Week 2## Tenative OH: M-11-12 Th-3-4 Bijective conformal mags: peneres Total geometry Def: Two bomain, A,BCC are called conformally opinalad if there exists a bijective conformation map f: A > B Let q(2): A → C if A is "bad" and B is "nice" and A, B are informed equivalent, the we betire a now function g(3): gof' (where 8:A>B) the g is on a nice domain appear-half plan and mit - disk are confirmals extrivalent 0 H exi figure out why this is true

Example: $f(z) = \frac{z-d}{1-az}$ |d|<1

 $f = \Lambda^{-1} \cdot f \cdot \Lambda$ this goes from the half-plane to strelf $H \leftarrow D \leftarrow D \leftarrow H$ Theorem Riemann mapping theorem Les A le a simple connecte domain when A = C when there oxists a Vijective continual map f: A > D Moreover, for, any fixed 20EA, we can find a unique ach map t myr {(=0)=0 and t,(50)>0 Annoyanus this is just an existence theorem Corrolong: Any simple connected domain A, B, norther one of Mich is all of C are conformally agricultury boot: So by A,OAz A is conformally equivalent to B Def: (now version) A domain is simply connected if for any simple closed were oftheA, ofth can be continuously deformed to a simple point 20 in A without bearing A Give curry T(1), of (1) SA, a homotopy from 8, to T2 is H(24) ~W RE[01,] H(O, t) = 7, (t) and H(1,1)= 82(4) HU, +) EA YSE [0,1] (f,0)H Ti, To as homotopic if there exists a homotopy between them H: 57 -> 52

so we get ((1)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Cardy Inequality; Is sis analytic and housed on A by 19(20) cm
ant a a circle of ration R in A conserved at 20
for (20) / 2 min m
Let f be entire and let f be bounded on ((If (2.))/M for all 2.6())
(H(55°))(1), Joy M. F. 60)
apply candy inequality with n=1
\ \(\(\frac{\chi}{\chi} \) \ \(\frac{\chi}{\chi} \)
This mosts for any circle so if we let Ramo
~ 40) \\\\(\frac{1}{20}\\=0 => \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
But this is also true for every 2.60
20 f(5)=0 => f(5)=c for some constant C
10 fire constant function
Liouvilles Theorem: Every bounded entire function is necessarily a constant
function conformal
Back do question 7:
j c
Support It continued
for C to D
But fire him him
1 1 carle and ventor
La f must be constant so it can't be one-to-one
So f cannot exist like this
You also will go back
if we found bijective and this fild of the because it would be investible and not work because of the argument whose
Riemann napping theorem IS A, B simple connected and A, B & C the A is conformally equivalent to B
Two "classes" of simply connected sets:

