Home ► My courses ► EEE117-2019S-Sec1 ► Homework ► Homework 2 - Chapter 9

Started on	Thursday, 24 January 2019, 7:50 AM
State	Finished
Completed on	Friday, 1 February 2019, 4:32 PM
Time taken	8 days 8 hours
Grade	90.83 out of 100.00

Correct

Mark 10.00 out of 10.00

P9.14_6ed

Given: $v_s = 750 \cos(5,000t) \text{ V}.$

Find the time domain current $i_0(t)$.

$$i_0(t)| = 1.5$$
 $< cos(5,000 t + 36.87)$ $< ^\circ) A$

Correct

_ .

Correct

Mark 6.67 out of 10.00

CQ9.11

Given:

$$L_1 = 8.5 \text{ mH (milli H)}$$
 $L_2 = 10.4 \text{ mH (milli H)}$ $L_3 = 15.2 \text{ mH (milli H)}$

The radian frequency of the driving source is 61047 rad/sec

Find the equivalent impedance of this parallel combination. Z_{Leq} = j ?? Ω (Ohms)

Answer: 218

Correct

Marks for this submission: 10.00/10.00. Accounting for previous tries, this gives **6.67/10.00**.

Correct

Mark 10.00 out of 10.00

Find the Thévenin impedance seen looking into the terminals ab of this circuit.

The frequency of operation is 100 krad/sec.

$$Z_{Th} = \begin{bmatrix} 20 \\ \checkmark \end{bmatrix} + j \begin{bmatrix} -15 \\ \checkmark \end{bmatrix} \Omega$$
 (Ohm)

Correct

Correct

Mark 10.00 out of 10.00

P9.39_6ed

Find the Norton equivalent circuit with respect to the terminals ab.

$$I_N = \begin{bmatrix} 6.4 \\ \checkmark \\ + j \end{bmatrix} - 4.8$$
 A in rectangular form
$$Z_{Th} = \begin{bmatrix} 50 \\ \checkmark \\ + j \end{bmatrix} - 25$$
 $\checkmark \Omega$ (Ohm) in rectangular form

Correct

Correct

Mark 10.00 out of 10.00

P9.49_6ed

Given:

$$v_{g1} = 10 \cos(5,000 t + 53.13^{\circ}) V$$

 $v_{g2} = 8 \sin(5,000 t) V$

Find the steady-state time domain expression for $\boldsymbol{v_0}$ (t) of this circuit.

$$v_0(t) = 12$$
 $\sqrt{\cos(5,000t + 0.0001)}$ $\sqrt{\circ}$ (Degrees) Volts

Correct

Correct

Mark 10.00 out of 10.00

Correct

Correct

Mark 6.67 out of 10.00

P9.81 7ed

The operational amplifier is ideal.

Given $v_g(t) = 25 \cos(50,000 t) V$

a) Find the steady-state output $v_0(t)$.

$$v_0(t) = 7.07$$
 \checkmark $cos(50,000 t + -8.13)$ \checkmark °) (Degrees)

Volts

b) How large can the amplitude of $v_q(t)$ be before the amplifier saturates?

$$|v_0(t)_{max}| \le 35.3$$
 Volts (less than or equal to)

Correct

Marks for this submission: 10.00/10.00. Accounting for previous tries, this gives **6.67/10.00**.

Correct

Mark 10.00 out of 10.00

P9.45_6ed

Use the mesh-current method to find $\mathbf{I_g}$.

$$I_g = \begin{bmatrix} 0 \\ 4 \end{bmatrix} + j \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$
 A

Correct

Correct

Mark 10.00 out of 10.00

P9.63_6ed

Given driving source frequency = 25 krad/sec.

The coefficient of coupling k is adjusted so that Z_{ab} is purely resistive.

Find \mathbf{Z}_{ab} for this condition.

$$Z_{ab} = \begin{bmatrix} 30 \\ \end{bmatrix}$$
 Ω (Ohm)

Correct

Correct

Mark 7.50 out of 10.00

AP9.15_9ed

The source voltage is 25 ∠0° kV (kilo Volts).

Find the amplitude and phase angle of V_2 and I_2 .

$$|\mathbf{V}_2| = \boxed{1868}$$
 Volts Phase angle $\mathbf{V}_2 = \boxed{142}$

(Degrees)

$$|\mathbf{I}_2| = \begin{bmatrix} 125 \\ \checkmark \end{bmatrix}$$
 A Phase angle $\mathbf{I}_2 = \begin{bmatrix} 217 \\ \checkmark \end{bmatrix}$ ° (Degrees)

Correct

Marks for this submission: 10.00/10.00. Accounting for previous tries, this gives **7.50/10.00**.

■ Homework 1 - Chapter 9

Jump to... ▼

Homework 3 - Chapter 10 ▶