Module de sécurité

CAMC-G-S1

FESTO

Description

Fonction de sécurité STO selon EN 61800-5-2

pour contrôleur de moteur CMMP-AS-...-M3

8042937 1412b

Traduction de la notice originale GDCP-CAMC-G-S1-FR

Identification des dangers et remarques utiles pour les éviter :

Danger

Danger imminent pouvant entraîner la mort ou des blessures graves.

Avertissement

Dangers pouvant entraîner la mort ou des blessures graves.

Attention

Dangers pouvant entraîner des blessures légères ou de graves dégâts matériels.

Autres symboles:

Nota

Dégâts matériels ou dysfonctionnement.

Recommandation, conseil, renvoi à d'autres documents.

Accessoires nécessaires ou utiles.

Informations pour une utilisation écologique.

Identifications de texte:

- Activités qui peuvent être effectuées dans n'importe quel ordre.
- 1. Activités qui doivent être effectuées dans l'ordre indiqué.
- Énumérations générales.
- → Résultat d'une manutention/Renvois à des informations complémentaires.

Table des matières - CAMC-G-S1

1	Sécurit	é et conditions pour l'utilisation du produit	8				
1.1	Sécurit	é	8				
	1.1.1	Consignes de sécurité générales	8				
	1.1.2	Utilisation conforme à l'usage prévu	8				
	1.1.3	Mauvaise utilisation prévisible	9				
	1.1.4	Niveau de sécurité pouvant être atteint,					
		Fonction de sécurité selon EN ISO 13849-1 / EN 61800-5-2	9				
1.2	Conditions de mise en œuvre du produit						
	1.2.1	Conditions techniques	10				
	1.2.2	Qualification du personnel spécialisé (exigences vis-à-vis du personnel)	10				
	1.2.3	Couverture du diagnostic (DC)	10				
	1.2.4	Domaine d'application et homologations	11				
2	Descrip	otion de produit Module de sécurité CAMC-G-S1	12				
2.1	Présent	Présentation des produits					
	2.1.1	Utilisation	12				
	2.1.2	Appareils pris en charge	12				
	2.1.3	Éléments de commande et raccordements	13				
	2.1.4	Fourniture	13				
2.2	Fonctionnement et application						
	2.2.1	Description de la fonction de sécurité STO	14				
	2.2.2	Aperçu de l'interface [X40]	15				
	2.2.3	Entrées de commande STO-A, 0 V-A / STO-B, 0 V-B [X40]	16				
	2.2.4	Contact d'accusé de réception C1, C2 [X40]	17				
	2.2.5	Alimentation auxiliaire 24 V, 0 V [X40]	17				
	2.2.6	Indication d'état	18				
	2.2.7	Interrupteur DIP	18				
2.3	Fonctio	nnalités du contrôleur moteur CMMP-ASM3	18				
2.4	Fonctio	n de transfert	20				
	2.4.1	Fonction de transfert de base STO	20				
	2.4.2	Fonction de transfert pour activation STO en fonctionnement avec redémarrage	21				
	2.4.3	Fonction de transfert pour activation SS1 en fonctionnement avec redémarrage	22				
3	Montag	ge et installation	24				
3.1	Montag	ge / Démontage	24				
3.2	Installa	tion électrique	25				
	3.2.1	Consignes de sécurité	25				
	3.2.2	Raccordement [X40]	26				
	3.2.3	Câblage minimal pour la première mise en service [X40]	26				

CAMC-G-S1

3.3	•	es de circuits	21		
	3.3.1	Arrêt du couple sécurisé (STO, "Safe Torque Off")	27		
	3.3.2	Temporisation et arrêt du couple sécurisé (SS1 "Safe Stop 1")	29		
4	Mise en service				
4.1	Avant la	mise en marche	3		
4.2	Réglage	des interrupteurs DIP	3		
4.3	Paramé	trage avec l'outil FCT	32		
	4.3.1	Paramétrage de la configuration	32		
	4.3.2	Importer le module et affichage d'état du module	32		
	4.3.3	Affichage de la mémoire de diagnostic permanente du contrôleur de moteur	34		
4.4	Test de	fonctionnement, validation	36		
5	Condition	ons d'utilisation	38		
5.1	Obligati	ions de l'exploitant	38		
5.2	Mainter	nance et entretien	38		
5.3	Fonction	ns de protection	38		
	5.3.1	Surveillance de la tension	38		
	5.3.2	Protection contre les surtensions et l'inversion de polarité	38		
5.4	Diagnos	stic et réparation	39		
	5.4.1	Indication de l'état	39		
	5.4.2	Messages d'erreurs	39		
6	Transfo	rmation et remplacement de module	42		
6.1	Rempla	cement du module de sécurité	42		
	6.1.1	Réparation	42		
	6.1.2	Démontage et montage	42		
6.2	Mise ho	rs service et élimination	42		
6.3	Rempla	cement de la gamme CMMP-AS courante par la gamme CMMP-ASM3	42		
A	Annexe technique		44		
A.1	Caracté	ristiques techniques	44		
	A.1.1	Technique de sécurité	44		
	A.1.2	Généralités	4.		
	A.1.3	Conditions de fonctionnement et d'environnement	4		
	A.1.4	Caractéristiques électriques	46		
В	Glossai	re	49		

Remarques relatives à la présente documentation

Cette documentation sert à travailler en toute sécurité avec la fonction de sécurité STO ("Safe Torque Off") conformément à la norme EN 61800-5-2 grâce à l'utilisation du module de sécurité CAMC-G-S1 pour le contrôleur moteur CMMP-AS-...-M3.

 Respecter également impérativement les consignes de sécurité générales relatives au CMMP-AS-...-M3.

Les consignes de sécurité générales relatives au CMMP-AS-...-M3 figurent dans la documentation Matériel. GDCP-CMMP-M3-HW-... → Tab. 5.

Tenir compte des informations relatives à la sécurité et aux conditions d'utilisation du produit au paragraphe 1.2.

Identification du produit

Cette documentation se rapporte aux versions suivantes :

- module de sécurité CAMC-G-S1, à partir de la révision 03,
- contrôleur de moteur CMMP-AS-...-M3, firmware à partir de la version 4.0.1501.1.1,
- FCT-PlugIn CMMP-AS à partir de la version 2.3.x.

Plaque signalétique (exemple)	Signification	
	Désignation de type	CAMC-G-S1
CAMC-G-S1 1501330 XX #nnnnn	Numéro de pièce	1501330
Rév. XX	Date de production	XX
	Numéro de série	#nnnnn
	État de révision	Rév. XX

Tab. 1 Plaque signalétique CAMC-G-S1

Service après-vente

Pour toute question d'ordre technique, s'adresser à l'interlocuteur Festo en région.

Normes/directives indiquées

Version	
EN 61800-5-1:2007-09	EN ISO 12100-1:2010-11
EN 61800-5-2:2007-10	EN ISO 13849-1:2008-06/AC:2009-03
EN 60204-1:2006-06/A1:2009-02	CEI 61131-2:2007-09
EN 62061:2005-04/AC:2010-02/A1:2013-02	CEI 61508-1//-7:2010-04

Tab. 2 Normes/directives indiquées dans le document

Période de fabrication

Sur la plaque signalétique, les 2 premiers caractères du numéro de série indiquent la période de fabrication sous forme cryptée (Tab. 1) La lettre indique l'année de fabrication et le caractère placé juste après (chiffre ou lettre) indique le mois de fabrication.

Année de fabrication					
X = 2009	A = 2010	B = 2011	C = 2012	D = 2013	E = 2014
F = 2015	H = 2016	J = 2017	K = 2018	L = 2019	M = 2020

Tab. 3 Année de fabrication (cycle de 20 ans)

Mois de fabrication				
1	Janvier		2	Février
3	Mars		4	Avril
5	Mai		6	Juin
7	Juillet		8	Août
9	Septembre		0	Octobre
n	Novembre		D	Décembre

Tab. 4 Mois de fabrication

Désignation de type

Fig. 1 Désignation de type

Documentations

Pour de plus amples informations sur le contrôleur de moteur, consulter les documentations suivantes :

Documentation utilisateur relative	au contrôleur de moteur CMMP-ASM3		
Nom, type	Table des matières Montage et installation du contrôleur de moteur CMMP-ASM3 pour toutes les variantes/classes de puissance (monophasées ou triphasées), affectations des connecteurs, messages d'erreur et maintenance.		
Description matérielle, GDCP-CMMP-M3-HW			
Description des fonctions, GDCP-CMMP-M3-FW	Description des fonctions (Firmware) CMMP-AS -M3 , remarques relatives à la mise en service.		
Description de FHPP, GDCP-CMMP-M3/-M0-C-HP	Commande et paramétrage du contrôleur de moteur par le profil FHPP Festo. - Contrôleur de moteur CMMP-ASM3 avec les bus de terrain suivants : CANopen, PROFINET, PROFIBUS, EtherNet/IP, DeviceNet, EtherCAT. - Contrôleur de moteur CMMP-ASM0 avec bus de terrain CANopen.		
Description CiA 402 (DS 402), GDCP-CMMP-M3/-M0-C-CO	Commande et paramétrage du contrôleur de moteur par le profil d'appareil CiA 402 (DS 402) Contrôleur de moteur CMMP-ASM3 avec les bus de terrain suivants : CANopen et EtherCAT. Contrôleur de moteur CMMP-ASM0 avec bus de terrain CANopen.		
Description de l'éditeur CAM, P.BE-CMMP-CAM-SW	Fonctionnalité "Disque à cames" (CAM) du contrôleur de moteur CMMP-ASM3/-M0.		
Description du module de sécurité, GDCP-CAMC-G-S1	Technique de sécurité fonctionnelle pour le contrôleur de moteur avec la fonction de sécurité STO.		
Description du module de sécurité, GDCP-CAMC-G-S3	Technique de sécurité fonctionnelle pour le contrôleur de moteur avec les fonctions de sécurité STO, SS1, SS2, SOS, SLS, SSR, SSM, SBC.		
Aide relative au PlugIn FCT CMMP-AS	Surface et fonctions du PlugIn CMMP-AS pour le Festo Configuration Tool → www.festo.com/sp.		

Tab. 5 Documentations relatives au contrôleur de moteur CMMP-AS-...-M3

1 Sécurité et conditions pour l'utilisation du produit

1.1 Sécurité

1.1.1 Consignes de sécurité générales

 Respecter également impérativement les consignes de sécurité générales relatives au CMMP-AS-...-M3.

Les consignes de sécurité générales relatives au CMMP-AS-...-M3 figurent dans la documentation Matériel GDCP-CMMP-M3-HW-.... → Tab. 5, page 7.

Nota

Perte de la fonction de sécurité.

Le non-respect des conditions ambiantes et de raccordement peut conduire à la perte de la fonction de sécurité.

 Tenir compte des conditions ambiantes et de raccordement, notamment des tolérances de tension d'entrée -> Caractéristiques techniques, annexe A.1.

Nota

Endommagement du module de sécurité ou du contrôleur de moteur dû à une manipulation incorrecte.

 Couper toutes les sources d'alimentation avant les travaux de montage ou d'installation. Remettre sous tension lorsque les travaux de montage et d'installation sont terminés.

- Ne jamais retirer le module du contrôleur de moteur sous tension ni l'enficher!
- Respecter les consignes concernant la manipulation des composants sensibles aux charges électrostatiques.

