

信息科学与工程学院

2019-2020 学年第二学期

实验报告

课程名称: 微处理器原理与应用

专 业 班 级 ___通信工程 二班___

学 生 学 号 201800121050

实验时间_2020年2月15日

实验报告

【实验目的】

- 1. 掌握 DEBUG 的基本命令及其功能,掌握 win10 使用 DEBUG 功能
- 2. 了解使用机器指令编程,掌握汇编指令编程

【实验要求】

- 1. 掌握一些基本汇编指令的运用
- 2. 掌握 DEBUG 的 R,D,E,U,T,A 等指令的运用

【实验具体内容】

- 1. 预备知识:
 - (1) 本次实验所需汇编指令

mov A,B 即将 B的值赋给 A

add ax,bx 即将 ax,bx 中的值相加的结果赋给 ax

sub ax,bx 即将 bx 减去 ax 后的结果赋给 ax

jmp 无条件跳转,用以改变 CS, IP

(2) 何为 DEBUG

Debug 是 DOS 和 Windows 都提供的实模式(8086 方式)程序的调试工具。使用它可以查看 CPU 各种寄存器中的内存、内存情况和在机器码级别跟踪程序的运行

- (3) DEBUG 中的几个指令
- -r 查看、改变 CPU 寄存器的内容
- -d 查看内存中的内容
- -e 改写内存中的内容
- -u 将内存中的机器指令翻译成汇编指令
- -t 执行一条机器指令
- -a 以汇编形式在内存中写入一条机器指令

2.

【调试 DEBUG】

(1) 在 winxp 环境下的 CMD 提供的 DOS 环境可直接进入 DEBUG, 在 win10 下需要由 DOSBox 实现

Z:\>mount c c:\masm511 Drive C is mounted as local directory c:\masm5\ Z:\>c:2

① 将本地的 c:\masm5 挂载为虚拟环境中的 C 盘 (可挂载多个盘, 只要分别命名即

可)

- ② 在虚拟环境中选择 C 盘符
- (2) 打开 debug 程序

```
C:\>debug
-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F SS=073F CS=073F IP=0100 NV UP EI PL NZ NA PO NC
073F:0100 0000 ADD [BX+SI],AL DS:0000=CD
```

可见 DEBUG 已可正常使用

【第一个实验】

实验要求:使用 DEBUG 将下面的程序写入内存,逐条执行,观察每条指令执行后 CPU 中相关寄存器的内容变化

机器码	汇编指令
b8 20 4e	mov ax,4E20H
05 16 14	add ax,1416H
bb 00 20	mov bx,2000H
01 d8	add ax,bx
89 c3	mov bx,ax
01 d8	add ax,bx
b8 1a 00	mov ax,001AH
bb 26 00	mov bx,0026H
00 d8	add al,bl
00 dc	add ah,bl
00 c7	add bh,al
b4 00	mov ah,0
00 d8	add al,bl
04 9c	add al,9CH

(1) 使用-r 指令查看当前 CS:IP 的位置,不妨在该位置开始写入指令

```
C:\>debug
-r
AX=0000 BX=0000 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F SS=073F CS=073F IP=0100 NV UP EI PL NZ NA PO NC
073F:0100 0000 ADD [BX+SI],AL DS:0000=CD
-a 073f:0100
```

(2) 使用-a 指令写入内存

```
-a 073f:0100
073F:0100 mov ax,4e20
073F:0103 add ax,1416
073F:0106 mov bx,2000
                       Error
073F:0106 mov bx,2000
                          多出一空格
073F:0109 add ax,bx
073F:010B mov bx,ax
073F:010D add ax,bx
073F:010F mo∨ ax,001a
073F:0112 mov bx,0026
073F:0115 add al,bl
073F:0117 add ah,bl
073F:0119 add bh,al
073F:011B mov ah,0
073F:011D add al,bl
073F:011F add al,9c
```

再尝试使用 e 命令写入(已为正确结果,直接按空格跳过更改)

```
-е 073f:0100
073F:0100
           B8.
                     20.
                              4E.
                                       05 .
                                                 16 .
                                                          14.
                                                                   BB.
                                                                             ΘΘ.
073F:0108
            20.
                     01.
                              D8.
                                       89.
                                                 C3.
                                                          01.
                                                                   D8.
                                                                             B8.
073F:0110
            1A.
                     00.
                              BB.
                                        26.
                                                 00.
                                                          00.
                                                                   D8.
                                                                             00.
073F:0118
            DC.
                     ΘΘ.
                              C7.
                                        B4.
                                                 00.
                                                          ΘΘ.
                                                                   D8.
                                                                             04.
           9C.
073F:0120
```

