Theoretical Guarantees in Reinforcement Learning: Regret analysis

Shipra Agrawal

IEOR 8100 (Reinforcement Learning)

Quantifying the performance of RL algorithms

- Computational complexity
 - the amount of per-time-step computation the algorithm uses during learning;
- Space complexity
 - the amount of memory used by the algorithm;
- Learning complexity
 - a measure of how much experience the algorithm needs to learn in a given task.

Learning complexity analysis

- Using a single thread of experience
 - No resets or generative model

Vs.

Generative models (simulator)

http://hunch.net/~jl/projects/RL/EE.html

Learning complexity analysis

- Optimal learning complexity?
 - "optimally explore" meaning to obtain maximum expected discounted reward $E[\sum_{t=1}^{\infty} \gamma^{t-1} r_t]$ over a known prior over the unknown MDPs
 - Tractable in special cases ($\gamma < 1, MAB$, Gittins, 1989).

PAC analysis: single thread of experience

- Bound number of steps on which suboptimal policy is played
- near-optimally on all but a polynomial number of steps (Kakade, 2003; Strehl and Littman, 2008b, Strehl et al 2006, 2009)
- Example: [Strehl et al 2006] (may been improved in recent work)

Theorem 1 Let M be any MDP and let ϵ and δ be two positive real numbers. If Delayed Q-learning is executed on MDP M, then it will follow an ϵ -optimal policy on all but $O\left(\frac{SA}{(1-\gamma)^8\epsilon^4}\ln\frac{1}{\delta}\ln\frac{1}{\epsilon(1-\gamma)}\ln\frac{SA}{\delta\epsilon(1-\gamma)}\right)$ timesteps, with probability at least $1-\delta$.

Generative model: Sample complexity for ϵ optimal

Some examples:

- An O(SA) analysis of Q-learning.
 - Michael Kearns and Satinder Singh, Finite-Sample Convergence Rates for Q-learning and Indirect Algorithms NIPS 1999.
- An analysis of TD-lambda.
 - Michael Kearns and Satinder Singh, Bias-Variance Error Bounds for Temporal Difference Updates, COLT 2000.

Regret analysis

- Bound difference in total reward of algorithm compared to a benchmark policy
 - $Reg(M,T) = T \rho^*(s_0) E[\sum_{t=1}^{T} r_t]$
 - $\rho^*(s_0)$ is infinite horizon average reward achieved by the best stationary policy π^*
- Episodic/single thread
 - Episodic: starting state is reset every H steps
 - Single thread: assume Communicating with diameter D
- Worst-case regret bounds; example
 - Theorem [Agrawal, Jia, 2017]: For any communicating MDP M with (unknown) diameter D, and for $T \ge S^5 A$, our algorithm achieves: $\text{Regret}(M,T) \le \tilde{O}(D\sqrt{SAT})$
- Bayesian regret bounds: (expectation over known prior on MDP M); example
 - Theorem [Osband, Russo, Van Roy, 2013]: For any known prior distribution f on MDP M, our algorithm achieves in episodic setting: $\mathbb{E}_{\mathbf{M} \sim f}[\mathrm{Regret}(M,T)] \leq \tilde{O}(HS\sqrt{AT})$

Lecture overview

- Exploration-exploitation and regret minimization for multi-armed bandit
 - UCB
 - Thompson Sampling
- Regret minimization for RL (tabular)
 - UCRL
 - Posterior sampling based algorithms

Multi-armed bandit == single state MDP

Two armed bandit

Stochastic multi-armed bandit problem

- Online decisions
 - At every time step t = 1, ..., T, pull one arm out of N arms
- Stochastic feedback
 - For each arm i, reward is generated i.i.d. from a **fixed but unknown distribution** ν_i support [0,1], mean μ_i
- Bandit feedback
 - Only the reward of the pulled arm can be observed

The multi-armed bandit problem (Thompson 1933; Robbins 1952)

Multiple rigged slot machines in a casino.

Which one to put money on?

Try each one out

Arm == actions

WHEN TO STOP TRYING (EXPLORATION) AND START PLAYING (EXPLOITATION)?

