

Formulary Heat Transfer: Conduction

Version 1 from 2021

from 7th June 2021

Dimensionless numbers

$$\mathrm{Bi}_L = \frac{\alpha L}{\lambda} \tag{Biot number}$$

$$\mathrm{Fo} = \frac{at}{L^2} \text{ with } a = \frac{\lambda}{\rho \, c_\mathrm{p}} \tag{Fourier number}$$

Heat conduction

$$\dot{q}'' = -\lambda \frac{\partial T}{\partial x}$$
 (Fourier's law)

Heat transport equation

• Cartesian coordinates

$$\rho c \frac{\partial T}{\partial t} = \left[\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) \right] + \dot{\Phi}^{'''}$$

• Cylindrical coordinates

$$\rho c \frac{\partial T}{\partial t} = \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\lambda \frac{\partial T}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) \right] + \dot{\Phi}^{'''}$$

• Spherical coordinates

$$\rho c \frac{\partial T}{\partial t} = \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \lambda \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\lambda \sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \Phi} \left(\lambda \frac{\partial T}{\partial \Phi} \right) \right] + \dot{\Phi}'''$$

Steady state heat conduction in walls without heat sources

$$R = \frac{T_{\rm A} - T_{\rm B}}{\dot{Q}}$$
 where $R = \sum_{i} R_{i}$ (Heat resistance)

• Plane wall

$$\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} = 0 \qquad \text{with BC} \qquad \frac{T(x=0) = T_1}{T(x=\delta) = T_2}$$

$$T = T_1 + \frac{T_2 - T_1}{\delta} x$$
 (Temperature profile)

$$\dot{Q} = -\lambda A \frac{\mathrm{d}T}{\mathrm{d}x} = \lambda A \frac{T_1 - T_2}{\delta}$$
 (Heat flow rate)

$$R = \frac{\delta}{\sqrt{\Delta}}$$
 (Heat resistance)

• Wall consisting of n layers

$$\dot{Q} = \lambda_1 \frac{A}{\delta_1} (T_1 - T_2) = \lambda_2 \frac{A}{\delta_2} (T_2 - T_3) = \dots = \lambda_n \frac{A}{\delta_n} (T_n - T_{n+1})$$

$$\dot{Q} = \frac{A}{\frac{n}{\sum_{i=1}^{n} \frac{\delta_i}{\lambda_i}}} (T_1 - T_{n+1}) \qquad \text{(Without conv. heat transfer)}$$

$$\dot{Q} = \frac{A}{\frac{1}{\alpha_A} + \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i} + \frac{1}{\alpha_B}} (T_A - T_B) \qquad \text{(With conv. heat transfer)}$$

• Thick-walled tube

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}T}{\mathrm{d}r}\right) = 0$$
 with BC $T(r=r_1) = T_1$
 $T(r=r_2) = T_2$

$$T = T_1 + \ln\left(\frac{r}{r_1}\right) \frac{T_2 - T_1}{\ln\left(\frac{r_2}{r_1}\right)}$$

$$= T_2 + \ln\left(\frac{r}{r_2}\right) \frac{T_2 - T_1}{\ln\left(\frac{r_2}{r_1}\right)}$$

$$\dot{Q} = 2\pi\lambda L \frac{T_1 - T_2}{\ln\left(\frac{r_2}{r_1}\right)}$$

$$(Heat flow)$$

$$R = \frac{1}{2\pi\lambda L} \ln\frac{r_2}{r_1} \quad \text{mit} \quad r_2 > r_1$$
(Heat resistance)

• Thick-walled tube consisting of n layers

$$\dot{Q} = 2\pi r L \left(-\lambda_i \frac{\mathrm{d}T}{\mathrm{d}r} \right) = const.$$

$$\dot{Q} = \frac{T_1 - T_{n+1}}{\frac{1}{2\pi L} \sum_{i=1}^{n} \frac{1}{\lambda_i} \ln \frac{r_{i+1}}{r_i}} \qquad (\text{Without conv. heat transfer})$$

$$\dot{Q} = \frac{2\pi L}{\frac{1}{\alpha_A r_1} + \sum_{i=1}^{n} \frac{1}{\lambda_i} \ln \frac{r_{i+1}}{r_i} + \frac{1}{\alpha_B r_{n+1}}} (T_A - T_B) \qquad (\text{With conv. heat transfer})$$

