#### LC Curs3.

# Echivalențe logice în logica propozițională

• Legile lui **DeMorgan**:

$$\neg (U \land V) \equiv \neg U \land \neg V$$

• Legile de absorbţie:

$$U \wedge (U \vee V) \equiv U \quad \text{si} \quad U \vee (U \wedge V) \equiv U$$

• Legile de comutativitate:

$$U \wedge V \equiv V \wedge U$$
 şi  $U \vee V \equiv V \vee U$ 

• Legile de asociativitate:

$$U \wedge (V \wedge Z) \equiv (U \wedge V) \wedge Z$$
 şi  $U \vee (V \vee Z) \equiv (U \vee V) \vee Z$ 

• Legile distributivității:

$$U \wedge (V \vee Z) \equiv (U \wedge V) \vee (U \wedge Z) \quad \text{$;$} \quad U \vee (V \wedge Z)$$
$$\equiv (U \vee V) \wedge (U \vee Z)$$

• Legile de idempotență:

$$U \wedge U \equiv U$$
 şi  $U \vee U \equiv U$ 

O formulă se numește **consistentă** dacă și numai dacă <u>are cel</u> <u>puțin un model</u>, deci poate fi evaluată ca adevărată.

O formulă se numește **validă** dacă și numai dacă formula este evaluată ca <u>adevărată în orice interpretare</u> (toate interpretările sunt modele ale formulei).

O formulă se numește **inconsistentă** dacă și numai dacă formula este <u>falsă în orice interpretare</u> (nu are niciun model).

O formulă se numește **contingentă** dacă și numai dacă <u>este</u> <u>consistentă</u>, dar <u>nu este validă</u>.

# Forme normale în logica propozițiilor

1. Un literal este o variabilă propozițională sau negația sa.

$$Ex.: p, \neg q$$

2. O clauză este disjuncția unui număr finit de literali.

$$Ex.: p \vee \neg q \vee r$$

3. Un **cub** este conjuncția unui număr finit de literali.

$$Ex.: p \land \neg q \land r$$

- 4. Clauza vidă (□) este clauza fără literali, fiind clauza vidă inconsistentă.
- 5. O formulă este în **formă normală disjunctivă (FND)**, dacă aceasta este scrisă ca o disjuncție de cuburi.

$$Ex.: (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (p \land q \land \neg r)$$

6. O formulă este în **formă normală conjunctivă (FNC)**, dacă aceasta este scrisă ca o conjuncție de clauze.

$$Ex.: (\neg p \lor q \lor r) \land (\neg p \lor \neg r) \land (p \lor q \lor \neg r) \land (p \lor q)$$

Algoritmul de normalizare:

Pas 1: Înlocuire  $\rightarrow$ ,  $\leftrightarrow$ ,  $\leftarrow$ .

Pas 2: Legile lui DeMorgan

Pas 3: Legile distributivității

<u>Pas 4</u>: Simplificarea folosind legile de simplificare, legile absorbției, legile de idempotentă.

# LC\_Curs4.

Axiome și reguli de inferență

- $A1: U \rightarrow (V \rightarrow U)$
- $A2: (U \to (V \to Z)) \to (U \to V) \to (U \to Z)$
- $A3: (U \rightarrow V) \rightarrow (\neg V \rightarrow \neg U)$
- Modus Ponens:  $U, U \rightarrow V \vdash V$

O formulă  $U \in F_P$ , astfel încât  $\emptyset \vdash U$  se numește **teoremă**.

Consecințele teoremei de deducție

- $\bullet \vdash U \rightarrow ((U \rightarrow V) \rightarrow V)$
- $\vdash (U \to V) \to ((V \to Z) \to (U \to Z))$  legea silogismului
- $\vdash (U \to (V \to Z)) \to (V \to (U \to Z))$  legea permutării premizelor
- $\vdash (U \rightarrow (V \rightarrow Z)) \rightarrow (U \land V \rightarrow Z)$  legea reuniunii premizelor
- $\vdash (U \land V \to Z) \to (U \to (V \to Z))$  legea separării premizelor

Teorema de corectitudine:

Dacă 
$$\vdash U$$
, atunci  $\models U$ .

