WO 2005/061209

AP20 Rec'd PCT/PTO 15 JUN 2006

MATÉRIAUX COMPOSITES COMPRENANT UN MATÉRIAU DE RENFORT ET UNE MATRICE THERMOPLASTIQUE, ARTICLE COMPOSÉ PRECURSEUR DE CES MATÉRIAUX ET PRODUITS OBTENUS A PARTIR DE CES MATÉRIAUX

5

10

15

20

25

30

35

Le domaine de l'invention est celui des matériaux composites et de leurs procédés de fabrication.

De façon plus précise, l'invention se rapporte à l'utilisation de certains polycondensats servant à l'imprégnation de matériaux de renfort, notamment sous la forme de fils et/ou de fibres, destinés à jouer le rôle de matrice thermoplastique, dans des matériaux composites.

Par fil, on entend un monofilament, un fil multifilamentaire continu, un filé de fibres, obtenu à partir d'un unique type de fibres ou de plusieurs types de fibres en mélange intime. Le fil continu peut être également obtenu par assemblage de plusieurs fils multifilamentaires.

Par fibre, on entend un filament ou un ensemble de filaments coupés, craqués ou convertis.

Dans le domaine des matériaux haute-performances, les composites ont pris une place prépondérante, de par leurs performances et les gains de poids qu'ils autorisent. Les composites hautes performances les plus connus à ce jour, sont obtenus à partir de résines thermodurcissables, dont l'utilisation est limitée aux applications de faibles séries, principalement dans l'aéronautique, le sport automobile, et dans les meilleurs cas, présentant des temps de fabrication voisins d'une quinzaine de minutes, comme par exemple, lors de la fabrication de skis. Le coût de ces matériaux, et/ou les temps de fabrication, les rendent incompatibles avec un usage en grande série.

Une réponse, en regard des temps de fabrication, est donnée par les composites à matrice thermoplastique. Les résines thermoplastiques sont en général connues pour leur viscosité élevée, ce qui constitue un frein en ce qui concerne l'imprégnation des matériaux de renfort, composés en général de faisceaux de filaments très denses. Il résulte de l'emploi des matrices thermoplastiques disponibles sur le marché, notamment des matrices polyamide, une difficulté d'imprégnation imposant soit des temps d'imprégnation prolongés, soit des pressions de mise en oeuvre importantes. Dans la majeure partie des cas, les matériaux composites obtenus à partir de ces matrices peuvent présenter des microvides et des zones non imprégnées. Ces microvides causent des chutes

10

15

20

25

30

35

de propriétés mécaniques, un vieillissement prématuré du matériau ainsi que des problèmes de délaminage lorsque le matériau est stratifié.

Pour améliorer l'imprégnation des fils de renfort par la matrice et l'adhésion entre les fils de renfort et la matrice, plusieurs voies ont été explorées.

La première de ces voies a consisté à utiliser des polyamides linéaires à poids moléculaire abaissé, comme matrice.

Ainsi, le document FR-2 158 422 décrit une feuille composite constituée d'une matrice polyamide et de fibres de renfort de type fibres de verre. Le polyamide est obtenu par polycondensation d'e-caprolactame, dont le poids moléculaire est compris entre 3000 et 25000 g/mol, ayant la capacité, grâce à sa faible viscosité, d'imprégner convenablement les fibres de renfort et ainsi de limiter l'apparition de microvides, dans le produit fini. Ce document décrit également un procédé de formage de cette feuille composite.

De façon générale, l'utilisation de polyamides de poids moléculaires faibles dans la matrice présente comme inconvénient majeur d'altérer les propriétés mécaniques du composite, notamment en ce qui concerne la résistance à la rupture, la résistance à l'allongement et le comportement en fatigue. En effet, lors de la mise en œuvre de composites hautes performances, renforcés de fibres longues, les propriétés mécaniques de ces composites sont fonction de la plasticité de la matrice, qui transmet les contraintes au niveau du renfort, et des propriétés mécaniques de celle-ci.

Une autre voie permettant d'améliorer l'imprégnation des fibres de renforts par la matrice, consiste à employer une matrice se présentant sous la forme d'un oligomère ou d'un prépolymère de bas poids moléculaire, polymérisable par polycondensation, in situ.

Ainsi, le document FR-A-2 603 891 concerne un procédé de fabrication d'un matériau composite, constitué d'une matrice en polyamide renforcée par des fibres de renfort longues. Ces fibres sont imprégnées d'un prépolymère ou d'un oligomère de polyamide qui comporte à chaque extrémité de la chaîne moléculaire une fonction réactive susceptible de réagir avec une autre molécule d'oligomère ou de prépolymère sous l'effet d'un chauffage, entraînant l'allongement de la chaîne polymérique, pour obtenir un polyamide de poids moléculaire élevé. L'oligomère ou le prépolymère, de faible masse moléculaire, a comme caractéristique d'être fluide à l'état fondu. Les polyamides utilisés sont préférentiellement des polyamides 6, 6.6, 6.10, 6.12, 11 et 12. Les fibres

imprégnées sont ensuite pultrudées à travers une filière conformatrice, à température élevée, afin de former des profilés.

Ce procédé reste voisin des procédés classiques de polymérisation, donc présente des temps de cycle incompatibles avec une cadence de production rapide. Si l'on adapte les temps de cycle de façon à les rendre compatibles avec la grande série, le poids moléculaire du polyamide obtenu et constituant la matrice est trop faible pour conférer à cette dernière un bon niveau de propriétés mécaniques.

Le document EP-B-0 133 825 décrit un matériau composite souple principalement constitué d'un matériau de renfort sous forme d'une mèche de fibres continues parallèles, imprégnées de poudre thermoplastique, préférentiellement de la poudre de polyamide, et d'une matrice thermoplastique sous forme de gaine autour de la mèche de fibres continues, cette gaine pouvant être également en polyamide. Ce matériau se caractérise par le fait que le polymère constituant la matrice thermoplastique possède un point de fusion inférieur ou égal à celui du polymère constituant la poudre thermoplastique, de telle sorte que le gainage des fibres recouvertes de poudre est réalisé par fusion de la matrice thermoplastique, mais sans fusion de la poudre, de telle sorte que cette dernière isole les fibres de la gaine.

