

Teoria da Computação

Primeiro Teste 2019–2020

Data: 25 de Outubro de 2019 Duração: 60 minutos

Justifique de forma clara e sucinta todas as respostas.

1. (1 valor) Seja X_n o conjunto das palavras definidas sobre o alfabeto $\{a, b, c\}$ com tamanho <u>menor ou igual</u> a $n, n \in \mathbb{N}_0$. Determine o menor valor de n que satisfaz $|X_n| \ge (9^6 - 1)/2$.

Solução: Temos que $|X_n| = \left| \bigcup_{k=0}^n \Sigma^k \right| = \sum_{k=0}^n \left| \Sigma^k \right| = \sum_{k=0}^n |\Sigma|^k = \sum_{k=0}^n 3^k = \frac{3^{n+1} - 1}{3 - 1}.$ Assim, $|X_n| \ge (9^6 - 1)/2 \iff \frac{3^{n+1} - 1}{2} \ge (9^6 - 1)/2 \iff 3^{n+1} \ge 3^{12} \iff n \ge 11.$ Logo n = 11.

- 2. (4 valores) Sejam Σ e Γ dois quaisquer alfabetos. Um homomorfismo $h: \Sigma^* \to \Gamma^*$ é uma função tal que: (i) $h(\varepsilon) = \varepsilon$; (ii) $\forall x, y \in \Sigma^*, h(xy) = h(x)h(y)$.
 - (a) Apresente uma definição indutiva de palavra reversa (w^{-1}) de uma palavra $w \in \Sigma^*$.

Solução:

$$w^{-1} = \begin{cases} \varepsilon & \text{se } w = \varepsilon \\ av^{-1} & \text{se } w = va, \text{ com } a \in \Sigma, v \in \Sigma^* \end{cases}$$

(b) Seja $h: \Sigma^* \to \Gamma^*$ um homomorfismo. Mostre que $\forall w \in \Sigma^*, h(w^{-1}) = h(w)^{-1}$.

Solução: Demonstração por indução estrutural sobre $w \in \Sigma^*$.

Caso base: Para $w = \varepsilon$,

$$\begin{split} h(w^{-1}) &= h(\varepsilon^{-1}) = h(\varepsilon) & \text{def. de palavra reversa} \\ &= \varepsilon & \text{def. de homomorfismo} \\ &= \varepsilon^{-1} & \text{def. de palavra reversa} \\ &= h(\varepsilon)^{-1} = h(w)^{-1} & \text{def. de homomorfismo} \end{split}$$

Passo indutivo: Considere-se que a propriedade é verdadeira para $v \in \Sigma^*$ e vamos

mostrar que é válida para w = va.

$$h(w^{-1}) = h((va)^{-1}) = h(av^{-1})$$
 def. de palavra reversa
$$= h(a)h(v^{-1})$$
 def. de homomorfismo
$$= h(a)h(v)^{-1}$$
 hipótese de indução
$$= (h(v)h(a))^{-1}$$
 def. de palavra reversa
$$= h(va)^{-1} = h(w)^{-1}$$
 def. de homomorfismo

- 3. (12 valores) Considere o alfabeto $\Sigma = \{a, b\}$.
 - (a) Determine um AFD completo reconhecedor de $L_1 = \{awb \mid w \in \Sigma^*\}.$

(b) Determine um AFD completo reconhecedor de $L_2 = \{w \in \Sigma^* \mid w \text{ tem dois } b\text{'s consecutivos}\}.$

(c) Determinize o AFND ε definido pela seguinte tabela de transições

Solução: Temos que: $fecho\varepsilon(q_0)=\{q_0,q_2\}$, $fecho\varepsilon(q_1)=\{q_1,q_2\}$, $fecho\varepsilon(q_2)=\{q_2\}$, $fecho\varepsilon(q_3)=\{q_3\}$. Assim a determinização do AFD dado é:

		1
$\underline{\hspace{1cm}}$	a	<u>b</u>
$\to *\{q_0,q_2\}$	$\{q_1,q_2,q_3\}$	$\{q_1,q_2\}$
$*\{q_1, q_2, q_3\}$	$\{q_2,q_3\}$	$\{q_2\}$
$*\left\{ q_{1},q_{2} ight\}$	$\{q_3\}$	Ø
$*\left\{ q_{2},q_{3} ight\}$	$\{q_2,q_3\}$	$\{q_2\}$
$*\{q_2\}$	$\{q_3\}$	Ø
$\{q_3\}$	$\{q_2\}$	$\{q_2\}$
Ø	Ø	Ø
	,	

(d) Construa o AFD mínimo equivalente ao AFD completo definido pela seguinte tabela de transições

Solução: Aplicando o algoritmo de determinização obtemos a tabela:

Assim as classes de equivalência do autómato quociente são: $[1] = [2] = [4] = \{1, 2, 4\},$ $[3] = [5] = \{3, 5\}, [6] = \{6\}, [\emptyset] = \{\emptyset\}.$

O AFD mínimo é assim:

4. (3 valores) Seja $A = (Q, \Sigma, \delta, s, F)$ um AFD completo e seja \equiv a relação de indistinguibilidade de estados em Q. O autómato quociente do autómato A pela relação \equiv é o autómato finito determinista $A_{\equiv} = (Q_{\equiv}, \Sigma, \delta_{\equiv}, [s], F_{\equiv})$ onde: (i) $Q_{\equiv} = \{[q] \mid q \in Q\}$; (ii) $F_{\equiv} = \{[f] \mid f \in F\}$; (iii)

 $\delta_{\equiv}:Q_{\equiv}\times\Sigma\to Q_{\equiv}$ é definida para $[q]\in Q_{\equiv}$ e $a\in\Sigma$ por $\delta_{\equiv}([q],a)=[\delta(q,a)]$. Mostre que o autómato quociente é reduzido, ou seja, que os estados em Q_{\equiv} são dois a dois distinguíveis.

Solução: Sejam $p, q \in Q$ dois quaisquer estados tais que $[p] \neq [q]$. Então existe uma palavra $w \in \Sigma^*$ que distingue p de q ou seja:

•
$$\delta^*(p, w) = f \in F \in \delta^*(q, w) = r \notin F$$

<u>ou</u>

•
$$\delta^*(p, w) = r \notin F \in \delta^*(q, w) = f \in F$$

Vamos mostrar que esta mesma palavra w também distingue [p] de [q].

Por indução estrutural usando a definição de função de transição estendida num AFD, mostrase que $\delta^*_{\equiv}([q],w) = [\delta^*(q,w)]$, para qualquer estado $q \in Q$ e palavra $w \in \Sigma^*$.

Assim,

• se
$$\delta^*(p,w)=f\in F$$
 e $\delta^*(q,w)=r\notin F$ então $\delta^*_{\equiv}([p],w)=[\delta^*(p,w)]=[f]\in F_{\equiv}$ e $\delta^*_{\equiv}([q],w)=[\delta^*(q,w)]=[r]\notin F_{\equiv}$.

<u>ou</u>

• se
$$\delta^*(p,w)=r\notin F$$
 e $\delta^*(q,w)=f\in F$ então $\delta^*_{\equiv}([p],w)=[\delta^*(p,w)]=[r]\notin F_{\equiv}$ e $\delta^*_{\equiv}([q],w)=[\delta^*(q,w)]=[f]\in F_{\equiv}$.