

Introduction to conic optimization

June 20th 2016 - June 22th 2016

e.d.andersen@mosek.com

www.mosek.com

Lecture 2 Content

- More applications.
 - Minimal circle problem.
 - Portfolio optimization (or how to get rich maybe).
 - Robust linear optimization.
- Solving examples using MOSEK Fusion.

Section 1

Applications continued

Minimal enclosing cirle problem

- Problem: Assume you should place a fire station so the maximum distance from the station to each house in the district is minimized.
- This is a minimal enclosing circle problem.
- Wikipedia info: en.wikipedia.org/wiki/Smallest-circle_problem

Problem formulation

Let n points

$$p^i \in \mathbb{R}^2$$

be given. Find the smallest enclosing circle.

Let x be the center of a circle, then we want to find x such that

$$||p^i - x||$$

is minimized.

Observe

$$\left(\begin{array}{c}r\\p^i-x\end{array}\right)\in\mathcal{K}_q$$

implies

$$||p^i - x|| \le r.$$

Minimum enclosing circle Conic formulation

CQ model:

$$\begin{array}{ll} \text{minimize} & r \\ \text{subject to} & \left(\begin{array}{c} r \\ p^i - x \end{array} \right) \in \mathcal{K}_q, \quad \forall i. \end{array}$$

- [1] solves it using GAMS+(Knitro, Conopt, MINOS)
 - Formulation is nonconvex.
 - Must choose a good starting point or optimizer faces difficulties for n=100.

Implementation MOSEK Fusion

MOSEK Fusion is a framework for solving

minimize
$$\sum_k (c^k)^T x^k$$
 subject to
$$A^i x^k + b^i \quad \in \quad \mathcal{K}^i, i = 1, \dots$$

where

$$K^{i}$$

is

- a linear cone,
- a quadratic cone,
- a semidefinite cone,
- or the zero vector. (The linear equality case)

Fusion is available for

- C++
- Java
- Matlab
- Python
- .NET

We will use

- Python version.
- From a Jupiter notebook.

The primal formulation A Python Jupyter notebook

A few import Python facts:

- Python is interpreted language. python.org.
- Index origin is 0.
- [[1.0, 2.0], [3.0, 4.0]] is a 2 by 2 matrix stored rowwise.

See Jupyter notebook:

• minball.ipynb

Minimum circle problem The dual formulation

Recall duality i.e. the primal

$$\begin{array}{lll} \text{minimize} & \sum_k (c^k)^T x^k \\ \text{subject to} & \sum_k^k A^k x^k & = & b, \\ & x^k \in \mathcal{K}^k, & & \forall k \end{array}$$

has the dual

$$\begin{array}{lll} \text{maximize} & b^T y \\ \text{subject to} & c^k - (A^k)^T y & \in & \mathcal{K}^k, \forall k. \end{array}$$

Modified primal problem

Reformulated problem

$$\begin{array}{ll} \text{maximize} & \hat{r} \\ \text{subject to} & \left(\begin{array}{c} 0 \\ p^i \end{array} \right) - I \left(\begin{array}{c} \hat{r} \\ x \end{array} \right) \in \mathcal{K}_q, \quad \forall i \end{array}$$

where $r=-\hat{r}$ has problem has dual form.

Therefore, the dual problem is

$$\begin{array}{lll} \text{minimize} & \sum_i \begin{bmatrix} 0 \\ p^i \end{bmatrix}^T y^i \\ \\ \text{subject to} & \sum_i y^i & = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \\ y^i & \in \mathcal{K}_q, \ \forall i. \end{array}$$

Solving the primal and dual A Python Jupyter notebook

See Jupyter notebook:

