Lógica modal computacional

Decidibilidad y complejidad de lógicas modales (ii)

Carlos Areces & Raul Fervari

1er cuatrimestre de 2017 Córdoba, Argentina

Repaso

La última vez que nos vimos, vimos que...

- KAlt₁ es NP-completa (usando funciones de selección).
- K no tiene la propiedad de modelos polinimiales:

• El problema de K-satisfacibilidad está en PSPACE:

Repaso

La última vez que nos vimos, vimos que...

- KAlt₁ es NP-completa (usando funciones de selección).
- K no tiene la propiedad de modelos polinimiales:
 - ullet Dimos una familia de fórmulas satisfacibles $arphi_k$
 - Para cada k, $|\varphi_k| \in O(k^3)$
 - φ_k fuerza que sus modelos sean árboles binarios completos
 - Luego, todo modelo de φ_k tiene al menos 2^k nodos
- El problema de K-satisfacibilidad está en PSPACE:

Repaso

La última vez que nos vimos, vimos que...

- KAlt₁ es NP-completa (usando funciones de selección).
- K no tiene la propiedad de modelos polinimiales:
 - Dimos una familia de fórmulas satisfacibles φ_k
 - Para cada k, $|\varphi_k| \in O(k^3)$
 - φ_k fuerza que sus modelos sean árboles binarios completos
 - Luego, todo modelo de φ_k tiene al menos 2^k nodos
- El problema de K-satisfacibilidad está en PSPACE:
 - Podemos adivinar de a una rama del modelo por vez.
 - Esto lo mostramos usando Hintikka sets.
 - La profundidad de una rama puede ser lineal en la fórmula.
 - Obtuvimos un algoritmo no-det. de espacio polinomial.
 - Y sabíamos que PSPACE = NPSPACE.

Lógicas robustas

Muchas variantes de K también están en PSPACE

- K + nominales y @
- K + counting modalities $\langle r \rangle_{\geq n} \varphi$
- K + funciones parciales
- K + operadores de pasado $\langle r \rangle^{-1} \varphi$
- S4 (*r* es una relación transitiva)
- ...
- ¡pero cuidado con las combinaciones!

Lógicas robustas

Muchas variantes de K también están en PSPACE

- K + nominales y @
- K + counting modalities $\langle r \rangle_{\geq n} \varphi$
- K + funciones parciales
- K + operadores de pasado $\langle r \rangle^{-1} \varphi$
- S4 (*r* es una relación transitiva)
- ...
- ¡pero cuidado con las combinaciones!

Los operadores "globales" nos suelen mover a EXPTIME

- K + la modalidad universal A
- \mathbf{K} + el operador de clausura transitiva $\langle r \rangle^* \varphi$
- ...

¿Cómo probar si K es PSPACE-completa?

- Necesitamos probar que K es PSPACE-hard.
- Alcanza con poder reducir polinomialmente un problema PSPACE-completo.
- Usaremos el problema canónico: validez para QBF.

Quantified Boolean Formulas (QBF)

Sintáxis

- $\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists p\varphi \mid \forall p\varphi$
- Sentencia: fórmula sin variables libres
- *Forma prenexa*: $Q_1p_1...Q_np_n\theta(p_1,...,p_n)$, θ proposicional.

Quantified Boolean Formulas (QBF)

Sintáxis

- $\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \exists p\varphi \mid \forall p\varphi$
- Sentencia: fórmula sin variables libres
- Forma prenexa: $Q_1p_1 \dots Q_np_n\theta(p_1,\dots,p_n)$, θ proposicional.

Semántica

$$\begin{array}{cccc} v \models p & \Leftrightarrow & v(p) = 1 \\ v \models \neg p & \Leftrightarrow & v(p) = 0 \\ v \models \varphi \lor \psi & \Leftrightarrow & v \models \varphi \land v \models \psi \\ v \models \varphi \land \psi & \Leftrightarrow & v \models \varphi \lor v \models \psi \\ v \models \exists p \varphi & \Leftrightarrow & v[p \mapsto 1] \models \varphi \land v[p \mapsto 0] \models \varphi \\ v \models \forall p \varphi & \Leftrightarrow & v[p \mapsto 1] \models \varphi \lor v[p \mapsto 0] \models \varphi \end{array}$$

Validez de fórmulas de QBF

Teorema

Decidir la validez de una fórmula de QBF es un problema PSPACE-completo.

