Arg Gly Thr Gly Thr Gly Phe Ala Tyr

SEQUENCE LISTING

1

```
<110> ONO, MITSUHARU
     SOKA, TAKAYUKI
     MORIMOTO, IKUO
     MIYAMURA, KOICHI
<120> CELL SEPARATION DEVICE AND SEPARATION METHOD
<130> ASAHI-1-PC-1
<140> 09/701,001
<141> 2000-11-22
<150> PCT/JP99/02711
<151> 1999-05-24
<150> JP 159957
<151> 1998-05-25
<150> JP 163023
<151> 1998-05-26
<160> 66
<170> PatentIn Ver. 2.1
                          De EP 0365, 205
Figo 2 and 3
CDR, of anti Low 3a
<210> 1
<211> 5
<212> PRT
<213> Mus sp.
<400> 1
Asp Tyr Val Ile Asn
                       - CDR 1
<210> 2
<211> 17
<212> PRT
<213> Mus sp.
<400> 2
Glu Ile Tyr Pro Gly Ser Gly Ser Ala Tyr Tyr Asn Glu Met Phe Lys
                                                 ante Lew 3a
                              = CDRZ of
Gly
<210> 3
<211> 9
<212> PRT
                                   = CDR3 of and Lew 3a
<213> Mus sp.
<400> 3
```

The party than the

```
<210> 4
 <211> 15
 <212> PRT
 <213> Mus sp.
<400> 4/ / / / / / / / / / / / / Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Met Asn
                                         CDRI of ante Law Fa
^<210> 5
 <211> 7
 <212> PRT
 <213> Mus sp.
                                 CDR2 of anti-Lowba
 <400> 5
Ala Ala Ser Asn Leu Glu Ser
 <210> 6
 <211> 9
\mathcal{D}_{212} PRT
 <213> Mus sp.
                                       CDR3 of centi-low3a
 <400> 6
Gln Gln Ser Ser Glu Asp Pro Pro Thr
 <210> 7
 <211> 330
 <212> DNA
 <213> Mus sp.
 <220>
 <221> CDS
 <222> (1)..(330)
 <400> 7
cct gag ctg gtg aag cct ggg gct tca gtg aag atg tcc tgc aag gct
 Pro Glu Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala
 tot gga tac aca ttc act gac tat gtt ata aac tgg ttg aac cag aga
                                                                  96
 Ser Gly Tyr Thr Phe Thr Asp Tyr Val Ile Asn Trp Leu Asn Gln Arg
                                 25
                                                                  144
 act gga cag ggc ctt gag tgg att gga gag att tat cct gga agt ggt
 Thr Gly Gln Gly Leu Glu Trp Ile Gly Glu Ile Tyr Pro Gly Ser Gly
                                                                  192
 agt gct tac tac aat gag atg ttc aag ggc aag gcc aca ctg act gca
 Ser Ala Tyr Tyr Asn Glu Met Phe Lys Gly Lys Ala Thr Leu Thr Ala
```

_				aac Asn		_		_	_		_	_	_			240
				gtc Val 85												288
				ggc Gly												330
<211 <212 <213 <220 <221	l> CI	DS ra al	•													
	2> (1	1)	(309))												
gct		_	_	gtg Val 5				_		_				_	_	48
_	_		_	gtt Val	_		_		-	_						96
				gga Gly												144
		_		gly aaa			_			-		_				192
	_			ctc Leu									_	_	_	240
			_	cag Gln 85		_	_		_		_	_				288
		_	_	gaa Glu												309

<210> 9 <211> 925 <212> DNA <213> Mus sp.

