Übungsblatt LA 7

Computational and Data Science FS2024

Mathematik 2

Lernziele:

- Sie kennen die Begriffe Spur, Determinante, Leibnizsche Formel, Regel von Sarrus, Gramsche Matrix und deren wichtigste Eigenschaften.
- ➤ Sie kennen die Formel zur Berechnung von Massen (Länge, Fläche, Volumen …) und können sie anwenden.
- Sie können die Eigenschaften einer Matrix anhand ihrer Spur und Determinante beurteilen.
- > Sie können die Determinante quadratischer Matrizen in 2D und 3D berechnen.
- Sie können die Determinanten einer quadratischen Matrix mit Hilfe des Gaußschen Verfahrens berechnen.

1. Aussagen über die Spur

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Spur ist für jede Matrix definiert.		Χ
b) Ob eine Matrix regulär oder singulär ist, lässt sich nicht alleine	Х	
anhand der Spur beurteilen.		
c) Für alle orthogonalen Matrizen gilt: tr(A ^T •A) = n.	Х	
d) Für alle quadratischen nxn Matrizen gilt: tr(A•B-B•A) = 0.	Х	
e) Für alle quadratischen nxn Matrizen gilt: tr(A•B) = tr(A)•tr(B).		Х
f) Die Matrix A ist schiefsymmetrisch, wenn gilt: tr(A) = 0.		Χ

2. Spur und Determinante der Standardmatrizen in 2D

Bestimmen Sie für die Standardmatrizen \mathbb{E} , \mathbb{I} , P, Z $_{\lambda}$, P $_{x}$, P $_{y}$, S $_{x}$ und S $_{y}$ jeweils die Spur und die Determinante.

Die Matrizen \mathbb{E} , \mathbb{I} , P beschreiben Drehungen, die Matrizen sind somit orthogonal. Es gilt folglich: $det(\mathbb{E}) = det(\mathbb{I}) = det(P) = 1$.

Die Matrizen P_x , P_y beschreiben Projektionen. Sind sind deshalb singulär und somit gilt: $det(P_x) = det(P_y) = 0$.

Die Matrizen S_x und S_y beschreiben Spiegelungen. Da Spiegelungen nicht orientierungstreu sind, gilt: $det(S_x) = det(S_y) = -1$.

Die Matrix Z_{λ} beschreibt eine Streckung um den Faktor λ . Dabei vergrössern sich die Flächen um den Faktor λ^2 und es folgt: $\det(Z_{\lambda}) = \lambda^2$.

$$\underline{\operatorname{tr}(\mathbb{1})} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 1 + 1 = \underline{2}$$

$$\underline{\operatorname{det}(\mathbb{1})} = \operatorname{det}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 1 \cdot 1 - 0 \cdot 0 = 1 - 0 = \underline{1}$$

$$\underline{\operatorname{tr}(\mathbb{S})} = \operatorname{tr}\left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\right) = 0 + 0 = \underline{0}$$

$$\underline{\operatorname{det}(\mathbb{S})} = \operatorname{det}\left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\right) = 0 \cdot 0 - 1 \cdot (-1) = 0 + 1 = \underline{1}$$

$$\underline{\operatorname{tr}(P)} = \operatorname{tr}\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\right) = -1 + (-1) = \underline{-2}$$

$$\underline{\operatorname{det}(P)} = \operatorname{det}\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\right) = (-1) \cdot (-1) - 0 \cdot 0 = 1 - 0 = \underline{1}$$

$$\underline{\operatorname{tr}(Z_{\lambda})} = \operatorname{tr}\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \lambda + \lambda = \underline{2\lambda}$$

$$\underline{\operatorname{det}(Z_{\lambda})} = \operatorname{det}\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \lambda \cdot \lambda - 0 \cdot 0 = \lambda^2 - 0 = \underline{\lambda^2}$$

$$\underline{\operatorname{tr}(P_x)} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = 1 + 0 = \underline{1}$$

$$\underline{\operatorname{det}(P_x)} = \operatorname{det}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0 + 1 = \underline{1}$$

$$\underline{\operatorname{det}(P_y)} = \operatorname{tr}\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0 \cdot 1 - 0 \cdot 0 = 0 - 0 = \underline{0}$$

$$\underline{\operatorname{tr}(S_x)} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 + (-1) = \underline{0}$$

$$\underline{\operatorname{det}(S_x)} = \operatorname{det}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 \cdot (-1) - 0 \cdot 0 = -1 - 0 = \underline{-1}$$

$$\underline{\underline{\operatorname{tr}}(S_y)} = \operatorname{tr}\left(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\right) = -1 + 1 = \underline{\underline{0}}$$

$$\underline{\underline{\det}(S_y)} = \det\left(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\right) = (-1) \cdot 1 - 0 \cdot 0 = -1 - 0 = \underline{-1}.$$

3. Spur und Determinante berechnen

Berechnen Sie jeweils die Spur und die Determinante.

