Due Monday, November 27

1. Suppose that $f, g \in L^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m)$. Show that, for almost all $x \in \mathbb{R}$, the function f(x - y)g(y) is integrable in y. For such x define

$$(f * g)(x) = \int f(x - y)g(y) dx$$

Show that f * g = g * f almost everywhere, and that

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

- 2. Folland Page 92, Problem 11.
- 3. Folland Page 93, Problem 17.
- 4. Folland Page 94, Problem 21.
- **5.** Recall the algebra $\mathcal{A}_n \subset \mathcal{B}_{(0,1]}$ on (0,1] from Lecture 1, generated by sets of the form $\left(\frac{k}{2^n}, \frac{k+1}{2^n}\right]$ with $0 \leq k < 2^n 1$. (This is finite so it is a σ -algebra as well.) Given $f \in L^1((0,1], \mathcal{B}_{(0,1]}, m)$, find the conditional expectation of f on \mathcal{A}_n as defined in problem 17 above.