```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
import statsmodels.formula.api as smf
```

```
In [2]: data=pd.read_csv('wc_at.csv')
   data.head()
```

## Out[2]:

|   | Waist | AT    |
|---|-------|-------|
| 0 | 74.75 | 25.72 |
| 1 | 72.60 | 25.89 |
| 2 | 81.80 | 42.60 |
| 2 | 92 NE | 12 00 |

**4** 74.65 29.84

```
In [3]: plt.figure(figsize=(10,7),facecolor="lightgreen")
plt.scatter(data.Waist,data.AT)
```

## Out[3]: <matplotlib.collections.PathCollection at 0x19861a45bb0>



# 1.Method1

[-215.98148796]

```
In [4]: lm=LinearRegression()
In [5]: x=data['Waist'].values.reshape(-1,1)
    y=data['AT'].values.reshape(-1,1)
In [6]: model=lm.fit(x,y)
In [7]: y_pred=model.predict(x)
In [8]: print(model.coef_)
    print(model.intercept_)
    [[3.45885939]]
```

```
In [9]: plt.figure(figsize=(10,7),facecolor="lightgreen")
    plt.scatter(data.Waist,data.AT,color="black",label="predict")
    plt.plot(data.Waist,y_pred,color="red")
    plt.scatter(data.Waist,y_pred,color="red")
    plt.legend(loc="best")
```

Out[9]: <matplotlib.legend.Legend at 0x19861c1dfa0>



```
In [10]: r2_score(data['AT'],y_pred)
```

Out[10]: 0.6700368930528429

## 2.Method 2

```
In [11]: data['Waist_sq']=data['Waist']**2
```

```
In [12]: model=smf.ols("np.log(AT)~Waist+Waist_sq",data=data).fit()
```

In [13]: model.summary()

Out[13]: OLS Regression Results

| Dep. \            | Variable: |           | np.log(AT)           |          | R-squared:    |           | 0.779   |          |
|-------------------|-----------|-----------|----------------------|----------|---------------|-----------|---------|----------|
| Model:            |           | :         | OLS Ad               |          | j. R-squared: |           | 0.775   |          |
| Method:           |           | ։ Լ       | Least Squares        |          | F-statistic:  |           | 186.8   |          |
|                   | Date      | : Wed     | , 29                 | Jun 2022 | 2 Prol        | (F-statis | tic):   | 1.80e-35 |
|                   | Time:     |           | 18:38:06 <b>Lo</b>   |          | g-Likelihood: |           | -24.779 |          |
| No. Observations: |           | :         | 109                  |          |               | AIC:      |         | 55.56    |
| Df Residuals:     |           | :         | 106                  |          |               | BIC:      |         | 63.63    |
| Df Model:         |           | :         | 2                    |          |               |           |         |          |
| Covarian          | :         | nonrobust |                      |          |               |           |         |          |
|                   | coe       | ef std    | err                  | t        | P> t          | [0.025    | 0.97    | 5]       |
| Intercept         | -7.824    | 1 1.4     | 73                   | -5.312   | 0.000         | -10.744   | -4.90   | )4       |
| Waist             | 0.228     | 9 0.0     | 32                   | 7.107    | 0.000         | 0.165     | 0.29    | 93       |
| Waist_sq          | -0.001    | 0.0       | 000                  | -5.871   | 0.000         | -0.001    | -0.00   | )1       |
| Omi               | nibus:    | 0.325     | D                    | ourbin-W | /atson:       | 1.46      | 4       |          |
| Prob(Omnibus): 0  |           | 0.850     | 50 Jarque-Bera (JB): |          | 0.271         |           |         |          |
| Skew: 0           |           | 0.119     | Prob(JB):            |          |               | 0.873     |         |          |

## Notes:

Kurtosis: 2.949

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Cond. No. 4.49e+05

[2] The condition number is large, 4.49e+05. This might indicate that there are strong multicollinearity or other numerical problems.