What we will learn

- 1 Null and Alternative Hypotheses
- 2 Test Statistic
- 3 P-Value
- 4 Significance Level
- 5 One-Sample z Test
- 6 Power and Sample Size

Terms Introduce in Prior Chapter

- Population = all possible values
- Sample = a portion of the population
- Statistical inference = generalizing from a sample to a population with calculated degree of certainty
- Two forms of statistical inference
 - Hypothesis testing
 - Estimation
- Parameter \equiv a characteristic of population, e.g., population mean μ
- Statistic = calculated from data in the sample, e.g., sample mean (x)

Distinctions Between Parameters and Statistics (Chapter 8 review)

	Parameters	Statistics
Source	Population	Sample
Notation	Greek (e.g., µ)	Roman (e.g., xbar)
Vary	No	Yes
Calculated	No	Yes

Sampling Distributions of a Mean (Introduced in Ch 8)

The sampling distributions of a mean (SDM) describes the behavior of a sampling mean

$$\bar{x} \sim N(\mu, SE_{\bar{x}})$$

where
$$SE_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

Hypothesis Testing

- Is also called significance testing
- Tests a claim about a parameter using evidence (data in a sample
- The technique is introduced by considering a one-sample z test
- The procedure is broken into four steps
- Each element of the procedure must be understood

Hypothesis Testing Steps

- A. Null and alternative hypotheses
- B. Test statistic
- C. P-value and interpretation
- D. Significance level

Null and Alternative Hypotheses

- Convert the research question to null and alternative hypotheses
- The null hypothesis (H₀) is a claim of "no difference in the population"
- The alternative hypothesis (H_a) claims "H₀ is false"
- Collect data and seek evidence against H_0 as a way of bolstering H_a (deduction)

Illustrative Example: "Body Weight"

- The problem: In the 1970s, 20–29 year old men in the U.S. had a mean μ body weight of 170 pounds. Standard deviation σ was 40 pounds. We test whether mean body weight in the population now differs.
- Null hypothesis $H_{0:} \mu = 170$ ("no difference")
- The alternative hypothesis can be either $H_{a:} \mu > 170$ (one-sided test) or $H_{a:} \mu \neq 170$ (two-sided test)

Test Statistic

This is an example of a one-sample test of a mean when σ is known. Use this statistic to test the problem:

$$z_{\text{stat}} = \frac{\overline{x} - \mu_0}{S E_{\overline{x}}}$$

where $\mu_0 \equiv$ population mean assuming H_0 is true

and
$$SE_x = \frac{\sigma}{\sqrt{g}}$$

Illustrative Example: z statistic

- For the illustrative example, $\mu_0 = 170$
- We know $\sigma = 40$
- Take an SRS of n = 64. Therefore

$$SE_{x} = \frac{\sigma}{\sqrt{64}} = \frac{40}{\sqrt{64}} = 5$$

If we found a sample mean of 173, then

$$z_{\text{stat}} = \frac{x - \mu_0}{SE_{\bar{x}}} = \frac{173 - 170}{5} = 0.60$$

Illustrative Example: z statistic

If we found a sample mean of 185, then

$$z_{\text{stat}} = \frac{\bar{x} - \mu_0}{SE_{\bar{x}}} = \frac{185 - 170}{5} = 3.00$$

Reasoning Behinuzstat

Sampling distribution of xbar under H_0 : $\mu = 170$ for $n = 64 \Rightarrow X \sim N(170,5)$

P-value

- The P-value answer the question: What is the probability of the observed test statistic or one more extreme when H₀ is true?
- This corresponds to the AUC in the tail of the Standard Normal distribution beyond the z_{stat.}
- Convert z statistics to P-value :

```
For H_a: \mu > \mu_0 \Rightarrow P = \Pr(Z > z_{\text{stat}}) = \text{right-tail beyond } z_{\text{stat}}
For H_a: \mu < \mu_0 \Rightarrow P = \Pr(Z < z_{\text{stat}}) = \text{left tail beyond } z_{\text{stat}}
For H_a: \mu \neq \mu_0 \Rightarrow P = 2 \times \text{one-tailed } P\text{-value}
```

 Use Table B or software to find these probabilities (next two slides).

One-sided P-value for z_{stat} of 0.6

One-sided P-value for z_{stat} of 3.0

Two-Sided P-Value

- One-sided H_a ⇒
 AUC in tail beyond z_{stat}
- Two-sided H_a ⇒
 consider potential
 deviations in both
 directions ⇒
 double the one sided P-value

Examples: If one-sided P = 0.0010, then two-sided $P = 2 \times 0.0010 = 0.0020$. If one-sided P = 0.2743, then two-sided $P = 2 \times 0.2743 = 0.5486$.

Interpretation

- P-value answer the question: What is the probability of the observed test statistic ...
 when H₀ is true?
- Thus, smaller and smaller P-values provide stronger and stronger evidence against H₀
- Small P-value ⇒ strong evidence

Interpretation

Conventions*

 $P > 0.10 \Rightarrow$ non-significant evidence against H_0 $0.05 < P \le 0.10 \Rightarrow$ marginally significant evidence $0.01 < P \le 0.05 \Rightarrow$ significant evidence against H_0 $P \le 0.01 \Rightarrow$ highly significant evidence against H_0

Examples

 $P = .27 \Rightarrow$ non-significant evidence against H_0 $P = .01 \Rightarrow$ highly significant evidence against H_0

* It is unwise to draw firm borders for "significance"

α-Level (Used in some situations)

