

Institut supérieure des sciences appliquées et de technologie de Gafsa

Champ magnétique Force et moment Chapitre VIII

INTRODUCTION

- Les charges électriques produisent des champs électriques \vec{E} .
- Les bar aimantés (aimants) produisent des champs magnétiques \vec{B} .
- Un aimant est constitué de deux pôles désignés par Nord et Sud.
- Les Lignes de champ sortent de Nord et entrent par le sud.

En présence de deux aimants on a:

• Que se passe t-il si on coupe un aimant en deux? Peut on séparer les deux pôles?

 Non On aura deux barres aimanté. Donc contrairement au charge électrique, les monopoles magnétiques n'existent pas dans la nature

DÉFINITION

Soit une charge électrique q en mouvement avec une vitesse \vec{v} dans un champ magnétique \vec{B} .

- On a définit le champ électrique à partir de la force électrique $\vec{F}_e = q\vec{E}$
- De même, on définit le champ magnétique à partir de la force magnétique \hat{F}_R

$$\vec{F}_B = q \vec{v} \times \vec{B} \qquad \qquad F_B = |q| v B \sin \theta$$

Dans le S.I, l'unité de \vec{B} est 1 tesla = 1 T

$$1T = 1\frac{N}{C.m/s} = 1\frac{N}{A.m}$$

Questions de réflexions:

- 1. La force magnétique peut elle accélérer la charge q?
- Non parce que la force \vec{F}_B est perpendiculaire à la vitesse \vec{v}
- 2. La force magnétique peut elle effectuer un travail sur la charge q?

Non car

$$dW = \vec{\mathbf{F}}_{R} \cdot d \vec{\mathbf{s}} = q(\vec{\mathbf{v}} \times \vec{\mathbf{B}}) \cdot \vec{\mathbf{v}} dt = q(\vec{\mathbf{v}} \times \vec{\mathbf{v}}) \cdot \vec{\mathbf{B}} dt = 0$$

FORCE MAGNÉTIQUE **AGISSANT SUR UN CONDUCTEUR PARCOURU** PAR UN COURANT ÉLECTRIQUE

• Un courant électrique I est un ensemble de charge en mouvement. Donc en présence d'un champ magnétique \vec{B} (sortant dans la figure ci-dessous), un fil conducteur parcourus par I est dévié par la force magnétique \vec{F}_B . Le sens de déviation dépend du sens du courant.

 Calcul de la force magnétique agissant sur le fil conducteur réctiligne:

Soit un fil de longueur ℓ et de section A. Le champ \vec{B} est entrant. Les charges se déplacent avec une vitesse de dérive \vec{v}_d (chapitre 5). Si n est la \times densité de charge volumique alors la charge totale contenue dans ce segment est $Q_{tot} = q(nA\ell)$

$$\vec{\mathbf{F}}_{B} = Q_{\text{tot}} \vec{\mathbf{v}}_{d} \times \vec{\mathbf{B}} = q n A \ell(\vec{\mathbf{v}}_{d} \times \vec{\mathbf{B}}) = I(\vec{\ell} \times \vec{\mathbf{B}})$$

Puisque d'après le chapitre 5 on a $I = n q v_d A$

- Cas d'un fil conducteur de forme quelconque et un champ magnétique non uniforme:
- Soit un fil conducteur de forme quelconque parcouru par un courant I et placé dans un champ magnétique \vec{B} .
- Un élément de force magnétique $d\vec{F}_B$ agissant sur un éléments de longueurs $d\vec{s}$ s'écrit:

$$d\vec{F}_B = I \, d\vec{s} \times \vec{B}$$

• La force magnétique s'obtient en sommant les éléments de forces agissant sur les différents éléments de longueurs :

$$\vec{F}_B = \int d\vec{F}_B = I \int_a^b d\vec{s} \times \vec{B}$$

 Si le champ magnétique est uniforme alors:

$$\vec{F}_B = I \left(\int_a^b d\vec{s} \right) \times \vec{B} = I \vec{\ell} \times \vec{B}$$

- Exercice 1 : cas d'une boucle fermée
- Montrer que la force magnétique agissant sur une boucle fermée est nulle.

