Examen de Topología I (Soluciones)

2º curso del Grado en Ingeniería Informática y Matemáticas

30 de enero de 2017

Ejercicio 1. (3-4 puntos) Sea $X = \{1, 2, 3, 4, 5\}$ y \mathcal{T} la siguiente familia de subconjuntos de X:

$$\mathcal{T} = \{X, \emptyset, \{1\}, \{4, 5\}, \{1, 4, 5\}\}.$$

- (1) Probar que \mathcal{T} es una topología en X y encontrar una base de \mathcal{T} .
- (2) Encontrar el sistema de entornos y una base de entornos de los puntos 1, 2, y 4.
- (3) Calcular el interior, la adherencia y la frontera de los subconjuntos A y B, siendo

$$A = \{2, 3\}, \quad B = \{1, 4\}.$$

(4) Sea $f:([0,1],\mathcal{T}_u)\to (X,\mathcal{T})$ la aplicación

$$f(t) = \begin{cases} 1 & \text{si } t \in [0, 1/2) \\ 3 & \text{si } t \in [1/2, 1]. \end{cases}$$

Es f una aplicación continua?.

- (5) Encontrar el grupo de homeomorfismos de (X, \mathcal{T}) .
- (6) Sea R la relación de equivalencia en X dada por xRx, $\forall x \in X$, 2R4, 4R2, 3R5 y 5R3. Describir el espacio cociente $(X/R, \mathcal{T}/R)$.
- (7) Calcular los subconjuntos conexos de (X, \mathcal{T}) y estudiar si (X, \mathcal{T}) es un espacio conexo por arcos. Solución.
- (1) Probar que \mathcal{T} es una topología es trivial. Una base de \mathcal{T} es dada por

$$\mathcal{B} = \{X, \{1\}, \{4, 5\}\}$$

pues el único abierto no trivial que queda (el $\{1,4,5\}$) es unión de elementos de la base. X tiene que ser un abierto básico pues es el único abierto que contiene a los puntos 2 y 3.

(2) Si se representa por \mathcal{U}^x y \mathcal{B}^x al sistema y a una base de entornos de un punto x, entonces

$$\begin{cases} \mathcal{B}^1 = \{\{1\}\} \ \text{y} \ \mathcal{U}^1 = \{V \subset X \ | \ 1 \in V\}, \\ \mathcal{B}^2 = \mathcal{U}^2 = \{X\}, \\ \mathcal{B}^4 = \{\{1,4\}\} \ \ \text{y} \ \mathcal{U}^4 = \{V \subset X \ | \ \{1,4\} \subset V\}. \end{cases}$$

- (3) $A^0 = \emptyset$ pues el vacio es el único abierto contenido en A. $\overline{A} = A$, esto es A es cerrado, pues su complementario $\{1,4,5\}$ es abierto. Por otro lado, $B^0 = \{1\}$ pues $\{1\}$ es el mayor abierto contenido en B. $\overline{B} = X$ pues cualquier entorno de 2, 3 y 5 cortan a B. Como consecuencia, $\operatorname{Fro}(A) = A$ y $\operatorname{Fro}(B) = \{2,3,4,5\}$.
- (4) f es continua si para todo abierto $O \in \mathcal{T}$, se tiene que $f^{-1}(O) \in \mathcal{T}_u$. Trivialmente $f^{-1}(X) = [0, 1]$ y $f^{-1}(\emptyset) = \emptyset$. Como además

$$f^{-1}(\{1\}) = [0, 1/2), \quad f^{-1}(\{4, 5\}) = \emptyset \quad \text{y } f^{-1}(\{1, 4, 5\}) = [0, 1/2),$$

y [0,1/2) es abierto en la topología usual de [0,1], se tiene que f es continua.

