

Qu'est-ce qu'une donnée manquante?

- Une **donnée manquante** (DM) : valeur non observée pour un couple variable-observation
- **DM partielle** (*item non-response*): pour un individu donné, seules quelques valeurs non observées
- **DM totale** (*unit non-response*): toutes les variables d'un individu donné sont non observées

 Lorsqu'on parle de données manquantes dans un sens plus général, il s'agit de l'ensemble des données manquantes

• Sous R, mentionné par le terme NA (*Not Available*) ≠ NaN (Not A Number) → division par 0

Répartition de données manquantes

Structure univariée
Mêmes individus ont des
DMs pour les mêmes d < p
variables

<u>Monotone</u>

Si les variables peuvent être ordonnées de telle sorte que lorsque l'observation est manquante pour un individu i pour une variable, alors toutes les autres variables suivantes sont aussi manquante

→ fréquent données longitudinales

Sans structure

DMs réparties sans

structure particulière dans le jeu de donnée

→ Adapter notre stratégie de traitement

- Exclure des variables ou des individus
- Collecter de nouvelles données (quand cela est possible)
- Estimer/remplacer les données manquantes : imputation, quelle(s) méthode(s) choisir pour cela ?

Valeur manquante

Cas des données longitudinales

Y complètement observé. L'individu s'est présenté à toutes les visites

Y manquante intermittente. L'individu a manqué quelques visites.

Y manquante monotone. L'individu est perdu de vue (ne vient plus à partir d'une certaine date).

Bien comprendre ses données

- Valeurs manquantes pas pu être observées, perdues, incohérentes
- Pas toujours « NA », ou une case vide dans les jeux de données
 - 1. Données omiques, spectrométrie de masse → présence de 0
 - Soit la variable (protéine, métabolite, etc.) est vraiment absente → vrai 0
 - Soit < seuil de détection → présente mais en très faible quantité
 - Problème technique : exemple en protéomique, MS/MS la protéine « se coupe mal », peptide non identifié → valeur mise à 0 → ?
 - Etc.

Méconnaissance du mécanisme réel de la donnée manquante

- 2. Données météorologiques : -999, code des données manquantes pour la température
- Autre exemple particulier : données longitudinales
 - L'individu absent à un temps t → Pourquoi ?
 - L'individu quitte l'étude (notion de censure → données manquantes particulières)

Quelques notations

- Soit un vecteur $Y = (Y_1, ..., Y_p)$ de p variables aléatoires (numériques ou catégorielles)
- R matrice indicatrice des valeurs manquantes $(r_{ij})_{i=1,\dots,n,j=1,\dots,p}$

$$r_{ij} = \begin{cases} 1 \text{ si } y_{ij} \text{ est observ\'ee} \\ 0 \text{ sinon} \end{cases}$$

- Y_{obs} : parties observées de Y
- Y_{miss} : parties manquantes de Y

$$Y = RY_{obs} + (1 - R)Y_{miss}$$

- Mécanisme des données manquantes : f(R|Y) distribution conditionnelle de R sachant Y
 - Peut dépendre de paramètre $\psi + f(R|Y;\psi)$
 - Présence de covariables $(X_i)_{i=1,\dots,q}$ complètement observées $\rightarrow f(R|Y,X;\psi)$

Mécanisme des données manquantes

Little & Rubin (2002)

Missing Completely At Random (MCAR)

$$f(R|Y,X;\psi) = f(R;\psi)$$

<u>Exemple</u>: Une personne oublie accidentellement de répondre à une question pendant une enquête ou sous-échantillon pour des mesures trop coûteuses

Missing At Random (MAR)

$$f(R|Y,X;\psi) = f(R|Y_{obs},X;\psi)$$

Exemple: personnes âgées (X = âge) ont plus tendance à refuser de donner leur revenu (Y)

Missing Not At Random (MNAR)

$$f(R|Y,X;\psi) = f(R|Y_{obs},Y_{miss},X;\psi)$$

Exemple: Question sensible

• Mécanisme ignorable : données manquantes aléatoirement + les paramètres régissant le mécanisme de génération de DM et des données doivent être « distinguables »

• Structurally missing data (SMD) (*Mitra et al., 2023*): fait référence à des motifs multivariés non aléatoires d'absence de données dans un ensemble de données

Exemple : âge du premier enfant alors que l'individu n'a pas d'enfant, réunit plusieurs bases de données

Illustration MAR vs MNAR

Source : figure 2 de Mitra et al. (2023)

Pourquoi doit-on gérer les données manquantes?

