Name: Yousef Wael Mahmoud Alkattan

PROJECT1: DSP48A1

1. Design

Input & Output & Internal Registers

```
module DSP2 (clk,A,B,D,BCIN,C,PCIN,CARRYIN,OPMODE,CEA, CEB, CEC, CED, CEM, CEP,CECARRYIN, CEOPMODE,
RSTA,RSTB,RSTC,RSTD,RSTM,RSTP,RSTCARRYIN, RSTOPMODE,P,PCOUT,M,CARRYOUT, CARRYOUTF,BCOUT);
parameter A0REG=0; parameter A1REG=1;
parameter BOREG=0; parameter B1REG=1;
parameter CREG=1;parameter DREG=1;
parameter MREG=1; parameter PREG=1;
parameter CARRYINREG=1;parameter CARRYOUTREG=1;
parameter OPMODEREG=1;
parameter CARRYINSEL = "OPMODE5";
parameter B_INPUT = "DIRECT";
parameter RSTTYPE = "SYNC";
input clk;
input [17:0] A, B, D, BCIN;
input [47:0] C, PCIN;
input CARRYIN;
input [7:0] OPMODE;
input CEA, CEB, CEC, CED, CEP; //clock enable input ports
input CEM, CECARRYIN, CEOPMODE; //clock enable for multiplier,carryin,opmode
input RSTA, RSTB, RSTC, RSTD, RSTM, RSTP; //reset input ports
input RSTCARRYIN, RSTOPMODE;
output [47:0] P, PCOUT;
output [35:0] M;
output CARRYOUT, CARRYOUTF;
output [17:0] BCOUT;
    // Internal registers
reg CARRYO, CARRYOUTO;
reg [47:0] Z;
reg [47:0] X;
reg [17:0] BIN;
wire [17:0] A0, B0, D0, A1, B1;
wire [47:0] CO;
wire [7:0] OPMODE0;
wire CIN;
reg [17:0] preadder_out;
wire [35:0] multiplier out;
reg [47:0] postadder_out;
```

```
// Pipeline stage instances
PipelineRegister #(18, A0REG, RSTTYPE) A_stage0 (.clk(clk), .rst(RSTA), .ce(CEA), .d_in(A), .d_out(A0));
PipelineRegister #(18, A1REG, RSTTYPE) A_stage1 (.clk(clk), .rst(RSTA), .ce(CEA), .d_in(A0), .d_out(A1));

PipelineRegister #(18, B0REG, RSTTYPE) B_stage0 (.clk(clk), .rst(RSTB), .ce(CEB), .d_in(BIN), .d_out(B0));
PipelineRegister #(18, B1REG, RSTTYPE) B_stage1 (.clk(clk), .rst(RSTB), .ce(CEB), .d_in(preadder_out), .d_out(B1));

PipelineRegister #(48, CREG, RSTTYPE) C_stage (.clk(clk), .rst(RSTC), .ce(CEC), .d_in(C), .d_out(C0));
PipelineRegister #(18, DREG, RSTTYPE) D_stage (.clk(clk), .rst(RSTD), .ce(CED), .d_in(D), .d_out(D0));
PipelineRegister #(8,OPMODEREG, RSTTYPE) OPMODE_stage (.clk(clk), .rst(RSTOPMODE), .ce(CEOPMODE), .d_in(OPMODE0), .d_out(OPMODE0));
PipelineRegister #(1,CARRYINREG, RSTTYPE) CARRYIN_stage (.clk(clk), .rst(RSTCARRYIN), .ce(CECARRYIN), .d_in(CARRY0), .d_out(CIN));
PipelineRegister #(48,PREG, RSTTYPE) M_stage (.clk(clk), .rst(RSTD), .ce(CEP), .d_in(postadder_out), .d_out(P));
PipelineRegister #(1, CARRYINREG, RSTTYPE) CARRYOUT_stage (.clk(clk), .rst(RSTCARRYIN), .ce(CECARRYIN), .d_in(CARRYOUT0), .d_out(CARRYOUT));
```