Validez de fórmulas de QBF

Teorema

Decidir la validez de una fórmula de QBF es un problema PSPACE-completo.

Ejercicio

Mostrar que model-checking de lógica de primer orden es PSPACE-hard.

Validez de QBF equivale encontrar un árbol...

Para $\forall p_0 \exists p_1 (p_0 \leftrightarrow \neg p_1)$

¡Y vimos cómo forzar árboles binarios con una fórmula modal!

Repasemos nuestros ladrillos

• B_i fuerza dos sucesores, uno para cada valor de p_i :

$$B_i := \Diamond p_{i+1} \wedge \Diamond \neg p_{i+1}$$

• S_i propaga los valores de p_i y $\neg p_i$ al siguiente nivel:

$$S_i := (p_i \to \Box p_i) \land (\neg p_i \to \Box \neg p_i)$$

• L_{ki} asegura que un nodo esté en el nivel i y sólo en ese:

$$L_{ki} := \bigwedge_{j \in \{0...k\} \setminus \{i\}} \neg l_j \wedge l_i$$

La reducción de QBF-validez a K-satisfacibilidad

La reducción de QBF-validez a K-satisfacibilidad

ullet Notar que $f(\varphi)$ es computable en tiempo polinomial

Teorema

 φ es válida en QBF sii $f(\varphi)$ es K-satisfacible.

Teorema

 φ es válida en QBF sii $f(\varphi)$ es K-satisfacible.

Corolario

Satisfacibilidad de K es PSPACE-completa.

Teorema

 φ es válida en QBF sii $f(\varphi)$ es K-satisfacible.

Corolario

Satisfacibilidad de K es PSPACE-completa.

Se puede mostrar un resultado más general

"Toda lógica entre K y S4 es PSPACE-completa".

K + A, agregamos la modalidad universal.

Semántica

- $\mathcal{M}, w \models \mathsf{A}\varphi \operatorname{sii} \mathcal{M}, v \models \varphi \operatorname{para} \operatorname{todo} v$
- $\mathcal{M}, w \models \mathsf{E} \varphi \ \mathrm{sii} \ \mathcal{M}, v \models \varphi \ \mathsf{para} \ \mathsf{algún} \ v$

K + A, agregamos la modalidad universal.

Semántica

- $\mathcal{M}, w \models \mathsf{A}\varphi \operatorname{sii} \mathcal{M}, v \models \varphi \operatorname{para} \operatorname{todo} v$
- $\mathcal{M}, w \models \mathsf{E} \varphi \ \mathrm{sii} \ \mathcal{M}, v \models \varphi \ \mathsf{para} \ \mathsf{algún} \ v$
- E es un "diamante" y A es un "box".
- Se pueden pensar como modalidades sobre una relación total.

Model checking

I.

II.

Model checking

I. Es decidible

II.

Model checking

- I. Es decidible
- II. Está en PTIME (e.g., usando programación dinámica)

Model checking

- I. Es decidible
- II. Está en PTIME (e.g., usando programación dinámica)
- III. Es fácil de implementar de manera eficiente

Model checking

- I. Es decidible
- II. Está en PTIME (e.g., usando programación dinámica)
- III. Es fácil de implementar de manera eficiente

¿Por qué es menos complejo en K + A que en primer orden?

Satisfacibilidad

I.

II.

Satisfacibilidad

I. Es decidible (reducción a FO2)

II.

Satisfacibilidad

- I. Es decidible (reducción a FO2)
- II. ¿Podemos ver que está en PSPACE como hicimos con K?

Modelos "exponencialmente profundos" en K + AIntuición

Vamos a ver que...

- Para cada n > 0 existe una fórmula κ_n tal que:
 - κ_n es satisfacible
 - Todo modelo para κ_n tiene una rama con al menos 2^n nodos

Modelos "exponencialmente profundos" en K + A

Vamos a ver que...

- Para cada n > 0 existe una fórmula κ_n tal que:
 - κ_n es satisfacible
 - Todo modelo para κ_n tiene una rama con al menos 2^n nodos

De donde se concluye que...

