Math. - ES 1 - CORRECTION

EXERCICE 1

Soit $n \in \mathbb{N}^*$. Une matrice $A \in \mathscr{M}_n(\mathbb{R})$ est dite **pseudo-inversible** s'il existe une matrice $B \in \mathscr{M}_n(\mathbb{R})$ telle que :

- (1) AB = BA
- (2) ABA = A
- (3) BAB = B

On dit dans ce cas que B est une pseudo-inverse de A.

- 1. Soit A une matrice pseudo-inversible de $\mathcal{M}_n(\mathbb{R})$, et B_1 et B_2 deux pseudo-inverses de A.
 - a. En calculant AB_1AB_2 de deux façons différentes, montrer que $AB_1=AB_2$. $AB_1AB_2=(AB_1A)B_2=AB_2 \text{ et } AB_1AB_2=(AB_1)(AB_2)=(B_1A)(B_2A)=B_1(AB_2A)=B_1A=AB_1$ d'où $AB_2=AB_1$
 - **b.** En déduire que $B_1 = B_2$. On a : $AB_1 = AB_2 \Rightarrow B_1AB_1 = B_1AB_2 \Rightarrow B_1 = B_1AB_2$ De plus, $AB_1 = AB_2 \Rightarrow B_1A = B_2A \Rightarrow B_1AB_2 = B_2AB_2 = B_2$ D'où $B_1 = B_2$.

Ainsi la matrice A admet une unique pseudo-inverse, appelée la pseudo-inverse de A notée A^* .

- 2. Montrer que la matrice nulle de $\mathcal{M}_n(\mathbb{R})$ est pseudo-inversible et déterminer sa pseudo-inverse. $A = B = 0_n$ vérifient les trois propriétés d'une matrice pseudo-inversible d'où $0_n^* = 0_n$.
- 3. Montrer que toute matrice inversible de $\mathcal{M}_n(\mathbb{R})$ est pseudo-inversible et déterminer sa pseudo-inverse. A=P et $B=P^{-1}$ vérifient les trois propriétés d'où $P^*=P^{-1}$.
- **4.** Soit N une matrice non nulle de $\mathcal{M}_n(\mathbb{R})$ telle que :

$$\exists p \in \mathbb{N}^*, \quad N^p = 0_n \quad \text{et} \quad N^{p-1} \neq 0_n$$

On suppose de plus que N est pseudo-inversible.

- **a.** Montrer que pour tout entier $k \geq 2, N^*N^k = N^{k-1}$. Pour $k \geq 2$: $N^*N^k = (N^*N)N^{k-1} = (NN^*)NN^{k-2} = (NN^*N)N^{k-2} = NN^{k-2} = N^{k-1}$.
- b. En déduire que N n'est pas pseudo-inversible. On remarque tout d'abord que $p \geq 2$ car $N \neq 0_n$. Alors, si N était pseudo-inversible, pour k = p, le résultat précédent donnerait : $N^*N^p = N^{p-1}$ or $N^p = 0_3$ et $N^{p-1} \neq 0_3$ on a donc une contradiction. On en déduit que N n'est pas pseudo-inversible.
- c. Soit $N = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$. N peut-elle être pseudo-inversible? $N \neq 0_2$ et $N^2 = 0_2$ donc d'après la question précédente, N n'est pas pseudo-inversible.
- **5. a.** Soit D une matrice diagonale de $\mathcal{M}_n(\mathbb{R})$. Montrer que D est pseudo-inversible et déterminer sa pseudo-inverse. On pourra distinguer les éléments diagonaux nuls des autres.

On note $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Pour $i \in [1, n]$, si $\lambda_i \neq 0$ on note $\mu_i = \frac{1}{\lambda_i}$ et si $\lambda_i = 0$, on note $\mu_i = 0$. Alors la matrice $\operatorname{diag}(\mu_1, \dots, \mu_n)$ vérifie les propriétés de la pseudo-inverse de D.

b. Soient P une matrice inversible de $\mathcal{M}_n(\mathbb{R})$ et D une matrice diagonale de $\mathcal{M}_n(\mathbb{R})$. On pose $A = PDP^{-1}$. Montrer que A est pseudo-inversible et exprimer A^* en fonction de D^* et P. La matrice PD^*P^{-1} vérifie les trois propriétés.

