6610402230 ASEN M745252

Quiz 4

The following table is a result from observing the behavior of a person whether he went out or stayed home given the two weather conditions (sunny or rainy) and the two options regarding his car status (car-broken or carworking)

- $y_i \in \{go out, stayhome\}$ $x_i^1 \in \{sunny, rainy\}$ $x_i^2 \in \{car broken, car working\}$

i	x_i^1	x_i^2	y_i
1	sunny	car-broken	go-out
2	rainy /	car-working /	go-out /
3	sunny	car-broken	go-out /
4	sunny	car-broken	go-out /
5	sunny	car-broken	go-out
6	sunny	car-working	stay home
7	rainy	car-working	stay home
8	rainy	car-broken	stay home
9	sunny	car-working	stay home
10	rainy	car-working	stay home

Assume that we are using Binomial distribution as the modeling distribution. You are to demonstrate solutions to the following questions.

- 1. Estimate P(y=go-out). P(y=go-out) = $\frac{1}{h} \stackrel{?}{k} = \frac{1}{10} \stackrel{?}{=} \frac{1}{2} \stackrel{?}{\times}$ 2. Estimate P(y=stay home). P(y=stay home) = $\frac{1}{h} = \frac{1}{h} = \frac{1}{10} \stackrel{?}{=} \frac{1}{2} \stackrel{?}{\times}$ 3. What is the estimate of P(y)? n. white wood turn not in Y | P(x=y) = $\frac{1}{h} = \frac{1}{10} \stackrel{?}{=} \frac{1}{2} \stackrel{?}{\times}$ 4. What is the estimate of P(x)? n. white wood turn not in Y | P(x=y) = $\frac{1}{h} = \frac{1}{10} \stackrel{?}{=} \frac{1}{2} \stackrel{?}{\times}$ 5. Estimate P(x = (rainy, car-working) and y=go-out). = $\frac{1}{h} = \frac{1}{10} \stackrel{?}{=} \frac$
- assumption. 8. By using Naive Bayes assumption, what would be the return of h(x =(sunny, car-broken))?

6. P(y = 90-out (X = Crainy, car working) PCY|XJ = PCX|Y)P(Y) $P(Y) = \frac{1}{2}$ $P(x) = \frac{1}{3} (x_1 = x_2) = \frac{3}{10}$ $P(Y|X) = \left(\frac{1}{5}\right)\left(\frac{1}{2}\right)\left(\frac{1}{5}\right) = \frac{1}{3} \times \text{duta}$ I_P(X= Craining, convorting) (y=goout) using Native Bays Assumption ! by the Native back Assumption - h(x) - argmax P(Y12) = argmax PC×14) PCY) (original buys rule) = arguar PCX(Y)PCY) (Novive boys assumption) P(ANB) all fecture ve independent = P(A) P(B) $P(x|y) = \frac{d}{11} P(x|y)$ PCX = (rainy, car norking) / y = go-out) = P(x=raing 1 y=go-oct) P(x=Cur working | y=go-oct) $= \underbrace{\frac{1}{3}}_{n} \underbrace{$ K=1 I(Yk=y) K=1 I(Yk=y) $= \left(\frac{1}{5}\right)\left(\frac{1}{5}\right) = \frac{1}{25} = 0.04$

by Naive buys assumption 8. hCx = (Sunny, car broken) h(x) = argmax P(y1x) = argmax PCX 14) PCY) (native buys assump) = argmax TIP(X,14)PCY) y

d=1

Di,7]

D det y = go-out
[] J = PC ×, 19) PC × 14) PCY) $= \left(\frac{4}{5}\right)\left(\frac{4}{5}\right)\left(\frac{1}{2}\right) = 0.32$ y - Stay home $= \left(\frac{1}{5}\right)\left(\frac{1}{5}\right)\left(\frac{1}{2}\right) = 0.02$ hc>) will return argmax PCYIX) Ans y = 90 - out &

106104 012220 YELD WARDER