Algebra

Zadanie 5, Lista 3

Współczynniki wielomianów stopnia co najwyżej 7 nad ciałem \mathbb{R}_5 tworzą wektory o ośmiu współrzędnych:

$$W(x) = a_0 x^0 + a_1 x^1 + ... + a_7 x^7$$
 $\overrightarrow{v} = (a_0, a_1, ..., a_7)$

Dodawanie i mnożenie wektorów działa tak jak dodawanie i mnożenie wielomianów:

$$A(x) = a_3 x^3 + a_5 x^5, B(x) = b_3 x^3 + b_4 x^4$$

$$S(x) = A(x) + B(x) = (a_3 + b_3) x^3 + b_4 x^4 + a_5 x^5 2 \cdot A(x) = 2 \cdot (a_3 x^3 + a_5 x^5) = 2a_3 x^3 + 2a_5 x^5$$

Działamy w \mathbb{R}_5 , więc:

$$2x^3 + 4x^3 = (6 \bmod 5) \cdot x^3 = 1 \cdot x^3 = x^3$$

Fakt 3.9: Jeśli F : V W jest przekształceniem liniowym oraz LIN $(v_1,...,v_k) = V$ to $Im(F) = LIN(F(v_1),...,F(v_k))$.

Skorzystamy z tego faktu do obliczenia obrazu (Im(F))

 $\mathbb {V}$ jest przestrzenią wielomianów stopnia co najwyżej 7 nad ciałem $\mathbb {R}_5.$

Weźmy wektory standardowe $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, ..., $\overrightarrow{e_8}$. Wtedy:

 $\mathbb{V}=\mathrm{LIN}(\overrightarrow{e_1},\ \overrightarrow{e_2},\ \dots\ ,\ \overrightarrow{e_8})$

 $\operatorname{Im}(F) = \operatorname{LIN}(F(\overrightarrow{e_1}), F(\overrightarrow{e_2}), \dots, F(\overrightarrow{e_8}))$

Z definicji przekształcenia:

$$F(\overrightarrow{e_1}) = 0$$

$$F(\overrightarrow{e_2}) = 1$$

$$F(\overrightarrow{e_3}) = 2x + 2$$

$$F(\overrightarrow{e_4}) = 3x^2 + 6x = 3x^2 + x$$

$$F(\overrightarrow{e_5}) = 4x^3 + 12x^4 = 4x^3 + x$$

$$F(e_6') = 5x^4 + 20x^3 = 0$$

$$F(\overrightarrow{e_5}) = 4x^3 + 12x^4 = 4x^3 + 2x^4$$

$$F(\overrightarrow{e_6}) = 5x^4 + 20x^3 = 0$$

$$F(\overrightarrow{e_7}) = 6x^5 + 30x^4 = x^5$$

$$F(\overrightarrow{e_8}) = 7x^6 + 42x^5 = 2x^6 + 2x^5$$

Definicja 2.1 (notatki):, B jest bazą przestrzeni liniowej V, gdy LIN(B) = V oraz B jest liniowo niezależny. Wektory niezależne ze zbioru $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \dots, \overrightarrow{e_8}\}$ tworzą bazę \mathbb{V} . Wyznaczymy ją przeprowadzając eliminację Gaussa:

0	0	0	0	0	0	0	0		1	0	0	0	0	0	0	0		1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0		2	2	0	0	0	0	0	0		0	1	0	0	0	0	0	0
2	2	0	0	0	0	0	0		0	1	3	0	0	0	0	0		0	0	1	0	0	0	0	0
0	1	3	0	0	0	0	0		0	0	2	4	0	0	0	0		0	0	0	1	0	0	0	0
0	0	2	4	0	0	0	0	\sim^1	0	0	0	0	0	1	0	0	\sim^2	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0		0	0	0	0	0	2	2	0		0	0	0	0	0	0	1	0
0	0	0	0	0	1	0	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
0	0	0	0	0	2	2	0		0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0

 $[\]sim^1$: Przeniesienie wierszy pustych na dół macierzy

Stąd:

Baza obrazu: $\{1, x, x^2, x^3, x^5, x^6\}$ (odczytujemy niezerowe kolumny) dim(Im(F)) = 6 (6 elementów bazy) Baza jądra: $\{x^4, x^7\}$ (2 zerowe kolumny macierzy) dim(ker(F)) = 2 (2 elementy jądra)

Twierdzenie 3.10:

$$dim(\mathbb{V}) = dim(Im(F)) + dim(ker(F))$$

$$dim(\mathbb{V}) = 8 = dim(Im(F)) + dim(ker(F)) = 6 + 2$$

Co zgadza się z twierdzeniem $3.10\,$

 $[\]sim^2$: Odjęcie od siebie wierszy i podzielenie (aby doprowadzić do postaci z samymi jedynkami)