دوره آموزشی بینایی ماشین کاربردی

آکادمی ربوتک - آزمایشگاه تعامل انسان و ربات

جلسه 3 – ادامه كانتورها + لبه يابي

میخواهیم زوایای شکل زیر را پیدا کنیم!

مرحله 1 : ایجاد یک Mask مناسب به کمک

= [26 , 183, 255] باند بالا

[0 , 33, 63] = باند پایین

مرحله 3 : محاسبه كانتور و تخمين آن

مرحله 2 : تصحیح mask

cv2.approxPolyDP

(با دقت بالا)

cv2.erode cv2.dilate

آشنایی با مفهوم محدب (Convex)

جسم محدب : جسمی است که زاویه ای بیشتر از 180 درجه در خود نداشته باشد.

محدب (Convex)

نامحدب (Concave)

Convex Hull

ناحیه محدبی که بر جسم محیط می شود.

میخواهیم یک ناحیه Non Convex در اطراف شکل ایجاد کنیم.

از این ناحیه بعدا برای محاسبه زوایا استفاده می کنیم.

دستور convexHull : 43


```
out_hull = cv2.convexHull(max_cnts)

cv2.drawContours (img, [out_hull], -1, (0, 255, 0), 2)
```

دستور 44: convexityDefects

مثال:

defects = cv2.convexityDefects(max_cnts, hull)

مرحله 4: محاسبه Convexity Defects و محاسبه نقاط متناظر کانتور آن

```
for i in range(defects.shape[0]):
    s, e, f, d = defects[i,0]

    start = tuple(max_cnts[s, 0])
    end = tuple(max_cnts[e, 0])
    far = tuple(max_cnts[f, 0])
```

مرحله 6: محاسبه طول اضلاع مثلث

$$d_{sf} = \sqrt{(x_s - x_f)^2 + (y_s - y_f)^2}$$

$$d_{se} = \sqrt{(x_s - x_e)^2 + (y_s - y_e)^2}$$

$$d_{ef} = \sqrt{(x_e - x_f)^2 + (y_e - y_f)^2}$$

f

مرحله 6 : محاسبه زاویه به کمک قانون کسینوس ها

$$\gamma = \frac{a^2 + b^2 - c^2}{2ab}$$

تشخیص ژست دست (Hand Gesture Recognition)

تعداد انگشت = تعداد زوایای کمتر از 90 + 1

بخش دوم

الگوریتم های تشخیص ویژگی

بخش اول:

پیش پردازش داده ها

كتابخانه imutils

□ نوشته Adrian Rosebrock

□ شامل توابع ساده شده ای از توابع OpenCV

□ و توابع اضافی که البته کاربردی است!

وبلاگ : pyimagesearch.com

$$M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}$$

دستور 45 : جابه جایی تصویر (Translation)

تصویر ورودی

جابه جایی در راستای x

imutils.translate

تصویر جابه جا شده

جابه جایی در راستای y

مثال:

translated = imutils.translate(img, 25, -75)

$$M = \begin{bmatrix} Cos(\theta) & -Sin(\theta) & 0 \\ Sin(\theta) & Cos(\theta) & 0 \end{bmatrix}$$

دستور 46 : چرخش تصویر (Rotation)

مثال:

rotated = imutils.rotate(img, angle= 90)

مثال:

rotated = imutils.resize(img, width = 400)

مثال:

Google_logo =imutils.url_to_image("https://www.google.com/logo.png")

كانولوشن

کانولوشن و فیلتر

√ ماتریس کرنل به صورت افقی و عمودی بر روی تصویر حرکت می کند و عمل کانولوشن را انجام می دهد.

با کانولوشن مقدار یک پیکسل با پیکسل های اطرافش
 کد می شود.

√ اندازه ماتریس کرنل همواره عددی فرد است.

مثال:

conv_img = cv2.filter2D(img, cv2.CV_8U, kernel)

□ کرنل یک ماتریس است که میتوانیم آن را با کتابخانه numpy بسازیم.

دستور 50 : دستور blur

مثال:

blur_img = cv2.blur(img,(3,3))

دستور 51 : دستور 51

مثال:

Gb_img = cv2.GaussianBlur(img,(3,3), 1)

فرمول محاسبه كرنل گاوسين:

$$H_{ij} = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(i-(k+1))^2 + (j-(k+1))^2}{2\sigma^2}\right); 1 \le i, j \le (2k+1)$$

شخیصت هفته : Andrew NG

حیکی از سرمایه گذاران سیلیکون ولی

≺ استاد دانشگاه استنفورد

← موسس Baidu و Coursera و Baidu

لبه یابی

لبه چیست ؟

لبه جایی است که تغییرات زیادی در intensity در یک همسایگی تصویر اتفاق می افتد.

