$$\Sigma(1940) \ 3/2^-$$

$$I(J^P) = 1(\frac{3}{2}^-)$$
 Status: ***

For results published before 1974 (they are now obsolete), see our 1982 edition Physics Letters **111B** 1 (1982).

Not all analyses require this state. It is not required by the GOYAL 77 analysis of $K^- n \to (\Sigma \pi)^-$ nor by the GOPAL 80 analysis of $K^- n \to K^- n$. See also HEMINGWAY 75.

Σ(1940) MASS

VALUE (MeV)	DOCUMENT ID		TECN COMMENT			
1900 to 1950 (≈ 1940) OUR ESTIMATE						
1920 ± 50	GOPAL	77	DPWA $\overline{K}N$ multichannel			
1950 ± 30	BAILLON	75	IPWA $\overline{K}N o \Lambda\pi$			
$1949 + 40 \\ -60$	VANHORN	75	DPWA $K^- p \rightarrow \Lambda \pi^0$			
1935 ± 80	KANE		DPWA $K^-p \rightarrow \Sigma \pi$			
1940 ± 20	LITCHFIELD	74 B	DPWA $K^- p \rightarrow \Lambda(1520) \pi^0$			
1950 ± 20	LITCHFIELD	74 C	DPWA $K^- p \rightarrow \Delta(1232) \overline{K}$			
• • • We do not use the following data for averages, fits, limits, etc. • •						
1886 or 1893			DPWA $\overline{K}N$ multichannel			
1940	DEBELLEFON	l 76	IPWA $K^- p \rightarrow \Lambda \pi^0$, F_{17} wave			

Σ(1940) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN COMMENT		
150 to 300 (≈ 220) OUR ESTIMATE					
170 ± 25	CAMERON	78 B	DPWA $K^- p \rightarrow N \overline{K}^*$		
300 ± 80	GOPAL	77	DPWA $\overline{K}N$ multichannel		
$150\!\pm\!75$	BAILLON	75	IPWA $\overline{K}N o \Lambda\pi$		
160^{+70}_{-40}	VANHORN	75	DPWA $K^-p \rightarrow \Lambda\pi^0$		
330 ± 80	KANE	74	DPWA $K^-p \rightarrow \Sigma \pi$		
60 ± 20	LITCHFIELD	74 B	DPWA $K^- p \rightarrow \Lambda(1520) \pi^0$		
70^{+30}_{-20}	LITCHFIELD	74 C	DPWA $K^-p \rightarrow \Delta(1232)\overline{K}$		
• • • We do not use the following data for averages, fits, limits, etc. • •					
157 or 159	¹ MARTIN	77	DPWA $\overline{K}N$ multichannel		

Created: 5/30/2017 17:20

Σ (1940) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	NK	<20 %
Γ_2	$\Lambda\pi$	seen
Γ ₃	$\Sigma \pi$	seen
Γ_4	$\Sigma(1385)\pi$	seen
Γ_5	$\Sigma(1385)\pi$, $\it S-wave$	
Γ_6	$\Lambda(1520)\pi$	seen
Γ_7	$arLambda(1520)\pi$, $\mathit{P} ext{-}$ wave	
Γ ₈	$arLambda(1520)\pi$, $\mathit{F} ext{-}$ wave	
	$\Delta(1232)\overline{K}$	seen
Γ_{10}	$\Delta(1232)\overline{K}$, $\mathit{S} ext{-}$ wave	
Γ_{11}	${\it \Delta}(1232)\overline{\it K}$, ${\it D}$ -wave	
Γ_{12}	$N\overline{K}^{*}(892)$	seen
Γ ₁₃	$N\overline{K}^*(892)$, $S=3/2$, S -wave	

Σ (1940) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(N\overline{K})/\Gamma_{\text{total}}$				Γ_1/Γ	
VALUE	DOCUMENT ID	,	TECN	COMMENT	
<0.2 OUR ESTIMATE					
< 0.04	GOPAL	77	DPWA	$\overline{K}N$ multichannel	
0.14 or 0.13	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel	
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma$	-		TECN	$(\Gamma_1\Gamma_2)^{\frac{1}{2}}/\Gamma$	
VALUE	DOCUMENT ID		TECN DDAG	COMMENT	
-0.06 ± 0.03	GOPAL			K N multichannel	
-0.04 ± 0.02	BAILLON	75	IPWA	$\overline{K}N \rightarrow \Lambda\pi$	
$-0.05 \begin{array}{c} +0.03 \\ -0.02 \end{array}$	VANHORN	75	DPWA	$K^- p \rightarrow \Lambda \pi^0$	
$-0.153\!\pm\!0.070$	DEVENISH	74 B		Fixed-t dispersion rel.	
• • • We do not use the following	g data for averag	es, fits,	limits, e	tc. • • •	
-0.15 or -0.14	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel	
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N \overline{K} \to \Sigma (1940) \to \Sigma \pi$ $(\Gamma_1 \Gamma_3)^{\frac{1}{2}} / \Gamma$					
VALUE	<u>DOCUMENT ID</u>	<u> </u>	<u>TECN</u>	COMMENT	
-0.08 ± 0.04	GOPAL	77	DPWA	$\overline{K}N$ multichannel	
-0.14 ± 0.04	KANE	74	DPWA	$K^-p \rightarrow \Sigma \pi$	
ullet $ullet$ We do not use the following	g data for averag	es, fits,	limits, e	tc. • • •	
+0.16 or +0.16	$^{ m 1}$ MARTIN	77	DPWA	$\overline{K}N$ multichannel	

