Artificial Intelligence Fundamentals

Learning: Neural Networks

Biology

Major observations:

- 1. Synaptic weights
- 2. Cumulative effect
- 3. All or none

Neurons connectivity

Artificial neuron model

Neural Network

Activation function
$$\overline{d} = g(\overline{x})$$

Performance – error function

The threshold

Gradient descent

Gradient descent – moving toward the minimum.

learning rate

$$\Delta \omega = \sigma \left(\frac{\partial E}{\partial \omega_1} i + \frac{\partial E}{\partial \omega_2} j \right)$$

 ω_1 We need a continuous function – sigmoid function.

Example: logical AND

$$x_1, x_2 \in \{0, 1\}$$
$$y = x_1 \text{ AND } x_2$$

x_1	x_2	$h_{\Theta}(x)$
0	0	g(-30) ≈ 0
0	1	g(-10) ≈ 0
1	0	g(-10) ≈ 0
1	1	g(10) ≈ 1

$$h(x) = x_1 AND x_2$$

$$h(x) = g(-30 + 20 x_1 + 20 x_2)$$

Example: logical OR

$$h(x) = g(-10 + 20 x_1 + 20 x_2)$$

$$h(x) = x_1 OR x_2$$

A simple neural network

$$\frac{\partial E}{\partial \omega_2} = \frac{\partial E}{\partial h} \frac{\partial h}{\partial \omega_2} = -(d-h) \frac{\partial h}{\partial \omega_2} = -(d-h) \frac{\partial h}{\partial p_2} \frac{\partial p_2}{\partial \omega_2} = -(d-h) \frac{\partial h}{\partial p_2} y$$

$$\frac{\partial E}{\partial \omega_1} = \frac{\partial E}{\partial h} \frac{\partial h}{\partial \omega_1} = -(d-h) \frac{\partial h}{\partial \omega_1} = -(d-h) \frac{\partial h}{\partial p_2} \frac{\partial p_2}{\partial \omega_1} = -(d-h) \frac{\partial h}{\partial p_2} \frac{\partial p_2}{\partial \omega_1} \frac{\partial p_2}{\partial \omega_1} \frac{\partial p_2}{\partial \omega_2} \frac{\partial p_2}{\partial \omega_1} \frac{\partial p_2}{\partial \omega_2} \frac{\partial p_2}{\partial \omega_$$

$$= -(d-h)\frac{\partial h}{\partial p_2}\omega_2\frac{\partial y}{\partial p_1}\frac{\partial p_1}{\partial \omega_1} = -(d-h)\frac{\partial h}{\partial p_2}\omega_2\frac{\partial y}{\partial p_1}x$$

Derivative of the sigmoid

$$g = \frac{1}{1 + e^{-x}}$$

$$\frac{dg}{dx} = \frac{d}{dx}(1 + e^{-x})^{-1} = -(1 + e^{-x})^{-2}(-e^{-x}) = \frac{e^{-x}}{(1 + e^{-x})^{-2}}$$

$$= \frac{1 + e^{-x} - 1}{(1 + e^{-x})^{-2}} = \frac{1}{(1 + e^{-x})} \left[\frac{1 + e^{-x}}{(1 + e^{-x})} - \frac{1}{(1 + e^{-x})} \right] = g(1 - g)$$

$$\frac{\partial E}{\partial \omega_2} = -(d - h) \frac{\partial h}{\partial p_2} y = -(d - h) h (1 - h) y$$

$$\frac{\partial E}{\partial \omega_1} = -(d - h) \frac{\partial h}{\partial p_2} \omega_2 \frac{\partial y}{\partial p_1} x = -(d - h) h (1 - h) \omega_2 y (1 - y) x$$

Backpropagation algorithm

$$\frac{\partial E}{\partial \omega_2} = (h - d)h(1 - h)y$$

$$\frac{\partial E}{\partial \omega_1} = (h - d)h(1 - h)\omega_2 y(1 - y)x$$

It's only a local computation - depends by the staff on the vicinity

Changing the weights

$$\omega_{1} = \omega_{1old} + \sigma \frac{\partial E}{\partial \omega_{1}}$$

$$\omega_{2} = \omega_{2old} + \sigma \frac{\partial E}{\partial \omega_{2}}$$

• It's very important to choose a right learning rate σ (e.g. usually 0.01 or 0.001)

AlexNet

Some examples from an earlier version of the net

It can deal with a wide range of objects

AlexNet

- 60 millions parameters
- 224 x 224 RGB input
- 1000 classes output

Problems

- Fitting a curve. Why it's better than other methods?
- How we encode the problems parameters?
 (e.g. weather prediction the hard problem)
- Over fitting
- Oscillations

Related resources

• http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/exams/MIT6_034F10_quiz2_2007.pdf

Readings

Artificial Intelligence (3rd Edition), Patrick Winston, Chapter 12