LIME ENHANCED DIRECT REDUCTION OF GALENA BY HYDROGEN

by
DEBAJYOTI BANDYOPADHYAY

ME TH ME/1984/M B 2232

M

LIM

DEPARTMENT OF METALLURGICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR AUGUST 1984

LIME ENHANCED DIRECT REDUCTION OF GALENA BY HYDROGEN

Submitted on....

A thesis submitted in Partial Fulfilment of the Requirements for the degree of

MASTER OF TECHNOLOGY

by
DEBAJYOTI BANDYOPADHYAY

POST GRADITATE, OFFICE This thesis has men approved for the award of the Degree of Mason of Technology (M. Feelin accorda), with the regulations of the Fulian Institute of Technology Nampi Dated.

to the

DEPARTMENT OF METALLURGICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR AUGUST 1984

21 SEP 1984

ME-1984-M-BAN-LIM

CERTIFICATE

Certified that this work on 'Lime Enhanced Direct Reduction of Galena by Hydrogen' has been carried out under my supervision and that it has not been submitted elsewhere for a degree.

Dated: August 1, 14, 4

(S.P. MEHROTRA)
Assistant Professor
Dept.of Metallurgical Engineerin
Indian Institute of Technology
Kanpur.

15/8/84. Du-

ACKNOWLEDGEMENT

In my journey through a problematic path the light of right direction and destinity has come from my supervisor Dr. S.P. Mehrotra. His invaluable suggestions and analytic mind has made it possible for me to sail through all the predicament situations. My sense of gratitude knows no bound for his mountain high patience he has offered me in all my mistakes and for his help in all parts of this study.

Thanks are due to Ms. J. Chatterjee for taking the trouble of helping me in various ways during the analysis of the results. Author wants to convey his thanks to Mr. P.K. Chowdhury and B.R. Srinivasan for helping me analysing the samples. He is also indepted to Ms. Jayasree and Ms. B. Pandey for correcting the manuscript.

Last but not least, the author wants to mention the names of Mr. A. Sharma and Mr. D.P. Tripathi who helped himin laboratory through out the experimental period. Thanks are due to them.

Finally the author wants to thank $\mbox{Mr. S.N.}$ Pradhan for his typing .

TABLE OF CONTENTS

LIST OF FIGU	JRES	Page No
ABSTRACT		
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	LITERATURE REVIEW	5
2.1	Reduction of Copper Sulfide	5
2.2	Reduction of Cobalt Sulfide	7
2.3	Reduction of Molybdenum Sulfide	8
2.4	Reduction of Nickel Sulfide	9
2,5	Reduction of Antimony Sulfide	10
2.6	Reduction of Lead Sulfide	11
2.7	Choice of lime as Scavenging Agent	12
CHAPTER 3	THERMODYNAMIC CONSIDERATION OF	
	SCAVENGED REACTION	17
CHAPTER 4	EXPERIMENTAL	20
4.1	Materials	20
4.2	Experimental Setup	21
4.3	Preparation of Pellets	23
4.4	Experimental Procedure	24
4.4a	Evaporation	24
4.4b	Reduction	26
CHAPTER 5	RESULT AND DISCUSSION	34
5.1	Kinetics of vaporization of	
	Galena in Nitrogen Atmosphere	34
5.1.	lEffect of Temperature	39

5.	2 Effect of Gas Flow Rate	40
5.2	3 Effect of Lime	40
5.1	.4 Evaluation of Rate constants and	
	Activation Energy Vaporization	41
5.2	Kinetics of Reducation of Galena	
	in Presence of Lime by Hydrogen	48
5.2	.l Effect of Flow Rate	49
5.2	.2 Effect of Temperature	54
5.2	.3 Effect of Lime	54
5.2	.4 Estimation of Vaporization Rate	
	of Galena in Hydrogen	58
CHAPTER 6	CONCLUSION	
CHAPTER 7	APPENDIX	
APPENDIX 1	Vaporization data of galena under	
	various experimental conditions	
APPENDIX 2	Weight loss data for reduction under	
	various experiment conditions	
APPENDIX 3	Determination of porosity	
APPENDIX 4	Attempts of estimate metallic lead	
	in reduced sample	
APPENDIX 5	Result of X- Ray analysis	

LIST OF FIGURES

Figure		Page
4.1	Sketch of the Apparatus used	22
5.1	Evaporation of galena concentrate	35
	at 650° C at various N_2 flow rate for pellets	
	having various lime to galena ratios	
5.2	Vaporation of galena concentrate	36
	at 700° C at various N_2 flow rate for pellets	
	having various lime to galena ratios	
5.3	Evaporation of galena concentrate at 750° C	37
	at various N_2 flow rate for pellets having various lime to galena ratios	
5.4	Vaporation of galena concentrate at 800°C at	38
	various N ₂ flow rate for pellets having	
	various lime to galena ratios	
5,5	Activation energy of vaporization of	42(a)
•	galena under various conditions	
5.6	Typical plot to calculate reduction	50
	weight loss by superimposing on evaporation plot	
5.7	Weight loss of galena at 650°C temperature at	51
	various H ₂ flow rates for pellets having	
	different compositions	
5,8	Weight loss of galena at 700°C temperature at	52
	various H ₂ flow rates for pellets having	
ı	different compositions	

5.9 Weight loss of galena at 750°C and 800°C temperature at various H_2 flow rates for pellets having different compositions

LISI OF TABLES

TABLE	•	PAGE
2.1	Thermodynamic consideration of the direct	6(a)
	recuction of cuprous sulfide with H2, with and	
	without lime	
2.2	Equilibrium constants of scavenged reduction	13
	for various scavenging agents	
3.1	Free energy change and equilibrium values for	17
	direct reduction, scavenging reaction at various	
	temperatures	
3.2	Comparison of equilibrium constants for lime	19
	scavenged reduction reaction with corrosponding	
	values in oxide reduction for lead	
4.1	Chemical composition of the galena concentrate	20
4.2	Porosity of pellets with various R values	24
4.3	Conditions of evaporation experiments	27
4.4	Conditions of reduction experiments	31
5.1	Equilibrium vapor pressure values for PbS at	39
	various experimental temperatures	
5.2	Rate constant values for vaporization under	43
	various experimental conditions	1
5.3	Activation energy of vaporization of galena	46
	having various lime to galena ratio (R) at	1
	various No flow rates	

- 5.4 Observed mass transfc. rate of galena in N_2 under 61 various experimental conditions
- 5.5 Observed mass transfer rate of galena in H_2 62 and values under various experimental conditions
- 5.6 Calculated mass transfer Co-efficient for $\rm H_2(k\!H_2)$ and $\rm N_2$ ($\rm k\!N_2$) for different temperatures and compositions.

ABSTRACT

Direct reduction of sulfide minerals by hydrogen in presence of lime is a probable alternative route for the extraction of non-ferrous metals. It can substantially reduce the sulfur pollution problem of the atmosphere due to evolution of sulfur bearing gases during the unit operations like roasting smelting etc. in the conventional pyrometallurgical route. A study of reduction behaviour of galena by hydrogen in presence of lime has been carried out at temperatures 650°C, 700°C, 750°C, 800°C with hydrogen flow rate of 150 c.c/min and 300 c.c/Cylindrical pellets of galena, having varying amount of CaO/Pbs ratio (R), namely from 0,1,2,4, and porosity varying from 10% - 16% were used.

Since galena has a high vapor pressure at temperature examined in this study, its vaporization kinetics also become important and therefore a study of vaporization kinetics of galena at temperatures 650°C, 700°C, 750°C, 800°C in nitrogen atmosphere was also carried out at three different flow rates of nitrogen, namely 200 c.c./min, 400 c.c./min and 600 c.c min. The composition and the geometry of the galena samples were identical to those employed in reduction studies.

Both the evaporation and reduction studies were carried out using Thermogravimetric Analysis Technique.For vaporization experiments, it was found that the % wt. loss vs time plots remained almost linear except for high temperatu

when lime was used . With increase of temperature, nitrogen gas flow rate and lime content, The weight loss due to vaporization also increased. Activation energy for vaporization under various experimental conditions were calculated from rate constant data ($k_{\rm V}$) and found to be 30 K- Cal/ mole. It was noticed that the log $k_{\rm V}$ vs $\frac{1}{T}$ plots remained almost parallel, indicatin that lime did not change the basic mechanism of vaporization.

During reduction, as the total weight loss comprised of weight loss by vaporization plus weight loss due to reducti The weight loss by reduction only was calculated by assuming that the vaporization kinetics of galena in hydrogen to be san as in nitrogen. Weight loss due to reduction was found to be higher with increase of hydrogen flow rate and temperature, exact at higher temperature due to sintering. Predominacy of scavanger reaction was established and reduction was enhanced in presence of lime.

CHAPTER -1

INTRODUCTION

About one third of naturally occurring metal ores are found in form of their sulfide and some of the common metals like Cu, Zn, Pb, Sb, Ni, Mo, Co etc. are produced from their sulfide ores using pyrometallurgical routes. The conventional pyrometallurgical routes of extraction of metals from sulphide ores includes at least two unit operations: (i) roasting and (ii) smelting. In both these unit operations considerable amount of SO_2 and other sulfur bearing gases are produced . Although in many plants a major fraction of these gases are converted into sulfuric acid, outgoing gases still contain substantially high concentration of sulfur bearing gases. Only limited demand of sulfuric acid and the problems associated with the storage of large quantities of acid, makes the storage of sulfur in this form least attractive. Further the multiplicity of unit operations involved in the conventional process complicates the problem of removing the sulfur bearing gases from the flue gas before releasing it into the atmosphere.

Thus, one of the main problems with the conventional pyrometallurgical route of extraction of metals from their sulfide ores is of atmospheric pollution. Continuous liberation of sulfur bearing gases in atmosphere can bring about

pollution beyond tolerable limits. In fact, in many western countries there are very strict city-pollution laws. The pollution problem in the conventional pyrometallurgical route has thus perhaps become the main bottle neck that has forced the extractive metallurgists to think for the alternative processes involving fewer unit operations and in which the amount of sulfur bearing gases produced is drastically cut down.

