MININTERN 최종보고서

기업명: TSN LAB

작성자: 노지훈

INDEX

- ▶ 과제 소개
- ▶ 설계 계획
- ▶ 코드 설명
- ▶ 결과

▶ GitHub: https://github.com/VET4/MiniIntern

본과제: 7 SEGMENT 구현하기

- > 7 segment 한 자리 표기하기 (0초부터 9초까지)
- > 9초를 넘으면 0초부터 시작
- ▶ 7 segment가 없으면? -> GPIO로 구현
- ▶ 보드가 없으면? -> Simulation 으로 구현 (해당 O)

추가 과제 1: 3자리수 표기하기

- ▶ 7 segment 3 자릿수 표기하기
- ▶ 000 ~ 999를 표기
- > 999를 넘으면 000부터 다시 시작하기

추가 과제 2: 분과 초 표기하기

- ▶ 타이머 분과 초 표기하기
- ▶ EX1) 000은 0분 00초
- ▶ EX2) 123은 1분 23초
- > 9분 59초 후에 다시 0분 00초부터 시작하기

Testbench 내부에 클럭과 리셋 입력변수 선언 (1클럭 = 1Hz) DUT 클럭과 리셋을 입력받고 내부에 total_count 변수를 선언하여 1초마다 1씩 증가 total_count변수를 60으로 나눈 값을 count2에 분값을 할당하고3.v [7:0] seg2 60으로 나는 나머지값을 자릿수 별로 count0, count1에 각각 값 할당 Counter > 9분59초(599초)가 지나면 모든 count 변수들 0으로 초기화 [7:0] seg1 Display ▶ 리셋이 동작하면 모든 count 변수들 0으로 초기화 [7:0] seg0 count0 가 자릿수의 숫자에 맞게 8비트로 seg0, seg1, seg2가 출력 ▶ 분과 초는 display 함수로 표기

TESTBENCH

- > segment의 dot부분도 포함하여 8비트의 출력 설정
- ▶ 처음 20초는 타이머 동작
- ▶ 그 후 20초는 리셋에 의한 0으로 초기화
- ▶ 그후 20초는 다시 타이머 동작 후 종료

```
// 현실시간과 매칭을 위해 1초 단위로 설정
     `timescale 1s/1ms
10
     module tb_7segment;
     reg clk;
     reg rst;
     wire [7:0] seg;
15
     // 1Hz 클럭 생성
     always
         #0.5 clk = ~clk;
     initial begin
         // 초기값 생성
        clk = 0;
21
22
         rst = 0;
23
     #20
         // 리셋 동작 확인
24
25
         rst = 1;
26
     #20
         // 재동작 확인
27
28
         rst = 0;
     #20
29
     $finish;
31
     end
32
     // dut 파일 연결
     dut_7segment DUT(
         .clk (clk),
36
         .rst
                (rst),
                (seg)
37
         .seg
38
     );
     endmodule
39
```

- ▶ Testbench와 마찬가지로 timescale 및 변수 선언
- ▶ 내부에서 사용할 count와 s 변수를 int와 reg로 선언
- ▶ 리셋이 1이면 count = 0으로 선언하여 초기화
- ▶ 리셋이 0이면 count는 1클럭(상승 엣지)마다 1씩 증가
- ▶ 내부 카운트는 상승 에지, segment는 하강 에지에서 출력되므로 count가 10이 아닌 9일때 0으로 초기화

```
// 현실시간과 매칭을 위해 1초 단위로 설정
      `timescale 1s/1ms
10
     module dut_7segment(
11
12
         input clk,
13
         input rst,
14
         output [7:0] seg
15
16
         integer count = 0;
17
         reg [7:0] s;
18
19
     // 리셋 여부에 대한 내부 count 동작 선언
     always @ (posedge clk) begin
20
         if (rst == 1) begin
21
22
             count = 0;
23
         end else begin
24
             if (count == 9) begin
25
                 count = 0;
26
             end else begin
                 count = count + 1;
27
28
             end
30 end
```

