Field and Galois Theory

Lectures by Uzi Vishne Summary by Ari Feiglin (ari.feiglin@gmail.com)

Contents

1	Field Extensions and Minimal Polynomials	1
	1.1 Dimensions of Field Extensions	1
	1.2 Constructing Fields	1
	1.3 Splitting Fields	4

1 Field Extensions and Minimal Polynomials

1.1 Dimensions of Field Extensions

1.1.1 Definition

Suppose F and K are fields such that $F \subseteq K$. Then the pair is called a **field extension** and is denoted

Notice that if K/F is a field extension, then K can be viewed as a F-linear space, and thus has a dimension. We denote this dimension $[K:F] := \dim_F K$, this is unsurprisingly called the dimension (or degree of the extension. An extension is called *finite* if its dimension is finite. Immediately we can prove a useful theorem about dimensions of extensions:

1.1.2 Theorem

Suppose K/F is a field extension and V a K-vector space. Then by viewing V as an F-linear space:

$$\dim_F V = \dim_K V \cdot [K:F]$$

Proof: let B_1 be a basis for V relative to K and B_2 be a basis for K relative to F. Then define B= $\{\alpha v \mid \alpha \in B_2, v \in B_1\} \subseteq V$, which we claim is a basis for V relative to F. Firstly, it is linearly independent: suppose $\alpha_1 v_1, \dots, \alpha_n v_n$ are in B and β_1, \dots, β_n are in F such that

$$\beta_1 \alpha_1 v_1 + \dots + \beta_n \alpha_n v_n = 0$$

Since B_1 is a basis for V, then $\beta_i \alpha_i = 0$ for all i, and since B_2 is a basis it has no zeroes, so $\beta_i = 0$ for all i, meaning B is linearly independent.

B spans V since if $v \in B$ then $v = \sum_{i=1}^{n} \alpha_i v_i$ for $v_i \in B_1$ and $\alpha_i \in K$, and so each α_i can be written as the linear combination of elements in B_2 . So all in all v can be written as the linear combination of elements in B. And so B is a basis of V, and $(\alpha, v) \mapsto \alpha v$ is a bijection from $B_1 \times B_2$ to B: it obviously is surjective and if $\alpha_1 v_1 = \alpha_2 v_2$ then $\alpha_1 = \alpha_2$ and $v_1 = v_2$ since B_1 is linearly independent. Thus V is a basis of cardinality $|B_1 \times B_2| = \dim_K V \cdot [K:F]$ as required.

In particular if E/K/F are field extensions then

$$[E:F] = [E:K] \cdot [K:F]$$

this is called the *multiplicity of dimension*.

1.2 Constructing Fields

Recall the following methods of constructing fields:

- (1) If R is a commutative ring and $M \triangleleft R$ is a maximal ideal that R/M is a field. In particular if F is a field, R = F[x], and p is an irreducible polynomial then (p) is maximal and so F[x]/(p) is a field.
- (2) If F is a field, so is the field of rational functions:

$$F \subseteq F(x) := \left\{ \frac{f(x)}{g(x)} \mid f, g \in F[x], g \neq 0 \right\}$$

- (3) If C is a chain of fields (meaning that for every $F, F' \in C$ either $F \subseteq F'$ or $F' \subseteq F$), then $\bigcup_{F \in C} F$ is also a field (the theory of fields is *inductive*). So for example $F(\lambda_1, \lambda_2, ...)$ is a field, the union of the chain $F_n = F(\lambda_1, \dots, \lambda_n)$, the field of rational functions over F_{n-1} .
- (4) If C is a chain of fields, then $\bigcap_{F \in C} F$ is also a field.

1.2.1 Definition

Let K/F be a field extension and $a \in K$, then denote F(a) the smallest subfield of K containing both F and a.

It is not hard to see that

$$F(a) = \left\{ \frac{f(a)}{g(a)} \mid f, g \in F[x], g(a) \neq 0 \right\}$$

Though we can actually get a simpler structure for F(a).

1.2.2 Definition

Let K/F be a field extension with $a \in K$, then define the **evaluation homomorphism** at a to be the homomorphism $\psi_a: F[x] \longrightarrow K$ defined by $\psi_a(s) = s$ for $s \in F$ and $\psi_a(x) = a$. This uniquely defines

$$\psi_a \left(\sum \alpha_i x^i \right) = \sum \alpha_i a^i$$

1.2.3 Definition

Let K/F be a field extension, then $a \in K$ is **transcendental** if the kernel of the evaluation homomorphism is trivial: ker $\psi_a = 1$. Otherwise a is **algebraic**.

