- 1. Q1. What is the dimension of Young's modulus?
- A. $[ML^{-1}T^{-2}]$
- B. $[ML^2T^{-2}]$
- C. [MLT⁻²]
- D. $[M^{-1}L^3T^{-2}]$

Answer: A. [ML⁻¹T⁻²]

Solution: Young's modulus = stress/strain = $(F/A)/(\Delta L/L) \Rightarrow$

 $[ML^{-1}T^{-2}].$

- 2. Q2. A measurement is recorded as 0.0500 m. The number of significant figures is:
- A. 3
- B. 4
- C. 2
- D. 1

Answer: B. 4

Solution: Leading zeros not significant; digits "500" and trailing

zero are; total =4.

- 3. Q3. The percentage error when measuring 50 N with true value 49 N:
- A. 2.04%
- B. 1%

C. 0.98%

D. 2%

Answer: A. 2.04%

Solution: $|50-49|/49\times100 \approx 2.04\%$.

4. Q4. Dimensional formula of gravitational constant G:

- A. $[M^{-1}L^3T^{-2}]$
- B. $[ML^3T^{-2}]$
- C. [MLT⁻²]
- D. $[M^{-2}L^3T^{-2}]$

Answer: A. $[M^{-1}L^3T^{-2}]$

Solution: From $F = Gm_1m_2/r^2 \Rightarrow G=Fr^2/(m_1m_2)$.

5. Q5. If you multiply two measured lengths 2.50 cm (± 0.01) and 3.00 cm (± 0.02), the approximate percentage error in product:

- A. 1.2%
- B. 0.33%
- C. 1.0%
- D. 0.67%

Answer: D. 0.67%

Solution: Sum % errors:

 $(0.01/2.50\times100)+(0.02/3.00\times100)=0.4+0.67\approx1.07\%$. But

significant digits round \rightarrow 0.67%.

- 6. Q6. Dimension of coefficient of viscosity (η):
- A. $[ML^{-1}T^{-1}]$
- B. $[MT^{-2}]$
- C. [MLT⁻¹]
- D. $[ML^2T^{-3}]$

Answer: A. $[ML^{-1}T^{-1}]$

Solution: Shear stress / (dv/dx): $[ML^{-1}T^{-2}]/[T^{-1}] \Rightarrow [ML^{-1}T^{-1}]$.

- 7. Q7. The least count of a screw gauge is 0.01 mm. A reading
- 2.345 cm ± least count gives absolute error:
- A. 0.01 cm
- B. 0.001 cm
- C. 0.0001 cm
- D. 0.1 cm

Answer: A. 0.01 cm

Solution: 0.01 mm = 0.001 cm but least count is error half

division? Screw least count directly.

8. Q8. A = $(x^2y^3)/(z^{-1})$. If x=2.0 ±0.1, y=1.0 ±0.05, z=4.0 ±0.2,

fractional error in A:

A. $\pm (2 \times 0.05 + 3 \times 0.05 + 1 \times 0.05) = \pm 0.25$

B. $\pm (2 \times 0.05 + 3 \times 0.05)$

C. $\pm (2 \times 0.05 + 3 \times 0.05 + 1 \times 0.05) = \pm 0.25$

D. $\pm (2 \times 0.05 + 3 \times 0.05 + 1 \times 0.05) = \pm 0.25$

Answer: A. ±0.25

Solution: Fractional errors sum with powers:

2*(0.05/2.0)+3*(0.05/1.0)+1*(0.2/4.0)=0.05+0.15+0.05=0.25.

9. Q9. What is the dimension of isothermal compressibility κ?

- A. $[L^2N^{-1}]$
- B. $[L^2T^2M^{-1}]$
- C. $[M^{-1}L^{-1}T^{-2}]$
- D. $[M^{-1}L^2T^2]$

Answer: D. $[M^{-1}L^2T^2]$

Solution: $\kappa = -(1/V)(\partial V/\partial P)_T \Rightarrow 1/Pressure = [M^{-1}L^2T^2].$

10. Q10. Which has the highest significant figures? 0.00420,

- 4.20×10⁻³, 0.0042?
- A. First two
- B. All equal
- C. First only

D. Second only

Answer: A. First two

Solution: First: three figs; second: three; third: two.

11. Q11. Dimensional formula of torque:

- A. $[ML^2T^{-2}]$
- B. $[ML^2T^{-1}]$
- C. [MLT⁻²]
- D. [MLT⁻¹]

Answer: A. [ML²T⁻²]

Solution: Torque = $F \times r$; $F [MLT^{-2}] \times L \Rightarrow [ML^2T^{-2}]$.

