

BB-8

BRIGADE N°32

SOMMAIRE

Introduction	page 3
1.Interacteurs.	
1.1.Bête à corne	page 4
1.2.Diagramme des interacteurs	page 5
1.3.Fonctions	page 6
2.Cahier des charges.	
2.1.Énoncé et niveaux des critères	page 7-10
2.2.Hiérarchisation des fonctions	page 11
2.3.Graphique de répartition des fonctions	page 12
3.Solutions.	
3.1.Solutions proposées	page 13-14
3.2.Matrices de choix indispensables	page 15-17
3.3.Matrices de critères appréciables	page 18-19
3.4.Solutions choisies	page 20-21
3.5Schéma d'architecture	page 22-23
Conclusion	page 24
Annexe	
Table des illustration	page 35-36

Introduction

Le projet de réalisation 2024 représente un projet innovant visant à concevoir un robot mobile intelligent, capable de suivre avec précision une ligne noire tracée sur un fond blanc. La particularité de cette ligne réside dans sa conclusion, matérialisée par une autre ligne noire, perpendiculaire à elle.

L'objectif final de cette mission est de démontrer l'habileté du robot à atteindre une destination précise, symbolisée par la fin de la ligne noire. À partir de ce point stratégique, un défi supplémentaire attend le robot : il devra positionner un satellite sur l'orbite d'une planète préalablement définie. Le satellite est fixé à un portique par le biais d'une tige rigide, ajoutant une dimension technique et ingénieuse à la mission.

Cette introduction vise à présenter les contours du projet, allant de la navigation précise sur une trajectoire complexe à la manœuvre de placement du satellite. Tout au long de ce rapport, nous explorerons les aspects techniques, les choix de conception et les défis surmontés pour réaliser avec succès ce premier projet de notre promotion 2024.

1.Interacteurs

1.1. Bête à corne

1.2. Diagramme des interacteurs

1.3.Fonctions

Fonctions de service:

FS1 : Se déplacer sur le support, dans l'aire d'évolution.

FS2: Atteindre une ligne de validation.

FS3: Mettre en orbite le satellite sur la planète.

FS4: Suivre la ligne de départ jusqu'à la ligne de validation.

Fonctions de contrainte:

FC1: Déplacer une balle de tennis de table (le satellite).

FC2: Se maintenir dans la zone de départ.

FC3: Être installé sur le support par les utilisateurs.

FC4: Respecter les normes imposées.

FC5: Avoir une source autonome d'énergie

2. Cahier des charges fonctionnelles

2.1.Énoncé et niveaux des critères.

Fonction	Critères	Niveaux	Flexibilité
FS1:	1. Vitesse de déplacement:	Minimum 0.4 Km/h	F2
Se déplacer	2. Masse du robot:	Maximum 2 kg	F2
sur le support,	3. Dimensions du support:	L=106*176 (en cm)	F0
dans l'aire d'évolution.	4. Alimentation:	6 VCC	F2
	5. Consommation électrique:	Entre 1,5A et 3A max	F2
FS2:	1. Arrêt du robot (durée):	Maximum 5s	F2
Atteindre une ligne	2. Épaisseur de ligne:	2.5 cm ± 1mm	F0
de	3. Longueur de ligne:	20 cm	F0
validation.	4. Couleur de la ligne:	Noir	F0
FS3: Mettre en orbite le	Diamètre de la planète:	P1:120mm P2: 2.86ds (≈100mm) P3:65mm	F0
satellite	Distance entre le robot et la planète:	20 cm (sujet échelonné)	F0
sur la planète.	3. Masse de la balle de tennis de table:	3g	F0
	4. Dimension de la balle:	Diamètre 35mm	F0
	5. Durée maximum de mise en orbite	15s	F2

	6. Hauteur de la planète par rapport à l'aire d'évolution	P1:3ds P2:6ds P3:6ds+lc	F0
FS4: Suivre la ligne de départ jusqu'à la ligne de validation.	 Largeur de la ligne Vitesse de déplacement: Courbure Epaisseur de la ligne 	2 cm ± 1 mm Minimum 0.4 Km/h Rayon Max:90° 2.5 cm ± 1 mm	F0 F0 F0
FC1: Déplacer une balle de tennis de table (le satellite).	 Masse de la balle de tennis de table: Dimension de la balle: 	3g diamètre 35mm	F0
FC2: Se maintenir dans la zone de départ.	 Taille du robot maximale (hors coque carénée) Hauteur 	Format A5 (150 x 210 mm) Illimité	F0
FC3: Être installé sur le support par	 Installation finale Discours (temps d'installation) 	8 Accumulateurs Max 1 min	F0 F0
les utilisateurs	3. Zone de départ (taille)	Zd>Format A5 (150 x 210 mm)	F0

