Problem Set – 1 Answers

CS 230, Spring 2023

Answers

1. (a), (b), (c)

Can be verified from truth table.

2. (3)

$$f = \overline{A} + \overline{\left[B + \overline{C}(\overline{AB} + A\overline{C})\right]}$$

$$f = A \cdot \left[B + \overline{C}(\overline{AB} + A\overline{C})\right]$$

$$f = A \cdot \left[B + \overline{C}(\overline{A} + \overline{B})(\overline{A} + C)\right]$$

$$f = A\left[B + \overline{C}(\overline{A} + \overline{B}C)\right]$$

$$f = A\left[B + \overline{A}\overline{C}\right]$$

$$f = AB$$

$$A \longrightarrow AB$$

$$A \longrightarrow AB$$

3. (4)

$$f = BD + B'D'$$

$$f = (A + C)(B + D) = B(A + C) + D(A + C) = B \cdot x + D \cdot x$$

For x , it takes 3 NAND gates.

5. $2^{2^{n-1}}$

Without the loss in generality say there exists a Boolean function f = A * B where * is an unknown operation.

Now, $f^d = A *^d B$ where $*^d$ is the dual of *

And, $f^c = A' *^c B'$ where $*^c$ is the complement of *

We know that, $*^d = *^c$ and $A \neq A'$ or $B \neq B'$

Hence, A = B' and A' = B as the Boolean operations are commutative.

And if *A* and *B* are further combinations of Boolean operations, we can recursively perform this argument.

So, to have $f^d = f^c$ we need to have mutually exclusive complement pairs of values. i.e., for 3 literals the pairs will be (0,7), (1,6), (2,5) and (3,4).

So, in n literals system, 2^{n-1} such pairs exist.

We have a choice to keep or discard each such pair. Hence, $2^{2^{n-1}}$.

6. (c)

$$M = \overline{XYZ + \overline{X}\overline{Y}} + YZ$$

Dual of M,

$$M^d = \overline{(X+Y+Z)\cdot (\overline{X}+\overline{Y})}\cdot (Y+Z)$$

$$M^{d} = \left[\overline{(X+Y+Z)} + \overline{(\bar{X}+\bar{Y})} \right] \cdot (Y+Z)$$

Compliment of *M*,

$$M^c = \overline{(XYZ + \overline{X}\overline{Y})} + YZ$$

$$M^c = \overline{\overline{(XYZ + \bar{X}\bar{Y})}} \cdot \overline{YZ}$$

$$M^c = (XYZ + \bar{X}\bar{Y}) \cdot \overline{YZ}$$

7. (6)

cd				
ab	00	01	11	10
00	1	1	0	0
01	0	0	1	1
11	0	1	1	1
10	1	1	1	0

From the 3 squares, we get bc, ad, b'c'Hence, f = ad + b'c' + bc

8. $\overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{D}$

From the Kmap, we can see that the blue square encompasses A'D'.

Now, as X is a don't care so the value of X doesn't change the outcome of the function. That means, even if X is 0, we can consider it to be 1 and complete our minimization for convenience.

Hence, from the red square we get B'D'.

$$f = A'D' + B'D'$$