

Graph Algorithms

9 December 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 9: Graph Algorithms

- **1.** Know basic terminology from graph theory, including types of graphs.
- **2.** Know adjacency matrix and adjacency list representations and their performance characteristica.
- 3. Know graph-traversal based algorithm, including efficient implementations.
- **4.** Be able to proof correctness of graph-traversal-based algorithms.
- **5.** Know algorithms for maximum flows in networks.
- **6.** Be able to model new algorithmic problems as graph problems.

Outline

9 Graph Algorithms

- 9.1 Introduction & Definitions
- 9.2 Graph Representations
- 9.3 Graph Traversal
- 9.4 BFS and DFS
- 9.5 Advanced Uses of DFS
- 9.6 Network flows
- 9.7 The Ford-Fulkerson Method
- 9.8 The Edmonds-Karp Algorithm

9.1 Introduction & Definitions

Graphs in real life

- ▶ a graph is an abstraction of *entities* with their (pairwise) *relationships*
- abundant examples in real life (often called network there)
 - ▶ social networks: e.g. persons and their friendships, . . . Five/Six? degrees of separation
 - physical networks: cities and highways, roads networks, power grids etc., the Internet, . . .
 - ▶ content networks: world wide web, ontologies, . . .

▶ ...

Many More examples, e.g., in Sedgewick & Wayne's videos:

https://www.coursera.org/learn/algorithms-part2

Flavors of Graphs

Since graphs are used to model so many different entities and relations, they come in several variants

Property	Yes	No
edges are one-way ≤ 1 edge between u and v edges can lead from v to v	directed graph (digraph) simple graph with loops (Schlage, Schlage)	undirected graph multigraph / with parallel edges
edges have weights	(edge-) weighted graph	unweighted graph

- on any combination of the above can make sense ...
- ► Synonyms:
 - vertex ("Knoten") = node = point = "Ecke"
 - edge ("Kante") = arc = line = relation = arrow = "Pfeil"
 - ▶ graph = network

Graph Theory

- ▶ default: unweighted, undirected, loop-free & simple graphs
- ► *Graph* G = (V, E) with
 - ► *V* a finite of *vertices*

 $ightharpoonup E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of V: $[V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Graph Theory

- ▶ default: unweighted, undirected, loop-free & simple graphs
- ► *Graph* G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of $V: [V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{\{0,1\},\{1,2\},\{1,4\},\{1,3\},\{0,2\},$$

$$\{2,4\},\{2,3\},\{3,4\},\{3,5\},\{4,5\}\}.$$

Graphical representation

like so . . .

Graph Theory

- ▶ default: unweighted, undirected, loop-free & simple graphs
- ightharpoonup *Graph* G = (V, E) with
 - ▶ *V* a finite of *vertices*
 - $ightharpoonup E \subseteq [V]^2$ a set of edges, which are 2-subsets of $V: [V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{\{0,1\},\{1,2\},\{1,4\},\{1,3\},\{0,2\},$$

$$\{2,4\},\{2,3\},\{3,4\},\{3,5\},\{4,5\}\}.$$

Graphical representation

like so . . .

...or so

(same graph)

Digraphs

- ▶ default digraph: unweighted, <u>loop-free</u> & simple
- ▶ *Digraph (directed graph)* G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq V^2 \setminus \{(v, v) : v \in V\}$ a set of (*directed*) edges, $V^2 = V \times V = \{(x, y) : x \in V \land y \in V\}$ 2-tuples / ordered pairs over V

Digraphs

- default digraph: unweighted, loop-free & simple
- ▶ *Digraph (directed graph)* G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq V^2 \setminus \{(v,v) : v \in V\}$ a set of (*directed*) edges, $V^2 = V \times V = \{(x,y) : x \in V \land y \in V\}$ 2-tuples / ordered pairs over V

Example

$$V = \{0,1,2,3,4,5\}$$

$$E = \{(0,2),(1,0),(1,4),(2,1),(2,4),$$

$$(3,1),(3,2),(4,3),(4,5),(5,3)\}$$

Graphical representation

Graph Terminology

Undirected Graphs

- \blacktriangleright *V*(*G*) set of vertices, *E*(*G*) set of edges
- write uv (or vu) for edge $\{u, v\}$
- ightharpoonup edges *incident* at vertex v: E(v)
- ▶ u and v are adjacent iff $\{u, v\} \in E$,
- ► *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- ightharpoonup degree d(v) = |E(v)|

Directed Graphs (where different)

- **▶** *uv* for (*u*, *v*)
- ightharpoonup iff $(u,v) \in E \lor (v,u) \in E$
- ightharpoonup in-/out-neighbors $N_{\rm in}(v)$, $N_{\rm out}(v)$
- ▶ in-/out-degree $d_{in}(v)$, $d_{out}(v)$

Graph Terminology

Undirected Graphs

- ightharpoonup V(G) set of vertices, E(G) set of edges
- write uv (or vu) for edge $\{u, v\}$
- ightharpoonup edges *incident* at vertex v: E(v)
- ▶ u and v are adjacent iff $\{u, v\} \in E$,
- ▶ *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- ightharpoonup degree d(v) = |E(v)|

Directed Graphs (where different)

- \blacktriangleright *uv* for (u, v)
- ightharpoonup iff $(u,v) \in E \lor (v,u) \in E$
- ▶ in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- ► in-/out-degree $d_{in}(v)$, $d_{out}(v)$

Kantenzus

- ▶ walk w of length n: sequence of vertices w[0..n] with $\forall i \in [0..n) : w[i]w[i+1] \in E$
- ightharpoonup is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
- *edge-simple* walk: no edge used twice
- ► cycle c is a closed path, i. e., c[0] = c[n] (ges closseen Weg, 2xhol, Kreiz (2xholus)

Graph Terminology

Undirected Graphs

- \blacktriangleright *V*(*G*) set of vertices, *E*(*G*) set of edges
- ightharpoonup write uv (or vu) for edge $\{u, v\}$
- ightharpoonup edges *incident* at vertex v: E(v)
- ▶ u and v are adjacent iff $\{u, v\} \in E$,
- ► *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- ightharpoonup degree d(v) = |E(v)|

Directed Graphs (where different)

- \blacktriangleright uv for (u, v)
- ightharpoonup iff $(u,v) \in E \lor (v,u) \in E$
- ▶ in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- ▶ in-/out-degree $d_{in}(v)$, $d_{out}(v)$
- ▶ *walk* w of length n: sequence of vertices w[0..n] with $\forall i \in [0..n) : w[i]w[i+1] \in E$
- ightharpoonup is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
- ▶ *edge-simple* walk: no edge used twice
- *cycle c* is a closed path, i. e., c[0] = c[n]
- ► *G* is *connected* iff for all $u \neq v \in V$ there is a path from u to v
- ► *G* is *acyclic* iff \nexists cycle (of length $n \ge 1$) in *G*
- strongly connected for digraphs (weakly connected = connected ignoring directions)

Typical graph-processing problems

- ► **Path**: Is there a path between *s* and *t*? **Shortest path**: What is the shortest path (distance) between *s* and *t*?
- ► Cycle: Is there a cycle in the graph?

 Euler tour: Is there a cycle that uses each edge exactly once?

 Hamilton(ian) cycle: Is there a cycle that uses each vertex exactly once.
- Connectivity: Is there a way to connect all of the vertices?MST: What is the best way to connect all of the vertices?Biconnectivity: Is there a vertex whose removal disconnects the graph?
- ▶ Planarity: Can you draw the graph in the plane with no crossing edges?
- ► **Graph isomorphism**: Are two graphs the same up to renaming vertices?

 \sim can vary a lot, despite superficial similarity of problems

Challenge: Which of these problems
can be computed in (near) linear time?
in reasonable polynomial time?
are intractable?

