Групповой проект. Тема: Рост дендритов

Артамонов Т. Е., Федорина Э. В., Морозов М. Е., Коротун И. И., Маслова А. С.

Содержание

1	Введ	дение	5
2	-	· '	6
	2.1	Проблема управления и предсказания морфологии дендритной	
		кристаллизации в переохлажденных расплавах	6
3	Важ	ные формулы	7
4	Опи	сание алгоритма построения модели	8
	4.1	Шаг 1: Инициализация параметров симуляции	8
		4.1.1 Определение параметров вещества:	8
		4.1.2 Задание начальных условий:	9
	4.2	Шаг 2: Настройка симуляционной сетки	0
		4.2.1 Создание симуляционной сетки:	0
		4.2.2 Инициализация затравки:	0
	4.3	Шаг 3: Расчет температурного поля	1
		4.3.1 Применение уравнения теплопроводности:	1
		4.3.2 Численное решение уравнения:	1
	4.4	Шаг 4: Моделирование роста дендритов	
		4.4.1 Использование условия Стефана:	
		4.4.2 Применение условия Гиббса-Томсона:	
		4.4.3 Обновление температурного поля:	
	4.5	Шаг 5: Анализ структуры дендритов	_
		4.5.1 Оценка морфологии:	-
		4.5.2 Сравнение с экспериментальными данными:	
	4.6	Шаг 6: Визуализация и оценка результатов	
		4.6.1 Визуализация роста дендритов:	
		4.6.2 Анализ результатов и формулировка выводов:	4
5	Про	граммная реализация 1	6
	5.1	Шаг 0 Используемые библиотеки	6
	5.2	Шаг 1 Параметры модели	6
	5.3	Шаг 2 Инициализация сетки	7
	5.4	Шаг 3 Параметры для условия Стефана	7
	5.5	Шаг 4 Функция роста	8
	5.6		9
	5.7	График молели	n

6	Вывод	21
Спі	исок литературы	22

Список иллюстраций

Хар-ки титана	9
Вычислительная сетка в физическом пространстве	10
Фазовое поле и соответствующее температурное поле дендритной	
структуры	12
Фазовое поле и соответствующее температурное поле дендритной	
структуры	13
Рост дендрита	15
nlot	20
	Вычислительная сетка в физическом пространстве

1 Введение

Дендриты [1] — это древовидные кристаллические структуры, которые образуются в процессе кристаллизации из переохлажденного расплава. Они играют ключевую роль в определении микроструктуры и, следовательно, физических свойств материалов. Процесс роста дендритов зависит от множества факторов. Если исследовать механизм формирования дендритов, то можно научиться изменять свойства различных сплавов, а значит исследование полезно не только для теории, но и для практики.

2 Формирование и описание научной проблемы

2.1 Проблема управления и предсказания морфологии дендритной кристаллизации в переохлажденных расплавах

В процессе формирования кристаллических структур из переохлажденных расплавов ключевым является понимание и управление механизмами роста дендритов, поскольку именно они определяют конечные физические свойства материалов. Дендритный рост, происходящий в результате кристаллизации, существенно влияет на микроструктуру и, как следствие, на механические, электрические и тепловые характеристики материалов. Особенностью дендритного роста является его чувствительность к множеству факторов, включая переохлаждение расплава, скорость охлаждения, наличие примесей и поверхностное натяжение. Таким образом, научная проблема заключается в разработке теоретических и численных моделей, способных точно предсказывать динамику роста дендритов и их влияние на микроструктуру сформированных материалов.

Решение этой проблемы откроет новые возможности для оптимизации процессов производства материалов с высокими эксплуатационными характеристиками и для создания новых материалов с уникальными свойствами.

3 Важные формулы

• Безразмерное переохлаждение:

$$S = \frac{c_p(T_m - T_\infty)}{L}$$

• Уравнение теплопроводности:

$$\rho c_p \frac{\partial T}{\partial t} = \kappa \nabla^2 T$$

• Условие Стефана для скорости (V):

$$V = \frac{\kappa}{\rho L} (\nabla T|_s - \nabla T|_l)$$

• Условие Гиббса-Томсона:

$$T_b = T_m \left(1 - \frac{\gamma T_m}{\rho L^2 R} \right)$$

• Кинетическая модификация температуры на границе:

$$\Delta T_b = -T_m \beta V$$

4 Описание алгоритма построения модели

4.1 Шаг 1: Инициализация параметров симуляции

На первом этапе задается начальное состояние системы, включающее все необходимые физические параметры материала и начальные условия для симуляции. Этот этап критически важен для обеспечения корректности всего процесса моделирования [2].

4.1.1 Определение параметров вещества:

- Плотность ρ: Масса на единицу объема материала, необходима для расчета массы вещества в заданном объеме и определения выделяемого или поглощаемого тепла в процессе фазового перехода.
- Удельная теплота плавления L: Количество теплоты, необходимое для перехода единицы массы вещества из твердого состояния в жидкое без изменения температуры, используется для расчета тепловых эффектов при кристаллизации.
- **Теплоемкость при постоянном давлении** c_p : Энергия, требуемая для нагрева единицы массы вещества на один градус Цельсия, важна для определения изменений температуры в материале.
- **Коэффициент теплопроводности** κ : Описывает способность материала проводить тепло, критичен для расчета распределения температуры в

системе.

• **Температура плавления** T_m [3] : Температура перехода вещества из твердого состояния в жидкое, определяет начальную точку фазового перехода.

Титан

Атомный номер	22
Атомная масса	47,867
Плотность, кг/м ⁸	4510
Температура плавления, °С	1668
Температура кипения, °С	
Теплоемкость, кДж/(кг·°С)	0,527
Электроотрицательность	1,5
Ковалентный радиус, А	1,32
1-й ионизац. потенциал, эв	6,83

Рис. 4.1: Хар-ки титана

4.1.2 Задание начальных условий:

- Начальная температура расплава T_{∞} : Температура жидкой фазы в начале симуляции, влияет на степень переохлаждения и условия начала кристаллизации.
- Безразмерное переохлаждение S: Вычисляется как $S=\frac{c_p(T_m-T_\infty)}{L}$, является ключевым фактором, определяющим начало процесса кристаллизации.

4.2 Шаг 2: Настройка симуляционной сетки

Создается симуляционная сетка [4], служащая пространством для моделирования роста дендритов. Этап включает подготовку сетки и начальную конфигурацию затравки кристаллизации.

4.2.1 Создание симуляционной сетки:

- Определение размера сетки $N \times N$, где N- количество узлов по каждому измерению. Размер сетки должен обеспечивать достаточную детализацию для визуализации роста дендритов и учитывать вычислительные ограничения.
- Установка расстояния между узлами сетки h, влияющего на детализацию моделирования и точность результатов.

4.2.2 Инициализация затравки:

• В центре сетки создается затравка [5], представляющая участок в твердой фазе. Размер и форма затравки могут варьироваться в зависимости от целей симуляции.

Рис. 4.2: Вычислительная сетка в физическом пространстве

4.3 Шаг 3: Расчет температурного поля

Моделирование распределения температуры в системе с течением времени, являющееся основой для анализа роста дендритов.

4.3.1 Применение уравнения теплопроводности:

• Используется уравнение теплопроводности $\rho c_p \frac{\partial T}{\partial t} = \kappa \nabla^2 T$ для моделирования изменений температуры, учитывая приток тепла в систему и его распределение.

4.3.2 Численное решение уравнения:

• Реализация численного метода, например, метода конечных разностей, для аппроксимации производных и расчета температуры в каждом узле сетки. Выбор временного шага Δt и пространственного шага h важен для стабильности и точности расчетов.

4.4 Шаг 4: Моделирование роста дендритов

На этом этапе реализуется моделирование роста дендритов на основе рассчитанных температурных полей и соответствующих физических законов [6].

4.4.1 Использование условия Стефана:

- Скорость роста границы кристаллизации Vопределяется условием Стефана: $V=rac{\kappa}{
 ho L}(
 abla T|_sabla T|_l)$, что позволяет связать скорость роста с разницей градиентов температуры на границе фаз.
- Исходя из скорости V, происходит обновление положения границы кристаллизации, тем самым моделируя расширение твердой фазы.

