Учебник по Эконометрике Лекция 3: Основы теории вероятностей

Джон Стачурски

Лекции: Акшай Шенкер Перевел: Алексей Кедо

8 октября 2020 г.

Вероятность фундаментальна для статистики и эконометрики, но технически сложна:

- множество событий, которым мы хотим присвоить вероятности, может быть очень большим
- нам нужны способы справиться со сложностью

Прежде чем мы начнем:

- множество S исчеслимо, если оно конечно или может быть представлено как последовательность
- ullet в противном случае, множество S неисчеслимо

Пространство элементарных событий

Пространство элементарных событий можно представить себе как "список" всех возможных результатов в данном случайном эксперименте:

- пространство элементарных событий обычно обозначается как Ω
- пространством элементарных событий может быть только непустое множество
- ullet типичный элемент Ω обозначается как ω

Реализация неопределенности приведет к выбору конкретной $\omega\in\Omega$

Пример. Обезьяна Бертона Малкиела с завязанными глазами метает дротики в мишень радиусом 1

Введем обычные декартовы координаты с началом в центре мишени

Пусть (h, v) — типичные координаты, измеренные по горизонтали и вертикали соответственно

Естественное пространство элементарных событий — это $\Omega := \{(h,v) \in \mathbb{R}^2 : \|(h,v)\| \le 1\}$ – также называется единичным кругом в \mathbb{R}^2

Неформально, событие — это подмножество Ω (мы скоро рассмотрим некоторые предостережения)

Событие A происходит всякий раз, когда отдельный $\omega \in \Omega$, выбранный в случайном эксперименте, оказывается в A

Рис.: Результаты и события

Вероятности и события

Можем ли мы присвоить вероятности каждому $\omega \in \Omega$?

Рассмотрим модель метания дротика, где Ω is \mathbb{R} :

- для $A\subset \Omega$, вероятность того, что дротик попадет в A пропорционален площади A
- вероятность точки $\omega \in \Omega$ будет меньше любой области A, содержащей ω
- ullet для любых $\epsilon>0$, мы можем найти A, содержащее ω , с площадью меньше ϵ

вероятность попадания в ω меньше ϵ для любых $\epsilon>0$, значит вероятность попадания в ω должна быть равна нулю!

Но можем ли мы присваивать вероятности каждому попространству Ω ?

В модели дротика:

$$\mathbb{P}(A) = \frac{\lambda(A)}{\pi}$$

где $\lambda(A)$: = площадь множества A

Определение площади A для всех $A\subset \Omega$ проблематично:

- пространство Ω , наш круг для дартс в \mathbb{R}^2 , содержит много подмножеств, что производит странные явления
- Парадокс Банаха Тарского

Решение: не принимайте множество событий за все подмножества Ω

Возьмите множество событий как определенные "хорошие" подмножества Ω , обозначенные \mathscr{F}

Присваивайте вероятности только подмножествам Ω в ${\mathscr F}$

Сигма-алгебра

Как мы можем гарантировать, что \mathscr{F} достаточно большой? В разумной вероятностной модели мы в идеале хотим:

- ullet событие "не А" принадлежит ${\mathscr F}$, если $A\in{\mathscr F}$
- ullet событие "A или B" принадлежит ${\mathscr F}$, если $A\in {\mathscr F}$ и $A\in {\mathscr F}$

Формально, \mathscr{F} — это σ -алгебра множества Ω , если

- 1. $A \in \mathscr{F} \implies A^c \in \mathscr{F}$
- 2. $A_1, A_2, \ldots \in \mathscr{F} \implies \bigcup_{n=1}^{\infty} A_n \in \mathscr{F}$ и
- 3. $\Omega \in \mathscr{F}$

1. - 3. подразумевают, что $\varnothing \in \mathscr{F}$, если $\mathscr{F} - \sigma$ -алгебра Событие \varnothing называется невозможным событием Событие Ω называется достоверным событием

Пример. Множество $\{\Omega,\varnothing\}$ — σ - алгебра, называемая тривиальной σ -алгеброй

Борелевская σ -алгебра

 σ -алгебра событий меняется от задачи к задаче

В \mathbb{R}^N мы используем Борелевские множества, обозначенные $\mathscr{B}(\mathbb{R}^N)$

ullet наименьшая σ -алгебра, содержащая все прямоугольники в \mathbb{R}^N

Почему Борелевская σ -алгебра?

