Statistik möter datavetenskap - erfarenheter från Linköpings universitet

Mattias Villani

Avdelningen för statistik och maskininlärning Institutionen för datavetenskap Linköpings universitet

Översikt

- Organisation
- Undervisning
- Forskning

 $Slides: \verb|https://github.com/mattiasvillani/Talks/raw/master/MatStat.pdf| \\$

Statistikämnet tillhör datavetenskaplig institution

► Avdelningen för statistik och maskininlärning är sedan 2008 en av fem avdelningar vid institutionen för datavetenskap.

► Frontiers in Massive Data Analysis (US National Research Council):

"Computer scientists involved in building big-data systems must develop a deeper awareness of inferential issues, while statisticians must concern themselves with scalability, algorithmic issues, and real-time decision-making."

Masterprogrammet Statistics and Machine Learning

- ▶ 2-årigt internationellt **masterprogram i statistik** med start 2008.
- ▶ **Studenter** från statistik, datavetenskap, ingenjörsvetenskaper, tillämpad matematik.
- ► Tidigare: större inslag av data mining och databaskurser från andra avdelningar.
- ► Under senare år mer probabilistiska modeller och likelihoodbaserade metoder.
- Prediktivt fokus.
- ► Programmering. Datorlaborationer och datortentor.
- ► Kurser samläses med masterprofil inom AI och Maskininlärning på ingenjörsprogram.

År 1

Year 1					
Semester 1		Semester 2			
Period 1	Period 2	Period 3	Period 4		
Advanced Academic Studies		Advanced Data Mining	Big Data Analytics		
(<u>732A60</u> , 3 credits)		(732A75 , 6 credits)	(<u>732A54</u> , 6 credits)		
	Introduction to	Introduction to Python	Philosophy of science		
Visualization	Machine Learning (732A95 , 9 credits)	(732A74 , 3 credits)	(<u>720A04</u> ,3 credits)		
(<u>732A98</u> , 6 credits)	(<u>732A33</u> , 9 credits)	Computational statistics (732A90, 6 credits)			
			Bayesian learning,		
Advanced R programming (732A94 , 6 credits)		Neural Networks and Learning Systems (732A55, 6 credits)	(732A91 , 6 credits)		
Statistical methods (732A93, 6 credits)	Bioinformatics (732A51, 6 credits)	Web programming (732A56 , 4 credits)			

Voor 1

År 2

Year 2					
Seme:	ster 3	Semester 4			
Period 1	Period 2	Period 3	Period 4		
Time series analysis(<u>732A62</u> , 6 credits)	Text Mining (732A92, 6 credits)				
Probability theory (732A63, 6 credits)	Multivariate statistical methods	MASTER THESIS (732A64 , 30 credits)			
	(732A97, 6 credits)		o credits)		
Advanced Machine Learning (732A96, 6 credits)	Database Technology (732A57 , 6 credits)				
Data mining project (732A65, 6 credits)					
Decision theory (7	32A66 , 6 credits)				
EXCHANG	E STUDIES				

Kurs: Sannolikhetslära och statistik, 6 hp

- Grundläggande kurs i Sannolikhetslära och statistik för ingenjörer.
- ► Sannolikhetslära + Inferens + Prediktion + Beslut
- Både frekventistisk och Bayesiansk inferens
- ► Tre rejäla datorlaborationer. Simulering för att förstå teorin.
- Exempel från maskininlärning/AI från dag 1 för motivationen.
- Kurssida: https://www.ida.liu.se/~TDAB01/info/courseinfo.sv.shtml.

Machine learning, 9 hp

- Avancerad nivå.
- ▶ Bred översiktskurs.
- ► Moment:
 - Basic Concepts in Machine Learning
 - Regression, Regularization and Model Selection
 - Classification Methods
 - Dimensionality Reduction and Uncertainty Estimation
 - Kernel Methods and Support Vector Machines.
 - Neural Networks and Deep Learning
 - Model Inference and Variable Selection
 - Ensemble Methods and Mixture Models
 - Online Learning
 - Splines and Additive Models
 - High-Dimensional Problems
- Kurssida:

https://www.ida.liu.se/~732A95/info/courseinfo.en.shtml.