(5) Si h es un homeomorfismo de (X, \mathcal{T}) , entonces $h: X \to X$ es una biyección continua, abierta y cerrada. Por tanto $h(\{1\})$ es abierto de X, y al tener un único punto, tiene que ser $\{1\}$. Así, h(1) = 1. De la misma forma, $h(\{1,4\})$ es abierto de X, y al tener dos puntos (pues h es una biyección), tiene que ser el abierto $\{4,5\}$. Análogamnente $h(\{2,3\}) = \{2,3\}$. Por tanto solo hay cuatro posibilidades: h_0, h_1, h_2, h_3 , siendo h_0 la identidad, y

$$\begin{cases} h_1(1) = 1, \ h_1(2) = 2, h_1(3) = 3, h_1(4) = 5, h_1(5) = 4, \\ h_2(1) = 1, \ h_2(2) = 3, h_2(3) = 2, h_2(4) = 4, h_2(5) = 5, \\ h_3(1) = 1, \ h_3(2) = 3, h_3(3) = 2, h_3(4) = 5, h_3(5) = 4, \end{cases}$$

(6) Es clato que $X/R = \{[1], [2] = [4], [3] = [5]\}$, esto es un conjunto con tres elementos. Es claro también que X/R y \emptyset son abiertos de la topología cociente. Además, $\{[1]\}$ es abierto de la topología cociente, pues si $\pi : X \to X/R$ es la proyección, entonces $\pi^{-1}(\{[1]\}) = \{1\}$ que es abierto en X. Como ningún otro subconjunto de X/R tiene la propiedad de que su imagen reciproca por π sea abierto en X, se tiene que

$$\mathcal{T}/R = \{X/R, \emptyset, \{[1]\}\}.$$

(7) Es muy fácil comprobar que el único subconjunto de X que no es conexo es $A = \{1, 4, 5\}$, pues los subconjuntos de A: $\{1\}$ y $\{4, 5\}$ son abiertos en A y proporcionan una partición de A en abiertos disjuntos y no triviales.

Por otro lado, el apartado 4 nos dice que los puntos 1 y 3 se conectan por una curva continua. Una curva similar (cambiando 3 por 2) nnos diría que los puntos 1 y 2 tambien se conectan por una curva continua. Además, la curva $f:([0,1],\mathcal{T}_u)\to (X,\mathcal{T})$ dada por

$$f(t) = \begin{cases} 1 & \text{si } t \in [0, 1/2) \\ 2 & \text{si } t = 1/2 \\ 4 & \text{si } t \in (1/2, 1]. \end{cases}$$

es continua y conecta los puntos 1 y 4. Una curva similar cambiando el punto 4 por el 5, me diría que los puntos 1 y 5 también se conectan. Así todos los puntos se conectan con el 1 y por tanto X es conexo por arcos.

Ejercicio 2. (3 puntos) Sea $D^n = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots x_n^2 \leq 1\}$ dotado de la topología usual (la inducida de la Euclídea). Sea define la relación de equivalencia R en D^n dada por

$$xRy$$
 si $x = y$ o $||x|| = ||y|| = 1$.

- (1) Estudiar si la proyección $\pi:(D^n,\mathcal{T}_u)\to (D^n/R,\mathcal{T}_u/R)$ es abierta o cerrada.
- (2) Probar que $(D^n/R, \mathcal{T}_u/R)$ es Hausdorff, compacto y conexo.
- (3) Identificar topologicamente el espacio $(D^n/R, \mathcal{T}_u/R)$.

Indicación: Considerar la aplicación $f: D^n \to \mathbb{R}^{n+1}$ dada por $f(x) = (\frac{\sin(\pi||x||)}{||x||} x, \cos(\pi||x||))$.

Solución

(1) Como π es continua de un espacio compacto a un espacio Hausdorff (apartado (2)), entonces π es una aplicación cerrada.

Por otro lado, sea $O = D^n \cap B(x, 1/2)$, donde B(x, 1/2) es la bola abierta en \mathbb{R}^n de centro $x = (0, \dots, 0, 1)$ y radio 1/2. Entonces O es abierto en D^n , pero $\pi(O)$ no es abierto en D^n/R , ya que

$$\pi^{-1}\pi(O) = O \cup \mathbb{S}^{n-1},$$

que no es abierto en D^n .