Tools to work with graphs

- Convenient GUI to edit & draw graphs: yEd live yworks.com/yed-live
- ▶ *graphviz* cmdline utility to draw graphs
 - Simple text format for graphs: DOT

dot -Tpdf graph.dot -Kfdp > graph.pdf

- graphs are typically not built into programming languages, but libraries exist
 - e.g. part of Google Guava for Java
 - they usually allow arbitrary objects as vertices
 - aimed at ease of use

9.2 Graph Representations

Graphs in Computer Memory

- ► We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- → need to choose a *representation* for graphs.
 - which is better depends on the required operations

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- → need to choose a *representation* for graphs.
 - which is better depends on the required operations

Key Operations:

- isAdjacent(u,v) Test whether $uv \in E$
- Adjacency list of v (iterate through (out-) neighbors of v)
- most others can be computed based on these

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- → need to choose a *representation* for graphs.
 - which is better depends on the required operations

Key Operations:

- isAdjacent(u,v)
 Test whether $uv \in E$
- ▶ adj (v)Adjacency list of v (iterate through (out-) neighbors of v)
- most others can be computed based on these

Conventions:

- ► (di)graph G = (V, E) (omitted if clear from context)
- ightharpoonup n = |V|, m = |E|
- in implementations assume V = [0..n)

(if needed, use symbol table to map complex objects to V)

Adjacency Matrix Representation

- ▶ adjacency matrix $A \in \{0,1\}^{n \times n}$ of G: matrix with $A[u,v] = [uv \in E] = \begin{cases} 1 & \text{if } E \\ 0 & \text{south} \end{cases}$
 - ▶ works for both directed and undirected graphs (undirected \rightsquigarrow $A = A^T$ symmetric)
 - can use a weight w(uv) or multiplicity in A[u, v] instead of 0/1
 - ightharpoonup can represent loops via A[v, v]

Example:

$$A = \begin{cases} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 5 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Adjacency Matrix Representation

- ▶ adjacency matrix $A \in \{0,1\}^{n \times n}$ of G: matrix with $A[u,v] = [uv \in E]$
 - works for both directed and undirected graphs (undirected $\rightsquigarrow A = A^T$ symmetric)
 - can use a weight w(uv) or multiplicity in A[u, v] instead of 0/1
 - ightharpoonup can represent loops via A[v, v]

Example:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

- \bigcirc $O(n^2)$ (bits of) space wasteful for sparse graphs
- \bigcap adj (v) iteration takes O(n) (independent of d(v))

Adjacency List Representation

- ▶ Store a linked list of neighbors for each vertex *v*:
 - ► *adj*[0..*n*) bag of neighbors (as linked list)
 - ▶ undirected edge $\{u, v\} \rightsquigarrow v \text{ in } adj[u] \text{ and } u \text{ in } adj[v]$
 - weighted edge $\underline{uv} \rightsquigarrow \text{store pair } (v, w(uv)) \text{ in } adj[u]$
 - ► multiple edges and loops can be represented

Adjacency List Representation

- ▶ Store a linked list of neighbors for each vertex *v*:
 - ► *adj*[0..*n*) bag of neighbors (as linked list)
 - undirected edge $\{u, v\} \rightsquigarrow v \text{ in } adj[u] \text{ and } u \text{ in } adj[v]$
 - weighted edge $uv \rightsquigarrow \text{store pair } (v, w(uv)) \text{ in } adj[u]$
 - multiple edges and loops can be represented

adj[0..n)

→ de-facto standard for graph algorithms

Graph Types and Representations

- Note that adj matrix and lists for undirected graphs effectively are representation of directed graph with directed edges both ways
 - conceptually still important to distinguish!
- multigraphs, loops, edge weights all naturally supported in adj lists
 - good if we allow and use them
 - but requires explicit checks to enforce simple / loopfree / bidirectional!
- we focus on static graphs dynamically changing graphs much harder to handle

9.3 Graph Traversal

Generic Graph Traversal

- ▶ Plethora of graph algorithms can be expressed as a systematic exploration of a graph
 - b depth-first search, breadth-first search
 - connected components
 - detecting cycles
 - topological sorting
 - ► Hierholzer's algorithm for Euler walks
 - strong components
 - testing bipartiteness
 - Dijkstra's algorithm
 - ▶ Prim's algorithm
 - Lex-BFS for perfect elimination orders of chordal graphs
 - ▶ ...

Generic Graph Traversal

- ▶ Plethora of graph algorithms can be expressed as a systematic exploration of a graph
 - ▶ depth-first search, breadth-first search
 - connected components
 - detecting cycles
 - topological sorting
 - ► Hierholzer's algorithm for Euler walks
 - strong components
 - testing bipartiteness
 - Dijkstra's algorithm
 - ▶ Prim's algorithm
 - Lex-BFS for perfect elimination orders of chordal graphs
 - ▶ ...

visiting all nodes & edges

- → Formulate generic traversal algorithm
 - first in abstract terms to argue about correctness
 - ▶ then again for concrete instance with efficient data structures

Tricolor Graph Traversal

Tricolor Graph Search:

- ▶ maintain vertices in 3 (dynamic) sets
 - **Gray:** unseen vertices The traversal has not reached these vertices so far.

Invariant:

No edges from *done* to *unseen* vertices

► **Green: done vertices** (a.k.a. visited vertices)

These vertices have been visited and all their edges have been explored already.

Red: active vertices (a.k.a. frontier ("Rand") of traversal)

All others, i. e., vertices that have been reached and some unexplored edges remain; initially some selected start vertices *S*.

► (implicitly) maintain status of each edge

want to color green -> to do that need neighbors here red

- not yet used
- used edge
- ► Vertices "want" to turn green.

during traversal

final state

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
        C[0..n) := unseen // Color array, all cells initialized to unseen
 3
        for s \in S do C[s] := active end for
        unusedEdges := E
        while \exists v : C[v] == active
             v := \text{nextActiveVertex}() // Freedom 1: Which frontier vertex?
 7
            if \nexists vw \in unusedEdges // no more edges from <math>v \leadsto done \ with \ v
 8
                 C[v] := done
            else
10
                  w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
11
                 if C[w] == unseen
12
                     C[w] := active
13
                 end if
14
                 unusedEdges.remove(vw)
15
            end if
16
        end while
17
```


Invariant:

No edges from done to unseen vertices

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // Color array, all cells initialized to unseen
3
       for s \in S do C[s] := active end for
       unusedEdges := E
       while \exists v : C[v] == active
            v := \text{nextActiveVertex}() // Freedom 1: Which frontier vertex?
7
            if \nexists vw \in unusedEdges // no more edges from <math>v \leadsto done \ with \ v
8
                C[v] := done
            else
                 w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
11
                if C[w] == unseen
12
                     C[w] := active
13
                end if
14
                unusedEdges.remove(vw)
            end if
16
       end while
17
```


Invariant:

No edges from *done* to *unseen* vertices

► Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on (and defines!) specific traversal-based graph algorithms