Arithmetic Block

```
// Arithmetic operations
always @(*) begin
        case (OPMODE0[4])
            1'b0: preadder_out = B0;
                if(OPMODE0[6]) preadder_out = D0 - B0;
                else preadder out = D0 + B0;
        endcase
        case (OPMODE0[1:0])
                2'b00: X = 48'b0;
                2'b01: X = \{12'b0,M\};
                2'b10: X = P;
                2'b11: X = {D0[11:0], A1, B1};
        endcase
        case (OPMODE0[3:2])
                2'b00: Z = 48'b0;
                2'b01: Z = PCIN;
                2'b10: Z = P;
                2'b11: Z = C0;
        endcase
        case (OPMODE0[7])
                1'b0: {CARRYOUT0, postadder_out} = Z + (X + CIN);
                1'b1: {CARRYOUT0, postadder_out} = Z - (X + CIN);
        endcase
        if (CARRYINSEL == "OPMODE5")CARRY0 = OPMODE0[5];
        else if (CARRYINSEL == "CARRYIN")CARRY0 = CARRYIN;
        else CARRY0 = 1'b0; // Default case
        if (B_INPUT == "DIRECT")BIN = B;
        else if (B INPUT == "CASCADE")BIN = BCIN;
        else BIN = 18'b0; // Default case
```

```
// Multiplier logic
    assign multiplier_out = B1 * A1;
    assign CARRYOUTF = CARRYOUT;
    assign BCOUT = B1;
    assign PCOUT = P;
    endmodule
   Register
module PipelineRegister #(parameter WIDTH = 18,parameter DREG=1, parameter RSTTYPE = "SYNC") (
    input clk,
    input rst,
    input ce,
    input [WIDTH-1:0] d_in,
   output [WIDTH-1:0] d_out
);
reg [WIDTH-1:0] d_temp;
   generate
        if (RSTTYPE == "ASYNC") begin
            always @(posedge clk or posedge rst) begin
                if (rst) d_temp <= 0;
                else if (ce) d_temp <= d_in;
            end
        end
        else begin // SYNC
            always @(posedge clk) begin
                if (rst) d_temp <= 0;
                else if (ce) d_temp <= d_in;
            end
        end
    endgenerate
assign d_out = (DREG)? d_temp : d_in;
endmodule
```

