QUANTITATIVE ANALYSIS

FOUNDATIONS FOR INFERENCE

AGENDA

- 1. Follow-up
- 2. Inferential Goals
- 3. Central Limit Theorem
- 4. Confidence Intervals
- 5. Hypothesis Testing
- 6. Normality Testing Review

1 FOLLOW-UP

Binomial Distribution Probability Mass Function p=0.5 and n=20

Line between calculated probabilities included for visualization purposes only.

2 INFERENTIAL GOALS

Universe or Population

Universe or Population

Universe or Population Sample Sample **Population Draw Inferences About Population** = 1 observation

SAMPLE SIZE

Polling Data								
Poll	Date	Sample	MoE	Clinton (D)	Trump (R)	Johnson (L)	Stein (G)	Spread
RCP Average	9/21 - 9/29			43.4	41.1	7.0	2.4	Clinton +2.3
FOX News	9/27 - 9/29	911 LV	3.0	43	40	8	4	Clinton +3
Rasmussen Reports	9/27 - 9/29	1500 LV	2 .5	43	42	6	2	Clinton +1
PPP (D)	9/27 - 9/28	933 LV	3.2	44	40	6	1	Clinton +4
Rasmussen Reports	9/26 - 9/28	1500 LV	2 .5	42	41	7	2	Clinton +1
Reuters/lpsos	9/22 - 9/26	1041 LV	3.5	42	38	7	2	Clinton +4
Quinnipiac	9/22 - 9/25	1115 LV	2.9	44	43	8	2	Clinton +1
Bloomberg	9/21 - 9/24	1002 LV	3.1	4 1	43	8	4	Trump +2
Monmouth	9/22 - 9/25	729 LV	3.6	46	42	8	2	Clinton +4
Economist/YouGov	9/22 - 9/24	948 RV	3.8	44	41	5	2	Clinton +3
NBC News/SM	9/19 - 9/25	13598 LV	1.1	45	40	10	3	Clinton +5
ABC News/Wash Post	9/19 - 9/22	651 LV	4.5	46	44	5	1	Clinton +2
Rasmussen Reports	9/20 - 9/21	1000 LV	3.0	39	44	8	2	Trump +5
Gravis	9/20 - 9/20	1560 LV	2 .5	44	40	5	2	Clinton +4
Economist/YouGov	9/18 - 9/19	936 RV	4.0	40	38	7	2	Clinton +2
Reuters/Ipsos	9/15 - 9/19	1111 LV	3.4	37	39	7	2	Trump +2
McClatchy/Marist	9/15 - 9/20	758 LV	3.6	45	39	10	4	Clinton +6
NBC News/Wall St. Jrnl	9/15 - 9/19	922 LV	3.2	43	37	9	2	Clinton +6
Associated Press-GfK	9/15 - 9/16	1251 LV	-	45	39	9	2	Clinton +6
NBC News/SM	9/12 - 9/18	133 20 LV	1.2	45	40	10	4	Clinton +5
FOX News	9/11 - 9/14	867 LV	3.0	41	40	8	3	Clinton +1

3 CENTRAL LIMIT THEOREM

A POPULATION

sysuse auto.dta, clear
(1978 Automobile Data)

summarize mpg

Variable	0bs	Mean 	Std. Dev.	Min 	Max
mpg	 74	21 . 2973	5.785503	 12	41

A RANDOM SAMPLE

sysuse auto.dta, clear
(1978 Automobile Data)

```
sample 54
(34 observations deleted)
```

summarize mpg

Variable 	0bs	Mean 	Std. Dev.	Min	Max
mpg		20 . 9	5.485646	12	41

A SECOND RANDOM SAMPLE

sysuse auto.dta, clear
(1978 Automobile Data)

```
sample 54
(34 observations deleted)
```

summarize mpg

Variable		0bs	Mean	Std. Dev.	Min	Max
mpg	 	 40	20 . 35	6.150047	12	41

ANOTHER 4,998 RANDOM SAMPLES

summarize mpgMeans

Variable		0bs	Mean	Std. Dev	•	Min	Max
mpgMeans	5,	 ,000 2	 21 . 29119	 .6266256	 19	 . 375	 23 . 625

Distribution of Sample Means for Miles per Gallon

k=5000 random samples of n=40 from auto.dta

THE "MAGIC" OF THE CLT

This holds up for any population regardless of its underlying distribution.

https://goo.gl/qYaZlx

DEFINITION

- Population:
 - Parameters of μ , σ
 - Sample size of n
 - lacksquare Sample means of $\overline{x}_1,\overline{x}_2,\overline{x}_3,\ldots\overline{x}_k$
- lacksquare Distribution of \overline{X} :
 - Has mean of μ
 - Has a standard deviation of $\frac{\sigma}{\sqrt{n}}$
 - Normal as $n \to \infty$

COMPARING A POPULATION AND RELATED SAMPLES

summarize mpg

Variable	0bs	Mean	Std. Dev	. Min	Max
mpg	 74	21 . 2973	5.785503	12	41

summarize mpgMeans

Variable	0bs	Mean 	Std. Dev.	Min	Max
mpgMeans	 5 , 000	21 . 29119	6266256	19 . 375	23.625