If a is transcendental then ker $\psi_a = 1$ and so by the isomorphism theorem

$$\operatorname{Im}\psi_a = \{f(a) \mid f \in F[x]\} = F[a] \cong F[x] / \ker \psi_a \cong F[x]$$

In fact we can extend ψ_a to a homomorphism $F(x) \longrightarrow F(a)$, and we similarly get an isomorphism $F(x) \cong F(a)$. Thus in the case that a is transcendental, we get

$$\begin{array}{cccc} F &\subseteq & F[a] &\subseteq & F(a) &\subseteq & K \\ &\cong &\cong & \cong \\ && F[x] && F(x) \end{array}$$

Otherwise, suppose a is algebraic. Since F[x] is a Euclidean domain, it is a PID, and therefore every ideal is a prime ideal. In particular $\ker \psi_a$ must be generated by some polynomial h_a . This means that $\ker \psi_a = (h_a) = h \cdot F[x]$, and so $h_a(a) = 0$ and if f(a) = 0 as well then h_a divides f. h_a is therefore called the *minimal polynomial* of a.

Now if $n = \deg h$ then $F[a] = \operatorname{span}\{1, a, \ldots, a^{n-1}\}$ since if $f \in F[x]$ then $f = h_a q + r$ for $\deg r < n$ by Euclidean division, and so f(a) = r(a). And r(x) is in $\operatorname{span}\{1, \ldots, a^{n-1}\}$ due to its dimension being at most n-1. Thus $\{1, \ldots, a^{n-1}\}$ spans F[a], and it is a basis since any linear combination cannot be zero as $h_a(x)$ is minimal and has degree n. Therefore F[a] is a F-linear space of dimension n.

Notice that

$$F[x]/(h_a) = F[x]/\ker \psi_a \cong \operatorname{Im} \psi_a = \{f(a) \mid f \in F[x]\} = F[a] = \operatorname{span}\{1, \dots, a^{n-1}\} \subseteq K$$

Since K is an integral domain, so is F[a]. Therefore (h_a) is a prime ideal, since a quotient ring is an integral domain iff the ideal is prime. Since F[x] is a PID, prime and maximal ideals are the same, so (h_a) is maximal and therefore F[a] is a field.

So we have proven

1.2.4 Proposition

Let K/F be a field extension and $a \in K$ algebraic in F. Let h_a be a's minimal polynomial over F, then

- (1) h_a is irreducible,
- F[a] is a field,
- $[F[a]:F] = n = \deg h_a \text{ and has a basis } \{1, a, \dots, a^{n-1}\}.$

In particular we have shown that when a is algebraic, F(a) = F[a].

1.2.5 Proposition

Suppose $F \subseteq K$ where F is a field and K is an integral domain. Further suppose [K:F] is finite. Then every element of K is algebraic and K is a field.

Proof: let $a \in K$, then

$$[K:F] = [K:F[a]] \cdot [F[a]:F]$$

meaning [F[a]:F] must be finite and so a must be algebraic (as otherwise $F[a]\cong F[x]$ which has infinite degree). Since F[a] is a field, it must have a multiplicative inverse for a, meaning K is a field.

Notice that $[F[a,b]:F[a]] \leq [F[b]:F]$, since the minimal polynomial of b relative to F, h_b , is also a zeroing a polynomial of b over F[a]. And so $[F[a,b]:F[a]] \leq \deg h_b = [F[b]:F]$. Thus we have that by multiplicity

$$[F[a,b]:F] = [F[a,b]:F[a]] \cdot [F[a]:F] \leq [F[b]:F] \cdot [F[a]:F]$$

And inductively we can show

1.2.6 Proposition

Suppose K/F is a field extension and a_1, \ldots, a_n then

$$[F[a_1, \dots, a_n] : F] \le \prod_{i=1}^n [F[a_i] : F]$$

1.2.7 Definition

Call a field extension K/F algebraic if every $a \in K$ is algebraic over F.

1.2.8 Lemma

Suppose $F_3/F_2/F_1$ are field extensions such that F_2/F_1 is algebraic and $a \in F_3$ is algebraic over F_2 . Then it is also algebraic over F_1 .

