Algorithmes et Complexité Projet

Le devoir doit être effectué par groupe de 1 à 2 personnes, chaque personne appartenant à exactement un groupe.

1 Travail à effectuer

Description

Le devoir est à rendre sur arche pour le 7 janvier 2019 à 8h.

Le travail à effectuer est en deux parties complètement indépendantes.

Pour chacune des parties, vous devez rendre :

- Les sources de vos programmes
- Un rapport répondant aux différentes questions, et qui explique en particulier la répartition du travail dans le groupe

Vous pouvez bien entendu incorporer les graphiques dans le rapport.

Le projet étant un projet d'algorithmique et non pas de développement logiciel, la majeure partie de la notation portera sur l'implémentation correcte des algorithmes et les réponses aux questions.

2 Arbres couvrants

Note: L'énoncé est très long car il est composé de beaucoup d'exemples, mais son contenu est assez simple, à l'exception des questions Q4 et Q6, qui sont plus difficiles que les autres. A titre d'exemple, le professeur a réalise les question Q2 et Q5 en moins de 30 lignes chacune.

On rappelle qu'un arbre couvrant d'un graphe G (non orienté) est un ensemble d'arêtes du graphe qui forment un arbre (il n'y a pas de cycle) et qui relient tous les sommets entre eux.

Voici un exemple d'un graphe G_0 , et d'un arbre couvrant de G_0 .

Q 1) Déterminer par la méthode de votre choix tous les arbres couvrants du graphe G_1 suivant (Aide : il y en a 8) :

Le but de l'exercice est d'écrire un algorithme qui choisit un arbre couvrant au hasard uniformément parmi tous les arbres couvrants du graphe. Dans l'exemple du graphe G_1 , il y a 8 arbres couvrants, donc chacun d'entre eux aura une chance sur 8 d'être choisi.

On va proposer trois algorithmes. Le premier est simple à mettre en oeuvre mais ne donne pas le bon résultat. Les deux autres donnent le bon résultat mais sont plus lents que le premier algorithme.

2.1 Algo 1 - Kruskal

Le premier algorithme fonctionne de la manière suivante :

- On mélange toutes les arêtes
- On les ajoute ensuite une par une sans créer de cycle.

Reprenons l'exemple du graphe G_0 . Il y a 11 arêtes : ab, ad, bc, bd, ce, cf, de, dg, ef, eg, fg. Si on les mélange, on obtient (par exemple) ce, ef, ab, dg, bd, cf, bc, eg, cf, de, fg, ad. Si on les ajoute sans créer de cycle, on obtient : ce, ef, ab, dg, bd, bc, c'est à dire :

- Q 2) Implémenter l'algorithme de Kruskal.
- Q 3) Tester l'algorithme un million de fois sur le graphe G_1 , et vérifier expérimentalement que les 8 arbres couvrants n'ont pas tous la même probabilité d'apparaître.
- **Q** 4) Prouver rigoureusement que les 8 arbres couvrants n'ont pas tous la même probabilité d'apparaître.

2.2 Algo 2 - Aldous-Broder

L'algorithme d'Aldous-Broder est un algorithme un peu plus lent mais qui donne bien la bonne distribution de probabilités : tous les arbres couvrants auront la même probabilité d'apparition.

Il est basé sur la notion de marche aléatoire. Une marche aléatoire sur un graphe est obtenu de la façon suivante : On commence sur un sommet donné (aléatoire ou fixé), et à chaque étape, on se déplace aléatoirement sur l'un des voisins du sommet (tous les voisins ayant la même probabilité d'être choisi) et on recommence. Une marche aléatoire peut passer plusieurs fois par le même sommet : on peut même prendre une arête, et reprendre la même arête immédiatement dans l'autre sens!.

