In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

14. DataSet Iris ¶

In [2]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\14_Iris.csv")
a
```

Out[2]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In [3]:

```
b=a.head(10)
b
```

Out[3]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
5	6	5.4	3.9	1.7	0.4	Iris-setosa
6	7	4.6	3.4	1.4	0.3	Iris-setosa
7	8	5.0	3.4	1.5	0.2	Iris-setosa
8	9	4.4	2.9	1.4	0.2	Iris-setosa
9	10	4.9	3.1	1.5	0.1	Iris-setosa

In [4]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Id	150 non-null	int64
1	SepalLengthCm	150 non-null	float64
2	SepalWidthCm	150 non-null	float64
3	PetalLengthCm	150 non-null	float64
4	PetalWidthCm	150 non-null	float64
5	Species	150 non-null	object

dtypes: float64(4), int64(1), object(1)

memory usage: 7.2+ KB

In [5]:

a.describe()

Out[5]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

In [6]:

a.columns

Out[6]:

In [7]:

```
c=b[['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
c
```

Out[7]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	1	5.1	3.5	1.4	0.2
1	2	4.9	3.0	1.4	0.2
2	3	4.7	3.2	1.3	0.2
3	4	4.6	3.1	1.5	0.2
4	5	5.0	3.6	1.4	0.2
5	6	5.4	3.9	1.7	0.4
6	7	4.6	3.4	1.4	0.3
7	8	5.0	3.4	1.5	0.2
8	9	4.4	2.9	1.4	0.2
9	10	4.9	3.1	1.5	0.1

In [8]:

sns.pairplot(c)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x217d2587ac0>

In [9]:

sns.distplot(c['SepalLengthCm'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

<AxesSubplot:xlabel='SepalLengthCm', ylabel='Density'>

In [10]:

sns.heatmap(c.corr())

Out[10]:

<AxesSubplot:>


```
In [11]:
```

```
x=b[['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm']]
y=b['SepalWidthCm']
```

In [12]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [13]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[13]:

LinearRegression()

In [14]:

```
print(lr.intercept_)
```

-8.881784197001252e-16

In [15]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[15]:

Co-efficient

Id 0.000000e+00

SepalLengthCm -4.724091e-18

SepalWidthCm 1.000000e+00

PetalLengthCm -3.819093e-16

PetalWidthCm 1.138951e-16

```
In [16]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[16]:

<matplotlib.collections.PathCollection at 0x217d45a1c40>

In [17]:

```
print(lr.score(x_test,y_test))
```

1.0

In [18]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [19]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[19]:

Ridge(alpha=10)

In [20]:

```
rr.score(x_test,y_test)
```

Out[20]:

-9.430062712045332

In [21]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[21]:

Lasso(alpha=10)

```
In [22]:
la.score(x_test,y_test)
Out[22]:
-10.042274052478106
In [23]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[23]:
ElasticNet()
In [24]:
print(en.coef_)
[-0. 0. 0. 0. 0.]
In [25]:
print(en.intercept_)
3.4285714285714284
In [26]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
-10.042274052478106
Evaluation Metrics
In [27]:
from sklearn import metrics
In [28]:
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,prediction))
Mean Absolute Error: 0.395238095238095
In [29]:
print("mean Squared Error:", metrics.mean_squared_error(y_test, prediction))
mean Squared Error: 0.17176870748299308
```

In [30]:

print("Root mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))

Root mean Squared Error: 0.414449885369743

15. DataSet Horse_Racing

In [31]:

a=pd.read_csv(r"C:\Users\user\Downloads\15_Horse Racing Results.CSV - 15_Horse Racing Res
a

Out[31]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	С
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	:
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	;
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	;
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	;
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	;
27003	14.06.2020	Sha Tin	11	1200	Gress	1450000	6	A Hamelin	59	Α
27004	21.06.2020	Sha Tin	2	1200	Gress	967000	7	K C Leung	57	Α
27005	21.06.2020	Sha Tin	4	1200	Gress	967000	6	Blake Shinn	57	Α
27006	21.06.2020	Sha Tin	5	1200	Gress	967000	14	Joao Moreira	57	Z
27007	21.06.2020	Sha Tin	11	1200	Gress	1450000	7	C Schofield	55	Z
27008	27008 rows × 21 columns									
4										•

localhost:8888/notebooks/DataSets (14 - 18)_Linear%2C Ridge and Lasso regression .ipynb