2. Testbench

```
module DSP48A1 tb;
parameter AOREG=0;parameter A1REG=1;
parameter B0REG=0;parameter B1REG=1;
parameter CREG=1; parameter DREG=1;
parameter MREG=1; parameter PREG=1;
parameter CARRYINREG=1; parameter CARRYOUTREG=1;
parameter OPMODEREG=1;
parameter CARRYINSEL = "OPMODE5";
parameter B_INPUT = "DIRECT";
parameter RSTTYPE = "SYNC";
reg clk;
reg [17:0] A, B, D, BCIN;
reg [47:0] C, PCIN;
reg CARRYIN;
reg [7:0] OPMODE;
reg CEA, CEB, CEC, CED, CEP;
reg CEM, CECARRYIN, CEOPMODE;
reg RSTA, RSTB, RSTC, RSTD, RSTM, RSTP;
reg RSTCARRYIN, RSTOPMODE;
wire [47:0] P, PCOUT;
wire [35:0] M;
wire CARRYOUT, CARRYOUTF;
wire [17:0] BCOUT;
reg [47:0]P_expected;
reg [17:0] stage1;
reg [35:0] stage2;
DSP2 uut (
        .clk(clk), .A(A), .B(B), .D(D), .BCIN(BCIN), .C(C), .PCIN(PCIN),
        .CARRYIN(CARRYIN), .OPMODE(OPMODE),
        .CEA(CEA), .CEB(CEB), .CEC(CEC), .CED(CED), .CEP(CEP),
        .CEM(CEM), .CECARRYIN(CECARRYIN), .CEOPMODE(CEOPMODE),
        .RSTA(RSTA), .RSTB(RSTB), .RSTC(RSTC), .RSTD(RSTD), .RSTM(RSTM), .RSTP(RSTP),
        .RSTCARRYIN(RSTCARRYIN), .RSTOPMODE(RSTOPMODE),
        .P(P), .PCOUT(PCOUT), .M(M), .CARRYOUT(CARRYOUT), .CARRYOUTF(CARRYOUTF), .BCOUT(BCOUT)
);
```

```
initial begin
clk=0;
forever
#1 clk=~clk;
end
initial begin
        A = 18'd10; B = 18'd5; D = 18'd3; BCIN = 18'd2;
        C = 48'd20; PCIN = 48'd15; CARRYIN = 1'b0;
        OPMODE = 8'b00000001;
        RSTA = 1; RSTB = 1; RSTC = 1; RSTD = 1; RSTM = 1; RSTP = 1;
        RSTCARRYIN = 1; RSTOPMODE = 1;
@(negedge clk);
        RSTA = 0; RSTB = 0; RSTC = 0; RSTD = 0; RSTM = 0; RSTP = 0;
        RSTCARRYIN = 0; RSTOPMODE = 0;
        CEA = 1; CEB = 1; CEC = 1; CED = 1; CEP = 1;
        CEM = 1; CECARRYIN = 1; CEOPMODE = 1;
        // Apply various test cases for the first OPMODE
        //some initial indicaters to show they were used ____o constant
PCIN = 48'hFFFF0000FFFF;BCIN = 18'd5:
        OPMODE = 8'b000000000; //p=0
                repeat(5)begin
                A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
                C=$random & 48'h0FFFFFFFFFFFFFF;CARRYIN=$random;//avoiding overflow (preadder not optimized)
                P_expected=0;
                @(negedge clk);@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
                end
        OPMODE = 8'b00000001; //p=M
                repeat(5)begin
                A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
                C=$random & 48'h0FFFFFFFFFF;CARRYIN=$random;
                stage1= B;
                stage2= stage1*A;
                P expected=stage2;
                @(negedge clk);@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
                end
```

```
OPMODE = 8'b00000010; CARRYIN=0; //p=old p
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
       @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
OPMODE = 8'b00000011;//p=concatenated
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFFF;CARRYIN=$random;
       P expected={D[11:0], A, B};
       @(negedge clk);@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
OPMODE = 8'b00000111;//concatenated+pcin
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFFF;CARRYIN=$random;
       P expected={D[11:0], A, B}+PCIN;
       @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
CARRYIN=0;//no longer randomizing carry
OPMODE = 8'b00001101; //M+C
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
       stage1= B;
       stage2= stage1*A;
       P expected=stage2+C;
       @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
```

```
OPMODE = 8'b00011101;//((B+D)*A)+C
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
       stage1= B+D;
       stage2= stage1*A;
       P expected=stage2+C;
       @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
OPMODE = 8'b01010101; //PCIN+((D-B)*A)
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
       stage1= D-B;
       stage2= stage1*A;
       P expected=PCIN+stage2;
       @(negedge clk);@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
OPMODE = 8'b11010101;//PCIN-((D-B)*A)
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
       stage1= D-B;
       stage2= stage1*A;
       P expected=PCIN-stage2;
       @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
OPMODE = 8'b10101101; //C-((B*A)+1)
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
       stage1= B;
       stage2= stage1*A;
       P expected=(C)-(stage2+1);
       @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
```

```
OPMODE = 8'b00100000;//1 testing (opmode[5])
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFFF;

    P_expected=1;
    @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycle
    end

#50 $stop;
```