EXERCICE 2

On donne les valeurs approchées suivantes : $e \simeq 2,72; \frac{1}{\sqrt{e}} \simeq 0,61; \sqrt{2} \simeq 1,41$ et $\ln(3) \simeq 1,10$

I. Étude d'une fonction

Soit f la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \quad f(x) = 3xe^{-x^2} - 1$$

1. Étudier la variations de f sur \mathbb{R} .

Les théorèmes généraux donnent f dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'(x) = 3e^{-x^2}(1 - 2x^2)$. On en déduit que f est décroissante sur $\left[-\infty; -\frac{1}{\sqrt{2}}\right]$ et sur $\left[\frac{1}{\sqrt{2}}; +\infty\right[$ et qu'elle est croissante sur $\left[-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right]$.

2. Déterminer les limites de f aux bornes de son domaine, et préciser les éventuelles asymptotes à sa courbe représentative \mathcal{C}_f .

Le théorème des croissances comparées donne $\lim_{x\to +\infty} f(x) = -1$.

On en déduit que \mathscr{C}_f admet la droite d'équation y = -1 pour asymptote en $\pm \infty$.

3. Dresser le tableau de variations de f.

4. Donner l'équation de la tangente à \mathscr{C}_f en 0, et étudier la position de la courbe par rapport à sa tangente. L'équation de la tangente est y = 3x - 1.

 $\forall x \in \mathbb{R}, \quad f(x) - (3x - 1) = 3x \left(e^{-x^2} - 1 \right);$

 $\forall x \in \mathbb{R}, \quad -x^2 \le 0$, donc $e^{-x^2} - 1 \le 0$ et f(x) - (3x - 1) est du signe opposé à celui de x.

Ainsi, la courbe est au-dessus de la tangente sur \mathbb{R}^- et en-dessous sur \mathbb{R}^+ .

5. Donner l'allure de la courbe de f.

II. Etude d'une équation différentielle

Soit $n \in \mathbb{N}^*$. Soit E_n l'équation différentielle :

$$xy' - (n - 2x^2)y = n - 2x^2$$

Soit H_n l'équation homogène associée à E_n .

1. Résoudre H_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.

$$\int_{-\infty}^{\infty} \frac{n - 2t^2}{t} dt = n \ln|x| - x^2 + C^{te}$$

Donc les solutions de H_n sur $I \in \{\mathbb{R}_+^*, \mathbb{R}_+^*\}$ sont les fonctions de la forme $y_0 : \begin{vmatrix} I & \to & \mathbb{R} \\ x & \mapsto & Cx^n e^{-x^2} \end{vmatrix}$, où $C \in \mathbb{R}$.

2. En déduire les solutions de E_n sur $]0, +\infty[$ et sur $]-\infty, 0[$.

 $x\mapsto -1$ est une solution triviale de E_n . On en déduit l'ensemble des solutions de E_n sur $I:S=\left\{x\mapsto -1+Cx^n\mathrm{e}^{-x^2},C\in\mathbb{R}\right\}$

3. Donner toutes les fonctions de classe C^1 sur \mathbb{R} et solutions de E_n sur \mathbb{R} .

On distinguera les cas n = 1 et $n \ge 2$.

Il s'agit ici de déterminer parmi les solutions trouvées à la question précédente celles qui se recollent en 0 pour former une fonction de classe C^1 sur \mathbb{R} .

Les solutions définies sur \mathbb{R}_{+}^{*} et sur \mathbb{R}_{+}^{*} sont de classe C^{∞} sur leur intervalle de définition. Pour trouver les

fonctions y solutions sur \mathbb{R} , il faut réussir à prolonger les solutions en 0, et à les rendre dérivable en 0. On remarque tout d'abord que pour tout $n \in \mathbb{N}^*$, $\lim_{x \to 0^-} Cx^n \mathrm{e}^{-x^2} - 1 = \lim_{x \to 0^+} Cx^n \mathrm{e}^{-x^2} - 1 = -1$ et cela quelle que soit la constante C. Le recollement sera donc toujours continu en 0 en prenant y(0) = -1, quelles que soient les constantes choisies sur \mathbb{R}_{+}^{*} et sur \mathbb{R}_{+}^{*} (éventuellement différentes).

