Data Analysis: Statistical Modeling and Computation in Applications

Correlation and Least Squares Regression

Outline

- Correlation
- Regression line
- Evaluation
- Multiple regression
- Computing the estimator
- Variable selection and regularization

Scatter diagram: height of 1078 fathers and their sons

Is there an association? What kind?

Data: Pearson K and Lee A. (1903). On the laws of inheritance in man. Biometrika, 2:357-462. Downloaded from https://myweb.uiowa.edu/pbreheny/data/pearson.html

• average \bar{x} , \bar{y}

• average \bar{x} , \bar{y} fathers: $\bar{x} \approx 68$, sons: $\bar{y} \approx 69$

- average \bar{x} , \bar{y} fathers: $\bar{x} \approx 68$, sons: $\bar{y} \approx 69$
- standard deviation

$$s_x = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

here: $s_x \approx s_y \approx 2.7$

- average \bar{x} , \bar{y} fathers: $\bar{x} \approx 68$, sons: $\bar{y} \approx 69$
- standard deviation

$$s_x = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

here: $s_x \approx s_y \approx 2.7$

• correlation coefficient $r \approx 0.5$

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{\text{cov}(x, y)}{s_x s_y}$$

(convert to standard units and take average product)

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{\text{cov}(x, y)}{s_x s_y}$$

(convert to standard units and take average product)

symmetric

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{\text{cov}(x, y)}{s_x s_y}$$

(convert to standard units and take average product)

- symmetric
- Why standard units?

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{\text{cov}(x, y)}{s_x s_y}$$

(convert to standard units and take average product)

- symmetric
- **2** Why standard units? adding or multiplying constants to all x_i or y_i does not change r
- **3** What does $r \approx 0.5$ mean?

What does the Correlation coefficient mean? (1)

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

measures *linear* association between variables:
 how much change of y is associated with change of x by 1 unit

What does the Correlation coefficient mean? (1)

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

measures *linear* association between variables:
 how much change of y is associated with change of x by 1 unit

What does the Correlation coefficient mean? (2)

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

• measures *clusteredness* along a line: $-1 \le r \le 1$ sign?

2.
$$r = -1$$

3.

4

5.

1.
$$r = 1$$

2.
$$r = -1$$

3.

4.
$$r = 0$$

5

1.
$$r = 1$$

3.
$$r = -0.8$$

4.
$$r = 0$$

1.
$$r = 1$$

2.
$$r = -1$$

3.
$$r = -0.8$$

4.
$$r = 0$$

5.
$$r = 0$$

1.
$$r = 1$$

5.
$$r = 0$$

2.
$$r = -1$$

4.
$$r = 0$$

6.
$$r = 0$$

Careful with nonlinearities and outliers!

Correlation coefficient: summary

$$r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right)$$

- measures *linear* association between variables:
- measures clusteredness along a line
- symmetric (swapping x and y)
- ullet between -1 and 1, and invariant to
 - adding a constant to all x_i or all y_i
 - multiplying to all x_i (all y_i) by a positive constant

Data Analysis: Statistical Modeling and Computation in Applications

Correlation and Least Squares Regression Part 4

Outline

- Correlation
- Regression line
- Evaluation
- Multiple regression
- Computing the estimator
- Variable selection and regularization

•	Model:	$y_i = \beta_0 +$	- $x_{i1}\beta_1$	$+x_{i2}\beta_2$	$+\epsilon_i$

ozone	radiation	temp
41	190	67
36	118	72
12	149	74
18	313	62

Xi

ozone	radiation	temp
41	190	67
36	118	72
12	149	74
18	313	62

- Model: $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$
- vector form: $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$

ozone	radiation	temp
41	190	67
36	118	72
12	149	74
18	313	62

•	Model:	$y_i = \beta_0$	$+x_{i1}\beta_1$	$+ x_{i2}\beta_2$	$+\epsilon_{i}$	_
---	--------	-----------------	------------------	-------------------	-----------------	---

