- 1. (a) Let $n_0 = 1$ and C = 1. We have $f(n) \le Cn^2$ for every $n \ge n_0$, so $f(n) = O(n^2)$.
 - (b) Observe that $\log n = o(n^{1/16}) = O(n^{1/16})$. Here is why.

$$\lim_{n \to \infty} \frac{\log n}{n^{1/16}} = \lim_{n \to \infty} \frac{16}{n^{1/16}}$$
$$= 0$$

Combining 8 copies of the above equality, one has $\log^8 n = O(\sqrt{n})$.

- (c) There exist $n_1, C_1 > 0$ so that $f(n) \le C_1 n^2$ for every $n \ge n_1$. There also exist $n_2, C_2 > 0$ so that $g(n) \le C_2 \sqrt{n}$ for every $n \ge n_2$. Hence, $f(n) \cdot g(n) \le C_1 C_2 n^{2.5}$ for every $n \ge \max\{n_1, n_2\}$. By the definition of big-O, $f(n) \cdot g(n) = O(n^{2.5})$.
- 2. (a) Let

$$S(n) = \begin{cases} S(\lceil n/2 \rceil) + dn & \text{if } n > 1\\ d & \text{if } n = 1 \end{cases}$$

If d is picked as a sufficiently large constant, then $T(n) \leq S(n)$ for every $n \geq 1$. Observe that $dn = \Omega(n^{\log_2 1 + \epsilon})$ and $1 \cdot dn/2 \leq 1/2 \cdot dn$. The third case of Master Theorem applies. We get S(n) = O(n), yielding that T(n) = O(n).

(b) Let

$$S(n) = \begin{cases} S(\lfloor n/2 \rfloor) + S(\lceil n/2 \rceil) + dn & \text{if } n > 1 \\ d & \text{if } n = 1 \end{cases}$$

If d is picked as a sufficiently large constant, then $T(n) \leq S(n)$ for every $n \geq 1$. Observe that $dn = \Theta(n^{\log_2 2})$. The second case of Master Theorem applies. We get $S(n) = O(n \log n)$, yielding that $T(n) = O(n \log n)$.

(c) Let

$$S(n) = \begin{cases} 2T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + dn & \text{if } n > 1\\ d & \text{if } n = 1 \end{cases}$$

If d is picked as a sufficiently large constant, then $T(n) \leq S(n)$ for every $n \geq 1$. Observe that $dn = \Theta(n^{\log_2 3 - \epsilon})$. The first case of Master Theorem applies. We get $S(n) = O(n^{\log_2 3})$, yielding that $T(n) = O(n^{\log_2 3})$.

(d) Let

$$T(n=2^k) = S(k) = \left\{ \begin{array}{ll} 2S(\approx k/2) + d & \text{if } n > 1 \\ d & \text{if } n = 1 \end{array} \right.$$

By Master Theorem, one has a rough guess that $T(n=2^k)=S(k)=O(\log n)$.

1

We use the substitution method to prove the guess $T(n) \le c \log n - c$ for some c > 0, for every $n \ge 3$. The induction base n = 3 holds by setting c sufficiently large (w.r.t. d). Assume that for every n < t, the guess holds. For n = t, $T(t) \le 2c \log \sqrt{t} - 2c + d \le c \log t$ if c > d. By induction, $T(n) = O(\log n)$.

3. We assume that all numbers are distinct or break ties arbitrarily.

(a)

```
\begin{array}{ll} \textbf{1} & \textbf{if } \mathcal{H}[2] < \mathcal{H}[3] \textbf{ then} \\ \textbf{2} & | & \text{return } \min\{\mathcal{H}[4],\mathcal{H}[5],\mathcal{H}[3]\} \\ \textbf{3} & \textbf{else} \\ \textbf{4} & | & \text{return } \min\{\mathcal{H}[6],\mathcal{H}[7],\mathcal{H}[2]\} \\ \textbf{5} & \textbf{end} \end{array}
```