« The best thing to do with missing data is to not have any »

Gertrude Mary Cox

Objectif:

- Limiter la perte de précision
- Limiter les biais d'estimation dans les méthodes d'inférence
- Préserver les caractéristiques essentielles des données : distribution des variables, relations entre les variables
- pas retrouver les vraies valeurs

Note : première façon d'éviter les données manquantes : bien construire son plan expérimental

> particulièrement vrai pour des études longitudinales, ou des enquêtes auprès de personnes

Visualiser les données manquantes

R package *VIM*Permet anomalies ou erreurs dans les données imputées

Heatmap

Barplots

Envisager d'imputer les valeurs manquantes (si la proportion de valeurs manquantes n'est pas trop élevée, inférieure à 30 % par exemple).

Pattern particulier des données manquantes : potentiellement présence de MNAR

Imputation ou supprimer ligne/colonne → peut introduire des biais. Le pattern a-t-il un sens ? Est-il possible d'établir un lien entre les schémas d'absence et un facteur expérimental ? Si oui, envisagez d'imputer par les niveaux de ce facteur.

Filtrer: supprimer des variables et/ou individus

• Enlever les variables et individus avec trop de données manquantes

- Au-delà d'un certain seuil (20-30%), les méthodes d'imputation ne vont pas bien fonctionner
 - > introduction de biais très fort,
 - résultats difficilement interprétables (#données « fictives/artificielles » > #données observées)
 - ➤ Attention si DM MNAR ➤ introduction de biais

Bien connaître ses données

Se poser aussi les bonnes questions

Exemple : spectrométrie de masse, choix arbitraire : suppression de toutes les variables avec > 20% de données manquantes

> Configuration suivante pour une variable (2 groupes d'intérêt, 12 individus)

	ln1d_g1	Ind2_g1	Ind3_g1	Ind4_g1	Ind5_g1	Ind6_g1	ln1d_g2	Ind2_g2	Ind3_g3	Ind4_g4	Ind5_g2	Ind6_g2
$omic_i$	110,038	NA	251,457	161,326	244,02	144,133	NA	NA	34,958	NA	NA	NA

- ➤ Ici sur l'ensemble des individus : 50% de NA → si on applique le filtre, on supprime la variable
- ➤ Filtre par groupe : g1: 16,7% ; g2: 83,3% de NA→ potentiel biomarqueur
- Question : comment imputer les données manquantes?
 - Groupe 2 : supposer que la variable n'est pas présente pour le groupe 2 (ou en très faible quantité, i.e. < seuil de détection) → remplacer le NA par 0 ou une toute petite valeur
 - Groupe 1: Utiliser une autre approche pour imputer la DM (exemple: knn)
 - Exemple de packages R : **DAPAR**, **imp4p**

Choisir sa stratégie

• Méthodes fondées uniquement sur les données observées :

• Analyse des cas complets, analyse des cas disponibles, etc.

Imputation simple

- Complétion stationnaire
- Basée sur des similarités entre individus
- Approches par prédiction
- Approches fondées sur les analyses factorielles
- Etc.

