```
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
In [2]: data=pd.read_csv('BMW_Car_Sales_Classification.csv')
In [3]: #data=data.drop('Sales_Classification',axis=1)
In [4]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 50000 entries, 0 to 49999
       Data columns (total 11 columns):
            Column
                                  Non-Null Count Dtype
           -----
                                  -----
           Model
        0
                                  50000 non-null object
        1
            Year
                                  50000 non-null int64
        2
                                  50000 non-null object
            Region
        3
           Color
                                  50000 non-null object
        4
           Fuel_Type
                                  50000 non-null object
        5
           Transmission
                                  50000 non-null object
                                 50000 non-null float64
           Engine_Size_L
                                  50000 non-null int64
        7
           Mileage KM
            Price USD
                                 50000 non-null int64
        9
            Sales_Volume
                                  50000 non-null int64
        10 Sales_Classification 50000 non-null object
       dtypes: float64(1), int64(4), object(6)
       memory usage: 4.2+ MB
In [5]: data= pd.get_dummies(data,columns=['Sales_Classification','Transmission','Fuel_Type
        data.head()
In [6]:
Out[6]:
                 Engine_Size_L Mileage_KM Price_USD Sales_Volume Sales_Classification_High Sa
           Year
        0 2016
                          3.5
                                   151748
                                               98740
                                                             8300
                                                                                    True
        1 2013
                          1.6
                                   121671
                                              79219
                                                             3428
                                                                                    False
                                             113265
        2 2022
                          4.5
                                    10991
                                                             6994
                                                                                    False
        3 2024
                          1.7
                                    27255
                                              60971
                                                             4047
                                                                                    False
        4 2020
                          2.1
                                                             3080
                                   122131
                                              49898
                                                                                    False
       5 rows × 36 columns
In [7]: data.describe()
```

	Year	Engine_Size_L	Mileage_KM	Price_USD	Sales_Volume
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000
mean	2017.015700	3.247180	100307.203140	75034.600900	5067.514680
std	4.324459	1.009078	57941.509344	25998.248882	2856.767125
min	2010.000000	1.500000	3.000000	30000.000000	100.000000
25%	2013.000000	2.400000	50178.000000	52434.750000	2588.000000
50%	2017.000000	3.200000	100388.500000	75011.500000	5087.000000
75%	2021.000000	4.100000	150630.250000	97628.250000	7537.250000
max	2024.000000	5.000000	199996.000000	119998.000000	9999.000000

In [8]: plt.hist(data['Price_USD'])

Out[7]:

In [9]: sns.heatmap(data.corr(),annot=True)

Out[9]: <Axes: >


```
In [10]: #sns.pairplot(data)
In [11]: x=data.drop('Price_USD',axis=1)
    y=data['Price_USD']
In [12]: x
```

_		Га		
Oι	11	- 1	٠) ا	0
\cup	<i>コ</i> し	1	_	

	Year	Engine_Size_L	wiiieage_Kivi	Sales_volume	Sales_Classification_High	Sales_Cla
0	2016	3.5	151748	8300	True	
1	2013	1.6	121671	3428	False	
2	2022	4.5	10991	6994	False	
3	2024	1.7	27255	4047	False	
4	2020	2.1	122131	3080	False	
•••						
49995	2014	4.6	151030	8182	True	
49996	2023	4.2	147396	9816	True	
49997	2010	4.5	174939	8280	True	
49998	2020	3.8	3379	9486	True	
49999	2020	3.3	171003	1764	False	

50000 rows × 35 columns

In [17]: lm=LinearRegression()

In [18]: lm.fit(x_train,y_train)

	+		
In [13]:	у		
Out[13]:	0 98740		
	1 79219		
	2 113265		
	3 60971		
	4 49898		
	•••		
	49995 42932		
	49996 48714		
	49997 46126		
	49998 58566		
	49999 77492		
	Name: Price_USD, Length: 50000, dtype: int64		
In [14]:	<pre>from sklearn.model_selection import train_test_split</pre>		
In [15]:	<pre>x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=23)</pre>		
In [16]:	<pre>from sklearn.linear_model import LinearRegression</pre>		

```
Out[18]:
          LinearRegression
          ► Parameters
In [19]: lm.intercept_
Out[19]: np.float64(-11224.909669668006)
In [20]: | lm.coef_
Out[20]: array([ 4.24126815e+01, 1.89967550e+02, -2.84274649e-03, 3.18948016e-02,
                 -1.05206128e+02, 1.05206128e+02, 1.16595260e+02, -1.16595260e+02,
                -9.06046530e+01, 3.95268207e+02, -3.05013646e+02, 3.50092234e-01,
                 -1.98122556e+02, 4.34024316e+02, -1.33125912e+01, -1.93396990e+02,
                 -4.91516709e+02, 4.62324530e+02, -1.33310722e+02, 6.52763473e+02,
                -1.61882107e+02, -2.85927177e+02, -1.54395104e+02, 8.27516374e+01,
                 2.94138016e+02, -1.07911494e+01, \quad 3.95824290e+02, -1.79699298e+02,
                -6.90159342e+02, 5.88820823e+02, -9.13124947e+01, -2.22120044e+02,
                -4.53282952e+02, 1.42682954e+02, 2.25899197e+02])
In [21]: c=pd.DataFrame(lm.coef_,x.columns,columns=['Price_USD'])
```

In [22]: c

Out[22]: Price_USD

	FIICE_03D
Year	42.412682
Engine_Size_L	189.967550
Mileage_KM	-0.002843
Sales_Volume	0.031895
Sales_Classification_High	-105.206128
Sales_Classification_Low	105.206128
Transmission_Automatic	116.595260
Transmission_Manual	-116.595260
Fuel_Type_Diesel	-90.604653
Fuel_Type_Electric	395.268207
Fuel_Type_Hybrid	-305.013646
Fuel_Type_Petrol	0.350092
Color_Black	-198.122556
Color_Blue	434.024316
Color_Grey	-13.312591
Color_Red	-193.396990
Color_Silver	-491.516709
Color_White	462.324530
Region_Africa	-133.310722
Region_Asia	652.763473
Region_Europe	-161.882107
Region_Middle East	-285.927177
Region_North America	-154.395104
Region_South America	82.751637
Model_3 Series	294.138016
Model_5 Series	-10.791149
Model_7 Series	395.824290
Model_M3	-179.699298
Model_M5	-690.159342
Model_X1	588.820823

```
Price_USD
                      Model_X3
                                  -91.312495
                      Model_X5 -222.120044
                      Model_X6 -453.282952
                       Model_i3 142.682954
                       Model_i8
                                 225.899197
In [23]: pr=lm.predict(x_test)
In [24]: pr
Out[24]: array([73500.79639859, 74633.70418724, 74779.94638861, ...,
                 73620.55249048, 75150.90617265, 74552.66215489], shape=(15000,))
In [25]: y_test
                   104395
Out[25]: 49466
         11621
                   108196
          39058
                   86604
          10033
                  101480
          22076
                    59951
                    . . .
          35962
                   71658
                   41403
          1710
                  119878
          37523
          14167
                   92089
                    30170
          21600
         Name: Price_USD, Length: 15000, dtype: int64
In [26]: plt.scatter(x=pr,y=y_test)
Out[26]: <matplotlib.collections.PathCollection at 0x2d72183c500>
```



```
In [27]:
         from sklearn import metrics
In [28]: metrics.mean_absolute_error(y_test,pr)
         22660.005257327874
Out[28]:
In [29]: metrics.mean_squared_error(y_test,pr)
Out[29]:
         681578803.0890763
In [30]:
         np.sqrt(metrics.mean_squared_error(y_test,pr))
Out[30]: np.float64(26107.064237272567)
In [31]:
         metrics.r2_score(y_test,pr)
Out[31]:
         -0.0012332612175953717
In [32]: sns.displot(y_test-pr,bins=25)
```

Out[32]: <seaborn.axisgrid.FacetGrid at 0x2d721479850>

