

Low Cost Micropower, Low Noise CMOS Rail-to-Rail, Input/Output Operational Amplifiers

Data Sheet

AD8613/AD8617/AD8619

FEATURES

Offset voltage: 2.2 mV maximum
Low input bias current: 1 pA maximum
Single-supply operation: 1.8 V to 5.5 V

Low noise: 22 nV/√Hz

Micropower: 50 μ A/amplifier maximum over temperature

No phase reversal Unity gain stable

Qualified for automotive applications

APPLICATIONS

Battery-powered instrumentation
Multipole filters
Current shunt sense
Sensors
ADC predrivers
DAC drivers/level shifters
Low power ASIC input or output amplifiers

GENERAL DESCRIPTION

The AD8613/AD8617/AD8619 are single, dual, and quad micropower, rail-to-rail input and output amplifiers that feature low supply current, as well as low input voltage and current noise.

The parts are fully specified to operate from 1.8 V to 5 V single supply, or ± 0.9 V and ± 2.5 V dual supply. The combination of low noise, very low input bias currents, and low power consumption make the AD8613/AD8617/AD8619 especially useful in portable and loop-powered instrumentation.

The ability to swing rail-to-rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in low power, single-supply systems.

The AD8613 is available in a 5-lead SC70 package and a 5-lead TSOT-23 package. The AD8617 is available in 8-lead MSOP, 8-lead SOIC, and 8-lead LFCSP packages. The AD8619 is available in 14-lead TSSOP and 14-lead SOIC packages. The AD8617W is qualified for automotive applications and is available in 8-lead MSOP and 8-lead SOIC packages. The AD8619W is qualified for automotive applications and is available in 14-lead SOIC and 14-lead TSSOP packages.

PIN CONFIGURATIONS

Figure 1. 5-Lead SC70 and 5-Lead TSOT-23

Figure 2. 8-Lead MSOP and 8-Lead SOIC_N

Figure 3. 8-Lead LFCSP

Figure 4. 14-Lead TSSOP and 14-Lead SOIC

Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS	
Features	Thermal Resistance5
Applications1	ESD Caution5
General Description	Typical Performance Characteristics6
Pin Configurations 1	Outline Dimensions
Revision History	Ordering Guide15
Specifications3	Automotive Products16
Absolute Maximum Ratings5	
REVISION HISTORY	
5/2016—Rev. G to Rev. H	Changes to Input Characteristics, Input Voltage Range Parameter;
Changed CP-8-9 to CP-8-21Throughout	Dynamic Performance, Settling Time to 0.1% and Phase Margin
Changed LFCSP_VD to LFCSPThroughout	Parameters; and Noise Performance, Peak-to-Peak Noise
Changes to Figure 3	Parameter, Table 13
Changes to Table 45	Changes to Input Characteristics, Input Voltage Range Parameter;
Changes to Figure 43	Dynamic Performance, Settling Time to 0.1% and Phase Margin
Updated Outline Dimensions	Parameters; and Noise Performance, Peak-to-Peak Noise
Changes to Ordering Guide	Parameter, Table 24
	Changes to Table 3 and Table 45
12/2014—Rev. F to Rev. G	Changes to Figure 12 to Figure 157
Changes to General Description Section	Changes to Figure 18 Caption8
Changes to Ordering Guide	Changes to Figure 30 and Figure 31 10
	Updated Outline Dimensions
4/2014—Rev. E to Rev. F	Added Figure 44; Renumbered Sequentially
Changes to General Description Section	Changes to Ordering Guide
Changes to Table 35	
Changes to Ordering Guide	1/2006—Rev. A to Rev. B
Added Automotive Products Section	Added AD8613Universal
	Changes to Features1
3/2010—Rev. D to Rev. E	Changes to Table 13
Changes to General Description	Changes to Table 24
Changes to Ordering Guide	Updated Outline Dimensions
	Changes to Ordering Guide
3/2010—Rev. C to Rev. D	
Changes to General Description	10/2005—Rev. 0 to Rev. A
Changes to Ordering Guide	Added AD8619Universal
	Change to Specifications Section3
10/2009—Rev. B to Rev. C	Updated Outline Dimensions
Added 8-Lead LFCSP PackageUniversal	Changes to Ordering Guide
Changes to Features Section, Figure 2 Caption,	
General Description Section, and Figure 31	9/2005—Revision 0: Initial Version
Changed V _S to V _{SY} Throughout	

