Perceptrón Multicapa

Sistemas de Inteligencia Artificial

Primer Cuatrimestre 2023

Rodrigo Ramele Eugenia Piñeiro Alan Pierri Santiago Reyes Marina Fuster Luciano Bianchi

capa 0

PERCEPTRÓN MULTICAPA

NOTACIÓN

Índice	Descripción
i	índice de la neurona de la capa de salida (o siguiente)
j	índice de la neurona de la capa intermedia
k	índice de la neurona de entrada o de la capa anterior
m	índice de la capa intermedia
р	cantidad datos
μ	dato en particular

 $w_{ik}^m = pesos sinápticos$

 V_{i}^{m} = neurona de capa intermedia

 $W_{ij} = pesos sináticos de la última capa$

 $O_i = neurona de capa de salida$

NOTACIÓN

Índice	Descripción
i	índice de la neurona de la capa de salida
j	índice de la neurona de la capa intermedia
k	índice de la neurona de entrada o de la capa anterior
m	índice de la capa intermedia
р	cantidad datos
μ	dato en particular

 $w_{ik}^m = pesos sinápticos$

 V_{i}^{m} = neurona de capa intermedia

 $W_{ij} = pesos sináticos de la última capa$

 $O_i = neurona de capa de salida$

	PERCEPTRÓN SIMPLE	PERCEPTRÓN MULTICAPA
Proceso para obtener la salida de la neurona ("predecir")	$O = \Theta(\sum_{i=0}^{n} x_i \cdot w_i)$?
Función de error con respecto a la salida esperada	$E(O) = \frac{1}{2} \sum_{\mu=1}^{p} (\zeta^{\mu} - O^{\mu})^{2}$?
Proceso de "aprendizaje" para ajustar los pesos	$w^{nuevo} = w^{anterior} + \Delta w$ $\Delta w = - \eta \frac{\partial E}{\partial w}$?

CALCULAR LA SALIDA DE LA NEURONA

CALCULAR LA SALIDA DE LA NEURONA

 $\mu = 18$ $O_1 = \Theta(\sum_{k=1}^2 V_k^2 . W_{1k})$ $W_{_{11}}$ W_{12} w_{21}^{2} w_{11}^{2} V_3^1 w_{12}^{1} w_{20}^{1} w_{22}^{1}

 w_{21}^{1}

1.0

 w_{10}^{1}

 x_0

-1.0

 $\mu = 18$

 $\mu = 18$

Propagación hacia adelante (forward propagation)

PROPAGACIÓN HACIA ADELANTE (FORWARD PROPAGATION)

Salida de la neurona:

$$O_{i} = \theta(\sum_{k=1}^{N} V_{k}^{M-1} . W_{ik})$$

Salida de la neurona de una capa intermedia:

$$V_j^m = \theta(\sum_{k=1}^{\infty} V_k^{m-1} . w_{jk}^m)$$
 $m = 2... M - 1$

Salida de la neurona de la primera capa intermedia:

$$V_{j}^{1} = \theta(\sum_{k=1}^{n} x_{k}^{\mu} \cdot w_{jk}^{1})$$

	PERCEPTRÓN SIMPLE	PERCEPTRÓN MULTICAPA
Proceso para obtener la salida de la neurona ("predecir")	$O = \Theta(\sum_{i=0}^{n} x_i \cdot w_i)$	$V_{j}^{m} = \Theta(\sum_{k=1}^{n} V_{k}^{m-1} . w_{jk}^{m})$ $m = 1M (O_{i} = V_{i}^{M}, x_{i} = V_{i}^{0})$
Función de costo (medir error con respecto a la salida esperada)	$E(O) = \frac{1}{2} (\zeta^{\mu} - O^{\mu})^2$?
Proceso de "aprendizaje" para ajustar los pesos	$w^{nuevo} = w^{anterior} + \Delta w$ $\Delta w = - \eta \frac{\partial E}{\partial w}$?

Proceso para obtener la salida de la neurona ("predecir")	$O = \Theta(\sum_{i=0}^{n} x_i \cdot w_i)$	$V_{j}^{m} = \Theta(\sum_{k=1}^{N} V_{k}^{m-1} \cdot w_{mk})$ $m = 1 \dots M \ (O_{i} = V_{i}^{M}, x_{i} = V_{i}^{0})$

PERCEPTRÓN MULTICAPA

Proceso de "aprendizaje"
$$E(O) = \frac{1}{2}(\zeta^{\mu} - O^{\mu})^2$$

$$E(O) = \frac{1}{2}\sum_{i}(\zeta^{\mu} - O^{\mu}_{i})^2$$

$$E(O) = \frac{1}{2}\sum_{i}(\zeta^{\mu} - O^{\mu}_{i})^2$$

Función de error

con respecto a la

para ajustar los

pesos

$$\frac{ior}{+}$$
 $\eta \frac{\partial E}{\partial w}$

PERCEPTRÓN SIMPLE

RUMELHART, HINTON, WILLIAMS (1986)

 Trabajan en un nuevo algoritmo para actualizar los pesos de una red neuronal llamado retropropagación (back-propagation)

 Para calcular la actualización de los pesos utilizaremos el algoritmo del gradiente descendente y la regla de la cadena para la diferenciación.

