

planetmath.org

Math for the people, by the people.

Hahn-Banach theorem

Canonical name HahnBanachTheorem Date of creation 2013-03-22 12:54:09 Last modified on 2013-03-22 12:54:09

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 10

Author rmilson (146)
Entry type Theorem
Classification msc 46B20
Defines bound
Defines bounded

The Hahn-Banach theorem is a foundational result in functional analysis. Roughly speaking, it asserts the existence of a great variety of bounded (and hence continuous) linear functionals on an normed vector space, even if that space happens to be infinite-dimensional. We first consider an abstract version of this theorem, and then give the more classical result as a corollary.

Let V be a real, or a complex vector space, with K denoting the corresponding field of scalars, and let

$$p: V \to \mathbb{R}^+$$

be a seminorm on V.

Theorem 1 Let $f: U \to K$ be a linear functional defined on a subspace $U \subset V$. If the restricted functional satisfies

$$|f(\mathbf{u})| \le p(\mathbf{u}), \quad \mathbf{u} \in U,$$

then it can be extended to all of V without violating the above property. To be more precise, there exists a linear functional $F: V \to K$ such that

$$F(\mathbf{u}) = f(\mathbf{u}), \quad \mathbf{u} \in U$$

 $|F(\mathbf{u})| \le p(\mathbf{u}), \quad \mathbf{u} \in V.$

Definition 2 We say that a linear functional $f: V \to K$ is bounded if there exists a bound $B \in \mathbb{R}^+$ such that

$$|f(\mathbf{u})| \le B p(\mathbf{u}), \quad \mathbf{u} \in V.$$
 (1)

If f is a bounded linear functional, we define ||f||, the norm of f, according to

$$||f|| = \sup\{|f(\mathbf{u})| : p(\mathbf{u}) = 1\}.$$

One can show that ||f|| is the infimum of all the possible B that satisfy (??)

Theorem 3 (Hahn-Banach) Let $f: U \to K$ be a bounded linear functional defined on a subspace $U \subset V$. Let $||f||_U$ denote the norm of f relative to the restricted seminorm on U. Then there exists a bounded extension $F: V \to K$ with the same norm, i.e.

$$||F||_V = ||f||_U.$$