Concours Marocain 2007: Maths II, PSI

Mr Mamouni : myismail1@menara.ma CPGE Med V, Casablanca, Maroc Source disponible sur:

@http://www.chez.com/myismail

CORRIGÉ

Notes du correcteur:

- Des questions de cours dans ce problème ne seront pas redémontrées, l'étudiant peur se réferrer à son propre cours.
- Dans $\mathcal{M}_{n,1}(\mathbb{R})$ la relation tXY définit un produit scalaire, on écrira parfois

$${}^{t}XY = \langle X, Y \rangle$$
, ${}^{t}XX = ||X||^2$

1^{ère} Partie.

- 1) Si a, b, c, d sont tous nuls, alors rgA = 0.
 - Si a, b, c, d ne sont pas tous nuls et $\det A = 0$, alors $\operatorname{rg} A = 1$.
 - Si a, b, c, d ne sont pas tous nuls et $\det A \neq 0$, alors $\operatorname{rg} A = 2$.

2) a)
$$\operatorname{rg} A = 0 \iff \operatorname{Vect}(C_1(A), \dots, C_n(A)) = 0$$

 $\iff C_i(A) = 0, \forall i \in [1; n]$
 $\iff a_{i,j} = 0, \forall i, j \in [1; n]$
 $\iff A = 0$
Donc $A \neq 0 \iff \operatorname{rg}(A) \neq 0 \iff \operatorname{rg}(A) > 1$.

- b) Question de cours.
- 3) Question de cours.
- 1) a) Un calcul simple, montre que

$$a_{i,j} = u_i v_j$$

b) Tr
$$(A) = \sum_{i=1}^{n} u_i v_i = {}^tUV = \langle U, V \rangle$$
.

c) D'aprés 4.a) on peut conclure que

$$C_i(A) = v_i U$$

d)
$$U \neq 0, V \neq 0 \implies \exists i, j \in [1; n] \text{ tel que } u_i \neq 0, v_j \neq 0$$

 $\implies \exists i, j \in [1; n] \text{ tel que } a_{i,j} \neq 0$
 $\implies A \neq 0$
 $\implies \mathbf{rg}A > 1$

D'autre part toutes les colonnes sont proportionnelles à U, donc $\operatorname{rg} A = \dim \operatorname{Vect}(C_1(A), \cdots, C_n(A)) \leq 1$, d'où l'égalité.

- 5) a) Supposons le contraire, dans ce cas A=0, donc rgA=0, contradiction.
 - b) On a $\operatorname{rg} A = \dim \operatorname{Vect}(C_1(A), \dots, C_n(A)) = 1$, donc $C_{i_0}(A) \neq 0$ en constitue une base, donc pour tout $j \in [1; n], \exists \lambda_j \in \mathbb{R}$ tel que $C_j(A) = \lambda_j C_{i_0}(A)$.
 - c) D'aprés la question précédente, on peut conclure que $a_{i,j} = x_i \lambda_j$ où $x_i = a_{i,i_0}$, d'aprés 4.a) on conclut aussi que $A = X^t Y$ où $X = C_{i_0}(A)$ et $Y = (\lambda_j)_{1 \le j \le n} \in \mathcal{M}_{n,1}(\mathbb{R})$.
 - d) D'aprés 4.c) on peut affirmer que : $A = X_1^t Y_1 \Longrightarrow X = C_{i_0}(A) = y_{i_0} X_1 \neq 0$, donc

$$X_1 = \alpha X$$

avec $\alpha = \frac{1}{y_{i_0}} \neq 0$, mais aussi

$$Y_1 = \frac{1}{\alpha}Y$$

6) $\operatorname{rg} A = r \Longrightarrow \exists P, Q \in \operatorname{GL}_n(\mathbb{R}) \text{ tel que } A = PJ_rQ \text{ avec}$

$$J_r = \begin{pmatrix} 1 & 0 & \cdots & & & 0 \\ \vdots & \ddots & \ddots & & & \vdots \\ & & 1 & & & \\ & & & 0 & \ddots & \\ \vdots & & & \ddots & 0 \\ 0 & \cdots & & & 0 \end{pmatrix}$$

où 1 se répète r fois, on peut écrire $J_r = \sum_{i=1}^r E_{i,i}$ où $E_{i,i}$ matrice

formé par des 0 sauf à la *i*-éme ligne et *i*-éme colonne où il y a 1, il est clair que $rgE_{i,i} = 1$, donc $rgPE_{i,i}Q = 1$ car équivalentes