4.4.2 Применение условия Гиббса-Томсона:

• Условие Гиббса-Томсона корректирует температуру плавления на границе кристалла: $T_b = T_m \left(1 - \frac{\gamma T_m}{\rho L^2 R}\right)$, учитывая кривизну границы и влияние поверхностного натяжения.

4.4.3 Обновление температурного поля:

• После каждого этапа роста дендритов требуется пересчитать температурное поле, учитывая выделение или поглощение теплоты за счет фазового перехода.

Рис. 4.3: Фазовое поле и соответствующее температурное поле дендритной структуры

Рис. 4.4: Фазовое поле и соответствующее температурное поле дендритной структуры

4.5 Шаг 5: Анализ структуры дендритов

Проводится детальный анализ сформированных дендритных структур для оценки их свойств и сравнения с теоретическими и экспериментальными данными.

4.5.1 Оценка морфологии:

- Анализ формы, размеров и ветвления дендритов позволяет понять механизмы их роста и определить влияющие на это процессы.
- Использование методов измерения фрактальной размерности дает количественную оценку сложности структуры дендритов.

4.5.2 Сравнение с экспериментальными данными:

• Сопоставление результатов моделирования с экспериментальными данными по росту дендритов помогает проверить точность и надежность модели.

4.6 Шаг 6: Визуализация и оценка результатов

Заключительный этап проекта включает подготовку визуализации процесса роста дендритов и анализ полученных результатов.

4.6.1 Визуализация роста дендритов:

- Использование графических инструментов для создания изображений и видео, демонстрирующих динамику роста дендритов и конечную структуру.
- Визуализация является ключевым элементом для наглядного представления исследования и помогает в анализе результатов.

4.6.2 Анализ результатов и формулировка выводов:

- Оценка эффективности использованных методов моделирования, сопоставление с теоретическими предположениями и экспериментальными данными.
- Подготовка выводов о механизмах роста дендритов и возможных путях улучшения процессов материаловедения на основе результатов моделирования.

Рис. 4.5: Рост дендрита

5 Программная реализация

5.1 Шаг 0 Используемые библиотеки

- using Plots: Библиотека для визуализации данных. В данном коде используем для создания тепловой карты, отображающей состояние сетки после симуляции роста дендритов.
- using LinearAlgebra: Библиотека для работы с линейной алгеброй. Используем, для операций с векторами и матрицами в вычислениях.

using Plots
using LinearAlgebra

5.2 Шаг 1 Параметры модели

Указываем основные параметрыры моделирования:

N: размер сетки, представляющий собой квадратную сетку N х N, на которой будет происходить моделирование. Т_melt: температура плавления, определяющая порог, при котором материал начинает затвердевать. growth_chance: увеличенный шанс роста дендритов в соседние ячейки, это вероятность, с которой новые дендриты будут расти в окружающие зоны с пониженной температурой. steps: количество шагов симуляции, определяющее, сколько раз будет произведено обновление состояния сетки.

```
N = 100
T_melt = 1.0
growth_chance = 0.005
steps = 8000
```

5.3 Шаг 2 Инициализация сетки

Создаем матрицу Т размером N x N, инициализируя ее нулями. Задаем начальную затравочную область в виде круга с заданным радиусом и центром.

```
T = zeros(N, N)

# Увеличение размера начальной затравочной области

center = div(N, 2)

radius = 1 # Радиус затравочной области

for i in (center-radius):(center+radius)

    for j in (center-radius):(center+radius)

        T[i, j] = T_melt
    end

end
```

5.4 Шаг 3 Параметры для условия Стефана

Определяем коэффициенты теплопроводности, плотности, латентной теплоты и температуру на границе. Используем эти парамметры для вычисления скорости роста кристалла по условию Стефана.

```
    ■ = 0.1 # Теплопроводность

    ■ = 1.0 # Плотность
```

```
L = 1.0 # Латентная теплота

Tb = T melt # Температура на границе
```

5.5 Шаг 4 Функция роста

Эта функция выполняет основную часть моделирования роста дендритов. Она итерирует указанное количество шагов по сетке и обновляет ее состояние в соответствии с правилами роста кристалла и уравнением теплопроводности.