Un inconvénient de l'utilisation d'un polymère thermoplastique sous forme de poudre est la nécessité d'utiliser un appareillage complexe qui limite la quantité de composite obtenue. Il apparaît donc clairement que ce procédé est peu compatible avec une production de grande série.

25

30

35

5

10

15

20

Le document US-B-5 464 684 décrit un fil hybride comprenant un cœur de mélange intime de filaments de renfort et de filaments de polyamide de basse viscosité, formant la matrice. Ce noyau est recouvert par un fil continu de polyamide, préférentiellement du même type que celui utilisé pour le noyau. Le polyamide utilisé est du type nylon 6 ou nylon 6.6, mais peut également être constitué par le nylon 6.6 T, le nylon 6.10, le nylon 10 ou un polyamide d'acide adipique et de 1,3-xylylènediamine. Les fibres de renfort sont des fibres de carbone ou des fibres de verre.

La technique utilisée pour fabriquer un tel fil hybride est certes adaptée à des applications de petites séries, telles que la fabrication de raquettes de tennis. Toutefois, il est difficile de concevoir l'utilisation d'une telle méthode à plus grande échelle.

Le document WO 03/029350 décrit l'utilisation d'un polyamide étoile comme matrice, un tel polyamide présentant une bonne fluidité à l'état fondu, ce qui permet une bonne imprégnation des matériaux de renfort.

5

10

15

20

25

30

35

L'objectif de la présente invention est donc de remédier aux inconvénients décrits ci-dessus en proposant un article précurseur d'un matériau composite, comprenant des types différents de fils et/ou de fibres, et notamment au moins un fil et/ou des fibres de renfort, et au moins un fil et/ou des fibres générateur d'une matrice thermoplastique présentant une haute fluidité à l'état fondu, permettant une très bonne imprégnation des fils et/ou des fibres de renfort, lors de la formation du matériau composite. Un tel article permet d'obtenir un matériau composite par une technique simple et rapide de thermocompression.

Un autre objectif de l'invention est de proposer un matériau composite, obtenu à partir de cet article et présentant de bonnes propriétés mécaniques.

Enfin, un dernier objectif de l'invention est de fournir un matériau composite présentant un avantage de réduction de coûts de fabrication, par l'emploi d'un outillage mettant en oeuvre des basses pressions et des temps de cycle raccourcis.

A cette fin, l'invention concerne un article précurseur d'un matériau composite comprenant une matrice polymérique et au moins un fil et/ou des fibres de renfort, ledit article comprenant au moins un fil et/ou des fibres de renfort et au moins un fil et/ou des fibres de matrice polymérique caractérisé en ce que :

- ledit fil et/ou lesdites fibres de renfort sont en matériau de renfort et comprennent éventuellement une partie en polymère thermoplastique
- ledit fil et/ou lesdites fibres de matrice polymérique sont en polymère thermoplastique, et en ce que,
- ledit polymère thermoplastique dudit fil et/ou desdites fibres de renfort et/ou dudit fil et/ou desdites fibres de matrice polymérique comprend au moins un polycondensat constitué de :
 - 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (l) suivante :

$$R_{3^{\text{-}}}(X\text{-}R_{2}\text{-}Y)_{n}\text{-}X\text{-}A\text{-}R_{1}\text{-}A\text{-}X\text{-}(Y\text{-}R_{2}\text{-}X)_{m}\text{-}R_{3} \ \ (I)$$

 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

$$R_4-[Y-R_2-X]_p-R_3$$
 (II)

dans lesquelles

- -X-Y- est un radical issu de la condensation de deux fonctions réactives F₁ et F₂ telles que
- F₁ est le précurseur du radical -X- et F₂ le précurseur du radical -Y- ou 5 inversement,
 - les fonctions F₁ ne peuvent réagir entre elles par condensation
 - les fonctions F2 ne peuvent réagir entre elles par condensation
- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone. 10
 - R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.
 - R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné
 - R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone,
- linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des 15 hétéroatomes.
 - -n, m et p représentent chacun un nombre compris entre 30 et 200

Toutes les fonctions de polycondensation connues peuvent être utilisées dans le cadre de l'invention pour F₁ et F₂.

Dans le polycondensat, les radicaux R2 peuvent être de nature identique ou différente entre eux.

Selon un mode de réalisation particulier de l'invention ;la matrice polymérique est un polyamide A1 constitué de :

- 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante : R_3 - $(X-R_2-Y)_n$ - $X-A-R_1$ - $A-X-(Y-R_2-X)_m$ - R_3
- 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

$$R_4$$
-[Y- R_2 -X]_p- R_3 (II)

dans lesquelles: 30

20

25

- Y est le radical $\stackrel{-N}{-}$ quand X représente le radical $\stackrel{-C}{-}$, $\stackrel{|}{R_s}$ 0 Y est le radical $\stackrel{-C}{-}$ quand X représente le radical $\stackrel{-N}{-}$, $\stackrel{|}{R_s}$

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.

- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.
- 5 R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

- R₅ représente l'hydrogène ou un radical hydrocarboné comprenant de 1 à 6 atomes de carbone
- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
 - -n, m et p représentent chacun un nombre compris entre 30 et 200

Selon un autre mode de réalisation particulier de l'invention, la matrice polymérique de l'invention consiste en un polyester A2 constitué de :

 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

$$R_{3}$$
- $(X-R_{2}-Y)_{n}$ - $X-A-R_{1}$ - $A-X-(Y-R_{2}-X)_{m}$ - R_{3} (I)

 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

$$R_4-[Y-R_2-X]_p-R_3(II)$$

dans lesquelles:

20

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.
- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.
- 30 R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

10

15

20

25

- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.

-n, m et p représentent chacun un nombre compris entre 30 et 200

La matrice polymérique de l'invention peut également être un copolyesteramide.

Avantageusement m, n et p sont compris entre 30 et 250.

Avantageusement, R2 est un radical pentaméthylénique.

Le polyamide A1 ou le polyester A2 de l'invention comprend avantageusement au moins 45%, de préférence au moins 60%, encore plus préférentiellement au moins 80% molaire de chaînes macromoléculaires répondant à la formule (I).

