- 1. What is the image of the point (-5,2) under the translation $T_{3,-4}$?
 - (1) (-2,-2)
- (2) (-9,5)
- (3) (-8,6)
- (4) (-15,-8)
- 2. What is the slope of a line that whose equation is 3x + 4y = 12?
 - $(1) \frac{4}{3}$
- (2) $\frac{3}{4}$
- (3) $\frac{4}{3}$
- $(4) \frac{3}{4}$
- 3. In the diagram of $\triangle KLM$ below, $m \angle L = 70$, $m \angle M = 50$ and \overline{MK} is extended through N.

What is the measure of $\angle LKN$?

- (1) 180°
- (2) 300°
- (3) 60°
- (4) 120°
- 4. The transformation $R_{90^{\circ}}$ maps point (5,3) onto the point whose coordinates are
 - (1) (5,-3)
- (2) (-3,5)
- (3) (3,5)
- (4) (3,-5)
- 5. Reflecting (5,1) in the y-axis yields an image of
 - (1) (-5,1)
- (2) (-5,-1)
- (3) (5,1)
- (4) (5,-1)
- 6. If $\triangle ABC \cong \triangle JKL \cong \triangle RST$, then \overline{BC} must be congruent to
 - (1) \overline{JL}
- (2) \overline{RS}
- (3) \overline{JK}
- (4) \overline{ST}
- 7. The area of a square is represented by $36x^2$. Which expression represents the length of each side of the square?
 - (1) $6x^2$
- (2) 6x
- (3) 9x
- $(4) 9x^2$

- 8. The equation of a line is 3y + 2x = 12. What is the slope of the line parallel to the given line?
 - (1) $-\frac{3}{2}$
- (2) $-\frac{2}{3}$
- (3) $\frac{3}{2}$
- (4) $\frac{2}{3}$
- 9. In the accompanying diagram, $\overline{AC} \parallel \overline{DE}$, AB = 10, BC = 15, and BD = 8.

What is the length of \overline{EC} ?

- (1) 3
- (2) $5\frac{1}{3}$
- (3) 2
- (4) 12
- 10. In the diagram below, which single transformation was used to map triangle *A* onto triangle *B*?

(1) translation

(2) rotation

(3) dilation

(4) line reflection

- 11. Which equation represents a line that is perpendicular to the line represented by 2x - y = 7
 - (1) y = 2x + 6

(2) $y = \frac{1}{2}x + 6$

(3) y = -2x + 6

- (4) $y = -\frac{1}{2}x + 6$
- 12. Which transformation produces a figure similar but *not* congruent to the original figure?
 - (1) $D^{\frac{1}{2}}$
- (2) $r_{y=x}$ (3) $T_{1,3}$ (4) $R_{90^{\circ}}$
- 13. In the diagram below of $\triangle ABC$. side \overline{BC} is extended to point D, $m \angle A = x$, $m\angle B = 2x + 15$, and $\angle ACD = 5x + 5$.

What is $m \angle B$?

- (1) 5
- (2) 20
- (3) 25
- (4) 55
- 14. The coordinates of any point (x,y) after a reflection in the x-axis can always be represented by
 - (1) (x,-y)
- (2) (-x,-y) (3) (x,y)
- (4) (-x,y)
- 15. Which equation represents a line that is perpendicular to the line whose equation is 3x - 2y = 7?
 - (1) $y = -\frac{2}{3}x + 4$

(2) $y = \frac{2}{3}x - 4$

(3) $y = \frac{3}{2}x - 5$

(4) $y = -\frac{3}{2}x + 5$

Name:

16. In the diagram below of ΔDAE and ΔBCE , \overline{AB} and \overline{CD} intersect at E, such that $\overline{AE} \cong \overline{CE}$ and $\angle BCE \cong \angle DAE$.

Triangle DAE can be proved congruent to triangle BCE by

- (1) SSS
- (2) HL
- (3) ASA
- (4) SAS
- 17. Given \overline{MN} shown below, with M(-6,1) and n(3,-5), what is an equation of the line that passes through point P(6,1) and is parallel to \overline{MN} ?

