最优化第三次作业

张晋 15091060

2017年10月9日

2.8 设该基本可行解 x 为 x_1, x_2, \dots, x_n ,其中 x_1, x_2, \dots, x_m 为其基本可行解的基,对于 $z(x) = c^T x = z_0 + r_{m+1} x_{m+1} +, \dots, + r_n x_n = z_0$,z 在该基本可行解下取到下界 z_0 . 若存在其他解 x',则 $z(x') = z_0 + r_{m+1} x'_{m+1} +, \dots, + r_n x'_n$,在 $x'_{m+1}, x_{m+2'}, \dots, x'_n$ 中至少有一个大于 0,否则 x' = x

 $\therefore r_j, x_j' > 0 \quad \forall m+1 \leq j \leq n.$ $\therefore z(x') > z_0 = z(x)$, 即不存在其他最优解.

2.9 举例如下:

min
$$x_1$$

s.t. $x_1 + x_2 - x_3 = 1$
 $-x_2 + x_3 = 0$
 $x_i \ge 0 \quad (i = 1, 2, 3)$ (1)

显然该最优解在 $x_1 = 1, x_2 = x_3$ 时取到。其单纯形表如下:

表 1: 2.9 题例的单纯形表

	x_1	x_2	x_3	b
	1	1	-1	1
	0	-1	1	0
r^T	-1	0	0	0

虽然 a_1 对应的 $r_1 < 0$,但对应的可行解 $(1,0,0)^T$ 为最优解.

2.10 化为标准形如下:

min
$$x_1 - x_2$$

s.t. $x_1 - x_2 + x_3 = 2$
 $x_1 + x_2 + x_4 = 6$
 $x_i \ge 0 \quad (i = 1, 2, 3, 4)$ (2)

	x_1	x_2	x_3	x_3	b
	1	-1	1	0	2
	1	1	0	1	6
$m{r}^T$	1	-1	0	0	0

表 2: 第一次迭代

取 1 为转轴元,此时解为 $(0,0,2,6)^T$

	x_1	x_2	x_3	x_3	b
	2	0	1	1	8
	1	1	0	1	6
r^T	2	0	0	1	6

表 3: 第二次迭代

此时得最优解为 $(0,6,8,0)^T$,即在 $x_1=0,x_2=6$ 时得原问题最优值为 $6. x_1,x_2$ 空间的可行域见图 1,单纯形法的解从 (0,0) 迭代到 (0,6)

图 1: 可行域图

2.20 单纯形表如下:

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	4	1	0	0	1	0	100
	8	4	1	0	0	1	10000
$oldsymbol{r}^T$	-4	-2	-1	0	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	0	1	0	-4	1	0	96
	0	4	1	-8	0	1	9992
$m{r}^T$	0	-2	-1	4	0	0	4

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	0	1	0	-4	1	0	96
	0	0	1	8	-4	1	9608
$m{r}^T$	0	0	-1	-4	2	0	196

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	4	1	0	0	1	0	100
	-8	0	1	0	-4	1	9600
$m{r}^T$	4	0	-1	0	2	0	200

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	4	1	0	0	1	0	100
	-8	0	1	0	-4	1	9600
$m{r}^T$	-4	0	0	0	-2	1	9800

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	0	1	0	-4	1	0	96
	0	0	1	8	-4	1	9608
$m{r}^T$	0	0	0	4	-2	1	9804

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	0	1	0	-4	1	0	96
	0	4	1	-8	0	1	9992
$m{r}^T$	0	2	0	-4	0	1	9996

	x_1	x_2	x_3	x_4	x_5	x_6	b
	1	0	0	1	0	0	1
	4	1	0	0	1	0	100
	8	4	1	0	0	1	10000
$oldsymbol{r}^T$	4	2	0	0	0	1	10000

单纯形法迭代完毕后得最优解 (0,0,10000), 得最优值 10000.

2.21 单纯形表如下:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
	1	0	0	1/4	-8	-1	9	0
	0	1	0	1/2	-12	- 1/2	3	0
				0				
$m{r}^T$	0	0	0	- 3/4	20	- 1/2	6	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
	4	0	0	1	-32	-4	36	0
	-2	1	0	0	$\boxed{4}$	3/2	-15	0
	0	0	1	0	0	1	0	1
$m{r}^T$	3	0	0	0	-4	-7/2	33	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
	-12	8	0	1	0	8	-84	0
	-1/2	1/4	0	0	1	3/8	-15/4	0
	0	0	1	0	0	1	0	1
$m{r}^T$	1	1	0	0	0	-2	18	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
	-3/2	1	0	1/8	0	1	-21/2	0
	1/16	-1/8	0	-3/64	1	0	3/16	0
	3/2	-1	1	-1/8	0	0	21/2	1
$oldsymbol{r}^T$	-2	3	0	1/4	0	0	-3	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
	2	-6	0	-5/2	56	1	0	0
	1/3	-2/3	0	-1/4	16/3	0	1	0
	-2	6	1	5/2	-56	0	0	1
$oldsymbol{r}^T$	-1	1	0	-1/2	16	0	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
		-3						
	0	1/3	0	1/6	-4	-1/6	1	0
		0						
$m{r}^T$	0	-2	0	-7/4	44	1/2	0	0

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b
	1	0	0	1/4	-8	-1	9	0
	0	1	0	1/2	-12	-1/2	3	0
	0	0	1	0	0	1	0	1
$m{r}^T$	0	0	0	-3/4	20	-1/2	6	0

当我们计算到第7张表时,我们可以发现第7张表其实和第一张表是相同的,如果继续按该规则进行计算,将会出现循环的现象,每经过6次转轴迭代后会回到初始单纯形表.

为了避免循环的出现,可以使用摄动法、字典序法和 Bland 法则, Bland 法则的做法是: 进基后使目标值减小的变量中选指标最小者进基, 出基后使新的基本解保持可行的变量中选指标最小者出基.