A zoo of examples of groups!

Spencer Bagley

With many thanks to Matthew Macauley, http://www.math.clemson.edu/~macaule/

29 Jan 2025

Families of groups

So far we've seen some examples of *individual* groups, but here we're going to see some examples of *families* of groups, because they'll be nice go-to examples:

- 1. cyclic groups: rotational symmetries
 - (Side quest: orbits and cycle graphs)
- 2. dihedral groups: rotational and reflective symmetries
- 3. abelian groups: where ab = ba (always)
- 4. **permutation groups**: collections of rearrangements.

We'll show that every finite group is "isomorphic" to a permutation group.

Then, we'll see how to combine groups into bigger groups using

- 6. direct products and
- 7. semidirect products of groups.

I'm also kicking a couple of things to the homework for you to think about on your own:

- 8. matrix groups
- 9. the quaternion group Q_8

Some definitions

Definition

A subgroup of G is a subset $H \subseteq G$ that is also a group. We denote this by $H \subseteq G$.

(More on this soon.)

Definition

The order of a group G is its size as a set (how many distinct elements are in it), denoted by |G|.

Example

 $|\mathbf{Sq}| = 8$, and $|\mathbb{Z}| = \infty$.

Definition

The order of an element $g \in G$ is $|g| := |\langle g \rangle|$, i.e., either

- the minimal k > 1 such that $g^k = e$, or
- \bullet ∞ . if there is no such k.

Cyclic groups

Definition

A group is cyclic if it can be generated by a single element.

Finite cyclic groups describe the symmetries of objects that have *only* rotational symmetry.

Remark

You can make a cyclic group of any order you want.

Cyclic groups, multiplicatively

Definition

For $n \geq 1$, the multiplicative cyclic group C_n is the set

$$C_n = \{1, r, r^2, \dots, r^{n-1}\},\$$

where $r^i r^j = r^{i+j}$, and the exponents are taken modulo n. The identity is $r^0 = r^n = 1$.

It is clear that a presentation for this is

$$C_n = \langle r \mid r^n = 1 \rangle$$
.

Note that r^2 generates C_5 :

$$(r^2)^0 = 1$$
, $(r^2)^1 = r^2$, $(r^2)^2 = r^4$, $(r^2)^3 = r^6 = r$, $(r^2)^4 = r^8 = r^3$.

Do you have a conjecture about for which k does $C_n = \langle r^k \rangle$?

Cyclic groups, additively

Definition

For $n \geq 1$, the additive cyclic group \mathbb{Z}_n is the set

$$\mathbb{Z}_n = \{0, 1, \ldots, n-1\},\,$$

where the binary operation is addition modulo n. The identity is 0.

We can write a group presentation additively:

$$\mathbb{Z}_n = \langle 1 \mid n \cdot 1 = 0 \rangle.$$

What else generates \mathbb{Z}_5 ?

Remark

It is wrong to write $C_n = \mathbb{Z}_n$. (Why?)

Instead, we say C_n is isomorphic to \mathbb{Z}_n , and we write $C_n \cong \mathbb{Z}_n$.

Cayley tables of cyclic groups

Modular addition has a nice visual appearance in the Cayley tables for cyclic groups, if we order the elements $0, 1, \ldots, n-1$.

Here are two different ways to write the Cayley table for $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$.

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

	0	1	3	2	4
0	0	1	3	2	4
1	1	2	4	3	0
3	3	4	1	0	2
2	2	3	0	4	1
4	4	0	2	1	3

(Hey, this looks kind of familiar, like the hilt of a sword)

Exercise

Draw the Cayley table for C_2 .

Infinite cyclic groups

Definition

The additive infinite cyclic group is

$$\mathbb{Z} = \langle 1 \mid \rangle$$
,

the integers under addition. The multiplicative infinite cyclic group is

$$C_{\infty} := \langle r \mid \rangle = \{ r^k \mid k \in \mathbb{Z} \}.$$

What does a Cayley graph of \mathbb{Z} look like?

Orbits and cycle graphs

Definition

The orbit of an element $g \in G$ is the cyclic subgroup that it generates,

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \},$$

and its order is $|g| := |\langle g \rangle|$.

We can visualize the orbits by the (undirected) orbit graph, or cycle graph.

