Problem 1

Let T be a linear operator on a finite dimensional vector space V with Jordan Canonical Form

Γ	2	1	0	0	0	0	0
	0	2	1	0	0	0	0
	0	0	2		0		
	0	0	0	2	1 2	0	0
	0						
	0	0	0	0	0	3	0
L	0	0	0	0	0	0	3

Answer the following questions

- 1. Find the characteristic polynomial of T
- 2. Find the dot diagram corresponding to each eigenvalue of T
- 3. For which eigenvalues λ_i , if any, does $E_{\lambda_i} = K_{\lambda_i}$
- 4. For each eigenvalue λ_i find the smallest postive integer p_i for which $K_{\lambda_i} = N((T_{\lambda_i}I)^{p_i})$
- 5. Compute the following numbers for each i where U_i denotes the restriction of $T \lambda_i$ to K_{λ_i}
 - (a) $rank(U_i)$
 - (b) $\operatorname{rank}(U_i^2)$
 - (c) $\dim(N(U_i))$
 - (d) $\dim(N(U_i^2))$

Solution

1. The characteristic polynomial for T is immediately obtainable from its Jordan Canonical Form:

$$f(t) = (2 - t)^5 (3 - \lambda)^2.$$

2. For the eigenvalue $\lambda = 2$, we can see from our JCF of T that we have one cycle of length 3, and another cycle of length 2. Thus, the dot diagram is

For the eigenvalue $\lambda = 3$, we have two cycles of length 1, so we have dot diagram

- 3. For $\lambda_i = 3$ we have that $K_{\lambda_i} = E_{\lambda_i}$, as all of the vectors in K_{λ_i} are eigenvalues of T.
- 4. These can immediately be obtained from the dot diagrams. If we let $\lambda_1 = 2$, and $\lambda_2 = 3$, we have

$$p_1 = 3$$
, and $p_2 = 1$.

5. (a) We have that $rank(U_i)$ is equal to the number of dots in the dot diagram that are not the bottom dot for their column. Thus, we have

$$rank(U_1) = 3$$
, and $rank(U_2) = 0$.

(b) We have that $\operatorname{rank}(U_i^2)$ is equal to the number of dots in the dot diagram that are not in the bottom two dots for their column. Thus,

$$rank(U_1^2) = 1$$
, and $rank(U_2^2) = 0$.

(c) The number of dots in the dot diagram is equal to the dimension of K_{λ_i} . Thus, using the rank nullity theorem, and our results from (a), we have

$$\dim N(U_1) = 5 - 3 = 2$$
, and $\dim N(U_2) = 2 - 0 = 2$.

(d) Using the results from part (b), we have

$$\dim N(U_1^2) = 5 - 1 = 4$$
, and $\dim N(U_2^2) = 2 - 0 = 2$.

November 17, 2023

Problem 2

Find the Jordan Canonical Form for the following matrix.

$$A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 3 & -2 \\ 0 & 2 & 2 & -1 \end{bmatrix}$$

Solution

We start by finding the finding the characteristic polynomial for A:

$$|A - tI| = \begin{vmatrix} 1 - t & 0 & 2 & 2 \\ 0 & 1 - t & 0 & 0 \\ 0 & 2 & 3 - t & -2 \\ 0 & 2 & 2 & -1 - t \end{vmatrix}$$
$$= (1 - t)^{2} (-(3 - t)(1 + t) + 4)$$
$$= (1 - t)^{2} (t^{2} - 2t + 1)$$
$$= (1 - t)^{4}.$$

