CC5501 Mallas geométricas y aplicaciones

Tarea 2 (versión 2)

Prof. M.C. Rivara 2017/1

Elija una de las dos tareas siguientes:

TAREA A

Implemente un algoritmo de simplificación por refinamiento, usando triangulación dependiente de los datos. Input: grillas de datos de terrenos o imágenes a color.

TAREA B

Implemente el algoritmo Lepp Centroide / Flipping de Arista Terminal para construir triangulaciones de buena calidad basado en las siguientes ideas:

- i) Dada una triangulación Delaunay (o no Delaunay) inicial (de mala calidad) de la geometría.
- ii) Encuentre el conjunto S de los triángulos malos con ángulo más pequeño menor o igual que θ_{tol} ($\theta_{tol} \leq 30^{\circ}$).
- Para cada triángulo t_0 en S encuentre lista ordenada Lepp (t_0) = $\{t_0, t_1, ... t_n\}$ donde t_i es vecino de t_{i-1} por la arista más larga de t_{i-1} . Este camino es finito y se detiene cuando t_{n-1} , t_n son triángulos (terminales) que comparten la misma arista más larga (arista terminal).
 - Caso especial: t_n tiene arista terminal sobre el borde.
- iv) Si los triángulos terminales son localmente Delaunay, seleccione el Centroide C de los triángulos terminales e insértelo en la triangulación uniendo C con los vértices del cuadrilátero terminal. En caso contrario realice flipping de la arista terminal.
- v) Actualice S (la inserción de C puede crear triángulos malos y eliminar otros)
- vi) Repita mientras t₀ permanezca en la triangulación.

AB arista terminal

t₂,t₃ triángulos terminales

A continuación se describe en seudolenguaje el algoritmo que realiza bisección por la arista más larga en vez de la inserción del centroide

```
Algorithm 2 Terminal Edge Bisection Flipping algorithm
Input: triangulation \tau, set S_{ref} of triangles to be refined
Output: triangulation \tau' such that each t \in S_{ref} has been refined
for each t in S_{ref} do
  while t remains in \tau do
     Find Lepp(t), terminal triangles t_1, t_2 and terminal edge l. Triangle
     t_2 can be null for boundary l
     if t_1, t_2 are non locally Delaunay then
       Perform flipping of terminal edge l
     else
       Select point P, midpoint of edge l
       Perform bisection by P of triangles t_1, t_2
     end if
     Update S_{ref}
  end while
end for
```

Observaciones

- 1. Elija una operación entre bisección por la arista más larga o inserción del centroide.
- 2. En vez de usar el test del círculo para determinar si los triángulos terminales son Delaunay, puede usar otra función geométrica.

Realice pruebas al menos con 4 triangulaciones (no triviales) de mala calidad. Detenga su software por número de puntos por si no converge.

Escriba una presentación / informe de su trabajo que incluya:

- 1. Introducción al problema
- 2. Solución elegida
- 3. Discusión de la implementación
- 4. Trabajo empírico
- 5. Discusión de dificultades
- 6. Conclusiones

Entrega: 27 de mayo, presentación 29 de mayo