maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information. including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information, Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 3. DATES COVERED (From - To) 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE Technical Paper 03-01-2003 5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE **5b. GRANT NUMBER** Methyl Tin(IV) Derivatives of HOTeF5 and HN(SO2CF3)2: A Solution Multi-NMR Study and X-ray Crystal Structures of (CH₃)₂SnCl(OTeF₅) and 5c. PROGRAM ELEMENT NUMBER $(CH_3)_3Sn(H_20)_2]N(SO_2CF_3)_2]$ 5d. PROJECT NUMBER 6. AUTHOR(S) DARP Ashwani Vij, William W. Wilson, Vandana Fook S. Tham² 5e. TASK NUMBER A205 Vij, Robert C. Corely¹ **5f. WORK UNIT NUMBER** 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER ²Department of Chemistry ¹Air Force Research Laboratory (AFMC) AFRL-PR-ED-TP-2002-306 University of California AFRL/PRS Riverside, CA 92521 5 Pollux Drive Edwards AFB, CA 93524-7048 10. SPONSOR/MONITOR'S 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) ACRONYM(S) Air Force Research Laboratory (AFMC) 11. SPONSOR/MONITOR'S AFRL/PRS NUMBER(S) 5 Pollux Drive AFRL-PR-ED-TP-2002-306 Edwards AFB CA 93524-7048 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 20030213 110 15. SUBJECT TERMS 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE 16. SECURITY CLASSIFICATION OF: **PERSON OF ABSTRACT OF PAGES** Leilani Richardson 19b. TELEPHONE NUMBER c. THIS PAGE b. ABSTRACT a. REPORT (include area code) Α (661) 275-5015 Unclassified Unclassified Unclassified Standard Form 298 (Rev. 8-98)

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Form Approved

OMB No. 0704-0188

Prescribed by ANSI Std. 239.18

MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO)

16 Dec 2002

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-2002-306

Vij, A.; Wilson W.; Vij, V; Corley, R.C., et al. "Methyl Tin(IV) Derivatives of HOTeF5 and

HN(SO₂CF₃)₂: A Solution Multi-NMR Study and X-ray Crystal Structures of (CH₃)₂SnCl(OTeF₅) and

 $[(C\dot{H}_3)_3Sn(H_20)_2][N(SO_2CF_3)_2]"$

Inorganic Chemistry

(Journal Article) (Deadline: N/A)

(Statement A)

Methyl Tin(IV) Derivatives of HOTeF₅ and HN(SO₂CF₃)₂: A

Solution Multi-NMR Study and X-ray Crystal Structures of

 $(CH_3)_2SnCl(OTeF_5)$ and $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$

Ashwani Vij,*a William W. Wilson, Vandana Vij, Robert C. Corley, Fook S. Tham, Michael Gerken, Ralf Haiges, Stefan Schneider, Thorsten Schroer and Ross I. Wagner,

^a Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRL/PRS), Edwards Air Force Base, CA 93524, USA, ^b Department of Chemistry, University of California, Riverside, CA 92521,^c Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA

* Corresponding author email: <u>ashwani.vij@edwards.af.mil</u>, Fax (661)-275-5471

This paper is dedicated to our dear friend and colleague Karl O. Christe for his outstanding achievements in the field of Inorganic Chemistry

Keywords: bis(trifluoromethylsulfonyl)imide, coupling constants, crystal structure, organotin(IV), pentafluorooxotellurate(VI), ¹¹⁹Sn NMR, ¹²⁵Te NMR

Abstract

The new tin(IV) species, (CH₃)₂SnCl(OTeF₅), was prepared via solvolysis of (CH₃)₃SnCl in HOTeF₅ or from the reaction of (CH₃)₃SnCl with ClOTeF₅ and was characterized by NMR and vibrational spectroscopy, mass spectrometry, and single crystal X-ray diffraction. $(CH_3)_2SnCl(OTeF_5)$ crystallizes in the monoclinic space group $P2_1/n$ (a = 5.8204(8) Å, b = 5.8204(8) Å, b = 5.8204(8)=10.782(1) Å, c = 15.493(2) Å, $\beta = 91.958(2)^{\circ}$, V = 971.7(2) Å³, Z = 4). NMR spectroscopy of $(CH_3)_3SnX$, prepared from excess $Sn(CH_3)_4$ and HX (X = $OTeF_5$ or $N(SO_2CF_3)_2$), revealed a tetracoordinate tin environment using (CH₃)₃SnX as a neat liquids or in CH₂Cl₂ solutions. In acetone and CH₃CN solution, the tin atom in (CH₃)₃SnOTeF₅ was found to extend its coordination number to five by adding one solvent molecule. In the strong donor solvent, DMSO, the Sn-OTeF₅ bond is broken and the (CH₃)₃Sn(O=S(CH₃)₂)₂⁺ cation and the OTeF₅⁻ anion are formed. (CH₃)₃SnOTeF₅ and (CH₃)₃SnN(SO₂CF₃)₂ show different reactivity with water. While the OTeF₅ group of (CH₃)₃SnOTeF₅ undergoes complete hydrolysis, $(CH_3)_3SnN(SO_2CF_3)_2$ forms the stable hydrate salt, $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$. This salt crystallizes in the monoclinic space group $P2_1/c$ (a = 7.3072(1) Å, b = 13.4649(2) Å, c=16.821(2) Å, β = 98.705(1)°, V =1636.00(3) Å³, Z = 4) and was also characterized by NMR and vibrational spectroscopy.

Introduction

The solvolytic reactions of alkyltin(IV)chlorides in strong protonic acids, such as HF,1 HOSO₂F, HOSO₂CF₃, and HOPOF₂, ²⁻⁴ and the superacidic HF-MF₅ (M = Sb, Nb, Ta) systems, ⁵ are a convenient preparative route to the corresponding organotin(IV) derivatives. In these acidolysis reactions, Sn-Cl as well as Sn-C bond cleavage have been observed, with Sn-Cl bond cleavage being preferred. Alkyl tin(IV) derivatives of acids are commonly polymeric due to vacant coordination sites on tetracoordinate tin(IV). The bridging occurs through halogen atoms or the oxoacid ligands. In the solid state, the methyl tin halides, (CH₃)₃SnF^{6,7} and (CH₃)₃SnCl⁸, form extended halogen-bridged chains with pentacoordinate tin, while (CH₃)₂SnF₂⁹ has a sheetlike polymeric structure with hexacoordinate tin. The crystal structures of (CH₃)₂Sn(SO₃F)₂, ¹⁰ (CH₃)₃SnOOCCF₃, ¹¹ (C₆H₁₂)₃SnOOCC₃H₇, ¹² and (CH₃)₂SnCl(OOCCH₃) ¹³ contain tin centers that are bridged by the oxoacid ligands. However, due to steric crowding tricyclohexyltin(IV) trifluoroacetate contains only a four-coordinated tin.14 While chlorodimethyltin(IV) species, such as (CH₃)₂SnCl(OOCCH₃), contain a five-coordinated tin with bridging acetate groups, 13 the corresponding diethyl species exhibits a distorted trigonal bipyramidal structure involving chlorine-bridges. 15

Alternative synthetic routes to such alkyltin(IV) derivatives involve metathetical reactions of alkyltin(IV) chlorides with Ag^+ salts of the corresponding acids, $^{5,16-19}$ and reactions with chloro derivatives of the acids. Alkyltin(IV) derivatives of the nitrogen acids, $HN(SO_2X)_2$ ($X = F, CF_3$), have been prepared by the metathetical reaction of $(CH_3)_3SnCl$ with $[Ag][N(SO_2X)_2] \cdot C_6H_6^{17}$ and by the reaction of $(CH_3)_3SnCl$ with $ClN(SO_2X)_2$. Solutions of $(CH_3)_3SnN(SO_2X)_2$ (R = alkyl; $R = F, CF_3$) have been studied by multi-NMR spectroscopy in various solvents, showing that these species contain highly electron deficient tin centers.

The extreme case of electron deficient tin center is examplified by tricoordinate stannyl cations. Recently, the Mes₃Sn⁺ cation (mes = mesityl) has been prepared in solution by Lambert et al. and characterized by its highly deshielded ¹¹⁹Sn resonance at 806 ppm.²⁰ The closest approximation to a stannyl cation in the solid state to date is the [n-Bu₃Sn][CB₁₁(CH₃)₁₂] salt that has been characterized by X-ray crystallography.²¹

To our knowledge, $(CH_3)_3SnOTeF_5$ is the only known tin compound that contains an OTeF₅ group, but no detailed structural characterization has been carried out. ¹⁹ The acid strength of HOTeF₅, which was found to lie between those of HNO₃ and HCl, ²² is larger than those determined for the nitrogen acids HN(SO₂X)₂, i.e., pK_a = 1.3 (X=F), ²³ pK_a = 1.7 (X = CF₃). ²⁴ The exceptionally high group electronegativity of the OTeF₅ group (3.87) has been commented on by Schrobilgen et al., ²⁵ Seppelt, ²⁶ and Christe²⁷ and lies slightly above those of N(SO₂X)₂ groups (~3.6 on the Pauling scale for the latter). ²³ This property of the OTeF₅ group, can be employed to synthesize highly electron deficient organotin(TV) species. The present study was undertaken to investigate the reactions of (CH₃)₃SnCl with HOTeF₅ and ClOTeF₅.

Results and Discussion

Syntheses and Properties of (CH₃)₂SnCl(OTeF₅) and (CH₃)₃SnOTeF₅. The reaction of (CH₃)₃SnCl with a slight excess of HOTeF₅ in the absence of a solvent yielded colorless (CH₃)₂SnCl(OTeF₅) as the major Sn(IV) product according to eq. (1). The by-

$$\sim 25 \,^{\circ}\text{C}$$
(CH₃)₃SnCl + HOTeF₅ \longrightarrow (CH₃)₂SnCl(OTeF₅) + CH₄ (1)

product, methane, was identified by infrared spectroscopy. Solid (CH₃)₂SnCl(OTeF₅) can be sublimed at 50 °C (0.01 Torr). This result is in contrast to the previously reported preparation of

(CH₃)₃SnOTeF₅ via the solvolysis reaction of (CH₃)₃SnCl in HOTeF₅. ¹⁹ Under our experimental conditions, only minor amounts of (CH₃)₃SnOTeF₅ were detected by ¹¹⁹Sn NMR spectroscopy, and the major product was (CH₃)₂SnCl(OTeF₅). The formation of (CH₃)₂SnCl(OTeF₅) indicates that either the Sn-C bond is cleaved preferentially compared to the Sn-Cl bond or that the Sn-Cl bond is initially cleaved forming (CH₃)₃SnOTeF₅ and HCl as intermediates, followed by attack of HCl, thereby forming (CH₃)₂SnCl(OTeF₅) and CH₄. The propensity of hydrogen halides to cleave as many as two Sn-C bonds has been well established. ²⁸ The reaction of (CH₃)₃SnCl with trifluoroacetic acid has also been reported to result in the replacement of a methyl group. ²⁹

Surprisingly, (CH₃)₃SnCl also reacts with ClOTeF₅ in CFCl₃ solvent to form (CH₃)₂SnCl(OTeF₅) according to eq. (2) where methylchloride was identified as the reaction

$$(CH_3)_3SnCl + ClOTeF_5 \longrightarrow (CH_3)_2SnCl(OTeF_5) + CH_3Cl$$
 (2)

product. A minor component was also identified by 119 Sn NMR and is assigned to $[(CH_3)_2SnO(OTeF_5)]_n$ based upon preliminary x-ray diffraction analysis. Investigation of three separate crystals yielded twinned samples and so far, we have not been able to refine the structure satisfactorily. The formation of this product can be explained by the hydrolysis of one $OTeF_5$ groups in $(CH_3)_2Sn(OTeF_5)_2$ followed by polymerization via formation of Sn-O-Sn bonds.

Pure $(CH_3)_3SnOTeF_5$ can easily be prepared in quantitative yield by the solvolysis of $HOTeF_5$ in a large excess of $Sn(CH_3)_4$ with the elimination of methane as previously reported¹⁹ (eq. (3)).

excess
$$Sn(CH_3)_4$$
 + $HOTeF_5$ \longrightarrow $(CH_3)_3SnOTeF_5$ + CH_4 (3)

The clear, colorless, mobile liquid, $(CH_3)_3SnOTeF_5$, is far less viscous than the fluid-like $(CH_3)_3SnN(SO_2X)_2$ (X = F or CF₃). ^{17,18} In the presence of donor solvents such as $(CH_3)_2CO$ (donor number, DN = 17.0)³⁰ and CH_3CN (DN = 14.1), ³⁰ (CH_3)₃SnOTeF₅ forms adducts in solution (eq. (4)) which were characterized by NMR spectroscopy (see NMR Spectroscopy (a)).

$$(CH_3)_3Sn OTeF_5$$
 + Dn \longrightarrow $(CH_3)_3SnOTeF_5 \cdot Dn$ (4)
$$Dn = (CH_3)_2CO, CH_3CN$$

The even stronger donor solvent DMSO (DN = 29.8)³⁰ causes a solvent assisted dissociation of the Sn-O bond yielding the (CH₃)₃Sn(O=S(CH₃)₂)₂⁺ cation and the OTeF₅⁻ anion in solution (eq. (5))

$$(CH_3)_3Sn OTeF_5 + O=S(CH_3)_2 \longrightarrow [(CH_3)_3Sn(O=S(CH_3)_2)_2][OTeF_5]$$
 (5)

which were characterized by NMR spectroscopy. Unlike (CH₃)₃SnN(SO₂CF₃)₂ which forms adducts with water (vide infra), (CH₃)₃SnOTeF₅ reacts with water in CH₃CN and DMSO solvents resulting in hydrolytic degradation of the OTeF₅ group as evidenced by the appearance of numerous signals in the ¹²⁵Te and ¹⁹F NMR spectra.

Synthesis and Properties of [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]. The reaction of (CH₃)₃SnN(SO₂CF₃)₂ with water in a mixture of CH₂Cl₂/CHCl₃ resulted in dissociation of (CH₃)₃SnN(SO₂CF₃)₂ and the formation of colorless crystals of [(CH₃)₂Sn(H₂O)₂][N(SO₂CF₃)₂] according to eq. (6). Under the present conditions, no degradation of the [N(SO₂CF₃)₂] anion was observed.

$$(CH3)3SnN(SO2CF3)2 + 2H2O \xrightarrow{CH2Cl2/CHCl3} [(CH3)3Sn(H2O)2][N(SO2CF3)2] (6)$$

Vibrational Spectroscopy. The vibrational spectra of (CH₃)₂SnCl(OTeF₅), (CH₃)₃SnOTeF₅, and [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂] together with their tentative assignments are listed in the experimental section.

- (a) $(CH_3)_2SnCl(OTeF_5)$ and $(CH_3)_3SnOTeF_5$. The frequencies of the Te-O stretching vibration in OTeF₅ derivatives lie in the range 868-613 cm⁻¹. ^{31,32} This variation in $\nu(Te-O)$ band is attributed to the partial double bond character in the OTeF₅ anion. ³³ The $\nu(Te-O)$ bands for $(CH_3)_2SnCl(OTeF_5)$ and $(CH_3)_3SnOTeF_5$ both lie at 860 cm⁻¹ in the infrared and at 856 cm⁻¹ in the Raman spectra indicating a similar bonding situation in both tin pentafluorotellurate species.
- (b) [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]. The infrared spectrum of [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂] shows additional bands attributable to the coordinated water molecules, when compared to that of its parent compound, (CH₃)₃SnN(SO₂CF₃)₂. ¹⁸ The infrared bands associated with the N(SO₂CF₃)₂ group are slightly shifted. The most significant shift is found for the antisymmetric SO₂ stretch of [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂] which appears at lower frequency (1346 cm⁻¹) relative to that of (CH₃)₃SnN(SO₂CF₃)₂ (1378 cm⁻¹). ¹⁸ The v_{as}(SO₂) stretching band is diagnostic of sulfonamide groups and is lowered by about 100 cm⁻¹ upon going from covalent to ionic derivatives as a consequence of the delocalization of the negative charge of sulfonamide anions onto the sulfonyl oxygen atoms, resulting in weaker S=O bonds. ^{17,34} For ionic N(SO₂CF₃)₂ groups v_{as}(SO₂) frequencies of 1345 cm⁻¹ have been reported which is in excellent agreement with that observed for [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂] corroborating its ionic nature that was observed by X-ray crystallography (see Crystal Structures (b)).

NMR Spectroscopy. The multi-NMR spectroscopic data of $(CH_3)_3SnOTeF_5$ as a neat liquid and in various solvents, and those of $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$ in CH_3CN , and

DMSO solvents are listed in Tables 1 and 2, together with the literature data for $(CH_3)_3SnN(SO_2CF_3)_2^{18}$ and $(CH_3)_3SnN(SO_2F)_2^{17}$

(a) (CH₃)₃SnOTeF₅. The ¹¹⁹Sn chemical shift of (CH₃)₃SnOTeF₅ is highly dependent upon the nature of the solvent. The ¹¹⁹Sn resonances for (CH₃)₃SnOTeF₅ in CH₂Cl₂ solvent (272.4 ppm) and as a neat liquid (270.8 ppm) are ca. 20 ppm more deshielded than that of the N(SO₂X)₂ (X = F, CF₃) substituted trimethyl tin derivatives^{17,18} and are at significantly higher frequencies compared to the previously suggested range of 200 to –60 ppm for tetracoordinated organotin(IV) derivatives. This indicates a highly ionic Sn-O bond and a highly electron deficient tin center in (CH₃)₃SnOTeF₅. In donor solvents such as (CH₃)₂CO, CH₃CN, and DMSO, the ¹¹⁹Sn resonance is shifted to significantly lower frequency as previously reported for dialkyl and trialkyl tin(IV) species. ^{17,18,35,36} This increase in shielding is indicative for an increase in coordination number from four to five upon adduct formation with the donor solvent.

Lockhart^{37,38} suggested empirical correlations between the ${}^2J({}^{119}\text{Sn-}{}^{1}\text{H})$ and ${}^1J({}^{119}\text{Sn-}{}^{13}\text{C})$ coupling constants in methyltin compounds and the average C-Sn-C angles (eqs (7) and (8)).

$$\theta = 0.0161 |^{2} J(^{119} \text{Sn}^{-1} \text{H})^{2} | -1.32 |^{2} J(^{119} \text{Sn}^{-1} \text{H}) | +133.4$$
(7)

$$|^{1}J(^{119}Sn^{-13}C)| = 11.4\theta - 875$$
 (8)

The C-Sn-C angles calculated using both equations are listed in Table 1. The C-Sn-C angles calculated for the neat $(CH_3)_3SnOTeF_5$ or the CH_2Cl_2 solution are close to the tetrahedral angle of 109.5°. In donor solvents, the ${}^2J({}^{119}Sn-{}^{1}H)$ and ${}^1J({}^{119}Sn-{}^{13}C)$ are larger by approximately 10 Hz reflecting an increase in the *s*-electron density in orbitals at tin involved in bonding to the methyl groups. As a consequence, the calculated C-Sn-C angles are close to 120° which is

consistent with a trigonal bipyramidal geometry with the three methyl groups in the equatorial position.

The ¹⁹F NMR spectra of OTeF₅ derivatives also provide information about the extent of bond polarization. An increase in electron density on the oxygen atom reaching a maximum for the OTeF5 anion increases the O-Te back bonding which in turn causes a weakening of the Te-Fax bond and results in increased shielding of the axial fluorine resonance and a decrease in 1 J(125 Te- 19 F_{ax}). 33 The NMR spectroscopic parameter for the OTeF5 group in (CH3)3SnOTeF5 dissolved in CH₂Cl₂, (CH₃)₂CO, CH₃CN, and as a neat liquid are in the same range (¹⁹F_{ax}: ca -30 ppm; $^{19}F_{eq}$: ca -40 ppm; ^{125}Te : 565 to 575 ppm; $^{1}J(^{125}Te^{-19}F_{ax})$: 3020 to 3188 Hz; and $^{1}J(^{125}Te^{-19}F_{ax})$ ¹⁹F_{eq}): ca 3550 Hz) reflecting only slight changes to the electronic structure of the OTeF₅ ligand. The solution of (CH₃)₃SnOTeF₅ in DMSO, however, exhibits significantly different shifts and coupling constants. The $^{19}F_{ax}$ chemical shift and $^{1}J(^{125}Te^{-19}F_{ax})$ coupling constant appear at higher frequency (-16.2 ppm) and are smaller, respectively, and are consistent with values found for $[N(n-Bu)_4][OTeF_5]^{.33}$ This suggests the presence of an $OTeF_5$ anion in solution as a consequence of the dissociation of (CH₃)₃SnOTeF₅ upon adduct formation with two strong donor molecules of DMSO (cf eq. (4)). The donor-solvent assisted ionization of a trialkyl tin(IV) derivatives, R₃SnX, yielding [R₃Sn(Dn)₂][X] has previously been shown for $[Bu_3Sn(HMPA)_2][ClO_4], ^{39} [Ph_3Sn(HMPA)_2][ClO_4], ^{39} [(CH_3)_3Sn(O=S(CH_3)_2][N(SO_2F)_2], ^{17} and ^{19} [(CH_3)_3Sn(O=S(CH_3)_2)][N(SO_2F)_2], ^{17} and ^{19} [(CH_3)_3Sn(O=S(CH_3)_2)][N(SO_2F)_2], ^{18} [(CH_3)_2Sn(O=S(CH_3)_2)][N(SO_2F)_2], ^{18} [(CH_3)_2Sn(O=S(CH_3)_2]]$ $[(CH_3)_3Sn(py)_2][N(SO_2F)_2]^{17}$ in solution and was found in the present work for $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2] \ in \ the \ solid \ state \ by \ X-ray \ crystallography \ (see \ Crystallography \ Argordonum \$ Structures (b)).

(b) (CH₃)₂SnCl(OTeF₅). Nuclear magnetic resonance spectroscopic data for (CH₃)₂SnCl(OTeF₅) in CH₂Cl₂ and (CH₃)₂CO solvents are listed in the experimental section. In

both solvents, two sets of signals were observed. At room temperature, the tin signals are broadened to ca 300 and ca 3300 Hz in CH₂Cl₂ and (CH₃)₂CO solutions, respectively. At 223 K the linewidth for the 119Sn resonances in CH2Cl2 decreased somewhat and their relative intensities change compared to those recorded at room temperature indicating that an equilibrium is operational, whose nature is presently not understood. In CH₂Cl₂ solvent, the ¹¹⁹Sn resonances appear at 127 and 143 ppm which is in the chemical shift range for tetracoordinate dimethyltin. As observed for (CH₃)₃SnOTeF₅ (vide supra), dissolution in donor solvents such as (CH₃)₂CO results in an increase in ¹¹⁹Sn shieldings to 33 and -79 ppm which is consistent with pentacoordinate tin. In CH₂Cl₂ solution, two separate sets of ¹H, ¹³C, ¹⁹F, and ¹¹⁹Sn NMR signals could be distinguished. At low temperature a second set of ¹²⁵Te NMR signals was resolved. Small deviations in chemical shifts and coupling constants between the two sets indicate similar geometries of the two species present in solution. In (CH₃)₂CO, two very broad ¹¹⁹Sn resonances could be distinguished. The NMR spectroscopic parameters of the OTeF₅ in both solvents are similar to those for neat (CH₃)₃SnOTeF₅ (vide supra) indicating that the Sn-O bond has not been cleaved in those solution.

The C-Sn-C angles for $(CH_3)_2SnCl(OTeF_5)$ in various solvents can be calculated from the $^2J(^{119}Sn^{-1}H)$ coupling constants using equation (9), as recommended by Lockhart³⁷ for

$$\theta = 0.0105 |^{2} J(^{119} Sn^{-1} H)|^{2} - 0.799 |^{2} J(^{119} Sn^{-1} H)| + 122.4$$
(9)

dimethyl tin compounds with highly electronegative substituents. The C-Sn-C angle calculated using $^2J(^{119}Sn-^1H)$ and $^1J(^{119}Sn-^{13}C)$ coupling constants for $(CH_3)_2SnCl(OTeF_5)$ dissolved in CH_2Cl_2 is approximately ~118°. The $\delta(^{119}Sn)$ value of ~120 ppm indicates that tin is present in a

five-coordinate environment. The fifth coordination site is most likely occupied by a bridging chlorine ligand from a second Me₂SnCl(OTeF₅) molecule, as shown below:

OTe
$$F_5$$

Cl—Sn—CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

Such a pseudo-trigonal bipyramidal structure could account for the increase of the C-Sn-C angle from a tetrahedral value of 109.5° to about 120°. The proposed structure is similar to the one found in the solid-state structure of Me₂SnCl(OTeF₅) as shown in Fig.1.

In acetone, an increase in the ${}^2J({}^{119}\mathrm{Sn}{}^{-1}\mathrm{H})$ and ${}^1J({}^{119}\mathrm{Sn}{}^{-13}\mathrm{C})$ coupling constants values by ~21 and ~220 Hz, respectively, results in the calculated C-Sn-C angle increases to 137°. compared to the values found in $\mathrm{CH_2Cl_2}$ solution indicating the formation of a distorted trigonal bipyramidal adduct:

$$\begin{array}{c|c} OTeF_5 \\ H_3C & Sn - OC(CH_3)_2 \\ H_3C'''' & Cl \end{array}$$

(c)[(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]. For the N(SO₂F)₂ ligand, the fluorine chemical shifts provide a mean to distinguish ionic and covalent N(SO₂F)₂ moieties. Typical $\delta(^{19}F)$ values for covalent derivatives lie around 55.5 ppm and for ionic derivatives, the resonance is more shielded by ca 3 ppm to 52.5 ppm. ¹⁷ However, in the case of the N(SO₂CF₃)₂ group, the fluorine

atoms are isolated by greater bond separation and, therefore, do not show any significant chemical shift difference between ionic and covalent derivatives.¹⁸

The ¹¹⁹Sn chemical shifts for $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$ in CH_3CN and DMSO are 59.0 and 42.8 ppm, which are more shielded by ca 200 ppm compared to that of neat $(CH_3)_3SnN(SO_2CF_3)_2$. ¹⁸ This low-frequency shift confirms the presence of a pentacoordinate tin species, which is either the $(CH_3)_3Sn(H_2O)_2^+$ cation that was found in the solid state, or cationic species with partially or completely displaced water molecules, i.e., $(CH_3)_3Sn(H_2O)(Dn)^+$ or $(CH_3)_3Sn(Dn)_2^+$, with $Dn = CH_3CN$ and DMSO.

Crystal Structures Details of the data collection and other crystallographic information for $(CH_3)_2SnCl(OTeF_5)$ and $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$ are given in Table 3. Bond lengths and bond angles for $(CH_3)_2SnCl(OTeF_5)$ and $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$ are given in Table 4 and 5, respectively.

(a) (CH₃)₂SnCl(OTeF₅). The crystal structure of (CH₃)₂SnCl(OTeF₅), which crystallizes in the monoclinic system, contains (CH₃)₂SnCl(OTeF₅) molecules with distorted tetrahedral coordination about tin and a Sn-Cl distance of 2.386(1) Å, which is the same as 2.388(4) Å found in the crystal structures of (C₂H₅)₂SnCl(OOCH₃). The OTeF₅ group is tilted towards one methyl group (C(2)) resulting in a widening of the O(1)-Sn(1)-C(2) angle (105.04(15)°) compared to the O(1)-Sn(1)-C(1) (95.44(14)°) and O(1)-Sn(1)-Cl(1) (94.64(17)°) angles.

The coordination sphere around tin is extended by a contact to Cl to a trigonal bipyramid (Fig.1). A chlorine atom of one (CH₃)₂SnCl(OTeF₅) molecule coordinates through the tetrahedral face formed by chlorine and two carbon atoms, located at its vertices, of a second molecule, and vice versa, resulting in dimer formation Fig (1). These symmetry related contacts of 3.201(1) Å [Sn···Cl(1B) (2-x, 1-y, -z)] are significantly smaller than the sum of the van der Waals radii (3.91)

Å)⁴⁰ (Table 3). The Sn···Cl contacts in (CH₃)₂SnCl(OTeF₅) are similar to those in the chlorine-bridged methyltin(IV) derivatives, ((CH₃)₂SnCl)₂ (3.240(3) and 3.292(3) Å)⁴¹ and (CH₃)₃SnCl (3.269(2) Å),⁷ however, they are significantly shorter than those in (C₂H₅)₂SnCl(OOCCH₃) (3.875 Å),¹⁵ bis(μ^2 -chloro)chlorodimethyltin-(diphenylcyclopropenone-o)tin(IV) (3.561 Å),⁴² and (C₆H₅)₂SnCl₂ (3.872 Å).⁴³ In addition to the Sn···Cl contacts, one fluorine atom of an OTeF₅ group exhibits a Sn···F(2) (1+x, y, z) contact with 3.141(3) Å (Σ r_{Vdw} (Sn-F) = 3.64 Å),⁴⁰ occupying the fourth corner of the square plane around tin, the other three being occupied by O(1), Cl(1) and Cl(1B) (2-x, 1-y, -z) and extending the coordination number about tin to six. No long-range contacts are observed from the oxygen atom of the OTeF₅ group implying that this anion shows no bridging via the oxygen atom. The crystal packing can be seen as a sheet-like polymeric structure containing chains with the Sn···F(2) contacts bridging the dimeric units (Fig. 2).

(b)[(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]. The crystal structure of [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂] contains separated (CH₃)₃Sn(H₂O)₂⁺ cations and N(SO₂CF₃)₂ anions which are shown in Figure 3. This structure is similar to that observed for [(CH₃)₃Sn(H₂O)₂][N(SO₂CH₃)₂]. The tin atom is present in a trigonal bipyramidal structure with the three methyl groups in the equatorial positions, and the axial positions being occupied by the two water molecules with Sn-O distances of 2.306(3) and 2.335(3) Å. The trifluoromethyl groups on the N(SO₂CF₃)₂ anion can be present in the *cis*- or *trans*-conformation:

Trans

Cis

In the case of [(CH₃)₃Sn(H₂O)₂][N(SO₂CH₃)₂], the trifluromethyl groups are oriented in a trans-manner with respect to each other. This orientation is most favored and is found in the structures of $HN(SO_2CF_3)_2$, 45,46 [Mg(H₂O)₆][N(SO₂CF₃)₂], 45 [Cu(CO)₂][N(SO₂CF₃)₂], 47 and 1ethyl-2-methyl-3-benzyl-imidazolium bis(trifluoromethylsulfonyl)imide. 48 However, the cisconformation has been observed in the case of KN(SO₂CF₃)₂. ⁴⁶ The S-N distances of 1.589(3) and 1.573(3) Å are relatively short when compared to those reported for HN(SO₂CF₃)₂ of $1.644(1)^{45}$ and 1.647 Å^{46} and the S-N-S angle is compressed from $128.4(2)^{45}$ in HN(SO₂CF₃)₂ to 125.3(2)° in the present compound. However, the latter value is significantly greater than the corresponding S-N-S angle of 121.5(2)° in the case of [(CH₃)₃Sn(H₂O)₂][N(SO₂CH₃)₂].⁴⁴ The crystal-packing diagram along the c-axis (Fig. 4) shows a three-dimensional hydrogen-bonding network in the ab-plane. The O···H $(x, \frac{1}{2} - y, \frac{1}{2} + z)$ contacts range from 1.95 to 2.60 Å showing a tightly packed crystal lattice due to hydrogen bonding. A bifurcated hydrogen bond is formed from O(1)-H(11)···O(4) and O(1)-H(11)···O(5) at 2.16(5) and 2.60(5) Å $(x, \frac{1}{2} - y, \frac{1}{2} + z)$, respectively. There is also a short contact resulting from one of the hydrogen atoms from a water molecule, O(2)-H(21) and the nitrogen atom of the N(SO₂CF₃)₂ group, i.e., N(1)···H(21) (-1 + x, y, z) at 2.17(6) Å.

Conclusions

In the present study, the (CH₃)₂SnCl(OTeF₅) was prepared by reacting (CH₃)₃SnCl with HOTeF₅ or ClOTeF₅ where the Sn-C bond is cleaved, and it represents the first structurally characterized methyl tin(IV) pentafluorooxotellurate. Multi-NMR spectroscopy of (CH₃)₃Sn(OTeF₅) in various solvents revealed the strong dependence of the coordination

environment of the tin(IV) species in solution on the donor strength of the solvent. In DMSO, the strongest donor solvent studied, the dissociation of the Sn-OTe bond was facilitated with formantion of $[(CH_3)_3Sn(O=S(CH_3)_2)_2][OTeF_5]$. The crystal structure of $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$ unambiguously proves the existence of such solvated salts in the solid state and represents only the second crystal structure of such a solvated tin(IV) salt.

Experimental

Materials and Apparatus. Reactions were carried out in Teflon-FEP or -PFA ampoules that contained Teflon coated magnetic stirring bars and were closed by stainless steel valves.

Volatile materials were handled either on a stainless steel/Teflon-FEP vacuum line⁴⁹ or a Pyrex glass vacuum line equipped with grease-free Kontes glass-Teflon valves. Nonvolatile solids were handled in the dry nitrogen atmosphere of a glove box.

The (CH₃)₃SnCl and Sn(CH₃)₄ (Aldrich Chemical Co.) were used as received. The HOTeF₅ was prepared from either CsOTeF₅ (Rocketdyne) or pyHOTeF₅ (kindly supplied by Prof. Steve Strauss, Colorado State University) after its reaction with concentrated H₂SO₄, and purified by fractional condensation at –78 °C over –45 °C. The ClOTeF₅ was generated by the reaction of HOTeF₅ with an excess of ClF, followed by purification via fractional condensation at –95 °C over –78 °C. (CH₃)₃SnN(SO₂CF₃)₂ was prepared as described earlier¹⁸ and CFCl₃ (Matheson) was dried by storage over P₄O₁₀ before use.

Infrared and Raman Spectroscopy. Infrared spectra were recorded on a Mattson Galaxy 5030 FT-IR spectrometer using dry powders pressed between AgCl or AgBr windows in an Econo press (Barnes Engineering Co.). Raman spectra were recorded on either a Bruker Equinox 55 FT-RA spectrometer using a Nd-Yag laser at 1064 nm and Pyrex melting point

capillaries as sample containers or a Cary Model 83 spectrometer using the 488 nm exciting line of an Ar ion laser.

NMR Spectroscopy. The NMR spectra were recorded at 500.13 MHz (¹H), 470.51 MHz (¹⁹F), 125.76 MHz (¹³C), 186.50 MHz (¹¹⁹Sn) and 158.03 MHz (¹²⁵Te) on a Bruker AMX 500 or at 400.13 MHz (¹H), 376.54 MHz (¹⁹F), 100.62 MHz (¹³C), 149.22 MHz (¹¹⁹Sn) and 126.45 MHz (¹²⁵Te) on a Bruker Avance 400 NMR spectrometer using neat liquid/solutions in a sealed standard glass tube. The following external references were used: ¹H and ¹³C: neat TMS (0 ppm); ¹⁹F: neat CFCl₃ (0 ppm); ¹¹⁹Sn: neat Sn(CH₃)₄ (0 ppm); ¹²⁵Te: a saturated aqueous Te(OH)₆ solution (710.9 ppm). ⁵⁰ The AB₄ spin patterns in the ¹⁹F NMR spectra were simulated using the program gNMR. ⁵¹

Mass Spectrometry. The mass spectrometric data were collected on a Jeol JMS AX505HA or a HP Agilent 6890 GC Mass spectrometer using the EI method. The isotopic pattern were simulated using a shareware software.⁵²

X-ray Crystallography. The single crystal X-ray diffraction data were collected on a Bruker 3-circle platform diffractometer equipped with a SMART CCD (charge coupled device) detector with the χ -axis fixed at 54.74° and using MoK $_{\alpha}$ radiation (λ = 0.71073 Å) from a fine-focus tube. This diffractometer was equipped with an LT-3 apparatus for low temperature data collection using controlled liquid nitrogen boil off. The goniometer head, equipped with a Nylon Cryoloop with a magnetic base, was then used to mount the crystals using PFPE (perfluoropolyether) oil and mounted on the magnetic goniometer. Cell constants were determined from 90 thirty-second frames at ~215 K (see Table 3). A complete hemisphere of data was scanned on omega (0.3°) with a run time of thirty-second per frame at a detector resolution of 512 x 512 pixels using the SMART software. ⁵³ A total of 1271 frames were

collected in three sets and final sets of 50 frames, identical to the first 50 frames, were also collected to determine any crystal decay. The frames were then processed on a PC running on Windows NT software by using the SAINT software to give the hkl file corrected for Lp/decay. The absorption correction was performed using the SADABS program. The structures were solved by the direct method using the SHELX-90⁵⁶ program and refined by the least squares method on F², SHELXL-97⁵⁷ incorporated in SHELXTL Suite 5.10 for Windows NT. All non-hydrogen atoms were refined anisotropically. For the anisotropic displacement parameters, the U(eq) is defined as one third of the trace of the orthogonalized Uii tensor. The methyl-hydrogen atoms in (CH₃)₂SnCl(OTeF₅) and [Me₃Sn(H₂O)₂][N(SO₂CF₃)₂] were added at calculated positions while hydrogen atoms of the water molecules were located and refined isotropically from electron density maps.

Preparation of (CH₃)₂SnCl(OTeF₅). Inside the drybox, (CH₃)₃SnCl (1.3740 g, 6.8952 mmol) was loaded into a Teflon ampoule, followed by the addition of HOTeF₅ (1.8057 g, 7.5363 mmol) *in vacuo* at –196°C. The reactants were allowed to warm to room temperature for 12 hours. When the volatile components were removed from the ampoule and collected at -196°C, the only volatile by-product identified by infrared spectroscopy was CH₄ (besides some unreacted HOTeF₅). Further reaction for three hours at 60°C, followed by removal of all volatiles and subsequent sublimation, yielding a white solid in 73.2% yield that was identified by vibrational and multi-NMR spectroscopy and X-ray crystallography as (CH₃)₂SnCl(OTeF₅).

Alternatively, a Teflon FEP ampoule was loaded with ClOTeF₅ (0.6702 g, 2.445 mmol) in vacuo at -196 °C followed by condensation of CFCl₃ solvent (3.1645 g) onto the ClOTeF₅. Inside the drybox, (CH₃)₃SnCl (0.4883 mg, 2.450 mmol) was then added at -196 °C to the frozen solution. After evacuating the ampoule at -196 °C, the ampoule was warmed to room

temperature for 1-1/2 h. The volatile components were removed under dynamic vacuum at room temperature and CH₃Cl was identified as the only volatile component besides CFCl₃ solvent via infrared spectroscopy. A white solid (0.7552 g) was isolated after removal of all volatile material in 72.7% crude yield. This solid was further purified by sublimation at ~50°C/0.001 Torr, and identified as (CH₃)₂SnCl(OTeF₅) by vibrational spectroscopy. Spectroscopic data obtained are as follows: IR (AgCl), cm⁻¹: 3041w (v_{as} CH₃), 2941 w, (v_{s} CH₃), 1406 mw, 1314 w, 1284 w, 1210 mw, 1019 m, 860 vs (ν TeO), 811 vs (ρ CH₃), 693 vs (ν TeF_{eq}), 617 ms (ν TeF_{ax}), 580 mw (v_{as}Sn-C), 524 m (v_sSn-C), 426 ms. Raman, cm⁻¹ (rel. int.): 3024 (8); 2941 sh; 2925 (47); 1208 (18); 1186 (2); 857 (3); 702 (7); 686 (5); 629 (8); 616 (4); 581 (5); 568 (10); 518 (100); 423 (3); 313 (53); 229 (5); 179 (30); 143 (24); 119 (23). MS (EI) major ¹²⁰Sn fragments (pattern matches simulated spectra): 409 [M - CH₃]⁺ 85, 389 [(CH₃)₂SnOTeF₅]⁺ 61, 169 $[(CH_3)_2SnF]^+$ 100. NMR spectroscopic data; acetone-d₆ solvent at 300 K: $\delta(^1H) = 1.73$ ppm, s, $^{1}J(^{13}C^{-1}H) = 136.7 \text{ Hz}, ^{2}J(^{117/119}Sn^{-1}H) = 87.4/91.3 \text{ Hz}, \Delta v_{1/2} = 1.5 \text{ Hz}; \delta(^{13}C) = 12.46 \text{ ppm, s},$ $^{1}J(^{117/119}Sn^{-13}C) = 659.5/695.1 \text{ Hz}, \ \Delta v_{1/2} = 17.8 \text{ Hz}; \ \delta(^{119}Sn) = -79.3 \text{ ppm}, \ \Delta v_{1/2} = 3220 \text{ Hz};$ $\delta(^{119}\text{Sn}) = 33.2 \text{ ppm}, \ \Delta v_{1/2} = 3350 \text{ Hz}; \ \delta(^{125}\text{Te}) = 572.56 \text{ ppm}, \ d \text{ of quint.}, \ ^1J(^{125}\text{Te}-^{19}F_{eq}) = 3553.4 \text{ ppm}$ Hz, ${}^{1}J({}^{125}\text{Te}{}^{19}\text{F}_{ax}) = 3088.4 \text{ Hz}$, $\Delta\nu_{1/2} = 53.3 \text{ Hz}$. CH₂Cl₂ solvent at 300 K: $\delta({}^{1}\text{H}) = 0.61 \text{ ppm}$, s, $^{2}J(\text{Sn-}^{1}\text{H}) = 67.9 \text{ Hz}, \ \Delta v_{\frac{1}{2}} = 23.7 \text{ Hz}; \ \delta(^{13}\text{C}) = 7.49 \text{ ppm, s}, \ ^{1}J(\text{Sn-}^{13}\text{C}) = 472 \text{ Hz}, \ \Delta v_{\frac{1}{2}} = 50 \text{ Hz};$ $\delta(^{19}F_{ax}) = -36.45 \text{ ppm}, ^{1}J(^{125}Te^{-19}F_{ax}) = 3325 \text{ Hz}, ^{2}J(^{19}F_{ax}^{-19}F_{eq}) = 182 \text{ Hz}; \delta(^{19}F_{eq}) = -41.15 \text{ ppm}.$ $^{1}J(^{125}\text{Te}^{-19}\text{F}_{eq}) = 3551 \text{ Hz}; \ \delta(^{119}\text{Sn}) = 127.3 \text{ ppm}, \ \Delta v_{1/2} = 302 \text{ Hz}; \ \delta(^{125}\text{Te}) = 576.13 \text{ ppm}, \ d \text{ of }$ quint., ${}^{1}J({}^{125}\text{Te}{}^{-19}\text{F}_{eq}) = 3551 \text{ Hz}, {}^{1}J({}^{125}\text{Te}{}^{-19}\text{F}_{ax}) = 3325 \text{ Hz}, \ \Delta v_{1/2} = 271.8 \text{ Hz}.$ Minor component: $\delta(^{1}\text{H}) = 0.47 \text{ ppm, s, }^{2}J(\text{Sn-}^{1}\text{H}) = 70 \text{ Hz, } \Delta v_{1/2} = 33.2 \text{ Hz; } \delta(^{13}\text{C}) = 6.48 \text{ ppm, s, } \Delta v_{1/2} = 66 \text{ Hz;}$ $\delta(^{19}F_{ax}) = -34.90 \text{ ppm}, ^2J(^{19}F_{ax}^{-19}F_{eq}) = 182 \text{ Hz}; \delta(^{19}F_{eq}) = -40.17 \text{ ppm}, ^1J(^{125}Te^{-19}F_{eq}) = 3554 \text{ Hz};$ $\delta(^{119}\text{Sn}) = 142.7 \text{ ppm}, \ \Delta v_{1/2} = 313 \text{ Hz}.$ Ratio major:minor component based on integrals of the

¹¹⁹Sn resonances: 2.4 : 1.0. (CH₃)₂SnCl(OTeF₅) in CH₂Cl₂ solvent at 223 K : $\delta(^{1}\text{H}) = 0.39$ ppm, s, $^{2}J(\text{Sn}^{-1}\text{H}) = 68.4$ Hz, $\Delta v_{\frac{1}{2}} = 12.8$ Hz; $\delta(^{13}\text{C}) = 7.49$ ppm, s, $^{1}J(\text{Sn}^{-13}\text{C}) = 474.3$ Hz, $\Delta v_{\frac{1}{2}} = 12.1$ Hz; $\delta(^{119}\text{Sn}) = 140.23$ ppm, sept., $^{2}J(^{119}\text{Sn}^{-1}\text{H}) = 70.6$ Hz, $\Delta v_{\frac{1}{2}} = 51$ Hz; $\delta(^{125}\text{Te}) = 575.53$ ppm, d of quint., $^{1}J(^{125}\text{Te}^{-19}\text{F}_{eq}) = 3570.6$ Hz, $^{1}J(^{125}\text{Te}^{-19}\text{F}_{ax}) = 3276.8$ Hz, $\Delta v_{\frac{1}{2}} = 112$ Hz. Minor component: $\delta(^{1}\text{H}) = 0.25$ ppm, s, $^{2}J(\text{Sn}^{-1}\text{H}) = 68.0$ Hz, $\Delta v_{\frac{1}{2}} = 11.4$ Hz; $\delta(^{13}\text{C}) = 8.76$ ppm, s, $^{1}J(\text{Sn}^{-13}\text{C}) = 482.2$ Hz, $\Delta v_{\frac{1}{2}} = 12.2$ Hz; $\delta(^{119}\text{Sn}) = 114.7$ ppm, $^{2}J(^{119}\text{Sn}^{-1}\text{H}) \approx 65$ Hz, $\Delta v_{\frac{1}{2}} = 243$ Hz; $\delta(^{125}\text{Te}) = 577.48$ ppm, d of quint., $^{1}J(^{125}\text{Te}^{-19}\text{F}_{eq}) = 3562.9$ Hz, $^{1}J(^{125}\text{Te}^{-19}\text{F}_{ax}) = 3306.7$ Hz, $\Delta v_{\frac{1}{2}} = 97$ Hz. Ratio major:minor component based on integrals of the ^{119}Sn resonances: 1.3 : 1.0.

Preparation of (CH₃)₃Sn(OTeF₅). After condensation of HOTeF₅ (0.8428 g, 3.518 mmol) into a Teflon ampoule via a stainless steel vacuum line at -196 °C, excess Sn(CH₃)₄ (3.1144 g, 17.429 mmol) was added to the ampoule on a glass vacuum line in vacuo at -196°C. A brisk effervescence was observed upon slowly warming the reaction mixture to room temperature over a period of 45 min. The volatile components were then removed in vacuo at ~20 °C, leaving behind a clear colorless liquid ((CH₃)₃Sn(OTeF₅); 1.3819 g; 3.434 mmol). Inspection of the volatile material trapped at -196 °C by gas-phase infrared spectroscopy showed methane as the sole reaction by-product. The colorless liquid, (CH₃)₃Sn(OTeF₅), was characterized by vibrational spectroscopy and multi-NMR spectroscopy. Spectroscopic data obtained are as follows: IR (AgCl), cm⁻¹: 3009 w (v_{as}CH₃), 2929 w, (v_sCH₃), 1402 w, 1296 w, 1202 mw, 860 s (ν TeO), 789 s (ρ CH₃), 688 vs (ν TeF_{eq}), 613 mw (ν TeF_{ax}), 552 ms (ν _{as}Sn-C), 518 m (v_sSn-C), 429 ms. Raman, cm⁻¹ (rel. int): 3008 (7); 2930 (14); 1214 (6), 1204 sh; 856 (4), 781 (<1); 681 (72); 624 (4); 554 (16); 518 (100); 431 (4); 334 (5); 296 (4); 230 (4); 146 (22). **MS** (EI): major ¹²⁰Sn fragments (pattern matches simulated spectra): 389 [(CH₃)₂SnOTeF₅]⁺ 46, 169 $[(CH_3)_2SnF]^+$ 100.

Preparation of [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]. A solution of (CH₃)₃SnN(SO₂CF₃)₂ in CH₂Cl₂ (0.25g in 5 mL) was added to ca 10 mL of chloroform that was presaturated with water. The mixture was stirred for 30 min and then left undisturbed for ca 48 h inside a fume hood. During this time colorless crystals had formed which were isolated, washed with cold CH₂Cl₂ and dried in vacuo. The vibrational data obtained are as follows: IR (AgCl), cm⁻¹: 3470 vs, br (vOH), 2996 sh (v_{as}CH₃), 2929 w, (v_sCH₃), 1614 vs (vOH), 1346 vs, 1201 vs, 1133 vs, 1053 vs, 797 vs (v_{as}SNS), 742 (v_sSNS), 616 vs, 572 s, 514 s (v_sSn-C). Raman, cm⁻¹ (rel. int): 2928 (32); 1242 (18); 1218 (11); 1132 (12); 746 (44); 560 (21); 523 (100); 401 (6); 342 (6); 316 (4); 277 (10); 157 (13); 140 (13), 119 sh.

NMR studies in donor solvents. Approximately 100 mg of (CH₃)₃SnOTeF₅ was loaded into a 5-mm glass NMR tube inside a glove box. The tube was sealed with a rubber septum and ca 0.5 mL of solvent was injected into the NMR tube via the septum prior to inserting the tube into the probe. When samples were prepared with aqueous acetonitrile/DMSO, white precipitates started forming within minutes, indicating the decomposition of the OTeF₅ group, as seen by the appearance of many complex signals in the ¹⁹F and ¹²⁵Te NMR spectra. In the case of (CH₃)₂SnCl(OTeF₅), NMR samples were prepared in side a dry box by loading approximately 50 mg of (CH₃)₂SnCl(OTeF₅) into a 5-mm glass NMR tube connected to a Kontes valve via a Cajon Ultratorr union. Subsequently, ca 0.5 mL of anhydrous solvent was vacuum distilled onto the solid, followed by flame sealing of the NMR tube. The samples were stored at -196 °C until their NMR spectroscopic characterization.

Acknowledgements

We wish to thank Dr. Gary Knerr and Ms. Jo ann Larue for obtaining the mass spectrometric data. We also thank Dr. Rusty Blanskii for help with NMR experiments. Dr. Steve Strauss and Dr. Fred Behr are gratefully acknowledged for generous gifts of [pyH][OTeF₅] and LiN(SO₂CF₃)₂, respectively. We wish to thank the National Science Foundation and the Air Force Office of Scientific Research for financial support. Two of us (S. S. and T. S.) thank the Alexander von Humbolt Foundation for Feodor-Lynen Fellowships. R. H. is grateful to the Deutsche Forschung Gesellschaft for a postdoctoral fellowship and M. G. thanks the Natural Sciences and Engineering Research Council of Canada for a postdoctoral fellowship.

References

- [1] L. E. Levchuk, L. E.; Sams, J. R.; Aubke, F. Inorg. Chem. 1972, 11, 43.
- [2] Yeats, P. A.; Ford, B. F. E.; Sams, J. R.; Aubke, F. J. Chem. Soc., Chem. Commun. 1969, 791.
- [3] Yeats, P. A.; Sams, J. R.; Aubke, F. Inorg. Chem. 1972, 11, 2634.
- [4] Tan, T. H.; Dalziel, J. R.; Yeats, P. A.; Sams, J. R.; Thompson, R. C.; Aubke, F. Can. J. Chem. 1972, 50, 1843 and references therein.
- [5] Mallela, S. P.; Yap, S.; Sams, J. R.; Aubke, F. Rev. Chim. Miner. 1986, 23, 572.
- [6] Clark, H. C.; O'Brien, R. J.; Trotter, J. J. Chem. Soc. 1964, 2332.
- [7] Yasuda, K.; Kawasaki, Y.; Kasai, N.; Tanaka, T. Bull. Chem. Soc. Japan 1965, 38, 1216.
- [8] Lefferts, J. L.; Molloy, K. C.; Hossain, M. B.; van der Helm, D.; Zuckerman, J. J. J. Organomet. Chem. 1982, 240, 349.
- [9] Schlemper, E. O.; Hamilton, W. C. *Inorg. Chem.* **1966**, *5*, 995.
- [10] Allen, F. H.; Lerbscher, J. A.; Trotter, J. J. Chem. Soc. A 1971, 2507.
- [11] Chih, H.; Penfold, B. R. J. Cryst. Mol. Struct. 1973, 3, 285.
- [12] Wang, R.-J.; Wang, H.-G.; Yao, X.-K; Xie, Q.-L.; Wang, M.-D. Acta Chim. Sinica 1989, 47, 209.
- [13] Allen, D. W.; Nowell, I. W.; Brooks, J. S.; Clarkson, R. W. J. Organomet. Chem. 1981, 219, 29.
- [14] Calogero, S.; Ganis, P.; Peruzzo, V.; Tagliavini, G. J. Organomet. Chem. 1980, 191, 381.
- [15] Shihada, A.-F.; Weller, F. Z. Kristallogr. 1997, 212, 332.
- [16] Anderson, H. H. Inorg. Chem. 1964, 3, 108.
- [17] Vij, A.; Singh, S.; Verma, R. D. J. Fluorine Chem. 1992, 58, 43.

- [18] Vij, A.; Zheng, Y. Y.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 3281.
- [19] Sladky, F.; Kropshofer, H. J. Chem. Soc., Chem. Commun. 1973, 600.
- [20] Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlmann, B. J. Am. Chem. Soc. 1999, 121, 5001.
- [21] Zharov, I.; King, B. T.; Havlas, Z.; Pardi, A.; Michl, J. J. Am. Chem. Soc. 2000, 122, 10253.
- [22] Engelbrecht, A.; Porcham, W. Monatsh. Chem. 1971, 102, 333.
- [23] Ruff, J. K. Inorg. Chem. 1965, 4, 1446.
- [24] Foropoulus, J.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720.
- [25] Birchall, T.; Myers, R. D.; de Waard, H.; Schrobilgen, G. J. Inorg. Chem. 1982, 21, 1068.
- [26] Seppelt, K. Angew. Chem. 1982, 94, 890; Angew. Chem., Int. Ed. Engl. 1982, 21, 877 and references therein.
- [27] Christe, K. J. Fluorine Chem. 1984, 25, 269.
- [28] Bade, V.; Huber, F. J. Organomet. Chem. 1970, 24, 387.
- [29] Wang, C. S.; Shreeve, J. M. J. Chem. Soc., Chem. Comm. 1970, 151.
- [30] Gutmann, V. Coord. Chem. Rev. 1976, 18, 225.
- [31] Christe, K. O.; Dixon, D. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Wilson, W. W. Inorg. Chem. 1993, 32, 4089.
- [32] Schack, C. J.; Wilson, W. W.; Christe, K. O. Inorg. Chem. 1983, 27, 18.
- [33] Strauss, S. H.; Abney, K. D.; Anderson, O. P. Inorg. Chem. 1986, 25, 2806.
- [34] Singh, S.; Vij, A.; Lal, M.; Verma, R. D. *Indian J. Chem.* **1989**, 28A, 890 and references therein.
- [35] Nádvornik, M.; Holeček, J.; Handliř, K.; Lyčka, A. J. Organomet. Chem. 1984, 275, 43.

- [36] Holeček, J.; Nádvornik, M.; Handliř, K.; Lyčka, A. J. Organomet. Chem. 1986, 315, 299.
- [37] Lockhart, T. P.; Manders, W. F. Inorg. Chem. 1985, 25, 892.
- [38] Lockhart, T. P.; Manders, W. F.; Zuckerman, J. J. J. Am. Chem. Soc. 1985, 107, 4546.
- [39] Edlund, U.; Ashadi, M.; Johnels, D. J. Organomet. Chem. 1993, 456, 57.
- [40] Bondi, A. J. Phys. Chem. 1964, 68, 441.
- [41] Adams, S.; Dräger, M.; Mathiasch, B. Z. Anorg. Allg. Chem. 1986, 532, 81.
- [42] Ng, S.-W.; Zuckerman, J. J. Chem. Soc., Chem. Commun. 1982, 475.
- [43] Greene, P. T.; Bryan, R. F. J. Chem. Soc. A 1971, 2549.
- [44] Blaschette, A.; Schomburg, D.; Wieland, E. Z. Anorg. Allg. Chem. 1989, 571, 75.
- [45] Haas, A.; Klare, Ch.; Betz, P.; Bruckmann, J.; Krüger, C.; Tsay, Y.-H.; Aubke, F. *Inorg. Chem.* **1996**, *35*, 1918.
- [46] Zak, Z.; Ruzicka, A. Z. Kristallogr. 1998, 213, 217.
- [47] Polyakov, O. G.; Ivanova, S. M.; Gaudinski, C. M.; Miller, S. M.; Anderson, O.; Strauss, S. H. Organometallics 1999, 18, 3769.
- [48] Golding, J. J.; MacFarlane, D. R.; Spiccia, L.; Forsyth, M.; Skelton, B. W.; White, A. H. J. Chem. Soc., Chem. Commun. 1998, 1593.
- [49] Vij, A.; Wilson, W. W.; Vij, V.; Tham, F. S.; Sheehy, J. A.; Christe, K. O. J. Am. Chem. Soc. 2001, 123, 6308 and references therein.
- [50] Collins, M. J.; Schrobilgen, G. J. Inorg. Chem. 1985, 24, 2608.
- [51] gNMR V4.1.0 by Peter H. M. Budzelaar, published by Cherwell Scientific Publishing, 1998.
- [52] For simulations of isotopic distribution patterns, http://www.sisweb.com/cgibin/mass10.pl

- [53] SMART V 4.045 Software for the CCD Detector System, Bruker AXS, Madison, WI (1999).
- [54] SAINT V 4.035 Software for the CCD Detector System, Bruker AXS, Madison, WI (1999).
- [55] SADABS, Program for absorption correction for area detectors, Version 2.01, Bruker AXS, Madison, WI (2000).
- [56] Sheldrick, G. M. SHELXS-90, Program for the Solution of Crystal Structure, University of Göttingen, Germany, 1990.
- [57] Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.
- [58] SHELXTL 5.10 for Windows NT, Program library for Structure Solution and Molecular Graphics, Bruker AXS, Madison, WI (2000).

Table 1. ¹H, ¹³C NMR Spectroscopic Data^a and calculated^{b,c} C-Sn-C angles for (CH₃)₃SnX [X = OTeF₅ and N(SO₂F/CF₃)₂]

Solute	Solvent ^d δ(¹ H) ppm	δ(¹H) ppm	$^2J_{(^{119(11)}Sn^{-1}H)}^2$	θ(C-Sn-C) ^b (*)	δ(¹³ C) ppm	$\delta(^{13}C) ^{1}J(^{119(11)}Sn^{-13}C) \theta(C-Sn-C)^{c}$	θ(C-Sn-C) ^ε (*)	Ref
(CH ₃) ₃ SnOTeF ₅	neat	0.84	59.2°	111.7	0.84	376.9(360.3)	109.8	This work
	CH_2Cl_2	0.79	58.5(55.9)	111.3	06.0	374.0(357.4)	109.6	This work
	acetone	69.0	68.8(65.8)	118.8	1.55	480.4(459.3)	118.9	This work
	CH_3CN	99.0	69.2(66.2)	119.2	1.49	484.6(463.1)	119.3	This work
	DMSO	0.50	69.5(66.6)	119.4	1.05	511.4(490.0)	121.6	This work
(CH ₃) ₃ SnOTeF ₅	AN/H ₂ O 0.46	0.46	(69.6(66.7)	119.5	0.10	508.5(486.0)	121.4	This work
I	DMSO/H ₂ O 0.43	0.43	70.1(68.5)	120.0	0.84	515.5(492.5)	122.0	This work
(CH ₃) ₃ SnN(SO ₂ F) ₂	neat	0.91	63.8(61.6)	114.7	1.6	416.8(400.3)	113.3	
	CH_2CI_2	96.0	62.3(59.9)	113.6	1.4	404.1(387.7)	112.2	17
,	DMSO	0.83	72.4(70.0)	122.2	-0.2	528.3(509.9)	123.1	17
(CH ₃) ₃ SnN(SO ₂ CF ₃) ₂	neat	0.84	64.2(61.6)	115.0	2.1	412.6(394.1)	113.0	18
	CH_2CI_2	0.81	64.4(61.8)	115.2	8.0	414.8(395.2)	113.0	18
	CH ₃ CN	0.82	70.2(67.1)	120.1	-1.7	489.5(467.6)	119.7	18
	DMSO	0.48	69.0(67.4)	119.0	0.7	512.2(499.0)	121.6	18
$[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$ CH ₃ CN	CH3CN	0.61	(69.7(66.7)	119.6	0.10	491.8(470.0)	120.0	This work
	DMSO	1.18	(69.8(66.7)	119.7	0.92	512.9(497.2)	121.8	This work

^a NMR spectroscopic data were recorded at 300 K.

^b Calc from relation: $\theta = 0.0161 \, [^{2} \chi(^{119} \text{Sn-}^{1} \text{H})]^{2} - 1.32 \, [^{2} \chi(^{119} \text{Sn-}^{1} \text{H})] + 133.4.$ ^c Calc from relation: $|^{1} \chi(^{119} \text{Sn-}^{13} \text{C})| = 11.4 \, \theta - 875.$ ^d Acetone = (CD₃)₂CO, DMSO = (CD₃)₂SO.

^e Calculated from center of unresolved $^{119} \text{Sn}$, $^{117} \text{Sn}$ satellites ($|_{\text{obs}}| \times 1.023$). 28

Table 2. 19 F, 119 Sn and 125 Te NMR Spectroscopic Data^a of (CH₃)₃SnX [X = OTeF₅ and N(SO₂F/CF₃)₂]

Solute	Solvent		δ(¹⁹ F), ppm	,	$^{2}J(^{19}F_{ax}-^{19}F_{eq})$. $\delta(^{119}Sn)$ $\delta(^{125}Te)$ $\delta(^{12}CF_{3})$ $^{1}J(^{125}Te-^{19}F)$, Hz $^{1}J(^{13}C-^{19}F)$ Ref.	δ(¹¹⁹ Sn)	$\delta(^{125}{ m Te})$	$\delta(^{13}\text{CF}_3)$	$^{1}J(^{125}{ m Te}$	- ¹⁹ F), Hz	¹ J(¹³ C- ¹⁹ F)	Ref.
		Fax	F_{eq}	CF ₃ /SO ₂ F Hz	Hz	wdd	mdd	mdd	Fax	Feq	Hz	
(CH ₃) ₃ SnOTeF ₅	neat	-32.9	-41.9	ŕ	182.5	270.8	569.5		3112	3540		This work
	CH_2Cl_2	-30.3	-38.5		183.0	272.4	564.6		3188	3550		This work
	acetone	-29.1	-40.6		180.0	0.96	574.9		3020	3558		This work
*	CH3CN	-29.2	-40.8		179.0	84.2	575.0		3032	3556		This work
•	DMSO	-16.2	-33.8		170.0	40.0	598.7		2712	3998		This work
$(CH_3)_3SnN(SO_2F)_2$	neat			55.5	,	242.5						16
	$\dot{\mathrm{CH}}_2\mathrm{Cl}_2$			55.6		248.6						16
-	DMSO		¢	52.5		32.9						<u>.</u> 16
(CH ₃) ₃ SnN(SO ₂ CF ₃) ₂	neat			-78.5		240.2	٠	118.7			320.4	17
,	CH_2Cl_2			-78.8		251.0		118.1			319.8	, 21
	CH3CN			-78.9	:	44.9	٠	119.4			320.7	17
	DMSO	*		-78.6		37.4		120.0			321.7	17
[(CH ₃) ₃ Sn(H ₂ O) ₂][N(SO ₂ CF ₃) ₂] CH ₃ CN	CH3CN			-79.0		59.0			,			This work
	DMSO			-79.1		42.8					,	This work
								٠				/

^a NMR spectroscopic data were recorded at 300 K.

^b Acetone = $(CD_3)_2CO$, DMSO = $(CD_3)_2SO$.

Table 3. Crystal data and structure refinement for $(CH_3)_2SnCl(OTeF_5)$ and $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$

Empirical formula	C ₂ H ₆ ClF ₅ OSnTe	C ₅ H ₁₃ F ₆ NO ₆ S ₂ Sn
Formula weight	422.81	479.97
T, K	218(2)	213(2)
Space group	$P2_1/n$	$P2_1/c$
Unit cell dimensions a, Å	5.8204(8)	7.3072(1)
<i>b</i> , Å	10.782(1)	13.4649(2)
c, Å	15.493(2)	16.821(2)
<i>β</i> , °	91.958(2)	98.705(1)
Volume, Å ³	971.7(2)	1636.00(3)
\mathbf{Z}	4	4
D _{calc} (g cm ⁻³)	2.890	1.949
Absorption coefficient (mm ⁻¹)	5.872	1.898
Theta for data (°)	2.30 to 29.30	1.95 to 28.27
Goodness-of-fit on F	1.088	1.233
R1, wR2 [I>2sigma(I)]	0.0282, 0.0712	0.0367, 0.0736
R1, wR2 (all data)	0.0333, 0.0743	0.0410, 0.0759

 $R1 = (\Sigma(F_o - F_c)/F_o); wR2 = [\Sigma(w(F_o - F_c)^2)/wF_o^2)]^{1/2}$

Table 4. Bond lengths [Å] and angles [°] for $(CH_3)_2SnCl(OTeF_5)$

Bond Lengths and Contacts

Sn(1)-O(1)	2.065(3)	Te(1)-F(5)	1.815(3)
Sn(1)-C(2)	2.094(4)	Te(1)-F(4)	1.819(3)
Sn(1)-C(1)	2.094(4)	Te(1)-F(1)	1.831(3)
Sn(1)-Cl(1)	2.3858(11)	Te(1)-F(3)	1.843(3)
O(1)-Te(1)	1.803(3)	Te(1)-F(2)	1.849(3)

Bond Angles

O(1)-Sn(1)-C(2)	105.04(15)	F(5)-Te(1)-F(1)	86.50(14)
O(1)-Sn(1)-C(1)	95.44(14)	F(4)-Te(1)-F(1)	90.65(16)
C(2)-Sn(1)- $C(1)$	139.05(17)	O(1)-Te(1)-F(3)	94.68(13)
O(1)-Sn(1)-Cl(1)	94.64(9)	F(5)-Te(1)-F(3)	86.48(14)
C(2)-Sn(1)-Cl(1)	106.63(13)	F(4)-Te(1)-F(3)	90.54(17)
C(1)-Sn(1)-Cl(1)	106.58(13)	F(1)-Te(1)-F(3)	172.81(12)
Te(1)-O(1)-Sn(1)	137.59(17)	O(1)-Te(1)-F(2)	93.38(14)
O(1)-Te(1)-F(5)	178.67(15)	F(5)-Te(1)-F(2)	85.99(16)
O(1)-Te(1)-F(4)	93.57(15)	F(4)-Te(1)-F(2)	173.05(14)
F(5)-Te(1)-F(4)	87.06(16)	F(1)-Te(1)-F(2)	88.89(14)
O(1)-Te(1)-F(1)	92.33(12)	F(3)-Te(1)-F(2)	89.06(16)

Table 5. Bond lengths [Å] and angles [°] for [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]

Bond Lengths and Contacts

			~
Sn(1)-C(2)	2.104(4)	S(1)-N(1)	1.573(3)
Sn(1)-C(1)	2.115(4)	S(1)-C(4)	1.825(5)
Sn(1)-C(3)	2.120(4)	S(2)-O(6)	1.421(3)
Sn(1)-O(1)	2.306(3)	S(2)-O(5)	1.433(3)
Sn(1)-O(2)	2.335(3)	S(2)-N(1)	1.589(3)
S(1)-O(3)	1.427(2)	S(2)-C(5)	1.844(4)
S(1)-O(4)	1.428(3)		
	Bon	d Angles	
;	•		
C(2)- $Sn(1)$ - $C(1)$	117.8(2)	O(3)-S(1)-N(1)	107.6(2)

C(2)-Sn(1)-C(1)	117.8(2)	O(3)-S(1)-N(1)	107.6(2)
C(2)-Sn(1)-C(3)	120.1(2)	O(4)-S(1)-N(1)	116.1(2)
C(1)-Sn(1)-C(3)	122.1(2)	O(3)-S(1)-C(4)	104.0(2)
C(2)-Sn(1)-O(1)	89.83(15)	O(4)-S(1)-C(4)	105.4(2)
C(1)-Sn(1)-O(1)	92.3(2)	O(6)-S(2)-O(5)	118.2(2)
C(3)-Sn(1)-O(1)	87.19(13)	O(6)-S(2)-N(1)	109.0(2)
C(2)-Sn(1)-O(2)	91.04(15)	O(5)-S(2)-N(1)	115.3(2)
C(1)- $Sn(1)$ - $O(2)$	90.8(2)	O(6)-S(2)-C(5)	104.7(2)
C(3)-Sn(1)-O(2)	88.95(13)	O(5)-S(2)-C(5)	105.0(2)
O(1)-Sn(1)-O(2)	175.94(11)	S(1)-N(1)-S(2)	125.3(2)
O(3)-S(1)-O(4)	118 5(2)		

- Figure 1 DIAMOND plot of (CH₃)₂SnCl(OTeF₅) showing the dimmer formation via Sn···Cl contacts. The thermal ellipsoids are at 30% probability.
- Figure 2 The unit cell along the b-axis of $(CH_3)_2SnCl(OTeF_5)$ showing extended Sn...Halogen contacts.
- Figure 3 DIAMOND plot showing the trigonal bipyramidal geometry of the $(CH_3)_3Sn(H_2O)_2^+$ cation and the *trans*-conformation of the $N(SO_2CF_3)_2^-$ anion with thermal ellipsoids at 50% probability level.
- Figure 4 Crystal packing diagram of $[(CH_3)_3Sn(H_2O)_2][N(SO_2CF_3)_2]$ showing the hydrogen bonding network.

Graphical Abstract

Methyl Tin(IV) Derivatives of HOTeF5 and HN(SO2CF3)2: A Solution Multi-NMR Study and X-ray Crystal Structures of (CH₃)₂SnCl(OTeF₅) and [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]

Michael Gerken, Ralf Haiges, Stefan Schneider, Thorsten Schroer and Ross I. Wagner, Ashwani Vij, ** William W. Wilson, * Vandana Vij, * Robert C. Corley, * Fook S. Tham, b

University of California, Riverside, CA 92521,^c Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA ^a Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRL/PRS), Edwards Air Force Base, CA 93524, USA, ^b Department of Chemistry,

The reaction of (CH₃)₃SnCl with HOTeF₅ or ClOTeF₅ yields (CH₃)₂SnCl(OTeF₅) which was diffraction. The NMR spectroscopic study of (CH₃)₃SnOTeF₅ revealed the presence of tetracoordinated tin in CH2Cl2 and as a neat liquid. In the donor solvents, acetone and CH₃CN, one solvent molecule coordinates on tin, while DMSO was found to cause Sn-OTeF₅ bond cleavage with formation of the [(CH₃)₃Sn(O=S(CH₃)₂)₂][OTeF₅] salt. The salt characterized by multi-NMR and vibrational spectroscopy and by single crystal X-ray [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)] was characterized by X-ray crystallography.

31

Supplementary Material

Methyl Tin(IV) Derivatives of HOTeF₅ and HN(SO₂CF₃)₂: A Solution Multi-NMR Study and X-ray Crystal Structures of (CH₃)₂SnCl(OTeF₅) and [(CH₃)₃Sn(H₂O)₂][N(SO₂CF₃)₂]

Ashwani Vij,*a William W. Wilson, Vandana Vij, Robert C. Corley, Fook S. Tham, Michael Gerken, Ralf Haiges, Stefan Schneider, Thorsten Schroer and Ross I. Wagner,

^a Propulsion Sciences and Advanced Concepts Division, Air Force Research Laboratory (AFRL/PRS), Edwards Air Force Base, CA 93524, USA, ^b Department of Chemistry, University of California, Riverside, CA 92521, ^c Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA

Table 1. Crystal data and structure refinement for Me₂SnCl(OTeF₅)

Identification code		$Me_2SnCl(OTeF_5)$
Empirical formula	•	Me ₂ SnCl(OTeF ₅)

Formula weight 422.81 Temperature 218(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group

Unit cell dimensions a = 5.8204(8) Å \Box = 90°.

b = 10.7820(14) Å $\Box = 91.958(2)^{\circ}$. c = 15.493(2) Å $\Box = 90^{\circ}$.

P2(1)/n

Volume 971.7(2) Å³

Z

 $2.890 \, \text{Mg/m}^3$ Density (calculated) 5.872 mm⁻¹ Absorption coefficient

F(000) 760

Crystal size $0.30 \times 0.22 \times 0.15 \text{ mm}^3$

Theta range for data collection 2.30 to 29.30°.

Index ranges -7<=h<=8, -14<=k<=14, -16<=l<=21

Reflections collected 6283

Independent reflections 2360 [R(int) = 0.0277]

Completeness to theta = 29.30° 89.3 % Absorption correction **SADABS**

Max. and min. transmission 0.4729 and 0.2718

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2360 / 0 / 103

Goodness-of-fit on F² 1.088

Final R indices [I>2sigma(I)] R1 = 0.0282, wR2 = 0.0712

R indices (all data) R1 = 0.0333, wR2 = 0.0743

Extinction coefficient 0.0042(3)

Largest diff. peak and hole 0.864 and -0.672 e.Å⁻³

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å 2 x 10^3) for Me₂SnCl(OTeF₅). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

·	· x	у	z	U(eq)
Sn(1)	11163(1)	4491(1)	1319(1)	27(1)
C(1)	12430(8)	2757(4)	955(3)	39(1)
C(2)	12389(7)	6282(4)	1585(3)	38(1)
Cl(1)	7508(2)	4728(1)	594(1)	40(1)
O(1)	9823(5)	3885(3)	2462(2)	38(1)
Te(1)	7968(1)	4479(1)	3274(1)	32(1)
F(1)	7791(5)	2965(3)	3804(2)	53(1)
F(2)	5315(4)	4095(4)	2639(2)	60(1)
F(3)	7841(5)	6060(3)	2823(2)	60(1)
F(4)	10350(6)	4924(4)	3999(2)	70(1)
F(5)	6072(6)	5041(3)	4094(2)	72(1)

Table 3. Bond lengths [Å] and angles [°] for Me₂SnCl(OTeF₅).

Sn(1)-O(1)	2.065(3)	Te(1)-F(5)	1.815(3)
Sn(1)-C(2)	2.094(4)	Te(1)-F(4)	1.819(3)
Sn(1)-C(1)	2.094(4)	Te(1)-F(1)	1.831(3)
Sn(1)-Cl(1)	2.3858(11)	Te(1)-F(3)	1.843(3)
O(1)-Te(1)	1.803(3)	Te(1)-F(2)	1.849(3)
•			
O(1)-Sn(1)-C(2)	105.04(15)	F(5)-Te(1)-F(1)	86.50(14)
O(1)-Sn(1)-C(1)	95.44(14)	F(4)-Te(1)-F(1)	90.65(16)
C(2)-Sn(1)-C(1)	139.05(17)	O(1)-Te(1)-F(3)	94.68(13)
O(1)-Sn(1)-Cl(1)	94.64(9)	F(5)-Te(1)-F(3)	86.48(14)
C(2)- $Sn(1)$ - $Cl(1)$	106.63(13)	F(4)-Te(1)-F(3)	90.54(17)
C(1)-Sn(1)-Cl(1)	106.58(13)	F(1)-Te(1)-F(3)	172.81(12)
Te(1)-O(1)-Sn(1)	137.59(17)	O(1)-Te(1)-F(2)	93.38(14)
O(1)-Te(1)-F(5)	178.67(15)	F(5)-Te(1)-F(2)	85.99(16)
O(1)-Te(1)-F(4)	93.57(15)	F(4)-Te(1)-F(2)	173.05(14)
F(5)-Te(1)-F(4)	87.06(16)	F(1)-Te(1)-F(2)	88.89(14)
O(1)-Te(1)-F(1)	92.33(12)	F(3)-Te(1)-F(2)	89.06(16)

Table 4. Anisotropic displacement parameters (Å 2 x 10 3) for Me $_2$ SnCl(OTeF $_5$). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h^2 a* 2 U 11 + ... + 2 h k a* b* U 12]

	U11	U^{22}	U_{33}	U23	Д13	U12	
Sn(1)	- 25(1)	29(1)	26(1)	1(1)	-2(1)	0(1)	
C(1)	45(2)	33(2)	40(2)	0(2)	7(2)	5(2)	
C(2)	36(2)	33(2)	45(2)	-8(2)	4(2)	-6(2)	
Cl(1)	24(1)	61(1)	33(1)	9(1)	-5(1)	-3(1)	
O(1)	40(2)	43(2)	31(1)	6(1)	7(1)	8(1)	
Te(1)	31(1)	37(1)	30(1)	3(1)	3(1)	2(1)	
F(1)	59(2)	52(2)	49(2)	22(1)	14(1)	6(1)	
F(2)	31(1)	77(2)	70(2)	12(2)	-10(1)	-5(1)	
F(3)	71(2)	34(1)	74(2)	11(1)	12(2)	8(1).	
F(4)	67(2)	92(2)	49(2)	-14(2)	-20(2)	-9(2)	
F(5)	80(2)	76(2)	64(2)	-3(2)	38(2)	23(2)	. •
				, ,	,		

Table 5. Torsion angles [°] for Me₂SnCl(OTeF₅).

·	
C(2)-Sn(1)-O(1)-Te(1)	46.5(3)
C(1)-Sn(1)-O(1)-Te(1)	-169.3(3)
Cl(1)-Sn(1)-O(1)-Te(1)	-62.1(3)
Sn(1)-O(1)-Te(1)-F(5)	143(6)
Sn(1)-O(1)-Te(1)-F(4)	-98.3(3)
Sn(1)-O(1)-Te(1)-F(1)	170.9(3)
Sn(1)-O(1)-Te(1)-F(3)	-7.5(3)
Sn(1)-O(1)-Te(1)-F(2)	81.8(3)
	•

Symmetry transformations used to generate equivalent atoms:

Table 6 - Contact Distances(Angstrom) for: Me2SnCl(OTeF5)

```
Sn1
      .Cl1_a
             3.9050(12)
                            F1
                                  .H2C_f
                                              2.6139
Sn1
      .F2_a
                3.141(3)
                          F1
                                .H2B_e
                                            2.7936
Sn1
      .Sn1_b
               4.4008(7)
                            F2
                                  .H1B_c
                                              2.8020
Sn1
      .Cl1_b
                                  .H2A
               3.2013(12)
                            F3
                                             2.7659
Cl1
      .Sn1_c
               3.9050(12)
                            F5
                                  .H1A_i
                                              2.6796
Cl1
      .Cl1_b
              3.5373(15)
                            C1
                                  .F4_f
                                           3.316(6)
Cl1
                            C1
      .Sn1_b
              3.2013(12)
                                  .Cl1_b
                                            3.622(5)
Cl1
      .Cl1_d
              3.4470(15)
                            C2
                                  .F2_a
                                           3.307(6)
Cl1
      .C1_b
               3.622(5)
                           C2
                                .F3
                                         3.330(5)
Cl1
     .C2_b
                3.549(5)
                          C2
                                .Cl1_b
                                          3.549(5)
Cl1
      .H2C_c
                                  .F5_e
                  3.0201
                           H1A
                                             2.6796
Cl1
     .H1C_b
                  3.1027
                           H<sub>1</sub>B
                                  .F2_a
                                             2.8020
F2
     .Sn1_c
                                 .Cl1_b
               3.141(3)
                          H1C
                                            3.1027
F2
     .C2_c
               3.307(6)
                          H<sub>1</sub>C
                                .F1_k
                                            2.4907
F3
     .C2
              3.330(5)
                         H2A
                                .F3
                                         2.7659
F4
     .C1_h
               3.316(6)
                          H<sub>2</sub>B
                                 .F1_i
                                           2.7936^{\circ}
F5
     .F5_i-
              3.112(5)
                         H2C
                                .Cl1_a
                                           3.0201
F1
     .H1C_g
                 2.4907
                           H2C
                                 .F1 h
                                             2.6139
```

Table 7 - Hydrogen Bonds (Angstrom, Deg) for: Me2SnCl(OTeF5)

Translation of Symmetry Code to Equiv.Pos

```
a = [ 1655.00 ] = 1+x,y,z g = [ 4455.00 ] = -1/2+x,1/2-y,1/2+z b = [ 3765.00 ] = 2-x,1-y,-z h = [ 2755.00 ] = 5/2-x,1/2+y,1/2-z c = [ 1455.00 ] = -1+x,y,z i = [ 2655.00 ] = 3/2-x,1/2+y,1/2-z d = [ 3665.00 ] = 1-x,1-y,-z j = [ 3666.00 ] = 1-x,1-y,1-z k = [ 4554.00 ] = 1/2+x,1/2-y,-1/2+z k = [ 2745.00 ] = 5/2-x,-1/2+y,1/2-z
```

Table 8. Crystal data and structure refinement for $[Me_3Sn(H_2O)_2]^+[N(SO_2CF_3)_2]^-$

Identification code

Empirical formula

Formula weight Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

 \mathbf{Z}

Density (calculated) Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected Independent reflections

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F²

Final R indices [I>2sigma(I)]

R indices (all data)

Extinction coefficient

Largest diff. peak and hole

 $[Me_3Sn(H_2O)]^+[N(SO_2CF_3)_2]^-$

C5 H13 F6 N O6 S2 Sn

479.97

213(2) K

0.71073 Å

Monoclinic

P2(1)/c

a = 7.30720(10) Å

□= 90°.

b = 13.4649(2) Å

 $\Box = 98.7050(10)^{\circ}$.

c = 16.821 Å1636.00(3) Å³

 \Box = 90°.

 $1.949 \, \text{Mg/m}^3$

1.898 mm⁻¹

936

 $0.30 \times 0.20 \times 0.12 \text{ mm}^3$

1.95 to 28.27°.

-9<=h<=9, -17<=k<=17, -13<=1<=22

20558

3908 [R(int) = 0.0327]

SADABS

0.965354 and 0.853923

Full-matrix least-squares on F²

3908 / 0 / 207

1.233

R1 = 0.0367, wR2 = 0.0736

R1 = 0.0410, wR2 = 0.0759

0.0131(4)

0.468 and -0.426 e.Å-3

Table 9. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for [Me₃Sn(H₂O)₂]⁺[N(SO₂CF₃)₂]. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	у	z	U(eq)
Sn(1)	4149(1)	3482(1)	3474(1)	34(1)
S(1)	9913(1)	2698(1)	715(1)	34(1)
S(2)	7793(1)	4113(1)	1397(1)	33(1)
F(41)	11105(5)	1580(2)	1948(2)	92(1)
F(42)	9976(5)	794(2)	892(3)	95(1)
F(43)	8150(5)	1537(2)	1581(2)	91(1)
F(51)	7822(4)	4885(2)	-30(2)	71(1)
F(52)	9275(5)	5742(2)	944(2)	83(1)
F(53)	6284(4)	5708(2)	735(2)	84(1)
O(1)	4717(4)	2953(3)	4793(2)	46(1)
O(2)	3362(4)	4046(3)	2154(2)	47(1)
O(3)	11785(3)	2708(2)	566(2)	50(1)
0(4)	8467(3)	2594(2)	47(2)	49(1)
O(5)	6150(3)	3569(2)	1095(2)	44(1)
O(6)	7930(4)	4542(2)	2176(2)	52(1)
N(1)	9685(4)	3569(2)	1316(2)	33(1)
C(1)	5633(7)	2277(4)	3077(3)	58(1)
C(2)	5613(6)	4801(3)	3803(3)	55(1)
C(3)	1289(5)	3384(3)	3560(2)	49(1)
C(4)	9778(7)	1586(3)	1324(3)	59(1)
C(5)	7801(6)	5181(3)	711(3)	53(1)

Table 10. Bond lengths [Å] and angles [°] for $[Me_3Sn(H_2O)_2]^+[N(SO_2CF_3)_2]^-$

