Utilizing Crowd Intelligence for Online Detection of Emotional Distress

Master's Thesis Presentation

Siddhant Goel Advisor: Han Xiao

Supervisor: Prof. Dr. Claudia Eckert

Chair for IT Security
Technische Universität München

March 13, 2013

Outline

- Introduction
 - Backdrop
 - Motivation
 - Problem Definition
- Theoretical Background
 - Machine Learning and Text Classification
 - Support Vector Machines
 - Ensemble Learning methods
- Experimental Results
 - Experiments
 - Results
- Conclusion and Future Work
- Q/A

Backdrop

- Millions of people die every year because of suicide
- Most people are between 15 to 29 years old
- Rise of social media Twitter, Facebook, Reddit, Wordpress
- Sections of interest on Reddit "/r/happy" ¹ and "/r/suicidewatch" ²
- Sections of interest on Twitter the entire website
- People want to post their inner feelings on the web
- **Direct phrases** "thoughts of suicide make me happy", "I have a rope around my neck"
- Indirect phrases "I don't know anything anymore", "Need someone to talk to"

¹http://www.reddit.com/r/happy

²http://www.reddit.com/r/suicidewatch

Backdrop

Figure: Happiness on Twitter as a function of time

- Study conducted in 2011
- 46 billion words collected over 33 months
- Negativity on Twitter has been on the rise
- Words include death, hate, and even suicide

Motivation

Figure: Last tweet of Twitter user "@CapitalSTEEZ_"3

- Some accounts have lots of followers, some don't
- Lives can be saved if there is a surveillance system of suicide
- Public sentiment information available on the web + No analysis possible = Disconnect

³http://twitter.com/CapitalSteez_

Problem Definition

- Evaluate machine learning algorithms that can be used for identifying depressed emotions in pieces of text
- Build a web based system that can
 - tap into crowd intelligence to incrementally improve the classifiers
 - detect content on the web that indicates that its author may be depressed or suicidal

Machine Learning

- Algorithms that can learn from data
- Construct a model from a given dataset, and then perform the required task on another dataset
- Supervised learning Train the models on the training data, and predict on the test data
- Unsupervised learning No distinction between training and test data

Text Classification

- Subset of machine learning algorithms (we focus on supervised text classification)
- Given some pieces of text, put unseen pieces of text into two or more categories
- Dataset $\{(\mathbf{x_n}, y_n)\}_{n=1}^N$ containing N instances
- Each instance $(\mathbf{x_n}, y_n)$ is of the form $[(x_{n,1}, x_{n,2}, ..., x_{n,D}), y_n]$
- Supervised learning calculate y_n of test data given information about y_n from training data
- Unsupervised learning calculate y_n given only information about $\mathbf{x_n}$

Support Vector Machines

- Fairly popular class of algorithms used for binary classification
- Given training data in some *D* dimensional space, find a decision boundary (hyperplane) that separates the two classes
- Maximize the distance of the boundary from any data point
- Decision function depends on a (usually small) subset of points called support vectors
- Kernel (linear/polynomial/RBF/Sigmoid) functions used to calculate distance between two points

Linear kernel SVM

Figure: Binary classification on a dataset using a linear kernel SVM

Kernel functions

Figure: Dataset in 2D (cannot be classified using a linear kernel SVM)

Figure : Dataset transformed to 3D

Ensemble Learning

- Class of machine learning methods that combine models to obtain better predictions
- Performance not guaranteed to be better than constituent classifiers
- Ensemble methods still usually outperform individual classifiers
- Soft requirement underlying models should be diverse
- Various strategies to combine models select best, voting (bagging), boosting, stacking

Bagging

- Combine M classifiers to form a single classifier
- To predict, obtain predictions from all constituent classifiers, and take majority vote
- Requirement classifiers should change for even small changes in underlying classifiers
- Two main approaches for training individual classifiers
 - Sample split different samples for different classifiers
 - Feature split different features for different classifiers

• Final prediction =
$$sign(\sum_{m=1}^{M} y_m(\mathbf{x_n}))$$

Boosting

- Assign each sample a weight value (same for all samples in the beginning)
- Train M classifiers successively
- Each classifier focuses more on samples that the previous classifier classified incorrectly
- For each classifier, calculate ϵ (measure of error) and α (decreases with ϵ)
- Final prediction = $sign(\sum_{n=1}^{m} \alpha_{m} y_{m}(\mathbf{x_{n}}))$

