Seconde session

Consignes:

- Vous disposez de 3 h pour répondre aux 3 × 4 questions suivantes.
- Calculatrice non programmable peu utile, mais autorisée.
- Un formulaire sur les transformées de Fourier et Laplace est fourni en annexe.
- Soyez clairs et précis et dans vos réponses et justifications.
- Et surtout exprimez-vous sur les sujets proposés pour démontrer votre compréhension des concepts!

Exercice 1

Soit x(t) le signal périodique ci-dessous, obtenu en superposant des impulsions gaussiennes $g(t) = e^{-t^2}$ à toutes les T = 3 secondes :

$$x(t) = \sum_{n=-\infty}^{\infty} g(t - 3n).$$

a) En utilisant la périodicité de x(t), montrer que sa transformée de Fourier $\widehat{x}(f)$ satisfait l'équation

$$e^{6\pi jf}\,\widehat{x}(f)=\widehat{x}(f)$$
 .

et expliquer pour quoi cela implique que $\widehat{x}(f)$ est un spectre de raies espacées de $\frac{1}{3}$ Hz.

b) En partant de la conclusion de a), montrer que x(t) admet une représentation en série de Fourier de la forme

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \left(e^{\frac{2\pi jt}{3}}\right)^n.$$

c) Exprimer x(t) sous forme de produit de convolution de g(t) avec un peigne de Dirac et obtenir ainsi une autre expression de $\widehat{x}(f)$. En déduire que

$$c_n = \frac{1}{3} \ \widehat{g} \left(\frac{n}{3} \right).$$

d) À l'aide de tout ce qui précède, obtenir une expression de x(t) sous la forme

$$x(t) = \sum_{n=0}^{\infty} a_n \cos\left(\frac{2\pi nt}{3}\right)$$

en précisant les valeurs des coefficients a_n .

Exercice 2

Considérons, pour $\omega > 0$, le système dont la sortie y(t) et l'entrée x(t) sont liées par l'équation différentielle :

$$y''(t) + \omega^2 y(t) = x(t).$$

a) Si x(t) est un signal de classe C^1 , rappeler comment on peut simplifier l'expression $x(t) \cdot \delta(t)$ et, en dérivant formellement le produit, établir l'identité

$$x(t) \cdot \delta'(t) = x(0) \cdot \delta'(t) - x'(0) \cdot \delta(t).$$

b) Quelle était l'entrée du système si la sortie correspondante est

$$y(t) = H(t) \cdot (\alpha \cos(\omega t) + \beta \sin(\omega t))$$
?

c) Expliquer pourquoi, dans le cas général, on sait qu'on peut écrire la sortie comme

$$y(t) = h(t) * x(t)$$

où h(t) est un signal que vous préciserez.

d) Calculer, par la méthode de votre choix, le produit de convolution

$$H(t)\sin t * H(t)e^{-t}$$
.

Exercice 3

- a) En utilisant la définition de la transformée de Fourier, établir la propriété exprimant la transformée de $\overline{x(t)}$ en fonction de \widehat{x} .
- b) Déduire l'identité de Parseval de la formule de Plancherel en appliquant celle-ci à une paire de signaux x et y bien choisis.
- c) Étant donnée une fonction y, expliquer et expliciter la signification de chacune des expressions suivantes :

$$\mathrm{III}_1 \cdot y, \qquad \mathrm{III}_1 * y, \qquad \int_{-\infty}^{+\infty} \mathrm{III}_1(t) \, y(t) \, \mathrm{d}t.$$

d) Si y et \hat{y} sont des fonctions, donner une démonstration simple (une ligne!) du fait que :

$$\sum_{n=-\infty}^{\infty} y(n) = \sum_{n=-\infty}^{\infty} \widehat{y}(n)$$

et utiliser cela pour en déduire la somme de la série

$$\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}.$$

Produit de convolution

$$(x_1 * x_2)(t) = \int_{-\infty}^{+\infty} x_1(u) \, x_2(t-u) \, \mathrm{d}u = \int_{-\infty}^{+\infty} x_1(t-v) \, x_2(v) \, \mathrm{d}v$$

