AutoML Praca domowa nr 2

Szymon Gut, Maciej Orsłowski

Wczytywanie danych

- W zmiennej celu wartości -1 zostały zamienione na 0 Korzyści:
 - Algorytmy działały
 - Łatwiejsza praca
- 2. Podział danych na zbiór treningowy i zbiór walidacyjny (80% / 20%)

1. Podejście manualne

Preprocessing

- 1. Usunięcie 25% najmniej skorelowanych ze zmienną celu kolumn Korelacja Spearmana, liczona na zbiorze treningowym
- 2. Imputacja brakujących danych Średnie wartości danej zmiennej
- 3. Redukcja wymiarowości metodą PCA
 Jako optymalna znaleziona wartość 170 komponentów
- 4. Skalowanie min-max

Metody

1. XGBoost

Bayes search na 100 iteracji

2. Random Forest

Bayes search na 100 iteracji

3. MLP

Trening na 10,000 epok

Wyniki

	Balanced accuracy na zbiorze:	
Model	Walidacyjnym	Testowym*
XGBoost	0.7704	0.9000
Random Forest	0.6372	0.8333
MLP	0.6832	-

^{*} wyniki na udostępnionej przez prowadzących próbce danych testowych

2. Podejście AutoML

Metody

1. MLJAR

- Tryb: Compete
- Limit czasu: 24h

2. AutoGluon

- Presets: High Quality
- Limit czasu: 24h

Wyniki

	Balanced accuracy na zbiorze:	
Framework	Walidacyjnym	Testowym*
MLJAR	0.8712	0.8333
AutoGluon	0.8709	0.7667

^{*} wyniki na udostępnionej przez prowadzących próbce danych testowych

Dziękujemy za uwagę!

Szymon Gut, Maciej Orsłowski