$u(x) < s < u(x_0), \forall x \in E.$$

令 $f(x) = u(x) - iu(ix)(\forall x \in X)$, 不难验证 $f \neq X$ 上的复有界线性泛函. 由上题,

$$\sup_{x \in E} |f(x)| \le \sup_{y \in E} u(y) \le s < u(x_0) \le |f(x_0)|,$$

取 $\alpha \in (s, u(x_0))$ 即可.

题目2.4.11. 设 E, F 是实赋范空间 X 中的两个互不相交的非空凸集, 并且 E 是开的和均衡的. 求证: 存在 $f \in X^*$ 使得

$$|f(x)| < \inf_{y \in F} |f(y)|, \quad \forall x \in E.$$

解答. 由凸集分离定理, 存在 $f \in X^*$ 使得

$$\sup_{x \in E} f(x) \le \inf_{y \in F} f(y) \le \inf_{y \in F} |f(y)|,$$

由于 E 是均衡的, 上式即

$$\sup_{x \in E} |f(x)| \le \inf_{y \in F} |f(y)|.$$

由于 E 是开集, 因此 |f(x)| 在 E 上取到最大值, 从而

$$|f(x)| < \inf_{y \in F} |f(y)|, \quad \forall x \in E.$$

题目2.4.12. 设 C 是实赋范空间 X 中的一个凸集, $x_0 \in C^\circ$, $x_1 \in \partial C$, $x_2 = m(x_1 - x_0) + x_0 (m > 1)$. 求证: $x_2 \notin C$.

解答. 反设 $x_2 \in C$. 由 $x_0 \in C^\circ$ 知存在 r > 0 使得 $B(x_0, r) \subset C$. 因此

$$B\left(x_1, (1 - \frac{1}{m})r\right) = x_1 + (\frac{1}{m} - 1)x_0 + B\left((1 - \frac{1}{m})x_0, (1 - \frac{1}{m})r\right)$$
$$= \frac{1}{m}x_2 + (1 - \frac{1}{m})B(x_0, r) \subset E,$$

因此 $x_1 \in C^{\circ}$, 矛盾.

题目2.4.13. 设 M 是赋范空间 X 中的闭凸集, 求证: 任取 $x \in X \setminus M$, 存在 $f_1 \in X^*$ 满足 $||f_1|| = 1$ 并且

$$\sup_{y \in M} f_1(y) \le f_1(x) - \rho(x, M).$$

解答. 记 $d = \rho(x, M) > 0$, 则 $B(x, d) \cap M = \emptyset$, 由凸集分离定理, 存在 $f \in X^*$ 使得

$$f(y) \le f(x+dz), \quad \forall \, y \in M, \|z\| < 1.$$

不妨设 $\|f\|=1$ (否则令 $f_1=\frac{f}{\|f\|}$ 依旧满足上式). 则 $\forall \varepsilon>0$, 存在 $\|z_0\|<1$ 使得

$$1 - \varepsilon \le f(z_0) \le 1,$$

从而

$$\sup_{y \in M} f(y) \le f(x - dz_0) = f(x) - df(z_0) \le f(x) - d(1 - \varepsilon).$$

由 ε 任意性, $\sup_{y \in M} f(y) \leq f(x) - d$.

△ **题目2.4.14**. 设 M 是实赋范空间 X 内的闭凸集, 求证:

$$\inf_{z \in M} \|x - z\| = \sup_{\|f\| = 1} \left(f(x) - \sup_{z \in M} f(z) \right), \quad \forall x \in X.$$

解答. 若记上式右侧为 α , 则

$$\alpha = \sup_{\|f\|=1} \inf_{z \in M} f(x-z) \le \sup_{\|f\|=1} \inf_{z \in M} \|f\| \cdot \|x-z\| = \inf_{z \in M} \|x-z\|.$$

另一方面, 由上题, 存在 $f_1 \in X^*$ 且 $||f_1|| = 1$ 使得

$$\rho(x, M) \le f_1(x) - \sup_{z \in M} f_1(z) \le \alpha,$$

因此 $\rho(x, M) = \alpha$.

题目2.4.15. 设 X 是 Banach 空间, $f: X \to \mathbb{R} (\triangleq \mathbb{R} \cup \{\infty\})$ 是连续的凸泛函, 并且 $f(x) \neq \infty$. 若定义 $f^*: X^* \to \mathbb{R}$ 为

$$f^*(x^*) = \sup_{x \in X} (\langle x^*, x \rangle - f(x)), \quad \forall x^* \in X^*,$$

求证: $f^*(x^*) \not\equiv \infty$.

解答. 给定 $x_0 \in X$ 使得 $|f(x_0)| < \infty$. 由于 f 在 x_0 处连续, 因此 $\partial f(x_0)$ 非空, 存在 $x_0^* \in X^*$ 使得

$$f^*(x_0^*) = \sup_{x \in X} (\langle x_0^*, x \rangle - f(x)) \le \langle x_0^*, x_0 \rangle - f(x_0) < \infty,$$

因此 $f^*(x_0^*) \not\equiv \infty$.

题目2.4.16. 设 X 是 Banach 空间, x(t): $[a,b] \to X$ 是连续的抽象函数. 又设 Δ 表示 [a,b] 的分割:

$$a = t_0 < t_1 < t_2 < \dots < t_n = b,$$

 $\|\Delta\| \triangleq \max_{0 \le i < n} (t_{i+1} - t_i).$

求证: 在 X 中存在极限

$$\lim_{\|\Delta\| \to 0} \sum_{i=0}^{n-1} x(t_i)(t_{i+1} - t_i).$$

此极限称为抽象函数 x(t) 在 [a,b] 上的 Riemann 积分.

解答. 称所有满足

$$x(t) = \alpha_i, \quad t \in (t_i, t_{i+1}), 0 \le i < n$$

的函数为阶梯型函数, 其中 $a = t_0 < t_1 < \cdots < t_n = b$, $\alpha_0, \cdots, \alpha_{n-1} \in X$, 所有阶梯型函数 组成的空间记为 Y_0 , 其上定义线性泛函

$$F(x) = \sum_{i=0}^{n-1} \alpha_i (t_{i+1} - t_i).$$

注意到

$$b-a = \|F(\chi_{[a,b]})\| \le \sup_{x \in Y_0, ||x||=1} \|F(x)\| \le \sum_{i=0}^{n-1} \|x\| (t_{i+1} - t_i) = b - a,$$

因此 $||F||_{Y_0} = b - a$. 由 Hahn-Banach 定理, 存在 $Y(Y_0)$ 的完备化空间) 上的连续线性泛函, 仍记为 F, 满足 ||F|| = b - a. 由于任意连续函数 x 均是阶梯型函数一致收敛的极限, 故 $C([a,b],X) \subset Y$. 并且由 F 的连续性,

$$F(x) = \lim_{\|\Delta\| \to 0} F\left(\sum_{i=0}^{n-1} x(t_i) \chi_{(t_i, t_{i+1})}\right) = \lim_{\|\Delta\| \to 0} x(t_i) (t_{i+1} - t_i),$$

故右侧极限存在.

题目2.4.17. 设 X 是 Banach 空间, G 是 \mathbb{C} 中的简单闭曲线 L 围成的开区域. 如果 $x(z):\overline{G} \to X$ 在 G 内解析, 且在 \overline{G} 上连续. 求证: (推广的 Cauchy 定理)

$$\int_L x(z) \mathrm{d}z = 0.$$

解答. 任取 $f \in X^*$, 有

$$\lim_{h \to 0} \frac{f(x(z+h)) - f(x(z)) - f(x'(z))h}{h}$$

$$= f\left(\lim_{h\to 0}\frac{x(z+h)-x(z)-x'(z)h}{h}\right) = 0, \quad \forall z\in G,$$

故 f(x(z)) 也在 G 内解析. 由 Cauchy 定理,

$$f\left(\int_{L} x(z)dz\right) = \int_{L} f(x(z))dz = 0, \quad \forall f \in X^{*},$$

因此 $\int_L x(z) dz = 0$.

▲ 题目2.4.18. 求证: (1) |x| 在 ℝ 中是凸的; (2) ∂|x|(0) = [-1,1].

解答. (1)
$$|\alpha x + (1-\alpha)y| \le \alpha |x| + (1-\alpha)|y|$$
, $\forall x, y \in \mathbb{R}, \alpha \in [0,1]$.

(2)
$$\partial |x|(0) = \{t \in \mathbb{R} : tx \le |x|, \forall x \in \mathbb{R}\} = [-1, 1].$$

B.2.5 共轭空间, 弱收敛, 自反空间

题目2.5.1. 求证: $(l^p)^* = l^q \Big(1 \le p < \infty, \frac{1}{p} + \frac{1}{q} = 1 \Big).$ 解答. 令

$$T: l^q \to (l^p)^*, \{\alpha_n\} \mapsto f \quad \left(f(\{x_n\}) = \sum_{n=1}^{\infty} \alpha_n x_n \right),$$

由习题 2.3.8 和习题 2.3.9, T 是良定义的并且保持范数. 还需证明 T 是满射. 设 $f \in l^q$, 令 $\{\alpha_n\} = \{f(e_n)\}$, 其中 e_n 是第 n 分量为 1 其余为 0 的点. $\forall \{x_n\} \in l^p$, $\sum_{n=1}^{\infty} \alpha_n x_n = f(\{x_n\})$ 收敛, 因此再由习题 2.3.8 和习题 2.3.9, $\{\alpha_n\} \in l^q$ 且 $T\{\alpha_n\} = f$, T 是满射.

题目2.5.2. 设 C 是收敛数列全体, 其上范数为 $\|\cdot\|_{\infty}$, 求证: $C^* = l^1$.

解答. 令

$$T: l^1 \to C^*, \alpha = \{\alpha_n\} \to f \quad \left(f(\{x_n\}) = \sum_{n=1}^{\infty} \alpha_n x_n\right).$$

首先证明 T 是良定义的, 并且 $||f|| = ||\alpha||_1$. 注意到

$$\left|f(x)\right| = \left|\sum_{n=1}^{\infty} \alpha_n x_n\right| \le \|x\|_{\infty} \sum_{n=1}^{\infty} |\alpha_n| = \|\alpha\|_1 \cdot \|x\|_{\infty}, \quad \forall x = \{x_n\} \in C,$$

因此 $||f|| \le ||\alpha||_1$. 记

$$x^{(m)} \in C_0 \subset C: \quad x_n^{(m)} = \begin{cases} \operatorname{sign}(\alpha_n), & n \leq m, \\ 0, & n > m. \end{cases}$$

则

$$f(x^{(m)}) = \sum_{n=1}^{m} |\alpha_n| \to ||\alpha||_1, \quad m \to \infty,$$

因此 $||f|| = ||\alpha||_1$.

