Office Hour: 1:30-3:30 PM, Th

STAT 610: Discussion 6

1 Summary

- Under assumption (A3), $\hat{\beta} = \hat{\beta}_{V^{-1}}$, if and only if $X(X^{\top}X)^{-1}X^{\top}Var(\epsilon)$ is symmetric, where $\beta_{V^{-1}}$ is the solution of WLSE.
- Notations and propoties for GLM.
 - Y have pdf

$$\exp\left\{\frac{\eta_i y_i - \zeta(\eta_i)}{\phi}\right\} h(y_i, \phi).$$

- $E[Y_i] = \zeta'(\eta_i) = \mu(\eta_i)$ and $Var(Y_i) = \phi \zeta''(\eta_i)$
- g is the link function. And $g \circ \mu(\eta_i) = \beta^{\top} x_i$.
- Canonical link: $q = \mu^{-1}$.
- $-\psi = (g \circ \mu)^{-1}$; hence $\eta_i = \psi(\beta^\top x_i)$.

2 Questions

1. A linear model with β replaced by a random vector $\boldsymbol{\beta}$ that is independent of ϵ . Suppose that $Var(\epsilon) = \sigma^2 \boldsymbol{I}_n$, and $E[\boldsymbol{\beta}] = \beta$. Show that $\ell^{\top} \hat{\beta}$ is the BLUE for $\ell^{\top} \beta$.

2. Under (A3) and X is full rank. Them, $\hat{\beta} = \hat{\beta}_{V^{-1}}$ if and only if $\ell^{\top}\hat{\beta}$ is BLUE for all ℓ .

3. Assume that $\epsilon \sim N(0, V)$, and X is full rank. Then, $X(X^{\top}X)^{-1}X^{\top}Var(\epsilon)$ is symmetric if and only if $\hat{\beta}$ is the UMVUE for all ℓ .

4. Let Y_1, \ldots, Y_n be independent Poisson random variables with

$$Y_i \sim \frac{1}{y_i!} \exp(\eta_i y_i - e^{\eta_i}) \mathbf{I}(y_i = 0, 1, \dots), \quad i = 1, \dots, n,$$

where $g(e^{\eta_i}) = \beta^{\top} x_i$, g is a link function, x_i 's are p-dimensional covariates, and β is a p-dimensional unknown parmeter vector. Consider a GLM for Y_1, \ldots, Y_n and X_1, \ldots, X_n .

(a) With link function $g(t) = \log t$, obtain the likelihood equation for MLE of β and show that the matrix of second order dereivative of the log likelihood function is

$$-\sum_{i=1}^{n} e^{\beta' x_i} x_i x_i^{\top}.$$

(b) Consider link $g(t) = 2\sqrt{t}$. Show that $\mu^{-1}(s) = \log s$ and $\psi(t) = \mu^{-1} \circ g^{-1}(t) = 2\log(t/2)$. Obtian the likelihood equation for the MLE of β .