ecnologias de Informação Geográfica - Mestrado

Jorge Pereira

Albano Figueiredo

Susceptibilidade à invasão por Acacia dealbata Mill. na bacia do rio Mondego: proposta metodológica para a avaliação de susceptibilidade em áreas extensas.

24 de Setembro de 2015

As espécies invasoras são uma das maiores ameaças ao bem estar ambiental e económico do planeta (GISP – Global Invasive Species Programme).

Actualmente o número de espécies invasoras continuam a aumentar rapidamente em todos os países pelo que é urgente que hajam respostas eficazes e activas, derivar planos de acção, revisão e aumento da legislação e sobretudo sensibilização da comunidade.

"Invasion debt" (Kettunen, et al., 2008), causam à sociedade europeia muito acima dos 12 mil milhões de euros por ano (Hulme et al., 2009).

Impactos no equilíbrio dos ecossistemas, lençóis freáticos, económicos e na saúde pública.

Bacia do rio Mondego é um modelo nacional de área uma área extremamente invadida.

Será que um processo de projecção espacial funciona bem para áreas extensas?

Localização da área de calibração dos modelos e de projecção espacial

			Aspect	Dist_hidro	PP_seco	IC	10	IT	ITC	MDT	PP	PP_humid	Slope	Tmax	Tmin	TP
Spearman's rho	Aspect	Spearman's CC	1,00	,148**	,073**	,021**	,057**	-,038**	-,038**	,021**	,066**	,075 ^{**}	,015**	-,029**	-,040**	-,03
	Dist_hidro	Spearman's CC	,148**	1,00	,050**	,010 [*]	,029**	-,008*	-,008*	,044**	,041**	,046**	,034**	0,00	-,008*	-0,0
	PP_seco	Spearman's CC	,073**	,050**	1,00	,606**	,893**	-,718 ^{**}	-,718**	,704**	,974**	,992**	,440**	-,635**	-,727**	-,69
	IC	Spearman's CC	,021**	,010 [*]	,606**	1,00	,734**	-,695**	-,695**	,714**	,693**	,645 ^{**}	,476**	-,512**	-,725**	-,65
	Ю	Spearman's CC	,057**	,029**	,893**	,734**	1,00	-,945**	-,945**	,924**	,965**	,918 ^{**}	,575**	-,879**	-,950**	-,93
	IT	Spearman's CC	-,038**	-,008 [*]	-,718**	-,695**	-,945**	1,00	1,000**	-,953**	-,839**	-,759**	-,603**	,965**	,998**	,99
	ITC	Spearman's CC	-,038**	-,008 [*]	-,718**	-,695**	-,945**	1,000**	1,00	-,953**	-,839**	-,759**	-,603**	,965**	,998**	,99
	MDT	Spearman's CC	,021**	,044**	,704**	,714**	,924**	-,953**	-,953**	1,00	,832**	,749**	,599**	-,905**	-,954**	-,94
	PP	Spearman's CC	,066**	,041**	,974**	,693**	,965**	-,839**	-,839**	,832**	1,00	,985**	,520**	-,758**	-,847**	-,81
	PP_humid	Spearman's CC	,075**	,046**	,992**	,645**	,918**	-,759**	-,759**	,749**	,985**	1,00	,465**	-,671**	-,769**	-,73
	Slope	Spearman's CC	,015**	,034**	,440**	,476**	,575 ^{**}	-,603**	-,603**	,599**	,520**	,465**	1,00	-,582**	-,602**	-,60
	Tmax	Spearman's CC	-,029**	0,00	-,635**	-,512**	-,879**	,965**	,965**	-,905**	-,758**	-,671**	-,582**	1,00	,951**	,97
	Tmin	Spearman's CC	-,040**	-,008 [*]	-,727**	-,725**	-,950**	,998**	,998**	-,954**	-,847**	-,769**	-,602**	,951**	1,00	,99
	TP	Spearman's CC	-,036**	-0,01	-,694**	-,654**	-,932**	,998**	,998**	-,947**	-,818**	-,735**	-,601**	,979**	,993**	1,

Operacionalização do processo de modelação

Avaliação dos modelos – AUC (Area Under the Curve)

C

Models	AUC	Models	AUC				
1	0,719	16*	0,562				
2	0,719	17*	0,849				
3	0,707	18*	0,794				
4	0,718	19*	0,828				
5	0,704	20*	0,858				
6	0,696	21**	0,737				
7	0,682	22**	0,736				
8	0672	23**	0,722				
9	0,672	24**	0,735				
10	0,718	25**	0,719				
11*	0,868	26**	0,709				
12*	0,858	27**	0,693				
13*	0,858	28**	0,686				
14*	0,858	29**	0,682				
15*	0,841	30**	0,736				
* Models whose results assessment process was based on the use of an independent file.							

** Models whose results assessment process was based on the use of a file with all presences and a 30% random seed.

RESULTADOS

Modelos de distribuição da bacia do rio Ceira (Modelos com melhor e pior performance)

Modelo com melhor performance: 0,868 AUC

Modelo com pior performance: 0,562 AUC

Modelo de projecção de distribuição da bacia do Mondego (scores de incerteza)

Apesar de os modelos apresentarem um bom desempenho, a sua natureza correlativa limita a sua capacidade para produzir projeções precisas para áreas cujas condições ecológicas não estão presentes na área que serviu de base à calibração do modelo de referência.

Apesar desta falha, os resultados, além de permitirem, num trabalho futuro, direcionar o processo de monitorização para áreas em que o nível de incerteza é maior, permitem para já identificar áreas com condições adequadas à presença da espécie, direcionando o processo de validação dos resultados.

Proposta de trabalho futura?

- . Validação das áreas com menor score de ocorrência:
- . Calibração de um novo modelo nessas mesmas áreas
 - . Ocorrências por foto-interpretação
 - . Pontos de validação em campo
- . Calibração de um novo modelo para a bacia do Ceira
- . Calibração de um novo modelo para a bacia do Mondego

Modelos mais "finos" (micro-escala)

Muito Obrigado!