In [32]:

b=a.head(10)

Out[32]:

	Dato	Track	Race Number	Distance	Surface	Prize money	Starting position	Jockey	Jockey weight	Count
0	03.09.2017	Sha Tin	10	1400	Gress	1310000	6	K C Leung	52	Sveri
1	16.09.2017	Sha Tin	10	1400	Gress	1310000	14	C Y Ho	52	Sveri
2	14.10.2017	Sha Tin	10	1400	Gress	1310000	8	C Y Ho	52	Sveri
3	11.11.2017	Sha Tin	9	1600	Gress	1310000	13	Brett Prebble	54	Sveri
4	26.11.2017	Sha Tin	9	1600	Gress	1310000	9	C Y Ho	52	Sveri
5	10.12.2017	Sha Tin	1	1800	Gress	1310000	4	C Y Ho	52	Sveri
6	01.01.2018	Sha Tin	9	1800	Gress	1310000	9	C Schofield	54	Sveri
7	04.02.2018	Sha Tin	5	1800	Gress	1310000	6	Joao Moreira	57	Sveri
8	03.03.2018	Sha Tin	8	1800	Gress	1310000	3	C Y Ho	56	Sveri
9	11.03.2018	Sha Tin	10	1600	Gress	1310000	8	C Y Ho	57	Sveri

10 rows × 21 columns

In [33]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27008 entries, 0 to 27007
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	Dato	27008 non-null	object
1	Track	27008 non-null	object
2	Race Number	27008 non-null	int64
3	Distance	27008 non-null	int64
4	Surface	27008 non-null	object
5	Prize money	27008 non-null	int64
6	Starting position	27008 non-null	int64
7	Jockey	27008 non-null	object
8	Jockey weight	27008 non-null	int64
9	Country	27008 non-null	object
10	Horse age	27008 non-null	int64
11	TrainerName	27008 non-null	object
12	Race time	27008 non-null	object
13	Path	27008 non-null	int64
14	Final place	27008 non-null	int64
15	FGrating	27008 non-null	int64
16	Odds	27008 non-null	object
17	RaceType	27008 non-null	object
18	HorseId	27008 non-null	int64
19	JockeyId	27008 non-null	int64
20	TrainerID	27008 non-null	int64

dtypes: int64(12), object(9)

memory usage: 4.3+ MB

In [34]:

a.describe()

Out[34]:

	Race Number	Distance	Prize money	Starting position	Jockey weight	Horse age
count	27008.000000	27008.000000	2.700800e+04	27008.000000	27008.000000	27008.000000
mean	5.268624	1401.666173	1.479445e+06	6.741447	55.867373	5.246408
std	2.780088	276.065045	2.162109e+06	3.691071	2.737006	1.519880
min	1.000000	1000.000000	6.600000e+05	1.000000	47.000000	2.000000
25%	3.000000	1200.000000	9.200000e+05	4.000000	54.000000	4.000000
50%	5.000000	1400.000000	9.670000e+05	7.000000	56.000000	5.000000
75%	8.000000	1650.000000	1.450000e+06	10.000000	58.000000	6.000000
max	11.000000	2400.000000	2.800000e+07	14.000000	63.000000	12.000000
4						•

In [35]:

```
a.columns
```

Out[35]:

In [36]:

Out[36]:

	Race Number	Distance	Surface	Prize money	Starting position
0	10	1400	Gress	1310000	6
1	10	1400	Gress	1310000	14
2	10	1400	Gress	1310000	8
3	9	1600	Gress	1310000	13
4	9	1600	Gress	1310000	9
5	1	1800	Gress	1310000	4
6	9	1800	Gress	1310000	9
7	5	1800	Gress	1310000	6
8	8	1800	Gress	1310000	3
9	10	1600	Gress	1310000	8

In [37]:

sns.pairplot(c)

Out[37]:

<seaborn.axisgrid.PairGrid at 0x217d4a2c160>

In [38]:

sns.distplot(c['Distance'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[38]:

<AxesSubplot:xlabel='Distance', ylabel='Density'>

In [39]:

sns.heatmap(c.corr())

Out[39]:

<AxesSubplot:>


```
In [40]:
```

In [41]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [42]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[42]:

LinearRegression()

In [43]:

```
print(lr.intercept_)
```

-16.134030197444815

In [44]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[44]:

Co-efficient

Race Number	0.660163
Distance	0.006267
Prize money	0.000000
Starting position	0.240418

```
In [45]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[45]:

<matplotlib.collections.PathCollection at 0x217d57e49a0>

In [46]:

```
print(lr.score(x_test,y_test))
```

-17.078783064286586

In [47]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [48]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[48]:

Ridge(alpha=10)

In [49]:

```
rr.score(x_test,y_test)
```

Out[49]:

-7.724029079501507

In [50]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[50]:

Lasso(alpha=10)

```
In [51]:
la.score(x_test,y_test)
Out[51]:
-0.8690625000000003
In [52]:
en=ElasticNet()
en.fit(x_train,y_train)
Out[52]:
ElasticNet()
In [53]:
print(en.coef_)
[0.24550125 0.00280497 0.
                                   0.18344861]
In [54]:
print(en.intercept_)
-6.434565790561453
In [55]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
-5.48654541826254
```

Evaluation Metrics

```
In [56]:
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,prediction))
Mean Absolute Error: 1.8230175459888072
In [57]:
print("mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
mean Squared Error: 4.324363612175026
In [58]:
print("Root mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root mean Squared Error: 2.0795104260799047
```

16. DataSet Sleep_Health

In [59]:

a=pd.read_csv(r"C:\Users\user\Downloads\16_Sleep_health_and_lifestyle_dataset.csv")
a

Out[59]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Pr
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	
1	2	Male	28	Doctor	6.2	6	60	8	Normal	
2	3	Male	28	Doctor	6.2	6	60	8	Normal	
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	

374 rows × 13 columns

In [60]:

```
b=a.head(10)
b
```

Out[60]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	B Pres
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	12
1	2	Male	28	Doctor	6.2	6	60	8	Normal	12
2	3	Male	28	Doctor	6.2	6	60	8	Normal	12
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	14
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	14
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	14
6	7	Male	29	Teacher	6.3	6	40	7	Obese	14
7	8	Male	29	Doctor	7.8	7	75	6	Normal	12
8	9	Male	29	Doctor	7.8	7	75	6	Normal	12
9	10	Male	29	Doctor	7.8	7	75	6	Normal	12
4										•

In [61]:

a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373

Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Person ID	374 non-null	int64
1	Gender	374 non-null	object
2	Age	374 non-null	int64
3	Occupation	374 non-null	object
4	Sleep Duration	374 non-null	float64
5	Quality of Sleep	374 non-null	int64
6	Physical Activity Level	374 non-null	int64
7	Stress Level	374 non-null	int64
8	BMI Category	374 non-null	object
9	Blood Pressure	374 non-null	object
10	Heart Rate	374 non-null	int64
11	Daily Steps	374 non-null	int64
12	Sleep Disorder	374 non-null	object

dtypes: float64(1), int64(7), object(5)

memory usage: 38.1+ KB

In [62]:

```
a.describe()
```

Out[62]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	
cou	nt 374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	-
me	an 187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	
s	td 108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	
m	in 1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	
25	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	
50	% 187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	
75	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	
m	ax 374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	
4							•	

In [63]:

```
a.columns
```

Out[63]:

In [64]:

Out[64]:

	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level
0	6.1	6	42	6
1	6.2	6	60	8
2	6.2	6	60	8
3	5.9	4	30	8
4	5.9	4	30	8
5	5.9	4	30	8
6	6.3	6	40	7
7	7.8	7	75	6
8	7.8	7	75	6
9	7.8	7	75	6

In [65]:

sns.pairplot(c)

Out[65]:

<seaborn.axisgrid.PairGrid at 0x217d583d400>

In [66]:

sns.distplot(b['Daily Steps'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[66]:

<AxesSubplot:xlabel='Daily Steps', ylabel='Density'>

In [67]:

sns.heatmap(c.corr())

Out[67]:

<AxesSubplot:>


