

Masters Thesis 2024 30p

Faculty of Science and Technology

A comparative study of soil temperature models, including machine learning models

Mats Hoem Olsen

Computer science

1. FORWORD

I would like to thank my advisors and friends. Also the Big Bang for happening.

Fig. 1: LSTM cell Artist: $chevalier_english_2018$

2. THEORY

2.1. Regression model

The regression model will be for the sake of convenience be expressed as the following expresion

$$\left(\vec{F} \circ \mathbf{A}\right) \vec{\beta} = \vec{y} + \vec{\varepsilon}$$

Where \vec{F} is a vector function with following domain $\vec{F}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times p}$ where $m, p \in \mathbb{N}$, \mathbf{A} is the data in matrix form with dimentions $\mathbb{R}^{m \times n}$, $\vec{\beta}$ is the regression terms, \vec{y} is the target (TJM), and $\vec{\varepsilon}$ is the error from modelling. The \circ operator is the composition of \vec{F} and \mathbf{A} , is a short way of writing $\vec{F}(\mathbf{A})$.

2.2. Long Short Term Memory model

3. METHOD

3.1. Source of data

For this comparative study the following data sourses will be used

- 1. Norwegian Institute of Bioeconomy Research LandbruksMeteorologisk service (LMT)
- 2. Xgeo
- 3. Norwegian Institute of Bioeconomy Research Kilden (Kilden)
- 4. The Norwegian Meteorological Institute (MET)

3.2. Dataset

The dataset is chosen from four regions in Norway; Innlandet, Vestfold, Trøndelag, and Østfold. From each region are four stations picked:

Innlandet	1. Kise	Trøndelag	1. Kvithamar
	2. Ilseng		2. Rissa
	3. Apelsvoll		3. Frosta
	4. Gausdal		4. Mære
Østfold	1. Rygge	Vestfold	1. Lier
	2. Rakkestad		2. Ramnes
	3. Tomb		3. Tjølling
	4. Øsaker		4. Sande

All stations are sampled from the date¹ 03-01 to 10-31 from 2016 to 2020. The features rain (RR), mean soil temperature at 10cm (TJM10), mean soil temperature at 20cm (TJM20), and air temperature at 2m (TM) are sampled from the LMT database. The snow parameter is sampled from MET via Xgeo for imputed values in areas where there are no messured values. The soil type, and soil texture is sampled from Kilden from Norwegian Institute of Bioeconomy Research.

3.3. Selection process

The selection process for finding these station can be compiled into these steps

- 1. Recommendation from Norwegian Institute of Bioeconomy Research
- 2. Compute the missing values in the data
- 3. Missing values analyse
- 4. Searching LMT database for alternative station candidates if current data is insufficient
- 5. If some station was replaced the repeat step 2

NA count of station: Fåvang id: 17 Total:4459

Fig. 2: Visual representation of missing values at station 17 from 2014 to 2020

The plots of stations follow a simple representation where the y-axis represent the year and the x-axis represent the index of the data as all tables are taken from the same period. A circle represent a singluar na values, while a band represent a series of 2 or more missing values. The colours represents the features used in this comperative study. This representation of the missing values will indicate sesonal, and systematic removal of data and give an overall indication of how much data is missing. To get further insight into the data a report is generated in parallel to the plots describing precisie date and time of all values and which other parameter values is also missing values in the same period. See appendix A.2 for the full detail of the report generation and appendix B for na-plots of the station chosen for this study.

3.4. Collection of data

The method used was a powershell² script that called the respective institutions servers using the "curl" program³ to send an http request for the timeseries starting from 2014 to 2020 in the interval 1 of May to 31 of October. Code for data collection can be viewed in appendix A.1. The data is stores as an either a csv file or a json file for easy retrieval and manual control of values.

