· Imital assumption

characterized by a random veriable (r.v.) A over S

 $A \in S$  :  $\sum_{s \in S} P_{\chi}(s) = 1$ 

Ex. 1 not dependent on dataset!

iOS And. Mac Win Linux 1/5 1/5 1/5 1/5 • Completely <u>severalized datasety</u> Statistic over S, a v.v. Q  $Q \in S$ , with  $P_Q(s) = \frac{wo. entries}{uo. entries}$ 

IL Ex. 1:

Q Pa(s) 2/9 1/9 1/9 1/9 1/9

Pa is empirical distr.

· When observer <u>leans</u> values of Q.I. in one partition, then one equiv. class C remains.

Let L denote the r.v. of attr. S restricted to C: this is the information leaked.

LES: 
$$P(s) = \frac{\text{no. endries in C}}{\text{no. endries in C}}$$

· Recall: Px, Pa, Pl ave distributions over S

Def: An equivalence class C is  $\frac{2\text{-close}}{4\text{-close}}$  to the dataset wherever  $\frac{2}{2}$ .

A dataset has 2-closeress when all its equivalence classes are 2-close to the dataset.

D is a distance "measure" between prob. distributions. Some examples are:

- · L2 norn
- · Ln distance Variational distance

$$\triangle(P_2; P_Q) = \frac{1}{2} \sum_{s \in s} \left| P_2(s) - P_Q(s) \right|$$



· Kullbach-Leibler divergence (relative entropy)

$$KL(R|PQ) = \sum_{S \in S} R(s) \log_2 \frac{PL(s)}{PQ(s)}$$

| Last name<br>I       | First name<br>I | PLZ<br>QI               | Points<br>QI | System<br>S |
|----------------------|-----------------|-------------------------|--------------|-------------|
| Sample data set      |                 |                         |              |             |
| Andreasyan           | Narek           | 3270                    | 89           | iOS         |
| Asadauskas           | Marius Paulius  | 3294                    | 77           | Android     |
| Ayinkamiye           | Leïla           | 3400                    | 90           | MacOS       |
| Berger               | Reto            | 2608                    | 42           | Windows     |
| Bucheli              | Philippe        | 3177                    | 38           | Linux       |
| Bühlmann             | Noah Florian    | 2740                    | 35           | Windows     |
| Brunner              | Julien Pierre   | 3763                    | 25           | MacOS       |
| Egger                | Dominic Mathias | 3860                    | 33           | Windows     |
| Gerig                | Pascal Dominik  | 3770                    | 30           | Android     |
|                      |                 |                         |              |             |
|                      |                 |                         |              |             |
| 3-Anonymous data set |                 |                         |              |             |
|                      |                 | 3200-3299               | 75-90        | iOS         |
|                      | •               | <mark>3200-</mark> 3299 | 75-90        | Android     |
|                      |                 | <mark>3200</mark> -3299 | 75-90        | MacOS       |
|                      |                 | 2600-3199               | 35-45        | Windows     |
|                      |                 | 2600-3199               | 35-45        | Linux       |
|                      |                 | 2600-3199               | 35-45        | Windows     |
|                      |                 | 3700-3899               | 25-34        | MacOS       |
|                      |                 | 3700-3899               | 25-34        | Windows     |
|                      |                 | 3700-3899               | 25-34        | Android     |

Revisit Ex. 1:

$$\Delta(P_{132}, P_{Q}) = \frac{1}{2} \left( \frac{1}{3} + \frac{2}{3} + \frac{1}{3} + \frac{3}{3} + \frac{1}{3} \right)$$

$$= \frac{4}{2} \frac{8}{3} = \frac{4}{3} = 0.44...$$

Def: An equivalence class C is

(n, E)-close to the full dataset iff

there exists a subset M of dataset

s.f. |M| > h and

 $\mathcal{D}(\mathbb{R};\mathbb{P}_{Q|M}) \leq \varepsilon$ 

where Paim denotes the empirical districted for M.

