Functional Analysis: Problem Set III

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set III.

Question 1.

3.5 Let E be a Banach space and let $K \subset E$ be a subset of E that is compact in the strong topology. Let (x_n) be a sequence in K such that $x_n \to x$ weakly $\sigma(E, E^*)$. Prove that $x_n \to x$ strongly.

[Hint: Argue by contradiction.]

Solution.

Suppose $x_n \not\to x$ strongly. Then, there exists $\epsilon > 0$ and $\{x_{n_k}\}$ such that

$$|x_{n_k} - x| > \epsilon \tag{1}$$

for all $k \geq 1$. By the compactness of K in strong topology, there exists a further subsequence $\{x_{n_{k_l}}\}$ such that

$$\lim_{l \to \infty} x_{n_{k_l}} = y$$

for some $y \in K$. From (1), $y \neq x$. Now, since convergence in strong topology implies convergence in weak topology, we have

$$x_{n_{k_l}} \to_{\text{weak}} y$$
 as $l \to \infty$.

From our assumption, however, $x_n \to_{\text{weak}} x$ as $n \to \infty$, so by Hausdroff property of weak topology $x_{n_{k_l}} \to_{\text{weak}} x$ as $l \to \infty$. This contradicts the uniquness of limit property of weak topology, which also arises from Hausdorff property of weak topology. We have a contradiction, and we are done.

Question 2.

3.9 Let E be a Banach space; let $M \subset E$ be a linear subspace, and let $f_0 \in E^*$. Prove that there exists some $g_0 \in M^{\perp}$ such that

$$\inf_{g \in M^{\perp}} \|f_0 - g\| = \|f_0 - g_0\|.$$

Two methods are suggested:

- 1. Use Theorem 1.12.
- 2. Use the weak* topology $\sigma(E^*, E)$.

Solution.

Observe that

$$M^{\perp} = \{g \in E^* : \langle g, x \rangle = 0 \, \forall x \in M \}$$
$$= \bigcap_{x \in M} \{g \in E^* : \langle g, x \rangle = 0 \} = \bigcap_{x \in M} J(x)^{-1}(0)$$

where J is the natural embedding. Hence, M^{\perp} is weak-* closed. Now, choose $\{g_n\} \subset M^{\perp}$ such that

$$||f_0 - g_n|| \to \inf_{g \in M^{\perp}} ||f_0 - g|| \text{ as } n \to \infty.$$
 (2)

Fix $\epsilon > 0$. From above,

$$||g_n|| \le ||f_0|| + ||f_0 - g_n|| \le ||f_0|| + c + \epsilon$$

for n large enough. Therefore, $\{g_n\}$ is bounded in the dual norm. Now, consider $A=\overline{\{g_n\}}^{\text{weak-*}}\subset M^\perp$, where the second inclusion follows from the weak-* closure of M^\perp .

We now claim that any bounded $B \subset E^*$ is weak-* precompact. Choose $\lambda > 0$ such that $||b|| \le \lambda$ for all $b \in B$. Then,

$$\frac{1}{\lambda}B \subset B_{E^*} \text{ and } \frac{\overline{1}}{\lambda}B^{\text{weak}-*} \subset B_{E^*}$$

since B_{E^*} is compact in weak-* and since weak-* is Hausdorff, which implies that it is closed. As closed subset of compact set is compact and $x\mapsto \frac{1}{\lambda}x$ is a homeomorphism, $\frac{1}{\lambda}B$ is pre-compact, and B is precompact.

From the above result, A is weak-* compact. Now, consider the map $\Phi: A \to \mathbb{R}$ defined by

$$g \mapsto ||f_0 - g|| \quad (g \in A).$$

By lower semi-continuity of dual norm with respect to weak-* topology, Φ is lower semi-continuous as well. Hence, there exists $g_0 \in A$ such that

$$||f_0 - g_0|| = \inf_{g \in A} ||f_0 - g|| = \inf_{g \in M^{\perp}} ||f_0 - g||$$

where the last equality holds, by (2).

