10. Převody problémů

Na této přednášce se budeme zabývat rozhodovacími problémy a jejich obtížností. Za jednoduché budeme trochu zjednodušeně považovat ty problémy, na něž známe algoritmus pracující v polynomiálním čase.

Definice: Rozhodovací problém je takový problém, jehož výstupem je vždy ANO, nebo NE. [Formálně bychom se na něj mohli dívat jako na množinu L vstupů, na které je odpověď ANO, a místo L(x)= ANO psát prostě $x\in L$.]

Vstupy mějme zakódované jen pomocí nul a jedniček (obecně je jedno, jaký základ pro soustavu kódování zvolíme, převody mezi soustavami o nějakém základu $\neq 1$ jsou co do velikosti zápisu polynomiální). Rozhodovací problém je tedy $f: \{0,1\}^* \to \{0,1\}$, to jest funkce z množiny všech řetězců jedniček a nul do množiny $\{1,0\}$, kde 1 na výstupu znamená ANO, 0 NE.

Příklad: Je dán bipartitní graf G a $k \in \mathbb{N}$. Existuje v G párování, které obsahuje alespoň k hran?

To, co bychom ve většině případů chtěli, je samozřejmě nejen zjistit, zda takové párování existuje, ale také nějaké konkrétní najít. Všimněme si ale, že když umíme rozhodovat existenci párování v polynomiálním čase, můžeme ho polynomiálně rychle i najít:

Mějme černou skříňku (fungující v polynomiálním čase), která odpoví, zda daný graf má nebo nemá párování o k hranách. Odebereme z grafu libovolnou hranu a zeptáme se, jestli i tento nový graf má párovaní velikosti k. Když má, pak tato hrana nebyla pro existenci párování potřebná, a tak ji odstraníme. Když naopak nemá (hrana patří do každého párování požadované velikosti), tak si danou hranu poznamenáme a odebereme nejen ji a její vrcholy, ale také hrany, které do těchto vrcholů vedly. Toto je korektní krok, protože v původním grafu tyto vrcholy byly navzájem spárované, a tedy nemohou být spárované s žádnými jinými vrcholy. Na nový graf aplikujeme znovu tentýž postup. Výsledkem je množina hran, které patří do hledaného párování. Hran, a tedy i iterací našeho algoritmu, je polynomiálně mnoho a skříňka funguje v polynomiálním čase, takže celý algoritmus je polynomiální.

A jak náš rozhodovací problém řešit? Nejsnáze tak, že ho převedeme na jiný, † který už vyřešit umíme. Tento postup jsme (právě u hledání párování) už použili v kapitole o Dinicově algoritmu. Vytvořili jsme vhodnou síť, pro kterou platilo, že v ní existuje tok velikosti k právě tehdy, když v původním grafu existuje párování velikosti k.

Takovéto převody mezi problémy můžeme definovat obecně:

Definice: Jsou-li A, B rozhodovací problémy, pak říkáme, že A lze redukovat (neboli převést) na B (píšeme $A \to B$) právě tehdy, když existuje funkce f spočitatelná v polynomiálním čase taková, že pro $\forall x: A(x) = B(f(x))$. Všimněme si, že f pracující v polynomiálním čase vstup zvětší nejvíce polynomiálně.

[†] věrni matfyzáckým vtipům

Pozorování: $A \to B$ také znamená, že problém B je alespoň tak těžký jako problém A (tím myslíme, že pokud lze B řešit v polynomiálním čase, lze tak řešit i A): Nechť problém B umíme řešit v čase $\mathcal{O}(b^k)$, kde b je délka jeho vstupu. Nechť dále funkce f převádějící A na B pracuje v čase $\mathcal{O}(a^\ell)$ pro vstup délky a. Spustíme-li tedy B(f(x)) na nějaký vstup x problému A, bude mít f(x) délku $\mathcal{O}(a^\ell)$, kde $a = \mathfrak{q}$; takže B(f(x)) poběží v čase $\mathcal{O}(a^\ell + (a^\ell)^k) = \mathcal{O}(a^{k\ell})$, což je polynomiální v délce vstupu a.

