



3D Graphics for Web Programmers

Kelley Nielsen Salticid Software, Codechix October 4, 2013



2013







#### So...

How does
3D
Animation
Work?







## 3D animation is like Claymation







## We're building



#### Our own little world







ANITA BORG INSTITUTE

GRACE HOPPER
CELEBRATION OF WOMEN IN COMPUTING









#### Three.PerspectiveCamera





#### Three.Mesh



Three.PointLight





#### requestAnimationFrame()



Affine transformations: translate, rotate, scale

How?





#### What do we need?

three.js

teapot.js

An html5 page



#### To get it all:

https://github.com/shegeek/ teapots\_can\_fly

clone or download zip



#### The basic setup

```
<head>
<title>Teapots can fly!<title>
<style>canvas { width: 100%;
    Height: 100% }
</style>
</head>
```



#### The basic setup

```
<body>
  <script src="three.min.js">
  </script>
  <script>
     ** Our Stuff Goes Here!
  </script>
</body>
```



## The last setup step

```
<script>
  var renderer = new THREE.WebGLRenderer();
```

renderer.setSize(window.innerWidth, window.innerHeight);

document.body.appendChild (renderer.domElement);

</script>







# And now, the 3D code!







Three.PerspectiveCamera





#### The diorama

var scene = new THREE.Scene();





#### The Camera

```
var camera = new
THREE.PerspectiveCamera(
    35,
    window.innerWidth/window.innerHeight,
    0.1, 1000);
camera.position.z = 50;
```



# The coordinate system

Right-handed coordinates

Positive X to the right

Positive Z coming out of the screen







#### Three.Mesh



Three.PointLight





## The teapot

var teapot;

var jsonLoader = new THREE.JSONLoader();

jsonLoader.load( "teapot.js", createTeapot);





#### The teapot's callback

```
function createTeapot(tGeometry){
  var tMaterial = new
       THREE.MeshPhongMaterial({color: 0x00ffff});
  var tMesh = new
        THREE.Mesh(tGeometry, tMaterial);
  scene.add(tMesh);
  teapot = tMesh;
```



#### A closer look...

new THREE.Mesh( tGeometry, tMaterial );

#### A mesh has two parts





## A geometry is like bones









#### A material is like skin





#### The teapot's callback

```
function createTeapot(tGeometry){
  var tMaterial = new
       THREE.MeshPhongMaterial({color: 0x00ffff});
  var tMesh = new
        THREE.Mesh(tGeometry, tMaterial);
  scene.add(tMesh);
  teapot = tMesh;
```



## Let there be light!

var light = new THREE.PointLight(0xffffff);

light.position.set(0,150,150);

scene.add(light);









#### requestAnimationFrame()



Affine transformations: translate, rotate, scale

How?





# Making the teapot move

teapot.position.x += 0.1;

if (teapot.position.x > halfScreenWidth)
 teapot.position.x = -halfScreenWidth;





## Rendering the frame

renderer.render(scene, camera);





## Setting up the next frame

requestAnimationFrame(render);





## The complete render loop

```
var halfScreenWidth = 80;
var render = function () {
if (teapot) {
   teapot.position.x += 0.1;
   if (teapot.position.x > halfScreenWidth)
      teapot.position.x = -halfScreenWidth;
   renderer.render(scene, camera);
   requestAnimationFrame(render);
render();
```





# ...And once again, the repo:

https://github.com/shegeek/teapots\_can\_fly



Enjoy! Make cool stuff!

kelleynnn@gmail.com





#### Got Feedback?

★ Rate and Review the session using the GHC Mobile App

To download visit www.gracehopper.org





#### Resources and links

- three.js repo: https://github.com/mrdoob/three.js
- three.js home page: http://threejs.org/
- Stemkoski's examples: http://stemkoski.github.io/Three.js/index.html
- WebGL Up and Running (by Tony Parisi): http://shop.oreilly.com/product/06369200247 29.do
- Learning Three.js blog: http://learningthreejs.com/





#### Resources and links

- three.js boilerplate builder: http://jeromeetienne.github.io/threejsboilerplate builder/
- An Introduction to Web GL:
   http://dev.opera.com/articles/view/an-introduction-towebgl/
- Tutorials on the LearningWebGL blog: http://learningwebgl.com/blog/?page\_id=1217
- WebGL 1.0 spec: http://www.khronos.org/webgl/







# Image credits

- Felix image courtesy of Wikihow wikihow.com/Draw-Felix-the-Cat
- Gumby image courtesy of Art Clokey's Gumbyworld gumbyworld.com
- Earth image courtesy of NASA visibleearth.nasa.gov
- Coordinate axes image courtesy of http://www.cocos2d-x.org/
- Teapot wireframe image courtesy of caig.cs.nctu.edu.tw/
- Saran Wrap man image courtesy of funnyordie.com





## Teapots Can Fly

Kelley Nielsen
San Jose, CA
1-831-295-1219
kelleynnn@gmail.com



