МИНОБРНАУКИ РОССИИ

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В. И. Ульянова (Ленина)

АНАЛИЗ И СИНТЕЗ ИЗОБРАЖЕНИЙ В ТЕЛЕВИЗИОННЫХ СИСТЕМАХ

Методические указания к лабораторным работам

Санкт-Петербург 2017 Авторы: к.т.н. П. С. Баранов, к.т.н. А. А. Манцветов

Анализ и синтез изображений в телевизионных системах: Методические указания к лабораторным работам. СПбГЭТУ «ЛЭТИ». 2017.

Представлены методические указания к лабораторным работам по курсу «Анализ и синтез изображений в телевизионных системах».

Методические указания предназначены для магистрантов второго года обучения факультета радиотехники и коммуникаций, обучающихся по направлению «Радиотехника» по магистерской программе «Инфокоммуникационные технологии обработки и анализа пространственной информации».

Одобрено

Методической комиссией факультета радиотехники и телекоммуникаций в качестве методических указаний к лабораторным работам по курсу «Анализ и синтез изображений в телевизионных системах»

СОДЕРЖАНИЕ

Предисловие	4
Методические указания по выполнению лабораторных работ	
1. Пороговая чувствительность твердотельных фотоприемников	6
2. Контрастная чувствительность твердотельных фотоприемников	9
3. Разрешающая способность твердотельных фотоприемников	12
4. Исследование ложных детерминированных сигналов твердотельных	
фотоприемников	16
Заключение	20
Список литературы	21

ПРЕДИСЛОВИЕ

Дисциплина «Анализ и синтез изображений в телевизионных системах» подразумевает изучение теории оптических систем, используемых в телевидении, теории фотоэлектрического преобразования в полупроводниках, основных фотоэлектрических характеристик и параметров твердотельных фотоприемников, а также принципов формирования сигналов цветного телевидения.

Методические указания к лабораторным работам являются логичным продолжением практических занятий, проводимых в рамках курса «Анализ и синтез изображений в телевизионных системах».

Методические указания предназначены студентам, обучающимся по направлению 11.04.01 Радиотехника (магистерская программа «Инфокоммуникационные технологии обработки и анализа пространственной информации»), а также всем, кто занят в сфере информационных и мультимедийных технологий.

Методические указания по выполнению лабораторных работ

Для более полного освоения материала рекомендуется ознакомиться с литературой [1-3].

При выполнении конкретных лабораторных работ студенты на практических занятиях изучают теоретические вопросы, связанные с основной темой работы. Далее они получают номер индивидуального задания от преподавателя. Дома студенты готовят заготовку отчета по лабораторной работе, который должен содержать результаты расчетов по индивидуальному заданию и подготовленные позиции для измеренных результатов. Программа расчетов по индивидуальному заданию приведена в методических указаниях по данной лабораторной работе.

На занятии студенты выполняют лабораторную работу, запустив соответствующую программу и действуя в соответствии с методическими указаниями по данной работе. Результаты измерений заносятся в заготовку отчета по лабораторной работе. В отчет записываются также выводы по работе.

На следующем занятии проводится защита лабораторной работы, включающая проверку как полученных теоретически результатов, так и результатов измерений. Преподаватель задает студенту контрольные вопросы, проверяет сделанные им выводы. После этого выносится решение о зачете сделанной лабораторной работы. В случае незачета может быть выдано повторное задание, может быть проведено повторное исполнение лабораторной работы или повторная защита.

1. Пороговая чувствительность твердотельных фотоприемников

<u>Цель работы</u>: научиться оценивать пороговую чувствительность телевизионной системы при известных параметрах и характеристиках твердотельного фотоприемника, оптической системы, источника света, объекта наблюдения.

<u>Формируемые навыки</u>: способность рассчитать требуемые параметры телевизионной системы в заданных условиях наблюдения.

<u>Требуемые знания</u>: изучение тем практических занятий, посвященных изучению интегральной чувствительности, пороговой чувствительности и шумов твердотельных фотоприемников.

Методика проведения лабораторной работы:

1. Получить у преподавателя номер индивидуального задания согласно таблицам 1 и 2.

Таблица 1. Индивидуальные задания к лабораторной работе № 1.

