공간데이터 분석

Jong-June Jeon

September 4, 2022

Department of Statistics, University of Seoul

유동인구 데이터

서울생활인구데이터

- ㆍ생활인구는 특정 지역의 유동적인 변화를 포함하기 위해 나온 지표
- 24시간동안 해당 지역에 잇는 모든 인구를 포함
- · 서울시와 KT가 공공빅데이터와 통신데이터를 이용하여 추계한 인구자료

서울생활인구 추계단계

- 1. KT 기지국 주변에 위치한 고객과 점유율을 사용하여 실제 인구를 추정하기 위해서 보정
- 2. 집계구별로 배분, 재추계하여 산출
- 3. 스마트폰 사용비율이 상대적으로 낮은 10세 미만, 80세 이상 인구 최후 보정
- 4. 최종적으로 산출된 생활인구 데이터를 내국인, 장기체류 외국인, 단기체류 외국인으로 나눠 발표

서울열린데이터광장

Figure 1: 서울생활인구

4

서울생활인구데이터 다운로드 https://data.seoul.go.kr

- ㆍ 서울열린데이터광장 통계 > 서울 생활인구 탭 선택
- 필요에 따라 적절한 데이터 선택
- ㆍ예) 자치구단위 서울생활인구 일별 집계표 선택
- · openAPI 또는 직접 csv, json 파일을 내려받기 가능

자치구단위 서울생활인구(내국인) 데이터

Figure 2: 서울생활인구 홈페이지

자치구단위 서울생활인구(내국인) 데이터

기준일ID	시간대구분	자치구코드	총생활인구수	남자0세부터9	남자10세투
20220113	00	11110	202928.9692	4879.9787	2871.0295
20220113	00	11140	173923.0447	3690.7795	1500.4321
20220113	00	11170	256443.7587	7474.0119	3675.753
20220113	00	11200	324509.9998	11809.089	4905.8908
20220113	00	11215	365489.9287	10651.0678	5730.5488
20220113	00	11230	346784.6664	10598.7808	5270.3606
20220113	00	11260	378641.3774	12353.4366	5962.2769
20220113	00	11290	433388.9069	16521.1276	9263.5383

Figure 3: 자치구단위 서울생활인구(내국인) 예시

자치구단위 서울생활인구(내국인) 데이터 필드

- · 기준일ID: 데이터 수집 날짜
- · 시간대구분: 00 ~ 23까지 총 24시간
- ㆍ 자치구코드: 행정동을 의미하는 번호
- · 총생활인구수와 각 성별, 연령대별 생활인구수

자치구코드

- ㆍ통계 > 서울 생활인구 > 자치구 단위 > 행정구역 코드정보에서 다운받을 수 있음
- ㆍ총 424개의 행정동코드 정보를 담고 있음

통계청행정동코드	행자부행정동코드	시도명	시군구명	행정동명
H_SDNG_CD	H_DNG_CD	DO_NM	CT_NM	H_DNG_NM
1101053	11110530	서울	종로구	사직동
1101054	11110540	서울	종로구	삼청동
1101055	11110550	서울	종로구	부암동
1101056	11110560	서울	종로구	평창동
1101057	11110570	서울	종로구	무악동
1101058	11110580	서울	종로구	교남동
1101060	11110600	서울	종로구	가회동
1101061	11110615	서울	종로구	종로1.2.3.4가동
1101063	11110630	서울	종로구	종로5.6가동
1101064	11110640	서울	종로구	이화동
1101067	11110670	서울	종로구	창신1동

Figure 4: 행정동코드 예시

- · 행정동 shp 파일을 불러오기
- · crs(좌표계) 설정해주기: 'EPSG:4326'

ㆍ행정동 별 평균 총생활인구 시각화

3차원 시각화

- · R 패키지 'rayshader'를 활용하여 3차원 시각화
- ㆍ지도상에서 시간별 유동인구에 따라 막대의 크기가 달라지고 색깔도 변하도록 설정
- · 데이터를 보간(interpolation)하여 자연스러운 애니메이션 생성

3차원 시각화

Figure 5: 3차원 시각화 결과

유동인구 예측모형 구축

생활인구는 시공간적 특성에 따라 매우 다른 패턴을 보여줌

- ㆍ도시설계에 따라 대학가, 주거밀집지역 등 행정동별로 특성이 다름
- · 주중/주말 그리고 시간대별로 생활인구가 밀집되는 지역이 다름
- 연령대별로 생활인구가 밀집되는 지역이 다름