Solution:

Si le circuit est une boucle fermée alors:

$$\vec{\mathbf{F}}_{B} = I\left(\oint d\,\vec{\mathbf{s}}\,\right) \times \vec{\mathbf{B}}$$

Puisque l'intégrale de chemin sur une boucle est nul c.à.d. $\oint d \vec{s} = 0$ alors: $\vec{\mathbf{F}}_B = \vec{0}$

Exercice 2 : Conducteur demi-circulaire

 Soit un fil conducteur (reposant sur la plan xy) courbé en forme d'un demi-cercle de rayon R . Il est parcouru par un courant I est et plongé dans un champ magnétique uniforme B(voir la Figure ci-contre)

 Trouver la force magnétique totale agissant sur ce conducteur. Solution Exercice 2:

Si $\vec{B} = B \ \hat{j} . \ \vec{F_1}$ et $\vec{F_2}$ sont les forces magnétiques agissant respectivement sur le segment rectiligne et sur le demi-cercle. En notant que la longueur de segment est 2R alors la force magnétique est $\vec{F_1} = I(2R\,\hat{i}) \times (B\,\hat{j}) = 2I\,R\,B\,\hat{k}$

En notant que $d\vec{s} = ds\hat{\theta}$, or on a déjà montré que $\hat{\theta} = -\sin\theta\,\hat{i} + \cos\theta\,\hat{j}$ alors:

 $d\vec{F}_2 = Id\vec{s} \times B = IRd\theta(-\sin\theta\,\hat{i} + \cos\theta\,\hat{j}) \times B\,\hat{j}$ $d\vec{F}_2 = -IRB\sin\theta d\theta\,\hat{k}$

$$\vec{F}_2 = -IRB \int_0^{\pi} \sin\theta d\theta \,\hat{k} = -2IRB \,\hat{k}$$

$$\vec{F}_{t} = \vec{F}_{1} + \vec{F}_{2} = \vec{0}$$

MOMENT DIPOLAIRE MAGNÉTIQUE

Rappel de Mécanique: Moment d'une force

- Soit un solide en rotation autour d'un axe fixe et soumis à une force \vec{F} dont le point d'application est en P (voir Figure ci-dessous).
- Par définition, le moment de la force par rapport à O est donnée par: $\vec{\tau}_{\vec{F}/O} = \overrightarrow{OP} \times \vec{F}$
- Le moment de la force par rapport à (une droite qui passe par O et dirigée suivant le vecteur \vec{k} est: $\vec{\tau}_{\vec{F}/\Lambda} = \vec{\tau}_{\vec{F}}$

$$\vec{\tau}_{\vec{F}/\Lambda} = \vec{\tau}_{\vec{F}/O} \bullet \vec{k}$$

Moment de force sur une boucle de courant

• Qu'est ce qui se passe si on plonge une boucle (qui repose sur le plan x-y) parcourus par un courant I dans un champ magnétique $\vec{B} = B\hat{i}$?

• On remarque que les forces magnétiques agissant sur le coté 1 et 3 sont nulles puisque ces segment sont parallèles à \vec{B} .

• Donc $\vec{\mathbf{F}}_{\text{net}} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \vec{\mathbf{F}}_3 + \vec{\mathbf{F}}_4 = \vec{\mathbf{0}}$ comme prévus, mais \vec{F}_1 et \vec{F}_2 vont produire un moment de force résultant qui tend à faire tourner la boucle.

•Le moment de force par rapport au centre de la boucle est

poucle est
$$\vec{\tau}_{\vec{F}/O} = \left(\frac{-b}{2}\hat{i}\right) \times \vec{F}_2 + \left(\frac{b}{2}\hat{i}\right) \times \vec{F}_4$$
 $\vec{\tau}_{\vec{F}} = 0$

$$= \left(\frac{-b}{2}\hat{i}\right) \times \left(IaB\hat{k}\right) + \left(\frac{b}{2}\hat{i}\right) \times \left(-IaB\hat{k}\right)$$

$$= \left(\frac{IabB}{2} + \frac{IabB}{2}\right)\hat{j} = IabB\ \hat{j} = IAB\ \hat{j} \quad \text{Ou}\ A \text{ est l'aire de la surface de la boucle}$$

surface de la boucle

Donc puisque $\vec{A} = A \hat{k}$ on aura:

$$\vec{\tau}_{\vec{F}/O} = I\vec{A} \times \vec{B}$$

- La quantité $I\vec{A}$ est appelée moment magnétique dipolaire d'une boucle de courant et est noté $\vec{\mu}$.
- Si on a N boucle parcourue par un courant alors le moment magnétique s'écrit:

