AI POWERED NUTRITION ANALYZER FOR FITNESS ENTHUSIASTS

Team ID	PNT2022TMID46718
Project Name	AI-Powered Nutrition Analyzer For Fitness Enthusiasts
Team Members	K.Varun K.Vignesh P.Gopinath K.Akash

1. INTRODUCTION

1.1 PROJECT OVERVIEW

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

1.2 PURPOSE

Nutrition is a critical part of health and development. Better nutrition is related to improved infant, child and maternal health, stronger immune systems, safer pregnancy and childbirth, lower risk of non-communicable diseases (such as diabetes and cardiovascular disease), and longevity.

2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

Paper / Title	Auth	Year	Objective	Proposed	Limitations/	
	or			Technique	Improvements	
EVIDENCE-	Bethany	2011	(1) to	1) Image	Needs to	
BASED	L Six,		test	Segmentation	Accommodate	
DEVELOPMENT	TusaRe		whether	2) Volume	the lifestyles of	
OF AMOBILE	becca E		participan	Estimation	its users to	
TELEPHONE	Schap,		ts'	3) FNDDS	ensure useful	
FOOD RECORD	Anand		proficien	Indexing	images and	
	Mariapp		су	Nutrient Info	continuous use	
	an,		repeated		throughout the	
			use.		day or multiple	
					days.	
FOOD IMAGE	Landu	2020	To design	Extract the	To provide a	
ANALYSIS AND	Jiang		and	regions of	healthy diet,	
DIETARY			implement	interests (ROIs)	an automatic	
ASSESSMENTVIA			a system	by ap-plying	dietcalculator.	
DEEP MODEL			for food	regression		
			image	module isalso		
			Analysis -	used to locate		
			output the	thefood		
			amount of	coordinates in		
			nutritional	the image.		
			ingredients			
			of each			
			food items			
			from daily			
			captured			
			images. A			
			thorough			

			dietary		
			assessmen		
			t		
			report		
			will be		
			generated		
			based on		
			what you		
			have		
			during the		
			meal.		
AUTOMATIC	Jimene	1999	То	Two images	Cannot work
FRUIT	z A,		recognize	represent the	with low
RECOGNITION:A	Jain A,		spherical	azimuth and	resolution
SURVEY AND	Ceres		fruits in	elevation angles	images.
NEW	R, Pons		different	the attenuation	
RESULTSUSING	J.		situations	image REFL(x,	
RANGE/ATTENU			such as	y). The image	
ATIONIMAGES			shadows,	an	
			bright	alysis process	
			areas,	uses the images	
			occlusion	obtained from	
			S	the scanner to	
				detect the	
				position of the	
				fruits by	
				thresholding	
				and clustering.	
DEEPFOOD:	Chang	2016	То	A new	The inference
DE	Liu,		propose a	architecture was	time is extremely
EPLEARNING-	Yu		new	proposed based	long for even a

BASED FOOD	Cao,		CNN	on the	single image and
IMAGE	Yan		architectu	backbones of	hence not
RECOGNITION	Luo,		re for	LeNet, AlexNet	feasible to
FO	Guanli		food	and GoogleNet.	deploy in real
RCOMPUTER-	ng		image	After	time
AIDED DIETARY	Chen,		recogniti	convolutions, it	
ASSESSMENT	Vinod		on and	was followed by	
	Vokka		apply	sub- sampling	
	rane,		benchmar	to reduce	
	and		k on	dimensions and	
	Yunsh		UEC-256	FC layers.	
	eng		and		
	Ma		Food-101		
DEEP-LEARNING-	Ying-	2022	То	Adopted	Yet to be
ASSISTED	Chieh		int	EfficientDet-D1	integrated with a
MULTI-DISH	Liu		egrate	with	mobile app or
FOOD			ML	EfficientNet-B1	web application.
RECOGNIT			innovatio	as the	
ION			ns	backbone.	
APPLICATION			of	EfficientDet	
FOR			real	detector	
DIETARY			conditions	architecture	
INTAKE				with	
REPORTING				EfficientNet	
				was selected	