(3) 使用-u 命令查看输入的指令

-u 073f:01	100		
073F:0100	B8204E	MOV	AX,4E20
073F:0103	051614	ADD	AX,1416
073F:0106	BB0020	MOV	BX,2000
073F:0109	01D8	ADD	AX,BX
073F:010B	89C3	MOV	BX,AX
073F:010D	01D8	ADD	AX,BX
073F:010F	B81A00	MOV	AX,001A
073F:0112	BB2600	MOV	BX,0026
073F:0115	00D8	ADD	AL,BL
073F:0117	OODC .	ADD	AH,BL
073F:0119	00C7	ADD	BH,AL
073F:011B	B400	MOV	AH,00
073F:011D	00D8	ADD	AL,BL
073F:011F	049C	ADD	AL,9C

注意,如果不指定 Max IP,则最多翻译 20H 个字节的指令

(4) 使用-t 指令逐条执行

MOV AX,4E20

```
AX=0000 BX=0000 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F
                SS=073F CS=073F IP=0100
                                          NV UP EI PL NZ NA PO NC
073F:0100 B8204E
                      MOV
                             AX,4E20
-t
                CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
AX=4E20 BX=0000
DS=073F ES=073F
                SS=073F CS=073F IP=0103
                                          NU UP EI PL NZ NA PO NC
                             AX,1416
073F:0103 051614
                      ADD
```

ADD AX,1416

	CX=0000 DX=0000 SP=00FD SS=073F CS=073F IP=0103	
073F:0103 051614	ADD AX,1416	NO OF EFFECTIVE NO. 10 HC
-t		
AX=6236 BX=0000	CX=0000 DX=0000 SP=00FD	BP=0000 SI=0000 DI=0000
DS=073F ES=073F	SS=073F CS=073F IP=0106	NU UP EI PL NZ NA PE NC
073F:0106 BB0020	MOV BX,2000	

MOV BX,2000

					BP=0000 SI=0000 DI=0000
DS=073F	ES=073F	SS=073F	CS=073F	IP=0106	NU UP EI PL NZ NA PE NC
073F:0100	6 BB0020	MO	υ BX,	2000	
-t					
AX=6236	BX=2000	CX=0000	DX=0000	SP=00FD	BP=0000 SI=0000 DI=0000
DS=073F	ES=073F	SS=073F	CS=073F	IP=0109	NU UP EI PL NZ NA PE NC
073F:0109	9 01D8	AD	D AX,	BX	

ADD AX,BX

			BP=0000 SI=0000 DI=0000 NU UP EI PL NZ NA PE NC
973F:0109 01D8			no or El le lie illi le lic
-t			
AX=8236 BX=2000	CX=0000 DX=0000	SP=00FD	BP=0000 SI=0000 DI=0000
DS=073F ES=073F	SS=073F CS=073F	IP=010B	OV UP EI NG NZ NA PE NC
073F:010B 89C3	MOV BX,	AX	

MOV BX,AX

```
AX=8236 BX=2000 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F SS=073F CS=073F IP=010B DV UP EI NG NZ NA PE NC
073F:010B 89C3 MOV BX,AX
-t

AX=8236 BX=8236 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F SS=073F CS=073F IP=010D DV UP EI NG NZ NA PE NC
073F:010D 01DB ADD AX,BX
```

ADD AX,BX

AX=8236 BX=8236 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=073F ES=073F SS=073F CS=073F IP=010D OV UP EI NG NZ NA PE NC 073F:010D 01D8 ADD AX, BX ·t AX=046C BX=8236 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=073F ES=073F SS=073F CS=073F IP=010F OV UP EI PL NZ NA PE CY 973F:010F B81A00 MOV AX,001A

MOV AX,001A

AX=046C BX=8236 BP=0000 SI=0000 DI=0000 CX=0000 DX=0000 SP=00FD DS=073F ES=073F SS=073F CS=073F IP=010F OV UP EI PL NZ NA PE CY 073F:010F B81A00 MNU AX,001A -t AX=001A BX=8236 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 SS=073F CS=073F IP=0112 OV UP EI PL NZ NA PE CY DS=073F ES=073F 073F:0112 BB2600 MOU BX.0026

MOV BX,0026

AX=001A BX=8236 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=073F ES=073F SS=073F CS=073F IP=0112 OV UP EI PL NZ NA PE CY 073F:0112 BB2600 MOV BX,0026 -t. AX=001A BX=0026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 SS=073F OV UP EI PL NZ NA PE CY DS=073F ES=073F CS=073F IP=0115 073F:0115 00D8 ADD AL,BL

ADD AL,BL

AX=001A BX=0026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 SS=073F CS=073F IP=0115 DS=073F ES=073F OV UP EI PL NZ NA PE CY 073F:0115 00D8 ADD AL, BL -t AX=0040 BX=0026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=073F ES=073F SS=073F CS=073F IP=0117 NV UP EI PL NZ AC PO NC 073F:0117 00DC ADD AH,BL

