Ficher S:

46 Poderes figet por inedução de de acordo care as propriedades de carginêricas. Restor possíveis {0,1,2} $u \equiv 0 \pmod{3} \equiv 1$ $u \equiv 0 \pmod{3} \equiv 1$ caso N= $= 1 \quad \tilde{n} - \tilde{n} = 0 \quad (\text{ned} 3) \quad = 0$ n = 1 (mod 3) = 1 (mod 3) = 1 =1 $n^3 - n = 1 - 1 \pmod{3} = 1$ $n^3 - n = 0 \pmod{3} = 1$ 3 + n = 0 $n = 2 \pmod{3} = 1 \quad n = 8 \pmod{3} = 1 \quad = 1$ =1 n-n=6 (mod(3) =1 $n^3-n=0$ (mod3) $=131n^3-n$

dogo, não ineporte o reste, no- n é da forma DE.

47. Prove que

- (a) dado um inteiro a, o dígito das unidades de $a^2
 in 0, 1, 4, 5, 6$ ou 9.
- (b) qualquer um dos inteiros 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 pode ser o dígito das unidades de a^3 , para algum inteiro a;
- (c) dado um inteiro a, o dígito das unidades de a^4 é 0, 1, 5 ou 6.

47)

0 = 0 (mod 10)=102=0 (mod 10) -1 resto 0 1 = 1 (mod 10) (=) 12 = 1 (mod 10) - s reste) 2 = 2 (wood 10) (= 1 4 = 4 (recod 10) - 10 restor 3 = 3 (need 10) (= 1 9 = 9 (need 10) - need 9 4 = 4 (need 10) = 1 16 = 6 (need 10) - p resto 6 5 = 3 (mod 10) (=1 25 = 3 (mod 10) _s nosto 6 6 = 6 (mod 10) -1 36 = 6 (mod 10) -1 resto 6 7 = 7 (mod lo) (= 149 = 9 (mod 10) - 1 resto 9 8 = 8 (mod 10) (= 1 64 = 4 (mod 10) - 1 resto 4 9 = 9 (mod 10) = 181 = 1 (mod 10) - 1 resto 1

Ou seja, a algarisme das unidades de nº só pode ser

0,1,4,5,6,5 6-3-

0 = 0 (mod 10) (= 1 0 = 0 (mod 10) 1 = 1 (mod 10) = 1 13 = 1 (mod 10) 2 = 2 (mod (0) = 12 = 8 (mod 10) 3 = 3 (wed (c) = 1 3 = 7 (wed 10) 4 = 4 (wod lo) = 1 63 = 4 (wod 10) 5 = 3 (mod 10) (= 1 5 = 5 (mod 10) 6 = 6 (mod 10) = 163 = 6 (mod 10) 7=7(mod 10) =17=3 (mod 10) 8 = 8 (wood lo) = 18 = 2 (wood 10) 9 = 9 (mod 10) = 19 = 9 (red 10)

M

Logo, or algarismes 6,1,2,3,4,5,6,7,8,7 poderes ser o algarismero das unidades de qualquer interios a³.

1 = 1 (.... 1 12) - 2 2 - 2 / mod (0)

c)

$$0 \equiv 0 \pmod{10} \implies 0 \equiv 0 \pmod{10}$$

$$1^h \equiv 1 \pmod{10}$$

$$2^h \equiv 6 \pmod{10}$$

$$3^h \equiv 3 \pmod{10}$$

$$3^h \equiv 1 \pmod{10}$$

doge, os algaissers das unidades de qualquer inférier a só poderão ser 6, 1, 5 etc.

