GNNExplainer论文分享

1. Overview

 一句话概括: "We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures."

2. 背景

2.1 graph embedding问题定义

Definition 4. (Graph embedding) Given a graph G = (V, E), a graph embedding is a mapping $f : v_i \to y_i \in \mathbb{R}^d \ \forall i \in [n]$ such that $d \ll |V|$ and the function f preserves some proximity measure defined on graph G.

- 定义: 求图上节点的映射, 使得映射后的节点满足图结构上的"相似"
- 怎么定义相似? 基于图的应用场景定义
- 以社交网络为例:
 - 。 节点间有边相连(first-order proximity),人以类聚物以群分
 - 。 节点的邻居重叠(second-order proximity), 共同好友多
 - 。 节点的特征(node feature)相似,爱好相同
 - o

2.2 Graph Neural Network(GNN)

- 迭代地延边传播节点间的神经网络信号,巧妙融合了节点特征和图上信号传播的思想
- inductive learning: 参数共享,训练好的网络参数可直接用于新增节点的预测

直观上

数学上

2.3 GNN计算流程

GCN:

$$H^{(l+1)} = \sigma(H^{(l)}W_0^{(l)} + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}H^{(l)}W_1^{(l)})$$

GraphSage:

$$h_v^K = \sigma([W_k AGG(\{h_u^{k-1}, \forall u \in N(v)\}), B_k h_v^{k-1}])$$

1. MSG: 节点对 (v_i,v_j) 在第l层的传递信号可以用 $m_{ij}^l=MSG(h_i^{l-1},h_j^{l-1},r_{ij})$ 其中 h_i^{l-1} 表示l-1层的节点编码(信号), r_{ij} 表示节点间关联。

2. AGG: 节点 v_i 聚合邻居传递的信号, $M_i^l=AGG(\{m_{ij}^l, \forall v_j \in N(v_i)\})$ 。 3. UPDATE: 节点 v_i 结合AGG和自身在上一层的编码,非线性变化得l层编码 $h_i^l=UPDATE(M_i^l, h_i^{l-1})$ 。

本文意在建模解释上述流程描述的任何GNN预测。

2.4 理解GNN预测的意义

- 风控场景模型结果的可解释性极为重要, 提高业务对技术的信任
- 提高模型的透明度,赋能业务理解黑产行为/社区生态行为
- 提高开发者对GNN网络结构的理解,降低调试成本,便于debug

GNN model training and predictions (Basketball') GNNExplainer $\hat{y}_i = \text{`Basketball''}$ $\hat{y}_j = \text{`Sailing''}$ (Sailing')

Figure 1: GNNEXPLAINER provides interpretable explanations for predictions made by any GNN model on any graph-based machine learning task. Shown is a hypothetical node classification task where a GNN model Φ is trained on a social interaction graph to predict future sport activities. Given a trained GNN Φ and a prediction \hat{y}_i = "Basketball" for person v_i , GNNEXPLAINER generates an explanation by identifying a small subgraph of the input graph together with a small subset of node features (shown on the right) that are most influential for \hat{y}_i . Examining explanation for \hat{y}_i , we see that many friends in one part of v_i 's social circle enjoy ball games, and so the GNN predicts that v_i will like basketball. Similarly, examining explanation for \hat{y}_j , we see that v_j 's friends and friends of his friends enjoy water and beach sports, and so the GNN predicts \hat{y}_j = "Sailing."

