PREDICTING HOUSE PRICES

USING MACHINE LEARNING TECHNIQUES

By: Sumana Chilakamarri, Ayesha Uddin, & Yash Gupta

<u>Main topic:</u> Use Machine Learning Techniques to analyze key features of house pricing such as location, size, amenities, etc.

Problem Statement

Traditional Pricing Methods

Are subjective and do not capture complex relationships between features

Developing a model that

identifies which features most impact pricing

Our goal for this project is to develop a scalable model that identifies which features most impact pricing and supports data-driven decision making for buyers, sellers, and investors

Methodology

Data Preprocessing

- Used an open-source dataset on Kaggle
- Removing Outliers, Filling In missing values
 - OneClassSVM(), StandardScaler()
- PCA, SMOTE
 - Limited to 75 variables
- Two data files for our two types of methods

$\Lambda \Lambda$	od	15	S	od
IVI				

- K- Means Clustering
- Random Forest Classification

ВХ	
SalePrice	
208500	
181500	
223500	
140000	
250000	
143000	\
307000	
200000	
129900	
118000	
129500	
144000	
157000	

В	X	
PriceCategory		
	1	
	1	
	1	
	0	
	1	
	0	
	1	
	1	
	0	
	0	
	0	
	0	

Evaluation & Results

K-Means Clustering:

- K-Means clustering on PCA-reduced data shows generally well-separated clusters
- Some overlap— between green and yellow—may reflect similarity or PCA compression effects.

Accuracy: ~90.5%

Precision: 92.9%

Recall: 87.9%

Strong & **balanced performance** with few misclassifications

Top 15 Feature Importances

- PC1 is by far the most important feature in the Random Forest model
- Most other PCs contribute minimally, with a few later components showing modest predictive value.