avec
$$A = \sum_{i=1}^{r} PE_{i,i}Q$$

7) a)
$$\sum_{i=1}^{p} Y_i^t Z_i = 0 \implies \sum_{i=1}^{p} Y_i^t Z_i Z_i = 0$$

$$\implies \sum_{i=1}^{p} \lambda_i Y_i = 0 \quad \text{avec } \lambda_i = {}^t Z_i Z_i = ||Z_i||^2$$

$$\implies \lambda_i = ||Z_i||^2 \quad \forall i \in [1; n] \text{ car } (Y_i) \text{ libre }$$

$$\implies Z_i \quad \forall i \in [1; n]$$

L'implication réciproque est évidente.

$$\mathbf{b)} \quad \sum_{1 \leq i,j \leq n} \lambda_{i,j} X_i^t Y_j = 0 \quad \Longrightarrow \sum_{i=1}^n X_i \left(\sum_{j=1}^n \lambda_{i,j}^t Y_j \right) = 0$$

$$\Longrightarrow \sum_{j=1}^n \lambda_{i,j}^t Y_j = 0, \forall i \in [1;n] \text{ car } (X_i) \text{ libre}$$

$$\Longrightarrow \lambda_{i,j} = 0 \quad \forall i,j \in [1;n] \text{ car } ({}^tY_j) \text{ libre}$$

Ainsi la famille $(X_i^t Y_j)_{1 \leq i,j \leq n}$ est libre dans $\mathcal{M}_n(\mathbb{R})$ et de cardinal $n^2 = \dim \mathcal{M}_n(\mathbb{R})$, donc base formé de matrices de rang égal.

8) a) Posons $M = (a_{i,j}), N = (b_{i,j}), \text{ donc } MN = (c_{i,j}) \text{ avec}$

$$c_{i,j} = \sum_{k=1}^{n} a_{k,i} b_{k,j}$$

Et donc

$$\langle M, N \rangle = \operatorname{Tr}(^t M N) = \sum_{i=1}^n c_{i,i} = \sum_{1 \le k, i \le n} a_{k,i} b_{k,i}$$

Montrons maintenant qu'il s'agit bien d'un produit scalaire

- Symétrie : évident, d'aprés la formule précédente
- Bilinéarité : découle de la linéarité de la trace et celle de la transposé et la distributivité du produit par rapport à la somme.
- Positive: $\langle M, M \rangle = \sum_{1 \le k, i \le n} a_{k,i}^2 \ge 0.$

- **Définie :**
$$\langle M, M \rangle = 0 \implies \sum_{\substack{1 \leq k, i \leq n \\ \Rightarrow a_{k,i} = 0, \forall k, i \in [1; n]}} a_{k,i}^2 = 0$$

 $\implies A = 0$

b)
$$\langle X^t Y, X'^t Y' \rangle = \operatorname{Tr} (Y^t X X'^t Y') = \operatorname{Tr} (Y \langle X, X' \rangle^t Y')$$

= $\langle X, X' \rangle \operatorname{Tr} (Y^t Y') = \langle X, X' \rangle \langle Y, Y' \rangle$

c) Il suffit de prendre (X_i) orthonormale et (Y_i) unitaire.

1)
$$A^2 = U^t V U^t V = U \underbrace{\langle U, V \rangle}_{\alpha} {}^t V = \alpha U^t V = \alpha A$$
.

- 2) Par récurrence simple sur $n \in \mathbb{N}^*$, on montre que $A^n = \alpha^{n-1}A$, comme $A \neq 0$, alors elle est nilpotente si et seulement si $\alpha = 0$.
- 3) Supposons A non nilpotente, donc $\alpha \neq 0$, dans ce cas pour tout réel λ , on a $(\lambda A)^2 = \lambda^2 \alpha A = \lambda \alpha(\lambda A)$, ainsi λA est un projecteur si et seulement si $\lambda \alpha = 1$, pendre donc $\lambda = \frac{1}{\alpha}$.
- 4) a) $\operatorname{rg} A = 1 \neq n \geq 2$, donc A n'est pas inversible, d'où $\det A = 0$, autrement dit 0 est racine de $\chi_A(X) = \det(A XI_n)$, le polynôme caractéristique de A, d'où 0 est une valeur propre de A, dont le sous espace vectoriel propre associé n'est autre que :

$$\ker A = \{Y \in \mathcal{M}_{n,1}(\mathbb{R}) \text{ tel que } AY = 0\}$$

$$= \{Y \in \mathcal{M}_{n,1}(\mathbb{R}) \text{ tel que } U \underbrace{^t V Y}_{\mathbf{r\acute{e}el}} = 0\}$$

$$= \{Y \in \mathcal{M}_{n,1}(\mathbb{R}) \text{ tel que } ^t V Y = 0\} \quad \mathbf{car } U \neq 0$$

