Introduction to Bayesian inference

End of course data analysis project

Rafke ..., Joelle ..., Samer ..., Ermioni ..., Heiner ...

The Center for Disease Control (CDC) reports the vaccination coverage of Varicella among young children. Varicella, commonly known as chicken-pox, is a highly contagious viral infection caused by the varicella-zoster virus (VZV). Vaccination against chickenpox has been highly effective in reducing the incidence and severity of the disease. In the United States, vaccination against varicella has been part of the routine childhood immunization sched- ule since the mid-1990s. Since the vaccine's introduction, there has been a dramatic decline in the number of chickenpox cases, hospitalizations, and deaths associated with the disease. The target for vaccination coverage of varicella (chickenpox) in the United States, as set by the Centers for Dis- ease Control and Prevention (CDC), is typically around 90% or higher for children. This high coverage rate is aimed at achieving herd immunity and preventing outbreaks of chickenpox within communities.

Project 1: Insurance

The next table summarizes, based on a survey, the number of children in the birth cohort 2014-2017 that had at least one dose of the Varicella vaccine. It gives the number of vaccinated children (Vaccinated) amongst the number of children in the survey (Sample Size). The information is provided for 5 regions of the US, and split according to insurance status (private insurance, uninsured or any Medicaid).

Geography	Insurance	Vaccinated	Sample Size
North Carolina	Any Medicaid	380	419
North Carolina	Private Insurance Only	632	673
North Carolina	Uninsured	28	34
Georgia	Any Medicaid	363	396
Georgia	Private Insurance Only	527	576
Georgia	Uninsured	36	50
Wisconsin	Any Medicaid	282	332
Wisconsin	Private Insurance Only	514	548
Wisconsin	Uninsured	16	34
Florida	Any Medicaid	446	490
Florida	Private Insurance Only	588	628
Florida	Uninsured	28	39
Mississippi	Private Insurance Only	400	441
Mississippi	Uninsured	27	32

Question 1

Derive analytically the posterior of the vaccination coverage per ge- ography and insurance group. Use a conjugate prior that (1) reflects no knowledge on the vaccination coverage, and (2) reflects that vac- cination coverage is typically around 90% or higher. Give posterior summary measures of the vaccination coverage per geography and in- surance group. Is the choice of the prior impacting your results?

Theoretical considerations

The outcome Vaccinated/Not Vaccinated follows a Bernouilli distribution with parameter p:

V: Vaccination status $V \in \{0,1\}$ $V \sim \mathcal{B}ern(p)$

It is known from theory that the sum of n i.i.d Bernoulli random variables follows a Binomial distribution. This will be used to model the sample outcome: the number of vaccinated people V_s in a random sample of size n:

$$V_s = \sum_i^n V_i \sim \mathcal{B}inom(n,\theta)$$

where θ is the parameter of interest - the vaccine coverage.

In the course, we saw that the Beta distribution is the conjugate prior for binomially distributed data:

Table 2: Beta-Binomial conjugate model

Distribution	Formula
Prior	$p(\theta) = \mathcal{B}eta(\alpha, \beta)$
Likelihood	$p(y \mid \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$
Posterior	$p(\theta \mid y) = \mathring{\mathcal{B}eta}(\alpha + k, \beta + n - k)$

The summary measures for the Beta distribution are defined as follows:

Table 3: Beta distribution summary measures

Summary Measure	Formula
Mean	$\frac{\alpha}{\alpha + \beta}$
Median	See Note
Mode	$\frac{\alpha-1}{\alpha+\beta-2}$ for $\alpha,\beta>1$

Note: The median of the Beta distribution does not have a simple closed form expression. It can be approximated numerically or using statistical software.

Choice of prior distributions

(1) No prior knowledge

In order to reflect no prior knowledge on the vaccine coverage, the weakly-informative prior Beta(1,1) will be used, which is equivalent to the uniform distribution over [0,1].

(2) Vaccine coverage >90%

For modeling prior knowledge that vaccine coverage is about 90%, we chose the Beta(150, 7) distribution.