De plus, si x > 0 ou x < 0, on aura $\frac{y(x) - y(0)}{x - 0} = Cx^{n-1}e^{-x^2}$ qui admet toujours une limite en 0^+ et en 0^- égale à 0 si $n \ge 2$ et à C si n = 1. On en déduit que pour n = 1, il faudra prendre la même constante sur \mathbb{R}_{-}^* et sur \mathbb{R}_+^* pour assurer la dérivabilité en 0.

Ainsi, si n=1, les solutions sur $\mathbb R$ sont les fonctions $x\mapsto Cx\mathrm{e}^{-x^2}-1$ avec $C\in\mathbb R$ et si $n\geq 2$ les solutions sont les fonctions $x\mapsto \begin{cases} C_1x^n\mathrm{e}^{-x^2}-1 & \text{si } x>0 \\ C_2x^n\mathrm{e}^{-x^2}-1 & \text{si } x\leq 0 \end{cases}$ avec $C_1,C_2\in\mathbb R$.

III. Etude de deux suites

On suppose désormais que $n \geq 2$. On note

$$\forall x \in \mathbb{R}, \quad f_n(x) = 3x^n e^{-x^2} - 1$$

1. Quel est le signe de $f_n(0)$, de $f_n(1)$?

$$f_n(0) = -1 < 0 \text{ et } f_n(1) = \frac{3}{e} - 1 > 0.$$

2. Étudier les variations de f_n sur l'intervalle $[0, +\infty[$, et donner la limite de $f_n(x)$ quand x tend vers $+\infty$.

Les théorèmes généraux donnent f_n dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, f'_n(x) = 3(n-2x^2)x^{n-1}e^{-x^2}$ Sur \mathbb{R}^+ , $f_n'(x)$ est du signe de $n-2x^2$. On en déduit que f_n est croissante sur $\left[0;\sqrt{\frac{n}{2}}\right]$ et décroissante sur $\left[\sqrt{\frac{n}{2}}; +\infty\right]$. Par ailleurs, $\lim_{x\to+\infty} f_n(x) = -1$, par croissances comparées.

3. En déduire que f_n s'annule sur $[0, +\infty[$ en deux réels notés u_n et v_n tel que $u_n < 1 < v_n$.

La fonction f_n est continue, strictement monotone sur $\left[0; \sqrt{\frac{n}{2}}\right]$; elle est donc bijective sur cet intervalle, avec

 $f_n(0) < 0$ et $f_n\left(\sqrt{\frac{n}{2}}\right) \ge f(1) > 0$. D'après le théorème de bijection, f_n s'annule donc une unique fois entre 0 et $\sqrt{\frac{n}{2}}$. Comme de plus $f_n(1) > 0$, cette valeur d'annulation est comprise entre 0 et 1.

De même, f_n est bijective sur $\left[\sqrt{\frac{n}{2}}; +\infty\right[$, avec $f_n\left(\sqrt{\frac{n}{2}}\right) > 0$ et $\lim_{x \to +\infty} f_n(a) = -1$, donc f_n s'annule une unique fois sur cet intervalle.

4. Quelle est la limite de la suite $(v_n)_{n\geq 2}$?

On a montré à la question précédente que $v_n \ge \sqrt{\frac{n}{2}}$. Comme $\lim_{n \to +\infty} \sqrt{\frac{n}{2}} = +\infty$, le théorème de comparaison donne $\lim_{n \to +\infty} v_n = +\infty$.

5. a. Expliciter $e^{-u_n^2}$ en fonction de u_n^n .

Par définition de u_n , $f_n(u_n) = 0$, on a donc $3u_n^n e^{-u_n^2} = 1$, d'où : $e^{-u_n^2} = \frac{1}{3u_n^n}$.

b. En déduire le signe de $f_{n+1}(u_n)$.

