Devoir maison 15 - Séries

Pour $n \in \mathbb{N}^*$ et $x \in]-\infty,1]$, on définit :

$$u_n(x) = \frac{x^n}{n}$$
 et $S_n(x) = \sum_{k=1}^n u_k(x)$

1. Étude de $S_n(1)$

Pour $n \ge 1$, on note

$$\gamma_n = S_n(1) - \ln(n)$$

a. Étudier la série de terme général $D_n = \gamma_{n+1} - \gamma_n$, pour $n \ge 1$.

Pour
$$n \ge 1$$
 on a:

$$D_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n} \times \frac{1}{1 + \frac{1}{n}} - \ln\left(1 + \frac{1}{n}\right) \underset{n \to +\infty}{=} -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right).$$

Par comparaison à une série de Riemann, on en déduit que la série de terme général (D_n) converge.

b. En déduire que (γ_n) converge. On note γ sa limite appelée constante d'Euler.

$$\forall n \geq 1, \quad \sum_{k=1}^{n} D_k = \gamma_{n+1} - \gamma_1$$
 (somme télescopique).

La série $\sum D_n$ converge donc la suite (γ_n) converge.

2. Étude de la série $\sum_{n\geq 1} \frac{1}{n} \cos\left(\frac{2n\pi}{3}\right)$

Pour $n \ge 1$, on pose

$$C_n = \sum_{k=1}^n \frac{1}{k} \cos\left(\frac{2k\pi}{3}\right)$$

a. Déterminer les réels a, b et c tels que pour $n \ge 1$,

$$C_{3n} = a\sum_{p=1}^{n} \frac{1}{3p} + b\sum_{p=0}^{n-1} \frac{1}{3p+1} + c\sum_{p=0}^{n-1} \frac{1}{3p+2}$$

 $\forall n \geq 1$, on a:

$$C_{3n} = \sum_{p=1}^{n} \frac{1}{3p} \cos\left(\frac{2 \times 3p\pi}{3}\right) + \sum_{p=0}^{n-1} \frac{1}{3p+1} \cos\left(\frac{2 \times (3p+1)\pi}{3}\right) + \sum_{p=0}^{n-1} \frac{1}{3p+2} \cos\left(\frac{2 \times (3p+2)\pi}{3}\right) = \sum_{p=0}^{n} \frac{1}{3p} - \frac{1}{2} \sum_{p=0}^{n-1} \frac{1}{3p+1} - \frac{1}{2} \sum_{p=0}^{n-1} \frac{1}{3p+2}.$$

b. En déduire que

$$\forall n \ge 1, \quad C_{3n} = \frac{1}{2}S_n(1) - \frac{1}{2}S_{3n}(1)$$

Pour $n \ge 1$, on a:

$$C_{3n} = -\frac{1}{2} \left(\sum_{p=1}^{n} \frac{1}{3p} + \sum_{p=0}^{n-1} \frac{1}{3p+1} + \sum_{p=0}^{n-1} \frac{1}{3p+2} \right) + \frac{3}{2} \sum_{p=1}^{n} \frac{1}{3p} = -\frac{1}{2} S_{3n}(1) + \frac{1}{2} S_{n}(1)$$

c. Établir la convergence de la suite (C_n) et donner sa limite.

Pour
$$n \ge 1$$
, on a $C_{3n} = -\frac{1}{2}S_{3n}(1) + \frac{1}{2}S_n(1)$ donc:

$$C_{3n} = \frac{1}{2}(\gamma_n + \ln(n) - \gamma_{3n} - \ln(3n)) = \frac{1}{2}(\gamma_n - \gamma_{3n} - \ln(3)).$$
On a montré au **1.b.** que (γ_n) converge donc $\lim_{n \to +\infty} (\gamma_n - \gamma_{3n}) = 0$ on en déduit que (C_{3n}) converge

vers
$$-\frac{\ln(3)}{2}$$
.

De plus, pour
$$n \ge 1$$
, $C_{3n+1} = C_{3n} - \frac{1}{2} \frac{1}{3n+1}$ et $C_{3n+2} = C_{3n} - \frac{1}{2} \left(\frac{1}{3n+1} + \frac{1}{3n+2} \right)$.