Comparison of priors

Figure 1: Comparison of uniform Beta(1,1) prior vs. strong Beta(150,7) prior

Results

Table 4: Posterior distribution parameters and summary measures per geography for the two different Beta priors

			Posterior parameters and summary measures												
					Beta(1,1) prio	or		Beta(150,7) prior						
Geography	Insurance	α	β	mean	mode	var	HPD LL	HPD UL	α	β	mean	mode	var	HPD LL	HPD UL
NC	Medicaid	381	40	0.905	0.907	0.014	0.875	0.931	530	46	0.920	0.922	0.011	0.897	0.941
NC	Private	633	42	0.938	0.939	0.009	0.918	0.955	782	48	0.942	0.943	0.008	0.925	0.957
NC	Uninsured	29	7	0.806	0.824	0.065	0.664	0.916	178	13	0.932	0.937	0.018	0.892	0.963
GA	Medicaid	364	34	0.915	0.917	0.014	0.885	0.940	513	40	0.928	0.929	0.011	0.905	0.948
GA	Private	528	50	0.913	0.915	0.012	0.889	0.935	677	56	0.924	0.925	0.010	0.903	0.942
GA	Uninsured	37	15	0.712	0.720	0.062	0.583	0.825	186	21	0.899	0.902	0.021	0.854	0.936
WI	Medicaid	283	51	0.847	0.849	0.020	0.807	0.884	432	57	0.883	0.885	0.014	0.854	0.910
WI	Private	515	35	0.936	0.938	0.010	0.915	0.955	664	41	0.942	0.943	0.009	0.923	0.958
WI	Uninsured	17	19	0.472	0.471	0.082	0.314	0.634	166	25	0.869	0.873	0.024	0.818	0.913
FL	Medicaid	447	45	0.909	0.910	0.013	0.882	0.932	596	51	0.921	0.922	0.011	0.899	0.941
FL	Private	589	41	0.935	0.936	0.010	0.914	0.953	738	47	0.940	0.941	0.008	0.923	0.956
FL	Uninsured	29	12	0.707	0.718	0.070	0.561	0.834	178	18	0.908	0.912	0.021	0.864	0.944
MS	Private	401	42	0.905	0.907	0.014	0.876	0.931	550	48	0.920	0.921	0.011	0.897	0.940
MS	Uninsured	28	6	0.824	0.844	0.064	0.681	0.930	177	12	0.937	0.941	0.018	0.898	0.967

Figure 2: Posterior distributions per Geography/Insurance stratum, positive density: Beta(1,1) prior, negative density: Beta(150,7)

nvestigate whether the vaccination coverage is associated with the in- surance status using a logistic regression model Yij Binom(ij ,Nij) with logit(ij) = 0 + 1IAnyMedicaid,ij + 2IUninsured,ij where i is the location, j is the insurance status, ij is the vaccination coverage and I. are dummy variables. Assume non-informative priors for the parameters to be estimated. Write and explain the code in BUGS language

```
y[t] ~ dbin(p[t], K[t])
5
        logit(p[t]) \leftarrow alpha_0 + alpha_1 * x_1[t] + alpha_2 * x_2[t]
6
     }
7
8
      # Priors
9
      alpha_0 ~ dnorm(0.0,0.01)
10
      alpha_1 ~ dnorm(0.0,0.01)
11
      alpha_2 ~ dnorm(0.0,0.01)
12
13
      # Parameters of interest
15
16
      ## Question 5 - vaccine coverage
17
      pi_private <- exp(alpha_0)/(1+exp(alpha_0))</pre>
      pi_medicaid <- exp(alpha_0 + alpha_1)/(1+exp(alpha_0 + alpha_1))</pre>
19
     pi_uninsured <- exp(alpha_0 + alpha_2)/(1+exp(alpha_0 + alpha_2))</pre>
20
21
      ## Question 6 - Differences in vaccine coverages
      diff_priv_medicaid <- pi_private - pi_medicaid</pre>
23
      diff_priv_uninsured <- pi_private - pi_uninsured</pre>
24
25
   }
```

Likelihood function and model specification

For each row t in the dataset, the outcome y[t] (number of vaccinated children in the sample) is specified as drawn from a Binomial distribution with parameters p[t] and sample size K[t]. We also specify the conditional mean model for this likelihood function using the logit link function.