On a: $f_{n+1}(u_n) = 3u_n^{n+1}e^{-u_n^2} - 1 = \frac{3u_n^{n+1}}{3u_n^n} - 1 = u_n - 1.$

On sait par ailleurs que $u_n < 1$; on en déduit que $f_{n+1}(u_n) < 0$.

c. Déduire de ce qui précède la monotonie de la suite $(u_n)_{n\geq 2}$.

Par définition, $f_{n+1}(u_{n+1}) = 0$ et d'après le résultat précédent, $f_{n+1}(u_n) < 0$.

On a donc $f_{n+1}(u_{n+1}) > f_{n+1}(u_n)$ et comme la fonction f_{n+1} est strictement croissante sur l'intervalle [0; 1] auquel appartiennent u_n et u_{n+1} , on en déduit que $u_{n+1} > u_n$, et par suite, que la suite (u_n) est croissante.

d. Montrer que la suite (u_n) est convergente. On note L sa limite.

La suite (u_n) étant croissante et majorée par 1, elle converge d'après le théorème de convergence monotone.

6. Soit g_n définie sur $]0, +\infty[$ par

$$\forall x > 0, \quad g_n(x) = \ln(3) + n \ln(x) - x^2$$

a. Soit t > 0. Montrer que $g_n(t) = 0 \Leftrightarrow f_n(t) = 0$.

$$\forall t > 0,$$
 $g_n(t) = 0 \Leftrightarrow e^{g_n(t)} = 1 \Leftrightarrow 3t^n e^{-t^2} = 1 \Leftrightarrow f_n(t) = 0$

b. On suppose que $L \neq 1$. Trouver une contradiction en utilisant ce qui précède, et conclure quant à la limite de la suite (u_n) .

Si $L \neq 1$, comme (u_n) est positive, croissante et majorée par 1, on a nécessairement 0 < L < 1. Alors, $\lim_{n \to +\infty} n \ln(u_n) = -\infty$, et $\lim_{n \to +\infty} \ln(3) + n \ln(u_n) - u_n^2 = -\infty$.

Or, d'après la question précédente, pour tout $n \ge 2$, $\ln(3) + n \ln(u_n) - u_n^2 = g_n(u_n) = 0$ car $f_n(u_n) = 0$. On a donc une contradiction, et on en déduit que L = 1.

EXERCICE 3

Dans cet exercice, on note F l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ de la forme $\begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ avec $a, b \in \mathbb{R}$, et G l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^2 = M$.

Soient
$$A = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
 et $M = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} \in F$.

1. Montrer que $A \in F \cap G$.

 $A^2 = A$ donc $A \in G$ et les coefficients de A satisfont les conditions d'appartenance à F.

2. La matrice A est-elle inversible?

Si A était inversible, on aurait : $A^2 = A \Rightarrow AAA^{-1} = AA^{-1} \Rightarrow A = I_3$. Donc A n'est pas inversible.

3. a. Montrer que

$$M \in G \Leftrightarrow \left\{ \begin{array}{l} a^2 + 2b^2 = a \\ b(b + 2a - 1) = 0 \end{array} \right.$$

$$M \in G \Leftrightarrow M^2 = M \Leftrightarrow \left(\begin{array}{ll} a^2 + 2b^2 & b^2 + 2ab & b^2 + 2ab \\ b^2 + 2ab & a^2 + 2b^2 & b^2 + 2ab \\ b^2 + 2ab & b^2 + 2ab & a^2 + 2b^2 \end{array} \right) = \left(\begin{array}{ll} a & b & b \\ b & a & b \\ b & b & a \end{array} \right) \Leftrightarrow \left\{ \begin{array}{ll} a^2 + 2b^2 = a \\ b(b + 2a - 1) = 0 \end{array} \right.$$

b. En déduire que

$$F \cap G = \{I_3, 0_3, A, I_3 - A\}$$

$$M \in F \cap G \Leftrightarrow \begin{cases} a^2 + 2b^2 = a \\ b(b + 2a - 1) = 0 \end{cases} \Leftrightarrow \begin{cases} a^2 + 2b^2 = a \\ (b = 0) \lor (b = 1 - 2a) \end{cases} \Leftrightarrow \begin{cases} a^2 = a \lor \begin{cases} 9a^2 - 9a + 2 = 0 \\ b = 0 \lor \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases} a = 0 \\ b = 0 \end{cases} \lor \begin{cases} a = \frac{2}{3} \\ b = -\frac{1}{3} \end{cases} \lor \begin{cases} a = \frac{1}{3} \\ b = \frac{1}{3} \end{cases} \Leftrightarrow M \in \{0_3, I_3, A, I_3 - A\}$$

