# ساختمانهای گسسته

درخت

Dr. Aref Karimiafshar A.karimiafshar@ec.iut.ac.ir







#### درخت

تعریف: درخت گراف بدون جهت همبندی است که دارای دور نباشد.



#### درخت

#### قضیه:

یک گراف بدون جهت درخت است اگر و فقط اگر یک مسیر ساده منحصر به فرد بین هر دو راس آن وجود داشته باشد.



### درختهای ریشهدار

#### • درخت ریشهدار

درختی که در آن یک راس به عنوان ریشه انتخاب میشود و یالها (به سمت سایر رئوس) از آن انشعاب پیدا می کنند.



### درختهای ریشهدار

- برخی اصطلاحات:برگ

  - راس داخلی فرزند
    - - والد





#### زیر درخت

• زیر درخت با یک ریشه مشخص





## درخت m-تایی

- درخت m-تایی
- اگر هر راس داخلی آن بیشتر از m فرزند نداشته باشد
  - درخت m-تایی کامل
  - اگر هر راس داخلی آن دقیقا m فرزند داشته باشد
    - درخت باینری
- اگر هر راس داخلی آن دقیقا دو فرزند داشته باشد (درخت m-تایی و m-2

## درخت m-تایی





• درختی با n راس دارای n-1 یال است

• یک درخت کامل m-تایی با i راس داخلی دارای n=mi+1 راس است



- اگر T یک درخت کامل m-تایی باشد
  - اگر i تعداد رئوس داخلی
    - L تعداد برگها
    - n تعداد رئوس

با داشتن هر کدام از این پارامترها میتوان مقدار بقیه را تعیین کرد.

- قضیه: در یک درخت کامل m-تایی با
- راس، l = [(m-1)n+1]/m راس، i = (n-1)/m راس، داخلی و i = (n-1)/m برگ داریم
  - راس داخلی، l=(m-1)i+1 راس و n=mi+1 برگ داریم i -
  - راس داخلی i = (l-1)/(m-1) راس و n = (ml-1)/(m-1) راس داخلی L-

- قضیه: در یک درخت کامل m-تایی با l=[(m-1)n+1]/m راس: n-1 برگ داریم
  - n = mi + 1 n = l + i

$$n = mi + 1$$
  $\longrightarrow$   $i = (n-1)/m$   
 $n = l + i$   $\longrightarrow$   $l = n - i = n - (n-1)/m = [(m-1)n + 1]/m$ 

• اثبات

#### تعاريف

- سطح (دریک درخت ریشه دار):
- طول مسیر یکتا از ریشه به راس مورد نظر
  - سطح ریشه، صفر تعریف می شود
    - ارتفاع (در یک درخت ریشه دار):
- بزرگترین طول مسیر یکتا از ریشه به تمام رئوس
  - بزرگترین سطح قابل تعریف برای رئوس
    - درخت balanced·
- یک درخت m-تایی با ارتفاع h یک درخت balanced گفته می شود اگر هر برگ آن در ارتفاع h یا h-1 باشد

#### مثال



- قضیه: در یک درخت m-تایی با ارتفاع h حداکثر  $m^h$  برگ داریم
  - قضیه: اگر یک درخت m-تایی با ارتفاع h دارای L برگ باشد  $h \geq \lceil \log_m l \rceil$  برگ باشد  $h \geq \lceil \log_m l \rceil$ 
    - $h = \lceil \log_m l \rceil$ و اگر درخت m-تایی کامل و بالانس باشد داریم –

• اثبات

$$l \le m^h \longrightarrow \log_m l \le h \longrightarrow h \ge \lceil \log_m l \rceil$$

## کاربردهای درختها

- درخت جست و جوی دودویی
  - یک درخت دودویی
- هر فرزند یک راس می تواند فرزند چپ یا فرزند راست باشد
- هر راس نمی تواند بیشتر از یک فرزند چپ یا راست داشته باشد
  - هر راس با یک کلید برچسب گذاری می شود
- برچسب یک راس از تمامی رئوس موجود در زیر درخت سمت چپ بزرگتر
   و از تمام رئوس زیر درخت سمت راست کوچکتر است
  - پیدا کردن یک آیتم مشخص در یک لیست مرتب

#### درخت جست وجوی دودویی

mathematics, physics, geography, zoology, meteorology, geology, psychology and chemistry



## کاربردهای درختها

- درخت تصمیم
- یک درخت ریشه دار
- هر راس داخلی بیانگر یک تصمیم و زیر درخت آن بیان کننده خروجی های
   آن موقعیت تصمیم
  - مجموعه راه حلها = مسیرهای موجود به برگهای این درخت ریشه دار
    - نمایش فضای تصمیم و تحلیل موقعیتهای مختلف

#### درخت تصمیم

• 8 سکه داریم که یکی از آنها تقلبی است. وزن سکه تقلبی کمتر از سایر سکه هاست. برای تشخیص سکه تقلبی چندبار باید وزن کنیم؟



#### درخت تصميم

• درخت تصمیم برای مرتب کردن سه مولفه <mark>a, b, c.</mark>



#### پیمایش درخت



- درخت مرتب
- فرزندان رئوس داخلی دارای ترتیب هستند

• درختان مرتب برای ذخیره سازی اطلاعات مورد استفاده قرار می گیرند! - برای دستیابی به اطلاعات یک درخت مرتب به یک روش پیمایش رئوس نیاز داریم

## الگوریتمهای پیمایش

- الگوریتمهای پیمایش
- رویههای مشاهده سیستماتیک هر راس در یک درخت مرتب!

