(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-71699 (43)公開日 平成9年(1997) 3月18日

(51) Int.Cl.6		徽別記号	庁内整理番号	FΙ			技術表示箇所
COSL :	23/16	LCY		C08L	23/16	LCY	
C08K	3/04	KDZ		C08K	3/04	KDZ	
H 0 1 B	1/24			H 0 1 B	1/24	Z	

		審査請求 未請求 請求項の数4 FD (全 5 頁
(21) 出願番号	特順平7-254686	(71)出願人 000196107 西川ゴム工業株式会社
(22)出顧日	平成7年(1995)9月5日	広島県広島市西区三篠町2丁目2番8号
() F-1112 M	1 200 / 1000 / 1000	(72)発明者 津田 健司
		広島市西区三篠町2丁目2番8号西川ゴム
		工業株式会社内
		(74)代理人 弁理士 古田 剛暋

(54) [発明の名称] 半導電性ゴム組成物

(57)【要約】

【課題】 広範囲にわたって安定した体積固有抵抗値解 v を育する半導電性ゴム組成物及びそれを用いた、オフィスオートメーション機器用ゴムローラーを提供する。【解決手段】 C・含量を50~65%として、C・プロックの配向を少なくし、分子量分布を4.5以上とした、EPDMを主成分とするボリマー100重量部に対して、比表面積 50~76 m/ g以上目つ吸油量 10 m1/100 g以上の導電性を付与するための主カーボンブラック 10~25 亜銀筒、及び等電性を付与する補助剤として、比表面積 50~70 m/ /g、且つの、50~50 m/ /10 g、且つ野紅杉 450~560 m/ /10 g、馬つ野紅杉 450~560 m/ /10 g、馬つ野紅杉 を50~560 m/ /10 g、馬つ野紅杉 を配合してあるが、オイル及び導電性を有する金属酸化物を添加しない・埋御性化土地取りである金属酸化物を添加しない・埋御性化土地取りで

【特許請求の範囲】

【請求項1】 C:含量を50~65%とし、分子量分 布を4. 5以上としたEPDMを主成分とするポリマー 100重量部に対して、比表面積 180m2/g以上 且つ吸油量 110ml/100g以上の導電性を付与 するための主カーボンブラック 10~25重量部、及 び導電性を付与する補助剤として、比表面積 50~7 0 m²/g、且つ吸油量 30~50m1/100g、 且つ平均粒径 450~560 μmのサーマルブラック 20~60重量部をそれぞれ配合し、且つオイル及び 導電性を有する金属酸化物を添加しない半導電性ゴム組 成物。

【請求項2】 C₂含量を50~65%とし、分子量分 布を4.5以上としたEPDMを主成分とするポリマー 100重量部に対して、比表面積 180m2/g以上 且つ吸油量 110ml/100g以上の導電性を付与 するための主カーボンプラック 10~25重量部、及 び導電性を付与する補助剤として、比表面積 50~7 0 m2/g、且つ吸油量 30~50m1/100g、 且つ平均粒径 450~560 μmのサーマルブラック 20~60重量部をそれぞれ配合し、且つオイル及び 導電性を有する金属酸化物を添加せず、日つ発泡剤を2 ~20 重量部を添加してなる半導電性ゴム組成物。

【請求項3】 C₂含量を50~65%とし、分子量分 布を4.5以上としたEPDMを主成分とするポリマー 100重量部に対して、比表面積 180m²/g以上 且つ吸油量 110m1/100g以上の導電性を付与 するための主カーボンブラック 10~25重量部、及 び導電性を付与する補助剤として、比表面積 50~7 0 m2/g、且つ吸油量 30~50m1/100g、 且つ平均粒径 450~560 μmのサーマルブラック 20~60重量部、比表面積80~100m2/g、 且つ吸油量 110~140m1/100g且つ平均粒 径25~30 µmのファーネスブラック 1~15重量 部をそれぞれ配合をすると共に、オイル及び導電性を有 する金属酸化物を添加せず、発泡剤を無添加、または2

