项目:探索未来气候发展趋势

提交人: 叶佩仪

时间: 2019年12月31日

一、项目目的

利用 Udacity 的气温数据库中的数据,对全球温度趋势和我的居住地的温度趋势进行数据分析,实现可视化数据呈现,做出观察结论。

二、具体操作步骤

1、制作全球温度趋势折线图

(1) 在 SQL Workspace 中输入以下代码,导出 CSV 文件,命名为"global_data"。

(2) 打开"global_data"文件,在 C1 单元格输入题目"global_5_yr_moving_temp",在 C6 单元格输入"=AVERAGE(B2:B6)",然后拉动公式至 C267 单元格。获得全球每 5 年的移动平均温度。使用同样的方法,在 D 列、E 列、F 列分别获得全球每 10 年、每 20 年、每 30 年的移动平均温度。

SU	JM -	: ×	✓ f _{sc} =AVERAGE(B		2:B6)		
4	Α	В	С	D	E	F	
1	year	avg_temp	global_5_y	global_10_yr_m	global_20_	global_30_y	
2	1750	8.72					
3	1751	7.98					
4	1752	5.78					
5	1753	8.39					
6	1754	8.47	=AVERAGE	(B2:B6)			
7	1755	8.36	AVERAGI	(number1, [numb	er2],)		
8	1756	8.85	7.97				
9	1757	9.02	8.618				
10	1758	6.74	8.288				
11	1759	7.99	8.192	8.03			
12	1760	7.19	7.958	7.877			
13	1761	8.77	7.942	7.956			
14	1762	8.61	7.86	8.239			
15	1763	7.5	8.012	8.15			
16	1764	8.4	8.094	8.143		ſ	
17	1765	8.25	8.306	8.132			
18	1766	8.41	8.234	8.088			
19	1767	8.22	8.156	8.008			
20	1768	6.78	8.012	8.012	_		
21	1769	7.69	7.87	7.982	8.006		
22	1770	7.69	7.758	8.032	7.9545		
23	1771	7.85	7.646	7.94	7.948		
24	1772	8.19	7.64	7.898	8.0685		
25	1773	8.22	7.928	7.97	8.06		
26	1774	8.77	8.144	8.007	8.075		
27	1775	9.18	8.442	8.1	8.116		
28	1776	8.3	8.532	8.089	8.0885		
29	1777	8.26	8.546	8.093	8.0505		
30	1778	8.54	8.61	8.269	8.1405		
31	1779	8.98	8.652	8.398	8.19	-	
32	1780	9.43	8.702	8.572	8.302	-	
33	1781	8.1	8.662	8.597	8.2685		
34	1782	7.9	8.59	8.568	8.233	8.235	
35	1783	7.68	8.418	8.514	8.242	8.211333	

(3) 选择从 A1-F267 区域,插入折线图,在图表工具下的设计下的选择数据中,列的数据选择"global_5_yr_moving_temp",在设置坐标轴格式下的坐标轴选项中,设置边界最小值为7.0,边界最大值为10.0,主要单位为0.5,次要单位为0.1;另外,设置折线图标题为"Global Temperature Tendency",横坐标标题为"year",纵坐标标题为"Temp/°C",图例标题为"global_5_yr_moving_temp",最终获得全球每5年移动平均温度的折线图。使用同样的方法,分别获得全球每10年、每20年、每30年的移动平均温度的折线图。

- (4) 经比较,选择全球每10年的移动平均温度的折线图作为最终呈现图。
- 2、制作我的居住地的温度趋势折线图
- (1) 在 SQL Workspace 中输入以下代码,确定数据库中有广州的气温数据。

(2) 在 SQL Workspace 中输入以下代码,导出 CSV 文件,命名为"GZ_data"。

(3) 打开"GZ_data"文件,在 E1 单元格输入题目"GZ_10_yr_moving_temp",在 E11 单元格输入"=AVERAGE(D2:D11)",然后拉动公式至 E175 单元格。获得广州每 10 年的移动平均温度。

	Α	В	С	D	E	F	G	
1	country	city	year	avg_temp	GZ_10_yr_r	noving_ten	np	
2	China	Guangzho	1840	20.98				
3	China	Guangzho	1841	21.02				
4	China	Guangzhoi	1842	21.16				
5	China	Guangzhoi	1843	21.25				
6	China	Guangzhoi	1844	20.86				
7	China	Guangzhoi	1845	20.84				
8	China	Guangzhoi	1846	21.46				
9	China	Guangzho	1847	21.07				
10	China	Guangzho	1848	20.75				
11	China	Guangzho	1849	21.03	=AVERAGE	(D2:D11)		
12	China	Guangzho	1850	21.21	AVERAG	E(number1, [[number2],)	
13	China	Guangzho	1851	21.33	21.096			_
14	China	Guangzho	1852	21.28	21.108			
15	China	Guangzho	1853	21.78	21.161			
16	China	Guangzho	1854	21.64	21.239			
17	China	Guangzho	1855	21.09	21.264			
18	China	Guangzhoi	1856	20.6	21.178			
19	China	Guangzhoi	1857	21.12	21.183			
20	China	Guangzho	1858	21.05	21.213			

(4) 选择从 C1-E175 区域,插入折线图,在图表工具下的设计下的选择数据中,列的数据选择"GZ_10_yr_moving_temp",在设置坐标轴格式下的坐标轴选项中,设置边界最小值为20.5, 边界最大值为23.0, 主要单位为0.5, 次要单位为0.1, 最终获得广州每10年移动平均温度的折线图。

3、为了后续分析方便,将全球温度趋势折线图进行微调整。打开"global_data"文件,将 1849年至 2013年对应的"global_10_yr_moving_temp"数据,即 D101-D265数据通过复制和数值方式粘贴至"GZ_data"文件中的 F 列中(从 1849年开始粘贴)。重新制作折线图(方法同上)。调整后的全球温度趋势折线图如下:

2、观察发现

(1) 以下两张折线图分别为全球和广州从 1840 年至 2013 年每十年平均移动温度趋势图。

- (2) 观察 1: 自 1840 年至 2013 年约 170 年间,全球气温整体呈上升趋势,从最低温约 8度,上升至最高温约 9.6度,上升幅度约 1.6度。
- (3) 观察 2: 自 1972 年以来,全球气温上升趋势比以往加剧。
- (4) 观察 3: 自 1840 年至 2013 年约 170 年间,广州气温整体呈上升趋势,从最低温约 21 度,上升至最高温约 22.3 度,上升幅度约 1.3 度。
- (5) 观察 4: 与全球平均水平相比,广州的整体和局部气温趋势与全球保持一致,但广州的变化比全球更剧烈一些。
- (6) 观察 5: 与全球平均水平相比,广州的各阶段平均气温比全球高约 13 度。