VIBI: Explaining a Black-Box using Deep Variational Information Bottleneck Approach Seojin Bang, Pengtao Xie, Heewook Lee, Wei Wu, and Eric Xing

Kurt Willis July 20, 2021

Overview

1. Introduction to VIBI

2. Information Bottleneck & Variational Bound

3. Gumbel Softmax

4. Results

Introduction to VIBI

VIBI

2

2

Notation and Conventions

s: scalar

 \mathbf{x} : vector

X: random variable

$$\begin{split} p(\mathbf{x}) &= p_X(X = \mathbf{x}) \\ p(\mathbf{x}, \mathbf{y}) &= p_{X, Y}(X = \mathbf{x}, Y = \mathbf{y}) \\ p(\mathbf{x} \mid \mathbf{y}) &= p_{X \mid Y}(X = \mathbf{x} \mid Y = \mathbf{y}) = \frac{p_{X, Y}(X = \mathbf{x}, Y = \mathbf{y})}{p_Y(Y = \mathbf{y})} \end{split}$$

Markov-chain assumption:

$$Y \longleftrightarrow X \longleftrightarrow T$$

• Y is the discrete RV over the class labels, $\mathbf{y} \in \mathcal{Y} = \{1, \dots, 10\}$.

4

Markov-chain assumption:

$$Y \longleftrightarrow X \longleftrightarrow T$$

- Y is the discrete RV over the class labels, $y \in \mathcal{Y} = \{1, \dots, 10\}$.
- X is the continuous RV over the image space, $\mathbf{x} \in \mathcal{X} = [0,1]^d$

Markov-chain assumption:

$$Y \longleftrightarrow X \longleftrightarrow T$$

- *Y* is the *discrete* RV over the class labels, $\mathbf{y} \in \mathcal{Y} = \{1, \dots, 10\}$.
- X is the continuous RV over the image space, $\mathbf{x} \in \mathcal{X} = [0,1]^d$
- T is the RV over $\mathcal{T} = \mathcal{X}$

Markov-chain assumption:

$$Y \longleftrightarrow X \longleftrightarrow T$$

- Y is the discrete RV over the class labels, $y \in \mathcal{Y} = \{1, \dots, 10\}$.
- X is the continuous RV over the image space, $\mathbf{x} \in \mathcal{X} = [0, 1]^d$
- T is the RV over $\mathcal{T} = \mathcal{X}$

d is the image dimension (28 \times 28 = 784 in the case of the MNIST dataset).

4

Markov-chain assumption:

$$Y \longleftrightarrow X \longleftrightarrow T$$

The Markov-chain assumption leads to the joint-distribution

$$p(\mathbf{x}, \mathbf{y}, \mathbf{t}) = p(\mathbf{y} \mid \mathbf{t}, \mathbf{x}) p(\mathbf{t}, \mathbf{x})$$

Markov-chain assumption:

$$Y \longleftrightarrow X \longleftrightarrow T$$

The Markov-chain assumption leads to the joint-distribution

$$\begin{split} p(\mathbf{x}, \mathbf{y}, \mathbf{t}) &= p(\mathbf{y} \,|\, \mathbf{t}, \mathbf{x}) p(\mathbf{t}, \mathbf{x}) \\ &= p(\mathbf{y} \,|\, \mathbf{t}, \mathbf{x}) p(\mathbf{t} \,|\, \mathbf{x}) p(\mathbf{x}) \end{split}$$

Markov-chain assumption:

$$Y \longleftrightarrow X \longleftrightarrow T$$

The Markov-chain assumption leads to the joint-distribution

$$\begin{split} p(\mathbf{x}, \mathbf{y}, \mathbf{t}) &= p(\mathbf{y} \,|\, \mathbf{t}, \mathbf{x}) p(\mathbf{t}, \mathbf{x}) \\ &= p(\mathbf{y} \,|\, \mathbf{t}, \mathbf{x}) p(\mathbf{t} \,|\, \mathbf{x}) p(\mathbf{x}) \\ &= p(\mathbf{y} \,|\, \mathbf{t}) p(\mathbf{t} \,|\, \mathbf{x}) p(\mathbf{x}) \end{split}$$