L'algorithme d'Aldous Broder fonctionne de la manière suivante : On part d'un sommet quelconque, et on effectue une marche aléatoire. Dès qu'on rencontre un nouveau sommet, on marque l'arête par laquelle on est passé. On s'arrête quand tous les sommets sont visités, et les arêtes marquées forment l'arbre couvrant.

Essayons sur l'exemple du graphe G_0 , en partant du sommet a. On note en rouge le sommet sur lequel on est actuellement et en gris les sommets visités. Au départ, on est donc dans la configuration suivante :

On a donc une chance sur deux d'aller en d et une chance sur deux d'aller en b. Supposons qu'on décide d'aller en b. Le sommet b n'était pas visité, donc on marque l'arête ab, et on arrive en b:

Du sommet b, on a une chance sur 3 d'aller en a, une chance sur 3 d'aller en d, et une chance sur 3 d'aller en c. Supposons qu'on va en d, on obtient alors :

Et on continue ainsi, ce qui peut donner, par exemple, la suite d'opérations suivante :

Q 5) Implémenter l'algorithme d'Aldous et Broder. Tester l'algorithme un million de fois sur le graphe G_1 , et vérifier expérimentalement que les 8 arbres couvrants ont tous la même probabilité d'apparaître.

2.3 Algorithme de Wilson

Note : cette partie est plus difficile que les précédentes.

Le troisième algorithme, dû à Wilson, donne également le bon résultat, et est plus rapide que l'algorithme précédent.

Son fonctionnement est le suivant :

- Au départ, on visite un sommet (par exemple le sommet 0).
- A un moment donné de l'algorithme, on a donc des sommets visités et des sommets non visités.

- On choisit un sommet non visité (on le choisit comme on veut, aléatoirement ou non, ce n'est pas important)
- On effectue une marche aléatoire jusqu'à tomber sur un sommet déjà visité
- On élimine les boucles de la marche
- On ajoute les sommets qui restent aux sommets visités, et les arêtes qui restent dans l'arbre couvrant

Reprenons l'exemple du graphe G_0 . On suppose le sommet a déjà visité.

On prend un sommet non visité quelconque, par exemple g, et on lance une marche aléatoire jusqu'à tomber sur un sommet visité (donc ici, il faut tomber sur a).

Supposons que la marche aléatoire donne le chemin suivant :

$$g-e-d-b-c-e-d-a$$

On élimine les boucles du chemin. Pour cela, on regarde le premier sommet qui apparaît au moins deux fois. S'il n'y en a aucun c'est terminé. Sinon, on enlève tout jusqu'à la dernière occurence de ce sommet et on recommence. Dans notre exemple, les sommets e et d apparaissent deux fois : le premier dans le chemin, c'est e, on enlève donc tout ce qu'il y a entre la première occurence de e et la dernière occurence de e et on obtient :

$$g - e - d - a$$

On ajoute ensuite tous les sommets aux sommets visités, et toutes les arêtes à l'arbre pour obtenir :

Et on recommence : on prend un sommet non visité (par exemple c et on lance une marche aléatoire jusqu'à tomber sur un sommet visité, etc.

 \mathbf{Q} 6) Implémenter l'algorithme de Wilson. Tester l'algorithme un million de fois sur le graphe G_1 , et vérifier expérimentalement que les 8 arbres couvrants ont tous la même probabilité d'apparaître.

2.4 Application ludique : les labyrinthes

Outre les applications sérieuses des arbres couvrants en réseaux, ils permettent également de créer des labyrinthes. Partant d'un ensemble de cases, toutes isolées par des murs, on crée un labyrinthe de la façon suivante :

- On crée un graphe où les sommets sont les cases, et les arêtes les murs
- On tire un arbre couvrant du graphe
- On met un passage là où il y a une arête de l'arbre couvrant, et un mur sinon.

