

utilizzando reti neurali convoluzionali

INDICE

ottimizzazione

05Feature
Classification

Implementazione

06

01 INTRODUZIONE

COS'È UN'EMOZIONE

L'emozione è uno stato mentale e fisiologico associato a modificazioni psicologiche o a stimoli interni ed esterni.

Rende più efficace la reazione dell'individuo a situazioni in cui si rende necessaria una risposta immediata ai fini della sopravvivenza.

Per questo non utilizza processi cognitivi ed elaborazione cosciente.

LE ESPRESSIONI FACCIALI

- Le emozioni sono innate nell'essere umano.
- Le espressioni facciali corrispondenti a un'emozione sono universalmente riconosciute, indifferentemente da luogo, tempo e cultura.

CARATTERISTICHE DELLE EMOZIONI

1.Rabbia

Parte del corpo	Caratteristica
Sopracciglia	Abbassate e ravvicinate
Mento	Alzato
Sguardo	Intenso

2. Disgusto

Parte del corpo	Caratteristica
Naso	Arricciato
Bocca	Labbro superiore sollevato
Sopracciglia	Abbassate

3. Paura

Parte del corpo	Caratteristica	
Sopracciglia	Corrugate	
Восса	Aperta	
Occhi	Spalancati	

4. Felicità

Parte del corpo	Caratteristica
Guance	Sollevate
Labbra	Angoli sollevati
Occhi	Angoli esterni a zampa di gallina

5. Tristezza

Parte del corpo	Caratteristica	
Sopracciglia	Corrugate	
Labbra	Angoli abbassati	

6. Sorpresa

Parte del corpo	Caratteristica	
Mascella	Caduta	
Sopracciglia	Alzate	
Occhi	Spalancati	

EMOTION RECOGNITION

COS'È L'EMOTION RECOGNITION?

- L'emotion recognition è una tecnica usata per capire che emozione prova una persona.
- Grazie alle espressioni facciali o al tono di voce

CAMPI DI APPLICAZIONE

- **Campo dell'accessibilità**: Utile a persone non vedenti e affette da sindrome dello spettro autistico a comprendere le emozioni delle persone che hanno di fronte
- **Campo delle risorse umane**: Utile per capire se una persona sta mentendo e se è veramente interessata alla posizione lavorativa aperta
- Assistenza clienti: Utile per capire il grado di soddisfazione dei clienti
- **Automobilistico**: Avvisare il Conducente di stanchezza e attuare piani per tenerlo sveglio

DIFFERENZA TRA NN E CNN

NN

CNN

DIFFERENZA TRA NN E CNN

ANN è composta da diversi layer di neuroni fortemente interconnessi

A causa della sua profondità si potrebbero verificare i seguenti problemi:

Costo computazionale elevato La discesa del gradiente esploderebbe

DIFFERENZA TRA NN E CNN

Nella CNN, invece, si hanno delle caratteristiche che riducono di molto i costi computazionali in caso di image recognition.

Le CNN condividono i pesi a gruppi. Neuroni diverso dello stesso livello eseguono lo stesso tipo di operazione su porzioni diverse dell'input

02 STRUMENTI

Dataset Fer2013

INTRODUCTION

3=Happy,

5=Surprise,

6=Neutral.

4=Sad,

```
Fer2013 contiene circa 30.000 immagini facciali di diverse espressioni con dimensioni limitate a 48×48 e le label principali possono essere suddivise in 7 tipi:

0=Angry,

1=Disgust,

2=Fear,
```

Estrazione dataset

IMBALANCE PROBLEM

PROBLEMA

Squilibrio della Classificazione

SOLUZIONE

Data Augmentation

GANS

Scaling

Fer2013	0=Angry	1=Disgust	2=Fear	3=Нарру	4=Sad	5=Surprise	6=Neutral
Training	3995	436	4096	7214	4830	3171	4965
Testing	958	111	1024	1774	1247	831	1322