3. Do file

```
vlib work
vlog DSP48A1.v DSP48A1_tb.v
vsim -voptargs=+acc work.DSP48A1_tb
add wave *
run -all
```

4. QuestaSim waveform snippets

Reset

♦ clk	1'b0	
⊢ ∜ BCIN	18'b0000000000000000010	0000 0000000000000000000000000000000
⊢ ∜ PCIN	48'b00000000000000000000	0000 (11111111111
CARRYIN	1'b0	
◆ CEA	1'bx	
◆ CEB	1'bx	
◆ CEC	1'bx	
◆ CED	1'bx	
◆ CEP	1'bx	
◆ CEM	1'bx	
◆ CECARRYIN	1'bx	
◆ CEOPMODE	1'bx	
♦ RSTA	1'b1	
♦ RSTB	1'b1	
♦ RSTC	1'b1	
♦ RSTD	1'b1	
♦ RSTM	1'b1	
♦ RSTP	1'b1	
◆ RSTCARRYIN	1'b1	
♦ RSTOPMODE	1'b1	
♦ CARRYOUT	StX	
CARRYOUTF	StX	
	8'b00000001	0000 , 00000000
⊢ ∳ A	18'h0000a	0000a (03524
⊢ ∳ D	18'h00003	00003 0d609
⊢∲ B	18'h00005	00005 05e81
├- ◆ BCOUT	18'hxxxxx	00000 (05e81
;– ∳ C	48'h000000000014	0000 0000b1f05663
;– ∳ M	36'hxxxxxxxxxx	(000000000
PCOUT	48'hxxxxxxxxxxxxx	(000000000000
⊢ → P	48'hxxxxxxxxxxxxx	00000000000
	48'hxxxxxxxxxxxxx	00000000000

initial begin

```
A = 18'd10; B = 18'd5; D = 18'd3; BCIN = 18'd2;

C = 48'd20; PCIN = 48'd15; CARRYIN = 1'b0;

OPMODE = 8'b00000001;

RSTA = 1; RSTB = 1; RSTC = 1; RSTD = 1; RSTM = 1; RSTP = 1;

RSTCARRYIN = 1; RSTOPMODE = 1;

@(negedge clk);

RSTA = 0; RSTB = 0; RSTC = 0; RSTD = 0; RSTM = 0; RSTP = 0;

RSTCARRYIN = 0; RSTOPMODE = 0;

CEA = 1; CEB = 1; CEC = 1; CED = 1; CEP = 1;

CEM = 1; CECARRYIN = 1; CEOPMODE = 1;
```

```
//some initial indicaters to show they were used
PCIN = 48'hFFFF0000FFFF;BCIN = 18'd5;

OPMODE = 8'b00000000; //p=0
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;C=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFFFFF;CARRYIN=$random;//avoiding overflow (preadder not optimized)
    P_expected=0;
    @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
    end
```



```
OPMODE = 8'b00000001; //p=M
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFFFFFF;CARRYIN=$random;
    stage1= B;
    stage2= stage1*A;
    P_expected=stage2;

@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
```

end


```
OPMODE = 8'b00000010;CARRYIN=0; //p=old p
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFFF;

    @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
    end
```

				_							
🔷 dk	1'b1		厂								
→ OPMODE	8'b00000001	0000000	01			0000001	0				
-	18'h072cf	072cf				0bdf2			0f378		
⊕- ♦ D	18'h0650a	0650a				0b341			00deb		
 → B	18'h04923	04923				0618a			01289		
± -♦ BCOUT	18'h04923	04923				061	8a		(012	89	
	48'h0000e5730aca	0000e57	730aca			0000ec4	34d8		00005b0	265b6	
 → M	36'h020ccb94d	0133	020ccb	94 <mark>d</mark>		036	4 (048	f1674	(05c	(011a	0bb38
± - PCOUT	48'h000020ccb94d	0000	(0000	000	020ccb94d						
⊕- - P	48'h000020ccb94d	0000	(0000	000	020ccb94d						
 → P_expected	48'h000020ccb94d	0000200	cb94d								
 → stage1	18'h04923	04923									
 → stage2	36'h020ccb94d	020ccb9	94d								
<u> </u>											

OPMODE = 8'b00000011;//p=concatenated repeat(5)begin A=\$random & 18'h0FFFF;B=\$random & 18'h0FFFF;D=\$random & 18'h0FFFF; C=\$random & 48'h0FFFFFFFFFF;CARRYIN=\$random; P_expected={D[11:0], A, B}; @(negedge clk);@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles

end

OPMODE = 8'b00000111;//concatenated+pcin repeat(5)begin A=\$random & 18'h0FFFF;B=\$random & 18'h0FFFF;D=\$random & 18'h0FFFF; C=\$random & 48'h0FFFFFFFFFF;CARRYIN=\$random; P_expected={D[11:0], A, B}+PCIN; @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles end


```
CARRYIN=0;//no longer randomizing carry
OPMODE = 8'b00001101;//M+C
       repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
       stage1= B;
       stage2= stage1*A;
       P_expected=stage2+C;
       @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
       end
```

