Unit 2

Regularized regression: lasso, ridge and elastic net

The linear regression model has the form

$$f(X) = \beta_0 + \sum_{j=1}^{p} X_j \beta_j,$$

with input vector $X^T = (X_1, \dots, X_p)$.

- The linear model assumes that E(Y|X) is linear or that the linear model is a reasonable approximation.
- The variables X_i can come from different sources:
 - quantitative inputs;
 - transformations of quantitative inputs;
 - basis expansions;
 - numeric or "dummy" coding of levels of qualitative inputs;
 - interactions between variables.

- The model is linear in the (unknown) parameters $\beta = (\beta_0, \beta_1, \dots, \beta_p)$.
- ullet Least squares estimation determines eta by minimizing the residual sum of squares:

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i))^2$$
$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij}\beta_j)^2.$$

In matrix notation:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{T}(\mathbf{y} - \mathbf{X}\beta).$$

• Differentiating with respect to β gives:

$$egin{aligned} rac{\partial \mathsf{RSS}}{\partial eta} &= -2 \pmb{X}^T (\pmb{y} - \pmb{X} eta), \ rac{\partial^2 \mathsf{RSS}}{\partial eta \partial eta^T} &= 2 \pmb{X}^T \pmb{X}. \end{aligned}$$

• Assuming that \boldsymbol{X} has full column rank, $\boldsymbol{X}^T\boldsymbol{X}$ is positive definite and the unique solution is given by

$$\hat{\beta} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

The predicted values are given by

$$\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} = \mathbf{H}\mathbf{y},$$

with \boldsymbol{H} the "hat"-matrix which orthogonally projects into the subspace spanned by the columns of \boldsymbol{X} .

• If $\mathbf{X}^T \mathbf{X}$ is singular, β is not uniquely determined, but the fitted values $\hat{\mathbf{y}}$ are.

Assume

$$\mathbf{y} = \mathbf{X}\beta + \epsilon,$$

with

- $\bullet \ \mathsf{E}(\epsilon) = \mathsf{0}$
- $2 \operatorname{Var}(\epsilon) = \sigma^2 I$
- 3 X deterministic with full column rank.
- Then:
 - The Gauss-Markov Theorem gives that the least squares estimator $\hat{\beta}$ is the best linear unbiased estimator (BLUE).
 - The variance of the estimator is:

$$\operatorname{Var}(\hat{\beta}) = \sigma^2(\boldsymbol{X}^T \boldsymbol{X})^{-1}.$$

• Typically the variance σ^2 is estimated by

$$\hat{\sigma}^2 = \frac{1}{N-p-1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2,$$

to obtain an unbiased estimate.

• Adding the assumption:

$$\bullet \ \epsilon \sim \textit{N}(\textbf{0}, \sigma^2 \textit{I})$$
 gives

$$\hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}),$$
$$(N-p-1)\hat{\sigma}^2 \sim \sigma^2 \chi^2_{N-p-1},$$

and $\hat{\beta}$ and $\hat{\sigma}^2$ are statistically independent.

• The *t* test statistic for the hypothesis test $\beta_i = 0$ is given by

$$t_j = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{\mathbf{v}_j}},$$

with v_j the jth diagonal element of $(\mathbf{X}^T\mathbf{X})^{-1}$. Under the Gaussian assumption and the null hypothesis $\beta_j = 0$ t_j follows a t distribution with N - p - 1 degrees of freedom.

• This can also be used to construct $(1 - 2\alpha)$ confidence intervals for β_i by:

$$(\hat{\beta}_j - t_{N-p-1}^{(1-\alpha)} \sqrt{v_j} \hat{\sigma}, \hat{\beta}_j + t_{N-p-1}^{(1-\alpha)} \sqrt{v_j} \hat{\sigma}),$$

with $t_{N-p-1}^{(1-\alpha)}$ the 1 $-\alpha$ quantile of the t distribution with N-p-1 degrees of freedom.

To compare two nested models, one calculates

$$F = \frac{(RSS_0 - RSS_1)/(p_1 - p_0)}{RSS_1/(N - p_1 - 1)},$$

with

- RSS₁ being the residual sum-of-squares for the least squares fit of the bigger model with $p_1 + 1$ parameters, and
- RSS₀ the same for the nested smaller model with $p_0 + 1$ parameters, having $p_1 p_0$ parameters constrained to be zero.

Under the Gaussian assumption and that the smaller model is correct, the F statistic follows an F-distribution with p_1-p_0 and $N-p_1-1$ degrees of freedom.

