Teoría de Lenguajes

Manuel Mena

29 de junio de 2020

Índice

0.	Prá	ctica 0	4
	0.1.		4
	0.2.		4
	0.3.		4
		0.3.a	4
		0.3.b	4
		0.3.c	4
		0.3.d	4
		0.3.e	4
		0.3.f.	4
	0.4.		4
	0.5.		5
	0.6.		5
		0.6.a	5
		0.6.b.	5
		0.6.c	5
		0.6.d	5
		0.6.e	5
		0.6.f.	5
		0.6.g.	5
		0.6.h.	5
	0.7.		5
		0.7.a	5
		0.7.b	5
		0.7.c	5
		0.7.d	6
		0.7.e	6
		0.7.f	6
		0.7.g	6
		0.7.h	6
	0.8.		6
	0.9.		6
		0.9.a	6
	0.10		6
		0.10.a	6
		0.10.b	6
		0.10.c.	6

1.	Prá	ctica 1
	1.4.	
	1.1.	1.4.a
		1.4.b
		1.4.c
		1.4.d
		1.4.e
		1.4.f
		1.4.g
		1.4.h
	1 -	
	1.5.	
		1.5.a
		1.5.b
		1.5.c
		1.5.d
2 .	Prá	ctica 2
	2.2.	
		2.2.a
		2.2.b
		2.2.c. 10
		2.2.d
		2.2.e 10
		2.2.f
		2.2.g
	2.3.	
		2.3.a
		2.3.b
	2.4.	1
	2.4.	
		2.4.a
		2.4.b 13
		2.4.c. 13
	2.6.	1
		2.6.a
		2.6.b
		2.6.c. 14
		2.6.d
	2.7.	14
	2.1.	
		2.7.a
		2.7.b
		2.7.c. 1
		2.7.d
		2.7.e
	2.8.	
	2.9.	
4.	Prá	ctica 4
	4.1.	
		4.1.a

5.	Prácti	ca 5																			18
	5.1					 											 		 		18
	5.	1.a.				 													 		18
	5.	1.b.				 													 		18
	5.	1.c.				 											 		 		18
	5.	1.d.				 											 				18
	5.	1.e.				 													 		18
	5.	1.f.				 											 		 		18
	5.	1.g.				 											 				18
	5.	1.h.				 											 				18
	5.	1.i.				 											 				19
	5.	1.j.				 											 				19
	5.	1.k.				 															19
	5.	1.l.			•	 															19
7.	Prácti	ca 7																			20
	7.1					 											 		 		20
	7.2					 															20
	7.3					 											 		 		20
	7.4					 											 		 		20
	7.5					 											 		 		21
	7.6					 											 		 		21
	7.	6.a.				 											 		 		21
	7	6 b																			21

0.1.

```
\begin{split} \Sigma^{0} &= \{\lambda\} \\ \Sigma^{1} &= \Sigma = \{a,b\} \\ \Sigma^{2} &= \Sigma.\Sigma = \{aa,ab,ba,bb\} \\ \Sigma^{*} &= \cup_{i \geq 0} \Sigma^{i} = \{\lambda,a,b,aa,bb,ab,bb,aaa,\ldots\} \\ \Sigma^{+} &= \cup_{i \geq 1} \Sigma^{i} = \{a,b,aa,bb,ab,bb,aaa,\ldots\} \\ |\Sigma| &= 2 \\ |\Sigma^{0}| &= 1 \end{split}
```

0.2.

```
\begin{split} x^0 &= \lambda \\ x^1 &= abb \\ x^2 &= abbabb \\ x^3 &= abbabbabb \\ x^0.x^1.x^2.x^3 &= abbabbabbabbabbabb \\ x^r &= bba \end{split}
```

0.3.

0.3.a.

Falso

0.3.b.

Falso. λ ni siquiera es un conjunto

0.3.c.

Falso

0.3.d.

Verdadero

0.3.e.

Verdadero

0.3.f.