• vector form: $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$

• Matrix-vector form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$

$$\begin{array}{c}
4 \mid = \beta_0 + |90\beta_1 + 67\beta_2 + \epsilon_1 \\
\begin{pmatrix} 41 \\ 36 \\ 12 \\ 18 \end{pmatrix} = \begin{pmatrix} 1/190 & 67 \\ 1 & 118 & 72 \\ 1 & 149 & 74 \\ 1 & 313 & 62 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{pmatrix}$$

ozone	radiation	temp
41	190	67
36	118	72
12	149	74
18	313	62

• Model:
$$y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$$

• vector form: $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$

• Matrix-vector form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$

ullet y dependent / response variable: N imes 1

ozone	radiation	temp
41	190	67
36	118	72
12	149	74
18	313	62

• Model:
$$y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$$

• vector form: $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$

• Matrix-vector form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$

• **y** dependent / response variable: $N \times 1$

ullet X design matrix: N imes p

$$\begin{pmatrix} 41\\ 36\\ 12\\ 18 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 190 & 67\\ 1 & 118 & 72\\ 1 & 149 & 74\\ 1 & 313 & 62 \end{pmatrix} \begin{pmatrix} \beta_0\\ \beta_1\\ \beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1\\ \epsilon_2\\ \epsilon_3\\ \epsilon_4 \end{pmatrix}$$

ozone	radiation	temp
41	190	67
36	118	72
12	149	74
18	313	62

• Model:
$$y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$$

- vector form: $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$
- Matrix-vector form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$
 - ullet y dependent / response variable: ${\it N} imes 1$
 - X design matrix: N × p
 β parameters: p × 1

$$\begin{pmatrix} 41\\36\\12\\18 \end{pmatrix} = \begin{pmatrix} 1&190&67\\1&118&72\\1&149&74\\1&313&62 \end{pmatrix} \begin{pmatrix} \beta_0\\\beta_1\\\beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1\\\epsilon_2\\\epsilon_3\\\epsilon_4 \end{pmatrix}$$

ozone	radiation	temp
41	190	67
36	118	72
12	149	74
18	313	62

• Model:
$$y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$$

- vector form: $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$
- Matrix-vector form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$
 - **y** dependent / response variable: $N \times 1$
 - **X** design matrix: $N \times p$
 - ullet eta parameters: p imes 1
 - ϵ : random error / disturbances ϵ_i are iid, $\mathbb{E}[\epsilon_i] = 0$, $Var(\epsilon_i) = \sigma^2$

$$\begin{pmatrix} 41\\36\\12\\18 \end{pmatrix} = \begin{pmatrix} 1 & 190 & 67\\1 & 118 & 72\\1 & 149 & 74\\1 & 313 & 62 \end{pmatrix} \begin{pmatrix} \beta_0\\\beta_1\\\beta_2 \end{pmatrix} + \begin{pmatrix} \epsilon_1\\\epsilon_2\\\epsilon_3\\\epsilon_4 \end{pmatrix}$$

• Simple linear regression:

$$p = 2, X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix}, \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, y_i = \beta_0 + \beta_1 x_1$$

• Simple linear regression:

$$p = 2, \ X = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \ y_i = \beta_0 + \beta_1 x_1$$

Quadratic (polynomial) regression:

$$p = 3, \ X = \begin{pmatrix} 1 & x_1 & x_1^2 \\ \vdots & \vdots & \vdots \\ 1 & x_N & X_N^2 \end{pmatrix}, \ \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}, \ y_i = \beta_0 + \beta_1 x_{i1} + \underline{\beta_2 x_{i1}^2}$$

• **Effect on groups**. Consider an example where we have data obtained on different days. The effect of the days can be modeled as

$$y_i = \underbrace{\beta_0}_{\text{day 1}} + \underbrace{\beta_1}_{\text{day 2}} + \underbrace{\beta_2}_{\text{day 3}} + \epsilon_i$$

