Warm-up

Problem 1. Consider a deck of 4n cards, with $n \spadesuit$, $n \heartsuit$, $n \diamondsuit$, and $n \clubsuit$. After it is shuffled uniformly at random, what is the expected number of consecutive pairs of the same suit?

Solution 1. This is n-1: Let $X_i \in \{ \spadesuit, \heartsuit, \diamondsuit, \clubsuit \}$ denote the suit of the *i*-th card in the permuted deck. We want to compute the expectation of

$$X = \sum_{i=1}^{4n-1} \mathbb{1}_{\{X_i = X_{i+1}\}}$$

For every $1 \le i \le 4n - 1$,

$$\Pr[X_i = X_{i+1}] = \frac{n-1}{4n-1}$$

since once X_i has a given suit, then there remain n-1 cards of that particular suit, out of 4n-1 cards left in total. The result then follows from linearity of expectation. As a sanity check: for n=13 (standard deck of 52 cards), we get n-1=12, retrieving the result mentioned in class.

Problem 2. A computer randomly generates a 2024-bit long binary string. What is the expected number of consecutive runs of 3 ones? (For instance, the 4-bit binary string 1111 has 2 such consecutive runs, while 0111 only has 1.)

Solution 2. This is again by linearity of expectation, looking at the 2024 - 2 = 2022 indicator random variables Y_1, \ldots, Y_{2022} defined by

$$Y_i = \mathbb{1}_{\{X_i = X_{i+1} = X_{i+2} = 1\}}$$

where $X = (X_1, ..., X_{2024}) \in \{0, 1\}^{2024}$ is the binary string. Now,

$$\mathbb{E}[Y_i] = \Pr[X_i = X_{i+1} = X_{i+2} = 1] = \Pr[X_i = 1] \cdot \Pr[X_{i+1} = 1] \cdot \Pr[X_{i+2} = 1] = \frac{1}{2^3}$$

(the second inequality as the bits are independent) and so the answer is $\frac{2024-2}{2^3} = \frac{2022}{8} = 252.75$.

Problem 3. An integer $1 \le i \le n$ is called a *fixed point* of a given permutation $\pi: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ if $\pi(i) = i$. Show that the expected number of fixed points of a uniformly randomly chosen permutation π is 1. What is the variance?

Solution 3. Linearity of expectation. Specifically, let $X_i \in \{0,1\}$ be the indicator random variable of whether $\pi(i) = i$ (that is, it is 1 if, and only if, i is a fixed point of the random permutation π). Of course, the X_i 's are not independent (but we don't care). Since a given element i (only looking at this element) has value

 $\pi(i)$ equal to any fixed element of $\{1, 2, ..., n\}$ with the same probability, we get $\Pr[X_i = 1] = 1/n$. The expected number $\mathbb{E}[X]$ of fixed points is then

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} \Pr[X_i = 1] = \sum_{i=1}^{n} \frac{1}{n} = 1$$

The answer is 1 for the variance as well, apply linearity of expectation after expanding the square of the sum and dividing it into \sum_i and $\sum_{i\neq j}$. In more detail, since $\operatorname{Var} X = \mathbb{E}\left[X^2\right] - \mathbb{E}[X]^2$ and we just got that $\mathbb{E}[X]^2 = 1^2 = 1$, it suffices to show that $\mathbb{E}[X^2] = 2$. We have:

$$\mathbb{E}\left[X^{2}\right] = \mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{i} X_{j}\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}\left[X_{i} X_{j}\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right] + \sum_{1 \leq i \neq j \leq n}^{n} \mathbb{E}\left[X_{i} X_{j}\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] + \sum_{1 \leq i \neq j \leq n}^{n} \Pr\left[\pi(i) = i \text{ and } \pi(j) = j\right] \qquad \text{(since } X_{i}^{2} = X_{i}\text{)}$$

$$= 1 + \sum_{1 \leq i \neq j \leq n} \frac{1}{n} \cdot \frac{1}{n-1} \qquad \text{(see below)}$$

$$= 1 + 1 = 2 \qquad \text{(The second sum has } n(n-1) \text{ terms)}$$

concluding the proof. Now, why do we have $\Pr[\pi(i) = i \text{ and } \pi(j) = j] = \frac{1}{n} \cdot \frac{1}{n-1}$? We pick uniformly at random two distinct values in $\{1, 2, ..., n\}$ for $(\pi(i), \pi(j))$: there are n(n-1) possibilities; out of these, only one is good.

Problem 4. (1) Give a random variable X over $[0, \infty)$ such that $\mathbb{E}[X] = \infty$. (2) Give a random variable X over \mathbb{N} such that $\mathbb{E}[X] = \infty$.

Solution 4. (1) Random variable with probability density function $f(x) = \frac{2}{\pi} \frac{1}{x^2 + 1}$. (2) Random variable with probability mass function $p(n) = \frac{6}{\pi^2} \frac{1}{(n+1)^2}$.

