

IPPD Hoje: Desempenho

Prof. Dr. Rafael P. Torchelsen rafael.torchelsen@inf.ufpel.edu.br

Ganho de desempenho

- Número de cores = p
- Tempo serial = T_{serial}
- Tempo paralelo = T_{paralelo}

$$Ganho Linear$$
 $T_{parallel} = T_{serial} / p$

Ganho em um programa paralelo

$$S = \frac{T_{\text{serial}}}{T_{\text{paralelo}}}$$

Eficiência de um programa paralelo

$$E = S = p$$

$$= T_{\text{paralelo}}$$

$$p \cdot T_{\text{paralelo}}$$

Ganho de desempenho e eficiência de um programa paralelo

p	1	2	4	8	16
S	1.0	1.9	3.6	6.5	10.8
E = S/p	1.0	0.95	0.90	0.81	0.68

Ganho de desempenho e eficiência de um programa paralelo com tamanhos de dados diferentes

	p	1	2	4	8	16
Half	S	1.0	1.9	3.1	4.8	6.2
7111111	E	1.0	0.95	0.78	0.60	0.39
Original	S	1.0	1.9	3.6	6.5	10.8
	\boldsymbol{E}	1.0	0.95	0.90	0.81	0.68
Double	S	1.0	1.9	3.9	7.5	14.2
	\boldsymbol{E}	1.0	0.95	0.98	0.94	0.89

Ganho de desempenho

Eficiência

Overhead

$$T_{parallel} = T_{serial} / p + T_{overhead}$$

Lei de Amdahl

• A lei de Amdahl, também conhecida como argumento de Amdahl, é usada para encontrar a máxima melhora esperada para um sistema em geral quando apenas uma única parte do mesmo é melhorada. Isto é frequentemente usado em computação paralela para prever o máximo speedup teórico usando múltiplos processadores. A lei possui o nome do Arquiteto computacional Gene Amdahl, e foi apresentada a AFIPS na Conferência Conjunta de Informática na primavera de 1967.

Escalabilidade

 Um programa é escalável quando ele consegue lidar com programas que aumentam de tamanho

Leitura

Ler capitulo 2