4

The explainer network models a probability distribution $p(\mathbf{z} \mid \mathbf{x})$ over cognitive chunks. Z is drawn as a k-hot vector from $p(\mathbf{z} \mid \mathbf{x})$. The resulting explanation is given by $\mathbf{t} = \mathbf{x} \odot \mathbf{z}$

Full markov-chain:

$$Y\,\longleftrightarrow\,X\,\longleftrightarrow\,(X,Z)\,\longleftrightarrow\,T$$

Variational Bound

Information Bottleneck &

Information Bottleneck

The Information Bottleneck (IB) objective as stated by Tishby, Pereira, and Bialek, 2000:

$$\max_{p_{T|X}, p_{Y|T}, p_{T}} I(T; Y) - \beta I(X; T)$$

$$Y \longleftrightarrow X \longleftrightarrow (X,Z) \longleftrightarrow T$$

$$I(X; T) \le I(X; X, Z)$$

$$Y \longleftrightarrow X \longleftrightarrow (X,Z) \longleftrightarrow T$$

$$I(X; T) \le I(X; X, Z)$$

= $I(X; Z) + I(X; X | Z)$

$$Y \longleftrightarrow X \longleftrightarrow (X, Z) \longleftrightarrow T$$

$$I(X; T) \le I(X; X, Z)$$

$$= I(X; Z) + I(X; X | Z)$$

$$= I(X; Z) + H(X | Z) + H(X | Z) - H(X, X | Z)$$

$$Y \longleftrightarrow X \longleftrightarrow (X, Z) \longleftrightarrow T$$

$$I(X; T) \le I(X; X, Z)$$

$$= I(X; Z) + I(X; X | Z)$$

$$Y \longleftrightarrow X \longleftrightarrow (X, Z) \longleftrightarrow T$$

$$\begin{split} I(X;\,T) &\leq I(X;\,X,\,Z) \\ &= I(X;\,Z) + I(X;\,X\,|\,Z) \\ &= I(X;\,Z) + H(X\,|\,Z) + H(X\,|\,Z) - H(X,\,X\,|\,Z) \\ &= I(X;\,Z) + H(X\,|\,Z) \\ &\leq I(X;\,Z) + H(X) \end{split}$$

$$I(X; Z) = \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})} \right) d\mathbf{x} d\mathbf{z}$$

$$I(X; Z) = \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})} \right) d\mathbf{x} d\mathbf{z}$$
$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} | \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z}) d\mathbf{x} d\mathbf{z}$$

$$I(X; Z) = \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})} \right) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z}) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z}$$

$$I(X; Z) = \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})} \right) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z}) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \underbrace{\int p(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z}}_{D_{KL}(p||r) + H(p,r)}$$

$$I(X; Z) = \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})} \right) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z}) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \underbrace{\int p(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z}}_{D_{\mathsf{KL}}(p||r) + H(p, r)}$$

$$\leq \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{z}) \log r(\mathbf{z}) d\mathbf{z}$$

$$I(X; Z) = \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})} \right) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z}) d\mathbf{x} d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \underbrace{\int p(\mathbf{z}) \log p(\mathbf{z}) d\mathbf{z}}_{D_{KL}(p|\mid r) + H(p, r)}$$

$$\leq \int p(\mathbf{x}, \mathbf{z}) \log p(\mathbf{z} \mid \mathbf{x}) d\mathbf{x} d\mathbf{z} - \int p(\mathbf{z}) \log r(\mathbf{z}) d\mathbf{z}$$

$$= \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z}$$

$$I(X; T) \le \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z} d\mathbf{x} + C$$

$$I(X; T) \le \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z} d\mathbf{x} + C$$
$$= \int p(\mathbf{x}) p(\mathbf{z} \mid \mathbf{x}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z} d\mathbf{x} + C$$

$$I(X; T) \leq \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z} d\mathbf{x} + C$$

$$= \int p(\mathbf{x}) p(\mathbf{z} \mid \mathbf{x}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z} d\mathbf{x} + C$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \int p(\mathbf{z} \mid \mathbf{x}^{(n)}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x}^{(n)})}{r(\mathbf{z})} \right) d\mathbf{z} + C$$

