Finite representation of real numbers Floating-point numbers

Dr. Ing. Rodrigo Gonzalez

rodralez@frm.utn.edu.ar
rodrigo.gonzalez@ingenieria.uncuyo.edu.ar

Summary

- Introduction
- Old formats
- IEEE 754 standard
 - 32-bit Single-Precision
 - Normalized Form
 - Example 1
 - Example 2
 - Example 3
 - Why auto range?
 - De-normalized Form
 - Example 4
- Special values

- Rounding schemesDynamic rangePrecision
 - Fixed-point precision
 - Floating-point precision
 - Precision and ranges
 - Precision problems
- 8 Sum of two floating-point numbers
 - Sum of floating-point numbers in similar range
 - Sum of floating-point numbers in very different range
- Fixed-point vs floating-point

Introduction

A floating-point number can represent a very large or a very small value, positive and negative.

Floating-point Numbers (Decimal)

A floating-point number is typically expressed in the scientific notation in the form of

$$(-1)^{\mathcal{S}} \times F \times r^{\mathcal{E}}$$
,

where,

- S, sign bit.
- F, fraction.
- E, biased exponent.
- r, certain radix. r = 2 for binary; r = 10 for decimal.

In this presentation r=2

Old formats

IEEE Standard P754 Format

IBM Format

Bit 31 30 29 28 27 26 25 24 23 22 21 20
$$\cdots$$
 2 1 0

S | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 2 | 2 | 2 | 3 | 2 | 4 | \cdots 2 | 22 | 2 | 2 | 3 | 2 | 4 | \cdots 2 | 22 | 2 | 2 | 3 | 2 | 4 | \cdots 2 | 22 | 2 | 2 | 3 | 2 | 4 | \cdots 2 | 22 | 2 | 2 | 3 | 2 | 4 | \cdots 2 | 24 | Sign (s) | \leftarrow Exponent (e) \rightarrow \leftarrow Fraction (f) \rightarrow

$$\leftarrow$$
 Exponent (e) \rightarrow 1 \leftarrow Fraction (f) \rightarrow

DEC (Digital Equipment Corp.) Format

Bit 31 30 29 28 27 26 25 24 23 22 21 20
$$\cdots$$
 2 1 0
S 27 26 28 24 23 22 21 20 \cdots 2 2 2 2 23 24 \cdots 2 22 2 23 24 \cdots 2 24 Sign (s) \leftarrow Exponent (e) \rightarrow \leftarrow Fraction (f) \rightarrow

MIL-STD 1750A Format

Bit 31 30 29
$$\cdots$$
 11 10 9 8 7 6 5 4 3 2 1 0

20 2 1 2 2 \cdots 2 20 2 21 2 22 23 27 26 25 24 21 2 2 21 2

 \leftarrow Fraction (f) \rightarrow \leftarrow Exponent (e) \rightarrow

IEEE 754 standard

Modern computers adopt the IEEE 754 standard for representing floating-point numbers at the FPU.

First version was published in 1985. Last version in July 2019 (IEEE 754-2019).

IEEE 754 standard defines several arithmetic formats.

Solo vemos estos estándares base=2

	Binary formats $(B = 2)$				Decimal formats $(B = 10)$		
Parameter	Binary 16	Binary 32	Binary 64	Binary 128	Decimal 132	Decimal 164	Decimal 128
p, digits	10 + 1	23 + 1	52 + 1	112 + 1	7	16	34
e_{max}	+15	+127	+1023	+16383	+96	+384	+16,383
e_{min}	-14	-126	-1022	-16382	-95	-383	-16,382
Common name	Half precision	Single precision	Double precision	Quadruple precision			

Nos enfocamos en el de 32 bits que es de sistemas

IEEE 754 standard also defines:

- Rounding rules.
- Arithmetic operations, trigonometric functions.
- Exception handling.

