MA 110 Linear Algebra and Differential Equations Lecture 07

Prof. Sudhir R. Ghorpade Department of Mathematics IIT Bombay

http://www.math.iitb.ac.in/~srg/

Spring 2025

Basis and dimension of a subspace

Let V be a subspace of $\mathbb{R}^{n\times 1}$. Recall the following definitions.

Definition

A subset S of V is called a basis of V if S is linearly independent and S has maximum possible number of elements among linearly independent subsets of V.

Note that a basis of V has at most n elements, and any two bases of V have the same number of elements.

Definition

The dimension of V is defined as the number of elements in a basis of V. It is denoted by dim V.

Definition

Let $S \subset \mathbb{R}^{n \times 1}$. The set of all linear combinations of elements of S is denoted by span S and called the span of S.

We proved the following useful characterization.

Proposition

Let V be a subspace of $\mathbb{R}^{n\times 1}$, and let $S\subset V$. Then S is a basis for $V \iff S$ is linearly independent and span S = V.

Corollary

Let V be a subspace of $\mathbb{R}^{n\times 1}$. Every linearly independent subset of V can be enlarged to a basis for V.

Proof (Sketch). Begin with a linearly independent subset S of V. If span S = V, then S is a basis for V. If not, then $\mathbf{x}_1 \in V$ such that $\mathbf{x}_1 \notin \operatorname{span} S$. Now $S_1 := S \cup \{\mathbf{x}_1\}$ is a linearly independent subset of V. Check if span $S_1 = V_1$. If yes, then S_1 is a basis for V. If not then continue the process with S replaced by S_1 . This process must end after a finite number of steps (since dim V < n), and so it will lead to an enlargement of S which is a basis of V.

Proposition

Let $S := \{\mathbf{c}_1, \dots, \mathbf{c}_r\}$ be a basis for a subspace V of $\mathbb{R}^{n \times 1}$, and let $\mathbf{x} \in V$. Then there are unique $\alpha_1, \dots, \alpha_r \in \mathbb{R}$ such that $\mathbf{x} = \alpha_1 \mathbf{c}_1 + \dots + \alpha_r \mathbf{c}_r$.

Proof. Since V is a basis for V, we obtain $V = \operatorname{span} S$, and so the vector \mathbf{x} is a linear combination of vectors in S, that is, there are scalars $\alpha_1, \ldots, \alpha_r$ such that $\mathbf{x} = \alpha_1 \mathbf{c}_1 + \cdots + \alpha_r \mathbf{c}_r$. Now suppose $\mathbf{x} = \beta_1 \mathbf{c}_1 + \cdots + \beta_r \mathbf{c}_r$ for some $\beta_1, \ldots, \beta_r \in \mathbb{R}$. Then

$$(\alpha_1 - \beta_1)\mathbf{c}_1 + \cdots + (\alpha_r - \beta_r)\mathbf{c}_r = \mathbf{0}.$$

Since the set S is linearly independent, it follows that $\alpha_1-\beta_1=\cdots=\alpha_r-\beta_r=0$, that is, $\beta_1=\alpha_1,\ldots,\beta_r=\alpha_r$. This proves the uniqueness.

Remark: All things we have defined above for column vectors can also be defined for row vectors.

Column Space and Null Space of a Matrix

Recall that the column space of an $m \times n$ matrix \mathbf{A} is the space $\mathcal{C}(\mathbf{A})$ of all linear combinations of column vectors of \mathbf{A} . And the null space of \mathbf{A} is $\mathcal{N}(\mathbf{A}) = \{\mathbf{x} \in \mathbb{R}^{n \times 1} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$.

Proposition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, and let rank $\mathbf{A} = r$. Then dim $\mathcal{C}(\mathbf{A}) = r$ and dim $\mathcal{N}(\mathbf{A}) = n - r$.

Proof. Since the column rank of **A** is equal to r, there are r linearly independent columns $\mathbf{c}_{k_1}, \ldots, \mathbf{c}_{k_r}$ of **A**, and any other column of **A** is a linear combination of these r columns.

Let $\mathbf{x} \in \mathcal{C}(\mathbf{A})$. Then \mathbf{x} is a linear combination of columns of \mathbf{A} , each of which in turn is a linear combination of $\mathbf{c}_{k_1}, \ldots, \mathbf{c}_{k_r}$. Thus \mathbf{x} is a linear combination of $\mathbf{c}_{k_1}, \ldots, \mathbf{c}_{k_r}$. This shows that span $\{\mathbf{c}_{k_1}, \ldots, \mathbf{c}_{k_r}\} = \mathcal{C}(A)$. Hence $\{\mathbf{c}_{k_1}, \ldots, \mathbf{c}_{k_r}\}$ is a basis for $\mathcal{C}(\mathbf{A})$ and dim $\mathcal{C}(\mathbf{A}) = r$.

To find the dimension of $\mathcal{N}(\mathbf{A})$, let us transform \mathbf{A} to a REF \mathbf{A}' by EROs of type I and type II. Since the row rank of \mathbf{A} is equal to r, the matrix \mathbf{A}' has exactly r nonzero rows and exactly r pivotal columns.

Let the n-r nonpivotal columns be denoted by $\mathbf{c}_{\ell_1},\ldots,\mathbf{c}_{\ell_{n-r}}$. Then $x_{\ell_1},\ldots,x_{\ell_{n-r}}$ are the free variables. For each $\ell\in\{\ell_1,\ldots,\ell_{n-r}\}$, there is a basic solution \mathbf{s}_ℓ of the homogeneous equation $\mathbf{A}\mathbf{x}=\mathbf{0}$, and every solution of this homogeneous equation is a linear combination of these n-r basic solutions. Let S denote the set of these n-r basic solutions. Then span $S=\mathcal{N}(\mathbf{A})$.

We claim that the set S of the n-r basic solutions is linearly independent. To see this, we note that each basic solution is equal to 1 in one of the free variables and it is equal to 0 in the other free variables. Let $\alpha_1, \ldots, \alpha_{n-r} \in \mathbb{R}$ be such that

$$\mathbf{x} := \alpha_1 \mathbf{s}_{\ell_1} + \cdots + \alpha_{n-r} \mathbf{s}_{\ell_{n-r}} = \mathbf{0}.$$

For $j=1,\ldots,n$, let x_j denote the jth entry of \mathbf{x} . Then for each $\ell\in\{\ell_1,\ldots,\ell_{n-r}\}$, we see that $\alpha_\ell\cdot 1=x_\ell=0$. Hence S is linearly independent. Thus S is a basis for $\mathcal{N}(\mathbf{A})$ and $\dim\mathcal{N}(\mathbf{A})=n-r$, the number of elements in S.

Given any $\mathbf{A} \in \mathbb{R}^{m \times n}$, the dimension of the null space $\mathcal{N}(\mathbf{A})$ of \mathbf{A} is called the **nullity** of \mathbf{A} .

Theorem (Rank-Nullity Theorem)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then rank \mathbf{A} + nullity $\mathbf{A} = n$.

Proof. If $r = \text{rank } \mathbf{A}$, then we have seen that

$$\dim \mathcal{C}(\mathbf{A}) = r$$
 and $\dim \mathcal{N}(\mathbf{A}) = n - r$.

This shows that rank \mathbf{A} + nullity \mathbf{A} = n

Let us restate two earlier results which are in conformity with the Rank-Nullity Theorem. Let $\bf A$ be an $n \times n$ matrix. Then

A is invertible
$$\iff$$
 nullity $\mathbf{A} = 0 \iff$ rank $\mathbf{A} = n$.

Further, rank
$$\mathbf{A} = n \iff \mathcal{C}(\mathbf{A}) = \mathbb{R}^{n \times 1}$$
.