Falso

0.4.

$$xy = abbacb$$

$$(xy)^r = cbabba$$

$$y^r = cba$$

$$y^r x^r = cbabba$$

$$\lambda x = abb$$

$$\lambda y = abc$$

$$x\lambda y = abbabc$$

$$x^2 \lambda^3 y^2 = abbabbabcabc$$

0.5.

```
\begin{split} \Sigma \cup A &= \{a,b,c\} \\ \Sigma \cap A &= \{a\} \\ \Sigma.A &= \{aa,ac,ba,bc\} \\ \Sigma.A^+ &= \{aa,ba,ac,bc,aaa,baa,aca,bca,\ldots\} \\ \Sigma^+.A &= \{aa,ba,ac,bc,aaa,baa,aba,abc,\ldots\} \\ (\Sigma.A)^+ &= \{aa,ac,ba,bc,aaaa,aaac,aaba,aabc,acaa,acac,acba,acbc,\ldots\} \\ (\Sigma.A)^* &= \{\lambda,aa,ac,ba,bc,aaaa,aaac,aaba,aabc,acaa,acac,acba,acbc,\ldots\} \\ \Sigma^*.A^* &= \{\lambda,aa,ac,ba,bc,aaa,aac,aba,abc,baa,bac,bba,bbc,aca,acc,bca,bcc,\ldots\} \\ \Sigma.\Lambda.A &= \Sigma.A &= \{aa,ac,ba,bc\} \end{split}
```

0.6.

0.6.a.

Verdadero

0.6.b.

Verdadero

0.6.c.

Verdadero

0.6.d.

Verdadero

0.6.e.

Falso

0.6.f.

Verdadero

0.6.g.

Verdadero

0.6.h.

Verdadero

0.7.

0.7.a.

a, b, $\lambda,$ aa, ab

0.7.b.

a, b, aa, ab

0.7.c.

b, ab, bb, abb, aabb

```
0.7.d.
```

a, ab, aa, aab, aabb

0.7.e.

acbabbabbab, aacbabbabbab, aaaaacbabbabbab, aaaaacacbabbabbab

0.7.f.

 λ , aaa, aba, abb, bab, baa, aaaaba, baaabb, bababa, bbbbbbb

0.7.g.

aa, bb, abba, bbbb, aaaa, baab

0.7.h.

a, b, aa, bb, aaaa, abba, baab, bbbb

0.8.

$$L_1 = \{a^k b^k | k \ge 1\}$$

$$L_2 = \{a^{2k} b^k | k \ge 1\}$$

$$L_3 = \{a^k b c^k | k \ge 3\}$$

0.9.

0.9.a.

$$|a.(a.\alpha) = 1 + |a.\alpha| = 2 + |\alpha|$$

0.10.

0.10.a.

Quiero ver que
$$\forall \alpha (\alpha \in F(F(A)) \Leftrightarrow \alpha \in F(A))$$

 $\alpha \in F(F(A)) \Leftrightarrow \exists \beta (\beta \alpha \in F(A))$
 $\Leftrightarrow \exists \beta \exists \gamma (\gamma \beta \alpha \in A)$
 $\Leftrightarrow \exists \phi (\phi \in A) \text{ tal que } \phi = \gamma \beta$

0.10.b.

Quiero ver que
$$\forall \alpha (\alpha \in F(F(A)) \Leftrightarrow \alpha \in F(A))$$

 $\alpha \in S(S(A)) \Leftrightarrow \exists \beta (\alpha \beta \in S(A))$
 $\Leftrightarrow \exists \beta \exists \gamma (\alpha \beta \gamma \in A)$
 $\Leftrightarrow \exists \phi (\phi \alpha \in A) \text{ tal que } \phi = \gamma \beta$

0.10.c.

