JUSTIFIQUEU DETALLADAMENT LES VOSTRES RESPOSTES

1. (a) Proveu per inducció que si $t \neq 1$ i $n \geq 1$ aleshores

$$\frac{1}{1-t} = 1 + t + t^2 + \dots + t^n + \frac{t^{n+1}}{1-t}$$

i deduiu que

$$\lim_{t \to 0} \frac{\frac{1}{1-t} - (1 + t + t^2 + \dots + t^n)}{t^{n+1}} = 1.$$

- (b) Donada $f(x) = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right)$, calculeu el domini de f. Digueu si f és contínua al seu domini, i si hi és derivable, i calculeu f' allà on sigui possible.
- (c) Calculeu el polinomi de Taylor de f a l'origen, de grau n.
- 2. Proveu que

$$0 \le 2x \arctan(x) - \log(1 + x^2) \le x^2$$

per a tot $x \in \mathbb{R}$. Calculeu també el l'imit

$$\lim_{x \to 0} \frac{2x \arctan(x) - \log(1 + x^2)}{x^2}.$$

3. Per a cada $n \in \mathbb{N}$ sigui la funció $f_n: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longmapsto \mathbb{R}$ definida per

$$f_n(x) = \begin{cases} \frac{(\tan x)^n}{x^2}, & \text{si } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \setminus 0, \\ 0, & \text{si } x = 0. \end{cases}$$

Per a quins valors de n és derivable f_n ? Per a quins valors de n la funció f_n' és contínua?

- 4. Sigui l'equació $e^x + \sin x = \pi$.
 - (a) Demostreu que té una única solució positiva ($x_0 > 0$).
 - (b) Doneu un interval de longitud menor que 1 que contingui aquesta solució.
 - (c) Té solucions negatives l'equació?
- 5. Sigui f i g dues funcions derivables definides en un interval obert I i sigui $a \in I$. Aleshores demostreu que $f \cdot g$ és derivable i doneu la derivada.

TOTS ELS EXERCICIS VALEN EL MATEIX

ESCRIVIU LA RESPOSTA A CADA PREGUNTA EN UN FULL DIFERENT

POSEU EL VOSTRE NOM I COGNOM EN CADA FULL EN MAJÚSCULES