This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT `
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-4350

(43)公開日 平成6年(1994)1月14日

(51)Int.Cl.5

識別記号 庁内整理番号 FΙ

技術表示箇所

G06F 11/28

3 4 0 B 9290-5B

審査請求 未請求 請求項の数2(全 6 頁)

(21)出願番号

特願平4-158419

(22)出願日

平成 4年(1992) 6月18日

(71)出願人 000242666

北陸日本電気ソフトウェア株式会社 石川県石川郡鶴来町安養寺1番地

(72)発明者 皆本 尚市

石川県石川郡鶴来町安養寺1番地北陸日本

電気ソフトウェア株式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

(54)【発明の名称】 ソフトウェアの網羅率測定方式

(57)【要約】

【目的】 網羅率測定対象となるプログラムの動作環境 であるHW機能やOS機構に限定されることを最小限に 押さえたSW網羅率測定手段を提供する。

【構成】 プログラム開発装置1では、分岐先処理検出 手段14と分岐ID作成手段15と分岐ID通知処理埋 め込み手段16と測定テーブル作成手段17とで網羅率 測定対象プログラムに分岐ID通知処理を埋め込むと共 に網羅率測定テーブル20を作成する。プログラム実行 装置3では、網羅率測定対象プログラムを実行すると、 実際に実行した各分岐先処理に対応する分岐IDが送信 手段32を経由して網羅率測定装置5に送信される。網 羅測定では、分岐 I Dを受信すると分岐 I D記録手段 5 3か分岐結果記録手段54により本分岐1Dを測定テー ブル57に記録する。網羅率分析手段56は定期的に測 定テーブル57を参照して網羅率を分析しその結果を印 刷&表示手段52を経由して印刷&表示する。

【請求項1】情報処理装置システムのプログラム実行装 置と網羅率測定装置接続が汎用的なインタフェースで接 続された環境下でのソフトウェアの網羅率測定方式にお いて、

プログラム開発装置内で、網羅率測定対象プログラムの ソースプログラム内の全分岐処理に対応する各分岐先を 検出するための分岐先処理検出手段と、分岐先処理検出 手段が検出した各分岐先に分岐IDを作成するための分 岐先に分岐ID作成手段が作成した分岐IDを通知する 処理を埋め込むための分岐 I D通知処理埋め込み手段 · と、網羅率測定装置内でプログラム実行装置から受信し た分岐IDから網羅率測定結果を記録するための測定テ ーブルと、この測定テーブルを分岐ID作成手段で作成 した全分岐 I Dに対応させて作成するための測定テーブ ル作成手段と、

網羅率測定対象プログラムを実行する装置内で、測定対 象プログラムから通知された分岐IDを網羅率測定装置 に送信する送信手段と、

網羅率測定装置内で、分岐IDを受信するための受信手 段と、受信した分岐IDをプログラム開発装置の測定テ ーブル作成手段で作成した測定テーブルに記録する分岐 I D記録手段と、測定テーブルの内容から網羅率を分析 する網羅率分析手段と、網羅率分析手段の分析結果を印 刷及び表示する印字&表示手段と、を含むことを特徴と するソフトウェアの網羅率測定方式。

【請求項2】網羅率測定装置内で、分岐ID記録手段の 代替手段として、受信した分岐IDが分岐実行した結果 本分岐【Dをプログラム開発装置の測定テーブル作成手 段で作成した測定テーブルに記録する分岐結果記録手段 を含む請求項1記載のソフトウェアの網羅率測定方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はソフトウェアの網羅率測 定方式、特に、測定対象となるプログラムを実行する情 報処理装置の機能に限定されないソフトウェアの網羅率 測定方式に関する。

[0002]

【従来の技術】従来、この種のソフトウェア網羅率測定 方式では、網羅率測定手段が測定対象プログラムと単一 装置内に同居しており、網羅率測定手段は測定対象プロ グラムを実行する装置自身のの特殊機能やオペレーティ ングシステムの機能を使用していた。

[0003]

【発明が解決しようとする課題】上述した従来のソフト ウェアの網羅率測定方式では、網羅率測定手段が装置自 身の特殊機能やオペレーティングシステムの機能による 制約を受けるため、測定対象プログラムを実行する装置 50 段14と、分岐先処理検出手段14が検出した各分岐先