~20 重量部を添加してなる半導電性ゴム組成物。 【請求項4】 C₂含量を50~65%とし、分子量分 布を4.5以上としたEPDMを主成分とするポリマー 100重量部に対して、比表面積 180m²/g以上 且つ吸油量 110ml/100g以上の導電性を付与 するための主カーボンブラック 10~25重量部、及 び導電性を付与する補助剤として、比表面積 50~7 0m²/g、且つ吸油量 30~50m1/100g、 且つ平均粒径 450~560 μmのサーマルブラック 20~60重量部、比表面積80~100m2/g、 且つ吸油量 110~140m1/100g且つ平均粒 径25~30 µmのファーネスブラック 1~15重量 部をそれぞれ配合をすると共に、オイル及び導電性を有 ~20重量部を添加してなる半導重性ゴム組成物よりな るオフィスオートメーション機器用ゴムローラー。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オフィスオートメ ーション機器等に用いるのに適する、EPDMを基材と する半導電性ゴム組成物であって、特にオイル及び導電 性を有する金属酸化物を添加しないもの、及びそれを用 いたオフィスオートメーション機器用ゴムローラーに関

10 するものである。

[0002]

【従来の技術】従来、オフィスオートメーション機器用 ゴムローラーを、例えば、EPDMを主成分として製造 する場合、導電性を付与するために金属酸化物を添加し たり、ゴム硬度を調整するために石油系のプロセスオイ ルを配合した半導電性スポンジゴムが使用されている。 【0003】しかしながら、上記従来の半導電性ゴム組 成物は、練りのパラツキ特にムーニー値の最低値Vmの コントロール、硬度のパリエーションもオイル添加量に

20 依存しており、オイルを添加してあるため、体積固有抵 抗値R v のコントロールが難しく、それが前記ムーニー 値の最低値Vm・硬度Hsの不安定要因になり、また、 添加したオイルが使用現場で感光体トナー等の汚染源と なること、さらに圧縮永久歪Cs (70℃-22時間) が25~30%と大きいこと、配合単価が高いこと等の 問題占がある。

[0004]

【発明が解決しようとする課題】解決しようとする課題 は、上記従来の半導電性ゴム組成物は、オイルを添加し 30 てあるため、体積固有抵抗値Rvのコントロールが難し く、また、添加したオイルが使用現場で感光体トナー等 の汚染源となること、さらに圧縮永久歪みCs (70℃ -22Hr) が25~30%と大きいこと、配合単価が 高いことであり、本発明はこの点に着目して、体積固有 抵抗値Rvのコートロールが容易で、硬度Csが比較的 よく、低コストの半導電性ゴム組成物及びそれを用いた オフィスオートメーション機器用ゴムローラーを提供す るものである。

[0005]

【課題を解決するための手段】第1の発明は、C2含量 を50~65%とし、分子量分布を4,5以上とした。 EPDMを主成分とするポリマー100重量部に対し て、比表面積 180 m2/g以上且つ吸油量 110 m1/100g以上の導電性[®] 付与するための主カーボ ンプラック 10~25重量部、及び導電性を付与する 補助剤として、比表面積 50~70m2/g、且つ吸 油量 30~50ml/100g、且つ平均²径 45 0~560 μ mのサーマルブラック 20~60重量部 をそれぞれ配合してなり、目つオイル及び導雷性を有す する金属酸化物を添加せず、発泡剤を無添加、または2 50 る金属酸化物を含まない半導電性ゴム組成物である。

【0006】第2の発明は、上記第1の発明に加えて、 発泡剤を2~20重量部添加したものである。

【0007】第3の発明は、上記第1又は第2の発明の 構成に加えて、さらに平均粒径 25~30 µ m、且つ 比表面積 80~100m2/g、且つ吸油量 110 ~140ml/100gのファ ネスブラック 1~1 5 重量部を配合したものである。

