DSC 275/475: Time Series Analysis and Forecasting (Fall 2021) Project-1

Question 1

```
In [2]:
          import pandas as pd
          import numpy as np
          from matplotlib import pyplot
          import matplotlib.pyplot as plt
In [115...
          df=pd.read_csv("Problem1_DataSet.csv")
                          #,header=0, index col=0, parse dates=True, squeeze=True)
          df
              Month
                     Miles
Out[115...
           0 Jan-64
                     7.269
           1 Feb-64 6.775
           2 Mar-64 7.819
           3 Apr-64
                     8.371
           4 May-64
                     9.069
                 ...
          79 Aug-70 14.057
          80 Sep-70 16.234
          81 Oct-70 12.389
          82 Nov-70 11.594
         83 Dec-70 12.772
         84 rows × 2 columns
 In [4]:
          x = df.Month
          y = df.Miles
 In [5]:
          df.plot(figsize=(12,8))
          pyplot.show()
```

about:srcdoc Page 1 of 27

Question 2

In [6]: from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

In [7]: figure= plot_acf(y)

In [8]: figure= plot_pacf(y)

about:srcdoc Page 2 of 27

ACF shows an oscillation, indicating seasonality of 12.

Question 3:

```
rolling = df.rolling(window=5)
rolling_mean = rolling.mean()
# plot original and transformed dataset
df.plot()
rolling_mean.plot(color='red')
pyplot.show()
```



```
rolling = df.rolling(window=7)
rolling_mean = rolling.mean()
# plot original and transformed dataset
df.plot()
rolling_mean.plot(color='red')
pyplot.show()
```

about:srcdoc Page 3 of 27

Suitable choice for the moving average window length can be 5,6 or 7

Question 4: The trend line from the graph is increasing

Question 5:

```
diff = y.diff()
diff = diff.iloc[1:]
plt.plot(diff)
plt.show()
```



```
In [11]: figure= plot_acf(diff)
```

about:srcdoc Page 4 of 27

The significant lags based on the ACF: 3,4,5,7,9,12

```
In [12]: figure= plot_pacf(diff)
```

/opt/anaconda3/lib/python3.8/site-packages/statsmodels/regression/linear_mo
del.py:1434: RuntimeWarning: invalid value encountered in sqrt
 return rho, np.sqrt(sigmasq)

The significant lags based on the PACF: 2,3,4,5,7,8,11,20

Question 6:

```
In [13]: df['Seasonal First Difference']=df['Miles']-df['Miles'].shift(12)
In [14]: a=df['Seasonal First Difference'].dropna()
In [15]: a
```

about:srcdoc Page 5 of 27

```
1.081
          12
Out[15]:
          13
                 1.054
          14
                 1.010
                 1.577
          15
          16
                 1.569
          79
                 0.326
                 1.124
          80
          81
                 0.204
                 0.949
          82
                 0.611
          83
          Name: Seasonal First Difference, Length: 72, dtype: float64
```

In [16]: figure= plot_acf(a, lags=20)

The significant lags based on the ACF: 1,12

The significant lags based on the PACF: 1,9,11,12,19,25

about:srcdoc Page 6 of 27

```
In [18]: df[12:]
```

Out[18]:		Month	Miles	Seasonal First Difference
	12	Jan-65	8.350	1.081
	13	Feb-65	7.829	1.054
	14	Mar-65	8.829	1.010
	15	Apr-65	9.948	1.577
	16	May-65	10.638	1.569
	•••			
	79	Aug-70	14.057	0.326
	80	Sep-70	16.234	1.124
	81	Oct-70	12.389	0.204
	82	Nov-70	11.594	0.949
	83	Dec-70	12.772	0.611

72 rows × 3 columns

```
In [19]: df['Seasonal First Difference'].plot()
```

Out[19]: <AxesSubplot:>


```
import statsmodels.api as sm
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(df['Seasonal First Difference'].dropna(),lag
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(df['Seasonal First Difference'].dropna(),lag
```

about:srcdoc Page 7 of 27

The significant lags based on the ACF: 1,12 The significant lags based on the PACF: 1,9,11,12,19,23,25,26