№ п/п	Квантовая эффективность фотоприемника	Спектральная характеристика источника света	Размер пиксела, мкм×мкм	Время накопления, мс
1	1	1	5,86×5,86	20
2	1	1	8,3×8,6	40
3	1	1	3,45×3,45	100
4	1	2	5,86×5,86	500
5	1	2	8,3×8,6	1000
6	2	2	3,45×3,45	20
7	2	3	5,86×5,86	40
8	2	3	8,3×8,6	100
9	2	3	3,45×3,45	500
10	2	4	5,86×5,86	1000
11	3	4	8,3×8,6	20
12	3	4	3,45×3,45	40
13	3	5	5,86×5,86	100
14	3	5	8,3×8,6	500
15	3	5	3,45×3,45	1000

Таблица 2. Индивидуальные задания к лабораторной работе № 1.

$N_{\underline{0}}$	Шумы считывания,	Относительное	Коэффициент отражения
Π/Π	электронов	отверстие	объекта
1	3	1:1,4	0,89
2	4	1:2	0,5
3	5	1:2,8	0,1
4	6	1:4	0,89
5	7	1:5,6	0,5
6	8	1:1,4	0,1
7	9	1:2	0,89
8	3	1:2,8	0,5
9	4	1:4	0,1
10	5	1:5,6	0,89
11	6	1:1,4	0,5
12	7	1:2	0,1
13	8	1:2,8	0,89
14	9	1:4	0,5
15	2	1:5,6	0,1

- 2. Домашнее задание: на основе знаний, полученных на практических занятиях, рассчитать значения пороговой чувствительности в лк для трех значений отношения сигнал/шум, равных 1, 6 и 10. Коэффициент пропускания объектива принять равным 0,9. Значение фотометрического коэффициента принять равным 683 лм/Вт.
 - 3. При выполнении лабораторной работы запустить программу Lab1.
- 3.1 В соответствующих окнах выставить значения из таблиц 1, 2 в соответствии со своим индивидуальным заданием.
- 3.2 В окне «Минимум освещенности» задать минимальную освещенность, равную половине полученного значения пороговой освещенности при отношении сигнал/шум, равном 1.
- 3.3 В окне «Максимум освещенности» задать максимальную освещенность, равную удвоенному значению пороговой освещенности при отношении сигнал/шум, равном 10.
- 3.4 Снять зависимость отношения сигнал/шум от освещенности на фотоприемнике.

- 3.5 Проверить, что значения пороговой освещенности, полученные при отношениях сигнал/шум равных 1, 6 и 10 совпадают с расчетными.
- 3.6 Изменить относительное отверстие объектива. Повторить измерения.
 - 3.7 Изменить время накопления. Повторить измерения.
- 4. Подготовить отчет по лабораторной работе, включающий результаты домашних расчетов, результаты измерений при различных начальных условиях. Сделать выводы.

Контрольные вопросы:

- 1. Почему пороговая освещенность рассчитывается при отношениях сигнал/шум 1, 6, 10?
 - 2. Как влияют шумы считывания на пороговую чувствительность?
- 3. При каком относительном отверстии объектива пороговая чувствительность будет выше: 1:1,4 или 1:5,6?
 - 4. Какая пороговая чувствительность выше: 0,01 лк или 0,015 лк?
 - 5. Где выше освещенность: на фотоприемнике или на объекте?
- 6. Какой из параметров объектива улучшают просветляющие покрытия?
 - 7. Почему нельзя неограниченно увеличивать время накопления?
- 8. Как меняется пороговая чувствительность при диафрагмировании объектива?
- 9. Как меняется пороговая чувствительность при изменении времени накопления?
 - 10. В чем отличие квантовой эффективности от квантового выхода?

2. Контрастная чувствительность твердотельных фотоприемников

<u>Цель работы</u>: научиться оценивать контрастную чувствительность телевизионной системы при известных спектральных характеристиках объекта наблюдения и фона, изучить методы спектральной селекции объектов, изучить закон Роуза.

<u>Формируемые навыки</u>: способность рассчитать требуемые параметры спектральных фильтров, оценивать предельный контраст в заданных условиях наблюдения, понимать методы повышения контрастной чувствительности.

<u>Требуемые знания</u>: изучение тем практических занятий, посвященных изучению контрастной чувствительности, пороговой чувствительности, составляющих шумов твердотельных фотоприемников, знания в области статистической радиотехники.

Методика проведения лабораторной работы:

1. Получить у преподавателя номер индивидуального задания согласно таблицам 1 и 2, а также файл с малоконтрастным изображением.

Таблица 1. Индивидуальные задания к лабораторной работе № 2.

