考研高数习题集

枫聆

2021年10月3日

目录

1	及限相关	4
	.1 1∞ 类型极限	4
	.2 1º 类型极限	4
	.3 夹逼准则应用	,
	.4 级数相关的极限	6
	.5 去除根式的尴尬	8
	.6 换元取极限	10
	.7 递归求极限	10
	.8 等价无穷小的替换	10
	.9 中值定理	10
	.10 含积分的极限	11
	.11 没有具体的函数表达式	11
2	·····································	11
	.1 导数定义相关的	11
	.2 泰勒公式求高阶导数	12
	.3 递归法求高阶导数	12
3	函数性质	13
	.1 求零点	13

4	不定积分	1 4
	4.1 多项式分式	14
	4.2 分母带根号	14
	4.3 换元法	16
	4.4 高次	16
	4.5 分部积分	16
	4.6 三角有理式	16
	4.7 递归式	17
	4.8 被积函数含不常见函数形式	17
5	定积分	19
	5.1 参数积分求导	19
	5.2 奇怪的定积分	19
	5.3 不太好积的带三角函数的积分	19
	5.4 待定系数收敛反常积分	20
	5.5 化为极限形式	20
6	反常积分。————————————————————————————————————	21
	6.1 含有 e^x 的被积函数 $\dots\dots$	21
	6.2 定积分的应用	21
	6.3 待定参数	22
	6.4 分离积分	23
	6.5 求值	23
7		23 25
7	6.5 求值	2 5
7	微分方程 7.1 线性微分方程解的结构	25 25
7	微分方程 7.1 线性微分方程解的结构	25 25 25
7	微分方程 7.1 线性微分方程解的结构	25 25 25 26
	微分方程 7.1 线性微分方程解的结构	25 25 25 26
	微分方程 7.1 线性微分方程解的结构	25 25 25 26 26 27

9.1 帯不等式的条件板值 28 9.2 可微定义 28 10 二重限分 25 10.2 化极坐标 25 11 三重限分 36 11.1 直角坐标 36 11.3 球坐标 36 12 第一機分的应用 31 12.1 第一类曲线积分 31 12.2 第二类曲线积分 31 12.4 第二类曲面积分 32 13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 33 13.3 不标准的幂级数 33 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 36 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36 14.3 高数积分 36 14.3 高数积分 36	9	多元函数	28
10 二重积分		9.1 带不等式的条件极值	28
10.1 交換次序更好积分 25 10.2 化极坐标 25 11 三重积分 36 11.1 直角坐标 36 11.2 柱坐标 36 11.3 球坐标 36 12 多元积分的成用 31 12.1 第一类曲线积分 31 12.2 第二类曲线积分 31 12.3 第一类曲面积分 32 12.4 第二类曲面积分 32 13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 36 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36		9.2 可微定义	28
10.2 化极坐标 25 11 三重积分 36 11.1 直角坐标 36 11.2 柱坐标 36 11.3 球坐标 36 12 多元积分的应用 31 12.1 第一类曲线积分 31 12.2 第二类曲或积分 32 12.4 第二类曲面积分 32 12.4 第二类曲面积分 32 13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 33 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36	10	二重积分	29
11 三重积分 36 11.1 直角坐标 36 11.2 柱坐标 36 11.3 球坐标 36 12 多元积分的应用 31 12.1 第一类曲线积分 31 12.2 第二类曲或积分 32 12.3 第一类曲面积分 32 12.4 第二类曲面积分 32 13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 35 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36		10.1 交换次序更好积分	29
11.1 直角坐标3611.2 柱坐标3611.3 球坐标3612 多元积分的应用3112.1 第一类曲线积分3112.2 第二类曲线积分3212.3 第一类曲面积分3212.4 第二类曲面积分3213 级数3313.1 参数收敛3313.2 带-1 的幂次3313.3 不标准的幂级数3413.4 利用傅里叶公式求和3413.5 利用已有的幂级数求和3413.6 构造微分方程3614 tricks3614.1 一些有趣的不等式3614.2 Stirling 公式36		10.2 化极坐标	29
11.2 柱坐标 36 11.3 球坐标 36 12 多元积分的应用 31 12.1 第一类曲线积分 31 12.2 第二类曲或积分 32 12.4 第二类曲面积分 32 13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 35 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36	11	三重积分	30
11.3 球坐标 36 12 多元积分的应用 31 12.1 第一类曲线积分 31 12.2 第二类曲或积分 32 12.4 第二类曲面积分 32 13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 33 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36		11.1 直角坐标	30
12 多元积分的应用 31 12.1 第一类曲线积分 31 12.2 第二类曲线积分 31 12.3 第一类曲面积分 32 12.4 第二类曲面积分 32 13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 33 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36		11.2 柱坐标	30
12.1 第一类曲线积分3112.2 第二类曲组积分3212.3 第一类曲面积分3212.4 第二类曲面积分3213 级数3313.1 参数收敛3313.2 带-1 的幂次3313.3 不标准的幂级数3413.4 利用傅里叶公式求和3413.5 利用已有的幂级数求和3413.6 构造微分方程3514 tricks3614.1 一些有趣的不等式3614.2 Stirling 公式36		11.3 球坐标	30
12.2 第二类曲线积分3112.3 第一类曲面积分3212.4 第二类曲面积分3213 级数3313.1 参数收敛3313.2 带-1 的幂次3313.3 不标准的幂级数3413.4 利用傅里叶公式求和3413.5 利用已有的幂级数求和3413.6 构造微分方程3514 tricks3614.1 一些有趣的不等式3614.2 Stirling 公式36	12	多元积分的应用	31
12.3 第一类曲面积分3212.4 第二类曲面积分3213 级数3313.1 参数收敛3313.2 带-1 的幂次3313.3 不标准的幂级数3413.4 利用傅里叶公式求和3413.5 利用已有的幂级数求和3413.6 构造微分方程3514 tricks3614.1 一些有趣的不等式3614.2 Stirling 公式36		12.1 第一类曲线积分	31
12.4 第二类曲面积分3213 级数3313.1 参数收敛3313.2 带-1 的幂次3313.3 不标准的幂级数3413.4 利用傅里叶公式求和3413.5 利用已有的幂级数求和3413.6 构造微分方程3514 tricks3614.1 一些有趣的不等式3614.2 Stirling 公式36		12.2 第二类曲线积分	31
13 级数 33 13.1 参数收敛 33 13.2 带-1 的幂次 33 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36		12.3 第一类曲面积分	32
13.1 参数收敛 33 13.2 带-1 的幂次 33 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36		12.4 第二类曲面积分	32
13.1 参数收敛 33 13.2 带-1 的幂次 33 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36	13	级数	33
13.2 带-1 的幂次 33 13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36		13.1 参数收敛	33
13.3 不标准的幂级数 34 13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36			
13.4 利用傅里叶公式求和 34 13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36			
13.5 利用已有的幂级数求和 34 13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36			
13.6 构造微分方程 35 14 tricks 36 14.1 一些有趣的不等式 36 14.2 Stirling 公式 36			
14.1 一些有趣的不等式 36 14.2 Stirling 公式 36			
14.1 一些有趣的不等式 36 14.2 Stirling 公式 36	14	tricks	3€
14.2 Stirling 公式			

极限相关

1∞ 类型极限

Example 1.1. 若 $\lim \alpha(x) = 0$, $\lim \beta(x) = \infty$, 且 $\lim \alpha(x)\beta(x) = A$, 其中 A 是一个常数,则

$$\lim \left[1 + \alpha(x)\right]^{\beta(x)} = e^A.$$

hints 带指数形式的表达式,第一想法是把指数拿下来

$$\lim [1 + \alpha(x)]^{\beta(x)} = \lim e^{\beta(x)\ln(1+\alpha(x))} = \lim e^{\beta(x)\alpha(x)} = e^A.$$

Example 1.2. 求极限

$$\lim_{x \to \infty} \left[\frac{x^2}{(x-a)(x+b)} \right]^x.$$

hints

$$\left[\frac{x^2}{(x-a)(x+b)}\right]^x = \left(\frac{x}{x-a}\right)^x \cdot \left(\frac{x}{x+b}\right)^x = \left(1 + \frac{a}{x-a}\right)^x \cdot \left(1 - \frac{b}{x+b}\right)^x = e^{a-b}.$$

Example 1.3. 求极限

$$\lim_{n\to\infty} \left(\frac{\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}}{3}\right)^n.$$

hints 往 $(1+\alpha(x))^{\beta(x)}$ 上凑

$$\left(\frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c}}{3}\right)^{n} = \left(1 + \frac{\sqrt[n]{a} + \sqrt[n]{b} + \sqrt[n]{c} - 3}{3}\right)^{n}$$

