

- ********
 - 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
 - 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
 - 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
 - 4.实验报告文件以 PDF 格式提交。

院系	计算机学院		班 级	行政4班		组长		李钰	
学号	19335112		19335134		19335156				
学生	李钰		林雁纯	雁纯 毛羽翎					
实验分工									
毛羽翎		全程参与,交换机 S3	配置		李钰	全程参与,	交换机	S2 配置	
林雁纯		全程参与,交换机 S1	配置						

【实验题目】

IPv6 构建园区骨干网

【实验目的】

掌握在大型网络中如何采用 IPv6 相关技术构建园区骨干网络

【实验要求】

建设双协议栈的网络,既能访问 IPv4 的站点,又能访问 IPv6 的站点;在建设初期,为了保证 IPv6 网络的顺利开通,要求进行 IPv6 全网的测试工作来进行基于 IP v6 的访问控制,要求能够提供基于 IP v6 的主机防 ping 功能。

【实验拓扑】

图 13-12 IPv6 综合实验拓扑

【实验设备】

双协议交换机 3 台, IP v6 计算机 2 台

【实验步骤】

步骤 1: 配置 PC1 的 IP v6 地址。

进入 Internet 协议版本 6 手动设置主机的 IPv6 地址

设置成功之后,用 ipconfig 命令查看如下图

步骤 2: 配置 PC2 的 IP v6 地址。

具体过程如步骤 1 所示,设置好之后的 IPv6 地址如下图

步骤 3: 配置交换机 S3760-1, S3760-2, S3760-3 的相关端口地址

交换机 S3760-1 的相关端口配置,相关说明如下图,交换机 S3760-2 和 S3760-3 的配置大同小异

```
26-S5750-1(config)#interface gigabitethernet 0/1 #no switchport
Warning: the native vlan of port Gigabitethernet 0/1 may not match with its neighbor.
26-S5750-1(config-if-Gigabitethernet 0/1 may not match with its neighbor.
26-S5750-1(config-if-Gigabitethernet 0/1 way not match with the one for the neighbor port native vlan=0,
26-S5750-1(config-if-Gigabitethernet 0/1)#no switchport
26-S5750-1(config-if-Gigabitethernet 0/1)#pv6 "Jan 27 08:48:24: %LLDP-4-ERRDETECT: Native vlan
26-S5750-1(config-if-Gigabitethernet 0/1 way not match with the one for the neighbor port. Port native vlan=0,
26-S5750-1(config-if-Gigabitethernet 0/1 may not match with the one for the neighbor port. Port native vlan=0,
26-S5750-1(config-if-Gigabitethernet 0/1)#ipv6 enable 在接口下开启IPv6功能
26-S5750-1(config-if-Gigabitethernet 0/1)#no shutdown
26-S5750-1(config-if-Gigabitethernet 0/24)#no switchport
26-S5750-1(config-if-Gigabitethernet 0/24)#no switchport
26-S5750-1(config-if-Gigabitethernet 0/24)#no switchport
26-S5750-1(config-if-Gigabitethernet 0/24)#no switchport
26-S5750-1(config-if-Gigabitethernet 0/24)#no shutdown
26-S5750-1
```

交换机 S3760-2 的相关端口配置

设置与交换机 S3760-1 相连端口的 IPv6 地址

```
s3760-2(config)#interface gigabitethernet 0/1
s3760-2(config-if-GigabitEthernet 0/1)#no switchport
s3760-2(config-if-GigabitEthernet 0/1)#ipv6 enable
s3760-2(config-if-GigabitEthernet 0/1)#ipv6 address 1000:f80c::2
% Incomplete command.

s3760-2(config-if-GigabitEthernet 0/1)#ipv6 address 1000:f80c::2/64
s3760-2(config-if-GigabitEthernet 0/1)#no shutdown
s3760-2(config-if-GigabitEthernet 0/1)#exit
```


<u>计算机网络实验报告</u>

设置与交换机 S3760-3 相连端口的 IPv6 地址

```
s3760-2(config-if-GigabitEthernet 0/2)#ipv6 address 2000:f80c::1/64 s3760-2(config-if-GigabitEthernet 0/2)#no shutdown
% Invalid input detected at '^' marker.
s3760-2(config-if-GigabitEthernet 0/2)#no shutdown
% Invalid input detected at '^' marker.
s3760-2(config-if-GigabitEthernet 0/2)#no shutdown s3760-2(config-if-GigabitEthernet 0/2)#exit
```