№ п/п	Квантовая эффективность фотоприемника	Спектральная характеристика объекта	Спектральная характеристика фона	Емкость фотодиода, электронов
1	1	1	1	10000
2	1	1	2	12000
3	1	1	3	15000
4	1	2	1	20000
5	1	2	2	30000
6	2	2	3	40000
7	2	3	1	50000
8	2	3	2	10000
9	2	3	3	12000
10	2	4	1	15000
11	3	4	2	20000
12	3	4	3	30000
13	3	5	1	40000
14	3	5	2	50000
15	3	5	3	10000

Таблица 2. Индивидуальные задания к лабораторной работе № 2.

No	Границы первого	Границы второго	Границы третьего
п/п	спектрального фильтра,	спектрального фильтра,	спектрального фильтра,
11/11	НМ	НМ	HM
1	200300	500600	9001000
2	300400	600700	800900
3	400500	200300	9001000
4	500600	300400	700800
5	600700	300400	10001100
6	700800	400500	9001000
7	800900	200300	400500
8	9001000	400500	500600
9	300400	400500	600700
10	400500	600700	9001000
11	500600	200300	10001100
12	600700	300400	800900
13	700800	400500	9001000
14	800900	300400	500600
15	9001000	400500	700800

2. Домашнее задание:

- 2.1 На основе знаний, полученных на практических занятиях, рассчитать дома значения контрастной чувствительности в процентах для трех значений отношения сигнал/шум, равных 3, 5 и 6. Оценить вероятность ложной тревоги для всех трех случаев. При помощи программы Excel построить спектральные характеристики объекта и фона в диапазоне длин волн от 200 до 1100 нм.
- 2.2 По спектральным характеристикам объекта и фона и квантовой эффективности фотоприемника вычислить значение относительного контраста К без применения спектральной селекции.
- 2.3 Применить спектральные фильтры к спектральным характеристикам объекта и фона, вычислить для трех случаев значения относительных контрастов K_1 , K_2 и K_3 . Оценить эффективность спектрального фильтра по формуле K/K_i .
- 2.4 Подобрать самому границы спектрального фильтра, вычислить значение относительного контраста.

- 2.5 В программе MATLAB применить к полученному малоконтрастному изображению операции эквализации гистограмм и растяжки заданного участка гистограммы.
- 2.6 Подготовить электронную заготовку отчета с полученными данными и изображениями.
 - 3. При выполнении лабораторной работы запустить программу Lab2.
- 3.1 В соответствующих окнах выставить значения из таблицы 1 и 2 в соответствии со своим индивидуальным заданием.
- 3.2 Получить значения контрастной чувствительности для трех отношений сигнал/шум.
- 3.3 Получить значения относительных контрастов K_1 , K_2 и K_3 и эффективности данных спектральных фильтров, проверить, что рассчитанные значения совпадают с расчетными.
- 3.4 Задать в окне «Пользовательский фильтр» минимальную и максимальную длины волн подобранного индивидуального спектрального фильтра, измерить значение относительного контраста и эффективность фильтра, сравнить с расчетными.
- 3.5 Загрузить файл исходного изображения, выданного преподавателем.
- 3.6 Применить к нему операции эквализации гистограмм и растяжки заданного участка гистограммы. Сравнить полученные результаты с результатами, выполненными дома.
- 4. Подготовить отчет по лабораторной работе, включающий результаты домашних расчетов, результаты измерений при различных начальных условиях. Сделать выводы.

Контрольные вопросы:

- 1. Почему контрастная чувствительность рассчитывается при отношениях сигнал/шум 3, 5, 6?
 - 2. Как влияют шумы считывания на контрастную чувствительность?
 - 3. Каковы основные свойства распределения Пуассона?
 - 4. Что такое интерференционный фильтр?
- 5. Каков диапазон длин волн чувствительности кремниевого фотоприемника?
- 6. Какова связь между контрастной чувствительностью и динамическим диапазоном?
 - 7. Как влияет на контрастную чувствительность биннинг?
 - 8. Как влияет на контрастную чувствительность цифровое накопление?
 - 9. Как влияет на контрастную чувствительность время накопления?
 - 10. Как влияет на контрастную чувствительность частота кадров?

3. Разрешающая способность твердотельных фотоприемников

<u>Цель работы</u>: научиться рассчитывать апертурно-частотные характеристики твердотельных фотоприемников, оценивать разрешающую способность телевизионной системы, учитывать функцию передачи модуляции объектива и фильтра нижних пространственных частот.

<u>Формируемые навыки</u>: способность рассчитать апертурно-частотные характеристики при задании формы действующей апертуры и наоборот, рассчитать разрешающую способность телевизионной системы при известных параметрах объектива, фотоприемника и фильтра нижних пространственных частот.

