Modificaciones de parches y axiomas de separación en topología sin puntos

26 de julio de 2025

Juan Carlos Monter Cortés Director: Dr. Luis Ángel Zaldívar Corichi

Universidad de Guadalajara

$$T_2$$
: Si $x, y \in S$ con $x \neq y$, $\exists U, V \in OS$ tal que $x \in U, y \in V$ y $U \cap V = \emptyset$.

$$T_2$$
: Si $x, y \in S$ con $x \neq y$, $\exists U, V \in OS$ tal que $x \in U, y \in V$ y $U \cap V = \emptyset$.

$$T_2$$
: Si $x, y \in S$ con $x \neq y$, $\exists U, V \in OS$ tal que $x \in U, y \in V$ y $U \cap V = \emptyset$.

Si S es T_2 ,

• Todo conjunto compacto (saturado) es cerrado.

$$T_2$$
: Si $x, y \in S$ con $x \neq y$, $\exists U, V \in OS$ tal que $x \in U, y \in V$ y $U \cap V = \emptyset$.

- Todo conjunto compacto (saturado) es cerrado.
- El subespacio diagonal es cerrado.

$$T_2$$
: Si $x, y \in S$ con $x \neq y$, $\exists U, V \in OS$ tal que $x \in U, y \in V$ y $U \cap V = \emptyset$.

- Todo conjunto compacto (saturado) es cerrado.
- El subespacio diagonal es cerrado.
- T_2 + compacto \Rightarrow Regular.

$$T_2$$
: Si $x, y \in S$ con $x \neq y$, $\exists U, V \in OS$ tal que $x \in U, y \in V$ y $U \cap V = \emptyset$.

- Todo conjunto compacto (saturado) es cerrado.
- El subespacio diagonal es cerrado.
- T_2 + compacto \Rightarrow Regular.
- •

$$T_2$$
: Si $x, y \in S$ con $x \neq y$, $\exists U, V \in OS$ tal que $x \in U, y \in V$ y $U \cap V = \emptyset$.

- Todo conjunto compacto (saturado) es cerrado.
- El subespacio diagonal es cerrado.
- T_2 + compacto \Rightarrow Regular.
- :

La construcción en Top:

• $S \in \text{Top es empaquetado si y solo si } Q \in \mathcal{Q}S \text{ entonces } Q \in \mathcal{C}S.$

- $S \in \text{Top}$ es empaquetado si y solo si $Q \in QS$ entonces $Q \in CS$.
- ${}^pS \in \text{Top}$ es el espacio de parches con la topología generada por

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, Q \in \mathcal{Q}S\}.$$

La construcción en Top:

- $S \in \text{Top}$ es empaquetado si y solo si $Q \in QS$ entonces $Q \in CS$.
- ${}^pS \in \text{Top}$ es el espacio de parches con la topología generada por

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, Q \in \mathcal{Q}S\}.$$

• S es empaquetado si y solo si ${}^{p}S = S$.

- $S \in \text{Top}$ es empaquetado si y solo si $Q \in QS$ entonces $Q \in CS$.
- ${}^pS \in \text{Top}$ es el espacio de parches con la topología generada por

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, Q \in \mathcal{Q}S\}.$$

- S es empaquetado si y solo si ${}^{p}S = S$.
- $T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$.

- $S \in \text{Top}$ es empaquetado si y solo si $Q \in QS$ entonces $Q \in CS$.
- ${}^pS \in \text{Top}$ es el espacio de parches con la topología generada por

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, \ Q \in \mathcal{Q}S\}.$$

- S es empaquetado si y solo si ${}^{p}S = S$.
- $T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$.
- Si S es T_1 , entonces ${}^pS = {}^{pp}S$.

