

Semantic Blockchain

(STARTING POINT)

By: Héctor E. Ugarte R.

https://semanticblocks.wordpress.com/

1. BACKGROUND

Bitcoin 1.0 **bitcoin**

• The world's first decentralized digital currency

- A solution to the central authority problem
- Achieve concensus without a central authority

SOURCE: Andreas Antonopoulos. Mastering bitcoin: Unlocking digital cryptocurrencies. O'Reilly, Sebastopol, CA, 2015.

Bitcoin 2.0: ethereum

- The application of decentralized public ledgers for purposes other than just digital currencies.
- There are many (metacoins and others), but Ethereum includes a programmable smart contract platform.

 SMART CONTRACT: programs and protocols to facilitate the automated performance of a contract. Different possible languages, supported one: SOLIDITY

<contract>

CONTRACT

Ethereum Decentralized Application (DApp)

SOURCE: Hector Ugarte. Semantic web on/with the blockchain - Multilayered architecture on Ethereum, https://semanticblocks.wordpress.com/2016/03/29/multilayered-architecture-on-ethereum/ 2016.

2. ANALYSIS

Why Ethereum over Bitcoin? (metacoins)

- General purpose.
- Turing-complete, universal scripting language.
- Fees regulate its Turing-complete functionality and prevent abusive transactions transaction fee for each computational step of script execution.
- Mining algorithms: Different more energy friendly "Proof of stake"
- GHOST GHOST is a new block propagation protocol that allows blockchains to have much faster block confirmation times, ideally in the range of 3-30 seconds.

Why blockchain technologies?

- Interoperable/Robust: A modular, interoperable platform that eliminates the possibility of double spending.
- Cost-efficient/Reduce costs: A solution to drastically reduce costs by eliminating the need for "handling companies" to be audited
- Real-time and agile: A fast and highly accessible sign-up means quick deployment
- Public/Transparency/censorship resilent/ Incorruptible/ Inmutable / Auditable/Traceability: The openness of the platform enables innovation and could achieve bottom-up transparency in supply chains instead of burdensome top-down audits. Ethics can be hard-coded. An auditable record that can be inspected and used by companies, standards organizations, regulators, and customers alike
- Guaranteed continuity: The elimination of any central operator ensures inclusiveness and longevity.
- Trustless
- Super distributed Security: You would have to hack each node in the chain to hijack the system
- proof of uniqueness
- ownership of data

Why Semantic Web?

- Uniform Resource Identifiers (URIs) used to identify documents and also concepts (people, places, things, abstract/intangible concepts) and properties / data relationships (consistency).
- Resource Description Framework (RDF) provides a W3C standard way to write simple logical statements about relationships. (Standardization).
- Ontologies are like data dictionaries with additional logical annotations Multiple ontologies can co-exist and be used in parallel. It's also easy to cross-reference between them. (Standarization).
- SPARQL query language enables a query to combine machine-readable data from multiple sources and also allows new data relationships to be constructed from existing data. (Linking and mappings).

3. PROPOSED SOLUTION

Proposed solutions

1. Developed Blondie ontology to explore Bitcoin and Ethereum blockchain

```
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://www.example.com/blondie.owl>
  a owl:Ontology;
 rdfs:comment """BLONDIE: Bitcoin Ontology with Dynamic Extensibility
Ontology for Cryptocurrencies""" .
<http://www.example.com/blondie.owl#blockheaderListEthereumPayload>
 a owl:ObjectProperty;
 rdfs:domain <http://www.example.com/blondie.owl#EthereumPayload> ;
 rdfs:range <http://www.example.com/blondie.owl#EthereumBlockheader> .
<http://www.example.com/blondie.owl#transactionInputListBitcoinTransaction>
  a owl:ObjectProperty;
 rdfs:domain <http://www.example.com/blondie.owl#BitcoinTransaction> ;
 rdfs:range <http://www.example.com/blondie.owl#BitcoinTransaction> .
```


Proposed solutions

Evaluation:

A basic mapping between JSON RPC (using Ethereum JSON RPC API) and RDF (using Blondie vocabulary)

```
// Result
{
    "id":1,
    "jsonrpc":"2.0",
    "result": {
        "number": "0x1b4", // 436
        "hash": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331",
        "parentHash": "0x9646252be9520f6e71339a8df9c55e4d7619deeb018d2a3f2d21fc165dde5eb5",
        "nonce": "0xe04d296d2460cfb8472af2c5fd05b5a214109c25688d3704aed5484f9a7792f2",
        "sha3Uncles": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
        "logsBloom": "0xe670ec64341771606e55d6b4ca35a1a6b75ee3d5145a99d05921026d1527331",
        "transactionsRoot": "0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421"
        "stateRoot": "0xd5855eb08b3387c0af375e9cdb6acfc05eb8f519e419b874b6ff2ffda7ed1dff",
```

```
:Blockheader01 a :EthereumBlockheader;

:parentHashEthereumBlockhader "0x9646252be9520f6e71339a8df9c55e4d7619deeb018d2a3f221fc165dde5eb5";

:stateRootEthereumBlockheader "0x56e81f171bcc55a6fff8345e692c0f86e5b48e01b996cadc001622fb5e363b421".
```

Proposed solutions

2. Implement a usecase on Ethereum

Chosen usecase: "PROVENANCE on the Supply Chain"

"Provenance is defined as a record that describes the people, institutions, entities, and activities involved in producing, influencing, or delivering a piece of data or a thing."

W3C (World Wide Web Consortium) Provenance Working Group's

Provenance in the Semantic Web Layer Cake Diagram.

Simplified view of PROV specifications

SOURCE: Christopher Brewster. Semantic blockchains in the supply chain. Aston University, 2015.

SOURCE: Luc Moreau. Enabling Provenance on the Web Standardization and Research Questions. Web and Internet Science. University of Southampton, 2015.

The Project Provenance Ltd

 Prototype that uses block chain technology to enable secure traceability of certifications and other salient information in supply chains.

Data Journalism Scenario

SOURCE: Luc Moreau, Paul Groth. Provenance: an introduction to PROV. Morgan & Claypool, 2013.

Individuals diagram

Using The PROV Ontology (PROV-O)

Data Journalism Đapp Schema

Future Work

Ethereum Contract ABI (Application binary interface)

```
contract Test {
function Test() { b = 0x12345678901234567890123456789012; }
event Event(uint indexed a, bytes32 b)
                                                "type":"event",
event Event2(uint indexed a, bytes32 b)
                                                'inputs": [{"name":"a","type":"uint256","indexed":true},{"name":"b","type":"bytes32","indexed":false}],
function foo(uint a) { Event(a, b); }
                                                "name":"Event"
bytes32 b;
                                                "type":"event",
                                                inputs": [{"name":"a","type":"uint256","indexed":true},{"name":"b","type":"bytes32","indexed":false}],
                                                "name":"Event2"
                                                "type":"event",
                                                'inputs": [{"name":"a","type":"uint256","indexed":true},{"name":"b","type":"bytes32","indexed":false}],
                                                "name":"Event2"
                                                "type":"function",
                                                'inputs": [{"name":"a","type":"uint256"}],
                                                "name":"foo",
                                                outputs": []
```

Future Work

• Ethereum Natural Specification Format

```
/// @notice Send `(valueInmGAV / 1000).fixed(0,3)` GAV from the account of
/// `message.caller.address()`, to an account accessible only by `to.address()
/// @dev This should be the documentation of the function for the developer docs
/// @param to The address of the recipient of the GavCoin
/// @param valueInmGav The GavCoin value to send
function send(address to, uint256 valueInmGAV) {
   if (balances[message.caller] >= valueInmGAV) {
      balances[to] += valueInmGAV;
      balances[message.caller] -= valueInmGAV;
   }
}
*@author: The name above the contract definition
*@notice: Represent appear to the user to appear
```

- •@title: This is a title that should describe the contract and go above the contract definition
- •@author: The name of the author of the contract. Should also go above the contract definition.
- •@notice: Represents user documentation. This is the text that will appear to the user to notify him of what the function he is about to execute is doing
- @dev: Represents developer documentation. This is documentation that would only be visible to the developer.
- @param: Documents a parameter just like in doxygen. Has to be followed by the parameter name.
- •@return: Documents the return type of a contract's function.