Nouveau processus de segmentation dans Slicer 3

Nicolas Rannou

Institut Supérieur de l'Électronique et du Numérique

Contexte

IRM cérébrale

- IRM cérébrale
- Nombre important de données

- IRM cérébrale
- Nombre important de données
- Segmentation manuelle coûteuse en temps

- IRM cérébrale
- Nombre important de données
- Segmentation manuelle coûteuse en temps
- Variabilité intra- et inter-expert

- IRM cérébrale
- Nombre important de données
- Segmentation manuelle coûteuse en temps
- Variabilité intra- et inter-expert
- Développement de méthodes de segmentation automatiques des tissus

- IRM cérébrale
- Nombre important de données
- Segmentation manuelle coûteuse en temps
- Variabilité intra- et inter-expert
- Développement de méthodes de segmentation automatiques des tissus
- Apparition de la segmentation par exceptation-maximisation

Problème

Peu utilisé car

 processus de segmentation doit être amélioré

Problème

Peu utilisé car

- processus de segmentation doit être amélioré
- paramètres optimums durs à choisirs

Problème

Peu utilisé car

- processus de segmentation doit être amélioré
- paramètres optimums durs à choisirs
- paramètres peu explicites

Plan

- Introduction
- 2 Segmentation par expectation maximisation
 - Principe
 - EM segmentation dans Slicer 3
- Contributions
 - Initialisation des tissus à segmenter
 - Évaluation de la sélection des tissus
 - Correction des inhomogéinités d'intensité
 - Évaluation du paramètre de normalisation
- 4 Résultats
 - Segmentation sans contribution
 - Segmentation après correction des inhomogéinités d'intensité
 - Segmentation avec la nouvelle méthode d'initialisation des tissus

Principe EM segmentation dans Slicer 3

Segmentation par expectation maximisation

Principe

La segmentation

Définition

Diviser un ensemble en parties délimitées

Origine de la segmentation par expectation-maximisation

• En 1977, Dempster, Laird et Rubin ont généralisé un principe utilisé depuis longtemps par les auteurs

Origine de la segmentation par expectation-maximisation

- En 1977, Dempster, Laird et Rubin ont généralisé un principe utilisé depuis longtemps par les auteurs
- Utilisé pour résoudre des problèmes de classifications où des données sont manquantes

Principe de la segmentation par expectation-maximisation

Deux étapes, l'expectation et la maximisation.

Soit Φ , un set contenant les paramètres à estimer (moyenne et variance pour chaque tissu).

Φ est initialisé par l'utilisateur.

Étape d'expectation

• Estime la probabilité que le set de paramètres soit bon

Étape de maximisation

Principe de la segmentation par expectation-maximisation

Deux étapes, l'expectation et la maximisation.

Soit Φ , un set contenant les paramètres à estimer (moyenne et variance pour chaque tissu).

Φ est initialisé par l'utilisateur.

Étape d'expectation

• Estime la probabilité que le set de paramètres soit bon

Étape de maximisation

• Estime un nouveau set de paramètres

Résumé de la segmentation par expectation-maximisation

Principe EM segmentation dans Slicer 3

Segmentation par expectation maximisation

EM segmentation dans Slicer 3

Informations supplémentaires

Atlas probabilistes

Informations supplémentaires

- Atlas probabilistes
- Segmentation multi-canaux

Informations supplémentaires

- Atlas probabilistes
- Segmentation multi-canaux
- Correction des inhomogéinités de l'intensité

Informations supplémentaires

- Atlas probabilistes
- Segmentation multi-canaux
- Correction des inhomogéinités de l'intensité
- Information hiérarchique

Processus de segmentation dans Slicer 3

Conclusion

Plan

- Introduction
- Segmentation par expectation maximisation
 - Principe
 - EM segmentation dans Slicer 3
- 3 Contributions
 - Initialisation des tissus à segmenter
 - Évaluation de la sélection des tissus
 - Correction des inhomogéinités d'intensité
 - Évaluation du paramètre de normalisation
- 4 Résultats
 - Segmentation sans contribution
 - Segmentation après correction des inhomogéinités d'intensité
 - Segmentation avec la nouvelle méthode d'initialisation des tissus