3.5. labeling of stations between Nibio and MET

Since Nibio and MET have different names for the same stations one must compile a list that converts Nibio ID to MET ID. This was performed with these requests

```
1. \item \begin{lstlisting} "https://frost.met.no/sources/v0.jsonld?types=Se
\item \begin{lstlisting} "https://frost.met.no/observations/v0.csv?source
```

Where ID is the Nibio Id for the given station, Frost.ID is the MET id, ID.latitude is the latitude gathered from Nibio, ID.longitude is the longitude gathered from Nibio.

3.6. Setup of models

The models are set up in according to the relevant paper the model is fetched from, alternatively reuse the code made by the author. When importing the data to the model there will be modifying to the original code to facilitate for the model as far as it goes. Any modifications will be in the appendix under section A. The details of the models will be discussed in section??

¹Format month-day

 $^{^2}$ Version 7.3.11

³curl 8.4.0 (Windows) libcurl/8.4.0 Schannel WinIDN

A. SCRIPS

A.1. Powershell

A.1.1. Nibio data gathering

```
$baseUri = 'https://lmt.nibio.no/agrometbase/showweatherdata.php'
$\datapath = \"$(\$PSScriptRoot)/\../\../\data/raw_data/nibio"
$line = Get-Content -Path "$($PSScriptRoot)/../../PRIVATE_FILES/frost_met_client.txt'
FrostID = line.Split(":")[1]
bases = @(
10 , 11 , 12 , 145 , 143 , 13 , 86 , 133 , 14 , 127 , 140 , 15 , 16 , 17 , 18 , 19 ,
jobs = @()
foreach ($base in $bases) {
                     foreach ($year in 2014..2022) {
                                           $full_path = "$($datapath)/weather_data_raw_hour_stID$($base)_y$($yeather_data_raw_hour_stID$)
                                           if (Test-Path $full_path -PathType Leaf) {
                                                                continue
                                           }
          $jobs += Start-ThreadJob -Name "w$($base)-y$($year)" -ScriptBlock {
                                                                param($base, $baseUri, $year, $storage)
                                                                form = 0
                                                                                      weatherstation=$base
                                                                                      loginterval=1
                                                                                      valuetype="value_raw"
                                                                                      date_start="$($year)-03-01"
                                                                                      date\_end="$(\$year)-03-31"
                                                                                      format="csv"
                                                                                      separator="dot"
                                                                }
                                                                $Uri = "$($baseUri)?"
                                                                $Uri += "weatherstation=$($form["weatherstation"])&"
                                                                 for each ($el in @(1,297,6,7)) { # 1, 297 \prec temp, nedbør
                                                                                      $Uri += "elementMeasurementTypes%5B%5D=$($e1)&"
                                                                }
                                                                foreach ($key in @("loginterval","valuetype","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start","date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_start,"date_sta
                                                                                      $Uri += "$($key)=$($form[$key])&"
                                                                 Uri = Uri.Substring(0, Uri.length-1)
                                                                Write-Host $Uri
                                                                 curl $Uri —output $storage —retry 3 —retry-delay 5
          } -ArgumentList $base, $baseUri, $year, $full_path
```

```
Write-Host "Written w$($base)-y$($year)."
                    }
if(\$jobs.length -eq 0) {
                    Write-Host "No jobs"
} else {
