BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

Offenlegungsschrift

® DE 103 16 134 A 1

(21) Aktenzeichen:

103 16 134.1

Anmeldetag: (3) Offenlegungstag:

9. 4.2003 30. 10. 2003

(5) Int. CI.7: A 61 B 17/28

A 61 B 1/00 A 61 B 18/12 A 61 B 10/00

(31) Unionspriorität:

2002-106012

09.04.2002

2002-278651

25.09.2002 JP

(7) Anmelder:

Pentax Corp., Tokio/Tokyo, JP

(74) Vertreter:

Schaumburg und Kollegen, 81679 München

② Erfinder:

Kidooka, Satoshi, Tokio/Tokyo, JP

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- Sangeninstrument für ein Endoskop
- Ein Zangeninstrument (100) umfasst einen Einführteil (104), der durch ein Endoskop in eine Körperkavität einführbar ist, einen Gabelkopf (120), ein Paar längliche Elemente (128a, 128b, 200a, 200b) sowie ein Paar einander gegenüberliegende Backen (110a, 110b). Der Gabelkopf (120) ist mit dem distalen Ende des Einführteils (104) verbunden. Die beiden länglichen Elemente (128a, 128b, 200a, 200b) sind an den Gabelkopf (120) gekoppelt. Die länglichen Elemente (128a, 128b, 200a, 200b) haben jeweils eine Spitze, die gesenkmäßig verformt ist, um das jeweilige Element (128a, 128b, 200a, 200b) an dem Gabelkopf (120) zu befestigen. Die beiden Backen (110a, 110b) sind schwenkbar an die beiden länglichen Elemente (128a, 128b, 200a, 200b) gekoppelt, so dass sie zwischen einer geöffneten und einer geschlossenen Stellung bewegbar sind. Die beiden länglichen Elemente (128a, 128b, 200a, 200b) sind parallel zueinander angeordnet. Ferner sind die beiden länglichen Elemente (128a, 128b, 200a, 200b) so ausgerichtet, dass ihre Spitzen, die gesenkmäßig verformt sind und damit vergleichsweise geringe mechanische Festigkeit aufweisen, auf entgegengesetzten Seiten des Gabelkopfs (120) angeordnet sind.

BEST AVAILABLE COPY

Beschreibung

[0001] Die Ersindung betrifft ein Zangeninstrument sür ein Endoskop mit zwei gegenüberliegenden Backen an dessen distalem Ende.

[0002] Für ein Endoskop bestimmte Zangeninstrumente haben typischerweise ein Paar gegenüberliegende Backen, wie z. B. die Backen einer Biopsiezange, einer Greifzange und einer hämostatischen Zange.

[0003] Fig. 1 zeigt das distale Ende eines herkömmlichen 10 endoskopischen Zangeninstrumentes 10. Das Zangeninstrument 10 umfasst einen Gabelkopf 12, der mit dem distalen Ende einer flexiblen Hülle 11 verbunden ist. Über einen Niet 15 sind zwei gegenüberliegende Backen 14 schwenkbar mit dem distalen Ende des Gabelkopfs 12 verbunden. Der Niet 15 ist in Bohrungen 16 eingesetzt, die am distalen Ende des Gabelkopfs 12 ausgebildet sind, und erstreckt sich quer zu einem in dem Gabelkopf 12 ausgebildeten Schlitz 13.

[0004] Durch die Hülle 11 sind zwei nicht gezeigte Steucrdrähte geführt und mit den beiden Backen 14 verbunden. 20 Die beiden Backen 14 öffnen und schließen sich, wenn die beiden Steuerdrähte vom proximalen Ende des Zangeninstrumentes 10 her vor- und zurückbewegt werden.

[0005] Der Niet 15 umfasst einen Körper 15b, einen Kopf
15a, dessen Durchmesser größer als der des Körpers 15b ist,
und eine Spitze 15c, deren Durchmesser kleiner als der des
Körpers 15b ist. Die Spitze 15c wird nach Einsetzen des
Niets 15 in die Bohrungen 16 des Gabelkopfs 12 gesenkmäßig verformt, um den Niet 15 an dem Gabelkopf 12 zu befestigen. Da jedoch die mechanische Festigkeit der gesenkmäßig verformten Spitze 15c des Niets 15 vergleichsweise gering ist, besteht die Gefahr, dass sich der Niet 15 von dem
Gabelkopf 12 löst und sich so das distale Ende des Zangeninstrumentes in seine Einzelteile zerlegt, wenn eine starke
Kraft auf den Gabelkopf 12 ausgeübt wird, die den Schlitz
35
13 des Gabelkopfs 12 aufweitet.

[0006] Aufgabe der Erfindung ist es, ein Zangeninstrument für ein Endoskop sowie eine Zangenbackenanordnung hierfür anzugeben, die gewährleisten, dass sich das genannte distale Ende nicht in seine Einzelteile zerlegt.

[0007] Die Erfindung löst diese Aufgabe durch die Gegenstände der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.

[0008] Bei dem Zangeninstrument und der Zangenbakkenanordnung nach der Erfindung sind die länglichen Elesmente oder Stangenelemente so angeordnet, dass sich ihre Kopplungsteile, die beispielsweise gesenkmäßig verformt oder nach Art eines Gewindeeingriffs gekoppelt sind und deshalb vergleichsweise geringe mechanische Festigkeit haben, auf entgegengesetzten Seiten des Gabelkopfs befinden. 50 Dies bedeutet, dass sich auch die Köpfe der länglichen Elemente, die eine größere mechanische Festigkeit als die Kopplungsteile haben, auf entgegengesetzten Seiten des Gabelkopfs befinden. So ist eine feste Kopplung zwischen den länglichen Elementen und dem Gabelkopf auf beiden Seiten 55 des Gabelkopfs gewährleistet.

[0009] Die Ersindung wird im Folgenden an Hand der Figuren näher erläutert. Darin zeigen:

[0010] Fig. 1 das distale Ende eines herkömmlichen endoskopischen Zangeninstrumentes,

[0011] Fig. 2 ein endoskopisches Zangeninstrument als Ausstihrungsbeispiel, das an eine Hochsrequenz-Spannungsversorgung angeschlossen ist,

[0012] Fig. 3 cine perspektivische Ansicht des distalen Endes des in Fig. 2 gezeigten Zangeninstrumentes,

[0013] Fig. 4 eine teilweise geschnittene Seitenansicht des distalen Endes des in Fig. 2 gezeigten Zangeninstrumentes,
 [0014] Fig. 5 eine Schnittansicht des in Fig. 4 gezeigten

Zangeninstrumentes in Blickrichtung des Pfeils A,

[0015] Fig. 6 eine perspektivische Explosionsansicht einer Zangenbackenanordnung des in Fig. 2 gezeigten Zangeninstrumentes,

5 [0016] Fig. 7A und 7B eine rechte Seitenansicht bzw. eine Rückansicht eines Isolierblocks des in Fig. 2 gezeigten Zangeninstrumentes,

[0017] Fig. 8 eine Schnittansicht der Zangenbackenanordnung längs der in Fig. 4 gezeigten Linie VIII-VIII,

[0018] Fig. 9 eine Schnittansicht des Endabschnittes einer modifizierten Ausführungsform des in den Fig. 1 bis 8 gezeigten Zangeninstrumentes, und

[0019] Fig. 10 eine perspektivische Explosionsansicht der Zangenbackenanordnung der modifizierten Ausführungsform des in Fig. 1 gezeigten Zangeninstrumentes.

[0020] Im Folgenden wird unter Bezugnahme auf die Figuren ein Ausführungsbeispiel beschrieben.

[0021] Fig. 2 zeigt ein endoskopisches Zangeninstrument 100 als Ausführungsbeispiel, das mit einer Hochfrequenz-Spannungsversorgung 200 verbunden ist.

[0022] Das Zangeninstrument 100 umfasst einen Bedienteil 102 und einen Einführteil 104, der mit dem distalen Ende des Bedienteils 102 verbunden ist.

[0023] Der Einführteil ist in Form und Größe so ausgebildet, dass er durch einen Instrumentenkanal eines nicht gezeigten Endoskops in eine Körperkavität eingeführt werden kann. Der Einführteil 104 umfasst eine längliche, flexible Hülle 106 und zwei verschiebbar durch die Hülle 106 geführte Leitungsdrähte 108, von denen nur einer gezeigt ist. Dic Hülle 106 besteht aus einem isolierenden Material, z. B. Polytetrafluorethylen (PTFE). Die Hülle 106 ist z. B. 1 m bis 2 m lang und hat einen Außendurchmesser von z. B. 2 mm bis 3 mm.

