

b-flavour tagging in pp collisions

Alex Birnkraut on behalf of the LHCb collaboration

Basics

Introduction

Measurements of flavour oscillations and timedependent *CP* asymmetries in neutral *B* meson systems require knowledge of the *b* quark flavour at production. This identification is performed by the Flavour Tagging (FT). [1,2]

Two independent classes of algorithms

same side taggers (SS)

use charged particles created in the fragmentation process of the b quark of the signal B meson

- kaon for B_s^0 → SS kaon / SS kaon nnet
- pion for B^0 \rightarrow SS pion \rightarrow SS proton - proton for B^0

opposite side taggers (OS)

exploit the non-signal b quark of the initial bb pair

- overall charge of the secondary vertex (SV) → OS vertex charge
- lepton from semi-leptonic b hadron decays → OS muon / OS electron
- kaon from the $b \rightarrow c \rightarrow s$ decay chain \rightarrow OS kaon
- D meson from the $b \rightarrow c$ decay chain → OS charm (New!)

Each tagger provides a decision d on the initial flavour ("tag") and a probability to be wrong, η .

Flavour Tagging characteristics

mistag

fraction of events with a wrong tagging decision

$$\omega = rac{N_{ ext{wrong}}}{N_{ ext{right}} + N_{ ext{wrong}}}$$

tagging efficiency

fraction of events with a tagging decision

$$oldsymbol{arepsilon_{ ext{tag}}} = rac{oldsymbol{N_{ ext{right}} + oldsymbol{N_{ ext{wrong}}}}{oldsymbol{N_{ ext{all}}}}$$

effective tagging efficiency

represents the statistical reduction factor of a sample in a tagged analysis

$$arepsilon_{ ext{eff}} = arepsilon_{ ext{tag}} \left(1 - 2\omega
ight)^2$$

Calibration

Mistag calibration

$$\omega(\eta) = p_0 + p_1 \left(\eta - \langle \eta \rangle \right)$$

$$\uparrow$$
calibrated ev-by-ev mistag estimated mistag

Several flavour-specific decay channels are used

- $B^+ \to J/\psi K^+, B^+ \to D^0 \pi^+$ charged channels: extract ω by comparing tag decision with charge of the final state
- $B^0 \to J/\psi K^{*0}$, $B^0 \to D^{*-}\mu^+\nu_\mu$, $B^0_s \to D^-_s\pi^+$, ... neutral channels: full time-dependent analysis to extract ω from the mixing asymmetry

$$\mathcal{A}_{\mathsf{mix}}(t) \propto (1-2\omega) \cos(\Delta m_{d/s} t)$$

Flavour Tagging in Run I

Usage in analyses

- one calibration per tagger valid for all channels
- systematic uncertainties from
 - calibration methods
 - results in different control channels
- "ad-hoc" calibration using best-suited control channels for analyses dominated by FT uncertainty

Highlights of flavour-tagged measurements

• Measurements of ϕ_s

- Decay time (modulo $2\pi/\Delta m_s$) [ps]
- newest analyses profited from
 - → including SS kaon nnet tagger
 - → re-optimisation of OS algorithms

CP violation in $B_s^0 \rightarrow D_s^{\mp} K^{\pm}$

- analysis on 2011 data: $arepsilon_{ ext{eff}} = 5.07\,\%$
- SS kaon nnet adds more than 1.3% to $\varepsilon_{\mathrm{eff}}$ [5]

- *CP* violation in $B^0 \rightarrow J/\psi K_s^0$ (sin 2 β)
 - analysis on 2011 data: $arepsilon_{ ext{eff}} = 2.38\,\%$ [6]
 - full Run I analysis: $\varepsilon_{\rm eff} = 3.02 \%$ [7]
 - ightarrow SS pion tagger adds more than 0.376 % to $arepsilon_{
 m eff}$

- precision analysis → "ad-hoc" FT calibration
- \rightarrow OS algorithms calibrated with $B^+ \rightarrow J/\psi K^+$
- \rightarrow SS pion calibrated with $B^0 \rightarrow J/\psi K^{*0}$
- *CP* violation in $B_s^0 \to J/\psi K_s^0$

- not possible to exclude B^0 events in selection

- B_s^0 events: $\varepsilon_{{
 m eff},B_s^0}=4.00\,\%$, $\varepsilon_{{
 m eff},B^0}=2.62\,\%$ [8]
- \rightarrow small contribution of SS kaon for B^0 due to:
- same-side protons misidentified as kaons
- kaons have opposite charge: invert tag

kaons from same-side K^* (892)

Developments

OS charm tagger (preliminary)

