Universidad Internacional de La Rioja

4.8 Cuaderno de ejercicios

Ejercicio 1. Demuestra la regla de mutación del condicional:

$$\frac{A{\rightarrow}(B{\rightarrow}C)}{B{\rightarrow}(A{\rightarrow}C)}$$

Ejercicio 2. Demuestra la regla asociativa de la disyunción:

$$\frac{A \vee (B \vee C)}{(A \vee B) \vee C}$$

Ejercicio 3. Demuestra la regla distributiva de la conjunción:

$$\frac{A \land (B \lor C)}{(A \land B) \lor (A \land C)}$$

Ejercicio 4. Demuestra la regla del condicional en conjunción:

$$\frac{A \rightarrow B}{\neg (A \land \neg B)}$$

Indicación: utiliza la regla de De Morgan.

Ejercicio 5. Demuestra la regla de disyunción en conjunción:

$$\frac{A \vee B}{\neg (\neg A \wedge \neg B)}$$

Ejercicio 6. Demuestra el siguiente razonamiento:

$$\begin{aligned} -1(p \wedge r) &\rightarrow (q \rightarrow s) & \dashv s \\ -2 \neg p &\rightarrow t \\ -3 \neg r &\rightarrow t \\ -4 \neg t \wedge q \end{aligned}$$

$$-1p \to (q \to u) \qquad \exists \ u$$

$$-2(p \land s) \lor r$$

$$-3 \neg (\neg q \lor r)$$

Ejercicio 8. Demuestra el siguiente razonamiento:

$$-1\neg p \qquad \qquad \neg (s \land r)$$

$$-2\neg q$$

$$-3r \rightarrow \neg (p \lor q)$$

Ejercicio 9. Demuestra el siguiente razonamiento:

$$\begin{aligned} -1\neg((q\wedge r)\to\neg t) & \dashv p \\ -2(q\to s)\vee(r\to s) & \\ -3(s\wedge t)\to p & \end{aligned}$$

Ejercicio 10. Demuestra el siguiente razonamiento:

$$-1p \lor r \to s \qquad \exists \ p \to \neg q$$
$$-2s \land r \to p$$
$$-3p \to \neg s \lor r$$

Solución.

$$\begin{array}{c|cccc}
1 & A \rightarrow (B \rightarrow C) \\
2 & B \\
3 & A \\
4 & B \rightarrow C & E \rightarrow 1, 3 \\
5 & C & E \rightarrow 4, 2 \\
6 & A \rightarrow C & I \lor, 3-5 \\
7 & B \rightarrow (A \rightarrow C) & I \rightarrow, 2-6
\end{array}$$

La implicación contraria se demuestra de forma parecida.

1	$A \wedge (B \vee C)$		
2	A	$E \wedge, 1$	
3	$B \lor C$	$E \wedge, 1$	
4	<u>B</u>		
5	$A \wedge B$	$I \wedge, 2, 4$	
6	$ (A \land B) \lor (A \land C) $	$I\lor$, 5	
7			
8	$A \wedge C$	$I\lor$, 2, 7	
9	$(A \wedge B) \vee (A \wedge C)$ $(A \wedge B) \vee (A \wedge C)$	$I\lor$, 8	
10	$ (A \land B) \lor (A \land C) $	EV, 3, 4–6, 7–9	

1	$(A \land B) \lor (A \land C)$	
2	$A \wedge B$	
3		$E \wedge, 2$
4	B	$E \wedge, 2$
5	$B \lor C$	$I\lor$, 4
6		$I \wedge$, 3, 5
7	$A \wedge C$	
8		$E \wedge, 7$
9		$E \wedge, 7$
10	$B \lor C$	$I\lor$, 9
11		I∧, 8, 10
12	$A \wedge (B \vee C)$	EV, 1, 2-6, 7-11

1	$\neg (A \land \neg B)$	
2	<u>A</u>	
3	$\neg A \lor \neg \neg B$	DM, 1
4	$\neg A$	
5	$A \wedge \neg A$	$I \wedge, 2, 4$
6		ECQ, 5
7		
8	$\mid \mid B$	$E\neg$, 7
9	B	$E\lor$, 3, 4–6, 7–8
10	$A \to B$	$I\rightarrow$, 2, 9

1	$A \vee B$	
2	<u>A</u>	
3		
4		$I \wedge$, 2, 3
5		$I\neg, 3-4$
6	$\neg \neg A \lor \neg \neg B$	$I\lor$, 5
7	$\neg(\neg A \land \neg B)$	DM, 6
8	<u>B</u>	
9	$\neg B$	
10	$\frac{\neg B}{B \land \neg B}$	$I \wedge$, 8, 9
11	$\neg B$	$I\neg, 9-10$
12	$\neg \neg A \lor \neg \neg B$	I∨, 11
13		DM, 12
14	$\neg (\neg A \land \neg B)$	I∨, 1, 2–7, 9–13

1	$p \lor r \to s$	
2	$ p \lor r \to s $ $s \land r \to \neg p $ $p \to \neg s \lor r $	
3	$p \to \neg s \vee r$	
4	<u>p</u>	
5	$ \begin{array}{c c} p\\ \hline p\lor r\\ s\end{array} $	$I\lor$, 4
6	s	$E\rightarrow$, 1, 5
7	$\neg s \lor r$ $\neg \neg s$	$E\rightarrow$, 3, 4
8	$\neg \neg s$	I¬¬, 6
9	r	SD, 7, 8
10	$s \wedge r$	$I \wedge, 6, 9$
11		$E\rightarrow$, 2, 10
12		$I \wedge$, 4, 11
13		ECQ, 12
14	$p \rightarrow \neg q$	$I\rightarrow$, 4–13