设置 loopback 接口,使其作为 OSPFrouter-id

```
$3760-2(config)#interface loopback 0

$3760-2(config-if-Loopback 0)#*Jun 23 17:47:09: %LINK-3-UPDOWN: In

*Jun 23 17:47:09: %LINEPROTO-5-UPDOWN: Line protocol on Interface

ip a

% Incomplete command.

$3760-2(config-if-Loopback 0)#ip address 2.2.2.2 255.255.0

$3760-2(config-if-Loopback 0)#exit
```

交换机 S3760-2 的相关端口配置

```
27-s5750-1(config)#interface fastEthernet 0/2
% Invalid input detected at ^^ marker.
27-s5750-1(config)#interface gigabitethernet 0/2
27-s5750-1(config)#interface gigabitethernet 0/2
27-s5750-1(config)#interface gigabitethernet 0/2 may not match with its neighbor.
27-s5750-1(config-if-Gigabitethernet 0/2)#ipv6 #Jun 23 17:08:23: %LLDP-4-ERRDETECT: Native vlan for the port or native vlan-1.
27-s5750-1(config-if-Gigabitethernet 0/2)#ipv6 #Jun 23 17:09:03: %LINK-3-UPDOWN: Interface Gigabitethernet 3/2 yiun 23 17:09:03: %LINK-3-UPDOWN: Interface Gigabitethernet 3/2 yiun 23 17:09:06: %LINK-3-UPDOWN: Interface Gigabitethernet 0/2 yiun 23 17:09:06: %LINK-3-UPDOWN: Interface Loopback 0, changed state to up. 27-s5750-1(config-if-Gigabitethernet 0/2 yiun 23 17:09:06: %LINK-3-UPDOWN: Interface Loopback 0, changed state to up. 27-s5750-1(config-if-Gigabitethernet 0/2 yiun 23 17:15:28: %LINK-3-UPDOWN: Interface Loopback 0, changed state to up. 27-s5750-1(config-if-Loopback 0)#ipu 23 17:15:28: %LINK-3-UPDOWN: Interface Lo
```


配置完接口之后,我们下面来验证一下以上步骤是否正确。

(1) 用交换机 S3760-2 去 ping 与其相连的其他两个交换机的端口 IPv6 地址。

如下图,我们发现成功率100%,连接成功

(2) 检查端口信息,这里还是以 S3760-2 为例

如下图,端口 0/1 被设置的 IPv6 地址为 1000:f80c::2

```
s3760-2#show ipv6 interface
interface GigabitEthernet 0/1 is Up, ifindex: 1
   address(es):
     Mac Address: 14:14:4b:77:17:87
                                                   subnet is FE80::/64
     INET6: FE80::1614:4BFF:FE77:1787
     INET6: 1000:F80C::2 ,
                                 subnet is 1000:F80C::/64
   Joined group address(es):
     FF01::1
FF02::1
     FF02::2
     FF02::1:FF00:2
     FF02::1:FF77:1787
  MTU is 1500 bytes
   ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 milliseconds
ND retransmit interval is 1000 milliseconds
   ND advertised retransmit interval is 0 milliseconds
   ND router advertisements are sent every 200 seconds<160--240> ND router advertisements live for 1800 seconds
```

如下图,端口 0/2 被设置的 IPv6 地址为 2000:f80c::1

```
interface GigabitEthernet 0/2 is Up, ifindex: 2
  address(es):
    Mac Address: 14:14:4b:77:17:87
    INET6: FE80::1614:4BFF:FE77:1787
                                           . subnet is FE80::/64
    INET6: 2000:F80C::1 .
                             subnet is 2000:F80C::/64
  Joined group address(es):
    FF01::1
    FF02::1
    FF02::2
    FF02::1:FF00:1
    FF02::1:FF77:1787
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
  ND advertised reachable time is 0 milliseconds
  ND retransmit interval is 1000 milliseconds
  ND advertised retransmit interval is 0 milliseconds
  ND router advertisements are sent every 200 seconds<160--240> ND router advertisements live for 1800 seconds
interface Null O is Up, ifindex: 4096
  address(es):
    Mac Address: N/A
  Joined group address(es):
```