Question 7:

```
In [48]:
          data= df[0:72] #first 6 years data only
In [49]:
          from pmdarima import auto arima
          import warnings
          warnings.filterwarnings("ignore")
In [50]:
          # calculating best values
          decomp= auto_arima(data['Miles'], start_p=0, start_q=0,
                            max_p=3, max_q=3, m=12, start_P=0, max_P=3,
                            start_Q=0, max_Q=3, d=None, D=None, trace=True,alpha=0.0!
                            seasonal=True, stepwise=False)
                                               : AIC=164.080, Time=0.01 sec
          ARIMA(0,0,0)(0,1,0)[12] intercept
          ARIMA(0,0,0)(0,1,1)[12] intercept
                                               : AIC=153.783, Time=0.09 sec
          ARIMA(0,0,0)(0,1,2)[12] intercept
                                               : AIC=154.367, Time=0.15 sec
          ARIMA(0,0,0)(0,1,3)[12] intercept
                                               : AIC=156.234, Time=0.32 sec
                                               : AIC=152.719, Time=0.04 sec
          ARIMA(0,0,0)(1,1,0)[12] intercept
                                               : AIC=154.373, Time=0.07 sec
          ARIMA(0,0,0)(1,1,1)[12] intercept
                                               : AIC=156.264, Time=0.35 sec
          ARIMA(0,0,0)(1,1,2)[12] intercept
                                               : AIC=158.216, Time=1.21 sec
          ARIMA(0,0,0)(1,1,3)[12] intercept
                                               : AIC=154.305, Time=0.10 sec
          ARIMA(0,0,0)(2,1,0)[12] intercept
          ARIMA(0,0,0)(2,1,1)[12] intercept
                                               : AIC=156.218, Time=0.32 sec
                                               : AIC=158.216, Time=0.68 sec
          ARIMA(0,0,0)(2,1,2)[12] intercept
```

