DRINFELD MODULAR VARIETIES: HOMEWORK ON SMOOTHNESS

(1) For any map of commutative rings $B \to B'$ and any $S \in Alg_B$, show that there are canonical isomorphisms of $S' = B' \otimes_B S$ -modules:

$$B' \otimes_B \Omega^1_{S/B} \simeq S' \otimes_S \Omega^1_{S/B} \simeq \Omega^1_{S'/B'}$$
.

(2) Suppose that $S \in Alg_B$ and $T \in Alg_S$. Exhibit a canonical exact sequence of T-modules

$$T \otimes_S \Omega^1_{S/B} \to \Omega^1_{T/B} \to \Omega^1_{T/S} \to 0.$$

- (3) Show that any localization of a smooth *B*-algebra is formally smooth over *B*. *Such a B-algebra is called essentially smooth*.
- (4) Suppose that $B \to B'$ is a faithfully flat map, and that $S \in Alg_B$. Show that S is smooth over B if and only if $S' = B' \otimes_B S$ is smooth over B'.

Hint: One direction is easy (and true for any base change). For the other, use the criterion in terms of surjections $P \to S$, the splitting of the fundamental short exact sequence, and the projectivity of the module of differentials. This argument appeared in disguise already in Lecture 22.

- (5) Suppose that B = k is a field. Show that the following are equivalent:
 - (a) S is a product of finite separable extensions of k.
 - (b) S is smooth over k of relative dimension 0.
 - (c) S is a finite dimensional k-vector space and formally smooth over k.
 - (d) S is finitely generated over k and $\Omega^1_{S/k} = 0$.

Hint: All these assertions can be equivalently checked after base changing to an algebraic closure of k (see the previous problem!). So you can assume that k is algebraically closed, and in particular infinite.

For (a) \Rightarrow (b), note more generally that a product of smooth algebras of relative dimension n is also smooth of relative dimension 0.

For (c) \Rightarrow (d), note that $\operatorname{Hom}(\Omega^1_{S/k}, k)$ is finite if and only if $\Omega^1_{S/k} = 0$.

For $(d)\Rightarrow(a)$, note that all the maximal ideals of S must localize to (0) (Lemma from lecture 23). You will need the Nullstellensatz.

(6) Let S be a smooth k-algebra with maximal ideal \mathfrak{m} such that $\mathfrak{m}S_{\mathfrak{m}}$ is nilpotent. Show that $\mathfrak{m}S_{\mathfrak{m}}=(0)$ and that $S_{\mathfrak{m}}$ is a field.

Hint: Show that $S_{\mathfrak{m}}$ *is a finite dimensional* k-vector space and use the previous problem.

Remark: With a bit more work, the same argument shows that for any prime $P \leq S$, if PS_P is nilpotent, then S_P is a field. This implies that smooth k-algebras cannot contain non-zero nilpotent elements.

- (7) Let S be a smooth k-algebra, and suppose that $\mathfrak{m} \leq S$ is a maximal ideal such that $\mathfrak{m}S_{\mathfrak{m}} = (a)$ is principal. Show that one of the following is true:
 - (a) $S_{\mathfrak{m}}$ is a PID.
 - (b) $S_{\mathfrak{m}}$ is a field.

Hint: If $S_{\mathfrak{m}}$ is not an integral domain, show that $a^n = 0$ for some n, and use the previous problem.

(8) Suppose that k is a perfect field. Let S be a finitely generated k-algebra with a maximal ideal \mathfrak{m} and residue field $L = S/\mathfrak{m}$. Let

$$\mathfrak{m}_L \leq L \otimes_k S$$

be the maximal ideal corresponding to the surjection

$$L \otimes_k S \xrightarrow{a \otimes s \mapsto a\pi(s)} L$$

where $\pi: S \to L$ is the quotient map. Show that $S/\mathfrak{m}^2 \simeq (L \otimes_k S)/\mathfrak{m}_L^2$, and hence that $\mathfrak{m}/\mathfrak{m}^2 \simeq \mathfrak{m}_L/\mathfrak{m}_L^2$. Hint: The key is to show that S/\mathfrak{m}^2 is canonically an L-algebra. This uses the fact that L is a finite separable extension of k.

Remark: This completes the proof of the 'Consequence' from Lecture 23 under the additional perfectness hypothesis. The full proof needs a little dimension theory and will be skipped.

- (9) Suppose that $S \in \operatorname{Alg}_k$ is a finitely generated k-algebra such that $\Omega^1_{S/k}$ is finite projective over S of rank n. Show that there exist $f_1, \ldots, f_m \in S$ such that $(f_1, \ldots, f_m) = S$ is the unit ideal and such that, for each i, $S[f_i^{-1}]$ is the quotient of a standard smooth S-algebra of relative dimension n.

 Hint: See Lecture 22.
- (10) Suppose that $S \in Alg_k$ is a finitely generated k-algebra that is a Dedekind domain, and is such that $\Omega^1_{S/k}$ is projective of rank 1. Show that S is smooth.

Hint: Use the previous problem. This completes the proof of the proposition in Lecture 23.