2.2 REFERENCES

- 1. Usda food and nutrient database for dietary studies, 1.0. Beltsville, MD: Agricultural Research Service, Food Surveys Research Group; 2004. [Google Scholar]
- 2. Chang CC, Lin CJ. LIBSVM: a library for support vector machines. 2001 software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
- **3.** Jain A, Farrokhnia F. Unsupervised texture segmentation using gabor filters. Pattern recognition. 1991;24(12):1167–1186. [Google Scholar]
- 4. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence. 2000;22(8):888–905. [Google Scholar
- 5. Chan T, Sandberg B, Vese L. Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation. 2000;11(2):130–141. [Google Scholar]
- 6. Woo I, Otsmo K, Kim S, Ebert DS, Delp EJ, Boushey CJ. Automatic portion estimation and visual refinement in mobile dietary assessment. Proceedings of the IS&T/SPIE Conference on Computational Imaging VIII; San Jose, CA. January 2010. [PMC free article] [PubMed] [Google Scholar]
- 7. Mariappan A, Bosch M, Zhu F, Boushey CJ, Kerr DA, Ebert DS, Delp EJ. Personal dietary assessment using mobile devices. Proceedings of the IS&T/SPIE Conference on Computational Imaging VII; San Jose, CA. January 2009. [PMC free article] [PubMed] [Google Scholar]

2.3 PROBLEM STATEMENT DEFINITION

High-Calorie food intake can be harmful and result in obesity, which is a preventable medical condition that causes abnormal accumulation of fat in the body. It can result in numerous diseases such as obesity, diabetes, cholesterol, heart attacks, blood pressure, and other diet-related ailments. In order to deal with such problems, people are inclined towards making a difference in their diet plans by paying more attention to what type of food they are consuming. Diet management is a key concern among individuals belonging to different age groups. However, one major challenge in diet management is maintaining a balance between what one eats and how one monitors his/her food consumption. The immense increase in ailments such as high cholesterol, blood pressure, strokes, etc. demands nutritional and diet management for which people resort to expensive nutrition therapies.

1. Who does the problem affect?

• Fitness enthusiasts who are not taking sufficient nutrition intake.

2. What is the issue?

• The issue is fitness freaks work more but do not get proper nutrients which leads to bad metabolism and causes health-related issues.

3. What is the impact of this issue?

- Lack of nutrition.
- Weaker immune system.
- Stress, tiredness, illness.

4. What would happen if we didn't solve the problem?

If we don't fix this issue it may cause various health related issues that include weight loss, lack of nutrition, and vitamin and mineral deficiency. These issues lead to low BMI levels. On the other hand, untreated obesity leads to high blood pressure, and excess cholesterol ultimately leads to heart diseases.

5. What would happen when it is fixed?

- Higher immunity level.
- Normal blood pressure.
- Rich metabolism levels.

6. Why is it important that we fix this problem?

Our body requires enough calories, nutrients, and minerals as much as it has burned during work, so when the person fails to take sufficient nutrients their metabolism will not be proper which may lead to many health issues, so it is important to fix this problem which leads a healthy life.

Solution:

The aim of this project is to create a fitness tracker which motivates users to track their diet and follow their diet without the eventual abatement. The classification of fruits is planned to be based on Convolutional Neural Network. Primarily, the model is trained using a training data set of several fruits to be able to accurately measure the calories, sugar, fibre and proteins present in a particular fruit. Furthermore, based on the image taken by the user, real time processing is done and uploaded to a custom-made website.

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas:

3.2 Ideation & Brainstorming:

3.3 Proposed Solution:

Project team shall fill the following information in proposed solution template.