about:srcdoc Page 8 of 27

```
ARIMA(0,0,0)(2,1,3)[12] intercept
                                     : AIC=160.216, Time=0.55 sec
                                     : AIC=156.228, Time=0.32 sec
ARIMA(0,0,0)(3,1,0)[12] intercept
                                     : AIC=158.216, Time=1.31 sec
ARIMA(0,0,0)(3,1,1)[12] intercept
ARIMA(0,0,0)(3,1,2)[12] intercept
                                     : AIC=160.216, Time=0.64 sec
ARIMA(0,0,1)(0,1,0)[12] intercept
                                     : AIC=148.341, Time=0.02 sec
                                     : AIC=146.837, Time=0.05 sec
ARIMA(0,0,1)(0,1,1)[12] intercept
ARIMA(0,0,1)(0,1,2)[12] intercept
                                     : AIC=148.556, Time=0.12 sec
                                     : AIC=150.524, Time=0.46 sec
ARIMA(0,0,1)(0,1,3)[12] intercept
ARIMA(0,0,1)(1,1,0)[12] intercept
                                     : AIC=146.584, Time=0.06 sec
ARIMA(0,0,1)(1,1,1)[12] intercept
                                     : AIC=148.571, Time=0.10 sec
                                     : AIC=150.544, Time=0.17 sec
ARIMA(0,0,1)(1,1,2)[12] intercept
                                     : AIC=inf, Time=1.44 sec
ARIMA(0,0,1)(1,1,3)[12] intercept
                                     : AIC=148.568, Time=0.19 sec
ARIMA(0,0,1)(2,1,0)[12] intercept
ARIMA(0,0,1)(2,1,1)[12] intercept
                                     : AIC=inf, Time=0.66 sec
                                     : AIC=152.366, Time=0.83 sec
ARIMA(0,0,1)(2,1,2)[12] intercept
                                     : AIC=150.503, Time=0.39 sec
ARIMA(0,0,1)(3,1,0)[12] intercept
ARIMA(0,0,1)(3,1,1)[12] intercept
                                     : AIC=inf, Time=1.91 sec
                                    : AIC=150.207, Time=0.03 sec
ARIMA(0,0,2)(0,1,0)[12] intercept
ARIMA(0,0,2)(0,1,1)[12] intercept
                                     : AIC=148.292, Time=0.07 sec
ARIMA(0,0,2)(0,1,2)[12] intercept
                                     : AIC=150.079, Time=0.21 sec
ARIMA(0,0,2)(0,1,3)[12] intercept
                                     : AIC=151.953, Time=0.50 sec
                                     : AIC=148.058, Time=0.12 sec
ARIMA(0,0,2)(1,1,0)[12] intercept
                                     : AIC=150.037, Time=0.18 sec
ARIMA(0,0,2)(1,1,1)[12] intercept
ARIMA(0,0,2)(1,1,2)[12] intercept
                                     : AIC=152.035, Time=0.39 sec
                                     : AIC=150.035, Time=0.21 sec
ARIMA(0,0,2)(2,1,0)[12] intercept
                                     : AIC=151.993, Time=1.17 sec
ARIMA(0,0,2)(2,1,1)[12] intercept
ARIMA(0,0,2)(3,1,0)[12] intercept
                                     : AIC=152.027, Time=0.62 sec
                                     : AIC=151.828, Time=0.06 sec
ARIMA(0,0,3)(0,1,0)[12] intercept
ARIMA(0,0,3)(0,1,1)[12] intercept
                                     : AIC=149.037, Time=0.09 sec
                                     : AIC=150.787, Time=0.23 sec
ARIMA(0,0,3)(0,1,2)[12] intercept
                                     : AIC=148.867, Time=0.08 sec
ARIMA(0,0,3)(1,1,0)[12] intercept
                                     : AIC=150.758, Time=0.11 sec
ARIMA(0,0,3)(1,1,1)[12] intercept
ARIMA(0,0,3)(2,1,0)[12] intercept
                                     : AIC=150.746, Time=0.19 sec
ARIMA(1,0,0)(0,1,0)[12] intercept
                                     : AIC=153.472, Time=0.02 sec
ARIMA(1,0,0)(0,1,1)[12] intercept
                                     : AIC=149.196, Time=0.06 sec
ARIMA(1,0,0)(0,1,2)[12] intercept
                                     : AIC=150.259, Time=0.16 sec
                                     : AIC=152.259, Time=0.43 sec
ARIMA(1,0,0)(0,1,3)[12] intercept
                                     : AIC=148.559, Time=0.10 sec
ARIMA(1,0,0)(1,1,0)[12] intercept
                                     : AIC=150.497, Time=0.11 sec
ARIMA(1,0,0)(1,1,1)[12] intercept
ARIMA(1,0,0)(1,1,2)[12] intercept
                                     : AIC=152.259, Time=0.29 sec
ARIMA(1,0,0)(1,1,3)[12] intercept
                                     : AIC=inf, Time=1.69 sec
                                     : AIC=150.466, Time=0.18 sec
ARIMA(1,0,0)(2,1,0)[12] intercept
ARIMA(1,0,0)(2,1,1)[12] intercept
                                     : AIC=inf, Time=0.83 sec
ARIMA(1,0,0)(2,1,2)[12] intercept
                                     : AIC=154.132, Time=0.69 sec
                                     : AIC=152.154, Time=0.78 sec
ARIMA(1,0,0)(3,1,0)[12] intercept
                                     : AIC=154.130, Time=1.18 sec
ARIMA(1,0,0)(3,1,1)[12] intercept
                                     : AIC=150.181, Time=0.07 sec
ARIMA(1,0,1)(0,1,0)[12] intercept
ARIMA(1,0,1)(0,1,1)[12] intercept
                                     : AIC=148.046, Time=0.10 sec
                                     : AIC=149.816, Time=0.36 sec
ARIMA(1,0,1)(0,1,2)[12] intercept
                                     : AIC=151.660, Time=0.43 sec
ARIMA(1,0,1)(0,1,3)[12] intercept
                                     : AIC=147.792, Time=0.10 sec
ARIMA(1,0,1)(1,1,0)[12] intercept
                                     : AIC=149.760, Time=0.16 sec
ARIMA(1,0,1)(1,1,1)[12] intercept
ARIMA(1,0,1)(1,1,2)[12] intercept
                                     : AIC=151.760, Time=0.39 sec
                                     : AIC=149.759, Time=0.21 sec
ARIMA(1,0,1)(2,1,0)[12] intercept
ARIMA(1,0,1)(2,1,1)[12] intercept
                                     : AIC=151.709, Time=1.44 sec
                                     : AIC=151.754, Time=0.71 sec
ARIMA(1,0,1)(3,1,0)[12] intercept
                                    : AIC=152.295, Time=0.25 sec
ARIMA(1,0,2)(0,1,0)[12] intercept
                                     : AIC=149.985, Time=0.19 sec
ARIMA(1,0,2)(0,1,1)[12] intercept
                                    : AIC=151.730, Time=0.82 sec
ARIMA(1,0,2)(0,1,2)[12] intercept
ARIMA(1,0,2)(1,1,0)[12] intercept
                                     : AIC=149.715, Time=0.25 sec
ARIMA(1,0,2)(1,1,1)[12] intercept
                                     : AIC=151.684, Time=0.34 sec
```

