201201871 서현택

1.목표

최단경로 알고리즘 구현(BFS, DFS)

2.과제를 해결하는 방법

- (1) 실습 내용 기반으로 BFS, DFS 알고리즘 구현
- (2) 그림을 그려보면서 알고리즘 이해

3.과제를 해결한 방법

(1) 그림을 통한 이해

(2) BFS

list형 변수 queue와 set형 변수 visited를 생성한 뒤, start_node를 추가한다. 그 후, start_node를 출력한다. queue의 길이가 0보다 클 때 동안, visiting에 queue의 첫 번째 자료를 pop시킨 것을 저장한다. neighbor가 graph의 리스트에 있는지 확인하고, visitited에 neighbor가 없다면 visted에 neighbor를 추가하고, neighbor를 출력한 뒤, queue에 neighbor를 저장한다.

(3) DFS

list형 변수 stack과 set형 변수 visited를 생성한 뒤, stack에 start_node를 삽입하한다. stack의 길이가 0보다 클 때 동안, visiting에 stack을 pop한 값을 저장하고, visited에 visiting이 없다면 visited에 visiting을 추가한다. 그 후 visiting을 출력한 뒤, graph의 vert_list에 포함되어있는 값을 stack에 저장한다.

- (4) Graph 클래스
- 1) init

Graph 클래스를 초기화한다.

2) add_vertex

Graph 클래스에 key를 통해 vertex를 추가한다.

3) get_vertex

Graph 클래스에 저장된 vertex의 list에서 해당되는 vertex를 불러온다.

4) contains

vertex에 해당 값이 저장되어 있나 확인한다.

5) add_edge

vert_list[f]에서 vert_list[t]로의 edge를 생성한다.

6) get_vertices

vert_list의 keys를 불러온다.

7) iter

vert_list.values의 iter 함수 값을 반환한다.

4.결과화면

(1) 제공된 코드

```
[ G diet_Bfs ]
Visit 0
Visit 4
Visit 5
Visit 6
Visit 3
[ G diet_Dfs ]
Visit 0
Visit 5
Visit 2
Visit 4
Visit 4
Visit 6
```

(2) G1

```
[ G1 diet_Bfs ]
Visit 0
Visit 1
Visit 2
Visit 4
Visit 3
Visit 5
[ G1 diet_Dfs ]
Visit 0
Visit 2
Visit 3
Visit 4
Visit 4
Visit 5
```

(3) G2

```
[ G2 diet_Bfs ]
Visit 0
Visit 1
Visit 2
Visit 3
Visit 4
Visit 5
[ G2 diet_Dfs ]
Visit 0
Visit 2
Visit 3
Visit 5
Visit 4
Visit 1
```

(4) G3

[63 diet_Bfs]
Visit 0
Visit 1
Visit 2
Visit 5
Visit 4
[63 diet_Dfs]
Visit 0
Visit 3
Visit 5
Visit 4
Visit 4