                    Write-Host "Downloads started ..."
                    Wait-Job -Job $jobs
                    foreach ($job in $jobs) {
                                                            Receive-Job -Job $job
A.1.2. Frost data gathering
$\line = \text{Get-Content -Path "$(\$PS\script\Root)/../../PRIVATE_FILES/\frost_\met_\client.txt'}
FrostID = line.Split(":")[1]
$frosturi = "https://frost.met.no/sources/v0.jsonld?types=SensorSystem&geometry=near
$datapath = "$($PSScriptRoot)/../../data/info"
$datafile = "$($datapath)/StationIDInfo.csv"
stationlist = @(
10, 11, 12, 145, 143, 13, 86, 133, 14, 127, 140, 15, 16, 17, 18, 19, 20, 110, 21, 121, 87, 22, 23, 24, 25, 26
attributes = @(
                    "ID", "Name", "Long", "Lati", "FrostName", "ErrorDist", "S0", "D0", "S1", "D1", "S2", "I
)
New-Item -Path $datafile -Value "$($attributes -join ";")'n"
foreach ($id in $stationlist){
                    $webreq = Invoke-WebRequest -Uri "https://lmt.nibio.no/services/rest/weather
                    Add-Content\ -Path\ \$datafile\ -Value\ (@(\$webreq.weatherStationId\ ,\$webreq.name\ ,\$webreq.mame\  
                    $frostlocal = curl "https://frost.met.no/sources/v0.jsonld?types=SensorSystem
                    $frostdata = curl "https://frost.met.no/sources/v0.jsonld?types=SensorSystem&
                    Add-Content -Path $datafile -Value "; $($frostlocal.data.id); $($frostlocal.data.id)
                    for each (\$i in 0..4) {
                                        $substat = $frostdata.data[$i]
                                        Add-Content -Path $datafile -Value "; $(@($substat.id, $substat.distan
                    j = 1
                    do {
                                                            Write-Host "Attempting: id $($id) on index $($j)"
                                                            $weatherdata = curl "https://frost.met.no/observations/v0.csv
                                                            $fileoutput = "$($datapath)/../raw_data/MET/StationTo_$($id)_
```

```
try {
                         \ weatherdata = \ weatherdata | ConvertFrom-Json
                         Write-Host "$($weatherdata."@type")"
                         if ($weatherdata."@type" -eq "ErrorResponse"){
                                 Write-Host "Did not find for id $($id) at index $($j)
                         } else {
                                  Write-Host "Found for id $($id) at index $($j)?"
                                 Add-Content -Path $fileoutput -Value $weatherdata
                 } catch {
                         Write-Host "Found for id $($id) at index $($j)"
                         Add-Content -Path $fileoutput -Value $weatherdata
                 j = j + 1
        \} while ($j -le 4)
A.2. R
## -
library(dplyr) # for data manipulation and transformation
library(tidyverse) # for a collection of packages for data manipulation and visualiza
library (stats) # for statistical functions and models
library (tsfeatures)
library(lubridate)
library (runner)
library (TSdist) # for calculating distance measures between time series
library (forecast) # for time series forecasting
library (TSA) # for time series analysis
library (tseries)
library (signal)
library (imputeTS)
library(ggplot2) # for creating beautiful and customizable visualizations
library(gridExtra) # for arranging multiple plots on a grid
library (RColorBrewer) # for creating color palettes for your plots
library (MLmetrics)
library (summary tools)
# path definitions
ROOT \leftarrow "../../"
DATA_PATH <- paste0 (ROOT, "data/")
DATA_INFO <- paste0(DATA_PATH, "info/")
DATA_INFO_NIBIO_FILE <- paste0 (DATA_INFO ,"lmt.nibio.csv")
```

```
DATA_INFO_FROST_FILE <- paste0 (DATA_INFO, "Frost_stations.csv")
DATA_FILE_SOIL_STATIONS <- paste0 (DATA_INFO, "'Stasjonsliste_jordtemperatur_modellerin
DATA_COLLECTION <- paste0 (DATA_PATH, "raw_data/")
DATA_COLLECTION_STAT <- paste0 (DATA_COLLECTION, "VeretupaauAasu2013-u2017/") # pattern
DATA_COLLECTION_TIME <- paste0 (DATA_COLLECTION, "Time_2013-2023/") # pattern -> Time{
DATA_COLLECTION_NIBIO <- paste0 (DATA_COLLECTION, "nibio/") # pattern -> weather_data_l
# ID definitions
station_names <- read.csv(DATA_INFO_NIBIO_FILE,
                           header=TRUE,
                           row.names="ID",
