Semantics and Verification 2010

Lecture 9

- Labelled transition systems with time
- Timed CCS; syntax and semantics
- Timed Automata; syntax and semantics

Turing Awards

1991, CCS

1980, CSP

1996, Temporal Logic

2007, Model Checking

Need for Introducing Time Features

- Timeout in Alternating Bit protocol:
 - In CCS timeouts were modelled using nondeterminism.
 - Enough to prove that the protocol is safe.
 - Maybe too abstract for certain questions (What is the average time to deliver the messag e?).
- Many real-life systems depend on timing:
 - Real-time controllers (production lines, computers in cars, railway crossings).
 - Embedded systems (mobile phones, remote controllers, digital watch).
 - ...

Why CISS?

- 80% of all software is embedded
- Demands for increased functionality with

minimal resources

- Requires multitude of skills
 - Software construction
 - hardware platforms,
 - communication
 - testing & verification
- Goal: Give a qualitative lift to current industrial practice

A Light Switch

Informal Requirement

- If the switch is off, and is pressed once, then the light will turn on.
- If the switch is then pressed again soon after the light was turned on, then the light becomes brighter.
- Otherwise, the light is turned off by the next button press.
- The light is also turned off by a button press when it is bright.

Labelled Transition Systems with Time

Timed (labelled) transition system (TLTS)

TLTS is a triple $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ where

- Proc is a set of states (or processes),
- $Act = N \cup \mathbb{R}^{\geq 0}$ is a set of actions (consisting of labels and time-elapsing steps), and
- for every $a \in Act$, $\stackrel{a}{\longrightarrow} \subseteq Proc \times Proc$ is a binary relation on states called the transition relation.

We write

- $s \xrightarrow{a} s'$ if $a \in N$ and $(s, s') \in \xrightarrow{a}$, and
- $s \xrightarrow{d} s'$ if $d \in \mathbb{R}^{\geq 0}$ and $(s, s') \in \xrightarrow{d}$.

Requirements to TLTS

Sanity Requirements

Time additivity: If $s \xrightarrow{d} s'$ and $0 \le d' \le d$ then $s \xrightarrow{d'} s'' \xrightarrow{d-d'} s'$ for some state s'';

Zero delay: $s \xrightarrow{0} s$ for all states s;

Time determinism: If $s \xrightarrow{d} s'$ and $s \xrightarrow{d} s''$ then s' = s''.

How to Describe Timed Transition Systems?

TCCS [Yi'90]:

CCS extended with delays.

Timed Automata [Alur, Dill'90]:

Finite-state automata equipped with clocks.

TCCS = CCS + Delay Prefix

Let $d \in \mathbb{R}^{\geq 0}$ and let P be a process then $\epsilon(d).P$ is the process which after a delay of d time units will behave like P.

Rules for Delay Prefix

We expect the following transitions

•
$$\epsilon(d).P \xrightarrow{d} P$$

•
$$\epsilon(d).P \xrightarrow{d'} \epsilon(d-d').P$$
 for $d' \leq d$

•
$$\epsilon(d).P \xrightarrow{d+d'} P'$$
 if $P \xrightarrow{d'} P'$.

SOS Rules for TCCS

$$\frac{P \xrightarrow{d'} P'}{\epsilon(d).P \xrightarrow{d+d'} P'} \qquad \frac{\epsilon(d).P \xrightarrow{d'} \epsilon(d-d').P}{\epsilon(d).P \xrightarrow{d'} \epsilon(d-d').P} d' \leq d$$

$$\frac{P \xrightarrow{d} P'}{K \xrightarrow{d} P'} K = ^{def} P \qquad \frac{P \xrightarrow{d} P' Q \xrightarrow{d} Q'}{\alpha \cdot P \xrightarrow{d} \alpha \cdot P} \alpha \neq \tau \qquad \frac{P \xrightarrow{d} P' Q \xrightarrow{d} Q'}{P + Q \xrightarrow{d} P' + Q'}$$

$$\frac{P \xrightarrow{d} P'}{P[f] \xrightarrow{d} P'[f]} \qquad \frac{P \xrightarrow{d} P'}{P \setminus L \xrightarrow{d} P' \setminus L}$$

Parallel Composition

Maximal Progress:

If a process can evolve on its own, then it will do so with out any further delay, i.e. if $P \xrightarrow{\tau}$ then $P \not\stackrel{d}{\longrightarrow}$ for any d > 0.

