Лекция 2 Обратная матрица

2.1 Понятие обратной матрицы. Метод миноров

А2.1.1 Определение. Пусть дана квадратная матрица A. Матрица A^{-1} называется матрицей, *обратной* к матрице A, если выполняются равенства $A \cdot A^{-1} = A^{-1} \cdot A = E$ (единичная матрица).

А2.1.2 Метод миноров. Пусть
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 и пусть определитель этой матрицы

равен Δ . Рассмотрим матрицу, составленную из алгебраических дополнений к элементам

матрицы
$$A: \widetilde{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$
. В матрице \widetilde{A} алгебраические дополнения элементов

строк матрицы A расположены в соответствующем столбце. Рассмотрим теперь произведение $A\cdot\widetilde{A}$: при умножении i -ой строки матрицы на i -й столбец матрицы \widetilde{A} получим сумму произведений элементов строки на их алгебраические дополнения, значит, получим значение определителя Δ . При умножении i -ой строки матрицы на j -й столбец матрицы \widetilde{A} (при $i \neq j$) получим сумму произведений элементов строки на алгебраические дополнения элементов другой

строки, значит, получим ноль (докажите!). Таким образом,
$$A\widetilde{A} = \begin{pmatrix} \Delta & 0 & \dots & 0 \\ 0 & \Delta & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \Delta \end{pmatrix}$$
. Если

определитель $\Delta \neq 0$, то умножив полученную матрицу на $\frac{1}{\Lambda}$, получим единичную матрицу.

Аналогично рассматривается произведение $\widetilde{A}A$ - там речь пойдет об умножении элементов столбца на свои или чужие алгебраические дополнения. Таким образом, при $\Delta \neq 0$ получаем

$$A^{-1} = \frac{1}{\Delta} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}, \text{ а при } \Delta = 0 \text{ получим деление на ноль, следовательно, обратная}$$
 матрица не существует.

А2.1.3 Алгоритм вычисления обратной матрицы методом миноров:

- 1. Находим определитель |A| исходной матрицы A. Если |A| = 0, то матрица A не имеет обратной.
- 2. Если $|A| \neq 0$, то транспонируя исходную матрицу, получим матрицу A^T ;
- 3. Находим алгебраические дополнения элементов матрицы A^{T} и строим *присоединенную* матрии $v \tilde{A}$:
- 4. Находим обратную матрицу по формуле $A^{-1}=rac{1}{|A|}\widetilde{A}$;

- 5. Проверяем правильность вычислений, используя равенство $A^{-1}A = E$;
- **А2.1.4** Замечание: после деления элементов присоединенной матрицы \widetilde{A} на числовое значение определителя |A| элементы обратной матрицы во многих случаях становятся дробными числами. Для упрощения вычислений при использовании обратной матрицы лучше представлять ее с вынесенным общим множителем $A^{-1} = \frac{1}{|A|} \widetilde{A}$. Если элементами матрицы A были целые числа, то

матричные операции при таком представлении также будут производиться с целыми числами.

Вычисляя алгебраические дополнения элементов матриц, обратные к данным и произвести проверку

a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 9 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix}$;

Решение: а) Вычислим определитель матрицы: $|A| = \begin{vmatrix} 1 & 2 \\ 3 & 9 \end{vmatrix} = 9 - 6 = 3$. Вычеркивая первую строку

и первый столбец, получим $A_{11} = \P^{1} \cdot 9 = 9$. Аналогично, вычеркивая первую строку и второй столбец, получим $A_{12}= \P^1$ $^2 \cdot 3=-3$. Аналогично $A_{21}= \P^1$ $^2 \cdot 2=-2; \ A_{22}= \P^1$ $^2 \cdot 1=1$. Значит,

$$A^{-1} = \frac{1}{3} \cdot \begin{pmatrix} 9 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix}.$$

Проверка: $A^{-1}A = \frac{1}{3} \begin{pmatrix} 9 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 9 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix};$

б) Вычислим определитель матрицы: $|B| = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 4 & -3 & -6 \\ 7 & -6 & -11 \end{vmatrix} = \begin{vmatrix} -3 & -6 \\ -6 & -11 \end{vmatrix} = -3$.