about:srcdoc Page 9 of 27

```
ARIMA(1,0,2)(2,1,0)[12] intercept
                                   : AIC=151.681, Time=0.47 sec
                                   : AIC=153.570, Time=0.10 sec
ARIMA(1,0,3)(0,1,0)[12] intercept
                                   : AIC=151.008, Time=0.20 sec
ARIMA(1,0,3)(0,1,1)[12] intercept
ARIMA(1,0,3)(1,1,0)[12] intercept
                                   : AIC=150.866, Time=0.18 sec
ARIMA(2,0,0)(0,1,0)[12] intercept
                                   : AIC=154.062, Time=0.06 sec
                                   : AIC=150.812, Time=0.07 sec
ARIMA(2,0,0)(0,1,1)[12] intercept
ARIMA(2,0,0)(0,1,2)[12] intercept
                                   : AIC=151.995, Time=0.17 sec
                                   : AIC=153.993, Time=0.34 sec
ARIMA(2,0,0)(0,1,3)[12] intercept
ARIMA(2,0,0)(1,1,0)[12] intercept
                                   : AIC=150.205, Time=0.08 sec
ARIMA(2,0,0)(1,1,1)[12] intercept
                                   : AIC=152.178, Time=0.18 sec
ARIMA(2,0,0)(1,1,2)[12] intercept
                                   : AIC=153.994, Time=0.62 sec
                                   : AIC=152.165, Time=0.18 sec
ARIMA(2,0,0)(2,1,0)[12] intercept
                                   : AIC=inf, Time=1.32 sec
ARIMA(2,0,0)(2,1,1)[12] intercept
ARIMA(2,0,0)(3,1,0)[12] intercept
                                   : AIC=153.907, Time=0.97 sec
ARIMA(2,0,1)(0,1,0)[12] intercept
                                   : AIC=152.049, Time=0.10 sec
                                   : AIC=149.878, Time=0.32 sec
ARIMA(2,0,1)(0,1,1)[12] intercept
ARIMA(2,0,1)(0,1,2)[12] intercept
                                   : AIC=151.591, Time=1.04 sec
ARIMA(2,0,1)(1,1,0)[12] intercept
                                   : AIC=149.596, Time=0.31 sec
ARIMA(2,0,1)(1,1,1)[12] intercept : AIC=151.565, Time=0.31 sec
ARIMA(2,0,1)(2,1,0)[12] intercept : AIC=151.560, Time=0.71 sec
ARIMA(2,0,2)(0,1,0)[12] intercept
                                   : AIC=153.662, Time=0.21 sec
ARIMA(2,0,2)(0,1,1)[12] intercept
                                   : AIC=151.288, Time=0.46 sec
                                   : AIC=151.132, Time=0.44 sec
ARIMA(2,0,2)(1,1,0)[12] intercept
ARIMA(2,0,3)(0,1,0)[12] intercept
                                  : AIC=155.565, Time=0.28 sec
ARIMA(3,0,0)(0,1,0)[12] intercept
                                   : AIC=153.579, Time=0.07 sec
                                  : AIC=150.354, Time=0.09 sec
ARIMA(3,0,0)(0,1,1)[12] intercept
ARIMA(3,0,0)(0,1,2)[12] intercept : AIC=152.158, Time=0.24 sec
                                   : AIC=150.368, Time=0.11 sec
ARIMA(3,0,0)(1,1,0)[12] intercept
ARIMA(3,0,0)(1,1,1)[12] intercept
                                   : AIC=152.161, Time=0.19 sec
                                   : AIC=152.127, Time=0.29 sec
ARIMA(3,0,0)(2,1,0)[12] intercept
                                   : AIC=153.149, Time=0.06 sec
ARIMA(3,0,1)(0,1,0)[12] intercept
ARIMA(3,0,1)(0,1,1)[12] intercept
                                   : AIC=150.188, Time=0.14 sec
ARIMA(3,0,1)(1,1,0)[12] intercept : AIC=150.338, Time=0.19 sec
ARIMA(3,0,2)(0,1,0)[12] intercept : AIC=inf, Time=0.26 sec
```

Best model: ARIMA(0,0,1)(1,1,0)[12] intercept Total fit time: 39.987 seconds

A couple of approaches could be: Model 1: ARIMA(3,0,1)(1,0,0)[12] intercept : AIC=198.558, Time=0.26 sec Model 2: ARIMA(3,2,1)(3,2,1)[12] intercept : AIC=164.584, Time=0.10 sec Model 3: ARIMA(0,0,1)(1,1,0)[12] intercept : AIC=146.584, Time=0.07 sec

I'm using AIC as the evaluation criteria!

