# CFD Simulation and Validation of a Redesigned Paediatric Inhaler Spacer

#### GROUP: HEALTHCARE 1

Skyler Bennett – 2432995

Brandon Dancel - 2444556

Diljit Singh - 2471090

Harkirat Singh - 2407465



#### Project Brief

#### **Background:**

• Computational Fluid Dynamics is carried out to explore the trajectory of drug particles from the inhaler to the throat. This is performed on a pressurised metered-dose inhaler targeted towards children.

#### Aims:

- Evaluate the effect of changing the size/shape of the inhaler spacer.
- Analyse the efficiency of the inhaler through the particles that travel to the throat.

## Inhaler Spacers and Asthma.

- Metered-Dose Inhaler's (MDIs) are a way of providing a standardized dose of medication during an asthma attack.
- The medicine is typically a corticosteroid or bronchodilator and is absorbed via the lungs.
- A spacer improves the efficiency of the MDI by reducing the amount of medicine wasted in the throat and mouth.
- Spacers do require constant cleaning, with soap and water and there is a misunderstanding regarding the target audience for a spacer – any age can benefit from them.



Figure 1: Pediatric Inhaler Delivery

#### Geometry of Initial Design of Inhaler Spacer



| Dimensions              | Value  |
|-------------------------|--------|
| Length of Spacer        | 119 mm |
| Spacer Diameter         | 48 mm  |
| Mask Insertion Diameter | 24 mm  |

Geometry of Initial Design



#### Geometry of Redesigns

Design 1 – Tapered Spacer (Skyler)



Design 2 – Pear-shaped Spacer (Brandon)





#### Geometry of Redesigns

Design 3 – Inclined Outlet Spacer (Diljit)



Design 4 – Internal Guide Vanes Spacer (Harkirat)





#### Concept for Redesign 4

Design is inspired by: Stator blades in turbine jet engines

Usually act to diffuse air, however in some cases they can act as compressors

The geometry of the compressive ring is loosely based on two diagrams below

- Key points:
  - Curved blade > Straight Blade
  - Equally spaced thin blades



Figure 2: Initial and final designs for a stator blade (Lee S.Y and Kim K.Y, 2000)



Figure 3: Full circle compressor stator blade ring model (Ma J, Liu Z, Zhang D and Xie Y, 2023)



## Mouth Anatomy



Figure 5: Mouth and Tongue Anatomy



Direction of Fluid Into and Out of the Cavity of Mouth and Nose.

#### Regulations

- The National Institute for Health and Care Excellence (NICE) guideline emphasises the importance of using Pressure Metered Dose Inhalers with a spacer device for young children.
- They also highlight the need to select the right device to ensure consistent drug dosing.



#### Fluid and Material Properties

• Due to insufficient information around the properties of salbutamol except density, air properties from Ansys Fluent are used to replace the missing ones.

| Property             | Salbutamol / Air                |
|----------------------|---------------------------------|
| Density              | 1.07 kg/m <sup>3</sup>          |
| Specific Heat        | 1006.43 J/kgK                   |
| Thermal Conductivity | 0.0242 W/mK                     |
| Dynamic Viscosity    | 1.7894 x 10 <sup>-5</sup> kg/ms |

| Property             | Polycarbonate            |
|----------------------|--------------------------|
| Density              | 63.987 kg/m <sup>3</sup> |
| Specific Heat        | 1198.5                   |
| Thermal Conductivity | 0.034606 W/mK            |



#### Governing Equations

• Assuming that density is constant:  $\nabla \cdot (\rho \vec{v}) \equiv \rho \nabla \cdot \vec{v} + \vec{v} \cdot \nabla \rho$ 

• Assuming that momentum is constant: 
$$x$$
-component:  $\frac{\partial(\rho u)}{\partial t} + V \cdot (\rho u \vec{V}) = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + \rho f_x$ 

y-component: 
$$\frac{\partial(\rho v)}{\partial t} + \nabla \cdot (\rho v \vec{V}) = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + \rho f_y$$

z-component: 
$$\frac{\partial(\rho w)}{\partial t} + \nabla \cdot (\rho w \vec{V}) = -\frac{\partial p}{\partial z} + \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} + \rho f_z$$