- No podemos repetir la prueba de PSPACE para K
- (donde adivinábamos de a una rama del modelo por vez)

Modelos "exponencialmente profundos" en K + A Sumando en base 2

Idea para construir κ_n

- Usamos n proposiciones q_0, \ldots, q_{n-1} .
- Cada asignación codifica un número entre 0 y $2^n 1$
- Queremos que un nodo a nivel i tenga una asignación que codifique i

Modelos "exponencialmente profundos" en K + A Sumando en base 2

Idea para construir κ_n

- Usamos *n* proposiciones q_0, \ldots, q_{n-1} .
- Cada asignación codifica un número entre 0 y $2^n 1$

¿Cómo se suma 1 en binario?

• El caso fácil (el dígito menos significativo es 0):

Modelos "exponencialmente profundos" en $\mathsf{K} + \mathsf{A}$

Sumando en base 2

Idea para construir κ_n

- Usamos n proposiciones q_0, \ldots, q_{n-1} .
- Cada asignación codifica un número entre 0 y $2^n 1$

¿Cómo se suma 1 en binario?

• El caso fácil (el dígito menos significativo es 0):

$$\begin{array}{r}
 10011010 \\
 + 1 \\
 \hline
 10011011
\end{array}$$

Modelos "exponencialmente profundos" en $\mathsf{K} + \mathsf{A}$

Sumando en base 2

Idea para construir κ_n

- Usamos n proposiciones q_0, \ldots, q_{n-1} .
- Cada asignación codifica un número entre 0 y $2^n 1$

¿Cómo se suma 1 en binario?

• El caso fácil (el dígito menos significativo es 0):

$$\begin{array}{r}
 10011010 \\
 + 1 \\
 \hline
 10011011
\end{array}$$

• El caso general:

Modelos "exponencialmente profundos" en $\mathsf{K} + \mathsf{A}$

Sumando en base 2

Idea para construir κ_n

- Usamos n proposiciones q_0, \ldots, q_{n-1} .
- Cada asignación codifica un número entre 0 y $2^n 1$

¿Cómo se suma 1 en binario?

• El caso fácil (el dígito menos significativo es 0):

$$\begin{array}{r}
 10011010 \\
 + 1 \\
 \hline
 10011011
\end{array}$$

• El caso general:

$$\begin{array}{r}
 10011011 \\
 + 1 \\
 \hline
 10011100
\end{array}$$

Modelos "exponencialmente profundos" en K + ALadrillos para armar κ_n

INC_i

- Fuerza el valor del siguiente nivel (sumando 1),
- ullet pero sólo si el valor del actual tiene el primer 0 en el bit i

Modelos "exponencialmente profundos" en K + ALadrillos para armar κ_n

INC_i

- Fuerza el valor del siguiente nivel (sumando 1),
- pero sólo si el valor del actual tiene el primer 0 en el bit *i*
- Caso fácil

$$INC_0 := \neg q_0 \to (\Box q_0 \land \bigwedge_{i>0} ((q_i \to \Box q_i) \land (\neg q_i \to \Box \neg q_i)))$$

Modelos "exponencialmente profundos" en K + A

Ladrillos para armar κ_n

INC_i

- Fuerza el valor del siguiente nivel (sumando 1),
- pero sólo si el valor del actual tiene el primer 0 en el bit *i*
- Caso fácil

$$INC_0 := \neg q_0 \to (\Box q_0 \land \bigwedge_{i>0} ((q_i \to \Box q_i) \land (\neg q_i \to \Box \neg q_i)))$$

• Caso general

$$INC_{i+1} := (\neg q_{i+1} \land \bigwedge_{j=0}^{i} q_j) \rightarrow \begin{pmatrix} \Box(q_{i+1} \land \bigwedge_{j=0}^{i} \neg q_j) & \land \\ \bigwedge_{l>i+1} (q_l \rightarrow \Box q_l) & \land \\ \bigwedge_{l>i+1} (\neg q_l \rightarrow \Box \neg q_l) \end{pmatrix}$$

Modelos "exponencialmente profundos" en K + A Finalmente, κ_n

Definimos κ_n como

$$(\neg q_{n-1} \wedge \cdots \wedge \neg q_0) \wedge$$

Modelos "exponencialmente profundos" en K + A Finalmente, κ_n

Definimos κ_n como

$$(\neg q_{n-1} \wedge \cdots \wedge \neg q_0) \wedge \mathsf{A}(\bigwedge_{i=0}^{n-1} \mathsf{INC}_i) \wedge \mathsf{A} \diamondsuit \top$$

