The Role of Energy Efficiency in Productivity: Evidence from Canada

Anil Gogebakan
University of Calgary
Ph.D. Candidate in Economics
Supervisor: Prof. Trevor Tombe

September 24, 2025

Supported by Environment and Climate Change Canada's Economics Environmental Policy Research Network (EEPRN)

Outline

- Motivation
- 2 Data
- 3 Framework
- 4 Mode
- Results
- 6 Conclusion

Why Study Energy Misallocation?

- ullet Resource misallocation o major source of productivity loss.
- Prior work: Focusing mainly on capital and labor misallocation.
- Energy: a central input in all sectors, yet much less studied.
- Increasingly important for both productivity and climate policy.

Sources: Hsieh and Klenow (2009); Restuccia and Rogerson (2017); Bartelsman et al. (2013); Chen and Irarrazabal (2015); Asker et al. (2019); Choi (2020); Tombe and Winter (2015).

Share of Manufacturing Sector

• ... However, most studies focus on manufacturing sector and firm level input inefficiencies.

Country	Manufacturing Share (% of GDP)				
China (2023)	25.5				
India (2023)	13.0				
USA (2023)	10.3				
Canada (2014–2020 avg.)	~10.0				

Source: World Bank

 I rather examine economy-wide estimate of energy misallocation at sector-by-province level.

Why Canada? & Why Province-Sector Level?

- Provinces differ in energy policy
 → fragmented markets.
- High variation in energy prices, infrastructure, and regulation.
- Limited interprovincial trade \rightarrow persistent inefficiencies.
- Internal trade studies show sizable productivity losses (3–7%).^a
- Rich provincial input-output data (2014–2020).

Canada's Input Shares (Sector Level)

Input	Share (%)				
Labor	60–65				
Capital	25-30				
Energy	5–10				

Author's calculations.

^aAlbrecht and Tombe (2016); Alvarez et al. (2019)

Preview of the Results

- \bullet ~5–8% potential TFP gains overall (2014–2020)
- Decomposition: Most misallocation (more than half) comes from within-sector differences across provinces
 - ullet Capital dominates between-sector losses: $\sim 1-4\%$ output loss
 - Energy accounts for \sim 1–2% output loss (disproportionately large relative to its small share \sim 8%)
 - ullet Labor accounts for less than ${\sim}1\%$ output loss
- Per dollar, energy is more distortionary than capital or labor.
- Bottom line: Energy inefficiency acts as a persistent bottleneck, offsetting efficiency gains elsewhere.

Contribution

- Connects **output gaps and climate goals**: efficient energy use boosts **productivity** *and* reduces **emissions**.
- I focus on energy as an essential input and show its disproportionately large effect on aggregate productivity → equally (even more) important to capital or labor.
- First economy-wide estimate of energy misallocation (sector × province data).
- Quantifies productivity loss from energy misallocation across regions and sectors → spatial dimension
- \bullet Uses a tractable, flexible, and generalizable model \to policy insights on energy pricing, infrastructure, climate policy.

Outline

- Motivation
- 2 Data
- 3 Framework
- 4 Mode
- Results
- 6 Conclusion

Data Sources & Features

- Statistics Canada Provincial Input—Output Tables (2014–2020).
- Sectors: 230+ sectors, covering entire economy.
- Inputs: energy, capital, labor.
- Sector-by-province level variation.
- Energy share in inputs varies widely by province.
- Detailed enough (more than 230+ sectors for 10 provinces).

Who's Who in the Data: Energy Sectors

- 10 Oil and gas extraction (except oil sands)
- 11 Oil sands extraction
- 12 Coal mining
- 22 Natural gas extraction
- 23 Support activities for oil and gas extraction
- 24 Support activities for mining
- 25 Electric power generation, transmission and distribution
- 30 Transportation engineering construction
- 31 Oil and gas engineering construction
- 57 Petroleum refineries
- 58 Petroleum and coal product manufacturing (except petroleum refineries)
- 148 Crude oil and other pipeline transportation
- 149 Pipeline transportation of natural gas

Who's Who in the Data: Capital and Labor

Capital:

Single row: Gross Mixed Income

Labor:

- Two rows:
 - Wages and salaries
 - Employers' social contributions

Outline

- Motivation
- 2 Data
- Framework
- Mode
- 6 Results
- 6 Conclusion

Conceptual Framework

- Build on Hsieh-Klenow (2009) misallocation model.
- Provinces/sectors face distortions → marginal revenue products differ.
- Extend to include energy alongside capital and labor.
- Compare observed allocation vs. efficient benchmark.
- Fully tractable and flexible model allowing for clean decomposition: within-sector (across provinces) vs. between-sector (within provinces) misallocation.