[0024] Am distalen Ende des Einführteils 104 ist eine Zangenbackenanordnung 109 angebracht. Die Zangenbakkenanordnung 109 umfasst eine erste Backe 110a und eine zweite Backe 110b, die mit den Leitungsdrähten 108 verbunden sind.

[0025] Der Bedienteil 102 umfasst einen zylindrischen
 Teil 112 und einen verschiebbar in den zylindrischen Teil
 112 eingeführten stabförmigen Teil 114.

[0026] Der zylindrische Teil hat an seinem proximalen Ende eine umlaufende Aussparung 112a. Der Benutzer des Zangeninstrumentes 100 kann den Bedienteil 102 halten, indem er ihn mit seinem Zeigefinger und seinem Mittelfinger an der Aussparung 112a einklemmt.

[0027] Der stabförmige Teil 114 hat einen Ring 114a, in den der Benutzer seinen Daumen einführen kann, um den stabförmigen Teil 114 in den zylindrischen Teil 112 vor- und zurückzubewegen.

|0028| Der stabförmige 'leil 114 ist mit den beiden Drähten 108 in dem zylindrischen Teil 112 so verbunden, dass durch Vor- und Zurückbewegen des stabförmigen Teils 114 bezüglich des zylindrischen Teils 112 die Drähte 108 in der Hülle 106 vorgeschoben und zurückgezogen werden. Die beiden Drähte 108 können aneinander befestigt sein, so dass sie in der Hülle 106 als Einheit verschoben werden, um die beiden Backen 110 gleichzeitig zu bewegen.

[0029] Die Leitungsdrähte 108 sind üher ein Paar Anschlussstücke 116, die an der Seitenfläche des zylindrischen Teils 112 vorgesehen sind, lösbar mit Zuführleitungen der Hochfrequenz-Spannungsversorgung 200 verbunden. Einer der Leitungsdrähte 108 ist mit dem positiven Anschluss und der andere mit dem negativen Anschluss der Spannungsversorgung 200 verbunden.

[0030] Fig. 3 ist eine perspektivische Ansicht des distalen Endes des in Fig. 2 gezeigten Zangeninstrumentes 100. Fig. 4 ist eine teilweise geschnittene Seitenansicht des distalen

Endes des in Fig. 2 gezeigten Zangeninstrumentes 100. Fig. 5 ist eine Schnittansicht des in Fig. 4 gezeigten distalen Endes des Zangeninstrumentes 100 in Blickrichtung des Pfeils A. In den Fig. 4 und 5 ist jeweils eine zusammengesetzte Ansicht gezeigt, in der auf verschiedene Positionen bezogene Schnittansichten miteinander kombiniert sind.

[0031] Die Zangenbackenanordnung 109 umfasst einen Gabelkopf 120, an den die erste Backe 110a und die zweite Backe 110b schwenkbar gekoppelt sind. Der Gabelkopf 120 besteht aus einem harten isolierenden Material, z. B. einem 10 starren Kunststoff, und ist an dem distalen Ende der flexiblen Hülle 106 angebracht.

[0032] Wie in Fig. 5 gezeigt, hat der Gabelkopf 120 einen Körper (Basis) 121, der mit dem distalen Ende der flexiblen Hülle 106 verbunden ist, sowie einen ersten Arm 122a und 15 einen zweiten Arm 112b, die sich von dem Körper 121 parallel zueinander nach vorne erstrecken und zwischen sich einen Schlitz 124 konstanter Breite bilden. An den Armen 122a, 122b sind ein erster Niet 128a und ein zweiter Niet 128h in der Nähe der distalen Ende der Arme 122a und 122h 20 gehalten (vgl. auch Fig. 4).

[0033] Die beiden Niete 128a und 128b sind parallel zueinander, voneinander beabstandet und senkrecht zu einer ersten und einer zweiten inneren Seitenfläche 124a, 124b des Schlitzes 124 angeordnet. Ferner sind die beiden Niete 25 128a, 128b so angeordnet, dass die Längsachse B des Gabelkopfs 120 durch die Mitte des zwischen den beiden Nieten 128a, 128b liegenden Raums geht. Die beiden Niete 128a, 128b bestehen beispielsweise aus korrosionsbeständigem

[0034] Die beiden Backen 110a, 110b sind teilweise in den Schlitz 124 des Gabelkopfs 120 eingesetzt und schwenkbar an den beiden Nieten 128a, 128b montiert. Die beiden Bakken 110a, 110b können zwischen einer geschlossenen Stellung, in der sie, wie in Fig. 4 mit durchgezogenen Linien angedeutet, in Kontakt miteinander kommen, und einer geöffneten Stellung, in der sie, wie in Fig. 4 mit Doppelstrichlinien angedeutet, voneinander getrennt sind, bewegt werden. [0035] Wie in Fig. 4 gezeigt, ist das hintere, d. h. proximale Ende der jeweiligen Backe 110a bzw. 110b mit dem 40 zugehörigen Leitungsdraht 108 verbunden. Jeder Leitungsdraht 108 ist mit Ausnahme seines Endabschnittes 108a, an dem er mit der ihm zugeordneten Backe 110a bzw. 110b verbunden ist, mit einem Isolierrohr 126 umhüllt.

[0036] In dem Schlitz 124 des Gabelkopfs 120 ist ein Iso- 45 lierblock 130 vorgesehen, der verhindert, dass die erste und die zweite Backe 110a, 110b innerhalb des Schlitzes 124 miteinander in Kontakt kommen. Der Isolierblock 130 ist zwischen den beiden Backen 110a, 110h angeordnet und mit den beiden Nieten 128a, 128b gehalten.

[0037] Fig. 6 ist eine perspektivische Explosionsansicht der Zangenbackenanordnung 109. In Fig. 6 ist der Gabelkopf 120 weggelassen, um die Darstellung zu vereinfachen. [0038] Die heiden Backen 110a, 110b sind jeweils als längliches Element ausgebildet, das aus einem leitenden 55 Material wie korrosionsbeständigem Stahl besteht. Die Bakken 110a, 110b umfassen jeweils einen länglichen vorderen, d. h. distalen Teil 140 und einen länglichen hinteren, d. h. proximalen Teil 142. Sind die Backen 110a, 110h an dem Berhalb des Schlitzes 124 und ihre hinteren Teile 142 zwischen den beiden Armen 122 angeordnet.

[0039] In dem hinteren Teil der jeweiligen Backe 110a, 110b sind zwei Durchgangsbohrungen 144 und 146 ausgebildet. Die erste Durchgangsbohrung 144 bildet eine Lagerbohrung und befindet sich etwa in der Mitte der jeweiligen Backe 110a, 110b. Die andere Durchgangsbohrung 146 bildet eine Verbindungsbohrung und befindet sich in der Nähe

des hinteren Endes der jeweiligen Backe 110a, 110b.

[0040] Die erste Backe 110a ist schwenkbar an dem Gabelkopf 120 montiert, indem der erste Niet 128a durch ihre Lagerbohrung 144 geführt ist. Dagegen ist die zweite Backe 110h schwenkbar an dem Gabelkopf 120 montiert, indem der zweite Niet 128b durch ihre Lagerbohrung 144 geführt

[0041] Die Spitze des jeweiligen Leitungsdrahtes 108, die nicht von dem Isolierrohr 126 umhüllt ist, ist durch die Verbindungsbohrung 146 geführt und mit der zugehörigen Backe 110a, 110b verbunden.

[0042] Der hintere Teil 142 der jeweiligen Backe 110a 110b ist etwas gebogen, so dass die in der Hülle 106 vorund zurückgleitenden Leitungsdrähte 108 die Backen 110a, 110h um die jeweiligen Nieten 128a, 128h zwischen der ge-

öffneten und der geschlossenen Stellung schwenken.

[0043] Der vordere Teil 140 der jeweiligen Backe 110a, 110b ist becherförmig ausgebildet. Die Backen 110a, 110b sind so angeordnet, dass die becherförmigen Teile mit ihren konkaven Seiten in Kontakt miteinander kommen, wenn sich die Backen 110a, 110b in der geschlossenen Stellung befinden.

[0044] Der Isolierblock 130 besteht aus einer Keramik oder einem Harz wie z. B. Polytetrafluorethylen. Der Isolierblock 130 hat eine vordere Seite 150, eine hintere Seite 152, eine rechte Seite 154 und eine linke Seite 156. Der Isolierblock 130 ist in dem Schlitz 124 des Gabelkopfs 120 so angeordnet, dass seine rechte Seite 154 der rechten inneren Seitenfläche 124a und seine linke Seite 156 der linken inneren Seitenfläche 124b des Schlitzes 124 zugewandt ist.