<220> <221> CDS <222> (1).	. (915)	sing	ee (4 Jul	معو	~	A	6	+	~∕	CB4
<400> 9 atg aaa ta Met Lys Ty 1	c ctg ctg	ccg acc Pro Thr	gct gct	gct	ggt	ctg	ctg	ctc	ctc	gcg	48
gcc cag cc Ala Gln Pr	g gcc atg o Ala Met 20	gcc gac Ala Asp	att gtg Ile Val	Leu	acc Thr	caa Gln	tct Ser	cca Pro 30	gct Ala	tct Ser	96
ttg gct gt Leu Ala Va 3	l Ser Leu	ggg cag Gly Gln	agg gcc Arg Ala	acc Thr	atc Ile	tcc Ser	tgc Cys 45	aag Lys	gcc Ala	agc Ser	144
caa agt gt Gln Ser Va	l Asp Tyr	Asp Gly	Asp Ser	Tyr	atg Met	aac Asn	tgg Trp	tac Tyr	caa Gln	cag Gln	192
aaa cca gg Lys Pro Gl 65	a cag cca	ccc aaa	ctc ctc	atc			Ala	Ser	Asn		240
gaa tct gg Glu Ser Gl		Ala Arg					tct		aca		288
ttc acc ct Phe Thr Le				ı Glu							336
tac tgt ca Tyr Cys Gl 1T	n Gln Ser	agt gag Ser Glu	Asp Pro	ccg Pro	Thr	ttc Phe	ggt Gly 125	gga Gly	ggc Gly	acc Thr	384
aag ctg ga Lys Leu Gl 130		Gly Gly	ggc ggt	tca Ser	ggc Gly	Gly	Gly	Gly	Ser	Gly	432
ggt ggc gg Gly Gly Gl 145											480
aag cct gg Lys Pro Gl		Val Lys									528
ttc act ga Phe Thr As	p Tyr Val		Trp Let	Asn							576
ctt gag tg Leu Glu Tr 19	p Ile Gly							Ala	Tyr		624

Asn													aaa Lys			672
		_		_	_		_	_	_				gac Asp		-	720
											Gly		gct Ala			768
													gac Asp 270			816
													agc Ser			864
													Gly aaa			912
aaa Lys 305	tgat	aago	ett													925
<210	0> 10)														
<212	1> 92 2> DI 3> Mi	25 JA	o.													
<213 <213 <220 <223	2 > D1 3 > M1	25 NA 18 SI														
<212 <213 <220 <223 <223 <400 atg	2 > DM 3 > Mu 0 > CI 2 > (3 0 > 10 aaa	25 NA IS ST OS L) Otac	(915) ctg	ctg									ctc Leu			48
<213 <221 <222 <222 <400 atg Met 1 gcc	2> DM 3> MM 0> 1> CM 2> (3 0> 10 aaa Lys	25 JA JS JS J) tac Tyr	(915) ctg Leu gcc	ctg Leu 5 atg	Pro	Thr cag	Ala	Ala	Ala 10 ctg	Gly	Leu	Leu		Leu 15 cct	Ala	48
<211 <211 <221 <222 <222 <400 atg Met 1 gcc Ala	2> DN 3> Mu 0> 1> CI 2> (: 0> 1(aaa Lys cag Gln	25 NA OS L) Otac Tyr ccg Pro	ctg Leu gcc Ala 20	ctg Leu 5 atg Met	Pro gcc Ala gct	Thr cag Gln tca	Ala gtt Val gtg	Ala cag Gln 25 aag	Ala 10 ctg Leu atg	Gly cag Gln tcc	cag Gln tgc	tct Ser	Leu gga Gly	Leu 15 cct Pro	Ala gag Glu gga	0.5
<213 <221 <222 <222 <400 atg Met 1 gcc Ala ctg Leu	2> DN 3> Mu 0> 1> CI 2> (: 0> 1(aaa Lys cag Gln gtg Val	25 NA 18 sp 10 S 1) 1) tac Tyr 1 ccg Pro 2 aag 1 Lys 3 5 ttc	ctg Leu gcc Ala 20 cct Pro	ctg Leu 5 atg Met ggg Gly	Pro gcc Ala gct Ala	Thr cag Gln tca ser	Ala gtt Val gtg Val 40 ata	Ala cag Gln 25 aag Lys aac	Ala 10 ctg Leu atg Met	Gly cag Gln tcc ser	cag Gln tgc Cys	tct Ser aag Lys 45	gga Gly 30 gct	Leu 15 cct Pro tct ser	Ala gag Glu gga Gly	96

