## Robot Motion Control and Planning

http://www.ceng.metu.edu.tr/~saranli/courses/ceng786

Lecture 2 – Bug Algorithms

Uluç Saranlı

http://www.ceng.metu.edu.tr/~saranli

## **Bug Algorithms**

- Point robot operating on the plane
  - Only local knowledge of the environment and a global goal
  - Bug1 and Bug2 assume tactile sensing
  - Tangent bug assumes finite distance sensing
- A few general concepts
  - Workspace  $W:\mathbb{R}^2$  or  $\mathbb{R}^3$ depending on the robot. Could be infinite (open) or bounded (closed, compact)
  - Obstacles  $WO_i$
  - Free workspace  $W_{\mathtt{free}} := W \bigcup_i WO_i$
- Representation: What is the current "situation"?

## **Bug Algorithms**

#### Insect-inspired



Start

#### Known direction to goal

 robot can measure distance d(x,y) between pts x and y

#### Otherwise local sensing

walls/obstacles and encoders

#### Reasonable world

- finitely many obstacles in any finite area
- a line will intersect an obstacle finitely many times
- Workspace is bounded

## Beginner Strategy

"Bug 0" Algorithm

- Known direction to goal
- Otherwise local sensing
  - walls/obstacles and encoders



Start

- 1 Head toward goal
- 2 Follow obstacles until you can head toward goal again
- 3 continue

What can go wrong? Find a map that will foil Bug 0.

Assume a left-turning robot. Turning direction might be decided beforehand

## Bug Zapper

Bug 0 never reaches the goal! Incomplete algorithm!



#### "Bug 0" Algorithm

- 1 Head toward goal
- 2 Follow obstacles until you can head toward goal again
- 3 continue

#### How can we improve Bug 0?

- Add memory
  - What information is available?
- Encoders
  - Keep track of robot's own motion

## Bug 1

"Bug 1" Algorithm



- Known direction to goal
- Otherwise local sensing
  - walls/obstacles and encoders
- 1 Head toward goal
- 2 If an obstacle is encountered, circumnavigate it AND remember how close you get to the goal
- 3 return to that closest point and continue
- Takes longer to run
- Requires more computational effort

Vladimir Lumelsky & Alexander Stepanov: Algorithmica 1987

# Bug 1 More formally

- Let  $q_0^L = q_{start}$ ; i = 1
- repeat
  - repeat
    - from q<sup>L</sup><sub>i-1</sub> move toward q<sub>goal</sub>
  - until goal is reached or obstacle encountered at q<sup>H</sup><sub>i</sub>
  - if goal is reached, exit
  - repeat
    - follow boundary recording pt q<sup>L</sup>; with shortest distance to goal
  - until  $q_{qoal}$  is reached or  $q_i^H$  is re-encountered
  - if goal is reached, exit
  - Go to q<sup>L</sup><sub>i</sub>
  - if move toward q<sub>qoal</sub> moves into obstacle
    - exit with failure
  - else
    - i=i+1
    - continue

## Quiz: Bug 1 Analysis

Bug 1: Path Bounds

What are upper/lower bounds on the path length that the robot takes?



D = straight-line distance from start to goal  $P_i$  = perimeter of the  $i^{th}$  obstacle

#### Lower bound

what is the shortest distance it might travel?

#### Upper bound

what is the longest distance it might travel?

$$D+1.5\sum_{i}P_{i}$$

D

What is an environment where the upper bound is required?

## How Can We Show Completeness?

- An algorithm is complete if, in finite time, it finds a path if such a path exists or terminates with failure if it does not.
- Suppose Bug1 were incomplete
  - Therefore, there is a path from start to goal
    - By assumption, it is finite length, and intersects obstacles a finite number of times.
  - Bug1 does not find it
    - Either it terminates incorrectly, or, it spends an infinite amount of time
    - Suppose it never terminates
      - but each leave point is closer to the obstacle than corresponding hit point
      - Each hit point is closer than the last leave point
      - Thus, there are a finite number of hit/leave pairs; after exhausting them, the robot will proceed to the goal and terminate
    - Suppose it terminates (incorrectly)
    - Then, the closest point after a hit must be a leave where it would have to move into the obstacle
      - But, then line from robot to goal must intersect object even number of times (Jordan curve theorem)
      - But then there is another intersection point on the boundary closer to object. Since we assumed there is a path, we must have crossed this pt on boundary which contradicts the definition of a leave point.

## A Better Bug?

"Bug 2" Algorithm



- 1 Head toward goal on the m-line
- 2 If an obstacle is on the way, follow it until you hit the m-line again
- 3 Leave the obstacle and continue toward the goal

What can go wrong? Find maps that will foil Bug 2.

## A Better Bug?

#### Whoops! Infinite loop



- 1 Head toward goal on the m-line
- 2 If an obstacle is on the way, follow it until you hit the m-line again closer to the goal
- 3 Leave the obstacle and continue toward the goal

Is this algorithm better or worse than Bug 1?