• **Effect on groups**. Consider an example where we have data obtained on different days. The effect of the days can be modeled as

$$y_i = \underbrace{\beta_0}_{\text{day 1}} + \underbrace{\beta_1}_{\text{day 2}} + \underbrace{\beta_2}_{\text{day 3}} + \epsilon_i$$

$$p = 3, \quad X = \begin{pmatrix} 1 & 0 & 0 \\ \hline 1 & 0 & 0 \\ \hline \vdots & \vdots & \vdots \\ \hline 0 & 1 & 0 \\ \vdots & \vdots & \vdots \\ \hline 0 & 0 & 1 \\ \vdots & \vdots & \vdots \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix}$$

temp
67
72
74
62

• Model:
$$y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$$

- vector form: $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$
- Matrix-vector form: $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$
 - **y** dependent / response variable: $N \times 1$
 - **X** design matrix: $N \times p$
 - ullet eta parameters: p imes 1
 - ϵ : random error / disturbances ϵ_i are iid, $\mathbb{E}[\epsilon_i] = 0$, $Var(\epsilon_i) = \sigma^2$

$$\begin{pmatrix} 41\\36\\12\\18 \end{pmatrix} = \begin{pmatrix} 1&190&67\\1&118&72\\1&149&74\\1&313&62 \end{pmatrix} \begin{pmatrix} \beta_0\\\beta_1\\\beta_2\\ \end{pmatrix} + \begin{pmatrix} \epsilon_1\\\epsilon_2\\\epsilon_3\\\epsilon_4 \end{pmatrix}$$

$$\nearrow \qquad \swarrow \qquad \swarrow \qquad \swarrow \qquad \qquad \swarrow \qquad \qquad \downarrow$$

- model: $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$
- fitted values: $\hat{y}_i = \hat{\beta}_0 + x_{i1}\hat{\beta}_1 + x_{i2}\hat{\beta}_2$ • $\hat{y}_i = \mathbf{x}_i\hat{\boldsymbol{\beta}}$

- model: $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$
- fitted values: $\hat{y}_i = \hat{\beta}_0 + x_{i1}\hat{\beta}_1 + x_{i2}\hat{\beta}_2$ or $\hat{y}_i = \mathbf{x}_i\hat{\boldsymbol{\beta}}$
- least squares:

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{N} (y_i - \mathbf{x}_i \boldsymbol{\beta})^2 = \arg\min_{\beta} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

- model: $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$
- fitted values: $\hat{y}_i = \hat{\beta}_0 + x_{i1}\hat{\beta}_1 + x_{i2}\hat{\beta}_2$ or $\hat{y}_i = \mathbf{x}_i\hat{\boldsymbol{\beta}}$
- least squares:

$$\hat{eta} = \arg\min_{eta} \sum_{i=1}^{N} (y_i - \mathbf{x}_i \boldsymbol{\beta})^2 = \arg\min_{eta} \|\mathbf{y} - \mathbf{X} \boldsymbol{\beta}\|^2$$

setting derivative to zero gives normal equations

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\mathsf{I}} \quad \mathbf{X}^{\mathsf{T}}\mathbf{X}\hat{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- model: $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$
- fitted values: $\hat{y}_i = \hat{\beta}_0 + x_{i1}\hat{\beta}_1 + x_{i2}\hat{\beta}_2$ or $\hat{y}_i = \mathbf{x}_i\hat{\boldsymbol{\beta}}$
- least squares:

$$\hat{eta} = \arg\min_{eta} \sum_{i=1}^{N} (y_i - \mathbf{x}_i oldsymbol{eta})^2 = \arg\min_{eta} \|\mathbf{y} - \mathbf{X} oldsymbol{eta}\|^2$$

• setting derivative to zero gives normal equations

$$\mathbf{X}^{ op}\mathbf{X}\hat{eta} = \mathbf{X}^{ op}\mathbf{y}$$

ullet if $\mathbf{X}^{ op}\mathbf{X}$ is invertible, then $\hat{eta}=(\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$

- model: $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$
- fitted values: $\hat{y}_i = \hat{\beta}_0 + x_{i1}\hat{\beta}_1 + x_{i2}\hat{\beta}_2$ or $\hat{y}_i = \mathbf{x}_i\hat{\boldsymbol{\beta}}$
- least squares:

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{N} (y_i - \mathbf{x}_i \boldsymbol{\beta})^2 = \arg\min_{\beta} \|\mathbf{y} - \mathbf{X} \boldsymbol{\beta}\|^2$$

• setting derivative to zero gives *normal equations*

$$\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}^{\top}\mathbf{y}$$

- ullet if $\mathbf{X}^{ op}\mathbf{X}$ is invertible, then $\hat{eta}=(\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$
- fitted values: $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta} = \underbrace{\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}}_{\text{"hat matrix"}}\mathbf{y}$