- исключает "странные" множества
- включает повседневные полезные множества (включая плоскости и гиперплоскости, круги, сферы, многоугольники, конечные множества и последовательности точек)

Вероятности

Для данного события $B\in \mathscr{F}$, символ $\mathbb{P}(B)$ показывает "вероятность, что событие B случится"

 $\mathbb{P}(B)$ показывает вероятность, что когда неопределенность решена и некоторые $\omega \in \Omega$ выбраны "естественно", то утверждение $\omega \in B$ является верным

Нам нужно установить ограничения, чтобы сделать вероятности правильными

Например, мы хотим исключить $\mathbb{P}(B) = -93$ для некоторых B

Пусть Ω — непустое множество и $\mathscr{F}-\sigma$ -алгебра подпространств Ω . Вероятность $\mathbb P$ на $(\Omega,\mathscr F)$ — функция из $\mathscr F$ в [0,1], которая удовлетворяет

- 1. $\mathbb{P}(\Omega) = 1$ и
- 2. $\mathbb{P}(\bigcup_{n=1}^{\infty}A_n)=\sum_{n=1}^{\infty}\mathbb{P}(A_n)$ для любой непересекающейся последовательности множеств $A_1,A_2,\ldots\in\mathscr{F}$

 $\mathbb P$ также называется вероятностной мерой; втроем $(\Omega,\mathscr F,\mathbb P)$ называются вероятностным пространством

Аксиома 1.: мы требуем $\mathbb{P}(\Omega)=1$, так как, по построению, любая возможная ω лежит в множестве Ω .

Аксиома 2. называется счетной аддитивностью

В формулировке аксиомы (ii) несовместность попарна: любая различная пара A_i, A_j не имеет общих точек

Счетная аддитивность подразумевает конечную аддитивность:

$$\mathbb{P}(A_1 \cup \dots \cup A_k) = \mathbb{P}(A_1) + \dots + \mathbb{P}(A_k) \tag{1}$$

всякий раз, когда A_1, \ldots, A_k несовместные

Рис.: Каждая из N точек случается с вероятностью 1/N

$$\mathbb{P}(A \cup B \cup C) = \frac{9}{N} = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$$

Пример. Пусть $\Omega := \{1, \dots, 6\}$ представляют шесть разных граней кубика, как в примере $\ref{eq:posterior}$?

Так как Ω конечна, пусть \mathscr{F} — множество всех подмножеств Ω Определим вероятность $\mathbb{P}\colon \mathscr{F} \to [0,1]$

$$\mathbb{P}(A) := \frac{|A|}{6}$$
 , где $|A| :=$ количество элементов в множестве A (2)

Легко заметить, что $0 \leq \mathbb{P}(A) \leq 1$ для любых $A \in \mathscr{F}$ и что $\mathbb{P}(\Omega) = 1$

Пример. (прод.) Касательно аддитивности, предположим, что A и B — два несовместных подмножества $\{1,\ldots,6\}$

Тогда $|A \cup B| = |A| + |B|$, значит

$$\mathbb{P}(A \cup B) = \frac{|A \cup B|}{6} = \frac{|A| + |B|}{6} = \frac{|A|}{6} + \frac{|B|}{6} = \mathbb{P}(A) + \mathbb{P}(B)$$

Это доказывает аддитивность для пар множеств. Аналогичный аргумент подтверждает аддитивность для любого конечного набора

Конечная аддитивность в этом случае эквивалентна счетной аддитивности, поскольку общее количество различных событий конечно.

Пример.