• Energy is conserved:

$$\begin{split} &\frac{\partial}{\partial t} \left[ \rho \left( e + \frac{V^2}{2} \right) \right] + V \cdot \left[ \rho \left( e + \frac{V^2}{2} \right) \vec{V} \right] \\ &= \rho \dot{q} + \frac{\partial}{\partial x} \left( k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left( k \frac{\partial T}{\partial y} \right) \\ &+ \frac{\partial}{\partial z} \left( k \frac{\partial T}{\partial z} \right) - \frac{\partial (up)}{\partial x} - \frac{\partial (vp)}{\partial y} - \frac{\partial (wp)}{\partial z} + \frac{\partial (u\tau_{xx})}{\partial x} \\ &+ \frac{\partial (u\tau_{yx})}{\partial y} + \frac{\partial (u\tau_{zx})}{\partial z} + \frac{\partial (v\tau_{xy})}{\partial x} + \frac{\partial (v\tau_{yy})}{\partial y} \\ &+ \frac{\partial (v\tau_{zy})}{\partial z} + \frac{\partial (w\tau_{xz})}{\partial x} + \frac{\partial (w\tau_{yz})}{\partial y} + \frac{\partial (w\tau_{zz})}{\partial z} + \rho \vec{f} \cdot \vec{V} \end{split}$$



#### Governing Equations

Computational approach: Reynolds-Averaged Navier Stokes (RANS) with k-epsilon model.

Navier-Stokes –Body and Surface forces present:

$$-\rho\left(\frac{D\vec{v}}{Dt}\right) = \rho\nabla\Phi + \nabla p + \eta\nabla^2\vec{v} \qquad \qquad \frac{D}{Dt} \equiv \frac{\partial}{\partial t} + (\vec{v}\cdot\nabla)$$

• Turbulence – For internal flow:  $Re \ge 2300$ 

• 
$$Re_{Salbutamol/Air} = \frac{\rho uL}{\mu} = \frac{1.07 \times 1.724 \times 119 \times 10^{-3}}{1.7894 \times 10^{-5}} = 12269$$



## Default Mesh for Initial design

#### The default meshing option is inadequate:

- High number of Elements
- The Mesh fails



| Mesh Size (mm) | Number of<br>Elements | Aspect Ratio | Skewness | Orthogonal<br>Quality | Element<br>Quality |
|----------------|-----------------------|--------------|----------|-----------------------|--------------------|
| Default        | 1,141,767             | 1.9014       | 0.2419   | 0.7568                | 0.8274             |

#### Finding optimum Mesh Size – Method





| Location      | Mesh Method      | Defeature size | Local Minimum Size |
|---------------|------------------|----------------|--------------------|
| Spacer Volume | Hex Dominant     | 0.75 mm        | 1.2 mm             |
| Mask Volume   | Hex Dominant     | 0.5 mm         | 0.8 ram            |
| Mouth Volume  | Patch Conforming | 0.3 mm         | 0.5 mm             |

## Varying Mesh Size for Initial Design





| Mesh Size (mm) | Number of<br>Elements | Aspect Ratio | Skewness | Orthogonal<br>Quality | Element<br>Quality |
|----------------|-----------------------|--------------|----------|-----------------------|--------------------|
| 16             | 503,308               | 2.0772       | 0.2730   | 0.7334                | 0.8053             |
| 12             | 503,456               | 2.1290       | 0.2747   | 0.7318                | 0.8042             |
| 8              | 503,813               | 2.0613       | 0.2731   | 0.7331                | 0.8056             |
| 4              | 507,966               | 2.1024       | 0.2742   | 0.7334                | 0.8030             |













| Design             | Number of<br>Elements | Aspect<br>Ratio | Skewness | Orthogonal<br>Quality | Element<br>Quality |
|--------------------|-----------------------|-----------------|----------|-----------------------|--------------------|
| Tapered            | 481,829               | 1.9265          | 0.25776  | 0.74292               | 0.81704            |
| Pear Shape         | 486,293               | 1.9434          | 0.25948  | 0.74178               | 0.81528            |
| Inclined<br>Outlet | 488,125               | 1.9409          | 0.25942  | 0.74207               | 0.81565            |
| Guide<br>Vanes     | 508,911               | 2.2861          | 0.27787  | 0.72855               | 0.80159            |



