Introduction

Types of learning

- 1. Learning with a teacher: supervised learning.
- 2. Learning with a critic: reinforcement learning.
- 3. Learning on your own: unsupervised learning.

	How we	study	learning	in	neural	networks:
--	--------	-------	----------	----	--------	-----------

Classification

Input vectors **x** associated with output vectors **y**.

Learn mapping: $\mathbf{x} \Rightarrow \mathbf{y}$.

Generalise to data not seen during learning. ("Training set" vs "test set" and also "validation set").

Approaches to classification

- 1. Logistic regression (binary outputs). Applied Statistics.
- 2. Naive Bayes. Machine Learning / probablistic modelling.
- 3. Multi-layer perceptron. Neural networks part I.
- 4. Support vector machines. Kernel methods.
- 5. Decision Trees and Forests.
- 6. Neural networks part II.

The perceptron (Rosenblatt 1957)

Notation:

- x_i : activity of input unit i (binary or [0,1]).
- w_i synaptic weight from unit i.
- $z = \sum_i w_i x_i$ total input to the output unit.
- *y*: activity of output unit.
- t: desired output (of use later). (μ superscript denotes training sample.)
- $f(\cdot)$: transfer function; y = f(z).

Training set

<i>X</i> ₁	<i>X</i> ₂	t
0	0	0
0	1	0
1	0	0
1	1	1
	0	0 0 0 0 1

Transfer function

Given total weighted input to neuron, what is its output?

- 1. identity: f(z) = z.
- 2. threshold: $f(z, \theta) = \begin{cases} 1 & \text{if } z \geq \theta \\ 0 & \text{otherwise} \end{cases}$
- 3. sigmoidal: $f(z) = \frac{1}{1 + \exp(-kz)}$
- 4. tanh: f(z) = tanh(z)
- 5. rectified linear unit (ReLU): f(z) = max(0, z)

How to choose? One key property: differentiable.

Perceptron decisions

Whether a perceptrons output is 0 or 1 depends on whether $\sum_{i=1}^{N} w_i x_i$ is less or greater than θ .

The equation

$$\sum_{i=1}^{N} w_i x_i = \theta$$

defines a hyperplane in N-dimensional space.

This hyperplane cuts the space in two.

$$w_1 x_1 + w_2 x_2 = \theta$$

 $x_2 = \left(\frac{-w_1}{w_2}\right) x_1 + \frac{\theta}{w_2}$

This is an equation for a straight line.

Linearly separable problems and the perceptron

Learning involves adjusting the values of w and θ so that the decision plane can correctly divide the two classes.

Threshold & Bias

The threshold, θ , can be treated as just another weight from a new input unit which always has a value of +1 (or -1). This new input unit is called the **bias** unit.

Instead of comparing $\sum_{i=1}^{N} w_i x_i$ with θ , we compare $\sum_{i=0}^{N} w_i x_i$ with 0, or

$$y = \begin{cases} 1 & \text{if } \sum_{i=0}^{N} w_i x_i > 0, \\ 0 & \text{if } \sum_{i=0}^{N} w_i x_i \leqslant 0. \end{cases}$$

Now, learning is about jiggling weights only.

Intuitively... (positive valued inputs)

$$y^{\mu} = \operatorname{step}\left(\sum_{i=0}^{N} w_i x_i^{\mu}\right)$$

Consider w_j 's contribution to $\sum_i w_i x_i^{\mu}$ in different cases:

- 1. $y^{\mu} = t^{\mu}$ Perceptron has classified input μ correctly change nothing
- 2. $x_i^{\mu} = 0$ Changing w_i will not affect the $\sum_i w_i x_i^{\mu}$ change nothing
- 3. $x_i^{\mu} \neq 0, y^{\mu} < t^{\mu}$ The sum $\sum_i w_i x_i^{\mu}$ is too low so increase it
- 4. $x_{j}^{\mu} \neq 0$, $y^{\mu} > t^{\mu}$ The sum $\sum_{i} w_{i} x_{i}^{\mu}$ is too high so decrease it

The local rule:

$$\Delta w_j \propto (t^\mu - y^\mu) x_j^\mu$$

Perceptron learning rule

$$y = f(\mathbf{w} \cdot \mathbf{x})$$
 e.g. $f(z) = 1/(1 + \exp(-z))$, $f(z) = z$

$$E = \frac{1}{2}(t - y)^2$$
 $t \text{ is target output}$

$$\Delta w_j = -\epsilon \frac{\partial E}{\partial w_j} = -\epsilon \frac{\partial E}{\partial y} \frac{\partial y}{\partial w_j} =$$

This is the method of gradient descent with learning-rate parameter ϵ .

Perceptron pros and cons

- The perceptron convergence theorem (Dayan and Abbott, page 327) guarantees that solution will be found iff there is a linearly separable solution.
- Many complex problems are not linearly separable, e.g. XOR problem.

	-		
<i>X</i> ₁	<i>X</i> ₂	У	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Multi-layer perceptrons (MLPs)

The importance of features / 1

(Lindsay and Norman's view of Selfridge's Pandemonium model, 1959).

The importance of features / 2

• Find the right features to make the task solvable:

- Engineering features by hand is hard.
- Neural networks learn features that they find important.

How many layers of features do you need?

One hidden layer is all you need **in theory** to make a "universal approximator" (Cybenko 1989; Hornik 1991). With linear transfer functions how many layers do we need?

Neural networks and linear algebra

- Activation of a layer of neurons stored in a vector.
- Synapses from one layer to another stored in a weight matrix: W_{ji} is strength of connection from unit i in one layer to unit j in the next layer.
- "The single key fact about vectors and matrices is that each vector represents a point located in space, and a matrix moves that point to a different location. Everything else is just details." (Stone 2019, Appx. C).