

K.K.Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y. 2022-23) Pattern of Course Structure: 2022 Semester – IV S. Y. B. Tech Computer Science and Design

Course Code	Course Type	Title of Course		ching S Hrs./wo	cheme eek	Assessment Scheme of Marks						Credits					
			TH	TU	PR	In Sem	End Sem	CCE	TU	TW	PR	OR	Total	TH	TU	PR/OR	Total
SMH222111	BSC	Applied Mathematics –III	3	1	-	20	60	20	25	-	-	-	125	3	1	-	4
CSD222012	DCC	Advanced Data Structures	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CSD222013	DCC	Operating Systems	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CSD222014	DCC	Computer Networks	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CSD222015	LHSM	Software Engineering and Project Management	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
CSD222016	ASM	Client Side Technology	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CSD222017	DCC	Advanced Data Structures Lab	-	-	4	-	-	-	-	25	50	-	75	-	-	2	2
CSD222018	DCC	Operating Systems Lab	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
CSD222019	DCC	Computer Networks Lab	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
CSD222020	PSI	Project Based Learning - Client Side Technology	1	-	2	-	-	-	-	25	-	-	25	-	-	1	1
Total 16 1				10	100	300	100	25	100	100	-	725	15	1	5	21	

	Patt	a. Computer Science tern 2022 Semester: 111: Applied Mather	: IV		
Teaching S	cheme:	Credit Scheme:	Examination Scher	ne:	
Theory: 03 Tutorial:01		03 01	ContinuousComprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSemExam: 60Marks Tutorial: 25Marks		
Prerequisit	e Courses:- Applied Mathe	matics-I			
Course Out	tcomes: On completion of the	he course, students wi	ll be able to—		
		Course Outcomes		Bloom's Level	
CO1	Understand basic concept	of Statistic		2-Understand	
CO2	Understand basic concept	of probability distribu	ition	2-Understand	
CO3	Apply the basic concepts of	·		3-Apply	
CO4	Apply the basic concepts of life problems	of probability distribut	ion theory to real	3-Apply	
CO5	Analyze real life problems Probability distribution	by using theory of sta	atistics and	4-Analyze	
	(COURSE CONTENT	ΓS		
Unit I	Descriptive Measures		(08hrs+2hrsTutoria	COs Mapped - CO1, CO2, CO3	
	f central tendency (Mean, M Range), coefficients of varia		-	iance, Standard	
Unit II	Random Variable & Dis	tribution Functions	(08hrs+2hrsTutoria	COs Mapped -CO1, CO2, CO3	
function, P	ariable, Distribution function robability mass function (p.1) function (Continuous and continuous are continuou	n.f.), Probability dens	, , 1		
Unit III	Mathematical Expectation	on and Generating	(08hrs+2hrsTutorial) COs Mapp CO3, CO4 CO5		
Mathematic	cal Expectation, Properties of	of expectation, Momen	nt Generating Function	1	
Unit IV	Probability Dis	tributions	(08hrs+2hrsTutoria	l) COsMapped - CO4, CO5	

Discrete distributions: Geometric, Binomial, Poisson, Uniform Distribution Continuous distribution: Normal distribution, Standard Normal, Uniform.

Unit V	Correlation and Regression	(08hrs+2hrsTutorial)	COs Mapped -
			CO1, CO2

Covariance, Concept of correlation, Karl Pearson's Coefficient of Correlation, Rank Correlation coefficient, Spearman's rank Correlation coefficient.

Regression: Lines of Regression, Regression coefficients.

TextBooks

- 1. B.V.Ramana, "Higher Engineering Mathematics", TataMcGraw-Hill.
- 2. B.S.Grewal,"Higher Engineering Mathematics", Khanna Publication, Delhi.
- 3. AdvancedEngineeringMathematics,7e,bypeterV.O"Neil(ThomsonLearning)
- 4. IntroductiontoProbabilityandStatistics forEngineersandScientists,5e, bySheldonM.Ross(ElsevierAcademicPress)

ReferenceBooks

- 1. Erwin Kreyszig,"Advanced Engineering Mathematics", WileyEastern Ltd.
- 2. P.N.Wartikar and J.N.Wartikar,"Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.
- 3. AdvancedEngineeringMathematics,2e,by M.D.Greenberg(PearsonEducation).

Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr.No.	Components for Continuous Comprehensive Evaluation	Marks Alloted			
1	Assignments (Total3Assignment, Unit I and II 20marks, Unit III and IV20marks and UnitV- 10marks &50markswillbeconvertedto10Marks)	10			
2	Tests on each unit using LearniCo (Each test for 15 Marks and total will be converted out of 10 Marks)	10			

List of Tutorial Assignments					
Sr.No.	Title	CO Mapped			
1	Examples on measures of central tendency and measures of dispersion	CO1,CO2, CO3			
2	Examples on Probability density function (p.d.f.) and Cumulative distribution function (Continuous and discrete).	CO1,CO2, CO3			
3	Examples on Probability mass function (p.m.f.) and Probability density function (p.d.f.)	CO1,CO2			
4	Examples on Cumulative distribution function (Continuous and discrete).	CO1,CO2			
5	Solve problems on measures of central tendency using MATLAB	CO1,CO2, CO3,CO4			
6	Solve problems on measures of dispersion using MATLAB	CO1,CO2, CO3,CO4			
7	Examples on Mathematical Expectation, Properties of expectation,	CO1,CO2, CO3			
8	Examples on Moment generating function	CO1,CO2, CO3			

9	Examples on Geometric, Binomial, Poisson, Uniform Distribution	CO3, CO4,CO5
10	Examples on Normal, Standard Normal & Uniform distribution	CO3, CO4,CO5
11	Examples on Covariance, Karl Pearson's Coefficient of Correlation, Rank Correlation coefficient, Spearman's rank Correlation coefficient.	CO4,CO5
12	Examples on Lines of regression, Regression coefficients.	CO4,CO5

