

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики Кафедра суперкомпьютеров и квантовой информатики

Камалов Ирек Маратович

Исследование методов решения задачи обучения по нескольким примерам, основанных на применении ансамбля алгоритмов формирования синтетических обучающих данных

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель:

к.ф-м.н., Д. Ю. Буряк

Введение.

- Многие задачи требуют адаптации к новым целевым меткам
- Актуально для робототехники часто требуется адаптация к новым локациям/объектам
- Требуется и в других областях, пример сеть GPT-3 для генерации текста

Введение.

- Адаптация к новым задачам умение обучаться по нескольким примерам
- Небольшая входная выборка может быть увеличена методами генерации
- Цель работы предложить и исследовать схему ансамблирования генеративных решений

Описание задачи.

- ▶ Рассмотрим задачу классификации изображений
- Для каждого класса доступно лишь несколько обучающих примеров
- Допускается использование размеченных изображений нецелевых классов
- На количество таких примеров ограничений нет

Обзор тематики.

- Оптимизация эмпирического риска приводит к переобучению
- Для борьбы с проблемой используется перенос обучения из других задач

Рис. 1: Разделение подходов.

Генеративный подход.

- Строится алгоритм генерации искусственных примеров
- С помощью алгоритма создается искусственная выборка
- ▶ На выборке обучается классификатор

Рис. 2: Трансформация примеров.

Постановка задачи.

- Провести обзор методов генерации искуственных выборок для решения задачи классификации
- Выбрав наиболее подходящие методы, предложить ансамбль алгоритмов генерации
- Реализовать предлагаемое решение
- Провести исследование точности решения с учётом возникающих гиперпараметров

Решение задачи с помощью ансамбля генераторов.

Дельта-кодировщик $DeltaEncoder(X_1, X_2, Y)$

Модель обучается кодировать мета-связи примеров X_1, X_2 и по этой информации воссоздавать неизвестную пару для Y

Рис. 3: Кодирование мета-связей.

Решение задачи с помощью ансамбля генераторов.

Центроидный генератор $G(C_1a, C_2a, C_1b, C_2b)$

- ▶ Векторы кластеризуются, в кластерах остаются лишь центроиды
- lacktriangle Регрессия парной центроиды C_2b по C_1b и паре (C_1a,C_2a)

Рис. 4: Регрессия парных примеров.

Решение задачи с помощью ансамбля генераторов.

Ключевые идеи ансамбля:

- Перевод всех изображений в векторы признаков
- Построение выборок генераторами по отдельности
- Смешивание полученных выборок
- Обучение классификатора на смешанной выборке

Программная реализация.

Красные блоки - заимствование кода/весов, синие - обучение моделей, зелёные - использование моделей

Реализация НС с помощью Python 3.7, PyTorch, NVIDIA

Вычислительный эксперимент.

- ► Были рассмотрены 2 модельные задачи miniImageNet и CIFAR100
- ▶ В каждой задаче было выделено 80 тренировочных классов, на которых обучались генераторы
- Оценка качества на 5 классах, не вошедших в тренировочные
- Метрика качества точность

Вычислительный эксперимент.

- lacktriangle Все изображения были переведены в пространство \mathbb{R}^{2048} сетью на базе VGG16
- Каждым генератором была воссоздана выборка из 1024 примеров
- Целевой классификатор однослойный персептрон

Результаты эксперимента.

miniImageNet:

Рис. 5: Точность для различных соотношений при смешивании.

Входных примеров	G1	G2	G1 + G2 (смесь 0.51 : 0.49)
1	58.9%	56.9%	64.2%
5	75.9%	74.5%	80.1%

Таблица 1: Рекордная точность для 3 типов выборок.

Результаты эксперимента.

CIFAR100:

Рис. 6: Точность для различных соотношений при смешивании.

Входных приме	ров G1	G2	G1 + G2 (смесь 0.9 : 0.1)
1	64.4%	64.7%	69.2%
5	79.4%	76.9%	83%

Таблица 2: Рекордная точность для 3 типов выборок.

Выводы.

Выводы из эксперимента:

- Смешивание выборок улучшает качество решения на 3-6%
- Оптимальное соотношение для смешивания зависит от задачи
 - ▶ 0.59 : 0.41 наилучшая смесь для minilmageNet
 - 0.9 : 0.1 наилучшая смесь для CIFAR100
- Данное соотношение гиперпараметр ансамбля

Основные результаты.

- ▶ Проведён обзор методов генерации искусственных выборок
- На основании обзора выбрано 2 метода для построения ансамбля
- ▶ Выполнена реализация ансамбля и исследование на базах minilmageNet, CIFAR100
- Получен прирост точности для ансамбля относительно отдельных решений
- Сделан вывод: соотношение выборок при смешивании новый гиперпараметр