Continuous Variables - Histogram

```
import pandas as pd
import matplotlib.pyplot as plt
from google.colab import drive
import os
drive.mount('/content/drive')
os.chdir('/content/drive/MyDrive/')
for item in os.listdir():
 print(item)
print("----")
os.chdir('/content/drive/MyDrive/cloud/GitHub/AdvDataViz/Notebooks/')
for item in os.listdir():
  print(item)
print("----")
notebooks = "/content/drive/MyDrive/cloud/GitHub/AdvDataViz/Notebooks"
print(os.listdir(notebooks))
print("----")
file = "heart-disease.csv"
file_path = os.path.join(notebooks, file)
with open(file path, "r") as f:
  contents = f.read()
→ Mounted at /content/drive
    learningStore
    healthyCar
    startup
    Artificial Intelligence
    cloud
    03 Matplotlib - Exercise.ipynb
    02 Matplotlib.ipynb
    01 Python_Pandas.ipynb
    04 Continuous Variables - Histogram .ipynb
    05 Continuous Variables - Histogram - Exercise .ipynb
    07 Continuous Variables - Boxplot - Exercise .ipynb
    03 Matplotlib - Exercise Solutions.ipynb
    05 Continuous Variables - Histogram - Exercise Solutions.ipynb
    06 Continuous Variables - Boxplot.ipynb
    08 Continuous Variables - Scatterplot.ipynb
    07 Continuous Variables - Boxplot - Exercise Solutions.ipynb
    09 Continuous Variables - Scatterplot - Exercise Solutions.ipynb
    09 Continuous Variables - Scatterplot - Exercise .ipynb
    10 Categorical Variables - Bar_Pie.ipynb
    12 Seaborn.ipynb
    11 Pandas Data Visualization.ipynb
    13 Seaborn - Exercise ipynb
    Top 50 US Tech Companies.csv
    13 Seaborn - Exercise Solution.ipynb
```

```
15 Custom Modules.ipynb
14 Functions.ipynb
churn.csv
student_performance.csv
myplotlib.py
employee_attrition_.csv
heart-disease.csv
```

['03 Matplotlib - Exercise.ipynb', '02 Matplotlib.ipynb', '01 Python_Pandas.ipynb',

Dataset: Heart Disease

```
#df = pd.read_csv("heart-disease.csv")
df = pd.read_csv(file_path)
df.head()
```

→		age	sex	chest_pain	rest_bp	chol	max_hr	st_depr	heart_disease	
	0	63	female	3	145	233	150	2.3	1	ıl.
	1	37	female	2	130	250	187	3.5	1	
	2	41	male	1	130	204	172	1.4	1	
	3	56	female	1	120	236	178	0.8	1	
	4	57	male	0	120	354	163	0.6	1	

Next steps:

Generate code with df

View recommended plots

New interactive sheet

Histogram

```
fig, ax = plt.subplots()
ax.hist(df['age'], color='g', edgecolor='black'); # the default number of bins is 10
# The basic built-in colors:
# b: blue
# g: green
# r: red
# c: cyan
# m: magenta
# y: yellow
# k: black
# w: white
```


Set the number of bins to display

Auto-set the number of bins to display

Set a custom color

Named Colors

HTML Color Codes

Style the chart

Format the labels (increase font size)

```
fig, ax = plt.subplots()
ax.hist(df['age'], color = '#9616FA', edgecolor='black')
# Increase the font size of the labels
ax.set_title('Histogram', fontsize=16)
ax.set_xlabel('Age', fontsize=16);
```


Customize the ticks

```
fig, ax = plt.subplots()
ax.hist(df['age'], color = '#33ffac', edgecolor='black')
ax.set_title('Histogram', fontsize=16)
ax.set_xlabel('Age', fontsize=16)

# Customize the ticks
ax.tick_params(color="purple", width=3, length=5);
```


Customize the tick labels (color and size)

```
fig, ax = plt.subplots()
ax.hist(df['age'], color = '#9616FA', edgecolor='black')
ax.set_title('Histogram', fontsize=16)
ax.set_xlabel('Age', fontsize=16)

# Customize the tick labels
ax.tick_params(labelsize=16, labelcolor="purple");
```


Customize only a specific axis

```
fig, ax = plt.subplots()
ax.hist(df['age'], color = '#ff33ea', edgecolor='black')
ax.set_title('Histogram', fontsize=16)
ax.set_xlabel('Age', fontsize=16)

# Customize the ticks of a specific axis
ax.tick_params(axis='y', labelsize=16, labelcolor="purple", color="purple", width=3, lengelsearch.")
```


Continuous x categorical (age x gender)

Create paired histograms

→ Add a legend

```
fig, ax = plt.subplots()

# The data
females_age = df.loc[df['sex']=="female", "age"]
males_age = df.loc[df['sex']=="male", "age"]

ax.hist([females_age, males_age], color=['pink',"cornflowerblue"], edgecolor='black')

ax.set(xlabel="Age", title="Histogram")

plt.legend(["female", "male"]); # <-- display a legend</pre>
```


