Esame per il Corso di ALGEBRA LINEARE

02/09/2022

1. **(8 punti)**

- (a) Calcolare z^4 dove $z = 2(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$.
- (b) Considerare la seguente matrice:

$$A = \begin{pmatrix} 1 & -2 & 0 \\ 3k & 8+2k & k-1 \\ 0 & 8k+8k & 0 \end{pmatrix}$$

Calcolare il rango rkA di A e il determinante detA di A al variare di $k \in \mathbb{R}$. Determinare per quali $k \in \mathbb{R}$ la matrice A è invertibile.

2. (8 punti) Considerare la seguente matrice:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ -1 & -2 & 8 \end{pmatrix}$$

- (a) Trovare una forma ridotta e una decomposizione LU di B.
- (b) Determinare se B è invertibile e motivare la risposta. Se sì, calcolare l'inversa di B.
- 3. (8 punti) Considerare la seguente matrice:

$$B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{pmatrix}$$

- (a) Trovare una base del sottospazio C(D) di \mathbb{R}^3 generato dalle colonne to D e una base dello spazio nullo $N(D^T)$ della trasposta D^T di D.
- (b) Mostrare che l'insieme $\mathcal{C} = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \right\}$ è una base di \mathbb{R}^3 .
- (c) Considerare la seguente base di \mathbb{R}^3 : $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$. Calcolare la matrice $N = A_{\mathcal{C} \to \mathcal{B}}$, cioè l'unica matrice N tale che $c_{\mathcal{B}}(v) = Nc_{\mathcal{C}}(v)$ per ogni $v \in \mathbb{R}^3$.
- 4. **(6 punti)** Considerare la seguente matrice: $M = \begin{pmatrix} 1 & -4 \\ -1 & 1 \end{pmatrix}$. Vero o falso? Si motivi la risposta!
 - (a) Gli autovalori di M sono $\lambda_1 = -1$ e $\lambda_2 = 3$.
 - (b) La matrice M è diagonalizzabile.
 - (c) Le colonne di M sono ortogonali.
- 5. (1 punti) Sia $A \in M_{n \times n}(\mathbb{K})$. Dimostrare la seguente affermazione: Se A possiede un'inversa destra R e un'inversa sinistra L, allora L = R.