Years long efforts in this direction have resulted in many newer processes. Some of which have been successfully tried on laboratory scale. One of the processes which has shown great potential is the one based on direct reduction of metal sulphides with hydrogen involving a reaction of the following type.

$$MS + H_2 \longrightarrow M + H_2 S \uparrow$$

The H₂S gas, that is produced in this reduction, immediately reacts with some appropriate scavanging compounds to form a solid sulfide. Thus, the outgoing gas contains only a small amount of sulfur bearing gases. Further the process involves only one unit operation, This process has been extensively studied for metals like Cu,Ni,Mo,Zn,Pb,Sb,Co etc. (1-10)

The main objective of the present investigation is to

explore the possibility of using this direct reduction process for extraction of lead from its sulfide (galena) concentrate. From the thermodynamic consideration, which we shall discuss in details in one of the following chapters, it is obvious that the rate of reduction of sulfide is enhanced in presence of scavenging element/ compound that has a strong affinity / sulfur. Thus, the scavanging compound not only converts the sulfur bearinggases into less harmful form, but also enhances the rate of reduction. Some of the studies on direct reduction of sulfides of common metals reported in literature indicate that lime is one of the very effective scavanging compounds (20-28) both from economic point of view Thus the kinetic as well as its affinity towards sulfur. study of lime enhanced direct reduction of galena with hydrogen is the primary interest of this thesis. One major difference with behaviour of lead sulphide with those of sulfides of most other common metals is that, lead sulfides has a very high vapour pressure at temperature normally employed for reduction. Therefore, any study on reduction of load sulfide would automatically require an extensive study on its vapori-Hence in the present study also vaporization of lead under various experimental conditions, employed in the reduction studies, has been investigated.

This thesis is divided in seven chapters. The second chapter deals with the literature review, the third chapter gives an account of the thermodynamic consideration of scavenged reaction, the fourth chapter contains experimental. Fifth chapter gives the experimental results and discussion of evaporation and reduction study, the sixth chapter takes in to account the conclusion and finally the seventh chapter presents the appendix.

CHAPTER -2

LITERATURE REVIEW

Direct reduction of sulfide concentrates with hydrogen, being one of the potential alternative processes for extraction of non-ferrous metals,/been extensively studied.

A review of literature on those studies has been made and presented in this chapter.

2.1 Reduction of Copper Sulfide

In 1967 Tanaka et al. were amongst the first investigators to study the reduction kinetics of cuprous sulfide by hydrogen with an objective to replace the preliminary roasting unit operation in the conventional copper extraction extraction process and they were not much concerned about the pollution problem. They calculated the rate of reaction by using Arrhenius Absolute Reaction Rate theory.

Habasi and co-workers (2-5) conducted pointering investigation on the hydrogen reduction of number of sulfides of copper such as $\mathrm{Cu}_2\mathrm{S}$, $\mathrm{Cu}\mathrm{S}$, bornite ($\mathrm{Cu}_5\mathrm{Fe}\mathrm{S}_4$) and Chalcopyrite concentrate in presence of lime and reported that all these sulfides could be successfully desulfurized and that copper could be produced by such a direct reduction process. But inspite of their elaborate experimentation they did not make

any serious attempt to study the effects of various operating parameters that would effect the process kinetics. Mankhand et al. $^{(6)}$ made an elaborate study of the process kinetics and the effect of various parameters with Cu_2S . They showed that the presence of lime, along with H_2 as a reducing agent enhanced the reduction rate to a large extent. Thermodynamic considerations which led to this condusion are summarized in Table 2.1.

Table 2.1 it is obvious that the values of the equilibrium constants for the reaction (2.3) are about 2-3 orders of magnitude greater than those for reaction (2.1) at various temperatures. Mankhand et al. (6) further observed that/rate of cuprous sulfide reduction was dependent on various factors like hydrogen flow rate, temperature, particle size, lime content etc. The reduction reaction had higher efficiency at the low gas flow rate. Very high flow rate of hydrogen, reduced the partial pressure of H₂S gas which, in turn, adversely affected the reaction between H₂S and lime. Reduction rate was highly dependent on temperature, low scavanging capacity of lime reduced the reduction rate. Finer particle size of Cu₂S and the lime content greater than the stochiometry (about up to R=3 where R is Amount of CaO/ Amount of Cu2S) resulted in enhanced reduction kinetics. The reaction of Cu₂S converted to mettalic copper can be estimated either by a chemical

TABLE - 2.1

Thermodynamic consideration of the direct reduction of cuprous sulfide with hydrogen, with and without lime.

$$Cu_2S(s) + H_2(g) = 2 Cu(s) + H_2S(g)(2.1) G^01000^0K H^0298^0K (k.Cal) (K.Cal) 14.3 14.7$$

$$CaO(s) + H_2S(g) = CaS(s) + H_2O(g)(2.2) -15.0$$
 -11.3
 $Cu_2S(s) + CaO(s) + H_2(g) = Cu(s) + CaS(s) + H_2O(g) ...(2.3) -0.7$ 3.4

 $K_1 = pH_2S/pH_2;$ $K_2 = pH_2O/pH_2S;$ $K_3 = pH_2O/pH_2$

Equation constants for reaction 1,2 and 3

Temperature (^O K)	Kı	К2	K ₃ (K ₁ K ₂)
900	4.27X10 ⁻⁴	4.4X10 ²	1.88
1000 .	7.48X10 ⁻⁴	1.85X10 ³	1.39
400	1.17X10 ⁻³	9.09X10 ²	1.06
1200	1.67X10 ⁻³	5.06X10 ²	0.85
1300	2.25X10 ⁻³	3.05X10 ²	0.69

From the Table 2.1 it is obvious that the values of the equilibrium constants for the reaction (2.3) are about 2-3 order of magnitude greater than those for reaction (2.1) at various temperatures.

analysis route (11) or by Thermogravimetric Analysis (6) (TGA).

In his study on copper sulfide reduction Cech (12) observed that though the incubation period for reduction was appreciably reduced in presence of lime, the total lime required for reduction was not much affected. At low temperatures, 400°C, 500°C copper grows (12) in the form of occassional fibers whereas at high temperature like 700°C it is found in the form of spenge.

2.2 Reduction of Cobalt Sulfide: --

Reduction of cobalt sulfide with hydrogen in presence of lime was carried out by Ford et al (13). They took into account the benificial effect of lime on the reduction kinetics and found that the increase in lime content increased the reduction rate (e.g. 5 fold increase in conversion at with 700°C was achieved/lime over the hydrogen reduction without lime). However, over a value of R>3 (R= amount of lime/amount of CbS), acted as an inert filler only. They further reported that at higher temperatures the scavenged reaction becomes slightly sensitive to change in temperature, but this conclusion seems to be erroneous. They also reported that the best scavenging reaction was achieved at low hydrogen flow rate and the reaction was associated with an incubation period. The latter phenomenon is attributed to slow neucleation

processoccurring in the metal sulfide. Cobalt sulfide is a metal deficit compound. (14) On exposure to hydrogen atmosphere, sulfur atoms are first removed and thus the metal deficiency decreases. The metal ions diffuse to the bulk of the metal sulfide which gradually becomes super-saturated with respect to the metal. (15) Accordingly neucleation of metal becomes possible. Once metal nuclei are formed, they startgrowing on the surface of the sulfide. Cech et al (12) made an attempt to study the morphology of cobalt formation. They found that by using 10 pct. H₂ and 90 pct. N₂ mixture, reduction in the temperature interval of 870°C to 878°C produced masses of irregular fibers with some single crystal file near the higher temperature. At 879°C and 880°C coarse columner crystals were observed whereas above 880°C, the reduced cobalt particals were spherical.

A Ni-Co mixed sulfide (12) needed the same highly diluted reducing gas as was used for cobalt sulfide to produce fibrous cobalt in temperature interval of 750°C. to 805°C. Above 805°C, only spherical particles were produced. Reduction below 750°C was very slow with an incubation period of an hour or more.

2.3 Reduction of Molybdenum Sulfide:-

First attempt of direct reduction of molybdenum sulfide (Molybdenite) was made by $\mathrm{Key}^{(16)}$ who found that

about 80% desulfurization could be achieved at 980°C.

Mankhand et al (17) in their study on reduction of molybdenite observed that its reduction with hydrogen enhanced substantially in presence of lime and that the scavenged reaction could be carried out almost isothermally.

Percentage desulfurization could be estimated by using the TGA method. Effects of $\rm H_2$ flow rate, lime and temperature on the reduction kinetics were similar to those reported for other metal sulfides. At higher temperatures ($1000^{\rm O}{\rm C}$ and above) the reduction rate, however, decreased because of sintering of the sulfide particles.

2.4 Reduction of Nickel Sulfide:-

Cech at al⁽¹²⁾ investigated the reduction of nickel sulfide using synthetic sulfide samples. They reported that the reduction to about 80 pct.produced at a nearly constant velocity. Superiority of seavenged reaction by lime over direct reduction and over other scavenging compounds like $CaCO_3$ (before decomposition temperature) was established. It was found that for the reaction without lime, the rate was independent of temperature indicating that the rate was dependent on the rate at which H_2S evolved was transported by the flowing gas.

Reduction experiments carried out near 600°C revealed that the sulfide was reduced to a mass of nickel filaments. In the temperature range between 535°C to 565°C, the fibers were irregular where—as in between 565°C to 590°C, they were a mixture of irregular and straight sided fibers. As the reduction temperature was increased from 590°C to 630°C, fibers became entirely fine and straight—sided. Temperatures between 630°C to 637°C produced numerous short columnar crys—tals in the filamentary mass where—as at temperature above 638°C, produced only dense spherical particles of metal.

Using the natural nickel sulfide ones. Shake et al. $^{(18)}$ and Byerley et al. $^{(19)}$ examined the possibility of nickel extraction by direct hydrogen reduction of metal sulfide in molten state.

2.5 Reduction of Antimony Sulfide:-

Not much literature is available on reduction of antimony sulfide. Torma et al (29) studied the hydrogen reduction of stibnite both without and with lime and magnesium oxide. They could achieve complete desulfurization in presence of lime or MgO at a temperature of 510°C with hydrogen flow rate of 100 c.c/mm within 60 minutes where—as with the same experimental condition but without lime, the yeild was only 54.5% desulfurization.

2.6 Reduction of Lead Sulfide: -

Spagola (30) is among the first investigators to study the direct reduction of PbS and ZnS in solid state. He reported that the solid state reduction was slow and time dependent. Due to the partial reduction of the outerlayers of the charge, the contact between metal sulfide and the reducing gas was interrupted. The reduction was also damped considerably in presence of gangue material.

The possibility of volatilizing certain metal sulfides has been considered by several investigators. Hsiao and Schlechten (31) measured the vapour pressure of a number of metal sulfide by measuring the rate of weight loss under vacuum. On the basis of vaporization kinetics experiments, the metal sulfides can be divided in-to two categories

(i) those which lose weight by evaporation of metal sulfide molecules and (ii) which are dissociated into sulfur and metal and then sulfur and metals evaporate.