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
        // (di)graph G = (V, E) and start vertices S \subseteq V
        C[0..n) := unseen // Color array, all cells initialized to unseen
 3
        for s \in S do C[s] := active end for
        unusedEdges := E
        while \exists v : C[v] == active
             v := \text{nextActiveVertex}() // Freedom 1: Which frontier vertex?
 7
             if \nexists vw \in unusedEdges // no more edges from <math>v \leadsto done \ with \ v
 8
                 C[v] := done
(9)
             else
10
                  w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
(11)
                 if C[w] == unseen
12
                      C[w] := active
13
                 end if
14
                 unusedEdges.remove(vw)
             end if
 16
        end while
17
```


Invariant:

No edges from \emph{done} to \emph{unseen} vertices

► Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on (and defines!) specific traversal-based graph algorithms

Generic Reachability

► Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from *S* in *done*

Generic Reachability

- ► Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from *S* in *done*
- ► Invariant:
 - 1. No edges from done to unseen vertices
 - **2.** For every *done* or *active* vertex v, there exists a path from $s \in S$ to v.

Generic Reachability

► Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from *S* in *done*

► Invariant:

- 1. No edges from done to unseen vertices
- **2.** For every *done* or *active* vertex v, there exists a path from $s \in S$ to v.

→ in final state:

- ▶ $v \in done \implies path from S \implies reachable from S$
- v ∈ unseen ~ not reachable from done ⊇ S ~ not reachable from S

 (assume met. then s ~ > v Rosel where on path that is variety has

 done were whose b (1)

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test $\exists v : C[v] = active$, nextActiveVertex()
 - ► test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - ► unusedEdges.remove(vw)

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test $\exists v : C[v] = active$, nextActiveVertex()
 - ▶ test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - ► unusedEdges.remove(vw)
- ► Typical solution maintains **bag** "frontier" of pairs (v, i) where $v \in V$ and i is an **iterator** in adj[v]

- unusedEdges represented implicitly: edge used iff previously returned by i
 - \rightsquigarrow don't need unusedEdges.remove(vw)

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test $\exists v : C[v] = active$, nextActiveVertex()
 - ▶ test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - ► unusedEdges.remove(vw)
- ▶ Typical solution maintains **bag** "frontier" of pairs (v, i) where $v \in V$ and i is an **iterator** in adj[v]
 - unusedEdges represented implicitly: edge used iff previously returned by i
 don't need unusedEdges.remove(vw)
 - ▶ Implement $\exists v : C[v] = active \text{ via } frontier.\text{isEmpty}()$
 - ▶ Implement $\exists vw \in unusedEdges \ via \ i.hasNext() \ assuming \ (v,i) \in frontier$
 - ► Implement nextUnusedEdge(v) via i.next() assuming (v, i) \in frontier
 - \rightarrow all operations apart from <u>nextActiveVertex()</u> in O(1) time
 - \rightsquigarrow *frontier* requires O(n) extra space

9.4 BFS and DFS

Breadth-First Search

► Maintain *frontier* in a **queue** (FIFO: first in, first out)

Breadth-First Search

► Maintain *frontier* in a **queue** (FIFO: first in, first out)

distance (V, S) = min distance (V, S) seS || Hedys fewest edges length of shortest path from S path from s & V

► Invariant:

- 1. No edges from done to unseen vertices
- 2. All *done* or *active* vertices are reached via a **shortest path** from *S*
- **3.** Vertices enter and leave *frontier* in order of increasing distance from *S*

→ in final state, we reach all reachable vertices via shortest paths

Proof of BFS Invariant (corrected version)

(1) follows from the generic proof for tricolor traversal abbreviate $S(v) = \min_{s \in S} distance_{G}(s, v)$

IB: (2) only seS are active or done, we reach s via path [5] (lusth 6)

(3) only ses have entired frontier so far, there are minimal wit. S IH: Invariant is fulfilled up to now

IS: consider next active vertex v.

- (i) v has no more would edges. => mark v as done
 - (2) v only changes color => still holds by IH
 - (3) by IH , v entered fromther at correct time & guene treeps order => (3) still holds
- (ii) v has another edge vw. We further distinguish:

(ii-a) w is active or done => no changes => invariant stell holds

(ii-b) w is unseen = s enqueue w and make it active by IH, we reached v by shorked path of S(v) edges and any node a with S(a) < S(v) is done (since before v) = S(w) = S(v) + 1 and we reach w via a shorked path = S(2) ~

If remains to show that any \times with S(x) = S(v) is active or dove by now; then adding w to Growher now is according to sorted order by S.

Suppose the path to \times goes via $w: s \rightarrow w \rightarrow x$ then S(u) < S(v) and $w: s \rightarrow w \rightarrow x$ then S(u) < S(v) and $w: s \rightarrow w \rightarrow x$ then S(u) < S(v) and $w: s \rightarrow w \rightarrow x$ then S(u) < S(v) and $w: s \rightarrow w \rightarrow x$ then S(u) < S(v) and $w: s \rightarrow w \rightarrow x$ then S(u) < S(v) and $w: s \rightarrow w \rightarrow x$ then S(u) < S(v) in frontier by S(v) > S(w) in frontier by S(v) > S(w) their addition before $w: s \rightarrow w \rightarrow x$ that have S(v) > S(w) in frontier by S(v) > S(w) their addition before $w: s \rightarrow w \rightarrow x$ then S(v) > S(w) in frontier by S(v) > S(w) their addition before $w: s \rightarrow w \rightarrow x$ that have S(v) > S(w) in frontier by S(v) > S(w) the invariant of that have S(v) > S(w).

= (3) \checkmark

Breadth-First Search

► Maintain *frontier* in a **queue** (FIFO: first in, first out)

Invariant:

1. No edges from done to unseen vertices

- fewest edges
- 2. All *done* or *active* vertices are reached via a **shortest path** from *S*
- **3.** Vertices enter and leave *frontier* in order of increasing distance from *S*

- → in final state, we reach all reachable vertices via shortest paths
- ▶ To preserve that knowledge, we collect extra information during traversal
 - ► parent[v] stores predecessor on path from S via which v was reached

 thu when v was

 distFrom S[v] stores the length of this path
 - ▶ *distFromS*[v] stores the length of this path

Breadth-First Search – Code

```
1 procedure bfs(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // New array initialized to all unseen
3
       frontier := new Queue;
       parent[0..n) := NOT VISITED; distFromS[0..n) := \infty
5
       for s \in S
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.peek()
11
           if \neg i.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

Breadth-First Search – Code

```
1 procedure bfs(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // New array initialized to all unseen
3
      frontier := new Queue;
       parent[0..n) := NOT_VISITED; distFromS[0..n) := \infty
5
       for s \in S
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.peek()
11
           if \neg i.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

- parent stores a shortest-path tree/forest
- Can retrieve shortest path to v from some vertex s ∈ S
 (backwards) by following parent[v] iteratively

Breadth-First Search – Code

```
1 procedure bfs(G, S)
       //(di)graph G = (V, E) and start vertices S \subseteq V
       C[0..n) := unseen // New array initialized to all unseen
3
      frontier := new Queue;
       parent[0..n) := NOT_VISITED; distFromS[0..n) := \infty
5
       for s \in S
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.peek()
11
           if \neg i.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

- parent stores a shortest-path tree/forest
- can retrieve shortest path to v from some vertex s ∈ S
 (backwards) by following parent[v] iteratively
- ▶ running time $\Theta(n + m)$
- ▶ extra space $\Theta(n)$

Depth-First Search

- ► Maintain *frontier* in a **stack** (LIFO: last in, first out)
 - ightharpoonup only consider $S = \{s\}$
 - usual mode of operation: call dfs(v) for all unseen v, for v = 0, ..., n-1

Depth-First Search

- ► Maintain *frontier* in a **stack** (LIFO: last in, first out)
 - ightharpoonup only consider $S = \{s\}$
 - ▶ usual mode of operation: call dfs(v) for all *unseen* v, for v = 0, ..., n-1

► Invariant:

- 1. No edges from done to unseen vertices
- 2. All *done* or *active* vertices are reached via a path from s

