August 23 - August 29, 2019 Maribor, Slovenia Day 1 Tasks

covering English (LVA)

T - Covering

Ja tu esi spēlējis Tetri, tu varētu zināt, ka viena no figūrām izskatās šādi:

Nosauksim šo figūru par T-tetrom \bar{i} no; tetrom \bar{i} no ir izdomāts vārds ģeometriskai figūrai, kas sastāv no četrām rūtiņām. Rūtiņu, kas marķēta ar \times nosauksim par centra rūtiņu.

Manka uzzīmēja taisnstūrveida režģi ar m rindām un n kolonnām un katrā rūtiņā ierakstīja skaitli. Tabulas rindas ir numurētas no 0 līdz m-1 un kolonnas ir numurētas no 0 līdz n-1. Vēl viņa atzīmēja dažas rūtiņas kā $\bar{\imath}pašas$, nokrāsojot tās sarkanā krāsā. Pēc tam viņa palūdza savai draudzenei Nikai novietot T-tetromīnus uz režģa tā, lai būtu izpildīti šādi nosacījumi:

- T-tetromīno skaitam jābūt vienādam ar īpašo rūtiņu skaitu. Katrai T-tetromīno centra rūtiņai jāatrodas uz kādas īpašās rūtiņas.
- Neviens T-tetromīno pāris nedrīkst pārklāties.
- Visiem T-tetromīniem pilnībā jāatrodas uz režģa.

Nemiet vērā, ka katram T-tetromīno ir četras iespējamās orientācijas (\top , \bot , \vdash , un \dashv).

Ja nosacījumus nevar izpildīt, Nikai jādod atbilde *No*. Ja nosacījumus var izpildīt, viņai jāatrod tāds T-tetromīnu izvietojums, lai iegūtu maksimālo iespējamo skaitļu summu rūtiņās, kuras pārklāj T-tetromīni. Šajā gadījumā viņai jāpasaka Mankai maksimālā summa.

Uzrakstiet programmu, kas palīdzētu Nikai atrisināt šo mīklu.

Ievaddatu raksturojums

Katra ievaddatu rinda satur veselu skaitļu virkni, un starp skaitļiem ir viena atsarpe.

levaddatu pirmajā rindā ir veseli skaitļi m and n. Katrā no nākamajām m rindām ir n veseli skaitļi intervālā [0,1000]. J-tais veselais skaitlis i-tajā rindā apzīmē skaitli, kas ierakstīts režģa i-tās rindas j-tajā rūtiņā. Nākamajā rindā ir vesels skaitlis $k \in \{1, mn\}$, kas nosaka īpašo rūtiņu skaitu. Šai rindai seko vēl k rindas un katra no tām satur veselus skaitļus $r_i \in \{0, \dots, m-1\}$ un $c_i \in \{0, \dots, n-1\}$, kuri nosaka i-tās īpašās rūtiņas pozīciju (atbilstošās rindas un kolonnas indeksu). Īpašo rūtiņu sarakstā nav neviena dublikāta.

Izvaddatu raksturojums

Izdrukā maksimālo iespējamo skaitļu summu rūtiņās, kuras pārklāj T-tetromīni, vai *No*, ja nav neviena derīga T-tetromīnu izvietojuma.

Ierobežojumi

• $1 \le mn \le 10^6$.

Apakšuzdevumi

- ullet 5 punkti: $k\leq 1000$; katram atšķirīgam īpašo rūtiņu pārim i un j ir spēka nosacījumi $|r_i-r_j|>2$ vai $|c_i-c_j|>2$.
- 10 punkti: $k \leq 1000$; katram atšķirīgam īpašo rūtiņu pārim i un j ir spēkā sakarība, ja $|r_i-r_j| \leq 2$ un $|c_i-c_j| \leq 2$, tad $|r_i-r_j|=1$ un $|c_i-c_j|=0$ vai $|r_i-r_j|=0$ un $|c_i-c_j|=1$.
- 10 punkti: $k \leq 1000$; katram atšķirīgam īpašo rūtiņu pārim i and j ir spēkā sakarība, ja $|r_i-r_j| \leq 2$ un $|c_i-c_j| \leq 2$, tad $|r_i-r_j| \leq 1$ un $|c_i-c_j| \leq 1$.
- 10 punkti: $k \leq 1000$; visas īpašās rūtiņas atrodas vienā rindā.
- 15 punkti: $k \le 10$.
- 20 punkti: k < 1000.
- 30 punkti: nav papildu ierobežojumu.

1. piemērs

levaddati

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 4
```

Izvaddati

67

Komentārs

Lai sasniegtu maksimālo summu, Nika var izvietot tetromīnus šādi:

- ¬ rūtiņā (1, 1);
- ⊢ rūtiņā (2, 2);

2. piemērs

levaddati

```
5 6
7 3 8 1 0 9
4 6 2 5 8 3
1 9 7 3 9 5
2 6 8 4 5 7
3 8 2 7 3 6
3
1 1
2 2
3 3
```

Izvaddati

No