

STRAIGHT LINES

1. DISTANCE FORMULA

The distance between the points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

2. SECTION FORMULA

The P(x,y) divided the line joining $A(x_1,y_1)$ and $B(x_2,y_2)$ in the ratio m: n, then;

$$x = \frac{mx_2 + nx_1}{+n}$$
; $y = \frac{my_2 + ny_1}{+n}$

- (i) If m/n is positive, the division is internal, but if m/n is negative, the division is external.
- (ii) If P divides AB internally in the ratio m:n & Q divides AB externally in the ratio m:n then

P & Q are said to be harmonic conjugate of each other w.r.t. AB.

Mathematically, $\frac{2}{AB} = \frac{1}{AP} + \frac{1}{AQ}$ i.e. AP, AB & AQ are in H.P.

3. CENTROID, INCENTRE & EXCENTRE

If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are the vertices of triangle ABC, whose sides BC, CA, AB are of lengths a, b, c respectively, then the co-ordinates of the special points of triangle ABC are as follows:

Centroid G =
$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

Incentre
$$I \equiv \left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$
 and

Excentre (to A) I,

$$= \left(\frac{-ax_1 + bx_2 + cx_3}{-a + b + c}, \frac{-ay_1 + by_2 + cy_3}{-a + b + c}\right) \text{ and so on.}$$

- (i) Incentre divides the angle bisectors in the ratio, (b+c): a; (c+a): b & (a+b): c.
- (ii) Incentre and excentre are harmonic conjugate of each other w.r.t. the angle bisector on which they lie.
- (iii) Orthocentre, Centroid & Circumcentre are always collinear & centroid divides the line joining orthocentre & circumcentre in the ratio 2:1.
- (iv) In an isosceles triangle G, O, I & C lie on the same line and in an equilateral traingle, all these four points coincide.

4. AREA OF TRIANGLE

If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are the vertices of triangle ABC, then its area is equal to

$$\Delta ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}, \text{ provided the vertices are}$$

considered in the counter clockwise sense.

The above formula will give a (-)ve area if the vertices (x_1, y_1) , i = 1, 2, 3 are placed in the clockwise sense.

STRAIGHT LINES

Area of n-sided polygon formed by points (x_1, y_1) ; (x_2, y_2) ; (x_n, y_n) is given by :

$$\frac{1}{2} \left(\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} + \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} + \dots \begin{vmatrix} x_{n-1} & x_n \\ y_{n-1} & y_n \end{vmatrix} \right)$$

5. SLOPE FORMULA

If θ is the angle at which a straight line is inclined to the positive direction of x-axis, and $0^{\circ} \le \theta < 180^{\circ}$, $\theta \ne 90^{\circ}$, then the slope of the line, denoted by m, is defined by m = tan θ . If θ is 90° , m does n't exist, but the line is parallel to the y-axis, If $\theta = 0$, then m = 0 and the line is parallel to the x-axis.

If $A(x_1, y_1)$ & $B(x_2, y_2)$, $x_1 \neq x_2$, are points on a straight line, then the slope m of the line is given by:

$$\mathbf{m} = \left(\frac{\mathbf{y}_1 - \mathbf{y}_2}{\mathbf{x}_1 - \mathbf{x}_2}\right)$$

6. CONDITION OF COLLINEARITY OF THREE POINTS

Points A (x_1,y_1) , B (x_2,y_2) , C (x_3,y_3) are collinear if:

(i)
$$m_{AB} = m_{BC} = m_{CA}$$
 i.e. $\left(\frac{y_1 - y_2}{x_1 - x_2}\right) = \left(\frac{y_2 - y_3}{x_2 - x_3}\right)$

(ii)
$$\triangle ABC = 0$$
 i.e. $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$

- (iii) $AC = AB + BC \text{ or } AB \sim BC$
- (iv) A divides the line segment BC in some ratio.

7. EQUATION OF A STRAIGHT LINE IN VARIOUS FORMS

(i) **Point-Slope form:** $y-y_1 = m(x-x_1)$ is the equation of a straight line whose slope is m and which passes through the point (x_1, y_1) .