Guidelines for Tutorial/Termwork Assessment					
Sr.No.	Components for Tutorial/Termwork Assessment	Marks Allotted			
1	Assignment on Computational Software	5			
2	Tutorial (Each tutorial carries 15marks)	15			
3	Attendance (Above95%:05Marks,below75%: 0Marks)	5			

S. Y. B. Tech. Computer Science and Design Pattern 2022 Semester: IV CSD222012: Advanced Data Structures

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory: 03 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks
		EndSem Exam: 60 Marks

Prerequisite Courses:- CSD222001: Fundamentals of Data structures, CSD222003:Discrete Mathematics

Companion Course: - CSD222017: Advanced Data Structures Lab

Course Objectives:

- To understand basic concepts of non linear data structures such as trees, graphs
- To study the concepts of hash table and files
- To learn advanced data structures such as indexing techniques and multiway search trees

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Make use of non-linear data structures such as graph and trees to solve a given problem	3-Apply
CO2	Use different representations of symbol table	3-Apply
CO3	Apply the hash table and it's collision resolution methods and different file handling techniques	3-Apply
CO4	Use efficient indexing techniques and multiway search trees to store and maintain data	3-Apply
CO5	Analyze an algorithm used for solving a given problem	4-Analyze

COURSE CONTENTS

Unit I	Graphs	(08 hrs)	COs Mapped -
			CO1, CO5

Graph- Basic Concepts, Storage representation- Adjacency matrix, Adjacency list, Adjacency multi list Traversals-Depth First Search (DFS) and Breadth First Search(BFS)

Spanning Tree - Connected components, Minimum spanning Tree, Greedy algorithms- Prim's and Kruskal's for MST

Dikjtra's Single source shortest path, Algorithm for Topological ordering

Self Study-Data structure used in Webgraph and Google map.

Unit II	Trees	(08 hrs)	COs Mapped -
			CO1, CO5

Trees- Basic terminology, General tree and its representation, Representation using sequential and linked organization, **C**onverting tree to binary tree, Types of trees

Binary tree- Properties, ADT, Representation using sequential and linked organization, Binary tree traversals (recursive and non-recursive)- inorder, preorder, postorder, Depth first and breadth first search, Operations on binary tree, Formation of binary tree from given traversals,

Applications of Binary trees

Binary Search Tree (BST) - Concept, Definition, Comparison with binary tree, BST operations, applications of BST

Threaded binary tree, Expression tree, Huffman Tree (Concept and Use), Decision Tree, Game tree.

Unit III	Symbol Tal	ble	(07	hrs)	COs Mapped –
					CO2, CO5

Symbol Table-Representation of Symbol Tables- Static tree table and Dynamic tree table, Weight balanced tree - Optimal Binary Search Tree (OBST), OBST as an example of Dynamic Programming

Height Balanced Trees- AVL tree. Red-Black Tree, Splay Tree.

Unit IV	Hash tables and Files	(07 hrs)	COs Mapped –
			CO3, CO5

Hash table Concepts-Hash function, bucket, Collision, Probe, Synonym, Overflow, Open hashing, Closed hashing, Perfect hash function, Load density, Full table, Load factor, Rehashing, Basic operations, Issues in hashing

Hash functions- Properties of good hash function, Division, Multiplication, Extraction, Mid-square, folding and universal

Collision resolution strategies-Open addressing and Chaining, Hash table overflow- Open addressing and Chaining, Closed addressing and Separate chaining.

Files-Concept, Need, Primitive operations. Sequential file organization, Direct access file, Indexed sequential file organization-Concept and Primitive operations

Self Study- SkipList- Representation, Searching.

Unit V	Indexing and Multiway Trees	(06 hrs)	COs Mapped –
			CO4, CO5

Indexing and Multiway Trees- Indexing, Indexing techniques-Primary, Secondary, Dense, Sparse

Multiway search trees, B-Tree- Insertion, Deletion, B+ Tree - Insertion, Deletion, Use of B+ tree in Indexing **Heaps**- Concept, Insert, Delete operation, Heap sort, Heap as a Priority Queue.

Self Study- Trie Tree

Text Books

- 1. Horowitz, Sahani, Dinesh Mehata, "Fundamentals of Data Structures in C++", Galgotia Publisher, ISBN: 8175152788, 9788175152786
- 2. M Folk, B Zoellick, G. Riccardi, "File Structures", Pearson Education, ISBN:81-7758-37-5

Reference Books

- 1. Sartaj Sahani, "Data Structures, Algorithms and Applications in C++", Second Edition, University Press, ISBN: 9788173715228
- 2. G A V Pai, "Data Structures and Algorithms", McGraw-Hill Companies, ISBN:9780070667266

Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Quiz on Unit 1, Unit-2, Unit-3 (Quiz 10 marks on each unit and will be converted to 10 Marks)	10
2	Theory assignment on Unit- 4 & 5 (10 marks assignment on unit 4 and 5 each and that will be converted in to 10 Marks)	10
	Total	20

