KNSI Golem Bootcamp 2023

Spotkanie 1

Agenda

- W skrócie o nas
- Co można z nami robić
- Omówienie bootcampu
- Wprowadzenie do ML (Prezka)
- Wprowadzenie do przetwarzania danych pod ML (Google Colab)

Kluczowe informacje

- Istniejemy od 2017r.
- Wydział EiTI
- opiekun koła: dr hab. inż. Jarosław Arabas
- Zarząd na ten rok akademicki:
 - Jakub Sobolewski (prezes)
 - Weronika Piotrowska (vice)
 - Piotr Kitłowski (skarbnik)
- Własny komputer obliczeniowy w ZSI (4xGeForce RTX 2070 Super)

Nasza misja/cele/wartości

- Dążymy do zwiększania poziomu wiedzy członków koła
- Jesteśmy otwarci na ludzi, którzy chcą z nami działać
- Tworzymy społeczność ludzi zainteresowanych AI/ML

Aktywności koła

Hackathony

Bootcamp

Roadmap, czyli jak zostać Golemem

1. Bootcamp

Jeśli tu jesteś, to dopiero początek Twojej drogi :)

Bootcamp #1

Wstęp

Jakub Sobolewski

30 października 2023 WEiTI, sala 161 18:00

2. Bootcamp Level-Up

- Termin: następny semestr
- Cel: dostarczyć podstawową wiedzę i umiejętności z najpopularniejszych dziedzin Deep Learningu
- Must have by móc wejść głębiej w inne zagadnienia Al
- Bardziej zaawansowane tematy i zagadnienia

2. Bootcamp Level-Up → Tematy

Computer Vision

NLP

Reinforcement Learning

Unsupervised Learning

3. Study Groups

- Dedykowane konkretnej dziedzinie/zagadnieniu
- Nastawione na wzajemną naukę
- Docelowo mają wyłaniać się z nich projekty Koła :)
- kanał #study-groups
- świetna okazja by wkręcić się jeszcze głębiej w Al

3. Study Groups

Generative models SG

Beginner SG

INPUT

Computer Vision SG

Static ML

— CAR — TRUCK

- BICYCLE

CLASSIFICATION

Adaptive ML

Continual Learning SG

Deploy continually

FEATURE LEARNING

Pudzian

4. Hackathony - świetna zabawa

Byliśmy na

- BiteHack 2022 w Krakowie (1. i 3. miejsce w kategorii Al)
- BrainHack Warsaw
- CuValley Hackathon
- Best Hacking League
- KNUM x Golem Hackathon 2022 (2. miejsce w kategorii Al)
- Al Games 2022 w Gdańsku (aż 25 osób 1,2,3 miejsce)
- Space Apps NASA (18 osób)

Coming soon

- Ensemble AI hackathon (wiosną)
- wiele więcej!

Będzie więcej ;)) (i to za hajs polibudy!)

5. Prelekcje

- Prawie każdy czwartek o 18:15
- zaproszony gość przestawia jakiś temat związany z ML
 - badania naukowe
 - ciekawa algorytmy
 - zastosowania

Zakład Sztucznej Inteligencji & CV Lab

- Projekty badawcze
- Specjaliści i mentorzy
- Ciekawe i zaawansowane tematy
- Spin-off
- Co jest potrzebne:
 - skille zdobyte w poprzednich punktach
 - o chęci
 - o czas

A przede wszystkim potrzebny jest zespół

Co się dzieje w ZSI & CV Lab?

Continual Learning

Multitask Learning

(b)

Reinforcement Learning

I wiele innych...

Bootcamp – struktura

1. 5 spotkań:

- a. Wstęp (Jakub)
- b. Regresja (Weronika)
- c. Klasyfikacja (Antoni)
- d. Sztuczne Sieci Neuronowe (Maciek)
- e. Konwolucyjne Sieci Neuronowe (Janek)

2. W ramach każdego spotkania:

- a. Wykład, prezentacja + przykłady w kodzie
- b. Praca domowa wraz z rozwiązaniami

Q&A

Część druga

Agenda po raz drugi

- AI ML DL
- Dane, dane, dane kluczowe koncepty
- Typy zmiennych
- Jak rozumieć Machine Learning?
- Czym jest predykcja?
- Podstawowe zadania
- Metody uczenia się
- Pułapki uczenia się
- Podsumowanie
- Część trzecia ;)

AI, ML, DL?

O danych słów kilka

Kluczowe koncepty

- Zbiory:
 - treningowy
 - testowy
- Zbiór cech (tzw. features)
- Cel predykcji (target, label)
- Dwuwymiarowe tabelki (przynajmniej na razie)
- Typy cech:
 - o ciągłe
 - dyskretne (kategoryczne)

Dataset

Machine Learning (Maszynowe Uczenie się)

Jak to rozumieć?

Maszynowe

- Bez tzw. 'ifologii'
- Oparte na danych
- Celem: parametryzowany model rozwiązujący pewne, wysoce wyspecjalizowane zadanie (np. rozpoznawanie czy dany zbiór pikseli reprezentuje literę G)

Uczenie się

- Inspirowane sposobem, w jaki uczy się człowiek
- Mechanizm: pętla sprzężenia zwrotnego
- Kluczem: dane

Model

Parametry

Algorytm uczący

Funkcja straty

$$MSE(D, f) := \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{y}_i - f(\mathbf{x}_i)||_2^2,$$

Trening

 a_{21}

 a_{31}

 a_{22}

 a_{32}

 a_{3n}

Zbiór treningowy

Aktualizacja parametrów modelu

$$egin{array}{c} a_{2n} \\ a_{3n} \\ \vdots \\ a_{mn} \end{array}$$

 $MSE(D, f) := \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{y}_i - f(\mathbf{x}_i)||_2^2,$

Typy zadań predykcyjnych (podstawowe)

Regresja (spotkanie 2.)

- Przewidywanie ciągłej wartości
- Przykład: jaka powinna być wartość nieruchomości bazując na danych o niej?
- Podstawowy model: regresja liniowa

Klasyfikacja (spotkanie 3.)

- Przewidywanie klasy/kategorii
- Przykład: jaki gatunek piwa powstanie mając dane nt procesu jego wytwarzania?
- Podstawowy model: drzewo decyzyjne, regresja logistyczna (tak, to coś innego)

Typy uczenia się

Nadzorowane (supervised)

- W zbiorze treningowym znana jest nam wartość, którą chcemy przewidywać
- Naszym zadaniem jest przewidzenie jej w zbiorze testowym (ewaluacyjnym)
- Bootcamp dotyczy praktycznie tylko takiego typu uczenia się

Nienadzorowane (unsupervised)

- Zazwyczaj dotyczy klastryzacji
- Przykład: mając 100 punktów danych o zachowaniu użytkowników w serwisie znajdź ukryte podgrupy
- (Jeśli działa) umożliwia odkrywanie ukrytych zależności w dużych i wielowymiarowych zbiorach danych

Mniej przyjemna rzeczywistość

Co może pójść nie tak?

Podsumowanie

- KNSI Golem jest fajne i robi fajne rzeczy, róbcie je z nami :)
- Od zera do Golema
- Struktura bootcampu
- Dane
- Kluczowe koncepty: Maszynowe Uczenie się
- Z czego składa się model ML?
- Jak wygląda jego trening?
- Typy zadań oraz uczenia się
- Na co trzeba uważać?

Q&A

Krótki przykład podstawowych bibliotek