Paper: https://www.nature.com/articles/323533a0

Aplicamos la regla de la cadena:

$$\frac{\partial E}{\partial W_{11}} = \frac{\partial E}{\partial O_1} \frac{\partial O_1}{\partial h_1} \frac{\partial h_1}{\partial W_{11}}$$

Aplicamos la regla de la cadena:

$$\frac{\partial E}{\partial w_{11}^2} = \frac{\partial E}{\partial O_1} \frac{\partial O_1}{\partial h_1} \frac{\partial h_1}{\partial V_1^2} \frac{\partial V_1^2}{\partial h_1^2} \frac{\partial h_1^2}{\partial w_{11}^2}$$

Aplicamos la regla de la cadena:

$$\frac{\partial E}{\partial w_{11}^1} = \frac{\partial E}{\partial O_1} \frac{\partial O_1}{\partial h_1} \frac{\partial h_1}{\partial V_1^2} \frac{\partial h_1}{\partial V_1^2} \frac{\partial V_1^2}{\partial h_1^2} \frac{\partial h_1^2}{\partial V_1^2} \frac{\partial V_1^2}{\partial h_1^1} \frac{\partial h_1^1}{\partial w_{11}^1}$$

RETROPROPAGACIÓN: CAPA DE SALIDA

$$E(O) = \frac{1}{2} \sum_{i} (\zeta^{\mu} - O_{i}^{\mu})^{2}$$

$$O_{i} = \theta(h_{i})$$

$$h_{i} = \sum_{j=1}^{n} V_{j}^{M-1} \cdot W_{ij}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial O_i} \frac{\partial O_i}{\partial h_i} \frac{\partial h_i}{\partial W_{ij}}$$

RETROPROPAGACIÓN: CAPA DE SALIDA

$$E(O) = \frac{1}{2} \sum_{i} (\zeta^{\mu} - O_{i}^{\mu})^{2}$$

$$O_{i} = \theta(h_{i})$$

$$h_{i} = \sum_{j=1}^{n} V_{j}^{M-1} . W_{ij}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial O_i} \frac{\partial O_i}{\partial h_i} \frac{\partial h_i}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = (\zeta_i - O_i)(-1)\theta'(h_i)(1)V_j^{M-1}$$

RETROPROPAGACIÓN: CAPA DE SALIDA

$$E(O) = \frac{1}{2} \sum_{i} (\zeta^{\mu} - O_{i}^{\mu})^{2}$$

$$O_{i} = \theta(h_{i})$$

$$h_{i} = \sum_{j=1}^{\infty} V_{j}^{M-1} . W_{ij}$$

$$\Delta w = -\eta \begin{bmatrix} \frac{\partial E}{\partial w} \end{bmatrix} \longrightarrow \frac{\partial E}{\partial W_{ij}} = \begin{bmatrix} \frac{\partial E}{\partial O_i} \\ \frac{\partial O_i}{\partial h_i} \end{bmatrix} \begin{bmatrix} \frac{\partial O_i}{\partial h_i} \\ \frac{\partial W_{ij}}{\partial w_{ij}} \end{bmatrix}$$

$$\frac{\partial E}{\partial W_{ij}} = (\zeta_i - O_i)(-1)\theta'(h_i)(1)V_j^{M-1}$$

$$\frac{\partial E}{\partial W_{ii}} = -\delta_i V_j^{M-1} \qquad \delta_i = (\zeta_i - O_i)\theta'(h_i)$$

RETROPROPAGACIÓN: CAPA DE SALIDA

$$E(O) = \frac{1}{2} \sum_{i} (\zeta^{\mu} - O_{i}^{\mu})^{2}$$

$$O_{i} = \theta(h_{i})$$

$$h_{i} = \sum_{j=1}^{\infty} V_{j}^{M-1} . W_{ij}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial O_i} \frac{\partial O_i}{\partial h_i} \frac{\partial h_i}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = (\zeta_i - O_i)(-1)\theta'(h_i)(1)V_j^{M-1}$$

$$\frac{\partial E}{\partial W_{ij}} = -\delta_i V_j^{M-1} \qquad \delta_i = (\zeta_i - O_i)\theta'(h_i)$$