 $\bullet \ \, {\tt minball_primal_dual.ipynb}$

Section 2

Finance application: Portfolio optimization

The problem

An investor can investor in n stocks or assets to be held over a period of time. What is the optimal portfolio? Now assume a stochastic model where the return of the assets is a random variable

r

with known mean

$$\mu = \mathbf{E}r$$

and covariance

$$\Sigma = \mathbf{E}(r-\mu)(r-\mu)^T.$$

Return and risk

Let x_j amount invested in asset j. Moreover, the expected return is:

$$\mathbf{E}y = \mu^T x$$

and variance of the return is

$$(y - \mathbf{E}y)^2 = x^T \Sigma x.$$

The investors optimization problem:

$$\begin{array}{lll} \text{maximize} & \mu^T x \\ \text{subject to} & e^T x & = & w + e^T x^0, \\ & x^T \Sigma x & \leq & \gamma^2, \\ & x & \geq 0, \end{array}$$

where

- e is the vector of all ones.
- ullet w investors initial wealth.
- x^0 investors initial portfolio.
- Objective maximize expected return.
- Constraints:
 - Budget constraint. ($e^T x = \sum_{j=1}^n x_j$).
 - Risk constraint. γ is chosen by the investor.
 - Only buy a positive amount i.e. no short-selling.

The covariance matrix Σ is positive semidefinite by definition. Therefore,

$$\exists G: \quad \Sigma = GG^T.$$

CQ reformulation:

maximize
$$\mu^T x$$
 subject to
$$e^T x = w + e^T x^0,$$

$$[\gamma; G^T x] \in \mathcal{K}_q^{n+1},$$

$$x \geq 0.$$

Python program

$portfolio_basic.py$

```
import mosek
import sys
from mosek.fusion import *
from portfolio_data import *
def BasicMarkowitz(n,mu,GT,x0,w,gamma):
    with Model("Basic Markowitz") as M:
        # Redirect log output from the solver to stdout for debugging.
        # if uncommented.
        M.setLogHandler(svs.stdout)
        # Defines the variables (holdings). Shortselling is not allowed.
        x = M.variable("x", n, Domain.greaterThan(0.0))
        # Maximize expected return
        M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x))
        # The amount invested must be identical to initial wealth
        M.constraint('budget', Expr.sum(x), Domain.equalsTo(w+sum(x0)))
        # Imposes a bound on the risk
        M.constraint('risk', Expr.vstack(gamma,Expr.mul(GT,x)), Domain.inQCone())
        M.solve()
        return (M.primalObjValue(), x.level())
if __name__ == '__main__':
    (expret,x) = BasicMarkowitz(n,mu,GT,x0,w,gamma)
    print("Expected return: %e" % expret)
    print("x: ").
    print(x)
```

Python data

portfolio_data.py

Running

Running

 $\verb"python portfolio_basic.py"$

Output

MOSEK optimizer log


```
Optimizer
          - threads
Optimizer
          - solved problem
                                   : the primal
Optimizer
          - Constraints
                                   : 3
Optimizer - Cones
Optimizer - Scalar variables
                                                       conic
                                                                              . 4
Optimizer - Semi-definite variables: 0
                                                                              : 0
                                                       scalarized
Factor
          - setup time
                                   . 0.00
                                                       dense det. time
                                                                              : 0.00
Factor
          - ML order time
                                   : 0.00
                                                       GP order time
                                                                              : 0.00
Factor
          - nonzeros before factor : 6
                                                       after factor
                                                                              : 6
Factor
          - dense dim.
                                                       flops
                                                                               7.00e+001
TTE PEEAS
             DEEAS
                     GFEAS
                              PRSTATUS
                                         POR.I
                                                           DOB.T
                                                                             MII
                                                                                      TIME
   1.0e+000 1.0e+000 1.0e+000 0.00e+000
                                         0.000000000e+000
                                                           0.000000000e+000
                                                                             1.0e+000 0.00
   1.7e-001 1.7e-001 4.4e-001 9.46e-001
                                         1.259822223e-001
                                                           2.171837612e-001
                                                                             1.7e-001 0.00
    4.0e-002 4.0e-002 5.6e-001 1.56e+000
                                         8.104070951e-002 1.693911786e-001
                                                                             4.0e-002 0.00
   1.4e-002 1.4e-002 2.9e-001 3.00e+000 7.268285567e-002 8.146211968e-002 1.4e-002 0.00
   1.3e-003 1.3e-003 1.1e-001 1.43e+000 7.102726686e-002 7.178857777e-002 1.3e-003 0.00
   1 7e-004 1 7e-004 3 9e-002 1 05e+000 7 101472221e-002 7 111329525e-002 1 7e-004 0 00
   7.7e-006 7.7e-006 8.5e-003 1.01e+000 7.099770619e-002 7.100232290e-002 7.7e-006 0.00
   6.0e-007 6.0e-007 2.4e-003 1.00e+000 7.099794084e-002 7.099830405e-002 6.0e-007 0.00
   1.7e-008 1.7e-008 4.0e-004 1.00e+000 7.099799652e-002 7.099800667e-002 1.7e-008 0.00
Interior-point optimizer terminated, Time: 0.00.
```

