Planche nº 32. Séries numériques

* très facile ** facile *** difficulté moyenne **** difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1 (***I) Un calcul de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

- 1) Déterminer deux réels a et b tels que, pour tout entier naturel non nul n, $\frac{1}{n^2} = \int_0^{\pi} \left(at^2 + bt\right) \cos(nt) dt$.
- $\textbf{2)} \ \mathrm{Montrer} \ \mathrm{que} \ \forall t \in]0,\pi], \ \sum_{k=1}^n \cos(kt) = \frac{\sin\left(\frac{(2n+1)t}{2}\right)}{2\sin\left(\frac{t}{2}\right)} \frac{1}{2}.$
- 3) En utilisant le lemme de LEBESGUE, déterminer $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Exercice n° 2 (**I) Un calcul de $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$ et de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

- 1) En remarquant que $\forall k \geqslant 1$, $\frac{1}{k} = \int_0^1 t^{k-1} \ dt$, montrer que la série de terme général $\frac{(-1)^{n-1}}{n}$, $n \geqslant 1$, converge et déterminer la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$.
- 2) En adaptant l'idée précédente, montrer que la série de terme général $\frac{(-1)^n}{2n+1}$, $n \ge 0$, converge et déterminer la valeur de $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

Exercice nº 3 (***I) Séries de BERTRAND.

Soient α et β deux réels. Pour $n\geqslant 2,$ on pose $u_n=\frac{1}{n^{\alpha}\ln^{\beta}n}.$

- 1) Deux exemples : montrer que la série de terme général $\frac{\ln n}{n^2}$, $n \geqslant 1$, converge et que la série de terme général $\frac{1}{\sqrt{n} \ln^2 n}$, $n \geqslant 2$, diverge.
- 2) Montrer que si $\alpha < 0$, la série de terme général \mathfrak{u}_n diverge grossièrement.
- 3) Montrer que si $0\leqslant \alpha<1,$ la série de terme général \mathfrak{u}_n diverge.
- 4) Montrer que si $\alpha > 1$, la série de terme général u_n converge.
- 5) Dans cette question, $\alpha = 1$.
 - a) Montrer que si $\beta \leqslant 0$, la série de terme général \mathfrak{u}_n diverge.
 - b) En comparant u_n à une intégrale, montrer que la série de terme général u_n converge si et seulement si $\beta > 1$.

Exercice nº 4

Nature de la série de terme général

1) (*)
$$\ln\left(\frac{n^2+n+1}{n^2+n-1}\right)$$
 2) (*) $\frac{1}{n+(-1)^n\sqrt{n}}$ 3) (**) $\left(\frac{n+3}{2n+1}\right)^{\ln n}$ 4) (**) $\frac{1}{\ln(n)\ln(\ln n)}$ 5) (**) $\arccos\sqrt[3]{1-\frac{1}{n^2}}$ 6) (*) $\frac{n^2}{(n-1)!}$ 7) $\left(\cos\frac{1}{\sqrt{n}}\right)^n-\frac{1}{\sqrt{e}}$ 8) (**) $\ln\left(\frac{2}{\pi}\operatorname{Arctan}\frac{n^2+1}{n}\right)$ 9) (*) $\int_0^{\pi/2}\frac{\cos^2x}{n^2+\cos^2x}\,dx$ 10) (**) $n^{-\sqrt{2}\sin(\frac{\pi}{4}+\frac{1}{n})}$ 11) (**) $e-\left(1+\frac{1}{n}\right)^n$

Exercice nº 5

Nature de la série de terme général

1) (***)
$$\sqrt[4]{n^4 + 2n^2} - \sqrt[3]{P(n)}$$
 où P est un polynôme. 2) (***) $\frac{1}{n^{\alpha}}S(n)$, $\alpha \in \mathbb{R}$, où $S(n) = \sum_{p=2}^{+\infty} \frac{1}{p^n}$, $n \ge 2$.

$$\mathbf{3)} \ \ (\mathbf{**}) \ u_n \ \text{où} \ \forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n} e^{-u_{n-1}}. \qquad \mathbf{4)} \ \ (\mathbf{**}) \ \operatorname{Arctan}\left(\left(1 + \frac{1}{n}\right)^{\alpha}\right) - \operatorname{Arctan}\left(\left(1 - \frac{1}{n}\right)^{\alpha}\right), \ \alpha \in \mathbb{R}.$$

5) (***)
$$\frac{1}{n^{\alpha}} \sum_{k=1}^{n} k^{3/2}$$
.