عواملی که باعث ایجاد لبه می شوند:

تغییر شکل جسم در تصویر

تغییر در عمق تصویر

وجود رنگ های مختلف در یک جسم

حضور سایه های اجسام در تصویر

چرا لبه ها مهم هستند ؟

ورودی تصویر و خروجی مشتق تصویر

عملگر گرادیان (Gradient Operator)

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

این عملگر دارای دو مولفه در راستای x و y است.

$$\nabla f = [\mathbf{0}, \frac{\partial f}{\partial y}]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

جهت و اندازه گرادیان

$$\theta = \tan^{-1}(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}})$$

$$\|\nabla f\| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$$

اندازه گرادیان:

عمود بر جهت گرادیان

جهت لبه

مفهوم مشتق در یک تصویر:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon, y) - f(x,y)}{\varepsilon}$$

مشتق پیوسته:

مشتق گسسته (در تصویر):

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1} \approx f(x+1, y) - f(x,y)$$

$$\frac{\partial f(x,y)}{\partial y} \approx \frac{f(x,y+1) - f(x,y)}{1} \approx f(x, y+1) - f(x,y)$$

مشتق در راستای X و Y

مشتق در راستای X

مشتق در راستای Y

ایده : یک کرنل بدهیم و منتظر پاسخ بمانیم سوال : چه کرنلی ؟

چگونه این لبه ها را پیدا کنیم ؟

برخی از کرنل های معروف:

عملگر Sobel

-1	0	+1
-2	0	+2
-1	0	+1

-1	-2	-1
0	0	0
+1	+2	+1

عملگر Prewitt

-1	0	+1
-1	0	+1
-1	0	+1

-1	0	+1
-1	0	+1
-1	0	+1

آشنایی با عملگر Sobel

کرنل برای مشتق در جهت X

کرنل برای مشتق در جهت ۲

 $\nabla I = [g_x \ g_y]$

$$\|\nabla f\| = \sqrt{g_x^2 + g_y^2}$$

اندازه و جهت

$$\theta = \tan^{-1}(\frac{g_x}{g_y})$$

مثال:

sobelX = $cv2.Sobel(gray, cv2.CV_64F, dx=0, dy=1, ksize = 3)$

و اما در دنیای واقعی!

لبه کجاست ؟!

تاثیر حضور نویز بر لبه یابی

افزایش نویز گاوسی

برای حل این مشکل چه کار کنیم ؟

f

h

$$f * h$$

$$\frac{\partial}{\partial x}(f*h)$$

$$\frac{\partial}{\partial x}(h*f) = \frac{\partial}{\partial x}(h)*f$$

میتوانیم از خواص ریاضی کانولوشن استفاده کنیم.

f

$$\frac{\partial}{\partial x}(h)$$

$$\frac{\partial}{\partial x}(f*h)$$

الگوریتم کنی برای لبه یابی

ارایه شده توسط جان کنی مهندس کامپیوتر استرالیایی

در سال 1986 و به عنوان پایان نامه ارایه شد

به صورت گسترده در بینایی ماشین ارایه می شود.

مراحل الگوريتم Canny

حذف نویز با فیلتر گاوسین

1

محاسبه گرادیان تصویر

2

Non Maximum Suppression

3

hysteresis thresholding

4

به کمک عملگر Sobel گرادیان تصویر را در دو جهت x و y محاسبه می کنیم و x

لبه یابی بسیار حساس به نویز است. به همین دلیل یک فیلتر گاوسین در ابتدا اعمال می شود.

محاسبه گرادیان تصویر

را بدست می آوریم.

Non maximum supression

3)

برای لبه ای که چند پیکسل نماینده آن هستند، باید پیکسلی با بیشترین Magnitude را نگه داشت و بقیه را حذف کرد.

□ نقطه A چون مقدار گرادیانش از مقدار maximum بیشتر است. پس لبه

🗖 نقطه B مقدارش بین minVal و maxVal مي باشد ولي چون به لبه اي قوي متصل نشده است ، لبه در نظر گرفته نمی شود.

□ نقطه C مقدارش بین minVal و T مي باشد ولي چون به لبه اي قوي متصل شده است ، لبه در نظر گرفته می شود.

دستور 52 : الگوريتم Canny

مثال:

Canny_img = cv2.Canny(gray, 100, 200)

تمرین : به کمک عملگر Sobel و آنچه تا کنون آموخته اید در تصویر زیر بارکد را پیدا کنید.

