

Механико-математический факультет

Алгебра, 3 семестр, 2 поток

Преподаватель: Куликова Ольга Викторовна

Авторы: Соколов Егор

Группа: 208

Контакт: Мой телеграм для связи

Содержание

1 Группы			
	1.1	Основные понятия	2
	1.2	Циклические группы	9
	1.3	Смежные классы	11

1 Группы

1.1 Основные понятия

Определение. Пусть G - множество. Бинарной операцией на G называется отображение $*: G \times G \to G$.

Определение. Множество G с бинарной операцией * называется группой, если выполнены следующие аксиомы:

- 1. $\forall a, b, c \in G \ \ a * (b * c) = (a * b) * c;$
- 2. $\exists e \in G : \forall a \in G \ a * e = e * a = a;$
- 3. $\forall a \in G \ \exists b \in G : a * b = b * a = e$

Различные формы записи группы:

1. Мультипликативная форма (терминология):

Операция - " · " (умножение);

Нейтральный элемент - единичный (1);

Элемент из аксиомы 3 - обратный $(a^{-1}$ для $a \in G)$;

2. Аддитивная форма (терминология):

Операция - " + " (сложение);

Нейтральный элемент - нулевой (0);

Элемент из аксиомы 3 - противоположный (-a для $a \in G)$;

Определение. Если G - группа и $\forall a,b \in G \ a \cdot b = b \cdot a,$ то G - абелева (коммутативная) группа.

Замечание. Обычно для обозначения абелевых групп будем использовать аддитивную форму записи, для иных - мультипликативную.

Утверждение (Простейшие свойства групп).

- 1. Единичный элемент единственный;
- 2. $\forall a \in G$ обратный к а элемент единственный;
- $\beta. (ab)^{-1} = b^{-1}a^{-1};$
- 4. Если $a,b \in G$, то решение уравнения ax = b (xa = b) единственно.

Доказательство.

- 1. (От противного) Допустим, что $\exists e_1, e_2 \in A$ единичные. Тогда $e_1 = e_1 * e_2 = e_2$ по определению единичного элемента.
- 2. Допустим $\exists b_1, b_2$ обратные к a элементы: $b_1 \neq b_2$ В силу ассоциативности:

$$b_1 * (a * b_2) = (b_1 * a) * b_2$$

 $b_1 * e = e * b_2$
 $b_1 = b_2$

3.
$$abb^{-1}a^{-1} = aea^{-1} = e;$$

 $b^{-1}a^{-1}ab = b^{-1}eb = e \Longrightarrow (ab)^{-1} = b^{-1}a^{-1}$

4.
$$ax = b \iff a^{-1}ax = a^{-1}b \iff x = a^{-1}b;$$

 $xa = b \iff xaa^{-1} = ba^{-1} \iff x = ba^{-1};$

Определение. Мощность множества G называется порядком группы G. Обозначается |G|.

Если $|G| < \infty$, то группа называется конечной, иначе бесконечной.

Примеры.

- 1. $(\mathbb{Z}, +), (\mathbb{Z}_n, +);$
- 2. $GL_n(F)$ группа невырожденных матриц порядка n с коэффициентами из поля F:
- 3. Пусть Ω множество. Преобразованиями Ω назовём биекции $f:\Omega \to \Omega$. $S(\Omega)$ множество всех преобразований Ω образует группу относительно композиции.

Если $\Omega = \{1, ..., n\}$, то $S(n) = S_n$ - группа подстановок.

4. Если $G = \{a_1, ..., a_n\}$ - конечная группа, то её можно задать с помощью таблицы умножения (таблицы Кэли).

Например, для $Z_2 = \{0, 1\}$:

	0	1
0	0	1
1	1	0

5. Группа кватернионов: $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ Таблица Кэли для кватернионов:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	-j
j	j	-k	-1	i
k	k	j	i	-1

Определение. Подмножество $H\subseteq G$ называется подгруппой группы G, если:

- 1. $\forall a, b \in H \ ab \in H$;
- $2. \ \forall a \in H \ a^{-1} \in H;$
- 3. $1 \in H$ (можно заменить на $H \neq \emptyset$)

Обозначается $H \leqslant G$.

Утверждение. Подгруппа H группы G является группой относительно бинарной операции группы G.

Примеры.

