

FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES B.P 1515 LOME

UE MATH 102: Examen SEMESTRE MOUSSON DURÉE: 2 heures

EXERCICE 1 (8 pts) (FDS seulement)

Soit E un ensemble non vide fini muni d'une loi de composition interne , associative notée multiplicativement dont tout élément est régulier.

- 1. En utilisant les translations à gauche γ_x et à droite δ_x , $x\in E$, montrer que (E,.) admet un élément neutre e.
- 2. Montrer que tout élément de E est symétrisable.

3.	Conclure.			
3				
-				
			i i	
		1		

EXERCICE 2 (8 pts) (EPL seulement)					
On considère l'équation (E) : $17x + 26y = 1$ où (x, y) est un couple de nombres entiers relatifs.					
1. Déterminer une solution particulière de (E) .					
2. Résoudre alors l'équation (E) .					
3. Déterminer un entier u tel que $17u \equiv 1[26]$.					
. Soit \mathcal{N} un nom. \mathcal{N} subit une permutation $\pi = (12453)$, ce qui donne $\pi(\mathcal{N})$. On code ensuite $\pi(\mathcal{N})$ par la fonction $f(x) = 17x + 22$ [26], $x \in \{0, 1, 2, \dots, 25\}$. On obtient alors à la fin du processus $f(\pi(\mathcal{N})) = WZDMY$.					
(a) Déterminer la fonction de déchiffrage g de f . (b) Déterminer le nom \mathcal{N} .					
5. Le nom $\mathcal N$ subit la permutation $\sigma=(51432),$ ce qui donne un nom célèbre $\sigma(\mathcal N)=\mathcal H.$ Déterminer $\mathcal H.$					

EXERCICE	3	(8	pts
DITED TO D		(0	POD

Soit σ une permutation de \mathcal{S}_{10} définie par: $\sigma=$

- 1. Décomposer σ en produit de cycles disjoints puis en produit de transpositions.
- 2. Calculer $I(\sigma)$ le nombre d'inversions de σ puis sa signature $\varepsilon(\sigma)$.
- 3. Déterminer σ^{-1} puis σ^{2023} .
- 4. Déterminer la permutation μ telle que $\sigma\mu = (210579)$.

EXERCICE 4 (8 pts)

Décomposer en éléments simples sur
$$\mathbb R$$
 les fractions rationnelles suivantes:
$$f(x) = \frac{X^3 + 1}{X^3 - 1}, \qquad g(x) = \frac{X + 1}{(X - 1)(X + 1)^2}, \qquad h(x) = \frac{x^2 - x + 1}{(x^2 + 4x + 5)^2}.$$