Случайные процессы: домашние задания

2023

Домашнее задание на первую неделю

Задача 1 (Задача из канонического задания)

Пусть случайный процесс $X(\omega,t)=\omega t,\ t\in[0;1]$, определен на вероятностном пространстве $(\Omega,\mathcal{F},\mathbb{P})$, где $\Omega=\{1,2,3\},\ \mathcal{F}$ — множество всех подмножеств множества Ω , а мера \mathbb{P} такова, что $\mathbb{P}(\{1\})=\mathbb{P}(\{2\})=\mathbb{P}(\{3\})=1/3$. Построить вторичное (выборочное) вероятностное пространство процесса.

Задача 2

Случайный процесс X задан формулой $X_t = t \cdot \eta$, где $\eta \sim U_{(0;1)}$, $t \in (0;1)$. Найдите n-мерные функции распределения этого процесса.

Задача 3

Найдите математическое ожидание, дисперсию и корреляционную функцию процесса из предыдущей задачи.

Задача 4

Пусть дана случайная величина $\eta \sim \mathrm{U}_{[0;1]}$. Определим случайный процесс $X_t = \mathbb{I}_{(-\infty;\eta]}(t)$. Найдите вероятность, что скачок с единицы до нуля произойдёт на интервале $[t_0;t_0+\Delta t]$, если достоверно известно, что на $[0;t_0]$ скачка не было (параметр Δt задан и строго меньше $1-t_0$).

Задача 5

Пусть ξ и η — независимые случайные величины с функциями распределения $F_{\xi}(x)$ и $F_{\eta}(y)$. Пусть X — случайный процесс, определённый формулой $X_t = \xi \cdot t + \eta$. Найдите семейство конечномерных распределений процесса.

Задача 6

Пусть X_1 , X_2 — два независимых случайных процесса с корреляционными функциями $R_{X_1}(t,s)$ и $R_{X_2}(t,s)$ и функциями среднего $m_{X_1}(t)$ и $m_{X_2}(t)$. Найдите корреляционную функцию процесса $Y = X_1 \cdot X_2$.

Домашнее задание на вторую неделю

Задача 1 (Задача из канонического задания)

Поток сделок в фирме моделируется с помощью пуассоновского процесса K с интенсивностью $\lambda=100$ сделок/час. Каждая сделка приносит доход $V_i \sim \mathrm{U}_{[a;b]}, \ a=10, \ b=100$ условных единиц денег. Считая, что $K, \ \{V_i\}_{i\in\mathbb{N}}$ — независимые в совокупности случайные величины, найдите математическое ожидание, дисперсию и характеристическую функцию выручки за время t. Докажите, что она имеет асимптотически нормальное распределение.

Задача 2 (Задача из канонического задания)

Случайный процесс X представляет собой сумму n независимых пуассоновских процессов с интенсивностями $\{\lambda_i\}_{i\in\{1,\dots,n\}}$. Определить тип и параметры процесса X.

Задача 3 (Задача из канонического задания)

Пусть K — пуассоновский случайный процесс интенсивности λ , а X — случайный процесс, полученный в результате удаления из K всех событий, очередной номер которых не кратен s. Определить тип и параметры распределения интервала между соседними событиями в случайном процессе X.

Задача 4

Пусть $\{\xi_k\}_{k\in\mathbb{N}}$ все независимы в совокупности и имеют одинаковое распределение $U_{[3;5]}$. Покажите, что процесс восстановления, построенный по этим случайным величинам (т. е. процесс вида $X_t = \sup\{n \mid \xi_1 + \ldots + \xi_n \leqslant t\}$) не является процессом с независимыми приращениями.

Задача 5

Пусть K — пуассоновский процесс с интенсивностью $\lambda > 0$. Какие из следующих процессов имеют независимые приращения?

- 1. $X_t = K_t K_0, t \ge 0.$
- 2. $X_t = K_t \mod 2, t \ge 0.$
- 3. $X_t = K_{t^2-t+1}, t \ge 0.$

4.
$$X_t = K_t^2, t \ge 0.$$

Задача 6

Пусть K — пуассоновский процесс с интенсивностью $\lambda > 0$. Найдите вероятность, что в момент времени t число K_t чётно.

Задача 7

Найдите предел при $t \to +\infty$ (почти наверное) величины K_t/t , где K — пуассоновский процесс интенсивности $\lambda \geqslant 0$.

Задача 8 (Практическое задание)

Вас приняли на должность системного администратора в известную IT-компанию «Рога и Копыта». Одной из ваших задач является стресс-тестирование сетевой инфраструктуры компании. Для моделирования потока данных от пользователей вы решили использовать сложный пуассоновский процесс с интенсивностью λ . Размер V_i каждого приходящего пакета распределён логнормально:

$$\rho_V(x) = \mathbb{I}_{[0;+\infty)}(x) \cdot \frac{\exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)}{x \cdot \sigma\sqrt{2\pi}}$$

Пользуясь результатами, полученными на семинаре, найдите функцию среднего и корреляционную функцию процесса (матожидание и дисперсию V можно взять из справочника). Найти вероятностное распределение времени между отправкой n-ого и (n+m)-ого пакета.

Пусть связь с одним из серверов осуществляется по N независимым каналам, на каждом из которых поток пакетов моделируется согласно процессу выше. Найдите вид и параметры процесса, соответствующего суммарному потоку данных на сервер.

По аналогии с кодом в репозитории курса напишите функцию, которая по параметрам процесса (λ, μ, σ) моделирует заданное число реализаций. Постройте графики реализаций для некоторого набора параметров.

Зафиксируем $\sigma^2 = \mu$. Взяв в качестве максимальной пропускной способности $Q_{\rm max} = \lambda \cdot e^{3\mu}$, путём компьютерного моделирования оценить частоту выхода канала из строя при работе в течение времени $100/\lambda$.