PbS falls in the former category. Kellog (32) observed that substances with vapour pressure of the order of 80 mm of Hg should rapidly vaporize in a gas stream.

With the knowledge that PbS can be reduced $^{(30)}$ by H_2 and that PbS has an appreciable vapour presoure at pra¢tial temperatures (86 mm at 1100° C) development of a process

was sought by Cole et al $^{(33)}$ where PbS was vaporized from concentrate and reduced by hydrogen and the $\rm H_2S$ produced was processed to elementary sulfur form.

As PbS is substantially volatile, its volatilization characteristics are very important both from the point of view of vapour phase reduction as well as gas-solid reduction. Rao et al (34) very extensively studied the vaporization characteristics of PbS mixed with lime. They found that the kinetics of evaporation of PbS was much faster in helium than in nitrogen. Rapid vaporization of PbS in helium was attributed to higher diffusion rate of PbS (g) in helium than in nitrogen.

2.7 Choice of Lime as Scavenging Agent:-

In fact the scavenging capacity of lime for sulfur had been recognized long back. In 1951, T.Rosenquivst $^{(22)}$ made a detail thermodynamic study of the reaction CaS+H₂O = CaO + H₂S and the desulfurization of liquid metal with lime. Later on, many investigators $^{(2-10)}$ have studied the scavanging capacity of various basic metal oxides. The equilibrium constant of scavanged reaction for various basic metal oxides at 827°C is shown in Table 2.2 .

TABLE - 2.2

Equilibrium constants of scavenged reaction for various scavenging agents.

Reach. MB + 425 -> MS + 420	$k = \frac{1+20}{p_{420}}$
Scavenger	Equilibrium Constant
Na ₂ O	6.00 x10 ⁸
BaO	1.48 x10 ⁶
CaO	1.88 x10 ³
MnO	6.68×10^2
MgO	3.98 x10 ⁻³

Values compiled from Ref (37,38)

So from Table 2.2 it is obvious that according to the scavanging capability, Na_2O , CaO, BaO, MgO, MnO they may be arranged in the following manner.

Na₂O> BaO> CaO> MnO> MgO.

Though Na₂O and BaO have higher scavenging capacity than CaO but if one now considers the relative costs of these two reagents and their corrosiveness and consequent case of handling, lime is the obvious practical choice for commercial use of scavenged reduction process. It may be noted that lime has found favour as absorbent for sulfur-bearing gases generated in the new roasting procedure such as lime roasted process ^(7,8)basically aimed at containing atmospheric pollution.

Gavrilova and Allushuler $^{(9)}$ who investigated reaction between CaO and $\rm H_2S$ in temperature range 500 -1100°C, have found that reaction is rather slow at low temperature and is diffusion-controlled. Recently Habasi and Mikhall $^{(10)}$ have found that the scavanged reactionfollows parabolic rate equation and has an activation energy of 16.0 K.Cal/mole in the temperature range of 470° - 800° C.

The necessity of the above discussion about the scavenging capacity of various compounds and the scavenged reaction is to have proper validity of choosing lime for scavenging purpose and to have an idea about the thermodynamic

concept of the scavenged reaction before studying the kinetic part.

It would become apparent from the literature review presented in this chapter that the direct reduction of metal sulfides in presence of lime has commercial implications and that the direct reduction of lead sulfide with hydrogen has not been investigated to any significant level. present study an attempt has been made to examine the kinetics of lime enhanced reduction of galena concentrate with hydrogen, using the Thermogravimetric Analysistechnique. Since the lead sulfide would have a substantially high vapour pressure at the temperatures, to be employed for reduction studies, the weight loss due to vaporization would be compounded with the weight loss due to reduction. Keeping this idea in mind the present work is divided in to two parts. In the first part, the vaporization kinetics of galena concentration, with various proportions of lime added to it, has been studied at various temperatures and nitrogen flow rates. The second part deals with the reduction kinetics under various experimental conditions specified in chapter 5.

CHAPTER -3

THERMODYNAMIC CONSIDERATION OF SCAVENGED REACTION

From the thermodynamic data available in literature (35,36), it is possible to estimate free energy change. for the direct reduction reaction i.e.

The calculated values of free energy change and the equilibrium constants for the above reaction (denoted by ΔG_1^0 and K_1 respectively) at various temperatures are tabulated in Table 3.1. From the ΔG_1^0 values it is apparent that the reaction (3.1) is not thermodynamically favourable and under standard conditions insignificant reduction takes place even after prolonged treatment because of low value ($10^{-3} - 10^{-2}$) of equilibrium constant.

One of the ways of driving the reaction (3.1) forward would be to employ excessively high hydrogen flow rate, so as to sweep away the H_2S gas from the system. But this would obviously an inefficient and expensive method.

TABLE 3.1

scavenging reaction and scavenged reduction reaction at various temperatures. Free energy change and equilibrium constant values for direct reduction,

Reaction (1) PbS(s)	Reaction (1) $PbS(s) + H_2(g) = Pb(t) + H_2S(g)$)+H ₂ S(g)	ergy	change	Equilibrium K_1 ,	constants PH2S (PH2)
(3) PbS(s)	(3) PbS(s)+CaO(s)+H ₂ (g)	(5) 7175 (6)) CV 1		, CA	58Hd)
=Pb(=Pb(()+CaS(s)+H ₂ O(g	20(g)	o G ₃		Ж Ж	K3 = P420/442
Temperature $\triangle { t G}_1^0$	$_{ m e} riangle { m G}_{ m l}^{ m o}$.	AG ⁰	A G ⁰		K2	. K3
527	10109.96	-15028,26	4918,09	1,802x10 ⁻³	1,2x10 4	21.624
627	9356,226	-15100,85	-5744.58	5.528×10 ⁻³	4.4x10 3	24,3232
727	8620.00	-15045,88	-6425,35	1.343x10 ²	1,85x10'3	24,8455
827	7899,55	-14987.16	-7087,70	2,758x10 ²	9.09x10 ²	25.07 2
927	7193.44	-14943.69	-7750.09	4.992x10-2	5.06x10 ²	25,2595
	A Seguin de la company de la company des company de la	CCLUCATED CIPROTORIAN CONTRACTORIAN CONTRACT		A CARACTER CONTRACTOR OF THE CARACTER CONTRACTOR OF THE CARACTER CONTRACTOR OF THE CARACTER CONTRACTOR CONTRAC	in the state of th	

Values compiled from Ref (36),

Reduction By Hydrogen in $Presence of a H_2S Scavenger.$

A better way of achiving the desired low P_{H_2S} value level for driving reaction (3.1) forward is to employ a scavenging compound which when placed near the reacting sulfide particle is capable of rapidly and efficiently absorbing H_2S as soon as it is formed. If lime is used as the scavenging compound, it would react with H_2S in the following manner

 $\text{CaO(s)} + \text{H}_2 \text{S(g)} = \text{CaS(s)} + \text{H}_2 \text{O (g)} \\ \text{...3.2}$ The maintenance of an extremely low in situ $\text{P}_{\text{H}_2 \text{S}}$ value by the use of a suitable scavenger will perhaps enable the reaction to proceed forward.

The scavenged direct reduction of lead sulfide will take place in the following manner.

$$PbS(s) + CaO(s) + H_2(g) = Pb(t) + CaS(s) + H_2O(g)$$
.... 3.3

The change of free energy for the above two reactions (denoted by $\triangle G_2^o$ and $\triangle G_3^o$ respectively) along with the equilibrium constant values (denoted by K_2 and K_3 respectively) at various temperatures are given in Table 3.1.

One aspect which might complicate the reduction process is the possibility of oxidation of the reduced metal by the water vapour. However the comparison of equilibrium

 $(P_{\rm H_2O}/P_{\rm H_2})$) constant values (Table 3.2) for reaction 3.4 viz

$$MO(s) +H_2 = M(s) + H_2O(g)$$
 ...3.4

with those for the reaction (3.3) suggests that the oxidation of metallic lead with water vapour can be ignored.

Thale 3.2: - Comparison of equilibrium constants for lime scavenged reduction reaction with corresponding values in oxide reduction for lead.

Reactions:- PbS(s) + CaO (s) + $H_2(g) = Pb(k) + CaS(s) + H_2O$3.3 .. K_3 PbO (s) + $H_2(g) = Pb(k) + H_2O(g)$ 3.4. K_4

<pre>Tmperature (OK)</pre>	Equilibrium constants	
	К3	K ₄
		4
700		3.23x10 ⁴
800	21.624	2.03x10 ⁴
900	24.3232	1.38x10 ⁴
1000	24.8455	9.99x10 ³
1100	25.0702	7.61x10 ³

CHAPTER - 4

EXPERIMENTAL

As already mentioned towards the end of Chapter 2, the present investigation has been divided into two parts.

(i) effects of temperature, lime content and nitrogen flow rate on the evaporation characteristics of galena concentrate(ii) reduction of cylindrical pellets of galena under various experimental conditions.

In this chapter, brief drescriptions of materials employed in the investigation, experimental set up and experimental procedure are presented.

Materials:-

4. I

(A) Galena concentrate: The galena concentrate was procured from Hindusthan Zinc Limited, Udaypur. The chemical composition of the concentrate is given in Table (4.1).

TABLE 4.1 :- Chemical Composition of the concentrate.

Constituent	wt%
Pb	56.7
Fe	2.1
Zn	7.6
SiO ₂	6.0
S	15.37

To verify the phases present in the concentrate, X-ray analysis was carried out and the presence of PbS, ZnS, SiO_O was confirmed.

(B) Lime: Commercial grade lime having particle size -120 mesh was employed for the present study. This lime was obtained from Satana mines , M.P.

