

Suresh Devasahayam Department of Bioengineering Christian Medical College, Vellore

Ultrasound Measurement

Ultrasound Reflection Measurement

Ultrasound Instruments

Time of echo:

$$\tau = 2\frac{d}{c}$$

Attenuation:

$$\frac{I_r}{I_o} = e^{-\mu(2d)}$$

 Automatic depth dependent gain compensation

Flow measurement

Transit time =distance / (effective velocity in medium)

Doppler shift

- Source frequency f_o
- Source-target velocity u
- Propagation in medium with velocity c
- Dopplet shift f_d

$$\frac{f_d}{f_o} = \frac{u}{c}$$

Flow Measurement

Dilution methods

$$C_i F + \frac{dm}{dt} = C_o F$$

$$F = \frac{dm/dt}{C_o - C_i}$$

Digital Measurement

Digital Temperature sensor - TMP100

Digitization and Quantization

Inertial Sensors

Measurement of Acceleration

Gyroscope Principle

Disc gyroscope

$$mgr = \omega_s \omega_p I_s$$

- Mass, m
- Radius of disc, r
- Spin angular vel
- Precession angular vel
- Spin moment of inertia

Vibrating gyroscope – Coriolis force

- Force, F
- Angular Velocity of rotation/precession
- Linear velocity of oscillation
- Mass, m

$$F = -2 \omega_p v_{osc} m$$

Distance Measurement

Triangulation calculation

$$\frac{d}{h} = \frac{x_o}{x_1}$$

$$d = x_o h \cdot \frac{1}{x_1}$$

ToF LiDAR

Radiation Thermometry

Stefan-Boltzman Law – radiation (absorbed/emitted)

- Integrating Wien's equation can get total thermal power
 - integrate numerically
- Empirical formula by Stefan and Boltzman

$$P_{tot} = A \epsilon \sigma T^4$$

- For black body, the emissivity is 1
- 'A' is a geometry factor

$$P_{tot(blackbody)} = \sigma T^4$$

$$\sigma$$
=5.67037 $Wm^{-2}K^{-4}$

Biopotential Electrodes

Measurement model

Photospectrometry

Absorption spectrum change of phenol red with pH

Examples requiring Design

1. Measuring eye-blink for noise removal

- Noise in EEG recording
- Remove noise by subtracting blink event-related potential
- Determine transfer relation between blink measurement and EEG measurement

2. Measuring eye-blink to use as control signal

- Locked-in patients eye-blink under voluntary control
- Encode intention as sequence of eye-blinks

3. Electrogastrography

- Measure peristalsis
- Distinguish signal from movement noise

4. Measuring Blood flow in tissue

- Photoplethysmography
- Impedance plethysmography

5. Separating signal from noise

- Similar characteristics
 - ECG/EMG
 - EEG/EMG
- Different characteristics
 - ECG/respiration

Designing Measurement Systems

- Sensitivity
- Selectivity
 - Noise immunity
- Linearity
- Dynamic response
- Non-invasive
- Portability
 - Battery operation
 - Wireless data transfer