深度学习简介

杨阳

中国科学院自动化研究所

目录

1、深度学习

2、卷积神经网络

3、深度学习的应用

1、深度学习

深度学习受到越来越多的关注

深度学习就是构建由参数化功能模块构成的网络,并利用基于梯度的优化方法进行样本训练。

1、网络 2、优化

神经网络

线性加权

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

神经网络实例

神经网络实例

给定不同的输入 得到对应的输出

$$f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix}$$

深度神经网络

深度学习就是构建由参数化功能模块构成的网络,并利用基于梯度的优化方法进行样本训练。

为什么选择深度网络

任何连续函数

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

可以被一个单隐藏层网络逼近

(给定足够多的隐藏层节点)

为什么时更深而不是更胖的网络?

AlexNet

1、相比于深度,目前在宽度上已经很宽了

2、为了模拟更复杂的模型,提升模型精度

实例

网络结构和参数.

1、模型

2、优化

训练数据

• 准备训练数据: 图像和标签

网络学习的任务是在训练集上得到"最优"

网络训练

目标:

输出尽可能的逼近标签

均方损失
$$MSE(y,y') = \frac{\sum_{i=1}^{n} (y_i - y_i')^2}{n}$$

局部最优

• 梯度下降法无法保证全局最优

图像识别

邮件过滤

文本分类

深度学习工具

<u>PaddlePaddle</u>

深度学习步骤

模型 定义损 优化方 模型训 模型测 失函数 案 练 试

深度学习看起来如此简单.....

2、卷积神经网络

卷积神经网络

• 利用二维图像块去描述图像特征.

卷积

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 图像

卷积核

1	-1	-1	
-1	1	-1	
-1	-1	1	

卷积核1

-1	1	-1
-1	1	-1
-1	1	-1

卷积核2

每个卷积核作用在(3 x 3)的图像块上

卷积

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 图像

1	-1	-1
-1	1	-1
-1	-1	1

卷积核1

3 -1

卷积网络与全连接网络

输出: 32维特征

卷积网络需要的参数更少

全连接网络

卷积神经网络

训练方法: 随机梯度下降法

卷积神经网络的实现

3、深度学习在视觉中的应用

时间序列图像理解

计算机视觉四大基本任务

(a) Image classification

(c) Semantic segmentation

(b) Object localization

(d) Instance segmentation

深度学习在计算机视觉应用拓展

- ▶ 人脸识别
- ▶ 行人再识别
- > 关键节点检测与骨架识别
- > 图像注释
- > 表情识别
- > 医学图像
- ▶ 行为识别
- > 对抗生成网络

THE END