WHAT IS CLAIMED IS:

- 1. A composition for oxidation dyeing keratinous fibers comprising, in a medium suitable for dyeing:
- (iii) at least one oxidation dye precursor chosen from 1-(4-aminophenyl)-pyrrolidines of formula (I) and acid addition salts thereof:

- R_1 is chosen from a hydrogen atom, C_1 - C_6 alkyl groups, C_1 - C_5 monohydroxyalkyl groups, and C_2 - C_5 polyhydroxyalkyl groups,
- R₂ is chosen from a hydrogen atom, a -CONH₂ group, C₁-C₅ monohydroxyalkyl groups, and C₂-C₅ polyhydroxyalkyl groups, and
- R₃ is chosen from a hydrogen atom, and a hydroxyl group, and
- (ii) at least one cationic polymer chosen from:
 - (1) homopolymers and copolymers comprising, as a constituent of the chain, at

least one unit chosen from units formula (II):

$$\begin{array}{c|c}
 & (CH_2)k \\
 & (CH_2)k \\
 & (CR_6) - CH_2 \\
 & CH_2 \\
 & CH_2 \\
 & R_4 \\
 & R_5
\end{array}$$
(II)

- k and t, which are identical or different, are each chosen from 0 and 1,
 provided that the sum of k + t is equal to 1,
- R₄ and R₅, together with the nitrogen cation to which they are commonly bonded, optionally form a cationic heterocyclic group chosen from a piperidinyl group and a morpholinyl group,
- R₆, which are identical or different, are each chosen from a hydrogen atom and a methyl group, and
- X is an anion;
- (2) quaternary diammonium polymers comprising repeating units of formula (III):

DESETOS OFFICE

(111)

- R_7 , R_8 , R_9 , and R_{10} , which are identical or different, are each chosen from C_1 - C_{20} aliphatic groups, C_3 - C_{20} alicyclic groups, C_7 - C_{20} arylaliphatic groups, and lower hydroxyalkyl groups,
- at least two of said R₇, said R₈, said R₉, and said R₁₀, together with the nitrogen cations to which they are attached, optionally form at least one cationic heterocyclic ring optionally comprising an additional heteroatom other than nitrogen,
- R_7 , R_8 , R_9 , and R_{10} , which are identical or different, are each optionally chosen from linear and branched C₁-C₆ alkyl groups substituted with at least one group chosen from nitrile groups, ester groups, acyl groups, amide groups, -CO-O-R₁₁-D groups, and -CO-NH-R₁₁-D groups, wherein R₁₁ is chosen from alkylene groups and D is chosen from quaterhary ammonium groups,
- A₁ and B₁, which are identical or different, are each chosen from linear and branched, saturated and unsaturated, C2-C20 polymethylene groups, optionally comprising at least one entity chosen from aromatic rings,

an oxygen atom, a sulfur atom, a sulfoxide group, a sulfone group, a disulfide group, an amino group, alkylamino groups, a hydroxyl group, quaternary ammonium groups, a ureido group, an amide group, and ester groups, wherein said at least one entity is linked to or intercalated in the main chain,

- X is an anion,
- said A₁, said R₇, and said R₉ optionally form a piperazine ring, together with the two nitrogen cations to which they are attached, and
- provided that if A_1 is chosen from linear and branched, saturated and unsaturated, C_2 - C_{20} polymethylene groups and linear and branched, saturated and unsaturated, hydroxy(C_2 - C_{20})polymethylene groups, B_1 is chosen from
 - $-(CH_2)_n$ -CO-D-OC- $(CH_2)_n$ groups, wherein:
 - n is an integer ranging from 1 to 100,
 - D is chosen from:
 - a) glycol residues of formula: -O-Z-O-, wherein Z is chosen from linear and branched hydrocarbon groups and groups chosen from groups of formulae:

-(CH₂-CH₂-O)_x-CH₂-CH₂- and

-[CH₂-CH(CH₃)-O]_y † CH₂-CH(CH₃)-

wherein x and y, which are identical or different, are each chosen from integers ranging from 1 to 4 (in which case x and y represent a defined and unique degree of polymerization) and

Attorney Døcket No. 5725.0881-00

any number ranging from 1 to 4 (in which case x and y represent an average degree of polymerization),

- b) bis-secondary diamine residues,
- c) bis-primary diamine residues chosen from residues of formula:

-NH-Y-NH-, wherein Y is chosen from linear and branched hydrocarbon groups and residues of formula

- d) a ureylene group of formula: -NH-CO-NH-;
- (3) quaternary diammonium polymers comprising repeating units of formula (IV):

wherein;

- p is an integer ranging from 1 to 6,
- D is chosen from a direct bond and -(CH₂)_r-CO- groups, wherein r is a number equal to 4 or 7, and

 $-/X^{-}$ is an anion;

- (4) amine-containing silicones.
- 2. A composition according to claim 1, wherein said keratinous fibers are human keratinous fibers.

