Matias Pablo Borghi Orué

Departamento de Física Facultad de Ciencias Exactas Universidad Nacional de La Plata

Estudio de las transiciones de fase

en un modelo tipo Ising con parámetro de interacción dependiente de la orientación del espín

M.Borghi Orué 1 / 42

Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Trabajo de diploma Contenidos

Motivación

Algoritmo

Escaleo tamaño finito

Modelo

Resultados

Conclusión

M.Borghi Orué 2 / 42

Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Transiciones de fase

Ejemplos de diagramas de fases: (Izquierda) P-T del agua. (Centro) H-T para un ferromagneto tipo Ising. (Derecha) H-T para un antiferromagneto tipo Ising.

M.Borghi Orué 3 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Tipos de transiciones de fase

TRANSICIONES DE PRIMER ORDEN

M.Borghi Orué 4 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Tipos de transiciones de fase

• TRANSICIONES DE SEGUNDO ORDEN O CONTINUAS

M.Borghi Orué 5 / 42

Modelo de Ising

$$\mathcal{H} = -J \sum_{\langle ij \rangle} s_i s_j - H \sum_i s_i$$

- Modelo de materiales magnéticos.
- Dimensión del problema (d): 1,2,3,...,n.
- Transición de fase para d > 1.
- J > 0: Ferromagneto,
 J < 0: Antiferromagneto.

M.Borghi Orué 6 / 42

Magnetización media por espín

$$\langle m \rangle = \frac{1}{N} \left\langle \sum_{i} s_{i} \right\rangle.$$
 (1)

Susceptibilidad por espín

$$\chi = \frac{1}{N} \frac{\partial \langle M \rangle}{\partial H} = \frac{\beta}{N} \left(\langle M^2 \rangle - \langle M \rangle^2 \right) = \beta N \left(\langle m^2 \rangle - \langle m \rangle^2 \right).$$
 (2)

Capacidad calorífica por espín

$$c_v = \frac{k\beta^2}{N} (\langle E^2 \rangle - \langle E \rangle^2). \tag{3}$$

M.Borghi Orué 7 / 42 Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusió

Modelo de Ising

M.Borghi Orué 8 / 42

Simulaciones en equilibrio

- Estimador
- · Muestreo de importancia
- Proceso de Markov
- Ergodicidad
- · Balance detallado

M.Borghi Orué 9 / 42

Estimador

Valor de expectación

$$\langle Q \rangle = \frac{\sum_{\mu} Q_{\mu} e^{-\beta E_{\mu}}}{\sum_{\mu} e^{-\beta E_{\mu}}}.$$
 (4)

Estimador

$$Q_M = \frac{\sum_{i=1}^{M} Q_{\mu_i} p_{\mu_i}^{-1} e^{-\beta E_{\mu_i}}}{\sum_{j=1}^{M} p_{\mu_j}^{-1} e^{-\beta E_{\mu_j}}},$$
 (5)

M.Borghi Orué 10 / 42

Muestreo de importancia

$$Q_M = \frac{1}{M} \sum_{i=1}^{M} Q_{\mu_i}$$
 (6)

Proceso de Markov

- Ergodicidad
- Balance detallado: $p_{\mu}P(\mu \to \nu) = p_{\nu}P(\nu \to \mu)$

$$\frac{P(\mu \to \nu)}{P(\nu \to \mu)} = \frac{p_{\nu}}{p_{\mu}} = e^{-\beta(E_{\nu} - E_{\mu})}.$$
 (7)

M.Borghi Orué 11 / 42 Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Algoritmo de Metrópolis

$$P(\mu \to \nu) = g(\mu \to \nu)A(\mu \to \nu).$$

$$g(\mu o
u)=rac{1}{N}.$$
 $A(\mu o
u)=egin{cases} e^{-eta(E_\mu-E_
u)} & ext{, si } E_\mu-E_
u>0 \ 1 & ext{, caso contrario.} \end{cases}$

M.Borghi Orué 12 / 42

Equilibrio

M.Borghi Orué 13 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Fluctuaciones críticas y enlentecimiento crítico

Error estadístico

$$\sigma \propto \sqrt{\frac{1}{n}}$$
 (8)

Tiempo de correlación

$$au \sim \xi^z \sim L^z,$$
 (9)

	Algoritmos			
dimensión d	Metrópolis	Wolff	Swendsen-Wang	
2	2.167(1)	0.25(1)	0.25(1)	

-> Algoritmo de Wolff?