Deriving the normal equations

• least squares objective:

$$f(\beta) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i \beta)^2 = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta)$$

Deriving the normal equations

• least squares objective:

$$f(\beta) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i \beta)^2 = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta)$$

set gradient to zero. Gradient is the vector of partial derivatives:

Deriving the normal equations

• least squares objective:

$$f(\beta) = \sum_{i=1}^{N} (y_i - \mathbf{x}_i \beta)^2 = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta)$$

set gradient to zero. Gradient is the vector of partial derivatives:

$$\nabla_{\beta}f(\beta) = \begin{pmatrix} \frac{\partial f}{\partial \beta_0} \\ \frac{\partial f}{\partial \beta_1} \\ \vdots \\ \frac{\partial f}{\partial \beta_{p-1}} \end{pmatrix} \leftarrow \begin{pmatrix} \frac{\partial f}{\partial \beta_0} \\ \frac{\partial f}{\partial \beta_0} \\ \vdots \\ \frac{\partial f}{\partial \beta_{p-1}} \end{pmatrix}$$
If β is $p \times 1$, then $\nabla_{\beta}f(\beta)$ is $p \times 1$.

Partial derivative

• example: 1 data point, p = 2:

$$f(\beta) = (y_1 - \underbrace{x_1(\beta_1) - \beta_0})^2 \qquad \beta = 0$$

Partial derivative

• example: 1 data point, p = 2:

$$f(\beta) = (y_1 - \underbrace{x_{11}}_{\beta_1} \beta_1 - \beta_0)^{\bigcirc}$$

derivative:

$$f(\beta) = (y_1 - x_{11}\beta_1 - \beta_0)^{\bigcirc}$$

$$\frac{\partial f}{\partial \beta_1} = -\bigcirc x_{11}(y_1 - x_{11}\beta_1 - \beta_0) \stackrel{!}{=} \bigcirc$$

Partial derivative

• example: 1 data point, p = 2:

$$f(\beta) = (y_1 - x_{11}\beta_1 - \beta_0)^2$$

derivative:

$$\frac{\partial f}{\partial \beta_1} = -2x_{11}(y_1 - x_{11}\beta_1 - \beta_0)$$

similarly:

$$\nabla_{\beta} f(\beta) = -2\mathbf{X}^{\top} (\mathbf{y} - \mathbf{X}\beta) = 0$$

$$\mathbf{X}\beta = \mathbf{X}^{\top} \mathbf{Y}\mathbf{Y}$$

Data Analysis: Statistical Modeling and Computation in Applications

Correlation and Least Squares Regression Part 5

Outline

- Correlation
- Regression line
- Evaluation
- Multiple regression
- Computing the estimator
- Variable selection and regularization

- model: $y_i = \beta_0 + x_{i1}\beta_1 + x_{i2}\beta_2 + \epsilon_i$
- fitted values: $\hat{y}_i = \hat{\beta}_0 + x_{i1}\hat{\beta}_1 + x_{i2}\hat{\beta}_2$ or $\hat{y}_i = \mathbf{x}_i\hat{\boldsymbol{\beta}}$
- least squares:

$$\hat{eta} = \arg\min_{eta} \sum_{i=1}^{N} (y_i - \mathbf{x}_i oldsymbol{eta})^2 = \arg\min_{eta} \|\mathbf{y} - \mathbf{X} oldsymbol{eta}\|^2$$

• setting derivative to zero gives normal equations

$$\mathbf{X}^{\top}\mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}^{\top}\mathbf{y}$$

ullet if ${f X}^{ op}{f X}$ is invertible, then $\hat{eta}=({f X}^{ op}{f X})^{-1}{f X}^{ op}{f y}$

When is X^TX invertible?

• if $\mathbf{X}^{\top}\mathbf{X}$ has full rank:

When is $\mathbf{X}^{\top}\mathbf{X}$ invertible?

- if $\mathbf{X}^{\top}\mathbf{X}$ has full rank:
- N ≥ p

$$\beta_0 + 2\beta_1 = 5$$

When is $\mathbf{X}^{\top}\mathbf{X}$ invertible?