(2) Como π es continua y sobreyectiva y D^n es compacto y conexo, se tiene que $D^n/R = \pi(D^n)$ también es compacto y conexo.

Veamos que D^n/R es un espacio Hausdorff. Para ello sean $[x], [y] \in D^n/R$ dos puntos distintos. Como $[x] \neq [y]$, se tiene que x e y no están relacionados. Por tanto hay dos posibilidades: x, y son distintos y pertenecen al interior de D^n o x está en el interior de D^n e y en la esfera \mathbb{S}^{n-1} que bordea a D^n .

En el primer caso, sean $B(x, \epsilon)$ y $B(y, \delta)$ bolas abiertas de \mathbb{R}^n centradas en x e y tal que están contenidas en el interior de D^n y son disjuntas entre si. Como

$$\pi^{-1}\pi(B(x,\epsilon))=B(x,\epsilon), \quad \text{y} \quad \pi^{-1}\pi(B(y,\delta))=B(y,\delta),$$

se tiene que $\pi(B(x,\epsilon))$ y $\pi(B(y,\delta))$ son abiertos disjuntos en D^n/R conteniendo respectivamente a [x] e [y].

En el segundo caso, sea $B(x,\epsilon)$ contenida en el interior de D^n y $D^n - \overline{B}(0,\delta)$ de tal manera que sean disjuntas. Como

$$\pi^{-1}\pi(B(x,\epsilon)) = B(x,\epsilon), \quad \text{y} \quad \pi^{-1}\pi(D^n - \overline{B}(y,\delta)) = D^n - \overline{B}(y,\delta),$$

se tiene que $\pi(B(x,\epsilon))$ y $\pi(D^n - \overline{B}(y,\delta))$ son abiertos disjuntos en D^n/R conteniendo respectivamente a [x] e [y]. Esto prueba que D^n/R es Hausdorff.

(3) En primer lugar la aplicación f es continua en todo D^n , pues en el punto 0 = (0, ..., 0) (el único con alguna difucultad para probar la continuidad de f), se tiene que $f(0) = (0, ..., 0, 1) = \lim_{x \to 0} f(x)$. En segundo lugar, es facil comprobar que ||f(x)|| = 1, $\forall x \in D^n$. Por tanto f es una aplicación continua de D^n en \mathbb{S}^n . Además, como D^n es compacto y \mathbb{S}^n es Hausdorff, f es también una aplicación cerrada. Finalmente, $f: D^n \to \mathbb{S}^n$ es sobreyectiva, pues f(0) = (0, ..., 0, 1), f(x) = (0, ..., 0, -1) para todo $x \in D^n$ con ||x|| = 1, y si $(y_1, ..., y_{n+1}) \in \mathbb{S}^n$ con $-1 < y_{n+1} < 1$, entonces $f(x) = (y_1, ..., y_{n+1})$ siendo

$$x = \frac{t}{\sin(\pi t)}(y_1, \dots, y_n), \quad t = \frac{\arccos y_{n+1}}{\pi}.$$

Veamos ahora que $R = R_f$, siendo R_f la relación de equivalencia en D^n dada por xR_fy si f(x) = f(y). En efecto, si xRy, se tiene que x = y o ||x|| = ||y|| = 1. En el primer caso f(x) = f(y) y en el segundo f(x) = f(y) = (0, ..., 0, -1). Por otro lado, si xR_fy , entonces f(x) = f(y) y en particular $\cos(\pi ||x||) = \cos(\pi ||y||)$. Como $\pi ||x||, \pi ||y|| \in [0, \pi]$ tenemos que ||x|| = ||y||. Además sabemos que

$$\frac{\sin(\pi||x||)}{||x||}x = \frac{\sin(\pi||y||)}{||y||}y.$$

Si ||x|| = ||y|| = 0, entonces x = y = 0. Si $||x|| = ||y|| \in (0,1)$, entonces la anterior relación nos dice que x = y. La última posibilidad es que ||x|| = ||y|| = 1. Así se tiene que xRy. Por tanto $R_f = R$.

