Теорема Виета

Теорема Виета. Если числа x_1 и x_2 — корни квадратного уравнения $x^2 + px + q = 0$, то

$$x_1 + x_2 = -p, \quad x_1 x_2 = q.$$

- Пусть x_1 , x_2 корни уравнения $2x^2 9x + 1 = 0$. Найдите значение выражения $\frac{1}{x_1} + \frac{1}{x_2}$.
- [2] Пусть x_1 и x_2 корни квадратного уравнения $x^2 + px + q = 0$. Выразите через p и q величины:
 - (a) $x_1^2 + x_2^2$;
 - (b) $x_1^3 + x_2^3$.
- 3 Уравнение $x^2+8x-3=0$ имеет корни x_1 и x_2 . Составьте уравнение, корнями которого являются числа $2x_1+3$ и $2x_2+3$.
- 4 Пусть x_1 и x_2 корни квадратного уравнения $x^2 + px + q = 0$. Напишите уравнения, корнями которых являются следующие пары чисел:
 - (a) x_1^2, x_2^2 ;
 - (b) $\frac{1}{x_1}, \frac{1}{x_2};$
 - (c) $\frac{x_2}{x_1}, \frac{x_1}{x_2}$.
- [5] Докажите, что если для коэффициентов уравнения $ax^2 + bx + c = 0$ выполняется равенство a + b + c = 0, то $x_1 = 1$, а $x_2 = \frac{c}{a}$.
- [6] При каких p, q уравнению $x^2 + px + q = 0$ удовлетворяют два различных числа 2p и p+q?
- [7] Решить систему уравнений $a^2 + b^2 = 5$, $\frac{1}{a} + \frac{1}{b} = \frac{1}{2}$.
- 8 Известно, что корни уравнения $x^2 + px + q = 0$ целые числа, а p и q простые числа. Найдите p и q.
- [9] Корни уравнения $x^2 + ax + 1 = b$ целые, отличные от нуля, числа. Докажите, что число $a^2 + b^2$ является составным.
- 10 Про различные числа x, y, z известно, что выполняются равенства $x^3 3x = y^3 3y = z^3 3z$. Чему может равняться значение выражения xy + yz + zx?