STANDARD ERROR

- The standard deviation of the distribution of sample means (\overline{X}) is known as the standard error.
- A means for assessing the reliability of a particular statistic by estimating the difference between the sample statistic and the population statistic.

$$\sigma_{ar{x}} = \frac{\sigma}{\sqrt{n}}$$

$$\sigma_x = \sqrt{\frac{\sum (x - \mu)^2}{n}}$$

$$\mu = \frac{\sum x}{n}$$

$$\sigma_x = 5.746$$

$$\sigma_x = 5.746$$

Samples of \bar{X}

$$\sigma_{\bar{X}} = \frac{\sigma_x}{\sqrt{n}}$$

$$\sigma_x = 5.746$$

Samples of $ar{X}$

$$\sigma_{\bar{X}} = \frac{5.746}{\sqrt{40}} = 0.909$$

Z-SCORES

The value of an observation expressed in standard deviations.

$$z = \frac{x - \mu}{\sigma}$$

Z-SCORES FOR SAMPLING DISTRIBUTIONS

The value of an observation expressed in standard deviations.

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Z-SCORES FOR SAMPLING DISTRIBUTIONS

► Taking repeated samples of n=40 from this population, what proportion of these samples will have means \geq 25?

$$z = \frac{25 - 21.297}{\frac{5.746}{\sqrt{40}}} = \frac{3.703}{0.909} = 4.074$$

Z-SCORES FOR SAMPLING DISTRIBUTIONS

► Taking repeated samples of n=40 from this population, what proportion of these samples will have means ≥ 25 ?

$$z = \frac{25 - 21.297}{\frac{5.746}{\sqrt{40}}} = \frac{3.703}{0.909} = 4.074$$

- display 1-normal(4.074)
 00002311
- ▶ The likelihood of obtaining a sample mean that is ≥ 25 from that population is very, very small (0.002%).

ESTIMATING SAMPLE SIZES

The CLT can be used to estimate sample sizes based on how close we want our sample to be to the population. This is one version of what we call power analyses.

$$\left(\frac{1.96\sigma}{\Delta}\right)^2$$

- The Greek uppercase letter Δ ("Delta") is used to represent the amount of error we are willing to tolerate.
- We want our sample to be within $\pm \Delta$ of the population mean.

ESTIMATING SAMPLE SIZES

Given the population parameters we have been using in this case for miles per gallon, what sample size would we need to have sample mean that is within 3 miles per gallon of the population's?

$$\left(\frac{1.96\sigma}{\Delta}\right)^2$$

ESTIMATING SAMPLE SIZES

Given the population parameters we have been using in this case for miles per gallon, what sample size would we need to have sample mean that is within 3 miles per gallon of the population's?

$$\left(\frac{(1.96)(5.746)}{3}\right)^2 = \left(\frac{11.26216}{3}\right)^2 = (3.754053333)^2 = 14.093$$

- We need to have a sample size of at least 15 vehicles to have a sample mean within 3 miles per gallon of the population's.
- ▶ To be within 2 miles per gallon, we need n=32.
- ▶ To be within 1 miles per gallon, we need n=127.

4 CONFIDENCE INTERVALS

THE PREDICTIVE INTERVAL

- Related to the confidence interval.
- lacktriangle Can be used prior to sampling to estimate a value for both $m{x}$ and $ar{x}$.
- Use z-scores from two-sided critical values.

$$(\mu - 1.96\sigma, \mu + 1.96\sigma)$$

Critial Values for Standard Normal

Two-tailed Test (Right Side Detail)

THE PREDICTIVE INTERVAL

$$(\mu - 1.96\sigma, \mu + 1.96\sigma)$$

 $(21.297 - (1.96) (5.746), 21.297 + (1.96) (5.746))$
 $(21.297 - 11.26216, 21.297 + 11.26216)$
 $(10.03484, 32.55916)$

Based on the predictive interval, a given value of x selected at random will fall between 10.035 and 32.559 95% percent of the time.

THE PREDICTIVE INTERVAL

$$\left(\mu - 1.96 \frac{\sigma}{\sqrt{n}}, \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

$$(21.297 - (1.96) (0.909), 21.297 + (1.96) (0.909))$$

 $(21.297 - 1.78164, 21.297 + 1.78164)$
 $(19.51536, 23.07864)$

Based on the predictive interval, a sample mean will fall between 19.515 and 23.079 95% percent of the time.

THE CONFIDENCE INTERVAL

- Used after sampling to the amount of possible error between the given sample mean (for example) and the population sample mean.
- Like predictive intervals, use z-scores from two-sided critical values.

$$\left(\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$

Critial Values for Standard Normal

Two-tailed Test (Right Side Detail)

THE CONFIDENCE INTERVAL

$$\left(\bar{x} - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{x} + 1.96 \frac{\sigma}{\sqrt{n}}\right)$$
$$(\bar{x} - 1.78164, \bar{x} + 1.78164)$$

If we take a sample of size n=40 from our population, the the interval of the sample mean \pm 1.782 has a 95% chance of covering μ .