Bayesian learning, 6 hp

- Avancerad nivå.
- ► Fyra moment:
 - The Bayesics
 - Bayesian Regression and Classification
 - Bayesian Computations: MCMC and Variational Bayes
 - Model Inference and Variable Selection
- Bayesiansk inferens passar ML:
 - Prediktion och beslut på ett naturligt sätt
 - Simuleringsvänligt (MCMC etc)
 - ▶ **Regularisering** av flexibla icke-linjära modeller via mjukhetspriors
- ► Kombinerad dator- och papperstenta.
 - ► Tenta i datorsal, med speciellt mjukvarusystem för datortenta.
 - ▶ 3/4 löses med dator, 1/4 löses med papper och penna.
 - Studentens labbrapporter finns tillgängliga under tentan.
- ► Kurssida: https://www.ida.liu.se/~732A91/info/courseinfo.en.shtml.

Advanced Machine learning, 6 hp

- Avancerad nivå.
- Djupdykning i mindre antal probabilistiska modeller. Bayes.
- ► Moment:
 - Hidden Markov Models
 - State Space Models
 - Graphical Models and Bayesian Networks
 - Gaussian Process Regression and Classification
- ► Kurssida: https://www.ida.liu.se/~732A96/info/courseinfo.en.shtml.

Gaussiska processer för ML

▶ Bok: Gaussian Processes for Machine Learning (Rasmussen-Williams).

► Innehåll:

- Resultat om multivariat normal (täthet, marginella och betingade fördelningar, linj.transf).
- Definition Gaussisk process (GP) som sannolikhetsfördelning över funktioner.
- Regression med GPs
- Klassifikation med GPs
- Probabilistisk optimering med GPs.
- Numeriskt stabil implementation av GPs.
- Skalbara GPs för stora datamängder

Text Mining, 6 hp

- Avancerad nivå.
- ► Samarbete mellan STIMA, datorlingvistik och databasgruppen.
- ► Hela pipelinen:
 - web-scraping
 - linguistisk pre-processing
 - probabilistisk modellering.
- Moment:
 - Information Retrival
 - Natural Language Processing
 - Statistical Analysis of Textual Data
- Kurssida: https://www.ida.liu.se/~732A92/courseinfo.en.shtml.

Forskning

- ► Grundtema:
 - statistisk analys baserat på sannolikhetsmodeller
 - med fokus på prediktion och beslutsfattande
 - genom effektiva skalbara beräkningar för
 - stora komplexa datamängder.
- Ex på STIMA-publikationer under senaste två åren:
 - ► Journal of Computational and Graphical Statistics (3 st)
 - Journal of Machine Learning Research
 - ► IEEE Transactions on Pattern Analysis and Machine Intelligence
 - ► Journal of the American Statistical Association
 - Annals of Applied Statistics
 - ► Proceedings of National Academy of Sciences (PNAS) (2 st).
 - ► NeuroImage (3 st)
 - Human Brain Mapping

Övrig forskningsverksamhet inom ML

STIMA leder IDA Machine Learning Research Group vid institutionen f\u00f6r datavetenskap (IDA). https://liu.se/machinelearning/

- ► IDA Machine Learning Seminars. STIMA-ledd internationell månatlig seminarieserie i maskininlärning med världsledande forskare. https://liu.se/machinelearning/seminars
- ► LiU Seminars in Statistics and Mathematical Statistics. Gemensam seminarieserie tillsammans med MatStat.
- ► AI, Autonomous Systems and Software Program (WASP).
 - ▶ **WASP-doktorand**. Bayesian Learning for Spatio-Temporal Models in Transportation.
 - **WASP-doktorand.** *Methods for Scalable and Safe Robot Learning.*
 - ► **WASP industridoktorand** tillsammans med Ericsson Research. *Machine Learning for 5G System Control and Automation*.
- Medlem av styrelsen för Nationellt Superdatorcentrum.

Vad krävs för att närma sig ML? Vill vi?

- ► Statistiker måste vara **genuint intresserade** av skalbara beräkningar och algoritmer (och inte bara av AI-miljarder).
- ► Helhetssyn på
 - sannolikhetsmodeller
 - inferens
 - prediktion och beslut
 - skalbarhet och beräkningseffektivt.
- ► Forskningsverksamhet inom computational statistics och maskininlärning. ML-tillämpningar i undervisning.
- ▶ Behålla vår statistiska integritet, men stå ut med att hoppa över vissa eleganta härledningar. Inte alla egenskaper måste utforskas.
- Mer fokus på prediktiv inferens, mycket mindre på hypotesttest och deras asympotiska egenskaper.
- ► Ett bayesiansk perspektiv underlättar.