- $S \in \text{Top}$ es empaquetado si y solo si $Q \in \mathcal{Q}S$ entonces $Q \in \mathcal{C}S$.
- ${}^pS \in \text{Top}$ es el espacio de parches con la topología generada por

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, \ Q \in \mathcal{Q}S\}.$$

- S es empaquetado si y solo si ${}^{p}S = S$.
- $T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$.
- Si S es T_1 , entonces ${}^pS = {}^{pp}S$.
- Si *S* es T_{\circ} , entonces ${}^{pp}S = {}^{ppp}S$

- $S \in \text{Top}$ es empaquetado si y solo si $Q \in QS$ entonces $Q \in CS$.
- ${}^pS \in \text{Top}$ es el espacio de parches con la topología generada por

$$pbase = \{U \cap Q' \mid U \in \mathcal{O}S, \ Q \in \mathcal{Q}S\}.$$

- S es empaquetado si y solo si ${}^{p}S = S$.
- $T_2 \Rightarrow \text{Empaquetado} \Rightarrow T_1$.
- Si S es T_1 , entonces ${}^pS = {}^{pp}S$.
- Si *S* es T_{\circ} , entonces ${}^{pp}S = {}^{ppp}S$

$$OS \longrightarrow O^pS \longrightarrow O^fS$$

Lo que necesitamos:

1. Núcleos

- 1. Núcleos
 - Núcleos abiertos (v•)

- 1. Núcleos
 - Núcleos abiertos (v•)
 - Núcleos cerrados (u_•)

- 1. Núcleos
 - Núcleos abiertos (v_•)
 - Núcleos cerrados (u_•)
- 2. Filtros

- 1. Núcleos
 - Núcleos abiertos (v_•)
 - Núcleos cerrados (u_•)
- 2. Filtros
 - Filtros abiertos (A^{\wedge})

- 1. Núcleos
 - Núcleos abiertos (v_•)
 - Núcleos cerrados (u_•)
- 2. Filtros
 - Filtros abiertos (A^{\wedge})
 - Filtros admisibles $(\nabla(j))$

- 1. Núcleos
 - Núcleos abiertos (v_•)
 - Núcleos cerrados (u_•)
- 2. Filtros
 - Filtros abiertos (A^{\wedge})
 - Filtros admisibles ($\nabla(j)$)
- 3. El Teorema de Hoffman-Mislove

La construcción en Frm:

La construcción en Frm:

Pbase =
$$\{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

La construcción en Frm:

• Para $A \in Frm$, PA es el marco de parches y es generado por

Pbase =
$$\{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

• A es parche trivial si y solo si $A \simeq PA$.

La construcción en Frm:

Pbase =
$$\{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

- A es parche trivial si y solo si $A \simeq PA$.
- ¿Cuándo ocurre que $A \simeq PA$?

La construcción en Frm:

Pbase =
$$\{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

- A es parche trivial si y solo si $A \simeq PA$.
- ¿Cuándo ocurre que $A \simeq PA$?
- ¿Cómo se comparta PA?

La construcción en Frm:

Pbase =
$$\{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

- *A* es parche trivial si y solo si $A \simeq PA$.
- ¿Cuándo ocurre que $A \simeq PA$?
- ¿Cómo se comparta PA?

$$A \longrightarrow PA \longrightarrow NA$$

La construcción en Frm:

• Para $A \in Frm$, PA es el marco de parches y es generado por

Pbase =
$$\{u_a \wedge v_F \mid a \in A, F \in A^{\wedge}\}.$$

- A es parche trivial si y solo si $A \simeq PA$.
- ¿Cuándo ocurre que $A \simeq PA$?
- ¿Cómo se comparta PA?

$$A \longrightarrow PA \longrightarrow NA$$

¿Qué tanto se parece empaquetado y parche trivial?

Ejemplo

Sea $S = \mathbb{R}$ y consideremos las topologías generadas por:

$$\mathcal{O}_l S = \{(-\infty, a)\}, \quad \mathcal{O}_m S = \{(a, b)\}, \quad \mathcal{O}_n S = \{[a, b)\},$$

donde $a, b \in S$.

Ejemplo

Sea $S = \mathbb{R}$ y consideremos las topologías generadas por:

$$\mathcal{O}_l S = \{(-\infty, a)\}, \quad \mathcal{O}_m S = \{(a, b)\}, \quad \mathcal{O}_n S = \{[a, b)\},$$

donde $a, b \in S$. Entonces

$$\mathcal{O}_l S \hookrightarrow \mathcal{O}_m S \hookrightarrow \mathcal{O}_n S$$

Ejemplo

Sea $S = \mathbb{R}$ y consideremos las topologías generadas por:

$$O_l S = \{(-\infty, a)\}, \quad O_m S = \{(a, b)\}, \quad O_n S = \{[a, b)\},$$

donde $a, b \in S$. Entonces

$$\mathcal{O}_l S \hookrightarrow \mathcal{O}_m S \hookrightarrow \mathcal{O}_n S$$

Se puede verificar que

$$O_1^p S = O_m S \simeq PO_l S$$
 y $O_1^f S = O_n S \simeq NO_l S$,

es decir,

$$O_1S = A \rightarrow PA \hookrightarrow NA$$

El diagrama de parches

(1)

El diagrama de parches

• La construcción de parches es funtorial si para

$$f: A \rightarrow B$$

convierte filtros abiertos.

