Einführung in die Analysis 10. Integralrechnung - das unbestimmte Integral

Joana Portmann — Fachhochschule Nordwestschweiz

Frühlingssemester 2021

9. Integralrechnung - das unbestimmte Integral

Inhaltsverzeichnis

- 1 Einstieg
- 2 Stammfunktionen
 - Einfache Stammfunktionen
 - Definition
 - Beispiele
- 3 Rechenregeln
 - Konstantenregel
 - Summenregel
 - Potenzregel
 - Faktorregel
 - Wichtige Stammfunktionen
 - Zusatzübungen
 - Substitutionsregel
 - Zusatzübungen
 - Satz (Integration von Produkt aus Funktion und Ableitung)

Das unbestimmte Integral: kahoot

kahoot.it

Quiz

Die Aufgabe der Differenzialrechnung bestand im Wesentlichen darin, von einer gegebenen (differenzierbaren) Funktion y=f(x) die Ableitung y'=f'(x) zu ermitteln. Die Aufgabe der Integralrechnung ist die Umgekehrte:

Zu einer gegebenen (stetigen) Ableitungsfunktion f(x) = F'(x) soll die ursprüngliche **Stammfunktion** F(x), aus der die gegebene Funktion also durch Ableiten hervorgegangen ist, ermittelt werden.

Einfache Stammfunktionen

Beispiel (einfache Stammfunktionen):

In den einfachsten Fällen kann man F(x) direkt bestimmen, wenn $F^{\prime}(x)$ gegeben ist:

F'(x) gegeben	F(x) gesucht
e^x	e^x
2x	x^2
$\sin x + \cos x$	$-\cos x + \sin x$
$\frac{1}{x}$	$\ln x$
a	ax

Im allgemeinen wird die Bestimmung von Stammfunktionen nicht so einfach sein. Hat man F(x) gefunden, so ist auch F(x) + C, worin C eine beliebige Konstante ist, eine Stammfunktion, denn beim Ableiten fällt diese ja wieder heraus.

$$[F(x) + C]' = F'(x) + C' = F'(x)$$

Definition (Stammfunktion)

Jede differenzierbare Funktion F(x), deren Ableitung F'(x) gleich einer gegebenen stetigen Funktion f(x) ist, heißt eine **Stamm- oder Integralfunktion** von f(x) und man schreibt

$$F'(x) = f(x) \Leftrightarrow F(x) = \int f(x) dx$$

Die Menge aller Integralfunktionen von f(x) ist

$$\{F(x) + C | C \in \mathbb{R}\}$$

und heißt das **unbestimmte Integral** von f(x). C wird **Integrationskonstante** genannt.

Anmerkungen:

- Das Integralzeichen \int ist ein langezogenes, stilisiertes S und wird "Integral über $f(x)\mathrm{d}x$ " gelesen. f(x) heißt auch der Integrand; die Rechenoperation wird integrieren genannt. Die Variable nach der integriert wird (dx), muss dabei stets angegeben werden.
- Differenzieren und Integrieren sind umgekehrte Aufgabenstellungen. Wird eine Funktion f(x) zuerst integriert: $\int f(x)dx = F(x)$ und das Ergebnis, nämlich die Integralfunktion F(x), anschließend wieder differenziert, so erhält man mit F'(x) = f(x) wieder die ursprüngliche Form. Dies macht man sich als Probe beim Integrieren zunutze.
- lacktriangle Die Gesamtheit der Funktionen des unbestimmten Integrals F(x)+C unterscheiden sich nur durch eine additive Konstante. Es gibt also zu jeder stetigen Funktion unendlich viele Stammfunktionen.

Beispiel:

Gegeben sei die lineare Funktion

$$f(x) = 2x$$

Die quadratischen Funktionen

$$F(x) = \int 2x \mathrm{d}x = x^2 + C$$

bilden das unbestimmte Integral der Funktion f(x). Es handelt sich um in y-Richtung um den Wert C verschobene Normalparabeln, die die gesamte Ebene lückenlos überdecken, ohne dass zwei Parabeln einander schneiden.