CARRETOON	500									
≻ dk	1'b1									
OPMODE	8'b00001101	00001101								
• A	18'h00cd0	0e2b5	00cd0				0addc			
D	18'h0adab	01979	0adab				072fd			
≻ B	18'h00b2a	094df	00b2a				0bc9a			
▶ BCOUT	18'h00b2a	094df	(00b2a				(Obc	a		
C	48'h0000076fcf0e	00002231ff44	0000076fcf0e				0000e1f1	02c3		(
M M	36'h0008f0a20	083d61fab	(0077)	0008f0a2	20		(007	(080	162658	
PCOUT	48'h000007fed92e	(0000) 0000a6081eef	χ(0000	0000	07fed92e		(000	0 (000	16207291b
P	48'h000007fed92e	(0000) 0000a6081eef		0000	0000	07fed92e		(000	0 (000	16207291b
P_expected	48'h000007fed92e	0000a6081eef	000007fed92e				0001620	7291b		10
> stage1	18'h00b2a	094df	00b2a				0bc9a			10
stage2	36'h0008f0a20	083d61fab	0008f0a20				0801626	58		(

```
OPMODE = 8'b00011101;//((B+D)*A)+C
        repeat(5)begin
       A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
       C=$random & 48'h0FFFFFFFFF;
        stage1= B+D;
        stage2= stage1*A;
       P_expected=stage2+C;
```

@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles

end

	Cita															
CARRYOUT	St0															
CARRYOUTF	St0															
clk	1'b1					1_	\Box									
OPMODE	8'b00011101	000	01101	0001110												
A	18'h0b9b6	0ed	56	0b9b6						0bf94						069db
D	18'h08779	076	67	08779						02c04						0b7d9
• B	18'h08a38	0e9	1e	08a38						05d93						0de4d
BCOUT	18'h111b1	0e9	1 e	08a	8 (11	1b 1				(0e5	oc (08	997				10a51
C	48'h0000dc2bc4b8	000	08531	0000dc2b	c4b8					0000acb	/ca59					0000b6a42
M	36'h0c68b7cd6	0d8	4b9634	(0a9)	(06	14	0c68	b7cc	6	Occo	(0a	ьб	066	7344	k	038e.
PCOUT	48'h0001a2b7418e	(000	15d7cca3e		(00)	1	(000	1	000	la2b74186	(00	01	(000	1	000	113aefea5
P	48'h0001a2b7418e	(000	15d7cca3e		(00)	01	000	1	000	la2b7418e	(00	01	(000	1	000	113aefea5
P_expected	48'h0001a2b7418e	000	15d7c	0001a2b7	7418e					000113a	efea5					00015e952

```
OPMODE = 8'b01010101;//PCIN+((D-B)*A)
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;D=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFFF;
    stage1= D-B;
    stage2= stage1*A;
    P_expected=PCIN+stage2;

@(negedge clk);@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles)
```

end


```
OPMODE = 8'b11010101;//PCIN-((D-B)*A)
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;C=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFFF;

    stage1= D-B;
    stage2= stage1*A;
    P_expected=PCIN-stage2;

@(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
end
```

	St0											
– ∳ clk	1'b0					╙	╙					
	8'b11010101	1101010	1									
- ♦ ≻ A	18'h0837d	03796		0837d				09b7e				0e4fa
- - ∳ D	18'h05786	09f26		05786				0b6cf				00917
}- ♦ > B	18'h00fdc	021c0		00fdc				080db				0ee61
	18'h07d66	07d66		(08f	4a (047	aa		(3d6	ab (035	f4		3c86
}- ∜ - C	48'h00003c03ff78	0000db4	61ab6	00003c0	3ff78			00003ced	2b79			0000d0f57
- ◆ M	36'h01b3a63c4	(01b	3a63c4	(040	6 (049	9 (024	cefc02	(02b	3 (254	(020	54a 18	0304
	48'hfffee4c69c3b	fffe	2 (fffe	4c69c3b	(fffe	b (fffe	(fffe	db3203fd	(fffe	J (fffca	(fffe	df3bb5e7
- ∜ -P	48'hfffee4c69c3b	fffe	2 / fffe	4c69c3b	(fffe	b (fffe	(fffe	db3203fd	(fffe	J (fffca	(fffe	df3bb5e7
	48'hfffedb3203fd	fffee4c6	9c3b	fffedb32	03fd			fffedf3bb	5e7			fffc392ed2

```
OPMODE = 8'b10101101;//C-((B*A)+1)
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;C=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFFF;

stage1= B;
    stage2= stage1*A;
    P_expected=(C)-(stage2+1);

@(negedge clk);@(negedge clk);@(negedge clk);//5clock cyclesed
```



```
OPMODE = 8'b00100000;//1 testing (opmode[5])
    repeat(5)begin
    A=$random & 18'h0FFFF;B=$random & 18'h0FFFF;C=$random & 18'h0FFFF;
    C=$random & 48'h0FFFFFFFFF;

    P_expected=1;
    @(negedge clk);@(negedge clk);@(negedge clk);//5clock cycles
end
```