M.Borghi Orué 14 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Comportamiento crítico y exponentes criticos

 $1/\nu$

 θ

1.02(4)

2.166(7)

0.191(1)

	Calor	co	$C_H \sim t ^{-\alpha}$			
	$M \sim t ^{\beta}$					
Susceptibilidad $\chi \sim t ^{-\gamma}$						
Longitud de correlación $\xi \sim t ^{- u}$						
		Modelo				
		2D Ising	(exacto)	3D Ising		
	$2\beta/\nu$	0.252(2)	1/4	0.517(2)		
ente	β	0.124(5)	1/8	0.3273(17)		

M.Borghi Orué 15 / 42

2.1667(5)*

0.6327(20)

2.042(6)

0.108(2)

Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Universalidad

- Rango de interacción: primeros vecinos, segundos vecinos, etc.
- Dimensionalidad del espacio, d: 1,2,3,...
- Simetría del parámetro de orden: escalar, vectorial, etc.

M.Borghi Orué 16 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Escaleo de tamaño finito

Límite termodinámico

$$\xi = |t|^{-\nu},$$
 (10a)

$$\chi = |t|^{-\gamma}, \tag{10b}$$

donde $t = (T - T_c)/T_c$ es una variable de escala.

$$\rightarrow \chi \sim \xi^{\gamma/\nu}$$
.

Tamaño finito

$$\chi = \xi^{\gamma/\nu} \chi_0(L/\xi), \qquad (11)$$

- $\chi_0(x) = \text{constante si}$ $x \gg 1$.
- $\chi_0(x) \sim x^{\gamma/\nu} \operatorname{si} x \to 0$,

M.Borghi Orué 17 / 42

Escaleo de tamaño finito

$$L^{-\gamma/\nu}\chi_L = \tilde{\chi}(L^{1/\nu}t),\tag{12}$$

$$L^{-\alpha/\nu}c_L = \tilde{c}(L^{1/\nu}t), \tag{13}$$

$$L^{\beta/\nu}m_L = \tilde{m}(L^{1/\nu}t), \tag{14}$$

$$U_{4_L} = \tilde{U}_4(L^{1/\nu}t).$$
 (15)

M.Borghi Orué 18 / 42

Escaleo de tamaño finito extendido

Límite termodinámico

$$\xi = \frac{\tanh^{1/2}(\beta)}{1 - \tanh(\beta)} = \tanh^{1/2}(\beta)\tau^{-\nu},$$
 (16a)

$$\chi = \frac{2}{1 - \tanh(\beta)} - 1 = 2\tau^{-\gamma} - 1,$$
(16b)

donde $\tau = 1 - \tanh(\beta)$ es una variable de escala.

Tamaño finito

$$\frac{\chi(\beta) + 1}{2L/\tanh^{1/2}(\beta)} = \tilde{\chi}\left(\frac{L[1 - \tanh\beta]}{\tanh^{1/2}(\beta)}\right). \tag{17}$$

M.Borghi Orué

¿Cómo calcular la temperatura crítica?

Cumulante cuarto

$$U_4 = 1 - \frac{\langle m^4 \rangle}{3\langle m^2 \rangle^2}. (18)$$

- $T < T_c$: $U_4 \to 2/3$
- $T > T_c$: $U_4 \to 0$
- $T = T_c$: $U_4 = U_0^*$

M.Borghi Orué 20 / 42

Modelo propuesto

$$\mathcal{H} = -\sum_{\langle ij\rangle} \alpha_{ij} s_i \cdot s_j, \tag{19}$$

donde

$$lpha_{ij} = egin{cases} lpha_{\uparrow\downarrow}, & ext{si } s_i
eq s_j \ 1, & ext{caso contrario}. \end{cases}$$

M.Borghi Orué 21 / 42

Cálculo de la temperatura crítica para $\alpha_{\uparrow\downarrow}=0.5$

M.Borghi Orué 22 / 42

Cálculo de la temperatura crítica para $lpha_{\uparrow\downarrow}=0.5$

M.Borghi Orué 23 / 42

Cálculo de la temperatura crítica para $\alpha_{\uparrow\downarrow}=0.5$

M.Borghi Orué 24 / 42

Cálculo de la temperatura crítica para $\alpha_{\uparrow\downarrow}=0.5$

$$T_c(L) = T_c + AL^{-1/\nu}$$

 $T_c = 1.701(1)$

M.Borghi Orué 25 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Diagrama de fases

M.Borghi Orué 26 / 42

Instantáneas T=1.0

M.Borghi Orué 27 / 42

Instantáneas $\alpha_{\uparrow\downarrow}=-3$

M.Borghi Orué 28 / 42

Instantáneas $\alpha_{\uparrow\downarrow}=1$

M.Borghi Orué 29 / 42

¿Qué sucede con $\alpha_{\uparrow\downarrow}=-1$?