INTRA-CLASS VARIATION

"PROBLEMA"

Diverse tipologie di immagini all'interno di una classe

SOLUZIONE

Avoid Overfitting

Overfitting

Casi
Le prestazioni :
sul training e sul testing
Rilevazione sul dataset

OCCLUSION /CONTRAST VARIATION/ OUTLIERS

PROBLEMA

Luminosità delle img, occhiali che coprono gli occhi, ecc

SOLUZIONE

Scegliere immagini idonee e realistiche

03 ARCHITETTURA

COMPONENTI DELL'ARCHITETTURA

- Feature Extraction
- Feature Classification
- Hidden Layers

MODELLO CNN

Feature Extraction

Convoluzione

 \pm

Pooling

Ex: data un'immagine si rilevano due occhi, una coda, delle zampe e così via.

Feature Classification

FCL

- Imparano come utilizzare le feature prodotte dalle convoluzioni per classificare correttamente le immagini.
- Funge da classificatore quindi assegna la probabilità che l'immagine sia un cane

LA CONVOLUZIONE

Definizione

In termini matematici è una combinazione tra due funzioni e ne produce una terza.

In questo caso:

Sottopone le immagini di input a una serie di filtri, ciascuno dei quali attiva determinate caratteristiche dalle immagini

Input X Filter → FEATURE MAP

Dimostrazione in 2D

- Si esegue una moltiplicazione matriciale
- Si eseguono più convoluzioni su un input
- I valori delle feature map è il risultato dell'operazione di convoluzione attraverso la funzione di attivazione (ReLu) -> non linearità

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

4	

APPLICAZIONE FILTRO A IMMAGINE

Esempio:

INPUT

FILTER $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

FEATURE MAP

Dimostrazione in 3D

- Si tiene conto anche della profondità a causa dei canali di colore utilizzati in un'immagine (RGB)
- L'operazione di convoluzione su ciascun input, utilizzando un filtro diverso, viene eseguita in maniera indipendente
- Le feature map risultanti sono disgiunte

Ex: Se si usano 2 filtri ci sarebbero 2 feature map

```
model.add(Conv2D(32,(3,3),
  Padding = 'same',
  kernel_initializer= 'he_normal
',
  input_shape=(48,48,1)))
```

POOLING/RAGGRUPPAMENTO

- Tipo più comune : Max Pooling
- Si scorre una pooling window sull'input dopodichè si prende il valore massimo nella finestra.
- I livelli di pooling effettuano il downsampling

FEATURE CLASSIFICATION

Fully Connected Layer

- Prevede un vettore 1D di numeri
- Si effettua una sorta di appiattimento (FLATTEN)
- Una volta fatto il flattening dell'output del liv. di pooling finale -> diventa l'input per il FCL
- Imparano come utilizzare le feature prodotte dalle convoluzioni per classificare correttamente le immagini

FUNZIONAMENTO

- Il neurone nel fully connected layer rileva una certa feature
- ______ Conserva il suo valore.
- Comunica questo valore sia alla classe "ANGRY" che alla classe "NEUTRAL".
 - Entrambe le classi controllano la funzionalità e decidono se è rilevante per loro.

FCL-CODICE

```
#Block-5
     model.add(Flatten())
     model.add(Dense(64,
     kernel_initializer='he_normal'))
    model.add(Activation('relu'))
     model.add(BatchNormalization())
     model.add(Dropout(0.5))
#Block-7
     model.add(Dense(7,
     kernel_initializer='he_normal'))
    model.add(Activation('softmax'))
```

HIDDEN LAYER

CONVOLUZIONE

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

1	0	-1
1	0	-1
1	0	-1

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1

= 6

	6	
-		

In particolare notiamo che:

¬ Volume input(W)

VOLUME OUTPUT

Volume filtro(F)

- Stride

→ Padding

STRIDE

```
model.add(
  Conv2D(32, (3,3),
  padding='same',
  kernel_initializer='he_normal',
  input_shape=(48,48,1))
)
```

Si tratta del passo con cui facciamo scorrere il filtro.

