Diodes

- Diodes are essentially one-way current gates
- Symbolized by:

• Current vs. voltage graphs:

plain resistor

diode

idealized diode

WAY idealized diode

the direction the arrow points in the diode symbol is the direction that current will flow

Diode Makeup

- Diodes are made of semiconductors (usually silicon)
- Essentially a stack of p-doped and n-doped silicon to form a p-n junction
 - doping means deliberate impurities that contribute extra electrons (n-doped) or "holes" for electrons (p-doped)
- Transistors are *n-p-n* ir *p-n-p* arrangements of semiconductors

LEDs: Light-Emitting Diodes

- Main difference is material is more exotic than silicon used in ordinary diodes/transistors
 - typically 2-volt drop instead of 0.6 V drop
- When electron flows through LED, loses energy by emitting a photon of light rather than vibrating lattice (heat)
- Anything with an LED cares about the battery orientation (it's still a diode, after all)
- LED efficiency is 30% (compare to incandescent bulb at 10%)

Getting DC back out of AC

- AC provides a means for us to distribute electrical power, but most devices actually *want* DC
 - bulbs, toasters, heaters, fans don't care: plug straight in
 - sophisticated devices care because they have diodes and transistors that require a certain polarity
 - rather than oscillating polarity derived from AC
 - this is why battery orientation matters in most electronics
- Use diodes to "rectify" AC signal
- Simplest rectifier uses one diode:

Doing Better: Full-wave Diode Bridge

- The diode in the rectifying circuit simply prevented the negative swing of voltage from conducting
 - but this wastes half the available cycle
 - also very irregular (bumpy): far from a "good" DC source
- By using four diodes, you can recover the negative swing:

5

Smoothing out the Bumps

- Still a bumpy ride, but we can smooth this out with a capacitor
 - capacitors have capacity for storing charge
 - acts like a reservoir to supply current during low spots
 - voltage regulator smoothes out remaining ripple

PUBLISHED ONLINE: 28 SEPTEMBER 2015 | DOI: 10.1038/NNANO.2015.220

A carbon nanotube optical rectenna

Asha Sharma^{1,2†}, Virendra Singh^{1†}, Thomas L. Bougher^{1†} and Baratunde A. Cola^{1,3*}

An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago¹, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale^{2,3}. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 PHz (switching speed on the order of 1 fs). Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads^{3,4}, but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna². Here we demonstrate an optical rectenna by engineering metal-insulator-metal tunnel diodes, with a junction capacitance of \sim 2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (~10 nm in diameter), which act as the antenna^{5,6}. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports

I-V curve of a diode

Drifting

Electrical Resistance

Resistance

$$R \equiv \frac{V}{I} = \rho \frac{L}{Wt}$$

(Unit: ohms)

where ρ is the resistivity

Potential vs. Kinetic Energy

$E_{\rm c}$ represents the electron potential energy:

$$P.E. = E_c - E_{reference}$$

Under thermal equilibrium

Electrostatic Potential, V

• The potential energy of a particle with charge -q is related to the electrostatic potential V(x):

P.E. =
$$-qV$$

$$V = \frac{1}{q}(E_{\text{reference}} - E_{\text{c}})$$

Electric Field, ε

$$\mathcal{E} = -\frac{dV}{dx} = \frac{1}{q} \frac{dE_{c}}{dx}$$

• Variation of E_c with position is called "band bending."

Under a biasing condition

Diffusion

Carrier Diffusion

- Due to thermally induced random motion, mobile particles tend to move from a region of high concentration to a region of low concentration.
 - Analogy: ink droplet in water
- Current flow due to mobile charge diffusion is proportional to the carrier concentration gradient.
 - The proportionality constant is the *diffusion constant*.

$$J_p = -qD_p \frac{dp}{dx}$$

Notation:

 $D_{\rm p} \equiv \text{hole diffusion constant (cm}^2/\text{s})$

 $D_{\rm n}^{\rm r} \equiv {\rm electron\ diffusion\ constant\ (cm^2/s)}$

Diffusion Current

• Diffusion current within a semiconductor consists of hole and electron components:

$$J_{p,diff} = -qD_{p} \frac{dp}{dx} \qquad J_{n,diff} = qD_{n} \frac{dn}{dx}$$

$$J_{tot,diff} = q(D_{n} \frac{dn}{dx} - D_{p} \frac{dp}{dx})$$

• The total current flowing in a semiconductor is the sum of drift current and diffusion current:

$$J_{tot} = J_{p,drift} + J_{n,drift} + J_{p,diff} + J_{n,diff}$$

Non-Uniformly-Doped Semiconductor

- The position of E_F relative to the band edges is determined by the carrier concentrations, which is determined by the net dopant concentration.
- In equilibrium E_F is constant; therefore, the band-edge energies vary with position in a non-uniformly doped semiconductor:

Built-In Electric Field due to n(x), p(x)

Consider a piece of a non-uniformly doped semiconductor:

Quasi-Neutrality Approximation

• If the dopant concentration profile varies gradually with position, then the majority-carrier concentration distribution does not differ much from the dopant concentration distribution.

$$N_{\rm D}(x) + p(x) = N_{\rm A}(x) + n(x)$$

- n-type material: $n(x) \cong N_D(x) N_A(x)$
- p-type material: $p(x) \cong N_A(x) N_D(x)$

$$\Rightarrow \mathcal{E} = -\frac{kT}{q} \left(\frac{1}{n} \right) \frac{dn}{dx} = -\frac{kT}{q} \left(\frac{1}{N_{\rm D}} \right) \frac{dN_{\rm D}}{dx} \quad \text{in n-type material}$$