Quiero ver que
$$\forall \alpha (\alpha \in F(AB) \Leftrightarrow \alpha \in F(B) \lor \alpha \in F(A)B)$$

 \Rightarrow)
$$\alpha \in F(AB) \Rightarrow \exists w (w\alpha \in AB)$$

$$\Rightarrow wxyz \in AB \text{ con } xyz = \alpha$$

$$\Rightarrow (w \in A \land xyz \in B) \lor (wx \in A \land yz \in B) \lor (wxy \in A \land z \in B)$$

$$\Rightarrow (xyz \in B) \lor (x \in F(A) \land yz \in B) \lor (xy \in (F(A) \land z \in B))$$

$$\Rightarrow (xyz \in B) \lor (xyz \in F(A)B) \lor (xyz \in F(A)B)$$

$$\Rightarrow (xyz \in B) \lor (xyz \in F(A)B)$$

$$\Rightarrow (xyz \in B) \lor (xyz \in F(A)B)$$

$$\Rightarrow (\alpha \in B) \lor (\alpha \in F(A)B)$$

$$\Rightarrow (\alpha \in F(B) \lor (\alpha \in F(A)B)$$

1.4.

1.4.a.

Convertir los estados finales en no fianles y viceversa. Es necesario que sea determinístico, de lo contrario podría aceptar casos que no pertenecerían al complemento

1.4.b.

Convertir el estado inicial en final para permitir la cadena nula, pero tener precaucion con automatas que vuelvan al estado inicial, en ese caso habra que crear un estado aparte. Luego hacer que todos los estados finales tengan las mismas transiciones que el estado inicial, lo cual haria que una vez que se llego a una cadena aceptada por el automata, comience a leer las siguiente parte de la cadena, como si estuvieran concatenadas, como sucede en L^*

1.4.c.

Hacer el estado inicial el estado final y los estados finales el inicial (puede transformarse en no deterministico)

1.4.d.

Hacer que todos los estados anteriores al estado final, sean finales. Tener cuidado si el estado final puede volver a uno anterior, en ese caso se deben crear nuevos estados

1.4.e.

Convertirlo como en el de cadenas iniciales del ejercicio anterior, pero luego de haberlo convertido en la reversa

1.4.f.

Convertirlo en iniciales de finales

1.4.g.

Convertir en no finales los estados finales que vayan a cualquier estado que no sea el trampa, incluidos ellos mismos

1.4.h.

Hacer que todos los estados finales lleven al trampa

1.4.i.

Hacer que todos los finales redirijan a ellos mismos siempre

1.5.

1.5.a.

Se genera un estado inicial que se dirige mediante λ a ambos estados iniciales de L_1 y L_2 . Es no deterinístico

1.5.b.

Se hace el complemento de la union de los complementos de L_1 y L_2 ya que $L_1 \cap L_2 = \neg(\neg L_1 \cup \neg L_2)$

1.5.c.

Los estados finales de L_1 pasan a ser no finales

1.5.d.

Se hace el complemento de la union entre L_2 y el complemento de L_1 ya que L_1 $L_2 = \neg(L_2 \cup \neg L_1)$

2.2.

2.2.a.

$$\partial_1(10^*1) = 0^*1$$

2.2.b.

$$\partial_{\lambda}(10^*1) = 10^*1$$

2.2.c.

$$\partial_0(10^*1) = \emptyset$$

2.2.d.

$$\partial_a(ab^*|ac|c^+) = b^*|c$$

2.2.e.

$$\partial_a(a^+ba) = \partial_a(aa^*ba) = a^*ba$$

2.2.f.

$$\partial_a(a^*ba) = \partial_a(a^*)ba|\epsilon(a^*)\partial_a(ba) = a^*ba|\emptyset = a^*ba$$

2.2.g.

$$\partial_{01}(0(1|\lambda)|1^{+}) = \partial_{1}(\partial_{0}(0(1|\lambda)|1^{+})) = \partial_{1}(\partial_{0}(0(1|\lambda))|\partial_{0}(1^{+})) = \partial_{1}(\partial_{0}(0(1|\lambda))|\emptyset)) = \partial_{1}(\partial_{0}(0(1|\lambda))) = \partial_{1}(1|\lambda) = \lambda$$

2.3.