別やオペレーティングシステム別に、網羅率測定手段を 開発しなければならないという欠点がある。

[0004]

【課題を解決するための手段】第一の発明のソフトウェ アの網羅率測定方式は、プログラム開発装置内で、網羅 率測定対象プログラムのソースプログラム内の全分岐処 理に対応する各分岐先を検出するための分岐先処理検出 手段と、分岐先処理検出手段が検出した各分岐先に分岐 IDを作成するための分岐ID作成手段と、分岐先処理 岐 I D作成手段と、分岐先処理検出手段が検出した各分 10 検出手段が検出した各分岐先に分岐 I D作成手段が作成 した分岐 I Dを通知する処理を埋め込むための分岐 I D. 通知処理埋め込み手段と、網羅率測定装置内でプログラ ム実行装置から受信した分岐IDから網羅率測定結果を 記録するための測定テーブルと、この測定テーブルを分 岐ID作成手段で作成した全分岐IDに対応させて作成 するための測定テーブル作成手段と、網羅率測定対象プ ログラムを実行する装置内で、測定対象プログラムから 通知された分岐IDを網羅率測定装置に送信する送信手 段と、網羅率測定装置内で、分岐IDを受信するための 20 受信手段と、受信した分岐 I Dをプログラム開発装置の 測定テーブル作成手段で作成した測定テーブルに記録す る分岐ID記録手段と、測定テーブルの内容から網羅率 を分析する網羅率分析手段と、網羅率分析手段の分析結 果を印刷及び表示する印字&表示手段とを有している。 【0005】第二の発明のソフトウェアの網羅率測定方 式は、網羅率測定装置内で、分岐ID記録手段の代替手 段として、受信した分岐IDが分岐実行した結果の通知 であるかを判定し分岐実行した結果であるならば本分岐 IDをプログラム開発装置の測定テーブル作成手段で作 の通知であるかを判定し分岐実行した結果であるならば 30 成した測定テーブルに記録する分岐結果記録手段を有し ている。

[0006]

【実施例】次に本発明について図面を参照して説明す る。

【0007】図1は本発明の一実施例を示すブロック図

【0008】図1において本発明のソフトウェアの網羅 率測定方式は、網羅率測定対象プログラムを開発するた めのプログラム開発装置1と、網羅率測定対象プログラ 40 ムを実行するためのプログラム実行装置3と、網羅率の 測定を行うための網羅率測定装置5とから構成され、プ ログラム実行装置3と網羅率測定装置5は汎用的なイン タフェースで接続されている。

【0009】プログラム開発装置1は、網羅率測定対象 プログラムのソースプログラム11と、ソースプログラ ムートをコンパイル&リンクするためのコンパイル&リ ンク手段12と、コンパイル&リンクした結果の実行プ ログラム13と、ソースプログラム11内の全分岐処理 に対応する各分岐先を検出するための分岐先処理検出手

に対応する分岐IDを作成するための分岐ID作成手段 15と、分岐先処理検出手段14が検出した各分岐先に 分岐 I D作成手段 1-5 が作成した分岐 Dを通知する処理 を埋め込むための分岐 I D通知処理埋め込み手段 1 6 と、網羅率測定装置5内でプログラム実行装置3から受 信した分岐IDから網羅率測定結果を記録するための測 定テーブル20と、この測定テーブル20を分岐 ID作 成手段15で作成した全分岐 I Dに対応させて作成する ための測定テーブル作成手段17とから構成される。

装置1の実行プログラム13を操作員の介入等によりロ ードし起動された実行プログラム31と、実行プログラ ム31から通知された分岐 IDを網羅率測定装置5に送 信する送信手段32とから構成される。

【0011】網羅率測定装置5は、分岐 I Dを受信する ための受信手段51と、プログラム開発装置1の測定テ ーブル20を操作員の介入等によりロードした測定テー ブル57と、受信した分岐 I Dを測定テーブル57に記 録する分岐ID記録手段53と、受信した分岐IDが分 岐実行した結果の通知であるかを判定し分岐実行した結 20 である。 果であるならば本分岐 I Dを測定テーブル57に記録す る分岐結果記録手段54と、測定テーブル57の内容か ら網羅率を分析する網羅率分析手段56と、網羅率分析 手段56の分析結果を印刷及び表示する印刷&表示手段 52とから構成されている。