Optimizer terminated. Time: 0.01 Expected return: 7.099800e-02

x:

[0.15518625 0.12515363 0.71966011]

The efficient frontier

- Question: What is the right γ ?
- Answer: Show the investor the optimal expected return for all γ 's.

I.e. solve

$$\begin{array}{ll} \text{maximize} & \mu^T x - \alpha s \\ \text{subject to} & e^T x & = w + e^T x^0, \\ & [s; G^T x] & \in \mathcal{K}_q^{n+1}, \\ & x & \geq 0 \end{array}$$

for all $\alpha \in [0, \infty[$.

Python program

V

portfolio_frontier.py

```
import mosek
import sys
from mosek.fusion import *
from portfolio_data import *
def EfficientFrontier(n.mu.GT.x0.w.alphas):
    with Model ("Efficient frontier") as M:
        # Defines the variables (holdings). Shortselling is not allowed.
        x = M.variable("x", n, Domain.greaterThan(0,0)) # Portfolio variables
        s = M.variable("s", 1, Domain.unbounded()) # Risk variable
        M.constraint('budget', Expr.sum(x), Domain.equalsTo(w+sum(x0)))
        # Computes the risk
        M.constraint('risk', Expr.vstack(s,Expr.mul(GT,x)),Domain.inQCone())
        frontier = \Pi
        mudotx = Expr.dot(mu.x) # Is reused.
        for i.alpha in enumerate(alphas):
            # Define objective as a weighted combination of return and risk
            M. objective('obj', ObjectiveSense.Maximize, Expr.sub(mudotx.Expr.mul(alpha.s)))
            M.solve()
            frontier.append((alpha,M.primalObjValue(),s.level()[0]))
        return frontier
if name == ' main ':
    alphas = [x * 0.1 \text{ for } x \text{ in range}(0, 21)]
    frontier = EfficientFrontier(n.mu,GT,x0,w,alphas)
    print('%-14s %-14s %-14s %-14s' % ('alpha', 'obj', 'exp. ret', 'std. dev.'))
    for f in frontier:
        print("%-14.2e %-14.2e %-14.2e %-14.2e" % (f[0],f[1],f[1]+f[0]*f[2],f[2])),
```

Observations

- The whole model is not rebuild for each α .
- Leads to better efficiency.

Market impact costs

- Question: Is prices on asserts independent of trade volume.
- Answer: No. Why?

A common assumption about market impact costs are where $m_j \geq 0$ is a constant that is estimated in some way [2][p. 452]. Therefore,

$$T_j(x_j - x_j^0) = m_j |x_j - x_j^0| \sqrt{|x_j - x_j^0|} = m_j |x_j - x_j^0|^{3/2}$$

can be seen as transaction cost.