Modelos "exponencialmente profundos" en K + A Finalmente, κ_n

Definimos κ_n como

$$(\neg q_{n-1} \wedge \cdots \wedge \neg q_0) \wedge \mathsf{A}(\bigwedge_{i=0}^{n-1} \mathsf{INC}_i) \wedge \mathsf{A} \diamondsuit \top$$

- κ_n tiene tamaño $\mathcal{O}(n^2)$ pero todo modelo que la satisfaga tiene un camino sin repeticiones de longitud 2^n .
- La misma técnica se puede usar sobre otras modalidades "globales" (e.g., operador de clausura transitiva)

- Sabemos que si φ es satisfacible, tiene modelo exponencial.
- Veremos que, además:
 - hay una cantidad exponencial de modelos a considerar, y
 - cada uno de estos modelos es exponencial
 - y se puede construir en una cantidad de pasos exponencial.
- Esto nos da un algoritmo determinístico que corre en tiempo exponencial.
- La técnica se llama "eliminación de Hintikka sets".

Hintikka sets – repaso

Clausura de un conjunto de fórmulas Σ (Cl(Σ))

$$\operatorname{Cl}(\Sigma) = \{\varphi \mid \varphi \text{ ocurre en } \Sigma\} \cup \{\overline{\varphi} \mid \varphi \text{ ocurre en } \Sigma\}$$

Intuición

 $\mathrm{Cl}(\Sigma)$ es el conjunto de "fórmulas relevantes" de Σ .

Hintikka sets – repaso

Clausura de un conjunto de fórmulas Σ (Cl(Σ))

$$Cl(\Sigma) = \{ \varphi \mid \varphi \text{ ocurre en } \Sigma \} \cup \{ \overline{\varphi} \mid \varphi \text{ ocurre en } \Sigma \}$$

Intuición

 $Cl(\Sigma)$ es el conjunto de "fórmulas relevantes" de Σ .

Hintikka sets

Decimos que $H \subseteq Cl(\Sigma)$ es un *Hintikka set para* Σ si cumple:

- I. $\varphi \in \operatorname{Cl}(\Sigma) \Rightarrow \varphi \in H \operatorname{sii} \overline{\varphi} \notin H$
- II. $\varphi \land \psi \in Cl(\Sigma) \Rightarrow \varphi \land \psi \in H \text{ sii } \varphi \in H \text{ y } \psi \in H$
- III. $\mathsf{E}\varphi\in\mathsf{Cl}(\Sigma)\Rightarrow\varphi\in H$ implica $\mathsf{E}\varphi\in H$

Satisfacibilidad de K + A está en EXPTIME $Hin_{C}(\Sigma)$

Notación

- $A(C) = \{ \varphi \mid A\varphi \in C \}$
- $\mathit{Hin}(\Sigma) = \{H \mid H \text{ es un Hinitkka set para } \Sigma\}$
- $Hin_C(\Sigma) = \{H \mid H \in Hin(\Sigma) \text{ y } \mathsf{A}(H) = C\}$

Satisfacibilidad de K + A está en EXPTIME $Hin_{C}(\Sigma)$

Notación

- $A(C) = \{ \varphi \mid A\varphi \in C \}$
- $Hin(\Sigma) = \{H \mid H \text{ es un Hinitkka set para } \Sigma\}$
- $Hin_C(\Sigma) = \{H \mid H \in Hin(\Sigma) \text{ y } \mathsf{A}(H) = C\}$

Idea

- Para cada $C \subseteq A(Cl(\Sigma))$, intentamos armar un modelo \mathcal{M}_C .
- Si \mathcal{M}_C está definido, entonces $\mathcal{M} \models \mathsf{A}\varphi \ \forall \varphi \in C$.
- La idea es ver que:

$$\Sigma$$
es satisfacible si
i $\exists \mathcal{C} \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$ tal que $\mathcal{M}_{\mathcal{C}}, w \models \Sigma$

Eliminación de Hintikka sets

Caso base: \mathcal{M}_{C}^{0} .

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

• $W_C^0 = Hin_C(\Sigma)$

Eliminación de Hintikka sets

Caso base: $\mathcal{M}_{\mathcal{C}}^0$.

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

- $W_C^0 = Hin_C(\Sigma)$
- $(H, H') \in R^0_C \text{ sii } \forall \varphi \in H', \Diamond \varphi \in Cl(\Sigma) \text{ implica } \Diamond \varphi \in H.$

Eliminación de Hintikka sets

Caso base: $\mathcal{M}_{\mathcal{C}}^0$.

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

- $W_C^0 = Hin_C(\Sigma)$
- $(H, H') \in R_C^0 \text{ sii } \forall \varphi \in H', \Diamond \varphi \in Cl(\Sigma) \text{ implica } \Diamond \varphi \in H.$
- $V_C^0(p) = \{ H \in W_C^0 \mid p \in H \}$

Eliminación de Hintikka sets

Caso base: $\mathcal{M}_{\mathcal{C}}^0$.

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

- $W_C^0 = Hin_C(\Sigma)$
- $(H, H') \in R_C^0 \text{ sii } \forall \varphi \in H', \Diamond \varphi \in Cl(\Sigma) \text{ implica } \Diamond \varphi \in H.$
- $V_C^0(p) = \{ H \in W_C^0 \mid p \in H \}$

Eliminación de Hintikka sets

Caso base: $\mathcal{M}_{\mathcal{C}}^0$.

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

- $W_C^0 = Hin_C(\Sigma)$
- $(H, H') \in R_C^0 \text{ sii } \forall \varphi \in H', \Diamond \varphi \in Cl(\Sigma) \text{ implica } \Diamond \varphi \in H.$
- $V_C^0(p) = \{ H \in W_C^0 \mid p \in H \}$

Paso de eliminación: \mathcal{M}_{C}^{n+1}

- Supongamos que \mathcal{M}_C^n está definido (i.e., $W_C^n \neq \emptyset$).
- Decimos que H es satisfecho en n si, para todo φ :
 - I. $\Diamond \varphi \in H$ implica $\exists H' \in W_{\mathbb{C}}^n$ tal que $\varphi \in H'$ y $(H, H') \in R_{\mathbb{C}}^n$.

Eliminación de Hintikka sets

Caso base: $\mathcal{M}_{\mathcal{C}}^0$.

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

- $W_C^0 = Hin_C(\Sigma)$
- $(H, H') \in R_C^0 \text{ sii } \forall \varphi \in H', \Diamond \varphi \in Cl(\Sigma) \text{ implica } \Diamond \varphi \in H.$
- $V_C^0(p) = \{ H \in W_C^0 \mid p \in H \}$

Paso de eliminación: \mathcal{M}_{C}^{n+1}

- Supongamos que \mathcal{M}_C^n está definido (i.e., $W_C^n \neq \emptyset$).
- Decimos que H es satisfecho en n si, para todo φ :
 - I. $\Diamond \varphi \in H$ implica $\exists H' \in W_C^n$ tal que $\varphi \in H'$ y $(H, H') \in R_C^n$.
 - II. $E\varphi \in H$ implica $\exists H' \in W_C^n$ tal que $\varphi \in H'$.

Eliminación de Hintikka sets

Caso base: $\mathcal{M}_{\mathcal{C}}^0$.

Dado Σ y $C \subseteq A(Cl(\Sigma))$, definimos $M_C^0 = \langle W_C^0, R_C^0, V_C^0 \rangle$ donde:

- $W_C^0 = Hin_C(\Sigma)$
- $(H, H') \in R_C^0 \text{ sii } \forall \varphi \in H', \Diamond \varphi \in Cl(\Sigma) \text{ implica } \Diamond \varphi \in H.$
- $V_C^0(p) = \{ H \in W_C^0 \mid p \in H \}$

Paso de eliminación: \mathcal{M}_C^{n+1}

- Supongamos que \mathcal{M}_C^n está definido (i.e., $W_C^n \neq \emptyset$).
- Decimos que H es satisfecho en n si, para todo φ :
 - I. $\Diamond \varphi \in H$ implica $\exists H' \in W_C^n$ tal que $\varphi \in H'$ y $(H, H') \in R_C^n$.
 - II. $\mathsf{E}\varphi \in H$ implica $\exists H' \in W_C^n$ tal que $\varphi \in H'$.
- \mathcal{M}_{C}^{n+1} : restricción de \mathcal{M}_{C}^{n} a los $H \in \mathcal{W}_{C}^{n}$ satisfechos en n.

