MAT257 PSET 15—Question 2

Jonah Chen

Lemma 1: Let open sets $U, V \subset \mathbb{R}^n$ be diffeomorphic with the diffeomorphism $g: U \to V$. Then, any k-form on U can be expressed as the pullback using g of some k-form on V, and any k-form on V can be expressed as the pullback using g^{-1} of some k-form on U.

Specifically, $\forall \nu \in \Omega^k(V)$, then $\nu = (g^{-1})^*\mu$ where $\mu = g^*\nu \in \Omega^k(U)$, and $\forall \mu \in \Omega^k(U)$, then $\mu = g^*\nu$ where $\nu = (g^{-1})^*\mu \in \Omega^k(V)$

Proof. Let $u_1, \ldots, u_k \in T_pU$ and $v_1 = g_*u_1, \ldots, v_k = g_*u_k \in T_qV$ where $p \in U$ and q = g(p).

Consider some $\nu \in \Omega^k(V)$, then $\nu = (g^{-1})^*\mu$ where $\mu = g^*\nu \in \Omega^k(U)$.

$$\nu(v_1,\ldots,v_k)=(g^{-1})^*\mu(v_1,\ldots,v_k)=\mu(u_1,\ldots,u_k)=g^*\nu(u_1,\ldots,u_k)=\nu(v_1,\ldots,v_k).$$

Similarly, consider some $\mu \in \Omega^k(U)$, then $\mu = g^*\nu$ where $\nu = (g^{-1})^*\mu \in \Omega^k(V)$.

$$\mu(u_1,\ldots,u_k) = g^*\nu(u_1,\ldots,u_k) = \nu(v_1,\ldots,v_k) = (g^{-1})^*\mu(v_1,\ldots,v_k) = \mu(u_1,\ldots,u_k).$$

If there are no closed forms on V, then the statement is trivial.

By lemma 1, for every closed k+1 form on ν on V, there is a corresponding k+1 form $\mu=g^*\nu$ on U such that $\nu=(g^{-1})^*\mu$.

$$d\mu = d(g^*\nu) = g^*(d\nu) = g^*(0) = 0.$$

Hence, μ is a closed k+1 form on U. Since every closed form in U is exact, then there must exist $\eta \in \Omega^k(U)$: $\mathrm{d}\eta = \mu$. Note that $\lambda = (g^{-1})^*\eta$ is a k form on V.

$$d\eta = \mu$$

$$(g^{-1})^*(d\eta) = (g^{-1})^*\mu$$

$$d((g^{-1})^*\eta) = (g^{-1})^*\mu$$

$$d\lambda = \nu$$

As a λ can be found for any closed form ν on V, then every closed form on V is also exact.