- 1 Cálculo susceptibilidad con campo magnético externo aplicado en el límite $H \to 0$.
- 2 Obtención exponentes críticos en el régimen de la dinámica crítica a tiempos cortos.
- Resultado analítico.
- 4 Comparación del resultado analítico con los resultados de la simulación y el modelo de Ising en 1D.

M.Borghi Orué 30 / 42

Desarrollo analítico del modelo

Resultado analítico.

$$\alpha_{ij} = \begin{cases} \alpha_{\uparrow\downarrow} = -1 & \text{, si } s_i \neq s_j \\ 1 & \text{, caso contrario} \end{cases}$$

entonces

$$\alpha_{ij}s_is_j = \begin{cases} (-1)*(-1) = +1 &, \text{ si } s_i \neq s_j \\ (+1)*(+1) = +1 &, \text{ caso contrario.} \end{cases}$$

M.Borghi Orué 31/42

Cálculo función de partición

$$\mathcal{H}_{\mathcal{N}} = -\sum_{\langle ij \rangle} \alpha_{ij} s_i s_j - H \sum_{i=1}^{N} s_i.$$

¡Paramagneto!

$$\mathcal{H}_{\mathcal{N}} = \mathfrak{C} - H \sum_{i=1}^{N} s_i.$$

$$Z_N(\beta) = \sum_{\substack{\text{Todas las} \\ \text{configuraciones} \\ \text{posibles del sistema}}} \exp\left(-\beta \mathcal{H}_N^{2D}\right) = \sum_{\{s_i = \pm 1\}} \exp\left(\beta \sum_{\langle ij \rangle} \alpha_{ij} s_i s_j\right).$$

$$Z_N(\beta) = \sum_{\{s_i = \pm 1\}} \left[\prod_{\langle ij \rangle} \exp\left(\beta \alpha_{ij} s_i s_j\right) \right].$$

M.Borghi Orué 32 / 42

Cálculo función de partición

$$Z_N^{2D}(\beta) = (\exp \beta)^{2N}.$$

$$Z_N^{2D}(\beta, H) = (\exp \beta)^{2N} (2\cosh \beta H)^N = (2\exp(2\beta)\cosh \beta H)^N.$$

M.Borghi Orué 33 / 42

Cantidades termodinamicas

$$F_N(T, H) = -NkT \log 2 - NkT \log (\exp(2/kT) \cosh(H/kT))$$

$$E = -\frac{1}{N} \frac{\partial \log Z_N}{\partial \beta} = -(2 + H \tanh(\beta H))$$

$$C_V = -k\beta^2 \left(\frac{\partial E}{\partial \beta}\right) = k(\beta H)^2 \operatorname{sech}^2(\beta H)$$

M.Borghi Orué 34 / 42

Magnetización

$$m = -\frac{1}{N} \frac{\partial F}{\partial H} = \tanh(\beta H)$$
 $\chi = \frac{\partial m}{\partial H} = \beta \operatorname{sech}^2(\beta H)$

M.Borghi Orué 35 / 42

Entropía

M.Borghi Orué 36 / 42

Comparando con Ising 1D

M.Borghi Orué 37 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Resultados campo magnetico externo pequeño

M.Borghi Orué 38 / 42

Trabajo de diploma Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Resultados campo magnetico externo pequeño

M.Borghi Orué 39 / 42

Comparando resultados analíticos y simulaciones

Trabajo de diploma

4 Comparación del resultado analítico con los resultados de la simulación.

El sistema **NO ordena** para $\alpha_{\uparrow\downarrow}=-1$ a temperatura cero.

M.Borghi Orué 40 / 42

Motivación Algoritmo Escaleo tamaño finito Modelo Resultados Conclusión

Conclusión

- α_{↑↓} ≠ −1: Determinación de la temperatura crítica. Transiciones de fase continuas. Misma clase de universalidad que Ising 2D.
- $\alpha_{\uparrow\downarrow} = -1$: El sistema no ordena a temperatura nula.
- · Obtención del diagrama de fases.

Para continuar desarrollando

- Desarrollo analitico con $\alpha_{\uparrow\downarrow}=f(\epsilon)$
- · Interacciones a segundos vecinos, etc.

M.Borghi Orué 41 / 42

¡Muchas gracias!