- 3. A composition according to claim 2, wherein said human keratinous fibers are human hair.
- 4. A composition according to claim 1, wherein said n of said $-(CH_2)_n$ -CO-D-OC- $(CH_2)_n$ groups is an integer ranging from 1 to 50.
- 5. A composition according to claim 1, wherein said R_1 , said R_2 , and said R_3 are each a hydrogen atom.
- 6. A composition according to claim 1, wherein said R_1 and said R_3 are each a hydrogen atom and said R_2 is a -CH₂OH group.
- 7. A composition according to claim 1, wherein said R_1 is a hydrogen atom, said R_2 is a -CH₂OH group, and said R_3 is a hydroxyl group.
- 8. A composition according to claim 1, wherein said R_1 and said R_3 are each a hydrogen atom and said R_2 is a -CONH₂ group.
- 9. A composition according to claim 1, wherein said acid addition salts of said 1-(4-aminophenyl)pyrrolidines of formula (I) are chosen from hydrochlorides, hydrobromides, sulphates, tartrates, lactates, and acetates.
- 10. A composition according to claim 1, wherein said at least one oxidation dye precursor is present in said composition in an amount ranging from 0.001% to 10% by weight relative to the total weight of the composition.
- 11. A composition according to claim 10, wherein said at least one oxidation dye precursor is present in said composition in an amount ranging from 0.01% to 8% by weight relative to the total weight of the composition.
- 12. A composition according to claim 1, wherein said quaternary diammonium polymers comprising repeating units of formula (III) are chosen from cationic polymers

comprising repeating units of formula (V):

wherein

- R_{12} , R_{13} , R_{14} , and R_{15} , which are identical or different, are each chosen from C_1 - C_4 alkyl groups and C_1 - C_4 hydroxyalkyl groups, and
- n and p are each chosen from integers ranging from 2 to 20, and
- X is an anion.
- 13. A composition according to claim 12, wherein said cationic polymers comprising repeating units of formula (V) are chosen from cationic polymers comprising repeating units of formula (W):

$$\begin{array}{c|c} CH_{3} & CH_{3} \\ \hline & | & | \\ \hline | & | \\ N^{+}_{Cl^{+}} (CH_{2})_{3} - N^{+}_{-} - (CH_{2})_{6} \end{array} \begin{array}{c} \\ \\ | & | \\ CH_{3} \end{array} \qquad (W)$$

$$CH_{3} \qquad CH_{3}$$

14. A composition according to claim 12, wherein said cationic polymers comprising repeating units of formula (V) are chosen from cationic polymers comprising repeating units of formula (U):

$$\begin{array}{c|c}
CH_3 & C_2H_5 \\
 & | & | \\
\hline
 & | & | \\
N_{\frac{Br}{}} & (CH_2)_3 - N_{\frac{Br}{}} - (CH_2)_3 - \\
 & | & | & | & | \\
CH_3 & C_2H_5 & ...
\end{array}$$
(U)

- 15. A composition according to claim 1, wherein said at least one cationic polymer is chosen from quaternary diammonium polymers comprising repeating units of formula (IV), wherein:
- p is chosen from integers ranging from 1 to 6,
- D is chosen from a direct bond and –(CH₂)_r-CO- groups, wherein r is a number equal to 4 or 7, and
- X⁻ is an anion chosen from anions derived from inorganic acids and anions derived from organic acids.
- 16. A composition according to claim 15, wherein said p is equal to 3, said D is a direct bond, and said X⁻ is a chlorine anion.
- 17. A composition according to claim 1, wherein said at least one aminecontaining silicone is chosen from:
- (i) polysiloxanes of formula (VI):

- R is a group chosen from a methyl group and a hydroxyl group, and
- x' and y' are integers chosen such that the weight-average molecular weight of said polysiloxane ranges from 5,000 to 500,000;
- (ii) aminosilicones of formula (VII):

- T is chosen from a hydrogen atom, a phenyl group, a hydroxyl group, and (C₁-C₈) alkyl groups,
- a is an integer ranging from 0 to 3,
- b is chosen from 0 and 1,
- m and n are numbers such that the sum (n + m) ranges from 1 to 2,000,

- n is chosen from a number ranging from 0 to 1,999,
- m is chosen from a number ranging from 1 to 2,000,
- R^1 is a monovalent group of formula $-C_qH_{2q}L$, wherein q is chosen from a number ranging from 2 to 8, and wherein L is an optionally quaternized amine group chosen from:

- $-N(R^2)_2$,
- $-N^{+}(R^{2})_{3}Q^{-}$
- -N+(R2)(H)2Q-,
- -N⁺(R²)₂HQ⁻, and
- $-N(R^2)-CH_2-CH_2-N^+(R^2)H_2Q^-$

- R², which are identical or different, are each chosen from a hydrogen atom, a phenyl group, a benzyl group, and (C₁-C₂₀) alkyl groups, and
- Q is chosen from halide anions;
- (iii) aminosilicones of formula (IX):

$$R^{3} = S_{i} - O = \begin{bmatrix} R^{4} - CH_{2} - CHOH - CH_{2} - N(R^{3})_{3} Q^{0} \\ R^{3} - S_{i} - O \end{bmatrix} = \begin{bmatrix} R^{3} & R^{3} \\ S_{i} - O \end{bmatrix} = \begin{bmatrix} R^{3} & R^{3} \\ S_{i} - R^{3} \end{bmatrix} = \begin{bmatrix} R^{3} & R^{3} \\ R^{3} & R^{3} \end{bmatrix}$$
(IX)

- R³, which are identical or different, are each chosen from (C₁-C₁8) alkyl groups and (C₂-C₁8) alkenyl groups,
- R₄ is chosen from divalent (C₁-C₁₈) alkylene groups, and divalent (C₁-C₁₈) alkyleneoxy groups,
- Q⁻ is chosen from halide anions,
- r is a mean statistical value ranging from 2 to 20, and
- s is a mean statistical value ranging from 20 to 200;
- (iv) silicones of formula (X):

$$R_{8} - N - CH_{2} - CHOH - CH_{2} - R_{6} = \begin{bmatrix} R_{7} \\ i \\ Si - O \end{bmatrix} - \begin{bmatrix} R_{7} \\ i \\ Si - R_{6} - CH_{2} - CHOH - CH_{2} - N - R_{8} \\ R_{7} \end{bmatrix}$$

$$= \begin{bmatrix} R_{7} \\ i \\ Si - R_{6} - CH_{2} - CHOH - CH_{2} - N - R_{8} \\ R_{7} \end{bmatrix}$$