- **4.** On note $B = I_3 A$.
 - **a.** Déterminer $\alpha, \beta \in \mathbb{R}$ tels que

$$M = \alpha A + \beta B$$

$$\alpha A + \beta B = \frac{1}{3} \begin{pmatrix} 2\alpha + \beta & -\alpha + \beta & -\alpha + \beta \\ -\alpha + \beta & 2\alpha + \beta & -\alpha + \beta \\ -\alpha + \beta & -\alpha + \beta & 2\alpha + \beta \end{pmatrix} \text{ donc } M = \alpha A + \beta B \Leftrightarrow \left\{ \begin{array}{l} 2\alpha + \beta = 3a \\ -\alpha + \beta = 3b \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \alpha = a - b \\ \beta = a + 2b \end{array} \right.$$

b. Calculer AB et BA.

$$AB = BA = 0_3$$
.

c. Montrer par récurrence que

$$\forall n \in \mathbb{N}, \quad M^n = \alpha^n A + \beta^n B$$

Le résultat est immédiat pour n=0 et il a déjà été démontré pour n=1. Soit $n \in \mathbb{N}$: $(M^n - \alpha^n A + \beta^n B)$

$$\Rightarrow \left(M^{n+1} = (\alpha A + \beta B)(\alpha^n A + \beta^n B) = \alpha^{n+1} \underbrace{A^2}_{=A} + \alpha \beta^n \underbrace{AB}_{=0_3} + \beta \alpha^n \underbrace{BA}_{=0_3} + \beta^{n+1} \underbrace{B^2}_{=B} = \alpha^{n+1} A + \beta^{n+1} B\right)$$

Le résultat est ainsi montré par principe de récurrence.

5. Montrer que M est inversible si, et seulement si $\alpha \neq 0$ et $\beta \neq 0$.

A et B n'étant pas inversibles, les cas $\alpha=0$ et $\beta=0$ donnent immédiatement M non inversible. Si $\alpha\beta\neq0$ alors $M\left(\frac{1}{\alpha}A+\frac{1}{\beta}B\right)=(\alpha A+\beta B)\left(\frac{1}{\alpha}A+\frac{1}{\beta}B\right)=A^2+\frac{\alpha}{\beta}AB+\frac{\beta}{\alpha}BA+B^2=A+B=\mathrm{I}_3.$ Ainsi, dans ce cas M est inversible et $M^{-1}=\frac{1}{\alpha}A+\frac{1}{\beta}B.$

6. Si $\alpha\beta \neq 0$, montrer que

$$\forall n \in \mathbb{N}, \quad (M^{-1})^n = \alpha^{-n}A + \beta^{-n}B$$

Le cas n=0 est immédiat et le cas n=1 a été démontré à la question précédente. Soit $n\in\mathbb{N}$

$$(M^{-1})^n = \alpha^{-n}A + \beta^{-n}B \Rightarrow (M^{-1})^{n+1} = \left(\frac{1}{\alpha}A + \frac{1}{\beta}B\right)\left(\alpha^{-n}A + \beta^{-n}B\right) = \alpha^{-(n+1)}A + \beta^{-(n+1)}B$$

Le résultat est ainsi montré par principe de récurrence.

7. Soient $T = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}$ et $Y = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.

On considère alors la suite (X_n) de matrices colonnes définie par $X_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $\forall n \in \mathbb{N}, X_{n+1} = TX_n + Y$.

a. A l'aide de la question **4.**, exprimer la matrice T à l'aide de A et B.

