Práctica 7

- 1. Sea Y un espacio métrico y sea A un conjunto. Para cada $n \in \mathbb{N}$, sea $f_n : A \to Y$. Entonces $(f_n)_{n\geq 1}$ no converge uniformemente a $f: A \to Y$ si y sólo si existen $\alpha > 0$, una subsucesión $(f_{n_k})_{k\geq 1}$ de $(f_n)_{n\geq 1}$ y una sucesión $(a_k)_{k\geq 1}$ en A tales que $d(f_{n_k}(a_k), f(a_k)) \geq \alpha$ para todo $k \in \mathbb{N}$.
- 2. Analizar la convergencia puntual y uniforme de las siguientes sucesiones de funciones $(f_n)_{n\geq 1}$:
 - (a) $f_n(x) = \frac{1}{n}\sin(nx)$, definida en \mathbb{R} ;
 - (b) $f_n(x) = \sin\left(\frac{x}{n}\right)$, definida en \mathbb{R} ;
 - (c) $f_n(x,y) = \frac{n}{n+1}(x,y)$, definida en \mathbb{R}^2 con valores en \mathbb{R}^2 .
- **3.** (a) Encontrar el límite puntual de la sucesión $(f_n)_{n\geq 1}$ de funciones reales definidas sobre $A\subseteq \mathbb{R}$ en cada uno de los siguientes casos:
 - i. $f_n(x) = x^n$, A = (-1, 1];
 - ii. $f_n(x) = x^{-n}e^x$, $A = (1, +\infty)$;
 - iii. $f_n(x) = n^2 x (1 x^2)^n$, A = [0, 1].
 - (b) Para la sucesión de i., probar que la convergencia es uniforme sobre $(0, \frac{1}{2})$, y para la de ii., que es uniforme sobre [2, 5].
 - (c) ¿Es uniforme la convergencia de la sucesión sobre A en alguno de los casos?
- **4.** Sea X un conjunto y sea B(X) el conjunto de las funciones acotadas de X en \mathbb{R} . Sea $(f_n)_{n\geq 1}$ una sucesión en B(X).
 - (a) Si $(f_n)_{n\geq 1}$ converge puntualmente a una función $f:X\to\mathbb{R}$, ¿es cierto que $f\in B(X)$?
 - (b) Si $(f_n)_{n\geq 1}$ converge uniforme a $f:X\to\mathbb{R}$, les cierto que $f\in B(X)$?
 - (c) Mostrar que la sucesión $(f_n)_{n\geq 1}$ converge uniformemente a una función acotada $f: X \to \mathbb{R}$ si y solo si $(f_n)_{n\geq 1}$ converge a f en $(B(X), d_{\infty})$.
 - (d) Si $(f_n)_{n\geq 1}$ converge uniformemente en X, mostrar que existe M>0 tal que $|f_n(x)|\leq M$ para todo $x\in X$ y todo $n\in\mathbb{N}$. En otras palabras, la sucesión $(f_n)_{n\geq 1}$ es uniformemente acotada o es acotada en d_{∞} .
- **5.** Estudiar la convergencia puntual y uniforme de las sucesiones $(f_n)_{n\geq 1}$ y $(f'_n)_{n\geq 1}$ en [0,1], con $f_n(x) = \frac{nx^2}{1+nx^2}$.
- **6.** Sea X un espacio métrico y sean $(f_n)_{n\geq 1}$ y $(g_n)_{n\geq 1}$ dos sucesiones de funciones de X a \mathbb{R} que convergen uniformemente sobre X a f y a g, respectivamente. Probar que:

- (a) La sucesión $(f_n + g_n)_{n \ge 1}$ converge uniformemente a f + g.
- (b) Si ambas sucesiones están uniformemente acotadas, entonces $(f_n g_n)_{n\geq 1}$ converge uniformemente a fg.
- 7. Sea X un espacio métrico y sea $(f_n)_{n\geq 1}$ una sucesión de funciones $f_n:X\to\mathbb{R}$ uniformemente continuas que converge uniformemente a una función $f:X\to\mathbb{R}$. Estudiar la continuidad uniforme de f.
- 8. Sea $(f_n)_{n\geq 1}: [a,b] \to \mathbb{R}$ una sucesión de funciones derivables que converge puntualmente a una función $f: [a,b] \to \mathbb{R}$. Probar que si existe c>0 tal que $|f'_n(x)| \leq c$ para todo $x \in [a,b]$ y para todo $n \in \mathbb{N}$, entonces f es continua.
- **9.** Sea X un espacio métrico y sea $(f_n)_{n\geq 1}$ una sucesión de funciones continuas de X a \mathbb{R} tal que $\sum_{n\geq 1} f_n$ converge uniformemente en X.
 - (a) La función suma $f = \sum_{n \geq 1} f_n$ es continua en X.
 - (b) Si X = [a, b], entonces $\int_a^b f(x) dx = \sum_{n \ge 1} \int_a^b f_n(x) dx$.
- 10. Si $(a_n)_{n\geq 1}$ es una sucesión de escalares (reales o complejos) tal que $\sum_{n\geq 1} a_n$ converge absolutamente, entonces las dos series de funciones

$$\sum_{n\geq 1} a_n \cos nx \qquad \qquad \mathbf{y} \qquad \sum_{n\geq 1} b_n \sin nx$$

convergen absoluta y uniformente en \mathbb{R} a funciones continuas.

- 11. Probar que:
 - (a) Para todo $x \in \mathbb{R}$ se tiene que

$$\sin x = \sum_{k>0} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

y la serie converge absoluta y uniformente en todo intervalo acotado. ¿Qué sucede en \mathbb{R} ?

- (b) La función $f(x) = \sum_{n \geq 0} \left(\frac{x^n}{n!}\right)^2$ está bien definida en \mathbb{R} y es continua.
- 12. Sea $f_n(x) = xe^{-nx^2}$.
 - (a) Calcular el límite puntual de $(f_n)_{n\in\mathbb{N}}$ y probar que la convergencia es uniforme sobre \mathbb{R}
 - (b) Probar que la serie de término general f_n converge uniformemente en cualquier intervalo de la forma de $[a, +\infty)$ pero no en $(0, +\infty)$.