$$\begin{split} I(X; T) &\leq \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) \, \mathrm{d}\mathbf{z} \mathrm{d}\mathbf{x} + C \\ &= \int p(\mathbf{x}) p(\mathbf{z} \mid \mathbf{x}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) \, \mathrm{d}\mathbf{z} \mathrm{d}\mathbf{x} + C \\ &\approx \frac{1}{N} \sum_{n=1}^{N} \int p(\mathbf{z} \mid \mathbf{x}^{(n)}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x}^{(n)})}{r(\mathbf{z})} \right) \, \mathrm{d}\mathbf{z} + C \\ &= \frac{1}{N} \sum_{n=1}^{N} D_{\mathsf{KL}} \left(f_{\mathsf{Xpl}}(\mathbf{x}^{(n)}) \mid\mid r \right) + C \end{split}$$

9

$$I(X; T) \leq \int p(\mathbf{x}, \mathbf{z}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z} d\mathbf{x} + C$$

$$= \int p(\mathbf{x}) p(\mathbf{z} \mid \mathbf{x}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x})}{r(\mathbf{z})} \right) d\mathbf{z} d\mathbf{x} + C$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \int p(\mathbf{z} \mid \mathbf{x}^{(n)}) \log \left(\frac{p(\mathbf{z} \mid \mathbf{x}^{(n)})}{r(\mathbf{z})} \right) d\mathbf{z} + C$$

$$= \frac{1}{N} \sum_{n=1}^{N} D_{KL} \left(f_{Kpl}(\mathbf{x}^{(n)}) \mid\mid r \right) + C =: U_{X,T}$$

$$I(T; Y) = \int p(\mathbf{t}, \mathbf{y}) \log \left(\frac{p(\mathbf{t}, \mathbf{y})}{p(\mathbf{t})p(\mathbf{y})} \right) d\mathbf{t} d\mathbf{y}$$

$$I(T; Y) = \int p(\mathbf{t}, \mathbf{y}) \log \left(\frac{p(\mathbf{t}, \mathbf{y})}{p(\mathbf{t})p(\mathbf{y})} \right) d\mathbf{t}d\mathbf{y}$$
$$= \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y} | \mathbf{t}) d\mathbf{t}d\mathbf{y} - \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y}) d\mathbf{t}d\mathbf{y}$$

$$I(T; Y) = \int p(\mathbf{t}, \mathbf{y}) \log \left(\frac{p(\mathbf{t}, \mathbf{y})}{p(\mathbf{t})p(\mathbf{y})} \right) d\mathbf{t} d\mathbf{y}$$

$$= \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y} - \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y}) d\mathbf{t} d\mathbf{y}$$

$$= \int p(\mathbf{y}) \int p(\mathbf{y} | \mathbf{t}) \log p(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y} - \int p(\mathbf{y}) \log p(\mathbf{y}) d\mathbf{y}$$

$$\begin{split} I(T; Y) &= \int p(\mathbf{t}, \mathbf{y}) \log \left(\frac{p(\mathbf{t}, \mathbf{y})}{p(\mathbf{t}) p(\mathbf{y})} \right) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} \\ &= \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y} \, | \, \mathbf{t}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} - \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} \\ &= \int p(\mathbf{y}) \int p(\mathbf{y} \, | \, \mathbf{t}) \log p(\mathbf{y} \, | \, \mathbf{t}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} - \int p(\mathbf{y}) \log p(\mathbf{y}) \, \mathrm{d}\mathbf{y} \\ &\stackrel{\text{(var. approx)}}{\geq} \int p(\mathbf{y}) \int p(\mathbf{y} \, | \, \mathbf{t}) \log q(\mathbf{y} \, | \, \mathbf{t}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} + H(Y) \end{split}$$

$$\begin{split} I(T; Y) &= \int p(\mathbf{t}, \mathbf{y}) \log \left(\frac{p(\mathbf{t}, \mathbf{y})}{p(\mathbf{t}) p(\mathbf{y})} \right) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} \\ &= \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} - \int p(\mathbf{t}, \mathbf{y}) \log p(\mathbf{y}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} \\ &= \int p(\mathbf{y}) \int p(\mathbf{y} \,|\, \mathbf{t}) \log p(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} - \int p(\mathbf{y}) \log p(\mathbf{y}) \, \mathrm{d}\mathbf{y} \\ &\stackrel{(\text{var. approx})}{\geq} \int p(\mathbf{y}) \int p(\mathbf{y} \,|\, \mathbf{t}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} + H(Y) \\ &\geq \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{y} \end{split}$$

