Aula 04

- Materiais de Ferramenta Monocortante - (Parte 1)

Aula 04

- → Materias de ferramentas (parte I)
 - Requisitos
 - Evolução
 - Tipos
 - Características
 - Emprego

Consequência dos esforços na de Ferramenta

- · Requisitos desejados em uma ferramentas de corte
 - → Resistência à compressão
 - → Dureza
 - → Resistência à flexão e tenacidade
 - → Resistência do gume
 - → Resistência interna de ligação
 - → Resistência a quente
 - → Resistência à oxidação
 - → Pequena tendência à fusão e caldeamento
 - → Resistência à abrasão
 - → Condutibilidade térmica, calor específico e expansão térmica

Nenhum material de ferramenta possui todas estas características

Evolução dos materiais de ferramenta

- 50 mil anos atrás (Paleolítico Pedra Lascada):
 - Emprego de <u>ferramentas de pedra</u> com gumes afiados por lascamento, adaptando a geometria de corte à tarefa a ser realizada.

Evolução dos materiais de ferramenta

- Aço ferramenta (1868)
- Aço rápido (1900)
- Stellite (1910)
- Metal duro (1926)
- Cerâmicas (1938)
- Nitreto de boro cúbico (década de 50)
- Diamante mono e policristalino (década de 70)

Classificação dos materiais de ferramentas

Propriedades dos materiais de ferramentas

Tenacidade, resistência à flexão

Propriedades dos materiais de ferramentas

Resistência a quente dos principais materiais de ferramentas

Dureza e condutividade de alguns materiais de corte

Aplicação de materiais de ferramenta na indústria

automobilística CBN+PKD 2

Aços ferramenta

Características

- Aços carbono (0,8 a 1,5 % de C)
- sem ou com mínimos teores de elementos de liga
- Principal material utilizado ate 1900
- Baixo custo
- Facilidade de afiação obtençãcao de gumes vivos
- Tratamento térmico relativamente simples ⇒ elevada dureza e resistência ao desgaste
 - Resistem a temperatura de até aproximadamente 250°C

Aços ferramenta

Áreas de aplicação dos aços-ferramentas

- Materiais de baixa velocidade de corte
- Usinagem de aços doces com Vc < 25m/min
- Brocas para uso doméstico hobby
- Ferramentas para carpintaria

Características

- Principais elementos constituintes (W, Mo, Co, V), elementos que conferem alta tenacidade às ferramentas.
- Dureza de 60 a 67 HRC
- Resistem a temperatura de até aproximadamente 520 a 600°C
 - Clássico 18 (%W) 4 (%Cr) 1 (%V)
 - Aço super rápido adição de Co
 - Tratamento térmico complexo
 - preço elevado

Características

- Composição química usual (5 a 7% formam carbonetos):
 - 0,6 a 1,6% C
 - 4% Cr
 - 7 a 10% W
 - ◆ 85 a 89% Fe
 - 4 a 5% Mo
 - 0,9 a 3% V
- Designação: HS + % W Mo V Co (ex.: HS 10-4-3-10).

- Subdivisão em 4 grupos, segundo o teor de W e Mo

Grupo		Para usinagem de aço			
	Nomenclatura W Mo V Co	de médio esforço < 850 N/mm ² / > 850 N/mm ²		desbaste /	
18%W	HS18 - 0 - 1	+	-	-	-
	HS18 – 1 - 2 -5	-	-	+	-
12%W	HS12- 1 - 4 -5	-	-	(+)	+
	HS10 - 4 - 3 -10	-	-	(+)	+
6% W + 5% Mo	HS 6 - 5 - 2	-	+	-	-
	HS 6 - 5 - 3 -5	-	-	(+)	+
	HS 6 - 5 - 2 -5	-	-	+	-
2% W + 9% Mo	HS 2 – 9 - 1	+	-	-	-
	HS 2 – 9 - 2	-	+	_	-
	HS 2 – 10 - 1 8	-	_	+	-

Aços rápidos – Subdivisão

Grupo 1

- alto teor de W (até 18%)
- bom revenimento
- empregado para desbaste de aço e ferro fundido

- Grupo 2

- teores de W de até 12%
- crescente teor de V
- revenimento um pouco pior que grupo 1
- empregado para acabamento de materiais ferrosos e na usinagem de materiais não-ferrosos
- para ferramentas com forma complexa (boa maleabilidade e tenacidade)

Grupos 3 e 4

- W + Mo (Mo substitui W)
- possui tenacidade muito boa
- empregado para todos tipos de ferramentas

- → Influência dos elementos de liga
 - Aumento no teor de elementos de liga:
 - Maior produtividade destes materiais;
 - Aumento na resistência ao desgaste;
 - Aumento na vida das ferramenta;
 - Porém torna-se mais difícil a fabricação deste material;
 - Maiores custos de produção

→ Influência dos elementos de liga

Tungstênio (W)

- formador de carbonetos
- melhora revenimento
- melhora resistência ao desgaste

Vanádio (V)

- Formador de carbonetos
- melhora resistência ao desgaste (resist. a quente)
- usado para acabamento

Molibdênio (Mo)

- melhora temperabilidade
- melhora tenacidade
- substitui W

Cobalto (Co)

- eleva temperatura de sensibilização a quente
- melhora dureza a quente
- melhor solubilidade de carbonetos

- Aço-rápido com revestimento (TiC, TiN):
 - Menor atrito;
 - Redução no desgaste;
 - Maior estabilidade química;
 - Proteção térmica do substrato

Áreas de aplicação dos aços-rápidos

- Ferramentas para todas as operações de usinagem
- Ferramentas para desbaste e acabamento
- Machos e cossinetes de roscas
- Brocas helicoidais
- Alargadores
- Fresas de todos os tipos
- Ferramentas de plainar
- Escareadores
- Ferramentas para trabalho a frio
- Ferramentas para trabalho em madeira
- outras.

Ligas Fundidas

Características

- Composição típica:
 - → 3% Fe
 - → 17% W
 - → 33% Cr
 - → 44% Co
- Resistem a temperatura entre aproximadamente 700 a 800°C
 - W ⇒ Mn, Mo, V, Ti e Ta
 - Tratamento térmico complexo
 - Preço elevado

Ligas Fundidas

Nomes comerciais: Stellite, Tantung, Rexalloy e Chromalloy

Áreas de aplicação das Ligas Fundidas

- Raro em ferramentas para usinagem de geometria definida
- Material para abrasivos
- Isoladores térmicos, isoladores elétricos
- Fundição de materiais cerâmicos
- outros