GRAFOS – 25/2

Ciência da Computação Universidade do Vale do Itajaí – UNIVALI

Profa Fernanda dos Santos Cunha

fernanda.cunha@univali.br

Fonte: Marco Goldbarg, Elizabeth Goldbarg. Grafos: conceitos, algoritmos e aplicações. Rio de Janeiro: Elsevier, 2012. ISBN 978-85-352-5716-8

1

Grafos: Unidade 5 - Planaridade

□ Problema das 3 casas.

É possível conectar os 3 serviços às 3 casas sem haver cruzamento de tubulação?

Grafos: Unidade 5 - Planaridade

- □ Aplicações de **grafos planares** estão por toda parte, como em projetos de:
 - circuitos integrados e circuitos impressos
 - rodovias conectando cidades
 - linhas de transmissão de energia elétrica
 - linha de produção em uma indústria

3

Grafo Bipartido Completo K_{m,n}

□ Um grafo G bipartido é dito completo se cada vértice do conjunto V₁ com *m* vértices, é adjacente a todos os *n* vértices do conjunto V₂, e vice versa.

Sendo conjuntos disjuntos $V_1=\{1,2\}$ e $V_2=\{3,4,5\}$, quaisquer dois vértices tomados no mesmo conjunto não são adjacentes, porém todos os vértices tomados em conjuntos diferentes são adjacentes.

Grafo Clique K_n

- □ Um grafo clique de um grafo G é um subgrafo completo de G.
 - Ao lado tem-se grafos simples completos com 1, 2, 3 e 4 vértices.

K₁

5

Teoremas relacionados

□ Teorema 1:

Um grafo G é bipartido se e somente se todo ciclo em G for par.

Ex.: no grafo $\mathbf{K}_{2,3}$ tem-se 3,2,4,1,3 ou 1,4,2,5,1 (4 arestas), ou 3,1,4,2,5,1,3 (6 arestas).

Teoremas relacionados

□ Teorema 2:

O n^o de arestas de um grafo completo G(V,E) é n(n-1)/2, onde n é o n^o de vértices.

■ Ex.: no grafo $\mathbf{K_3}$ tem-se 3(3-1)/2 = 3*2/2 = 3 arestas e no grafo $\mathbf{K_4}$ tem-se 4(4-1)/2 = 4*3/2 = 6 arestas.

7

Grafo Planar

Um grafo G é dito planar se seus vértices e suas arestas podem ser imersos em R² tal que suas arestas não se cortem/cruzem (representação planar).

Ou seja, admite representação no plano de modo que não exista cruzamento de arestas.

Grafo Planar

□ Três representações gráficas distintas para um **K**₄:

■ K₄ é um grafo planar pois admite pelo menos uma representação num plano sem cruzamento de arestas.

9

Fórmula de Euler

■ Euler percebeu que um *grafo simples, planar e conexo* divide o plano em um certo nº de regiões (ou faces), incluindo regiões totalmente fechadas e a região infinita exterior.

(1) Grafo que divide o plano em 4 regiões

(2) Grafo que divide o plano em 6 regiões

□ A relação entre nº de arestas (E), nº de vértices (V) e nº de regiões (R) para tais grafos é dada pela fórmula: V-E+R = 2

Fórmula de Euler

■ Se G é um grafo planar, a representação planar de G divide o plano em regiões:

r₄ é região externa em ambos

11

Demonstrar a fórmula de Euler por indução

 \Box Considere o grafo K_1

- Neste grafo o nº de arestas é zero (E=0) e possui um só vértice (V=1).
- Logo, aplicando a fórmula:

$$V - E + R = 2$$

$$1 - 0 + R = 2$$

$$R = 1$$

■ Isto mostra que a fórmula se verifica!

Demonstrar a Fórmula de Euler por indução

- Considere um grafo que possui um vértice de grau 1.
 - Elimina-se então o vértice de grau 1 e a aresta que o conecta, tornando um grafo de E-1 arestas, V-1 vértices e um número de regiões R para os quais

$$(V-1)-(E-1)+R=2 => V-E+R=2$$

No grafo original, antes de retirar a aresta e o nó deve também valer a fórmula, ou seja (V+1)-(E+1)+R=2 que pela hipótese de indução é verdadeira.