APPROACH 1: AIC value is 205.999 which is pretty decent, and the plot also looks very similar but it doesn't look like it takes the trend into consideration because the plot is on the same linear plane. Rating of the pdq= 3/5

```
In [59]: model=sm.tsa.statespace.SARIMAX(data['Miles'],order=(3, 0, 1),seasonal_orderesults=model.fit()
In [60]: data['forecast'] = results.predict(start = 72, end = 84, dynamic= True)
data[['Miles', 'forecast']].plot(figsize=(12, 8))
```

about:srcdoc Page 10 of 27

Out[60]: <AxesSubplot:>

In [61]: print(results.summary())

about:srcdoc Page 11 of 27

SARIMAX Results

=========	======	=======		======	:====	=========	====
Dep. Variable:	==			Miles	No.	Observations:	
Model: -97.000	SARI	MAX(3, 0,	1)x(1, 0, [], 12)	Log	Likelihood	
Date: 205.999			Tue, 26 Oc	t 2021	AIC		
Time: 220.512			01	:21:30	BIC		
Sample: 211.830				0	HQI	C	
Covariance Typ	e:			- 83 opg			
==========		=======		======	====		====
===	goof	c+d orr		בת	- I	[0.025	0 0
75 <u>]</u>					۷		
ar.L1	0.3417	0.203	1.681	0.0	93	-0.057	0.
740 ar.L2	0.2035	0.229	0.890	0.3	374	-0.245	0.
652							
ar.L3	0.3960	0.127	3.120	0.0	002	0.147	0.
645 ma.L1	0.4981	0.236	2.109	0.0	35	0.035	0.
961							
ar.S.L12 004	0.8168	0.095	8.557	0.0	000	0.630	1.
	0.6785	0.074	9.145	0.0	000	0.533	0.
	======	=======		======	:====:		====
====== Ljung-Box (L1) 64.62	(Q):		0.06	Jarque-	-Bera	(JB):	
Prob(Q):			0.81	Prob(JE	3):		
0.00 Heteroskedasti 0.27	city (H):		4.31	Skew:			
Prob(H) (two-s 7.29	ŕ			Kurtosi			

====== Warnings:

 $\[1]$ Covariance matrix calculated using the outer product of gradients (comp lex-step).

about:srcdoc Page 12 of 27

```
#IGNORE

data=data.append(pd.Series(), ignore_index=True)
```

APPROACH 2: AIC value is 164.374 which is much better than 1, and the plot also looks VERY similar and looks like it takes the trend into consideration because the plot is slightly higher but again it's not exactly perfect when it comes to the seasonal pattern. Rating of the pdg= 4/5

```
In [58]: model2=sm.tsa.statespace.SARIMAX(data['Miles'],order=(3, 2, 1),seasonal_order=ults2=model2.fit()

In [62]: data['forecast2'] = results2.predict(start = 72, end = 84, dynamic= True) data[['Miles', 'forecast2']].plot(figsize=(12, 8))
```

Out[62]: <AxesSubplot:>

about:srcdoc Page 13 of 27

```
In [63]:
```

print(results2.summary())

		========		Results	=========	:======
Dep. Variab				Miles No	. Observations	:
Model: -73.187	SARI	MAX(3, 2,	1)x(3, 2, 1	, 12) Lo	g Likelihood	
Date: 164.374			Tue, 26 Oct	2021 AI	C	
Time: 182.762			01:	21:41 BI	C	
Sample: 171.520				0 HQ	IC	
Covariance				- 83 opg		
===						
75]	coef		Z		[0.025	0.9
ar.L1	-0.2153		-1.185		-0.571	0.
141 ar.L2	-0.3698	0.206	-1.799	0.072	-0.773	0.
033 ar.L3	-0.1302	0.267	-0.488	0.625	-0.653	0.
392 ma.L1 565	-0.9968	6.409	-0.156	0.876	-13.558	11.
ar.S.L12	-0.2898	201.242	-0.001	0.999	-394.717	394.
ar.S.L24 271	-0.0011	173.101	-6.58e-06	1.000	-339.274	339.
ar.S.L36	0.1662	88.785	0.002	0.999	-173.850	174.
ma.S.L12 584	-0.6282	209.806	-0.003	0.998	-411.840	410.
sigma2 777	0.9646	10.108	0.095	0.924	-18.848	20.
======		======				:======
Ljung-Box (30.17	L1) (Q):		0.19	Jarque-Be	ra (JB):	
Prob(Q): 0.00			0.66	Prob(JB):		
	asticity (H):		1.71	Skew:		
Prob(H) (tw 6.44	o-sided):		0.25	Kurtosis:		
=======================================	=======	=======	=======	=======	========	======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (comp lex-step).

