

Master's thesis

Radio activity optimisation for Wireless Personal Communications

Author: Jérome EERTMANS

Supervisors: Jérôme LOUVEAUX, Claude OESTGES

Advisor: **Sam GEERAERTS**Reader: **Mathieu XHONNEUX**

A connected world

Many wireless technologies

Wi-Fi, Bluetooth, Bluetooth Low Energy (BLE), ZigBee, etc.

Speed, power, cost, range, ... A matter of trade-offs!

BLE: a technology with a bright future...

Main pros: low power, decent range and datarate, robust and cheap.

Typical applications:

wireless earbuds, portable speaker, sensors, Internet of Things (IoT), and hearing aids.

BLE: ... and a lot of challenges!

Excellent designs should minimise:

- interference with other technologies;
- 2 packet collisions;
- 3 Packet Error Rate (PER);
- 4 radio usage;
- 6 and many others.

Table of contents

- Introduction
- ◆ C.1 Slot finder
- ◆ C.2 Enhanced Wi-Fi interoperability
- Conclusion

C.1 Slot finder

C.1 Slot finder - contents

- Introduction
- ◆ C.1 Slot finder
 - The packet collisions problem
 - A minimisation problem
 - o A simple but efficient solution
 - Results
- C.2 Enhanced Wi-Fi interoperability
- ◆ Conclusion

The packet collisions problem

In some situations, collisions can occur: either at **random** or **deterministic** time instants.

C.1 Slot finder

A minimisation problem

Cost function

$$C = \sum_{i,j>i} \#_{i,j} \left(\frac{P_i}{N_{i,j}} + \frac{P_j}{N_{j,i}} \right)$$

Find best:

- interval value *T*:
 - and anchor timing t.

A simple but efficient solution

Results

Some key aspects:

- always runs under 100 ms¹;
- can easily be reduced to 10 ms or 1 ms;
- highly customisable;
- excellent for similar connections.

¹For less than 16 connections.

C.2 Enhanced Wi-Fi interoperability - contents

- ◆ Introduction
- ◆ C.1 Slot finder
- ◆ C.2 Enhanced Wi-Fi interoperability
 - o Coexistence in the 2.4 GHz ISM band
 - Current CA implementation
 - Proposed enhancement
 - Results
- Conclusion

Coexistence in the 2.4 GHz ISM band

Current CA implementation

Proposed enhancement

Proposed enhancement - why only one Wi-Fi signal?

Results - one Wi-Fi - no filter vs filtering

Conclusion

Conclusion - contents

- Introduction
- ◆ C.1 Slot finder
- C.2 Enhanced Wi-Fi interoperability
- Conclusion
 - Two contributions
 - Status of work and future

Two contributions

C.1 - Slot finder

- Problem packets can collide;
- Solution smart connection scheduling.

C.2 - Enhanced Wi-Fi interoperability

- **Problem** BLE can deteriorate Wi-Fi's experience;
- Solution upgrade current CA with Wi-Fi detection.

Status of work and future

Status of work

- good view of modern challenges;
- thorough testing and promising results.

Future work

- validate on hardware;
- tune for specific applications.

Thanks for listening!

Do you have any question?

Wi-Fi channels

Frequency Hopping

Slot definitions

Collision bounds

Slot finder - perfect (P) and worst (W) cases

Filtering - the filter

$$\xrightarrow{x(t)} \underbrace{\text{Sensor}} - x[n] - x[n]$$

$$u[n+1] = \left(1 - \frac{1}{2^k}\right)u[n] + x[n]$$

Filtering - frequency response

Wi-Fi detection - activity results

Wi-Fi detection - energy results

Additional contents

Clock drift

CA vs NOCA - status

CAVS NOCA-PER

Wi-Fi activity - office vs basement

Wi-Fi detection probability - office vs basement

Wi-Fi detection - any Wi-Fi - p = 30% - k = 0 vs k = 1

Wi-Fi detection - one Wi-Fi - p = 100% - k = 0 vs k = 1

Wi-Fi detection - any Wi-Fi - p = 80% - k = 0 vs k = 1

Wi-Fi detection - two Wi-Fi - p = 80 % - k = 0 vs k = 1

Wi-Fi detection - one Wi-Fi - p = 80 % - k = 0 vs k = 1