- (ii) Slope-Intercept form: y = mx + c is the equation of a straight line whose slope is m and which makes an intercept c on the y-axis.
- (iii) Two point form: $y y_1 = \frac{y_2 y_1}{x_2 x_1}$ ($x x_1$) is the equation of a straight line which passes through the point (x_1, y_1) & (x_2, y_2)
- (iv) **Determinant form**: Equation of line passing through $\begin{pmatrix} x_1, y_1 \end{pmatrix}$ and $\begin{pmatrix} x_2, y_2 \end{pmatrix}$ is $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$
- (v) Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$ is the equation of a straight line which makes intercepts a & b on OX & OY respectively.
- (vi) Perpendicular/Normal form: $x\cos\alpha + y\sin\alpha = p$ (where p > 0, $0 \le \alpha < 2\pi$) is the equation of the straight line where the length of the perpendicular from the origin O on the line is p and this perpendicular makes an angle α with positive x-axis.
- (vii) Parametric form: $P(r) = (x,y) = (x_1 + r \cos \theta, y_1 + r \sin \theta)$ or $\frac{x x_1}{\cos \theta} = \frac{y y_1}{\sin \theta} = r \text{ is the equation of the line is parametric}$ form, where 'r' is the parameter whose absolute value is
- (viii) General Form: ax + by + c = 0 is the equation of a straight line in the general form. In this case, slope of line $= -\frac{a}{b}$.

the distance of any point (x,y) on the line from fixed point

8. POSITION OF THE POINT (x₁,y₁ RELATIVE OF THE LINE ax + by + c = 0

 (x_1,y_1) on the line.

If $ax_1 + by_1 + c$ is of the same sign as c, then the point (x_1, y_1) lie on the origin side of ax + by + c = 0. But if the sign of $ax_1 + by_1 + c$ is opposite to that of c, the point (x_1, y_1) will lie on the non-origin side of ax + by + c = 0. In general two points (x_1, y_1) and (x_2, y_2) will lie on same side or opposite side of ax + by + c = 0 according as $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ are of same or opposite sign respectively.

9. THE RATIO IN WHICH A GIVEN LINE DIVIDES THE LINE SEGMENT JOINING TWO POINTS

Let the given line ax + by + c = 0 divides the line segment joining $A(x_1,y_1)$ and $B(x_2,y_2)$ in the ratio m.n., then

$$\frac{m}{n} = -\frac{ax_1 + by_1 + c}{ax_2 + by_2 + c}$$
. If A and B are on the same side of

the given line then m/n is negative but if A and B are on opposite sides of the given line, then m/n is positive.

10. LENGTH OF PERPENDICULAR FROM A POINT ON A LINE

The length of perpendicular from $P(x_1, y_1)$ on

$$ax + by + c = 0$$
 is $\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$

11. REFLECTION OF A POINT ABOUT A LINE

(i) The image of a point (x_1,y_1) about the line ax + by + c = 0 is :

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = -2 \frac{ax_1 + by_1 + c}{a^2 + b^2}$$

(ii) Similarly foot of the perpendicular from a point on the line is:

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{-(ax_1 + by_1 + c)}{a^2 + b^2}$$

12. ANGLE BETWEEN TWO STRAIGHT LINES IN TERMS OF THEIR SLOPES

If m_1 and m_2 are the slopes of two intersecting straight lines $(m_1m_2 \neq -1)$ and θ is the acute angle between them,

then
$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$
.

Let m_1 , m_2 , m_3 are the slopes of three line L_1 =0; L_2 =0; L_3 =0 where m_1 > m_2 > m_3 then the interior angles of the ΔABC found by these lines are given by,

$$\tan A = \frac{m_1 - m_2}{1 + m_1 m_2}$$
; $\tan B = \frac{m_2 - m_3}{1 + m_2 m_3}$; and $\tan C = \frac{m_3 - m_1}{1 + m_3 m_1}$

13. PARALLEL LINES

- (i) When two straight lines are parallel their slopes are equal.

 Thus any line parallel to y = mx + c is of the type y = mx + d, where d is parameter.
- (ii) Two lines ax + by + c = 0 and a'x + b'y + c' = 0 are parallel

if:
$$\frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$$

Thus any line parallel to ax+by+c=0 is of the type ax+by+k=0, where k is a parameter.

(iii) The distance between two parallel lines with equations $ax + by + c_1 = 0$ and

$$ax + by + c_2 = 0$$
 is $\left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|$

Coefficient of x & y in both the equations must be same.

