# **Computation on Arrays: Broadcasting**

#### **Broadcasting**:

A set of rules by which NumPy lets you apply binary operations (e.g., addition, subtraction, multiplication, etc.) between arrays of different sizes and shapes.

# **Introducing Broadcasting**

Recall that for arrays of the **same size**, binary operations are performed on an **element-by-element** basis:

In [80]: import numpy as np

```
In [ ]: a = np.array([0, 1, 2])
b = np.array([5, 5, 5])
a + b
```

Out[]: array([5, 6, 7])

**Broadcasting** allows these types of **binary operations** to be performed on arrays of **different sizes.** 

**For example,** we can just as easily **add a scalar** (think of it as a zero-dimensional array) **to an array**:

```
In [ ]: a + 5
```

Out[]: array([5, 6, 7])

We can think of this as an operation that **stretches or duplicates** the **value** 5 **into the array** [5, 5, 5], and **adds the results.** 

We can similarly **extend this idea** to **arrays of higher dimension.**Observe the result when we add a **one-dimensional array to a two-dimensional** array:

Here the one-dimensional array a is **stretched**, or **broadcasted**, across the second dimension in order to match the shape of M.

While these examples are relatively easy to understand, more complicated cases can involve broadcasting of both arrays:

```
In [67]: a = np.arange(3)
         b = np.arange(3)[:, np.newaxis]
         print(a)
         print(b)
        [0 1 2]
        [[0]]
         [1]
         [2]]
In [ ]: a + b
Out[]: array([[0, 1, 2],
                 [1, 2, 3],
                 [2, 3, 4]])
```

Just as before we **stretched or broadcasted** one value to **match the shape** of the other.

Here we've stretched **both** a and b to match **a** common shape, and the **result is a two-dimensional array!** 

The **geometry** of these examples is visualized in the following figure:



The **light boxes** represent the **broadcasted values**.

This way of thinking about **broadcasting** may raise questions about its **efficiency in terms of memory use**:

NumPy broadcasting **does not actually copy the broadcasted values** in memory.

Still, this can be a **useful mental model** as we think about broadcasting.

## **Rules of Broadcasting**

**Broadcasting** in NumPy follows a **strict set of rules** to determine the interaction between the two arrays:

- Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is padded with ones on its leading (left) side.
- Rule 2: If the shape of the two arrays does **not match** in **any** dimension, the **array with shape equal to 1** in that dimension is **stretched** to match **the other shape.**
- Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

To make these rules clear, let's consider a few examples in detail.

## **Broadcasting Example 1**

Suppose we want to **add** a **two-dimensional** array to a **one-dimensional** array:

Let's consider an **operation on these two arrays**, which have the **following shapes:** 

- M.shape is (2, 3)
- a.shape is (3,)

We see by rule 1 that the array a has fewer dimensions, so we pad it on the left with ones:

- M.shape remains (2, 3)
- a.shape becomes (1, 3)

By rule 2, we now see that the first dimension disagrees, so we stretch this dimension to match:

- M.shape remains (2, 3)
- a.shape becomes (2, 3)

The **shapes now match**, and we see that the **final shape will be** (2, 3):

## **Broadcasting Example 2**

Now let's take a look at an **example** where **both arrays need to be broadcast:** 

```
In [ ]: b
Out[ ]: array([0, 1, 2])
```

Again, we'll start by **determining the shapes** of the arrays:

- a.shape is (3, 1)
- b.shape is (3,)

**Rule 1** says we must **pad the shape** of b with **ones:** 

- a.shape remains (3, 1)
- b.shape becomes (1, 3)

And rule 2 tells us that we must upgrade each of these 1 s to match the corresponding size of the other array:

• a.shape becomes (3, 3)

• b.shape becomes (3, 3)

Because the **results match**, these **shapes are compatible**. We can see this here:

# **Broadcasting Example 3**

Next, let's take a look at an **example** in which the two **arrays are not compatible**:

```
In [39]: M = np.ones((3, 2))
a = np.arange(3)
```

This is just a **slightly different** situation than in the **first example**: the matrix **M** is transposed.

How does this affect the calculation? The **shapes** of the arrays are as follows:

- M.shape is (3, 2)
- a.shape is (3,)

Again, rule 1 tells us that we must pad the shape of a with ones:

- M.shape remains (3, 2)
- a.shape becomes (1, 3)

By rule 2, the first dimension of a is then stretched to match that of M:

- M.shape remains (3, 2)
- a.shape becomes (3, 3)

Now we hit **rule 3** —the **final shapes** do **not match**, so these two arrays are **incompatible**, as we can observe by attempting this operation:

```
In [41]: M + a
```

```
ValueError
t call last)
Cell In[41], line 1
----> 1 M + a
ValueError: operands could not be broadcast together with shape
s (3,2) (3,)
```

Note the **potential confusion** here:

You could imagine making a and M compatible by, say, padding a 's shape with ones on the right rather than the left.