1.1.2 Utilisation conforme à l'usage prévu

Le module de sécurité CAMC-G-S1 sert d'extension au contrôleur de moteur CMMP-AS-...-M3 afin d'atteindre la fonction de sécurité :

 Couple désactivé de manière sûre – "Arrêt sécurisé" (STO) avec SIL3 selon EN 61800-5-2 / EN 62061 / CEI 61508 ou catégorie 4 / PL e selon EN ISO 13849-1.

Le contrôleur de moteur CMMP-AS-...-M3 avec module de sécurité CAMC-G-S1 est un produit doté de fonctions essentielles de sécurité, conçu pour être monté sur des machines ou des systèmes d'automatisation et à être utilisé comme suit :

- dans un état fonctionnel irréprochable,
- dans son état d'origine sans y apporter de modifications,
- dans les limites définies par les caractéristiques techniques du produit → Annexe A.1,
- dans le domaine industriel.

1 Sécurité et conditions pour l'utilisation du produit

Le module de sécurité CAMC-G-S1 peut être exploité dans l'ensemble des contrôleurs de moteur CMMP-AS-...-M3, dotés d'un port Ext3 pour système de sécurité. Il ne peut être enfiché dans les ports Ext1 ou Ext2 destinés aux interfaces.

Nota

En cas d'endommagements dus à des interventions par des personnes non autorisées ou en cas d'utilisation non conforme, il y a annulation des droits à la garantie et de la responsabilité du fabricant.

1.1.3 Mauvaise utilisation prévisible

Sont considérées applications non conformes les mauvaises utilisations prévisibles suivantes :

- utilisation dans un appareil autre que le CMMP-AS-...-M3,
- utilisation à l'extérieur,
- utilisation dans un site non industriel (zone résidentielle),
- utilisation dans des systèmes dont la mise hors circuit peut entraîner des mouvements ou états dangereux.

Nota

- La fonction STO n'est pas une fonction de sécurité suffisante dans le cas d'actionneurs soumis à un couple permanent (par ex. charges suspendues).
- Le pontage de dispositifs de sécurité n'est pas autorisé.
- Les réparations du module ne sont pas autorisées!

La fonction STO (Safe Torque Off) ne protège pas contre une électrocution, mais uniquement contre des mouvements dangereux !

→ Documentation Matériel, GDCP-CMMP-M3-HW-...

1.1.4 Niveau de sécurité pouvant être atteint, Fonction de sécurité selon EN ISO 13849-1 / EN 61800-5-2

Le module de sécurité répond aux exigences

- catégorie 4 / PL e selon EN ISO 13849-1,
- SIL CL 3 selon EN 62061,

et peut être utilisé dans des applications jusqu'à la catégorie 4 / PL e selon EN ISO 13849-1 et SIL 3 selon EN 61800-5-2 / EN 62061 / CEI 61508.

Le niveau de sécurité pouvant être atteint dépend des autres composants utilisés pour l'application de la fonction de sécurité.

1.2 Conditions de mise en œuvre du produit

- Mettre les présentes informations à disposition du constructeur, du monteur et du personnel en charge de la mise en service des machines ou installations auxquelles est destiné ce produit.
- Veiller au respect permanent des instructions énoncées dans cette documentation. En outre, tenir compte des informations relatives aux autres composants et modules (par ex. contrôleur de moteur, conduites, etc.)
- Pour la destination, tenir compte des réglementations légales en vigueur ainsi que :
 - les prescriptions et les normes
 - les réglementations des organismes de contrôle et des assurances
 - les dispositions nationales en vigueur.
- En cas de demande de la fonction de sécurité, il convient de prévoir une protection contre la remise en marche automatique qui respecte la catégorie exigée, sous la forme d'un interrupteur de sécurité externe, par exemple.

1.2.1 Conditions techniques

Consignes générales à respecter pour garantir un fonctionnement correct et en toute sécurité de ce produit :

- Respecter les conditions ambiantes et de raccordement spécifiées dans les caractéristiques techniques du module de sécurité (Annexe A.1), du contrôleur de moteur ainsi que de tous les composants connectés.
 - Seul le respect des valeurs limites ou des limites de charge permet une exploitation du produit conforme aux directives de sécurité en vigueur.
- Observer les remarques et avertissements contenus dans la présente documentation.

1.2.2 Qualification du personnel spécialisé (exigences vis-à-vis du personnel)

Seul un électricien qualifié est habilité à mettre l'appareil en marche, étant entendu qu'il est familiarisé avec

- l'installation et l'exploitation de systèmes de commande électrique.
- les prescriptions en vigueur relatives au fonctionnement des installations de sécurité,
- les prescriptions en vigueur en matière de prévention des accidents, la sécurité au travail et
- les informations concernant le produit.

1.2.3 Couverture du diagnostic (DC)

La couverture du diagnostic dépend de l'intégration du contrôleur de moteur avec module de sécurité dans la chaîne de commande ainsi que des mesures appliquées pour le diagnostic → Paragraphe 5.4. Lorsque le diagnostic fait apparaître un dysfonctionnement potentiellement dangereux, des mesures appropriées visant le maintien du niveau de sécurité doivent être prévues.

Nota

Vérifier si votre application requiert une détection des courts-circuits transversaux du circuit d'entrée et le câblage de raccordement.

Le cas échéant, utiliser un interrupteur de sécurité avec détection des courts-circuits transversaux pour la commande du module de sécurité.

1 Sécurité et conditions pour l'utilisation du produit

1.2.4 Domaine d'application et homologations

Le contrôleur de moteur avec module de sécurité intégré est un composant de sécurité conforme à la directive machine et possède le marquage CE.

Les normes et les valeurs d'essai que respecte le produit sont indiquées au paragraphe "Caractéristiques techniques" → Annexe A.1. Les directives CE relatives à ces produits figurent dans la déclaration de conformité.

Les certificats et la déclaration de conformité relatifs à ce point figurent sur le site www.festo.com.

2 Description de produit Module de sécurité CAMC-G-S1

2.1 Présentation des produits

2.1.1 Utilisation

Avec une automatisation croissante, la protection des personnes des déplacements dangereux prend une place toujours plus importante. La sécurité fonctionnelle décrit les mesures nécessaires pour les dispositifs électriques ou électroniques afin de réduire ou d'éliminer les dangers occasionnés par des dysfonctionnements. En fonctionnement normal, les dispositifs de protection empêchent tout accès humain aux points dangereux. Dans des modes de fonctionnement définis, par ex. lors du réglage, des personnes doivent également se tenir dans les zones dangereuses. Dans ces situations, l'opérateur doit être protégé par des mesures- internes d'actionnement et de commande.

La technique de sécurité fonctionnelle intégrée offre les conditions côté commande et côté actionnement pour la réalisation optimale des fonctions de protection. Les dépenses de planification et d'installation baissent. Grâce à l'utilisation de la technique de sécurité fonctionnelle intégrée, la fonctionnalité de la machine et la disponibilité augmentent par rapport à l'utilisation d'une technique de sécurité classique.

Type (Type)	Description	
CAMC-G-S1	Module de sécurité avec fonction STO et micro-interrupteurs DIL.	
CAMC-G-S3	Module de sécurité avec les fonctions STO, SS1, SS2, SOS, SBC, SLS, SSR, SSM et	
	micro-interrupteurs DIL.	
CAMC-DS-M1	Module de micro-interrupteurs avec micro-interrupteurs DIL, aucune fonction de	
	sécurité.	

Tab. 2.1 Aperçu des modules de sécurité et de micro-interrupteurs pour le CMMP-AS-...-M3

2.1.2 Appareils pris en charge

Le module de sécurité CAMC-G-S1 s'utilise exclusivement dans les contrôleurs de moteur conformément au paragraphe 1.1.2. Les contrôleurs de moteur CMMP-AS-...-M3 sont livrés sans module dans l'emplacement d'enfichage Ext3.

Grâce à l'emploi du module de sécurité CAMC-G-S1, l'extension de la sécurité fonctionnelle intégrée aux fonctions de sécurité décrites dans cette documentation est possible, pour des arrêts de sécurité.

Si aucune fonction de sécurité n'est nécessaire, le module de micro-interrupteurs CAMC-DS-M1 doit être commandé et monté dans l'emplacement d'enfichage Ext3.

2.1.3 Éléments de commande et raccordements

Le module de sécurité CAMC-G-S1 dispose des éléments de commande, raccordements et éléments d'affichage suivants :

- 1 Contrôleur de moteur CMMP-AS-...-M3 avec emplacement d'enfichage Ext3
- 2 Interface numérique I/O [X40] pour commande de la fonction STO
- 3 Broche 1 de l'interface [X40]

- 4 LED d'affichage d'état (statut de la sécurité fonctionnelle)
- Micro-interrupteur DIL (paramètres de fonctionnement de la communication de bus de terrain dans le contrôleur de moteur)

Fig. 2.1 Élément de commande et raccordements CAMC-G-S1

2.1.4 Fourniture

Module de sécurité CAMC-G-S1	
Module de sécurité avec matériel de fixation	Module Safe Torque Off
(2 vis avec rondelle élastique)	
Connecteur pour câbles de commande	PHOENIX Mini-Combicon MC 1,5/8-STF-3,81 BK
Notice simplifiée avec instructions de montage	allemand / anglais / espagnol / français /
	italien / chinois

Tab. 2.2 Fourniture

2.2 Fonctionnement et application

Le module de sécurité CAMC-G-S1 possède les caractéristiques de performance suivantes :

- Accès à la fonction "Arrêt sécurisé" ("Safe Torque Off", STO),
- Contact d'accusé de réception libre de potentiel pour le statut de fonctionnement,
- Exécution comme module enfichable de l'extérieur, ainsi un équipement ultérieur est possible,
- Exclusivement conçu pour contrôleur de moteur de la série CMMP-AS-...-M3.

Avec un interrupteur de sécurité externe adapté et un circuit approprié pour le contrôleur de moteur CMMP-AS-...-M3, il est possible d'exécuter la fonction "Maintien sûr" (SS1).

2.2.1 Description de la fonction de sécurité STO

Utiliser la fonction "Couple désactivé de manière sûre" ("Safe Torque Off", STO) si votre application exige de couper l'alimentation en énergie vers le moteur de façon sécurisée.

La fonction "Couple désactivé de manière sûre" coupe l'alimentation pilote pour les semi-conducteurs de puissance et empêche ainsi que l'étage de sortie fournisse la tension nécessaire pour le moteur

- 1 Circuit de sécurité (interrupteur, relais, interrupteur de sécurité)
- 2 Module de sécurité CAMC-G-S1
- Étage de sortie dans le CMMP-AS-...-M3 (une seule phase présentée)
- 4 Alimentation du pilote
- 5 Raccordement moteur
- 6 LED (verte/jaune), affichage du statut
- 7 Contact d'accusé de réception

Fig. 2.2 "Couple désactivé de manière sûre" - Principe de fonctionnement pour le CMMP-AS-...-M3

Si la fonction de sécurité STO "Arrêt sécurisé" est activée, l'approvisionnement en énergie de l'actionneur est coupé de manière sûre. L'actionneur ne peut plus générer de couple et donc de mouvements dangereux. En cas de charges en suspension ou d'autres forces externes, prévoir des mesures supplémentaires évitant une chute à coup sûr (p. ex. freins de maintien mécaniques). Dans l'état STO "Safe Torque Off", aucune surveillance de la position d'arrêt n'est effectuée.

La mise à l'arrêt de la machine doit s'effectuer conformément aux normes de sécurité et être assurée via un interrupteur de sécurité par exemple. Ceci vaut tout particulièrement pour les axes verticaux sans mécanisme autobloquant, ni unité de blocage, ni compensation de poids.

