MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerül
- **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- Hiányos/hibás megoldás esetén kérjük, hogy az egyes részpontszámokat is írja rá a dolgozatra.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- Ha a megoldási útmutatóban zárójelben szerepel egy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- Egy feladatra adott többféle megoldási próbálkozás közül **csak egy** (a magasabb pontszámú) **értékelhető**.
- A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1. a)		
A logaritmus azonosságait és a 10-es alapú logaritmus-függvény szigorú monotonitását felhasználva, megoldandó az $(x+7)(3x+1) = 100$ másodfokú egyenlet.	1 pont	A monotonitásra való hivatkozás nélkül is jár az l pont.
Ennek gyökei: $x_1 = -\frac{31}{3}$; $x_2 = 3$.	2 pont	
Mivel a bal oldal értelmezése alapján $x > -\frac{1}{3}$, ezért az $x_1 = -\frac{31}{3}$ nem gyöke az egyenletnek.	1 pont	Az l pont indoklással együtt adható. A hamis gyök kizárása történhet behelyettesítéssel is.
Az $x = 3$ kielégíti az eredeti egyenletet.	1 pont	
Összesen:	5 pont	

1. b) első megoldás					
A jobb oldalon alkalmazva a hatványozás azonosságait, megoldandó az alábbi egyenlet: $2^x = 3 \cdot 9^x$.	2 pont				
Ebből rendezéssel kapjuk, hogy: $(4,5)^x = \frac{1}{3}$.	2 pont				
Innen $x = \log_{4,5} \left(\frac{1}{3} \right) \left(= \frac{\lg \frac{1}{3}}{\lg 4,5} \approx -0.7304 \right).$	1 pont	Az exponenciális egyenlet gyökeként fogadjuk el a helyes közelítő értéket.			
A kapott gyök kielégíti az eredeti egyenletet, mert ekvivalens átalakításokat végeztünk.	1 pont	Az ellenőrzést fogadjuk el közelítő értékkel is.			
Összesen:	6 pont				

1. b) második megoldás				
Mivel $3 = 2^{\log_2 3}$, a hatványozás azonosságait alkalmazva $2^x = 3^{2x+1} = 2^{(2x+1)\log_2 3}$.	2 pont			
A 2-es alapú exponenciális függvény szigorú monotonitása miatt $x = (2x+1)\log_2 3$.	1 pont	A monotonitásra való hivatkozás nélkül is jár az 1 pont.		
Az egyenlet megoldása $x = -\frac{\log_2 3}{\log_2 9 - 1} = -\frac{\log_2 3}{\log_2 4,5} (= -\frac{\lg 3}{\lg 4,5} \approx -0.7304)$	2 pont	Az exponenciális egyenlet gyökeként fogadjuk el a helyes közelítő értéket.		
A kapott gyök kielégíti az eredeti egyenletet, mert ekvivalens átalakításokat végeztünk.	1 pont	Az ellenőrzést fogadjuk el közelítő értékkel is.		
Összesen:	6 pont			

2. a)		
Mivel a dobások során bármelyik helyen háromféle számot (0; 2; 4) dobhatunk, a rendezett számötösök száma 3 ⁵ = 243.	2 pont*	
Összesen:	2 pont	

2. b)		
Ha a dobott pontok összegét tekintjük csak, és a		
dobások sorrendjét nem, akkor 10-et összegként	1 pont*	
háromféleképpen dobhattunk:		
1. eset: $4+4+2+0+0=10$;	1 pont	
2. eset: $4 + 2 + 2 + 2 + 0 = 10$;	1 pont	
3. eset: $2+2+2+2+2=10$.	1 pont	
Az 1. esetben ezt az 5 számot $\frac{5!}{2!\cdot 2!} = 30$ -féle	2 pont	
sorrendben dobhattuk.		
A 2. esetben ezt az 5 számot $\frac{5!}{3!}$ = 20 -féle sorrendben	2 pont	
dobhattuk.		
A 3. esetben ezt az 5 számot csak egyféle sorrendben		
dobhattuk.	2 pont*	
A 10-es összeg tehát összesen 51-féleképpen állhatott	2 pont	
elő.		
Összesen:	10 pont	

A *-gal jelölt részpontszámok akkor is adhatók, ha nem ennyire részletezők, de a leírásból világosan követhető a közölt gondolatmenet.

írásbeli vizsga 0621 4 / 15 2006. október 25.