	Patter	Computer Science and rn 2022 Semester: IV 013: Operating System		
Teaching Sche	eme:	Credit Scheme:	Examination S	cheme:
·	neory: 03 hrs/week 03 Continuous Comprehensiv Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks		Marks 20 Marks	
Prerequisite C	Courses:- CSD222001:Fund	amentals of data structur	res	
Companion Companion	ourse:- CSD222018: Opera	ating Systems Lab		
 To study pr To get acqualgorithms To learn con To introduct 	and operating system services occess scheduling algorithms tainted with the concepts of encepts of memory management of the Linux operating systems	s and multithreading tech synchronization, deadloo nent and I/O managemen	niques ck prevention and t techniques	
Course Outco	mes: On completion of the		ble to	
		Course Outcomes		Bloom's Level
CO1	Explain operating system basic shell commands	services, types of operat	ing systems and	2- Understand
CO2	Illustrate the concept of p scheduling problems	Illustrate the concept of process scheduling algorithms to solve scheduling problems 2- Understand		
CO3	Compare algorithms for davoidance	_		2- Understand
CO4	Use algorithms for page r	replacement and I/O man	agement	3- Apply
CO5	Describe Linux command	ls and utilities such as gr	ep, tr, sed, awk	2- Understand
	CO	URSE CONTENTS		
Unit I	Fundamental concepts of o	operating systems	(07 hrs)	COs Mapped - CO1
Types of operat Operating syste	perating systems services ting systems: Batch, Time-sem operations: Dual mode a oting: Basic shell commands	and multimode, System of	calls, Types of sys	
Unit II	Process man	nagement	(08 hrs)	COs Mapped - CO2
-	ot, Process control block, Pr lling: Types, First come fi	_	-	

Unit III Process coordination (07 hrs) COs Mapped - CO3

Threads: Multi core programming, Multithreading models, Implicit threading, Threading issues

Synchronization: The critical-section problem, Peterson's solution, Synchronization hardware, Mutex locks, Semaphores, Monitors

Classic problems of synchronization: Producer-consumer problem, Reader/writer problem, Dining philosopher problem

Deadlock: Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance and detection, Recovery from deadlock.

Unit IV	Memory Management	(07 hrs)	COs Mapped -
			CO4

Memory Partitioning: Fixed partitioning, Dynamic partitioning

Contiguous Memory allocation techniques: First fit, Best fit, Worst fit, Swapping, Structure of the page table, Segmentation, Demand paging

Page Replacement algorithms: First in first out, Optimal page replacement, Least recently used translation look aside buffer

Unit V	I/O management and Introduction to Linux	07 hrs	COs Mapped –
			CO4, CO5

I/O devices, Disk scheduling algorithms: First come first serve, Shortest seek time first algorithm, SCAN, Circular-SCAN

Introduction to Linux: Essential features, File systems and directories, Linux shell commands such as pwd, cd, ls, cat, rm, cp, mkdir and Linux utilities such as tr, sed, grep, egrep, awk. File access rights.

Text Books

- 1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", WILEY, ISBN:978-81-265-5427-0, 9th Edition
- 2. William Stallings, "Operating System: Internals and Design Principles", Prentice Hall, ISBN 10: 0-13-380591-3, ISBN 13: 978-0-13-380591-8, 8th Edition

Reference Books

- 1. Tom Adelstein and Bill Lubanovic, "Linux System Administration", O'Reilly Media, ISBN 10: 0596009526, ISBN 13: 978-0596009526
- Harvey M. Deitel, "Operating Systems", Prentice Hall, ISBN 10: 0131828274, ISBN 13: 978-0131828278

	Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotte			
1	Quiz on Unit 1, Unit-2, Unit-4, Unit 5 (Quiz 15 marks each and will be converted to 15 Marks)	15	
2	Theory assignment on Unit-3 (One Assignment on Unit III of 10 marks will be converted to 5 Marks)	05	
	Total	20	

S. Y. B. Tech. Computer Science and Design Pattern 2022 Semester: IV CSD222014 : Computer Networks Teaching Scheme: Credit Scheme: Examination Scheme: Theory :03 hrs./week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks

Prerequisite Courses: - CSD222004:Digital Electronics and Logic Design

Companion Course: - CSD222019: Computer Networks Lab

Course Objectives:

- To understand fundamental concepts of networking standards, protocols, hardware and technologies
- To understand the basics of error detection including parity, checksums, and CRC
- To understand the client/server model and key application layer protocols
- To learn sockets programming and how to implement client/server applications
- To understand the concepts of reliable data transfer, principles of routing, semantics and syntax of IP

Course Outcomes: On completion of the course, students will be able to

	Course Outcomes	Bloom's Level		
CO1	Summarize fundamental concepts of computer network, architectures, models, technologies and security aspects	2 - Understand		
CO2	Illustrate functions of HTTP, DNS and SMTP protocols.	2-Understand		
CO3	Explain the Transport Layer functions such as port addressing, socket programming Connection Management, Error and Flow control mechanism	2-Understand		
CO4	Demonstrate routing protocols and mechanisms	2-Understand		
CO5	Apply concepts of framing, error detection and control at data link layer	3-Apply		
	COLIDGE CONTENTES			

COURSE CONTENTS

Unit I	Introduction to Computer Network	(08hrs)	COs Mapped -
			CO1

Introduction

Definition, Goals and applications of networks, **Types of Networks**: LAN, MAN, WAN, Wireless networks, **Network Architectures**: Client-Server, Peer to peer, Hybrid .protocol, Design issues for the network layers. **Network Models**: The OSI reference model, TCP/IP model

Network Topologies and design: Network hardware devices: Bridge, Switch, Router, Gateway, Access Point.

Cast: Unicast, Multicast, Broadcast, Types of transmission medium, Signal transmission and **Line coding scheme**: Manchester and Differential Manchester encoding, Frequency Hopping(FHSS), Direct Sequence Spread Spectrum (DSSS)

Switching Techniques: Circuit, message and packet switching, multiplexing.

Network Performance: Bandwidth and latency, Delay and bandwidth product, High speed networks and application performance needs.

Basic network Security Concepts: Need, attacks, types of network security and tools.