Transformation de Laplace

domaine temporel	domaine opérationnel	remarque
x(t)	$X(p) = \int_0^{+\infty} x(t) e^{-pt} dt$	
x'(t)	$pX(p)-x(0^+)$	
$\int_0^t x(u)\mathrm{d}u$	$\frac{X(p)}{p}$	The Control of the Co
tx(t)	-X'(p)	
$(-1)^n t^n x(t)$	$X^{(n)}(p)$	$(n\in\mathbb{N})$
$rac{x(t)}{t}$	$\int_{p}^{+\infty} X(s) \mathrm{d}s$	
$e^{at}x(t)$	X(p-a)	$(a\in\mathbb{C})$
x(t-a)	$e^{-pa}X(p)$	$(a\geqslant 0)$
x(kt)	$\frac{1}{k}X\left(\frac{p}{k}\right)$	(k > 0)

Théorèmes des valeurs initiale et finale : Si les limites temporelles existent et sont finies, on a

$$\lim_{p \to +\infty} pX(p) = x(0^+) \qquad \text{et} \qquad \lim_{p \to 0} pX(p) = x(+\infty)$$

original causal $x(t)$	${\rm image} \\ X(p)$	remarque
$1 ext{ou} H(t)$ t $\frac{t^n}{n!}$ e^{at} $\cos(\omega t)$ $\sin(\omega t)$	$ \frac{1}{p} $ $ \frac{1}{p^2} $ $ \frac{1}{p^{n+1}} $ $ \frac{1}{p-a} $ $ \frac{p}{p^2 + \omega^2} $ $ \frac{\omega}{p^2 + \omega^2} $	$(a\in\mathbb{C})$
$\delta(t)$	1	

Transformation de Fourier

Market and the second s	
domaine temporel	domaine fréquentiel
$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi j f t} df$	$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi j f t} dt$
$\lambdax_1(t) + \mux_2(t)$	$\lambda \widehat{x_1}(f) + \mu \widehat{x_2}(f)$
x(-t)	$\widehat{x}(-f)$
$\overline{x(t)}$	$\overline{\widehat{x}(-f)}$
x(t-a)	$e^{-2\pi jaf}\widehat{x}(f)$
$e^{2\pi jat}x(t)$	$\widehat{x}(f-a)$
$rac{\mathrm{d}x}{\mathrm{d}t} = -2\pi jtx(t)$	$2\pi jf\widehat{x}(f)$ $\dfrac{\mathrm{d}\widehat{x}}{\mathrm{d}f}$
$-2\pi \jmath\iota x(\iota)$	$\overline{\mathrm{d}f}$
$(x_1*x_2)(t)$	$\widehat{x_1}(t)\widehat{x_2}(t)$
$x_1(t)x_2(t)$	$(\widehat{x_1}*\widehat{x_2})(f)$
$\Pi_a(t) = Hig(t+rac{a}{2}ig) - Hig(t-rac{a}{2}ig)$	$a \operatorname{sinc}(\pi a f)$
$e^{-\lambda t }, \lambda > 0$	$\frac{2\lambda}{\lambda^2 + 4\pi^2 f^2}$
e^{-t^2}	$\sqrt{\pi}e^{-\pi^2f^2}$
$\delta(t)$	1
1	$\delta(f)$
$\mathrm{III}_T(t)$	$rac{1}{T} \coprod_{rac{1}{T}} (f)$

Formule de Plancherel

$$\int_{-\infty}^{+\infty} \widehat{x}(u) y(u) du = \int_{-\infty}^{+\infty} x(v) \, \widehat{y}(v) dv$$

Identité de Parseval

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |\widehat{x}(f)|^2 df$$

La promo 63, tous des ingrats.