(1) $y = -\frac{2}{3}x - 3$

(3) $y = \frac{3}{2}x - 8$

(2) $y = \frac{3}{2}x + 7$ (4) $y = -\frac{2}{3}x + 5$

- 18. What is an equation of the line that passes through the point (-2,3) and is parallel to the line whose equation is $y = \frac{3}{2}x - 4$?
 - (1) $y = \frac{3}{2}x + 6$

(3) $y = \frac{3}{2} x$

- (2) $y = \frac{-2}{3}x$ (4) $y = \frac{-2}{3}x + \frac{5}{3}$
- 19. As shown in the diagram below, a regular pyramid has a square base whose side measures 6 inches.

If the altitude of the pyramid measures 12 inches, its volume, in cubic inches, is

- (1) 72
- (2) 144
- (3) 288
- (4) 432
- 20. Triangle ABC has vertices A(1,3), B(0,1), and C(4,0). Under a translation, A', the image point of A, is located at (4,4). Under this same translation, point C' is located at
 - (1)(1,-1)
- (2) (7,1)
- (3) (5,3)
- (4)(3,2)
- 21. An equation of a line perpendicular to the line represented by the equation $y = -\frac{1}{2}x - 5$ and passing through (6, -4) is
 - (1) y = 2x + 14

(2) y = 2x - 16

(3) $y = -\frac{1}{2}x - 1$

(4) $y = -\frac{1}{2}x + 4$

Name:

7 June 2017

22. In the diagram of $\triangle ABC$ below, \overline{AB} is extended to point D.

If $m\angle CAB = x + 40$, $m\angle ACB = 3x + 10$, and $m\angle CBD = 6x$, what is $m\angle CAB$?

- (1) 65
- (2) 13
- (3) 25
- (4) 53
- 23. A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?
 - (1) 92
- (2) 102
- (3) 1,632
- (4) 408
- 24. In the diagram shown below, \overline{AC} is tangent to circle O at A and to circle Pat C, \overline{OP} intersects \overline{AC} at B, OA = 4, AB = 5, and PC = 10.

What is the length of \overline{BC} ?

- (1) 6.4
- (2) 8
- (3) 12.5
- (4) 16

7 June 2017 Final Exam

Fill in the solutions. Show work for full credit.

25. What is the slope of a line perpendicular to the line whose equation is $y = -\frac{2}{3}x - 5$?

26. In the diagram below of $\triangle ABC$, \overline{DE} is a midsegment of $\triangle ABC$, DE = 7, AB = 10, and BC = 13. Find the perimeter of $\triangle ABC$.

27. In the accompanying diagram, $\angle AOB$ is a straight line, $m \angle AOD = 3x - 12$, and $m \angle BOD = x$. What is the value of x?

28. In a rectangle, the length is twice the width, and the perimeter is 48. Find the area of the rectangle.

29. The coordinates of the vertices of $\triangle .ABC$ are A(1,2), B(-4,3), and C(-3,-5). State the coordinates of $\triangle A'B'C'$, the image of $\triangle ABC$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

Geometry Final (v.1)

29. The coordinates of the vertices of $\triangle .ABC$ are A(1,2), B(-4,3), and C(-3,-5). State the coordinates of $\triangle A'B'C'$, the image of $\triangle ABC$ after a rotation of 90° about the origin. [The use of the set of axes below is optional.]

Final Exam

1. 1

2. 4

3. 4

4. __2__

5. 1

6. 4

7. 2

8. __2_

9. 1

10. __2_

11. 4

12. 1

13. 3

14. __1_

15. 1

16. 3

17. 4

18. _ 1

19. 2

20. 2

21. 2

22. 1

23. 2

24. 3

25. $\frac{-3}{2}$

26. 37

27. 48

28. 128

29. A'(-2,1), B' (-3,-4), andC'(5,-3)