SPECIFICATIONS

Electrical characteristics at $V_{SY} = 5$ V, $V_{CM} = V_{SY}/2$, $T_A = 25$ °C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$-0.3 \text{ V} < \text{V}_{\text{CM}} < +5.3 \text{ V}$		0.4	2.2	mV
		-40° C < T _A < $+125^{\circ}$ C, -0.3 V < V _{CM} < $+5.2$ V			2.2	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1	4.5	μV/°C
AD8613				2.5	7.0	μV/°C
Input Bias Current	I _B			0.2	1	pA
·		-40°C < T _A < +85°C			110	рA
		-40°C < T _A < +125°C			780	рA
Input Offset Current	los			0.1	0.5	рA
•		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			50	рA
		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$			250	pA
Input Voltage Range	IVR		0		5	v
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} < \text{V}_{\text{CM}} < 5 \text{ V}$		95		dB
		-40°C < T _A < +125°C	68			dB
Large Signal Voltage Gain	A _{VO}	$R_L = 10 \text{ k}\Omega$, 0.5 V < V_O < 4.5 V	235	500		V/mV
Input Capacitance	C _{DIFF}	12 112, 112 1 110 1 112		1.9		pF
pat capacitance	C _{CM}			2.5		pF
OUTPUT CHARACTERISTICS	COVI					ρ.
Output Voltage High	V _{OH}	$I_{L} = 1 \text{ mA}$	4.95	4.98		V
output voltage riigii	VOH	-40°C to +125°C	4.9	1.50		v
		I _L = 10 mA	٦.۶	4.7		v
		-40°C to +125°C	4.50	ч.,		v
Output Voltage Low	V _{OL}	$I_L = 1 \text{ mA}$	7.50	20	30	mV
Output Voltage Low	VOL	-40°C to +125°C		20	50	mV
		$I_L = 10 \text{ mA}$		190	275	mV
		-40°C to +125°C		130	335	mV
Short-Circuit Current	1	-40 C t0 +123 C		±80	333	mA
Closed-Loop Output Impedance	I _{SC} Z _{OUT}	f = 10 kHz, A _V = 1		±80 15		Ω
POWER SUPPLY	ZOUT	1 – 10 KHZ, AV – 1		13		12
	DCDD	101/21/251/	67	0.4		40
Power Supply Rejection Ratio	PSRR	1.8 V < V _{SY} < 5 V	67	94		dB
Committee Commont / Amontifican	1,	-40°C < T _A < +125°C	64	20		dB
Supply Current/Amplifier	I _{SY}	$V_0 = V_{SY}/2$		38	50	μΑ
DVALANIC DEDECODAMANCE		-40°C <t<sub>A < +125°C</t<sub>			50	μΑ
DYNAMIC PERFORMANCE	CD.	D 1010		0.1		.,,
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.1		V/µs
Settling Time to 0.1%	t _s	$G = \pm 1$, $V_{IN} = 2$ V step, $C_L = 20$ pF, $R_L = 1$ k Ω		23		μs
Gain Bandwidth Product	GBP	$R_L = 100 \text{ k}\Omega$		400		kHz
SI	~	$R_L = 10 \text{ k}\Omega$		350		kHz
Phase Margin	Øм	$R_L = 10 \text{ k}\Omega$, $R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$		70		Degree
NOISE PERFORMANCE					_	
Peak-to-Peak Noise	e _n p-p	0.1 Hz to 10 Hz		2.3	3.5	μV
Voltage Noise Density	en	f = 1 kHz		25		nV/√Hz
		f = 10 kHz		22		nV/√Hz
Current Noise Density	İn	f = 1 kHz		0.05		pA/√Hz

