PavlovYarN 11102024-152949

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.512	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Найти точку (см. рисунок 1), соответствующую s_{22} на частоте 5.4 ГГц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Задан двухполюсник на рисунке 2, причём R1 = 294.84 Ом.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
3.5	0.393	156.3	3.544	57.2	0.115	57.7	0.151	-118.9
4.0	0.398	150.6	3.099	52.1	0.130	54.7	0.147	-125.9
4.5	0.406	146.0	2.758	47.2	0.145	51.5	0.140	-132.6
5.0	0.410	141.9	2.491	42.4	0.160	48.3	0.131	-139.8
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
6.0	0.422	132.4	2.091	32.7	0.188	41.5	0.106	-159.6
6.5	0.435	127.0	1.934	28.0	0.201	38.0	0.098	-175.7
7.0	0.450	121.5	1.795	23.0	0.214	34.4	0.093	166.3
7.5	0.472	117.4	1.674	18.4	0.226	31.0	0.100	147.0
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

и частоты $f_{\mbox{\tiny H}}=5.0$ $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=7.0$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти модуль $s_{22}\,$ в дБ на частоте $f_{\scriptscriptstyle \mathrm{H}}\,$.

Варианты ОТВЕТА:

- 1) -7.7 дБ
- 2) -17.6 дБ
- 3) -15.9 дБ
- 4) 7.9 дБ

Найти точку (см. рисунок 4), соответствующую коэффициенту отражения от нормированного импеданса z=0.86-0.26 i .

Рисунок 4 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.352	-56.5
1.3	0.332	-167.1	10.393	86.1	0.046	68.3	0.292	-62.1
1.6	0.343	-174.9	8.358	80.5	0.054	67.5	0.248	-67.9
1.9	0.352	178.5	7.048	75.7	0.064	66.6	0.215	-73.7
2.4	0.359	170.7	5.465	69.5	0.078	64.4	0.185	-84.2
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6
6.0	0.406	132.7	2.181	33.6	0.181	42.9	0.103	-135.0
7.5	0.455	117.7	1.746	19.5	0.219	32.6	0.070	167.2

и частоты $f_{\scriptscriptstyle \rm H}=1.3$ ГГц, $f_{\scriptscriptstyle \rm B}=6.0$ ГГц.

Найти усиление на $f_{\scriptscriptstyle \mathrm{H}}$.

Варианты ОТВЕТА:

1) 10.2 дБ 2) 3.4 дБ 3) 6.8 дБ 4) 20.3 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
5.9	0.503	150.5	4.791	41.2	0.086	48.8	0.183	-127.4
6.0	0.505	149.5	4.716	40.2	0.087	48.2	0.181	-128.9
6.1	0.506	148.3	4.638	39.2	0.088	47.6	0.179	-130.7
6.2	0.508	147.1	4.562	38.2	0.090	47.0	0.176	-132.5
6.3	0.510	145.9	4.487	37.2	0.091	46.4	0.174	-134.3
6.4	0.512	144.7	4.414	36.1	0.092	45.8	0.172	-136.3
6.5	0.514	143.5	4.342	35.0	0.094	45.3	0.171	-138.2
6.6	0.516	142.4	4.271	34.1	0.095	44.8	0.166	-139.7
6.8	0.521	140.3	4.133	32.2	0.097	43.9	0.159	-143.1
7.0	0.527	138.2	3.999	30.1	0.100	43.1	0.151	-146.7
7.2	0.532	136.4	3.874	28.4	0.102	42.3	0.141	-150.4

и частоты $f_{\mbox{\tiny H}}=6.0$ $\Gamma\Gamma\mbox{\scriptsize II},\,f_{\mbox{\tiny B}}=6.8$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\text{\tiny H}}...f_{\text{\tiny B}}$, используя рисунок 5.

Рисунок 5 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 0.6 дБ 2) 1.8 дБ 3) 0.6 дБ 4) 1.1 дБ