a)
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$$

e)
$$\begin{pmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \end{pmatrix}$$

g)
$$\begin{pmatrix} 2 & -3 & 5 & 1 & 4 \\ 2 & -3 & 1 & -6 & 18 \\ 4 & -3 & 9 & 6 & 10 \\ -2 & 4 & -6 & -1 & -1 \\ -6 & 11 & -23 & -14 & 9 \end{pmatrix}$$

a)
$$\begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$ c) $\begin{pmatrix} 0 & 2 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ d) $\begin{pmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \\ 6 & -3 & 12 \end{pmatrix}$ e) $\begin{pmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{pmatrix}$ f) $\begin{pmatrix} 1 & \sqrt{3} & 8 & -\sqrt{2} \\ -13 & 3 & \sqrt{2} & 0 \\ \sqrt{17} & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}$ g) $\begin{pmatrix} 2 & -3 & 5 & 1 & 4 \\ 2 & -3 & 1 & -6 & 18 \\ 4 & -3 & 9 & 6 & 10 \\ -2 & 4 & -6 & -1 & -1 \\ -6 & 11 & -23 & -14 & 9 \end{pmatrix}$ h) $\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{2} \end{pmatrix}$

h)
$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} \end{pmatrix}$$

$$\underline{\underline{\operatorname{tr}(A)}} = 2 + 5 = \underline{\underline{7}}.$$

$$\det(A) = 2 \cdot 5 - 4 \cdot 3 = 10 - 12 = \underline{-2}.$$

b)

$$tr(A) = 2 + 6 = 8$$

Da bei der Matrix A die 2. Spalte ein Vielfaches der Ersten ist, verschwindet die Determinante: det(A) = 0

c)

$$tr(A) = (-1) + 2 + (-1) = \underline{0}.$$

$$\underline{\underline{\det(A)}} = (-1) \cdot 2 \cdot (-1) + 1 \cdot 3 \cdot 0 + 0 \cdot 2 \cdot 0 - 1 \cdot 2 \cdot 0 - 0 \cdot 3 \cdot (-1) - (-1) \cdot 2 \cdot 0$$
$$= 2 + 0 + 0 - 0 - 0 - 0 = \underline{2}.$$

d)

$$tr(A) = -2-2+12=8$$

Die zweite Zeile von A ist ein Vielfaches der ersten Zeile. Deswegen verschwindet die Determinante: det(A) = 0

$$\underline{\operatorname{tr}(A)} = 1 + (-2) + 3 + (-2) = \underline{0}.$$

$$\underline{\det(A)} = \begin{vmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{vmatrix} \cdot 2 = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 2 & -1 & 6 & 3 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{vmatrix} \cdot 2 = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 2 & 0 & -4 \\ 0 & 3 & 6 & -2 \end{vmatrix} \cdot 2$$

$$= \begin{vmatrix} \begin{bmatrix} [1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 2 & 0 & -4 \\ 3 & 0 & 3 & 6 & -2 \end{vmatrix} \cdot 2 \cdot (-1) = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 6 & 7 \end{vmatrix} \cdot 2 \cdot (-1)$$

$$= \begin{vmatrix} \begin{bmatrix} [1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 0 & [6] & 7 \\ 0 & 0 & 0 & [2] \end{vmatrix} \cdot 2 \cdot (-1) \cdot (-1) = 1 \cdot 1 \cdot 6 \cdot 2 \cdot 2 \cdot (-1) \cdot (-1) = \underline{24}.$$
f)

$$\operatorname{tr}(A) = 1 + 3 + 0 + 0 = 4.$$

$$\frac{\det(A)}{=} = \begin{vmatrix}
1 & \sqrt{3} & 8 & -\sqrt{2} \\
-13 & 3 & \sqrt{2} & 0 \\
\sqrt{17} & -1 & 0 & 0 \\
2 & 0 & 0 & 0
\end{vmatrix} = \begin{vmatrix}
[-\sqrt{2}] & 1 & \sqrt{3} & 8 \\
0 & -13 & 3 & \sqrt{2} \\
0 & \sqrt{17} & -1 & 0 \\
0 & 2 & 0 & 0
\end{vmatrix} \cdot (-1)^3$$

$$= \begin{vmatrix}
[-\sqrt{2}] & 8 & 1 & \sqrt{3} \\
0 & [\sqrt{2}] & -13 & 3 \\
0 & 0 & \sqrt{17} & -1 \\
0 & 0 & 2 & 0
\end{vmatrix} \cdot (-1)^{3+2} = \begin{vmatrix}
[-\sqrt{2}] & 8 & \sqrt{3} & 1 \\
0 & [\sqrt{2}] & 3 & -13 \\
0 & 0 & [-1] & \sqrt{17} \\
0 & 0 & 0 & [2]
\end{vmatrix} \cdot (-1)^{3+2+1}$$

$$= -\sqrt{2} \cdot \sqrt{2} \cdot (-1) \cdot 2 \cdot (-1)^6 = \underline{4}.$$

g)

