Dashboard ► My courses ► www.learn.ed__57918_1 ► Diagnostic Test ► Mathematics Diagnostic Test ► Preview

Started on	Friday, 27 July 2018, 3:53 PM
State	Finished
Completed on	Friday, 27 July 2018, 3:53 PM
Time taken	11 secs

Grade 0.00 out of 100.00

Question 1

Not answered

Marked out of 5.00

Assuming that the denominators are never zero, which of the following statements are true in general?

Select all the true statements - there may be more than one.

$$\left(\frac{6}{x}\right)^2 = \frac{36}{x}$$

$$\frac{a}{b}\left(\frac{c}{d}\right) = \frac{a+c}{bd}$$

$$\left(\frac{6}{x}\right)^2 = \frac{36}{x^2}$$

$$\frac{1}{x}\left(x+\frac{1}{x}\right) = 1 + \frac{1}{2x}$$

$$\frac{x}{ab} + \frac{y}{ac} = \frac{cx+by}{abc}$$

Question 2

Not answered

Marked out of 5.00

Functions g and h are defined on suitable domains by $g(x)=3^{-3\,x}$ and $h(x)=rac{x^2}{9}+2.$

Given that $h(g(x)) = 3^{f(x)} + 2$, find an expression for f(x).

Which one of the following is the correct expression for f(x)?

$$lacksquare$$
 $-6x-2$

$$\square 2 - \frac{x^2}{3}$$

$$-3x-2$$

Not answered

Marked out of 5.00

(a) Rewrite the quadratic function $f(x)=4\,x^2-16\,x+15$ in the form $f(x)=a(x-p)^2+q$.

$$f(x) = \boxed{?*(x-?)^2+?}$$

(b) Which type of stationary point does this function have?

(No answer given)

(c) What are the coordinates of the stationary point?

Question 4

Not answered

Marked out of 5.00

Given that $\cos(x) = \frac{6}{7}$ for the acute angle x, find the value of $\cos(2x)$.

Give an exact answer as a fraction, for example 23/73. Do not give the answer as a decimal number.

Question 5

Not answered

Marked out of 5.00

The expression $15 \sin(x) + 8 \cos(x)$ can be written in the form $A \sin(x + \varphi)$, where A>0 and $-\pi<\varphi<\pi$.

Find the values of A and φ . Give the value of φ in radians, correct to at least three decimal places.

$$A =$$

Not answered

Marked out of 5.00

The vectors $\bf a$ and $\bf b$ lie in the plane as indicated on the diagram. The other vector shown is $p{\bf a}+q{\bf b}$ where p and q are both integers.

Give the values of p and q:

$$p =$$

$$q = \bigcap$$

Question 7

Not answered

Marked out of 5.00

A chemical factory has a rectangular room, with corners A, O and B as shown. The floor of the room is $2\,\mathrm{m}\times 5\,\mathrm{m}$ and the height of the room is $2\,\mathrm{m}$.

An engineer needs to bend a pipe at O so that it runs in a straight line from A to O, then bends at O, and then runs in a straight line from O to B.

What is the angle of the bend at O? Give your answer in degrees, correct to at least 1 decimal place.

Not answered

Marked out of 5.00

Express $2\,\ln(c\,u)-\ln\!\left(rac{u}{t}
ight)$ as a single logarithm.

Which one of the following is the correct result?

Question 9

Not answered

Marked out of 5.00

Complete the statements below:

- The curve with equation $y=-rac{3\,x}{3\,x^2-2}$ is plotted in graph

(No answer given) ▼

• The curve with equation $y=rac{-7\,x^3+15\,x+18}{28\,x}$ is plotted in graph

(No answer given) ▼

Graph A

Graph B

Graph C

Graph D

Not answered

Marked out of 5.00

You are given the two equations

$$\left. \begin{array}{l}
 x + a y + b = 0 \\
 -2 x - 3 y - 8 = 0
 \end{array} \right\}
 \tag{*}$$

where a and b are constants.