<u>Требуемые знания</u>: изучение тем практических занятий, посвященных разрешающей способности фотоприемника и оптической системы, изучение

параметров и характеристик объективов, изучение по учебникам понятия разрешающей способности телевизионной системы.

Методика проведения лабораторной работы:

1. Получить у преподавателя номер индивидуального задания согласно таблицам 1 и 2.

Таблица 1. Индивидуальные задания к лабораторной работе № 3.

	Tuestinga 1. Tingingi andring sugaring k state of a top field the s					
No	Форма	Форма	Размер пиксела			
п/п	действующей апертуры	действующей апертуры	фотоприемника			
11/11	по горизонтали	по вертикали	по горизонтали, мкм			
1	Прямоугольная	Трапецеидальная* 0,0075	3,25			
2	Прямоугольная	Трапецеидальная* 0,01	3,45			
3	Прямоугольная	Трапецеидальная* 0,0125	3,45			
4	Прямоугольная	Трапецеидальная* 0,015	4,0			
5	Прямоугольная	Трапецеидальная* 0,0175	4,5			
6	Прямоугольная	Трапецеидальная* 0,02	5,0			
7	Прямоугольная	Трапецеидальная* 0,025	5,5			
8	Прямоугольная	Трапецеидальная* 0,030	6,0			
9	Трапецеидальная* 0,0075	Прямоугольная	6,0			
10	Трапецеидальная* 0,01	Прямоугольная	6,0			
11	Трапецеидальная* 0,0125	Прямоугольная	6,5			
12	Трапецеидальная* 0,015	Прямоугольная	6,5			
13	Трапецеидальная* 0,0175	Прямоугольная	6,5			
14	Трапецеидальная* 0,02	Прямоугольная	7,0			
15	Трапецеидальная* 0,025	Прямоугольная	7,5			

Таблица 2. Индивидуальные задания к лабораторной работе № 3.

№ п/п	Размер пиксела фотоприемника по вертикали, мкм	Форма апертурно-частотной характеристики	Диаметр входного зрачка объектива	Толщина ФНПЧ
1	3,45	Гауссова	30	1
2	4,0	Sinc	28	1,1
3	5,5	Sinc ²	27	1,2
4	3,45	Прямоугольная	26	1,3
5	4,0	Трапецеидальная	25	1,4
6	5,5	Гауссова	24	1,5
7	6,0	Sinc	23	1,6
8	4,0	Sinc ²	22	1,7
9	5,5	Прямоугольная	21	1,8
10	6,0	Трапецеидальная	20	1,9
11	5,0	Гауссова	19	2,0
12	6,5	Sinc	18	2,1
13	7,0	Sinc ²	17	2,2
14	7,5	Прямоугольная	16	2,3
15	8,0	Трапецеидальная	15	2,4

* Для трапецеидальной действующей апертуры указаны протяженность боковых сторон в долях от размера пиксела в соответствующем направлении. Трапеция — симметрична.

2. Домашнее задание:

- 2.1 На основе знаний, полученных на практических занятиях и из учебников, рассчитать дома продольную и поперечную апертурно-частотные характеристики фотоприемника. Построить их и занести в отчет. Записать значение глубины модуляции на частоте Найквиста для обоих случаев.
- 2.2 На основании формы заданной апертурно-частотной характеристики построить качественно действующую апертуру фотоприемника (в одном направлении).
- 2.3 Рассчитать дифракционный предел разрешения объектива. Считая, что в объективе присутствуют только дифракционные ограничения рассчитать форму функции передачи модуляции. Перемножить апертурночастотные характеристики фотоприемника на функцию передачи модуляции объектива. Полученные характеристики занести в отчет. Записать значение глубины модуляции на частоте Найквиста для обоих случаев.
- 2.4 Рассчитать контрастно-частотную характеристику фильтра нижних пространственных частот. Перемножить апертурно-частотные характеристики фотоприемника на функцию передачи модуляции объектива и на контрастно-частотную характеристику фильтра нижних пространственных частот. Полученные характеристики занести в отчет. Записать значение глубины модуляции на частоте Найквиста для обоих случаев.
 - 3. При выполнении лабораторной работы запустить программу Lab3.
- 3.1 В соответствующих окнах выставить заданные функции формы действующей апертуры в поперечном и продольном направлениях, а также

задать размер боковых сторон трапеций. Выставить значения размеров пиксела в соответствии со своим индивидуальным заданием.