2.3.a.

```
\partial_0(L_0) = \partial_0((0|1)^*01)
               = \partial_0((0|1)^*)01|\epsilon((0|1)^*)\partial_0(01)
               = \partial_0(0|1)(0|1)^*01|\partial_0(01)
               = (0|1)*01|1
               =L_1
\partial_1(L_0) = \partial_1((0|1)^*01)
               = \partial_1((0|1)^*)01|\epsilon((0|1)^*)\partial_1(01)
               = \partial_1(0|1)(0|1)^*01|\partial_1(01)
               = (0|1)*01|\emptyset
               = (0|1)*01
               =L_0
\partial_0(L_1) = \partial_0((0|1)^*01|1)
               = \partial_0((0|1)^*01)|\partial_0(1)
               =\partial_0((0|1)^*01)
               =\partial_0(L_0)
               =L_1
\partial_1(L_1) = \partial_1((0|1)^*01|1)
               =\partial_1((0|1)^*01)|\partial_1(1)
               = \partial_1((0|1)^*01)|\lambda
               = \partial_1((0|1)^*)01|\epsilon((0|1)^*)\partial_1(01)|\lambda
               = \partial_1((0|1)^*)01|\epsilon((0|1)^*)\emptyset|\lambda
               = \partial_1((0|1)^*)01|\lambda
               = \partial_1(0|1)(0|1)^*01|\lambda
               = (0|1)*01|\lambda
               =L_2
\partial_0(L_2) = \partial_0((0|1)^*01|\lambda)
               =\partial_0((0|1)^*01)
               =\partial_0(L_0)
               =L_1
\partial_1(L_2) = \partial_1((0|1)^*01|\lambda)
               = \partial_1((0|1)^*01)
               =\partial_1(L_0)
               =L_0
```

2.3.b.

$$\begin{array}{ll} \partial_a(L_0) &= \partial_a(a(b|\lambda)|b^+) \\ &= \partial_a(a(b|\lambda))|\partial_a(b+) \\ &= b|\lambda \\ &= L_1 \\ \partial_b(L_0) &= \partial_b(a(b|\lambda)|b^+) \\ &= \partial_b(a(b|\lambda))|\partial_b(b+) \\ &= b^* \\ &= L_2 \\ \partial_a(L_1) &= \partial_a(b|\lambda) \\ &= \emptyset \\ L_T \\ \partial_b(L_1) &= \partial_b(b|\lambda) \\ &= \lambda \\ &= L_3 \\ \partial_a(L_2) &= \partial_a(b^*) \\ &= \emptyset \\ L_T \\ \partial_b(L_2) &= \partial_b(b^*) \\ &= b^* \\ L_2 \\ \partial_a(L_3) &= \partial_a(\lambda) \\ &= \emptyset \\ L_T \\ \partial_b(L_3) &= \partial_b(\lambda) \\ &= \emptyset \\ L_T \end{array}$$

2.4.

2.4.a.

$$L_{0} = a.L_{1}|b.L_{1} = (a|b).L_{1}$$

$$L_{1} = a.L_{1}|b.(a|b).L_{1}|\lambda$$

$$= a.L_{1}|b.(a|b).L_{1}|\lambda$$

$$= a.L_{1}|(b.(a|b).L_{1}|\lambda)$$

$$= a^{*}b.(a|b).L_{1}|a^{*}\lambda$$

$$= (a^{*}b.(a|b))^{*}.a^{*}\lambda$$

$$= (a^{*}b.(a|b))^{*}.a^{*}$$

$$= (a^{*}ba|a^{*}bb)^{*}.a^{*}$$

 $L_0 = (a|b)(a^*ba|a^*bb)^*a^*$

2.4.b.

$$L_1 = a.L_2|b.L_3$$

$$L_2 = a.L_1|b.L_2|\lambda$$

$$L_3 = (a|b).L_2$$

$$L_1 = a.L_2|b(a|b).L_2 = (a|b(a|b)).L_2$$

$$L_2 = a(a|b(a|b)).L_2|b.L_2|\lambda$$

$$= (a(a|b(a|b))|b).L_2|\lambda$$

$$= (a(a|b(a|b))|b)^*$$

$$L_1 = (a|b(a|b))(a(a|b(a|b))|b)^*$$

2.4.c.