再证明 T 是满射. 对 $f \in C^*$, 令 $\alpha = \{\alpha_n\} = \{f(e^{(n)})\}$. 下面证明 $\alpha \in l^1$.

$$\left| f(x^{(m)}) \right| = \left| \sum_{n=1}^{\infty} x_n^{(m)} f(e^{(n)}) \right| = \sum_{n=1}^{m} \left| f(e^{(n)}) \right| = \sum_{n=1}^{m} |\alpha_n| \le \|f\| \cdot \|x^{(m)}\| = \|f\|,$$

故 $\alpha \in l^1$, 再根据 $T\alpha = f$ 知 T 是满射.

- **题目2.5.3.** 设 C_0 是收敛于 0 的数列全体, 其上范数为 $\|\cdot\|_{\infty}$, 求证: $C_0^* = l^1$. **解答.** 与上题证明过程相同.
- 题目2.5.4. 求证: 有限维赋范空间是自反的.

解答. 设 X 的一组基为 x_1, \dots, x_n . 由习题 2.4.7, 存在 $f_1, \dots, f_n \in X^*$ 使得 $f_i(x_j) = \delta_{ij} (1 \le i, j \le n)$. 任取 $f \in X^*, x = \sum_{k=1}^n \alpha_k x_k$, 有

$$f(x) = f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = \sum_{k=1}^{n} \alpha_k f(x_k) = \sum_{k=1}^{n} \langle f, x_k \rangle f_k(x),$$

并且由于 $f_k(1 \le k \le n)$ 线性无关, 这种表示是唯一的, 因此 f_1, \dots, f_n 是 X^* 的一组基, $\dim X^* = n = \dim X$.

同理可得 $\dim X^{**} = \dim X^*$, 从而 $\dim X^{**} = \dim X$, 再由 $X \subset X^{**}$ 知 $X = X^{**}$.

▲ 题目2.5.5. 求证: Banach 空间 X 自反当且仅当 X* 自反.

解答. 必要性: 若X自反,则自然映射 τ 是从X到 X^{**} 的等距同构. $\forall x^{***} \in X^{***}$,对

 $\forall x^{**} = \tau x \in X^{**}, \overleftarrow{a}$

$$\langle x^{***}, x^{**} \rangle = \langle x^{***}, \tau x \rangle = \langle \tau^* x^{***}, x \rangle$$
$$= \langle \tau x, \tau^* x^{***} \rangle = \langle x^{**}, \tau^* x^{***} \rangle,$$

因此 X* 是自反的.

充分性: 若 X^* 自反,则由必要性条件知 X^{**} 自反. 记 τ 是 X 到 X^{**} 的自然 同构,则由 X 是 Banach 空间可得 $\tau(X)$ 在 X^{**} 中闭. 根据 Pettis 定理,自反空间的 闭子空间也自反,因此 τX 自反. 记 ϕ 是从 τX 到 $(\tau X)^{**}$ 的自然同构 (因为 τX 自反). 不难看出 $x^* \mapsto y^*$, $\langle y^*, \tau x \rangle := \langle x^*, x \rangle (x \in X)$ 是 X^* 到 $(\tau X)^*$ 的等距同构,从而 $\psi: x^{**} \mapsto y^{**}, \langle y^{**}, y^* \rangle := \langle x^{**}, x^* \rangle (x^* \in X^*)$ 是从 X^{**} 到 $(\tau X)^{**}$ 的等距同构. 故

$$\langle x^{**}, x^{*} \rangle = \langle y^{**}, y^{*} \rangle = \langle y^{*}, \phi^{-1} y^{**} \rangle$$

= $\langle x^{*}, \tau^{-1} \phi^{-1} y^{**} \rangle = \langle x^{*}, \tau^{-1} \phi^{-1} \psi x^{**} \rangle$,

因此 X 也自反.

题目2.5.6. 设 X 是赋范空间, τ 是 X 到 X^{**} 的自然映射, 求证: $R(\tau)$ 是闭的当且仅当 X 完备.

解答. 必要性: 设 $\{x_n\}$ 是 X 中的 Cauchy 列, 则 $\{\tau x_n\}$ 是 X^{**} 中的 Cauchy 列. 由 X^{**} 的完备性以及 $R(\tau)$ 是闭集, $\tau x_n \to \tau x \in R(\tau)$, 从而 $x_n \to x$, X 完备.

充分性: 设 $\tau x_n \to x^{**} \in X^{**}$, 则 $\{\tau x_n\}$ 是 X^{**} 中的 Cauchy 列, $\{x_n\}$ 是 X 中的 Cauchy 列. 根据 X 的完备性, $x_n \to x \in X$, 也即 $\tau x_n \to \tau x = x^{**} \in R(\tau)$, 因此 $R(\tau)$ 是闭的.

❷ 题目2.5.7. 在 *l*¹ 中定义算子

$$T:(x_1,x_2,\cdots)\mapsto (0,x_1,x_2,\cdots),$$

求证: $T \in L(l^1)$ 并求 T^* .

解答.由

$$||Tx|| = ||x||, \quad \forall x \in l^1$$

可知 $T \in L(l^1)$ 并且 ||T|| = 1. 注意到

$$\langle T^*f,x\rangle=\langle f,Tx\rangle=\sum_{n=1}^\infty f_n(Tx)_n=\sum_{n=1}^\infty f_{n+1}x_n,\quad\forall f\in l^\infty=(l^1)^*,x\in l^1,$$

故

$$T^*: l^{\infty} \to l^{\infty}, (f_1, f_2, \dots) \mapsto (f_2, f_3, \dots),$$

也即 T^* 是 I^∞ 上的左推移算子.

▲ **题目2.5.8.** 在 l² 中定义算子

$$T: \{x_n\}_1^\infty \mapsto \left\{\frac{x_n}{n}\right\}_1^\infty,$$

求证: $T \in L(l^2)$ 并求 T^* .

解答.由

$$||Tx||^2 = \sum_{n=1}^{\infty} \frac{|x_n|^2}{n^2} \le \left(\sum_{n=1}^{\infty} \frac{1}{n^2}\right) \left(\sum_{n=1}^{\infty} |x_n|^2\right) = \zeta(2) ||x||, \quad \forall x \in l^2$$

可知 $T \in L(l^2)$ 并且 $||T|| = \zeta(2)$. 注意到

$$(T^*x, y) = (x, Ty) = \sum_{n=1}^{\infty} \frac{x_n y_n}{n} = (Tx, y), \quad \forall x, y \in l^2$$

可得 $T^* = T$.

▲ **题目2.5.9.** 设 *H* 是 Hilbert 空间, *A* ∈ *L*(*H*) 并满足

$$(Ax,y)=(x,Ay),\quad\forall x,y\in H,$$

求证: (1) $A^* = A$; (2) $\overline{R(A)} = H \Longrightarrow A$ 是单射.

解答. (1) 由 Rieze 表示定理, H≅ H*, 再由

$$(A^*x, y) = (x, Ay) = (Ax, y), \quad \forall x, y \in H$$

可得 $A^* = A$.

(2) 若 Ax = Ay, 则

$$0 = (Ax - Ay, z) = (x - y, Az), \quad \forall z \in H.$$

由 $\overline{R(A)} = H$ 知, 存在 $Az_n \rightarrow x - y$, 故

$$0 = (x - y, Az_n) \rightarrow (x - y, x - y) = 0 \implies x = y.$$

因此 A 是单射.

- **题目2.5.10**. 设 X, Y 是赋范空间, $A \in L(X, Y)$, A^{-1} 存在且 $A^{-1} \in L(Y, X)$, 求证:
 - (1) $(A^*)^{-1}$ 存在且 $(A^*)^{-1} \in L(X^*, Y^*)$;
 - (2) $(A^*)^{-1} = (A^{-1})^*$.

解答. (1) 设 $A^* f = A^* g$, 则

$$0 = \langle A^*f - A^*g, A^{-1}y \rangle = \langle f - g, AA^{-1}y \rangle = \langle f - g, y \rangle (\forall y \in Y) \implies f = g.$$

因此 A^* 是单射. 任取 $x^* \in X^*$, 取 $y^* = (A^{-1})^* x^*$, 则

$$\langle A^* y^*, x \rangle = \langle y^*, Ax \rangle = \langle x^*, A^{-1} Ax \rangle = \langle x^*, x \rangle, \quad \forall x \in X,$$

故 $A^*y = x$, A^* 是满射. 再根据 Banach 逆算子定理, $(A^*)^{-1} \in L(X^*, Y^*)$.

- (2) 由 (1) 证明 A* 是满射的过程不难看出.
- **题目2.5.11.** 设 X, Y, Z 是赋范空间, $B \in L(X, Y), A \in L(Y, Z)$, 求证: $(AB)^* = B^*A^*$. **解答**.

$$\langle (AB)^*z^*, x \rangle = \langle z^*, ABx \rangle = \langle A^*z^*, Bx \rangle = \langle B^*A^*z^*, x \rangle, \quad \forall z^* \in Z^*, x \in X,$$

故 $(AB)^* = B^*A^*$.

题目2.5.12. 设 X,Y 是 Banach 空间, T 是从 X 到 Y 的线性算子, 并且 $\forall g \in Y^*$,

 $g(Tx) \in X^*$, \overline{X} \overline{u} : $T \in L(X, Y)$.

解答. 定义 $T^*: Y^* \to X^*, g \mapsto g(Tx)$, 则

$$\sup_{\substack{x^{**} \in R(\tau) \\ \|x^{**}\| = 1}} \|(x^{**} \circ T^*)g\| = \sup_{\substack{x \in X \\ \|x\| = 1}} \|(T^*g)(x)\| < \infty, \quad \forall g \in Y^*,$$

由共鸣定理,

$$\sup_{\substack{x^{**} \in R(\tau) \\ \|x^{**}\| = 1}} \sup_{\substack{g \in Y^* \\ \|g\| = 1}} \left\| (x^{**} \circ T^*)(g) \right\| = \sup_{\substack{\|g\| = 1 \\ g \in Y^*}} \left\| T^* g \right\| = \left\| T^* \right\| < \infty,$$

故 $T^* \in L(Y^*, X^*)$, 从而 $||T|| = ||T^*|| < \infty$, $T \in L(X, Y)$.

