Serverless Computing

Decreasing concern (and control) over stack implementation

Evolution Of Serverless

Enter Serverless

What is Serverless?

a cloud-native platform

for

short-running, stateless computation

and

event-driven applications

which

scales up and down instantly and automatically

anc

charges for actual usage at a millisecond granularity

Server-less means no servers? Or worry-less about servers?

Runs code **only** on-demand on a per-request basis

What triggers code execution?

Runs code in response to events

Event-programming model

Why is Serverless attractive?

- Making app development & ops dramatically faster, cheaper, easier
- Drives infrastructure cost savings

	On-prem	VMs	Containers	Serverless
Time to provision	Weeks- months	Minutes	Seconds- Minutes	Milliseconds
Utilization	Low	High	Higher	Highest
Charging granularity	CapEx	Hours	Minutes	Blocks of milliseconds

Source: Jason McGee, IBM; Serverless Conference 2017.

Key factors for infrastructure cost savings

	Traditional models (CF, containers, VMs)	Serverless
High Availability	At least 2-3 instances of everything	No incremental infrastructure
Multi-region deployment	One deployment per region	No incremental infrastructure
Cover delta between short (<10s) load spikes and valleys (vs average)	~2x of average load	No incremental infrastructure
Example incremental costs	2 instances x 2 regions x 2 = 8x	1x

Chatbots

PyWren: a massive data framework for Lambda

- Open Source MapReduce framework using Lambda
- Word count job on 83M items is only 17% slower than PySpark running on dedicated servers.
- Sort 1TB data in 3.4 minutes (Spark 100TB in 23 min)

https://github.com/pywren/pywre http://pywren.io/

Nordstrom Recommendations

15-20 minutes of processing \rightarrow now in seconds 2x order of magnitude for cost savings

What is Serverless good for?

Serverless is **good** for

short-running stateless event-driven

Microservices

Mobile Backends

Bots, ML Inferencing

🔒 loʻ

Modest Stream Processing

Service integration

Serverless is **not good** for

long-running stateful number crunching

Databases

Deep Learning Training

Heavy-Duty Stream Analytics

Mumerical Simulation

Video Streaming

Current Platforms for Serverless

Google Functions