(1)

El diagrama de parches

• La construcción de parches es funtorial si para

$$f: A \rightarrow B$$

convierte filtros abiertos.

• U_A convierte filtros abiertos.

Sea $A \in \operatorname{Frm} y \alpha \in \mathbf{Ord}$.

Sea $A \in \operatorname{Frm} y \alpha \in \operatorname{Ord}$.

• $F \in A^{\wedge}$ es α -arreglado si

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$
,

donde
$$d = d(\alpha) = f^{\alpha}(0)$$
 y $f = \dot{\bigvee} \{v_a \mid a \in F\}$

Sea $A \in \operatorname{Frm} y \alpha \in \operatorname{Ord}$.

• $F \in A^{\wedge}$ es α -arreglado si

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$
,

donde
$$d = d(\alpha) = f^{\alpha}(0)$$
 y $f = \bigvee \{v_a \mid a \in F\}$

• A es α -arreglado si todo $F \in A^{\wedge}$ es α -arreglado.

Sea $A \in \operatorname{Frm} y \alpha \in \mathbf{Ord}$.

• $F \in A^{\wedge}$ es α -arreglado si

$$x \in F \Rightarrow u_d(x) = d \lor x = 1$$
,

donde
$$d = d(\alpha) = f^{\alpha}(0)$$
 y $f = \dot{\bigvee} \{v_a \mid a \in F\}$

- A es α -arreglado si todo $F \in A^{\wedge}$ es α -arreglado.
- A es arreglado si A es α -arreglado para algún α .

Arreglado ⇔ Parche trivial.

- Arreglado ⇔ Parche trivial.
- Regular \Rightarrow Arreglado.

- Arreglado ⇔ Parche trivial.
- Regular \Rightarrow Arreglado.
- Si A es arreglado $\Rightarrow S = \operatorname{pt} A$ es T_1 .

- Arreglado ⇔ Parche trivial.
- Regular \Rightarrow Arreglado.
- Si A es arreglado $\Rightarrow S = \operatorname{pt} A$ es T_1 .
- Si A es 1-arreglado $\Rightarrow S$ es T_2 .

- Arreglado ⇔ Parche trivial.
- Regular \Rightarrow Arreglado.
- Si A es arreglado $\Rightarrow S = \operatorname{pt} A$ es T_1 .
- Si A es 1-arreglado $\Rightarrow S$ es T_2 .
- OS es 1-arreglado $\Leftrightarrow S$ es T_2 .

- Arreglado ⇔ Parche trivial.
- Regular \Rightarrow Arreglado.
- Si A es arreglado $\Rightarrow S = \operatorname{pt} A$ es T_1 .
- Si A es 1-arreglado $\Rightarrow S$ es T_2 .
- OS es 1-arreglado $\Leftrightarrow S$ es T_2 .
- OS es arreglado $\Leftrightarrow S$ es empaquetado y apilado.

Objetivo

Conocer la relación que existe entre la propiedad arreglado y los distintas propiedades de separación que existe en Frm

Axiomas de separación en Frm

Axiomas tipo Hausdorff

(**dH**): Si
$$a \lor b = 1$$
, con $a, b \ne 1$, $\exists u, v \text{ tales que } u \nleq a, v \nleq b \text{ y}$
 $u \land v = 0$.

(**H**): Si $1 \neq a \nleq b \exists u, v \text{ tales que } u \nleq a, v \nleq b \text{ y } u \land v = 0.$

(**Hp**): Todo elemento semiprimo es máximo.

(**fH**): El sublocal diagonal es cerrado.

Comportamiento de los axiomas

S. H.= Suficientemente Huasdorff ($P \Rightarrow T_2$)

C.= Propiedad conservativa ($P \Leftrightarrow T_2$)

C. S. E.= Comportamiento similar al espacial

$$((\mathbf{H}) + \text{Compacto} \Rightarrow (\mathbf{reg}))$$

Propiedad/Comportamiento	C.	1°	2°	S. H.	C. S. E.
(dH)	X	\checkmark	X	X	X
(H)	√	√	X	✓	X
(Hp)	√	√	X	√	?
(fH)	X	X	√	✓	√

• Conocer la relación entre parche trivial y empaquetado.