趣目2.5.13. 设 $x_n, x \in C[a, b]$ 且 $x_n \to x$, 求证

$$x_n(t) \to x(t), \quad \forall t \in [a, b].$$

解答. $\forall t \in [a,b]$, 取 $f_t(y) = y(t)(\forall y \in C[a,b]$, 则

$$|f_t(y)| = |y(t)| \le ||y||, \quad \forall y \in C[a, b],$$

故 f_t ∈ $(C[a,b])^*$, 从而

$$f_t(x_n) = x_n(t) \rightarrow f_t(x) = x(t), \quad \forall t \in [a, b].$$

题目2.5.14. 设在赋范空间 $X 中 x_n - x_0$, 求证:

$$\liminf_{n\to\infty} \|x_n\| \ge \|x_0\|.$$

解答. 由 Hahn-Banach 定理, 存在 $f \in X^*$ 使得 $f(x_0) = ||x_0||$ 且 ||f|| = 1, 故

$$\|x_0\|=f(x_0)=\lim_{n\to\infty}f(x_n)\leq \liminf_{n\to\infty}\|x_n\|.$$

- **题目2.5.15.** 设 H 是 Hilbert 空间, $\{e_n\}$ 是 H 的正交规范基, 求证: $x_n \to x_0$ 的充要条件 是
 - (1) $\|x_n\|$ 有界;
 - (2) $(x_n, e_k) \to (x_0, e_k), \forall k \ge 1.$

解答. 必要性: 由 Banach-Steinhaus 定理易得.

充分性: 由 Riesz 表示定理, 只需证明 $(x_n, x) \to (x_0, x) (\forall x \in H)$. 记 $M \not\in \|x_n\|$ 的一个上界. $\forall \varepsilon > 0$, 存在 N 使得

$$\sqrt{\sum_{k=N+1}^{\infty}|(x,e_k)|^2} = \left\|\sum_{k=N+1}^{\infty}(x,e_k)e_k\right\| < \frac{\varepsilon}{M+\|x_0\|}.$$

从而

$$\begin{split} |(x_n - x_0, x)| &\leq \left| \left(x_n - x_0, \sum_{k=1}^N (x, e_k) e_k \right) \right| + \left| \left(x_n - x_0, \sum_{k=N+1}^\infty (x, e_k) e_k \right) \right| \\ &\leq \sum_{k=1}^N |(x, e_k)| \cdot |(x_n - x_0, e_k)| + (M + ||x_0||) \cdot \frac{\varepsilon}{M + ||x_0||} \\ &\leq \sum_{k=1}^N |(x, e_k)| \cdot |(x_n - x_0, e_k)| + \varepsilon, \end{split}$$

在上式中令 $n \to \infty$, 再由 ε 的任意性可知, $(x_n - x_0, x) \to 0$.

▲ 题目2.5.16. 设 S_n 是 $L^p(\mathbb{R}^n)$ 到自身的算子 $(1 \le p < \infty)$:

$$(S_n u)(x) = \begin{cases} u(x), & |x| \le n, \\ 0, & |x| > n, \end{cases}$$

求证: $S_n \to I \ \text{但} \ S_n \not\Rightarrow I$.

解答. 任取 $u \in L^p(\mathbb{R}^n)$,

$$||(I-S_n)u||^p = \int_{|x|>n} |u(x)|^p dx \to 0,$$

因此 $S_n \rightarrow I$. 但

$$||I - S_n|| = \sup_{\|u\|=1} \left(\int_{|x|>n} |u(x)|^p dx \right)^{\frac{1}{p}} \le 1,$$

对 $v = \chi_{n < |x| < 2n}$, 取 $u = \frac{v}{\|v\|}$ 带入上式, 得 $\|I - S_n\| = 1$, 故 $S_n \neq I$.

题目2.5.17. 设 H 是 Hilbert 空间, $x_n \to x_0$, $y_n \to y_0$, 求证: $(x_n, y_n) \to (x_0, y_0)$. **解答**. 设 M 是 $\|x_n\|$ 的上界, 则

$$|(x_n, y_n) - (x_0, y_0)| \le |(x_n, y_n - y_0)| + |(x_n - x_0, y_0)|$$

$$\le M ||y_n - y_0|| + |(x_n - x_0, y_0)|,$$

- **题目2.5.18.** 设 $\{e_n\}$ 是 Hilbert 空间 H 中的正交规范集, 求证: $e_n \to 0$ 但 $e_n \to 0$. **解答.** 由 Bessel 不等式, $(e_n, x) \to 0 (\forall x \in H)$, 再由 Riesz 表示定理, $e_n \to 0$. 但 $\|e_n\| = 1(\forall n)$, 故 $e_n \to 0$.
- ▲ 题目2.5.19. 设 H 是 Hilbert 空间, 求证 $x_n \to x$ 的充要条件是
 - (1) $||x_n|| \to ||x||$;
 - (2) $x_n \rightarrow x$.

解答. 必要性显然, 只需证明充分性. 注意到

$$(x_n - x, x_n - x) = (x_n, x_n) - 2\operatorname{Re}(x_n - x, x) - (x, x),$$

△ 题目2.5.20. 求证: 在自反的 Banach 空间中, 集合的弱列紧性和有界性等价.

解答. 由 Eberlein-Smulian 定理, 自反空间中的有界集是弱列紧的, 还需证明弱列紧集有界. 设 A 是自反 Banach 空间 X 中的弱列紧集. 反设 A 无界, 则存在 $\{x_n\} \subset A$ 并且 $\|x_n\| \ge n(\forall n \ge 1)$. 由于 A 是弱列紧的, $\{x_n\}$ 有弱收敛子列 $\{x_{n_k}\}$, 从而该子列有界, 矛盾.

题目2.5.21. 求证: 赋范空间中的闭凸集是弱闭的, 即若 M 是闭凸集, $\{x_n\} \subset M$ 且 $x_n \to x_0$, 则 $x_0 \in M$.

解答. 若 $x_n \to x_0$,由 Mazur 定理, 存在 $\{x_n\}$ 的凸组合序列 $\{y_n\}$ 强收敛与 x_0 ,而由 M 是闭集, $\{y_n\} \subset M$,因此由 M 是闭集, $x_0 \in M$.

题目2.5.22. 设 X 是自反的 Banach 空间, M 是 X 中的有界闭凸集, $f \in X^*$, 求证: f 在 M 上达到最大值和最小值.

解答. 设 $||x|| \le K(\forall x \in M)$, 则由

$$|f(x)| \le ||f|| \cdot ||x|| \le K ||f||, \quad \forall x \in M$$

知 f 在 M 上的上确界和下确界均是有限值. 设 $x_n \in M$ 使得 $f(x_n) \to \alpha = \sup_{x \in M} f(x)$, 由题目 2.5.20, $\{x_n\}$ 有弱收敛子列 $\{x_{n_k}\}$, 记弱极限为 x, 显然 $f(x) = \alpha$. 根据题目 2.5.21, $x \in M$, 因此 f 在 M 上能达到最大值, 同理也能达到最小值.

题目2.5.23. 设 X 是自反的 Banach 空间, M 是 X 中的非空闭凸集, 求证: 存在 $x_0 \in M$ 使得 $\|x_0\| = \inf_{x \in M} \|x\|$.

解答. 记 $d = \inf_{x \in M} \|x\|$, 任取 $y \in M$, 有 $\|y\| \ge d$. 令 $N = M \cap \overline{B}(0, \|y\|)$, 则 N 是有界闭 凸集, 并且 $\inf_{x \in N} \|x\| = d$. 取 $x_n \in N$ 使得 $\|x_n\| \to d$, 则由题目 2.5.20, $\{x_n\}$ 有弱收敛子列 $\{x_{n_k}\}$, 弱极限为 x_0 . 取 $f \in X^*$ 使得 $\|f\| = 1$ 且 $f(x_0) = \|x_0\|$, 则

$$||x_0|| = f(x_0) = \lim_{k \to \infty} f(x_{n_k}) \le \lim_{k \to \infty} ||x_{n_k}|| = d.$$

由题目 2.5.21, $x_0 \in N \subset M$, 因此还有 $||x_0|| \ge d$, 故 $||x_0|| = d$.

B.2.6 线性算子的谱

题目2.6.1. 设 X 是 Banach 空间, 求证: 可逆有界线性算子全体在 L(X) 是开集. 证明. 设 $A \in L(X)$ 可逆. 则

$$B = A(I - A^{-1}(A - B)),$$

当 $||B-A|| < ||A^{-1}||^{-1}$ 时, B 也可逆.

题目2.6.2. 设 A 是闭线性算子, $\lambda_1, \dots, \lambda_n \in \sigma_p(A)$ 两两互异, x_i 是对应于 λ_i 的特征元. 求证: x_1, \dots, x_n 线性无关.

解答. 若 $\sum_{k=1}^{n} \alpha_k x_k = 0$, 则分别左乘 $I, A, A^2, \dots, A^{n-1}$ 可得

$$\sum_{i=1}^{n} \lambda_{i}^{j}(\alpha_{i} x_{i}) = 0, \quad j = 0, 1, \dots, n-1.$$

上述线性方程组的系数行列式为

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{vmatrix}.$$

由于 $\lambda_1, \dots, \lambda_n$ 互异, 上述行列式非零, 故 $\alpha_i x_i = 0 (i = 1, 2, \dots, n) \implies \alpha_1 = \dots = \alpha_n = 0 \implies x_1, \dots, x_n$ 线性无关.

▲ 题目2.6.3. 在双边 $l^2(\mathbb{Z})$ 空间 (从 $-\infty$ 到 ∞) 上, 考察右推移算子

$$A: x \mapsto Ax$$
, $(Ax)_n = x_{n-1} (\forall n \in \mathbb{Z})$.

求证: $\sigma_c(A) = \sigma(A) = 单位圆周$.

解答. 显然 ||A|| = 1, 故当 $|\lambda| > 1$ 时 $\lambda \in \rho(A)$. 并且 $||A^{-1}|| = 1$, $0 < |\lambda| < 1$ 时 $\frac{1}{\lambda} \in \rho(A^{-1})$, 从而由 $\lambda I - A = -\lambda(\lambda^{-1}I - A^{-1})A$ 知此时 $\lambda \in \rho(A)$.