Pozorování: Převoditelnost je

- \bullet reflexivní (úlohu můžeme převést na tu stejnou identickým zobrazením): $A \to A,$
- tranzitivní: Je-li $A \to B$ funkcí $f, B \to C$ funkcí g, pak $A \to C$ složenou funkcí $g \circ f$ (složení dvou polynomiálních funkcí je zase polynomiální funkce, jak už jsme zpozorovali v předchozím odstavci).

Takovýmto relacím říkáme kvaziuspořádání – nesplňují obecně antisymetrii, tedy může nastat $A \to B$ a $B \to A$. Omezíme-li se však na třídy navzájem převoditelných problémů, dostáváme již (částečné) uspořádání. Existují i navzájem nepřevoditelné problémy – například problém vždy odpovídající 1 a problém vždy odpovídající 0. Nyní se již podíváme na nějaké zajímavé problémy. Obecně to budou problémy, na které polynomiální algoritmus není znám, a vzájemnými převody zjistíme že jsou stejně těžké.

1. problém: SAT

Splnitelnost (satisfiability) logických formulí, tj. dosazení 1 či 0 za proměnné v logické formuli tak, aby formule dala výsledek 1.

Zaměříme se na speciální formu zadání formulí, konjunktivní normální formu (CNF), které splňují následující podmínky:

- formule je zadána pomocí $klauzuli^{\dagger}$ oddělených \wedge ,
- \bullet každá klauzuleje složená z literálůoddělených $\vee,$
- každý literál je buďto proměnná nebo její negace.

Formule mají tedy tvar:

$$\psi = (\dots \vee \dots \vee \dots) \wedge (\dots \vee \dots \vee \dots) \wedge \dots$$

Vstup: Formule ψ v konjunktivní normální formě.

 $\textit{Výstup: } \exists$ dosazení 1 a 0 za proměnné takové, že hodnota formule $\psi(\ldots)=1.$

Převod nějaké obecné formule ψ na jí ekvivalentní χ v CNF může způsobit, že χ je exponenciálně velká vůči ψ . Později ukážeme, že lze podniknout převod na takovou formuli χ' v CNF, která sice není ekvivalentní s ψ (přibydou nám proměnné, a ne každý rozšířený model ψ je modelem χ'), ale je splnitelná právě tehdy, když je splnitelná ψ – což nám přesně stačí – a je lineárně velká vůči ψ .

bez politických konotací

2. problém: 3-SAT

Definice: 3-SAT je takový SAT, v němž každá klauzule obsahuje nejvýše tři literály.

Převod 3-SAT na SAT: Vstup není potřeba nijak upravovat, 3-SAT splňuje vlastnosti SATu, proto 3-SAT \rightarrow SAT (SAT je alespoň tak těžký jako 3-SAT)

Převod SAT na 3-SAT: Musíme formuli převést tak, abychom neporušili splnitelnost.

Trik pro dlouhé klauzule: Každou "špatnou" klauzuli

$$(\alpha \vee \beta)$$
, tž. $|\alpha| + |\beta| \ge 4$, $|\alpha| \ge 2$, $|\beta| \ge 2$

přepíšeme na:

$$(\alpha \vee x) \wedge (\beta \vee \neg x),$$

kde x je nová proměnná (při každém dělení klauzule jiná nová proměnná).

Tento trik opakujeme tak dlouho, dokud je to třeba – formuli délky k+l roztrhneme na formule délky k+1 a l+1. Pokud klauzule půlíme, dostaneme polynomiální čas (strom rekurze má logaritmicky pater – formule délky alespoň 6 se nám při rozdělení zmenší na dvě instance velikosti maximálně 2/3 původní, kratší formule nás netrápí; na každém patře se vykoná tolik co na předchozím + $2^{hloubka}$ za přidané formule). Velikost výsledné formule je tím pádem polynomiální vůči původní: v každém kroku se přidají jen dva literály, tedy celkem *čas na převod*·2 nových.

