Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

9 de Junho de 2022

- Introdução
- Vetores na base ortonormal
- Soma de vetores
- Multiplicação de vetores (1)
- Multiplicação de vetores (2)
- **Apêndice**

A física e os vetores

A física inteira é representada por grandezas escalares e vetoriais. Do ponto de vista matemático, as grandezas escalares são representadas por escalares enquanto que as grandezas vetoriais por vetores.

Exemplos de grandezas escalares e vetoriais

- ✓ Grandezas escalares: Massa, pressão, energia, trabalho,...
- ✓ Grandezas vetoriais: Força, deslocamento, velocidade, aceleração, torque,...

Corollary

Independente se a massa do bloco permanece a mesma, podemos observar que o fenômeno físico observado (seu deslocamento) muda se o empurrarmos da esquerda para a direita ou da direita para a esquerda.

Multiplicação de vetores (1)

Vetor

00000

Entidade matemática dotada de:

- ✓ Módulo ou intensidade:
- ✓ Direção:
- ✓ Sentido:

As propriedades do vetor \vec{r} são dados por:

- ✓ Módulo: $2\sqrt{2}$ unidades:
- ✓ Direção: 45° em relação ao eixo x;
- ✓ Sentido: De A para B.

Utilize a animação para ver as propriedades de um vetor.

Representação de um vetor no plano cartesiano.

Prof. Flaviano W. Fernandes

IFPR-Irati

Coordenadas vetoriais

00000

Na figura ao lado, o vetor \vec{r} é dado por

$$ec{r} = \overline{\mathsf{AB}}, \\ = \mathsf{B} - \mathsf{A}, \\ = (3,4) - (1,-1), \\ \overline{\vec{r}} = (2,5).$$

Um vetor pode ser obtido pela diferença entre duas coordenadas no espaço.

Representação de um vetor no plano cartesiano.

Multiplicação de um vetor por um escalar

- ✓ Na multiplicação de um vetor por um escalar, a direção e sentido não se varia, alterando apenas o seu módulo;
- ✓ Vetores com a mesma orientação (direção e sentido) e mesmo módulo são idênticos, não importando a sua representação no espaço;
- ✓ O módulo de um vetor é medido pelo seu comprimento do segmento de reta que o representa.

Utilize a animação para ver a mudança de um vetor quando multiplicado por um escalar.

Paralelismo de vetores no plano cartesiano.

00000

Usando relações trigonométricas temos

$$r^2 = r_x^2 + r_y^2,$$

$$r^2 = 3^2 + 3^2$$

$$r=3\sqrt{2}$$
.

Vetor que possui módulo igual a um.

Utilize a animação para ver o módulo de um vetor a partir das suas componentes.

Representação de um vetor no plano cartesiano.

Representação de um vetor numa base ortonormal

Considere o vetor \vec{r} . Desde que a base representada pelo sistema de coordenadas cartesiana seja ortogonal, podemos utilizar relações trigonométricas, e dizer que

$$egin{aligned} r_{\it X} &= {\it rcos} heta, \ r_{\it y} &= {\it rsen} heta, \ {\it ran} heta &= rac{r_{\it y}}{r_{\it x}}, \ r &= \sqrt{r_{\it x}^2 + r_{\it y}^2}. \end{aligned}$$

Componentes de um vetor no plano cartesiano.

Representação de um vetor numa base ortonormal (continuação)

De certa forma, podemos representar \vec{r} como a combinação linear de \vec{r}_x e \vec{r}_y ,

$$\vec{r} = \vec{r}_x + \vec{r}_y$$
.

Considerando que \vec{r}_x e \vec{r}_y podem ser obtidos pelo produto de escalares com os versores \hat{i} e \hat{j} , podemos dizer que

$$\vec{r} = r\cos\theta \hat{i} + r \sin\theta \hat{j}$$
.

Utilize a animação para ver as componentes de um vetor.

Componentes de um vetor no plano cartesiano.

A representação do vetor \vec{r} no espaço de três dimensões pode ser dado por

$$\vec{r}=r_{x}\hat{i}+r_{y}\hat{j}+r_{z}\hat{k}.$$

Base ortonormal

Base construída à partir dos versores \hat{i} , \hat{j} e \hat{k} , que são ortogonais entre si.

Representação de um vetor no espaço.

Soma de vetores e vetor resultante

Considere a equação abaixo

$$\vec{r} = \vec{a} + \vec{b}$$

onde \vec{r} é o vetor resultante. Representando \vec{a} e \vec{b} em suas componentes temos

$$\vec{r} = (a_x \hat{i} + a_y \hat{j}) + (b_x \hat{i} + b_y \hat{j}),$$

$$\vec{r} = (a_x + b_x) \hat{i} + (a_y + b_y) \hat{j},$$

$$\vec{r}=r_{x}\hat{i}+r_{y}\hat{j}.$$

Utilize a animação para ver a adição de dois vetores.

