YRM71, YS591 – Mathematical Neuroscience Project 1: Backpropagation

A short oral presentation is required in addition to turn in a short writeup that describes the problem you investigated, why it is interesting, and results.

Key words: learning from examples, feed-forward neural networks, error backpropagation

Assignment

1. XOR problem. $n_1 = 2, n_2 = 2$.

Data
$$\mathcal{D} = \{(\boldsymbol{x}^{\alpha}, y^{\alpha})\} = \{((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)\}$$

2. Mirror Symmetry Detection Problem (Rumelhart *et al.* 1986), $n_1 = 6, n_2 = 2$. Among $2^6 = 64$ possible inputs, the network is trained to output 1 for only $2^3 = 8$ inputs.

$$\mathcal{D} = \{(\boldsymbol{x}^{\alpha}, y^{\alpha})\} = \{((0, 1, 0, 0, 1, 0), 1), ((0, 1, 1, 1, 1, 0), 1), ((1, 1, 0, 1, 1, 0), 0), \dots\}$$

Learning Procedure

- 1. Generate a set of input-output pairs, $(\boldsymbol{x}^{\alpha}, y^{\alpha}), \alpha = 1, 2, \cdots$
- 2. Set weights connections, w_j , and s_{jk} , $j=0,1,\cdots,n_2, k=0,1,2,\cdots,n_1$, random values according to the normal distribution $\mathcal{N}(0,0.1^2)$, mean 0, variance 0.1^2 .
- 3. Set a randomly selected x^{α} as an input to the network.
- 4. Activity dynamics (Fast): Calculate $u_j, j = 1, 2, \dots, n_2$, output z, and E.

$$u_j = f\left(\sum_{k=0}^{n_1} s_{jk} x_k\right), \ z = f\left(\sum_{j=0}^{n_2} w_j u_j\right), \ E = \frac{1}{2} \left(z - y\right)^2$$

5. Weight dynamics (Slow): Update parameter values w_j , and s_{jk} , $j = 0, 1, \dots, n_2, k = 0, 1, 2, \dots, n_1$.

$$\Delta w_j = -\mu \frac{\partial E}{\partial w_j} = \mu r u_j, \qquad r = (y - z) \cdot z (1 - z)$$

$$\Delta s_{jk} = -\mu \frac{\partial E}{\partial s_{jk}} = \mu r_j^* x_k, \qquad r_j^* = r w_j \cdot u_j (1 - u_j)$$

where r and r_j^* 's are learning signals, and $\mu = 0.8$ is learning coefficient.

6. Repeat this procedure from 3. until ΔE is small enough.

Evaluation of the network (* Must)

- 1. * Draw a graph with number of iterations in horizontal axis and E in vertical axis.
- 2. * Every 10 iterations, calculate the percentage of correct responses. Draw a graph with number of iterations in horizontal axis and the percentage correct responses (decide 1 if the weighted sum input to the output unit is larger than 0, 0 otherise) in vertical axis.
- 3. * Try several different initial parameter values in learning.
- 4. * Try several cases of number of hidden units, n_2 . Interpret the trained network, and explain how the network solves the XOR and Mirror Symmetry problems.
- 5. In mirror symmetry detection problem, only m = 20 (for example) examples are used to train the network. Evaluate network performance 64 m = 44 untrained examples. Try various m.
- 6. Compare the results (e,g., the learning speed) when output unit z and target signal y take (-1,1) instead of (0,1).
- 7. Compare the learning speed when the target signal y takes (0.1, 0.9) and (-0.9, 0.9) instead of (0,1) and (-1,1).
- 8. Try different activity functions. Try ReLU as hidden units activity functions

$$f_5(u) = \begin{cases} u, & u \ge 0 \\ 0, & u < 0 \end{cases}$$

9. Try batch learning. Instead of adjusting parameter for each input, accumulate $10 \Delta w_j, \Delta s_{jk}$'s for 10 inputs, then change these values to the means. Compare the results.

10. Draw the learning trajectory of connection weights. In Mirror Symmetry Detection Problem, $n_1 = 6, n_2 = 2$, there are 17 parameters $\boldsymbol{\theta} = (s_{10}, s_{20}, \dots, s_{62}, w_0, w_1, \dots, w_6)$. Collect many $\boldsymbol{\theta}$ s during learning and represent these in 2 dimensional plane by dimensional reduction method, like PCA or t-SNE.