- انواع الگوریتم پیمایش
- پیش ترتیب (preorder)
  - میان ترتیب (inorder)
- یس ترتیب (postorder)

#### پیمایش پیش ترتیب

- اگر T یک درخت ریشهدار مرتب با ریشه r باشد
  - اگر T فقط از r تشکیل شده باشد
  - آنگاه r پیمایش پیش ترتیب T خواهد بود
- در غیر این صورت، اگر  $T_1, T_2, \dots, T_n$  زیر درختهای  $\top$  در راس r از چپ به راست باشند

• آنگاه پیمایش پیش ترتیب T با T شروع می شود و بعد با پیمایش پیش ترتیب درخت  $T_0$  و بعد  $T_2$  تا  $T_1$  ادامه پیدا می کند.



#### مثال

• پیمایش پیش ترتیب درخت T را بیاید.





## مثال (ادامه ...)







### پیمایش میان ترتیب

- اگر T یک درخت ریشهدار مرتب با ریشه r باشد
  - اگر T فقط از r تشکیل شده باشد
  - آنگاه r پیمایش میان ترتیب T خواهد بود
- در غیر این صورت، اگر  $T_1, T_2, \dots, T_n$  زیر درختهای  $\top$  در راس r از چپ به راست باشند
  - آنگاه پیمایش میان ترتیب T با پیمایش میان ترتیب درخت  $T_1$  و بعد مشاهده ریشه شروع می شود و سپس با پیمایش میان ترتیب درخت  $T_2$  و بعد  $T_3$  تا  $T_n$  ادامه پیدا می کند.



#### مثال

• پیمایش میان ترتیب درخت T را بیاید.





## مثال (ادامه ...)







#### پیمایش پس ترتیب

- اگر T یک درخت ریشهدار مرتب با ریشه r باشد
  - اگر T فقط از r تشکیل شده باشد
  - آنگاه r پیمایش پس ترتیب T خواهد بود
- در غیر این صورت، اگر  $T_1, T_2, \dots, T_n$  زیر درختهای  $\top$  در راس r از چپ به راست باشند
- $T_n$  تا  $T_3$  و بعد  $T_2$  و بعد  $T_1$  تا  $T_3$  و بعد  $T_3$  و بعد  $T_3$  و بعد و آنگاه پیمایش پس ترتیب درخت  $T_3$  و بعد و با مشاهده  $T_3$  خاتمه می یابد.



#### مثال

• پیمایش پس ترتیب درخت T را بیاید.





## مثال (ادامه ...)









#### نمایش درختی عبارات

F

 $((x+y) \uparrow 2) + ((x-4)/3)$  درخت ریشه دار مرتب مرتبط با عبارت



## نمایش پیشوندی

 $((x+y) \uparrow 2) + ((x-4)/3)$  عبارت عبارت •



$$+ \uparrow + x y 2 / - x 43$$

#### نمایش پیشوندی

• مقدار عبارت پیشوندی  $4 \times 2 \times 4 \times 10^{-4}$  را حساب کنید

Value of expression: 3

## نمایش پسوندی

 $((x + y) \uparrow 2) + ((x - 4)/3)$  عبارت •



$$xy + 2 \uparrow x 4 - 3 / +$$

## نمایش پسوندی

7 2 3 \* - 4 ↑ 9 3 / +

$$2*3=6$$

7 6 - 4 ↑ 9 3 / +

 $7-6=1$ 

1 4 ↑ 9 3 / +

 $1^4=1$ 

1 9 3 / +

 $9/3=3$ 

1 3 +

 $1+3=4$ 

Value of expression: 4

### نمایش پسوندی

درخت ریشه دار مرتب نمایش دهنده گزاره مرکب زیر را بیابید.

( $\neg(p \land q)$ )  $\leftrightarrow$  ( $\neg p \lor \neg q$ )







$$pq \land \neg p \neg q \neg \lor \leftrightarrow$$

# درخت فراگیر



- درخت فراگیر (Spanning Tree)
- درخت باشد! (همبند و فاقد دور)
  - همه رئوس را شامل شود

مثال



(a)



 $\{e,f\}$ 

 $\{c,g\}$ 

Discrete Mathematics

IUT

(c)

# مثال

• قضیه: یک گراف درخت فراگیر دارد اگر و تنها اگر همبند باشد.