ADD AH,BL

CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 AX=0040 BX=0026 DS=073F ES=073F SS=073F CS=073F IP=0117 NV UP EI PL NZ AC PO NC 073F:0117 00DC ADD AH.BL -t AX=2640 BX=0026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=073F ES=073F SS=073F CS=073F IP=0119 NV UP EI PL NZ NA PO NC 073F:0119 00C7 ADD BH,AL

ADD BH,AL

```
AX=2640 BX=0026
                 CX=0000 DX=0000 SP=00FD
                                            BP=0000 SI=0000 DI=0000
DS=073F ES=073F
                 SS=073F
                          CS=073F IP=0119
                                             NV UP EI PL NZ NA PO NC
073F:0119 00C7
                       ADD
                               BH.AL
-t
AX=2640
        BX=4026
                 CX=0000
                          DX=0000 SP=00FD
                                            BP=0000 SI=0000 DI=0000
                                   IP=011B
                                             NU UP EI PL NZ NA PO NC
DS=073F ES=073F
                 SS=073F
                          CS=073F
                       MOV
073F:011B B400
                               AH,00
```

MOV AH,0

```
AX=2640 BX=4026
                 CX=0000 DX=0000
                                   SP=00FD
                                           BP=0000 SI=0000 DI=0000
DS=073F
        ES=073F
                 SS=073F
                        CS=073F
                                   IP=011B
                                            NU UP EI PL NZ NA PO NC
073F:011B B400
                       MOU
                               AH,00
-t.
AX=0040 BX=4026
                 CX=0000 DX=0000
                                  SP=00FD
                                           BP=0000 SI=0000 DI=0000
DS=073F ES=073F
                 SS=073F
                         CS=073F
                                   IP=011D
                                            NU UP EI PL NZ NA PO NC
073F:011D 00D8
                       ADD
                               AL,BL
```

ADD AL,BL

```
CX=0000
                                           BP=0000 SI=0000 DI=0000
AX=0040 BX=4026
                          DX=0000 SP=00FD
                 SS=073F CS=073F
DS=073F ES=073F
                                  IP=011D
                                            NV UP EI PL NZ NA PO NC
073F:011D 00D8
                       ADD
                               AL, BL
-t
AX=0066 BX=4026
                 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F
        ES=073F
                 SS=073F
                                            NU UP EI PL NZ NA PE NC
                         CS=073F
                                   IP=011F
073F:011F 049C
                       ADD
                               AL.9C
```

ADD AL,9C

```
AX=0066
        BX=4026
                 CX=0000
                          DX=0000
                                   SP=00FD
                                            BP=0000 SI=0000 DI=0000
DS=073F ES=073F
                 SS=073F
                          CS=073F
                                   IP=011F
                                             NU UP EI PL NZ NA PE NC
073F:011F 049C
                       ADD
                               AL,9C
 +
AX=0002
        BX=4026
                 CX=0000
                          DX=0000 SP=00FD
                                            BP=0000 SI=0000 DI=0000
DS=073F
        ES=073F
                 SS=073F
                          CS=073F
                                   IP=0121
                                             NV UP EI PL NZ AC PO CY
073F:0121 0000
                       ADD
                               [BX+SI],AL
                                                                  DS:4026=00
```

【第二个实验】

实验要求:将下面 3 条指令写入从 2000:0 开始的内存单元中,利用这 3 条指令计算 2 的 8 次方。

mov ax,1 (从 2000:0 开始的内存单元)

add ax,ax

imp 2000:0003 (观察跳到什么地方了?)

(1) 将三条指令写入从 2000: 0 开始的内存单元中

-a 2000:0

2000:0000 mov ax,1 2000:0003 add ax,ax

2000:0005 jmp 2000:0003

2000:0007

(2) 逐条执行, 直到 ax 中计算得出 2 的 8 次方

MOV AX,0001

```
AX=4E20 BX=4026 CX=0000 DX=0000
                                  SP=00FD
                                          BP=0000 SI=0000 DI=0000
                                  IP=0000
                                           NU UP EI PL NZ AC PO CY
DS=073F ES=073F
                SS=073F
                         CS=2000
2000:0000 B80100
                              AX,0001
                      MOV
-t
AX=0001 BX=4026 CX=0000 DX=0000 SP=00FD
                                          BP=0000 SI=0000 DI=0000
                                           NU UP EI PL NZ AC PO CY
DS=073F ES=073F
                SS=073F CS=2000 IP=0003
2000:0003 0100
                      ADD
                              AX,AX
```

ADD AX,AX

```
BP=0000 SI=0000 DI=0000
AX=0001 BX=4026
                 CX=0000
                          DX=0000
                                  SP=00FD
DS=073F
        ES=073F
                 SS=073F
                          CS=2000
                                   IP=0003
                                             NU UP EI PL NZ AC PO CY
2000:0003 0100
                       ADD
                               AX,AX
-t
AX=0002
        BX=4026
                 CX=0000
                          DX=0000 SP=00FD
                                            BP=0000 SI=0000 DI=0000
        ES=073F
                 SS=073F
                          CS=2000
                                  IP=0005
                                             NU UP EI PL NZ NA PO NC
DS=073F
                       JMP
2000:0005 EBFC
                               0003
```

