- 1. It is not BCNF; We can first move $F \to C$ to its own table, i.e. $R_1(A, B, D, E, F)$ and $R_2(F, C)$. Then we decompose R_1 into $R_3(A, B, D, E)$ and $R_4(B, D, F)$ since $BD \to F$. Therefore the final set of tables is $R_2(F, C), R_3(A, B, D, E), R_4(B, D, F)$.
- 2. (a) We have $\{C, D, E, F, G, H\}$ that has no dependencies, which makes $2^6 = 64$ closed sets. Then since a closed set with B must also have C, D in it, we have another $2^4 = 16$ sets (since $\{E, F, G, H\}$ makes 16 combinations). Then we can add A to those 16 sets to make 16 more. Therefore we have 64 + 16 + 16 = 96 closed sets in total.
 - (b) Any subset that implies $A \to B$ must contain either or both $\{A \to B\}$ and $\{A \to C, C \to B\}$. Then we can make 8 combinations that does not logically imply $A \to B$ with $\{B \to A, C \to A, B \to C\}$, then another 8 from those combinations with $A \to C$ added (and not $C \to B$), similarly, we have another 8 with $C \to B$ added. Therefore the number of subsets that implies $A \to B$ is 64 8 8 8 = 40.
- 3. I: CBAD: guaranteed to empty; Table C can be deleted first since no other table depends on it. Then B can be deleted since although D(z1) depends on B(x) it has ON DELETE SET NULL specified and it is nullable. A can now be deleted since D(z2) is also nullable.
 - II: CDAB: not guaranteed to empty; A is deleted before B so B(x) will be set NULL but it is a PRIMARY KEY and cannot be set NULL.
 - III: BCDA: guaranteed to empty; B is deleted first and D(z1) is set NULL, C is then deleted since nothing references it. D can then be deleted since A is not dependent on it.
- $4. \quad (a)$

	INSERT	DELETE	UPDATE
Executive	YES (insert high pay)	NO	YES (raise pay past 10 times)
Employee	YES (insert new lowest pay)	NO	YES (lower lowest pay)

- (b) CHECK (salary <= (SELECT 10*MIN(salary) FROM Employee WHERE division = div_in_charge))
- 5. SELECT publisher, SUM(price) as a1

FROM Books

WHERE birthYear>1950

GROUP BY publisher

HAVING SUM(price)>10000;

- 6. (a) missing the average rotational latency r, since the head might not start at the beginning of the file; Access time = seek time + rotational delay + transfer rate = 10ms + r + 1/(6000/60) = 10ms + r + 10ms = r + 20ms.
 - (b) 9804; $\lfloor \frac{4096 \text{ bytes/block}}{40 \text{ bytes/tuple}} \rfloor = 102 \text{ tuples/block}, \lceil \frac{1000000 \text{ tuples/table}}{102 \text{ tuples/block}} \rceil = 9804 \text{ blocks/table}.$
 - (c) Each block is 4096 bytes so each one can fit 255 longs and 256 pointers. So we have $\lceil \frac{1000000}{255} \rceil = 3922$ leaf nodes, $\lceil \frac{3922}{256} \rceil = 15$ level 2 nodes, and $\lceil \frac{15}{256} \rceil = 1$ root node. Therefore we need at least 3922+15+1=3938 nodes.
 - (d) 3 IOs; 2 IOs from root to level 3, 1 IO from level 3 to data.
- 7. (a)

Height-3 Tlu:

(b)

8. (a)

(b)