Thus, we have one unique eigenvalue, $\lambda = 1$. Since this eigenvalue has multiplicity 4, we have $\dim(K_1) = 4$. We will now find the dot diagram, but finding how many dots go in each row:

$$r_1 = \dim(V) - \operatorname{rank}(A - \lambda I)$$

$$= 4 - \operatorname{rank} \begin{pmatrix} \begin{bmatrix} 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & -2 \\ 0 & 2 & 2 & -2 \end{bmatrix} \end{pmatrix}$$

$$= 4 - \operatorname{rank} \begin{pmatrix} \begin{bmatrix} 0 & 2 & 2 & -2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \end{pmatrix}$$

$$= 4 - 2$$

$$= 2$$

Now, to find the number of dots in the second row, we will need to square $A - \lambda I$:

Thus, we have

$$r_2 = r_1 - \operatorname{rank}(A - \lambda I)^2$$
$$= 2 - 1$$
$$= 1.$$

Since the number of dots must equal the multiplicity of λ , we have $r_3 = 1$. Thus, the dot diagram is

With this, we can see that the JCF of A is

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Problem 3

Suppose that V is the real vector space of functions spanned by the set of real-valued functions $\beta_0 = \{e^t, te^t, t^2e^t, e^{2t}\}$. Suppose that T is the linear operator on V defined by T(f) = f'. Find a Jordan Canonical Form J of T and a Jordan basis β of generalized eigenvectors for V.

Solution

We will start by expressing T as a matrix in this given basis. We have

$$Te^{t} = e^{t}$$

$$Tte^{t} = e^{t} + te^{t}$$

$$Tt^{2}e^{t} = 2te^{t} + t^{2}e^{t}$$

$$Te^{2t} = 2e^{2t}.$$

Thus, we have

$$[T]_{\beta_0} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Now, we will find the characteristic polynomial:

$$|T - tI| = \begin{vmatrix} 1 - t & 1 & 0 & 0\\ 0 & 1 - t & 2 & 0\\ 0 & 0 & 1 - t & 0\\ 0 & 0 & 0 & 2 - t \end{vmatrix}$$
$$= (1 - t)^3 (2 - t).$$

Thus, we have two unique eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$ with respective multiplicities 3 and 1. Now we will find matrix form of $T - \lambda_1 I$:

$$T - \lambda_1 I = \begin{bmatrix} 1 - \lambda_1 & 1 & 0 & 0 \\ 0 & 1 - \lambda_1 & 2 & 0 \\ 0 & 0 & 1 - \lambda_1 & 0 \\ 0 & 0 & 0 & 2 - \lambda_1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

This has rank 3, which means that there is only 1 dot in the first row of our dot diagram, which means we can conclude that the dot diagram corresponding to λ_1 is

The dot diagram for λ_2 is trivial, thus we can conclude that a JCF of T is

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Now, we will find the nullspace of $(T - \lambda_1 I)^2$. We have

Thus, the a basis for this null space is

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \right\}$$

Now we find the null space for $(T - \lambda_1 I)^3$:

Thus, we see that a basis for this null space is

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}.$$

Now, we want the one vector that is not in the nullspace of $(T - \lambda I)^2$, so we know we want the third one. Call this vector v_3 . We can use this to find the next vector in our basis that will put T in JCF:

$$v_2 = (T - \lambda I)v_3$$

= $Tt^2e^t - t^2e^t$
= $2te^t + t^2e^t - t^2e^t$
= $2te^t$.

Finally, we use this to get the eigenvector:

$$v_1 = (T - \lambda I)v_2$$

$$= 2Tte^t - 2te^T$$

$$= 2e^t + 2te^t - 2te^t$$

$$= 2e^t.$$

Putting it all together, our basis for putting T into JCF is

$$\beta = \{t^2 e^t, 2t e^t, 2e^t, e^{2t}\}.$$

As a sanity check, we will express T in this basis. First, we see

$$Tt^{2}e^{t} = t^{2}e^{t} + 2te^{t}$$
$$T2te^{t} = 2te^{t} + 2e^{t}$$
$$T2e^{t} = 2e^{t}$$
$$T2e^{2t} = 2e^{2t}.$$

With this, we can see

$$[T]_{\beta} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix},$$

as desired.