$$I(T; Y) \ge \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y}$$

$$I(T; Y) \ge \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t}d\mathbf{y}$$
$$= \int p(\mathbf{t}, \mathbf{y}, \mathbf{x}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t}d\mathbf{y}d\mathbf{x}$$

$$I(T; Y) \ge \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y}$$

$$= \int p(\mathbf{t}, \mathbf{y}, \mathbf{x}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y} d\mathbf{x}$$

$$= \int p(\mathbf{x}) p(\mathbf{t} | \mathbf{x}) p(\mathbf{y} | \mathbf{x}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y} d\mathbf{x}$$

$$I(T; Y) \ge \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y}$$

$$= \int p(\mathbf{t}, \mathbf{y}, \mathbf{x}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y} d\mathbf{x}$$

$$= \int p(\mathbf{x}) p(\mathbf{t} | \mathbf{x}) p(\mathbf{y} | \mathbf{x}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{t} d\mathbf{y} d\mathbf{x}$$

$$\approx \frac{1}{N} \sum_{n=1}^{N} \int p(\mathbf{t} | \mathbf{x}^{(n)}) \int p(\mathbf{y} | \mathbf{x}^{(n)}) \log q(\mathbf{y} | \mathbf{t}) d\mathbf{y} d\mathbf{t}$$

$$\begin{split} I(T; Y) &\geq \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \\ &= \int p(\mathbf{t}, \mathbf{y}, \mathbf{x}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{x} \\ &= \int p(\mathbf{x}) p(\mathbf{t} \,|\, \mathbf{x}) p(\mathbf{y} \,|\, \mathbf{x}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{x} \\ &\approx \frac{1}{N} \sum_{n=1}^{N} \int p(\mathbf{t} \,|\, \mathbf{x}^{(n)}) \int p(\mathbf{y} \,|\, \mathbf{x}^{(n)}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{t} \\ &\approx \frac{1}{NM} \sum_{\substack{n=1...N \\ m=1...M}} \int p(\mathbf{y} \,|\, \mathbf{x}^{(n)}) \log q(\mathbf{y} \,|\, \mathbf{t}^{(m;n)}) \, \mathrm{d} \mathbf{y} \end{split}$$

$$\begin{split} I(T; Y) &\geq \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \\ &= \int p(\mathbf{t}, \mathbf{y}, \mathbf{x}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{x} \\ &= \int p(\mathbf{x}) p(\mathbf{t} \,|\, \mathbf{x}) p(\mathbf{y} \,|\, \mathbf{x}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{x} \\ &\approx \frac{1}{N} \sum_{n=1}^{N} \int p(\mathbf{t} \,|\, \mathbf{x}^{(n)}) \int p(\mathbf{y} \,|\, \mathbf{x}^{(n)}) \log q(\mathbf{y} \,|\, \mathbf{t}) \, \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{t} \\ &\approx \frac{1}{NM} \sum_{\substack{n=1,\dots N \\ m=1,\dots M}} \int p(\mathbf{y} \,|\, \mathbf{x}^{(n)}) \log q(\mathbf{y} \,|\, \mathbf{t}^{(m;n)}) \, \mathrm{d} \mathbf{y} \\ &\approx -\frac{1}{NM} \sum_{\substack{n=1,\dots N \\ m=1,\dots M}} H\left(b(\mathbf{x}^{(n)}), f_{\mathsf{apx}}(\mathbf{t}^{(m;n)})\right) \end{split}$$