【0008】第4の発明は、上記第3の発明の構成の半 導電性ゴム組成物よりなるオフィスオートメーション機 器用ゴムローラーである。

【0009】EPDMを主成分とするポリマーは、C2 含有量を少なくし、分子量分布Mw/Mnを大きくする 等. 上記組成とすることによって、グリーン強度が増大 し、加工時の粘度が下がり、剪断速度が速くなり、加工 性が向上し、オイルを添加しなくても、押出時のスキン 状態・押出スピード等が改善される。

[0.01.0]

【発明の実施の形態】第1の発明の半導電性ゴム組成物 について説明すると、C2含量を50~65%として、 い状m で、C2とC3との組成に分布を付けることによ り、下記に定義す。分子m 分布Mw/Mnを4. 5以上 とした、EPDMを主成分とするポリマー100重量部 に対して、比表面積 180m2/g以上且つ吸油量 110ml/100g以上の導電性[®] 付与するための主 カーボンブラック 10~25重量部、及び導電性を付 与する補助剤として、比表面積 50~70m2/g、 且つ吸油量30~50m1/100g、且つ平均粒 カーボンブラックの特性

* 450~560 µmのサーマルブラック 20~60重 量部を配合するが、オイル及び導電性を有する金属酸化 物を添加しないものである。なお、Mwは重量平均分子 量を示し、Mnは数平均分子量を示す。

【0011】第2の発明は、上記第1の発明の構成に加 えて、発泡剤を2~20重量部添加したものである。

【0012】第3の発明は、上記第1又は第2の発明の 構成に加えて、さらに平均粒径 25~30 u m、目つ 比表面積 80~100m2/g、且つ吸油量110~ 10 140m1/100gのファ ネスブラック 1~15

重量部を配合したものである。 【0013】第4の発明は、上記第3の発明の構成の半 導電性ゴム組成物よりなるオフィスオートメーション機

器用ゴムローラーである。 【0014】ゴム用カーボンブラックは、球状微粒子で あって、その内部は二次元状に拡がった黒鉛構造の層状 結晶になっており、その結晶が無配列に数千個凝集した 状態になっているため、カーボンブラックはその種類に

より、粒子径・ポロシティ・比表面箱・凝集状態すなわ C2プロックの配向を少なく」、且つそのC2含量の少な 20 ちストラクチャー(吸油量DBPにより表示)・水素含 右量・酸素含有量等が異なり、導雷件を付与するための 主カーボンブラックについては、粒子径・ポロシティと の相関性の大きい比表面積、また、凝集当りの粒子数・ 開放状か房状かどうかとの相関性の大きい吸油量に着目 し、その適正範囲を設定する必要がある。この点に着目 した各種カーボンプラックの特性を表1に示す。 [0015]

【表1】

	比表面積	吸油量	メーカー
	(m^2/g)	(m 1 / 100 g)	
TB*5500	215	155	東海カーボン
ファーネスプラック (HAF)	80	110	M.E
Acetylene Black	80	216	-
*3050	180	110	三菱化成
*3 2 5 0	240	165	刊上

【0016】EPDMを主成分とするポリマーに導電性 を付与する主カーボンブラック・サーマルブラック・フ 40 合評価を行った結果を表2に示す。 アーネスプラックを配合したゴム組成物につき、適正条 件スクリーニングのための体積固有抵抗値R v ・アスカ

- C硬度・押出性(押出速度≥5m/s、表面肌等)の総
 - [0017]
 - 【表2】

特間平9-71699

							メインカーボン+他カーボン程							
	Cz含有量 mol%	分子堂 分布	#U.	-		#5500	#3050	MIAP	#5500+HAP	#5500+H1	#5500+IIAP+H1			
nt.	63	5.0	4021(三井石化製)		Δ	Δ	×	Δ	0	0				
ע	72	2.6	4010()	×	×	×	×	×	×			
₹	68	4.0	40700	u)	×	×	×	×	×	×			
ſ	66	5.7	4045(,,)	×	×	x	×	×	×			