WIDTH OF CONFIDENCE INTERVALS

Confidence Interval	Formula	Width	
95%	$\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$	$3.92 \frac{\sigma}{\sqrt{n}}$	
99%	$\overline{X} \pm 2.58 \frac{\sigma}{\sqrt{n}}$	$5.16 \frac{\sigma}{\sqrt{n}}$	

CONFIDENCE INTERVALS & N

n	95% CI for µ	Width	
10	$\overline{X} \pm 0.620\sigma$	1.240σ	
100	$X \pm 0.196\sigma$	0.392σ	
1000	$\overline{X} \pm 0.062\sigma$	0.124σ	

5 HYPOTHESIS TESTING

THE PROBLEM: EVERYTHING WE HAVE DONE SO FAR ASSUMES WE KNOW THE POPULATION PARAMETERS

AN ALTERNATIVE

- As part of his work with Guisness, Gosset identified a solution to the problem of not knowing the population parameters.
- The Student's t distribution approximates normal once the degrees of freedom (n-1) is ≥ 30 .

$$t = \frac{x - \mu}{\frac{s}{\sqrt{n}}}$$

Standard Normal (μ =0, σ =1.0) and Student's t (df=1)

Standard Normal (μ =0, σ =1.0) and Student's t (df=20)

Standard Normal (μ =0, σ =1.0) and Student's t (df=30)

Standard Normal (μ =0, σ =1.0) and Student's t (df=100)

Critial Values for Standard Normal

Two-tailed Test (Right Side Detail)

ERROR

Campla	Population		
Sample	$\mu = \mu_0$	µ ≠ µ ₀	
Not Reject	yes	Type II	
Reject	Туре I	yes	

^{*}The null hypothesis is that $\mu = \mu_0$

ERROR

$$Pr(Type | I) = \beta$$

 $I - \beta = power$

Campla	Population		
Sample	$\mu = \mu_0$	µ ≠ µ ₀	
Not Reject	yes	Type II	
Reject	Туре I	yes	

^{*}The null hypothesis is that $\mu = \mu_0$

$$Pr(Type I) = \alpha$$

THE PROBABILITY OF GETTING RESULTS AT LEAST AS EXTREME AS THE ONES YOU OBSERVED, GIVEN THAT THE NULL HYPOTHESIS IS CORRECT

Christie Aschwanden

FiveThirtyEight's p-value story

AES STATEMENT ON P-VALUES

- 1. P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- 2. Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
- 3. Proper inference requires full reporting and transparency.
- 4. A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
- 5. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

P-HACKING

https://goo.gl/3oVKaP

Hack Your Way To Scientific Glory

You're a social scientist with a hunch: The U.S. economy is affected by whether Republicans

P-HACKING

6 NORMALITY TESTING REVIEW

QUANTIFYING ABNORMAL

DESCRIPTIVE STATISTICS

DIAGNOSTIC PLOTS HYPOTHESIS TESTS

CALCULATING SKEW AND KURTOSIS

summarize mpg, detail

Mileage	(mpg)
---------	-------

	Percentiles	Smallest		
1%	12	12		
5%	14	12		
10%	14	14	0bs	74
25%	18	14	Sum of Wgt.	74
50%	20		Mean	21.2973
		Largest	Std. Dev.	5.785503
75%	25	34		
90%	29	35	Variance	33.47205
95%	34	35	Skewness	. 9487176
99%	41	41	Kurtosis	3.975005

"NORMALLY DISTRIBUTED"

Quantile-Normal Plot

Beta Distribution - α =6, β =10, n=20

POSITIVE (RIGHT) SKEW

Quantile-Normal Plot

Beta Distribution - α =2, β =10, n=120

NEGATIVE (LEFT) SKEW

Quantile-Normal Plot

Beta Distribution - α =6, β =1, n=120

"NORMALLY DISTRIBUTED"

Normal Probability Plot

Beta Distribution - α =6, β =10, n=20

POSITIVE (RIGHT) SKEW

Normal Probability Plot

Beta Distribution - α =2, β =10, n=120

NEGATIVE (LEFT) SKEW

Normal Probability Plot

Beta Distribution - α =6, β =1, n=120

HYPOTHESIS TESTS FOR NORMALITY

- **b** Both the Shapiro-Wilk (W) and Shapiro-Francia (W') tests use the same hypotheses:
 - $ightharpoonup H_0$ = Data are not markedly different from the normal distribution.
 - $\mathbf{H}_{\mathbf{A}}$ = Data are markedly different from the normal distribution.
- swilk mpg

Shapiro-Wilk W test for normal data

Variable	0bs	W	V	Z	Prob>z
mpg	74	0.94821	3.335	2.627	0.00430

The results of the Shapiro-Wilk test (W=0.948; p=0.004) suggest that the variable mpg is not normally distributed.

DOCUMENT DETAILS

Document produced by <u>Christopher Prener, Ph.D</u> for the Saint Louis University course SOC 5050: QUANTITATIVE ANALYSIS - APPLIED INFERENTIAL STATISTICS. See the <u>course wiki</u> and the repository <u>README.md</u> file for additional details.

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.