Delay for Parallel Composition

$$\frac{P \xrightarrow{d} P' \ Q \xrightarrow{d} Q'}{P \mid Q \xrightarrow{d} P' \mid Q'} \quad \mathsf{NoSync}(P, Q, d)$$

where NoSync(P, Q, d) holds if for any d' < d whenever $P \xrightarrow{d'} P'$ and $\xrightarrow{d'} Q'$ then $P|Q \xrightarrow{\mathcal{T}}$.

Timed Automata

A Dumb Light Controller

Timed Automata [Alur & Dill'89]

A Timed Automata (Semantics)

press?

States:

(location, x=v) where $v \in \mathbf{R}$

Transitions:

```
(Off, x=0)
delay 4.32 \rightarrow (Off, x=4.32)
press? \rightarrow (Light, x=0)
delay 2.51 \rightarrow (Light, x=2.51)
press? \rightarrow (Bright, x=2.51)
```


Intelligent Light Controller

Intelligent Light Controller

Transitions: (Off, x=0) delay 4.32 press? delay 4.51 press? \rightarrow (Light, x=0) \rightarrow (Light, x=4.51) press? \rightarrow (Light, x=0) \rightarrow (Light, x=0) \rightarrow (Off, x=0)

Invariants ensures progress

Definition of TA: Clock Constraints

Let $C = \{x, y, ...\}$ be a finite set of clocks.

Set $\mathcal{B}(C)$ of clock constraints over C

 $\mathcal{B}(C)$ is defined by the following abstract syntax

$$g, g_1, g_2 ::= x \sim n \mid x - y \sim n \mid g_1 \wedge g_2$$

where $x, y \in C$ are clocks, $n \in \mathbb{N}$ and $\sim \in \{\leq, <, =, >, \geq\}$.

Example: $x \le 3 \land y > 0 \land y - x = 2$

Clock Valuation

Clock valuation

Clock valuation v is a function $v: C \to \mathbb{R}^{\geq 0}$.

Let v be a clock valuation. Then

ullet v+d is a clock valuation for any $d\in\mathbb{R}^{\geq 0}$ and it is defined by

$$(v+d)(x) = v(x) + d$$
 for all $x \in C$

• v[r] is a clock valuation for any $r \subseteq C$ and it is defined by

$$v[r](x)$$
 $\begin{cases} 0 & \text{if } x \in r \\ v(x) & \text{otherwise.} \end{cases}$

Evaluation of Clock Constraints

Evaluation of clock constraints $(v \models g)$

```
v \models x < n iff v(x) < n

v \models x \le n iff v(x) \le n

v \models x = n iff v(x) = n

\vdots

v \models x - y < n iff v(x) - v(y) < n

v \models x - y \le n iff v(x) - v(y) \le n

\vdots

v \models g_1 \land g_2 iff v \models g_1 and v \models g_2
```

Syntax of Timed Automata

Definition

A timed automaton over a set of clocks C and a set of labels N is a tuple

$$(L,\ell_0,E,I)$$

where

- L is a finite set of locations
- $\ell_0 \in L$ is the initial location
- $E \subseteq L \times \mathcal{B}(C) \times N \times 2^C \times L$ is the set of edges
- $I: L \to \mathcal{B}(C)$ assigns invariants to locations.

We usually write $\ell \xrightarrow{g,a,r} \ell'$ whenever $(\ell,g,a,r,\ell') \in E$.

Example: Hammer

$$(\ell_0, x = 0, y = 0)$$

$$\xrightarrow{1.4} (\ell_0, x = 1.4, y = 1.4)$$

$$\xrightarrow{a} (\ell_0, x = 1.4, y = 0)$$

$$\xrightarrow{1.6} (\ell_0, x = 3.0, y = 1.6)$$

$$\xrightarrow{a} (\ell_0, x = 3.0, y = 0)$$

