Discriminative Training II: MERT

April 3, 2014

The Noisy Channel

 $-\log p(\mathbf{g}|\mathbf{e})$

Improvement I:

change $\vec{\mathbf{w}}$ to find better translations

 $-\log p(\mathbf{g}|\mathbf{e})$ •

Improvement 2:

Add dimensions to make points separable

Parameter Learning: Review

K-Best List Example

- $0.8 \le \ell < 1.0$ $0.6 \le \ell < 0.8$ $0.4 \le \ell < 0.6$

Fit a linear model

Fit a linear model

K-Best List Example

- 0.8 ≤ ℓ < 1.0
 0.6 ≤ ℓ < 0.8
 0.4 ≤ ℓ < 0.6
 0.2 ≤ ℓ < 0.4
 0.0 ≤ ℓ < 0.2

Limitations

- We can't optimize corpus-level metrics, like BLEU, on a test set
 - These don't decompose by sentence!
- We turn now to a kind of "direct cost minimization"

- Minimum Error Rate Training
- Directly target an automatic evaluation metric
 - BLEU is defined at the corpus level
 - MERT optimizes at the corpus level
- Downsides
 - Does not deal well with > ~20 features

Given weight vector w, any hypothesis $\langle \mathbf{e}, \mathbf{a} \rangle$ will have a (scalar) score $m = \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

$$\mathbf{w}_{\text{new}} = \mathbf{w} + \gamma \mathbf{v}$$

Given weight vector w, any hypothesis $\langle \mathbf{e}, \mathbf{a} \rangle$ will have a (scalar) score $m = \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

$$\mathbf{w}_{\text{new}} = \mathbf{w} + \gamma \mathbf{v}$$

$$m = (\mathbf{w} + \gamma \mathbf{v})^{\top} \mathbf{h} (\mathbf{g}, \mathbf{e}, \mathbf{a})$$

Given weight vector w, any hypothesis $\langle \mathbf{e}, \mathbf{a} \rangle$ will have a (scalar) score $m = \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

$$\mathbf{w}_{\text{new}} = \mathbf{w} + \gamma \mathbf{v}$$

$$m = (\mathbf{w} + \gamma \mathbf{v})^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$$

$$= \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a}) + \gamma \mathbf{v}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$$

Given weight vector w, any hypothesis $\langle \mathbf{e}, \mathbf{a} \rangle$ will have a (scalar) score $m = \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

$$\mathbf{w}_{\text{new}} = \mathbf{w} + \gamma \mathbf{v}$$

$$m = (\mathbf{w} + \gamma \mathbf{v})^{\top} \mathbf{h} (\mathbf{g}, \mathbf{e}, \mathbf{a})$$

$$= \underbrace{\mathbf{w}^{\top} \mathbf{h} (\mathbf{g}, \mathbf{e}, \mathbf{a})}_{b} + \gamma \underbrace{\mathbf{v}^{\top} \mathbf{h} (\mathbf{g}, \mathbf{e}, \mathbf{a})}_{a}$$

$$m = a\gamma + b$$

Given weight vector w, any hypothesis $\langle \mathbf{e}, \mathbf{a} \rangle$ will have a (scalar) score $m = \mathbf{w}^{\top} \mathbf{h}(\mathbf{g}, \mathbf{e}, \mathbf{a})$

$$\mathbf{w}_{\text{new}} = \mathbf{w} + \gamma \mathbf{v}$$

$$m = (\mathbf{w} + \gamma \mathbf{v})^{\top} \mathbf{h} (\mathbf{g}, \mathbf{e}, \mathbf{a})$$

$$= \mathbf{w}^{\top} \mathbf{h} (\mathbf{g}, \mathbf{e}, \mathbf{a}) + \gamma \mathbf{v}^{\top} \mathbf{h} (\mathbf{g}, \mathbf{e}, \mathbf{a})$$

$$= a\gamma + b$$
Linear function in 2D!

Recall our k-best set $\{\langle \mathbf{e}_i^*, \mathbf{a}_i^* \rangle\}_{i=1}^K$

Recall our k-best set $\{\langle \mathbf{e}_i^*, \mathbf{a}_i^* \rangle\}_{i=1}^K$

29

30

Let $\mathbf{w}_{\text{new}} = \gamma^* \mathbf{v} + \mathbf{w}$

- In practice "errors" are sufficient statistics for evaluation metrics (e.g., BLEU)
 - Can maximize or minimize
- How do you pick the search direction?

Dynamic Programming MERT

Other Algorithms

- Given a hypergraph translation space
- In the Viterbi (Inside) algorithm, there are two operations
 - Multiplication (extend path)
 - Maximization (choose between paths)
- Semirings generalize these to compute other quantities

Semirings

semiring	\mathbb{K}	\oplus	\otimes	$\overline{0}$	$\overline{1}$	notes
Boolean	{0,1}	V	\wedge	0	1	idempotent
count	$\mathbb{N}_0 \cup \{\infty\}$	+	×	0	1	
probability	$\mathbb{R}_+ \cup \{\infty\}$	+	×	0	1	
tropical	$\mathbb{R} \cup \{-\infty,\infty\}$	max	+	-∞	0	idempotent
log	$\mathbb{R} \cup \{-\infty,\infty\}$	\oplus_{log}	+	_∞	0	

Inside Algorithm

$$\alpha(q_{goal}) = \bigoplus_{\mathbf{d} \in \mathcal{G}} \bigotimes_{e \in \mathbf{d}} w(e)$$

```
1: function Inside(G, K)
                                                     \triangleright G is an acyclic hypergraph and K is a semiring
        for q in topological order in G do
           if B(q) = \emptyset then
 3:
               \alpha(q) \leftarrow \overline{1}
                                                           > assume states with no in-edges are axioms
 4:
           else
 5:
               \alpha(q) \leftarrow \overline{0}
 6:
              for all e \in B(q) do

    all in-coming edges to node q

             k \leftarrow w(e)
                  for all r \in \mathbf{t}(e) do

⇒ all tail (previous) nodes of edge e

                     k \leftarrow k \otimes \alpha(r)
10:
                  \alpha(q) \leftarrow \alpha(q) \oplus k
11:
12:
        return \alpha
```

Point-Line Duality

- Represent a set of lines as a set of points (and vice-versa)
 - y = mx + b => (m, -b)
- The slope between dual points is the intersection x-axis of the pair of lines
- An upper envelope is dual to a lower convex hull

Primal

Convex Hull Semiring

```
Definition2. The Convex Hull Semiring.Let (\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1}) be defined as follows:\mathbb{K}A set of points in the plane that are the extreme points of a convex hull.A \oplus B\operatorname{conv}[A \cup B]A \otimes B\operatorname{convex} \operatorname{hull} \operatorname{of} \operatorname{the} \operatorname{Minkowski} \operatorname{sum}, i.e.,\operatorname{conv}\{(a_1 + b_1, a_2 + b_2) \mid(a_1, a_2) \in A \land (b_1, b_2) \in B\}\overline{0}\emptyset\overline{1}\{(0, 0)\}
```

Theorem 1. The Convex Hull Semiring fulfills the semiring axioms and is commutative and idempotent.

Theorem 2

 The Inside algorithm with the computes the convex hull dual to the MERT upper envelope generated from the ∞-best list of derivations

Summary

- Evaluation metrics
 - Figure out how well we're doing
 - Figure out if a feature helps
 - Train your system
- What's a great way to improve translation?
 - Improve evaluation!