Вычисляем алгебраические дополнения элементов

$$B_{11} = 4 \cdot 1 = 4 \cdot 1 = 2 \cdot B_{12} = 4 \cdot 1 = 4 \cdot 1 = 2 \cdot B_{13} = 4 \cdot 1 = 3 \cdot B_{13} = 4 \cdot 1 = 3 \cdot B_{13} = 4 \cdot B_{21} = 4 \cdot B_{22} = 4 \cdot 1 = 2 \cdot B_{13} = 4 \cdot B_{23} = 4 \cdot$$

$$B_{21} = 4 \cdot 1 \begin{vmatrix} 2 & 3 \\ 8 & 10 \end{vmatrix} = 4 \cdot B_{22} = 4 \cdot 1 \begin{vmatrix} 2 & 2 \\ 7 & 10 \end{vmatrix} = -11 \cdot B_{23} = 4 \cdot 1 \begin{vmatrix} 2 & 2 \\ 7 & 8 \end{vmatrix} = 6 \cdot$$

$$B_{31} = \left(-1 \right)^{3+1} \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 \cdot B_{33} = \left(-1 \right)^{3+3} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 \cdot B_{33} = \left(-1 \right)^{3+3} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 \cdot B_{33} = \left(-1 \right)^{3+3} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 \cdot B_{33} = \left(-1 \right)^{3+3} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 \cdot B_{33} = \left(-1 \right)^{3+3} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 \cdot B_{33} = \left(-1 \right)^{3+3} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6 \cdot B_{33} = \left(-1 \right)^{3+3} \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix} = -3 \cdot B_{32} = \left(-1 \right)^{3+2} \begin{vmatrix} 1 & 3 \\ 4 & 5 \end{vmatrix}$$

$$B^{-1} = -\frac{1}{3} \cdot \begin{pmatrix} 2 & 4 & -3 \\ 2 & -11 & 6 \\ -3 & 6 & -3 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & -\frac{4}{3} & 1 \\ -\frac{2}{3} & \frac{11}{3} & -2 \\ 1 & -2 & 1 \end{pmatrix}.$$

Проверка:
$$B^{-1}B = -\frac{1}{3}\begin{pmatrix} 2 & 4 & -3 \\ 2 & -11 & 6 \\ -3 & 6 & 3 \end{pmatrix}\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix} = -\frac{1}{3}\begin{pmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

А2.1.6 Замечание 1. При нахождении обратной матрицы к матрице третьего порядка пришлось вычислить один определитель третьего порядка и девять определителей второго порядка. Если бы

метод миноров применялся к матрице десятого порядка, пришлось бы вычислять один определитель десятого порядка и сто (!) определителей девятого порядка. С увеличением порядка матрицы количество вычислений лавинообразно возрастает, поэтому метод миноров не является оптимальным методом нахождения обратной матрицы: его имеет смысл применять для матриц порядка не выше третьего.

А2.1.7 Замечание 2.
$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$
 Действительно, $(A \cdot B)^{-1} \cdot A^{-1} = (A \cdot B)^{-1} = AA^{-1} = E$.

2.2 Элементарные преобразования строк матрицы

А2.2.1 Определение. Элементарными преобразованиями строк матрицы называются:

- 1) умножение всех элементов любой строки на одно и то же число, отличное от нуля;
- 2) прибавление ко всем элементам любой строки соответствующих элементов другой строки, умноженных на одно и то же число;
- 3) перестановка строк.

А2.2.2 Теорема (элементарные преобразования строк и умножение матриц)

- 1. Умножение всех элементов некоторой строки матрицы A на одно и то же число равносильно умножению этой матрицы слева на некоторую диагональную матрицу;
- 2. Прибавление ко всем элементам некоторой строки матрицы A соответствующих элементов другой строки, умноженных на одно и то же число равносильно умножению этой матрицы слева на некоторую трансвекцию.

Доказательство. 1) Обозначим
$$A = \begin{pmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & \dots & a_{2i} & \dots & a_{2n} \\ a_{31} & \dots & a_{3i} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nn} \end{pmatrix}$$
 , $D_i \blacktriangleleft = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \alpha & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$

Рассмотрим произведение
$$\begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & \dots & a_{2i} & \dots & a_{2n} \\ a_{31} & \dots & a_{3i} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nn} \end{pmatrix} . \quad \text{Матрица} \quad D_i \blacktriangleleft -$$

диагональная, у которой на месте ii находится элемент α , а остальные диагональные элементы равны единице. При умножении первой строки матрицы D_i на любой столбец матрицы A будем получать первый элемент соответствующего столбца матрицы A. То есть, первая строка матрицы A не изменится. При умножении i -ой строки матрицы D_i на любой столбец матрицы A будем получать первый элемент соответствующего столбца матрицы A, умноженный на число α . Таким образом i -я строка матрицы A умножится на число α , а остальные ее строки не изменятся.