Quando il passo è 1, spostiamo i filtri di un pixel alla volta.

Quando il passo è 2 (o di più) i filtri saltano di 2 o di più pixel alla volta. Ciò comporta volumi di output più piccoli

Link: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

strides

An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.

PADDING

```
model.add(
    Conv2D(32, (3, 3),
    padding='same',
    kernel_initializer='he_normal',
    input_shape=(48, 48, 1))
)
```

Si tratta di una cornice di zeri che si può aggiungere o meno all'input per far risultare la dimensione dell'output pari a quella dell'input.

Link: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D

Mettiamo in pratica la formula

Wout =
$$\frac{\text{Win} - \text{F} + 2 \cdot \text{Padding}}{\text{Stride}} + 1 = \frac{4 - 3 + 2 \cdot 0}{1} + 1 = 2$$

E aggiungendo il padding...

Wout =
$$\frac{\text{Win} - \text{F} + 2 \cdot \text{Padding}}{\text{Stride}} + 1 = \frac{4 - 3 + 2 \cdot 1}{1} + 1 = 4$$

VALID - no padding

```
#Block-1
  model.add(Conv2D(32, (3, 3), padding='valid',
  kernel initializer='he normal',
  input shape=(48, 48, 1))
#Block-2
  model.add(Conv2D(64, (3, 3), padding='valid',
  kernel initializer='he normal'))
#Block-3
  model.add(Conv2D(128, (3, 3), padding='valid',
  kernel initializer='he normal'))
Layer (type)
                        Output Shape
                                               Param #
conv2d (Conv2D)
                        (None, 46, 46, 32)
                                               320
                        (None, 44, 44, 64)
conv2d 1 (Conv2D)
                                               18496
conv2d 2 (Conv2D)
                        (None, 42, 42, 128)
                                               73856
```

SAME - padding

```
#Block-1
  model.add(Conv2D(32, (3, 3), padding='same',
  kernel initializer='he normal',
  input shape=(48, 48, 1))
#Block-2
  model.add(Conv2D(64, (3, 3), padding='same',
  kernel initializer='he normal'))
#Block-3
  model.add(Conv2D(128, (3, 3), padding='same',
  kernel initializer='he normal'))
                        Output Shape
                                               Param #
Layer (type)
conv2d 3 (Conv2D)
                        (None, 48, 48, 32)
                                               320
conv2d 4 (Conv2D)
                        (None, 48, 48, 64)
                                               18496
conv2d 5 (Conv2D)
                      (None, 48, 48, 128)
                                               73856
```

RELU è una funzione di attivazione

Una funzione di attivazione, è una funzione che viene aggiunta a una rete neurale artificiale per aiutare la rete ad apprendere modelli complessi nei dati.

Perché ci serve...

- Mantenere l'uscita limitata a un intervallo particolare.
- Introdurre la non linearità nella rete
 - Dobbiamo tener conto del tipo di dati che vogliamo modellare
 - Altrimenti porterebbero ad una profondità di un singolo strato indipendentemente dalla complessità della rete

$$y1 = f(w1*x + b1)$$

$$y1 = f(w1*x + b1)$$
 $y1 = w1*x + b1$

$$y1 = f(w1*x + b1)$$
 $y1 = y1 = w1*x + b1$
 $y = f(w2*y1 + b2)$

$$y1 = f(w1*x + b1) \xrightarrow{f(x) = x} y1 = w1*x + b1$$
$$y = f(w2*y1 + b2) = f(w2*(w1*x + b1) + b2)$$

