Purpose of Design and Analysis of Algorithms

- Purpose of Design: Efficiently solve our problem
- Purpose of Analysis: <u>Predict the behavior</u> of an algorithm without implementing it on a specific computer

How?

- How to measure efficiency?
- How to use the measure to predict (approximately) the behavior?

What does "efficient" mean?

• Economical in <u>time</u> and in <u>space</u>.

Time is often (but not always) more important these days.

• We count time by counting the number of steps a program goes through to solve a problem, assuming that each step takes no more than a constant time.

Example: I'm thinking of a number between 1 and 1000. Ask me yes/no questions to try to figure it out.

Strategy 1: Is it 1? Is it 2?...

Takes 999 questions in the worst case!

Strategy 2: Is it > 500? If yes, is it > 750? (If no, is it > 250?)...

Takes 10 questions in the worst case! (Similar to binary search.)

† Not only that, but how many more questions are needed if I can choose between 1 and 2000?

With strategy 1, 1000 more!

With strategy 2, 1 more!

† Incidentally, how would you solve this problem in 10 steps without feedback until you asked all 10?

- We try to relate time to the size of the problem. In this case, time is the number of questions. Size is the size of the interval.
- For strategy 1, T(n) = n.
- For strategy 2, $T(n) = \log_2(n)$.
- Doubling problem size doubles the time for strategy 1, but only increases time by one for strategy 2.

How to relate time to the size of a problem?

- Very often, the running time depends not on exact input but only on the *size* of the input, e.g., mergesort.
- When running time is really a function of the particular input, not just of the size of the input, e.g. binary search tree operations:
 - \dagger worst case: the maximum, over all inputs of size n, of the running time on the input
 - \dagger average case: the average, over all inputs of size n, of the running time on the input.
- We usually use worst case.

Average case is hard to determine and also depends on the distribution of inputs

Order of Magnitude Notation

- Suppose we analyzed an algorithm for a particular machine and a new one is wheeled in that is faster up to three times. We would then have to redo our analysis.
- Instead we choose to be lazy and ignore factors of 3, 5, indeed any constant.
- When we say the time for an algorithm is $O(\log n)$ ("big oh of log n" or "oh of log n") we could mean it takes time $30 \log(n)$, $9999 \log(n)$, and so on.
- For real applications, the constant does matter, but the order of magnitude notation is a good first cut, and usually lets us choose the right algorithm.

Example: 1000 n versus 0.0001 n^2

• For any input smaller than 10^7 , second algorithm $(0.0001 \ n^2)$ is faster. But eventually, the first algorithm is faster.

O() notation

Capture intuition as follows:

Let T(n) be the time of a particular algorithm for input of size n.

$$T(n) = O(g(n))$$
 iff

 $\exists c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0,$

$$T(n) \le c \cdot g(n)$$
.

- We don't care what constant is on g(n), as long as for values greater than n_0 , $c \cdot g(n)$ dominates T(n). Therefore, T(n) grows no faster than g(n).
- \bullet c lets us ignore constant terms
- n_0 lets us ignore a few particular values.

The function $T(n) = 3n^3 + 2n^2$ is $O(n^3)$.

Let $n_0 = 1$ and c = 5.

For $n \ge n_0$ we have $3n^3 + 2n^2 \le 5n^3$

• We could also say that T(n) is $O(n^4)$ since we can let $n_0 = 1$, c = 5 and for $n \ge 0$ we have $3n^3 + 2n^2 \le 5n^4$.

This is a weaker statement than saying it is $O(n^3)$.

Prove 3^n is not $O(2^n)$.

Proof: Suppose there were constants n_0 and c such that for all $n \geq n_0$

$$3^n \le c \cdot 2^n.$$

Then, $c \geq (3/2)^n$ for all $n \geq n_0$.

But $(3/2)^n$ gets arbitrarily large as n gets larger.