```
In [68]:
```

In [69]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [70]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[70]:

LinearRegression()

In [71]:

```
print(lr.intercept_)
```

92.64886316724176

In [72]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[72]:

Co-efficient

Age	0.085580
Sleep Duration	-0.068389
Quality of Sleep	0.196109
Physical Activity Level	-0.345723
Stress Level	-0.006792

```
In [73]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[73]:

<matplotlib.collections.PathCollection at 0x217d3cc96d0>

In [74]:

```
print(lr.score(x_test,y_test))
```

0.5948164949109942

In [75]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [76]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[76]:

Ridge(alpha=10)

In [77]:

```
rr.score(x_test,y_test)
```

Out[77]:

0.6107776395910929

In [78]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[78]:

Lasso(alpha=10)

```
In [79]:
la.score(x_test,y_test)
Out[79]:
0.676799228718691
In [80]:
en=ElasticNet()
en.fit(x_train,y_train)
Out[80]:
ElasticNet()
In [81]:
print(en.coef_)
[ 0.
              -0.
                           0.
                                       -0.33422547 -0.
                                                               ]
In [82]:
print(en.intercept_)
95.100509964194
In [83]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.6128318822957425
```

Evaluation Metrics

```
In [84]:
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,prediction))
Mean Absolute Error: 1.403510675491584

In [85]:
print("mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
mean Squared Error: 5.50639100734944

In [86]:
print("Root mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root mean Squared Error: 2.3465700516603887
```

17. DataSet Student_Marks

```
In [87]:
```

a=pd.read_csv(r"C:\Users\user\Downloads\17_student_marks.csv")
a

Out[87]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_
0	22000	78	87	91	91	88	98	94	100	100	10
1	22001	79	71	81	72	73	68	59	69	59	(
2	22002	66	65	70	74	78	86	87	96	88	1
3	22003	60	58	54	61	54	57	64	62	72	(
4	22004	99	95	96	93	97	89	92	98	91	!
5	22005	41	36	35	28	35	36	27	26	19	:
6	22006	47	50	47	57	62	64	71	75	85	1
7	22007	84	74	70	68	58	59	56	56	64	
8	22008	74	64	58	57	53	51	47	45	42	
9	22009	87	81	73	74	71	63	53	45	39	
10	22010	40	34	37	33	31	35	39	38	40	
11	22011	91	84	78	74	76	80	80	73	75	
12	22012	81	83	93	88	89	90	99	99	95	1
13	22013	52	50	42	38	33	30	28	22	12	:
14	22014	63	67	65	74	80	86	95	96	92	1
15	22015	76	82	88	94	85	76	70	60	50	!
16	22016	83	78	71	71	77	72	66	75	66	(
17	22017	55	45	43	38	43	35	44	37	45	;
18	22018	71	67	76	74	64	61	57	64	61	1
19	22019	62	61	53	49	54	59	68	74	65	!
20	22020	44	38	36	34	26	34	39	44	36	4
21	22021	50	56	53	46	41	38	47	39	44	;
22	22022	57	48	40	45	43	36	26	19	9	
23	22023	59	56	52	44	50	40	45	46	54	!
24	22024	84	92	89	80	90	80	84	74	68	
25	22025	74	80	86	87	90	100	95	87	85	÷
26	22026	92	84	74	83	93	83	75	82	81	•
27	22027	63	70	74	65	64	55	61	58	48	
28	22028	78	77	69	76	78	74	67	69	78	(
29	22029	55	58	59	67	71	62	53	61	67	
30	22030	54	54	48	38	35	45	46	47	41	;
31	22031	84	93	97	89	86	95	100	100	100	!
32	22032	95	100	94	100	98	99	100	90	80	1
33	22033	64	61	63	73	63	68	64	58	50	!
34	22034	76	79	73	77	83	86	95	89	90	!
35	22035	78	71	61	55	54	48	41	32	41	4
36	22036	95	89	91	84	89	94	85	91	100	10