A partitioning C is  $(u, \varepsilon)$ -close to the dataset iff. exists e subset M of dataset with  $1M1 \gg u \leq 5$ .

each each equiv. class L satisfies

· Uses any subset of sufficient Size for reference to hide the disclosed distr. acrong this set.

Recap

Persons

Pr Pr seusifive data

Trusted
asgregator

scutized dateset

Consumes statistic, leans data

Public

## 6) Differential phluacy

6.1) Randomised response

n persons, each bas a sensitive value  $X_i \in \{0,1\}$ 

Suppose each  $X_i$  is Bernoulli  $v, v, with prob. p, i, e_o,$   $P[X_i = 1] = p$ 

(ruhour p)

Observer wents to lear (estimate) He value of p, but must not violate privacy of persons.

Ex. u= 18 students
1 observer / teacher

Q: Have you ever cleated in an exam?

Idea: Add randomization that lets each Pi deny the sensitive value.

 $P_i$  sends  $Y_i = \begin{cases} X_i & \omega/\text{pwb.} \alpha \\ R_i & \omega/\text{pwb.} 1-\alpha \end{cases}$ 

where  $R_i \in \{0,1\}$  is uniformly vandom

1 Up to two randon choices.

Observer receives all Y: values.

no. of Y<sub>1</sub> = 1: 9 Y<sub>1</sub> = 0: 9

De server can still estimate Ne tre value of p · Role x?

Tradeoff between utility and privacy:  $\alpha = 0$ : no utility, this privacy  $\alpha = 1$ : full utility, no privacy

« What do we lear?

$$Y = \sum_{i} Y_{i} \qquad (=9)$$

Recall Px; (1) = p, E[Xi] = p

DV

$$P = \frac{1}{\alpha} \left( \mathbb{E}[Y_i] - \frac{1-\alpha}{2} \right)$$

After observing Y, compute estimater for pas

$$\tilde{p} = \frac{1}{\alpha} \left( \frac{Y}{n} - \frac{1-\alpha}{2} \right)$$

$$= \frac{1}{\alpha} \left( \frac{\sum_{i=1}^{n} - \frac{1-\alpha}{2}}{n} \right)$$

$$= \frac{1}{\alpha n} \sum_{i=1}^{n} - \frac{1-\alpha}{2\alpha}$$

$$\tilde{p} = 2 \cdot \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$$

How accurate?

$$Var \left[ \stackrel{\sim}{p} \right] = Var \left[ \frac{1}{\alpha n} \sum_{i=1}^{N} \frac{1-\alpha}{2\alpha} \right]$$

$$= \frac{1}{\alpha^{2}n^{2}} Var \left[ \sum_{i=1}^{N} Y_{i} \right]$$

$$= \frac{1}{\alpha^{2}n^{2}} \sum_{i=1}^{N} Var \left[ Y_{i} \right]$$

$$Var [Y_i] \leq 1$$

$$= \frac{1}{\alpha^2 n}$$

Ineversing u teads to a better estimate.

Decreásing a leads to less accurate

estimation.

Given u data values  $\left[ X_{1,000}, X_{n} \right] = \times^{n}$ 

corresp. to sensitive values of n individuals; X: EX

$$\circ \chi = N$$

- of algorithm M: X" -> T sanitizes a vector X" EX" and outputs Y E T,
- · M must be randonièzed
- · DP is feative of the algorithm

Def: Two datasets X" and X" are neighbouring, denoted

Xn~Xn

whenever  $\exists i : X_i \neq X_i$  1

 $\forall j \neq i : \times_i = X_i$ 

(Differ in exectly one component.)

Def: A (vandomized) alg. M: X"-> Y

is \( \geq \)-differentially private iff.

 $\forall \Upsilon \subseteq \Upsilon$  and

Yx and X s.t. X ~ X :

 $\mathbb{P}[M(X^{n}) \in Y] \leq e^{\varepsilon} \mathbb{P}[M(X^{n}) \in Y].$