				atg Met 85		_		_	_		_		-	_		288
tcc Ser	tcc Ser	aac Asn	aca Thr 100	gcc Ala	tac Tyr	atg Met	cag Gln	ctc Leu 105	agc Ser	agc Ser	ctg Leu	aca Thr	tct Ser 110	gag Glu	gac Asp	336
				ttc Phe												384
				ggg Gly												432
tca Ser 145	ggc Gly	gga Gly	ggt Gly	ggc Gly	tcc Ser 150	gga Gly	ggt Gly	ggc Gly	gga Gly	tcg Ser 155	gac Asp	att Ile	gtg Val	ctg Leu	acc Thr 160	480
				tct Ser 165												528
				agc Ser												576
				cag Gln												624
gct Ala	gca Ala 210	tcc Ser	aat Asn	cta Leu	gaa Glu	tct Ser 215	gly ggg	atc Ile	cca Pro	gcc Ala	agg Arg 220	ttt Phe	agt Ser	ggc Gly	agt Ser	672
				gac Asp												720
_	_	_		tat Tyr 245			_		_	_		_		_	_	768
				acc Thr	_	_	_				-	_	_			816
				aaa Lys												864
				agg Arg												912

aaa tgataagctt Lys 305	925
<210> 11 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 11 aagettatga aceggggagt ceetttta	28
<210> 12 <211> 56 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 12 geggeegete aettgteate gtegteettg tagtetgget geaceggggt ggacea	56
<210> 13 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 13 gggaattcat graatgsasc tgggtywtyc tctt	34
<210> 14 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<220> <221> modified_base <222> (30) <223> a. t. C. g. other or unknown	

<400> 14 cccaagcttc cagggrccar kggataracn grtgg	35
<210> 15 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<220> <221> modified_base <222> (15) <223> a, t, c, g, other or unknown	
<220> <221> modified_base <222> (18) <223> a, t, c, g, other or unknown	
<220> <221> modified_base <222> (27) <223> a, t, c, g, other or unknown	
<400> 15 tgtgccctcg agctnacnca ragyccngc	29
<210> 16 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 16 atggatacta gtggtgcagc atcagccc	28
<210> 17 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 17 gggaattcat ggagacagac acactcctgc tat	33

<210> 18 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 18 cgtcggagga tcctcactac t	21
<210> 19 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 19 caggatccgc tgcagcagtc tggacct	27
<210> 20 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 20 tgggcccgtc gttttggctg cagagac	25
<210> 21 <211> 56 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 21 teatgaaata eetgetgeeg acegetgetg etggtetget geteetegeg geecag	56
<210> 22 <211> 56 <212> DNA <213> Artificial Sequence	

<220> <223>	Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> tgcggd	22 cegea gecatggtgt ttgeggecat egeeggetgg geegegagga geagea	56
<210><211><212><212><213>	56	
<220>	Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> tgcggd	23 cegea gaetacaagg atgaegatga caaaggeteg agegageaga agetga	56
<210><211><211><212><213>	57	
<220> <223>	Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> ggtggg	24 gtega cetegagece agateetett egetgateag ettetgeteg etegage	57
<210><211><212><213>	23	
	Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> tgcggc	25 egca gactacaagg atg	23
<210><211><212><212><213>	56	
	Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> taagct	26 tato attiggioga cooglegiga igaigaiggi gggiogacci cgagco	56

<210> 27 <211> 38 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 27 agccggccat ggccgacatt gtgctgaccc aatctcca	38
<210> 28 <211> 58 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 28 ctccggagcc acctccgcct gaaccgcctc cacctttgat ttccagcttg gtgcctcc	58
<210> 29 <211> 40 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 29 ctccggaggt ggcggatcgc aggttcagct gcagcagtct	40
<210> 30 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 30 tgcggccgct gcagagacag tgaccagagt c	31
<210> 31 <211> 35 <212> DNA <213> Artificial Sequence	

