PHYSICS 2426 Fall 2019 Equation Sheet Exam 3

Constants, Permeability and Permittivity

$$\begin{array}{ll} e = 1.602 \times 10^{-19} \, \mathrm{C} & m_e = 9.11 \times 10^{-31} \, \mathrm{kg} \\ \epsilon_0 = 8.85 \times 10^{-12} \, \mathrm{C^2/N \cdot m^2} & \mu_0 = 4\pi \times 10^{-7} \, \mathrm{T \cdot m/A} & \epsilon = K \epsilon_0 \quad \mu = K_m \mu_0 \end{array}$$

$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

 $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$

$$\epsilon = K\epsilon_0 \quad \mu = K_m\mu_0$$

Maxwell's Equations

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl}}}{\epsilon_0}$$

$$\oint \vec{B} \cdot d\vec{A} = 0$$

$$\oint \vec{E} \cdot d\vec{l} = \varepsilon = -rac{d\Phi_B}{dt}\,, \quad \Phi_B \equiv \int \vec{B} \cdot d\vec{A}$$

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \left(i + \epsilon_0 \frac{d\Phi_E}{dt} \right)_{encl}, \Phi_E \equiv \int \vec{E} \cdot d\vec{A}$$

Lorentz Force Law

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Mechanics

$$\sum \vec{F} = m\vec{a}$$

$$K = \frac{1}{2}mv^2 \qquad a_{rad} = \frac{v^2}{r}$$

$$a_{rad} = \frac{v^2}{r}$$

$$\Delta K + \Delta U = 0$$

Electric Fields, Electric Potential and Electric Potential Energy

$$\vec{E}_{\text{point charge}} = \frac{1}{4\pi\epsilon} \frac{q}{r^2} \hat{r}$$

$$\vec{r} \equiv \vec{r}_f - \vec{r}_s$$
 $\vec{F}_E = q\vec{E}$

$$\vec{F}_E = q\bar{E}$$

$$E_{\mathrm{parallel\;plates}} = \frac{\sigma}{\epsilon}$$
 $E_{\mathrm{inf.\;line}} = \frac{1}{2\pi\epsilon} \frac{\lambda}{r}$

$$E_{\text{inf. line}} = \frac{1}{2\pi\epsilon} \frac{\lambda}{r}$$

$$V_{
m point\,charge}=rac{1}{4\pi\epsilon}rac{q}{r}$$
 $ec{E}=-rac{dV}{dr}\hat{r}$

$$\vec{E} = -\frac{dV}{dr}\hat{n}$$

$$U_{\rm elec} = qV$$

Magnetic Fields and Force

$$\vec{F}_B = q\vec{v} \times \vec{B}$$
 $\vec{F}_{B,wire} = I\vec{l} \times \vec{B}$ $\vec{B} = \frac{\mu_0}{4\pi} \int \frac{I \ d\vec{l} \times \hat{r}}{r^2}$ $B_{long\ wire} = \frac{\mu_0 I}{2\pi r}$ $B_{solenoid} = \mu_0 nI$

Energy Densities

$$u_E = \frac{1}{2}\epsilon_0 E^2 \qquad u_B = \frac{1}{2}\frac{B^2}{\mu_0}$$

Circuit Elements (Resistors, Capacitors and Inductors)

$$\begin{split} v_R(t) &= i(t)R & v_C(t) &= \frac{q(t)}{C} & v_L(t) &= -L\frac{di(t)}{dt} \\ i(t) &= \frac{dq(t)}{dt} & p(t) &= v(t)i(t) & U_C(t) &= \frac{1}{2}\frac{q(t)^2}{C} & U_L(t) &= \frac{1}{2}Li(t)^2 \\ \sum I_{\rm in} &= \sum I_{out} & \sum V_{loop} &= 0 \end{split}$$

R-C Circuits

$$q(t) = Q_{max} \left(1 - e^{-t/_{RC}} \right)$$
 $q(t) = Q_0 e^{-t/_{RC}}$

R-L Circuits

$$i(t) = I_{max} (1 - e^{-(R/L)t})$$
 $i(t) = I_0 e^{-(R/L)t}$

L-C Circuits

$$q(t) = Q_{max}\cos(\omega t + \varphi)$$
 $\omega \equiv 2\pi f \equiv \frac{2\pi}{T} = \sqrt{\frac{1}{LC}}$