

Databricks Lakehouse

Strategie vincenti dalla teoria alla pratica

Speaker

Andrea Bergonzi

Data Scientist @ Dataskills srl

andrea.bergonzi@dataskills.it

https://www.linkedin.com/in/andreabergonzi-5a1390103/

Dataskills

DATA SKILLS
PERSTANDING THE WORLD

Specializzati nella creazione di soluzioni innovative nelle quattro aree principali della Data Science.

BUSINESS INTELLIGENCE

• Trasformare dati e informazioni in conoscenza

PREDICTIVE ANALYTICS

• Utilizzare i dati per offrire previsioni sul futuro

BIG DATA

 Gestire, immagazzinare e analizzare immense moli di dati

IOT ANALYTICS

• Estrarre e sfruttare i dati provenienti da device interconnessi

25

Anni di esperienza

90+

Progetti realizzati

3

Libri di Data Science pubblicati 2

Professori all'Università Bocconi

Agenda

Teoria del Data LakeHouse

- 1. Intorduzione al Paradigma LakeHouse
- 2. Medallion Architecture
- 3. Tecnologie per il Lakehouse: Databricks, Delta Lake e Unity

Catalog

Nella Pratica: Implementazione di un Lakehouse

- 5. Ingestion tramite chiamate API
- 6. Costruzione della Medallion Architecture
- 7. Organizzazione e gestione dei notebook
- 8. Creazione dei workflow e orchestrazione delle pipeline
- 9. Tips & Tricks per un'implementazione efficace

Il Paradigma LakeHouse

Concetti: Il Data Warehouse

Concetti: Il Data Warehouse

Punti di forza:

- High data quality
- Built for reporting

Punti di debolezza:

- Poor support for unstructured data, Al and streaming
- Closed, propietery formats
- Expensive to scale

Concetti: Il Data Lake

Concetti: Il Data Lake

Punti di forza:

- Support for any kind of data
- Low cost for storage

Punti di debolezza:

- Complex to set up
- Poor BI performance
- Difficulties in governance ("data swamp")

Data Warehouse vs. Data Lake

	Data Warehouse	Data Lake
Tipo di dati	Strutturati, ordinati, puliti	Eterogenei: strutturati e non strutturati, "grezzi"
Progettazione	Definita ex-ante ("Schema-on-write")	Definita ex-post ("Schema-on-read")
Utenti finali	Analisti di business, management	Data scientist, sviluppatori, analisti di business
Più adatto per	Reporting, Business Intelligence, visualizzazione	Machine Learning, Predictive Analytics, Data Mining
Qualità dei dati	Molto elevata	Non necessariamente elevata
Costi di progettazione e manutenzione	Relativamente elevati	Relativamente bassi
Competenze richieste per l'utilizzo	Relativamente basse	Relativamente elevate
Capacità di coinvolgere più utenti finali	Relativamente elevata	Relativamente bassa

«Il meglio dei due mondi»

Vantaggi del Lakehouse

- Flessibilità
- Scalabilità
- Openness
- Separazione tra storage e parte computazionale
- Costi ridotti
- Supporto per workload differenti

Medallion Architecture

È il data design pattern utilizzato per organizzare logicamente i dati nel Lakehouse, con l'obiettivo di aumentare progressivamente la struttura e la qualità del dato tra un passaggio e l'altro negli strati dell'architettura.

Bronze Layer – Raw Data

- È dove "atterrano" i dati.
- Struttura delle tabelle è tendenzialmente "as-is" rispetto a quelle delle fonti.
- Posso aggiungere campi tecnici per catturare metadata
- Base per le rifiniture del dato negli stati successivi
- Archivio storico del dato grezzo (Cold data).

Silver Layer – Filtered, Cleaned, Augmented Data

I dati provenienti dal layer bronze sono elaborati, mergiati, ripuliti e conformati sufficientemente in modo da fornire un' "Enterprise View".

Il Silver Layer riconcilia le diverse fonti e fornisce la possibilità di interrogazioni, reporting ad-hoc, advanced analytics e machine learning. I dati non sono però ancora business-ready ed è quindi raccomandato che questo layer sia utilizzato principalmente da utenti più avanzati come Data Scientist e Data Engineers.

Gold Layer – Business-level Aggregates

I dati nel Gold layer sono *consumption-ready* e possono essere organizzati in database "project-specific". Il Gold Layer è quello che alimenta la reportistica e qui I dati devono essere de-normalizzati in ottica analitica.

Prima di entrare nel Gold Layer vengono applicate le varie regole di business ai dati in modo che siano puliti e certificati, e seguano rigide regole di **Data Quality** come come in un Data Warehouse tradizionale.

Tecnologie per il LakeHouse

Databricks, Delta Lake e Unity Catalog

Che cos'è Databricks

Data Analytics Platform

- Databricks SQL
- Data Science & Engineering
- Machine Learning

Che cos'è Databricks

Databricks è **Apache Spark**, ma con un'interfaccia utente semplice da utilizzare e tantissimi altri automatismi e servizi a disposizione

Un po' di storia...

- 2009: Nasce Apache Spark nei laboratory AMPLab dell'Università di Berkley, California
- **2013**: Tre professori universitari: Ali Ghodsi, Ion Stoica, e Matei Zahara, già creatori di Apache Spark, decidono di fondare Databricks. Il progetto ottiene immediatamente finanziamenti importanti, come quello del fondo Andreessen Horowitz.
- 2015: Databricks viene integrata come servizio all'interno del marketplace cloud di AWS.
- **2017**: Grazie alla partnership con Microsoft, I servizi di Databricks vengono introdotti all'interno della piattaforma Azure
- 2021: Con la partnership con Google e l'inserimento all'interno di Google Cloud, Databricks è presente in tutti i maggiori cloud provider al mondo.
- 2022: Oltre 5000 imprese si affidano a Databricks per gestire le proprie attività di Data Engineering e Data Science, tra cui metà delle società della Fortune 500.