Let's think about this in the example of **Sq**. Use your Cayley graph to write down the orbits of each element.

element	orbit
1	{1}
r^2	$\{1, r^2\}$
r r³	$\{1, r, r^2, r^3\}$
f	{1, f}
rf	{1, rf}
$r^2 f$	$\{1, r^2f\}$
$r^3 f$	$\{1, r^3f\}$

By convention, we typically only draw maximal orbits.

Definition

The dihedral group D_n or Dih_n is the group of symmetries of a regular n-gon.

Examples

$$Tri = D_3$$
 and $Sq = D_4$. :)

Conjecture time:

- What is the order of a generic D_n ?
- What does the Cayley graph of a generic D_n look like?
- Do you immediately see any subgroups of a generic D_n ?
- What do you think is a presentation for a generic D_n ?

Definition

The dihedral group D_n is the group of symmetries of a regular n-gon. It has order 2n.

One possible choice of generators is

- 1. $r = \text{counterclockwise rotation by } 2\pi/n \text{ radians,}$
- 2. f = flip across a fixed axis of symmetry.

Using these generators, one (of many) ways to write the elements of $D_n = \langle r, f \rangle$ is

$$D_n = \left\{ \underbrace{1, r, r^2, \dots, r^{n-1}}_{n \text{ rotations}}, \underbrace{f, rf, r^2f, \dots, r^{n-1}f}_{n \text{ reflections}} \right\}.$$

It is easy to check that $rf = fr^{-1}$:

Several different presentations for D_n are:

$$D_n = \langle r, f \mid r^n = 1, f^2 = 1, rfr = f \rangle = \langle r, f \mid r^n = 1, f^2 = 1, rf = fr^{n-1} \rangle.$$

Warning!

Many books denote the symmetries of the n-gon as D_{2n} .

A strong advantage to our convention is that we can write

$$C_n = \langle r \rangle = \{1, r, r^2, \dots, r^{n-1}\} \le \langle r, f \rangle = D_n.$$

(In the other convention, for instance, $C_3 \leq D_6$, which I find annoying.)

Observation

When we were first playing with **Sq** and **Tri**, we identified lots of different reflections, but lately we've been pinning it down to just one specific one.

Question

Can you generate D_n using only reflections?

Definition

The infinite dihedral group, denoted D_{∞} , has presentation

$$D_{\infty} = \langle r, f \mid f^2 = 1, rfr = f \rangle.$$

Question

Can we generate D_{∞} with two reflections?

Cycle graphs of dihedral groups

The maximal orbits of D_n consist of

- 1 orbit of size n containing $\{1, r, ..., r^{n-1}\}$;
- *n* orbits of size 2 containing $\{1, r^k f\}$ for k = 0, 1, ..., n 1.

Unless n is prime, the size-n orbit will have smaller subsets that are orbits.

Cayley tables of dihedral groups

The separation of D_n into rotations and reflections is visible in its Cayley tables.

	1	r	r ²	r ³	f	rf	r^2f	r³f
1	1	r	r ²	r ³	f	rf	r ² f	r³f
r	r	r ²	r ³	1	rf	r ² f	r³f	f
r ²	r ²	r ³	1	r	r² f	r³f	f	rf
r ³	r ³	1	r	r ²	r³ f	f	rf	r ² f
f	f	r³f	r ² f	rf	1	r ³	r ²	r
rf	rf	f	r³ f	r² f	r	1	r ³	r ²
r²f	r ² f	rf	f	r³f	r ²	r	1	r ³
r³f	r³f	r² f	rf	f	r ³	r ²	r	1

	1	r	r^2	r ³	f	rf	r²f	r^3f
1	1	r	r2	r ³	f	rf	r^2f	r^3f
r	r		r3	1	rf	r² f		f
r ²	r ²	ota	1	r	r ² f	r3 f	ctio	rf
r ³	r3	1	r	r^2	r³f	f	rf	r^2f
f	f	r^3f	r^2f	rf	1	r ³	r^2	r
rf	rf			r^2f	r	1	r ³	r^2
r²f	r ² f		ctio	r^3f	r^2	ota	1	r3
r³f	r³f	r²f	rf	f	r^3	r ²	r	1

The partition of D_n as depicted above has the structure of group C_2 .

"Shrinking" a group in this way is called a quotient.