Уравнение теплопроводности: 1. Создается временная копия текущего состояния сетки Т. 2. Перебираются все внутренние ячейки сетки. 3. Если температура в ячейке равна температуре плавления, вычисляется градиент температуры в соседних ячейках. 4. Для каждой соседней ячейки вычисляется градиент температуры и скорость роста кристалла по условию Стефана. 5. Если случайное число меньше произведения шанса роста на скорость роста, ячейка затвердевает на следующем шаге, и это отражается во временной копии сетки.

Обновление основной сетки: После завершения всех шагов симуляции, основная сетка T обновляется копией T temp.

```
function grow_crystals_stefan!(T)

for step in 1:steps

    T_temp = copy(T) # Создаем временную копию для текущего шага

for i in 2:N-1

for j in 2:N-1

if T[i, j] == T_melt

for di in -1:1

for dj in -1:1

if T[i+di, j+dj] == 0

# Вычисляем градиенты температуры в соседних ячей

МТ_s = [T[i+di, j+dj] - T[i, j] for (di, dj) in [
МТ_l = [Tb - T[i, j] for _ in 1:4]
```

```
# Умножаем градиенты для диагональных элементов н
                                     \Delta T_s[1] /= 2
                                     \Delta T_s[2] /= 2
                                     # Вычисляем вектор нормали к границе затвердевани
                                     n = [di + dj for (di, dj) in [(-1, 0), (1, 0), (0)]
                                     # Вычисляем скорость роста кристалла по условию (
                                     v = \boxtimes / (\boxtimes * L) * dot(n, \boxtimes T_s - \boxtimes T_l)
                                     if rand() < growth_chance * v</pre>
                                          T_{temp[i+di, j+dj]} = T_{melt} + 3атвердевание
                                     end
                                end
                            end
                       end
                  end
              end
         end
         Т .= T_temp # Обновляем основную сетку
    end
end
```

5.6 Шаг 5 Визуализация итогового состояния

После выполнения симуляции функцией роста, код строит тепловую карту (heatmap) для визуализации конечного состояния сетки Т.

```
#Выполнение симуляции
grow_crystals_stefan!(T)

#Визуализация итогового состояния
```

p = heatmap(T, color=:ice, aspect_ratio=1, title="Модель роста дендритов с услови
display(p)

5.7 График модели

Модель роста дендритов с условием Стефана

Рис. 5.1: plot

6 Вывод

Модель роста дендритов, реализованная с использованием условия Стефана и уравнения теплопроводности, позволяет имитировать процесс затвердевания материала и формирования кристаллических структур. После завершения всех шагов симуляции, модель предоставляет визуализацию итогового состояния сетки с помощью тепловой карты.

Список литературы

- 1. Dendrite [Электронный ресурс]. Wikimedia Foundation, Inc., 2024. URL: https://en.wikipedia.org/wiki/Dendrite (crystal).
- 2. Медведев Д.А. и др. МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ И ЯВ-ЛЕНИЙ НА ПК. Редакционно-издательский центр НГУ, 2005. 101 с.
- 3. Температура плавления [Электронный ресурс]. Wikimedia Foundation, Inc., 2023. URL: https://ru.wikipedia.org/wiki/Температура плавления.
- 4. Mesh generation [Электронный ресурс]. Wikimedia Foundation, Inc., 2024. URL: https://en.wikipedia.org/wiki/Mesh_generation.
- 5. Seed crystal [Электронный ресурс]. Wikimedia Foundation, Inc., 2024. URL: https://en.wikipedia.org/wiki/Seed_crystal.
- 6. Медведев Д. А. П.Э.Р. Куперштох А. Л. Моделирование физических процессов и явлений на ПК: Учеб. пособие. Новосибирск: Новосиб. гос. ун-т., 2010. 101 с.