MECE-410: Flight Dynamics

Spring 2014-2015 (2145)

Instructions: Use Matlab to solve all problems. Save and program your work in an m-file. Hand-in:

Project #2

Due: March 5th, 2015

- 1. a project write-up with clearly defined answers to each problem.
- 2. a print out copy of your m-file program.
- 3. a print out copy of clearly labeled Figures and Plots

Using the data shown below for a business jet aircraft model, determine the following longitudinal stability information at subsonic speeds:

- a. Wing contribution to the pitching moment: $C_{m_a} = -0.0997$, $C_{m_a} = 0.167$ (1/rad)
- b. Tail contribution to the pitching moment: $C_{m_0} = 0.1685$, $C_{m_0} = -1.1506$ (1/rad)
- c. Fuselage contribution to the pitching moment $C_{m_{o_f}} = -0.0164$, $C_{m_{\alpha_f}} = 0.4355$ (1/rad) or 0.0076 (1/deg)
- d. Total pitching moment: $C_{m_a} = 0.05243$, $C_{m_a} = -0.548$ (1/rad)
- e. Plot the various contributions and the total pitch moment versus angle-of-attack (please use on plot and use an angle-of-attack range from 0 to 10 degrees, the x-axis on your plot will be angleof-attack in degrees, remember: $C_{m_e} = C_{m_{e_e}} + C_{m_e} \alpha$)
- Estimate the stick fixed neutral point: $\frac{x_{NP}}{\overline{z}} = 0.41406$

Business Jet Aircraft Data

Wing characteristics:	Tail characteristics:	
$S = 542.5 \text{ (ft}^2\text{)}$	$S_t = 149 (\mathrm{ft}^2)$	
b = 53.75 (ft)	$b_t = 24.75 (\text{ft})$	
$\bar{c} = 10.93 \text{ (ft)}$	$\overline{c}_t = 6.5 \text{ (ft)}$	
$C_{m_{ac_w}} = -0.1$	$C_{L_{\alpha_t}} = 0.05934 \ (1/\text{deg})$	
$C_{L_{ta_w}} = 0.0583 \ (1/\text{deg})$	$i_t = -5 \text{ (deg)}$	
$C_{L_{o_w}} = 0.006$ ()	$\eta = 0.95$	
$i_w = 0$ (deg)	$l_t = 23.6$ (ft)	
$\alpha_{o_w} = -1 \text{ (deg)}$		

Fuselage characteristics:

Fuselage characteristics: Aircraft characteristics:
$$l_f = 58.6$$
 (ft) $x_{cg} = 0.25\overline{c}$ (ft) $x_{ac} = 7.2$ (ft) $x_{ac} = 0.2\overline{c}$ (ft) $x_{ac} = 0.2\overline{c}$ (ft)

Remember $\frac{d\varepsilon}{d\alpha} = \frac{2C_{L_{\alpha_w}}}{\pi AR_w}$ and $\varepsilon_o = \frac{2C_{L_{\alpha_w}}}{\pi AR_w}$ where $AR_w = \frac{b^2}{S}$, also use Figure 3.33 to find $\frac{d\varepsilon_u}{d\alpha}$ for segments 1-9 (don't worry about scaling the Figure for $C_{L_x} = 0.0583$ (1/deg), i.e. use the Figure directly without scaling). Your answer for $C_{m_{ac}}$ will be in units of (1/deg)

Business Jet Aircraft Data

Fuselage section (assuming 13 sections) characteristics:

Station	ΔX , (ft)	w_f , ft	i_f , (deg)
1	2.6	2.5	-3
2	2.6	4.2	-3
3	2.2	5.5	-10
4	2.2	6.3	-10
5	3.4	6.6	0
6	3.4	7.2	0
7	3.4	7.2	0
8	3.4	7.2	0
9 (wing location)	14.6	7.2	0
10	5.2	6.6	0
11	5.2	5.4	0
12	5.2	3.8	0
13	5.2	2.1	-4