【0012】図2において、図1の実行プログラム13

網羅率=実行フラグ数/全フラグ数×100% \cdots (1)

実行フラグ数:1に設定されたフラグの数

全フラグ数: : 測定対象プログラムの全分岐 I Dが全経 路IDに対応するフラグ数

なお、式(1)の全フラグ数は図4の全フラグ数401 を示し、実行フラグ数は図4のフラグ403~408で 1に設定されているフラグの数である。

【0017】次に本発明の動作について説明する。プロ グラム開発装置1は、以下の順序で動作する。

1-1:分岐先処理検出手段14はソースプログラム1 1を読み込み、処理ルーチン毎に全分岐処理(処理ルー チンの先頭と分岐処理212,216とサブルーチン・ コール処理215である)と、これに対応する全分岐先 処理(通常処理211, 213, 214, 216, 21 7, 218である)を検出して、処理ルーチンの区切り と、分岐処理単位の各分岐処理に対応する分岐先処理ポ イントを分岐 I D 作成手段 1 5 へ通知する。

1-2:分岐ID作成手段15は通知を受けた処理ルー チンの区切りと、分岐処理単位の各分岐処理に対応する 分岐先処理ポイントからルーチン番号301と、分岐処 理番号302と、分岐数303と、分岐先番号304と を作成しながら、これから各分岐先処理に対応する分岐 IDを作成して、各分岐先処理ポイントと対応する分岐

及び実行プログラム31には、分岐 I D 通知処理201 ~206が埋め込まれており、この処理の実行によりそ れぞれに対応した分岐ID1~6を図1の送信手段32 に通知する。通常処理211~218及びサブルーチン ・コール処理204は実行プログラム13の本来機能を 実現するための処理である。

【0013】図3において、図1の分岐1D作成手段1 .5 で作成される分岐IDは、ルーチン番号301と、分 岐処理番号302と、分岐数303と、分岐先番号30 【0010】プログラム実行装置3は、プログアム開発 10 4とから構成されており、図2の分岐ID1~6に対応 した異なる値が設定される。なお、

> ルーチン番号: 各処理ルーチンを識別する一連番号 分岐処理番号:ルーチン番号が示す処理内の各分岐処理 を識別する一連番号

> 分岐数 : 分岐処理番号が示す分岐処理に対応する 全分岐数(各処理ルーチンの先頭及びソブルーチンコー ル処理の直後の分岐 I Dの場合は"1"である)

> 分岐先番号 : 分岐処理番号が示す分岐処理に対応する 各分岐先を識別する一連番号

【0014】図4において、図1の測定テーブル20と 測定テーブル57は、全フラグ数401と、フラグ40 3~408とから構成されている。

【0015】網羅率は式(1)で与えられる。 [0016]

成した分岐 I Dを測定テーブル作成手段 1 7 に通知す る。

30 1-3:分岐 I D通知処理埋め込み手段 16は全分岐先 処理ポイントと、対応する分岐IDの通知を受けた後、 各分岐にIDに対応する分岐ID通知処理を作成して、 ソースプログラム11の各分岐先処理ポイントに埋め込 む。

1-4:分岐 I D用測定テーブル作成手段 17は全分岐 IDの通知を受けた後、測定テーブル20を以下の様に 初期設定して作成する。

【0018】全フラグ数401 777403 - 408 = 0

40 1-5: コンパイル&リンク手段12は分岐1D通知処 理型め込み手段16により分岐ID通知処理が埋め込ま れたソースプログラム11をコンパイル&リンクして実 行プログラム13を作成する。

【0019】プログラム実行装置3は、以下の順序で動 作する。

2-1:操作員の介入等によりプログラム開発装置1の 実行プログラム 1 3 をプログラム実行装置 3 の実行プロ グラム31として実行する。

2-2:実行プログラム31は分岐ID通知処理201 IDを分岐ID通知処理埋め込み手段I6に通知し、作 50 ~206のどれかを実行すると各分岐ID通知処理に対 応する分岐 I Dを送信手段32に通知する。

