MASx52: Assignment 3

- 1. Consider the binomial model with $r = \frac{1}{11}$, d = 0.9, u = 1.2, s = 100 and time steps t = 0, 1, 2.
 - (a) Draw a recombining tree of the stock price process, for time t = 0, 1, 2.
 - (b) Find the value, at time t = 0, of a European call option that gives its holder the option to purchase one unit of stock at time t = 2 for a strike price K = 90. Write down the hedging strategy that replicates the value of this contract, at all nodes of your tree.

You may annotate your tree from (a) to answer (b).

- 2. Let $S_n = \sum_{i=1}^n X_i$, be a random walk, in which $(X_i)_{i \in \mathbb{N}}$ is a sequence of i.i.d. random variables with common distribution $\mathbb{P}[X_i = \frac{1}{i^2}] = \mathbb{P}[X_i = -\frac{1}{i^2}] = \frac{1}{2}$.
 - (a) Show that $\mathbb{E}[|S_n|] \leq \sum_{i=1}^n \frac{1}{i^2}$.
 - (b) Explain briefly why part (a) means that S_n is bounded in L^1 .
 - (c) Show there exists a random variable S_{∞} such that $S_n \stackrel{a.s.}{\to} S_{\infty}$ as $n \to \infty$.
 - (d) Determine whether (S_n) is bounded in L^2 , and briefly state what else (if anything) can be deduced about S_{∞} as a consequence.