Beispiele:

Berechnen Sie die folgenden unbestimmten Integrale:

$$\int 5 dx =$$

$$\int -k dx =$$

$$\int 4x^3 \mathrm{d}x =$$

$$\int \sqrt{x} dx =$$

$$\int \left(\frac{1}{\sqrt{x}} + \frac{1}{x^2}\right) \mathrm{d}x =$$

Beispiele:

Berechnen Sie die folgenden unbestimmten Integrale:

$$\int 5 dx = 5x + C$$

$$\int 4x^3 \mathrm{d}x = x^4 + C$$

$$\int \sqrt{x} dx = \frac{2}{3} x^{\frac{3}{2}} + C$$

$$\int \left(\frac{1}{\sqrt{x}} + \frac{1}{x^2}\right) dx = \int \left(x^{-\frac{1}{2}} + x^{-2}\right) dx = 2x^{\frac{1}{2}} - \frac{1}{x} + C$$

Satz (Konstantenregel)

Für eine Konstante $a \in \mathbb{R}$ gilt

$$\int a \mathrm{d}x = ax + C$$

Beweis:

Ableiten der rechten Seite liefert:(ax+C)'=(ax)'+C'=a, was dem Integranden auf der linken Seite entspricht.

Beispiel:

Insbesondere gilt:

$$\int 0 \mathrm{d}x = C$$

Satz (Summenregel)

Eine Summe von Funktionen kann man gliedweise integrieren, bzw. das Integral einer Summe ist gleich der Summe der Integrale

$$\int [f(x) + g(x)] dx = \int f(x)dx + \int g(x)dx = F(x) + G(x) + C$$

Beweis: Setzt man

$$F'(x) = f(x)$$
 \Rightarrow $F(x) = \int f(x) dx$
 $G'(x) = g(x)$ \Rightarrow $G(x) = \int g(x) dx$

so ergibt sich mit der Summenregel der Ableitungsrechnung

$$F'(x) + G'(x) = [F(x) + G(x)]' = f(x) + g(x)$$

$$\Rightarrow F(x) + G(x) = \int [f(x) + g(x)] dx$$

$$\Rightarrow \int f(x) dx + \int g(x) dx = \int [f(x) + g(x)] dx$$

Satz (Potenzregel)

Für ein $n \in \mathbb{R}$ mit $n \neq -1$ gilt:

$$\int x^n \mathrm{d}x = \frac{1}{n+1}x^{n+1} + C$$

Beweis:

Ableiten der rechten Seite liefert:

$$\left(\frac{1}{n+1}x^{n+1} + C\right)' = \left(\frac{1}{n+1}x^{n+1}\right)' + C' = \frac{n+1}{n+1}x^n = x^n$$

was dem Integranden auf der linken Seite entspricht.

Beispiel:

$$\int \left(x^5 + \sqrt[4]{x} + \frac{1}{x^3}\right) dx = \int \left(x^5 + x^{\frac{1}{4}} + x^{-3}\right) dx = \int x^5 dx + \int x^{\frac{1}{4}} dx + \int x^{-3} dx$$
$$= \frac{1}{5+1} x^{5+1} + \frac{1}{\frac{1}{4}+1} x^{\frac{1}{4}+1} + \frac{1}{-3+1} x^{-3+1} = \frac{1}{6} x^6 + \frac{4\sqrt[4]{x^5}}{5} - \frac{1}{2x^2}$$

Satz (Faktorregel)

Für ein $a \in \mathbb{R}$ und eine beliebige Funktion f(x) gilt

$$\int a \cdot f(x) dx = a \cdot \int f(x) dx = a \cdot F(x) + C$$

Dieser und die vorangegangenen Sätze sind eine umittelbare Folge der entsprechenden Ableitungsregeln, also, im Grunde genommen, gar keine neuen Aussagen.

Beispiel:

$$\int -18x^5 dx = -18 \cdot \int x^5 dx = -18 \cdot \frac{1}{6}x^6 + C = -3x^6 + C$$

Die Integration ist die Umkehrung der Ableitung. Im Kapitel Differenzialrechnung haben wir bereits Ableitungen für elementare Funktionen zusammengestellt. Aus dieser Aufstellung können wir deshalb nun auch die sogenannten **Grundintegrale** ablesen, auf die man beim formalen Integrieren zurückgeführt wird und die ohne schriftliche Rechnung durch Bilden der Ableitung bestätigt werden können.

