

Entreprise agréée solidaire et labellisée :

Salut:)

Josselin Tobelem Formateur

- développeur java, prof de maths
- formateur référent promos dev web
- les maths, les logiciels libres... > geek #<
- depuis 2019, missions data
- passé la DP100 en juin
- et vous?

Groupes Azure, workspaces

```
jt-dp100:
jt-dp100-usa-est:
jt-dp100-usa-west:
jt-dp100-europe-nord:
```

SOMMAIRE

I - Présentation d'Azure

la plateforme de cloud microsoft

- 1. portail
- 2. studio AML
- 3. sdk

II - Présentation de la certification de la certification

III - Pratique

- 1. environnement Azure
- 2. environnement local
- 3. retour sur deux notions importantes

IV - Bilan

de cette introduction

Présentation d'Azure et AzureML

Plateforme Azure

- plateforme de cloud, comme AWS ou GCP
- cloud computing (application serverless)
- data storage
- services IA (cognitives services, automl, ...)
- devops
- dashboards d'expériences
- ...

Azure ML

Domain specific pretrained models

To simplify solution development

Search Language

Familiar Data Science tools

To simplify model development

Visual Studio Code

Azure Notebooks

Command line

Popular frameworks

To build advanced deep learning solutions

TensorFlow Scikit-Learn

Productive services

To empower data science and development teams

Azure **Databricks**

Azure Machine Learning

Learning VMs

Powerful infrastructure

To accelerate deep learning

CPU

GPU

FPGA

Les étapes d'un projet de data science

Notions essentielles

Présentation d'Azure

Portail

https://portal.azure.com/

- Création de groupe de ressources
- Gestion des espaces de travail
- Gestion de la souscription

Azure services

Management...

	resou	

Name	Type	Last Viewed
Microsoft Azure Sponsorship (9114a63e-9210-4e32-97ca-b7d9e8ac403d)	Subscription	2 weeks ago
<u> </u>	Machine Learning	3 weeks ago
emotion-resource	Cognitive Services	4 months ago
jt-dp100-ressources	Resource group	4 months ago
ognitive-service-resources	Resource group	4 months ago
aibs-vm	Virtual machine	4 months ago
📍 Al School Azure	Subscription	4 months ago

Navigate

Subscriptions

Resource groups

All resources

Dashboard

Tools

Microsoft Learn 7 Learn Azure with free online training from Microsoft

Security Center Secure your apps and infrastructure

Studio

https://ml.azure.com/

- Regroupe les services liés au ML
- Notebooks
- Instances de calcul
- Datasets, datastores
- Modèles
- ...

Les composants AzureML dans le studio

SDKs

https://docs.microsoft.com/en-us/azure/developer/python/azure-sdk-overview

- Permet d'utiliser toutes les fonctions d'azure (donc du portail) depuis python
- l'api complète d'azure :
 https://docs.microsoft.com/en-us/python/api/?view=azure-python

pour installer toutes les dépendances : environnement virtuel ou <u>conda</u>

Présentation de la certification

Exam DP-100

Designing and Implementing a Data Science
Solution on Azure

Certification DP100

https://docs.microsoft.com/en-us/learn/certifications/exams/dp-100

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE3VUjA

- Le contenu de cet examen a été mis à jour 22 mai 2020.
- Mettre en place un espace de travail Azure Machine Learning (30-35%)
- Exécuter des expériences et former les modèles (25-30%)
- Optimiser et gérer les modèles (20-25%)
- Déployer et consommer les modèles (20-25%)

Programme de la préparation

3 jours en présentiel

introduction à Azure, sdk (experiments, models, data, remote compute, automl)

- mercredi 30 septembre 2020
- jeudi 1er octobre
- vendredi 2 octobre

2 jours en distanciel

pipeline, deploy + modalités exam

- lundi 23 novembre 2020
- jeudi 26 novembre 2020

Ressources

- <u>Parcours d'apprentissage microsoft : Créer des solutions d'IA avec AML</u>
 (tout ce qu'il faut pour préparer la dp100)
- <u>Parcours d'apprentissage microsoft : Créer des modèles Machine Learning</u> (des notebooks pour revoir la base sur du machine learning sans azure + librairies pytorch, tf, etc ...)
 - Repository microsoft
 - API azure
 - Getting Started with AML
 - Mon repo prepa-dp100

Notions essentielles

Partie pratique

Portail et studio + exercices du parcours

Installer son environnement en local

Configuration d'azureML

Focus sur deux notions clés

Datastores/datasets et compute targets

Prise en main de la plateforme

mon repo:

https://github.com/jtobelem-simplon/dp100-brief-init

Prise en main de la plateforme

https://portal.azure.com/

Allez sur le groupe de ressource : it-dp100-resources

Sélectionnez l'espace de travail : **jt-dp100**

Azure Machine Learning Studio

(cela ouvre le studio)

Localisation: choisissez europe occidentale (et pas france)

Création d'une instance de calcul

Créez une machine de type standard d2 v3 standard ds11 v2: **machine-xx** (remplacez xx par vos initiales)