Depth-First Search – Code

```
procedure dfsTraversal(G)
       C[0..n) := unseen
       for v := 0, ..., n-1
           if C[v] == unseen
               dfs(G, v)
  procedure dfs(G, s)
      frontier := new Stack;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.top()
11
           if \neg i.hasNext() // v has no unused edge
12
               C[v] := done; frontier.pop(); postorderVisit(v)
13
           else
14
               w := i.next(); visitEdge(vw)
15
               if C[w] == unseen
16
                   preorderVisit(w)
17
                   C[w] := active; frontier.push((w, G.adj[w].iterator()))
18
               end if
19
           end if
20
       end while
21
```

- define *hooks* to implement further operations
 - ▶ preorder: visit v when made *active* (start of T(v))
 - ▶ postorder: visit v when marked *done* (end of T(v))
 - visitEdge: do something for every edge
- ► if needed, can store DFS forest via *parent* array

Depth-First Search – Code

```
procedure dfsTraversal(G)
       C[0..n) := unseen
       for v := 0, ..., n-1
3
           if C[v] == unseen
               dfs(G, v)
  procedure dfs(G, s)
      frontier := new Stack;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
9
       while ¬frontier.isEmpty()
10
           (v,i) := frontier.top()
11
           if \neg i.hasNext() // v has no unused edge
12
               C[v] := done; frontier.pop(); postorderVisit(v)
13
           else
14
               w := i.next(); visitEdge(vw)
15
               if C[w] == unseen
16
                   preorderVisit(w)
17
                   C[w] := active; frontier.push((w, G.adj[w].iterator()))
18
               end if
19
           end if
20
       end while
21
```

- define *hooks* to implement further operations
 - ▶ preorder: visit v when made *active* (start of T(v))
 - ▶ postorder: visit v when marked *done* (end of T(v))
 - visitEdge: do something for every edge
- ► if needed, can store DFS forest via *parent* array
- ▶ running time $\Theta(n + m)$
- ▶ extra space $\Theta(n)$

Simple DFS Application: Connected Components

- ► In an <u>undirected</u> graph, find all *connected components*.
 - ▶ **Given:** simple undirected G = (V, E)
 - ▶ **Goal:** assign component ids CC[0..n), s.t. CC[v] = CC[u] iff \exists path from v to u

Simple DFS Application: Connected Components

- ► In an undirected graph, find all *connected components*.
 - ▶ **Given:** simple undirected G = (V, E)
 - ▶ **Goal:** assign component ids CC[0..n), s.t. CC[v] = CC[u] iff \exists path from v to u

```
procedure connectedComponents(G):
      // undirected graph G = (V, E) with V = [0..n)
       C[0..n) := unseen
      CC[0..n) := NONE
      id := 0
      for v := 0, ..., n-1
          if C[v] == unseen
              dfs(G, v)
8
              id := id + 1
9
       return CC
10
11
12 procedure preorderVisit(v):
       CC[v] := id
13
```

```
1 // same as before
2 procedure dfs(G, s)
      frontier := new Stack;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
      while ¬frontier.isEmpty()
           (v,i) := frontier.top()
           if ¬i.hasNext() // v has no unused edge
               C[v] := done; frontier.pop()
               postorderVisit(v)
           else
10
               w := i.next(); visitEdge(vw)
11
               if C[w] == unseen
12
                    preorderVisit(w)
13
                    C[w] := active
14
                   frontier.push((w, G.adj[w].iterator()))
15
               end if
16
           end if
17
      end while
18
```

Dijkstra's Algorithm & Prim's Algorithm

- ▶ On edge-weighted graphs, we can use tricolor traversal with a *priority queue* as *frontier*
- Dijkstra's Algorithm for shortest paths from s in digraphs with weakly positive edge weights
 - ightharpoonup priority of vertex v = length of shortest path known so far from s to v
- ▶ Prim's Algorithm for finding a minimum spanning tree
 - ightharpoonup priority of vertex v = weight of cheapest edge connecting v to current tree
- → Detailed discussion in Unit 11

9.5 Advanced Uses of DFS

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

DFS forest

stack over time

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

DFS forest

stack over time

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from s

input graph G

1 2

DFS forest

stack over time

 \leadsto Each vertex v spends time interval T(v) as *active* vertex

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from s

DFS forest

stack over time

- \rightarrow Each vertex v spends time interval T(v) as active vertex
- **1.** *frontier* is stack \rightsquigarrow $\{T(v): v \in V\}$ forms *laminar set family*: ("disjoint or contained") either $T(v) \cap T(w) = \emptyset$ or $T(v) \subseteq T(w)$ or $T(v) \supseteq T(w)$

► Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

DFS forest

stack over time

- \rightarrow Each vertex v spends time interval T(v) as active vertex
- **1.** *frontier* is stack \rightsquigarrow $\{T(v): v \in V\}$ forms *laminar set family*: ("disjoint or contained") either $T(v) \cap T(w) = \emptyset$ or $T(v) \subseteq T(w)$ or $T(v) \supseteq T(w)$
- **2. Parenthesis Theorem:** $T(v) \supseteq T(w)$ **iff** v is ancestor of w in DFS tree
 - $'\Rightarrow'$ during T(v), all discovered vertices become descendants of v
 - $' \Leftarrow ' T(v)$ covers v's entire subtree, which contains w's subtree

Properties of DFS – Unseen-Path Theorem

▶ **Unseen-Path Theorem:** In a DFS forest of a (di)graph *G*, *w* is a descendant of *v* **iff** at the time of preorderVisit(v), there is a path from v to wusing only *unseen* vertices. \ et the from v was made red

Properties of DFS – Unseen-Path Theorem

▶ Unseen-Path Theorem: In a DFS forest of a (di)graph G, w is a descendant of w iff at the time of preorderVisit(v), there is a path from v to w using only *unseen* vertices.

'⇒' If w is a descendant of v, $T(w) \subseteq T(v)$ by the Parenthesis Theorem. Hence the path from v to w in the DFS tree consists (at time of preorderVisit(v)) of solely *unseen* vertices.

Properties of DFS – Unseen-Path Theorem

- ▶ Unseen-Path Theorem: In a DFS forest of a (di)graph G, w is a descendant of v iff at the time of preorderVisit(v), there is a path from v to w using only *unseen* vertices.
 - '⇒' If w is a descendant of v, $T(w) \subseteq T(v)$ by the Parenthesis Theorem. Hence the path from v to w in the DFS tree consists (at time of preorderVisit(v)) of solely *unseen* vertices.
 - ' \Leftarrow' Suppose towards a contradiction that there was a w with an unseen path $p[0.\ell]$ with p[0] = v and $p[\ell] = w$, but w is not a descendant of v. W.l.o.g. let w be a first such vertex, i.e., $p[0], \ldots, p[\ell-1] = u$ are descendants of v. So $T(u) \subset T(v)$ (*).

Upon processing u, we will discover edge uw, so whether or not w is already *done* at this point, w will be marked *done* before u. Hence $\max T(w) \le \max T(u)$.

With (*), we obtain $\min T(v) \le \min T(u) \le \max T(w) \le \max T(u)$, so by laminarity,

 $T(w) \subset T(u) \subset T(v)$ and w is a descendant of v **4**.

Topological Sorting & Cycle Detection

- ► **Application:** Given a set of <u>tasks</u> with precedence constraints of the form "*a* must be done before *b*", can we find a legal ordering for all tasks?
 - → Model as directed graph!
 - ► tasks are the vertices *V*
 - ightharpoonup add an edge (a, b) when a must be done before b

Topological Sorting & Cycle Detection

- ► **Application:** Given a set of tasks with precedence constraints of the form "a must be done before b", can we find a legal ordering for all tasks?
 - → Model as directed graph!
 - ► tasks are the vertices *V*
 - ightharpoonup add an edge (a, b) when a must be done before b
- ▶ **Definition:** R[0..n) is a topological (order) ranking of digraph G = (V, E) if $\forall (u, v) \in E : R[u] < R[v]$
- ► Lemma DAG iff topo:

A directed graph *G* has a topological ranking **iff** it does not contain a directed cycle.