- 1. $\mathbb{Z} \leqslant \mathbb{Q} \leqslant \mathbb{R} \leqslant \mathbb{C} \ (\mathbb{N} \nleq \mathbb{Z}$, т.к. не группа);
- 2. $GL_n(F) \geqslant SL_n(F) = \{A \in GL_n(F) | \det A = 1\}$ унимодулярная группа.
- 3. $GL_n(F) \geqslant O_n(F) \geqslant SO_n(F) \ (O_n(F)$ ортогональная группа, $SO_n(F)$ специальная ортогональная группа);
- 4. $GL_n(F) \ge$ группа строго треугольных матриц.

Определение. Любая подгруппа группы $S(\Omega)$ называется группой преобразований множества Ω .

Примеры.

- 1. GL(V) ($\leq S(V)$) группа всех невырожденных линейных операторов векторного пространства V;
- 2. $Aff(\mathbb{A})$ группа всех невырожденных аффинных преобразований аффинного пространства \mathbb{A} ;

3. \mathcal{E}^2 - аффинно-евклидово двумерное пространство. Ізот \mathcal{E}^2 - группа изометрий (движений) на \mathcal{E}^2 . Ізот $\mathcal{E}^2\geqslant O_2\geqslant SO_2$, где O_2 - группа движений, сохраняющих точку O, SO_2 - группа поворотов вокруг точки O.

- 4. $T\subseteq \mathcal{E}^2$ некоторая фигура. Sym $T=\{f\in \mathrm{Isom}\ \mathcal{E}^2\mid f(T)=T\}$ - группа симметрий фигуры T.
 - Если T окружность с центром в точке O, то Sym $T = O_2$;
 - Если T правильный n-угольник с центром в точке O, то Sym $T=D_n$ группа Диэдра.

 $|D_n| = 2n$ - n поворотов и n симметрий.

Определение. Пусть $(G_1,*,e_1),(G_2,\circ,e_2)$ - группы. Отображение $\varphi:G_1\to G_2$ - изоморфизм, если

- 1. φ биекция;
- 2. $\forall a, b \in G_1 \ \varphi(a * b) = \varphi(a) * \varphi(b)$

Если между G_1 и G_2 существует изоморфизм, то G_1 и G_2 называются изоморфными. Обозначается $G_1\cong G_2$.

Пример. $D_3 \cong S_3$.

 \mathcal{A} оказательство. D_3 - группа движений, переводящая равносторонний треугольник в себя. Если пронумеровать вершины изначального треугольника, то каждый элемент группы D_3 будет соответствовать подстановке, переводящей старый порядок вершин в новый. Определение изоморфизма проверяется очевидно.

Утверждение. Изоморфность групп - отношение эквивалентности на множестве групп.

Утверждение (Свойства изоморфизмов).

- 1. $\varphi(e_1) = e_2;$
- 2. $\varphi(a^{-1}) = (\varphi(a))^{-1};$
- 3. $G_1 \cong G_2 \Longrightarrow |G_1| = |G_2|$.

3амечание. Обратное утверждение неверно (например, $S_3 \ncong \mathbb{Z}_6$).

Пример. $SO_2 \cong (U, \cdot)$, где $U = \{z \in \mathbb{C} : |z| = 1\}$.

Определение. Пусть (G, \cdot, e) - группа, $k \in \mathbb{Z}, g \in G$. Мультипликативный термин - элемент g в степени k:

$$g^{k} = \begin{cases} \underbrace{g \cdot g \cdot \dots \cdot g, k > 0}_{k} \\ \underbrace{g^{-1} \cdot g^{-1} \cdot \dots \cdot g^{-1}}_{-k}, k < 0 \\ \underbrace{e, k = 0} \end{cases}$$

Определение. Пусть (G, +, e) - группа, $k \in \mathbb{Z}, g \in G$. Аддитивный термин - кратное элемента g:

$$kg = \begin{cases} \underbrace{g + g + \dots + g, k > 0}_{k} \\ \underbrace{(-g) + (-g) + \dots + (-g)}_{-k}, k < 0 \\ e, k = 0 \end{cases}$$

Утверждение (Свойства $(k, m \in \mathbb{Z}, g \in G)$).