                           colClasses=c(ID="integer",Navn="character"))
nibio_id = list(
    Innlandet = c(11,17,18,26,27),
    Trøndelag = c(15,57,34,39,43),
    \emptysetstfold = c(37,41,52,118,5),
    SørVestlandet = c(14,29,32,48,22),
    Vestfold = c(30, 38, 42, 50)
# function definitions
file_name.nibio <- function(station_id, year, path = NULL){
    if (is.null(path)){
        pattern = paste0 (DATA_COLLECTION_NIBIO, "weather_data_hour_stID", station_id, "_
        pattern = sprintf(path, station_id, year)
    return (pattern)
}
data.nibio <- function(station_id, year, path = NULL){
    path <- file_name.nibio(station_id, year, path = path)
    data_nibio <- read.csv(path,
                        header=T, col.names = c("Time", "TM", "RR", "TJM10", "TJM20"))
    data_nibio <- mutate(data_nibio, across(
                                      "Time"
                                    str2date))
    data_nibio <- column_to_rownames(data_nibio, var = "Time")
    data_nibio <- mutate_at (data_nibio, c("TM", "RR", "TJM10", "TJM20"), as.numeric)
    return (data_nibio)
na.interpol.cust <- function(data, maxgap = Inf, n.p,
                               s.window = 10, alg.option = "linear"){
    data.decomp <- stlplus::stlplus(data,n.p = n.p, s.window = s.window)
    data.new \leftarrow rep(0, length.out = length(data))
```

```
for(part in c("seasonal", "trend", "remainder")){
           data.new <- data.new + na_interpolation(data.decomp$data[,part],
                                                                  maxgap=maxgap,
                                                                  option = alg.option)
     return (data.new)
str2date <- function(x) {
     \label{eq:continuous_posterior} \begin{split} return\left(\,as\,.\,POSIXlt\left(\,paste0\left(\,x\,,\,"00\,"\right)\,,\right.\right.\\ format &= \,\,"\%Y\!-\!\%m\!-\!\%d_{\sqcup}\%H\!:\%M\!:\%S\%z\,"\,, \end{split}
                              tz="GMT")
}
na.interplol.kal <-function(data, maxgap = Inf, n.p,
                                        s.window = 10, alg.option = "StructTS"){
     data.decomp <- stlplus::stlplus(data,n.p = n.p, s.window = s.window)
     data.new \leftarrow rep(0, length.out = length(data))
     for(part\ in\ c("seasonal",\ "trend",\ "remainder"))\{
           {\tt data.new} \, \leftarrow \, {\tt data.new} \, + \, {\tt na\_kalman} \big( \, {\tt data.decomp\$data} \, [ \, , {\tt part} \, ] \, ,
                                                                  maxgap=maxgap,
                                                                 model = alg.option,
                                                       smooth = TRUE
     return (data.new)
}
find.na.index.length \leftarrow function(x){ \# antar at x er bool vektor}
     i \leftarrow 1 \# starting index
     na.data <- data.frame()
     \mathrm{while}\,(\,\mathrm{i}\,<=\,\mathrm{length}\,(\,\mathrm{x}\,)\,)\,\{
           sample.data \leftarrow x[i:length(x)]
           first \leftarrow match(T, sample.data, nomatch = -1)
           if(first < 0) {
                break
           last <- match(F, sample.data[first:length(sample.data)], nomatch = length(sample.data)
           na.data \leftarrow rbind(na.data, data.frame(Length = c(last-first + 1), First = c(first + 1))
           i <\!\!- i + last
     return (na. data)
}
blocks.index < c()
len.na <- 8
len.val <- 12
```

```
data.check <- 1:5880
i < -0
 while (i < 5880) {
            i \leftarrow i + len.val - 1
            blocks.index <- append(blocks.index, seq(i,i+len.na-1))
            i \leftarrow i + len.na
blocks.index \leftarrow blocks.index[blocks.index <= 5880]
#library (moments)
data_nibio_no_na <- data.nibio(14,2019)
 col.name <- "TM"
 faulty.data <- data_nibio_no_na
 faulty.data[blocks.index,col.name] <- NA
 fixed.data <- na_interpolation(faulty.data[,col.name], option="spline", method = "pe
abs.diff <- fixed.data - data_nibio_no_na[,col.name]
 print\left(\,paste\left(\,"\mu"\,,mean\left(\,abs\,.\,diff\,\right)\,,"std\,:\,"\,,sqrt\left(\,var\left(\,abs\,.\,diff\,\right)\right)\,,"skewness\,:\,"\,,skewness\,(\,abs\,.\,diff\,)\,,\,"skewness\,(\,abs\,.\,diff\,)\,,\,"std\,:\,"\,,sqrt\left(\,var\left(\,abs\,.\,diff\,\right)\,,\,"skewness\,:\,"\,,skewness\,(\,abs\,.\,diff\,)\,,\,"std\,:\,"\,,sqrt\left(\,var\left(\,abs\,.\,diff\,\right)\,,\,"skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,:\,"\,,skewness\,
