Simulations in Mechatronic Design							
Title of exercise	f exercise Ex. 3 – Modelling a mechanical system with flexible elements						
Name and surname	Harshit Verma	Date	31.05.24				
Group	1	_					
Academic year	2023/2024	No. of points	Σ	/7			

Catalogue number of the motor: 17N78

Value of the electromechanical time constant of the motor: $8*10^{-3}s$

Clutch activation time : $24.7*10^{-3}s$				
1. Angular position of the motor rotor and load - a set of mathematical dependencies transformed into a form φ_1 = and φ_2 =				

Explanation of symbols

Symbol (and value)	Name of the quantity / parameter Unit	
$oldsymbol{arphi}_1$	The angular position of the motor rotor	rad
$oldsymbol{arphi}_2$	The angular position of the load	rad
Mred = 12(0.25) = 3	reduced active load torque	Nmm
$J_red = J_s * 2 = 2.4(10^{-4})$	reduced mass moment of inertia of the driven elements	gm^2

C=2	coefficient of angular stiffness	Nmm/rad			
Explanation of symbols cont.					
Symbol (and value)	Name of the quantity / parameter Unit				
b	coefficient of angular dumping	Nmm*s			
M_e	electromagnetic torque of the motor	Nmm			
$M_{ m r}$	friction torque in the motor	Nmm			
$J_{s} = 1.2 * 10^{-4}$	Rotor inertia	gm^2			
${m \phi'}_1$	angular velocity of the motor rotor	Rad/s			
${m \phi'}_{_{m 2}}$	angular velocity of the load	Rad/s			
$K_{\rm T} = 0.0184$	Torque constant	Nmm/mA			
$K_e = 18.43$	Back emf constant	mV/rad/s			
V = 18000	Supply voltage	mV			
$R_{t} = 27.5$	Terminal resistance	Ohms			
i	armature current	mA			
L = 0.0047	Rotor inductance	Н			
i ₀ = 5	average no-load current	mA			

4. Graph of difference in angular positions of the rotor and the load (φ_1 - φ_2)

5. Simulation model