Por teoría, existe una aplicación $\hat{f}: D^n/R \to \mathbb{S}^n$ que es un homeomorfismo, ya que $f: D^n \to \mathbb{S}^n$ es sobreyectiva, continua y cerrada. Así el espacio cociente es homeomorfo a una esfera de dimensión n.

Ejercicio 3. (4 puntos) Sea (X, \mathcal{T}) un espacio topológico no compacto y ∞ un punto no perteneciente a X. En $\hat{X} = X \cup \{\infty\}$ definimos la familia $\hat{\mathcal{T}} = \mathcal{T} \cup \mathcal{T}(\infty)$, donde

$$\mathcal{T}(\infty) = \{ O \subset \hat{X} \mid \hat{X} - O \text{ es un subconjunto cerrado y compacto de } (X, \mathcal{T}) \}.$$

- (1) Probar que \mathcal{T} y $\mathcal{T}(\infty)$ son disjuntas y que $\hat{\mathcal{T}}$ es una topología en \hat{X} .
- (2) Probar que $\hat{\mathcal{T}}_X = \mathcal{T}$, esto es que la topología inducida por $\hat{\mathcal{T}}$ en X es \mathcal{T} .
- (3) Probar que $\overline{X} = \hat{X}$ y que ∞ no es un punto aislado en (\hat{X}, \hat{T}) .
- (4) Probar que (\hat{X}, \hat{T}) es compacto.
- (5) Si $(X, \mathcal{T}) = (\mathbb{R}, \mathcal{T}_u)$, sabrías identificar al espacio $(\hat{X}, \hat{\mathcal{T}})$?.

Solución

(1) Si $O \in \mathcal{T}(\infty)$, entonces $\infty \in O$, pues si no, $\infty \in \hat{X} - O \subset X$, lo que es una contradicción. Como un abierto de \mathcal{T} no puede contener a ∞ ya que es un subconjunto de X, sde tiene que \mathcal{T} y $\mathcal{T}(\infty)$ son disjuntas.

Veamos ahora que $\hat{\mathcal{T}}$ es una topología en \hat{X} . $\hat{X} \in \hat{\mathcal{T}}$ pues $\hat{X} - \hat{X} = \emptyset$ que es cerrado y compacto en X. $\emptyset \in \mathcal{T} \subset \hat{\mathcal{T}}$.

Sean $O \in \mathcal{T}$ y $\hat{O} \in \mathcal{T}(\infty)$. Veamos que $O \cup \hat{O}, O \cap \hat{O} \in \hat{\mathcal{T}}(\infty)$. En efecto $\hat{X} - (O \cup \hat{O}) = (\hat{X} - O) \cap (\hat{X} - \hat{O}) = (X - O) \cap (\hat{X} - \hat{O})$ que es cerrado en X (por ser intersección de cerrados) y contenido en el compacto $\hat{X} - \hat{O}$. Por tanto también es compacto. Así $O \cup \hat{O} \in \mathcal{T}(\infty)$. Análogamente, como $O \cap \hat{O} \subset X$, se tiene que $X - (O \cap \hat{O}) = (X - O) \cup (\hat{X} - \hat{O})$ que es cerrado en X (por ser unión de cerrados). Así, $O \cap \hat{O} \in \mathcal{T}$.

Por etro lado las uniones arbitrarias y las iintersecciones finitas de abiertos de \mathcal{T} son abiertas en \mathcal{T} y por tanto en $\hat{\mathcal{T}}$. Análogamente, las uniones arbitrarias y las intersecciones finitas de elementos

de $\mathcal{T}(\infty)$ son elementos de $\mathcal{T}(\infty)$, y por tanto de $\hat{\mathcal{T}}$, ya que las intersecciones arbitrarias y las uniones finitas de cerrados y compactos de X son cerradas y compactas en X.

Todas estas observaciones juntas prueban fácilmente que las uniones arbitrarias y las intersecciones finitas de elementos de $\hat{\mathcal{T}}$ son elementos de $\hat{\mathcal{T}}$.

