## 전자기학/초고주파 분야 2015 박사과정자격시험 (2015. 7. 29)

1. (10 pts) Find the mutual inductance between two air coaxial solenoids of radius "a" with lengths  $l_1$  and  $l_2$ , and  $N_1$  and  $N_2$  turns, respectively.



- 2. (a) (5 pts) Solve Laplace's equation to find potential V as a function of angle  $\phi$ . The boundary conditions are given as two infinite radial conducting planes,  $V=100~(V)~at~\phi=0~(rad),$  and  $V=40~(V)~at~\phi=0.2~(rad)$ .
  - (b) (5 pts) Find  $\stackrel{\longrightarrow}{E}$  when ho=10, using the result of (a).

$$(\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho \frac{\partial V}{\partial \rho}) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}, \qquad \nabla V = \hat{\rho} \frac{\partial V}{\partial \rho} + \hat{\phi} \frac{1}{\rho} \frac{\partial V}{\partial \phi} + \hat{z} \frac{\partial V}{\partial z})$$

- 3. (15 pts) A rectangular loop in the xy-plane with sides  $b_1$  and  $b_2$  carrying a current I shown lies in a uniform magnetic field  $\overrightarrow{B} = \hat{x}3 + \hat{y}6 \hat{z}8$ .
  - (a) Determine magnetic dipole moment of the loop.
  - (b) Determine the torque on the loop.
  - (c) Determine the total force on the loop due to perpendicular component of  $\stackrel{\longrightarrow}{B}$ .



4. (15 pts) A perfectly conducting plane with zero potential is located in free space at x=0, and an infinite uniform line charge of  $\rho_L=10\,(n\,C/m)$  lies along the line x=2, y=1. Use the method of images to find potential at point P(4,-1,0).

( 
$$\epsilon_0=\frac{1}{36\pi}10^{-9}$$
 )

- **5.** [20pts] A uniform plane wave with  $\overrightarrow{E_i}(z,t) = \hat{x} E_{i0} \cos \omega \left(t \frac{z}{u_n}\right)$  in medium 1  $(\epsilon_1, \mu_1)$  is incident normally onto a lossless dielectric slab  $(\epsilon_2, \mu_2)$  of a thickness d backed by a perfectly conduction plane, as shown in the below figure. Find
- (a) [5pts]  $\overrightarrow{E_r}(z,t)$
- (b) [5pts]  $\overrightarrow{E_1}(z,t)$  (c) [5pts]  $(\overrightarrow{P_{av}})_1$
- (d) [5pts] Determine the thickness d that makes  $\overrightarrow{E_1}$  the same as if the dielectric slab were absent.



6. [20pts] Consider the following transmission line circuit.



- (a) [10pts] Derive the expressions of voltages and currents on the transmission line,  $V\!(z')$ and I(z') with z' = l - z.
- (b) [10pts] Derive the generator input impedance  $Z_{i\prime}$  looking into the transmission line at the source end of the line z'=l.
- 7. [10점] Consider the following Hertzian dipole antenna with its magnetic vector potential  $\overrightarrow{A} = \hat{z} \frac{\mu_0 Idl}{4\pi} \left( \frac{e^{-j\beta R}}{R} \right)$



- (a) [5pts] Find the magnetic field  $\overset{\longrightarrow}{H}$  in spherical coordinate system.
- (b) [5pts] Find the magnetic field  $\overset{\longrightarrow}{E}$  in spherical coordinate system.