CALCULUS II ASSIGNMENT 8

DUE MARCH 28, 2019

1. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(i) $\sum_{n=1}^{\infty} \frac{n}{7^n},$

(iv) $\sum_{n=1}^{\infty} \frac{n!}{n^n},$

(ii) $\sum_{m=1}^{\infty} \frac{(-1)^m}{6m+2}$,

- (v) $\sum_{r=1}^{\infty} \left(1 + \frac{1}{r}\right)^{r^2}$,
- (iii) $\sum_{k=1}^{\infty} (-1)^k \frac{k}{\sqrt{k^3 + 3}}$,
- (vi) $\sum_{m=1}^{\infty} \frac{(-1)^m}{\log(m)}.$

2. Test the series for convergence or divergence. Use any method available to you.

(i) $\sum_{n=1}^{\infty} \frac{2^n n!}{(n+2)!}$,

(iv) $\sum_{m=1}^{\infty} \frac{(m!)^m}{m^{4m}}$,

(ii) $\sum_{k=1}^{\infty} \left(\frac{1}{k^3} + \frac{1}{4^k} \right)$,

(v) $\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$,

(iii) $\sum_{\ell=1}^{\infty} \ell \sin(1/\ell),$

(vi) $\sum_{p=1}^{\infty} (\sqrt[p]{2} - 1)$.

3. Find the radius of convergence and interval of convergence of the series.

(i) $\sum_{n=1}^{\infty} \frac{x^n}{2n-1},$

- (iii) $\sum_{m=1}^{\infty} \frac{b^m}{\log(m)} (x-a)^m \text{ for } b > 0$
- (ii) $\sum_{k=1}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!},$
- (iv) $\sum_{n=1}^{\infty} \frac{x^n}{n!}$.

4. The Bessel functions of order 0 and 1 are, respectively,

$$J_0(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(n!)^2 2^{2n}}$$
 and $J_1(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{n!(n+1)! 2^{2n+1}}$.

1

Find the radii and intervals of convergence of these functions.