h)
$$\underline{\det(A)} = \begin{vmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{vmatrix} = \begin{vmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{vmatrix} \cdot (-1)^2$$

$$= \begin{vmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & [-2] & 0 & 0 & 0 \\
0 & 0 & [1] & 1 & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{vmatrix} \cdot 1 = \begin{vmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & [-2] & 0 & 0 & 0 \\
0 & 0 & 0 & [1] & 1 & 0 \\
0 & 0 & 0 & 0 & [2] & 0 \\
0 & 0 & 0 & 0 & \sqrt{2}
\end{vmatrix}$$

$$= 1 \cdot (-2) \cdot 1 \cdot 2 \cdot \sqrt{2} = -4\sqrt{2}.$$

4. Spur und Determinante mit Python/Numpy bestimmmen

Berechnen Sie jeweils Spur und Determinante der Matrizen aus Aufgabe 3 mit Python/Numpy.

```
a)
# Initialisieren
import numpy as np;
# Parameter
A=np.array([[2,3],[4,5]]);
# Berechnungen
spur=np.trace(A);
determinante=np.linalg.det(A);
# Ausgabe
print('Spur =',spur);
print('Determinante =',round(determinante,3));
b)-h) analog
```

5. Aussagen über die Determinante

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Determinante ist nur für quadratische Matrizen definiert.	Χ	
b) Ob eine quadratische Matrix regulär oder singulär ist, lässt sich nicht nur anhand der Determinante beurteilen.		Х
c) Für eine quadratische nxn Matrix A und eine orthogonale nxn Matrix Q gilt: det(QA) = det(A).	Х	
d) Für quadratische nxn Matrizen A und B gilt: det(A+B) = det(A) + det(B).		Х
e) Gilt A = A^{-1} , dann folgt: $det(A) \in \{-1;1\}$.	Х	
f) A sei eine schiefsymmetrische nxn Matrix. Für ungerade n gilt: det(A) = 0.	X	

6. Aussagen über 2 Matrizen in 2D

Gegeben sind die beiden Matrizen

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 und $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Matrix A ist orthogonal.	X	
b) Die Matrix B beschreibt eine Spiegelung an einer Geraden.		Χ
c) Es gilt: $det(B) = tr(A) + tr(B)$.	Χ	
d) Es gibt ein $n \in \mathbb{N}$, so dass $B^n = 0$.	Χ	
e) Die Matrizen A und B kommutieren nicht, d. h. es gilt A⋅B ≠ B⋅A.	Χ	
f) Es gilt B = B^{-1} .		Χ

7. Aussagen über 2 Matrizen in 3D

Gegeben sind die beiden Matrizen

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \text{ und } B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}.$$

Welche der folgenden Aussagen sind wahr und welche falsch?

	wahr	falsch
a) Die Matrix A ist singulär.	X	
b) Die Matrix A ¹⁰² ist symmetrisch.	X	
c) Es gilt: det(B) = det(A).		Χ
d) Es $det(A) = tr(A)$.	X	
e) Es gilt: $B^{56} = \mathbb{E}$.	X	
f) Es gilt: A·B = B·A		Х

8. Determinante mit Parameter

Für welche reellen Parameter λ verschwinden die Determinanten?

a)
$$\begin{vmatrix} 1-\lambda & 2\\ 1 & -2-\lambda \end{vmatrix}$$

b)
$$\begin{vmatrix} 1 - \lambda & 2 & 0 \\ 0 & 3 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix}$$

a)

Determinante bestimmen:

$$(1 - \lambda)(-2 - \lambda) - 2 = \lambda^2 + \lambda - 4 = 0$$

Mitternachtsformel verwenden, dies ergibt: $\lambda_1 = 1,562$ und $\lambda_2 = -2,562$

b)

Determinante bestimmen (da es sich um eine obere Dreiecksmatrix handelt, braucht man nur die Elemente der Hauptdiagonalen multiplizieren):

6

$$(1 - \lambda)(3 - \lambda)(2 - \lambda) = 0$$

Dies ergibt: $\lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 2$

Übungsblatt LA 7

Computational and Data Science BSc FS

2023

Lösungen

3 S/ke[egV>[WodW3/WWodS]

1. Aussagen über die Spur

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Die Spur ist für jede Matrix definiert.	0	•
b) Alleine anhand ihrer <i>Spur</i> kann man nicht beurteilen, ob eine <i>quadratische Matrix regulär</i> oder <i>singulär</i> ist.	•	0
c) Für alle $A \in O(n)$ gilt $tr(A^T \cdot A) = n$.	•	0
d) Für alle $A, B \in \mathbb{M}(n, n, \mathbb{R})$ gilt $\operatorname{tr}(A \cdot B - B \cdot A) = 0$.	•	0
e) Für alle $A, B \in M(n, n, \mathbb{R})$ gilt $tr(A \cdot B) = tr(A) \cdot tr(B)$.	0	•
f) Gilt $tr(A) = 0$, dann ist die <i>Matrix A schiefsymmetrisch</i> .	0	•

