Camellia:

A Toolbox for a Class of Discontinuous Petrov-Galerkin Methods
Using Trilinos

Nate Roberts
Collaborators: Leszek Demkowicz, Jesse Chan, Truman Ellis

Institute for Computational and Engineering Sciences
The University of Texas at Austin

September 12, 2012

Outline

- DPG in Brief
- Stokes
- 3 Camellia
- Solving Stokes with Camellia
 - Identify variables

From Strong-Form PDE to DPG Form

Solving with DPG

Continuous Test Space

$$\begin{array}{c} \textbf{DPG Form} \\ b(u_h,v) = l(v) \end{array}$$

Optimal Test Functions

For each $u \in U_h$, find $v_u \in V : (v_u, w)_V = b(u, w) \forall w \in V$

Discrete Test Space

Optimal Test Functions

For each $u \in U_h$, find $v_u \in V_{p+\triangle p}$: $(v_u, w)_V = b(u, w)$ $\forall w \in V_{p+\triangle p}$

Stiffness Matrix

$$K_{ij} = b(e_i, v_{e_j}) = (v_{e_i}, v_{e_j})_V = (v_{e_j}, v_{e_i})_V = b(e_j, v_{e_i}) = K_{ji}$$

Error (for adaptivity)

$$||u - u_h||_E$$

$$= ||R_V^{-1}(Bu_h - l)||_V$$

Error (for adaptivity)

$$||u - u_h||_E$$

$$\approx \left| \left| R_{V_{p+\Delta p}}^{-1}(Bu_h - l) \right| \right|_{V_{p+\Delta p}}$$

Graph Test Norm

For a strong operator A with formal adjoint A^* , the adjoint graph space is

$$H_{A^*} = \{ v \in L^2(\Omega) : A^*v \in L^2(\Omega) \}$$

and the (adjoint) graph norm on the test space V is given by

$$||v||_{\text{graph}} = ||v||_{H_{A^*}} = \left(||v||^2 + ||A^*v||^2\right)^{1/2}.$$

E.g. if
$$A^* = \nabla$$
, then $H_{A^*} = H^1$, and $||v||_{H_{A^*}} = ||v||_{H^1}$.

Key Result: Well-posedness ⇒ Optimal Convergence

Under modest technical assumptions (true for Stokes), we have¹

$$||Au|| \geq \gamma \, ||u|| \implies \sup_{v \in H_{A^*}} \frac{b((u,\widehat{u}),v)}{||v||_{H_{A^*}}} \geq \gamma_{\mathrm{DPG}} \left(||u||^2 + ||\widehat{u}||_{\widehat{H}_A(\Gamma_h)}^2\right)^{1/2}$$

where $\gamma_{\mathrm{DPG}}=O(\gamma)$ is a mesh-independent constant, and $||\cdot||_{\widehat{H}_A(\Gamma_h)}$ is the minimum energy extension norm.

¹Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz. The DPG method for the Stokes problem. Technical Report 12-22, ICES, 2012

Key Result: Well-posedness ⇒ Optimal Convergence

Under modest technical assumptions (true for Stokes), we have¹

$$||Au|| \geq \gamma \, ||u|| \implies \sup_{v \in H_{A^*}} \frac{b((u,\widehat{u}),v)}{||v||_{H_{A^*}}} \geq \gamma_{\mathrm{DPG}} \left(||u||^2 + ||\widehat{u}||_{\widehat{H}_A(\Gamma_h)}^2\right)^{1/2}$$

where $\gamma_{\mathrm{DPG}}=O(\gamma)$ is a mesh-independent constant, and $||\cdot||_{\widehat{H}_A(\Gamma_h)}$ is the minimum energy extension norm.

By Babuška's Theorem,

$$\implies \left(||u - u_h||^2 + ||\widehat{u} - \widehat{u}_h||_{\widehat{H}_A(\Gamma_h)}^2 \right)^{1/2} \le \frac{M}{\gamma_{\text{DPG}}} (\text{B.A.E.}).$$

¹Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz. The DPG method for the Stokes problem. Technical Report 12-22, ICES, 2012

Key Result: Well-posedness ⇒ Optimal Convergence

Under modest technical assumptions (true for Stokes), we have¹

$$||Au|| \geq \gamma \, ||u|| \implies \sup_{v \in H_{A^*}} \frac{b((u,\widehat{u}),v)}{||v||_{H_{A^*}}} \geq \gamma_{\mathrm{DPG}} \left(||u||^2 + ||\widehat{u}||_{\widehat{H}_A(\Gamma_h)}^2\right)^{1/2}$$

where $\gamma_{\mathrm{DPG}}=O(\gamma)$ is a mesh-independent constant, and $||\cdot||_{\widehat{H}_A(\Gamma_h)}$ is the minimum energy extension norm.

