

USI Compression Algorithm

Manuel Schmid, manuel.schmid@epfl.ch

Internship, Summer 2014

The Algorithm

The algorithm is an **expanded form of Principal Component Analysis** (PCA).

Instead of doing a single PCA for the whole data set, we group vectors into clusters.

The **clustering** is done **iteratively** by doing PCA for each cluster and reassigning vectors to the best cluster.

```
    → initial clustering
    → PCA for each cluster (1 vector)
    → reassign vectors to clusters
    → PCA for each cluster (1 vector)
    → reassign vectors to clusters
    → final PCA (M vectors)
```

The Implementation

Our implementation of the USI algorithm is **distributed** and uses a **Lanczos solver** to find eigenvectors.

It **reads data** from a NetCDF file, **compresses** and **decompresses** the data, and **writes it back** to NetCDF.

There are **three different versions** of the program: eigen, minlin_host, and minlin_device

We can specify **arbitrary dimensions along** rows/columns.

latitude × longitude

latitude × longitude × levels

time

We can read and combine multiple variables.

wind speed
temperature
sea ice

The program can print out **statistics** comparing the original and reconstructed data.

Statistics

Maximum time for input: 2.75187 Maximum time for solve: 962.085

Compression ratio: 0.0999069

Variable CCN3:

min	max	mean	std	
3.66e-05	1251.36	26.0719	54.3484	(original data)
-1.72935	1237.73	26.0719	54.3374	(reconstructed data)

maximum error: 0.0372324 (normalized with range)
RMS error: 0.000872772 (normalized with range)

correlation: 0.999798
SRR: 5.63699
PrecisionBits: 3.7473

The Results

The results are based on **yearly average** data from the **Community Earth System Model** (CESM).

1 horizontal dimension (ncol) with 48602 entries1 vertical dimension (lev or ilev) with 30 or 31 entries

88x 3D variable with 30 levels 09x 3D variable with 31 levels 101x 2D variable (89 used)

Horizontal stacking didn't work very well.

rank	cl. 1	cl. 2	cl. 3	cl. 4	cl. 5	cl. 6	cl. 7	cl. 8	cl. 9	cl. 10
0	259	11	11	1	6	0	0	0	1	14
1	271	9	5	0	1	1	1	2	0	12
2	267	4	0	9	0	1	4	7	2	8
3	255	5	0	11	6	0	3	9	7	6
4	235	8	2	6	14	1	3	9	17	7
5	220	12	12	5	21	1	7	8	10	6
6	208	15	9	1	26	0	6	6	15	16
7	412	71	23	0	111	56	99	27	28	66

Compression is better if we only place nool along rows rather than nool × lev.

There is an **optimal number of clusters** at around K=10.

There is an **optimal number of clusters** at around K=10.

Excluding 2D variables doesn't improve compression considerably.

We therefore compress all variables together, using 10 clusters, placing only 'ncol' along rows.

We can make comparisons between variables.

RMS error	max. error	prec. bits	SSR	variable name	for K=10, M=200
0.000093	0.00183	8.10	11.5	Geopotential Height (abov	ve sea level)
0.000187	0.000419	6.90	10.2	Liquid water static energy	
0.000187	0.00415	6.91	10.2	Liq wat virtual static energ	gy
0.000347	0.0518	3.27	5.00	Aerosol absorption	
0.000376	0.0457	3.45	3.62	Zonal momentum flux	
•••	•••	•••	•••	•••	
0.00217	0.0514	2.20	c		
	0.0314	3.28	6.26	Fractional occurance of sn	IOW
0.00226	0.0227	4.46	6.60	Fractional occurance of SN Fractional occurance of ZN	. •
0.00226 0.00230					. •
	0.0227	4.46	6.60	Fractional occurance of ZN	A convection

We can also try to compare the results to **other publications**, but currently this is **difficult**.

Evaluating Lossy Compression on Climate Data

Nathanael Hübbe¹, Al Wegener², Julian Kunkel¹, Yi Ling², and Thomas Ludwig³

A Methodology for Evaluating the Impact of Data Compression on Climate Simulation Data *

Allison H. Baker National Center for Atmospheric Research 1850 Table Mesa Drive Boulder, CO 80305 abaker@ucar.edu

Michael N. Levy National Center for Atmospheric Research 1850 Table Mesa Drive Boulder, CO 80305 mlevy@ucar.edu Haiying Xu
National Center for
Atmospheric Research
1850 Table Mesa Drive
Boulder, CO 80305
haiyingx@ucar.edu

Doug Nychka National Center for Atmospheric Research 1850 Table Mesa Drive Boulder, CO 80305 nychka@ucar.edu John M. Dennis National Center for Atmospheric Research 1850 Table Mesa Drive Boulder, CO 80305 dennis@ucar.edu

Sheri A. Mickelson National Center for Atmospheric Research 1850 Table Mesa Drive Boulder, CO 80305 mickelso@ucar.edu

Compared to Hübbe et al., our **errors are much larger** but our **compression is also much stronger**.