- Conocer la relación entre parche trivial y empaquetado.
- Ver el comportamiento de arreglado con respecto a los axiomas tipo Hausdorff.

- Conocer la relación entre parche trivial y empaquetado.
- Ver el comportamiento de arreglado con respecto a los axiomas tipo Hausdorff.
- Desarrollar teoría que permita comprender la interacción entre las propiedades.

- Conocer la relación entre parche trivial y empaquetado.
- Ver el comportamiento de arreglado con respecto a los axiomas tipo Hausdorff.
- Desarrollar teoría que permita comprender la interacción entre las propiedades.
- Ver ejemplos.

¿El marco de parches se comporta como el espacio de parches?

• PA, en general, no es T_1 .

- PA, en general, no es T_1 .
- Al no ser T₁ no puede cumplir algún otro axioma de separación más fuerte que T₁.

- PA, en general, no es T_1 .
- Al no ser T₁ no puede cumplir algún otro axioma de separación más fuerte que T₁.
- ¿PA cumple (saju)?

- PA, en general, no es T_1 .
- Al no ser T₁ no puede cumplir algún otro axioma de separación más fuerte que T₁.
- ¿PA cumple (**saju**)?
- ¿Se cumple que $PA \simeq P^2A$?

- PA, en general, no es T_1 .
- Al no ser T₁ no puede cumplir algún otro axioma de separación más fuerte que T₁.
- ¿PA cumple (saju)?
- ¿Se cumple que $PA \simeq P^2A$?
- Se cumple que $P^2A \simeq P^3A$.

¿El marco de parches se comporta como el espacio de parches?

- PA, en general, no es T_1 .
- Al no ser T₁ no puede cumplir algún otro axioma de separación más fuerte que T₁.
- ¿PA cumple (saju)?
- ¿Se cumple que $PA \simeq P^2A$?
- Se cumple que $P^2A \simeq P^3A$.

¿Qué pasa si el marco A cumple (H)?

• Si A es $(\mathbf{H}) \Rightarrow S = \operatorname{pt} A$ es T_2

- Si A es $(\mathbf{H}) \Rightarrow S = \operatorname{pt} A$ es T_2
- Si S es $T_2 \Rightarrow OS$ es 1-arreglado.

- Si A es $(\mathbf{H}) \Rightarrow S = \operatorname{pt} A$ es T_2
- Si S es $T_2 \Rightarrow OS$ es 1-arreglado.
- Si OS es 1-arreglado $\Rightarrow OS \simeq POS$.

- Si A es $(\mathbf{H}) \Rightarrow S = \operatorname{pt} A$ es T_2
- Si S es $T_2 \Rightarrow OS$ es 1-arreglado.
- Si OS es 1-arreglado $\Rightarrow OS \simeq POS$.
- Si S es $T_2 \Rightarrow^p S = S$.

- Si A es $(\mathbf{H}) \Rightarrow S = \operatorname{pt} A$ es T_2
- Si S es $T_2 \Rightarrow OS$ es 1-arreglado.
- Si OS es 1-arreglado $\Rightarrow OS \simeq POS$.
- Si S es $T_2 \Rightarrow^p S = S$.
- $\operatorname{Si}^{p}S = S \Rightarrow \mathfrak{O}S = \mathfrak{O}^{p}S$.

- Si A es $(\mathbf{H}) \Rightarrow S = \operatorname{pt} A$ es T_2
- Si S es $T_2 \Rightarrow OS$ es 1-arreglado.
- Si OS es 1-arreglado $\Rightarrow OS \simeq POS$.
- Si S es $T_2 \Rightarrow^p S = S$.
- Si ${}^pS = S \Rightarrow \mathfrak{O}S = \mathfrak{O}^pS$.

Marcos arreglados vs propiedades en Frm

Corolario

 $SiA \in Frm$ es espacial, entonces OS cumple $(\mathbf{H}) \Leftrightarrow A$ es 1-arreglado.

Corolario

Todo marco ajustado es arreglado.