Recall from lecture 1:

$$\{(t,z): t \ge z^{3/2}, z \ge 0\} = \{(t,z): (s,t,z), (z,1/8,s) \in \mathcal{K}_r^3\}.$$

So

$$z_{j} = |x_{j} - x_{j}^{0}|,$$

$$(s_{j}, t_{j}, z_{j}), (z_{j}, 1/8, s_{j}) \in \mathcal{K}_{r}^{3},$$

$$\sum_{i=1}^{n} T(x_{j} - x_{j}^{0}) = \sum_{i=1}^{n} t_{j}.$$

and the relaxation

$$z_{j} \geq |x_{j} - x_{j}^{0}|,$$

$$(s_{j}, t_{j}, z_{j}), (z_{j}, 1/8, s_{j}) \in \mathcal{K}_{r}^{3},$$

$$\sum_{j=1}^{n} T(x_{j} - x_{j}^{0}) = \sum_{j=1}^{n} t_{j}$$

is good enough.

Now

$$z_j \ge |x_j - x_j^0|.$$

is the same as

$$z_j \ge x_j - x_j^0,$$

$$z_j \ge -(x_j - x_j^0).$$

Revised model with market impact costs


```
\begin{array}{lll} \text{maximize} & \mu^T x \\ \text{subject to} & e^T x + m^T t & = & w + e^T x^0, \\ & (\gamma, G^T x) & \in & \mathcal{K}_q^{n+1}, \\ & z_j & \geq & x_j - x_j^0, & j = 1, \dots, n, \\ & z_j & \geq & x_j^0 - x_j, & j = 1, \dots, n, \\ & [v_j; t_j; z_j], [z_j; 1/8; v_j] & \in & \mathcal{K}_r^3, & j = 1, \dots, n, \\ & x & \geq & 0. \end{array}
```

The revised budget constraint is

$$e^T x = w + e^T x^0 - m^T t$$

where

$$m^T t$$

is the total market impact cost that must be paid too.

Python program

V

portfolio_marketimpact.py

```
import mosek
import numpy
import sys
from mosek.fusion import *
from portfolio_data import *
def MarkowitzWithMarketImpact(n,mu,GT,x0,w,gamma,m):
    with Model("Markowitz portfolio with market impact") as M:
        #M.setLogHandler(sys.stdout)
        # Defines the variables. No shortselling is allowed.
        x = M.variable("x", n, Domain.greaterThan(0.0))
        # Additional "helper" variables
        t = M.variable("t", n, Domain.unbounded())
        z = M.variable("z", n, Domain.unbounded())
        v = M.variable("v", n, Domain.unbounded())
        # Maximize expected return
        M.objective('obj', ObjectiveSense, Maximize, Expr.dot(mu.x))
        # Invested amount + slippage cost = initial wealth
        M.constraint('budget', Expr.add(Expr.sum(x),Expr.dot(m,t)), Domain.equalsTo(w+sum(x0)))
        # Imposes a bound on the risk
        M.constraint('risk', Expr.vstack(gamma,Expr.mul(GT,x)), Domain.inQCone())
        # z >= /x-x0/
        M.constraint('buy', Expr.sub(z,Expr.sub(x,x0)),Domain.greaterThan(0.0))
        M.constraint('sell', Expr.sub(z,Expr.sub(x0,x)),Domain.greaterThan(0.0))
        # t \ge z^1.5, z \ge 0.0. Needs two rotated quadratic cones to model this term
        M.constraint('ta', Expr.hstack(v,t,z),Domain.inRotatedQCone())
        M.constraint('tb', Expr.hstack(z.Expr.constTerm(n.1.0/8.0).v).Domain.inRotatedQCone())
        M.solve()
        print('Expected return: %.4e Std. deviation: %.4e Market impact cost: %.4e' % \
              (M.primalObjValue(),gamma,numpy.dot(m,t.level())))
if __name__ == '__main__':
   m = n*[1.0e-2]
    MarkowitzWithMarketImpact(n,mu,GT,x0,w,gamma,m)
```