Prenons l'exemple d'un labyrinthe 4×4 . Voici le labyrinthe au début, alors qu'aucune arête n'a été choisie pour l'arbre couvrant. Il y a donc des murs partout. On a mis arbitrairement l'entrée en bas à gauche et la sortie en haut à droite, mais cela ne se voit pas dans le graphe :

On trouve ensuite un arbre couvrant aléatoire du graphe, et on reporte dans le labyrinthe. Par exemple :

Pour bien comprendre, on peut superposer les deux images :

- **Q 7)** Ecrire un algorithme qui crée un labyrinthe 20x20 obtenu avec la méthode de Kruskal et un labyrinthe 20x20 obtenu avec la méthode de Aldous-Broder (ou Wilson).
- Q 8) Comparer les deux méthodes. Pour cela, on tirera au hasard 1000 labyrinthes (ou plus) suivant les deux méthodes et on comparera :
 - Le nombre moyen de culs de sac
 - La distance moyenne de l'entrée à la sortie

2.5 Programmation en Java

Classes fournies

Le projet doit obligatoirement être fait en Java et utiliser les classes fournies. Les classes peuvent évidemment être modifiées (on peut ajouter des champs, des méthodes, etc) mais toute modification en profondeur de la représentation des graphes devra être approuvée au préalable par l'enseignant au risque d'être refusée.

Détaillons les différentes classes :

- La classe Edge représente une arête non orientée. Elle dispose d'une méthode other qui renvoie le sommet à l'autre extrêmité de l'arête. Le champ used permet de savoir si l'arête est utilisée dans l'arbre couvrant.
- La classe **Graphe** représente un graphe.
 - On peut créer un graphe à N sommets en appelant le constructeur.
 - On peut ajouter arête après arête au graphe avec la méthode addEdge.
 - La méthode adj renvoie la liste des arêtes reliées à un sommet.
 - La méthode edges renvoie toutes les arêtes.
 - La méthode writeFile permet d'écrire un fichier dot contenant le résultat
 - La méthode statique example renvoie un petit graphe de Test (le graphe G_1)
 - La méthode statique Grid renvoie une grille de $n \times n$.
- La classe Display sert à débugger et permet d'afficher le graphe dans une fenêtre. On peut éventuellement afficher plusieurs fenêtres d'un coup. Un exemple d'utilisation est donné dans le fichier Test
- La classe **Test** donne un exemple d'utilisation. La méthode **printLaby** permet également de créer un fichier .tex contenant un labyrinthe. On peut ensuite convertir le labyrinthe en .pdf en tapant **pdflatex toto.tex** dans un terminal.

Aides

- Pour implémenter Kruskal, il peut être bon de programmer une structure Union-Find. L'implémentation dans la Wikipedia française est suffisante, en remplaçant par simplicité la référence vers le noeud père par un tableau parent.
- La méthode Collections.shuffle peut être très utile. A noter que toutes les méthodes de la classe Graphe renvoient des copies des (Array)listes, donc vous pouvez appeler Collections.shuffle sur le résultat sans remords.

3 Partie 2

Description

On considère dans ce problème un jeu qui se joue à deux joueurs. Les règles de ce jeu sont les suivantes. Etant donnés deux paramètres entiers N et K avec N < K, le jeu consiste pour le joueur 2 à deviner une combinaison secrète ordonnée de N couleurs distinctes choisies parmi K couleurs possibles par le joueur 1. Ainsi dans un premier temps, le joueur 1 choisit en secret un N-uplet $s = (s_1, \ldots, s_N)$ d'éléments distincts dans l'ensemble des couleurs $\{c_1, \ldots, c_K\}$. Le joueur 2 doit deviner s en le moins d'étapes possible.