Le polyamide A1 ou le polyester A2 de l'invention présente avantageusement une masse moléculaire en nombre supérieure ou égale à 5000, et inférieure ou égale à 25000 g/mol.

Le fil et/ou les fibres de polymère thermoplastique destinés à jouer le rôle de matrice seront dénommés ci-après "fil- et/ou fibres-matrice".

Par masse moléculaire en nombre du polyamide A1 ou du polyester A2, on entend la masse moléculaire en nombre pondérée par les fractions molaires des deux types de chaînes macromoléculaires des formules (I) et (II).

Selon un mode de réalisation particulier de l'invention, le polyamide A1 ou le polyester A2 est obtenu par copolymérisation à partir d'un mélange de monomères comprenant :

- a) un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les acides carboxyliques, les alcools, et leurs dérivés, les fonctions réactives étant identiques,
- b) des monomères de formules générales (IIIa) et (IIIb) suivantes dans le cas du polyamide A1

$$R'_{2}$$
 O R'_{2} N (III_b)

30

b') des monomères de formules générales (IIIa') et (IIIb') suivantes dans le cas du polyester A2

WO 2005/061209 PCT/FR2004/003310

8

.
$$R'_{2} \xrightarrow{O} Q$$

$$X'-R'_{2}-Y' \qquad (III_{a}') \qquad \text{ou} \qquad \qquad (III_{b}')$$

dans lesquelles

5

15

20

25

- R'2 représente un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes,
- Y' est un radical amine quand X' représente un radical carboxylique, ou Y' est un radical carboxylique quand X' représente un radical amine, dans le cas du polyamide A1
- Y' est un radical hydroxyle quand X' représente un radical carboxylique, ou Y'
 est un radical carboxylique quand X' représente un radical hydroxyle, dans le cas du polyester A2

Par acide carboxylique ou radical carboxylique dans la présente invention, on entend les acides carboxyliques et leurs dérivés, tels que les anhydrides d'acide, les chlorures d'acide, les esters, les nitriles etc. Par amine, on entend les amines et leurs dérivés.

Les monomères de formule (III_a) ou (III_b) sont de préférence les monomères de polyamides du type polyamide 6, polyamide 11, polyamide 12 etc. On peut citer à titre d'exemple de monomères de formule (III_a) ou (III_b) pouvant convenir dans le cadre de l'invention le caprolactame, l'acide 6-aminocaproïque, le lauryllactame etc. Il peut s'agir d'un mélange de monomères différents.

Comme exemples de monomères de formule (III_a) ou (III_b) pouvant convenir dans le cadre de l'invention, on peut citer la caprolactone, la δ -valerolactone, l'acide 4-hydroxybenzoïque etc.

Le mélange de monomères peut également comprendre un monomère monofonctionnel utilisé classiquement dans la production des polymères comme limiteur de chaînes.

Le mélange de monomères peut également comprendre des catalyseurs.

Avantageusement le composé a) représente entre 0,1 et 2% molaire par rapport au nombre de moles de monomères de type b) ou b').

WO 2005/061209

5

10

15

20

25

30

Dans le cas du polyamide A1, la copolymérisation des monomères est réalisée dans des conditions classiques de polymérisation de polyamides obtenus à partir de lactames ou d'aminoacides.

Dans le cas du polyester A2, la copolymérisation des monomères est réalisée dans des conditions classiques de polymérisation de polyesters obtenus à partir de lactones ou d'hydroxy-acides

La polymérisation peut comprendre une étape de finition afin d'obtenir le degré de polymérisation souhaité.

Selon un autre mode de réalisation particulier de l'invention, le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu, par exemple à l'aide d'un dispositif d'extrusion, d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides et d'un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les alcools, les acides carboxyliques et leurs dérivés, les fonctions réactives étant identiques. Le polyamide est par exemple du polyamide 6, du polyamide 11, du polyamide 12 etc.. Le polyester est par exemple le polycaprolactone, la poly(pivalolactone) etc..

Le composé difonctionnel est ajouté directement dans le polyamide ou le polyester en milieu fondu.

Avantageusement le composé difonctionnel représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester.

Le composé difonctionnel de l'invention est de préférence représenté par la formule (IV) :

dans laquelle X" représente un radical amine, un radical hydroxyle ou un groupement carboxylique ou leurs dérivés

R1 et A sont tels que décrits ci-dessus.

A titre d'exemple de radical X", on peut citer un radical amine primaire, amine secondaire etc.

Le composé difonctionnel peut être un diacide carboxylique. A titre d'exemples de diacides, on peut citer l'acide adipique qui est l'acide préféré, l'acide décanoïque ou sébacique, l'acide dodécanoïque, les acides phtaliques tels

10

15

20

25

30

que l'acide téréphtalique, l'acide isophtalique. Il peut s'agir d'un mélange comprenant des sous-produits issus de la fabrication d'acide adipique, par exemple un mélange d'acide adipique, d'acide glutarique et d'acide succinique.

Le composé difonctionnel peut être une diamine. A titre d'exemples de diamines, on peut citer l'hexaméthylène diamine, la méthyl pentaméthylènediamine, la 4,4'-diaminodicyclohexylméthane, la butane diamine, la métaxylylène diamine.

Le composé difonctionnel peut être un dialcool. A titre d'exemples de dialcools, on peut citer le 1,3-propanediol, le 1,2-éthanediol, le 1,4-butanediol, le 1,5-pentanediol, le 1,6-hexanediol et polytetrahydrofurane.

Le composé fonctionnel peut être un mélange d'une diamine et d'un dialcool.

Dans le cas du polyamide A1, les fonctions réactives du composé difonctionnel sont généralement des amines ou des acides carboxyliques ou dérivés.

Dans le cas du polyester A2, les fonctions réactives du composé difonctionnel sont généralement des alcools ou des acides carboxyliques ou dérivés.

