Full Solutions

1. Evaluate/simplify by substitution.

Solution:
$$A = 3p - 2q = 3(-2) - 2(4) = -6 - 8 = -14$$
. $B = \frac{p^2}{q} = \frac{(-2)^2}{4} = \frac{4}{4} = 1$. $A + B = -14 + 1 = -13$.

2. Solve the linear equation.

Solution:
$$4(2x - 3) - 5 = 3x + 7 \Rightarrow 8x - 12 - 5 = 3x + 7 \Rightarrow 8x - 17 = 3x + 7 \Rightarrow 5x = 24 \Rightarrow x = \frac{24}{5} = 4.8.$$

3. Absolute value.

Solution: (a)
$$|2x - 5| = 9 \Rightarrow 2x - 5 = 9$$
 or $2x - 5 = -9$. First: $2x = 14 \Rightarrow x = 7$. Second: $2x = -4 \Rightarrow x = -2$. (b) $|x + 1| \le 4 \Rightarrow -4 \le x + 1 \le 4 \Rightarrow -5 \le x \le 3$. Interval: $[-5, 3]$.

4. Literal equation.

Solution:
$$F = \frac{9}{5}C + 32 \Rightarrow F - 32 = \frac{9}{5}C \Rightarrow C = \frac{5}{9}(F - 32).$$

5. Exponent rules.

Solution:
$$(a^3b^{-2})^2 = a^6b^{-4}$$
. Dividing by $a^{-1}b^4$ gives $a^{6-(-1)}b^{-4-4} = a^7b^{-8} = \frac{a^7}{b^8}$. At $a = -2$, $b = \frac{1}{2}$: $\frac{(-2)^7}{(1/2)^8} = \frac{-128}{1/256} = -128 \cdot 256 = -32768$.

6. Quadratic: factor and solve.

Solution: $x^2 - 5x - 24 = (x - 8)(x + 3) = 0 \Rightarrow x = 8 \text{ or } x = -3.$ Intercepts are (8,0) and (-3,0).

7. Solve the system.

Solution: From 4x - y = 1 we get y = 4x - 1. Substitute in 2x + 3y = 7: $2x + 3(4x - 1) = 7 \Rightarrow 2x + 12x - 3 = 7 \Rightarrow 14x = 10 \Rightarrow x = \frac{5}{7}$. Then $y = 4x - 1 = 4 \cdot \frac{5}{7} - 1 = \frac{20}{7} - \frac{7}{7} = \frac{13}{7}$. Solution: $\left(\frac{5}{7}, \frac{13}{7}\right)$.

8. Function $f(x) = 2x^2 - 3x + 1$.

Solution:
$$f(-2) = 2(4) - 3(-2) + 1 = 8 + 6 + 1 = 15$$
.
 $f(k) = 2k^2 - 3k + 1$ (already simplified).
 $f(a+1) - f(a) = \left[2(a+1)^2 - 3(a+1) + 1\right] - \left[2a^2 - 3a + 1\right]$
 $= 2(a^2 + 2a + 1) - 3a - 3 + 1 - 2a^2 + 3a - 1 = 4a - 2$.

9. Piecewise.

Solution: p(-3) uses x + 4: -3 + 4 = 1. p(0) uses x^2 : $0^2 = 0$. p(2) uses x^2 : $2^2 = 4$. p(5) uses constant 6: 6.

10. Modeling.

Solution: C(m) = 2.50 + 1.80m. $C(6) = 2.50 + 1.80 \cdot 6 = 2.50 + 10.80 = 13.30$. \$20 budget: $2.50 + 1.80m \le 20 \Rightarrow 1.80m \le 17.50 \Rightarrow m \le \frac{17.50}{1.80} \approx 9.72$. Greatest whole number of miles: 9.