Assignment 2

Case 1. Parameters: a = 0.5, b = 0.1, r = 0.1, $I_{ext} = 0$. [a] Phase Plot

[b]

• The plot of V(t) vs t and W(t) vs t is shown below.

V(t) vs t

• The trajectory on the phase plane for the points P_1 and P_2 is shown below. The Green curve shows the trajectory of P_1 and the Yellow curve shows the trajectory of P_2 .

Here the fixed point is at (0, 0), which is a stable fixed point. The fixed point is stable because at (0, 0), $\Delta > 0$ and $\tau < 0$.

Case 2. By using the pplane8.m file we found the approximate values for I_1 and I_2 where it exhibit oscillation. $I_1 = 0.33$, $I_2 = 0.73$, $I_{ext} = 0.6$

[b] As shown above, the fixed point is at (0.63, 0.63).

In order to show that the fixed point is an unstable point, we first need to find " Δ " and " τ ".

$$\Delta = f'(v)^*(-r) + b$$
 where $f(v) = v^*(a-v)^*(v-1)$ and $\tau = f'(v) - r$

For, a = 0.5, b = 0.1, r = 0.1, v = 0.63. Substituting all the values in the above eqs. we get: $\Delta = 0.08007$ and $\tau = 0.0993$.

Since, both $\Delta > 0$ and $\tau > 0$, we can say that the given fixed point is an unstable fixed point [1].

Figure 2[b] below shows the trajectory (limit cycle behavior/oscillation) of the above system on the phase plane.

Figure 2[b]

Case 3. [a] $I_{ext} = 1.1$

[b] As shown above, the fixed point is at (1.06, 1.06).

In order to show that the fixed point is a stable point, we first need to find " Δ " and " τ ".

$$\Delta = f'(v)*(-r) + b$$
 where $f(v) = v*(a-v)*(v-1)$ and $\tau = f'(v) - r$

For, a = 0.5, b = 0.1, r = 0.1, v = 1.06. Substituting all the values in the above eqs. we get: $\Delta = 0.17$ and $\tau = -0.79$.

Since, $\Delta > 0$ and $\tau < 0$, we can say that the given fixed point is a stable fixed point [1]. Figure 3[b] shows the trajectory of the points on the phase plane.

Figure 3[b]

Case 4.

[a] Parameters: a = 0.5, b = 0.01, r = 0.2, $I_{ext} = 0.02$.

[b] $P_1 = (0.04, 0.0005)$, $P_2 = (0.43, 0.0055)$, $P_3 = (1.01, 0.0127)$. P_1 , P_2 , P_3 are the fixed points. We know that, $\Delta = \mathbf{f}'(\mathbf{v})^*(-\mathbf{r}) + \mathbf{b}$ where $\mathbf{f}(\mathbf{v}) = \mathbf{v}^*(\mathbf{a} - \mathbf{v})^*(\mathbf{v} - \mathbf{1})$ and $\tau = \mathbf{f}'(\mathbf{v}) - \mathbf{r}$

- At P_1 , $\Delta = 0.138$ and $\tau = -0.4848$. Since, $\Delta > 0$ and $\tau < 0$, we can say that the given fixed point is a stable fixed point [1].
- At P₂, Δ = 0.076 and τ = 0.135.
 Since, Δ > 0 and τ > 0, we can say that the given fixed point is an unstable fixed point [1].
- At P_{3} , $\Delta = 0.153$ and $\tau = -0.63$. Since, $\Delta > 0$ and $\tau < 0$, we can say that the given fixed point is a stable fixed point [1].

[c]

Note:

- main.py was used to display the "Phase plot", "V(t) vs t" and "W(t) vs t".
- pplane8.m was used to plot the trajectory of the points on the phase plane.

References:

[1]

[2] pplane.m