Vetores \vec{a} e \vec{b} e suas componentes.

Graficamente, podemos obter o vetor resultante combinando todos os vetores de modo a representar um polígono fechado. O lado do polígono que estiver com sentido contrário será o vetor resultante. No exemplo ao lado temos o vetor \vec{r} resultante da soma dos vetores $\vec{a} = 4\hat{i} + 2\hat{j}$ e $\vec{b} = -2\hat{i} - 4\hat{j}$, onde

$$\vec{r}=2\hat{i}-2\hat{j}.$$

Vetor resultante \vec{r} da soma $\vec{a} + \vec{b}$.

Vetor resultante a partir da regra do paralelogramo

Ordenando os vetores de modo que o início de um coincida com o fina do outro teremos que

$$\vec{a} + \vec{b} + \vec{c} + \vec{r} + \cdots = \vec{0}.$$

Sabendo que $-\vec{r}$ representa o vetor \vec{r} no sentido oposto teremos

$$\vec{r} = \vec{a} + \vec{b} + \vec{c} + \cdots$$

Utilize a animação para encontrar o vetor resultante a partir da formação de um polígono.

Vetor resultante \vec{r} .

Propriedades de adição vetorial

Uma grandeza vetorial deve obedecer as seguintes propriedades de adição:

$$ec{r}=ec{a}+ec{b}$$
 (equação vetorial), $ec{a}+ec{b}=ec{b}+ec{a}$ (lei comutativa), $(ec{a}+ec{b})+ec{c}=ec{a}+(ec{b}+ec{c})$ (lei associativa), $ec{r}=ec{a}-ec{b}=ec{a}+(-ec{b})$ (subtração de vetores).

Corollary

A ordem dos vetores na soma não afeta o resultado.

Tipos de multiplicação em cálculo vetorial

✓ Multiplicação entre um vetor e um escalar ⇒ O resultado será outro vetor:

$$\vec{F} = m\vec{a}$$

(Segunda Lei de Newton),

✓ Produto escalar ⇒ O resultado será um escalar:

$$W = \vec{F} \cdot d\vec{r}$$

(Trabalho),

✓ Produto vetorial ⇒ O resultado será outro vetor diferente dos anteriores:

$$\vec{ au} = \vec{r} imes \vec{F}$$

(Torque).

Corollary

Todas as três maneiras são diferentes entre si e nenhuma é igual à multiplicação algébrica.

Produto escalar

Usamos o produto escalar quando desejamos que o resultado da multiplicação entre dois vetores seja um escalar. Para isso, impomos as seguintes condições

$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = 0,$$

 $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1.$

Dessa maneira temos

$$\vec{a}\cdot\vec{b}=(a_x\hat{i}+a_y\hat{j}+a_z\hat{k})\cdot(b_x\hat{i}+b_y\hat{j}+b_z\hat{k}),$$

$$\vec{a} \cdot \vec{b} = a_{x}b_{x} \underbrace{(\hat{i} \cdot \hat{i})}_{1} + a_{x}b_{y} \underbrace{(\hat{i} \cdot \hat{j})}_{0} + a_{x}b_{z} \underbrace{(\hat{i} \cdot \hat{k})}_{0} + a_{y}b_{x} \underbrace{(\hat{j} \cdot \hat{i})}_{1} + a_{y}b_{y} \underbrace{(\hat{j} \cdot \hat{j})}_{1} + a_{y}b_{z} \underbrace{(\hat{j} \cdot \hat{k})}_{0} + a_{z}b_{z} \underbrace{(\hat{k} \cdot \hat{k})}_{1} + a_{z}b_{z} \underbrace{(\hat{k} \cdot \hat{k})}_{1}.$$

Portanto, temos

$$\vec{a}\cdot\vec{b}=a_xb_x+a_yb_y+a_zb_z.$$

Vemos que a condição anterior é satisfeita se

$$\hat{i} \cdot \hat{j} = \hat{i} \cdot \hat{k} = \hat{j} \cdot \hat{k} = \cos\theta = 0,$$

 $\hat{i} \cdot \hat{i} = \hat{i} \cdot \hat{i} = \hat{k} \cdot \hat{k} = \cos\theta = 1,$

onde θ é o ângulo formado entre os versores \hat{i} , \hat{j} e \hat{k} . Como a base é ortogonal, ou seja, $\theta = 90^{\circ}$, vemos que a condição é satisfeita.

Ângulo entre os versores \hat{i} , \hat{j} e \hat{k} .

