On well quasi orders on languages

Flavio D'Alessandro

Stefano Varricchio

September 18, 2003

Let S be a set. A *quasi order* on S is a binary relation \leq satisfying the reflexive and transitive property.

If \leq is a quasi order on S, the equivalence relation associated with \leq is the relation $\sim = \leq \cap \leq^{-1}$, i.e.

$$a \sim b \Leftrightarrow a \leq b \text{ and } b \leq a.$$

Definition 1 A quasi-order in S is called a well quasi-order (wqo) if every nonempty subset X of S has at least one minimal element in X but no more than a finite number of (non-equivalent) minimal elements.

- 1. \leq is a well quasi-order.
- 2. the ascending chain condition holds for the closed subsets of S.
- 3. every infinite sequence of elements of S has an infinite ascending subsequence.
- 4. if $s_1, s_2, \ldots, s_n, \ldots$ is an infinite sequence of elements of S, then there exist integers i, j such that $1 \le i < j$ and $s_i \le s_j$.
- 5. there exists neither an infinite strictly descending sequence in S (i.e., \leq is well-founded), nor an infinity of mutually incomparable elements of S.
- 6. S has the *finite basis property*, i.e., every closed subset of S is finitely generated.

Definition 2 A quasi-order \leq in a semigroup S is monotone if for all $x_1, x_2, x_3, x_4 \in S$ if $x_1 \leq x_2$ and $x_3 \leq x_4$, then $x_1x_3 \leq x_2x_4$.

Definition 3 A quasi-order \leq in S is a divisibility, or division, order if it is monotone and, moreover, for all $s \in S$ and $x, y \in S^1$, $s \leq xsy$.

Theorem 1 (Higman) Let S be a semigroup quasi-ordered by a divisibility order \leq . If there exists a generating set of S well quasi-ordered by \leq , then S will also be so.

Theorem 2 Let A^* be the free semigroup over a finite alphabet A and let \leq be the subsequence ordering. Then \leq is a wqo on A^* .

A semi-Thue system (A, π) is called *unitary* when π is a finite set of productions of the kind

$$\epsilon \to u, \ u \in I \subseteq A^+.$$

Let \Rightarrow_I^* the derivation relation in these systems. If I=A, then \Rightarrow_A^* is equal to the subsequence ordering \leq which is a divisibility ordering. Thus, \Rightarrow_A^* is a wqo by the Higman theorem.

Definition 4 Let $I \subseteq A^+$. We say that I is subword unavoidable if there exists a positive integer k_0 , such that any word $u \in A^*$, $|u| > k_0$, can be written as u = xwy, where $w \in I$ and $x, y \in A^*$.

Theorem 3 (Ehrenfeucht, Haussler, Rozenberg, 1983) The relation \Rightarrow_I^* of the unitary semi-Thue system associated with the finite set $I \subseteq A^+$ is a wqo if and only if I is subword unavoidable.

Let
$$L_I^{\epsilon} = \{ w \in A^* \mid \epsilon \Rightarrow_I^* w \}.$$

In general \Rightarrow_I^* is not a wqo on L_I^ϵ . In fact let

$$A = \{a, b, c\}$$

and

$$I = \{ab, c\}$$

Then the sequence

$$acb, aacbb, aaacbbb, \dots, a^ncb^n \dots$$

is a bad sequence with respect to \Rightarrow_I^* .

Let I be a finite subset of A^* . We define the binary relation \vdash_I as follows: we say that $v \vdash_I w$ if

$$v=v_1v_2\cdots v_{n+1},$$

$$w = v_1 a_1 v_2 a_2 \cdots v_n a_n v_{n+1},$$

with $a_i \in A$, and $a_1 a_2 \cdots a_n \in I$.

The relation \vdash_I^* is the transitive and reflexive closure of \vdash_I .

Definition 5 Let $I \subseteq A^*$. We say that I is subsequence unavoidable if there exists a positive integer k_0 , such that any word $u \in A^*$, $|u| > k_0$, can be written as $v_1 a_1 v_2 a_2 \cdots v_n a_n v_{n+1}$ where $a_1 a_2 \cdots a_n \in I$, $a_i \in A$, and $v_1, v_2, \ldots v_{n+1} \in A^*$.

Theorem 4 (Haussler 1983) The relation \vdash_I^* associated with the finite set $I \subseteq A^+$ is a wqo if and only if I is subsequence unavoidable.

Let
$$L_{\vdash_I}^{\epsilon} = \{ w \in A^* \mid \epsilon \vdash_I^* w \}.$$

In general \vdash_I^* is not a wqo on $L_{\vdash_I}^\epsilon$. Let

$$A = \{a, \bar{a}, b, \bar{b}, c, \bar{c}, d, \bar{d}\}$$

$$I = \{a\bar{a}, b\bar{b}, c\bar{c}, d\bar{d}\}$$

Let $u_1, u_2, \ldots, u_n, \ldots$ be a sequence of words of $\{b, c\}^*$, with the property that u_i is not a factor of u_j for $i \neq j$.