S.NO.	PARAMETER	DESCRIPTION				
1	Problem Statement (Problem	Filling the gap of not knowing the				
	to be solved)	nutrients intake and helping to maintain a				
		proper balanced consumption for the				
		customers/users.				
2	Idea / Solution description	A web based application that allows user				
		to retrieve the nutritional facts of a food				
		item by adding an image of it.				
3	Novelty / Uniqueness	Web based easy to use interface.				
		• Provides an image based facts retrieval				
		of food.				
		• Suggestion based on the facts.				
		Basic details and guidance based on the				
		user profile.				
4	Social Impact / Customer	With the assistance of the data obtained,				
	Satisfaction	users get to maintain a healthy body,				
		which makes them feel confident. In				
		addition, it boosts their energy and				
		stamina.				
5	Business Model (Revenue	• Connecting to hospitals and centres that				
	Model)	provide support for the user's.				
		• Subscription based plan for users to				
		unlock all features.				
		• Incorporating advertisements of all				

		categories.		
		• Providing online resources for customers.		
6	Scalability of the Solution	Making a user-friendly interface and		
		making it all platform compatible.		
		• Providing rewards for usage and sharing		
		of application.		
		• Using client data and feedback to		
		improvise.		
		Collaborating with other parties for		
		larger scale usage.		

3.4 Problem Solution fit:

PARAMETER	PARAMETER DESCRIPTION			
DESCRIPTION				
PROBLEM	Major challenge in diet management is maintaining a			
STATEMENT	balance between what one eats and how one monitors			
	his/her food consumption. The immense increase in			
	ailments such as high cholesterol, blood pressure,			
	strokes, etc. demands nutritional and diet management			
	for which people resort to expensive nutrition			
	therapies.			
SCALABILITY OF THE	Filling the gap of not knowing the nutrients intake			
SOLUTION	and helping to maintain a proper balanced			
	consumption for the customers/users.			
IDEA/SOLUTION	An application that allows user to retrieve the			
DESCRIPTION	nutritional facts of a food item by adding an image of			
	it.			

4. REQUIREMENT ANALYSIS:

4.1 Functional requirement:

Following are the functional requirements of the proposed solution.

FR NO	FUNCTIONAL	SUB REQUIREMENT (STORY / SUB-TASK)			
	REQUIREMENT				
	(EPIC)				
FR-1	User Interaction	Interacting the user through web interface and			
		automated voice to answer the user queries and to			
		guide them in a proper way to maintain their fitness.			
		In the web interface,			
		• There will be separate and special features for the			
		registered user to get personalized and well defined			
		advice and good practice lectures to maintain their			
		fitness.			
		• All the registered users will be verified with either			
		email or mobile number based on their interest in			
		giving their information, but the verification is a			
		must one.			
		• For non-registered users, the user can visit the			
		website free of cost and can check the nutrient value			
		in the fruits and vegetables, and also can view the			
		common practices for fitness.			
FR-2	User Management	Creating a group of people, who are willing to befit			
		in their health and making them organized in a			
		sample place, through which they can collaborate			

		and also can achieve their goals with others, by					
		encouraging each other. The application Date 17					
		October 2022 Team ID PNT2022TMID46718					
		Project Name AI-powered Nutrition Analyzer for					
		Fitness Enthusiasts Maximum Marks 4 Marks gives					
		the ability to ask questions about a problem in the					
		fitness groups, through which they can work					
		effectively.					
FR-3	User Satisfying	The satisfaction of each user is a must, so UI/UX					
		should be more than enough to engage the user in					
		the platform and the performance of the application					
		should be optimized in order to keep every user for					
		a long time. On an periodic interval (like once in					
		month), we need to interact one to one with each					
		and every user to solve the queries					
FR-4	User Engagement	The user should be engaged in the application at					
		least Once a day to get notified about the latest and					
		good practice on fitness which is recommended by					
		the backend model.					