(Validitatea sintactică implică validitatea semantică)

Teorema de **completitudine**:

Dacă 
$$\vDash U$$
, atunci  $\vdash U$ .

(Validitatea semantică implică validitatea sintactică)

# LC\_Curs5.

#### Metoda tabelelor semantice

clasa  $\alpha$  – formule de tip conjunctiv tip disjunctiv  $A \wedge B \qquad \qquad A \vee B \qquad \qquad A \vee B \qquad \qquad \neg (A \vee B) \qquad \qquad \neg (A \wedge B) \qquad \qquad A \rightarrow B$ 

- O ramură se numește închisă(⊗) dacă ea conține o formulă și negație ei, în caz contrar, se numește deschisă.
- O ramură se numește **completă** dacă ea fie <u>este închisă</u>, fie <u>toate formulele</u> de pe acea ramură <u>au fost descompuse</u>.
- O tabelă se numește **închisă** dacă <u>toate ramurile</u> sale <u>sunt</u> <u>închise.</u>
- O tabelă se numește **deschisă** dacă are <u>cel puţin o ramură</u> <u>deschisă</u>.
- O tabelă se numește **completă** dacă <u>toate ramurile</u> ei <u>sunt</u> complete.

Teorema de **corectitudine și completitudine** a metodei tabelelor semantice:

O formulă U este **teoremă (tautologie)** dacă și numai dacă există o tabelă semantică închisă pentru formula  $\neg U$ .

LC Curs6.

Metoda rezoluției (sintactică, prin respingere)

#### Teorema de **corectitudine** și **completitudine**:

Mulțimea S este inconsistentă dacă și numai dacă  $S \vdash_{ReS} \Box$ .

U este **tautologie** dacă și numai dacă  $FNC(\neg U) \vdash_{Res} \Box$ .

#### Strategii:

• Strategia eliminării

Pas 1: Eliminarea clauzelor tautologice

Pas 2: Eliminarea clauzelor subsumate de alte clauze din S

Pas 3: Eliminarea clauzelor care conțin literali puri în S

• Strategia saturării pe nivele

$$S_1 = \{C_1, C_2, C_3, C_4\}$$

- 1. Res: C1-C2; C1-C3; C1-C4; C2-C3; C2-C4; C3-C4 ->  $S_2 = \{C_5, C_6\}$
- 2. Res: C5-C1; C5-C2; C5-C3; C5-C4; C5-C6; C6-C1; C6-C2; C6-C3; C6-C4; C6-C5 -> una dintre acestea va ieși clauza vidă, altfel se continuă!
- Strategia mulțimii suport

$$S_2 = \{C_1, C_2, C_3, C_4, C_5, C_6\}, Y = \{C_6\}, S_2 \setminus Y = S_1, S_1 - \text{consistent} \}$$

Res: Luăm clauza din Y și o clauză din  $S_2$ . Încercăm să rezolvăm. Dacă nu iese cu nicio clauză din  $S_2$ , atunci este consistentă.

LC\_Curs7.

#### Rafinările rezoluției

Rezoluţia blocării

#### Teorema de **completitudine** și **corectitudine**:

Fie S o mulțime de clauze în care fiecare literal este indexat în mod arbitrar cu un întreg.

<u>S este inconsistentă</u> dacă și numai dacă <u>din S se deduce prin</u> <u>rezoluția blocării clauza vidă</u>.

• Rezoluția liniară

#### Teorema de **completitudine și corectitudine**:

Mulțimea S de clauze este inconsistentă dacă și numai dacă  $S \vdash^{lin}_{Res} \Box$ .