- if $\mathbf{X}^{\top}\mathbf{X}$ has full rank:
- N ≥ p
- all columns of X linearly independent

If p > N...

Regularize!

If p > N...

Regularize!

• ℓ_2 **penalty**: minimize

$$\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \lambda \underbrace{\|\boldsymbol{\beta}\|_2^2}_{\sum_{j=0}^{p-1} \beta_j^2}$$

penalizes large values of β_j always unique $\hat{\beta}$.

If p > N...

Regularize!

• ℓ_2 **penalty**: minimize

$$\sum_{i=1}^{N}(y_i-\hat{y}_i)^2+\lambda\underbrace{\|\boldsymbol{\beta}\|_2^2}_{\sum_{j=0}^{p-1}\beta_j^2}$$

penalizes large values of β_j always unique $\hat{\boldsymbol{\beta}}$.

• ℓ_1 penalty (Lasso): minimize

$$\sum_{i=1}^{N}(y_i-\hat{y}_i)^2+\lambda\underbrace{\|oldsymbol{eta}\|_1}_{\sum_{j=0}^{p-1}|eta_j|},$$

prefers sparse β (few nonzero coordinates)

 $\beta_j = 0$ would mean I exclude variable j from the prediction.

 $\beta_i = 0$ would mean I exclude variable j from the prediction.

• **Idea:** β_i is a random variable. Do a t-test!

 $\beta_i = 0$ would mean I exclude variable j from the prediction.

- **Idea:** β_i is a random variable. Do a t-test!
- Recall: model and estimator:

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i, \quad \mathbb{E}[\epsilon_i] = \sigma^2$$
 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$

 $\beta_i = 0$ would mean I exclude variable j from the prediction.

- **Idea:** β_i is a random variable. Do a t-test!
- Recall: model and estimator:

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i, \quad \mathbb{E}[\epsilon_i] = \sigma^2$$
 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$

• OLS is (conditionally) unbiased: $\mathbb{E}[\hat{\beta}|X] = \beta$.

 $\beta_i = 0$ would mean I exclude variable j from the prediction.

- **Idea:** β_i is a random variable. Do a t-test!
- Recall: model and estimator:

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i, \quad \mathbb{E}[\epsilon_i] = \sigma^2$$
 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$

- OLS is (conditionally) unbiased: $\mathbb{E}[\hat{\beta}|X] = \beta$.
- Gaussianity: If $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, model correct and **X** fixed, then $\hat{\boldsymbol{\beta}}$ is normal: $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1})$

 $\beta_i = 0$ would mean I exclude variable j from the prediction.

- **Idea:** β_i is a random variable. Do a t-test!
- Recall: model and estimator:

$$y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i, \quad \mathbb{E}[\epsilon_i] = \sigma^2$$
 $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$

- ullet OLS is (conditionally) unbiased: $\mathbb{E}[\hat{eta}|\mathbf{X}]=eta.$
- Gaussianity: If $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, model correct and **X** fixed, then $\hat{\boldsymbol{\beta}}$ is normal: $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1})$
- t-test to test $\beta_j = 0$ vs. $\beta_j \neq 0$: estimate σ^2 as $\hat{\sigma}^2 = \frac{1}{N-p-1} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$, then $(N-p-1)\hat{\sigma}^2 \sim \sigma^2 \chi_{N-p}^2$.

Backward Model Selection

Which variables should I include in my model? $\beta_j=0$ would mean I exclude variable j from the prediction.

Backward Model Selection

Which variables should I include in my model? $\beta_j=0$ would mean I exclude variable j from the prediction.

• Fit a model that uses all variables:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1} + \epsilon_i$$

Backward Model Selection

Which variables should I include in my model? $\beta_i = 0$ would mean I exclude variable j from the prediction.

• Fit a model that uses all variables:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_{p-1} x_{i,p-1} + \epsilon_i$$

• Use the t-test to determine variables that are not significant. Of those, remove the one with the largest *p*-value. Re-fit and repeat until all variables have significant *p*-values.

References

- D. Freedman, R. Pisani, R. Purves. Statistics. 2007.
 Part III.
- D. Freedman. Statistical Models Theory and Practice. 2009. Chapters 2–4.