[0045] In dem Isolierblock 130 sind zwei Durchgangsbohrungen 158a und 158b ausgebildet, die senkrecht zur rechten Seite 154 und zur linken Seite 156 des Isolierblocks 130 verlaufen. Der Isolierblock 130 ist an dem Gabelkopf 120 angebracht, indem der erste Niet 128a durch die erste Durchgangsbohrung 158a und der zweite Niet 128b durch die zweite Durchgangsbohrung 158b geführt ist. Da der Isolierblock 130 mit den beiden Nieten 128a, 128b gehalten ist, dreht er sich in dem Schlitz. 124 nicht.

[0046] Die Niete 128a, 128b haben jeweils einen Körper 160, einen Kopf 162, dessen Durchmesser größer als der des Körpers 160 ist, und eine Spitze 164, deren Durchmesser kleiner als der des Körpers 160 ist.

[0047] Fig. 7A zeigt die rechte Seite 154 und Fig. 7B die hintere Seite 152 des Isolierblocks 130. Fig. 8 zeigt eine Schnittansicht der Zangenbackenanordnung 109 längs der in Fig. 4 dargestellten Linie VIII-VIII.

[0048] Die rechte Seite 154 des Isolierblocks 130 ist mit cinem ersten Vorsprung 154a versehen. Der erste Vorsprung 154a hat eine im Wesentlichen ebene Seitenfläche 154b. Entsprechend ist die linke Seite 156 des Isolierblocks 130 mit einem zweiten Vorsprung 156a versehen, der ebenfalls eine im Wesentlichen ebene Seitenfläche 156b hat. Die beiden Vorsprünge 154a, 156a sind so ausgebildet, dass der Abstand zwischen ihren Seitenflächen 154b, 156b und damit die Gesamtdicke des Isolierblocks 130 im Wesentlichen gleich der Breite des Schlitzes 124 ist. Die Seitenslächen 154b. 156b der Vorsprünge 154a, 156a kommen deshalb in Kontakt mit der rechten hzw. der linken inneren Seitenfläche Gabelkopf 120 montiert, so sind ihre vorderen Teile 140 au- 60 124a, 124b des Schlitzes 124, wenn der Isolierblock 130 in dem Schlitz 124 angeordnet ist.

[0049] Wie in Fig. 8 gezeigt, dienen die beiden Vorsprünge 154a, 156a der Ausbildung eines ersten Raums 170a und eines zweiten Raums 170b zwischen dem Isolierblock 130 und den Armen 122 des Gabelkopfs 120, in denen die erste bzw. die zweite Backe 110a, 110b aufgenommen sind.

[0050] Die erste Backe 110a ist innerhalb des ersten

Raums 170a schwenkbar an den ersten Niet 128a gekoppelt. Die zweite Backe 110b ist innerhalb des zweiten Raums 170b schwenkbar an den zweiten Niet 128b gekoppelt.

[0051] Der erste und der zweite Vorsprung 154a, 156a sind so ausgebildet, dass der erste hzw. der zweite Raum 170a, 170b geringfügig breiter die erste bzw. die zweite Backe 110a, 110b ist. Die beiden Backen 110a, 110b können so reibungsfrei um den ersten bzw. den zweiten Niet 128a, 128b geschwenkt werden.

[0052] Wie aus Fig. 8 hervorgeht, ist der erste Vorsprung 10 154a so ausgebildet, dass er den zweiten Niet 128b in der Nähe der ersten Backe 110a umgibt. Entsprechend ist der zweite Vorsprung 156a ausgebildet, dass er den ersten Niet in der Nähe der zweiten Backe 110b umgibt. Die so ausgebildeten Vorsprünge 154a, 156a verhindern deshalh, dass die erste Backe 110a mit dem zweiten Niet 128b und die zweite Backe 110b mit dem ersten Niet 128a in Kontakt kommen und einen Kurzschluss verursachen.

[0053] Wie in Fig. 8 gezeigt, hat der erste Arm 122a das Gabelkopfs 120 zwei Bohrungen 180 und 182. Entsprechend hat der zweite Arm 122b zwei Bohrungen 184 und

[0054] Die Bohrungen 180 und 184 umfassen jeweils einen Abschnitt 180a bzw. 184a vergrößerten Durchmessers und einen Abschnitt 180b, 184b verkleinerten Durchmessers, wobei der vergrößerte Durchmesser im Wesentlichen dem Durchmesser des Kopfs 162 und der verkleinerte Durchmesser im Wesentlichen dem Durchmesser des Körpers 160 des jeweiligen Niets 128a bzw. 128b entspricht. Die anderen beiden Bohrungen 182 und 186 haben jeweils einen Durchmesser, der im Wesentlichen gleich dem Durchmesser der Spitze des jeweiligen Niets 128a, 128b ist.