Created: 5/30/2017 17:20

$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(1)$	940) → Λ(152				
< 0.03	CAMERON	77	DPWA	$K^- p \rightarrow$	$\Lambda(1520) \pi^{0}$
< 0.03 -0.11±0.04	LITCHFIELD	74 B	DPWA	$K^-p \rightarrow$	$\Lambda(1520)\pi^{0}$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma (1)$	940) → Λ(152	•			. = -, ,
0.062 ± 0.021 -0.08 ± 0.04	CAMERON	77	DPWA	$K^-p \rightarrow$	$\Lambda(1520) \pi^{0}$
-0.08 ± 0.04	LITCHFIELD	74 B	DPWA	$K^-p \rightarrow$	$\Lambda(1520) \pi^{0}$
$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{\frac{1}{2}}/\Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow \Sigma(1)}{\frac{VALUE}{-0.16 \pm 0.05}}$	$940) \rightarrow \triangle(123)$ $DOCUMENT ID$	32) <i>K</i>	, S-wav	e <u>COMMENT</u>	(Γ ₁ Γ ₁₀) ^{1/2} /Γ
-0.16 ± 0.05	LITCHFIELD	74C	DPWA	$K^-p \rightarrow$	$\Delta(1232) K$
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(1)$	940) → Δ(123	32) <i>K</i>	, <i>D</i> -wav	re <u>COMMENT</u>	(Γ ₁ Γ ₁₁) ^½ /Γ
<u>VALUE</u> −0.14±0.05	LITCHFIELD	74 C	DPWA	$K^-p \rightarrow$	Δ (1232) \overline{K}
$(\Gamma_i \Gamma_f)^{1/2} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Sigma(1)$	940) → Σ(138	$35)\pi$			(Γ ₁ Γ ₄) ^½ /Γ
<u>VALUE</u> +0.066±0.025	² CAMERON	78	DPWA	$K^- p \rightarrow$	$\Sigma(1385)\pi$
$\frac{\left(\Gamma_{i}\Gamma_{f}\right)^{1/2}/\Gamma_{total} \text{ in } N\overline{K} \rightarrow \Sigma(1)}{\frac{VALUE}{-0.09 \pm 0.02}}$	940) → <i>N</i> \(\overline{K}^* ((892)			$(\Gamma_1\Gamma_{12})^{\frac{1}{2}}/\Gamma$
-0.09 ± 0.02	³ CAMERON	78 B	DPWA	$K^-p \rightarrow$	N K *

Σ (1940) FOOTNOTES

Σ (1940) REFERENCES

PDG GOPAL CAMERON CAMERON GOPAL GOYAL MARTIN Also Also DEBELLEFON BAILLON HEMINGWAY VANHORN Also DEVENISH KANE LITCHFIELD	82 80 78 78B 77 77 77 77 76 75 75 75 74B 74 74B	PL 111B 1 Toronto Conf. 159 NP B143 189 NP B146 327 NP B131 399 NP B119 362 PR D16 2746 NP B127 349 NP B126 266 NP B126 285 NP B109 129 NP B94 39 NP B91 12 NP B87 145 NP B87 157 NP B81 330 LBL-2452 NP B74 19	M. Roos et al. G.P. Gopal W. Cameron et al. W. Cameron et al. W. Cameron et al. G.P. Gopal et al. D.P. Goyal, A.V. Sodhi B.R. Martin, M.K. Pidcock, R.G. B.R. Martin, M.K. Pidcock B.R. Martin, M.K. Pidcock A. de Bellefon, A. Berthon P.H. Baillon, P.J. Litchfield R.J. Hemingway et al. A.J. van Horn A.J. van Horn R.C.E. Devenish, C.D. Froggatt, D.F. Kane P.J. Litchfield et al.	(LOUC) (LOUC) IJP (CDEF) IJP (CERN, RHEL) IJP (CERN, HEIDH, MPIM) IJP (LBL) IJP (LBL) IJP
LITCHFIELD	74B	NP B74 19	P.J. Litchfield <i>et al.</i>	(CERN, HÈIDH) IJP
LITCHFIELD	74C	NP B74 39	P.J. Litchfield <i>et al.</i>	(CERN, HEIDH) IJP

Created: 5/30/2017 17:20

 $^{^1}$ The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. 2 The published sign has been changed to be in accord with the baryon-first convention. 3 Upper limits on the D_1 and D_3 waves are each 0.03.