Statistics functions in R and spreadsheets

Bert Van Vreckem

Contents

1	Univariate statistics	1
2	Bivariate statistics	1
3	Probability density of the normal distribution	2
4	Resources	2

This cheat sheet gives an overview of the most common statistics functions for spreadsheets in English and Dutch (LibreOffice Calc, Excel), and for the R programming language.

1 Univariate statistics

x denotes a cell range (spreadsheet) or list/array/table (R).

Function	R	Spreadsheet (EN)	Spreadsheet (NL)
Mean, average	mean(x)	=AVERAGE(x)	=GEMIDDELDE(x)
Population variance	-	=VAR.P(x)	=VAR.P(x)
Population standard deviation	-	=STDEV.P(x)	=STDEV.P(x)
Sample variance	var(x)	=VAR(x), =VAR.S(x)	=VAR(x), =VAR.S(x)
Sample standard deviation	sd(x)	=STDEV(x), =STDEV.S(x)	=STDEV(x), =STDEV.S(x)
Median	median(x)	=MEDIAN(x)	=MEDIAAN(x)
Minimum	min(x)	=MIN(x)	=MIN(x)
Maximum	max(x)	=MAX(x)	=MAX(x)
Quartile	-	=QUARTILE(x, type)†	=KWARTIEL(x, type)†
Percentile	<pre>quantile(x, alphas)‡</pre>	=PERCENTILE(x, alpha)‡	=PERCENTIEL(x, alpha)‡

† type: 0 = min, 1 = 25% (1st quartile), 2 = 50% (median), 3 = 75% (3rd quartile), 1 = max

 \ddagger alpha is a number in [0, 1] denoting the percentile rank (0 = minimum, .5 = median, 1 = max). In R, you can specify an array of the desired percentiles, e.g. quantile(x, c(0, .33, .67, 1)).

2 Bivariate statistics

- x denotes the cell range (spreadsheet) or list/array/table (R) containing values of the independent variable.
- y denotes the cell range (spreadsheet) or list/array/table (R) containing values of the dependent variable.

Function	R	Spreadsheet (EN)	Spreadsheet (NL)
Pearson's correlation coefficient (R) Determination coefficient (R ²)	cor(x, y)	=PEARSON(y, x) =RSQ(y, x)	=PEARSON(y, x) =R.KWADRAAT(y, x)
Covariance	cov(x, y)	=COVAR(x, y)	COVARIANTIE.S(x, y)

_

3 Probability density of the normal distribution

- X is a normally distributed stochastic variable with mean m and standard deviation s, or X ~ Nor(m, s). x is a number drawn from X.
 - P(X < x) is the probability that a number is drawn from X smaller than x (left tail probability)
- Z is the standard normal distribution, or Z \sim Nor(0, 1). z is a number drawn from Z.
 - P(Z < z) is the probability that a number is drawn from Z smaller than z (left tail probability)

Function	R	Spreadsheet (EN)	Spreadsheet (NL)
<i>z</i> -transformation	z <- (x - m)/s	=STANDARDIZE(x, m, s)	=NORMALISEREN(x, m, s)
P(Z < z)	pnorm(z)	=NORMSDIST(z)	=STAND.NORM.VERD(z)
P(X < x)	<pre>pnorm(x, m, s)</pre>	=NORMDIST(x, m, s)	=NORM.VERD(x, m, s)
z so P(Z < z) = p	qnorm(p)	=NORM.S.INV(p)	=NORM.S.INV(p)
x so P(X < x) = p	<pre>qnorm(p, m, s)</pre>	=NORMINV(p, m, s)	=NORM.INV.N(p, m, s)

4 Resources

• Van Der Elst, J. (2012). Statistiek met Excel. Derde druk. Uitgeverij De Boeck.

_