It yields a group of order 2 with the following Cayley table:

Abelian groups

Definition

A group G is abelian if ab = ba for all $a, b \in G$.

Claim

Every cyclic group is abelian.

Remark

To check that G is abelian, it suffices to only check that ab = ba for all pairs of generators.

Jokes

- What's purple and commutes?
- What's warm, nourishing, delicious, and commutative?

Abelian groups

It is easy to check whether a group is abelian from either its Cayley graph or Cayley table.

Abelian groups

One way to build abelian groups is to "glue together" cyclic groups using direct products.

Fundamental Theorem of Finite Abelian Groups

Every finite abelian group A is isomorphic to a direct product of cyclic groups

$$A \cong \mathbb{Z}_{k_1} \times \mathbb{Z}_{k_2} \times \cdots \times \mathbb{Z}_{k_m}$$
, for some $k_1, k_2, \ldots, k_m \in \mathbb{N}$.

(More on this later.)

What infinite abelian groups might there be?

- The rational numbers, ①, under addition
- The real numbers, \mathbb{R} , under addition
- The complex numbers, C, under addition
- **a** all of these (with 0 removed) under multiplication: \mathbb{Q}^* , \mathbb{R}^* , and \mathbb{C}^* .
- the positive versions of these under multiplication: \mathbb{Q}^+ , \mathbb{R}^+ (but not \mathbb{C}^+).

Other abelian groups

It is clear that $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$. However, there are many more subgroups of \mathbb{C} than these.

Most of the following are actually rings: additive groups also closed under multiplication. We'll study these more later.

Definition

The Gaussian integers are the complex numbers of the form

$$\mathbb{Z}[i] = \{ a + bi \mid a, b \in \mathbb{Z} \}.$$

We'll see $\mathbb{Z}[\sqrt{-m}]$ and others when we encounter rings of algebraic integers.

The set of polynomials in x "over the integers" is a group under addition, denoted

$$\mathbb{Z}[x] = \{a_n x^n + \cdots + a_1 x + a_0 \mid a_i \in \mathbb{Z}\}.$$

We can also look at certain subgroups, like the polynomials of degree $\leq n$.

Polynomials can be defined in multiple variables, like

$$\mathbb{Z}[x,y] = \Big\{ \sum a_{ij} x^i y^j \mid a_{ij} \in \mathbb{Z}, \text{ all but finitely many } a_{ij} = 0 \Big\},$$

or over a finite ring such as \mathbb{Z}_n .

Groups of permutations

Loosely speaking, a permutation is an action that rearranges a set of objects.

Definition

Let X be a set. A permutation of X is a bijection $\pi: X \to X$.

Definition

The permutations of a set X form a group that we denote S_X . The special case when $X = \{1, ..., n\}$ is called the symmetric group, and denoted S_n .

If |X| = |Y|, then $S_X \cong S_Y$, so we'll usually work with S_n , which has order $n! = n(n-1)\cdots 2\cdot 1$.

There are several notations for permutations, each with their strengths and weaknesses.

This is best seen with an example:

$$\frac{i}{\pi(i)} \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 6 & 5 & 4 \end{vmatrix}$$

$$\pi = (123)(46)$$

"cycle notation"

[&]quot;one-line notation"

[&]quot;permutation diagram"

Permutation notations

One-line notation: $\pi = 231654$, $\sigma = 564123$

Pros.

- concise
- nice visualization of rearrangement

Cons

- bad for combining permutations
- not clear where elements get mapped
- hard to compute the inverse

Permutation diagram:

$$\pi$$
: 1 $\stackrel{?}{\smile}$ 3

Pros:

- can see where elements get mapped
- easy to compute inverses
- convenient for combining permutations

Cycle notation: $\pi = (123)(46), \quad \sigma = (152634);$

Cons

- cumbersome to write
- can get tangled

Pros:

- short and concise
- easy to see the disjoint cycles
- convenient for combining permutations

Cons

- representation isn't unique
- not clear what n is

Cycle notation

The cycle (1465) means

"1 goes to 4, which goes to 6, which does to 5, which goes back to 1."

Thus, we can write (1465) = (4651) = (6514) = (5146).