3.		
Mivel a háromszög szögeinek összege 180°, $\alpha + \gamma = 180^{\circ} - \beta$, valamint $\beta + \gamma = 180^{\circ} - \alpha$,	1 pont	A részpontszámok akkor is adhatók, ha csak a
és $\cos(180^{\circ} - \beta) = -\cos \beta$, valamint $\cos(180^{\circ} - \alpha) = -\cos \alpha$.	1 pont	későbbiek során derül ki, hogy ezeket az összefüggéseket helyesen használja a vizsgázó.
A megadott egyenlőség pontosan akkor teljesül, ha $\sin \alpha : \sin \beta = \cos \beta : \cos \alpha$.	1 pont	
Ebből a $\sin \alpha \cdot \cos \alpha = \sin \beta \cdot \cos \beta$ egyenlőség következik.	1 pont	
A kétszeres szög szinuszára vonatkozó azonosságot használva kapjuk, hogy $\sin 2\alpha = \sin 2\beta$.	3 pont	
Egy háromszögben bármely szög kétszeresének értéke 0° és 360° közé esik, ezért a fenti egyenlőség két esetben állhat fenn:	3 pont	
$2\alpha = 2\beta$ vagy $2\alpha + 2\beta = 180^{\circ}$.	2 pont	
Az első esetben $\alpha = \beta$, a háromszög két szöge egyenlő, a háromszög egyenlő szárú.	1 pont	
A második esetben $\alpha + \beta = 90^{\circ}$, a háromszögben $\gamma = 90^{\circ}$, a háromszög derékszögű.	1 pont	
Összesen:	14 pont	

4. a) első megoldás		
Mivel hét pénzt dobtunk fel, akkor lesz több fej, mint	2 nont	A részpontszámok akkor is adhatók, ha nem
írás, ha 4; 5; 6 vagy 7 fejet dobtunk.	2 pont	is adhatók, ha nem
Ekkor éppen 3; 2; 1 vagy 0 írás lesz.	1 pont	ennyire részletezők, de a
Szimmetria okokból ennek ugyanannyi az esélye, mint ha 3; 2; 1 vagy 0 fejet dobtunk volna.	2 pont	leírásból világosan követ- hető a közölt gondolat- menet.
Tehát a keresett valószínűség: 0,5	2 pont	
Összesen:	7 pont	

írásbeli vizsga 0621 5 / 15 2006. október 25.

4. a) második megoldás						
A hét elemű fej-írás jelsorozat minden helyén		A részpontszámok akkor				
előfordulhat a fej és írás is, ezért az egyenlő esélyű	2 pont	is adhatók, ha nem				
jelsorozatok száma: 2 ⁷ = 128.		ennyire részletezők, de a				
Több fejet dobtunk, mint írást, tehát a fejek száma 4;	2 pont	leírásból világosan követhető a közölt				
5; 6 vagy 7.	2 point	gondolatmenet.				
A kedvező jelsorozatok száma tehát:						
$\binom{7}{4} + \binom{7}{5} + \binom{7}{6} + \binom{7}{7} = 35 + 21 + 7 + 1 = 64.$	2 pont					
A keresett valószínűség: $\frac{64}{128} = 0.5$.	1 pont					
Összesen:	7 pont					

4. b)				
Akkor nagyobb a különbség 3-nál, ha 6 fej és 1 írás vagy 7 fej és 0 írás van.	A pontszám akkor is adható, ha nem ennyire részletező, de a leírásból világosan követhető a közölt gondolatmenet. Ha a fordított esetet is tekintetbe veszi a kedvező eseteknél, 2 pontot kaphat.			
A kedvező esetek száma a szimmetria okok miatt:	2 pont			
7+1=8.	1 pont			
A keresett valószínűség: 0,0625 $\left(=\frac{8}{128} = \frac{1}{16}\right)$.	1 pont			
Összesen:	7 pont			

II.

5. a)		
A lecsiszolt testnek 24 csúcsa van, mert a 8		1. A részpontszámok
kockacsúcs helyett minden csúcsnál 3-3 új csúcs	1 pont	akkor is adhatók, ha nem
keletkezik (a negyedelő pontoknál).		ennyire részletezők, de a
A lecsiszolt testnek 36 éle van, mert a 12 kocka élen		leírásból világosan követ-
maradnak élek, és a lemetszett háromszögek oldalai	1 pont	hető a közölt gondolat-
is élek: $8 \cdot 3 = 24$, és $12 + 24 = 36$.		menet.
A lapok száma 14, mert a kockalapokból marad egy-		2. A végeredmények
egy nyolcszög, és a lemetszett háromszögek száma 8,	1 pont	puszta közléséért leg-
6 + 8 = 14.		feljebb 2 pont adható.
Összesen:	3 pont	

