Project Management Analysis

Using the functions and capabilities of Python and the data analyis libraries, we tackle the analysis of the Project Management dataset. We will explore the key attributes: Project Name, Project Description, Project Type, Project Manager, Region, Department, Project Cost, Project Benefit, Complexity, Status, Completion, Phase, Year, Month, Start Date & End Date to gain insight on what influences the projects' progress and state. Visualizing the findings using data visualization techniques and conducting analysis to identify: trends, patterns and correlations within the dataset to provide a satisfactory report.

Import Library

Import CSV File

df = pd.read_csv("12_Project Management Analysis.csv")
2)
Python

Data Preprocessing

.head()

Using .head() to display the first 5 rows of our dataset.

d	f.head()															Python
	Project Name	Project Description	Project Type	Project Manager	Region	Department	Project Cost	Project Benefit	Complexity	Status	Completion%	Phase	Year	Month	Start Date	End Date
0	Rhinestone	Associations Now Is A Casual Game To Teach You	INCOME GENERATION	Yael Wilcox	North	Admin & BI	3648615	8443980	High	In - Progress	77%	Phase 4 - Implement	2021	2	2/1/2021	6/1/2021
1	A Triumph Of Softwares	Is A Fully Managed Content Marketing Software	INCOME GENERATION	Brenda Chandler	West	eCommerce	4018835	9012225	High	Cancelled	80%	Phase 2 - Develop	2021	3	3/1/2021	6/1/2021
2	The Blue Bird	Most Content Marketers Know The Golden Rule: Y	INCOME GENERATION	Nyasia Hunter	North	Warehouse	4285483	9078339	High	Completed	100%	Phase 4 - Implement	2021	3	3/1/2021	6/1/2021
3	Remembering Our Ancestors	Utilize And Utilizes (Verb Form) The Open, Inc	PROCESS IMPROVEMENT	Brenda Chandler	East	Sales and Marketing	5285864	8719006	High	Cancelled	75%	Phase 5 - Measure	2021	3	3/1/2021	6/1/2021
4	Skyhawks	Is A Solution For Founders Who Want To Win At	WORKING CAPITAL IMPROVEMENT	Jaylyn Mckenzie	East	eCommerce	5785601	8630148	High	Completed	100%	Phase 1 - Explore	2021	3	3/1/2021	6/1/2021

.tail()

Using .tail() to show the last 5 rows of the dataset.

Using .tail() to show the last 5 rows of the dataset.

df.tail()

	Project Name	Project Description	Project Type	Project Manager	Region	Department	Project Cost	Project Benefit	Complexity	Status	Completion%	Phase	Year	Month	Start Date	End Date
94	Strive Training	Was Built To Help Founders Create Optimized Co	WORKING CAPITAL IMPROVEMENT	Nyasia Hunter	South	Supply Chain	5259436	8817917	Medium	On - Hold	80%	Phase 2 - Develop	2025	8	8/1/2025	11/1/2025
95	Debug Entity	In This Ecosystem, Association Content Is Simp	INCOME GENERATION	Kamari Norris	North	Warehouse	4790417	8872443	Medium	In - Progress	73%	Phase 4 - Implement	2025	9	9/1/2025	12/1/2025
96	Made By Me	With 15 Five, We Take The Guesswork Out Of Con	PROCESS IMPROVEMENT	Yael Wilcox	West	Supply Chain	4283481	8895152	Low	Completed	100%	Phase 3 - Plan	2025	11	11/1/2025	3/1/2026
97	Revolution	Was Founded To Help Founders And Entrepreneurs	COST REDUCTION	Jaylyn Mckenzie	East	eCommerce	4606575	8658343	High	In - Progress	77%	Phase 4 - Implement	2025	11	11/1/2025	3/1/2026
98	7Th Annual Workshop	Welcome To The Future Of Content Creation, The	WORKING CAPITAL IMPROVEMENT	Nyasia Hunter	West	Sales and Marketing	5054482	8422578	High	In - Progress	83%	Phase 3 - Plan	2025	12	12/1/2025	3/1/2026

.shape

With .shape, we can get the total rows and columns of the dataset.

df.shape
Python

... (99, 16)

.columns

.columns allow us to identify all columns present in the dataset.

```
df.columns
```

.dtypes

With .dtypes, we can identify the data types assigned to each column

```
df.dtypes
```

Project Name object Project Description object Project Type object Project Hanager object Region object Department object project Cost int64 Complexity object

.unique()

.unique() shows the unique values in a specified column.

```
df['Project Type'].unique()
Python
```

··· array(['INCOME GENERATION', 'PROCESS IMPROVEMENT',
'WORKING CAPITAL IMPROVEMENT', 'COST REDUCTION'], dtype=object)

.nunique()