T = 2A + 5B.

b. Démontrer qu'il existe une unique matrice colonne L, que l'on déterminera, telle que L = TL + Y.

$$\begin{split} L &= TL + Y \Leftrightarrow (\mathrm{I}_3 - T)L = Y \\ \mathrm{I}_3 - T &\in F \text{ et d'après la question } \textbf{4.}, \, \mathrm{I}_3 - T = -A - 4B \text{ donc, d'après la question } \textbf{6.} \, \left(\mathrm{I}_3 - B\right) \text{ est inversible} \\ \mathrm{et} \, \left(\mathrm{I}_3 - B\right)^{-1} &= -A - \frac{1}{4}B = -\frac{3}{4}A - \frac{1}{4}\mathrm{I}_3. \end{split}$$

On a donc l'existence et l'unicité de L telle que L = TL + Y, donnée par $L = (I_3 - T)^{-1}Y = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$

c. Démontrer que

$$\forall n \in \mathbb{N}, \quad X_{n+1} - L = T(X_n - L)$$

puis que

$$\forall n \in \mathbb{N}, \quad X_n = L + T^n(X_0 - L)$$

Pour $n \in \mathbb{N}$, $X_{n+1} = TX_n + Y = TX_n + L - TL \Leftrightarrow X_{n+1} - L = T(X_n - L)$ Une récurrence immédiate donne le second résultat.

d. Pour tout entier naturel n, exprimer X_n en fonction de A, B, L, X_0 et n.

T=2A+5B donc d'après la question **4.c**, $T^n=2^nA+5^nB$ d'où : $X_n=L+(2^nA+5^nB)(X_0-L)$

D'où :
$$X_n = \begin{pmatrix} -1 + \frac{2}{3} \left(2^{n+1} + 5^n \right) \\ 1 + \frac{2}{3} \left(-2^n + 5^n \right) \\ \frac{2}{3} \left(-2^n + 5^n \right) \end{pmatrix}$$

EXERCICE 4

On note f la fonction définie sur $\mathbb{C} \setminus \{1\}$ par

$$f(z) = \frac{z - \frac{7}{4} - i}{z - 1}$$

On munit le plan d'un repère orthonormé direct \mathcal{R} .

1. a. Montrer que les images par f sont dans $\mathbb{C} \setminus \{1\}$.

Pour $z \in \mathbb{C} \setminus \{1\}$, $(f(z) = 1) \Leftrightarrow \left(z - \frac{7}{4} - \mathbf{i} = z - 1\right) \Leftrightarrow \left(\frac{7}{4} + \mathbf{i} = 1\right)$; ce résultat étant toujours faux, on en déduit que : $\forall z \in \mathbb{C} \setminus \{1\}$, $f(z) \neq 1$ donc que f est à valeurs dans $\mathbb{C} \setminus \{1\}$.

b. Montrer que $\forall Z \in \mathbb{C} \setminus \{1\}, \exists z \in \mathbb{C} \setminus \{1\}, f(z) = Z$.

Soit
$$Z \in \mathbb{C} \setminus \{1\}$$
; pour $z \in \mathbb{C} \setminus \{1\}$ on a:

$$f(z) = Z \Leftrightarrow \frac{z - \frac{7}{4} - i}{z - 1} = Z \Leftrightarrow z(Z - 1) = Z - \frac{7}{4} - i \Leftrightarrow z = f(Z)$$

Que remarque-t-on?

Le résultat obtenu montre que f établit une bijection entre $\mathbb{C}\setminus\{1\}$ et lui-même et que la bijection réciproque de f sur $\mathbb{C}\setminus\{1\}$ est f elle-même.

2. a. Déterminer la forme algébrique de f(z) pour $z \neq 1$. On donnera l'expression à l'aide de Re(z) et Im(z).

$$\begin{array}{l} \text{En notant } z = x + \mathrm{i} y \text{ avec, } x, y \in \mathbb{R}, \text{ on obtient :} \\ f(z) = \frac{x^2 - \frac{11}{4} x + y^2 - y + \frac{7}{4}}{(x-1)^2 + y^2} + \mathrm{i} \, \frac{-x + \frac{3}{4} y + 1}{(x-1)^2 + y^2}. \end{array}$$

b. Déterminer les complexes z tels que $f(z) \in \mathbb{R}$. Donner une interprétation géométrique simple.

$$f(z) \in \mathbb{R} \Leftrightarrow \frac{-x + \frac{3}{4}y + 1}{(x-1)^2 + y^2} = 0 \Leftrightarrow -x + \frac{3}{4}y + 1 = 0$$
; on reconnait l'équation d'une droite.

