Домашняя работа №3

А-13а-19 Самсонова Мария

31 мая 2022 г.

1 Реализуйте машины Тьюринга, которые позволяют выполнять следующие операции:

1. Сложение двух унарных чисел Граф решения МТ

Проверка работоспобособности алгоритма

No	входная строка	выходная строка
1	1 1 + 1 1	1 1 1 1
2	+ 1 1	1 1
3	1 1 +	1 1

2. Умножение унарных чисел Граф решения МТ

Проверка работоспобособности алгоритма

$N_{\overline{0}}$	входная строка	выходная строка
1	1 1 x 1 1 1	1 1 1 1 1
2	x 1 1 1	
3	1 1 1 x	

3. Принадлежность к языку $L = \{0^n 1^n 2^n\}, n \ge 0$ Граф решения МТ

Проверка работоспобособности алгоритма

Tipobopika paooitoeniooceoniociii asii opiiiska		
$N_{\overline{0}}$	входная строка	выходная строка
1	0 0 1 1 2	Т
2	0 0 2	Т
3	1 1	Т
4	1 2 1	F
5		Т

4. Проверка соблюдения правильности скобок в строке (минимум 3 вида скобок) Граф решения МТ

Проверка работоспобособности алгоритма

Nº	входная строка	выходная строка
1		Т
2	[(])	F
3	() 1	F
4	[()]	F

5. Поиск минимального по длине слова в строке (слова состоят из символов 1 и 0 и разделены пробелом)

Граф решения МТ

Проверка работоспобособности алгоритма

Nº	входная строка	выходная строка
1	1 1 0 1 1 0 1	1 0 1
2	1 1 1 0 1	1 1
3	1 1 1 1 0 0	0
4	1 1	1 1

2 Квантовые вычисления

for (q in qs)

Дано N кубитов ($1 \le N \le 8$) в нулевом состоянии $0 \dots 0$. Также дана некоторая последовательность битов, которое задаёт ненулевое базисное состояние размера N. Задача получить суперпозицию нулевого состояния и заданного.

$$S = \frac{1}{\sqrt{2}}(0\dots 0 + \psi)$$

То есть требуется реализовать операцию, которая принимает на вход:

- 1. Массив кубитов q_s
- 2. Массив битов bits описывающих некоторое состояние ψ . Это массив имеет тот же самый размер, что и qs. Первый элемент этого массива равен 1.

```
namespace Quantum.HW3
{
    open Microsoft. Quantum. Canon;
    open Microsoft.Quantum.Intrinsic;
    open Microsoft. Quantum. Diagnostics;
    open Microsoft. Quantum. Measurement;
    @EntryPoint()
    operation SolveForTwoQubits() : Result[]
        using (qubits = Qubit[1])
            DumpMachine ();
            Solve (qubits);
                                             // invoke your existing Solve operati
                                             // outputs the state of your qubits
            DumpMachine ();
                                            // measure the qubits
            let results = MultiM(qubits);
                                             // reset the qubits to the initial st
            ResetAll(qubits);
                                             // return the measured results
            return results;
    }
    operation Solve (qs : Qubit[]) : ()
        body
```

```
if (Zero != M(q))
{
          X(q);
          }
}
H(qs[0]);

for (i in 1..Length(qs) - 1)
{
    use q = Qubit();
    if (Zero != M(q))
    {
          CNOT(qs[0], qs[i]);
    }
}
```

}