MA4261 Information and Coding
Theory
Owen Leong
owenleong@u.nus.edu

November 26, 2024

E[Y] = E[E[Y|X]]

Var(Y) = E[Var(Y|X)] + Var(E[Y|X])

Union bound $\mathbb{P}(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

1 Probability

Markov chain
$$X-Y-Z$$
 has
$$P_{XYZ}(x,y,z) = P_X(x)P_{Y|X}(y|x)P_{Z|Y}(z|y)$$

$$P_{XZ|Y}(x,z|y) = P_{X|Y}(x|y)P_{Z|Y}(z|y)$$
 Markov's inequality $\Pr(X>a) \leq \frac{\mathbb{E}[X]}{a}$ Chebyshev's $\Pr(|X-\mu|>a\sigma) \leq \frac{1}{a^2}$ WLLN $\lim_{n\to\infty} \Pr\left(\left|\frac{1}{n}\sum_{i=1}^n X_i\right|>\epsilon\right) = 0$
$$\mathcal{N}(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/(2\sigma^2)}$$
 CDF $\Phi(y) = \int_{-\infty}^y \mathcal{N}(x;0,1)\mathrm{d}x$ CLT $\lim_{n\to\infty} \Pr\left(\frac{1}{\sigma\sqrt{n}}\sum_{i=1}^n X_i < a\right) = \Phi(a)$ Jensen's inequality $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$

2 Information Quantities

$$\begin{aligned} \mathbf{H}(\mathbf{X}) &= \sum_{x \in \mathscr{X}} p(x) \log \frac{1}{p(x)} \text{ bits for R.V. } X \\ 0 &\leq H(X) = \mathbb{E} \left[1/\log p_X(X) \right] \leq \log |\mathscr{X}| \\ H(X,Y) &= \mathbb{E}_{P_{X,Y}} \left[\log \frac{1}{p_{X,Y}(X,Y)} \right] \\ H(Y|X) &= \sum p(x)H(Y|X=x) \\ H(Y|X) &= \mathbb{E}_{P_{X,Y}} \left[\log \frac{1}{p_{Y|X}(Y|X)} \right] \\ H(Y|X &= x) &= -\sum_{y} p(y|x) \log p(y|x) \\ H(X,Y) &= H(X) + H(Y|X) \\ H(X,Y|Z) &= H(X|Z) + H(Y|X,Z) \\ \mathbf{D}(\mathbf{p} \parallel \mathbf{q}) &= \sum p(x) \log[p(x)/q(x)] \\ \text{with } 0 \log \frac{0}{0} &= 0 \log \frac{0}{q} = 0, p \log \frac{p}{0} = +\infty \\ \mathbf{I}(\mathbf{X}; \mathbf{Y}) &= D(p_{X,Y} \parallel p_X p_Y) = H(X) - H(X|Y) \end{aligned}$$

2.1 Chain Rule(s)

$$H(X_1, ...X_n) = \sum_{i=1}^n H(X_i|X_1, ...X_{i-1})$$

$$I(X_1, ..., X_n; Y) = \sum_{i=1}^n I(X_i; Y|X_1, ..., X_{i-1})$$

$$D(p_{X,Y} \parallel q_{X,Y}) = D(p_X \parallel q_X) + D(p_{X|Y} \parallel q_{X|Y}|p_X)$$

$$D(p_{Y|X} \parallel q_{Y|X}|p_X) = \sum_{i=1}^n p(x)D(p_{Y|X} \parallel q_{Y|X})$$

 $D(p || q) \ge 0, I(X; Y) > 0$

 $H(X_1,...,X_n) \leq \sum H(X_i)$ with equality

when X_i 's are mutually independent

2.2 Information Inequalities

Log-sum inequality for non-negative
$$a_i, b_i$$

$$\sum \left(a_i \log \frac{a_i}{b_i}\right) \geq a \log \frac{a}{b} = \left(\sum a_i\right) \log \frac{\sum a_i}{\sum b_i}$$

$$D(\lambda p_1 + (1-\lambda)p_2 \parallel \lambda q_1 + (1-\lambda)q_2)$$

$$\leq \lambda D(p_1 \parallel q_1) + (1-\lambda)D(p_2 \parallel q_2) \text{ convex}$$

$$H(\lambda p + (1-\lambda)q) \geq \lambda H(p) + (1-\lambda)H(q) \text{ concave}$$
 Fix $p_{Y|X}, p_X \to I(p_X, p_{Y|X})$ is concave Fix $p_X, p_{Y|X} \to I(p_X, p_{Y|X})$ is convex

