Requisitos do Trabalho: Curvas Elípticas e Criptografia

24 de junho de 2025

Requisitos do Trabalho

1. Introdução Teórica

- Explicação do conceito de curvas elípticas sobre corpos finitos \mathbb{F}_p
- Definição da **equação de Weierstrass** $(y^2 = x^3 + ax + b)$ e condição de não-singularidade $(4a^3 + 27b^2 \neq 0)$
- Descrição do **grupo aditivo** dos pontos da curva (incluindo o ponto no infinito \mathcal{O})

2. Fundamentos Matemáticos

- Explicação do Problema do Logaritmo Discreto (ECDLP) em curvas elípticas
- \bullet Comparação entre curvas sobre \mathbb{R} e \mathbb{F}_p
- Menção às curvas sobre \mathbb{F}_{2^n} (opcional)

3. Criptografia de Curva Elíptica (ECC)

- Descrição do protocolo **ECDH** (Elliptic Curve Diffie-Hellman)
- Explicação do esquema de assinatura ECDSA
- Comparação entre ECC e RSA (tamanhos de chave equivalentes)

4. Implementação em Python

- Requisitos técnicos:
 - Uso de bibliotecas como sympy, ecdsa ou implementação manual
- Funcionalidades obrigatórias:

- 1. Implementação da adição de pontos em \mathbb{F}_p
- 2. Implementação da multiplicação escalar (algoritmo double-and-add)
- 3. Simulação do protocolo **ECDH**
- 4. Implementação do **ECDSA** (opcional)

• Entradas/Saídas:

- Parâmetros de entrada: (p, a, b), ponto base G, chave privada n
- Saídas esperadas: pontos resultantes, chave compartilhada ou assinatura digital

5. Análise e Discussão

- Discussão sobre complexidade computacional das operações
- Análise de vulnerabilidades e ataques conhecidos
- Comparação entre diferentes curvas elípticas (e.g., NIST P-256 vs. Curve25519)

6. Conclusão e Reflexão

- Síntese dos desafios encontrados na implementação
- Reflexão sobre a importância das curvas elípticas na criptografia moderna

7. Apresentação e Formato

- Relatório:
 - Estrutura clara (introdução, desenvolvimento, resultados, conclusão)
 - Código bem documentado e explicado
- Apresentação oral (opcional):
 - Slides com pontos-chave
 - Demonstração prática