Proof: there exists an $f \in F_2[x]$ such that f(a) = 0. Suppose $f = \sum b_i x^i$, then a is algebraic over $F_1[b_0, \dots, b_n]$. Then

$$[F_1[b_0,\ldots,b_n,a]:F_1]=[F_1[b_0,\ldots,b_n,a]:F_1[b_0,\ldots,b_n]]\cdot [F_1[b_0,\ldots,b_n]:F_1]$$

and since a is algebraic over $F_1[b_0,\ldots,b_n]$ and $b_i\in F_2$ are algebraic over F_1 , the right-hand side is finite. Thus a is algebraic over F_1 by the left-hand side, as required.

1.2.9 Theorem

Let K/F be a field extension, then

$$Alg_F(K) := \{a \in K \mid a \text{ is algebraic over } F\}$$

is a field. Furthermore, every element in $K \setminus \mathrm{Alg}_F(K)$ is transcendental over $\mathrm{Alg}_F(K)$.

Proof: notice that $F[a \cdot b]$, $F[a + b] \subseteq F[a, b]$ and $[F[a, b] : F] \le [F[a] : F] \cdot [F[b] : F] < \infty$ for $a, b \in \operatorname{Alg}_F(K)$. So $\operatorname{Alg}_F(K)$ is closed under addition and multiplication. It is also obviously closed under additive inverses since F[-a] = F[a]. And since F[a] is a field, $a^{-1} \in F[a]$ so $F[a^{-1}] \subseteq F[a]$ and thus $[F[a^{-1}] : F] \le [F[a] : F] < \infty$, so a^{-1} is algebraic over F. So $\operatorname{Alg}_F(K)$ is indeed a field.

Now suppose $a \in K \setminus \operatorname{Alg}_F(K)$ is algebraic over $\operatorname{Alg}_F(K)$. Then by the above lemma, it is algebraic over F since $\operatorname{Alg}_F(K)/F$ is trivially algebraic. But then $a \in \operatorname{Alg}_F(K)$ by definition, in contradiction.

1.3 Splitting Fields

1.3.1 Proposition

Let F be a field and $f \in F[x]$ be an irreducible polynomial. Then there exists a field extension K/F such that f has a root in K and $[K:F] = \deg f$.

Proof: since f is irreducible, (f) is maximal (since F[x] is a PID so prime ideals are maximal). Thus $K = \frac{F[x]}{f}$ is a field. The dimension of K is deg f since it has a basis $\{1, x, \ldots, x^{\deg f - 1}\}$.

By the second isomorphism theorem,

$$F/_{F\cap(f)}\cong F+(f)/_{(f)}\subseteq F[x]/_{(f)}=K$$

But $F \cap (f) = 0$, and so $F/F \cap (f) = F/0 \cong F$. Thus we can embed F into K, so we can view K/F as a field extension.

Now, define $\alpha = x + (f)$, and suppose $f(x) = \sum_{i=0}^{n} a_i x^i$ for $a_i \in F$. Then

$$f(\alpha) = \sum_{i=0}^{n} a_i (x + (f))^i = \sum_{i=0}^{n} a_i (x^i + (f)) = \sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} a_i (f) = f + (f) = 0$$

Thus α is a root of f in K.

1.3.2 Corollary

Let F be a field and $f \in F[x]$ a polynomial. Then there exists a field extension K/F such that f has a root in K and $[K:F] \leq \deg f$.

Proof: take an irreducible factorization of f and apply the above result to one of its factors.

1.3.3 Definition

Suppose F is a field and $f \in F[x]$. Then f splits in F if there exist $\alpha_1, \ldots, \alpha_n \in F$ such that $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$.

1.3.4 Proposition

Let $f \in F[x]$ then there exists a field extension K/F such that f splits in K and $[K:F] \leq (\deg f)!$.

Proof: by induction on $n = \deg f$. For n = 1, f is linear and thus has a root so we can take K = F. Now suppose $\deg f = n + 1$, then by corollary 1.3.2 there exists a field extension K_0/F such that f has a root in K_0 and $[K_0:F] \leq n+1$. Now suppose $\alpha \in K_0$ is a root of f, then there exists a $g(x) \in K_0[x]$ such that $(x - \alpha)g(x) = f(x)$ and so $\deg g \leq n$. Therefore inductively there is a field extension K/K_0 which splits g(x) and thus f(x) and

$$[K:F] = [K:K_0] \cdot [K_0:F] \le n! \cdot (n+1) = (n+1)!$$

as required.

