CSC/ECE 573 Section 002 Fall 2020

Name 1: Rajit Nitin Bharambe Name 2: Hrishikesh Patil Student ID 1: 200314482 Student ID 2: 200318004

Project 2 Report

Task 1:

	00)	5, MSS = 50	k N (p=0.0	1: GO Bac	Task	
Average Delay	5th	4th	3rd	2nd	1st	Window size (N)
115.00704	115.083	126.728	112.346	113.292	107.587	1
98.26128	80.7535	97.8279	105.995	92.5402	114.19	2
59.96650	55.5899	59.5228	59.8344	70.0501	54.8353	4
53.772610	63.09	52.1003	49.0858	54.9939	49.5931	8
28.79988	27.968	32.8716	28.9966	23.5589	30.6043	16
20.812	19.6357	18.9645	24.5686	19.5863	21.3084	32
13.44690	13.7728	9.6881	15.6145	13.5494	14.61	64
21.711	23.6685	25.9968	19.5687	20.6859	18.6396	128
64.94674	61.8956	61.2352	67.5581	63.6585	70.3863	256
173.1279	172.875	183.691	170.256	165.89	172.928	512
417.44704	497.885	385.982	416.896	405.367	381.106	1024

Average Delay vs Window size (N)

Parameter:

The window size (N) is varied from 1 to 1024, with interval of power of 2, MSS is varied from 100 to 1000 with an interval of 100. p is set to 0.05

Explanation:

When window size is small, less packets are transmitted at a time. The probability of lost ACK is more because upon retransmission, less packets are transmitted. There are more chances of getting a lost ACK. As the window size is less, it takes a long time to transmit the file to the server.

When window size increases then, average delay time decreases up till N = 64, If the window size increases further then upon lost ACK, average delay time is increased because the time is wasted to retransit all the packets every time. For example, consider Window size to be 1024. When 1024 packets are transmitted at once. Let say the Lost ACK occurs at sequence number 3, then upon retransmission all the packets from 3 to 1024 are transmitted again and this results in high average delay time.

Task 2:

Task 2: Go back N (p=0.05, N=64)								
MSS	1st	2nd	3rd	4th	5th	Average Delay		
100	55.5597	42.4277	48.8673	29.3788	37.0202	42.65074		
200	40.2662	25.4945	24.2174	23.8693	25.8283	27.93514		
300	30.7086	12.4225	23.0658	15.1309	23.8381	21.03318		
400	17.871	21.616	16.3343	14.749	22.5931	18.63268		
500	19.9105	10.7207	13.6112	11.9509	15.4264	14.32394		
600	19.9093	8.9201	14.1198	14.1573	9.4707	13.31544		
700	19.7069	11.4065	12.3546	10.7251	14.9061	13.81984		
800	10.8627	11.8209	15.5484	9.47698	8.9209	11.325976		
900	13.8104	10.8507	9.4765	9.7093	10.4518	10.85974		
1000	12.8491	8.2662	8.8411	8.7236	9.9992	9.73584		

Average Delay vs MSS

Parameter:

The window size (N) is set to 64, MSS is varied from 100 to 1000 with an interval of 100. p is set to 0.05

Explanation:

As the value of the MSS increases, this means that more data is transmitted in a packet therefore, there will be less number of the packet as MSS is more and thus there is less chance of retransmission due to lost packet/lost ACK.

When there is less retransmission and more data is sent in a packet, therefore as the size of MSS increases, the average time to transfer the file decreases. This is exactly as observed in the graph. The average delay time decreases from 42.6 sec to 9.73 sec.

Conclusion:

MSS is inversely proportional to average delay time.

Task 3:

Task 3: Go back N (MSS=500, N=64)							
р	1st	2nd	3rd	4th	5th	Average Delay	
0.01	7.9879	9.0968	9.1402	9.4597	9.6114	9.0592	
0.02	10.8671	14.6702	8.9666	11.4396	9.5298	11.09466	
0.03	11.5452	10.1575	11.493	10.7871	9.609	10.71836	
0.04	21.4986	8.2294	16.8047	11.1263	13.3073	14.19326	
0.05	16.6906	11.607	11.818	15.7579	18.8148	14.93766	
0.06	18.8232	17.0306	13.5638	26.6171	12.391	17.68514	
0.07	22.6677	18.8509	14.1371	14.2882	17.5606	17.5009	
0.08	25.0443	18.3006	16.9533	14.6536	13.2287	17.6361	
0.09	27.0272	13.9353	14.2126	17.649	20.3507	18.63496	
0.1	25.8711	24.4683	20.9399	29.4504	25.3597	25.21788	

Average Delay vs Probability (p)

Parameter:

The window size (N) is set to 64, MSS is set to 500. p is varied from 0.01 to 0.1 with intervals of 0.01

Explanation:

As the value of the p increases, this means that there will be more ACK lost, thus this will lead to more retransmission because the lost ACK probability increases as p increases. The random

value is calculated between 0 to 1 and is compared with probability which varies from 0.01 to 0.1. When random value is less than p, the packet is retransmitted by the client.

This same behaviour is observed in the graph, as the value of the p increases, the average delay time increases.

Conclusion:

p is directly proportional to average delay time.