Proposición

Todo marco fuertemente Hausdorff es arreglado.

Proposición

Si A es arreglado, A_i es arreglado para $j \in NA$.

Intervalos de admisibilidad

Si
$$F \in A^{\wedge}$$
, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para
$$d = v_F(o)$$
, $v_F = f^{\infty}$.

Información con los intervalos

Intervalos de admisibilidad

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para
$$d = v_F(o)$$
, $v_F = f^{\infty}$.

Información con los intervalos

• $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(o)$, $v_F = f^{\infty}$.

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(o)$, $v_F = f^{\infty}$.

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.
- Arreglado $\Leftrightarrow v_F \leqslant u_d$

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(o)$, $v_F = f^{\infty}$.

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.
- Arreglado $\Leftrightarrow v_F \leqslant u_d$
- $(\mathbf{fH}) \Leftrightarrow \forall j \in [v_F, w_F], j = u_{\bullet} y \bullet \in A.$

Si $F \in A^{\wedge}$, entonces

$$u_d \leqslant v_F \leqslant w_F$$

para $d = v_F(o)$, $v_F = f^{\infty}$.

- $[v_F, w_F] \subseteq NA$ es el intervalo de admisibilidad.
- Si $j \in [v_F, w_F]$, A_j es compacto.
- Arreglado $\Leftrightarrow v_F \leqslant u_d$
- $(\mathbf{fH}) \Leftrightarrow \forall j \in [v_F, w_F], j = u_{\bullet} y \bullet \in A.$
- $(\mathbf{aju}) \Leftrightarrow [v_F, w_F] = \{*\} y * = u_{\bullet} \text{ para } \bullet \in A.$

Por el Teorema de Hoffman-Mislove

$$Q\in \mathcal{Q}S \leftrightarrow \mathit{F}\in \mathit{A}^{\wedge} \quad \mathsf{y} \quad \mathit{Q}\in \mathcal{Q}S \leftrightarrow \nabla \in \mathcal{O}S^{\wedge}.$$

Además, $[v_Q, w_Q] \subseteq NOS$ es un intervalo de admisibilidad.

Por el Teorema de Hoffman-Mislove

$$Q \in QS \leftrightarrow F \in A^{\wedge}$$
 y $Q \in QS \leftrightarrow \nabla \in OS^{\wedge}$.

Además, $[v_Q, w_Q] \subseteq NOS$ es un intervalo de admisibilidad.

Proposición

Con Fy Q como antes, $sij \in [v_Q, w_Q]$, entonces

$$\nabla(U_*jU^*)=F$$

donde U^* es la reflexión espacial y U_* es su adjunto derecho.

Por el Teorema de Hoffman-Mislove

$$Q \in QS \leftrightarrow F \in A^{\wedge}$$
 $y \quad Q \in QS \leftrightarrow \nabla \in OS^{\wedge}$.

Además, $[v_Q, w_Q] \subseteq NOS$ es un intervalo de admisibilidad.

Proposición

Con Fy Q como antes, si $j \in [v_Q, w_Q]$, entonces

$$\nabla(U_*jU^*)=F$$

donde U^* es la reflexión espacial y U_* es su adjunto derecho.

Equivalentemente

El Q-cuadrado

En [12] construyen el diagrama

$$\begin{array}{ccc}
A & \xrightarrow{f^{\infty}} & A \\
U_{A} \downarrow & & \downarrow U_{A} \\
OS & \xrightarrow{F^{\infty}} & OS
\end{array}$$

y prueban que $U_A \circ f^{\infty} \leqslant F^{\infty} \circ U_A$.

El Q-cuadrado

En [12] construyen el diagrama

$$egin{aligned} A & \stackrel{f^{\infty}}{\longrightarrow} A \ U_A & & \downarrow U_A \ \mathcal{O}S & \stackrel{F^{\infty}}{\longrightarrow} \mathcal{O}S \end{aligned}$$

y prueban que $U_A \circ f^\infty \leqslant F^\infty \circ U_A$. Si $j \in NA$, \widehat{f}^∞ es el núcleo asociado al filtro $j_*F \in A^\wedge$.

