Context-Enriched Diarization: Enhancing Baseline Performance with Semantic and Acoustic Fusion

Course Name: Speech Processing

Course Code: 22AIE450

Faculty: Dr. Yaddanapudi Kavya Sai

Team (2) members:

- M Hemasri BL.EN.U4AIE22028
- Ishvarya G BL.EN.U4AIE22118

Problem statement

- The problem with Acoustic- only diarization models:
 - o Similar Voices, Variable conditions
 - Linguistic Style Consistency
 - Leveraging Topic Continuity
 - o Role based patterns

Eg.

Speaker 1 (clearly identified acoustically): "I think the economic impact will be significant." [Unclear speaker segment]: "As I was saying, the markets will respond positively."

Introduction

- Dataset used : VoxConverse
- Propose 3 approaches : Baseline model, Optimization of the Baseline, Context-Aware model
- Aim : To evaluate the contribution of semantic features in the task of Diarization
- A novel model that jointly optimizes for speaker identity and semantic consistency
- Evaluate the 3 models using DER, Missed Detection, False alarm, Confusion, Reference vs Hypothesis Speakerss

Literature Review

S.No	Title of the Paper & Year	Methodology	Inference & Research Gap					
[1]	ASR-aware end-to-end neural diarization International Conference on Acoustics, Speech and Signal Processing (ICASSP)- 2022.	 Focus: Improve performance using ASR-aware features in an end-to-end neural diarization (EEND) system. Method: Utilize lexical cues derived from ASR into a Conformer-based EEND model Result: 20% relative DER reduction compared to baseline. 	 ASR-derived features significantly enhance speaker diarization. Gaps: Extend to Multi-speaker scenarios Explore more ASR feature types (e.g., prosodic or semantic embeddings). 					
[2]	Content-aware speaker embeddings for speaker diarization International Conference on Acoustics, Speech and Signal Processing (ICASSP)-2021	 Data Source: Collected quarterly data (2008–2023) from RBI and World Bank. Variables: Exchange rate (USD/INR), FDI, FII. Tools Used: Johansen Cointegration Test, VECM. Software: Analysis done using EViews 12. 	 Long-run equilibrium exists among variables. Positive and stable influence on exchange rate. Highly volatile, affects short-term exchange fluctuations. Research Gap: Limited Indiaspecific studies using VECM on post-2008 data. 					

Literature Review

S.No	Title of the Paper & Year	Methodology	Inference & Research Gap
[3]	A contextual beam search approach International Conference on Acoustics, Speech and Signal Processing (ICASSP) - 2024.	 Joint acoustic and LLM-based speaker diarization. Probabilistic model combining speaker & word info. Used n-gram LM and GPT LLM. Dataset: multi-speaker speech with transcripts. 	 Up to 39.8% SA-WER improvement. Lexical cues aid speaker ID. Works for any number of speakers. Gap: Few use general LLMs for diarization.
[4]	Joint Inference of Speaker Diarization and ASR with Multi-Stage Information Sharing International Conference on Acoustics, Speech and Signal Processing (ICASSP) - 2024.	 Design a joint ASR + speaker diarization system for meeting transcription. Unified model that shares information across ASR and diarization tasks at multiple stages Input: Audio → shared encoder → speaker prediction and ASR decoder. Result :Significant improvement in word-level diarization error rate (WDER). 	 Expand to online/streaming scenarios. Extend to more languages and multi-speaker meetings.

Data Description

- **Source**: 50+ hours of multi-speaker audio from YouTube (debates, news).
- Split: 216 labeled dev files, 232 unlabeled test files.
- Annotations: RTTM files with speaker, start time, and duration info.
- Stats: Avg 4.5 speakers/file, 338s duration, 92.26% speech, 3.95% overlap.
- Turn Rate: Avg 4.26 speaker turns per minute.
- Visualization: Waveform and spectrogram plotted using STFT.

Data Visualisation

Fig. 1: Distributions derived from RTTM analysis: number of speakers, durations, speech %, overlap %, average segment durations, and speaker turn rates across development files.

Fig. 2: Waveform and Spectrogram visualization of ahnss.wav.

