

## Agenda

- Image Segmentation
- Fully Convolutional Networks (FCN)
- Training Vision Models Challenges



#### **Image Segmentation**

- Evolution from Classification → Detection → Segmentation
- Goal: Pixel level identification
- Metrics: Jaccard Index

$$-IoU = \frac{True\ Positive}{True\ Positive + False\ Positive + False\ Negative}$$

- Datasets:
  - PASCAL VOC
  - MS COCO
  - Cityscapes
  - ADE20K
  - Imagenet
  - KITTI



# **Agenda**

• Image Segmentation

Fully Convolutional Networks (FCN)

Training Vision Models Challenges



# **Fully Convolutional Networks**

Image Classification Objective: Predict Image Label



Source: Mathworks



# **Fully Convolutional Networks**

Segmentation Objective: Predict Pixel Label

#### convolution



Teradata.

#### FCN: Upsampling



Upsampling and Image Segmentation with Tensorflow and TF-Slim Source: http://warmspringwinds.github.io/tensorflow/tf-slim/2016/11/22/upsampling-and-image-segmentation-with-tensorflow-and-tf-slim/

# **Fully Convolutional Networks: Implementations**

- Future easy to use—Coming to Keras: Dense Prediction API Design, Including Segmentation and Fully Convolutional Networks
  - https://github.com/fchollet/keras/issues/6538#issuecomment-301342345
- Original Caffe: <a href="https://github.com/shelhamer/fcn.berkeleyvision.org">https://github.com/shelhamer/fcn.berkeleyvision.org</a>
- TensorFlow: https://github.com/MarvinTeichmann/tensorflow-fcn



# Agenda

• Image Segmentation

Fully Convolutional Networks (FCN)

Training Vision Models Challenges



# Training Vision Models Challenges: Time

| Batch Size | epochs | Top-1 Accuracy | hardware             | cost (\$)   | time   |
|------------|--------|----------------|----------------------|-------------|--------|
| 256        | 100    | 58.7%          | 8-core CPU + K20 GPU | 3,000       | 144h   |
| 512        | 100    | 58.8%          | 1 DGX station        | 129,000     | 6h 10m |
| 4096       | 100    | 58.4%          | 1 DGX station        | 129,000     | 2h 19m |
| 32K        | 100    | 58.5%          | 512 KNLs             | 1.2 million | 24m    |

Table 7: The speed and hardware cost for training AlexNet.

For batch size=32K, we changed local response norm in AlexNet to batch norm.

| Batch Size | epochs | Top-1 Accuracy | hardware        | cost (\$)   | time |
|------------|--------|----------------|-----------------|-------------|------|
| 256        | 90     | 73.0%          | 1 DGX station   | 129,000     | 21h  |
| 8192       | 90     | 72.7%          | 1 DGX station   | 129,000     | 21h  |
| 8192       | 90     | 72.7%          | 32 DGX stations | 4.1 million | 1h   |
| 32K        | 90     | 72.4%          | 512 KNLs        | 1.2 million | 1h   |

Table 8: The speed and hardware cost for training ResNet50. We did not use data augmentation.



# **Architectures & Hyper-Parameters**





34-layer residual



Hyper-Parameter Optimization

Microsoft Resnet

Architecture GIFs: https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
More about hyper parameteric optimization http://colinraffel.com/wiki/neural network hyperparameters

FRADATA

#### **Distributed Training**

#### Data Parallel

- Distribute Data
  - Synchronous
  - Asynchronous



#### Model Parallel

Distribute Model Operations