Estimation in R

The function for fitting a linear regression model in R is:

- The formula specifies the dependent variable as well as how the model matrix is created from the independent variables.
- Least squares estimation is performed using QR method.
- Regression coefficient estimates are identical to maximum likelihood estimates assuming that ϵ is normally distributed:

$$\epsilon \sim N(0, \sigma^2 I)$$

Inference performed (e.g., using summary()) is based on this assumption.

Example: Prostate Cancer

- Data set provided in the R package ElemStatLearn.
- Use only the 67 observations from the training data set.
- The dependent variable is lpsa, the level of a prostate-specific antigen.
- The independent variables are clinical measures.
- There is a substantial amount of correlation between the clinical measures.
- The independent variables are standardized before fitting the linear model.

Example: Prostate Cancer / 2

Example: Prostate Cancer / 3

	Estimate St	d. Error t	value	Pr(> t)	
(Intercept)	2.45	0.09	28.18	<2e-16	***
lcavol	0.72	0.13	5.37	<2e-16	***
lweight	0.29	0.11	2.75	0.01	**
age	-0.14	0.10	-1.40	0.17	
lbph	0.21	0.10	2.06	0.04	*
svi	0.31	0.13	2.47	0.02	*
lcp	-0.29	0.15	-1.87	0.07	
${\tt gleason}$	-0.02	0.14	-0.15	0.88	
pgg45	0.28	0.16	1.74	0.09	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 '

Example: Prostate Cancer / 4

• Dropping the insignificant variables (age, 1cp, gleason, pgg45) and comparing the two models using the *F*-test gives:

Analysis of Variance Table

```
Model 1: lpsa ~ (lcavol + lweight + age + lbph + svi + lcp

pgg45) - age - lcp - gleason - pgg45

Model 2: lpsa ~ lcavol + lweight + age + lbph + svi + lcp +

pgg45

Res.Df RSS Df Sum of Sq F Pr(>F)

1 62 32.815
```

• Prediction performance on the test dataset measured by the MSE:

```
base model full model subset model
1.057 0.521 0.456
```

2 58 29.426 4 3.3886 1.6698 0.1693

Model / subset selection

- There are two reasons why least squares estimates are not satisfactory:
 - Prediction accuracy: Shrinking or setting coefficients zero might induce bias, but may improve prediction accuracy due to reduced variance.
 - Interpretation: Determining a small subset of predictors exhibiting the strongest effects allows to more easily discern important regressors.

Model / subset selection / 2

Strategies for choosing a subset:

- Best subset selection: possible for up to p = 30 or 40 using the efficient *leaps and bounds* procedure (Furnival and Wilson, 1974).
 Available for example in package **leaps** in R.
- Forward- and backward-stepwise selection: seek a good path through subsets of different size.
 - Forward selection starts with the intercept model and iteratively adds predictors which improve the model fit most.
 - Backward selection starts with the full model and iteratively removes the predictor which has the least impact on the fit.
 - Variables are iteratively added or removed. In each step the least squares coefficient estimates are determined for the current active set.

Model / subset selection / 3

- Forward-stagewise regression:
 - In each step the variable is selected which has the largest absolute correlation with the current residual.
 - The simple linear regression coefficient for this variable and the current residual is determined.
 - The coefficients of all other variables remain unchanged.
 - More than p steps necessary to arrive at the full least squares solution.

Model / subset selection / 4

- Least angle regression (LAR):
 - Iterative procedure where one variable is added in each step to the active set.
 - Starting at each step the variables in the active set
 - have the same absolute correlation with the current residual,
 - have a higher absolute correlation than the variables not in the active set.
 - The coefficients of the variables in the active set are updated
 - keeping the correlation to the residuals tied,
 - until another variable (not in the active set) has the same correlation with the residuals.
 - This variable is then added to the active set.
 - This process eventually also gives the full least squares solution.

Example: Prostate Cancer

Shrinkage methods

- Shrinkage methods add a complexity parameter which allows to gradually change between a simple model (e.g., intercept only) to a complex model (e.g., the least squares fit of all variables).
- In general the optimization criterion is modified by adding a penalty.
- Examples:
 - Best subset selection
 - Ridge
 - Lasso (least absolute shrinkage and selection operator)
 - Elastic net

Best subset selection

 Regression with best subset selection obtains the estimates by adding a penalty in dependence of the L₀ norm of the regression coefficients:

$$\hat{\beta}^{\mathrm{BSS}} = \operatorname*{arg\,min}_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \|\beta_{\setminus 0}\|_0 \right\},$$

with the L_0 norm being equal to the number of non-zero elements in a vector and with $\lambda \geq 0$ the complexity parameter.