# Bug 2 More formally

- Let  $q_0^L = q_{start}$ ; i = 1
- repeat
  - repeat
    - from  $q_{i-1}^L$  move toward  $q_{qoal}$  along the m-line
  - until goal is reached or obstacle encountered at q<sup>H</sup><sub>i</sub>
  - if goal is reached, exit
  - repeat
    - follow boundary
  - until  $q_{goal}$  is reached or  $q_i^H$  is re-encountered or m-line is re-encountered, x is not  $q_i^H$ ,  $d(x, q_{goal}) < d(q_i^H, q_{goal})$  and way to goal is unimpeded
  - if goal is reached, exit
  - if q<sup>H</sup><sub>i</sub> is reached, return failure
  - else
    - $q_i^L = m$
    - i=i+1
    - continue

## Head-to-head Comparison

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).



## Bug 1 vs. Bug 2

- Bug 1 is an exhaustive search algorithm
  - it looks at all choices before committing
- Bug 2 is a greedy algorithm
  - it takes the first thing that looks better
- In many cases, Bug 2 will outperform Bug 1, but
- Bug 1 has a more predictable performance overall

## Bug 2 Analysis

Bug 2: Path Bounds



What are upper/lower bounds on the path length that the robot takes?

D = straight-line distance from start to goal  $P_i$  = perimeter of the  $i^{th}$  obstacle

#### Lower bound

what is the shortest distance it might travel?

#### Upper bound

what is the longest distance it might travel?

$$D + 1.5 \sum_{i} \frac{n_i}{2} P_i$$

D

 $\mathbf{n_i}$  = # of s-line intersections of the *i* th obstacle

What is an environment where the upper bound is <u>required</u>?

## A more realistic bug

- As presented: global beacons plus contact-based wall following
- The reality: we typically use some sort of range sensing device that lets us look ahead (but has finite resolution and is noisy)
- Now, let us assume we have a range sensor...

## Raw Distance Function

$$\rho(x, \theta) = \min_{\lambda \in [0, \infty]} d(x, x + \lambda [\cos \theta, \sin \theta]^T),$$

such that  $x + \lambda[\cos \theta, \sin \theta]^T \in \bigcup_i \mathcal{WO}_i$ .

$$\rho \colon \mathbb{R}^2 \times S^1 \to \mathbb{R}$$

#### Saturated raw distance function

$$\rho_R(x,\theta) = \begin{cases} \rho(x,\theta), & \text{if } \rho(x,\theta) < R \\ \infty, & \text{otherwise.} \end{cases}$$



## Intervals of Continuity

• Tangent Bug relies on finding endpoints  $O_i$  of finite, continuous segments of  $\rho_R$ 



## Tangent Bug Algorithm: Basic Ideas

- Motion-to-Goal (two variations)
  - Move towards the goal until an obstacle is sensed between the robot and the goal
  - Move towards the  $O_i$  that maximally decreases a heuristic distance, e.g.  $d(x, O_i) + d(O_i, q_{goal})$

#### Follow obstacle

- Started if the robot cannot decrease the heuristic distance
- Continuously moves towards the on the followed obstacle in the same direction as the previous motion-to-goal
- Back to motion-to-goal when it is "better" to do so

## Transition Among Motion-To-Goal



Cultiventlyit, stheerts addicates good etelinagy ion 'thin wai'y three three good at

Ans: Start moving towards the  $O_i$  that minimizes  $d(x, O_i) + d(O_i, q_{goal})$ 

## Heuristic Example

At x, robot knows only what it sees and where the goal is,



so it moves toward  $O_2$ . Note that the line connecting  $O_2$  and goal passes through an obstacle



so it moves toward O<sub>4</sub>. Note that some "thinking" was involved and the line connecting O<sub>4</sub> and the goal passes through an obstacle

Choose the point Oi that minimizes  $d(x, O_i) + d(O_i, q_{goal})$ 

# Motion-to-Goal Example



Choose the point Oi that minimizes  $d(x, O_i) + d(O_i, q_{goal})$ 

## Transition From Motion-To-Goal

Choose the point Oi that minimizes  $d(x, O_i) + d(O_i, q_{goal})$ 

- Problem: What if this distance starts to go up?
- Answer: Start to act like a Bug and follow boundary!