Stammfunktionen von einigen der wichtigsten Funktionen

Funktion	Stammfunktion
$\int e^x \mathrm{d}x$	$e^x + C$
$\int x^a dx$	$\frac{1}{a+1}x^{a+1} + C, a \neq 1$
$\int \frac{1}{x} \mathrm{d}x$	$\ln x + C$
$\int \sin x \mathrm{d}x$	$-\cos x + C$
$\int \cos x \mathrm{d}x$	$\sin x + C$
$\int \frac{1}{1+x^2} \mathrm{d}x$	$\arctan x + C$

Zusatzübungen: Summen-, Faktor und Potenzregel

Bestimmen Sie die folgenden unbestimmten Integrale:

(a)
$$\int (3x-5)^2 dx$$

(b)
$$\int \frac{3x^2 - 5x + 10}{4x^3} dx$$

(c)
$$\int \frac{10x^2 - 7x - 12}{2x - 3} dx$$

(d)
$$\int \sin(x-b) dx$$

(e)
$$\int \frac{1}{1 + \cos^2 x - \sin^2 x} \mathrm{d}x$$

Lösungen Zusatzübungen: Summen-, Faktor und Potenzregel

(a)
$$\int (9x^2 - 30x + 25) dx = 3x^3 - 15x^2 + 25x + C$$

(b)
$$\int \frac{3x^2 - 5x + 10}{4x^3} dx = \int \left(\frac{3}{4}x^{-1} - \frac{5}{4}x^{-2} + \frac{5}{2}x^{-3}\right) dx = \frac{3}{4}\ln|x| + \frac{5}{4}x^{-1} - \frac{5}{4}x^{-2} + C$$
$$= \frac{3}{4}\ln|x| + \frac{5}{4x} - \frac{5}{4x^2} + C$$

(c)
$$\int \frac{10x^2 - 7x - 12}{2x - 3} dx = \int \frac{(5x + 4) \cdot (2x - 3)}{(2x - 3)} dx = \int (5x + 4) dx = \frac{5}{2}x^2 + 4x + C \text{ für } x \neq 1.5$$

(d)
$$\int \sin(x-b)dx = -\cos(x-b) + C$$

(e)
$$\int \frac{1}{1 + \cos^2 x - \sin^2 x} dx = \int \underbrace{\frac{1}{1 - \sin^2 x} + \cos^2 x}_{-\cos^2 x} dx = \int \frac{1}{2 \cos^2 x} dx = \frac{1}{2} \tan x + C$$

Beim Differenzieren verketteter Funktionen ist eine innere Ableitung zu berücksichtigen. Entsprechend vorsichtig muss man deshalb bei der Integration von verketteten Funktionen $f(x)=(g\circ h)(x)=g(h(x))$ vorgehen.

Beispiel:

Für die Stammfunktion von $\cos 8x$ gilt

$$\int \cos 8x \, \mathrm{d}x = \frac{1}{8} \sin 8x + C,$$

wie man durch differenzieren der Stammfunktion verifizieren kann.

ACHTUNG: Die Funktion $\sin 8x$ ist keine Stammfunktion von $\cos 8x$, denn bei der Ableitung von $\sin 8x$ müssen wir die Kettenregel für die innere Funktion h(x) = 8x berücksichtigen: $(\sin 8x)' = 8\cos 8x$.

Mit dem konstanten Faktor $\frac{1}{8}=\frac{1}{h'(x)}$ können wir jedoch die innere Ableitung eliminieren.

Beispiel:

Für die Stammfunktion von $f(x) = 2xe^{x^2}$ gilt:

$$\int 2xe^{x^2} \mathrm{d}x = e^{x^2} + C$$

wie man durch Differenzieren der rechten Seite sehen kann.

Der Faktor 2x vor der e-Funktion entspricht der Ableitung der inneren Funktion $h(x)=x^2$ und ermöglicht uns eine einfache Berechnung des unbestimmten Integrals, denn es gilt:

$$\left(e^{x^2}\right)' = 2xe^{x^2} \quad \text{und somit} \quad \int 2xe^{x^2} dx = e^{x^2} + C$$

Bei den vorangegangenen Beispielen spielt die innere Ableitung, die die Kettenregel beim Ableiten erzeugt, eine entscheidende Rolle.