2 Experimental SetJup:-

Both evaporation and reduction studies were carried out using Thermogravimetric Analysis (TGA). The schematic diagram of the experimental set up is given in Fig. 4.1. It comprised of a Kanthal-A wire wound electric resistance vertical long tabe furnage, enclosing an inner diameter of 5cm fused Mullite tube which served as a reaction chamber. Both the inert and the reducing gases could be admitted through the gas inlet at the bottom of the furnace, and the out coming gases withdrawn from the top of the furnace. The top end of the reaction tube was fitted with a brass head stopper with O- ring which made this end of the reactor air tight. Provision was there to cool this brass head stopper by flowing cold water through a brass coil surrounding the brass head. A.Chromel alumel thermocouple, introduced from

Fig. 4.1

- A H2 gas cylinder
- n N₂ gas cylinder
- C, D Inhydrous CaCla
- Stop cock
- F Copper gauge furnace
- G Reaction Tube
- H Furnace
- I Sample Wolder
- J Samle
- M. L. Thermocouples
- i. que cutlet
- N Single you balance
- O 'emperature Controllsr
- F Cas inlet

the bottom of the furnace was used for controlling the temperature of the furnace. A steel wire mesh container served as the sample holder. This could be suspended freely into the reactor with the help of a canthal wire which passed through a hole in the brass head stopper. The other end of this wire was attached to a semi-automatic single pan metter balance. Furnace temperature could be held constant using an automatic Electromax controller. The efficiency of the controlling unit was found to be $\pm 2^{\circ}$ C. A constant temperature zone of about 6 cm length near the middle of the reaction tube was obtained. A gas purification train consisting of columns of anhydrous ${\rm CaCl}_2$ and a copper gauge furnace was designed. To measure the gas flow rates, capilary flow meters were employed.

43 Preparation of Pollets:-

Cylindrical pellets of 0.5 inch. diameter and length varying from .8-1.4 inch were used in the evaporation and reduction studies. The ratio of lime to galena (R) in these pellets was varied from 0 to 4. To make the pellets of various R values, required amounts of galena concente and lime were weighed accurately. The weight of the mixture was kept constant to about 5 gm. After thorough mixing of the two poweders, the powder mixture was pressed in 1/2 inch steel die at 20 Killo Newton pressure using a standard motor operated pressing unit.

The porosity of the pressed samples could be estimated using the values of the true density of the powder and the apparent density of the powder in the pellet. The former was determined using the specific gravity bottles and Kerosene as the liquid while the later was obtained from the weight and dimension of the compacted pellet. A sample calculation and the results of the density measurements are given in Appendix 1. Variation of porosity of pellets as a function of lime content is given is Table 4.2.

TABLE 4.2:- Porosity of pellets with various R valus.

R NO EMIL LAMPTYM	Porosity
0	10.84%
1	11.27%
2	12.56%
3	14.12%
4	16.91%

Experimental Procedure:-

Evaporation:

The evaporation experiments using compacted pellets of various compositions were carried out at various temperature and nitrogen flow rates. Experimental conditions employed in this study are tabulated in Table 4.3.

To study the evaporation at constant temperature, the copper gauge furnace and the reactor were gradually heated to the desired temperature. When the temperature was stabilized a pellet of known weight and porosity was kept into the sample holder and introduced into the reaction chamber but hold near the top end of the furnace tube. The brass head was carefully tightened and then the gas train and the reaction chamber were flushed with nitrogen. Once the reaction chamber was free from air, the .nitrogen gas flow rate was set at the desired flow rate value. After steady state, with respect to the gas flow rate was attained the pellet was lowered to the maximum temperature zone. Weight of the sample holder and the pellet was immediately measured and taken as the initial weight of the sample . A chromel-alumel thermocouple tip which was kept very near to the sample holder recorded the furnace temperature which was assumed to be the same as that of the pellet. The change in weight as function of time was recorded at regular interval of time with the help of the single pan balance. All experiments were conducted for 60 minutes after which the samples were

pulled up and cooled in nitrogen atmosphere before removing from the furnace.

A few experiments were repeated to check the reproducibility of the data and the variation in results was found to be within 2.0%

..46 Reduction:-

The reduction experiments were carried out in the same set up described above using almost the same procedure as in the case of evaporation studies. The only difference was that after flushing the furnace with nitrogen and introduction of the pellet to the furnace, the nitrogen gas was injected at a predetermined flow rate, for about 10 minutes after which nitrogen gas supply was switched off and the reducing gas was introduced at a predetermined flow rate. The reduction experiments were carried out for 60 minutes. Before taking out the pellet, the furnace chamber was again flushed with nitrogen to drive away unconsumed hydrogen. Then the pellet was slowly brought to the cooler part of the furnance and ultimately taken out for immediate transfer to despicator to cool it down to room temperature. Various experimental conditions which were employed in this part of the study are tabulated in Table 4.4

TABLE 4.3
Conditions of evaporation experiments

Temperature °C	Composition	Nitrogen Flow Rates C.C./ min.
		200
	R=O	400
		600
		200
	R=1	400
650		600
0,0		200
	R=2	400
		600
		200
	R=4	400
		600
munifordisms transferance inhibitions reclaimed distributions and for the constitution of problems distributed	t Other James and Salaman de Company and Company of Com	200
700	R=0	400
		600
		200
	R=1	400
	rrowskilantenskille steele deutsemmen op heppings kan gestels kan med skill de troubskille bestelste sogskalden skilgen.	600

Contd... TABLE 4.3
Conditions of evaporation experiments

Minute Language consistency spirit has find as in color Sept. Will be beginner or proper strain proper life constitution of the color Sept. Will be beginner or the color spirit and the color spirit		and the state of t
Temperature °C	Compositi on	Nitrogen Flow Rates C.C./min
tandental and the second secon	action registrated symmetry for the transformation for a state of the	200
	R=2	400
		600
		200
700	R=3	400
		600
		200
	R=4	400
-		600
		200
	R=0	400
		600
		20 0
7.50	R=1	400
7 50	,	600
		200
	R=2	400
	•	600

Contd... TABLE -4.3
Conditions of evaporation experiments

Temperature °C	Composition	Nitrogen Flow Rates C.C./min
Makangangata ing ngapangangangangangan di mangangangangangan di mangangangan di mangangangan di mangangangan di mangangangan di mangangangan di mangangan di mangangangan di mangangangan di mangangangan di mangangangan di mangangan di mangan Mangangan di mangangan di mangan	magazinin Mad Kalandin iyosin Af Millindir mad Laginin ili a tarif kamina kabini Amanin Amanin Ama	200
750	R=4	400
		600
		200
	R=0	400
		600
		200
	R=1	400
800		600
800		200
	R=2	400
		600
		200
	R=4	400
		600

Contd...TABLE-4.3

Conditions of evaporation experiments with pellet made from residue after leaching (10% HCl) of galena concentrate

Temperature °C	Composition	Nitrogen Flow Rates C.C./min.
700	R=0	400
700	R=1	400

TABLE - 4.4
Conditions of reduction experiments

Temperature °C	Composition	Hydrogen Flow Rate C.C./min.
600	R=0	300
		150
	R=O	*
		300
		150
	R=1	
6 1 1 1		300
650		150
	R=2	
		300
	•	1 50
	R=4	
		300
		150
	R=O	<i>-1</i>
700		300
		150
	R=1	
		300

Contd... TABLE -4.4
Conditions of reduction experiments

Temperature °C	Composition	Hydrogen Flow Rate C.C./min.
		150
	R=2	
700		300
,		1 50
	R=3	
		300
Security States and Security S		150
	R=0	
		300
7 50		150
	R=2	
		300
	R=O	15 0
800	R=1	1500
	,	

Contd... TABLE - 4.4

Condition of reduction experiments with pellet made from residue after leaching (10% HCl) of galena concentrate

Composition	Hydrogen Flow Rate C.C./min.
R=1	200

Various techniques were tried to directly measure the amount of lead present in the reduced samples. These included

- (i) Chemical analysis of reduced sample to separately analyse metallic Pb and residual PbS in the sample
- (ii) Melting of reduced sample in a vaccum sealed quartz capsule to separate Pb
- (iii) X-ray analysis of the reduced sample
- (iv) Estimation of residual sulfur

None of these technique however worked to satisfaction. The details of some of these techniques and the reason for their failure are given in Appendix 4 X-ray analysis, infact, was used satisfactorily for qualitative analysis.

CHAPTER -5

RESULT AND DISCUSSION

5.1 Kinetics of Vaporization of Galena in Nitrogen
Atmosphere:-

Vaporization of galena with and without lime was investigated at four different temperatures, namely 650°C, 700°C, 750°C, 800°C. At each temperature samples of different composition (R=0,1,2,4) were subjected to vaporization. Three different flow rates viz. 200 c.c/min, 400 c.c/min and 600 c.c/ min were employed. Experimental conditions which were used in this part of study have already been listed in Table (4.3).

The basic kinctic data consisted of weightloss of galena samples at regular interval of time. The % weight loss vs. time plots for various samples at these various experimental conditions are presented in Fig. 5.1 -5.4.

It can be seen from the figures that at lower temperatures (650° C, 700° C) all the % weight loss vs. time plots remain almost linear for all values of flow rate and lime content. At higher temperatures (750° C and 800° C) the plots remain almost linear for experiments where no lime was used , but with the addition of lime, the linear character

ot 650°C ON! Fly. O.1 at carious Mg Ran rates for peliate having to total limes to the ratios (R).

Fig. 5.2 That the of games that the out 700°C at the first two flows to gallene rolling (R).

FIG.5.3 Evaporation of galena concentrate at 75°C at various N2 flow rates for patiets having various time to galena ratios (R).

دا الله ول أواط

Fig. 5.4 Evaporation of gother concentrate at 800°C at various N2 flow rates for publists having writing time to patent ratios (R).

of these plots changed.

5.1.1 Effect of temperature: As expected, the amount of galena evaporated increased with increasing temperature.

The equilibrium vapor pressure of lead sulfide (Pce) can be computed from the standard free energy equation given below (34)

$$G^{O}(J) = -RT \ln Pce = 254596 + 15.51 T \log T + 8.23x10^{-3}T^{2}$$

- 229.12 T

The calculated Pce values at various temperatures of interest are tabulated in Table 5.1

TABLE 5.1 Equilibrium Vapor Pressure values for PbS at various Experimental Temperatures.

Temperature (oC)	Vapor Pressure
(00)	(atm)
650	5.76×10 ⁻⁶
700	2.89x10 ⁻⁵
750	1.229x10 ⁻⁴
800	4.54x10 ⁻⁴

It is evident from Table 5.1 that the equilibrium vapor pressure of PbS increases with temperature and hence vaporization.

5.1.2 Effect of Gas Flow Rate: In general, the vaporization process may be represented by the following reversible reaction,

PbS (s)
$$\longrightarrow$$
 PbS (g)

For the process to continue it is required that the gases produced be continuously removed from the pellet surface to the bulk of the surrounding gaseous phase. This involves the mass transfer of the gaseous species through the concentration boundary layer thickness and the pellet. The mass flow is inversely proportional to the boundary layer thickness which depends on the gas velocity. Decreased boundary layer thickness with increasing gas velocity (Volume flow rate) would result in faster rate of mass transfer and hence enhanced rate of vaporization.