Méthodes pour les approches paramétriques d'inférence statistiques

- Modélisation jointe : approches EM ou bayésiennes
- Méthodes pour estimer la variabilité et fiabilité de l'imputation
 - Évaluer la fiabilité de l'imputation (erreur dans l'estimation de la valeur imputée) : outil de diagnostique
 - Estimation de la variabilité liée au processus d'imputation
 - Imputation multiple, estimation de l'incertitude dans les modèles EM
- Données MNAR : méthodes spécifiques
 - modèles de sélection, modèles par mélange de profils, modèles à paramètres partagés

Méthodes fondées uniquement sur les données observées

- Analyse des cas complets Little & Rubin (2002)
 - Ne considérer que les individus pour lesquels toutes les données sont observées
 - Souvent par défaut dans les logiciels (dont R)
 - Graham (2009) → déconseillé si DM > 5%
 - ⑤ facile à mettre en œuvre, pas de modèle à spécifier
 - 8 Valable pour MCAR, perte possible de beaucoup d'individus

warning message: In PCA(orange) : Missing values are imputed by the mean of the variable: you should use the imputePCA function of the missMDA package

- Pondération par probabilité inverse (IPW) Seaman & White (2011)
 - Réduire les biais d'estimation → repondérer les cas complets disponibles
 - R package : ipw
 - © facile à mettre en œuvre, pas de modèle à spécifier
 - 8 Valable pour MCAR et MAR, souvent efficace imputation multiple

Méthodes fondées uniquement sur les données observées

- Analyse des cas disponibles Allison (2001), Pigott (2001)
- estimer ≠ aspects du problème avec ≠ sous-échantillons
 - Matrice de corrélation, covariance
 - Fonction R cor, cov
 - Apprentissage des arbres

```
cov(x, y = NULL, use = "everything"
method = c("pearson", "kendall", "spearman"))
```

- ②: facile à mettre en œuvre, pas de modèle d'imputation correct à spécifier, permet de prendre en compte + d'individus
- 🖰 : principalement valable MCAR
 - favorise/défavorise de manière artificielle certaines variables selon %DM, notamment si variable pertinente pour partitionner l'échantillon (erreurs en apprentissage majorées)
 - interprétation difficile car sur des sous-échantillons (pas forcément représentatif), erreur standard des estimateurs habituels difficiles à obtenir

Illustration, corrélation


```
use="everything")
                                     Eductn Cathlc
           Frtlty Agrclt Exmntn
                                                         Infn.M
Frtlty 1.0000000
                              NA -0.66378886
                                                    0.41655603
Agrclt
                       1
                              NA
                                          NA
                                                 NA
                                                             NA
                              1
Exmntn
               NA
                      NA
                                          NA
                                                 NA
                                                             NA
Eductn -0.6637889
                             NA 1.00000000
                                                 NA -0.09932185
                      NA
Cathlc
                      NA
                              NA
                                                             NA
Infn.M 0.4165560
                             NA -0.09932185
                                                 NA 1.00000000
```

```
> cor(swM, use = "all.obs")
Error in cor(swM, use = "all.obs") :
  observations manquantes dans cov / cor
```

cas complets

cas disponibles

Méthodes pour les approches paramétriques d'inférence statistiques (EM ou bayésienne)

Schafer (1997)

• Objectif : inférence \rightarrow approches fondées sur la modélisation paramétrique de la distribution multivariée des données, $f(Y;\theta)$ permettant d'obtenir des estimations de θ sans avoir à imputer les données, et en garantissant une estimation non biaisée de ce paramètre, à condition que l'hypothèse d'ignorabilité du mécanisme de génération des DMs soit vérifiée

Approche fréquentiste

- basée sur des approches EM
- Maximum de vraisemblance à information incomplète : **FIML** (*Full Information Maximum Likelihood*)
- Peut servir à l'imputation, θ estimé \star échantillonner selon la loi $f(Y;\theta)$ de pour compléter les DMs MAIS pas besoin si objectif est d'estimer θ

Approche bayésienne

- Loi a priori définie sur θ , $p(\theta)$ utilisée pour déterminer la loi a posteriori
- Approche par augmentation de données, itération de 2 étapes
 - Étape I (Imputation) : M tableaux complets générés selon la loi $f(Y_{miss}|Y_{obs};\theta)$ courante
 - Etape P (postérieure) obtention de la loi a posteriori

Type de variables	Numérique	Catégorielle	longitudinale
Méthode	Moyenne, médiane	Mode	LOCF (dernière valeur
			connue)