El Q-cuadrado

En [12] construyen el diagrama

$$egin{array}{cccc} A & \stackrel{f^{\infty}}{\longrightarrow} & A & & & \downarrow U_A \ U_A & & & & \downarrow U_A & & & \downarrow U_A \ \mathcal{O}S & \stackrel{F^{\infty}}{\longrightarrow} & \mathcal{O}S & & & & \end{array}$$

y prueban que $U_A \circ f^{\infty} \leqslant F^{\infty} \circ U_A$. Si $j \in NA$, \hat{f}^{∞} es el núcleo asociado al filtro $j_*F \in A^{\wedge}$.

$$\begin{array}{ccc}
A & \xrightarrow{f^{\infty}} & A \\
\downarrow^{j} & & \downarrow^{j} \\
A_{j} & \xrightarrow{f^{\infty}} & A_{j}
\end{array}$$

Para j, \hat{f}, \hat{y} como antes, se cumple que

1.
$$j \circ \hat{f} \leqslant f \circ j$$
.

2.
$$j \circ \hat{f}^{\infty} \leqslant f^{\infty} \circ j$$
.

Para $j, f, y\hat{f}$ como antes, se cumple que

- 1. $j \circ \hat{f} \leqslant f \circ j$.
- 2. $j \circ \hat{f}^{\infty} \leqslant f^{\infty} \circ j$.

Definiendo $H=f^{\infty}\circ j$ y $h=H_{|A_{j_*F}}$, obtenemos el diagrama

Para j, \hat{f}, \hat{y} como antes, se cumple que

- 1. $j \circ \hat{f} \leqslant f \circ j$.
- $2. \ j \circ \widehat{f}^{\infty} \leqslant f^{\infty} \circ j.$

Definiendo $H=f^{\infty}\circ j$ y $h=H_{|A_{i*}|}$, obtenemos el diagrama

$$\begin{array}{ccc}
A & \xrightarrow{\widehat{f}^{\infty}} & A_{\widehat{f}^{\infty}} \\
\downarrow j & & \downarrow h \\
A_{j} & \xrightarrow{f^{\infty}} & A_{f^{\infty}}
\end{array} \tag{2}$$

Para $j, f, y\hat{f}$ como antes, se cumple que

- 1. $j \circ \hat{f} \leqslant f \circ j$.
- 2. $j \circ \widehat{f}^{\infty} \leqslant f^{\infty} \circ j$.

Definiendo $H = f^{\infty} \circ j$ y $h = H_{|A_{i*F}|}$, obtenemos el diagrama

$$\begin{array}{ccc}
A & \xrightarrow{\widehat{f}^{\infty}} & A_{\widehat{f}^{\infty}} \\
\downarrow & & \downarrow h \\
A_{j} & \xrightarrow{f^{\infty}} & A_{f^{\infty}}
\end{array} \tag{2}$$

Proposición

El diagrama (2) es conmutativo.

Consideremos

¿Qué pasa si A cumple (H)?

Marcos KC

 $S \in \mathsf{Top}$ es KC si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Marcos KC

 $S \in \mathsf{Top}$ es KC si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Definición

 $A \in Frm$ es KC si todo cociente compacto de A es cerrado.

Marcos KC

 $S \in \text{Top es KC}$ si todo conjunto compacto es cerrado. S es US si cada sucesión convergente tiene exactamente un límite al cual converge.

$$T_2 \Rightarrow KC \Rightarrow US \Rightarrow T_1$$

Definición

 $A \in Frm$ es KC si todo cociente compacto de A es cerrado.

Equivalentemente

$$A_F = u_d$$

para algún $d \in A$ y $F \in A^{\wedge}$.

 $KC \Rightarrow Arreglado$

 $KC \Rightarrow Arreglado$

Proposición

 $Si A es KC entonces A_j es KC para todo j \in NA.$

 $KC \Rightarrow Arreglado$

Proposición

 $Si A es KC entonces A_j es KC para todo j \in NA.$

Proposición

Si A es KC, entonces $A es T_1$.

De hecho

 $KC \Rightarrow Arreglado$

Proposición

 $Si A es KC entonces A_j es KC para todo j \in NA.$

Proposición

SiA es KC, entonces A es T_1 .