5. b)		
A talapzat felszínét kiszámíthatjuk, ha a 6 db nyolcszög területéhez hozzáadjuk a 8 db szabályos háromszög területét.	1 pont	A részpontszámok akkor is adhatók, ha nem
A nyolcszög területe: a 12 dm oldalú négyzet területéből kivonjuk a 4 db egyenlő szárú derékszögű háromszög területét, vagyis 2 db 3 dm oldalú négyzet területét: $T_{nyolcszög} = 12^2 - 2 \cdot 3^2 = 126 \text{ (dm}^2\text{)}.$	2 pont	ennyire részletezők, de a számolásból világosan
A szabályos háromszög oldala $3 \cdot \sqrt{2}$, ezért $T_{háromszög} = \frac{a^2 \cdot \sqrt{3}}{4} = \frac{9 \cdot \sqrt{3}}{2} \text{ (dm}^2\text{)}.$	2 pont	
$A = 6 \cdot T_{nyolcsz\ddot{o}g} + 8 \cdot T_{h\acute{a}romsz\ddot{o}g} = 756 + 36 \cdot \sqrt{3}$ $(\approx 818,35 \text{ dm}^2).$	1 pont	
Összesen:	6 pont	

5. c)						
Legyen <i>m</i> az ajándéktárgy megrendelt tömege. Az összes tömeg 20 <i>m</i> .						
0 5	Foglaljuk táblázatba a csiszolt ajándéktárgyakról					
tudott inforn	nációkat.	, T	T			
anyag	achát	hematit	zöld jade	gránát	2 pont	
gyakoriság	3 db	6 db	7db	4db		A 2+2 pont akkor is jár, ha a helyes egyenletet
tömeg	0,99 m	0,995 m	1,015 m			világosan rögzített jelölé-
				sekkel írja fel a vizsgázó.		
Jelöljük $(x \cdot m)$ -mel a gránátból készített						
ajándéktárgy	ajándéktárgy valódi tömegét.				2 .	
Tudjuk, hog		_	tömeg 20 <i>m</i>	ı. innen	2 pont	
$20 \cdot m = 3 \cdot 0.99m + 6 \cdot 0.995m + 7 \cdot 1.015m + 4 \cdot xm.$						
Ebből következik, hogy $x = 0.98875$.			2 pont			
A gránát ajándéktárgyak tömege 1,125%-kal kisebb a		1 1				
megrendeltnél.		1 pont				
Összesen:					: 7 pont	

6. a)								
		oglaljuk az eltelt			al kiszán ben:	nított		
		1970	1980	1990	2000			
	t	1	11	21	31		2 pont	
	m(t)	7	11,2	11,5	11,7			
	h(t)	6,3	12,0	15,7	18,7			
15 10	7 6,3 1970	11,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1:1;	55	18,7	év	2+2 pont	
	zsu fűz:			nutfenyő		C V		
manu	LSU IUZ.	11C	gyi iliali	iuticity0	Össz	esen:	6 pont	

Ha a vizsgázó függvénytranszformáció lépéseire támaszkodva vagy bármely más függvényábrázolási módszerrel jó megoldást ad, m(t) ábrájára 3 pontot, h(t) grafikonjára 3 pontot kaphat. A helyettesítési értékeket ekkor is fel kell tüntetnie.

írásbeli vizsga 0621 8 / 15 2006. október 25.

6. b)		
Megoldandó a $10.5 = 5 \cdot \sqrt{0.4t + 1} + 0.4$ egyenlet.	1 pont	
Rendezés után kapjuk, hogy $t \approx 7,7$.	2 pont	
A kívánt magasságot a mamutfenyő a 8. évben, vagyis (1969 + 8 =) 1977-ben érte el.	1 pont	Az l pont bármelyik formában megadott jó válasz esetén jár.
Összesen:	4 pont	

6. c)		
A megadott függvény menetét a derivált előjelvizsgálatával állapítjuk meg.	1 pont	
A derivált: $g'(t) = 3t^2 - 33t + 72$.	1 pont	
A derivált értéke 0, ha $t = 3$ vagy $t = 8$.	1 pont	
A derivált mindkét nullhelyénél előjelet vált, a két nullhely közötti t értékekre a derivált negatív, ezért a $g(t)$ függvény ezen a tartományon $(3 < t < 8)$ szigorúan monoton csökkenő.	2 pont	
A fa magassága nem csökkenhet az arborétumban, ezért a $g(t)$ függvény egyetlen fa növekedését sem írhatja le.	1 pont	
Összesen:	6 pont	

