Relatório 2º Projeto ASA 2023/2024

Grupo: AL013

Aluno(s): Daniel Filipe da Costa Rodrigues (106772) e Tiago Castro Santos (106794)

Descrição do Problema e da Solução

O problema colocado consistia em perceber qual o número de "saltos" que um vírus consegue dar dentro de uma rede de pessoas que se conhecem. Para solucionar a questão decidimos construir um grafo dirigido para representar a rede de pessoas, com arcos de x para y se x conhece y. Começamos por percorrer o grafo através de um algoritmo iterativo da DFS de forma a obtermos os tempos de fim (que são guardados do maior para o menor). De seguida, voltamos a realizar uma DFS iterativa (percorrendo os vértices de forma decrescente dos tempos de fim obtidos anteriormente), mas desta vez sobre o grafo transposto.

À medida que visitamos um determinado vértice calculamos também qual o maior caminho que podemos fazer até esse vértice. Para tal, verificamos os seus adjacentes e obtemos o maior dos caminhos até eles. O maior caminho até determinado vértice será então o valor anterior + 1.

Análise Teórica

Na fase inicial é feita uma leitura dos dados de entrada através de um loop que depende de forma linear do número m de relações. É também construído o grafo e o seu transposto. Logo esta etapa é O(m).

De seguida é efetuada uma DFS iterativa que está dividida em duas funções: a função principal DFS que possui um loop inicial que coloca todos os vértice como não visitados e um segundo loop (loop 1) que percorre os vértices do grafo que ainda não foram fechados e chama a segunda função, DFSVisit, que possui uma stack onde inicialmente apenas se encontra o vértice a ser visitado e um loop (loop 2) que apenas termina quando a stack estiver vazia. Dentro deste loop a função percorre as adjacências do vértice inicial (loop 3) e adiciona-as à stack procedendo à sua visita na iteração seguinte. A complexidade da função DFS é então dominada pelos loops 1, 2 e 3, onde o loop 1 tem complexidade O(n), uma vez que percorre todos os vértices do grafo, o mesmo pode ser dito para o loop 2. A soma de todas as iterações do loop 3 corresponde ao número de relações de indivíduos (m). Logo esta etapa tem complexidade $O(n+n+m) \equiv O(n+m)$.

Em seguida, é efetuada nova DFS, desta vez sobre o grafo transposto, utilizando a ordem decrescente dos tempos de fim (obtidos na etapa anterior). Nesta DFS, verificamos qual é o maior dos caminhos até cada adjacente do vértice a ser visitado, guardando este valor. Quando todos os adjacentes do vértice foram visitados, o valor do maior caminho será então o valor guardado + 1. Como todas estas operações são O(1) a DFS mantém a sua complexidade. Logo esta etapa é O(n+m).

Por fim é apresentado o caminho máximo entre os demais o que corresponde a uma complexidade O(1).

Conclui-se então que a complexidade global é O(n+m).

Relatório 2º Projeto ASA 2023/2024

Grupo: AL013

Aluno(s): Daniel Filipe da Costa Rodrigues (106772) e Tiago Castro Santos (106794)

```
DFS(G)
for each v \in G.V
v.color = WHITE
for each v \in G.V
if v.color = WHITE
DFSVisit(G, v)
```

Notação : WHITE = vizinhos por explorar, GREY = já explorei os vizinhos, BLACK = já fechei; *time* é uma variável global

```
DFSVisit (G, source)
 let S be a new stack with source
 while S not empty
  let v = S.top()
  if v.color = = WHITE
     time++
     for u \in G.adi[v]
         S.push(u)
     v.color = GREY
  else if v.color = = GREY
    time++
    v.color = BLACK
    S.pop()
    v.time = time
   else
     S.pop()
```

Avaliação Experimental dos Resultados

De forma a verificar a complexidade real da solução proposta para o problema realizamos testes onde calculamos o tempo necessário para obter o valor do número máximo de saltos para determinados n e m.

Analisando o resultado dos testes, verificamos que os tempos de execução variam de forma linear em relação à complexidade teórica estimada, o que confirma que a implementação está de acordo com a análise teórica.

N	M	Complexidade	Tempo (s)
0,00E+00	0,00E+00	0,00E+00	0
1,20E+05	1,20E+05	2,40E+05	0,072
2,00E+05	2,00E+05	4,00E+05	0,14
3,00E+05	3,00E+05	6,00E+05	0,212
4,00E+05	4,00E+05	8,00E+05	0,292
5,00E+05	5,00E+05	1,00E+06	0,379
6,00E+05	6,00E+05	1,20E+06	0,447
7,00E+05	7,00E+05	1,40E+06	0,521
8,00E+05	8,00E+05	1,60E+06	0,601
9,00E+05	9,00E+05	1,80E+06	0,693
1,00E+06	1,00E+06	2,00E+06	0,803
1,10E+06	1,10E+06	2,20E+06	0,894
1,25E+06	1,25E+06	2,50E+06	1,024
1,50E+06	1,50E+06	3,00E+06	1,153

Reta de regressão linear: t = 0.086 (n + m) - 0.1285