Databricks Architecture

Delta Lake

Delta Lake in Databricks

Che cos'è Delta Lake?

- È un formato di dati **open source** che risiede sopra il **Lakehouse** per risolvere alcune delle sue limitazioni
- Il Delta Lake può essere pensato come un'estensione all'interno del Data lakehouse (come csv, parquet, avro...).
- Azure Databricks possiede nativamente un delta engine che facilita l'utilizzo del formato delta lake per le operazioni di data engineering.

Delta Lake in Databricks

Transaction log

Le transazioni all'interno del Transaction Log del Delta Lake (chiamate anche Delta Logs) sono record in ordine cronologico di tutte le transazioni avvenute all'interno della tabella in formato delta dal momento della sua creazione.

Questo permette di:

- Scrivere e leggere la stessa tabella anche da più utenti contemporaneamente.
- Garantire l'atomicità del Delta Lake.
- Effettuare operazioni di roll-back alla versione precedente della tabella

Unity Catalog

Che cos'è Unity Catalog?

"Soluzione di governance unificata per I dati e l'AI sul Lakehouse"

In particolare, garantisce:

- Data Access Control
- Data Access Audit
- Data Lineage
- Data Discovery

Come funziona Unity Catalog?

Traditional two-layer namespace

Data LakeHouse Strategie vincenti

Implementazione e Best Practice

Tre Asset principali:

- Notebooks
 - Schemas
- Workflows

DATA SKILLS

UNDERSTANDING THE WORLD

- 1. Source To Bronze
- 2. Bronze To Silver
- 3. Bronze To Silver Special
- 4. Silver To Gold
- 5. Aggregate Views
- Utils

Workspace → Shared → LakeHouse ☆			Share	Add 🗸
Name ▼	Туре	Owner	Created	
Utils	Folder	Andrea Bergonzi	2/21/2023	•
05_AggregateViews	Folder	Andrea Bergonzi	2/21/2023	•
03_BronzeToSilverSpecial	Folder	Andrea Bergonzi	2/21/2023	• •
02_BronzeToSilver	Folder	Andrea Bergonzi	2/21/2023	•
■ 04_SilverToGold	Notebook	Andrea Bergonzi	2/21/2023	•
: □ 01_SourceToBronze	Notebook	Andrea Bergonzi	2/21/2023	•

Add 🗸

Workspace > Shared > LakeHouse >

02_BronzeToSilver ☆

_						
	Name ▼	Туре	Owner	Created		
	 zone zone	Notebook	Andrea Bergonzi	2/21/2023	•	
	 	Notebook	Andrea Bergonzi	2/21/2023	•	
	 network	Notebook	Andrea Bergonzi	2/21/2023	•	
	 Iineitem	Notebook	Andrea Bergonzi	2/21/2023	•	
	 execution	Notebook	Andrea Bergonzi	2/21/2023	•	
	 deal	Notebook	Andrea Bergonzi	2/21/2023	•	
	 company company	Notebook	Andrea Bergonzi	2/21/2023	•	
	 category	Notebook	Andrea Bergonzi	2/21/2023	•	
	 	Notebook	Andrea Bergonzi	2/21/2023	•	
	advertiser advertiser	Notebook	Andrea Bergonzi	2/21/2023	•	
	■ _BronzeToSilverOrchestration	Notebook	Andrea Bergonzi	2/21/2023	•	

Workspace > Shared > LakeHouse >

05_AggregateViews ☆

				1.
Name ▼	Туре	Owner	Created	
Execution_perDayAndHour	Notebook	Andrea Bergonzi	2/21/2023	•
Execution_perDay	Notebook	Andrea Bergonzi	2/21/2023	•
■ _AggregateViewsOrchestration	Notebook	Andrea Bergonzi	2/21/2023	•

Add 🕶

Share

Data Assets: Schemas, Tables, Models

Workflow & Orchestration

Tips & Tricks

Sulle tabelle

- PARTITION BY
- **OPTIMIZE** e **Z-ORDERING** dove possibile

OPTIMIZE ricompatta una serie file piccoli in file più grandi; ZORDER colloca I dati in base a uno più campi nello stesso set di file

```
OPTIMIZE events

OPTIMIZE events WHERE date >= '2017-01-01'

OPTIMIZE events
WHERE date >= current_timestamp() - INTERVAL 1 day
ZORDER BY (eventType)
```


- Evitare il Partition Shuffling df.cache() dopo Wide Transformations
- Evitare il Partition Skewing
 df.coalesce() o df.repartition() dopo Wide Transformations
- Evitare API Throttling df.mapPartitions() per chiamate API

Sui Cluster

- Environment Variables
- Init Scripts


```
#!/bin/bash
sudo apt-get update
sudo mkdir /usr/local/sap
sudo apt-get install unzip
sudo cp /dbfs/FileStore/nwrfc750P_11_70002752.zip /usr/local/sap/
sudo unzip /usr/local/sap/nwrfc750P_11_70002752.zip -d /usr/local/sap/
echo SAPNWRFC_HOME='/usr/local/sap/nwrfcsdk' >> /etc/environment
cd /etc/ld.so.conf.d/
touch nwrfcsdk.conf
sudo cp /dbfs/FileStore/nwrfcsdk.conf /etc/ld.so.conf.d/nwrfcsdk.conf
sudo ldconfig && ldconfig -p | grep sap
```


Grazie!!!

Data Saturday #37 Feedback Form