$$y1 = f(w1*x + b1) \xrightarrow{f(x) = x} y1 = w1*x + b1$$

$$y = f(w2*y1 + b2) = f(w2*(w1*x + b1) + b2) = f(w2*w1*x + w2*b1 +b2)$$

$$y1 = f(w1*x + b1) \xrightarrow{f(x) = x} y1 = w1*x + b1$$

$$y = f(w2*y1 + b2) = f(w2*(w1*x + b1) + b2) = f(w2*w1*x + w2*b1 + b2)$$

$$w3 = w1*w2$$

$$b3=w2*b1+b2$$

$$y = f(w3*x + b3)$$

$$y1 = f(w1*x + b1) \xrightarrow{\qquad} y1 = w1*x + b1$$

$$y = f(w2*y1 + b2) = f(w2*(w1*x + b1) + b2) = f(w2*w1*x + w2*b1 + b2)$$

$$w3 = w1*w2$$

$$y = f(w3*x + b3)$$

$$b3$$

Proprietà:

- 1. Problema del gradiente di fuga
- 2. Centrato sullo zero
- 3. Spese computazionali
- 4. Differenziabile

Fuga di gradiente

Nelle reti neurali durante la propagazione posteriore, ogni peso riceve un aggiornamento proporzionale alla derivata parziale della funzione di errore.

In alcuni casi, questo termine derivato è così piccolo da rendere gli aggiornamenti molto piccoli e quindi la convergenza sarà lenta o assente.

Allo stesso modo, se il termine derivato è molto grande, anche gli aggiornamenti saranno molto grandi. In tal caso, l'algoritmo supererà il minimo e non potrà convergere.

SOLUZIONE: scelta della funzione di attivazione corretta

Esistono molte funzioni di attivazione:

- Sigmoide
- Funzione Softmax
- Tangente Iperbolica (tanh)
- Rectifier Linear Unit
- Leaky relu
- Swish
- Elu
- Softplus and softsign
- Selu
- Attivazione lineare

Ne vediamo solo alcune, per approfondire consiglio il seguente link: https://netai.it/guida-rapida-alle-funzioni-di-attivazione-nel-deep-learning/#page-content

Sigmoide

Pro:

- Limita l'uscita tra 0 e 1.
- Previsioni molto chiare per la classificazione binaria

Contro:

- Può causare il problema del gradiente in fuga
- Computazionalmente costoso
- Non è centrato sullo zero

Softmax

Funzione comunemente utilizzata nello stato finale di una rete.

Prima di applicare softmax, alcuni componenti del vettore potrebbero essere negativi o maggiori di uno e potrebbero non sommarsi a 1 ma dopo aver applicato softmax ogni componente sarà compreso tra 0 e 1 e sommerà a 1, può quindi essere interpretato come probabilità.

The standard (unit) softmax function $\sigma: \mathbb{R}^K o \mathbb{R}^K$ is defined by the formula

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{i=1}^K e^{z_j}} ext{ for } i=1,\ldots,K ext{ and } \mathbf{z} = (z_1,\ldots,z_K) \in \mathbb{R}^K$$

Relu(unità lineare rettificata)

Pro:

- Facile da calcolare
- Non causa fuga di gradiente
- È veloce ed efficiente

Contro:

 Può uccidere dei neuroni per sempre

$$f(x) = x^+ = \max(0, x),$$

Esempio

Input

Quali funzioni utilizzare?...

RELU dovrebbe essere preferito per i livelli nascosti. Se sta causando il problema di relu morente, è necessario utilizzare le sue modifiche come **Leaky Relu**, **ELU**, **SELU**, ecc.

Per le reti profonde, SWISH ha prestazioni migliori di relu.

Negli ultimi livelli, per normalizzare gli output della rete è consigliabile usare Softmax.

Sigmoide e tanh dovrebbero essere evitati a causa del problema della fuga del gradiente.

