Ingegneria Informatica e Automatica Esame scritto di Fisica del 6 febbraio 2020

(inserire i valori numerici, quando forniti, solo all'ultimo, dopo aver ricavato prima le espressioni richieste)

- 1) Una cassa scivola su un piano scabro con coefficiente di attrito dinamico μ e quando sta a distanza s dal respingente di una molla a riposo di costante k, ha una velocità v_0 . Incontrando la molla, la comprime di un tratto massimo d. Scrivere l'espressione e poi il valore numerico del coefficiente di attrito μ . Trovare il valore della velocità della cassa quando ripassa a distanza s dal respingente della molla a riposo. (m=50 kg, k=20 kN/m, v_0 =3,0 m/s, s=600 mm, d=120 mm)
- 2) Una particella si muove lungo un cerchio di raggio R e percorre una distanza in funzione del tempo $x=ct^3$. Trovare l'accelerazione normale e tangenziale della particella e l'istante t_0 in cui la velocità lineare è v_0 . A quale tempo t_1 le due accelerazioni erano uguali? Che velocità v_1 aveva al tempo t_1 . (c=0.3 cm/s³, $v_0=0.4$ m/s)
- 3) Un disco di raggio R è uniformemente carico di carica Q; trovare l'espressione del campo elettrico E sull'asse z ortogonale al disco con origine nel centro del disco. Ponendo sull'asse z anche una carica puntiforme di carica uguale Q a distanza $d=\alpha R$, quanto deve essere α affinché il campo elettrico si annulli nel punto z=2R?
- 4) Due lunghe rotaie parallele prive di resistenza e attrito, sono connesse da un filo privo di resistenza. Un campo magnetico B è orientato perpendicolarmente al piano che contiene le due rotaie. Una sbarra conduttrice di resistenza R posta perpendicolarmente alle rotaie si muove senza attrito lungo la direzione delle rotaie con velocità iniziale v_0 . Ottenere le espressioni della forza F, che agisce sulla sbarra, e della distanza massima S_{max} percorsa dalla stessa.

Domande di teoria

- A) Descrivere l'esperienza di Joule dell'espansione libera, i risultati e le conseguenze per i gas perfetti.
- B) Dimostrare la legge di Ampère e la necessità della successiva correzione apportata da Maxwell