MS-Word で解答し、PDF に変換してアップロードしてください。

学籍番号 8223036	氏名	栗山淳
--------------	----	-----

【課題1】

 14 N 1 H $_{3}$ 分子は対称回転子なので、純回転(マイクロ波吸収)遷移において選択則 $\Delta J=\pm 1$, $\Delta K=0$ を満たす。

$$F(J, K) = BJ(J+1) + (C-B)K^{2}$$

= $(10.1 \text{cm}^{-1})J(J+1) - (3.66 \text{ cm}^{-1})K^{2}$

から、純回転スペクトルの形を予測しなさい。

【課題1解答欄】(解答の長さは自由です。)

 $^{14}N^{1}H_{3}$ 分子は対称回転子なので, $\Delta J=\pm 1, \Delta K=0$ を満たす。

吸収については $\Delta I = +1$ であり, $\Delta K = 0$ より

$$\Delta F = F(J + 1, K) - F(J, K) = 2B(J + 1)$$

の間隔でスペクトルが現れる。

 $B = 10.1 cm^{-1}$ なので具体的には次の表の位置にピークが現れる。

J	0	1	2	3	4	5	
$\bar{\nu}[\text{cm}^{-1}]$	20.2	40.4	60.6	80.8	101.0	121.2	

【課題2】

次の各分子の回転定数から結合長を見積もりなさい。ただし、 $\hbar=1.0546\times 10^{-34}\mathrm{J\cdot s}$ 、原子質量単位は $u=1.6605\times 10^{-27}\mathrm{kg}$ 、円周率は 3.1416、光速は 2.9979×10^8 m/s とする。

分子	¹ H ³⁵ Cl	¹ H ⁷⁹ Br	¹² C ¹⁶ O	¹⁴ N ¹⁶ O
----	---------------------------------	---------------------------------	---------------------------------	---------------------------------

$B [cm^{-1}]$ 10.591 8.473 1.931 1.705	B [cm ⁻¹]	10.591	8.473	1.931	1.705
--	-----------------------	--------	-------	-------	-------

【課題2解答欄】(解答の長さは自由です。)

2原子分子で $I=m_{eff}R^2$ なので,

$$R = \sqrt{\frac{I}{m_{\rm eff}}}B = \frac{1}{hc}\frac{\hbar^2}{2I} = \frac{\hbar}{4\pi cI}$$
, $I = \frac{\hbar}{4\pi cB}$

なので,

$$R = \sqrt{\frac{I}{m_{\rm eff}}} = \sqrt{\frac{4\pi cB}{m_{\rm eff}}} = \sqrt{\frac{\hbar}{m_{\rm eff}4\pi cB}}$$

分子	¹ H ³⁵ CI	¹H ⁷⁹ Br	¹² C ¹⁶ O	¹⁴ N ¹⁶ O
B[cm-1]	10.591	8.473	1.931	1.705
$m_{ m eff}$	$\frac{35}{36}u$	$\frac{79}{80}u$	$\frac{192}{28}u$	$\frac{224}{30}u$
$m_{ m eff} [10^{-27} { m kg}]$	1.614375	1.63974375	11.38628571	12.3984
$R = \sqrt{\frac{\hbar}{m_{\text{eff}} 4\pi cB}}$ $[10 \times 10^{-10} \text{m}]$	1.2796	1.419	1.128	1.151