CSCI 6521: Advanced Machine Learning I Study Guide for Test#3

(Please don't distribute this study guide. The guide is for your study purpose only)

Chapter 06

1. Can you think of a few applications for a sequence-to-sequence RNN? What about a sequence-to-vector RNN, and a vector-to-sequence RNN?

Ans: Here are a few RNN applications:

- For a sequence-to-sequence RNN: predicting the weather (or any other time series), machine translation (using an Encoder–Decoder architecture), video captioning, speech to text, music generation (or other sequence generation), identifying the chords of a song.
- For a sequence-to-vector RNN: classifying music samples by music genre, analyzing the sentiment of a book review, predicting what word an aphasic patient is thinking of based on readings from brain implants, predicting the probability that a user will want to watch a movie based on their watch history (this is one of many possible implementations of collaborative filtering for a recommender system).
- For a vector-to-sequence RNN: image captioning, creating a music playlist based on an embedding of the current artist, generating a melody based on a set of parameters, locating pedestrians in a picture (e.g., a video frame from a self-driving car's camera).

2. How many dimensions must the inputs of an RNN layer have? What does each dimension represent? What about its outputs?

Ans: An RNN layer must have three-dimensional inputs: the first dimension is the batch dimension (its size is the batch size), the second dimension represents the time (its size is the number of time steps), and the third dimension holds the inputs at each time step (its size is the number of input features per time step). For example, if you want to process a batch containing 5 time series of 10 time steps each, with 2 values per time step (e.g., the temperature and the wind speed), the shape will be [5, 10, 2]. The outputs are also three-dimensional, with the same first two dimensions, but the last dimension is equal to the number of neurons. For example, if an RNN layer with 32 neurons processes the batch we just discussed, the output will have a shape of [5, 10, 32].

3. If you want to build a deep sequence-to-sequence RNN, which RNN layers should have return sequences=True? What about a sequence-to-vector RNN?

Ans: To build a deep sequence-to-sequence RNN using Keras, you must set return sequences=True for all RNN layers. To build a sequence-to-vector RNN, you must set

return_sequences=True for all RNN layers except for the top RNN layer, which must have return sequences=False (or do not set this argument at all, since False is the default).

4. Suppose you have a daily univariate time series, and you want to forecast the next seven days. Which RNN architecture should you use?

Ans: If you have a daily univariate time series, and you want to forecast the next seven days, the simplest RNN architecture you can use is a stack of RNN layers (all with return_sequences=True except for the top RNN layer), using seven neurons in the output RNN layer. You can then train this model using random windows from the time series (e.g., sequences of 30 consecutive days as the inputs, and a vector containing the values of the next 7 days as the target). This is a sequence-to-vector RNN. Alternatively, you could set return_sequences=True for all RNN layers to create a sequence-to-sequence RNN. You can train this model using random windows from the time series, with sequences of the same length as the inputs as the targets. Each target sequence should have seven values per time step (e.g., for time step t, the target should be a vector containing the values at time steps t+1 to t+7).

5. What are the main difficulties when training RNNs? How can you handle them?

Ans: The two main difficulties when training RNNs are unstable gradients (exploding or vanishing) and a very limited short-term memory. These problems both get worse when dealing with long sequences. To alleviate the unstable gradients problem, you can use a smaller learning rate, use a saturating activation function such as the hyperbolic tangent (which is the default), and possibly use gradient clipping, Layer Normalization, or dropout at each time step. To tackle the limited short-term memory problem, you can use LSTM or GRU layers (this also helps with the unstable gradients problem).

6. Can you sketch the LSTM cell's architecture?

Ans: An LSTM cell's architecture looks complicated, but it's actually not too hard if you understand the underlying logic. The cell has a short-term state vector and a long-term state vector. At each time step, the inputs and the previous short-term state are fed to a simple RNN cell and three gates: the forget gate decides what to remove from the long-term state, the input gate decides which part of the output of the simple RNN cell should be added to the long-term state, and the output gate decides which part of the long-term state should be output at this time step (after going through the tanh activation function). The new short-term state is equal to the output of the cell. See Figure below.

Figure: LSTM cell.