.nunique() on the other hand provides us the number of unique values in each columns.

```
### df.nunique()

Project Name 99
Project Description 95
Project Type 4
Project Manager 7
Region 4
Department 5
Project Cost 99
Project Benefit 99
Complexity 3
Status 4
Completion% 22
Phase 5
Year 5
North 12
Start Date 49
End Date 43
dtype: int64
```

.describe()

Shows the count, mean, median, etc. of columns with Int64 datatypes.

	df.	describe()			
•••		Project Cost	Project Benefit	Year	Month
	count	9.900000e+01	9.900000e+01	99.000000	99.000000
	mean	4.156649e+06	8.828178e+06	2022.747475	7.151515
	std	1.076544e+06	2.164019e+05	1.402210	3.211471
	min	2.418301e+06	8.422578e+06	2021.000000	1.000000
	25%	3.251948e+06	8.656248e+06	2022.000000	4.500000
	50%	4.172827e+06	8.846243e+06	2022.000000	7.000000
	75%	5.063288e+06	9.019234e+06	2024.000000	10.000000
	max	5.974815e+06	9.165877e+06	2025.000000	12.000000

.value_counts()

Returns the number of all unique values in a column.

df['Project Type'].value_counts()
Python

Project Type
INCOME GENERATION 27
PROCESS IMPROVEMENT 25
MORKING CAPITAL IMPROVEMENT 25
COST REDUCTION 22
Name: count, dtype: int64

.isnull()

Checks for null values.

	d	f.isnull()															Pyt
.]		Project Name	Project Description	Project Type	Project Manager	Region	Department	Project Cost	Project Benefit	Complexity	Status	Completion%	Phase	Year	Month	Start Date	End Date
	0	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	94	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	95	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False	False
	06	Enlan	Enles	Enles	Enles	Enlan	Enlan	Enlan	Enles	Enlan	Enles	Enles	Enlan	Enlan	Enlan	Enlan	Enlan

97 False Fal

99 rows × 16 columns

sns.heatmap(df.isnull())

False

False

<Axes: >

98

Data Analysis

Data Visualization

```
ptype = df.groupby('Project Type').size()
    reg = df.groupby('Region').size()
    dep = df.groupby('Department').size()
    stats = df.groupby('Status').size()
    comp = df.groupby('Complexity').size()
    pha = df.groupby('Complexity').size()
    pha = df.groupby('Phase').size()

    plt.figure(figsize=(8,8))
    plt.pie(ptype, labels=ptype.index, autopct='%1.1f%%', startangle=140)
    plt.title('Project Type')
    plt.axis('equal')
    plt.show()
```



```
plt.figure(figsize=(8,8))
plt.pie(dep, labels=dep.index,autopct='%1.1f%%', startangle=140)
plt.title('Department')
plt.axis('equal')
plt.show()
```



```
plt.figure(figsize=(8,8))
plt.pie(stats, labels=stats.index,autopct='%1.1f%%', startangle=140)
plt.title('Project Status')
plt.axis('equal')
plt.show()
Python
```



```
plt.figure(figsize=(8,8))
plt.pie(comp, labels=comp.index,autopct='%1.1f%%', startangle=140)
plt.title('Project Complexity')
plt.axis('equal')
plt.show()
Python
```

Project Complexity

29.3%

40.4%

High

```
plt.figure(figsize=(8,8))
plt.pie(pha, labels=pha.index,autopct='%1.1f%%', startangle=140)
plt.title('Project Phase')
plt.axis('equal')
plt.sxis('equal')
plt.show()
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Project Type', hue='Department')
plt.xlabel('Project Type')
plt.xlabel('Department')
plt.title('Project Type by Department')
plt.title('Project Type by Department')
plt.show()
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Project Type', hue='Status')
plt.xlabel('Type')
plt.xlabel('Status')
plt.title('Distribution of Project Types by Status')
plt.show()
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Project Type', hue='Complexity')
plt.xlabel('Type')
plt.xlabel('Type')
plt.title('Distribution of Project Types by Complexity')
plt.title('Distribution of Project Types by Complexity')
plt.show()
Python
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Project Type', hue='Phase')
plt.xlabel('Type')
plt.ylabel('Phase')
plt.title('Distribution of Project Types by Phase')
plt.show()

Pythor
```



```
plt.figure(figsize=(12,6))
sns.countplot(data=0f, x='Region', hue='Department')
plt.xlabe1('Region')
plt.ylabe1('Department')
plt.title('Department')
plt.sitle('Departments and Region')
plt.show()
```



```
North West East South
```

```
plt.figure(figsize=(12,6))
sns.countplot(data=df, x='Department', hue='Status')
plt.xlabel('Department')
plt.ylabel('Status')
plt.title('Status of Projects by Department')
plt.show()
```



```
D pit-figure(figsize-(12,6))
sns.countplot(data-df, x='Status', huc='Complexity')
pit.ylabel('Status')
pit.ylabel('Complexity')
pit.ylabel('Complexity')
pit.show()

[2]
```

