Optimal Dynamic Regret in LQR Control

 $\label{eq:continuity} \begin{tabular}{l} \hline Dheeraj Baby and Yu-Xiang Wang \\ \hline \end{tabular} dheeraj @ucsb.edu and $yuxiangw@cs.ucsb.edu \\ \hline \end{tabular}$

PROBLEM SETTING

Online interaction protocol

We study an online LQR system:

- 1. At time $t \in [n]$, learner is at state $x_t \in R^{d_x}$ and plays a control signal $u_t \in R^{d_u}$. 2. The system transitions to next state as:
 - $x_{t+1} = Ax_t + Bu_t + w_t$ with $||w_t||_2 \le 1$. A and B are known. 3. Agent suffers loss $\ell(x_t, u_t) = ||x_t||_{R_x}^2 + ||u_t||_{R_u}^2$ for known

2020). Let $M=(M^{[i]})_{i=1}^m$ denote a sequence of matrices $M^{[i]}\in\mathbb{R}^{d_u\times d_x}$ We define the corresponding disturbance action policies (DAP) π^M as: Definition 1 (Disturbance action policies, Foster and Simchowitz,

$$\pi_t^M(x_t) = -K_{\infty} x_t - q^M(w_{1:t-1}),$$

where $q^M(w_{1:t-1}) = \sum_{i=1}^m M^{[i]} w_{t-i}$. We are interested in DAPs for which the sequence M belongs to the set:

$$M(m,R,\gamma) := \{ M = (M^{[i]})_{i=1}^m : \|M^{[i]}\|_{op} \leq R \gamma^{i-1} \},$$

where m, R and γ are known parameters

The performance of the learner is measured in terms of dynamic

$$R\left(M_{1:n}\right) = \sum_{t=1}^{n} \ell(x_{t}^{\mathrm{alg}}, u_{t}^{\mathrm{alg}}) - \ell(x_{t}^{M_{1:n}}, u_{t}^{M_{1:n}})$$

Responsible decision making

- 1. Physical constraints on the allowable control actions at any
- 2. Eg: Applying huge torque in a drone can burn the motor or drain the battery quickly.
- 3. We model safe control signals as:

$$\mathcal{F}_t := \{u_t | u_t = \pi_t^M(x_t) \text{ for some } M \in \mathcal{M}(m, R, \gamma)\}.$$

- Choosing parameters m,R and γ can constrain the magnitude of feasible control actions at any state.
- signal from the feasible set \mathcal{F}_t thus necessitating the need for To ensure safety, at each round the learner plays a control

Foster and Simchowitz, 2020 provides a reduction from the LQR problem to the problem of delayed online linear regression:

 $-K_{\infty}x+q^{M_t}(w_{1:t-1})$ for a sequence of matrices $M_{1:n}$ chosen in hindsight. $-K_{\infty}x+q^{M_t^{alg}}(w_{1:t-1})$. Let the comparator policies take the form $\pi_t(x)=$ Then the dynamic regret against the policies $\pi:=(\pi_1,\ldots,\pi_n)$ satisfies: **Proposition 1** Suppose the learner plays policy of the form $\pi_t^{dlg}(x)$

$$R_n(\pi) \le O(1) + \sum_{t=1}^{n} \hat{A}_t(M_t^{alg}) - \hat{A}_t(M_t),$$

where the parameters involved in the inequality are defined as below: $\hat{A}_t(M) := \|q^M(w_{1:t-1}) - q_{\infty;h}(w_{t:t+h})\|_{\Sigma_{\infty}}^2$ and $h = O(\log n)$.

- 1. The losses $A_t(M_t)$ are linear regression losses which are exp-
- Need dynamic regret minimizing algorithms under expconcave losses.
- To ensure safety, we must play matrices $M_t^{\mathrm{alg}} \in \mathcal{M}(m,R,\gamma)$.

The algorithm of Baby and Wang, 2022 minimises dynamic regret under exp-concave losses. But they can only support L_{∞} constrained decision sets. Central question: How to extend their algorithm for proper online linear regression?

ALGORITHM

may produce iterates outside \mathcal{D} . (See Theorem 1 for a specific choice gorithm A which ensures low dynamic regret under general exp-Here \mathcal{D}' is a compact and convex set. Note that such an algorithm \mathcal{A} ProDR.control: Inputs - Decision set \mathcal{D} , G > 0, a surrogate alconcave losses against any comparator sequence in some $\mathcal{D}' \supset \mathcal{D}$.

- 1. At round t, receive w_t from A.
- 2. Receive co-variate matrix $A_t := [a_{t,1}, \dots, a_{t,p}]^T$.
- 3. Play $\hat{w}_t \in \operatorname{argmin}_{x \in \mathcal{D}} \max_{i=1,...,p} |a_{t,i}^T(x-w_t)|$.
- 4. Let $\ell_t(w) = f_t(w) + G \cdot S_t(w)$, where $f_t(w) = ||A_t w b_t||_2^2$ and $S_t(w) = \min_{x \in \mathcal{D}} \max_{i=1,...,p} |a_{t,i}^T(x-w)|.$
- Send $\ell_t(w)$ to \mathcal{A} . Б.

PERFORMANCE GUARANTEES

in Baby and Wang, 2022 and using the delayed to non-delayed reduction of Joulani et al, 2013 guarantees thaf $R(M_{1:n}) = \tilde{O}^*(n^{1/3} \lceil \tilde{\mathcal{T}} \mathcal{V}(M_{1:n}) \rceil^{2/3} \vee 1)$. Here $\mathcal{T} \mathcal{V}(M_{1:n}) := \sum_{t=2}^n \sum_{j=1}^m \|M_t^{[i]} - M_{t-1}^{[i]}\|_1$. Further, the static regret against any DAP policy from $\mathcal{M}(m,R,\gamma)$ in any local time window **Theorem 1 (informal)** Set $\mathcal{D} = \mathcal{M}(m, R, \gamma)$ and \mathcal{D}' as the tightest L_{∞} ball that encloses \mathcal{D} . Choosing the surrogate algorithm \mathcal{A} as the algorithm

Design of ProDR.control is inspired by the improper to proper black-box reduction of Cutkosky and Orabona, 2018. **Theorem 2** There exists an LQR system, a choice of the perturbations w_t and a DAP policy class such that:

$$\sup_{M_{1:n} \text{ with } \mathcal{TV}(M_{1:n}) \leq C_n} \mathbb{E}[R(M_{1:n})] = \Omega(n^{1/3} C_n^{2/3} \vee 1),$$

where the expectation is taken wrt randomness in the strategies of the agent

EXAMPLE OF NON-STATIONARITY

Depending on the perturbation process, different DAP policies are suitable across different sections of time.

REFERENCES

Online learning under delayed feedback, Pooria Joulani, András György, and Csaba Szepesvari, ICML 2013

Black-box reductions for parameter-free online learning in banach spaces, Ashok Cutkosky and Francesco Orabona, COLT 2018. Logarithmic regret for adversarial online control, Dylan J Foster and Max Simchowitz, ICML 2020. Optimal dynamic regret in proper online learning with strongly convex losses and beyond, Dheeraj Baby and Yu-Xiang Wang, AISTATS,