Fully Polynomial Parameterized Algorithms For the T-Path Packing Problem

Narek Bojikian

Humboldt University of Berlin

12.12.2019

• T-path packing.

• T-path packing.

- T-path packing.
- Odd *T*-path packing.

- T-path packing.
- Odd *T*-path packing.

- T-path packing.
- Odd *T*-path packing.
- S T-path packing.

- T-path packing.
- Odd *T*-path packing.
- S T-path packing.

- T-path packing.
- Odd *T*-path packing.
- S T-path packing.
- Goal: Find maximum set of each.

- T-path packing.
- Odd *T*-path packing.
- S T-path packing.
- Goal: Find maximum set of each.

- T-path packing.
- Odd T-path packing.
- S T-path packing.
- Goal: Find maximum set of each.
- Maximum Matching $\nu(G)$.

- T-path packing.
- Odd *T*-path packing.
- S T-path packing.
- Goal: Find maximum set of each.
- Maximum Matching $\nu(G)$.

Reduction - T-Path Packing to Matching

Reduction - T-Path Packing to Matching

Reductions presented in the thesis

• Let $\mathcal A$ be an efficient **polynomial-time**^(*) algorithm for matching in a class $\mathcal C$.

- Let $\mathcal A$ be an efficient **polynomial-time**^(*) algorithm for matching in a class $\mathcal C$.
- ullet Let f be a reduction from a problem P to maximum matching.

- Let $\mathcal A$ be an efficient **polynomial-time**^(*) algorithm for matching in a class $\mathcal C$.
- Let f be a reduction from a problem P to maximum matching.
- Assume f can be computed efficiently and the size of the output is bounded in a **linear function**(**) in the size of G.

- Let $\mathcal A$ be an efficient **polynomial-time**^(*) algorithm for matching in a class $\mathcal C$.
- Let f be a reduction from a problem P to maximum matching.
- Assume f can be computed efficiently and the size of the output is bounded in a **linear function**(**) in the size of G.
- Assume C is closed under f.

- Let $\mathcal A$ be an efficient **polynomial-time**^(*) algorithm for matching in a class $\mathcal C$.
- Let f be a reduction from a problem P to maximum matching.
- Assume f can be computed efficiently and the size of the output is bounded in a **linear function**(**) in the size of G.
- Assume C is closed under f.
 - Then we get an efficient algorithm for P in \mathcal{C} .

- Let $\mathcal A$ be an efficient **polynomial-time**^(*) algorithm for matching in a class $\mathcal C$.
- Let f be a reduction from a problem P to maximum matching.
- Assume *f* can be computed efficiently and the size of the output is bounded in a **linear function**(**) in the size of *G*.
- Assume C is closed under f.
 - Then we get an efficient algorithm for P in C.

A' - Efficient algorithm for P

Given a graph G. Compute G' := f(G) and apply A on G'.

- Let $\mathcal A$ be an efficient **polynomial-time**^(*) algorithm for matching in a class $\mathcal C$.
- Let f be a reduction from a problem P to maximum matching.
- Assume f can be computed efficiently and the size of the output is bounded in a **linear function**(**) in the size of G.
- Assume C is closed under f.
 - Then we get an efficient algorithm for P in \mathcal{C} .

A' - Efficient algorithm for P

Given a graph G. Compute G' := f(G) and apply A on G'.

$$\operatorname{time}_{A'}(G) = \operatorname{time}_f(G) + \operatorname{time}_A(G') = O(\operatorname{time}_f(G) + \operatorname{time}_A(G))$$

- T-path packing (using the second reduction):
 - Tree-depth.
 - Tree-width.
 - s-plexes.

The value at most doubles.

- Modular-width.
- Independence number.
- Neighborhood diversity number.

The value does not change.

```
.. Running time O(k(n+m))
```

Strongly chordal -, Interval- and co-Comparability- graphs.

The classes are closed under this reduction.

```
.. Running time O(n+m)
```

Circular-arc graphs.

The classes are closed under this reduction.

```
.. Running time O((n+m)\log(n))
```

- Odd *T*-path packing:
 - Neighborhood diversity number.
 - Bounded Replaceablity $O(k^2)$.

.. Running time $O(k^2(n+m))$

- Odd T-path packing and S T-path packing:
 - Tree-depth and tree-width.

The value at most doubles.

.. Running time O(k(n+m))

- Independence number - does not change.

• Vertex-deletion distance to a class - $d_{\mathcal{C}}(G)$.

- Vertex-deletion distance to a class $d_{\mathcal{C}}(G)$.
- The reductions preserve the distance to triviality.

- Vertex-deletion distance to a class $d_{\mathcal{C}}(G)$.
- The reductions preserve the distance to triviality. Given a graph G, a class C and any of the reductions f such that C is closed under f and $d_C(G) \le k$, then $d_C(f(G)) \le 2k$.

- Vertex-deletion distance to a class $d_{\mathcal{C}}(G)$.
- The reductions preserve the distance to triviality. Given a graph G, a class $\mathcal C$ and any of the reductions f such that $\mathcal C$ is closed under f and $d_{\mathcal C}(G) \leq k$, then $d_{\mathcal C}(f(G)) \leq 2k$.
- The reductions preserve the distance to parameters values.

- Vertex-deletion distance to a class $d_{\mathcal{C}}(G)$.
- The reductions preserve the distance to triviality. Given a graph G, a class $\mathcal C$ and any of the reductions f such that $\mathcal C$ is closed under f and $d_{\mathcal C}(G) \leq k$, then $d_{\mathcal C}(f(G)) \leq 2k$.
- The reductions preserve the distance to parameters values. Let ρ_G be the value of the parameter in G. Consider the class $\mathcal{C}_n := \{G: \rho_G \leq n\}$. For a reduction f, such that $f(\mathcal{C}_n) \subseteq \mathcal{C}_{g(n)}$ for some computeable function g,

we get $d_{\mathcal{C}_{g(n)}}(f(G)) \leq 2d_{\mathcal{C}_n}(G)$.

- Vertex-deletion distance to a class $d_{\mathcal{C}}(G)$.
- The reductions preserve the distance to triviality. Given a graph G, a class C and any of the reductions f such that \mathcal{C} is closed under f and $d_{\mathcal{C}}(G) \leq k$, then $d_{\mathcal{C}}(f(G)) \leq 2k$.
- The reductions preserve the distance to parameters values. Let ρ_G be the value of the parameter in G. Consider the class $C_n := \{G : \rho_G \leq n\}$. For a reduction f, such that $f(C_n) \subseteq C_{g(n)}$ for some computeable function g,

we get $d_{\mathcal{C}_{\sigma(n)}}(f(G)) \leq 2d_{C_n}(G)$.

• If maximum matching can be solved efficiently in graphs with distance at most k to C, so is T-path packing.

- T-Path Packing.
 - Neighborhood diversity number.
 - s-plexes.
 - Independence number.

¹On adaptive algorithms for maximum matching, F.Hegerefeld and S.Kratsch, ICALP-2019.

- T-Path Packing.
 - Neighborhood diversity number.
 - s-plexes.
 - Independence number.

.. Running time $O(\sqrt{d}k(n+m))$

Odd T-Path Packing.
 Neighborhood diversity number.

¹On adaptive algorithms for maximum matching, F.Hegerefeld and S.Kratsch, ICALP-2019.

- T-Path Packing.
 - Neighborhood diversity number.
 - s-plexes.
 - Independence number.

- Odd T-Path Packing.
 Neighborhood diversity number.
 - The class of ℓ -Replaceable graphs $\mathcal{R}[\ell]$.

¹On adaptive algorithms for maximum matching, F.Hegerefeld and S.Kratsch, ICALP-2019.

- T-Path Packing.
 - Neighborhood diversity number.
 - s-plexes.
 - Independence number.

- Odd T-Path Packing.
 Neighborhood diversity number.
 - The class of ℓ -Replaceable graphs $\mathcal{R}[\ell]$.
 - For m:=|E(G)|, $l,d\in\mathbb{N}$, if $d_{\mathcal{R}[\ell]}(G)\leq d$, then $\nu(G)$ can be found in $O(\sqrt{d}\ell m)^{-1}$.

¹On adaptive algorithms for maximum matching, F.Hegerefeld and S.Kratsch, ICALP-2019.

- T-Path Packing.
 - Neighborhood diversity number.
 - s-plexes.
 - Independence number.

- Odd T-Path Packing.
 Neighborhood diversity number.
 - The class of ℓ -Replaceable graphs $\mathcal{R}[\ell]$.
 - For m:=|E(G)|, $l,d\in\mathbb{N}$, if $d_{\mathcal{R}[\ell]}(G)\leq d$, then $\nu(G)$ can be found in $O(\sqrt{d}\ell m)^{-1}$.
 - For G' the graph resulting from G when we apply the second reduction. If the Neighborhood diversity number of G is at most k then G' is at most $O(k^2)$ replaceable.

¹On adaptive algorithms for maximum matching, F.Hegerefeld and S.Kratsch, ICALP-2019.

- T-Path Packing.
 - Neighborhood diversity number.
 - s-plexes.
 - Independence number.