2.5 问题的数学表述

对给定节点v、GNN模型 Φ 的预测可表示为

$$\hat{y} = \Phi(G_c(v), X_c(v)).$$

其中 G_c 表示v的计算图, X_c 表示图上的节点特征。即GNN模型 Φ 可表示为条件分布 $P_{\Phi}(Y|G_c,X_c)$ 。

那么解释预测分的问题可以通过求解下式表述:

$$rg\max_{G_S\subset G_c(v),X_S^F\subset X_c(v)} MI(Y,(G_S,X_S^F))$$

其中MI表示互信息, X_S 表示子图 G_S 的节点特征集合,F为节点特征集合上的掩码。我们希望找到最主要影响预测结果 \hat{y} 的子图和对应节点特征的子集,输出作为解释预测的论据。这种影响通过互信息(mutual information)量化描述,即找到对随机变量Y分布影响最大的因子。

Figure 2: **A.** GNN computation graph G_c (green and orange) for making prediction \hat{y} at node v. Some edges in G_c form important neural message-passing pathways (green), which allow useful node information to be propagated across G_c and aggregated at v for prediction, while other edges do not (orange). However, GNN needs to aggregate important as well as unimportant messages to form a prediction at node v, which can dilute the signal accumulated from v's neighborhood. The goal of GNNEXPLAINER is to identify a small set of important features and pathways (green) that are crucial for prediction. **B.** In addition to G_s (green), GNNEXPLAINER identifies what feature dimensions of G_s 's nodes are important for prediction by learning a node feature mask.

注意到 $MI(Y,(G_S,X_S^F))=H(Y)-H(Y|G=G_S,X=X_S^F)$,对给定的GNN模型H(Y)固定,那么原问题转化为最小化条件熵

$$H(Y|G = G_S, X = X_S^F) = -\mathbf{E}_{Y|G_S, X_S^F}[\log P(Y|G = G_S, X = X_S^F)].$$

2.6 求解

2.6.1 不筛选节点特征

即 $X_S^F=X_S=X_S(G_S)$ 时,记 G_S 服从随机图分布 \mathcal{G} ,那么优化目标可表示为

$$\min_{\mathcal{G}} \mathbf{E}_{G_S \sim \mathcal{G}}[H(Y|G = G_S, X = X_S)]$$

在凸性假设下由Jensen's Inequality有上界:

$$\min_{\mathcal{G}} H(Y|G = \mathbf{E}_{G_S \sim \mathcal{G}}[G_S], X = X_S).$$

不过NN模型不满足凸性,这里作者表示实验表明加上*正则项*(参考2.6.3)后,由目标函数得到的局部极小值也很好用。

这里直接用exact inference求分布 $\mathcal G$ 使目标函数最小的计算复杂度高,因 G_c 有指数量级的子图 G_S 。假设隐变量 e_{ij} 相互独立,采用mean-field variational family近似分布 $\mathcal G$ 有

$$P_{\mathcal{G}}(G_S) = \prod_{(j,k) \in G_c} A_S[j,k] \ \ s.\,t. \ \ A_S \in [0,1]^{n imes n}, \ \ orall j,k \ A_S[j,k] \leq A_c[j,k].$$

这里 A_S 是fractional adjacency matrix, $P(e_{jk} \in G_S) = A_S[j,k]$ 。因此在近似分布 P_g 下,有 $\mathbf{E}_{G_S \sim \mathcal{G}}[G_S] \approx A_c \odot \sigma(M)$, $M \in \mathbf{R}^{n \times n}$ 就是我们需要学习的参数矩阵(mask)。通过 sigmoid函数映射到[0,1]上的概率。

在一些应用中,我们往往只关心为什么给节点打上一类标记(如只关心"坏人"的预测)。此时可以把优化目标改为交叉熵,用梯度下降优化:

$$\min_{M} - \sum_{c=1}^{C} \mathbb{I}[y=c] \log P_{\Phi}(Y=y|G=A_c \odot \sigma(M), X=X_c).$$

最后输出解释子图 G_S 可通过对M设定阈值后移除低于阈值的边实现。

2.6.2 筛选节点特征

 $F \in \{0,1\}^d$ 表示节点特征集合上的掩码,即

$$X_S^F = \{x_j^F | v_j \in G_S\}, \quad x_j^F = [x_{j,t_1}, \dots, x_{j,t_k}] \text{ for } F_{t_i} = 1.$$