Effect of gas flow rate on vaporization rate for pellets containing varying amount of lime is shown in Figs. 5.1 to 5.4. It may be seen that in general, the vaporization increases with increasing gas flow rate in all pellets containing lime but this effect is not that apparent in the case of pellets without lime.

5.1.3 Effect of Lime:-

The reason for adding lime to galena for the vaporization studies was to get some idea about the vaporization characteristics of the pellets of same compositions which were to be later used in the reduction studies. It is

evident from Fig. 5.1 to 5.4 that for the same conditions of temperature and gas flow rate the vaporization increases with increasing lime content. From the porosity measurements it was found that the addition of lime resulted in increased porosity of the pellets (Table 4.2). Lime could also disperse the galena particles throughout the matrix and thus prevent them from getting sintered during the reaction. Increased porosity of pellets and prevention of sintering results in larger exposed surface of the galena particles from which the vaporization would take place.

5.1.4 Evaluation of Rate Constant and Activation Energy of Vaporization:-

The rate constant of vaporization under nitrogen atmosphere ($k_{\rm v,N_2}$) was evaluated for each experiment using the relation

$$k_{v,N_2} = \frac{1}{W_{PbS}^0} \left(\frac{d \Delta W_{PbS}^0}{dt} \right)$$

=(Slope of %wt. loss vs. time plot)x
$$\mathbb{W}_{PbS}^{O}$$
100(5.1)

where Δ W^O_{PbS} is the weight loss in the interval of time t and W^O_{PbS} is the initial weight of galena in the sample. The amount of PbS present in the sample could be found out

for various compositions by using the following relations

for R=1
$$W_{PbS}^{o} = 0.5 W_{T}^{o}$$

R=2 $W_{PbS}^{o} = 0.33 W_{T}^{o}$
R=3 $W_{PbS}^{o} = 0.25 W_{T}^{o}$
R=4 $W_{PbS}^{o} = 0.22 W_{T}^{o}$

Where W^OT is the total weight of the sample. Slope in Eq. 5.1 represents a time average of the slope of % wt. loss vs. time plots in Fig. 5.1 to 5.4. The rate constant values for various experimental condition are tabulated in Table 5.2.

The rate constant data at various conditions would be used for calculating the activation energy values using Arrhenius type of plot. Log k_{v,N_2} vs. $\frac{1}{T}$ plot for different gas flow rates and R values are shown in Fig.5.5. Activation energy values were evaluated from the slope of the linear plot in this Figure.

$$E = - R \times Slope$$

Were R is the universal gas constant. Activation energy values as a function of gas flow rates and lime content are tabulated in Table 5.3.

It is evident from Table 5.3 that for a given flow rate there is not much variation in activation energy with variation in lime content. It is attributed to the

Fig. 5.5. Activation energy of vaporization of galena under various conditions.

TABLE -5.2 Rate constant values for vaporization under various experimental conditions

Temperature °C	. Composition	Flow rate c.c/min	kv, N ₂₁
galayerumennen elektrik demindeka terrik elektrika alak terrik elektrik elektrik elektrik elektrik elektrik el		200	3.744x10 ⁻⁴
	R=O	400	4.26x10 ⁻⁴
		600	4.77x10 ⁻⁴
		200	1,334x10 ⁻³
	R= 1 .	400	1.595x10 ⁻³
650		600	1.740x10 ⁻³
650		200	7.810x10 ⁻⁴
	R=2	400	1.084x10 ⁻³
		600	1.189x10 ⁻³
		200	6.120x10 ⁻⁴
	R=4	400	7.164x10 ⁻⁴
		600	8.517x10 ⁻⁴
700	nderstellt som et delskalaret ett ett ett som kantilet som ett	200	9.916×10 ⁻⁴
	R=O	400	1.652x10 ⁻³
		600	1.817x10 ⁻³

Contd.... TABLE -5.2

Temperature ^O C	Composition	Flow rate c.c/min	k _{v,N₂}
		200	2.019x10 ⁻³
	R=1	400	2.369x10 ⁻³
		600	2.736x10 ⁻³
		200	1,813x10 ⁻³
700	R=2	400	1.948x10 ⁻³
		600	1.997x10 ⁻³
		200	9.475x10 ⁻⁴
	R=4	400	1.014x10 ⁻³
		600	1.159x10 ⁻³
maken teresen seen mehr varir var menden seen seen seen seen seen seen seen	acica ili - Dell'anni di californi di su calenda di di di di di supercenta californi di di di di di di di di d	200	1,591x10 ⁻³
	R=O	400	2.106x10 ⁻³
		600	2.182x10 ⁻³
		200	5.540x10 ⁻³
	R=1	400	6.216x10 ⁻³
750		600	6.574x10 ⁻³
		200	5.072x10 ⁻³
	R=2	400	6.149x10 ⁻³
		600	7.331x10 ⁻³
			Contd

Contd... TABLE-5.2

Temperature °C	Composition	Flow rate c.c/min	k _{v,N21}
		200	3.549x10 ⁻³
750	R=4	400	4.574x10 ⁻³
		600	4.654x10 ⁻³
Appearance and progression and community and appearance and appear	and and a second and an anti-control of the second and an anti-control of the second and an anti-control of the	2)0	4.222x10 ⁻³
	R=O	400	4.228x10 ⁻³
		600	8.101x10 ⁻³
		200	1.107x10 ⁻⁹
	R=1	400	1.257x10 ⁻²
		600	1.371x10 ⁻²
800		200	9.258x10 ⁻³
	R=2	400	9.020x10 ⁻³
,		600	1.017x10 ⁻²
		200 ,	6.671x10 ⁻³
	R=4	400	7.562x10 ⁻³
		600	3.053x10 ⁻³

TABLE 5.3

Activation energy of vaporization of galena having various lime to galena ratio (R) at various nitrogen flow rate.

Flow rate c.c./min.	Composition	Activation energy K.cal/mole
200	R = 0	30. 8
	R = 1	30.42
	R = 2	29.87
	R = 4	29.63
400	R = 0	26.3
	R = 1	26.12
	$\mathbb{R} = 2$	25.82
	R = 4	25.75
600	R = 0	22.85
	R = 1	22.42
	R = 2	22.01

fact that the addition of lime does not alter the basic mechanism of vaporization. The enhanced rate of vaporization with increased lime content is due to the increased exposed surface of the galena particles which is reflected in the increased value of the prexponential terms in the Arrhenius equation.

Reduction of activation energy with increased gas flow rate (Table 5.3) indicates that the flushing of vapor by the flowing gas reduces the resistance to the mass transfer through the boundary layer.

The activation energy values obtained in our study, however are somewhat lower than those obtained by EL-Rahaiby and Rao (34) who reported activation energy of vaporization of lead sulfide as 52 K. Cal/mole. The apparent discrepancy in these values may be due to the fact that the starting material in the present study was galena and not pure lead sulfide. Further in the case of Rahaiby and Rao, the vaporization was only from one surface which was enveloped by a stagnant layer of an inert gas unlike ours where the vaporization was from the entire surface of the pellet exposed to a flowing gas.

5.2 Kinetics of Reduction of Galena in Hydrogen.

Reduction of galena with and without lime was investigated at four different temperatures. At each temperature samples of different compositions and flow rates of $^{\rm H}_2$ were employed. All the experimental conditions used in this part of study have already been listed in Table 4.4.

The basic kinetic data consisted of weight loss of galena at regular interval of time. It may be recognized that the total weight loss as measured by using the Thermograve-matric Analysis, would be due to the following two factors

- (1) The weight loss due to vaporization in flowing hydrogen gas
- (ii) The weight loss due to the reduction of lead sulfide with hydrogen

Therefore to be able to estimate the weight loss due to the reduction only it is required to estimate the weight loss due to vaporization. As a first approximation it was assumed that the vaporization characteristics of galena in hydrogen would be identical to those of in nitrogen. Therefore, using the weight loss data obtained in the previous section of this chapter, an attempt was made to estimate the weight loss due to the reduction reaction only.

A typical plot superimposing weight loss due to the vaporization of galena in nitrogen on the plot of total weight loss in hydrogen as a function of lime is shown in Fig. 5.6. Using such plots for all our experiments it could be possible to estimate the percent weight loss due to reduction only. Since in each of the reduction experiments, nitrogen was injected for 10 minutes before the hydrogen flow started, the weight of the sample after 10 minutes was taken as the starting weight in all the computations.

Results of the calculations are presented in Appendix (2). Percent weight loss due to the reduction versus time plots at various temperatures for different compositions of the starting galena pellets (R=0,1,2,4) are shown in Figs. 5.7 to 5.9.

5.2.1 Effect of Flow Rate: _

The fact that the extent of reduction was higher at higher flow rate of the reducing gas at a given temperature for the same composition of the galena lime samples, is evident from Fig. 5.7 to 5.9. It is well known that increasing gas flow rate decreases the resistance to mass transfer through the gas film surrounding the particle. If the mass transfer through the gas film is the rate controlling step, which indeed is at low gas flow rates,

Typical plot to calculate reduction of, loss of section of a seaporation plot. 1 7 2 ° 6 °

Fig. 5.7. Toright loss of them at 650°C temperature at various H2 flow rates for collects having different compositions.

inight loss of minus at 7 mil to persture t verious is flow result in pallets having disferent compositions.

Temperature = 800°C Hy flow = 150 c.c./min

Fig. 5.9 Weight loss of walena it 750 b 100°C remperature at various 12 flow rates for a llets having different compositions.

the rate of reaction would increase with increasing gas flow rate. In our case, since low gas flow rates were involved, we would expect the mass transfer through the gas film to be the rate controlling step. Hence, the extent of reduction would be higher at a higher gas flow rate.

5.2.2 Effect of Temperature:

No clear-cut effect of temperature is observed in Fig. 5.7 to 5.9. Reduction tends to increase with temperature upto about 750°C and then it decreases. Percent weight loss estimated at 800°C is lower than those measured at lowed temperatures. There are two possible reasons for the observation.

- (i) High temperature leads to sintering of lead sulphide particles which results in lowering of surface area of the particles.
- (ii) Lead sulphide reacts with lime to form a complex compound which has a lower reducibility.

However, the exact reason could not be ascertained.

5.2.3 Effect of lime:

As it has been shown in chapter 3, also, even thermodynamically, reduction of PbS with hydrogen is enhanced with lime. All our experimental observations

Figs. 5.7 to 5.9 also support this fact. At all temperatures the rate of reduction increases with increasing lime constant. These are, however, a few interesting observations

- (i) The plots corresponding to R=0 and R=1 are some what close to each other. Whereas the gap between plots for R=1 and R=2 is comparatively larger.
- (ii) The plots corresponding to R=2 and R=3 or 4 tend to overlap, except in the plot at $650^{\circ}C$ and 150 c.c / min. flow rate .

