Année universitaire 2021/2022 Master I: Math.Appli & Stat Module : Analyse de données

Hom work 02

Exercice 01:

Exercice 02:

On désire effectuer l'AFC du tableau K suivant

$I \backslash J$	A	B	C	D	E	F	G
 α	1	0	0	0	1	1	1
$\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array}$	0	1	0	1	0	1	1
γ	0	0	1	1	1	0	1

- 1. Calculer les poids associés aux profils des lignes α , β et γ , ainsi que le carré de la distance (du Khi-deux) entre α et β , β et γ , α et γ .
- 2. En déduire que les deux valeurs propres non triviales λ_1 et λ_2 issues de l'AFC de K, ont la même valeur que l'on notera par la suite λ .
- 3. En déduire que le centre de gravité g_J , que l'on précisera, est à égale distance des profils de α , β et γ .
- 4. Calculer la valeur de l'inertie totale I_T et en déduire la valeur de λ .
- 5. Calculer les poids des sept éléments de J, ainsi que le carré de la distance (du Khi-deux) entre A et B, B et C, C et A.
- 6. Montrer que le centre de gravité du nuage N(J) est égal au profil de la colonne G.
- 7. Représentation du nuage N (J):
 - 1. En considérant le plan engendré par les trois points A, B, C, placer les trois points A, B, C, puis situer les quatre autres points D, E, F et G par rapport à A, B, C.
 - 2. Placer sur le graphique le point a centre de gravité des quatre points A, E, F, G affectés tous les quatre de la masse 1.
 - 3.Donner la valeur numérique du rapport $\frac{d(G,a)}{d(G,A)}$, où d(G,a) (resp. d(G,A)) désigne la distance du Khi-deux entre G et a (resp. G et A).

Exercice 02: On considere le tableau K suivant où a est un entier non nul:

I/J	j_1	j_2	j_3	j_4	j_5
i_1	a	a	a	0	0
i_2	a	a	0	a	0
i_3	0	a	0	a	a

On pose $I = \{i_1, i_2, i_3\}etJ = \{j_1, j_2, j_3, j_4, j_5\}$:

On effectue l'analyse factorielle des correspondances (AFC) de K.

- 1. Determiner les centres de gravité des nuages N(I) et N(J).
- 2. Determiner la matrice des profils colonnes F_1 ainsi que la matrice des profils lignes F_2 de K.
- 3. calculer le produit F_1F_2
- 4. Quel est l'influence du reel a sur l'AFC de ce tableau?
- 5. Quel est l'axe factoriel trivial, a quelle valeur propre est-il associé?
- 6. Quelle est l'inertie du nuage N(J)?
- 7. On pose

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ Montrer que w_1 et w_2 sont des vecteurs propres de F_1F_2 ,

en deduire les axes factoriels t'non triviaux u_1 et u_2 ainsi que les valeurs propres associees. On choisira u_1 de maniere 'que la premiere coordonnée soit positive, de meme pour u_2 .

- 8. On note $\varphi_{\alpha}(i)$ l'abscisse de la projection du profil de la ligne i sur le α eme axe factoriel.
 - 'Remplir le tableau suivant avec la contrainte $\varphi_{\alpha}(i) \geq 0$ $\begin{vmatrix} i/J & \varphi_1 & \varphi_2 & \varphi_3 \\ i_1 & & & \\ i_2 & & & \\ i_3 & & & \end{vmatrix}$
- 9. On note ψ_{α}^{j} l'abscisse de la projection du profil de la colonne j sur le α eme axe factoriel. 'En utilisant les formules de transition, completer le tableau suivant

I/J	j_1	j_2	j_3	j_4	j_5
ψ_1	$\frac{\sqrt{6}}{4}$				
ψ_2	$\frac{-\sqrt{2}}{4}$				

- 10. Representer les deux nuages N(I) et N(J) simultanement dans le plan factoriel 1-2.
- 11. Calculer la contribution de i_1 a chacun des axes factoriels non triviaux ainsi que la qualité de representation de i_1 dans le plan factoriel 1-2 c'est-a-dire $COR_1(i_1) + COR_2(i_1)$.

Exercice 03: