Calcul de primitives

Exercice 1 Déterminer les primitives suivantes :

a)
$$\int t e^{t^2} dt$$

b)
$$\int \frac{t^2}{1+t^3} dt$$

c)
$$\int \frac{\ln t}{t} dt$$

d)
$$\int \frac{t}{\sqrt{1+t^2}} dt$$

e)
$$\int \cos t \sin t dt$$

f)
$$\int \frac{dt}{t \ln t}$$

$$g) \int \frac{t}{1+t^4} dt$$

h)
$$\int \tan t dt$$

i)
$$\int \cos^3 t dt$$
.

 $\textbf{\textit{Exercice 2}} \quad \text{Soit } \lambda \in \mathbb{C} \setminus \mathbb{R} \text{ , } a = \text{Re}(\lambda) \text{ et } b = \text{Im}(\lambda) \text{ . Etablir } \int \frac{\mathrm{d}t}{t-\lambda} = \ln \left|t-\lambda\right| + i. \arctan \left(\frac{t-a}{b}\right) + C^{te} \text{ .}$

Exercice 3 Déterminer les primitives suivantes :

a)
$$\int \frac{\mathrm{d}t}{it+1}$$

b)
$$\int e^t \cos t dt$$

c)
$$\int t \sin t e^t dt$$
.

Calcul d'intégrales

Exercice 4 Calculer $I_{m,n} = \int_0^{2\pi} \cos mt \cos nt dt$ pour $m, n \in \mathbb{N}$.

Exercice 5 Calculer les intégrales suivantes :

a)
$$\int_{1}^{2} \frac{\mathrm{d}t}{t^{2}}$$

b)
$$\int_0^{2\pi} \cos^2 t dt$$

c)
$$\int_{1}^{2} \ln t dt$$

d)
$$\int_0^1 \frac{dt}{1+t^2}$$

e)
$$\int_{0}^{1} \frac{dt}{\sqrt{1+t^{2}}}$$

f)
$$\int_0^{1/2} \frac{dt}{\sqrt{1-t^2}}$$
.

Propriétés de l'intégrale

Exercice 6 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue par morceaux et $c \in]a,b[$.

$$\text{Montrer que } \frac{1}{b-a} \int_a^b f(t) \mathrm{d}t \leq \max \biggl(\frac{1}{c-a} \int_a^c f(t) \mathrm{d}t, \frac{1}{b-c} \int_c^b f(t) \mathrm{d}t \biggr).$$

Exercice 7 Soit $f: \mathbb{R} \to \mathbb{R}$ continue et T > 0. On suppose que $\int_x^{x+T} f(t) dt = C^{te}$. Montrer que f est périodique.

Exercice 8 Soit $f:[a,b] \to \mathbb{R}$ continue.

Montrer que
$$\left| \int_a^b f(t) dt \right| = \int_a^b \left| f(t) \right| dt$$
 si et seulement si $f \ge 0$ ou $f \le 0$.

Exercice 9 Soit $f:[0,1] \to \mathbb{R}$ continue telle que $\int_0^1 f(t) dt = \frac{1}{2}$. Montrer que f admet un point fixe.

Exercice 10 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue.

Montrer:
$$\exists c \in \left]a,b\right[,\frac{1}{b-a}\int_a^b f(t)\mathrm{d}t = f(c)$$
.

Exercice 11 Soit $f,g:[a,b]\to\mathbb{R}$ continues avec $g\geq 0$.

Montrer qu'il existe $\xi\in[a,b]$ tel que $\int_a^b f(t)g(t)\mathrm{d}t=f(\xi)\int_a^b g(t)\mathrm{d}t$.

- *Exercice 12* Soit $f:[0,\pi] \to \mathbb{R}$ continue.
 - a) Montrer que si $\int_0^{\pi} f(t) \sin t dt = 0$ alors $\exists a \in]0, \pi[$ tel que f s'annule en a.
 - b) Montrer que si $\int_0^{\pi} f(t) \sin t dt = \int_0^{\pi} f(t) \cos t dt = 0$ alors f s'annule 2 fois sur $]0,\pi[$.

(indice : on pourra regarder $\int_0^{\pi} f(t) \sin(t-a) dt$).