<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 31 agccggccat ggcccaggtt cagctgcagc agtct	35
<210> 32 <211> 56 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 32 ctccggagcc acctccgcct gaaccgcctc cacctgcaga gacagtgacc ac	gagtc 56
<210> 33 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 33 ctccggaggt ggcggatcgg acattgtgct gacccaatct cca	43
<210> 34 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Single strand DNA primer for PCR	
<400> 34 tgcggccgct ttgatttcca gcttggtgcc tcc	33
<210> 35 <211> 118 <212> PRT . <213> Mus sp.	
<pre><400> 35 Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Glu Lys Pro</pre>	Gly Ala

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30

Val Ile Asn Trp Leu Asn Gln Arg Thr Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Glu Ile Tyr Pro Gly Ser Gly Ser Ala Tyr Tyr Asn Glu Met Phe 50 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
85 90 95

Ala Arg Arg Gly Thr Gly Thr Gly Phe Ala Tyr Trp Gly Arg Gly Thr
100 105 110

Leu Val Thr Val Ser Ala 115

<210> 36

<211> 111

<212> PRT

<213> Mus sp.

<400> 36

Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp 20 25 30

Gly Asp Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45

Lys Leu Leu Ile Tyr Ala Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala 50 55 60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His 65 70 75 80

Pro Val Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Ser Ser 85 90 95

Glu Asp Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> 37

<211> 354

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(354)

<400> 3													
cag gtt Gln Val													48
tca gtg Ser Val													96
gtt ata Val Ile													144
gga gag Gly Gli 50	ılle				_		_	_					192
aag ggd Lys Gly 65	_	_		_		_	_						240
atg cag Met Glr	•	_	_	_				_		_		_	288
gca aga Ala Arg													336
ctg gtc Leu Val		_											354
<210 > 3 <211 > 3 <212 > I <213 > N	33 NA	p.											
<220> <221> 0 <222>		(333))										
<400> 3 gac att Asp Ile	gtg												48
cag agg Gln Arg	_				_	-	_	_	-	_	_	_	96
ggt gat Gly Asp													144

aaa ctc ctc atc tat gct gca tcc aat cta gaa tct ggg atc cca gcc Lys Leu Leu Ile Tyr Ala Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala 50 55 60	192
agg ttt agt ggc agt ggg tct ggg aca gac ttc acc ctc aac atc cat Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His 65 70 75 80	240
cct gtg gag gag gat gct gca acc tat tac tgt cag caa agt agt Pro Val Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Ser Ser 85 90 95	288
gag gat cct ccg acg ttc ggt gga ggc acc aag ctg gaa atc aaa Glu Asp Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 110	333
<210> 39 <211> 351 <212> DNA <213> Mus sp.	
<220> <221> CDS <222> (1)(351)	
<pre><400> 39 cag gtg cag ctg aag cag tca gga cct ggc cta gtg cag ccc tca cag Gln Val Gln Leu Lys Gln Ser Gly Pro Gly Leu Val Gln Pro Ser Gln 1 5 10 15</pre>	48
age ctg tcc ttc atc tgc aca gtc tct ggt ttc tca tta act agt cat Ser Leu Ser Phe Ile Cys Thr Val Ser Gly Phe Ser Leu Thr Ser His 20 25 30	96
ggt gta cac tgg gtt cgc cag tct cca gga aag ggt ctg gag tgg ctg Gly Val His Trp Val Arg Gln Ser Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45	144
gga gtg ata tgg ggt gct gga agg aca gac tat aat gca gct ttc ata Gly Val Ile Trp Gly Ala Gly Arg Thr Asp Tyr Asn Ala Ala Phe Ile 50 55 60	192
tcc aga ctg agc atc agc agg gac att tcc aag agc caa gtt ttc ttt Ser Arg Leu Ser Ile Ser Arg Asp Ile Ser Lys Ser Gln Val Phe 65 70 75 80	240
aag atg aac agt ctg caa gtt gat gac aca gcc ata tat tac tgt gcc Lys Met Asn Ser Leu Gln Val Asp Asp Thr Ala Ile Tyr Tyr Cys Ala 85 90 95	288
aga aat agg tac gag agc tac ttt gac tac tgg ggc caa ggc acc act Arg Asn Arg Tyr Glu Ser Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Thr 100 105 110	336
tcc ctc aca gtc tcc Ser Leu Thr Val Ser 115	351

