PadhAl: The Convolution Operation

One Fourth Labs

The 1D convolution operation

What does the convolution operation do?

- 1. Let's approach this with a real world example
- 2. Consider a flight from Chennai to Delhi
 - a. We measure the distance of the flight from Chennai at regular intervals,
 - i. x_0 at t_0
 - ii. x_1 at t_1
 - iii. x_2 at t_2
 - b. In general, to calculate the overall speed, we would take the average speed at these measured points i.e $\frac{1}{3}(x_0 + x_1 + x_2)$.
 - c. However, let us try giving the most importance to the current reading, and a progressively decreasing level of importance to every reading preceding the current one.
 - d. Let's assign different weights to each of these reading points
 - i. $x_0 \longrightarrow w_0$ (0 indicates current reference point)
 - ii. $x_1 \longrightarrow w_{-1}$ (1 reading before reference point)
 - iii. $x_2 \longrightarrow w_{-2}$ (1 readings before reference point)
 - e. So the new overall speed would be calculated by $w_{-2}x_0 + w_{-1}x_1 + w_0x_2$ where the weights are decreasing from w_0
- 3. The formula could be written as follows

a.
$$s_t = \sum_{a=0}^{\infty} w_{-a} x_{t-a} = (x * w)_t$$

- b. Where t refers to reference point
- c. a is the index of the weight, ranging from 0 for reference point to ∞
- 4. In practice, we wouldn't want to take the reading up till $-\infty$, thus we can simply say that those unwanted weights are all 0.
- 5. Consider the following table

	W ₋₆	W ₋₅	W ₋₄	W ₋₃	W ₋₂	W ₋₁	W_0					
W	0.01	0.01	0.02	0.02	0.04	0.04	0.05					
×	1.00	1.10	1.20	1.40	1.70	1.80	1.90	2.10	2.20	2.40	2.50	2.70
S							1.80					

- 6. In the above table, w_{27} to w_{27} are all consider to be 0
- 7. Here, $s_6 = x_6 w_0 + x_5 w_{-1} + x_4 w_{-2} + x_3 w_{-3} + x_2 w_{-4} + x_1 w_{-5} + x_0 w_{-6}$