Transaction costs

E.g. trading costs

Now assume there is a cost associated with trading asset j and the cost is given by

$$T_j(\Delta x_j) = \left\{ egin{array}{ll} 0, & \Delta x_j = 0, \\ f_j + g_j |\Delta x_j|, & {
m otherwise}. \end{array}
ight.$$

where

$$\Delta x_j = x_j - x_j^0.$$

New model

V

With transactions costs

```
\begin{array}{lll} \text{maximize} & \mu^T x \\ \text{subject to} & e^T x + \sum_{j=1}^n (f_j y_j + g_j z_j) & = & w + e^T x^0, \\ & [\gamma; G^T x] & \in & \mathcal{K}_q^{n+1} \\ & z_j & \geq & x_j - x_j^0, \quad j = 1, \dots, n, \\ & z_j & \geq & x_j^0 - x_j, \quad j = 1, \dots, n, \\ & \sim & \leq & U_j y_j, \quad j = 1, \dots, n, \\ & \subset & \{0, 1\}, & j = 1, \dots, n, \end{array}
                                                                                                                                                                                                       > 0.
                                                                             x
```

Observe:

- Is mixed-integer model. y_i models purchase or not.
- We have $z_j \geq 0$ and hence $y_j = 0 \Rightarrow z_j = 0 \Rightarrow x_j = x_j^0$.

Python program

import mosek

V

portfolio_transaction.py

```
import numpy
import sys
from mosek.fusion import *
from portfolio_data import *
def MarkowitzWithTransactionsCost(n,mu,GT,x0,w,gamma,f,g):
    # Upper bound on the traded amount
    u0 = u + sum(x0)
    u = n*[w0]
    with Model("Markowitz portfolio with transaction costs") as M:
        x = M.variable("x", n, Domain.greaterThan(0.0))
        z = M.variable("z", n, Domain.unbounded())
       y = M.variable("y", n, Domain.binary())
        # Maximize expected return
        M.objective('obj', ObjectiveSense.Maximize, Expr.dot(mu,x))
        # Invest amount + transactions costs = initial wealth
        M.constraint('budget', Expr.add([Expr.sum(x), Expr.dot(f.v), Expr.dot(g.z)]), Domain.equalsTo(w0))
        # Imposes a bound on the risk
        M.constraint('risk', Expr.vstack(gamma,Expr.mul(GT,x)), Domain.inQCone())
        # z >= |x-x0|
        M.constraint('buy', Expr.sub(z.Expr.sub(x.x0)).Domain.greaterThan(0.0))
        M.constraint('sell', Expr.sub(z,Expr.sub(x0,x)),Domain.greaterThan(0.0))
        # Constraints for turning y off and on. z-diag(u)*y<=0 i.e. z_j \le u_j *y_j
        M.constraint('y_on_off', Expr.sub(z,Expr.mulElm(u,y)), Domain.lessThan(0.0))
        # Integer optimization problems can be very hard to solve so limiting the
        # maximum amount of time is a valuable safe quard
        M.setSolverParam('mioMaxTime', 180.0)
        M.solve()
        print('Expected return: %.4e Std. deviation: %.4e Transactions cost: %.4e' %
              (numpy.dot(mu,x.level()),gamma,numpy.dot(f,y.level())+numpy.dot(g,z.level())))
if name == ' main ':
    f = n*[0.01]
    g = n*[0.001]
    MarkowitzWithTransactionsCost(n.mu.GT.x0.w.gamma.f.g)
```

Section 3

Robust optimization

Why robust optimization

- A very important application of conic quadratic optimization is robust optimization.
- \bullet Robust optimization assumes the problem data e.g. A is not known exactly.
- Tries to compute a robust solution.

A motivating example

Consider the toy linear optimization problem:

A company produces two kinds of drugs, Drugl and Drugll, containing a specific active agent A, which is extracted from raw materials which should be purchased on the market. The drug production data are as follows:

Drug	Selling price,	Content of agent A,	
	\$ per 1000 packs	g per 1000 packs	
Drugl	6,200	0.500	
DrugII	6,900	0.600	

Drug	Production expenses per 1000 packs		
	manpower,	equipment,	operational
	hours	hours	costs, \$
Drugl	90.0	40.0	700
DrugII	100.0	50.0	800

There are two kinds of raw materials, Rawl and Rawll, which can be used as sources of the active agent. The related data are as follows:

Raw material	Purchasing price,	Content of agent A,
	\$ per kg	g per kg
Rawl	100.00	0.01
RawII	199.90	0.02

Finally, the per month resources dedicated to producing the drugs are as follows:

Budget, \$	Manpower, hours	Equipment, hours	Capacity of raw materials storage, kg
100,000	2,000	800	1,000

The problem is to find the production plan which maximizes the profit of the company.