Prior distribution

As prior distribution for all parameters (intercept and indicator variables for the insurance group), a vague prior is chosen : $\mathcal{N}(\mu = 0, \tau = 0.01)$.

Quantities of interest During each MCMC run, the vaccine coverage per insurance group is calculated using the inverse logit transformation, this will give access to the posterior distribution of vaccine coverage per insurance group. Furthermore, the differences between vaccine coverages are calculated which will be needed to answer Question 6.

Question 3

Run the MCMC method and check convergence of the MCMC chains. Give the details on how you checked convergence.

MCMC run summary

```
Inference for Bugs model at "4", fit using jags,
 2 chains, each with 40000 iterations (first 2000 discarded), n.thin = 2
n.sims = 38000 iterations saved. Running time = 1.488 secs
                                               25%
                    mu.vect sd.vect
                                      2.5%
                                                       50%
                                                                75%
                                                                      97.5%
alpha_0
                      2.567
                              0.072 2.430
                                             2.518
                                                     2.566
                                                              2.616
                                                                      2.709
                                                                    -0.169
alpha_1
                     -0.382
                              0.108 -0.593
                                            -0.455
                                                    -0.383
                                                            -0.309
alpha_2
                     -1.648
                              0.176 -1.988
                                            -1.766
                                                    -1.649
                                                            -1.531
                                                                    -1.304
                      0.030
                              0.009 0.013
                                             0.024
                                                     0.030
                                                             0.036
diff_priv_medicaid
                                                                      0.047
                      0.215
                              0.033 0.153
                                             0.192
                                                     0.214
                                                              0.237
                                                                      0.281
diff_priv_uninsured
pi_medicaid
                      0.899
                              0.007 0.884
                                             0.894
                                                     0.899
                                                              0.904
                                                                      0.913
                                             0.925
                      0.929
                              0.005 0.919
                                                     0.929
                                                              0.932
                                                                      0.938
pi_private
pi_uninsured
                      0.714
                              0.033 0.648
                                             0.692
                                                     0.714
                                                              0.736
                                                                      0.776
                              2.427 99.479 100.470 101.611 103.305 108.584
deviance
                    102.231
                     Rhat n.eff
                    1.002 2100
alpha_0
```

```
      alpha_1
      1.001
      38000

      alpha_2
      1.001
      10000

      diff_priv_medicaid
      1.001
      29000

      diff_priv_uninsured
      1.001
      38000

      pi_medicaid
      1.002
      2200

      pi_private
      1.001
      38000

      deviance
      1.001
      9800
```

For each parameter, n.eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

```
DIC info (using the rule: pV = var(deviance)/2) pV = 2.9 and DIC = 105.2 DIC is an estimate of expected predictive error (lower deviance is better).
```

Convergence checks

Traceplots

Chain -1 -2

Figure 3

Density plots per chain

Posterior Density by Parameter and Chain

Figure 4

Autocorrelation plot

 \hat{R}

Potential scale reduction factors:

	${\tt Point}$	est.	Upper	C.I.
alpha_0		1		1.00
alpha_1		1		1.00
alpha 2		1		1.01

Figure 5

Multivariate psrf

1

${\bf Geweke\ diagnostics}$

[[1]]

```
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
alpha_0 alpha_1 alpha_2
-0.7133 1.9892 -0.3369
```

[[2]]

```
Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5
alpha_0 alpha_1 alpha_2
-0.2058 -0.8814 1.1700
```

Question 4

Make a plot of the posterior of the model parameters and give posterior summary measures. Interpret the results.