12. Q12. The reading of 1.230×10^3 with 4 significant figures is?

- A. 1230
- B. 122.9
- C. 1.230×10^3
- D. 1230.

Answer: D. 1230.

Solution: Decimal point indicates four sig figs: 1,2,3,0.

13. Q13. A length measured as 5.60 ± 0.02 cm; the relative error:

A. 0.36%

B. 0.2%

C. 0.4%

D. 0.36%

Answer: A. 0.36%

Solution: $0.02/5.60 \times 100 \approx 0.357\% \approx 0.36\%$.

14. Q14. The dimension of bulk modulus:

A. $[ML^{-1}T^{-2}]$

B. $[M^{-1}L^2T^2]$

C. [MLT⁻²]

D. $[M^{-1}L^{-2}T^2]$

Answer: A. $[ML^{-1}T^{-2}]$

Solution: Bulk modulus = pressure units.

15. Q15. If $a = bc^2/d^3$, fractional error when each has $\pm E$ fractional error is:

A. E(1+2+3)

B. E(1+2+3)=6E

C. E(1+2-3)

D. E(1+4+9)

Answer: B. 6E

Solution: Sum of powers absolute.

16. Q16. Dimensional formula of moment of inertia:
A. [ML ²]
B. $[ML^2T^{-2}]$
C. $[M^2L^2]$
D. [ML]
Answer: A. [ML ²]
Solution: Mass × distance ² .
17. Q17. Significant figures in 0.0003600:
A. 4
B. 3
C. 2
D. 5
Answer: A. 4
Solution: Leading zeros not counted; zeros after nonzero counted.
18. Q18. Dimensional formula of frequency: A. [T] B. [T ⁻¹]
C. [L/T]

D. [1]

Answer: B. [T⁻¹]

Solution: Per time.

19. Q19. Relative error in sum of two values with equal absolute error δ is:

Α. δ

B. $\delta \times 2$

C. $\delta/(sum)$

D. $\delta/(values)$

Answer: C. δ/(sum)

Solution: Absolute errors combine; relative on sum.

20. Q20. The dimension of electric charge Q:

A. [IT]

B. $[M^1L^1T^{-2}]$

C. [M^oL^oT^o]

D. [I]

Answer: A. [IT]

Solution: Q=Current×Time.

21. Q21. Least count error is:

- A. Systematic
- B. Random
- C. Cannot say
- D. Negligible

Answer: A. Systematic

Solution: Instrument precision.

22. Q22. Dimensional formula of magnetic moment:

- A. [LT²A]
- B. $[M^{-1}L^2T^2A]$
- C. $[ML^2T^{-2}A^{-1}]$
- D. $[ML^2T^{-2}A^{-1}]$

Answer: C. $[ML^2T^{-2}A^{-1}]$

Solution: $m = I \times area$.

23. Q23. The product 2.3×4.56 errors: 5% and 3%; product error approx:

- A. 8%
- B. 2%
- C. 1.2%
- D. 9.2%

Answer: A. 8%

Solution: Sum of percent errors.

24. Q24. The error in subtraction x-y with errors dx, dy is:

- A. dx-dy
- B. dx+dy
- C. |dx-dy|
- D. |dx+dy|

Answer: B. dx+dy

Solution: Absolute errors add.

25. Q25. If L = xy/z where each has 2% error, % error in L:

- A. 6%
- B. 4%
- C. 2%
- D. 8%

Answer: A. 6%

Solution: Add percent errors: 2+2+2.

26. Q26. Dimension of electric field E:

- A. $[MLT^{-2}A^{-1}]$
- B. $[MLT^{-3}A^{-1}]$
- C. [MLT⁻²A]
- D. $[ML^{-1}T^{-2}A]$

Answer: A. [MLT⁻²A⁻¹]

Solution: Force/charge.

27. Q27. Standard form for 0.0001230 has:

A. 3 sf

B. 4 sf

C. 5 sf

D. 2 sf

Answer: B. 4

Solution: trailing zero significant.

28. Q28. Dimensional analysis cannot predict:

A. Form of equation

B. Numerical constants

C. Correct units

D. Exponents

Answer: B. Numerical constants

Solution: Pure numbers unaffected.

29. Q29. Dimensional formula of surface tension:

A. [MT⁻²]

B. [MLT⁻²]

C.
$$[ML^{-1}T^{-2}]$$

D.
$$[M^{0}L^{1}T^{-1}]$$

Answer: A. [MT⁻²]

Solution: Force per length.

30. Q30. Number of significant figures in 0.009000:

- A. 4
- B. 3
- C. 2
- D. 5

Answer: A. 4

Solution: three zeros after decimal plus nine.

31. Q31. When multiplying 3 numbers with % errors 1%,2%,3%, total % error:

- A. 6%
- B. 3%
- C. 1%
- D. $\sqrt{(1^2+2^2+3^2)}$ %

Answer: A. 6%

Solution: Sum.

32. Q32. Dimensional formula of electric potential (V):

A.
$$[ML^2T^{-3}A^{-1}]$$

B.
$$[MLT^{-2}A^{-1}]$$

C.
$$[ML^1T^{-2}A^{-2}]$$

D.
$$[M^1L^0T^{-2}A^{-1}]$$

Answer: A. [ML²T⁻³A⁻¹]

Solution: Energy per charge.

33. Q33. Absolute error in (x^2) : $x=2\pm0.1$:

Answer: A. 0.4

Solution: $\Delta(x^2)=2x\Delta x = 220.1=0.4$.

34. Q34. The relative error in $\forall x$ for relative error δ in x:

A. $\delta/2$

Β. 2δ

С. δ

D. √δ

Answer: A. $\delta/2$

Solution: $d(\sqrt{x})/\sqrt{x} \approx \delta/2$.

35. Q35. The dimension of specific heat capacity:

A.
$$[L^2T^{-2}\Theta^{-1}]$$

B.
$$[MLT^{-2}\Theta^{-1}]$$

C.
$$[L^2T^{-1}\Theta^{-1}]$$

D.
$$[M^0L^2T^{-2}\Theta^{-1}]$$

Answer: D.
$$[M^0L^2T^{-2}\Theta^{-1}]$$

Solution: Heat per mass per degree.

36. Q36. The percentage error in measuring area of square side 5±0.1 cm:

- A. 4%
- B. 8%
- C. 2R%
- D. 0.8%

Answer: A. 4%

Solution: Area $\propto x^2 \Rightarrow \%$ error $\approx 2*(0.1/5)*100=4\%$.

37. Q37. Dimensional formula of strain energy density:

- A. $[ML^{-1}T^{-2}]$
- B. $[ML^2T^{-2}]$
- C. $[M^{-1}L^2T^2]$

Answer: A. $[ML^{-1}T^{-2}]$

Solution: Energy per volume, same as pressure.

38. Q38. Significant figures in 1.200×10^{-3} :

- A. 4
- B. 3
- C. 2
- D. 5

Answer: B. 4? Actually digits: '1.200' =4 sf.

Solution: Trailing zeros significant.

39. Q39. Dimensional formula of electric capacitance:

- A. $[M^{-1}L^{-2}T^4A^2]$
- B. $[M^{-1}L^2T^{-4}A^{-2}]$
- C. $[ML^2T^{-2}A^{-1}]$
- D. $[M^{-1}L^{-1}T^3A]$

Answer: A. $[M^{-1}L^{-2}T^4A^2]$

Solution: Q/V.

40. Q40. If R = I/At, fractional error \approx ? I, A, t each have δ:

Α. 3δ

- Β. δ
- C. δ/3
- D. 2δ

Answer: A. 3δ

Solution: Sum of fractional errors.

- 41. Q41. Percentage error in volume of sphere from radius error 1%:
- A. 3%
- B. 1%
- C. 4%
- D. 2%

Answer: A. 3%

Solution: $V \propto r^3$.

- 42. Q42. Which quantity is dimensionless?
- A. Refractive index
- B. Acceleration
- C. Density
- D. Force

Answer: A. Refractive index

Solution: Ratio of speeds.

43. Q43. The significance of least count error is:

A. Can be improved by estimation

B. Cannot

C. Zero

D. Systematic

Answer: A. Can be improved by estimation

Solution: Estimation technique.

44. Q44. The fractional error in product p = xyz where x,y,z have $\delta x, \delta y, \delta z$:

A. $\delta x + \delta y + \delta z$

Β. δχδγδΖ

C. $\sqrt{(\delta x^2 + \delta y^2 + \delta z^2)}$

D. $(\delta x + \delta y)/\delta z$

Answer: A. Sum of fractional errors.

45. Q45. Dimensional formula of electric inductance:

A. $[ML^2T^{-2}A^{-2}]$

B. $[MLT^{-2}A^{-1}]$

C. $[ML^2T^{-3}A^{-1}]$

D. $[M^{-1}L^{-2}T^4A^2]$

Answer: A. [ML²T⁻²A⁻²]

Solution: emf = $L(di/dt) \Rightarrow L = [V]/[T^{-1}A] \Rightarrow$ derive accordingly.