[0055] Der erste Niet 128a wird an den Gabelkopf 120 gekoppelt, indem er in die Bohrungen 180 und 186 eingesetzt wird, und zwar in Fig. 8 in der Richtung, die von rechts nach 35 links weist. Der zweite Niet 128b wird an den Gabelkopf 120 gekoppelt, indem er in - bezüglich des ersten Niets 128a - entgegengesetzter Richtung in die Bohrungen 182 und 184 eingesetzt wird, nämlich in der Richtung, die in Fig. 8 von links nach rechts weist. Der Kopf 162 des ersten Niets 128a bzw. des zweiten Niets 128b, der in die Bohrung 180 bzw. 184 eingesetzt ist, passt in den Abschnitt 180a bzw. 184a vergrößerten Durchmesser der Bohrung 180 bzw. 184. Ein zwischen dem Abschnitt 180a bzw. 184a und dem Abschnitt 180b bzw. 184b ausgebildeter stufiger Abschnitt verhindert, 45 dass der Kopf 162 des ersten Niets 128a bzw. des zweiten Niets 128b durch die Bohrung 180 bzw. 184 tritt. Die Enden der Niete 128a, 128b werden gesenkmäßig verformt, so dass die Niete 128a, 128b sich nicht von dem Gabelkopf 120 lö-

[0056] Wie oben beschrieben, werden die beiden Niete 128a, 128b in entgegengesetzten Richtungen in den Gabelkopf 120 eingesetzt. Die gesenkmäßig verformten Teile der Niete 128a, 128b, die eine geringere mechanische Festigkeit als deren Köpfe 162 haben, sind so an verschiedenen Armen 55 122a, 122b des Gabelkopfs 120 angeordnet.

[0057] Wird auf die Arme 122a, 122b des Gabelkops 120 eine äußere Kraft ausgeübt, die bestrebt ist, den Schlitz 124 aufzuweiten, so verhindert der Kopf 162 des ersten Niets 128a, dass sich der erste Arm 122a nach außen biegt und sich von der Spitze 164 des zweiten Niets 128b löst. Entsprechend verhindert der Kopf 162 des zweiten Niets 128b, dass sich die Spitze 164 des ersten Niets 128a von dem zweiten Arm 122b des Gabelkopfs 120 löst. Dadurch wird verhindert, dass sich die Zangenbackenanordnung 109 infolge einer äußeren Kraft in ihre Einzelteile zerlegt.

[0058] Fig. 9 ist eine Schnittansicht des Endabschnittes einer modifizierten Ausführungsform des in den Fig. 1 bis 8

gezeigten endoskopischen Zangeninstrumentes 100. Bei dem in Fig. 9 gezeigten Zangeninstrument sind der erste und der zweite Niet 128a, 128b durch einen ersten bzw. einen zweiten Stift 200a, 200b ersetzt, von denen in Fig. 9 nur der erste Stift 200a gezeigt ist. Die Stifte 200a, 200b bestehen beispielsweise aus einem Metall, wie etwa einem korrosionsbeständigem Stahl. Die beiden Stifte 200a, 200b haben jeweils an ihrer Spitze ein Schraubengewinde, das mit einer entsprechenden Bohrung 182 bzw. 184 in Eingriff steht. Abgesehen davon entspricht die in Fig. 9 gezeigte modifizierte Ausführungsform dem in den Fig. 1 bis 8 gezeigten Zangeninstrument.

[0059] Fig. 10 ist eine perspektivische Explosionsansicht der Zangenbackenanordnung des in Fig. 1 gezeigten Zangeninstrumentes, wobei die beiden Niete 128a, 128b durch die beiden Stifte 200a, 200b ersetzt sind. In Fig. 10 ist der Gabelkopf 120 weggelassen, um die Darstellung zu vereinfachen.