- $\begin{aligned} \textit{Exercice 13} \quad \text{Soit } (a,b) \in \mathbb{R}^2 \ \, \text{tel que } a < b \ , \ \, f: \big[a,b\big] \to \mathbb{R} \ \, \text{continue et } \, n \in \mathbb{N} \ \, \text{telle que :} \\ \forall k \in \big\{0,1,...,n\big\} \int_a^b t^k f(t) \, \mathrm{d}t = 0 \ \, \text{. Montrer que } \, f \ \, \text{s'annule au moins } \, n+1 \ \, \text{fois sur } \big[a,b\big] \, . \end{aligned}$
- **Exercice 14** Soit $f:[0,1] \to \mathbb{R}$ continue. Montrer que f possède une unique primitive F telle que $\int_0^1 F(t) \mathrm{d}t = 0 \ .$
- **Exercice 15** Soit $f:[a,b] \to \mathbb{R}$. Montrer que $x \mapsto \int_a^b f(t)\sin(xt)dt$ est lipschitzienne.
- *Exercice 16* Irrationalité du nombre π
 - a) Pour $a,b\in\mathbb{N}^*$, montrer que la fonction polynomiale $P_n(x)=\frac{1}{n!}x^n(bx-a)^n$ et ses dérivées successives prennent en 0 et en $\frac{a}{b}$ des valeurs entières.
 - b) Pour $\,n\in\mathbb{N}^*$, on pose $\,I_n=\int_0^\pi\!P_{\!_n}(t)\sin t\,\mathrm{d}t$. Montrer que $\,I_n\to0$.
 - c) En supposant $\pi = \frac{a}{b}$, montrer que $I_n \in \mathbb{Z}$. Conclure.

Limite d'intégrales

- *Exercice 17* Soit $f:[0,1] \to \mathbb{R}$ continue. Montrer que $\int_0^1 t^n f(t) dt \xrightarrow[n \infty]{} 0$.
- *Exercice 18* Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue. Déterminer $\lim_{x\to 0^+} \frac{1}{x} \int_0^x f(t) dt$.
- Exercice 19 Déterminer les limites suivantes sans pour autant calculer les intégrales correspondantes :

a)
$$\lim_{x \to 0^+} \int_{-x}^{x} \sin t^2 dt$$

b)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{dt}{\ln t}$$

c)
$$\lim_{x\to 0^+} \int_x^{2x} \frac{e^t dt}{t}.$$

d)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{\cos(1/t)}{t} dt$$

e)
$$\lim_{x\to+\infty} \int_{x}^{2x} \frac{\sin t}{t} dt$$

f)
$$\lim_{x \to +\infty} \int_{x}^{2x} \frac{e^{1/t}}{t} dt$$

Intégration par parties

Exercice 20 Déterminer les primitives suivantes :

a)
$$\int t \ln t dt$$

b)
$$\int t \arctan t dt$$

c)
$$\int (t^2 - t + 1)e^{-t} dt$$

d)
$$\int (t-1)\sin t dt$$

e)
$$\int (t+1) \operatorname{ch} t dt$$

f)
$$\int t \sin^3 t dt$$
.

Exercice 21 Calculer les intégrales suivantes:

a)
$$\int_0^1 \arctan t dt$$

b)
$$\int_{0}^{1} \ln(1+t^{2}) dt$$

b)
$$\int_0^1 \ln(1+t^2) dt$$
 c) $\int_1^e t^n \ln t dt$ (avec $n \in \mathbb{N}$)

d)
$$\int_0^{1/2} \arcsin t dt$$

e)
$$\int_0^1 t \arctan t dt$$
.

f)
$$\int_{1}^{e^{\pi}} \sin(\ln t) dt$$
.

g)
$$\int_0^1 \ln(1+t^2) dt$$
.

Exercice 22 Soit $f:[a,b] \to \mathbb{R}$ de classe C^1 .

Pour $n \in \mathbb{N}$ on pose : $I_n = \int_a^b f(t) \sin(nt) dt$. Montrer que $I_n \to 0$.

Changement de variables

Exercice 23 Déterminer les primitives suivantes en procédant par un changement de variable adéquat :

a)
$$\int \frac{\mathrm{d}t}{\sqrt{t} + \sqrt{t^3}}$$

b)
$$\int \frac{\ln t \, dt}{t + t (\ln t)^2}$$

c)
$$\int \frac{e^{2t} dt}{e^t + 1}$$

d)
$$\int \frac{\mathrm{d}t}{t\sqrt{t^2-1}}$$
.

Exercice 24 Calculer les intégrales suivantes via un changement de variable adéquat :

a)
$$\int_{0}^{1} \sqrt{1-t^2} \, dt$$

b)
$$\int_0^1 t^2 \sqrt{1-t^2} \, dt$$

c)
$$\int_{1}^{2} \frac{\ln t}{\sqrt{t}} dt$$

d)
$$\int_{1}^{e} \frac{dt}{t + t(\ln t)^2}$$

e)
$$\int_{1}^{e} \frac{dt}{t\sqrt{\ln t + 1}}$$

$$f) \int_0^1 \frac{\mathrm{d}t}{\mathrm{e}^t + 1}$$

$$g) \int_0^\pi \frac{\sin t}{3 + \cos^2 t} dt$$

h)
$$\int_{1}^{2} \frac{\mathrm{d}t}{\sqrt{t+2t}}$$

i)
$$\int_{1}^{2} \frac{\ln(1+t) - \ln t}{t^{2}} dt$$
.