- 3.2 Получить апертурно-частотные характеристики, сравнить их значения на частоте Найквиста с рассчитанными.
- 3.3 Задать диаметр входного зрачка объектива, получить вид дифракционно ограниченной функции передачи модуляции. Проверить значение функции на частоте Найквиста. Получить произведение апертурно-частотной характеристики на функцию передачи модуляции.
- 3.4 Задать толщину фильтра нижних пространственных частот. Получить его контрастно-частотную характеристику. Сравнить ее значение на частоте Найквиста с рассчитанной.
 - 3.5 Полученные значения и вид характеристик занести в отчет.
- 4. Подготовить отчет по лабораторной работе, включающий результаты домашних расчетов, результаты измерений апертурно-частотных характеристик, функции передачи модуляции объектива и контрастно-частотной характеристики фильтра нижних пространственных частот. Сделать выводы.

Контрольные вопросы:

- 1. Как связана форма апертурно-частотной характеристики и действующей апертуру?
- 2. Что важнее в изображении апертурно-частотная характеристика или фазо-частотная характеристика?
 - 3. Как телевизионные линии связаны с оптическими?
- 4. Из какого материала изготавливается фильтр нижних пространственных частот?
 - 5. Что такое двойное лучепреломление?
 - 6. Каков критерий Рэлея для углов и для расстояний?
 - 7. Возможно ли у объектива разрешение выше, чем по критерию Рэлея?

- 8. Что такое входной зрачок объектива?
- 9. Какова действующая апертура передающей телевизионной трубки?
- 10. При помощи какого устройства можно поднять верхние частоты в видеосигнале?

4. Исследование ложных детерминированных сигналов твердотельных фотоприемников

<u>Цель работы</u>: научиться оценивать уровень ложных детерминированных сигналов твердотельных фотоприемников при различных условиях эксплуатации, изучить методы компенсации ложных детерминированных сигналов.

<u>Формируемые навыки</u>: способность самостоятельно оценивать уровень артефактов на изображении при различных условиях эксплуатации телевизионной аппаратуры, способность предсказывать появление ложных детерминированных сигналов при воздействии экстремальных условий — высокой и низкой температуры, солнечной радиации, вакуума.

<u>Требуемые знания</u>: изучение тем практических занятий, посвященных ложным детерминированным сигналам твердотельных фотоприемников, изучение по учебникам понятий темнового тока, геометрического шума, горячих пикселов, инерционности, смаза, неэффективности переноса.

Методика проведения лабораторной работы:

1. Получить у преподавателя номер индивидуального задания согласно таблицам 1 и 2.

Таблица 1. Индивидуальные задания к лабораторной работе № 4.

	Значение			Уровень вертикального
№	темнового тока	Температура	Инерционность*,	смаза при стандартных
п/п	при температуре	фотоприемника,	%	условиях,
	+20°C	$^{\circ}\mathrm{C}$, ,	дБ
1	1	70	0,05	-80
2	2	75	0,10	-85
3	3	80	0,15	-90
4	4	85	0,20	-95
5	5	90	0,25	-100
6	6	95	0,01	-105
7	7	100	0,02	-110
8	8	105	0,03	-115
9	1	100	0,04	-120
10	2	95	0,26	-60
11	3	90	0,27	-65
12	4	85	0,28	-70
13	5	80	0,16	-75
14	6	75	0,17	-55
15	7	70	0,1	-50

Таблица 2. Индивидуальные задания к лабораторной работе № 4.

	י די די		1 1	non pacerers in
№	Размер по вертикали крупной детали,	Уровень пересветки,	Неэффективность	Число элементов
Π/Π	% от высоты фотоприемника	раз	переноса	ПЗС регистра
1	18	50	3·10 ⁻⁵	4096
2	20	45	4.10-5	3512
3	22	40	5·10 ⁻⁵	3200
4	24	35	6.10-5	2984
5	26	30	7.10-5	2532
6	28	25	8·10-5	2048
7	30	20	9.10-5	1892
8	18	45	1.10-6	5192
9	20	35	2·10 ⁻⁶	4842
10	22	30	3·10-6	4400
11	24	25	4.10-6	4096
12	26	20	5·10 ⁻⁶	3548
13	28	17,5	6.10-6	3012
14	30	15	7·10 ⁻⁶	2892
15	18	60	8·10-6	2562

^{*} Пусть максимальная емкость фотодиода составляет 30 000 электронов.