about:srcdoc Page 14 of 27

APPROACH 3:AIC value is 160.908 which is much better, and the plot also looks VERY similar but again looks like it does not take the trend into consideration because the plot is on the same height. Rating of the pdq= 3/5

```
In [64]: model3=sm.tsa.statespace.SARIMAX(data['Miles'],order=(0, 0, 1),seasonal_order=ults3=model3.fit()
In [65]: data['forecast3'] = results3.predict(start = 72, end = 84, dynamic= True)
data[['Miles', 'forecast3']].plot(figsize=(12, 8))
```

Out[65]: <AxesSubplot:>


```
In [66]: print(results3.summary())
```

about:srcdoc Page 15 of 27

SARIMAX Results

========	========	=======		======	=====	=========	
Dep. Variab	==== le:			Miles	No.	Observations:	
Model: -77.454	SARI	MAX(0, 0,	1)x(1, 1, [], 12)	Log	Likelihood	
Date: 160.908			Tue, 26 Oc	t 2021	AIC		
Time: 167.696			01	:21:55	BIC		
Sample: 163.607				0	HQI	C	
Covariance	Type:			opg - 83			
=======================================					=====		
75]					Z	[0.025	0.9
ma.L1 912	0.6822	0.117	5.814	0.0	000	0.452	0.
ar.S.L12 478	-0.0242	0.256	-0.095	0.9	925	-0.527	0.
sigma2 017	0.7659	0.128	5.981	0.0	000	0.515	1.
======		=======				==========	====
Ljung-Box (67.33	L1) (Q):		0.29	Jarque-	-Bera	(JB):	
Prob(Q): 0.00			0.59	Prob(J	3):		
	sticity (H):		2.22	Skew:			
Prob(H) (tw 7.67	o-sided):		0.06	Kurtos			

Warnings:

=======

[1] Covariance matrix calculated using the outer product of gradients (comp lex-step).

APPROACH 4: AIC value is 159.498 which is much better, and the plot also looks similar but again it does not follow seasonality pattern properly. Rating of the pdq= 3/5

```
In [68]: model4=sm.tsa.statespace.SARIMAX(data['Miles'],order=(3, 1, 2),seasonal_order=sults4=model4.fit()
In [69]: data['forecast4'] = results4.predict(start = 72, end = 84, dynamic= True) data[['Miles', 'forecast4']].plot(figsize=(12, 8))
```

about:srcdoc Page 16 of 27

Out[69]: <AxesSubplot:>

In [70]: print(results4.summary())

about:srcdoc Page 17 of 27

SARIMAX Results

========	====					
Dep. Variabl	Le:			Miles No.	Observations	3 :
Model: -68.749	SAR	IMAX(3, 1,	2)x(3, 2, 2	, 12) Log	Likelihood	
Date: 159.498			Tue, 26 Oct	2021 AIC		
Time: 182.163			01:	22:09 BIC		
Sample: 168.327				0 HQIC		
Covariance 1	Type:			– 83 opg		
=======================================	========		=======	========	========	:======
75]	coef	std err	z	P> z	[0.025	0.9
 ar.L1	-0.5792	10.878	-0.053	0.958	-21.900	20.
742 ar.L2	0.1435	4.572	0.031	0.975	-8.817	9.
104 ar.L3 245	-0.2707	2.814	-0.096	0.923	-5.786	5.
ma.L1 939	0.2175	4.450	0.049	0.961	-8.504	8.
ma.L2 181	-0.7506	3.537	-0.212	0.832	-7.683	6.
ar.S.L12 +04	-0.5515	7380.969	-7.47e-05	1.000	-1.45e+04	1.45€
ar.S.L24 +04	-0.6778		-0.000	1.000	-1.05e+04	
ar.S.L36 377	-0.2563		-0.000	1.000	-4648.890	
+04	-0.4878				-1.9e+04	
ma.S.L24 +04		6818.636			-1.34e+04	
sigma2 781 	0.6422			1.000	-6379.497 	
====== Ljung-Box (I			0.06	Jarque-Bera		
74.27 Prob(Q):	, (2)		0.80	Prob(JB):	,	
0.00 Heteroskedas	sticity (H)	:	1.44	Skew:		
-0.76 Prob(H) (two 8.33	o-sided):		0.44	Kurtosis:		

[1] Covariance matrix calculated using the outer product of gradients (comp lex-step).