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution

FR NO	Non-Functional	Description
	Requirement	
NFR-1	Usability	60% of the internet users are mobile users, and
		most of them are only using some common
		application for communicating based on the
		features they offer. So the application should be
		easily accessible by users and also it should have
		the ability to report an issue by the user to solve it
		as soon as possible.
NFR-2	Security	While logging the application, the data is encrypted
		and highly secured which can avoid data
		plagiarism. Authentication and authorization are to
		be done properly through the application.
NFR-3	Reliability	Application can offer you to stay focused on your
		diet plan. It offers to maintain your calories in your
		desired food. It shows quite accurately calories for
		the user that makes to sustain in healthy lifestyle.
NFR-4	Performance	Performance of the application should be high
		enough to maintain the user in the application and
		also to get new users. Performance can be increased
		by using optimized code and also reducing the
		redirects and also can by DSA (Data Structures and
		Algorithms).

NFR-5	Availability	Even though it is a good application for registered					
		users, it has the ability to offer minimum					
		functionality to the nonregistered users and also to					
		increase the audience base.					
NFR-6	Scalability	The application should be as much as scalable, in					
		order to increase the number of users based on their					
		interest.					

5. PROJECT DESIGN:

5.1 Data Flow Diagrams:

5.2 Solution & Technical Architecture:

Solution Architecture:

Technical Architecture:

5.3 User Stories:

User	Type	User	User Story	Acceptanc	Priorit	Releas
	Functional	Story	/ Task	e criteria	y	e
	Requirement	Num				
	(Epic)	ber				
Customer	Application	USN-	As a user I	My app	High	Sprint-
		1	installed	will be		1
			the	installed in		
			application	home		
			for day to	screen.		
			day leaf			
			disease			
			detection			
			and			
			recognize			
			it.			

	USN-	As a user, I	I can	High	Sprint-
	2	can register	access my		1
		for the	account		
		application	/dashboard		
		identifying			
		diseases at			
		early stage			
	USN-	As a user I	I can	Mediu	Sprint-
	3	will detect	register and	m	2
		the plant	access the		
		once I have	dashboard		
		registered	with		
		for the	application		
		particular	account		
		process			

6. PROJECT PLANNING & SCHEDULING:

6.1 Sprint Planning & Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As an biogeography, I can register for the application by entering my email, password, and confirming my password.	2	High	Varun K Vignesh K
Sprint-1	User Confirmation	USN-2	As an biogeography, I will receive confirmation email once I have registered for the application	1	Medium	Gopinath P Akash K

Sprint-1	Login	USN-3	As an biogeography, I can log	2	High	Varun K
			into the application by entering			Vignesh K
			email & password			Gopinath P
Sprint-2	Data Collection	USN-1	Download the dataset used in	2	High	Varun K
			Digital Naturalist – Al Enabled			Vignesh K
			tools for Biodiversity			Gopinath P
			Researchers			
Sprint-2	Image Preprocessing	USN-1	Improving the image data that	1	High	
			suppresses unwilling distortions			Vignesh K
			or enhances some image			Gopinath P
			featuresimportant for further			
			processing, although			
			performing some geometric			
			transformations of images like			
			rotation, scaling, etc.			
Sprint-3	Getting started	USN-1	Neural network are integral	2	High	
	withConvolutional		for teaching computers to			
	Neural Network		think and learn by classifying			Akash K
			information, similar to how			Vignesh K
			we as humans learn. With			Gopinath P
			neural networks, the software			
			can learnto recognize images,			
			for example. Machine scan			
			also make predictions and			
			decisions			
			with a high level of accuracy			
			based on data inputs.			