- ▶ 하강 에지에서 현재의 count값에 따라 segment 선언
- ▶ 최종 output인 seg에 현재 s값 할당하여 출력

```
// count 값에 따른 7-segment 선언
     always @ (negedge clk) begin
33
                 (count == 0) ? 8'b11111100: //0
34
35
                 (count == 1) ? 8'b01100000: //1
36
                 (count == 2) ? 8'b11011010: //2
37
                  (count == 3) ? 8'b11110010: //3
38
                  (count == 4) ? 8'b01100110: //4
                  (count == 5) ? 8'b10110110: //5
39
40
                 (count == 6) ? 8'b10111110: //6
41
                 (count == 7) ? 8'b11100000: //7
42
                 (count == 8) ? 8'b11111110: //8
43
                 (count == 9) ? 8'b11100110: 8'b00000000; // 9, error: 0
44
     end
45
     // 최종 output인 seg에 값 할당
     assign seg = s;
48
     endmodule
49
```

									32.148 s					
Name	Value	0.000 s	5.000 s	10.000 s	15.000 s	20.000 s	25.000 s	30.000 s		35.000 s	40.000 s	45.000 s	50.000 s	55.000 s
ሤ clk ሤ rst	0													
> 6 seg[7:0]	fc	(fc √60 √da √f2 √6	6 b6 be e0 fe e6	fc \ 60 \ da \ f2 \ 60	b6/be/e0/fe/e	6		fc			√60 √ da √ f2 √ 66	b6 be e0 fe e	6 / fc / 60 / da / f2 / 66	b6/be/e0/fe/e6

		32.148 s
Name	Value	0.000 s 10.000 s 15.000 s 20.000 s 25.000 s 30.000 s 35.000 s 40.000 s 45.000 s 50.000 s 55.000 s
[™] clk	0	
¼ rst > ₩ seg[7:0]	1 fc	fc \(60 \) da \(f2 \) 66 \(b6 \) be \(e0 \) fe \(e6 \) fc \(60 \) da \(f2 \) 66 \(b6 \) be \(e0 \) fe \(e6 \) fc \(60 \) da \(f2 \) 66 \(b6 \) be \(e0 \) fe \(e6 \) fc \(60 \) da \(f2 \) 66 \(b6 \) be \(e0 \) fe \(e6 \) fc \(60 \) da \(f2 \) 66 \(b6 \) be \(e0 \) fe \(e6 \) fc \(60 \) da \(f2 \) 66 \(b6 \) be \(e0 \) fe \(e6 \) fc \(e0 \) fe \(
		 0초부터 20초 구간 count가 1씩 증가하여 8비트 output seg의 값이 증가하는 숫자에 맞게 할당되어 선언됨 20초부터 40초 구간 rst = 1이 되어 초기화 조건이 걸려 count = 0이 되어 seg에 0xfc가 출력 40초부터 60초 구간 rst = 0이 되어다시 count가 1씩 증가하여 0초 ~ 20초 구간과 같게 동작하다 종료

TESTBENCH

- > 3개의 segment 출력 변수 선언
- > 999이상의 동작을 보기 위해 처음 1200초는 타이머 동작
- ▶ 그 후 20초는 리셋에 의한 0으로 초기화
- ▶ 그후 다시 1200초는 다시 타이머 동작후 종료

```
8 // 현실시간과 매칭을 위해 1초 단위로 설정
    `timescale 1s/1ms
10
    module tb_7segment_2;
12 reg clk;
13 reg rst;
14 wire [7:0] seg0;
15 wire [7:0] seg1;
    wire [7:0] seg2;
17
    // 1Hz 클럭 생성
    always
       #0.5 clk = ~clk;
21 initial begin
    // 초기값 생성
23 clk = 0;
       rst = 0;
    #1200 // 999이상까지 테스트
    | // 리셋 동작 확인
       rst = 1;
28
    #20
       // 재동작 확인
       rst = 0;
    #1200
    $finish;
33
    end
   // dut 파일 연결
36 dut_7segment_2 DUT(
        .clk (clk),
38 .rst (rst),
39 .seg0 (seg0),
40 .seg1 (seg1),
41 .seg2 (seg2)
42 );
43 endmodule
```

