Contents

Contents

1 Differentiable structures on topological manifolds

2

1 Differentiable structures on topological manifolds

Definition 1.0.1 (Topological Manifold). A second countable Hausdorffspace M is called **topological manifold** of dimension $m \in \mathbb{N}$, if it is locally homeomorphic to \mathbb{R}^m . To be precise, if for all $p \in M$ there exists an open neighborhood $U \subseteq M$ of p, an open set $V \subseteq \mathbb{R}^m$ and a map $\varphi : W \to V$ that is a homeomorphism. We call the map $\varphi : U \to V$ a **chart around** p **on** M and φ^{-1} a **local coordinate system around** p **on** M.

Definition 1.0.2 (Differentiable Manifold). Let M be a topological manifold of dimension M.

- 1. A differentiable atlas of class $r \in \mathbb{N} \cup \{\infty\}$ is a family of charts $\mathfrak{A} = (\varphi_i : U_i \to V_i)_{i \in I}$ such that
 - a) $\bigcup_{i \in I} U_i = M$, meaning that (U_i) is an open covering of M.
 - b) For every pair $(i, j) \in I^2$ the **transition function**:

$$\varphi_{ij}: \varphi_j(U_i \cap U_j) \to \varphi_i(U_i \cap U_j)$$

$$x \mapsto \left(\varphi_i \circ \varphi_j^{-1}\right)(x)$$

is differentiable of class r.

We call such an atlas a C^r -atlas.

2. Two C^r -atlases \mathfrak{A} and \mathfrak{B} are called **equivalent** if the family $\mathfrak{A} + \mathfrak{B} = (\varphi_i, \varphi_j)_{ij}$ is a C^r -atlas.

A differentiable structure of class r on M is an equivalence class c of C^r -atlases. For $r = \infty$ we call the pair (M, c) a smooth manifold.

Corollary 1.0.3. Every transition functions φ_{ij} $i, j \in I^2$ of a differentiable atlas $\mathfrak{A} = (\varphi_i)_{i \in I}$ is not just a homeomorphism but also a diffeomorphism due to $\varphi_{ji} = \varphi_{ij}^{-1}$

Definition 1.0.4. Let (M,c) be a differentiable manifold of class r and $U \subseteq M$ open. We call a continuous function

$$f:U\to\mathbb{R}$$

differentiable of class r, if for any one (and hence for all) $(\varphi_i)_{i \in I} = \mathfrak{A} \in c$ the compositions $f \circ \varphi_i^{-1}$ are differentiable of class r. For $r = \infty$ we define:

$$\mathcal{E}(U) = \{ f \in U \to \mathbb{R} \text{ continous } | f \text{ is differentiable of class } \infty \}.$$

Corollary 1.0.5. Let (M,c) be a smooth manifold of dimension m and $U \subseteq M$ be a open subset. With pointwise defined operations, the set $(\mathcal{E}(U), +, \cdot, \circ)$ becomes an \mathbb{R} -algebra. Furthermore, \mathcal{E} becomes a sheaf of \mathbb{R} -algebras.

Proof. There is not really a need for a proof. However, it might help to work through the definition of a sheaf as a reminder. First, \mathcal{E} is a presheaf, where the restriction in the domain of a function gives the needed restriction homomorphism:

$$\operatorname{res}_{V}^{U}: \mathcal{E}(U) \to \mathcal{E}(V)$$
$$f \mapsto f\Big|_{V}.$$

The required properties of a presheaf are trivial. Furthermore, this gives a sheaf as the requirement of locality is trivial for functions and the property of gluing is also trivial for functions, since differentiability is a local property.

Definition 1.0.6. If $p \in M$ is fix, $f \in \mathcal{E}(U)$ and $g \in \mathcal{E}(U')$ such that $p \in U \cap U'$ we say that f and g have the same **germ in** p, if there is another open neighborhood $W \subseteq U \cap U'$ of p such that $f|_w = g|_W$. This defines an equivalence relation \sim_p . An equivalence class s of local functions around p is called a **germ in** p. We write $s = f_p$, if s = [f] with $f \in \mathcal{E}(U)$. We write

$$\mathcal{E}_p(M) = \left(\sum_{U \text{ open}, p \in U} \mathcal{E}(U)\right) / \sim_p.$$

For the set of germs and call it the **stalk in** p. Here \sum denotes the co-product (also called sum) in \top and hence the disjoint union.

Corollary 1.0.7. For a smooth manifold (M,c) the set $\mathcal{E}_p(M)$ inherits an \mathbb{R} -algebra structure from the $\mathcal{E}(U)$. Furthermore, it carries a natural (evaluation-)homomorphism:

$$\operatorname{eval}_p : \mathcal{E}_p(M) \to \mathbb{R}$$

$$f_p \mapsto f(p) =: f_p(p)$$

The stalks are also local rings with maximal ideal $\mathfrak{m}_p = \ker(\operatorname{eval}_p)$. Hence, the pair (M, \mathcal{E}) gives us a locally ringed space.