·	·		
Sn(1)-C(2)	2.104(4)	F(51)-C(5)	1.311(5)
Sn(1)-C(1)	2.115(4)	F(52)-C(5)	1.325(5)
Sn(1)-C(3)	2.120(4)	F(53)-C(5)	1.322(5)
Sn(1)-O(1)	2.306(3)	O(1)-H(12)	0.87(6)
Sn(1)-O(2)	2.335(3)	O(1)-H(11)	0.69(5)
S(1)-O(3)	1.427(2)	O(2)-H(22)	0.78(7)
S(1)-O(4)	1.428(3)	O(2)-H(21)	0.76(6)
S(1)-N(1)	1.573(3)	C(1)-H(1A)	0.97
S(1)-C(4)	1.825(5)	C(1)-H(1B)	0.97
S(2)-O(6)	1.421(3)	C(1)-H(1C)	0.97
S(2)-O(5)	1.433(3)	C(2)-H(2A)	0.97
S(2)-N(1)	1.589(3)	C(2)-H(2B)	0.97
S(2)-C(5)	1.844(4)	C(2)-H(2C)	0.97
F(41)-C(4)	1.316(6)	C(3)-H(3A)	0.97
F(42)-C(4)	1.312(5)	C(3)-H(3B)	0.97
F(43)-C(4)	1.327(6)	C(3)-H(3C)	0.97
			•
C(2)-Sn(1)-C(1)	117.8(2)	O(6)-S(2)-O(5)	118.2(2)
C(2)-Sn(1)-C(3)	120.1(2)	O(6)-S(2)-N(1)	109.0(2)
C(1)-Sn(1)-C(3)	122.1(2)	O(5)-S(2)-N(1)	115.3(2)
C(2)-Sn(1)-O(1)	89.83(15)	O(6)-S(2)-C(5)	104.7(2)
C(1)- $Sn(1)$ - $O(1)$	92.3(2)	O(5)-S(2)-C(5)	105.0(2)
C(3)-Sn(1)-O(1)	87.19(13)	N(1)-S(2)-C(5)	102.7(2)
C(2)- $Sn(1)$ - $O(2)$	91.04(15)	Sn(1)-O(1)-H(12)	121.1(32)
C(1)- $Sn(1)$ - $O(2)$	90.8(2)	Sn(1)-O(1)-H(11)	122.2(43)
C(3)-Sn(1)-O(2)	88.95(13)	H(12)-O(1)-H(11)	110.1(54)
O(1)- $Sn(1)$ - $O(2)$	175.94(11)	Sn(1)-O(2)-H(22)	114.3(47)
O(3)-S(1)-O(4)	118.5(2)	Sn(1)-O(2)-H(21)	122.2(41)
O(3)-S(1)-N(1)	107.6(2)	H(22)-O(2)-H(21)	111.5(58)
O(4)-S(1)-N(1)	116.1(2)	S(1)-N(1)-S(2)	125.3(2)
O(3)-S(1)-C(4)	104.0(2)	Sn(1)-C(1)-H(1A)	109.47(14)
O(4)-S(1)-C(4)	105.4(2)	Sn(1)-C(1)-H(1B)	109.47(13)
N(1)-S(1)-C(4)	103.4(2)	H(1A)-C(1)-H(1B)	109.5

Sn(1)-C(1)-H(1C)	109.47(13)
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
Sn(1)-C(2)-H(2A)	109.47(13)
Sn(1)-C(2)-H(2B)	109.47(12)
H(2A)-C(2)-H(2B)	109.5
Sn(1)-C(2)-H(2C)	109.47(13)
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
Sn(1)-C(3)-H(3A)	109.47(13)
Sn(1)-C(3)-H(3B)	109.47(11)
H(3A)-C(3)-H(3B)	109.5
Sn(1)-C(3)-H(3C)	109.47(11)
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
F(42)-C(4)-F(41)	107.9(4)
F(42)-C(4)-F(43)	108.6(4)
F(41)-C(4)-F(43)	109.2(5)
F(42)-C(4)-S(1)	109.6(4)
F(41)-C(4)-S(1)	110.9(3)
F(43)-C(4)-S(1)	110.5(3)
F(51)-C(5)-F(53)	108.8(4)
F(51)-C(5)-F(52)	109.2(4)
F(53)-C(5)-F(52)	109.5(4)
F(51)-C(5)-S(2)	111.1(3)
F(53)-C(5)-S(2)	108.5(3)
F(52)-C(5)-S(2)	109.8(3)

Table 11. Anisotropic displacement parameters (Å 2 x 10 3) for Me $_3$ Sn(H $_2$ O) $_2$]+[N(SO $_2$ CF $_3$) $_2$]. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h^2 $a^*^2U^{11} + ... + 2hka^*b^*U^{12}$]

		· ,		•			
	U11	U ²²	U33	U ²³	U13	U12	
Sn(1)	26(1)	43(1)	34(1)	-1(1)	7(1)	-2(1)	
S(1)	24(1)	40(1)	40(1)	-7(1)	8(1)	1(1)	
S(2)	27(1)	39(1)	34(1)	0(1)	9(1)	4(1)	
F(41)	108(3)	70(2)	91(2)	31(2)	-4(2)	21(2)	
F(42)	107(3)	39(2)	145(3)	-15(2)	36(2)	9(2)	
F(43)	90(2)	60(2)	138(3)	26(2)	66(2)	-3(2)	
F(51)	87(2)	79(2)	52(2)	25(1)	25(1)	26(2)	,
F(52)	88(2)	49(2)	118(3)	9(2)	34(2)	-16(2)	
F(53)	84(2)	74(2)	101(2)	29(2)	35(2)	50(2)	
O(1)	28(1)	68(2)	42(2)	14(1)	6(1)	3(1)	
O(2)	29(1)	78(2)	35(1)	6(1)	5(1)	-6(1)	
O(3)	28(1)	65(2)	.59(2)	-11(1)	15(1)	2(1)	
O(4)	32(1)	71(2)	45(2)	-19(1)	5(1)	-1(1)	
O(5)	26(1)	55(2)	52(2)	-5(1)	12(1)	-2(1)	-
O(6) ·	53(2)	64(2)	41(1)	-14(1)	.12(1)	12(1)	
N(1)	24(1)	38(2)	37(1)	-5(1)	2(1)	3(1)	
C(1)	63(3)	58(3)	57(3)	-1(2)	24(2)	13(2)	
C(2)	61(3)	57(3)	48(2)	-8(2)	12(2)	-20(2)	
C(3)	29(2)	72(3)	46(2)	13(2)	8(2)	0(2)	
C(4)	61(3)	40(2)	78(3)	6(2)	21(2)	4(2)	
C(5)	54(2)	47(2)	60(3)	11(2)	20(2)	15(2)	

Table 12. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (\mathring{A}^2x 10^3) for $[Me_3Sn(H_2O)_2]^+[N(SO_2CF_3)_2]^-$

÷	X	У	Z	U(eq)
H(12)	3828(75)	2721(39)	5032(30)	68(16)
H(11)	5549(74)	2747(39)	4958(30)	59(16)
H(22)	4068(91)	3903(50)	1870(38)	94(22)
H(21)	2369(79)	4031(41)	1934(32)	68(17)
H(1A)	4803(7)	1719(4)	2945(3)	87
H(1B)	6623(7)	2085(4)	3500(3)	87
H(1C)	6154(7)	2474(4)	2604(3)	87
H(2A)	4777(6)	5291(3)	3973(3)	82
H(2B)	6133(6)	5055(3)	3346(3)	82
H(2C)	6602(6)	4666(3)	4243(3)	82
H(3A)	833(5)	2730(3)	3386(2)	73
H(3B)	616(5)	3885(3)	3220(2)	73
H(3C)	1111(5)	3490(3)	4113(2)	73
			•	

Table 13. Torsion angles [°] for $[Me_3Sn(H_2O)_2]^{\!+}[N(SO_2CF_3)_2]^{\!-}$

•	
O(3)-S(1)-N(1)-S(2)	155.0(2)
O(4)-S(1)-N(1)-S(2)	19.5(3)
C(4)-S(1)-N(1)-S(2)	-95.4(3)
O(6)-S(2)-N(1)-S(1)	156.3(2)
O(5)-S(2)-N(1)-S(1)	20.6(3)
C(5)-S(2)-N(1)-S(1)	-93.0(3)
O(3)-S(1)-C(4)-F(42)	-66.8(4)
O(4)-S(1)-C(4)-F(42)	58.5(4)
N(1)-S(1)-C(4)-F(42)	-179.2(3)
O(3)-S(1)-C(4)-F(41)	52.2(4)
O(4)-S(1)-C(4)-F(41)	177.5(3)
N(1)-S(1)-C(4)-F(41)	-60.1(4)
O(3)-S(1)-C(4)-F(43)	173.5(4)
O(4)-S(1)-C(4)-F(43)	-61.2(4)
N(1)-S(1)-C(4)-F(43)	61.1(4)
O(6)-S(2)-C(5)-F(51)	175.2(3)
O(5)-S(2)-C(5)-F(51)	-59.6(3)
N(1)-S(2)-C(5)-F(51)	61.3(3)
O(6)-S(2)-C(5)-F(53)	-65.3(4)
O(5)-S(2)-C(5)-F(53)	60.0(4)
N(1)-S(2)-C(5)-F(53)	-179.2(3)
O(6)-S(2)-C(5)-F(52)	54.3(3)
O(5)-S(2)-C(5)-F(52)	179.5(3)
N(1)-S(2)-C(5)-F(52)	-59.6(3)

Symmetry transformations used to generate equivalent atoms:

Table 14 - Contact Distances(Angstrom) for $[Me_3Sn(H_2O)_2]^+[N(SO_2CF_3)_2]^-$

S 1	.F51	3.464(3)	O2	.N1_k	2.911(4)
S1	.H21_a	3.08(5)	O2	.O5	2.972(4)
S2	.H22	2.96(7)	O3	.F42	2.985(4)
F41	.O3	2.882(4)	O3	.F41	2.882(4)
F41	.N1	3.008(4)	O3	.O1_f	2.814(4)
F41	.O6_b	3.144(4)	O4	.F43	2.986(4)
F42	.O3	2.985(4)	04	.F51	3.120(4)
F42	.O4	2.939(4)	O4	.O1_g	2.807(4)
F43	.04	2.986(4)	O4	.05	2.933(4)
F43	.05	3.151(4)	O4	.F42	2.939(4)
F43	.N1	3.016(4)	O5	.F51	2.986(4)
F51	.04	3.120(4)	O5	.F43	3.151(4)
F51	.O5	2.986(4)	O5	.O4	2.933(4)
F51	.S1	3.464(3)	O5	.O2	2.972(4)
F51	.F52_d	2.926(5)	O5	.O1_g	3.066(5)
F51	.N1	3.031(4)	O5	.F53	2.948(4)
F52	.N1	2.998(4)	O6	.F52	2.913(4)
F52	.O6	2.913(4)	O6	.F41_h .	3.144(4)
F52	.F51_d	2.926(5)	O6	.F53	2.984(4)
F53	.O5 .	2.948(4)	O3	.H21_a	2.88(5)
F53	.O6	2.984(4)	O3	.H12_f	1.95(6)
F53	.C1_e	3.357(6)	O3	.H3C_f	2.908(5)
F43	.H1C	2.728(6)	O4	.H11_g	2.16(5)
F43	.H2A_c	2.767(5)	· O4	.H1B_	g 2.777(6)
F53	.H1A_e	2.819(6)	O5	.H11_g	2.60(5)
01	.O4_j	2.807(4)	O5	.H12_g	2.86(5)
O1	.O5_j	3.066(5)	O5	.H22	2.19(7)
O1	.O3_i	2.814(4)	O6	.H3B_a	2.584(5)
O6	.H2B	2.619(6)	НЗВ	.O6_k	2.584(5)
N1	.O2_a	2.911(4)	Н3С	.H12	2.54(6)
N1	.F43	3.016(4)	H3C	.O3_i	2.908(5)
N1	.F41	3.008(4)		.O4_j	
N1	.F51	3.031(4)	H11	.O5_j	
					•

```
.H3C
      :F52
              2.998(4)
                         H12
                                          2.54(6)
N1
N1
                          H12
      .H21_a
                2.17(6)
                                .O3_i
                                           1.95(6)
C1
     .F53 1
               3.357(6)
                          H12
                               .O5_j
                                          2.86(5)
H1A
      .F53_1
                2.819(6)
                           H21
                                 .S1_k
                                            3.08(5)
H<sub>1</sub>B
      .O4_j
                2.777(6)
                          H21
                                 .O3_k
                                           2.88(5)
H<sub>1</sub>C
      .F43
               2.728(6) H21
                                .N1_k
                                           2.17(6)
                            H22
H2A
      .F43 m
                 2.767(5)
                                 .S2
                                           2.96(7)
                          H22 .O5
H2B
               2.619(6)
                                          2.19(7)
      .06
```

Table 15 - Hydrogen Bonds (Angstrom, Deg) for [Me₃Sn(H₂O)₂]⁺[N(SO₂CF₃)₂]

Translation of Symmetry Code to Equiv.Pos

```
a = [ 1655.00 ] = 1+x,y,z

b = [ 2745.00 ] = 2-x,-1/2+y,1/2-z

c = [ 2645.00 ] = 1-x,-1/2+y,1/2-z

d = [ 3765.00 ] = 2-x,1-y,-z

e = [ 2655.00 ] = 1-x,1/2+y,1/2-z

f = [ 4654.00 ] = 1+x,1/2-y,-1/2+z

g = [ 4554.00 ] = x,1/2-y,-1/2+z

h = [ 2755.00 ] = 2-x,1/2+y,1/2-z

i = [ 4455.00 ] = -1+x,1/2-y,1/2+z

j = [ 4555.00 ] = x,1/2-y,1/2+z

k = [ 1455.00 ] = -1+x,y,z
```