Platí-li:

- $\alpha \Rightarrow$ zvolíme x = 0 (zajistí splnění druhé poloviny nové formule),
- $\beta \Rightarrow$ zvolíme x = 1 (zajistí splnění první poloviny nové formule),
- $\alpha, \beta/\neg \alpha, \neg \beta \Rightarrow$ zvolíme x=0/1 (je nám to jedno, celkové řešení nám to neovlivní).

Nabízí se otázka, proč můžeme přidanou proměnnou x nastavovat, jak se nám zlíbí. Vysvětlení je prosté – proměnná x nám původní formuli nijak neovlivní, protože se v ní nevyskytuje, proto ji můžeme nastavit tak, jak chceme.

Poznámka: U 3-SAT lze vynutit právě tři literály, pro krátké klauzule použijeme stejný trik:

$$(\alpha) \to (\alpha \vee \alpha) \to (\alpha \vee x) \wedge (\alpha \vee \neg x).$$

3. problém: Hledání nezávislé množiny v grafu

Existuje nezávislá množina vrcholů z G velikosti alespoň k?

Definice: Nezávislá množina (NzMna) budeme říkat každé množině vrcholů grafu takové, že mezi nimi nevede žádná hrana.

Vstup: Neorientovaný graf $G, k \in \mathbb{N}.$

$$V$$
ýstup: $\exists A \subseteq V(G), |A| \ge k$: $\forall u, v \in A \Rightarrow uv \notin E(G)$?

Poznámka: Každý graf má minimálně jednu nezávislou množinu, a tou je prázdná množina. Proto je potřeba zadat i minimální velikost hledané množiny.

3

Ukážeme, jak na tento probém převést 3-SAT.

2010-02-09

Příklad nezávislé množiny

Převod 3-SAT na NzMna: Z každé klauzule vybereme jeden literál, jehož nastavením se klauzuli rozhodneme splnit. Samozřejmě tak, abychom v různých klauzulích nevybírali konfliktně, tj. $x = \neg x$.

Příklad:
$$(x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor p).$$

Pro každou klauzuli sestrojíme graf (trojúhelník) a přidáme "konfliktní" hrany, tj. x a $\neg x$. Počet vrcholů grafu odpovídá počtu literálů ve formuli, počet hran je maximálně kvadratický a převod je tedy polynomiální.

Existuje-li v grafu nezávislá množina velikosti k, pak z každého z k trojúhelníků vybere právě jeden vrchol, a přitom žádné dva vrcholy nebudou odpovídat literálu a jeho negaci – tedy dostaneme ohodnocení proměnných splňujících alespoň k klauzulí. Na druhou stranu, existuje-li ohodnocení k klauzulí, pak přímo odpovídá nezávislé množině velikosti k (v každém trojúhelníku zvolíme právě jednu z ohodnocených proměnných, nemůže se stát že zvolíme vrcholy konfliktní hrany). Ptáme-li se tedy na nezávislou množinu velikosti odpovídající počtu klauzulí, dostaneme odpověď ANO právě tehdy, když je formule splnitelná.

Jsou-li ve formuli i klauzule kratší než 3, můžeme je buďto prodloužit metodou výše popsanou; nebo si v grafu necháme dvoj- a jedno-úhelníky, které žádné z našich úvah vadit nebudou.

Ukázka převodu 3-SAT na nezávislou množinu

Převod NzMna na SAT:

• Pořídíme si proměnné v_1, \ldots, v_n odpovídající vrcholům grafu. Proměnná v_i bude indikovat, zda se i-tý vrchol vyskytuje v nezávislé množině (tedy

příslušné ohodnocení proměnných bude vlastně charakteristická funkce nezávislé množiny).