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_
37	22037	99	89	79	87	87	81	82	74	64	;
38	22038	82	83	85	86	89	80	88	95	87	!
39	22039	65	56	64	62	58	51	61	68	70	
40	22040	100	93	92	86	84	76	82	74	79	
41	22041	78	72	73	79	81	73	71	77	83	!
42	22042	98	100	100	93	94	92	100	100	98	!
43	22043	58	62	67	77	71	63	64	73	83	•
44	22044	96	92	94	100	99	95	98	92	84	ł
45	22045	86	87	85	84	85	91	86	82	85	ł
46	22046	48	55	46	40	34	29	37	34	39	4
47	22047	56	52	54	47	40	35	43	44	40	;
48	22048	42	44	46	53	62	59	57	53	43	;
49	22049	64	54	49	59	54	55	57	59	63	•
50	22050	50	44	37	29	37	46	53	57	55	1
51	22051	70	60	70	62	67	67	68	67	72	1
52	22052	63	73	70	63	60	67	61	59	52	!
53	22053	92	100	100	100	100	100	92	87	94	10
54	22054	64	55	54	61	63	57	47	37	44	1
55 In	22055 [88]:	60	66	68	58	49	47	39	29	39	4

b=a.head(10) b

Out[88]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_1
0	22000	78	87	91	91	88	98	94	100	100	10
1	22001	79	71	81	72	73	68	59	69	59	61
2	22002	66	65	70	74	78	86	87	96	88	8;
3	22003	60	58	54	61	54	57	64	62	72	6:
4	22004	99	95	96	93	97	89	92	98	91	98
5	22005	41	36	35	28	35	36	27	26	19	2:
6	22006	47	50	47	57	62	64	71	75	85	8.
7	22007	84	74	70	68	58	59	56	56	64	71
8	22008	74	64	58	57	53	51	47	45	42	4:
9	22009	87	81	73	74	71	63	53	45	39	4:
4											•

In [89]:

```
a.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 56 entries, 0 to 55 Data columns (total 13 columns): Column Non-Null Count Dtype ---------Student_ID 56 non-null int64 0 56 non-null 1 Test_1 int64 2 Test_2 56 non-null int64 3 Test_3 56 non-null int64 4 Test 4 56 non-null int64 5 Test_5 56 non-null int64 6 Test 6 56 non-null int64 7 56 non-null Test_7 int64 8 Test_8 56 non-null int64 Test_9 9 56 non-null int64 10 Test_10 56 non-null int64 56 non-null 11 Test_11 int64

56 non-null

dtypes: int64(13)
memory usage: 5.8 KB

In [90]:

a.describe()

12 Test_12

Out[90]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6
count	56.000000	56.000000	56.000000	56.000000	56.000000	56.000000	56.000000
mean	22027.500000	70.750000	69.196429	68.089286	67.446429	67.303571	66.000000
sto	16.309506	17.009356	17.712266	18.838333	19.807179	20.746890	21.054043
min	22000.000000	40.000000	34.000000	35.000000	28.000000	26.000000	29.000000
25%	22013.750000	57.750000	55.750000	53.000000	54.500000	53.750000	50.250000
50%	22027.500000	70.500000	68.500000	70.000000	71.500000	69.000000	65.500000
75%	22041.250000	84.000000	83.250000	85.000000	84.000000	85.250000	83.750000
max	22055.000000	100.000000	100.000000	100.000000	100.000000	100.000000	100.000000
4							•

int64

In [91]:

a.columns

Out[91]:

In [92]:

sns.pairplot(b)

Out[92]:

<seaborn.axisgrid.PairGrid at 0x217d65aa6d0>

In [93]:

```
sns.distplot(b['Test_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[93]:

<AxesSubplot:xlabel='Test_2', ylabel='Density'>

In [94]:

sns.heatmap(b.corr())

Out[94]:

<AxesSubplot:>


```
In [95]:
```

In [96]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [97]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[97]:

LinearRegression()

In [98]:

```
print(lr.intercept_)
```

13.200685689397119

In [99]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[99]:

Co-efficient

Student_ID	-0.000308
Test_1	-0.279774
Test_2	0.055882
Test_3	0.299643
Test_4	0.157631
Test_5	-0.019157
Test_6	0.500782
Test_7	0.008546
Test_8	0.139421
Test_9	0.108753
Test_10	0.073561
Test_11	-0.014964
Test_12	-0.128484

```
In [100]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[100]:

<matplotlib.collections.PathCollection at 0x217df4ccd60>

In [101]:

```
print(lr.score(x_test,y_test))
```

0.9695653774078994

In [102]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [103]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[103]:

Ridge(alpha=10)

In [104]:

```
rr.score(x_test,y_test)
```

Out[104]:

0.9644727349653939

In [105]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[105]:

Lasso(alpha=10)

```
In [106]:
la.score(x_test,y_test)
Out[106]:
0.9988004699481617
In [107]:
en=ElasticNet()
en.fit(x_train,y_train)
Out[107]:
ElasticNet()
In [108]:
print(en.coef_)
[-0.
             -0.
                                      0.01747778 0.
                                                               0.
                          0.03041345
 0.93487531 0.01167405
                                                  0.
                                                               0.
 -0.
            ]
In [109]:
print(en.intercept_)
0.28096938877563105
In [110]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.9996346626033297
Evaluation Metrics
In [111]:
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,prediction))
```

```
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,prediction))

Mean Absolute Error: 0.35516758709910806

In [112]:

print("mean Squared Engar," metrics mean squared engar(y test prediction))
```

```
print("mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
```

```
mean Squared Error: 0.15254865963191833
```

In [113]:

```
print("Root mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

Root mean Squared Error: 0.39057478110077504

18. DataSet World_Data

In [114]:

a=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023.csv")
a

Out[114]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Call Co
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	ç
1	Albania	105	AL	43.10%	28,748	9,000	11.78	35
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	21
3	Andorra	164	AD	40.00%	468	NaN	7.20	37
4	Angola	26	АО	47.50%	1,246,700	117,000	40.73	24
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	5
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	3
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	96
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	26
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	26
195 r	ows × 35 co	lumns						
4								•

In [115]:

b=a.fillna(value=51)
b

Out[115]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Call Co
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	ć
1	Albania	105	AL	43.10%	28,748	9,000	11.78	35
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	21
3	Andorra	164	AD	40.00%	468	51	7.20	37
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	24
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	5
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	8
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	96
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	26
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	26
195 r	ows × 35 co	lumns						
4								•

In [116]:

c=b.head(10)

Out[116]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Callin ₍
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.
3	Andorra	164	AD	40.00%	468	51	7.20	376.
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	1.0
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54.
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	374.
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	61.
9	Austria	109	AT	32.40%	83,871	21,000	9.70	43.
10	10 rows × 35 columns							
4								•

In [117]:

a.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 195 entries, 0 to 194 Data columns (total 35 columns): Column Non-Null Count Dtype ---------195 non-null 0 Country object 1 Density (P/Km2)195 non-null object 2 Abbreviation 188 non-null object 3 Agricultural Land(%) 188 non-null object 4 Land Area(Km2) 194 non-null object 5 Armed Forces size 171 non-null object 6 Birth Rate float64 189 non-null 7 Calling Code 194 non-null float64 8 Capital/Major City 192 non-null object 9 Co2-Emissions 188 non-null object 10 CPI 178 non-null object 11 CPI Change (%) 179 non-null object 12 Currency-Code 180 non-null object 13 Fertility Rate 188 non-null float64 Forested Area (%) 188 non-null object 15 Gasoline Price 175 non-null object 16 GDP 193 non-null object Gross primary education enrollment (%) object 17 188 non-null Gross tertiary education enrollment (%) 183 non-null object 19 Infant mortality 189 non-null float64 Largest city 189 non-null object 21 Life expectancy float64 187 non-null 22 Maternal mortality ratio float64 181 non-null Minimum wage 23 150 non-null object Official language 194 non-null object Out of pocket health expenditure 188 non-null object 26 Physicians per thousand 188 non-null float64 27 Population 194 non-null object Population: Labor force participation (%) 176 non-null object Tax revenue (%) 169 non-null object 30 Total tax rate 183 non-null object Unemployment rate 176 non-null object 32 Urban population 190 non-null object float64 33 Latitude 194 non-null 34 Longitude 194 non-null float64 dtypes: float64(9), object(26) memory usage: 53.4+ KB

