Beweisarchiv

Mai 2018

Inhaltsverzeichnis

1	Gru	ındlagen 5
	1.1	Mengenlehre
		1.1.1 Definitionen
		1.1.2 Rechenregeln
	1.2	Abbildungen
		1.2.1 Definitionen
		1.2.2 Grundlagen
		1.2.3 Kardinalzahlen
2	Ana 2.1	Alysis Folgen
3	Top	pologie 11
	3.1	Grundbegriffe
		3.1.1 Definitionen
	3.2	Metrische Räume
		3.2.1 Metrischer Räume
		3.2.2 Normierte Räume

1 Grundlagen

1.1 Mengenlehre

1.1.1 Definitionen

Definition 1.1 (seteq: Gleichheit von Mengen).

$$A = B : \iff \forall x (x \in A \iff x \in B).$$

Definition 1.2 (subseteq: Teilmenge).

$$A \subseteq B :\iff \forall x (x \in A \implies x \in B).$$

Definition 1.3 (filter: beschreibende Angabe).

$$a \in \{x \mid P(x)\} : \iff P(a).$$

Definition 1.4 (cap: Schnitt).

$$A \cap B := \{x \mid x \in A \land x \in B\}.$$

Definition 1.5 (cup: Vereinigung).

$$A \cup B := \{x \mid x \in A \lor x \in B\}.$$

Definition 1.6 (intersection: Schnitt).

$$\bigcap_{i\in I}A_i\iff \{x\mid \forall i\in I\,(x\in A_i)\}.$$

Definition 1.7 (union: Vereinigung).

$$\bigcup_{i\in I}A_i\iff \{x\mid \exists i\in I\,(x\in A_i)\}.$$

1.1.2 Rechenregeln

Satz 1.1 (Kommutativgesetze). Es gilt $A \cap B = B \cap A$ und $A \cup B = B \cup A$.

Beweis. Nach Def. 1.1 (seteg) expandieren:

$$\forall x (x \in A \cap B \iff x \in B \cap A).$$

Nach Def. 1.4 (cap) und Def. 1.3 (filter) gilt:

$$x \in A \cap B \iff x \in A \land x \in B \iff x \in B \land x \in A \iff x \in B \cap A.$$

Satz 1.2 (Assoziativgesetze). Es gilt $A \cap (B \cap C) = (A \cap B) \cap C$ und $A \cup (B \cup C) = (A \cup B) \cup C$.

Beweis. Nach Def. 1.1 (seteq) expandieren:

$$\forall x[x \in A \cap (B \cap C) \iff x \in (A \cap B) \cap C].$$

Nach Def. 1.4 (cap) und Def. 1.3 (filter) gilt:

$$x \in A \cap (B \cap C) \iff x \in A \land x \in B \cap C \iff x \in A \land (x \in B \land x \in C)$$

 $\iff (x \in A \land x \in B) \land x \in C \iff x \in A \cap B \land x \in C \iff x \in (A \cap B) \cap C.$

Für die Vereinigung ist das analog.

1.2 Abbildungen

1.2.1 Definitionen

Definition 1.8 (img: Bildmenge). Für eine Abbildung $f: A \to B$ und $M \subseteq A$ wird die Menge

$$f(M) := \{ y \mid \exists x \in M (y = f(x)) \} = \{ y \mid \exists x (x \in M \land y = f(x)) \}$$

als Bildmenge von M unter f bezeichnet.

Definition 1.9 (inj: Injektion). Eine Abbildung $f: A \rightarrow B$ heißt genau dann injektiv, wenn gilt:

$$\forall x_1 \forall x_2 (f(x_1) = f(x_2) \implies x_1 = x_2)$$

bzw. äquivalent

$$\forall x_1 \forall x_2 (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)).$$

Definition 1.10 (sur: Surjektion). Eine Abbildung $f: A \rightarrow B$ heißt genau dann surjektiv, wenn gilt:

$$B \subseteq f(A)$$
.

1.2.2 Grundlagen

Satz 1.3 (feq: Gleichheit von Abbildungen). Zwei Abbildungen $f: A \to B$ und $g: C \to D$ sind genau dann gleich, kurz f = g, wenn A = C und B = D und

$$\forall x (f(x) = g(x)).$$

Ohne Beweis.

1.2.3 Kardinalzahlen

Definition 1.11 (equipotent: Gleichmächtigkeit). Zwei Mengen A, B heißen genau dann gleichmächtig, wenn eine Bijektion $f: A \rightarrow B$ existiert.

Satz 1.4. Sei M eine beliebige Menge. Die Potenzmenge 2^M ist zur Menge $\{0,1\}^M$ gleichmächtig.

Beweis. Für eine Aussage A sei

$$[A] := \begin{cases} 1 & \text{wenn A gilt,} \\ 0 & \text{sonst.} \end{cases}$$

Für $A \subseteq M$ betrachte man nun die Indikatorfunktion

$$\chi_A: M \to \{0, 1\}, \quad \chi_A(x) := [x \in A].$$

Die Abbildung

$$\varphi: 2^M \to \{0, 1\}^M, \quad \varphi(A) := \chi_A$$

ist eine kanonische Bijektion. Zur Injektivität. Nach Def. 1.9 (inj) muss gelten:

$$\varphi(A) = \varphi(B) \implies A = B$$
, d.h. $\chi_A = \chi_B \implies A = B$.

Nach Satz 1.3 (feq) und Def. 1.1 (seteq) wird die Aussage expandiert zu:

$$\forall x(\chi_A(x) = \chi_B(x)) \implies \forall x(x \in A \iff x \in B).$$

Es gilt aber nun:

$$\chi_A(x) = \chi_B(x) \iff [x \in A] = [x \in B] \iff (x \in A \iff x \in B).$$

Zur Surjektivität. Wir müssen nach Def. 1.10 (sur) prüfen, dass $\{0,1\}^M \subseteq \varphi(2^M)$ gilt. Expansion nach Def. 1.2 (subseteq) und Def. 1.8 (img) ergibt:

$$\forall f(f \in \{0, 1\}^M \implies \exists A \in 2^M [f = \varphi(A)]).$$

Um dem Existenzquantor zu genügen, wähle

$$A := f^{-1}(\{1\}) = \{x \in M \mid f(x) \in \{1\}\} = \{x \in M \mid f(x) = 1\}.$$

Es gilt $f = \chi_A$, denn

$$\chi_A(x) = [x \in A] = [x \in \{x \mid f(x) = 1\}] = [f(x) = 1] = f(x).$$

Da φ eine Bijektion ist, müssen 2^M und $\{0,1\}^M$ nach Def. 1.11 (equipotent) gleichmächtig sein. \Box

2 Analysis

2.1 Folgen

2.1.1 Konvergenz

Definition 2.1 (openepball: offene Epsilon-Umgebung). Sei (M, d) ein metrischer Raum. Unter der offenen Epsilon-Umgebung von $\alpha \in M$ versteht man:

$$U_{\varepsilon}(a) := \{ x \mid d(x, a) < \varepsilon \}$$

Setze zunächst speziell d(x, a) := |x - a| bzw. d(x, a) := ||x - a||.

Definition 2.2 (lim: konvergente Folge, Grenzwert).

$$\lim_{n\to\infty} a_n = a : \iff \forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ (\alpha_n \in U_{\varepsilon}(a))$$

bzw.

$$\lim_{n\to\infty} a_n = a :\iff \forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ (\|a_n - a\| < \varepsilon).$$

Definition 2.3 (bseq: beschränkte Folge). Eine Folge (a_n) mit $a_n \in \mathbb{R}$ heißt genau dann beschränkt, wenn es eine reelle Zahl S gibt mit $|a_n| < S$ für alle n.

Eine Folge (a_n) von Punkten eines normierten Raums heißt genau dann beschränkt, wenn es eine reelle Zahl S gibt mit $||a_n|| < S$ für alle n.

Satz 2.1. Es gilt:

$$\lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 \ \exists n_0 \ \forall n > n_0 \ (\|\alpha_n - a\| < R\varepsilon),$$

wobei R > 0 ein fester aber beliebieger Skalierungsfaktor ist.

Beweis. Betrachte $\varepsilon > 0$ und multipliziere auf beiden Seiten mit R. Dabei handelt es sich um eine Äquivalenzumformung. Setze $\varepsilon' := R\varepsilon$. Demnach gilt:

$$\varepsilon > 0 \iff \varepsilon' > 0$$
.

Nach der Ersetzungsregel düfen wir die Teilformel $\varepsilon > 0$ nun ersetzen. Es ergibt sich die äquivalente Formel

$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon' > 0 \ \exists n_0 \ \forall n > n_0 \ (\|a_n - a\| < \varepsilon').$$

Das ist aber genau Def. 2.2 (lim). □

Satz 2.2. Es gilt:

$$\lim_{n\to\infty} a_n = a \implies \lim_{n\to\infty} ||a_n|| = ||a||.$$

Beweis. Nach Satz 3.2 (umgekehrte Dreiecksungleichung) gilt:

$$|||a_n|| - ||a||| \le ||a_n - a|| < \varepsilon.$$

Dann ist aber rest recht $|||a_n|| - ||a||| < \varepsilon$. \square

Satz 2.3. Ist (a_n) eine Nullfolge und (b_n) eine beschränkte Folge, dann ist auch (a_nb_n) eine Nullfolge.

Beweis. Wenn (b_n) beschränkt ist, dann existiert nach Def. 2.3 (bseq) eine Schranke S mit $|b_n| < S$ für alle n. Man multipliziert nun auf beiden Seiten mit $|\alpha_n|$ und erhält

$$|a_nb_n|=|a_n||b_n|<|a_n|S.$$

Wenn $a_n \to 0$, dann muss für jedes ε ein n_0 existieren mit $|a_n| < \varepsilon$ für $n > n_0$. Multipliziert man auf beiden Seiten mit S, und ergibt sich

$$|a_n b_n - 0| = |a_n b_n| < |a_n| S < S\varepsilon.$$

Nach Satz 2.1 gilt dann aber $a_n b_n \rightarrow 0$.