The problem can be immediately posed as the following linear programming program:

maximize

$$\begin{array}{l} -\left(100 \cdot \mathtt{RawI} + 199.90 \cdot \mathtt{RawII} + 700 \cdot \mathtt{DrugI} + 800 \cdot \mathtt{DrugII}\right) \text{ (cost)} \\ +\left(6200 \cdot \mathtt{DrugI} + 6900 \cdot \mathtt{DrugII}\right) \text{ (income)} \end{array}$$

subject to

```
\begin{array}{rll} 0.01 \cdot {\tt RawI} + 0.02 \cdot {\tt RawII} - 0.500 \cdot {\tt DrugI} - 0.600 \cdot {\tt DrugII} & \geq & 0 \\ & {\tt RawI} + {\tt RawII} & \leq & 1000 \\ & 90.0 \cdot {\tt DrugI} + 100.0 \cdot {\tt DrugII} & \leq & 2000 \\ & 40.0 \cdot {\tt DrugI} + 50.0 \cdot {\tt DrugII} & \leq & 800 \\ 100.0 \cdot {\tt RawI} + 199.90 \cdot {\tt RawII} + 700 \cdot {\tt DrugI} + 800 \cdot {\tt DrugII} & \leq & 100000 \\ & {\tt RawI}, {\tt RawII}, {\tt DrugI}, {\tt DrugII} & \geq & 0 \end{array}
```

Explanation of constraints:

- balance of active agent
- storage restriction
- manpower restriction
- · equipment restriction
- budget restriction

The optimal solution:

```
*** Optimal value: 8819.658
```

*** Optimal solution:

RawI: 0.000

RawII: 438.789 DrugI: 17.552

DrugII: 0.000

Comments

- The company makes a profit 8819 on a budget of 100,000 i.e. 8.8%.
- The balance constraint is active as could have been guessed.
- Is there anything wrong with the solution?

- Is it likely that RawI contains exactly 0.01 g per kg of agent A?
- Reasonable assumption: The contents of the active agent a_I in RawI and a_{II} in RawII in the raw materials are random variables.
- Assume instead:

$$a_I = \begin{cases} 0.0095, & p = 0.5 \\ 0.0105, & p = 0.5 \end{cases}$$

and

$$a_{II} = \begin{cases} 0.0196, & p = 0.5\\ 0.0204, & p = 0.5 \end{cases}$$

where p is a probability.

- The optimal solution says buy 438.8 kg of RawII and produce 17552 packs of drug DrugII.
- That will be an infeasible plan with probability of 0.5.
- In that case we can only produce 17201 packs leading to a profit of 6889. A 21% decrease in the profit.
- Assuming we reduce output in the bad case and keep it constant in the good case, then the expected profit is 7854.
- Conclusion: We see that in our toy example pretty small (and unavoidable in reality) perturbations of the data may make the optimal solution infeasible, and a straightforward adjustment to the actual solution values may heavily affect the solution quality.

Robust linear optimization

The general case

The standard linear optimization problem:

Assume:

$$a_{i:}^T \in \mathcal{E}_i := \{z: z = \bar{a}_{i:}^T + H^i y, \|y\| \le 1\},$$

where

$$H^i \in \mathbb{R}^{n \times l_i}$$
.

Observe:

ullet \mathcal{E}_i is an ellipsoid.

For a fixed x we have

$$\max_{a_{i:} \in \mathcal{E}_{i}} a_{i:}x = \max_{\|y\| \le 1} x^{T} (\bar{a}_{i:}^{T} + H^{i}y)$$

$$= \bar{a}_{i:}x + \max_{\|y\| \le 1} x^{T} H^{i}y$$

$$= \bar{a}_{i:}x + \|(H^{i})^{T}x\|.$$

(Why does the last equality holds?)