For each of the following statements, decide if it is always, sometimes or never true.

For those which you decide are "sometimes" true, give examples of values for a and b which make the statement true.

1. The system (*) has no solutions. (No answer given) ▼

If you think "sometimes" then give an example: a= igcup b = igcup

- 2. The system (*) has precisely one solution. (No answer given) $\ ^{lacktriangledown}$ If you think "sometimes" then give an example: a=
- 3. The system (*) has precisely two solutions. (No answer given) ullet If you think "sometimes" then give an example: a=
- 4. The system (*) has infinitely many solutions. (No answer given) $\ lacktriangledown$ If you think "sometimes" then give an example: a=

Question 11

Not answered

Marked out of 5.00

Given two integers a and b,

- $\max(a,b)$ denotes the maximum of a and b, e.g. $\max(10,20)=20$,
- $\min(a,b)$ denotes the minimum of a and b, e.g. $\min(10,20)=10$.
- (a) Evaluate the following expressions:

$$\max(\min(10,8),12) = \boxed{}$$

(b) Give values of a,b,c for which the following inequality is **false**:

$$\max(\min(a,b),c) > \min(\max(a,b),c).$$

$$a = \bigcap$$

$$b =$$

$$c =$$

Not answered

Marked out of 5.00

At what point on the graph of $y=x^2-x-3$ is the slope equal to -1?

$$(x,y)=($$
 $).$

Question 13

Not answered

Marked out of 5.00

The curve with equation $y=-t^2-6\,t-11$ has a tangent at t=-2, as shown in the diagram.

The tangent has equation y = mt + c. What are the values of m and c?

$$m = \bigcap$$

$$c =$$

Question 14

Not answered

Marked out of 5.00

A curve has equation $y=-rac{x^3}{3}+3\,x^2-33\,x-8.$

The line y = mx + c is a tangent to the curve at the point (a, b).

(a) Find the values of m to complete the following statements:

$$ullet$$
 When $a=-2$, $m=$

$$ullet$$
 When $a=1$, $m=$

(b) What is the maximum value of m, over all possible values of a?.

Not answered

Marked out of 5.00

The curve $y=rac{2\,x^3}{3}-2\,x^2-2$ has two stationary points. Complete the table below to show the x-coordinates of the stationary points and their nature.

Note: Enter the x-coordinates in ascending order, i.e. with the smaller first.

x	Nature
	(No answer given) ▼
	(No answer given) ▼

Question 16

Not answered

Marked out of 5.00

Which one of the following is the derivative of $\cos \left(a\,x^2 + b
ight)$ with respect to x?

$$-2ax\sin(ax^2+b)$$

$$-2ax\sin(2ax)$$

$$-\sin(2ax)$$

Question 17

Not answered

Marked out of 5.00

Which one of the following is the derivative of $(2x^2+6)^3$ with respect to x?

$$\begin{array}{c} \blacksquare \ \ 6 \left(2 \, x^2 + 6\right)^2 \\ \blacksquare \ \ \frac{\left(2 \, x^2 + 6\right)^4}{16 \, x} \\ \blacksquare \ \ 48 \, x^5 \end{array}$$

$$\frac{16}{1900}$$

$$\square 12 x (2 x^2 + 6)^2$$

Question 18

Not answered

Marked out of 5.00

Find the exact value of $\int_{-\infty}^{3} \frac{5}{x^3} dx$.

Give your answer as a fraction, for example 17/33.

Not answered

Marked out of 5.00

The curve with equation $y=3\,x^2-15\,x$ is shown in the diagram.

Find the value of k for which the two shaded areas are equal.

$$k =$$

Question 20

Not answered

Marked out of 5.00

The function f(x) is such that f(4)=11 and its derivative $f^{\prime}(4)=-7$.

Given that g(x)=xf(x), what is the value of $g^{\prime}(4)$?

$$g'(4) =$$