

COMPUTATIONAL ENGINEERING

TACKLING TURBULENCE WITH (SUPER)COMPUTERS

BURGULENCE

A GOOD TOY MODEL OF TURBULENCE

On his death bed, Werner Heisenberg is reported to have said, «When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first.»

REMAINDER 1: TURBULENCE IS EXPENSIVE

l: biggest eddies (driving scale)

 $\eta\colon smallest$ eddies (Kolmogorov length scale) — \blacktriangleright

(Computational) Complexity of NS grows very fast!!!

In space:
$$dim = 3 \Rightarrow (l/\eta)^3 \sim \text{Re}_l^{9/4}$$

In time: $t_{eddy}/t_{\eta} \sim \text{Re}_{l}^{1/2}$

In space \times time: $(l/\eta)^3 t_{eddy} / t_{\eta} \sim \text{Re}_l^{11/4}$

$$\eta/l \sim \operatorname{Re}_{l}^{-3/4}$$
 $u/U \sim \operatorname{Re}_{l}^{-1/4}$
 $t_{\eta}/t_{eddy} \sim \operatorname{Re}_{l}^{-1/2}$

$$\eta/l \sim (v^3/\epsilon)^{1/4}$$

$$u \sim (v\epsilon)^{1/4}$$

$$t_{\eta} \sim (v/\epsilon)^{1/2}$$

REMAINDER 2: NONLINEARITY OF NS

$$\frac{\partial \vec{u}}{\partial t} + \underbrace{(\vec{u} \cdot \nabla)\vec{u}}_{\text{nonlinear guy in NS}} = v \nabla^2 \vec{u} - \nabla p; \qquad \nabla \cdot \vec{u} = 0$$

Let us consider a one single 1D wave, $u(x) = \sin(kx)$

$$u \frac{\partial u}{\partial x} = k \sin(k x) \cos(k x) = \frac{k}{2} \sin(2 k x)$$

REMAINDER!!!

Double-angle formula: $\sin(2x) = 2\sin(x)\cos(x)$

REMAINDER 3: ENERGY CASCADE

$$[k] = [L^{-1}]$$
 $[\epsilon] = [L^2 T^{-3}]$ $[E_T] = [L^2 T^{-2}]$ $[E(k)] = [L^3 T^{-2}]$

Hypothesis (K41): $E(k) \propto \varepsilon^a k^b$

$$\begin{array}{ccc}
2a - b = & 3 \\
-3a & = -2
\end{array}
\Rightarrow
\begin{array}{c}
a = & 2/3 \\
b = -5/3
\end{array}$$

Kolmogorov energy spectrum: $E(k) = C_K \varepsilon^{2/3} k^{-5/3}$

$$E(k) = C_K \varepsilon^{2/3} k^{-5/3}$$

Formal proof of the existence of the inertial subrange for the (incompressible) Navier-Stokes equations: C. Foias, O.P. Manley, R. Rosa and R. Temam; Estimates for the energy cascade in three-dimensional turbulent flows. C. R. Acad. Sci. Paris, Série I Math. 333, 499-504, (2001).

$$\frac{\partial \vec{u}}{\partial t} + \underbrace{(\vec{u} \cdot \nabla)\vec{u}}_{\text{nonlinear guy in NS}} = v \nabla^2 \vec{u} - \nabla p; \qquad \nabla \cdot \vec{u} = 0$$

$$1D \downarrow \text{No continuity eq.}$$

$$\frac{\partial u}{\partial t} + \underbrace{u \frac{\partial u}{\partial x}}_{\text{nonlinear guy in Burgers'}} = v \frac{\partial^2 u}{\partial x^2} + f$$

This is simplified model that shares many of the features of the NS equations.

BURGERS' EQUATION

$$\frac{\partial \vec{u}}{\partial t} + \underbrace{(\vec{u} \cdot \nabla)\vec{u}}_{\text{nonlinear guy in NS}} = v \nabla^2 \vec{u} - \nabla p; \qquad \nabla \cdot \vec{u} = 0$$

1D \ \ No continuity eq.

$$\frac{\partial u}{\partial t} + \underbrace{u \frac{\partial u}{\partial x}}_{\text{nonlinear guy in Burgers'}} = v \frac{\partial^2 u}{\partial x^2} + f$$

Fourier Transform $u(x) = \sum_{k=-N}^{k=+N} \hat{u}_k e^{ikx}$

$$\frac{\partial \hat{u}_{k}}{\partial t} + \sum_{\substack{p+q=k \text{ nonlinear guy in Burgers'}}} \hat{u}_{p} i q \hat{u}_{q} = -v k^{2} \hat{u}_{k} + \hat{f}_{k}$$

BURGERS' EQUATION IN FOURIER SPACE

We consider equation (6) on an interval Ω with periodic boundary conditions. In Fourier space, the Burgers equation reads¹

$$\partial_t \hat{u}_k + \sum_{k=p+q} \hat{u}_p iq \hat{u}_q = -\frac{k^2}{Re} \hat{u}_k + F_k \qquad k = 0, \dots, N$$
 (7)

where the forcing term is given by $F_k = 0$ for k > 1 and F_1 such that $\partial_t \hat{u}_1 = 0$ for t > 0. Here $\hat{u}_k(t) \in \mathbb{C}$ denotes the k-th Fourier coefficient of u(x,t)

$$u(x) \equiv \sum_{k=-N}^{k=+N} \hat{u}_k e^{ikx} \tag{8}$$

where N in the total number of Fourier modes. Note that since $u(x,t) \in \mathbb{R}$ the following condition must be accomplished

$$\hat{u}_k = \overline{\hat{u}_{-k}} \tag{9}$$

where $\overline{(\cdot)}$ denotes the complex conjugate. For details about the computation of the non-linear convective term the reader is referred to Appendix B.