Pasamos a deterministico

	a	b
0	1	-
1	12	-
12	123	2
123	123	023
2	3	2
023	13	023
3	3	03
13	123	03
03	13	03
		•

Y luego resolvemos las ecuaciones

$$L_0 = a.L_1$$

$$L_1 = a.L_{12}$$

$$L_{12} = a.L_{123}|b.L_2$$

$$L_{123} = a.L_{123}|b.L_{023}|$$

$$L_2 = a.L_3|b.L_2$$

$$L_{023} = a.L_{13}|b.L_{023}$$

$$L_3 = a.L_3|b.L_{03}$$

$$L_{13} \quad a.L_{123}|b.L_{03}|$$

$$L_{03}$$
 $a.L_{13}|b.L_{03}$

Quedan por resolver las ecuaciones

- 2.6.
- 2.6.a.

$$R = \{a\}$$

2.6.b.

$$R = \{a\}, S = \{b\}$$

2.6.c.

$$R = \{a\}$$

2.6.d.

$$R = \{a\}, S = \{b\}, T = \{c\}$$
$$\{a, bc\} \neq \{aa, ac, ba, bc\}$$

- 2.7.
- 2.7.a.

$$R = \{a, \lambda\}$$

2.7.b.

$$R = \{a\}, S = \{aa\}$$

- 2.7.c.
 - $R = \{\lambda\}$ $R = \Sigma^*$

$$R = \Sigma^*$$

2.7.d.

$$R = \{a\}^*, S = \{a\}, T = \{a\}$$

2.7.e.

$$R = \{a\}^*, S = \{\lambda\}$$

2.8.

Primero se pasa L a I(L) convirtiendo todos sus estados en finales. Obtenemos la expresion regular de I(L)

$$L_0 = a.L_1|b.L_3|\lambda$$

$$L_1 = c.L_2 | \lambda$$

$$L_2 = b.L_1|\lambda$$

= $b.c.L_2|\lambda$
= $(bc)^*$

$$L_3 = a.L_3|c.L_1|\lambda$$

$$L_1 = c.L_2|\lambda$$

= $c(bc)^*|\lambda$

$$L_3 = a.L_3|c.L_1|\lambda$$

$$= a.L_3|c.(c(bc)^*|\lambda)|\lambda$$

$$= a.L_3|cc(bc)^*|c|\lambda$$

$$= a.L_3|(cc(bc)^*|c|\lambda)$$

$$= acc(bc)^*|ac|a$$

$$L_0 = a.L_1|b.L_3|\lambda$$

= $a(c(bc)^*|\lambda)|b(acc(bc)^*|ac|a)$
= $ac(bc)^*|a|bacc(bc)^*|bac|ba$

Por lo tanto $I(L) = ac(bc)^*|a|bacc(bc)^*|bac|ba$ y $I(L)^* = (ac(bc)^*|a|bacc(bc)^*|bac|ba)^*$

2.9.

Es necesario primero pasarlo a deterministico: $\mid \begin{array}{c|c} a & b & c \end{array}$

	a	b	c
0	01	Т	Т
01	012	Т	Т
012	012	2	Т
2	Т	2	Т
\mathbf{T}	Т	Т	Т
		•	

Con estados finales $F = \{012, 2\}$

Luego obtenemos L^c simplemente invirtiendo los estados finales $F^c = \{0,01,T\}$