- ▶ Testbench와 마찬가지로 timescale 및 변수 선언
- ▶ 3자릿수에 맞게 seg 변수도 3개 선언
- ▶ 리셋이 1이면 total_count = 0으로 선언하여 초기화
- ▶ 리셋이 0이면 total_count는 1클럭마다 1씩 증가
- ▶ 10으로 나눈 몫과 나머지를 이용하여 각 자릿수를 분리하여 각 count 변수에 할당

```
9 // 현실시간과 매칭을 위해 1초 단위로 설정
     `timescale 1s/1ms
11
    module dut_7segment_2(
        input clk,
        input rst,
       // 3자릿수 Segment 인풋
        output [7:0] seg0,
17
        output [7:0] seg1,
18
        output [7:0] seg2
19 );
        // 000 ~ 999까지 세는 카운터용 변수 선언
20
        integer total_count = 0;
21
        // 자릿수 별 값 할당을 위한 변수 선언
22
        integer count0 = 0;
        integer count1 = 0;
24
        integer count2 = 0;
        reg [7:0] s0;
        reg [7:0] s1;
27
28
        reg [7:0] s2;
    // 리셋 여부에 대한 내부 count 동작 선언
    always @ (posedge clk) begin
       // 리셋 초기화 조건
        if (rst == 1) begin
           total count = 0;
        end else begin
           // 999 넘을 경우 초기화 조건
           if (total_count == 999) begin
37
               total_count = 0;
               count0 = 0;
40
               count1 = 0;
41
               count2 = 0;
            // 전체 카운터에서 각 자릿수로 할당하기 위해 숫자 분리
42
           end else begin
44
               total_count = total_count + 1;
               count0 = total_count % 10;
45
               count1 = ((total_count) / 10) % 10;
46
               count2 = ((total_count) / 100) % 10;
47
48
           end
49
        end
50 end
```

- ▶ 각 자릿수값을 세그먼트 표기값으로 변환하기 위해 task를 이용하여 반복되는 코드 단축
- ▶ 클럭의 하강에지에서 세그먼트 표기값을 할당해주는데이 경우에도 에러 방지를 위해 리셋 동작 초기화 조건을 삽입
- ▶ 최종 output인 각 seg에 현재 각 s값을 할당하여 출력

```
task convert(
         input [31:0] count,
         output reg [7:0] s
55 );
         case (count)
57
            0 : s = 8'b11111100; //0, d252
            1 : s = 8'b01100000; //1, d96
            2 : s = 8'b11011010; //2, d218
            3 : s = 8'b11110010; //3, d242
            4 : s = 8'b01100110; //4, d102
62
            5 : s = 8'b10110110; //5, d182
            6 : s = 8'b10111110; //6, d190
             7 : s = 8'b11100000; //7, d224
            8 : s = 8'b11111110; //8, d254
65
             9 : s = 8'b11100110; //9, d230
66
             default: s = 8'b00000000; //error
         endcase
     endtask
     // 각 count 값에 따른 7-segment 선언
     always @ (negedge clk) begin
         if (rst == 1) begin
74
            // 리셋 초기화
            total_count = 0;
             count0 = 0;
             count1 = 0;
78
             count2 = 0;
             s0 <= 8'b111111100;
             s1 <= 8'b111111100;
            s2 <= 8'b111111100;
81
         end else begin
82
83
            -// 자릿수 별 값 할당
            convert(count0, s0);
            convert(count1, s1);
             convert(count2, s2);
87
         end
88
     end
89
90 // 최종 output인 seg에 값 할당
91 assign seg0 = s0;
92   assign seg1 = s1;
93 assign seg2 = s2;
94
95 endmodule
```

결과 - 추가과제 1 (1)

TESTBENCH

- > 3개의 segment 출력 변수 선언
- > 599이상의 동작을 보기 위해 처음 1200초는 타이머 동작
- ▶ 그 후 20초는 리셋에 의한 0으로 초기화
- ▶ 그후 다시 1200초는 다시 타이머 동작 후 종료

```
- // 현실시간과 매칭을 위해 1초 단위로 설정
    `timescale 1s/1ms
10
    module tb_7segment_3;
    reg clk;
    reg rst;
    wire [7:0] seg0;
    wire [7:0] seg1;
    wire [7:0] seg2;
17
    // 1Hz 클럭 생성
    always
        #0.5 clk = ~clk;
    initial begin
       // 초기값 생성
       clk = 0;
        rst = 0;
    #1200 //599이상까지 테스트
       // 리셋 동작 확인
       rst = 1;
28
    #20
        // 재동작 확인
29
30
        rst = 0;
    #1200
31
    $finish;
33
    end
34
    // dut 파일 연결
    dut_7segment_3 DUT(
        .clk (clk),
     .rst (rst),
39 .seg0 (seg0),
40 .seg1 (seg1),
     .seg2 (seg2)
41
42 );
43 endmodule
```