1.3.5 Definition

Suppose K/F is a field extension and $\varphi: F \longleftrightarrow E$ is an embedding into some other field E. Then an **extension** of φ to K is an embedding $\overline{\varphi}: K \hookrightarrow E$ such that $\overline{\varphi}|_F = \varphi$ ($\overline{\varphi}$ is equal to φ on F). Let us then

$$\eta_{K/F}^{\varphi} := \#\{\overline{\varphi} \mid \overline{\varphi} \text{ is an extension of } \varphi\}$$

In other words, an extension is an embedding $\overline{\varphi}$ such that the following diagram commutes:

Where $\iota: F \longrightarrow K$ is the inclusion embedding.

Suppose f, g are two field homomorphisms $F(a_1, \ldots, a_n) \longrightarrow K$ such that f(x) = g(x) for all $x \in F$ and $f(a_i) = g(x)$ $g(a_i)$ for $1 \leq i \leq n$. Then f(x) = g(x) on all of $F(a_1, \ldots, a_n)$. This is since $\{r \in F(a_1, \ldots, a_n) \mid f(r) = g(r)\}$ is a field containing F and a_1, \ldots, a_n and thus $F(a_1, \ldots, a_n)$.

In particular if $\varphi: F \longrightarrow E$ is an embedding, then an extension $\overline{\varphi}: F(a_1, \ldots, a_n) \longrightarrow E$ is defined entirely by its image on a_1, \ldots, a_n .

1.3.6 Proposition

Suppose $K = F[\alpha]$, then $\eta_{K/F}^{\varphi}$ is equal to the number of distinct roots the minimal polynomial of α has in E. Formally, if $h(x) = \sum_{i=0}^n a_i x^i$ then define $\hat{h}(x) = \sum_{i=0}^n \varphi(a_i) x^i$, and $\eta_{K/F}^{\varphi}$ is equal to the number of roots $\hat{h}(x)$ has in E.

In particular $\eta_{K/F}^{\varphi}$ is independent of the choice of φ .

Proof: let $h(x) \in F[x]$ be the minimal polynomial of α , and $\overline{\varphi}$ be an extension of φ to K, then

$$\hat{h}(\overline{\varphi}(\alpha)) = \sum_{i=0}^{n} \varphi(a_i)\overline{\varphi}(\alpha)^i = \sum_{i=0}^{n} \overline{\varphi}(a_i)\overline{\varphi}(\alpha^i) = \overline{\varphi}\left(\sum_{i=0}^{n} a_i\alpha^i\right) = \overline{\varphi}(h(\alpha)) = \overline{\varphi}(0) = 0$$

Thus $\overline{\varphi}(\alpha)$ must be a root of h(x), and as explained above extensions of embeddings to $K = F[\alpha]$ are dependent only on their image of α . So there are at most as many extensions as there are distinct roots of \hat{h} .

Now suppose $\beta \in E$ is a root of \hat{h} , then we claim that there exists an extension with $\overline{\varphi}(\alpha) = \beta$. Indeed, $\alpha \notin F$ and β is not in the image of φ (as then $0 = \hat{h}(\varphi(a)) = \varphi(\hat{h}(a))$ so a is a root of $\hat{h}(x)$ but \hat{h} is irreducible), so this is well-defined.

1.3.7 Definition

A polynomial f which splits over E is called **separable** over E if its linear factors are all distinct (ie. it has $n = \deg f$ distinct roots in E).

When we have an embedding $\varphi: F \hookrightarrow E$ and a polynomial $f \in F[x]$ and we say that f has some property in E (eg. splits over E, separable over E), then we mean that its image under φ has that property. Meaning if $f(x) = \sum_{i=0}^{n} a_i x^i$ then $\sum_{i=0}^{n} \varphi(a_i) x^i$ has said property.

1.3.8 Theorem

Let K/F be a finite extension, and let $\varphi: F \longrightarrow E$ be an embedding. Then

- $(\mathbf{1}) \quad \eta^E_{K/F} \leq [K:F];$
- (2) if $K = F[\alpha_1, \ldots, \alpha_n]$ where α_i are roots of some $f \in F[x]$ which splits over E, then $1 \leq \eta_{K/F}^{\varphi}$.

(3) if f is also separable over E, then $\eta_{K/F}^{\varphi} = [K:F]$.

Proof: since K/F is finite, we have that $K = F[\alpha_1, \dots, \alpha_n]$ (we can take $\{\alpha_1, \dots, \alpha_n\}$ to be a basis for K as a F-linear space).