#Aggiunta al modello della funzione di attivazione ReLU nei primi 6 blocchi della rete.

model.add(Activation('relu'))

#Nell'ultimo blocco abbiamo aggiunto la
funzione di attivazione Softmax

model.add(Activation('softmax'))

MAX-POOLING TIPI DI → AVERAGE-POOLING **POOLING** → MIN-POOLING

MAX-POOLING

255	255	255	255	255	255
255	0	255	255	255	255
255	255	0	255	255	255
255	255	255	0	255	255
255	255	255	255	0	255
255	255	255	255	255	255

34	20		3. 2/

0	0	0	0	0	0
0	255	0	0	0	0
0	0	255	0	0	0
0	0	0	255	0	0
0	0	0	0	255	0
0	0	0	0	0	0

255	0	0
0	255	0
0	0	255

٩,	- 6	

AVERAGE-POOLING

255	255	255	255	255	255
255	0	255	255	255	255
255	255	0	255	255	255
255	255	255	0	255	255
255	255	255	255	0	255
255	255	255	255	255	255

	100	97		1	3 8
	100				
					9
		_		_	
3	- 8				9 8
		- ·	_	_	
			1		
	1	I		I	
	1	I		I	1
	1			I	
22 2	1 0	DD 2			

191	255	255		
255	127	255		
255	255	191		

0	0	0	0	0	0
0	255	0	0	0	0
0	0	255	0	0	0
0	0	0	255	0	0
0	0	0	0	255	0
0	0	0	0	0	0

63	0	0	
0	127	0	
0	0	63	

MIN-POOLING

255	255	255	255	255	255
255	0	255	255	255	255
255	255	0	255	255	255
255	255	255	0	255	255
255	255	255	255	0	255
255	255	255	255	255	255

0	255	255		ı
255	0	255		
255	255	0		

0	0	0	0	0	0
0	255	0	0	0	0
0	0	255	0	0	0
0	0	0	255	0	0
0	0	0	0	255	0
0	0	0	0	0	0

COSA NOTIAMO?

Il raggruppamento <u>minimo</u> offre risultati migliori per le immagini con <u>sfondo bianco</u> e <u>oggetto nero</u>

0	0	0	0	0	0
0	255	0	0	0	0
0	0	255	0	0	0
0	0	0	255	0	0
0	0	0	0	255	0
0	0	0	0	0	0

Il raggruppamento <u>massimo</u> offre risultati migliori per le immagini con <u>sfondo nero</u> e <u>oggetto bianco</u>

Viene utilizzato il **pooling massimo** perchè lo sfondo in queste immagini viene reso nero per ridurre il costo di calcolo.

NERO = 0 BIANCO=255

model.add(MaxPooling2D(pool_size=(2,2)))

NOTIAMO ANCHE CHE:

Anche qui si potrebbe usare il padding, ma non lo faremo per ridurre il numero di dati da trasportare nella nostra rete.

Quindi:

Layer (type)	Output Shape	Param #
conv2d_6 (Conv2D)	(None, 48, 48, 32)	320
activation_18 (Activation)	(None, 48, 48, 32)	0
<pre>max_pooling2d_20 (MaxPooli g2D)</pre>	n (None, 24, 24, 32)	0
conv2d_7 (Conv2D)	(None, 24, 24, 64)	18496
activation_19 (Activation)	(None, 24, 24, 64)	0
<pre>max_pooling2d_21 (MaxPooli g2D)</pre>	n (None, 12, 12, 64)	0

04

ALGORITMI DI OTTIMIZZAZIONE

COSA SONO?

Algoritmi matematici che permettono di trovare punti di minimo della funzione di costo (cost function) per aggiornare i parametri della rete (pesi e bias)

DISCESA DEL GRADIENTE

Metodo utilizzato per calcolare il minimo della funzione di costo e calcolare l'errore di predizione dei neuroni della rete per fare l'aggiornamento dei suoi parametri.

 $C = (y^{-} y)^{2}$, dove $y^{-} e$ l'output predetto e y la classificazione corretta.

BATCH SIZE E EPOCHS

Sono due iperparametri della rete neurale che servono all'algoritmo di ottimizzazione (GD) per ottimizzare al meglio il training del modello.