13

Demonstrar a fórmula de Euler por indução

- □ Considere um grafo que não tem vértices de grau 1.
 - Retira-se então uma aresta que define uma região fechada, o que o torna um grafo planar simples com E arestas, algum número V de vértices, da forma:

$$V-E+R = 3-2+1 = 2$$

Verifica-se assim a fórmula de Euler. Note que antes de eliminar a aresta tinha-se:

$$V-E+R = V-(E+1)+(R+1)$$

= 3-(2+1)+(1+1) = 2

Teorema sobre o Número de Vértices e Arestas

□ Se um grafo *simples, planar e conexo*, com V vértices e E arestas, então

$$V - E + R = 2$$

■ Se V ≥ 3 então

$$E \leq 3V - 6$$

Se V ≥ 3 e não existem ciclos de comprimento 3 então

$$E \le 2V - 4$$

15

Teorema sobre o Número de Vértices e Arestas

- Este teorema pode ser usado para **demonstrar que certos grafos** <u>não são planares</u>.
 - Ex1: **K**₅ é um grafo simples e conexo com 5 vértices com 10 arestas.

Aplicando o teorema vê-se que:

$$E \le 3V - 6$$

 $10 \le 3*5 - 6$
 $10 \le 9$

O teorema não se verifica. Portanto, este grafo não é planar.

Teorema sobre o Número de Vértices e Arestas

■ Ex2: O grafo **K**_{3,3} é conexo, simples, com 6 vértices e 9 arestas, não possui ciclos de comprimento 3.

Aplicando o teorema vê-se que:

$$9 \le 3*6 - 6$$

 O teorema inicialmente se verifica, PORÉM, esse grafo não possui ciclos de comprimento 3, logo deve-se verificar a 2^a condição.

17

Teorema sobre o Número de Vértices e Arestas

■ Entretanto, a 2ª condição do teorema diz:

$$E \leq 2V - 4$$

$$9 \le 2*6 - 4$$

- A 2ª fórmula não se verifica, logo o grafo não é planar.
 - Esta desigualdade é necessária mas não suficiente para a planaridade dos grafos.

Grafos Isomorfos G_I

- Dois grafos G₁=(E₁,V₁) e G₂=(E₂,V₂) são isomorfos se existe uma função unívoca f:E₁→E₂ tal que (i,j) é elemento de V₁ se e somente se (f(i),f(j)) é elemento de V₂.
 - Ex.: grafos isomorfos:

$$f(a)=1$$
, $f(b)=2$, $f(c)=3$, $f(d)=8$,
 $f(e)=5$, $f(f)=6$, $f(g)=7$, $f(h)=4$
 $(b,c)=(2,3)$ $(g,h)=(7,4)$ $(d,e)=(8,5)$

19

Grafos Isomorfos G₁

■ Ex.: grafos isomorfos ao K₄

- □ Teorema 3:
 - Grafos isomorfos possuem a mesma sequência de graus.
 - Dois grafos não são isomorfos se um deles contém um subgrafo que não pertence ao outro.

Grafos homeomorfos H(G)

- □ Dois grafos G₁ e G₂ são ditos homeomorfos se são isomorfos ou podem ser feitos isomorfos por subdivisões elementares.
 - Inserção de vértices: adicionar um vértice em qualquer aresta, criando consequentemente 2 novas arestas em G.
 - 2. <u>Fusão de arestas</u>: suprimir um vértice v de G se d(v)=2, eliminando as arestas que incidem sobre v suprimindo-o e criando nova aresta que liga os vértices originalmente conectados ao v eliminado.

(1) Inserção

(2) Fusão

21

Teorema de Kuratowski

- □ Um grafo G é planar se e somente se não possui um subgrafo homeomorfo ao K₅ ou ao K_{3,3} (chamados de grafos de Kuratowski).
 - Ex. de grafos não-planares:

Algoritmos

- Apesar de elegante, a caracterização de Kuratowski não fornece um algoritmo muito prático para teste de planaridade, nem está claro como obter a representação planar.
- □ Para verificar se um grafo é planar e desenhá-lo em sua forma planar, existem:
 - Hopcroft-Trajan (1974)
 - Demoucron et al. (1990)
 - Boyer-Myrvold (1999)