Lecture Summary: Maximum of Two Random Variables

Source: Lecture 2.9.pdf

Key Points

- Introduction to the Maximum Function:
 - The maximum of two random variables, $Z = \max(X, Y)$, represents the largest value between X and Y.
 - This lecture focuses on X and Y being independent and identically distributed (i.i.d.) uniform random variables over $\{1, 2, \dots, 6\}$.
- Steps to Derive the PMF of Z:
 - 1. Determine the Range of Z:
 - The range of Z is $\{1, 2, ..., 6\}$, as the maximum of two values between 1 and 6 also lies in this range.
 - 2. Count the Occurrences for Each Value of Z:
 - For Z = 1, the only possible pair is (1, 1).
 - For Z = 2, possible pairs are (2, 1), (2, 2), and (1, 2).
 - For Z = 3, possible pairs are (3, 1), (3, 2), (3, 3), (2, 3), and (1, 3).
 - This pattern continues for higher values of Z.
- General Formula for PMF of Z:
 - For Z=z, the count of pairs (x,y) satisfying $\max(x,y)=z$ is:

$$2z - 1$$
.

- The probability is then:

$$P(Z=z) = \frac{2z-1}{36}, \quad z \in \{1, 2, \dots, 6\}.$$

- Visualization of the PMF:
 - The PMF shows an increasing trend, with probabilities rising as z increases.
 - Example values:

$$P(Z=1) = \frac{1}{36}, \quad P(Z=2) = \frac{3}{36}, \quad P(Z=3) = \frac{5}{36}, \quad \dots, \quad P(Z=6) = \frac{11}{36}.$$

- Extensions:
 - For general $X, Y \sim \text{Uniform}\{1, 2, \dots, n\}$, the range of $Z = \max(X, Y)$ is $\{1, 2, \dots, n\}$.
 - The count of pairs (x, y) where $\max(x, y) = z$ is 2z 1.
 - PMF:

$$P(Z=z) = \frac{2z-1}{n^2}, \quad z \in \{1, 2, \dots, n\}.$$

Simplified Explanation

Maximum Function: The maximum of two random variables X and Y is their largest value. For i.i.d. uniform distributions: - Range of $Z = \{1, 2, ..., n\}$. - Probability $P(Z = z) = \frac{2z-1}{n^2}$.

Example for n = 6:

$$P(Z=1) = \frac{1}{36}, \ P(Z=2) = \frac{3}{36}, \ P(Z=3) = \frac{5}{36}, \dots, \ P(Z=6) = \frac{11}{36}.$$

Conclusion

In this lecture, we:

- Derived the PMF of the maximum function for two uniform random variables.
- Used a systematic approach to count pairs satisfying $\max(X,Y) = Z$.
- Generalized the results for uniform distributions over $\{1, 2, \dots, n\}$.

Understanding the maximum function is essential for probabilistic analysis and forms the basis for studying other functions of random variables.