FC4: Respecter les normes imposées.	 Temps imparti Nombre de motoréducteurs fournis Taille du robot maximale (hors coque carénée) 	40s 2 Format A5 (150 x 210 mm)	F0 F0
FC5: Avoir une source autonome d'énergie	 Autonomie des batteries Capacité attendue Format préconisé 	>40s ≈2300mAh AA	F2 F2 F2

Justification du choix des niveaux (F2 uniquement):

Vitesse de déplacement:				
	échelle	7	10	
	Distance (en cm)	176	251,42	
	D'après la figure 2 du sujet le support fait 176cm, en traçant à la règle sur un logiciel nous trouvons que cette première longueur fait 7cm sur le dessin, le parcours de notre robot en fait quant à lui 10. Le temps maximal étant de 40 nous voulons que notre robot y arrive en 30 secondes et ait une marge de 5 secondes, il nous reste 25 seconde de mouvement. Nous faisons donc V=d/t ici cela donne 0.1m/s ce qui fait environ 0.36km/h pour avoir une belle marge de manœuvre nous concluons sur 0.4km/h. (soit environ 12% plus rapide que notre minimum).			
Masse du robot:	La masse du robot ne doit pas excéder 2 kg d'après les préconisations du directeur de l'unité d'enseignement Mécanique et conception.			
Alimentation:	Alimentation ne du robot.	écessaire pour to	utes les parties "	vitales"
Consommation électrique:		déterminée en f i que de la vitess	onction de l'alime e nécessaire.	entation
Arrêt des moteurs durée:	Temps calculé durée de l'épreu		total nécessaire	à la
Autonomie des batteries:		culée en fonction des besoins éner	de la durée maxi gétiques.	male
Capacité attendue:	Capacité néces tâches durant l'	=	our réaliser toutes	les

2.2. Hiérarchisation des fonctions.

Fonctions	FS1	FS2	FS3	FS4	FC1	FC2	FC3	FC4	FC5
FS1		0	0	0	3	0	0	3	0
FS2	9		3	3	9	6	0	9	0
FS3	9	3		3	9	6	3	9	0
FS4	9	3	3		6	6	0	9	0
FC1	3	0	0	0		3	0	9	0
FC2	6	0	0	0	3		0	9	0
FC3	9	6	3	9	9	9		9	6
FC4	3	0	0	0	0	0	0		0
FC5	9	6	6	6	6	9	0	9	
Total	57	18	15	21	45	39	3	66	6

0: non

3: égaux

6:oui

9: oui ++

2.3. Graphique de répartition des fonctions.

D'après ce graphique camembert, nous devons nous concentrer principalement sur les fonctions FC4, FS1, FC2 et FC1. Celles-ci vont occuper la grande majorité de notre temps. En revanche, il ne faut pas négliger pour autant les fonctions FS2, FS4, FS3, FC3 et FC5 qui prendront néanmoins, moins de temps à être réalisées.

Université d'ORLÉANS

RAPPORT N°1

3. Solutions

3.1. Solutions proposées

BRAINSTORMING du 06/02/2024

FS3: mettre en orbite de la planète le satellite

Tous les schémas des solutions sont disponibles en annexe.

- 1. Bras télescopique/grapin
- 2. Catapulte
- 3. Canon qui propulse quand on le veut
- 4. Grue
- 5. Toboggan sur le robot
- 6. Fusée qui décolle depuis le robot
- 7. La brigade dépose le satellite
- 8. Tuyau
- 9. Propulsion depuis l'intérieur du robot avec un ressort/piston/aire comprimé
- 10. Baguette (jeu "shoot the moon")
- 11. Lance pierre
- 12. Tiré le satellite + drift
- 13. Bilboquet inversé
- 14. Deux grands bras = pinces
- 15. Système de moteur avec un lancement slap
- 16. Ascenseur

FC1: Porter une balle de tennis de table (le satellite)

Tous les schémas des solutions sont disponibles en annexe.