1.
$$g^k \cdot g^m = g^{k+m}$$
;

2.
$$(g^k)^m = g^{km}$$
;

3.
$$(g^k)^{-1} = g^{-k}$$
.

Утверждение. Множество всех элементов g^k , где $k \in \mathbb{Z}$, $g \in G$, образует подгруппу в G. Обозначается $\langle g \rangle = \{e, g, g^{-1}, g^2, g^{-2}, ...\}$.

Определение. $\langle g \rangle$ - циклическая подгруппа. порождённая элементом g.

Примеры.

1.
$$G=\mathbb{Z}:\langle 2\rangle=2\mathbb{Z}$$
 - чётные целые числа;

2.
$$G = \mathbb{Z}_6 : \langle 2 \rangle = \{0, 2, 4\};$$

3.
$$G = \mathbb{C} : \langle i \rangle = \{\pm 1, \pm i\}$$

Пусть (G, \cdot, e) - группа, $g \in G$. Если $\forall k, m \in \mathbb{Z} : k \neq m \Longrightarrow g^k \neq g^m$, то $\langle g \rangle$ - бесконечная (элемент g имеет бесконечный порядок).

Если $\exists k, m \in \mathbb{Z} : k \neq m, g^k = g^m \Longrightarrow g^{k-m} = e \Longrightarrow$ существует наименьшее $n \in \mathbb{N}$ такое, что $g^n = e$ (элемент g имеет порядок n)

Определение. Порядком элемента $g \in G$ называется наименьшее натуральное число n такое, что $g^n = e$, если такое существует. Иначе говорят, что элемент g имеет бесконечный порядок. Обозначается ord g.

Примеры.

- 1. $G = \mathbb{Z}$: ord $2 = \infty$;
- 2. $G = \mathbb{Z}_{12}$: ord 2 = 6;
- 3. $G = \mathbb{C}^*$: ord $2 = \infty$ (\mathbb{C}^* мультипликативная группа поля, $\mathbb{C} \setminus \{0\}$ относительно умножения).

Утверждение 1 (Свойства элементов конечного порядка).

- 1. $q^m = e \iff \text{ord } q \mid m$;
- 2. $g^m = g^l \iff k \equiv l \pmod{g}$

Доказательство.

1. Разделим m на $n = \operatorname{ord} g$ с остатком: m = nq + r, где $0 \leqslant r < n$. Тогда:

$$e = g^m = (g^n)^q \cdot g^r = g^r \Longrightarrow r = 0$$

так как r < n, где n - минимальное натуральное число такое, что $g^n = 0$.

2. Следует из 1.

Следствие. ord $g = |\langle g \rangle|$

Доказательство. Если ord $g=\infty: \forall k\neq l\ g^k\neq g^l\Longrightarrow$ подгруппа $\langle g\rangle=\{e,g^{\pm 1},g^{\pm 2},...\}$ бесконечна.

Если ord $g=n:\langle g\rangle=\{e,g^1,...g^{n-1}\}$ - все эти элементы различны из пункта 2 утверждения, а других нет по определению порядка.

Примеры.

1.
$$i \in \mathbb{C}^*$$
 - ord $i = 4$;

2. $\sigma \in S_n$:

Если $\sigma = (i_1, ..., i_k)$ - цикл длины k, то ord $\sigma = k$.

Так как любая подстановка раскладывается в произведение независимых циклов и независимые циклы коммутируют, если $\sigma = \tau_1...\tau_n$, где τ_i - независимые циклы, то верно: ord $\sigma = \text{HOK }\{|\tau_1|,...,|\tau_n|\}$.

Например, $\sigma = (23)(145) \Longrightarrow \text{ ord } \sigma = 6.$

Утверждение 2. Пусть n = ord g. Тогда $\text{ord } g^k = \frac{n}{HOZ(n,k)}$.

Доказательство. Пусть ord $g^k = m$. Из утверждения 1: $g^{mk} = e \iff n|mk$, откуда $\frac{n}{\text{HOД}(n,k)}|m$, т.е. $m \geqslant \frac{n}{\text{HOД}(n,k)}$. Очевидно, что при $m = \frac{n}{\text{HOД}(n,k)} \, n|mk$. \square

Определение. Множество $S \subseteq G$ называется порождающим множеством для группы G, если $\forall g \in G \ \exists s_1,...,s_k \in S : g = s_1^{\varepsilon_1}...s_k^{\varepsilon_k}$, где $\varepsilon_i = \pm 1$ (s_i не обязательно различны).