JMP 0003

```
CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
AX=0002 BX=4026
DS=073F ES=073F
                 SS=073F CS=2000 IP=0005
                                            NV UP EI PL NZ NA PO NC
2000:0005 EBFC
                      JMP
                              0003
-t
AX=0002 BX=4026
                 CX=0000
                         DX=0000
                                  SP=00FD
                                           BP=0000 SI=0000 DI=0000
       ES=073F
DS=073F
                 SS=073F
                         CS=2000
                                  IP=0003
                                            NV UP EI PL NZ NA PO NC
2000:0003 0100
                      ADD
                              AX,AX
```

到此可见,程序发生循环,又跳回了 ax+ax 的步骤,实现循环乘 2,经过循环,得到 ax 中为 0100H,即得到所需结果

```
AX=0100 BX=4026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F SS=073F CS=2000 IP=0005 NV UP EI PL NZ NA PE NC
2000:0005 EBFC JMP 0003
```

【第三个实验】

查看内存中的内容 PC 机主板上的 ROM 中写有一个生产日期,在内存 FFF00H~FFFFFH 的某几个单元中,请找到这个生产日期并试图改变它。(内存 ffff:0005~ffff:000C(共 8 个字节单元中)处)

```
d ffff:0
                                                           .....01/01/92..U
          EA CO 12 00 FO 30 31 2F-30 31 2F 39 32 00 FC 55
FFFF:0000
          60 10 00 F0 BB 13 A3 01-08 00 70 00 B1 13 A3 01
FFFF:0010
                                                           `....<del>.....p..</del>...
         08 00 70 00 60 10 00 F0-60 10 00 F0 60 10 00 F0
FFFF:0020
                                                           ..p. ... ... ...
                                                           ;····į···.U...
          A5 FE 00 F0 87 E9 00 F0-55 FF 00 F0 60 10 00 F0
FFFF:0030
          60 10 00 F0 60 10 00 F0-80 10 00 F0 60 10 00 F0
FFFF:0040
FFFF:0050
          00 13 00 F0 00 11 00 F0-20 11 00 F0 40 11 00 F0
                                                           FFFF:0060
          A0 11 00 F0 C0 11 00 F0-E0 11 00 F0 20 12 00 F0
FFFF:0070 CO 12 00 F0 CO 12 00 F0-40 12 00 F0 60 10 00 F0
```

可见在该 DOSBOX 环境下的主板生产日期为 92 年 1 月 1 日,要注意,这是虚拟环境中虚拟的生产日期,并不是真实的日期

尝试修改为00年12月12日

```
-e ffff:0005
FFFF:0005 30.31
                   31.32
                           ZF.
FFFF:0008
          30.31 31.32
                                    39.30
                                            32.30
                           ZF.
-d ffff:0000
                                                               .... 01/01/92. .U
FFFF:0000 EA CO 12 00 FO 30 31 2F-30 31 2F 39 32 00 FC 55
FFFF:0010 60 10 00 F0 BB 13 A3 01-08 00 70 00 B1 13 A3 01
FFFF:0020 08 00 70 00 60 10 00 F0-60 10 00 F0 60 10 00 F0
                                                               .....U....<u>`</u>....
FFFF:0030 A5 FE 00 F0 87 E9 00 F0-55 FF 00 F0 60 10 00 F0
FFFF:0040 60 10 00 F0 60 10 00 F0-80 10 00 F0 60 10 00 F0
FFFF:0050 00 13 00 F0 00 11 00 F0-20 11 00 F0 40 11 00 F0
FFFF:0060 A0 11 00 F0 C0 11 00 F0-E0 11 00 F0 20 12 00 F0
FFFF:0070 CO 12 00 F0 CO 12 00 F0-40 12 00 F0 60 10 00 F0
                                                               . . . . . . . . . . . . . . . . . .
```

可见修改并没有起到作用,问题在于,向地址 C0000~FFFFF 的内存单元写入数据的操作是无效的,因为这等于改写只读存储器中的内容

【第四个实验】

使用 Debug,将下面的程序段写入内存,逐条执行,根据指令执行后的实际运行情况填空。(逐条执行,每条指令执行结果截图)

```
mov ax, ffff
mov ds, ax
mov ax, 2200
mov ss,ax
mov sp,0100
mov ax, [0]
              ; ax =
add ax, [2]
              ; ax=
              ;bx=
mov bx, [4]
              ; bx=
add bx, [6]
push ax
              ;sp=;修改的内存单元的地址是
内容为
push bx
              ;sp=_____;修改的内存单元的地址是_____
内容为
pop ax
              ;sp=____;ax=_
             ;sp=___;bx=_
pop bx
             ;sp=;修改的内存单元的地址是_
push [4]
内容为
             ;sp=____;修改的内存单元的地址是___
push [6]
内容为
```

