Ejercicios de la sección 1.3 Combinaciones lineales de vectores en \mathbb{R}^n y las ecuaciones vectoriales

(Ejercicios para hacer en clase: 7, 9, 11, 13, 17, 20, 22, 26, 27.) (Ejercicios con solución o indicaciones: 1, 6, 8, 12, 18, 19, 25, 28.)

▶1. Demuestra que $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ para todos los vectores \mathbf{u} y \mathbf{v} en \mathbf{R}^n .

En los ejercicios 2 y 3, halla $\mathbf{u} + \mathbf{v}$ y $\mathbf{u} - 2\mathbf{v}$.

2.
$$\mathbf{u} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$$

3.
$$\mathbf{u} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

En los ejercicios 4 y 5, representa los siguientes vectores utilizando flechas en una gráfica en el plano $xy: \mathbf{u}, \mathbf{v}, -\mathbf{v}, -2\mathbf{v}, \mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}$ y $\mathbf{u} - 2\mathbf{v}$. Observa que $\mathbf{u} - \mathbf{v}$ es el vértice de un paralelogramo cuyos otros vértices son \mathbf{u} , $\mathbf{0}$ y $-\mathbf{v}$.

- 4. u y v como en el ejercicio 2.
- 5. u y v como en el ejercicio 3.

En los ejercicios 6 y 7, escribe un sistema de ecuaciones que sea equivalente a la ecuación vectorial dada.

▶6.
$$x_1 \begin{pmatrix} 6 \\ -1 \\ 5 \end{pmatrix} + x_2 \begin{pmatrix} -3 \\ 4 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -7 \\ -5 \end{pmatrix}$$

$$7. x_1 \begin{pmatrix} -2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 8 \\ 5 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ -6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Usa la siguiente figura para escribir cada vector indicado en los ejercicios $8\ y\ 9$ como una combinación lineal de $u\ y\ v$. ¿Es cada vector en \mathbf{R}^2 una combinación lineal de $u\ y\ v$?.

- ▶8. Los vectores a, b, c y d.
- ▶9. Los vectores \mathbf{w} , \mathbf{x} , \mathbf{y} y \mathbf{z} .

En los ejercicios 10 y 11, escribe una ecuación vectorial que sea equivalente al sistema de ecuaciones dado.

▶11.

$$x_2 + 5x_3 = 0$$
 $4x_1 + x_2 + 3x_3 = 9$
 $4x_1 + 6x_2 - x_3 = 0$ $x_1 - 7x_2 - 2x_3 = 2$
 $-x_1 + 3x_2 - x_3 = 0$ $x_1 + 6x_2 - 5x_3 = 15$

En los ejercicios 12 y 13, averigua si ${\bf b}$ es una combinación lineal de ${\bf a}_1,\,{\bf a}_2$ y ${\bf a}_3.$

▶12.
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 5 \\ -6 \\ 8 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 6 \end{pmatrix}$.

▶13.
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 2 \\ 5 \\ 8 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} -5 \\ 11 \\ -7 \end{pmatrix}$.

En los ejercicios 14 y 15, averigua si **b** es una combinación lineal de los vectores formados a partir de las columnas de la matriz *A*.

14.
$$A = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 3 \\ -7 \\ -3 \end{pmatrix}$

15.
$$A = \begin{pmatrix} 1 & -2 & -6 \\ 0 & 3 & 7 \\ 1 & -2 & 5 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 11 \\ -5 \\ 9 \end{pmatrix}$

En los ejercicios 16 y 17, escribe cinco vectores que pertenezcan a Gen $\{v_1, v_2\}$. Para cada vector, indica los coeficientes usados con v_1 y v_2 para generar el vector e indica los tres elementos del vector. No hagas ningún bosquejo; trabaja algebraicamente.

16.
$$\mathbf{v}_1 = \begin{pmatrix} 7 \\ 1 \\ -6 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -5 \\ 3 \\ 0 \end{pmatrix}$$

▶17.
$$\mathbf{v}_1 = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} -2 \\ 0 \\ 3 \end{pmatrix}$$

▶18. Halla los valores de h para los que y estará en Gen $\{v_1, v_2, v_3\}$ si

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 5 \\ -4 \\ -7 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} -4 \\ 3 \\ h \end{pmatrix}$

▶19. Sean $\mathbf{a}_1 = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$, $\mathbf{a}_2 = \begin{pmatrix} -2 \\ -3 \\ 7 \end{pmatrix}$ y $\mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ h \end{pmatrix}$. ¿Para qué valores de h está \mathbf{b} en el plano generado por \mathbf{a}_1 y \mathbf{a}_2 ?.