La vm a été créée avec succès

On accède à jupyter notebook

Accès au terminal

Clone du git qui contient les notebooks mslearn

```
💢 jupyter
```

```
azureuser@machine-jt:/mnt/batch/tasks/shared/LS_root/mounts/clusters/machine-jt/code$ ls

azureuser@machine-jt:/mnt/batch/tasks/shared/LS_root/mounts/clusters/machine-jt/code$ cd Users/jtobelem/
azureuser@machine-jt:/mnt/batch/tasks/shared/LS_root/mounts/clusters/machine-jt/code/Users/jtobelem$ git clone https://github.com/MicrosoftDocs/mslearn-aml-labs.git
```


Allez dans votre dossier avec cd et clonez le repo des notebooks : git clone https://github.com/MicrosoftDocs/mslearn-aml-labs.git

Liste des notebooks du repo

A vous de jouer

Suivez les modules et exécutez les notebooks correspondants :

https://docs.microsoft.com/fr-fr/learn/paths/build-ai-s olutions-with-azure-ml-service/

Installation de l'environnement Azure en local

mon repo:

https://github.com/jtobelem-simplon/dp100-brief-init-expert

Prérequis

- Python > 3.6
- <u>Conda</u> (+ prompt pour windows), anaconda ou minconda (miniconda suffit)
- Git (git pour windows)
- vscode

Création d'un environnement vide conda

Toutes les commandes suivantes se font dans le terminal linux ou dans le prompt conda

```
(base) lab@lab:~$ conda -V
conda 4.8.5
(base) lab@lab:~$ conda update conda
Collecting package metadata (current_repodata.json): done
Solving environment: done

# All requested packages already installed.
(base) lab@lab:~$ [
```



```
(base) lab@lab:~$ conda create -n azure python=3.7 anaconda
```


Clonage du repo du cours et du repo microsoft

```
(base) lab@lab:~$ git clone --recurse-submodules https://github.com/jtobelem-sim
plon/prepa-dp100.git
```


Mise à jour de l'environnement avec le repo

```
(base) lab@lab:~$ cd prepa-dp100/env/
(base) lab@lab:~/prepa-dp100/env$ conda activate azure
(azure) lab@lab:~/prepa-dp100/env$ conda env update --file environment.yml
```


Jupyter notebook

```
(base) lab@lab:~$ git clone --recurse-submodules https://github.com/jtobelem-sim
plon/prepa-dp100.git
Clonage dans 'prepa-dp100'...
remote: Enumerating objects: 191, done.
remote: Counting objects: 100% (191/191), done.
remote: Compressing objects: 100% (137/137), done.
remote: Total 191 (delta 90), reused 137 (delta 39), pack-reused 0
Réception d'objets: 100% (191/191), 1.24 MiB | 460.00 KiB/s, fait.
Résolution des deltas: 100% (90/90), fait.
Sous-module 'mslearn-aml-labs' (https://github.com/MicrosoftDocs/mslearn-aml-lab
s.git) enregistré pour le chemin 'mslearn-aml-labs'
Clonage dans '/home/lab/prepa-dp100/mslearn-aml-labs'...
remote: Enumerating objects: 14, done.
remote: Counting objects: 100% (14/14), done.
remote: Compressing objects: 100% (12/12), done.
remote: Total 292 (delta 3), reused 5 (delta 2), pack-reused 278
Réception d'objets: 100% (292/292), 491.70 KiB | 294.00 KiB/s, fait.
Résolution des deltas: 100% (185/185), fait.
Chemin de sous-module 'mslearn-aml-labs' : 'c4671ca81f8cfb1cf1415a43c9d3ee0d506d
7231' extrait
(base) lab@lab:~$ conda activate azure
(azure) lab@lab:~$ cd prepa-dp100/
(azure) lab@lab:~/prepa-dp100$ jupyter notebook
```


Test de l'environnement

Ouvrez le notebook 0-config pour vérifier votre environnement

MSLearn labs en local

Vous pouvez maintenant tester le repo MSLearn en local

Problèmes rencontrés

Voici une liste des problèmes (corrigés ou pas) rencontrés :

- dépendance mlflow
- installation de docker sous windows (lors du run d'un estimator)
- 04-Working_with_Compute:
 le cluster-name ne peut depasser 16 characteres, utilisez le nom 'aml-cluster'

Focus sur deux notions clés

Datastores/dataset

- Magasins de données : <u>datastores</u>
 - o <u>dataref</u>
 - o <u>datasets</u>
 - tabular dataset
 - file data set

Compute target

Pour exécuter un notebook, il faut une machine :

- local
- ComputeInstance

A l'interieur d'un notebook, on peut réaliser des expériences (par exemple fit un modèle) que l'on va faire tourner sur une computeTarget :

- local
- ComputeInstance
- AmlCompute

Bilan

Retour sur le programme

01-Getting Started with Azure ML.ip... 02-Training Models.ipynb 03-Working_with_Data.ipynb 04-Working with Compute.jpynb 05-Creating a Pipeline.ipynb 06-Deploying a model.ipynb 07-Creating a Batch Inferencing Serv... 08-Tuning Hyperparameters.ipynb 09-Automated ML.ipvnb 10-Interpreting_Models.ipynb 11-FairLearn.ipynb 12-Monitoring a Model.ipynb 13-Monitoring Data Drift.ipynb

Déjà abordé:

- configuration, compute, datasets/stores
- automl

Reste à voir:

- pipeline, deploy
- interprétation des modèles