Topological Sorting & Cycle Detection

- ► **Application:** Given a set of tasks with precedence constraints of the form "*a* must be done before *b*", can we find a legal ordering for all tasks?
 - → Model as directed graph!
 - ► tasks are the vertices *V*
 - ightharpoonup add an edge (a, b) when a must be done before b
- ▶ **Definition:** R[0..n) is a *topological (order) ranking* of digraph G = (V, E) if $\forall (u, v) \in E : R[u] < R[v]$
- ► Lemma DAG iff topo:

A directed graph *G* has a topological ranking **iff** it does not contain a directed cycle.

- ► Topological Sorting
 - ▶ **Given:** simple digraph G = (V, E)
 - ▶ **Goal:** Compute topological ranking of vertices R[0..n) or output a directed cycle in G.
- ► Amazingly, can do all with one pass of DFS!

DFS Edge Types

input digraph G

DFS Edge Types

input digraph G

DFS forest

stack over time

DFS Edge Types

DFS forest

stack over time

ightharpoonup During DFS traversal, an edge vw has one of these 4 types:

example:

1. tree edge: $\longrightarrow w \in unseen \rightsquigarrow vw$ part of DFS forest.

(0,1), (0,2), (2,3)

2. back edges: --> $w \in active$; \rightsquigarrow w points to ancestor of v.

(3,0)

3. forward edges*: $w \in done \land w$ is descendant of v in DFS tree.

(0,3)

4. cross edges*: ---> $w \in done \land w$ is not descendant of v.

(3,0)

*only possible in <u>directed</u> graphs

Cycle Detection

If *G* contains a directed cycle, DFS will find a directed cycle:

- ▶ any back edge implies a cycle:
 - ▶ DFS visits an edge (v, w) where $w \in active$, w is already on the stack
 - \leadsto DFS tree contains path $w \leadsto v$ and we have edge $v \to w$.

Cycle Detection

If *G* contains a directed cycle, DFS will find a directed cycle:

- any back edge implies a cycle:
 - ▶ DFS visits an edge (v, w) where $w \in active$, w is already on the stack
 - \rightsquigarrow DFS tree contains path $w \rightsquigarrow v$ and we have edge $v \rightarrow w$.
- ightharpoonup conversely any cycle C[0..k] once reached must have some back edge or cross edge (tree and forward edges go from smaller to larger preorder index)
 - cannot be a cross edge since cycle is strongly connected all cycle vertices must be descendants of first reached cycle vertex
 - → cycle contributes a back edge

DFS Postorder Implementation

```
procedure dfsPostorder(G):
       C[0..n) := unseen
       P[0..n) := NONE; r := 0
       parent[0..n) := NONE
      cycle := NONE
       for v := 0, ..., n-1
          if C[v] == unseen
7
               dfs(G, v)
       return (P, cycle)
9
10
  procedure postorderVisit(v):
       P[v] := r; r := r + 1
13
14 procedure visitEdge(vw):
       if C[w] == active
15
           if cycle ≠ NONE return
16
           while v \neq w
17
               cycle.append(v)
18
               v := parent[v]
19
           cycle.append(v)
20
```

```
1 // dfs is as in CC but with parent
2 procedure dfs(G, s)
      frontier := new Stack;
       parent[s] := NONE;
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
       while ¬frontier.isEmpty()
           (v, i) := frontier.top()
7
           if \neg i.hasNext() // v has no unused edge
                C[v] := done; frontier.pop()
                postorderVisit(v)
10
           else
11
                w := i.next() // Advance i in adj[v]
12
                visitEdge(vw)
13
                if C[w] == unseen
14
                    parent[w] := v;
15
                    preorderVisit(w)
16
                    C[w] := active; frontier.push((w, G.adj[w].iterator()))
17
                end if
18
           end if
19
       end while
20
```

DFS Postorder & Topological Sort

▶ **DFS Postorder**: The DFS <u>postorder numbers</u> is a numbering P[0..n) of V such that P[v] = r iff exactly r vertices reached state *done* before v in a DFS.

DFS Postorder & Topological Sort

- ▶ **DFS Postorder**: The DFS postorder numbers is a numbering P[0..n) of V such that P[v] = r iff exactly r vertices reached state *done* before v in a DFS.
- Lemma rev postorder:

 Let G be a simple, connected \overline{DAG} and R[0..n) a reverse \overline{DFS} postorder of G, i. e., R[v] = n 1 P[v] for a DFS postorder P[0..n). Then R is a topological ranking of G.
- ▶ **Invariant:** If $v \in done$ and $(v, w) \in E$ then $w \in done$ and R[v] < R[w].
 - initially true ($done = \emptyset$)
 - ▶ upon postorderVisit(v), all outgoing edges vw lead to $w \in done$ (Parenthesis Theorem)

Topological Sorting & Cycle Detection – Summary

- ▶ Putting everything together we obtain topological sorting
 - can produce either the ranking or the sequence of vertices in topological order, whatever is more convenient

```
procedure topologicalRanking(P):
                                                procedure topologicalSort(P):
      (P[0..n), cycle) := dfsPostorder(G)
                                                      (P[0..n), cycle) := dfsPostorder(G)
      if cycle ≠ NULL
                                                      if c \neq NULL
3
         return NOT A DAG
                                                          return NOT A DAG
     R[0..n) := NONE
                                                      S[0..n) := NONE
     for v := 0, ..., n-1
                                                     for v := 0, ..., n-1
         R[v] = n - 1 - P[v]
                                                          S[n-1-P[v]] := v
      return R
                                                      return S
```

- \triangleright $\Theta(n+m)$ time
- \triangleright $\Theta(n)$ extra space

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

Euler's Theorem:

Euler walk exists iff *G* connected and 0 or 2 vertices have odd degree.

'⇒' trivial (need to enter and exit intermediate vertices equally often)

 $' \Leftarrow '$ Following algorithm *constructs* Euler walk under this assumption

Euler Cycles - Hierholzer's Algorithm

- ▶ use an *edge-centric DFS*
 - ► We mark *edges* (not vertices)
 - \rightsquigarrow stack = edge-simple walk
 - ► We remember iterator *i* globally per *v* to resume traversal

```
procedure edgeDFS(s):
       frontier := new Stack;
      frontier.push(s)
       while ¬frontier.isEmpty()
            v := frontier.top()
5
            if \neg i.hasNext() // v has no unused edge
                frontier.pop()
                if ¬frontier.isEmpty()
                    // assign edge leading here largest free index
                    euler[j] := (frontier.top(), v); j := j - 1
10
                end if
11
           else
12
                w := i.next()
13
                if \neg visited[v, w]
14
                    visited[v,w] := true
                    visited[w,v] := true
16
                    frontier.push(w)
17
                end if
18
           end if
19
       end while
20
```

Clicker Question

Mark all correct statements about a dfsTraversal (Slide 21) of a **DAG** *G*:

A Listing vertices in the order they are marked *done* is a topological sorting of *G*.

- B Listing vertices in the reverse order they are marked *done* is a topological sorting of *G*.
- C If v is marked *done* before vertex w, there is a path $v \rightsquigarrow w$.
- D If v is marked *done* before vertex w, there is a path $w \rightsquigarrow v$.
- E If v is marked *done* before vertex w, there cannot be a path $v \rightsquigarrow w$.
- F If v is marked *done* before vertex w, there cannot be a path $w \rightsquigarrow v$.