D'autre part $\operatorname{rg} A = 1$, donc $\operatorname{dim} \ker A = n - 1$. Ainsi 0 est une valeur propre de multiplicité au moins n - 1, comme la somme des valeurs propres vaut $\operatorname{Tr}(A)$, alors l'autre valeur propre sera $\operatorname{Tr}(A)$.

b) $AU = U \underbrace{{}^tVU}_{{}^tVU=\alpha} = \alpha U$, d'où α est une valeur propre et $U \neq 0$ vecteur propre associé, dont le

sous espace vectoriel propre associé sera de dimension 1, car la somme des sous espace vectoriel propre ne peut jamais dépasser n et déjà un sous espace vectoriel propre $(\ker A)$ est de dimension n-1.

c) En résumé:

- Si $\alpha \neq 0$, alors A admet deux valeurs propre 0, dont le sous espace vectoriel propre associé est de dimension n-1 et α dont le sous espace vectoriel propre associé est de dimension 1.
- Si $\alpha = 0$, alors A admet une seule valeur propre 0, dont le sous espace vectoriel propre associé est de dimension n-1.
- 5) Résultat immédiat du résumé de la question précédente.
- 6) a) Si A était diagonalisable alors elle serait semblable à la matrice nulle, car 0 est son unique valeur propre, donc A=0, ce qui ne l'est pas.
 - b) D'aprés II.4.b) $AU = \alpha U = 0$ n d'où $U \in \ker A = \ker f$ et par suite $W = \lambda U \in \ker f$ où $\lambda = {}^tVV = \|V\|^2 \in \mathbb{R}$. Or $W \neq 0$, donc forme une famille libre dans \ker et on conclut à l'aide du théorème de la base incomplète.
 - c) Posons $\mathcal{B}=(E_1,\cdots,E_{n-2},W,V)$ Comme $\operatorname{card}(\mathcal{B})=n=\dim\mathcal{M}_{n,1}(\mathbb{R}),$ il suffit de montrer qu'elle est libre pour conclure que c'est une base. En effet : Supposons que $\lambda_1E_1+\cdots\lambda_{n-2}E_{n-2}+\alpha W+\beta V=0,$ on multiplie à gauche par tV, comme (E_1,\cdots,E_{n-2},W) est une base de $\ker A=\{Y\in\mathcal{M}_{n,1}(\mathbb{R})\text{ tel que }{}^tVY=0\}$ alors il ne reste que l'égalité $\beta^tVV=\beta\|V\|^2=0$ d'où $\beta=0$ car $V\neq 0,$ l'égalité initiale devient alors $\lambda_1E_1+\cdots\lambda_{n-2}E_{n-2}+\alpha W=0,$ or (E_1,\cdots,E_{n-2},W) est une base de $\ker A$ donc en particulier libre, d'où $\lambda_1=\cdots=\lambda_n=\alpha=0.$ $f(E_1)=AE_1=0,\cdots,f(E_{n-2})=AE_{n-2}=0,f(W)=AW=0$

$$0, f(V) = AV = U^t V V = ||V||^2 U = W,$$
 donc

$$\mathcal{M}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \dots & 0 & 0 \\ \vdots & & & \vdots & \vdots \\ & & & & 0 \\ \vdots & & & \vdots & 1 \\ 0 & \dots & & 0 & 0 \end{pmatrix}$$

Découle immédiatement de la question précédente car toutes les deux semblables à la matrice

$$\begin{pmatrix} 0 & \dots & 0 & 0 \\ \vdots & & & \vdots & \vdots \\ & & & 0 \\ \vdots & & & \vdots & 1 \\ 0 & \dots & & 0 & 0 \end{pmatrix}$$

3ème Partie.

