DS707 Data Analytics

Project Report

SSLC Data Analysis

Masters of Technology in Information Technology

Submitted by

Roll No	Names of Students
MT2013025	Apoorwa Mishra
MT2013026	Arjun S Bharadwaj
MT2013140	Ankit Shah

Under the guidance of **Prof. Chandrashekar R**

International Institute of Information Technology Bangalore, Karnataka, India – 560 100

Fall Semester 2014

Contents

1	Discretization + Classification	1
2	Regression + Classification	2
3	Regression + Classification	4
4	Regression + Classification	5
5	Urban / Rural Characterization	6
6	Regression + Classification	8
7	Regression + Classification	9
8	Regression + Classification	10

Discretizaion + Classification

- Objective:
 - Discretize subject marks into discrete attributes S (use NRC_CLASS as domain)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

Consider the marks information: L1_MARKS, L2_MARKS, L3_MARKS, S1_MARKS, S2_MARKS, S3_MARKS. Consider TOTAL_MARKS as the dependent variable

• Objective:

- Determine the least number of attributes S that give the best possible regression equation (least error)
- Build a classification model based on S for NRC_CLASS class variable

• Procedure followed:

- Data is loaded and cleansed by removing invalid and missing rows.
- Regression analysis is performed on the data by using the marks data.
- Synergy/Interaction effect of all the marks are observed and the combination of marks having least p-value is chosen for classification
- Marks are rounded off for improving the speed of classification.
- Classification is performed on the data based on the class variable combination having least p-value.
- The results of confusion matrices are compared.

• Results Obtained:

- All Subjects are used for classification:
 - * Accuracy: 90.2%

* 95% CI: (0.8962, 0.9076)

- Best case:

L1_MARKS, L2_MARKS, S2_MARKS, S3_MARKS (p-value = 0.0732) are used for classification:

* Accuracy: 84.03%

* 95% CI: (0.8332, 0.8472)

- Worst case:

L3_MARKS, S1_MARKS (p-value = 0.94523) are used for classification:

* Accuracy: 69.46%

* 95% CI: (0.6857, 0.7033)

• Conclusion:

- Taking all the subjects marks for classification gives the highest accuracy.
- Taking the combination of the subjects having low p-value offers the next highest accuracy for classification.
- Conversely, the combination of subjects having highest p-value gives the least accuracy.

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Urban / Rural Characterization

What are the characteristics of students from urban and rural areas, respectively? For antecedent, try with demographic info (SCHOOL_TYPE, URBAN_RURAL, NRC_CASTE_CODE, NRC_GENDER_CODE, NRC_MEDIUM, NRC_PHYSICAL_CONDITION, CANDIDATE_TYPE) Also try with subject performance in the antecedent

• Objective:

Identify association rules with URBAN_RURAL in the consequent of the rule

• Procedure followed:

- Data is loaded and cleansed by removing invalid and missing rows.
- The values of all the columns are factored so that it's suitable for association rules analysis.
- Apriori algorithm is run on the data by forcing URBAN_RURAL=Rural rule in consequent.
- Apriori algorithm is run on the data by forcing URBAN_RURAL=Urban rule in consequent.
- The rules generated with high confidence and lift are compared for both the cases.

• Results Obtained:

For URBAN_RURAL = Urban, the following were the results:

Antecedant	Support	Confidence	Lift
$SCHOOL_TYPE = Unaided,$	0.1305375	0.8029823	1.883977
NRC_MEDIUM = English	0.1303373	0.0029023	1.000911
$SCHOOL_TYPE = Unaided,$			
$NRC_MEDIUM = English,$	0.1297800	0.8025108	1.882871
NRC_PHYSICAL_CONDITION=Normal			
$SCHOOL_TYPE = Unaided,$			
$NRC_MEDIUM = English,$	0.1130235	0.8002575	1.877584
NRC_CASTE_CODE=General			

For URBAN_RURAL = Rural, the following were the top three results:

Antecedant	Support	Confidence	Lift
SCHOOL_TYPE = Government, NRC_GENDER_CODE=Boy, NRC_MEDIUM = Kannada, CANDIDATE_TYPE=Regular Fresher, L1_RESULT=Pass, L2_RESULT=Pass, S2_RESULT=Pass, S3_RESULT=Pass	0.1018423	0.8611325	1.500797
SCHOOL_TYPE = Government, NRC_GENDER_CODE = Boy, NRC_MEDIUM = Kannada, CANDIDATE_TYPE = Regular Fresher, L1_RESULT = Pass, L2_RESULT = Pass, L3_RESULT = Pass, S1_RESULT = Pass, S3_RESULT = Pass	0.1015393	0.8609969	1.500561
SCHOOL_TYPE = Government, NRC_GENDER_CODE = Boy, NRC_MEDIUM = Kannada, CANDIDATE_TYPE = Regular Fresher, L1_RESULT = Pass, L2_RESULT = Pass, L3_RESULT = Pass, S1_RESULT = Pass, S2_RESULT = Pass	0.1012969	0.8609323	1.500448

• Conclusion:

- Students in Urban area mainly belong to Unaided English medium schools.
- Students in Rural area are mainly boys who belong to Government Kannada medium schools.

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2

Regression + Classification

- Objective:
 - Determine the least number of attributes S that give the best possible regression equation (least error)
 - Build a classification model based on S for NRC_CLASS class variable
- Procedure followed:
 - Step 1
 - Step 2
- Results Obtained:
 - Result 1
 - Result 2
- Conclusion:
 - Conclusion 1
 - Conclusion 2