48. Determine os algarismos x,y de modo que o inteiro $\overline{3x5y}$ seja simultaneamente divisível por 4 e por 9.

$$\begin{array}{l}
3z + 3y = 0 \text{ (wood 9)} \\
3z + 3y = 0 \text{ (wood 9)}
\end{array}$$

$$\begin{array}{l}
3z + 3y + 3y + 4 = 0 \text{ (wood 9)} \\
3x + 3y = 0 \text{ (wood 9)}
\end{array}$$

$$\begin{array}{l}
3x + 3y + 4 = 0 \text{ (wood 9)}
\end{array}$$

$$\begin{array}{l}
3x + 3y + 4 = 0 \text{ (wood 9)}
\end{array}$$

$$\begin{array}{l}
3x + 4 + 4 = 1 \text{ (wood 9)}
\end{array}$$

easo
$$y=6$$

$$0e+6 \equiv 1 \pmod{9} = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$2 = 4$$

$$1 = 1$$

$$2 = 4$$

$$2 = 1$$

$$2 = 4$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$3 = 1$$

$$4 = 1$$

$$3 = 1$$

$$3 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

$$4 = 1$$

49. Determine os dígitos x e y tais que o número $\overline{34xx58y}$ é simultaneamente divisível por 9 e por 11.

$$\frac{34 \times 258 y}{34 \times 258 y} = 0 \text{ (wod 9)}$$

$$= 1$$

$$\frac{34 \times 458 + y}{34 \times 258 } = 0 \text{ (wod 9)}$$

$$= 1$$

$$\frac{34 \times 458 + y}{34 \times 458 } = 0 \text{ (wod 9)}$$

$$= 1$$

$$\frac{34 \times 458 + y}{34 \times 458 } = 0 \text{ (wod 9)}$$

$$= 1$$

$$\frac{34 \times 458 + y}{34 \times 458 } = 0 \text{ (wod 9)}$$

$$\frac{34 \times 458 + y}{34 \times 458 } = 0 \text{ (wod 9)}$$

$$\frac{3h_{xx}s_{y}}{3h_{xx}s_{y}} = 0 \text{ (wod 11)} \qquad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 2x+h=3 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 2x+h=3 \text{ (wod 11)}$$

$$= 1 \quad |3+x+5+y-8-h-n| = 0 \text{ (wod 11)}$$

$$= 2x+h=3 \text{ (wod 11)}$$

$$= 2x$$

$$\frac{1}{2^{-1}}$$

$$2^{-1}$$

$$3466584$$
Se $n=1$, $\alpha=5+$

50. Determine os algarismos a e b tais que o número $\overline{56a21b}$ é simultaneamente divisível por 2 e por 11.

e os algarismos a e b tais que o número $\overline{56a21b}$ é simultaneamente divisível por b = 0 (vecad a) 56a21b = 0 (vecad a)

1 56021b = 0 (reed 11) (6+2+b - 5-1-a = 0 (reed 11) $b = a = -2 \pmod{1}$ $b - a = 9 \pmod{11}$ Se 5=0, - a = 9 (resod 11) = 1 a = 9 (resod 11) = 1 a = 2 (resod 11) se b=2, 2-a=9 (reed 11) =1 a=-7 (reed m)=1 a=4 (ree=d 11) 5c 5=4, 4- a = 9 (reed 1) (=1 a = 6 (reed 11) a=6 566214 6-a=9 (red 1)=1a=8 (red 17) a=8 568216 8-a=9 (reed 17) =10=10 (reed 1) - siegssivel, 79 ac \ 0, ..., 92

res	51.	Resolva	va as seguinte	es congruências	lineares
ĺ	51.	Resolva	va as seguinte	es congruencias	linea

- (a) $25x \equiv 15 \pmod{29}$;
- (b) $5x \equiv 2 \pmod{26}$;
- (c) $140x \equiv 133 \pmod{301}$;

51)

33 (mod 301); cee $d \cdot c = (25, 29) = 1$ (25, 29) = 1

(1) 15

a) 25ne = 15(necd 29) = 1, 29y = 25ne - 15 = 1

21 x = 29y + 15 c= 1 x= y + 4y + 15 de y= 15,

 $= 100 \times 10$

50 ucuen solution, pois verd.c (25,29) = 1

De: 18

le.d.c(26,5)=1

30e-2=26y= 0e=26y+2=,

5) 5 se = 2 (read 26) = 1

C=1 oc = 3y + y + 2

Unea vereica solução novamentes

Se y = 3, se = 15 +1 = 16 Veuen verein solução novamentes

c) 140 ne = 133 (read 361)

