8. 論理回路

1610581 堀田 大地

2018/5/17

1 目的

トランジスタ,IC 等の半導体素子の発展と共に機 械システムへのエレクトロニクスの導入が進み、今 やエレクトロニクスと関わりのない機械システムは 考えられなくなった. 特にコンピュータを始め、そ の周辺機器, 各種情報機器,NC 工作機械, 家電製品 等にはディジタル回路が多用されている. そこで、 実際に広く利用されているディジタル用 IC を用い て, ディジタル回路, 特に論理回路の基礎的事項に ついて実験し、ディジタル IC の使い方、動作、設計 法について理解する.

2 方法

3 実験項目

3.1 ゲート回路

6種類のゲート回路についての素子名称,動作表, 回路の読み方, 真理値表, 論理式を表 4.1 に示した.

3.2 2 **入力** EX-OR ゲート

3.2.1 EX-OR **の機能**

回路図を図1,動作表,真理値表を表1,2,論理式を (1) に示した.

図1 NAND 素子 4 個を用いた EX-OR 機能の論理式

$$Y = A \cdot \overline{B} + \overline{A} + B = A \oplus B \quad (1)$$

3.2.2 考察

実験では, S_0 と S_1 のうち 1 方がオンの状態で のみ、LED が光っていたことので、動作を確認でき $\overline{D} = A \cdot C = A \cdot (\overline{A} + \overline{B}) = A \cdot \overline{B}$ (3)

表1 EX-OR の回路の動作表. 入力の H はスイッ チ ON, 出力の H は LED の点灯を表す

	入力		出力
接続端子	S_0	S_1	L_0
端子名	A	В	Y
	L	L	L
電圧	L	Н	Н
	Н	L	H
	Н	Н	L

表 2 EX-OR 機能の真理値表

	入力		出力
端子名	A	В	Y
	0	0	0
真理值	0	1	1
	1	0	1
	1	1	0

た. また,LED の光り方により, 回路の機能は理解 できた.

3.2.3 課題

実験で用いた回路を正論理/負論理の NAND 素 子を使って書き換えた回路を図に示した. この課題 では、図の回路の出力 Y が EX-OR 機能であるこ とを示した. $C,\overline{D},\overline{E}$ での論理式を次式 (2)-(5) に示 した.

図 2 正論理/負論理の NAND 素子を使って作っ た EX-OR 回路

$$C = \overline{A} + \overline{B} \quad (2)$$

$$\overline{D} = A \cdot C = A \cdot (\overline{A} + \overline{B}) = A \cdot \overline{B} \quad (3)$$

$$\overline{E} = B \cdot C = B \cdot (\overline{A} + \overline{B}) = \overline{A} \cdot B \quad (4)$$

$$Y = \overline{D} + \overline{E} = A \cdot \overline{B} + \overline{A} \cdot B = A \oplus B \quad (5)$$

よって, (5) より, 図が EX-OR 機能であることが示された.

3.3 デコーダとエンコーダ

3.3.1 デコーダの機能

デコーダ回路は,2 桁の 2 進数スイッチを使って入力し,10 進数の 0 から 3 を表す LED に"1(H)"を出力する. すなわち対応する LED が点灯する回路である. 回路図を図 3, デコーダの動作表, 真理値表を表 3.4 に示した.

図3 2入力4出力デコーダの回路図

表 3 デコーダの動作表. 入力の H はスイッチ ON, 出力の H は LED の点灯を表す.

	入力		出力			
端子名	S_1	S_0	L_0			
	L L	L	H L	L	L	L
電圧	L	Η	L	Η	L	L
	Н	L H	L	L	Н	
	Н	Η	L	L	L	Η

	入力		出力			
端子名	S1	S0	L0	L1	L2	L3
	0	0	1	0	0	0
電圧	0	1	0	1	0	0
	1	0	0	0	1	0
	1	1	0	0	0	1

3.3.2 考察

改めてこの回路の入力と出力の関係が「解読」であることを考察する. S_0 , S_1 の 2 入力 4 通りの組み合わせから, 4 つの出力が生まれる構造があり, 出力結果を見るだけで, 入力の信号がわかる. つまり, このことから, 入力と出力の関係が「解読」であると言える.

3.3.3 課題

エンコーダは 10 進数を 2 進数に変換する回路である。この課題では、10 進数から 0 から 3 をそれぞれに対応する 4 つのスイッチ (S_0,S_1,S_2,S_3) を使って入力し、2 つの $LED(L_0,L_1)$ を使って 2 ビットの 2 進数を出力するエンコーダ回路を設計し作成する。まず、エンコーダの真理値表を表 5 に、論理式を (6)、(7) に、回路図を図 4 に示した。

表 5 エンコーダの真理値表

	入力				出力	
端子名	S_0	S_1	S_2	S_3	L_1	L_0
	1	0	0	0	hoge	hoge
真理值	0	1	0	0	hoge	hoge
	0	0	1	0	hoge	hoge
	0	0	0	1	hoge	hoge

$$L_0 = S_1 + S_3$$
 (6)

$$L_1 = S_2 + S_3$$
 (7)

3.4 加算回路

- 3.4.1 加算回路の機能
- 3.4.2 考察
- 3.4.3 課題
- 1. 機能説明
- 2. フル・アダーの回路設計
- 3.2桁の2進数の加算回路の設計

- 3.5 ラッチ回路
- 3.5.1 ラッチ回路の機能
- 3.5.2 考察
- 3.6 J-K フリップフロップ回路
- 3.6.1 J-K フリップフロップ回路の機能
- 3.6.2 考察
- 3.7 Dフリップフロップ回路
- 3.7.1 D フリップフロップ回路の機能
- 3.7.2 考察
- 3.8 非同期 16 進力ウンタ回路
- 3.8.1 非同期 16 進力ウンタ回路の機能
- 3.8.2 考察
- 4 感想

参考文献

- [1] CT-311S 実習セット (デジタル編) 学習の手引き, サンハヤト株式会社
- [2] 最新 74 シリーズ IC 規格票,CQ 出版社
- [3] 猪飼國夫, 本多中二共著, 定本 ディジタルシステムの設計, CQ 出版社