Name:

Due: Monday, Dec. 21st, 2020

Instructions:

Please include essential steps in your solution. For most of the problems, answers without essential steps may receive a score of 0.

- 1. Let U and V be subspaces of W. Use the subspace test to prove the following.
 - (a) The set intersection $U \cap V$ is a subspace of W.
 - (b) The sum of the spaces, $U+V=\{\vec{u}+\vec{v}|\vec{u}\in U and \vec{v}\in V\}$, is a subspace of W.
 - (c) The set union $U \cup V$ is not a subspace of W unless one of U or V is contained in the other.

2. Show that
$$span \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\} = span \left\{ \begin{bmatrix} 0\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}.$$

- 3. Let $\vec{u} = (2, -1, 1)$, $\vec{v} = (0, 1, 1)$, and $\vec{w} = (2, 1, 3)$. Show that $span \{\vec{u} + \vec{w}, \vec{v} \vec{w}\} \subset span \{\vec{u}, \vec{v}, \vec{w}\}$ and determine whether or not these spans are actually equal.
- 4. Determine if the following sets are linearly independent in $V = \mathbb{R}^4$.
 - a) $[1, 1, 1, 1]^T$, $[1, 0, 1, 0]^T$, $[1, 0, 1, 0]^T$.
 - b) $[0, 1, -1, 2]^T$, $[0, 1, 3, 4]^T$, $[0, 2, 2, 6]^T$.
 - c) $[1, -1, 0, 1]^T$, $[-2, 2, 1, 1]^T$.
- 5. Find the coordinate vector of \vec{v} with respect to the following bases:
 - (a) $\vec{v} = (0, 1, 2)$, basis (2, 0, 1), (-1, 1, 0), (0, 1, 1) of \mathbb{R}^3 .
 - (b) $\vec{v} = 2 + x^2$, basis 1 + x, $x + x^2$, 1 x of P_2 .