An Example Problem

Principal Component Analysis

- Given an n imes d matrix A, compute a **good** rank-k orthonormal Q

$$A \approx A \cdot Q \cdot Q^T$$

ullet Columns of Q are the Principal Components

An Example Problem

Principal Component Analysis

• Given an $n \times d$ matrix A, compute a **good** rank-k orthonormal Q

$$A pprox A \cdot Q \cdot Q^T$$
 $A pprox A pprox A$

- Columns of Q are the Principal Components

Classic Setting

- ullet The matrix A is available to us and can be arbitrarily accessed
- Compute SVD: nd^2 time
 - Very slow on modern datasets
 - Does not utilize sparsity