Colles - Semaine 15

Série 1

Question de cours

Démontrer que les espaces vectoriels F et F^{\perp} sont supplémentaires dans E, et que $(F^{\perp})^{\perp} = F$.

Exercice

On considère l'application F définie sur \mathbb{R} par : $F(t) = \frac{e^t}{1 + e^t}$.

- 1. Montrer que F est la fonction de répartition d'une variable aléatoire à densité dont on déterminera une densité notée f.
- 2. Soit X une variable aléatoire de densité f. Montrer que X admet des moments d'ordre n pour tout entier naturel n.

On pose :
$$I = \int_0^{+\infty} \frac{t}{1 + e^t} dt$$
.

Calculer l'espérance $\mathbb{E}(X)$ de X ainsi que sa variance $\mathbb{V}(X)$ en fonction de I.

3. On considère une suite de v.a.r. $(X_n)_{n\geqslant 1}$ définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$, mutuellement indépendantes et de densité f.

Soit $(\overline{X}_n)_{n\geqslant 1}$ la suite de v.a.r. définie par :

$$\forall n \geqslant 1, \ \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- a) Montrer que la suite $(\overline{X}_n)_{n\geqslant 1}$ converge en probabilité vers 0, puis déterminer une suite de réels $(a_n)_{n\geqslant 1}$ telle que la suite $(a_n\,\overline{X}_n)_{n\geqslant 1}$ converge en loi vers une variable aléatoire suivant la loi normale centrée réduite.
- **b)** On pose $S_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$.

Construire à partir de S_n^2 un estimateur sans biais de I. Montrer que cet estimateur est convergent.

4. Proposer en Scilab une simulation de la loi associée à f.

Série 2

Question de cours

Déterminer le spectre de $A = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 2 & -1 \\ -2 & 0 & 0 \end{pmatrix}$.

Exercice

Soit $n \in \mathbb{N}^*$ et $E = \mathbb{R}_{2n+1}[X]$ l'espace vectoriel des polynômes à coefficients de degré inférieur ou égal à 2n+1.

On définit l'application f qui à tout $P \in E$ associe le polynôme f(P) défini par :

$$\forall x \in \mathbb{R}^*, \ f(P)(x) = x^{2n+1} P\left(\frac{1}{x}\right)$$

- 1. Montrer que f est un endomorphisme de E.
- 2. a) Déterminer $f \circ f$.
 - **b)** En déduire que f est diagonalisable (on pourra utiliser l'application $p = \frac{1}{2}(f + \mathrm{id}_E)$).
- 3. Soit φ l'application définie sur $E \times E$ par :

pour
$$P(X) = \sum_{k=0}^{2n+1} a_k X^k$$
 et $Q(X) = \sum_{k=0}^{2n+1} b_k X^k$, $\varphi(P, Q) = \sum_{k=0}^{2n+1} a_k b_k$

Montrer que φ est un produit scalaire sur E.

- 4. a) Montrer que f est un endomorphisme symétrique de (E,φ) .
 - b) En déduire que $Ker(f id_E)$ et $Ker(f + id_E)$ sont supplémentaires.
 - c) Déterminer la dimension de chaque sous-espace propre de f.
- 5. Les résultats précédents restent-ils valables si $E = \mathbb{R}_{2n}[X]$ et :

$$\forall x \in \mathbb{R}^*, \ f(P)(x) = x^{2n} P\left(\frac{1}{x}\right)$$

Série 3

Question de cours

Démontrer l'inégalité de Markov, puis celle de Bienaymé-Tchebychev.

Exercice

Soit α un réel strictement positif et $(Y_i)_{i \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes définies sur le même espace probabilisé $(\Omega, \mathscr{A}, \mathbb{P})$. On suppose de plus que pour tout i, Y_i suit la loi exponentielle de paramètre $i \alpha$.

Pour tout $n \in \mathbb{N}^*$, on pose $Z_n = \sum_{i=1}^n Y_i$ et on note g_n la densité de Z_n nulle sur \mathbb{R}_+ et continue sur \mathbb{R}_+^* .

- 1. a) Déterminer la fonction g_2 .
 - b) Montrer que pour $n \ge 1$ et x > 0, on a : $g_n(x) = n \alpha e^{-\alpha x} (1 e^{-\alpha x})^{n-1}$
 - c) Calculer l'espérance de Z_n et en donner un équivalent simple lorsque n tend vers l'infini.
 - d) Calculer la variance de Z_n et montrer qu'elle admet une limite finie lorsque n tend vers l'infini.
- 2. Pour $n \in \mathbb{N}^*$, on pose $U_n = \frac{1}{n} Z_n$.
 - a) Déterminer la fonction de répartition H_n de U_n .
 - b) Montrer que la suite (U_n) converge en loi et déterminer la loi limite.
 - c) Déterminer la limite quand n tend vers l'infini de $\mathbb{E}(U_n)$ et $\mathbb{V}(U_n)$.