◆□→ ◆部→ ◆注→ ◆注→

Introduction
Segmentation par expectation maximisation
Contributions
Résultats
Perspectives
Conclusion

Initialisation des tissus à segmenter

Évaluation de la sélection des tissus Correction des inhomogéinités d'intensité Évaluation du paramètre de normalisation

Contributions

Initialisation des tissus à segmenter

Évaluation de la sélection des tissus Correction des inhomogéinités d'intensité Évaluation du paramètre de normalisation

Initialisation des tissus à segmenter

Présentation du problème

Méthodes actuelles d'initialisation

• Manuelle : dur à estimer

Initialisation des tissus à segmenter

Présentation du problème

Méthodes actuelles d'initialisation

- Manuelle : dur à estimer
- Semi-automatique : peu représentatif du tissu et non reproductible

Évaluation de la sélection des tissus Correction des inhomogéinités d'intensité Évaluation du paramètre de normalisation

Initialisation des tissus à segmenter

Solution proposée

• Initialisation à l'aide d'une "labelmap"

Évaluation de la sélection des tissus Correction des inhomogéinités d'intensité Évaluation du paramètre de normalisation

Initialisation des tissus à segmenter

Solution proposée

- Initialisation à l'aide d'une "labelmap"
- Représentatif du tissu à segmenter

Évaluation de la sélection des tissus Correction des inhomogéinités d'intensité Évaluation du paramètre de normalisation

Initialisation des tissus à segmenter

Solution proposée

- Initialisation à l'aide d'une "labelmap"
- Représentatif du tissu à segmenter
- Reproductible

Initialisation des tissus à segmenter

Évaluation des résultats

Comparaison Semi-automatique/Labelmap (matière blanche, IRM T1)

ullet Semi-automatique (10 échantillons) : $\mu=$ 543, $\sigma=$ 1105

Initialisation des tissus à segmenter

Évaluation des résultats

Comparaison Semi-automatique/Labelmap (matière blanche, IRM T1)

- ullet Semi-automatique (10 échantillons) : $\mu=$ 543, $\sigma=$ 1105
- Labelmap (\simeq 200 échantillons) : $\mu =$ 489, $\sigma =$ 592

Contributions

Évaluation de la sélection des tissus

Évaluation de la sélection des tissus

Présentation du problème

Aucun moyen de savoir si l'initialisation est la meilleure possible

Évaluation de la sélection des tissus

Solution proposée

 Représentation de la distribution des tissus sous forme de Gaussiennes

Évaluation de la sélection des tissus

Solution proposée

- Représentation de la distribution des tissus sous forme de Gaussiennes
- Connaissant les tissus à segmenter, on peut en déduire si l'initialisation est bonne

Évaluation de la sélection des tissus

Évaluation des résultats

• Os représenté en bleu

Évaluation de la sélection des tissus

Évaluation des résultats

- Os représenté en bleu
- Gauche : Semi-automatique | Droite : Labelmap

Contributions

Correction des inhomogéinités d'intensité

Correction des inhomogéinités d'intensité

Présentation du problème

• Processus de segmentation fait pour traiter les IRM

Correction des inhomogéinités d'intensité

Présentation du problème

- Processus de segmentation fait pour traiter les IRM
- Inhomogéinités d'intensité problème récurrent

Correction des inhomogéinités d'intensité

Présentation du problème

- Processus de segmentation fait pour traiter les IRM
- Inhomogéinités d'intensité problème récurrent
- Problème traité tardivement

Correction des inhomogéinités d'intensité

Présentation du problème

- Processus de segmentation fait pour traiter les IRM
- Inhomogéinités d'intensité problème récurrent
- Problème traité tardivement
- Apparition de problèmes de recalage et de distribution

