Vorlesung 10 | 27.11.2020 | 10:15-12:00 via Zoom

Handzettel

In der letzten Vorlesungen haben wir gesehen: Beschränkung eines σ -Algebra, Bedingte W-keiten, Bayes'sche Formel, Unabhängigkeit, von Z.V. erzeugten σ -Algebra, Produkt σ -Algebra, Produktmaß, Satz von Fubini-Tonelli, Satz von Fubini-Lebesgue.

Heutigen Vorlesung.

Unendliche Produkte

Definition 1. Seien $(\Omega_k, \mathcal{F}_k)_{k \in \mathbb{N}}$ Messräume und $\hat{\Omega} = \prod_{k \ge 1} \Omega_k$ das unendliche Produkträum (geordnete Produkt).

Definieren wir die Produkt- σ -Algebra $\hat{\mathscr{F}}$ auf $\hat{\Omega}$, als die kleinste σ -Algebra, die alle Teilmengen von $\hat{\Omega}$ der Form $A = \bigotimes_{k \in I} A_k \times \bigotimes_{\ell \notin I} \Omega_\ell$ enthält, wobei $A_k \in \mathscr{F}_k$, $I = (i_1, \ldots, i_n) \in \mathbb{N}^n$. Diese Mengen heißen Zylindermengen.

Definition 2. Seien $(\Omega_k, \mathscr{F}_k, \mathbb{P}_k)_{k \in \mathbb{N}}$ W-raüme. Wir definieren das unendliche Produktmaß $\hat{\mathbb{P}} := \bigotimes_{k \in \mathbb{N}} \mathbb{P}_k$ auf $(\hat{\Omega}, \hat{\mathscr{F}})$ s.d. für alle Zylindermengen A gilt

$$\hat{\mathbb{P}}(A) = \hat{\mathbb{P}}(\otimes_{k \in I} A_k \times \otimes_{\ell \notin I} \Omega_{\ell}) = \prod_{k \in I} \mathbb{P}_k(A_k).$$

Definition 3. Sei $(\Omega, \mathcal{F}, \mathbb{P})$ ein W-raum. Eine messbare Abbildung

$$X: (\Omega, \mathcal{F}) \to (\mathbb{R}^{\mathbb{N}}, \mathcal{B}(\mathbb{R}^{\mathbb{N}}))$$

heißt Zufallsfolge, oder stochasticher Prozess in diskreter Zeit.

Lemma 4.

a) Seien X, Y zwei unabhängige Z.V. mit Verteilungsfunktionen F_X und $F_Y.$ Dann ist die Verteilungsfunktion F_{X+Y} von X+Y gegeben durch

$$F_{X+Y}(s) = \int_{\mathbb{R}} F_X(s-y) d\mathbb{P}_Y(y) = \int_{\mathbb{R}} F_Y(s-x) d\mathbb{P}_X(x)$$

b) Falls dazu X, Y Dichten ρ_X , ρ_Y besitzen, dann besitz X + Y die Dichte

$$\rho_{X+Y}(s) = \int_{\mathbb{R}} \rho_X(x) \, \rho_Y(s-x) \, \mathrm{d}x$$

Definition 5. Die Faltung $F_X * F_Y$ zweier Verteilungsfunktionen F_X und F_Y , ist definiert durch

$$(F_X * F_Y)(s) = \int_{\mathbb{D}} F_X(s - y) d\mathbb{P}_Y(y).$$

Satz 6. Seien $X_1 \sim \mathcal{N}(m_1, \sigma_1^2)$ und $X_2 \sim \mathcal{N}(m_2, \sigma_2^2)$ unhabängig. Dann ist

$$X_1 + X_2 \sim \mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2).$$

Definition 7. Sei X_1, X_2, \ldots eine Folge von i.i.d. Z.V. mit $\mathbb{P}(X_k = 1) = 1 - \mathbb{P}(X_k = -1) = p$. Dann heißt die Folge

$$n \mapsto S_n \coloneqq \sum_{k=1}^n X_k$$

die einfache Irrfahrt auf \mathbb{Z} (simple random walk).

Fur p = 1/2 heißt die einfache symmetrische Irrfahrt.

Ruinproblem

$$K_n = K_0 + S_n$$

$$T_a = \inf\{n \ge 1 : K_n = a\}$$

$$\left[\inf \emptyset = +\infty\right]$$

$$T_a: \Omega \to \mathbb{N} \cup \{+\infty\}$$

$$A = \left\{ \inf \{ n \ge 1 : S_n = -K_0 \} < \inf \{ n \ge 1 : S_n = G \} \right\} = \{ T_0 < T_{\tilde{G}} \}$$

 $mit \ \tilde{G} = K_0 + G.$

$$\begin{cases} h(k) \coloneqq \mathbb{P}\left(T_0 < T_{\tilde{G}} \middle| K_0 = k\right) & \text{für } 0 < k < \tilde{G} \\ h(0) = 1, \\ h(\tilde{G}) = 0. \end{cases}$$

$$\begin{cases} h(k) = (1-p)h(k-1) + (1-p)h(k+1), & 0 < k < \tilde{G} \\ h(0) = 1 \\ h(\tilde{G}) = 0 \end{cases}$$

Das Arcsinusgesetz

(a).
$$Z_{2n} := \sum_{\ell=1}^{2n} Y_{\ell}$$
 mit
$$Y_{\ell} = \begin{cases} 1, & \text{falls } S_{\ell} > 0 \text{ und } S_{\ell+1} > 0, \\ 0, & \text{sonst.} \end{cases}$$

 $\Rightarrow Z_{2n} = \sharp$ schritten in positiven Bereich

(b).
$$f_{2n} := \mathbb{P}\left(\underbrace{\inf\{\ell > 0: S_{\ell} = 0\}}_{\text{erste Rückkehr nach 0}} = 2n\right)$$

(c). Die W-keit Rückkehr nach 2n Schritten

$$u_{2n} \coloneqq \mathbb{P}(S_n = 0)$$

Lemma 8. Es gilt

$$(a) \quad u_{2n} = \frac{1}{2^n} \binom{2n}{n}$$

(b)
$$f_{2n} = \frac{1}{2^n} u_{2n-2} = u_{2n-2} - u_{2n}$$

Reflection principle:

Satz 9. Es gilt

$$\mathbb{P}(Z_{2n} = 2k) =: p_{2k,2n} = u_{2k} \cdot u_{2n-2k}$$

$$= {2k \choose k} \frac{1}{2^{2k}} {2n-2k \choose n-k} \frac{1}{2^{2(n-k)}}$$

Asymptotischer Ergebnis

Die Dichte

$$\rho(\alpha) \coloneqq \frac{\mathrm{d}}{\mathrm{d}\alpha} F(\alpha) = \frac{1}{\pi (\alpha (1-\alpha))^{1/2}}$$

Es ist viel größer für $\alpha \approx 0$ oder $\alpha \approx 1$ als in der Mitte $\alpha \approx 1/2$.