- Some definitions:
  - M is the point on the "sensed" obstacle which has the shortest distance to the goal
  - Followed obstacle: the obstacle that we are currently sensing
  - Blocking obstacle: obstacle intersecting segment  $(1 \lambda)x + \lambda q_{goal} \quad \forall \lambda \in [0, 1]$
  - The last two start as the same

# Boundary following

- Move toward the Oi on the followed obstacle in the "chosen" direction while maintaining d<sub>followed</sub> and d<sub>reach</sub>
- d<sub>followed</sub> is the shortest distance between the *sensed* boundary and the goal
- d<sub>reach</sub> is the shortest distance between *blocking* obstacle and goal (or my distance to goal if no blocking obstacle visible)

$$\Lambda := \{ y \in \delta W O_b : \lambda x + (1 - \lambda) y \in Q_{\text{free}} \quad \forall \lambda \in [0, 1] \\ d_{\text{reach}} := \min_{c \in \Lambda} d(q_{\text{goal}}, c)$$



- Terminate when  $d_{reach} < d_{followed}$
- Some definitions:
  - M is the point on the "sensed" obstacle which has the shortest distance to the goal
  - Followed obstacle: the obstacle that we are currently sensing
  - Blocking obstacle: obstacle intersecting segment  $(1 \lambda)x + \lambda q_{\text{goal}} \quad \forall \lambda \in [0, 1]$
  - The last two start as the same

## Example: Zero Sensor Range



- Robot moves toward goal until it hits obstacle 1 at H<sub>1</sub>
- Pretend there is an infinitely small sensor range and the O<sub>i</sub> which minimizes the heuristic is to the right
- Keep following obstacle until robot can go toward obstacle again
- Same situation with second obstacle
- At third obstacle, the robot turned left until it could not increase heuristic
- D<sub>followed</sub> is distance between M<sub>3</sub> and goal, d<sub>reach</sub> is distance between robot and goal because sensing distance is zero

# Example: Finite Sensor Range



# Example: Infinite Sensor Range



## Tangent Bug Algorithm

- repeat
  - Compute continuous range segments in view
  - Move toward n in  $\{T,O_i\}$  that minimizes  $h(x,n) = d(x,n) + d(n,q_{goal})$  until
    - · goal is encountered, or
    - the value of h(x,n) begins to increase
- follow boundary continuing in same direction as before repeating
  - update {O<sub>i</sub>}, d<sub>reach</sub> and d<sub>followed</sub> until
    - · goal is reached
    - a complete cycle is performed (goal is unreachable)
    - $d_{reach} < d_{followed}$

Note the same general proof reasoning as before applies, although the definition of hit and leave points is a little trickier.

## Implementing tangent Bug

- Basic problem: compute tangent to curve forming boundary of obstacle at any point, and drive the robot in that direction
- Let  $D(x) = \min_c d(x, c)$   $c \in \bigcup_i WO_i$
- Let  $G(x) = D(x) W^* \leftarrow$  some safe following distance
- Note that  $\nabla G(x)$  points radially away from the object
- Define  $T(x) := (\nabla G(x))^{\perp}$  the tangent direction
  - in a real sensor (we'll talk about these) this is just the tangent to the array element with lowest reading
- We could just move in the direction T(x)
  - open-loop control
- Better is  $\delta x = \mu(T(x) \lambda(\nabla G(x))G(x))$ 
  - closed-loop control (predictor-corrector)

## Sensors

#### Robots' link to the external world...





Sensors, sensors! and tracking what is sensed: world models



IR rangefinder



sonar rangefinder



odometry...

## **Tactile Sensors**



on/off switch as a low resolution encoder

analog input: "Active antenna"





Sensuikabel

Treiberkabel



Surface acoustic waves

Capacitive array sensors

Resistive sensors

# Tactile Applications

# Medical teletaction interfaces



daVinci medical system



Robotic sensing Merritt systems, FL

## Infrared Sensors

#### "Noncontact bump sensor"



IR emitter/detector pair

(1) sensing is based on light intensity.

"object-sensing" IR

Detection zone

Emitter

Detector



diffuse distance-sensing IR

looks for changes at this distance



Different Angles with Different Dist

## Infrared Calibration

The response to white copy paper (a dull, reflective surface)



## Infrared Calibration



energy vs. distance for various materials (the incident angle is 0°, or head-on) (with no ambient light)

## Sonar Sensing



single-transducer sonar timeline

0

75μs

a "chirp" is emitted into the environment

typically when reverberations from the initial chirp have stopped the transducer goes into "receiving" mode and awaits a signal...

limiting range sensing

.5s

after a short time, the signal will be too weak to be detected





Polaroid sonar emitter/receivers

## Sonar Effects



Draw the range reading that the sonar will return in each case...

## Sonar Effects









- (a) Sonar providing an accurate range measurement
- (b-c) Lateral resolution is not very precise; the closest object in the beam's cone provides the response
- (d) Specular reflections cause walls to disappear
- (e) Open corners produce a weak spherical wavefront
- (f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

# Sonar Modeling

#### response model (Kuc)

$$h_R(t, z, a, \alpha) = \frac{2c \cos \alpha}{\pi a \sin \alpha} \sqrt{1 - \frac{c^2(t - 2z/c)^2}{a^2 \sin^2 \alpha}}$$



- Models the response, h<sub>R</sub>, with
  - c = speed of sound
  - a = diameter of sonar element
  - t = time
  - z = orthogonal distance
  - $\alpha$  = angle of environment surface
- Then, allow uncertainty in the model to obtain a probability:

chance that the sonar reading is S, given an obstacle at location O

# Laser Ranging