Regret minimization problem

- Minimize expected regret in time T
 - $Regret(T) = T\mu^* E[\sum_{t=1}^{T} r_t]$ where $\mu^* = \max_j \mu_j$
- Equivalent formulation
 - Expected regret for playing arm $I_t = i$ at time t: $\Delta_i = \mu^* \mu_i$
 - $n_{i,T}$ be the number times arm i is played till time T
 - $Regret(T) = \sum_{t} (\mu^* \mu_{I_t}) = \sum_{i:\mu_i \neq \mu^*} \Delta_i E[n_{i,T}]$
- If we can bound $n_{i,T}$ by $\frac{C \log(T)}{\Delta_i^2}$, then regret bound: $\sum_{i:\mu_i\neq\mu^*} \frac{C \log(T)}{\Delta_i}$
 - Problem-dependent bound, close to lower bound [Lai and Robbins 1985]
- For problem independent bound: $C\sqrt{NTlog(T)}$
 - Separately bound total regret for playing an arm with $\Delta_i \leq \sqrt{\frac{N\log(T)}{T}}$ and $\Delta_i > \sqrt{\frac{N\log(T)}{T}}$
 - Lower bound $\Omega(\sqrt{NT})$,

The need for exploration

- Two arms black and red
 - Random rewards with unknown mean $\mu_1 = 1$. 1, $\mu_2 = 1$
 - Optimal expected reward in T time steps is $1.1 \times T$

- Exploit only strategy: use the current best estimate (MLE/empirical mean) of unknown mean to pick arms
- Initial few trials can mislead into playing red action forever

```
1.1, 1, 0.2,
1, 1, 1, 1, 1, 1, .....
```

• Expected regret in T steps is close to $0.1 \times T$

Exploration-Exploitation tradeoff

- Exploitation: play the empirical mean reward maximizer
- Exploration: play less explored actions to ensure empirical estimates converge

Upper confidence bound algorithms for MAB

Optimism under face of uncertainty

Empirical mean at time t for arm i

$$\hat{\mu}_{i,t} = \frac{\sum_{s=1: I_s=i}^{t} r_s}{n_{i,t}}$$

Upper confidence bound

$$UCB_{i,t} := \hat{\mu}_{i,t} + 2\sqrt{\frac{\ln t}{n_{i,t}}}$$

Algorithm 1: UCB algorithm for the stochastic N-armed bandit problem

```
for each t = 1, ..., N do
|Play arm t
end

for each t = N + 1, N + 2..., T do
|Play arm I_t = \arg\max_{i \in \{1...N\}} \text{UCB}_{i,t-1}.
|Observe r_t, compute UCB<sub>i,t</sub>
end
```

Regret analysis

• Using Azuma-Hoeffding (since $E[r_t|I_t=i]=\mu_i$), with probability $1-\frac{2}{t^2}$,

$$|\hat{\mu}_{i,t} - \mu_i| < \sqrt{\frac{4 \ln t}{n_{i,t}}}$$

- Two implications: for every arm i
 - $UCB_{i,t} > \mu_i$ with probability $1 \frac{2}{t^2}$

• If
$$n_{i,t} > \frac{16 \ln(T)}{\Delta_i^2}$$
 , $\hat{\mu}_{i,t} < \mu_i + \frac{\Delta_i}{2}$

Each suboptimal arm is played at most

$$\frac{16\ln(T)}{\Delta_i^2}$$
 times, since after that many plays:

Recall:
$$UCB_{i,t} := \hat{\mu}_{i,t} + 2\sqrt{\frac{\ln t}{n_{i,t}}}$$

$$\begin{aligned} \text{UCB}_{i,t} &= \hat{\mu}_{i,t} + \sqrt{\frac{\ln t}{n_{i,t}}} \leq \hat{\mu}_{i,t} + \frac{\Delta_i}{2} \\ &< \left(\mu_i + \frac{\Delta_i}{2}\right) + \frac{\Delta_i}{2} \\ &= \mu^* \\ &< \text{UCB}_{i^*,t} \end{aligned}$$

Thompson Sampling [Thompson, 1933]

- Natural and Efficient heuristic
- Maintain belief about parameters (e.g., mean reward) of each arm
- Observe feedback, update belief of pulled arm i in Bayesian manner
- Pull arm with posterior probability of being best arm
 - NOT same as choosing the arm that is most likely to be best