De préférence le composé difonctionnel est choisi parmi l'acide adipique, l'acide décanoïque ou sébacique, l'acide dodécanoïque, l'acide téréphtalique, l'acide isophtalique, l'hexaméthylène diamine, la méthyl pentaméthylènediamine, la 4,4'-diaminodicyclohexylméthane, la butane diamine, la métaxylylène diamine, le 1,3-propanediol, le 1,2-éthanediol, le 1,4-butanediol, le 1,5-pentanediol, le 1,6-hexanediol et le polytetrahydrofurane

Selon un autre mode de réalisation particulier de l'invention, le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu, par exemple à l'aide d'un dispositif d'extrusion, d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides, avec un composé de formule (V):

G-R-G(V)

dans laquelle

15

20

25

30

R est un radical hydrocarboné, linéaire ou cyclique, aromatique ou aliphatique, substitué ou non, et pouvant comprendre des hétéroatomes,

G est une fonction ou un radical pouvant réagir sélectivement soit avec les fonctions réactives amine, soit avec les fonctions réactives acide carboxylique du polyamide ou du polyester, pour former des liaisons covalentes. Le polyamide est par exemple du polyamide 6, du polyamide 11, du polyamide 12. Le polyester est par exemple le polycaprolactone ou le poly(pivalolactone).

Le composé de formule (V) est ajouté directement dans le polyamide ou le polyester en milieu fondu.

Avantageusement le composé de formule (V) représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester.

Tous les coupleurs de chaînes polymériques ou les agents d'extension de chaînes polymériques connus de l'homme du métier, comprenant généralement deux fonctions identiques ou deux radicaux identiques, et réagissant sélectivement soit avec les fonctions réactives amine, soit avec les fonctions réactives alcool, soit avec les fonctions réactives acide carboxylique du polyamide ou du polyester, pour former des liaisons covalentes, peuvent être utilisés comme composé de formule (V).

Dans le cas de l'obtention de polyamide A1, le composé (V) peut par exemple réagir sélectivement avec les fonctions amine du polyamide dans lequel il est introduit. Ce composé ne réagira pas avec les fonctions acide du polyamide dans ce cas.

De façon avantageuse, lorsque le fil et/ou les fibres de renfort comprennent un polymère thermoplastique, celui-ci se présente préférentiellement sous la forme d'une gaine de polymère qui recouvre le fil et/ou les fibres de renfort.

Selon une variante de l'invention, l'article précurseur du matériau composite comporte également au moins un fil- et/ou des fibres-matrice en polymère thermoplastique linéaire.

Selon une caractéristique préférée, ce polymère linéaire est un polyamide ou copolyamide aliphatique et/ou semicristallin choisi dans le groupe comprenant le PA 4.6, PA 6, PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11,

10

15

20

30

35

PA 12 ou un polyamide ou copolyamide semi-aromatique semicristallin choisi dans le groupe comprenant les polyphtalamides, et les mélanges de ces polymères et de leurs copolymères.

Le fil- et/ou les fibres-matrice peuvent comprendre également tous les additifs usuels tels que des ignifugeants, des fluidifiants, des stabilisants chaleur et lumière, des cires, des pigments, des nucléants, des antioxydants, des modificateurs de la résistance aux chocs ou analogues et connus de l'homme de l'art.

Avantageusement, le fil et/ou les fibres de renfort sont choisis parmi les fils et/ou les fibres de carbone, de verre, d'aramides et de polyimides.

Selon une variante de cette caractéristique, le fil et/ou les fibres de renfort sont un fil et/ou des fibres naturels, choisis parmi les fils et/ou les fibres de sisal, de chanvre, de lin.

De façon avantageuse, l'article selon l'invention comporte également un matériau en poudre, précurseur de matrice, qui peut être par exemple un polyamide.

De préférence, on utilisera une poudre présentant une granulométrie comprise entre 1 et 100 microns.

Préférentiellement, l'article selon l'invention est sous forme de fils continus ou coupés, de rubans, de mats, de tresses, de tissus, de tricots, de nappes, de multiaxiaux, de non-tissés et/ou de formes complexes comprenant plusieurs des formes précitées. A titre d'exemples, une forme complexe peut être une nappe associée à un non-tissé ou à des fils continus.

Un autre objet de l'invention est un matériau composite obtenu à partir d'un article tel que défini ci-dessus, par fusion au moins partielle du fil- et/ou des fibres-matrice. Ce matériau composite comprend une matrice polymérique et des fils et/ou des fibres de renfort.

Par fusion partielle, on entend la fusion d'au moins une partie d'au moins un fil et/ou une fibre-matrice.

Cette fusion peut être réalisée par thermocompression à une température supérieure à la température de fusion de la matrice polymérique et sous pression. Cette fusion permet d'obtenir une imprégnation homogène des fils et/ou des fibres de renfort par la matrice.

Selon une caractéristique préférentielle, le matériau composite ainsi obtenu, présente un taux de renfort massique compris entre 25 et 80 %.

Encore un autre objet de l'invention est un produit semi-fini obtenu par un procédé de thermocompression ou de calandrage de l'article précité, au cours

WO 2005/061209 PCT/FR2004/003310

duquel on fond au moins partiellement le fil- et/ou les fibres-matrice afin d'imprégner le fil et/ou les fibres de renfort.

Avantageusement encore, ce produit semi-fini se présente sous forme de plaques ou de bandes.

Le produit semi-fini consiste en un produit intermédiaire, dans lequel les fils et/ou les fibres de renfort ont été imprégnés par la matrice polymérique qui se trouve sous la forme d'une phase continue. Ce produit n'est pas encore sous sa forme définitive.

Le produit semi-fini doit subir une ultime étape de mise en forme, par un procédé de formage ou thermocompression connus de l'homme de l'art, à des températures supérieures à leur point de transition vitreuse et inférieures à son point de fusion, permettant d'obtenir un produit fini.

Encore un autre objet de l'invention est un produit fini obtenu par un procédé de thermocompression à la forme définitive de l'article précité, au cours duquel on fond au moins partiellement le fil- ou/et les fibres-matrice afin d'imprégner le fil et/ou les fibres de renfort.

De façon générale, les procédés de thermocompression utilisés mettent en œuvre des basses pressions (inférieures à 20 bars), des températures inférieures à 290°C, et des temps courts (inférieurs à 5 minutes).

D'autres détails et avantages de l'invention apparaîtront plus clairement à la lumière des exemples donnés ci-dessous, uniquement à titre indicatif et à fin d'illustration.

