Appendices: Covariate tests

Table A1. Covariate tests for the July-September catch (S_t) . M is the base model with only prior season October-March catch (N_{t-1}) as the covariate. To the base model, the environmental covariates are added. nearshore is 0-80km and regional is 0-160km. The SST data are the AVHRR data. The models are nested sets, e.g. 1, 2a, 3a and 1, 2b, 3b.

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
catch only models 1983-2015 data null model: $ln(S_t) = ln(S_{t-1}) + \epsilon_t$ base model (M): $ln(S_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	33 30	21.7	1.596 1.204	126.6 115.2	1.596 1.313	0.559 0.692
Precipitation						
$V_t = \text{Jun-Jul Precipitation}$ - ocean $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$	29.1	19.7	1.199	117.7	1.34	0.731
	27.9	21.4	1.163	119.1	1.322	0.656‡
$V_t = \text{Jun-Jul Precipitation}$ - land $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$	29.1	25.4	1.156	115.3	1.308	0.564‡‡
	28	29.9	1.1	115.3	1.327	0.62‡‡
$V_t = \text{Apr-May Precipitation}$ - ocean $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$	29.1	24.1	1.166	115.8	1.312	0.666
	27.7	22.2	1.152	119.3	1.335	0.638‡
$V_t = \text{Apr-May Precipitation - land}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$	29.1 27.2	26.9 25.1	1.144 1.12	114.6 119	1.329 1.37	0.78 0.642‡
Sea surface temperature						
$V_t = \text{Mar-May SST - regional}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29	21.8	1.183	116.8	1.329	0.719
	27.1	23.5	1.131	119.8	1.331	0.741
	29	22.6	1.178	116.5	1.312	0.79
	27	26.3	1.107	118.8	1.305	0.835
$V_t = \text{Jun-Sep SST}$ - nearshore $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29	28	1.136	114.1	1.278	0.733
	27.4	32.5	1.067	115.2	1.306	0.621‡‡
	29.1	23.1	1.174	116.3	1.357	0.695
	27.2	20.6	1.154	120.9	1.454	0.764
$V_t = \text{Oct-Dec SST}$ - nearshore $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29.1	19.7	1.199	117.7	1.35	0.706
	28	20.5	1.17	119.4	1.361	0.775

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
Upwelling						
$V_t = \text{Jun-Sep nearshore-offshore SST differential}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29.1	25.9	1.152	115	1.308	0.66
	27.7	29.6	1.097	115.8	1.314	0.56‡‡
	29.1	20.8	1.191	117.2	1.361	0.803
	27.7	20.1	1.169	120	1.371	0.788
$V_t = \text{Jun-Sep SST}$ - nearshore $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29	28	1.136	114.1	1.278	0.733
	27.4	32.5	1.067	115.2	1.306	0.621‡‡
	29.1	23.1	1.174	116.3	1.357	0.695
	27.2	20.6	1.154	120.9	1.454	0.764
$V_t =$ Jun-Sep Ekman Mass Transport - near shore $ln(S_t) = \mathbf{M} + \beta V_t$ $ln(S_t) = \mathbf{M} + s(V_t)$ $ln(S_t) = \mathbf{M} + \beta V_{t-1}$ $ln(S_t) = \mathbf{M} + s(V_{t-1})$	29.1 27.3 29.1 27.7	19.2 16.4 20.3 17.7	1.203 1.185 1.195 1.185	117.9 122.5 117.5 121.2	1.359 1.394 1.344 1.368	0.81 0.845 0.701 0.787
$V_t =$ Apr-May Ekman Mass Transport - near	29.1	20.8	1.191	117.3	1.326	0.8
shore $ln(S_t) =$ M + βV_t $ln(S_t) =$ M + $s(V_t)$	28	26.1	1.129	116.9	1.281	0.739
$V_t = \text{Jun-Sep Ekman Pumping - nearshore}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29.1	29.6	1.123	113.4	1.294	0.892
	27.6	29.5	1.096	116.1	1.328	0.769
	29.1	19.3	1.203	117.8	1.327	0.723
	27.8	19.5	1.175	120.1	1.357	0.617‡‡
$V_t = \text{Jun-Sep Ekman Pumping - tip of India}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29.1	22.1	1.181	116.7	1.369	0.765
	27.7	21	1.161	119.7	1.387	0.868
	29.1	19.3	1.204	117.7	1.334	0.768
	27.8	20.9	1.165	119.5	1.336	0.588‡‡
$V_t = \text{Jan-Feb Ekman Pumping - tip of India}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29	27.3	1.141	114.5	1.295	0.77
	28.1	26.2	1.131	116.6	1.321	0.73
	29	19	1.204	118	1.362	0.692
	28.1	17.6	1.195	120.3	1.371	0.771
Ocean climate						
$V_t = 2.5$ -year average SST - AVHRR regional $ln(S_t) = \mathcal{M} + \beta V_t$ $ln(S_t) = \mathcal{M} + s(V_t)$	29.1	40.3	1.034	107.9††	1.29	0.691
	28.1	47	0.958	105.7††	1.375	0.558‡‡