		SRR		PrecisionBits	
file	rel. size	APAX	${ m GRIB2/JPEG}2000$	APAX	GRIB2/JPEG 2000
trads	65.4%	20.7	20.8	20.3	21.1
aclcov	64%	23.2	22.1	21.0	21.0
trafl	56.5%	20.8	21.4	20.4	22.0
trflwac	53.2%	21.5	20.9	20.2	21.8
soflwac	35.8%	21.0	22.0	18.7	22.0
wsmx	29.3%	23.7	21.6	21.8	21.8
ahfllac	28%	21.7	19.0	21.1	21.7
vdisgw	22.9%	24.6	19.6	22.9	21.9
$\operatorname{srad}0d$	22.6%	13.5	21.6	12.2	21.3
alsom	$\left 2.9\% / 1.9\% \right $	lossless	22.8	lossless	21.5

Table 1. GRIB2/JPEG2000 and APAX Signal Quality Metrics at the same compression ratios. N=22 for GRIB2/JPEG2000 files.

Compared to Baker et al., we only have a **few values** that have similar compression ratios, but those have **similar errors**.

Table 3: NRMS errors (and compression ratio CR) between the original and reconstructed datasets for variables U, FSDSC, Z3, and CCN3.

Table 4: Maximum relative pointwise errors (e_{nmax}) (and compression ratio) between the original and reconstructed datasets for variables U, FSDSC, Z3, and CCN3.

Comp.	U	FSDSC	Z3	CCN3
Method		NRMSE (CR)		
GRIB2 APAX-2 APAX-4 APAX-5 fpzip-24 fpzip-16 ISA-0.1 ISA-0.5 ISA-1.0	3.6e-4 (.10) 5.8e-7 (.50) 1.4e-4 (.25) 4.3e-4 (.20) 2.2e-6 (.39) 5.7e-4 (.15) 8.7e-5 (.57) 2.7e-4 (.44) 3.7e-4 (.41)	1.4e-4 (.22) 8.3e-7 (.50) 2.1e-4 (.26) 5.4e-4 (.21) 1.8e-5 (.34) 4.6e-3 (.10) 4.1e-4 (.37) 9.1e-4 (.36) 1.1e-3 (.36)	7.8e-8 (.32) 7.0e-8 (.50) 2.0e-5 (.25) 5.1e-5 (.19) 5.1e-6 (.19) 1.2e-3 (.04) 3.8e-5 (.39) 9.8e-5 (.37) 1.5e-4 (.36)	2.3e-8 (.37) 1.6e-7 (.50) 4.1e-5 (.25) 9.9e-5 (.20) 6.5e-7 (.36) 1.7e-4 (.12) 2.8e-5 (.37) 1.2e-4 (.38) 2.0e-4 (.37)

Comp.	U	FSDSC	Z3	CCN3
Method		e_{nmax} (CR)		
GRIB2 APAX-2 APAX-4 APAX-5 fpzip-24 fpzip-16 ISA-0.1 ISA-0.5 ISA-1.0	6.2e-4 (.10) 3.3e-6 (.50) 9.0e-4 (.25) 2.7e-3 (.20) 1.2e-5 (.39) 3.1e-3 (.15) 6.4e-4 (.57) 2.9e-3 (.44) 4.9e-3 (.41)	2.5e-4 (.22) 4.7e-6 (.50) 1.1e-3 (.26) 2.7e-3 (.21) 3.9e-5 (.34) 9.9e-3 (.10) 1.6e-3 (.37) 7.6e-3 (.36) 1.5e-2 (.36)	1.6e-7 (.32) 3.3e-6 (.50) 8.3e-4 (.25) 3.1e-3 (.19) 3.3e-6 (.19) 6.8e-3 (.04) 9.8e-4 (.39) 4.9e-3 (.37) 9.9e-3 (.36)	4.9e-8 (.37) 2.9e-6 (.50) 7.5e-4 (.25) 1.9e-3 (.20) 2.4e-5 (.36) 5.3e-3 (.12) 8.7e-4 (.37) 3.9e-3 (.38) 7.9e-3 (.37)

ours (0.10)

1.2e-3

1.0e-3

9.3e-4

8.1e-4

1.8e-2

1.2e-2

1.8e - 3

4.3e-3

Baker et al. propose a **method to evaluate lossy compression** based on an **ensemble** of 101 files

$$Z_{x_i}^m = \frac{x_i^m - \bar{x}_i^{E \setminus m}}{\sigma_{x_i}^{E \setminus m}}$$

$$RMSZ_X^m = \sqrt{\frac{1}{N_X} \sum_i (Z_{x_i}^m)^2}$$

We can use this to test for a bias of the compression method.

RMSZ for variable FSDSC (slope=0.893, intercept=0.109)

1.1

RMSZ original

1.25

1.20

115 105 105

1.10

1.00

0.95 0.90

0.8

RMSZ original

slope

0.99 - 1.0001

0.75 - 0.84

FSDSC 0.87 - 0.92

CCN3 0.96 - 0.99

intercept

0.00035 - 0.0067

0.17 Z3 -0.26

FSDSC 0.083 -0.14

CCN3 0.0081 - 0.042

max. Diff.

0.006

Z3 0.118

FSDSC 0.034

CCN3 0.035

Thank you.