embebidos

IEEE 754 standard

32-bit Single-Precision

$$(-1)^S \times F \times r^{(E-bias)}$$

- *S*, sign bit. **0** for positive numbers and **1** for negative numbers.
- F, 23-bits fraction: $[2^{-1} \ 2^{-2} \cdots 2^{-23}]$
- We need to represent both positive and negative exponents.
- E, 8-bits exponent, no sign bit.
 - E = [1, 254], bias = 127; $-126 \le E bias \le 127$. Se implementa para
 - E = 0 and E = 255 are reserved.
 Reservados para valores filmina 14

evitar bit de signo en el exponente

IEEE 754 standard Normalized Form

32-bit Single-Precision Floating-point Number

$$(-1)^S \times F \times r^{(E-bias)}$$

Exponente E-bias resulta ser el máximo tal que quede parte entera 1 al pasarlo dividiendo

- Representation of a floating point number may not be unique:
- For example, the number 13.25 can be represented as $1101.01_2\cdot(2^0)=110.101_2\cdot(2^1)=11.0101_2\cdot(2^2)=1.10101_2\cdot(2^3)$
- A floating point number is normalized when the integer part of its mantissa is forced to be exactly 1 and its fraction is adjusted accordingly. Forma normalizada
- The leading 1 is implicit. It is not part of the 32 bits number.
- 1.F = 1. $[2^{-1} \ 2^{-2} \cdots 2^{-23}]$.

Represent 3215.020002₁₀

http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.html

Da 3215,020032 pero se pierden últimos bits. Quizás incluso más si pones bien la representación de la parte fraccionaria

Represent $3215.020002_{10} \times 2 = 6430.040004_{10}$

Decimal Value Entered: 6430.040004

Single precision (32 bits):

Status: normal Binary:

Bit 31 Bits 30 - 23 Sign Bit Exponent Field 0 10001011 0: + Decimal value of exponent field and exponent 1: -- 127 = 12 139

Bits 22 - 0 Significand 1 .10010001111000001010010

Decimal value of the significand 1.5698340

Hexadecimal: 45C8F052 Decimal: 6430.0400

Represent $3215.020002_{10}/4 = 803.7550005_{10}$

Decimal Value Entered: 803.7550005

Single precision (32 bits):

```
Binary:
          Status: normal
  Bit 31
                            Bits 30 - 23
                                                                      Bits 22 - 0
Sian Bit
                           Exponent Field
                                                                      Significand
   0
                             10001000
                                                             1 .10010001111000001010010
           Decimal value of exponent field and exponent
                                                           Decimal value of the significand
   1: -
                        136
                              -127 = 9
                                                                       1.5698340
```

To multiply and divide by 2 is easy using floating-point numbers.

Decimal: 803.75500

- Not every real number can be represented with floating-point format.
- Floating-point numbers are auto range!

Hexadecimal: 4448F052

IEEE 754 standard Why auto range?

	MIN F	MAX F
2^E	100000000000000000000000000000000000	11111111111111111111111 (b2)
	1 (b10)	1.999999881 (b10)
2^-126	1.1755E-38	2.3510E-38
2^-30	9.3132E-10	1.8626E-09
2^-20	9.5367E-07	1.9073E-06
2^-10	9.7656E-04	1.9531E-03
2^-3	0.12500000	0.2499999
2^-2	0.25000000	0.4999997
2^-1	0.5000000	0.9999994
2^0	1.0000000	1.9999988
2^1	2.0000000	3.9999976
2^2	4.0000000	7.9999952
2^3	8.00000000	15.99999905
2^10	1.0240E+03	2.0480E+03
2^20	1.0486E+06	2.0972E+06
2^30	1.0737E+09	2.1475E+09
2^127	1.7014E+38	3.4028E+38

Aumenta el error absoluto

IEEE 754 standard De-normalized Form

Not all real numbers in the range are representable

Normalized floating-point numbers

Denormalized floating-point numbers

- Normalized form has a serious problem.
- The number zero cannot be represent with an implicit leading 1!
- De-normalized form is devised to represent zero and small numbers.
- $E = 0 \Rightarrow E bias = -127$