In [118]:

a.describe()

Out[118]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand
count	189.000000	194.000000	188.000000	189.000000	187.000000	181.000000	188.000000
mean	20.214974	360.546392	2.698138	21.332804	72.279679	160.392265	1.839840
std	9.945774	323.236419	1.282267	19.548058	7.483661	233.502024	1.684261
min	5.900000	1.000000	0.980000	1.400000	52.800000	2.000000	0.010000
25%	11.300000	82.500000	1.705000	6.000000	67.000000	13.000000	0.332500
50%	17.950000	255.500000	2.245000	14.000000	73.200000	53.000000	1.460000
75%	28.750000	506.750000	3.597500	32.700000	77.500000	186.000000	2.935000
max	46.080000	1876.000000	6.910000	84.500000	85.400000	1150.000000	8.420000
4							>

In [119]:

c.columns

Out[119]:

```
Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land(
%)',
       'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Cod
e',
       'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
       'Currency-Code', 'Fertility Rate', 'Forested Area (%)',
       'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
       'Gross tertiary education enrollment (%)', 'Infant mortality',
       'Largest city', 'Life expectancy', 'Maternal mortality ratio',
       'Minimum wage', 'Official language', 'Out of pocket health expendit
ure',
       'Physicians per thousand', 'Population',
       'Population: Labor force participation (%)', 'Tax revenue (%)',
       'Total tax rate', 'Unemployment rate', 'Urban_population', 'Latitud
e',
       'Longitude'],
      dtype='object')
```

In [120]:

Out[120]:

	Density\n(P/Km2)	Urban_population	Latitude	Longitude
0	60	9,797,273	33.939110	67.709953
1	105	1,747,593	41.153332	20.168331
2	18	31,510,100	28.033886	1.659626
3	164	67,873	42.506285	1.521801
4	26	21,061,025	-11.202692	17.873887
5	223	23,800	17.060816	-61.796428
6	17	41,339,571	-38.416097	-63.616672
7	104	1,869,848	40.069099	45.038189
8	3	21,844,756	-25.274398	133.775136
9	109	5,194,416	47.516231	14.550072

In [121]:

sns.pairplot(d)

Out[121]:

<seaborn.axisgrid.PairGrid at 0x217e09599a0>

In [122]:

sns.distplot(d['Latitude'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[122]:

<AxesSubplot:xlabel='Latitude', ylabel='Density'>

In [123]:

sns.heatmap(d.corr())

Out[123]:

<AxesSubplot:>


```
In [124]:
```

In [125]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [126]:

```
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[126]:

LinearRegression()

In [127]:

```
print(lr.intercept_)
```

-1.0658141036401503e-14

In [128]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[128]:

Co-efficient

Density\n(P/Km2) 2.906770e-16
Latitude 1.000000e+00
Longitude -5.332036e-17

```
In [129]:
```

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[129]:

<matplotlib.collections.PathCollection at 0x217e0c2fcd0>

In [130]:

```
print(lr.score(x_test,y_test))
```

1.0

In [131]:

```
from sklearn.linear_model import Ridge,Lasso
```

In [132]:

```
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
```

Out[132]:

Ridge(alpha=10)

In [133]:

```
rr.score(x_test,y_test)
```

Out[133]:

0.9996940751514699

In [134]:

```
la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[134]:

Lasso(alpha=10)

```
In [135]:
la.score(x_test,y_test)
Out[135]:
0.9994946274260796
In [136]:
en=ElasticNet()
en.fit(x_train,y_train)
Out[136]:
ElasticNet()
In [137]:
print(en.coef_)
[9.68190444e-04 9.98012216e-01 0.00000000e+00]
In [138]:
print(en.intercept_)
-0.02666247441751146
In [139]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.9999500554619002
Evaluation Metrics
In [140]:
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,prediction))
Mean Absolute Error: 0.07284664765712161
In [141]:
print("mean Squared Error:",metrics.mean_squared_error(y_test,prediction))
mean Squared Error: 0.008879604769335657
In [142]:
print("Root mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

Root mean Squared Error: 0.0942316548158614

7/31/23, 2:44 PM

In []:			