SUMMER-2019

UNIT-1

Q.1 a) Solve
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$$
. (6)

b) Solve
$$(D^2 + a^2)y = \sec ax by method of VOP. (7)$$

Q.2 a) Solve
$$(D^2 + 5D + 6)y = e^{-2x}\sin 2x + 4x^2e^x$$
. (6)

b) Solve
$$x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$
. (7)

UNIT-2

Q.3 a) Show that
$$L^{-1}\left\{\frac{1}{s}\cos\frac{1}{s}\right\} = 1 - \frac{t^2}{(2!)^2} + \frac{t^4}{(4i)^2} - \frac{t^6}{(6!)^2}$$
. (4)

b) Find the L.T. of the following periodic functions

$$f(t) = \frac{kt}{T}; 0 < t < T \text{ and given that } f(t) = f(t + T)$$
 (5)

c) If
$$f(t) = e^{t} \cos t$$
; $0 < t < \pi$
= $e^{t} \sin t$; $t > \pi$

Then find
$$L\{f(t)\}$$
 (5)

Q.4 a) Solve the D.E. by using Laplace transformation.

$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 4t + e^{3t}; y(0) = 1 \text{ and } y'(0) = -1$$
 (4)

b) Using convolution theorem
$$L^{-1}\left\{\frac{1}{\left(s^2+1\right)\left(s^2+9\right)}\right\}$$
. (5)

c) Find the L.T. of
$$\frac{d}{dt} \left(\frac{\sin t}{t} \right)$$
. (5)

UNIT-3

Q.5 a) Solve
$$y_{x+2} - 7y_{x+1} + 12y_x = \cos x$$
. (5)

b) Find the inverse Z-transform of
$$\frac{z}{z^2 + 7z + 10}$$
. (4)

c) Find the Z-transform of
$$k^2a^{k-1}$$
; $k \ge 1$. (4)

Q.6 a) i. Solve
$$y_{n+2} - 2\cos\alpha y_{y+1} + y_n = \cos\alpha n$$
 (4)

ii. Solve
$$u_{n+2} - 16u_n = \cos \frac{n}{2}$$
 (4)

b) Solve
$$y(n + 3) - 3y(n + 1) + 2y(n) = 0$$
 given that $y(0) = 4$, $y(1) = 0$, $y(2) = 8$ using z-transformation. (5)

UNIT-4

Q.7 a) Using Fourier integral prove that

$$\int_{0}^{\infty} \left(\frac{1-\cos \lambda \pi}{\lambda}\right) \sin \lambda x d\lambda = \frac{\pi}{2}; 0 \le x \le \pi$$

$$= 0; x > \pi$$
(5)

b) Solve the partial differential equations

i.
$$(y + z)p + (z + x)q = (x + y)$$
 (4)

$$ii. yp = 2xy + logq (4)$$

Q.8 a) Using Fourier integral prove that

$$\int_{0}^{\infty} \left(\frac{\sin \pi \lambda \sin x \lambda}{1 - \lambda^{2}} \right) d\lambda = \frac{\pi}{2} \sin x; 0 \le x \le \pi$$

$$= 0: x > \pi$$

b) Solve partial differential equation:

i.
$$(3y - 2z)p + (z - 3x)q = 2x - y$$
 (4)

ii.
$$p^2 - pq = 1 - z^2$$
 (4)

UNIT-5

Q.9 a) If f(z) = u + iv is an analytic function, the complex variable z and $(u - v) = e^{x}(\cos y - \sin y)$ then find f(z). (5)

b) Find the Bilinear transformation which maps the points -1, i, 1 of w-plane respectively. (4)

c) If f(z) is an analytic function of z then

prove
$$\left(\frac{\partial^2}{\partial \mathbf{x}^2} + \frac{\partial^2}{\partial \mathbf{y}^2}\right) \log |\mathbf{f}'(\mathbf{z})| = 0$$
 (4)

Q.10 a) If f(z) = u + iv is analytic and

 $u - v = e^{x}[(x - y)\cos y - (x + y)\sin y]$ then find f(z) if f(0) = 1. (1)

b) Expand $\frac{1}{\sigma^2 - 3\sigma + 2}$ in the region

i.
$$|z| > 2$$
, ii. $0 < |z - 1| < 1$ (1)

Q.11 a) Find the rate of change of ϕ = xyz in the direction of the surface $x^2y + y^2x + yz^2$ at the normal to the point (-1, 2, 1). (7)

b) Prove that
i. d iv
$$\left(\frac{\bar{r}}{r^3}\right) = 0$$

ii. d iv (grad r^n) = $n(n + 1)r^{n-2}$

Where
$$r = xi + yi + zk$$
 (7)

a) If $\overline{F} = (2x^2 - 3z)i - 2xyj - 4xk$ then evaluate $\iiint \nabla \circ \overline{F} dv$ where v is bounded by the planes x = 0, y = 0,

$$z = 0$$
 and $2x + 2y + z = 4$ (7)

b) If $\overline{A} = (3x^2 + 6y)i - 14yzj + 20xz^2k$ then evaluate the line integral. $\oint A \circ dr$ from (0, 0, 0) to (1, 1, 1) along the curve c,x = t, y = t^2 and z = t^3 . (7)