7. Why would you want to use 1D convolutional layers in an RNN?

Ans: An RNN layer is fundamentally sequential: in order to compute the outputs at time step t, it has to first compute the outputs at all earlier time steps. This makes it impossible to parallelize. On the other hand, a 1D convolutional layer lends itself well to parallelization since it does not hold a state between time steps. In other words, it has no memory: the output at any time step can be computed based only on a small window of values from the inputs without having to know all the past values. Moreover, since a 1D convolutional layer is not recurrent, it suffers less from unstable gradients. One or more 1D convolutional layers can be useful in an RNN to efficiently preprocess the inputs, for example to reduce their temporal resolution (downsampling) and thereby help the RNN layers detect long-term patterns. In fact, it is possible to use only convolutional layers, for example by building a WaveNet architecture.

8. Which neural network architecture could you use to classify videos?

Ans: To classify videos based on their visual content, one possible architecture could be to take (say) one frame per second, then run every frame through the same convolutional neural network (e.g., a pretrained Xception model, possibly frozen if your dataset is not large), feed the sequence of outputs from the CNN to a sequence-to-vector RNN, and finally run its output through a softmax layer, giving you all the class probabilities. For training you would use cross entropy as the cost function. If you wanted to use the audio for classification as well, you could use a stack of strided 1D convolutional layers to reduce the temporal resolution from thousands of audio frames per second to just one per second (to match the number of images per second), and concatenate the output sequence to the inputs of the sequence-to-vector RNN (along the last dimension).

9. (a) Draw the schematic diagram of the LSTM architecture. (b) Describe the operation of the LSTM cell using Equations.

Ans: (a)

Figure: LSTM cell.

(b) The following Equations summarize the operations of the LSTM cell.

$$\mathbf{i}_{(t)} = \sigma \left(\mathbf{W}_{xi}^{\mathsf{T}} \mathbf{x}_{(t)} + \mathbf{W}_{hi}^{\mathsf{T}} \mathbf{h}_{(t-1)} + \mathbf{b}_{i} \right)$$

$$\mathbf{f}_{(t)} = \sigma \left(\mathbf{W}_{xf}^{\mathsf{T}} \mathbf{x}_{(t)} + \mathbf{W}_{hf}^{\mathsf{T}} \mathbf{h}_{(t-1)} + \mathbf{b}_{f} \right)$$

$$\mathbf{o}_{(t)} = \sigma \left(\mathbf{W}_{xo}^{\mathsf{T}} \mathbf{x}_{(t)} + \mathbf{W}_{ho}^{\mathsf{T}} \mathbf{h}_{(t-1)} + \mathbf{b}_{o} \right)$$

$$\mathbf{g}_{(t)} = \tanh \left(\mathbf{W}_{xg}^{\mathsf{T}} \mathbf{x}_{(t)} + \mathbf{W}_{hg}^{\mathsf{T}} \mathbf{h}_{(t-1)} + \mathbf{b}_{g} \right)$$

$$\mathbf{c}_{(t)} = \mathbf{f}_{(t)} \otimes \mathbf{c}_{(t-1)} + \mathbf{i}_{(t)} \otimes \mathbf{g}_{(t)}$$

$$\mathbf{y}_{(t)} = \mathbf{h}_{(t)} = \mathbf{o}_{(t)} \otimes \tanh \left(\mathbf{c}_{(t)} \right)$$

- W_{xi} , W_{xf} , W_{xo} , W_{xg} are the weight matrices of each of the four layers for their connection to the input vector $\mathbf{x}_{(t)}$.
- \mathbf{W}_{ht} , \mathbf{W}_{hp} , \mathbf{W}_{ho} , and \mathbf{W}_{hg} are the weight matrices of each of the four layers for their connection to the previous short-term state $\mathbf{h}_{(t-1)}$.
- \mathbf{b}_{i} , \mathbf{b}_{f} , \mathbf{b}_{o} , and \mathbf{b}_{g} are the bias terms for each of the four layers. Note that Tensor-Flow initializes \mathbf{b}_{f} to a vector full of 1s instead of 0s. This prevents forgetting everything at the beginning of training.

10. Draw the schematic diagram of the GRU architecture.

Ans:

Figure: GRU cell.