2. Spuren und Determinanten der Standard-Matrizen in 2D

Wir betrachten die Standard-Matrizen 1, i, P, Z_{λ} , P_x , P_y , S_x und S_y in 2D.

a) Die Matrizen 1, i und P beschreiben Drehungen. Daher gilt 1, i, $P \in SO(2)$ und es folgt

$$\det(\mathbb{1}) = \det(\mathbb{i}) = \det(P) = 1. \tag{1}$$

Die Matrizen P_x und P_y beschreiben Projektionen. Sie sind daher singulär und es folgt

$$\det(P_x) = \det(P_y) = 0. \tag{2}$$

Die Matrizen S_x und S_y beschreiben Spiegelungen. Daher gilt $S_x, S_y \in O(2)$. Weil Spiegelungen nicht orientierungstreu sind, folgt

$$\det(S_x) = \det(S_y) = -1. \tag{3}$$

Die $Matrix\ Z_{\lambda}$ beschreibt eine Streckung um den Faktor λ . Dabei vergrössern sich Flächen um den Faktor λ^2 und es folgt

$$\det(Z_{\lambda}) = \lambda^2. \tag{4}$$

b) Wir berechnen jeweils Spur und Determinante der Standard-Matrizen. Es gilt

$$\underline{\operatorname{tr}(\mathbb{1})} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 1 + 1 = \underline{2} \tag{5}$$

$$\underline{\underline{\det(1)}} = \det\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 1 \cdot 1 - 0 \cdot 0 = 1 - 0 = \underline{\underline{1}}$$
 (6)

$$\underline{\operatorname{tr}(\hat{\mathfrak{b}})} = \operatorname{tr}\left(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\right) = 0 + 0 = \underline{0} \tag{7}$$

$$\underline{\det(\mathring{\mathfrak{l}})} = \det\left(\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\right) = 0 \cdot 0 - 1 \cdot (-1) = 0 + 1 = \underline{\underline{1}}$$
(8)

$$\underline{\operatorname{tr}(P)} = \operatorname{tr}\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\right) = -1 + (-1) = \underline{-2} \tag{9}$$

$$\underline{\underline{\det(P)}} = \det\left(\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\right) = (-1) \cdot (-1) - 0 \cdot 0 = 1 - 0 = \underline{\underline{1}}$$

$$(10)$$

$$\underline{\operatorname{tr}(Z_{\lambda})} = \operatorname{tr}\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \lambda + \lambda = \underline{2\lambda} \tag{11}$$

$$\underline{\underline{\det(Z_{\lambda})}} = \det\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}\right) = \lambda \cdot \lambda - 0 \cdot 0 = \lambda^2 - 0 = \underline{\underline{\lambda}^2}$$
(12)

$$\underline{\underline{\operatorname{tr}(P_x)}} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = 1 + 0 = \underline{\underline{1}} \tag{13}$$

$$\underline{\det(P_x)} = \det\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = 1 \cdot 0 - 0 \cdot 0 = 0 - 0 = \underline{0} \tag{14}$$

$$\underline{\operatorname{tr}(P_y)} = \operatorname{tr}\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0 + 1 = \underline{\underline{1}} \tag{15}$$

$$\underline{\underline{\det(P_y)}} = \det\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = 0 \cdot 1 - 0 \cdot 0 = 0 - 0 = \underline{\underline{0}}$$
(16)

$$\underline{\operatorname{tr}(S_x)} = \operatorname{tr}\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 + (-1) = \underline{0} \tag{17}$$

$$\underline{\det(S_x)} = \det\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 1 \cdot (-1) - 0 \cdot 0 = -1 - 0 = \underline{-1}$$
(18)

$$\frac{\operatorname{tr}(S_y)}{=} \operatorname{tr}\left(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right) = -1 + 1 = \underline{\underline{0}}$$
(19)

$$\underline{\underline{\det(S_y)}} = \det\left(\begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}\right) = (-1) \cdot 1 - 0 \cdot 0 = -1 - 0 = \underline{-1}. \tag{20}$$

3. Spur und Determinante berechnen

Wir berechnen jeweils die Spur und Determinante der Matrix.

a) Wir betrachten die Matrix

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}. \tag{21}$$

Um die Determinante von A zu berechnen, wenden wir die LEIBNIZ-Formel an. Es gilt

$$\operatorname{tr}(A) = 2 + 5 = \underline{7}. \tag{22}$$

$$\underline{\det(A)} = 2 \cdot 5 - 4 \cdot 3 = 10 - 12 = \underline{-2}.$$
(23)

b) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}. \tag{24}$$

Weil die zweite Spalte von A ein Vielfaches der ersten ist, muss die Determinante verschwinden. Es gilt

$$tr(A) = 2 + 6 = \underline{\underline{8}}.$$

$$\det(A) = \underline{0}. \tag{26}$$

c) Wir betrachten die Matrix

$$A = \begin{bmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 1 & 2 & -1 \end{bmatrix}. \tag{27}$$