2. Домашнее задание:

2.1 На основе знаний, полученных на практических занятиях и из учебников, рассчитать дома уровень темнового тока твердотельного фотоприемника при заданной температуре и при температурах $\pm 5^{\circ}$ и $\pm 10^{\circ}$. Построить

графики. Рассчитать среднеквадратическое отклонение флуктуационных шумов темнового тока.

- 2.2 Рассчитать остаточный сигнал в первом и втором кадрах, пользуясь заданными значениями инерционности.
- 2.3 Используя выданные значения стандартного уровня вертикального смаза для матричного ПЗС, а также размер яркой детали по вертикали и уровень пересветки, рассчитать уровень вертикального смаза для данной детали.
- 2.4 Для матричного ПЗС рассчитать результирующую неэффективность переноса, учитывая то, что перенос осуществляется в двухфазном регистре.
 - 2.5 Все полученные данные занести в отчет по лабораторной работе.
 - 3. При выполнении лабораторной работы запустить программу Lab4.
- 3.1 В соответствующих окнах выставить значения из таблицы 1 в соответствии со своим индивидуальным заданием.
- 3.2 Получить зависимость темнового тока от температуры и сравнить ее с рассчитанной. Полученные данные занести в отчет. Проверить соответствие рассчитанных значений среднеквадратического отклонения шума темнового тока, снятого при измерениях. Полученные результаты занести в отчет.
- 3.3 Задать значение инерционности в соответствующем окне. Проверить, совпадают ли рассчитанные значения с измеренными. Занести результаты в отчет.
- 3.4 Провести моделирование вертикального смаза перейдя в соответствующую вкладку меню и задав в окнах значения индивидуального задания. Полученные результаты и синтезированное изображение включить в отчет
- 3.5 Перейти во вкладку неэффективность переноса для матричного ПЗС и задать индивидуальные значения. Получить значение суммарной не-

эффективности переноса, сравнить ее с рассчитанной. Просмотреть и сохранит изображение, искаженное неэффективность горизонтального переноса.

4. Подготовить отчет по лабораторной работе, включающий результаты домашних расчетов, результаты темнового тока, инерционности, вертикального смаза, неэффективности переноса. Сделать выводы.

Контрольные вопросы:

- 1. В каком твердотельном фотоприемнике темновой ток больше матричном ПЗС или в КМОП-сенсоре?
 - 2. Какие есть методы борьбы с темновым током?
 - 3. Каков был уровень инерционности в плюмбиконах?
- 4. В чем причина образования вертикального смаза в матричных ПЗС с кадровым переносом?
- 5. В чем причина образования вертикального смаза в матричных ПЗС со строчным переносом?
- 6. Для чего необходим матричный ПЗС со строчно-кадровым переносом?
 - 7. Каков уровень неэффективности переноса в поверхностном канале?
 - 8. Каков уровень неэффективности переноса в объемном канале?
 - 9. Может ли возникнуть неэффективность переноса в КМОП-сенсоре?
 - 10. Что такое геометрический шум?

ЗАКЛЮЧЕНИЕ

В процессе выполнения курса лабораторных работ студенты выполняют большой объем самостоятельной работы, позволяющий лучше усвоить основные понятия, изучаемые в курсе дисциплины. Разнообразие выдаваемых заданий позволяет студентам делать различные выводы о результатах выполнения работы, что позволяет преподавателю судить о степени самостоятельности выполнения работы и понимании студентом темы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Цифровое преобразование изображений. Учеб. пособие для вузов по направлению "Радиотехника" / Р. Е. Быков, Р. Фрайер, К. В. Иванов, А. А. Манцветов; Под ред. Р. Е. Быкова. М.: Горячая линия—Телеком, 2003. 228 с.
- 2. Цыцулин А. К. Телевидение и космос. СПб: Изд-во СПбГЭТУ СПбГЭТУ «ЛЭТИ», 2014. 240 с.
- 3. Манцветов А. А., Цыцулин А. К. Телекамеры на КМОП фотоприемниках. Вопросы радиоэлектроники, сер. Техника телевидения, 2006, вып. 2. С. 70–89.

ъ.	<i>T</i>		_		_
1	Гетодические ч	припесели	κ παροι	natonulim	nahotam
ΤA	тетодические	y Kasanirin I	к лаоо	parophbim	paooram

Баранов Павел Сергеевич	
Манцветов Андрей Александрови	y

Анализ и синтез изображений в телевизионных системах

Издание публикуется в авторской редакции

СПбГЭТУ «ЛЭТИ» 197376, Санкт-Петербург ул. Проф. Попова, 5