Propiedades de Decisión de los Lenguajes Regulares

Alan Reyes-Figueroa Teoría de la Computación

(Aula 07a) 08.agosto.2022

Discusión general de "Propiedades" El Lema de Bombeo Pertenencia, Vacuidad, Finitud, Etc.

Propiedades Clases de Lenguajes

- Una clase de lenguajes es un conjunto de lenguajes.
 - <u>Ejemplo</u>: los lenguajes regulares.
 - Veremos muchos otros ejemplos.
- Las clases de lenguajes tienen dos tipos importantes de propiedades:
 - 1. Propiedades de decisión.
 - 2. Propiedades de cerradura.

Representación de Lenguajes

- Pueden ser formales o informales.
- ☐ Ejemplo (formal): representar un lenguaje mediante su *regex* o DFA que lo define.
- ☐ Ejemplo: (informal): mediante un enunciado prosaico o lógico acerca de sus cadenas:
 - \square {0ⁿ1ⁿ: n es un entero no-negativo}
 - "El conjunto de las cadenas que consisten de un cierto número de 0's seguido del mismo número de 1's."

Propiedades de Decisión

□ Una propiedad de decisión para una clase de lenguajes es un algoritmo que toma una descripción formal del lenguaje (e.g., un DFA) y nos dice cuándo cierta propiedad de ese lenguaje se cumple o no.

☐ Ejemplo: Es el lenguaje L vacío? ¿Son los lenguajes L y M iguales?

Por qué prop. de decisión?

- Cuando hablamos de ejemplos de protocolos representados por DFAs, vimos que propiedades de un buen protocolo se relacionan con el lenguaje.
- □ Ejemplo: "El protocolo termina?" = "Es el lenguaje finito?"
- ☐ Ejemplo: "Puede el protocolo fallar?" = "Es el lenguaje no vacío?"

Por qué prop. de decisión?

- Otra razón es que para un lenguaje, nos gustaría tener la "menor" representación posible, e.g., DFA con estados mínimos o la menor regex.
- □ Si no podemos decidir "Son estos dos lenguajes el mismo?"
 - ☐ i.e., dos DFA's definen el mismo lenguaje? Entonces no podemos hallar el "menor".

Propiedades de cerradura

- □ Una propiedad de cerradura de una clase de languajes establece que lenguajes en dicha clase, una operación (e.g., unión) entre ellos produce otro lenguaje en la misma clase.
- □ Ejemplo: los lenguajes regulares son cerrados mediante unión, concatenación, y la cerradura de Kleene.
 - □ Usar la representación *regex*.

Por qué prop. de cerradura?

- 1. Ayudan a construir representaciones.
- 2. Ayudan a mostrar (de manera informal) que un cierto lenguajes no pertenece a una clase.

Ejemplo: propiedad de cerradura

Veremos en un momento que el lenguaje $L_1 = \{0^k 1^k \mid k \ge 0\}$ no es regular.

- □ L₂ = {cadenas de 0's y 1's con el mismo número de 0's y de 1's} tampoco es regular (pero es más difícil de probar).
- □ Lenguajes regulares son cerrados bajo ∩.
- □ Si L₂ fuera regular, entonces L₂ ∩ L(0*1*)
 = L₁ sería regular, pero no lo es.

Pertenencia

- Nuestra primera propiedad de decisión es la pregunta: "está la cadena w en el lenguaje regular L?"
- □ Asumir que L es representado por un DFA, denotado M.
- Simular la acción del autómata M tomando como input en la secuencia de símbolos de w.

Y si L no es representado por un DFA?

Recordemos que tenemos un ciclo de equivalencias para representar lenguajes regulares:

El problema de vacuidad

- □ Dado un lenguaje regular L, queremos saber si L contiene alguna palabra.
- Suponga que L se representa con un DFA.
- Construir el grafo de transiciones.
- Calcular el conjunto de estados alcanzables desde el estado inicial q₀.
- □ Si algún estado final q_F es alcanzable, sí hay palabras, caso contrario $L = \{\}$.