about:srcdoc Page 18 of 27

APPROACH 5: AIC value is 159.498 which is much better, and the plot also looks similar but again it does not follow seasonality pattern properly. Rating of the pdq= 3/5

```
In [71]:
           model5=sm.tsa.statespace.SARIMAX(data['Miles'],order=(3, 2, 3),seasonal order=
           results5=model5.fit()
In [72]:
           data['forecast5'] = results5.predict(start = 72, end = 84, dynamic= True)
           data[['Miles', 'forecast5']].plot(figsize=(12, 8))
Out[72]: <AxesSubplot:>
                 Miles
          18
                 forecast5
          16
          14
          12
          10
           8
                                 20
                                                  40
In [73]:
```

about:srcdoc Page 19 of 27

print(results4.summary())

SARIMAX Results

============	======== ===	=======	========	========	========	======
Dep. Variable	e:			Miles No.	Observations	S:
83 Model:	SARI	MAX(3, 1,	2)x(3, 2, 2	. 12) Log	Likelihood	
-68.749	22-11	(0) = /				
Date: 159.498			Tue, 26 Oct	2021 AIC		
Time:			01:	22:24 BIC		
182.163				0	a	
Sample: 168.327				0 HQI	C	
				- 83		
Covariance Ty	-			opg		======
===	_	_				
75]	coef	std err	Z	P> z	[0.025	0.9
 ar.L1	-0.5792	10.878	-0.053	0.958	-21.900	20.
742						
ar.L2 104	0.1435	4.572	0.031	0.975	-8.817	9.
	-0.2707	2.814	-0.096	0.923	-5.786	5.
245	0 2175	4 450	0.040	0.061	0 504	0
ma.L1 939	0.2175	4.450	0.049	0.961	-8.504	8.
ma.L2	-0.7506	3.537	-0.212	0.832	-7.683	6.
181 ar.S.L12	-0.5515	7380.969	-7.47e-05	1.000	-1.45e+04	1.45e
+04						
ar.S.L24 +04	-0.6778	5373.108	-0.000	1.000	-1.05e+04	1.05e
ar.S.L36	-0.2563	2371.795	-0.000	1.000	-4648.890	4648.
377 ma.S.L12	-0.4878	9679.525	-5.04e-05	1.000	-1.9e+04	1.9e
+04						
ma.S.L24 +04	0.8435	6818.636	0.000	1.000	-1.34e+04	1.34e
sigma2	0.6422	3255.233	0.000	1.000	-6379.497	6380.
781 ========						
======						
Ljung-Box (L1 74.27	l) (Q):		0.06	Jarque-Ber	a (JB):	
Prob(Q):			0.80	Prob(JB):		
0.00	-iai+ (T)		1 44	Chorre		
Heteroskedast	ticity (H)	!	1.44	Skew:		
Prob(H) (two- 8.33	-sided):		0.44	Kurtosis:		
========				========	========	

[1] Covariance matrix calculated using the outer product of gradients (comp lex-step).

about:srcdoc Page 20 of 27

Question 8:

```
In [74]: modelfinal=sm.tsa.statespace.SARIMAX(df['Miles'],order=(3, 1, 3),seasonal_c
resultsfinal=modelfinal.fit()

In [75]: df['forecast']=resultsfinal.predict(start=72,end=84,dynamic=True)
df[['Miles','forecast']].plot(figsize=(12,8))
```

Out[75]: <AxesSubplot:>


```
In [76]: print(resultsfinal.summary())
```

about:srcdoc Page 21 of 27

SARIMAX Results

Dep. Variabl	==== e:			Miles	No. Observations:	:
84 Model:	SARI	MAX(3, 1,	3)x(3, 1, [], 12)	Log Likelihood	
-80.303 Date:			Tue, 26 Oc	t 2021	AIC	
180.607 Time:			01	:22:38	BIC	
203.233 Sample: 189.605				0	HQIC	
Covariance T	ype:			- 84 opg		
=======================================	=======	=======	=======	======	===========	=====
75]					[0.025	0.9
ar.L1 061	-0.6678	0.309	-2.158	0.03	1 -1.274	-0.
ar.L2 048	-0.6677	0.316	-2.113	0.03	5 -1.287	-0.
ar.L3 798	0.2879	0.260	1.106	0.26	9 -0.222	0.
ma.L1 604	0.0303	0.293	0.104	0.91	8 -0.543	0.
ma.L2 438	0.0988	0.173	0.571	0.56	8 -0.240	0.
ma.L3 349	-0.6635	0.160	-4.141	0.00	0 -0.978	-0.
ar.S.L12 603	-0.8695	0.136	-6.386	0.00	0 -1.136	-0.
ar.S.L24 068	-0.5246	0.303	-1.734	0.08	3 -1.118	0.
ar.S.L36 690	-0.1831	0.446	-0.411	0.68	1 -1.057	0.
sigma2 622	0.4869	0.069	7.073	0.00	0.352	0.
========	=======	=======	=======	======		-====
Ljung-Box (L 64.06	1) (Q):		0.00	Jarque-B	era (JB):	
Prob(Q):			0.97	Prob(JB)	:	
Heteroskedas	ticity (H):		2.99	Skew:		
Prob(H) (two 7.14	-sided):		0.01	Kurtosis	:	

