

Detailed Course 2.0 on Function of One and Several Variable - IIT JAM, 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Differentiability

Darboux Theorem:

If a function is differentiable in a closed interval [a, b] and f'(a), f'(b) are of opposite sign, then there exist at least one point c in the open interval (a, b) s.t. f'(c) = 0.

Local maxima and local minima:

Let $f: I \to R$ and c be an interior point of the interval I, then

f(c) is said to be a local maximum value of the function f, if there exist some neighbourhood (c - δ, c + δ) of c, such that f(c) > f(x), for all (c - δ, c + δ) then c is point of local maxima.

(2) f(c) is said to be local minimum value of the function f, if there exist some neighbourhood of (c - δ, c + δ) of c s.t. f(c) < f(x), for all x ∈ (c - δ, c + δ), and c is called point of local minima.

(3) Extreme Value:

f(c) is said to be extreme value of f, if it is either a maximum or minimum value.

i.e. a point x = c is said to be extreme point if f(c) = 0

Interior extremum theorem:

Let c be the interior point of the interval I at which $f: I \rightarrow R$

has an extremum value. If f(c) = 0.

Note:

- (1) If f(x) is continuous on [a, b] and f (x) > 0 in (a, b), then f(x) is increasing in [a, b].
- (2) If f(x) is continuous in [a, b] and f (x) < 0 in (a, b) then f(x) is decreasing in [a, b].</p>

First Derivative test for extreme values:

Let a function f be differentiable in a neighbourhood of c, where f has an extreme value at c, then f(c) is a maximum value if the sign of f change from positive to negative.

And f(c) is a minimum value of the dign of f changes from negative to positive.

Second test for extreme value:

- (a) If f'(c) = 0 and f''(c) < 0 then f has a maximum value at x = c.
- (b) If f(c) = 0 and f'(c) > 0 then f has a minimum value at x = c.

Q.1 Let $\varphi : R \to R$ be a differentiable function such that φ is strictly increasing with φ (1) = 0. Let α and β denote the minimum and maximum values of φ (x) on the interval [2, 3], respectively. Then which one of the following is TRUE? IIT JAM 2017

(a)
$$\beta = \phi(3)$$
 (b) $\alpha = \phi(2.5)$

(c)
$$\beta = \varphi(2.5)$$
 (d) $\alpha = \varphi(3)$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q.2. Let $f:\left(0,\frac{\pi}{2}\right)$ be given by $f(x) = (\sin x)^{\pi} - \pi \sin x + 1$

π. Then which of the following statements is/are TRUE? IIT JAM 2019

- (a) f is an increasing function
- (b) f is a decreasing function

(c)
$$f(x) > 0$$
 for all $x \in \left(0, \frac{\pi}{2}\right)$

(d)
$$f(x) < 0$$
 for some $x \in \left(0, \frac{\pi}{2}\right)$

- Q.3. Let $f : R \to R$ be a differentiable function with f(0) = 0.if for all $x \in R$, 1 < f'(x) < 2, then which one of the following statements is true on $(0, \infty)$ IIT JAM 2015
 - (a) f is unbounded (b) f is increasing and bounded
 - (c) f has at least one zero (d) f is periodic

Q.4. For
$$x \in R$$
, let $f(x) = \begin{cases} x^3 \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$. Then which

one of the following is FALSE? IIT JAM 2017

(a)
$$\lim_{x\to 0} \frac{f(x)}{x} = 0$$
 (b) $\lim_{x\to 0} \frac{f(x)}{x^2} = 0$

- (c) $\frac{f(x)}{x^2}$ has infinitely many maxima and minima on the interval (0,1)
- (d) $\frac{f(x)}{x^4}$ is continuous at x = 0 but not differentiable at x = 0.

Q.5. Let
$$f(x) = \begin{cases} x + x^2 \cos\left(\frac{\pi}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$$
 & consider the

following statements:

- (i) f (0) exists & is equal to 1
- (ii) f is not increasing in any neighbourhood of 0
- (iii) f (0) does not exist
- (iv) f is increasing on R

How many of the above statement is/are true?

(a) 0

(b) 1

(c) 2

d) 3

Q.6. Let
$$f(x) = \begin{cases} x+1 & x < 0 \\ (x-1)^2 & x \ge 0 \end{cases}$$

Which one of the following is TRUE?

- (a) f is differentiable on R
- (b) f has neither a local maximum nor a local minimum in R
- (c) f is bounded on R
- (d) f is not differentiable at x = 0 and f(x) has local maximum at x = 0

- Q.7. If $f : R \to R$ is a continuous function such that f(x + y) = f(x) + f(y) for all $x, y \in R$, then
 - (a) f is increasing if $f(1) \ge 0$ and decreasing if $f(1) \le 0$
 - (b) f is increasing if $f(1) \le 0$ and decreasing if $f(1) \ge 0$
 - (c) f is not an increasing function
 - (d) f is neither an increasing nor a decreasing function

Q.8. Let f be a twice differentiable function on R. Given t hat f'(x) > 0 for all $x \in R$, then

- (a) f(x) = 0 has exactly two solution on R.
- (b) f(x) = 0 has a positive solution if f(0) = 0 & f'(0) = 0
- (c) f(x) = 0 has no positive solution if f(0) = 0 and f'(0) > 0
- (d) f(x) = 0 has no positive solution if f(0) = 0 and f'(0) < 0

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	Total ₹ 21,780
24 months	₹ 908 / mo

0 12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR