

NTNU

$\mathsf{TDT4145}$ - Datamodellering og databasesystemer

Øving 3

Mathias Ose og Øyvind Robertsen

Innhold

1	Oppgave 1															-	1												
	1.1																												
	1.2	b)																			 								1
	1.3																												
	1.4																												
	1.5	e)																			 							4	2
	1.6	f)																			 							4	2
	17																											4	9

1 Oppgave 1

1.1 a)

Nøkkel: Den enkelte eller den minimale mengden identifiserende attributtene ved en tabell. Må være unikt identifiserende for hver rad i tabellen. Kan være en enkelt attributt eller en mengde attributter.

Supernøkkel: En mengde attributter i en tabell som sammen fungerer som nøkkel for alle rader i tabellen. Kan også defineres som en mengde av attributter i en relasjon der alle andre attributter er funksjonelt avhengige av supernøkkelattributtene.

Funksjonell avhengighet: En funksjonell avhengighet $X \to Y$, der X og Y er mengder av attributter, betyr at verdiene av attributtene i X bestemmer verdiene av Y.

1.2 b)

Tillukningen (X^+) til en mengde attributter X er mengden av alle attributter i relasjonen R som er funksjonelt avhengig av X.

Algoritme for X^+ , med hensyn på en mengde funksjonelle avhengigheter F:

Listing 1: Tillukningsalgoritme

```
\begin{array}{l} X^+ = X \\ X^+_{gammel} = \text{null} \\ \text{while not } X^+_{gammel} == X^+ \colon \\ X^+_{gammel} = X^+ \\ \text{for functional dependency } Y \to Z \text{ in F:} \\ \text{if } Y \text{ in } X^+ \colon \\ X^+ = X^+ \cup Z \end{array}
```

1.3 c)

$$a^{+} = \{a, e\}$$
$$ab^{+} = \{a, b, c, d, e\}$$
$$e^{+} = \{e\}$$

1.4 d)

For at en mengde attributter skal være en supernøkkel, må tillukningen av mengden inneholde alle attributter i relasjonen. For en mengde attributter X fra en relasjon R avgjør vi om X er en supernøkkel ved å finne X^+ og sjekke om X^+ inneholder alle attributter i R.

For at en supernøkkel også skal være en nøkkel, må den være minimal. Dvs. at vi kan finne ut om en supernøkkel SK også er en nøkkel ved å fjerne en og en attributt og sjekke om hver restmengde er en supernøkkel.

1.5 e)

For at projeksjonene R_1 og R_2 skal ha tapsløs-join-egenskapen må det gå an å joine R_1 og R_2 sammen og få R. Formelt har vi at R_1 og R_2 har tapsløs-join-egenskapen hvis og bare hvis

$$(R_1 \cap R_2 \to R_1 - R_2) \in F^+ \lor (R_1 \cap R_2 \to R_2 - R_1) \in F^+$$

Det er naturlig å anta at det kun er mulig å ha tapsløs-join dersom $R_1 \cap R_2 \to R_1 \vee R_2$. Funksjonelle avhengigheter i R kan gi oss den formelle definisjonen over, der snittet mellom R_1 og R_2 ikke nødvendigvis er R_1 eller R_2 . Dette på grunn av at funksjonelle avhengigheter kan gi oss muligheten til å manipulere snittet slik at det blir lik enten den ene eller den andre.

1.6 f)

Vi har relasjonen R(a, b, c, d) med $F = \{b \to c\}$. Dette gir oss:

- 1. $R_1(a, b, c)$ og $R_2(b, c, d)$
 - $R_1 \cap R_2 \rightarrow \{b,c\}$
 - $R_1 R_2 \to \{a\} \notin F^+$
 - $R_2 R_2 \to \{d\} \notin F^+$
 - Ikke tapsløs join
- 2. $R_1(a, b, d)$ og $R_2(b, c, d)$
 - $R_1 \cap R_2 \rightarrow \{b, d\}$
 - $R_1 R_2 \to \{a\} \notin F^+$
 - $R_2 R 1 \to \{c\} \in F^+$
 - Tapsløs join
- 3. $R_1(a, b, d)$ og $R_2(b, c)$
 - $R_1 \cap R_2 \rightarrow \{b\}$
 - $R_1 R_2 \to \{a, d\} \notin F^+$
 - $R_2 R_1 \to \{c\} \in F^+$
 - Tapsløs join

1.7 g)

For at en relasjon R skal være på tredje normalform, må følgende krav oppfylles:

- R er på andre normalform
- Alle attributter som ikke er en del av en nøkkel, er direkte avhengig av hele nøkkelen. Dvs. at transitiv avhengighet ikke er lov