$$= \begin{bmatrix} R_{7} \\ i \\ R_{7} \end{bmatrix} - \begin{bmatrix} R_{7} \\ i \\ R_{7} \end{bmatrix}$$

$$= \begin{bmatrix} R$$

- R₆ is chosen from divalent (C₁-C₁₈) alkylene groups, and divalent (C₁-C₁₈) alkyleneoxy groups, wherein said R₆ is bonded to the Si by way of an SiC bond,
- R₇, which are identical or different, are each chosen from (C₁-C₁₈) monovalent
 hydrocarbon-based groups, (C₂-C₁₈) alkenyl groups, and (C₅-C₆) rings,
- R₈, which are identical or different, are each chosen from a hydrogen atom,
 (C₁-C₁₈) monovalent hydrocarbon-based groups, (C₂-C₁₈) alkenyl groups, and
 -R₆-NHCOR₇ groups, wherein said R₆ and said R₇ are defined above,

- r is a mean statistical value ranging from 2 to 200, and
- X is an anion.
- 18. A composition according to claim 1, wherein said at least one cationic polymer is chosen from trimethylsilylamodimethicones of formula (VIII):

$$(CH_3)_3 SiO - \begin{bmatrix} CH_3 \\ I \\ SiO \\ - CH_3 \end{bmatrix}_{\mathbb{R}} \begin{bmatrix} CH_3 \\ I \\ SiO \\ - CH_3 \\ - CH_3 \\ - CH_2 \\ - CH_3 \\ - CH_2 \\ - CH_2 \\ - CH_3 \\ - CH_2 \\ - CH_3 \\ - CH$$

- m and n are numbers such that the sum (n + m) ranges from 1 to 2,000,
- n is chosen from a number ranging from 0 to 1,999, and
- m is chosen from a number ranging from 1 to 2,000.
- 19. A composition according to claim 1, wherein said at least one cationic polymer is chosen from polysiloxanes of formula (VI):

- R is a group chosen from a methyl group and a hydroxyl group, and
- x' and y' are integers chosen such that the weight-average molecular weight of said polysiloxane ranges from 5,000 to 500,000;

and wherein said composition further comprises:

- (i) trimethylcetylammonium chloride, and
- (ii) at least one compound of formula: $C_{13}H_{27}$ -(OC_2H_4)₁₂-OH.
- 20. A composition according to claim 18, wherein said composition further comprises:
- (i) at least one nonionic surfactant of formula: $C_8H_{17}-C_6H_4-(OCH_2CH_2)_{40}-OH$,
- (ii) at least one nonionic surfactant of formula: $C_{12}H_{25}$ -(OCH₂-CH₂)₆-OH, and
- (iii) propylene glycol.
- 21. A composition according to claim 1, wherein said at least one cationic polymer is present in said composition in an amount ranging from 0.01% to 10% by weight relative to the total weight of the composition.

- 22. A composition according to claim 21, wherein said at least one cationic polymer is present in said composition in an amount ranging from 0.05% to 5% by weight relative to the total weight of the composition.
- 23. A composition according to claim 22, wherein said at least one cationic polymer is present in said composition in an amount ranging from 0.1% to 3% by weight relative to the total weight of the composition.
 - 24. A composition according to claim 1 further comprising at least one coupler.
- 25. A composition according to claim 24, wherein said at least one coupler is chosen from meta-phenylenediamines, meta-aminophenols, meta-diphenols, naphthols, heterocyclic couplers, and acid addition salts of any of the foregoing compounds.
- 26. A composition according to claim 24, wherein said at least one coupler is chosen from 2,4-diamino-1-(β-hydroxyethyloxy)benzene, 2-methyl-5-aminophenol, 5-N-(β-hydroxyethyl) amino-2-methylphenol, 3-aminophenol, 1,3-dihydroxybenzene, 1,3-dihydroxy-2-methylbenzene, 4-chloro-1,3-dihydroxy-benzene, 2-amino-4-(β-hydroxyethylamino)-1-methoxy-benzene, 1,3-diaminobenzene, 1,3-bis(2,4-diamino-phenoxy)propane, sesamol, 1-amino-2-methoxy-4,5-methylenedioxybenzene, α-naphthol, 6-hydroxyindole, 4-hydroxyindole, 4-hydroxy-N-methylindole, 6-hydroxy-indoline, 2,6-dihydroxy-4-methylpyridine, 1-H-3-methyl-pyrazol-5-one, 1-phenyl-3-methylpyrazol-5-one, 2-amino-3-hydroxypyridine, 3,6-dimethylpyrazolo[3,2-c]-1,2,4-triazole, 2,6-dimethylpyrazolo[1,5-b]-1,2,4-triazole and acid addition salts of any of the foregoing compounds.
- 27. A composition according to claim 24, wherein said at least one coupler is present in said composition in an amount ranging from 0.0001% to 15% by weight relative

to the total weight of the composition.