Forma de-normalizada

• Implicit leading $0.F = \mathbf{0}. [2^{-1} \ 2^{-2} \cdots 2^{-23}].$

Para 2^-127 asume 0 implícito

Represent -3.4E-39₁₀

Decimal Value Entered: -3.4e-39

Single precision (32 bits):

Hexadecimal: 802505D1 Decimal: -3.3999999e-39

Special values

E:exponente F:Parte fraccionaria

- **Zero**: E = 0, F = 0. Two representations: **+0** (S = 0) and **-0** (S = 1).
- Inf (Infinity): E = 0xFF, F = 0. Two representations: +Inf (S = 0) and -Inf (S = 1).
- NaN (Not a Number): E = 0xFF, $F \neq 0$. A value that cannot be represented as a real number (e.g. 0/0). Parte fraccional con cq valor !=0

MATLAB

- $0 \sim a = 1/0$
- \bigcirc » a = Inf
- \bigcirc » b = exp(1000)
- \bigcirc » b = Inf
- 0 > c = log(0)
- \bigcirc » c = -Inf

MATLAB

- $0 \gg d = -1/0$
- ② » d = -Inf
- $0 \gg e = 0/0$
- \bigcirc » f = Inf/Inf

Rounding schemes

- ulp (unit of least precision). In MATLAB, eps ().
- f, significant, f = 1.F.
- f' and f'' being two successive multiples of ulp.
- Assume that f' < f < f''.
- f'' = f' + ulp.
- Then, the rounding function round(f) associates to f either f' or f'', according to some rounding strategy.

Rounding schemes

Rounding schemes are:

- Truncation (also called round toward 0 or chopping):
 - if f is positive, round(f) = f'.
 - if f is negative, round(-f) = f''.
- ② Round toward plus infinity: round(f) = f''.
- **1 Outside Outside**
- Round to nearest (default):
 - if f < f' + ulp/2, round(f) = f'.
 - if f >= f' + ulp/2, round(f) = f''.

Dynamic range

Dynamic range is defined as,

$$DR_{db} = 20 log_{10} \left(\frac{largest possible word value}{smallest possible word value} \right)$$
 [dB]

Dynamic range for floating-point numbers is defined as,

$$DR_{dB} \approx 6.02 \cdot 2^{b_E}$$
 I think to be exact it is $6.02*(3+2^bE)$

where b_E is the number of bits of E.

For single precision (32-bits):

$$DR_{dB} \approx 6.02 \cdot 2^8 \approx 1541 \, dB$$

"Con la misma cantidad de bits, podemos representar muchísimos más números"

Creo que quiso decir mayor rango.

Creo que quiso decir mayor rango.

 $DR_{dB} \approx 6.02 \cdot 31 \approx 186 \, \mathrm{dB}$

Me parece que convienen porque por lo general te importa más error relativo chico que absoluto chico.

Precision

Fixed-point precision

- Precision is 2^{-n} , where *n* is the number of bits for the fraction part.
- Precision is constant throughout all fixed-point numbers' range.

MATLAB

```
" * Fixed-point quantizer"
" * q = quantizer('fixed','floor','saturate',[5 1]);
" * [wordlength fractionlength]
" * u = linspace(-15,15,1000);
" * y1 = quantize(q,u);
" * plot(u,y1); title(tostring(q))
```


Precision

Floating-point precision

- Precision is $2^E \cdot 2^{-23}$ for single precision.
- Precision is not constant throughout all floating-point numbers' range.
- As the numbers get larger, the precision gets larger as well.