<21 <21	0 > 4 1 > 3 2 > D 3 > M	39	ρ.													
	1 > C	DS 1)	(339))												
	0 > 4															
		gtg Val														48
		gcc Ala														96
		aat Asn 35							_	_	_			_		144
		ctc Leu														192
gac Asp 65	agg Arg	ttc Phe	agt Ser	ggc Gly	agt Ser 70	gga Gly	tca Ser	Gly aaa	aca Thr	gaa Glu 75	ttc Phe	aca Thr	ctc Leu	aag Lys	atc Ile 80	240
		gtg Val														288
		gtt Val														336
cgg Arg																339
<211 <212)> 41 -> 90 !> DN !> Mu	9).													
	.> CI	s .)(906)													
atg		atg Met														48

					tta Leu											96
	_	_	_	_	atg Met	_	_		_	_	_	_				144
					tca Ser											192
					agt Ser 70											240
	_		_		tgg Trp	_						_				288
_			_	_	ttc Phe			_	_	_		_		_		336
	_	_		_	ttc Phe		_	_			_		_	_	_	384
	_				tgt Cys	_	_					_			_	432
					acc Thr 150											480
					tct Ser					_	_					528
_					ctg Leu		_	_			_	_	_			576
					cag Gln											624
				_	cag Gln	_			_					_		672
		_			cga Arg 230				_		_			_		720

							aca Thr									768
							tgc Cys									816
							gtg Val 280		_				_	_		864
	_		_		_	_	ccg Pro	_	_	_	_	_	_	tag		909
<210> 42 <211> 918 <212> DNA <213> Mus sp.																
<220> <221> CDS <222> (1)(915)																
atg		atg		_		_	ttt Phe		_			_				48
							gca Ala				_	_				96
	_	-	_	_	_	_	cag Gln 40		_	_	_	_				144
							agc Ser									192
ggt Gly 65	ttc Phe	tca Ser	tta Leu	act Thr	agt Ser 70	cat His	ggt Gly	gta Val	cac His	tgg Trp 75	gtt Val	cgc Arg	cag Gln	tct Ser	cca Pro 80	240
							gga Gly									288
							tcc Ser									336
							aag Lys 120									384

									agg Arg							432
tac Tyr 145	tgg Trp	ggc Gly	caa Gln	Gly aaa	acc Thr 150	acg Thr	gtc Val	acc Thr	gtc Val	tcc Ser 155	tca Ser	ggt Gly	gga Gly	ggc Gly	ggt Gly 160	480
tca Ser	ggc Gly	gga Gly	ggt Gly	ggc Gly 165	tct Ser	ggc Gly	ggt Gly	ggc Gly	gga Gly 170	tcg Ser	gac Asp	atc Ile	gag Glu	ctc Leu 175	act Thr	528
									ctt Leu							576
									cac His							624
									cag Gln							672
									gtc Val							720
									aag Lys 250							768
									caa Gln							816
									ctg Leu							864
									gaa Glu							912
aag Lys 305	tag															918
<21	0> 4: 1> 5 2> PI															

