Приложение-инструмент для генерации датасетов для фотограмметрии

Презентация проделанной работы к окончанию 2-ой итерации

Задачи на итерацию (issues)

- 1. а) Формирование и настройка ограничений виртуальной стандартной сцены
 - б) Загрузка моделей на стандартную сцену
- 2. а) Реализация камеры для отображения сцены и дальнейшего скрининга модели
 - б) Реализация взаимодействия с камерой с привлечением UI
- 3. а) Реализация источника освещения
 - б) Реализация управления источником света с UI
- 4. Прохождение курса на платформе Stepik

Методы решения, технологии

Данное GUI приложение разрабатывается на движке Unreal Engine 4 с использованием системы визуального скриптинга Blueprint и языка программирования C++.

Методы и решения реализации класса камеры были взяты из ресурса по UE4 https://docs.unrealengine.com/en-US/Programming/Introduction/index.html из разделов Programming Guide и Unreal Engine API Reference. Основными компонентами класса камеры являются USpringArmComponent, UCameraComponent, UStaticMesh. Модель представляет собой класс Actor, связанный с объектом StaticMesh и текстурами формата jpg.

Источник освещения так же реализован с помощью встроенных классов, механизмов рефлексии и методов линейной алгебры.

Загрузка 3D-модели

Задача: Необходимо обеспечить загрузку 3D-модели на стандартную сцену в режиме runtime с учетом некоторых ограничений

Что было выполнено:

- 1. Была реализована загрузка модели на стандартную сцену с помощью элементов интерфейса.
- 2. Было добавлено окно загрузки модели со следующими настраиваемыми параметрами:
 - о Локация (по координатам)
 - Поворот (задается вектор поворота)
 - Масштаб (от 0х до 5х размера модели)

Загрузка 3D-модели: демонстрация работы

Рис. 1 - окно загрузки

Загрузка 3D-модели: демонстрация работы

Puc. 2 - отображение загружаемой модели по нажатию Load

Загрузка 3D-модели: демонстрация работы

Рис. 3 - несколько акторов

Реализация источника освещения

Задача: Создать на сцене источник освещения и реализовать возможность изменения параметров источника в реальном времени (пространственные и световые параметры)

Что было выполнено:

- 1. Был создан кастомный класс источника освещения с необходимым функционалом для реализации движения источника и изменения его свойств
- 2. Объект источника освещения был добавлен на сцену для освещения загруженной 3D-модели
- 3. Добавлены возможности изменения параметров света с помощью элементов интерфейса(цвет, интенсивность) и изменения координат источника, возможность быстрого изменения высоты, на которой находится источник, с помощью элементов интерфейса(изменение высоты источника освещения)

Рис. 1 - освещение сцены белым светом с заданными параметрами

Puc. 2 - освещение сцены светом (цвет FFDCFBFF) с заданными параметрами(изменение цвета)

Puc. 3 - освещение сцены светом (цвет FFDCFBFF) с заданными параметрами(изменение интенсивности)

Puc. 4 - освещение сцены светом (цвет F8DCFB88) с заданными параметрами (изменение view angle и цвета)

File Tools Help		
▼Light type Color: F8DCF888 Intensivity:		▼Precipitation □ Snow □ Rain □ Clear Amount:
▼ Source position		Speed:
X: 20		
Y: 0 Z: 3000		▼ Source position
▼View angle		X: Y:
X: 150		Z:
Y: 150		▼ View angle
Z : 0		X:
▼Quick change		Y:
R:		
H:		▼Quick change R:
		D:
		H:

Puc. 5 - освещение сцены светом (цвет F8DCFB88) с заданными параметрами (изменение view angle)

Рис. 6 - освещение модели белым источником с заданными параметрами

Рис. 6 - освещение модели цветным источником с заданными параметрами

Реализация камеры

Задача: Создать камеру для реализации просмотра сцены (модели). А также изменения параметров камеры пользователем в реальном времени.

Что было выполнено:

- 1. Был создан кастомный класс Pawn'a MyCamera, со всеми необходимыми ресурсами для пространственного перемещения объекта класса на сцене.
- 2. Был добавлен объект на сцену.
- 3. Были связаны параметры объекта камеры и виджеты UI, а именно, координаты камеры и ее углы вращения вокруг осей X, Y, Z (для базовых настроек); координаты, такие же углы вращения вокруг осей X,Y,Z, а также способность быстрого редактирования, где R rotation, D distance, H height, A angle (для расширенных настроек).

Реализация камеры: демонстрация работы

Рис. 1 - перемещение координат камеры.

Реализация камеры: демонстрация работы

Рис. 2 - работа быстрого редактирования.

Реализация камеры: демонстрация работы

Рис. 3 - комбинированная работа изменения координат камеры и ее вращение вокруг осей X, Y, Z.

Планы на следующую итерацию

На протяжении 3-ей итерации предполагается:

- 1. Настройка параметров источника освещения, включая его световые и координатные аспекты, непосредственно влияющие на модель
- 2. Формирование осадков различного типа и их визуализации на стандартной сцене
- 3. Разработка алгоритма движения камеры для подготовки к дальнейшему скринингу модели