2.2.1 Data Processing Ineq. for M.I.

If
$$X - Y - Z$$
, then $I(X;Y) \ge I(X;Z)$ with $= \inf X - Z - Y$, i.e. $I(X;Y) \ge I(X;g(Y))$

 $H_b(P_e) + P_e \log |\mathcal{X}| > H(X|\hat{X}) > H(X|Y)$

2.2.2 Fano's Inequality

$$P_{e} = \Pr(\hat{X} \neq X) \geq \frac{H(X|Y) - 1}{\log |\mathcal{X}|}$$
Han's: $H(X^{n}) \leq \frac{1}{n-1} \sum_{i=1}^{n} H(X^{n \setminus i})$
Shearer's: If $S \subseteq [n]$ is random following a distribution $\forall i \in [n], \Pr(i \in S) \geq \mu$, then
$$E_{S}[H(X_{S})] \geq \mu H(X^{n}), X_{S} = \{X_{i} : i \in S\}$$
3 Asymptotic Equipartition Prop

 $\epsilon\text{-weakly typical set of }X\sim p(x)$ is $A^{(n)}_{\epsilon}(X) = \left\{x^n: \left|\frac{1}{n}\log\frac{1}{p(x^n)} - H(X)\right| < \epsilon\right\}$ $2^{-n(H(X)+\epsilon)} \leq p(x^n) \leq 2^{-n(H(X)-\epsilon)}$ $\Pr(X^n \in A^{(n)}_{\epsilon}(X)) \geq 1 - \epsilon \text{ for suff large } n$

 $(1 - \epsilon)2^{n(H(X) - \epsilon)} < |A_{\epsilon}^{(n)}| < 2^{n(H(X) + \epsilon)}$

4 Source Coding

If $R^*(x) = \inf\{R \geq 0 : R \text{ is achievable}\}$, then $R^*(X) = H(X)$. Prove that $R^*(X) \leq H(X)$ using AEP, prove that $R^*(X) \geq H(X)$ using Fano's inequality.

4.1 Han Verdu Lemma

Fix $(n, 2^{nR})$ -code, then $P_e = \Pr(X^n \neq \hat{X}^n)$

$$P_e \ge \sup_{\gamma > 0} \left\{ \Pr\left(\frac{1}{n} \log \frac{1}{p(X^n)} \ge R + \gamma\right) - 2^{-n\gamma} \right\}$$

5 Stochastic Processes

Stationary means $\Pr(X_1^n) = \Pr(X_{1+l}^{n+l})$ Markov $\Pr(X_{n+1}|X_1^n) = \Pr(X_{n+1}|X_n)$ Time invariant $p(x_{n+1}|x_n)$ indep of n. Irreducible: possible to go from any state to any other state in a finite number of steps Aperiodic: GCD of the lengths of the paths from a state to itself is 1 Entropy rate of stochastic process is

$$H(X) = \lim_{n \to \infty} \frac{1}{n} H(X_1, ..., X_n)$$

$$H'(X) = \lim_{n \to \infty} H(X_n | X_1^{n-1})$$

For stationary process, H(X) = H'(X)For stationary ergodic process,

$$\lim_{n \to \infty} -\frac{1}{n} \log p(X_1, ..., X_n) = H(X)$$

For Markov chain.

$$H(X) = H(X_2|X_1) = \sum_{i,j} -\mu_i P_{ij} \log P_{ij}$$

Hidden Markov Model is has Y_i fn of X_i with X_i 's forming a Markov chain.

$$H(Y_n|Y_1^{n-1}, X_1) \le H'(Y) \le H(Y_n|Y_1^{n-1})$$

with convergence as $n \to \infty$.