考虑 $\alpha(x)\beta(x)$

$$\frac{(\sqrt[n]{a}-1)+(\sqrt[n]{b}-1)+(\sqrt[n]{c}-1)}{3}\cdot n = \frac{1}{3}\left(\frac{\sqrt[n]{a}-1}{\frac{1}{n}}+\frac{\sqrt[n]{b}-1}{\frac{1}{n}}+\frac{\sqrt[n]{c}-1}{\frac{1}{n}}\right)$$

10 类型极限

Example 1.4. 若 $\lim \alpha(x) = 0$, $\lim \beta(x)\alpha(x) = 0$, 则

$$(1 + \alpha(x))^{\beta(x)} - 1 \sim \alpha(x)\beta(x).$$

hints 取对数

$$e^{\beta(x)\ln(1+\alpha(x))} - 1 \sim e^{\beta(x)\alpha(x)} - 1 \sim \beta(x)\alpha(x).$$

夹逼准则应用

Example 1.5. 求极限

hints

Example 1.6. 求极限

hints

Example 1.7. 求极限

hints

$$\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n} \right).$$

$$\frac{n^2}{n^2+n} \le s \le \frac{n^2}{n^2+1}.$$

$$\lim_{n \to 0^+} x \left[\frac{1}{x} \right].$$

$$x - 1 \le [x] \le x$$

$$\lim_{n\to\infty}\frac{2^n}{n!}.$$

$$\left(\frac{2}{1}\right) \times \frac{2}{2} \times \frac{2}{3} \times \dots \times \frac{2}{n}.$$

级数相关的极限

Example 1.8. $\lim_{n\to\infty} a_n = A$, \mathbb{N}

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

hints 直接考察

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| = \left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_n - A)}{n} \right|$$

用极限的定义等式右边分成两部分,即对任意的 $\varepsilon > 0$,可以找到一个 n_1 ,使得 $n > n_1$ 时有 $|x_n - A| < \varepsilon$,那么

$$\left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_{n_1} - A)}{n} + \frac{(a_{n_1 + 1} - A) + (a_{n_1 + 2} - A) + \dots + (a_n - A)}{n} \right| \\ \leq \frac{|a_1 - A| + |a_2 - A| + \dots + |a_{n_1} - A|}{n} + \frac{|a_{n_1 + 2} - A| + |a_{n_1 + 1} - A| + \dots + |a_n - A|}{n}$$

上述不等式右边第一项,形如 $\frac{C}{n}$,因为先对任意 $n > n_1$ 都有上述不等式成立,那么只需要让 n 取的大一点,就能使得 $\frac{C}{n} < \varepsilon$ (阿基米德公理). 右边第二项显然小于 $\frac{n-n_1}{n} \varepsilon$,于是综上

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| < \varepsilon + \frac{n - n_1}{n} \varepsilon < 2\varepsilon.$$

如果题目中没有直接给出极限的具体值,我们可以用 O.Stolz 定理先猜出来,然后用初等方法来验证,再根据极限的唯一性,就得到了答案. 把 a_n 换成形式,例如

$$\lim_{n \to \infty} \frac{1 + \sqrt[2]{2} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Example 1.9. 求极限

$$x_n = \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}.$$

hints 用 O.Stolz 定理考虑

$$\lim_{n\to\infty}\frac{n^k}{n^{k+1}-(n-1)^{k+1}}$$

分母二项式展开合并极有 $\lim \frac{n^k}{(k+1)n^k+\cdots} = \frac{1}{k+1}$. 这道题初等方法似乎不能很好的把握,用和式的方法写出来其实就是黎曼积分的定义

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{k} \frac{k}{n} = \int_{0}^{1} x^{k} = \frac{1}{k+1}.$$

级数相关的问题往往可以尝试考虑用定积分的思路来解决. 下面是 $1^k+2^k+\cdots+n^k$ 的转换思路

$$\sum_{i=1}^{n} i^{k} = n^{k+1} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{k} \sim_{\infty} n^{k+1} \int_{0}^{1} x^{k} dx = \frac{n^{k+1}}{k+1}$$

$$\lim_{n \to \infty} \ln \sqrt[n]{a_1 a_2 \cdots a_n} = \ln a.$$

hints

$$\ln \sqrt[n]{a_1 a_2 \cdots a_n} = \frac{\ln a_1 + \ln a_2 + \cdots + \ln a_n}{n} = \ln a.$$

因为 $\ln x$ 的连续性, 所以 $\lim \ln a_n = \ln a$, 再根据 1.8.

Example 1.11. $\stackrel{\cdot}{=} \lim_{n\to\infty} a_n = a, a_n > 0, \ \mathbb{M}$

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a.$$

hints 取对数再根据1.10

$$\sqrt[n]{a_1 a_2 \cdots a_n} = e^{\ln \sqrt[n]{a_1 a_2 \cdots a_n}} = e^{\ln a} = a.$$

Example 1.12. 求极限

$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n}.$$

hints 由 1.11 可知 a_n 和 $b_n = \sqrt[n]{a_1 a_2 \cdots a_n}$ 的极限是相同的 (假设 a_n 的极限存在). 那么有一个推论,对于数列

$$a_1, \frac{a_2}{a_1}, \frac{a_3}{a_2}, \cdots, \frac{a_{n+1}}{a_n}, \cdots$$

则 $\lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n}$,只要等式右边的极限存在就行. 在这里我们只要设 $a_n = \frac{n!}{n^n}$ 即可,那么

$$\lim \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \lim \frac{n^n}{(n+1)^n} = \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e}.$$

去除根式的尴尬

Example 1.13. 求极限

$$\lim_{x \to +\infty} \left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)} - x \right].$$

hints

$$(x + a_1)(x + a_2) \cdots (x + a_k) = x^k \left(1 + \frac{a_1 + a_2 + \cdots + a_k}{x} + \mathcal{O}\left(\frac{1}{x^2}\right) \right)$$

那么

$$x\left(1+\frac{a_1+a_2+\cdots+a_k}{x}+\mathcal{O}\left(\frac{1}{x^2}\right)\right)^{\frac{1}{n}}=x\left(1+\frac{a_1+a_2+\cdots+a_n}{nx}+\mathcal{O}\left(\frac{1}{x^2}\right)\right)=x+\frac{a_1+a_2+\cdots+a_n}{nx}+\mathcal{O}\left(\frac{1}{x}\right),$$

这里第一个等号右边对 $(1+x)^p$ 在 x=0 处用了一下泰勒展开得到 $(1+qx+\mathcal{O}(x^2))$,这个 \mathcal{O} 表示最高次的多项式.

还有一种升次的方法, 即下面的恒等式

$$y - z = \frac{y^k - z^k}{y^{k-1} + y^{k-2}z + \dots + z^{k-1}}.$$

这里我们使得 $y = \sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}$ 及 z=x, 那么原式就变成了

$$=\frac{(x+a_1)(x+a_2)\cdots(x+a_k)-x^k}{\left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}\right]^{k-1}+\left[\sqrt[k]{(x+a_1)(x+a_2)\cdots(x+a_k)}\right]^{k-2}x+\dots+x^{k-1}}\\ =\frac{a_1+a_2+\dots+a_k+\mathcal{O}(\frac{1}{x})}{\left[\sqrt[k]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})\cdots(1+\frac{a_k}{x})}\right]^{k-1}+\left[\sqrt[k]{(1+\frac{a_1}{x})(1+\frac{a_2}{x})\cdots(1+\frac{a_k}{x})}\right]^{k-2}x+\dots+1}$$

分母中 $\sqrt[k]{(1+\frac{\alpha_1}{x})(1+\frac{\alpha_2}{x})\cdots(1+\frac{\alpha_k}{x})}$ 是趋于 1 的,再用一下函数 $x^{\frac{m}{n}}$ 的连续性,取其函数值也是等于 1,所以 分母就有 $k\cdot 1$.

Example 1.14. 求极限

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

hints 取对数应用 e^x 的连续性

$$\lim e^{\frac{\ln n}{n}} = e^{\lim \frac{\ln n}{n}} = 1.$$

也可以使用一下14.1的伯努利不等式来证明,这里设 $\sqrt[n]{n} = 1 + h$,那么

$$n = (1+h)^n = 1 + nh + \frac{n(n-1)}{2}h^2 + \cdots$$

$$\Rightarrow n \ge \frac{n(n-1)}{2}h^2$$

$$\Rightarrow h^2 \le \frac{2}{n-1}.$$

当 $n \to \infty$ 时, $h \to 0$, 即 $\sqrt[n]{n} - 1 \to 0$, 所以 $\lim \sqrt[n]{n} = 1$.

