Det kommer an på størrelsen

Formål:

Det er eksperimentets formål at se nærmere på begrebet diffusion. Vi skal finde ud af, hvilken betydning en celles størrelse har for diffusionen.

Teori:

Vi vil i dette forsøg undersøge diffusionshastigheden i tre (kunstige) celler lavet af såkaldt agar. Blokkene skal have en kendt størrelse, fx 1x1x1 cm, 2x2x2 cm og 3x3x3 cm.

Agarblokkene er farvet blå med en såkaldt pH-indikator, der skifter farve, når pH-værdien ændres. Ved at lægge blokkene ned i en sur opløsning kan vi ved farveskift se, hvordan den sure opløsning trænger ind i agaren. Transporten af den sure opløsning sker ved diffusion. Med andre ord kan vi holde øje med, hvor hurtigt diffusionen ind i agarblokkene forløber. Ved at skære dem midt over bagefter, kan vi se, om den sure væske er trængt helt ind i blokkenes indre, eller den kun er trængt ind i overfladen. Ved at opmåle hvor langt den sure væske er trængt ind, kan diffusionshastigheden beregnes.

Her ses et regneeksempel:

I en agarblok på 2x2x2 cm (8 cm³) er diffusionen nået 6 mm ind i cellen på 3 minutter. Det uberørte rumfang (som stadig er blåt) er på 0,8x0,8x0,8 cm, hvilket er 0,512 cm³.

Det gule rumfang, som er det, diffusionen har nået, bliver dermed: 8 - 0.512 = 7.488 cm³.

Den procentvise andel, som diffusionen har nået af det oprindelige rumfang, bliver derfor: $(7,488 / 8) \times 100\% = 93,6 \%$.

Den gule farve er trængt 0,6 cm ind (fra alle sider) på 3 minutter. Det svarer til en diffusionshastighed på 0,2 cm/min (0,6 / 3).

Materialer:

Agar farvet med BTB (25 g neutral agar pr. liter vand)

Kniv

Bægerglas

Eddike eller svag eddikesyreopløsning (sur opløsning)

Lineal

Ske

Fremgangsmåde

Skær omhyggeligt tre kvadratiske blokke ud af agaren. De tre blokke skal have sider på hhv. 1 cm på hvert led, 2 cm på hvert led og 3 cm på hver led (andre størrelser er også ok – men husk at opmål og noter størrelsen i så fald). De tre "celler" lægges på en ske og sænkes ned i en svagt sur væske. Efter præcis 3 minutter tages de op igen og skæres midt over. Opmål og noter, hvor mange cm den gule farve er trængt ind i de tre blå "celler" (agarblokke).

RESULTATER

Rumfang (start)	Tværsnit af terning	Diffusions- længde (cm)	Blåt rumfang	Gult rumfang	Diffusion (%)	Overflade (start) = 0	O/R
3 x 3 x 3 = 27 cm ³							
2 x 2 x 2 = 8 cm ³							
1 x 1 x 1 =1 cm ³							

Agarblok	Diffusionshastighed (cm/min)
3 x 3 x 3	
2 x 2 x 2	
1 x 1 x 1	

Fai	llei	lder
		ıucı

Diskussion

- 1. Hvordan er sammenhængen mellem cellestørrelse og diffusionshastighed?
- 2. Hvorledes er sammenhængen mellem cellestørrelse og den procentdel af cellen, som diffusionen når på 3 minutter?
- 3. Indtegn i et koordinatsystem cellernes sidelængder på x-aksen og den procentvise dækning på y-aksen.
 - Hvor mange procent dækket ville en celle på 4x4x4 have været efter de tre minutter?
- 4. Hvis du på baggrund af dette simple forsøg skal udtale dig om cellestørrelsens betyd ning i forhold til hvor effektiv diffusionen er, hvad vil du så konkludere?
- 5. Hvordan løser fx menneskekroppen diffusionsproblemet? Vi skal jo have ilt ind til celler, der er helt inde midt i kroppen – langt fra atmosfærens ilt?
- 6. Hvorfor har små dyr generelt sværere ved at klare sig i kolde og varme omgivelser end store dyr har?