<212> PRT <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Amino acid
 sequence of heavy chain CDR-1

```
<400> 43
Ser His Gly Val His
<210> 44
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Amino acid
      sequence of heavy chain CDR-2
<400> 44
Val Ile Trp Gly Ala Gly Arg Thr Asp Tyr Asn Ala Ala Phe Ile Ser
<210> 45
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Amino acid
      sequence of heavy chain CDR-3
<400> 45
Asn Arg Tyr Glu Ser Tyr Phe Asp Tyr
<210> 46
<211> 16
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Amino acid
      sequence of light chain CDR-1
<400> 46
Arg Ser Ser Gln Asn Leu Val His Ser Asn Gly Asn Thr Tyr Leu His
<210> 47
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Amino acid
      sequence of light chain CDR-2
```

```
<400> 47
Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe
                  5
<210> 48
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Amino acid
      sequence of light chain CDR-3
<400> 48
Ser Gln Ser Thr His Val Pro Leu Thr
<210> 49
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 49
gtcccaggat cctctgaagc agtcaggccc
                                                                    30
<210> 50
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
acagtgggcc cgtcgttttg gctgaggaga
                                                                    30
<210> 51
<211> 32
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 51
tgtgccctcg aggtgactca aactccactc tc
                                                                    32
<210> 52
<211> 28
<212> DNA
```

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 52 atggatacta gtggtgcagc atcagece	28
<210> 53 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 53 ctcttggagg agggtgccag	20
<210> 54 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 54 ccagatttca actgctcatc aga	23
<210> 55 <211> 43 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 55 geggeecage eggeeatgge ecaggtgeag etgaageagt eag	43
<210> 56 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 56 agacggtgac cgtggtgcct tggcccc	27

<212	<210> 57 <211> 32 <212> DNA <213> Artificial Sequence															
	<220> <223> Description of Artificial Sequence: Primer															
	<400> 57 tcgageteae teagteteea eteteeetge et															32
<213	<210> 58 <211> 25 <212> DNA <213> Artificial Sequence															
<220> <223> Description of Artificial Sequence: Primer																
	<400> 58 cacctgcggc cgcccgtttc agetc													25		
<213 <213	<210> 59 <211> 305 <212> PRT <213> Mus sp.															
)> 59 Lys		Leu	Leu 5	Pro	Thr	Ala	Ala	Ala 10	Gly	Leu	Leu	Leu	Leu 15	Ala	
Ala	Gln	Pro	Ala 20	Met	Ala	Asp	Ile	Val 25	Leu	Thr	Gln	Ser	Pro 30	Ala	Ser	
Leu	Ala	Val 35	Ser	Leu	Gly	Gln	Arg 40	Ala	Thr	Ile	Ser	Cys 45	Lys	Ala	Ser	
Gln	Ser 50	Val	Asp	Tyr	Asp	Gly 55	Asp	Ser	Tyr	Met	Asn 60	Trp	Tyr	Gln	Gln	
Lys 65	Pro	Gly	Gln	Pro		_		Leu			Ala	Ala	Ser	Asn	Leu 80	
Glu	Ser	Gly	Ile	Pro 85	Ala	Arg	Phe	Ser	Gly 90	Ser	Gly	Ser	Gly	Thr 95	Asp	
Phe	Thr	Leu	Asn 100	Ile	His	Pro	Val	Glu 105	Glu	Glu	Asp	Ala	Ala 110	Thr	Tyr	
Tyr	Сув	Gln 115	Gln	Ser	Ser	Glu	Asp 120	Pro	Pro	Thr	Phe	Gly 125	Gly	Gly	Thr	
Lys	Leu 130	Glu	Ile	Lys	Gly	Gly 135	Gly	Gly	Ser	Gly	Gly 140	Gly	Gly	Ser	Gly	

Gly Gly Gly Ser Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val 145 150 155 160

Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr 165 170 175

Phe Thr Asp Tyr Val Ile Asn Trp Leu Asn Gln Arg Thr Gly Gln Gly 180 185 190

Leu Glu Trp Ile Gly Glu Ile Tyr Pro Gly Ser Gly Ser Ala Tyr Tyr 195 200 205

Asn Glu Met Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser 210 220

Asn Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala 225 230 235 240

Val Tyr Phe Cys Ala Arg Arg Gly Thr Gly Thr Gly Phe Ala Tyr Trp
245 250 255

Gly Arg Gly Thr Leu Val Thr Val Ser Ala Ala Ala Ala Asp Tyr Lys 260 265 270

Asp Asp Asp Lys Gly Ser Ser Glu Gln Lys Leu Ile Ser Glu Glu 275 280 285

Asp Leu Gly Ser Arg Ser Thr His His His His His Gly Ser Thr 290 295 300

Lys 305

<210> 60

<211> 305

<212> PRT

<213> Mus sp.

