

Christopher Landschoot

Audio Data Scientist

Background

- Music "Demixing" (audio source separation) separating individual instruments' audio from a single music track.
- Applications:
 - Music Remixing
 - o Music information retrieval (lyric recognition, automatic scoring, etc.)
 - Music education
 - And of course...
 - Karaoke!

Background

- Audio source separation has increased interest in recent years due to an increase in computing power and capabilities of neural networks.
- Previous methods utilized DSP filtering techniques for source separation, but they did not produce the desirable high-fidelity audio required for music.
- <u>Alcrowd</u> has created a competition, MDX-23, focused on pushing forward music source separation technology with 3 "paths":
 - General audio source separation
 - Bleeding: Some stems have "bleed" of other audio (e.g. audio from vocalist headphones bleeds into their microphone)
 - Mislabeling: Some stems have been labeled incorrectly (e.g. "Bass" labeled as "Drums")

Background

- Audio source separation has increased interest in recent years due to an increase in computing power and capabilities of neural networks.
- Previous methods utilized DSP filtering techniques for source separation, but they did not produce the desirable high-fidelity audio required for music.
- <u>Alcrowd</u> has created a competition, MDX-23, focused on pushing forward music source separation technology with 3 "paths":
 - General audio source separation

Problem Statement

- Participation in MDX-23 seeks to:
 - Explore and review current methods of audio source separation.
 - Replicate state-of-the-art modelling techniques.
 - Compare the Band-Split RNN against other methods.
 - Determine shortcomings and methods for improvement.

History

Audio Source Separation Methods (source: paperswithcode)

Waveform (Time Domain)

Spectrum (Frequency Domain)

Spectrogram (Time-Frequency Domain)

Band-Split Recurrent Neural Network

Band-Split Recurrent Neural Network

3 Modules

- Band-split module
- Band and sequence separation modeling module
- Mask estimation module

Band-Split Module

Band and Sequence Separation Modeling Module

- Reverse audio BLSTM achieves this
- Gain scaling randomly scales the gain (aka volume) of the signal
- Random crop randomly selects "chunks" of audio each iteration

Performance

Audio	SDR	Sample
Mixture		0000
Vocals	10.47	0000
Bass	8.16	0000
Drums	10.15	0000
Other	7.08	0000

Conclusions

- This Band-Split RNN framework out-performs all other models in nearly every category and far outperforms vocal separation.
 - Including: Meta's Demucs, KUIELab's MDX-Net, PyTorch Open-Unmix, Deezer Spleeter
- This is a novel framework that was published in 2022 and still has a great deal of possible tuning, particularly regarding instruments other than vocals.

Conclusions

- Methods for improvement:
 - The 4 sources of Vocals, Bass, Drums, and Other are not all-encompassing.
 - Create datasets that consist of more diverse stems (e.g. acoustic guitar, strings, etc.)
 - Better choice of band-splitting (currently determined through rough grid-search)
 - Tune hyperparameters:
 - Frame size (how much audio is analysis at a time: Used 3 seconds
 - Hop size (spacing between frames, aka overlap): 2.5 seconds
 - Adjust dimensions in Band Split and Mask Estimation modules
 - Adjust dimensions and number of BLSTM layers in Band and Sequence module