# الگوریتمهای پیدا کردن درخت فراگیر

- الگوریتم پیدا کردن درخت فراگیر
  - ورودی: یک گراف همبند
    - خروجی: درخت فراگیر
- الگوریتمهای پیدا کردن درخت فراگیر
  - Depth-First Search (DFS) -
  - Breadth-First Search (BFS) -

### الگوريتم DFS

- 1. به صورت دلخواه یک راس از گراف را به عنوان ریشه انتخاب کنید
- یک راس جدید انتخاب کنید و یال واقع بر آن و راس قبلی را پیمایش کنید، این مسیر را تا زمانی که راس جدیدی به مسیر اضافه می شود ادامه دهید. اگر همه رئوس پوشش داده شد الگوریتم خاتمه می یابد.
- 3. در غیر این صورت به راس قبلی بر گردید و یک راس جدید را انتخاب کنید. اگر چنین راسی پیدا نکردید به راس قبل از آن بر گردید و این کار را ادامه دهید تا راس جدیدی به مسیر اضافه شود.

### ALGORITHM 1 Depth-First Search.

4. دو گام فوق را تا مشاهده همه T:= tree consisting only of the vertex  $v_1$   $v_2,\ldots,v_n$   $v_3$  T:=  $v_4$  T:=  $v_4$   $v_4$   $v_5$   $v_6$   $v_6$   $v_6$   $v_7$   $v_8$   $v_9$   $v_9$  v

procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
 add vertex w and edge {v, w} to T
 visit(w)

### الگوريتم DFS



### الگوريتم BFS

- 1. به صورت دلخواه یک راس از گراف را به عنوان ریشه انتخاب کنید
  - 2. همه یالهای واقع بر آن را به گراف اضافه کنید
- 3. رئوسی که در این مرحله به درخت اضافه می شوند رئوس سطح یک را تشکیل می دهند.
- 4. یالهای واقع بر رئوس جدید را به درخت اضافه کنید. رئوس جدید را به درخت اضافه کنید، اینها رئوس سطوح بعدی هستند. این کار تا مشاهده همه رئوس ادامه دهید.

### ALGORITHM 2 Breadth-First Search.

```
procedure BFS (G: connected graph with vertices v_1, v_2, \ldots, v_n) T := tree consisting only of vertex v_1 L := empty list put v_1 in the list L of unprocessed vertices while L is not empty remove the first vertex, v, from L for each neighbor w of v if w is not in L and not in T then add w to the end of the list L add w and edge \{v, w\} to T
```

### الگوريتم BFS



مثال: درخت فراگیر گراف زیر را رسم کنید







# درخت فراگیر مینیمم

- درخت فراگیر مینیمم (Minimum Spanning Tree) در یک گراف وزن دار همبند، درخت فراگیری است که کمترین مجموع وزن یالها را داشته باشد.
  - الگوریتمهای پیدا کردن درخت فراگیر مینیمم
    - الگوريتم پرايم (Prim)
    - الگوريتم كراسكال (Kruskal)

### الگوريتم پرايم

### ALGORITHM 1 Prim's Algorithm.

```
procedure Prim(G): weighted connected undirected graph with n vertices)
T := a minimum-weight edge
for i := 1 to n - 2
e := an edge of minimum weight incident to a vertex in T and not forming a simple circuit in T if added to T
T := T with e added
return T := T is a minimum spanning tree of G}
```

# الگوريتم پرايم

Ħ

• مثال: درخت فراگیر مینیمم برای گراف زیر را بیابید.



| Choice |  |
|--------|--|
| 1      |  |
| 2      |  |
| 3      |  |
| 4      |  |
| 5      |  |
| 6      |  |
| 7      |  |
| 8      |  |
| 9      |  |
| 10     |  |
| 11     |  |

| Edge       | Weight    |
|------------|-----------|
| $\{b, f\}$ | 1         |
| $\{a, b\}$ | 2         |
| $\{f, j\}$ | 2         |
| $\{a, e\}$ | 3         |
| $\{i, j\}$ | 3         |
| $\{f, g\}$ | 3         |
| $\{c, g\}$ | 2         |
| $\{c, d\}$ | 1         |
| $\{g, h\}$ | 3         |
| $\{h, l\}$ | 3         |
| $\{k, 1\}$ | 1         |
|            | Total: 24 |

# الگوريتم كراسكال

### ALGORITHM 2 Kruskal's Algorithm.

```
procedure Kruskal(G): weighted connected undirected graph with n vertices)
```

T := empty graph

**for** i := 1 **to** n - 1

e := any edge in G with smallest weight that does not form a simple circuit when added to T

T := T with e added

**return** T {T is a minimum spanning tree of G}

### الگوريتم كراسكال

F

مثال: درخت فراگیر مینیمم برای گراف زیر را بیابید.



Total: 24

### پایان

موفق و پیروز باشید