Eliminación de Hintikka sets – \mathcal{M}_C

• Como $Hin_C(\Sigma)$ es finito y $W^{n+1} \subseteq W^n$, el proceso converge.

Eliminación de Hintikka sets – \mathcal{M}_C

- Como $Hin_C(\Sigma)$ es finito y $W^{n+1} \subseteq W^n$, el proceso converge.
- Pero notar que W^{n+1} podría estar vacío.

Eliminación de Hintikka sets – \mathcal{M}_C

- Como $Hin_C(\Sigma)$ es finito y $W^{n+1} \subseteq W^n$, el proceso converge.
- Pero notar que W^{n+1} podría estar vacío.
- \mathcal{M}_C es la estructura tal que $\mathcal{M}^{n+1} = \mathcal{M}^n$ (cuando $W^n \neq \emptyset$).

Eliminación de Hintikka sets – \mathcal{M}_C

- Como $Hin_C(\Sigma)$ es finito y $W^{n+1} \subseteq W^n$, el proceso converge.
- Pero notar que W^{n+1} podría estar vacío.
- \mathcal{M}_C es la estructura tal que $\mathcal{M}^{n+1} = \mathcal{M}^n$ (cuando $W^n \neq \emptyset$).
- $|Hin_C(\Sigma)|$ es exponencial en $|\Sigma|$, luego podemos obtener \mathcal{M}_C en $O(2^{|\Sigma|})$ pasos.

Eliminación de Hintikka sets - algunos lemas

Lema

Si $\mathcal{M}_{\mathcal{C}}$ está definido (con $\mathcal{C} \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces $\forall H \in W_{\mathcal{C}}$:

I. $\forall \diamond \chi \in Cl(\Sigma), \diamond \chi \in H \text{ sii } \exists H' \in W, \chi \in H' \text{ y } (H, H') \in R_C.$

Eliminación de Hintikka sets – algunos lemas

Lema

Si $\mathcal{M}_{\mathcal{C}}$ está definido (con $\mathcal{C} \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces $\forall H \in W_{\mathcal{C}}$:

- I. $\forall \Diamond \chi \in Cl(\Sigma)$, $\Diamond \chi \in H \text{ sii } \exists H' \in W$, $\chi \in H' \text{ y } (H, H') \in R_C$.
- II. $\forall \ \mathsf{E}\chi \in \mathsf{Cl}(\Sigma), \ \mathsf{E}\chi \in H \ \mathsf{sii} \ \exists \ H' \in W, \ \chi \in H'.$

Eliminación de Hintikka sets – algunos lemas

Lema

Si $\mathcal{M}_{\mathcal{C}}$ está definido (con $\mathcal{C} \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces $\forall H \in W_{\mathcal{C}}$:

- I. $\forall \Diamond \chi \in Cl(\Sigma)$, $\Diamond \chi \in H \text{ sii } \exists H' \in W$, $\chi \in H' \text{ y } (H, H') \in R_C$.
- II. $\forall \, \mathsf{E} \chi \in \mathsf{Cl}(\Sigma), \, \mathsf{E} \chi \in H \, \mathsf{sii} \, \exists \, H' \in W, \, \chi \in H'.$

Demostración

 \Rightarrow) Si no valiera, *H* habría sido eliminado.

Eliminación de Hintikka sets - algunos lemas

Lema

Si \mathcal{M}_C está definido (con $C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces $\forall H \in W_C$:

- I. $\forall \Diamond \chi \in Cl(\Sigma)$, $\Diamond \chi \in H \text{ sii } \exists H' \in W$, $\chi \in H' \text{ y } (H, H') \in R_C$.
- II. $\forall \ \mathsf{E}\chi \in \mathsf{Cl}(\Sigma), \ \mathsf{E}\chi \in H \ \mathsf{sii} \ \exists \ H' \in W, \ \chi \in H'.$

Demostración

- \Rightarrow) Si no valiera, H habría sido eliminado.
- $\Leftarrow) \quad \text{ I. } \mathcal{M}_C \text{ es un refinamiento de } \mathcal{M}_0 \Rightarrow (H,H') \in R_C^0 \Rightarrow \Diamond \chi \in H.$

