• HW 2

I. Two sample data with equal variance case and without outliers

A. Normal Distribution

We want to generate $X_1, ..., X_m$ from $N(\mu_x, \sigma_x^2)$ and $Y_1, ..., Y_n$ from $N(\mu_y, \sigma_y^2)$, where $\mu_x = 0$, $\mu_y = \Delta$, $\sigma_x^2 = \sigma_y^2 = 1$.

- 1. For m=n=5 and $\varDelta=0$, generate one set of samples and perform
 - (1) Two sample t-test with the equal variance assumption
 - (2) Two sample t-test without the equal variance assumption
 - (3) Wilcoxon rank sum test
 - (4) Permutation test using t-statistics with the equal variance assumption (1000 replication)

- (5) Permutation test using t-statistics without the equal variance assumption (1000 replication)
- 2. Repeat the whole process 100 times and compute the type one errors
- 3. For m=n=5, and $\Delta=1$, repeat the whole process 100 times and compute the power
- 4. For m=n=5 and $\Delta=2$, repeat the whole process 100 times and compute the power
- 5. For m=n=5 and $\Delta=3$, repeat the whole process 100 times and compute the power
- 6. Draw a power graph where the x-axis represents the values of Δ and the y-axis does the power. Make your conclusion.

B. Normal + Gamma Distribution

Generate $X_1, ..., X_m$ from $N(\mu_x, \sigma_x^2)$ and $Y_1, ..., Y_n$ from $\Gamma(\alpha_y, \beta_y)$, where $\mu_y = \alpha_y \beta_y$, $\sigma_y^2 = \alpha_y \beta_y^2$. Assume $\mu_x = 2$, $\sigma_x^2 = 1$. If we set $\beta_y = 1/\sqrt{\alpha_y}$, then $\sigma_y^2 = 1$.

- 1. For m=n=5, choose the value of α_y so that $\Delta=0$. Perform the type one error analysis.
- 2. For m=n=5, choose the several values of α_y in a systematic manner for $\Delta>0$. Perform the type power analysis.
- 3. Make your conclusion.

C. Gamma Distributions

Generate $X_1, ..., X_m$ from $\Gamma(\alpha_x, \beta_x)$, where $\mu_x = \sqrt{\alpha_x}$, $\sigma_x^2 = 1$ and $Y_1, ..., Y_n$ from $\Gamma(\alpha_y, \beta_y)$, where $\mu_y = \sqrt{\alpha_y}$, $\sigma_y^2 = 1$.

- 1. For m=n=5, assume that $\alpha_x=\alpha_y=4$ so that $\Delta=0$. Perform the type one error analysis.
- 2. For m=n=5, fix $\alpha_x=4$ and choose the several values of α_y in a systematic manner for $\Delta>0$. Perform the type power analysis.
- 3. Make your conclusion.

II. Two sample data with equal variance case and with outliersAmong the generated X's, choose the largest value and add 5(?) to it. Perform the same analysis.

- A'. Normal Distribution
- B'. Normal + Gamma Distribution
- C'. Gamma Distributions

III. Two sample data with different variances and without outliers

A". Normal Distribution

B". Normal + Gamma Distribution

C". Gamma Distributions

IV. Two sample data with different variances and with outliers

A"". Normal Distribution

B"". Normal + Gamma Distribution

C"". Gamma Distributions