当 $|\lambda| = 1$ 时, 若 $x \neq 0$ 但 $Ax = \lambda x$, 设 $x_m \neq 0$, 则

$$x_{n-1} = \lambda x_n (\forall n \in \mathbb{Z}) \implies x_{m-n} = \lambda^n x_m (\forall n \in \mathbb{Z}) \implies ||x|| = \infty,$$

矛盾. 因此 λ 不是特征值. 由于 $l^2(\mathbb{Z})$ 是 Hilbert 空间, 要证明 $\overline{R(\lambda I - A)} = l^2$ 只需证 $R(\lambda I - A)^{\perp} = \{0\}$. 为此, 只需注意到

$$\begin{split} x &\in R(\lambda I - A)^{\perp} \iff (x, (\lambda I - A)y) = 0 (\forall y \in l^2(\mathbb{Z})) \\ &\iff \sum_{n = -\infty}^{\infty} x_n(\overline{\lambda}\overline{y}_n - \overline{y}_{n-1}) = 0 (\forall y \in l^2(\mathbb{Z})) \end{split}$$

$$\iff \sum_{n=-\infty}^{\infty} (\overline{\lambda} x_n - x_{n+1}) \overline{y}_n = 0 (\forall y \in l^2(\mathbb{Z}))$$

$$\iff ((\overline{\lambda} I - A^{-1}) x, y) = 0 (\forall y \in l^2(\mathbb{Z}))$$

$$\iff (\overline{\lambda} I - A^{-1}) x = -\overline{\lambda}^{-1} A^{-1} (\overline{\lambda} I - A) x = 0$$

$$\iff (\overline{\lambda} I - A) x = 0 \iff x = 0.$$

△ 题目2.6.4. 在 l² 上考察左推移算子

$$A:(x_1,x_2,\cdots)\mapsto(x_2,x_3,\cdots).$$

求证: $\sigma_p(A) = \{\lambda \in \mathbb{C} : |\lambda| < 1\}, \sigma_c(A) = \{\lambda \in \mathbb{C} : |\lambda| = 1\}, 并且.$

$$\sigma(A) = \sigma_p(A) \cup \sigma_c(A)$$
.

解答. 显然 ||A|| = 1, 故当 $|\lambda| > 1$ 时 $\lambda \in \rho(A)$.

当 $|\lambda| < 1$ 时, $x_{\lambda} = (1, \lambda, \lambda^{2}, \cdots)$ 是关于 λ 的特征值, 因此 $\lambda \in \sigma_{p}(A)$. 当 $|\lambda| = 1$ 时, 若 $Ax = \lambda x$, 则

$$x_{n+1} = \lambda x_n (\forall n \ge 1) \implies x_n = \lambda^{n-1} x_1 (\forall n \ge 1) \implies \sum_{n=1}^{\infty} |x_1| < \infty \implies x = 0.$$

因此 λ 不是特征值. 此外,

$$x \in R(\lambda I - A)^{\perp} \iff (x, (\lambda I - A)y) = 0 (\forall y \in l^{2})$$

$$\iff \sum_{n=1}^{\infty} x_{n}(\overline{\lambda}\overline{y}_{n} - \overline{y}_{n+1}) = 0 (\forall y \in l^{2})$$

$$\iff \sum_{n=1}^{\infty} (\overline{\lambda}x_{n} - x_{n-1})\overline{y}_{n} = 0 (\cancel{\sharp} + x_{0} = 0, \forall y_{n} \in l^{2}),$$

在上式中令 $y_n = \overline{\lambda}x_n - x_{n-1}(\forall n \ge 1)$, 则 $\overline{\lambda}x_n = x_{n-1}(\forall n \ge 1)$, 从而 $x_n = \overline{\lambda}^{1-n}x_1$, 由 $\|x\|^2 = \sum_{n=1}^{\infty} |x_1|$ 知 x = 0, 从而 $R(\lambda I - A)^{\perp} = \{0\}$, $\overline{R(\lambda I - A)} = l^2$, $\lambda \in \sigma_c(A)$.

B.3 紧算子与 Fredholm 算子

B.3.1 紧算子的定义和基本性质

题目3.1.1. 设 X 是无穷维 Banach 空间, 求证: 若 $A \in \mathfrak{C}(X)$, 则 A 没有有界逆.

解答. 反设 A 存在有界逆,则由 $A(B_1)$ 是列紧的, $B_1 = A^{-1}A(B_1)$ 也是列紧的,但无穷维空间中的单位球不可能列紧,矛盾.

题目3.1.2. 设 X 是 Banach 空间, $A \in L(X)$ 满足

$$||Ax|| \ge \alpha ||x||, \quad \forall x \in X,$$

其中 α 是正常数. 求证: $A \in \mathfrak{C}(X)$ 的充要条件是 X 是有限维的.

解答. 充分性显然, 只证必要性. 若 $A \in \mathfrak{C}(X)$, 则任取 $\{x_n\} \subset B_1$, $\{Ax_n\}$ 有收敛子列 $\{Ax_{n_k}\}$, 故

$$||x_{n_k} - x_{n_s}|| \le \frac{1}{\alpha} ||Ax_{n_k} - Ax_{n_s}||, \quad \forall k, s \ge 1,$$

因此 $\{x_{n_k}\}$ 是基本列, 从而收敛. 故 B_1 是列紧的, X 是有限维空间.

题目3.1.3. 设 X, Y 是 Banach 空间, $A \in L(X, Y), K \in \mathfrak{C}(X, Y)$ 满足 $R(A) \subset R(K)$. 求证: $A \in \mathfrak{C}(X, Y)$.

解答. 令

$$\tilde{K}: X/N(K) \to R(K), x + N(K) \mapsto K(x),$$

由于 $B_1 + N(K)$ 是 X/N(K) 中的单位球, 因此由 $\tilde{K}(B_1 + N(K)) = K(B_1)$ 列紧知 $\tilde{K} \in \mathfrak{C}(X/N(K), Y)$. 由 \tilde{K} 是单射及 $R(A) \subset R(K)$, 可以定义线性算子

$$T = \tilde{K}^{-1}A: X \to X/N(K).$$

因为 \tilde{K} 是单射且是闭算子, 故 \tilde{K}^{-1} 是闭算子, 从而 T 也是闭算子, 而 X 完备, 因此由闭图像定理, T 是连续线性算子, 故 $A = \tilde{K}T$ 是紧算子.

题目3.1.4. 设 H 是 Hilbert 空间, $A \in \mathfrak{C}(H)$, $x_n \rightarrow x_0$, $y_n \rightarrow y_0$. 求证:

$$(x_n, Ay_n) \rightarrow (x_0, Ay_0).$$

解答. 由于紧算子都是全连续的, 故 $Ay_n \rightarrow Ay_0$, 从而

$$\begin{aligned} \left| (x_n, Ay_n) - (x_0, Ay_0) \right| &\leq \left| (x_n, Ay_n - Ay_0) \right| + \left| (x_n - x_0, Ay_0) \right| \\ &\leq \sup_{n \geq 1} \left\| x_n \right\| \cdot \left\| Ay_n - Ay_0 \right\| + \left| (x_n - x_0, Ay_0) \right| \to 0. \end{aligned}$$

题目3.1.5. 设 X, Y 是 Banach 空间, $A \in L(X, Y)$. 若 R(A) 闭且是无穷维的, 求证: $A \notin \mathfrak{C}(X, Y)$.

解答. 反设 $A \in \mathfrak{C}(X,Y)$, 则

$$\tilde{A}: X/N(A) \to R(A), x+N(A) \to Ax$$

是从 X/N(A) 到 R(A) 的具有有界逆的紧算子. 记 U 是 R(A) 中的单位球,则 $\tilde{A}^{-1}U$ 在 X/N(A) 中有界,从而 $U = \tilde{A}\tilde{A}^{-1}U$ 列紧,与 R(A) 是无穷维的矛盾.

题目3.1.6. 设 $\omega_n \in \mathbb{K}, \omega_n \to 0$, 求证: 映射

$$T:\{\xi_n\}\mapsto\{\omega_n\xi_n\}\quad (\forall\xi=\{\xi_n\}\in l^p)$$

是 l^p 上的紧算子, 其中 1≤p<∞.

解答. 首先, 显然有 $T \in L(l^p)$ 并且 $||T|| \le \sup_{n \ge 1} |\omega_n|$. 令 $F_n : x \mapsto (x_1, \dots, x_n, 0, \dots)$. 由于 $R(F_n) = n$, 故 $F_n \in \mathfrak{C}(l^p) \Longrightarrow F_n T \in \mathfrak{C}(l^p)$. 注意到

$$||T - F_n T||^p = \sup_{\|x\|=1} ||Tx - F_n Tx||^p = \sum_{k=n+1}^{\infty} |\omega_k x_k|^p \le \sup_{k>n} |\omega_k|^p \cdot ||x||^p = \sup_{k>n} |\omega_k|^p \to 0,$$

因此 $F_nT \Rightarrow T$, 由于 $\mathfrak{C}(l^p)$ 在 $L(l^p)$ 中闭, $T \in \mathfrak{C}(l^p)$.

题目3.1.7. 设 Ω 是 \mathbb{R}^n 中的 Lebesgue 可测集, f 是 Ω 上的有界可测函数. 求证: F: $x(t) \mapsto f(t)x(t)$ 是 $L^2(\Omega)$ 上的紧算子的充要条件为: f = 0 a.e.

解答. 充分性显然, 只证必要性. 设 $F(x_n) \to y$. 令 $x = f^{-1}\chi_{\{f \neq 0\}}$, 则 $F(x_n) \to F(x) \Longrightarrow$ F(x) = y, 从而 R(F) 是闭集. 由本节第五题, 因此 R(F) 是闭的, 则由 F 是紧算子可知 R(F) 是有限维的, 因此必有 f = 0.

题目3.1.8. 设 Ω 是 \mathbb{R}^n 中的可测集, $K \in L^2(\Omega \times \Omega)$, 求证:

$$A: u(x) \mapsto \int_{\Omega} K(x, y) u(y) dy \quad (\forall u \in L^{2}(\Omega))$$

是 $L^2(\Omega)$ 上的紧算子.

解答. 设 K_n 是 $L^2(\Omega \times \Omega)$ 上的依范数收敛于 K 的简单函数, 并且每个取值集合均为 $E \times F$ 的形式, 其中 $E, F \subset \Omega$. 令

$$A_n: u(x) \mapsto \int_{\Omega} K_n(x, y) u(y) dy,$$

由于 A_n 的值域是有限维的, 每个 A_n 都是紧算子. 此外,

$$||A - A_n|| \le ||K - K_n||_{L^2(\Omega \times \Omega)} \to 0.$$

因为紧算子在有界算子中闭, 因此由 A 也是紧算子.

题目3.1.9. 设 H 是 Hilbert 空间, $A \in \mathfrak{C}(H)$, $\{e_n\}$ 是 H 中的正交规范集, 求证: $\lim_{n \to \infty} (Ae_n, e_n) = 0$.

解答. 由 Bessel 不等式,

$$\sum_{n=1}^{\infty} |(x, e_n)|^2 \le ||x||^2 \Longrightarrow (x, e_n) \to 0, \quad \forall x \in H.$$

因此 $e_n \to 0$, 从而 $Ae_n \to 0$. 而 e_n 是有界的, 因此 $(Ae_n, e_n) \to 0$.

题目3.1.10. 设 X 是 Banach 空间, $A \in \mathfrak{C}(X)$, X_0 是 X 的闭子空间满足 $A(X_0) \subset X_0$. 求证: 映射

$$T:[x]\mapsto [Ax]$$

是商空间 X/X₀ 上的紧算子.