При этом говорят, что G порождается множеством S.

Если \exists конечное множество S такое, что S порождает G, то G называется конечно порождённой, и бесконечно порождённой иначе.

Обозначается $\langle S \rangle = \{s_1^{\varepsilon_1}...s_k^{\varepsilon_k}|\varepsilon_i=\pm 1\}$ - группа, порождённая S.

Примеры.

- 1. $S_n = \langle \text{все транспозиции} \rangle;$
- 2. $GL_n(F) = \langle \text{все элементарные матрицы} \rangle$
- 3. $Q_8 = \langle i, j \rangle;$
- 4. $D_n = \langle \alpha, s \rangle$, где α поворот на $\frac{2\pi}{n}$, а s любая из симметрий.
- 5. Группа Клейна: $H = \{ \mathrm{id}, a = (12)(34), b = (13)(24), c = (14)(23) \} \leqslant S_4$ Это группа симметрий прямоугольника, не являющегося квадратом: a, c симметрии относительно средних линий, b поворот на π вокруг центра. Таблица Кэли для группы Клейна:

	e	a	b	$^{\mathrm{c}}$
е	е	a	b	c
a	a	е	c	b
b	b	c	е	a
С	c	b	a	е

Отсюда $\{e,a,b,c\} = \langle a,b \rangle$.

6. Q - бесконечно порождённая.

1.2 Циклические группы

Определение. Группа G называется циклической, если G порождается одним элементом, т.е. $\exists g \in G : \forall h \in G \ \exists k \in \mathbb{Z} : h = g^k$. Элемент g также называется образующим элементом группы G.

Примеры.

- 1. $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$, $\mathbb{Z}_n = \langle 1 \rangle$;
- 2. U_n множество всех комплексных корней степени n из 1. U_n группа относительно умножения, причём $U_n = \langle \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \rangle$.

Утверждение 3. Если $G = \langle g \rangle$, mo |G| = ord g.

3амечание. Далее циклическую группу порядка n обозначаем $\langle g \rangle_n$

Утверждение 4. Пусть $G = \langle g \rangle_n$. Тогда $G = \langle g^k \rangle \iff \operatorname{HOД}(k,n) = 1$.

Доказательство. Из утверждения 3 |G| = ord g. Тогда:

$$G = \langle g^k \rangle \iff \text{ord } g^k = \frac{n}{\text{HOД}(n,k)} = n \iff \text{HOД}(n,k) = 1$$

Теорема 1 (Классификация циклических групп).

- 1. Если циклическая группа G бесконечна, то $G \cong \mathbb{Z}$;
- 2. Если циклическая группа G конечна и имеет порядок n, то $G \cong \mathbb{Z}_n$.

Доказательство.

1. Пусть ord $g = \infty, \forall h \in g \; \exists k \in \mathbb{Z} : h = g^k$ Рассмотрим отображение $\varphi : G \to \mathbb{Z}$ такого вида: $\varphi : g^k \to k$. Очевидно, что φ - сюръекция (в $k \in \mathbb{Z}$ перешёл $g^k \in G$). $\varphi(g^k) = \varphi(g^m) \Longrightarrow k = m \Longrightarrow g^k = g^m$ - отсюда φ - инъекция. Проверим сохранение операции:

$$\varphi(g^k \cdot g^m) = \varphi(g^{k+m}) = k + m = \varphi(g^k) + \varphi(g^m)$$

Отсюда φ - изоморфизм.

2. Пусть ord g=n. Рассмотрим отображение $\varphi:\mathbb{Z}_n\to G$ такого вида: $\varphi:k\mapsto g^k$. Очевидно, что φ - сюръекция (в $g^k\in G$ перешёл $k\in\mathbb{Z}_n$).

 $k \equiv m (\mathrm{mod}\ n) \Longleftrightarrow g^k = g^m$ - отсюда arphi - инъекция.

Сохранение операции - аналогично пункту 1.

Отсюда φ - изоморфизм.

Следствие. Если G_1, G_2 - циклические группы, то $G_1 \cong G_2 \Longleftrightarrow |G_1| = |G_2|$.

Доказательство.

