Bayesian estimation of optical properties of the human head via 3D structural MRI

June 23, 2003 at ECBO 2003

Alex Barnett

Courant Institute, New York University

Collaborators (NMR Center, Mass. Gen. Hosp., Boston)

David Boas Joe Culver Anna Custo (MIT)

Gregory Sorensen Anders Dale

Funding: CIMS, NIH, CIMIT

The big picture

Diffuse Optical Tomography (DOT):

The big picture

Diffuse Optical Tomography (DOT):

vector \mathbf{x} = spatial absorption & scattering infovector \mathbf{y} = components of measured signals Inverse problem: given \mathbf{y} find \mathbf{x} .

The big picture

Diffuse Optical Tomography (DOT):

vector $\mathbf{x} = \text{spatial absorption } \& \text{ scattering info}$ vector $\mathbf{y} = \text{components of measured signals}$ Inverse problem: given \mathbf{y} find \mathbf{x} . Many wavelengths \rightarrow [HbO₂], [HbR], activation...

Baseline optical measurement

Assuming head tissues optically homogeneous: How well could we measure their baseline properties?

- absolute cortical absorption μ_a • cerebral oximetry, neonatal, stroke, trauma...
- required for *quantitative* brain activation studies

Baseline optical measurement

Assuming head tissues optically homogeneous: How well could we measure their baseline properties?

- absolute cortical absorption μ_a • cerebral oximetry, neonatal, stroke, trauma...
- required for *quantitative* brain activation studies

small # unknowns (N = 6): $\mathbf{x} \equiv \{\mu_a, \mu'_s\}$ scalp, skull, brain

- time-resolved DOT
- small system eg 2 Src, 4 Det

Baseline optical measurement

Assuming head tissues optically homogeneous: How well could we measure their baseline properties?

- absolute cortical absorption μ_a • cerebral oximetry, neonatal, stroke, trauma...
- required for *quantitative* brain activation studies

small # unknowns (N = 6): $\mathbf{x} \equiv \{\mu_a, \mu'_s\}$ scalp, skull, brain

- time-resolved DOT
- small system eg 2 Src, 4 Det

Numerical study: simulated noisy signals y

MRI segmented geometry

segment -

MRI segmented geometry

segment

tissue	μ_a (mm ⁻¹)	μ_s' (mm ⁻¹)	shape
scalp	0.015	0.8	~ 7 mm layer
skull	0.01	1.0	~ 7 mm layer
CSF	0.0004	0.01^{*}	folded 1–3 mm sheet
brain	0.018	1.3	~ 1 cm folds (sulci)

Much uncertainty. * Diffusion, we use $\mu'_{s,\text{eff}} \sim 0.4 \text{ mm}^{-1}$.

Diffusion forward model

$$\frac{1}{c}\frac{\partial\phi}{\partial t} = \nabla \cdot \left(\frac{1}{3\mu_s'(\mathbf{r})}\nabla\phi\right) - \mu_a(\mathbf{r})\phi + q(\mathbf{r},t)$$

- Finite difference, lattice size h
- Forward Euler, timestep $\Delta t \sim \text{ps}$
- accuracy $O(h^2)$, typ few % error
- $h = 2 \text{ mm}: 4 \times 10^4 \text{ cells}, 10 \text{s CPU}$

Signals: time-dep fluence at detectors = vector f(x)

Diffusion forward model

$$\frac{1}{c}\frac{\partial\phi}{\partial t} = \nabla \cdot \left(\frac{1}{3\mu_s'(\mathbf{r})}\nabla\phi\right) - \mu_a(\mathbf{r})\phi + q(\mathbf{r},t)$$

- Finite difference, lattice size h
- Forward Euler, timestep $\Delta t \sim \text{ps}$
- accuracy $O(h^2)$, typ few % error
- h = 2 mm: $4 \times 10^4 \text{ cells}$, 10 s CPU

Signals: time-dep fluence at detectors = vector f(x)

detect

Bayesian estimation of optical properties of the human head via 3D structural MRI – p.5

 $\frac{\partial f_m}{\partial x_n}$ sing. vals. $\to 0$: 'ill-posed' (many x equally valid) Incomplete info on $\mathbf{x} \to probability density function$

Bayesian inference

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{x},\mathbf{y})$$

$$= p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})$$
posterior likelihood prior

 $\frac{\partial f_m}{\partial x_n}$ sing. vals. $\to 0$: 'ill-posed' (many x equally valid) Incomplete info on $\mathbf{x} \to probability density function$

Bayesian inference

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{x},\mathbf{y})$$

$$= p(\mathbf{y}|\mathbf{x}) \cdot p(\mathbf{x})$$
posterior likelihood prior

- assumptions about noise → width of likelihood
- Embraces ill-posedness, statistically rigorous.
- Need to explore N-dim posterior: many f(x) evals required (> 10^2).

Common "Bayesian" method for DOT inversion: find single best-fit $\mathbf{x} = \mathbf{x}_{\text{MAP}}$. (MAP = maximum a-posteriori)

Common "Bayesian" method for DOT inversion: find single best-fit $\mathbf{x} = \mathbf{x}_{\text{MAP}}$. (MAP = maximum a-posteriori)

However x_{MAP} can be moved by reparametrization!

Common "Bayesian" method for DOT inversion: find single best-fit $\mathbf{x} = \mathbf{x}_{\text{MAP}}$. (MAP = maximum a-posteriori)

However x_{MAP} can be moved by reparametrization!

