LaPIS Diagnostic Test Workbook - Mathematics

Name : Sachin S

Class: 7

Section : C

School : AKV Public School

Login ID : AKV179

Sachin S's Performance Report

Score: 23/40 Percentage: 57.5%

Sachin S's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princ	ipal Signature	

Mensuration

Topics to be Improved		
Area	Area of rectangle	

Hi, here in this video you will learn Area

Question: 1

Find which of the shaded portion in the given shape represent it's area.

......

.....

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 2

Find the area of a rectangular garden whose dimension is $25~\mathrm{ft}$ in length and $20~\mathrm{ft}$ in breadth.

Answer:

The garden is in _____ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = $\underline{\qquad}$ x $\underline{\qquad}$ = $\underline{\qquad}$ cm^2

Question: 3

Shade the possible dimension of the door whose area is 500 m^2

$$50~m~\times~10~m$$

$$25 m \times 25 m$$

.....

Door is _____ in shape. Area of the ____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25m \times 25m$			
$25m \times 20m$			
$30 \text{m} \times 20 \text{m}$			

Therefore, possible dimension of the door whose area is 500 m^2 is/are _____

Data handling

Topics to be Improved		
Chance of probability	Sample space in probability	
1 0	1 1 1	

.....

Hi, here in this video you will learn Basics of probability

Question: 4

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, ____ contains list of possible outcomes.

Question: 5

Write the possible outcomes while spinning the given wheel.

Answer:			
Outcomes are (possible outcomes while spinning	, - ,	-	
Question: 6			
A bag contains three balss of colour bare taken out.	blue, green and red. Write	he possible outcomes if	two balls
Answer:			
A bag contains,	and	balls.	
If one of the ball is blue in colour, the	en other ball can be	or	
If one of the ball is green in colour, the	nen other ball can be	or	·
If one of the ball is red in colour, then	n other ball can be	or	·
Therefore, if two balls are taken out t	then possible outcomes are	blue +	,
1	1		

Geometry

Topics to be Improved		
Transversal angle made by transversal	Basics of Transversal angle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Types of triangle	Basics of types of triangle (sides)	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	
Faces vertex and edges	Idenfication of faces, edges and vertices	

Hi, here in this video you will learn Basics of Transversal angle

.....

Question: 7

In given diagram, \angle 1 and \angle 7 are _____ (alternate / corresponding) angles.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles.

Question: 8

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 9

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of ∠a is and its value is Corresponding angle of ∠a is and its value is
Hi, here in this video you will learn Pythagoras property
Question: 10
In a right angled triangle, square of the = sum of the squares of the legs.
Answer:
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that
Question: 11
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
m
Pythagoras theorem states that square of the = sum of the squares of its
$Given:$ Base =, Altitude =, Base and altitude are (hypotenuse/ legs) of the triangle. By Pythagoras theorem, ()^2 = ()^2 + ()^2
= +
Therefore, hypotenuse of the triangle is
Question: 12 Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm. Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

= ____ + ____

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 13

Find the greatest distance to reach C from A in the given diagram.

.....

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

Side $AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 14

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle. The difference of the two sides of a triangle is _____ than the other side of the triangle. Example: In triangle XYZ,

Question: 15

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ___ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = ____ ___ = ____

 Therefore, the length of the third side is greater than _____

.....

Therefore, length of the third side is greater than ______ but less than _____.

Hi, here in this video you will learn **Types of triangle**

Question: 16

Polygon with three sides is called as _____.

Answer:

A polygon is a simple _____ (open / closed) curve made up of only line segments. Polygon with three sides is called _____.

Draw a diagram of polygon with three sides:

Question: 17	
Identify the types of triangles.	
4 cm $3 cm$ $4 cm$	3 cm
5 cm $4 cm$	3 cm
Answer:	
Triangle has sides.	
• Triangle with all sides are equal is called	triangle.
• Triangle with two sides of equal length is called	triangle.
• Triangle with three sides of different length is called	triangle.
Question: 18 A park is in the shape of an isosceles triangle. If side length of possible length of third side of park can be Answer:	
The shape of the park is The shapes has sides and this shape has Given: length of sides of park is The possible length of third side is	sides of equal length.
Hi, here in this video you will learn Criteria of co	ngruence
Question: 19	
Circle the groups that contain congruent images.	

Answer:

Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are ______ (congruent/not congruent).

Question: 20
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $___$ (SSS/ASA/SAS) criteria .
$\underline{Answer:}$
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $\underline{\hspace{1cm}}$ (2/ 3/ 5) sides of the triangle are $\underline{\hspace{1cm}}$ (equal/ not equal) to the three corresponding sides of the other triangle.
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 21

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

triangle.