Example 1.15. 求极限

$$\lim_{x \to +\infty} (\sqrt[6]{x^6 + x^5} - \sqrt[6]{x^6 - x^5})$$

 ${\bf hints}$ 考虑把根式里面变成 $(1+\alpha(x))$ 的形式,因此考虑提出一个因子 x

$$\lim_{x \to +\infty} x (\sqrt[6]{1 + \frac{1}{x}} - \sqrt[6]{1 - \frac{1}{x}}) = \lim_{x \to +\infty} \left(\frac{\sqrt[6]{1 + \frac{1}{x}}}{\frac{1}{x}} - \frac{\sqrt[6]{1 - \frac{1}{x}}}{\frac{1}{x}} \right) = \frac{1}{3}.$$

换元取极限

Example 1.16. 求极限

$$\lim_{x \to 0} \frac{\sqrt[m]{x+1} - 1}{x}, \ m \in \mathbb{N}.$$

hints 设 $y=\sqrt[m]{x+1}-1$,显然 y 在 x=0 处连续,所以当 $x\to 0$ 时有 $y\to 0$,那么此时的极限就变成了

$$\lim_{y \to 0} \frac{y}{(y+1)^m - 1} = \frac{1}{m}.$$

这样上下都变成我们熟悉的多项式,分母二项式展开.

Example 1.17. 求极限

$$\lim_{x \to 0} \frac{(x+1)^{\frac{n}{m}} - 1}{x}.$$

hints 还是使得 $y = (x+1)^{\frac{1}{m}} - 1$,那么就变成了

$$\lim_{y \to 0} \frac{(1+y)^n - 1}{(1+y)^m - 1} = \lim_{y \to 0} \frac{(1+y)^n - 1}{y} \frac{y}{(1+y)m - 1} = \frac{n}{m}.$$

递归求极限

Example 1.18. 1.7 单调数列求极限

hints 考虑递归式

$$x_{n+1} = x_n \cdot \frac{2}{n+1},$$

等式两边同时取极限则有

$$a = a \cdot 0 \Rightarrow a = 0.$$

等价无穷小的替换

中值定理

Example 1.19. 求极限

$$\lim_{x \to +\infty} \frac{1}{2} x^2 [\ln \arctan(x+1) - \ln \arctan x].$$

hints 对连续函数 ln arctan x 应用中值定理

$$\lim_{x \to +\infty} \frac{1}{2} x^2 \frac{1}{[1 + (\theta + x)^2] \arctan(\theta + x)},$$

其中 $0 < \theta < 1$. 那么即有

$$\lim_{x\to +\infty} \frac{1}{2} \frac{x^2}{1+(\theta+x)^2} \frac{1}{\arctan(\theta+x)} = \frac{1}{\pi}.$$

含积分的极限

Example 1.20. 求极限

$$\lim_{x \to 0^+} \frac{\int_0^x \sqrt{x - t} e^t dt}{\sqrt{x^3}}$$

hints 这样的含参数积分最好的办法就是洛必达,但是这里首先需要换元一下,令 u = x - t,则

$$\int_0^x \sqrt{x-t}e^t dt = \int_0^x \sqrt{u}e^{x-u} du = e^x \sqrt{u}e^{-u} du.$$

再用洛必达

$$\lim_{x \to 0^+} = \frac{e^x \sqrt{u} e^{-u} du}{x^{\frac{3}{2}}} = \lim_{x \to 0^+} \frac{\left(\int_0^x \sqrt{u} e^{-u} du\right)'}{\left(x^{\frac{3}{2}}\right)'} = \frac{x^{\frac{1}{2}} e^{-x}}{\frac{3}{2} x^{\frac{1}{2}}} = \frac{2}{3}.$$

没有具体的函数表达式

$$L = \lim_{h \to 0} \frac{\frac{f(a+h) - f(a)}{h} - f'(a)}{h}.$$

hints 直觉告诉它的结果和二阶导有关,但是任何初等方法都化不出来二阶导的定义,这个时候可以考虑用一下 洛必达

$$L = \lim_{h \to 0} \frac{f(a+h) - f(a) - hf'(a)}{h^2} = \lim_{h \to 0} \frac{f'(a+h) - f'(a)}{2h} = \frac{1}{2}f''(a).$$

导数

导数定义相关的

Example 2.1. 已知 $f'(x_0) = -1$, 求

$$\lim_{x \to 0} \frac{x}{f(x_0 - 2x) - f(x_0 - x)}.$$

hints直觉上就是想办法凑导数的定义出来

$$\lim_{x \to 0} \frac{f(x_0 - 2x) - f(x_0)}{-2x} = -1$$
$$\lim_{x \to 0} \frac{f(x_0 - x) - f(x_0)}{-x} = -1$$

求出需要 $\lim_{x\to 0} \frac{f(x_0-2x)-f(x_0)}{x}$ 和 $\lim_{x\to 0} \frac{f(x_0-x)-f(x_0)}{x}$, 两项相减再取倒.

泰勒公式求高阶导数

递归法求高阶导数

Example 2.2. 设

$$f(x) = \frac{\arcsin x}{\sqrt{1 - x^2}},$$

求 $f^{(n)}(0)$.

hints 这道题你想求它的麦克劳林级数其实不太好求 (https://math.stackexchange.com/questions/549028/deriving-maclaurin-series-for-frac-arcsin-x-sqrt1-x2), 实际上也不用求出通项,因为只需要求 x=0 的情况,这里有比较 trick 的利用递归式的手法. 先求它的一阶导

$$f'(x) = \frac{1 + \frac{x}{\sqrt{1 - x^2}} \arcsin x}{1 - x^2} = \frac{x}{(1 - x)^{3/2}} \arcsin x + \frac{1}{1 - x^2}.$$

这里构造一个微分方程

$$(1 - x^2)f'(x) - xf(x) - 1 = 0$$

两边求 n 次,根据 n 的莱布尼茨公式有

$$(1-x^2)f^{(n+1)}(x) - (2n+1)xf^n(x) - n^2f^{(n-1)}(x) = 0.$$

带入 x=0, 这里就可能消掉 $f^{(n)}$ 的项, 得到一个递归式

$$f^{(n+1)}(0) - n^2 f^{(n-1)}(0).$$

这里我们让 n = n + 1,则有

$$f^{(n+2)}(0) = n^2 f^{(n)}(0).$$

我们可以求出最前面的两项 f'(0) = 1 和 f''(0) = 0,于是这里有

$$f^{n}(0) = \begin{cases} 0 & n = \hat{\eta} \\ (n-1)^{2} \times (n-2)! \times \dots \times 2! & n = \mathcal{U} \end{cases}$$

奇数下的情况可以化简为 $2^{n-1}((\frac{n-1}{2})!)^2$

函数性质

求零点

hints f'(x) 有两个零点,也就是有两个极值点. 这样的题目最好还是构造相应的函数,用罗尔定理来做. 设 g(x) = f(x) - f(a) 和 h(x) = f(x) - f(b),我们思路是确定 g(x) 和 h(x) 的一个零点,那么就可以用罗尔定理来确定两个 f'(x) 的零点. 确定 g(x) 和 h(x) 零点,我们要用零点定理来做. 由于 $f'_+(a) > 0$,根据导数的定义有

$$\lim_{x \to 0^+} \frac{f(a+x) - f(a)}{x} > 0 \Rightarrow f(a+\xi_1) > f(a), \xi_1 > 0$$

同理,由于 $f'_{-}(b) > 0$,我们可以得到

$$\lim_{x \to 0^+} \frac{f(b-x) - f(b)}{-x} > 0 \Rightarrow f(b-\xi_2) < f(b), \xi_2 > 0.$$

注意这里的 ⇒ 用到的是极限的保号性. 于是这里由零点定理有

$$g(a + \xi_1) > 0, g(b - \xi_1) \le 0 \Rightarrow g(\theta_1) = 0, a + \xi_1 < \theta_1 < b - \xi_1$$

因此存在 $f(\theta_1) = f(a)$. 同理有

$$h(a + \xi_1) > 0, h(b - \xi_2) < 0 \Rightarrow g(\theta_2) = 0, a + \xi_1 < \theta_2 < b - \xi_1$$

因此存在 $f(\theta_2) = f(b)$.

现在需要分类讨论一下,若 $\theta_1 \leq \theta_2$,则根据罗尔定理我们可以在 (a,θ_1) 及 (θ_2,b) 上各找到一个零点.若 $\theta_1 > \theta_2$,此时由 $g(a+\xi_1) > 0, g(\theta_2) \leq 0$,存在一点 θ_3 使得 $f(\theta_3) = 0$,同理由 $g(\theta_1) \geq 0, g(b-\xi_2) < 0$,可以找 到一点 θ_4 使得 $f(\theta_4) = 0$,这样 $\theta_3 < \theta_4$,回到了前面一种情况.证闭!

