

Algorithms: Design and Analysis, Part II

Greedy Algorithms

A Scheduling Application: The Algorithm

Intuition for Algorithm

Recall: Want to $\min \sum_{j=1}^{n} w_j$.

Goal: Devise correct greedy algorithm.

Question:

- 1. With equal lengths, schedule larger or smaller-weight jobs earlier?
- 2. With equal weights, schedule shorter or longer jobs earlier?
 - A) Larger/shorter C) Larger/longer
 - B) Smaller/shorter D) Smaller/longer

Resolving Conflicting Advice

Question: What if $w_i > w_j$ but $l_i > l_j$?

Idea: Assign "scores" to jobs that are:

- inscreasing in weight
- decreasing in length

Guess (1): Order jobs by decreasing value of $w_i - l_i$.

Guess (2): Order w_i/I_i .

Breaking a Greedy Algorithm

To distinguish (1) & (2): Find example where the two algorithms produce different outputs. (At least one will be incorrect.) Example:

$$I_1 = 5, w_1 = 3$$
 (longer ratio)
 $I_1 = 2, w_1 = 1$ (larger difference)

Question: What is the sum of weighted completion times of algorithms (1) & (2) respectively?

- A) 22 and 23 C) 17 and 17
- B) 23 and 22 D) 17 and 11

Alg#1:
$$\#2 \mid \#1 \mid \rightarrow 1 \cdot 2 + 3 \cdot 7 = 23$$

Alg#2: $\#1 \mid \#2 \mid \rightarrow 3 \cdot 5 + 1 \cdot 7 = 22$

The Story So Far

So: Alg#1 not (always) correct.

Claim: Alg#2 (order by decreasing ratio w_j/l_j 's) is always correct. [not obvious! - proof coming up next]

Running time: $O(n \log n)$. [just need to sort]