2-3:送信手段32は通知を受けた分岐IDを接続された網羅率測定装置·5に送信する。

【0020】網羅率測定装置5は、以下の順序で動作する。

3-1:測定テーブル57の初期化が必要な時のみ、操作員の介入等によりプログラム開発装置1の測定テーブル20を測定テーブル57にロードして初期化する。

3-2:受信手段51はプログラム実行装置3から分岐 I Dが送信されると、これを受信して以下に通知する。 【0021】 (請求項1の場合:分岐ID記録手段53)

(請求項2の場合:分岐結果記録手段54)

3-3: (請求項1の場合)

. .

7.5

分岐 I D記録手段 5 3 は通知を受けた分岐 I Dに対応する測定テーブル 5 7 のフラグ 4 0 3 ~ 4 0 8 のどれかを 1 に設定する。

【0022】(請求項2の場合)分岐結果記録手段54 は通知を受けた分岐IDが分岐を実行した結果であるか を以下の様に判定する。

- (イ) 同一のルーチン番号301を持つ分岐IDを既に 通知されていなければ分岐実行した。
- (ロ) 同一のルーチン番号301を持つ直前に通知された分岐IDの分岐処理番号302が今通知を受けた分岐IDの分岐処理番号302と異なるなら分岐実行した。分岐実行した結果と判定された場合、分岐IDに対応する測定テーブル57のフラグ403~408のどれかを1に設定し、分岐実行した結果でないと判定された場合は何もしない。

3-4:網羅率分析手段56は、ある一定の時間間隔を 30 あけて測定テーブル57を参照し、網羅率算出式501 に従って網羅率を算出し、その算出結果を印刷&表示手段52に通知する。

3-5:印刷&表示手段52は網羅率算出結果の通知を受けたら、これを印刷&表示する。

[0023]

【発明の効果】以上説明した様に本発明は、測定対象プログラムを実行する情報処理装置の特殊機能やオペレー

ティングシステムの制約条件を最小限に押さえて (網羅 率測定装置と接続するインタフェースが必要である)、 ソフトウェアの網羅率測定を行える効果がある。

6

【図面の簡単な説明】

【図1】 本発明の一実施例を示すブロック図である。

【図2】図1の実行プログラム13と実行プログラム3 1の流れ図である。

【図3】図1の分岐ID作成手段15で作成する分岐I D作成手段15で作成する分岐IDの構成を示す図であ 10 る。

【図4】図1の測定テーブル20と測定テーブル57の 構成を示す図である。

【符号の説明】

- 1 プログラム開発装置
- 3 プログラム実行装置
- 5 網羅率測定装置
- 11 ソースプログラム
- 12 コンパイル&リンク手段
- 13 実行プログラム
- 14 分岐先処理検出手段
- 15 分岐 I D作成手段
- 16 分岐 I D通知埋め込み手段
- 17 測定テーブル作成手段
- 20 測定テーブル
- 31 実行プログラム
- 32 送信手段
- 51 受信手段
- 52 印刷&表示手段
- 53 分岐 I D記録手段
- 0 5 4 分岐結果記錄手段
 - 56 網羅率分析手段
 - 57 測定テーブル
 - 301 ルーチン番号
 - 302 分岐処理番号
 - 303 分岐数
 - 304 分岐先番号
 - 401 全フラグ数
 - 403~408 フラグ

【図3】

20

 301
 302
 303
 304

 ルーチン番号
 分岐処理番号
 分岐数
 分岐先番号

【図1】

[図4]

	全フラグ数	-401
⇔	フラグ	403
\$	フラグ	~404
₽	フラグ	~ 405
\$	フラグ	-406
₽	フラグ	~ 407
₽	フラグ	~ 408
	के के के क	 □ フラグ □ フラグ □ フラグ □ フラグ □ フラグ

全フラグ教の内容: =6 分岐【Dに対応する場合

各フラグの内容 =0 対応する測定ポルを実行していない(初期値のまま) =1 対応する測定ポルを実行している

【図2】

