Mật mã & Ứng dụng

Trần Đức Khánh Bộ môn HTTT – Viện CNTT&TT ĐH BKHN

Chủ đề

- ☐ Hệ mật mã cổ điển
- ☐ Hệ mật mã khóa bí mật (đối xứng)
- Hệ mật mã khóa công khai (bất đối xứng)
- □ Hàm băm, chữ ký số
- □ Quản lý khóa, giao thức mật mã,...

Nhu cầu toàn vẹn thông tin

- Các ứng dụng chú trọng mục tiêu Toàn vẹn
 - Tài liệu được sử dụng giống hệt tài liệu lưu trữ
 - Các thông điệp trao đổi trong một hệ thống an toàn không bị thay đổi/sửa chữa
- "Niêm phong" tài liệu/thông điệp
 - "Niêm phong" không bị sửa đổi/phá hủy đồng nghĩa với tài liệu/thông điệp toàn vẹn
 - "Niêm phong": băm (hash), tóm lược (message digest), đặc số kiểm tra (checksum)
 - Tạo ra "niêm phong": hàm băm

Hàm băm

- Mục tiêu an toàn
 - Toàn vẹn (Integrity)

Hàm băm có khóa

Đầu vào là một chuỗi có chiều dài biến thiên, và đầu ra có chiều dài cố định

$$h: \sum^* \times K \to \sum^n$$

- \square Tin: \sum^*
- \square Cốt (Digest): \sum^{n}
- □ Khóa: **K**
- □ h là hàm một chiều (one way function)
 - biết y, rất khó tìm x sao cho h(x,k)=y nhưng rất khó tính
- \square h có tính phi đụng độ lỏng (weak collision resistence)
 - cho x, rất khó tìm y /= x sao cho h(x,k) = h(y,k)
- \Box h có tính phi đụng độ chặt (strong collision resistence)
 - rất khó tìm được x /= y sao cho h(x,k) = h(y,k)

Hàm băm không khóa

Đầu vào là một chuỗi có chiều dài biến thiên, và đầu ra có chiều dài cố định

$$h: \sum^* \to \sum^n$$

- \square Tin: $\sum_{i=1}^{\infty}$
- \square Cốt (Digest): $\sum_{n=1}^{n}$
- □ h là hàm một chiều (one way function)
 - biết y, rất khó tìm x sao cho h(x)=y nhưng rất khó tính
- \Box h có tính phi đụng độ lỏng (weak collision resistence)
 - cho x, rất khó tìm y /= x sao cho h(x) = h(y)
- □ *h* có tính phi đụng độ chặt (strong collision resistence)
 - rất khó tìm được x /= y sao cho h(x) = h(y)

Kỹ thuật tạo hàm băm

- Dùng các hàm mã hóa
 - CBC
 - RMDP
 - DM
- Dùng các phép toán số học đồng dư
 - QCMDC
 - DP
- Dùng các hàm thiết kế đặc biệt
 - MD4/5
 - SHA/SHS

Kỹ thuật tạo hàm băm

- Dùng các hàm mã hóa
 - CBC
 - RMDP
 - DM
- Dùng các phép toán số học đồng dư
 - QCMDC
 - DP
- Dùng các hàm thiết kế đặc biệt
 - MD4/5
 - SHA/SHS

CBC - Chaining Block Cipher

- Mật mã đối xứng
 - Hàm mã hóa E
 - Khóa *K*
- □ Hàm băm
 - M = M1M2...Mn
 - \blacksquare Hi = E(K,Mi xor Hi-1)
 - \blacksquare H = Hn

RMDP – Rabin, Matyas, Davise, Price

- Mật mã đối xứng
 - Hàm mã hóa E
 - Khóa là các khối của tin
- □ Hàm băm
 - M = M1M2..Mn
 - $H0 = r (r \text{ ng} \tilde{a} \text{u nhien})$
 - \blacksquare Hi = E(Mi, Hi-1)
 - H= Hn

DM – Davies, Meyer

- Mật mã đối xứng
 - Hàm mã hóa E
 - Khóa là các khối của tin
- □ Hàm băm
 - M = M1M2..Mn
 - \blacksquare $H0 = r (r ng \tilde{a} u nhi \hat{e} n)$
 - \blacksquare Hi = E(Mi,Hi-1) xor Hi-1
 - \blacksquare H = Hn

Kỹ thuật tạo hàm băm

- Dùng các hàm mã hóa
 - CBC
 - RMDP
 - DM
- Dùng các phép toán số học đồng dư
 - QCMDC
 - DP
- Dùng các hàm thiết kế đặc biệt
 - MD4/5
 - SHA/SHS