Cazuri particulare: Rezoluția <u>unitară</u> (*unit*) – clauzele centrale au *cel puțin o clauză părinte unitară* (conține un singur literal)

Rezoluția <u>de intrare</u> (*input*) – clauzele laterale sunt clauze *inițiale* (de intrare)

Teorema de echivalență input - unit:

$$S \vdash_{Res}^{input} \square$$
 dacă și numai dacă  $S \vdash_{Res}^{unit} \square$ .

| Tipuri de metode |                         |                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                  | Semantice Sintactice    |                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Directe          | Tabela de adevăr<br>FNC | Deducția (mp)                                                                                                                                                                                        |  |  |  |  |  |  |  |
| prin Respingere  | FND<br>Tabele semantică | Rezoluția (generală, strategia eliminării, strategia saturării pe nivele, strategia mulțimii suport, rafinarea rezoluției blocării, rafinarea rezoluției liniare, cazuri particulare: input și unit) |  |  |  |  |  |  |  |

#### LC Curs8.

#### Logica predicatelor de ordinul I

- $A1: U \rightarrow (V \rightarrow U)$
- $A2: (U \to (V \to Z)) \to (U \to V) \to (U \to Z)$
- $A3: (U \rightarrow V) \rightarrow (\neg V \rightarrow \neg U)$
- $A4: (\forall x)U(x) \rightarrow U(t)$ , unde t este un termen arbitrar
- $A5: (U \to V(y)) \to (U \to (\forall x)V(x))$ , unde y este o variabilă liberă în V care nu apare în U, iar x nu este variabilă liberă nici în U, nici în V.
- Modus Ponens:  $U, U \rightarrow V \vdash_{mp} V$
- Regula generalizării:  $U(x) \vdash_{gen} (\forall x) U(x)$

(x era o variabilă liberă în U)

Variabilele din formulele predicative care se află sub incidența unui cuantificator se numesc *variabile legate*, în caz contrar, ele se numesc *variabile libere*.

O formulă predicativă se numește <u>închisă</u>, dacă toate variabilele sale sunt legate, iar, în caz contrar, se numește <u>deschisă</u>.

#### O formulă $U \in F_{Pr}$ , astfel încât $\emptyset \vdash U$ se numește **teoremă**.

- O formulă A este realizabilă (consistentă) dacă și numai dacă există o interpretare I și o funcție  $a \in As(I)$  astfel încât  $v_a^I(A) = T$ . În caz contrar formula se numește nerealizabilă (inconsistentă).
- Formula A este adevărată în interpretarea I dacă și numai dacă pentru orice funcție  $a \in As(I)$  de asignare avem  $v_a^I(A) = T$  și notăm  $\models_I A$ , iar I se numește model al lui A.
- Interpretarea I se numește *anti-model* al formulei predicative A dacă A este evaluată ca falsă în I, adică:  $\forall a \in As(I)$  are  $loc v^I_a(A) = F$ .
- Formula A este validă (tautologie) dacă și numai dacă A este adevărată în orice interpretare și se notează:  $\models A$ .
- Două formule A și B sunt logic echivalente dacă  $v_a^I(A) = v_a^I(B)$  pentru orice interpretare I și funcție a de asignare. Notație  $A \equiv B$ .
- O mulțime S de formule *implică logic* o formulă A dacă toate modelele mulțimii (adică modelele conjuncției formulelor din S) sunt modele ale formulei. Spunem că A este o *consecință logică* a mulțimii de formule S și notăm  $S \models A$ .
- O *mulțime de formule* predicative este *consistentă* dacă formula obținută prin conjuncția elementelor sale este consistentă, adică are cel puțin un model.
- O *mulțime de formule* este *inconsistentă* dacă nu există nici un model pentru formula obținută prin conjuncția elementelor sale.