$$\Delta W_{ij} = \eta \delta_i V_j^{M-1}$$

RETROPROPAGACIÓN: CAPA DE SALIDA

$$E(O) = \frac{1}{2} \sum_{i} (\zeta^{\mu} - O_{i}^{\mu})^{2}$$

$$O_{i} = \theta(h_{i})$$

$$h_{i} = \sum_{j=1}^{N} V_{j}^{M-1} . W_{ij}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial O_i} \frac{\partial O_i}{\partial h_i} \frac{\partial h_i}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = (\zeta_i - O_i)(-1)\theta'(h_i)(1)V_j^{M-1}$$

$$\frac{\partial E}{\partial W_{ij}} = -\delta_i V_j^{M-1} \qquad \delta_i = (\zeta_i - O_i)\theta'(h_i)$$

$$\Delta W_{ij} = \eta \delta_i V_j^{M-1}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial w_{jk}^m} = \frac{\partial E}{\partial O} \frac{\partial O}{\partial h} \frac{\partial h}{\partial V_j^m} \frac{\partial V_j^m}{\partial h_j^m} \frac{\partial h_j^m}{\partial w_{jk}^m}$$

$$E(O) = \frac{1}{2} \sum_{i} (\zeta^{\mu} - O_{i}^{\mu})^{2}$$

$$O_{i} = \theta(h_{i})$$

$$h_{i} = \sum_{j=1}^{n} V_{j}^{M-1} \cdot W_{ij}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial w_{jk}^m} = \frac{\partial E}{\partial O} \frac{\partial O}{\partial h} \frac{\partial h}{\partial v_j^m} \frac{\partial v_j^m}{\partial h_j^m} \frac{\partial h_j^m}{\partial w_{jk}^m}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = (-1) \sum_{i} (\zeta_{i} - O_{i}) \theta'(h_{i}) (1) W_{ij} \frac{\partial V_{j}^{m}}{\partial h_{j}^{m}} \frac{\partial h_{j}^{m}}{\partial w_{jk}^{m}}$$

$$V_{j}^{m} = \theta(h_{j}^{m})$$

$$h_{j}^{m} = \sum_{k} V_{k}^{m-1} . w_{jk}^{m}$$

$$\Delta w = - \eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial w_{jk}^m} = \frac{\partial E}{\partial O} \frac{\partial O}{\partial h} \frac{\partial h}{\partial v_j^m} \frac{\partial v_j^m}{\partial h_j^m} \frac{\partial h_j^m}{\partial w_{jk}^m}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \frac{\partial V_{j}^{m}}{\partial h_{j}^{m}} \frac{\partial h_{j}^{m}}{\partial w_{jk}^{m}}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \; \theta'(h_{j}^{m}) (1) \; V_{k}^{m-1}$$

$$V_{j}^{m} = \theta(h_{j}^{m})$$

$$h_{j}^{m} = \sum_{k} V_{k}^{m-1} . w_{jk}^{m}$$

$$\Delta w = - \eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial w_{jk}^m} = \frac{\partial E}{\partial O} \frac{\partial O}{\partial h} \frac{\partial h}{\partial v_j^m} \frac{\partial v_j^m}{\partial h_j^m} \frac{\partial h_j^m}{\partial w_{jk}^m}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \begin{vmatrix} \partial V_{j}^{m} \\ \partial h_{j}^{m} \end{vmatrix} \frac{\partial h_{j}^{m}}{\partial w_{jk}^{m}}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \; \theta'(h_{j}^{m}) (1) \; V_{k}^{m-1}$$

$$V_{j}^{m} = \theta(h_{j}^{m})$$

$$h_{j}^{m} = \sum V_{k}^{m-1} . w_{jk}^{m}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial w_{jk}^{m}} = \frac{\partial E}{\partial O}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \frac{\partial V_{j}^{m}}{\partial h_{j}^{m}} \frac{\partial h_{j}^{m}}{\partial w_{jk}^{m}}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \frac{\Theta'(h_{j}^{m})(1)}{\partial w_{jk}^{m}} V_{k}^{m-1}$$

$$\Delta w = \eta \delta_j^m V_k^{m-1}$$

$$V_{j}^{m} = \theta(h_{j}^{m})$$

$$h_{j}^{m} = \sum_{i} V_{k}^{m-1} . w_{jk}^{m}$$

$$\Delta w = -\eta \frac{\partial E}{\partial w} \longrightarrow \frac{\partial E}{\partial w_{jk}^m} = \frac{\partial E}{\partial O} \frac{\partial O}{\partial h} \frac{\partial h}{\partial v_j^m} \frac{\partial v_j^m}{\partial h_j^m} \frac{\partial h_j^m}{\partial w_{jk}^m}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \begin{bmatrix} \partial v_{j}^{m} \\ \partial h_{j}^{m} \end{bmatrix} \frac{\partial h_{j}^{m}}{\partial w_{jk}^{m}}$$

$$\frac{\partial E}{\partial w_{jk}^{m}} = -\sum_{i} \delta_{i} W_{ij} \Theta'(h_{j}^{m})(1) V_{k}^{m-1}$$

