

FUCO5A - Análise De Circuitos Elétricos 1Aula 16

Prof.: Renan Silva Maciel

(slides adaptados de AC64-2018/1 - Prof. Maurício Zardo)

Tópicos:

- Características de Capacitores
- Carga e descarga
- Transitórios

Capacitor:

$$\frac{1}{T} + \frac{1}{T}$$

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau)d\tau + v(t_0)$$

 conjunto de condutores isolados entre si por meio de dielétricos e que tem como função armazenar carga e energia elétrica no campo eletrostático que se estabelece entre os condutores;

CAMPO ELÉTRICO

 Linhas indicam a intensidade do campo elétrico em torno do corpo carregado. Quanto maior a densidade das linhas de campo, mais intenso o campo elétrico.

CAPACITÂNCIA:

 Análise é estendida a superfícies carregadas de qualquer formato e tamanho.

 Placas de alumínio (o metal mais comumente usado na construção de capacitores)

Capacitância:

 medida da quantidade de carga que o capacitor pode armazenar em suas placas: capacidade de armazenamento.

$$C = \frac{Q}{V}$$

$$C = \text{farads (F)}$$

$$Q = \text{coulombs (C)}$$

$$V = \text{volts (V)}$$

$$Q = CV$$

$$Q = CV$$
(coulombs, C)

 quanto mais alta a capacitância de um capacitor,
 maior a quantidade de carga armazenada nas placas para a mesma tensão aplicada.

Efeito de Borda:

 ocorre na medida em que as linhas de campo que se originam nos pontos mais distantes da placa negativa se direcionam para completar a conexão

pode ser ignorado na maioria das aplicações.

Materiais dielétricos:

"di": oposição

"elétrico": campo elétrico

Para um material isolante, os elétrons não conseguem deixar seus átomos e migrar para a placa positiva.

Diferentes materiais colocados entre placas estabelecem diferentes quantidades de carga adicional nas placas.

Dielétrico	ϵ_r (valores médios)
Vácuo	1,0
Ar	1,0006
Teflon®	2,0
Papel parafinado	2,5
Borracha	3,0
Polistireno	3,0
Óleo	4,0
Mica	5,0
Porcelana	6,0
Baquelite®	7,0
Óxido de alumínio	7
Vidro	7,5
Óxido de tântalo	30
Cerâmica	20 - 7.500
Titanato de bário e estrôncio (cerâmica)	7.500,0

O símbolo ε_r na Tabela é chamado de permissividade relativa (ou constante dielétrica).

$$\epsilon_r = \frac{\epsilon}{\epsilon_o}$$

Tensão de ruptura:

Potencial que, se aplicado através de seus terminais, romperá os elos.

(a corrente flui pelo dielétrico)

A tensão necessária por comprimento unitário é um indicativo da sua rigidez dielétrica.

Dielétrico	Rigidez dielétrica (valor médio) em volts/mil
Ar	75
Titanato de bário e estrôncio (cerâmica)	75
Cerâmica	75–1.000
Porcelana	200
Óleo	400
Baquelite®	400
Borracha	700
Papel parafinado	1.300
Teflon®	1.500
Vidro	3.000
Mica	5.000

Capacitores Eletrolíticos:

- Informações impressas no invólucro
- Devem estar conectados com o terminal negativo conectado ao terra ou ao ponto de potencial mais baixo.
- A faixa típica 100 pF a 100 μ F
- Tensões de trabalho: 5V a 450V.

 Capacitores de filme, poliéster, polipropileno ou Teflon

- Usam um processo de enrolamento ou empilhamento para aumentar a área de superfície.
- A faixa típica: 0,1 μ F a 15.000 μ F
- Tensões de trabalho: poucos volts a 2.000 V.

Capacitores cerâmicos (disco)

- usam um dielétrico de cerâmica, para utilizar os excelentes valores εr e altas tensões de trabalho.
- Faixa típica: 10 pF a 0,047 μ F
- Tensão de trabalho: podem chegar a 10 kV.

Capacitores de mica

- usam um dielétrico de mica que pode ser monolítico (chip único) ou empilhado. O tamanho relativamente pequeno
- Faixa típica: 2 pF a muitos μ F
- Tensões de trabalho: até 20 kV.

Capacitores de óleo

- Faixa típica: 0,001 μ F a 1000 μ F
- Tensões de trabalho: até 150 kV.