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
$V_t = \text{ONI Jul-Jun average}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$	29 28	20.5 21.5	1.193 1.165	117.4 118.9	1.335 1.349	0.716 0.697
$V_t = \text{PDO Jul-Jun average}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$	29.1 27.6	27.1 28.5	1.144 1.104	114.4 116.6	1.354 1.362	0.674 0.59‡‡
$V_t = \text{AMO Jul-Jun average}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + s(V_t)$	29.1 27.5	38.9 47.5	1.047 0.945	108.6†† 106.6††	1.232‡ 1.215‡	0.512‡‡‡ 0.557‡‡
$V_t = \text{Sep-Nov DMI}$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + s(V_{t-1})$	29.1 27	19.2 15.8	1.203 1.184	117.9 123.2	1.328 1.373	0.733 0.811
catch only models 1998-2015 data null model: $ln(S_t) = ln(S_{t-1}) + \epsilon_t$ base model (M): $ln(S_t) = \alpha + p(ln(N_{t-1})) + \epsilon_t$ Chlorophyll	18 15	16.2	0.616 0.364	35.9 25.8	0.616 0.478	0.425 0.228
Chlorophyn $V_t = \text{Jul-Sep CHL - nearshore}$ $ln(S_t) = M + \beta V_t$ $ln(S_t) = M + p(V_t)$ $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + p(V_{t-1})$	14 13 14 13	12 16.4 10.3 3.5	0.361 0.339 0.364 0.364	29.4 31.8 29.7 34.3	0.535 0.733 0.49 0.664	0.24 0.272 0.248 0.295
$V_t = \text{Oct-Dec CHL}$ - nearshore $ln(S_t) = M + \beta V_{t-1}$ $ln(S_t) = M + p(V_{t-1})$	14 13	10.9 24.4	0.363 0.322	29.6 29.9	$0.515 \\ 0.53$	0.259 0.247

Notes: LOOCV = Leave one out cross-validation. RMSE = root mean square error. MdAE = median absolute error. AICc = Akaike Information Criterion corrected for small sample size. † and †† = AICc greater than 2 and greater than 5 below model M (base catch model). ‡, ‡‡, and ‡‡‡ = LOOCV RMSE 5%, 10% and 20% below model M, respectively. t indicates current year and t-1 is the prior year. N_t spans two calendar years (Oct-Mar); t is the year in Oct. Thus if t=2014, S_t is Jul 2014 to Sep 2014 and N_{t-1} is Oct 2013 to Mar 2014. For covariates that are multiyear, such as the multiyear average SST, t is the calendar year at the end of the multiyear span; thus the 2.5 year average SST for 2014 is Jan 2012 to Jun 2014.