(iv) The area of the parallelogram = $\frac{p_1p_2}{\sin\theta}$, where p_1 and p_2 are

distance between two pairs of opposite sides and θ is the angle between any two adjacent sides. Note that area of the parallogram bounded by the lines $y=m_1x+c_1$, $y=m_1x+c_2$. and $y=m_2x+d_1$, $y=m_2x+d_2$ is given by

$$\frac{\left|\frac{(c_{1}-c_{2})(d_{1}-d_{2})}{m_{1}-m_{2}}\right|$$

14. PERPENDICULAR LINES

(i) When two lines of slopes $m_1 \& m_2$ are at right angles, the product of their slope is -1 i.e., $m_1 m_2 = -1$. Thus any line perpendicular to y = mx + c is of the form.

$$y = -\frac{1}{m}x + d$$
, where d is any parameter.

(ii) Two lines ax + by + c = 0 and a'x + b'y + c' = 0 are perpendicular if aa' + bb' = 0. Thus any line perpendicular to ax + by + c = 0 is of the form bx - ay + k = 0, where k is any parameter.

15. STRAIGHT LINES MAKING ANGLE a WITH GIVEN LINE

The equation of lines passing through point (x_1,y_1) and making angle α with the line y = mx + c are given by $(y - y_1) = \tan(\theta - \alpha)(x - x_1)$ & $(y - y_1) = \tan(\theta + \alpha)(x - x_1)$, where $\tan \theta = m$.

16. BISECTOR OF THE ANGLES BETWEEN TWO LINES

Equations of the bisectors of angles between the lines ax + by + c = 0 and a'x + b'y + c' = 0 ($ab' \neq a'b$) are:

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = \pm \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$

Equation of straight lines through $P(x_1,y_1)$ & equally inclined with the lines $a_1x+b_1y+c_1=0$ and $a_2x+b_2y+c_2=0$ are those which are parallel to the bisector between these two lines & passing throught the point P.

17. METHODS TO DISCRIMINATE BETWEEN THE ACUTE BISECTOR AND THE OBTUSE ANGLE BISECTOR

- (i) If θ be the angle between one of the lines & one of the bisectors, find $\tan \theta$. if $|\tan \theta| < 1$, then $2\theta < 90^{\circ}$ so that this bisector is the acute angle bisector. if $|\tan \theta| > 1$, then we get the bisector to be the obtuse angle bisector
- (ii) Let L₁=0 & L₂=0 are the given lines & u₁=0 and u₂=0 are bisectors between L₁=0 and L₂=0. Take a point P on any one of the lines L₁=0 or L₂=0 and drop perpendicular on u₁=0 and u₂=0 as shown. If.

$$|p| < |q| \Rightarrow u_1$$
 is the acute angle bisector.

$$|p| > |q| \Rightarrow u_1$$
 is the obtuse angle bisector.

$$|p| = |q| \Rightarrow$$
 the lines L₁ and L₂ are perpendicular.

(iii) if aa'+ bb' <0, while c & c' are postive, then the angle between the lines is acute and the equation of the bisector

of this acute angle is
$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$

If, however, aa' + bb' > 0, while c and c' are postive, then the angle between the lines is obtuse & the equation of the bisector of this obtuse angle is:

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$

The other equation represents the obtuse angle bisector in both cases.

18. TO DISCRIMINATE BETWEEN THE BISECTOR OF THE ANGLE CONTAINING A POINT

To discriminate between the bisector of the angle containing the origin & that of the angle not containing the origin. Rewrite the equation, ax + by + c = 0 & a'x + b'y + c' = 0 such that the constant term c, c' are positive.

Then;
$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = + \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$
 gives the equation of

the bisector of the angle containing origin and

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = -\frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$
 gives the equation of the

bisector of the angle not containing the origin. In general equation of the bisector which contains the point (α, β) is.

$$\frac{ax + by + c}{\sqrt{a^2 + b^2}} = \frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}} \text{ or } \frac{ax + by + c}{\sqrt{a^2 + b^2}} = -\frac{a'x + b'y + c'}{\sqrt{a'^2 + b'^2}}$$

according as $a\alpha + b\beta + c$ and $a'\alpha + b'\beta + c'$ having same sign or otherwise.