Um die Determinante von A zu berechnen, wenden wir die Leibniz-Formel an. Es gilt

$$\underline{\operatorname{tr}(A)} = (-1) + 2 + (-1) = \underline{0}. \tag{28}$$

$$\underline{\det(A)} = (-1) \cdot 2 \cdot (-1) + 1 \cdot 3 \cdot 0 + 0 \cdot 2 \cdot 0 - 1 \cdot 2 \cdot 0 - 0 \cdot 3 \cdot (-1) - (-1) \cdot 2 \cdot 0$$

$$= 2 + 0 + 0 - 0 - 0 - 0 = 2. \tag{29}$$

d) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} -2 & 4 & 8 \\ 1 & -2 & -4 \\ 6 & -3 & 12 \end{bmatrix}. \tag{30}$$

Weil die erste Zeile von A ein Vielfaches der zweiten ist, muss die Determinante verschwinden. Es gilt

$$\underline{\operatorname{tr}(A)} = (-2) + (-2) + 12 = \underline{\underline{8}}.\tag{31}$$

$$\det(A) = \underline{\underline{0}}. \tag{32}$$

e) Wir betrachten die Matrix

$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{bmatrix}. \tag{33}$$

Um die Determinante von A zu berechnen, wenden wir das Gauss-Verfahren an. Es gilt

$$tr(A) = 1 + (-2) + 3 + (-2) = \underline{0}.$$
 (34)

$$\frac{\det(A)}{=} \begin{vmatrix} 1 & 0 & 3 & 0 \\ 4 & -2 & 12 & 6 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{vmatrix} = \begin{vmatrix} 2 \\ 1 \\ 3 & 3 & 15 & -2 \end{vmatrix} \cdot 2 = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 2 & -1 & 6 & 3 \\ 1 & 2 & 3 & -4 \\ 3 & 3 & 15 & -2 \end{vmatrix} \cdot 2 = \begin{vmatrix} [1] & 0 & 3 & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 2 & 0 & -4 \\ 0 & 3 & 6 & -2 \end{vmatrix} \cdot 2$$

$$= \begin{vmatrix} \begin{bmatrix} 1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 2 & 0 & -4 \\ 3 & 0 & 3 & 6 & -2 \end{vmatrix} \cdot 2 \cdot (-1) = \begin{vmatrix} \begin{bmatrix} 1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 6 & 7 \end{vmatrix} \cdot 2 \cdot (-1)$$

$$= \begin{vmatrix} \begin{bmatrix} 1] & 0 & 3 & 0 \\ 0 & [1] & 0 & -3 \\ 0 & 0 & [6] & 7 \\ 0 & 0 & 0 & [2] \end{vmatrix} \cdot 2 \cdot (-1) \cdot (-1) = 1 \cdot 1 \cdot 6 \cdot 2 \cdot 2 \cdot (-1) \cdot (-1) = \underline{24}. \tag{35}$$

f) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} 1 & \sqrt{3} & 8 & -\sqrt{2} \\ -13 & 3 & \sqrt{2} & 0 \\ \sqrt{17} & -1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}.$$
 (36)

Um die Determinante von A zu berechnen, bringen wir A zunächst durch Vertauschen von Spalten in Stufenform. Es gilt

$$\underline{\operatorname{tr}(A)} = 1 + 3 + 0 + 0 = \underline{\underline{4}}.\tag{37}$$

$$\frac{\det(A)}{=} = \begin{vmatrix}
1 & \sqrt{3} & 8 & -\sqrt{2} \\
-13 & 3 & \sqrt{2} & 0 \\
\sqrt{17} & -1 & 0 & 0 \\
2 & 0 & 0 & 0
\end{vmatrix} = \begin{vmatrix}
[-\sqrt{2}] & 1 & \sqrt{3} & 8 \\
0 & -13 & 3 & \sqrt{2} \\
0 & \sqrt{17} & -1 & 0 \\
0 & 2 & 0 & 0
\end{vmatrix} \cdot (-1)^3$$

$$= \begin{vmatrix}
[-\sqrt{2}] & 8 & 1 & \sqrt{3} \\
0 & [\sqrt{2}] & -13 & 3 \\
0 & 0 & \sqrt{17} & -1 \\
0 & 0 & 2 & 0
\end{vmatrix} \cdot (-1)^{3+2} = \begin{vmatrix}
[-\sqrt{2}] & 8 & \sqrt{3} & 1 \\
0 & [\sqrt{2}] & 3 & -13 \\
0 & 0 & [-1] & \sqrt{17} \\
0 & 0 & 0 & [2]
\end{vmatrix} \cdot (-1)^{3+2+1}$$

$$= -\sqrt{2} \cdot \sqrt{2} \cdot (-1) \cdot 2 \cdot (-1)^6 = \underline{4}.$$
(38)