Nota

Il existe un danger de secousses de l'actionneur en cas d'erreurs multiples dans le CMMP-AS-...-M3.

Si pendant un état STO, l'étage de sortie du contrôleur de moteur est défaillant (court-circuit simultané de 2 semi-conducteurs de puissance dans différentes phases), un mouvement d'encliquetage du rotor peut se produire. L'angle de rotation / la course correspond à un écartement polaire. Exemples :

- Axe de rotation, machine synchrone, 8 pôles → Mouvement < 45° sur arbre de moteur.
- Moteur linéaire, écartement polaire 20 mm → Mouvement < 20 mm sur la pièce en mouvement.

2.2.2 Aperçu de l'interface [X40]

Le module de sécurité dispose sur sa face avant d'un raccordement à 8 pôles [X40] pour les entrées de commande, le contact d'accusé de réception et une alimentation auxiliaire 24 V pour les capteurs externes → Paragraphe 3.2.

La fonction de sécurité STO est exclusivement demandée via les deux entrées de commande numériques STO-A et STO-B. Un circuit conforme à la sécurité d'autres interfaces du contrôleur de moteur CMMP-AS...-M3 n'est ni nécessaire ni prévu.

Une détection des courts-circuits transversaux du circuit d'entrée n'est pas effectuée par le module de sécurité.

L'état du contrôleur de moteur au niveau d'un interrupteur de sécurité externe est signalé via un contact d'accusé de réception (contact à fermeture) libre de potentiel. Ainsi, il est possible d'exécuter une interface compatible avec une version postérieure dans une configuration mixte composée de CMMP-AS (séries précédentes avec la fonctionnalité "Arrêt sécurisé" via le raccordement [X3]) et du contrôleur de moteur CMMP-AS-...-M3 → Paragraphe 6.3.

L'interface [X40] permet le raccordement direct de capteurs actifs et passifs, car une tension d'alimentation 24 V (tension auxiliaire) est disponible avec le potentiel de référence correspondant.

Racco	ords	Description	
STO-A	(Broche 1)	Entrée de commande A pour la fonction STO avec le potentiel de référence	
0V-A	(Broche 2)	correspondant. 1)	
		 Demande "Safe Torque Off" (STO) si Low (signal 0), avec STO_B. 	
STO-B	3 (Broche 3)	Entrée de commande B pour la fonction STO avec le potentiel de référence	
0V-B	(Broche 4)	correspondant. 1)	
		 Demande "Safe Torque Off" (STO) si Low (signal 0), avec STO_A. 	
C1	(Broche 5)	Contact d'accusé de réception pour le statut "Safe Torque Off" (STO), par ex. à	
C2	(Broche 6)	une commande externe.	
		- Contact d'accusé de réception ouvert : "Safe Torque Off" (STO) inactif	
		 Contact d'accusé de réception fermé : "Safe Torque Off" (STO) actif 	
24V	(Broche 7)	Alimentation auxiliaire, par ex. pour les périphériques sécurisés	
OV	(Broche 8)	(alimentation logique 24 V CC du contrôleur de moteur).	

Entrées de commande 24 V, high-actif, analogue à EN 61131-2, niveau de signal différent → Annexe A, Tab. A.8
 Tab. 2.3 Fonction des raccordements du module [X40]

Les raccordements sont divisés en groupes et sont séparés galvaniquement de l'alimentation 24 V du contrôleur de moteur → Annexe A.1.4. Tab. A.11.

2.2.3 Entrées de commande STO-A, 0 V-A / STO-B, 0 V-B [X40]

La fonction de sécurité STO (Safe Torque Off) est demandée sur deux canaux, avec les deux entrées de commande STO-A et STO-B. Elles permettent le raccordement direct de sorties à semi-conducteurs sécurisées (interrupteurs de sécurité électroniques, capteurs de sécurité actifs, par ex. rideau lumineux avec signaux OSSD) et de contacteurs (interrupteurs de sécurité avec sorties relais, capteurs de sécurité passifs, par ex. détecteurs de position à commande forcée) → par ex. paragraphe 3.2.2, Fig. 3.2. Pour demander la fonction de sécurité STO (Safe Torque Off), la tension de commande 24 V est coupée au niveau des deux entrées de pilotage STO-A et STO-B (0 V).

Si les deux entrées de pilotage sont coupées simultanément ou dans un délai de discordance déterminé, la fonction de sécurité STO est activée.

Pour les entrées de commande STO-A et STO-B, une surveillance de sous-tension est intégrée afin d'exclure toute plage de tension invalide pour les appareils électroniques raccordés en aval, ainsi qu'une surveillance de surtension protégeant des tensions excessives.

Tab. A.8 en annexe A.1.4 décrit les caractéristiques techniques pour les entrées de commande dans la plage de fonctionnement spécifiée des tensions logiques.

Des plages de tolérance sont définies pour la plage de tension d'entrée des entrées de commande STO-A et STO-B. La quantité d'énergie stockée dans les composants du module de sécurité (par ex. condensateurs) dépend du niveau de la tension d'entrée. En cas de commutations, ces quantités d'énergie doivent être chargées ou déchargées. En conséquence, on obtient des valeurs dépendant de la tension d'entrée pour le temps de coupure pour le passage en état sécurisé (STO) et le temps de tolérance vis-à-vis des signaux OSSD (marge).

Les exigences en termes de fonction de transfert sont indiquées dans les caractéristiques techniques en annexe A.1.4. La fonction de transfert est elle-même décrite au paragraphe 2.4.

2

Délai de discordance

La transition entre l'état sécurisé et l'état non sécurisé est introduite par des modifications de niveau des entrées de commande STO-A et STO-B du module de sécurité CAMC-G-S1. Conformément aux spécifications de la fonction de sécurité, les deux niveaux doivent être identiques, sinon un message d'erreur est émis. La machine d'état dans le contrôleur de moteur surveille en interne les tensions d'alimentation des pilotes suite à la commande des entrées de commande. En principe, ces modifications de niveau ne surviennent, par exemple, en raison des tolérances des pièces ou de rebonds des sorties de commandes de sécurité, pas exactement au même moment. Le firmware tolère cela tant que la seconde entrée suit dans un délai défini, que l'on appelle temps de discordance. Si ce temps est dépassé, le contrôleur de moteur génère un message d'erreur.

Un temps de discordance de 100 ms est prédéfini.

Recommandation: Commuter toujours STO-A et STO-B simultanément.

Impulsions de test

Épisodiquement, des impulsions de test des commandes de sécurité sont tolérées, sans toutefois être interprétées comme un appel de la fonction STO.

La tolérance vis-à-vis des impulsions de test des capteurs avec signaux OSSD est établie pour la plage de fonctionnement conformément à l'annexe A.1.4, Tab. A.9. La longueur d'impulsion admissible dépend du niveau de la tension de commande au niveau des entrées STO-A et STO-B.

Exemple: Tension d'entrée pour STO-A et STO-B = 24 V

→ Des signaux OSSD ayant une longueur d'impulsions de test de 3,5 ms sont tolérés.

2.2.4 Contact d'accusé de réception C1, C2 [X40]

Si **la fonction STO est inactive**, le contact d'accusé de réception est ouvert. Cela se produit par exemple si une seule des deux tensions de commande STO-A ou STO-B est établie, si la tension d'alimentation logique 24 V est coupée ou en cas de panne de courant.

Si la fonction STO est activée, le contact de relais est fermé.

Le contact d'accusé de réception est monocanal et s'utilise à des fins de diagnostic, néanmoins non pas dans le circuit de sécurité.

Tab. A.10 en annexe A.1.4 décrit les caractéristiques électriques, Tab. A.9 la fonction de transfert du contact d'accusé de réception.

En cas d'activation et de désactivation de l'alimentation 24 V de l'appareil de base, l'état de commutation du relais peut varier brièvement (env. 100 ms) de l'état des entrées de commande STO-A et STO-B en raison du temps de démarrage d'une rapidité différente des tensions d'alimentation internes.

2.2.5 Alimentation auxiliaire 24 V, 0 V [X40]

Le contrôleur de moteur CMMP-AS...-M3 avec le module de sécurité CAMC-G-S1 met une alimentation auxiliaire de 24 V à disposition de [X40]. Elle peut être utilisée en cas d'utilisation du contact d'accusé de réception C1/C2 ou pour alimenter des capteurs externes actifs.

Tab. A.11 en annexe A.1.4 décrit les caractéristiques techniques de l'alimentation auxiliaire.

2.2.6 Indication d'état

Le module de sécurité est doté d'une LED sur la face avant pour indiquer l'état → Paragraphe 5.4.1. La LED d'état indique le statut de fonctionnement du module (vert = STO inactive, jaune = STO active). L'affichage correspond à l'état du contact d'accusé de réception C1/C2.

2.2.7 Interrupteur DIP

Des micro-interrupteurs DIL se trouvent sur la face avant du module de sécurité. Ils ne sont dotés d'aucune fonction sécurisée. La signification des différents interrupteurs dépend de l'interface utilisée pour la communication du bus de terrain.

Les micro-interrupteurs DIL permettent d'activer/désactiver la communication du bus de terrain et, par exemple, de paramétrer une adresse d'abonné.

2.3 Fonctionnalités du contrôleur moteur CMMP-AS-...-M3

Les fonctions suivantes du contrôleur moteur CMMP-AS-...-M3 ne sont pas certifiées selon la norme EN 61800-5-2. Ce sont des compléments fonctionnels qui offrent des possibilités de diagnostic supplémentaires.

Les messages d'erreur générés par le module de sécurité, comme par ex. dépassement du temps de discordance, sont enregistrés et évalués par la machine d'état du contrôleur de moteur qui n'a aucune incidence sur la sécurité. Si les conditions d'un statut d'erreur sont détectées, un message d'erreur est généré. Dans ce cas, il ne peut pas être garanti que l'étage de sortie de puissance sera coupé de façon sûre en toutes circonstances.

Le module de sécurité CAMC-G-S1 est conçu exclusivement pour mettre à disposition l'alimentation pilote pour le contrôleur de moteur CMMP-AS-...-M3. Les niveaux de la tension d'entrée sont certes surveillés par plages, mais le module de sécurité ne dispose pas de mécanismes d'évaluation d'erreur propres, ni de la possibilité d'afficher les erreurs.

Nota

En cas d'acquittement de messages d'erreur, tous les défauts relatifs à la sécurité fonctionnelle pouvant être acquittés seront également toujours acquittés

→ Paragraphe 5.4.2.

Le contrôleur de moteur CMMP-AS-M3 surveille le statut des entrées de commande STO-A et STO-B. Ainsi, la demande de fonction de sécurité STO (Safe Torque Off) est détectée par le firmware du contrôleur de moteur et différentes fonctions non sécurisées sont exécutées par la suite :

- Détection de la coupure de l'alimentation pilote pour les semi-conducteurs de puissance grâce au module de sécurité,
- Coupure de la régulation d'actionnement de la commande des semi-conducteurs de puissance (PWM),
- La commande du frein de maintien est coupée (si configuré),
- La machine d'état côté contrôleur moteur avec évaluation de la commande (temps de discordance),
- Détection des statuts d'erreur associés à l'application,
- Diagnostic du matériel,
- Affichage de l'état et des erreurs sur un écran, sorties numériques, bus de terrain, etc.

2

Nota

La commande d'un frein est actionnée par le firmware non sécurisé du contrôleur de moteur.

Nota

Si l'étage de sortie est activé et que l'une des entrées de pilotage STO_A ou STO_B est désactivée, l'actionneur tourne alors en roue libre sans être freiné lorsque le frein de maintien n'est pas raccordé.