- 28. A composition according to claim 1 further comprising at least one oxidation base, other than said at least one oxidation dye precursor, in an amount ranging from 0.0001% to 15% by weight relative to the total weight of said composition.
- 29. A composition according to claim 1 further comprising at least one direct dye in an amount ranging from 0.001% to 20% by weight relative to the total weight of said composition.
- 30. A composition according to claim 1 further comprising at least one agent chosen from reducing agents and antioxidants, wherein said at least one agent is present in said composition in an amount ranging from 0.05% to 1.5% by weight relative to the total weight of said composition.
- 31. A composition for oxidation dyeing keratinous fibers comprising, in a medium suitable for dyeing:
- (i) at least one oxidation dye precursor chosen from 1-(4-aminophenyl)-pyrrolidines of formula (I) and acid addition salts thereof:

$$R_3$$
 R_2
 R_1
 R_1
 R_2

- R₁ is chosen from a hydrogen atom, C₁-C₆ alkyl groups, C₁-C₅ monohydroxyalkyl groups,
 and C₂-C₅ polyhydroxyalkyl groups,
- R₂ is chosen from a hydrogen atom, a -CONH₂ group, C₁-C₅ monohydroxyalkyl groups,
 and C₂-C₅ polyhydroxyalkyl groups, and
- $\ensuremath{\text{R}_{3}}$ is chosen from a hydrogen atom, and a hydroxyl group, and
- (ii) at least one cationic polymer chosen from:
 - (1) homopolymers and copolymers comprising, as a constituent of the chain, at least one unit chosen from units formula (II):

- k and t, which are identical or different, are each chosen from 0 and 1,
 provided that the sum of k + t is equal to 1,
- R₄ and R₅, which are identical or different, are each chosen from
 (C₁-C₂₂) alkyl groups, (C₁-C₅)-hydroxyalkyl groups, and
 (C₁-C₄)amidoalkyl groups,

- R₄ and R₅, together with the nitrogen cation to which they are commonly bonded, optionally form a cationic heterocyclic group chosen from a piperidinyl group and a morpholinyl group,
- R₆, which are identical or different, are each chosen from a hydrogen atom and a methyl group, and
- X is an anion;
- (2) quaternary diammonium polymers comprising repeating units of formula (III):

$$\begin{bmatrix}
R_{7} & R_{9} \\
N+-A_{1}-N+-B_{1} \\
R_{8} & R_{10} & 2X^{-}
\end{bmatrix}$$
(III)

- R₇, R₈, R₉, and R₁₀, which are identical or different, are each chosen from C₁-C₂₀ aliphatic groups, C₃-C₂₀ alicyclic groups, C₇-C₂₀ arylaliphatic groups, and lower hydroxyalkyl groups,
- at least two of said R₇, said R₈, said R₉, and said R₁₀, together with the
 nitrogen cations to which they are attached, optionally form at least
 one cationic heterocyclic ring optionally comprising an additional
 heteroatom other than nitrogen,
- R₇, R₈, R₉, and R₁₀, which are identical or different, optionally are each

chosen from linear and branched C_1 - C_6 alkyl groups substituted with at least one group chosen from nitrile groups, ester groups, acyl groups, amide groups, -CO-O- R_{11} -D groups, and -CO-NH- R_{11} -D groups, wherein R_{11} is chosen from alkylene groups and D is chosen from quaternary ammonium groups,

- A₁ and B₁, which are identical or different, are each chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups, optionally comprising at least one entity chosen from aromatic rings, an oxygen atom, a sulfur atom, a sulfoxide group, a sulfone group, a disulfide group, an amino group, alkylamino groups, a hydroxyl group, quaternary ammonium groups, a ureido group, an amide group, and ester groups, wherein said at least one entity is linked to or intercalated in the main chain,
- X⁻ is an anion,
- said A₁, said R₇, and said R₉ optionally form a piperazine ring, together with the two nitrogen cations to which they are attached, and
- provided that if A₁ is chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups and linear and branched, saturated and unsaturated, hydroxy(C₂-C₂₀)polymethylene groups, B₁ is additionally chosen from -(CH₂)_n-CO-D-OC-(CH₂)_n- groups, wherein:
 - n is an integer ranging from 1 to 100, and
 - D is chosen from:
 - a) glycol residues of formula: -O-Z-O-, wherein Z is chosen from linear

Attorney Docket No. 5725.0881-00

and branched hydrocarbon groups and groups chosen from groups of formulae:

-(CH₂-CH₂-O)_x-CH₂-CH₂- and

wherein x and y, which are identical or different, are each chosen from integers ranging from 1 to 4 (in which case x and y represent a defined and unique degree of polymerization) and any number ranging from 1 to 4 (in which case x and y represent an average degree of polymerization),

- b) bis-secondary diamine residues,
- c) bis-primary diamine residues chosen from residues of formula:

 -NH-Y-NH-, wherein Y is chosen from linear and branched hydrocarbon groups and residues of formula

 -CH₂-CH₂-S-S-CH₂-CH₂-, and
- d) a ureylene group of formula: -NH-CO-NH-;
- (3) quaternary diammonium polymers comprising repeating units of formula (IV):

- p is an integer ranging from 1 to 6,
- D is chosen from a direct bond and -(CH₂)_r-CO- groups, wherein r is a number equal to 4 or 7, and
- X is an anion;
- (4) amine-containing silicones, and
- (iii) at least one oxidizing agent.
- 32. A composition according to claim 31, wherein said at least one oxidizing agent is chosen from hydrogen peroxide, urea peroxide, alkali metal bromates, alkali metal ferricyanides, persalts, and oxidation-reduction enzymes
- 33. A composition according to claim 32, wherein said at least one oxidizing agent is chosen from laccases, peroxidases and 2-electron oxidoreductases, where appropriate in the presence of their respective donor or cofactor.
- 34. A composition according to claim 32, wherein said at least one oxidizing agent is hydrogen peroxide.
- 35. A composition according to claim 32, wherein said at least one oxidizing agent comprises a solution of hydrogen peroxide with a titre ranging from 1 to 40 in volume.
- 36. A composition according to claim 1, wherein said composition for oxidation dyeing keratinous fibers has a pH ranging from 3 to 12.
- 37. A composition according to claim 31, wherein said composition for oxidation dyeing keratinous fibers has a pH ranging from 3 to 12.
- 38. A composition according to claim 31 further comprising at least one surfactant chosen from anionic surfactants, cationic surfactants, nonionic surfactants, and

amphoteric surfactants.