기존 데이터의 전처리 작업이 필요함

- · (기존)기준일ID: 20220113 > (변경) 1월, 13일, 목요일
- · (기존)자치구코드 11110530 > (변경) 종로구사직동

Figure 6: 연령대별 생활인구 Top5 행정동 예시

데이터 추가 작업

- ㆍ 날씨 상태, 미세먼지와 같은 환경적 요인에 따라 생활인구패턴이 달라짐
- ㆍ 평일도 공휴일 여부에 따라 해당 지역의 생활인구패턴이 달라짐
- · 위의 변수를 추가하기 위해 공공데이터 및 openAPI 이용

기상자료수집

- ㆍ 기상청 기상자료개방포털를 이용
- · 종관기상관측자료(ASOS)에서 지점 > 서울특별시 선택
- · 기온, 강수량, 습도와 같은 필요 변수 선택 후 csv 파일 다운로드

지점	시간	기온(°C)	강수량(mm)	습도(%)
서울(108)	2022-01-11 01:00	-1.2		83
서울(108)	2022-01-11 02:00	-2.7		72
서울(108)	2022-01-11 03:00	-4.3	0.2	71
서울(108)	2022-01-11 04:00	-5.9		66
서울(108)	2022-01-11 05:00	-7.1		67
서울(108)	2022-01-11 06:00	-7.9		66
서울(108)	2022-01-11 07:00	-8.7		62
서울(108)	2022-01-11 08:00	-9.3		62

Figure 7: ASOS 자료 예시

미세먼지자료수집

- ㆍ서울시 열린데이터광장의 '서울시 일별 평균 대기오염정보' 데이터셋 사용
- ㆍ미세먼지, 초미세먼지 외 필요한 변수 사용
- ㆍ 각 측정소별로 측정된 자료이지만 평균하여 서울 공통 변수로 사용

측정일시	측정소명	미세먼지(µg/m')	초미세먼지(#g/m
20220118	강남구	32	17
20220118	강남대로	42	18
20220118	강동구	41	22
20220118	강변북로	42	21
20220118	강북구	40	20
20220118	강서구	43	19
20220118	공항대로	44	22
20220118	관악구	30	16

Figure 8: 서울시 미세먼지 자료 예시

공휴일 데이터 받기

- · 공공데이터 포털 한국천문연구원 특일 정보 API를 활용하여 공휴일 구하기
- · https://www.data.go.kr/data/15012690/openapi.do의 API key 발급

```
# 필요 라이브러리 블러오기
import pandas as pd
import numpy as np
import requests
import json
import xmltodict

key = '발급받은 키를 넣어주세요'

# api를 통하여 호출받은 정보를 저장할 데이터 프레임과 리스트 만들기
holidays = pd.DataFrame(columns=['date', 'name'])
date_list = []
name_list = []
```

```
for year_ in ['2022', '2023', '2024']:
    for month in ['01','02','03','04','05','06','07','08','09','10','11','12']:
        url = "http://apis.data.go.kr/B090041/openapi/service/SpcdeInfoService/getHoliDeInfo?solYear=
        "+vear +"&solMonth="+month+"&ServiceKev="+kev
        # request 로 api data 불러오기
        content = requests.get(url).content
        #orderedDict 형태
        dict = xmltodict.parse(content)
        #xml을 ison으로 변화
        isonString = ison.dumps(dict['response']['body'], ensure ascii = False)
        #ison파일을 파이써으로
        isonObj = ison.loads(isonString)
        if jsonObj['items'] == None:
           continue
        holi dict = isonObi['items']['item']
        if type(holi dict) == list:
            for i in range(len(holi dict)):
               date list.append(holi dict[i]['locdate'])
               name list.append(holi dict[i]['dateName'])
        ، مع ام
            date list.append(holi dict['locdate'])
           name list.append(holi dict['dateName'])
date_arr = np.array(date_list)
name arr = np.arrav(name list)
#DataFrame 형태로 저장
holidays['date'] = date_arr
holidavs['name'] = name arr
```