Outline

- Motivation
- 2 Data
- Framework
- Model
- Results
- 6 Conclusion

Aggregate Output and Sectoral Shares

National output is CES over sectoral outputs:

$$Y = \prod_{s=1}^{S} Y_s^{\theta_s}, \quad \theta_s = \frac{P_s Y_s}{PY}, \quad \sum_s \theta_s = 1$$

• Each sector s is CES across provinces i:

$$Y_s = \left(\sum_i Y_{si}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

Associated price index:

$$P_s = \left(\sum_i P_{si}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}$$

Production Technology

 Sector–province production follows Cobb–Douglas with three inputs:

$$Y_{si} = A_{si} K_{si}^{\alpha_s} L_{si}^{\beta_s} E_{si}^{\gamma_s}, \quad \alpha_s + \beta_s + \gamma_s = 1$$

- Inputs: capital K, labor L, energy E.
- Distortions enter as wedges on input prices.

Profit Maximization with Distortions

• Each sector s in province i maximizes profits:

$$\max_{K,L,E} P_{si} Y_{si} - (1 + \tau_K) rK - (1 + \tau_L) wL - (1 + \tau_E) p_E E$$

- \bullet τ are wedges capturing distortions.
- Leads marginal revenue products (MRPs) to be distorted.

Marginal Revenue Products

From first-order conditions:

$$MRPK_{si} = lpha_s rac{P_{si} Y_{si}}{K_{si}} = (1 + au_{K_{si}})r$$
 $MRPL_{si} = eta_s rac{P_{si} Y_{si}}{L_{si}} = (1 + au_{L_{si}})w$
 $MRPE_{si} = \gamma_s rac{P_{si} Y_{si}}{E_{si}} = (1 + au_{E_{si}})p_E$

- Equalization across provinces and sectors implies efficiency.
- Dispersion reflects misallocation.

Productivity Measures

Physical TFP (TFPQ):

$$TFPQ_{si} = \frac{Y_{si}}{K_{si}^{\alpha_s} L_{si}^{\beta_s} E_{si}^{\gamma_s}}$$

Revenue TFP (TFPR):

$$TFPR_{si} = \frac{P_{si} Y_{si}}{K_{si}^{\alpha_s} L_{si}^{\beta_s} E_{si}^{\gamma_s}}$$

$$egin{aligned} TFPR_{si} &\propto (\textit{MRPK}_{si})^{lpha_s} (\textit{MRPL}_{si})^{eta_s} (\textit{MRPE}_{si})^{\gamma_s} \ &\propto (1+ au_{K_{si}})^{lpha_s} (1+ au_{L_{si}})^{eta_s} (1+ au_{E_{si}})^{\gamma_s} \end{aligned}$$

• Key insight: TFPR dispersion ⇒ misallocation.

Sectoral Productivity under Misallocation

Sector TFP with distortions:

$$A_{s} = \left[\sum_{i} \left(A_{si} \left(\frac{\overline{MRPK_{s}}}{MRPK_{si}}\right)^{\alpha_{s}} \left(\frac{\overline{MRPL_{s}}}{MRPL_{si}}\right)^{\beta_{s}} \left(\frac{\overline{MRPE_{s}}}{MRPE_{si}}\right)^{\gamma_{s}}\right)^{\sigma-1}\right]^{\frac{1}{\sigma-1}}$$