(1) 将指令写入内存

```
-a 2000:0000
2000:0000 mov ax,ffff
2000:0003 mo∨ ds,ax
2000:0005 mov ax,2200
2000:0008 mov ss,ax
2000:000A may sp,0100
2000:000D mov ax,[0]
2000:0010 add ax.[2]
2000:0014 mov bx.[4]
2000:0018 add bx,[6]
2000:001C push ax
2000:001D push bx
2000:001E pop ax
2000:001F pop bx
2000:0020 push [4]
2000:0024 push [6]
```

(2) 逐条执行指令

MOV AX,FFFF

```
AX=0100 BX=4026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F SS=073F CS=2000 IP=0000 NU UP EI PL NZ NA PE NC
2000:0000 B8FFFF MOU AX,FFFF
-t

AX=FFFF BX=4026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=073F ES=073F SS=073F CS=2000 IP=0003 NU UP EI PL NZ NA PE NC
2000:0003 8ED8 MOU DS,AX
```

MOV DS,AX

```
AX=FFFF BX=4026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=073F ES=073F CS=2000 IP=0003 NU UP EI PL NZ NA PE NC 2000:0003 8ED8 MOU DS,AX -t

AX=FFFF BX=4026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=FFFFF ES=073F SS=073F CS=2000 IP=0005 NU UP EI PL NZ NA PE NC 2000:0005 B80022 MOU AX,2200
```

MOV AX,2200

```
AX=FFFF BX=4026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=FFFF ES=073F SS=073F CS=2000 IP=0005 NV UP EI PL NZ NA PE NC 2000:0005 B80022 MOV AX,2200 -t

AX=2200 BX=4026 CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000 DS=FFFF ES=073F SS=073F CS=2000 IP=0008 NV UP EI PL NZ NA PE NC 2000:0008 8ED0 MOV SS,AX
```

MOV SS,AX

```
AX=2200 BX=4026
                CX=0000 DX=0000 SP=00FD BP=0000 SI=0000 DI=0000
DS=FFFF ES=073F
                 SS=073F CS=2000 IP=0008
                                           NU UP EI PL NZ NA PE NC
                      MOV
2000:0008 8EDO
                              SS,AX
-t
                 CX=0000 DX=0000
AX=2200 BX=4026
                                  SP=0100
                                          BP=0000 SI=0000 DI=0000
                 SS=2200 CS=2000
DS=FFFF ES=073F
                                 IP=000D
                                           NU UP EI PL NZ NA PE NC
2000:000D A10000
                      MOV
                              AX,[0000]
                                                                DS:0000=C0EA
```

MOV AX,[0]

					BP=0000 SI=0000 DI=0000 NU UP EI PL NZ NA PE NC
	D A10000	MO	V AX,	[0000]	DS:0000=C0EA
-t					
AX=C0EA	BX=4026	CX=0000	DX=0000	SP=0100	BP=0000 SI=0000 DI=0000
DS=FFFF	ES=073F	SS=2200	CS=2000	IP=0010	NU UP EI PL NZ NA PE NC
2000:001	0 0306020	O AD	D AX,	[0002]	DS:0002=0012

ADD AX,[2]

					BP=0000 SI=0000 DI=0000
	ES=073F 9 0306020				NV UP EI PL NZ NA PE NC DS:0002=0012
-t	9 0300020	ט העדו	, חרי	10002.1	D3:0002-0012
AX=C0FC	BX=4026	CX=0000	DX=0000	SP=0100	BP=0000 SI=0000 DI=0000
					NV UP EI NG NZ NA PE NC
2000:0014	4 8B1E040	9 M O	υ BX,	[0004]	DS:0004=30F0

MOV BX,[4]

```
AX=COFC BX=4026
                 CX=0000
                          DX=0000
                                  SP=0100
                                           BP=0000 SI=0000 DI=0000
DS=FFFF ES=073F
                SS=2200 CS=2000
                                  IP=0014
                                            NU UP EI NG NZ NA PE NC
2000:0014 8B1E0400
                       MOV
                               BX.[0004]
                                                                 DS:0004=30F0
-t
AX=COFC
        BX=30F0 CX=0000 DX=0000
                                  SP=0100
                                           BP=0000 SI=0000 DI=0000
       ES=073F
                SS=2200 CS=2000
                                  IP=0018
                                            NU UP EI NG NZ NA PE NC
DS=FFFF
2000:0018 031E0600
                       ADD
                               BX,[0006]
                                                                 DS:0006=2F31
```