- Pro každou hranu $ij \in E(G)$ přidáme klauzuli $(\neg v_i \lor \neg v_j)$. Tyto klauzule nám ohlídají, že vybraná množina je vskutku nezávislá.
- Ještě potřebujeme zkontrolovat, že je množina dostatečně velká, takže si její prvky očíslujeme čísly od 1 do k. Očíslování popíšeme maticí proměnných x_{ij} , přičemž x_{ij} bude pravdivá právě tehdy, když v pořadí i-tý prvek nezávislé množiny je vrchol v_i – přidáme tedy klauzule, které nám řeknou, že vybrané do nezávislé množiny jsou právě ty vrcholy, které jsou touto maticí očíslované: $\forall i,j,\; x_{ij} \Rightarrow v_j$ (jen dodejme, že $a \Rightarrow b$ je definované jako $\neg a \lor b$).
- Ještě potřebujeme zajistit, aby byla v každém řádku i sloupci nejvýše jedna jednička: $\forall j, i, i', i \neq i' : x_{ij} \Rightarrow \neg x_{i'j} \text{ a } \forall i, j, j', j \neq j' : x_{ij} \Rightarrow \neg x_{ij'}$.
- A nakonec si ohlídáme, aby v každém řádku byla alespoň jedna jednička, klauzulí $\forall i: x_{i1} \lor x_{i2} \lor \ldots \lor x_{in}$.

Tímto vynutíme NzMnu > k, což jsme přesně chtěli. Takovýto převod je zřejmě polvnomiální.

Příklad matice: Jako příklad použijeme nezávislou množinu z ukázky nezávislé množiny. Nechť jsou vrcholy grafu očíslované zleva a zeshora. Hledáme nezávislou množinu velikosti 2. Matice pak bude vypadat následovně:

$$\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)$$

Vysvětlení: Jako první vrchol množiny bude vybrán vrchol v_1 , proto v prvním řádku a v prvním sloupci bude 1. Jako druhý vrchol množiny bude vybrán vrchol v_4 , proto na druhém řádku a ve čtvrtém sloupci bude 1. Na ostatních místech bude 0.

4. problém: Klika

Vstup: Graf $G, k \in N$.

Výstup: \exists úplný podgraf grafu G na k vrcholech?

Příklad kliky

Převod: Prohodíme v grafu G hrany a nehrany \Rightarrow (hledání nezávislé množiny \leftrightarrow hledání kliky).

> 5 2010-02-09

Prohození hran a nehran

Důvod: Pokud existuje úplný graf na k vrcholech, tak v komplementárním grafu tyto vrcholy nejsou spojeny hranou, tj. tvoří nezávislou množinu, a naopak.

5. problém: 3,3-SAT

Definice: 3,3-SAT je speciální případ 3-SATu, kde každá proměnná se vyskytuje v maximálně třech literálech.

Převod 3-SAT na 3,3-SAT: Pokud se proměnná x vyskytuje v k > 3 literálech, tak nahradíme výskyty novými proměnnými x_1, \ldots, x_k a přidáme klauzule:

$$(\neg x_1 \lor x_2), (\neg x_2 \lor x_3), (\neg x_3 \lor x_4), \dots, (\neg x_{k-1} \lor x_k), (\neg x_k \lor x_1),$$

což odpovídá:

$$(x_1 \Rightarrow x_2), (x_2 \Rightarrow x_3), (x_3 \Rightarrow x_4), \dots, (x_{k-1} \Rightarrow x_k), (x_k \Rightarrow x_1).$$

Tímto zaručíme, že všechny nové proměnné budou mít stejnou hodnotu.

Mimochodem, můžeme rovnou zařídit, že každý literál se vyskytuje nejvíce dvakrát (tedy že každá proměnná se vyskytuje alespoň jednou pozitivně a alespoň jednou negativně). Pokud by se nějaká proměnná objevila ve třech stejných literálech, můžeme na ni také použít náš trik a nahradit ji třemi proměnnými. V nových klauzulích se pak bude vyskytovat jak pozitivně, tak negativně.

6. problém: 3D párování (3D matching)

Vstup: Tři množiny, např. K (kluci), H (holky), Z (zvířátka) a množina kompatibilních trojic (těch, kteří se spolu snesou).

 $\mathit{Výstup:}$ Perfektní podmnožina trojic – tj. taková podmnožina trojic, která obsahuje všechna $K,\,H$ a Z.

Ukážeme, jak na tento problém převést 3,3-SAT (ovšem to až na další přednášce).

Závěr: Obrázek ukazuje problémy, jimiž jsme se dnes zabývali, a vztahy mezi těmito problémy.

Ukázka 3D párování

Převody mezi problémy