

In the claims:

Claims 1-9 cancelled.

10. (currently amended) A method for operating an internal combustion engine with oil lubrication and electronic fuel injection, the method comprising the steps of determining during operation of the internal combustion engine a flow of fuel mass (mfp_i_oel) entering an engine oil; determining a flow of fuel mass (mfp_ausg) evaporating out of oil; and determining a setpoint injected-fuel quantity (rk_ev) with taking into account the determined flow of fuel mass (mfp-ausg) revaporating out of oil.

11. (previously presented) A method as defined in claim 10; and further comprising determining a flow of fuel mass (mfp_ausgr) flowing into an intake manifold based on the determined flow of fuel mass evaporating out of the oil (mfp_saug); and taking the determined flow of fuel mass flowing into the intake manifold in the determination of the setpoint injected-dual quantity (rk_ev).

12. (currently amended)) A method as defined in claim 10; and further comprising ~~during operation of the internal combustion engine~~, determining ~~a flow of fuel mass (mfp_i_oel) entering an engine oil~~; and to the flow of fuel mass (mfp_i_oel) taking into account at least one of the following influencing variables:

- Enrichment factors during start, a post-start phase, and/or warm-up (fst_w , $fnsf_w$, fwl_w) of the internal combustion engine
- Engine temperature ($tmot$) and/or oil temperature ($toel$)
- Engine speed ($nmot$)
- Load value (rl)
- A component temperature in the intake port
- Temperature in the combustion chamber
- Fuel type (KS)
- An assigned lambda setpoint value (LS)

13. (previously presented) A method as defined in claim 10; and further comprising in the determining of the flow of fuel mass (mfp_ausg), evaporating out of the engine oil, taking into account at least one of the following influencing variables.

- Oil temperature ($toel$)
- Oil temperature gradient over time
- Fuel mass in the oil (mk_i_oel)
- Fuel type (KS)
- Pressure in the crankcase (pk)

14. (previously presented) A method as defined in claim 10; and further comprising, in the determining of the flow of fuel mass (mfp_ausg)

entering the intake manifold, taking into account one of the following influencing variables:

- Pressure in the crankcase (pk)
- Pressure in the intake manifold (ps)
- Pressure upstream of a throttle valve (pu)
- Position of a crankcase ventilation valve (SKEV)
- Temperature of the engine oil (toel)
- Concentration of the fuel gases in the crankcase due to blow-by gases

15. (previously presented) A method as defined in claim 10; and further comprising determining a fuel mass (mk_i_{ocl}) contained in an engine oil, by taking into account a flow of fuel mass (mkp_i_{oel} , mkp_{ausg}) entering the engine oil and evaporating out of the engine oil.

16. (previously presented) A method as defined in claim 11; and further comprising converting a value selected from the group consisting of the flow of fuel mass (mkp_{saugr}) flowing into the intake manifold or the flow of fuel mass (mkp_{ausg}) during evaporation, as a function of an engine speed, into an equivalent injected-fuel quantity; and subtracting from an uncorrected setpoint injected-fuel quantity, with a result being a corrected setpoint injected-fuel quantity rk_{ev} .

17. (previously presented) A method as defined in claim 10; and further comprising, if a second fuel type is also injected, calculating a fuel mass in the oil for the fuel type that was also injected.

18. (currently amended) A control unit for an internal combustion engine, the control unit is configured and programmed for use with a method for operating an internal combustion engine with oil lubrication and electronic fuel injection, the method comprising the steps of determining during operation of the internal combustion engine a flow of fuel mass (mfp_i_oel) entering an engine oil; determining a flow of fuel mass (mfp_ausg) evaporating out of oil; and determining a setpoint injected-fuel quantity (rk_ev) with taking into account the determined flow of fuel mass (mfp_ausg) evaporating out of oil.