ADD BX,[6]

```
AX=COFC BX=30F0 CX=0000 DX=0000
                                  SP=0100
                                           BP=0000 SI=0000 DI=0000
                SS=2200 CS=2000
                                  IP=0018
                                            NU UP EI NG NZ NA PE NC
DS=FFFF
        ES=073F
2000:0018 031E0600
                       ADD
                               BX,[0006]
                                                                 DS:0006=2F31
-t
AX=COFC
        BX=6021
                 CX=0000 DX=0000
                                   SP=0100
                                           BP=0000 SI=0000 DI=0000
DS=FFFF
        ES=073F
                 SS=2200 CS=2000
                                   IP=001C
                                            NV UP EI PL NZ NA PE NC
2000:0010 50
                       PUSH
                               ĤΧ
```

PUSH AX

					BP-0000 SI-0000 DI-0000 NU UP EI PL NZ NA PE NC
2000:0010 -t					
AX=COFC	BX=6021	CX=0000	DX=0000	SP=00FE	BP=0000 SI=0000 DI=0000
					NU UP EI PL NZ NA PE NC
2000:001D	53	PU	SH BX		

PUSH BX

					BP=0000 SI=0000 DI=0000 NV UP EI PL NZ NA PE NC
2000:001D -t	53	PU	SH BX		
					BP=0000 SI=0000 DI=0000 NV UP EI PL NZ NA PE NC
2000:001E				11-001E	NO OF EL FE NZ NH FE NC

POP AX

				BP=0000 SI=0000 DI=0000 NU UP EI PL NZ NA PE NC
2000:0011 -t	E 58	PO	P AX	
	ES=073F	SS=2200		BP=0000 SI=0000 DI=0000 NU UP EI PL NZ NA PE NC

POP BX

				BP=0000 SI=0000 DI=0000 NU UP EI PL NZ NA PE NC
2000:001) -t	F 5B	PO	P BX	
				BP=0000 SI=0000 DI=0000
		SS=2200 O PU		NU UP EI PL NZ NA PE NC DS:0004=30F0

PUSH [4]

					BP=0000 SI=0000 DI=0000 NV UP EI PL NZ NA PE NC
	0 FF36040				DS:0004=30F0
	RY-COFC	CY-0000	DY-0000	SP-OOFF	BP=0000 SI=0000 DI=0000
DS=FFFF	ES=073F	SS=2200	CS=2000	IP=0024	NU UP EI PL NZ NA PE NC
2000:002	4 FF36060	O PU	SH [00	061	DS:0006=2F31

PUSH [6]

```
AX=6021 BX=C0FC CX=0000
              DX=0000
                   SP=00FE
                         BP=0000 SI=0000 DI=0000
    ES=073F SS=2200 CS=2000 IP=0024
                         NU UP EI PL NZ NA PE NC
                                     DS:0006=2F31
2000:0024 FF360600
             PUSH
                 [0006]
                         BP=0000 SI=0000 DI=0000
AX=6021 BX=C0FC
         CX=0000
              DX=0000 SP=00FC
    ES=073F
         SS=2200
              CS=2000
                    IP=0028
                         NU UP EI PL NZ NA PE NC
2000:0028 0000
                                     DS:COFC=00
             ADD
                 [BX+SI],AL
-d 2200:00f0
200:00F0 00 00 21 60 00 00 28 00-00 20 A3 01 31 2F F0 30
2200:0100
     2200:0110
     2200:0120
     2200:0130
      2200:0140
     2200:0150
```

结束最后一步操作后,可见栈内存放着最后放入的两个数据,DS:0006 和 DS:0004 的数据: 2F31 和 30F0

(3) 根据实际运行情况填空

```
mov ax, ffff
mov ds, ax
mov ax, 2200
mov ss,ax
mov sp,0100
                  ;ax= COEA
mov ax, [0]
                  ;ax= COFC
add ax, [2]
                  ; bx= 30F0
mov bx, [4]
                  ; bx = 6021
add bx, [6]
                        00FE ; 修改的内存单元的地址是 2200:00FE
push ax
                  ;sp=
内容为 COFC
push bx
                  ; sp= 00FC ; 修改的内存单元的地址是 2200:00FC
内容为 6021
                  ;sp=<u>00FE</u> ;ax= 6021
pop ax
                  ;sp= 0100 ;bx= COFC
pop bx
                  ;sp=_00FE_;修改的内存单元的地址是 2200:00FE
push [4]
内容为 30F0
                  ;sp= 00FC ;修改的内存单元的地址是 2200:00FC
push [6]
内容为 2F31
```