Exercice nº 6

Calculer les sommes des séries suivantes après avoir vérifié leur convergence.

$$\begin{array}{lll} 1) \ (**) \sum _{n=0}^{+\infty} \frac{n+1}{3^n} & 2) \ (**) \sum _{n=3}^{+\infty} \frac{2n-1}{n^3-4n} & 3) \ (**) \sum _{n=1}^{+\infty} \frac{n^2}{(n-1)!} \\ 4) \ (**) \sum _{n=2}^{+\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} \right) & 5) \ (***) \sum _{n=2}^{+\infty} \ln \left(1 + \frac{(-1)^n}{n} \right) & 6) \ (***) \sum _{n=0}^{+\infty} \ln \left(\cos \frac{\alpha}{2^n} \right) \ \alpha \in \left] 0, \frac{\pi}{2} \right[\\ 7) \sum \frac{\sinh \left(\frac{\alpha}{2^n} \right)}{2^n}, \ \alpha \in \mathbb{R}^*. \end{array}$$

Exercice nº 7 (*** I)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de nombres réels strictement positifs telle que la série de terme général u_n converge. Montrer que $u_n = o\left(\frac{1}{n}\right)$. Trouver un exemple de suite $(u_n)_{n\in\mathbb{N}}$ de réels strictement positifs telle que la série de terme général u_n converge mais telle que la suite de terme général nu_n ne tende pas vers 0.

Exercice nº 8 (***)

Trouver un développement limité à l'ordre 4 quand $\mathfrak n$ tend vers l'infini de $\left(e-\sum_{k=0}^{\mathfrak n}\frac{1}{k!}\right)\times(\mathfrak n+1)!.$

Exercice nº 9 (***)

Nature de la série de terme général $u_n = \sin\left(\pi\left(2 + \sqrt{3}\right)^n\right)$.

Exercice nº 10 (**)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive telle que la série de terme général u_n converge. Etudier la nature de la série de terme général $\frac{\sqrt{u_n}}{n}$.

Exercice no 11 (***)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Trouver la nature de la série de terme général $\nu_n=\frac{u_n}{(1+u_1)\dots(1+u_n)},\, n\geqslant 1,$ connaissant la nature de la série de terme général u_n puis en calculer la somme en cas de convergence.

Exercice nº 12

Convergence et somme éventuelle de la série de terme général

$$\mathbf{1)} \ (\textbf{**}) \ u_n = \frac{2n^3 - 3n^2 + 1}{(n+3)!} \qquad \mathbf{2)} \ (\textbf{***}) \ u_n = \frac{n!}{(\alpha+1)(\alpha+2)\dots(\alpha+n)}, \ n\geqslant 1, \ \alpha\in\mathbb{R}^{+*} \ \mathrm{donn\'e}.$$

Exercice no 13 (*)

Nature de la série de terme général $u_n = \sum_{k=1}^n \frac{1}{(n+k)^p}, \ p \in]0, +\infty[.$

Exercice nº 14 (** I)

$${\rm Calculer} \, \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} \, {\rm et} \, \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}.$$

Exercice nº 15 (*** I)

 $\mathrm{Pour}\; n \in \mathbb{N}^*, \, \mathrm{on}\; \mathrm{pose}\; R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}.$

1) Justifier l'existence de R_n . Quelle est la limite de R_n ?

- 2) En encadrant $\frac{1}{k^2}$ par des termes généraux de sommes télescopiques, montrer que $R_n \underset{n \to +\infty}{\sim} \frac{1}{n}$.
- 3) En commençant par remarquer que $\frac{1}{n} = \sum_{k=n+1}^{+\infty} \left(\frac{1}{k-1} \frac{1}{k} \right)$, déterminer le développement limité à l'ordre 2 de R_n quand n tend vers l'infini.

Exercice no 16 (***)

$$\operatorname{Calculer} \sum_{p \in \mathbb{N}^*} \left(\sum_{n \in \mathbb{N}^*, \ n \neq p} \frac{1}{n^2 - p^2} \right) \operatorname{et} \sum_{n \in \mathbb{N}^*} \left(\sum_{p \in \mathbb{N}^*, \ p \neq n} \frac{1}{n^2 - p^2} \right). \ \operatorname{Que} \ \operatorname{constatez-vous}?$$

Exercice no 17 (***)

 ${\rm Convergence\ et\ somme\ de\ la\ série\ de\ terme\ général\ } u_n = \frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1},\ n\geqslant 0.$

Exercice no 18 (****)

Pour $n\geqslant 1$, on note p_n le n-ème nombre premier. On veut montrer que $\sum_{n=1}^{+\infty}\frac{1}{p_n}=+\infty.$

- 1) Montrer que la série de terme général $\frac{1}{p_n}$ est de même nature que la série de terme général $\ln\left(\left(1-\frac{1}{p_n}\right)^{-1}\right)$.
- 2) En utilisant la décomposition d'un entier naturel supérieur ou égal à 2, montrer que

$$\forall N \in \mathbb{N}^*, \ \sum_{k=1}^N \frac{1}{k} \leqslant \sum_{n=1}^{+\infty} \ln \left(\left(1 - \frac{1}{p_n}\right)^{-1} \right).$$

Conclure.