Matrice utilisée: polyamide A1 selon l'invention, obtenu par polycondensation de caprolactame en présence de 0.6% molaire d'acide adipique, dans des conditions classiques de polymérisation de polyamide à partir de caprolactame

Exemple 1- Plaque semi-finie réalisée à partir de polyamide selon l'invention et de fils de renfort

30

35

5

10

15

20

25

Une série d'essais à été réalisée à partir d'un fil multifilaments de polyamide A1 décrit ci-dessus, présentant un titre par brin compris entre 21 et 22 dtex et une ténacité voisine de 23 cN/Tex. Un tel multifilament est assemblé, lors d'une opération de tissage multiaxial, avec un fil de renfort continu de verre, présentant un titre de 600 Tex. Afin de valider la haute fluidité de la matrice à

l'état fondu, des tissus multiaxiaux sont réalisés à partir de couches élémentaires, définies comme suit:

Couche élémentaire

5

10

15

20

Pli n°1 : fil de renfort – orientation : - 45° Pli n°2 : fil de renfort – orientation : +45°

Pli n°3: fil Polyamide A1 (matrice) – orientation: 90°

Un composite stratifié est ensuite réalisé en plaçant plusieurs couches élémentaires (entre 2 et 10) du tissu obtenu dans un moule présentant une forme de plaque, sous une presse à plateaux chauffants, pendant une durée de 1 à 3 minutes, sous une pression comprise entre 1 et 20 Bars et une température comprise entre 250 et 260 °C (supérieure à la température de fusion du Polyamide A1). Après refroidissement jusqu'à une température de 50-60°C, le composite est démoulé. Le taux massique de renfort est alors compris entre 60 et 70%.

La haute fluidité du polyamide A1 permet d'obtenir une bonne imprégnation du renfort par la matrice sans engendrer ni les pertes de propriétés mécaniques, ni les problèmes de résistance à la fatigue constatés avec des polymères à bas poids moléculaire. Les propriétés mécaniques en flexion sont comparées à celles d'un composite thermodurcissable obtenu à partir du même matériau de renfort et d'une résine époxy dans le tableau 1.

25

30

Fibres de verre	Contrainte de rupture (MPa)	Module de flexion (MPa)	Allongement à la rupture (%)
Matrice Epoxy	630,0	21000	3,53
Matrice PA1	517	21000	3,26

Tableau 1 : Plaque composite polyamide/fibres de verre

L'utilisation d'un renfort sous forme de fil continu permet de conserver des propriétés mécaniques élevées dans des directions privilégiées. Le fait d'utiliser la matrice sous la forme d'un fil permet, outre un avantage économique

par rapport aux solutions de poudrage ou de pré-imprégnation classiques, une manipulation aisée ainsi qu'une bonne maîtrise du taux de renforcement du matériau composite final.

Le tableau n°2 donne une synthèse des propriétés mécaniques 5 obtenues.

	Unités	Norme	Tissu Multiaxial PA A1 / Verre
Taux d'imprégnation (p/p)	%		65
Densité			1.8
Traction Simple			
Contrainte rupture	MPa	ISO 527	545
Module d'Young	GPa	ISO 527	21.3
Allongement	%	ISO 527	2.76
Flexion 3 points			
Contrainte rupture	MPa	ISO 14125	517
Module de flexion	GPa	ISO 14125	21
Choc multiaxial			
Force maximale	DaN	ISO 6603-2	650

Tableau 2: Synthèse des propriétés mécaniques obtenues.

REVENDICATIONS

- 1. Article précurseur d'un matériau composite comprenant une matrice polymérique et au moins un fil et/ou des fibres de renfort, ledit article comprenant au moins un fil et/ou des fibres de renfort et au moins un fil et/ou des fibres de matrice polymérique caractérisé en ce que :
 - ledit fil et/ou lesdites fibres de renfort sont en matériau de renfort et comprennent éventuellement une partie en polymère thermoplastique
 - ledit fil et/ou lesdites fibres de matrice polymérique sont en polymère thermoplastique, et en ce que,
 - ledit polymère thermoplastique dudit fil et/ou desdites fibres de renfort et/ou dudit fil et/ou desdites fibres de matrice polymérique comprend au moins un polycondensat constitué de :
 - 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

$$R_{3}-(X-R_{2}-Y)_{n}-X-A-R_{1}-A-X-(Y-R_{2}-X)_{m}-R_{3}$$
 (I)

• 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

$$R_4-[Y-R_2-X]_p-R_3$$
 (II)

20 dans lesquelles

5

10

15

- -X-Y- est un radical issu de la condensation de deux fonctions réactives F₁ et F₂ telles que
- F₁ est le précurseur du radical -X- et F₂ le précurseur du radical -Y- ou inversement,
- 25 les fonctions F₁ ne peuvent réagir entre elles par condensation
 - les fonctions F₂ ne peuvent réagir entre elles par condensation
 - A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.
- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non
 comprenant de 2 à 20 atomes de carbone.
 - R₃, R₄ représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
- -n, m et p représentent chacun un nombre compris entre 30 et 200

- 2. Article selon la revendication 1, caractérisé en ce que le polymère thermoplastique comprend au moins un polyamide A1 constitué de :
 - 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

$$R_{3}$$
-(X- R_{2} -Y)_n-X-A- R_{1} -A-X-(Y- R_{2} -X)_m- R_{3} (I)

10

20

25

 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

$$R_4-[Y-R_2-X]_p-R_3$$
 (II)

dans lesquelles:

- Y est le radical — N— quand X représente le radical — C— R₅ O

- A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.
- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.
 - R₃, R₄ représente l'hydrogène, un radical hydroxle ou un radical hydrocarboné

- R₅ représente l'hydrogène ou un radical hydrocarboné comprenant de 1 à 6 atomes de carbone
- R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
- -n, m et p représentent chacun un nombre compris entre 30 et 200

- 3. Article selon la revendication 1, caractérisé en ce que le polymère thermoplastique comprend au moins un polyester A2 constitué de :
 - 30 à 100% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (I) suivante :

$$R_{3}$$
- $(X-R_{2}-Y)_{n}$ - $X-A-R_{1}$ - $A-X-(Y-R_{2}-X)_{m}$ - R_{3} (!)

