§7. Эквивалентные бесконечно малые функции, их свойства. Главная часть бесконечно малой функции

Пусть даны функции $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x \rightarrow a$, где a может быть не только числом, но и одним из символов ∞ , $+\infty$, $-\infty$.

Определение 7.1. Если существует $\lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 1$, то $\alpha(x)$ и $\beta(x)$ называются эквивалентными бесконечно малыми при $x \to a$.

Обозначение: $\alpha(x) \sim \beta(x)$ при $x \rightarrow a$.

Так, $\ln(x^3 - 3x^2 + 3x) \sim (x - 1)^3$ при $x \to 1$, поскольку

$$\lim_{x \to 1} \frac{\ln(x^3 - 3x^2 + 3x)}{(x - 1)^3} = 1 \text{ (пример 6.3)}.$$

Замечание 7.1. Эквивалентные бесконечно малые функции являются частным случаем бесконечно малых одного порядка (см. определение 6.1).

Свойства эквивалентных бесконечно малых

Теорема 7.1 (теорема о замене эквивалентными в произведении и отношении). Если $\alpha_1(x)$, $\alpha_2(x)$, $\beta_1(x)$, $\beta_2(x)$ являются бесконечно малыми при $x \to a$ и $\alpha_1(x) \sim \beta_1(x)$, $\alpha_2(x) \sim \beta_2(x)$ при $x \to a$, то

1)
$$\alpha_1(x) \cdot \alpha_2(x) \sim \beta_1(x) \cdot \beta_2(x)$$
;

2)
$$\frac{\alpha_1(x)}{\alpha_2(x)} \sim \frac{\beta_1(x)}{\beta_2(x)}$$
 при $x \to a$; 3) $\lim_{x \to a} \frac{\alpha_1(x)}{\alpha_2(x)} = \lim_{x \to a} \frac{\beta_1(x)}{\beta_2(x)}$.

▶ 1)
$$\lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)} = \lim_{x \to a} \frac{\alpha_2(x)}{\beta_2(x)} = 1$$
 (определение 7.1). Имеем $\lim_{x \to a} \frac{\alpha_1(x) \cdot \alpha_2(x)}{\beta_1(x) \cdot \beta_2(x)} = 1$

 $=\lim_{x\to a}\frac{\alpha_1(x)}{\beta_1(x)}\cdot\frac{\alpha_2(x)}{\beta_2(x)}=\lim_{x\to a}\frac{\alpha_1(x)}{\beta_1(x)}\cdot\lim_{x\to a}\frac{\alpha_2(x)}{\beta_2(x)}=1,\quad\text{отсюда}\quad\text{следует}\quad\text{доказываемое}$ соотношение (определение 7.1).

2) $\lim_{x \to a} \frac{\alpha_1(x)}{\alpha_2(x)} / \frac{\beta_1(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)} \cdot \frac{\beta_2(x)}{\alpha_2(x)} = 1$, отсюда следует доказываемое соотношение (определение 7.1).

3)
$$\lim_{x \to a} \frac{\alpha_1(x)}{\alpha_2(x)} = \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)} \cdot \frac{\beta_2(x)}{\alpha_2(x)} \cdot \frac{\beta_1(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\alpha_1(x)}{\beta_1(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\alpha_2(x)} \cdot \lim_{x \to a} \frac{\beta_1(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} \cdot \lim_{x \to a} \frac{\beta_2(x)}{\beta_2(x)} = \lim_{x \to a} \frac{\beta_2(x)}{\beta$$

$$=\lim_{x\to a}\frac{\beta_1(x)}{\beta_2(x)}$$
, τακ κακ $\lim_{x\to a}\frac{\alpha_1(x)}{\beta_1(x)}=\lim_{x\to a}\frac{\beta_2(x)}{\alpha_2(x)}=1$.

Теорема 7.2. Для того чтобы бесконечно малые функции $\alpha(x)$ и $\beta(x)$ были эквивалентными при $x \rightarrow a$, необходимо и достаточно, чтобы при $x \rightarrow a$ выполнялось одно из равенств $\alpha(x) - \beta(x) = o(\alpha(x))$ или $\alpha(x) - \beta(x) = o(\beta(x))$.

►Пусть $\alpha(x) \sim \beta(x)$ при $x \to a$. Имеем $\lim_{x \to a} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to a} \left(\frac{\alpha(x)}{\beta(x)} - 1 \right) = 0$ и, следовательно, $\alpha(x) - \beta(x) = o(\alpha(x))$. Второе равенство доказывается аналогично.

Предположим теперь, что верно равенство $\alpha(x) - \beta(x) = o(\beta(x))$ при $x \to a$.

Имеем $\lim_{x \to a} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to a} \left(\frac{\alpha(x)}{\beta(x)} - 1 \right) = 0 \Rightarrow \lim_{x \to a} \frac{\alpha(x)}{\beta(x)} = 1 \Rightarrow \alpha(x) \sim \beta(x)$ при

 $x \rightarrow a$.

