PH3204: Electronics Laboratory

Experiment 03: Study of Operational Amplifier (OpAmp) as inverting and non-inverting amplifier and its applications as adder and subtractor

Ronit Bhuyan (22MS025) Sub-Group B01

 $March\ 18,\ 2025$

Contents

1	Theory	2
	1.1 Operational Amplifier (OpAmp)	2
	1.2 Inverting Amplifier	
	1.3 Non-Inverting Amplifier	
	1.4 Adder	
	1.5 Subtractor	4
2	Data and Analysis	5
3	Results and Discussion	7
4	Sources of Error	7

1 Theory

1.1 Operational Amplifier (OpAmp)

An Operational Amplifier or OpAmp is a differential amplifier that has a very high voltage gain, high input impedance and low output impedance. The OpAmp ha two inputs namely a non-inverting input(V_+) and an inverting input(V_-). The OpAmp amplifies the difference between the two inputs. The output voltage (V_{out}) is given by

$$V_{out} = A(V_+ - V_-)$$

where A is the open loop gain of the amplifier. The OpAmp is usually operated with a negative feedback. The OpAmp used in this experiment is the LM741 OpAmp. The pin configuration of the LM741 OpAmp and its circuit diagram is shown in the figure below.

Figure 1: Pin configuration of LM741 OPAMP (left) and its circuit symbol (right)

The OpAmp can be used in various configurations such as inverting amplifier, non-inverting amplifier, adder, subtractor, differentiator, integrator etc. In this experiment, we will study the OpAmp as an inverting amplifier, non-inverting amplifier, adder and subtractor.

1.2 Inverting Amplifier

The OpAmp can be used as an inverting amplifier by connecting it as per the following circuit diagram.

Figure 2: Circuit diagram of OpAmp as an Inverting Amplifier

At the point A, the voltgae is 0 due to virtual ground. Theus, by applying Kirchoff's current law at the point A, we get

$$\frac{V_{in} - 0}{R_1} = \frac{0 - V_{out}}{R_f} \implies V_{out} = -\frac{R_f}{R_1} V_{in}$$

Hence, the amplification in the case of inverting amplifier is given by

$$A = -\frac{R_f}{R_1}$$

1.3 Non-Inverting Amplifier

The circuit diagram of an OpAmp as a non-inverting amplifier is shown below.

Figure 3: Circuit diagram of OpAmp as a Non-Inverting Amplifier

At point A, the potential is $V_i n$. Thus, by applying Kirchoff's current law at point A, we get

$$\frac{V_{in} - V_{out}}{R_1} = \frac{V_{out} - 0}{R_f} \implies V_{out} = \left(1 + \frac{R_f}{R_1}\right) V_{in}$$

Hence, the amplification in the case of non-inverting amplifier is given by

$$A = 1 + \frac{R_f}{R_1}$$

1.4 Adder

The OpAmp can be used as an adder by connecting it as per the following circuit diagram.

Figure 4: Circuit diagram of OpAmp as an Adder

Similar to the case of the inverting and non-inverting amplifiers, the potential at the point A is 0. Thus, by applying Kirchoff's current law at point A, we get

$$\frac{0 - V_1}{R_1} + \frac{0 - V_2}{R_2} + \frac{0 - V_3}{R_3} = \frac{V_{out}}{R_f}$$

$$\implies V_{out} = -\left(\frac{R_f}{R_1}V_1 + \frac{R_f}{R_2}V_2 + \frac{R_f}{R_3}V_3\right)$$

In the special case when $R_1 = R_2 = R_3 = R_f = R$, the output voltage is given by

$$V_{out} = -(V_1 + V_2 + V_3)$$

Thus, the OpAmp acts as an adder in this case by adding the input voltages.

1.5 Subtractor

The circuit diagram for OpAmp as a subtractor is shown below.

Figure 5: Circuit diagram of OpAmp as a Subtractor

Again, by applying the concept of virtual ground, we know that the potntial at point \mathbf{A} and at the point \mathbf{B} is the same. Let the potential at point \mathbf{A} and \mathbf{B} be V. Thus, by applying Kirchoff's current law at point \mathbf{A} , we get

$$\frac{V - V_1}{R_1} = \frac{V_{out} - V}{R_f}$$

Similarly, by applying Kirchoff's current law at point B, we get

$$\frac{V - V_2}{R_2} = \frac{-V}{R_0}$$

Solving for V_{out} , we get

$$V_{out} = \frac{R_f}{R_1} \left(\frac{V_2 R_0}{R_0 + R_2} - V_1 \right) + \frac{V_2 R_0}{R_0 + R_2}$$

In the special case when $R_1 = R_2 = R_f = R_0 = R$, the output voltage is given by

$$V_{out} = V_2 - V_1$$

Thus, the OpAmp acts as a subtractor in this case by subtracting the input voltages.