 0 à 70% molaire (bornes comprises) de chaînes macromoléculaires répondant à la formule (II) suivante

$$R_4-[Y-R_2-X]_p-R_3$$
 (II)

- 10 dans lesquelles:
 - Y est le radical quand X représente le radical C—
 - Y est le radical c— quand X représente le radical O—
 - A est une liaison covalente ou un radical hydrocarboné aliphatique pouvant comprendre des hétéroatomes et comprenant de 1 à 20 atomes de carbone.
- R₂ est un radical hydrocarboné aliphatique ou aromatique ramifié ou non comprenant de 2 à 20 atomes de carbone.
 - R3, R4 représente l'hydrogène, un radical hydroxyle ou un radical hydrocarboné

- 20 R₁ est un radical hydrocarboné comprenant au moins 2 atomes de carbone, linéaire ou cyclique, aromatique ou aliphatique et pouvant comprendre des hétéroatomes.
 - -n, m et p représentent chacun un nombre compris entre 30 et 200
- 4. Article selon l'une des revendications précédentes, caractérisé en ce que n, m et p sont compris entre 30 et 150

- 5. Article selon l'une des revendications 2 à 4, caractérisé en ce que le polyamide A1 ou le polyester A2 comprend au moins 45%, de préférence au moins 60% molaire de chaînes macromoléculaires répondant à la formule (I)
- 5 6. Article selon l'une des revendications précédentes, caractérisé en ce que R2 est un radical pentaméthylénique
 - 7. Article selon l'une des revendications 2 à 6, caractérisé en ce que le polyamide A1 ou le polyester A2 est obtenu par copolymérisation à partir d'un mélange de monomères comprenant :
 - a) un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les acides carboxyliques, les alcools, et leurs dérivés, les fonctions réactives étant identiques,
- b) des monomères de formules générales (IIIa) et (IIIb) suivantes dans le 15 cas du polyamide A1

b') des monomères de formules générales (Illa') et (Illb') suivantes dans le 20 cas du polyester A2

$$X'-R'_2-Y'$$
 (III_a') ou R'_2

dans lesquelles

25

- R'2 représente un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes,
- Y' est un radical amine quand X' représente un radical carboxylique, ou Y' est un radical carboxylique quand X' représente un radical amine, dans le cas du polyamide A1

- Y' est un radical hydroxyle quand X' représente un radical carboxylique, ou Y' est un radical carboxylique quand X' représente un radical hydroxyle, dans le cas du polyester A2
- 5 8. Article selon la revendication 7, caractérisé en ce que le composé a) représente entre 0,1 et 2% molaire par rapport au nombre de moles de monomères de type b) ou b')
- 9. Article selon l'une des revendications 2 à 6, caractérisé en ce que le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides avec un composé difonctionnel dont les fonctions réactives sont choisies parmi les amines, les alcools, les acides carboxyliques et leurs dérivés, les fonctions réactives étant identiques.
 - 10. Article selon la revendication 9, caractérisé en ce que le composé difonctionnel représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester

11. Article selon l'une des revendications 7 à 10, caractérisé en ce que le composé difonctionnel est représenté par la formule (IV) :

$$X''-A-R_1-A-X''$$
 (IV)

25

20

dans laquelle X" représente un radical amine , un radical hydroxyle, un groupement carboxylique ou leurs dérivés

30 12. Article selon l'une des revendications 7 à 11, caractérisé en ce que le composé difonctionnel est choisi parmi l'acide adipique, l'acide décanoïque ou sébacique, l'acide dodécanoïque, l'acide téréphtalique, l'acide isophtalique,

l'hexaméthylène diamine, la méthyl pentaméthylènediamine, la 4,4'-diaminodicyclohexylméthane, la butane diamine, la métaxylylène diamine, le 1,3-propanediol, le 1,2-éthanediol, le 1,4-butanediol, le 1,5-pentanediol, le 1,6-hexanediol et le polytetrahydrofurane

5

10

15

30

13. Article selon l'une des revendications 2 à 6, caractérisé en ce que le polyamide A1 ou le polyester A2 est obtenu par mélange en fondu, d'un polyamide du type de ceux obtenus par polymérisation des lactames et/ou amino-acides ou d'un polyester du type de ceux obtenus par polymérisation de lactones et/ou hydroxy-acides, avec un composé de formule (V):

G-R-G(V)

dans laquelle

- R est un radical hydrocarboné, linéaire ou cyclique, aromatique ou aliphatique, substitué ou non, et pouvant comprendre des hétéroatomes,
- G étant une fonction ou un radical pouvant réagir sélectivement soit avec les fonctions réactives amine, soit avec les fonctions réactives alcool, soit avec les fonctions réactives acide carboxylique du polyamide ou du polyester, pour former des liaisons covalentes
- 20 14. Article selon la revendication 13, caractérisé en ce que le composé de formule (V) représente entre 0,05 et 2% en poids par rapport au poids de polyamide ou de polyester.
- 15. Article selon l'une des revendications précédentes, caractérisé en ce qu'il comporte également au moins un fil- et/ou des fibres-matrice en polymère thermoplastique linéaire
 - 16. Article selon la revendication 15, caractérisé en ce que le polymère linéaire est un polyamide ou copolyamide aliphatique et/ou semicristallin choisi dans le groupe comprenant le PA 4.6, PA 6,PA 6.6, PA 6.9, PA 6.10, PA 6.12, PA 6.36, PA 11, PA 12 ou un polyamide ou copolyamide semi-aromatique

semicristallin choisi dans le groupe comprenant les polyphtalamides, et les mélanges de ces polymères et de leurs copolymères.