QCMDC – Quadratic Congruential Manipulation Dectection Code

- $\square M = M1M2...Mn$
 - Mi khối n bit
- □ N là số nguyên tố sao cho
 - $N >= 2^{(n-1)}$
- □ Hàm băm
 - \blacksquare $H0 = r (r ng \tilde{a} u nhi \hat{e} n)$
 - \blacksquare $Hi = (Hi-1+Mi)^2 \mod N$
 - \blacksquare H = Hn

DP - Davies, Price

- $\square M = M1M2...Mn$
- N là số nguyên tố sao cho
 - $N >= 2^r$
- □ Hàm băm
 - \blacksquare H0 = 0
 - \blacksquare Hi = (Hi-1 xor Mi)^2 mod N
 - \blacksquare H = Hn

Kỹ thuật tạo hàm băm

- Dùng các hàm mã hóa
 - CBC
 - RMDP
 - DM
- □ Dùng các phép toán số học đồng dư
 - QCMDC
 - DP
- Dùng các hàm thiết kế đặc biệt
 - SHA/SHS
 - MD4/5

SHA-1

- ☐ SHA = Secure Hash Algorithm
- □ Được đề xuất và bảo trợ bởi NIST
- Dùng trong hệ DSS (Digital Signature Standard) của NIST
- Dược sử dụng rộng rãi
 - SSL, PGP, SSH, S/MIME, IPSec

SHA-1

- □ Đầu vào bội số của 512 bit
- ☐ Giá trị băm 160 bit
- □ 80 vòng lặp tính toán

Vòng lặp SHA-1

Vòng lặp SHA-1

- □ A,B,C,D,E khối 32 bit
- Kt hằng số của vòng lặp t
- Wt được tính từ các khối của Tin
- <<< dịch chuyển các bit sang trái</p>
- □ - cộng modulo 32
- ☐ F là hàm kết hợp các phép toán logic
 - not, and, or, xor

MD5

- MD = Message Digest
- MD5 được đề xuất bởi Rivest vào năm 1991
- Được sử dụng rộng rãi
 - Truyền tập tin
 - Lưu trữ mật khẩu

MD5

- □ Đầu vào 512 bit
- ☐ Giá trị băm 128 bit
- 64 vòng lặp tính toán

Vòng lặp MD5

Vòng lặp MD5

- □ A,B,C,D khối 32 bit
- ☐ Ki hằng số của vòng lặp i
- Mi khối 32 bit của Tin
- <<< dịch chuyển các bit</p>
- ☐ F là hàm kết hợp các phép toán logic
 - not, and, or, xor

Tấn công Hàm băm

- Đe dọa/mối nguy
 - Nghịch lý sinh nhật
 - Trong một nhóm 23 người, xác suất để có hai người có cùng một sinh nhật là không nhỏ hơn 1/2
 - Tấn công dạng "sinh nhật"
 - Tính N giá trị băm trong thời gian và không gian cho phép
 - Lưu trữ các giá trị băm để tìm ra đụng độ
 - ☐ Xác suất đụng độ
 - Nếu N > 2^(n/2) giá trị băm, thì xác suất đụng độ là
 1/2, trong đó n là độ dài của chuỗi giá trị băm

Chữ ký số

- 1976, Diffie & Hellman lần đầu tiên đề cập đến khái niệm Chữ ký số
- 1989, phiên bản thương mại Chữ ký số đầu tiên trong Lotus Notes, dựa trên RSA
- Úng dụng
 - Hợp đồng số
 - Bầu cử điện tử
 - Giao dịch ngân hàng
 - **...**

Chữ ký số

- Mục tiêu an toàn
 - Xác thực (Authentication)
 - Chống phủ nhận (Non-repudiation)

Hệ chữ ký số

- □ Thuật toán tạo chữ ký
 - Ký hiệu S
 - Đầu vào là một thông tin m
 - Chữ ký S(m)
- Thuật toán kiểm định chữ ký
 - Ký hiệu V
 - Đầu vào là thông tin m và chữ ký kèm theo s
 - V(m,s) = true khi và chỉ khi <math>s = S(m)

Kỹ thuật tạo Chữ ký số

- Mật mã khóa công khai
- Mật mã khóa công khai + Hàm băm
 - RSA + Hàm băm
 - ElGamal + Hàm băm
 - DSA

Chữ ký số dùng Mật mã khóa công khai

☐ RSA

- Chọn ngẫu nhiên 2 số nguyên tố p, q
 - \square n = p * q
- Chọn e sao cho
 - \Box 1 < e < (p-1) * (q-1)
 - □ USCLN(e, (p-1) * (q-1)) = 1
- Chon d sao cho
 - $\Box 1 < d < (p-1) * (q-1)$
 - \Box e*d = 1 mod (p-1) * (q-1)
- Khóa công khai: (n,e)
- Khóa riêng: (p,q,d)