Cela peut endommager la machine. Il est donc recommandé de raccorder un frein de maintien au contrôleur de moteur.

Vérifier si les moteurs avec frein de maintien utilisés sont conçus pour freiner et immobiliser le moteur à partir du frein de maintien en cas de défaut.

La demande d'état sécurisé est possible en cas de commande active des semi-conducteurs de puissance (PWM). Le statut des deux tensions d'alimentation pilote est enregistré et évalué au cours d'un cycle de 10 ms. Si elles sont inégales sur une longue période, un message d'erreur est déclenché → Paragraphe 5.4.2. La fonction de sécurité exige que les deux signaux aient le même statut. Des signaux inégaux sont uniquement tolérés durant une période de transition appelée "Temps de discordance" → Paragraphe 2.2.3.

Cette machine d'état dans le contrôleur de moteur CMMP-AS-...-M3 a un statut propre, en parallèle du module de sécurité CAMC-G-S1. En raison de l'évaluation du temps de discordance, cette machine d'état atteint un "état sécurisé" seulement avec une nette temporisation, dans la mesure du possible. En conséquence, cet état peut également uniquement être signalé via les sorties numériques ou un bus de terrain avec une nette temporisation. L'étage de sortie de puissance lui-même est ensuite "coupé de manière sécurisée". Le cycle de travail de cette machine d'état est de 10 ms.

Ainsi, on obtient globalement une vitesse de réaction décalée conformément à Tab. 2.4 :

Fonction	Temps de réaction	Réaction
Temps de commutation	T_STO-A/B_OFF	→ Paragraphe A.1.4, Tab. A.8
de High à Low		
Temps de commutation	T_STO-A/B_ON	→ Paragraphe A.1.4, Tab. A.8
de Low à High		
Enregistrement de	t _{Réaction} ≤ 125 μs	La commande des semi-conducteurs de puissance
défaillance de		(PWM) est coupée.
l'alimentation pilote		
Activer le frein de	t _{Réaction} ≤ 10 ms	Commande du frein de maintien après
maintien		l'enregistrement de la panne de l'alimentation pilote
Évaluation du signal et	t _{Réaction} ≤ 10 ms	Transitions d'état dans la machine d'état interne, le
affichage de l'état		cas échéant déclenchement d'un message d'erreur
		et représentation de l'état sur l'écran

Tab. 2.4 Temps d'enregistrement et temps de réaction de la tension d'alimentation pilote

2.4 Fonction de transfert

Les entrées STO-A et STO-B sont absolument identiques sur le plan fonctionnel. C'est pourquoi l'ordre de commutation de STO-A/STO-B est interchangeable sur tous les schémas.

2.4.1 Fonction de transfert de base STO

Fig. 2.3 présente la fonction de transfert de base du module de sécurité. Les indications temporelles figurent dans le tableau Tab. 2.5.

Fig. 2.3 Fonction de transfert de base en cas d'activation et désactivation de la fonction de sécurité STO

Temps	Description	Valeur
T_STO-A/B_OFF	STO-A/B – Temps de commutation de High à Low	→ Paragraphe A.1.4,
		Tab. A.8
T_STO-A/B_ON	STO-A/B – Temps de commutation de Low à High	→ Paragraphe A.1.4,
		Tab. A.8
T_C1/C2_ON	C1/2 – Temps de commutation Fermeture	→ Paragraphe A.1.4,
		Tab. A.10
T_C1/C2_OFF	C1/2 – Temps de commutation Ouverture	→ Paragraphe A.1.4,
		Tab. A.10
T_DRIVE_V	Temporisation du CMMP-AS-M3	0 10 ms

Tab. 2.5 Indications de temps pour Fig. 2.3

2.4.2 Fonction de transfert pour activation STO en fonctionnement avec redémarrage

Fig. 2.4 indique la fonction de transfert à partir de la fermeture de la tension de commande au niveau de STO-A/B ainsi que le déroulement nécessaire pour redémarrer l'appareil. Les indications temporelles figurent dans Tab. 2.6. Remarque :

- La commande du frein de maintien est exécutée par le contrôleur de moteur, de façon non sécurisée.
- Le rebond du moteur est représenté, indépendamment de l'activation/désactivation du frein.
- La valeur de consigne est uniquement validée lorsque la temporisation du frein de maintien
 T BRAKE V est écoulée.

Fig. 2.4 Fonction de transfert en cas d'activation de la fonction de sécurité STO avec redémarrage

Temps	Description	Valeur
T_STO-A/B_OFF	STO-A/B – Temps de commutation de High à Low	→ Paragraphe A.1.4, Tab. A.8
T_STO-A/B_ON	STO-A/B – Temps de commutation de Low à High	→ Paragraphe A.1.4, Tab. A.8
T_DIN5_LOW	Temps durant lequel DIN5 doit être sur Low avant	0 ms
	que STO-A/B soit redémarrée.	
T_DIN5_SU	Temps durant lequel DIN5 doit rester sur Low	> 20 ms
	après le redémarrage de STO-A/B et le	
	changement de statut du module STO	
T_DRIVE_V	Temporisation du CMMP-AS-M3	0 10 ms
T_BRAKE_V_ON	Retard de coupure du frein de maintien	En fonction du frein 1)
T_BRAKE_V_OFF	Retard à l'enclenchement du frein de maintien	En fonction du frein ²⁾

¹⁾ Durée de temporisation physique jusqu'à ce que le frein soit fermé.

Tab. 2.6 Indications de temps pour Fig. 2.4

²⁾ Durée minimale : Durée de temporisation physique jusqu'à ce que le frein soit ouvert. Ce temps peut être paramétré par une valeur supérieure dans le régulateur.

2

2.4.3 Fonction de transfert pour activation SS1 en fonctionnement avec redémarrage

La fonction de transfert dans Fig. 2.5 se base sur l'exemple de circuit pour SS1 dans le paragraphe 3.3.2, à partir du signal de commande S1 pour K1. Les indications temporelles figurent dans Tab. 2.7.

Fig. 2.5 Fonction de transfert en cas d'activation de la fonction de sécurité SS1 (circuit externe) avec redémarrage

2 Description de produit Module de sécurité CAMC-G-S1

Temps	Description	Valeur
T_K1	Durée de temporisation entre la commutation de	→ Fiche de données
	S1 et la fermeture du contact non temporisé K1	techniques du
		commutateur de sécurité
T_K1_V	Durée de temporisation entre S1 et l'ouverture du	Réglable sur l'interrupteur
	contact K1 temporisé	de sécurité
T_STO-A/B_OFF	STO-A/B – Temps de commutation de High à Low	→ Paragraphe A.1.4,
		Tab. A.8
T_STO-A/B_ON	STO-A/B – Temps de commutation de Low à High	→ Paragraphe A.1.4,
		Tab. A.8
T_DRIVE_V	Temporisation du CMMP-AS-M3	0 10 ms
T_DIN5_SU	Temps durant lequel DIN5 doit rester sur Low	> 20 ms
	après le redémarrage de STO-A/B et le	
	changement de statut du module STO	
T_BRAKE_V_ON	Retard de coupure du frein de maintien	En fonction du frein 1)
T_BRAKE_V_OFF	Retard à l'enclenchement du frein de maintien	En fonction du frein ²⁾

¹⁾ Durée de temporisation physique jusqu'à ce que le frein soit fermé.

Tab. 2.7 Indications de temps pour Fig. 2.5

²⁾ Durée minimale : Durée de temporisation physique jusqu'à ce que le frein soit ouvert. Ce temps peut être paramétré par une valeur supérieure dans le régulateur.

3 Montage et installation

3.1 Montage / Démontage

Le module de sécurité CAMC-G-S1 est conçu exclusivement pour être intégré dans les contrôleurs de moteur CMMP-AS-...-M3. Il ne peut fonctionner hors d'un contrôleur de moteur.

Avertissement

Danger d'électrocution avec un module de sécurité non monté.

Le contact avec des éléments sous tension peut provoquer de graves blessures ou entraîner la mort.

Avant de manipuler des éléments sous tension lors de travaux de maintenance, d'entretien et de nettoyage ainsi que pendant des interruptions de fonctionnement prolongées :

- 1. Mettre l'équipement électrique hors tension à l'aide de l'interrupteur général et le protéger contre toute remise en marche.
- Après la mise hors tension, attendre l'écoulement du temps de décharge pendant au moins 5 minutes et vérifier l'absence de tension avant d'intervenir sur le contrôleur.

Nota

Endommagement du module de sécurité ou du contrôleur de moteur dû à une manipulation incorrecte

- Couper toutes les sources d'alimentation avant les travaux de montage ou d'installation. Remettre sous tension lorsque les travaux de montage et d'installation sont terminés.
- Ne jamais retirer le module du contrôleur de moteur sous tension ni l'enficher!

 Respecter les consignes de manipulation des composants sensibles aux charges électrostatiques. Ne pas toucher les composants et les pistes de la platine ni les broches de la barrette de raccordement du contrôleur de moteur. Ne saisir le module de sécurité que par la plaque frontale ou le bord de la platine.

Montage du module de sécurité

- 1. Glisser le module de sécurité dans les guidages.
- 2. Serrer les vis. Respecter le couple de serrage $0,4~\rm Nm \pm 20~\%$. Résultat : La plaque frontale a un contact électrique avec le boîtier.

Démontage du module de sécurité

- 1. Dévisser les vis.
- Dégager le module de sécurité en le soulevant légèrement au niveau du panneau frontal ou en le déplaçant de quelques millimètres au niveau du connecteur opposé et le retirer de l'emplacement d'enfichage.

Fig. 3.1 Montage / Démontage

3.2 Installation électrique

3.2.1 Consignes de sécurité

Lors de l'installation, observer les exigences de la norme EN 60204-1.

Avertissement

Danger d'électrocution dû à des sources de tension dépourvues de mesures de protection.

- Utiliser exclusivement pour l'alimentation logique électrique des circuits électriques TBTS (Très Basse Tension de Sécurité) selon EN 60204-1.
 Observer également les exigences générales s'appliquant aux circuits électriques TBTS selon la norme EN 60204-1.
- Utiliser exclusivement des sources de courant garantissant une isolation électrique sûre de la tension de service, conformément à la norme EN 60204-1.

L'utilisation des circuits électriques TBTS permet d'assurer l'isolation (protection contre les contacts directs et indirects) selon EN 60204-1 (Équipement électrique des machines, exigences générales). Le bloc d'alimentation 24 V utilisé dans le système doit répondre aux exigences de la norme EN 60204-1 relative aux alimentations en courant continu (comportement en cas de coupure de tension, etc.). Le câble est raccordé à un connecteur, ce qui facilite le remplacement du module de sécurité.

S'assurer que des ponts ou autres ne peuvent être parallèlement installés au câblage de sécurité, en utilisant notamment une section de conducteur maximale de 1,5 mm² ou des cosses appropriées munies de gaine d'isolation.

Pour le bouclage de câble entre des appareils rapprochés, utiliser des cosses doubles.

Protection contre les décharges électrostatiques

Sur les connecteurs enfichables non affectés, il existe un risque d'endommagement par décharge électrostatique sur l'appareil ou d'autres parties de l'installation. Avant la mise en place, mettre les éléments de l'installation à la terre et utiliser un équipement de protection contre les décharges électrostatiques (par ex. chaussures, bandes de mise à la terre, etc.)

3.2.2 Raccordement [X40]

Le module de sécurité CAMC-G-S1 possède une interface combinée pour la commande et le message de retour via un connecteur enfichable [X40].