Problem 5. Prove the fact from the lecture: if X has a finite variance, then $\operatorname{Var} X = \mathbb{E}[X^2] - \mathbb{E}[X]^2$.

Solution 5. Expand inside the expectation, hope for the best.

Problem solving

Problem 6. Prove the fact from the lecture: if X takes values in $\mathbb{N} = \{0, 1, 2, ..., \}$ and $\mathbb{E}[X]$ is finite, then $\mathbb{E}[X] = \sum_{n=1}^{\infty} \Pr[X \ge n]$.

Solution 6. Swap sums, hope for the best.

Problem 7. Consider the following map: each edge represents a path (of length one) between two different locations. To reach the cheese, the mouse needs to take a path connecting locations *M* and *C*.

Unfortunately, cats have heard of this plan, and will try to intercept the mouse. These cats are not the brightest, thankfully, and behave randomly: namely, each edge will be occupied by a cat, independently of all other edges, with some fixed probability $p \in (0,1)$. The mouse cannot go on any edge that has a cat, of course. (Once the cats have randomly decided their position at the beginning, they stay there once and for all, effectively "killing" that edge as far as the mouse is concerned.)

- a) Give the probability that the mouse still has a path leading to the cheese.
- b) Give the probability that the mouse still has a path of length at most 3 leading to the cheese.
- c) Give the expected numbers of cats on the map.

Solution 7.

a) The idea here is to simplify the problem by asking questions of the form "is there *no* cat" because while there are a large number of ways to have "a cat," there is only one way to have none of something.

Pr[There is a path] =
$$1 - \Pr[\text{There is no path}]$$

= $1 - \Pr[\text{Top path has a cat}] \cdot \Pr[\text{Middle path has a cat}]$
 $\cdot \Pr[\text{Bottom path has a cat}]$
= $1 - (1 - \Pr[\text{Top path has no cats}]) \cdot (1 - \Pr[\text{Middle path has no cats}])$
 $\cdot (1 - \Pr[\text{Bottom path has no cats}])$
= $1 - (1 - (1 - p)^2)(1 - (1 - p)^3)(1 - (1 - p)^4)$

Small "sanity check": for p = 0, we get a probability $1 - 0 \cdot 0 \cdot 0 = 1$, which makes sense (there is no cat anywhere). For p = 1, we get $1 - 1 \cdot 1 \cdot 1 = 0$, which also makes sense (there are cats everywhere).

b) We just remove the bottom path from our working above, giving

$$1 - (1 - (1 - p)^2)(1 - (1 - p)^3).$$

c) If we define an indicator variable X_e such that $X_e = 1$ if edge e (in the set of edges E) has a cat, and count by taking $X = \sum_{e \in E} X_e$, we get

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{e \in E} X_e\right] = \sum_{e \in E} \mathbb{E}[X_e] = 9p$$

Problem 8. Let A be an array of n distinct numbers. We say that an index $1 \le i \le n$ is "prefix-maximum" if A[i] is the biggest number so far, that is, if A[j] < A[i] for all j < i. Let pf(A) denote the number of prefix-maximum indices of A.

- a) What is pf(A) if A is sorted (increasing)?
- b) Suppose that we permute the elements of *A* uniformly at random to get an array *B*. Show that

$$\mathbb{E}[\mathsf{pf}(B)] = H_n = O(\log n),$$

where $H_n = 1 + 1/2 + 1/3 + \cdots + 1/n$ is the *n*-th Harmonic number.

Solution 8.

- a) Every element is bigger than the ones before it (because the array is sorted) and we say that the first element is a prefix maximum (as it is bigger than nothing) so pf(A) = n.
- b) Define an indicator variable X_i which is 1 if B_i is a prefix maximum. Then we have $pf(B) = \sum_{i=1}^{n} X_i$,

$$\mathbb{E}[\mathrm{pf}(B)] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Where $\mathbb{E}[X_1]$ is 1 (it is always the largest so far), $\mathbb{E}[X_2]$ is the probability that given two distinct elements, we randomly choose the largest, which is 1/2, and so on. This gives the series

$$\mathbb{E}[\mathrm{pf}(B)] = \sum_{i=1}^{n} \frac{1}{i} = O(\log n).$$

Advanced

Problem 9. Given two values $x, y \in \{0, 1\}$, their XOR $x \oplus y$ is equal to their sum modulo 2, or equivalently, is 1 if x + y is odd, and 0 otherwise. This generalises to n bits as follows: for $x_1, \ldots, x_n \in \{0, 1\}$,

$$x_1 \oplus x_2 \oplus \cdots \oplus x_n = \begin{cases} 0 \text{ if } \sum_{i=1}^n x_i \text{ is even} \\ 1 \text{ if } \sum_{i=1}^n x_i \text{ is odd} \end{cases}$$

Suppose that $X_1, ..., X_n, ...$ are independent Bernoulli random variables with parameter $p \in [0,1]$, and, for any $n \ge 1$, let $Y_n = X_1 \oplus X_2 \oplus \cdots \oplus X_n$. This is itself a Bernoulli random variable: let's call its parameter p_n .

