캡스톤디자인 Ⅱ 중간보고서

프로젝트명: 항공영상 기반의 제로샷 객체 탐지 연구 캡스톤 디자인Ⅱ, 중간보고서

Version 1.0

개발 팀원 명(팀리더): 박우진

김다빈

대표 연락처: 010-2360-2799

e-mail: 20201735@edu.hanbat.ac.kr

캡스톤 디자인 Ⅱ 중간보고서 내용

- 1. 요구사항 정의서에 명세된 기능에 대하여 현재까지 진척된 결과 및 그 내용을 기술하시오.
- 시각-언어 모델(VLM)을 기반으로 군용 객체 탐지 성능 향상을 위한 프롬프트 튜닝 실험을 수행하였다.

모델	이미지1	이미지2
Qwen_S	orner de la constant	
Qwen_M	ormore last	
Qwen_H		

- 데이터 부족 문제를 보완하기 위한 합성 기법을 활용해 군용 차량 이미지를 추가하였다.

- OVD 기반 모델들을 활용하여 군용 객체 탐지 성능을 실험적으로 비교하였으며, 그 결과는 아래와 같다.

model	class	mAP(0.5~0.95)
YOLO-World-S	military object	0.016
YOLO-World-L	military object	0.299
Grounding-DINO	military object	0.745

- VLM을 대상으로 다양한 프롬프트를 적용하여 군용 객체 제로샷 탐지 성능을 평가, 비교하였다.

model	method	class	mAP(0.5~0.95)	all mAP(0.5~0.95)
		T-80	0.121	
	외형적 정보를	K-2	0.149	
Qwen2.5-VL	기반으로 반환	BMP-3	0.223	0.264
	형식대로 탐지	K-200	0.178	
	0 1 1, — 11	Military Truck	0.384	

mo dol	model method		mAP(0.5~0.95)	all
model	method	thod class	IIIAF (0.5~0.95)	mAP(0.5~0.95)
	드론뷰 명시	T-80	0.155	
Qwen2.5-VL	+외형적으로 구별되는	K-2	0.342	l
		BMP-3	0.253	0.368
		K-200	0.277	
	특징만을 선별	Military Truck	0.556	

사용 모델

- Tianheng Cheng, et al. "YOLO-World: Real-Time Open-Vocabulary Object Detection" CVPR 2024.
- S. Liu, et al. "Grounding DINO: Marrying DINO with Grounded Pre-Training for Ope n-Set Object Detection" ECCV 2024.
- Shuai Bai, et al. "Qwen2.5-VL Technical Report" arXiv 2025.

- 2. 프로젝트 수행을 위해 적용된 추진전략, 수행 방법의 결과를 작성하고, 만일 적용과정에서 문제점이 도출되었다면 그 문제를 분석하고 해결방안을 기술하시오.
- 단일 OVD에서 클래스명, 서술형 프롬프트만으로는 성능 개선 폭이 제한되고 저해상도에서 세부가 소실되었다. 이에 VLM을 결합한 Two-Stage 구조로 전환하고, 객체 외형 특징을 반영한 프롬프트를 설계하였다.
- 탐지는 OVD가, 분류는 지식이 풍부한 VLM이 맡도록 역할을 분리했다. 1단계에서는 Grounding DINO가 localization 역할을 수행하여 안정적으로 박스를 획득하고, 2단계에서는 해당 ROI를 Qwen2.5-VL에 전달해 classification 역할을 수행하며 세부 클래스를 식별한다.

프로젝트명 : 항공영상 기반의 제로샷 객체 탐지 연구

소프트웨어 요구사항 정의서

Version 1.0

개발 팀원 명(팀리더):박우진 김다빈

대표 연락처: 010-2360-2799

e-mail: 20201735@edu.hanbat.ac.kr

목 차

1. 시스템 개요
2. 시스템 장비 구성 요구사항
3. 기능 요구사항
4. 성능 요구사항
5. 인터페이스 요구사항
6. 데이터 요구사항10
7. 테스트 요구사항10
8. 보안 요구사항10
9. 품질 요구사항10
10. 제약 사항
11. 프로젝트 관리 요구사항11

1. 시스템 개요

- Zero-shot 성능을 향상시키기 위한 Two-Stage 파이프라인 구조

2. 시스템 장비 구성요구사항

요구사항 고	유번호	ECR-001		
요구사항 명	칭	장비 요구사항		
요구사항 분	류	시스템 장비구성 요구사항	응락수준	필 수
	정의	모델 추론 장비		
요구사항 상세 설명	세부 내용	 장비 품목: GPU (NVIDIA A600 장비 수량: 2개 장비 기능: 모델의 연산 속도를 : 장비 성능 및 특징: 개당 VRAM 	높인다.	

