ΛΥΣΗ

- α) Η συνάρτηση $f(x) = \rho \eta \mu (\omega x)$ με $\rho > 0$, έχει μέγιστη τιμή ρ . Με βάση το σχήμα η συνάρτηση έχει μέγιστη τιμή 3, άρα $\rho = 3$. Επίσης η περίοδος της συνάρτησης είναι π , οπότε $\pi = \frac{2\pi}{\omega} \Leftrightarrow \omega = 2 .$ Άρα $f(x) = 3\eta \mu (2x)$.
- β) Η ευθεία $y=\alpha x$ διέρχεται από το σημείο Ε της γραφικής παράστασης της f που έχει τεταγμένη 3, η οποία είναι η μέγιστη τιμή της συνάρτησης. Η συνάρτηση $f(x)=3\eta\mu(2x)$ παρουσιάζει μέγιστη τιμή σε διάστημα μιας περιόδου στο $\frac{1}{4}$ της περιόδου, δηλαδή στη θέση $x=\frac{\pi}{4}$. Άρα είναι $\mathbb{E}\left(\frac{\pi}{4},3\right)$ και $3=\alpha\cdot\frac{\pi}{4}\Leftrightarrow\alpha=\frac{12}{\pi}$. Οπότε η εξίσωση της ευθείας είναι : $y=\frac{12}{\pi}x$.
- γ) Η εξίσωση $3\eta\mu(2x)-\frac{12}{\pi}x=0$ γράφεται ισοδύναμα $3\eta\mu(2x)=\frac{12}{\pi}x$. Οι λύσεις της εξίσωσης είναι οι τετμημένες των σημείων τομής της γραφικής παράστασης της $f(x)=3\eta\mu(2x)$ με την ευθεία $y=\frac{12}{\pi}x$. Με βάση το σχήμα τα σημεία τομής είναι 3, οι τετμημένες των οποίων είναι
 - x = 0, δεδομένου ότι f(0) = 3ημ0 = 0 και η ευθεία $y = \frac{12}{π}x$ διέρχεται από το σημείο (0,0).
 - $x = \frac{\pi}{4}$, δεδομένου ότι $f(\frac{\pi}{4}) = 3\eta\mu\left(2\cdot\frac{\pi}{4}\right) = 3\eta\mu\left(\frac{\pi}{2}\right) = 3\cdot 1 = 3$ και η ευθεία $y = \frac{12}{\pi}x$ διέρχεται από το σημείο $\left(\frac{\pi}{4}, \frac{12}{\pi} \cdot \frac{\pi}{4}\right) = \left(\frac{\pi}{4}, 3\right)$ και
 - $x = -\frac{\pi}{4}$, δεδομένου ότι $f(-\frac{\pi}{4}) = 3\eta\mu\left(-2\cdot\frac{\pi}{4}\right) = 3\eta\mu\left(-\frac{\pi}{2}\right) = 3\cdot(-1) = -3$ και η ευθεία $y = \frac{12}{\pi}x$ διέρχεται από το σημείο $\left(-\frac{\pi}{4}, \frac{12}{\pi}\cdot\left(-\frac{\pi}{4}\right)\right) = \left(-\frac{\pi}{4}, -3\right)$.

Άρα η εξίσωση $3\eta\mu\big(2x\big)-\frac{12}{\pi}x=0$ έχει λύσεις τις x=0 , $x=\frac{\pi}{4}$ και $x=-\frac{\pi}{4}$.