TUGAS 1 PRAKTIKUM ANALISIS ALGORITMA

Disusun oleh:

Hasna Karimah

140810160020

PROGRAM STUDI S-1 TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN SUMEDANG

2019

Algoritma Gale-Shapley

Men's Preferences Profile

Victor Wyatt Xavier Yancey Zeus

Men 31 Telefelice31 Tollic						
o th	1 st	2 nd	3 rd	4 th		
Bertha	Amy	Diane	Erika	Clare		
Diane	Bertha	Amy	Clare	Erika		
Bertha	Erika	Clare	Diane	Amy		
Amy	Diane	Clare	Bertha	Erika		
Bertha	Diane	Amy	Erika	Clare		

Women's Preferences Profile

Amy Bertha Clare Diane Erika

o th	1 st	2 nd	3 rd	4 th
Zeus	Victor	Wyatt	Yancey	Xavier
Xavier	Wyatt	Yancey	Victor	Zeus
Wyatt	Xavier	Yancey	Zeus	Victor
Victor	Zeus	Yancey	Xavier	Wyatt
Yancev	Wvatt	7eus	Xavier	Victor

```
Initially all m \in M and w \in W are free
While there is a man m who is free and hasn't proposed to
every woman
  Choose such a man m
  Let w be the highest-ranked woman in m's preference list
      to whom m has not yet proposed
   If w is free then
      (m, w) become engaged
  Else w is currently engaged to m'
      If w prefers m' to m then
         m remains free
      Else w prefers m to m'
         (m, w) become engaged
         m' becomes free
     Endif
   Endif
Endwhile
Return the set S of engaged pairs
```

Code:

```
/* Hasna Karimah

Tugas Praktikum Analisis Algoritma - Worksheet 1
Stable Marriage Problem
5-3-2019
=====================*/
```

```
#include <iostream>
using namespace std;
int findIndex(string name){
    int resultIndex;
    if (name == "Victor" || name == "Amy")
        resultIndex = 0;
    else if (name == "Wyatt" || name == "Bertha")
        resultIndex = 1;
    else if (name == "Xavier" || name == "Clare")
        resultIndex = 2;
    else if (name == "Yancey" || name == "Diane")
        resultIndex = 3;
    else
        resultIndex = 4;
    return resultIndex;
int main()
    string men[5][2] = {
        {"Victor", "free"},
        {"Wyatt", "free"},
        {"Xavier", "free"},
        {"Yancey", "free"},
        {"Zeus", "free"},
    };
    string menPreference[5][5] = {
        {"Bertha", "Amy", "Diane", "Erika", "Clare" }, // Victor
        {"Diane", "Bertha", "Amy", "Clare", "Erika" }, // Wyatt
        {"Bertha", "Erika", "Clare", "Diane", "Amy" }, // Xavier
        {"Amy", "Diane", "Clare", "Bertha", "Erika" }, // Yancey
        {"Bertha", "Diane", "Amy", "Erika", "Clare" } // Zeus
    };
    string women[5][2] = {
        {"Amy", "free"},
        {"Bertha", "free"},
       {"Clare", "free"},
        {"Diane", "free"},
        {"Erika", "free"},
    };
    string womenPreference[5][5] = {
        {"Zeus", "Victor", "Wyatt", "Yancey", "Xavier" }, // Amy
        {"Xavier", "Wyatt", "Yancey", "Victor", "Zeus" }, // Bertha
```

```
{"Wyatt", "Xavier", "Yancey", "Zeus", "Victor" }, // Clare
        {"Victor", "Zeus", "Yancey", "Xavier", "Wyatt" }, // Diane
        {"Yancey", "Wyatt", "Zeus", "Xavier", "Victor" } // Erika
    string engaged[5][2] = {
       { "Amy", "?"},
       { "Bertha", "?"},
       { "Clare", "?"},
        { "Diane", "?"},
        { "Erika", "?"}
    };
   bool isSomeoneFree = true;
    int tries = 0;
    for (int i=0; i<5; i++){
        for (int j=0; j<5; j++){
            if (men[i][1] == "free"){
                if (women[ findIndex(menPreference[i][j]) ][1] == "free" ){
                    men[i][1] = "engaged";
                    women[ findIndex(menPreference[i][j]) ][1] = "engaged";
                    engaged[ findIndex(menPreference[i][j]) ][1] = men[i][0];
                    cout<<engaged[ findIndex(menPreference[i][j]) ][1] <<" with "</pre>
                        <<engaged[ findIndex(menPreference[i][j]) ][0]</pre>
                        <<" engaged!" <<endl;</pre>
                    isSomeoneFree = false;
                    break;
                else {
                    for (int k=0; k<5; k++){
                        if ( womenPreference[ findIndex(menPreference[i][j]) ][k]
==
                            engaged[ findIndex(menPreference[i][j]) ][1] )
                            break;
```

```
if ( womenPreference[ findIndex(menPreference[i][j]) ][k]
== men[i][0]
                              && k < 5){
                              cout<<engaged[ findIndex(menPreference[i][j]) ][1]</pre>
<<" with "
                                  <<engaged[ findIndex(menPreference[i][j]) ][0]</pre>
                                  <<" break apart! then ";</pre>
                              men[ findIndex(engaged[
findIndex(menPreference[i][j]) ][1] = "free";
                              men[i][1] = "engaged";
                              women[ findIndex(menPreference[i][j]) ][1] =
'engaged";
                              engaged[ findIndex(menPreference[i][j]) ][1] =
men[i][0];
                              cout<<engaged[ findIndex(menPreference[i][j]) ][1]</pre>
<<" with "
                                  <<engaged[ findIndex(menPreference[i][j]) ][0]</pre>
                                  <<" engaged!" <<endl;</pre>
                              isSomeoneFree = true;
             else
                 break;
        }
        Tries++;
        if (isSomeoneFree == true && i == 5 - 1 )
            i = -1;
    if (isSomeoneFree == false){
        cout<<endl <<endl</pre>
             <<"Stable couple are : "<<endl<<endl;
        for(int i=0; i<5; i++){
             cout<<engaged[i][1] <<" engaged with "</pre>
                <<engaged[i][0] <<endl;</pre>
```

```
}
}
return 0;
}
```

Output:

```
Victor with Bertha engaged!
Wyatt with Diane engaged!
Victor with Bertha break apart! then Xavier with Bertha engaged!
Yancey with Amy engaged!
Wyatt with Diane break apart! then Zeus with Diane engaged!
Yancey with Amy break apart! then Victor with Amy engaged!
Wyatt with Clare engaged!
Yancey with Erika engaged!

Stable couple are :

Victor engaged with Amy
Xavier engaged with Bertha
Wyatt engaged with Clare
Zeus engaged with Diane
Yancey engaged with Erika
```

1		4	
1.		4.	m = Yancey
	victor → Bertha		Yancey → Amy
	if (Bertha == free) //True		If (Amy == free) //true
	(Victor, Bertha)		(Yancey, Amy)
	Man free:		Man free:
	Wyatt		Victor
	Xavier		Zeus
	Yancey		Women free:
	Zeus		Clare
	Women free:		Erika
			Linu
	Amy Clare	5	m = Zeus
		3.	
	Diane		Zeus → Bertha
	Erika		If (Bertha == free) //false
			Else
2.	m = wyatt		If (bertha prefer Xavier) // true
	wyatt → Diane		(Xavier, Bertha)
	if (Diane == free) //true		Zeus free
	(wyatt, diane)		Man free:
	Man free:		Victor
	Xavier		Zeus
	Yancey		Women free:
	Zeus		Clare
	Women free:		Erika
	Amy		
	Clare	6.	m = Victor
	Erika		Victor → Amy
			If (Amy == free) //false
3.	m = Xavier		Else
	Xavier → Bertha		If (amy prefer yancey) //false
	If (bertha == free) //false		Else (amy prefer victor) //true
	Else		(Victor, Amy)
	If (bertha prefer victor) //false		Yancey free
	Else (bertha prefer Xavier)		Man free:
	//true		Yancey
			Zeus
	(Xavier, bertha)		
	Victor free		Women free:
	Man free:		Clare
	Victor		Erika
	Yancey		
	Zeus		
	Women free:	7.	m = Zeus
	Amy		Zeus → Diane
	Clare		If (Diane == free) //false
	Erika		Else
			If (Diane prefer wyatt) //false
			Else (Diane prefer zeus) //true
			Disc (Diane prefer Zeus) // true

	(Zeus, Diane)	Erika
	Wyatt free	
	Man free:	11. $m = wyatt$
	Wyatt	wyatt → Amy
	Yancey	if (amy == free) //false
	Women free:	else
	Clare	if (amy prefer victor) //true
	Erika	(Victor, Amy)
		Wyatt free
8.	m = Yancey	Man free:
	yancey → Diane	Wyatt
	if (diane == free) //false	
	else	Women free:
	if (diane prefer zeus) //true	Erika
	(Zeus, Diane)	
	Yancey free	12. $m = wyatt$
	Man free:	wyatt → Clare
	Wyatt	if (clare == free) //false
	Yancey	else
	Women free:	if (clare prefer yancey) //false
	Clare	else (clare prefer wyatt) //true
	Erika	(Wyatt, Clare)
		Yancey free
9.	m = wyatt	Man free:
	wyatt → bertha	Yancey
	if (bertha == free) // false	
	else	Women free:
	if (bertha prefer Xavier) //true	Erika
	(Xavier, Bertha)	
	Wyatt free	13. $m = yancey$
	Man free:	yancey -> Erika
	Wyatt	if (Erika == free) //true
	Yancey	(Yancey, Erika)
	Women free:	
	Clare	Man free:
	Erika	-
		Women free:
10.	m = yancey	-
	yancey → clare	
	if (clare == free) //true	Jadi pasangannya :
	(Yancey, Clare)	X77
		• Victor, Amy
	Man free:	• Xavier, bertha
	Wyatt	• Wyatt, Clare
		 Zeus, Diane
	Women free:	 Yancey, Erika
	TO OHIOH HOU.	

Pembuktian Algoritam G-S

Anda diminta untuk membuktikan algoritma G-S benar dengan menjawab pertanyaan berikut:

1. **Fakta** (1.1): Seorang wanita tetap bertunangan dari titik di mana dia menerima proposal pertamanya; dan urutan mitra yang bertunangan dengannya menjadi lebih baik dan lebih baik lagi (hal ini sesuai dengan daftar preferensi wanita). -> tidak perlu dipertanyakan

Benar. Wanita langsung bertunangan dari titik dimana dia menerima proposal pertamanya.

2. **Fakta** (1.2): Urutan wanita yang dilamar pria lebih buruk dan lebih buruk lagi (hal ini sesuai dengan daftar preferensi pria). -> tidak perlu dipertanyakan

Benar. Daftar preferensi pilihan tiap pria sudah berurut secara descending.

3. **Teorema** (1.3): Algoritma G-S berakhir setelah paling banyak n² iterasi menggunakan While Loop. Buktikan!

Paling banyak n² iterasi didapat dari hasil perkalian antara jumlah pria dan wanita yang ada didalam himpunan. Aturan yang menyebutkan setiap pria akan mengajukan proposal ke, maksimal, seluruh wanita yang ada memberikan pencerahan bahwa jumlah maksimal proposal yang diajukan adalah jumlah pria dikali jumlah wanita.

4. **Teorema (1.4):** Jika seorang pria bebas di beberapa titik dalam eksekusi algoritma, maka ada seorang wanita yang belum dia ajak bertunangan. Buktikan!

Dapat dibuktikan dengan kontradiksi. Misal ada waktu tertentu dalam pelaksanaan algoritma ketika seorang pria single, namun telah mengusulkan kepada setiap wanita. Ini berarti saat ini, setiap wanita telah dipasangkan setidaknya satu kali. Ada n wanita yang bertunangan dan ada n pria yang bertunangan, yang berarti bahwa tidak mungkin ada orang yang masih single jika setiap n sudah berpasangan.

5. **Teorema (1.5):** Himpunan S yang dikembalikan saat terminasi adalah perfect matching Buktikan!

Pria pasti hanya akan melamar apabila belum berpasangan atau pasangan sebelumnya tidak cocok. Sedangkan wanita akan selalu memilih pria dengan preferensi teratas untuk bertunangan dengannya. Baik pria dan wanita, prinsip mereka adalah melamar sesuai urut preferensi. Dengan itu Himpunan S adalah perfect matching dikarenakan teori tersebut.

6. **Teorema (1.6):** Sebuah eksekusi algoritma G-S mengembalikan satu set pasangan S. Set S adalah pasangan yang stabil. Buktikan!

Tidak ada pria yang bisa ditolak oleh semua wanita. Wanita pun harus mendapatkan satu pria dan ia hanya dapat menolak lamaran ketika ada pria yang lebih tinggi preferensinya dibandingkan pria sebelumnya. Setiap iterasi dari loop sementara melibatkan tepat satu proposal dan pria tidak akan melamar wanita yang sama dua kali.