1) a) $rgA = n \implies A$ inversible $\implies \det A \neq 0$, d'où $\frac{A}{\det A}A^c = I_n$ donc ${}^tA^c$ est inversible de rang n et dont l'inverse est

$$(^t A^c)^{-1} = \frac{A}{\det A}$$

Aprés transposition on conclut que A^c est inversible de rang n et dont l'inverse est

$$(A^c)^{-1} = \frac{{}^t A}{\det A}$$

D'où

$$A^c = \frac{{}^t A^{-1}}{\det A}$$

- b) Si $rgA \le n-2$, alors toutes les n-1 colonnes de A sont liée donc les cofacteurs, coéfficients de A^c obtenus à partir des déterminants de ces colonnes, sont nuls, d'où $A^c = 0$.
- a) Si rgA = n 1, alors il existe au moins n 1 colonnes de A qui sont libre donc le cofacteur, coéfficient de A^c obtenu à partir du déterminant de ces colonnes, est non nul, d'où $A^{c} = 0$, d'où $rgA^{c} > 1$.

b)
$$rgA = n - 1 \implies A \text{ non inversible}$$

 $\implies \det A = 0$
 $\implies A^t A^c = 0$

 \implies Im $(^tA^c) =$ Im $(q) \subset \ker A = \ker f$

Ainsi $\operatorname{rg} A^c = \operatorname{rg} ({}^t A^c) = \operatorname{rg} g \leq \dim \ker f = \dim \ker A =$ n - rgA = 1, d'où l'égalité.

a) Rappelons que si $u_1(t), \dots, u_n(t)$ sont dérivables, comme le déterminant est *n*-linéaire alors $t \mapsto \det_{\mathcal{B}}(u_1(t), \cdots, u_n(t))$ est dérivable de dérivée égale à

$$\sum_{i=1}^{n} \det_{\mathcal{B}}(u_1(t), \cdots, u'_i(t), \cdots, u_n(t))$$

Dans notre cas $P_A(t) = \det(A - tI_n) = \det_{\mathcal{B}}(C_1(A) - tI_n)$ $te_1, \cdots, C_n(A) - te_n$) est dérivable de dérivée égale à

$$P'_A(t) = -\sum_{i=1}^n \det_{\mathcal{B}} \left(C_1(A) - te_1, \cdots, e_i, \cdots, C_n(A) - te_n \right)$$

D'aprés la question précédente, on a :

$$P'_{A}(0) = -\sum_{i=1}^{n} \det_{\mathcal{B}} (C_{1}(A), \dots, e_{i}, \dots, C_{n}(A))$$

= $-\sum_{i=1}^{n} (A^{c})_{i,i}$

on a developpé le déterminant par rapport à la iéme ligne $=-\mathrm{Tr}\left(A^{c}\right)$

- 4) a) Question de cours.
 - b) Comme $P_A = P_B$ alors $P_A'(0) = P_B'(0)$, d'où $\operatorname{Tr}(A^c) = \operatorname{Tr}(B^c)$.
 - c) $\operatorname{rg} A = n \Longrightarrow A^c = \frac{{}^t A^{-1}}{\det A}$, or $A = PBP^{-1}$ et $\det A = \det B$, d'où $A^c = Q \frac{{}^t B^{-1}}{\det B} Q^{-1} = QB^c Q^{-1}$ où $Q = {}^t P$, donc A^c et B^c sont semblables.
 - d) $\mathbf{rg}A = \mathbf{rg}B \le n 2 \Longrightarrow A^c = B^c = 0$, donc semblables.
 - e) i. On a $\operatorname{rg} A = \operatorname{rg} B = n-1$, d'aprés 2.b) on a $\operatorname{rg}(A^c) = \operatorname{rg}(B^c) = 1$, or $\operatorname{Tr}(A^c) \neq 0$, d'aprés II.5 A^c est semblable à $\operatorname{diag}(0, \dots, 0, \operatorname{Tr}(A^c))$, de même B^c est semblable à $\operatorname{diag}(0, \dots, 0, \operatorname{Tr}(B^c))$, or $\operatorname{Tr}(A^c) = \operatorname{Tr}(B^c)$, donc A^c et B^c semblables.

ii. On a $\operatorname{rg} A = \operatorname{rg} B = n-1$, d'aprés 2.b) on a $\operatorname{rg}(A^c) = \operatorname{rg}(B^c) = 1$, or $\operatorname{Tr}(A^c) = 0$, donc $\operatorname{Tr}(B^c) = 0$ car égales, d'aprés II.6.d) A^c et B^c sont semblables.

Fin.