- Let $\alpha \equiv$ probability of erroneously rejecting H_0
- Set α threshold (e.g., let α = .10, .05, or whatever)
- Reject H_0 when $P \le \alpha$
- Retain H_0 when $P > \alpha$
- Example: Set $\alpha = .10$. Find $P = 0.27 \Rightarrow$ retain H_0
- Example: Set $\alpha = .01$. Find $P = .001 \Rightarrow$ reject H_0

(Summary) One-Sample z Test

A. Hypothesis statements

$$H_0$$
: $\mu = \mu_0 \text{ vs.}$

 H_a : $\mu \neq \mu_0$ (two-sided) or

 H_a : $\mu < \mu_0$ (left-sided) or

 H_a : $\mu > \mu_0$ (right-sided)

B. Test statistic

$$z_{\text{stat}} = \frac{x - \mu_0}{SE_{\bar{x}}} \text{ where } SE_{\bar{x}} = \frac{\sigma}{\sqrt{m}}$$

- C. P-value: convert z_{stat} to P value
- D. Significance statement (usually not necessary)

Conditions for z test

- σ known (not from data)
- Population approximately Normal or large sample (central limit theorem)
- SRS (or facsimile)
- Data valid

The Lake Wobegon Example

"where all the children are above average"

- Let X represent Weschler Adult Intelligence scores (WAIS)
- Typically, X ~ N(100, 15)
- Take SRS of n = 9 from Lake Wobegon population
- Data ⇒ {116, 128, 125, 119, 89, 99, 105, 116, 118}
- Calculate: x-bar = 112.8
- Does sample mean provide strong evidence that population mean μ > 100?

Example: "Lake Wobegon"

A. Hypotheses:

 H_0 : $\mu = 100 \text{ versus}$

 H_a : $\mu > 100$ (one-sided)

 H_a : $\mu \neq 100$ (two-sided)

B. Test statistic:

$$SE_{x} = \frac{\sigma}{\sqrt{g}} = \frac{15}{\sqrt{g}} = 5$$

$$z_{\text{stat}} = \frac{x - \mu_0}{SE_x} = \frac{112.8 - 100}{5} = 2.56$$

C. *P*-value: $P = Pr(Z \ge 2.56) = 0.0052$

 $P = .0052 \Rightarrow$ it is unlikely the sample came from this null distribution \Rightarrow strong evidence against H_0

Two-Sided P-value: Lake Wobegon

- H_a : $\mu \neq 100$
- Considers random
 deviations "up" and
 "down" from µ₀ ⇒tails
 above and below ±z_{stat}
- Thus, two-sided P
 - $= 2 \times 0.0052$
 - = 0.0104

Power and Sample Size

Two types of decision errors:

```
Type I error = erroneous rejection of true H_0
```

Type II error = erroneous retention of false H_0

	irutn			
Decision	H_0 true	H_0 false		
Retain H ₀	Correct retention	Type II error		
Reiect H	Type I error	Correct rejection		
α ≡ probability of a Type I error				
β ≡ Probability of a Type II error				

T... . + L

Power

β = probability of a Type II error
 β = Pr(retain H₀ | H₀ false)
 (the "|" is read as "given")

1 – β = "Power" ≡ probability of avoiding a
Type II error
 1 – β = Pr(reject H₀ | H₀ false)

Power of a z test

$$1-\beta = \Phi\left(-z_{1-\frac{\alpha}{2}} + \frac{|\mu_0 - \mu_a|}{\sigma}\right)$$

where

- Φ(z) represent the cumulative probability of Standard Normal Z
- μ₀ represent the population mean under the null hypothesis
- μ_a represents the population mean under the alternative hypothesis

Calculating Power: Example

A study of n = 16 retains H_0 : $\mu = 170$ at $\alpha = 0.05$ (two-sided); σ is 40. What was the power of test's conditions to identify a population mean of 190?

$$1 - \beta = \Phi \left(-z_{1 - \frac{\alpha}{2}} + \frac{|\mu_0 - \mu_a|}{\sigma} \right)$$

$$= \Phi \left(-1.96 + \frac{|170 - 190|}{40} \right)$$

$$= \Phi(0.04)$$

$$= 0.5160$$

Reasoning Behind Power

- Competing sampling distributions
 Top curve (next page) assumes H₀ is true
 Bottom curve assumes H_a is true
 α is set to 0.05 (two-sided)
- We will reject H_0 when a sample mean exceeds 189.6 (right tail, top curve)
- The probability of getting a value greater than 189.6 on the bottom curve is 0.5160, corresponding to the power of the test

Sample Size Requirements

Sample size for one-sample z test:

$$n = \frac{\sigma^2 \left(Z_{1-\beta} + Z_{1-\frac{\alpha}{2}} \right)^2}{\Delta^2}$$

where

 $1 - \beta \equiv desired power$

 $\alpha \equiv$ desired significance level (two-sided)

 $\sigma \equiv$ population standard deviation

 $\Delta = \mu_0 - \mu_a \equiv$ the difference worth detecting

Example: Sample Size Requirement

How large a sample is needed for a one-sample z test with 90% power and α = 0.05 (two-tailed) when σ = 40? Let H_0 : μ = 170 and H_a : μ = 190 (thus, $\Delta = \mu_0 - \mu_a = 170 - 190 = -20)$

$$n = \frac{\sigma^2 \left(Z_{1-\beta} + Z_{1-\frac{\alpha}{2}} \right)^2}{\Delta^2} = \frac{40^2 (1.28 + 1.96)^2}{-20^2} = 41.99$$

Round up to 42 to ensure adequate power.

