С	О	$\hat{r_O}$	P ₁	$r_{\hat{m{p}}1}$	b ₁	P ₂	$r_{\hat{p}2}$	b ₂
c_1	4	0.9	4	0.6	0	4	0.7	0
C_2	3	0.7	3	0.4	0	4	0.7	1
C_3	3	0.7	3	0.4	0	3	0.4	0
C_4	3	0.7	4	0.6	1	3	0.4	0
	∑=13		∑=14			∑=14		

nDCG is inapplicable in cases where the sum of original rank prediction (13) is less than predicted rank sum. It gives a score greater than 1 which is not correct as it ranges [0,1].

So we use **hDMA** which is explained below.

C- sub-concepts of superconcept D.

O- original rank of subconcepts based on decreasing confidence scores $\hat{r_o}$.

 $\hat{r_o}$ - original confidence score of relatedness to D. P_i - predicted ranking based on predicted confidence score $\hat{r_{p_i}}$.

 b_i - bit vector of XOR operation between 0 and P_i .

$$O \oplus P_1 = (0001)_2 = (1)_{10}$$

 $hDMA(O, P_1) = \frac{1}{1+1}$

$$O \oplus P_2 = (0100)_2 = (4)_{10}$$

 $hDMA(O, P_2) = \frac{4}{4+1}$