Ahora hacemos las ecuaciones para determinar la expresion regular de L^c

$$\begin{split} L_0 &= a.L_{01}|(b|c).L_T|\lambda \\ L_{01} &= a.L_{012}|(b|c).L_T|\lambda \\ L_{012} &= a.L_{012}|b.L_2|c.L_T \\ L_2 &= b.L_2|(a|c).L_T \\ L_T &= (a|b|c).L_T|\lambda \\ &= (a|b|c)^* \\ L_2 &= b.L_2|(a|c).L_T \\ &= b.L_2|(a|c)(a|b|c)^* \\ &= b^*(a|c)(a|b|c)^* \\ &= b^*(a|c)(a|b|c)^* \\ &= b^*(a|c)(a|b|c)^* \\ L_{012} &= a.L_{012}|b.L_2|c.L_T \\ &= a.L_{012}|bb^*(a|c)(a|b|c)^*|c(a|b|c)^* \\ &= a^*(bb^*(a|c)(a|b|c)^*|c(a|b|c)^*) \\ L_{01} &= a.L_{012}|(b|c).L_T|\lambda \\ &= aa^*(bb^*(a|c)(a|b|c)^*|c(a|b|c)^*)|(b|c)(a|b|c)^*|\lambda \\ L_0 &= a(aa^*(bb^*(a|c)(a|b|c)^*|c(a|b|c)^*)|(b|c)(a|b|c)^*|\lambda)|(b|c)(a|b|c)^*|\lambda \\ L_0 &= a(aa^*(bb^*(a|c)(a|b|c)^*|c(a|b|c)^*)|(b|c)(a|b|c)^*|\lambda)|(b|c)(a|b|c)^*|\lambda \end{split}$$

Y luego todo eso elevado a la 3

4.1.

4.1.a.

Pasamos a deterministico

	a	b
q_0	q_{01}	q_0
q_{01}	q_{012}	q_0
q_{012}	q_{0123}	q_0
q_{0123}	q_{0123}	q_{03}
q_{03}	q_{013}	q_{03}
q_{013}	q_{0123}	q_{03}

Con estados finales $\{q_{0123}, q_{03}, q_{013}\}$

Luego separamos en clases de equivalencia para minimizar

	\equiv_0	a	b	\equiv_1	a	b	\equiv_2	a	b	\equiv_3
q_0	NF	NF	NF	C_1	C_1	C_1	D_1	D_2	D_1	E_1
q_{01}	NF	NF	NF	C_1	C_2	C_1	D_2	D_3	D_1	E_2
q_{012}	NF	F	NF	C_2	C_1	C_1	D_3	D_4	D_1	E_3
q_{0123}	F	F	F	C_3	C_3	C_3	D_4	D_4	D_4	E_4
q_{03}	F	F	F	C_3	C_3	C_3	D_4	D_4	D_4	E_4
q_{013}	F	F	F	C_3	C_3	C_3	D_4	D_4	D_4	E_4
NT	1	1	4 1 _	- (T	T		1 1	1. 77	C	- 1

Nos quedamos con los estados $\{E_1, E_2, E_3, E_4\}$ donde E_4 es final

5.1.

5.1.a.

Es regular $(00)^+$

5.1.b.

Un lenguaje L es regular si vale

```
\forall \alpha, \alpha \in L |\alpha| \geq n \Longrightarrow \exists x \exists y \exists z \alpha = xyz |xy| \leq n |y| \geq 1 \forall i (xy^i z \in L)
```

Si $L = \{0^m 1^n 0^{m+n} \mid m, n \ge 1\}$ es regular, debe ocurrir que para algun n, todas las cadenas que pueda formar con longitud $\ge n$ cumplan $\exists x \exists y \exists z \alpha = xyz |xy| \le n|y| \ge 1 \forall i (xy^i z \in L)$

Consideramos la cadena $\alpha = 0^n 1^n 0^{2n} = xyz$. Ocurre que xy son todos 0s, por lo que y esta compuesta por uno o mas 0s.

Si tomamos i=0, la cadena $x=0^j, y=0^k$ con $j+k\leq n, j\geq 0, k\geq 1$, por lo que $xz=0^j0^{n-k-j}1^n0^2n=0^{n-k}1^n0^{2n}$ como $k\geq 1, n-k\leq n$ pero para ser aceptado deberia ser n-k=2n-n. Absurdo, por lo tanto L no es regular

5.1.c.

Si $L = \{0^p | pesprimo\}$ es regular, debe ocurrir que para algun n, todas las cadenas que pueda formar con longitud $\geq n$ cumplan $\exists x \exists y \exists z \alpha = xyz | xy | \leq n | y | \geq 1 \forall i (xy^i z \in L)$

Consideramos 0^p con p el siguiente número primo a n. $x=0^j,y=0^k$ con $j+k\leq n, j\geq 0, k\geq 1$. Por lo que $xy^iz=0^j0^{ik}0^{p-j-k}=0^{p+(i-1)k}$

Supongo que no puede valer para toda i porque los numeros primos no se comportan de manera lineal, por lo que debe existir un i para el cual que p + (i - 1)k no puede ser primo.