- a) Compute the first few values of p_n when p = 1/2, p = 0, and p = 1. Establish the expression of p_n (as a function of n) for these particular cases. Interpret the result.
- b) In general, as a function of p, what is p_0 ? p_1 ? p_2 ?
- c) Give a recurrence relation for p_n .
- d) Solve the recurrence to obtain the expression for p_n . Show that it always converge to 1/2. How fast?

Solution 9.

- a) For p=1/2, we get $p_0=0$, and $p_n=1/2$ for every $n \ge 1$. (XOR-ing independent fair random bits still gives a fair random bit). For p=0, then $Y_n=0$ for all n, and so $p_n=0$ for $n \ge 0$. For p=1, then $Y_n=0$ (with probability 1) for n even and 1 for n odd, and so $p_n=1-(-1)^n$ for $n \ge 0$.
- b) $p_0 = 0$ (Y_0 is the sum of...nothing, so is always equal to o); $p_1 = p$ by definition, while $p_2 = 2p(1-p)$ (the probability that $X_1 \neq X_2$: exactly one of the two is must be equal to 1, the other o).
- c) We have $Y_{n+1} = Y_n \oplus X_{n+1}$. So for Y_{n+1} to be equal to 1, we need either (1) $Y_n = 0$ and $X_{n+1} = 1$ or (2) $Y_n = 1$ and $X_{n+1} = 0$. These are disjoint events, so the probability $p_{n+1} = \Pr[Y_{n+1} = 1]$ is the sum of the probabilities of these two events; by recurrence, we have that the first has probability $(1 p_n) \cdot p$, and the second has probability $p_n \cdot (1 p)$. We then get the recurrence

$$p_{n+1} = (1-p)p_n + p(1-p_n)$$

or, massaging the right-hand-side,

$$p_{n+1} = (1 - 2p)p_n + p$$

d) Now, solving this recurrence will give the solution:

$$p_n = \frac{1}{2}(1 - (1 - 2p)^n), \qquad n \ge 0$$

Before proving it, note that this converges exponentially fast to 1/2 for $p \in (0,1)$, is stationary at 0 for p = 0, and does not converge for p = 1. This is consistent with questions a) and b) (important to check!)

How do we get there?

• Nice way: 1/2 seems special (as it is a fixed point of the recurrence relation, as shown in a)), so let's "center" on 1/2: that is, let $q_n = p_n - 1/2$, and rewrite:

$$q_{n+1} + 1/2 = (1 - 2p)(q_n + 1/2) + p$$

which gives, expanding and simplifying:

$$q_{n+1} = (1 - 2p)q_n$$

from which we can easily get $q_{n+1} = (1-2p)^{n+1}q_0$. But that means

$$p_{n+1} = (1 - 2p)^{n+1}q_0 + \frac{1}{2}$$

and since $q_0 = p_0 - 1/2 = -1/2$, we get

$$p_{n+1} = \frac{1}{2} \left(1 - (1 - 2p)^{n+1} \right)$$

as claimed.

• Painful, general way: first rewrite it as a linear system:

$$\begin{pmatrix} p_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 2p & p \\ 0 & 1 \end{pmatrix} \begin{pmatrix} p_n \\ 1 \end{pmatrix}$$

so that

$$\begin{pmatrix} p_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 - 2p & p \\ 0 & 1 \end{pmatrix}^n \begin{pmatrix} p \\ 1 \end{pmatrix}$$

We can then try to diagonalise the matrix to compute its *n*-power more easily: if

$$\begin{pmatrix} 1 - 2p & p \\ 0 & 1 \end{pmatrix} = P^{-1} \Delta P$$

with Δ diagonal, then

$$\begin{pmatrix} 1 - 2p & p \\ 0 & 1 \end{pmatrix}^n = P^{-1} \Delta^n P$$

and Δ^n is easy to compute (as Δ is diagonal).

Diagonalising gives

$$\Delta = \begin{pmatrix} 1 & 0 \\ 0 & 1 - 2p \end{pmatrix}, \qquad P = \frac{1}{2} \begin{pmatrix} 0 & 2 \\ 2 & -1 \end{pmatrix}, \qquad P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$

and so

$$\begin{pmatrix} p_{n+1} \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & (1-2p)^n \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} 0 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} p \\ 1 \end{pmatrix}$$

$$= \frac{1}{4} \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & (1-2p)^n \end{pmatrix} \begin{pmatrix} 2 \\ 2p-1 \end{pmatrix}$$

$$= \frac{1}{4} \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -(1-2p)^{n+1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2} - \frac{1}{2}(1-2p)^{n+1} \\ 1 \end{pmatrix}$$

and we again get $p_{n+1} = \frac{1}{2} (1 - (1 - 2p)^{n+1})$, for all $n \ge 0$.