Exercice 25 Observer: $\int_0^{\pi/4} \ln \cos t \, dt = \int_0^{\pi/4} \ln \cos \left(\frac{\pi}{4} - t \right) dt.$

En déduire $\int_0^{\pi/4} \ln(1+\tan t) dt$.

Exercice 26 a) Montrer que: $\int_0^{\pi/2} \frac{\cos t}{\cos t + \sin t} dt = \int_0^{\pi/2} \frac{\sin t}{\cos t + \sin t} dt = \frac{\pi}{4}$

b) En déduire :
$$\int_0^1 \frac{\mathrm{d}t}{\sqrt{1-t^2}+t}.$$

Exercice 27 Soit $f:[a,b] \to \mathbb{R}$ continue telle que $\forall x \in [a,b]$, f(a+b-x) = f(x).

Montrer que
$$\int_a^b x f(x) dx = \frac{a+b}{2} \int_a^b f(x) dx$$
.

Fonction dont la variable est borne d'intégration

Exercice 28 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue.

Justifier que les fonctions $g: \mathbb{R} \to \mathbb{R}$ suivantes sont de classe \mathcal{C}^1 et exprimer leur dérivée :

a)
$$g(x) = \int_{2\pi}^{x^2} f(t) dt$$

b)
$$g(x) = \int_0^x x f(t) dt$$

b)
$$g(x) = \int_0^x x f(t) dt$$
 c) $g(x) = \int_0^x f(t+x) dt$

Exercice 29 Soit $\varphi : \mathbb{R} \to \mathbb{R}$ la fonction définie par : $\varphi(t) = \frac{\sinh t}{t}$ pour $t \neq 0$ et $\varphi(0) = 1$.

Soit
$$f: \mathbb{R} \to \mathbb{R}$$
 définie par : $f(x) = \int_{x}^{2x} \varphi(t) dt$.

- a) Montrer que f est bien définie et étudier la parité de f .
- b) Justifier que f est dérivable et calculer f'(x).
- c) Dresser le tableau de variation de f.
- **Exercice 30** Soit $f:[0,1] \to \mathbb{R}$ continue. On définit $F:[0,1] \to \mathbb{R}$ par $F(x) = \int_0^1 \min(x,t) f(t) dt$.
 - a) Montrer que F est de classe C^2 et calculer F''(x).
 - b) En déduire que $F(x) = \int_{0}^{x} \int_{0}^{1} f(t) dt du$.
- *Exercice 31* Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue.

On pose, pour tout
$$x \in \mathbb{R}$$
, $f(x) = \int_0^x \sin(x-t)g(t)dt$.

- a) Montrer que f est dérivable et que $f'(x) = \int_0^x \cos(t-x)g(t)dt$.
- b) Montrer que f est solution de l'équation différentielle y'' + y = q(x).
- c) Achever la résolution de cette équation différentielle.
- *Exercice 32* Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^1 et $F: \mathbb{R}^* \to \mathbb{R}$ définie par $\forall x \neq 0, F(x) = \frac{1}{2x} \int_{-x}^x f(t) dt$.
 - a) Montrer que F peut être prolongée par continuité en 0. On effectue ce prolongement.
 - b) Montrer que F est dérivable sur \mathbb{R}^* et y calculer F'(x).
 - c) Montrer que F est dérivable en 0 et observer F'(0) = 0.

Suite dont le terme général est défini par une intégrale

- **Exercice 33** On pose, pour $n \in \mathbb{N}$: $I_n = \int_0^1 \frac{(1-x)^n}{n!} e^x dx$.
 - a) Montrer que $I_n \to 0$.
 - b) Montrer que $I_n = \frac{1}{(n+1)!} + I_{n+1}$.
 - c) En déduire que $e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$.
- **Exercice 34** Pour $n \in \mathbb{N}$, on pose $I_n = \int_1^e (\ln x)^n dx$.
 - a) Calculer I_0 et I_1 .
 - b) Etablir une relation liant I_n et I_{n+1} .

- c) En déduire que $\forall n \in \mathbb{N}$, $0 < I_n < \frac{\mathrm{e}}{n+1}$
- d) Déterminer $\lim I_n$ puis un équivalent de I_n .
- e) Soit (u_n) une suite réelle définie par $u_0=a, \forall n\in\mathbb{N}, u_{n+1}=\mathrm{e}-(n+1)u_n$.