6 Fixed-to-variable

Non-singular if each x mapped to a diff CW Extension C^* of a code C is the map $C^*(x_1 \cdots x_n) = C(x_1) \cdots C(x_n)$

Code is uniquely decodable if its extension is non-singular

Code is prefix-free if no codeword is a prefix of any other codeword

Kraft's inequality $\sum 2^{-l_i} \le 1$ Expected codeword length $L^* \ge H(X)$ Shannon code sets $l_i = \lceil \log \frac{1}{p_i} \rceil$, obtains $H(X) < L^* < H(X) + 1$

6.1 Huffman Codes

Given $p_1 \geq p_2 \geq p_3 \geq \cdots p_M$, $p_i > p_j \Rightarrow l_i \leq l_j$, and exists some optimal code where C(M-1) and C(M) are siblings, same length and differ only in last bit

7 Channels

 $M=2^{nR}$ is max number of distinguishable messages reliably sent through the channel rate R, the max rate C is channel capacity Discrete channel has $(\mathcal{X},\mathcal{Y},p_{Y|X})$, (finite) input & output alphabet, and transition probabilities

Memoryless chan $\Pr(y^n|x^n) = \prod p(y_i|x_i)$ $C = C(p_{Y|X}) = \max_{p_x} I(X;Y)$ Noiseless BC $\mathcal{X} = \mathcal{Y} = \{0,1\}, \ p = I_2$ Noisy Typewriter $C = \log 13$ use alternate $p(i|i) = 1/2, p(i+1(mod\ 26)|i) = 1/2$ BSC flips bits with prob $p, C = 1 - H_b(p)$ $p_{Y|X}(y|x) = p$ if $y \neq x$ else 1 - pBinary erasure channel, $\{0,1\} \rightarrow \{0,e,1\}$

$$p_{Y|X} = \begin{bmatrix} 1 - \alpha & \alpha & 0 \\ 0 & \alpha & 1 - \alpha \end{bmatrix}, C = 1 - \alpha$$

Symmetric channels if rows and columns are permutations of each other

Weakly symmetric channels if column sums are same and rows are permutations $C = \log |\mathcal{Y}| - H(\underline{r})$

7.1 Channel Coding

(M,n)-code for DMC $(\mathcal{X},p_{Y|X},\mathcal{Y})$ consists of message set [m], encoder set $f:[m]\to\mathcal{X}^n$ and decoder $\varphi:\mathcal{Y}^n\to[m]$. M is size, n is block length.

$$\lambda_w = \Pr(\varphi(Y^n) \neq w | X^n = x^n(w))$$
$$= \sum_{y^n} p(y^n | x^n(w)) \mathbb{1}[\varphi(y^n) \neq w]$$

$$P_e^{(n)} = \lambda_{ave}^{(n)} = \frac{\sum_{w \in [M]} \lambda_w}{M}, \lambda_{max}^{(n)} = \max_{w \in [M]} \lambda_w$$

7.2 Jointly Typical Sequences

$$A_{\epsilon}^{(n)}\subseteq\{(x^n,y^n)\in\mathscr{X}^n\times\mathscr{Y}^n\}$$
 such that

$$\left| -\frac{\log p(x^n)}{n} - H(X) \right| < \epsilon, \left| -\frac{\log p(y^n)}{n} - H(Y) \right| < \epsilon$$

$$\left| -\log p(x^n, y^n) / n - H(X, Y) \right| < \epsilon$$
where $p(x^n, y^n) = \prod p(x_i, y_i)$

$$\exists N : \forall n > N, \Pr((X^n, Y^n) \notin A_{\epsilon}^{(n)}) < \epsilon$$

$$\exists N : \forall n > N, \Pr((X^n, Y^n) \notin A_{\epsilon}^{(n)}) < \epsilon$$
$$|A_{\epsilon}^{(n)}| \le 2^{n(H(X,Y) + \epsilon)}$$

If $\tilde{X}^n \perp \!\!\! \perp \tilde{Y}^n$,

$$\Pr((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}(X, Y)) \le 2^{-n(I(X; Y) - 3\epsilon)}$$

$$\Pr((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}(X, Y)) \ge (1 - \epsilon)2^{-n(I(X; Y) + 3\epsilon)}$$