- Modèle sur l'appareil : PHOENIX MINICOMBICON MC 1,5/8-GF-3,81 BK
- Connecteur (fourni): PHOENIX MINICOMBICON MC 1,5/8-STF-3,81 BK, raccordement conformément au paragraphe A.1.4, Tab. A.13

-	nec- r mâle	Broche	Désignation	Valeur	Description	
		8	OV	0 V	Potentiel de référence pour tension d'alimentation auxiliaire.	
∞	}®(}®(}®(7	24V	+24 V CC	Tension d'alimentation auxiliaire (alimentation logique en 24 V CC du contrôleur de moteur).	
	J. O	6	C2	_	Contact d'acquittement pour l'état "STO" sur une	
		5	C1		commande externe.	
		4	0 V-B	0 V	Potentiel de référence pour STO-B.	
-	Ĭ®}	3	STO-B	0 V / 24 V	Entrée de commande B pour la fonction STO.	
		2	0 V-A	0 V	Potentiel de référence pour STO-A.	
		1	STO-A	0 V / 24 V	Entrée de commande A pour la fonction STO.	

Tab. 3.1 Affectation connecteur [X40] (représentation du connecteur sur le module)

Pour assurer la fonction STO "Safe Torque Off", le raccordement des entrées de commande STO-A et STO-B doit s'effectuer à deux canaux via un câblage parallèle → Paragraphe 3.3.1, Fig. 3.2. Ce branchement peut par exemple être un élément d'un circuit d'arrêt d'urgence ou d'une configuration de porte de protection.

3.2.3 Câblage minimal pour la première mise en service [X40]

Si une connexion conforme aux normes de sécurité n'existe pas (encore), installer un module de commutation CAMC-DS-M1.

Le remplacement du module dans le FCT doit être configuré et validé → Paragraphe 4.3. Le cas échéant, tenir également compte du réglage de l'interrupteur DIP → Paragraphe 4.2.

Si aucun module de micro-interrupteurs n'est disponible ou si la première mise en marche du contrôleur de moteur s'effectue sans système de sécurité, le contrôleur de moteur CMMP-AS-...-M3 avec le module de sécurité CAMC-G-S1 et circuit minimal peut être doté, conformément à la Fig. 3.2, d'un interrupteur d'arrêt d'urgence (2).

Nota

Ne pas effectuer de pontage des fonctions de sécurité.

Exécuter le circuit minimal des entrées STO-A/STO-B et 0 V-A/0 V-B de sorte à devoir obligatoirement les retirer lorsque le circuit de sécurité définitif sera installé.

Exemples de circuits 3.3

3.3.1 Arrêt du couple sécurisé (STO, "Safe Torque Off")

- représentés)
- 5 Interrupteur de sécurité

2 Interrupteur d'arrêt d'urgence

Raccordement du module de sécurité CAMC-G-S1, exemple d'un contrôleur de moteur Fig. 3.2 CMMP-AS-...-M3 monophasé

La fonction de sécurité "Couple désactivé de manière sûre" (STO) peut être demandée par différents appareils. Le commutateur S1 peut être, par exemple, un interrupteur d'arrêt d'urgence, un interrupteur de protection de porte, un rideau lumineux ou un interrupteur de sécurité. La demande de sécurité est effectuée sur 2 canaux via le commutateur S1 et entraîne la coupure de l'étage de sortie sur 2 canaux. Si la coupure de l'étage de sortie se produit, cela est émis par le contact libre de potentiel C1/C2.

Montage et installation

3

Remarques relatives à l'exemple de circuit :

- Aucune détection de courts-circuits transversaux n'est intégrée dans le contrôleur de moteur avec module de sécurité.
 - En cas de câblage direct de rideaux lumineux, la détection des courts-circuits transversaux est assurée par le rideau lumineux, dans la mesure où il est conçu pour cela.
- En cas d'utilisation d'interrupteurs de sécurité, le contact C1, C2 peut être intégré dans le circuit de retour d'information de l'interrupteur de sécurité.
- L'exemple de circuit présente une structure bi-canal adaptée pour les catégories 3 et 4 avec des mesures supplémentaires.
- Les mesures supplémentaires nécessaires dépendent du domaine d'application et du concept de sécurité de la machine.

3.3.2 Temporisation et arrêt du couple sécurisé (SS1 "Safe Stop 1")

La fonction de sécurité "Arrêt sécurisé 1" (SS1, type C) peut être demandée par différents appareils
→ Fig. 3.3. Le commutateur S1 dans Fig. 3.3 peut être, par exemple, un interrupteur d'arrêt d'urgence, un interrupteur de protection de porte ou un rideau lumineux. La demande de sécurité est effectuée sur 2 canaux via le commutateur S1 et vers l'interrupteur de sécurité. L'interrupteur de sécurité coupe la validation du régulateur. Si la validation du régulateur du contrôleur de moteur est coupée, le mouvement est automatiquement retardé, pour attendre l'activation du frein si celui-ci est configuré et le circuit de régulation est finalement coupé. Après un temps réglé dans l'interrupteur de sécurité, l'étage de sortie est coupé sur 2 canaux via STO-A/B. Si la coupure de l'étage de sortie se produit, cela est émis par le contact libre de potentiel C1-C2.

Fig. 3.3 Exemple de circuit "Retardement et arrêt de couple sécurisé" (SS1, "Safe Stop 1"), exemple de contrôleur moteur monophasé CMMP-AS-...-3A-M3

Montage et installation

3

Remarques relatives à l'exemple de circuit :

- L'interrupteur de sécurité utilisé doit couper la validation du régulateur (X1-9, DIN5) sans temporisation et les entrées STO-A et STO-B avec une temporisation (X40-1, -3).
- La temporisation nécessaire dépend de l'application et doit être déterminée en fonction de l'utilisation spécifique. La temporisation doit être établie de telle sorte que l'actionneur est également freiné jusqu'à zéro à vitesse extrêmement élevée par le biais de la rampe d'arrêt rapide dans le contrôleur CMMP-AS...-M3, avant la coupure de STO-A/B.
- L'installation électrique est exécutée conformément aux exigences de la norme EN 60204-1. Par exemple : l'interrupteur de sécurité et le contrôleur de moteur se trouvent dans la même armoire de commande, de telle sorte qu'il est possible de considérer une exclusion d'erreur pour un court-circuit transversal ou une mise à la terre entre les câbles (contrôle de réception de l'armoire de commande pour vérifier la qualité du câblage).
- L'exemple de circuit présente une structure bi-canal adaptée pour les catégories 3 et 4 avec des mesures supplémentaires.
- Les mesures supplémentaires nécessaires dépendent du domaine d'application et du concept de sécurité de la machine.

Nota

Perte de la fonction de sécurité!

Une fonction de sécurité manquante peut entraîner de graves et irréversibles blessures, notamment en cas de mouvements incontrôlés des actionneurs reliés.

- N'utiliser le module de sécurité
 - que s'il est monté et
 - que si toutes les mesures de protection sont initiées.
- Valider la fonction de sécurité au terme de la mise en marche > Paragraphe 4.4.

Un câblage défectueux, l'utilisation d'un module de sécurité inadéquat ou de composants externes non sélectionnés en fonction de la catégorie de sécurité, sont des causes de perte de fonction de sécurité.

- Évaluer les risques pour l'application et sélectionner le circuit et les composants de manière appropriée.
- Tenir compte des exemples → Paragraphe 3.3.

Avant la mise en marche 4.1

Accomplir les étapes suivantes avant la mise en marche :

- 1. S'assurer que le module de sécurité est correctement installé (→ Paragraphe 3.1).
- 2. Vérifier l'installation électrique (câble de raccordement, affectation du contact → Paragraphe 3.2). Tous les conducteurs de protection PE sont-ils raccordés ?

4.2 Réglage des interrupteurs DIP

Des interrupteurs DIP permettant d'activer et de commander la configuration du bus de terrain se trouvent sur le module de sécurité.

La fonctionnalité des interrupteurs DIP est identique à celle du module de micro-interrupteurs CAMC-DS-M1 et elle dépend de l'interface de bus terrain utilisée.

Régler les interrupteurs DIP comme décrit dans la documentation Matériel GDCP-CMMP-M3-HW-... ou dans la documentation spécifique au bus de terrain → Tab. 5, page 7.

4.3 Paramétrage avec l'outil FCT

4.3.1 Paramétrage de la configuration

Pour la sécurité fonctionnelle, il existe la demande de reproductibilité des modifications. Afin de pouvoir le garantir, des données relatives au type de module, au numéro de série, à la version et à la révision sont enregistrées sur le module de sécurité. Ces données sont enregistrées dans le contrôleur de moteur en tant que valeurs comparatives. Ainsi, il est possible de détecter une modification des composants.

Pour créer le module de sécurité, ajouter le module de sécurité utilisé dans le FCT sur la page "Configuration" du PlugIns CMMP-AS avec "Créer nouvelle configuration d'actionnement" → Fig. 4.1.

Fig. 4.1 PlugIn FCT CMMP-AS: créer/modifier configuration d'actionnement

Dès qu'une connexion en ligne avec le contrôleur de moteur est établie, reprendre le type de module, le numéro de série, la version et la révision du module → Paragraphe 4.3.2.

4.3.2 Importer le module et affichage d'état du module

La détection d'une modification, notamment un changement de module, déclenche une erreur impossible à valider. Afin de remettre en marche l'application à l'aide du contrôleur de moteur, la modification doit être "configurée". En d'autres mots, la modification doit être explicitement prise en charge ou confirmée. En ce qui concerne les modules de sécurité ou de micro-interrupteurs, il s'agit d'un changement de module en cas de modifications reproductibles.

Pour le remplacement du module, les règles suivantes s'appliquent :

- un remplacement d'un module de micro-interrupteurs par un module de micro-interrupteurs est possible à tout moment,
- un remplacement de module CAMC-G-S1 par un autre CAMC-G-S1 ne nécessite aucune confirmation.
 - Exception : Le contrôle de la version dans l'appareil de base provoque une incompatibilité des modules (message d'erreur 51-3), et le remplacement du module doit alors être confirmé.
- En cas de remplacement d'un type de module par un type différent (message d'erreur 51-2) le remplacement du module doit toujours être confirmé.
- En cas de remplacement du module CAMC-G-S3 par un module CAMC-G-S3 (message d'erreur 51-6), le remplacement du module doit également toujours être confirmé.

Pour la confirmation du remplacement du module, il existe deux possibilités :

- Lors de l'activation du mode en ligne, le remplacement du module est détecté et une boîte de dialogue de confirmation s'affiche automatiquement.
- Si le remplacement du module n'a pas été confirmé lors de l'activation du mode en ligne, il est possible d'ouvrir à tout moment la boîte de dialogue de confirmation via la commande de menu [Component]
 [Online] [Confirm Module Change] ([Composant] [En ligne] [Confirmer remplacement du module]).

Dans la boîte de dialogue "Confirmer remplacement du module", la révision générale (CAMC-G-S3) ou la révision et la version (CAMC-G-S1, CAMC-DS-M1) ainsi que le numéro de série du module précédent et le module actuellement monté s'affichent.

 "Oui" permet de confirmer le remplacement du module, et les paramètres sont enregistrés de manière permanente dans l'appareil de base et un redémarrage est exécuté.

Indication d'état

Des informations relatives à l'état du module de sécurité s'affichent en mode en ligne dans la zone de version du projet dans le registre "Fonctions de sécurité".

