Week 1 — Practice Proofs (Symmetric & Invertible Matrices)

The examples labeled "Strang" are taken from the problem sets in Ch. 2, §5 & §7 of Gilbert Strang's Introduction to Linear Algebra, fifth edition. Otherwise, the full author's name is given, or the problem is so well known that a citation is unwarranted.

Problems

1. (Strang) If A and B are $n \times n$ symmetric matrices, then show that the following are also symmetric, or provide a counterexample.

a.
$$A^2 = B^2$$
b. $(A+B)(A-B)$
c. ABA
d. $ABAB$

$$(A^2)^T = A^TA^T = (A^T)^2$$
Symv

A. $(A^T - B^T)^T = (A^T)^T - (B^T)^T = (A^T)^T - (B^T)^T = A^T - B^T$
b. $((A+B)(A-B))^T = (A-B)^T (A+B)^T = (A^T - B^T)(A^T + B^T)$

$$= (A-B)(A+B)$$

$$= (A-B)(A+B)$$

$$(A+B)(A-B) = (11)(11) = (20) \neq (20)$$
NOT Sym
$$(A+B)(A-B) = (11)(11) = (20) \neq (20)$$
C. $(ABA)^T = A^TB^TA^T = ABA$ Sym
$$(ABAB)^T = B^TA^TB^TA^T = BABA \neq ABAB$$

$$(A^T - B^T - B^TA^T - B^TA^T = B^TA^T - B^TA^T -$$

2. (Jim Kruidenier, SBCC) If $A^2 = [0]$, does $(I - A)^{-1}$ exist? Prove or provide a counterexample.

IF
$$(I-A)^{-1}$$
 EXISTS, THEN $B(I-A) = (I-A)B = I$

FOR SOME B
 $A^{2} = [O] \Rightarrow I^{2} - A^{2} = I \Rightarrow TRY \land DIF OF SQS$
 $(I-A)(I+A) = I^{2} - AI + IA - A^{2} = I^{2} - A + A - [O] = I$
 $(I+A)(I-A) = I^{2} + AI - IA - A^{2} = I^{2} + A - A - [O] = I$
 $\Rightarrow EXISTS, (I-A)^{-1} = I+A$

3. (Strang) Suppose that A is $m \times n$, S is $m \times m$ and symmetric, and both A and S have real valued entries.

- a. Show that A^TA has no negative diagonal entries.
- b. Is A^TSA symmetric? What are its dimensions?

a.
$$A^{T}A_{ii} = R_{i}(A^{T})^{T}C_{i}(A) = C_{i}(A)^{T}C_{i}(A)$$

$$= \sum_{j=1}^{m} a_{ij}^{Z} / \text{THE SUM OF THE SQUARES OF THE }$$

$$A^{Z}_{ij} \geq 0 \text{ FOR ALL } j \Rightarrow \sum_{j=1}^{m} a_{ij}^{Z} \geq 0$$
b. $(A^{T}SA)^{T} = A^{T}S^{T}(A^{T})^{T} = A^{T}SA - YES^{I}$

DIM: $A^{T}SA = A^{T}S^{T}(A^{T})^{T} = A^{T}SA + YES^{I}$
DIM: $A^{T}SA = A^{T}SA + A^{$

MEANT TO SAT $C^{-1}C = C^{-1}(AB) = (C^{-1}A)B = I$ "PROVE II $B^{-1}EXISTS \Rightarrow (C^{-1}A)BB^{-1} = IB^{-1} \Rightarrow C^{-1}A = B^{-1}$ IF C = AB, $C^{-1}ABB^{-1} = I \Rightarrow (BC^{-1})A = I$ LEFT INVS $C^{-1}ANDB^{-1}$ EXISTS, $C^{-1}ANDB^{-1}$ EXISTS, $C^{-1}ADB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$ EXISTS, $C^{-1}ABB^{-1}$

B-1 = CD-1A BB-1 = BCD-1A = I => D-1 = C-1B-1A-1 B-1B = CD-1AB = I => D-1 = C-1B-1A-1

5. Let
$$\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

a. Find the matrix A such that $A\mathbf{b} = \mathbf{a} \times \mathbf{b}$, where \times is the cross product.

b.
$$A^{T} = \begin{pmatrix} 0 & a_{3} - a_{2} \\ -a_{3} & 0 & a_{1} \\ a_{2} - a_{1} & 0 \end{pmatrix} = -A$$

6. A matrix is skew-symmetric if $A^T = -A$. Show that if A is skew symmetric, then (I + A) exists.

WE NEED A LUT MORE THAN WHAT WE HAVE SO FAR TO SHOW THIS (DETERMINANTS, EIGENVALUTES, ETC.)

SKIP FOR NOW, GOOD PROBLEM TO RETURN TO LATER THOUSEN

7. A little algebra shows that $A = \frac{1}{2}(A - A^T) + \frac{1}{2}(A + A^T)$.

a. Show that $\frac{1}{2}(A - A^T)$ is skew symmetric (1.E. $A^T = -A$)

b. Show that $\frac{1}{2}(A + A^T)$ is symmetric

$$\alpha \cdot (\frac{1}{2}(A-A^{T}))^{T} = \frac{1}{2}(A-A^{T})^{T} = \frac{1}{2}(A^{T}-A) = -(\frac{1}{2}(A-A^{T}))^{T}$$

$$b \cdot (\frac{1}{2}(A+A^{T}))^{T} = \frac{1}{2}(A+A^{T})^{T} = \frac{1}{2}(A^{T}+A) = \frac{1}{2}(A+A^{T})^{T}$$