Proof. Here, we only need to prove the statement about the locality of the stalks. This follows from $f_p \in \mathcal{E}_p(M)$ being invertible if and only if $f(p) \neq 0$ which is the same as $f_p \notin \ker(\operatorname{eval}_p)$.

Definition 1.0.8. Let (M,c) be a smooth manifold of dimension m and $p \in M$. We call an \mathbb{R} -linear map $\delta : \mathcal{E}_n(M) \to \mathbb{R}$ a **derivation**, if it satisfies the Leibnitz-rule:

$$\delta(f_p \cdot g_p) = \delta(f_p)g_p(p) + f_p(p)\delta(g_p)$$
 for all $f, g \in \mathcal{E}_p(M)$.

We call $\operatorname{Der}_{\mathbb{R}}(\mathcal{E}_p(M), \mathbb{R})$ the set of derivations and give it a \mathbb{R} vector space structure by pointwise operations. We define the **tangent space** of M at p to be the vector space

$$TM_n := \operatorname{Der}_{\mathbb{R}}(\mathcal{E}_n(M), \mathbb{R})$$
.

Corollary 1.0.9. Let (M,c) be a smooth manifold and $\varphi: U \to V$ be a chart around p with $x_0 = \varphi(p)$ $(\varphi \in \mathfrak{A} \in c)$. Then

$$\xi = \frac{\partial}{\partial x^{j}} \Big|_{p} : \mathcal{E}_{p}(M) \to \mathbb{R}$$

$$f_{p} \mapsto \xi(f_{p}) = \frac{\partial}{\partial x^{j}} \Big|_{x_{0}} (f \circ \varphi^{-1})$$

is well-defined and a tangent vector. In fact, the family

$$\left(\frac{\partial}{\partial x^1}\Big|_p, ..., \frac{\partial}{\partial x^m}\Big|_p\right)$$

defines a basis of TM_p . Hence, the dimension of TM_p is m.

Definition 1.0.10. For a smooth manifold (M, c) the sum $\sum_p TM_p$ comes with a natural projection

$$\pi: TM \to M$$

$$\xi \mapsto p \text{ where } \xi \in TM_p$$

Furthermore, the local vector fields with respect to a chart $\varphi: U \to V$

$$\frac{\partial}{\partial x^j} : U \to \pi^{-1}(U)$$
$$p \mapsto \frac{\partial}{\partial x^j} \Big|_{r}$$

induce a local trivialization:

$$\pi^{-1}(U) \cong U \times \mathbb{R}^m$$
.

We can induce a topology on TM such that all those trivializations are continuos. This then gives an atlas for TM such that we have a 2m-dimensional manifold. To be precise, the atlas is given by the maps $\pi^{-1}(U_i) \to R^m \times R^m; x \mapsto (\pi(x), q_{\varphi \circ \pi(x)}(x))$ where q_p denotes the coordinate map corresponding to the basis $(\frac{\partial}{\partial x^1}|_p, ..., \frac{\partial}{\partial x^m}|_p)$ that depends on the chart φ_i . In fact, this yields a smooth manifold and a (smooth) vector bundle of dimension m. We call TM the **tangent bundle**.

Definition 1.0.11 (The Derivative). Let (M,c) and (M',c') be smooth manifolds (from now on we suppress the differentiable structure in our notation). We call a continuous function $f: M \to M'$ smooth, if for all $\varphi \in \mathfrak{A} \in c$ and $\varphi' \in \mathfrak{A}' \in c'$ the maps

$$\varphi' \circ f \circ \varphi^{-1} : V \to V'$$

are smooth. A given smooth function induces a smooth function between the Tangent bundles as follows:

$$Df:TM \to TM'$$
, $Df_p(\xi)(q_p) = \xi((g \circ f)_p)$

Here, $\xi \in T_pM$, $g_p \in E_p(M')$.

Corollary 1.0.12. Let $f: M \to \mathbb{R}$ be smooth and $\varphi: U \to V$ be a chart. Then we can interprete df as a one-form. To be prezice assume q to be the coordinate funktion $T\mathbb{R} \to \mathbb{R}$ from the basis induced by the identity as a chart. $v \in \Gamma TM$ we have

$$q \circ \mathrm{d}f(v) = v \cdot f$$

Here on the righd side, f denotes a map $p \mapsto f_p$ such that $v(f)(p) := v_p(f_p)$ is well defined. We keep this notations so vector fields can take funktions as an input.