#### Calculation, Initialisation and Setup Conditions



**Parameters** 



**Run Calculation Conditions** 





**Hybrid Initialisation Iterations** 

#### **Boundary Conditions**

| Inlet Conditions               |                               |  |  |
|--------------------------------|-------------------------------|--|--|
| Velocity<br>Magnitude<br>(m/s) | 1.724                         |  |  |
| Specification<br>Method        | Intensity and Viscosity Ratio |  |  |
| Turbulent<br>Intensity (%)     | 5                             |  |  |
| Turbulent<br>Viscosity Ratio   | 10                            |  |  |
| Temperature<br>(°C)            | 25                            |  |  |
| Discrete Phase<br>Type         | Escape                        |  |  |

| Outlet Conditions              |                               |  |  |
|--------------------------------|-------------------------------|--|--|
| Backflow<br>Reference<br>Frame | Absolute                      |  |  |
| Gauge Pressure<br>(Pa)         | 0                             |  |  |
| Specification<br>Method        | Intensity and Viscosity Ratio |  |  |
| Turbulent<br>Intensity (%)     | 5                             |  |  |
| Turbulent<br>Viscosity Ratio   | 10                            |  |  |
| Backflow Total<br>Temp (°C)    | 25                            |  |  |
| Discrete Phase<br>Type         | Escape                        |  |  |

| Wall Conditions         |            |  |  |
|-------------------------|------------|--|--|
| Wall Motion             | Stationary |  |  |
| <b>Shear Condition</b>  | No Slip    |  |  |
| Roughness<br>Model      | Standard   |  |  |
| Roughness<br>Height (m) | 0          |  |  |
| Roughness<br>Constant   | 0.5        |  |  |
| Temperature<br>(°C)     | 25         |  |  |
| Discrete Phase<br>Type  | Trap       |  |  |

Average number of breaths for 3-5 year olds = 28 breaths per minute Inspiratory Flow Rate for 2-12 year olds  $(Q_1)=30\frac{L}{min}=0.0005\frac{m^3}{s}$  Inlet Area of Spacer $(A_1)=0.00029$   $m^2$  Inlet Velocity =  $\frac{Q_1}{A_1}=\frac{0.0005}{0.00029}=1.724\frac{m}{s}$ 



#### **DPM/Injection Conditions**



DPM Physical Model Conditions



Point Properties Physical Models Turbulent Dispersion

Stochastic Tracking

Dispersion Model

discrete-random-walk ▼

Random Eddy Lifetime

Number of Tries

5

Time Scale Constant

0.15

Length Scale Constant

0.72

**DPM Turbulence Conditions** 



Salbutamol Injection Material Properties



## Initial Design Result

$$Efficiency of Spacer = \frac{Particles Escaped}{Particles Tracked} = \frac{562}{1200} = 46.83\%$$





## Tapered Spacer Result

$$Efficiency of Spacer = \frac{Particles Escaped}{Particles Tracked} = \frac{2109}{4400} = 47.93\%$$





## Pear-Shaped Spacer Result

Efficiency of Spacer = 
$$\frac{Particles\ Escaped}{Particles\ Tracked} = \frac{658}{900} = 73.11\%$$





## Inclined Outlet Spacer Result

Efficiency of Spacer = 
$$\frac{Particles\ Escaped}{Particles\ Tracked} = \frac{686}{990} = 69.29\%$$





## Internal Guide Vanes Spacer Result

$$Efficiency \ of \ Spacer = \frac{Particles \ Escaped}{Particles \ Tracked} = \frac{283}{1120} = 25.27\%$$





## Comparison of Results

| Spacer Type          | Tracked Particles | Escaped Particles | Efficiency (%) |
|----------------------|-------------------|-------------------|----------------|
| Initial              | 1200              | 562               | 46.83          |
| Tapered              | 4400              | 2109              | 47.93          |
| Pear-shaped          | 900               | 658               | 73.11          |
| Inclined Outlet      | 990               | 686               | 69.29          |
| Internal Guide Vanes | 1120              | 283               | 25.27          |



#### Solver













#### Validation

#### **Advantages:**

- Complies with regulations
- •Turbulent model k epsilon
- Mesh Resolution default meshing

#### **Things to Consider:**

- Accuracy of human anatomy
- Using transient model instead of steady state
- Material and fluid properties





#### Limitations of model

- The computational cost of a transient model is too high (simulations take hours or crash). To address this, the model is simplified by choosing the steady-state option.
- The model for the mouth makes simplifications in CAD. We could outsource a more anatomy-correct model.
- The material for the wall boundary was chosen to be "honeycomb polycarbonate plastic" and modelled as smooth. Ideally, the mouth should be another material and have the associated roughness model.
- The fluid properties are mainly accounting for air instead of salbutamol, which slightly affects our efficiency values when solving.