- 39. A composition according to claim 38, wherein said at least one surfactant is present in said composition in an amount ranging from 0.1% to 20% by weight relative to the total weight of said composition.
 - 40. A method for oxidation dyeing keratinous fibers comprising:
- (A) applying to said fibers at least one dyeing composition comprising, in a medium suitable for dyeing:
 - (i) at least one oxidation dye precursor chosen from 1-(4-aminophenyl)-pyrrolidines of formula (I) and acid addition salts thereof:

$$R_3$$
 R_2
 R_1
 R_1
 R_2

- R₁ is chosen from a hydrogen atom, C₁-C₆ alkyl groups, C₁-C₅ monohydroxyalkyl groups, and C₂-C₅ polyhydroxyalkyl groups,
- R_2 is chosen from a hydrogen atom, a -CONH $_2$ group, C_1 - C_5 monohydroxyalkyl

groups, and C2-C5 polyhydroxyalkyl groups, and

- R₃ is chosen from a hydrogen atom, and a hydroxyl group, and optionally comprising:
- (ii) at least one cationic polymer chosen from:
 - (1) homopolymers and copolymers comprising, as a constituent of the chain, at least one unit chosen from units formula (II):

$$\begin{array}{c|c}
 & (CH_2)k \\
 & C(R_5) - CH_2 \\
 & H_2C & CH_2 \\
 & N+ & X^- \\
 & R_4 & R_5
\end{array}$$
(II)

- k and t, which are identical or different, are each chosen from 0 and 1,
 provided that the sum of k + t is equal to 1,
- R₄ and R₅, which are identical or different, are each chosen from
 (C₁-C₂₂) alkyl groups, (C₁-C₅)-hydroxyalkyl groups, and
 (C₁-C₄)amidoalkyl groups,
- R₄ and R₅, together with the nitrogen cation to which they are commonly bonded, may optionally form a cationic heterocyclic group chosen from a piperidinyl group and a morpholinyl group,
- R_6 , which are identical or different, are each chosen from a hydrogen atom

and a methyl group, and

- X is an anion;
- (2) quaternary diammonium polymers comprising repeating units of formula (III):

$$\begin{bmatrix}
R_7 & R_9 \\
N+-A_1-N+-B_1 \\
R_8 & R_{10} & 2X^-
\end{bmatrix}$$
(III)

- R₇, R₈, R₉, and R₁₀, which are identical or different, are each chosen from C₁-C₂₀ aliphatic groups, C₃-C₂₀ alicyclic groups, C₇-C₂₀ arylaliphatic groups, and lower hydroxyalkyl groups,
- at least two of said R₇, said R₈, said R₉, and said R₁₀, together with the
 nitrogen cations to which they are attached, optionally form at least
 one cationic heterocyclic ring optionally comprising an additional
 heteroatom other than nitrogen,
- R₇, R₈, R₉, and R₁₀, which are identical or different, optionally are each chosen from linear and branched C₁-C₆ alkyl groups substituted with at least one group chosen from nitrile groups, ester groups, acyl groups, amide groups, -CO-O-R₁₁-D groups, and -CO-NH-R₁₁-D groups, wherein R₁₁ is chosen from alkylene groups and D is chosen from

quaternary ammonium groups,

- A₁ and B₁, which are identical or different, are each chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups, optionally comprising at least one entity chosen from aromatic rings, an oxygen atom, a sulfur atom, a sulfoxide group, a sulfone group, a disulfide group, an amino group, alkylamino groups, a hydroxyl group, quaternary ammonium groups, a ureido group, an amide group, and ester groups, wherein said at least one entity is linked to or intercalated in the main chain,
- X is an anion,
- said A₁, said R₇, and said R₉ optionally form a piperazine ring, together with the two nitrogen cations to which they are attached, and
- provided that if A₁ is chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups and linear and branched, saturated and unsaturated, hydroxy(C₂-C₂₀)polymethylene groups, B₁ is additionally chosen from
 - $-(CH_2)_n$ -CO-D-OC- $(CH_2)_n$ groups, wherein:
 - n is an integer ranging from 1 to 100, and
 - D is chosen from:
 - a) glycol residues of formula: -O-Z-O-, wherein Z is chosen from linear and branched hydrocarbon groups and groups chosen from groups of formulae:

- $[CH_2$ - $CH(CH_3)$ - $O]_y$ - CH_2 - $CH(CH_3)$ -

wherein x and y, which are identical or different, are each chosen from integers ranging from 1 to 4 (in which case x and y represent a defined and unique degree of polymerization) and any number ranging from 1 to 4 (in which case x and y represent an average degree of polymerization),

- b) bis-secondary diamine residues,
- c) bis-primary diamine residues chosen from residues of formula:

 -NH-Y-NH-, wherein Y is chosen from linear and branched hydrocarbon groups and residues of formula

 -CH₂-CH₂-S-S-CH₂-CH₂-, and
- d) a ureylene group of formula: -NH-CO-NH-;
- (3) quaternary diammonium polymers comprising repeating units of formula (IV):

- p is an integer ranging from 1 to 6,
- D is chosen from a direct bond and -(CH₂)_r-CO- groups, wherein r is a number equal to 4 or 7, and