5.1.d.

Es regular $(0|1|\lambda)(01|10|11)^*(0|1|\lambda)$

5.1.e.

Considero la cadena $0^n 1^n$. Ocurre que xy son todos 0s, por lo que y esta compuesta por uno o mas 0s.

 xy^iz con i=0 tendra 1 o más 0s faltantes, dejando de cumplir la igualdad de 0s y 1s, y así no perteneciendo al lenguaje. Por lo que no es regular.

5.1.f.

Si $L = \{\omega \in \{0,1\}^* | |\omega|_0 \neq |\omega|_1\}$ fuera regular, entonces su complemento también lo sería. Pero como vimos en el ejecticio anterior, no lo es. Por lo tanto L no es regular.

5.1.g.

Consideramos 1^n0^{n+1} . xy estara formada solo por 1s, por lo que y también. Entonces con i > 1, se deja de cumplir la condición para xy^iz . No es regular.

5.1.h.

Consideremos la cadena $(\prod_{i=1}^n i)(\prod_{i=1}^n (n-i))$, es decir, "123...(n-1)nn(n-1)...321"

xy seran los numeros del 1 a j con $j \le n$, por lo que y está conformada por alguna cadena empezando por alguno de esos números hasta j. Por lo que si tomamos i=0, ocurre que $xy^iz=xz$ deja de tener algunos de los numeros que conformaban xy, ya que $|y| \ge 1$, y por lo tanto deja de cumplir la propieda de ser palíndromo. Por lo tanto no es regular.

5.1.i.

Es regular
$$A = <\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_0\} > \text{con } \delta = \frac{ \begin{vmatrix} 0 & 1 \\ q_0 & q_1 & q_0 \\ q_1 & q_0 & q_1 \end{vmatrix}}$$

5.1.j.

Es regular
$$A = <\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_0, q_2, q_3\} > \cos \delta = \frac{ \mid 0 \mid 1}{q_0 \mid q_1 \mid q_2}$$
 $q_1 \mid q_0 \mid q_3 \mid q_2 \mid q_1$
Es regular $A = <\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_2\} > \cos \delta = \frac{ \mid 0 \mid 1}{q_0 \mid q_1 \mid q_2}$
 $q_1 \mid q_0 \mid q_3 \mid q_2 \mid q_1$
 $q_1 \mid q_0 \mid q_3 \mid q_2 \mid q_1$

5.1.k.

Consideramos 1^n0^{n+1} . xy esta formada solo por 1s por lo que y también. Con i=0 ocurre que $xy^iz=xz$ donde como y tenia al menos un 1, $xz=1^k0^{n+1}$, con $k\leq n-1$, $|xz|_0=n+1, |xz|_1=k$ y por lo tanto, para el prefijo $\gamma=xz, |\gamma|_0=n+1, |\gamma|_1=k$ por lo que $|\gamma|_0-|\gamma|_1=n+1-k\geq n+1-(n-1)=2$, por lo que xy^iz no es parte del lenguaje para i=0 y entonces no es regular.

5.1.l.

Considero la cadena 1^n0^n . Ocurre que xy son todos 0s, por lo que y esta compuesta por uno o mas 0s.

 xy^iz con i=0 tendra 1 o más 0s faltantes, dejando de cumplir la igualdad de 0s y 1s, y así no perteneciendo al lenguaje. Por lo que no es regular.