Chapter 07

1. What are the pros and cons of using a stateful RNN versus a stateless RNN?

Ans: Stateless RNNs can only capture patterns whose length is less than, or equal to, the size of the windows the RNN is trained on. Conversely, stateful RNNs can capture longer-term patterns. However, implementing a stateful RNN is much harder—especially preparing the dataset properly. Moreover, stateful RNNs do not always work better, in part because consecutive batches are not independent and identically distributed (IID). Gradient Descent is not fond of non-IID datasets.

2. Why do people use Encoder–Decoder RNNs rather than plain sequence-to-sequence RNNs for automatic translation?

Ans: In general, if you translate a sentence one word at a time, the result will be terrible. For example, the French sentence "Je vous en prie" means "You are welcome," but if you translate it one word at a time, you get "I you in pray." Huh? It is much better to read the whole sentence first and then translate it. A plain sequence-to-sequence RNN would start translating a sentence immediately after reading the first word, while an Encoder—Decoder RNN will first read the whole

sentence and then translate it. That said, one could imagine a plain sequence-to-sequence RNN that would output silence whenever it is unsure about what to say next (just like human translators do when they must translate a live broadcast).

3. How can you deal with variable-length input sequences? What about variablelength output sequences?

Ans: Variable-length input sequences can be handled by padding the shorter sequences so that all sequences in a batch have the same length and using masking to ensure the RNN ignores the padding token. For better performance, you may also want to create batches containing sequences of similar sizes. Ragged tensors can hold sequences of variable lengths, and tf.keras will likely support them eventually, which will greatly simplify handling variable-length input sequences (at the time of this writing, it is not the case yet). Regarding variable-length output sequences, if the length of the output sequence is known in advance (e.g., if you know that it is the same as the input sequence), then you just need to configure the loss function so that it ignores tokens that come after the end of the sequence. Similarly, the code that will use the model should ignore tokens beyond the end of the sequence. But generally, the length of the output sequence is not known ahead of time, so the solution is to train the model so that it outputs an end-of-sequence token at the end of each sequence.

4. What is beam search and why would you use it? What tool can you use to implement it?

Ans: Beam search is a technique used to improve the performance of a trained Encoder—Decoder model, for example in a neural machine translation system. The algorithm keeps track of a short list of the k most promising output sentences (say, the top three), and at each decoder step it tries to extend them by one word; then it keeps only the k most likely sentences. The parameter k is called the beam width: the larger it is, the more CPU and RAM will be used, but also the more accurate the system will be. Instead of greedily choosing the most likely next word at each step to extend a single sentence, this technique allows the system to explore several promising sentences simultaneously. Moreover, this technique lends itself well to parallelization. You can implement beam search fairly easily using TensorFlow Addons.

5. What is an attention mechanism? How does it help?

Ans: An attention mechanism is a technique initially used in Encoder–Decoder models to give the decoder more direct access to the input sequence, allowing it to deal with longer input sequences. At each decoder time step, the current decoder's state and the full output of the encoder are processed by an alignment model that outputs an alignment score for each input time step. This score indicates which part of the input is most relevant to the current decoder time step. The weighted sum of the encoder output (weighted by their alignment score) is then fed to the decoder, which produces the next decoder state and the output for this time step. The main benefit of using

an attention mechanism is the fact that the Encoder–Decoder model can successfully process longer input sequences. Another benefit is that the alignment scores makes the model easier to debug and interpret: for example, if the model makes a mistake, you can look at which part of the input it was paying attention to, and this can help diagnose the issue. An attention mechanism is also at the core of the Transformer architecture, in the Multi-Head Attention layers.

6. What is the most important layer in the Transformer architecture? What is its purpose?

Ans: The most important layer in the Transformer architecture is the Multi-Head Attention layer (the original Transformer architecture contains 18 of them, including 6 Masked Multi-Head Attention layers). It is at the core of language models such as BERT and GPT-2. Its purpose is to allow the model to identify which words are most aligned with each other, and then improve each word's representation using these contextual clues.

7. When would you need to use sampled softmax?

Ans: Sampled softmax is used when training a classification model when there are many classes (e.g., thousands). It computes an approximation of the cross-entropy loss based on the logit predicted by the model for the correct class, and the predicted logits for a sample of incorrect words. This speeds up training considerably compared to computing the softmax over all logits and then estimating the cross-entropy loss. After training, the model can be used normally, using the regular softmax function to compute all the class probabilities based on all the logits.