Caractéristiques	Affichage	État
État :	Vert	Fonctionnement normal (aucune demande STO)
Affichage de l'état du module	Jaune	STO demandé et atteint
	Rouge	Erreur circuit de sécurité
Entrée X40.STO-A :	Gris	Fonction de sécurité demandée, STO-A = Low
Affichage de l'état en entrée	Vert	Aucune fonction de sécurité demandée, STO-A = High
Entrée X40.STO-B:	Gris	Fonction de sécurité demandée, STO-B = Low
Affichage de l'état en entrée	Vert	Aucune fonction de sécurité demandée, STO-B = High
Sortie X40.C1/C2:	Jaune	Fonction de sécurité active, contact relais fermé
Affichage du contact relais	Gris	Fonction de sécurité inactive, contact relais ouvert

Tab. 4.1 État du module de sécurité

Les informations relatives au module (de sécurité) enfiché, comme le type de module, la révision, la version et le numéro de série s'affichent sur la page "Device information" ("Informations sur les appareils"), sous "Option Slot Ext 3" ("Emplacement d'enfichage optionnel Ext 3").

4

4.3.3 Affichage de la mémoire de diagnostic permanente du contrôleur de moteur

Pour l'affichage ou l'enregistrement de la mémoire de diagnostic permanente, activer le registre en ligne "Diagnosis" ("Diagnostic") dans le PlugIn FCT.

Si la connexion en ligne est activée, activer le registre en ligne "Permanent" ("Permanent"). "Read" ("Lecture") permet de lire le nombre d'entrées défini sous "Entries" ("Entrées") de la mémoire de diagnostic permanente et de les afficher dans l'ordre chronologique, l'entrée la plus récente apparaissant en premier.

L'option "all entries" ("Toutes les entrées") permet de lire la mémoire de diagnostic permanente complète. Cela peut prendre quelques secondes.

Le contenu de la mémoire de diagnostic s'affiche sous forme de tableau :

Colonne	Explication
No. (N°)	Numéro en cours de l'entrée.
Fault No. (Nº d'incident)	Numéro de l'erreur, de l'avertissement ou de l'événement → Voir
	paragraphe 5.4.2.
Fault Description	Nom de l'entrée, texte d'erreur.
(Description du défaut)	
Timestamp (Date	Heure de l'événement de diagnostic au format hb>:<mm>:<ss> (compteur</ss></mm>
relative)	d'heures de fonctionnement, facteur de marche de l'alimentation logique).
Constant (Constante)	Informations complémentaires pour le personnel du service après-vente
	Festo
Free Parameter	Informations complémentaires pour le personnel du service après-vente
(Paramètres libres)	Festo
Type (Type)	Type d'entrée (erreur, avertissement, entrée journal).

Tab. 4.2 Affichage de la mémoire de diagnostic permanente

Le tableau suivant présente un exemple d'entrées :

No. (N°)	Fault No. (N° d'inci- dent)	Fault Description (Description du défaut)	Timestamp (Date relative)		Free Parameter (Paramètres libres)	Type (Type)
1	00-21	Entrée journal issue	580:15.03	0x0000	Erreur validée, source :	Erreur
		du module de sécurité			0x01, sans erreur	
2	00-8	Contrôleur mis sous	580:15.00	0x0000	0x0000	Erreur
		tension				
3	00-11	Remplacement du	580:15.22	0x48FF	CAMC-DS-M1, S/N:	Erreur
		module : Module			3781764777, rév. matérielle :	
		actuel			0.1, rév. logicielle : 0.1	
4	00-12	Remplacement du	580:15.22	0x4830	CAMC-G-S3, S/N:	Erreur
		module : Module			1212820487, rév. matérielle :	
		précédent			1.0, rév. logicielle : 1.0	

Tab. 4.3 Exemple d'entrées dans la mémoire de diagnostic

34

Autres remarques relatives aux entrées dans la mémoire de diagnostic :

- les entrées s'effectuent dans l'ordre chronologique, l'entrée supérieure étant l'entrée la plus récente,
- de légères divergences de la date relative sont possibles après Power OFF/ON, dans la mesure où le contrôleur de moteur enregistre la date relative de manière non volatile uniquement une fois par minute.

"Copy" ("Copier") et "Export" ("Exporter") permet de reprendre le contenu au format CSV avec ";" comme séparateur dans le presse-papier Windows ou dans un fichier.

La colonne "Timestamp" ("Date relative") affiche la valeur du compteur d'heures de fonctionnement du contrôleur de moteur au moment de l'entrée journal.

Au-dessus de la liste, la valeur actuelle du compteur d'heures de fonctionnement du contrôleur de moteur s'affiche en tant que "Current System Time" ("Heure système actuelle")

4.4 Test de fonctionnement, validation

Nota

La fonction STO doit être validée après l'installation et les modifications de l'installation.

Cette validation doit être documentée par l'opérateur de mise en route. En guise d'aide à la mise en service, une compilation des questions relatives à la réduction des risques figure ci-après sous forme d'exemples de listes de contrôle.

Les listes de contrôle qui suivent ne remplacent aucune formation technique de sécurité. L'exhaustivité des listes de contrôle ne peut être garantie.

N°	Questions	Concerne	Effectué
1.	Toutes les conditions d'utilisation et toutes les méthodes d'intervention ont-elles été prises en compte ?	Oui Non	
2.	La "méthode des 3 niveaux" pour la réduction des risques a-t-elle été appliquée ? C'est-à-dire, 1. Construction inhérente sûre, 2. Mesures de protection technique et éventuelles mesures complémentaires, 3. Informations pour l'usager sur le	Oui Non	
	risque résiduel.		
3.	Les dangers ont-ils été éliminés ou les risques présentés par les dangers ont-ils été réduits autant que possible ?	Oui Non	
4.	Est-il certain que les mesures appliquées ne présentent pas de nouveaux dangers ?	Oui Non	
5.	Les usagers sont-ils suffisamment informés et alertés sur les risques résiduels ?	Oui Non	
6.	Est-il certain que les conditions de travail des opérateurs n'ont pas été détériorées par les mesures de protection mises en œuvre ?	Oui Non	
7.	Les mesures de protection appliquées sont-elles compatibles entre elles ?	Oui Non	
8.	Les conséquences susceptibles de survenir en raison de l'utili- sation d'une machine construite à des fins commerciales/ industrielles dans un environnement ni commercial, ni industriel, ont-elles suffisamment été prises en compte ?	Oui Non	
9.	Est-il certain que les mesures mises en œuvre n'affectent pas trop la capacité de la machine à remplir ses fonctions ?	Oui Non	

Tab. 4.4 Questions pour la validation selon la norme EN ISO 12100-1:2010 (Exemple)

4 Mise en service

N°		Questions	Concern	ie	Effectué
1.	Ur	e évaluation des risques a-t-elle été réalisée ?	Oui 🗌	Non 🗌	
2.	Ur	e liste des erreurs et un plan de validation ont-ils été établis ?	Oui 🗌	Non 🗌	
3.		plan de validation (incluant l'analyse et le contrôle) a-t-il été	Oui 🗌	Non 🗌	
	tra	ité et un rapport de validation a-t-il été établi ?			
	Le	s contrôles suivants doivent au moins être effectués dans le			
	ca	dre de la validation :			
	a)	Contrôle des composants : Le CMMP-ASM3 est-il utilisé	Oui 🗌	Non 🗌	
		avec le CAMC-G-S1 (contrôle à l'aide des plaques			
		signalétiques) ?			
	b)	Le câblage est-il correct (contrôle à l'aide du plan de	Oui 🗌	Non	
		raccordement) ?			
		Certains shunts ont-ils été retirés ?	Oui	Non	
		Un interrupteur de sécurité a-t-il été raccordé par câble avec	Oui 🗌	Non 🗌	
		X40 ?			
		L'interrupteur de sécurité est-il certifié et câblé	Oui 💹	Non	Ш
		conformément aux exigences de l'application ?			
	c)	Contrôles du fonctionnement :	Oui	Non _	Ц
		Actionnement de l'arrêt d'urgence de l'installation.	Oui 🗌	Non	Ш
		L'actionneur est-il immobilisé ?			
		Seul STO-A a-t-il été activé, l'actionneur est-il immobilisé	Oui 🗌	Non 🗌	Ш
		immédiatement et l'erreur "Violation du temps de			
		discordance" (affichage 52-1) dans le CMMP-AS-M3 a-t-elle			
		été indiquée une fois le temps de discordance écoulé ?			
		Seul STO-B a-t-il été activé, l'actionneur est-il immobilisé	Oui	Non	
		immédiatement et l'erreur "Violation du temps de			
		discordance" (affichage 52-1) dans le CMMP-AS-M3 a-t-elle			
		été indiquée une fois le temps de discordance écoulé ?	0.0	\Box	
		Un court-circuit a-t-il été détecté entre STO-A et STO-B ou	Oui 🗌	Non 🗌	Ш
		une exclusion d'erreur adaptée a-t-elle été définie ?			
		Uniquement en cas d'utilisation d'un interrupteur de sécurité	Oui 🗌	Non 🗌	Ш
		avec évaluation du contact d'accusé de réception C1/C2 :			
		En cas de court-circuit, l'actionneur est-il immobilisé de C1 vers C2 ?			
		Le redémarrage est-il empêché ? Cela signifie que, en cas	Oui	Non 🗌	
		d'arrêt d'urgence actionné et de signaux d'activation actifs,			
		aucun mouvement ne se produit sans un acquittement			
		préalable en cas d'ordre de démarrage.			

Tab. 4.5 Questions pour la validation selon la norme EN ISO 13849-1 et -2 (Exemple)

5 Conditions d'utilisation

5.1 Obligations de l'exploitant

Vérifier le bon fonctionnement des dispositifs de sécurité à intervalles réguliers. L'exploitant est tenu de définir le mode de contrôle et la durée des intervalles. Le contrôle doit être effectué de sorte à prouver le fonctionnement irréprochable des dispositifs de sécurité et de l'interaction entre tous les composants.

5.2 Maintenance et entretien

Le module de sécurité ne nécessite aucune maintenance.

5.3 Fonctions de protection

5.3.1 Surveillance de la tension

Les tensions d'entrée sont surveillées au niveau de STO-A et STO-B. En cas de tension d'entrée trop basse ou trop élevée au niveau de STO-A ou STO-B, l'alimentation pilote des semi-conducteurs de puissance du contrôleur de moteur est coupée de manière sécurisée. L'étage de sortie de puissance (PWM) est alors coupé.

5.3.2 Protection contre les surtensions et l'inversion de polarité

Les entrées de commande STO-A et STO-B sont protégées contre les surtensions et contre l'inversion de polarité de la tension de commande → Paragraphe A.1.4, Tab. A.8.

La tension d'alimentation de 24 V CC du contrôleur de moteur fournie au niveau de [X40] est protégée contre les courts-circuits.

38

5.4 Diagnostic et réparation

5.4.1 Indication de l'état

Affichage sur le module de sécurité

L'état de fonctionnement est affiché directement par la LED bicolore du module de sécurité.

LED	État	Description
Arrêt	Pas sécurisé = État STO non activé	Le module de sécurité ou le contrôleur de moteur
		n'enregistre aucune tension de service.
Vert	Pas sécurisé = État STO non activé	L'étage de sortie du contrôleur de moteur pour
		l'alimentation du moteur peut être activé ou
		désactivé.
Jaune	Sécurisé = État STO activé	L'étage de sortie du contrôleur de moteur pour
		l'alimentation du moteur est coupé de manière
		sécurisée.