To find the inverse of a cycle, write it backwards:

$$(1465)^{-1} = (5641) = (1564) = \cdots$$

Though it's not necessary, we usually prefer to begin a cycle with its smallest number.

Remark

Every permutation in S_n can be written in cycle notation as a product of disjoint cycles, and this is unique up to commuting and cyclically shifting cycles.

For example, consider the following permutation in S_{10} :

This is a product of four disjoint cycles. Since they are disjoint, they commute:

$$(1465)(23)(8\ 10\ 9) = (23)(8\ 10\ 9)(1465) = (23)(8\ 10\ 9)(1465) = \cdots$$

Composing permutations

Remark

The order of a permutation is the least common multiple of the sizes of its disjoint cycles.

For example, $(1\ 3\ 8\ 6)(2\ 9\ 7\ 4\ 10\ 5)\in S_{10}$ has order 12; this should be intuitive.

When cycles are not disjoint, order matters.

Many books compose permutations from right-to-left, due to function composition.

Since we have been using right Cayley graphs, we will compose them from left-to-right.

Notational convention

Composition of permutations will be done left-to-right. That is, given π , $\sigma \in S_n$,

$$\pi\sigma$$
 means "do π , then do σ ".

The main drawback about our convention is that it does not work well with function notation applied to elements, like $\pi(i)$.

For example, notice that

$$(\pi\sigma)(i) = \sigma(\pi(i)) \neq \pi(\sigma(i)).$$

However, we will hardly ever use this notation, so that drawback is minimal.

Composing permutations

Here are two ways illustrating how permutations are composed, with the example

First do
$$\frac{i \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{\pi(i) \mid 4 \mid 3 \mid 1 \mid 2 \mid 6 \mid 5}$$
 then do $\frac{i \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6}{\sigma(i) \mid 2 \mid 1 \mid 3 \mid 6 \mid 4 \mid 5}$

"By stacking."

"By cycles:"

Composing permutations in cycle notation

Let's practice composing two permutations:

$$1 2 3 4 5 6 * 1 2 3 4 5 6 = 1 2 3 4 5 6$$
first (1423)(56) then (12)(465) (164)(23)

Let's now do that in slow motion.

In the example above, we start with 1 and then read off:

- "1 goes to 4, then 4 goes to 6"; Write: (16
- "6 goes to 5, then 5 goes to 4"; Write: (1 6 4
- "4 goes to 2, then 2 goes to 1"; Write: (1 6 4), and start a new cycle.
- "2 goes to 3, then 3 is fixed"; Write: (1 6 4) (2 3
- \blacksquare "3 goes to 1, then 1 goes to 2"; Write: (1 6 4) (2 3), and start a new cycle.
- "5 goes to 6, then 6 goes to 5"; Write: (1 6 4) (2 3) (5); now we're done.

We typically omit 1-cycles (fixed points), so the permutation above is just (1 6 4) (2 3).

Cayley's theorem

A set of permutations that forms a group is called a permutation group.

A fundamental theorem by British mathematician Arthur Cayley (1821–1895) says that every finite group can be thought of as a collection of permutations.

This is clear for groups of symmetries like V_4 , C_n , or D_n , but less so for groups like Q_8 .

Cayley's theorem

Every finite group is "isomorphic to" a collection of permutations, i.e., some subgroup of S_n .

We don't have the mathematical tools to prove this formally, but we'll get a 1-line proof when we study group actions.

Let's make an intuitive argument, though.

Constructing permutations from a Cayley graph

Here is an algorithm given a Cayley graph with n nodes:

- 1. number the nodes 1 through n,
- 2. interpret each arrow type in the Cayley graph as a permutation.

Take the permutations corresponding to the generators.

Example

Let's try this with $D_3 = \langle r, f \rangle$.

We see that D_3 is isomorphic to the subgroup $\langle (123)(456), (14)(25)(36) \rangle$ of S_6 .

Question:

Would this have worked if we had chosen a different numbering?

Constructing permutations from a Cayley table

Here is an algorithm given a Cayley table with n elements:

- 1. replace the table headings with 1 through n,
- 2. make the appropriate replacements throughout the rest of the table,
- 3. interpret each row (or column) as a permutation.

Take the permutations corresponding to any generating set.

Example

Let's try this with the Cayley table for $D_3 = \langle r, f \rangle$.