pandas DatetimeIndex를 사용하자

```
# DatetimeIndex에서 월 추출
pandas.DatetimeIndex.month
# DatetimeIndex에서 날 추출
pandas.DatetimeIndex.day
# DatetimeIndex에서 요일 추출
pandas.DatetimeIndex.weekday
```

```
여러개의 output에 대해서 서로 공유하는 input laver를 정의
shared input layer = [layers.Input(shared x input[0].shape[1])
                       for in range(M)]
shared dense1 = layers.Dense(d1,
                   kernel regularizer=tf.keras.regularizers.l2(0.01).
                   activation='relu')
shared dense2 = layers.Dense(d2,
                   kernel regularizer=tf.keras.regularizers.l2(0.01).
                   activation='relu')
shared h = [shared dense2(shared dense1(x))]
           for x in shared input layer]
```

shared input, input 사이의 인접정보와 각 output 계산에 필요한 input을 결한 input layer = [layers.Input(x input[0].shape[1]) for in range(M)] # adjacency matrix embedding w loc dense = layers.Dense(d2, kernel regularizer=tf.keras.regularizers.l2(0.01). activation='relu') w loc = w loc dense(adj mat) w loc = tf.split(w loc, num or size splits=M, axis=0) w loc = [tf.tile(w loc[i]. (batch size. 1)) for i in range(M)] $concat_h = [tf.concat([x, h, w], axis=-1)]$ for x, h, w in zip(input layer, shared h, w loc)]

여러개의 output에 대해서 각각 loss를 계산하고, 하나로 합치는 custom loss 정의, GradientTape에 이를 적용

```
atf. function
def loss_fun(y, y_pred):
    loss = 0
    for i in range(M):
        loss = loss + tf.math.reduce mean(tf.math.square(
            tf.cast(tf.squeeze(v[i]), tf.float32) \
                - tf.cast(v pred[i]. tf.float32)))
    return loss
with tf.GradientTape() as tape:
    v pred = model([x batch, shared x batch])
    loss = loss fun(v batch, v pred)
grads = tape.gradient(loss, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
```

신경망 모형적합

tf. Variable을 통해 선형 레이어의 가중치 정의하기

```
class Linear(lavers.Laver): # subclass
    def init (self, units=32, input dim=32):
        super(Linear, self). init ()
        w init = tf.random normal initializer()
        self.w = tf.Variable(initial value=w init(shape=(input dim,
                                                            units).
                                                  dtvpe='float32').
                                                  trainable=True)
        b init = tf.zeros initializer()
        self.b = tf.Variable(initial value=b init(shape=(units.).
                                                  dtvpe='float32').
                                                  trainable=True)
   def call(self, inputs):
        return tf.matmul(inputs. self.w) + self.b
```

```
add weight을 통해 선형 레이어의 가중치 정의하기
class Linear(lavers.Laver):
   def __init__(self, units=32, input_dim=32):
       super(Linear, self). init ()
       self.w = self.add_weight(shape=(input_dim, units),
                               initializer='random normal'.
                               trainable=True)
       self.b = self.add weight(shape=(units.).
                               initializer='zeros',
                               trainable=True)
   def call(self. inputs):
       return tf.matmul(inputs, self.w) + self.b
```

```
학습이 불가능한 weight 정의하기
class Compute_Sum(layers.Layer):
   def init (self. input dim):
       super(Compute_Sum, self).__init__()
       self.total = tf.Variable(initial value=tf.zeros((input dim, )),
                               trainable=False)
   def call(self. inputs):
       self.total.assign add(tf.reduce sum(inputs, axis=0))
       # 지금까지 입력된 값들을 total에 상수처럼 누적하여 저장
       return self.total
weights: 1
non-trainable weights: 1
trainable weights: []
```

- 많은 경우에, input의 크기를 미리 알 수 없는 경우가 있고, layer를 만든 이후에 이러한 input 값이 알려지면 weights를 생성하고 싶을 수 있다.
- Keras API에서는, build(inputs_shape) method를 이용해 다음과 같이 weights를 이후에 생성할 수 있다.
- \cdot __call__ method는 첫 번째 호출이 되는 시점에 자동으로 build를 실행시킨다.