- X is an anion;
- (4) amine-containing silicones, and
- (B) developing a color by applying to said fibers at least one oxidizing composition comprising:
 - at least one oxidizing agent and
 - optionally comprising said at least one cationic polymer as defined above,
 - wherein said at least one oxidizing composition is
 - applied to said fibers after combining, at the time of use, said at least one oxidizing composition with said at least one dyeing composition, or
 - applied to said fibers either simultaneously with or immediately after said at least one dyeing composition, without intermediate rinsing, and
- (C) provided that said at least one cationic polymer is present in at least one of said at least one dyeing composition or said at least one oxidizing composition.
- 41. A method according to claim 40, wherein said keratinous fibers are human keratinous fibers.
- 42. A method according to claim 41, wherein said human keratinous fibers are human hair.
 - 43. A method for oxidation dyeing keratinous fibers comprising:
- (A) preparing at least one dyeing composition comprising, in a medium suitable for dyeing:
 - (i) at least one oxidation dye precursor chosen from 1-(4-aminophenyl)-pyrrolidines

of formula (I) and acid addition salts thereof:

$$R_3$$
 R_2
 R_1
 R_1
 R_2
 R_3
 R_2
 R_3
 R_4

- R_1 is chosen from a hydrogen atom, C_1 - C_6 alkyl groups, C_1 - C_5 monohydroxyalkyl groups, and C_2 - C_5 polyhydroxyalkyl groups,
- R₂ is chosen from a hydrogen atom, a -CONH₂ group, C₁-C₅ monohydroxyalkyl groups, and C₂-C₅ polyhydroxyalkyl groups, and
- R₃ is chosen from a hydrogen atom, and a hydroxyl group,
- (ii) at least one cationic polymer chosen from:
 - (1) homopolymers and copolymers comprising, as a constituent of the chain, at least one unit chosen from units formula (II):

$$\begin{array}{c|c}
 & (CH_2)k \\
\hline
 & (CH_2)k \\
 & C(R_6) - CH_2 \\
\hline
 & H_2C & CH_2 \\
\hline
 & R_4 & R_4
\end{array}$$
(11)

- k and t, which are identical or different, are each chosen from 0 and 1,
 provided that the sum of k + t is equal to 1,
- R_4 and R_5 , which are identical or different, are each chosen from (C_1-C_{22}) alkyl groups, (C_1-C_5) -hydroxyalkyl groups, and (C_1-C_4) amidoalkyl groups,
- R₄ and R₅, together with the nitrogen cation to which they are commonly bonded, may optionally form a cationic heterocyclic group chosen from a piperidinyl group and a morpholinyl group,
- R₆, which are identical or different, are each chosen from a hydrogen atom and a methyl group, and
- X is an anion;
- (2) quaternary diammonium polymers comprising repeating units of formula (III):

Attorney Docket No. 5725.0881-00

$$\begin{bmatrix}
R_{7} & R_{9} \\
N+-A_{1}-N+-B_{1}-\\
I & R_{8} & R_{10} & 2X^{-}
\end{bmatrix}$$
(III)

- R₇, R₈, R₉, and R₁₀, which are identical or different, are each chosen from C₁-C₂₀ aliphatic groups, C₃-C₂₀ alicyclic groups, C₇-C₂₀ arylaliphatic groups, and lower hydroxyalkyl groups,
- at least two of said R₇, said R₈, said R₉, and said R₁₀, together with the
 nitrogen cations to which they are attached, optionally form at least
 one cationic heterocyclic ring optionally comprising an additional
 heteroatom other than nitrogen,
- R₇, R₈, R₉, and R₁₀, which are identical or different, optionally are each chosen from linear and branched C₁-C₆ alkyl groups substituted with at least one group chosen from nitrile groups, ester groups, acyl groups, amide groups, -CO-O-R₁₁-D groups, and -CO-NH-R₁₁-D groups, wherein R₁₁ is chosen from alkylene groups and D is chosen from quaternary ammonium groups,
- A₁ and B₁, which are identical or different, are each chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups, optionally comprising at least one entity chosen from aromatic rings,

Attorney Docket No. 5725.0881-00

an oxygen atom, a sulfur atom, a sulfoxide group, a sulfone group, a disulfide group, an amino group, alkylamino groups, a hydroxyl group, quaternary ammonium groups, a ureido group, an amide group, and ester groups, wherein said at least one entity is linked to or intercalated in the main chain,

- X is an anion,
- said A₁, said R₇, and said R₉ optionally form a piperazine ring, together with the two nitrogen cations to which they are attached, and
- provided that if A₁ is chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups and linear and branched, saturated and unsaturated, hydroxy(C₂-C₂₀)polymethylene groups, B₁ is additionally chosen from
 - $-(CH_2)_n$ -CO-D-OC- $(CH_2)_n$ groups, wherein:
 - n is an integer ranging from 1 to 100, and
 - D is chosen from:
 - a) glycol residues of formula: -O-Z-O-, wherein Z is chosen from linear and branched hydrocarbon groups and groups chosen from groups of formulae:

$$-(CH_2-CH_2-O)_x-CH_2-CH_2-$$
 and

wherein x and y, which are identical or different, are each chosen from integers ranging from 1 to 4 (in which case x and y represent a defined and unique degree of polymerization) and

any number ranging from 1 to 4 (in which case x and y represent an average degree of polymerization),

- b) bis-secondary diamine residues,
- c) bis-primary diamine residues chosen from residues of formula:

 -NH-Y-NH-, wherein Y is chosen from linear and branched hydrocarbon groups and residues of formula

 -CH₂-CH₂-S-S-CH₂-CH₂-, and
- d) a ureylene group of formula: -NH-CO-NH-;
- (3) quaternary diammonium polymers comprising repeating units of formula (IV):

- p is an integer ranging from 1 to 6,
- D is chosen from a direct bond and -(CH₂)_r-CO- groups, wherein r is a number equal to 4 or 7, and
- X is an anion;
- (4) amine-containing silicones, and
- (iii) at least one oxidizing agent,

