Stabilité d'un système linéaire

Définition : Un système est dit stable si sa réponse à une entrée bornée l'est.

Critère sur les pôles de la FTBF:

Un SLCI est stable ssi tous les pôles de sa fonction de transfert sont à partie réelle négative.

Critère de Routh:

Pour un système dont la FT s'écrit : $H(p) = \frac{N(p)}{D(p)}$ avec

 $D(p) = a_0 + a_1 p + \ldots + a_n p^n.$

On établi le tableau :

Le système est stable ssi tous les éléments de la première colonne du tableau sont strictement de même signe.

- ▶ Le nombre de changement de signe dans la première colonne est nombre de racines de D(p) à partie réelle positives
- ightharpoonup Chgmnt de signe ou 0 dans la première colonne \Rightarrow instable.

2 Stabilité d'un système bouclé

Pour étudier la stabilité d'une FTBF on s'intéresse à la FTBO.

Y(p)

$FTBF(p) = \frac{FTBO(p)}{1 + FTBO(p)} \frac{1}{B(p)}$ FTBO(p) = A(p)B(p)

Critère du revers :

Pour un système dont la FTBO n'admet pas de pôle à partie réelle strictement positive :

Le système en BF est stable ssi

- La phase de sa FTBO est supérieure à $-\pi$ lorsque son gain est de $0 \, dB$
- Le gain de sa FTBO est inférieur à 0 dB lorsque sa phase est de $-\pi$

- Marge de gain : $m_G = -20 \log |FTBO(j\omega_{-\pi})|$ Valeur minimale communément admise : $12\,\mathrm{dB}$
- Marge de phase : $m_{\varphi} = \pi + \arg(FTBO(j\omega_{0dB}))$ Valeur minimale communément admise : $\frac{\pi}{4}$

Les systèmes sont maintenant supposés stables. (Nécessaire pour l'étude de précision, rapidité)

Précision d'un système linéaire

Précision: caractérisée par l'écart entre sortie attendue et sortie obtenue.

En régime permanent :

- Échelon: erreur indicielle ou de position
- Rampe: erreur de trainage ou de poursuite

Critère : Si l'entrée et la sortie d'un système de fonction de transfert H(p) sont comparables :

Le système ne pourra être stable que si le gain statique de H(p) vaut 1.

Précision d'un système asservi

La FTBO d'un système peut s'écrire :

$$FTBO(P) = \frac{K}{p^{\alpha}} \frac{1 + \sum_{i=1}^{n} a_i p^i}{1 + \sum_{i=1}^{m} b_i p^i}$$

Avec $\alpha \ge 0$ nb d'intégrateurs et K gain statique (FTBO).

 $\triangleright \alpha$ est appelé classe du système (nb d'intégrateurs FTBO)

Erreur statique ε_s du système :

Définie par
$$\varepsilon_s = \lim_{t \to \infty} \varepsilon(t) = \lim_{t \to \infty} x(t) - y_r(t)$$
(Avec $x(t)$ entrée, $y_r(t)$ image de retour de l'entrée)
$$\varepsilon_s = \lim_{p \to 0} \frac{p}{1 + \frac{K}{p^{\alpha}}} X(p)$$

Erreur statique en fonction de l'entrée et de la classe :

		0	1	2	3
	au(t)	$\frac{a}{1+K}$	0	0	0
	atu(t)	∞	$\frac{a}{K}$	0	0
	$at^2u(t)$	∞	∞	$\frac{2a}{K}$	0
	$at^3u(t)$	∞	∞	∞	$\frac{6a}{K}$

Erreur statique due à une perturbation :

L'erreur statique d'une perturbation ne peut être éliminée que s'il y a, **en amont** de la perturbation, un nombre d'intégrateurs supérieur ou égal au degré de la perturbation.

- ▶ Perturbation en échelon, intégrateur en amont
- ▶ Perturbation en rampe, 2 intégrateurs en amont ...

5 Rapidité

Critère : Plus $t_{5\%}$ est petit, plus le système est rapide.

Critère: Plus la BP est grande, plus le système est rapide.

Pour un système bouclé:

ightharpoonup La BP à $-3\,\mathrm{dB}$ de la FTBF peut être approximé par pa BP) 0 dB de la FTBO.

Critère : Plus la BP à 0dB de la FTBO est grande, plus le système est rapide.