- 17. Article selon l'une des revendications précédentes, caractérisé en ce que le filet/ou les fibres-matrice comprennent également des additifs, tels que des ignifugeants, des fluidifiants, des stabilisants chaleur et lumière, des cires, des pigments, des nucléants, des antioxydants, des modificateurs de la résistance aux chocs ou analogues.
- 18. Article selon l'une des revendications précédentes, caractérisé en ce que le fil et/ou les fibres de renfort sont choisis parmi les fils et/ou les fibres de carbone, de verre, d'aramides et de polyimides.
- 19. Article selon l'une des revendications précédentes, caractérisé en ce que le fil et/ou les fibres de renfort sont un fil et/ou des fibres naturels, choisis parmi les fils et/ou les fibres de sisal, de chanvre, de lin.
- 20. Article selon l'une des revendications précédentes, caractérisé en ce qu'il comporte également un matériau en poudre précurseur de matrice.
 - 21. Article selon la revendication précédente, caractérisé en ce que ledit matériau en poudre précurseur de matrice est un polyamide.
- 25 22. Article selon l'une des revendications précédentes, caractérisé en ce qu'il est sous forme de fils continus ou coupés, de rubans, de mats, de tressés, de tissus, de tricots, de nappes, de multiaxiaux, de non-tissés et/ou de formes complexes comprenant plusieurs des formes précitées.
- 23. Matériau composite caractérisé en ce qu'il est obtenu à partir d'un article selon l'une des revendications précédentes, par fusion au moins partielle du fil- et/ou des fibres-matrice.

WO 2005/061209 PCT/FR2004/003310

- 24. Matériau composite selon la revendication précédente, caractérisé en ce qu'il présente un taux de renfort massique compris entre 25 et 80 %.
- 25. Produit semi-fini caractérisé en ce qu'il est obtenu par un procédé de thermoformage ou de calandrage de l'article selon l'une des revendications 1 à 22, au cours duquel on fond au moins partiellement le fil- ou/et les fibresmatrice afin d'imprégner le fil et/ou les fibres de renfort.
- 26. Produit semi-fini selon la revendication 25, caractérisé en ce qu'il se présente sous forme de plaques ou de bandes.
 - 27. Produit fini caractérisé en ce qu'il est obtenu par un procédé de thermoformage à la forme finale de l'article selon l'une des revendications 1 à 22, au cours duquel on fond au moins partiellement le fil- ou/et les fibresmatrice afin d'imprégner le fil et/ou les fibres de renfort.
 - 28. Produit fini caractérisé en ce qu'il est obtenu par un procédé de formage ou de thermocompression à la forme finale du produit semi-fini selon l'une des revendications 25 ou 26.

15

5

Interactional Application No PC1/FR2004/003310

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B29C70/50 B29C B29C70/46 C08J5/04 B29B15/10 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) B29C B29B IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category 9 1,2,4-28 WO 03/029350 A (RHODIA IND YARNS AG ; χ PHILIPPON FREDERIC (CH); MYARD PHILIPPE (FR)) 10 April 2003 (2003-04-10) cited in the application 3 the whole document Υ 3 WO 02/062563 A (QUADRANT PLASTIC Υ COMPOSITES AG; DITTMAR HARRI (DE))
15 August 2002 (2002-08-15) page 3, line 12 - line 23 claims EP 0 743 165 A (BUDD CO) Α 20 November 1996 (1996-11-20) -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents : 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular retevance invention *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priorily date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 06/06/2005 27 May 2005 Authorized officer Name and mailing address of the ISA European Palent Office, P.B. 5818 Palentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 551 epo nl, Fax: (+31-70) 340-3016 Mazet, J-F

International Application No PCT FR2004/003310

		PC17 FR2004	7003310
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	F	Relevant to claim No.
A	FR 2 158 422 A (ALLIED CHEM) 15 June 1973 (1973-06-15) cited in the application page 9, line 13 - page 10, line 12 examples		1,2,4-6, 9-28
A	FR 2 603 891 A (ATOCHEM) 18 March 1988 (1988-03-18) cited in the application the whole document		1–28
A	EP 0 216 109 A (SUMITOMO CHEMICAL COMPANY, LIMITED; JAPAN EXLAN COMPANY, LTD) 1 April 1987 (1987-04-01) abstract claims column 2, line 38 - column 3, line 20 claims		1,3-8, 11,12
A	WO 93/25736 A (BASF AKTIENGESELLSCHAFT) 23 December 1993 (1993-12-23) abstract; claims		1,2,4-8, 11,12
	·		

rmation on patent family members

International Application No
PC FR2004/003310

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 03029350	A	10-04-2003	FR CA EP WO JP	2830255 A1 2462395 A1 1432763 A1 03029350 A1 2005504162 T	04-04-2003 10-04-2003 30-06-2004 10-04-2003 10-02-2005
WO 02062563	A	15-08-2002	DE WO EP US	10105813 A1 02062563 A1 1358060 A1 2004177911 A1	14-08-2002 15-08-2002 05-11-2003 16-09-2004
EP 0743165	A	20-11-1996	BR CA DE DE EP ES US	9602341 A 2176416 A1 69610357 D1 69610357 T2 0743165 A2 2151637 T3 5820801 A	01-09-1998 19-11-1996 26-10-2000 22-02-2001 20-11-1996 01-01-2001 13-10-1998
FR 2158422	A	15-06-1973	CA DE FR IT JP JP US	1015121 A1 2253048 A1 2158422 A1 975423 B 48052844 A 56033428 B 3920879 A	09-08-1977 03-05-1973 15-06-1973 20-07-1974 25-07-1973 04-08-1981 18-11-1975
FR 2603891	A	18-03-1988	FR AT CA CN DE DK EP ES FI JP JP KR PT US	2603891 A1 59055 T 1323161 C 87106424 A ,C 3766678 D1 485187 A 0261020 A1 2005311 A6 874046 A ,B, 2083353 C 7115413 B 63082731 A 9302462 B1 85731 A ,B 4927583 A	18-03-1988 15-12-1990 19-10-1993 30-03-1988 24-01-1991 18-03-1988 23-03-1988 01-03-1989 18-03-1988 23-08-1996 13-12-1995 13-04-1988 02-04-1993 01-10-1987 22-05-1990
EP 0216109	Α	01-04-1987	JP EP	62045718 A 0216109 A2	27-02-1987 01-04-1987
WO 9325736	A	23-12-1993	DE AU BR CA CN DE EE WO EP JP	4218719 A1 4317093 A 9306503 A 2137375 A1 1089670 A ,C 59301269 D1 3196 B1 9325736 A1 0644959 A1 2081217 T3 3179105 B2 7506639 T	09-12-1993 04-01-1994 15-09-1998 23-12-1993 20-07-1994 08-02-1996 15-06-1999 23-12-1993 29-03-1995 16-02-1996 25-06-2001 20-07-1995

mation on patent family members

International Application No PC - FR2004/003310

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 9325736 A		KR LT LV RU SK	264615 B1 3089 B 10794 A ,B 2114939 C1 150994 A3	01-09-2000 25-11-199 4 20-08-1995 10-07-1998 10-05-1995