$$\begin{split} I(T; \, Y) &\geq \int p(\mathbf{t}, \mathbf{y}) \log q(\mathbf{y} \, | \, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \\ &= \int p(\mathbf{t}, \mathbf{y}, \mathbf{x}) \log q(\mathbf{y} \, | \, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{x} \\ &= \int p(\mathbf{x}) p(\mathbf{t} \, | \, \mathbf{x}) p(\mathbf{y} \, | \, \mathbf{x}) \log q(\mathbf{y} \, | \, \mathbf{t}) \, \mathrm{d} \mathbf{t} \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{x} \\ &\approx \frac{1}{N} \sum_{n=1}^{N} \int p(\mathbf{t} \, | \, \mathbf{x}^{(n)}) \int p(\mathbf{y} \, | \, \mathbf{x}^{(n)}) \log q(\mathbf{y} \, | \, \mathbf{t}) \, \mathrm{d} \mathbf{y} \mathrm{d} \mathbf{t} \\ &\approx \frac{1}{NM} \sum_{\substack{n=1,\dots N \\ m=1\dots M}} \int p(\mathbf{y} \, | \, \mathbf{x}^{(n)}) \log q(\mathbf{y} \, | \, \mathbf{t}^{(m;n)}) \, \mathrm{d} \mathbf{y} \\ &\approx -\frac{1}{NM} \sum_{\substack{n=1,\dots N \\ m=1\dots M}} H\left(b(\mathbf{x}^{(n)}), f_{\mathsf{apx}}(\mathbf{t}^{(m;n)})\right) \quad =: L_{T,Y} \end{split}$$

$$I(T; Y) - \beta I(X; T) \gtrsim L_{T,Y} - \beta U_{X,T}$$

$$\max_{\theta} L_{T,Y} - \beta U_{X,T}$$

$$I(T; Y) - \beta I(X; T) \gtrsim L_{T, Y} - \beta U_{X, T}$$

$$\max_{\theta} L_{T, Y} - \beta U_{X, T}$$

$$\iff \min_{\theta} -L_{T, Y} + \beta U_{X, T}$$

$$\begin{split} I(T;\,Y) - \beta I(X;\,T) &\gtrapprox L_{T,\,Y} - \beta \, U_{X,\,T} \\ &\max_{\theta} \quad L_{T,\,Y} - \beta \, U_{X,\,T} \\ &\iff \min_{\theta} - L_{T,\,Y} + \beta \, U_{X,\,T} \quad =: J_{\mathsf{IB}} \end{split}$$

$$\begin{split} I(T;Y) - \beta I(X;T) &\gtrapprox L_{T,Y} - \beta \, U_{X,T} \\ & \underset{\boldsymbol{\theta}}{\text{max}} \quad L_{T,Y} - \beta \, U_{X,T} \\ &\iff \min_{\boldsymbol{\theta}} - L_{T,Y} + \beta \, U_{X,T} \quad =: J_{\text{IB}} \\ &\iff \min_{\boldsymbol{\theta}} \frac{1}{NM} \sum_{\substack{n=1,\dots N \\ m=1,\dots M}} H\Big(b(\mathbf{x}^{(n)}), f_{\text{apx}}(\mathbf{t}^{(m;n)})\Big) \\ &+ \beta \frac{1}{N} \sum_{n=1,\dots N} D_{\text{KL}}\Big(f_{\text{Xpl}}(\mathbf{x}^{(n)}) \mid\mid r\Big) \end{split}$$

$$I(T; Y) - \beta I(X; T) \gtrsim L_{T,Y} - \beta U_{X,T}$$

$$\underset{\theta}{\text{max}} L_{T,Y} - \beta U_{X,T}$$

$$\iff \underset{\theta}{\text{min}} - L_{T,Y} + \beta U_{X,T} =: J_{\mathsf{IB}}$$

$$\iff \underset{\theta}{\text{min}} \frac{1}{NM} \sum_{\substack{n=1...N\\m=1...M}} H\left(\underbrace{b(\mathbf{x}^{(n)})}_{p(\mathbf{y}\mid\mathbf{x})}, \underbrace{f_{\mathsf{apx}}(\mathbf{t}^{(m;n)})}_{q(\mathbf{y}\mid\mathbf{t})}\right)$$

$$+ \beta \frac{1}{N} \sum_{n=1...N} D_{\mathsf{KL}}\left(\underbrace{f_{\mathsf{xpl}}(\mathbf{x}^{(n)})}_{p(\mathbf{z}\mid\mathbf{x})} || r\right)$$