<400> 60

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Gln Ser Gly Pro Glu 20 25 30

Leu Val Lys Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly
35 40 45

Tyr Thr Phe Thr Asp Tyr Val Ile Asn Trp Leu Asn Gln Arg Thr Gly 50 55 60

Gln Gly Leu Glu Trp Ile Gly Glu Ile Tyr Pro Gly Ser Gly Ser Ala 65 70 75 80

Tyr Tyr Asn Glu Met Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys
85 90 95

Ser Ser Asn Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp

Ser Ala Val Tyr Phe Cys Ala Arg Arg Gly Thr Gly Thr Gly Phe Ala 115 120 125

Tyr Trp Gly Arg Gly Thr Leu Val Thr Val Ser Ala Gly Gly Gly 130 135 140

Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Val Leu Thr 145 150 155 160

Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile 165 170 175

Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp Ser Tyr Met 180 185 190

Asn Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr 195 200 205

Ala Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala Arg Phe Ser Gly Ser 210 215 220

Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His Pro Val Glu Glu 225 230 235 240

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Ser Ser Glu Asp Pro Pro Thr 245 250 255

Phe Gly Gly Thr Lys Leu Glu Ile Lys Ala Ala Ala Asp Tyr Lys 260 265 270

Asp Asp Asp Lys Gly Ser Ser Glu Gln Lys Leu Ile Ser Glu Glu 275 280 285

Asp Leu Gly Ser Arg Ser Thr His His His His His Gly Ser Thr 290 295 300

Lys 305

<210> 61

<211> 118

<212> PRT

<213> Mus sp.

<400> 61

Gln Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30

Val Ile Asn Trp Leu Asn Gln Arg Thr Gly Gln Gly Leu Glu Trp Ile

Gly Glu Ile Tyr Pro Gly Ser Gly Ser Ala Tyr Tyr Asn Glu Met Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Asn Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
85 90 95

Ala Arg Arg Gly Thr Gly Thr Gly Phe Ala Tyr Trp Gly Arg Gly Thr $100 \hspace{1cm} 105 \hspace{1cm} 110 \hspace{1cm}$

Leu Val Thr Val Ser Ala 115

<210> 62

<211> 111

<212> PRT

<213> Mus sp.

<400> 62

Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1 10 15

Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp 20 25 30

Gly Asp Ser Tyr Met Asn Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45

Lys Leu Leu Ile Tyr Ala Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala 50 55 60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His 65 70 75 80

Pro Val Glu Glu Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Ser Ser 85 90 95

Glu Asp Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

<210> 63

<211> 117

<212> PRT

<213> Mus sp.

<400> 63

Gln Val Gln Leu Lys Gln Ser Gly Pro Gly Leu Val Gln Pro Ser Gln 1 5 10 15

Ser Leu Ser Phe Ile Cys Thr Val Ser Gly Phe Ser Leu Thr Ser His

Gly Val His Trp Val Arg Gln Ser Pro Gly Lys Gly Leu Glu Trp Leu
35 40 45

Gly Val Ile Trp Gly Ala Gly Arg Thr Asp Tyr Asn Ala Ala Phe Ile 50 55 60

Ser Arg Leu Ser Ile Ser Arg Asp Ile Ser Lys Ser Gln Val Phe Phe 65 70 75 80

Lys Met Asn Ser Leu Gln Val Asp Asp Thr Ala Ile Tyr Tyr Cys Ala 85 90 95

Arg Asn Arg Tyr Glu Ser Tyr Phe Asp Tyr Trp Gly Gln Gly Thr Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Ser Leu Thr Val Ser 115

<210> 64

<211> 113

<212> PRT

<213> Mus sp.

