

Faculty of Engineering & Technology – Electrical & Computer Engineering Department

Second Semester 2020 – 2021

COMPUTER ORGANIZATION AND MICROPROCESSOR

ENCS2380

Assembly Project

Name: Ahmaide Al-Awawdah.

ID: 1190823

Section: 2

Date: 9th June 2021

The string that will be saved is = "hello world"

Encryption File:

```
area TheData, DATA, readonly
                  "hello world", 0; the first location of the string
 2 addrl DCB
      equ 0x40000000; the first location of the encrypted string
3 D
 4 E
      equ 0x40001008; the first location of the decrypted string
5 F
      egu OxFFFFFFF
 6 Z
      equ 0x00000000
      area aEncryption, code, readonly
10
              r0, =addrl; r0 = the address of the string
11
12
              rl,= D; rl = the address of the encrypted string
13 looping
                      r2,[r0]; starting a loop to store the encrypted string
              r2,r2,#2; Rotate the value in r2 to the right by 2
14
      ROR
              r0,r0,#1; go to the address of the next character of the string
15
      add
16
      STR
              r2,[r1]; store the encrypted character in 32 bits, because the rotate goes on 32 bits
17
      MOVS
              r3,r2; set the zero flag
      add
18
              rl,rl,#4; point at the next memory address after 4 cells to save the next encrypted character in
19
      BNE
              looping; loop end when Z flag = 0
20
      LDR
              r4,= F; when r4=FFFFFFF, that means that all the string characters are encrypted
21
```

Decryption File

```
area MyData, DATA, readonly
2 addrl DCB
                 "hello world", 0
3 D equ 0x40000000; the first location of the encrypted string
 4 E
     equ 0x40001008; the first location of the decrypted string
     equ 0xFFFFFFF
5 F
6 Z equ 0x00000000
 8
      area bDecryption, code, readonly
      ENTRY
9
10
      LDR
              rl, = D; the address of the encrypted string
              r2, = E; the address of the decrypted string
12
      LDR
              r4, = 2; set r4=0
13 looping2
              LDR
                     r3,[r1]; starting a loop to store the decrypted string
14
              r3,r3,#30; Rotate the value in r2 to the right by 30 (which is the same as to the left by 2)
15
             r4, r3; set the zero flag
16
      add
              rl,rl,#4; increase rl so it points on the location of the next encrypted character
17
      STRB
             r3,[r2]; store the decrypted character in r3 in the memory location that is in r2
18
      add
              r2,r2,#1; r2 will point at the next memory location to store the next decrypted character
19
              looping2; end of the loop when Z flag = 0
      LDR
              r5,= F; when r4=FFFFFFF, that means that all the string characters are decrypted
20
21 here
              here; stay here
    END
```

The Registers before the encryption loop starts

The Registers after the encryption ends

The registers after the Decryption ends

The string stored in the memory before encryption

The Encrypted string stored in the memory

The Decrypted string stored in the memory