Eliminación de Hintikka sets – algunos lemas

Lema

Si \mathcal{M}_C está definido (con $C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces $\forall H \in W_C$:

- I. $\forall \diamond \chi \in Cl(\Sigma)$, $\diamond \chi \in H \text{ sii } \exists H' \in W$, $\chi \in H' \text{ y } (H, H') \in R_C$.
- II. $\forall \ \mathsf{E}\chi \in \mathsf{Cl}(\Sigma), \ \mathsf{E}\chi \in H \ \mathrm{sii} \ \exists \ H' \in W, \ \chi \in H'.$

Demostración

- \Rightarrow) Si no valiera, *H* habría sido eliminado.
- $(4) \quad \text{I. } \mathcal{M}_{C} \text{ es un refinamiento de } \mathcal{M}_{0} \Rightarrow (H, H') \in R_{C}^{0} \Rightarrow \Diamond \chi \in H.$
 - II. $\chi \in H' \Rightarrow \mathsf{E}\chi \in H' \Rightarrow \mathsf{A}\neg \chi \not\in H' \Rightarrow \mathsf{A}\neg \chi \not\in H \Rightarrow \mathsf{E}\chi \in H.$

Eliminación de Hintikka sets – algunos lemas

Lema (Truth lemma)

Si \mathcal{M}_C está definido (con $C\subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces vale:

$$\mathcal{M}_{\mathcal{C}}, H \models \varphi \Leftrightarrow \varphi \in H$$

para todo $H \in W_C$ y todo $\varphi \in Cl(\Sigma)$.

Eliminación de Hintikka sets - algunos lemas

Lema (Truth lemma)

Si \mathcal{M}_C está definido (con $C\subseteq \mathsf{A}(\mathsf{Cl}(\Sigma))$), entonces vale:

$$\mathcal{M}_{\mathcal{C}}, H \models \varphi \Leftrightarrow \varphi \in H$$

para todo $H \in W_C$ y todo $\varphi \in Cl(\Sigma)$.

Demostración

• Sale fácil por inducción en φ , usando el lema anterior.

Eliminación de Hintikka sets - ¿para qué?

Teorema

 Σ es satisfacible sii existen $C\subseteq \mathsf{A}(\mathrm{Cl}(\Sigma))$ y H en el dominio de \mathcal{M}_C tal que $\Sigma\subseteq H$.

Eliminación de Hintikka sets - ¿para qué?

Teorema

 Σ es satisfacible sii existen $C\subseteq \mathsf{A}(\mathrm{Cl}(\Sigma))$ y H en el dominio de \mathcal{M}_C tal que $\Sigma\subseteq H.$

Demostración

←) Consecuencia directa del Truth Lemma.

Eliminación de Hintikka sets - ¿para qué?

Teorema

 Σ es satisfacible sii existen $C\subseteq \mathsf{A}(\mathrm{Cl}(\Sigma))$ y H en el dominio de \mathcal{M}_C tal que $\Sigma\subseteq H.$

Demostración

- ←) Consecuencia directa del Truth Lemma.
- \Rightarrow) Idea:

Eliminación de Hintikka sets - ¿para qué?

Teorema

 Σ es satisfacible sii existen $C\subseteq \mathsf{A}(\mathrm{Cl}(\Sigma))$ y H en el dominio de \mathcal{M}_C tal que $\Sigma\subseteq H$.

Demostración

- ←) Consecuencia directa del Truth Lemma.
- ⇒) Idea:
 - Dado $\mathcal{M}, w \models \Sigma$, definir $H_v = \{\varphi \mid \mathcal{M}, v \models \varphi \text{ y } \varphi \in \text{Cl}(\Sigma)\}$ y armar $\mathcal{M}' = \langle W', R', V' \rangle$ tal que: $W' = \{H_v \mid v \in W\}$ $R' = \{(H_v, H_{v'}) \mid (v, v') \in R\}$

$$R' = \{(H_v, H_{v'}) \mid (v, v') \in R\}$$

$$V'(p) = \{H_v \mid p \in H_v\}$$

Eliminación de Hintikka sets - ¿para qué?