Question 3.

 $\boxed{3.10} \text{ Let } E \text{ and } F \text{ be two Banach spaces. Let } T \in \mathscr{L}(E,F), \text{ so that } T^\star \in \mathscr{L}(F^\star,E^\star). \text{ Prove that } T^\star \text{ is continuous from } F^\star \text{ equipped with } \sigma(F^\star,F) \text{ into } E^\star \text{ equipped with } \sigma(E^\star,E).$

Solution.

Question 4.

3.14 Let E be a reflexive Banach space and let I be a set of indices. Consider a collection $(f_i)_{i \in I}$ in E^* and a collection $(\alpha_i)_{i \in I}$ in \mathbb{R} . Let M > 0. Show that the following properties are equivalent:

- (A) $\begin{cases} \text{There exists some } x \in E \text{ with } ||x|| \leq M \text{ such that } \langle f_i, x \rangle = \alpha_i \\ \text{for every } i \in I. \end{cases}$
- (B) $\begin{cases} \text{One has } |\sum_{i \in J} \beta_i \alpha_i| \leq M \|\sum_{i \in J} \beta_i f_i\| \text{ for every collection } (\beta_i)_{i \in J} \\ \text{in } \mathbb{R} \text{ with } J \subset I, J \text{ finite.} \end{cases}$

Compare with Exercises 1.10, 1.11 and Lemma 3.3.

Solution.

 $(A) \Longrightarrow (B)$ is obvious. For a moment, we assume the result of exercise 1.10 in Brezis. Suppose (B) is true. Then, by 1.10, there exists $\phi_0 \in E^{**}$ such that

$$||f|| \leq M$$
 and $\langle \phi_0, f_i \rangle = \alpha_i$

for all $i \in I$. Then, by reflexivity of E, there exists $x_0 \in E$ such that

$$||x_0|| \le M$$
 and $\langle f, x_0 \rangle = \alpha_i$

for all $i \in I$. Hence, it suffices to prove the result of 1.10. In particular, we need $(B) \implies (A)$ direction. Let G be the vector space spanned by $\{x_i\}_{i \in I}$. Define $g: G \to \mathbb{R}$ by

$$g(x) = \sum_{i \in J} \beta_i \alpha_i$$

where $x = \sum_{i \in J} \beta_i x_i$. g is well-defined and bounded by assumption (B). Now, extend g to the whole of E by corollary 1.2 of Hahn Banach, and we are done.

Question 5.

3.16 Let E be a Banach space.

- 1. Let (f_n) be a sequence in (E^*) such that for every $x \in E$, $\langle f_n, x \rangle$ converges to a limit. Prove that there exists some $f \in E^*$ such that $f_n \stackrel{\star}{\rightharpoonup} f$ in $\sigma(E^*, E)$.
- Assume here that E is reflexive. Let (x_n) be a sequence in E such that for every
 f ∈ E*, ⟨f, x_n⟩ converges to a limit. Prove that there exists some x ∈ E such
 that x_n → x in σ(E, E*).
- 3. Construct an example in a nonreflexive space E where the conclusion of 2 fails. [**Hint**: Take $E = c_0$ (see Section 11.3) and $x_n = (1, 1, \dots, 1, 0, 0, \dots)$.]

Solution.

(i) Let $f: E \to \mathbb{R}$ be defined by

$$\langle f, x \rangle = \lim_{n \to \infty} \langle f_n, x \rangle \quad (x \in E).$$

Then, f is linear, because by linearty of $\{f_n\}$,

$$< f, x + y > = \lim_{n \to \infty} < f_n, x + y > = \lim_{n \to \infty} < f_n, x > + < f_n, y >$$
 $= \lim_{n \to \infty} < f_n, x > + \lim_{n \to \infty} < f_n, y > = < f, x > + < f, y >$

for any $x, y \in E$ and

$$< f, \lambda x > = \lim_{n \to \infty} < f_n, \lambda x > = \lambda \lim_{n \to \infty} < f_N, x > = \lambda < f, x >$$

for any $\lambda \in \mathbb{R}$ and $x \in E$. Now, we prove the boundedness of f. By the pointwise convergence,

$$\sup_{n} | < f_n, x > | < \infty$$

for all $x \in E$. Therefore, by uniform boundedness principle, there exists C > 0 such that

$$|\langle f_n, x \rangle| \leq C||x||$$

and hence

$$| \langle f, x \rangle | \le | \langle f_n, x \rangle | + | \langle f_n, x \rangle - \langle f, x \rangle |$$