Electrical characteristics at $V_{SY} = 1.8 \text{ V}$, $V_{CM} = V_{SY}/2$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$-0.3 \text{ V} < \text{V}_{\text{CM}} < +1.9 \text{ V}$		0.4	2.2	mV
		$-0.3 \text{ V} < \text{V}_{\text{CM}} < +1.8 \text{ V}; -40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$			2.2	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1	8.5	μV/°C
AD8613				3.7	9.0	μV/°C
Input Bias Current	I _B			0.2	1	pА
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$			110	pА
		-40°C < T _A < +125°C			780	pА
Input Offset Current	los			0.1	0.5	pА
		-40 °C < T_A < $+85$ °C			50	pА
		-40 °C < T_A < $+125$ °C			250	рА
Input Voltage Range	IVR		0		1.8	V
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} < \text{V}_{\text{CM}} < 1.8 \text{ V}$	58	86		dB
		-40°C < T _A < +125°C	55			dB
Large Signal Voltage Gain	A _{vo}	$R_L = 10 \text{ k}\Omega$, $0.5 \text{ V} < V_O < 1.3 \text{ V}$	85	1000		V/mV
Input Capacitance	C _{DIFF}			2.1		pF
	Ссм			3.8		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	1.65	1.73		V
		-40°C to +125°C	1.6			V
Output Voltage Low	V _{OL}	$I_1 = 1 \text{ mA}$		44	60	mV
, ,		-40°C to +125°C			80	mV
Short-Circuit Current	I _{sc}			±7		mA
Closed-Loop Output Impedance	Zout	$f = 10 \text{ kHz}, A_V = 1$		15		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$1.8 \text{V} < \text{V}_{\text{S}} < 5 \text{V}$	67	94		dB
Supply Current/Amplifier	Isy	$V_0 = V_{SY}/2$		38		μA
,		-40°C <t<sub>A < +125°C</t<sub>			50	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.1		V/µs
Settling Time to 0.1%	ts	$G = \pm 1$, $V_{IN} = 1$ V step, $C_L = 20$ pF, $R_L = 1$ k Ω		6.5		μs
Gain Bandwidth Product	GBP	$R_L = 100 \text{ k}\Omega$		400		kHz
		$R_L = 10 \text{ k}\Omega$		350		kHz
Phase Margin	Ø _M	$R_L = 10 \text{ k}\Omega$, $R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$		70		Degree
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	0.1 Hz to 10 Hz		2.3	3.5	μV
Voltage Noise Density	e _n	f = 1 kHz		25		nV/√Hz
-		f = 10 kHz		22		nV/√Hz
Current Noise Density	in	f = 1 kHz		0.05		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.	
Parameter	Rating
Supply Voltage	6 V
Input Voltage	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Input Current	±10 mA
Differential Input Voltage	±6 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C
ESD AD8613	
НВМ	±4000 V
FICDM	±1000 V
ESD AD8617	
НВМ	±3000 V
FICDM	±1000 V
MM	±100 V
ESD AD8619	
НВМ	±4000 V
FICDM	±1250 V
MM	±200 V

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Characteristics

Package Type	θ _{JA}	Ө лс	Unit
5-Lead TSOT-23 (UJ-5)	207	61	°C/W
5-Lead SC70 (KS-5)	376	126	°C/W
8-Lead MSOP (RM-8)	210	45	°C/W
8-Lead SOIC_N (R-8)	158	43	°C/W
8-Lead LFCSP (CP-8-21)	81	20	°C/W
14-Lead SOIC_N (R-14)	120	36	°C/W
14-Lead TSSOP (RU-14)	180	35	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_{SY} = 5 \text{ V}$ or $\pm 2.5 \text{ V}$, unless otherwise noted.