不定积分

多项式分式

Example 4.1. 求

$$\int \frac{x^4 - x^2}{1 + x^2} dx.$$

hints 还是得部分分式

$$\frac{x^4 - x^2}{1 + x^2} = \frac{(x^4 - 1) - (x^2 + 1) + 2}{1 + x^2} = x^2 + \frac{2}{1 + x^2} - 2.$$

因此原函数为

$$\frac{x^3}{3} + 2\arctan x - 2x + C,$$

Example 4.2. 求

$$\int \frac{x+5}{x^2-6x+13} dx.$$

hints观察分子多项式次数小于分母的,且只小一次,所以我们考虑这样部分分式

$$\frac{1}{2} \int \frac{2x-6}{x^2-6x+13} dx + 8 \int \frac{1}{x^2-6x+13} dx = \frac{1}{2} \int \frac{1}{x^2-6x+13} d(x^2-6x+13) + 8 \int \frac{1}{4+(x-3)^2} dx,$$

因此原函数为

$$\frac{1}{2}\ln(x^2 - 6x + 13) + 4\arctan\frac{x - 3}{2} + C.$$

Example 4.3. \bar{x}

$$\int \frac{x}{x^4 + 2x^2 + 5} dx$$

hints 观察分子多项式次数小于分母, 且小两次, 所以我们考虑这样部分分式

$$\int \frac{x}{4 + (x^2 + 1)^2} dx = \frac{1}{2} \int \frac{1}{4 + (x^2 + 1)^2} d(x^2 + 1) = \frac{1}{4} \arctan \frac{x^2 + 1}{2} + C$$

分母带根号

Example 4.4. 求

$$\int \frac{dx}{\sqrt{x(4-x)}}.$$

hints根号下凑平方

$$\int \frac{1}{\sqrt{4 - (x - 2)^2}} d(x - 2) = \arcsin \frac{x - 2}{2} + C$$

Example 4.5. 求

$$\int \frac{2-x}{\sqrt{3+2x-x^2}} dx.$$

hints 先分式把分子根号里面的微分

$$\int \frac{2-x}{\sqrt{3+2x-x^2}} dx = \int \frac{1-x}{\sqrt{3+2x-x^2}} dx + \int \frac{1}{\sqrt{3+2x-x^2}} dx = \frac{1}{2} \int \frac{1}{\sqrt{3+2x-x^2}} d(3+2x-x^2) + \int \frac{1}{\sqrt{4-(x-1)^2}} dx,$$

因此原函数为

$$\sqrt{3+2x-x^2} + \arcsin\frac{x-1}{2} + C$$

Example 4.6. 求

$$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx$$

hints 考虑第二类换元, 令 $x = a \sin t$, 则

$$\int \frac{a^2 \sin^2 t}{a \cos t} \cdot a \cos t dt = \frac{a^2}{2} \int 1 - \cos 2t dt = \frac{a^2 t}{2} - \frac{a^2}{4} \sin 2t.$$

把 t 变成 x 也有一点技巧,第二项可以变成 $\frac{1}{2}(a\sin t)(a\cos t)$,其中 $a\sin t = x, a\cos t = \sqrt{a^2-x^2}$,这样会方便一点

$$\frac{a^2 \arcsin\frac{x}{a}}{2} - \frac{x}{2}\sqrt{a^2 - x^2} + C$$

Example 4.7. 求

$$\frac{dx}{x\sqrt{x^4+1}}.$$

hints这里还是要凑根号下的微分,有比较多的凑法,这里提及一种凑微分再配合三角换元的,

$$\frac{dx}{x\sqrt{x^4+1}} = \int \frac{1}{2} \frac{dx^2}{x^2\sqrt{(x^2)^2+1}},$$

$$\frac{1}{2} \int \frac{1}{\sin u} du = \frac{1}{2} \ln|\csc u + \cot u|.$$

再带回 x 即可.

Example 4.8. 求

$$\int \frac{dx}{\sqrt{1+x^2}(1+x^2)}.$$

hints 这里目标肯定是换元换成我们熟悉的积分,但是找不到因子提到微分符号里面,这时可以分母提一个 x^3 出来,就可以换元了

$$\int \frac{dx}{x^3 \sqrt{1 + \frac{1}{x^2}} (1 + \frac{1}{x^2})} = -\frac{1}{2} \int \frac{d(1 + \frac{1}{x^2})}{\sqrt{1 + \frac{1}{x^2}} (1 + \frac{1}{x^2})} = \frac{1}{\sqrt{1 + \frac{1}{x^2}}} + C$$

这里也可以尝试令 $x = \frac{1}{t}$, 有

$$-\int \frac{tdt}{\sqrt{1+t^2}(1+t^2)} = \int \frac{d\sqrt{1+x^2}}{1+x^2}$$

换元法

Example 4.9. 求

$$\int \sqrt{1+e^x} dx$$

hints考虑第二类换元, 今 $x = \ln(t^2 - 1)$,则

$$\int t \cdot \frac{2t}{t^2 - 1} dt = 2 \int 1 + \frac{1}{t^2 - 1} dt = 2t + \ln\left|\frac{t - 1}{t + 1}\right| + C$$

带入 $t = \sqrt{e^x + 1}$, 即得

$$2\sqrt{e^x + 1} + \ln\frac{\sqrt{e^x + 1} - 1}{\sqrt{e^x + 1} + 1} + C$$

高次

分部积分

三角有理式

Example 4.10. 求

$$\int \frac{dx}{\cos x (1 + \sin x)}.$$

hints 这里有一个非常巧妙的第二类换元, 令 $x = \arcsin u$, 则

$$\int \frac{1}{\sqrt{1-u^2}(1+u)} \frac{1}{\sqrt{1-u^2}} du = \int \frac{1}{(1+u)(1-u^2)} du.$$

再把有理式拆开, 这过程使用待定系数的方法

$$\int \frac{1}{(1+u)(1-u^2)} du = \frac{1}{2} \int \frac{1}{1-u^2} + \frac{1}{(1+u)^2} du = -\frac{1}{4} \ln \left| \frac{1-u}{1+u} \right| - \frac{1}{2} \frac{1}{(1+u)}.$$

最后即有

$$-\frac{1}{4}\ln\left|\frac{1-\sin x}{1+\sin x}\right| - \frac{1}{2}\frac{1}{1+\sin x} + C.$$

Example 4.11. 求

$$\int \frac{dx}{\sin x (\sin x + \cos x)}.$$

$$-\int \frac{1}{\frac{1}{\sqrt{1+u^2}}\left(\frac{1}{\sqrt{1+u^2}} + \frac{u}{\sqrt{1+u^2}}\right)} \frac{1}{1+u^2} du = -\int \frac{1}{1+u} du = -\ln|u| + C = -\ln|1 + \cot x| + C.$$

Example 4.12. 求

$$\int \frac{\sin x}{\sin x + \cos x} dx$$

hints 这种情况可以考虑先化简一下分子,即上下乘以 $(\cos x - \sin x)$,这样之后就可以考虑部分分式.

递归式

Example 4.13. 求

$$\int e^{ax} \cos nx dx.$$

hints分部积分 2 次回到原积分

$$\int e^{ax} \cos nx dx = \frac{1}{a} \int \cos nx de^{ax} = \frac{1}{a} \left(e^{ax} \cos nx + n \int e^{ax} \sin nx dx \right)$$
$$= \frac{1}{a} \left[e^{ax} \cos nx + \frac{n}{a} \left(e^{ax} \sin nx - n \int e^{ax} \cos nx dx \right) \right]$$

整理两边即得

$$\frac{n^2+a^2}{a^2}\int e^{ax}\cos nx dx = \frac{ae^{ax}\cos nx + ne^{ax}\sin nx}{a^2} \Rightarrow \int e^{ax}\cos nx dx = \frac{ae^{ax}\cos nx + ne^{ax}\sin nx}{a^2+n^2}$$

类似的有

$$\int e^{ax} \sin nx dx = \frac{ae^{ax} \sin nx - ne^{ax} \cos nx}{a^2 + n^2}$$

被积函数含不常见函数形式

Example 4.14. 求

$$\int \frac{\arcsin e^x}{e^x} dx.$$

hints 必须得想办法吧 $\operatorname{arcsin} e^x$ 提出来,因为我们没有已知原函数导数为反三角的,这里自然地就要使用部分积分了

$$-\int \arcsin e^x d(e^{-x}) = -\frac{\arcsin e^x}{e^x} + \int e^{-x} \frac{e^x}{\sqrt{1 - e^{2x}}} dx = \int \frac{1}{\sqrt{1 - e^{2x}}} dx.$$