OPMODE	8'b00100000	10101101	00100000			
🥎 A	18'h01d2a	0b90e	01d2a		(0a879	0c96b
◆ D	18'h0ff9e	0c09f	Off9e		045ca	0ddb6
🥎 В	18'h0f48d	066e6	0f48d		(0e3c8	0aec7
SCOUT	18'h0f48d	066e6	0f48d		0e3¢8	(0aec
∲ C	48'h00009c6de638	0000152f	00009c6de638		000009ff4113	00005d0
🥎 М	36'h01bdc1822	04a61d694	(00bb	01bdc1822	(0a0f (095e6e988	(0b3)
PCOUT	48'h000000000001	ffffcacdde95		000000000001		
👉 P	48'h000000000001	ffffcacdde95		000000000001		
P_expected	48'h000000000001	ffffcacdde95	0000000000	1		

5. Constraint File

6. Elaboration

- ✓ □ Elaborated Design (25 warnings)
 - ✓ □ General Messages (25 warnings)
 - [Synth 8-2490] overwriting previous definition of module DSP48A1 [DSP48A1.v:1]
 - (a) [Synth 8-6014] Unused sequential element A_reg_reg was removed. [DSP48A1.v:121] (2 more like this)
 - O [Synth 8-3331] design DSP48A1 has unconnected port BCIN[17] (20 more like this)

7.Synthesis

339 Cells 346 I/O Ports 798 Nets

Setup Hold Pulse Width

Worst Negative Slack (WNS): 5.201 ns Worst Hold Slack (WHS): 0.182 ns

Total Negative Slack (TNS): 0.000 ns Total Hold Slack (THS): 0.000 ns

Number of Failing Endpoints: 0 Number of Failing Endpoints: 0

Total Number of Endpoints: 104 Total Number of Endpoints: 104

Worst Pulse Width Slack (WPWS): 4.500 ns
Total Pulse Width Negative Slack (TPWS): 0.000 ns
Number of Failing Endpoints: 0
Total Number of Endpoints: 144

Name 1	Slice LUTs (134600)	Slice Registers (269200)	DSP s (740)	Bonded IOB (500)	BUFGCTRL (32)
> N DSP2	255	160	1	327	1

8.Implementation

Setup Hold Pulse Width

Worst Negative Slack (WNS): 3.475 ns
Total Negative Slack (TNS): 0.000 ns
Number of Failing Endpoints: 0
Total Number of Endpoints: 125

Total Hold Slack (THS): 0.000 ns

Number of Failing Endpoints: 0

Total Number of Endpoints: 125

Worst Hold Slack (WHS):

Worst Pulse Width Slack (WPWS): 4.500 ns

Total Pulse Width Negative Slack (TPWS): 0.000 ns

Number of Failing Endpoints: 0

Total Number of Endpoints: 181

All user specified timing constraints are met.

	Name 1	Slice LUTs (133800)	Slice Registers (267600)	Slice (3345 0)	LUT as Logic (133800)	LUT Flip Flop Pairs (133800)	DSP s (740)	Bonded IOB (500)	BUFGCTRL (32)
2	N DSP2	254	179	112	254	27	1	327	1

0.262 ns