<u>Remarque</u>: Si on considère le point M d'affixe z, le point M_1 d'affixe $z_1 = \frac{7}{4} + i$ et le point M_2 d'affixe $z_2 = 1$, on a pour $z \neq 1$, $M \neq M_2$ et $f(z) = \frac{z - z_1}{z - z_2}$, ainsi, $f(z) \in \mathbb{R}$ équivaut à z = 0 ou $\arg(f(z)) \equiv 0$ $[\pi]$ donc soit $M = M_1$, soit $(\overrightarrow{MM_2}, \overrightarrow{MM_1}) \equiv 0$ $[\pi]$; on en déduit que la droite trouvée est la droite (M_1M_2) , privée du point M_2 .

c. Déterminer les complexes z tels que $f(z) \in i \mathbb{R}$ (c'est-à-dire que f(z) est un imaginaire pur). Donner une interprétation géométrique simple.

$$f(z) \in \mathbf{i} \ \mathbb{R} \Leftrightarrow \frac{x^2 - \frac{11}{4}x + y^2 - y + \frac{7}{4}}{(x-1)^2 + y^2} = 0 \Leftrightarrow x^2 - \frac{11}{4}x + y^2 - y + \frac{7}{4} = 0 \Leftrightarrow \left(x - \frac{11}{8}\right)^2 + \left(y - \frac{1}{2}\right)^2 = \frac{25}{64}$$
 C'est l'équation du cercle de centre le point d'affixe
$$\frac{11}{8} + \frac{1}{2}\mathbf{i} \quad \text{et de rayon} \quad \frac{5}{8}.$$

Remarque: Avec les même notations que précédemment, on a $f(z) \in \mathbb{R}$ équivaut à z = 0 ou arg $(f(z)) \equiv \frac{\pi}{2} [\pi]$ donc soit $M = M_1$, soit $(\overrightarrow{MM_2}, \overrightarrow{MM_1}) \equiv \frac{\pi}{2} [\pi]$; on en déduit que le cercle trouvé est le cercle de diamètre $[M_1M_2]$, privé du point M_2 .

d. Déterminer les complexes z tels que $f(z) \in \mathbb{U}$ (c'est-à-dire |f(z)| = 1). Donner une interprétation géométrique simple.

$$f(z) \in \mathbb{U} \Leftrightarrow \left|z - \frac{7}{4} - \mathrm{i}\right|^2 = |z - 1|^2 \Leftrightarrow \left(x - \frac{7}{4}\right)^2 + (y - 1)^2 = (x - 1)^2 + y^2 \Leftrightarrow \frac{3}{2}x + 2y - \frac{49}{16} = 0$$

on en déduit que la droite trouvée est la médiatrice du segment $[M_1M_2]$.

3. a. Résoudre dans \mathbb{C} d'équation f(z) = z. On obtiendra deux solutions notées a et b avec Re(a) < Re(b).

$$f(z) = z \Leftrightarrow z^2 - 2z + \frac{7}{4} + i = 0.$$

On doit résoudre une équation du second degré avec $\Delta = -3 - 4i = (1 - 2i)^2$.

On obtient : $a = \frac{1}{2} + i$ et $b = \frac{3}{2} - i$.

b. Calculer
$$\frac{a-1}{b-1}$$
; $\frac{a-1}{b-1} = -1$

c. Montrer que si $z \notin \{1; a\}$ alors

$$\frac{b - f(z)}{a - f(z)} = -\frac{b - z}{a - z}$$

Pour $z \notin \{1; a\}$, sachant que a = f(a) et b = f(b), on a :

$$\frac{b - f(z)}{a - f(z)} = \frac{\frac{b - \left(\frac{7}{4} + \mathrm{i}\right)}{b - 1} - \frac{z - \left(\frac{7}{4} + \mathrm{i}\right)}{z - 1}}{\frac{a - \left(\frac{7}{4} + \mathrm{i}\right)}{a - 1} - \frac{z - \left(\frac{7}{4} + \mathrm{i}\right)}{z - 1}} = \frac{(z - 1)\left(b - \left(\frac{7}{4} + \mathrm{i}\right)\right) - (b - 1)\left(z - \left(\frac{7}{4} + \mathrm{i}\right)\right)}{(z - 1)\left(a - \left(\frac{7}{4} + \mathrm{i}\right)\right)} \times \frac{(a - 1)(z - 1)}{(b - 1)(z - 1)}$$

$$= -\frac{\left(\frac{3}{4} + \mathrm{i}\right)b - \left(\frac{3}{4} + \mathrm{i}\right)z}{\left(\frac{3}{4} + \mathrm{i}\right)z} = -\frac{b - z}{a - z}$$

