Contents

1	Class	overview	2	
2	2.0	Astronomy 0.1 Greek mergence of modern Astro	2 3	
3	Orbital Mechanics I			
	3.1 No	ewtonian mechanics	6	
	3.2 No	ewtons laws	6	
	3.3 Di	isplacement vector and polar coordinates	7	
	3.4 Ke	epler laws: angular momentum	7	
	3.5 ke	eplers 2nd law = consv, angular momentum	7	
	3.6 Ke	eplers Laws	8	
		6.1 Keplers First Law	8	
	3.7 Ke	epler III	8	
4 Orbital energetics			8	
		hecking energy in circular orbits	9	
		egative total energy orbits	9	
			9	
			10	
5			LO	
			10	
			10	
			11	
			11	
	•		11	
			11	
			12	
	5.6 Hi	ill radius	12	
c	Closes		เก	

Astro Notes

Pierson Lipschultz

September 12, 2025

1 Class overview

Office hours tues and thurs 11-12 astro 237 ta office hours wed 3:30:530 astro 2367 hw due wed hw posted week before

- solar system
- steller evo
- compact objects
- galaxy quasi darkmatter
- cosmic web
- big bang

course goals

- apply pys to universe
- understand foundations of modern astro, astrophys, and cosmology $\,$
- conceptual understanding of the uni based on physical principles

2 Early Astronomy

2.0.1 Greek

- Aristotle
 - earth is spherical
 - partial lunar eclipses
 - some stars visible from southern locations but not northern and vice versa

- had ideas regarding perfect geo influenced by Pythagoras and Plato
- Aristarchus (310-230 BC):
 - unpreceded heliocentric framework
 - trig distances earth-moon-sun system
 - angular diameters $\theta_{sun} \approx \theta_{moon}$: $\frac{A}{C} = \frac{D_{moon}}{D_{moon}}$
 - diameters from lunar eclipses $D_{moon} < D_{earth}$
- Eratoshs (176-195 BC):
 - Determined radius of spherical earth R_E
 - Sun at zenith at noon on summer solstice at Aswan
 - But further north in Alexandria, Egypt, the sun is south of the zenith by angle α
- Hipparchus (190-120 BC):
 - Discover precession of the equinoxes from examination of star catalogs over centuries
 - established the magnitude system
- Copernicus (1473-1543):
 - heliocentric
 - earth rotates
 - still assumed uniform circular celestial motion
 - inferior planets: orbit smaller than earths
 - superior planets: orbits larger than earths

2.1 Emergence of modern Astro

Inferior planets

- B/C = $\sin \theta_E$
- B=C Sin θ_E
- C is AU
- Early astronomers didnt know C, so they could only infer rations of B/C. Ie. Orbital radii measured in AU

Superior Planets

- Measure time between opposition and eastern quadrature
- want angle θ between opp and east quad

- $\theta = (\omega_E \omega_p)$ and $C/B = cos\theta$
- measure τ and synodic period, calculate sidereal period and ω_p ; know ω_E and infer C/B

Galilean Revolution

- Galileo Galilei (1564 -1642)
- - improved and used a basic refracting telescoping
- def publication of early results 1610 "starry messenger"
- Moon is cratered; not a perfect Sphere
 - milkyway is made out of stars
 - Jupiter has moons (or as he thought, stars)
 - measured phases of Venus

Phases of Venus

- direct confrontation with Ptolemaic geocentric models
- in Ptolemaic models you only see crescent phases

Tycho Brahe (1546-1601)

- Denmark, later Prague
- Given island by king Fredrick (and staff)
- made a accurate and vast database of celestial motion
- had a lead nose?
- Threw giant ragers
- supernova named after him

Johannes Kepler (1571–1630, Prague)

- 'Inherited' (maybe stole) Brahe's data
- also has a SN
- Kepler fit a new empirical model of heliocentric orbits, abandoning perfect circles
 - "It was as if I awoke from sleep and saw a new light" (Kepler, New astronomy)

Kepler's Laws

First law

- The planets travel on elliptical orbits with the sun at one focus
- Semimajor axis, half the major axis
- eccentricity: how elliptical (stretched) an orbit is distance between foci divided by major axis.

second law

- A line drawn from the sun to a planet sweeps out equal areas in equal time intervals'
- perihelion: orbital point closet to the sun
- aphelion: furthest orbital point from the sun

third law

Def: The square of the sidereal orbital periods of the planets are prop to the cubes of the Semimajor axis of their orbits

$$p^2 = Ka^3$$

$$\begin{split} P &= \text{planets sidereal period} \\ a &= \text{length of semimajor axis} \\ K &= \text{constant} \end{split}$$