BATCH SIZE

Rappresenta quanti esempi/data points vengono mostrati e analizzati dal modello prima che esso faccia l'update dei suoi parametri.

EPOCHS

Il numero di epoche è un iperparametro che definisce il numero di volte a cui il modello sarà sottoposto all'intero dataset (training set), cioè quante volte il modello analizzerà tutti gli esempi presenti nel training set.

LOSS (loss e val_loss)

La loss function (o funzione di costo) è una funzione che *valuta le prestazioni* di un modello. Rappresenta una perdita e quindi l'obiettivo di un buon apprendimento è la *minimizzazione* della loss function.

ACCURACY (accuracy e val_accuracy)

In un sistema di classificazione, i campioni di test vengono forniti al modello e vengono conteggiati gli esempi correttamente elaborati. Infine viene calcolata l'accuratezza come rapporto tra i campioni correttamente elaborati e il totale dei campioni inviati al modello.

$$accuracy = \frac{pattern_{OK}}{pattern_{TOT}}$$

ESEMPIO

```
model.compile(loss='categorical crossentropy',opt
imizer=Adam(learning rate=0.001),metrics=['accura
cy'])
model.fit(train X, train Y, batch size=64,
epochs=25, validation data=(test X, test Y))
loss and accuracy = model.evaluate(test X, test Y)
print(loss and metrics)
```

ESEMPIO

```
F⇒ Epoch 1/100
 Epoch 2/100
 898/898 [============ - 31s 34ms/step - loss: 1.5726 - accuracy: 0.3886 - val loss: 1.3413 - val accuracy: 0.4851
 Epoch 3/100
 Epoch 4/100
 Epoch 5/100
 Epoch 6/100
 Epoch 7/100
 Epoch 8/100
 898/898 [============ - 31s 34ms/step - loss: 1.0956 - accuracy: 0.6011 - val loss: 1.0624 - val accuracy: 0.6013
 Epoch 9/100
 Epoch 10/100
 Epoch 11/100
 898/898 [============== - 31s 34ms/step - loss: 0.9470 - accuracy: 0.6625 - val loss: 1.0159 - val accuracy: 0.6339
 Epoch 12/100
 Epoch 13/100
 Epoch 14/100
 Epoch 15/100
 Epoch 16/100
                       3s completed at 10:42
```

DISCESA DEL GRADIENTE

BGD (Batch Gradient Descent)

Prevede l'analisi di tutti gli esempi del dataset da parte del modello prima di aggiornare i parametri. La funzione di loss decresce più lentamente ma con poche oscillazioni. La rete apprende meglio.

PRO

Il modello apprende dall'intero dataset

CONTRO

Serve una maggiore potenza computazionale

MBGD (Mini-Batch Gradient Descent)

Divide i dati del dataset in gruppi (batch) e fa allenare la rete sottoponendo un gruppo alla volta di esempi, dopo ogni batch si aggiorneranno i pesi calcolando l'errore medio della cost function.

PRO

E' la soluzione migliore come rapporto potenza computazionale/convergenza

CONTRO

Non raggiunge la stessa precisione di BGD

SGD (Stochastic Gradient Descent)

I pesi della rete vengono aggiornati facendo analizzare solamente *un esempio per volta*, la rete perciò non apprende dall'intero dataset. Non si avrà mai una totale convergenza della loss function.

PRO

Algoritmo veloce ad apprendere in quanto i pesi vengono aggiornati ad ogni esempio

CONTRO

Poco preciso e non raggiunge una convergenza totale

CONFRONTO

BATCH NORMALIZATION

E' una tecnica per l'addestramento di DNN che standardizza gli input/output ad ogni livello della rete per stabilizzare il processo di apprendimento ed evitare sbilanciamenti di pesi tra i diversi layer.

Evita il fenomeno noto come *internal covariate shift*

INTERNAL COVARIATE SHIFT

Di cosa si tratta?