Tab. 5.1 Témoins LED sur le module de sécurité

Affichage sur le contrôleur de moteur

Affichage	Description				
1 1	"H" : Le contrôleur de moteur est en "État sécurisé".				
	Ceci n'équivaut pas à l'information relative à l'état de la fonction de sécurité STO				
, ,	(Arrêt sécurisé). Cette dernière ne peut être lue que via la LED du module de sécurité.				
	Aucun affichage spécial n'est prévu pour l'"état non sécurisé". Seuls sont représentés				
	les affichages normaux de l'état du contrôleur de moteur.				

Tab. 5.2 Afficheur à sept segments sur le contrôleur de moteur

5.4.2 Messages d'erreurs

Lorsqu'une erreur survient, le contrôleur de moteur affiche un message d'erreur de manière cyclique sur l'afficheur à sept segments placé sur la face avant du contrôleur de moteur. Le message d'erreur se compose d'un "E" (pour Error), suivi d'un index principal (xx) et d'un sous-index, par exemple (y), "E 5 1 0".

Les avertissements possèdent le même numéro qu'un message d'erreur. Ils se distinguent toutefois par un tiret placé avant et après, par ex. - 1 7 0 -.

Les messages d'erreur importants pour la sécurité fonctionnelle liée au module de sécurité CAMC-G-S1 sont répertoriés dans les tableaux suivants.

La liste complète des messages d'erreur figure dans la documentation Matériel GDCP-CMMP-M3-HW-... du contrôleur de moteur utilisé.

En cas de message d'erreur impossible à acquitter, commencer par en éliminer la cause en adoptant les mesures recommandées. Effectuer ensuite une réinitialisation du contrôleur de moteur et vérifier si la cause de l'erreur a été réparée et si le message d'erreur a disparu.

Groupe d'erreurs 51		Fonction/module de sécurité				
No. (N°) Code		Message Réaction				
51-0	8091h	Module o	le sécurité absent/inconnu ou alimentation pilote	PSoff		
		défectue	use			
		Cause	Erreur interne liée à la tension du module de sécurité	ou du module		
			de micro-interrupteurs.			
		Mesure	Module vraisemblablement défectueux. Si possib	le, le remplacer		
			par un autre module.			
		Cause	Aucun module de sécurité détecté ou type de module	inconnu.		
		Mesure	Installer un module de sécurité ou un module de r	nicro-inter-		
			rupteurs adapté au firmware et au matériel.			
			Charger un firmware adapté au module de sécurit	é ou au module		
			de micro-interrupteur en comparant la désignation	n de type indi-		
			quée sur le module.			
51-2	8093h	Module d	le sécurité : Type de module différent	PSoff		
		Cause	Ce type ou cette révision du module n'est pas adapté	à la conception.		
		Mesure	Vérifier si le type de module et la révision correcte	sont utilisés.		
			En cas de changement de module : Type de modul	le pas encore		
			projeté. Valider le module de sécurité ou le modul	e de micro-inter-		
			rupteurs actuellement installé en le désignant cor			
51-3	8094h	Module o	le sécurité : Version de module différente	PSoff		
		Cause	Ce type ou cette révision du module n'est pas pris en			
		Mesure	Installer un module de sécurité ou un module de r	nicro-inter-		
			rupteurs adapté au firmware et au matériel.			
			Charger un firmware adapté au module en compa	rant la désignati-		
			on de type indiquée sur le module.			
		Cause	Le type de module est correct mais la révision du mod	dule n'est pas		
			prise en charge par l'appareil de base.			
		Mesure	 Contrôle de la révision du module ; après le rempl 			
			dans la mesure du possible un module de même r			
			un module de sécurité ou un module de micro-inte	errupteurs pour		
Charger un firmware adapté a						
		Si seul un module avec une révision supérieure es	•			
			Charger un firmware adapté au module dans l'app			
			en comparant la désignation de type sur le modul	e		

Conditions d'utilisation

5

Groupe d'erreurs 51		Fonction/module de sécurité				
No. (N°)	Code	Message		Réaction		
51-5	8096h	Module o	Module de sécurité : Erreur dans la commande de freinage PSoff			
		Cause	Erreur matérielle interne (signaux de pilotage de la co	mmande de		
			freinage) du module de sécurité ou module de micro-	interrupteurs.		
Ì		Mesure	Mesure • Module vraisemblablement défectueux. Si possible,			
			par un autre module.			
		Cause	Erreur dans la partie commande du pilote de freinage	dans l'appareil		
			de base.			
		Mesure	 Appareil de base vraisemblablement défectueux. Si possible remplacer par un autre appareil de base. 			

Groupe d'erreurs 52		Fonction	de sécurité		
No. (N°)	Code	Message	Message Réaction		
52-1	8099h	Fonction	PSoff		
		Cause	 Les entrées de pilotage STO-A et STO-B ne sont pa 	s confirmées	
			simultanément.		
		Mesure	Vérifier l'écart du temps de discordance.		
		Cause	 Les entrées de pilotage STO-A et STO-B ne sont pa 	s actionnées	
			dans le même sens.		
		Mesure	 Vérifier l'écart du temps de discordance. 		
		Cause	Alimentations OS et US non branchées simultanémen	t (temps de	
			discordance dépassé)		
			 Erreur dans la commande / câblage externe du mo 	dule de	
	sécurité.				
			 Erreur dans le module de sécurité. 		
		Mesure	Contrôler le câblage du module de sécurité. Les en		
			STO-B sont-elles désactivées simultanément et via	deux canaux ?	
			Remplacer le module de sécurité, si un défaut du r	nodule est	
			soupçonné.		
52-2	809Ah		de sécurité : Défaillance de l'alimentation pilote	PSoff	
		avec com	mande MLI activée		
		Cause	Ce message d'erreur n'apparaît pas sur les appareils l	· ·	
usine. Il risque de survenir en cas d'utilisation			usine. Il risque de survenir en cas d'utilisation d'un fir	mware pour	
	appareil spécifique au client.				
			2 ctat secanos a cte acmanae avec t ctage ac sont	•	
			libéré. Vérifier l'intégration dans la mise en marche	e sécurisée.	

6 Transformation et remplacement de module

6.1 Remplacement du module de sécurité

6.1.1 Réparation

Une réparation ou maintenance du module n'est pas autorisée. Si nécessaire, remplacer le module complet.

6.1.2 Démontage et montage

Des informations concernant le démontage et le montage du module de sécurité sont disponibles ici :

- Montage / Démontage du module de sécurité → Paragraphe 3.1.
- Reprise du numéro de série du module de sécurité remplacé → Paragraphe 4.3.2.

6.2 Mise hors service et élimination

Consulter les consignes de démontage du module de sécurité au paragraphe 3.1.

Élimination

Procéder à l'élimination des équipements électroniques selon les directives locales de protection de l'environnement.

6.3 Remplacement de la gamme CMMP-AS courante par la gamme CMMP-AS-...-M3

CMMP-AS

Les appareils de la gamme CMMP-AS courante disposent d'une fonction de sécurité STO "Safe Torque Off" fixe intégrée dans l'appareil conformément à la norme EN ISO 13849-1, Cat. 3 / PLd. La fonction STO exige de disposer de deux canaux, ce qui est atteint à partir de deux chemins de coupure indépendants:

- 1. chemin de coupure : Activation d'étage de sortie via [X1.21], coupure de l'étage de sortie de puissance (blocage des signaux PWM). Les pilotes pour les semi-conducteurs de puissance ne sont plus pilotés avec des modèles d'impulsion.
- 2. chemin de coupure : Interruption de l'alimentation des 6 semi-conducteurs de puissance à étages de sortie (IGBT) via [X3] à l'aide d'un relais. L'alimentation pilote pour les semi-conducteurs de puissance (octocoupleur IGBT) est coupée avec un relais. Ainsi, il est impossible que les modèles d'impulsion (signaux PWM) atteignent les semi-conducteurs de puissance.

De plus, le contrôleur CMMP-AS dispose d'un contact d'accusé de réception ([X3] broches 5 et 6) qui indique la présence de l'alimentation pilote sous forme de sortie de diagnostic.

CMMP-AS-...-M3

Les appareils de la gamme CMMP-AS-M3 disposent, en association avec le CAMC-G-S1, de la fonction de sécurité STO "Safe Torque Off" conformément à la norme EN 61800-5-2 SIL3 et à la norme EN ISO 13849-1, Cat. 4 /PL e. Les deux chemins de coupure sont réalisés via les entrées de commande STO-A [X40.1] et STO-B [X40.3]. Le contact d'accusé de réception libre de potentiel ([X40] Broches 5 et 6) est également présent.

Modifications du câblage de raccordement

Pour basculer une application existant avec STO du CMMP-AS au CMMP-AS-M3, les modifications suivantes du câblage de raccordement sont nécessaires :

- 1. chemin de coupure :
 Câblage pour l'activation d'étage de sortie [X1.21] conservé et réalisé en parallèle sur STO-A [X40.1].
 - Raccorder GNDA [X40.2] à 0 V [X40.8] pour raccorder le potentiel de référence.
- 2. chemin de coupure : Réaliser maintenant le câblage de l'alimentation pilote [X3.RELAIS] sur STO-B [X40.3]. Raccorder GNDB [X40.4] à 0 V [X40.8] pour raccorder le potentiel de référence.
- Contact d'accusé de réception :
 Basculer le raccordement pour les contacts d'accusé de réception [X3.5] et [X3.6] sur [X40.5] et [X40.6].

Nota

En fonctionnement, les contacts d'accusé de réception pour CMMP-AS et CMMP-AS-M3 sont compatibles.

En cas de coupure d'alimentation logique (24 V), le comportement est différent :

- CMMP-AS : contact fermé.
- CMMP-AS-...-M3: contact ouvert.

Remarques relatives à la configuration

Le CMMP-AS-...-M3 dispose d'une puissance de pointe supérieure à celle du CMMP-AS. Ainsi, il est possible d'atteindre des vitesses de déplacement supérieures en fonction de l'application. Si elle est utile, il s'agit d'une modification essentielle de la machine.

Nota

Le jeu de paramètres du CMMP-AS doit être reporté sur le jeu de paramètres du CMMP-AS-...-M3 avec les mêmes valeurs. Si ces valeurs sont augmentées, et que le danger s'accroît en conséquence, une nouvelle évaluation des risques de la machine doit être effectuée.

Nota

Après le remplacement du contrôleur de moteur, une validation de la fonction de sécurité doit être effectuée conformément aux consignes du fabricant de la machine.