Efficient benchmark (no distortions):

$$A_s^* = \left(\sum_i A_{si}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$

$$\frac{A_s}{A_s^*} = \left[\sum_{i} \left(\frac{A_{si}}{A_s^*} \left(\frac{\overline{MRPK_s}}{MRPK_{si}} \right)^{\alpha} \left(\frac{\overline{MRPL_s}}{MRPL_{si}} \right)^{\beta} \left(\frac{\overline{MRPE_s}}{MRPE_{si}} \right)^{\gamma} \right)^{\sigma - 1} \right]^{\frac{1}{\sigma - 1}}$$

Productivity Decomposition

National productivity loss decomposed into:

$$\frac{A}{A^*} = \underbrace{\prod_{s} \left(\frac{A_s}{A_s^*}\right)^{\theta_s}}_{\text{Within-sector misallocation}} \times \underbrace{\prod_{s} \left(\left(\frac{k_s}{k_s^*}\right)^{\alpha_s} \left(\frac{I_s}{I_s^*}\right)^{\beta_s} \left(\frac{e_s}{e_s^*}\right)^{\gamma_s}\right)^{\theta_s}}_{\text{Between-sector misallocation}}$$

- Within-sector: across provinces in a sector (interprovincial).
- Between-sector: across sectors in the economy (intersectoral).
- Can further decompose by input: capital, labor, energy.

Measuring Input-Specific Distortions

Recall that (under Cobb-Douglas):

$$MRPK_{si} = \alpha_s \frac{\sigma - 1}{\sigma} \frac{P_{si} Y_{si}}{K_{si}} = (1 + \tau_{K_{si}})r$$

• Taking logs and subtracting ln(r) and rearranging:

$$\underbrace{\ln(\textit{MRPK}_{\textit{si}})}_{\epsilon_{\textit{si}}} - \underbrace{\ln(r) - \ln(\frac{\sigma - 1}{\sigma})}_{\beta_0} - \underbrace{\ln(\alpha_{\textit{s}})}_{\text{sector FE}} = \ln\left(\frac{P_{\textit{si}}Y_{\textit{si}}}{rK_{\textit{si}}}\right)$$

Regression:

$$\ln\left(\frac{P_{si}Y_{si}}{rK_{si}}\right) = \beta_0 + \sum_{s} \beta_s \gamma_s + \epsilon_{si}$$

• **Interpretation:** Dependent variable = revenue-to-capital ratio; intercept = common parameters; sector FE absorb averages; residuals ϵ_{si} capture dispersion \Rightarrow variance of residuals measures misallocation.

22 / 34

Outline

- Motivation
- 2 Data
- Framework
- 4 Mode
- 6 Results
- Conclusion

Dispersion of MRPs, 2014 vs. 2020

- Labor dispersion consistently lowest.
- Capital allocation improves modestly over time.
- Energy dispersion remains high \Rightarrow persistent inefficiency.

Sector-Level Changes in MRP Dispersion

Relative TFPR Dispersion by Province

Recall that:

$$egin{aligned} extit{TFPR}_{si} &\propto (extit{MRPK}_{si})^{lpha_s} (extit{MRPL}_{si})^{eta_s} (extit{MRPE}_{si})^{\gamma_s} \ &\propto (1+ au_{ extit{K}_{si}})^{lpha_s} (1+ au_{ extit{L}_{si}})^{eta_s} (1+ au_{ extit{E}_{si}})^{\gamma_s} \end{aligned}$$

- TFPR = geometric average of MRPs under Cobb-Douglas.
- Measure dispersion relative to sectoral average.
- Higher dispersion ⇒ greater productivity loss.

TFPR Dispersion Insights

- ON, QC: lowest misallocation, though QC worsens over time.
- AB, BC: some improvement.
- NB, MB, SK: persistently higher misallocation.
- Dispersion differs by up to $\approx 20\%$ from sectoral average.