Topics for Self Study: Network hardware devices: Bridge, Switch, Router, Gateway, Access Point

Unit II	Application Layer	(07hrs)	COs Mapped -
			CO2

Web and HTTP, Web Caching, DNS, Email: SMTP, MIME, POP3, Webmail,

FTP, TELNET,

DHCP, SNMP

Basic Concepts of Data Compression and Cryptography

Unit III Transport Layer (07hrs) COs Mapped - CO3

Process to Process Delivery, Services, Socket programming.

Elements of Transport Layer Protocols: Addressing, Connection establishment, Connection release, Flow control and buffering, Multiplexing, congestion control.

Transport Layer Protocols: TCP and UDP, SCTP, RTP, Congestion control and quality of service (OoS). Differentiated services

TCP and UDP for Wireless networks.

Topics for Self Study: Connection establishment, Connection release

Unit IV	The Network Layer	(07hrs)	COs Mapped -
			CO4

IP Protocol: Classes of IP, IPv4, IPv6, Network Address Translation, Sub-netting, CIDR.

Network layer Protocols: ARP, RARP, ICMP, and IGMP.

Network Routing and Algorithms: Static Routing, Dynamic Routing, Distance Vector Routing, Link State Routing, Path Vector.

Routing. Protocols: RIP, OSPF, BGP, and MPLS. **Routing in MANET**: AODV, DSR, And Mobile IP.

Unit V		(07hrs)	COs Mapped -
	Data Link Layer		CO5

Design Issues: Services to network layer, Framing.

ARQ strategies: Error Detection and correction, Parity Bits, Hamming codes (11/12-bits) and CRC.

Flow Control Protocols: Unrestricted simplex, Stop and Wait, Sliding Window protocol.

WAN Connectivity: PPP and HDLC.

MAC Sub layer: Multiple Access Protocols: Pure and Slotted ALOHA, CSMA, WDMA,

CSMA/CD, CSMA/CA, Binary Exponential Back-off algorithm,

Introduction to Ethernet IEEE 802.3, IEEE 802.11 a/b/g/n, IEEE 802.15 and IEEE 802.16 Standards.

Topics for self-study: CSMA/CD, CSMA/CA

Text Books

- 1. Kurose and Ross, "Computer Networking- A Top-Down Approach", Pearson, ISBN-10:0132856204
- 2. Andrew Tanenbaum "Computer Networks", Prentice Hall, ISBN:0-07-058408-7

Reference Books

- 1. Behrouz Forouzan, "Data Communication and Networking", McGraw Hill Publication, ISBN:0-07-058408-7
- 2. D. Comer, "Computer Networks and Internets", Pearson, ISBN: 0133587932
- 3. Behrouz Forouzan, "TCP/IP Protocol Suite", McGraw Hill Publication, ISBN 0-07-337604-3
- 4. Willam Stallings," Cryptography and Information Security: Principles and Practice", Pearson, Fourth edition, ISBN: 9789353942564

Guidelines for Continuous Comprehensive Evaluation of Theory Course		
Components for Continuous Comprehensive Evaluation	I	Marks Allotted
Quiz on Unit 1, Unit-2, Unit-4, Unit 5 (Quiz 15 marks each and will be converted to 15 Marks)		15
Theory assignment on Unit-3 (One Assignment on Unit III of 10 marks will be converted to 5 Marks)		5
Т	otal	20

S. Y. B. Tech. Computer Science and Design Pattern 2022 Semester: IV CSD222015: Software Engineering and Project Management

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory: 03 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks

Prerequisite Courses:-CSD222001:Fundamentals of Data Structures, CSD222005:Programming Paradigms and Java Programming

Course Objectives:

- To understand the need for the software life cycle and its implications
- To be acquainted with methods of capturing, specifying, visualizing and analyzing software requirements
- To understand project management through the life cycle of the project and current practices in the IT industry

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Identify appropriate process model for software development.	3-Apply
CO2	Model software requirements for software development.	3-Apply
CO3	Make use of emerging trends for software project management.	3-Apply
CO4	Utilize project metrics for software project estimation and process improvement	3-Apply
CO5	Analyze software risks involved in project development.	4-Analyze

COURSE CONTENTS

Unit I	Introduction to Software Engineering and	(08hrs)	CO1
	Software Process Models		

Software Engineering: The Nature of Software, Defining Software, Software Engineering Process, Software Engineering Practice.

Process Models: A Generic Process Model, Process Assessment and Improvement, Prescriptive process models.

Agile Development: Agility, Agility and Cost of change, Agile process, Extreme Programming (XP), Other Agile Process Models- Scrum, Feature Driven Development (FDD)

Self-Study Topic: Use of Agile to enhance business processes by major players such as Sky, Philips and JP Morgan Chase

Unit II	Understanding Requirements and Design	(07hrs)	CO2
	Concepts		

Requirement Engineering: Establishing the Groundwork, Eliciting Requirements, Developing the use cases, Building the Requirement model, Negotiate Requirements, Validating Requirements, and Requirement Analysis.

Design Concepts: Design within the context of Software Engineering, The Design Process, Design Concepts, and The Design Model.

Self-Study Topic: Software Requirement Specification of Library Management System

Unit	Emerging Trends in Software Engineering &	(07hrs)	CO3
III	Project Management Concepts		

Emerging Trends: Technology evolution, Observing Software Engineering Trends, Identifying soft trends, Technology directions, Tools related trends.

