流形

- 1. 流形: 设 M 是一个 Hausdorff 空间; $\forall p \in M$, 如果存在一个开邻域 $O: p \in O$ 与 \mathbb{R}^n 或 \mathbb{C}^n 中的一个开集同胚, 就称 M 为实或复的 n— 维流形;
- 2. 微分流形: 设 M 是一个流形, 若同时满足:
 - (a) 存在开覆盖 $\{U_i|i\in I\}$, $\varphi_i:U_i\to\varphi_i(U_i)\in R^n, \varphi^{-1}:\varphi_i(U_i)\to U_i\subset M;$
 - (b) 当 $U_i \cap U_j \neq \phi$, 下列映射是 C^{∞} 可微的: $\psi_{ij} = \varphi_i \circ \varphi_j^{-1} : \varphi_j(U_i \cap U_j) \rightarrow \varphi_i(U_i \cap U_j)$;
- 3. 等价关系: 关系 A~B是一个等价关系, 若同时满足:
 - (a) 自反性: $A \sim A$;
 - (b) 对称性: $A \sim B, B \sim A$;
 - (c) 传递性: $A \sim B, B \sim C \Rightarrow A \sim C$;
- 4. 坐标卡: (U_i, φ_i) 给出微分流形的坐标卡;
 - (a) 卡集: 坐标卡的全体称为卡集;
 - (b) 坐标邻域: $p \in U_i$, 则 U_i 为在 p 点的坐标邻域;
 - (c) 坐标函数: φ_i , 坐标函数在 p 点处的值记为 $x^{\mu}(p), 1 \leq \mu \leq n$;
 - (d) 卡集相容: 如果两个卡集的并仍然是卡集,则称它们相容;
 - i. 相容性是一种等价关系;
- 5. \mathbb{R}^n 上的 $\vec{y} = (y_1, y_2, ..., y_n)$ 到 n 维单位球面 $S^n : \{x_i \in \mathbb{R}^{n+1} | \sum_{i=1}^{n+1} x_i^2 = 1\}$ 上 $\vec{x} = (x_1, x_2, ..., x_n, x_{n+1})$ 的球极投影:
 - (a) 自北极 (0,0,...,0,1) 的 (南多半球) 球极投影: $y_i=\frac{x_i}{1-x_{n+1}},$ $||y||^2=\frac{1+x_{n+1}}{1-x_{n+1}},$ $x_i=\frac{2y_i}{||y||^2+1},$ $x_{n+1}=\frac{||y||^2-1}{||y||^2+1};$
 - i. 南多半球: $U_+ = S^n \setminus \{(0,0,...,0,-1)\} = \{(x_1,x_2,...,x_n,x_{n+1} \in S^n | x_{n+1} \neq -1)\};$
 - ii. (U_{\pm}, φ_{\pm}) 坐标函数: $\varphi_{+}: U_{+} \to \mathbb{R}^{n}, (x_{1}, ..., x_{n+1}) \mapsto \left(\frac{x_{1}}{1+x_{n+1}}, ..., \frac{x_{n}}{1+x_{n+1}}\right)$;

- (b) 自南极 (0,0,...,0,-1) 的 (北多半球) 球极投影: $y_i=\frac{x_i}{1+x_{n+1}}, ||y||^2=\frac{1-x_{n+1}}{1+x_{n+1}}, x_i=\frac{2y_i}{||y||^2+1}, x_{n+1}=\frac{1-||y||^2}{1+||y||^2};$
 - i. 北多半球: $U_- = S^n \setminus \{(0,0,...,0,+1)\} = \{(x_1,x_2,...,x_n,x_{n+1} \in S^n | x_{n+1} \neq 1)\};$
 - ii. (U_{\pm}, φ_{\pm}) 坐标函数: $\varphi_{-}: U_{-} \to \mathbb{R}^{n}, (x_{1}, ..., x_{n+1}) \mapsto \left(\frac{x_{1}}{1 x_{n+1}}, ..., \frac{x_{n}}{1 x_{n+1}}\right)$;
- 6. 等价类: 满足同样等价关系的一类关系;
 - (a) 微分结构: *M* 所有卡集按照等价类可划分为不同的类,每个类对应一个微分结构; 即相容的卡集定义了 *M* 上相同的微分结构;
- 7. 齐次坐标: 在 n 维实射影空间 $\mathbb{R}P^n$ 中, 由 \mathbb{R}^{n+1} 中所有过原点的直线 $(x^0, x^1..., x^n) \in \mathbb{R}^{n+1}$ 且 $(x^0, x^1..., x^n) \neq (0, 0, ..., 0)$,则称该直线为 $\mathbb{R}P^n$ 的齐次坐标;
 - (a) 非齐次坐标: 设 U_i 为所有过原点的齐次坐标 $x^i \neq 0$ 的直线集, 定义非齐次坐标 $\xi^j_{(i)} = \frac{x^j}{x^i}$, 即 $\xi_{(i)} = (\xi^0_{(i)}, \xi^1_{(i)}, ..., \xi^{i-1}_{(i)}, \xi^{i+1}_{(i)}, ..., \xi^n_{(i)})$. 其中 $\xi^i_{(i)} = 1$ 被省略;
 - i. U_i 中的非齐次坐标实际与齐次坐标的选择无关: 若 $x = \lambda y$, 则 有 $\frac{x^j}{x^i} = \frac{y^j}{y^i} = \xi^j_{(i)}$;
 - ii. 非齐次坐标提供了 U_i 与 \mathbb{R}^n 之间的同胚 $\varphi_i: U_i \to \mathbb{R}^n$;
 - (b) 卡集 $\{U_i|0 \le i \le n\}$ 的转移函数 ψ_{ij} : 当 $U_i \cap U_j \ne \phi$,