【第五个实验】

使用 Debug,将下面的程序段写入内存,逐条执行,观察每条指令执行后,CPU 中相关寄存器中内容的变化。(逐条执行,每条指令执行结果截图)如果有问题请说明原因

```
汇编指令
mov ax,1000H
mov ds,ax
mov ds,[0]
```

add ds,ax

(1) 将指令写入内存后逐条执行

```
AX=6021
         BX=COFC
                 CX=0000
                           DX=0000
                                    SP=00FC
                                             BP=0000 SI=0000 DI=0000
                  SS=2200
DS=FFFF
        ES=073F
                          CS=2000
                                   IP=0028
                                              NU UP EI PL NZ NA PE NC
2000:0028 0000
                        ADD
                                [BX+SI],AL
                                                                    DS:COFC=00
-a 2000:0028
2000:0028 mov ax,1000
2000:002B mov ds,ax
2000:002D mo∨ ds,[0]
2000:0031 add ds,ax
                ` Error
```

要注意,段寄存器不可以参与算术运算

(2) 将 add ds, ax 指令替换为如下三条指令后逐条执行

mov bx,ds

add ax,bx

mov ds,ax

(3)逐条执行

MOV AX,1000

```
AX=6021 BX=C0FC
                  CX=0000
                          DX=0000
                                   SP=00FC
                                             BP=0000 SI=0000 DI=0000
DS=FFFF
        ES=073F
                          CS=2000
                                    IP=0028
                                              NU UP EI PL NZ NA PE NC
                  SS=2200
2000:0028 B80010
                        MOV
                                AX,1000
-t
AX=1000
        BX=COFC
                  CX=0000
                          DX=0000
                                    SP=00FC
                                             BP=0000 SI=0000 DI=0000
                                              NU UP EI PL NZ NA PE NC
DS=FFFF
        ES=073F
                  SS=2200
                          CS=2000
                                    IP=002B
2000:002B 8ED8
                       MOV
                                DS,AX
```

MOV DS,AX

```
CX=0000
AX=1000
        BX=COFC
                           DX=0000
                                    SP=00FC
                                             BP=0000 SI=0000 DI=0000
                                    IP=002B
                                              NU UP EI PL NZ NA PE NC
DS=FFFF
        ES=073F
                  SS=2200
                           CS=2000
2000:002B 8ED8
                        MOV
                                DS,AX
-t
                  CX=0000
                                    SP=00FC
AX=1000 BX=C0FC
                           DX=0000
                                             BP=0000 SI=0000 DI=0000
DS=1000 ES=073F
                 SS=2200
                          CS=2000
                                    IP=002D
                                              NU UP EI PL NZ NA PE NC
2000:002D 8E1E0000
                       MOV
                                DS,[0000]
                                                                    DS:0000=0000
```

MOV DS,[0]

					BP=0000 SI=0000 DI=0000
DS=1000	ES=073F	SS=2200	CS=2000	IP=002D	NV UP EI PL NZ NA PE NC
2000:002D	8E1E0000) MOI	J DS,	[0000]	DS:0000=0000
-t					
AX=1000	BX=COFC	CX=0000	DX=0000	SP=00FC	BP=0000 SI=0000 DI=0000
DS=0000	ES=073F	SS=2200	CS=2000	IP=0031	NU UP EI PL NZ NA PE NC
2000:0031	8CDB	MO	J BX,	DS	

MOV BX,DS

					BP=0000 SI=0000 DI=0000	
					NU UP EI PL NZ NA PE NC	
	2000:0031 8CDB MOV BX,DS					
$-\mathbf{t}$						
AX=1000	BX=0000	CX=0000	DX=0000	SP=00FC	BP=0000 SI=0000 DI=0000	
DS=0000	ES=073F	SS=2200	CS=2000	IP=0033	NV UP EI PL NZ NA PE NC	
2000:0033	3 01D 8	AD	D AX,	BX		

ADD AX,BX

AX=1000	BX=0000	CX=0000	DX=0000	SP=00FC	BP=0000 SI=0000 DI=0000
DS=0000	ES=073F	SS=2200	CS=2000	IP=0033	NV UP EI PL NZ NA PE NC
2000:0033 01D8		ADD AX,BX			
-t					
AX=1000	BX=0000	CX=0000	DX=0000	SP=00FC	BP=0000 SI=0000 DI=0000
DS=0000	ES=073F	SS=2200	CS=2000	IP=0035	NV UP EI PL NZ NA PE NC
2000:0035 8ED8		MOV DS,AX			

MOV DS,AX

```
AX=1000 BX=0000 CX=0000
                        DX=0000
                                 SP=00FC
                                          BP=0000 SI=0000 DI=0000
DS=0000 ES=073F
                SS=2200 CS=2000 IP=0035
                                           NU UP EI PL NZ NA PE NC
                      MOV
2000:0035 8ED8
                              DS,AX
AX=1000 BX=0000
                CX=0000 DX=0000
                                 SP=00FC
                                          BP=0000 SI=0000 DI=0000
DS=1000 ES=073F
                 SS=2200 CS=2000 IP=0037
                                           NU UP EI PL NZ NA PE NC
2000:0037 0000
                      ADD
                              [BX+SI],AL
                                                               DS:0000=00
```

