Optimisation de circuits logiques

Alexandre JANNIAUX

Circuits logiques et fonctions combinatoires

Méthode de Quine-McCluskey

Méthode de Petrick

Fonctions multivaluées

Circuits logiques et fonctions combinatoires

FIGURE: Exemple de circuit logique PLA ET/OU

$$f: \{0,1\}^3 \longrightarrow \{0,1,_\}$$

 $(e_1, e_2, e_3) \longmapsto (e_1 + e_2)e_3 + (e_1 + e_3)e_2$

Notations:

Mintermes :

$$A\overline{B}C\overline{D}EF = (1, 0, 1, 0, 1, 1) = \overline{101011}^2 = 43$$

- ▶ DNF : a_i : $f = \sum m(a_1, \dots, a_n)$
- ▶ Terme simplifié : $(1, \underline{\hspace{0.2cm}}, 0) = A\overline{C} = A(B + \overline{B})\overline{C}$

Méthode de Quine-McCluskey

FIGURE : Représentation graphique de minterme

Exemple:

$$f(\mathbf{x}_1, \cdots, \mathbf{x}_6) = \sum m(36, 44, 51, 60)$$

36 : 100100 **✓**

44 : 101100 **✓** 36,44 : 10_100

60 : 111100 **✓**

Méthode de Petrick - Redondance

Implicants	36	44	51	60
51			X	
36,44	X	X		
44,60		X		X

Méthode de Petrick : exacte, exemple

$$g \equiv (P_1 + P_2)(P_1 + P_4 + P_4) \cdots (P_7 + P_9)$$

Approximation:

- ▶ plus rapide
- ightharpoonup approximation en H_n
- adapté à plusieurs itérations

Fonctions multivaluées

Définition:

$$f: \mathcal{P}_1 \times \cdots \times \mathcal{P}_n \longrightarrow \mathbb{B}^m$$

Littéraux :

$$X_i^{S_i} = \begin{cases} 1 \text{ si } X_i \in S_i \\ 0 \text{ sinon} \end{cases} \quad \text{où } X_i \in \mathcal{P}_i \text{ et } S_i \subset \mathcal{P}_i$$

Décomposition de Shannon :

$$\bigcup_{i=1}^{n} c_i = 1 \implies f \equiv \bigcup_{i=1}^{n} f|_{C_i} \cap c_i$$

Espresso

$$\bigcup_{i=1}^{n} c_i = 1 \implies f \equiv \bigcup_{i=1}^{n} f|_{C_i} \cap c_i$$

Atout : Optimisation récursive

Initialisation:

- Simplification
- Élimination des redondances
- ▶ Recherche des impliquants essentiels

Algorithme:

- ► Réduction d'un impliquant.
- ▶ Simplification
- Élimination des redondances

Conclusion

- ▶ Problème difficile ...
- ... mais bien maîtrisé.
- Approximable facilement.
- Généralisable (XOR-NAND)