Identification of Assembly's Patterns for Hardware Acceleration

Introduction

In today's world, technological applications require more and more computational power to run. CPU speed increase has seen a decline over the past four years, leaving room for ideas to accommodate the increasing need for fast processing power:

Aim & Motivation

- Discover potential accelerate candidates that can be then used for hardware acceleration
- Explore an analysis technique to analyse assembly machine code.

Automatic Hardware Acceleration using an FGPA co-processor configuration.

Methods

1. Data Generation System

2. Convolutional Neural Network

Assembly matrix represented as an Image 150 2. Supervised Leaning Result:

representation of a loop dependent assembly machine code. Each Vector is derived from the instruction's opcode and operands using a one-hot encoder.

Conclusion

CNN training with high accuracy

Lack of generalisations to new data

Data Generation system capable of producing labelled datasets

Disassembly

Vectors Generation

Dataset

✓ Accuracy: 100%

Function √ Adam optimizer 0.000 In testing heavy applications like convolution and sigmoid, the model predicted a UN label or unknown pattern.

Overfitting: Lack of generalisations to new data

R. Luis Jalabert. "Deep Learning Based FPGA-CPU Acceleration." In: (2018).

url: https://github.com/LuisJalabert/Deep-Learning-Based-FPGA-CPU-Accelerati on/blob/master/Deep_Learning_Based_CPU_Acceleration_-_Luis_Jalabert_Dec ember_2018.pdf.

✓ Epochs: 9

✓ Batch size: 10

✓ MSE Loss

References

Pytorch. PYTORCH DOCUMENTATION. 2019. url: https://pytorch.org/docs /stable/index.html.

sentdex. Convolutional Neural Nework Model - Deep Learning and Neural Networks with Python and Pytorch p.6. 2019. url: https://pythonprogramming.net/convnet -model-deep-learning-neural-networkpytorch/?completed=/convolutional-n eural-networks-deep-learning-neuralnetwork-pytorch/.

Future Work

more work and data.

- Data augmentation: task parallelism
- "Early stopping" algorithm

A **promising** area of research, but the need for

Analysis of compilers

Author: Elias Abou Farhat

Supervisor: Dr J Cater