Posterior Density by Parameter

Figure 6

Table 5

Parameter	Sum	mary meas	95% HP	D interval	
	Mean	Median	SD	LL	UL
α_0	2.567	2.566	0.072	2.427	2.706
α_1	-0.382	-0.383	0.108	-0.594	-0.170
α_2	-1.648	-1.649	0.176	-1.997	-1.313

Plots of posterior densities and summary measures of the model parameters are given in Figure 6 and Table 5, respectively.

With Private Insurance Only as reference category the interpretation of the parameters is as follows:

- α_0 gives the log(odds) of Vaccinated vs. Non-Vaccinated in the private insurance group
- α_1 gives the change in log(odds) in the Medicaid group vs. the private Insurance group, the log(odds) in the Medicaid group are given by $\alpha_0 + \alpha_1$
- α_2 gives the change in log(odds) in the Uninsured group vs. the private Insurance group, the log(odds) in the Uninsured group are given by $\alpha_0 + \alpha_2$

Numerically, the posterior mean of α_0 is estimated at 2.567 and with a posterior probability of 95% α_0 lies in [2.427, 2.706]. The posterior estimates for α_1 and α_2 can be read in the same manner from Table 5.

Question 5

Give the posterior estimate of the vaccination coverage per region and insurance status. Compare with the analytical results you obtained in Question 1.

The vaccine coverage in a given group can be obtained from the log(odds) (see model code Question 3):

$$\pi = \frac{\exp(\log(odds))}{1 + \exp(\log(odds))}$$

Posterior estimates for the mean vaccine coverage per region and insurance status are given in 6. To facilite comparison against the results of conjugate modeling in Question 1, Figure 7 shows the difference of the posterior mean obtained from the logistic regression model ($\bar{\pi}_{logreg}$) with respect to a Beta(1,1) prior ($\Delta_{Beta(1,1)}$), and to a Beta(150,7) ($\Delta_{Beta(150,7)}$), respectively.

For both priors, the differ between in the posterior mean between the logistic regression model and the conjugate modeling is most pronounced for the group of Uninsured children. Compared to the strong prior, $\Delta_{Beta(150,7)}$ is negative in the Uninsured group across all states, while for the non-informative prior, $\Delta_{Beta(1,1)}$ is negative for uninsured children in MS and NC, strongly positive in WI, and neglegible in FL and GA.

Table 6

Table 7: Posterior estimates of mean vaccine coverages from the logistic regression model vs. estimates from conjugate pair modeling. Subscripts indicate whether the estimates was obtained from logistic regression or the chosen prior distribution, respectively. $\Delta_{Beta(\alpha,\beta)}$ gives the difference between posterior estimates from the logistic regression model and conjugate pair modeling. Vaccine coverage for MS/Medicaid can only be obtained from the logistic regression model.

Geo.	Ins.	k	n	$\bar{\pi}_{logreg}$	$\bar{\pi}_{Beta(1,1)}$	$\bar{\pi}_{Beta(150,7)}$	$\Delta_{Beta(1,1)}$	$\Delta_{Beta(150,7)}$
FL	Medicaid	446	490	0.899	0.909	0.921	-0.010	-0.022
FL	Private	588	628	0.929	0.935	0.940	-0.006	-0.011
FL	Uninsured	28	39	0.714	0.707	0.908	0.007	-0.194
GA	Medicaid	363	396	0.899	0.915	0.928	-0.016	-0.029
GA	Private	527	576	0.929	0.913	0.924	0.016	0.005
GA	Uninsured	36	50	0.714	0.712	0.899	0.002	-0.185
MS	Medicaid	NA	NA	0.899	NA	NA	NA	NA
MS	Private	400	441	0.929	0.905	0.920	0.024	0.009
MS	Uninsured	27	32	0.714	0.824	0.937	-0.110	-0.223
NC	Medicaid	380	419	0.899	0.905	0.920	-0.006	-0.021
NC	Private	632	673	0.929	0.938	0.942	-0.009	-0.013
NC	Uninsured	28	34	0.714	0.806	0.932	-0.092	-0.218
WI	Medicaid	282	332	0.899	0.847	0.883	0.052	0.016
WI	Private	514	548	0.929	0.936	0.942	-0.007	-0.013
WI	Uninsured	16	34	0.714	0.472	0.869	0.242	-0.155

Figure 7: Differences between posterior means of vaccine coverage per region and insurance status obtained from logistic regression and conjugate pair modeling. Differences are most pronounced for the Uninsured group in MS, NC, WC when using a Beta(1,1) prior and all states when using a Beta(150,7) prior.

