Use R to Analyze the Boston Housing Data

- ▶ Basic command: 1m
- ► Rank deficiency
- ▶ RSS *vs.* prediction error (training error *vs.* test error)

Interpret the LS coefficients

- $\hat{\beta}_j$ measures the average change of Y per unit change of X_j , with all other predictors held fixed.
- Seemingly contradictory results from SLR and MLR: SLR suggests that "age" has a significant negative effect on housing price, while MLR suggests the opposite.

Partial Regression Coefficients

Consider a multiple linear regression model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + \dots + \beta_p X_p + \text{err.}$$

The LS estimate $\hat{\beta}_k$ describes the partial correlation between Y and X_k adjusted for the other predictors.

The LS estimate $\hat{\beta}_k$ can be obtained as follows (see Algorithm 3.1 from ESL):

- 1. Y^* : residual from regressing Y onto all other predictors except X_k
- 2. X_k^* : residual from regressing X_k onto all other predictors except X_k
- 3. Regress Y^* onto X_k^*

Hypothesis Testing in Linear Regression Models

The key test is the F-test. Compare two nested models

- ▶ H_0 : reduced model with p_0 coefficients;
- ▶ H_a : full model with p_a coefficients.

Nested: if the reduced model is a special case of the full model, e.g.,

$$H_0: Y \sim X_1 + X_2, \quad H_a: Y \sim X_1 + X_2 + X_3.$$

Note that $RSS_a < RSS_0$ and $p_a > p_0$.

F-test

Test statistic:

$$F = \frac{(\mathsf{RSS}_0 - \mathsf{RSS}_a)/(p_a - p_0)}{\mathsf{RSS}_a/(n - p_a)},$$

which $\sim F_{p_a-p_0,n-p_a}$ under the null.

- Numerator: variation (per dim) in the data not explained by the reduced model, but explained by the full model, i.e., evidence supporting H_a .
- ▶ Denominator: variation (per dim) in the data not explained by either model, which is used to estimate the error variance.

Reject H_0 , if F-stat is large, i.e., the variation missed by the reduced model, when being compared with the error variance, is significantly large.

Special Cases of the F-test

▶ The so-called t-test for each regression parameter (see the R output) is a special case of F-test. For example, the test for the j-th coef β_j compares

►
$$H_0: Y \sim 1 + X_1 + \dots + X_{j-1} + X_{j+1} + \dots + X_p$$

$$H_a: Y \sim 1 + X_1 + \dots + X_{j+1} + X_j + X_{j+1} + \dots + X_p$$

- ▶ The overall F-test (at the bottom of the R output) compares
 - ▶ $H_0: Y \sim 1$
 - $H_a: Y \sim 1 + X_1 + \dots + X_{j+1} + X_j + X_{j+1} + \dots + X_p$

Handle Categorical Variables

Consider a categorical predictor, Size, taking values from $\{S,M,L\}$, which needs to be coded as two numerical predictors.

$$\begin{pmatrix} S \\ S \\ M \\ M \\ L \\ L \end{pmatrix} \Longrightarrow \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}_{6\times 2}$$

- ▶ 1st column: indicator for value "M".
- 2nd column: indicator for value "L".
- No need to code "S", which is chosen as the reference level and its effect is absorbed into the intercept. (You can choose any value as the reference group.)
- ▶ In general, code a categorical predictor with K values as (K − 1) binary vectors.

Categorical Variables and Interactions

We can also generate products of those indicator variables with other variables to create the **interaction terms**. Suppose there is another numerical predictor, Price, denoted by $\{x_i\}_{i=1}^6$, and we fit a linear regression model including Size, Price, and their interaction. The design matrix looks like follows

$$\begin{pmatrix} S \\ S \\ M \\ M \\ L \\ L \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & 0 & 0 & x_1 & 0 & 0 \\ 1 & 0 & 0 & x_2 & 0 & 0 \\ 1 & 1 & 0 & x_3 & x_3 & 0 \\ 1 & 1 & 0 & x_4 & x_4 & 0 \\ 1 & 0 & 1 & x_5 & 0 & x_5 \\ 1 & 0 & 1 & x_6 & 0 & x_6 \end{pmatrix}$$

Collinearity

- We often encounter problems in which some predictors are highly correlated, e.g., the seatpos data. In this case, the contribution of a particular predictor could be masked by other predictors, which create difficulties for statistical inference on β.
- ▶ Typical symptoms of collinearity: high pair-wise (sample) correlation between predictors; R^2 is relatively large, overall F test is significant, but none of the predictors is significant.

Collinearity

- We often encounter problems in which some predictors are highly correlated, e.g., the seatpos data. In this case, the contribution of a particular predictor could be masked by other predictors, which create difficulties for statistical inference on β.
- ▶ Typical symptoms of collinearity: high pair-wise (sample) correlation between predictors; R^2 is relatively large, overall F test is significant, but none of the predictors is significant.
- What to do with collinearity? Remove some predictors or combine collinear predictions (e.g., PCA).

Collinearity

- We often encounter problems in which some predictors are highly correlated, e.g., the seatpos data. In this case, the contribution of a particular predictor could be masked by other predictors, which create difficulties for statistical inference on β.
- ► Typical symptoms of collinearity: high pair-wise (sample) correlation between predictors;
 R² is relatively large, overall F test is significant, but none of the predictors is significant.
- What to do with collinearity? Remove some predictors or combine collinear predictions (e.g., PCA).
- ▶ How would collinearity affect prediction of *Y*?

LINE: Assumptions for Linear Regression

- L: $f^*(x) = \mathbb{E}(Y \mid X = x)$ is "assumed" to be a linear function of x. This is not really an assumption, but a restriction. If the truth f^* is not a linear function, then regression just returns us the best linear approximation of f^* .
- ▶ INE: error terms at all x_i 's are iid $\mathcal{N}(0, \sigma^2)$ (can be relaxed to be uncorrelated with mean zero and constant variance). This assumption is related to the objective function, an unweighted sum of the squared errors at all x_i 's. If the errors have unequal variances (heteroscedasticity) or correlated, then we should use a different objective function.
- No assumptions on X's. But to achieve a good performance, we would like \mathbf{x}_i 's to be uniformly sampled.

Outliers

▶ Outlier test based on leave-one-out prediction error. Let $\hat{\boldsymbol{\beta}}_{(-i)}$ be the LS estimate of $\boldsymbol{\beta}$ based on (n-1) samples excluding the *i*-th sample (\mathbf{x}_i, y_i) , then

$$\frac{y_i - \mathbf{x}_i^t \hat{\boldsymbol{\beta}}_{(-i)}}{\text{some normalizing term}} \sim \mathcal{N}(0,1), \text{ if } i \text{th sample is NOT an outlier.}$$

- ▶ Datasets from real applications are usually large (in terms of both n and p). Do not recommend to test outliers. Why?
 - ▶ Need to adjust for multiple comparison; cannot detect a cluster of outliers.
- ▶ But do recommend to do some of the following:
 - ▶ Run the summary command in R to know the range of each variable;
 - ightharpoonup Apply log, square-root or other transformations on right-skewed predictors and Y.
 - Apply winsorization to remove the effect of extreme values.