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	3	1	5	6	4
3	3	1	2	6	4	5
4	4	6	5	1	3	2
5	5	4	6	2	1	3
6	6	5	4	3	2	1

We see that D_3 is isomorphic to the subgroup $\langle (123)(456), (14)(26)(35) \rangle$ of S_6 .

Constructing permutations from a different Cayley diagram

Another canonical way to generate D_n is with two reflections:

- \blacksquare s := f
- $t := fr = r^{n-1}f$ a different reflection!

Composing these in either order is a rotation of $2\pi/n$ radians:

$$st = f(fr) = r$$
, $ts = (fr)f = (r^{n-1}f)f = r^{n-1}$.

A group presentation with these generators is

$$D_n = \left\langle s, t \mid s^2 = 1, \ t^2 = 1, \ (st)^n = 1 \right\rangle = \left\{ \underbrace{1, st, ts, (st)^2, (ts)^2, \dots,}_{\text{rotations}} \underbrace{s, t, sts, tst, \dots}_{\text{reflections}} \right\}.$$

1 2	3	4
-----	---	---

5

30 / 36

Transpositions

A transposition is a permutation that swaps two objects and fixes the rest, e.g.:

$$\tau = (ij): \qquad 1 \quad 2 \quad \cdots \quad i-1 \quad i \quad i+1 \cdots \quad j-1 \quad j \quad j+1 \cdots \quad n-1 \quad n$$

An adjacent transposition is one of the form $(i \ i+1)$.

Remark

There are three canonical types of generating sets for S_n :

■ A transposition and an *n*-cycle, e.g.,:

$$S_n = \langle (1 2), (1 2 \cdots n-1 n) \rangle.$$

Adjacent transpositions:

$$S_n = \langle (1 \ 2), (2 \ 3), \ldots, (n-1 \ n) \rangle$$

Overlapping transpositions:

$$S_n = \langle (1 \ 2), (1 \ 3), \dots, (1 \ n) \rangle$$

Homework

Explain why each of these will generate the full S_n . (It may be helpful to think about n objects arranged in a row.)

Even and odd permutations

Remark

Every permutation in S_n can be written as a product of transpositions... uniquely?

- **Example:** $(1 \ 3 \ 2) = (1 \ 2)(2 \ 3)$
- Write (1 3 5) as a product of transpositions.
- Write (1 3 5) using only adjacent transpositions.
- Write (1 3 5) using only overlapping transpositions.

Proposition

The parity of the number of transpositions of a fixed permutation is unique.

Definition

An even permutation in S_n can be written with an even number of transpositions. An odd permutation requires an odd number.

Remark

- The product of two even permutations is even. (Why?)
- The product of two odd permutations is
- The product of an even and an odd permutation is

The alternating groups

Definition

The set of even permutations in S_n is the alternating group, denoted A_n .

Proposition

Exactly half of the permutations in S_n are even, and so $|A_n| = \frac{n!}{2}$.

Rather than prove this using (messy) elementary methods now, we'll wait until we see the isomorphism theorems to get a 1-line proof.

Here are Cayley graphs for A_4 on a truncated tetrahedron and cuboctahedron.

Direct products

Here is a fun way to combine two groups A and B to make a bigger group $A \times B$. I shall illustrate with the example of $C_2 \times C_4$.

Direct products: Your turn!

- Do $C_2 \times C_2$. Who is this?
- Do $C_2 \times C_3$. Is this guy new?
- Do $C_4 \times C_2$. Is this the same as $C_2 \times C_4$?

Direct products, symbolically

For two groups, A and B, the Cartesian product is the set of ordered pairs

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Definition

The direct product of groups (A, \star) and (B, \circ) is a group whose elements are the set $A \times B$, and the group operation is done component-wise: for generic elements $(a, b), (c, d) \in A \times B$,

$$(a, b) * (c, d) = (a * c, b \circ d).$$

We call A and B the factors.

I wish to emphasize that the binary operations on A and B could be different. For example, in $D_4 \times \mathbb{Z}_4$:

$$(r^3, 3) * (fr, 1) = (r^3 \cdot fr, 3 + 1) = (fr^2, 0).$$

Question

Is $D_4 \times \mathbb{Z}_4$ abelian?

Homework

Prove that $A \times B$ is abelian if and only if both A and B are abelian.