A A X X

【0018】評価項目は体積固有抵抗,アスカC硬度,押出性(押出速度25m/min,表面肌など)の総合評価とした。

4-5 4021+4045

5

(基本配合)

イオウ

 EPDM
 100重量部

 Stearic Acid
 2重量部

 PEG
 2重量部

 各種カーボン
 20重量部

加硫促進剤 5重量部 (尚、#5500+HAF=20+10重量部

#5¹ 00+MT = 20+10重量部 #5¹ 00+HAF-MT = 20+10+20重量部0 【0019】 表2から明らかなように、ポリマーのC2 を有量は66、好ましくは65%以下で、分子量分布M w / Mmが4.5以上であっても、ファーネスブラック

(HAF) のように比表面積・吸油量共に低いものは、 オイル・導電性金属酸化物なしでは、総合評価で合格点 に達せず、TB#5500・#3050のように 比表面積≥180[™] 2/g 吸油量≥110m1/100g

であれば、** 一歩と言う域に達しており、さらにカーボ ンプラックとして、#5500のみではスコーチを起す 2重量部 2.0 重量部 スプラック(HAF)を添加すると共に、澤電性金属酸 (物と同様)効果を示すサーマルブラック(MT)を流 5重量部 20 がまことによって、特定の半導電域で安定した抵抗値 を得ると言う所定の目的を達することが出来るようにな

> った。なお、イオウ及び加硫促進剤をマスターパッチ化することによりHAFは不要になる。 【0020】さらに、#5500に絞って、カーボンブラックの配合剤合を変化させたゴム配[®] 物につき、その

【0021】

件状を調べた結果を表3に示す。

	ゴム組成物					
	No.1	No.2	No.3	No.4		
BPDM (4021)	100	100	100	100		
Stearic Acid/PEG	2/2	2/2	2/2	2/2		
Z n 0 * 1	5	5	5	5		
T B*5500	15	20	20	20		
HAF	10	7	5	15		
MT	20	20	20	20		
s .	1.5	1.5	1.5	1.5		
м	2.0	2.0	2.0	2.0		
в z	1.5	1.5	1.5	1.5		
z z	1.0	1.0	1.0	1.0		
ŤL	0.5	0.5	0.5	0.5		
A C*3 sw (発泡幣)	10	10	10	10		
*101 (セルベースト101)	3.5	3.5	3.5	3.5		
Rv Ω•cm	5×10*	3×1010	2×1011	2×10 ⁵		
Hs (アスカーC)	27	29	29	45		
Cs (70℃-22hr) % 25%圧縮	20以下	20UF	20以下	20以"F		

加減条件 加減缶加機 BRgノcm2-30分 (パイプ状製品:外径約20㎜, 内径約5㎜)

【0022】表3から明らかなように、TB#5500 10~25重量部、HAF 0~15重量部、MT 2 0~60重量部配合することによって、得られた製品の 体積固有抵抗値R v は 1 05~1 011Q・c m域で安定 値R v が 1 08~ 1 011Q · c m域ではアスカ C 硬度H sは16~20%と比較的良好であり、体積固有抵抗値 R v が 1 05~1 0 6 Q · c m 域でも、これらの値は実現 可能であり、発泡剤を加えるこ によっ 広範囲にわ たって安定した体積固有抵抗値Rvを有するスポンジラ

パーよりなるオフィスオートメーション機器用ゴムロー ラーを製造可能であり、その材料コストは従来品に比較 して約30%低減可能である。

[0023] であって、経時変化が少なく、特に、その^{*} 稿固^{*} 抵抗 40 【発明の効果】本発明は以上のように構成されるため、 発泡剤を加えることによって、広範囲にわたって安定し た体積固有抵抗値R v を有するフォームラバーよりなる オフィスオートメーション機器用ゴムローラーを製造可 能であり、その材料コストは従来品に比較して約30% 低減可能である。