We are now in a position to state and prove a comprehensive result regarding solutions of a system of m linear equations in n unknowns that we started with, namely

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$
(1)

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$
(2)

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
(m)

As usual, we write this as $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} := [a_{jk}] \in \mathbb{R}^{m \times n}, \ \mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\mathsf{T} \text{ and } \mathbf{b} := \begin{bmatrix} b_1 & \cdots & b_m \end{bmatrix}^\mathsf{T}.$

Theorem (Fundamental Theorem for Linear Systems: FTLS)

Let $m, n \in \mathbb{N}$ and \mathbf{A} be an $m \times n$ matrix with real entries. Suppose rank $\mathbf{A} = r$.

(i) Homogeneous Linear System :
$$Ax = 0$$
 (H)

The solution space $\{\mathbf{x} \in \mathbb{R}^{n \times 1} : \mathbf{A}\mathbf{x} = \mathbf{0}\}$ of (H) is a subspace of $\mathbb{R}^{n \times 1}$ of dimension n - r.

In particular, r = n if and only if $\mathbf{0}$ is the only solution of (H). If r < n, then there are linearly independent solutions $\mathbf{x}_1, \dots, \mathbf{x}_{n-r}$ of (H) and every solution of (H) is a unique linear combination of these $\mathbf{x}_1, \dots, \mathbf{x}_{n-r}$.

(ii) General Linear System:
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 with $\mathbf{b} \in \mathbb{R}^{m \times 1}$ (G)

(G) has a solution if and only if $rank[\mathbf{A}|\mathbf{b}] = r$. In this case, let \mathbf{x}_0 be a particular solution of (G). If \mathbf{x} is a solution of (G), then $\mathbf{x} = \mathbf{x}_0 + \mathbf{x}_h$, where \mathbf{x}_h is a solution of (H) above.

Proof. (i) The solution space of the homogeneous linear system (H) is just the nullspace $\mathcal{N}(\mathbf{A})$ of \mathbf{A} , and we have seen that its dimension, that is, the nullity of \mathbf{A} , is equal to n-r.

We note that $r = n \iff n - r = 0$, that is, the dimension of $\mathcal{N}(\mathbf{A})$ is zero; in other words, $\mathcal{N}(\mathbf{A}) = \{\mathbf{0}\}$. This means that $\mathbf{0}$ is the only solution of (H).

Let now r < n. Then $\mathcal{N}(\mathbf{A})$ has a basis consisting of n - r elements, say $\mathbf{x}_1, \dots, \mathbf{x}_{n-r}$. Hence every element of the solution space is a unique linear combination of the elements in this basis.

(ii) Let $\mathbf{b} \in \mathbb{R}^{n \times 1}$. Let $\mathbf{c}_1, \dots, \mathbf{c}_n$ be the *n* columns of \mathbf{A} . Then

$$\mathbf{A}\mathbf{x} = x_1\mathbf{c}_1 + \cdots + x_n\mathbf{c}_n \quad \text{for } \mathbf{x} := \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^\mathsf{T} \in \mathbb{R}^{n \times 1}.$$

Hence $\mathbf{A}\mathbf{x} = \mathbf{b}$ for some $\mathbf{x} \in \mathbb{R}^{n \times 1}$ if and only if \mathbf{b} is a linear combination of the columns of \mathbf{A} , that is, $\mathbf{b} \in \mathcal{C}(\mathbf{A})$.

