ADVANCED PLACEMENT PHYSICS C TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

 $e = 1.60 \times 10^{-19} \text{ C}$ Electron charge magnitude,

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light,

Universal gravitational $G = 6.67 \times 10^{-11} \left(\text{N} \cdot \text{m}^2 \right) / \text{kg}^2$

constant,

Acceleration due to gravity $g = 9.8 \text{ m/s}^2$

at Earth's surface,

1 unified atomic mass unit,

 $1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$

 $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$ Planck's constant,

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$

 $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$ Vacuum permittivity,

Coulomb's law constant, $k = 1/(4\pi\epsilon_0) = 9.0 \times 10^9 \text{ (N} \cdot \text{m}^2)/\text{C}^2$

 $\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$ Vacuum permeability,

Magnetic constant, $k' = \mu_0/(4\pi) = 1 \times 10^{-7}$ (T·m)/A

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$ 1 atmosphere pressure,

UNIT SYMBOLS	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	С	tesla,	Т
	second,	S	newton,	N	volt,	V	degree Celsius,	°C
	ampere,	A	pascal,	Pa	ohm,	Ω	electron volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES					
Factor	Prefix	Symbol			
10 ⁹	giga	G			
10 ⁶	mega	M			
10 ³	kilo	k			
10^{-2}	centi	С			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	р			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following assumptions are used in this exam.

- The frame of reference of any problem is inertial unless otherwise
- II. The direction of current is the direction in which positive charges would drift.
- The electric potential is zero at an infinite distance from an isolated III. point charge.
- IV. All batteries and meters are ideal unless otherwise stated.
- V. Edge effects for the electric field of a parallel plate capacitor are negligible unless otherwise stated.

 $\frac{1}{R_p} = \sum_i \frac{1}{R_i}$

 $P = I\Delta V$

M	IECHANICS
$v_x = v_{x0} + a_x t$	a = acceleration
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	E = energy F = force
	f - frequency
$v_x^2 = v_{x0}^2 + 2a_x(x - x)$	(x_0) $h = \text{height}$
5	I = rotational inertia
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	J = impulse
m m	K = kinetic energy
$\Rightarrow d\vec{p}$	k = spring constant
$\vec{F} = \frac{d\vec{p}}{dt}$	$\ell = length$
	L = angular momentum
$\vec{J} = \int \vec{F} dt = \Delta \vec{p}$	m = mass
	P = power
$\vec{p} = m\vec{v}$	p = momentum r = radius or distance
$\left \vec{F}_f \le \mu \vec{F}_N \right $	T = period
$ \Gamma_f \leq \mu \Gamma_N $	t = time
$\Delta E = W = \int \vec{F} \cdot d\vec{r}$	U = potential energy
$\Delta E = W = \int F \cdot ar$	v = velocity or speed
$K = \frac{1}{2}mv^2$	W = work done on a syster
2	x = position
$\int_{-\infty}^{\infty} dE$	μ = coefficient of friction
$P = \frac{dE}{dt}$	θ = angle
→	$\tau = \text{torque}$
$P = \vec{F} \cdot \vec{v}$	ω = angular speed α = angular acceleration
$\Delta U_g = mg\Delta h$	ϕ = phase angle
$\Delta O_g = m_S \Delta n$, ,
$a_c = \frac{v^2}{r} = \omega^2 r$	$\vec{F}_s = -k\Delta \vec{x}$
$a_c = \frac{1}{r} = \omega^2 r$	1
 → → +	$U_{S} = \frac{1}{2}k(\Delta x)^{2}$
$\vec{\tau} = \vec{r} \times \vec{F}$	$x = x_{\text{max}} \cos(\omega t + \phi)$
$\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	
I I	$T = \frac{2\pi}{\omega} = \frac{1}{f}$
$I = \int r^2 dm = \sum mr^2$	
	$T_s = 2\pi \sqrt{\frac{m}{k}}$
$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	
$\sum m_i$	$T_p = 2\pi \sqrt{\frac{\ell}{\sigma}}$
$v = r\omega$	18
$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$	$\left \vec{F}_G \right = \frac{Gm_1 m_2}{r^2}$
$K = \frac{1}{2}I\omega^2$	$U_G = -\frac{Gm_1m_2}{r}$
$\omega = \omega_0 + \alpha t$	

 $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$

ELECTRICITY AND MAGNETISM					
$\left \vec{F}_E \right = \frac{1}{4\pi\varepsilon_0} \left \frac{q_1 q_2}{r^2} \right $	A = areaB = magnetic fieldC = capacitance				
$\vec{E} = \frac{\vec{F}_E}{q}$	$d = \text{distance}$ $d = \text{distance}$ $E = \text{electric field}$ $\mathcal{E} = \text{emf}$				
$\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$	F = force $I = current$ $J = current density$				
$E_x = -\frac{dV}{dx}$	L = inductance $\ell = \text{length}$				
$\Delta V = -\int \vec{E} \cdot d\vec{r}$	n = number of loops of wireper unit lengthN = number of charge carriers				
$V = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i}$	P = power $Q = charge$				
$U_E = qV = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$	 q = point charge R = resistance r = radius or distance 				
$\Delta V = \frac{Q}{C}$	t = time $U = potential or stored energy$				
$C = \frac{\kappa \varepsilon_0 A}{d}$	V = electric potential v = velocity or speed $\rho =$ resistivity				
$C_p = \sum_i C_i$	$ \Phi = \text{flux} $ $ \kappa = \text{dielectric constant} $				
$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$	$\vec{F}_M = q\vec{v} \times \vec{B}$ $\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I$				
$I = \frac{dQ}{dt}$	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{\ell} \times \hat{r}}{r^2}$				
$U_C = \frac{1}{2}Q\Delta V = \frac{1}{2}C(\Delta V)^2$ $R = \frac{\rho\ell}{4}$	$4\pi \qquad r^2$ $\vec{F} = \int I \ d\vec{\ell} \times \vec{B}$				
$\vec{E} = \rho \vec{J}$	$B_s = \mu_0 nI$				
$I = Nev_d A$ ΔV	$\Phi_B = \int \vec{B} \cdot d\vec{A}$				
$I = \frac{\Delta V}{R}$ $R_{s} = \sum_{i} R_{i}$	$\varepsilon = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$				
	$\mathcal{E} = -L\frac{dI}{dt}$				

 $U_L = \frac{1}{2}LI^2$

ADVANCED PLACEMENT PHYSICS C EQUATIONS

GEOMETRY AND TRIGONOMETRY

_						
R	0	~ 1	1	n	α	0
1		L /	1	11	יצו	

$$A = area$$

$$A = bh$$

C = circumference

Triangle

V = volume

$$A = \frac{1}{2}bh$$

S =surface area b = base

h = height

Circle

$$h = \text{heigh}$$

 $A = \pi r^2$

$$\ell = \text{length}$$

 $w = \text{width}$

 $C = 2\pi r$

$$r = \text{radius}$$

$$c - rA$$

$$s = arc length$$

 $s = r\theta$

$$\theta$$
 = angle

Rectangular Solid

$$V = \ell w h$$

Cylinder

$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du} \frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\frac{d}{dx}(\ln ax) = \frac{1}{x}$$

$$\frac{d}{dx}[\sin(ax)] = a\cos(ax)$$

$$\frac{d}{dx}[\cos(ax)] = -a\sin(ax)$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int \frac{dx}{x+a} = \ln|x+a|$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax)$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax)$$

VECTOR PRODUCTS

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$\left| \vec{A} \times \vec{B} \right| = AB \sin \theta$$