DISENTANGLED REPRESENTATIONS

REFERENCE

Huang, Xun, et al.

"Stacked generative adversarial networks."

Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

OVERVIEW

▶ 조건이 부여된 생성기 출력을 위한 잠재 표현 분해 방식

- InfoGAN과는 달리
 - (노이즈 + 조건)을 학습하는 것이 아닌
 - GAN을 GAN의 스택으로 나눔
- ▶ 각각의 GAN은 자신만의 잠재 코드를 가지고
 - 일반적인 GAN처럼
 - ▶ 판별기-적대적 방식으로 독립적으로 훈련됨

STRUCTURE

- ▶ 인코더(Encoder)
 - ▶ 분류를 수행하는
 - 이리 학습된
 - Bottom-up DNN

- 생성기
 - ► Top-down의
 - 여러 생성기의 스택
- 각 GAN은
 - 고레벨의 특징과
 - 노이즈 벡터를 입력으로 함
 - 저레벨의 특징을 출력

- 각 GAN을
 - 독립적으로 학습한 다음
 - ▶ E0-G0 학습 후 E1-G1 ···
- 이후 End-to-end의 관점에서
 - 함께 학습

SGAN TRAIN

- ▶ 1. 각 GAN의 독립적 학습
- $L_{G_i} = \lambda_1 L_{G_i}^{adv} + \lambda_2 L_{G_i}^{cond} + \lambda_3 L_{G_i}^{ent}$

Adversarial loss

- Adversarial loss
- ightharpoonup 판별기 D_i 는 다음의 손실 함수로부터 학습:
 - $\mathcal{L}_{D_i} = \mathbb{E}_{h_i \sim P_{data,E}} \left[-\log D_i(h_i) \right] +$ $\mathbb{E}_{z_i \sim P_{z_i}, h_{i+1} \sim P_{data,E}} \left[-\log \left(1 D_i(G_i(h_{i+1}, z_i)) \right) \right]$
- lackbox 생성기 G_i 는 판별기 D_i 를 속이기 위해 다음의 손실 함수로부터 학습:
 - $\mathcal{L}_{G_i}^{adv} = \mathbb{E}_{h_{i+1} \sim P_{data,E}, z_i \sim P_{z_i}} [-\log(D_i(G_i(h_{i+1}, z_i)))]$

- Conditional loss
- ▶ 인코더로부터 고레벨 표현을 복구

Conditional loss

$$\mathcal{L}_{G_i}^{cond} = \mathbb{E}_{h_{i+1} \sim P_{data,E}, z_i \sim P_{z_i}}[f(E_i(G_i(h_{i+1}, z_i)), h_{i+1})]$$

- ▶ *f* 는 거리를 구하는 함수
 - 논문에서는 Euclidean distance

Entropy loss

- Entropy loss
- Conditional loss를 단순히 추가하는 것은 또다른 이슈를 가져옴
 - ullet 생성자 G_i 가 노이즈 z_i 를 무시하도록 학습하고
 - h_{i+1} 로부터 \hat{h}_i 를 결정론적으로 생성하도록 학습함

- Entropy loss
- 이러한 문제는 conditional GAN에서 종종 있어왔던 문제
- 어떻게 해결할 수 있을까?
 - 생성기에 노이즈를 더함
 - > 그러나 conditional Generator가 노이즈를 무시하게 되면서 실패
- 아직까지 이를 잘 다루는 정석적인 방법은 없음

- Entropy loss
- 이 문제를 다루기 위해
 - ▶ 조건부 엔트로피(conditional entropy) $H(\hat{h}_i \,|\, h_{i+1})$ 가 가능한 높아야(~=1) 함
- ightharpoonup 조건부 엔트로피 <math>H(Y|X)
 - ightharpoonup 어떤 확률변수 X가 다른 확률변수 Y의 값을 예측하는데
 - 도움이 되는지(~=0)를 측정할 수 있는 방법

- Entropy loss
- ullet 그러나 $H(\hat{h}_i \,|\, h_{i+1})$ 를 직접 최대화하기는 어렵기 때문에
- 대신에 조건부 엔트로피의
 - Variational lower bound를 최대화

- Entropy loss
- ▶ 보조(Auxiliary) 네트워크 Q_i 사용
 - > True posterior인 $P_i(z_i | \hat{h}_i)$ 를 추정
 - ▶ 특징 \hat{h}_i 가 주어졌을 때 z가 관측될 확률

- Entropy loss
- $Q_i = (z_i | \hat{h}_1)$
 - lackbox 대부분의 파라미터를 D_i 와 공유

Entropy loss

$$\mathcal{L}_{G_{i}}^{ent} = \mathbb{E}_{z_{i} \sim P_{z_{i}}} [\mathbb{E}_{\hat{h}_{i} \sim G_{i}(\hat{h}_{i}|z_{i})} [-\log Q_{i}(z_{i}|\hat{h}_{i})]]$$

SUMMARY

1. 각 GAN의독립적 학습

SGAN TRAIN

2. Joint training

SGAN TEST

▶ 레이블 y의 이미지 생성

SGAN TEST

▶ 레이블 y의 이미지 생성

Interpretable Disentangled Codes

RESULTS

RESULTS

MNIST

(a) SGAN samples (conditioned on (b) Real images (nearest neighbor) labels)

RESULTS

MNIST

- generated fc3 features)
- (c) SGAN samples (conditioned on (d) SGAN samples (conditioned on generated fc3 features, trained without entropy loss)

CONCLUSION

DISCUSSION AND FUTURE WORK

- SGAN
 - Top-down 접근법
- 이미지 분포를 추정하는 어려운 문제를
 - 상대적으로 쉬운 여러 문제로 분할

DISCUSSION AND FUTURE WORK

- ▶ GAN이 노이즈를 무시하는 문제를 해결
 - Entropy Loss
 - 이는 다른 솔루션에도 쓰일 수 있음

DISENTANGLED REPRESENTATIONS