LATEX Template for STAT 548 Qualifying Paper Report

Naitong Chen

September 22, 2022

1 Summary

Tibshirani and Wasserman (2015)

Stein's Lemma:

- (univariate) Let $Z \sim \mathcal{N}(0,1)$. Let $f : \mathbb{R} \to \mathbb{R}$ be absolutely continuous, with derivative f' (and assume that $\mathbb{E}[|f'(Z)|] < \infty$). Then $\mathbb{E}[Zf(Z)] = \mathbb{E}[f'(Z)]$.
- (extesion) Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then $\frac{1}{\sigma^2} \mathbb{E}\left[(x \mu) f(x) \right] = \mathbb{E}\left[f'(X) \right]$.
- (multivariate) Let $X \sim \mathcal{N}(\mu, \sigma^2 I)$, where $\mu \in \mathbb{R}^n$ and $\sigma^2 I \in \mathbb{R}^{n \times n}$. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function such that, for each $i = 1, \dots, n$ and almost every $x_{-i} \in \mathbb{R}^{n-1}$, $f(\cdot, x_{-i}) : \mathbb{R} \to \mathbb{R}$ is absolutely continuous (and assume $||f(X)||_2 < \infty$). Then $\frac{1}{\sigma^2} \mathbb{E}[(X \mu)f(X)] = \mathbb{E}[\nabla f(X)]$.
- (extension) Let $f = (f_1, \dots, f_n)$, then

$$\frac{1}{\sigma^2} \mathbb{E}\left[(X - \mu) f_i(X) \right] = \mathbb{E}\left[\nabla f_i(X) \right]$$

$$\implies \frac{1}{\sigma^2} \sum_{i=1}^n \operatorname{Cov}(X_i, f_i(X)) = \frac{1}{\sigma^2} \sum_{i=1}^n \mathbb{E}\left[(X_i - \mu_i) f_i(X) \right] = \mathbb{E}\left[\sum_{i=1}^n \frac{\partial f_i}{\partial X_i}(X) \right].$$

Stein's Unbiased Risk Estimate (SURE):

Given samples $y \sim \mathcal{N}(\mu, \sigma^2 I)$, and a function $\hat{\mu} : \mathbb{R}^n \to \mathbb{R}^n$, $\hat{\mu}$ is a fitting procedure that, from y, provides an estimate $\hat{\mu}(y)$ of the underlying (unknown) mean μ . Then

$$R = \mathbb{E}_{y} \|\mu - \hat{\mu}(y)\|^{2}$$

$$= -n\sigma^{2} + \mathbb{E} \|y - \hat{\mu}\|_{2}^{2} + 2\sigma^{2} \mathrm{df}(\hat{\mu})$$

$$= -n\sigma^{2} + \mathbb{E} \|y - \hat{\mu}\|_{2}^{2} + 2\sum_{i=1}^{n} \mathrm{Cov}(y_{i}, \hat{\mu}_{i}),$$

where $df(\hat{\mu}) = \frac{1}{\sigma^2} \sum_{i=1}^n Cov(y_i, \hat{\mu}_i)$. And

$$\hat{R} = -n\sigma^2 + \|y - \hat{\mu}(y)\|_2^2 + 2\sigma^2 \sum_{i=1}^n \frac{\partial \hat{\mu}_i}{\partial y_i}(y)$$

is an unbiased estimate for R.

Extending SURE to regularized estimators:

Now suppose $\hat{\mu}_{\lambda}$ depends on $\lambda \in \Lambda$, which controls the degree of regularization to our estimator (typically $\Lambda = \mathbb{R}_{>0}$), and assume σ is known, we can find the optimal λ , denoted $\hat{\lambda}$ by

$$\hat{\lambda} = \operatorname*{arg\,min}_{\sigma \in \Sigma} \|y - \hat{\mu}_{\lambda}(y)\|_{2}^{2} + 2\sigma^{2} \sum_{i=1}^{n} \frac{\partial \hat{\mu}_{\lambda,i}}{\partial y_{i}}(y).$$

- 2 Mini-proposals
- 2.1 Proposal 1: MY PROPOSAL TITLE
- 2.2 Proposal 2: MY OTHER PROPOSAL TITLE

3 Project report

SURE with Ridge Regression:

Let
$$y \sim \mathcal{N}(X^T \beta, \sigma^2)$$
, where $y \in \mathbb{R}$ and $X \in \mathbb{R}^{p+1}$, X constant. Then with $\mathbf{X} = \begin{bmatrix} X_1^T \\ \vdots \\ X_n^T \end{bmatrix}$

we have $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{X}\beta, \sigma^2 I)$, where $\boldsymbol{y} \in \mathbb{R}^n$ and $\boldsymbol{X} \in \mathbb{R}^{n \times (p+1)}$.

We know that $\hat{\beta}_{\text{ridge}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda I_{p+1})^{-1} \boldsymbol{X}^T \boldsymbol{y}$, then

$$\hat{\mu}_{\lambda}(\boldsymbol{y}) = \boldsymbol{X} \hat{\beta}_{\text{ridge}} = \boldsymbol{X} \left(\boldsymbol{X}^{T} \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$$

$$\hat{\mu}_{\lambda,i}(\boldsymbol{y}) = X_{i}^{T} \hat{\beta}_{\text{ridge}} = X_{i}^{T} \left(\boldsymbol{X}^{T} \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$$

Then

$$\frac{\hat{\mu}_{\lambda,i}(\boldsymbol{y})}{\partial y_i} = \frac{\partial}{\partial y_i} \left(X_i^T \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y} \right)
= \frac{\partial}{\partial y_i} F_i \boldsymbol{y} \qquad (F_i := X_i^T \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \boldsymbol{X}^T \in \mathbb{R}^n)
= F_{i,i}
= \left(X_i^T \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \boldsymbol{X}^T \right)_i.$$

We can now write

$$\hat{R} = -n\sigma^2 + \|\boldsymbol{y} - \hat{\mu}_{\lambda}(\boldsymbol{y})\|_{2}^{2} + 2\sigma^2 \sum_{i=1}^{n} \left(X_{i}^{T} \left(\boldsymbol{X}^{T} \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \boldsymbol{X}^{T} \right)_{i}$$

$$= -n\sigma^2 + \|\boldsymbol{y} - \hat{\mu}_{\lambda}(\boldsymbol{y})\|_{2}^{2} + 2\sigma^2 \operatorname{tr} \left(\boldsymbol{X} \left(\boldsymbol{X}^{T} \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \boldsymbol{X}^{T} \right)$$

$$= -n\sigma^2 + \|\boldsymbol{y} - \hat{\mu}_{\lambda}(\boldsymbol{y})\|_{2}^{2} + 2\sigma^2 \operatorname{tr} \left(\boldsymbol{X}^{T} \boldsymbol{X} \left(\boldsymbol{X}^{T} \boldsymbol{X} + \lambda I_{p+1} \right)^{-1} \right)$$

$$= -n\sigma^2 + \|\boldsymbol{y} - \hat{\mu}_{\lambda}(\boldsymbol{y})\|_{2}^{2} + 2\sigma^2 \operatorname{tr} \left(H \left(H + \lambda I_{p+1} \right)^{-1} \right),$$

where the last line is by defining $H := \mathbf{X}^T \mathbf{X}$. We can optimize λ over \hat{R} using autodiff (log-transform λ so that it is nonnegative).

References

Ryan Tibshirani and L Wasserman. Stein's unbiased risk estimate. Course notes from "Statistical Machine Learning, pages 1–12, 2015.