4. Spur und Determinante berechnen mit Python/Numpy

Wir berechnen die *Spuren* und *Determinanten* aus Aufgabe 3 mit Python/Numpy. Dazu implementieren wir den folgenden Code, den wir für jede Teilaufgabe modifizieren.

```
# Python initialisieren:
import numpy as np;
# Parameter:
A=np.array(...);
prec=3;
# Berechnungen:
s=np.trace(A);
d=np.linalg.det(A);
# Ausgabe:
print(f"s = {s:#.{prec}} und d = {d:#.{prec}}");
```

a) Wir modifizieren den Code.

```
# Parameter:
A=np.array([[2.,3.],[4.,5.]]);
```

Gemäss Ausgabe ist $\underline{s} \approx 7.00$ und $\underline{d} \approx -2.00$.

b) Wir modifizieren den Code.

```
# Parameter:
A=np.array([[2.,3.],[4.,6.]]);
```

Gemäss Ausgabe ist $\underline{s} \approx 8.00$ und $\underline{d} \approx 0.00$.

c) Wir modifizieren den Code.

```
# Parameter:
A=np.array([[-1.,3.,0.],[0.,2.,0.],[1.,2.,-1.]]);
```

Gemäss Ausgabe ist $\underline{s} \approx 0.00$ und $\underline{d} \approx 2.00$.

d) Wir modifizieren den Code.

```
# Parameter:
A=np.array([[-2.,4.,8.],[1.,-2.,-4.],[6.,-3.,12.]]);
```

Gemäss Ausgabe ist $\underline{s} \approx 8.00$ und $\underline{d} \approx 0.00$.

e) Wir modifizieren den Code.

Gemäss Ausgabe ist $s \approx 0.00$ und $d \approx 24.0$.

f) Wir modifizieren den Code.

Gemäss Ausgabe ist $s \approx 4.00$ und $d \approx 4.00$.

5. Aussagen über die Determinante

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Die Determinante ist nur für quadratische Matrizen definiert.	•	0
b) Alleine anhand ihrer <i>Determinante</i> kann man nicht beurteilen, ob eine quadratische Matrix regulär oder singulär ist.	0	•
c) Der <i>Betrag</i> der <i>Determinante</i> einer <i>Matrix</i> ist gerade das <i>Mass</i> (<i>Fläche, Volumen</i> , etc), das von ihren <i>Zeilen-Vektoren</i> aufgespannt wird.	•	0
d) Für $A \in M(n, n, \mathbb{R})$ und $Q \in SO(n)$ gilt $det(QA) = det(A)$.	•	0
e) Für alle $A, B \in M(n, n, \mathbb{R})$ gilt $\det(A + B) = \det(A) + \det(B)$.	0	•
f) Gilt $A = A^{-1}$, dann folgt $\det(A) \in \{-1, 1\}$.	•	0

6. Determinante berechnen

Wir berechnen jeweils die Determinante der Matrix.

a) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} 2 & -3 & 5 & 1 & 4 \\ 2 & -3 & 1 & -6 & 18 \\ 4 & -3 & 9 & 6 & 10 \\ -2 & 4 & -6 & -1 & -1 \\ -6 & 11 & -23 & -14 & 9 \end{bmatrix}.$$
 (39)

Mit Hilfe des Gauss-Verfahrens erhalten wir für A die Determinante

$$\frac{\det(A)}{\det(A)} = \begin{array}{c} \begin{bmatrix} 2 \\ -3 \\ 2 \\ -3 \\ -1 \\ -2 \\ -4 \\ -6 \\ -6 \\ -1 \\ -3 \\ -6 \\ 11 \\ -23 \\ -6 \\ 11 \\ -23 \\ -6 \\ -1 \\ -24 \\ -6 \\ -1 \\ -1 \\ -24 \\ -6 \\ -1 \\ -1 \\ -24 \\ -1 \\ -24 \\ -1 \\ -24 \\ -$$

b) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} \end{bmatrix}. \tag{41}$$

Druch Vertauschen von Zeilen und mit Hilfe des Gauss-Verfahrens erhalten wir für A die Determinante

$$\frac{\det(A)}{=} = \begin{vmatrix}
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{vmatrix} = \begin{vmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{vmatrix} \cdot (-1)^{2}$$

$$= \begin{vmatrix}
[1] & 1 & 0 & 0 & 0 \\
0 & [-2] & 0 & 0 & 0 \\
0 & 0 & [1] & 1 & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{vmatrix} \cdot 1 = \begin{vmatrix}
[1] & 1 & 0 & 0 & 0 \\
0 & [-2] & 0 & 0 & 0 \\
0 & [-2] & 0 & 0 & 0 \\
0 & 0 & 0 & [1] & 1 & 0 \\
0 & 0 & 0 & [2] & 0 \\
0 & 0 & 0 & 0 & [\sqrt{2}]
\end{vmatrix}$$

$$= 1 \cdot (-2) \cdot 1 \cdot 2 \cdot \sqrt{2} = -4\sqrt{2}. \tag{42}$$

7. Inverse einer Matrix in 2D

Es seien $a, b, c, d \in \mathbb{R}$ und

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{mit} \quad \det(A) \neq 0. \tag{43}$$

a) Wir betrachten die *Matrix*

$$B := \frac{1}{\det(A)} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}. \tag{44}$$