Posterior Sampling: main idea [Thompson 1933]

- Maintain Bayesian posteriors for unknown parameters
- With more trials posteriors concentrate on the true parameters
 - Mode captures MLE: enables exploitation
- Less trials means more uncertainty in estimates
 - Spread/variance captures uncertainty: enables exploration
- A sample from the posterior is used as an estimate for unknown parameters to make decisions

Bernoulli rewards, Beta priors

Uniform distribution Beta(1,1)

 $Beta(\alpha, \beta)$ prior \Rightarrow Posterior

- $Beta(\alpha + 1, \beta)$ if you observe 1
- $Beta(\alpha, \beta + 1)$ if you observe 0

Start with $Beta(\alpha_0,\beta_0)$ prior belief for every arm In round t,

- For every arm i, sample $heta_{i,t}$ independently from posterior B $eta(lpha_0+S_{i,t},eta_0+F_{i,t})$
- Play arm $i_t = \max_i \theta_{i,t}$
- Observe reward and update the Beta posterior for arm i_t

Bayesian regret bounds for Thompson Sampling

• Theorem [Russo and Van Roy 2014]: Given any prior f over MAB instance M described by reward distributions with [0,1] bounded support (e.g., prior distribution over $\mu_1, \mu_2, ..., \mu_N$ in case of Bernoulli rewards)

BayesianRegret
$$(T) = E_{M \sim f}[Regret(T, M)] \le O(\sqrt{NT \ln T})$$

Note;

- Regret(T, M) notation is used to explicitly indicate dependence on regret on the MAB instance M.
- In comparison, worst case regret,

$$Regret(T) = max_M[Regret(T, M)]$$

Worst-case regret bounds

[A. and Goyal COLT 2012, AISTATS 2013, JACM 2017, Kaufmann et al. 2013]

Instance-dependent bounds for {0,1} rewards

- Regret $(T) \leq \ln(T)(1+\epsilon) \sum_{i} \frac{\Delta_i}{KL(\mu^*||\mu_i)} + O(\frac{N}{\epsilon^2})$
 - Matches asymptotic instance wise lower bound [Lai Robbins 1985]
 - UCB algorithm achieves this only after careful tuning [Kaufmann et al. 2012]

Arbitrary bounded [0,1] rewards (using Beta and Gaussian priors)

- Regret $(T) \leq O(\ln(T) \sum_{i} \frac{1}{\Delta_i})$
 - Matches the best available for UCB for general reward distributions

Instance-independent bounds (Beta and Gaussian priors)

- Regret $(T) \leq O(\sqrt{NT \ln T})$
- Prior and likelihood mismatch allowed!

Why does it work? Two arms example

- Two arms, $\mu_1 \ge \mu_2$, $\Delta = \mu_1 \mu_2$
- Every time arm 2 is pulled, Δ regret
- Bound the number of pulls of arm 2 by $\frac{\log(T)}{\Delta^2}$ to get $\frac{\log(T)}{\Delta}$ regret bound
 - How many pulls of arm 2 are actually needed?

Easy situation

After n=
$$O(\frac{\log(T)}{\Delta^2})$$
 pulls of arm 2 and arm 1

Empirical means are well separated

Error
$$|\widehat{\mu_i} - \mu_i| \le \sqrt{\frac{\log(T)}{n}} \le \frac{\Delta}{4}$$
 whp (Using Azuma Hoeffding inequality)

Beta Posteriors are well separated

Mean =
$$\frac{\alpha_i}{\alpha_i + \beta_i} = \widehat{\mu_i}$$

standard deviation $\simeq \frac{1}{\sqrt{\alpha + \beta}} = \frac{1}{\sqrt{n}} \le \frac{\Delta}{4}$

The two arms can be distinguished! No more arm 2 pulls.

Easy situation

- If arm 2 is pulled less than $n=O(\frac{\log(T)}{\Delta^2})$ times?
 - Regret is at most $n\Delta = \frac{\log(T)}{\Delta}$

Difficult situation

• At least $\frac{\log(T)}{\Delta^2}$ pulls of arm 2, but few pulls of arm 1

Main insight

- Arm 1 will be played roughly every constant number of steps in this situation
- It will take at most $constant \times \frac{\log T}{\Delta^2}$ steps (extra pulls of arm 2) to get out of this situation
- Total number of pulls of arm 2 is at most $O(\frac{\log T}{\Delta^2})$

- Summary: variance of posterior enables exploration
- Optimal bounds (and for multiple arms) require more careful use of posterior structure

Next...