Замечательные пределы, следствия из них (§3) и замечание 3.1 позволяют найти эквивалентные для некоторых элементарных функций.

Таблица 7.1

Таблица эквивалентных бесконечно малых функций

Пусть функция $\alpha = \alpha(x) \rightarrow 0$ при $x \rightarrow a$. Тогда

$$\sin \alpha \sim \alpha$$
, (7.1) $1 - \cos \alpha \sim \alpha^2/2$, (7.2)

$$tg \alpha \sim \alpha$$
, (7.4)

$$arctg\alpha \sim \alpha$$
, (7.5) $e^{\alpha} - 1 \sim \alpha$, (7.6)

$$\ln(1+\alpha) \sim \alpha,$$
 (7.8)

Пример 7.1. Найти $\lim_{x\to 0} \frac{\ln \cos x}{\sqrt[3]{1+x^2}-1}$.

▶Дробь под знаком предела при $x \to 0$ даёт неопределённость 0/0.

Имеем : $\frac{\ln \cos x}{\sqrt[3]{1+x^2}-1} = \frac{\ln(1+\cos x-1)}{(1+x^2)^{1/3}-1}$. Из таблицы 7.1 при $x \to 0$ следуют

соотношения:

$$\ln(1+\cos x-1) \sim \cos x - 1 \sim -x^2/2 \ ((7.7), \ \alpha = \cos x - 1 \ \text{if} \ (7.2), \ \alpha = x),$$
$$(1+x^2)^{1/3} - 1 \sim x^2/3 \ ((7.8), \ \alpha = x^2, \mu = 1/3),$$

поэтому, в силу теоремы 7.1, получаем: $\lim_{x\to 0} \frac{\ln \cos x}{\sqrt[3]{1+x^2}-1} = \lim_{x\to 0} \frac{-x^2/2}{x^2/3} = -\frac{3}{2}$.

Пример 7.2. Найти $\lim_{x\to 2} \frac{\arcsin(x^2-2x)}{e^{\lg \pi x}-1}$.

▶Дробь под знаком предела при $x \rightarrow 2$ — неопределённость 0/0. При $x \rightarrow 2$:

$$\arcsin(x^2-2x) \sim x^2-2x\ ((7.4),\alpha=x^2-2x),\ e^{\mathrm{t}g\pi x}-1 \sim \mathrm{t}g\pi x\ ((7.6),\alpha=\mathrm{t}g\pi x).$$
 Поскольку $\mathrm{t}g\pi x=\mathrm{t}g(\pi x-2\pi)=\mathrm{t}g\pi(x-2)\sim\pi(x-2)$ при $x\to 2$, то $e^{\mathrm{t}g\pi x}-1\sim\mathrm{t}g\pi x\sim$

 $\sim \pi(x-2)$ при $x \to 2$. Используя теорему 7.1, приходим к равенству:

$$\lim_{x \to 2} \frac{\arcsin(x^2 - 2x)}{e^{\operatorname{tg}\pi x} - 1} = \lim_{x \to 2} \frac{x(x - 2)}{\pi(x - 2)} = \frac{2}{\pi}.$$

Пример 7.3. Найти $\lim_{x\to 1} (\operatorname{tg}(\pi x/4))^{1/(x-1)}$.

▶Выражение под знаком предела при $x \to 1$ – неопределённость 1^{∞} . Из равенства $(tg(\pi x/4))^{1/(x-1)} = e^{\ln t g(\pi x/4)/(x-1)}$ ((см. 5.1)) имеем (замечание 2.2):

$$\lim_{x\to 1} (tg(\pi x/4))^{1/(x-1)} = e^{\lim_{x\to 1} \ln tg(\pi x/4)/(x-1)}.$$

Числитель в показателе степени заменим на эквивалентную бесконечно малую:

 $\ln tg(\pi x/4) = \ln(1+tg(\pi x/4)-1) \sim tg(\pi x/4)-1$ ((7.7), $\alpha = tg(\pi x/4)-1$). Отсюда следует соотношение (теорема 7.1):

$$\lim_{x \to 1} \frac{\ln \operatorname{tg}(\pi x/4)}{x-1} = \lim_{x \to 1} \frac{\operatorname{tg}(\pi x/4) - 1}{x-1}.$$

Теперь к числителю применим формулу для разности тангенсов:

$$\frac{\operatorname{tg}(\pi x/4) - 1}{x - 1} = \frac{\operatorname{tg}(\pi x/4) - \operatorname{tg}(\pi/4)}{x - 1} = \frac{\sin(\pi(x - 1)/4)}{(x - 1)\cos(\pi x/4)\cos(\pi/4)}.$$

Поскольку

$$\lim_{x \to 1} \frac{\sin(\pi(x-1)/4)}{x-1} = \lim_{x \to 1} \frac{\pi(x-1)/4}{x-1} = \frac{\pi}{4},$$

a

$$\lim_{x \to 1} \cos(\frac{\pi}{4}x) = \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
, To

$$\lim_{x \to 1} \frac{\ln \operatorname{tg}(\pi x/4)}{x-1} = \frac{\pi}{2} \text{ if } \lim_{x \to 1} (\operatorname{tg} \frac{\pi}{4} x)^{1/(x-1)} = e^{\pi/2}. \blacktriangleleft$$