解答. 显然 $B_1 + X_0$ 是 X/X_0 上的单位球. 任取 $\|x_n\| \le 1$, 只需证明 $\{[Ax_n]\}$ 有收敛子列. 取 $\{x_n\}$ 的子列 $\{x_{n_k}\}$ 使得 $Ax_{n_k} \to y \in X$. 则

$$||[Ax_n] - [y]|| \le ||Ax_n - y|| \to 0,$$

因此 $[Ax_{n_k}] \rightarrow [y]$.

题目3.1.11. 设 X,Y,Z 是 Banach 空间, $X \subset Y \subset Z$. 若 $X \to Y$ 的嵌入映射是紧的, $Y \to Z$ 的嵌入映射是连续的. 求证: $\forall \varepsilon > 0$, 存在 $c = c(\varepsilon) > 0$ 使得

$$||x||_Y \le \varepsilon ||x||_X + c||x||_Z, \quad \forall x \in X, \quad \forall n \ge 1.$$

解答. 反设存在 $\varepsilon_0 > 0$ 和 $\{x_n\} \subset X$ 使得

$$||x_n||_Y > \varepsilon_0 ||x_n||_X + n ||x_n||_Z$$
.

不妨设 $\|x_n\|_X = 1$. 由于从 X 到 Y 的嵌入映射是紧的, 故存在子列 $\{x_{n_k}\}$ 和 $y \in Y$ 使得

$$||x_{n_k}-y||_Y\to 0,$$

再由 Y 到 Z 的嵌入是连续的可得 $\|x_{n_k} - y\|_Z \to 0$. 由于紧映射是连续的, 故存在 M > 0 使得

$$M \ge ||x_n||_Y > \varepsilon_0 + n||x_n||_Z \Longrightarrow ||x_n||_Z \le \frac{M}{n} \to 0.$$

故由极限的唯一性有 y = 0, 但 $||y|| = \lim_{k \to \infty} ||x_{n_k}||_Y \ge \varepsilon_0 > 0$, 矛盾.

B.3.2 Riesz-Fredholm 理论

题目3.2.1. 设 X 是 Banach 空间, M 是 X 的闭子空间并且 codim M = n. 求证: 存在线性无关的 $\{\varphi_k\}_1^n \subset X^*$ 使得

$$M = \bigcap_{k=1}^{n} N(\varphi_k).$$

解答. 记 span $\{x_k + M\}_1^n = X/M$, 则任取 $x \in X$, 存在 $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ 使得

$$x + M = \sum_{k=1}^{n} \lambda_k x_k + M \implies x - \sum_{k=1}^{n} \lambda_k x_k \in M,$$

再由 $x_k \notin M(1 \le k \le n)$ 知

$$X = \operatorname{span}\{x_k\}_1^n \oplus M$$
.

由 Hahn-Banach 定理, 存在 $\varphi_1, \dots, \varphi_n \in X^*$ 使得

$$\varphi_i(x_j) = \delta_{ij}$$
 $\exists \varphi_i|_M = 0, i, j = 1, \dots, n.$

根据上式不难得出 $\varphi_1, \dots, \varphi_n$ 线性无关. 从而

$$x = \sum_{k=1}^{n} \lambda_k x_k + y \in \bigcap_{k=1}^{n} N(\varphi_k) \iff \varphi_k(x) = 0 (1 \le k \le n)$$

$$\iff \lambda_k = 0 (1 \le k \le n) \iff x = y \in M.$$

题目3.2.2. 设 X, Y 是 Banach 空间, $T \in L(X, Y)$ 是满射. 定义

$$\tilde{T}: X/N(T) \to Y, [x] \mapsto Tx.$$

求证: Ť 是线性同胚映射.

解答. 任取 $x \in X$, 存在 $y \in [x]$ 使得 $\|[x]\| \ge \frac{1}{2} \|y\|$, 从而

$$\|\tilde{T}[x]\| = \|Tx\| \le \|Tx\| = \|Ty\| \le \|T\| \cdot \|y\| \le 2\|T\| \cdot \|[x]\|,$$

因此 $\tilde{T} \in L(X/N(T) \to Y)$. 由于 T 是满射, 因此 \tilde{T} 是双射, 由 Banach 逆算子定理, $\tilde{T}^{-1} \in L(Y, X/N(T))$.

△ 题目3.2.3. 设 X 是 Banach 空间, M, N₁, N₂ 是 X 的闭子空间, 如果

$$M \oplus N_1 = X = M \oplus N_2$$
,

求证: N₁ 和 N₂ 同胚.

解答. 令

$$T_i: X/M = (M \oplus N_i)/M \rightarrow N_i, m + n_i + M \mapsto n_i,$$

不难证明 T_i 是从 X/M 到 N_i 的同胚 (i = 1,2), 因此 N_1 和 N_2 也同胚.

- **题目3.2.4.** 设 $A \in \mathfrak{C}(X)$, T = I A, 求证:
 - (1) $\forall [x] \in X/N(T)$, 存在 $x_0 \in [x]$ 使得 $||x_0|| = ||[x]||$.
 - (2) 若 $y \in X$ 使得 Tx = y 有解,则其中必有一个解达到范数最小.

解答. (1) 只需证明存在 $y \in N(T)$ 使得 $||x - y|| = \rho(x, N(T))$. 取 $y_n \in N(T)$ 使得

$$\rho(x, N(T)) \le \left\| x - y_n \right\| \le \rho(x, N(T)) + \frac{1}{n}.$$

由上式, $\{y_n\}$ 是有界列, 因此存在子列 $\{y_{n_k}\}$ 使得 $Ay_{n_k} \to y$, 而由 $y_{n_k} \in N(T)$, $y_{n_k} = Ay_{n_k} \to y \in N(T)$, y 显然满足条件.

- (2) 显然与(1) 等价.
- **趣目3.2.5.** 设 $A \in \mathfrak{C}(X)$, T = I A, 求证: $N(T^k)$ 是有限维的, 并且 $R(T^k)$ 是闭的 (∀ $k \ge 1$). **解答**. 由

$$I - T^{k} = I - (I - A)^{k} = I - \sum_{i=0}^{n} {k \choose i} (-1)^{i} A^{i} = A \left(\sum_{i=1}^{n} {k \choose i} (-1)^{i-1} A^{i-1} \right)$$

知 $I - T^k$ ∈ $\mathfrak{C}(X)$, 再由 Riesz-Fredholm 定理易得.

- **题目3.2.6.** 设 M 是 Banach 空间 X 的闭子空间. 称满足 $P^2 = P$ 的由 X 到 M 上的一个有界线性算子 P 为由 X 到 M 上的投影算子. 求证:
 - (1) 若 M 是 X 的有限维子空间,则必存在从 X 到 M 上的投影算子.
 - (2) 若 P 是由 X 到 M 上的投影算子, 则 I-P 是由 X 到 R(I-P) 上的投影算子.
 - (3) 若 P 是由 X 到 M 上的投影算子, 则 $X = M \oplus N$, 其中 N = R(I P).
 - **解答**. (1) 取 P 为将 x 映为 x 在 M 上的最佳逼近元的映射即可.
 - (2) 只需注意到 $(I-P)^2 = I-2P+P^2 = I-2P+P = I-P$.
 - (3) 一方面, $x Px = (I P)x \in N \Longrightarrow X = M + N$. 另一方面, 若 $(I P)x \in M$, 而

 $Px \in M$, 因此 $x \in M$, 故 x = Px, (I - P)x = 0, 因此 $X = M \oplus N$.

B.3.3 紧算子的谱理论

(本节习题中的 X 均指 Banach 空间)

△ **题目3.3.1.** 给定数列 $\{a_n\}$, 在 l^1 上定义算子 A 如下:

$$A(x_1, x_2, \dots) = (a_1 x_1, a_2 x_2, \dots), \quad \forall x = \{x_n\} \in l^1.$$

求证:

- (1) $A \in L(l^1) \iff \sup_{n \ge 1} |a_n| < \infty$. (2) $A^{-1} \in L(l^1) \iff \inf_{n \ge 1} |a_n| > 0$.
- (3) $A \in \mathfrak{C}(l^1) \iff \lim_{n \to \infty} a_n = 0.$

解答. (1) 只需证明 $||A|| = \sup |a_n| < \infty$. 一方面,

$$||A|| = \sup_{||x||=1} ||Ax|| = \sup_{||x||=1} \sum_{n=1}^{\infty} |a_n x_n| \le \sup_{n \ge 1} |a_n|.$$

另一方面, 若记 $e^{(k)}$ 是第 k 项为 1, 其余为 0 的数列, 显然 $\|e^{(k)}\| = 1$, 并且

$$\sup_{n>1} |a_n| = \sup_{k>1} \left\| Ae^{(k)} \right\| \le \|A\|.$$

- (2) 充要条件的两端都蕴含了 $a_n \neq 0 (\forall n \geq 1)$, 此时由 A 的定义不难看出 $A^{-1}\{x_n\} =$ $\{\frac{x_n}{a_n}\}$. 因此由 (1) 可得 (2).
- (3) 必要性: 反设 $a_n
 ightarrow 0$, 也即存在 N 的无穷子集 K 使得 $|a_n|
 ightarrow \varepsilon_0 > 0 (∀n
 ightarrow K)$. 若令 $A_1 = A|_K$ 是 $l^1(K)$ 上的线性算子, 则根据 $\inf_{n \in K} |a_n| \ge \varepsilon_0 > 0$ 以及 (2) 可得 $A_1^{-1} \in A_1$ $L(l^1(K))$. 但由习题 3.1.1 知无穷维 Banach 空间上的紧算子没有有界逆, 矛盾.

充分性: 设 $a_n \rightarrow 0$. 定义

$$A_k x = (a_1 x_1, \cdots, a_k x_k, 0, \cdots), \quad \forall x \in l^1.$$

不难验证 A_k 是有穷秩算子, 并且

$$||A - A_k|| = \sup_{||x||=1} \sum_{n=k+1}^{\infty} |a_n x_n| \le \sup_{n>k} |a_n|,$$

在上式中令 $k \to \infty$ 可得 $||A - A_k|| = 0$, 因此 $A \in \mathfrak{C}(l^1)$.

▲ 题目3.3.2. 在 C[0,1] 中, 考虑映射

$$T: x(t) \mapsto \int_0^t x(s) ds, \quad \forall x(t) \in C[0,1].$$

- (1) 求证: T 是紧算子.
- (2) 求 $\sigma(T)$ 及 T 的一个非平凡的闭不变子空间.