Demande Internationale No
PCIFFR2004/003310

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 B29C70/50 B29C70/46 C08J5/04 B29B15/10 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimate consultée (système de classification suivi des symboles de classement) B29C B29B CIB 7 Documentation consultée autre que la documentation minimale dans la mesure oû ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationate (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, WPI Data, PAJ C. DOCUMENTS CONSIDERES COMME PERTINENTS no, des revendications visées Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents Catégorie ° 1,2,4-28WO 03/029350 A (RHODIA IND YARNS AG : X PHILIPPON FREDERIC (CH); MYARD PHILIPPE (FR)) 10 avril 2003 (2003-04-10) cité dans la demande 3 le document en entier 3 WO 02/062563 A (QUADRANT PLASTIC COMPOSITES AG; DITTMAR HARRI (DE))
15 août 2002 (2002-08-15) page 3, ligne 12 - ligne 23 revendications EP 0 743 165 A (BUDD CO) Α 20 novembre 1996 (1996-11-20) -/--Les documents de familles de brevets sont indiqués en annexe Voir la suite du cadre C pour la fin de la liste des documents X Catégories spéciales de documents cités: *T° document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenemant pas à l'état de la technique perlinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention "A" document définissant l'état général de la technique, non considéré comme particulièrement perlinent 'X' document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isotément
 'Y' document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier 'E' document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens pour une personne du métier document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée *&* document qui fait partie de la même famille de brevets Date d'expédition du présent rapport de recherche internationale Date à laquelle la recherche internationale a été effectivement achevée 06/06/2005 27 mai 2005 Nom et adresse postale de l'administration chargée de la recherche internationale Fonctionnaire autorisé Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Mazet, J-F

Demande Internationale No
PC FR2004/003310

		FR2004/003310
C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS	
Catégorie °	identification des documents cités, avec, le cas échéant, l'indication des passages pertin	ents no. des revendications visées
A	FR 2 158 422 A (ALLIED CHEM) 15 juin 1973 (1973-06-15) cité dans la demande page 9, ligne 13 - page 10, ligne 12 exemples	1,2,4-6, 9-28
A	FR 2 603 891 A (ATOCHEM) 18 mars 1988 (1988-03-18) cité dans la demande le document en entier	1-28
A	EP 0 216 109 A (SUMITOMO CHEMICAL COMPANY, LIMITED; JAPAN EXLAN COMPANY, LTD) 1 avril 1987 (1987-04-01) abrégé revendications colonne 2, ligne 38 - colonne 3, ligne 20 revendications	1,3-8, 11,12
A	WO 93/25736 A (BASF AKTIENGESELLSCHAFT) 23 décembre 1993 (1993-12-23) abrégé; revendications	1,2,4-8, 11,12

Renseignements relatifs

mbres de familles de brevets

Demande Internationale No	
PC FR2004/003310	

					Date de
Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	publication
WO 03029350	A	10-04-2003	FR CA EP WO JP	2830255 A1 2462395 A1 1432763 A1 03029350 A1 2005504162 T	04-04-2003 10-04-2003 30-06-2004 10-04-2003 10-02-2005
WO 02062563	A	15-08-2002	DE WO EP US	10105813 A1 02062563 A1 1358060 A1 2004177911 A1	14-08-2002 15-08-2002 05-11-2003 16-09-2004
EP 0743165	A	20-11-1996	BR CA DE DE EP ES US	9602341 A 2176416 A1 69610357 D1 69610357 T2 0743165 A2 2151637 T3 5820801 A	01-09-1998 19-11-1996 26-10-2000 22-02-2001 20-11-1996 01-01-2001 13-10-1998
FR 2158422	A	15-06-1973	CA DE FR IT JP JP US	1015121 A1 2253048 A1 2158422 A1 975423 B 48052844 A 56033428 B 3920879 A	09-08-1977 03-05-1973 15-06-1973 20-07-1974 25-07-1973 04-08-1981 18-11-1975
FR 2603891	A	18-03-1988	FR AT CA CN DE DK EP ES FI JP JP KR PT US	2603891 A1 59055 T 1323161 C 87106424 A , O 3766678 D1 485187 A 0261020 A1 2005311 A6 874046 A , E 2083353 C 7115413 B 63082731 A 9302462 B1 85731 A , E 4927583 A	24-01-1991 18-03-1988 23-03-1988 01-03-1989 18-03-1988 23-08-1996 13-12-1995 13-04-1988 02-04-1993
EP 0216109	Α	01-04-1987	JP EP	62045718 A 0216109 A2	27-02-1987 01-04-1987
WO 9325736	A	23-12-1993	DE AU BR CA CN DE EE WO EP JP	4218719 A1 4317093 A 9306503 A 2137375 A1 1089670 A ,(59301269 D1 3196 B1 9325736 A1 0644959 A1 2081217 T3 3179105 B2 7506639 T	09-12-1993 04-01-1994 15-09-1998 23-12-1993 20-07-1994 08-02-1996 15-06-1999 23-12-1993 29-03-1995 16-02-1996 25-06-2001 20-07-1995

Renseignements relatifs

rembres de familles de brevets

Demande Internationale No
PC+7 FR2004/003310

Renseignements relatifs embres de familles de brevets		its	PC FR2004/003310		
Document brevet cité au rapport de recherche	Date de publication		Membre(s) de la famille de brevet(s)	Date de publication	
WO 9325736 A		KR LT LV RU SK	264615 B1 3089 B 10794 A ,B 2114939 C1 150994 A3	01-09-2000 25-11-1994 20-08-1995 10-07-1998 10-05-1995	
	. Mil Milyan yan din samban ayy ma yangidi da ma ang sin da				
				·	
	·				