El problema de la finitud

- □ Dado un lenguaje regular L, es infinito?
- Comenzar con un DFA para L.
- □ Idea clave: si el DFA tiene n estados, y el lenguaje contiene cualquier cadena de longitud n o mayor, entonces L es infinito.
- Caso contrario, el lenguaje es finito.
 - ☐ Limitado a cadenas de longitud *n* o menor.

Prueba de la idea clave

- □ Si un DFA de n estados acepta una cadena w de longitud n o mayor, entonces debe haber un estado que aparece al menos dos veces en el trayecto de w desde el estado inicial q₀ al estado final q_F de w.
- □ Esto ya que hay al menos n+1 estados a lo largo del trayecto de w.

Prueba de la idea clave

 \rightarrow xyⁱz está en el lenguaje, para todo i \geq 0.

Como y no es la cadena ϵ , todas las cadenas xy^iz (hay infinitas de ellas) están en L.

Finitud

- Aún no tenemos un algoritmo.
- Hay un número infinito de cadenas de longitud > n. No podemos testarlas todas.
- □ Segunda idea clave: si hay una cadena de longitud ≥ n (= número de estados) en L, entonces debe haber una cadena de longitud entre n y 2n-1.

Pueba de la 2^a idea clave

□ Recordemos:

- □ Podemos elegir y como el primer ciclo a lo largo del trayecto de w.
- □ Así, $|xy| \le n$; en particular, $1 \le |y| \le n$.
- Luego, si w es de longitud 2n o mayor, hay una cadena de menor longitud en L que aún es de longitud n o más.
- □ Reducir hasta obtener algo en [n,2n-1].

Completamos el algoritmo de infinitud

- □ Verificar la pertenencia a L de todas las cadenas de longitudes entre n y 2n-1.
 - ☐ Si alguna es aceptada, entonces L es infinito. Caso contrario, L es finito.
- □ El peor algoritmo posible.
- □ Mejor idea: buscar la existencia de ciclos entre el estado inicial q_0 y final q_E

Búsqueda de Ciclos

- 1. Eliminar los estados que no son alcanzables desde el estado inicial q_0 .
- Eliminar los estados que no llegan al estado final q_F.
- 3. Verificar si el grafo de transiciones remanente posee algún ciclo.

El Lema de Bombeo (*Pumping Lemma*)

- □ En lo anterior casi hemos probado, de forma accidental, un resultado que es muy útil para mostrar que ciertos lenguajes no son regulares.
- ☐ Este es llamado el *lema de bombeo para lenguajes regulares*.

Lema de Bombeo

Para todo lenguaje regular L, estados del DFA para L existe un entero $n \ge 1$, tal que para toda cadena $w \in L$ de longitud $\ge n$ podemos escribir w = xyz, donde:

- 1. $|xy| \leq n$.
- 2. |y| > 0.
- 3. Para todo i ≥ 0 , $xy^iz \in L$.

y corresponde al primer ciclo en el trayecto de w

Número de

Prueba de Lema de Bombeo

- 1. Tomamos n = número de estados del DFA para L
- 2. Tomamos w ϵ L de longitud \geq n
- Por el principio de las casillas en el trayecto de w hay
 ≥ n+1 estados, de modo que al menos un estado q
 se repite.
- 4. Tome y la subcadena de w del ciclo en q_i

(Observe que y tiene longitud al menos 1, no es la cadena vacía).

- 5. \rightarrow xyⁱz está en el lenguaje, para todo i \geq 0.
- 6. Como y no es la cadena ϵ , todas las cadenas de la forma xyⁱz (hay infinitas de ellas) están en L.

Ejemplo: Lema de Bombeo

Vamos a mostrar que $L = \{0^k 1^k : k \ge 1\}$ no es un lenguaje regular.

- Suponga que sí es. Entonces existe un n ≥ 1 para L que cumple el lema de bombeo.
- □ Tome $w = 0^n 1^n \in L$. Podemos escribir w = xyz, donde $|xy| \le n$, |y| > 0. Esto implica que:
 - 1. $y \neq \epsilon$.
 - 2. x, y consisten sólo de 0's
- \square Pero, por el lema de bombeo, la cadena xyyz \in L.
- □ Pero esta cadena tiene (n+1) 0's y n 1's. Absurdo!