De hecho

La topología máximo compacta

Consideremos $S = \{x, y\} \cup \mathbb{N}^2$ con $x, y \notin \mathbb{N}^2$ y sea

$$R_n = \{(m, n) \mid m \in \mathbb{N}\}$$

Definimos

$${\mathbb O}{\mathcal S}={\mathbb P}{\mathbb N}^2\cup{\mathcal U}\cup{\mathcal V}$$

donde

$$\mathcal{U} = \{ U \subseteq S \mid x \in U \text{ y } \forall n \in \mathbb{N}, U \cap R_n \text{ es cofinito} \}$$

$$V = \{ V \subseteq S \mid y \in V \text{ y } \exists F \subseteq \mathbb{N} \text{ finito tal que } \forall n \notin F, R_n \subseteq V \}$$

OS es una topología..

Propiedades de OS

- OS es T_1 .
- OS no es (\mathbf{H}) .
- OS es compacto.
- OS es (aju).
- 0*S* es *KC*.
- OS es 2-arreglado.

El ejemplo de Paseka y Smarda

Consideremos $A \in \operatorname{Frm} y A_r = \{a \in A \mid \neg \neg a = a\}$. Definimos

$$K(A) = \{(u, v) \mid u \in A, v \in A_r, u \leqslant v\}$$

 $K(A) \in Frm.$

Propiedades de K(A)

- Si A es (**H**) y $\neg m$ = 0 para m máximo, K(A) es (**H**).
- Si A es compacto, entonces K(A) es compacto.
- *K*(*A*) no es subajustado

De manera adicional, sea A = [0, 1] con la topología usual. Entonces

- OI es (**H**).
- OI es compacto.
- K(OI) es compacto y (**H**).
- K(OI) no es subajustado.
- K(OI) no es espacial.

Existe marcos Hausdorr y compactos que no son espaciales.

• Requerimos identificar cual es significado de que un marco sea *US*.

- Requerimos identificar cual es significado de que un marco sea US.
- Conocer más sobre el comportamiento del marco de parches para niveles superiores.

- Requerimos identificar cual es significado de que un marco sea US.
- Conocer más sobre el comportamiento del marco de parches para niveles superiores.
- Verificar que (**H**) implica (o no) *KC* (o arreglado).

- Requerimos identificar cual es significado de que un marco sea US.
- Conocer más sobre el comportamiento del marco de parches para niveles superiores.
- Verificar que (**H**) implica (o no) *KC* (o arreglado).
- Desarrollar ejemplos donde aparezcan las propiedades que están involucradas en la investigación.

- Requerimos identificar cual es significado de que un marco sea US.
- Conocer más sobre el comportamiento del marco de parches para niveles superiores.
- Verificar que (**H**) implica (o no) *KC* (o arreglado).
- Desarrollar ejemplos donde aparezcan las propiedades que están involucradas en la investigación.
- Explorar las posibilidades que brindan los intervalos de admisibilidad y el Q-cuadrado.

Bibliografía I

- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074
- J. Monter; A. Zaldívar, El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos [tesis de maestría], 2022. Universidad de Guadalajara.
- J. Paseka and B. Smarda, T_2 -frames and almost compact frames. Czechoslovak Mathematical Journal (1992), 42(3), 385-402.
- J. Picado and A. Pultr, *Frames and locales: Topology without points*, Frontiers in Mathematics, Springer Basel, 2012.

Bibliografía II

- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.
- RA Sexton, A point free and point-sensitive analysis of the patch assembly, The University of Manchester (United Kingdom), 2003.
- RA Sexton, Frame theoretic assembly as a unifying construct, The University of Manchester (United Kingdom), 2000.
- RA Sexton and H. Simmons, *Point-sensitive and point-free* patch constructions, Journal of Pure and Applied Algebra **207** (2006), no. 2, 433-468.

Bibliografía III

- H. Simmons, An Introduction to Frame Theory, lecture notes, University of Manchester. Disponible en línea en https://web.archive.org/web/20190714073511/http://staff.cs.manchester.ac.uk/~hsimmons.
- H. Simmons, Regularity, fitness, and the block structure of frames. Applied Categorical Structures 14 (2006): 1-34.
- H. Simmons, The lattice theoretic part of topological separation properties, Proceedings of the Edinburgh Mathematical Society, vol. 21, pp. 41–48, 1978.

Bibliografía IV

- H. Simmons, *The Vietoris modifications of a frame*. Unpublished manuscript (2004), 79pp., available online at http://www.cs.man.ac.uk/hsimmons.
- 🔋 A. Wilansky, Between T1 and T2, MONTHLY (1967): 261-266.
- A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2025. Universidad de Guadalajara.