Contents

1	Neighbourhoods										1															
	1.1	Neighbourhood topology																								1

1 Neighbourhoods

1.1 Neighbourhood topology

We have a set X.

For each element $x \in X$, there is a non-empty set of neighbourhoods $N \in \mathbf{N}(x)$ where $x \in N \subseteq X$ such that:

- If N is a subset of M, M is a neighbourhood.
- The intersection of two neighbourhoods of x is a neighbourhood of x.
- N is a neighbourhood for each point in some $M\subseteq N$