Durch Multiplikation mit A erhalten wir

$$\underline{B \cdot A} = \frac{1}{\det(A)} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{\det(A)} \cdot \begin{bmatrix} a \cdot d - b \cdot c & d \cdot b - b \cdot d \\ -c \cdot a + a \cdot c & -c \cdot b + a \cdot d \end{bmatrix} \\
= \frac{1}{\det(A)} \cdot \begin{bmatrix} \det(A) & 0 \\ 0 & \det(A) \end{bmatrix} = \frac{\det(A)}{\det(A)} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot \mathbb{1} = \underline{\mathbb{1}}.$$
(45)

Daraus folgt, dass A invertierbar ist und die Inverse berechnet werden kann durch

$$\underline{\underline{A^{-1}}} = B = \underline{\frac{1}{\det(A)} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}}.$$
 (46)

b) Wir betrachten die *Matrix*

$$A = \begin{bmatrix} 3 & 1 \\ 11 & 4 \end{bmatrix}. \tag{47}$$

Gemäss (46) gilt

$$\underline{\underline{A^{-1}}} = \frac{1}{3 \cdot 4 - 1 \cdot 11} \cdot \begin{bmatrix} 4 & -1 \\ -11 & 3 \end{bmatrix} = \frac{1}{1} \cdot \begin{bmatrix} 4 & -1 \\ -11 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -11 & 3 \end{bmatrix}. \tag{48}$$

8. Aussagen über zwei Matrizen in 2D

Wir betrachten die Matrizen

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{und} \quad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. \tag{49}$$

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Die Matrix A ist orthogonal.	•	0
b) Die <i>Matrix B</i> beschreibt eine <i>Spiegelung</i> an einer <i>Geraden</i> .	0	•
c) Es gilt $det(B) = tr(A) + tr(B)$.	•	0
d) Es gibt ein $n \in \mathbb{N}$, so dass $B^n = 0$.	•	0
e) Die <i>Matrizen A</i> und <i>B kommutieren</i> nicht, das heisst, es gilt $A \cdot B \neq B \cdot A$.	•	0
f) Es gilt $B = B^{-1}$.	0	•

9. Flächen in 2D

Wir betrachten $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$, welche ein *Parallelogramm* mit *Fläche A* aufspannen. Die Situation ist in der folgenden Skizze dargestellt.

a) Aus der Formel für die *Fläche* eines *Parallelogramms* und durch Anwenden der *Trigono-metrie* erhalten wir

$$\underline{\underline{A}} = g \cdot h = |\mathbf{v}| \cdot h = |\mathbf{v}| \cdot |\mathbf{w}| \cdot |\sin(\alpha)| = |\mathbf{v}| \cdot |\mathbf{w}| \cdot |\cos(\beta)| = |\mathbf{v}| \cdot |\mathbf{w}| \cdot \cos(\beta)|$$

$$= ||R(\pi/2) \cdot \mathbf{v}| \cdot |\mathbf{w}| \cdot \cos(\beta)| = |\langle R(\pi/2) \cdot \mathbf{v}, \mathbf{w} \rangle| = |\underline{\Omega(\mathbf{v}, \mathbf{w})}|. \tag{50}$$

b) Zunächst schreiben wir die Vektoren **v** und **w** in Komponenten. Es seien

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad \text{und} \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}. \tag{51}$$

Mit Hilfe des Ergebnisses von Teilaufgabe a) und der Leibniz-Formel für Determinanten finden wir

$$\underline{\underline{A}} = |\mathbf{\Omega}(\mathbf{v}, \mathbf{w})| = |\langle R(\pi/2) \cdot \mathbf{v}, \mathbf{w} \rangle| = |\langle \mathbf{l} \cdot \mathbf{v}, \mathbf{w} \rangle| = |\langle \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \rangle|$$

$$= |\langle \begin{bmatrix} -v_2 \\ v_1 \end{bmatrix}, \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \rangle| = |-v_2 \cdot w_1 + v_1 \cdot w_2| = |v_1 \cdot w_2 - v_2 \cdot w_1|$$

$$= |\det \begin{pmatrix} \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} \end{pmatrix}| = |\det (\begin{bmatrix} \mathbf{v} & \mathbf{w} \end{bmatrix})|. \tag{52}$$

c) Wir betrachten die Gram-Determinante, das heisst die Determinante der Gram-Matrix der Vektoren v und w. Mit Hilfe des Leibniz-Formel und (50) finden wir

