Lösning Veckotest 1, MA1439

Henrik Samuelsson

November 4, 2015

Uppgift 1.

Lös ekvationen 7x - 2(3x - 8) = 45

Lösning

$$7x - 2(3x - 8) = 45$$

$$7x - 6x + 16 = 45$$

$$7x - 6x = 45 - 16$$

$$x = 29$$

Uppgift 2.

Låt $f(x) = 4x^2 + 2x$ och bestäm

- (a) f(0)
- (b) f(3)
- (c) f(-1)
- (d) f(2a+3a)

Lösning

(a)
$$f(0) = 4 \cdot 0^2 + 2 \cdot 0 = 4 \cdot 0 = 0$$

(b)
$$f(3) = 4 \cdot 3^2 + 2 \cdot 3 = 4 \cdot 9 + 4 = 36 + 4 = 40$$

(c)
$$f(-1) = 4(-1)^2 + 2(-1) = 4 \cdot 1 - 2 = 4 - 2 = 2$$

(d)
$$f(2a+3a) = 4 \cdot (2a+3a)^2 + 2 \cdot (2a+3a) = 4(4a^2+12a+9a^2) + 10a = 52a^2 + 58a$$

Uppgift 3.

En linje är parallell med linjen 2x-y=0 och går genom punkten (4,-1). Bestäm linjens ekvation.

Lösning

Den kända linjen kan skrivas som y = 2x.

Den sökta linjen är parallell med den kända linjen, det betyder att den sökta linjen måste kunna skrivas som y=2x+m.

Vi känner inte till värdet av m men kan få fram det eftersom vi känner till en punkt på den sökta linjen. Vi sätter in koordinaterna för den kända punkten i linjens ekvation.

$$-1 = 2 \cdot 4 + m$$

$$-1 = 8 + m$$

$$m = -1 - 8$$

$$m = -9$$

Den sökta linjens ekvation är således y = 2x - 9.

Som en extra kontroll kan man plotta dom två linjerna. I bilden nedan ser vi dom två linjerna. Resultatet verkar rimligt, linjerna ser parallella ut och en av linjerna gå igenom den givna punkten.

Uppgift 4.

Ange ekvationen för en linje som är vinkelrät mot linjen $y = \frac{x}{3} - 7$.

Lösning

I kurslitteraturen bevisas att två icke-vertikala linjer med riktningskoefficienterna k_1 och k_2 är vinkelräta om och endast om $k_2 = -\frac{1}{k_1}$.

Vi har en given linje med riktningskoefficienten $k_1 = \frac{1}{3}$. Det betyder att att en linje som är vinkelrät mot den givna linjen måste ha riktningskoefficienten $k_2 = -3$.

Den sökta linjens m-värde kan väljas godtyckligt. Vi väljer m=3.

Ekvationen för den sökta linjen blir y = -3x + 3.

Som en extra kontroll väljer vi även att plotta ut dom två linjerna. I bilden nedan ser vi dom två linjerna. Linjerna ser hyfsat vinkelräta ut så vi har antagligen räknat rätt.

Uppgift 5.

Bestäm ekvationen för den linje som går genom punkterna $(2,\frac{7}{3})$ och $(-2,\frac{43}{3})$

Lösning

Vi börjar med att beräkna linjens riktningskoefficient.

$$k = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{43}{3} - \frac{7}{3}}{-2 - 2} = \frac{\frac{36}{3}}{-4} = -\frac{12}{4} = -3$$

Vi vet nu att linjen är på formen y = -3x + m. Återstår att bestämma värdet på m. Detta görs genom att sätta in en av dom givna punkterna i linjens ekvation.

$$\frac{7}{3} = -3(2) + m$$

$$\frac{7}{3} = -6 + m$$

$$m = \frac{7}{3} + 6$$

$$m = \frac{7}{3} + \frac{18}{3}$$

$$m = \frac{25}{3}$$

Den sökta linjens ekvation är alltså $y = -3x + \frac{25}{3}$

Vi väljer att kontrollera rimligheten på svaret genom att plotta linjen, se figuren nedan. Det ser ut som om dom två kända punkterna ligger på linjen så resultatet verkar rimligt.

Uppgift 6.

Bestäm ekvationerna för de tre linjerna i bilden nedan.

Lösning

Man inser direkt att den gröna horisontella linjen beskrivs av ekvationen y=3.

Vi väljer sedan att titta på den röda linjen. Man ser att två punkter på denna

linjen är (-3,0) och (3,3). Med hjälp av dessa punkter kan vi räkna ut riktningskoefficienten k.

$$k = \frac{3-0}{3-(-3)} = \frac{3}{6} = \frac{1}{2}$$

Sätt nu in koordinaterna (3,3) och $k=\frac{1}{2}$ i räta linjens ekvation för att ta reda på värdet av m.

$$y = kx + m$$

$$3 = \frac{1}{2}3 + m$$

$$m = 3 - \frac{3}{2}$$

$$m = \frac{3}{2}$$

Vi vet nu att den röda linjen beskrivs av ekvationen $y = \frac{1}{2}x + \frac{3}{2}$

Till sist är det dags att titta på den brantaste blå linjen. Man ser att två punkter på denna linjen är (0, -3) och (3, 3). Med hjälp av dessa punkter kan vi räkna ut riktningskoefficienten k.

$$k = \frac{3 - (-3)}{0 - (-3)} = \frac{6}{3} = 2$$

Sätt nu in koordinaterna (3,3) och k=2 i räta linjens ekvation för att ta reda på värdet av m.

$$y = kx + m$$

$$3 = 2 \cdot 3 + m$$

$$m = 3 - 6$$

$$m = -3$$

Vi vet nu att den blåa linjen beskrivs av ekvationen y = 2x - 3.