Using UCB and TS ideas for exploration-exploitation in RL

The need for exploration

- Single state MDP
 - Solution concept: optimal action
 - Multi-armed bandit problem
- Uncertainty in rewards
 - Random rewards with unknown mean μ_1 , μ_2
- Exploit only: use the current best estimate
 (MLE/empirical mean) of unknown mean to pick arms
- Initial few trials can mislead into playing red action forever

The need for exploration

- Uncertainty in rewards, state transitions
- Unknown reward distribution, transition probabilities
- Exploration-exploitation:
 - Explore actions/states/policies, learn reward distributions and transition model
 - Exploit the (seemingly) best policy

Summary of recent work

Upper confidence bound based algorithms [Jaksch, Ortner, Auer, 2010] [Bartlett, Tewari, 2012]

- Worst-case regret bound $\tilde{O}(DS\sqrt{AT})$ for communicating MDP
- Lower bound $\Omega(\sqrt{DSAT})$

Optimistic Posterior Sampling [A. Jia 2017]

- Worst-case regret bound $\tilde{O}(D\sqrt{SAT})$ for communicating MDP of diameter D
- Improvement by a factor of \sqrt{S}

Optimistic Value iteration [Azar, Osband, Munos, 2017]

• Worst-case reget bound $\tilde{O}(\sqrt{HSAT})$ in episodic setting

Posterior sampling known prior setting [Osband, Russo, and Van Roy 2013, Osband and Van Roy, 2016, 2017]b

• Bayesian regret bound of $\tilde{O}(H\sqrt{SAT})$ in episodic setting, length H episodes

Next...

- >UCRL: Upper confidence bound based algorithm for RL
- Posterior sampling based algorithm for RL
 - Main result
 - Proof techniques

UCRL algorithm [Jacksch, Ortner, Auer 2002]

Similar principles as UCB

This is a *Model-based approach*

- Maintain an estimate of model \hat{P} , \hat{R}
- Occassionally solve the MDP $(S, A, \hat{P}, \hat{R}, s_1)$ to find a policy
- Run this policy for some time to get samples, and update model estimate

Compare to ``model-free" approach or direct learning approach like Q-learning

Directly update Q-values or value function or policy using samples.

UCRL algorithm

 Proceed in epochs, an epoch ends when the number of visits of some stateaction pair doubles.

In the beginning of every epoch k

- Use samples to compute an optimistic MDP (S, A, \tilde{R} , \tilde{P} , s_1)
 - MDP with value greater than true MDP (Upper bound!!)
- Solve the optimistic MDP to find optimal policy $\tilde{\pi}$

Execute $\tilde{\pi}$ in epoch k

• observe samples s_t, r_t, s_{t+1}

Go to next epoch If visits of *some* state-action pair doubles

• If $n_k(s, a) \ge 2 n_{k-1}(s, a)$ for some s, a

UCRL algorithm (computing optimistic MDP)

In the beginning of every epoch k

- For every s, a, compute **empirical** model estimate
 - let $n_k(s, a)$ be the number of times s, a was visited before this epoch,
 - let $n_k(s, a, s')$ be the number of transition to s'
 - Set $\hat{R}(s, a)$ as average reward over these $n_k(s, a)$ steps
 - Set $\hat{P}(s, a, s')$ as $\frac{n_k(s, a, s')}{n_k(s, a)}$
- Compute optimistic model estimate
 - Use Chernoff bounds to define confidence region around \hat{R} , \hat{P}

$$|\widehat{P}(s, a, s') - P(s, a, s')| \le \frac{\log(t)}{\sqrt{n_k(s, a)}}$$
 with probability $1 - \frac{1}{t^2}$

- True R, P lies in this region
- Find the best combination , \tilde{R} , \tilde{P} in this region
 - MDP (S, A, \tilde{R} , \tilde{P} , s_1) with maximum value
 - Will have value more than the true MDP

Main result

Recall regret:

Regret(M,T) =
$$T \rho^* - \sum_{t=1}^{T} r(s_t, a_t)$$

• <u>Theorem:</u> For any **communicating** MDP M with (unknown) diameter D, with high probability:

$$Regret(M,T) \leq \tilde{O}(DS\sqrt{AT})$$

• $\tilde{O}(\cdot)$ notation hides logarithmic factors in S,A,T beyond constants.