Therefore,

are equivalent.

A simple example

Consider

$$\begin{array}{lll} \min & -x_1 \\ \text{subject to} & a_1x_1+a_2x_2 & \leq & 1, \\ & x_1,x_2 \geq 0. \end{array}$$

Assuming that $a_1 = a_2 = 1$ then the optimal solution is

$$x_1 = 1 \text{ and } x_2 = 0.$$

Notes

- The optimal solution is on the boundary (holds generically).
- The optimal solution is infeasible if $a_1 > 1$ and therefore not robust.

Next consider the robust version

$$\begin{array}{lll} \min & -x_1 \\ \text{subject to} & a_1x_1+a_2x_2 & \leq & 1, \quad \forall (a_1,a_2) \in \mathcal{E} \\ & x_1,x_2 \geq 0. \end{array}$$

where

$$\mathcal{E} := \{ (a_1, a_2) : (a_1, a_2) = (1, 1) + \theta y, \|y\| \le 1 \}$$

and θ is a fixed nonnegative number. Equivalent robust version

$$\begin{array}{ll} \min & -x_1 \\ \text{subject to} & x_1+x_2+\theta \, \|(x_1,x_2)\| & \leq & 1, \\ & x_1,x_2 \geq 0. \end{array}$$

Notes

- The optimal solution is $(x_1, x_2) = \left(\frac{1}{1+\theta}, 0\right)$.
- The optimal solution is in the interior of

$$\{(x_1, x_2): x_1 + x_2 \le 1\}$$

for $\theta > 0$.

- The robust version push the optimal solution into the interior of the original feasible region.
- Therefore, the optimal solution is still feasible even for small changes in the problem data.
- Clearly, there is a tradeoff between "robustness" and the objective value.

A statistical interpretation

Assumptions:

• $a_{i:}$ are independent Gaussian random vectors i.e.

$$a_{i:} \sim N(\bar{a}_{i:}, \Sigma_i).$$

Problem:

Now

$$Prob(a_i \cdot x \leq b_i) \geq p$$

is equivalent to

$$\mathsf{Prob}\left(\frac{a_{i:}x - \mu}{\sigma_i} \le \frac{b_i - \mu}{\sigma_i}\right) \ge p$$

where

$$\mu = ar{a}_{:i} x$$
 and $\sigma_i = \left\| \Sigma^{rac{1}{2}} x
ight\|$.

Clearly

Hence.

where

Thus

$$\Phi(z) := \frac{1}{2\pi} \int_{-\infty}^{z} e^{-t^2/2} dt.$$

 $\frac{a_{i:}x - \bar{a}_{:i}x}{\left\|\Sigma_i^{\frac{1}{2}}x\right\|} \sim N(0,1).$

 $\frac{b_i - \bar{a}_{:i}x}{\left\| \sum_i^{\frac{1}{2}} x \right\|} \ge \Phi^{-1}(p)$

$$b_i \ge \bar{a}_{:i}x + \Phi^{-1}(p) \left\| \Sigma_i^{\frac{1}{2}} x \right\|.$$

$$\Sigma_i^{\frac{1}{2}} x \bigg\| \, .$$

Equivalent problem:

min
$$c^T x$$

subject to $\bar{a}_{i:}x + \Phi^{-1}(p) \left\| \Sigma_i^{1/2} x \right\| \leq b_i, \forall i.$

Notes:

- For $p \ge 0.5$ then $\Phi^{-1}(p) \ge 0$.
- Hence, is a conic quadratic problem for $p \ge 0.5$.
- Is called *chance constrained* optimization.

Section 4

Summary

A recap

- Introduced MOSEK Fusion for Python.
- Implemented minimum circle model in Fusion.
- Introduced an portfolio optimization problem of an investor and its implementation.
- Introduced robust optimization.

References I

- Neculai Andrei.
 Nonlinear optimization applications using GAMS technology.
 Springer, New York, 2013.
- [2] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New York, 2 edition, 2000.