Proof. We proof this by showing it for the section $\frac{\partial}{\partial x^i}$ and thereby for any, since those sections form a basis of the space of sections as a $C^{\infty}(M,\mathbb{R})$ vectorspace. Now let $g_p \in \mathcal{E}_p(\mathbb{R})$ and $\varphi(p) = x_0$. Then

$$df(\frac{\partial}{\partial x^{i}}|_{p})(g_{p}) = \frac{\partial}{\partial x^{i}}|_{p}(g \circ f)_{p} = \frac{\partial}{\partial x^{i}}|_{x_{0}}(g \circ f \circ \varphi^{-1}) = \frac{\partial}{\partial x}|_{p}(g_{p}) \cdot \frac{\partial}{\partial x^{i}}|_{p}(f_{p})$$

Hence, $df(v) = v(f) \frac{\partial}{\partial x}$ letting us conclude the statement.

Definition 1.0.13 (A Metric). Let M be a smooth manifold. A section $g \in \Gamma(TM^* \otimes TM^*)$ into the tensor product of the dual Tangend bundle with itself is a **riemannian** metric if the following are satisfied for all $p \in M$:

- 1. g is **non degenerate**, meaning for a $v_p \in T_pM$ $g_p(v_p, w_p) = 0 \ \forall w_p \in T_pM$ then $v_p = 0$.
- 2. g is symmetric, meaning $g_p(v_p, w_p) = g_p(w_p, v_p) \ \forall v_p, w_p \in T_pM$.
- 3. g is **positiv definite**, meaning that $g_p(v_p, v_p) \ge 0 \forall v_p$ and vanishes only for $v_p = 0$.

We cal a touple (M, g) a **riemannian manifold**.

Definition 1.0.14 (The Gradient). Assume that (M, g) is a smooth manifold together with a riemannian metric. Let $f: M \to \mathbb{R}$ be a smooth function. We define its **gradient** to be a vector field grad $(f) \in \Gamma(TM)$ such that for any vector field V:

$$q \circ df(V) = g(\operatorname{grad}(f), V)$$
.

Here q denotes the canonical coordinate funtion $TR \to \mathbb{R}$.

Definition 1.0.15. Let (M, g) be a riemannian manifold and $\varphi : U \to V$ be a chart. We define the smooth functions $g_{ij} : U \to \mathbb{R}$ to be :

$$g_{ij} = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}).$$

Then if two vector fields v,w over U are given with $v=\sum v^i\frac{\partial}{\partial x^i}$ and $w=\sum_i w^i\frac{\partial}{\partial x^i}$ we can calculate the metric locally:

$$g(v,w) = \sum_{ij} g_{ij}v^i w^j : U \to \mathbb{R}$$

Furthermore, we can invert the matricies $(g_{ij}(p))_{ij}$ for all p (which is a smooth procedure by the theorem of cayley hamilton) to get smooth functions

$$g^{ij}: U \to \mathbb{R}$$
$$p \mapsto g^{ij}(p) = \left((g_{kl}(p))_{kl}^{-1} \right)_{ij}$$

Lemma 1.0.16. Let $\varphi: U \to V$ be a chart. Then the gradient has the local form:

$$\operatorname{grad}(f) = \sum_{i,j} g^{ij} \left(\frac{\partial}{\partial x^i} (f) \right) \frac{\partial}{\partial x^j} = \sum_{i,j} g^{ij} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j}.$$

Here, g^{ij} denotes the smooth functions given by the coordinates of the function $x \mapsto (g_{ij}(x))$ that defines the coordinate representation of the gradient in x.

Proof. Assume that $v, w \in \Gamma(TM)$ such that $v = \sum_i v^i \frac{\partial}{\partial x^i}$ and $w = \sum_i w^i \frac{\partial}{\partial x^i}$. Then $g(v, w) = \sum_{i,j} g_{ij} v^i w^i$. Suppose that $\operatorname{grad}(f) = \sum_j G^j \frac{\partial}{\partial x^j}$ and q is the coordinate map $T\mathbb{R} \to \mathbb{R}$ in each tangend space. Then by definition of the gradient we have:

$$\frac{\partial}{\partial x^{j}}(f) = q \circ df(\frac{\partial}{\partial x^{j}}) = q \circ \frac{\partial f}{\partial x^{j}} = g(\operatorname{grad}(f), \frac{\partial}{\partial x^{j}}) = \sum_{ij} g_{ij}G^{i}$$

Hence,

$$(G^{1}, \cdots G^{m})(g_{ij}) = \left(\frac{\partial}{\partial x^{1}}(f), \cdots, \frac{\partial}{\partial x^{m}}(f)\right)$$

$$\Leftrightarrow (G^{1}, \cdots G^{m}) = \left(\frac{\partial}{\partial x^{1}}(f), \cdots, \frac{\partial}{\partial x^{m}}(f)\right)(g^{ij}).$$

But then we can conclude that $G^j = \sum_i g^{ij} \frac{\partial}{\partial x^i}(f)$.