1 Определения

Определение 1.1. Пусть F — факториальное кольцо, $f(x) \in F[x]$. Тогда содержание c(f) многочлена f(x) — это наибольшый общий делитель его коэффициентов.

Определение 1.2. Пусть F — факториальное кольцо, $f(x) \in F[x]$. Тогда f(x) — примитивный, если его содержание тривиально: $c(f) \sim 1$

Определение 1.3. Характеристика поля F-charF- это минимальное количество единиц, сумма которых равна нулю. Если никакя сумма единиц не дает нуля, то говорят, что charF=0, иначе F- поле конечное характеристики.

Определение 1.4. Пусть F — поле. Тогда K называется расширением F, если K — поле, и $F \subset K$

Определение 1.5. Пусть K – расширение F. Элемент $\alpha \in K$ называется алгебраическим над F, если $\exists f(x) \in F[x]: f(\alpha) = 0$

Определение 1.6. Пусть K – расширение F. Элемент $\alpha \in K$ называется трансцендентным над F, если $\forall f(x) \in F[x] : f(\alpha) \neq 0$

Определение 1.7. Расширение K называется алгебраическим, если все его элементы алгебраические.

Пример. \mathbb{C} – алгебраическое расширение \mathbb{R} , так как любой его элемент z=a+ib является корнем многочлена $\left(\frac{x-a}{b}\right)^2+1=0$.

Пример. \mathbb{R} — не алгебраическое расширение \mathbb{Q} , так как π не является корнем ни какого многочлена над \mathbb{Q} .

Определение 1.8. Пусть K – расширение над F. $\alpha \in K$ – алгебраический элемент. Тогда $m_{\alpha}(x)$ – это минимальный (по степени) многочлен со старшим коэфициентом, равным единице, который обнуляет α .

Определение 1.9. Пусть $K\supset F$ – расширение, $\gamma\in K$. $F(\gamma)$ – минимальное по включению поле, содержащее F и γ .

Определение 1.10. Пусть F — поле, $f(x) \in F[x]$. Тогда поле разложения многочлена f(x) — это такое минимальное по включению расширение $K \supset F$, что f раскладывается на множители над K.

Определение 1.11. Поле K, удовлетворяющее любому из следующих эквивалентных условий, называется алгебраически замкнутым:

- 1. Любой многочлен $f(x) \in K[x]$ ненулевой степени имеет корень в K.
- 2. Полем разложения любого многочлена $f(x) \in K[x]$ является K
- 3. Любой неприводимый многочлен $f(x) \in K[x]$ имеет степень 1.

4. Любое алгебраическое расширение $L \supset K$ тривиально, то есть L = K.

Определение 1.12. Пусть F – поле, тогда его алгебраическим замыканием \overline{F} называется такое его алгебраическое расширение, которое является алгебраически замкнутым.

Определение 1.13. Расширение $K \supset F$ называется сепарабельным, если все его элементы $\alpha \in K$ сепарабельны над F.

Определение 1.14. Элемент α расширения $K \supset F$ называется сепарабельным, если его минимальный многочлен m_{α} не содержит кратных корней.

Определение 1.15. Назовём расширение $K\supset F$ радикальным, если существует башня расширений $K\supset K_n\supset K_{n-1}\supset \cdots \supset K_1\supset F$, где $K_1=F(\alpha_0), K_2=K_1(\alpha_1), \cdots, K_n=K_{n-1}(\alpha_{n-1}), K=K_n(\alpha_n), \ \alpha_i$ – корень многочлена $x^{n_i}-a_i=0,\ a_i\in K_i$.

Многочлен $f(x) \in F[x]$ называется разрешимым в радикалах, если его поле разложения является радикальным расширением F.

Определение 1.16. ξ_n — примитивный корень n-ной степени из единицы — это такой элемент F, что $\xi_n^n=1$, а степени ξ_n — это всевозможные корни n-ной степени из единицы.

Определение 1.17. Два элемента называются сопряженными, если их минимальные многочлены совпадают.