 plot ((abs. diff), xlim = c(0,5880))
fixed.data <- na.interpol.cust(faulty.data[,col.name], n.p = 21,alg.option="spline",
abs. diff <- fixed.data - data_nibio_no_na[,col.name]
 print (paste ("µ", mean (abs. diff), "std:", sqrt (var (abs. diff)), "skewness:", skewness (abs. d
 plot((abs.diff), xlim = c(0,5880))
# RR hadde ikke noe serlig, men hadde en rep ~= 31 (måned baser?)
\# TM \sim 24?
# TJM10 ~= 24?
# TJM20 ~= 21?
{\tt perid} \; < \!\!\! - \; c \, (TM = \; 24 \, , TJM10 \; = \; 24 \, , \; TJM20 \; = \; 24 \, , \; RR \; = \; 31)
data.rle <- rle(is.na(data_nibio[,"TJM20"]))
data.max <- max(data.rle$lengths[data.rle$values])
indexes <- find.index.rle.bool(data.rle, data.max)</pre>
 print (data.max)
 for (col in c("TJM20")){
            imput <- as.ts(na.interpol.cust(data_nibio[,col],n.p=perid[col]))
            plot (imput, xlim = c (indexes [1] -100, indexes [2] +100))
            abline (v=indexes [1], col = "red")
            abline(v=indexes[2],col = "red")
             title (paste (col, "STL_{\sqcup}+_{\sqcup}naive"))
}
```

```
for (col in c("TJM20")) {
    imput <- as.ts(na_interpolation(data_nibio[,col]))
    plot (imput, xlim = c (indexes [1] -100, indexes [2]+100))
    abline (v=indexes [1], col = "red")
    abline(v=indexes[2],col = "red")
    title (paste (col, "naive"))
}
feature.name = c("TM", "RR", "TJM10", "TJM20")
na.run.tables <- c()
full.count \leftarrow c()
notible\_run <- 24*7
warning_run <- 8*2 # imputering fra begge ender
cat ("Null_count_of_data.",
             file = "data.txt", sep="\n"
cat (paste ("notable uruns, defined uby unbulength", notible run, "and uwarning ulength", warning
             file = "NB_data.txt", sep="\n")
station_names <- read.csv(DATA_INFO_NIBIO_FILE,
                             header=TRUE,
                             row.names="ID",
                             colClasses=c(ID="integer", Navn="character"))
na.run.station.year.feature <- list()
sub set <- unlist(nibio id)</pre>
all.id <- as.numeric(rownames(station names))
for (id in all.id) {
    # beginning plot
    pdf(file = paste0(ROOT, "plots/plot-", id, ".pdf"))
    plot (NULL,
          sub = "hourly \bot time \bot From \bot 2014 - 03 - 01 \bot to \bot year \bot 2020 - 10 - 31",
          xlab="Date", ylab="NA_location",
          xlim = c(0,5881), ylim = c(2013,2021)
    colours <- c(TM = "blue", RR = "red", TJM10 = "green", TJM20 = "orange")
    lev \leftarrow seq(-1/2, 1/2, length.out=5)
    names(lev) <- feature.name
    numb < -0
    denom < -0
    na.run.count \leftarrow matrix (rep (0, length = 5880*4), nrow = 5880, ncol = 4)
```

```
colnames (na.run.count) <- feature.name
na.count \leftarrow c()
na.count.year <- c()
na.matrix.total <- NULL
#na.run.station.year.feature[[as.character(id)]] <- c()
#data_plot <- ggplot(title = paste("NA count of staion:", station_names[as.charact
na.plot <- FALSE
cat (\,paste\,(\,"***********,\,"station\,"\,,id\,,\,"**********")\,,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\n"\,,fil,append=\!T,sep="\
for (year in seq(2014,2020)) {
              # Drawing separating lines
               lines (c(0,5880), c(year + 1/2, year + 1/2), col = "black")
              \#lev \leftarrow seq(-1/2,1/2,length.out=5)
               #names(lev) <- c("TM","RR","TJM10","TJM20")
               #lev
              #lev["TJM20"]
              \#lev[match("TJM20", names(lev))+1]
               cat(paste(":::::year", year, "::::::"),append=T,sep="\n",file = "NB_data.txt
               data_nibio <- suppressWarnings(data.nibio(id,year)) # henter data
               data_nibio <- data_nibio [rownames(data_nibio)] #> paste0(year,"-04-01"),]
               data_nibio_raw <- suppressWarnings(data.nibio(id,
                                                                                                                            year,
                                                                                                                            path=paste0 (DATA_COLLECTION_NIBIO,
                                                                                                                                                                          "weather_data_raw_hour_stID%i_y%i.cs
                                                                                                                         ))
