Студент	№ варианта	Последовательность переключений	N1	N2	N3	N4
Середа	2404	2,2,7,5	4	$max(mod_3(N1+1),2)$	min(3·N1,2·N2,1)	max(N2,N3)-2-N1

Цель работы

Цель работы - разработать автомат, который распознает заданную последовательность одинарных переключений линий порта РО (каждый раз меняется состояние только одной линии - входной одинарный разностный сигнал). То есть входным сигналом для автомата является не само значение, а изменение значения на заданной линии порта.

Данный способ задания входных сигналов ориентирован на реализацию автомата с использованием виртуального стенда. состояния виртуальных тумблеров, подключенных к линиям порта P0 в этом стенде меняются одним «кликом» мыши. ясно, что одним кликом можно изменить значение только одной линии порта.

Образец задания

№ варинта	последовательность переключений	N1	N2	N3	N4
xxxx	2, 7, 1, 5	2	N1 mod 2	N1 + N2	max(N3, 3)

N1,N2,N3,N4 - определяют количество допустимых ошибок при вводе очередного переключения. При определении допустимого количества ошибок начиная со 2-го переключения учитывается количество ошибок, допущенных при вводе предшествующих переключений.

Пример: при вводе первого переключения допущена одна ошибка (что допустимо). Тогда $N2=N1 \mod 2 = 1$. Если при вводе второго переключения ошибок не допущено, то N3=1+0=1.

Вывод контрольной информации

- После запуска программы в порт P1 выводится номер очередного вводимого переключения (1,2,3,4).
- При нарушений условий по допустимым ошибкам происходит блокировка работы системы, а в порт P1 выводится код AAh.
- Если распознавание переключения выполнено корректно с допустимым количеством ошибок ввода на каждом шаге, то в порт P1 выводится код 55h, а в порт P2 выводится НЕХ номер варианта задания.

Примечание: предварительно все линии портов P1 и P2 устанавливаются в нулевое состояние. Начальное состояние линий порта P0 произвольное.

Циклический буфер

- Реализация программного автомата предполагает выполнение циклического опроса порта р0.
- Как фиксировать изменение состояния линии порта «p0» при его циклическом опросе?
- Идея использовать циклический буфер длиной «2» для хранения предыдущего и текущего значений порта.
- Линия, изменившая состояние определяется путем выполнения логической операции исключающее «или» над содержимым двух ячеек буфера.

Тестовая программа циклического буфера

Программа реализует циклический буфер с двумя ячейками внутренней памяти данных с адресами 24h и 25h. Для имитации циклической записи в буфер используется инкрементируемый счетчик на основе регистра «R7». Результат заполнения буфера можно наблюдать в окне «memory 1». Тестирование программы удобно выполнять при помощи установки контрольной точки на строку «15». Нажатием «F5» выполняется одна итерация цикла.

Циклический буфер с вводом данных через порт «Р0»

Ячейки буфера – с адресами 24h и 25h. При изменении данных, принимаемых через порт «Р0» с 75 на 74 в аккумулятор после выполнения 16 строки загружается значение 01. Фиксируется изменение в «0» разряде данных, принимаемых через порт «Р0».