▶20. Sean
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} -3 \\ 1 \\ 8 \end{pmatrix}$ y $\mathbf{b} = \begin{pmatrix} h \\ -5 \\ -3 \end{pmatrix}$. ¿Para qué valores de h está \mathbf{b} en el plano generado por \mathbf{a}_1 y \mathbf{a}_2 ?.

21. Da una descripción geométrica del subespacio Gen $\{\mathbf{v}_1, \mathbf{v}_2\}$ de \mathbf{R}^3 para los vectores

$$\mathbf{v}_1 = \begin{pmatrix} 8\\2\\-6 \end{pmatrix} \mathbf{y} \ \mathbf{v}_2 = \begin{pmatrix} 12\\3\\-9 \end{pmatrix}.$$

▶22. Da una descripción geométrica de $Gen\{v_1, v_2\}$ para los vectores del ejercicio 17.

23. Sean $\mathbf{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ y $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Demuestra que el vector $\begin{pmatrix} h \\ k \end{pmatrix}$ está en Gen $\{\mathbf{u}, \mathbf{v}\}$ para todos los valores de h y k.

24. Construye una matriz A de 3×3 , con todos los elementos distintos de cero, y un vector \mathbf{b} en \mathbf{R}^3 tal que \mathbf{b} no esté en el conjunto generado por las columnas de A.

En los ejercicios 25 y 26, indica para cada enunciado si es verdadero o falso. Justifica cada una de tus respuestas.

▶25.

- (a) Una notación equivalente para el vector $\begin{pmatrix} -4\\ 3 \end{pmatrix}$ es $\begin{bmatrix} -4 & 3 \end{bmatrix}$.
- (b) Los puntos en el plano correspondientes a (-2,5) y (-5,2) están sobre una recta que pasa por el origen.
- (c) Un ejemplo de una combinación lineal de los vectores \mathbf{v}_1 y \mathbf{v}_2 es el vector $\frac{1}{2}\mathbf{v}_1$.
- (d) El conjunto solución del sistema cuya matriz ampliada es $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}]$ es igual al conjunto solución de la ecuación vectorial $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$.
- (e) Cualesquiera que sean los vectores \mathbf{u} , \mathbf{v} el conjunto generado por ellos, $\text{Gen}\{\mathbf{u},\mathbf{v}\}$, siempre representa un plano que pasa por el origen.

▶26.

- (a) Cualquier lista de cinco números reales es un vector en R³.
- (b) El vector ${\bf u}$ se obtiene cuando al vector ${\bf u}-{\bf v}$ se le suma el vector ${\bf v}.$
- (c) Si \mathbf{u} y \mathbf{v} son vectores distintos de cero, Gen $\{\mathbf{u}, \mathbf{v}\}$ contiene la recta que pasa por \mathbf{u} y por el origen.
- (d) Si \mathbf{u} y \mathbf{v} son vectores distintos ambos no nulos, Gen $\{\mathbf{u}, \mathbf{v}\}$ contiene la recta que pasa por \mathbf{u} y por \mathbf{v} .
- (e) Preguntar si el sistema correspondiente a una matriz ampliada [a₁ a₂ a₃ b] tiene alguna solución es lo mismo que preguntar si b está en el conjunto generado Gen{a₁, a₂, a₃}.

▶27. Sean

$$A = \begin{pmatrix} 1 & 0 & 6 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{pmatrix} \quad \mathbf{y} \quad \mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ -4 \end{pmatrix}.$$

Denotemos las columnas de A mediante \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , y sea $W = \text{Gen}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.

- (a) ¿Está **b** en W? ¿Cuántos vectores hay en W?.
- (b) Demuestra que a_1 está en W. [Indicación: No se requieren operaciones de fila.]

▶28. Sea $A = \begin{pmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{pmatrix}$, sea $\mathbf{b} = \begin{pmatrix} 10 \\ 3 \\ 3 \end{pmatrix}$, y sea

W el conjunto de todas las combinaciones lineales de las columnas de A.

- (a) ¿Está **b** en W?.
- (b) Demuestra que la tercera columna de *A* está en *W*.