7.3 Proof of Achievability

Fix p(x), generate codebook

$$C = \begin{bmatrix} x_1(1) & \cdots & x_n(1) \\ x_1(2) & \cdots & x_n(2) \\ & \vdots & & \vdots \\ x_1(2^{nR}) & \cdots & x_n(2^{nR}) \end{bmatrix} \sim p_X(x)$$

Encoder: given w, send $x^n(w)$

Decoder: given y^n , declare \hat{w} is sent if $(x^n(\hat{w}), y^n) \in A_{\epsilon}^{(n)}$ and no other $w' \in [2^{nR}]$ satisfies $(x^n(w'), y^n) \in A_{\epsilon}^{(n)}$

Given w=1 was sent, the error scenarios are either the received $(x^n(1),y^n)\notin A_{\epsilon}^{(n)}$, or that other $(x^n(i),y^n)\in A_{\epsilon}^{(n)}$ for $i\geq 2$. $E_w=\{(X^n(w),Y^n)\in A_{\epsilon}^{(n)})\}$

$$\Pr(E|W_1) \le \Pr(E_1^c|W_1) + \sum_{w=2}^{2^{nR}} \Pr(E_w|W_1)$$

$$\Pr(E_1^c|W_1) = \Pr((X^n(1), Y^n) \notin A_{\epsilon}^{(n)}) < \frac{\epsilon}{4}$$

$$\Pr(E_w|W_1) = \Pr((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}) \le 2^{-n(I-3\epsilon)}$$

$$\Pr(E|W_1) \le \frac{\epsilon}{4} + 2^{nR} 2^{-n(I-3\epsilon)} = \frac{\epsilon}{4} + 2^{-n(I-R-3\epsilon)}$$

Take p_X that maximizes I(X;Y), and take $R < C - 3\epsilon$ so that $2^{-n(I(X;Y)-R-3\epsilon)} < \frac{\epsilon}{4}$, so $\Pr(E|W=1) < \frac{\epsilon}{2}$.

 $\implies \exists$ a code C^* with rate R and average error prob $< \frac{\epsilon}{2}$

$$E_C[\lambda_{ave}^{(n)}(C)] < \frac{\epsilon}{2} \implies \exists C^* : \lambda_{ave}^{(n)}(C^*) < \frac{\epsilon}{2}$$

To get bound on λ_{max} , take only the better half of the codebook, new size of $\tilde{C}^* = \frac{2^{nR}}{2} = 2^{n(R-\frac{1}{n})}$ and $\max_w \lambda_w(\tilde{C}^*) < \epsilon$ $\implies \exists$ a code \tilde{C}^* of rate $R - \frac{1}{n}$ with max error prob $< \epsilon$.

7.4 Proof of Converse

$$\Pr(W \neq \hat{W}) \ge \frac{H(W|\hat{W}) - 1}{\log|W|}$$

$$\implies H(W|\hat{W}) \le P_e^{(n)} \cdot nR + 1$$

$$nR = H(W) = I(W; \hat{W}) + H(W|\hat{W})$$

$$\leq I(X^n; Y^n) + P_e^{(n)} nR + 1$$

$$= nC + nRP_e^{(n)} + 1$$

$$R \leq \frac{1}{1 - P_e^{(n)}} C + \frac{1}{n}$$

As
$$n \to \infty$$
, $P_e^{(n)} \to 0$, $R \le C$.

8 Differential Entropy

$$\begin{split} h(X) &= -\int_S f(x) \log f(x) \, dx \\ \text{For } X \sim \text{Uniform}(0,a), \, h(X) &= \log a \\ \text{For } X \sim \phi(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{x^2}{2\sigma^2}), \\ h(\phi) &= \frac{1}{2} \log(2\pi e\sigma^2) \text{ bits} \\ \max_{EX^2 = \alpha} h(X) &= \frac{1}{2} \log(2\pi e\alpha) \end{split}$$

9 Gaussian Channels

$$Y_i = X_i + Z_i, \ Z_i \sim \mathcal{N}(0, N)$$

Require $\frac{1}{n} \sum_{i=1}^{n} x_i^2 \le P$.

$$C = \max_{E[X^2] \le P} I(X;Y) = \frac{1}{2} \log(1 + \frac{P}{N})$$

achieving max when $X \sim \mathcal{N}(0, P)$ For parallel guassian channels each with N_j , Water filling theorem, $P_i = (v - N_i)^+, \sum (v - N_i)^+ = P$