Let $v_1, v_2, \ldots, v_n, \ldots$ be the sequence of words of $\{b, \overline{b}, c, \overline{c}\}^*$ where v_i is obtained from u_i with the substitution $b \to b\overline{b}$, $c \to c\overline{c}$. For instance if $u_i = cbbc$ then $v_i = c\overline{c}b\overline{b}b\overline{b}c\overline{c}$.

Finally we construct a sequence $w_1, w_2, \ldots, w_n, \ldots$ where each w_i is obtained from v_i as follows.

If, for instance, $v_i=c\bar{c}b\bar{b}b\bar{c}c\bar{c}b\bar{b}c\bar{c}$ then

 $w_i = ac\bar{c}db\bar{b}\bar{a}ab\bar{b}\bar{d}dc\bar{c}\bar{a}ab\bar{b}\bar{d}c\bar{c}\bar{a}$

Proposition 1 The sequence $w_1, w_2, \ldots, w_n, \ldots$ is a bad sequence with respect to \vdash_I^* . Therefore, \vdash_I^* is not a wgo on $L_{\vdash_I}^{\epsilon}$.

The following theorem holds:

Theorem 5 For any finite set I the relation \vdash_I^* is a well quasi order on L_I^ϵ .

Let T be a set of tuples of words. The elements of T are of the kind (u_1, u_2, \ldots, u_n) , with $u_i \in A^+$, and $n \ge 1$.

We define the binary relation \vdash_T as follows: we say that $v \vdash_T w$ if $v = v_1 v_2 \cdots v_{n+1}$,

$$w = v_1 u_1 v_2 u_2 \cdots v_n u_n v_{n+1},$$

and $(u_1, u_2 \dots u_n) \in T$.

The relation \vdash_T^* is the transitive and reflexive closure of \vdash_T .

Definition 6 Let T be a set of tuples of elements of A^* . We say that T is unavoidable if there exists a positive integer k_0 , such that any word $u \in A^*$, $|u| > k_0$, can be written as $v_1u_1v_2u_2 \cdots v_nu_nv_{n+1}$ where $(u_1, u_2 \dots u_n) \in T$, and $v_1, v_2, \dots v_{n+1} \in A^*$.

Conjecture 1 (Haussler 1983) The relation \vdash_T^* associated with the finite set T of tuples is a wqo if and only if T is unavoidable.

Let I be a finite set of words. We consider the set

$$\bar{I} = \{(u, v) \mid u, v \in A^+ \text{ and } uv \in I\} \cup I$$

The following theorem holds:

Theorem 6 For any finite set of words I the relation $\vdash^*_{\overline{I}}$ is a wqo on L_I^ϵ .

Definition 7 We say that \leq is a division order on L, if \leq is monotone and the following conditions hold:

$$u \leq xuy$$
 for any $u \in L, x, y \in A^*$ with $xuy \in L$,

$$1 \leq u$$
 for any $u \in L$.

Let G = (V, A, P, S) be a context-free grammar.

Let $V = \{X_1, X_2, \dots, X_n\}$. Let L_i be the language of the words generated setting X_i as start symbol and let $L = \bigcup_{i=1}^n L_i$. The following theorem holds:

Theorem 7 If \leq is a division order on L, then \leq is a well quasi order on L.

Let $I \subseteq A^+$.

- 1. The language L_I^ϵ is a context-free language generated by a grammar having only one variable.
- 2. The language $L_{\vdash_I}^{\epsilon}$ is not, in general, context-free.
- 3. The derivation relation \vdash_I^* is a division order on L_I^ϵ and $L_{\vdash_I}^\epsilon$.
- 4. The derivation relation \Rightarrow_I^* in general is not a division order neither on L_I^ϵ nor on $L_{\vdash_I}^\epsilon$.

Theorem 8 (Ehrenfeucht, Haussler, Rozenberg, 1983) Let $L \subseteq A^*$. L is regular if and only if it is upwards closed with respect to a monotone well quasi order of A^* .

Let $I \subseteq A^+$. The following conditions are equivalent:

- 1. The language L_I^ϵ is a regular language.
- 2. The derivation relation \Rightarrow_I^* is a well quasi order on A^* .
- 3. I is subword unavoidable.

Problem: Characterize the subsets I such that \Rightarrow_I^* is a well quasi order on L_I^ϵ .

Conjecture 2 The derivation relation is a well quasi order on L_I^{ϵ} if and only if it is a well quasi order on A^* .

The above conjecture holds if the following statement is true:

If I is avoidable, then \Rightarrow_I^* is not a well quasi order on L_I^ϵ .