Based on the logistic regression model, what is the probability (a posteriori) that coverage amongst children that have private insurance is higher than amongst children that have any medicaid? And compared to children with no insurance?

To answer this question, the differences $\pi_{private} - \pi_{medicaid}$ and $\pi_{private} - \pi_{uninsured}$ were incorporated and observed during the MCMC run of the model specified in Question 3. Posterior densities and empirical CDF are shown in Figure 8.

Posterior densities and ECDF of differences in vaccine coverage

Figure 8

The probabilities of interest defined below and can be approximated by using the posterior samples from the MCMC runs:

- $\begin{array}{l} 1. \ \ P(\pi_{priv}>\pi_{medicaid}) = P(\pi_{priv}-\pi_{medicaid}>0) = 0.99971 \\ 2. \ \ P(\pi_{priv}>\pi_{uninsured}) = P(\pi_{priv}-\pi_{uninsured}>0) = 1 \end{array}$

Question 7

Secondly, investigate whether the vaccination coverages are distinct at the different locations by adding a location-specific intercept.

$$\mathrm{logit}\left(\pi_{ij}\right) = \alpha_{0i} + \alpha_{1}I_{\mathrm{AnyMedicaid}} \ + \alpha_{2}I_{\mathrm{Uninsured}}$$

Assume non-informative priors for the parameters to be estimated. Write the code in BUGS language. Give a brief summary of the convergence checks you performed. Compare posteriors of vaccination coverages with results from Question 1.

```
model
{
  # Likelihood
  for (t in 1:T) {
    y[t] ~ dbin(p[t], K[t])
    logit(p[t]) <- inprod(beta, X[t,])</pre>
 }
```

```
# Priors
for (i in 1:7){
    beta[i] ~ dnorm(0.0,0.01)
}

# Vaccine coverage
for (t in 1:T){
    #logodds
    lo[t] <- inprod(beta, X[t,])
    #convert to probability / vaccine coverage
    coverage[t] <- exp(lo[t]) / (1 + exp(lo[t]))
}</pre>
```

Convergence was checked in a similar way as for the model defined in Question 3. In brief, trace plots showed the expected caterpillar pattern, posterior densities per parameter and chain showed superposed well and autocorrelation plots revealed decreasing autocorrelation with increasing lag number - all indicating convergence.

Table 8

Table 9: Posterior estimates of mean vaccine coverages from the logistic regression model including a region specific intercept vs. estimates from conjugate pair modeling. Subscripts indicate whether the esimates was obtained from logistic regression or the chosen prior distribution, respectively. $\Delta_{Beta(\alpha,\beta)}$ gives the difference between posterior estimates from the logistic regression model and conjugate pair modeling. Vaccine coverage for MS/Medicaid can only be obtained from the logistic regression model.

Geo.	Ins.	k	n	$\bar{\pi}_{logreg}$	$\bar{\pi}_{Beta(1,1)}$	$\bar{\pi}_{Beta(150,7)}$	$\Delta_{Beta(1,1)}$	$\Delta_{Beta(150,7)}$
FL	Medicaid	446	490	0.907	0.909	0.921	-0.001	-0.014
FL	Private	588	628	0.937	0.935	0.940	0.002	-0.003
FL	Uninsured	28	39	0.742	0.707	0.908	0.034	-0.166
GA	Medicaid	363	396	0.896	0.915	0.928	-0.018	-0.031
GA	Private	527	576	0.929	0.913	0.924	0.016	0.006
GA	Uninsured	36	50	0.718	0.712	0.899	0.006	-0.181
MS	Medicaid	NA	NA	0.881	NA	NA	NA	NA
MS	Private	400	441	0.918	0.905	0.920	0.013	-0.001
MS	Uninsured	27	32	0.686	0.824	0.937	-0.138	-0.251
NC	Medicaid	380	419	0.912	0.905	0.920	0.007	-0.009
NC	Private	632	673	0.940	0.938	0.942	0.002	-0.002
NC	Uninsured	28	34	0.752	0.806	0.932	-0.054	-0.180
WI	Medicaid	282	332	0.872	0.847	0.883	0.025	-0.011
WI	Private	514	548	0.912	0.936	0.942	-0.024	-0.030
WI	Uninsured	16	34	0.667	0.472	0.869	0.195	-0.202