• An equivalent problem formulation is:

$$\hat{eta}^{ ext{BSS}} = rg \min_{eta} \left\{ \sum_{i=1}^{N} (y_i - eta_0 - \sum_{j=1}^{p} x_{ij} eta_j)^2
ight\},$$
 subject to $\|eta_{\setminus 0}\|_0 \leq t$,

with a one-to-one correspondence between t and λ .

Ridge

 Ridge regression obtains the estimates by adding a penalty in dependence of the squared Euclidean length of the regression coefficients:

$$\hat{\beta}^{\text{ridge}} = \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\},\,$$

with $\lambda \geq 0$ the complexity parameter:

- $\lambda = 0$: least squares fit.
- $\lambda = \infty$: only a constant function β_0 fit.

Ridge / 2

An equivalent problem formulation is:

$$\hat{eta}^{ ext{ridge}} = rg\min_{eta} \left\{ \sum_{i=1}^N (y_i - eta_0 - \sum_{j=1}^p x_{ij} eta_j)^2
ight\},$$
 subject to $\sum_{j=1}^p eta_j^2 \leq t,$

with a one-to-one correspondence between t and λ .

- The intercept β_0 is not penalized to ensure that the solutions do not depend on the origin for Y.
- Ridge regression alleviates the problem of poorly identified coefficients in case of multicollinearity.
- Ridge regression is not equivariant under scaling of the inputs.
 Normally inputs are standardized before estimation.

Ridge / 3

The Ridge criterion can also be written as

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^{\mathsf{T}}(\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^{\mathsf{T}}\beta,$$

with solution

$$\hat{\beta}^{\text{ridge}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y},$$

where I is the $p \times p$ identity matrix.

Ridge: Shrinkage effects

For orthonormal inputs:

$$\hat{eta}^{
m ridge} = rac{\hat{eta}}{1+\lambda}.$$

Otherwise use the singular value decomposition

$$X = UDV^T$$

with

- \boldsymbol{U} a $N \times p$ orthogonal matrix,
- V a $p \times p$ orthogonal matrix,
- $\textbf{\textit{D}}$ a $p \times p$ diagonal matrix with $d_1 \geq d_2 \geq \ldots d_p \geq 0$.

Ridge: Shrinkage effects / 2

This gives

$$egin{aligned} m{X}\hat{eta}^{ ext{ridge}} &= m{X}(m{X}^Tm{X} + \lambda m{I})^{-1}m{X}^Tm{y} \ &= m{U}m{D}(m{D}^2 + \lambda m{I})^{-1}m{D}m{U}^Tm{y}. \end{aligned}$$

- Ridge regression
 - projects y onto the principal components and
 - shrinks the coefficients of the low-variance components more than the high-variance components.
- The effective degrees of freedom are given by

$$df(\lambda) = tr(\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^T] = tr(\boldsymbol{H}_{\lambda})$$
$$= \sum_{j=1}^{p} \frac{d_j^2}{d_j^2 + \lambda}.$$

Example: Prostate Cancer

Lasso

The lasso estimate is defined by:

$$\hat{eta}^{\mathrm{lasso}} = rg\min_{eta} \left\{ \sum_{i=1}^{N} (y_i - eta_0 - \sum_{j=1}^{p} x_{ij} eta_j)^2
ight\},$$
 subject to $\sum_{j=1}^{p} |eta_j| \leq t.$

The equivalent Lagrangian form is given by:

$$\hat{\beta}^{\text{lasso}} = \operatorname*{arg\,min}_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{\rho} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{\rho} |\beta_j| \right\}.$$

Lasso / 2

- The lasso essentially replaces the L₂ ridge penalty with the L₁ penalty.
- If *t* is sufficiently small, some of the coefficients will be exactly zero.
- If t is larger than $t_0 = \sum_{j=1}^p |\hat{\beta}_j|$, then the lasso estimates are the OLS estimates $\hat{\beta}_j$. If $t = t_0/2$, the lasso estimates are shrunken by 50% on average.
- A standardized penalty parameter is given by

$$s = \frac{t}{\sum_{j=1}^{p} |\hat{\beta}_j|},$$

with $s \in [0, 1]$.

Lasso regression is not equivariant under scaling of the inputs.
 Normally inputs are standardized before estimation.

Example: Prostate Cancer

Elastic net

The following optimization problem is solved in elastic net regression

$$\begin{split} \hat{\beta}_{\text{enet}} &= \arg\min_{\beta} \left\{ \| \mathbf{y} - \mathbf{X} \beta \|_{2}^{2} + \lambda (\alpha \| \beta_{[-0]} \|_{2}^{2} + (1 - \alpha) \| \beta_{[-0]} \|_{1}) \right\} \\ &= \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_{i} - \beta_{0} - \sum_{j=1}^{p} x_{ij} \beta_{j})^{2} + \lambda \left(\sum_{j=1}^{p} \alpha \beta_{j}^{2} + (1 - \alpha) |\beta_{j}| \right) \right\} \end{split}$$

- The parameter $\lambda \geq 0$ is a complexity parameter, that controls the amount of shrinkage. The parameter $\alpha \in [0,1]$ determines the compromise between Ridge and LASSO penalty.
- The intercept β_0 is not shrunken.
- The elastic net solutions are not equivariant under scaling of the regressors.
 - ⇒ One normally standardizes the regressors before analysis.

For an orthonormal input matrix X:

Best subset (size M), L₀ loss:

$$\hat{\beta}_j \mathbb{1}_{\operatorname{rank}(|\hat{\beta}_j|) \leq M}$$

• Lasso, L₁ loss:

$$\operatorname{sign}(\hat{eta}_j)(|\hat{eta}_j|-\lambda)_+$$

• Ridge, L₂ loss:

$$\hat{\beta}_j \frac{1}{1+\lambda}$$

with $\hat{\beta}_i$ the OLS estimator.

The lasso and ridge regression can be generalized to:

$$\tilde{\beta} = \operatorname*{arg\,min}_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\},$$

with $q \ge 1$.

Elastic net:

$$\begin{split} \hat{\beta}^{\text{elastic net}} &= \arg\min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right. \\ &\left. + \lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha) |\beta_j|) \right\}, \end{split}$$

with $\alpha \in [0, 1]$.

- Represents a compromise between lasso and ridge.
- Selects variables like the lasso, and shrinks together the coefficients of correlated predictors like ridge.
- Has computational advantages over the L_q penalties.

Relation to Bayesian estimation

- Bayesian estimation determines the posterior distribution of a parameter given
 - prior beliefs and
 - observed data

by combining the prior distribution of the parameter with the likelihood function.

- All penalized approaches can be seen as determining the maximum a-posteriori estimates of the parameters using different prior distributions. E.g., the following priors for:
 - Ridge: normal distribution.
 - Lasso: double-exponential or Laplace distribution.

Relation to Bayesian estimation / 2

Shrinkage methods: Estimation

- Best subset selection:
 - Use of an efficient branch and bound algorithm to avoid enumeration of all subsets.
 - Exploits that in linear regression it holds for the residual sum of squares (RSS) that

$$RSS(A) \leq RSS(B)$$
,

where A is any set of independent variables and B is a subset of A.

Shrinkage methods: Estimation / 2

Ridge:

 Regression coefficient estimates are available in closed form for a given λ.

Lasso:

- If λ decreases the coefficient values change in a piecewise linear fashion. The slope only changes if coefficients leave or enter the set of active coefficients.
- The entire path for all λ values can be determined in a computationally efficient way.
 - ⇒ See least angle regression (LAR).
- Pathwise coordinate optimization.
- Convex optimization problem (as ridge regression).

LAR and lasso

- Assume the input features are standardized.
- For the active set A_k at step k in LAR it holds:

$$\mathbf{x}_{j}^{T}(\mathbf{y}-\mathbf{X}\beta)=\gamma\cdot\mathbf{s}_{j},$$

for all $j \in A_k$ and with

- ullet the current coefficient estimates,
- $s_j \in \{-1, 1\},$
- \bullet γ the common value.

LAR and lasso / 2

The lasso criterion corresponds to

$$R(\beta) = \frac{1}{2} \| \mathbf{y} - \mathbf{X} \beta \|_2^2 + \lambda \| \beta \|_1.$$

• If \mathcal{B} is the active set of variables for a given value of λ , $R(\beta)$ is differentiable for these variables and the stationarity conditions need to hold:

$$\mathbf{x}_{j}^{T}(\mathbf{y} - \mathbf{X}\beta) = \lambda \cdot \operatorname{sign}(\beta_{j}),$$

for all $j \in \mathcal{B}$.