解答. (1) 记 B 为 C[0,1] 中的单位球,则由

$$||Tx|| \le ||x|| \le 1, \quad \forall x \in B,$$

$$\left| \int_0^{t_1} x(s) ds - \int_0^{t_2} x(s) ds \right| \le |t_1 - t_2|, \quad \forall x \in B,$$

知 TB 一致有界且等度连续, 根据 Arzela-Ascoli 定理, TB 在 C[0,1] 中列紧, T 是紧算子.

(2) 注意到

$$||T^n|| = \sup_{||x||=1} \left| \int \cdots \int_{0 \le t_1 \le \cdots \le t_{n-1} \le t \le 1} x(s) ds dt_1 \cdots dt_{n-1} \right| \le \frac{1}{n!},$$

因此根据 Gelfand 定理, $r_{\sigma}(T) = \lim_{n \to \infty} \|T^n\|^{\frac{1}{n}} = 0$. 再由无穷维 Banach 空间上紧算子无有界逆可得 $\sigma(T) = \{0\}$.

 $\overline{\{P(T)x:x\in C[0,1]\}}$ 是 T 的非平凡闭不变子空间, 其中 P 是任意多项式.

题目3.3.3. 设 $A \in \mathfrak{C}(X)$, 求证: x - Ax = 0 只有零解当且仅当 x - Ax = y 对 $\forall y \in X$ 都有解.

解答. 若记 T = I - A, 此即证明 $N(T) = \{0\} \iff R(T) = X$, 必要性书上已有证明, 只需

证充分性. 若 R(T) = X, 由 Riesz-Fredholm 定理,

$$N(T^*) = R(T)^{\perp} = X^{\perp} = \{0\} \implies \dim N(T) = \dim N(T^*) = 0,$$

因此 $N(T) = \{0\}$.

趣 題目3.3.4. 设 $T \in L(X)$, 并存在 $m \ge 0$ 使得

$$X = N(T^m) \oplus R(T^m),$$

求证: $p(T) = q(T) \le m$.

解答. 首先证明 $q = q(T) \le m$. $\forall x \in X$, 存在 $y \in N(T^m)$, $z \in X$ 使得

$$x = y + T^m z.$$

从而 $T^m x = T^m y + T^{2m} z = T^{2m} z \in R(T^{m+1})$. 因此 $R(T^m) = R(T^{m+1})$, $q \le m$.

下面证明 $p = p(T) \le q \le m$. 由 $N(T^m) \cap R(T^q) = \{0\}$ 知如果 $T^q x \in N(T^m)$, 也即 $T^{m+q} x = 0$, 则 $T^q x = 0$, 此即 $N(T^{m+q}) \subset N(T^q)$, 因此 $N(T^q) = N(T^{q+1})$, $p \le q$.

最后证明 $q \le p$. 因为 $X = N(T^p) \oplus R(T^q)$, 故 $\forall x \in X$, 存在 $y \in N(T^p)$, $z \in X$ 使得

$$x = y + T^q z$$
.

从而 $T^p x = T^p y + T^{p+q} z = T^{p+q} z \in R(T^{p+1})$. 故 $R(T^p) = R(T^{p+1})$.

- **趣目3.3.5.** 设 A, B ∈ L(X) 并且 AB = BA. 求证:
 - (1) R(A) 和 N(A) 都是 B 的不变子空间.
 - (2) $R(B^n)$ 和 $N(B^n)$ 都是 B 的不变子空间 ($\forall n \in \mathbb{N}$).

解答. (1) 若 $Ax \in R(A)$, 则 $B(Ax) = A(Bx) \in R(A)$, 从而 $B(R(A)) \subset R(A)$.

若 $x \in N(A)$, 则 $A(Bx) = B(Ax) = 0 \Longrightarrow Bx \in N(A)$, 从而 $B(N(A)) \subset N(A)$.

(2) 若 $B^n x \in R(B^n)$, 则 $B(B^n x) = B^n(Bx) \in R(B^n)$.

若 $x \in N(B^n)$, 则 $B^n x = 0 \Longrightarrow B^n(Bx) = 0 \Longrightarrow Bx \in N(B^n)$.

题目3.3.6. 设 $A \in L(X)$, $M \in A$ 的有限维闭不变子空间, 求证:

- (1) A 在 M 上的作用可以用一个矩阵来表示;
- (2) M 中存在 A 的特征元.

解答. (1) 设 $M = \text{span}\{e_k\}_1^n$. 记

$$Ae_i = \sum_{j=1}^n a_{ij}e_j (i = 1, \dots, n), \quad A = (a_{ij}).$$

则 $\forall x = \sum_{i=1}^{n} \alpha_i e_i$, 都有

$$Ax = \sum_{j=1}^{n} e_j \left(\sum_{i=1}^{n} a_{ij} \alpha_i \right) = \begin{bmatrix} \alpha_1 & \cdots & \alpha_n \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix} = \boldsymbol{\alpha}^T \boldsymbol{A} \boldsymbol{e}.$$

(2) 设 λ ∈ ℂ 是 A 的特征值, 对应特征向量为 α . 则沿用 (1) 中的记号, 有

$$A(\boldsymbol{\alpha}^T \boldsymbol{e}) = \boldsymbol{\alpha}^T \boldsymbol{A} \boldsymbol{e} = \lambda(\boldsymbol{\alpha}^T \boldsymbol{e}).$$

题目3.3.7. 设 $x_0 \in X$, $f \in X^*$ 满足 $f(x_0) = 1$. 令 $A = x_0 \otimes f$, T = I - A, 求 T 的零链长 p. **解答.** 由于 A 是紧算子, 故 $p(T) = q(T) < \infty$. 若 $X = \mathbb{K}x_0$, 则 $R(T) = \mathbb{K}x_0 = X$, p(T) = q(T) = 0. 若 $\mathbb{K}x_0 \subseteq X$, 则 $R(T^2) = R(T) = \mathbb{K}x_0 \subseteq X$, p(T) = q(T) = 1.

B.3.4 Hilbert-Schmidt 定理

(本节各题中, H 均指复 Hilbert 空间)

▲ **题目3.4.1**. 设 *A* ∈ *L*(*H*), 求证 *A* + *A**, *AA**, *A** *A* 都是对称算子, 并且

$$||AA^*|| = ||A^*A|| = ||A||^2.$$

解答. 注意到 $\forall x, y \in H$,

$$((A + A^*)x, y) = (Ax, y) + (A^*x, y) = (x, A^*y) + (x, Ay) = (x, (A + A^*)y),$$
$$(AA^*x, y) = (A^*x, A^*y) = (x, AA^*y),$$
$$(A^*Ax, y) = (Ax, Ay) = (x, A^*Ay),$$

并且

$$||AA^*|| = \sup_{\|x\|=1} |(AA^*x, x)| = \sup_{\|x\|=1} |(A^*x, A^*x)| = ||A^*||^2 = ||A||^2,$$
$$||A^*A|| = \sup_{\|x\|=1} |(A^*Ax, x)| = \sup_{\|x\|=1} |(Ax, Ax)| = ||A||^2.$$

趣 題目3.4.2. 设 $A \in L(H)$, 满足 $(Ax, x) \ge 0 (\forall x \in H)$, 且

$$(Ax, x) = 0 \iff x = 0,$$

求证:

$$\|Ax\|^2 \le \|A\|(Ax, x), \quad \forall x \in H.$$

解答. 不妨设 ||A|| = 1, ||x|| = 1. 由题目条件可知 $(x, y)_A = (Ax, y)(\forall x, y \in H)$ 构成一个 H 上的内积, 因此由 Cauchy-Schwarz 不等式, 有

$$\left|(Ax,y)\right|^2 \leq (Ax,x)(Ay,y), \quad \forall \, x,y \in H.$$

在上式中取 y = Ax, 则

$$||Ax||^2 \le (Ax, x)(A^2x, Ax) \le (Ax, x), \quad \forall ||x|| = 1.$$

▲ 题目3.4.3. 设 A 是 H 上的有界对称算子, 令

$$m(A) \triangleq \inf_{\|x\|=1} (Ax, x), \quad M(A) \triangleq \sup_{\|x\|=1} (Ax, x).$$

求证:

- (1) $\sigma(A) \subset [m(A), M(A)]$, 且 $m(A), M(A) \in \sigma(A)$. 进一步假设 $A \in H$ 上的对称紧算子, 求证:
- (2) 若 $m(A) \neq 0$, 则 $m(A) \in \sigma_p(A)$;
- (3) 若 $M(A) \neq 0$, 则 $M(A) \in \sigma_p(A)$.

解答. (1) 不妨设 $|M(A)| \ge |m(A)|$ (否则令 $A \mapsto -A$), 则 $\sigma(A) \subset (-\infty, ||A||] = (-\infty, M(A)]$. 令 $A_k = A - kI$, 则当 k 充分大时, $m(A_k) = -||A_k||$, 从而 $\sigma(A_k) \subset [m(A_k), \infty)$. 注意到 $m(A_k) = m(A) - k$, 因此 $\sigma(A) = \sigma(A_k) + k \subset [m(A_k) + k, \infty) = [m(A), \infty)$.

(2)(3) 不妨设 $|M(A)| \ge |m(A)|$. 此时由 A 是对称紧算子知 $M(A) \in \sigma_p(A)$. 令 $A_k = A - kI$, 当 k 充分大时, 有 $m(A_k) = -\|A_k\|$, 从而 $m(A_k) \in \sigma_p(A_k)$, 故

$$m(A) = m(A_k) + k \in \sigma_p(A_k) + k = \sigma(A).$$

- △ **题目3.4.4**. 设 *A* 是对称紧算子, 求证:
 - (1) 若 A 非零,则 A 至少有一个不等于零的特征值;
 - (2) 若 M 是 A 的非零不变子空间, 则 M 上必含有 A 的特征元.
 - **解答.** (1) 若 A 非零,则 m(A) 和 M(A) 至少有一个非零 (沿用上题记号),由上题知, m(A) 和 M(A) 中至少有一个是 A 的非零特征值.
 - (2) 由于 $A_1 = A|_M$ 仍是对称紧算子, 因此由 (1), M 上必有 A 的特征元.
- **题目3.4.5.** 求证: 为了 $P \in L(H)$ 是一个正交投影算子, 必须且仅须:
 - (1) P 是对称的, 即 $P = P^*$;
 - (2) P 是幂等的, 即 $P^2 = P$.

解答. 必要性显然,只证明充分性. 记 $M = \{x \in H : Px = x\}$,则 M 是闭子空间. 注意到 $\forall x \in X$, $Px \in M$ 并且

$$(x - Px, y) = (x, y) - (Px, y) = (x, y) - (x, Py) = 0, \quad \forall y \in M,$$

因此 $x - Px \perp M$, $P \in M$ 对应的正交投影算子.

