The Pythagorean Theorem describes the relationship between the lengths of the legs and the hypotenuse of a right triangle.

$$a^{2} + b^{2} = c^{2}$$

The relationship $a^2 + b^2 = c^2$ can be shown visually.

The areas of a^2 and b^2 fit into c^2

with side length b

Given the length of legs a and b, the length of the hypotenuse can be found using the formula $a^2 + b^2 = c^2$.

Given the length of legs a and b, the length of the hypotenuse can be found using the formula $a^2 + b^2 = c^2$.

The Pythagorean Theorem will work for any right triangle.

$$c^2 = a^2 + b^2$$

$$c^2 = 5^2 + 7^2$$

$$c^2 = 25 + 49$$

$$c^2 = 74$$

$$c = \sqrt{74}$$

$$c \approx 8.6023$$

The Distance Formula is a variant of the Pythagorean Theorem.

You may calculate the distance between two points using the the Distance Formula.

The Distance Formula: Given the two points P1 (x_1, y_1) and P2 (x_2, y_2) , the distance between these points is given by the formula:

distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$P_1 = (x_1, y_1) P_2 = (x_2, y_2)$$

$$P_1 = (2, 8) P_2 = (7, 3)$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$d = \sqrt{(7 - 2)^2 + (3 - 8)^2}$$

$$d = \sqrt{(5)^2 + (-5)^2}$$

$$d = \sqrt{25 + 25}$$

$$d = \sqrt{50}$$