(1) We proceed inductively on n. For n=1, by the previous proposition $\eta_{K/F}^{\varphi}$ is equal to the number of roots h_{α_1} (the minimal polynomial of α_1) has in E.

For the inductive step, define $F_1 = F[\alpha_1]$, and so

$$\begin{split} \eta_{K/F}^{\varphi} &= \#\{\varphi''\!\!: K \longrightarrow E \text{ is an extension of } \varphi\} \\ &= \# \bigcup \{\varphi''\!\!: K \longrightarrow E \text{ is an extension of } \varphi' \mid \varphi'\!\!: F_1 \longrightarrow E \text{ is an extension of } \varphi\} \\ &= \sum_{\varphi'} \eta_{K/F_1}^{\varphi'} \end{split}$$

By our inductive hypothesis, $\eta_{K/F_1}^{\varphi'} \leq [K:F_1]$ and $\eta_{F_1/F}^{\varphi} \leq [F_1:F]$ so

$$\leq \sum_{\varphi'} [K:F_1] = [F_1:F] \cdot [K:F] = [K:F]$$

as required.

- (2) Again, we proceed inductively on n. For $n=1, K=F[\alpha]$ and $\eta_{K/F}^{\varphi}$ is equal to the number of roots h_{α} has in E. But since $f(\alpha)=0$ and h_{α} is minimal, h_{α} must divide f and therefore split in E, meaning it has at least one root in E. So $1 \leq \eta_{K/F}^{\varphi}$ as required.
 - Inductively, set $F_1 = F[\alpha_1]$ and so there exists an extension of φ to $\varphi': F_1 \longrightarrow E$ by our base case. And there then exists an extension of φ' to $\varphi'': K \longrightarrow E$, so there exists at least one extension as required.
- (3) If we review the proof of (2), for the base case we must have that f is separable and splits in E, which means that h_{α} does as well. Then h_{α} has precisely deg h_{α} distinct roots in E, so $\eta_{K/F}^{\varphi} = \deg h_{\alpha} = [K:F]$ as required. The rest of the proof proceeds similarly.

1.3.9 Definition

Let $f \in F[x]$ be any polynomial over F. Then a field $F \subseteq K$ is called a **splitting field** if f splits over K and it contains no other field over which f splits (meaning it is the smallest field which splits f).

Notice that if K is a splitting field of $f \in F[x]$, then K is of the form $K = F[\alpha_1, \ldots, \alpha_n]$ where α_i are roots of f in K. Then

$$[K:F] \le \prod_{i=1}^{n} [F[\alpha_i]:F] < \infty$$

so K/F is a finite extension. And such a finite field exists: we know there exists a field extension F_1 such that f has a root α_1 in F_1 , so there must be an extension F_2/F_1 such that $f/(x-\alpha)$ has a root α_2 in F_2 , and we continue inductively. This gives us a field F_n with roots $\alpha_1, \ldots, \alpha_n$ and so defining $K = F[\alpha_1, \ldots, \alpha_n]$ gives us a splitting field.

1.3.10 Theorem

Any two splitting fields of a polynomial $f \in F[x]$ are isomorphic.

Proof: let K be a splitting field of f, and suppose f splits in E, where $F \subseteq E$. By the above theorem, there must exist an extension of the inclusion embedding $F \hookrightarrow E$ to an embedding $K \hookrightarrow E$. This embedding gives rise to an embedding of F-linear spaces, meaning $[K:F] \leq [E:F]$. In particular, if E is another splitting field of f then $[E:F] \leq [K:F]$ as well, so that K and E are isomorphic F-linear spaces, and thus are isomorphic as fields.

1.3.11 Definition

Let $f(x) = \sum_{k=0}^{n} a_k x^k \in F[x]$ be a polynomial. We define its **formal derivative** to be the polynomial

$$f'(x) = \sum_{k=1}^{n} k a_k x^{k-1}$$

It is not hard to prove that (f+g)'=f'+g' and $(f\cdot g)'=f'g+fg'$.

1.3.12 Lemma

Let $f,g \in F[x]$ and define $r(x) = \gcd(f,g)$. Then r(x) is the gcd of f and g over every field extension

Proof: let $r_K(x)$ be the gcd of f, g over K. Since r(x) still divides f, g we have that $r(x)|r_K(x)$. And by Euclid's algorithm there exist $a(x), b(x) \in F[x]$ such that

$$r(x) = a(x)f(x) + b(x)g(x)$$

But $r_K(x)$ divides f, g so it divides r(x). Thus $r_K(x) = r(x)$ as required.