A chaque étape, il a le droit de soumettre au joueur 1 une proposition $p = (p_1, \ldots, p_N)$ là encore constituée de N couleurs distinctes choisies parmi les K couleurs possibles. A chaque proposition soumise par le joueur 2, le joueur 1 doit répondre par un couple d'entiers positifs (b, m) où b est le nombre de couleurs bien placées, i.e. $b = \#\{i | s_i = p_i\}$ et m est le nombre de couleurs bien choisies mais mal placées, i.e. $m = \#\{i | \exists j \neq i : s_i = p_j\}$. Le joueur 2 cherche donc à déduire la combinaison de couleurs secrète du joueur 1 à partir de la succession des propositions soumises et des réponses fournies pour chaque proposition. Son but est de minimiser le nombre d'étapes (propositions) jusqu'à obtenir (b, m) = (N, 0).

3.1 Question préalables

On cherche à évaluer le nombre de combinaisons secrètes compatibles avec une réponse fournie à une proposition.

- Q 9) Combien de combinaisons de couleurs (secrètes) existe-t-il?
- **Q 10)** Si (b,0) est la réponse correspondant à la proposition (p_1,\ldots,p_N) , combien de possibilités de combinaisons secrètes peuvent-elles être envisagées par le joueur 2?
- **Q 11)** De façon plus générale, montrez que le nombre de combinaisons secrètes compatibles avec une réponse (b, m) fournie en fonction d'une seule proposition est majoré par

$$C_N^b C_{N-b}^m A_{N-b}^m A_{K-N}^{N-b-m} \\$$

où C_x^y est le nombre de parties à y éléments parmi x, et A_x^y est le nombre d'arrangements à y éléments parmi x.

Q 12) Pourquoi n'y a-t-il pas forcément égalité?

3.2 Programmation dynamique

On veut déterminer maintenant de manière exacte le nombre de combinaisons secrètes compatibles avec la réponse fournie à une proposition du joueur 2. Pour cela, on note C(k, n, b, m) le nombre de combinaisons secrètes de taille n parmi k couleurs qui sont compatibles avec la réponse (b, m) fournie à une proposition de taille n.

- **Q 13)** En considérant que le premier élément de la proposition peut être soit bien placé, soit mal placé, soit absent de la combinaison secrète, proposez une formule de récurrence pour C(k, n, b, m). N'oubliez pas les conditions initiales.
- Q 14) En déduire un algorithme qui évalue le nombre exact de combinaisons secrètes compatibles avec la réponse fournie à une proposition du joueur 2 dans le jeu.
- **Q 15**) Programmez cet algorithme. Quelle est la valeur obtenue pour N=4, K=6, b=1 et m=2?
- Q 16) Quelle est la complexité au pire cas de cet algorithme?

3.3 Algorithme glouton

On appelle historique l'ensemble des connaissances du joueur 2. C'est une suite de propositions $p^{(1)}, \ldots, p^{(q)}$ avec les réponses reçues $(b^{(1)}, m^{(1)}), \ldots, (b^{(q)}, m^{(q)})$. L'historique est noté

$$H = \{(p^{(1)}, b^{(1)}, m^{(1)}), \dots, (p^{(q)}, b^{(q)}, m^{(q)})\}\$$

Pour tout historique H, le nombre de combinaisons secrètes qui sont compatibles avec toutes les propositions et réponses fournies est noté C(H). On définit alors le score d'une proposition p compte tenu de l'historique H par la formule

$$S(p|H) = \max_{(b,m)} C(H, (p, b, m))$$

- **Q 17)** Pourquoi est-il difficile d'appliquer le raisonnement des questions précédentes au calcul de score d'une proposition dans le cas d'un historique non vide?
- Q 18) Décrivez et programmez un algorithme qui calcule le score d'une proposition selon un historique donné. On songera à optimiser les calculs tout en parcourant de manière exhaustive les différentes combinaisons secrètes possibles.
- Q 19) Quelle est la complexité au pire cas de cet algorithme?
- **Q 20)** Proposez et programmez un algorithme glouton basé sur les scores des propositions possibles et qui cherche à trouver la combinaison secrète proposée par l'utilisateur en le moins de coups possibles. A titre d'exemple, vous pourrez notamment tester cet algorithme avec les valeurs $N=4,\,K=6$