$$\Delta w = \eta \delta_j^m V_k^{m-1}$$

$$V_{j}^{m} = \theta(h_{j}^{m})$$

$$h_{i}^{m} = \sum_{j} V_{k}^{m-1} . w_{ik}^{m}$$

Proceso para obtener la salida de la neurona ("predecir")	$O = \Theta(\sum_{i=0}^{n} x_i \cdot w_i)$	$V_{j}^{m} = \theta(\sum_{k=1}^{N} V_{k}^{m-1} . w_{mk})$ $m = 1 M (O_{i} = V_{i}^{M}, x_{i} = V_{i}^{0})$
Función de error con respecto a la salida esperada	$E(O) = \frac{1}{2} (\zeta^{\mu} - O^{\mu})^2$	$E(O) = \frac{1}{2} \sum_{i} \left(\zeta^{\mu} - O_{i}^{\mu} \right)^{2}$
Proceso de "aprendizaje" para ajustar los pesos	$w^{nuevo} = w^{anterior} + \Delta w$ $\Delta w = -\eta \frac{\partial E}{\partial w}$	$\Delta W_{ij} = \eta \delta_i V_j \qquad \delta_i = (\zeta_i - O_i) \theta'(h_i)$ $\Delta w_{jk}^m = \eta \delta_j^m V_k^{m-1} \qquad \delta_j^m = (\sum_i \delta_i^{m+1} w_{ij}^{m+1}) \theta'(h_j^m)$

PERCEPTRÓN SIMPLE

PERCEPTRÓN MULTICAPA

ALGORITMO DEL PERCEPTRÓN MULTICAPA

- 1. Definir la arquitectura del perceptrón multicapa
 - a. Capas y cantidad de neuronas (no tenemos un método para conseguir la ideal)
 - b. Funciones de activación (puede ser la misma para todas las neuronas o no)
- 2. Inicializar los pesos sinápticos en valores aleatorios pequeños o cero
- 3. Definir: método de optimización, tasa de aprendizaje, épocas.
- 4. Para cada elemento del conjunto de datos
 - a. Calcular la salida de la neurona (feedforward)
 - b. Actualizar los pesos sinápticos (backpropagation)
- 5. Calcular el error del perceptrón para verificar si se alcanzó convergencia (MSE)
 - a. Si el perceptrón alcanzó convergencia, finalizar.
- 6. Repetir 3 y 4 hasta alcanzar convergencia o hasta finalizar la cantidad de épocas

ALGORITMO DEL PERCEPTRÓN MULTICAPA

Para cada elemento del conjunto de datos

a. Calcular la salida de la neurona (feedforward) (M es la cantidad de capas)

$$V^{0} = x^{\mu}$$

$$V_{j}^{m} = \theta(\sum_{k=1}^{n} V_{k}^{m-1} . w_{mk}) \quad m = 1...M - 1$$

$$O_{i} = \theta(\sum_{j} V_{j}^{M-1} W_{ij})$$

ALGORITMO DEL PERCEPTRÓN MULTICAPA

Para cada elemento del conjunto de datos

b. Actualizar los pesos sinápticos (backpropagation)

Calculamos los deltas para cada capa

$$\delta_{i} = (\zeta_{i} - O_{i})\theta'(h_{i}) \qquad capa \ salida$$

$$\delta_{j}^{m} = (\sum_{i} \delta_{i}^{m+1} w_{ij}^{m+1})\theta'(h_{j}^{m}) \qquad capa \ oculta$$

Calculamos la actualización correspondiente para los pesos

$$\Delta W_{ij} = \eta \delta_i V_j^{M-1}$$

$$\Delta w_{jk}^m = \eta \delta_j^m V_k^{m-1}$$

$$capa \ salida$$

$$capa \ oculta$$

RESUMEN

- El perceptrón multicapa me permite modelar transformaciones complejas (expande el comportamiento de los perceptrones simples)
- La arquitectura del perceptron multicapa debe realizarse manualmente. A priori, no tenemos una receta que nos permita definir "la mejor arquitectura".
- El algoritmo de retropropagación provee un mecanismo para hallar las actualizaciones de los pesos que nos permiten minimizar la función de costo.

ALGUNAS VARIACIONES POSIBLES

Variable	Posibles Valores
Función de activación ($ heta$)	Escalón, Identidad, Sigmoidea
Tasa de aprendizaje (η)	~0.1
Actualización de los pesos	Batch/Online
Error del perceptrón (función de costo)	Accuracy, suma valores absolutos, MSE
Épocas	
Método de optimización	Gradiente Descendente
Parámetros de función de activación	heta de tanh o de log
Técnica para separar en entrenamiento y testeo	Ejemplo: 80%-20%
Arquitectura de la red	