[1] Covariance matrix calculated using the outer product of gradients (comp lex-step).

In [81]:

df[72:] #compare actual values to forecasted values!

about:srcdoc Page 22 of 27

Out[81]:		Month	Miles	Seasonal First Difference	forecast
	72	Jan-70	10.840	1.349	10.217580
	73	Feb-70	10.436	1.517	10.222063
	74	Mar-70	13.589	1.982	12.731674
	75	Apr-70	13.402	4.550	11.612775
	76	May-70	13.103	0.566	12.998826
	77	Jun-70	14.933	0.174	14.710351
	78	Jul-70	14.147	0.480	13.443494
	79	Aug-70	14.057	0.326	14.433915
	80	Sep-70	16.234	1.124	15.979700
	81	Oct-70	12.389	0.204	12.300071
	82	Nov-70	11.594	0.949	10.988532
	83	Dec-70	12.772	0.611	12.748958

Out[98]: 0.13139640993766555

USED: order=(3, 1, 3),seasonal_order=(3,1,0,12) The forecast is very close to the actual values as you can see in the graph and the table, but not exactly the same. I tried playing around with different p,q, P, Q values to see which one would follow the actual values closely, turns out this is the best one I could find. The AIC value is 180.607 and the forecast nearly follows the actual values.

It also follows the increasing trend of actual values. Mean absolute error is also 0.13139!

Problem 2:

```
In [99]: df1=pd.read_csv("TotalWine.csv")
In [100... df1.head()
```

	u	11.1100	20()
Out[100		Time	TotalWine
	0	1	1.486
	1	2	1.915
	2	3	1.844
	3	4	2.808
	4	5	1.287

about:srcdoc Page 23 of 27

Part A

```
In [101... x1 = df1["Time"]
    y1 = df1.TotalWine
    plt.plot (x1, y1)
    plt.xlabel ('Time')
    plt.ylabel ('Wine')
    plt.show()
```


Part B

```
df1['Seasonal First Difference 1']=y1-y1.shift(1)
df1['Seasonal First Difference 2']=y1-y1.shift(2)
df1['Seasonal First Difference 4']=y1-y1.shift(4)
df1['Seasonal First Difference 6']=y1-y1.shift(6)
```

```
In [103... df1['Seasonal First Difference 1'].plot()
```

Out[103... <AxesSubplot:>

about:srcdoc Page 24 of 27

```
In [104... df1['Seasonal First Difference 2'].plot()
```

Out[104... <AxesSubplot:>


```
In [105... df1['Seasonal First Difference 4'].plot()
```

Out[105... <AxesSubplot:>


```
In [106... df1['Seasonal First Difference 6'].plot()
```

about:srcdoc Page 25 of 27

Out[106... <AxesSubplot:>

4 difference is best suited!

```
In [107... figure= plot_acf(y1)
```


Seasonality period is 4-lag long.

```
from statsmodels.tsa.api import AR
bestlag= AR(df1['Seasonal First Difference 4'].dropna().values).select_orde
bestlag
```

Out[108... 5

Best lag is 5,we should use AR(5)

```
In [109... model= AR(df1['Seasonal First Difference 4'].dropna().values).fit(maxlag=5 forecast= model.predict()
```

about:srcdoc Page 26 of 27

```
plt.figure(figsize=(20,10))
df1['Seasonal First Difference 4'].dropna().iloc[5:].plot()
plt.plot(df1['Seasonal First Difference 4'].dropna().iloc[5:].index, foreca
```

Out[110... [<matplotlib.lines.Line2D at 0x166864280>]

from sklearn.metrics import mean_absolute_error
mae= mean_absolute_error(df1['Seasonal First Difference 4'].dropna().iloc[!
mae

Out[111... 0.13139640993766555

In []:

about:srcdoc Page 27 of 27