DATA SCIENCE 11 WEEK PART TIME COURSE

Week 6 - Decision Trees Monday 25th January 2016

- 1. ..
- 2. What are decision trees?
- 3. How decision trees work
- 4. Visual example on Titanic dataset
- 5. Lab
- 6. Talks
- 7. Discussion

DATA SCIENCE PART TIME COURSE

DECISION TREES

• A supervised learning technique that can be used for classification or regression.

- A supervised learning technique that can be used for classification or regression.
- Visually engaging and easy to interpret.

- A supervised learning technique that can be used for classification or regression.
- Visually engaging and easy to interpret.
- Foundation for getting into very powerful techniques.

WHAT ARE DECISION TREES?

- A supervised learning technique that can be used for classification or regression.
- Visually engaging and easy to interpret.
- Foundation for getting into very powerful techniques.
- Great for explaining to people!

• Prone to overfitting.

- Prone to overfitting.
- Predictive power is lower in comparison to many other modern techniques.

• Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear.

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear
- Greedy process
- Splits within splits

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear
- Greedy process
- Splits within splits
- For a classification tree, we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs.

- Scans for a feature to split on that results in the greatest separation between classes in the resulting nodes.
- Non-linear
- Greedy process
- Splits within splits
- For a classification tree, we predict that each observation belongs to the most commonly occurring class of training observations in the region to which it belongs.
- We naturally get combinations of features used for our prediction.

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

TITANIC DATA 19

Features

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7
2	1	1	Cumings, Mrs. John Bradley (Florence Bri	female	38	1	0	PC 17599	71
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	8
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Pe	female	35	1	0	113803	53
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8
6	0	3	Moran, Mr. James	male		0	0	330877	8
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463	52
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909	21
9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelm	female	27	0	2	347742	11
10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	0	237736	30

In pairs, pick the two features from the titanic dataset that you believe will be the most predictive of survival.

Variable Description

survival Survival (0 = No; 1 = Yes)

pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

name Name

sex Sex

age Age

sibsp Number of Siblings/Spouses Aboard

parch Number of Parents/Children Aboard

ticket Ticket Number

fare Passenger Fare

cabin Cabin

Before Split	All
Survived	10
Died	15

$$1 - \sum \left(\frac{class_i}{total}\right)^2$$

Before Split	All
Survived	10
Died	15

$$1 - \sum \left(\frac{class_i}{total}\right)^2$$

$$1 - \left(\frac{survived}{total}\right)^2 - \left(\frac{died}{total}\right)^2$$

Before Split	All
Survived	10
Died	15

$$1 - \left(\frac{survived}{total}\right)^2 - \left(\frac{died}{total}\right)^2$$
$$1 - \left(\frac{10}{25}\right)^2 - \left(\frac{15}{25}\right)^2 = 0.48$$

Gender	M	F	
Survived	2	8	
Died	13	2	
Gini	0.27		

Siblings	0	≥1	
Survived	5	5	
Died	7	8	
Gini	0.48		

Class	1,2	3	
Survived	7	3	
Died	5	10	
Gini	0.42		

Using BigML to demonstrate a decision tree model on the Titanic dataset.

https://bigml.com/dashboard/datasets

BigML is a cloud based machine learning tool, designed to make machine learning more approachable.

DATA SCIENCE PART TIME COURSE

LAB

SYNCHING A FORK

git remote -v git remote add upstream https://github.com/ihansel/SYD_DAT_3.git git remote -v git fetch upstream git checkout master git merge upstream/master OR git reset -hard upstream/master

DISCUSSION TIME

- Presentations
- ▶ Hackday

Presentations

- Overall great work, we were really impressed
- Everyone should have their own feedback

Tips

- Don't put too much text on the slide
- Know a bit of the surrounding/base material (which I know is difficult while we are learning)
- ▶ Pick topics you are interested in! (Which you all did)

Hackday

- Deportunity to work on project, cover any material you want to review, & maybe a few bonus topics ?????
- → Who's (really) keen ?
- When suits everyone ?
- Saturday 30th January ?
- Tie in with social drinks after?

Just work on your project and read the following

Chapter 8 of Introduction to Statistical Learning, Tree Based Methods (30 pages)