2) Обозначим
$$T_{ij}$$
 $\mathfrak{G} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 1 & \dots & \beta & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$ - трансвекция, у которой в i -ой строке и j -ом

столбце расположен элемент β , а остальные внедиагональные элементы равны нулю. При умножении любой строки трансвекции, кроме i-ой на столбцы матрицы A ничего не изменится. А при умножении i-ой строки на столбцы матрицы A, из-за того, что в этой строке два ненулевых элемента (единица на i-ом месте и β на j-ом), получим, что к i-ой строке матрицы A прибавилась j-я строка, умноженная на β .

А2.2.3 *Замечание*. Перестановка строк может быть достигнута последовательным применением первых двух элементарных преобразований.

равносильна умножению матрицы A на некоторую матрицу слева (равную произведению трех трансвекций и одной диагональной матрицы).

A2.2.4 Рассмотрим квадратную матрицу A и будем проводить элементарные преобразования строк с целью превратить эту матрицу в единичную. Те же самые преобразования будем

проводить и с единичной матрицей. В результате вместо матрицы A получим произведение матриц $B_n...B_2B_1A=E$, где B_i - различные диагональные матрицы и(или) трансвекции. Но тогда, по определению обратной матрицы, получим $B_n...B_2B_1=A^{-1}$. Поскольку единичная матрица умножалась на те же матрицы $B_n,...B_2, B_1$, то получим $B_n...B_2B_1E=A^{-1}$. Значит, описанный выше способ действительно приводит к получению обратной матрицы.

А2.2.5 Пример. Методом элементарных преобразований найти матрицы, обратные к данным

a)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 9 \end{pmatrix}$$
; 6) $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix}$.

Решение: а) Рассмотрим матрицу $\begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 3 & 9 & | & 0 & 1 \end{pmatrix}$.

Вычтем из второй строки матрицы первую строку, умноженную на 3: $\begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 3 & | & -3 & 1 \end{pmatrix}$.

Умножим вторую строку на $\frac{1}{3}$: $\begin{pmatrix} 1 & 2 & | & 1 & 0 \\ & & & \\ 0 & 1 & | & -1 & \frac{1}{3} \end{pmatrix}$.

Прибавим к первой строке вторую строку, умноженную на -2:

$$egin{pmatrix} 1 & 0 & | & 3 & -rac{2}{3} \\ 0 & 1 & | & -1 & rac{1}{3} \end{pmatrix}$$
 . Слева от черты получили единичную матрицу, значит справа –

матрицу, обратную к матрице A .

$$A^{-1} = \begin{pmatrix} 3 & -\frac{2}{3} \\ -1 & \frac{1}{3} \end{pmatrix}.$$

б) Рассмотрим матрицу
$$\begin{pmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 4 & 5 & 6 & | & 0 & 1 & 0 \\ 7 & 8 & 10 & | & 0 & 0 & 1 \end{pmatrix}$$
.

Прибавим ко второй строке первую, умноженную на -4, а к третьей строке – первую, умноженную на -7:

$$\begin{pmatrix}
1 & 2 & 3 & | & 1 & 0 & 0 \\
0 & -3 & -6 & | & -4 & 1 & 0 \\
0 & -6 & -11 & | & -7 & 0 & 1
\end{pmatrix}.$$

Прибавим к третьей строке вторую, умноженную на -2:

$$\begin{pmatrix}
1 & 2 & 3 & | & 1 & 0 & 0 \\
0 & -3 & -6 & | & -4 & 1 & 0 \\
0 & 0 & 1 & | & 1 & -2 & 1
\end{pmatrix}.$$

Прибавим ко второй строке третью, умноженную на 6, а к первой строке – третью, умноженную на -3.