<u>计算机网络实验报告</u>

步骤 4: 配置 OSPFv3 的构建骨干网络

交换机 S3760-1 启用 OSPFv3 进程,将其相关接口加入到 OSPF 相关区域,其他两个交换机步骤同理。

```
26-S5750-1(config)#ipv6 router ospf 开启OSPFv3
26-S5750-1(config-router)#router-id 1.1.1.1 指定 route-id 为 1.1.1.1
Change router-id and update OSPFv3 process! [yes/no]:yes
```

```
26-S5750-1(config-if-GigabitEthernet 0/1)#ipv6 ospf 1 area 0
26-S5750-1(config-if-GigabitEthernet 0/1)#exit
26-S5750-1(config)#interface gigabitethernet 0/24
26-S5750-1(config-if-GigabitEthernet 0/24)#ipv6 ospf 1 area 1
26-S5750-1(config-if-GigabitEthernet 0/24)#
```

交换机 S3760-2

```
s3760-2(config)#ipv6 router ospf
s3760-2(config-router)#router-id 2.2.2.2
Change router-id and update OSPFv3 process! [yes/no]:yes
```

```
s3760-2(config)#interface gigabitethernet 0/1
s3760-2(config-if-GigabitEthernet 0/1)#ipv6 ospf 1 area 0
s3760-2(config-if-GigabitEthernet 0/1)#ex*Jun 23 18:08:43: %OSPFV3-5-ADJCHG: Process
[1], Nbr [1.1.1.1-GigabitEthernet 0/1] from Down to Init, HelloReceived.
*Jun 23 18:08:43: %OSPFV3-5-ADJCHG: Process [1], Nbr [1.1.1.1-GigabitEthernet 0/1] from Loading to Full, LoadingDone.
it
s3760-2(config)#interface gigabitethernet 0/2
s3760-2(config-if-GigabitEthernet 0/2)#ipv6 ospf 1 area 0
s3760-2(config-if-GigabitEthernet 0/2)#exit
```

交换机 S3760-3

```
27-s5750-1(config)#ipv6 router ospf
27-s5750-1(config-router)#router-id 3.3.3.3
Change router-id and update OSPFv3 process! [yes/no]:yes

27-s5750-1(config)#interface giga 0/2
27-s5750-1(config-if-GigabitEthernet 0/2)#ipv6 ospf 1 area 0

27-s5750-1(config-if-GigabitEthernet 0/2)#exit

27-s5750-1(config-if-GigabitEthernet 0/24)#ipv6 ospf 1 area 2
27-s5750-1(config-if-GigabitEthernet 0/24)#
```

测试以上步骤正确性: 查看交换机 S3760-2 邻居关系的建立

查看各交换机的路由表信息,新增了 OI 项

交换机 S3760-1

交换机 S3760-2

```
S3760-2#show ipv6 route
IPv6 routing table name is Default(0) global scope - 12 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
II - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
0 - OSPF intra area, OI - OSPF inter area, OEI - OSPF external type 1, OE2 - OSPF external type 2
ONI - OSPF NSSA external type 1, ON2 - OSPF NSSA external type 2
L ::1/128 via Loopback, local host
C 1000:F80C::/64 via GigabitEthernet 0/1, directly connected
L 1000:F80C::/64 via GigabitEthernet 0/1, local host
C 2000:F80C::/64 via GigabitEthernet 0/2, directly connected
L 7000:F80C::/64 via GigabitEthernet 0/2, local host
OI 3001:F0C::1/128 via CigabitEthernet 0/2 local host
OI 3001:F0C::1/128 via CigabitEthernet 0/2 local host
OI 4008:31:F::/64 [110/2] via FE80::1614:48FF:FE77:1683, GigabitEthernet 0/2
FE80::/64 via GigabitEthernet 0/1, directly connected
L FE80::1614:48FF:FE77:1787/128 via GigabitEthernet 0/1, local host
FE80::1614:48FF:FE77:1787/128 via GigabitEthernet 0/2, local host
```

交换机 S3760-3

步骤 5: 配置 IP v6 的访问控制列表

在配置访问控制列表之前,PC1 和 PC2 之间是可以连通的

pc1 ping pc2

```
C:\Windows\system32>ping 4008:31:f::2
正在 Ping 4008:31:f::2 具有 32 字节的数据:
来自 4008:31:f::2 的回复: 时间<1ms
来自 4008:31:f::2 的回复: 时间<1ms
来自 4008:31:f::2 的回复: 时间<1ms
来自 4008:31:f::2 的回复: 时间<1ms
4008:31:f::2 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0 (0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

PC2 ping PC1

```
管理员: 命令提示符
```

```
Microsoft Windows [版本 10.0.14393]
(c) 2016 Microsoft Corporation。保留所有权利。
(c) 2016 Microsoft Corporation。保留所有权利。
(c:\Users\Administrator>ping 3001:f0c3:45a0::2

正在 Ping 3001:f0c3:45a0::2 具有 32 字节的数据:
来自 3001:f0c3:45a0::2 的回复: 时间=3ms
来自 3001:f0c3:45a0::2 的回复: 时间<1ms
来自 3001:f0c3:45a0::2 的回复: 时间<1ms
来自 3001:f0c3:45a0::2 的回复: 时间<1ms

3001:f0c3:45a0::2 的回复: 时间<1ms

次据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 3ms,平均 = 0ms
```

之后, 我们开始建立访问控制列表。

在交换机 S3760-1 上建立名为 work1 的时间访问控制列表。

指定起生效时间为每周工作日的9:00-18:00

```
26-S5750-1(config)#time-range work1
26-S5750-1(config-time-range)#periodic daily 9:00 to 18:00
26-S5750-1(config-time-range)#exit
```

设置访问控制列表的具体规则并将其应用至端口 0/24

```
14-S5750-1(config)#ipv6 access-list deny_ping
14-S5750-1(config-ipv6-acl)#$host 4008:31:f::2 time-range work1
14-S5750-1(config-ipv6-acl)#permit ipv6 any any
failed, for the entry is existed or the sequence number has been allocated!
14-S5750-1(config-ipv6-acl)#exit
14-S5750-1(config)#interface giga 0/24
14-S5750-1(config-if-GigabitEthernet 0/24)#ipv6 traffic-filter deny_ping in
```


<u>计算机网络实验报告</u>

将系统时间设置为不可访问时间范围之内

```
14-55750-1#clock set 12:00:00 4 12 2021
14-55750-1#*Apr 12 12:00:00: %SYS-6-CLOCKUPDATE: System clock has been updated
```

此时, PC2 不能 ping 通 PC1

```
C:\Users\Administrator>ping 3001:f0c3:45a::2
正在 Ping 3001:f0c3:45a::2 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
3001:f0c3:45a::2 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4(100% 丢失),
```

再将系统时间设置为禁止时间之外的

14-55750-1#clock set 8:00:00 4 12 2021 14-55750-1#*Apr 12 08:00:00: %SYS-6-CLOCKUPDATE: System clock has been updated to 08:00:00 UTC Mon Apr 12 2021.

此时 PC2 可以 ping 通 PC1

```
Microsoft Windows [版本 10.0.14393]
(c) 2016 Microsoft Corporation。保留所有权利。

C:\Users\Administrator\ping 3001:f0c3:45a0::2

正在 Ping 3001:f0c3:45a0::2 具有 32 字节的数据:
来自 3001:f0c3:45a0::2 的回复: 时间=3ms
来自 3001:f0c3:45a0::2 的回复: 时间<1ms
来自 3001:f0c3:45a0::2 的回复: 时间<1ms
来自 3001:f0c3:45a0::2 的回复: 时间<1ms

2001:f0c3:45a0::2 的回复: 时间<1ms

2001:f0c3:45a0::2 的回复: 时间<1ms

2001:f0c3:45a0::2 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),

往返行程的估计时间(以毫秒为单位):
最短 = 0ms,最长 = 3ms,平均 = 0ms
```

实验要求完成

【实验心得】

本次实验是第一次将之前 IPv4 的学习内容应用到 IPv6 上去,有相似之处也有不同之处。我们首 先学习了相关实验内容,掌握了一定的指令操作之后开始进行试验,完成过程相交顺利。

与 IPv4 下的 OSPF 相比,OSPFv3 是基于链路运行的,通过 Router ID 唯一标识邻居,并需要将不同的接口加入到相对应的区域中。在设置访问控制列表时,IPv4 与 IPv6 的相应指令也有少许差异,但在学习了 IPv4 之后,不难理解它在 IPv6 上的应用。

【自评】

学号	学生	自评分
19335112	李钰	99
19335134	林雁纯	99
19335156	毛羽翎	99