Lee .d.c (301,140)=7 $\sqrt{3317}$ $\sqrt{3317}$ $\sqrt{3317}$ $\sqrt{3317}$

 $\frac{1302}{20} = \frac{3014 + 133}{20}$ = 1202 = 434 + 1921 = 1202 = 24 + 34 + 19 = 20

Come we de c = t,

pait soluçãos de lipo $a: 16+43t \times n$ $t \in [c, 6], \in \mathbb{Z}$ Se y = 7, 2e: 14 + 2 = 16Le veneas lução

5/: \, 16,59,162,145,188,231,274}

52. Diga, justificando, quais das congruências seguintes são solúveis e, para essas, indique a menor solução não negativa:

(a)
$$12x \equiv 6 \pmod{16}$$
;

(b)
$$12x \equiv 7 \pmod{35}$$
;

(c)
$$12x \equiv 24 \pmod{35}$$
;

(d)
$$10x \equiv 14 \pmod{16}$$
;

(e)
$$60x \equiv -30 \pmod{165}$$
;

52)

1 1/ /2 - 7

4+6

w.d.c(16,(2)=2 5) m.d.c (35, 12) = 1 soluvel 3+3-7 (22e-7 = 35ym) ne: 35y +7 007 5d:56+35t Set=-1, 0e=21e) m. d. c (35, 12)=) 2= 354+2h =1 x= 2y+2+114 2e= 24+2 + 11=37 se E:-1 58 = 37 + 35 t 2 = 2 m 2114 ue.d.c(16,10)=7 d) 10 x = 14 (leod 16) Se 4 = 1 2 . .

10
$$2e - 14 = 16y = 1$$
 $52e - 7 = 8y = 1$ $2 = 4 + 1 + \frac{34 + 2}{5}$ $3e = 1$ $2e = 2 + 1 = 3$
8 $4:3$

2) $602e = -30$ (weed 165)

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

15 130

16 130

17 130

18 130

18 130

18 130

19 130

10 130

10 130

10 130

11 130

11 130

12 130

13 130

15 130

15 130

16 130

17 130

18 130

18 130

19 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

11 130

11 130

12 130

13 130

14 130

15 130

16 130

17 130

18 130

18 130

19 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

10 130

53. Diga, justificando, se a congruência linear $14x \equiv 18 \pmod{60}$ tem soluções pares.

55) Lee
$$\mathcal{L} \cdot \mathcal{L} (60, 1h) = 7$$
 2118
 $14ne - 18 = 60g(=) + ne - 9 = 30g$ $5e = -3 + 30 = 27 + 30t$

Vaisa surple Repor, entre jes.

- 54. Relativamente à congruência $13x \equiv 17 \pmod{42}$, determine, caso existam,
 - (a) as soluções negativas superiores a -100;
 - (b) uma solução par.

se
$$t = -2$$
, $\alpha = -37$
se $t = -3$, $\alpha = -73$

s) ice possivel,

estelles

ucer n° heepal coree lee lhpolo

- 55. Considere a congruência linear $18x \equiv 9 \pmod{21}$.
 - (a) Verifique que a congruência linear dada admite solução.
 - (b) Quantas soluções tem a congruência linear $18x \equiv 9 \pmod{21}$ no intervalo inteiro [-1,80]? Calcule-as.

35)

319

Adreite solução.

b)
$$18\alpha - 9 = 21y (=1 - 6\alpha - 3 = +y - 2) = 2 = y + y + 3$$

 $5ey = 3$, $\alpha = 3 + 1 = 4$ $t = -1, \alpha = -3 \not\in J - 1.80$ 6
 $\alpha = 4 + 7t$ $t = 0$, $\alpha = 4$ $t = 1$, $\alpha = 11$
 $t = 2$, $\alpha = 18$ $t = 3$, $\alpha = 25$ $t = 4$, $\alpha = 32$ $t = 5$, $\alpha = 39$

t = 6, x = 46 t = 7, x = 53 t = 8, x = 60 t = 9, x = 67t = 10, t = 74 t = 11, t = 81 t = 81 t = 81

Sel: } 4,11,18,25,32, 39,46,53,60,67,746