Since every column of \mathbf{A} is also a column of the augmented matrix $[\mathbf{A}|\mathbf{b}]$, the column space $\mathcal{C}(\mathbf{A})$ of \mathbf{A} is contained in the column space $\mathcal{C}([\mathbf{A}|\mathbf{b}])$ of $[\mathbf{A}|\mathbf{b}]$. It follows that $\mathbf{b} \in \mathcal{C}(\mathbf{A})$ if and only if $\mathcal{C}([\mathbf{A}|\mathbf{b}]) = \mathcal{C}(\mathbf{A})$, that is, the column rank of $[\mathbf{A}|\mathbf{b}]$ is equal to the column rank of \mathbf{A} . So $\mathrm{rank}[\mathbf{A}|\mathbf{b}] = \mathrm{rank}\,\mathbf{A} = r$.

Let \mathbf{x}_0 be a particular solution of (G), that is, let $\mathbf{x}_0 \in \mathbb{R}^{n \times 1}$ satisfy $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$. Then for any $\mathbf{x} \in \mathbb{R}^{n \times 1}$, we see that $\mathbf{A}\mathbf{x} = \mathbf{b}$ if and only if $\mathbf{A}(\mathbf{x} - \mathbf{x}_0) = \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x}_0 = \mathbf{b} - \mathbf{b} = \mathbf{0}$, that is, \mathbf{x} is a solution of (G) if and only if $\mathbf{x}_h := \mathbf{x} - \mathbf{x}_0$ is a solution of (H). The proof is complete.

Remark

The above theorem is of immense theoretical importance. It tells us precisely when solutions exist, and also describes the nature of solutions of a linear system of equations.

For example, it says that when there is a nonzero solution of a homogeneous linear system, there are infinitely many solutions. Further, when a homogeneous system has infinitely many solutions, it says that they can be described by a one parameter family, or a two parameter family etc.

It may seem that to implement the results of the above theorem, we must first find the rank of the coefficient matrix **A** of the linear system. This is not necessary.

We have already seen that we may directly proceed to find the solutions of the linear system by considering the augmented matrix $[\mathbf{A}|\mathbf{b}]$ and transform the coefficient matrix \mathbf{A} to a row echelon form by the Gauss Elimination Method and then use Back Substitution . This process itself reveals all possibilities.

In particular, when the rank r of \mathbf{A} is less than the number n of variables, we have shown how to construct a set S of basic solutions of an homogeneous linear system. This set S is in fact a basis of the solution space of the system. That is the reason for using the terminology 'basic solutions'.

Row Space and Column Space

Definition

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The row space of A, denoted $\mathcal{R}(\mathbf{A})$, is defined as the subspace of $\mathbb{R}^{1 \times n}$ spanned by the row vectors of \mathbf{A} .

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Here are some important observations.

- The row-rank of **A** is precisely the dimension of $\mathcal{R}(\mathbf{A})$.
- If $\mathbf{A}' \in \mathbb{R}^{m \times n}$ is obtained from \mathbf{A} by an elementary row operation, then $\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{A}')$.
- If $\mathbf{A}' \in \mathbb{R}^{m \times n}$ is in REF, then the pivotal rows of \mathbf{A}' form a basis of $\mathcal{R}(\mathbf{A}')$.
- A basis of $\mathcal{R}(\mathbf{A})$ is given by the pivotal rows of its REF.
- If \mathbf{A}' is obtained from \mathbf{A} by an elementary row operation, then $\mathcal{C}(\mathbf{A})$ need not be equal to $\mathcal{C}(\mathbf{A}')$.
- However, the columns of **A** corresponding to the pivotal columns of its REF form a basis of $C(\mathbf{A})$.

Example: Consider the 5×6 matrix **A** and its REF **A**' given by

Then rank $\mathbf{A} = 3$. A basis of the row space $\mathcal{R}(\mathbf{A})$ is given by

$$\{ \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & -1 & -2 & 0 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 6 \end{bmatrix} \}$$

whereas a basis for the column space $C(\mathbf{A})$ is given by

$$\left\{ \begin{array}{c|ccc} 1 & -2 & 0 \\ 2 & -5 & -3 \\ 0 & 0 & 5 & 15 \\ 2 & 0 & 18 \end{array} \right\}.$$

Verify!