Project Management Concepts: The management spectrum, People, The Product, The Process, The Project, The W⁵HH Principle

Unit	Project Estimation and Software Process	(07hrs)	CO4	
IV	Improvement			

Project Metrics: Software Measurement, Metrics for Software Quality, Metrics for Small Organizations

Estimation for Software Projects: Observation on Estimation, The Project Planning Process, Software Scope and Feasibility, Resources, Software Project Estimation, Decomposition Techniques, Empirical Estimation Models, Specialized Estimation Techniques

Software Process Improvement: Introduction, Approaches to SPI, Maturity Models - Capability Maturity Model (CMM), Capability Maturity Model Integration (CMMI)

Unit V Project Scheduling and Risk Management (07hrs) CO5

Project Scheduling: Basic Principles, Task set for Software Project, Task Network, Scheduling **Risk Management:** Reactive versus Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinement, The RMMM Plan

Self-Study Topic: Risk management for E-commerce website

Text Books

- 1. Roger Pressman, "Software Engineering: A Practitioner's Approach"||, McGraw Hill, ISBN 0-07-3375
- 2. Ian Sommerville,"Software Engineering", Addison and Wesely, ISBN 0-13-703515-2.

Reference Books

- 1. Rajib Mall, "Fundamentals of Software Engineering", Prentice Hall India, ISBN-13: 978-8120348981
- 2. Pankaj Jalote, "An Integrated Approach to Software Engineering", Springer, ISBN 13: 9788173192715.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Quiz on Unit-1, Unit-2, Unit-4 and Unit-5 (Quiz 15marks each and will be converted to 15 marks)	15		
2	Theory assignment on Unit-3 (One assignment on Unit-3 of 10 marks will be converted to 5 marks)	05		
	Total	20		

	(Autonomous from A	teaucinic Tear 2022-25)			
	S. Y. B. Tech. Computer Science and Design Pattern 2022 Semester: IV CSD222016: MOOC – Client Side Technology				
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:	
Theory:	MOOC	01			
Prerequi	isite Courses:- CSD222006	5:Design Thinking			
Compan	ion Course:- CSD222020: 1	Project Based Learning –	Client Side Technol	ogy	
ToTo	Objectives: understand the concepts of understand client side techn Outcomes: On completion of	nologies			
Course Outcomes Bloom's Level					
CO1	Build web pages using HTML			3-Apply	
CO2	Apply CSS for styling web pages			3-Apply	
CO3	Use of Java Script for web development			3-Apply	
CO4	Use Angular for web development			3-Apply	
CO5	CO5 Use front-end frameworks for web development			3- Apply	
		COURSE CONTENT	TS .		
Unit I	Client side scripting - Hyp Language	oer Text Markup	(02hrs)	COs Mapped - CO1	
The Internet, basic internet protocols, the World Wide Web, HTTP Request message, HTTP response message, web clients, web servers. HTML: Introduction, HTML elements: headings, paragraphs, line break, colors and fonts, links, frames, lists, tables, images and forms, Difference between HTML and HTML5. https://drive.google.com/drive/folders/18j8w9gcUey0EOgDEoqVpxIdtEfA69E3p					
Unit II	Cascaded Style Sheets	222	(02hrs)	COs Mapped - CO2	

Introduction to Style Sheet, CSS features, CSS core syntax, Style sheets and HTML, Style rule cascading and inheritance, text properties. CSS Color, CSS Background Image, CSS Selectors, CSS BOX model, introduction to Bootstrap.

https://drive.google.com/drive/folders/1oFTQKtBlnZB3dSHOiCKgQtYY4-VkXS76

Unit	Client Side Technology - Java Script	(02hrs)	COs Mapped -
III			CO3

Java Script: Introduction to JavaScript, Document Object Modelling, Benefits of JavaScript, Fundamentals: Variables, Constants, Data Types, Objects, Functions, Conditional Statements, Loops, Switch Case.

 $\underline{https://drive.google.com/drive/folders/1_szX6sGFwtJ14KppmPU70flrFPVczAvp}$

Unit Client Side Technology - Angular	(03hrs)	COs Mapped -
---------------------------------------	---------	--------------

IV	CO4	
Introduction to Single Page Applicati	ion, Angular, Angular routing Angular directive	es,
Angular components, One-way data bindi	ing for read-only data, Two-way data binding, Event	nts,
Format data with pipes, Shared service, U	Use routing to navigate among different views and the	ıeir
components.		

https://drive.google.com/drive/folders/1GkH-8FNEm1HmC7Urr5m83znkg5_bDldw

Unit V	Front End Technologies	(03hrs)	COs Mapped -
			CO5

Introduction to React JS, React JS installation, React Component, React Lifecycle, React Events, Introduction to Node.js, Features of Node.js, Node.js Architecture, Node.js module, JSON File, Node.js Operators, Node.js functions, Node.js Objects, Node.js file system, Node.js Events, Node.js HTTP module.

 $\underline{https://drive.google.com/drive/folders/15EkXqxAzMe8L0Gzt9Hm1ybOkez0yE5VD}$

Learning Material

1. Jeffrey C. Jackson ," Web Technologies: A Computer Science Perspective", Second Edition, Pearson Education, 2007, ISBN 978-0131856035

S. Y. B. Tech. Computer Science and Design
Pattern 2022 Semester: IV
CSD222017: Advanced Data Structures Lab

C5D222017. Advanced Data Structures Lab		
Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 04 hrs/week	02	Term Work: 25 Marks Practical Exam: 50 Marks

Prerequisite Courses: - CSD222001:Fundamentals of Data structures, CSD222003:Discrete Mathematics

Companion Course: CSD222012: Advanced Data Structures

Course Objectives:

- To understand basic concepts of non linear data structures such as trees, graphs
- To study the concepts of hash table and files
- To learn advanced data structures such as indexing techniques and multiway search trees

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Make use of non-linear data structures such as graph and trees to solve a given problem	3-Apply
CO2	Use different representations of symbol table	3-Apply
CO3	Apply the hash table and it's collision resolution methods and different file handling techniques	3-Apply
CO4	Use efficient indexing techniques and multiway search trees to store and maintain data	3-Apply
CO5	Analyze an algorithm used for solving a given problem	4-Analyze