Correction des inhomogéinités d'intensité

Solution proposée

• Nouveau processus de segmentation

Correction des inhomogéinités d'intensité

Solution proposée

- Nouveau processus de segmentation
- Pour améliorer recalage

Nouveau processus de segmentation dans Slicer 3

Correction des inhomogéinités d'intensité

Solution proposée

- Nouveau processus de segmentation
- Pour améliorer recalage
- Pour améliorer la distribution des tissus

Correction des inhomogéinités d'intensité

Évaluation des résultats

Recalage

Histogrammes joints sans correction du bias

Correction des inhomogéinités d'intensité

Évaluation des résultats

Recalage

Histogrammes joints après correction du bias

Correction des inhomogéinités d'intensité

Évaluation des résultats

Distribution des tissus

Contributions

Évaluation du paramètre de normalisation

Évaluation du paramètre de normalisation

Présentation du problème

Difficile à évaluer précisément

Solution proposée

Développement d'un outil d'évaluation

Segmentation sans contribution Segmentation après correction des inhomogéinités d'intensité Segmentation avec la nouvelle méthode d'initialisation des tissus

Plan

- Introduction
- Segmentation par expectation maximisation
 - Principe
 - EM segmentation dans Slicer 3
- 3 Contributions
 - Initialisation des tissus à segmenter
 - Évaluation de la sélection des tissus
 - Correction des inhomogéinités d'intensité
 - Évaluation du paramètre de normalisation
- 4 Résultats
 - Segmentation sans contribution
 - Segmentation après correction des inhomogéinités d'intensité
 - Segmentation avec la nouvelle méthode d'initialisation des tissus

Introduction
Segmentation par expectation maximisation
Contributions
Résultats
Perspectives
Conclusion

Segmentation sans contribution

Segmentation après correction des inhomogéinités d'intensité Segmentation avec la nouvelle méthode d'initialisation des tissu

Résultats

Segmentation sans contributions

Segmentation sans contribution

Segmentation après correction des inhomogenites d'intensité Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation sans contributions

Méthode de tests

Segmentation multi-canal

Segmentation sans contribution

Segmentation après correction des inhomogéinités d'intensité Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation sans contributions

- Segmentation multi-canal
- Suit un tutoriel

Segmentation sans contribution

Segmentation apres correction des inhomogéinites d'intensité Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation sans contributions

- Segmentation multi-canal
- Suit un tutoriel
- Images cibles contiennent des inhomogéinités d'intensité

Segmentation sans contribution

Segmentation après correction des inhomogéinités d'intensité Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation sans contributions

Point de vue de l'expert

• Matière grise surestimée

Segmentation sans contributions

Point de vue de l'expert

- Matière grise surestimée
- Mauvaise segmentation

Segmentation sans contributions

Point de vue de l'expert

- Matière grise surestimée
- Mauvaise segmentation
- Inutilisable

Segmentation sans contributions

Point de vue de l'expert

- Matière grise surestimée
- Mauvaise segmentation
- Inutilisable

Discussion

Mauvais recalage

Segmentation sans contributions

Point de vue de l'expert

- Matière grise surestimée
- Mauvaise segmentation
- Inutilisable

- Mauvais recalage
- Mauvaise distribution ds tissus

Segmentation sans contribution
Segmentation après correction des inhomogéinités d'intensité
Segmentation avec la nouvelle méthode d'initialisation des tissus

Résultats

Segmentation après correction des inhomogéinités d'intensité

34 / 44

Segmentation sans contribution Segmentation après correction des inhomogéinités d'intensité

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation après correction des inhomogéinités d'intensité

Méthode de tests

Segmentation multi-canal

Segmentation sans contribution Segmentation après correction des inhomogéinités d'intensité

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation après correction des inhomogéinités d'intensité