⇒: верно всегда;

 \Leftarrow : из теоремы: если G_1 бесконечна, то $G_1 \cong \mathbb{Z} \cong G_2$, иначе $G_1 \cong \mathbb{Z}_n \cong G_2$, где $n = |G_1| = |G_2|$.

Теорема 2.

- 1. Любая подгруппа циклической группы является циклической.
- 2. Подгруппы циклической группы G порядка n находятся во взаимном соответствии c делителями n, m.e.

$$\forall H \leqslant G \mid H \mid \mid n \mid u \mid \forall d \mid n \mid \exists ! \mid H \leqslant G : \mid H \mid = d$$

3. Подгруппы группы \mathbb{Z} исчерпываются группами $k\mathbb{Z} = \langle k \rangle$, где $k \in \mathbb{N} \cup \{0\}$.

Доказательство.

1. Пусть $G = \langle g \rangle, H \leqslant G$. Если $H = \{e\}$, то $H = \langle e \rangle$. При $H \neq \{e\}: \forall h \in H \; \exists k \in \mathbb{Z}: h = g^k$. Так как $g^k \in H \Longrightarrow g^{-k} \in H$ и в H есть элемент, отличный от e, \exists наименьшее $k \in \mathbb{N}: g^k \in H$.

Докажем, что $H = \langle g^k \rangle$. Рассмотрим произвольный $g^m \in H$. Разделим m на k с остатком: $m = kq + r, 0 \leqslant r < k$. Тогда:

$$g^m = (g^k)^q \cdot g^r \Longrightarrow g^r = (g^k)^{-q} \cdot g^m \Longrightarrow r = 0$$
, т.к. k - наименьшее $\in \mathbb{N}$

2. $G = \langle g \rangle_n, H \leqslant G \Longrightarrow_{(1)} H = \langle g^k \rangle.$

Так как $g^n=e\in H$, то в силу рассуждений пункта 1 при m=n получаем $k|n\Longrightarrow n=kq.$

Отсюда $H = \{e, g^k, g^{2k}, ..., g^{(q-1)k}\} \Longrightarrow |H| = q$, где q|n.

Обратно, $\forall d|n \; \exists ! H = \langle g^{\frac{n}{d}} \rangle$ (в силу описания выше других подгрупп такого порядка нет).

3. Из пункта 1 в аддитивной форме получаем, что $H\leqslant \mathbb{Z}=\langle 1\rangle \Longrightarrow H=\langle k\cdot 1\rangle$

Следствие. В циклической группе простого порядка существуют ровно две подгруппы - тривиальная и сама группа.

Примеры.

- 1. $H \leq \mathbb{Z}_5 \Longrightarrow H = \{0\}, H = \mathbb{Z}_5;$
- 2. $H \leq \mathbb{Z}_6 \Longrightarrow H = \{0\}, H = \langle 2 \rangle, H = \langle 3 \rangle, H = \mathbb{Z}_6.$

1.3 Смежные классы

Определение. Пусть (G, \cdot, e) - произвольная группа, $H \leqslant G, g \in G$. Рассмотрим множества:

 $gH = \{gh|h \in H\}$ - левый смежный класс G по H с представителем g $Hg = \{hg|h \in H\}$ - правый смежный класс G по H с представителем g

Утверждение (Свойства смежных классов).

- 1. $\forall a \in G \ a \in aH$;
- 2. если $a \in bH$, то bH = aH; в частности, любые два смежных класса либо не пересекаются, либо совпадают.
- 3. $aH = bH \iff b^{-1}a \in H;$ (Верны аналогичные утверждения для правых смежных классов)

Доказательство.

- 1. Очевидно;
- 2. $a \in bH \Longrightarrow \exists h \in H : a = bh \Longrightarrow \forall \tilde{h} \in H \ a\tilde{h} = bh\tilde{h} \in bH \Longrightarrow aH \subseteq bH$. Аналогично $bH \subseteq aH \Longrightarrow aH = bH$.
- 3. \Longrightarrow : $aH = bH \Longrightarrow a \in bH (a \in aH) \Longrightarrow \exists h \in H : a = bh \Longrightarrow b^{-1}a = h \in H$ \Longleftrightarrow : $b^{-1}a = h \in H \Longrightarrow a = bh \Longrightarrow aH = bH$ по пункту 2.