# **HW1** Report

## 學號:311512015 姓名:謝元碩

# - \ Regression

(1) Network Architecture

• Input layer: 1, hidden layer: 2, output layer: 1

• Neurons of input layers: 16

• Neurons of hidden layers: 10\*10

Neurons of output layers: 1

• Activation function design: hidden layers 和 output layer 皆使用 sigmoid function

(2) Training parameters

● 網路架構中的參數(w,b)使用高斯分布做隨機初始化

• Learning rate: 1e-8

• Epoch: 3000

● Batch-size: training data 的樣本數

(3) Learning Curve

Loss 大約在 500 個 epoch 內就逐漸收斂



- (4) Training RMS Error: 2.735003059442172
- (5) Test RMS Error: 2.914477191109333
  - 使用自行設計之網路架構及參數進行訓練,訓練集和測試集的 RMS 誤差如上,可以看到測試集的誤差比訓練集稍微大一些,而測試集對於我們訓練的 model 屬於 new data,因此測試集誤差較大為合理情形
- (6) Regression result with training labels



## (7) Regression result with test labels



- (8) Design a feature selection procedure to find out which input features influence the energy load significantly.
  - 為找出對模型影響較大的輸入資訊,我在每次訓練時移除其中一項資訊,使用移除該項資訊之輸入組合訓練該模型(其餘參數相同),將訓練結果進行誤差的計算,並與原本無刪除的輸入組做比較。
  - 可以發現將 Glazing Area Distribution 刪除後所訓練出之模型,計算出之訓練集和 測試集誤差皆比其他情況大,估測效果也較差,因此認為此項目對於模型的訓練

影響最大;另外,移除 Glazing Area 也會造成 error 上升,最後推測與 Glazing Area 相關的資訊對於 heating load 估測影響最大。

| 刪除項目                      | Train error | Test error |
|---------------------------|-------------|------------|
| 無刪除資料                     | 2.8358      | 2.9647     |
| Relative Compactness      | 2.7496      | 2.7032     |
| Surface Area              | 2.9711      | 3.2430     |
| Wall Area                 | 3.0644      | 3.0375     |
| Roof Area                 | 2.7663      | 2.8294     |
| Overall Height            | 2.7971      | 2.8472     |
| Orientation               | 2.8239      | 2.7540     |
| Glazing Area              | 3.2130      | 3.4557     |
| Glazing Area Distribution | 4.6583      | 4.5092     |

### 二、 Classification

#### (1) Network Architecture

- Input layer: 1, hidden layer: 2, output layer: 1
- Neurons of input layers: 34
- Neurons of hidden layers: 24\*16
- Neurons of output layers: 2 (將 good, bad 分類為[1,0], [0,1])
- Activation function design:
  - hidden layers 皆使用 sigmoid function
  - output layer 使用 softmax 對前一層之輸出 x 數值做範圍限制,並以機率分布 表示,適合用來做分類任務之訓練

#### (2) Training parameters

- 網路架構中的參數(w, b)使用高斯分布做隨機初始化
- Learning rate: 1e-5
- Epoch: 390
- Batch-size: training data 的樣本數

#### (3) Learning curve

- 下圖分別為 loss 趨勢圖、使用訓練集之預測結果、使用測試集之預測結果
- 趨勢圖在 400 epoch 內就已經接近收斂,分類效果呈現在第 4,5 點的數據以及下面的預測分布圖。
- 顏色為該資料的實際類別,從圖中可以看到,不同種類的顏色分布重疊度低,無 論是訓練集或測試集的資料,分類效果皆較佳。







- (4) Training error rate: 0.014285714285714285
- (5) Test error rate: 0.05714285714285714
- (6) Compare the results of choosing different numbers of nodes in the layer before the output layer by plotting the distribution of latent features at different training stage.
  - 本作業除了使用 390 epoch 訓練,另外使用了三種 epoch 訓練並觀察比較結果, 結果如下:
    - Epoch = 10

Train Error Rate: 0.16071428571428573

Test Error Rate: 0.18571428571428572

因迭代較少,模型尚未找到合適的參數、loss 並未收斂,因此分類結果如下 圖,兩種類別的資料分布重疊度高,導致分類效果差。







### $\blacksquare$ Epoch = 100

Train Error Rate: 0.0035714285714285713 Test Error Rate: 0.07142857142857142

在 100 epoch, loss 已逐漸收斂,但估測結果分布成有部分重疊情形。



# ■ Epoch = 2000

Train Error Rate: 0.0 Test Error Rate: 0.1

使用較高的迭代數座訓練,可以看到使用訓練集的估測結果相當好,估測誤差為 0;使用測試集的預測誤差則較高一些,但分類效果仍是較佳的。 因此較高的迭代數可以讓模型達到更好的效果,原本希望嘗試訓練到 overfitting,經過多次調整後仍未嘗試出來。