               \label{eq:data_nibio_raw['is.na(data_nibio_raw[',"TM"']) & (data_nibio_raw[',"TM"'] <= 0), 'and 'analysis' (data_nibio_raw[',"TM"'] <= 0), 'analysis' (data_nibio_raw[',"TM"']) & (data_nibio_raw[',
               data_nibio [1:nrow(data_nibio_raw), "RR"] <- data_nibio_raw[1:nrow(data_nibio_raw]
              #na.run.station.year.feature[[as.character(id)]][[as.character(year)]] <- c()
              # Na analesys
                cat ("——Matrixurepresentation, uandupairuNA's——", append =T, sep="\r
               data.matrix <- as.matrix(ifelse(is.na(data_nibio),1,0))
               data.matrix.sq <- t(data.matrix)%*%data.matrix
                if (is.null(na.matrix.total)) {
                              na.matrix.total <- data.matrix.sq
                } else {
                              na.matrix.total <- na.matrix.total + data.matrix.sq
                cat("\t",append=T,file = "NB_data.txt",sep = "\t")
```

```
suppressWarnings (write.table (data.matrix.sq,append =T, file = "NB_data.txt", se
cat (paste ("Total_NA:", sum (diag (data.matrix.sq))), file = "NB_data.txt", append=
na.check <- is.na(data_nibio)
if (any (na.check)) {
          if(length(na.count) == 0){
                     na.count <- ifelse (na.check, 1, 0)
          } else {
                     na.count <- na.count + ifelse (na.check, 1, 0)
          #na.count.year[[as.character(year)]] <- sum(na.check)/(nrow(data_nibio)*4
          na.plot <- TRUE
          for (cols in feature.name) { # checker run for hver kolonne
                     run_table <- table (NULL)
                                                                                          -station",id,"year",year,"feature",cols,"—
                     cat (paste ("\n-
                                               file = "NB_data.txt", append=T, sep="\n")
                     if(sum(na.check[,cols]) > 0){
                               run_na <- find.na.index.length(na.check[,cols])
                               #na.run.station.year.feature[[as.character(id)]][[as.character(year.feature]]
                              #print(paste("year:", year, "feature:", cols))
                              #print (run_na)
                               points (c(0,0,0,0), lev[1:4] + year + 1/8, col = colours)
                               for (ind in 1:nrow(run_na)){
                                          c <- run_na[ind, "Length"]
                                          dates <- rownames(data_nibio)[c(run_na$First[ind],run_na$Last
                                          if (any (is.na(dates))) {
                                                    print (dates)
                                         }
                                          cat(paste("\t-\t", dates[1], "]->", c, "run", ifelse(c!=1, paste("), and cat("), and cat
                                                               file = "NB_data.txt", append=T, sep="")
                                         # plot conditions
                                          if(c == 1){
                                                   # plot dot
                                                    points (run_na\$First [ind], year + lev [cols] + 1/8, col = co
                                                   # plot rectangle
                                                    \verb|rect(run_na\$First[ind], year + lev[cols], \\
                                                                 run\_na\$Last\left[\:ind\:\right]\:,\\ year\:+\:lev\left[\:match\left(\:cols\:,names\left(\:lev\:\right)\right)+\right.
                                                                  col = colours [cols], border = NA
                                          }
                                         # Write condition
```

```
if(c >= notible_run)
                                cat("(NB!)", file = "NB_data.txt", append=T, sep="\n")
                           } else if(c > warning_run) {
                                cat ("(Warning)",
                                      file = "NB_data.txt", append=T, sep="\n")
                           } else {
                                cat ( "".
                                      file = "NB_data.txt",append=T,sep="\n")
                          \operatorname{na.run.count}[c, \operatorname{cols}] \leftarrow \operatorname{na.run.count}[c, \operatorname{cols}] + 1
