Simulador de Gerenciamento de Memória Virtual com Paginação Grupo 7

Antônio Sebastian - 10797781 Gabriell Tavares - 10716400 Helbert Moreira - 10716504

Memória Virtual

- É uma técnica que usa a memória secundária como uma "cache" para partes do espaço dos processos.
- A ideia básica por trás da memória virtual é que cada processo possui seu próprio espaço de endereçamento, que é dividido em pedaços chamados de páginas.
 - Um processo utiliza apenas endereços virtuais.
 - A cada momento, apenas parte das páginas precisa estar na memória principal para que o processo possa executar.

Paginação

- Consiste na subdivisão da memória física em pequenas partições (frames), para permitir-lhe uma utilização mais eficiente. As molduras da memória física correspondem a páginas de memória virtual. A alocação de memória é requisitada por páginas, a menor unidade deste método.
- Cada processo é dividido em páginas e cada uma dessas páginas pode ou não estar na memória principal.
- Cada página é mapeada no respectivo *frame* de memória através de um processo que chama paginação, obtida através de consulta a tabelas que relacionam os endereços lineares das páginas de memória com os endereços físicos.

Unidade de Gerenciamento de Memória (MMU)

A Unidade de Gerenciamento de Memória ou MMU, é um dispositivo de hardware que traduz endereços virtuais em endereços físicos, é geralmente implementada como parte da CPU, mas pode também estar na forma de um circuito integrado separado.

Page Fault e Swap

- A memória virtual permite que uma página que não resida atualmente na memória principal seja endereçada e usada. Se um programa tenta acessar um local em tal página, uma exceção chamada de uma falta de página (page fault) é gerada.
- O hardware ou o sistema operacional é notificado e realiza o processo de **substituição de página** (swap) e carrega a página requerida da memória secundária.

Algoritmos de Substituição de Páginas

Algoritmos de Substituição de Páginas

- Condições
 - Memória cheia
 - o Página referenciada não está na memória

• Qual página retirar?

Algoritmo Ótimo

• Simulação prévia

- Irrealizável
- Efeito de comparação

FIFO - First-In, First-Out

Pouco usado

Algoritmo de Segunda Chance

• FIFO + bit R

A página é novamente inserida no final da lista;

Algoritmo de segunda chance

Relógio

• Lista circular

Se bit R == 0,

então página é substituída,

senão,

R=0

Ponteiro avança para a próxima página;

Algoritmo LRU - least Recently Used

 Páginas muito utilizadas nas últimas instruções provavelmente serão muito utilizadas novamente

Alto custo

• Implementação por hardware ou por software

Algoritmo LRU - Hardwares especiais

- Contador em hardware (64 bits)
 - Armazenado na entrada da tabela de páginas
 - Incrementa a cada referência
 - Menor Contador -> menos usada recentemente
- Matriz n x n
 - Inicialmente todos com o valor 0.
 - Página k for referenciada:
 - bits da linha k = 1
 - \blacksquare bits da coluna k = 0
 - Linha com o menor valor binário será a página LRU
 - o Ex: 0123

_									0											
	Página					Página					Página					Página				
Ι.	0	1	2	3		0	1	2	3		0	1	2	3		0	1	2	3	
0	0	1	1	1		0	0	1	1		0	0	0	1		0	0	0	0	
1	0	0	0	0		1	0	1	1		1	0	0	1		1	0	0	0	
2	0	0	0	0		0	0	0	0		1	1	0	1		1	1	0	0	
3	0	0	0	0		0	0	0	0		0	0	0	0		1	1	1	0	
(a)						(b)					(c)					(d)				

Algoritmo LRU - Software

- Algoritmo NFU (not frequently used)
 - O Contador em software usando o bit R
 - Não esquece

- Algoritmo de envelhecimento (aging)
 - o Quantas vezes foi referenciada
 - Quando foi referenciada

Algoritmo LRU - Software

- Algoritmo de envelhecimento (aging)
 - Contadores deslocados um bit à direita.
 - Bit R de cada página é adicionado ao bit mais à esquerda
 - A página com menor contagem é removida.

Algoritmo NRU - *Not Recently Used*

- Modificada: bit M
 - 0 -> 1, quando a página é modificada
- Referenciada: bit R
 - 0 -> 1, quando a página é referenciada
 - Zerado periodicamente

Algoritmo NRU - *Not Recently Used*

• Escolhe aleatoriamente uma página da classe de ordem mais baixa

Classes

0: R=0, M=0

1: R=0, M=1

R=1, M=0

3: R=1, M=1

Implementação