• © simple et rapide

Imputation simple (2/3): similarité entre individus

Utiliser des valeurs observées des individus similaires à l'individu pour lequel une valeur est manquante

kNN	<u>Hot-deck</u>				
basé sur une distance Choix de k (<i>Jönsson & Wohlin 2004</i>)	fondé sur le concept de donneurs Andridge & Little (2010)				
© facile, basée sur des mesures de similarités, pas d'hypothèse sur la distribution, souple (choix de la distance), non paramétrique					
qd k >1 : améliore erreur et erreur quadratique moyenne de l'estimation de diverses stat.	préservent distribution (MCAR), estimateur sans biais (MAR), données imputées réalistes, si échantillon grand : moins sensible à une mauvaise spécification des hypothèse qui sous-tendent l'imputation				
 ⊗ tendance à déformer les corrélations entre variables (imputation individus en entier → besoin d'avoir n nombre conséquent d'individus) 					
k ⊅ tend à déformer la distribution univariées des variables (et donc la variance)	 estimateurs biaisées dans certains cas → pas adaptée à l'estimation des mesures d'associations entre variables, estimateur moyenne sous estimée (→ imputation multiple), résultat dégradés si peu échantillon petit (dépend des donneurs) 				

- Approches par prédiction
 - Régression locale (LOESS) Cleveland & Devlin (1988)
 - Régression linéaires, pénalisées (lasso, ridge, elastic net), etc.
 - Régression non paramétrique : arbre de régression (Breiman et al. 1984), forêt aléatoire (Breiman 2001, Stekhoven & Bühlmann 2012)
 - Mieux adaptées pour la modélisation jointe des variables
 - © : jeu complet, flexibles (large choix d'approche de régression)
 - 😕 : valable MAR, + difficile à mettre en œuvre, bonne spécification de la méthode de régression, requièrent bonne prédictibilité des variables avec DM par les autres variables
- Approches fondées sur les analyses factorielles
 - Imputation basée sur de l'ACP, ACM, AFDM: nipals (DM faible, Wold 1966), ACP itérative (ACP-EM, Kiers 1997), ACP itérative régularisée (Verbanck et al 2015), ACP bayésienne (Ilin & Raiko 2010, Verbanck et al 2015)
 - ©bien adapté analyse exploratoire, variantes adaptées a la grande dimension et au grand volume
 - valable MAR, cadre théorique restreint aux modèle de génération des données fondés sur les modèles à effets fixes ou mixtes; problème si relation non linéaire entre les variables continues

Prendre en compte l'incertitude liée à l'imputation

- Pour évaluer la fiabilité des résultats
 - Incertitude sur les données observées (bruit)
 - Incertitude provenant de l'imputation
 - 2 composantes qui sont confondues, erreur globale estimée

- Outils de diagnostique (Abayomi et al 2008, Stuart et al, 2009)
- Imputation multiple (Rubin 1987, Schafer 1999, Rubin 2012)
- SEM: imputation est prise en charge par une hypothèse paramétrique nécessitant l'estimation d'un paramètre θ (Meng & Rubin 1991)

Outils de diagnostiques (1/2)

- 1) Représentation graphique
 - Couleurs ≠ pour données imputées et observées

• Densité semblable ? Valeur atypique dans les données imputées ? Répartition spécifique des points (valeurs imputées) sur le nuage de points ?

Outils de diagnostiques (2/2)

- 2) Comparer densités entre valeurs imputées et observées
 - Test de kolmogorov-Smirnov
 - Graphique : histogramme, courbe de densité
- 3) Pour les imputations générées par des modèles ajustées sur données observées
 - Graphique résidus, qqplot pour un modèle linéaire
 - Se rapproche de la sur-imputation

Conclusion:

- problème imputation > choisir une autre méthode
- sous-groupe de la population avec plus de DMs mis en avant → les étudier

Imputation multiple, schéma

Imputation

Analyse statistique

Combinaison des M résultats en un seul

Phase d'imputation

- <u>Différentes méthodes</u>: ré-échantillonnage, type hot-deck, bayésienne, etc.
- M, nombre d'imputations conseillé :

