

Figure 54.12: Running (SVM_{s2'}) on two sets of 30 points; $\nu = 0.51$.

 $p_f=21, q_f=21, p_m=22, q_m=23$. Interestingly, for $\nu=0.7$, we run into the singular situation where there are no support vectors.

For our next to the last run, Figure 54.14 shows the result of running the program with $\nu = 0.95$. We have $p_f = 28, q_f = 28, p_m = 29, q_m = 29$.

Figure 54.15 shows the result of running the program with $\nu = 0.97$. We have $p_f = 29, q_f = 29, p_m = 30, q_m = 30$, which shows that the largest margin has been achieved. However, after 80000 iterations the dual residual is less than 10^{-12} but the primal residual is approximately 10^{-4} (our tolerance for convergence is 10^{-10} , which is quite high). Nevertheless the result is visually very good.

54.9 Soft Margin Support Vector Machines; (SVM_{s3})

In this section we consider a variation of Problem (SVM_{s2'}) by adding the term $(1/2)b^2$ to the objective function. The result is that in minimizing the Lagrangian to find the dual function G, not just w but also b is determined and η is determined under a mild condition on ν . We also suppress the constraint $\eta \geq 0$ which turns out to be redundant.