Question 8

Compare the vaccination coverage in each of the location with the vaccination coverage in North Carolina:

$$\theta_{ij} = \frac{\pi_{ij}}{\pi_{\text{North Carolina },j}}$$

Interpret the results.

Figure 9

Table 10: Posterior summary measures of the ratio of the vaccine coverage in a given Geography/Insurance group stratum compared to the corresponding Insurance group in North Carolina

		Sumn	nary mea	95% H	95% HPD interval		
Geo.	Ins.	Mean	Mode	SD	LL	UL	
FL	Medicaid	0.995	0.995	0.014	0.968	1.024	
FL	Private	0.997	0.997	0.010	0.977	1.015	
FL	Uninsured	0.988	0.987	0.040	0.910	1.068	
GA	Medicaid	0.983	0.984	0.015	0.955	1.013	
GA	Private	0.989	0.989	0.010	0.969	1.008	
GA	Uninsured	0.956	0.956	0.040	0.877	1.033	
MS	Private	0.977	0.977	0.015	0.948	1.005	
MS	Uninsured	0.913	0.913	0.055	0.805	1.020	
WI	Medicaid	0.957	0.957	0.016	0.925	0.988	
WI	Private	0.970	0.970	0.011	0.948	0.992	
WI	Uninsured	0.888	0.888	0.041	0.808	0.970	

Make a caterpillar plot of the estimated coverage (per location and insurance status). Include also the observed vaccination proportion in the plot.

Figure 10: Ridgeline plot showing the posterior distribution of the ratio of the vaccine coverage in a given Geography/Insurance group stratum compared to the corresponding Insurance group in North Carolina

No data is given for children insured by Any medicaid in Mississippi. Predict the number of vaccinated individuals in Mississippi among 519 children with any medicaid

The posterior predictive distribution of the sample outcome in for MS/Medicaid with a sample size of n=519 can be obtained using the posterior distribution of the logodds obtained from the additive logistic regression model built in Question 10.

Posterior sample of the vaccine coverage

m: Contrast row vector for the Mississippi and Medicaid insurance group

 $\theta^{(s)}$: Row vector of posterior samples of model parameters (rows: MCMC iteration, columns: sampled parameter values) s=1,2,...,S

$$logit^{-1}(x) = \frac{e^x}{1+e^x}$$

1. Calculation of logodds $\eta^{(s)}$

$$\eta^{(s)} = m\theta^{(s)\top}$$

2. Inverse logit transformation

$$\pi^{(s)} = \operatorname{logit^{-1}}\left(\eta^{(s)}\right)$$

3. Binomial sampling

$$y^{(s)} = \mathcal{B}in (n = 519, \pi^{(s)})$$

The posterior predictive distribution of y is approximated by $\left\{y^{(s)}\right\}_{s=1}^{S}$.

Table 11: Summary measures and HPD interval for the posterior predictive distribution for vaccinated people in a sample of size 519 in the MS/Mississippi stratum.

Sumi	nary meas	95% HPD interval			
Mean	Median	SD	LL	UL	
456.979	458	12.992	430	480	

The posterior predictive mean for a new sample from the MS/Medicaid population with n=519 is $\hat{Y}^{S+1}=456.979$. With a posterior probability of 95% \tilde{y} lies in [430, 480].