- ▶ Testbench와 마찬가지로 timescale 및 변수 선언
- > 3자릿수에 맞게 seg 변수도 3개 선언
- ▶ 리셋이 1이면 total_count = 0으로 선언하여 초기화
- ▶ 리셋이 0이면 total_count는 1클럭마다 1씩 증가
- ▶ 60으로 나누어 분과 초를 분리하고 10으로 나누어 초의 각 자릿수를 분리하여 각 count 변수에 할당
- Display 사용 시 공백 제거를 위해 문자열로 변환하고 task를 사용하여 코드 단축

```
module dut_7segment_3(
        input clk,
        input rst,
        // 3자릿수 Segment 인풋
        output [7:0] seg0,
        output [7:0] seg1,
        output [7:0] seg2
20 );
        // 000 ~ 599까지 세는 카운터용 변수 선언
21
        integer total_count = 0;
        // 자릿수 별 값 할당을 위한 변수 선언
        integer count0 = 0;
        integer count1 = 0;
        integer count2 = 0;
27
        // 분과 초 표기를 위한용
        reg [7:0] digit0 = "0";
28
        reg [7:0] digit1 = "0";
        reg [7:0] digit2 = "0";
        reg [7:0] s0;
        reg [7:0] s1;
        reg [7:0] s2;
     // 분과 초 표기용 반복작업 task로 정의
                                             64
     task digit_converter(
        input [31:0] count,
        output [7:0] digit
39
40
        case (count)
            0 : digit = "0";
            1 : digit = "1";
            2 : digit = "2";
                                             72
              : digit = "3";
                                             73
            4 : digit = "4";
                                             74
            5 : digit = "5";
            6 : digit = "6";
            7 : digit = "7";
48
            8 : digit = "8";
            9 : digit = "9";
50
            default : digit = "0";
51
                                             80
                                            81 end
52
        endcase
53 endtask
                                             82
```

10 // 현실시간과 매칭을 위해 1초 단위로 설정

`timescale 1s/1ms

```
55 // 리셋 여부에 대한 내부 count 동작 선언
    always @ (posedge clk) begin
        // 리셋 초기화 조건
        if (rst == 1) begin
            total count = 0;
        end else begin
            // 599 넘을 경우 초기화 조건
            if (total_count == 599) begin
               total count = 0;
               count0 = 0;
               count1 = 0;
               count2 = 0;
            // 전체 카운터에서 각 자릿수로 할당하기 위해 숫자 분리
            end else begin
               total_count = total_count + 1;
               count2 = total_count / 60;
               count1 = (total_count % 60) / 10;
               count0 = (total_count % 60) % 10;
            end
        end
        // display를 위해 task 사용
        digit_converter(count2, digit2);
        digit converter(count1, digit1);
        digit_converter(count0, digit0);
```

- ▶ 각 자릿수값을 세그먼트 표기값으로 변환하기 위해 task를 이용하여 반복되는 코드 단축
- 클럭의 하강에지에서 세그먼트 표기값을 할당해주는데 이 경우에도 에러 방지를 위해 리셋 동작 초기화 조건을 삽입
- Display함수를 사용하여 콘솔창에 타이머 시간 출력-> 인식문제로 인해 min과 sec로 표기
- ▶ 최종 output인 각 seg에 현재 각 s값을 할당하여 출력

```
83 // 7 segment 할당 반복작업 task로 정의
     task convert(
          input [31:0] count,
         output reg [7:0] s
 87 );
 88
         case (count)
             0: s = 8'b111111100; //0, d252
             1 : s = 8'b01100000; //1, d96
             2 : s = 8'b11011010; //2, d218
 91
             3 : s = 8'b11110010; //3, d242
             4 : s = 8'b01100110; //4, d102
             5 : s = 8'b10110110; //5, d182
 94
             6 : s = 8'b10111110; //6, d190
             7 : s = 8'b11100000; //7, d224
             8 : s = 8'b11111110; //8, d254
             9 : s = 8'b11100110; //9, d230
 98
 99
             default: s = 8'b00000000; //error
100
         endcase
     endtask
L01
L02
     // count 값에 따른 7-segment 선언
      always @ (negedge clk) begin
         // 자릿수 별 값 할당
L05
         if (rst == 1) begin
L06
L07
             total_count = 0;
L08
             count0 = 0;
L09
             count1 = 0;
110
             count2 = 0;
111
             s0 <= 8'b111111100;
112
             s1 <= 8'b111111100;
L13
             s2 <= 8'b111111100;
114
         end else begin
115
             convert(count0, s0);
l16
             convert(count1, s1);
117
             convert(count2, s2);
L18
         // 분과 초 표기, 비바도에서 한글 인식 안돼서 영어로 표기
L19
         $display("count: [%d] : [%s]min [%s]sec : time: [%d]", total_count, digit2, {digit1,digit0}, $time);
L20
121 end
L22 // 최종 output인 seg에 값 할당
123   assign seg0 = s0;
124 assign seg1 = s1;
125 assign seg2 = s2;
126 endmodule
```