<400> 64

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly
1 5 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Asn Leu Val His Ser 20 25 30

Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45

Pro Asn Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Lys Ile 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95

Thr His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Val Glu Leu Lys
100 105 110

Arg

<210> 65

<211> 302

<212> PRT

<213> Mus sp.

<400> 65

Met Thr Met Ile Thr Pro Ser Phe Gly Ala Phe Phe Leu Glu Ile Phe 1 5 10 15

Asn Val Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr
20 25 30

Ala Ala Gln Pro Ala Met Ala Gln Val Lys Leu Gln Gln Ser Gly Pro 35 40 45

Gly Leu Val Gln Pro Ser Gln Ser Leu Ser Phe Ile Cys Thr Val Ser 50 55 60

Gly Phe Ser Leu Thr Ser His Gly Val His Trp Val Arg Gln Ser Pro 65 70 75 80

Gly Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ala Gly Arg Thr 85 90 95

Asp Tyr Asn Ala Ala Phe Ile Ser Arg Leu Ser Ile Ser Arg Asp Ile
100 105 110

Ser Lys Ser Gln Val Phe Phe Lys Met Asn Ser Leu Gln Val Asp Asp 115 120 125

Thr Ala Ile Tyr Tyr Cys Ala Arg Asn Arg Tyr Glu Ser Tyr Phe Asp 130 135 140

Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly 145 150 155 160

Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp Ile Glu Leu Thr 165 170 175

Gln Ser Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile 180 $$185\$

Ser Cys Arg Ser Ser Gln Asn Leu Val His Ser Asn Gly Asn Thr Tyr 195 200 205

Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Asn Leu Leu Ile 210 215 220

Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly 225 230 235 240

Ser Gly Ser Gly Thr Glu Phe Thr Leu Lys Ile Ser Arg Val Glu Ala \$245\$ \$250\$ \$255\$

Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Leu 260 265 270

Thr Phe Gly Ala Gly Thr Lys Val Glu Leu Lys Arg Ala Ala Ala Gly 275 280 285

Ala Pro Val Pro Tyr Pro Asp Pro Leu Glu Pro Arg Ala Ala 290 295 300

<210> 66

<211> 305

<212> PRT

<213> Mus sp.

<400> 66 Met Thr Met Ile Thr Pro Ser Phe Gly Ala Phe Phe Leu Glu Ile Phe Asn Val Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ala Ala Gln Pro Ala Met Ala Gln Val Lys Leu Gln Gln Ser Gly Pro Gly Leu Val Gln Pro Ser Gln Ser Leu Ser Phe Ile Cys Thr Val Ser 55 Gly Phe Ser Leu Thr Ser His Gly Val His Trp Val Arg Gln Ser Pro Gly Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ala Gly Arg Thr Asp Tyr Asn Ala Ala Phe Ile Ser Arg Leu Ser Ile Ser Arg Asp Ile 105 Ser Lys Ser Gln Val Phe Phe Lys Met Asn Ser Leu Gln Val Asp Asp Thr Ala Ile Tyr Tyr Cys Ala Arg Asn Arg Tyr Glu Ser Tyr Phe Asp 135 Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Asp Ile Glu Leu Thr 170 Gln Ser Pro Leu Ser Leu Pro Val Ser Leu Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Asn Leu Val His Ser Asn Gly Asn Thr Tyr 195 200 Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser Pro Asn Leu Leu Ile 215 220 Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Lys Ile Ser Arg Val Glu Ala 250 Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser Thr His Val Pro Leu

Thr Phe Gly Ala Gly Thr Lys Val Glu Leu Lys Arg Ala Ala Ala Gly 275 280 285

Ala Pro Val Pro Tyr Pro Asp Pro Leu Glu Pro Arg Ala Ala Lys Lys 290 295 300

Lys 305

rent growing mentagen and renter than the state of the st