Sampling T

$$\mathbf{t} = \mathbf{x} \odot \mathbf{z}$$

$$p(\mathbf{t} \,|\, \mathbf{x}) = p(\mathbf{z} \,|\, \mathbf{x}) \stackrel{?}{=} f_{\mathrm{xpl}}(\mathbf{x})$$

Sampling T

$$\mathbf{t} = \mathbf{x} \odot \mathbf{z}$$

$$p(\mathbf{t} \,|\, \mathbf{x}) = p(\mathbf{z} \,|\, \mathbf{x}) \stackrel{?}{=} f_{\mathrm{Xpl}}(\mathbf{x})$$

outputs of f_{xpl} network are unnormalized logits...

Sampling T

$$\mathbf{t} = \mathbf{x} \odot \mathbf{z}$$

$$\begin{split} p(\mathbf{t} \,|\, \mathbf{x}) &= p(\mathbf{z} \,|\, \mathbf{x}) \stackrel{?}{=} f_{\mathrm{xpl}}(\mathbf{x}) \\ p(\mathbf{z}^* \,|\, \mathbf{x}) &= \mathrm{relaxed_k_hot}_{\tau}(f_{\mathrm{xpl}}(\mathbf{x})) \end{split}$$

outputs of $f_{\rm xpl}$ network are unnormalized logits...

$$\begin{split} \mathbf{g} &= -\log(-\log(\varepsilon))\,,\, \varepsilon \sim \mathcal{U}[0,1] \\ \mathbf{c} &= \operatorname{softmax}\left(\frac{\log(\mathbf{p}) + \mathbf{g}}{\tau}\right) \end{split}$$

$$\begin{split} \mathbf{g} &= -\log(-\log(\varepsilon))\,,\, \varepsilon \sim \mathcal{U}[0,1] \\ \mathbf{c} &= \operatorname{softmax}\left(\frac{\log(\mathbf{p}) + \mathbf{g}}{\tau}\right) \end{split}$$

Figure 1: Relaxed categorical gumbel softmax distribution with varying temperature au (Jang, Gu, and Poole, 2017).

$$\begin{split} \mathbf{g} &= -\log(-\log(\varepsilon))\,,\, \varepsilon \sim \mathcal{U}[0,1] \\ \mathbf{c} &= \operatorname{softmax}\left(\frac{\log(\mathbf{p}) + \mathbf{g}}{\tau}\right) \end{split}$$

$$\begin{split} \mathbf{g} &= -\log(-\log(\varepsilon))\,,\, \varepsilon \sim \mathcal{U}[0,1] \\ \mathbf{c} &= \operatorname{softmax}\left(\frac{\log(\mathbf{p}) + \mathbf{g}}{\tau}\right) \end{split}$$

Sample k relaxed one-hot vectors $\{\mathbf{c}^{(n)}\}_{n=1}^k$.

$$\mathbf{z}_i^* = \max_n \mathbf{c}_i^{(n)}$$

Resulting vector z^* will be at most k-hot.

Results

Authors' - Results

Figure 2: Interpretable results from MNIST black box classifier (Bang et al., 2019).

Authors' - Results

			L2X	VIBI (Ours)					
	chunk size	k	0	0.001	0.01	0.1	1	10	100
Accuracy	1×1	64	0.694	0.690	0.726	0.689	0.742	0.729	0.766
	1×1	96	0.814	0.831	0.780	0.806	0.859	0.765	0.826
	1×1	160	0.903	0.907	0.905	0.917	0.917	0.928	0.902
	2×2	16	0.735	0.795	0.750	0.771	0.732	0.753	0.769
	2×2	24	0.776	0.855	0.834	0.856	0.868	0.854	0.847
	2×2	40	0.811	0.914	0.914	0.915	0.903	0.918	0.935
	2×2	80	0.905	0.949	0.940	0.939	0.962	0.941	0.923
	4×4	4	0.650	0.655	0.650	0.775	0.717	0.682	0.681
	4×4	6	0.511	0.858	0.706	0.701	0.708	0.690	0.730
	4×4	10	0.835	0.835	0.824	0.933	0.875	0.854	0.782
	4×4	20	0.954	0.962	0.815	0.934	0.929	0.946	0.943

Figure 3: Ablations for β parameter on MNIST (Bang et al., 2019).