But this is **not how the broadcasting rules work!** 

That sort of **flexibility** might be **useful in some cases**, but it would lead to potential areas of **ambiguity**.

If right-side padding is what you'd like, you can do this explicitly by reshaping the array (we'll use the np.newaxis keyword introduced in The Basics of NumPy Arrays for this):

```
In [43]: a
Out[43]: array([0, 1, 2])
In [45]: M
Out[45]: array([[1., 1.],
                [1., 1.],
                 [1., 1.]
In [47]: a.shape
Out[47]: (3,)
In [49]: M. shape
```

```
Out[49]: (3, 2)
In [61]: a[:, np.newaxis]
Out[61]: array([[0],
                [1],
                 [2]])
In [59]: a[:, np.newaxis].shape
Out[59]: (3, 1)
In [57]: M + a
```

```
ValueError
                                                  Traceback (most recen
        t call last)
        Cell In[57], line 1
        ----> 1 M + a
        ValueError: operands could not be broadcast together with shape
        s(3,2)(3,)
In [55]: M + a[:, np.newaxis]
Out[55]: array([[1., 1.],
                 [2., 2.],
                 [3., 3.11)
```

Also notice that while we've been **focusing on the** + **operator** here, these broadcasting rules apply to **any binary ufunc.** 

For **example**, here is the logaddexp(a, b) function, which computes log(exp(a) + exp(b)) with **more precision** than the naive approach:

For more information on the many available universal functions, refer to **Computation on NumPy Arrays: Universal Functions.** 

## **Broadcasting in Practice**

Broadcasting operations form the core of many examples you'll see throughout this book.

We'll now take a look at **some instances** of where they can be useful.

# **Centering an Array**

In Computation on NumPy Arrays: Universal Functions, we saw that ufuncs allow a NumPy user to remove the need to explicitly write slow Python loops.

Broadcasting extends this ability.

One commonly seen **example** in data science is **subtracting the** row-wise mean from an array of data.

Imagine we have an array of 10 observations, each of which consists of 3 values.

Using the standard convention (**Data Representation in Scikit-Learn**), we'll **store this in a \$\pmb{10 \times 3}\$ array**:

We can compute the **mean of each column** using the **mean** aggregate across the first dimension:

```
In [ ]: Xmean = X.mean(0)
Xmean
Out[ ]: array([0.38503638, 0.36991443, 0.63896043])
```

# And now we can **center the** X **array** by **subtracting the mean** (this is a broadcasting operation):

```
In [ ]: | X centered = X - Xmean
In [ ]: X centered
Out[]: array([[ 0.01703691, -0.06428131, 0.03772009],
               [-0.2268243, 0.4225632, -0.54476574],
               [-0.01749695, -0.30602514, 0.32535566],
               [-0.0330264, 0.175589, 0.24701902],
               [0.18513326, -0.10377048, 0.17807777],
               [0.17403013, -0.30604408, 0.20981709],
               [0.50910846, -0.18070657, -0.40236028],
               [-0.22000743, 0.19592414, -0.34382932],
               [-0.09425626, 0.53088102, -0.03903608],
               [-0.29369742, -0.36412976, 0.33200179]])
```

To **double-check** that we've done this correctly, we can check that the **centered array has a mean near zero:** 

```
In [ ]: X_centered.mean(0)
Out[ ]: array([ 4.99600361e-17, -4.44089210e-17, 0.000000000e+00])
```

To within *machine precision*, the **mean is now zero.** 

# Plotting a Two-Dimensional Function

One place that **broadcasting** often comes in **handy** is in **displaying** images based on two-dimensional functions.

If we want to define a function z = f(x, y), **broadcasting** can be used to **compute the function across the grid**:

```
In [82]: # x and y have 50 steps from 0 to 5
          x = np.linspace(0, 5, 50)
          y = np.linspace(0, 5, 50)[:, np.newaxis]
          z = np.sin(x) ** 10 + np.cos(10 + y * x) * np.cos(x)
In [84]: print(x.shape)
          print(y.shape)
          print(z.shape)
         (50,)
         (50, 1)
         (50, 50)
          We'll use Matplotlib to plot this two-dimensional array, shown in
          the following figure (these tools will be discussed in full in Density
```

In [86]: %matplotlib inline

and Contour Plots):

#### import matplotlib.pyplot as plt

```
In [110...
```

```
plt.imshow(z, origin='lower', extent=[0, 5, 0, 5])
plt.rcParams['figure.figsize'] = [.2, .2]
plt.colorbar();
```



The result is a visualization of the two-dimensional function.