Proyecto 1: Diseño de PID mediante Lugar Geométrico de las Raíces para la planta Térmica

Departamento de Ingeniería Electrónica Universidad de Antioquia

6 de junio de 2025

Introducción

En esta actividad usaremos la planta TempLABUdeA, cuyo modelo linealizado para cada zona térmica es:

 $G(s) \; = \; \frac{K}{\tau \, s + 1} e^{\theta_d s},$

con K y τ obtenidos de la linealización. El objetivo es diseñar un controlador PID que cumpla especificaciones de sobreimpulso, tiempo de asentamiento y margen de fase utilizando el Lugar Geométrico de las Raíces (LGR).

Objetivos de la Actividad

- Aplicar el Lugar Geométrico de las Raíces para ubicar polos del lazo cerrado en posiciones deseadas.
- 2. Determinar los parámetros $K_p,\,T_i$ y T_d de un PID que satisfaga especificaciones de desempeño.
- 3. Verificar mediante simulación en Python o MATLAB la respuesta al escalón y la estabilidad del sistema controlado.

Procedimiento

1. Función de transferencia en lazo abierto

Partiendo del controlador PID:

$$G_{\text{PID}}(s) = K_p \Big(1 + \frac{1}{T_i s} + T_d s \Big),$$

la función de transferencia en lazo abierto es:

$$L(s) = G_{\text{PID}}(s) G(s) = K_p \frac{K (T_i T_d s^2 + T_i s + 1)}{T_i s (\tau s + 1)}.$$

- Defina K_p , T_i y T_d como símbolos iniciales y exprese L(s).
- Verifique que el numerador de L(s) sea $K_p K (T_i T_d s^2 + T_i s + 1)$.
- Verifique que el denominador de L(s) sea $T_i s (\tau s + 1)$.

2. Trazado del Lugar Geométrico de las Raíces

- 1. En Python (módulo control y matplotlib) o MATLAB, defina valores numéricos para K y τ de la zona térmica seleccionada.
- 2. Grafique el LGR de

$$L(s) = K_p \frac{K (T_i T_d s^2 + T_i s + 1)}{T_i s (\tau s + 1)}$$

variando K_p . Use valores provisionales para T_i y T_d , por ejemplo $T_i = \tau$ y $T_d = \tau/10$.

3. Observe el lugar trazado en el plano s. Identifique el recorrido de los polos al aumentar K_p .

3. Selección de polos deseados

- Defina las especificaciones de desempeño:
 - Porcentaje de sobreimpulso 10%OS.
 - Tiempo de asentamiento T_s (2) minutos.
- \blacksquare Relacione %OS con el coeficiente de amortiguamiento ζ mediante:

$$\%OS \approx 100 e^{-\frac{\pi \zeta}{\sqrt{1-\zeta^2}}}.$$

lacktriangle Relacione T_s con la parte real del polo dominante:

$$T_s \approx \frac{4}{\zeta \omega_n}$$
, ω_n = frecuencia natural.

- Calcule ζ y ω_n a partir de %OS y T_s .
- Determine la ubicación deseada de los polos dominantes:

$$s_{1,2} = -\zeta \,\omega_n \pm j \,\omega_n \sqrt{1 - \zeta^2}.$$

4. Cálculo de K_p , T_i , T_d

1. En el punto deseado s_d (uno de los polos dominantes), imponga la condición de fase:

$$\angle L(s_d) = -180^{\circ}.$$

Esto equivale a:

$$\angle (T_i T_d s_d^2 + T_i s_d + 1) - \angle s_d - \angle (\tau s_d + 1) = -180^\circ - \angle K_p - \angle K.$$

2. Imponga la condición de módulo en s_d :

$$|L(s_d)| = 1 \iff K_p K \frac{|T_i T_d s_d^2 + T_i s_d + 1|}{|T_i |s_d| |\tau s_d + 1|} = 1.$$

- 3. Resuelva numéricamente el par de ecuaciones (fase y módulo) para T_i y T_d , una vez fijado K_p si así lo desea, o bien resuelva simultáneamente para K_p , T_i , T_d .
- 4. Ajuste afín de K_p si la condición $|L(s_d)| = 1$ no se cumple exactamente.

5. Simulación y verificación

• Con los valores obtenidos de K_p , T_i , T_d , simule la respuesta al escalón de la función de transferencia en lazo cerrado:

$$G_{\rm cl}(s) = \frac{L(s)}{1 + L(s)}.$$

- Compare la %OS, T_s y margen de fase resultantes con las especificaciones.
- Ajuste parámetros si es necesario y vuelva a simular hasta cumplir las metas.

6. Implementación en TempLABUdeA

• En el script Python de control, reemplace la ley PI por la ley PID:

$$Q(t) = Q_{\text{bias}} + K_p e(t) + \frac{K_p}{T_i} \int_0^t e(\tau) d\tau + K_p T_d \frac{de}{dt}.$$

Aproxime la derivada discretamente:

$$\frac{de}{dt} \approx \frac{e(k) - e(k-1)}{\Delta t}.$$

• Implemente antiwindup restando el error cuando Q(t) se sature:

si
$$Q = 100$$
, $ierr = err$; si $Q = 0$, $ierr = err$.

■ Ejecute la prueba en TempLABUdeA, registre $T_1(t)$, $Q_1(t)$, compárelos con la simulación.

Entregables y Evaluación

- Documento en LaTeX detallando:
 - Trazado del LGR y selección de polos dominantes.
 - Cálculo paso a paso de K_p , T_i , T_d .
 - Gráficas de LGR y respuesta al escalón simulada.
- Código Python/MATLAB para:

- Generar el Lugar Geométrico del lazo abierto.
- Simular respuesta al escalón de $G_{\rm cl}(s)$.
- Implementar PID en TempLABUdeA y recolectar datos.
- Archivos de datos experimentales (*.csv) y gráficos que comparen experimento vs. simulación.

Rúbrica de Evaluación (Adaptada)

Criterio	0	1	2	3	4	5
Trazado correcto LGR	Ausente	Incorrecto	Parcial	Funcional	Bueno	Excelente
Ubicación de polos deseados	N/D	Errónea	Incompleta	Aceptable	Buena	Óptima
Cálculo de K_p, T_i, T_d	Ausente	Inexacto	Parcial	Funcional	Bien justificado	Excelente
Comparación experimento vs. simulación	N/D	Muy disperso	> 25 %	1525%	1015%	$< \! 10 \%$
Calidad de reporte NOTEBOOK y código	Ausente	Muy deficiente	Deficiente	Aceptable	Buena	Excelente

Cuadro 1: Rúbrica de evaluación del diseño PID por LGR (0-5).