Real Analysis

Homework 9

Deadline: 23 November 2023

Choose two of the four exercise below, and hand in you homework in Room 554 before 5 P.M. November 23.

Exercise 1

Given $f \in L(0,1)$ show that $\int_0^1 x^k f(x) dx \to 0$ [Zygmund p85 exercise 4]

Exercise 2

Use Egorov's theorem to prove the bounded convergence theorem. [Zygmund p85 exercise 5]

Exercise 3

Let f(x,y), $0 \le x,y \le 1$, satisfy the following condition: for each x, f(x,y) is an integrable function of y, and $\frac{\partial f}{\partial x}$ is a bounded function of (x,y). Show that $\frac{\partial f}{\partial x}$ is a measurable function of y for each x and

$$\int_0^1 \frac{\partial}{\partial x} f(x, y) dy = \frac{d}{\partial x} \int_0^1 f(x, y) dy$$
 [Zygmund p85 exercise 6]

Exercise 4

Given p > 0 and $\int_E |f - f_k|^p \to 0$ as $k \to \infty$, (a) show that $f_k \to f$ in measure.

[Zygmund p85 exercise 9]

(b) If in addition, $\int_E |f_k|^p \le M$ for all $k \in \mathbb{N}$ show that $\int_E |f|^p \le M$. [Zygmund p85 exercise 10]