Let,
$$f = -\frac{K}{r^3}$$
 (attractive force)

Potential Energy = $-\int_{00}^{r} f \cdot dr = +\int_{r^3}^{r} \frac{Kdr}{r^3} = \frac{-K}{2r^2}$

we will use polar equation; as particle moves under a Central force, motion is confined to plane.

Lagrangian (L) =
$$T-V = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + \frac{K}{2r^2}$$

$$\frac{\partial}{\partial r} = 0$$

$$\frac{7}{mr} - mr\dot{\theta}^2 + \frac{k}{r^3} = 0$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \theta}\right) - \frac{\partial L}{\partial \theta} = 0$$

$$\frac{d}{dt} \left(mr^2 \dot{\theta} \right) > 0$$
 $\frac{d}{dt} \left(mr^2 \dot{\theta} \right) > 0$ $\frac{d}{dt} \left(const. \right) . . 2$

Let,
$$u=\frac{1}{7}$$
 = $\frac{m\dot{b}}{u^2}$ = \dot{b} = $\frac{\dot{b}u^2}{m}$

$$\Rightarrow \dot{r} = -\frac{1}{4} \dot{\theta} \frac{du}{d\theta} = -\frac{b}{m} \frac{du}{d\theta} \cdot \dot{\theta} \quad \dot{r} = -\frac{b}{m} \frac{du}{d\theta} \cdot \dot{\theta}$$

Scanned with CamScanner

$$\frac{1}{2} \frac{\dot{\lambda}}{\lambda} = -\frac{1}{m} \cdot \frac{bu^2}{m} \frac{d^2u}{d\theta^2}$$

$$7 = -\frac{b^2 u^2}{m^2} \frac{d^2 u}{d\theta^2}$$

$$\frac{1}{m^{2}} + \frac{b^{2}u^{2}}{d\theta^{2}} + \frac{d^{2}u}{d\theta^{2}} + \frac{b^{2}u^{2}}{m^{2}} = -ku^{3} = 0$$

$$\frac{b^2 u^2}{m} \frac{d^2 u}{d\theta^2} + \frac{b^2 u^3}{m} - K u^3 = 0$$

$$\frac{d^2u}{d\theta^2} + u - \frac{mk u}{b^2} u = 0$$

$$\frac{d^{2}u}{d\theta^{2}} + \left(1 - \frac{mk}{b^{2}}\right)u = 0$$

Second degree equation: (Simple Harmonic Motion)

ttence; if b2 > mk

$$\frac{1}{b^2} \quad u = u_0 \quad \cos \left[\sqrt{1 - \frac{mk}{b^2}} \left(\theta - \theta_0 \right) \right]$$

$$\frac{1}{a} \left[r \cos \left(\frac{1 - m k}{b^2} \left(\theta - \theta_0 \right) \right) \right] = r_0$$

(ro, 00) is any point on orbit.

$$\frac{b^{2} < mk}{r \cosh \left(\sqrt{\frac{mk}{b^{2}} - 1} \left(\theta - \theta_{0}\right)\right) = v_{0}}$$

