SCORING SCHEME

Hotline: 0776/0754958643

SCORING GRID

Basis of assessment	Scoring criteria						
	Evidence/skills/ability exhibited [Justification]	Code	Score/collecti on [Max.score]	Total score			
Title	Gives the title of the experiment, indicating the variables. 01	а	1a				
Aim	Provides the aim of the experiment 01	b	1b	-			
Hypothesis	States the hypothesis, either null or alternative; indicating both variables 02	С	1c				
Variables	States the variables; ✓ Independent 01 ✓ Dependent 01 ✓ Controlled. 03	d	3d				
Apparatus/materials	Lists requirements 04	е	2e	30			
Procedure(s)	Outlines a procedure; ✓ Relevant to the experiment. 04		10f				
	✓ Coherent to the experiment. 04 Identifies risks 02 Manages the controlled variables. 02	f					
Results/ presentation of data	Presents accurate/correct data logically [table] 03	g	3g				

SCORING GUIDE

- (a) **Title:** Investigation of the effect of surface area(particle size) on the rate of reaction between P_1 , P_2 and solution Q^a
- (b) **Aim:** To determine if P_2 reacts faster with solution Q than P_1 ^b
- (a) **Variables**:

Manipulated variable: Surface area (particle size) of P_1 and P_2^d **Responding variable:** Loss/decrease in mass of the reaction mixture ^d. **Controlled variables:** Mass of sample P_1 and P_2^d , concentration/volume of solution Q^d .

- (b) **Hypothesis:** The larger the surface area of the limestone ^c, the faster the decrease/loss in mass of the reaction mixture ^c.
- (c) Apparatus and materials
 - Solid sample P_1 and P_2 e, solution Q e, measuring cylinder $(50cm^3)$ e, a conical flask/beaker e, stop clock e, weighing scale e, distilled water e, cotton wool e.

(d) Procedure

- (i) A clean conical flask was put on a weighing scale and its weight/mass, M_O was recorded f .
- (ii) $25cm^3/30cm^3$ of solution Q was measured (and transferred) into a clean conical flask f while still on the weighing scale using a measuring cylinder f.
- (iii) 5g of P_1 was accurately weighed and added to solution Q, a plug of cotton wool was placed in the neck of the flask f and the new(initial) mass, M_1 (of the flask and reaction mixture) was recorded f. Immediately a stop clock was started f.
- (iv) The mass of the conical flask and reaction mixture(apparatus) was recorded every after 1 minute for 7 minutes ^f.
- (v) The (total) loss/decrease in mass of the reaction mixture(apparatus) was calculated for each recording of the weighing scale/balance by the formula M_1-M_0 ^f
- (vi) After 7 minutes, the conical flask was emptied and cleaned f.
- (vii) Steps (ii) to (vi) were repeated using solid sample P_2 f

(e) Results/Data presentation

Time(minutes)		0	1	2	3	4	5	6	7
Loss in mass reaction mixture(g)	P_1	0 g	0.55g	1 g	1.38g	1.75 g	1.90 g	2.0 g	2.0 g
	P_2	0 g	1 g	1.5 g	1.88	2.0 g	2.0 g	2.0 g	2.0 g

(f) Analysis/discussion

A graph of time for loss in mass of reactants against time

Explanation/interpretation

• The loss in mass of P_2 increased very rapidly upto 4^{th} minute and then remained constant h but that for P_1 increased rapidly upto $5.5/6^{th}$ minute and then remained constant h . This is because P_2 has smaller particle size than P_1 thus, a larger surface area of P_2 particles is exposed to solution Q molecules h , increasing the frequency of collision between reacting molecules/particles thereby increasing the rate of reaction h . Thus, the larger the surface area of solid reactants, the faster the rate of reaction h .

ACC: Earlier maximum and later maximum attained for P_2 and P_1 respectively.

ACC: Rate of reaction was faster with P_2 than P_1 , because P_2 being with smaller particle size, had a larger surface area than P_1 which increased the frequency of collision between reacting molecules, leading to faster rate of reaction.

(g) Conclusion

• P_2 reacts faster with solution Q than P_1 i since it has increased/a larger surface area i exposed to solution Q than P_1 i.

(h) Recommendation

Mr. Okiror j should use sample P_2 of limestone j for faster neutralization of soil acidity j .