Satz 2.4 (Grenzwertsatz zur Addition). Seien (a_n) , (b_n) Folgen von Punkten eines normierten Raumes. Es gilt:

$$\lim_{n\to\infty} a_n = a \wedge \lim_{n\to\infty} b_n = b \implies \lim_{n\to\infty} a_n + b_n = a + b.$$

Beweis. Dann gibt es ein n_0 , so dass für $n > n_0$ sowohl $||a_n - a|| < \varepsilon$ als auch $||b_n - b|| < \varepsilon$. Addition der beiden Ungleichungen ergibt

$$||a_n-a||+||b_n-b||<2\varepsilon.$$

Nach der Dreiecksungleichung, das ist Axiom (N3) in Def. 3.4 (normed-space), gilt nun aber die Abschätzung

$$\|(a_n + b_n) - (a + b)\| = \|(a_n - a) + (b_n - b)\| \le \|a_n - a\| + \|b_n - b\|.$$

Somit gilt erst recht

$$\|(a_n+b_n)-(a+b)\|<2\varepsilon.$$

Nach Satz 2.1 folgt die Behauptung. □

3 Topologie

3.1 Grundbegriffe

3.1.1 Definitionen

Definition 3.1 (nhfilter: Umgebungsfilter).

$$U(x) := \{ U \subseteq X \mid \exists O(O \in T \land x \in O \land O \subseteq U) \}.$$

Definition 3.2 (int: Offener Kern).

$$int(M) := \{x \in M \mid M \in U(x)\}$$

Satz 3.1. Der offene Kern von M ist die Vereinigung der offenen Teilmengen von M. Kurz:

$$\mathsf{int}(M) = \bigcup_{O \in 2^M \cap T} O.$$

Beweis. Nach Def. 1.1 (seteq) und Def. 3.2 (int) expandieren:

$$\forall x[x\in M\land M\in\underline{U}(x)\Longleftrightarrow x\in\bigcup_{O\in2^M\cap T}O].$$

Den äußeren Allquantor brauchen wir nicht weiter mitschreiben, da alle freien Variablen automatisch allquantifiziert werden. Nach Def. 3.1 (nhfilter) weiter expandieren, wobei die Bedingung $U \subseteq X$ als tautologisch entfallen kann, weil X die Grundmenge ist. Auf der rechten Seite wird nach Def. 1.7 (union) expandiert. Es ergibt sich:

$$x \in M \land \exists O(O \in T \land x \in O \land O \subseteq M) \iff \exists O(O \subseteq M \land O \in T \land x \in O).$$

Wegen $A \wedge \exists x (P(x)) \iff \exists x (A \wedge P(x))$ ergibt sich auf der linken Seite:

$$\exists O(x \in M \land O \in T \land x \in O \land O \subseteq M).$$

Wenn aber $O \subseteq M$ erfüllt sein muss, gilt $x \in O \implies x \in M$. Demnach kann $x \in M$ entfallen. Auf beiden Seiten steht dann die gleiche Bedingung. \square

3.2 Metrische Räume

3.2.1 Metrischer Räume

Definition 3.3 (metric-space: metrischer Raum). Man bezeichet (M, d) mit $d: M^2 \to \mathbb{R}$ genau dann als metrischen Raum, wenn die folgenden Axiome erfüllt sind:

(M1)
$$d(x, y) = 0 \iff x = y$$
,

$$(M2) \quad d(x,y) = d(y,x),$$

(M3)
$$d(x, y) \le d(x, z) + d(z, y)$$
.

3.2.2 Normierte Räume

Definition 3.4 (normed-space: normierter Raum). Sei V ein Vektorraum über dem Körper der rellen oder komplexen Zahlen. Sei N(x) = ||x|| eine Abbildung, die jedem $x \in V$ eine reelle Zahl zuordnet. Man nennt (V, N) genau dann einen normierten Raum, wenn die folgenden Axiome erfüllt sind:

(N1) $||x|| = 0 \iff x = 0$, (Definitheit)

(N2) $\|\lambda x\| = |\lambda| \|x\|$, (betragsmäßige Homogenität)

(N3) $||x + y|| \le ||x|| + ||y||$. (Dreiecksungleichung)

Satz 3.2 (umgekehrte Dreiecksungleichung). In jedem normierten Raum gilt

$$|||x|| - ||y||| \le ||x - y||.$$

Beweis. Auf beiden Seiten von Def. 3.4 (normed-space) Axiom (N3) wird ||y|| subtrahiert. Es ergibt sich

$$||x + y|| - ||y|| \le ||x||$$
.

Substitution x := x - y bringt nun

$$||x|| - ||y|| \le ||x - y||$$
.

Vertauscht man nun x und y, dann ergibt sich

$$||y|| - ||x|| \le ||y - x|| \iff -(||x|| - ||y||) \le ||x - y||.$$

Wir haben nun die Situation $a \le b$ und $-a \le b$. Multipliziert man die letzte Ungleichung mit -1, dann ergibt sich $a \ge -b$. Somit ist $-b \le a \le b$, kurz $|a| \le b$. \square

Dieses Heft steht unter der Creative-Commons-Lizenz CCO.