Attorney Docket No. 5725.0881-00

- wherein said at least one dyeing composition is prepared, at the time of use, by combining (i), (ii), and (iii) above,
- (B) developing a color by applying said at least one dyeing composition prepared in(A) above to said fibers,
- (C) leaving said at least one dyeing composition prepared in (A) above on said fibers for a time ranging from 1 to 60 minutes,
- (D) rinsing said fibers, optionally shampooing said fibers, and optionally further rinsing said fibers, and
- (E) drying said fibers.
- 44. A method according to claim 43, wherein said keratinous fibers are human keratinous fibers.
- 45. A method according to claim 44, wherein said human keratinous fibers are human hair.
- 46. A method according to claim 43, wherein said leaving time is a time ranging from 10 to 45 minutes.
- 47. A method according to claim 45, wherein said human hair is chosen from wet human hair and dry human hair.
- 48. A kit for oxidation dyeing keratinous fibers comprising at least two compartments, wherein:
- (A) a first compartment comprises at least one dyeing composition comprising, in a medium suitable for dyeing:
 - (i) at least one oxidation dye precursor chosen from 1-(4-aminophenyl)-pyrrolidines

of formula (I) and acid addition salts thereof:

$$R_3$$
 R_2
 R_3
 R_2
 R_3
 R_4
 R_5

- R₁ is chosen from a hydrogen atom, C₁-C₆ alkyl groups, C₁-C₅ monohydroxyalkyl groups, and C₂-C₅ polyhydroxyalkyl groups,
- R₂ is chosen from a hydrogen atom, a -CONH₂ group, C₁-C₅ monohydroxyalkyl groups, and C₂-C₅ polyhydroxyalkyl groups, and
- R₃ is chosen from a hydrogen atom, and a hydroxyl group, and optionally comprising:
- (ii) at least one cationic polymer chosen from:
 - (1) homopolymers and copolymers comprising, as a constituent of the chain, at least one unit chosen from units formula (II):

 $\begin{array}{c|c}
 & (CH_2)k \\
 & C(R_6) - CH_2 \\
 & H_2C & CH_2 \\
 & R_4 & R_5
\end{array}$ (11)

- k and t, which are identical or different, are each chosen from 0 and 1,
 provided that the sum of k + t is equal to 1,
- R₄ and R₅, which are identical or different, are each chosen from
 (C₁-C₂₂) alkyl groups, (C₁-C₅)-hydroxyalkyl groups, and
 (C₁-C₄)amidoalkyl groups,
- R₄ and R₅, together with the nitrogen cation to which they are commonly bonded, may optionally form a cationic heterocyclic group chosen from a piperidinyl group and a morpholinyl group,
- R₆, which are identical or different, are each chosen from a hydrogen atom and a methyl group, and
- X is an anion;
- (2) quaternary diammonium polymers comprising repeating units of formula (III):

Attorney Docket No. 5725.0881-00

- R₇, R₈, R₉, and R₁₀, which are identical or different, are each chosen from C₁-C₂₀ aliphatic groups, C₃-C₂₀ alicyclic groups, C₇-C₂₀ arylaliphatic groups, and lower hydroxyalkyl groups,
- at least two of said R₇, said R₈, said R₉, and said R₁₀, together with the
 nitrogen cations to which they are attached, optionally form at least
 one cationic heterocyclic ring optionally comprising an additional
 heteroatom other than nitrogen,
- R₇, R₈, R₉, and R₁₀, which are identical or different, optionally are each chosen from linear and branched C₁-C₆ alkyl groups substituted with at least one group chosen from nitrile groups, ester groups, acyl groups, amide groups, -CO-O-R₁₁-D groups, and -CO-NH-R₁₁-D groups, wherein R₁₁ is chosen from alkylene groups and D is chosen from quaternary ammonium groups,
- A₁ and B₁, which are identical or different, are each chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups,
 optionally comprising at least one entity chosen from aromatic rings,

an oxygen atom, a sulfur atom, a sulfoxide group, a sulfone group, a disulfide group, an amino group, alkylamino groups, a hydroxyl group, quaternary ammonium groups, a ureido group, an amide group, and ester groups, wherein said at least one entity is linked to or intercalated in the main chain,

- X⁻ is an anion,
- said A₁, said R₇, and said R₉ optionally form a piperazine ring, together with the two nitrogen cations to which they are attached, and
- provided that if A₁ is chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups and linear and branched, saturated and unsaturated, hydroxy(C₂-C₂₀)polymethylene groups, B₁ is additionally chosen from
 - $-(CH_2)_n$ -CO-D-OC- $(CH_2)_n$ groups, wherein:
 - n is an integer ranging from 1 to 100, and
 - D is chosen from:
 - a) glycol residues of formula: -O-Z-O-, wherein Z is chosen from linear and branched hydrocarbon groups and groups chosen from groups of formulae:

-(CH₂-CH₂-O)_x-CH₂-CH₂- and

-[CH₂-CH(CH₃)-O]_v-CH₂-CH(CH₃)-

wherein x and y, which are identical or different, are each chosen from integers ranging from 1 to 4 (in which case x and y represent a defined and unique degree of polymerization) and

any number ranging from 1 to 4 (in which case x and y represent an average degree of polymerization),

- b) bis-secondary diamine residues,
- c) bis-primary diamine residues chosen from residues of formula:

 -NH-Y-NH-, wherein Y is chosen from linear and branched hydrocarbon groups and residues of formula

 -CH₂-CH₂-S-S-CH₂-CH₂-, and
- d) a ureylene group of formula: -NH-CO-NH-;
- (3) quaternary diammonium polymers comprising repeating units of formula (IV):

