ASSIGNMENT 3

Write a parallel *Pthreads* program computing the norm of the product of two $\mathbf{n} \times \mathbf{n}$ dense matrices on a \mathbf{p} -processor SMP so that

- **p** threads are involved in the parallel computations.
- The 1-dimensional parallel algorithm of matrix multiplication is employed:
 - o one of matrices is partitioned in one dimension into **p** equal slices
 - o there is one-to-one mapping between the partitions and threads
 - each thread is responsible for computation of the corresponding slice of the resulting matrix
- Computation of the norm of the resulting matrix employs the *mutex* synchronization mechanism.

You can use BLAS or ATLAS for local computations.

Experiment with the program and build:

- 1) The dependence of the execution time of the program on the matrix size \mathbf{n} .
- 2) The speedup over a serial counterpart of the program.

Explain the results.

Variants of the assignment:

- 1) Granularity of the program
 - a. Two successive steps:
 - i. Parallel matrix multiplication
 - ii. Parallel computation of the norm of the resulting matrix
 - b. One-step algorithm. No intermediate resulting matrix.
- 2) Partitioning scheme
 - a. Left matrix is horizontally partitioned
 - b. Right matrix is vertically partitioned
- 3) Matrix norm to be computed:
 - a. The *maximum absolute column sum norm* (aka *one-norm*):

$$||A||_1 = \max_{0 \le j < n} \sum_{i=0}^{n-1} |a_{ij}|$$

b. The maximum absolute row sum norm (aka infinity-norm):

$$||A||_{\infty} = \max_{0 \le i < n} \sum_{i=0}^{n-1} |a_{ij}|$$