△ 题目3.4.6. 为了 $P \in L(H)$ 是一个正交投影算子, 必须且仅须:

$$(Px, x) = ||Px||^2, \quad \forall x \in H.$$

解答. 必要性:

$$||Px||^2 = (Px, Px) = (P^2x, x) = (Px, x), \quad \forall x \in H.$$

充分性: 由上题, 只需证明 P 是对称且幂等的. 由于 $(Px,x) = \|Px\|^2 \in \mathbb{R}(\forall x \in H)$, 因此 P 是对称的. 由于 P 是对称的, 因此 $P - P^2$ 也是对称的, 从而

$$||P - P^{2}|| = \sup_{\|x\|=1} |((P - P^{2})x, x)| = \sup_{\|x\|=1} |(Px, x) - P(^{2}x, x)|$$
$$= \sup_{\|x\|=1} |(Px, x) - \|Px\|^{2}| = 0,$$

从而 $P^2 = P$.

趣目3.4.7. 设 A ∈ L(H), 称其为正算子, 是指

$$(Ax, x) \ge 0, \quad \forall x \in H.$$

求证:

- (1) 正算子必是对称的;
- (2) 正算子的一切特征值都是非负实数.

解答. (1) 由 $(Ax, x) \in \mathbb{R}(\forall x \in H)$ 可知.

(2) 设
$$Ax = \lambda x (x \neq 0)$$
, 则

$$\lambda(x,x)=(\lambda x,x)=(Ax,x)\geq 0,$$

从而 $\lambda \geq 0$.

题目3.4.8. 求证: 为了 H 的闭线性子空间 L, M 满足 $L \subset M$, 必须且仅须 $P_M - P_L$ 是正算子.

解答. 注意到若 P 是正交投影算子, 则

$$||x - Px||^2 = ||x||^2 - 2(Px, x) + ||Px||^2 = ||x||^2 - (Px, x), \quad \forall \in H,$$

故

$$L \subset M \iff \rho(x,L) \ge \rho(x,M) \iff \|x - P_L x\| \ge \|x - P_M x\|$$

$$\iff (P_M x, x) \ge (P_L x, x) \iff P_M - P_L$$
是正算子.

题目3.4.9. 设 $(a_{ij})(i,j=1,2,\cdots)$ 满足 $\sum_{i,j=1}^{\infty} \left|a_{ij}\right|^2 < \infty$, 在 l^2 空间上, 定义映射

$$A: x = \{x_j\} \mapsto y = \{y_j\}, \quad \not\exists \vdash y_i \triangleq \sum_{j=1}^{\infty} a_{ij} x_j (i = 1, 2, \cdots).$$

求证:

- (1) A 是 H 上的紧算子;
- (2) 又若 $a_{ij} = \overline{a_{ji}}(i, j = 1, 2, \cdots)$, 则 A 是对称算子.

解答. (1) 定义

$$A_n x = (y_1, \dots, y_n, 0, \dots), \quad \forall x \in l^2.$$

显然 An 是有穷秩算子. 并且有

$$||A - A_n||^2 = \sup_{||x|| = 1} \sum_{i=n+1}^{\infty} \left| \sum_{j=1}^{\infty} a_{ij} x_j \right|^2 \le \sum_{i=n+1}^{\infty} \sum_{j=1}^{\infty} \left| a_{ij} \right|^2 \to 0,$$

因此 A 是紧算子.

(2) 任取 $x \in l^2$, 有

$$(Ax, x) = \sum_{i=1}^{\infty} y_i \overline{x_i} = \sum_{i,j=1}^{\infty} a_{ij} x_j \overline{x_i} = \sum_{i,j=1}^{\infty} \overline{a_{ji}} x_j \overline{x_i}$$
$$= \sum_{i,j=1}^{\infty} a_{ji} x_i \overline{x_j} = \sum_{i,j=1}^{\infty} a_{ij} x_j \overline{x_i} = \overline{(Ax, x)},$$

故 $(Ax,x) \in \mathbb{R}(\forall x \in l^2)$, A 是对称的.

- △ **题目3.4.10**. 设 *A* 是 *H* 上的对称算子, 并且存在一组由 *A* 的特征元组成的 *H* 的正交规范基. 又设
 - (1) $\dim N(\lambda I A) < \infty$, $\forall \lambda \in \sigma_p(A) \setminus \{0\}$;
 - (2) $\forall \varepsilon > 0, \sigma_p(A) \setminus [-\varepsilon, \varepsilon]$ 只有有限个值.

求证: A 是 H 上的紧算子.

解答. 由 (1)(2), A 至多有可数个特征值, 且至多以 0 为聚点, 除 0 以外按照重数记为 $\{\lambda_n\}_1^N$. 记 λ_n 对应的特征向量为 e_n (同一特征值的不同特征向量取为相互正交的), N(A) 的一组正交基为 $\{e_j^0: j \in J\}$. 令

$$A_k: x = \sum_{j \in J} a_j e_j^0 + \sum_{n=1}^N a_n e_n \mapsto \sum_{n=1}^{\min\{k,N\}} a_n \lambda_n e_n,$$

其中 $N \in \mathbb{N}$ 或 $N = \infty$. 若 $N < \infty$, 则 A 是有穷秩算子, 当然是紧算子. 若 $N = \infty$, 则

$$||A - A_k||^2 = \sup_{||x|| = 1} \left\| \sum_{n=k+1}^{\infty} a_n \lambda_n \right\|^2 \le \sup_{\sum_{n=1}^{\infty} |a_n|^2 \le 1} \sum_{n=k+1}^{\infty} |\lambda_n a_n|^2 \le \sup_{n > k} |\lambda_n|,$$

在上式中令 $k \to \infty$, 则由 $\lim_{n \to \infty} \lambda_n = 0$ 知不等式最后一项趋于 0, 从而 $A_k \Rightarrow A$, A 是紧算子.

B.3.5 对椭圆型方程的应用

题目3.5.1. 设 $a_i \in C^1(\overline{\Omega})$ ($1 \le i \le n$), $U \in C(\overline{\Omega})$, 其中 $\Omega \in \mathbb{R}^n$ 中边界光滑的有界开区域, 讨论下列边值问题:

$$\begin{cases} -\Delta u + \sum_{i=1}^{n} (a_i u)_{x_i} + U u = f, & x \in \Omega, \\ u|_{\partial\Omega} = 0. \end{cases}$$

解答. 该问题的弱解为 $u \in H_0^1(\Omega)$ 满足

$$\int_{\Omega} Du \cdot Dv - \sum_{i=1}^n a_i u v_{x_i} + U u v \mathrm{d}x = \int_{\Omega} f v \mathrm{d}x, \quad \forall v \in H^1_0(\Omega).$$

取充分大的 $\mu > 0$, 令

$$a(u,v) := \int_{\Omega} Du \cdot Dv - \sum_{i=1}^{n} a_i u v_{x_i} + (U+\mu) u v dx, \quad u,v \in H_0^1(\Omega).$$

则不难看出 $a(\cdot,\cdot)$ 满足 Lax-Milgram 定理的条件, 故存在唯一的具有有界逆的 $A \in L(H_0^1(\Omega))$ 使得

$$a(u, v) = (Au, v), \quad \forall u, v \in H_0^1(\Omega).$$

注意到 $a(\cdot,\cdot)$ 实际上是 $H_0^1(\Omega)$ 上与一般内积等价的内积, 记为

$$(u,v)_{\mu} := (Au,v)_{H_0^1(\Omega)}, \quad ||u||_{\mu} := ((u,u)_{\mu})^{\frac{1}{2}}.$$

因此问题的解等价于 $u \in H_0^1(\Omega)$ 满足

$$(u, v)_{\mu} - \mu \int_{\Omega} uv dx = \int_{\Omega} f v dx, \quad \forall v \in H_0^1(\Omega).$$

注意到对给定的 $u \in H_0^1(\Omega)$, $\int_{\Omega} uv dx$ 是 $H_0^1(\Omega)$ 上的有界线性泛函, 故存在唯一的 $w \in H_0^1(\Omega)$ 使得

$$\int_{\Omega} u v dx = (w, v)_{\mu}, \quad \forall v \in H_0^1(\Omega).$$

定义 $K_u: L^2(\Omega) \to H_0^1(\Omega), w \mapsto u.$ 则

$$\int_{\Omega} u v dx = (K_{\mu} u, v)_{\mu}, \quad \forall u, v \in H_0^1(\Omega).$$

故该问题的解还等价于 $u \in H_0^1(\Omega)$ 使得

$$(u, v)_{\mu} - \mu(K_{\mu}u, v)_{\mu} = (K_{\mu}f, v)_{\mu}, \quad \forall v \in H_0^1(\Omega).$$

此即

$$(I - \mu K_{\mu}) u = K_{\mu} f.$$

由于 $K_{\mu} \in L(L^2(\Omega), H_0^1(\Omega))$,而 $H_0^1(\Omega)$ 到 $L^2(\Omega)$ 的单位映射是紧算子, 故 $K_{\mu} \in \mathfrak{C}(H_0^1(\Omega))$.

此时 K_u 还是对称的, 因为

$$(K_{\mu}u, v)_{\mu} = \int_{\Omega} u v dx = (u, K_{\mu}v)_{\mu}, \quad \forall u, v \in H_0^1(\Omega).$$

从而 K_{μ} 是对称紧算子. 根据 Riesz-Fredholm 定理, 算子方程

$$(I - \mu K_{\mu}) u = K_{\mu} f$$

有解 $u \in H_0^1(\Omega)$ 当且仅当 $K_\mu f \in R(I - \mu K_\mu)$. 注意到

$$R(I - \mu K_{\mu}) = N((I - \mu K_{\mu})^*)^{\perp} = N(I - \mu K_{\mu})^{\perp},$$

因此该问题有解当且仅当 $K_{\mu}f \in N(I - \mu K_{\mu})^{\perp}$.

注意到

$$u \in N(I - \mu K_{\mu}) \iff u = \mu K_{\mu} u \iff (u, v)_{\mu} = \mu \int_{\Omega} u v dx (\forall v \in H_0^1(\Omega)).$$

上式右端等价于

$$\int_{\Omega} Du \cdot Dv - \sum_{i=1}^n a_i u v_{x_i} + U u v \mathrm{d}x = 0, \quad \forall \, v \in H^1_0(\Omega),$$

因此 $u \in N(I - \mu K_{\mu})$ 当且仅当 u 是问题中方程所对应齐次方程的解.

若 $N(I-\mu K_{\mu})=\{0\}$, 则齐次方程只有零解, 此时 $N(I-\mu K_{\mu})^{\perp}=H_0^1(\Omega)$, 方程存在唯一解.