这里令 $t = \sqrt{1 - e^{2x}}$,那么 $x = \frac{\ln(1 - t^2)}{2}$, $dx = \frac{-t}{1 - t^2}dt$,于是

$$\int \frac{1}{t} \frac{-t}{1-t^2} dt = \int \frac{1}{t^2-1} dt = \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| + C = \frac{1}{2} \ln \frac{\sqrt{1-e^{2x}}-1}{\sqrt{1-e^{2x}}+1} + C.$$

因此

$$\int \frac{\arcsin e^x}{e^x} dx = -\frac{\arcsin e^x}{e^x} + \frac{1}{2} \ln \frac{\sqrt{1 - e^{2x}} - 1}{\sqrt{1 - e^{2x}} + 1} + C$$

Example 4.15. 求

$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right)dx, x>0$$

hints 首选分部积分,但是为了为了能部分积分,我们必须先第一类换元,令 $t=\sqrt{\frac{1+x}{x}}$,那么 $x=\frac{1}{t^2-1}$,于是

$$\int \ln(1+t)d\left(\frac{1}{t^2-1}\right) = \frac{\ln(1+t)}{t^2-1} - \int \frac{1}{(1+t)^2(t-1)},$$

其中

$$\int \frac{1}{(1+t)^2(t-1)} = \frac{1}{2} \int \frac{(t+1)-(t-1)}{(1+t)^2(t-1)} = \frac{1}{2} \int \frac{1}{t^2-1} - \frac{1}{(1+t)^2} = \frac{1}{4} \ln \left| \frac{t-1}{t+1} \right| + \frac{1}{2(1+t)} + C.$$

因此

$$\int \ln\left(1+\sqrt{\frac{1+x}{x}}\right)dx = \frac{\ln(1+t)}{t^2-1} + \frac{1}{4}\ln\left|\frac{t-1}{t+1}\right| + \frac{1}{2(1+t)} + C.$$

定积分

参数积分求导

Example 5.1. 设 f(x) 连续, 求

$$\frac{d}{dx} \int_0^x t f(x^2 - t^2) dt.$$

hints 对于这种第二类的参数积分,对于有比较简洁的结果的,首先应该换元试试,令 $u=x^2-t^2$,那么即有

$$-\frac{1}{2} \int_{x^2}^0 f(u) du = \frac{1}{2} \int_0^{x^2} f(u) du$$

因此

$$\frac{1}{2}\frac{d}{dx}\int_0^{x^2} f(u)du = xf(x^2).$$

奇怪的定积分

Example 5.2. $\mbox{if } f(x) = \int_0^\pi \frac{\sin t}{\pi - t} dt, \ \ \mbox{if } \int_0^\pi f(x) dx.$

hints 可以用分部积分

$$\int_0^{\pi} f(x)dx = xf(x)\big|_0^{\pi} - \int_0^{\pi} xf'(x)dx = \pi \int_0^{\pi} \frac{\sin x}{\pi - x}dx - \int_0^{\pi} \frac{\sin x}{\pi - x}dx = \int_0^{\pi} \sin x dx = 2.$$

不太好积的带三角函数的积分

Example 5.3. 求

$$I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x}.$$

hints 如果不能一眼看出来

$$I = -\int_0^\pi x d \arctan \cos x = - \left. x \arctan \cos x \right|_0^\pi + \int_0^\pi \arctan \cos x.$$

后面这个积分, 令 $u = \pi - x$, 则可以得到

$$\int_0^{\pi} \arctan\cos x = -\int_0^{\pi} \arctan\cos x,$$

即它是等于零的.

尝试方法 我们要充分利用三角函数的性质,一开始我们令 $u = \pi - x$,则有

$$I = \int_0^{\pi} \frac{(\pi - u)\sin u}{1 + \cos^u} \to 2I = \pi \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} dx = -\pi \arctan\cos x \Big|_0^{\pi} = \frac{\pi^2}{2}$$

待定系数收敛反常积分

Example 5.4. 求满足下式的 a, b

$$\int_{1}^{+\infty} \left[\frac{2x^2 + bx + a}{x(2x+a)} - 1 \right] dx = 1$$

hints 首先化简一下

$$\int_{1}^{+\infty} \frac{(b-a)x+a}{2x^2+ax} dx$$

若上述积分收敛,则 b = a. 于是

$$\int_{1}^{+\infty} \frac{a}{2x^2 + ax} dx = \int_{1}^{+\infty} \frac{1}{x} - \frac{2}{2x + a} dx = \ln \frac{x}{2x + a} \Big|_{1}^{+\infty} = \ln \frac{1}{2} - \ln \frac{1}{2 + a} = 1 \Rightarrow a = 2e - 2.$$

化为极限形式

Example 5.5. 求

$$\int_0^{+\infty} \frac{xe^{-x}}{(1+e^{-x})^2} dx$$

hints 考虑部分分式

$$\int_0^{+\infty} \frac{xe^{-x}}{(1+e^{-x})^2} dx = \int_0^{+\infty} x d\frac{1}{1+e^{-x}} = \frac{x}{1+e^{-x}} \Big|_0^{+\infty} - \int_0^{+\infty} \frac{1}{1+e^{-x}} dx = \int_0^{+\infty} x d\frac{1}{1+e^{-x}} dx = \int_0^{+\infty} x dx =$$

你会发现第一个积分是发散的,这里我们考虑把它转换为极限的形式

$$\lim_{a \to +\infty} \left[\frac{x}{1 + e^{-x}} \Big|_0^a - \int_0^a \frac{1}{1 + e^{-x}} dx \right] = \lim_{a \to +\infty} \left[\frac{a}{1 + e^{-a}} - \int_0^a \frac{e^x}{1 + e^x} dx \right] = \lim_{a \to +\infty} \left[\frac{a}{1 + e^{-a}} - \ln(1 + e^a) + \ln 2 \right]$$

其中

$$\lim_{a \to +\infty} \left[\frac{a}{1+e^{-a}} - \ln 1 + e^a \right] = \lim_{a \to +\infty} \frac{1}{1+e^{-a}} (a - (1+e^{-a}) \ln (1+e^a)) = \lim_{a \to +\infty} \ln e^a - \ln (1+e^a) - \frac{\ln (1+e^a)}{e^a} = 0$$

因此原积分等于 ln 2.

反常积分

含有 e^x 的被积函数

Example 6.1. 讨论下述积分的收敛性

$$\int_{a}^{+\infty} x^{\mu} e^{-ax} dx \ (\mu, a > 0).$$

hints比较审敛法,取任意的 $\lambda > 1$,即 $\frac{1}{x^{\lambda}}$ 是收敛的,于是

$$\lim_{x\to +\infty}\frac{x^{\mu}e^{-ax}}{\frac{1}{x^{\lambda}}}=\frac{x^{u+\lambda}}{e^{ax}}=0,$$

因此原无穷积分也是收敛的.

Example 6.2. 讨论下述积分的收敛性

$$\int_0^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}}.$$

hints这里需要注意两个上下积分限都需要考察,我们可以将上述积分划分为

$$\int_0^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}} = \int_0^A \frac{x dx}{\sqrt{e^{2x} - 1}} + \int_A^{+\infty} \frac{x dx}{\sqrt{e^{2x} - 1}},$$

其中 $A \in (0, +\infty)$. 当 $x \to 0$ 时, 取 $0 < \lambda < 1$, 于是

$$\lim_{x \to 0} \frac{\frac{x}{\sqrt{e^{2x} - 1}}}{\frac{1}{x}^{\lambda}} = \frac{x^{1+\lambda}}{\sqrt{e^{2x} - 1}} = 0,$$

即积分 $\int_0^A \frac{xdx}{\sqrt{e^{2x}-1}}$ 是收敛的. 当 $x \to \infty$ 时,取 $\lambda > 1$,于是

$$\lim_{x \to \infty} \frac{\frac{x}{\sqrt{e^{2x} - 1}}}{\frac{1}{x}} = \frac{1}{\sqrt{e^{2x} \cdot x^{-(2\lambda + 2) - x^{-(2\lambda + 2)}}}} = 0,$$

定积分的应用

Example 6.3. 设无穷长直线 L 的线密度为 1,引力常数为 k,则 L 对距直接为 a 的单位质点.

hints 首先得知道万有引用公式 $F=k\frac{Mn}{r^2}$. 再考虑直线上某个点对给定单位质点的引力,然后考虑这些引力的合成. 示意图为

设 L 所在的直线为 x 轴, y 轴过给定的单位质点. 由示意图这些力的合成一定是在 y 轴上的,关于 F_y 的微分为

$$dF_y = k \frac{kdx}{a^2 + x^2} \cos b = \frac{kadx}{(a^2 + k^2)^{\frac{3}{2}}}$$