- Segmentation multi-canal
- Suit un tutoriel

- Segmentation multi-canal
- Suit un tutoriel
- Images cibles contiennent des inhomogéinités d'intensité

Conclusion

- Segmentation multi-canal
- Suit un tutoriel
- Images cibles contiennent des inhomogéinités d'intensité
- Nouveau processus de segmentation

Conclusion

Point de vue de l'expert

• Erreurs de classification dans la zone de l'os

Segmentation après correction des inhomogéinités d'intensité Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation après correction des inhomogéinités d'intensité

Conclusion

Point de vue de l'expert

- Erreurs de classification dans la zone de l'os
- Effet de volume partiel

Discussi<u>on</u>

Conclusion

Point de vue de l'expert

- Erreurs de classification dans la zone de l'os
- Effet de volume partiel

Discussion

Segementation meilleure

Conclusion

Point de vue de l'expert

- Erreurs de classification dans la zone de l'os
- Effet de volume partiel

- Segementation meilleure
- Problème liés à la segmentation de l'os peuvent être résolus

Segmentation sans contribution
Segmentation après correction des inhomogéinités d'intensité
Segmentation avec la nouvelle méthode d'initialisation des tissus

Résultats

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

Méthode de tests

Segmentation multi-canal

Segmentation sans contribution
Segmentation après correction des inhomogéinités d'intensit

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

- Segmentation multi-canal
- Suit un tutoriel

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

- Segmentation multi-canal
- Suit un tutoriel
- Images cibles contiennent des inhomogéinités d'intensité

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

- Segmentation multi-canal
- Suit un tutoriel
- Images cibles contiennent des inhomogéinités d'intensité
- Nouveau processus de segmentation

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

- Segmentation multi-canal
- Suit un tutoriel
- Images cibles contiennent des inhomogéinités d'intensité
- Nouveau processus de segmentation
- Initialisation des tissus par Labelmap

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

Conclusion

Point de vue de l'expert

Os mieux segmenté

Discussion

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

Conclusion

Point de vue de l'expert

- Os mieux segmenté
- Sous estimation de la matière blanche dans le cerebulum

Discussion

Segmentation avec la nouvelle méthode d'initialisation des tissus

Conclusion

Point de vue de l'expert

- Os mieux segmenté
- Sous estimation de la matière blanche dans le cerebulum

Discussion

 Meilleure distribution des tissus, et notament de l'os

Segmentation avec la nouvelle méthode d'initialisation des tissus

Segmentation avec la nouvelle méthode d'initialisation des tissus

Conclusion

Point de vue de l'expert

- Os mieux segmenté
- Sous estimation de la matière blanche dans le cerebulum

Discussion

- Meilleure distribution des tissus, et notament de l'os
- Segmentation du cerebulum, problème complexe

Plan

- Introduction
- 2 Segmentation par expectation maximisation
 - Principe
 - EM segmentation dans Slicer 3
- 3 Contributions
 - Initialisation des tissus à segmenter
 - Évaluation de la sélection des tissus
 - Correction des inhomogéinités d'intensité
 - Évaluation du paramètre de normalisation
- 4 Résultats
 - Segmentation sans contribution
 - Segmentation après correction des inhomogéinités d'intensité
 - Segmentation avec la nouvelle méthode d'initialisation des tissus

Perspectives

Priorités

• Faire des efforts au niveau des algorithmes

Priorités

- Faire des efforts au niveau des algorithmes
- Améliorer la vitesse de l'agorithme d'EM segmenation

Priorités

- Faire des efforts au niveau des algorithmes
- Améliorer la vitesse de l'agorithme d'EM segmenation
- Améliorer la vitesse de l'algorithme de correction du biais

• Présentation d'un nouveau processus de segmentation

- Présentation d'un nouveau processus de segmentation
- Résultats intéressants

- Présentation d'un nouveau processus de segmentation
- Résultats intéressants
- Vitesse de traitement doit être améliorée

Merci de votre attention!

Des questions?