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Basics of 3D model

A point at which two or more lines segments meet is called	
has two end point (line/line segment/ray). is a point where two or more line segments meet(V	Vertex/ edges/ faces).
Question: 23	
Mark and find the number of vertices, edges and faces in a cube.	
Answer:	
Mark the vertex, edges and faces in a cube.	
Count the number of vertex, edges and faces in a cube. Cube have vertices, edges and faces.	
Question: 24 \cdots	

How many vertices, edges and faces does dices have?

Answer	•
11.00 ac.	•

The shape of d	ice is	·	
Dices have	vertices,	$_$ edges and $_$	faces

Number system

	Topics to be Improved			
Decimals	Multiplication and division of decimals			
Fractions	Multiplication of fractions, Division of fraction			
Operations on rational numbers	Subtraction of rational numbers			
Positive and negative rational numbers	Identification of positive rational numbers			
Hi, here in this video you will learn Basics of decimals				

Hi, here in	n this v	video y	ou wi	ll learı	n Bas	ics of	decir	nals	- [<u>\$</u> - [
Question: 2		e given s							 	

Answer	•

There are boxes.			
0.4 can be expressed as	in fraction		
This fraction represents	$_{\rm}$ parts out of $_{\rm}$	equal parts	3.
So, we need to shade	boxes out of	boxes.	

Question: 26

Solve the following.

- (i) 0.4×1.2
- (ii) 0.48×1.2

Answer:

(i) 0.4×1.2 :

Multiplication of $0.4 \times$

Multiplication of 0.4×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.4 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is _____.

(ii)	0.48	×	1.2
------	------	---	-----

Multiplication of 0.48×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.48 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is

Question: 27

One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?

Answer:

One box contains _____ chocolates. The cost of one box is _____ Then cost of one chocolate = ____ \div ___ = ____

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} = \underline{\hspace{1cm}}$$

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate \times ____ = ___ x ___ = ___

Hi, here in this video you will learn Multiplication on fractions

Question: 28

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as ____ in fraction.

4 can be written as ____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

0 11 00	
Question: 29	

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls
$$=$$
 \times $=$ $=$ $=$

Question: 30

Solve : $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}})+\text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{ } \times \frac{2}{3} = \boxed{ }$$

Hi, here in this video you will learn **Operation on rational numbers**

Question: 31

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are _____ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

......

Question: 32

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box \hat{A} in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$. Number of shaded square in box $B = \underline{\hspace{1cm}}$. Shaded part of box B in fraction $= \underline{\hspace{1cm}}$.

Shaded part of box A + Shaded part of box B = $___$ + $___$

Question: 33

Find the missing values in the given figure.

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} + \underline{}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{}$ Therefore, result is $\underline{}$.

Hi, here in this video you will learn **Division on fractions**

Question: 34

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

......

10	
35	

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{(\text{Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + -----}{7} = \frac{\square}{\square}$$

Question: 35

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

.....

......

Question: 36

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 37

Segregate positive and negative rational number.

Answer:

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then	it	is
	(positive/negative) rational number.			

In the given circle, positive rational numbers are _____ and negative rational numbers are Question: 38 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number. Answer: -3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \Box$ and this _____ rational number. (Positive / Negative / Neither positive nor negative rational number) Question: 39 The product of a positive rational number and a negative rational number is _____ rational number. (Positive/ Negative/ neither positive nor negative) Answer: Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number \times Negative rational number = $_$ \times $_$ = $_$ and this is _____ rational number

Comparing Quantities

Topics to be Improved

Conversion of fraction into percentage

Conversion of fraction into percentage

......

Hi, here in this video you will learn Converting fraction into percentage

Question: 40

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

.....

Question: 41

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is _____

Question: 42

Find the percentage of shaded part of square.

Answer:	
The square shape is divided into parts. Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert into percentage ,	x 100

Algebra

Topics to be Improved			
subtraction of algebraic expressions	subtraction of algebraic expressions		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression		
Basics of simple equation	Solving of simple equation		

Hi,	here	in	this	video	you	will	learn	Sub	traction	on	expression	Ĺ

Question: 43	
--------------	--

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.
The answer is

Question: 44

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

.....

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school $A = \underline{\hspace{1cm}}$,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 45

Solve the following:

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

 $\operatorname{Hi},$ here in this video you will learn \mathbf{Types} of $\mathbf{expression}$

Question: 46

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are _____ terms in the expression.

Question: 47

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 48

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are ______.

Here, the expression has ______ terms and it is called a _____ expression.

.....

.....

......

Hi, here in this video you will learn Solving an equation

Question: 49

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 50

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \square + 3 = -4$$

Answer:

The given equation is 7—+3 =-4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 51

Arrange the terms in the descending order when the value of x is 2.

$\underline{Answer:}$

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, _____.