29. Sean $\mathbf{v}_1,\ldots,\mathbf{v}_k$ puntos en \mathbf{R}^3 , y supongamos que para $j=1,\ldots,k$ un objeto de masa m_j , se localiza en el punto \mathbf{v}_j . Los físicos llaman a tales objetos masas puntuales. La masa total del sistema es

$$m = m_1 + \cdots + m_k$$

El centro de gravedad (o centro de masa) del sistema es

$$\bar{\mathbf{v}} = \frac{m_1 \mathbf{v}_1 + \dots + m_k \mathbf{v}_k}{m}$$

Calcula el centro de gravedad del sistema constituido por las siguientes masas puntuales:

Punto	Masa
$\mathbf{v}_1 = (5, -4, 3)$	2 g
$\mathbf{v}_2 = (4, 3, -2)$	5 g
$\mathbf{v}_3 = (-4, -3, -1)$	2 g
$\mathbf{v}_4 = (-9, 8, 6)$	1 g

30. Considera los vectores \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 y \mathbf{b} en \mathbf{R}^2 que se muestran en la figura. La ecuación vectorial $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$, ¿tiene alguna solución?. En caso afirmativo, ¿es única?. Utiliza la figura para explicar tus respuestas.

- **31.** Usa los vectores $\mathbf{u} = (u_1, \dots, u_n)$, $\mathbf{v} = (v_1, \dots, v_n)$ y $\mathbf{w} = (w_1, \dots, w_n)$ para verificar las siguientes propiedades algebraicas de \mathbf{R}^n .
 - (a) (u + v) + w = u + (v + w),
 - (b) $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ para cada número c.
- **32.** Usa el vector $\mathbf{u} = (u_1, \dots, u_n)$ para verificar las siguientes propiedades algebraicas de \mathbf{R}^n .
 - (a) $\mathbf{u} + (-\mathbf{u}) = (-\mathbf{u}) + \mathbf{u} = 0$,
 - (b) $c(d\mathbf{u}) = (cd)\mathbf{u}$ para cualesquiera números c y d.

Pistas y soluciones de ejercicios seleccionados de la sección 1.3

1.
$$\mathbf{u} + \mathbf{v} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix} = \begin{pmatrix} v_1 + u_1 \\ \vdots \\ v_n + u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_n + u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ \vdots \\ v_n + u_n \end{pmatrix} = \mathbf{v} + \mathbf{u}.$$

6. El sistema es:

$$6x_1 - 3x_2 = 1$$

$$-x_1 + 4x_2 = -7$$

$$5x_1 = -5$$

8.
$$a = u - 2v$$
, $b = 2u - 2v$, $c = 2u - \frac{7}{2}v$, $d = 3u - 4v$.

12. Basta poner la matriz $\begin{bmatrix} a_1 & a_2 & a_3 & b \end{bmatrix}$ en forma escalonada:

$$\begin{pmatrix} 1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

La forma escalonada no tiene un pivote en la columna de los términos independientes (la de la derecha), luego el sistema es compatible y el vector \mathbf{b} es una combinación lineal de \mathbf{a}_1 , \mathbf{a}_2 y \mathbf{a}_3 .

18. El vector y estará en Gen $\{v_1,v_2,v_3\}$ si y sólo si el sistema de matriz $[v_1 \ v_2 \ v_3 \ y]$ es compatible. Ponemos esa matriz en forma escalonada:

$$\begin{pmatrix} 1 & 5 & -3 & -4 \\ -1 & -4 & 1 & 3 \\ -2 & -7 & 0 & h \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 3 & -6 & h - 8 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h - 5 \end{pmatrix}$$

El sistema es compatible si y sólo si h=5 por tanto el único valor de h para el que y está en $Gen\{v_1, v_2, v_3\}$ es h=5.

19. Basta poner la matriz $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{b}]$ en forma escalonada:

$$\begin{pmatrix} 1 & -2 & 4 \\ 4 & -3 & 1 \\ -2 & 7 & h \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 4 \\ 0 & 5 & -15 \\ 0 & 3 & h+8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & h+17 \end{pmatrix}.$$

Para que no haya pivote en la columna de la derecha tiene que ser h=-17.

25. (a) La notación equivalente es (-4,3), (b) Estos puntos no están alineados con el origen porque no son uno múltiplo del otro, (c) El coeficiente de \mathbf{v}_2 es cero, (d) Recuérdese la definición del producto matriz por vector, (e) Es una recta si \mathbf{u} y \mathbf{v} son proporcionales y no ambos nulos y es un punto si ambos son nulos.

28. (a) Basta poner la matriz $(A|\mathbf{b})$ en forma escalonada para averiguar si el sistema $A\mathbf{x} = \mathbf{b}$ es compatible. En este caso se obtiene que sí lo es por lo que \mathbf{b} sí está en W. (b) Si llamamos \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 a las columnas de A, se cumple $\mathbf{a}_3 = 0$ $\mathbf{a}_1 + 0$ $\mathbf{a}_2 + \mathbf{a}_3$, luego es combinación lineal de las columnas de A, luego está en W.