Figure 5. Input Offset Voltage Distribution

Figure 6. Input Offset Voltage Drift Distribution

Figure 7. Input Offset Voltage vs. Input Common-Mode Voltage

Figure 8. Input Bias Current vs. Temperature

Figure 9. Supply Current vs. Supply Voltage

Figure 10. Supply Current vs. Temperature

Figure 11. Output Voltage to Supply Rail vs. Load Current

Figure 12. Output Voltage to Supply Rail vs. Temperature $(I_L = 1 \text{ mA})$

Figure 13. Output Voltage to Supply Rail vs. Temperature $(I_L = 10 \text{ mA})$

Figure 14. Open-Loop Gain and Phase vs. Frequency

Figure 15. CMRR vs. Frequency

Figure 16. PSRR vs. Frequency

Figure 17. Output Impedance vs. Frequency

Figure 18. Small Signal Overshoot vs. Load Capacitance

Figure 19. Small Signal Transient Response

Figure 20. Large Signal Transient Response

Figure 21. Positive Overload Recovery

Figure 22. Negative Overload Recovery

Figure 23. No Phase Reversal

Figure 24. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 25. Voltage Noise Density

Figure 26. Channel Separation

 $V_{SY} = 1.8 \text{ V}$ or $\pm 0.9 \text{ V}$, unless otherwise noted.

Figure 27. Input Offset Voltage Distribution

Figure 28. Input Offset Voltage vs. Input Common-Mode Voltage

Figure 29. Output Voltage to Supply Rail vs. Load Current

Figure 30. Output Voltage to Supply Rail $\,$ vs. Temperature $\,$ ($I_L=1\,$ mA)

Figure 31. CMRR vs. Frequency

Figure 32. PSRR vs. Frequency

Figure 33. Small Signal Overshoot vs. Load Capacitance

Figure 34. Large Signal Transient Response

Figure 35. 0.1 Hz to 10 Hz Input Voltage Noise

Figure 36. Voltage Noise Density

OUTLINE DIMENSIONS

Figure 37. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 38. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012-AB

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 39. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)

Figure 40. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

072809-A

Figure 41. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters

Figure 42. 5-Lead Thin Small Outline Transistor Package [TSOT-23] (UJ-5) Dimensions shown in millimeters

Figure 43. 8-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-8-21) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option	Branding
AD8613AKSZ-R2	−40°C to +125°C	5-Lead SC70	KS-5	A0Y
AD8613AKSZ-REEL	−40°C to +125°C	5-Lead SC70	KS-5	AOY
AD8613AKSZ-REEL7	-40°C to +125°C	5-Lead SC70	KS-5	A0Y
AD8613AUJZ-R2	−40°C to +125°C	5-Lead TSOT-23	UJ-5	AOY
AD8613AUJZ-REEL	−40°C to +125°C	5-Lead TSOT-23	UJ-5	A0Y
AD8613AUJZ-REEL7	−40°C to +125°C	5-Lead TSOT-23	UJ-5	A0Y
AD8617ACPZ-R2	−40°C to +125°C	8-Lead LFCSP	CP-8-21	A0T
AD8617ACPZ-R7	-40°C to +125°C	8-Lead LFCSP	CP-8-21	A0T
AD8617ARMZ	-40°C to +125°C	8-Lead MSOP	RM-8	A0T
AD8617ARMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	A0T
AD8617ARZ	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8617ARZ-REEL	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8617ARZ-REEL7	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8617WARMZ-REEL	−40°C to +125°C	8-Lead MSOP	RM-8	A23
AD8617WARZ-RL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8617WARZ-R7	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8619ARUZ	−40°C to +125°C	14-Lead TSSOP	RU-14	
AD8619ARUZ-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8619ARZ	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8619ARZ-REEL7	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8619WARZ-RL	−40°C to +125°C	14-Lead SOIC_N	R-14	
AD8619WARZ-R7	−40°C to +125°C	14-Lead SOIC_N	R-14	
AD8619WARUZ-R7	−40°C to +125°C	14-Lead TSSOP	RU-14	
AD8619WARUZ-RL	-40°C to +125°C	14-Lead TSSOP	RU-14	

¹ Z = RoHS Compliant Part.

 $^{^{2}}$ W = Qualified for Automotive Applications.

Data Sheet

AUTOMOTIVE PRODUCTS

The AD8617W and AD8619W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.