

Intro to Machine Learning

Week 7

Table of Contents

- Intro to ML
 - What is it
 - Applications
 - Types of ML
 - Types of Supervised ML
 - Train Test Split
 - o KNN
 - Evaluation Metrics

Machine Learning What is it?

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Machine Learning What is it?

AI it's been around for a while now, and includes all solutions that mimic human behavior, and in some way replacing human decision making by AI models.

Machine Learning is a subset of Artificial Intelligence, using historical data to predict future behaviors.

Deep Learning is a subset of Machine Learning that also learns with historical data, focusing specifically on algorithms inspired by the structure and function of the brain's neural networks.

Machine Learning Some applications

Fraud detection

machine learning to spot fraud, like credit card fraud, by analysing historical data in order to find patterns and spotting suspicious behavior.

Machine Learning Some applications

Healthcare Diagnosis

Machine learning models are used to analyze medical data including imaging scans, genetic information, and patient records to assist healthcare professionals in diagnosing diseases

Machine Learning Some applications

Recommendation Systems

Platforms like Netflix, Amazon, and Spotify use **ML** algorithms to analyze user preferences and behavior, and then recommend personalized content to enhance user experience.

Machine Learning Some applications

Autonomous Vehicles

Self-driving cars employ a variety of **AI** and **ML** techniques including computer vision, sensor fusion, and deep learning to perceive their environment, make decisions, and navigate safely without human intervention.

Types of Machine Learning

Machine Learning Different types of ML

Supervised Learning

 You have data with inputs and corresponding outputs. The algorithm learns from this labeled data to make predictions on new, unseen data.

Supervised

X ₁	X ₂	Xp	Y

Target

Machine Learning Different types of ML

Unsupervised Learning

• You have data **without** predefined labels or categories. The algorithm tries to find patterns or structures in the data on its own.

Unsupervised

X ₁	X ₂	Хp	

No Target

Machine Learning Different types of ML

Reinforcement Learning

 An algorithm learns to make decisions by trial and error, receiving feedback in the form of rewards or penalties as it interacts with an environment.

Supervised Learning

Supervised Learning

 In Supervised Learning, depending on the type of variable we are trying to predict, a particular problem can either be a Regression or Classification.

Classification

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.2	4.1	1.5	0.1	Iris-Setosa
1	7.7	3.0	6.1	2.3	Iris-Virginica
2	5.1	3.8	1.5	0.3	Iris-Setosa
3	6.5	3.0	5.8	2.2	Iris-Virginica
4	6.1	3.0	4.6	1.4	Iris-Versicolour
5	6.9	3.1	4.9	1.5	Iris-Versicolour
6	4.6	3.6	1.0	0.2	Iris-Setosa
7	5.2	3.5	1.5	0.2	Iris-Setosa

In a classification problem our target variable is **Categorical.**We have a **finite** number of possible outcomes.

Regression

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target
0	5.4103	33.0	5.275748	0.960133	683.0	2.269103	32.81	-117.24	3.32400
1	2.8788	38.0	5.862197	1.057728	1378.0	2.566108	36.35	-119.65	0.85500
2	3.1324	19.0	29.248649	5.632432	441.0	2.383784	34.24	-116.86	1.32000
3	2.6903	34.0	5.729216	1.059382	1558.0	3.700713	35.37	-118.93	0.62800
4	4.3512	24.0	4.976101	1.021384	3196.0	4.020126	33.76	-117.95	1.91400
5	5.5248	22.0	6.141361	0.994764	1217.0	3.185864	32.68	-116.98	1.56300
6	4.1026	25.0	3.549683	0.993658	1314.0	2.778013	33.65	-117.92	2.11500
7	2.0547	35.0	4.750000	1.000000	1183.0	4.349265	32.69	-117.10	0.98000

In a regression problem our target variable is **Continuous/Numerical.**We have a **infinite** number of possible outcomes.

Train Test Split

- After identifying the type of variable we're trying to predict, we must separate our data into Training and Testing.
- Usually we reserve between 20-30% for Test set.

Train Test Split

- We split our data into **Training** and **Test**sets to evaluate our model fairly. During
 training, the model only accesses the
 Training set. Once trained, we use the
 Test set to predict labels for which we
 already know the target.
- Then, we compare our predictions with the true labels of the data points in the Test set.

K Nearest Neighbors

Machine Learning KNN

- K Nearest Neighbors or KNN, is a ML algorithm that classifies an data point by assigning it the most common class label among its nearest neighbors in the training set.
- Can be used both classification or regression.

K Nearest Neighbors

Machine Learning KNN

- Suppose you have two independent variables(features):
 - Hours Slept and Hours studied

 We want to **predict** if a student will either **pass** or **fail**.

Machine Learning KNN

- KNN will label a new data point based on the class of the k nearest points.
- For instance, when k=3, **KNN** evaluates the class labels of the 3 closest data points and assigns a class to the new data point through a majority voting.
- For Regression, we calculate the average instead majority voting.

Evaluation Metrics

Machine Learning Evaluations Metrics

After training our model, we need to evaluate its performance.

 Metrics compute in order to evaluate the performance, will be different whether we are dealing with a Classification or a Regression problem.

Machine Learning Evaluations Metrics

Classification

 In Classification problems, Accuracy is often to compute in order to assess model performance.

$$accuracy = \frac{Correct\ Predictions}{All\ Predictions}$$

$$True\ Label$$

$$True\ Label$$

$$True\ Label$$

Machine Learning Evaluations Metrics

Classification

In this case we have correctly predict 4 out a total of 6 predictions

$$accuracy = \frac{Correct\ Predictions}{All\ Predictions}$$

$$accuracy = \frac{4}{6} = 66\%$$

Machine Learning Evaluations Metrics

Regression

- In **Regression** problems, **R-Squared** is often to compute in order to assess model performance.
- **R-squared (R2)** measures how effectively the independent variables in a regression model predict or explain changes in the dependent variable.
- It varies between 0 and 1, where values close to 1 indicate a better model (though occasionally, we may obtain negative values for R2).

Machine Learning Evaluations Metrics

Regression

R-Squared Formula

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \widehat{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

prediction