Fins

$$\theta = T - T_{\rm a} \qquad ({\rm Temperature~difference})$$

$$\eta_{\rm F} = \frac{\dot{Q}_{\rm F}}{\dot{Q}_{\rm max}} = \frac{\dot{Q}_{\rm F}}{A_0\,\alpha\,\theta_{\rm b}} = \frac{{\rm transferred~heat}}{{\rm maximum~transferable~heat}} \qquad ({\rm Efficiency~of~the~fin})$$

here: A_0 Heat transferring surface

 $\theta_{\rm b}$ Fin base temperature

Rod fins and plane fins

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}x^2} - \underbrace{\frac{\alpha U}{\lambda A_c}}_{=m^2} \theta = 0 \quad \text{with} \quad \begin{array}{l} \mathrm{BC1:} \quad \theta(x=0) = \theta_\mathrm{b} \\ \mathrm{BC2:} \quad \text{may vary, see the following:} \end{array}$$

(Differential equation for fins)

$$\theta(x) = A \cosh(mx) + B \sinh(mx)$$
 (Method of solution)

$$\cdots = C \exp(mx) + D \exp(-mx)$$

$$m = \sqrt{\frac{\alpha U}{\lambda A_c}} = \sqrt{\frac{4\alpha}{\lambda d}}$$
 (Rod fin)

$$m = \sqrt{\frac{\alpha U}{\lambda A_c}} = \sqrt{\frac{2\alpha}{\lambda \delta}}$$
 (Plane fin)

Boundary condition 2:

• Fins with adiabatic head:

BC2:
$$-\lambda \frac{\mathrm{d}\theta}{\mathrm{d}x}\Big|_{x=L} = 0$$

$$\theta = \theta_{\rm b} \frac{\cosh\left[m\left(L - x\right)\right]}{\cosh\left[mL\right]}$$
 (Temperature profile)
$$\dot{Q} = \lambda A_{\rm c} \, m \, \theta_{\rm b} \, \tanh\left(mL\right)$$
 (Heat flow through the fin)
$$\eta = \frac{\tanh(mL)}{mL}$$
 (Efficiency of the fin)

• Fins with head at ambient temperature (long fins):

BC2:
$$\theta(x = L) = 0$$

• Fins transferring heat at the fin head:

BC2:
$$-\lambda \frac{\mathrm{d}\theta}{\mathrm{d}x}\Big|_{x=L} = \alpha \,\theta(x=L)$$

One-dimensional, unsteady state heat conduction

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \frac{\partial^2 T}{\partial x^2}$$
 (Differential equation)
$$\frac{\partial \theta^*}{\partial t} = a \frac{\partial^2 \theta^*}{\partial x^2}$$
 with $\theta^* = \frac{T - T_0}{T_a - T_0}$

• Semi-infinite plate with negligible heat transfer resistance:

$$Bi = \frac{\alpha L}{\lambda} \gg 1$$

$$\begin{cases} t > 0 \\ x = 0 \end{cases} \quad T = T_{\mathbf{a}} \qquad \theta^* = 1$$
 (BC2)

$$\begin{cases} t > 0 \\ x \to \infty \end{cases} \quad T = T_0 \qquad \theta^* = 0$$
 (BC3)

$$\theta^* = \frac{T - T_0}{T_{\rm a} - T_0} = 1 - \operatorname{erf}\left(\frac{1}{\sqrt{4\operatorname{Fo}}}\right) \quad \text{with} \quad \operatorname{Fo} = \frac{at}{x^2} \quad \text{(Temperature profile)}$$

$$\dot{q}''|_{x=0} = \sqrt{\frac{\lambda c\rho}{\pi t}} \left(T_{\rm a} - T_0 \right)$$
 (Heat flux)

$$\delta(t) \approx 3.6 \sqrt{at}$$
 (Temperature penetration depth)

• Semi-infinite plate, **non** negligible heat transfer resistance:

$$\begin{cases} t > 0 \\ x = 0 \end{cases} \quad \alpha \left(T_{a} - T(x = 0) \right) = -\lambda \left. \frac{\partial T}{\partial x} \right|_{x = 0}$$
 (BC1)

$$\theta^* = \frac{T - T_0}{T_a - T_0} = 1 - \operatorname{erf}\left(\frac{1}{\sqrt{4\operatorname{Fo}}}\right) \cdots \qquad (\text{Temperature profile})$$

$$\cdots - \left[\exp\left(\operatorname{Bi}_x + \operatorname{Fo}\operatorname{Bi}_x^2\right)\right] \left[1 - \operatorname{erf}\left(\frac{1}{\sqrt{4\operatorname{Fo}}} + \sqrt{\operatorname{Fo}}\operatorname{Bi}_x\right)\right]$$
with
$$\operatorname{Bi}_x = \frac{\alpha x}{\lambda}$$

$$\operatorname{Fo} = \frac{at}{x^2}$$

• Semi-infinite plate, periodically changing surface temperature:

$$\begin{cases} t > 0 \\ x = 0 \end{cases} T(x = 0) = T_{\rm m} + (T_{\rm max} - T_{\rm m}) \cos(2\pi t/\tau)$$
 (BC1)

$$\theta^* = \frac{T - T_{\rm m}}{T_{\rm max} - T_{\rm m}} = \exp\left(-\sqrt{\frac{\pi x^2}{a\tau}}\right) \cos\left(\frac{2\pi}{\tau}t - \sqrt{\frac{\pi x^2}{a\tau}}\right) \quad \text{(Temperature profile)}$$

