

Universidad Tecnológica Nacional

FACULTAD REGIONAL CÓRDOBA

Amplificador Realimentado V-S

Materia: Electronica Aplicada II

Curso: 4R1

Edificio:

■ Ingeniero Soro [Aula 606]

Laboratorio de electrónica

Profesores:

- [Teórico] Ing, Carlos Celdran
- [Teórico] Ing, Carlos Enrique Olmos
- [Práctico] Ing, Federico Luis José Linares

Autores:

- Pappano Meinardi, Joaquín Leg.86730
- Monteros Vigueras, Juan Manuel Leg.86334
- Romero Diaz, Agustín Leg.86821

Fecha: 14 de abril de 2023

Índice

1. Introducción

La retroalimentación negativa es una técnica ampliamente utilizada en el diseño de circuitos electrónicos para mejorar la estabilidad, la linealidad y la precisión de los amplificadores. El amplificador de retroalimentación negativa V-S es un ejemplo común de esta técnica, que utiliza una red beta y un amplificador multietapas para reducir la ganancia y mejorar la linealidad del circuito. En este informe, se presentará una descripción detallada del diseño y funcionamiento del amplificador de retroalimentación negativa V-S, así como su análisis teórico y experimental. Además, se discutirán algunas de las aplicaciones prácticas de este tipo de amplificador en la electrónica analógica y su ancho de banda.

2. Cálculos Teóricos

Se realizaron los cálculos de A_v , Z_o , Z_i , A_{vf} , Z_{of} , Z_{if}

Estamos frente a un amplificador el cual tiene unas función de transferencia $H(s) = \frac{V_o}{V_i}$ por lo tanto el circuito equivalente de este lo podemos ver en la figura ??

Figura 1: Circuito equivalente amplificador realimentado V-S

definiremos los parámetros de este circuito respecto al esquemático dado

$$R_B = R_{b1}//R_{b2} \rightarrow 332K8\Omega$$

$$R_{e3} \rightarrow 240\Omega \qquad R_L \rightarrow 470\Omega \qquad R_f \rightarrow 1k6\Omega$$

$$R_f \rightarrow 1K6\Omega \qquad R_B' = R_{b3}//R_{b4} \rightarrow 19K7\Omega \qquad R_{c1} \rightarrow 18K\Omega$$

$$hfe1 \rightarrow 359 \qquad hfe2 \rightarrow 339 \ R_{c2} \qquad \rightarrow 2K\Omega$$

Para hie se deben encontrar las corriente ICQ1 e ICQ2 Para eso analizarimos la polarización de los traacitores $Vcc-VR_{b1}-VR_{b2}=0 \rightarrow ICQ1=hfe1\frac{Vcc}{R_{b1}+R_{b2}}=5,73mA$ $hie1=hfe1\frac{25mV}{ICQ1}=1568\Omega\ Vcc-VR_{b3}-VR_{b4}=0 \rightarrow ICQ2=hfe2\frac{Vcc}{R_{b3}+R_{b4}}=$

$$hie1 = hfe1\frac{25RV}{ICQ1} = 1508\Omega V cc - V R_{b3} - V R_{b4} = 0 \rightarrow ICQ2 = hfe2\frac{V cc}{R_{b3} + R_{b4}} = 55,65mA$$

 $hie2 = hfe2\frac{25mV}{ICQ2} = 152\Omega$

Las ecuaciones que podemos obtener del análisis del circuito son

$$i_{b1} = V_i \frac{1}{hie_1 + [(R_{e1}//R_f)(hfe+1)]} \rightarrow \frac{i_{b1}}{v_i} = \frac{1}{hie_1 + [(R_{e1}//R_f)(hfe+1)]} = 22,36 * 10^{-6}$$

Figura 2: Polarizacion Q1

$$i_{b2} = ib1(-hfe\frac{R_{e1}/(R_b'/(hie_2 + R_{e3}(hfe_2 + 1))}{(hie_2 + R_{e3}(hfe_2 + 1))}hie_2) \rightarrow \frac{i_{b2}}{i_{b1}} = -hfe\frac{R_{e1}/(R_b'/(hie_2 + R_{e3}(hfe_2 + 1))}{(hie_2 + R_{e3}(hfe_2 + 1))}hie_2 = V_o = i_{b2}(-hfe[R_{e2}//(R_f + R_{e2})]) \rightarrow \frac{V_o}{i_{b2}} = -hfe[R_{e2}//(R_f + R_{e2})] = 105749$$

2.1. Calculo Av

$$A_v = \frac{V_o}{V_i} = \frac{v_o}{i_{b2}} \frac{i_{b2}}{i_{b1}} \frac{i_{b1}}{v_i} = 82,87$$

2.2. Calculo Red beta y calculo Avf

$$v_o = i(R_f + R_{e1})$$
 $vf = iR_{e1}$
 $\beta = \frac{v_f}{v_o} = \frac{R_{e1}}{R_{e1} + R_f} = 0,075$
 $D = |1 + A_v \beta| = 7,1618$ $A_{vf} = \frac{A_v}{D} = 11,57$

2.3. Cálculos de Zi,Zo,Zif,Zof

Lazo abierto:
$$Z_i = R_b / / hie_1 + [(R_{e1} / / R_f)(hfe + 1)] = 39523\Omega$$

Figura 3: Polarizacion Q2

$$Z_o = R_{c2} / / (R_{e1} + R_f) = 927,61\Omega$$

Lazo cerrado : $Z_{if} = Z_i * D = 283 K\Omega$

$$Z_{of} = \frac{Z_o}{D} = 130\Omega$$

3. Simulaciones

Para la simulación se utilizo el sofware Ltspace en el mismo se modelo el amplificador realimentado, se selecciono un valor de $Vin=60mV_{pp}$ y una f=1,5KHz

Figura 4: Red Beta V-S

3.1. Lazo Abierto

y se pudo obserla la $Vout=4,8V_{pp}$ de la fig?? Se calculo la ganancia a lazo

Figura 5: Vout Lazo Abierto

abierto
$$H(s) = \frac{V_o}{V_i} = 80$$

Se hizo un varrido en frecuencia para ver las variacion de la ganancia, atraves de un diagrama de bode Se puede observar que el ancho de banda va desde los $10 \rm Khz$ hasta los $2 \rm MHz$

Figura 6: AV en funcion de la frecuencia

3.2. Lazo Cerrado

Al cerrar el lazo se volvio a medir la Vout = 700mV Se calculo la ganancia a lazo

Figura 7: Vout Lazo cerrado

abierto $H(s)=\frac{V_o}{V_i}=11,66$ Se hizo un varrido en frecuencia para ver las variacion de la ganancia, atraves de un diagrama de bode Se puede observar que el ancho de

Figura 8: AV en funcion de la frecuencia

banda va desde los $10 \mathrm{Khz}$ hasta los $10 \mathrm{MHz}$

4. Procedimiento

4.1. Consignas Solitadas

- Implementar un amplificador realimentado
- Realizar las mediciones $A_v, Z_o, Z_i, A_{vf}, Z_{of}, Z_{if}$
- Realizar la medición de Desensibilidad provocando una variación máxima de Av del 45cual se deberá modificar algún componente del amplificador (usaremos Re3).
- Obtener y graficar la curva de respuesta en frecuencia de la ganancia circuito a lazo abierto y lazo cerrado del circuito implementado. Para esto se utilizará los generadores provistos por el laboratorio centra
- Haciendo uso del simulador verificar los valores obtenidos del punto anterior (ganancia y respuesta en frecuencia).

Para poder realizar las mediciones solicitadas, se realizo el pcb del circuito correspondiente y se monto los componentes en el mismo. Una vez hecho esto se alimeto el circuito con 22V C.C, en paralelo con R_L se conecto un osiloscopio digital para poder medir la salida y en la entrada un generador de ondas $V_{in} = 60V_{pp}$ como en el esquema de figura ??

Figura 9: Conexiones amplificador realimentado V-S

4.2. Mediciones

Se comenzo midiendo la salida a lazo abierto $V_o = 4V_{pp}$, se procedio a conectar la realimentación a la salida y se obtuvo la $V_o = 700 mV$ a lazo cerrado

$$A_{v1} = \frac{V_o}{V_i} = \frac{4V}{0,06V} = 66,66A_{vf1} = \frac{V_o}{V_i} = \frac{700mV}{60mV} = 11,66$$

Para reducir la ganacia a lazo abierto un 45 % se remplazo R_{e3} por un tripo de $1K\Omega$ y se lo vario hasta que la $V_o=2,2V$ en lazo abierto esto se logro con el tripo en 500ω , se conecto la realimentacio en se midio $V_o=550mv$

Con estos datos se volvio a calcular $A_{v2}=\frac{V_o}{V_i}=\frac{2,2V}{0,06V}=36,66A_{vf2}=\frac{V_o}{V_i}=\frac{550mV}{60mV}=9,66$

$$D = \frac{\Delta \% A_v}{\Delta \% A_{vf}} = \frac{45 \%}{21,44 \%} = 2,09$$

Una vez calculada la desensibilidad se conecto en la entrada un tripo de $100k\Omega$ con se muestra en la figura??

Figura 10: Circuito para medicion Zi

con el amplificador a lazo abierto se aumento la V_i hasta llegar al punto MES(Maxima excurcion simetrica) $V_o = 4,8V$, se conecto el tripo y se lo vario hasta llegar a una $V_o = 2,4V$, se saco el tripo y se lo medio

$$Z_i = 40,26k\Omega$$

Para Z_o se realizo la conexion de la figura??

Figura 11: Circuito para medicion Zo

5. Respuesta en frecuencia

Cuadro 1: Add caption

Variacion de la ganancia a lazo					
Frecuencia	Vo-pp(mv)	Vof-pp(mv)	Av	Avf	
10	2000	200	33,3333333	3,33333333	
50	4240	500	70,6666667	8,33333333	
100	4000	720	66,6666667	12	
300	4000	760	66,6666667	12,6666667	
500	4800	688	80	11,4666667	
1000	4644	688	77,4	11,4666667	
5000	5000	720	83,3333333	12	
8000	4760	720	79,3333333	12	
10000	4720	672	78,6666667	11,2	
50000	4800	680	80	11,3333333	
100000	4800	705	80	11,75	
200000	4600	720	76,6666667	12	
500000	3600	680	60	11,3333333	
800000	2720	680	45,3333333	11,3333333	
1000000	2400	680	40	11,3333333	
1500000	1560	720	26	12	
2000000	1120	720	18,6666667	12	