                     run_table <- t(as.matrix(table(run_na$Length)))
                }
                cat (paste ("\n---
                                                 ——Total⊔for⊔station",id,"year",year,"in⊔feat
                              file = "NB_data.txt", append=T, sep="\n")
                cat("\t",append=T,file = "NB_data.txt",sep = "\t")
                suppressWarnings (write.table (run_table, file = "NB_data.txt", append=T,
                cat\left(\,paste\left(\,"\backslash t-_{\!\!\!\!\sqcup}\,total_{\,\!\!\!\sqcup}:\backslash\,t\,"\,,sum\left(\,na\,.\,check\left[\,,\,cols\,\right]\right)\right)\,,
                     file = "NB_data.txt", append=T, sep="\n")
          }
     } else {
          \operatorname{cat}\left(\operatorname{paste}\left("\backslash t - \sqcup \operatorname{year}", \operatorname{year}, "\operatorname{without} \sqcup \operatorname{NA}."\right)\right)
                                     \label{eq:file_sep}  \mbox{file } = \mbox{"NB\_data.txt",append=T,sep="\n")} 
           if(length(full.count[[as.character(id)]]) == 0){
                full.count[[as.character(id)]] <- 1/7
                full.count[[as.character(id)]] <- full.count[[as.character(id)]] + 1
     cat (paste ("::::::END_uyear", year, "END::::::"), append=T, sep="\n", file = "NB_c
}
legend (x = "topright", legend=feature.name, fill = colours)
if (na. plot){
                                                                         ="), append=T, sep="\r
     cat (paste ("END_station", id, "END_
     cat (paste ("Staion unru", id),
           file = "data.txt", append=T, sep="\n")
     #suppressWarnings(write.table(bad_data, file = "data.txt",append=T)) # add lab
     cat (paste ("prosent of", id, ":", sum(na.count)/(nrow(data_nibio)*4)),
           file = "data.txt", append=T, sep="\n")
     \operatorname{cat}(\operatorname{paste}(\operatorname{"prosent}_{\sqcup}\operatorname{of"},\operatorname{id},\operatorname{"}_{\sqcup}\operatorname{for}_{\sqcup}\operatorname{years}:\operatorname{"}),
           file = "data.txt", append=T, sep="\n")
     cat(paste0(unlist(na.count.year), collapse = "\n"),
           file = "data.txt", append=T, sep="\n")
     cat("\t",append=T,file = "NB_data.txt",sep = "\t")
     suppressWarnings (write.table (na.matrix.total, file = "NB_data.txt", append=T, se
     cat(paste("Total:",sum(diag(na.matrix.total))), file = "NB_data.txt", append =
```

```
title (main = paste0 ("NA_count_of_station: ", station_names [as.character(id),],
                        "⊔id:⊔",id,
                "LTotal:", sum(diag(na.matrix.total))))
    dev.off()
}
plot (data.nibio (16,2017)[, "TM"], type="l")
plot (forecast (fit, h=24*7), xlim=c(5500,6000))
## -
imput_data <- na_interpolation(as.ts(data_nibio))
# RR hadde ikke noe serlig , men hadde en rep ∼= 31 (måned baser?)
# TM ~= 24?
# TJM10 ~= 24?
# TJM20 ~= 21?
for (col in c("TM", "TJM10", "TJM20")) {
    acf(imput_data[,col])
    title (col)
    pacf(imput_data[,col])
    title (col)
}
plot(stlplus::stlplus(imput_data[,"RR"],n.p = 31, s.window = 5,s.degree=2))
data_stat_id = matrix()
for(id in nibio_id){
    csv_files <- list.files(path = DATA_COLLECTION_NIBIO,
                        pattern = regex(paste0(".*ID",id,"_y)\d{4}.csv")),
                                        full.names = TRUE
    combined_data <- lapply(csv_files,
                        read.csv,
                        header=T,
                        combined_data <- combined_data %% column_to_rownames(., var = 'Time')
    combined_data <- mutate_at (combined_data, c("TM", "RR", "TJM10", "TJM20"), as.numeric
}
```

```
library (datasets)
data ("faithful")
#z-scores & Mahalanobis distance
z <- scale(imput_data) %% as.data.frame()
mahalanobis(z, center = c(0, 0), cov = cov(imput_data, use = "all.obs"))
# DBSCAN & LOF
library (dbscan)
dbscan(imput\_data, eps = 1)$cluster == 0
lof(imput\_data, minPts = 5)
# I s o l a t i o n forest
library ( isotree )
iso_mod <- isolation.forest( imput_data )</pre>
predict( iso_mod , newdata = imput_data )
# one - class SVM
library ( e1071 )
svm\_mod <- \ svm \ ( \ imput\_data \ , \ type = "one-classification")
print(sum(predict( svm_mod , newdata = imput_data )))
adf.test(imputed.data[,"TJM10"])
kpss.test(imputed.data[,"TJM10"])
pp.test(imputed.data[,"TJM10"])
A.3. Python
```

