Отчёт о выполнении лабораторной работы 3.3.2 Исследование вольт-амперной характеристики вакуумного диода

Трунов Владимир Владимирович

1 Аннотация

В данной работе будет получен удельный элементарный заряд, а также будет экспериментально подтверждён закон трёх вторых.

2 Теоретическое введение

В работе исследуется зависимости прямого тока, проходящего через вакуумный диод, в зависимости от напряжения на нем, а именно та часть вольт-амперной характеристики, в которой электронное облако существенно влияет на распределение электрического поля между катодом и анодом.

Распределение потенциала по радиусу внутри диода определяется уравнением Пуассона в цилиндрических координатах:

$$\Delta V = \frac{d^2V}{dr^2} + \frac{1}{r} + \frac{dV}{dr} = -\frac{\rho(r)}{\varepsilon_0}$$
 (1) Рис. 1 – Схема распределения электродов в диоде

При этом плотность заряда $\rho(r)$ связана с текущим через слой диода толщины l током I формулой $I=-2\pi r \rho(r)v(r)l$. При этом из закона сохранения энергии мы легко находим скорость v(r) электронов , прошедших через разность потенциалов V(r): $\frac{mv^2}{2}=eV(r)$. Отсюда мы получаем уравнение

$$r\frac{d^2V}{dr^2} + \frac{dV}{dr} = \frac{I}{2\pi\varepsilon_0}\sqrt{\frac{m}{2eV}}$$
 (2)

Однако, в дифференциальном уравнении 2-ого порядка относительно V(r) нам неизвестен ток I, зависящий от V. Для доопределения уравнения будем полагать:

$$\left. \frac{dV}{dt} \right|_{r=r_{b}} = 0 \tag{3}$$

Наше предположение означает что вблизи катода пространственный заряд электронов полностью экранирует поле анодной разности потенциалов.

Уравнение (2) является нелинейным. Попробуем найти некое частное решение, где $V_a=V_{a0},$ при котором ток $I=I_0.$ Тогда выражения

$$I = I_0 \left(\frac{V_a}{V_{a0}}\right)^{3/2}, \qquad V(r) = V_{a0}(r)\frac{V_a}{V_{a0}}$$
(4)

являются решением уравнения (2), что проверяется подстановкой. В общем виде решение записывается в виде

$$I = \frac{8\sqrt{2}\pi\varepsilon_0 l}{9} \sqrt{\frac{e}{m}} \frac{1}{r_a \beta^2} V^{3/2} \tag{5}$$

Это и есть так называемый «закон трех вторых» — ток в вакуумном диоде пропорционален напряжению на нем в степени 3/2. Он справедлив при любой геометрии электродов, если ток не слишком велик (т.е. пока выполнено условие (3)).

Так как нам нужно найти удельный заряд электрона, выпишем в явном виде его из уравнения (5):

$$\frac{e}{m} = \frac{81r_a^2\beta^4}{128\pi^2\varepsilon_0 l^2} \cdot \frac{I^2}{V^3} = k\frac{I^2}{V^3} \tag{6}$$

Таким образом, удельный заряд электрона определяется из отношения квадрата тока к кубу напряжения, умноженный на коэффициент, зависящий от параметров установки.

3 Экспериментальная установка

Рис. 2 – Схема экспериментальной установки

В работе используется диод 2Ц2С с косвенным накалом. Радиус его катода $r_k=0,9$ мм, радиус анода $r_a=9,5$ мм, коэффициент $\beta^2=0,98$, длина слоя центральной части катода, покрытой оксидным слоем l=9 мм.

Для подогрева катода и анода используются стабилизированные источники постоянного тока и напряжения. В цепь накала включено предохранительное напряжение R. Анодное напряжение измеряется вольтметром источника питания, анодный ток — многопредельным мультиметром GDM-8245.

4 Ход работы

Сперва, вычислим коэффициент k:

$$k = \frac{81 \cdot (9, 5 \cdot 10^{-3})^2 \cdot 0, 98^4}{62 \cdot 2 \cdot 3, 14^2 \cdot (8, 85 \cdot 10^{-12})^2 \cdot (9 \cdot 10^{-3})^2} \approx 8, 4 \cdot 10^{20}$$
 (7)

Установим ток накала на $I_{\rm H}=1,3$ A, а начальное анодное напряжение на V=0.5 B. Проведем измерения анодного тока в зависимости от напряжения, изменяя его от 0,5 до 50 B.

Затем проведем аналогичные измерения для других токов накала: 1,4 A; 1,5 A; 1,6 A. Результаты занесем в таблицу 1.

<i>V</i> , B	$I_a = 1, 3 \text{ A}$	$I_a = 1, 4 \text{ A}$	$I_a = 1, 5 \text{ A}$	$I_a = 1,59 \text{ A}$
	I, MKA	I, MKA	I, MKA	I, MKA
0,5	4,29	7,75	15,75	23,8
1.0	13,08	19,8	28,05	39,5
1,5	26,01	33,7	45,8	58,25
2,0	40	48,5	62,15	79,2
2,5	56,3	66,3	84,5	103
3,0	74,5	89,9	103	123,8
3,5	94	109,8	128,7	152,6
4,0	116,2	133	152,3	176,55
4,5	138,7	154,8	178,5	203,8
5,0	162,4	183,1	203,8	229
5,5	191,3	209,3	231,7	259,1
6,0	216,5	235,6	259,2	288,5
7,0	270,6	295,3	323,6	356
8,0	331,8	360,3	390,1	424,7
9,0	399,3	431,3	495	501,2
10,0	472	499,2	571	619
15,0	914	957	1006	1070
20,0	1417	1493,6	1554	1623
25,0	2002	2094,5	2175	2256
30,0	2639	2764	2848	2940
35,0	3314	3473	3571	3669
40,0	4028	4243	4358	4465
45,0	4782	5137	5257	5392
50,0	5636	6003	6151	6282

Таблица 1 – Результаты измерений

Построи график (рис. 4) зависимости в двойном логарифмическом масштабе и убедися, что на зависимость почти полносью соответствует линейной.

Рис. 3 – Графики зависимости силы тока накала от напряжения

Построим график (рис. 4) зависимости I_a от V_a .

Рис. 4 – Графики зависимости силы тока накала от напряжения

Определив коэффициент наклона $a=\frac{\frac{e}{m}}{k},$ найдём удельный заряд для каждого тока. В мы получаем:

$I_{\rm\scriptscriptstyle H},{ m A}$	1,3	1,4	1,5	1,6
a	15,97	16,94	17,30	17,67
σ	0,03	0,03	0,02	0,03

$I_{\scriptscriptstyle m H}$, A	1,3	1,4	1,5	1,6
$\frac{e}{n}$	$\frac{1}{1}$, $10^{11} \frac{\text{K}_{\text{J}}}{\text{K}_{\text{F}}}$	2,14	2,41	2,51	2,62
σ	$10^{11} \frac{\mathrm{K}_{\mathrm{J}}}{\mathrm{K}_{\mathrm{\Gamma}}}$	0,02	0,02	0,02	0,02

5 Вывод

Ни одно из значений удельного заряда не совпало с табличным $\frac{e}{m}=1,759\cdot10^{11}~{\rm K}\pi/{\rm k}$ г. Ближе всего оказалось значение для тока накала $I_{\rm H}=1,3~{\rm A}$; это можно связать с тем, что вокруг катода сосредоточено мало зарядов, что соответствует условию (3). Точность измерений значительно уменьшилась из-за того, что катод просто не успевал полносью прогреться за выделенное время, поэтому показания приборов постоянно менялись. В целом все характерные зависимости были экспериментально подтверждены.