5.1 Wokół logiki z jedną zmienną

- ▶ **Zadanie 5.1.** Podobnie do transformacji Scotta z wykładu, pokaż że dla każdego zdania z FO¹ używającego wyłącznie relacji unarnych obliczymy w wielomianowym czasie równospełnialne zdanie postaci $\forall x \varphi(x) \land \bigwedge_{i=1}^{n} \exists x \ \varphi_i(x), \ gdzie \ \varphi, \varphi_i \ są bez kwantyfikatorów.$
- ▶ Zadanie 5.2. Za pomocą poprzedniego zadania, pokaż że problem spełnialności logiki FO¹ jest w NPTIME (tj. skontruuj wielomianowy algorytm typu "zgadnij i zweryfikuj").

5.2 Wokół FMP dla FO²

- ▶ Zadanie 5.3. Na wykładzie pokazaliśmy, że FO² ma własność modelu skończonego (FMP), tj. każda spełnialna formuła FO² ma też skończony model. Użyj tego faktu by podać prosty dowód, że FO² nie potrafi wyrazić, że relacja binarna jest przechodnia.
- ▶ Zadanie 5.4. Podobnie jak w poprzednim zadaniu. Korzystając z tego, że FO² ma FMP, pokaż że FO² nie potrafi wyrazić że relacja binarna jest funkcyjna.

5.3 Obliczeniowe aspekty FO²

- ▶ Zadanie 5.5. Pokaż, że problem model-checkingu dla FO² jest w PTIME. (W odróżnieniu od PSPACE-zupelnego ogólnego przypadku).
- ▶ Zadanie 5.6. Niech $\tau := \{p_0, p_1, \dots, p_{n-1}\}$ to sygnatura składająca się wyłącznie z n unarnych symboli. Będziemy traktować symbole z τ jako 'bity binarnych zakodowań liczb" w następującym sensie: dla elementu $a \in A$ z τ -struktury \mathfrak{A} , mówimy że a koduje wartość $m \in [0, 2^n 1]$ gdy $m = \sum_{i=0}^{n-1} b_i \cdot 2^i$, gdzie b_i to 1 gdy $a \in p_i^{\mathfrak{A}}$ orazz 0 w.p.p. Wykaż, że poniższe własności są wyrażalne w $\mathsf{FO}^2[\tau]$ przy pomocy formuł o wielkości wielomianowej względem n.
- Wartość kodowana przez x to (odp. $2^n 1$).
- Wartość kodowana przez x jest równa wartości kodowanej przez y.
- Wartośc kodowana przez x jest mniejsza od wartości kodowanej przez y.
- Wartość kodowana przez x jest równa wartości kodowanej przez y plus jeden.

Wywnioskuj istnienie $FO^2[\tau]$ -zdania φ o rozmiarze wielomianowym względem n, takiego że każdy model φ ma przynajmniej 2^n elementów.

5.4 Kafelkowanie

- ▶ Zadanie 5.7. Wykorzystaj poprzednie zadanie, by pokazać wielomianową redukcję z wykładniczego (NEXPTIME-zupełnego problemu kafelkowania) do spełnialności FO^2 . Mówiąc dokładniej: mając dane na wejściu n oraz zestaw kafelków \mathcal{T} , pokaż istnienie wielomianowej (względem $n+|\mathcal{T}|$) formuły FO^2 która ma model wtedy i tylko wtedy kiedy istnieje poprawne pokafelkowanie prostokąta $2^n \times 2^n$ kafelkami z \mathcal{T} .
- ▶ Zadanie 5.8. Podobnie jak w poprzednim zadaniu, ale tym razem chcemy zakodować prostokąt $2^n \times 2^{2^n}$. Możesz używać dwóch dodatkowych relacji \leq_1, \leq_2 , które są porządkami liniowymi. Wskazówka: Drzewo binarne o glębokości 2^n ma 2^{2^n} liści :)

▶ Zadanie 5.9. Rozważamy systemy kafelkowania bez wymogu na to by kafelkowany prostokąt był skończony i by rogi prostokąta były białe. Wykaż przy pomocy lematu Königa, że dla danego systemu domina da się poprawnie pokafelkować $\mathbb{N} \times \mathbb{N}$ wtedy i tylko wtedy gdy da się poprawawnie pokafelkować $\mathbb{Z} \times \mathbb{Z}$.