7.1.

$$\begin{array}{c} A \longrightarrow []|[B] \\ B \longrightarrow B, C|C \\ C \longrightarrow id|A \end{array}$$

Derivaciones a izquierda para $A_3 = [a, [b, c], d]$

$$A \longrightarrow [B] \longrightarrow [B,C] \longrightarrow [B,C,C] \longrightarrow [C,C,C] \longrightarrow [a,C,C] \longrightarrow [a,A,C] \longrightarrow [a,[B],C] \longrightarrow [a,[B,C],C] \longrightarrow [a,[C,C],C] \longrightarrow [a,[b,c],C] \longrightarrow [a,[b,c],d]$$

7.2.

$$A \longrightarrow AB|B$$
$$B \longrightarrow sym|num|str|()|(A)$$

Derivaciones para num

$$A \longrightarrow B \longrightarrow num$$

Derivaciones para ()

$$A \longrightarrow B \longrightarrow ()$$

Derivaciones para (sym()numstr)

$$A \longrightarrow B \longrightarrow (A) \longrightarrow (AB) \longrightarrow (ABB) \longrightarrow (BBBB) \longrightarrow (symBBB) \longrightarrow (sym()BB) \longrightarrow (sym()numB) \longrightarrow (sym()numstr)$$

7.3.

$$A \longrightarrow AB|B$$

$$B \longrightarrow C_n um|C$$

$$C \longrightarrow elem|(AB)$$

7.4.

$$\begin{array}{c} A \longrightarrow A + B|A - B|B \\ B \longrightarrow BC|B * C|B/C|C \\ C \longrightarrow id|(A) \end{array}$$

$$\begin{array}{ll} A & \longrightarrow A+B \\ & \longrightarrow A-B+B \\ & \longrightarrow B-B+B \\ & \longrightarrow C-B+B \\ & \longrightarrow id-B+B \\ & \longrightarrow id-B*C+B \\ & \longrightarrow id-B/C*C+B \\ & \longrightarrow id-BC/C*C+B \\ & \longrightarrow id-idC/C*C+B \\ & \longrightarrow id-idid/C*C+B \\ & \longrightarrow id-idid/id*C+B \\ & \longrightarrow id-idid/id*id+B \\ & \longrightarrow id-idid/id*id+C \\ & \longrightarrow id-idid/id*id+id \end{array}$$

7.5.

$$\begin{array}{c} A \longrightarrow B?B: A|B \\ B \longrightarrow B + C|C \\ C \longrightarrow id|(A) \end{array}$$

7.6.

7.6.a.

$$\begin{array}{cccc} A \longrightarrow B & key & A|B \\ B \longrightarrow B & binOp & C|C \\ C \longrightarrow C & id|D \\ D \longrightarrow id|int|(A) \end{array}$$

7.6.b.

```
A \longrightarrow B \ at : A
      \longrightarrow C \ at: A
      \longrightarrow D at : A
      \longrightarrow a \ at : A
      \longrightarrow a \ at : B \ put : A
      \longrightarrow a \ at: B+C \ put: A
      \longrightarrow a \ at: C+C \ put: A
      \longrightarrow a \ at: D+C \ put: A
      \longrightarrow a \ at: x + C \ put: A
      \longrightarrow a \ at: x+D \ put: A
      \longrightarrow a \ at: x+5 \ put: A
      \longrightarrow a \ at: x+5 \ put: B
      \longrightarrow a \ at: x+5 \ put: C
      \longrightarrow a \ at: x+5 \ put: C \ truncate
      \longrightarrow a \ at: x+5 \ put: D \ truncate
      \longrightarrow a \ at: x+5 \ put: (A) \ truncate
      \longrightarrow a \ at: x+5 \ put: (B) \ truncate
      \longrightarrow a \ at: x+5 \ put: (B/C) \ truncate
      \longrightarrow a at: x + 5 put: (B + C/C) truncate
      \longrightarrow a at: x + 5 put: (C + C/C) truncate
      \longrightarrow a at: x + 5 put: (D + C/C) truncate
      \longrightarrow a \ at: x+5 \ put: (b+C/C) \ truncate
      \longrightarrow a at: x + 5 put: (b + D/C) truncate
      \longrightarrow a at: x + 5 put: (b + c/C) truncate
      \longrightarrow a \ at: x+5 \ put: (b+c/C \ sqrt) \ truncate
      \longrightarrow a at : x + 5 put : (b + c/D \ sqrt) truncate
      \longrightarrow a \ at: x+5 \ put: (b+c/d \ sqrt) \ truncate
```