Produto escalar a partir da representação gráfica

De maneira geral podemos dizer que o produto escalar entre dois vetores quaisquer pode ser definido como

$$\vec{a} \cdot \vec{b} = abcos\theta,$$

onde θ é o ângulo entre esses vetores.

Projeção de a em b e vice-versa.

Corollary

O produto escalar também obedece a propriedade comutativa,

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

Módulo de um vetor resultante

O módulo da soma vetorial $\vec{r} = \vec{a} + \vec{b}$ pode ser calculada à partir do produto escalar $r^2 = \vec{r} \cdot \vec{r}$,

$$r^{2} = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}),$$

$$r^{2} = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + 2\vec{a} \cdot \vec{b}.$$

Mas $\vec{a} \cdot \vec{b} = abcos\theta$, onde θ é o ângulo entre os vetores \vec{a} e \vec{b} , portanto

$$r^2 = a^2 + b^2 + 2abcos\theta.$$

Vetor resultante \vec{r} .

Utilize a animação para ver o vetor resultante a partir da regra do paralelogramo.

Produto vetorial

Usamos o produto vetorial quando desejamos que o resultado da multiplicação entre dois vetores seja um vetor. Para isso, impomos as seguintes condições

$$\hat{i} \times \hat{j} = \hat{j} \times \hat{k} = \hat{k} \times \hat{i} = 1,$$

$$\hat{j} \times \hat{i} = \hat{k} \times \hat{j} = \hat{i} \times \hat{k} = -1,$$

$$\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = 0.$$

Dessa maneira temos

$$\vec{a} \times \vec{b} = (a_x \hat{i} + a_y \hat{j} + a_z \hat{k}) \times (b_x \hat{i} + b_y \hat{j} + b_z \hat{k}),$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = (a_y b_z - b_y a_z)\hat{i} + (a_z b_x - b_z a_x)\hat{j} + (a_x b_y - b_x a_y)\hat{k}.$$

Portanto, temos

$$ec{a} imesec{b}=ec{c}, \ c_X=a_Yb_Z-b_Ya_Z, \ c_Y=a_Zb_X-b_Za_X, \ c_Z=a_Xb_Y-b_Xa_Y.$$

Produto vetorial (continuação)

Vemos que a condição anterior é satisfeita se

$$\hat{i} \times \hat{j} = \hat{j} \times \hat{k} = \hat{k} \times \hat{i} = sen\theta = 1,$$

 $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = sen\theta = 0.$

onde θ é o ângulo formado entre os versores \hat{i} , \hat{j} e \hat{k} . Como a base é ortogonal, ou seia, $\theta = 90^{\circ}$, vemos que a condição é satisfeita.

Ângulo entre os versores \hat{i} , \hat{j} e \hat{k} .

Produto vetorial a partir da representação gráfica

De maneira geral podemos dizer que o produto vetorial entre dois vetores quaisquer pode ser definido como

$$|\vec{a} imes \vec{b}| = absen\theta,$$

onde θ é o ângulo entre esses vetores.

$$\vec{c} = \vec{a} imes \vec{b}$$

Corollary

O produto vetorial não obedece a propriedade comutativa,

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a}).$$

A regra da mão direita

Regra da mão direita, $(\vec{c} = \vec{a} \times \vec{b})$ [1].

A regra da mão direita (continuação)

Regra da mão direita, ($\vec{c'} = \vec{b} \times \vec{a}$) [1].

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que reste somente um número diferente de zero no lado esquerdo.

Multiplicação de vetores (1)

Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1~\text{mm} = 1\times 10^{(-1)\times \textcolor{red}{2}}~\text{dm} \rightarrow 1\times 10^{-2}~\text{dm}$$

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

10 ms =
$$10 \times 10^{(-1) \times 3}$$
 s $\rightarrow 10 \times 10^{-3}$ s

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times 2} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{(3) \times 3} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2,5 \text{ km}^3 = 2,5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2,5 \times 10^{18} \text{ mm}^3$$

Α	α
В	β
Γ	γ
Δ	δ
Ε	ϵ , ε
Z	ζ
Η	η
Θ	heta
1	ι
Κ	κ
٨	λ
Μ	μ
	$B \Gamma \Delta E Z H \Theta I K \Lambda$

. . .

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ho
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	Χ	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Observações¹

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.

Referências

D. Halliday, R. Resnick, J. Walker, Fundamentos de física. Mecânica, v.1, 10. ed.. Rio de Janeiro. LTC (2016)

Multiplicação de vetores (1)

- R. D. Knight, Física: Uma abordagem estratégica, v.1, 2nd ed., Porto Alegre, Bookman (2009)
- H. M. Nussenzveig, Curso de física básica, Mecânica, v.1, 5, ed., São Paulo, Blucher (2014)
- Phet Colorado