Solución a la tarea del día 19 de mayo

1) Representa las siguientes funciones definidas a trozos y da las características:

a)
$$f(x) = \begin{cases} x^2 - 1 & x \le 1 \\ 3x - 4 & x > 1 \end{cases}$$

TROZO 1

$$f(x) = x^2 - 1 \rightarrow \begin{cases} a = 1 \\ b = 0 \\ c = -1 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot 1} = 0$$

$$v_y = f(v_x) = f(0) = 0^2 - 1 = -1$$

$$V = (0, -1)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para $x \le 1$

				v	
x	-3	-2	-1	0	1
f(x)	8	3	0	7	0

TROZO 2

$$f(x) = 3x - 4$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

x	1	2
f(x)	-1	2

REPRESENTACIÓN GRÁFICA

$$Dom(f(x)) = \mathbb{R}$$

$$Im(f(x)) = (-1, +\infty)$$

Creciente: $[0, +\infty)$

Decreciente: $(-\infty, 0]$

Discontinuidades: x = 1

 $Min. \rightarrow (0, -1)$

Corte ejeX:
$$(-1,0)(1,0)(\frac{4}{3},0)$$

El tercer punto de corte $\left(\frac{4}{3},0\right)$ con el eje X sale de resolver la ecuación de primer grado:

$$f(x)=0$$

$$3x - 4 = 0 \to 3x = 4 \to x = \frac{4}{3}$$

Corte ejeY: (0,-1)

b)
$$f(x) = \begin{cases} 3 & x < -1 \\ x^2 + 2 & -1 < x < 2 \\ -x + 5 & x \ge 2 \end{cases}$$

TROZO 1

$$f(x) = 3$$

Se trata de una función constante.

TR070 2

$$f(x) = x^2 + 2 \rightarrow \begin{cases} a = 1 \\ b = 0 \\ c = 2 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot 1} = 0$$

$$v_y = f(v_x) = f(0) = 0^2 + 2 = 2$$

$$V = (0, 2)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para -1 < x < 2

		v		
x	-1	0	1	2
f(x)	3	2	3	6

TROZO 3

$$f(x) = -x + 5$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

X	2	3
f(x)	3	2

REPRESENTACIÓN GRÁFICA

 $Dom\big(f(x)\big)=\mathbb{R}-\{-1\}$

 $Im(f(x)) = (-\infty, 6)$

Creciente: [0, 2]

 $Decreciente: [-1,0] \cup [2,+\infty)$

Constante: $(-\infty, -1]$

Discontinuidades: x = 1, x = 2

 $Min. \rightarrow (0,2)$ $Corte\ ejeX: (5,0)$ $Corte\ ejeY: (0,2)$

c)
$$f(x) = \begin{cases} x^2 - 2 & x < 0 \\ -1 & x = 0 \\ x - 2 & x > 0 \end{cases}$$

TROZO 1
$$f(x) = x^{2} - 2 \to \begin{cases} a = 1 \\ b = 0 \\ c = -2 \end{cases}$$

Se trata de una función cuadrática (parábola).

Lo primero que hacemos es buscar dónde está el vértice:

$$v_x = \frac{-b}{2a} = \frac{-0}{2 \cdot 1} = 0$$

$$v_y = f(v_x) = f(0) = 0^2 - 2 = -2$$

$$V = (0, -2)$$

A continuación buscamos una tabla de valores para representar la parábola: Hay que tener en cuenta que esta función sólo está definida para x < 0

				v
x	-3	-2	-1	0
f(x)	7	2	-1	-2

TROZO 2

$$f(x) = -1$$

Se trata de una función constante.

TROZO 3

$$f(x) = x - 2$$

Se trata de una función lineal (recta).

Sólo necesitamos dos valores para representar una recta. Los valores que pondremos son los de los extremos del intervalo para el que está definida.

x	0	2
f(x)	-2	0

REPRESENTACIÓN GRÁFICA

$$Dom\big(f(x)\big)=\mathbb{R}$$

$$Im(f(x)) = (-2, +\infty)$$

Creciente: $[0, +\infty)$

Decreciente: $(-\infty, 0]$

Discontinuidades: x = 0

Corte ejeX: $(2,0)(-\sqrt{2},0)$

El otro punto de corte $(-\sqrt{2}, 0)$ sale de resolver la ecuación de segundo grado:

$$f(x) = 0$$

$$x^2 - 2 = 0$$

$$x^2 = 2$$

$$x^2 - 2 = 0$$

$$x^2 = 2$$

$$x = -\sqrt{2}$$

Corte ejeY: (0, -1)

2) Representa las siguientes funciones y da las características:

$$a) \ f(x) = -\frac{1}{x}$$

$$k = -1$$

A partir de la función podemos extraer las siguientes conclusiones:

- La función es creciente.
- La función se encuentra en los cuadrantes II y IV.

x		-2	•		2	4
f(x)	0.25	0.5	1	-1	-0.5	-0.25

$$Dom(f(x)) = \mathbb{R} - \{0\}$$

 $Im(f(x)) = \mathbb{R} - \{0\}$
 $Discontinuidad \to x = 0$
 $Creciente\ en\ su\ dominio$
 $Función\ impar$

$$b) f(x) = \frac{0.5}{x}$$

$$k = 0.5$$

A partir de la función podemos extraer las siguientes conclusiones:

- La función es decreciente.
- La función se encuentra en los cuadrantes I y III.

х	-2	-1	-0.5	0.5	1	2
f(x)	-0.25	-0.5	-1	1	0.5	0.25

$$Dom(f(x)) = \mathbb{R} - \{0\}$$

 $Im(f(x)) = \mathbb{R} - \{0\}$
 $Discontinuidad \rightarrow x = 0$
 $Decreciente\ en\ su\ dominio$
 $Función\ impar$

$$c) \ f(x) = \frac{2}{x}$$

$$k = 2$$

A partir de la función podemos extraer las siguientes conclusiones:

- La función es decreciente.
- La función se encuentra en los cuadrantes I y III.

x	-4	-2	-1	1	2	4
f(x)	-0.5	-1	-2	2	1	0.5

$$Dom(f(x)) = \mathbb{R} - \{0\}$$

 $Im(f(x)) = \mathbb{R} - \{0\}$
 $Discontinuidad \to x = 0$
 $Decreciente\ en\ su\ dominio$
 $Función\ impar$

$$d) \ f(x) = \frac{3/4}{x}$$

$$k = 3/4$$

A partir de la función podemos extraer las siguientes conclusiones:

- La función es decreciente.
- La función se encuentra en los cuadrantes I y III.

x		-1				3
f(x)	-0.25	-0.75	-1.5	1.5	0.75	0.25

$$Dom(f(x)) = \mathbb{R} - \{0\}$$

 $Im(f(x)) = \mathbb{R} - \{0\}$
 $Discontinuidad \rightarrow x = 0$
 $Decreciente\ en\ su\ dominio$
 $Función\ impar$