- 1. Minden jó érvelés elfogadható megoldásként. Ha a vizsgázó pl. megfelelő helyettesítési értékek összevetésével utal arra, hogy g(t) függvény értéke nagyobb t értéknél kisebb lett, megoldása teljes értékű lehet.
- 2. Megadjuk néhány egész t értékénél g(t) értékét:

évek száma	t	1	3	5	8	10	11	15	21
magasság (cm)	g(t)	116,6	154,5	132,5	92	130	186,5	802,5	3556,6

- 3. Ha a táblázatos módszerrel nem találja meg a csökkenő tartományt, és próbálkozásából nem derül ki, hogy a monotonitást vizsgálja, megoldására legfeljebb 1 pontot kapjon.
- 4. Ha a táblázatos módszerrel nem találja meg a csökkenő tartományt, de a próbálkozásából kiderül, hogy a monotonitást vizsgálja, megoldására legfeljebb 2 pontot kapjon.

írásbeli vizsga 0621 9 / 15 2006. október 25.

7. a)		
A húrnégyszögben a szemközti szögeinek összege 180°.	1 pont	A részpontszámok akkor is adhatók, ha nem
A megadott arányszámok nem feltétlenül követik a szögek sorrendjét a négyszögben, ezért három esetet különböztetünk meg aszerint, hogy a három arányszám közül melyik két szög van egymással szemben.	3 pont	ennyire részletezők, de a leírásból világosan követhető a közölt gondolatmenet.
A feltételben szereplő három szög legyen α , β , γ , a negyedik δ . $\alpha + \gamma = 180^{\circ}$, így a három lehetőség:		

	α	β	γ	egység	δ
yszög	7e	6e	8e	e=12°	
1. négyszög	84°	72°	96°		108°
/szög	6f	7 f	8f	$f = \frac{90^{\circ}}{7}$	
2. négyszög	$\frac{540^{\circ}}{7} = 77,14^{\circ}$	90°	$\frac{720^{\circ}}{7} = 102,86^{\circ}$		90°
négyszög	6g	8g	7g	$g = \frac{180^{\circ}}{13}$	
3. négy	$\frac{1080^{\circ}}{13} = 83,08^{\circ}$	$\frac{1440^{\circ}}{13} = 110,77^{\circ}$	$\frac{1260^{\circ}}{13} = 92,92^{\circ}$		$\frac{900^{\circ}}{13} = 69,23^{\circ}$

A helyesen megadott húrnégyszögenként	3-3 pont	A 3 pont bontása: az egység helyes kiszámítása: 1 pont a szemközti szögpárok helyes kiszámítása: 1+1 pont
Ös	szesen: 13 pont	

7. b)		
Látható tehát, hogy vannak olyan húrnégyszögek, amelyekre rendre igaz a tanórán elhangzott három állítás közül egy-egy: Zsófi állítása az 1., Peti állítása a 2., Kata állítása a 3. négyszögre igaz.	3 pont	
Az elhangzott három állítás viszont nem igaz egyszerre a probléma megoldását jelentő három húrnégyszög mindegyikére.		Ha a vizsgázó megadja mind a három típusú húrnégyszöget, és közvetlenül arra utal, hogy a három állítás egyszerre nem igaz mindhárom típusra, az utolsó 3 pontot kapja meg.
Összesen:	3 pont	

Ha a vizsgázó egy húrnégyszöget vizsgál csak, és ennek megfelelően választja ki az igaz állítást, megoldására legfeljebb 5 pontot kaphat.

írásbeli vizsga 0621 11 / 15 2006. október 25.

8. a)

Az A halmaz pontjai az $y = \frac{4}{3}x - 6$ egyenletű	1 pont	
egyenes alatti zárt félsík pontjai.		
Az A halmaz ábrájáért.	1 pont	
A <i>B</i> halmaz pontjai az $(x-3)^2 + (y+2)^2 = 25$ egyenletű kör és a kör belső pontjai.	1 pont	
A kör középpontja $K(3; -2)$, sugara $r = 5$.	1 pont	
A B halmaz ábrájáért.	2 pont	
A C halmaz pontjai az $y = 2$ és az $y = -2$ egyenletű párhuzamos egyenesek pontjai.	1 pont	
A C halmaz ábrájáért.	1 pont	
Összesen:	8 pont	

A teljes pontszámot az A és B halmaz leírása esetén akkor kaphatja meg, ha a ponthalmazok határoló vonalaira is világos az utalás.

írásbeli vizsga 0621 12 / 15 2006. október 25.

