Exercises Week 6

Ex. 1 — Let $f_1: \mathbb{R}^d \to \mathbb{R}$ be a μ_1 -strongly convex function and $f_2: \mathbb{R}^d \to \mathbb{R}$ be a μ_2 -strongly convex function. Prove that

- 1. For any c > 0, the function $g = cf_1$ is $(c\mu_1)$ -strongly convex.
- 2. The function $g = f_1 + f_2$ is $(\mu_1 + \mu_2)$ -strongly convex.

Ex. 2 — Let $X, W \subset \mathbb{R}^d$ and $Y \subset \mathbb{R}$. Consider the regression problem over the class of linear regressors $\mathcal{H} = \{h_w : X \to Y, w \in W\}$ where $h_w(x) = \langle w, x \rangle$, with the loss $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$.

1. Adapt the theory developed in class for RLM to demonstrate that, under appropriate additional conditions (to be determined), the ERM predictor is an agnostic PAC-learner for \mathcal{H} and enjoys guarantees similar to those of RLM.

Suggestions:

- Identify conditions that ensure the empirical loss is strongly convex (without the need to add a regularization term).
- Identify conditions under which the loss function is Lipschitz continuous.