BURGERS' EQUATION IN FOURIER SPACE

$$\partial_t u + u \partial_x u = \frac{1}{Re} \partial_{xx} u + f \tag{A.1}$$

each of the terms can be converted into Fourier space. Transient, diffusive and forcing terms are straightforward

$$\partial_t u = \sum_{k=-N}^{k=+N} (\partial_t \hat{u}_k) e^{ikx}$$
(A.2)

$$\partial_{xx}u = \sum_{k=-N}^{k=+N} \hat{u}_k \partial_{xx} e^{ikx} = \sum_{k=-N}^{K=+N} \left(-k^2 \hat{u}_k\right) e^{ikx}$$
(A.3)

$$f = \sum_{k=-N}^{k=+N} F_k e^{ikx} \tag{A.4}$$

BURGERS' EQUATION IN FOURIER SPACE

and non-linear convective term is given by

$$\partial_x u = \sum_{k=-N}^{k=+N} \hat{u}_k \partial_x e^{ikx} = \sum_{k=-N}^{k=+N} ik \hat{u}_k e^{ikx}$$
(A.5)

$$u\partial_x u = \sum_{p=-N}^{p=N} \hat{u}_p e^{ipx} \sum_{q=-N}^{q=+N} iq \hat{u}_q e^{iqx} = \sum_{p=-N, q=-N}^{p=+N, q=+N} \hat{u}_p iq \hat{u}_q e^{i(p+q)x}$$
(A.6)

and the condition that $u(x,t) \in \mathbb{R}$ is automatically satisfied

$$\hat{u}_{-p}i(-q)\hat{u}_{-q} = -\overline{\hat{u}_p}iq\overline{\hat{u}_p} = \overline{\hat{u}_p}iq\hat{u}_q$$
(A.7)

Therefore, the Burgers equation (A.1) in Fourier space results

$$\sum_{k=-N}^{k=+N} (\partial_t \hat{u}_k) e^{ikx} + \sum_{p=-N,q=-N}^{p=+N,q=+N} \hat{u}_p i q \hat{u}_q e^{i(p+q)x} = \frac{1}{Re} \sum_{k=-N}^{k=+N} (-k^2 \hat{u}_k) e^{ikx} + \sum_{k=-N}^{k=+N} F_k e^{ikx} \quad (A.8)$$

COMPUTING TRIADIC INTERACTIONS

The contribution of the convective term to the k^{th} mode is given by

$$\sum_{k=p+q} \hat{u}_p i q \hat{u}_q \in \mathbb{C}. \tag{B.1}$$

$$\hat{u}_p = \overline{\hat{u}_{-p}}.\tag{B.2}$$

Figure 4: Representation of all possible triadic interactions between modes. Only the interactions between the straight lines k=0 and k=N need to be considered for the computation of the non-linear convective term.

Figure 2: Energy spectrum of the steady-state solution of the Burgers equation for N=20 and N=100 (DNS). The steady state is reached at t=3 approximately.

DNS vs LES vs RANS

TURBULENCE MODELING: A PREVIEW

TURBULENCE MODELING: A PREVIEW

Turbulent channel flow at $Re_{\tau} = 395$ ($Re_{bulk} = 13760$)

LARGE-EDDY SIMULATION (LES)

$$\nu_t(k/k_N) = \nu_t^{+\infty} \left(\frac{E_{k_N}}{k_N}\right)^{1/2} \nu_t^* \left(\frac{k}{k_N}\right)$$
(19)

with

$$\nu_t^{+\infty} = 0.31 \frac{5 - m}{m + 1} \sqrt{3 - m} C_K^{-3/2} \tag{20}$$

where m is the slope of the energy spectrum, that is k^{-m} , E_{k_N} is the energy at the cutoff frequency, k_N , and C_K is the Kolmogorov constant. ν_t^* is a non-dimensional eddy-viscosity equal to 1 for small values of k/k_N and with a strong increase for higher k up to $k/k_N=1$; it reads

$$\nu_t^* \left(\frac{k}{k_N} \right) = 1 + 34.5e^{-3.03(k_N/k)} \tag{21}$$

Note that the classical $\nu_t(k/k_N)$ is recovered for m=5/3. In our case, the energy spectrum is approximately m=2 (see Figure 2) and the Kolmogorov constant (for 1D Burgers equation) is $C_K\approx 0.4523$. In our case, $\nu=Re^{-1}$, and therefore, in practice the only modification in the code implies to modify ν by $\nu_{eff}(k)=\nu+\nu_t(k)$. Try to reproduce the results reported in Figure 3.

Figure 3: Energy spectrum of the steady-state solution of the Burgers equation for N=20 (with spectral eddy-viscosity model taking m=2 and $C_K=0.4523$) and N=100 (DNS).

- Note that although $E_k \in \mathbb{R}$, $\hat{u}_k \in \mathbb{C}$. Therefore, your code must be able to perform basic operations with complex numbers.
- You can use a fully explicit time-integration scheme. Be careful with $\Delta t!!$ A CFL-like condition must be imposed⁴

$$\Delta t < C_1 \frac{Re}{N^2} \tag{22}$$

• All the results reported here correspond to the steady state solution. You can also visualize the temporal evolution, play with other *Re*-numbers, different initial conditions, etc... It would help you to understand better the role of each term.