此时最大化互信息目标函数表示为:

$$MI(Y, (G_S, F)) = H(Y) - H(Y|G = G_S, X = X_S^F).$$

同上节,记 $X_S^F=X_S\odot F$,用reparametrization tricks有 $X=Z+(X_S-Z)\odot F$,Z为基于经验分布的采样,使梯度可以传到参数矩阵F。

2.6.3 正则项

实际应用中为了使梯度下降收敛到较好的局部最优解,可对参数矩阵 $\sigma(M)$ 和F取element-wise entropy加入loss使参数 $\sigma(M)$ 和F稀疏化,即 $L_{entropy}=\frac{1}{n^2}\sum_{j,k}H(\sigma(M)_{j,k})$ 。

```
# entropy
mask_ent = -mask * torch.log(mask) - (1 - mask) * torch.log(1 - mask)
mask_ent_loss = self.coeffs["ent"] * torch.mean(mask_ent)
```

2.6.4 multi-instance explanations through graph prototypes

3. 拓展

3.1 weighted graph

```
Algorithm 1 Optimize mask for weighted graph
```

Input: 1. $G_c(u)$, computation graph of node u; 2. Pretrained GNN model Φ ; 3. y_u , node u's real label; 4. \mathcal{M} , learn-able mask; 5. K, number of optimization iterations; 6. L, number of layers of GNN.

```
1: \mathcal{M} \leftarrow randomize parameters \triangleright initialize, \mathcal{M} \in [0,1]^Q
 2: \mathbf{h}_v^{(0)} \leftarrow \mathbf{x}_v, for v \in G_c(u)
 3: for k = 1 to K do
4: \mathcal{M}_{vw} \leftarrow \frac{exp(\mathcal{M}_{vw}e_{vw})}{\sum_{v} exp(\mathcal{M}_{vw}e_{vw})} > renormalize mask
            5:
 6:
                   M_u^{(l)} \leftarrow \sum_{v}^{1} g(\mathcal{M}_{vu} \mathbf{m}_{vu}^{(l)}, \mathbf{h}_u^{(l-1)})  > aggregate
 7:
                   \mathbf{h}_u^{(l)} \leftarrow \sigma(W_0 \mathbf{h}_u^{(l-1)} + M_u^{(l)})

    □ update

 8:
             end for
 9:
             \hat{\mathbf{y}}_u \leftarrow softmax(\mathbf{h}_u^{(L)}) > predict on masked graph
10:
             loss \leftarrow crossentropy(\mathbf{y}_u, \hat{\mathbf{y}}_u) + regularizations
11:
             \mathcal{M} \leftarrow optimizer(loss, \mathcal{M})

    □ update mask

12:
13: end for
       Return: \mathcal{M}
```

4. 实验

见论文

5. 代码分析

6. 总结

7. 参考文献

- Variational Inference: A Review for Statisticians David M. Blei, Alp Kucukelbir, Jon D. McAuliffe
- 2. GNNExplainer: Generating Explanations for Graph Neural Networks Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, Jure Leskovec
- Semi-Supervised Classification with Graph Convolutional Networks Thomas N. Kipf, Max Welling
- 4. Inductive Representation Learning on Large Graphs William L. Hamilton, Rex Ying, Jure Leskovec
- 5. Graph Embedding Techniques, Applications, and Performance: A Survey Palash Goyal, Emilio Ferrara
- 6. https://github.com/RexYing/gnn-model-explainer
- 7. Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling
- 8. Visualizing Deep Neural Network Decisions: Prediction Difference Analysis Luisa M Zintgraf, Taco S Cohen, Tameem Adel, Max Welling
- 9. Classifying and Understanding Financial Data Using Graph Neural Network Xiaoxiao Li1* Joao Saude 2 Prashant Reddy 2 Manuela Veloso2
- 10. Hierarchical Graph Representation Learning with Differentiable Pooling