4. Dans \mathscr{R} , on note A le point d'affixe a, B le point d'affixe b et C le point d'affixe 1. Pour $z \in \mathbb{C} \setminus \{1\}$, on note M le point d'affixe z et M' le point d'affixe f(z).

On admettra que quatre points distincts du plan N_1, N_2, N_3, N_4 sont sur une même droite ou sur un même cercle si et seulement si

$$\exists k \in \mathbb{Z}, \quad \left(\overrightarrow{N_3N_1}, \overrightarrow{N_3N_2}\right) = \left(\overrightarrow{N_4N_1}, \overrightarrow{N_4N_2}\right) + k\pi$$

a. Vérifier que A, B et C sont alignés.

On a montré que a-1=-(b-1) donc $\overrightarrow{CA}=-\overrightarrow{CB}$ et les points A,B et C sont alignés.

b. Justifier que si $M \notin \{A, B, C\}$ alors il existe $k \in \mathbb{Z}$ tel que $(\overrightarrow{M'A}, \overrightarrow{M'B}) = (\overrightarrow{MA}, \overrightarrow{MB}) + k\pi$.

Si $M \notin \{A, B, C\}$, $z \notin \{1; a; b\}$ donc d'après le $\mathbf{3b}$, $\exists p \in \mathbb{Z}$, $\arg\left(\frac{b - f(z)}{a - f(z)}\right) = \pi + \arg\left(\frac{b - z}{a - z}\right) + 2p\pi$; on en déduit l'existence de $k \in \mathbb{Z}$, tel que $(\overrightarrow{M'A}, \overrightarrow{M'B}) = (\overrightarrow{MA}, \overrightarrow{MB}) + k\pi$

Que peut-on en déduire géométriquement?

On en déduit que les points A, B, M et M' sont soit alignés, soit cocycliques.

c. Montrer qu'il existe $k \in \mathbb{Z}$ tel que $(\overrightarrow{CM}, \overrightarrow{CM'}) = 2(\overrightarrow{CM}, \overrightarrow{CB}) + 2k\pi$

$$\begin{aligned} & \text{Pour } z \neq 1 \text{ on a:} \quad \frac{z'-1}{z-1} = \frac{\left(z-\left(\frac{7}{4}+\mathrm{i}\right)\right)-(z-1)}{(z-1)^2} = \frac{-\frac{3}{4}-\mathrm{i}}{(z-1)^2} = \frac{(b-1)^2}{(z-1)^2} = \left(\frac{b-1}{z-1}\right)^2 \\ & z \neq 1 \text{ et } f(z) \neq 1 \text{; on a donc l'existence de } k \in \mathbb{Z} \text{ tel que arg } \left(\frac{z'-1}{z-1}\right) = 2\mathrm{arg}\left(\frac{b-1}{z-1}\right) + 2k\pi \\ & \text{c'est-$\^{a}$-dire } \left(\overrightarrow{CM}, \overrightarrow{CM'}\right) = 2\left(\overrightarrow{CM}, \overrightarrow{CB}\right) + 2k\pi \end{aligned}$$

d. En déduire une construction géométrique simple de M' lorsque M n'est pas sur la droite (AB).

D'après la question **4b.**, si les points M,A et B ne sont pas alignés, les points A,B,M et M' sont cocycliques. Ainsi, les points A,B,C et M étant placés, on construit les cercle circonscrit au triangle ABM, et on place sur ce cercle le point M' tel que $\left(\overrightarrow{CM},\overrightarrow{CM'}\right) = 2\left(\overrightarrow{CM},\overrightarrow{CB}\right)$

Faire une figure.

