TD1 - Modules partie 1

Exercice 1. Soit \mathbb{k} un corps, lesquels des sous-ensembles suivants de $\mathbb{k}[X]$ sont des k-sous-modules de $\mathbb{k}[X]$?

- (a) Les polynômes de degré exactement 4.
- (b) Les polynômes de degré au plus 4.
- (c) Les polynômes unitaires.
- (d) L'ensemble {polynômes unitaires} \cup {0}.
- (e) Les polynômes de degré pair.

Exercice 2. Soit R un anneau, vu comme R-module. Montrer que les sous-R-modules de R sont exactement les idéaux de R.

Exercice 3. Soit R un anneau, vu comme un R-module. Déterminer tous les morphismes de R-modules de R vers R.

Exercice 4. Montrer que l'ensemble $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ des fonctions lisses (i.e infiniment dérivables) est un \mathbb{R} -module. Montrer que l'application ∂ envoyant f sur f' est un endomorphisme de $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$, quel est son noyau? Son image?

Exercice 5. Soient E, F, G trois sous-modules d'un R-module M. Est-il vrai que

$$E \cap (F + G) = (E \cap F) + (E \cap G)$$

$$E \cap (F + (E \cap G)) = (E \cap F) + (E \cap G)$$

Exercice 6. Soit E un k-espace vectoriel. Soient A et B des parties de E. Comparer

$$Vect(A \cup B)$$
 et $Vect(A) \cup Vect(B)$

$$Vect(A \cap B)$$
 et $Vect(A) \cap Vect(B)$

Vect(Vect(A)) et Vect(A)

Exercice 7. Soit $\varphi: M \to N$ un morphisme de R-modules, et soient M', N' des sous-modules respectifs de M et N. Montrer que $\varphi(M')$ est un sous-module de N et que $\varphi^{-1}(N')$ est un sous-module de M.

Exercice 8. Soit M un R-module, on définit l'annulateur de M par $I = \{r \in R \mid rM = 0\}$.

- 1. Montrer que I est bien un idéal de R.
- 2. Quel est l'annulateur du \mathbb{Z} -module \mathbb{Z} ?
- 3. Soit $n \in \mathbb{N}^*$, quel est l'annulateur du \mathbb{Z} -module $\mathbb{Z}/n\mathbb{Z}$?
- 4. Quel est l'annulateur du \mathbb{Z} -module $M := \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$?

Exercice 9. Soit (G, +) un groupe abélien, vérifier que poser, pour $n \in \mathbb{Z}, q \in G$,

$$n.g := g + g + \dots + g$$
 (*n* terms) et $(-n).g := -(n.g)$

munit G d'une structure de \mathbb{Z} -module.

Exercice 10. (Algèbres)

Soit R un anneau et S un R-module, on dit que S est une R-algèbre (associative, commutative et unitaire) s'il existe une loi interne $\times_S : S \times S \to S$ respectant les conditions suivantes :

- Associativité : pour $s_1, s_2, s_3 \in S$, on a $s_1 \times_S (s_2 \times_S s_3) = (s_1 \times_S s_2) \times_S s_3$.
- Commutativité : pour $s_1, s_2 \in S$, on a $s_1 \times_S s_2 = s_2 \times_S s_1$
- Unitarité : il existe un $1_S \in S$ tel que pour tout $s \in S$, on ait $1_S \times_S s = s$.
- R-bilinéarité : on a les égalités suivantes $(s_i, s' \in S, r \in R)$
 - $r.(s \times_S s') = (r.s) \times_S s' = s \times_S (r.s')$
 - $-(s_1+s_2)\times_S s_3 = s_1\times_S s_3 + s_2\times_S s_3$
 - $s_1 \times_S (s_2 + s_3) = s_1 \times_S s_2 + s_1 \times_S s_3$.
- 1. Soit $(S, +, \times_S)$ une R-algèbre.
 - a) Montrer que $(S, +, \times_S)$ est un anneau commutatif unitaire.
 - b) Montrer que l'application $f: R \to S$ définie par $r \mapsto r.1_S \in S$ est un morphisme d'anneaux.
- 2. Réciproquement, si $(S, +, \times)$ est un anneau et $f: R \to S$ un morphisme d'anneaux, montrer que l'on munit S d'une structure de R-module en posant :

$$\forall r \in R, s \in S, \quad r.s := f(r)s$$

Montrer que l'on fait ainsi de S une R-algèbre.

- 3. Montrer que R[X], vu comme R-module, est en fait une R-algèbre. Quel est le morphisme d'anneau $R \to R[X]$ associé?
- 4. Montrer que \mathbb{C} est une \mathbb{R} -algèbre, et une \mathbb{Q} -algèbre, quels sont les morphismes $\mathbb{Q} \to \mathbb{C}$ et $\mathbb{R} \to \mathbb{C}$ associés?
- 5. Montrer que pour tout anneau R, il existe un unique morphisme d'anneau $\mathbb{Z} \to R$. En déduire que tout anneau est muni d'une structure canonique de \mathbb{Z} -algèbre.

Exercice 11. (Mon premier foncteur)

Soient S et R deux anneaux, $f: R \to S$ faisant de S une R-algèbre (cf exercice 10), et M un S-module.

- 1. Montrer que poser r.m := f(r).m munit M d'une structure de R-module.
- 2. Si $\varphi:M\to N$ est un morphisme de S-modules, montrer que la construction précédente fait de φ un morphisme de R-modules.
- 3. Qu'obtient-on en appliquant les résultats précédents au cas $R = \mathbb{Z}$?

Exercice 12. Soit k un corps, E un k-espace vectoriel, et R := k[X] l'anneau des polynômes à une variable.

1. Soit $u \in \operatorname{End}_k(E)$, montrer que la loi de composition

$$\begin{array}{ccc} R \times E & \longrightarrow & E \\ (P, x) & \longmapsto & P(u)(x) \end{array}$$

munit E d'une structure de R-module.

- 2. Réciproquement, soit M un R-module, montrer que M est aussi un k-espace vectoriel et que l'application $u: v \mapsto X.v$ est un endomorphisme du k-espace vectoriel M.
- 3. En déduire que tout R-module peut s'obtenir par la construction de la question (1).
- 4. Montrer que pour tout $u, v \in \operatorname{End}_{\mathbb{k}}(E)$, les R-modules associés à (E, u) et (E, v) sont isomorphes si et seulement si u et v sont semblables (i.e conjuqués par un élément de $\operatorname{Gl}(E)$).
- 5. On suppose maintenant que (E, u) est un R-module monogène, c'est-à-dire que E = R.v pour un certain $v \in E$, on suppose également que E est de dimension finie comme k-espace vectoriel.
 - a) En considérant l'application $P \mapsto P.v$, montrer que $(E,u) \simeq R/(P_0)$ pour un certain polynôme unitaire $P_0 \in \mathbb{k}[X]$.
 - b) Montrer que P_0 est le polynôme minimal de l'endomorphisme u.
 - c) Montrer que E, vu comme k-espace vectoriel, admet pour base la famille $\{u^i(v)\}_{i\in[0,n-1]}$, où $n=\deg P_0$.
 - d) En déduire que P_0 est le polynôme caractéristique de l'endomorphisme u.