Clicker Question

Mark all correct statements about a dfsTraversal (Slide 21) of a DAG G:

- A Listing vertices in the order they are marked done is a topological sorting of C.
- B Listing vertices in the reverse order they are marked *done* is a topological sorting of G.
- (C) If v is marked done before vertex w, there is a path v -- w
- D) If v is marked done before vertex w, there is a path w -- v
- E If v is marked done before vertex w, there cannot be a path v --- w
- F If v is marked *done* before vertex w, there cannot be a path $w \rightsquigarrow v$.

→ sli.do/cs566

- ► **Given:** digraph G = (V, E)
- ▶ **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u

- ▶ **Given:** digraph G = (V, E)
- ► **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u strongly connected component
- **Component DAG** G^{SCC} : contract SCCs intro single vertices $V(G^{SCC}) = \{C_1, \dots, C_k\}$ with $C_1 \dot{\cup} \dots \dot{\cup} C_k = V$; name by smallest vertex s.t. $i \leq j$ iff min $C_i \leq \min C_j$
 - ► can't have cycles (maximality of SCC)
 - \rightarrow component DAG has a topological order $R^{SCC}[1..k]$

- ► **Given:** digraph G = (V, E)
- ▶ **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u strongly connected component
- ► Component DAG G^{SCC} : contract SCCs intro single vertices $V(G^{SCC}) = \{C_1, \dots, C_k\}$ with $C_1 \dot{\cup} \dots \dot{\cup} C_k = V$; name by smallest vertex s.t. $i \leq j$ iff min $C_i \leq \min C_j$
 - ► can't have cycles (maximality of SCC)
 - \rightarrow component DAG has a topological order $R^{SCC}[1..k]$

If we call dfs on any v in the last SCC C, it will discover all vertices in C, and only those! (any edges between components lead $into\ C$ by topological order)

And we can iterate this backwards through any topological order to get all SCCs!

- ▶ **Given:** digraph G = (V, E)
- ▶ **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u strongly connected component
- ► Component DAG G^{SCC} : contract SCCs intro single vertices $V(G^{SCC}) = \{C_1, \dots, C_k\}$ with $C_1 \dot{\cup} \dots \dot{\cup} C_k = V$; name by smallest vertex s.t. $i \leq j$ iff min $C_i \leq \min C_j$
 - can't have cycles (\$\forall \text{ maximality of SCC})
 - \rightarrow component DAG has a topological order $R^{SCC}[1..k]$

If we call dfs on any v in the last SCC C, it will discover all vertices in C, and only those! (any edges between components lead $into\ C$ by topological order)

And we can iterate this backwards through any topological order to get all SCCs!

Can we efficiently find the topological order of *G*^{SCC}? *Without knowing the components to start with?*?

Amazingly, yes.

Component Graph DFS

ightharpoonup Suppose we run dfsTraversal on G.

Component Graph DFS

- ► Suppose we run dfsTraversal on *G*.
 - \rightarrow We can extend time intervals to SCCs: $T(C_i) := \bigcup_{v \in C_i} T(v)$
 - \rightarrow $T(C_i) = T(v_i)$ for $v_i \in C_i$ the first vertex to be explored in a DFS on G (by Unseen Path & Parenthesis Thms)
- \rightarrow DFS on G produces same $T(C_i)$ (up to time scaling) as DFS on G^{SCC} !
- \leadsto reverse DFS postorder on G gives same relative order to v_1, \ldots, v_k as reverse DFS postorder on G^{SCC} gives as relative order to C_1, \ldots, C_k

Component Graph DFS

- ► Suppose we run dfsTraversal on *G*.
 - \rightsquigarrow We can extend time intervals to SCCs: $T(C_i) := \bigcup_{v \in C_i} T(v)$
 - \rightarrow $T(C_i) = T(v_i)$ for $v_i \in C_i$ the first vertex to be explored in a DFS on G (by Unseen Path & Parenthesis Thms)
- \rightarrow DFS on G produces same $T(C_i)$ (up to time scaling) as DFS on G^{SCC} !
- \leadsto reverse DFS postorder on G gives same relative order to v_1, \ldots, v_k as reverse DFS postorder on G^{SCC} gives as relative order to C_1, \ldots, C_k

We need **reverse** topological order on G^{SCC}, e.g., *reversed* reverse DFS postorder

- ▶ If we had the actual reverse DFS postorder on G^{SCC}, could just reverse again!
- ▶ But we only have reverse DFS postorder S[0..n) on G!
- \uparrow Reversing here would change v_i , i. e., which vertices of an SCC we see first

ightharpoonup Recall: Want reverse(topologicalRanking(G^{SCC}))

- ightharpoonup Recall: Want reverse(topologicalRanking(G^{SCC}))
- ► Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$ Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T
- For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)

 If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)

- $\blacktriangleright \ \, \mathbf{Recall:} \ \, \mathbf{Want} \ \, \mathbf{reverse} \big(\mathbf{topologicalRanking}(G^{\mathrm{SCC}}) \big)$
- ► Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$ Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T
- For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)

 If we reverse iteration order in disTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)
- ▶ Observation: $(G^T)^{SCC} = (G^{SCC})^T$
 - strong components not affected by edge reversals
- \blacktriangleright Want: reverse (topologicalRanking (G^{SCC})) (any ranking works, need not be reverse DFS postorder)

- ▶ **Recall:** Want reverse(topologicalRanking(G^{SCC}))
- ► Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$ Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T
- For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)

 If we reverse iteration order in disTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)
- ▶ Observation: $(G^T)^{SCC} = (G^{SCC})^T$
 - strong components not affected by edge reversals
- \blacktriangleright Want: reverse (topologicalRanking(G^{SCC})) (any ranking works, need not be reverse DFS postorder)
- \leadsto Get it from: topologicalRanking $((G^{SCC})^T)$ = topologicalRanking $((G^T)^{SCC})$

- ightharpoonup Recall: Want reverse(topologicalRanking(G^{SCC}))
- ► Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$ Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T
- For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)

 If we reverse iteration order in disTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)
- ▶ Observation: $(G^T)^{SCC} = (G^{SCC})^T$
 - strong components not affected by edge reversals
- \blacktriangleright Want: reverse (topologicalRanking(G^{SCC})) (any ranking works, need not be reverse DFS postorder)
- \leadsto Get it from: topologicalRanking $((G^{SCC})^T)$ = topologicalRanking $((G^T)^{SCC})$
- \rightarrow Get that as induced ranking on v_1, \ldots, v_k from reverse dfsPostorder(G^T)

```
procedure strongComponents(G):
      // directed graph G = (V, E) with V = [0..n)
       G^T = (V, \{wv : vw \in E\})
       P[0..n) := dfsPostorder(G^T) // postorder numbers
       for v \in V do S[P[v]] := v end for // postorder sequence
5
      // Rest like connectedComponents (with permuted vertices)
       C[0..n) := unseen
       SCC[0..n) := NONE
       id := 0
       for j := n - 1, ..., 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
               dfs(G, v)
13
               id := id + 1
14
       return SCC
15
16
  procedure preorderVisit(v):
       SCC[v] := id
```

```
procedure strongComponents(G):
      // directed graph G = (V, E) with V = [0..n)
       G^T = (V, \{wv : vw \in E\})
       P[0..n) := dfsPostorder(G^T) // postorder numbers
       for v \in V do S[P[v]] := v end for // postorder sequence
5
      // Rest like connectedComponents (with permuted vertices)
       C[0..n) := unseen
      SCC[0..n) := NONE
      id := 0
       for j := n - 1, ..., 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
               dfs(G, v)
13
               id := id + 1
14
       return SCC
15
16
   procedure preorderVisit(v):
       SCC[v] := id
```

correctness follows from our discussion

```
procedure strongComponents(G):
      // directed graph G = (V, E) with V = [0..n)
       G^T = (V, \{wv : vw \in E\})
       P[0..n) := dfsPostorder(G^T) // postorder numbers
       for v \in V do S[P[v]] := v end for // postorder sequence
5
      // Rest like connectedComponents (with permuted vertices)
       C[0..n) := unseen
      SCC[0..n) := NONE
      id := 0
       for j := n - 1, ..., 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
               dfs(G, v)
13
               id := id + 1
14
       return SCC
15
16
   procedure preorderVisit(v):
       SCC[v] := id
```

