

Olimpiada Națională de Fizică Târgu Jiu 2017 Proba teoretică

Subjectul I

A. Un corp mic și rigid este aruncat oblic din punctul O, în câmp gravitațional, conform figurii. În punctul A corpul lovește o placă rigidă, fixă și subțire după care zboară mai departe căzând pe sol în punctul B. Pentru cele două etape ale mișcării se cunosc bătăile D_1 și respectiv D_2 și înălțimile maxime pe care le

atinge corpul în timpul zborului, H_1 și respectiv H_2 . Consideră că pe durata impactului componenta normală a forței de contact dintre corp și placă este mult mai mare decât greutatea corpului (corpul este ușor).

Determină coeficientul de frecare dintre corp și placă, $\mu = \mu(D_1, D_2, H_1, H_2)$.

- ${f B.}$ O mașină frigorifică funcționează după un ciclu Carnot inversat având ca surse de căldură corpul care trebuie răcit, aflat la temperatura T, și mediul înconjurător, aflat la temperatura T_{aer} . Mașina frigorifică este folosită pentru a răci un corp care nu interacționează decât cu aceasta.
- a. Determină expresia eficienței mașinii frigorifice, ε , în funcție de temperaturile T și T_{aer} ($T < T_{aer}$). (Eficiența mașinii frigorifice este raportul dintre căldura absorbită de la sursa rece și modulul lucrului mecanic primit).
- b. Determină lucrul mecanic care trebuie furnizat mașinii frigorifice pentru a răci masa de apă m, de la temperatura T_1 la temperatura T_2 , unde $T_2 < T_1 < T_{aer}$. Căldura specifică a apei este c.

Indicație. Consideră că mașina frigorifică răcește apa de la temperatura T_1 la temperatura T_2 prin repetarea ciclului de un număr mare de ori. Căldurii schimbate de mașina frigorifică la repetarea i a ciclului, $Q_{ciclu,i}$, îi corespunde o variație ΔT_i a temperaturii și un lucru mecanic elementar $L_{ciclu,i}$. Lucrul mecanic total furnizat mașinii frigorifice poate fi calculat însumând lucrurile mecanice elementare. Iți poate fi utilă relația $\sum_{i=1}^N \frac{\Delta T_i}{T_i} = \ln \frac{T_2}{T_1}$, valabilă în cazul în care N este suficient de mare.

c. Calculează lucrul mecanic necesar pentru a îngheța masa m de apă, aflată inițial la temperatura T_{aer} . Consideră că presiunea atmosferică este constantă și că temperatura de solidificare a apei la această presiune este T_0 . Căldura latentă specifică de solidificare este λ .

Subjectul II

Un cilindru orizontal cu pereți termoizolatori este împărțit în n compartimente cu ajutorul unor pistoane mobile, ușoare, subțiri, etanșe, de capacitate calorică neglijabilă care se pot deplasa fără frecare.

Fiecare compartiment conține aceeași cantitate ν din același gaz ideal (γ) la presiunea p_0 și temperatura T_0 . Primul compartiment este încălzit lent, un anumit interval de timp, cu ajutorul unui rezistor legat la o sursă de

Pagina 1 din 2

- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.

^{1.} Fiecare dintre subiectele 1, 2, respectiv 3 se rezolvă pe o foaie separată care se secretizează.

Olimpiada Națională de Fizică Târgu Jiu 2017 Proba teoretică

tensiune. Se cunoaște că după realizarea transferului de energie, temperatura din compartimentul i este T_i , $i \neq 1$. Consideră următoarele două situații:

- 1. Pistonul P_1 este termoizolator iar celelalte $P_2, P_3 \dots P_{i-1} \dots P_{n-1}$ sunt termoconductoare.
- 2. Pistoanele care separă compartimentul i (P_{i-1} și P_i) sunt *termoizolatoare* iar celelalte sunt termoconductoare.

Pentru fiecare din cele două situații determină:

- a. Temperatura, presiunea, volumul și variația energiei interne a gazului din fiecare compartiment.
- b. Căldura disipată de rezistor prin efect Joule.
- c. Lucrul mecanic schimbat de gazul din primul compartiment.

Subjectul III

Un gaz ideal monoatomic având $C_V = \frac{3}{2}R$, parcurge ciclul motor din figură, unde se cunosc V și p.

- a. Lucrul mecanic efectuat de gaz în acest proces ciclic.
- b. Randamentul motorului ce parcurge acest ciclu termodinamic.
- c. Randamentul motorului Carnot ce ar funcționa între temperaturile extreme atinse în acest ciclu.

Subiecte propuse de:

Conf. univ. dr. **Paul BARVINSCHI**, Universitatea de Vest din Timișoara Prof. **Ioan POP**, Colegiul Național Mihai Eminescu, Satu Mare Prof. **Constantin GAVRILĂ**, Colegiul Național Sf. Sava, București

Pagina 2 din 2

- 2. În cadrul unui subiect, elevul are dreptul să rezolve în orice ordine cerințele.
- 3. Durata probei este de 3 ore din momentul în care s-a terminat distribuirea subiectelor către elevi.
- **4.** Elevii au dreptul să utilizeze calculatoare de buzunar, dar neprogramabile.
- 5. Fiecare subiect se punctează de la 10 la 1 (1 punct din oficiu). Punctajul final reprezintă suma acestora.