Verkettete Funktionen

$$f(x) = (g \circ h)(x) = g(h(x))$$

mit der Beziehung

$$\frac{\mathrm{d}h}{\mathrm{d}x} = h'(x)$$

lassen sich häufig mithilfe der sogenannten **Substitutionsregel** integrieren:

Satz (Substitutionsregel)

Gelingt es, den Integranden als ein Produkt aus einer verketteten Funktion $g\circ h$ und der inneren Ableitung h' darzustellen, dann kann man alternativ auch über die Funktion h integrieren:

$$\int g(h(x)) \cdot \underbrace{h'(x) dx}_{dh} = \int g(h) dh = G(h) + C$$

Bemerkungen:

Folgende Schritte werden bei der Substitution ausgeführt:

- **1** Berechne das Verhältnis der Differenziale $\frac{\mathrm{d}h}{\mathrm{d}x} = h'(x)$;
- **2** Ersetze im Integral die entsprechenden Ausdrücke durch die Funktion *h*;
- 3 Ersetze $dx = \frac{dh}{h'(x)}$ so, dass im neuen Integral nur noch h und h' vorkommen:
- \blacksquare Führe die Integration mit der Variablen h durch (falls möglich);
- f Durch Rücksubstitution erhält man Stammfunktionen, die wieder von x abhängen.

Beispiel:

Berechnen Sie das unbestimmte Integral mithilfe der Substitution $h = 1 - \sin x$:

$$\int \cos x \sqrt{1 - \sin x} \, \mathrm{d}x$$

$$(1) \Rightarrow \frac{\mathrm{d}h}{\mathrm{d}x} = -\cos x \Rightarrow \mathrm{d}x = \frac{\mathrm{d}h}{-\cos x}$$

$$(2)\mathsf{und}(3) \Rightarrow \int \cos x\sqrt{h} \cdot \frac{\mathrm{d}h}{-\cos x} = \int -\sqrt{h}\mathrm{d}h$$

$$(4) \Rightarrow \int -\sqrt{h}\mathrm{d}h = \int -h^{\frac{1}{2}}\mathrm{d}h = -\frac{2}{3}h^{\frac{3}{2}} + C$$

$$(5) \Rightarrow \int \cos x\sqrt{1-\sin x}\mathrm{d}x = -\frac{2}{3}(1-\sin x)^{\frac{3}{2}}$$

Zusatzübungen: Substitutionsregel

Bestimmen Sie die folgenden unbestimmten Integrale

(a)
$$\int 2x\sqrt{1+x^2}\,\mathrm{d}x$$

(b)
$$\int \tan x \, dx$$

(c)
$$\int \frac{1}{x \ln x} dx$$
 (Substitution: $h = \ln x$)

(d)
$$\int \frac{e^x + xe^x}{xe^x} dx$$
 (Substitution: $h = e^x$)

Lösungen Zusatzübungen: Substitutionsregel

(a)
$$\int (2x\sqrt{1+x^2})dx$$

$$\Rightarrow \int \frac{2x}{2x} \sqrt{h} dh = \frac{2}{3}h^{\frac{3}{2}} + C$$

$$\Rightarrow \int (2x\sqrt{1+x^2}) dx = \frac{2}{3}(1+x^2)^{\frac{3}{2}} + C$$

(b)
$$\int \tan x dx = \int \frac{\sin x}{\cos x} dx$$

$$\Rightarrow \int -\frac{\sin x}{\sin x} \frac{1}{h} dh = -\ln h + C$$
$$\int \tan x dx = -\ln \cos x + C$$

Substitution:
$$h(x) = 1 + x^2$$

$$\frac{dh}{dx} = 2x \Rightarrow dx = \frac{dh}{2x}$$

Rücksubstitution

Substitution: $h(x) = \cos x$

$$\frac{dh}{dx} = -\sin x \Rightarrow dx = \frac{-dh}{\sin x}$$

Rücksubstitution

Lösungen Zusatzübungen: Substitutionsregel

(c)
$$\int \frac{1}{x \ln x} dx$$

Substitution:
$$h = \ln x$$

$$\int \frac{x}{x} \cdot \frac{1}{h} dh = \ln h + C$$

$$\frac{dh}{dx} = \frac{1}{x} \Rightarrow dx = x \cdot dh$$

Rücksubstitution

$$\int \frac{1}{x \ln x} dx = \ln \ln x + C$$

Substitution:
$$h(x) = e^x$$

(d)
$$\int \frac{e^x + x \cdot e^x}{x \cdot e^x} dx$$

$$x = \ln h$$

$$\frac{dh}{dx} = e^x = h \Rightarrow dx = \frac{dh}{h}$$

$$\int \frac{h + \ln h \cdot h}{\ln h \cdot h} \cdot \frac{1}{h} dh = \int \frac{1 + \ln h}{\ln h \cdot h} dh$$

$$\int \frac{1}{\ln h \cdot h} \cdot \frac{1}{h} \frac{dh}{dt} = \int \frac{1}{\ln h \cdot h} \frac{dh}{dt}$$

$$= \int \frac{1}{\ln h \cdot h} dh + \int \frac{1}{h} dh$$

(FHNW)

$$= \ln \ln h + \ln h + C = \ln(h \ln h) + C$$

Rücksubstitution

$$\int \frac{e^x + x \cdot e^x}{x \cdot e^x} dx = \ln(e^x \cdot \ln e^x) + C = \ln(x \cdot e^x) + C$$