Legile distributivității:

• ∃ față de ∨:

$$(\exists x) (A(x) \lor B(x)) \equiv (\exists x) A(x) \lor (\exists x) B(x)$$

• ∀ față de ∧:

$$(\forall x)(A(x) \land B(x)) \equiv (\forall x)A(x) \land (\forall x)B(x)$$

Legile semidistributivității:

• ∃ față de ∧:

$$\vDash (\exists x) \big( A(x) \land B(x) \big) \to (\exists x) A(x) \land (\exists x) B(x)$$

• ∀ faţă de ∨:

$$\vDash (\forall x) \big( A(x) \lor B(x) \big) \to (\forall x) A(x) \lor (\forall x) B(x)$$

Algoritmul de aducere la forma normală clauzală:

<u>Pas 1</u>: Se înlocuiesc  $\rightarrow$ ,  $\leftrightarrow$ .

Pas 2: Se aplică legile lui DeMorgan.

<u>Pas 3</u>: Se redenumesc variabilele legate.

Pas 4: Se extrag cuantificatorii în fața formulei. (forma prenexă)

Pas 5: Eliminarea cuantificatorilor existențiali. (forma Skolem)

Pas 6: Eliminarea cuantificatorilor universali. (forma Skolem)

Pas 7: Distributivitatea lui ∨ față de ∧. (forma normală clauzală)

Teorema de completitudine și corectitudine:

Fie *S* o mulțime de formule predicative, iar *A* o formulă predicativă.

 $S \models A$  dacă și numai dacă  $S \vdash A$ .

# LC\_Curs9.

Metoda tabelelor semantice în calculul predicatelor clasa  $\gamma$  – formule cuantificate universal:



 $c_1,c_2,c_3,...,c_n$  — toate constantele existente pe ramură clasa  $\delta$  — formule cuantificate existențial:

$$(\exists x)A(x) \qquad \neg(\forall x)A(x)$$

$$| \qquad | \qquad \qquad |$$

$$A(a) \qquad \neg A(a)$$

a – constantă nou introdusă

LC\_Curs11.

# Algebre Booleene

O conjuncție de variabile se numește **monom**.

Un monom care conține toate cele n variabile se numește **monom canonic** sau **minterm** de n variabile.

Disjuncția care conține toate cele n variabile se numește  $\max$ term de n variabile.

# Metoda diagramelor Veitch



# Forma simplificată:

$$f^s(x_1, x_2, x_3, x_4) = x_1 \overline{x}_3 \vee x_1 \overline{x}_2 \vee x_1 x_4 \vee \overline{x}_2 \overline{x}_3 \overline{x}_4 \vee \overline{x}_1 x_2 x_3 \overline{x}_4$$
  
Metoda diagramelor **Karnaugh**

| $x_1$ $x_2$ $x_3$ | 00 | 01 | 11 | 10 |
|-------------------|----|----|----|----|
| 0                 |    |    |    |    |
| 1                 |    |    |    |    |

# Metoda analitică a lui Quine-Mc'Clusky

Pas 1: Ordonarea mulțimii suport a funcției cu n variabile, după numărul de valori 1 conținut de fiecare n-uplu.

$$f(x_1, x_2, x_3, x_4) = m_4 \vee m_6 \vee m_7 \vee m_8 \vee m_9 \vee m_{10} \vee m_{11} \vee m_{12}$$

$$S_f$$
= {(0,1,0,0), (0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1), (1,0,1,0), (1,0,1,1), (1,1,0,0)}
$$S_f$$
= {(0,1,1,1), (1,0,1,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0), (0,1,0,0), (1,0,0,0)}

Pas 2:

| Grupul | $x_1$ | $x_2$ | $\chi_3$ | $\chi_4$ |                   |
|--------|-------|-------|----------|----------|-------------------|
| I      | 0     | 1     | 1        | 1        | $m_7$             |
|        | 1     | 0     | 1        | 1        | $m_{11}$          |
| II     | 0     | 1     | 1        | 0        | $m_6$             |
|        | 1     | 0     | 0        | 1        | $m_9$             |
|        | 1     | 0     | 1        | 0        | $m_{10}$          |
|        | 1     | 1     | 0        | 0        | $m_{10} \ m_{12}$ |
| III    | 0     | 1     | 0        | 0        |                   |
|        | 1     | 0     | 0        | 0        | $m_4 m_8$         |