Scanned with CamScanne

Scanned with CamScanner

8(C) Solve the following system of limearing equations wing Gaussian elimination method: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Date Page
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 (c)	solve the following system of linear equations using Grangian elimination method
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	is a the trapezondof sure with he in
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6x1+3x2+2x3=11 Here 2 2 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$x_1 - x_2 + 2x_3 = 0 \tag{10}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6 3 2 12 = 1
$ \begin{vmatrix} 1 & -1 & 2 & x_{1} & 0 \\ 6 & 3 & 2 & x_{2} & = 1 \\ 5 & 2 & 1 & x_{3} & -2 \end{vmatrix} $ $ \begin{vmatrix} R_{2} \rightarrow R_{2} - 6R_{1} & R_{3} \rightarrow R_{3} - 5R_{1} \\ R_{2} \rightarrow R_{2} - 6R_{1} & R_{3} \rightarrow R_{3} - 5R_{1} \end{vmatrix} $ $ \begin{vmatrix} 1 & -1 & 2 & x_{1} & 0 \\ 0 & q & -10 & x_{2} & = 1 \\ 0 & 7 & -9 & x_{3} & -2 \end{vmatrix} $ $ \begin{vmatrix} R_{3} \rightarrow R_{3} - \frac{7}{9}R_{2} \\ R_{3} \rightarrow R_{3} - \frac{7}{9}R_{2} \end{vmatrix} $ $ \begin{vmatrix} 1 & -1 & 2 & x_{1} & 0 \\ 0 & q & -10 & x_{2} & = 1 \\ 0 & 0 & -11/9 & x_{3} & -25/9 \end{vmatrix} $ $ \begin{vmatrix} 3 & x_{1} - x_{2} + 2x_{3} & 0 \\ 9x_{2} - 10 & x_{3} & = 1 \end{vmatrix} $ $ \begin{vmatrix} 9x_{2} - 10 & x_{3} & = 1 \\ -11 & x_{3} & -25 & y_{3} & x_{3} & 1 \\ -11 & x_{3} & -25 & y_{3} & x_{3} & 1 \end{vmatrix} $ $ \begin{vmatrix} 9x_{2} - 10 & x_{3} & = 1 \\ -11 & x_{3} & -25 & y_{3} & x_{3} & 1 \end{vmatrix} $	S.	$R_2 \leftrightarrow R_1$
$\begin{bmatrix} 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} m_3 \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix}$ $R_2 \rightarrow R_2 - 6R_1, R_3 \rightarrow R_3 - 5R_1$ $\begin{bmatrix} 1 & -1 & 2 & x_1 & 0 \\ 0 & q & -10 & m_2 = 1 \\ 0 & 7 & -9 & \end{bmatrix}$ $R_3 \rightarrow R_3 - \frac{7}{9}R_2$ $\begin{bmatrix} 1 & -1 & 2 & $	- A	1 -1 2 21 0
$ \begin{bmatrix} 1 & -1 & 2 & x_1 & 0 \\ 0 & 9 & -10 & x_2 & 1 \\ 0 & 7 & -9 & x_3 & -2 \end{bmatrix} $ $ R_3 \rightarrow R_3 - \frac{7}{9}R_2 $ $ \begin{bmatrix} 1 & -1 & 2 & x_1 & 0 \\ 0 & 9 & -10 & x_2 & 1 \\ 0 & 0 & -11/9 & x_3 & -25/9 \end{bmatrix} $ $ \Rightarrow x_1 - x_2 + 2x_3 = 0 $ $ 9x_2 - 10 x_3 = 1 $ $ -11 x_3 = -25 \Rightarrow x_3 = 25 1 \Rightarrow $ $ 9x_2 - 10 \left(\frac{25}{11}\right) = 1 \Rightarrow $	/ [[]	$\begin{bmatrix} 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} n_3 \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix}$
$ \begin{vmatrix} 1 & -1 & 2 & & & & & & & & & $		$R_2 \rightarrow R_2 - 6R_1$, $R_3 \rightarrow R_3$
$ \begin{vmatrix} 1 & -1 & 2 & x_1 & & 0 \\ 0 & q & -10 & x_2 & & & & \\ 0 & 0 & -1/q & & x_3 & & & & & \\ 0 & 0 & -1/q & & & & & & & & & \\ 0 & 0 & -1/q & & & & & & & & & & $	- A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{vmatrix} $	-	$R_3 \rightarrow R_3 - \frac{7}{9}R_2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[10-1020][21][0]
$ \frac{9 \pi_{2} - 10 \times_{3} = 1}{-\frac{11}{9} \pi_{3} = -\frac{25}{9}} = \frac{25}{11} $ $ \frac{-11}{9} \pi_{3} = -\frac{25}{9} \Rightarrow \pi_{3} = \frac{25}{11} $ $ \frac{9 \pi_{2} - 10 \left(\frac{25}{11}\right) = 1}{2} \Rightarrow \pi_{2} = \frac{29}{11} $		0 9 -10 12 1
$ \frac{-11}{9} \times_3 = -25 \Rightarrow \times_3 = \frac{25}{11} $ $ = 9 \times_2 = 10 \left(\frac{25}{11}\right) = 1 \Rightarrow \times_2 = \frac{29}{11} $. 2230/	$-)$ $- \times + 2 \times - = 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		$\frac{-11}{9} \times 3 = \frac{-25}{9} \Rightarrow \left[\times_3 = \frac{25}{11} \right]$
-		$9x_2 - 10(\frac{25}{11}) = 1 \Rightarrow x_2 = \frac{29}{11}$
Scanned with CamScanner		