- The LAR and lasso criteria are identical if the sign of β_j matches the sign of the inner product.
 - ⇒ LAR and lasso start to differ when an active coefficient passes through zero.
 - ⇒ For the lasso the variable is excluded from the active set.

LAR and lasso / 3

• For the non-active variables the stationarity conditions require

$$|\mathbf{x}_{k}^{T}(\mathbf{y} - \mathbf{X}\beta)| \leq \gamma$$

for $k \notin \mathcal{A}$ and

$$|\mathbf{x}_{k}^{T}(\mathbf{y} - \mathbf{X}\beta)| \leq \lambda$$

for $k \notin \mathcal{B}$.

Algorithm: Least angle regression

- Standardize the predictors to have mean zero and unit norm. Start with the residual $\mathbf{r} = \mathbf{y} \bar{\mathbf{y}}$ and $\beta_1, \dots, \beta_p = 0$.
- 2 Find the predictor x_i most correlated with r.
- Move β_j from 0 towards its least squares (LS) coefficient $\langle \mathbf{x}_j, \mathbf{r} \rangle$, until some other competitor \mathbf{x}_k has as much correlation with the current residual as does \mathbf{x}_i .
- Move β_j and β_k in the direction defined by their joint LS coefficient of the current residual on $(\mathbf{x}_j, \mathbf{x}_k)$, until some other competitor \mathbf{x}_l has as much correlation with the current residual.
- **5** Continue in this way until all p predictors have been entered. After min(N-1, p) steps, we arrive at the full LS solution.

Lasso modification:

If a non-zero coefficient hits zero, drop its variable from the active set of variables and recompute the current joint LS direction.

Pathwise coordinate optimization

- An alternate approach to the lars algorithm for computing the lasso solution.
- Fix the penalty parameter λ in the Lagrangian form

$$\hat{\beta}^{\text{lasso}} = \arg\min_{\beta} \left\{ \frac{1}{2} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}.$$

- Optimize successively over each parameter, holding the other parameters fixed at their current values.
- This algorithm can be used to efficiently calculate the lasso solutions at a grid of values of λ . One starts with the largest value of λ .
- This algorithm can also be modified to be used with the elastic net.

Pathwise coordinate optimization: Algorithm

- Suppose all predictors are standardized to have mean zero and unit norm and the response also has mean zero.
- The current estimate for β_k at penalty parameter λ is denoted by $\tilde{\beta}_k(\lambda)$.
- The function to optimize can be written as:

$$R(\tilde{eta}(\lambda),eta_j) = rac{1}{2} \sum_{i=1}^N \left(y_i - \sum_{k \neq j} x_{ik} \tilde{eta}_k(\lambda) - x_{ij} eta_j
ight)^2 + \lambda \sum_{k \neq j} |\tilde{eta}_k(\lambda)| + \lambda |eta_j|.$$

Pathwise coordinate optimization: Algorithm / 2

• This has an explicit solution with respect to β_j :

$$\tilde{\beta}_{j}(\lambda) = S\left(\sum_{i=1}^{N} x_{ij}(y_{i} - \sum_{k \neq j} x_{ik}\tilde{\beta}_{k}(\lambda)), \lambda\right),$$

with

$$S(t,\lambda) = \operatorname{sign}(t)(|t| - \lambda)_+$$

is the soft-thresholding operator.

 Repeatedly iterating over the covariates results in the lasso estimate.

Degrees of freedom

$$df(\hat{\mathbf{y}}) = \frac{1}{\sigma^2} \sum_{i=1}^{N} Cov(\hat{y}_i, y_i).$$

- For linear regression with k fixed predictors this gives: $df(\hat{y}) = k$.
- For ridge regression: $df(\hat{\mathbf{y}}) = tr(\mathbf{H}_{\lambda})$.
- For LAR after the kth step: $df(\hat{y}) = k$.
- For lasso $df(\hat{y})$ approximately equals the number of predictors in the model.
- For best subset selection if k variables are selected: $df(\hat{y}) \ge k$.

Extensions

- Grouped Lasso:
 - For categorical variables the Lasso penalizes the individual dummy variables and selects them without taking into account that they belong to the same categorical variable.
 - Impose a penalty on the norm of the subvector of regression coefficients for the same categorical variable.
- Other penalties: e.g.,
 - SCAD (smoothly clipped absolute deviation) to achieve that larger coefficients are shrunken less.