表 1: 测量弦线上横波传播的速度(F一定,改变f)

| f/Hz | $rac{\lambda}{2}/\mathrm{cm}$ |       |       | $rac{\overline{\lambda}}{2}/\mathrm{cm}$ | $\lambda/\mathrm{cm}$ | $v=\lambda f$ | $v_0 = \sqrt{rac{F}{ ho}}$ |  |
|------|--------------------------------|-------|-------|-------------------------------------------|-----------------------|---------------|-----------------------------|--|
|      | 1                              | 2     | 3     | $\frac{1}{2}$                             | X/CIII                | m/s           | m/s                         |  |
| 60   | 50.23                          | 50.31 | 50.32 | 50.29                                     | 100.58                | 60.35         |                             |  |
| 70   | 43.32                          | 43.20 | 43.25 | 43.26                                     | 86.52                 | 60.56         | 58.00                       |  |
| 80   | 37.71                          | 37.82 | 37.85 | 37.79                                     | 75.58                 | 60.46         |                             |  |
| 90   | 33.85                          | 33.69 | 33.74 | 33.76                                     | 67.52                 | 60.77         |                             |  |
| 100  | 30.61                          | 30.27 | 30.20 | 30.36                                     | 60.72                 | 60.72         |                             |  |
| 120  | 25.32                          | 25.50 | 25.62 | 25.48                                     | 50.96                 | 61.15         |                             |  |

表 2: 测量弦线上横波传播的速度(f 一定, 改变 F)

| m/g   |       | $rac{\lambda}{2}/\mathrm{cm}$ |       | $rac{\overline{\lambda}}{2}/\mathrm{cm}$ | $\lambda/\mathrm{cm}$ | $v=\lambda f$ | $v_0 = \sqrt{rac{F}{ ho}}$ |
|-------|-------|--------------------------------|-------|-------------------------------------------|-----------------------|---------------|-----------------------------|
| III/g | 1     | 2                              | 3     | $\frac{1}{2}$ /cm                         |                       | m/s           | m/s                         |
| 30    | 33.35 | 33.20                          | 33.30 | 33.28                                     | 66.56                 | 49.92         | 47.36                       |
| 35    | 35.28 | 35.23                          | 35.42 | 35.31                                     | 70.62                 | 52.96         | 51.15                       |
| 40    | 37.85 | 38.02                          | 37.88 | 37.91                                     | 75.82                 | 56.86         | 54.68                       |
| 45    | 40.48 | 40.45                          | 40.38 | 40.44                                     | 80.88                 | 60.66         | 58.00                       |
| 50    | 42.22 | 42.13                          | 42.05 | 42.13                                     | 84.26                 | 63.19         | 61.14                       |
| 55    | 43.80 | 43.98                          | 43.85 | 43.87                                     | 87.74                 | 65.80         | 64.12                       |

