Машинное обучение (часть 1) Лекция 4. Логистическая регрессия

Заливако Сергей Сергеевич

Кафедра Информатики (402-5) zalivako@bsuir.by

Примеры задач классификации

Примеры задач

- Определение спама в электронных письмах;
- Определение, является ли транзакция мошеннической;
- Определение злокачественности опухоли.

Бинарная классификация $y \in \{0,1\}$

- 0 "отрицательный" класс (например, опухоль является доброкачественной);
- 1 "положительный" класс (например, опухоль является злокачественной);

Многоклассовая классификация $y \in \{0, 1, 2, 3\}$

- 0 объект на картинке является пешеходом;
- 1 объект на картинке является дорожным знаком;
- 2 объект на картинке является автомобилем;
- 3 объект на картинке не опознан;

Задача определение злокачественности опухоли

Задача определение злокачественности опухоли

Как решить с помощью линейной регрессии?

Решение с помощью линейной регрессии

Решение с помощью линейной регрессии

Если
$$h_{\theta}(x) \ge 0.5$$
, то $y = 1$,
Если $h_{\theta}(x) < 0.5$, то $y = 0$.

Решение с помощью линейной регрессии

Если $h_{\theta}(x) \ge 0.5$, то y = 1,

Если $h_{\theta}(x) < 0.5$, то y = 0.

Проблема в том, что $h_{\theta}(x)$ может принимать значения <0 и >1.

Логистическая функция (сигмоид)

Логистическая функция (сигмоид)

$$f(z) = \frac{1}{1 + e^{-z}}$$

Интерпретация логистической функции

$$h_{\theta}(x) = g(\theta^{T}x)$$
$$g(z) = \frac{1}{1+e^{-z}}$$

$$y=1$$
, если $h_{ heta}(x)\geq 0.5$

Интерпретация логистической функции

$$h_{\theta}(x) = g(\theta^{T}x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

y=1, если $h_{ heta}(x)\geq 0.5$ Следовательно $heta^Tx\geq 0.$

y=0, если $h_{\theta}(x)<0.5$ Следовательно $\theta^Tx<0$.

Гипотеза для логистической регрессии

Значение $0 \le h_{\theta}(x) \le 1$. Таким образом, $h_{\theta}(x)$ оценивает **вероятность** того, что объект

x принадлежит "положительному" классу (y = 1).

Другими словами,
$$h_{\theta}(x) = P(y = 1|x; \theta);$$
 $P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$

Разделяющая поверхность

Разделяющая поверхность

Уравнение данной поверхности – $\theta^T x$

Разделяющая поверхность

Уравнение данной поверхности – $\theta^T x$ y = 1, если $x_1 + x_2 \ge 3$.

<□ ▶ <∄ ▶ < ≧ ▶ < ≧ ▶ ○ ♀ ○ 8/22

Нелинейная разделяющая поверхность

Нелинейная разделяющая поверхность

Уравнение данной поверхности $-x_1^2 + x_2^2 \ge 1$.

Модель логистической регрессии

Обучающая выборка

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}, y \in \{0, 1\}$$

Гипотеза
$$h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$$

Модель логистической регрессии

Обучающая выборка

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}, y \in \{0, 1\}$$

Гипотеза
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Как выбрать параметры θ ?

Квадратичная функция стоимости

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Квадратичная функция стоимости

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Функция стоимости для логистической регрессии

$$Cost(h_{ heta}(x),y)=-log(h_{ heta}(x))$$
, если $y=1$ $Cost(h_{ heta}(x),y)=-log(1-h_{ heta}(x))$, если $y=0$

Функция стоимости для логистической регрессии

$$Cost(h_{ heta}(x),y)=-log(h_{ heta}(x))$$
, если $y=1$ $Cost(h_{ heta}(x),y)=-log(1-h_{ heta}(x))$, если $y=0$

$$Cost(h_{ heta}(x),y)=-log(h_{ heta}(x))$$
, если $y=1$ $Cost(h_{ heta}(x),y)=-log(1-h_{ heta}(x))$, если $y=0$

$$Cost(h_{ heta}(x),y)=-log(h_{ heta}(x))$$
, если $y=1$ $Cost(h_{ heta}(x),y)=-log(1-h_{ heta}(x))$, если $y=0$

Функция потерь
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$Cost(h_{ heta}(x),y)=-log(h_{ heta}(x))$$
, если $y=1$ $Cost(h_{ heta}(x),y)=-log(1-h_{ heta}(x))$, если $y=0$

Функция потерь
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$
 $J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))]$

$$Cost(h_{ heta}(x),y)=-log(h_{ heta}(x))$$
, если $y=1$ $Cost(h_{ heta}(x),y)=-log(1-h_{ heta}(x))$, если $y=0$

Функция потерь
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$
 $J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))]$