$$\begin{pmatrix} 1 & 2 & 0 & | & -2 & 6 & -3 \\ 0 & -3 & 0 & | & 2 & -11 & 6 \\ 0 & 0 & 1 & | & 1 & -2 & 1 \end{pmatrix}.$$
 Поделим вторую строку на -3 :
$$\begin{pmatrix} 1 & 2 & 0 & | & -2 & 6 & -3 \\ 0 & 1 & 0 & | & -\frac{2}{3} & \frac{11}{3} & -2 \\ 0 & 0 & 1 & | & 1 & -2 & 1 \end{pmatrix}.$$

Прибавим к первой строке вторую, умноженную на -2:

$$\begin{pmatrix}
1 & 0 & 0 & | & -\frac{2}{3} & -\frac{4}{3} & 1 \\
0 & 1 & 0 & | & -\frac{2}{3} & \frac{11}{3} & -2 \\
0 & 0 & 1 & | & 1 & -2 & 1
\end{pmatrix}.$$

2.3 Матричный способ решения СЛАУ

А2.3.1 Систему уравнений
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\ \ldots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n \end{cases}$$
 можно представить в

матричной форме:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}.$$

Если обозначить
$$A=\begin{pmatrix} a_{11}&a_{12}&...&a_{1n}\\a_{21}&a_{22}&...&a_{2n}\\...&...&...\\a_{n1}&a_{n2}&...&a_{nn} \end{pmatrix}$$
 – матрица коэффициентов, $X=\begin{pmatrix} x_1\\x_2\\...\\x_n \end{pmatrix}$ –

матрица-столбец неизвестных,
$$B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$$
 — матрица-столбец правой части, то матричное

уравнение запишется в краткой форме: AX=B . Умножим обе части этого равенства слева на матрицу A^{-1} : $A^{-1}AX=A^{-1}B$. Тогда $EX=A^{-1}B$ и $X=A^{-1}B$. То есть, для решения системы достаточно найти обратную матрицу и умножить ее на матрицу-столбец правой части.

Пример. Решить систему линейных уравнений с помощью обратной матрицы: $\begin{cases} x+2y+3z=10\\ 4x+5y+6z=38\\ 7x+8y+10z=47 \end{cases}$

Решение: запишем систему в матричном виде:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 38 \\ 47 \end{pmatrix}.$$
 Найдем матрицу, обратную к матрице $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{pmatrix}$:

$$A^{-1} = -rac{1}{3} \cdot egin{pmatrix} 2 & 4 & -3 \ 2 & -11 & 6 \ -3 & 6 & -3 \end{pmatrix}$$
. Вычислим матричное произведение

$$A^{-1} \cdot B = -\frac{1}{3} \cdot \begin{pmatrix} 2 & 4 & -3 \\ 2 & -11 & 6 \\ -3 & 6 & -3 \end{pmatrix} \cdot \begin{pmatrix} 10 \\ 38 \\ 47 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix},$$

значит,
$$x = 3$$
; $y = 2$; $z = 1$.

А2.3.2 Замечание. Матричный способ решения СЛАУ является не менее громоздким, чем правило Крамера. Этот способ применяют обычно в тех случаях, когда требуется решить несколько систем линейных уравнений с одной и той же матрицей и различными правыми частями.

2.4 Метод Гаусса

А2.4.1 Рассмотрим систему линейных уравнений, в которой количество уравнений совпадает с количеством неизвестных

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Все коэффициенты при переменной x_1 не могут быть равны нулю, т.к. в этом случае уравнений было бы больше, чем неизвестных. Будем считать, что коэффициент при первом неизвестном в первом уравнении отличен от нуля (если это не так — можно переставить уравнения). Умножим

первое уравнение на $\left(-\frac{a_{21}}{a_{11}}\right)$ и прибавим ко второму уравнению. Первое уравнение в системе

оставим без изменения, а результат проделанных действий запишем вместо второго уравнения; в этом новом втором уравнении коэффициент при первом неизвестном будет равен нулю.

Затем умножим первое уравнение на $\left(-\frac{a_{31}}{a_{11}}\right)$ и прибавим к третьему уравнению.

Результат, не содержащий неизвестного x_1 , запишем вместо третьего уравнения.

Продолжая этот процесс, можно добиться того, что в системе все уравнения, кроме первого не будут содержать неизвестного x_1 .