Mulțimea monoamelor maximale este formată din toate monoamele corespunzătoare liniilor nebifate din tabel.

$$max_1 = m_7 \lor m_6 = \overline{x}_1 x_2 x_3$$
 VI:  
 $max_2 = m_6 \lor m_4 = \overline{x}_1 x_2 \overline{x}_4$  dub  
 $max_3 = m_{12} \lor m_4 = x_2 \overline{x}_3 \overline{x}_4$   
 $max_4 = m_{12} \lor m_8 = x_1 \overline{x}_3 \overline{x}_4$   
 $max_5 = m_{11} \lor m_9 \lor m_{10} \lor m_8 = x_1 \overline{x}_2$ 

 $M(f) = \{\overline{x}_1 x_2 x_3, \overline{x}_1 x_2 \overline{x}_4, x_2 \overline{x}_3 \overline{x}_4, x_1 \overline{x}_3 \overline{x}_4, x_1 \overline{x}_2\}$ 

 $= \{max_1, max_2, max_3, max_4, max_5\}$ 

Pas 3: Factorizare

|            |     |       |       |       |       | Ī                      |
|------------|-----|-------|-------|-------|-------|------------------------|
| Grupul     |     | $x_1$ | $x_2$ | $x_3$ | $x_4$ |                        |
| I          |     | 0     | 1     | 1     | 1     | $m_7$                  |
|            |     | 1     | 0     | 1     | 1     | $m_{11}$               |
| II         |     | 0     | 1     | 1     | 0     | $m_6$                  |
|            |     | 1     | 0     | 0     | 1     | $m_9$                  |
|            |     | 1     | 0     | 1     | 0     | $m_{10}$               |
|            |     | 1     | 1     | 0     | 0     | $m_{12}$               |
| III        |     | 0     | 1     | 0     | 0     | $m_4$                  |
|            |     | 1     | 0     | 0     | 0     | $m_8$                  |
| IV=I+I     | I   | 0     | 1     | 1     | -     | $m_7 \vee m_6$         |
| Factorizar | e √ | 1     | 0     | -     | 1     | $m_{11} \vee m_9$      |
| simplă     |     | 1     | 0     | 1     | -     | $m_{11} \lor m_{10}$   |
| V=II+I     | II  | 0     | 1     | -     | 0     | $m_6 \vee m_4$         |
|            |     | 1     | 0     | 0     | -     | $m_9 \vee m_8$         |
|            |     | 1     | 0     | -     | 0     | $m_{10} \lor m_8$      |
|            |     | -     | 1     | 0     | 0     | $m_{12} \lor m_4$      |
|            |     | 1     | -     | 0     | 0     | $m_{12} \vee m_{8}$    |
| VI=IV+     | -V  | -     |       |       |       | $m_{11} \vee m_9$      |
| Factorizar | e   | 1     | 0     | -     | -     | $\vee m_{10} \vee m_8$ |
| dublă      |     |       |       |       |       |                        |

Pas 4: Identificarea monoamelor centrale

|          | $max_1$ | $max_2$ | $max_3$ | $max_4$ | $max_5$ |
|----------|---------|---------|---------|---------|---------|
| $m_7$    | *       |         |         |         |         |
| $m_{11}$ |         |         |         |         | *       |
| $m_6$    | *       | *       |         |         |         |
| $m_9$    |         |         |         |         | *       |
| $m_{10}$ |         |         |         |         | *       |
| $m_{12}$ |         |         | *       | *       |         |
| $m_4$    |         | *       | *       |         |         |
| $m_8$    |         |         |         | *       | *       |

$$C(f) = \{max_1, max_5\}$$

Suntem în cazul II.