NA count of station: Apelsvoll id: 11 Total:2911

NA count of station: Fåvang id: 17 Total:4459

NA count of station: Gausdal id: 18 Total:6978

NA count of station: Ilseng id: 26 Total:4280

NA count of station: Kise id: 27 Total:2893

NA count of station: Frosta id: 15 Total:2586

NA count of station: Kvithamar id: 57 Total:2055

NA count of station: Mære id: 34 Total:6068

NA count of station: Rissa id: 39 Total:2750

NA count of station: Skjetlein id: 43 Total:7712

NA count of station: Rakkestad id: 37 Total:4028

NA count of station: Rygge id: 41 Total:6651

NA count of station: Tomb id: 52 Total:3536

NA count of station: Øsaker id: 118 Total:6834

NA count of station: Ås id: 5 Total:4326

NA count of station: Etne id: 14 Total:833

NA count of station: Landvik id: 29 Total:1584

NA count of station: Lyngdal id: 32 Total:11280

NA count of station: Særheim id: 48 Total:6494

NA count of station: Hjelmeland id: 22 Total:2968

NA count of station: Lier id: 30 Total:1948

NA count of station: Ramnes id: 38 Total:11955

NA count of station: Sande id: 42 Total:6317

NA count of station: Tjølling id: 50 Total:9171