- correctness follows from our discussion
- ordering of SCCs follows reverse topological sort of G^{SCC}
 - some implementations reverse*G* for 2nd DFS, not 1st
 - output in (forward) topological order
 - but derivation more natural this way?

```
procedure strongComponents(G):
      // directed graph G = (V, E) with V = [0..n)
       G^T = (V, \{wv : vw \in E\})
       P[0..n) := dfsPostorder(G^T) // postorder numbers
       for v \in V do S[P[v]] := v end for // postorder sequence
5
      // Rest like connectedComponents (with permuted vertices)
       C[0..n) := unseen
      SCC[0..n) := NONE
      id := 0
       for j := n - 1, ..., 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
               dfs(G, v)
13
               id := id + 1
14
       return SCC
15
16
   procedure preorderVisit(v):
       SCC[v] := id
```

- correctness follows from our discussion
- ordering of SCCs follows reverse topological sort of G^{SCC}
 - some implementations reverse*G* for 2nd DFS, not 1st
 - output in (forward) topological order
 - but derivation more natural this way?
- ▶ as all our traversals: $\Theta(n+m)$ time,
 - $\Theta(n)$ extra space

9.6 Network flows

Clicker Question

Prior knowledge from linear optimization; check all apply.

A I've seen LPs in lectures before.

B I could model an application problem as (I)LP.

C I know algorithms for solving LPs.

D I know what weak and strong duality in LPs are.

E I could dualize an LP given to me.

F I know about the complexity of LPs and ILPs.

 $\left(\mathbf{G} \right)$ LPs for me only mean music on vinyl.

→ sli.do/cs566

- ▶ Water can flow through the pipes up to a flow <u>capacity limit</u> (up to c(e) liters per second, say).
- ► There's infinite water pressing into the source *s* and infinite drain capacity at the sink / target *t*
- ► At all other junctions, inflow = outflow (no leakage)
- → How much water can flow through the network?

- ▶ Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- ► There's infinite water pressing into the source *s* and infinite drain capacity at the sink / target *t*
- ► At all other junctions, inflow = outflow (no leakage)
- → How much water can flow through the network?

- ▶ Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- ► There's infinite water pressing into the source *s* and infinite drain capacity at the sink / target *t*
- ► At all other junctions, inflow = outflow (no leakage)
- → How much water can flow through the network?

- ▶ Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- ► There's infinite water pressing into the source *s* and infinite drain capacity at the sink / target *t*
- ► At all other junctions, inflow = outflow (no leakage)
- → How much water can flow through the network?

- ▶ Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- ► There's infinite water pressing into the source *s* and infinite drain capacity at the sink / target *t*
- ► At all other junctions, inflow = outflow (no leakage)
- → How much water can flow through the network?

Informally, imagine a network of water pipes.

- ▶ Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- ► There's infinite water pressing into the source *s* and infinite drain capacity at the sink / target *t*
- ► At all other junctions, inflow = outflow (no leakage)
- → How much water can flow through the network?

In this example:

- ▶ not more than 5+2+3=10 units of flow out of $\{0,2\}$ possible
- \rightarrow not more than 10 units out of *s* possible

Informally, imagine a network of water pipes.

- ▶ Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- ► There's infinite water pressing into the source *s* and infinite drain capacity at the sink / target *t*
- ► At all other junctions, inflow = outflow (no leakage)
- → How much water can flow through the network?

In this example:

- ▶ not more than 5+2+3=10 units of flow out of $\{0,2\}$ possible
- \rightsquigarrow not more than 10 units out of s possible
- → shown flow is maximal

Remainder of this unit: general version of above (+ efficient algorithms)

Networks and Flows – Definitions

ightharpoonup s-t-(flow) network:

- for notational convenience only
- ▶ **simple**, **directed**, **connected** graph G = (V, E), no antiparallel edges $(vw \in E \leadsto wv \notin E)$
- ▶ *edge capacities* $c: E \to \mathbb{R}_{>0}$
- ▶ distinguished vertices: *source* $s \in V$, target/*sink* $t \in V$

Networks and Flows - Definitions

- ► *s-t-*(*flow*) *network*: for notational convenience only
 - ▶ simple, directed, connected graph G = (V, E), no antiparallel edges $(vw \in E \leadsto wv \notin E)$
 - ▶ *edge capacities* $c: E \to \mathbb{R}_{>0}$
 - ▶ distinguished vertices: *source* $s \in V$, target/*sink* $t \in V$
- ► (network) flow (in G): $f: E \to \mathbb{R}_{>0}$
- ▶ flow *f* is *feasible* if it satisfies notational convenience: set f(vw) = c(vw) = 0 for $vw \notin E$
 - ▶ capacity constraints: $\forall v, w \in V : 0 \le f(vw) \le c(vw)$
 - flow conservation: $\forall v \in V \setminus \{s,t\} : \sum_{w \in V} f(w,v) = \sum_{w \in V} f(v,w)$

Networks and Flows – Definitions

- ► *s-t-*(*flow*) *network*: for notational convenience only
 - ▶ simple, directed, connected graph G = (V, E), no antiparallel edges $(vw \in E \leadsto wv \notin E)$
 - ▶ *edge capacities* $c : E \to \mathbb{R}_{\geq 0}$
 - ▶ distinguished vertices: *source* $s \in V$, target/*sink* $t \in V$
- ► (network) flow (in G): $f: E \to \mathbb{R}_{>0}$
- ▶ flow *f* is *feasible* if it satisfies notational convenience: set f(vw) = c(vw) = 0 for $vw \notin E$
 - capacity constraints: $\forall v, w \in V : 0 \le f(vw) \le c(vw)$
 - flow conservation: $\forall v \in V \setminus \{s,t\} : \sum_{w \in V} f(w,v) = \sum_{w \in V} f(v,w)$
- ▶ value |f| of flow f: $|f| = \sum_{v \in V} f(s, v) \sum_{v \in V} f(v, s)$

Max-Flow Problem

► Maximum-Flow Problem:

- **▶ Given:** *s-t*-flow network
- ▶ **Goal:** Find feasible flow f^* with maximum $|f^*|$ among all feasible flows

Max-Flow Problem

► Maximum-Flow Problem:

- ▶ **Given:** *s-t-*flow network
- ▶ **Goal:** Find feasible flow f^* with maximum $|f^*|$ among all feasible flows

▶ N vs R

as we will see

- ► We focus on integral capacities here ✓ can restrict ourselves to integral flows
- but: ideally want algorithms that work with arbitrary real numbers, too

Multiple Sources & Sinks, Antiparallel Edges

- ▶ Some of the restrictions can be generalized easily.
- ► We forbid **loops** and **antiparallel** edges.

- ► The presented algorithms actually work fine with both!
- but proofs are cleaner to write without them
- also: can always remove loops and (anti)parallel edges by adding a new vertex in the middle of the edge
- \rightsquigarrow same maximum |f|

Multiple Sources & Sinks, Antiparallel Edges

- ► Some of the restrictions can be generalized easily.
- ► We forbid **loops** and **antiparallel** edges.
 - ► The presented algorithms actually work fine with both!
 - but proofs are cleaner to write without them
 - also: can always remove loops and (anti)parallel edges by adding a new vertex in the middle of the edge
 - \rightarrow same maximum | f|
- ► We only allow a single source and a single sink
 - ▶ can add a "supersource" and "supersink" with capacity-∞ edges to all sources resp. sinks

▶ Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems

► Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems

1. Disjoint Paths

- ▶ **Given:** Unweighted (di)graph G = (V, E), vertices $s, t \in V$
- ▶ **Goal:** How many edge-disjoint paths are there from *s* to *t*?

► Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems

1. Disjoint Paths

- ▶ **Given:** Unweighted (di)graph G = (V, E), vertices $s, t \in V$
- ▶ **Goal:** How many edge-disjoint paths are there from *s* to *t*?

2. Assignment Problem, Maximum Bipartite Matching

- **▶ Given:** workers $W = \{w_1, \dots, w_k\}$ tasks $T = \{t_1, \dots, t_\ell\}$, qualified-for relation $Q \subseteq W \times T$
- ▶ **Goal:** Assignment $a: W \to T \cup \{\bot\}$ of workers to tasks such that
 - workers are qualified: $\forall w \in W : a(w) \neq \bot \implies (w, a(w)) \in Q$
 - \triangleright |a(W)|, the number of tasks assigned, is maximized

► Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems

1. Disjoint Paths

- ▶ **Given:** Unweighted (di)graph G = (V, E), vertices $s, t \in V$
- ► **Goal:** How many edge-disjoint paths are there from *s* to *t*?

2. Assignment Problem, Maximum Bipartite Matching

- ▶ **Given:** workers $W = \{w_1, \dots, w_k\}$ tasks $T = \{t_1, \dots, t_\ell\}$, qualified-for relation $Q \subseteq W \times T$
- ▶ **Goal:** Assignment $a: W \to T \cup \{\bot\}$ of workers to tasks such that
 - workers are qualified: $\forall w \in W : a(w) \neq \bot \implies (w, a(w)) \in Q$
 - \blacktriangleright |a(W)|, the number of tasks assigned, is maximized
- ▶ Both problems can be solved by (in both cases, 1. and 3. are very efficient)
 - 1. constructing a specific flow network from their input data
 - **2.** computing a maximum flow in that network
 - 3. "reading off" a solution for the original problem from the max flow

9.7 The Ford-Fulkerson Method

▶ **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

1. Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$

Problem: Cannot undo mistakes. Here: shouldn't have put so much flow on $(1,2) \dots$

▶ **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

- 1. Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- **2.** Push 3 units of flow over $s \rightarrow 1 \rightarrow 4 \rightarrow t$

Problem: Cannot undo mistakes. Here: shouldn't have put so much flow on $(1,2)\dots$

▶ **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

- **1.** Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- 2. Push 3 units of flow over $s \to 1 \to 4 \to t$
- 3. Push 2 units of flow over $s \rightarrow 2 \rightarrow 4 \rightarrow t$

Problem: Cannot undo mistakes. Here: shouldn't have put so much flow on $(1, 2) \dots$

► **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

- **1.** Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- **2.** Push 3 units of flow over $s \rightarrow 1 \rightarrow 4 \rightarrow t$
- 3. Push 2 units of flow over $s \rightarrow 2 \rightarrow 4 \rightarrow t$
- \rightsquigarrow Every *s-t* path now has a saturated edge.

Problem: Cannot undo mistakes. Here: shouldn't have put so much flow on $(1,2)\dots$

▶ **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

- 1. Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- 2. Push 3 units of flow over $s \rightarrow 1 \rightarrow 4 \rightarrow t$
- 3. Push 2 units of flow over $s \rightarrow 2 \rightarrow 4 \rightarrow t$
- \rightsquigarrow Every s-t path now has a saturated edge.
- ♠ But: resulting flow is not optimal!

Problem: Cannot undo mistakes. Here: shouldn't have put so much flow on $(1, 2) \dots$

► Goal: Allow undoing flow (without backtracking)

- ► Goal: Allow undoing flow (without backtracking)
- ▶ Residual network G_f : given network G = (V, E) and feasible flow f

Residual network
$$G_f$$
: given network $G = (V, E)$ and reasible flow f

$$C_f = (V, E_f) \text{ with capacities } c_f(vw) = \begin{cases} c(vw) - f(vw) & vw \in E \text{ // add flow} \\ f(wv) & wv \in E \text{ // revert flow} \\ 0 & \text{else} \end{cases}$$

- ► Goal: Allow undoing flow (without backtracking)
- ▶ Residual network G_f : given network G = (V, E) and feasible flow f

- ► Goal: Allow undoing flow (without backtracking)
- ▶ Residual network G_f : given network G = (V, E) and feasible flow f

- ► residual flow f': feasible flow in G_f f'(f+f')(vw) = f(vw) + f'(vw) f'(wv) f'(vw) = f(vw) + f'(vw) f'(wv) f'(vw) = f(vw) + f'(vw) f'(wv) f'(vw) = f(vw) + f'(vw) f'(wv)
- ▶ augmenting path p: s-t-path G_f particularly simple f'!

- ► Goal: Allow undoing flow (without backtracking)
- ▶ Residual network G_f : given network G = (V, E) and feasible flow f

$$\textbf{ } \textbf{ } \textbf{ } G_f = (V, E_f) \text{ with capacities } c_f(vw) = \begin{cases} c(vw) - f(vw) & vw \in E \text{ } // \text{ add flow} \\ f(wv) & wv \in E \text{ } // \text{ revert flow} \\ 0 & \text{else} \end{cases}$$

- ► residual flow f': feasible flow in G_f f'(f+f')(vw) = f(vw) + f'(vw) f'(wv) f'(f+f')(vw) = f(vw) + f'(vw) f'(wv)
- ▶ augmenting path p: s-t-path G_f particularly simple f'!

- ► **Goal:** Certificate for maximum flows
- $\underbrace{s\text{-}t\text{-}cut}_{S\text{-}t}(S,T) \text{: partition } S \dot{\cup} T = V, s \in S,$
 - net flow across cut: $f(S,T) = \sum_{i} \sum_{j} (f(v_i v_j))^{-1}$

$$f(S,T) = \sum_{v \in S} \sum_{w \in T} \left(f(vw) - f(wv) \right)$$

capacity of cut:

$$c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$$

- ► **Goal:** Certificate for maximum flows
- ► s-t-cut (S, T): partition $S \dot{\cup} T = V$, $s \in S$, $t \in T$
 - ► net flow across cut: $f(S,T) = \sum_{v \in S} \sum_{w \in T} (f(vw) - f(wv))$
 - capacity of cut:

$$c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$$

$$f(S,T) = 5 + 3 + 3 - 1 = 10$$

$$ightharpoonup c(S,T) = 5 + 3 + 3 = 11$$

- ► **Goal:** Certificate for maximum flows
- ► s-t-cut (S, T): partition $S \dot{\cup} T = V$, $s \in S$, $t \in T$
 - ► *net flow* across cut: $f(S,T) = \sum_{i} \sum_{v} (f(vw) - f(wv))$
 - capacity of cut:

$$c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$$

- f(S,T) = 5 + 3 + 3 1 = 10
- ► c(S,T) = 5 + 3 + 3 = 11net flow from S them to T

are equal by flow communities

- ► **Goal:** Certificate for maximum flows
- ► s-t-cut (S, T): partition $S \dot{\cup} T = V$, $s \in S$, $t \in T$
 - ► net flow across cut: $f(S,T) = \sum_{v \in S} \sum_{w \in T} (f(vw) - f(wv))$
 - ► *capacity* of cut:

$$c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$$

► Corollary:
$$|f| \le c(S, T)$$
 for any s - t -cut (S, T)

$$f(S,T) = 5 + 3 + 3 - 1 = 10$$

$$ightharpoonup c(S,T) = 5 + 3 + 3 = 11$$