#### Cazuri:

- Cazul I:  $M(f) = C(f) = f'(x_1, x_2, x_3, x_4) = g(x_1, x_2, x_3, x_4)$
- Cazul II:  $M(f) \neq C(f), C(f) \neq \emptyset = >$   $f'(x_1, x_2, x_3, x_4) = g(x_1, x_2, x_3, x_4) \lor h(x_1, x_2, x_3, x_4)$

Cazul III:  $M(f) \neq C(f), C(f) = \emptyset = >$  $f'(x_1, x_2, x_3, x_4) = h(x_1, x_2, x_3, x_4)$ 

#### Pas 5: Indentificarea formelor simplificate

$$g(x_1, x_2, x_3, x_4) = max_1 \lor max_5 = \overline{x}_1 x_2 x_3 \lor x_1 \overline{x}_2$$

În tabelul de mai sus:

Se hașurează coloanele care conțin ◈.

Se hașurează liniile ce conțin \* hașurate anterior.

Se observă că cel mai simplu mod de a acoperi tot tabelul este:

$$h(x_1, x_2, x_3, x_4) = max_3$$

Rezultă că forma simplificată este:

$$f'(x_1, x_2, x_3, x_4) = g(x_1, x_2, x_3, x_4) \vee h(x_1, x_2, x_3, x_4)$$
  
=  $\overline{x}_1 x_2 x_3 \vee x_1 \overline{x}_2 \vee x_2 \overline{x}_3 \overline{x}_4$ 

# LC\_Curs13.

# Circuite logice

O **poartă** este un minicircuit logic care realizează una dintre operațiile logice de bază:  $\land$ ,  $\lor$ ,  $\overline{\ }$ .





# <u>Pasul 1</u>: Identificarea intrărilor (variabilelor) și ieșirilor (funcțiilor)

• intrare: 4 cifre binare:  $x_1, x_2, x_3, x_4$ .

• ieşire:  $f_i(x_1, x_2, x_3, x_4) = 1$  pentru  $x_1 x_2 x_3 x_{4(2)} = i_{(10)}$ ,  $i = \overline{0.9}$ 

Pasul 2: Construirea tabelei de valori asociate

| $x_1$ | $x_2$ | $x_3$ | $x_4$ | $f_0$ | $f_1$ | $f_2$ | $f_3$ | $f_4$ | $f_5$ | $f_6$ | $f_7$ | $f_8$ | $f_9$ | FCD (cu un singur element)                                                              |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------------------------------------------------------------------------------|
| 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | $f_0(x_1, x_2, x_3, x_4) = \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_4$ |
| 0     | 0     | 0     | 1     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | $f_1(x_1, x_2, x_3, x_4) = \overline{x}_1 \overline{x}_2 \overline{x}_3 x_4$            |
| 0     | 0     | 1     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | $f_2(x_1, x_2, x_3, x_4) = \overline{x}_1 \overline{x}_2 x_3 \overline{x}_4$            |
| 0     | 0     | 1     | 1     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | $f_3(x_1, x_2, x_3, x_4) = \overline{x}_1 \overline{x}_2 x_3 x_4$                       |
| 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | $f_4(x_1, x_2, x_3, x_4) = \overline{x}_1 x_2 \overline{x}_3 \overline{x}_4$            |
| 0     | 1     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | $f_5(x_1, x_2, x_3, x_4) = \overline{x}_1 x_2 \overline{x}_3 x_4$                       |
| 0     | 1     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     | $f_6(x_1, x_2, x_3, x_4) = \overline{x}_1 x_2 x_3 \overline{x}_4$                       |
| 0     | 1     | 1     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     | $f_7(x_1, x_2, x_3, x_4) = \overline{x}_1 x_2 x_3 x_4$                                  |
| 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 0     | $f_8(x_1, x_2, x_3, x_4) = x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4$            |
| 1     | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     | $f_9(x_1, x_2, x_3, x_4) = x_1 \overline{x}_2 \overline{x}_3 x_4$                       |

Pasul 3: Obținerea expresiilor funcțiilor (FCD de mai sus)

Pasul 4: Simplificarea funcțiilor

Pasul 5: Desenarea circuitului

...