

DIPARTIMENTO DI MECCANICA

MECHANICAL SYSTEM DYNAMICS

Practical application of experimental modal analysis technique

M. Vignati

Identify the **natural frequencies** and **mode shapes** of a real system through experimental modal analysis.

Steps:

- System description
- Experimental setup design
 - Constraints -> how to fix the system
 - Inputs -> how to excite
 - Outputs -> what to measure
 - Measurement system (analytical tools)
- Data processing
- Comparison with analytical model

Properties of the system

An aluminum beam with rectangular constant cross-section

Parameter	symbol	unit	value
Lenght	L	mm	1200
Thickness	h	mm	8
Width	b	mm	40
Density	ho	${ m kg/m^3}$	2700
Young's Modulus	E	GPa	68

Experimental setup design

S1 and **S2** are flexible supports \approx free-free beam

Experimental setup design

Figure 1: Typical ICP® Accelerometer

Performance	ENGLISH	SI
Sensitivity(± 10 %)	100 mV/g	10.2 mV/(m/s ²)
Measurement Range	± 50 g pk	± 491 m/s² pk

Physical Sensing Element Ceramic Sensing Geometry Shear Housing Material Titanium Sealing Welded Hermetic Size (Hex x Height) 9/32 in x 18.5 mm Weight 2.0 gm **Electrical Connector** 10-32 Coaxial Jack Electrical Connection Position Top 5-40 Male Mounting Thread Mounting Torque 90 to 135 N-cm

Experimental setup design

Dynamometric Hammer

Why? Impulse input, excites all frequencies (theoretically)

... in these tests we will use hammer tip # 2 (intermediate)

Data processing

Time histories

INPUT FORCE

OUTPUT ACCELERATION

Frequency Response Functions

- Measurements are performed so as to collect a data set of N pairs of sampled time histories for the input force F_k and the output vibration x_j (the length of all the 2N time histories is indicated with T_0)
- 2 If needed, a Hanning (or other) window, is used to minimize spectral leakage
- 3 Discrete Fourier Transform is applied to all the signals, thus obtaining 2N discrete spectra F_{k_i} and X_{j_i} with fundamental frequency $\omega_0 = 2\pi/T_0$
- ② PSD (Power Spectral Density real) $G_{XX}(n\omega_0)$ and $G_{FF}(n\omega_0)$, as well as CSD (Cross-Spectral Density complex) functions $G_{XF}(n\omega_0)$ are computed.
- **6** Finally the experimental FRF G_{jk}^{EXP} and the coherence function γ_{jk}^2 are estimated.

= experimental FRF is computed according to H1 estimator

$$G_{jk}^{EXP} = \frac{X_j}{F_k} = \frac{G_{XF}}{G_{FF}}$$

Discrete Cross-spectral-density

$$G_{YZ} = \frac{1}{M} \sum_{m=1}^{M} \frac{Y(m\omega_0)Z^*(m\omega_0)}{2\omega_0}$$

Coherence function

$$\gamma_{jk}^2 = \frac{|G_{XF}|^2}{G_{XX}G_{FF}}$$

In modal approach the FRF can be written as

$$G_{jk} = \frac{X_{j0}}{F_k} = \sum_{i=1}^{N} \frac{X_j^{(i)} X_k^{(i)} / m_i}{-\Omega^2 + j2\xi_i \omega_i \Omega + \omega_i^2}$$

$$j = \text{A1, A2, A3}$$

$$k = \text{DH1, DH2}$$

Mode shapes are given by:

- Relative amplitudes
- Relative phases

At resonance:

$$G_{jk}(\omega_i) pprox \left(-j \frac{X_k^{(i)}}{c_i \omega_i}\right) X_j^{(i)}$$

Analytical solution for free-free beam

 $w(x,t) = (A\sin\gamma x + B\cos\gamma x + C\sinh\gamma x + D\cosh\gamma x)\cos(\omega t + \varphi)$

Boundary conditions

$$\begin{split} M_z(0,t) &= 0 & -B + D = 0 \\ Q(0,t) &= 0 & -A + C = 0 \\ M_z(L,t) &= 0 & -A \sin \gamma L - B \cos \gamma L + C \sinh \gamma L + d \cosh \gamma L = 0 \\ Q(L,t) &= 0 & -A \cos \gamma L + B \sin \gamma L + C \cosh \gamma L + d \sinh \gamma L = 0 \end{split}$$

- DH1.mat hammer in DH1 position
- DH2.mat hammer in DH2 position
- RDH1.mat Acc1 and DH1 position interchanged (reciprocity against DH1.mat)

Each *.mat file cointains:

- **freq** frequency vector (resolution 0.02 Hz)
- **frf** frequency response functions (complex), collected by columns (A1, A2, A3)
- **cohe** coherence function, collected by columns (A1, A2, A3)

Single mode identification (up to 5-th mode)

- 1. Identification of the natural **frequencies**√
- 2. Identification of the damping ratio by the "half-power points" method
- 3. Identification of the damping ratio by the "slope of the phase diagram" method
- 4. Comparison Analytical Vs Experimental **mode shapes**

For the oral examination...

...short report, for each mode, the identification results (items 1 to 4), for at least one test configuration among DH1, DH2 and RDH1. Collect the results in table form (for each sensor, items 1 to 3) and plot a diagram for the comparison (item 4)