Experiment No.8 Date:23/11/2021

Power Factor Improvement

Objective:

- To study the effect on inductive load and power factor
- To improve the power factor and understand the advantages

Circuit:

Simulation Tool:

LTSpice – transient analysis

Observation

Source Voltage: vs(t) = 325V, Vsrms = 230V

Load	Load Impedance $(Z < \emptyset)$	Line Current (Irms)	Load Terminal Voltage (Vrms)	Phase Angle Measured $(\Delta t/T) *$ 360	Power Factor	Real Power P(W)	Reactive Power Q(VAR)	Line Losses (W)
$(R+jX_L)$ 200+j157	254.26	0.777A	197.7V	38.5	0.782(lag)	120.88	94.5	30.3
$R+jX_L$ with C1 $200+j157$ $c=4.51\mu F$	335.18	0.65A	198.78V	18.9	0.95(lag)	122.81	40.16	21.15
$R+jX_L$ with C2 $200+j157$ $c = 5\mu F$	359.99	0.64A	199.35V	16.26	0.96(lag)	122.94	34.09	20.24
$R+jX_L$ with C3 $200+j157$ $c=4.51\mu F$	370.20	0.62A	199.49A	7.69	0.99(lead)	122.67	-15.80	19.07

Observe the results and comment on the changes in the following parameters:

- 1. Power Factor
- 2. Line losses
- 3. Terminal Voltage
- 4. Real Power
- 5. Reactive Power

Verify with theoretical calculation for load 1 and load 2 in the table

Calculations:

$$V_{Load} = I_{5} \times Z_{1}$$

$$= (0.915 | -105.65) (2.92.02 + 95.49j)$$

$$= 281.12 | -87.54 \text{ V}$$

$$V_{Load}_{EMS} = 198.78 | -87.54 \text{ V}$$

$$5 \text{ toad} = (V_{Load}_{EMS}) (I_{S_{EMS}})^{4}$$

$$= (198.78 | -87.54) (0.65 | 105.65)$$

$$= (122.81 + 0.16j) \text{ VA}$$

$$V_{AR}$$

$$V_{AR}$$

$$Q_{L} = 122.81$$

$$P_{L} =$$

$$S_{S} = (V_{SRNS}) (I_{SRNS})^{*}$$

$$= (230 1-90) (0.62 1-83.64)$$

$$= (111.74 - 15.67j) VA$$

$$V_{Loudans} = (0.62 1-83.64) (317.96 - 40.99j)$$

$$V_{todans} = 199.49 141.03 V$$

$$S_{Load} = (V_{todans}) (I_{SRNS})^{*}$$

$$= (199.49 1-91.03) (0.62 183.69)$$

$$S_{tod} = (122.67 - 15.80j) VA$$

$$P_{L} = 122.67$$

$$\therefore \cos \varphi = 122.67$$

$$\cos \varphi = 0.99 (1cod)$$

$$\therefore \text{ Power loss in line} = 19.07 W$$