So no constant c can exceed $(3/2)^n$ for all $n \geq n_0$

Some properties of O()

- If S(n) = O(f(n)) and T(n) = O(g(n)) then † S(n) + T(n) = O(f(n) + g(n)). † $S(n) + T(n) = O(\max(f(n), g(n)))$.
- $\lg n = O(n^{\alpha}), \quad \alpha > 0$ (any logarithmic function grows slower than a polynomial function)
- $n^k = O(2^n)$ (any polynomial function grows slower than an exponential function.)

Warning

- O() does not always make sense
- Run only a few times (writing, debugging dominates)
- Only on small input
- Time efficient uses too much space
- Accuracy and stability are more important

 $\Omega()$ notation

Sometimes, we also know that T(n) grows no slower than a certain function g(n). (Note: in worst case or average case)

Then we say $T(n) = \Omega(g(n))$ (Omega of g(n))

• More formally,

Let T(n) be the time of an algorithm for input of size n.

$$T(n) = \Omega(g(n))$$
 iff

 $\exists c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0,$

$$T(n) \ge c \cdot g(n)$$
.

- Note the similarity between O() and $\Omega()$ notations.
- \bullet O() corresponds, loosely, to upper bound.
- $\Omega()$ corresponds, loosely, to lower bound.
- Note: there is a better definition for $\Omega()$.

 $\Theta()$ notation

- If T(n) = O(f(n)) and $T(n) = \Omega(f(n))$ then $T(n) = \Theta(f(n))$
- $T(n) = \Theta(f(n))$, iff $\exists c_2 > c_1 > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0,$

$$c_1 \cdot f(n) \leq T(n) \leq c_2 \cdot f(n).$$

- If $T(n) = \Theta(f(n))$ we say T(n) and f(n) are of the same order of magnitude.
- Example: in mergesort $T(n) = \Theta(n \cdot \log n)$.
- The O, Ω, Θ correspond loosely to \leq, \geq and =.
- Read textbook for more precise meanings of f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- Read textbook for o() and $\omega()$ notations.

Insertion Sort

- Array $[1, \ldots, n]$ of n elements
- Goal: A[1] is the smallest, A[2] is the second smallest and so on.
- Assume $A[1, \ldots i]$ are sorted. To insert A[i+1] we need at most i comparisons and i+1 data movement.
- This implies $T(n) \le c \cdot n^2$ which means $T(n) = O(n^2)$

Insertion sort

- Array $[1, \ldots, n]$ of n elements
- Goal: A[1] is the smallest, A[2] is the second smallest and so on.
- Input: A[n] is smallest, A[n-1] is second smallest and so on.
- Steps by Insertion Sort: n(n-1)/2
- $-\Omega(n^2)$ for insertion sort

We already know $T(n) = O(n^2)$

Conclusion: $T(n) = \Theta(n^2)$

Lower bound for a problem

Sometime we can prove lower bound for a *problem* (not for an algorithm); then any algorithm for this problem has that lower bound.

- Worst case sorting by comparison is $\Omega(n \cdot \log n)$.
- Worst case search in an sorted array is $\Omega(\log n)$.
- Worst case search in an unsorted array is $\Omega(n)$.
- Usually it is hard to show lower bound for a problem.
- Meaning:
 - † This is the best (within a constant)
 - † You can quit searching for a better one!

- Occasionally it is easy.
 - † Searching in unsorted arrays.

Theorem 1. The lower bound of time complexity for searching a value in an unsorted array of size n is $\Omega(n)$.

Proof. Need to check every element at least once.

† What does this mean?

Once you find an algorithm with time complexity O(n) for searching in unsorted arrays, you stop looking for a better algorithm (if the constant ratio is not your concern)!

Summary

- Running time (time complexity) = number of steps.
- Relate running time to the size of the input:
 - † Worst case
 - † Average case
- Upper bound O(): T(n) = O(f(n))means $T(n) \le c \cdot f(n)$ for some c > 0 and $n \ge n_0$
- Lower bound $\Omega(): T(n) = \Omega(f(n))$ means $T(n) \ge c \cdot f(n)$ for some c > 0 and $n \ge n_0$
- \bullet $\Theta()$: upper bound equals lower bound