Math 221C Homework 1.

X, Y always smooth manifolds, maps are smooth etc.

1. Show that if $f: X \to X'$ and $g: Y \to Y'$ are both smooth, then so is the map $f \times g: X \times Y \to X' \times Y'$ defined by

$$(f \times g)(x,y) = (f(x), g(y))$$

- **2.** Prove that the projection map $X \times Y \to X$ given by $(x,y) \to x$ is smooth.
- **3.** Suppose that U is an open subset of the manifold X. Show that for all $p \in U$

$$T_p(U) = T_p(X)$$

- **4.** If $f: X \to Y$ is a diffeomorphism, then df_x is an isomorphism for all $x \in X$. Deduce that if \mathbb{R}^a is diffeomorphic to \mathbb{R}^b , then a = b.
- **5.** A curve in a manifold X is smooth map $c:(-1,1)\to X$. Define the velocity vector of c at $t_0\in(-1,1)$ to be

$$dc_{t_0}(1) \in T_{c(t_0)}(X)$$

(The point being that one should think of 1 as the unit vector in the one-dimensional vector space \mathbb{R} .)

Show that $T_p(X)$ is the set of velocity vectors of curves through the point p.

6. Prove that if $f: X \longrightarrow Y$ is a submersion and U is an open subset of X, then f(U) is an open subset of Y.