19. CONDITION OF CONCURRENCY

Three lines $a_1x + b_1y + c_1=0$, $a_2x + b_2y + c_2=0$ and $a_3x + b_3y + c_3=0$ are concurrent if

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Alternatively: If three constants A, B and C (not all zero) can be found such that A $(a_1x + b_1y + c_1) + B (a_2x + b_2y + c_2) + C (a_3x + b_3y + c_3) \equiv 0$, then the three straight lines are concurrent.

20. FAMILY OF STRAIGHT LINES

The equation of a family of straight lines passing through the points of intersection of the lines,

$$L_1 \equiv a_1 x + b_1 y + c_1 = 0 \& L_2 \equiv a_2 x + b_2 y + c_2 = 0$$
 is given by $L_1 + kL_2 = 0$ i.e.

 $(a_1x + b_1y + c_1) + k(a_2x + b_2y + c_2) = 0$, where k is an arbitray real number.

(i) If $u_1 = ax + by + c$, $u_2 = a'x + b'y + d$, $u_3 = ax + by + c'$, $u_4 = a'x + b'y + d'$, then $u_1 = 0$; $u_2 = 0$; $u_3 = 0$; $u_4 = 0$; form a parallegoram

The diagonal BD can be given by $u_2u_3 - u_1u_4 = 0$

Proof: Since it is the first degree equation in x & y, it is a straight line. Secondly point B satisfies $u_2 = 0$ and $u_1 = 0$ while point D satisfies $u_3 = 0$ and $u_4 = 0$. Hence the result. Similarly, the diagonal AC can be given by $u_1u_2 - u_3u_4 = 0$

(ii) The diagonal AC is also given by $u_1 + \lambda u_4 = 0$ and $u_2 + \mu u_3 = 0$, if the two equation are identical for some real λ and μ .

[For getting the values of λ and μ compare the coefficients of x, y & the constant terms.]

21. A PAIR OF STRAIGHT LINES THROUGH ORIGIN

- (i) A homogeneous equation of degree two, " $ax^2 + 2hxy + by^2 = 0$ " always represents a pair of straight lines passing through the origin if:
 - (a) $h^2 > ab \Rightarrow$ lines are real and distinct.
 - (b) $h^2 = ab \Rightarrow lines are coincident.$
 - (c) $h^2 < ab \Rightarrow lines$ are imaginary with real point of intersection i.e. (0,0)
- (ii) If $y = m_1 x & y = m_2 x$ be the two equations represented by $ax^2 + 2hxy + by^2 = 0$, then;

$$m_1 + m_2 = -\frac{2h}{b}$$
 and $m_1 m_2 = \frac{a}{b}$

(iii) If θ is the acute angle between the pair of straight lines represented by,

$$ax^2 + 2hxy + by^2 = 0$$
, then; $\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$

- (iv) The condition that these lines are:
 - (a) At right angles to each other is a + b = 0 i.e. co-efficient of $x^2 + \text{ co-efficient of } y^2 = 0$
 - (b) Coincident is $h^2 = ab$.
 - (c) Equally inclined to the axis of x is h = 0 i.e. coeff. of xy=0.

A homogeneous equation of degree n represents n straight lines passing through origin.

(v) The equation to the pair of straight lines bisecting the angle between the straight lines,

$$ax^2 + 2hxy + by^2 = 0$$
, is $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$

22. GENERAL EQUATION OF SECOND DEGREE REPRESENTING A PAIR OF STRAIGHT LINES

(i) $ax^2 + 2hxy + by^2 + 2gx + 2fy + c =$ represents a pair of straight lines if:

$$abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0$$
, i.e. if $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$

(ii) The angle θ between the two lines representing by a general equation is the same as that between two lines represented by its homogenous part only.

23. HOMOGENIZATION

The equation of a pair of straight lines joining origin to the points of intersection of the line

$$L = lx + my + n = 0$$
 and a second degree curve,

$$S = ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
 is

$$ax^2 + 2hxy + by^2 + 2gx \left(\frac{lx + my}{-n}\right) +$$

$$2f y \left(\frac{lx + my}{-n}\right) + c \left(\frac{lx + my}{-n}\right)^2 = 0$$

The equal is obtained by homogenizing the equation of curve with the help of equation of line.

Equation of any cure passing through the points of intersection of two curves $C_1=0$ and $C_2=0$ is given by $\lambda C_1 + \mu C_2 = 0$ where λ and μ are parameters.