Architecture Diagram

Baseline Diarization Model

- Uses pyannote.audio an open-source toolkit written in Python for speaker diarization
- Model used from HuggingFace ("pyannote/speaker-diarization-3.1")
- The Diarization pipeline :
 - Audio feature extraction
 - Voice Activity Detection (VAD)
 - Speaker Embedding Extraction
 - Clustering of Speaker Embeddings
 - Temporal Integration and Smoothing
- Output Time annotated RTTM files, Metrics for each file along with average metrics across all files

Optimized Baseline Model

- Optimized based on analysis from RTTM files
- Key Changes introduced:
 - ✓ Parameter Optimization:
 Introduced a new function get_optimized_parameters()
 Default speaker Count: 3 (lower limit) 9 (upper limit) based on average speaker count of 4.5
 If Audio is < 2 mins : Speaker range --> 2 to 9
 If Audio is >10mins : Speaker range --> 4 to 1
 - ✓ Post processing refinement :
 - Segment Merging : Merge short segments < 0.5 secs (avoid fragmentation)
 - Short Segment Filtering: Remove segments < 0.75 secs (avoid false speaker transitions)
 - ✓ Quality Verification to ensure processing entire file

Context-Aware Diarization model

- Initial Segmentation
 - → Audio segmented using baseline diarization based on speaker change (acoustic cues).
- Semantic Transcription
 - \rightarrow Whisper model generates time-aligned transcripts capturing what was said when.
- Contextual Embedding
 - \rightarrow BERT extracts deep semantic features from transcribed segments.
- Speaker Refinement
 - → Speaker profiles built from embeddings; segments reassigned using similarity if needed.

Fig. 5: Context Aware Diarization Architecture

Evaluation Metrics

- **Diarization Error Rate (DER):** Diarization Error Rate (DER) is the primary evaluation metric used to assess overall diarization performance.
- **DER** = Missed Time + False Alarm Time + Confusion Time / (Total Reference Time)
- **Missed Detection**: The portion of reference speech that was not detected as speech. Indicates failure in identifying valid speech segments.
- False Alarm: Represents non-speech segments (e.g., silence or noise) that were incorrectly labeled as speech by the system.
- **Confusion:** The amount of speech assigned to the wrong speaker. Reference Speakers: The number of distinct speakers annotated in the ground-truth reference for a given audio file.
- **Hypothesis Speakers:** The number of distinct speakers predicted by the diarization system in its output

Results and Analysis

TABLE I: Comparison of Reference and Hypothesis Speakers of all 3 models

Speaker Diarization Results Detected							
Filename	Reference_speakers	Baseline	Optimized Baseline	Context Aware			
Fichanic		Hypothesis_speakers	Hypothesis_speakers	Hypothesis_speakers			
afjiv	5	2	5	5			
bdopb	7	2	6	6			
cjfer	15	2	12	12			
суухр	1	1	3	1			
falxo	8	2	8	8			

Results and Analysis

Results and Analysis

Baseline Model:

- o Underestimated speakers (avg. 1.82 vs actual 4.68).
- o High diarization error rate (DER): 0.4316.
- o Speaker confusion score: 148.73 (very high).

Optimized Baseline:

- o Improved speaker count estimation via duration-based adjustment.
- o Speaker match accuracy increased (e.g., $falxo: 2 \rightarrow 8$ speakers correctly predicted).
- o Confusion slightly reduced to 144.86.
- DER slightly increased to 0.4628 better segmentation, but still confused similar voices.

Context-Aware Model:

- Added semantic context (BERT embeddings).
- Major DER drop: $0.4316 \rightarrow 0.2427$ (~20% improvement).
- Confusion drastically reduced: $148.73 \rightarrow 81.46$.
- Missed detection & false alarms unchanged gains came from better speaker attribution, not speech detection.

Conclusion & Future Scope

Conclusion

- Diarization accuracy improved progressively with each model.
- o Final model effectively combined acoustic, transcription, and semantic context.
- DER improved by ~20%, showing promise in distinguishing similar voices and handling overlapping speech.
- Confusion improved by 59.13%

Future Enhancements

- Support for multilingual and code-switched conversations.
- o Incorporate speaker intention recognition for better profile matching.
- o Leverage larger language models (e.g., GPT, task-specific transformers).
- o Comprehensive **Report generation** based on analysis of speaker conversations

References

- [13] Khare, Aparna, Eunjung Han, Yuguang Yang, and Andreas Stolcke. "ASR-aware end-to-end neural diarization." In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8092-8096. IEEE, 2022.
- [14] Sun, Guangzhi, D. Liu, Chao Zhang, and Philip C. Woodland. "Content-aware speaker embeddings for speaker diarisation." In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7168-7172. IEEE, 2021.
- [15] Park, Tae Jin, Kunal Dhawan, Nithin Koluguri, and Jagadeesh Balam. "Enhancing speaker diarization with large language models: A contextual beam search approach." In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.10861-10865. IEEE, 2024.
- [16] Wang, Weiqing, Danwei Cai, Ming Cheng, and Ming Li. "Joint Inference of Speaker Diarization and ASR with Multi-Stage Information Sharing." In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 11011-11015. IEEE, 2024.