By Babuška's Theorem,

$$\implies \left(||u - u_h||^2 + ||\widehat{u} - \widehat{u}_h||_{\widehat{H}_A(\Gamma_h)}^2 \right)^{1/2} \le \frac{M}{\gamma_{\text{DPG}}} (\text{B.A.E.}).$$

Suffices to show that $||Au|| \ge \gamma ||u||$ to prove optimal convergence rate!

¹Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz. The DPG method for the Stokes problem. Technical Report 12-22, ICES, 2012

Classical Stokes Problem

The classical strong form of the Stokes problem in $\Omega \subset \mathbb{R}^2$ is given by

$$egin{aligned} -\mu \Delta oldsymbol{u} +
abla p &= oldsymbol{f} & ext{in } \Omega, \
abla \cdot oldsymbol{u} &= 0 & ext{in } \Omega, \
on \partial \Omega, & ext{on } \partial \Omega, \end{aligned}$$

where μ is viscosity, p pressure, \boldsymbol{u} velocity, and \boldsymbol{f} a vector forcing function. Since by appropriate non-dimensionalization we can eliminate the constant μ , we take $\mu=1$ throughout.

DPG Applied to Stokes

To apply DPG, we need a first-order system. We introduce $\sigma = \nabla u$:

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma} + \nabla p &= \boldsymbol{f} & \text{in } \Omega, \\ \nabla \cdot \boldsymbol{u} &= 0 & \text{in } \Omega, \\ \boldsymbol{\sigma} - \nabla \boldsymbol{u} &= 0 & \text{in } \Omega. \end{aligned}$$

Testing with $(\boldsymbol{v},q,\boldsymbol{ au})$, and integrating by parts, we have

$$\begin{split} (\boldsymbol{\sigma} - p\boldsymbol{I}, \nabla \boldsymbol{v})_{\Omega_h} - \left\langle \widehat{\boldsymbol{t}}_n, \boldsymbol{v} \right\rangle_{\Gamma_h} &= (\boldsymbol{f}, \boldsymbol{v})_{\Omega_h} \\ (\boldsymbol{u}, \nabla q)_{\Omega_h} - \left\langle \widehat{\boldsymbol{u}} \cdot \boldsymbol{n}, q \right\rangle_{\Gamma_h} &= 0 \\ (\boldsymbol{\sigma}, \boldsymbol{\tau})_{\Omega_h} + (\boldsymbol{u}, \nabla \cdot \boldsymbol{\tau})_{\Omega_h} - \left\langle \widehat{\boldsymbol{u}}, \boldsymbol{\tau} \boldsymbol{n} \right\rangle_{\Gamma_h} &= \boldsymbol{0}, \end{split}$$

where traction $\boldsymbol{t}_n \stackrel{\text{def}}{=} (\boldsymbol{\sigma} - p\boldsymbol{I})\boldsymbol{n}$, and the hatted variables $\widehat{\boldsymbol{t}}_n$ and $\widehat{\boldsymbol{u}}$ are new unknowns representing the traces of the corresponding variables at the boundary.

DPG Applied to Stokes

DPG Formulation:

$$\begin{split} b(u,v) = & (\boldsymbol{\sigma} - p\boldsymbol{I}, \nabla \boldsymbol{v})_{\Omega_h} - \left\langle \widehat{\boldsymbol{t}}_n, \boldsymbol{v} \right\rangle_{\Gamma_h} \\ & + (\boldsymbol{u}, \nabla q)_{\Omega_h} - \left\langle \widehat{\boldsymbol{u}} \cdot \boldsymbol{n}, q \right\rangle_{\Gamma_h} \\ & + (\boldsymbol{\sigma}, \boldsymbol{\tau})_{\Omega_h} + (\boldsymbol{u}, \nabla \cdot \boldsymbol{\tau})_{\Omega_h} - \left\langle \widehat{\boldsymbol{u}}, \boldsymbol{\tau} \boldsymbol{n} \right\rangle_{\Gamma_h} = (\boldsymbol{f}, \boldsymbol{v})_{\Omega_h} = l(v). \end{split}$$

The natural spaces for the trial variables are then:

- fields: $p \in L^2(\Omega), u \in L^2(\Omega), \sigma \in L^2(\Omega),$
- fluxes: $\hat{\boldsymbol{t}}_n \in \boldsymbol{H}^{-1/2}(\Gamma_h)$,
- traces: $\widehat{\boldsymbol{u}} \in \boldsymbol{H}^{1/2}(\Gamma_h)$.

The natural norms for fluxes and traces are *minimum energy extension norms*.

Graph Test Norm

The adjoint graph norm for our Stokes formulation is:2

$$\begin{aligned} ||(\boldsymbol{\tau}, \boldsymbol{v}, q)||_{\text{graph}}^2 &= ||\nabla \cdot \boldsymbol{\tau} - \nabla q||^2 + ||\nabla \cdot \boldsymbol{v}||^2 + ||\boldsymbol{\tau} + \nabla \boldsymbol{v}||^2 \\ &+ ||\boldsymbol{\tau}||^2 + ||\boldsymbol{v}||^2 + ||q||^2. \end{aligned}$$

²Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz. The DPG method for the Stokes problem. Technical Report 12-22, ICES, 2012

Camellia⁴

Design Goal: make DPG research and experimentation as simple as possible, without sacrificing too much by way of performance.