- · layer는 재귀적으로 전진 방향 전파 학습을 하는 도중 손실함수 값을 수집한다!
- ・ layer에서 call method는 손실 값을 저장하는 tensor를 생성할 수 있도록 해주어, 후에 training loop을 작성할 때 사용가능하도록 해준다.
- · self.add_loss(value)를 사용!

```
class ActivityRegularizationLayer(layers.Layer):
    def __init__(self, rate=1e-2):
        super(ActivityRegularizationLayer, self).__init__()
        self.rate = rate

def call(self, inputs):
        self.add_loss(self.rate * tf.reduce_sum(inputs))
        return inputs
```

- · 이렇게 생성된 손실 값은(임의의 내부 layer의 손실 함수 값을 포함하여) layer.losses를 이용해 불러올수 있다.
- · 이러한 특성은 top-level layer에서의 모든 call의 시작에 초기화 된다.
- · 이는 layer.losses가 항상 마지막 전진 방향 전파 학습의 손실 값만을 저장하기 위함이다.

```
class OuterLayer(layers.Layer):
    def __init__(self):
        super(OuterLayer, self).__init__()
        self.activitiy_reg = ActivityRegularizationLayer(1e-2)

def call(self, inputs):
    return self.activitiy_reg(inputs)
```

```
layer = OuterLayer()
'''어떠한 layer도 call되지 않았으므로 손실 값이 없다'''
assert len(layer.losses) == 0
_ = layer(tf.random.normal((1, 1)))
'''layer가 1번 call되었으므로 손실 값은 1개'''
print(layer.losses)
assert len(layer.losses) == 1
[<tf.Tensor: shape=(), dtype=float32, numpy=0.007476533>]
```

```
'''layer.losses는 각각의 __call__의 시작에서 초기화'''
_ = layer(tf.random.normal((1, 1)))
'''마지막으로 생성된 손실 값'''
print(layer.losses)
assert len(layer.losses) == 1
[<tf.Tensor: shape=(), dtype=float32, numpy=0.00865575>]
```

|텐서플로우 커스텀 모형 적합

MCP penalty를 계산할 custom layer 정의와 그 사용법

```
class MCP(lavers.Laver):
    def init (self, lambda , r):
        super(MCP, self). init ()
        self.lambda = lambda
        self_r = r
    def call(self. weight):
        penalty1 = self.lambda * tf.abs(weight) \
                    - tf.math.square(weight) / (2. * self.r)
        penaltv2 = tf.math.square(self.lambda ) * self.r / 2
        return tf.reduce sum(
            penalty1 * tf.cast(tf.abs(weight) <= self.r * self.lambda . tf.float32) +</pre>
            penaltv2 * tf.cast(tf.abs(weight) > self.r * self.lambda . tf.float32))
# MCP penaltv 추가
mcp = MCP(lambda \cdot r)
model.add loss(lambda: mcp(custom layer.weights[0]))
```

텐서플로우 커스텀 모형 적합

custom 모형 정의 (가중치가 반복적으로 사용되는 모형) class CustomLayer(layers.Layer): def init (self. output dim, **kwargs): super(CustomLayer, self). init (**kwargs) self.output dim = output dim self.lambda = lambda self.r = rdef build(self, input shape): self.w = self.add_weight(shape=(input_shape[-1], 1). initializer="random normal", trainable=True) self.b = self.add_weight(shape=(), initializer="random normal". trainable=True) def call(self. x): w repeated = tf.repeat(self.w. self.output dim. axis=-1) b repeated = tf.repeat(self.b, self.output dim) return tf.matmul(x, w repeated) + b repeated

텐서플로우 커스텀 모형 적합

GradientTape을 이용해 MCP penalty를 custom model 학습에 적용

```
optimizer = K.optimizers.SGD(0.01)
for i in range(100):
    with tf.GradientTape() as tape:
        yhat = model(X)
        loss = tf.reduce_mean(tf.losses.mean_squared_error(y, yhat))
        loss += sum(model.losses) # MCP penalty 적용
    grad = tape.gradient(loss. model.trainable weights)
    optimizer.apply gradients(zip(grad, model.trainable weights))
    if i % 10.
        print(i, loss)
withpenalty = custom_layer.weights[0]
```

텐서플로우 커스텀 모형 적합

MCP penalty의 적용 결과 확인 (모형의 가중치 시각화)

Figure 9: custom 모형의 가중치 bar plot; left: no penalty, right: MCP penalty