

Cairo University Faculty of Computers and Artificial Intelligence

Midterm Exam

Department: CS

Course Name: Machine Learning
Course Code: CS467
Instructor(s): Dr. Hanaa Bayomi
Date: 1/12/2021
Duration: 1 hour
Total Marks: 20

Name: ID:.....

عليمات هامة

- حيازة التليفون المحمول مفتوحا داخل لجنة الإ\متحان يعتبر حالة غش تستوجب العقاب وإذا كان ضرورى الدخول بالمحمول فيوضع مغلق في الحقائب.
 - لا يسمح بدخول سماعة الأذن أو البلوتوث.
 - لايسمح بدخول أي كتب أو ملازم أو أوراق داخل اللجنة والمخالفة تعتبر حالة غش.

Question 1 [5 marks]

- Answer the following Questions:

1. Assume the following data

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Construct a parametric classifier using Naïve byes to predict whether this person with a new instance

X= (Given Birth= "Yes", Can Fly= "no", Live in water = "Yes", Have legs="no") Will be mammals or non-mammals.

A: attributes
M: mammals
N: non-mammals
$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

$$P(A|M)P(M) > P(A|N)P(N)$$

Question 2 Mark each statement with T or F in the right side:

[5 marks]

We can get multiple local optimum solutions if we solve problem by minimizing the sum of squared errors using	~ (F)
2) When a decision tree is grown to full depth, it is more little data.	likely to fit the noise in (T)
3) When the feature space is larger, over fitting is more li	ikely. (T)
4) 5-NN is more robust to outliers than 1-NN.	(T)
5) Since classification is a special case of regression, logistic special case of linear regression.	istic regression is a (F)
6) The Gradient descent will always find the global optim	<i>num</i> (F)
7) Overfitting Indicates limited generalization	(T)
8) In Support Vector Machines (SVM), Inputs are mapped space where data becomes likely to be linearly separab	
9) When the trained system matches the training set perfe	ctly, overfitting may (T)
10) Algorithms for supervised learning are not directly appunsupervised learning	olicable for (T)

Question 3 [5 marks]

Kim is building a spam filter. She has the hypothesis that counting the occurrences of the letter 'x' in the e-mails will be a good indicator of spam or no-spam. She collects 7 spam messages and 7 no spam messages and counts the number of x-s in each. Here is what she finds.

- Number of 'x'-s in each spam: [0, 3, 4, 8, 9, 13, 21]
- Number of 'x'-s in each no-spam: [0, 0, 1, 2, 2, 5, 6]

She trains a logistic regression classifier on the data and plots the classifier against the data.

a) How many x-s must an e-mail contain to guarantee it is a spam mail?

You can never be 100% sure with a logistic regression model.

b) How is a logistic regression model normally turned into a binary classifier? If you turn the model into a classifier in this way, what is the accuracy of the classifier on the training data?

This is normally done by choosing the class 1 if $P(1 \mid x) > 0.5$. We see from the graph that this classify 4 spams correctly and 3 spams incorrectly and 5 no-spams correctly and 2 incorrectly. Altogether 9 out of 14 are classified correctly, yielding and accuracy of 9/14.

c) Can use the SVM to solve this problem? explain. if you use it what is the training error rate after using SVM?

Yes, because this is a classification and linearly separable problem

Zero

Question 4 [5 marks]

a) While minimizing a convex objective function using gradient descent, the algorithm does not converge even after 10,000 iterations. Mention any two reasons and the possible solutions?

- 1) Very small learning rate: increase learning rate
- 2) Data is not normalized: perform normalization
 - b) The training error of 1-NN classifier is 0. (true/false) Explain

True: Each point is its own neighbor, so 1-NN classifier achieves perfect classification on training data.

c) We consider the following models of logistic regression for a binary classification with a sigmoid function

$$g(z) = \frac{1}{1 + e^{-z}}$$

- Model 1: $P(Y = 1 \mid X, w_1, w_2) = g(w_1X_1 + w_2X_2)$
- Model 2: $P(Y = 1 \mid X, w_1, w_2) = g(w_0 + w_1X_1 + w_2X_2)$

We have three training examples:

$$x^{(1)} = [1, 1]^T$$
 $x^{(2)} = [1, 0]^T$ $x^{(3)} = [0, 0]^T$
 $y^{(1)} = 1$ $y^{(2)} = -1$ $y^{(3)} = 1$

Does it matter how the third example is labeled in Model 1? i.e., would the learned value of w = (w1, w2) be different if we change the label of the third example to -1? Does it matter in Model 2? Briefly explain your answer. (Hint: think of the decision boundary on 2D plane.)

It does not matter in Model 1 because $x^{(3)} = (0, 0)$ makes $w_1x_1 + w_2x_2$ always zero and hence the likelihood of the model does not depend on the value of w. But it does matter in Model 2.

Gqod Luck Dr.Hanaa Bayomi