因此

$$F_y = \int_{-\infty}^{+\infty} \frac{kadx}{(a^2 + k^2)^{\frac{3}{2}}} = 2ka \int_0^{+\infty} \frac{dx}{(a^2 + k^2)^{\frac{3}{2}}}$$

$$F_y = 2ka \int_0^{\frac{\pi}{2}} \frac{a \sec^2 u}{a^3 \sec^3 du} du = \frac{2k}{a} \int_0^{\frac{\pi}{2}} \cos x dx = \frac{2k}{a}$$

待定参数

Example 6.4. 反常积分

$$\int_0^{+\infty} \frac{1}{x^a (1+x)^b} dx$$

收敛, 求 a,b.

hints 这道题还是用柯西审敛法,注意要同时考虑积分上下限. 当 $x\to +\infty$,那么就要和 $\frac{1}{x^{\lambda}}(\lambda>1)$ 比较,于是有

$$\lim_{x \to \infty} \frac{\frac{1}{x^a (1+x)^b}}{\frac{1}{x^{\lambda}}} = \frac{x^{\lambda - (a+b)}}{(\frac{1}{x} + 1)^b},$$

其中分母是趋于 0,为保证分子不趋于无穷,则需要 $\lambda<(a+b)$,即 a+b>1. 当 $x\to 0$ 时,那么就要和 $\frac{1}{x^{\lambda}}(\lambda<1)$ 比较,于是有

$$\lim_{x\to\infty}\frac{\frac{1}{x^a(1+x)^b}}{\frac{1}{x^\lambda}}=\frac{1}{x^{a-\lambda}(1+x)^b},$$

其中 $(1+x)^b \rightarrow 0$, 则 $a < \lambda$, 即 a < 1.

分离积分

Example 6.5. 讨论下述积分的收敛性

$$\int_0^{+\infty} \frac{\sin x}{x^2} dx = \int_0^{\frac{\pi}{2}} \frac{\sin x}{x^2} dx + \int_{\frac{\pi}{2}}^{+\infty} \frac{\sin x}{x^2} dx$$

hints其中后面这个积分在柯西判别法很容易确定是收敛的(实际上可以用狄利克雷判别法),因为总是满足

$$f(x) \le \frac{1}{x^2}$$

那么前面这个积分可以做一下变换

$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{x^2} dx = \int_0^{\frac{\pi}{2}} \frac{1}{x} \cdot \frac{\sin x}{x} dx \ge \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \frac{1}{x}$$

这是因为 $\frac{\sin x}{x}$ 在 $(0, \frac{\pi}{2}]$ 上是单调减的,这一点求两次导即可知道,所以前面这个积分是发散的. 因此整个积分是发散的.

求值

Example 6.6. 求

$$I = \int_0^{+\infty} \frac{dx}{1 + x^4}.$$

hints 方法 1 设 $u = \frac{1}{x}$, 则有

$$I = \int_0^{+\infty} \frac{u^2}{1 + u^4} du$$

把这个积分和原积分加起来

$$2I = \int_0^{+\infty} \frac{1+x^2}{1+x^4} dx = \int_0^{+\infty} \frac{1+\frac{1}{x^2}}{\frac{1}{x^2}+x^2} dx = \int_0^{+\infty} \frac{1+\frac{1}{x^2}}{(x-\frac{1}{x})^2+2} dx$$

这里设 $t = x - \frac{1}{x}$,有

$$\int_{-\infty}^{+\infty} \frac{1}{t^2 + 2} dt = \frac{1}{\sqrt{2}} \arctan \frac{t}{\sqrt{2}} \Big|_{-\infty}^{+\infty} = \frac{\pi}{\sqrt{2}}$$

因此 $I = \frac{\pi}{2\sqrt{2}}$.

方法2可以考虑直接部分分式即,其中分母可以分解为

$$1 + x^4 = 1 + 2x^2 + x^4 - 2x^2 = (1 + x^2)^2 - 2x^2 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1).$$

因此

$$\frac{1}{1+x^2} = \frac{Ax+B}{x^2+\sqrt{2}x+1} + \frac{Cx+D}{x^2-\sqrt{2}x+1} = \frac{\frac{1}{2\sqrt{2}}x+\frac{1}{2}}{x^2+\sqrt{2}x+1} + \frac{-\frac{1}{2\sqrt{2}}x+\frac{1}{2}}{x^2-\sqrt{2}x+1}$$

即

$$\frac{2\sqrt{2}}{1+x^2} = \frac{x+\sqrt{2}}{x^2+\sqrt{2}x+1} - \frac{x-\sqrt{2}}{x^2-\sqrt{2}x+1}$$

原积分可以写作

$$I = \frac{1}{2\sqrt{2}} \int_0^{+\infty} \frac{x + \sqrt{2}}{x^2 + \sqrt{2}x + 1} - \frac{x - \sqrt{2}}{x^2 - \sqrt{2}x + 1} dx = \frac{1}{2\sqrt{2}} \int_0^{+\infty} \frac{x + \sqrt{2}}{(x + \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} - \frac{x - \sqrt{2}}{(x - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} dx$$

再继续拆

$$I = \frac{1}{2\sqrt{2}} \int_0^{+\infty} \frac{x + \frac{\sqrt{2}}{2}}{(x + \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} + \frac{\frac{\sqrt{2}}{2}}{(x + \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} - \frac{x - \frac{\sqrt{2}}{2}}{(x - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} + \frac{\frac{\sqrt{2}}{2}}{(x - \frac{\sqrt{2}}{2})^2 + \frac{1}{2}} dx$$

第一项和第三项需要换元一下, 令 $u = x + \frac{\sqrt{2}}{2}$

$$I = \frac{1}{2\sqrt{2}} \left[\int_{\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du + \arctan\sqrt{2} \left(x + \frac{\sqrt{2}}{2} \right) \Big|_{0}^{+\infty} - \int_{-\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du + \arctan\sqrt{2} \left(x - \frac{\sqrt{2}}{2} \right) \Big|_{0}^{+\infty} \right]$$

其中

$$\int_{\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du - \int_{-\frac{\sqrt{2}}{2}}^{+\infty} \frac{u}{u^2 + \frac{1}{2}} du = -\int_{-\frac{\sqrt{2}}{2}}^{+\frac{\sqrt{2}}{2}} \frac{u}{u^2 + \frac{1}{2}} du = 0.$$

因此

$$I = \frac{1}{2\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{4} + \frac{\pi}{2} + \frac{\pi}{4} \right) = \frac{\pi}{2\sqrt{2}}$$

微分方程

线性微分方程解的结构

Example 7.1. 已知 $y_1 = e^{3x} - xe^{2x}$, $y_2 = e^x - xe^{2x}$, $y_3 = -xe^{2x}$ 是某二阶常系数非齐次线性微分方程的 3 个解, 求该方程的通解.

hints 这题考察线性微分方程解结构的一个非常典型的题,这里用到两个非齐次方程的解的差是齐次方程的解,则

$$y_2 - y_3 = e^x, y_1 - y_3 = e^{3x}.$$

它们是两个线性无关的解,因此它们是原方程导出的齐次方程的通解,我们再求一个特解即可,即 $y_1 - e^{3x} = -xe^{2x}$,则原方程的通解为

$$y = C_1 e^x + C_2 e^{3x} - x e^{2x}.$$

带积分的微分方程

Example 7.2. 设函数 f(x) 连续,且满足

$$\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$$

求 f(x).

hints 尝试去掉积分符号,去导前做一些变换,

$$\int_0^x f(u)du = x \int_0^x f(t)dt - \int_0^x t f(t)dt + e^{-x} - 1$$

$$f(x) = \int_0^x f(t)dt + x f(x) - x f(x) - e^{-x}$$

注意这里有 f(0) = -1(要善于发现这样的条件),设 $y = \int_0^x f(t)dt$,于是

$$y' - y = -e^{-x},$$

根据一阶线性方程的通解我们有

$$y = Ce^x + \frac{e^{-x}}{2},$$

则 $f(x) = Ce^x - \frac{e^{-x}}{2}$. 由于 f(0) = -1,因此 $C = -\frac{1}{2}$,最终 $f(x) = -\frac{e^x + e^{-x}}{2}$.

该死的绝对值

Annotation 7.3. 有时候的积分结果带 $\ln |f(x)|$,这个时候在考虑要不要去绝对值的时候,可以采取的下述的 手法

- 1. 如果提供了某个点 (x_0, y_0) , 那么这个时候我们可以考虑去掉绝对值保留 x_0 所在的定义域, 因为通解不需要表示全部的解, 只要保证我们最终我们可以根据这个特殊的点确定某个特解即可!
- 2. 如果没有提供某个点,那么这个时候我们可以有条件的去掉绝对值
 - (a) 若是可分离变量方程, 且里面没有无理数因子, 我们可以把绝对值去掉
 - (b) 若是一阶线性方程, 在对 P(x) 积分结果中出现 $\ln |f(x)|$, 根据 P(x) 中的是否有无理数因子或者分母为偶数的因子, 如果有, 那么这个绝对值不要去掉, 最后分类讨论; 若没有, 可以直接去绝对值.
- 3. 拿不准的时候,就彻底不去,直接开讨论就行.

