Matemáticas II, Curso 2024-25

Grado en Ingeniería Química Industrial

PRIMERA CONVOCATORIA - SEGUNDA PARTE

04-06-2025

NOMBRE y APELLIDOS:

Grupo:

PROBLEMA 1:

1.A) [1.5 puntos] Cambiar el orden de integración en la siguiente integral iterada

$$\int_0^1 \int_x^{2-x^2} x^2 \, dy \, dx$$

y evaluar aquella que resulte más sencilla.

- **1.B)** [2.5 puntos] Sea \mathcal{R} la región del primer cuadrante limitada por las gráficas de las circunferencias $y = \sqrt{4x x^2}$, $y = \sqrt{4 x^2}$ y el eje OY
 - **B.1)** Utilizando integrales dobles y coordenadas polares, calcular el área de \mathcal{R} .
 - **B.2)** Resolver la siguiente integral iterada $\iint_{\mathcal{R}} y \, dA$.

PROBLEMA 2:

- **2.A)** [1.5 puntos] Utilizando coordenadas cilíndricas calcular el volumen del sólido limitado por los semiconos $z = \sqrt{x^2 + y^2}$ y $z = 4 \sqrt{x^2 + y^2}$.
- **2.B)** [1.5 puntos] Sea \mathcal{Q} el sólido interior a la esfera $x^2 + y^2 + z^2 = 4$ y exterior al cilindro $x^2 + y^2 = 1$. Hacer un esbozo del sólido \mathcal{Q} y describir su volumen en coordenadas cilíndricas y en coordenadas esféricas.

PROBLEMA 3: Sea el campo vectorial

$$\mathbf{F}(x,y) = ((2x^2y + 2x + y)e^{x^2}, xe^{x^2}),$$

y sea C la curva dada por $\mathbf{r}(t) = (\operatorname{sen} t, \cos t), \operatorname{con} t \in \left[0, \frac{\pi}{2}\right].$

- **3.A)** [1.5 puntos] Comprobar que **F** es conservativo y obtener una función potencial asociada a dicho campo vectorial.
- 3.B) [0.5 puntos] Calcular la integral de línea $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- **3.C)** [1 punto] Calcular la integral de línea a lo largo de C del campo escalar $f(x,y) = 2x^3$.
- ▶ Problemas distintos se escribirán en grupos de hojas distintos.
- ▶ Todas las respuestas deberán estar debidamente razonadas.