List of Laboratory Experiments / Assignments		
Sr. No.	Laboratory Experiments / Assignments	CO Mapped
1	Flight management: There are flight paths between cities. If there is a flight between city A and city B then there is an edge between the cities. The cost of the edge can be the time that flight takes to reach city B from A, or the amount of fuel used for the journey. Write a menu driven C++ program to represent this as a graph using adjacency matrix and adjacency list. The node can be represented by the airport name or name of the city. Check whether cities are connected through flight or not. Compare the storage representation.	CO1, CO5
2	Graph traversal: The area around the college and the prominent landmarks of it are represented using graphs. Write a menu driven C++ program to represent this as a graph using adjacency matrix /list and perform DFS and BFS.	CO1, CO5

	A decide an analysis (A OV) and analysis and a second and	
3	Activity on vertex(AOV) network: Sandy is a well organized person. Every day he makes a list of things which need to be done and enumerates them from 1 to n. However, some things need to be done before others. Write a C++ code to find out whether Sandy can solve all his duties and if so, print the correct order	CO1, CO5
4	Binary search tree: Write a menu driven C++ program to construct a binary search tree by inserting the values in the order give, considering at the beginning with an empty binary search tree, After constructing a binary tree- i. Insert new node, ii. Find number of nodes in longest path from root, iii. Minimum data value found in the tree iv. Search a value v. Print values in ascending and descending order	CO1, CO5
5	Expression tree: Write a menu driven C++ program to construct an expression tree from the given prefix expression eg. +a*bc/def and perform following operations: 1. Traverse it using post order traversal (non recursive) 2. Delete the entire tree 3. Change a tree so that the roles of the left and right pointers are swapped at every node	CO1, CO5
V ₆	A Dictionary using BST: A Dictionary stores key and value pairs Data: Set of (key, value) pairs, Keys are mapped to values, Keys must be comparable, Keys must be unique. Standard Operations: Insert(key, value), Find(key), Delete(key) Write a menu driven C++ program to provide above standard operations on dictionaries and provide a facility to display whole data sorted in ascending/ Descending order. Also find how many maximum comparisons may require for finding any keyword. Use Binary Search Tree for implementation	CO1, CO5
7	Tree using traversal sequence : Write a C++ program to construct the binary tree with a given preorder and inorder sequence and Test your tree with all traversals	CO1, CO5
8	A Dictionary using AVL: A Dictionary stores key and value pairs Data: Set of (key, value) pairs, Keys are mapped to values, Keys must be comparable, Keys must be unique. Standard Operations: Insert(key, value), Find(key), Delete(key) Write a menu driven C++ program to provide above standard operations on dictionaries and provide a facility to display whole data sorted in ascending/ Descending order. Also find how many maximum comparisons may require for finding any keyword. Use Height balanced tree(AVL) and find the complexity for finding a keyword	CO2, CO5
9	Telephone book management : Consider the telephone book database of N clients. Write a menu driven C++ program to make use of a hash table implementation to quickly look up a client's telephone number. Use of two collision handling techniques and compare them using number of comparisons required to find a set of telephone numbers	CO3, CO5

10	A Dictionary using Hash table: A Dictionary stores key and value pairs Data: Set of (key, value) pairs, Keys are mapped to values, Keys must be comparable, Keys must be unique. Standard Operations: Insert(key, value), Find(key), Delete(key) Write a menu driven C++ program to provide above standard operations on dictionaries Write a menu driven C++ program to provide all the functions of a dictionary (ADT) using hashing and handle collisions using chaining.	CO3, CO5
11	Sequential File: The students' club members (MemberID, name, phone, email) list is to be maintained. The common operations performed include these: add member, search member, delete member, and update the information. Write a menu driven C++ program that uses file operation to implement the same and perform all operations.	CO3, CO5
12	Min/max Heaps: Marks obtained by students of second year in an online examination of a particular subject are stored by the teacher. Teacher wants to find the minimum and maximum marks of the subject. Write a menu driven C++ program to find out maximum and minimum marks obtained in that subject using heap data structure. Analyze the algorithm	CO4, CO5
13	A Dictionary using STL map and Hashmap: Implement Dictionary (key and value pairs) using using STL map in C++ and Hashmap in Java and compare all dictionary implementation 1. BST 2. AVL 3. User defined Hash table 4. STL Map 5. Hashmap in Java Use Visual C++ and Java Compiler	CO1, CO2, CO3, CO5
14	Study Assignment: 1. Explain Data structures used in whatsapp in details 2. Consider following real time application and explain in detail the combinations of data structures and algorithms used in it. Social media applications require efficient and scalable data structures to manage user-generated content, facilitate user interactions, and ensure the reliability and availability of the platform. The primary challenge in designing data structures for social media applications is to accommodate the massive volume of data generated by users, while providing fast and responsive access to that data. Some specific challenges that data structures in social media applications must address include: Handling user interactions such as likes, comments, and shares, and ensuring the integrity and consistency of those interactions. Supporting fast and flexible search and filtering of content based on user preferences, geographic location, hashtags, and other criteria. Managing relationships between users, such as friends, followers, and groups, and providing fast and efficient access to that information.	CO1 to CO5