Замечание 7.2. При решении примеров 7.1— 7.3 производилась замена эквивалентными в отношении двух бесконечно малых функций (теорема 7.1). Замена эквивалентными в сумме или разности двух бесконечно малых функций может привести к функции, не эквивалентной данной сумме. Так, например, $2-2\cos x \sim x^2 + x^4$, а $\sin^2 x \sim x^2 + 2x^3$ при $x \to 0$, но функция $2-2\cos x - \sin^2 x$ не эквивалентна функции $x^2 + x^4 - (x^2 + 2x^3)$ при $x \to 0$. Действительно,

$$2-2\cos x - \sin^2 x = 1-2\cos x + \cos^2 x = (1-\cos x)^2 \sim x^4/4$$
, а $x^2 + x^4 - (x^2 + 2x^3) = -2x^3 + x^4 \sim -2x^3$ при $x \to 0$.

Определение 7.2. Пусть даны функции $\alpha(x)$ и $\beta(x)$, являющиеся бесконечно малыми при $x \to a$. Функция $\beta(x)$ называется главной частью функции $\alpha(x)$ при $x \to a$, если $\alpha(x)$ при $x \to a$ можно представить в виде:

$$\alpha(x) = \beta(x) + o(\beta(x)). \tag{7.9}$$

Замечание 7.3. Из теоремы 7.2 и определения 7.2 следует утверждение: "функция $\beta(x)$ есть главная часть бесконечно малой функции $\alpha(x)$ при $x \rightarrow a$ тогда и только тогда, когда эти функции эквивалентны при $x \rightarrow a$ ". Бесконечно малая функция $\alpha(x)$ при $x \rightarrow a$ может иметь бесчисленное множество главных частей, ибо любую бесконечно малую функцию $\beta(x)$, эквивалентную $\alpha(x)$ можно считать её главной частью. Так, функции x, tgx – главные части $\sin x$, ибо $\sin x \sim x$, $\sin x \sim tgx$ при $x \rightarrow 0$.

Обычно главную часть функции $\alpha(x)$ — бесконечно малой при $x \to a$ находят в виде степенной функции $\beta(x) = C(x-a)^k$, k > 0 при $a \in \mathbb{R}$ или $\beta(x) = C(1/x)^k$, k > 0 при $a = \infty$. Найти для $\alpha(x)$ такую главную часть — значит найти константу C и порядок k этой функции относительно разности x-a или дроби 1/x.

Пример 7.4. Выделить главную часть вида $C(x-2)^k$ из бесконечно малой $\alpha(x) = \arctan(x^3 - 3x^2 + 4)$ при $x \rightarrow 2$.

▶ Имеем
$$\lim_{x\to 2} \frac{\alpha(x)}{C(x-2)^k} = \lim_{x\to 2} \frac{\arctan(x^3-3x^2+4)}{C(x-2)^k} = \lim_{x\to 2} \frac{x^3-3x^2+4}{C(x-2)^k}$$
 (функцию $\alpha(x)$ заменили на эквивалентную). Разложив числитель на множители, получим: $\lim_{x\to 2} \frac{\alpha(x)}{C(x-2)^k} = \lim_{x\to 2} \frac{(x-2)^2(x+1)}{C(x-2)^k} = \frac{3}{C} = 1$ при $k=2$ и $k=2$ и $k=3$. Поскольку $\alpha(x) \sim 3$ ($x-2$)² при $x\to 2$, то функция $\alpha(x) \sim 3$ ($\alpha(x) \sim 3$) при $\alpha(x) \sim 3$. $\alpha(x) \sim 3$.

Пример 7.5. Выделить главную часть вида $C(1/x)^k$ из бесконечно малой $\alpha(x) = \sin \frac{3x^2 + x}{5x^4 - 2}$ при $x \to \infty$.

▶
$$\lim_{x \to \infty} \frac{3x^2 + x}{5x^4 - 2} = 0$$
 (§5, пункт 1), $\alpha(x) = \sin \frac{3x^2 + x}{5x^4 - 2} \sim \frac{3x^2 + x}{5x^4 - 2}$ при $x \to \infty$ ((7.1), $\alpha = \frac{3x^2 + x}{5x^4 - 2}$). Имеем $\frac{3x^2 + x}{5x^4 - 2} = \frac{x^2(3 + 1/x)}{x^4(5 - 2/x^4)} = \frac{1}{x^2} \cdot \frac{3 + 1/x}{5 - 2/x^4} \sim \frac{3}{5x^2}$ при $x \to \infty$, отсюда следует: $\alpha(x) \sim \frac{3}{5x^2}$ при $x \to \infty$ и $\frac{3}{5x^2}$ – главная часть $\alpha(x)$ при $x \to \infty$. ◀