On suppose que $\,a \neq I_{_0}$, montrer, en étudiant $\,D_{_n} = \left|u_{_n} - I_{_n}\right|$, que $\left|u_{_n}\right| \to +\infty$.

- **Exercice 35** Pour p et q entiers naturels, on pose : $I_{p,q} = \int_a^b (t-a)^p (b-t)^q dt$.
 - a) Former une relation de récurrence liant $\,I_{p,q}\,$ et $\,I_{p+1,q-1}\,$.
 - b) Donner une expression de $I_{p,q}$ à l'aide de factoriels.
- *Exercice 36* Soit $n \in \mathbb{N}$ et $x \in]0,\pi[$.
 - a) Justifier l'existence de $I_n = \int_0^\pi \frac{\cos nt \cos nx}{\cos t \cos x} \mathrm{d}t$.
 - b) Exprimer $\,I_{\scriptscriptstyle n}$. On pourra commencer par calculer $\,I_{\scriptscriptstyle n+1} + I_{\scriptscriptstyle n-1}$.
- **Exercice 37** Pour $n \in \mathbb{N}$, on pose $u_n = \int_0^1 \frac{\mathrm{d}x}{1+x^n}$.
 - a) Calculer u_0, u_1, u_2 .
 - b) Montrer que (u_n) est une suite strictement croissante.
 - c) Montrer que $u_n \to 1$.
 - d) Etablir $\forall n \in \mathbb{N}^*$, $\int_0^1 \frac{x^n dx}{1+x^n} = \frac{\ln 2}{n} \frac{1}{n} \int_0^1 \ln(1+x^n) dx$.
 - e) Montrer que $\lim_{n \to \infty} \int_0^1 \ln(1+x^n) dx = 0$ et en déduire que $u_n = 1 \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$.
- Exercice 38 Intégrales de Wallis

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/2} \sin^n t dt$.

- a) Montrer que $I_n = \int_0^{\pi/2} \cos^n t dt$ et $I_n > 0$
- b) Montrer que $\,\, \forall n \in \mathbb{N} \,\,$ on a : $\,\, I_{n+2} = \frac{n+1}{n+2} I_n \,.$
- c) Donner une expression de I_n à l'aide de factoriels en distinguant les cas n=2p et n=2p+1.
- d) Etablir que pour tout $n\in\mathbb{N}$, $(n+1)I_{n+1}I_n=\frac{\pi}{2}$ et $I_{n+2}\leq I_{n+1}\leq I_n$.
- e) Déterminer un équivalent de I_n .

Sommes de Riemann

Exercice 39 Déterminer les limites des suites définies par le terme général suivant :

a)
$$\sum_{k=1}^{n} \frac{n}{n^2 + k^2}$$

b)
$$\sum_{k=1}^{n} \frac{k}{n^2 + k^2}$$

c)
$$\sum_{k=1}^{n} \frac{1}{\sqrt{n^2 + 2kn}}$$

d)
$$\sum_{k=1}^{n} \frac{k^2}{n^3 + nk^2}$$

$$e) \left(\frac{(2n)!}{n^n n!} \right)^{\frac{1}{n}}.$$

Exercice 40 En faisant apparaître une somme de Riemann, déterminer un équivalent simple de $S_n = \sum_{i=1}^n \sqrt{k}$.

Formules de Taylor

- *Exercice 41* Soit $g:[0,1] \to \mathbb{R}$ une fonction continue. Déterminer les fonctions $f:[0,1] \to \mathbb{R}$, deux fois dérivables, telles que : f(0) = f(1) = 0 et
- **Exercice 42** Montrer que $\forall n \in \mathbb{N}$ et $\forall x \in \mathbb{R}$ on a : $\left| \mathbf{e}^x \sum_{k=0}^n \frac{x^k}{k!} \right| \leq \frac{\left| x \right|^{n+1} \mathbf{e}^{|x|}}{(n+1)!}$. En déduire $\lim_{n \to \infty} \sum_{k=0}^n \frac{x^k}{k!}$.
- Exercice 43 En appliquant l'inégalité de Taylor-Lagrange à la fonction $x\mapsto \ln(1+x)$ entre 0 et 1, montrer que : $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n-1}}{n}\xrightarrow[n\to+\infty]{}\ln 2 \ .$
- **Exercice 44** Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 et $a \in \mathbb{R}$. Déterminer $\lim_{h \to 0} \frac{f(a+h) 2f(a) + f(a-h)}{h^2}$.

david Delaunay http://mpsiddl.free.fr