Ainsi les suites (C_{3n}) , (C_{3n+1}) et (C_{3n+2}) convergent vers $-\frac{\ln(3)}{2}$ donc (C_n) converge également vers ce réel.

3. Étude de $S_n(-1)$

Montrer que

$$\forall n \ge 1, \forall x \in]-\infty, 1[, \ln(1-x) = -S_n(x) - \int_0^x \frac{(x-t)^n}{(1-t)^{n+1}} dt$$

Pour
$$n \ge 1$$
 on note P_n la propriété : $\forall x \in]-\infty, 1[$, $\ln(1-x) = -S_n(x) - \int_0^x \frac{(x-t)^n}{(1-t)^{n+1}} dt$.

Pour
$$x < 1$$
, on a:

$$-S_1(x) - \int_0^x \frac{x-t}{(1-t)^2} dt = -x - \int_0^x \frac{(x-1)+1-t}{(1-t)^2} dt = -x - \left[\frac{x-1}{1-t} - \ln(1-t)\right]_0^x = \ln(1-x)$$
Prost dong vérifiée

Soit
$$n \ge 1$$
. On suppose P_n vérifiée : $\ln(1-x) = -S_n(x) - \int_0^x \frac{(x-t)^n}{(1-t)^{n+1}} dt$.

On définit
$$u$$
 et v sur $[0, x]$, par $u(x) = -\frac{(x-t)^{n+1}}{n+1}$ et $v(t) = \frac{1}{(1-t)^{n+1}}$. u et v sont de classe C^1

Par principe de récurrence, P_n est vérifiée pour tout $n \geq 1$.

Remarque: Ce résultat s'obtient plus rapidement avec la formule de Taylor avec reste intégral que l'on a démontré en classe, mais qui n'est pas explicitement au programme!

En déduire que la série de terme général $u_n(-1)$ converge et en donner la somme.

D'après le résultat précédent, avec
$$x = -1$$
, on a pour $n \ge 1$:
$$\ln(2) = -S_n(-1) - \int_0^{-1} \frac{(-1-t)^n}{(1-t)^{n+1}} dt = -S_n(-1) + \int_0^1 \frac{(-1+u)^n}{(1+u)^{n+1}} du.$$
 Ainsi, pour $n \ge 1$, $|\ln(2) + S_n(-1)| = \left| \int_0^1 \frac{(-1+u)^n}{(1+u)^{n+1}} du \right| \le \int_0^1 (1-u)^n du = \frac{1}{n+1}.$

Le théorème d'encadrement permet d'obtenir $\lim_{n\to+\infty} S_n(-1) = -\ln(2)$.

- 4. Étude de la série $\sum \frac{1}{(n+1)(2n+1)}$
- a. Décomposer en éléments simples la fraction rationnelle $\frac{1}{(X+1)(2X+1)} = \frac{-1}{X+1} + \frac{2}{2X+1}$.
- **b.** Montrer que

$$\forall n \ge 1, \quad \sum_{k=0}^{n} \frac{1}{2k+1} = \frac{1}{2} S_n(1) - S_{2n+1}(-1)$$

Pour $n \ge 1$, $S_{2n+1}(-1) = \sum_{k=1}^{2n+1} \frac{(-1)^k}{k} = \sum_{p=1}^n \frac{1}{2p} + \sum_{p=0}^n \frac{-1}{2p+1} = \frac{1}{2}S_n(1) - \sum_{p=0}^n \frac{1}{2p+1}$, ce qui donne le résultat attendu.

c. Déterminer la somme de $\sum_{n\geq 0} \frac{1}{(n+1)(2n+1)}$.

Pour $n \ge 1$, on a:

$$\sum_{k=0}^{n} \frac{1}{(k+1)(2k+1)} = \sum_{k=0}^{n} \left(\frac{-1}{k+1} + \frac{2}{2k+1} \right) = -S_{n+1}(1) + 2\left(\frac{1}{2}S_n(1) - S_{2n+1}(-1) \right)$$
$$= -S_{n+1}(1) + S_n(1) - 2S_{2n+1}(-1) = \frac{-1}{n+1} - 2S_{2n+1}.$$

D'après le 3. $\lim_{n\to+\infty} S_n(-1) = -\ln(2)$ donc la série $\sum \frac{1}{(n+1)(2n+1)}$ converge vers $2\ln(2)$.