

Module: Machine Learning (ML – SDSI)

- Course 4 -

Chapter 4: Neural Networks

Habib-Ellah GUERGOUR

Faculty of NTIC / TLSI Department

Contact: habib.guergour@univ-constantine2.dz

Université Constantine 2 2024/2025 Semester 2

Module: Machine Learning (ML – SDSI)

- Course 4 -

Chapter 4: Neural Networks

Habib-Ellah GUERGOUR

Faculty of NTIC / TLSI Department

Contact: habib.guergour@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
NTIC	TLSI	M1	SDSI

Université Constantine 2 2024/2025 Semester 2

Goals of the Chapter

- Introduce the **basic concepts** of neural networks.
- Understand neuron structure, layers, and activations.
- Learn the training process: forward pass, loss computation, backpropagation.
- Connect neural networks to the foundations of deep learning.

Main Titles

Introduction Biological Roots to Deep Learning How to build a neural network Forward Propagation & Activation Functions Backpropagation: The Core of Learning

Introduction

Introduction

Machine Learning vs Deep Learning

Introduction

Applications

Biological Inspiration

 Neurons are excitable cells connected to each other and whose role is to transmit information in our nervous system

From Neurons to Deep Learning

- Brain neurons → Artificial neurons (McCulloch-Pitts, 1943).
 - Binary threshold: Fires if weighted sum ≥ threshold.
 - No learning—just fixed logic.

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

- Learns weights from data (unlike fixed McCulloch-Pitts).
- Rule: Adjust weights to minimize classification errors.

Formula:

$$y = egin{cases} 1 & ext{if } \sum w_i x_i + b \geq 0, \ 0 & ext{otherwise.} \end{cases}$$

 <u>Limitation</u>: Only works for linearly separable data (XOR problem).

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

• Example: The model preforms well when the data is linearly separable.

$$z(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$$

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

- Example: The model is not at all capable of working with nonlinear data
- Is there a solution?

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

- Example: The model is not at all capable of working with nonlinear data.
- Is there a solution?

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

- Example: The model is not at all capable of working with nonlinear data.
- Is there a solution?

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

- Example: The model is not at all capable of working with nonlinear data.
- Feature Engineering

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

 Example: The model is not at all capable of working with nonlinear data.

Feature Engineering

The Perceptron and Its Limitations

Rosenblatt's Perceptron (1958):

 Example: The model is not at all capable of working with nonlinear data.

Feature Engineering

18

From Perceptron to Multi-Layer Networks

Problem:

 Single-layer perceptrons fail on non-linear problems (e.g., XOR).

Solution:

• Add hidden layers \rightarrow Multi-Layer Perceptron (MLP).

From Perceptrons to Multi-Layer Networks

Problem:

 Single-layer perceptrons fail on non-linear problems (e.g., XOR).

Solution:

• Add hidden layers \rightarrow Multi-Layer Perceptron (MLP).

How Do MLP (or Neural Networks) Learn?

How Do Neural Networks Learn?

Key Steps:

Forward Pass: Compute predictions.

$$\mathrm{Output} = f(\mathbf{W}\mathbf{x} + \mathbf{b})$$

- Loss Function: Measure error (e.g., Mean Squared Error).
- Backpropagation:
 - Adjust weights using gradient descent.
 - Not in early models (McCulloch-Pitts/Rosenblatt).

Example

Linear Model

Example

Decision Boundary

Example

Sigmoid function

Example

Summarize

$$z = w_1 x_1 + w_2 x_2 + b$$

$$a = \frac{1}{1 + e^{-z}}$$

$$\mathcal{L} = -\frac{1}{m} \sum_{i=1}^{m} y_i log(a_i) + (1 - y_i) log(1 - a_i)$$

$$W = W - \alpha \frac{\partial \mathcal{L}}{\partial W}$$

Notation

How to build a neural network

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{1}{m} \sum_{i=1}^{m} (a_i - y_i) x_1$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{1}{m} \sum_{i=1}^{m} (a_i - y_i) x_2$$

$$\frac{\partial \mathcal{L}}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (a_i - y_i)$$

Notation

How to build a neural network

Notation

How to build a neural network

Notation

How to build a neural network of 2 layers

Notation

How to build a neural network of 2 layers

$$z_1^{[1]} = w_{11}^{[1]} x_1 + w_{12}^{[1]} x_2 + b_1^{[1]}$$
$$a_1^{[1]} = \frac{1}{1 + e^{-z_1^{[1]}}}$$

$$z_2^{[1]} = w_{21}^{[1]} x_1 + w_{22}^{[1]} x_2 + b_2^{[1]}$$

$$a_2^{[1]} = \frac{1}{1 + e^{-z_2^{[1]}}}$$

$$z_1^{[2]} = w_{11}^{[2]} a_1^{[1]} + w_{12}^{[2]} a_2^{[1]} + b_1^{[2]}$$

$$a_1^{[2]} = \frac{1}{1 + e^{-z_1^{[2]}}}$$

Notation

How to build a neural network of 2 layers

Notation

How to build a neural network of N lavers

Plus le réseau est profond, plus il est capable d'apprendre des choses compliquées. Mais cela rend aussi l'apprentissage plus long.