One-dimensional, unsteady heat conduction in simple bodies

$$\frac{T_{\rm m}-T_{\rm a}}{T_0-T_{\rm a}}$$
 (Dimensionless temperature in the middle of a body)
$$\frac{T-T_{\rm a}}{T_{\rm m}-T_{\rm a}}$$
 (Dimensionless temperature at position x or r)

$$\frac{Q}{Q_0}$$
 mit $Q_0 = m c (T_0 - T_a)$ (Dimensionless heat loss)

Determination of temperature profile and heat flow for unsteady conditions \rightarrow Figures 3 - 11

Diagramm 1: Mid-plane temperature of a plate with thickness $2x_1$

Diagramm 2: Temperature distribution in a plate (valid for Fo > 0.2)

Diagramm 3: Temperature along the axis of a cylinder with radius r_1

Diagramm 4: Temperature distribution in a cylinder (valid for Fo > 0.2)

Diagramm 5: Temperature in the centre of a sphere with radius r_1

Diagramm 6: Temperature distribution in a sphere (valid for Fo > 0.2)

Diagramm 7: Heat loss of a plate

 $Bi^2 Fo = \cdot$

Diagramm 8: Heat loss of a cylinder

Diagramm 9: Heat loss of a sphere

Appendix A – Properties of various materials

Tabelle 1: Metals at 20°C

	ρ	c	λ	a
	$10^3~\rm kg/m^3$	$\rm kJ/kgK$	$\mathrm{W/mK}$	$10^{-6} \; \mathrm{m^2/s}$
Aluminum	2,70	0,888	237	98,80
Lead	11,34	$0,\!129$	35	23,90
Chromium	6,92	0,440	91	29,90
Iron	$7,\!86$	$0,\!452$	81	22,80
Gold	19,26	0,129	316	127,20
Copper	8,93	0,382	399	117,00
Magnesium	1,74	1,020	156	87,90
Manganese	$7,\!42$	$0,\!473$	21	6,00
Molybdenum	10,20	$0,\!251$	138	53,90
Sodium	9,71	1,220	133	11,20
Nickel	8,85	0,448	91	23,00
Platinum	21,37	0,133	71	25,00
Silver	10,50	$0,\!235$	427	173,00
Titanium	4,50	$0,\!522$	22	9,40
Wolfram	19,00	$0,\!134$	173	67,90
Zinc	7,10	0,387	121	44,00
Tin, white	$7,\!29$	$0,\!225$	67	40,80
Bronze	8,80	0,377	62	18,70
Cast iron	7,80	0,540	4250	1012
Carbon steel $(<0,4\% C)$	$7,\!85$	$0,\!465$	4250	1215
Cr-Ni-steel (X12CrNi 18,8)	7,80	0,500	15	3,80

Tabelle 2: Non-metal solids at 20° C

- Idbei	e 2. Non-met		λ	
	ho	c	Λ	a
	$10^3~\rm kg/m^3$	$\rm kJ/kgK$	$\mathrm{W/mK}$	$10^{-6} \text{ m}^2/\text{s}$
Acryl glass	1,18	1,44	0,184	0,108
Asphalt	2,12	0,92	0,7	$0,\!36$
Concrete	2,1	0,88	1	$0,\!54$
Ice (water 0�C)	0,917	2,04	$2,\!25$	1,203
Soil coarse gravel	2,04	1,84	$0,\!52$	$0,\!14$
Sand, dry	1,65	0,8	$0,\!27$	0,2
Sand, wet	1,75	1	0,58	$0,\!33$
Clay	1,45	0,88	1,28	1
Glass.				
window	2,48	0,7	0,87	0,5
mirror	2,7	0,8	0,76	$0,\!35$
quarz	2,21	0,73	1,4	0,87
Glass wool	1,2	0,66	0,046	0,58
Gypsum	1	1,09	0,51	$0,\!47$
Granite	2,75	0,89	2,9	1,18
Cork	0,19	1,88	0,041	$0,\!115$
Marble	2,6	0,8	2,8	1,35
Mortar	1,9	0,8	0,93	0,61
Paper	0,7	1,2	0,12	$0,\!14$
Polyethylene	0,92	2,3	$0,\!35$	$0,\!17$
Polytetrafluorethylene	2,2	1,04	0,23	0,1
PVC	1,38	0,96	$0,\!15$	$0,\!11$
Porcelain (95�C)	2,4	1,08	1,03	$0,\!4$
Hard coal	1,35	1,26	$0,\!26$	$0,\!15$
Fir wood (radial)	0,415	2,72	$0,\!14$	$0,\!12$
Plaster	1,69	0,8	0,79	$0,\!58$
Bricks	1,61,8	0,84	$0,\!38.\dots0,\!52$	$0,\!280,\!34$

