所有试题解答写在答题纸上,答案写在试卷上无效

(考试时间: 2022-6-15)

1. (每小题 3 分, 总 18 分) 岁	判断题
------------------------	-----

	11)	一个时间可逆的连续时间马氏链的嵌入链也是时间可逆的,	1	1
1	(I)	一个时间可见的连续时间与民铁的欧人铁也走时间可见的。	()

- (2) 设 $i \leftrightarrow j$, j 的周期为 d > 1, 则 $\lim_{n \to \infty} P_{ij}^{nd} = d/\mu_{jj}$, 其中 μ_{jj} 是马氏链相邻两次 访问状态 j 的期望间隔时间. ()
- (3) 设 S 和 T 是一个随机变量序列的停时, 则 $\min\{S,T\}$ 也是一个停时. ()
- (4) 半马氏过程是一类特殊的连续时间马氏过程. ()
- (5) 设 $\{Z_n, n \ge 1\}$ 为二阶矩存在有限的鞅, 定义 $X_k = Z_k Z_{k-1}, k \ge 1$, 且约定 $Z_0 = 0$, 则 $Var(Z_n) = \sum_{k=1}^n Var(X_k)$. ()
- (6) 在布朗运动中, 从 0 状态到达其它任一状态的平均时间皆为正无穷. ()
- 2. (总 21 分, 其中附加题 5 分) 现有一个粒子在一个圆周上做随机游动,圆周上有 12 个状态,按顺时针方向分别编号为 $1,2,\ldots,12$. 设 X_n 表示粒子在时刻 n (即第 n 步跳以后) 所处的状态,且假设粒子的每一步跳都会等概率地往顺时针或逆时针方向跳一步.
 - (1) (8 分)该过程长时间运行下去,求粒子处在状态 k 的概率;
 - (2) (8 分) 求粒子从状态 12 出发重新回到 12 状态平均需要跳的步数;
 - (3) 【附加题, 5 分】粒子从状态 12 出发, 再次回到状态 12 之前访问过其它所有的 11 个状态的概率有多大?
- 3. (每小题 6 分, 总 24 分) 假设一个加油站有 3 个加油停车位和 2 个加油工,来到加油站的汽车按一个 Poisson 过程到达,平均每 10 分钟到达一辆. 如果驾驶员发现加油车位已经被占用,则自行离开. 假设每辆车加油所需时间服从均值为 20 分钟的指数分布.
 - (1) 求到达加油站没有加油直接离开的车辆的平均占比:
 - (2) 求稳态情形下在加油站等待或正在加油的平均车辆个数;
 - (3) 求稳态情形下相邻两个忙期开始的平均间隔时间;
 - (4) 求稳态情形下一个忙期之内平均加油的车辆数.

- 5. (每小题 8 分, 总 16 分) 考虑一个简单随机游动, 其中质点每次向右移动一个单位的 概率为 $p \in (0,1)$, 往左移动一个单位的概率为 q = 1 p. 令 S_n 为质点时刻 n (即第 n 次跳之后) 所处的位置, 且假设 $S_0 = 0$.
 - (1) 证明 $\{Z_n, n \geq 0\}$ 为一个鞅, 其中

$$Z_n = rac{1}{[4p(1-p)]^{n/2}} \left(rac{1-p}{p}
ight)^{S_n/2}.$$

(2) 证明: 对任意 $n \ge 1$ 和 a > 1,

$$P(\max\{Z_1,\ldots,Z_n\}>a)\leq \frac{1}{a}.$$

6. (10 分) 设 $\{B(t), t \geq 0\}$ 是一个标准布朗运动, 定义随机变量序列 $Z_n = \sum_{k=1}^n B(k)$, $n \geq 1$, 求 Z_n 的分布.