Relazione dati Netflix

Aldo Solari, matricola 2575

Relazione

L'obiettivo dell'analisi è di prevedere la valutazione (rating) di 2931 utenti del test set per il film Miss Detective.

Il modello utilizzato per ottenere le previsioni finali è un semplice modello lineare

$$\hat{y}_i^* = \hat{\beta}_0 + \sum_{i=1}^{99} \hat{\beta}_j x_{ij}^* + \hat{\beta}_{100} z_i^*$$

dove

- x_{ij}^* è la valutazione dell'utente *i*-simo sul film *j*-simo del test set (e vale 0 se il dato è mancante); z_i^* è una variabile indicatrice che vale 1 se l'utente *i*-simo del test set assegna mediamente valutazioni più alte ai film di genere romantico o drammatico rispetto ad altri generi di film, altrimento vale 0; questa variabile è stata creata utilizzando un dataset esterno;
- $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_{100}$ sono le stime dei coefficienti del modello ottenute sulla base del training set.

Sintesi del processo di modellizzazione

1. Pre-elaborazione dei dati

Non è stata effettuata alcuna pre-elaborazione dei dati.

2. Dati mancanti

Non è stato effettuato alcun trattamento dei dati mancanti. Visto che nel dataset originale i dati mancanti sono codificati con il valore 0, sono stati trattati come valori numerici nel modello lineare.

3. Feature engineering

Utilizzando il dataset esterno messo a disposizione dal gruppo DEFINETTI, è stata creata una variabile indicatrice che vale 1 se l'utente assegna mediamente valutazioni più alte ai film di genere romantico o drammatico rispetto ad altri generi di film, altrimenti vale 0.

4. Feature selection

Non è stata effettuata alcuna selezione dei predittori.

5. Dati esterni

E' stato utilizzato il dataset messo a disposizione dal gruppo DEFINETTI.

6. Modelli

Non sono stati considerati altri modelli oltre al modello lineare utilizzato per la previsione finale (per il quale non erano previsti parametri di tuning).

Codice riproducibile

Includere **solo** il codice indispensabile per ottenere la previsione finale, e visualizzare i primi valori previsti con head(yhat).

```
PATH <- "https://raw.githubusercontent.com/aldosolari/DM/master/docs/hw/"
X.tr = read.table(paste(PATH, "Train_ratings_all.dat", sep=""))
y.tr = read.table(paste(PATH, "Train_y_rating.dat", sep=""))
train = data.frame(X.tr, y=y.tr$V1)
X.te = read.table(paste(PATH, "Test_ratings_all.dat", sep=""))
test = data.frame(X.te)
definetti <- read.csv(paste0(PATH, "definetti.csv"))</pre>
genre <- definetti$princ_genre2[-100]</pre>
rd <- rep(0,length(genre))
rd[(genre=="Romance" | genre=="Drama")] <- 1
m.tr <- apply(X.tr,1,function(x) mean(x[x!=0]))</pre>
m1.tr \leftarrow apply(X.tr,1,function(x) sum(x[x!=0]*rd[x!=0])/sum(rd[x!=0]))
z.tr <- m1.tr >= m.tr
train$z <- z.tr
m.te <- apply(X.te,1,function(x) mean(x[x!=0]))</pre>
m1.te \leftarrow apply(X.te,1,function(x) sum(x[x!=0]*rd[x!=0])/sum(rd[x!=0]))
z.te <- m1.te >= m.te
test$z <- z.te
fit = lm(y^{-}.,data=train)
yhat = pmin(predict(fit, newdata=test),5)
head(yhat)
## 3.948703 3.470572 3.676288 3.272309 3.499158 3.772120
# file .TXT sottomesso
# write.table(file="2575.txt", yhat, row.names = FALSE, col.names = FALSE)
```

sessionInfo()

```
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Catalina 10.15.7
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.2 magrittr_1.5
                                       tools_4.0.2
                                                       htmltools_0.5.0
## [5] yaml_2.2.1
                       stringi_1.5.3
                                       rmarkdown_2.4.2 knitr_1.30
## [9] stringr_1.4.0
                       xfun_0.18
                                       digest_0.6.25 rlang_0.4.8
## [13] evaluate_0.14
```