Example 7.4. 求 y(1) = 0,且满足下述方程的 y

$$y' = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2$$

hints 显然这个是一个齐次微分方程, 令 $u = \frac{y}{x}$, 于是有

$$\frac{du}{1+u^2} = \frac{dx}{x} \Rightarrow \arctan u = \ln|x| + C$$

题目中已经给定了一个点(1,0),那么此时我们可以去掉绝对值,只考虑x>0的情况,即有

$$u = \tan(\ln x + C) \Rightarrow y = x \tan(\ln x + C).$$

最后带入特殊点,得到 C=0,最终有 $y=x\tan(\ln x+C)$

改变自变量

Example 7.5. 求下述方程的通解

$$\frac{dy}{dx} = \frac{y}{x + y^4}$$

hints 当且形式根本找不到方法求,那么我们考虑求以 y 为自变量的 x = f(x) 形式的函数,于是有

$$\frac{dx}{dy} = \frac{x + y^4}{y} \Rightarrow \frac{dx}{dy} - \frac{x}{y} = y^3$$

即是关于自变量 y 一个线性方程. 此时就可以直接用通项公式有

$$x = y(\frac{1}{3}y^3 + C)$$

解析几何

求直线在平面上的投影

Annotation 8.1. 如给定直线 L 和平面 S, 求 L 在 S 上投影直线方程.

- 1. 确定与 L 和 S 法向量 η 都垂直的向量 γ ; 、
- 2. 确定以 γ 为法向量,包含L的平面S';
- 3. S 和 S' 相交的直线就是 L 在 S 上的投影直线方程.

旋转直线方程

Example 8.2. 求直线 $L: \frac{x-3}{2} = \frac{y-1}{3} = z+1$ 绕直线 $L_1: \begin{cases} x=2 \\ y=3 \end{cases}$ 旋转一圈所产生的曲面方程. hints 这里要用一个低维的思想,我们任取 L 上一点 (x_0,y_0,z_0) 考察它绕直线 L_1 旋转得到的方程

$$\begin{cases} z = z_0 \\ (x-2)^2 + (y-3)^2 = (x_0 - 2)^2 + (y_0 - 3)^2 \end{cases}$$

再考虑点 (x_0, y_0, z_0) 在直线 L,目的是为了让上述方程取遍所有 L 上的点. 这里有

$$\begin{cases} x_0 = 2z_0 + 5 \\ y_0 = 3z_0 + 4 \end{cases}$$

将它们带入第一个方程,即有

$$(x-2)^2 + (y-3)^2 = (2z+3)^2 + (3z+1)^2$$

这就是我们要求的曲线方程.

多元函数

带不等式的条件极值

Example 9.1. 求函数 $z = f(x,y) = x^2 - y^2 + 2$ 在椭圆域 $D = \{(x,y)|x^2 + y^2 \le 1\}$ 上的最大值和最小值.

hints 这个不等式的取值范围是一个闭连通域,我们只需要分别考虑它里面点构成的区域和边界上的点即可. 在这个椭圆里面唯一的驻点是 (0,0),其对应的函数值为 2; 在椭圆上的点满足 $y = 4 - 4^x$,则 f(x) 可以改写为

$$z = x^2 - (4 - 4^x) + 22 = 5x^2 - 2$$

其中 $-1 \le x \le 1$,那么其最大值为3,最小值为-2.三个驻点比较得出最终结果.

可微定义

Example 9.2. 设连续函数 z = f(x, y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y - 1)^2}} = 0,$$

求 $dz|_{(0,1)}$.

hints 显然要从定义出发,目标是整理出来定义的形式,先求 f(0,1),由上式极限存在,可以得到

$$\lim_{\substack{x \to 0 \\ y \to 1}} f(x, y) = 2x - y + 2,$$

再由 f(x,y) 连续, 上述等式左边就等于 f(0,1), 等式右边是个有限极限, 即 f(0,1) = 1. 我们再重新整理一下

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - f(0,1) - 2x + (y-1)}{\sqrt{x^2 + (y-1)^2}} = 0,$$

这就是 f(x) 在点 (0,1) 处可微定义,即 $dz|_{(0,1)} = 2dx - dy$.

二重积分

交换次序更好积分

Example 10.1. 求积分

$$\int_0^1 dy \int_u^1 \frac{\tan x}{x} dx.$$

hints 明显这个被积函数对 dx 是不好积的,于是考虑交换积分次序. 交换次序可以考虑画图来做,于是有

$$\int_0^1 dx \int_0^x \frac{\tan x}{x} dy = \int_0^1 \tan x dx = -\ln \cos x |_0^1 = -\ln \cos x.$$

Example 10.2. 设 f(x) 为连续函数,定义

$$F(x) = \int_{1}^{x} dv \int_{0}^{x} f(u)du, x > 1,$$

求 F'(x).

hints二重积分求导,这显然直接求不了. 考虑先计算这个二重积分,现在的积分次序导致我们无法对 $\int f(u)du$ 处理, 所以先交换次序. 有

$$F(x) = \int_{1}^{x} du \int_{1}^{u} f(u)dv = \int_{1}^{x} (u-1)f(u)du.$$

被积函数是连续函数的变上限积分,它的导数为 (x-1)f(x).

化极坐标

Example 10.3. 求积分

$$\int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^{2}}} \sqrt{x^{2}+y^{2}} dy.$$

hints 被积函数出现 x^2+y^2 ,考虑化极坐标. 首先把极坐标方程写出来,确定 θ 变限在 $[0,\frac{\pi}{2}]$,当固定一点 x 时,此时 $0 \le y \le \sqrt{2x-x^2}$,那么考虑这个积分域的边界就有

$$x^2 + y^2 = \rho^2 = 2\rho\cos\theta \Rightarrow \rho = 2\cos\theta.$$

于是原积分为

$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} \rho^2 d\rho = \int_0^{\frac{\pi}{2}} \frac{8\cos^3\theta}{3} d\theta = \frac{8}{3} \int_0^{\frac{\pi}{2}} (1 - \sin^2\theta) d\sin\theta = \frac{8}{3} (\sin\theta - \frac{\sin^3\theta}{3}) \Big|_0^{\frac{\pi}{2}} = \frac{16}{9}.$$

三重积分

直角坐标

Example 11.1. 设 Ω 由 $x^2 + \frac{y^2}{2^2} + \frac{z^2}{3^2} \le 1, 0 \le z \le 1$ 所确定,求

$$\iiint z^2 dv$$

hints 显然这是一个椭圆区域,因此先考虑二重积分再单重积分,xOy 上椭圆方程为

$$\frac{x^2}{1 - \frac{z^2}{3}} + \frac{y^2}{2^2(1 - \frac{z^2}{3})} = 1$$

这里可以直接套公式得出该椭圆面积为 $S=\pi ab=2\pi(1-\frac{z^2}{3})$. 因此

$$\iiint\limits_{\Omega} z^2 dv = 2\pi \int_0^1 z^2 (1 - \frac{z^2}{3}) dz = \frac{28}{45}\pi$$

柱坐标

球坐标

多元积分的应用

第一类曲线积分

Annotation 12.1. 第一类曲线积分的一般解决方法:

- 1. 确定是平面曲线还是空间曲线;
- 2. 确定曲线方程的给定形式和自变量的变换范围, 注意无论怎样的曲线方程都是可以看做参数方程的;
- 3. 确定是否为特殊曲线做简化计算的操作,例如关于坐标轴等价,在曲线上的自变量等价;
- 4. 若是曲线积分化定积分. 这一过程要注意弧长微分替换积分变量的过程,而提到的参数方程的弧长微分为 $\sqrt{x(t)'^2 + y(t)'^2} + z(t)'^2} dt$.