Camellia (2D)—built atop Trilinos

³Michael A. Heroux et al. An overview of the Trilinos project. *ACM Trans. Math. Softw.*, 31(3):397–423, 2005

⁴Nathan V. Roberts, Denis Ridzal, Pavel B. Bochev, and Leszek F. Demkowicz. A Toolbox for a Class of Discontinuous Petrov-Galerkin Methods Using Trilinos. Technical Report SAND2011-6678, Sandia National Laboratories, 2011

Reliance on Trilinos

Feature	Trilinos Package
OO interface to MUMPS	Amesos
KLU solver	Amesos
conforming basis functions	Intrepid
pullbacks/Piola transforms	Intrepid
smart multidimensional arrays	Intrepid
distributed compressed row storage matrices	Epetra
cell topologies	Shards
reference-counted pointers	Teuchos
space-filling curves for spatially local mesh partitioning	Zoltan

Camellia: Users

- Jesse Chan: compressible Navier-Stokes
- Truman Ellis: compressible Navier-Stokes with turbulence
- Nate Roberts: incompressible Navier-Stokes

Figure: Compressible Navier-Stokes for Carter flat plate problem, ${\rm Re}=1000, {\rm Ma}=3.$

Implementation with Camellia

- 1 Identify variables involved: fields, traces, fluxes, and test functions.
- 2 Define the bilinear form.
- Opening Technology
 Opening Technol
- 4 Define inner product.
- 6 Define boundary conditions.
- 6 Create initial mesh.
- Oreate solution object (and solve).
- 8 Adaptively refine the mesh.

Identify variables involved.

For Stokes, we have trial variables:

- fields: scalar $p \in L^2(\Omega)$, vector $\boldsymbol{u} \in \boldsymbol{L}^2(\Omega)$, tensor $\boldsymbol{\sigma} \in \boldsymbol{L}^2(\Omega)$,
- fluxes: vector $\hat{\boldsymbol{t}}_n \in \boldsymbol{H}^{-1/2}(\Gamma_h)$,
- traces: vector $\widehat{\boldsymbol{u}} \in \boldsymbol{H}^{1/2}(\Gamma_h)$.

```
VarFactory varFactory;
VarPtr p = varFactory.fieldVar("p");
VarPtr u1 = varFactory.fieldVar("u_1");
VarPtr u2 = varFactory.fieldVar("u_2");
VarPtr sigma11 = varFactory.fieldVar("\\sigma_11");
VarPtr sigma12 = varFactory.fieldVar("\\sigma 12");
VarPtr sigma21 = varFactory.fieldVar("\\sigma_21");
VarPtr sigma22 = varFactory.fieldVar("\\sigma_22");
VarPtr t1n = varFactory.fluxVar("\\hat{t} 1n");
VarPtr t2n = varFactory.fluxVar("\\hat{t}_2n");
VarPtr u1 = varFactory.traceVar("\\hat{u}_1");
VarPtr u2 = varFactory.traceVar("\\hat{u}_2");
```

Camellia: Rapid Specification of Inner Products

Suppose we have a problem whose graph norm is

$$||(v, \boldsymbol{q})||_{\text{graph}}^2 = ||v||^2 + ||\boldsymbol{q}||^2 + \left|\left|\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} + \nabla \cdot \boldsymbol{q}\right|\right|^2.$$

To specify this in Camellia, simply do:

```
VarFactory varFactory;
VarPtr v = varFactory.testVar("v", HGRAD);
VarPtr q = varFactory.testVar("q", HDIV);
IPPtr ip = Teuchos::rcp( new IP);
ip->addTerm(v);
ip->addTerm(q);
ip->addTerm(v->dx() - v->dy() + q->div());
```

The bilinear form can be specified similarly.

Camellia: Stiffness Matrix Timing Test

- local stiffness matrix computation is embarrassingly parallel
- minimize assembly costs: spatially local mesh partitioning
- timing tests on Lonestar: solve convection-dominated diffusion

 collaborators working on parallel solvers: Kyungjoo Kim (shared memory architecture), Maciej Paszynski (distributed memory)

17/18

Thank you!

Questions?

For more info: nroberts@ices.utexas.edu

Michael A. Heroux et al. An overview of the Trilinos project.

ACM Trans. Math. Softw., 31(3):397-423, 2005.

Nathan V. Roberts, Tan Bui-Thanh, and Leszek F. Demkowicz.

The DPG method for the Stokes problem.

Technical Report 12-22, ICES, 2012.

Nathan V. Roberts, Denis Ridzal, Pavel B. Bochev, and Leszek F. Demkowicz. A Toolbox for a Class of Discontinuous Petrov-Galerkin Methods Using Trilinos. Technical Report SAND2011-6678, Sandia National Laboratories, 2011.

18 / 18