3. 기능 요구사항

요구사항 고-	유번호	SFR-001		
요구사항 명	칭	AI 모델 개발		
요구사항 분	류	기능	응락수준	필 수
67.11 2 1	정의	OVD로 ROI를 검출한 뒤 VLM으로 세부 분류하는 end-to-end 파이라인 개발		nd-to-end 콰이프
요구사항 상세 설명	세부 내 용	- 1단계(OVD): OVD로 군용 객체(super-class) 탐지 - 2단계(VLM): VLM에 ROI 전달, 세부 클래스로 분류 - ROI 마진·해상도·threshold를 설정값으로 관리		

4. 성능 요구사항

요구사항 고-	유번호	PER-001		
요구사항 명	칭	처리 속도 및 시간		
요구사항 분	류 류	성능 요구사항	응락수준	필 수
٥그리하	정의	처리 속도 및 시간		
요구사항 상세 설명	세부 내용	- 이미지를 입력으로 받아 모델이 답변을 추론하는 시간을 의미함		

5. 인터페이스 요구사항

요구사항 고-	유번호	SIR-001		
요구사항 명	칭	대화형 컴퓨팅환경		
요구사항 분	류	사용자 인터페이스	응락수준	필 수
	정의	두 단계 제로샷 탐지를 위한 대화형	컴퓨팅환경 구현	
요구사항 상세 설명	세부 내용	- 사용자가 OVD(탐지)·VLM(분류) Jupyter(ipynb) 기반 인터페이스 - detector(OVD) · classifier(VLM 구성하고, 탐지/분류/평가를 인터되	제공 1) · evaluator 모	듈별 라이브러리로

6. 데이터 요구사항

요구사항 고유번호	DAR-001		
요구사항 명칭	드론뷰 군용 객체 데이터셋		
요구사항 분류	데이터	응락수준	필 수
요구사항 상세 설명	- 드론 시점 이미지 수집 후 cocc 후 JPG 파일과 JSON 파일로 저경		어노테이션 라벨링

7. 테스트 요구사항

요구사항 고유번호	TER-001		
요구사항 명칭	성능 테스트		
요구사항 분류	테스트	응락수준	필 수
요구사항 상세 설명	- mAP를 사용하여 드론뷰 데이터/ 따른 성능을 비교하여 평가	벳에 대한 OVD, VI	LM, Two-Stage에

8. 보안 요구사항

요구사항 고유번호	SER-001		
요구사항 명칭	보안지침 준수		
요구사항 분류	보안	응락수준	필 수
요구사항 상세 설명	- 군용 객체 데이터는 출처·라이선의 이터 이용정책에 따라 개발이 수학		및 저작관 관련 데

9. 품질 요구사항

요구사항 고유번호		QUR-001		
요구사항 명칭		데이터 품질관리		
요구사항 분류		품질	응락수준	필 수
	정의	품질관리(기술 관점)		
요구사항 상세 설명	세부 내용	- 데이터는 드론 시점으로 구성하고 포맷(JPG)을 통일해야함 데이터는 중복·손상·비정상 메타데이터가 없어야 함 - 바운딩박스/라벨 결측치가 없어야 하며, 서브클래스 명칭은 클래스 맵 핑표 와 일치해야 함.		

10. 제약 사항

요구사항 고유번호	COR-001		
요구사항 명칭	시스템 개발과 설계 및 구현 제약사항		
요구사항 분류	제약사항	응락수준	필 수
요구사항 상세 설명	- 현재 보유하여 활용 가능한 H/W, S/W를 최대한 활용함 - 대부분의 인공지능 모델 개발에 사용되는 Python(언어), PyTorch(프 레임워크)를 사용함		

11. 프로젝트 관리 요구사항

요구사항 고유번호	PMR-001		
요구사항 명칭	프로젝트 관리		
요구사항 분류	프로젝트 관리	응락수준	필 수
요구사항 상세 설명	- 세부 작업 분할 구조 : 1. 분석 - Two-Stage 제로샷 탐지의 범위, - 제로샷 탐지를 위한 기존의 방법 2. 데이터 수집 및 전처리 - 드론뷰 데이터셋 수집 - COCO 포맷으로 변환 후 중복/손 3. 시스템 설계 - OVD 모델과 VLM을 사용하여 저설계 4. 실험 - mAP를 사용하여 드론뷰 데이터 대한 비교 실험을 진행하여 성능 측 - 프로젝트 수행조직에 대한 구성, 김다빈 : 논문 및 자료 조사, 데이 박우진 : 논문 및 자료 조사, 데이 박우진 : 논문 및 자료 조사, 데이	론 조사 상된 이미지 제거 세로샷 탐지 성능을 셋에 대한 OVD, V 정 역할 터셋 전처리, 모델	향상 시키는 모델 LM, Two-stage에 코드 작성