Mathematics for Economists Kapitel 2 – Analyse af flere variable

Eric Hillebrand

Institut for Økonomi og CREATES Aarhus University

Disposition Kapitel 2

- Indsættelser: Grænseværdier, kontinuitet, optimering af funktioner af en variabel, middelværdisætningen, Taylor formlen for funktioner af en variabel
- Partielle afledede, gradienter (2.1)
- Differentiabilitet (2.9)
- Taylor formlen for funktioner af flere variable (2.6)
- Implicit givne funktioner (2.7)
- Konvekse mængder (2.2)
- Konkave og konvekse funktioner (2.3/2.4)
- Kvasikonkave og -konvekse funktioner (2.5)

Eksempel

Betragt Cobb-Douglas produktionsfunktionen

$$Y(L, K) = AL^{\alpha}K^{\beta}$$
, $A, \alpha, \beta > 0$, $L, K > 0$,

på konstant niveau yo:

$$Y(L, K) = y_0 \Longleftrightarrow \underbrace{Y(L, K) - y_0}_{=:F(L, K)} = 0.$$

Eksempel

På niveau y_0 kan vi tegne isokvantkurven $\{(L, K)|Y(L, K) = y_0\}$ og skrive den som funktion $g: L \longmapsto K$, eller K = g(L). Derved har vi

$$F(L, K) = F(L, g(L)) = Y(L, g(L)) - y_0 = 0$$
 for alle L .

Hvad er den marginale substitutionsrate dK/dL?

$$\frac{dK}{dL} = \frac{dg(L)}{dL} \stackrel{IFT}{=} -\frac{D_L F(L, K)}{D_K F(L, K)} = -\frac{A\alpha L^{\alpha-1} K^{\beta}}{A\beta L^{\alpha} K^{\beta-1}} = -\frac{\alpha}{\beta} \frac{K}{L}.$$

Vi betragter en niveaukurve for $F:\mathbb{R}^2\to\mathbb{R}$ på $C\in\mathbb{R}$, med F kontinuert differentiabel:

$$f(x, y) := F(x, y) - C = 0$$

Ligningen bestemmer y = y(x) som en **implicit givet funktion** of x. (I Cobb-Douglas eksemplet, isokvantkurven K(L) er den implicit givne funktion.)

Figure 1 The graph of f(x, y) = 0

Figure 2 f(x, y) = 0 defines y as a function of x in the rectangle R.

Hvis $f(x_0,y_0)=0$ og $f_2'(x_0,y_0)\neq 0$, så definerer ligningen f(x,y)=0 det andet argument y som implicit givet funktion $y=\varphi(x)$ af det første argument x i nærheden af x_0 , med $y_0=\varphi(x_0)$, og med den afledede givet ved $y'=-f_1'(x,y)/f_2'(x,y)$.

Teorem (Implicit givne funktioner i et punkt)

Lad $a \in \mathbb{R}^k$, $b \in \mathbb{R}^m$, k, $m \in \mathbb{N}$, and r_1 , $r_2 > 0$. Lad

$$X_1 := \{ x \in \mathbb{R}^k : ||x - a|| < r_1 \},$$

$$Y_1 := \{ y \in \mathbb{R}^m : ||y - b|| < r_2 \},$$

og lad

$$F: X_1 \times Y_1 \longrightarrow \mathbb{R}^m,$$

$$(x, y) \longmapsto F(x, y),$$

$$F(a, b) = 0.$$

I punktet (a, b), lad F være differentiabel og den $m \times m$ matrix $D_y F(a, b)$ være invertibel.

Teorem (Implicit givne funktioner i et punkt)

Lad

$$g: X_1 \longrightarrow \mathbb{R}^m$$
, $x \longmapsto g(x)$, $g(a) = b$,

være en kontinuert funktion således, at $g(X_1) \subset Y_1$ og

$$F(x, g(x)) = 0$$
 for enhver $x \in X_1$.

Så er g differentiabel i $a \in \mathbb{R}^k$ og Jacobi matricen er givet ved

$$D_{x}g(a) = -D_{y}F(a, b)^{-1}D_{x}F(a, b).$$

Bemærk, at vi kun antager, at g er kontinuert. Det følger fra teoremet om implicit givne funktioner, at g også er differentiabel. De afledede matricer nævnt i teoremet er eksplicite

$$D_{x}g = \begin{bmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{k}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{m}}{\partial x_{1}} & \cdots & \frac{\partial g_{m}}{\partial x_{k}} \end{bmatrix} \in \mathbb{R}^{m \times k},$$

$$D_{x}F = \begin{bmatrix} \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{k}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial x_{1}} & \cdots & \frac{\partial F_{m}}{\partial x_{k}} \end{bmatrix} \in \mathbb{R}^{m \times k},$$

$$D_{y}F = \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}} & \cdots & \frac{\partial F_{1}}{\partial y_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial y_{1}} & \cdots & \frac{\partial F_{m}}{\partial y_{m}} \end{bmatrix} \in \mathbb{R}^{m \times m}.$$

I tilfældet k = m = 1.

$$D_x g = \frac{dg}{dx}, \ D_x F = \frac{\partial F}{\partial x}, \ D_y F = \frac{\partial F}{\partial y}.$$

Hvis vi forstærker antagelserne for teoremet til kontinuert differentiabilitet af F i (a, b), så får vi, at g ikke kun er differentiabel i et punkt, men i en omegn af punktet.

Teorem (Implicit givne funktioner i en omegn, 2.7.2)

Lad F være kontinuert differentiabel i $(a, b) \in \mathbb{R}^k \times \mathbb{R}^m$. Så er der omegne X_2 , Y_2 af $a \in \mathbb{R}^k$ og $b \in \mathbb{R}^m$ således, at

$$X_2 \subset X_1$$
,
 $Y_2 \subset Y_1$,
 $g: X_2 \longrightarrow Y_2$

og

$$F(x, g(x)) = 0$$
 for all $x \in X_2$.

Generaliseringen virker fordi den invertible matrix $D_yF(a,b)$ indeholder kontinuerte funktioner $\partial F_i/\partial y_j$. Det betyder, at D_yF ikke kun er invertibel i (a,b), men i en omegn, fordi hvis det $D_yF(a,b)\neq 0$ og denne matrix kun indeholder kontinuerte funktioner, så er det $D_yF(x,y)\neq 0$ for $(x,y)\in (X_2,Y_2)$ omegn af (a,b), fordi determinanten også er en kontinuert funktion.