10 Finite Fields

Group has elements G and op \oplus satisfying closure, associativity, identity and inverse. Alternatively, satisfy associativity, identity and permutation property $a \oplus G$ is a permutation of G

Fields is a set \mathbb{F} of ≥ 2 elements with operations \oplus and * such that \mathbb{F} forms an abelian group under \oplus and $\mathbb{F}\setminus\{0\}$ forms an abelian group under * and $(a\oplus b)*c=(a*c)\oplus(b*c)$ \forall prime $p,R_p=\{0,\cdots,p-1\}$ forms a field under mod-p addition and multiplication Polynomial g(x) divides f(x) if f(x)=q(x)g(x) for some polynomial q(x). g(x) is a factor of f(x) if g(x) is monic and a nontrivial divisor of f(x)

Irreducible polynomials have no factors. A monic irreducible polynomial is a prime polynomial.

To construct field with p^m elements, take $\mathbb{F}_{g(x)} = \{r_0 + r_1 x + \dots + r_{m-1} x^{m-1} : r_i \in \mathbb{F}_p\}$ with polynomial addition and multiplication mod-g(x) where $\deg(g(x)) = m$ and g(x) is a prime polynomial.

11 Codes

(n,M,d)-code, codewords $C\subset \mathbb{F}_q^n, |C|=M, d=\min_{c\neq c'\in C}d(c,c'), R=\frac{\log_q M}{n}$ [n,k,d]-linear code has codewords forming a vector space with dim $k,M=q^k,R=\frac{k}{N}$ Dual code of C is $C^\perp=\{x:\langle x,c\rangle=0\}$ Hamming weight $wt(x)=d(x,0), wt(C)=\min_{c\in C,c\neq 0}wt(c)$ Generator Matrix $G\in \mathbb{F}^{k\times n}$ for linear code has rows formed by basis for C, standard form $[I_k]\mathbb{F}_q^{k\times (n-k)}]$, every codeword expressed as some vG Parity-check Matrix $H\in \mathbb{F}^{(n-k)\times n}$ is generator matrix for C^\perp , standard form $[\mathbb{F}_q^{(n-k)\times k}|I_k], HG^T=0$ $d(C)\geq d$ iff \forall subsets d-1 cols of H are LI d(C)< d iff \exists a subset of d cols that is L.D.

11.1 Performance Bounds

Relative dist $\delta(C) = (d-1)/n$

 $\begin{array}{l} A_q(n,d) = \max\{M: \exists (n,M,d)\text{-code}\} \\ B_q(n,d) = \max\{q^k: \exists [n,k,d]\text{-LC over }\mathbb{F}_q\} \\ \text{Sphere volume } V_q^n(r) = \sum_{i=0}^n \binom{n}{i} (q-1)^i \text{ if } \\ 0 \leq r \leq n \text{ else } q^n \text{ if } r > n \\ \text{Gilbert-Varshamov sphere-covering lower bound } A_q(n,d) \geq \frac{q^n}{V_q^n(d-1)} \\ \text{Sphere-packing upper bound Hamming bound } A_q(n,d) \leq \frac{q^n}{V_q^n(\lfloor \frac{d-1}{2} \rfloor)} \\ \text{Perfect code achieves hamming bound } \\ \text{Singleton bound } A_q(n,d) \leq q^{n-d+1} \text{ or } k \leq n-d+1 \\ \end{array}$

MDS codes achieve singleton bound

11.2 Reed-Solomon Codes

Choose n eval points $\alpha_1, \dots, \alpha_n \in \mathbb{F}_q$ Message $m = (m_0, \dots, m_{k-1}) \in \mathbb{F}_q^k$ Define polynomial $C_m(x) = \sum_{i=0}^{k-1} m_i x^i$ Encode $RS(m) = (C_m(\alpha_1), \dots, C_m(\alpha_n))$ For $m \neq m'$, at most k-1 evaluation points where $C_m(\alpha_i) = C_{m'}(\alpha_i)$ Thus $d(RS(m), RS(m')) \leq n - (k-1)$ Decoding using Berlekamp-Welch algorithm $\lfloor \frac{n-k}{2} \rfloor$ errors