MATH220/MATH240 INDIVIDUAL COURSEWORK

LEWIS MCCONKEY

1. Computing ${}^{\mathscr{C}}[T]^{\mathscr{C}}, {}^{\mathscr{B}}[T]^{\mathscr{C}}, {}^{\mathscr{C}}[T]^{\mathscr{B}}$ and ${}^{\mathscr{B}}[T]^{\mathscr{B}}$

For each of the basis vectors in $\mathscr C$ we apply T, and the coordinates of those vectors with respect to $\mathscr C$ will be the columns of ${}^{\mathscr C}[T]^{\mathscr C}$

$$T((1,0)) = (2,1), T((0,1)) = (-1,3)$$
 (1.1)

Since \mathscr{C} is the standard basis of \mathbb{R}^2 the resulting matrix is as follows:

$$^{\mathscr{C}}[T]^{\mathscr{C}} = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \tag{1.2}$$

Now finding $\mathscr{B}[T]^{\mathscr{C}}$. We already know what we get by applying T to the \mathscr{C} basis vectors by (??). Notice that:

$$(2,1) = (1,0) + (1,1), (-1,3) = -4(1,0) + 3(1,1)$$
 (1.3)

Hence the matrix is as follows:

$${}^{\mathscr{B}}[T]^{\mathscr{C}} = \begin{bmatrix} 1 & -4\\ 1 & 3 \end{bmatrix} \tag{1.4}$$

For each of the basis vectors in \mathscr{B} we apply T, and the coordinates of those vectors with respect to \mathscr{C} will be the columns of ${}^{\mathscr{C}}[T]^{\mathscr{B}}$

$$T((1,0)) = (2,1), T((1,1)) = (1,4)$$
 (1.5)

Since \mathscr{C} is the standard basis of \mathbb{R}^2 the resulting matrix is as follows:

$$\mathscr{C}[T]^{\mathscr{B}} = \begin{bmatrix} 2 & 1\\ 1 & 4 \end{bmatrix} \tag{1.6}$$

Now finding $\mathscr{B}[T]^{\mathscr{B}}$. We already know what we get by applying T to the \mathscr{B} basis vectors by $(\ref{eq:total_start})$. Notice that:

Date: November 13, 2022.

$$(2,1) = 1(1,0) + 1(1,1), (1,4) = -3(1,0) + 4(1,1)$$
 (1.7)

Hence the matrix is as follows:

$$\mathscr{B}[T]^{\mathscr{B}} = \begin{bmatrix} 1 & -3\\ 1 & 4 \end{bmatrix} \tag{1.8}$$

2. Computing
$$\mathscr{E}[T \circ T]^{\mathscr{B}}$$

We need to apply T twice to the \mathcal{B} basis vectors and find the coordinates of these with respect to \mathcal{B} . These coordinates will be the columns of the matrix ${}^{\mathcal{B}}[T \circ T]^{\mathcal{B}}$

$$T(T((1,0)) = T((2,1)) = (3,5) = -2(1,0) + 5(1,1)$$
 (2.1)

$$T(T((1,1)) = T((1,4)) = (-2,13) = -15(1,0) + 13(1,1)$$
 (2.2)

Hence the matrix is as follows:

$$\mathscr{B}[T \circ T]^{\mathscr{B}} = \begin{bmatrix} -2 & -15\\ 5 & 13 \end{bmatrix} \tag{2.3}$$

3. Verifying that $({}^{\mathscr{B}}[T]^{\mathscr{C}})({}^{\mathscr{C}}[T]^{\mathscr{B}}) = {}^{\mathscr{B}}[T \circ T]^{\mathscr{B}} = ({}^{\mathscr{B}}[T]^{\mathscr{C}})({}^{\mathscr{C}}[T]^{\mathscr{B}})$

$$(^{\mathscr{B}}[T]^{\mathscr{C}})(^{\mathscr{C}}[T]^{\mathscr{B}}) = \begin{bmatrix} 1 & -4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -2 & -15 \\ 5 & 13 \end{bmatrix} = ^{\mathscr{B}}[T \circ T]^{\mathscr{B}} \quad (3.1)$$

$$(^{\mathscr{B}}[T]^{\mathscr{B}})(^{\mathscr{B}}[T]^{\mathscr{B}}) = \begin{bmatrix} 1 & -3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} -2 & -15 \\ 5 & 13 \end{bmatrix} = ^{\mathscr{B}}[T \circ T]^{\mathscr{B}}$$

$$(3.2)$$

These two equations hold true by equation (??). Hence:

$$(^{\mathscr{B}}[T]^{\mathscr{C}})(^{\mathscr{C}}[T]^{\mathscr{B}}) = ^{\mathscr{B}}[T \circ T]^{\mathscr{B}} = (^{\mathscr{B}}[T]^{\mathscr{C}})(^{\mathscr{C}}[T]^{\mathscr{B}})$$
(3.3)