[0060] Wie in Fig. 10 gezeigt, haben die beiden Stifte 200a, 200h jeweils einen Körper 202, einen Kopf 204, dessen Durchmesser größer als der des Körpers 202 ist, und eine Spitze 206, deren Durchmesser kleiner als der des Körpers 202 ist. Wie oben erwähnt, ist an der jeweiligen Spitze 206 ein Gewinde ausgebildet. Die beiden Stifte 200a, 200b werden so angeordnet, dass ihre Spitzen 206 an verschiedenen Armen 122a, 122b des Gabelkopfs 120 befestigt werden. Dies bedeutet, dass auch die Köpfe 204 der Stifte 200a, 200b an verschiedenen Armen 122a, 122b befestigt werden. Wie auch beim den in Fig. 1 bis 8 gezeigten Zangeninstrument verhindern so die Köpfe 204 der Stifte 200a, 200b, dass sich die Spitzen 206 der Stifte 200a, 200b von den Armen 122a, 122b lösen.

[0061] Der Einführteil 104 des oben beschriebenen Zangeninstrumentes 100 wird durch ein Endoskop in eine Körperkavität, z. B. den Magen, eingeführt und die Zangenbakkenanordnung 109 wird in der Nähe eines Zielbereichs, z. B. eines blutenden Körperteils, angeordnet.

[0062] Dann wird der Bedienteil 102 so betätigt, dass die beiden Leitungsdrähte 108 in der Hülle 106 nach vorne gleiten und die beiden Backen 110a, 110b in die geöffnete Stellung schwenken. Die Backen 110a, 110b werden dann mit dem Endoskop so bewegt, dass der blutende Körperteil zwischen ihnen angeordnet wird.

[0063] Anschließend werden die beiden Leitungsdrähte 108 eingezogen, indem der stabförmige Teil 114 gegenüber dem zylindrischen Teil 112 nach hinten gezogen wird, um die vorderen Abschnitte 140 der Backen 110a, 110b in die geschlossene Stellung zu bringen und so den blutenden Körperteil zu greifen.

[0064] Schließlich werden die beiden Backen 110a, 110b über die Leitungsdrähte 108 aus der Spannungsversorgung 200 mit elektrischer Hochfrequenzspannung versorgt. Dadurch fließt ein Hochfrequenzstrom durch den zwischen den Backen 110a, 110b angeordneten Körperteil, um diesen zu koagulieren und dadurch die Blutung zu stoppen.

[0065] Die Erfindung wurde vorstehend an Hand eines Ausführungsbeispiels erläutert. Sie ist auf dieses Ausführungsbeispiel jedoch nicht beschränkt. Beispielsweise wird das oben beschriehene Zangeninstrument mit elektrischer Hochfrequenzenergie versorgt. Die Erfindung ist jedoch ebenso auf Zangeninstrumente anwendbar, die nicht mit elektrischer Hochfrequenzenergie arbeiten.

Patentansprüche

 Zangeninstrument (100) für ein Endoskop, umfassend einen durch das Endoskop in eine Körperkavität ein-

8

führbaren Einführteil (104),

einen mit dem distalen Ende des Einführteils (104) verbundenen Gabelkopf (120),

zwei längliche Elemente (128a, 128b, 200a, 200b), die durch in dem Gahelkopf (120) ausgehildete Bohrungen geführt sind, wobei die länglichen Elemente (128a, 128b, 200a, 200b) jeweils an ihrem einen Ende einen Kopf (162, 204) und an ihrem anderen Ende einen Kopplungsteil (164, 206) haben, der Kopf (162, 204) in Form und Größe so ausgehildet ist, dass er nicht durch die Bohrungen passt, der Kopplungsteil (162, 204) zur Befestigung des jeweiligen länglichen Elementes (128a, 128b, 200a, 200b) an dem Gabelkopf (120) mit diesem gekoppelt ist und die länglichen Elemente (128a, 128b, 200a, 200b) parallel zueinander angeordnet und so ausgerichtet sind, dass sich ihre Köpfe (162, 204) auf entgegengesetzten Seiten des Gabelkopfs (120) besinden, und

zwei einander gegenüberliegende Backen (110a, 110b), von denen eine (110a) mit dem einen länglichen Element (128a, 200a) und die andere (110b) mit dem anderen länglichen Element (128b, 200b) schwenkbar gekoppelt ist und die zwischen einer geöffneten und einer geschlossenen Stellung bewegbar sind.