Einen einfachen Spezialfall der Substitutionsregel hatten wir im 1. Beispiel (Folie 19) vorliegen. Die innere Funktion h(x) einer verketteten Funktion ist eine lineare Funktion der Form h(x) = ax + b:

Satz (Skalierungs- und Translationsregel)

Für zwei Zahlen $a,b\in\mathbb{R}$ und eine beliebige integrierbare Funktion f(x) gilt:

$$\int f(ax+b)dx = \frac{1}{a} \cdot F(ax+b) + C, a \neq 0$$

Beweis:

$$\begin{array}{lll} \text{Setze } h(x) = ax + b & \Rightarrow & \frac{\mathrm{d}h}{\mathrm{d}x} = a \Rightarrow \mathrm{d}x = \frac{\mathrm{d}h}{a} \\ \\ \text{Ersetze } ax + b \text{ und } \mathrm{d}x & \Rightarrow & \int f(ax + b) \mathrm{d}x = \int \frac{1}{a} \cdot f(h) \mathrm{d}h \\ \\ \text{Integration liefert:} & \Rightarrow & \int \frac{1}{a} \cdot f(h) \mathrm{d}h = \frac{1}{a} \cdot F(h) + C \\ \\ \text{R\"{u}cksubstitution:} & \Rightarrow & \int f(ax + b) \mathrm{d}x = \frac{1}{a} \cdot F(ax + b) + C \end{array}$$

Beispiele:

$$\begin{array}{cccc} (a) & \int \sqrt{4x+1} \mathrm{d}x & \stackrel{h=4x+1}{=} & \int \frac{1}{4} \sqrt{h} \mathrm{d}h \\ & = & \int \frac{1}{4} h^{\frac{1}{2}} \mathrm{d}h = \frac{1}{4} \cdot \frac{2}{3} h^{\frac{3}{2}} + C \\ & \stackrel{\mathsf{R\"{u}cksubstitution}}{\Rightarrow} & \int \sqrt{4x+1} \mathrm{d}x & = & \frac{1}{6} (4x+1)^{\frac{3}{2}} + C \end{array}$$

$$(b) \qquad \int \frac{5}{(3x+1)^2} dx \quad \stackrel{h=3x+1}{=} \quad \int \frac{1}{3} \cdot \frac{5}{h^2} dh$$

$$= \qquad \int \frac{5}{3} h^{-2} dh = -\frac{5}{3} \cdot h^{-1} + C$$

$$\stackrel{\text{Rücksubstitution}}{\Rightarrow} \int \frac{5}{(3x+1)^2} dx \qquad = \qquad -\frac{5}{3 \cdot (3x+1)} + C$$

Zusatzübungen: Skalierungs- und Translationsregel

Bestimmen Sie die folgenden unbestimmten Integrale

(a)
$$\int (5x - 7)^4 \, \mathrm{d}x$$

(b)
$$\int \sqrt{x-5} \, \mathrm{d}x$$

$$(c) \int \frac{1}{(2x-5)^2} \, \mathrm{d}x$$

$$(d) \int \frac{1}{\sqrt[3]{1-2x}} \, \mathrm{d}x$$

Lösungen Zusatzübungen: Skalierungs- und Translationsregel

(a)
$$\int (5x-7)^4 dx$$

$$\Rightarrow \int \frac{1}{5} h^4 dh = \frac{1}{25} h^5 + C$$
$$\Rightarrow \int (5x - 7)^4 dx = \frac{1}{25} (5x - 7)^5 + C$$

(b)
$$\int \sqrt{x-5} dx$$

$$\Rightarrow \int \sqrt{h} dh = \frac{2}{3} h^{\frac{3}{2}} + C$$
$$\Rightarrow \int \sqrt{x - 5} dx = \frac{2}{3} (x - 5)^{\frac{3}{2}} + C$$

Substitution:
$$h(x) = 5x - 7$$

$$\frac{dh}{dx} = 5 \Rightarrow dx = \frac{dh}{5}$$

Rücksubstitution

Substitution:
$$h(x) = x - 5$$

$$\frac{dh}{dx} = 1 \Rightarrow dx = dh$$

Rücksubstitution

Lösungen Zusatzübungen: Skalierungs- und Translationsregel

(c)
$$\int \frac{1}{(2x-5)^2} dx$$

Substitution:
$$h = 2x - 5$$

$$\frac{dh}{dx} = 2 \Rightarrow dx = \frac{dh}{2}$$

$$\int \frac{1}{2(h)^2} dh = -\frac{1}{2h} + C$$

Rücksubstitution

$$\int \frac{1}{(2x-5)^2} dx = -\frac{1}{2(2x-5)} + C$$

$$\int \frac{1}{(2x-5)^2} dx = -\frac{1}{2(2x-5)} + C$$

Substitution:
$$h = 1 - 2x$$

(d)
$$\int \frac{1}{\sqrt[3]{1-2x}} dx$$

$$\frac{dh}{dx} = -2 \Rightarrow dx = -\frac{dh}{2}$$

$$\int -\frac{1}{2 \cdot \sqrt[3]{h}} dh = \int -\frac{h^{\frac{1}{3}}}{2} dh = -\frac{3}{4} h^{\frac{2}{3}} + C$$

Rücksubstitution

$$\int \frac{1}{\sqrt[3]{1-2x}} dx = -\frac{3}{4} \sqrt[3]{\left(1-2x\right)^2} + C$$

Satz (Integration von Produkt aus Funktion und Ableitung)

Für Stammfunktionen, bei denen unter dem Integral das Produkt aus einer Funktion f und ihrer Ableitung f' steht, gilt:

$$\int f(x)f'(x)dx = \frac{1}{2}f(x)^2 + C$$

Beweis:

Setze
$$h(x) = f(x)$$
 $\Rightarrow \frac{\mathrm{d}h}{\mathrm{d}x} = f'(x) \Rightarrow \mathrm{d}x = \frac{\mathrm{d}h}{f'(x)}$ Ersetze $f(x)$ und $\mathrm{d}x$ $\Rightarrow \int f(x)f'(x)\mathrm{d}x = \int \frac{f'(x)}{f'(x)} \cdot h\mathrm{d}h$ Integration liefert: $\Rightarrow \int h\mathrm{d}h = \frac{1}{2} \cdot h^2 + C$ Rücksubstitution: $\Rightarrow \int f(x)f'(x)\mathrm{d}x = \frac{1}{2} \cdot f(x)^2 + C$

Beispiel:

Das Integral

$$\int \frac{\ln x}{x} \mathrm{d}x$$

soll berechnet werden. Bei geeigneter Betrachtung steht unter dem Integral ein Produkt aus Funktion und Ableitung:

$$\int \underbrace{\ln x}_{f(x)} \cdot \underbrace{\frac{1}{x}}_{f'(x)} \, \mathrm{d}x$$

Mit der Substitution $h = \ln x$ erhält man:

$$\int \frac{\ln x}{x} \mathrm{d}x = \frac{1}{2} \ln^2 x + C$$

Zusatzübungen: Produkt aus Funktion und Ableitung

Bestimmen Sie die folgenden unbestimmten Integrale.

(a)
$$\int \frac{\ln x}{x} dx$$

(b)
$$\int x^2 (1+x^3) \, dx$$

(c)
$$\int \cos x \cdot \sin x \, \mathrm{d}x$$

Lösungen Zusatzübungen: Produkt aus Funktion und Ableitung

(a)
$$\int \frac{\ln x}{x} dx = \int \left(\underbrace{\frac{\ln x}{-f(x)}}_{-f(x)} \cdot \frac{1}{\underbrace{x}}_{-f(x)} \right) dx = \frac{1}{2} \ln^2 x + C$$

Substitution: h(x)=ln(x)

(b)
$$\int x^2 (1+x^3) dx = \int \frac{1}{3} \underbrace{3x^2}_{-f(x)} \underbrace{(1+x^3)}_{-f(x)} dx = \frac{1}{3} \cdot \frac{1}{2} (1+x^3)^2 + C$$
Substitution $h(x) = 1 + x^3$

(c)
$$\int \underbrace{\sin x}_{-f(x)} \cdot \underbrace{\cos x}_{-f(x)} dx = \frac{1}{2} (\sin x)^2 + C$$

Substitution $h(x)=\sin x$