第二类曲线积分

Annotation 12.2. 第二类曲线积分的一般解决方法:

- 1. 确定是平面曲线还是空间曲线;
- 2. 确定曲线方向;
- 3. 确定曲线方程的给定形式和自变量的变换范围, 注意无论怎样的曲线方程都是可以看做参数方程的;
- 4. 确定<mark>平面曲线</mark>积分是否与路径无关,常见判定手法 (1 Pdx+Qdy 是否是某个二元函数的全微分 (2 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. 若与路径无关考虑, (1 利用原函数直接计算 (2 化简单积分路线,例如平行于坐标轴,就化为两个定积分.
- 5. 确定是否为光滑的<mark>平面闭曲线</mark>,若为光滑曲线考虑使用格林公式化二重积分,注意曲线方向和其围成的区域 D 要遵守左手法则,即绕着曲线的方向绕一圈,区域 D 总是在观察者的左手边. 还需要注意被积函数 P,Q 在 D 上要有连续的一阶偏导;
- 6. 确定若不是平面闭曲线,可以考虑做补线让其变成一个闭曲线,再使用格林公式,可能可以简化计算.
- 7. 确定是否为<mark>空间闭曲线</mark>,若是空间闭曲线,考虑使用斯托克斯公式,注意曲线方向和曲面的法向量要遵守 右手法则.

$$\int_{L} P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz = \int_{\Sigma} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)dydz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)dzdx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)dxdy$$

8. 直接计算, 使用公式

$$\int_{L} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz = \int_{\alpha}^{\beta} P[x(t),y(t),z(t)] x'(t) + Q[x(t),y(t),z(t)] y'(t) + R[x(t),y(t),z(t)] z'(t) dx + Q(x,y,z) dx + Q$$

第一类曲面积分

Annotation 12.3. 第一类曲面积分的一般计算方法

- 1. 确定曲面方程,实际上只有一种 z = f(x,y),并没有复杂的参数方程,和其自变量变化范围;
- 2. 确定是否为特殊的曲面做简化计算,例如关于坐标轴平面对称,在曲面上的自变量等价;
- 3. 直接计算,使用曲面微分的变量替换,需要注意 x,y 的区域 D 的确定

$$\iint_{\Sigma} f(x,y,z)dS = \iint_{D} \sqrt{1 + f_x^2(x,y), f_y^2(x,y)} dxdy.$$

第二类曲面积分

Annotation 12.4. 第二类曲面积分的一般计算方法

- 1. 确定曲面方程,实际上只有一种 z = f(x,y),并没有复杂的参数方程,和其自变量变化范围;
- 2. 确定曲面的方向;
- 3. 确定曲面是否可以围成一个闭区域, 考虑使用高斯公式

$$\int\int\limits_{\Sigma}Pdydz+Qdzdx+Rdxdy=\int\int\int\limits_{\Omega}(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dv.$$

这里曲面需要取外侧方向,如果当且曲面是内侧方向则需要加负号,也需要确定 P,Q,R 是否具有一阶连续偏导.

- 4. 考虑是否可以增加补面围成一个闭区间来使用高斯公式.
- 5. 直接计算,上述给定是 z 关于 x,y 方程,那么曲线方向决定了曲面法线和 z 轴的夹角余弦值,若余弦值是负的,则需要在下式积分号就带负号

$$\int \int_{S} f(x, y, z) dx dy = \pm \int \int_{D_{xy}} f(x, y, f(x, y)) dx dy.$$

这里要注意若给定是 y 关于 x,z 的方程,这里的余弦值则是看曲面法向量和 y 轴的夹角.

级数

参数收敛

Example 13.1. 讨论下列级数收敛性

$$\sum_{n=1}^{\infty} \frac{\ln(n!)}{n^{\alpha}}$$

hints 展开 ln n!, 有

$$\ln n! = \ln 1 + \ln 2 + \dots + \ln n < n \ln n < n^{1+\beta},$$

在 n 足够大的时候,对任何 $\beta > 0$ 都是成立. 因此

$$\frac{\ln(n!)}{n^{\alpha}} < \frac{n^{1+\beta}}{n^{\alpha}} = n^{1+\beta-\alpha},$$

因此取 $\alpha > 2$ 时,存在 β 使得

$$\frac{\ln(n!)}{n^{\alpha}} < \frac{1}{n} < \frac{n^{1+\beta}}{n^{\alpha}}.$$

即原级数在 a>2 是收敛的. 同理若 $\alpha\leq 2$ 时,是存在 β 使得 $1+\beta-\alpha>-1$ 的,此时是无法判定其是否收敛的。

Example 13.2. 已知级数 $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{\alpha}}$ 收敛,求 α 取值.

hints 先用比较审敛法确定一收敛与原级数收敛性相同的级数,显然这样选择一个调和级数 $\frac{1}{n^{\alpha-\frac{1}{2}}}$,来验证一下

$$\lim_{n\to\infty}\frac{\frac{\sqrt{n+1}}{n^{\alpha}}}{\frac{1}{n^{\alpha-\frac{1}{2}}}}=\lim_{n\to\infty}\sqrt{\frac{n+1}{n}}=1.$$

判定调和级数的收敛性,需要 $\alpha > \frac{3}{2}$.

带-1 的幂次

Example 13.3. 判断下述级数的收敛性

$$\sum_{n=2}^{\infty} \frac{1 + (-1)^n}{\ln n}$$

hints 这个级数奇数时为零,因此我们写作

$$\sum_{n=1}^{\infty} \frac{2}{\ln 2n}$$

这个级数显然是发散的, 因为在 n 足够大时 $\frac{2}{\ln 2n} \geq \frac{1}{n}$.

不标准的幂级数

Example 13.4. 求幂级数

$$\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n-1}$$

的收敛半径.

hints这是一个不标准的幂级数,无法直接用结论. 所以先化标准的形式 a_nx^n . 先考虑积分,消掉指数的常数,即有

$$\sum_{n=1}^{\infty} \int_{0}^{x} \frac{n}{2^{n} + (-3)^{n}} x^{2n-1} = \sum_{n=1}^{\infty} \frac{1}{2(2^{n} + (-3)^{n})} x^{2n}.$$

再令 $u=x^2$,求 $\sum_{n=1}^{\infty} \frac{1}{2(2^n+(-3)^n)} u^n$ 的收敛半径,根据结论有

$$\lim_{n \to \infty} \left| \frac{2^n + (-3)^n}{2^{n+1} + (-3)^{n+1}} \right| = \frac{1}{3},$$

因此其收敛半径为 3, 所以 $|x| < \sqrt{3}$, 即原级数的收敛半径为 $\sqrt{3}$.

利用傅里叶公式求和

Example 13.5. 求下列级数的和

$$\sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n}$$

hints 考虑 $s(x) = \frac{x}{\pi}$ 在 $(-\pi, pi)$ 上的傅里叶级数,它是一个奇函数因此

$$s(x) = \sum_{n=1}^{+\infty} b_n \sin nx = \sum_{n=1}^{+\infty} \left(\frac{2}{\pi} \int_0^{\pi} \frac{x}{\pi} \sin nx dx \sin nx \right) = \sum_{n=1}^{+\infty} -\frac{2}{\pi} \frac{(-1)^n \sin nx}{n}.$$

显然有

$$s(1) = -\frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n} = \frac{1}{\pi},$$

因此
$$\sum_{n=1}^{+\infty} \frac{(-1)^n \sin n}{n} = -\frac{1}{2}$$
.

利用已有的幂级数求和

Example 13.6. 求下述幂级数的和函数

$$\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{(2n)!} x^{2n}.$$

hints 这个级数显然不能在有限次的积分或者求导来一般手法求和,考虑把它拆开成熟悉的级数,这里可以 拆成两个熟悉的三角函数:

$$S(x) = \sum_{n=1}^{\infty} (-1)^n \frac{1}{(2n-1)!} x^{2n-1} x + \sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} x^{2n} - 1 = -x \sin x + \cos x - 1.$$

构造微分方程

Example 13.7. 求下述幂级数的和函数

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!!}$$

hints 连续的求导和积分似乎很难做到,这里就很有技巧了,可以构造含 S(x) 一阶微分方程.其中

$$S'(x) = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-2)!!} = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-2}x}{(2n-2)!!} = -xS(x),$$

解这个微分方程得到 $S(x)=Ce^{-\frac{1}{2}},$ 因为这里 S(0)=1, 最终得到 $S(x)=e^{-\frac{1}{2}x^2}.$

Example 13.8. 求下述幂级数的和函数

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

hints 观察这个系数有点像 e^x 的幂级数,但是只有奇数项. 那么偶数项其实就是 S'(x),因此 $S'(x)+S(x)=e^x$,由此解得 $S(x)=Ce^{-x}+\frac{1}{2}e^x$,由 S(0)=0,最终可得 $S(x)=-\frac{1}{2}e^{-x}+\frac{1}{2}e^x$

tricks

一些有趣的不等式

Proposition 14.1.

$$a^{\frac{1}{n}} - 1 < \frac{a-1}{n}, \ a > 1.$$

hints 伯努利不等式.

$$(1+x)^n \le 1 + nx, \ n \ge 0, x \le -1.$$

使得 $(1+x)=a^{\frac{1}{n}}$, 即可得到上式.

Stirling 公式

Proposition 14.2.

$$\ln(n!) = n \ln n - n + O(\ln n).$$

经常用于拆解 ln n! 有奇效.

高数积分

Proposition 14.3.

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} \, dx = \sqrt{\frac{\pi}{\alpha}}$$