- Zangeninstrument (100) nach Anspruch 1, dadurch 25 gekennzeichnet, dass die länglichen Elemente (128a, 128b) jeweils als Niet ausgebildet sind, dessen Spitze den Kopplungsteil (162) bildet und zur Befestigung des Niets an dem Gabelkopf (120) gesenkmäßig verformt ist.
- 3. Zangeninstrument (100) nach Anspruch 1, dadurch gekennzeichnet, dass der Kopplungsteil (206) des jeweiligen länglichen Elementes (200a, 200b) als Schraube ausgebildet ist, die mit dem Gabelkopf (120) verbunden ist.
- 4. Zangeninstrument (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die länglichen Elemente (128a, 128b, 200a, 200b) so angeordnet sind, dass die Längsachse (B) des Gabelkopfs (120) durch den zwischen den länglichen Elementen 40 (128a, 128b, 200a, 200b) liegenden Raum geht.
- 5. Zangeninstrument (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Backen (110a, 110b) jeweils aus einem leitenden Material bestehen und jeweils mit einem Leitungsdraht 45 (108) verbunden sind, über den sie mit elektrischer Hochfrequenzenergie versorgt werden.
- 6. Zangeninstrument (100) nach Anspruch 5, gekennzeichnet durch einen Isolierblock (130), der an den länglichen Elementen (128a, 128b, 200a, 200b) zwischen den beiden Backen (110a, 110b) gehalten ist.
- 7. Zangenbackenanordnung (109), umfassend einen Gabelkopf (120) mit einem Körper (121), der mit dem distalen Ende eines Einführteils (104) eines für ein Endoskop bestimmten Zangeninstrumentes (100) verbindbar ist,

zwei längliche Elemente (128a, 128b, 200a, 200b), die durch in dem Gabelkopf (120) ausgebildete Bohrungen geführt sind, wobei die länglichen Elemente (128a, 128b, 200a, 200b) jeweils an ihrem einen Ende einen 60 Kopf (162, 204) und an ihrem anderen Ende einen Kopplungsteil (164, 206) haben, der Kopf (162, 204) in Form und Größe so ausgebildet ist, dass er nicht durch die Bohrungen passt, der Kopplungsteil (162, 204) zur Befestigung des jeweiligen länglichen Elementes (128a, 128b, 200a, 200b) an dem Gabelkopf (120) mit diesem gekoppelt ist und die länglichen Elemente (128a, 128b, 200a, 200b) parallel zueinander angeord-

net und so ausgerichtet sind, dass sich ihre Köpfe (162, 204) auf entgegengesetzten Seiten des Gabelkopfs (120) befinden, und

zwei einander gegenüberliegende Backen (110a, 110b), von denen eine (110a) mit dem einen länglichen Element (128a, 200a) und die andere (110b) mit dem anderen länglichen Element (128b, 200b) schwenkbar gekoppelt ist und die zwischen einer geöffneten und einer geschlossenen Stellung bewegbar sind.

- 8. Zangenbackenanordnung (109) nach Anspruch 7, dadurch gekennzeichnet, dass die länglichen Elemente (128a, 128b) jeweils als Niet ausgebildet sind, dessen Spitze den Kopplungsteil (162) bildet und zur Befestigung des Niets an dem Gabelkopf (120) gesenkmäßig verformt ist.
- 9. Zangenbackenanordnung (109) nach Anspruch 7, dadurch gekennzeichnet, dass der Kopplungsteil (206) des jeweiligen länglichen Elementes (2004, 200b) als Schraube ausgebildet ist, die mit dem Gabelkopf (120) verbunden ist.
- 10. Zangenbackenanordnung (109) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die länglichen Elemente (128a, 128b, 200a, 200b) so angeordnet sind, dass die Längsachse (B) des Gabelkopfs (120) durch den zwischen den länglichen Elementen (128a, 128b, 200a, 200b) liegenden Raum geht.
- 11. Zangenbackenanordnung (109) nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Backen (110a, 110b) jeweils aus einem leitenden Material bestehen und jeweils mit einem Leitungsdraht (108) verbunden sind, über den sie mit elektrischer Hochfrequenzenergie versorgt werden.
- 12. Zangenbackenanordnung nach Anspruch 11, gekennzeichnet durch einen Isolierblock (130), der an den länglichen Elementen (128a, 128b, 200a, 200b) zwischen den beiden Backen (110a, 110b) gehalten ist.

Hierzu 9 Seite(n) Zeichnungen

STAND DER TECHNIK

BEST AVAILABLE COPY

FIG. 5

FIG.7A

FIG.7B

FIG. 8

FIG. 9