Consequences of heliocentric model

- retrograde motion of outer planets
- positions of outer and inner planets wrt sun
- annual parallax
- aberration of starlight
- Coriolis effect

Parallax

- annual parallax: change in the apparent position when seen from two diff locations due to earth revolving around the sun. First measured by Bessel in 1838

Aberration of starlight

- deflection of apparent stellar positions in the direction of the observers motion
- analog: running throw rain and getting wet in the front and not in the back
- detected (Picard, 1680); explained (Bradley, 1729)

- telescope is moving along orbital vector around the sun; translation along orbit cannot exceed transit time of light through telescope

Coriolis effect: evidence of earth rotation

- coriolis acceleration is perp to the direction of motion

$$\vec{a_{cor}} = s\vec{v} \times \vec{\omega}$$

- can be deduced from a pendulum
- and in hurricanes!

Orbital Mechanics I 3

3.1 Newtonian mechanics

Parametric vectors

Displacement $\vec{r}(t) = x(t)\hat{i}y(t)\hat{j} + z(t)\hat{k}$ distance: $r(t) = |\vec{r}(t)| = \sqrt{\vec{r} \cdot \vec{r}}$

3.2 Newtons laws

First law

- Isaac newton(1642-1727)
- an objects' velocity remains constant unless a net outside force acts upon
- $\vec{v}(t) = \vec{v_0} = const$

second law

- $\vec{F} = m\vec{a}(t)$
- $\vec{F} = \frac{d\vec{p}(t)}{dt}$
- $d\vec{v}/dt = \vec{f}/m$
- force changes velocity
- used a lot in computational math

third law

- forces come in pairs, equal in magnitude, and opposite in direction

Newtonian gravity

- a force, grav, exsits between any two objects having mass m and M, prop to the product of their masses mM and inversely proportinal to the square of the separtation distance r of their centers
- for coordinates centered on M:
- $ec{F}=-Grac{Mm}{|ec{r}|^2}\hat{r}$

3.3 Displacement vector and polar coordinates

- cartesian coordinates are often written a (x,y,z) in a coordinate system centered on mass M
- Axis orientations are chosen so that the planet orbits in the x-y plane
- Displacement $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$

velocity vector and polar coordinates

- unit vectors in polar coordinates vary with $\theta(t)$

$$\frac{d\hat{r}(t)}{dt} = \frac{d\hat{r}(t)}{d\theta} \frac{d\theta(t)}{dt} = \frac{d\theta(t)}{dt} \hat{\theta}(t)$$

- .
- .
- _ .
- .

$$\vec{v}(t) = v_r \hat{r} + v_t \hat{\theta}$$

- two velocity components in polar coords
- 3.4 Kepler laws: angular momentum
- 3.5 keplers 2nd law = consv, angular momentum

$$d\vec{L}/dt = 0$$

$$\vec{L} = \vec{R} \times \vec{p} = \vec{r} \times m\vec{v} = const$$

$$ightrightarrows |ec{v}| = L = mrv_1$$

3.6 Keplers Laws

3.6.1 Keplers First Law

$$- \frac{d\vec{v}}{dt} = -\frac{GM}{r_2}\hat{r}$$

-

$$\frac{L}{GMm}\frac{d\vec{v}}{dt} = \frac{d\hat{\theta}}{dt}$$

-

$$\frac{L}{GMm}\vec{v} = \hat{\theta} + e\hat{j}$$

- take dot product of both sides with unit vector $\hat{\theta}$, using

-
$$\hat{j} \cdot \hat{\theta} = \cos \theta$$

_

$$\vec{v} \cdot \hat{\theta} = v_t = \frac{L}{mr}$$

3.7 Kepler III

- we know that $\frac{dA}{dt} = \frac{l}{2m} = const$

- area of a ellipse $a = \pi ab$ of orb period p.

