

The key concepts of equilibria explain electrochemical processes (e.g. corrosion, batteries, fuel cells).

e.g.
$$2H_2O(I) + 2e - \rightleftharpoons H_2(g) + 2OH^-(aq) -0.83 V$$

$$E_{cell}^{o} = \frac{RT}{7F} \ln K$$

$$n_e F E^o_{cell} = R \text{ TIn K}$$

Learning Objectives

Draw a diagram for a voltaic cell including labels for essential details.

Calculate E^{o}_{cell} for a given reaction using tabulated half-cell data.

Calculate E_{cell} using the Nernst equation.

For the process of electrolysis, calculate product amounts and currents required.

Identify corrosion conditions and sacrificial anodes.

All figures in the following pages are copyright of McGraw Hill Companies unless otherwise stated

Draw a diagram for a voltaic cell including labels for essential details.

Calculate E^{o}_{cell} for a given reaction using tabulated half-cell data.

Calculate E_{cell} using the Nernst equation.

For the process of electrolysis, *calculate* product amounts and currents required.

Modifications of Figures 19.26 and 19.28

Identify corrosion conditions and sacrificial anodes.

