Towards Generalizable Reinforcement Learning for Trade Execution

Chuheng Zhang, Xiaoyu Chen, Yitong Duan, Jianyu Chen, Jian Li, Li Zhao

Tsinghua University, IIIS

Microsoft Research Asian

(This is a working draft. Feel free to discuss~)

Short Bio

- Chuheng Zhang (张楚珩) is researcher at MSRA
- Ph.D. at Institute of interdisciplinary Information Sciences, Tsinghua University (Sep, 2016 July, 2022), advised by Prof. Jian Li (李建)
- Bachelor at Physics Department at Nanjing University
- Research: reinforcement learning applications (e.g., quantitative investment, inventory management, advertising)
- Publications: AAAI, ICLR, WWW, SIGIR, CIKM, ICDM

Outline

- RL background
- Trade execution background
- Methods
- Results
- Discussion

Motivation

- RL has awesome performance on various games.
- Sequential decision is common in industry.
- Why not use RL in real applications?

Challenges	Solutions		
Costly Interaction	RL from Offline Data		
Sample Inefficiency	Representation Learning, Knowledge Transfer,		
Instability	Stable Algorithm		
Generalization	This work		

RL and Context

Popular RL Applications

Some Industrial RL Applications

- Distribution shift in offline RL [Fujimoto et al 2019; Kumar et al 2020]
- Control or real-time adaptation?

Introduction for Trade Execution

- Trade execution is to sell/buy a given amount of assets in a given time with the lowest possible trading cost
- Background: Trade execution is an important task for brokerage firms

Task: sell 1000 stocks within this time period

The Setting: Limit Order Book (LOB)

- Limit order book (LOB) is a record of outstanding limit orders
- Market order (MO) is executed immediately with large trading cost
- Limit order (LO) ensures the price at the risk of non-execution

• Raw offline data contains information for us to reconstruct the LOB

Background for Trade Execution

- Traditional methods [see e.g., Almgren and Chriss 2000; Guéant et al 2012]
 - Generate static policies
 - Rely on strong assumptions
- Previous RL methods suffer from overfitting
 - Observation (market indicators) is high noisy
 - Agent overfits spurious noise/feature
- Objective: Developing generalizable RL ag

RL formulation

Simulator: based on LOB data

Observation:

• State: inventory level, remaining time

• Context

	AskPric e	Volume	MACD	Spread	
t - k					
•••					
t					

- Action: LO (price, direction, quantity), MO (direction, quantity)
- Reward/objective: Maximize the cash obtained from selling the stocks
- Challenge: Context is high-dimensional, redundant, and noisy

Modeling

 Offline RL with Dynamic Context (ORDC)

- ϕ : \mathcal{C} (context) $\rightarrow \mathcal{X}$ (latent context) with $|\mathcal{C}| \gg |\mathcal{X}|$. E.g., for Brownian motion, c is historical prices and $x = (\alpha, \sigma)$
- Context dynamics is highly stochastic and we assume state dyanamics is known

Context: Uncontrollable
E.g., market indicators
Usually high-dimensional, redundant, and stochastic

State: Controllable
E.g., inventory level
The transition dynamics is usually clear

Theoretical Analysis

- Generalization is hard when data is limited, even if the context is compressible
 - Theorem 1 [Sample complexity lower bound]: In a class of ORDC models, any algorithm needs at least $\Omega\left(\frac{|\mathcal{C}|\log\left(|\mathcal{C}|/\delta\right)}{(1-\gamma)^3\epsilon^2}\right)$ context samples to learn.
- If we could properly compress the context, limited data leads to good generalization
 - Theorem 2 [Sample complexity upper bound]: With access to $\phi: \mathcal{C} \to \mathcal{X}$.

an algorithm can learn with $O\left(\frac{|\mathcal{X}|^2\log(|\mathcal{X}|/\delta)}{(1-\gamma)^4\epsilon^2}\right)$