-

$$\therefore \frac{A}{P} = \frac{\pi ab}{P} = \frac{L}{2m}$$

- eclipse geo : $b^2 = a^2(1 - e^2)$

- also, $\frac{L^2}{m^2}GMa(1-e^2)$

-

$$P^2 = \frac{4\pi^2}{GM}a^3$$

4 Orbital energetics

- total energy e is conserved

- sum of K and U

-

$$E = K + U$$

-

$$=\frac{1}{2}mv^2 - \frac{GMm}{r}$$

- total E is conserved

 $E = \left(\frac{GMm}{L}\right)^2 \frac{m}{2} (e^2 - 1)$

- Hyperbolic orbit: $e>1, E>0, K>\left|U\right|$

- open orbit, unbound;, single perihelion passage at $\theta = 0$

- Parabolic orbit: e=1, E=0, K=|U|

- marginally unbound; velocity approach zero at infinite time $\,$

- elliptical orbit: e < 1, E < 0, K = |U|

- objects originating outside our solar system are easily identified by their total energy

- measure total energy (how far away it is, how fast is it moving)

4.1 Checking energy in circular orbits

- governing equation for circular orbits in scalar from

$$f = ma$$

$$\frac{GM}{r^2} = \frac{v^2}{r} = \omega^2 r$$

$$v = \sqrt{\frac{GM}{r}}$$

4.2 Negative total energy orbits

- bound orbits have E; 0

- must add energy to break "unbind" the orbits

4.3 Parabolic orbits: escape speeds

- Escape speed is the speed that will bring your total pot energy to 0

- velocity becomes zero at infinite distance

$$\frac{1}{2}mv^2 = \frac{GMm}{r}$$

 $v_{esc} = \sqrt{\frac{2GM}{r}}$

4.4 Hohmann transfer orbit

- Elliptical transfer orbit from earth to superior planet
 - earths orbit becomes the transfer orbits perihelion passage
 - inserted into superior planet orbit at aphelion. This constrains launch windows
 - theoretically requires only two burns: at launch and aphelion insertion point
- semimajor axis os transfer orbit

 $a_{to} = \frac{a + a_{sup}}{2}; Earth$

5 Earth-Moon Systen

5.1 Motion of the moon

- 27.3 sidereal orbit
- 29.5 synodic orbit
- rises in east and sets in west diurnally, but moves eastwards by about 12 deg per day rel to stars
- rises hour later per night

5.2 Precession

- earth is an oblate spheroid with equatorial bulge of .3% cause by separation
- sun, moon, and planets exert a torque τ on earth

 $\vec{\tau} = \vec{r} \times \vec{F}$

- results in precession of spin axis of earth around ecliptic pole
- NCP moves. Polaris will not always be at NCP
- moves through stars with $P \approx 28500yr$
- opening angle

 $47^{\circ} (= 2 \times 23.5^{\circ})$

5.3 Tidal Forces

- Moon exerts diff tidal forces on matter on earth
- esp noticeable on earths ocean surface as tides
- when sun and moon align (sun-earth-moon at $0^{\circ} and 180^{\circ})$ high-amp tides result, called spring tides
- when sun and moon are at 90° they sum destructively, producing neap tides

5.3.1 Diff gravitational tidal forces

- arise from the r^{-2} dependence of grav force
- Taylor expansion about center of earth r_0

$$\delta F = \frac{2GM_{moon}m}{r^3}(r - r_0)$$

- Sun exerts about half as strong as moon tidal forces

5.3.2 Rotation of tides

- tidal bulges produced on earths by the moon rotate at the same angular rate as the moons orbit around earth
- but the earth is rotating faster at once per sidereal day by 4 minutes. Drags the tides forward from where they would otherwise be by about 10° by friction
 - therefore high tides occur shortly after upper transit of moon
 - the misalignment drives angular momentum transfer between earth and Moon
 - moon pulls strongly on nearer tidal bulge than farther tidal bulge
 - net torque to slow earth rotation
 - but conversely the tidal bugle pulls more strongly on the moon, pulling it forward, increasing its angular momentum

5.4 Earth Shape

- moon stretches earth in a prolate deformation
- spin of the earth causes an oblate deformation
- oblate is much greater the prolate def

5.5 Roche Limit

- object get too close, forces on one side much greater then other, rip object apart
- approx a planet as two spheres 2m

-

$$\Delta F = \frac{dF}{dr} \Delta r = \frac{2GMm}{r^3} \Delta r$$

- Is there a force holding 2m together? yes, self grav

_

$$F = -\frac{Gmm}{(\Delta r)^2}$$

r

5.6 Hill radius

- tidal forces of sun on earth-moon systems means that there is a maximum orbital distance for the moon, if it is to remain bound to the earth

6 Glossary

Synodic period

- ${\hspace{0.1em}\text{--}\hspace{0.1em}}$ time elapsed between success conjunctions or oppositions
- this is the period we observe from earth, which is moving

Sidereal Period

- elapsed time of full orbit relative to the fixed stars (inertial ref frame)
- This is the one we will want to put in keplers laws