Teorema

 Σ es satisfacible sii existen $C\subseteq \mathsf{A}(\mathrm{Cl}(\Sigma))$ y H en el dominio de \mathcal{M}_C tal que $\Sigma\subseteq H$.

Demostración

- ←) Consecuencia directa del Truth Lemma.
- ⇒) Idea:
 - Dado $\mathcal{M}, w \models \Sigma$, definir $H_v = \{\varphi \mid \mathcal{M}, v \models \varphi \text{ y } \varphi \in \text{Cl}(\Sigma)\}$ y armar $\mathcal{M}' = \langle W', R', V' \rangle$ tal que: $W' = \{H_v \mid v \in W\}$

$$W' = \{H_v \mid v \in W\}
 R' = \{(H_v, H_{v'}) \mid (v, v') \in R\}
 V'(p) = \{H_v \mid p \in H_v\}$$

• Ver que i) $\mathcal{M}', H_w \models \Sigma$ y ii) $\exists C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma)) \forall v, H_v \in \mathit{Hin}_{\mathsf{C}}(\Sigma)$.

Eliminación de Hintikka sets – ¿para qué?

Teorema

 Σ es satisfacible sii existen $C\subseteq \mathsf{A}(\mathrm{Cl}(\Sigma))$ y H en el dominio de \mathcal{M}_C tal que $\Sigma\subseteq H$.

Demostración

- ⇐) Consecuencia directa del Truth Lemma.
- ⇒) Idea:
 - Dado $\mathcal{M}, w \models \Sigma$, definir $H_v = \{ \varphi \mid \mathcal{M}, v \models \varphi \text{ y } \varphi \in \text{Cl}(\Sigma) \}$ y armar $\mathcal{M}' = \langle W', R', V' \rangle$ tal que:

$$W' = \{H_v \mid v \in W\}
 R' = \{(H_v, H_{v'}) \mid (v, v') \in R\}
 V'(p) = \{H_v \mid p \in H_v\}$$

- Ver que i) $\mathcal{M}', H_w \models \Sigma$ y ii) $\exists C \subseteq \mathsf{A}(\mathsf{Cl}(\Sigma)) \forall v, H_v \in \mathit{Hin}_{\mathsf{C}}(\Sigma)$.
- Observar que todo H_v está en \mathcal{M}_C (suponer que hay un mínimo que fue eliminado y llegar a un absurdo)

Un algoritmo determinístico basado en eliminación de Hintikka sets

```
 \text{EsSat} \, (\Sigma) \\ \text{para cada} \, \, C \subseteq \mathsf{A}(\operatorname{Cl}(\Sigma)) \\ \text{calcular} \, \, \mathcal{M}_C \, \, \text{y si est\'a definido} \\ \text{para cada} \, \, H \, \, \text{en el dominio de} \, \, \mathcal{M}_C \\ \text{si} \, \, \Sigma \subseteq H \\ \text{devolver 1} \\ \text{devolver 0}
```

Un algoritmo determinístico basado en eliminación de Hintikka sets

```
EsSat (\Sigma) para cada C \subseteq \mathbf{A}(\operatorname{Cl}(\Sigma)) calcular \mathcal{M}_C y si está definido para cada H en el dominio de \mathcal{M}_C si \Sigma \subseteq H devolver 1 devolver 0
```

Observaciones

- ullet EsSat(Σ) computa ${\sf K}+{\sf A} ext{-satisfacibilidad de }\Sigma$ (finito).
- $|\mathsf{A}(\mathsf{Cl}(\Sigma))| \in O(2^{|\Sigma|}).$
- Computar \mathcal{M}_C y recorrer su dominio lleva $O(2^{|\Sigma|})$ pasos.
- Luego, el algoritmo requiere $O(2^{|\Sigma|})$ pasos.

Un algoritmo determinístico basado en eliminación de Hintikka sets

Observaciones

- ullet EsSat(Σ) computa ${\sf K}+{\sf A} ext{-satisfacibilidad de }\Sigma$ (finito).
- $|\mathsf{A}(\mathsf{Cl}(\Sigma))| \in O(2^{|\Sigma|}).$
- Computar $\mathcal{M}_{\mathcal{C}}$ y recorrer su dominio lleva $O(2^{|\Sigma|})$ pasos.
- Luego, el algoritmo requiere $O(2^{|\Sigma|})$ pasos.

¿Será además EXPTIME-completo?