Context $c \in \mathcal{C}$

Motivate: Compress context representation

Methods: RL Formulation

	AskPric e	Volume	MACD	
t - k				
•••				
t				

Methods: CASH

 CASH: Context Aggregation with Handcrafted Statistics

 Pre-train the context encoder to predict key future statistics

• E.g., future price trend and volatility

	AskPric e	Volume	MACD	
t - k				
•••				
t				
t + 1				
•••				
t + k'				

Methods: CATE

- CATE: Context
 Aggregation with End-to end Training
- Future encoder is trained to
- 1. Extract useful information from future
- 2. Be predictable based on current context

Methods

- Why learn a compressed context representation to predict the statistics of the future context?
- 1. Convenient: The context representation depending on the future context is independent of actions
- 2. Informative: Information on the future context (e.g., prices) is useful for the agent to make decisions
- 3. Feasible: The statistics of future context is more predictable than the full future context

Experiment Results: Trading Cost

Algorithm	Training	Validation	Testing	Generalization Gap
TWAP Strategy	-	-	13.1217 (2.0858)	-
Tuned DQN	1.6078 (2.1974)	4.9241 (2.2437)	6.7199 (2.7776)	5.1121
Nevmyvaka et al. (2006)	2.8726 (5.6576)	8.8261 (1.6331)	9.7045 (1.2583)	6.8319
Ning et al. (2018)	7.2350 (5.5857)	10.5678 (1.8090)	10.0825 (2.1145)	2.8475
Lin et al. (2020)	6.0305 (6.7465)	11.1709 (1.1422)	12.4054 (1.3553)	6.3749
Tuned DQN + CASH	1.9351 (1.8016)	3.2507 (1.2944)	3.9184 (1.2287)	1.9833
Tuned DQN + CATE	-2.7526 (1.3319)	-1.7554 (1.1277)	0.0749 (1.5233)	2.8275
Tuned PPO	-1.7340 (1.7653)	1.9763 (0.5393)	3.2686 (0.5302)	5.0026
Dabérius et al. (2019)	6.7671 (11.0498)	10.2517 (2.2711)	12.9987 (2.5579)	6.2316
Lin et al. (2021)	5.5028 (7.4558)	7.8800 (1.0740)	10.2599 (1.5293)	4.4571
Fang et al. (2021)	-5.4925 (15.8669)	9.9096 (4.2206)	11.5612 (5.3556)	17.0537
Tuned PPO + CASH	-4.7082 (0.8733)	-4.1690 (0.2108)	-3.8524 (0.2234)	0.8558
Tuned PPO + CATE	-5.1725 (0.6705)	-4.7672 (0.1717)	-4.3000 (0.4813)	0.8725

Table The trading cost ($bp=10^{-4}$) of different algorithms. The validation set is used for hyperparameter tuning. The numbers are the average mean (std.) trading cost in the last 10% iterations over five different random seeds.

Experiment Results: Learned Policy

Figure 3: The policy learned by CATE (based on PPO) and the corresponding baseline. The background shaded areas indicate the 5-level ask/bid prices, and the stars indicate the orders placed by CATE. The lines indicate the remaining inventory of CATE and the baseline algorithm.

Predicted	Price	Volume
Statistics		
Twap volatility	1.2871	-0.4335
Avg future twap -	4.5296	-0.0420
current twap		
Max future twap -	1.3932	-0.1761
current twap		
Min future twap -	-1.0587	0.2978
current twap		
Sprd volatility	6.2039	-0.6810
Avg future sprd -	-0.0944	0.0879
current sprd		
Max future sprd -	1.8254	-0.2629
current sprd		
Min future sprd -	-1.2859	0.1579
current sprd		

Table 3: The impact of predicted statistics on the agent's action in CASH (based on PPO).

Discussion

- Generalization in Finance
 - Data augmentation
 - Ensemble
 - Market style detection and adaptation
 - ...