2 Data and Analysis

Inverting Amplifier

V_{in}	V_{out}	A	
1.00	-2.20	-2.20	
2.00	-4.38	-2.19	
3.00	-6.57	-2.19	
4.00	-8.75	-2.19	
5.00	-10.93	-2.19	
Average = -2.19			

(a)
$$R_i = 996\Omega, R_f = 2170\Omega$$

V_{in}	V_{out}	A
0.50	-2.30	-4.60
1.00	-4.59	-4.59
1.50	-6.85	-4.57
2.00	-9.16	-4.58
2.50	-11.44	-4.58
Average: $A = -4.58$		

(c)
$$R_i = 2160\Omega, R_f = 9850\Omega$$

V_{in}	V_{out}	A
0.02	-0.18	-9.00
0.20	-2.03	-10.15
0.40	-4.04	-10.10
0.60	-6.01	-10.02
0.79	-7.95	-10.06
Average		-9.87

(b)
$$R_i = 996\Omega, R_f = 9850\Omega$$

V_{in}	V_{out}	A
2.00	-0.90	-0.45
4.00	-1.80	-0.45
6.00	-2.71	-0.45
8.00	-3.62	-0.45
10.00	-4.53	-0.45
Average: $A = -0.45$		

(d)
$$R_i = 21800\Omega, R_f = 9850\Omega$$

Table 1: Data for Inverting Amplifier

Non-Inverting Amplifier

V_{in}	V_{out}	A	
1.00	3.20	3.20	
1.50	4.77	3.18	
2.00	6.35	3.18	
3.00	9.54	3.18	
4.00	12.69	3.17	
Average = 3.18			

(a)
$$R_i = 1006\Omega, R_f = 2160\Omega$$

V_{in}	V_{out}	Α	
1.00	1.12	1.12	
3.00	3.33	1.11	
5.00	5.54	1.11	
7.00	7.75	1.11	
9.00	9.96	1.11	
Average = 1.11			

(c)
$$R_i = 21800\Omega, R_f = 2170\Omega$$

V_{in}	V_{out}	A	
1.00	2.02	2.02	
2.00	4.04	2.02	
3.00	6.07	2.02	
4.00	8.10	2.03	
5.00	10.10	2.02	
Average = 2.02			

(b)
$$R_i = 985\Omega, R_f = 983\Omega$$

V_{in}	V_{out}	A	
0.50	2.84	5.68	
1.00	5.60	5.60	
1.50	8.38	5.59	
2.00	11.18	5.59	
2.50	13.97	5.59	
Average = 5.61			

(d)
$$R_i = 2170\Omega, R_f = 9850\Omega$$

Table 2: Data for Amplifier Gain for Non-Inverting Amplifier

\mathbf{Adder}

V_1	V_2	V_3	V_{out}	$V_{ m Theoretical}$
0.72	1.02	1.45	3.15	3.19
1.44	1.73	2.92	6.01	6.09
1.27	1.99	2.04	5.23	5.30
1.52	1.31	2.16	4.92	4.99
1.40	1.40	2.81	5.55	5.61
1.78	1.67	3.01	6.34	6.46
0.41	0.45	0.82	1.66	1.68
0.52	0.74	1.05	2.26	2.31
1.65	2.75	3.31	7.52	7.71
1.11	1.85	2.23	5.03	5.19

Table 3: OpAmp as an Adder

${\bf Subtractor}$

V_1	V_2	Vout	$V_{ m Theoretical}$
3.60	4.80	1.14	1.20
2.55	3.18	0.60	0.63
0.82	3.55	2.68	2.73
5.18	6.93	1.65	1.75
6.67	8.91	2.12	2.24
0.46	0.61	0.15	0.15
1.93	2.58	0.63	0.65
3.61	4.85	1.19	1.24
4.57	5.55	0.95	0.98
9.02	12.03	2.85	3.01

Table 4: OpAmp as a Subtractor

- 3 Results and Discussion
- 4 Sources of Error