- (2) Si $O \in \mathcal{T}$, entonces $O \subset X$ y así $O = O \cap X$. Esto significa que $O \in \hat{\mathcal{T}}_X$ y por tanto $\mathcal{T} \subset \hat{\mathcal{T}}_X$. Por otro lado, si $O \in \hat{\mathcal{T}}_X$ entonces $O = V \cap X$ con $V \in \hat{\mathcal{T}}$. Si $V \in \mathcal{T}$, entonces $O = V \in \mathcal{T}$. Si $V \in \mathcal{T}(\infty)$, entonces $X O = X (V \cap X) = \hat{X} V$, que es cerrado en X. Asi $O \in \mathcal{T}$. Esto implica que $\hat{\mathcal{T}}_X \subset \mathcal{T}$. Por tanto tiene que $\hat{\mathcal{T}}_X = \mathcal{T}$.
- (3) Para probar que $\overline{X} = \hat{X}$ basta con ver que $\infty \in \overline{X}$. Si O es un entorno abierto de ∞ , entonces $O \in \mathcal{T}(\infty)$ y por tanto $\hat{X} O$ es un cerrado y compacto de X. Si $O \cap X = \emptyset$ entonces $O = \{\infty\}$ y por tanto $X = \hat{X} O$ sería compacto, lo que contradice la no compacidad de X en el enunciado. Así, todo entorno abierto de ∞ intersecta a X y por tanto ∞ pertenece a la adherencia de X. El razonamiento hecho también prueba que ∞ no es un punto aislado.
- (4) Sea $\{O_{\lambda} \mid \lambda \in \Lambda\}$ un recubrimiento abierto de \hat{X} . Como $\infty \in \hat{X}$, entonces existe un $\lambda(\infty) \in \Lambda$ tal que $\infty \in O_{\lambda(\infty)}$. Así, $\hat{X} O_{\lambda(\infty)}$ es un subconjunto compacto de X. Por tanto del recubrimiento anterior podemos extraer un subrecubrimiento finito de $\hat{X} O_{\lambda(\infty)}$, esto es existe $\{O_{\lambda_i} \mid i = 1, \ldots, n\}$ con $\hat{X} O_{\lambda(\infty)} \subset \bigcup_{i=1}^n O_{\lambda_i}$. Es claro entonces que

$$\hat{X} = (\cup_{i=1}^n O_{\lambda_i}) \cup O_{\lambda(\infty)},$$

y por tanto del recubrimiento abierto original de \hat{X} hemos extraido un subrecubrimiento finito. Por tanto \hat{X} es compacto.

(5) Intuimos que \hat{X} es una circunferencia. Para pobrar dicha intuición consideramos la aplicación $h: \hat{\mathbb{R}} \to \mathbb{S}^1$ dada por

$$\begin{cases} h(t) = (\cos(\frac{2\pi}{1+e^{-t}}), \sin(\frac{2\pi}{1+e^{-t}})), & \text{si} \quad t \in \mathbb{R}, \\ h(\infty) = (1, 0). \end{cases}$$

Es un ejercicio probar que h es un homeomorfismo de $(\hat{\mathbb{R}}, \hat{\mathcal{T}})$ sobre $(\mathbb{S}^1, \mathbb{T}_u)$. La aplicación $f: \mathbb{R} \to (0,1)$ dada por $f(t) = \frac{1}{1+e^{-t}}$ es un homeomorfismo de \mathbb{R} sobre (0,1).

Ejercicio 4. (3 puntos) Sea $X = (\bigcup_{n \in \mathbb{N}} A_n) \cup B$, donde A_n es el segmento de recta en \mathbb{R}^2 uniendo los puntos (0,0) y (1,1/n) y $B = \{(t,0) \in \mathbb{R}^2 \mid 1/2 < t \le 1\}$. Dotamos a X de la topología usual (inducida de la Euclídea).

- (1) Probar que (X, \mathcal{T}_u) es un espacio conexo. Es (X, \mathcal{T}_u) conexo por arcos?
- (2) Calcular las componentes conexas de $(X \{(0,0)\}, \mathcal{T}_u)$.

