Brute Force

Exhaustive Solution Search

A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

Method:

- Generate a list of all potential solutions to the problem in a systematic manner
- Evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far
- When search ends, announce the solution(s) found

Traveling Salesman Problem

- Informal: Given *n* cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city
- Formal: Find shortest *Hamiltonian circuit* in a weighted connected graph
 - Hamiltonian Circuit: a cycle that visits each vertex exactly once (except the vertex which is both the start and end, and so is visited twice)

Traveling Salesman Problem

- Generate a list of all potential circle routes
- ▶ Sum all costs on selected routes. Keep track of the minimum.
- ▶ When search ends, announce the optimal circle found

Knapsack Problem

• Given n items:

- weights: w_1 w_2 ... w_n
- values: v_1 v_2 ... v_n
- a knapsack of capacity W
- Find most valuable subset of the items that fit into the knapsack

Knapsack Problem

• Given n items:

- weights: w_1 w_2 ... w_n
- values: v_1 v_2 ... v_n
- \triangleright a knapsack of capacity W
- Find most valuable subset of the items that fit into the knapsack
- Generate a list of all possible combination of items
- ➤ Sum the values of all items in each combination. Keep track of the maximum.
- When search ends, announce the optimal combination found

Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to job j is C[i,j]. Find an assignment that minimizes the total cost.

	Job 0	Job 1	Job 2	Job 3
Person 0	9	2	7	8
Person 1	6	4	3	7
Person 2	5	8	1	8
Person 3	7	6	9	4

Assignment Problem

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person i to job j is C[i,j]. Find an assignment that minimizes the total cost.

	Job 0	Job 1	Job 2	Job 3
Person 0	9	2	7	8
Person 1	6	4	3	7
Person 2	5	8	1	8
Person 3	7	6	9	4

- Generate a list of all possible permutation of persons
- ▶ Sum the cost of each job in each assignment. Keep track of the minimum.
- ▶ When search ends, announce the optimal permutation found

Summary

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- In some cases, there are much better alternatives!
 - Euler circuits
 - Shortest paths
 - Minimum spanning tree
 - Assignment problem
- In many cases, exhaustive search or its variation is the only known way to get exact solution