Linear Independence

1. Describe all solutions to Ax = 0 using parameters and vectors where A is each one of these matrices:

a.
$$\begin{bmatrix} 1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5 \end{bmatrix}$$

b.
$$\begin{bmatrix} 3 & -6 & 6 \\ -2 & 4 & -2 \end{bmatrix} nn$$

c.
$$\begin{bmatrix} 1 & -2 & 3 & -6 & 5 & 0 \\ 0 & 0 & 0 & 1 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- **2.** Let A be an $m \times n$ matrix and suppose \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^n such that $A\mathbf{v} = \mathbf{0}$ and $A\mathbf{w} = \mathbf{0}$; in other words, \mathbf{v} and \mathbf{w} are solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$. Show that $c\mathbf{v} + d\mathbf{w}$ is also a solution to $A\mathbf{x} = \mathbf{0}$.
- **3.** Determine if the following vectors are linearly independent:

a.
$$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

b.
$$\begin{bmatrix} 5 \\ -3 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -7 \\ 2 \\ 4 \end{bmatrix}$.

c.
$$\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}.$$

- **4.** True or false:
 - a. The columns of A are linearly independent if the equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution.
 - b. If S is a linearly dependent set, then each vector in S is a linear combination of the other vectors in S.
 - c. The columns of any 4×5 matrix are linearly dependent.
 - d. If x and y are linearly independent and if $\{x, y, z\}$ is linearly dependent, then z is in the span of x and y.
 - e. If x and y are linearly independent and if z is in the span of x and y, then $\{x,y,z\}$ is linearly dependent.

- f. If a set in \mathbb{R}^n is linearly dependent, then the set contains more than n vectors.
- **5.** The following statements are either True (in all cases) or False. If the statement is False, give an example illustrating that it is false. If true, explain why.
 - a. If x, y, and z are linearly independent and if x = y + 2z, then the set $\{x, y, z\}$ is linearly dependent.
 - b. If x and y are in \mathbb{R}^5 and x is not a scale multiple of y, then $\{x, y\}$ is linearly independent.
 - c. If x, y, z are in \mathbb{R}^3 and z is not a linear combination of x and y, then the set $\{x, y, z\}$ is linearly independent.
 - d. If $\{x, y, z\}$ is linearly independent, then so is $\{x, y\}$.