It is possible to explain some of the observations if one analyses the reduction mechanism carefully. In the case of galena samples without lime, the reduction of lead sulfide will proceed according to the following reaction

PbS +
$$H_2$$
 Pb + H_2 S ...(5a)

whereas in case of galena samples containing lime, the reaction will be

PbS +
$$H_2$$
+CaO \longrightarrow Pb +CaS + H_2 O(5b)

It is to be noted that in the case of the galena the weight loss on reduction of one mole of galena will correspond to the loss of one atom of sulfur whereas in the case of latter it would correspond to the loss of one atom of oxygen. It is thus obvious that for the same extent of reaction, the lime

free galena samples would exhibit exactly twice the weight loss in galena samples containing lime.

To verify that the reduction of galena was indeed through the above two reactions, a simple test was carried out. Outgoing gases from the reactor, after cooling, were passed through CdCl₂ solution. It was observed that in the case of lime free galena sample, thick black precipitate of CdS was formed as a result of the following reaction.

$$CdCl_2 + H_2S \longrightarrow CdS + 2HC1$$
 ...(5g)

In the case of galena samples with R=1,also the black precipitate was observed but its amount was much less. For galena samples with R>2 no precipitate was observed, clearly indicating that all the released sulfur was taken up by lime to form CdS and, therefore the reduction of galena in presence of lime took place according to the Reaction (5b). In the case with R= 1 it seems some galena was directly reduced, though the major fraction was reduced by the Reaction (5b). These observations have also been substantiated by X-ray analysis of the reduced samples presented in Appendix(5). In the case of samples with R= O, the phase which could easily be identified included galena, lead, whereas in the case of lime containing samples calcium sulfide was present in substantial quantities.

It is expected that there would be an optimum amount of lime which would correspond to the amount which is sufficient to scavenge the total sulfur that could be released due to the reduction reaction. Excess lime therefore, should not have any significant effect on the reduction reaction. Minor effects, however, may be there due to minor differences in physical characteristics of the samples having varying amount of lime.

There was however, one major flaw with the above analysis. In many cases the percentage weight loss due to reduction exceeded the theoretical percent weight loss required for 100% reduction of lead sulfide. There could be two reasons for this discrepancy.

- (i) Some of the lead that is formed as a result of the reduction reaction is also vaporized. It may be mentioned that the melting point of lead is only 327°C and that its vapor pressure at temperature employed in this investigation would be high enough to cause observable weight loss.
- (ii) The assumption that the vaporization characteristics of lead sulfide in hydrogen are identical to those in nitrogen is not valid.

As it was not possible to exclusively measure the vaporization of galena in hydrogen (without causing reduction), an indirect method was used to estimate the vaporization rate in hydrogen. The method is described below.

5.2.4 Estimation of Vaporization Rate of Galena in Hydrogen:

It is assumed that the rate of vaporization would be equal to the rate of transfer of vapors from the pellet surface to the surrounding gas bulk. If $k_{\rm H_2}$ is the mass transfer coefficient for galena vapor to the bulk of surrounding hydrogen gas, rate of mass transfer would be given by

hydrogen gas, rate of mass transfer would be given by
$$W_{H_2} = \frac{\mathbf{k}_{H_2} \cdot A \cdot Pce}{RT} \qquad \dots (5.2)$$

where Pce is the partial pressure of galena at the surface of the particle which is assumed to be equal to the equilibrium partial pressure, A is the surface area of the particle and R is the universal gas constant. For the sake of simplicity, the pellet was assumed to be a sphere of diameter d whose surface area was equivalent to that of the cylindrical pellet. It was further assumed that the effect of porosity of the pellet could be quantified using an emperical parameter & such that

$$W_{H_2} = \frac{R_{H_2} \cdot \pi \, d^2 \cdot \epsilon \, Pce}{RT} \qquad \dots (5.3)$$

There are however two unknown parameters (R_{H_2} and ϵ) in the above equation. The mass transfer coefficient R_{H_2} could be estimated using the Ranz-Marshall's correlation (39)

$$Sh = 2 + 0.6 (Re)^{1/2} (Sc)^{1/3} \dots (5.4)$$

where Sh is Scherwood's no. (Rd D

Re is Reynold's no. $(\frac{e_{vd}}{\mu})$

and Sc Schmidt's no. = $\frac{\mu}{\rho_D}$

 $\rho =$ density of the gas, μ is viscosity, D is binary diffusivity, d is the diameter of the sphere and v is the velocity of gas flow.

To estimate €, the vaporization data of galena in nitrogen was used. It was assumed that € depended only on the physical structur of the pellet and therefore, as long as the physical structure remains constant € will also be remained constant and that it is independent of the surrounding gaseous medium.

For minitrogen the rate of mass transfer will be

$$W_{N_2} = \frac{k_{N_2}}{RT}$$
 RT $\pi d^2 Pce$...(5.5)

where W_{N_2} is the experimentally measured rates, (Table 5.4). It would be possible to estimate \pm using Equn. (5.5). These values were estimated for different R values and temperatures and are tabulated in Table (5.5). The values of mass transfer coefficients K_{N_2} and K_{H_2} obtained using Equn (5.4) under various experimental conditions are given in Table (5.6). Using these values it was possible to estimate the vaporization rates of galena in hydrogen. The estimated values are reported in Table (5.5).

TABLE -5.4

Observed mass transfer rate of galena under various experimental conditions.

el uri v phi, phi qu'in pinnetina e arrangement don dimprise	des de la companya de	operator in spirator de la companiente	Z	spiragraph habe superciples date that brooks uperciples problems to	
Temp. o _C	Flow c.c/min.	R=0	R=1	R=2	R=4
	200	1.394×10 ⁻⁷	2.755x10 ⁻⁷	8.498×10 ⁻⁸	4.012x10 ⁻⁸
650	400	1.580x10 ⁻⁷	3.282×10 ⁻⁷	1.204×10 ⁻⁷	4.966x10 ⁻⁸
	009	1.761x10 ⁻⁷	3.575x10"7	1.314×10-7	5.759×10 ⁻⁸
	200	3.669x10 ⁻⁷	3.436x10-7	2.454×10^{-7}	6.515×10-8
700	400	6,198×10 ⁻⁷	4.017×10 ⁻⁷	2.643x10 ⁻⁷	6.978×10 ⁻⁸
	009	6.387x10 ⁻⁷	4.600x10 ⁻⁷	2.743x10"7	7.799x10 ⁻⁸
	200	3.890x10 ⁷	1,002×10 ⁻⁶	5.844x10"7	2,532×10 ⁻⁷
750	400	4.635x10 ⁷	1.122×10-6	7.055x10 ⁻⁷	3.037x10 ⁻⁷
	900	4.607x10 ⁻⁷	1.188x10 ⁻⁶	8.023x10 ⁻⁷	2.902x10 ⁻⁷
	200	1.552x10 ⁻⁶	1.940x10 ⁻⁶	1,004×10-6	4.559x10-7
800	400	1.415x10 ⁻⁶	2.231x10 ⁻⁶	9.161×10 ⁻⁷	5.278x10 ⁻⁷
	900	4.898x10 ⁻⁶	2.493x10 ⁻⁶	1.076x10 ⁻⁶	5.679x10 ⁻⁷

Observed mass transfer rate of galena and ← under various experimental conditions.

Temperature °C	Composition	$^{ m W}_{ m H_2}$ moles/sec.	£
Buddenhaum Hammidselb hand to 100 - 1900, Vietel bedestalmenhausbar, 1804-180	R=0	6.103x10 ⁻⁷	396.2
650	R=1	1.190x10 ⁻⁶	584.06
	R=2	2.088x10 ⁻⁷	9 6. 88
	R=4	1.726x10 ⁻⁷	73.57
	R=0	1.61x10 ⁻⁶	200.15
700	R=1	1.488x10 ⁻⁶	139.71
700	R=2	1.061x10 ⁻⁶	94.22
	R=4	2.806x10 ⁻⁷	22.96
	R=O	1.73x10 ⁻⁶	48,54
75C	R=2	2.56x10 ⁻⁶	51.397
300	R=O	6.87x10-6	50.73
	R=1	6.74x10 ⁻⁶	37.63

TABLE -5.6

Calculated mass transfer co-efficient for hydrogen ($\mbox{\it k}_{\rm H_2} \mbox{\it)}$ and nitrogen ($\mbox{\it k}_{\rm N_2} \mbox{\it)}$ for different temperatures and compositions.

Temperature OC	Composition	k _{H2}	R _{N2}
BOLLING CHARLES (1984 CHARLES (1984 CHARLES GRANIES GRANIES CHARLES	R=0	3.3611	0.7676
650	R=1	2.5892	0.5993
	R=2	2.4577	0.5705
	R=4	2.2784	0.5311
	R=O	3.6916	0.8404
	R=1	2,0425	0.6555
700	R=2	2.6980	0.6238
	R=4	2.501	0.5807
	R=O	4.0336	0.9071
	R=1	3.1050	0.7970
750	R=2	2.9466	0.6728
	R=4	2.7312	0.6261
	R=O	4.3580	0.9845
200	R=1	3.354	0.7667
800	R=2	3.1825	0.7295
	R=4	2.949	0.6787

For $\mathbf{k}_{\mathrm{H}_2}$ H_2 flow rate = 150 c.c/min. For $\mathbf{k}_{\mathrm{N}_2}$, N_2 flow rate = 200 c.c/min.

CHAPTER -6

CONCLUSIONS

Vaporization

- The amount of galena evaporated, increased with increase of temperature.
- 2. As vaporization involved mass transfer through the boundary layer, increase in gass flow rate resulted in higher weight loss due to fall in boundary layer resistance with higher flow rate.
- 3. Addition of lime resulted in increase of porosity and galena particles got dispersed, which prevented sintering of galena particle. This gave rise to higher weight loss due to vaporization with increase of lime content.
- 4. Plots of $\log K_{\mathbf{v},N_2}$ vs 1/T to calculate activation energy, parallel charascteristics at any flow rate with different lime content, indicating that addition of lime did not change the basic mechanism of vaporization.

Reduction

- 1. The extent of reduction was higher at higher flow rate of reducing gas at a given temperature for the same composition of the galena lime samples. It was due to fall in boundary layer resistance with increase in flow rate.
- 2. Reduction increased with increase in temperature upto 750°C but at 800°C it decreased. It is attributed to the sintering of galena particles at higher temperatures. Formation of some less voletile complex compound may also contribute to reduction in total weight loss at higher temperature. But this could not be verified.
- 3. Lime acted as a scavanging reagent and enhanced the rate of reduction of galena.