Tabelle 3: Liquids at 1 bar

	T	ρ	c	λ	ν	a	Pr
	$^{\circ}\mathrm{C}$	$10^3~\rm kg/m^3$	$\rm kJ/kgK$	$\mathrm{W/m}\mathrm{K}$	$10^{-6} \; \mathrm{m^2/s}$	$10^{-6} \text{ m}^2/\text{s}$	1
Nitrogen	-190	0,861	1,988	0,161	0,321	0,0939	3,42
Water	0	0,9998	4,218	0,561	1,793	0,133	13,48
	20	0,9982	4,181	0,598	1,004	0,1434	7,001
	40	0,9922	$4,\!177$	0,631	0,658	$0,\!1521$	4,3280
	60	0,9832	4,184	0,654	$0,\!475$	$0,\!1591$	2,983
	80	0,9718	$4,\!197$	$0,\!67$	$0,\!365$	0,1643	2,221
	99,63	0,9586	4,216	0,679	$0,\!295$	$0,\!168$	1,757
Aqueous non-organic solution							
$21\% \mathrm{NaCl}$	-10	1,187	3,312	0,528	4,02	$0,\!136$	29,5
Benzene	20	0,879	1,738	$0,\!154$	0,74	0,101	$7,\!33$
Methanol	20	0,792	2,495	$0,\!22$	0,737	0,111	$6,\!57$
Fuel oil	20	0,819	2	$0,\!116$	1,82	0,0709	25,7
	100	0,766	2,38	$0,\!104$	0,711	0,0572	12,4
Mercury	20	13,55	0,139	9,3	0,115	4,9	0,023

Tabelle 4: Gases at 1 bar

	T	ρ	c	λ	ν	a	\Pr
	$^{\circ}\mathrm{C}$	${\rm kg/m^3}$	$\rm kJ/kgK$	$10^{-3}\;\mathrm{W/mK}$	$10^{-6} \text{ m}^2/\text{s}$	$10^{-6} \text{ m}^2/\text{s}$	1
Air	-200	5,106	1,186	6,886	0,979	1,137	0,8606
	-100	2,019	1,011	16,2	5,829	7,851	0,7423
	0	$1,\!275$	1,006	24,18	$13,\!52$	18,83	0,7179
	20	1,188	1,007	25,69	$15,\!35$	$21,\!47$	0,7148
	40	1,112	1,007	27,16	$17,\!26$	$24,\!24$	0,7122
	80	0,9859	1,01	30,01	$21,\!35$	$30,\!14$	0,7083
	100	0,9329	1,012	31,39	$23,\!51$	$33,\!26$	0,707
	200	0,7356	1,026	37,95	$35,\!47$	50,3	0,7051
	400	$0,\!517$	1,069	49,96	$64,\!51$	90,38	0,7137
	600	$0,\!3986$	1,116	$61,\!14$	$99,\!63$	137,5	0,7247
	800	0,3243	$1,\!155$	$71,\!54$	140,2	191	0,7342
	1000	$0,\!2734$	1,185	80,77	185,9	249,2	0,7458
Steam	100	0,5896	2,042	25,08	20,81	20,83	0,999
	200	0,4604	1,975	33,28	$35{,}14$	36,6	0,96
	400	0,3223	2,07	54,76	$75,\!86$	82,07	0,9243
	600	0,2483	2,203	79,89	131,4	146,1	0,8993
	800	0,2019	2,343	107,3	199,9	226,8	0,8816
	1000	$0,\!1702$	2,478	163,3	280	323,2	0,8665
Hydrogen	0	0,0886	$14,\!24$	176	95	139	0,68
	50	0,0748	14,36	202	126	188	0,67
	100	0,0649	14,44	229	159	244	0,65
Carbon dioxide	0	1,95	0,829	14,3	7,1	8,86	0,8
	50	1,648	0,875	17,8	9,8	12,3	0,8
	100	1,428	0,925	21,3	12,4	16,1	0,8
Helium	27	$0,\!1625$	5,193	155,7	$122,\!6$	184,5	0,655