Solución

(1) Es claro que cada A_n dotado de la topología usual es conexo por arcos y por tanto conexo, ya que es un segmento de recta en \mathbb{R}^2 . Como $A = \bigcup_{n \in \mathbb{N}} A_n$ es una unión de subconjuntos conexos de \mathbb{R}^2 con un punto en común (el (0,0)), se tiene que A es conexo. Además, la adherencia de A en \mathbb{R}^2 es $\overline{A} = A \cup \{(t,0) \in \mathbb{R}^2 \mid t \in [0,1]\}$. Por tanto como $A \subset X \subset \overline{A}$ se tiene que X es un subconjunto conexo de $(\mathbb{R}; \mathcal{T}_u)$, es decir (X, \mathcal{T}_u) es conexo.

Por contra (X, \mathcal{T}_u) no es conexo por arcos, pues por ejemplo los puntos $(1,0), (1,1) \in X$ no pueden conectarse por una curva continua en X. En efecto, si $f : [0,1] \to X$ es una curva continua con f(0) = (1,0) y f(1) = (1,1), entonces sea $Y = \{t \in [0,1] | f(t) \in B\}$. Como $0 \in Y$, se tiene que Y es no vacio. Además, $Y = f^{-1}(B)$, por lo que Y es cerrado ya que B es cerrado en X al ser la intersección con X de la recta y = 0, que es cerrada de \mathbb{R}^2 . Si probamos que Y es abierto, se tendrá (usando la conexión de [0,1]) que Y = [0,1] y por tanto la imagen de la curva f está contenida en B, contradiciendo que en el instante 1 llega a (1,1).

Veamos pues que Y es abierto. Si $t_0 \in Y$, entonces $f(t_0) = (a, 0) \in B$ y por continuidad, dado $O = B((a, 0), 1/2) \cap X$, existe $\epsilon > 0$ tal que

$$f((t_0 - \epsilon, t_0 + \epsilon) \cap [0, 1]) \subset O.$$

Pero $(t_0 - \epsilon, t_0 + \epsilon) \cap [0, 1]$ es conexo, por lo que $f((t_0 - \epsilon, t_0 + \epsilon) \cap [0, 1])$ es un subconjunto conexo de O que contiene al punto (a, 0). Así debe estar contenido en la componente conexa de (a, 0) en el espacio O. Si vemos que dicha componente conexa es B se acaba la demostración.

Para ello, O es una unión numerable de segmentos de recta junto con B. Estos segmentos de recta son conexos y abiertos y cerrados en O, por lo que son componentes conexas de O. Como además B es conexo, B tiene que ser una componente conexa de O. Observemos que B es cerrado pero no es abierto en O.

(2) $X - \{(0,0)\} = \bigcup_{n \in \mathbb{N}} (A_n - \{(0,0)\}) \cup B$. (Este espacio es similar al espacio O estudiado en el apartado anterior. El cálculo de sus componentes conexas es parecido al hecho para O, pero en este caso lo haremos más detallado).

 $A_n - \{(0,0)\}$ es conexo (pues es un segmento de recta de \mathbb{R}^2 , cerrado (pues es la intersección de una recta de \mathbb{R}^2 , que es cerrada, con $X - \{(0,0)\}$ y abierto pues es la intersección con $X - \{(0,0)\}$ del sector abierto de \mathbb{R}^2 comprendido entre las semirectas A_{n-1} y A_{n+1} . Por tanto (por teoría) para todo $n \in \mathbb{N}$, $A_n - \{(0,0)\}$ es una componente conexa de $X - \{(0,0)\}$. Conviene observar que este razonamiento no prueba que A_n es abierto de X. Por tanto

$$X - \{(0,0)\} = \cup_{n \in \mathbb{N}} (A_n - \{(0,0)\}) \cup B \quad \text{(unión disjunta)}$$

con todos los $A_n - \{(0,0)\}$ componentes conexas de $X - \{(0,0)\}$ y siendo B conexo. Esto implica que B también es una componente conexa de $X - \{(0,0)\}$.