## GS543 Tutorial -2

A two-layered model response (for DC resistivity method) in isotropic media can be calculated using the following formula (TELFORD et al., 1990):

$$\rho_{a_{i}} = \rho_{1} \left[ 1 + 2p \sum_{m=1}^{\infty} k^{m} \left( \frac{1}{(r_{1}^{2} + 4m^{2}z^{2})^{\frac{1}{2}}} - \frac{1}{(r_{2}^{2} + 4m^{2}z^{2})^{\frac{1}{2}}} \right) \right]$$

$$- \frac{1}{(r_{3}^{2} + 4m^{2}z^{2})^{\frac{1}{2}}} + \frac{1}{(r_{4}^{2} + 4m^{2}z^{2})^{\frac{1}{2}}} \right]$$
Geometric
Factor

where  $\rho_1$  the resistivity of the first layer, z denotes the thickness of the first layer,  $r_1$  is the distance between  $C_1$  and  $P_1$  electrodes and it can be written as  $r_1 = |C_1P_1|$ . Similarly, the rest of the distances between the current and potential electrodes are  $r_2 = |P_1C_2|$ ,  $r_3 = |C_1P_2|$ , and  $r_4 = |P_2C_2|$ , respectively (Fig. 1). Quantity k can be calculated with  $k = \frac{(\rho_2 - \rho_1)}{(\rho_2 + \rho_1)}$  and p is given

$$p = \left\{ \begin{bmatrix} \frac{1}{r_1} - \frac{1}{r_2} \end{bmatrix} - \begin{bmatrix} \frac{1}{r_3} - \frac{1}{r_4} \end{bmatrix} \right\}^{-1}.$$
 (4)

m is a constant for summing variables which was chosen as 45 for this study. Thus, one can calculate a two-layered earth model response analytically using Eq. (3). Figure 1 shows a sketch of current and potential electrode configurations on the surface and a simple two-layered earth.



Figure 1: A sketch of current and potential electrode configuration and spacing on the earth surface

Write a Fortran program to compute the two-layer model response and complete the table accordingly.

| AB/2 | Pa | AB12 | Pq | AB 2   Sq |
|------|----|------|----|-----------|
| 1.5  |    | 40   |    | 300       |
| 2    |    | 50   |    | 350       |
| 3    |    | 60   |    | 400       |
| 4    |    | 80   |    | Soo       |
| 6    |    | (00  |    | 6001      |
| 8    |    | 120  |    | 700       |
| 10   |    | 140  |    | 800       |
| 18   |    | 160  |    | 900       |
| 20   |    | 180  |    | 1000      |
| 25   |    | 200  |    |           |
| 30   |    | 250  |    |           |

$$242 = C_1C_2 + P_1P_2$$

$$24 = C_1C_2 - P_1P_2$$

$$24 = C_1C_2 - P_1P_2$$

$$2$$