Bellman-Ford y Floyd-Warshall

Colectivo Estructuras de Datos y Algoritmos

Noviembre 2021

- 1. Sean $G = \langle V, E \rangle$ un grafo dirigido y ponderado que no contiene ciclos de costo negativo, $s \in V$ y m el máximo entre todo $v \in V$ del menor número de aristas en un camino de costo mínimo de s a v. Modifique el algoritmo Bellman-Ford para que termine correctamente a lo sumo en m+1 pasos de recorridos sobre E incluso si m no es conocido de antemano.
- 2. Modifique el algoritmo Bellman-Ford para que asigne $-\infty$ a d[v] en todo vértice v alcanzable desde el origen a través de un ciclo de costo negativo. La modificación no debe alterar la complejidad temporal del algoritmo.
- 3. Sea $G = \langle V, E \rangle$ un grafo dirigido y ponderado que contiene ciclos de costo negativo. Diseñe un algoritmo que encuentre y liste los vértices de uno de esos ciclos en O(|V||E|).
- 4. Sea $G = \langle V, E \rangle$ un grafo dirigido y ponderado. Diseñe un algoritmo que determine para todo $v \in V$ el valor de $\delta^*(v) = \min_{u \in V} \{\delta(u, v)\}$. La complejidad temporal de su algoritmo debe ser O(|V||E|).
- 5. Describa cómo detectar la presencia de ciclos de costo negativo utilizando la salida (matriz D) del algoritmo Floyd-Warshall.
- 6. Sea $\Pi = (\pi_{ij})$ la matriz de antecesores donde π_{ij} es -1 si i = j o no hay camino de i a j, en otro caso π_{ij} es el antecesor de j en algún camino de costo mínimo que empiece en i. Diseñe un algoritmo que calcule Π en $O(n^3)$ usando la salida (matriz D) del algoritmo Floyd-Warshall.
- 7. Sea $G = \langle V, E \rangle$ un grafo dirigido y ponderado. Para todo vértice $i \in V$, se define como subgrafo de antecesores de i en G a $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$ donde $V_{\pi,i} = \{j \in V : \pi_{ij} \neq -1\} \cup \{i\}$ y $E_{\pi,i} = \{(\pi_{ij}, j) : j \in V_{\pi,i} \{i\}\}$. Demuestra que para todo $i \in V$ el subgrafo de antecesores $G_{\pi,i}$ es un árbol de caminos de costo mínimo con raíz en i.
- 8. Sea $G = \langle V, E \rangle$ un grafo dirigido y ponderado. Se define la excentricidad de un vértice v como el mayor costo de todos los costos de los caminos de costo mínimo que terminan en v, o sea:

 $\operatorname{excentricidad}(v) = \max_{u \in V} \{ \operatorname{costo} \, \operatorname{del} \, \operatorname{camino} \, \operatorname{de} \, \operatorname{costo} \, \operatorname{m\'inimo} \, \operatorname{de} \, u \, \operatorname{a} \, v \}$

Proponga un algoritmo que encuentre un vértice con la menor excentricidad entre todos los vértices.

- 9. Sea $G = \langle V, E \rangle$ un grafo dirigido y ponderado. Implemente un algoritmo que encuentre la longitud (cantidad de aristas) de un ciclo de costo negativo en G de menor longitud. La complejidad temporal de su algoritmo debe ser $O(|V|^4)$.
- 10. Un sistema de n variables y m restricciones es factible si existe una asignación de valores en las variables tal que todas las restricciones se cumplan. Sean n variables reales $v_1, v_2, ..., v_n$ y m restricciones de diferencias de la forma $v_i v_j \le b$ donde b pertenece a los enteros. Diseñe un algoritmo que determine si el sistema de desigualdades es factible.