 - White, I.R. et al.(2010): M ✓ quand taux de DM ✓ + Monte-Carlo, nombre M nécessaire
 - Von Hipel et al. (2020): formule + poussée pour obtenir des estimations de SE reproductibles (SAS macro %mi_combine, Stata, R package howManyImputations)

Combiner les résultats

- Estimation d'un paramètre numérique → estimateur moyen
- Résultats sous forme + complexe, quelques exemples :
 - <u>missMDA</u>: ellipse de confiance autour de la projection des individus, *Josse et al. 2012*
 - Projection consensuelle : projection la + corrélée aux M projections obtenues lors d'AFM, Voillet et al. 2016 (missRows)
 - Inférence de réseau : fréquence de prédiction d'une arête, Imbert et al. 2018 (RNASeqNet)
 - Imputation multiple pour faire de l'analyse différentielle (données protéomiques): mi4p, Chion et al. 2021

Quelques approches pour tenter de prendre en compte les données MNAR

- **Problème** : la loi de Y_{miss} n'est pas indépendante de la loi de R
 - Approches habituelles (estimer la loi multivariée Y; $f(Y; \theta)$) \rightarrow estimateurs ou valeurs imputées biaisés
- Factorisation de la loi jointe
 - Modèle de sélection (Heckman 1976, Diggle & Kenward 1994)
 - 😊 : hypothèse paramétrique sur f(R|Y;psi), sensible à une mauvaise spécification de cette loi
 - Modèle de mélange de profils (Rubin 1977)
 - 😊 : sensible aux hypothèses de restriction (non vérifiables), compromis à effectuer, loi marginale de Y pas disponible directement
 - adapté au cas où la non réponse directement liée aux variables observées (ex: question sensible)
 - Si DM attribuable à un processus sous-jacent (ex: progression maladie) : modèles à paramètres partagés
- Modèles à paramètres partagés (Little 1995; Hogan & Laird 1997) : estimer les dépendances entre Y et R au moyens de variables aléatoires latentes
- Analyse de sensibilité: fondée sur une perturbation des données en direction hypothèse MNAR pour vérifier pertinence du modèle MAR
 - Comparaison de ≠ jeux imputés issus de modèles d'imputation ≠ (R package *mice*)
 - <u>VERBEKE, et al (2001)</u> proposent d'utiliser des modèles de mélanges de profil pour effectuer analyse de sensibilité

Conclusion

- Quelle que soit la stratégie utilisée :
 - Cela ne pourra jamais remplacer un jeu de données complet et consistant
 - Toujours une perte d'information, possibilité d'introduction de biais qui ne reflète pas nécessairement les relations régissant les données
 - Bien de tester plusieurs méthodes et voir celle(s) qui fonctionne(nt) → outils de diagnostique

Recommandations générales:

Liens utiles

- https://cran.r-project.org/web/views/MissingData.html
- https://rmisstastic.netlify.app/

- <u>Décrire, prendre en compte, imputer et évaluer les valeurs manquantes dans les études</u> <u>statistiques : une revue des approches existantes</u> Imbert, A. & Vialaneix, N., Journal de la Société Française de Statistique (2018)
- Quelques livres:
 - https://stefvanbuuren.name/fimd/
 - The missing book Nicholas Tierney & Allison Horst (2022)
 - https://argoshare.is.ed.ac.uk/healthyr book/identification-of-missing-data.html (chap 11)

Me: I should do multiple imputation
Other me: just impute using the mean and be done with it

FIN

Source: https://www.brodrigues.co/blog/2019-11-02-mice_exp/

Test sur le «mécanisme» de données manquantes

- MAR vs MNAR : pas de test connu, meilleure option est d'utiliser les connaissances spécifiques du domaine sur les données
 - msImpute : outils de diagnostique MAR/MNAR (MS, niveau peptidique)
- MCAR vs MAR : test de Little MCAR permet d'évaluer les preuves en faveur ou à l'encontre de ces deux paramètres
 - P-value faible suggèrent données MAR, Pvalue élevée suggèrent
 - R package :
 - *naniar,* mcar_test(.)
 - *misty*, na.test(.)