Оптимизация minimize $J(\theta)$

$$Cost(h_{ heta}(x),y)=-log(h_{ heta}(x))$$
, если $y=1$ $Cost(h_{ heta}(x),y)=-log(1-h_{ heta}(x))$, если $y=0$

Функция потерь
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$
 $J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)}))]$

Оптимизация minimize $J(\theta)$

Прогноз
$$h_{\theta}(x) = \frac{1}{1+e^{-\theta^T x}}$$


```
Пока не достигнута сходимость { \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) }
```

```
Пока не достигнута сходимость { \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta) }
```

$$j=0,1,\ldots,n$$

Пока не достигнута сходимость
$$\{\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)\}$$

$$j=0,1,\ldots,n$$

Формулы для обновления параметров

$$\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)}$$

$$\vdots$$

$$\theta_{n} = \theta_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{n}^{(i)}$$

Пока не достигнута сходимость {
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 }

$$j=0,1,\ldots,n$$

Формулы для обновления параметров

$$\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)}$$

$$\vdots$$

$$\theta_{n} = \theta_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{n}^{(i)}$$

Алгоритм такой же, как и для линейной регрессии!

Применение более сложных методов оптимизации

Пусть дан вектор параметров heta, тогда необходимо определить:

- Процедуру вычисления $J(\theta)$;
- Процедуру вычисления $rac{\partial}{\partial heta_i} J(heta) orall j \in \{1,2,\ldots,n\}$;

Применение более сложных методов оптимизации

Пусть дан вектор параметров heta, тогда необходимо определить:

- Процедуру вычисления $J(\theta)$;
- Процедуру вычисления $rac{\partial}{\partial heta_{i}}J(heta)orall j\in\{1,2,\ldots,n\}$;

Тогда можно использовать такие методы как:

- BFGS;
- L-BFGS;
- Нелдер-Мид;
- Генетические методы;
- ...

Применение более сложных методов оптимизации

Пусть дан вектор параметров heta, тогда необходимо определить:

- Процедуру вычисления $J(\theta)$;
- Процедуру вычисления $rac{\partial}{\partial heta_{i}}J(heta)orall j\in\{1,2,\ldots,n\}$;

Тогда можно использовать такие методы как:

- BFGS;
- L-BFGS;
- Нелдер-Мид;
- Генетические методы;
- . . .

Преимущества:

- ullet Нет необходимости настраивать lpha;
- Обычно большая производительность, чем при градиентном спуске.

Недостатки:

• Более сложны в реализации.

Примеры задач многоклассовой классификации

Распределение писем по папкам $y \in \{0, 1, 2, 3\}$

- 0 работа;
- 1 друзья;
- 2 семья;
- 3 хобби.

Медицинский диагноз $y \in \{0, 1, 2\}$

- 0 здоров;
- 1 простуда;
- 2 грипп.

Предсказание погоды $y \in \{0, 1, 2, 3\}$

- 0 солнечно;
- 1 облачно;
- 2 дождь;
- 3 снег;

Метод один против всех

Проблема переобучения

$$\lim_{x \to 8} \frac{1}{x-8} = \infty$$

$$\lim_{x\to 5}\frac{1}{x-5}=$$

Проблема переобучения

$$\lim_{x \to 8} \frac{1}{x-8} = \infty$$

$$\lim_{x \to 5} \frac{1}{x-5} = 0$$

Переобученная линейная регрессия

Переобученная логистическая регрессия

Регуляризация для линейной регрессии

Функция стоимости

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Регуляризация для линейной регрессии

Функция стоимости

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Градиентный спуск

$$\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)} + \frac{\lambda}{m} \theta_{1}$$

$$\vdots$$

$$\theta_{n} = \theta_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{n}^{(i)} + \frac{\lambda}{m} \theta_{n}$$

Регуляризация для линейной регрессии

Функция стоимости

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Градиентный спуск

$$\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)} + \frac{\lambda}{m} \theta_{1}$$
...
$$\theta_{n} = \theta_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{n}^{(i)} + \frac{\lambda}{m} \theta_{n}$$

Аналитическое решение

$$\theta = (X^T X + \lambda \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix})^{-1} X^T y$$

Регуляризация для логистической регрессии

Функция стоимости
$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^{m} [y^{(i)} log(h_{\theta}(x^{(i)})) + (1-y^{(i)}) log(1-h_{\theta}(x^{(i)}))] + \lambda \sum_{j=1}^{n} \theta_{j}^{2}]$$

Регуляризация для логистической регрессии

Функция стоимости
$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m [y^{(i)} log(h_{\theta}(x^{(i)})) + (1-y^{(i)}) log(1-h_{\theta}(x^{(i)}))] + \lambda \sum_{j=1}^n \theta_j^2]$$

Градиентный спуск

$$\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{1} = \theta_{1} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)} + \frac{\lambda}{m} \theta_{j}$$
...
$$\theta_{n} = \theta_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{n}^{(i)} + \frac{\lambda}{m} \theta_{j}$$