A Annexe technique

A.1 Caractéristiques techniques

A.1.1 Technique de sécurité

Indices de	Indices de sécurité				
Fonction de sécurité STO		STO STO	Couple désactivé de manière sûre (STO, Safe Torque Off)		
			selon la norme EN 61800-5-2		
SIL		SIL3	Niveau de sécurité (Safety Integrity Level) selon la norme		
		SILCL3	EN 61800-5-2		
			Limite de déclenchement SIL, pour un système partiel (Claim		
			Limit for a subsystem) selon la norme EN 62061		
Catégorie		4	Classement par catégorie d'après la norme EN ISO 13849-1		
PL		PL e	Degré de performance (Performance Level) selon la norme		
			EN ISO 13849-1		
DCmoy	[%]	97	Niveau de couverture du diagnostic moyen (Average Diagno-		
			stic Coverage)		
HFT		1	Tolérance d'erreur du matériel (Hardware Fault Tolerance)		
SFF	[%]	99,2	Proportion de défaillances en sécurité (Safe Failure Fraction)		
PFH		1,27 x 10 ⁻¹⁰	Probabilité d'une défaillance dangereuse par heure		
			(Probability of dangerous Failure per Hour)		
PFD		2,54 x 10 ⁻⁵	Probabilité d'une défaillance dangereuse sur demande		
			(Probability of dangerous Failure on Demand)		
T	[années]	20	Intervalle de test (Proof Test Interval)		
			Durée d'utilisation selon la norme EN ISO 13849-1		
$MTTF_d$	[années]	1370	Délai moyen avant une défaillance dangereuse (Mean time to		
			dangerous failure)		

Tab. A.1 Caractéristiques techniques : Indices de sécurité

Caractéristiques de sécurité		
Examen de type	Conformément au paragraphe 1.1.4, le système de sécurité fonctionnel du produit a été certifié par un organisme de contrôle indépendant, voir Certificat d'examen de type CE www.festo.com	
Certificat de l'organisme d'émission	TÜV 01/205/5165.01/14	
Module garanti	oui	

Tab. A.2 Caractéristiques techniques : Caractéristiques de sécurité

A.1.2 Généralités

Mécanique		
Longueur/largeur/hauteur	[mm]	112,6 x 87,2 x 28,3
Poids	[g]	75
Emplacement		Emplacement Ext3 pour les modules de sécurité
Remarque relative aux		Conforme à RoHS
matériaux		

Tab. A.3 Caractéristiques techniques : Mécanique

Homologations (module de sécurité CAMC-G-S1 pour contrôleur de moteur CMMP-ASM3)				
Marquage CE (voir la déclaration de	selon la directive européenne CEM			
conformité)	selon la directive européenne relative aux machines			
→ www.festo.com	L'appareil est destiné à être utilisé dans le domaine			
	industriel. Des mesures d'antiparasitage doivent			
	éventuellement être prises en zone résidentielle.			

Tab. A.4 Caractéristiques techniques : Homologations

A.1.3 Conditions de fonctionnement et d'environnement

Transport			
Plage de température	[°C]	−25 +70	
Humidité de l'air	[%]	0 95, à une température ambiante max. de 40 °C	
Durée de transport maximale		maximum 4 semaines de la durée de vie totale du produit	

Tab. A.5 Caractéristiques techniques : Transport

Stockage		
Température de stockage	[°C]	−25 +55
Humidité de l'air	[%]	5 95, sans condensation ou protégé contre la
		condensation
Hauteur admissible	[m]	< 3 000 (au-dessus du niveau de la mer)

Tab. A.6 Caractéristiques techniques : Stockage

Annexe technique

Α

Conditions ambiantes		
Température ambiante	[°C]	0 +40 (hors du boîtier du contrôleur de moteur)
Refroidissement		Via l'air ambiant dans le contrôleur de moteur, pas
		d'aération forcée
Altitude d'installation	[m]	< 2 000 (au-dessus du niveau de la mer)
admissible		
Indice de protection		IP20 (monté dans le CMMP-ASM3).
Humidité de l'air	[%]	Humidité relative de l'air jusqu'à 90 % sans condensation
Degré d'encrassement selon		2
la norme EN 61800-5-1		Ce point doit être garanti par la prise de mesures appro-
		priées, par ex. l'installation dans un coffret de commande.

Tab. A.7 Caractéristiques techniques : Conditions ambiantes

A.1.4 Caractéristiques électriques

Entrées de commande STO-A, 0 V-A / STO-B, 0 V-B [X40]					
Tension nominale	[V]	24 (basé sur 0 V-A/B)			
Plage de tension	[V]	19,2 28,8			
Ondulation résiduelle	[%]	2 (basé sur tension nominale 24 V)			
admissible					
Coupure en cas de surtension	[V]	31 (coupure en cas d'erreur)			
Courant nominal	[mA]	20 (typique ; 30 maximum)			
Courant à la mise	[mA]	450 (typique, durée 2 ms env.; max. 600 à 28,8 V)			
sous tension					
Seuil de tension d'entrée					
Mise sous tension	[V]	env. 18			
Coupure	[V]	env. 12.5			
Temps de commutation de	[ms]	10 (typique ; 20 maximum à 28,8 V)			
High à Low					
(STO-A/B_OFF)					
Temps de commutation de	[ms]	5 (typique ; 7 maximum)			
Low à High					
(STO-A/B_ON)					
Longueur d'impulsion	[µs]	< 300 (basée sur une tension nominale de 24 V et des			
positive et maximale de test		intervalles de >2 s entre les impulsions)			
avec signal 0					

Tab. A.8 Caractéristiques techniques : Caractéristiques électriques des entrées STO-A et STO-B

A Annexe technique

Temps de coupure jusqu'à l'inactivité de l'étage de sortie de puissance et temps de tolérance maximal pour les impulsions de test											
Tension d'entrée (STO-A/B) [V] 19 20 21 22 23 24 25 26 27 28							28				
Temps de coupure typique [ms] 4,0 4,5 5,0 6,0 6,5 7,0 7,5 8,0 8,5 9,5 (STO-A/B_OFF)							9,5				
Temps de tolérance maximal pour les impulsions de test à un signal de 24 V	[ms]	<2,0	<2,0	2,0	2,5	3,0	3,5	4,5	5,0	5,5	6,0

Tab. A.9 Temps de coupure typique et temps de tolérance minimal pour les impulsions de test (signaux OSSD)

Contact d'accusé de réception C1, C2 [X40]					
Modèle		Contact de relais, contact à fermeture			
Tension max.	[V DC]	< 30 (résistant à surtension jusqu'à 60 V DC)			
Courant nominal	[mA]	<200 (sans protection contre les courts-circuits)			
Chute de tension	[V]	≤1			
Courant résiduel (contact	[µA]	< 10			
ouvert)					
Temps de commutation	[ms]	< (STO-A/B_OFF ¹⁾ + 5 ms)			
Fermeture					
(T_C1/C2_ON)					
Temps de commutation	[ms]	< (STO-A/B_ON ¹⁾ + 5 ms)			
Ouverture					
(T_C1/C2_OFF)					
Durée de vie (cycles)	[n _{op}]	10 x 10 ⁶ (à 24 V et I _{contact} = 10 mA, pour des courants de			
		charge plus élevés, la durée de vie diminue)			

¹⁾ STO-A/B_OFF, STO-A/B_ON → Tab. A.8

Tab. A.10 Caractéristiques techniques : Caractéristiques électriques du contact d'accusé de réception C1/C2

Alimentation auxiliaire 24 V, 0 V [X40] – sortie					
Exécution		À partir de la tension d'alimentation logique transmise par le contrôleur de moteur (injecté au niveau de [X9], pas de filtration ou de stabilisation supplémentaire). Protégé contre l'inversion de polarité, résistant aux surtensions jusqu'à 60 V CC.			
Tension nominale	[V]	24			
Courant nominal	[mA]	100 (résistant aux courts-circuits, max. 300 mA)			
Chute de tension	[V]	≤ 1 (en cas de courant nominal)			

Tab. A.11 Caractéristiques techniques : Caractéristiques électriques de la sortie de l'alimentation auxiliaire

Annexe technique

Α

Séparation galvanique	
Zones de potentiel galvaniquement	STO-A / OV-A
isolées	STO-B / 0V-B
	C1 / C2
	24 V / 0 V (alimentation logique du contrôleur de moteur)

Tab. A.12 Caractéristiques techniques : isolation galvanique [X40]

Câblage			
Longueur	de câble max.	[m]	30
Blindage			Utiliser des câbles blindés pour le câblage à l'extérieur de
			l'armoire de commande. Blindage jusqu'à l'intérieur de
			l'armoire de commande/pose côté armoire de commande.
Section de	e conducteur (conduct	eur flexi	ble, cosse avec gaine d'isolation)
un	conducteur	[mm ²]	0,25 0,5
dei	ux conducteurs	[mm ²]	2 x 0,25 (avec cosses doubles)
Couple de serrage M2 [Nm]			0,22 0,25

Tab. A.13 Caractéristiques techniques : Câblage au niveau de [X40]

B Glossaire

Terme/abréviation	Description
Arrêt d'urgence	Selon EN 60204-1 : Sécurité électrique d'urgence par coupure de l'énergie
	électrique dans toute l'installation ou dans une partie de celle-ci.
	L'arrêt d'urgence doit être utilisé en cas de risque d'électrocution ou d'un autre
	danger d'origine électrique.
Arrêt d'urgence	Selon EN 60204-1 : Sécurité fonctionnelle en cas d'urgence par immobilisation
contrôlé	d'une machine ou de pièces en mouvement.
	L'arrêt d'urgence contrôlé est destiné à arrêter un processus ou un mouvement
	dans la mesure où celui-ci entraîne une mise en danger.
Cat.	Catégorie selon EN ISO 13849-1, niveaux 1-4.
CCF	Common Cause Failure, défaillance de cause commune selon la norme
	EN ISO 13849-1.
DC avg	Average Diagnostic Coverage, degré de couverture du diagnostic selon les
	normes CEI 61508 et EN 61800-5-2.
FCT	Festo Configuration Tool, logiciel de configuration et de mise en service.
HFT	Hardware Fault Tolerance, tolérance d'erreur du matériel selon la norme
	CEI 61508.
Interrupteur de	Appareil permettant d'exécuter des fonctions de sécurité ou de déclencher un
sécurité	état sécurisé de la machine par la coupure de l'alimentation en énergie vers des
	fonctions dangereuses de la machine. La fonction de sécurité souhaitée est
	uniquement activée en association avec d'autres mesures de réduction des
	risques, la coupure pouvant par exemple être un contrôleur de moteur.
MTTF _d	Mean Time To dangerous Failure : Temps en années jusqu'à la première
	défaillance dangereuse avec une probabilité de 100 % conformément à la
	norme EN ISO 13849-1.
OSSD	"Output Signal Switching Device": signaux de sortie avec synchronisation de
	niveau sur 24 V pour l'apparition d'erreurs.
PFD	Probability of Failure on Demand, probabilité de défaillance en cas de demande
	selon la norme CEI 61508.
PFH	Probability of Dangerous Failures per Hour, probabilité totale d'une défaillance
	dangereuse par heure conformément à la norme CEI 61508.
PL	Rendement (Performance Level) selon la norme EN ISO 13849-1 : niveau a e.
SFF	Safe Failure Fraction [%], rapport des taux de défaillance des accidents
	sécurisés et dangereux (mais détectables) sur la somme de toutes les
	défaillances conformément à la norme CEI 61508.
SIL	Niveau d'intégrité de sécurité - Des niveaux discrets pour la définition des
	exigences en termes d'intégrité de sécurité des fonctions de sécurité
	conformément aux normes CEI 61508, EN 62061 et EN ISO 13849.
SIL CL	Limite de déclenchement SIL, pour un système partiel (Claim Limit for a
	subsystem) selon la norme EN 62061.
STO STO	Safe Torque Off, couple désactivé de manière sûre conformément à la norme
	EN 61800-5-2.
T	Durée d'utilisation selon EN ISO 13849-1

Tab. B.1 Termes et abréviations

Copyright: Festo SE & Co. KG Postfach 73726 Esslingen Allemagne

Phone: +49 711 347-0

Fax: +49 711 347-2144

Toute communication ou reproduction de ce document, sous quelque forme que ce soit, et toute exploitation ou communication de son contenu sont interdites, sauf autorisation écrite expresse. Tout manquement à cette règle est illicite et expose son auteur au versement de dommages et intérêts. Tous droits réservés pour le cas de la délivrance d'un brevet, d'un modèle d'utilité ou d'un modèle de présentation.

e-mail: service_international@festo.com

Internet: www.festo.com

Original: de