2.6 Расстояние между прямыми

Существует 2 случая поиска расстояния между прямыми k и l:

- 1. $k \parallel l$ или k = l;
- $2. k \div l$ или $k \cap l = A$.

В первом случае $\vec{k} \parallel \vec{l}$, во втором $\vec{k} \not\parallel \vec{l}$.

2.6 Расстояние между прямыми

Для поиска расстояния между прямыми k и l в случае $\vec{k} \parallel \vec{l}$, требуется точка $A \in k$; в противном случае требуется плоскость $\alpha \parallel l$, $k \subset \alpha$.

$$ho(k,l) = egin{cases}
ho(A,l), ext{если} & \overrightarrow{k} \parallel \overrightarrow{l} \
ho(l,lpha), ext{если} & \overrightarrow{k} \nparallel \overrightarrow{l} \end{cases}$$

Даны точки:

$$A(-3;-1;-3)$$
, $B(-4;-2;-3)$, $C(1;3;4)$, $D(3;5;4)$.

Найти $\rho(AB, CD)$.

Решение:

Определим случай взаимного расположения прямых.

Найдём направляющие векторы: $\overrightarrow{AB}\{-1;-1;0\}, \overrightarrow{CD}\{2;2;0\}.$

Имеем $\overrightarrow{CD} = -2\overrightarrow{AB}$, следовательно $\overrightarrow{AB} \parallel \overrightarrow{CD}$.

Даны точки:

$$A(-3;-1;-3), B(-4;-2;-3), C(1;3;4), D(3;5;4).$$

Найти $\rho(AB, CD)$.

Решение:

$$\overrightarrow{AB} \parallel \overrightarrow{CD}$$
, следовательно $\rho(AB,CD) = \rho(A,CD)$.

$$\vec{l} = \frac{1}{2} \overrightarrow{CD}, \ \overrightarrow{AC} \{4; 4; 7\}, \ \vec{l} \{1; 1; 0\}.$$

$$\rho(A, CD) = \sqrt{\overrightarrow{AC}^2 - \frac{(\overrightarrow{AC} \cdot \overrightarrow{l})^2}{\overrightarrow{l}^2}} = \sqrt{81 - \frac{8^2}{2}} = 7.$$

Даны точки:

$$A(1; 2; 0), B(-4; -1; 0), C(1; -4; 5), D(-4; -3; 0).$$

Найти $\rho(AB, CD)$.

Решение:

Определим случай взаимного расположения прямых.

Найдём направляющие векторы: $\overrightarrow{BA}\{5; 3; 0\}, \overrightarrow{DC}\{5; -1; 5\}.$

Имеем $\overrightarrow{DC} \neq k \cdot \overrightarrow{BA}$, следовательно $\overrightarrow{BA} \nparallel \overrightarrow{DC}$.

Даны точки:

$$A(1; 2; 0), B(-4; -1; 0), C(1; -4; 5), D(-4; -3; 0).$$

Найти $\rho(AB, CD)$.

Решение:

$$\overrightarrow{BA} \nparallel \overrightarrow{DC}$$
, следовательно $\rho(AB,CD) = \rho(AB,\alpha) = \rho(A,\alpha)$, где $\alpha \parallel AB$, $CD \subset \alpha$.

Найдём нормаль к плоскости α по параллельным к ней векторам \overrightarrow{BA} и \overrightarrow{DC} , где $\overrightarrow{BA} \nparallel \overrightarrow{DC}$.

Даны точки:

$$A(1; 2; 0), B(-4; -1; 0), C(1; -4; 5), D(-4; -3; 0).$$

Найти $\rho(AB, CD)$.

Решение:

$$\overrightarrow{BA}$$
{5; 3; 0}, \overrightarrow{DC} {5; -1; 5};

Матрица:
$$\begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -5 \\ -3 & 5 & 0 \end{pmatrix}$$
, строки: $\vec{n}_1\{0;0;3\}$ $\vec{n}_2\{0;0;-5\}$; $\vec{n}_3\{-3;5;0\}$

Решение:

$$\overrightarrow{BA}$$
{5; 3; 0}, \overrightarrow{DC} {5; -1; 5};

Матрица:
$$\begin{pmatrix} 0 & 0 & 3 \\ 0 & 0 & -5 \\ -3 & 5 & 0 \end{pmatrix}$$
, строки: $\vec{n}_2\{0;0;-5\}$; $\vec{n}_3\{-3;5;0\}$
$$\vec{n}_0\{\vec{n}_1\cdot \overrightarrow{DC};\vec{n}_2\cdot \overrightarrow{DC};\vec{n}_3\cdot \overrightarrow{DC}\} = \vec{n}_0\{15;-25;-20\};$$
 $\vec{n}_\alpha=\frac{1}{5}\vec{n}_0; \ \vec{n}_\alpha\{3;-5;-4\}.$

Решение:

$$\vec{n}_{\alpha}$$
{3; -5; -4}; $D(-4; -3; 0); A(1; 2; 0);$

Составим уравнение плоскости α по \vec{n}_{α} и точке D, так как $D \in CD \subset \alpha$.

$$3(x + 4) - 5(y + 3) - 4z = 0.$$

$$\rho(A,\alpha) = \frac{|3(1+4) - 5(2+3)|}{\sqrt{9+25+16}} = \sqrt{2}.$$