결과 - 추가과제 2 (2)

Q	Count: [578] : [9]min [38]sec : time: [578] count: [579] : [9]min [39]sec : time: [579] count: [580] : [9]min [40]sec : time: [580] count: [581] : [9]min [41]sec : time: [581] count: [582] : [9]min [42]sec : time: [582] count: [583] : [9]min [43]sec : time: [583] count: [584] : [9]min [44]sec : time: [584] count: [585] : [9]min [45]sec : time: [586] count: [587] : [9]min [47]sec : time: [587]	Tcl Console × Messages Q	? _ & [
# xsim {tb_7segment_3} -wdb {simulate_xsim_tb_7segment_3.wdb} -autoloadwcfg Time resolution is 1 ms	count: [578] : [9]min [38]sec : time: [578] count: [579] : [9]min [39]sec : time: [579] count: [580] : [9]min [40]sec : time: [580] count: [581] : [9]min [41]sec : time: [581] count: [582] : [9]min [42]sec : time: [582] count: [583] : [9]min [43]sec : time: [583] count: [584] : [9]min [44]sec : time: [584] count: [585] : [9]min [45]sec : time: [585] count: [586] : [9]min [46]sec : time: [586] count: [587] : [9]min [47]sec : time: [587]	count: [595] : [9]min [55]sec : time: [1195] count: [596] : [9]min [56]sec : time: [1196] count: [597] : [9]min [57]sec : time: [1197] count: [598] : [9]min [58]sec : time: [1198] count: [599] : [9]min [59]sec : time: [1199] count: [0] : [0]min [00]sec : time: [1200] count: [0] : [0]min [00]sec : time: [1201] count: [0] : [0]min [00]sec : time: [1202] count: [0] : [0]min [00]sec : time: [1203]	
☐ Time resolution is 1 ms	count: [579] : [9]min [39]sec : time: [579] count: [580] : [9]min [40]sec : time: [580] count: [581] : [9]min [41]sec : time: [581] count: [582] : [9]min [42]sec : time: [582] count: [583] : [9]min [43]sec : time: [584] count: [585] : [9]min [45]sec : time: [585] count: [586] : [9]min [46]sec : time: [586] count: [587] : [9]min [47]sec : time: [587]	count: [596] : [9]min [56]sec : time: [1196] count: [597] : [9]min [57]sec : time: [1197] count: [598] : [9]min [58]sec : time: [1198] count: [599] : [9]min [59]sec : time: [1200] count: [0] : [0]min [00]sec : time: [1201] count: [0] : [0]min [00]sec : time: [1202] count: [0] : [0]min [00]sec : time: [1203]	
count: [6] : [0]min [06]sec : time: [7] count: [7] : [0]min [07]sec : time: [7] count: [8] : [0]min [08]sec : time: [8] count: [9] : [0]min [08]sec : time: [9] count: [10] : [0]min [10]sec : time: [10] count: [10] : [0]min [11]sec : time: [11] count: [12] : [0]min [11]sec : time: [12] count: [13] : [0]min [13]sec : time: [12] count: [13] : [0]min [13]sec : time: [13] count: [14] : [0]min [13]sec : time: [14] count: [15] : [0]min [15]sec : time: [15] count: [16] : [0]min [15]sec : time: [16] count: [16] : [0]min [16]sec : time: [17] count: [17] : [0]min [18]sec : time: [17] count: [18] : [0]min [18]sec : time: [18] count: [19] : [0]min [19]sec : time: [19] count: [20] : [0]min [20]sec : time: [20] count: [20] : [0]min [21]sec : time: [21] count: [22] : [0]min [22]sec : time: [22] count: [23] : [0]min [23]sec : time: [24] count: [24] : [0]min [25]sec : time: [24] count: [25] : [0]min [25]sec : time: [26] count: [26] : [0]min [28]sec : time: [27] count: [28] : [0]min [28]sec : time: [28] count: [28] : [0]min [28]sec : time: [29] count: [28] : [0]min [28]sec : time: [29] count: [29] : [0]min [28]sec : time: [29] count: [29] : [0]min [28]sec : time: [29] count: [29] : [0]min [28]sec : time: [29] count: [29] : [0]min [28]sec : time: [29] count: [29] : [0]min [28]sec : time: [29] count: [29] : [0]min [28]sec : time: [30] count: [31] : [0]min [38]sec : time: [32] count: [33] : [0]min [38]sec : time: [34] count: [36] : [0]min [38]sec : time: [37] count: [38] : [0]min [38]sec : time: [38] count: [39] : [0]min [38]sec : time: [39] count: [39] : [0]min [38]sec : time: [39] count: [39] : [0]min [38]sec : time: [39] count: [39] : [0]min [39]sec : time: [39] count: [39] : [0]min [39]sec : time: [39] count: [39] : [0]min [39]sec : time: [39] count: [39] : [0]min [39]sec : time: [39] count: [39] : [0]min [39]sec : time: [39] count: [39] : [0]min [39]se	count:	Count: 0 : 0 min 00 sec : time: 1204	
count: [41] : [0]min [41]sec : time: [41] count: [42] : [0]min [42]sec : time: [42] count: [43] : [0]min [43]sec : time: [43] count: [44] : [0]min [44]sec : time: [44] count: [45] : [0]min [45]sec : time: [45] count: [46] : [0]min [46]sec : time: [46] count: [47] : [0]min [47]sec : time: [47] count: [48] : [0]min [48]sec : time: [48]	count: [23] : [0]min [23]sec : time: [623] count: [24] : [0]min [24]sec : time: [624] count: [25] : [0]min [25]sec : time: [625] count: [26] : [0]min [26]sec : time: [626] count: [27] : [0]min [27]sec : time: [627] count: [28] : [0]min [28]sec : time: [628] count: [29] : [0]min [29]sec : time: [629] count: [30] : [0]min [30]sec : time: [630]	count: [20] : [0]min [20]sec : time: [1240] count: [21] : [0]min [21]sec : time: [1241] count: [22] : [0]min [22]sec : time: [1242] count: [23] : [0]min [23]sec : time: [1243] count: [24] : [0]min [24]sec : time: [1244] count: [25] : [0]min [25]sec : time: [1245] count: [26] : [0]min [26]sec : time: [1246] count: [27] : [0]min [27]sec : time: [1247]	>
	Type a Tcl command here	Type a Tcl command here	