实现了原功能

【第六个实验】

仔细观察下图中的实验过程,然后分析:为什么 2000:0~2000:f 中的内容会发生改变?

```
C:\>debug
0B39:0100 mov
         MOV
         mov
             ax,3123
         mov
   : 01 OR
         push ax
         mov ax,3366
         push ax
d 2000:0 f
          SP=FFEE
IP=0100
                                            BP=0000 SI=0000
                          DX =0000
                                                             DI =0000
        ES=0B39
                                             NU UP EI PL NZ NA PO
0B39:0100 B80020
                       MOU
                                                     S I =0000
X=2000
                                                              DI =0000
                          DX=0008
CS=0B39 I
SS,AX
 =ØB39
        ES = 0B39
                                   IP=0103
                                             NU UP EI PL NZ NA PO NC
                 SS=ØB39
                       MOU
0B39:0103
         8EDØ
                                            BP=0000 SI=0000 DI=0000
NU UP EI PL NZ NA PO NC
        BX =0000
ES =0B39
                          DX =0000
                                   SP=0010
                                    IP=0108
                          CS = ØB39
   :0108 B82331
                       MOU
  2000:0
             00 00 00 00 00 00 20-00 00 08 01 39 0B 9D 05
          ØØ
```

在执行 mov ss,ax 时,它的下一条指令 mov sp,10 也紧跟着被执行。另外,-t 指令将会引发单步中断,CPU 执行 1 号中断程序,将标志寄存器入栈,TF、IF 设置为 0,CS、IP 等段寄存器入栈,再对 CS、IP 做特定修改。可见图中右边 6 个字节从右至左分别为标志寄存器的值,CS,IP

【实验心得】

- 1. 将本地盘挂载为虚拟盘时可挂载多个,类似日常使用电脑的硬盘分区
- 2. 写入指令时要先注意 CS:IP 的位置,再进行写入
- 3. 从地址 0~9FFFF 的内存单元中读取数据,实际上就是在读取主随机存储器中的数据,向地址 A0000~BFFFF 的内存单元中写数据,就是向显存中写数据,这些数据会被显示卡输出到显示器上。向地址 C0000~FFFFF 的内存单元写入数据的操作是无效的,因为这等于改写只读存储器中的内容
- 4. 在执行对段寄存器 SS 的修改时,它的下一条指令也紧跟着被执行
- 5. -t 指令将会引发单步中断,CPU 执行 1 号中断程序,将标志寄存器入栈,TF、IF 设置为 0, CS、IP 等段寄存器入栈,再对 CS、IP 做特定修改
- 6. -u 指令亦可像-d 指令一样指定 IP 的范围,如果不指定 Max IP,则最多翻译 20H 个字节的指令
- 7. -e 指令逐个修改内存单元中的数据时,若不想修改,直接按空格即可

- 8. 段寄存器不能用于算术运算的指令(add ax,ds 与 add ds,ax 均不可)
- 9. 栈指针 SP 始终指向栈顶数据,而当栈为空时,指向栈底的高一位内存单元
- 10. POP 指令和 PUSH 指令本质上都是两次操作, push 为先 SP-2 再送入, pop 为先送 出再 SP+2
- 11. 当 add 指令中发生溢出时,将会略去高位,且,例如 add al, bl 溢出时,不会因为 AL 溢出而将溢出的 1 放入 AX 的第三位
- 12. 汇编指令中不分大小写,写指令时不需要带"H"

【课上问题】

- 1. 南北桥芯片:一块主板上,以 CPU 插槽为北,北桥芯片是最靠近 CPU 插槽的芯片,负责与 CPU 联系并控制内存。南桥芯片是离 CPU 插槽较远的芯片,负责 I/O 总线之间的通讯(如通过 USB, SATA 等与外存储设备通信)。
- 2. 主频: 即 CPU 的时钟频率, CPU 每个时钟周期执行一条指令。时钟频率的 SI 单位 是 Hz,表示 1s 内能执行的指令数,很大程度反映着 CPU 的快慢
- 3. 外频: 主板上具有一个统一的时钟信号发生器,控制着 CPU 与主板上其他单元 (如内存)的通信,这一时钟频率为外频,随着 CPU 主频的提升,外频可能低于 主频,传输数据的速度就会遇到"瓶颈"
- 4. 倍频: 在 CPU 中, 倍频=主频/外频。
- 5. Fsb: 前端总线,不能与外频混淆。它的速度指的是 CPU 和北桥芯片之间数据传输的速度
- 6. 32 位系统对内存的支持: 32 位系统能寻址的内存单元最多为 2^32 个,即最多能支持 4GB 的内存
- 7. Debug 程序与我们所用的 DOS 环境下的编译器,对指令的支持不尽相同,如对mov ax,[2],编译器将其认为是 2H 赋给 ax,debug 将其认为是 (DS: 0002) 赋给ax。对 16 位数,debug 中不可加 H,在 IDE 中则必须加 H,不然编译结果会出错