

Primer examen parcial: Conteo y combinatoria. Matemáticas discretas II Duración 3 horas

Carlos Andres Delgado S, Ing *

24 de Septiembre de 2018

Importante: Debe mostrar el procedimiento realizado en cada uno de los puntos, no es válido únicamente mostrar la respuesta.

1. Conteo básico [30 puntos]

Para los puntos 1 y 2 use la regla de la suma y la multiplicación, explique brevemente en cada punto cómo uso estas reglas.

- [10 puntos] Suponga que un país tiene una codificación de placas de vehículos con 6 o 7 caracteres alfanuméricos en los cuales las letras son mayúsculas en alfabeto Inglés y existen las siguientes categorías:
 - Placas servicio público: Inician con 4 letras.
 - Placas servicio privado: Inician con 2 o 3 letras.
 - Placas servicio especial: Inician con un número seguidas de 2 o 3 letras.

¿Cuantas placas existen?

- 2. [10 puntos] De los números entre 1 y 1000.
 - a) ¿Cuantos son divisibles por 10 y por 15?
 - b) ¿Cuantos son divisibles por 10 o por 15?
 - c) ¿Cuantos son divisibles por 10 pero no por 15?
- 3. [10 puntos] Usando el diagrama de árbol indique de cuantas formas se puede reorganizar las letras $\{a, b, c, d\}$ de tal forma la b y la c no estén juntas.

2. Principio de palomar. Combinatoria y permutación [40 puntos]

Explique cómo aplico cada concepto y no solucione numéricamente su respuesta, deje expresado para ver cómo aplico los conceptos de permutación y combinatoria. No es válido aplicar conteo básico.

- 1. [10 puntos] Usando principio de palomar indique ¿Cual es el mínimo número de estudiantes deben existir en un salón de clase para que el nombre de al menos 3 de ellos inicie con la misma letra?. Las letras están en alfabeto inglés y en mayúsculas. Explique como aplicó el principio.
- 2. [15 puntos] Cuantas cadenas de letras minúsculas de tamaño 10 tiene:
 - Al menos una vocal
 - Exactamente una vocal
 - No tiene vocales
- 3. [15 puntos] Un comité está compuesto por 6 estudiantes. Tenemos 10 estudiantes hombres y 8 mujeres. ¿De cuantas formar podemos formar un comité si se requiere el mismo número de hombres y mujeres?

3. Recurrencias [30 puntos]

Se reitera la importancia de indicar el procedimiento que aplicó, es lo que se va revisar.

- 1. **[15 puntos]** Resuelva la relación de recurrencia: $T(n) = -4T(n-1) + 5T(n-2) + 2n 3 + 4 * 5^n, T(0) = 3, T(1) = 9.$
- 2. [15 puntos] Utilizando el método de cambio de variable resuelva $T(n) = 9T(\frac{n}{3}) + 6n^3, T(1) = 9$. Compruebe su respuesta usando el método del maestro.

 $^{{\}rm *carlos. and res. delgado@correounivalle. edu. co}$

Ayudas

Conceptos básicos

Ecuación cuadrática de $ax^2 + bx + c$:

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Forma solución particular

F(n)	$a_n^{(p)}$
C_1	A
$\mid n \mid$	$A_1n + A_0$
n^2	$A_2n^2 + A_1n + A_0$
$n^t, t \in Z^+$	$A_t n^t + A_{t-1} n^{t-1} + \ldots + A_1 n + A_0$
$r^n, r \in R$	Ar^n
$\sin(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$\cos(\alpha n)$	$A\sin(\alpha n) + B\cos(\alpha n)$
$n^t r^n, t \in Z^+, r \in R$	$r^{n}(A_{t}n^{t} + A_{t-1}n^{t-1} + \ldots + A_{1}n + A_{0})$
$r^n \sin(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$
$r^n \cos(\alpha n)$	$Ar^n\sin(\alpha n) + Br^n\cos(\alpha n)$

Cuadro 1: Forma de la solución particular dado f(n)

Método del maestro

$$T(n) = aT(n/b) + cn^d$$

Siempre que $n=b^k$, donde k es un entero positivo, $a\geq 1$, b es un entero mayor que 1 y c y d son números reales tales que c>0 y $d\geq 0$, Entonces,

$$T(n) \quad es \left\{ \begin{array}{ll} O(n^d) & \text{si } a < b^d \\ O(n^d \log n) & \text{si } a = b^d \\ O(n^{\log_b a}) & \text{si } a > b^d \end{array} \right\}$$