Appendix V

Table of distributions

	mass/density function	domain	mean
Bernoulli	$f(1) = p, \ f(0) = q = 1 - p$	{0, 1}	p
Uniform (discrete)	n^{-1}	$\{1,2,\ldots,n\}$	$\frac{1}{2}(n+1)$
Binomial $bin(n, p)$	$\binom{n}{k}p^k(1-p)^{n-k}$	$\{0,1,\ldots,n\}$	np
Geometric	$p(1-p)^{k-1}$	$k=1,2,\ldots$	p^{-1}
Poisson	$e^{-\lambda}\lambda^k/k!$	$k=0,1,2,\ldots$	λ
Negative binomial	$\binom{k-1}{n-1}p^n(1-p)^{k-n}$	$k=n,n+1,\ldots$	np^{-1}
Hypergeometric	$\frac{\binom{b}{k}\binom{N-b}{n-k}}{\binom{N}{n}}, \ p = \frac{b}{N}, \ q = \frac{N-b}{N}$	$\{0,1,2,\ldots,b\wedge n\}$	np .
Uniform (continuous)	$(b-a)^{-1}$	[a,b]	$\frac{1}{2}(a+b)$
Exponential	$\lambda e^{-\lambda x}$	[0, ∞)	λ^{-1}
Normal $N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	R	μ
Gamma $\Gamma(\lambda, \tau)$	$\frac{1}{\Gamma(\tau)}\lambda^{\tau}x^{\tau-1}e^{-\lambda x}$	[0, ∞)	$ au\lambda^{-1}$
Cauchy	$\frac{1}{\pi(1+x^2)}$	R	-
Beta $\beta(a,b)$	$\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1}$	[0, 1]	$\frac{a}{a+b}$
Doubly exponential	$\exp(-x - e^{-x})$. R .	γ†
Rayleigh	$xe^{-\frac{1}{2}x^2}$	[0, ∞)	$\sqrt{\frac{\pi}{2}}$
Laplace	$\frac{1}{2}\lambda e^{-\lambda x }$	R	. 0

skewness

 $q-\underline{p}$

 \sqrt{pq}

0

 $\frac{1-2p}{\sqrt{np(1-p)}}$

 $\frac{2-p}{\sqrt{1-p}}$

 $\lambda^{-\frac{1}{2}}$

 $\frac{2-p}{\sqrt{n(1-p)}}$

0

2

variance

pq

 $\frac{1}{12}(n^2-1)$

np(1-p)

 $(1-p)p^{-2}$

λ

 $n(1-p)p^{-2}$

 $\frac{npq(N-n)}{N-1}$

 $\frac{1}{12}(b-a)^2$

 λ^{-2}

characteristic function

 $q + pe^{it}$

 $e^{it}(1-e^{int})$ $n(1-e^{it})$

 $(1-p+pe^{it})^n$

 $\frac{p}{e^{-it} - 1 + p}$

 $\exp\{\lambda(e^{it}-1)\}$

 $e^{ibt} - e^{iat}$ $\overline{it(b-a)}$

 $\frac{\lambda}{\lambda - it}$

 $e^{i\mu t - \frac{1}{2}\sigma^2t^2}$ 0 $\left(\frac{\lambda}{\lambda - it}\right)$ $2\tau^{-\frac{1}{2}}$ $\tau \lambda^{-2}$ $e^{-|t|}$ $M(a, a+b, it)^{\dagger}$ 2(a - b) $ab(a+b)^2$ $\overline{a+b+2}$ a+b+1 $\Gamma(1-it)$ 1.29857... $\frac{1}{6}\pi^2$ $1+\sqrt{2\pi}it\big(1-\Phi(-it)\big)e^{-\frac{1}{2}t^2}\dagger$ $\frac{2\sqrt{\pi}(\pi - 3)}{(4 - \pi)^{3/2}}$ $\overline{\lambda^2 + t^2}$ $2\lambda^2$ $\dagger F(a,b;c;z)$ is Gauss's hypergeometric function and M(a,a+b,it) is a confluent hypergeometric function. The N(0,1) distribution function is denoted by Φ .

The letter y denotes Euler's constant.