Введение в ИИ

ИИ можно рассматривать с точки зрения позиций:

- рациональность и подражание человеку
- мышление и поведение

В связи с чем можно выделить два подхода:

- человекоподобный интеллект
- рациональный интеллект

Тест Тьюринга 1950 — «Может ли машина мыслить?»

- обработка естественного языка (natural language processing NLP) для успешного общения на человеческом языке
- представление знаний (knowledge representation) для хранения того, что он знает или слышит
- автоматизированное формирование рассуждений (automated reasoning) для ответа на вопросы и получения новых выводов
- машинное обучение для адаптации к новым обстоятельствам, обнаружения и экстраполяции закономерностей

Полный тест Тьюринга:

- компьютерное зрение и распознавание речи для восприятия мира
- робототехника для манипулирования объектами и передвижения

Все эти шесть дисциплин формируют большую часть систем ИИ. Но исследователи все реже обращаются к тесту Тьюринга.

Мы можем узнать о человеческом мышлении тремя способами:

- самоанализ попытка уловить собственные мысли в процессе размышлений
- психологические эксперименты наблюдение за человеком в действии
- визуализация мозга наблюдение за мозгом в действии

Изучением искусственного интеллекта в купе с точными и повторяемыми моделями человеческого разу ма занимаются когнитивные науки.

Рациональное мышление:

- силлогизмы (Люди смертны, Сократ человек, Сократ смертен)
- логика точная нотация для высказываний об объектах мира и отношениях между ними
- теория вероятности позволяет проводить строгие рассуждения с неопределенной информацией

Агент (от греч. agere — действовать) отличается от обычной программы:

- автономное функционирование
- восприятие окружающей среды
- длительное существование
- адаптация к изменениям
- создание и достижение целей

Рациональный агент — это агент, который действует так, чтобы достичь наилучшего результата или, при наличии неопределенности, наилучшего ожидаемого результата.

Рациональный агент хорошо работает, когда мы можем точно формализовать цель (например, шахматы). Но в реальной жизни сформулировать правильно цель может быть крайне сложной задачей.

Проблема достижения согласия между нашими истинными предпочтениями и целью, которую мы закладываем в машину, называется проблемой согласования ценностей.

В итоге нам нужны агенты, которые будут доказательно полезны для людей.

Одним из кратких способов обобщить основные вехи истории ИИ является перечисление лауреатов премии Тьюринга:

- Марвин Мински (1969) и Джон Маккарти (1971) за определение основ области ИИ, основанной на представлении знаний и рассуждениях
- Эд Фейгенбаум и Радж Редди (1994) за разработку экспертных систем, которые кодируют человеческие знания для решения реальных проблем
- Джудеа Перл (2011) за разработку методов вероятностных рассуждений, которые принципиально работают с неопределенностью
- Йошуа Бенгио, Джеффри Хинтон и Янн ЛеКун (2019) за то, что «глубокое обучение» (многослойные нейронные сети) стало важной частью современных вычислительных систем

Зарождение ИИ

- Уорреном МакКаллохом и Уолтером Питтсом (1943) была предложена модель искусственного нейрона перцептрон
- Дональд Хебб (1949) предложил правило изменения силы связи нейронов, что легло в основу обучения нейронных сетей
- Марвин Мински и Дин Эдмондс (1950) построили первый нейросетевой компьютер
- Алан Тьюринг (1950) в своей статье представил тест Тьюринга, машинное обучение, генетические алгоритмы и обучение с подкреплением

Большие ожидания

• Ньюэлл и Саймон (1976) сформулировали знаменитую гипотезу о системе физических символов, которая гласит, что «система физических символов обладает необходимыми и достаточными средствами для общего разумного действия»

- Герберт Гелернтер (1959) создал программу Geometry Theorem Prover, которая позволяла доказывать теоремы, которые многие студенты-математики сочли бы довольно сложными
- Артур Самуэль (1956) написал программу играющую в шахматы на любительском уровне, первая реализация обучения с подкреплением
- Джон Маккарти (1958) представил язык Lisp и Advice Taker, гипотетическую программу, которая воплощает общие знания о мире и может использовать их для выработки планов действий

Возвращение к реальности

- Неспособность справиться с «комбинаторным взрывом» была одним из основных критических замечаний в адрес ИИ, содержащихся в докладе Лайтхилла (Lighthill, 1973), который лег в основу решения британского правительства прекратить поддержку исследований ИИ во всех университетах, кроме двух.
- В книге Мински и Пейперта «Перцептроны» (1969) было доказано, что перцептрон с двумя входами не может быть обучен распознавать, когда два его входа различны.

Экспертные системы

Механизмы поиска общего назначения, пытающийся соединить элементарные шаги рассуждений для нахождения полных решений, были названы «слабыми методами»

- Программа DENDRAL (Buchanan et al., 1969) была ранним перехода к частным узкоспециализированным системам, которая была создана для решения проблемы вывода молекулярной структуры из информации, предоставляемой масс-спектрометром
- Система MYCIN для диагностики инфекций крови, имела около 450 правил, которые были получены путем опроса большого количество экспертов. Для расчета неопределенности в диагнозе был введен «фактор неуверенности», который, как казалось (в то время), хорошо согласуется стем, как врачи оценивают влияние доказательств на диагноз.

Возвращение к нейронным сетям

- В середине 1980-х годов по крайней мере четыре различные группы заново изобрели алгоритм обучения методом обратного распространения ошибки (back-propagation), впервые разработанный в начале 1960-х годов.
- Коннекционизм предполагает, что мыслительные явления могут быть описаны сетями из взаимосвязанных простых элементов

Перемены

- Хрупкость экспертных систем привела к новому, более научному подходу, включающему вероятность, а не булеву логику, машинное обучение, а не ручное кодирование, и экспериментальные результаты, а не философские утверждения.
- Отказ от изоляционизма
- Джудеи Перла (1988) разработал байесовские сети и дал строгий и эффективный формализм для представления неопределенных знаний, а также практические алгоритмы для вероятностных рассуждений
- Рич Саттон (1988) связал обучение с подкреплением с теорией марковских процессов принятия решений, разработанной в области исследования операций

Большие данные

• Значительный рост вычислительных мощностей и создание Всемирной паутины способствовали созданию очень больших массивов данных - явление, иногда называемое большими данными

- Банко и Брилл (2001) утверждают, что улучшение производительности, полученное при увеличении размера набора данных на два или три порядка, перевешивает любое улучшение, которое может быть получено при настройке алгоритма
- Доступность десятков миллионов изображений в базе данных ImageNet (Deng et al., 2009) вызвала революцию в области компьютерного зрения.
- Победа системы Watson компании IBM над чемпионами в игре-викторине "Jeopardy!" в 2011 году, что оказало большое влияние на восприятие ИИ обществом

Глубокое обучение

Термин «глубокое обучение» относится к машинному обучению с использованием нескольких слоев простых, настраиваемых вычислительных элементов.

• Использование глубокой сети для представления функции оценки способствовало победам ALPHAGO над ведущими игроками в го (Silver et al., 2016, 2017, 2018).

Риски и преимущества

- автоматизированное оружие,
- тотальная слежка,
- необъективное принятие решений,
- рыноктруда,
- критическая важность безопасности в некоторых приложениях,
- кибер-безопасность,
- проблема гориллы,
- проблема царя Мидаса.