Álgebra Abstracta y Codificación: Ejercicios Semana 13

Mauro Artigiani

1 noviembre 2023

En los ejercicios 1–3 adapte la demostración vista en $\mathbb Z$ para el anillo F[x], con F campo.

- 1. Todos los ideales de F[x] son principales.
- 2. El máximo común divisor entre f(x) y g(x) es un polinomio $m\'onico\ d(x)\in F[x]$ tal que
 - $d(x) \mid f(x) y d(x) \mid g(x)$,
 - si $e(x) \mid f(x) \neq e(x) \mid g(x)$, luego $e(x) \mid d(x)$.

Demuestre que si $\gcd(f(x),g(x))=d(x)$, luego existen $r(x),\,t(x)\in F[x]$ tales que

$$f(x)r(x) + g(x)t(x) = d(x).$$

- 3. Si p(x) es un polinomio irreducible y $p(x) \mid f(x)g(x)$, luego $p(x) \mid f(x)$ o $p(x) \mid g(x)$.
- 4. Sea A un anillo conmutativo con 1. Decimos que a y b en A están asociados si existe una unidad $u \in A$ tal que a = bu. Estar asociados es una relación de equivalencia. Demuestre los siguientes hecho sobre ideales.

u es una unidad $\iff \langle u \rangle = \langle 1 \rangle$

a y b están asociados $\iff \langle a \rangle = \langle b \rangle$

a divide a $b \iff \langle b \rangle \subset \langle a \rangle$

a es un divisor proprio de $b \iff \langle b \rangle \subset \langle a \rangle \subset \langle 1 \rangle$.