

Indian Institute of Information Technology, Sri City, Chittoor (An Institute of National Importance under an Act of Parliament)

Analog to Digital and Digital to Analog Converters

Dr. Kandimalla Divyabramham
Assistant Professor
IIIT Sri City

Contents

- Digital to Analog Converters
 - Introduction
 - Usng Binary-weighted resistor
 - R-2R ladder network
- Analog to Digital Converters
 - Introduction
 - Flash ADC
 - Successive Approximations ADC
 - Counting ADC

Introduction

- Physical quantities (e.g., Temparature, a voltage or a speech signal) are analog analog in nature, varying continuously with time.
- Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
- An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
- The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in digital format must be converted to an analog voltage for playing out on a speaker.
- A DAC (Digital-to-Analog Converter) is used to convert a digital signal to the analog format.

Digital to Analog Converters

For a 4-bit DAC, with input $S_3S_2S_1S_0$, the output voltage is $V_A=K\left[\left(S_3\times 2^3\right)+\left(S_2\times 2^2\right)+\left(S_1\times 2^1\right)+\left(S_0\times 2^0\right)\right]$. In general, $V_A=K\sum_0^{N-1}S_k2^k$.

K is proportional to the reference voltage V_{R} . Its value depends on how the DAC is implemented.

DAC using Binary-weighted resistors

DAC using Binary-weighted resistors

If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.

Since the inverting terminal of the Op Amp is at virtual ground,

$$I_k = \frac{V(A_k) - 0}{R_k} = \frac{S_k V_R}{R_k}.$$

Using
$$R_k = 2^{N-1} R/2^k$$
, we get $I = \frac{V_R}{2^{N-1}R} \sum_{0}^{N-1} S_k \times 2^k$ ($N = 4$ here).

The output voltage is
$$V_o = -R_f I = -V_R \frac{R_f}{2^{N-1}R} \sum_{j=0}^{N-1} S_k \times 2^k$$
.

• Consider an 8-bit DAC with $V_R = 5$ V. What is the smallest value of R which will limit the current drawn from the supply (V_R) to 10 mA?

Maximum current is drawn from V_R when the input is 1111 1111. \rightarrow All nodes A_0 to A_7 get connected to V_R .

• If $R_f = R$, what is the resolution (i.e., V_A corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

$$V_A = -V_R \frac{R_f}{2^{N-1}R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right]$$

 $\to \Delta V_A = \frac{V_R}{2^{N-1}} \frac{R_f}{R} = \frac{5 \text{ V}}{2^{8-1}} \times 1 = \frac{5}{128} = 0.0391 \text{ V}.$

What is the maximum output voltage (in magnitude)?

$$V_A = -\frac{V_R}{2^{N-1}} \frac{R_f}{R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right].$$

Maximum V_A (in magnitude) is obtained when the input is 1111 1111.

$$|V_A|^{\text{max}} = \frac{5}{128} \times 1 \times \left[2^0 + 2^1 + \dots + 2^7\right] = \frac{5}{128} \times \left(2^8 - 1\right) = 5 \times \frac{255}{128} = 9.961 \,\text{V}.$$

Find the output voltage corresponding to the input 1010 1101.

$$V_A = -\frac{V_R}{2^{N-1}} \frac{R_f}{R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right].$$

= $-\frac{5}{128} \times 1 \times \left[2^7 + 2^5 + 2^3 + 2^2 + 2^0 \right] = -5 \times \frac{173}{128} = -6.758 \,\text{V}.$

DAC with R-2R Ladder

Node A_k is connected to V_R if input bit S_k is 1; else, it is connected to ground.

The original network is equivalent to

R-2R Ladder Network

R-2R ladder network: V_{Th} for $S_0 = 1$

R-2R ladder network: V_{Th} for $S_1 = 1$

R-2R ladder network: V_{Th} for $S_2 = 1$

R-2R ladder network: V_{Th} for $S_3 = 1$

$$R_{Th} = R.$$

$$V_{Th} = V_{Th}^{(S0)} + V_{Th}^{(S1)} + V_{Th}^{(S2)} + V_{Th}^{(S3)}$$

$$= \frac{V_R}{16} \left[S_0 2^0 + S_1 2^1 + S_2 2^2 + S_3 2^3 \right].$$

We can use the R-2R ladder network and an Op Amp

$$V_o = -\frac{R_f}{R_{Th}} V_{Th} = -\frac{R_f}{R_{Th}} \frac{V_R}{16} \left[S_0 2^0 + S_1 2^1 + S_2 2^2 + S_3 2^3 \right] .$$

For an N-bit DAC,
$$V_o = -\frac{R_f}{R_{Th}} V_{Th} = -\frac{R_f}{R_{Th}} \frac{V_R}{2^N} \sum_{0}^{N-1} S_k 2^k$$
.

6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip).