CIR2

TD de Maths - Anneaux

Exercice 1: Anneau produit

Soient $(A,+,\times)$ et $(B,+,\times)$ deux anneaux.

On définit sur $A \times B$ une addition et une multiplication en posant :

$$(a,b) \oplus (a',b') = (a+a',b+b')$$
 et $(a,b) \otimes (a',b') = (a \times a',b \times b')$

Vérifier que $(A \times B, \oplus, \otimes)$ est un anneau.

Quels sont les éléments inversibles de $A \times B$?

Exercice 2: Anneau de Boole

Soit $(A, +, \star)$ un anneau tel que $\forall x \in A / x \star x = x$

- Quels sont les éléments inversibles de A?
- Montrer que $\forall x \in A / x + x = 0$. En déduire que A est commutatif.
- Pour x et y dans A, on pose $x \le y \Leftrightarrow \exists a \in A / x = a * y$. Montrer que c'est une relation d'ordre.
- Exemple d'un tel anneau?

Exercice 3

On munit \mathbb{Q}^2 des deux opérations + et × : $\begin{cases} (a,b) + (c,d) = (a+b,c+d) \\ (a,b) \times (c,d) = (ac+2bd,ad+bc) \end{cases}$

- Vérifier que $(\mathbb{Q}^2, +, \times)$ est un anneau commutatif. Quel est l'élément unité?
- Montrer que l'ensemble des éléments (a,0) est un sous-anneau de \mathbb{Q}^2 isomorphe à \mathbb{Q}
- En calculant $(a,b)\times(a,-b)$, montrer que tout élément non nul de \mathbb{Q}^2 admet un inverse. (on rappelle que $\sqrt{2} \notin \mathbb{Q}$, c'est-à-dire que l'équation $x^2 = 2$ n'a pas de solution dans \mathbb{Q})
- Trouver un élément $(a,b) \in \mathbb{Q}^2$ tel que $(a,b)^2 = (2,0)$

Exercice 4

Soit
$$M = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$
.

- Si on considère M dans l'anneau des matrices à coefficients dans \mathbb{R} , M est-elle inversible?
- Si on considère M dans l'anneau des matrices à coefficients dans \mathbb{Z} , M est-elle inversible?
- Si on considère M dans l'anneau des matrices à coefficients dans $\mathbb{Z}/6\mathbb{Z}$, M est-elle inversible?

Mêmes questions pour $M = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$

Exercice 5

Soit $(A,+,\times)$ un anneau **commutatif** et $a \in A$.

On dit que a est nilpotent s'il existe $n \in \mathbb{N}$ tel que $a^n = 0$.

- Exemple : Déterminer les éléments nilpotents de $\mathbb{Z}/36\mathbb{Z}$.
- Exemple: Montrer que la matrice $M = \begin{pmatrix} 0 & 3 & -3 \\ 2 & 7 & -13 \\ 1 & 4 & -7 \end{pmatrix} \in M_3(\mathbb{R})$ est nilpotente.
- Montrer que si a et b sont nilpotents, alors a + b est nilpotent.
- Soit $a \neq 0$ nilpotent et $n \in \mathbb{N}$ tel que $a^n = 0$. Montrer que 1 a est inversible

(remarquer que $n \ge 2$ et que $1^n - a^n = 1$). Quel est l'inverse de $A = \begin{pmatrix} -1 & 3 & -3 \\ 2 & 6 & -13 \\ 1 & 4 & -8 \end{pmatrix}$?

• Soient a nilpotent et b inversible. Montrer que b + a est inversible.

Exercice 6 : Équation de Fermat (ou de Pell-Fermat)

Soit $\mathbb{Z}\left[\sqrt{2}\right]$ l'ensemble des réels de la forme $a+b\sqrt{2}$ où a et b sont des entiers.

- Soit $x \in \mathbb{Z}\left[\sqrt{2}\right]$. Montrer que l'écriture $x = a + b\sqrt{2}$ est unique.
- Montrer que $\mathbb{Z}\Big\lceil\sqrt{2}\,\Big\rceil$ est un sous-anneau de $\mathbb{R}\,$.
- Pour tout $x = a + b\sqrt{2} \in \mathbb{Z}\left[\sqrt{2}\right]$, on note $x = a b\sqrt{2}$.

 Montrer que $x \to x$ est un automorphisme de $\mathbb{Z}\left[\sqrt{2}\right]$ (isomorphisme d'anneau de $\mathbb{Z}\left[\sqrt{2}\right]$ sur lui-même)
- Calculer $x\overline{x}$. En déduire que si x est inversible dans $\mathbb{Z}\left[\sqrt{2}\right]$, alors $x\overline{x}$ est un élément inversible de \mathbb{Z} et donc $x\overline{x} = \pm 1$. Étudier la réciproque.
- Soit $x = a + b\sqrt{2}$ un élément inversible dans $\mathbb{Z}\left[\sqrt{2}\right]$. On suppose que x > 1En considérant le plus grand des 4 nombres $x, -x, x^{-1}, -x^{-1}$, montrer que a > 0 et b > 0. Vérifier que $\omega = 1 + \sqrt{2}$ est le plus petit élément inversible strictement supérieur à 1.
- Soit $x = a + b\sqrt{2}$ un élément inversible dans $\mathbb{Z}\left[\sqrt{2}\right]$ strictement supérieur à 1. Montrer qu'il existe un unique entier naturel n tel que $1 \le x \omega^{-n} < \omega$. En remarquant que $x \omega^{-n}$ est inversible, en déduire que $x = \omega^{n}$.
- Conclure que :

Les éléments inversibles de l'anneau $\mathbb{Z}\Big[\sqrt{2}\,\Big]$ qui sont >1 sont les puissances de ω d'exposants $\geqslant 1$. L'ensemble des éléments inversibles de l'anneau $\mathbb{Z}\Big[\sqrt{2}\,\Big]$ est $\Big\{\pm\omega^n\,/\,n\in\mathbb{Z}\,\Big\}$.

- Pour tout $n \in \mathbb{N}$ on pose $\omega^n = a_n + b_n \sqrt{2}$. Déterminer une relation de récurrence sur les (a_n, b_n) . Les calculer jusqu'à n = 5.
- Sur la figure ci-dessous, les côtés L et l du rectangle des entiers compris entre 50 et 100, et la diagonale d est aussi un entier. Trouver L et l pour que le rectangle soit « presque » carré. Calculer $\frac{L}{d}$.

Noter le format d'une feuille A4 : $\frac{21.0 \text{ cm}}{29.7 \text{ cm}}$

Pierre de Fermat 1601-1665