Pizzaseminar

3. Übungsblatt

Aufgabe 1. Schranken für die Größe der n-ten Primzahl

Folgender Beweis der Unendlichkeit der Primzahlen wird Euklid zugeschrieben:

Angenommen, p_1, \ldots, p_r seien alle Primzahlen. Wir setzen $N := p_1 \cdots p_r + 1$. Nach dem Fundamentalsatz der Arithmetik lässt sich N in Primfaktoren zerlegen. Das ist ein Widerspruch, denn die p_i sind keine Teiler von N, andere Primzahlen gibt es aber nach Widersprungsvoraussetzung nicht.

- a) Formuliere den Beweis so um, dass er konstruktiv folgende stärkere Aussage zeigt: Seien p_1, \ldots, p_r gegebene Primzahlen. Dann gibt es eine weitere Primzahl ungleich den p_i .
- b) Sei nun p_1, p_2, \ldots die aufsteigende Folge aller Primzahlen. Extrahiere aus deinem Beweis die Abschätzung

$$p_{n+1} \le p_1 \cdots p_n + 1.$$

c) Zeige folgende Schranke für die Größe der n-ten Primzahl:

$$p_n \le 2^{2^{n-1}}.$$

d) Tatsächlich ist diese Schranke sehr pessimistisch. Extrahiere aus Eulers Alternativbeweis der Unendlichkeit der Primzahlen eine bessere! (Details kommen noch!)