若 $N(I - \mu K_{\mu}) \neq \{0\}$, 由于 K_{μ} 是紧算子, dim $N(I - \mu K_{\mu}) < \infty$. 记

$$\text{span}\{\varphi_k\}_{k=1}^m = N(I - \mu K_{\mu}).$$

则 $K_{\mu}f \in N(I - \mu K_{\mu})^{\perp}$ 当且仅当

$$(K_{\lambda}f,\varphi_k)_{\mu}=0, \quad k=1,\cdots,m,$$

再根据 K_{μ} 的定义, 当且仅当 $\int_{\Omega} f \varphi_k dx = 0 (1 \le k \le m)$. 此时方程有解, 解空间维数为 m.

综上, 该方程对应的齐次方程 (即 f=0 时的方程) 的解空间是有限维的, 记其维数为 m, 解空间的基为 $\varphi_1, \cdots, \varphi_m$. 当 m=0 时, 方程对 $\forall f \in L^2(\Omega)$ 均存在唯一解; 当 m>0 时, 方程有解当且仅当 $\int_{\Omega} f \varphi_k \mathrm{d} x = 0 (1 \le k \le m)$, 并且此时解空间维数是 m.

△ 题目3.5.2. 在上题中, 讨论下列特征值问题:

$$\begin{cases} -\Delta u + \sum\limits_{i=1}^{n} (a_i u)_{x_i} + U u = \lambda u, & x \in \Omega, \\ u\big|_{\partial\Omega} = 0. \end{cases}$$

解答. 记 $\mu = \|U\|_{C(\overline{\Omega})}$, 并令

$$(u,v)_{\mu} = \int_{\Omega} Du \cdot Dv + (U+\mu)uv dx, \quad u,v \in H_0^1(\Omega).$$

与上题同样定义 K_{μ} , 则本题的弱解问题等价于寻找非零的 $u \in H_0^1(\Omega)$ 使得

$$u = (\lambda + \mu) K_{\mu} u$$
.

故问题有解等价于 $\frac{1}{\lambda+\mu} \in \sigma_p(K_\mu)$.

下面求 K_{μ} 的特征值. 若 u 是对应于特征值 v 的特征元,则

$$v(u, u)_{\mu} = (K_{\mu}u, u)_{\mu} = \int_{\Omega} u^2 dx > 0,$$

从而 $\sigma_p(K_\mu)$ \subset $(0,\infty)$. 注意到 K_μ 是对称紧算子, 根据 Hilbert-Schmidt 定理, K_μ 的特征 值是可数个趋于 0 的正数.

由于该问题的特征值就是 K_{μ} 特征值的倒数,该问题的特征值必存在,并且是可数个趋于无穷的正数.

B.4 广义函数与 Sobolev 空间

B.4.1 广义函数的概念

▲ 题目4.1.1. 设 $1 \le p < \infty$, 求证: $C_0^{\infty}(\Omega)$ 在 $L^p(\Omega)$ 中稠密.

解答. 由于对任意 $u \in L^p(\Omega)$ 以及 $\varepsilon > 0$, 存在紧集 $K \subset \Omega$ 使得

$$||u||_{L^p(\Omega\setminus K)}<\frac{\varepsilon}{2}.$$

由定理4.1.3和定理4.1.5, 存在 $\delta > 0$ 使得 $(u\chi_K)_\delta \in C_0^\infty(\Omega)$, 并且

$$\|u\chi_K - (u\chi_K)_\delta\|_{L^p(\Omega)} < \frac{\varepsilon}{2}.$$

故

$$\left\|u-(u\chi_K)_\delta\right\|_{L^p(\Omega)}\leq \|u\|_{L^p(\Omega\setminus K)}+\left\|u\chi_K-(u\chi_K)_\delta\right\|_{L^p(\Omega)}<\varepsilon.$$

■ 题目4.1.2. 求证: δ 函数不是局部可积函数.

解答. 反设 δ 是局部可积函数, 则存在 $f \in L^1_{loc}(\mathbb{R}^n)$ 使得

$$\langle \delta, \varphi \rangle = \varphi(0) = \int_{\mathbb{R}^n} f(x) \varphi(x) dx = \langle f, \varphi \rangle, \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^n).$$

由上题可知, 存在 $\varphi \in C_0^{\infty}(B(0,2))$ 使得 $\varphi_m(0) = 1$ 并且 $\int_{\mathbb{R}^n} \left| \varphi_m - \chi_{B(0,\frac{1}{m})} \right| \mathrm{d}x < \frac{1}{m}$. 带入上式, 则

$$1 = \int_{\mathbb{R}^n} f \varphi_m dx \le \int_{\mathbb{R}^n} |f| \cdot |\varphi_m - \chi_{B(0, \frac{1}{m})}| + |f| \cdot |\chi_{B(0, \frac{1}{m})}| dx$$

$$\le \frac{\|f\|_{L^1(B(0, 2)}}{m} + \|f\|_{L^1(B(0, \frac{1}{m}))} \to 0,$$

矛盾.

✍ 题目4.1.3. 设

$$f_j(x) = \left(1 + \frac{x}{i}\right)^j, \quad j = 1, 2, \cdots, x \in \mathbb{R},$$

求证: $f_i(x) \to e^x$ ($\mathcal{D}'(\mathbb{R})$).

解答. 设 $\varphi \in \mathcal{D}(\mathbb{R})$, supp $\varphi \subset [-R,R]$, 则

$$\left|\langle f_j - e^x, \varphi \rangle\right| \le \|\varphi\|_{C[-R,R]} \int_{-R}^{R} \left|f_j(x) - e^x\right| \mathrm{d}x,$$

由于 f_i 在有界区间上一致收敛到 e^x , 上式右端趋于 0.

▶ 题目4.1.4. 在 ②′(ℝ) 中, 求证:

(1)
$$\frac{1}{\pi} \cdot \frac{\varepsilon}{x^2 + \varepsilon^2} \to \delta(x), \varepsilon \to 0^+;$$

(2)
$$\frac{1}{2\sqrt{\pi t}} \exp\left(-\frac{x^2}{4t}\right) \rightarrow \delta(x), t \rightarrow 0^+.$$

解答. (1) 取 $\varphi \in \mathcal{D}(\mathbb{R})$, 并设 $\operatorname{supp} \varphi \subset [-R, R]$, 则

$$\begin{split} &\left|\left\langle\frac{1}{\pi}\cdot\frac{\varepsilon}{x^2+\varepsilon^2}-\delta,\varphi\right\rangle\right| \leq \frac{\varepsilon}{\pi}\int_{\mathbb{R}}\frac{\left|\varphi(x)-\varphi(0)\right|}{x^2+\varepsilon^2}\mathrm{d}x\\ \leq &\frac{\varepsilon}{\pi}\left\|\varphi'\right\|_{L^{\infty}(\mathbb{R})}\int_{-R}^R\frac{|x|}{x^2+\varepsilon^2}\mathrm{d}x = \frac{\left\|\varphi'\right\|_{L^{\infty}(\mathbb{R})}}{\pi}\varepsilon\log\left(1+\frac{R^2}{\varepsilon^2}\right) \to 0. \end{split}$$

(2) 沿用(1) 的假设,则

$$\begin{split} &\left|\left\langle\frac{1}{2\sqrt{\pi\,t}}e^{-\frac{x^2}{4t}}-\delta,\varphi\right\rangle\right| \leq \frac{1}{2\sqrt{\pi\,t}}\int_{-R}^{R}\left|\varphi(x)-\varphi(0)\right|e^{-\frac{x^2}{4t}}\mathrm{d}x\\ \leq &\frac{\left\|\varphi'\right\|_{L^{\infty}(\mathbb{R})}}{2\sqrt{\pi\,t}}\int_{-R}^{R}|x|e^{-\frac{x^2}{4t}}\mathrm{d}x = 2\left\|\varphi'\right\|_{L^{\infty}(\mathbb{R})}\sqrt{\frac{t}{\pi}}\left(1-e^{-\frac{R^2}{4t}}\right) \to 0. \end{split}$$

题目4.1.5. 设 $\Omega \subset \mathbb{R}^n$ 是一个开集, 又设 K 是 Ω 的一个紧子集, 求证: 存在一个函数 $\varphi \in C_0^\infty(\Omega)$ 使得 $0 \le \varphi \le 1$ 且 φ 在 K 的一个邻域内恒为 1.

解答. 取紧集 C 满足 $K \subset C \subset \Omega$ 并且 $d(\partial K, \partial C) > 0$, 则当 $\delta > 0$ 充分小时, $(\chi_C)_\delta$ 满足条件.

B.4.2 B₀ 空间

题目4.2.1. 验证: 在例 4.2.6 中, $\mathcal{E}(\Omega)$ 上的收敛性与紧集列 $\{K_m\}$ 的特殊选择无关. **解答.** 设还有一串满足条件的紧集 $\{C_k\}$. 若关于 $\{K_m\}$ 有 $\varphi_i \to 0$, 任取 $\varepsilon > 0$, $k \ge 1$, 存

在充分大的 m_1 使得 $C_k \subset K_{m_1}$. 令 $m_0 = \max\{m_1, k\}$, 则

$$\max_{x \in C_k} \left| \partial^{\alpha} \varphi_j(x) \right| \leq \max_{x \in K_{m_0}} \left| \partial^{\alpha} \varphi_j(x) \right| < \varepsilon, \quad \forall |\alpha| \leq k, j > N(\varepsilon, m_0).$$

因此关于 $\{C_k\}$ 也有 $\varphi_i \to 0$. 该收敛与 $\{K_m\}$ 的选取无关.

题目4.2.2. 设 $\|\varphi\|'_m = \sup_{|k|, |\alpha| \le m, x \in \mathbb{R}^n} |x^k \partial^{\alpha} \varphi(x)|, m \ge 0$. 求证: $\|\cdot\|'_m \in \mathcal{S}(\mathbb{R}^n)$ 上的等价可数范数.

解答. 容易验证线性空间 $X \perp \|\cdot\|_m$ 和 $\|\cdot\|_m'$ 等价当且仅当 $\forall m, m' \geq 1$, 存在常数 C>0 使得

$$\|x\|_{m} \leq C \|x\|_{m'}', \quad , \|x\|_{m}' \leq C \|x\|_{m'}, \quad \forall x \in X,$$

上式对题中所给范数显然成立.

参考文献

- [1] 张恭庆, 林源渠. 泛函分析讲义 (上).
- [2] Walter Rudin. Functional Analysis.
- [3] 林源渠. 泛函分析学习指南.
- [4] J. Dieudonne. Treatise on Analysis.
- [5] Walter Rudin. Principle of Mathematical Analysis.
- [6] Teschl G. Functional Analysis (Lecture Notes).
- [7] Lawrence C. Evans. Partial Differential Equations.
- [8] Kôsaku Yosida. Functional Analysis.