MATLAB

Floating-point precision

Precision

Precision and ranges

	MIN F	MAX F	PRECISION
2^E	100000000000000000000000000000000000	111111111111111111111111 (b2)	2^E * 2^-23
	1 (b10)	1.999999881 (b10)	
	,	, ,	
2^-126	1.1755E-38	2.3510E-38	1.4013E-45
2^-30	9.3132E-10	1.8626E-09	1.1102E-16
2^-20	9.5367E-07	1.9073E-06	1.1369E-13
2^-10	9.7656E-04	1.9531E-03	1.1642E-10
2^-3	0.12500000	0.24999999	1.4901E-08
2^-2	0.25000000	0.4999997	
2^-1	0.5000000	0.9999994	5.9605E-08
2^0	1.0000000	1.9999988	1.1921E-07
2^1	2.0000000	3.9999976	2.3842E-07
2^2	4.0000000	7.9999952	4.7684E-07
2^3	8.00000000	15.99999905	9.5367E-07
2^10	1.0240E+03	2.0480E+03	1.2207E-04
2^20	1.0486E+06	2.0972E+06	1.2500E-01
2^30	1.0737E+09	2.1475E+09	1.2800E+02
2^127	1.7014E+38	3.4028E+38	2.0282E+31

Precision problems

When calculations involve large and small numbers at the same time, the loss of precision affects the small number and the result.

MATLAB

```
\bigcirc » a = (2^53 + 1) - 2^53
disp('Turn off nuclear reactor')
» else

    disp('Do not turn off nuclear reactor')

0 > x = 0;
\bigcirc » t = tan(x) - sin(x)/cos(x)
0 > t = 0
0 > x = 1;
\bigcirc » t = tan(x) - sin(x)/cos(x)
```

Sum of two floating-point numbers Sum of floating-point numbers in similar range

Perform 0.5 + (-0.4375) using 4 bits for the mantissa.

$$0.5_{10} = 0.1000_2 \times 2^0 = 1.0000_2 \times 2^{-1} \text{ (normalised)}$$

$$-0.4375_{10} = -0.0111_2 \times 2^0 = -1.1100_2 \times 2^{-2} \text{ (normalised)}$$

Match exponents to the bigger one. Apply n right shifts to -0.4375 where n = (exponent1 - exponent2) = <math>(-1 + 2) = 1. $-0.4375 = -1.1100_2 \times 2^{-2} = -0.1110_2 \times 2^{-1}$

- 3 Add the mantissas. $(1.0000_2 0.1110_2) \times 2^{-1} = 0.0010_2 \times 2^{-1}$
- Normalise the sum, checking for overflow/underflow: $0.0010_2 \times 2^{-1} = 1.0000_2 \times 2^{-4} = \textbf{0.0625}$ -126 < -4 < 127, no overflow or underflow
- Round the sum. The sum fits in 4 bits so rounding is not required

Sum of two floating-point numbers Sum of floating-point numbers in very different range

Perform 1e10 + 1500 using IEEE-754 single precision.

$$10,000,000,000 = 1.001010100000010111111001_2 \times 2^{33} \mbox{ (normalised)}$$

$$1500 = 1.0111011100000000000000_2 \times 2^{10} \mbox{ (normalised)}$$

- ② Add the mantissas. $(1.001010100000010111111001_2 + 0.00000000000000000000001_2) \times 2^{33}$
- Normalise the sum, checking for overflow/underflow: $1.0101010000001011111010_2 \times 2^{33} = 1.16415333710 \times 2^{33} = \textbf{10}, \textbf{000}, \textbf{001}, \textbf{024} \\ -126 < 33 < 127, \text{ no overflow or underflow}$
- Round the sum. The sum fits in 23 bits so rounding is not required

Fixed-point vs floating-point

Bibliography

- 1 IEEE-SA Standards Board. IEEE Standard for Floating-Point Arithmetic. ISBN 978-0-7381-5752-8. Approved 12 June 2008. New York, NY, USA. Link.
- 2 Jean-Pierre Deschamps, Gustavo D. Sutter, and Enrique Cantó. Floating Point Arithmetic. Guide to FPGA Implementation of Arithmetic Functions, Chapter 12. Springer, 2012.