- (b) All elements in \mathcal{H} except $\mathcal{H}[1]$.
- 4. (a) One can solve this problem by binary search, detailed as follows. The initial call is find (1, n).

```
1 Function find (\ell, r):
       if r - \ell is small then
2
           solve by a linear scan
3
       end
4
       p \leftarrow (\ell + r)/2
5
       if S[p] equals -p then
6
           return Yes
7
8
       else
           if S[p] < -p then
9
              return find (\ell, p-1)
10
           else
11
               return find (p+1,r)
12
13
           end
14
       end
```

(b) We prove this by constructing an adversary game. For any algorithm \mathcal{A} that uses at most n-1 probes, if \mathcal{A} probes S[k], then Alice always claims that S[k] = -(k+1). Since there exists an S[i] for some $i \in [1, n]$ that \mathcal{A} does not know the value, Alice has the freedom to claim S[i] = -i or S[i] = -(i+1). Hence, \mathcal{A} has no way to answer correctly. Any algorithm that can solve this problem requires $\Omega(n)$ probes (time).

5. (a) We prove this problem by reduction. In what follows, we devise an $o(n \log n)$ -time algorithm for the element uniqueness problem using an $o(n \log n)$ -time algorithm for the second mode. However, any algorithm in the comparison-based model requires $\Omega(n \log n)$ time to solve the element uniqueness problem. Hence, the $o(n \log n)$ -time algorithm for the second mode does not exist in the comparison-based model.

```
1 Function uniqueness (a_1,a_2,\ldots,a_n):
2 a_0 \leftarrow \min\{a_1,a_2,\ldots,a_n\}-1
3 \mu \leftarrow 2 \operatorname{ndMode}(\underbrace{a_0,a_0,\ldots,a_0}_{n+1 \ copies},a_1,a_2,\ldots,a_n)
4 if \operatorname{freq}(\mu) \ equals \ 1 \ \text{then}
5 \operatorname{return} a_1,a_2,\ldots,a_n \ \text{are all distinct}
6 else
7 \operatorname{return} \operatorname{Some} \ \text{of} \ a_1,a_2,\ldots,a_n \ \text{repeats}
8 end
```

- (b) Represent each a_i in base n, so each a_i has 4 n-ary digits. By RADIXSORT, one can sort a's in O(4n) time. Followed by a linear scan, one can compute the frequency of a_i for each $i \in [1, n]$. Given the frequencies, output the second mode can be done in linear time. In total, we use only O(n) time.
- 6. Let $x_1 = \arg\min_{x \in S} \operatorname{freq}(x)$ and $x_2 = \arg\max_{x \in S} \operatorname{freq}(x)$. Let further $\Delta = n(1 1/\log n)$.

If $\operatorname{freq}(x_2) \geq \Delta/2$, then at least one of the (n/4)-th, (2n/4)-th, (3n/4)-th order statistics equals x_2 . Hence, one can decide whether $\operatorname{freq}(x_2) \geq \Delta/2$ in O(n) time by 3 selections and 1 linear scan. If the above procedure succeeds, then we receive the exact value $\operatorname{freq}(x_2)$. If the above procedure fails in any way, then $\operatorname{freq}(x_2) < \Delta/2$, implying that

$$freq(x_1) + freq(x_2) \le 2freq(x_2) < \Delta$$
,

so output "No."

Given $\operatorname{freq}(x_2)$, if $\operatorname{freq}(x_2) > n(1-2/\log n)$, then there are $O(n/\log n)$ values different from x_2 . In this case, one can sort the numbers not equal to x_2 in O(n) time, so $\operatorname{freq}(x_1)$ is obtained. Otherwise, $\operatorname{freq}(x_2) = n(1-2/\log n) - \delta$ for some $\delta \geq 0$. Then the only possibility to output "Yes" is $\operatorname{freq}(x_1) \geq n/\log n + \delta$. In this case, the n given numbers have at most

$$2 + \frac{n - \operatorname{freq}(x_1) - \operatorname{freq}(x_2)}{\operatorname{freq}(x_1)} \le 3.$$

distinct values. Hence, use 3 linear scan to figure out whether there are only 3 distinct values in the input. If yes, then $freq(x_1)$ can be computed in linear time. Otherwise, output "No.".

Conclusion: this problem can be solved in O(n) time.