

要求:

- 1. 使用腾讯课堂上课,如遇到技术故障将改用腾讯会议;
- 2. 为方便考勤,请同学们将昵称改成"学号-真实姓名";
- 3. 上课不定时发起签到,请同学们不要迟到早退。

计算机网络实验

CONTENHS

目录

▶ Lab4 RIP路由配置及协议分析

- ① 熟悉了解动态路由协议的原理与应用;
- ② 熟悉RIP协议的特点,理解水平分割、触发更新和毒性逆转的作用;
- ③ 掌握RIP协议的配置及分析方法。

> 路由器的工作原理

请思考

0.0.0.0/0路由有什么用处?

数据包的目的IP地址: 9.1.1.2

Destination/Mask	proto	pref	Metric	Nexthop	Interface
0.0.0.0/0	Static	60	0	120.0.0.2	Serial0
8.0.0.0/8	RIP	100	3	120.0.0.2	Serial0
9.0.0.0/8	OSPF	10	50	20.0.0.2	Ethernet0
9.1.0.0/16	RIP	100	4	120.0.0.2	Ethernet1
11.0.0.0/8	Static	60	0	120.0.0.2	Serial0
20.0.0.0/8	Direct	0	0	20.0.0.1	Ethernet0
20.0.0.1/32	Direct	0	0	127.0.0.1	LoopBack0

◆路由表查询: 最长匹配原则

目的IP和子网掩码作"与"运算获得**网络地址**

> 如何添加路由表项?

▶ 静态路由: 采用手工方式在路由器中配置而形成的路由。

→ 动态路由: 路由器自动生成、更新路由表。

> 按网络范围划分

▶ 内部网关协议 —— RIP, OSPF, IS-IS

➤ 外部网关协议 —— EGP, BGP

> 按寻径算法划分

➤ 距离矢量协议 —— RIP, BGP

➤ 链路状态协议 —— OSPF, IS-IS

> RIP距离矢量路由协议

• 在相邻的路由器之间周期性地交换整个路由表,并应用距离矢量算法来计算路由。

- 更新周期: 30s

- 老化计时: 180s

- 垃圾回收计时: 120s

> RIP距离矢量路由协议

• 启动路由器后,所有路由器自动发现自己的直连路由,并将直连路由添加到路由表中

> RIP距离矢量路由协议

• 第一次交换路由信息

> RIP距离矢量路由协议

• 第二次交换路由信息

> 路由环路

• 1网段发生故障

> 路由环路

• 路由器A在更新之前,路由器B的更新周期到了

> 路由环路

请思考

有什么改善机制吗?

- 1网段的路由的跳数会不断的增加下去,直到溢出
- 目的IP是1网段的报文也会在路由器A、B之间往返,直至报文的TTL字段为0

- 1 触发更新 (Triggered Update)
 - 当路由器检测到链路有问题时立即进行问题路由的更新,而不等待30秒的周期更新,迅速传递路由故障和加速收敛,减少环路产生的机会。

目的地址	下一跳	跳数
3.0.0.0	O	2

2 水平分割

• 当向某个网络接口发送RIP更新信息时,不包含从该接口得到的选路信息。

目的地址	下一跳	跳数	来源
3.0.0.0	С	1	C

3 毒性逆转

• 可以向学习端口发送路由表,但跳数为16。

目的地址	下一跳	跳数
3.0.0.0	С	16

4 抑制计时器

当路由条目不可达的时候,抑制时间内不会接受该路由条目的更新; 除非从该路由条目的发送方接受到了更优的路由条目。

目的地址	下一跳	跳数
3.0.0.0	С	16

实验组网图

实验步骤

- 1. 在Cisco Packet Tracer上搭建网络拓扑
- 2. 配置路由器、交换机基本信息和计算机的网关
- 3. 配置RIP协议及查看路由表,并测试连通性
- 4. 观察触发更新和水平分割现象,分析报文,并填写实验报告

提交内容: 实验报告(有模板)

截止时间:

实验课后两周内提交至HITsz Grader 作业提交平台,具体截止日期参考平台发布。

• 登录网址:: http://grader.tery.top:8000/#/login

• 推荐浏览器: Chrome

• 初始用户名、密码均为学号,登录后请修改

注意

上传后可自行下载以确认是否正确提交

同学们 请开始实验吧!