		L
	Assignment-7 solutions.	
	For a given frequency, lize of MJA can be reduced by Cutting Slots.(a)	A CONTRACTOR DESCRIPTION OF THE PROPERTY OF TH
2: (0)	$E_r = 2.55$, $h = 0.32$ cm, $tand = 0.0012$ $f = 1800$ MHz $E_{eff} \le 2.55$ $E_{eff} = 2.45$ (Assume) $A = C = \frac{3 \times 10^{10}}{1800 \times 106} = 16.67$ cm	
	Legs = $\frac{d}{dt} = \frac{do}{4 \times \sqrt{6}gg} = 2.66 \text{ cm}$ AL = $\frac{d}{\sqrt{8}} = \frac{0.32}{\sqrt{2.45}} = 0.20$ L = Legs - DL = $2.66 - 0.20 = 2.46 \text{ cm} = 2.5 \text{ cm}$ length of patch should be $2.5 \text{ cm}(d)$	
	RMSA with single short at corner will be most compact. (d)	
土	A shorted 90° sectoral MJA will not provide high desonance frequency among given options.	
	A single shorted compact RMSA provides less gain and less BW.	
	24 = 243 = (401 +1) 1 = 4.3 = 3/62	

2 Left = L+2AL DL= h = 0.16 VEGH V4.3 (b) Left = 10.15 Leff = C = St= Stepf 2 Left JEgg f=710MHz Approx. Jesonance frequency f = 710MHz. AW= AL = 0.16 Welf = W+ 2 x0.16 = 15.15 fw = C = 475MHz 2 Wegg JEegs Approx resonance trequency fin = 475MHz (9).