• reconstruct $D^0/D^{\pm}/D^*$ decays related to OS b decay

Decay mode	Relative $arepsilon_{tag}$	Relative $arepsilon_{ ext{eff}}$
$D^0 o \mathcal{K}^-\pi^+$	10.0 %	24.0 %
$D^0 o K^-\pi^+\pi^+\pi^-$	5.9 %	8.4 %
$D^+ o K^-\pi^+\pi^+$	10.3 %	2.6 %
D^0 , $D^+ o K^-\pi^+ X$	69.7 %	61.5 %
D^0 , $D^+ o K^-e^+X$	0.5 %	0.2 %
D^0 , $D^+ o K^-\mu^+ X$	3.4 %	0.3 %
$\Lambda_c^+ o p^+ K^- \pi^+$	0.2 %	2.4 %

- one boosted decision tree (BDT) for each mode [9]
- clean measure of B meson flavour (low mistag)
- stand-alone tagging power of $arepsilon_{
 m eff} = 0.30\,\%$ to $0.40\,\%$

SS pion calibration

- calibration performed with $B^0 o J/\psi K^{*0}$
- full evaluation of systematic uncertainties
- used for the first time in the measurements of
 - sin(2eta) with $B^0 o J/\psi \, K_S^0$
 - $\Rightarrow \varepsilon_{\rm eff}^{\rm SS\pi} = 0.38\%$
 - $\sin(2eta_{
 m eff})$ with $B^0 o J\!/\psi\,\pi^+\pi^-$
 - $\Rightarrow \varepsilon_{\text{\tiny aff}}^{\text{SS}\pi} = 0.54 \%$

SS kaon tagging using neural nets (NN)

- basic idea: use two NN
 - first NN distinguishes between:
 - 1. fragmentation tracks ⇒ signal for SS kaon nnet
 - 2. underlying event tracks

- assigns final tag and mistag based on multiple candidates [10]
- SS kaon nnet tagger is a great success, compared to the previous cut-based SS kaon it gives
 - $-B_s^0 \rightarrow D_s^- \pi^+$: 50 % relative improvement in $\varepsilon_{\rm eff}$
 - $-B_s^0 \rightarrow J/\psi \phi$: 41 % relative improvement in $\varepsilon_{\rm eff}$

References

- [1] LHCb Collaboration, R. Aaij et. al., Opposite-side flavour tagging of B mesons at the LHCb experiment, Eur. Phys. J. C72 (2012) 2022
- [2] LHCb Collaboration, R. Aaij et. al., Optimization and calibration of the same-side kaon tagging algorithm using hadronic B_s^0 decays in 2011 data, LHCb-CONF-2012-033
- [3] LHCb Collaboration, R. Aaij et. al., Measurement of CP violation and the B_s^0 meson decay width difference with $B_S^0 o J/\psi K^+ K^-$ and $\overline B_S^0 o J/\psi \pi^+ \pi^-$ decays, Phys.Rev. D87 (2013) 112010
- [4] LHCb Collaboration, R. Aaij et. al., Precision measurement of CP violation in $B_5^0
 ightharpoonup$ $J/\psi K^{+}K^{-}$ decays, Phys.Rev.Lett. 114 (2015) 4 041801
- [5] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_S in $\overline{B}^0_S o$ $J/\psi \pi^+\pi^-$ decays, Phys.Lett. B713 (2012) 378-386 [6] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_s in $\overline{B}_s^0 \to$
- $J/\psi \pi^{+}\pi^{-}$ decays, Phys.Lett. B736 (2014) 186 [7] LHCb Collaboration, R. Aaij et. al., Measurement of the CP-violating phase ϕ_s in $\overline{B}_s^0 \to 0$ $D_{S}^{+}D_{S}^{-}$ decays, Phys.Rev.Lett. 113 (2014) 211801
- [8] LHCb Collaboration, R. Aaij et. al., Measurement of CP asymmetry in $B_s^0 o D_s^\mp K^\pm$ decays, JHEP 1411 (2014) 060
- [9] LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent CP asymmetry in $B^0 \rightarrow J/\psi K_S^0$ decays, Phys.Lett. B721 (2013) 24-31
- [10] LHCb Collaboration, R. Aaij et. al., Measurement of CP violation in $B^0 o J/\psi \, K^0_\varsigma$ decays, Phys.Rev.Lett. 115 (2015) 031601 [11] LHCb Collaboration, R. Aaij et. al., Measurement of the time-dependent CP asymmetries
- in $B_s^0 \to J/\psi K_S^0$, JHEP 1506 (2015) 131 [12] LHCb Collaboration, R. Aaij et. al., B flavor tagging using reconstructed charm decays at

the LHCb experiment, LHCb-PAPER-2015.027

[13] G. A. Krocker, Development and calibration of a same side kaon tagging algorithm and measurement of the $B_s^0 - \overline{B}_s^0$ oscillation frequency Δm_s at the LHCb experiment, PhD thesis, Heidelberg U., Sep, 2013, CERN-THESIS-2013-213