 $\le C||x|| + | \langle f_n, x \rangle - \langle f, x \rangle |$

for any $x \in E$ and $n \ge 1$. Now, letting $n \to \infty$ gives

$$|\langle f, x \rangle| \leq C||x||$$

for any $x \in E$. Therefore, $f \in E^*$ such that

$$\langle f_n, x \rangle \rightarrow \langle f, x \rangle$$
 as $n \rightarrow \infty$

for any $x \in E$, which implies

$$f_n \to_{\text{weak}-*} f$$
 as $n \to \infty$.

(ii)

Question 6.

3.21 Let E be a separable Banach space and let (f_n) be a bounded sequence in E^* . Prove directly—without using the metrizability of E^* —that there exists a subsequence (f_{n_k}) that converges in $\sigma(E^*, E)$.

[Hint: Use a diagonal process.]

Solution.

By 3.16-1, it suffices to obtain a subsequence of $\{f_n\}$ such that $\{f_n\}$ converge pointwise everywhere. As E is separable, there exists $\{a_i\}$, a dense countable subset of E. Since $\{f_n\}$ are bounded in E^* , $\{<f_n,a_1>\}$ is bounded in \mathbb{R} . Hence, we can choose a subsequence $\{n_k\}$, with relabeling $\{(1,k)\}$ such that

$$\lim_{k \to \infty} \langle f_{1,k}, a_1 \rangle \quad \text{exists.}$$

Now, with the fact that $\{\langle f_n, a_2 \rangle\}$ is bounded in \mathbb{R} , choose a further subsequence $\{n_{kl}\}$ from $\{n_k\}$, with relabeling $\{(2,k)\}$ such that

$$\lim_{k \to \infty} \langle f_{2,k}, a_2 \rangle \quad \text{exists.}$$

Repeat this process inductively, so that we have chosen $f_{l,k}$ for all $l, k \in \mathbb{N}$. Then, consider $\{g_l\} = \{f_{l,l}\}$, which is the standard diagonal sequence. Then, by choice

$$\lim_{l \to \infty} \langle g_l, a_i \rangle \quad \text{exists}$$

for any $i \in \mathbb{N}$. Now, let $a \in E$, and $\epsilon > 0$. Choose a_i such that $||a_i - a|| < \epsilon$. Then,

$$|\langle g_{n}, a \rangle - \langle g_{m}, a \rangle| \leq |\langle g_{n}, a \rangle - \langle g_{n}, a_{i} \rangle| + |\langle g_{m}, a_{i} \rangle - \langle g_{m}, a \rangle| + |\langle g_{n}, a_{i} \rangle - \langle g_{m}, a_{i} \rangle| \leq |\langle g_{n}, a - a_{i} \rangle| + |\langle g_{m}, a_{i} - a \rangle| + |\langle g_{n}, a_{i} \rangle - \langle g_{m}, a_{i} \rangle| \leq 2C\epsilon + |\langle g_{n}, a_{i} \rangle - \langle g_{m}, a_{i} \rangle|$$
(4)

for all $n, m \ge 1$, where (3) holds by linearity, and (4) holds by the choice of a_i and C being the bound on the $\{f_n\}$ in the dual norm. Therefore,

$$|\langle g_n, a \rangle - \langle g_m, a \rangle| \le (2C+1)\epsilon$$

for all n, m large enough, and hence, we have shown that

$$\langle g_l, a \rangle$$
 converges to a limit as $l \to \infty$

for any $a \in E$. Hence, we are done.