$$g = \det(G) = \det\left(\begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix}\right) = \langle \mathbf{v}, \mathbf{v} \rangle \cdot \langle \mathbf{w}, \mathbf{w} \rangle - \langle \mathbf{w}, \mathbf{v} \rangle \cdot \langle \mathbf{v}, \mathbf{w} \rangle$$

$$= |\mathbf{v}|^2 \cdot |\mathbf{w}|^2 - \langle \mathbf{v}, \mathbf{w} \rangle^2 = |\mathbf{v}|^2 \cdot |\mathbf{w}|^2 - |\mathbf{v}|^2 \cdot |\mathbf{w}|^2 \cdot \cos^2(\alpha) = |\mathbf{v}|^2 \cdot |\mathbf{w}|^2 \cdot \left(1 - \cos^2(\alpha)\right)$$

$$= |\mathbf{v}|^2 \cdot |\mathbf{w}|^2 \cdot \sin^2(\alpha) = \left(|\mathbf{v}| \cdot |\mathbf{w}| \cdot |\sin(\alpha)|\right)^2 = A^2. \tag{53}$$

Wegen $g \geq 0$ lässt sich die Wurzel innerhalb der reellen Zahlen ziehen und es folgt

$$\underline{\underline{A}} = \sqrt{g} = \sqrt{\det\left(\begin{bmatrix} \langle \mathbf{v}, \mathbf{v} \rangle & \langle \mathbf{v}, \mathbf{w} \rangle \\ \langle \mathbf{w}, \mathbf{v} \rangle & \langle \mathbf{w}, \mathbf{w} \rangle \end{bmatrix}\right)}.$$
 (54)

d) Wir wenden alle Formeln aus den Teilaufgaben a) bis c) an, um die *Fläche* des *Parallelo-gramms* zu berechnen, welches aufgespannt wird durch die *Vektoren*

$$\mathbf{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \quad \text{und} \quad \mathbf{w} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}. \tag{55}$$

Mit Hilfe der *symplektischen Form* erhalten wir

$$\underline{\underline{A}} = \left| \mathbf{\Omega} \left(\begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix} \right) \right| = \left| 4 \cdot 5 - 1 \cdot 2 \right| = |18| = \underline{\underline{18}}. \tag{56}$$

Mit Hilfe der Determinante der Matrix, welche aus den Spalten \mathbf{v} und \mathbf{w} besteht und der Leibniz-Formel erhalten wir

$$\underline{\underline{A}} = \left| \det \left(\begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} \right) \right| = \left| 4 \cdot 5 - 1 \cdot 2 \right| = |18| = \underline{18}. \tag{57}$$

Wir zeigen mehrere Varianten, um die Gram-Matrix von v und w zu berechnen.

Variante 1: Durch explizites Berechnen der Skalar-Produkte finden wir

$$G = \begin{bmatrix} \left\langle \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right\rangle & \left\langle \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix} \right\rangle \\ \left\langle \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \end{bmatrix} \right\rangle & \left\langle \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \end{bmatrix} \right\rangle \end{bmatrix} = \begin{bmatrix} 4 \cdot 4 + 1 \cdot 1 & 4 \cdot 2 + 1 \cdot 5 \\ 2 \cdot 4 + 5 \cdot 1 & 2 \cdot 2 + 5 \cdot 5 \end{bmatrix}$$
$$= \begin{bmatrix} 17 & 13 \\ 13 & 29 \end{bmatrix}. \tag{58}$$

Variante 2: Mit Hilfe der *Matrix*, welche aus den *Spalten* v und w besteht, finden wir

$$G = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}^{T} \cdot \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 2 & 5 \end{bmatrix} \cdot \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 4 \cdot 4 + 1 \cdot 1 & 4 \cdot 2 + 1 \cdot 5 \\ 2 \cdot 4 + 5 \cdot 1 & 2 \cdot 2 + 5 \cdot 5 \end{bmatrix}$$
$$= \begin{bmatrix} 17 & 13 \\ 13 & 29 \end{bmatrix}. \tag{59}$$

Mit Hilfe der Leibniz-Formel erhalten wir daraus

$$\underline{\underline{A}} = \sqrt{\det\left(\begin{bmatrix} 17 & 13 \\ 13 & 29 \end{bmatrix}\right)} = \sqrt{17 \cdot 29 - 13 \cdot 13} = \sqrt{493 - 169} = \sqrt{324} = \underline{\underline{18}}.$$
 (60)

10. Aussagen über zwei Matrizen in 3D

Wir betrachten die Matrizen

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \quad \text{und} \quad B = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}. \tag{61}$$

Welche der folgenden Aussagen sind wahr und welche falsch?	wahr	falsch
a) Die Matrix A ist singulär.	•	0
b) Die $Matrix\ A^{102}$ ist $symmetrisch$.	•	0
c) Es gilt $det(B) = det(A)$.	0	•
d) Es gilt $det(A) = tr(A)$.	•	0
e) Es gilt $B^{56} = 1$.	•	0
f) Es gilt $A \cdot B = B \cdot A$.	0	•