# Introduction to data science and network science

Artificial Intelligence, urbanistics and data science ITMO, 2024/2025

Liubov Tupikina <u>liubov.tupikina@cri-paris.org</u> ITMO, Russia, LPI, Bell labs France

#### Contacts

Affiliate researcher at LPI, Researcher, Nokia Bell Labs, France

#### Main topics:

Explainable AI (geometry of embeddings, analysis of higher-order data)

Geometry of graphs and hypergraphs (processes on graphs, transport applications)

Students contact:

Zahara Farook, Hritika Kathuria





#### Outline and connection to other courses

- 1. Reversed classrooms
- 2. Project-based learning
- 3. Teaching and learning by doing (fablab access, art itmo projects, other external collaborations, e.g. lpi cri-paris.org collaboration)
- 4. Open science (github, X-posts on the results)
- 5. Open data policy if possible and needed
- 6. Course co-desing (office hours by requirements), collective learning and self-learning (other platforms)
- 7. Sustainability oriented courses
- 8. Mathematics and other deep courses (Skoltech, Spbgu)
- 9. Network seminar subscription (<u>youtube</u> links)

## Codesing of the course

# Orientation every class



## Outline of Introduction to data science

## Outline of Introduction to data science

What are your main projects?

## Outline of Introduction to network science

- 1. Introduction to networks
- 2. Practical part: notebooks

Assignment for the next course

## Resources and libraries for the course

Standard libraries (Python): numpy, matplotlib, scikit learn, seaborn Network libraries: networkx, osmnx (open street data)



## Resources and libraries for the course

Standard libraries (Python): numpy, matplotlib, scikit learn, seaborn Network libraries: networkx, osmnx (open street data)

#### Support materials

- Big data course Marc and Liubov <a href="https://github.com/Big-data-course-CRI/">https://github.com/Big-data-course-CRI/</a>
- Correlaid, Complex system conference CSS 2023 and TidyTuesday <a href="https://github.com/rfordatascience/tidytuesday">https://github.com/rfordatascience/tidytuesday</a>
- Network science book <a href="http://networksciencebook.com/">http://networksciencebook.com/</a>
- Network repository <a href="https://networks.skewed.de/">https://networks.skewed.de/</a>
- Visualisation tools <a href="https://gephi.org/users/download/">https://gephi.org/users/download/</a>
- Network datasets <a href="https://www.complex-networks.net/datasets.html#chap8">https://www.complex-networks.net/datasets.html#chap8</a>

## Statistics course

Two types of distributions we will work with very often



#### Statistics course

Types of distributions we will work with very often (following the recommendations from Michael Szell on his introduction to single variable analysis)

https://github.com/mszell/introdatasci/tree/main/unit12\_singlevariableanalysis Follow the notebook



## Central limit theorem and its intuition

