James Webb Space Telescope

The landscape of "mountains" and "valleys"

A visual grouping of five galaxies

CONVOLUTIONAL NEURAL NETWORK

Mahdi Roozbahani

Georgia Tech

Great visualization tool: https://poloclub.github.io/cnn-explainer/

Slides are based on Ming Li (University of waterloo – Deep learning part) with some modifications

Inspiration from Biological Neurons

The first drawing of a brain cells by Santiago Ramón y Cajal in 1899

Neurons: core components of brain and the nervous system consisting of

- Dendrites that collect information from other neurons
- 2. An axon that generates outgoing spikes

 $output = activation(x\theta + b)$

Name of the neuron	Activation function: activation(2		
Linear unit	$x\theta$		
Threshold/sign unit	$sign(x\theta)$		
Sigmoid unit	1		
Significia unit	$1 + \exp(x\theta)$		
Rectified linear unit (ReLU)	$\max(0, x\theta)$		
Tanh unit	$tanh(x\theta)$		

NN Regression

FACIAL RECOGNITION

Deep-learning neural networks use layers of increasingly complex rules to categorize complicated shapes such as faces.

Layer 1: The computer identifies pixels of light and dark.

Layer 2: The computer learns to identify edges and simple shapes.

Layer 3: The computer learns to identify more complex shapes and objects.

Layer 4: The computer learns which shapes and objects can be used to define a human face.

Smaller Network: CNN

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	~	0	0	1	0
0	0	~	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	Υ_	-1
-1	1	-1
-1	-1	1

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	7	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product 3 -1

6 x 6 image

1	-1	-1
-1	1	-1
-1	1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	0	0	0	1	0

6 x 6 image

Filter 1

6 x 6 image

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images Forming 2 x 4 x 4 matrix

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	~	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1st hidden layer features

Even fewer parameters

16: 1 Shared we
Ex. O constrained to be identical

The whole CNN

Max Pooling

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

Why Pooling

 Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller fewer parameters to characterize the image

A CNN compresses a fully connected network in three ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

Max Pooling

The whole CNN

CNN in Keras

Only modified the *network structure* and *input* format (vector -> 3-D tensor)

CNN in Keras

Only modified the *network structure* and *input*format (vector -> 3-D array)

CNN in Keras

Only modified the *network structure* and *input* format (vector -> 3-D array)

Number of Parameters

10 CNN Architecture