Example: broad PDF on μ'_s Normal, $\sigma = 30\%$ of mean.

16% shift in MAP between $p(\mu'_s)$ and $p(\mu'^{-1}_s)$

Common "Bayesian" method for DOT inversion: find single best-fit $\mathbf{x} = \mathbf{x}_{\text{MAP}}$. (MAP = maximum a-posteriori)

However x_{MAP} can be moved by reparametrization!

Example: broad PDF on μ'_s Normal, $\sigma = 30\%$ of mean.

16% shift in MAP between $p(\mu'_s)$ and $p(\mu'^{-1}_s)$

- CPUs advance faster than DOT instrumentation

 → best to make maximal use of data
- Statistical answers → multimodal imaging.

Realistic new noise model

Each signal component $f_m(\mathbf{x})$ independent noise.

Photons Poissonian: gaussian approx $\sigma(f) = f^{1/2}$

E.g. 10^6 photons = 0.1% relative error

But: we do not trust forward model to 0.1%!

Realistic new noise model

Each signal component $f_m(\mathbf{x})$ independent noise.

Photons Poissonian: gaussian approx $\sigma(f) = f^{1/2}$

E.g. 10⁶ photons = 0.1% relative error

But: we do not trust forward model to 0.1%!

• ε = relative forward model error *e.g.* 1–5% (errors: physics, numerical...)

Result: marginal posterior PDF

Applied Optics, special issue on biomedical optics, June 2003.

Gaussian PDF approx via Levenburg-Marquardt, ellipse encloses 65% prob

Result: marginal posterior PDF

Applied Optics, special issue on biomedical optics, June 2003.

Gaussian PDF approx

via Levenburg-Marquardt, ellipse encloses 65% prob

Sampling exact PDF

Markov chain Monte Carlo $\sim 40 \ \mathbf{f}(\mathbf{x})$ evals per sample (CPU intensive)

Result: marginal posterior PDF

Applied Optics, special issue on biomedical optics, June 2003.

Gaussian PDF approx via Levenburg-Marquardt, ellipse encloses 65% prob

Sampling exact PDF

Markov chain Monte Carlo $\sim 40 \ f(x)$ evals per sample (CPU intensive)

Pancake-like PDF: major-to-minor axis ratio $\sim 10^2$

Results: confidence intervals

 $\mu'_{s,\text{brain}}$: Gaussian approx bad, need MCMC sampling

Tracking brain parameters

measured tracks true optical params, little crosstalk

Tracking brain parameters

measured tracks true optical params, little crosstalk

 2×10^6 det photons: errorbars 3% $\mu_{a, \text{brain}}$, 10% $\mu'_{s, \text{brain}}$

for $\varepsilon = 3\%$, flat prior

How many photons needed?

Baseline brain errorbars vs...

 $N_p = \text{total det}$ photons

 $\epsilon = \text{fwd model}$ accuracy

Can optimize design of DOT apparatus

multilayer slab diffusion forward model:

Crank-Nicholson novel logarithmic timesteps

<1% error

Fast! typ. 0.2 sec CPU

multilayer slab diffusion forward model:

Crank-Nicholson novel logarithmic timesteps <1% error

Fast! typ. 0.2 sec CPU

Preliminary results...

• slab fits MRI head signals well (if no CSF)

multilayer slab diffusion forward model:

Crank-Nicholson novel logarithmic timesteps <1% error

Fast! typ. 0.2 sec CPU

Preliminary results...

- slab fits MRI head signals well (if no CSF)
- can also fit for unknown scalp+skull thickness but $\mu_{a,\text{brain}}$ is $3 \times$ more accurate if MRI geom used

multilayer slab diffusion forward model:

Crank-Nicholson novel logarithmic timesteps <1% error

Fast! typ. 0.2 sec CPU

Preliminary results...

- slab fits MRI head signals well (if no CSF)
- can also fit for unknown scalp+skull thickness but $\mu_{a,\text{brain}}$ is $3\times$ more accurate if MRI geom used

Optode amplitude & time-offset calibrations work (Bayes → marginalize over the 'nuisance' params)

Conclusions

- Optical tissue model from structural MRI
 - · can infer baseline tissue parameters
 - · errors $< 10\% \; \mu_{a, \text{brain}}, \; \mu'_{s, \text{brain}}, \; \text{no crosstalk}$
 - · noise model: shot noise + fwd model error

Conclusions

- Optical tissue model from structural MRI
 - · can infer baseline tissue parameters
 - · errors $< 10\% \mu_{a,\text{brain}}, \mu'_{s,\text{brain}}$, no crosstalk
 - · noise model: shot noise + fwd model error
- Forward models in complex geometry
 - \cdot need to be fast \rightarrow will call many times
 - · known errors → include in noise model

Conclusions

- Optical tissue model from structural MRI
 - · can infer baseline tissue parameters
 - · errors $< 10\% \; \mu_{a, \text{brain}}, \; \mu'_{s, \text{brain}}, \; \text{no crosstalk}$
 - · noise model: shot noise + fwd model error
- Forward models in complex geometry
 - need to be fast → will call many times
 - · known errors → include in noise model
- Bayes: understand full PDF on unknowns
 - · predict all errorbars, correlations
 - · CPU intensive but optimal use of data
 - · handle calibration (nuisance) params