p.m.f. or p.d.f. $f(x;\theta)$, $\theta \in \Omega$.

 Ω – parameter space.

1. Suppose $\Omega = \{1, 2, 3\}$ and the p.m.f. $f(x; \theta)$ is

$$\theta = 1$$
: $f(1;1) = 0.6$, $f(2;1) = 0.1$, $f(3;1) = 0.1$, $f(4;1) = 0.2$.

$$\theta = 2$$
: $f(1;2) = 0.2$, $f(2;2) = 0.3$, $f(3;2) = 0.3$, $f(4;2) = 0.2$.

$$\theta = 3$$
: $f(1;3) = 0.3$, $f(2;3) = 0.4$, $f(3;3) = 0.2$, $f(4;3) = 0.1$.

What is the maximum likelihood estimate of θ based on only one observation of X if ...

a) X = 1;

$$f(1;1)=0.6 \Leftarrow$$

 $f(1;2)=0.2 \Rightarrow \hat{\theta} = \mathbf{1}.$
 $f(1;3)=0.3$

b) X = 2;

$$f(2;1) = 0.1$$

$$f(2;2) = 0.3 \qquad \Rightarrow \qquad \hat{\theta} = 3.$$

$$f(2;3) = 0.4 \Leftarrow$$

c) X = 3;

$$f(3;1) = 0.1$$

 $f(3;2) = 0.3 \iff \hat{\theta} = 2.$
 $f(3;3) = 0.2$

d) X = 4.

$$f(4;1)=0.2 \Leftarrow$$

 $f(4;2)=0.2 \Leftarrow$ \Rightarrow $\hat{\theta} = 1 \text{ or } 2.$
 $f(4;3)=0.1$ (maximum likelihood estimate may not be unique)

Likelihood function:

$$L(\theta) = L(\theta; x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i; \theta) = f(x_1; \theta) \cdot \dots \cdot f(x_n; \theta)$$

It is often easier to consider $\ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i; \theta)$.

Maximum Likelihood Estimator: $\hat{\theta} = \arg \max L(\theta) = \arg \max \ln L(\theta)$.

Method of Moments:

$$E(X) = g(\theta)$$
. Set $\overline{X} = g(\widetilde{\theta})$. Solve for $\widetilde{\theta}$.

O. Consider a single observation X of a Binomial random variable with n trials and probability of "success" p. That is,

$$P(X = k) =_n C_k p^k (1-p)^{n-k}, \qquad k = 0, 1, ..., n.$$

a) Obtain the method of moments estimator of p, \tilde{p} .

Binomial: E(X) = n p

$$X = n \widetilde{p}$$
 \Rightarrow $\widetilde{p} = \frac{X}{n}$.

b) Obtain the maximum likelihood estimator of p, \hat{p} .

$$L(p) =_n C_X p^X (1-p)^{n-X}$$

$$\ln L(p) = \ln_n C_X + X \ln p + (n - X) \ln (1 - p)$$

$$\frac{d}{dp}\ln L(p) = \frac{X}{p} - \frac{n-X}{1-p} = \frac{X - Xp - np + Xp}{p(1-p)} = \frac{X - np}{p(1-p)}$$

$$\frac{d}{dp}\ln L(\hat{p}) = 0 \qquad \Rightarrow \qquad \hat{p} = \frac{X}{n}.$$

2. Let $X_1, X_2, ..., X_n$ be a random sample of size n from a Poisson distribution with mean λ , $\lambda > 0$. That is,

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k=0, 1, 2, 3, \dots$$

a) Obtain the method of moments estimator of λ , $\widetilde{\lambda}$.

$$E(X) = \lambda$$
 \Rightarrow $\widetilde{\lambda} = \overline{X}$

b) Obtain the maximum likelihood estimator of λ , $\hat{\lambda}$.

$$L(\lambda) = \prod_{i=1}^{n} f(X_i; \lambda) = \prod_{i=1}^{n} \left(\frac{\lambda^{X_i} e^{-\lambda}}{X_i!} \right).$$

$$\ln L(\lambda) = \left(\sum_{i=1}^{n} X_{i}\right) \cdot \ln \lambda - n \lambda - \sum_{i=1}^{n} \ln(X_{i}!).$$

$$\frac{d \ln L(\lambda)}{d \lambda} = \frac{1}{\lambda} \cdot \left(\sum_{i=1}^{n} X_i \right) - n = 0. \qquad \Rightarrow \qquad \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$$

Let $\hat{\theta}$ be the maximum likelihood estimate (m.l.e.) of θ . Then the m.l.e. of any function $h(\theta)$ is $h(\hat{\theta})$. (The Invariance Principle)

c) Obtain the maximum likelihood estimator of P(X = 2).

$$P(X=2) = h(\lambda) = \frac{\lambda^2 e^{-\lambda}}{2!} \qquad \hat{\lambda} = \overline{X} \qquad h(\hat{\lambda}) = \frac{\overline{X}^2 e^{-\overline{X}}}{2!}.$$

fig 1.0 The Extended Bell Curve.

3. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$, μ unknown. Show that $\hat{\mu} = \overline{X}$ is the MLE for μ .

$$L(\mu; x_1, x_2, ..., x_n) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (x_i - \mu)^2\right\}.$$

$$\ln L(\mu) = -\frac{n}{2} \ln(2\pi) - n \ln(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.$$

$$\frac{\mathrm{d}}{\mathrm{d}\mu}\ln\mathrm{L}(\mu) = \frac{1}{\sigma^2}\sum_{i=1}^n (x_i - \mu) = 0.$$

$$\sum_{i=1}^{n} (x_i - \mu) = \sum_{i=1}^{n} x_i - n \mu = 0.$$

$$\Rightarrow \qquad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}.$$

4. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$, μ known, σ unknown. Show that $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$ is the MLE for σ^2 .

$$L(\sigma^{2}; x_{1}, x_{2},..., x_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2\sigma^{2}}(x_{i} - \mu)^{2}\right\}.$$

$$\ln L(\sigma) = -\frac{n}{2} \ln(2\pi) - n \ln(\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.$$

$$\frac{\mathrm{d}}{\mathrm{d}\sigma}\ln\mathrm{L}(\sigma) = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

$$\Rightarrow \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

OR

$$L(\sigma^{2}; x_{1}, x_{2}, ..., x_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{1}{2\sigma^{2}} (x_{i} - \mu)^{2}\right\}$$
$$= \left(\frac{1}{\sqrt{2\pi\theta}}\right)^{n} \exp\left\{-\frac{1}{2\theta} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right\}.$$
 $\theta = \sigma^{2}$

$$\ln L(\theta) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\theta) - \frac{1}{2\theta} \sum_{i=1}^{n} (x_i - \mu)^2.$$

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\ln\mathrm{L}(\theta) = -\frac{n}{2\theta} + \frac{1}{2\theta^2} \sum_{i=1}^n (x_i - \mu)^2 = 0.$$

$$\Rightarrow \qquad \hat{\theta} = \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

- 5. Let $X_1, X_2, ..., X_n$ be a random sample of size n from $N(\theta_1, \theta_2)$, where $\Omega = \{(\theta_1, \theta_2) : -\infty < \theta_1 < \infty, \ 0 < \theta_2 < \infty\}$. That is, here we let $\theta_1 = \mu$ and $\theta_2 = \sigma^2$.
- a) Obtain the maximum likelihood estimator of θ_1 , $\hat{\theta}_1$, and of θ_2 , $\hat{\theta}_2$.

$$\begin{split} \mathbf{L}(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\theta_2}} \exp\left[-\frac{(\mathbf{X}_i - \boldsymbol{\theta}_1)^2}{2\theta_2}\right] \\ &= \left(\frac{1}{\sqrt{2\pi\theta_2}}\right)^n \exp\left[\frac{-\sum_{i=1}^n (\mathbf{X}_i - \boldsymbol{\theta}_1)^2}{2\theta_2}\right], \qquad (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) \in \Omega. \end{split}$$

$$\ln L(\theta_1, \theta_2) = -\frac{n}{2} \ln(2\pi\theta_2) - \frac{\sum_{i=1}^{n} (X_i - \theta_1)^2}{2\theta_2}.$$

The partial derivatives with respect to θ_1 and θ_2 are

$$\frac{\partial (\ln L)}{\partial \theta_1} = \frac{1}{\theta_2} \sum_{i=1}^{n} (X_i - \theta_1)$$

and

$$\frac{\partial (\ln L)}{\partial \theta_2} = -\frac{n}{2\theta_2} + \frac{1}{2\theta_2^2} \sum_{i=1}^n (X_i - \theta_1)^2.$$

The equation $\partial (\ln L)/\partial \theta_1 = 0$ has the solution $\theta_1 = \overline{X}$.

Setting $\partial (\ln L)/\partial \theta_2 = 0$ and replacing θ_1 by \overline{X} yields

$$\theta_2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2.$$

Therefore, the maximum likelihood estimators of $\mu = \theta_1$ and $\sigma^2 = \theta_2$ are

$$\hat{\theta}_1 = \overline{X}$$
 and $\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$.

b) Obtain the method of moments estimator of θ_1 , $\widetilde{\theta}_1$, and of θ_2 , $\widetilde{\theta}_2$.

$$E[X] = \mu = \theta_1.$$

$$E[X^{2}] = Var[X] + E[X]^{2} = \sigma^{2} + \mu^{2} = \theta_{2} + \theta_{1}^{2}.$$

Thus,
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \widetilde{\theta}_1, \qquad \overline{X^2} = \frac{1}{n} \sum_{i=1}^{n} X_i^2 = \widetilde{\theta}_2 + \widetilde{\theta}_1^2.$$

Therefore,
$$\widetilde{\theta}_1 = \overline{X}$$
 and $\widetilde{\theta}_2 = \overline{X^2} - (\overline{X})^2$.