.. Running time $O(\sqrt{d}k(n+m))$

- Odd T-Path Packing.
 Neighborhood diversity number.
 - The class of ℓ -Replaceable graphs $\mathcal{R}[\ell]$.
 - For m:=|E(G)|, $l,d\in\mathbb{N}$, if $d_{\mathcal{R}[\ell]}(G)\leq d$, then $\nu(G)$ can be found in $O(\sqrt{d}\ell m)^{-1}$.
 - For G' the graph resulting from G when we apply the second reduction. If the Neighborhood diversity number of G is at most k then G' is at most $O(k^2)$ replaceable.

¹On adaptive algorithms for maximum matching, F.Hegerefeld and S.Kratsch, ICALP-2019.

Methods and results - Simplify, solve and augment

 Sometimes parameters can be seen from a different perspective.

 $^{^2 \}text{For } \mathcal{T}$ the class of forests.

- Sometimes parameters can be seen from a different perspective.
- The feedback vertex number of a graph is the size of the smallest set of vertices that intersects all cycles in the graph.

 $^{^2}$ For $\mathcal T$ the class of forests.

- Sometimes parameters can be seen from a different perspective.
- The feedback vertex number of a graph is the size of the smallest set of vertices that intersects all cycles in the graph.
- Equivalently, the feedback vertex number of a graph G is the vertex-deletion distance of this graph from forests² $d_{\mathcal{T}}(G)$.

 $^{^2}$ For $\mathcal T$ the class of forests.

- Sometimes parameters can be seen from a different perspective.
- The feedback vertex number of a graph is the size of the smallest set of vertices that intersects all cycles in the graph.
- Equivalently, the feedback vertex number of a graph G is the vertex-deletion distance of this graph from forests² $d_T(G)$.
- ullet Let ho be a parameter defined as
 - the vertex-deletion distance to a class $\mathcal{C}.$

 $^{^2}$ For $\mathcal T$ the class of forests.

- Sometimes parameters can be seen from a different perspective.
- The feedback vertex number of a graph is the size of the smallest set of vertices that intersects all cycles in the graph.
- Equivalently, the feedback vertex number of a graph G is the vertex-deletion distance of this graph from forests² $d_T(G)$.
- ullet Let ho be a parameter defined as
 - the vertex-deletion distance to a class \mathcal{C} .
- ullet Assume T-Path Packing admits an efficient algorithm ${\mathcal A}$ in ${\mathcal C}$.
 - Then we get an algorithm for G parameterized by ρ .

 $^{^2}$ For $\mathcal T$ the class of forests.

A' - Parameterized algorithm

• Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in \mathcal{C}$.

- Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in C$.
- Apply \mathcal{A} on H.

- Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in C$.
- Apply \mathcal{A} on H.
- Apply the first reduction on H to get H'.

- Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in C$.
- Apply \mathcal{A} on H.
- Apply the first reduction on H to get H'.
- Find a maximum matching in H (using the reduction).

- Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in C$.
- Apply \mathcal{A} on H.
- Apply the first reduction on H to get H'.
- Find a maximum matching in H (using the reduction).
- ullet Turn H into G by adding S back to the graph
 - turns H' into G' by adding at most 2|S| vertices.

- Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in C$.
- Apply \mathcal{A} on H.
- Apply the first reduction on H to get H'.
- Find a maximum matching in H (using the reduction).
- Turn H into G by adding S back to the graph
 turns H' into G' by adding at most 2|S| vertices.
- Find a maximum matching in G'
 - by finding at most 2|S| augmenting paths.

- Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in C$.
- Apply \mathcal{A} on H.
- Apply the first reduction on H to get H'.
- Find a maximum matching in H (using the reduction).
- Turn H into G by adding S back to the graph
 turns H' into G' by adding at most 2|S| vertices.
 - turns 11 mile of by adding at
- Find a maximum matching in G'
 by finding at most 2|S| augmenting paths.
- Find a maximum T-path packing in G (using the reduction).

- Let S be a modulator in G and $H := G \setminus S$, i.e. $H \in C$.
- Apply \mathcal{A} on H.
- Apply the first reduction on H to get H'.
- Find a maximum matching in H (using the reduction).
- ullet Turn H into G by adding S back to the graph
 - turns H' into G' by adding at most 2|S| vertices.
- Find a maximum matching in G'
 - by finding at most 2|S| augmenting paths.
- Find a maximum T-path packing in G (using the reduction).

$$time_{A'}(G) = O(n + m + time_A(H) + (2|S|(n+m)))$$
$$= O(time_A(G \setminus S) + \rho(n+m)).$$

- Vertex Cover Number
 - simplify to an independent set.

Running time
$$O(k(n+m)) \rightarrow O(\sqrt{k(n+m)^3}$$

- Feedback Vertex Number
 - simplify to a forest.

.. Running time
$$O(k(n+m))$$

Designed a dynamic programming algorithm for each of the problems in forests.

³suggested by Prof. Kratsch.