Title

Timothy Chu Carnegie Mellon University tzchu@andrew.cmu.edu

September 17, 2019

Abstract

Buser shows that the isoperimetric cut of a surface with Ricci curvature bounded below, can be bounded as

 $\lambda_1 \le C(H + H^2)$

where H is the isoperimetric ratio of a cut.

The first proof technique uses an "area minimizing current", which shows that the curvature of the cut must be constant.

The second proof technique doens't use this: instead, they use an ϵ net to build a new division from the initial cut X (which can be 'wavy'). This new 'cut' (doesn't have to be a hypersurface, isn't null, but can be full dimensional) is \hat{X} , and they do this by defining \hat{X} to be the locus of points where a ball of radius r has exactly half the mass in A and half the mass in B. This 'smooths' wavy cuts.

Then they build an epsilon net around \hat{X} , and extend that to an epsilon net of the whole manifold. Finally, they build a little collar around \hat{X} , and use some properties of the hyperbolic spheres (only useful since hyperbolic sphere is some manifold lower bound on some volume terms relevant in the calculation, on objects of lower-bounded Ricci curvature) to establish the final bound.

In short, they build a Rayleigh quotient using \hat{X} , a smoothed version of X (that isn't exactly a 'cut', but still divides manifold M into two pieces), via a collar of radius r around \hat{X} . The Rayleigh quotient is 1 on the parts outside of \hat{X} , while it is $d(p,\hat{X})/r$ everywhere else.

 ϵ -nets are used for the analysis, but I am not sure they are used for the construction.