Sprint-2	Image	USN-1	Improving the image data that	1	High	
	Preprocessing		suppresses unwilling distortions			Vignesh K
			or enhances some image			Gopinath P
			featuresimportant for further			
			processing, although performing			
			some geometric			
			transformations of images like			
			rotation, scaling, etc.			
Sprint-3	Getting started	USN-1	Neural network are integral for	2	High	
	withConvolutional		teaching computers to think			
	Neural Network		and learn by classifying			Varun K
			information, similar to how			Vignesh K
			we as humans learn. With			Gopinath P
			neural networks, the software			Akash K
			can learnto recognize images,			
			for example. Machines can also			
			make predictions an decisions			
			with a high level of accuracy			
			based on data inputs.			
Sprint-3	Evaluation and	USN-1	well a model behaves after	1	Medium	
	model saving		each iteration of optimization.			
			An accuracy metric is used to			Vignesh K
			measure the algorithm's			Gopinath P
			performance in an			
			interpretableway. The			
			accuracy of a model is usually			
			determined after the model			
			parameters and is calculated			

			in the form of a percentage. Saving The Model get weights, set weights.			
Sprint-4	Application Building	USN-2	After the model is built, we will be integrating it to a web application so that normal userscan also use it. The users need to give the images of species	1	High	Varun K Vignesh K
Sprint-4	Train the Model on IBM	USN-3	Build Deep learning model and computer vision Using the IBM cloud.	2	High	Varun K Vignesh K Gopinath P Akash K

6.2 Sprint Delivery Schedule:

Sprint	Total Story Points	Duration	Sprint Start Date	Story Points Completed (as on Planned End Date)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5 Days	30 Oct 2022	2 Nov 2022	20	31 Oct 2022
Sprint-2	20	5 Days	3 Nov 2022	7 Nov 2022	20	8 Nov 2022
Sprint-3	20	5 Days	8 Nov 2022	12 Nov 2022	20	13 Nov 2022
Sprint-4	20	6 Days	13 Nov 2022	18 Nov 2022	20	19 Nov 2022

6.3 Reports from JIRA:

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

7 CODING & SOLUTIONING:

SCREENSHOT:

8 TESTING

8. SYSTEM TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub-assemblies, assemblies and/or a finished product. It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

8.1 TYPES OF TESTS

8.1.1 Unit testing

Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program inputs produce valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

8.1.2 Integration testing

Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

8.1.3 Functional test

Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

8.1.4 System Test

System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration-oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

8.1.5 White Box Testing

White Box Testing is a testing in which in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is purpose. It is used to test areas that cannot be reached from a black box level.

8.1.6 Black Box Testing

Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot "see" into it. The test provides inputs and responds to outputs without considering how the software works.

8.2 Unit Testing:

Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct phases.

8.2.1 Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail.

8.2.2 Test objectives

- All field entries must work properly.
- Pages must be activated from the identified link.
- The entry screen, messages and responses must not be delayed.

8.2.3 Features to be tested

- Verify that the entries are of the correct format
- No duplicate entries should be allowed
- All links should take the user to the correct page.

8.3 Integration Testing

Software integration testing is the incremental integration testing of two or more integrated software components on a single platform to produce failures caused by interface defects. The task of the integration test is to check that components or software applications, e.g. components in a software system or – one step up – software applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

8.4 Acceptance Testing

User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

9 RESULTS

Apple

Nutritional Value for Apple

Calories95 KcalCarbohydrate25 gramsProtein1 gramFiber2.4 gramFat0.2 gramSugar25 grams

10 ADVANTAGES & DISADVANTAGES:

ADVANTAGES

- > Useful in determining the and recognizing value of the different food types.
- ➤ By effectively implementing this algorithm, we can identify the Calorie values.

- > Image quality is high.
- ➤ High accuracy

DISADVANTAGES:

- ➤ Less accuracy
- > Less sensitivity
- > Less specificity
- ➤ High computation time

11 CONCLUSION:

We designed CNN based algorithm for predicting nutrion content present in the food items ,calorie level of food items ,we take fruit food items for detect the nutrion content present in them image we present the fruit detection and recognition system that we built, using deep convolutional neural network for the recognition of food images from the 8-class dataset that we acquired using Google

image searches, while keeping the model training time low to enable faster fine-tuning. Training the model with different epochs further improvement in test accuracy data expansion, which could also be achieved by collecting more training data or by optimizing the architecture and hyper-parameters of the network, considering overtraining problem at the same time. We have written a function which determines calories based on the fruit detected by taking in consideration the average calorie value of that fruit.

