HELP SLIDES

NEURAL NETWORK – SMALL TIP

- To simplify the topology in regards to the output layer consider making two perceptrons instead of one.
- E.g.
 - One to classify between Class 1 and Class 2
 - Another to classify between Class 2 and Class 3.
- If you do this, you will only need one output neurode (or node).
- Requires you to split data

PERCEPTRON/NEURAL NETWORK BASICS

- Inputs (X)
- Connection Weights (W)
- Threshold/bias
- Weighted Sum
- Activation function
- Output

Slide from a lecture given by Hector P. Martinez in the course Modern AI for Games, Fall 2012

PERCEPTRON ALGORITHM

- I. Initialize perceptron with random weights [0...1] and bias value [0...1], or with your own values (e.g. bias = 0)
- 2. For each set of inputs
 - Compute actual output, a^P, from perceptron using the activation function (more on next slide)
 - Update all weights with ΔW_j
- 3. If no changes to weights, then stop
- 4. Otherwise go back to 2

PERCEPTRON ALGORITHM – UPDATING WEIGHTS

- ΔW_j = Learning rate * X_j * (desired output actual output)
- Example with W₁, learning rate = 0.5, desired output = 0, actual output = 1:
- $\Delta W_1 = 0.5 * X1 * (0 1)$

PERCEPTRON EXAMPLE

Threshold = Bias

Slide from a lecture given by Hector P. Martinez in the course *Modern AI for Games*, Fall 2012

	Epoch	Inputs		Desired output	Initial weights		Actual output	Error	Final weights	
ı		x_1	x_2	d^p	w_1	w_2	$a^{ ext{output}} p$	$\mid E^p \mid$	w_1	w_2
Ī	1	0	0	0	0.3	- 0.1	0	0	0.3	-0.1
1		0	1	0	0.3	- 0.1	0	0	0.3	-0.1
1		1	0	0	0.3	-0.1	1	-1	0.2	-0.1
		1	1	1	0.2	- 0.1	0	1	0.3	0.0
ſ	2	0	0	0	0.3	0.0	0	0	0.3	0.0
1		0	1	0	0.3	0.0	0	0	0.3	0.0
1		1	0	0	0.3	0.0	1	-1	0.2	0.0
ı		1	1	1	0.2	0.0	1	0	0.2	0.0
ľ	3	0	0	0	0.2	0.0	0	0	0.2	0.0
		0	1	0	0.2	0.0	0	0	0.2	0.0
1		1	0	0	0.2	0.0	1	-1	0.1	0.0
		1	1	1	0.1	0.0	0	1	0.2	0.1
ſ	4	0	0	0	0.2	0.1	0	0	0.2	0.1
1		0	1	0	0.2	0.1	0	0	0.2	0.1
		1	0	0	0.2	0.1	1	-1	0.1	0.1
		1	1	1	0.1	0.1	1	0	0.1	0.1
	5	0	0	0	0.1	0.1	0	0	0.1	0.1
		0	1	0	0.1	0.1	0	0	0.1	0.1
		1	0	0	0.1	0.1	0	0	0.1	0.1
		1	1	1	0.1	0.1	1	0	0.1	0.1

Threshold: $w_0 = -0.2$; learning rate $\eta = 0.1$