$$x = (x^0, ..., x^n) \in U_i \cap U_j \begin{cases} \varphi_i(x) = \xi_{(i)} \in \varphi_i(U_i \cap U_j) \\ \varphi_j(x) = \xi_{(i)} \in \varphi_j(U_i \cap U_j) \end{cases}$$
$$\psi_{ij} = \varphi_i \circ \varphi_j^{-1} : \xi_{(j)}^k \mapsto \xi_{(i)}^k = \frac{x^j}{x^i} \cdot \xi_{(j)}^k$$

- i. 转移函数 ψ_{ij} 与 $U_i \cap U_j$ 中点的齐次坐标的选择无关: $x = \lambda y \Rightarrow \frac{x^j}{x^j} = \frac{y^j}{x^j}$;
- 8. 一般线性群: n 维一般线性群是 $n \times n$ 维可逆矩阵的集合, 记为 $GL(n,\mathbb{R})$;
- 9. 笛卡尔积: $X \times Y = \{(x,y) | x \in X \land y \in Y\};$
- 10. 流形的乘积: 设 M, \tilde{M} 分别为 n, \tilde{n} 维微分流形, 各自定义了坐标卡集 $\{(U_i, \varphi_i)\}, \{(\tilde{U}_\alpha, \tilde{\varphi}_\alpha)\}$. 则乘积流形 $M \times \tilde{M}$ 是一个 $n + \tilde{n}$ 维微分流形, 卡集为 $\{U_i \times \tilde{U}_\alpha, (\varphi_i, \tilde{\varphi}_\alpha)\}$;

- 11. 环面: $T^n = S^1 \times S^1 \times ... \times S^1$;
- 12. 封闭群的要素:
 - (a) 单位元: I;
 - (b) 逆元: 元 A 与其逆元 A^{-1} 之集为单位元 I;
 - (c) 满足结合律的乘法 < u, v >: 在该乘法下, 构成封闭群;
- 13. 矩阵构成的李群:
 - (a) 一般线性群 $GL(n, \mathbb{C})$;
 - (b) 幺正群 U(n) 和 U(p,q): 保持 n- 维复向量空间 $V \cong \mathbb{C}^n$ 的内积不变的变换;

i.
$$< u, v> = \bar{u}^T \cdot v = \sum_{j=1}^n \bar{u}_j v^j;$$

ii. $< u, v>_{p,q} = -\sum_{i=1}^p \bar{u}_i v^i + \sum_{j=1}^q \bar{u}_{p+j} v^{p+j};$

- (c) 特殊幺正群 $SU(p,q) = U(p,q) \cap SL(n,\mathbb{C});$
- (d) 正交群 O(n): 在实数集上保持欧几里得内积不变的变换;
- (e) 特殊正交群 $SO(p,q) = O(p,q) \cap SL(n,\mathbb{R})$;
- (f) 辛群 $Sp(2n,\mathbb{C})$: 保持向量 $y,z\in\mathbb{C}^{2n}$ 或 \mathbb{R}^{2n} 的斜积 $\omega(y,z)$ 不变的 变换:

i.
$$\omega(w,z) = \sum_{j=1}^{n} (w_j z'_j - w'_j z_j);$$

- (g) 幺正辛群 $USp(2n) = Sp(2n, \mathbb{C}) \cap U(2n)$;
- 14. 矩阵的指数映射: 设 A 是 $n \times n$ 矩阵, 指数 e^A 来自幂级数 $e^A = 1 + A + \frac{A^2}{2!} + ... = \sum\limits_{k=0}^{\infty} \frac{A^k}{k!};$

15. Pauli 矩阵:
$$\sigma_k=\left(egin{array}{cc} \delta_{a3} & \delta_{a1}-i\delta_{a2} \\ \delta_{a1}+i\delta_{a2} & -\delta_{a3} \end{array}
ight), k=0,1,2,3;$$

16. Lie 群流形:
$$(\xi_a)_{a=1,...,dimG} \in \mathbb{R}^{dimG}$$
, 通过指数映射 $g = \exp\left(i\sum_{a=1}^{dimG} \xi_a T^a\right) \in G, T^a \in g$;