APPENDIX - I

VAPORIZATION DATA AT 650°C FOR VARIOUS COMPOSITIONS

AND NITROGEN FLOW RATES.

AND SHIRE SHIPE OF IT AND EXPLOSED WITH THE AND EXPLORED HAND	met ersten kunn. sonden stellede en neuer, som 'n sold d'ann. 'n	% Wt.Loss					
Flow Rate (c.c./min)	Time (min)	Residence a superior and analysis.	R-1	R=2	R=4		
	5	3,16	3.46	3,53	4.14		
	15	4.34	4.23	4.14	6.72		
200	30	4.44	4.57	4.84	7,76		
	45	4.62	5.21	5.60	8.78		
	60	4.67	5.90	6.36	9.63		
Mil Flamedouth is raff (rapr.) amountment code statut and statebul parts	agail sigger places (see secret see sees see sees	3 , 83	3.39	3,73	5.85		
400	15	4.29	4.12	4.74	6.94		
	30	4.52	4.86	5.59	8.16		
	45	4.62	5.82	6.60	9.36		
	60	4.69	6.53	7,51	10.35		
E Japan's Microsoft Profiles/Additionations of the Additional Conference of the State of Stat	5	да жарынанын , туркы жаны цыятаны т. шилланын ы	3.68	3,75	6.28		
	15	4.21	4.24	4.47	7.10		
600	30	4.43	5,10	5.72	8.60		
	45	4,53	6.09	6.85	9,88		
	60	4.55	6.93	8.01	11.09		
			ng ngayag agazandandak sasa ku dhudh		, , , , , , , , , , , , , , , , , , ,		

Contd...

Contd.. APPENDIX -I

VAPORIZATION DATA AT 700°C FOR VARIOUS COMPOSITIONS
AN. NITROGEN FLOW RATES.

Flow Rate (c.c./min)	Time (min)	hermania annia comus an R=0	% Wt. I R=I	loss R=2	mention of the second s
passans, spart a net or remunities trape - over trads, meditical is of Al	5	3.91	3.43	3 , 45	3.79
	15	4.05	3,92	4.17	4.77
200	30	4.37	5.51	5.12	6.19
	45	4.63	6.98	6.88	7.39
	60	4.78	8.20	8,18	8,52
he jugado ann ar vario llabato de los populos presentir france e no de arrenopaciono	and branch supplies and the passes and that was closely better and to	ministrational desiration and the state of t	n, mentankanna sadar-makin, arteraksisan dakadak	ing 1975 ka tupangka ng pikurapina ning bahapi banadhan digan nadinan	
	5	4.06	3,71	3,53	3.83
	15	4.29	4.11	4.80	4.84
400	30	4,45	5.67	5.94	6.23
	45	4.68	7.13	7.14	7.54
	67	4.85	8.46	8,30	8.84
والمستقدم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمستقدمة	de europeressione 2 hebre genrologiskus i et iur wielder hett waste hand	acusines (1990) - Japan Chemico II della delle Plucheri (1994)	asseria, issae vassaeriaa taerinesses saaskuutsaaria saaskuutsaaria saaskuutsaaria saaskuutsaaria saaskuutsaar	erikalatan prospir (7 204 M., 1914 - S. Salissi, 1984-2002) (S. Salissi, 1984)	area aneagagea. Companya aneaga a
	5	4.08	4.08	4.07	3.97
	15	4.85	4.92	5.05	5.75
600	30	5.50	6.36	6,67	6.84
	45	5,61	8.74	7.97	8.84
	60	5.73	9.63	9.28	10.23
National Records 1 Behaviories condensation of a service condensation of the Section 10.00 Section 1	na frank (1257 - Amerika de Santa de S	an transisti alan da anguni kitika dikan kitinga a anguni kitinga a anguni kitinga kitinga kitinga kitinga kit	ON THE RESERVE AND THE PROPERTY AND THE PROPERTY AND		

Contd...

Contd... APPENDIX-I
VAPORIZATION DATA AT 750°C FOR VARIOUS COMPOSITIONS
AND NITROGEN FLOW RATES.

CONTROL PROVIDE A THE CONTROL OF THE REST, SOMEON	and the state that the state of	AMAGEMIA LEMPOTEMBET " BAT THERTONIONTHE LINEAR BAT IL IPA. DON NOTICE THE MOTOR PROMITE AND THE	% Wt. Los	S	.m. Albahar tukungka labungkan paga labungkan paga paga paga paga paga paga paga pa
Flow Rate (c.c/min)	Time (min)	R=0	R=1	R=2	R=4
	5	3.92	3.93	5.09	5.94
	15	4.13	6.66	9.30	10.64
200	30	4.24	10.14	14.51	16.51
	45	4.36	12.82	18.82	21.28
	60	4.56	13.03	22.15	25.34
gregomer / west, published and " with 1 size 5 sizes. Humit 15 sizes and	kudum erine timamis sistemadam kurumna, neuna basi sadatnam E-3	an commencement security research in	ensemble se service	6 , 20	6.52
400	15	4.40	8.03	11.83	12.42
	30	4.93	12.16	18,07	17.89
	45	5.07	15.06	22.38	24.10
	60	5,35	16.99	25.18	27.66
Mildelingkon skilmninger avamengar napatrumiter ibir kiluahistochi	5	4,72	4.63	7.58	10.04
	15	4.97	8.75	13.95	15,13
600	30	5.19	13.24	20.82	21.60
	45	5.44	16.40	25,31	26.19
	60	5.57	18.67	28.31	29.11
					agenaturaenska for managenska saktore enska nysjek krigisjer iz saktor 1960

Contd...

Contd... APPENDIX-I
VAPORIZATION DATA AT 800°C FOR VARIOUS COMPOSITIONS
AND NITROGEN FLOW RATES.

B 1800001. Transferrenderenderender anterioriet, dass i Frenchisch, sydfaste für die die b	art om Vedfildriggefrageralgebom ar vänes deel 1942 i 342 i 342	nderket der eine eine eine eine eine eine eine ei	%Wt.	Loss	
Flow Rate (c.c/min)	Time (min)	R=O		R=2	R=4
	5	3.81	5.65	7.78	7.67
	15	4.17	11.84	15.88	17.46
200	30	4.34	17.55	23.55	26.38
	45	5.17	20,69	27.25	31.06
	60	5.63	22,49	27.89	32,08
replacement along their states of the states	nerstelle estate per personer i personer de restate e errei in hall den personer	and in the first transfer of the second section of the section of the second section of the section of the second section of the section of t	THE NUMBER OF STREET STREET, STREET STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, ST	" Produkt na politicka, jed kristiski fariganski kaj konfliktor (jedinski konfliktor (jedinski konfliktor) (i.	neglensstyldt i die 'n ystossolensstylentskiethologenyrydischiefertus
	5	3.86	5.83	8.89	9.52
	15	4.53	12.48	17.81	19.60
400	30	4.98	18.58	24.89	28.74
	45	5.36	21.73	27.28	31.54
	60	5.74	22.56	27.93	32,30
at the tax about the first transfer designations have transfered.	or namenicularly promonouniculary, admirer assis incumbes socialism estat	4.23	6.84	9,47	10.51
	15	4.64	14.29	18.87	20.81
500	30	5.07	20.07	26.02	29.04
	45	5.78	22,37	28.15	31.91
	60	6.52	25,11	28.93	32.53

AFPENDIX -2
WEIGHT LOSS DATA FOR REDUCTION UNDER VARIOUS EXPERIMENTAL
CONDITIONS

Temperature	Flow	Time	a new regression committee and the	% 1	Wt loss		
C	rate c.c/m	min. in	R=O	P=1	R=2	R=4	R=3
Marie publicación son a ser orden engines una manda de servicio de	etimetic _{sus} microsphine [©] methodrometicistes i de	5	0.02	0.02	0.2	0.6	
		15	2.06	2,60	2.76	3.49	
	150	. 30	4.02	5.23	6.11	6.53	
		45	5.23	6.83	7,•65	9.12	
		60	5.78	7.96	8,70	11.33	
650		5	2.14	2,36	2.65	2.61	
		15	5.18	5.27	7.29	7.39	
	300	30	6.99	7.80	13.80	14.75	
		45	7.46	9. 2	18.5	19.87	
		60	9.23	11.40	20.85	21.45	
		5	0.04	0.05	2.61		3.07
		15	2.76	3.2 1	5.46	•	5.93
	150	30	4.36	6.55	10.11	10	O.92
		45	5.37	7.73	11.85	1:	2.58
		60	5.89	10.43	12.39	1	2.95
700		5	1.58	3.12	3.62	;	3.79
		15	5.48	7.26	10.29	1	0.5
	300	30	7.29	12.92	15.87	1	9.97
		45	8.22	14.21	19.23	2	2.23
		60	9.35	15.67	21.27	2	2.23
						Contd	•

Contd... APPENDIX
WEIGHT LOSS DATA FOR REDUCTION UNDER VARIOUS EXPERIMENTAL CONDITIONS.

Temperature	Flow	Time			
°C	rate c.c/m	min. in	R=0	R=1	R=2
No. (M. College Santa and provided to the Fundamental and College Santa and College		5	0.6		3.01
		15	3,5		6.00
	150	30	5.1		10.8
		45	5.79		12.37
		60	6.34		14.2
750		5	3.3		6.3
	300	15	5.67		11.42
		30	7.82		16.1
		45	8.99		19.74
		60).98		21.93
		5	0.3	1.15	•
		15	2.52	4.73	
800	150	30	3.47	6.21	
		45	4.92	8.25	
		6'0	5.21	11.63	

APPENDIX -3

DETERMINATION OF POROSITY

Porosity of a compact is defined as the ratio between volume of the pores and the volume of the compact. Mathematically it can be expressed as

Porosity = 1- Apparent density of compact True density of the powder

The apparent density of the compact was determined by weighing the specimen and volume of the pellet from its average length.

True density of the powder was determined by using a specific gravity bottle. Water was used as a liquid of known density. The following procedure was adopted for determining the true density.

Weight of the bottle = W_b Weight of the bottle + sample = W_1 Weight of the bottle + sample + water = W_2 Weight of the bottle + water = W_3 Density of water at 30°C = 0.9956 gm/c.c. Density of the powder = $\frac{W_1 - W_b}{(W_3 - W_b) - (W_2 - W_b)} \times 0.9956$.