Next...

- Our setting, regret definition
- **▶ Posterior sampling algorithm** for MDPs
 - Main result
 - Proof techniques

Posterior Sampling: main idea [Thompson 1933]

- Maintain Bayesian posteriors for unknown parameters
- With more trials posteriors concentrate on the true parameters
 - Mode captures MLE: enables exploitation
- Less trials means more uncertainty in estimates
 - Spread/variance captures uncertainty: enables exploration
- A sample from the posterior is used as an estimate for unknown parameters to make decisions

Posterior Sampling: Bayesian posteriors

- Assume for simplicity: Known reward distribution
- Needs to learn the unknown transition probability vector $P_{s,a} = (P_{s,a}(1), ..., P_{s,a}(S))$ for all s,a
- In any state $s_t = s$, $a_t = a$, observes new state s_{t+1}
 - outcome of a Multivariate Bernoulli trial with probability vector $P_{s,a}$

Posterior Sampling with Dirichlet priors

- Given prior Dirichlet($\alpha_1, \alpha_2, ..., \alpha_S$) on $P_{s,a}$
- After a Multinoulli trial with outcome (new state) i, Bayesian posterior on $P_{s,a}$ Dirichlet $(\alpha_1, \alpha_2, ..., \alpha_i + 1, ..., \alpha_S)$
- After $n_{s,a} = \alpha_1 + \cdots + \alpha_S$ observations for a state-action pair s,a
 - Posterior mean vector is empirical mean

$$\widehat{P}_{s,a}(i) = \frac{\alpha_i}{\alpha_1 + \dots + \alpha_S} = \frac{\alpha_i}{n_{s,a}}$$

- variance bounded by $\frac{1}{n_{s,a}}$
- With more trials of s, a, the posterior mean concentrates around true mean

Posterior Sampling for RL (Thompson Sampling)

Learning

- Maintain a Dirichlet posterior for $P_{s,a}$ for every s,a
 - After round t, on observing outcome s_{t+1} , update for state s_t and action a_t

To decide action

- Sample a $\tilde{P}_{s,a}$ for every s,a
- Compute the optimal policy $\tilde{\pi}$ for sample MDP $(S, A, \tilde{P}, r, s_0)$
- Choose $a_t = \tilde{\pi}(s_t)$

Exploration-exploitation

- Exploitation: With more observations Dirichlet posterior concentrates, $\tilde{P}_{s,a}$ approaches empirical mean $\hat{P}_{s,a}$
- Exploration: Anti-concentration of Dirichlet ensures exploration for states/actions/policies less explored

Optimistic Posterior Sampling [A., Jia, NIPS 2017]

• Proceed in epochs, an epoch ends when the number of visits $N_{s,a}$ of any state-action pair doubles.

In every epoch

- For every s,a, generate **multiple** $\psi=\tilde{O}(S)$ independent samples from a Dirichlet posterior for $P_{s,a}$
- Form **extended** sample MDP $(S, \psi A, \tilde{P}, r, s_0)$
- Find optimal policy $\tilde{\pi}$ and use through the epoch

Further, initial exploration:

• For s,a with very small $N_{s,a}<\sqrt{\frac{TS}{A}}$, use a simple optimistic sampling, that provides extra exploration

Main result [A., Jia NIPS 2017]

- An algorithm based on posterior sampling with high probability near-optimal worst-case regret upper bound
- Recall regret:

Regret(M,T) =
$$T \rho^* - \sum_{t=1}^{T} r(s_t, a_t)$$

• <u>Theorem:</u> For any **communicating** MDP M with (unknown) diameter D, and for $T \ge S^5 A$, with high probability:

$$Regret(M,T) \leq \tilde{O}(D\sqrt{SAT})$$

• Improvement of \sqrt{S} factor above UCB based algorithm