1 Funciones

Definición 1.1 Sean A, B dos conjuntos. Una $\underline{\text{función}}\ f: A \to B$ asigna un elemento $b \in B$ para cada elemento $a \in A$, denotado por b = f(a).

Definición 1.2 Para una función $f: A \rightarrow B$, definimos

rango
$$f = \{f(a) : a \in A\}$$

 $f^{-1}(b) = \{a \in A : f(a) = b\}$
 $f^{-1}(H) = \{a \in A : f(a) \in H\}.$

Si rango f=B, decimos que f es sobreyectiva. Si para todo $b\in B$, $|f^{-1}(b)|\leq 1$, decimos que la función f es inyectiva. Una función que es sobreyectiva y inyectiva se llama biyección.

Si $f:A\to B$ es inyectiva, f^{-1} es también una función $f^{-1}:B'\to A$ donde $B'=\operatorname{rango} f\subset B$. Si $f:A\to B$ es una biyección, entonces $f^{-1}:B\to A$ es también una biyección.

Definición 1.3 Sea $f: A \to B$ y $f: B \to C$ dos funciones. La composición es un función $f \circ g: A \to C$ definido como $(f \circ g)(x) = f(g(x))$.

Proposición 1.1 Para alguna función f y una colección de conjuntos indexados U_a , $a \in A$, tenemos

$$f^{-1}\left(\bigcap_{a\in A} U_a\right) = \bigcap_{a\in A} f^{-1}(U_a)$$
$$f^{-1}\left(\bigcup_{a\in A} U_a\right) = \bigcup_{a\in A} f^{-1}(U_a)$$
$$f\left(\bigcup_{a\in A} U_a\right) = \bigcup_{a\in A} f(U_a).$$

Ejemplo 1.1 Para $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, tenemos $f^{-1}(x) = \{\sqrt{x}, -\sqrt{x}\}$ implicando que f no es inyectiva. También tenemos que $f^{-1}([1,2]) = [-\sqrt{2},1] \cup [1,\sqrt{2}]$.

Definición 1.4 Sean las funciones $f,g:A\to\mathbb{R}$, denotamos $f\le g$ si $f(x)\le g(x)$ para todo $x\in A$, f< g si f(x)< g(x) para todo $x\in A$ y $f\equiv g$ si f(x)=g(x) para todo $x\in A$.

Definición 1.5 Denotamos una sucesión de funciones $f_n : A \to \mathbb{R}$, $n \in \mathbb{N}$, satisfaciendo $f_1 \le f_2 \le f_3 \le \cdots$ como $f_n \nearrow$.

Definición 1.6 Dado un conjunto $A \in \Omega$, definimos la <u>función indicador</u> $I_A : \Omega \to \mathbb{R}$ como

$$I_A(\omega) = egin{cases} 1 & \omega \in A \ 0 & ext{e otros casos} \end{cases}, \qquad \omega \in \Omega.$$

Proposición 1.2 La función indicador tiene algunas propiedades importantes

- 1. Para algún conjunto A, tenemos $I_A = 1 I_{A^c}$.
- 2. Si $A \subset B$, se cumple que $I_A \leq I_B$.
- 3. Para dos conjuntos A y B, se cumple que $I_{A \cap B} = I_A I_B$ y
- 4. Del mismo modo dado dos conjuntos A y B, se cumple que $I_{A \cup B} = I_A + I_B I_{A \cap B}$.

Ejemplo 1.2 (Principio de inclusión -exclusión) Sean los conjuntos A_1,A_2,\ldots,A_n y sea I_{A_i} la función indicador de A_i , la unión $A=A_1\cup A_2\cup\cdots\cup A_n$ tiene como función indicador

$$I_A = 1 - \prod_{i=1}^{n} (1 - I_{A_i}).$$

Existen algunas definiciones que son útiles en la comparación del comportamiento asintótico.

Definición 1.7 Sean las funciones $f,g:\mathbb{R}\to\mathbb{R}$ definimos las siguientes notaciones

$$\begin{split} f &= O(g) \qquad \text{cuando} \qquad x \to L \qquad \text{si} \qquad \limsup_{x \to L} \frac{|f(x)|}{|g(x)|} < \infty \\ f &= o(g) \qquad \text{cuando} \qquad x \to L \qquad \text{si} \qquad \lim_{x \to L} \frac{f(x)}{g(x)} = 0 \\ f \sim g \qquad \text{cuando} \qquad x \to L \qquad \text{si} \qquad \lim_{x \to L} \frac{f(x)}{g(x)} = 1 \\ f \Theta g \qquad \text{cuando} \qquad x \to L \qquad \text{si} \qquad f = O(g) \text{ y } g = O(f) \end{split}$$

A L le puede corresponder un límite finito o un límite infinito: $+\infty$, $-\infty$. Si se omite L, normalmente se supone que es $+\infty$.

Intuitivamente, f=O(g) implica que f crece tan rápido como g o más lento y f=o(g) implica que f crece más lento que g. Las definiciones anteriores suponen que g(x) no es cero, o al menos no es cero cuando $x\to L$.

Ejemplo 1.3 Se cumple f = O(g) si y sólo si f(x)/g(x) = O(1) y f(x) = o(g(x)) si y sólo si f(x)/g(x) = o(1).

Ejemplo 1.4 1. Se cumple que $x^a = o(x^b)$ para toda constante no negativa a < b.

- 2. $\log x = o(x^{\epsilon})$ para todo $\epsilon > 0$ y x > 1.
- 3. $x^b = o(a^x)$ para $a, b \in \mathbb{R}$ con a > 1.

Ejemplo 1.5 Si tenemos n, k > 0, tenemos que $x^n = O(x^k)$ si y sólo si $k \ge n$ y $x^{-n} = o(x^{-k})$ si y sólo si k < n (en ambos casos $x \to \infty$). También $x^n = O(\exp(x))$ y $\exp(-x) = o(x^{-n})$ cuando $x \to \infty$, para todo n > 0.

Proposición 1.3 Si f = o(g) o se cumple $f \sim g$, entonces f = O(g).

Es importante notar que

Proposición 1.4 Si f = o(g), entonces no es verdad que g = O(f).

$$\lim_{x\to\infty}\frac{g(x)}{f(x)}=\frac{1}{\lim_{x\to\infty}f(x)/g(x)}=\frac{1}{0}=\infty,$$

así $g \neq O(f)$.

Proposición 1.5 Para $a_k \neq 0$, $a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0 = O(x^k)$.

Definición 1.8 Dado dos funciones $f,g:\mathbb{R}\to\mathbb{R}$, decimos que

$$f = \Omega(g)$$

si y sólo existe una constante c y un x_0 tal que para todo $x \ge x_0$, tenemos que $f(x) \ge c|g(x)|$.

Proposición 1.6 f(x) = O(g(x)) si y sólo si $g(x) = \Omega(f(x))$.

Así por ejemplo
$$x^2 = \Omega(x)$$
, $2^x = \Omega(x^2)$ y $x/100 = \Omega(100x + \sqrt{x})$.

2 Referencias

- 1. Mathematics for Computer Science, Eric Lehman F Thomson Leighton Albert R Meyer 2010.
- 2. Book of Proof, 2013 by Richard Hammack Second Edition.
- 3. Probability, The Analysis of Data, volumen 1 Guy Lebanon.