APPENDIX -4

ATTEMPTS TO ESTIMATE METALLIC LEAD IN REDUCED SAMPLE

Various attempts were made to analyse the amount of metallization of galena after reduction under different experimental conditions. Some of them are described below

(a) Leaching and Melting:- Lead being a low melting point element (327°C), it was expected that lead might come out in the form of droplet when heated to a relatively high temperature. The presence of lime, CaS, iron compound and zinc compound might effect the droplet formation of lead. So the reduced samples were first powdered and then leached with 10% HC1. The filtrate was tested chemically to confirm the presence of Ca,Fe,Zn ions. Some leaching experiments with 10% HC1 was carried out with Pb,Pb+PbS, Pb+PbS+CaO mixtures to have quantitative idea about the dissolution characteristics of Pb,PbS and CaO. It was found that around 5% Pb, 22-25% PbS and almost 100% CaO got dissolved in 10% HC1.

The residue of the reduced sample after leaching over the filter paper was then dried up and was carefully transferred to a 1.27 cm diameter and 4 cm long quartz tube. The tube

containing the residue was evacuated to 10^{-4} atmosphere pressure and sealed. The idea of evacuation was to confirm that lead, that was formed, should not get oxidized by reacting with 0_2 of air. This evacuated capsule was heated at a temperature of 700° C.

Unfortunately most of the capsulesgot burst inside the furnace during heating. It may be due to increase of gas pressure of some unidentified species.

Another attempt, made to separate out the formed lead, mixed with unreacted galena, was by heating the leached residue in nitrogen and slightly reducing atmosphere at a temperature of 700°C by taking the sample in crucible. But this experiment came out with no positive result.

(b) X- ray Analysis of the Reduced Sample:— To study the reaction mode during reduction of samples with and without lime, powder of reduced samples were analysed by X- ray diffraction method. It was found that for sample where no lime was used contain lead and galena after reduction whereas sample where lime was used confirmed the presence of calcium sulfide, calcium oxide, lead and galena. This shows that when no lime was used the reduction took place in direct manner as indicated in Reaction 5a and in presence of lime, the scavenged reaction took place according to the Reaction 5b.

The X- ray analysis data for two samples are presented in Appendix 5.

(c) Estimation of Residual Sulfur:— In the partially reduced sample a part of the galena remained unreacted. So if the amount of sulfur present in the sample after reduction could be estimated, % desulfurization could easily be calculated from the initial sulfur content of galena. Thus an affort was made to liberate the sulfur from the sample by reacting with HCl according to the following reaction

$$PbS + 2HC1 = PbC1_2 + H_2S$$

and liberated $\rm H_2S$ was tried to be precipitated as a sulfide compound like CdS by reacting with CdCl₂ solution. But it was found that the dissolution of galena in HCl was incomplete and the liberation of $\rm H_2S$ w 3 partial.

APPENDIX -5

RESULT OF X-RAY ANALYSIS

SAMPLE: REDUCED PELLET WITHOUT LIME AT TEMPERATURE 700°C AND HYDROGEN FLOW RATE 300 c.c./min.(COPPER TARGET)

20	Intensity	d	Standard Value	Phase
26.0	84*	3.4241*	3.429*	PbS
28,55		3,1238		
30.1	100*	2.9664*	2.969*	PbS
31.3	100	2.8553	2.855	Pb
32.3		2.7692		
35.8		2.5060		
36.3	50	2.475		Pb
39.8		2.2629		
43.1	57*	2.0998*	2.099*	PbS
47.8		1.9012		
51.1	35*	1.7859*	1.790*	PbS
52.3	31	1.7477	1.75	Pb
53.4	16*	1.7128*	1.714*	PbS
56,35		1.6313	•	
62.6	10*	1.4826*	1.484*	PbS

^{*} Represent values for galena.

Contd..

Contd....APPENDIX -5

SAMPLE: RESUCED PELLET WITH R=1 AT TEMPERATURE 650°C

AND HYDROGEN FLOW RATE 300 c.c/min. (COPPER TARGET).

29	Intensity	d	Standred Value	Phase
26.05	84*	3.4176*	3,429*	PbS
27.1		3.2875		
28.08		3.1750		
30.1	100*	2.9664*	2.969*	PbS
31.3	100	2.8553	2.855	Pb
31.5	100°	2.8370	2.846°	CaS
32.3	34 ^x	2.769 ^x	2.778 ^X	CaO
36.35	50	2,4694	2.475	Pb
37.3	100	2.4047 ^X	2.405 ^X	CaO
43.08	57*	2.0979*	2.099*	PbS
44.6	70°	2.0299°	2.013°	CaS
47.55		1.9106		
51.0	35*	1.7892*	1.790*	PbS
52.3	31	1.748	1.750	Pb
53.4	16*	1.7143*	1.714*	PbS
53.7	45 ^X	1.705 ^X	1.701 ^X	CaO
6i.44		1.5078		
62.15	32	1.4923	1.493	Pb
62.49	10*	1.4850*	1.4826*	PbS
			Co	ontd

Contd.. APPENDIX -5

20	Intensity	d 	Standred Value	Phase
63		1.4742	,	
64.3	10 ^x	1.447 X	1.451 ^x	CaO
65.5	10 ⁰	1.4232°	1.4238°	CaS

^{*-}Represent values for galena

x-Represent values for calcium oxide

o-Represent values for calcium sulfide.

REFERENCES

- Tokiaki Tanka, Hideo Shimamura and Kyosuke-Jibiki,
 Zeitschrift fur Physikalische Chemic Neue Floge, 3
 1968, P 133.
- 2. F. Habasi and R. Dugdale, Met. Trans, 4, 1973, P 1865
- 3. F. Habasi and R. Dugdale, and Nagamori, Metall. 28,1974, P 1051
- 4. F. Habasi, Min. Mag. 133, 1975, P 171
- 5. F. Habasi and B .I. Yostos, Journal of Metals. 29,1977,
 P 11
- T.R. Mankhand, G. Singh and P.M. Prasad, Trans. I.I.M,
 31 (3), 1978, P 194
- 7. F.P. Haver and M.N. Wong, Min. Engg. 24 (6),1972, P 52.
- 8. R.W.Rartlett and H.F Huang, JOM, 25 (12), 1973, P 28
- 9. A.A. Gavrilova and U.S. Altschuler, Gazov. Protessy,
 Poluch. Energ. Technol Gazov. Akad. Nauk. SSSR, Inst.
 Goryuch. ISKOP, 1967,91, C.A. 68, 1963, 8116 h.
- 10. F. Habashi and S.A. Mikhail, Thermochemical Acta, 18, 1977
 P 319.
- 11. T.R. Mankhand and P.M. Prasad, Trans. I.I.M, 32 (3), 1979, P 253
- 12. R.E. Cech and T.D. Tienann, Trans. Met. Soc. AIME, 245, 1969, P 1727

- 13. J.D. Ford and M.A. Fahim, Met. Trans. B, 6B, 1975, P 461
- 14. H LeBrusq., C.R. Acad. Sci. Session C, 273, 1971, P139
- 15. C. Wagner, Steelmaking, Chipman conference, P 19, M.I.T. Press, Cambridge 1962
- 16. H. Kay, TMS-AIME, Conf. on ''High temperature Refractory metals (Proceeding of TMS-AIME 1965) (ed.by) W.A. Krivsky, Gordon and Breach (New York) 1968, P 33
- 17. T.R. Mankhand and P.M. Prasad, IIM, 32 (4), 1979. P 348
- 18. I.D. Shah and P.L. Ruzzi, Met. Trans. 9B, 1978, P 247,
- 19. J.J. Byerley, G.L. Runpel and N. Takebe, Met. Trans, 3, 1972, P 2133
- 20. F.M. Backet, U.S. Pat. 835,052, 1906.
- 21. G.W. Sargent, U.S. Pat. 1,401,924,1921
- 22. T. Rosenqwist, JOM, 4, 1951, P 535
- 23. J.D. Batchelor, G.P. Jurran and E. Gorin, U.S. Pat, 2.824,047, 1960
- 24. J.D. Batchelor, G.P. Curran and E. Gorin, U.S. Pat, 2,927,063, 1960
- J.D. Batchelor, G.P. Curran and E. Gorin, U.S. Pat,
 950,229, 1960
- 26. J.D. Batchelor, G.P. Curran and E. Gorin, U.S. Pat., 2,950,230, 1960
- 27. J.D. Batchelor, G.P. Curran and E. Gorin, U.S. Pat, 2,950,231, 1960

- 28. J.D. Batchelor, G.P. Curran and E. Gorin, U.S. Pat, 3,101, 303, 1960
- 29. A .E. Torma and O.T. Inal, Journal of the less common metals, 64,1979, P 107
- 30. J.D. Spagola USBM , RI 6662, P 17
- 31. C.M. Hsico and A.W. Schlechten, JON, 4, Trans, AIME, 1952
 P 65
- 32. H.H. Kellog, The 1966 Extractive Metallurgy Lecture,
 Trans. AIME, 236, 1966, P 602
- 33. E.R. Cole, M. Drassel and M.M. Fine, USBM, RI 7926, 1974
- 34. S.K. EL-Rahaiby and Y.K. Rao, Met, Trans. 13B, 1982, P 653.
- 35. J.F. Elliot and M. Gleiser, Thermochemistry of Steel Making, Vol.1, Addison Wesley, London, 1960, P 258.
- 36. O. Kubaschewski, C.B. Alock, Metallurgical Thermochemistry, Vol. 24, 1979.
- 37. I. Barin and O. Knacke, Thermodynamic Properties of Inorganic Substances, Springer- Verlag, New York, 1973
- 38. I. Barin, O. Knacke and O. Kubaschewski, Supplement to Thermo-chemical Properties of Inorganic Substances, Springer-Verlag, New York, 1977.
- 39. K. Schwerdtfeger, Trans. Met. Soc. AIME, 236,1966, P 1152.

74		F	983981
549.32	Dat	e Slip	
22220			
B 2 22 Rs b	OOK IS I	to be ret	urned on the
date last stan	npea.	-	yanggapen an
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	-		

• • • • • • • • • • • • • • • • • •			* * * * * * * * * * * * * * * * * * * *
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • •	
** . *			
	1		
			and the state of t
no narrowskostowani propriestolici obraziona fougación pagasani, sec di $x_i > 1$ is			1 / 1/4/4/4/4
			· · · · · · · · · · · · · · · · · · ·

ME-1984-M-BAN-LIM

Th 549:32 B222L

AB3981