Утверждение 1.1 (критерий неприводимости Эзенштейна). Для многочлена $f(x) = a_n x^n + \dots + a_0 \in F[x]$ он является неприводимым, если существет такое простое p, что $p \not| a_n$, $p | a_i$, $i \in \{n-1, \dots, 0\}$, $p^2 \not| a_0$

Определение 1.18. Конечное расширение $K \supset F$ называется нормальным, если оно удовлетворяет одному из следующих равносильных условий:

- 1. $\forall \alpha \in K : \forall \beta$ сопряженный к $\alpha, \beta \in K$
- $2.\ K$ поле разложения некоторого семейства многочленов.
- 3. $\forall \varphi: K \mapsto \overline{F}$ изоморфизм, сохраняющий F, также является автоморфизмом K.

Определение 1.19. Пусть $G = Aut_F K$ – группа автоморфизмов конечного расширения $K \supset F$, сохраняющих $F \colon \forall H < G$ рассмотрим $K^H = \{x \in K : \forall h \in H : hx = x\}$. Тогда конечное сепарабельное расширение $K \supset F$ называется расширением Галуа, если для него выполнено одно из следующих эквивалентных условий:

- 1. K нормальное расширение
- 2. [K:F] = |G|
- 3. $K^G = F$

Определение 1.20. Группа Галуа расширения $K \supset F$ — это группа автоморфизмов этого расширения K, сохраняющих F.

2 Вопросы

Утверждение 2.1. Пусть $f(x) = a_n x^n + \cdots + a_0$ – многочлен над $\mathbb{Z}[x]$. Пусть также $\exists p$ – простое, что p делит все a_i , кроме первого, а a_0 не делится на p^2 . Тогда f(x) – неприводимый.

Доказательство. Пусть не так, тогда $\exists g(x) = b_m x^m + \dots + b_0, h(x) = c^l x^l + \dots + c_0 \in \mathbb{Z}[x]$, причем f = gh, m < n, l < n. Тогда $a_i = \sum_{(j,k):j+k=i} b_j c_k$. Известно, что $p|a_0 = b_0 \cdot c_0$. Тогда либо $p|b_0$, либо $p|c_0$. Причем, поскольку $\neg p^2|a_0$, то c_0 либо b_0 соответсвенно не делится на p. Пусть без ограничения общности $p|b_0, \neg p|c_0$. Тогда из того, что $p|a_1 = b_1 a_0 + b_0 a_1$. Тогда b_1 делится на p. Аналогично для всех остальных b_i . Тогда $p|b_m$, следовательно $a_n = b_m c_k$ также делится на p. Противоречие.

Утверждение 2.2. Многочлен $\Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$, где p- простое число, неприводим.

Доказательство. $\Phi_p(x)=\frac{x^p-1}{x-1}$. Сделаем замену t=x-1. Тогда $\Phi_p=\frac{(t+1)^p-1}{t}=\sum_{i=1}^p\binom{p}{i}t^{i-1}=t^{p-1}+\sum_{i=2}^{p-1}\binom{p}{i}t^{i-1}+p$ – неприводим по критерию Эйзенштейна.

Утверждение 2.3. Пусть F – факториальное кольцо. Тогда неразложимые многочлены F[x] степени θ – это в точности простые элементы F.

Доказательство. Пусть p — неразложимый в F[x]. Тогда $\forall a,b,p=ab$: без ограничения общности $a\in F[x]^*$. Но a,b — тоже многочлены степени 0, то есть константы. Но тогда $a\in F^*$. Значит, p — неразложимый, а следовательно, простой в F.

Пусть наоборот, p – простой элемент F. Пусть он разложим над F[x], то есть $\exists f, g \notin F[x]^* : fg = p$. Тогда степень f и g – ноль. Тогда p = fg над F. То есть p – не простой.

Утверждение 2.4. Для произвольных многочленов $f, g \in F[x]$ над факториальным кольцом F выполнено равенство c(fg) = c(f)c(g).

Доказательство. Пусть $fg = c(f)\hat{f}c(g)\hat{g}$, где \hat{f},\hat{g} – примитивные. Докажем, что $\hat{f}\hat{g}$ – тоже примитивный. Пусть $\hat{f}\hat{g} = a^nx^n + \dots + a_0, \hat{f} = b_mx^m + \dots + b_0, \hat{g} = c_lx^l + \dots + c_0$. Тогда $a_k = \sum_{i=0}^k b_i c_{l-i}$. Предположим, что $\hat{f}\hat{g}$ – не примитивный. Тогда $\exists p: p|c(\hat{f}\hat{g}), p$ – простое.