8. b)

A $B \setminus A$ halmaz ábrázolása:	1 pont	
A $B \setminus A$ halmaz pontjai egy félkörlemez pontjai, amihez a félkörív és a belső pontok hozzá tartoznak, de a kör DE átmérője nem. (Az átmérő végpontjai: $D(0; -6)$ és $E(6; 2)$.)	2 pont	A teljes pontszámot meg- kaphatja akkor is, ha nem adja meg a D és E koordinátáit.
A ponthalmaz pontjai a <i>DE</i> átmérő fölött vannak.	1 pont	Bármilyen egyértelmű szöveges utalás arra, hogy melyik félkörle- mezről van szó, 1 pont.
Összesen:	4 pont	•

írásbeli vizsga 0621 13 / 15 2006. október 25.

8. c)

A $B \cap C$ halmaz a B ponthalmaz határoló körének		
két párhuzamos húrja:		
A húrok végpontjai: (0; 2) és (6; 2), valamint	1 ,	
(-2;-2) és $(8;-2)$.	1 pont	
(Ez utóbbi húr egyben átmérő is.)		
A $B \cap C$ halmaz ábrázolása:		
Az origótól a legmesszebb a (8; –2) pont,	1 pont	
legközelebb a $(0; 2)$ és a $(0; -2)$ pont van.	2 pont	
Összesen:	4 pont	

- 1. A vonatkozó pontszámokat rendezett és világos ábráért is megkaphatja.
- 2. A világos és rendezett ábrázolás elfogadható indoklásként is.
- 3. A nem világos ábra esetén a vonatkozó pontszámok akkor adhatók, ha pl. numerikus behelyettesítéssel meggyőződik arról, hogy a közölt pontja illeszkedik a vizsgált ponthalmazra.

írásbeli vizsga 0621 14 / 15 2006. október 25.

9.		
A megadott feltételeket a következő alakban		
használjuk:		
(1) $a_n = a_{n-1} + 12a_{n-2}$, ha $n \ge 3$	2 pont	A 2 pont a (2) egyenlet helyes felírásáért jár.
$(2) 2a_2 = a_1 + (a_3 - 9a_1)$	-	
(3) $a_1 + a_2 + a_3 + a_4 + a_5 = 682$.		
A sorozat harmadik tagja az (1) alapján:	1 pont	
$a_3 = a_2 + 12 a_1 .$	1 pont	
Behelyettesítve a (2) összefüggésbe ezt az a_3	2 mant	
helyére, rendezés után kapjuk, hogy $a_2 = 4a_1$.	2 pont	
Ebből az $a_3 = a_2 + 12a_1 = 4a_1 + 12a_1 = 16a_1$.	1 pont	
A negyedik tagot felírva az (1) alapján:		
$a_4 = a_3 + 12a_2 .$		
A jobb oldalon behelyettesítve az a_3 és az a_2 az	2 pont	
a_1 -gyel kifejezett értékét kapjuk, hogy		
$a_4 = 16a_1 + 12(4a_1) = 64a_1 .$		
Hasonlóan fejezhetjük ki a_5 értékét a_1 segítségével:	2 nont	
$a_5 = a_4 + 12a_3 = 64a_1 + 12(16a_1) = 256a_1$.	2 pont	
A (3) egyenlőség bal oldalán a sorozat tagjait rendre		
az a_1 -gyel kifejezett értékkel helyettesítve kapjuk,	2 pont	
hogy	2 pont	
$a_1 + a_2 + a_3 + a_4 + a_5 = a_1 + 4a_1 + 16a_1 + 64a_1 + 256a_1$		
Összevonás után: $341 a_1 = 682$.	1 pont	
Ebből: $a_1 = 2$.	- P	
A hatodik tagot felírva az (1) alapján: $a_6 = a_5 + 12a_4$.		
Az a_5 és az a_4 értékét a_1 -gyel kifejezve kapjuk,	2 pont	
hogy:	2 point	
$a_6 = 256a_1 + 12 \cdot 64a_1 = 1024a_1 = 1024 \cdot 2 = 2048.$		
A kapott 2; 8; 32; 128; 512; 2048, számsorozat		
elemei kielégítik az (a_n) sorozat elemeiről megadott	1 pont	
összes feltételt.		
A sorozat hatodik tagja: 2048.	16 - 4	
Összesen:	16 pont	

Ha a vizsgázó csak megsejti (pl. a második és harmadik tag a_1 -gyel történő kifejezése után), hogy ez a sorozat egy q=4 hányadosú mértani sorozat, de ezt nem igazolja, akkor megoldására legfeljebb 8 pontot kaphat.

írásbeli vizsga 0621 15 / 15 2006. október 25.