Towards Social Botnet Behavior Detecting in the End Host

Yuede Ji, Yukun He, Xinyang Jiang, and Qiang Li Jilin University

12/17/2014

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

1.1 What is Botnet and Bot?

- A botnet is a network composed by a large scale of infected hosts under the control of a botmaster through Command and Control (C&C) channel.
- Bot is the infected host

1.1 What is Botnet and Bot?

- 3 basic elements:
 - Bot, C&C channel, botmaster
- C&C channel
 - Biggest difference between bot and other malwares
 - Centralized: IRC, HTTP
 - Decentralized: Peer-to-Peer (P2P)
- A major threat to Internet security
 - DDoS, spam, identity theft, phishing

1.2 What is Social Botnet?

 Social botnet utilizes Online Social Network (OSN) as C&C channel.

• Social bot runs on user hosts stealthily, controls user account on OSN site, and communicates with the botmaster.

1.2 What is Social Botnet?

• Example: koobface

28 minutes ago from web - Reply - View Tweet

face of koobface: The largest web 2.0 botnet explained, Trend Micro Research 5 (9) (2009) 10.

1.3 Existing Detection Approaches

• Server-side:

 mainly use classification methods to identify malicious accounts or messages

• Host-side:

 mainly monitor the abnormal behaviors on host to determine whether it is infected

1.4 Our Contributions

1. We design a social botnet, named wbbot, based on Sina Weibo.

2. We identify six critical phases based on life cycle, and analyze social bot behaviors based on these phases.

3. We propose a behavior tree-based detection approach, which can get a fairly good detection rate compared with others.

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

2.1 Wbbot Architecture

(b) Wbbot control flow on host

2.2 Wbbot Behaviors

- Wbbot behaviors can be classified into two categories:
 - host based
 - social network based

	Command	Description
Host	getNetInfo	get host information (MAC, IP, username, etc.)
	getVersion	get the windows system Version
	exeCmd	execute a DOS command
	timeExeCmd	execute a DOS command at a specific time
	visit	force the IE browser to open an URL
	redirect	rebind the domain and IP
Social network	pubWeiboText	order wbbot to publish a message
	postComment	order wbbot to comment a message on a user
	addFollowing	order wbbot to follow an account
	autoAddFollowing	order wbbot to automatically follow others

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

3. Host Behaviors of Social Bots

- Analyze existing social bots:
 - Two samples: koobface, Naz bot;
 - Three laboratory works: stegobot, bot designed by Boshmaf, and facebot.

• Divide their behaviors into six phases:

3. Host Behaviors of Social Bots

In each phase, social bots can have several possible behaviors.

Phase	Notation	Description
	A[1]	browser download suspicious binaries
1	A[2]	download the binary attachment of emails
	A[3]	other suspicious binaries coming from outside
	B[1]	modifying bootstrap list of system
	B[2]	modifying bootstrap list of browser
2	B[3]	log all the keystrokes
	B[4]	stealing sensitive information
	B[5]	checking Internet cookies
	B[6]	monitoring OSN operations, email operations, etc.
	C[1]	automatically connect some specific HTTP servers
3	C[2]	automatically upload messages
	C[3]	automatically upload pictures
	C[4]	automatically visit some specific users
	D[1]	automatically download some specific user messages
4	D[2]	automatically download some specific user pictures
	D[3]	automatically download user profiles
	D[4]	automatically listen on a port and receive messages
	E[1] commands executing in the host	
5	E[2]	commands executing on OSN sites
	E[3]	commands related with HTTP
	F[1]	Return the encrypted information to HTTP server
	F[2]	Find the botmaster account and review the information
6	F[3]	Automatically join a specific chat group
	F[4]	Automatically publish suspicious messages
	F[5]	Automatically upload suspicious pictures

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

4.1 Detection System Architecture

- (1) Behavior Tree Representation
 - $-T = \langle V, E \rangle$
 - L1, root layer, represent the detection result
 - L2, six phases based on life cycle
 - L3, specific behaviors of L2
 - L4, implementations of each behavior

Example: B[1]

(2) Behavior Tree Construction:

 Once the behavior in L4 layer is identified, we will flag the nodes from bottom to top

- Example: the suspicious process has the following behaviors:
 - modify the Registry value of Run,
 - check Internet cookies,
 - automatically upload messages using POST function to OSN sites.

- (3) Template Library Construction:
 - Off-line process based on three aspects:
 - existing social bot samples,
 - possible social bots of laboratory works,
 - possible implementations from our analysis.

(4) Behavior Tree Match:

- Utilize tree edit distance to calculate tree similarity s.
- Robust Tree Edit Distance algorithm (RTED)
 - [21] M. Pawlik, N. Augsten,
 Rted: a robust algorithm for the tree edit distance, Proceedings of the VLDB Endowment 5 (4) (2011) 334–345.
- Calculation of trees similarity

$$-s = 1 - \frac{d}{\max(m,n)}$$

Algorithm 2 Behavior Tree Match Algorithm

Input: Suspicious behavior tree tOutput: The result of root node 1: set $max_s = 0$

- 2: **for** T in Template **do**
- 3: d = RTED(t,T)4: $s = 1 - \frac{d}{max(t.length,T.length)}$
- $5: \quad \text{if } s \ge \max_s \text{ then}$
- 6: $max_s = s$ 7: **end if**
- 8: end for
- 9: if $max_s > \theta$ then
- 10: flag the root node as social bot
- 11: else
- 12: flag the root node as benign
- 13: end if

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

5.1 Data Collection

Social Bot	Source	Duration	Size
Koobface	Open Malware	24 h	5.32 GB
Twitterbot	The author shared their source code with us	24 h	8.36 GB
TWebot	The author of a social botnet detection approach shared TWebot builders and binaries with us	18 h	2.77 GB
Yazanbot	We reproduced it based on their paper.	24 h	7.36 GB
FixNazbot	We reproduced it based on their paper.	24 h	4.99 GB
Wbbot	We designed.	18 h	11.5 GB
Fbbot	We designed.	5 h	4.65 GB

http://pan.baidu.com/s/1hqvHoSO

5.2 Detection Result

(1) Detection Result

31.8%
0%
0%
0%
0%
0%
0%
4.5%

(2) Result Analysis:

- a) FP rate is a little high
 - many benign processes perform similar behaviors as social bots
 - most social bots mimic user activities or benign application activities
- b) Koobface has a high FN rate
 - we only have their binaries and cannot configure them

5.2 Detection Result

(1) VirusTotal Detection Result

Trace	Detection Ratio
Koobface	47 / 54
FixNazbot	0 / 54
Yazanbot	1 / 51
Twitterbot	2 / 54
Fbbot	2 / 54
Wbbot	3 / 53
TWebot	2 / 54
Total	15.2%

- (2) Result Analysis:
- a) Koobface has a high detection ratio
 - Koobface has been already in signature database of most antivirus engines
- b) Others have a very low detection ratio
- c) Compared with them, our detection result is fairly good.

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

6. Discussion

1. Limitation

- (1) The FP rate of our detection system is a little high.
- (2) The construction of template library is static

2. Future Work

- (1) Try to improve the detection rate
- (2) Try to improve the construction mechanism of template library

- 1. Introduction
- 2. Design and Analysis of Wbbot
- 3. Host Behaviors of Social Bots
- 4. Methodology
- 5. Experiment
- 6. Discussion
- 7. Conclusion

7. Conclusion

1. Compared with other detection tools, our approach can still get a fairly good result

2. Our research still exists some flaws

3. The topic is interesting and needs a lot of further works...

Thanks for your attention!

Questions?