Chữ ký số dùng RSA

- \square Tin m
- □ Khóa công khai (n,e)
- ☐ Khóa riêng (p,q,d)
- □ Tạo chữ ký
 - \blacksquare $s = m^d \mod n$
- Kiểm định chữ ký
 - \blacksquare $m = ? s^e \mod n$

Chữ ký số dùng RSA

- □ Đe dọa/mối nguy
 - Tấn công dạng "chọn tin", dựa trên đặc điểm "nhân tính" của RSA
 - □ Nếu m1^d mod n là chữ ký của m1, m2^d mod n là chữ ký của m2, thì (m1*m2)^d mod n là chữ ký của m1*m2
 - Tấn công dạng "không Tin"
 - ☐ Lấy khóa công khai *k* của Alice
 - Tạo tin m và chữ ký s của m sao cho m và s được công nhận bởi thuật toán kiểm định sử dụng k

Chữ ký số dùng Mật mã khóa công khai + Hàm băm

- Tăng cường độ an toàn bằng kết hợp
 - Hệ mật mã khóa công khai
 - Hàm băm
- □ Thuật toán tạo chữ ký
 - Hàm mã hóa sử dụng khóa riêng
 - Hàm băm
- Thuật toán kiểm định chữ ký
 - Hàm giải mã sử dụng khóa công khai
 - Hàm băm

Chuẩn Chữ ký số - DSS

- Các thông số
 - Hàm băm h
 - 2 số nguyên tố p,q

- □ Tao khóa
 - \blacksquare n = p*q
 - Chọn e sao cho
 - \Box 1 < e < (p-1) * (q-1)
 - □ USCLN(e, (p-1) * (q-1)) = 1
 - Chọn d sao cho
 - \Box 1 < d < (p-1) * (q-1)
 - \Box $e*d = 1 \mod (p-1) * (q-1)$
 - Khóa công khai
 - □ (*n*,*e*)
 - Khóa riêng
 - \square (p,q,d)

- □ Tạo chữ ký
 - Tin m
 - Chữ ký
 - \square $s = h(m)^d \mod n$

- ☐ Kiểm định chữ ký
 - Chữ ký s
 - Tin m
 - Kiểm định
 - \square $h(m) ?= s^e \mod n$

- Các thông số
 - Hàm băm h
 - Số nguyên tố *p*
 - Số nguyên g sao cho
 - □ g^c = b mod p trong đó b,p nguyên tố cùng nhau

- □ Tạo khóa
 - Chọn a sao cho 0 < a < p-1</p>
 - \Box $A = g^a \mod p$ a được gọi là logarit rời rạc của A
 - Khóa công khai
 - \square (p,g,A)
 - Khóa riêng
 - 🔲 а

- □ Tạo chữ ký
 - Tin m
 - Chọn k sao cho
 - $\Box 0 < k < p-1$
 - □ k nguyên tố cùng nhau với p-1
 - Chữ ký
 - \square $r = g^k \mod p$
 - \square $s = k^{(-1)} * (h(m) a*r) mod (p-1)$

- ☐ Kiểm định chữ ký
 - Chữ ký (r,s)
 - Tin m
 - Kiểm định
 - \square 0 < r < p
 - $\Box 0 < s < p-1$
 - \square $A^*r^*r^s ?= g^h(m) \mod p$

- Các thông số
 - Hàm băm h
 - Số nguyên tố *q*
 - Số nguyên p sao cho
 - □ *p-1* la bội số của *q*
 - Số nguyên g sao cho
 - $\square g = x^{(p-1)/q) \mod p$ trong đó x < p

- □ Tao khóa
 - Chọn *a* < *q*
 - \square $A = g^a \mod p$
 - Khóa công khai
 - \square (p,q,g,A)
 - Khóa riêng
 - \Box a

- □ Tạo chữ ký
 - Tin m
 - Chọn k sao cho 0 < k < q</p>
 - Chữ ký
 - \square $r = (g^k \mod p) \mod q$
 - $\Box s = k^{(-1)} * (h(m) + a*r) \mod q$

- □ Kiểm định chữ ký
 - Chữ ký (r,s)
 - Tin m
 - Kiểm định
 - \square 0 < r < q
 - \square 0 < s < q
 - $r = ((g^{(s^{(-1))}*h(m)} \mod q) A^{(r*s^{(-1)})} \mod q)) \mod q$