Con internal covariate shift ci si riferisce al fatto che ogni strato della rete, ad ogni iterazione, viene esposto ad un input completamente diverso rispetto all'iterazione precedente.

Il cambiamento degli input ad ogni strato rappresenta un problema perchè gli strati della rete devono continuamente adattarsi ad una nuova distribuzione dei valori di ingresso, quindi, per migliorare la fase di training, occorre fissare questa distribuzione.

QUALI VANTAGGI...

- Training della rete più veloce
 - Si possono utilizzare tassi di apprendimento più alti
 - L'inizializzazione dei pesi della rete incide meno sul tempo
 - Miglioramento delle performance in generale

IMPLEMENTAZIONE

05 FEATURE CLASSIFICATION

DROPOUT LAYER

Tecnica che previene overfitting.

Disattiva casualmente una percentuale di
neuroni nella CNN ad ogni epoca.

Utile a ottenere risultati ben generalizzati,
senza che alcuni neuroni abbiano
dipendenze strette con altri neuroni.

DROPOUT LAYER

CONTRO

Funzione di costo non ben definita

PRO

Generalizza meglio il modello

FULLY CONNECTED LAYER

Ha il compito di mettere insieme le informazioni estratte ed effettuare la classificazione finale

SOFTMAX LAYER

Viene applicata la funzione di Softmax come ultima funzione per normalizzare i pesi tra 0 e 1 alla fine del training. Il suo scopo è di rendere i pesi delle probabilità, enfatizzando i valori più grandi, nascondendo quelli più piccoli rispetto al valore massimo

SOFTMAX LAYER(2)

La funzione di softmax ha la proprietà di trasformare alcuni componenti vettoriali che non sono nell'intervallo 0 e 1 in un valore nell'intervallo, facendo in modo che la somma di tutti i valori sia 1

06

IMPLEMENTAZIONE

In Google Colab

Riferimenti

- https://andreaprovino.it/vgg-16-cnn-networks-deep-learning-engineer-italia/
- https://www.kaggle.com/deadskull7/fer2013
- https://viso.ai/computer-vision/deepface/
- https://neurohive.io/en/popular-networks/vgg16/
- https://analyticsindiamag.com/my-first-cnn-project-emotion-detection-using-convolutional-neural-network-withtpu/
- https://netai.it/guida-rapida-alle-funzioni-di-attivazione-nel-deep-learning/#page-content
- https://www.freecodecamp.org/news/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050/
- https://medium.com/swlh/emotion-detection-using-opencv-and-keras-771260bbd7f7
- https://medium.com/themlblog/how-to-do-facial-emotion-recognition-using-a-cnn-b7bbae79cd8f
- https://analyticsindiamag.com/my-first-cnn-project-emotion-detection-using-convolutional-neural-network-with-tpu/
- https://www.developersmaggioli.it/blog/ia-un-po-di-nozioni-prima-della-pratica/
- https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2#7d8a

Riferimenti(2)

- https://www.youtube.com/watch?v=yN7qfBhfGqs
- https://medium.com/@alessandropadrin/come-velocizzare-il-training-delle-reti-neurali-5b66e3aa6a82
- https://en.wikipedia.org/wiki/Activation_function
- https://qastack.it/programming/9782071/why-must-a-nonlinear-activation-function-be-used-in-a-backpropagation-neural-net
- https://it.wikipedia.org/wiki/Problema_della_scomparsa_del_gradiente
- https://ichi.pro/it/funzioni-di-attivazione-relu-e-softmax-148521511785096
- https://ichi.pro/it/capire-relu-la-funzione-di-attivazione-piu-popolare-in-5-minuti-4784117649999
- https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
- https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
- https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
- https://123dok.org/article/pooling-layer-utilizzo-layer-convoluzionali-cnn.q7wx29oo
- https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-9
 5fb03f45a9

GRAZIE PER L'ATTENZIONE!

Riccardo Tenuta,

Chiara Bublil,

Jahaira Sulca,

Alex Zani