THE MAX-MAX PROBLEM

CRISTIAN R. ROJAS

During the last lecture we required the following result involving iterative maximizations:

Theorem 1. Let X and Y be arbitrary sets, and consider the function $f: X \times Y \to \mathbb{R}$. Then

$$\max_{x \in X, y \in Y} f(x, y) = \max_{x \in X} \left[\max_{y \in Y} f(x, y) \right]$$
 (1)

assuming that all the maxima are well defined.

Proof. Equality (1) will be proven as a combination of two inequalities:

1.
$$\max_{x \in X, y \in Y} f(x, y) \ge \max_{x \in X} \left[\max_{y \in Y} f(x, y) \right]$$

To establish this inequality, notice that by definition

$$\max_{\tilde{x} \in X, \, \tilde{y} \in Y} f(\tilde{x}, \, \tilde{y}) \ge f(x, y) \,, \qquad \text{for every } x \in X \,\,, \,\, y \in Y \tag{2}$$

Thus, we can maximize both sides of (2) with respect to $y \in Y$, which gives

$$\max_{\tilde{x} \in X, \tilde{y} \in Y} f(\tilde{x}, \tilde{y}) \ge \max_{y \in Y} f(x, y), \quad \text{for every } x \in X$$

and then with respect to $x \in X$, to obtain

$$\max_{\tilde{x} \in X, \tilde{y} \in Y} f(\tilde{x}, \tilde{y}) \ge \max_{x \in X} \left[\max_{y \in Y} f(x, y) \right]$$

2.
$$\max_{x \in X, y \in Y} f(x, y) \le \max_{x \in X} \left[\max_{y \in Y} f(x, y) \right]$$

Let $x^* \in X$ and $y^* \in Y$ be such that

$$f(x^*, y^*) = \max_{x \in X, y \in Y} f(x, y)$$

Then, since

$$f(x, y) \le \max_{\tilde{y} \in Y} f(x, \tilde{y})$$
, for every $x \in X$, $y \in Y$

we have that

$$f(x^*, y) \le \max_{\tilde{y} \in Y} f(x^*, \tilde{y}) \le \max_{\tilde{x} \in X} \left[\max_{\tilde{y} \in Y} f(\tilde{x}, \tilde{y}) \right], \quad \text{for every } y \in Y$$

Therefore,

$$\max_{x \in X, y \in Y} f(x, y) = f(x^*, y^*) \le \max_{\tilde{x} \in X} \left[\max_{\tilde{y} \in Y} f(\tilde{x}, \tilde{y}) \right]$$

This concludes the proof.

The previous result can be further generalized to cases where the maxima do not exist, and to more general sets than $X \times Y$. To this end, let Ω be a constraint set for (x, y), and define

$$X := \{x : (x, y) \in \Omega \text{ for some } y\}$$
$$Y_x := \{y : (x, y) \in \Omega\}$$

Then we have the following result:

Theorem 2. Let $f: \Omega \to \mathbb{R}$. Then

$$\sup_{(x,y)\in\Omega} f(x,y) = \sup_{x\in X} \left[\sup_{y\in Y_x} f(x,y) \right]$$
(3)

Proof. As in the proof of Theorem 1, equality (3) is established by proving two inequalities:

1.
$$\sup_{(x,y)\in\Omega} f(x,y) \ge \sup_{x\in X} \left[\sup_{y\in Y_x} f(x,y) \right]$$

For this proof we need to be careful about X and Y_x . Notice that

$$\sup_{(\tilde{x}, \tilde{y}) \in \Omega} f(\tilde{x}, \tilde{y}) \ge f(x, y), \quad \text{for every } x \in X, y \in Y_x$$
 (4)

Thus, for a fixed $x \in X$ we can take the supremum of both sides of (4) with respect to $y \in Y_x$, giving

$$\sup_{(\tilde{x},\tilde{y})\in\Omega} f(\tilde{x},\tilde{y}) \ge \sup_{y\in Y_x} f(x,y) , \quad \text{for every } x\in X$$

and then with respect to $x \in X$, to obtain

$$\sup_{(\tilde{x},\tilde{y})\in\Omega} f(\tilde{x},\tilde{y}) \ge \sup_{x\in X} \left[\sup_{y\in Y_x} f(x,y) \right]$$

2.
$$\sup_{(x,y)\in\Omega} f(x,y) \le \sup_{x\in X} \left[\sup_{y\in Y_x} f(x,y) \right]$$

This inequality is a bit trickier because the supremum of a function is not always achieved, but we can get as close to its value as we want. Take an $\varepsilon > 0$. By definition of the supremum, there exists $(x^*, y^*) \in \Omega$ such that

$$\sup_{(x,y)\in\Omega} f(x,y) - \varepsilon < f(x^*,y^*) \le \sup_{(x,y)\in\Omega} f(x,y)$$

Then, since

$$f(x, y) \le \sup_{\tilde{y} \in Y_x} f(x, \tilde{y}),$$
 for every $x \in X$, $y \in Y_x$

we have that

$$f(x^*, y) \le \sup_{\tilde{y} \in Y_x} f(x^*, \tilde{y}) \le \sup_{x \in X} \left[\sup_{y \in Y_x} f(x, y) \right],$$
 for every $y \in Y_{x^*}$

Therefore,

$$\sup_{(x,y)\in\Omega} f(x,y) < f(x^*,y^*) + \varepsilon \le \sup_{x\in X} \left[\sup_{y\in Y_x} f(x,y) \right] + \varepsilon \tag{5}$$

As $\varepsilon > 0$ was arbitrary, we can make $\varepsilon \to 0_+$ in (5), which gives the desired inequality.