Mini Project		
	Student has to perform one mini project based on concepts covered in the course, Write a detailed problem statement for your project, Design and implement a code for the same using appropriate data Structures.	CO1 to CO5
	Additional Programming Problems	
1	Skip Lists: Write a C++ program to create a skip list for a given set of elements. Find the element in the set that is closest to some given value. (note: Decide the level of element in the list Randomly with some upper limit)	CO3, CO5
2	Huffman algorithm : Write a C++ program to implement a file compression algorithm that uses a binary tree. Your program should allow the user to compress and decompress messages containing alphabets using the standard Huffman algorithm for encoding and decoding.	CO1, CO5
3	Tour management : Tour operators organize guided bus trips across Maharashtra. Tourists may have different preferences. Tour operators offer a choice from many different routes. Every day the bus moves from starting city S to another city F as chosen by the client. On this way, the tourists can see the sights alongside the route traveled from S to F. Clients may have preference to choose the route. There is a restriction on the routes that the tourists may choose from, the bus has to take a short route from S to F or a route having one distance unit longer than the minimum distance. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route. Write a C++ program to solve above problem.	CO1, CO5
4	Optimal Binary search tree : Given sequence $k = k1 < k2 < < kn$ of n sorted keys, with a search probability pi for each key ki. Write a C++ program to build the Binary search tree that has the least search cost given the access probability for each key.	CO2, CO5
5	Trie : Write a C++ program to store a collection of strings that have to be inserted in the trie and perform search operation	CO4, CO5

Guidelines for Laboratory Conduction

Use of coding standards and Hungarian notation, proper indentation and comments.

Use of open source software is to be encouraged.

Operating System recommended:- Linux or its derivative

Programming tools recommended: - Open Source line gcc/g++ (Visual C++ compiler for few assignments and note the difference)

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, problem statement, theory concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.

Guidelines for Termwork Assessment

Continuous assessment of laboratory work shall be based on the overall performance of a student.

Assessment of each laboratory assignment shall be based on rubrics that include

R1- timely completion (10),

R2- understanding of assignment (10) and

R3- presentation/clarity of journal writing (10) (Coding standard, Indentation, Hungarian notation, input validation etc)

Mini Project assessment will be based on Teamwork, Communication skill, Social relevance of mini project, Ethics followed.

S. Y. B. Tech. Computer Science and Design Pattern 2022 Semester: IV CSD222018: Operating Systems Laboratory

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 02 hrs/week	01	Term Work: 25 Marks Practical Exam : 25 Marks

Prerequisite Courses:- CSD222001:Fundamentals of Data Structures

Companion Course:- CSD222013: Operating Systems

Course Objectives:

- To understand operating system services, types of operating systems and shell scripts
- To study process scheduling algorithms and multithreading techniques
- To get acquainted with the concepts of synchronization, deadlock prevention and avoidance algorithms
- To learn concepts of memory management and I/O management techniques
- To introduce Linux operating systems

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Explain operating system services, types of operating systems and basic shell commands	2- Understand
CO2	Illustrate the concept of process scheduling algorithms to solve scheduling problems	2- Understand
CO3	Compare algorithms for deadlock detection, prevention and avoidance	2- Understand
CO4	Use algorithms for page replacement and I/O management	3- Apply
CO5	Describe Linux commands and utilities such as grep, tr, sed, awk	2- Understand

Sr. No.	List of Laboratory Assignments/ Experiments	COs Mapped
1	Write a shell script for implementation of control flow statements.	CO1
2	Write a shell script to find factorial of a given number.	CO1
3	Write a C program to compute and print the average waiting time, average turnaround time and CPU burst times for the given list of processes. Display/print the Gantt chart for first come first serve, shortest job first, priority scheduling and round robin scheduling algorithm.	CO2
4	Write a C program to implement inter process communication using shared memory, pipes, named pipes and signals	CO2
5	Write a C program to implement producer-consumer problem	CO3
6	Write a C program to implement page replacement algorithms such as first in first out, least recently used and optimal page replacement	CO4
7	Installation of Linux operating system and basic configuration.	CO5
8	Assignment on Unix basic commands such as pwd, ls, cat, redirection and pipes and Unix utilities like tr, sed, grep, egrep, awk.	CO5

Execute following AWK operations on the text file:	CO5
1 Print the lines which match the given pattern.	
2 Splitting a Line Into Fields	
3 To find the length of the longest line present in the file	
4 Printing the lines with more than specified characters	
	 Print the lines which match the given pattern. Splitting a Line Into Fields To find the length of the longest line present in the file

Guidelines for Laboratory Conduction

Use of coding standards and Hungarian notation, proper indentation and comments.

Use of open source software is to be encouraged. Operating System recommended: Linux or its derivative. Programming tools recommended: Open Source line gcc/g++

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, problem statement, theory concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.

Guidelines for Term work Assessment

Continuous assessment of laboratory work shall be based on overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include

- R1- timely completion (10),
- R2- understanding of assignment (10) and
- R3- presentation/clarity of journal writing (10).

S. Y. B. Tech. Computer Science and Design		
Pattern 2022 Semester: IV		
CSD222019: Computer Networks Lab		

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 02 hrs./week	01	Term work: 25 Marks Practical Exam:25 Marks

Prerequisite Courses: - CSD222004: Digital Electronics and Logic Design

Companion Course:- CSD222014: Computer Networks

Course Objectives:

- To understand fundamental concepts of networking standards, protocols, hardware and technologies
- To understand the basics of error detection including parity, checksums, and CRC
- To understand the client/server model and key application layer protocols
- To learn sockets programming and how to implement client/server applications
- To understand the concepts of reliable data transfer, principles of routing, semantics and syntax of IP

Course Outcomes: On completion of the course, students will be able to

	Course Outcomes	Bloom's Level
CO1	Summarize fundamental concepts of computer network, architectures, models, technologies and security aspects	2 - Understand
CO2	Illustrate functions of HTTP, DNS and SMTP protocols.	2-Understand
CO3	Explain the transport layer functions such as port addressing, socket programming, Connection management, Error and flow control mechanism.	2-Understand
CO4	Demonstrate routing protocols and mechanisms	2-Understand
CO5	Apply concepts of framing, error detection and control at data link layer	3-Apply

List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments		
1	Study of different types of network cables and implement the Cross-wired cable and straight through cable using clamping tool.	CO1	
2	Study of basic network commands and network configuration commands.	CO1	
3	Study of Campus Wide area Networking of your college	CO1	
4	Study of different network simulators: Cisco packet tracer, Wireshark and NS2 1. NS2 NS2 Basics, Create simple network with 3 nodes (2 senders and 1 receiver: TCP/FTP Create star topology: TCP as well as UDP Cisco Packet tracer tool	CO1	

	simple topology	
	complex topology	
	3 Wireshark	
	Packet Monitoring	
5	Setup a WAN which contains wired as well as wireless LAN using a packet tracer tool. Demonstrate transfer of a packet from LAN 1 (wired LAN) to LAN 2	CO1
	(Wireless LAN).	004
6	Configure HTTP Server using simulation tool	CO2
7	Design a file transfer protocol server configuration in cisco packet tracer and checking the connectivity for uploading and downloading the file from remote PC using Cisco packet tracer tool	CO2
8	Write a program for DNS lookup. Given an IP address as input, it should return URL and vice-versa.	CO2
9	Write a client-server program using TCP socket for wired network to - a. Say Hello to Each other b. File transfer c. Calculator	CO3
10	Write a program using UDP Sockets to enable file transfer (Script, Text, Audio and Video one file each) between two machines.	CO3
11	Write a program to demonstrate sub-nets and find the subnet masks	CO4
12	Write a program for error detection and correction for 7/8 bits ASCII codes using Hamming Codes or CRC	CO5

Guidelines for Laboratory Conduction

- Use of open source software is encouraged. Based on the concepts learned.
- Operating System recommended: -64-bit Open-source Linux or its derivative
- Programming tools recommended:- Open-Source C/C++/JAVA Programming tool like G++/GCC, NS-2
- Simulation tools recommended:- Wireshark/Ethereal and Packet Tracer

Guidelines for Student's Lab Journal

- The laboratory assignments are to be submitted by student in the form of journal.
- Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, Date of Completion, Objectives, Problem Statement, Software and Hardware requirements, Assessment grade/marks and assessor's sign, Theory- Concept in brief, algorithm, flowchart, test cases, Test Data Set(if applicable), mathematical model (if applicable), conclusion/analysis.
- Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Term work Assessment

- 1. Continuous assessment of laboratory work should be based on overall performance of Laboratory assignments by a student.
- 2. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 3. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

S. Y. B. Tech. Computer Science and Design Pattern 2022 Semester: IV

CSD222020: Project Based Learning – Client Side Technology

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 02 hrs/week	01	Term Work : 25 Marks

Prerequisite Courses: - CSD222006: Design Thinking

Companion Course: - CSD222016: Client Side Technology

Course Objectives:

- To develop critical thinking and problem solving ability by exploring and proposing solutions to realistic/social problem
- To apply alternative approaches for selecting client side technologies
- To emphasizes learning activities that are long-term, inter-disciplinary and student-centric
- To provide every student the opportunity to get involved either individually or as a group so as to develop team skills and learn professionalism
- To develop an ecosystem that promotes entrepreneurship and research culture among the students through web based development environment

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Identify the real life and societal problem	3-Apply
CO2	Build web pages using client side technologies	3-Apply
CO3	Make use of Angular for web development	3-Apply
CO4	Make use of front-end frameworks for web development	3-Apply

	List of Tasks		
Sr. No.	Tasks	CO Mapped	
1	Creating teams, assigning roles and responsibilities for project based learning	CO1	
2	Brain storming: Ideation, setting actionable problem statement, identify stakeholders, people/ organization, problems and opportunities, prepare questionnaire and discuss with stakeholders	CO1	
3	Use suitable Client Side Technology to design and develop mini project		
3.1	Design and develop GUI using client side technologies Hint: HTML,CSS	CO2	
3.2	Update task 3.1 using Java Script to apply dynamic behavior Hint: Java Script	CO2	
3.3	Rebuild task 3.2 into a single page application using Angular	CO3	
3.4	Redesign task 3.3 and develop dynamic application using Node.JS and React	CO4	

Guidelines for Laboratory Conduction

Client Side Technology (MOOC) is companion course for Project-Based Learning (PBL) - Client Side Technology. PBL is an instructional approach designed to give students an opportunity to develop knowledge and skills through engaging projects set around challenges and problems they may face in the real world. It is more than just projects. With these, students investigate and respond to an authentic, engaging, and complex problem and providing feasible solution using client side web technologies. It requires mentoring by faculty throughout the semester for successful completion of the project tasks selected by the students per batch. The batch should be divided into sub-groups of 4 to 5 students. Idea presentation and implementation under this course is carried throughout the semester and evaluation is done on the basis of internal continuous assessment.

Guidelines for Student's Lab Journal

The laboratory tasks are to be completed by students in the form of a report. Report consists of Certificate, table of contents, title, team structure, surveys conducted, problem statement, use cases, concepts in brief, conclusions. A mini project shall be presented in the soft form and report shall be submitted to the mentor for evaluation.

Guidelines for Term work Assessment

It is recommended that all activities should be recorded regularly, regular assessment of work need to be done and proper documents need to be maintained by both students as well as mentor. Continuous Assessment Record is to be maintained by all mentors.

Recommended rubrics for weekly assessment / evaluation:

Task 1 : Creating teams, assigning roles and responsibilities for project based	10 M
learning	
Task 2: Ideation	
Task 3.1: Design and develop GUI using client side technologies	15 M
Task 3.2: Update task 3.1 using Java Script to apply dynamic behavior	15 M
Task 3.3: Rebuild task 3.2 into a single page application using Angular	15 M
Task 3.4: Redesign task 3.3 and develop dynamic application using Node.JS and	15 M
React	
Report Writing	30 M
Task 3.1, 3.2, 3.3, 3.4: 15 marks each (R1: Timely completion and R2: Implement	ation)