- 1. Filet sur le robot
- 2. Trappe dans le robot
- 3. Portillon/porte pour empêcher la balle de partir trop tôt
- 4. Scratcher le satellite au robot
- 5. Aimanter le satellite au robot
- 6. Mettre le satellite sur le côté du robot dans un petit tiroir
- 7. Satellite déposé au dessus du robot sur la coque carénée
- 8. Le bilboquet / coquetier
- 9. Pinces devant le robot

3.2. Matrice des choix indispensables

Définition des critères :

Critères Indispensables pour la fonction FS3:

Critère 1: Diamètre de la planète

Description: Précision nécessaire pour atteindre l'orbite de la planète

Oui: taux de réussite > 80% **Non:** taux de réussite < 80%

Critère 2: Masse de la balle de tennis de table

Description: Solidité de la solution

Oui: supportant efficacement le satellite

Non: ne supportant pas efficacement le satellite

Critère 3: Dimension de la balle

Description: Doit contenir le satellite:

Oui: Stockage suffisant pour le satellite Non: Stockage insuffisant pour le satellite

Critères Indispensables pour la fonction FC1:

Critère 2: Masse de la balle de tennis de table

Description: Solidité de la solution

Critère 3: Dimension de la balle

Description: Doit contenir le satellite:

Matrice: Sélection des solutions pour FS3

Solutions FS3	Critère 1	Critère 2	Critère 3
1	oui	oui	oui
2	oui	oui	oui
3	oui	oui	oui
4	oui	oui	oui
5	non	oui	oui
6	oui	oui	oui
7	oui	oui	oui
8	oui	oui	oui
9	non	oui	oui
10	non	oui	oui
11	non	non	oui
12	non	non	non
13	non	oui	oui
14	oui	oui	oui
15	non	non	oui
16	oui	oui	oui

Sélection des solutions pour FC1

Solutions FC1	Critère 2	Critère 3
1	oui	oui
2	oui	oui
3	oui	oui
4	oui	≈oui
5	non	non
6	oui	oui
7	non	oui
8	≈ oui	oui
9	non	oui

Conclusion: Après lecture du modèle de sélection, il nous reste au final les solutions <u>n°1,2,3,4,6,7,8,14 et 16</u> pour la fonction FS3. Ainsi que les solutions <u>n°1,2,3 et 6</u> pour la fonction FC1.Nous allons donc opérer à une deuxième sélection grâce à une matrice solutions définie grâce à des critères appréciables prédéterminés par notre brigade.

3.3. Matrice de critères appréciables

Définition de critères:

Nous allons attribuer un coefficient de pondération (de 1 à 10) à chacun de ces critères en fonction de leur importance afin que certains soient plus influents que d'autres sur le choix final de la solution. Nous avons aussi défini une échelle de note selon le respect du critère.

Critère 1: Distance entre le robot et la planète (coefficient 5)

Description: faible distance entre le robot et la planète.

Critère 2: Durée maximum de mise en orbite (coefficient 8)

Description: rapidité de la mise en orbite.

Critère 3: Hauteur de la solution par rapport à la planète (coefficient 4)

Description: facilité de mise en orbite.

Critère 4: Facilité fabrication de la solution (coefficient 10)

Description: La solution doit être la plus simple possible à concevoir pour avoir une fiabilité la plus haute possible.

Critère 5: Coût de fabrication (coefficient 7)

Description: La solution doit être la plus économique dans sa conception.

Matrice des solutions:

Coefficients	5	8	4	10	7	Fonction	
Solutions	C1	C2	C3	C4	C5	Total	
1	80	30	80	2	2	994	
2	2	80	15	30	80	1570	
3	2	80	30	2	15	895	
4	80	30	80	15	2	1124	
6	2	2	2	2	2	68	FS3
7	2	80	80	80	80	2330	
8	80	30	30	80	80	2120	
14	80	15	30	2	15	765	
16	80	2	80	2	2	770	
1	80	80	30	30	30	1670	
2	2	15	80	30	80	1310	FC1
3	15	30	80	30	80	1495	
6	2	15	2	80	80	1498	

3.4. Solutions choisies

Choix final pour FS3: Après une réflexion approfondie en brigade sur la meilleure solution à mettre en place pour réussir au mieux la mise en orbite. Nous avons finalement, après une longue hésitation sur le défi technique que représenterait une grue, décidé de porter notre choix sur la solution du tube qui nous semble être la meilleure. Malgré le fait que le meilleure choix d'après le modèle est la solution 7, il nous est impossible de la mettre en place à cause de l'interdiction d'une action humaine sur le satellite après son dépôt sur/dans le robot.

Choix final pour la FC1: Dans cette situation, tous les choix de solutions étaient cohérent, car ils respecté tous les critères que nous attendions d'un système de stockage. Malgré cela, le choix de la porte s'est finalement révélé le plus logique en raison du choix de la solution de FS3.

3.4. Schéma d'architecture

Figure 1: Schéma d'architecture sans la solution.

Figure 2: Schéma d'architecture après choix de la solution

Conclusion

Au cours des séances de travaux dirigés, nous avons systématiquement progressé dans la rédaction de ce rapport, consolidant ainsi toutes les données cruciales pour la conception de notre robot. Dès la première séance, nous avons maîtrisé la structuration de nos idées à travers des diagrammes. Une communication efficace et une coordination sans faille étaient indispensables pour éviter tout retard dans les étapes suivantes.