1.3.13 Theorem

Let $f \in F[x]$ be a polynomial, then f is separable if and only if gcd(f, f') = 1.

Proof: let K be a splitting field of f. Suppose f is not separable, then it has the form $f(x) = (x - \alpha)^m g(x)$ for $g(x) \in K[x]$ and m > 1. But then $f'(x) = m(x - \alpha)^{m-1}g(x) + (x - \alpha)^m g'(x)$ and so $x - \alpha$ is a common factor of both f and f' so $gcd(f, f') \neq 1$ in K[x], but the gcd of f, f' in F is equal to its gcd in K by the above lemma. Alternatively if f is separable, then $f(x) = \prod_{i=1}^{n} (x - \alpha_i)$ and so

$$f'(x) = \sum_{j=1}^{n} \prod_{\substack{1 \le i \le n \\ i \ne j}} (x - \alpha_i)$$

But the irreducible factors of f, which are $x - \alpha_i$, do not divide f'(x) since no two roots are equal. Thus $\gcd(f, f') = 1.$

Recall that for any ring R, there is a unique homomorphism $\varphi: \mathbb{Z} \longrightarrow R$. In particular if F is a field then $\mathbb{Z}/\ker\varphi\cong\operatorname{Im}\varphi\subseteq F$. Since F is a field, $\operatorname{Im}\varphi$ is an integral domain and so $\ker\varphi$ is a prime ideal of \mathbb{Z} , meaning $\ker \varphi = (p)$ for some prime p or 0. This is called the *characteristic* of F.

Since $\varphi(n) = 1 + \cdots + 1$, the characteristic of F is simply the prime p such that $\varphi(p) = 0$, ie. $1 + \cdots + 1 = 0$ (p times), or 0 if no such primes exist.

1.3.14 Definition

The characteristic of a field F is the unique positive generator of the kernel of $\varphi \colon \mathbb{Z} \longrightarrow F$. Equivalently it is the minimum number p such that $1 + \cdots + 1 = 0$ (p times), or 0 if no such p exists.

If F has characteristic 0, then φ is an embedding so we can view \mathbb{Z} as a subfield of F. But then the field generated by \mathbb{Z} must also be a subfield of (embeddable into) F, meaning $\mathbb{Q} \subseteq F$. Similarly for fields of characteristic $p > 0, \ \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p \subseteq F.$

Notice that for fields of characteristic p, $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ is zero for $k \neq 0, p$. Thus:

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^k b^{n-k} = a^p + b^p$$

So $x \mapsto x^p$ is a homomorphism, called the Frobenius homomorphism. It can be viewed as a homomorphism to $F^p = \{x^p \mid x \in F\}$ (which is a field precisely because the Frobenius homomorphism is a homomorphism). The homomorphism has a trivial kernel, so $F \cong F^p$. In particular every element of F is of the form x^p .

1.3.15 Theorem

Let $f \in F[x]$ be an irreducible polynomial, then the following are equivalent:

- (1) f is not separable (has a multiple root),
- (2) F has a characteristic p > 0, and $f(x) = g(x^p)$ for some $g \in F[x]$,
- (3) every root of f is a multiple root.

Proof: (1) \implies (2): by theorem 1.3.13 we have that $gcd(f, f') \neq 1$. But f is irreducible and thus has no nontrivial divisors, so f' = 0. But since f is nonconstant, we must have that F is of characteristic p (since in characteristic p a nonconstant polynomial cannot have a zero derivative).

Now, if $f(x) = \sum_{k=0}^{n} a_k x^k$ then $ka_k = 0$ for all k since f'(x) = 0. So for k not divisible by p, this means that $k \neq 0$ and so $a_k = 0$. Thus

$$f(x) = \sum_{p|k} a_k x^k = \sum_j a_{pj} x^{pj}$$

so define $g(x) = \sum_{i} a_{pj}x^{j}$ and we have the desired result.

(2) \Longrightarrow (3): take a splitting field of g(x), then write $g(x) = a \prod_i (x - a_i)^{m_i}$. Then we have that $f(x) = a \prod_i (x^p - a_i)^{m_i}$. We can extend this to a field with p-roots of a_i (which are roots of $x^p - a_i$), α_i , and so over this field $f(x) = a \prod_i (x - \alpha_i)^{pm_i}$. So all the roots of f have a multiplicity greater than 1.

 $(3) \implies (1)$ is trivial.