Capacitor Real:

- Corrente de fuga
- ESR (resistência em série equivalente)

• TRANSITÓRIO: FASE DE CARGA

tensão através de um capacitor em um circuito CC é essencialmente a tensão aplicada após cinco constantes de tempo da fase de carga.

$$v_C = E(1 - e^{-t/\tau})$$
 carga (volts, V)

Constante de tempo

$$\tau = RC$$
 (tempo, s) $e^{-t/\tau} = e^{-\tau/\tau} = e^{-1} \cong 0,368$ $v_C = E(1 - e^{-t/\tau}) = E(1 - 0,368) = 0,632E$

 $t = 1\tau$

Corrente

Um capacitor pode ser substituído por um circuito aberto equivalente assim que a fase de carga em um circuito CC tiver passado.

Capacitor: Carga e transitórios

capacitor tem as características de um curto-circuito equivalente no instante em que a chave é fechada em um circuito R-C em série sem carga.

Um capacitor pode ser substituído por um circuito aberto equivalente assim que a fase de carga em um circuito CC tiver passado.

Tensão no Resistor

• TRANSITÓRIO: FASE DE DESCARGA

$$v_C = Ee^{-t/\tau}$$
 descarga

$$i_C = \frac{E}{R}e^{-t/\tau}$$
 descarga

$$\tau = RC$$
 descarga

$$v_R = Ee^{-t/\tau}$$
 descarga

O efeito de sobre a resposta

(a)

$$\tau = RC$$

O efeito de sobre a resposta

VALORES INICIAIS

$$\boldsymbol{v}_C = V_f + (V_i - V_f)e^{-t/\tau}$$

$$t = \tau (\log_e) \frac{(V_i - V_f)}{(\upsilon_C - V_f)}$$

• EQUIVALENTE DE THÉVENIN: $= R_{Th}C$

$$R_{Th} = R_1 || R_2 + R_3 = \frac{(60 \text{ k}\Omega)(30 \text{ k}\Omega)}{90 \text{ k}\Omega} + 10 \text{ k}\Omega$$

= 20 k\Omega + 10 k\Omega = 30 k\Omega

$$E_{Th} = \frac{R_2 E}{R_2 + R_1} = \frac{(30 \text{ k}\Omega)(21 \text{ V})}{30 \text{ k}\Omega + 60 \text{ k}\Omega} = \frac{1}{3}(21 \text{ V}) = 7 \text{ V}$$

$$R_{Th} = 30 \text{ k}\Omega$$

 $E_{Th} = 7 \text{ V}$
 $V_f = E_{Th} \text{ e } V_i = 0 \text{ V},$

$$\tau = RC$$

$$\tau = RC = (30 \text{ k}\Omega)(0.2 \text{ }\mu\text{F}) = 6 \text{ ms}$$

 $v_C = 7 \text{ V}(1 - e^{-t/6 \text{ ms}})$

$$\upsilon_C = V_f + (V_i - V_f)^{e-t/\tau}$$

$$v_C = V_f + (V_i - V_f)e^{-t/\tau}$$

$$v_C = E_{Th} + (0 \text{ V} - E_{Th})e^{-t/\tau}$$

$$v_C = E_{Th}(1 - e^{-t/\tau})$$

$$i_C = \frac{E}{R}e^{-t/\tau}$$
 descarge

$$i_C = \frac{E_{Th}}{R} e^{-t/RC} = \frac{7 \text{ V}}{30 \text{ k}\Omega} e^{-t/6 \text{ ms}}$$

= **0,23 mA** $e^{-t/6 \text{ ms}}$

• A CORRENTE i_c

 corrente capacitiva está diretamente relacionada à taxa de variação da tensão através do capacitor, não aos níveis de tensão envolvidos.

• CAPACITORES EM SÉRIE E EM PARALELO

E EM PARALELO
$$V = \frac{Q}{C}$$

$$Q_T = Q_1 = Q_2 = Q_3$$

$$E = V_1 + V_2 + V_3$$

$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

$$Q_T = Q_1 + Q_2 + Q_3$$

$$E = V_1 = V_2 = V_3$$

$$C_T = C_1 + C_2 + C_3$$

ENERGIA ARMAZENADA EM UM CAPACITOR

A energia armazenada no capacitor está representada pela região sombreada abaixo da curva da potência.