Enders, 2010:

- n'identifie pas les corrélats potentiels de l'absence de réponse
- Based on multivariate normality
- Étudie différence de moyenne en supposant que le modèle partage une matrice de covariance commune : ne peut pas détecter les écarts MCAR basés sur la covariance provenant d'un modèle MAR ou MNAR (qui peuvent produire des sous groupes de DM avec des moyennes égales)
- Simulation -> test suffers from low statistical power surtout quand ppeu de variables viole l'hypothèse MCAR, relation entre variable et missingness faible ou MNAR
- Peut seulement rejeter MCAR mais pas le prouver
- MNAR ne peut pas être exclu quelque soit le résultat du test (Ho: données MCAR ou MNAR, résultats significatif : MAR ou MNAR

Exemple de pourquoi s'intéresser aux DMs

Cas simple, inférence statistique, estimer l'espérance

- Approche naïve : cas complet
- Objectif: estimer l'espérance de Y_1 , $\mu_1 = \boldsymbol{E}(Y_1)$
- Estimateur habituel : $\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n y_{i1}$
 - Pas nécessairement observé sur certaines valeurs de Y_1 sont manquantes
 - $\tilde{\mu}_1 = \frac{1}{n_1} \sum_{i=1}^n r_{i1} y_{i1}$ avec $n_1 = \sum_{i=1}^n r_{i1}$, nombre de valeurs observées de Y_1
- MCAR, R et Y indépendantes $ightharpoonup ilde{\mu}_1$ estimateur sans biais de μ_1
- MAR ou MNAR : R et Y pas indépendantes \rightarrow exemple si Y_1 liée à Y_2
 - $R_1 = \begin{cases} 0 & si \ Y_2 \le a \\ 1 & sinon \end{cases}$ pour $a \in ensemble des réels$
 - $E(\tilde{\mu}_1) = E(Y_1 \mathbf{1}_{\{Y_2 > a\}})$ biais dans l'estimation de μ_1

Mécanisme ignorable

- Rubin 1976 : conditions minimales requises qui permettent d'ignorer le processus de génération des données manquantes dans l'inférence statistique → mécanisme ignorable
- 1) Données manquantes aléatoirement (MAR + MCAR)
- 2) les paramètres régissant le mécanisme de génération de DM et des données doivent être « distinguables », i.e. $\phi = (\psi, \theta)$ où :
 - ψ désigne les paramètres qui régissent la distribution de R et
 - θ sont les paramètres qui régissent celle de Y
- Paramètres distinguables lorsqu'ils vivent dans de espaces en produits cartésiens
 - → MAR : possible de factoriser la densité des données observées :

$$f(Y_{obs}, R; \theta, \psi) = f(R|Y_{obs}; \psi) \times \int f(Y; \theta) dY_{miss} = f(R|Y_{obs}; \psi) f(Y_{obs}; \theta)$$

• Donc : vraisemblance des données observées proportionnelle à la vraisemblance ignorant le mécanisme à l'origine des données manquantes $L(\theta|Y_{obs})$

$$L(\theta, \psi | Y_{obs}, R) \propto L(\theta | Y_{obs})$$

Méthodes fondées uniquement sur les données observées

Méthodes	Packages R	Cadre d'application	+	-
Analyse des cas complets	Option disponible dans de nombreuses fonctions Na.action = na.omit	Numériques et catégorielles Faible taux de DM (<5%) Mécanisme MCAR	Facile à mettre en œuvre; Pas besoin de modèle d'imputation	Valable ssi MCAR; Perte d'information; perte de précision
Analyse des cas disponibles	Regtools Option dans certaines fonctions Cor(, method=« pairwise »)	Numériques et catégorielles	Facile à mettre en œuvre; Pas besoin de modèle d'imputation; + d'individus pris en compte	Ok si MCAR (Dé) favorise artificiellement des variables Stat. Sur des population différente - > difficilement comparable
Pondération par probabilité inverse (IPW)	ipw	Numériques et catégorielles		

Méthodes pour les approches paramétriques d'inférence statistiques (EM ou bayésienne)