Aggregate Productivity Gains $(\sigma = 3)$

Table: TFP Gains from Input Reallocation (in %), 2014–2020, $\sigma = 3$

Component	2014	2015	2016	2017	2018	2019	2020
Total Misallocation	8.05	6.46	4.90	4.84	5.28	5.74	5.08
Between-sector Misallocation	3.96	2.25	1.27	1.53	1.53	1.96	1.63
Capital	1.80	1.22	0.55	0.66	0.71	0.88	0.83
Labor	0.78	0.50	0.36	0.37	0.39	0.37	0.46
Energy	1.43	0.55	0.36	0.50	0.45	0.73	0.34
Within-sector Misallocation	4.26	4.31	3.67	3.37	3.81	3.86	3.50
Capital	1.33	1.27	1.75	1.36	1.71	1.85	1.33
Labor	2.55	2.76	1.26	1.54	1.69	1.54	1.73
Energy	1.53	1.67	1.14	0.93	1.09	0.98	0.81

- Potential gains: 8% (2014) \rightarrow 5% (2020).
- Most loss from within-sector (interprovincial) misallocation.
- Capital and energy are the largest contributors.

Aggregate Productivity Gains $(\sigma = 7)$

Table: TFP Gains from Input Reallocation (in %), 2014–2020, $\sigma=7$

Component	2014	2015	2016	2017	2018	2019	2020
Total Misallocation	9.40	7.51	5.81	5.72	6.85	6.52	5.81
Between-sector Misallocation	3.96	2.25	1.27	1.53	1.53	1.96	1.63
Capital	1.80	1.22	0.55	0.66	0.71	0.88	0.83
Labor	0.78	0.50	0.36	0.37	0.39	0.37	0.46
Energy	1.43	0.55	0.36	0.50	0.45	0.73	0.34
Within-sector Misallocation	5.66	5.39	4.60	4.26	5.40	4.65	4.25
Capital	5.12	3.30	4.89	4.29	7.28	4.41	3.51
Labor	5.85	5.51	3.35	4.21	5.49	3.75	3.82
Energy	3.27	3.36	2.36	2.23	3.37	2.07	1.85

- Potential gains: 9.4% (2014) $\rightarrow 5.8\%$ (2020).
- Within-sector misallocation rises significantly.
- Energy misallocation peaks at 3.4pp in 2018.

Outline

- Motivation
- 2 Data
- Framework
- 4 Mode
- Results
- 6 Conclusion

Key Takeaways

- Energy misallocation plays outsized role despite its small $(\leq 10\%)$ input share.
- Labor allocation relatively efficient.
- Interprovincial distortions (trade, regulation) = major driver.
- Policy takeaway: energy coordination + market integration could yield sizable productivity gains.

Acknowledgements

- Prof. Trevor Tombe Main supervisor; for his excellent guidance and supervision.
- Prof. M. Scott Taylor and Prof. Arvind Magesan —
 Committee members; for their continued support and feedback.
- Prof. Stefan Staubli Graduate Program Director; for organizing the departmental seminar.
- Environment and Climate Change Canada's EEPRN and Smart Prosperity Institute — for research funding and support.

Thank You! ©

Questions and comments are very welcome.

References I

- Albrecht, L. and Tombe, T. (2016). Internal trade, productivity and interconnected industries: A quantitative analysis. Canadian Journal of Economics/Revue canadienne d'économique, 49(1):237–263.
- Alvarez, J., Krznar, M. I., and Tombe, T. (2019). Internal trade in Canada: case for liberalization. International Monetary Fund.
- Asker, J., Collard-Wexler, A., and De Loecker, J. (2019). (mis) allocation, market power, and global oil extraction. American Economic Review, 109(4):1568–1615.
- Bartelsman, E., Haltiwanger, J., and Scarpetta, S. (2013). Cross-country differences in productivity: The role of allocation and selection. *American economic review*, 103(1):305–334.
- Chen, K. and Irarrazabal, A. (2015). The role of allocative efficiency in a decade of recovery. Review of Economic Dynamics, 18(3):523–550.
- Choi, B. (2020). Productivity and misallocation of energy resources: Evidence from korea's manufacturing sector. Resource and Energy Economics, 61:101184.
- Hsieh, C.-T. and Klenow, P. J. (2009). Misallocation and manufacturing tfp in china and india. The Quarterly journal of economics, 124(4):1403–1448.
- Restuccia, D. and Rogerson, R. (2017). The causes and costs of misallocation. Journal of Economic Perspectives, 31(3):151–174.
- Tombe, T. and Winter, J. (2015). Environmental policy and misallocation: The productivity effect of intensity standards. Journal of Environmental Economics and Management, 72:137–163.