Stacking

Figure: Prediction using a stacking ensemble

- Outputs from first layer form the input for second layer
- Layer-1 classifiers can be trained using bootstrapping or selecting random features

Datasets

- Evaluation
 - Comments dataset from a competition on Kaggle
 - 6182 comments, each having a binary label
 - Label depends on whether or not a particular comment insults another user
- Web based system
 - Training data Reddit
 - Fetch posts from "/r/happy" ⁴ and "/r/suicidewatch" ⁵
 - Prediction data Twitter
 - Gather tweets from the public streaming API ⁶

⁴http://www.reddit.com/r/happy

⁵http://www.reddit.com/r/suicidewatch

⁶https://dev.twitter.com/docs/streaming-apis/streams/public

Data consolidation frequencies

Fetch 1000 posts from Reddit	24 hours
Fetch 100 tweets from Twitter	3 hours
Re-assign labels to previous tweets and update statistics	24 hours

Approach

- Implement all the models in MATLAB
- Extract n-grams (size upto 2) out of the Kaggle dataset
- Use tf-idf information as feature values
- Input matrix 6182 rows and 23175 columns
- SVM, Bagging, Boosting, Stacking obtain accuracy (10-fold cross validation) against number of samples
- SVM Growth of number of support vectors with the number of samples
- Bagging Accuracy against number of underlying models
- Start with 100 samples, and continue adding 100 samples in each iteration until no more samples are left

Support Vector Machines

Figure : Accuracy v/s Number of instances

- Linear kernel accuracy -79.02%
- Polynomial/RBF/Sigmoid kernel accuracy - 34.39%
- Having a large number of features implies less need for a kernel function

Support Vector Machines

Figure : Number of support vectors v/s Number of instances

- 100 samples 90% support vectors
- 6182 samples 60% support vectors
- Less support vectors implies that the classification is easy

Bagging

Figure : Accuracy v/s Number of instances

- 9 linear kernel SVMs underneath
- Performance ultimately governed by how SVMs perform
- Average accuracy on all 6182 samples = 79.65%

Bagging

Figure : Accuracy v/s Number of models

- Accuracy "stabilizes" slowly with the number of models
- Each model is assigned a random subset of samples
- Increase in number of models implies Subsets overlap implies Performance stabilizes

Boosting

Figure : Accuracy v/s Number of instances

- 9 linear kernel SVMs trained successively on each iteration
- Average accuracy = 72.84%

Stacking

Figure : Accuracy v/s Number of instances

- 9 linear kernel SVMs at first level
- Average accuracy = 79.48%

Approach

- Implement all the models in Python, and web interface in Django
- No training data available => build our own
- Training data
 - comes from Reddit
 - "/r/happy" users posts their happy moments
 - "/r/suicidewatch" users post when they want to commit suicide
 - pull 500 stories from each, every day
- Prediction data
 - should be the general sentiment of the overall public
 - hence. Twitter
 - pull 100 tweets every 3 hours

Architecture

Figure: Landing page

- two sections Ratings and Monitoring
- Ratings used to build the training data
- Monitoring used to monitor the status of the models and check distressed tweets

Ratings module

Figure : Landing page of the Ratings module

- taps into crowd intelligence
- automated scripts fetch 1000 posts from Reddit every day
- displays the first unlabelled post
- users can then assign labels to stories
- this builds the training data

Monitoring module

Figure : Landing page of the Monitoring module

- displays the top few tweets that were classified as depressed by all the classifiers
- links for checking the status of individual classifiers

Monitoring module

Figure : Statistics of the bagging classifier

For each classifier -

- displays the overall level of distress (in %) on Twitter
- each bubble displays
 - the number of stories that were found depressed on that particular day
 - the first tweet from that day which was depressed (no confidence values, yet)

Conclusion

- An evaluation of Support Vector Machines and Ensemble Learning methods (Bagging/Boosting/Stacking) in the domain of text classification
- Bagging outperformed Stacking outperformed SVM outperformed Boosting
- A web based system that can detect emotional distress on Twitter
- No labels implies qualitative evaluation is difficult except observation
- Observed results seem to be reasonable

Future Work

- Fetch more tweets
- Increase the crowd intelligence involved
- Relabelling process (decreases wastage of resources)
- Select best performing model
- Store confidence values