Notation

Vectorization

Pour implémenter de tels modèles, il n'est pas pratique d'écrire les équations de chaque neurone... l'idéal est donc de

Notation

Vectorization

$$\begin{split} z_1^{[1]} &= w_{11}^{[1]} x_1 + w_{12}^{[1]} x_2 + b_1^{[1]} & z_1^{[2]} &= w_{11}^{[1]} a_1^{[1]} + w_{12}^{[2]} a_2^{[1]} + w_{13}^{[2]} a_3^{[1]} + w_{14}^{[2]} a_4^{[1]} + b_1^{[2]} \\ z_2^{[1]} &= w_{21}^{[1]} x_1 + w_{22}^{[1]} x_2 + b_2^{[1]} & z_2^{[2]} &= w_{21}^{[1]} a_1^{[1]} + w_{22}^{[2]} a_2^{[1]} + w_{23}^{[2]} a_3^{[1]} + w_{24}^{[2]} a_4^{[1]} + b_2^{[2]} \\ z_3^{[1]} &= w_{31}^{[1]} x_1 + w_{32}^{[1]} x_2 + b_3^{[1]} & z_3^{[2]} &= w_{31}^{[1]} a_1^{[1]} + w_{32}^{[2]} a_2^{[1]} + w_{33}^{[2]} a_3^{[1]} + w_{34}^{[2]} a_4^{[1]} + b_3^{[2]} \\ z_4^{[1]} &= w_{41}^{[1]} x_1 + w_{42}^{[1]} x_2 + b_4^{[1]} & z_4^{[2]} &= w_{41}^{[1]} a_1^{[1]} + w_{42}^{[2]} a_2^{[1]} + w_{43}^{[2]} a_3^{[1]} + w_{44}^{[2]} a_4^{[1]} + b_4^{[2]} \end{split}$$

$$z_1^{[3]} = w_{11}^{[3]} a_1^{[2]} + w_{12}^{[3]} a_2^{[2]} + w_{13}^{[3]} a_3^{[2]} + w_{14}^{[3]} a_4^{[2]} + b_1^{[3]} \\$$

Notation

Vectorization

$$z_{1}^{[1]} = w_{11}^{[1]}x_{1} + w_{12}^{[1]}x_{2} + b_{1}^{[1]}$$

$$z_{1}^{[2]} = w_{11}^{[1]}a_{1}^{[1]} + w_{12}^{[2]}a_{2}^{[1]} + w_{13}^{[2]}a_{3}^{[1]} + w_{14}^{[2]}a_{4}^{[1]} + b_{1}^{[2]}$$

$$z_{2}^{[1]} = w_{21}^{[1]}x_{1} + w_{22}^{[1]}x_{2} + b_{2}^{[1]}$$

$$z_{2}^{[2]} = w_{21}^{[1]}a_{1}^{[1]} + w_{22}^{[2]}a_{2}^{[1]} + w_{23}^{[2]}a_{3}^{[1]} + w_{24}^{[2]}a_{4}^{[1]} + b_{2}^{[2]}$$

$$z_{2}^{[2]} = w_{21}^{[1]}a_{1}^{[1]} + w_{22}^{[2]}a_{2}^{[1]} + w_{23}^{[2]}a_{3}^{[1]} + w_{24}^{[2]}a_{4}^{[1]} + b_{2}^{[2]}$$

$$z_{3}^{[2]} = w_{31}^{[1]}$$

$$z_{3}^{[2]} = w_{31}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{23}^{[2]}a_{3}^{[1]} + w_{24}^{[2]}a_{4}^{[1]} + b_{2}^{[2]}$$

$$z_{3}^{[2]} = w_{31}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[1]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[1]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[2]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[2]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[2]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[2]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[2]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_{4}^{[2]} = w_{41}^{[1]}a_{1}^{[1]} + w_{42}^{[2]}a_{2}^{[1]} + w_{43}^{[2]}a_{3}^{[1]} + w_{44}^{[2]}a_{4}^{[1]} + b_{4}^{[2]}$$

$$z_1^{[3]} = u Z^{[3]} = W^{[3]} \cdot A^{[2]} + b^{[3]} + b_1^{[3]} + b_1^{[3]}$$

Université Constantine 2 © 2024 / H.-E. GUERGOUR

Forward Propagation

- Forward propagation is the process by which input data passes through the network layer by layer to produce a prediction/output.
- General formula for one neuron:

$$z = \sum_{i=1}^n w_i x_i + b = \mathbf{w}^T \mathbf{x} + b$$
 $a = f(z)$

Where:

• x = input vector

w = weight vector

 \bullet b = bias

f = activation function

38

• a =output of the neuron

Forward Propagation – Layer by Layer

• For layer *l*:

$$\mathbf{z}^{[l]} = \mathbf{W}^{[l]} \mathbf{a}^{[l-1]} + \mathbf{b}^{[l]}$$
 $\mathbf{a}^{[l]} = f(\mathbf{z}^{[l]})$

- Repeat this computation through each layer until the output layer.
- Final output:

$$\hat{\pmb{y}} = \mathbf{a}^{[L]}$$

Activation Functions

 Without non-linear activation functions, the whole network acts like a linear model:

composition of linear functions is still linear

 Activation functions allow the model to capture nonlinear patterns.

Université Constantine 2 © 2024 / H.-E. GUERGOUR 40

Common Activation Functions

Function	Formula	Range
Sigmoid	$\sigma(z)=rac{1}{1+e^{-z}}$	(0, 1)
Tanh	$ anh(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$	(-1, 1)
ReLU	$\mathrm{ReLU}(z) = \max(0,z)$	[0, ∞)

Choosing the Right Activation Function

- **Sigmoid**: good for output layers in binary classification, but can cause vanishing gradients.
- Tanh: better than sigmoid in hidden layers, but still suffers from gradient issues.
- **ReLU**: standard for hidden layers in deep networks.
- Others (brief mention): Leaky ReLU, ELU, Softmax (for multi-class outputs)

Recall: Training of an Artificial Neuron

1. Define a Cost Function

$$\mathcal{L} = -rac{1}{m}\sum y imes \log(A) + (1-y) imes \log(1-A)$$

binary cross-entropy loss (also called log loss).

Recall: Training of an Artificial Neuron

2. Compute the Partial Derivatives

$$rac{\partial \mathcal{L}}{\partial W} = rac{1}{m} X^T \cdot (A-y) \qquad rac{\partial \mathcal{L}}{\partial b} = rac{1}{m} \sum (A-y)$$

These are the gradients of the loss function with respect to the parameters W and b.

Recall: Training of an Artificial Neuron

3. Update Parameters W and b
 (Gradient Descent Step)

$$W=W-lpharac{\partial \mathcal{L}}{\partial W} \qquad b=b-lpharac{\partial \mathcal{L}}{\partial b}$$

This is the gradient descent update rule, where α is the learning rate.

Backpropagation

it consists in tracing back how the Cost Function evolves from the last layer of the network all the way to the very first.

La Back-Propagation consiste à revenir en arrière pour comprendre comment la fonction coût évolue depuis la dernière couche du réseau jusqu'à la toute première.

Backpropagation (Example 2 layers)

$$Z^{[1]} = W^{[1]} \cdot X + b^{[1]}$$

$$A^{[1]} = \frac{1}{1 + e^{-Z^{[1]}}}$$

$$Z^{[2]} = W^{[2]} \cdot A^{[1]} + b^{[2]}$$

$$A^{[2]} = \frac{1}{1 + e^{-Z^{[2]}}}$$

$$\mathcal{L} = -\frac{1}{m} \sum y \times log(A^{[2]}) + (1 - y) \times log(1 - A^{[2]})$$

Université Constantine 2 © 2024 / H.-E. GUERGOUR 48

Steps:

1- Compute gradients w.r.t weights and biases

Each parameter $w_{ij}^{\left[C\right]}$ connects neuron j (previous layer) to neuron i (current layer):

$$rac{\partial \mathcal{L}}{\partial w_{ij}^{[C]}} = \delta_i^{[C]} \cdot a_j^{[C-1]}$$

$$rac{\partial \mathcal{L}}{\partial b_i^{[C]}} = \delta_i^{[C]}$$

matrix form

$$egin{aligned} rac{\partial \mathcal{L}}{\partial W^{[C]}} &= \delta^{[C]} \cdot (a^{[C-1]})^T \ & rac{\partial \mathcal{L}}{\partial b^{[C]}} &= \delta^{[C]} \end{aligned}$$

Steps:

2- Backpropagate the error to the previous layer

$$\delta^{[C-1]} = \left((W^{[C]})^T \delta^{[C]}
ight) \circ \sigma'(z^{[C-1]})$$

Where:

o is element-wise multiplication (Hadamard product),

 $oldsymbol{\sigma}'(z) = a^{[C-1]} \circ (1 - a^{[C-1]})$ for sigmoid.

Steps:

3. Update Parameters

Using learning rate α :

$$egin{aligned} W^{[C]} &:= W^{[C]} - lpha \cdot rac{\partial \mathcal{L}}{\partial W^{[C]}} \ b^{[C]} &:= b^{[C]} - lpha \cdot rac{\partial \mathcal{L}}{\partial b^{[C]}} \end{aligned}$$

Thank you for your attention...

Université Constantine 2 52