Multi-part pattern analysis:

Combining structure analysis and source separation to discover intra-part repeated sequences

1. Motivation

Structural descriptions are usually single-dimensional, or perhaps hierarchical:

But pieces of music are multi-layered, with each instrument playing its part according to its own patterns:

Repeating sequences and steady states recur independently among the parts:

(In these plots, colour indicates a steady state *or* a consistent sequence.)

We propose a new task, multi-part pattern analysis, in which we aim to estimate such descriptions, directly from audio.

2. Data

No annotation corpora exist yet, and they would be costly to collect. Instead, using multi-channel MIDI files from Raffel's Lakh dataset, we can generate audio and derive multi-part descriptions.

MIDI piano roll for each channel:

Transitive SSMs are equivalent to measurewise labellings, which we visualize in the colourful plots above.

3. Algorithm

Briefly put: we perform source separation, then perform structural analysis on each estimated source.

We introduce a novel method of enforcing transitivity in the structural analysis.

Lexical sorting transforms related sequences into blocks, exposing transitivity errors as off-digaonal elements.

We process the SSM with many thresholds, and pick the one that describes as much of the piece as possible (*coverage*) while minimizing the number of transitivity errors (*strain*).

Jordan B. L. Smith Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST), Japan

4. Evaluation

We compare each of the estimated descriptions to each of the ground truth parts, and report the best permutation.

We use conventional structure metrics: pairwise precision, recall and *f*-measure — but, should we count pixels on the main diagonal, or not?

Main diagonal pixels are usually trivial and ignored, but here, main diagonal values are 0 if the instrument is silent, and 1 if not.

- Same pipeline, without source separation
- Baseline 1: every measure repeats
- Baseline 2: every measure is unique

Comparing off-diagonal pixels, we evaluate "repetition detection" quality: our algorithm does better if we skip the source separation!

But, including diagonals, Baseline 2 does best of all — and its recall shows that 50% of the data lies on the main diagonal!

But there's one bright spot: our algorithm was best (narrowly) at labelling instrument mixtures consistently:

This work was supported in part by JST ACCEL Grant Number JPMJAC1602, Japan.