Lors du second TD, nous avons élaboré le cahier des charges fonctionnel, définissant avec précision les critères essentiels. L'utilisation judicieuse d'une matrice de choix nous a permis de hiérarchiser efficacement les différentes fonctions, grâce à une répartition équilibrée des tâches. Le brainstorming, bien que complexe, a exigé une impartialité rigoureuse dans le choix de la meilleure solution.

Enfin, nous avons procédé à l'établissement d'une matrice de choix basée sur des critères définis en interne. Cette analyse nous a guidés vers la solution la plus adaptée, que nous avons ensuite optimisée pour garantir sa faisabilité, comme en témoigne notre schéma d'architecture prototype.

Annexe

Figure 1. Schéma du circuit interne du robot.

Figure 2. Croquis de la solution 1 (FS 3: Grapin/Bras télescopique)

Figure 3. Croquis de la solution 2 (FS 3: Catapulte)

Figure 4. Croquis de la solution 3 (FS 3: Canon)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

Figure 5. Croquis de la solution 4 (FS 3: Grue)

Figure 6. Croquis de la solution 5 (FS 3: Toboggan)

Figure 7. Croquis de la solution 7 (FS 3: La brigade dépose le satellite sur la planète)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

Figure 8. Croquis de la solution 6 (FS 3: Fusée)

Figure 9. Croquis de la solution 8 (FS 3: Tuyau)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

Figure 10. Croquis de la solution 9 (FS 3: Propulsion ressort)

Figure 11. Croquis de la solution 10 (FS 3: Baguette)

Figure 12. Croquis de la solution 13 (FS 3: Bilboquet inversé à propulsion)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

Figure 13. Croquis de la solution 11 (FS 3: Lance pierre)

Figure 14. Croquis de la solution 12 (FS 3: Drift + lancer de balle)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

Figure 15. Croquis de la solution 14 (FS 3: Deux pinces/mains)

Figure 16. Croquis de la solution 15 (FS 3: lancement "Slap")

Figure 17. Croquis de la solution 16 (FS 3: Ascenseur)

Figure 18. Croquis de la solution 17 (FC 1: Filet)

Figure 20. Croquis de la solution 19 (FC 1: Portillon)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

Figure 21. Croquis de la solution 20 (FC 1: Scratcher le satellite)

Figure 22. Croquis de la solution 21 (FC 1: Aimanter le satellite)

Figure 23. Croquis de la solution 22 (FC 1: Satellite sur le côté)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

Figure 24. Croquis de la solution 23 (FC 1: Balle déposé au dessus de la coque)

Figure 26. Croquis de la solution 25 (FC 1: Main)

BRIGADE N°32 JARASSIER Lucie, BLONDEAU Killian, RANDRIAMIARISOA Sedera

TABLE DES ILLUSTRATIONS

Schéma bête à cornes	page 4
Diagramme des inter-acteurs	page 5
Tableau cahier des charges	page 7
Tableau de hiérarchisation des fonctions	page 11
Diagramme de répartition des fonctions	page 12
Matrices	page 16
Diagramme des résultats de la matrice pour FS3FS3	page 20
Diagramme des résultats de la matrice pour FC1FC1	page 21
Schéma d'architecture n°1	page 22
Schéma d'architecture n°2	page 23
Figure 1. Schéma du circuit interne du robot	page 25
Figure 2. Croquis de la solution 1	page 26
Figure 3. Croquis de la solution 2	page 26
Figure 4. Croquis de la solution 3	page 26
Figure 5. Croquis de la solution 4	page 27
Figure 6. Croquis de la solution 5	page 27
Figure 7. Croquis de la solution 7	page 27
Figure 8. Croquis de la solution 6	page 28
Figure 9. Croquis de la solution 8	page 28
Figure 10. Croquis de la solution 9	page 29
Figure 11. Croquis de la solution 10	page 29
Figure 12. Croquis de la solution 13	page 29
Figure 13. Croquis de la solution 11	page 30
Figure 14. Croquis de la solution 12	page 30
Figure 15. Croquis de la solution 14	page 31

Figure 16. Croquis de la solution 15	page 31
Figure 17. Croquis de la solution 16	page 31
Figure 18. Croquis de la solution 17	page 32
Figure 19. Croquis de la solution 18	page 32
Figure 20. Croquis de la solution 19	page 32
Figure 21. Croquis de la solution 20	page 33
Figure 22. Croquis de la solution 21	page 33
Figure 23. Croquis de la solution 22	page 33
Figure 24. Croquis de la solution 23	page 34
Figure 25. Croquis de la solution 24	page 34

Figure 26. Croquis de la solution 25page 34