Authors' - Results

				App	Rationale Fidelity				
	chunk size	k	Saliency	LIME	SHAP	L2X	VIBI (Ours)	L2X	VIBI (Ours)
IMDB	sentence	1	38.7 ± 0.9	72.7 ± 0.8	49.5 ± 1.0	87.6 ± 0.6	87.7 ± 0.6	72.7 ± 0.8	73.1 ± 0.8
	word	5	41.9 ± 0.9	75.6 ± 0.8	50.1 ± 1.0	73.8 ± 0.8	74.4 ± 0.8	63.8 ± 0.8	65.7 ± 0.8
	5 words	1	42.4 ± 0.9	29.0 ± 0.8	49.7 ± 1.0	75.9 ± 0.7	76.4 ± 0.7	60.1 ± 0.9	$\textbf{63.2}\pm\textbf{0.8}$
	5 words	3	41.4 ± 0.9	67.9 ± 0.8	49.1 ± 1.0	83.3 ± 0.7	83.5 ± 0.7	69.4 ± 0.8	66.0 ± 0.8
MNIST	2×2	16	91.2 ± 0.6	77.0 ± 0.8	94.2 ± 0.5	93.4 ± 0.5	94.8 ± 0.4	73.5 ± 0.9	77.1 ± 0.8
	2×2	24	93.8 ± 0.5	80.7 ± 0.8	95.4 ± 0.4	95.1 ± 0.4	95.3 ± 0.4	77.6 ± 0.8	85.6 ± 0.7
	2×2	40	95.7 ± 0.4	85.9 ± 0.7	95.4 ± 0.4	96.7 ± 0.4	96.2 ± 0.4	81.1 ± 0.8	91.5 ± 0.5
	4×4	4	86.3 ± 0.7	60.9 ± 1.0	94.8 ± 0.4	95.3 ± 0.4	94.8 ± 0.4	65.0 ± 0.9	77.5 ± 0.8
	4×4	6	90.6 ± 0.6	63.7 ± 0.9	93.6 ± 0.5	95.7 ± 0.4	95.6 ± 0.4	51.1 ± 1.0	70.1 ± 0.9
	4×4	10	94.9 ± 0.4	70.5 ± 0.9	95.1 ± 0.4	96.5 ± 0.4	96.7 ± 0.4	83.5 ± 0.7	93.3 ± 0.5

Figure 4: Comparison with other interpretability frameworks (Bang et al., 2019).

Figure 5: CIFAR10 VIBI training metrics. Explainer is a *Unet*, k=64, β = 0.001

CIFAR10 test set batch.

CIFAR10 VIBI distribution over explanation. Explainer is a $\textit{Unet},\,k=64,\,\beta$ = 0.001

CIFAR10 test set batch.

CIFAR10 VIBI explanations with black box prediction context. Explainer is a <code>Unet</code>, k=64, β = 0.001

CIFAR10 test set batch.

CIFAR10 VIBI distribution over explanation with black box prediction context. Explainer is a <code>Unet</code>, k=64, $\beta=0.001$

CIFAR10 VIBI top-k explanations with black box prediction context. Explainer is a $\textit{Unet},\,k=64,\,\beta=0.001$

CIFAR10 VIBI top-k explanations with black box prediction context. Explainer is a <code>Unet</code>, k=64, $\beta=0.001$, <code>out_channels=3</code>

MNIST Results

MNIST test set batch.

MNIST Results

MNIST VIBI distribution over explanations with black box prediction context. Explainer is a ResNet, k=4, $\beta=0.01$, chunk_size=4x4

MNIST Results

MNIST VIBI top-k explanations with black box prediction context. Explainer is a ResNet, k=4, $\beta=0.01$, chunk_size=4x4

Bibliography

References

- Seojin Bang et al. Explaining a black-box using Deep Variational Information Bottleneck Approach. 2019. arXiv: 1902.06918 [cs.LG].
- Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 2017. arXiv: 1611.01144 [stat.ML].
- Naftali Tishby, Fernando C Pereira, and William Bialek. "The information bottleneck method". In: *arXiv preprint* physics/0004057 (2000).

Code available at github.com/willisk/VIBI