Méthodes	Packages R	Cadre d'application
FIML	lavaan	Modèles à équations structurelles
Approche EM avec un modèle multivarié normal	norm	Données multivariées gaussiennes
Approche EM avec un modèle log- linéaire	cat	Données multivariées catégorielles
Équivalent du package <i>norm</i> pour des données mixtes	mix	Données multivariées mixtes
EM avec approche bayésienne ou boostrap	Amelia	Variables numériques

Imputation simple

Méthodes	Packages R	Cadre d'application
Moyenne, médiane	Hmisc, simputation	Numériques
Mode	Hmisc	Catégorielles
LOCF	zoo	Longitudinales
K plus proches voisins	Impute, VIM, yalmpute	Numérique et/ou catégorielle (cf distance)
Hot-deck	hot.deck, simputation,VIM, HotDeckImputation	Mixte
Régression	simputation, VIM	Numériques
Régression LOESS	locfit	Numériques
Régression stochastique	mice (m=1)	Numériques
Arbres et forêts aléatoires	missForest	Mixtes
NIPALS	ade4, pcaMethods, mixOmics	Numériques
Analyses factorielles	missMDA	Catégorielles et/ou numériques
ACP probabiliste, ACP bayésienne	pcaMethods	
Interpolation, ajustement d'une courbe de lissage, estimation de régression longitudinales	forecast, imputeTS, spaceTime, timeSeries, xts, zoo	Séries temporelles

Hot-deck, principe

- Hot-deck métrique ou plus proche voisin
 - distance
- Hot-deck avec score d'affinité
- Hot-deck hiérarchisé
 - Ordre naturel entre les variables
- Hot-deck aléatoire avec ou sans remise
 - Nécessite individus avec un profil homogène
 - Hot-deck par classe (classification)
- Hot-deck séquentiel

missForest, Stekhoven&Bühlmann (2012)

- Première complétion "naïve" des valeurs manquantes.
- Soit k le vecteur des indices de colonnes de Y triées par quantité croissante de valeurs manquantes;
- 3. Tant que γ n'est pas atteint faire
 - (a) Y_{imp}^{old} = matrice précédemment imputée
 - (b) Pour s dans k faire
 - i. Ajuster $y_{obs}^{(s)} \sim x_{obs}^{(s)}$ par forêt aléatoire
 - ii. Prédire $y_{mis}^{(s)}$ avec les régresseurs $x_{mis}^{(s)}$
 - iii. Y_{imp}^{new} est la nouvelle matrice complétée par les valeurs prédites $y_{mis}^{(s)}$
 - (c) mettre à jour le critère γ

- Imputation naïve: moyenne, médiane, mode
- Critère arrêt : différence entre la matrice imputée nouvelle et celle de l'itération précédente

Source : wikistat

Approches d'évaluation de la variabilité due aux NA ou à l'imputation

Méthodes	Packages R	Cadre d'application			
fondée sur une approche par modélisation jointe (EM et bayésiennes)	Amelia	Numériques			
Version multiple hot-deck	Hot.deck	mixtes			
Approches de modélisation jointe (EM et bayésiennes) multi-niveau	Jomo, pan	Mixtes			
Équations chaînées	<pre>mi, mice mifa (use mice + combined covariance matrices)</pre>	Mixtes			
Analyses factorielles	missMDA	Numérique, mixtes			
Combinaison générique	mitools	Mixtes stratifiés en classe			
Imputation multiple par AFM	missRows	Imputation individus en entier			
Imputation multiple : wrapper de <i>mice</i> , de <i>imp4p</i> et <i>impute.knn</i>	mi4p	Imputation multiple pour de l'analyse différentielle protéomique			
Outils de diagnostique					
Calculs d'erreur	Amelia, missMDA, yalmpute	Mixtes			
Graphique	mi, VIM	mixtes			

missCompare: pipeline d'imputation pour guider les utilisateurs à gérer leurs DMs et sélectionner la méthode la + adaptée à leurs données via des outils de diagnostique

<u>retour</u>

MICE: Multivariate Imputation by Chained Equations

- Introduction de l'aléa réalisé via l'approche d'équations chaînées, approché bayésienne fondées sur la méthode FCS, Stef Van Buuren & Oudshoorn (1999)
- Bâtir un modèle conditionnel pour chaque variable de façon séquentielle jusqu'à convergence

Table 6.1: Built-in univariate imputation techniques in the mice package. Methods marked by * are default for scale type.

	Description	Scale Type
pmm	Predictive mean matching	Any*
midastouch	Weighted predictive mean matching	Any
sample	Random sample from observed values	Any
cart	Classification and regression trees	Any
rf	Random forest imputation	Any
mean	Unconditional mean imputation	Numeric
norm	Bayesian linear regression	Numeric
norm.boot	Normal imputation with bootstrap	Numeric
norm.nob	Normal imputation ignoring model error	Numeric
norm.predict	Normal imputation, predicted values	Numeric
quadratic	Imputation of quadratic terms	Numeric
ri	Random indicator for nonignorable data	Numeric
logreg	Logistic regression	Binary*
logreg.boot	Logistic regression with bootstrap	Binary
polr	Proportional odds model	Ordinal*
polyreg	Polytomous logistic regression	Nominal*
lda	Discriminant analysis	Nominal

FCS: Fully Conditionnal Specification (spécification de lois conditionnelles)

missMDA, Josse&Husson (2016)

Imputation multiple: MIPCA

- Générer M jeux de données dans lesquels seules les valeurs imputées ≠ -> approche type « bootstrap sur les résidus »
- ACP itérative sur les M jeux de données
- Représentation graphique globale

ACP itérative

- 1. Initialisation : remplacer la DM par la moyenne
- 2. ACP réalisée, chercher à trouver la droite qui minimise les distances entre les points et leur projection perpendiculaire sur cette droite
- 3. Prédire la DM -> nouvelle valeur imputée
- 4. Nouvelle ACP
- 5. Répétition de ces étapes jusqu'à convergence

missMDA, Comment lire les graphiques

Ellipse: témoin de la variabilité inter-imputation

Supplementary projection

Nuage de points: incertitude des prédictions

Variable representation

Source: https://francoishusson.wordpress.com/2017/08/05/can-we-believe-in-the-imputations/

retoui

missRows, MIMFA

Vignette, missRows

+ ellipse (convex hull) est large, + incertitude sur la position exacte de l'individu → attention à l'interprétation

Inférence de réseau : RNAseqNet

Estimation de l'incertitude dans les modèles EM

- SEM (Supplemental EM)
- Exprimer l'erreur quadratique moyenne de θ en fonction de 2 quantités estimables
 - Erreur quadratique moyenne de θ sur les données observées
 - Taux de convergence de l'algo EM
- Obtenue directement avec FIML, nécessite une étape supplémentaire (SEM)
- Principal limite: hypothèse paramétriques + adaptation de l'approche pour chaque cadre d'hypothèse
 - Imputation multiple (IM) + simple pour évaluer incertitude liée à l'imputation
 - Cadre inférence statistique : bcp papiers → supériorité en terme de puissance stat. de l'approche EM, FIML, (vs IM)

Quelques packages R pour les données MNAR

Méthodes	Packages R	Cadre d'application
Équations chaînées	miceMNAR	Binaire ou continu
Modèle de sélection, profil mélangé, hurdle model	missingHE	Variables continues, longitudinale
Modèles de sélection de copules	GJRM	Résultat non gaussien
MAR: MLE (EM algo), SVD, knn; MNAR: mindet, minprob, QRILC	imputeLCMD	Données censurées à gauche
KNC (k-nearest class means), knn, MAR: low-rank approximation, MNAR: random draw from Gaussian parameterised around lowest observed value in the sample	msImpute	Imputation pour l'intensité de peptides (spectrométrie de masse, lebel-free) → variables continues
Imputation multiple; MAR: MLE, PCA, random forest, SLSA; MNAR: igcda (under a Gaussian Complete Data Assumption), pa (présence dans 1 condition/absence dans l'autre): petites valeurs	imp4p (certaines méthodes aussi dans DAPAR)	Imputation peptides et protéines → variables continues