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n' = b_1' \\ a_{21}x_2 + \dots + a_{2n}x_n = b_2' \\ \vdots \\ a_{n2}x_2 + \dots + a_{nn}x_n = b_n' \end{cases}$$

Если определитель матрицы $\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$ не был равен нулю, то после описанных

преобразований ни одно из уравнений не обратится в тождество (верное или неверное).

Допустим, что коэффициент a_{21} не равен нулю (если это не так, то можно во всех уравнениях переставить неизвестные т. к. от перемены мест слагаемых сумма не изменится).

Умножим второе уравнение на $\left(-\frac{a_{31}^{'}}{a_{21}^{'}}\right)$ и прибавим к третьему уравнению. Новое третье

уравнение не будет содержать неизвестного x_2 . Затем умножим второе уравнение на $\left(-\frac{a_{41}^{'}}{a_{21}^{'}}\right)$ и

прибавим к четвертому, чтобы оно также е содержало неизвестного x_2 . Продолжая этот процесс, добьемся того, что во всех уравнениях, начиная с третьего, будет отсутствовать неизвестная x_2 .

Далее добъемся того, чтобы во всех уравнениях начиная с четвертого отсутствовал x_3 и т. д. В результате последнее уравнение системы будет содержать не более одного неизвестного, предпоследнее — не более двух неизвестных и т.д.

Из последнего уравнения найдем значение неизвестного x_n и, подставив его в предпоследнее уравнение, найдем x_{n-1} и т.д.

А2.4.2 Пример 1: Решить систему методом Гаусса

$$\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 28 \\ 7x + 8y + 10z = 47 \end{cases}$$

Решение: Умножим первое уравнение на -4z = -4x - 8y - 12z = -40 и прибавим ко второму:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ 7x + 8y + 10z = 47 \end{cases}$$

Теперь умножим первое уравнение на (-7): -7x-14y-21z=-70 и прибавим к третьему:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ -6y - 11z = -23 \end{cases}$$

Умножим второе уравнение системы на (-2): 6y + 12z = 24 и прибавим к третьему:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ z = 1 \end{cases}$$

Значение z=1 подставим во второе уравнение системы и найдем y=2 . Значения z=1 и y=2 подставим в первое уравнение системы и найдем x=3 . Система решена.

А9.1.3 Пример 2: Решить систему методом Гаусса

$$\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 28 \\ 7x + 11y + 15z = 38 \end{cases}$$

Решение: Умножим первое уравнение на -4z = -4x - 8y - 12z = -40 и прибавим ко второму:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ 7x + 11y + 15z = 38 \end{cases}$$

Теперь умножим первое уравнение на $\P7$: -7x-14y-21z=-70 и прибавим к третьему:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ -3y - 6z = -32 \end{cases}$$

Умножим второе уравнение на (-1) и прибавим к третьему:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ 0 = 20 \end{cases}$$

Вместо уравнения получили неверное тождество. Система не имеет решений.

Замечание: если при применении метода Гаусса появляется хотя бы одно неверное тождество, то система не имеет решений.

А9.1.4 Пример 3: Решить систему методом Гаусса

$$\begin{cases} x + 2y + 3z = 10 \\ 4x + 5y + 6z = 28 \\ 7x + 11y + 15z = 58 \end{cases}$$

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ 7x + 11y + 15z = 58 \end{cases}$$

Теперь умножим первое уравнение на (-7): -7x-14y-21z=-70 и прибавим к третьему:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ -3y + -6z = -12 \end{cases}$$

Умножим второе уравнение на (-1) и прибавим к третьему:

$$\begin{cases} x + 2y + 3z = 10 \\ -3y - 6z = -12 \\ 0 = 0 \end{cases}$$

Вместо уравнения получили верное тождество. Система имеет бесконечно много решений.

Контрольные вопросы:

- 1. Какая матрица называется обратной к данной квадратной матрице? Для любой ли квадратной матрицы существует обратная?
- 2. Сформулируйте алгоритм нахождения обратной матрицы методом миноров.
- 3. Что называется элементарными преобразованиями строк матрицы?
- 4. Сформулируйте алгоритм нахождения обратной матрицы методом элементарных преобразований
- 5. Сформулируйте алгоритм решения системы линейных уравнений матричным способом.
- 6. Сформулируйте алгоритм метода Гаусса. К чему приведет метод Гаусса, если система не имеет решений? К чему приведет метод Гаусса, если система имеет бесконечно много решений?