결과 - 추가과제 2 (2)

Tcl Console x Messages	Tcl Console × Messages	Tcl Console × Messages	? _ & 🖰
Q X ♦ □ □ □	Q X 0 II 0 III 1 1 1 1 1 1 1 1		
count: [count: [578] : [9] min [38] sec : time: [578] count: [579] : [9] min [39] sec : time: [579] count: [580] : [9] min [40] sec : time: [580] count: [581] : [9] min [41] sec : time: [582] count: [582] : [9] min [42] sec : time: [582] count: [583] : [9] min [42] sec : time: [582] count: [583] : [9] min [43] sec : time: [583] count: [584] : [9] min [44] sec : time: [584] count: [588] : [9] min [48] sec : time: [588] count: [588] : [9] min [48] sec : time: [588] count: [589] : [9] min [50] sec : time: [589] count: [589] : [9] min [51] sec : time: [591] count: [592] : [9] min [53] sec : time: [592] count: [593] : [9] min [54] sec : time: [594] count: [594] : [9] min [54] sec : time: [598] count: [598] : [9] min [58] sec : time: [598] count: [598] : [9] min [59] sec : time: [598] count: [598] : [9] min [59] sec : time: [598] count: [598] : [9] min [59] sec : time: [598] count: [598] : [9] min [59] sec : time: [600] count: [598] : [9] min [60] sec : time: [600] count: [1] : [0] min [00] sec : time: [602] count: [1] : [0] min [00] sec : time: [603] count: [1] : [0] min [00] sec : time: [603] count: [1] : [0] min [00] sec : time: [603] count: [1] : [0] min [00] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [1] : [0] min [10] sec : time: [603] count: [6	Count: [595] : [9]min [55]sec : time: [1195]	
	Type a Tcl command here	Type a Tcl command here	

이상입니다

THANKYOU