- p is an integer ranging from 1 to 6,
- D is chosen from a direct bond and -(CH₂)_r-CO- groups, wherein r is a number equal to 4 or 7, and
- X is an anion; and
- (4) amine-containing silicones, and

- (B) a second compartment comprises at least one oxidizing agent and optionally comprises said at least one cationic polymer as defined above, and
- (C) provided that said at least one cationic polymer is present in at least one of said first compartment or said second compartment.
- 49. A kit according to claim 48, wherein said keratinous fibers are human keratinous fibers.
- 50. A kit according to claim 49, wherein said human keratinous fibers are human hair.
- 51. A kit for oxidation dyeing keratinous fibers comprising at least three compartments, wherein:
- (A) a first compartment comprises at least one dyeing composition comprising, in a medium suitable for dyeing, at least one oxidation dye precursor chosen from 1-(4-aminophenyl)-pyrrolidines of formula (I) and acid addition salts thereof:

$$R_3$$
 R_2
 R_1
 R_1
 R_2
 R_3
 R_4

- R₁ is chosen from a hydrogen atom, C₁-C₆ alkyl groups, C₁-C₅ monohydroxyalkyl groups, and C₂-C₅ polyhydroxyalkyl groups,
- R₂ is chosen from a hydrogen atom, a -CONH₂ group, C₁-C₅ monohydroxyalkyl groups, and C₂-C₅ polyhydroxyalkyl groups, and
- R₃ is chosen from a hydrogen atom, and a hydroxyl group,
- (B) a second compartment comprises at least one cationic polymer chosen from:
 - (1) homopolymers and copolymers comprising, as a constituent of the chain, at least one unit chosen from units formula (II):

- k and t, which are identical or different, are each chosen from 0 and 1, with the proviso that the sum of k + t is equal to 1,
- R₄ and R₅, which are identical or different, are each chosen from
 (C₁-C₂₂) alkyl groups, (C₁-C₅)-hydroxyalkyl groups, and
 (C₁-C₄)amidoalkyl groups,

- R₄ and R₅, together with the nitrogen cation to which they are commonly bonded, may optionally form a cationic heterocyclic group chosen from a piperidinyl group and a morpholinyl group,
- R₆, which are identical or different, are each chosen from a hydrogen atom and a methyl group, and
- X is an anion;
- (2) quaternary diammonium polymers comprising repeating units of formula (III):

$$\begin{bmatrix}
R_{7} & R_{9} \\
N+-A_{1}-N+-B_{1}-\\
R_{8} & R_{10} & 2X^{-}
\end{bmatrix}$$
(III)

- R₇, R₈, R₉, and R₁₀, which are identical or different, are each chosen from C₁-C₂₀ aliphatic groups, C₃-C₂₀ alicyclic groups, C₇-C₂₀ arylaliphatic groups, and lower hydroxyalkyl groups,
- at least two of said R₇, said R₈, said R₉, and said R₁₀, together with the
 nitrogen cations to which they are attached, optionally form at least
 one cationic heterocyclic ring optionally comprising an additional
 heteroatom other than nitrogen,
- R₇, R₈, R₉, and R₁₀, which are identical or different, optionally are each

Attorney Dock t No. 5725.0881-00

chosen from linear and branched C_1 - C_6 alkyl groups substituted with at least one group chosen from nitrile groups, ester groups, acyl groups, amide groups, -CO-O- R_{11} -D groups, and -CO-NH- R_{11} -D groups, wherein R_{11} is chosen from alkylene groups and D is chosen from quaternary ammonium groups,

- A₁ and B₁, which are identical or different, are each chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups, optionally comprising at least one entity chosen from aromatic rings, an oxygen atom, a sulfur atom, a sulfoxide group, a sulfone group, a disulfide group, an amino group, alkylamino groups, a hydroxyl group, quaternary ammonium groups, a ureido group, an amide group, and ester groups, wherein said at least one entity is linked to or intercalated in the main chain,
- X is an anion,
- said A₁, said R₇, and said R₉ optionally form a piperazine ring, together with the two nitrogen cations to which they are attached, and
- provided that if A₁ is chosen from linear and branched, saturated and unsaturated, C₂-C₂₀ polymethylene groups and linear and branched, saturated and unsaturated, hydroxy(C₂-C₂₀)polymethylene groups, B₁ is additionally chosen from
 - $-(CH_2)_n$ -CO-D-OC- $(CH_2)_n$ groups, wherein:
 - n is an integer ranging from 1 to 100, and
 - D is chosen from:

Attorney Docket No. 5725.0881-00

a) glycol residues of formula: -O-Z-O-, wherein Z is chosen from linear and branched hydrocarbon groups and groups chosen from groups of formulae:

wherein x and y, which are identical or different, are each chosen from integers ranging from 1 to 4 (in which case x and y represent a defined and unique degree of polymerization) and any number ranging from 1 to 4 (in which case x and y represent an average degree of polymerization),

- b) bis-secondary diamine residues,
- c) bis-primary diamine residues chosen from residues of formula:

 -NH-Y-NH-, wherein Y is chosen from linear and branched hydrocarbon groups and residues of formula

 -CH₂-CH₂-S-S-CH₂-CH₂-, and
- d) a ureylene group of formula: -NH-CO-NH-;
- (3) quaternary diammonium polymers comprising repeating units of formula (IV):

- p is an integer ranging from 1 to 6,
- D is chosen from a direct bond and -(CH₂)_r-CO- groups, wherein r is a number equal to 4 or 7, and
- X is an anion; and
- (4) amine-containing silicones, and
- (C) a third compartment comprises at least one oxidizing agent.
- 52. A kit according to claim 51, wherein said keratinous fibers are human keratinous fibers.
- 53. A kit according to claim 52, wherein said human keratinous fibers are human hair.