12 FUTURE WORK

13 APPENDIX:

Source Code:

import os

from flask import Flask, render_template, request, flash, redirect import numpy as np

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import cv2
from tqdm import tqdm
from PIL import Image
import io
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from tensorflow.keras.applications import EfficientNetB2
from keras.layers import GlobalAveragePooling2D, Dropout, Dense
from keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, Tens
orBoard, ModelCheckpoint
from sklearn.metrics import classification_report, confusion_matrix
from IPython.display import display, clear_output
import ipywidgets as widgets
from google.colab import drive
```

drive.mount('/content/drive')

%Directory setting

```
fpath = '/content/drive/My Drive/nutrion analysis/new dataset'
random seed = 42
categories = os.listdir(fpath)
categories = categories[:20]
print("List of categories = ",categories,"\n\nNo. of categories = ", len(categories))
% image loading and labeling
def load_images_and_labels(categories):
  img_lst=[]
  labels=[]
  for index, category in enumerate(categories):
    for image_name in os.listdir(fpath+"/"+category):
       img = cv2.imread(fpath+"/"+category+"/"+image_name)
       img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
       img_array = Image.fromarray(img, 'RGB')
       #resize image to 227 x 227 because the input image resolution for AlexNet
is 227 x 227
       resized_img = img_array.resize((227, 227))
       img_lst.append(np.array(resized_img))
       labels.append(index)
  return img_lst, labels
```

```
images, labels = load_images_and_labels(categories)
print("No. of images loaded = ",len(images),"\nNo. of labels loaded = ",len(labels))
print(type(images),type(labels))
%model summary
model=Sequential()
#1 conv layer
model.add(Conv2D(filters=96,kernel_size=(11,11),strides=(4,4),padding="valid",a
ctivation="relu",input_shape=(227,227,3)))
#1 max pool layer
model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
model.add(BatchNormalization())
#2 conv layer
model.add(Conv2D(filters=256,kernel_size=(5,5),strides=(1,1),padding="valid",ac
tivation="relu"))
#2 max pool layer
model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
model.add(BatchNormalization())
```

```
#3 conv layer
model.add(Conv2D(filters=384,kernel_size=(3,3),strides=(1,1),padding="valid",ac
tivation="relu"))
#4 conv layer
model.add(Conv2D(filters=384,kernel_size=(3,3),strides=(1,1),padding="valid",ac
tivation="relu"))
#5 conv layer
model.add(Conv2D(filters=256,kernel_size=(3,3),strides=(1,1),padding="valid",ac
tivation="relu"))
#3 max pool layer
model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
model.add(BatchNormalization())
model.add(Flatten())
#1 dense layer
model.add(Dense(4096,input_shape=(227,227,3),activation="relu"))
model.add(Dropout(0.4))
model.add(BatchNormalization())
```

```
#2 dense layer
model.add(Dense(4096,activation="relu"))
model.add(Dropout(0.4))
model.add(BatchNormalization())
#3 dense layer
model.add(Dense(1000,activation="relu"))
model.add(Dropout(0.4))
model.add(BatchNormalization())
#output layer
model.add(Dense(20,activation="softmax"))
model.summary()
% compile CNN model and accuracy
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metric
s=["accuracy"])
%train the model
model.fit(x_train, y_train, epochs=100)
%model save
model_name = 'trained_model.h5'
```

model.save(model_name, save_format='h5')

%loss accuracy

loss, accuracy = model.evaluate(x_test, y_test)

print(loss,accuracy)

GITHUB:

https://github.com/IBM-EPBL/IBM-Project-44184-1660723167

PROJECT DEMO LINK:

https://youtu.be/HnfOg_NO4oQ