Чип памяти состоит из миллиардов переключателей/битов

Переключатели могут быть выключены или включены (0 или 1)

Генератор случайных чисел обращается к N битам, включая или выключая каждый из них

Получается

- $\Omega := \{(b_1, \dots, b_N) :$ где b_n равняется 0 или 1 для каждого $n\}$
- $\mathbb{P}(A) := 2^{-N}(\#A)$

Упражнение: Покажите, что \mathbb{P} — вероятность

Для пространства событий, возьмем \mathscr{F} как множество Борелевских подмножеств в \mathbb{R}^2 , лежащее в Ω

Для \mathbb{P} мы следуем "равномерному"распределению вероятностей, заданному

To есть,
$$\mathbb{P}(B) = \lambda(B)/\pi$$
 для каждого $B \in \mathscr{F}$

Функция λ , которая назначает область для Борелевских множеств, известна как счетно-аддитивная, то есть $\lambda(\cup_n A_n) = \sum_{n=1}^{\infty} \lambda(A_n)$ при условии, что эти множества несовместные

Очевидно,
$$\mathbb{P}(\Omega)=1$$

Мера Лебега

Функция λ , отображающая Борелевские множества на свою "территорию", формально известна как Мера Лебега

§?? в ЕТ дает краткое введение в эту концепцию

Свойства вероятностной меры

Факт. (??) Пусть $(\Omega, \mathscr{F}, \mathbb{P})$ — вероятностное пространство и $A, B \in \mathscr{F}$

Если $A \subset B$, то

- 1. $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$,
- 2. $\mathbb{P}(A) \leq \mathbb{P}(B)$ (монотонность)
- 3. $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$, и
- **4**. $\mathbb{P}(\emptyset) = 0$.

Доказательство. Когда $A\subset B$, имеется $B=(B\setminus A)\cup A$, значит

$$\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(A)$$

Все результаты следуют из этого (почему?)

Факт. (??) Если A и B — какие-нибудь (не обязательно несовместные) события, то

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Докажите в качестве упражнения ?? в ЕТ

Факт подразумевает, что полуаддитивность: для любых $A,B\in\mathscr{F}$, имеется

$$\mathbb{P}(A \cup B) \le \mathbb{P}(A) + \mathbb{P}(B)$$

Условная вероятность и независимость

Условная вероятность A при данном B:

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \tag{3}$$

Вероятность A, при данной информации, что B случилось

События A и B называются независимыми, если $\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)$

Если A и B независимы, то

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

Пример. Эксперимент: бросим кубик дважды

$$\Omega := \{(i,j) : i,j \in \{1,\ldots,6\}\}$$
 u $\mathbb{P}(E) := \#E/36$

Теперь рассмотрим события

$$A:=\{(i,j)\in\Omega: i \text{ четное}\} \quad \text{и} \quad B:=\{(i,j)\in\Omega: j \text{ четное}\}$$

В этом случае мы имеем

$$A \cap B = \{(i,j) \in \Omega : i \text{ и } j \text{ четные}\}$$

Упражнение: убедитесь, что $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

Следовательно, A и B независимы с вероятностью $\mathbb P$

Закон полной вероятности

Закон полной вероятности утверждает, что:

 $oldsymbol{\Phi}$ акт. $(\ref{eq:constraint})$ Если $A\in\mathscr{F}$ и B_1,\ldots,B_M — части Ω с $\mathbb{P}(B_m)>0$ для всех m, то

$$\mathbb{P}(A) = \sum_{m=1}^{M} \mathbb{P}(A \mid B_m) \cdot \mathbb{P}(B_m)$$

Доказательство. Возьмем $A \in \mathscr{F}$ и части $B_1, ..., B_M$:

$$\mathbb{P}(A) = \mathbb{P}[A \cap (\cup_{m=1}^{M} B_m)] = \mathbb{P}[\cup_{m=1}^{M} (A \cap B_m)]$$
$$= \sum_{m=1}^{M} \mathbb{P}(A \cap B_m) = \sum_{m=1}^{M} \mathbb{P}(A \mid B_m) \cdot \mathbb{P}(B_m)$$

Теорема Байеса

Теорема Байеса: для любых событий A и B с положительной вероятностью, выполняется

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)} \tag{4}$$

Доказательство. Из определения условной вероятности:

$$\mathbb{P}(A \,|\, B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad \text{if} \quad \mathbb{P}(B \,|\, A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

Следовательно
$$\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B) \, \mathbb{P}(B) = \mathbb{P}(B \mid A) \, \mathbb{P}(A)$$

Перегруппировка уравнения (4)

Пример. Банки используют автоматизированные системы для обнаружения мошеннических или незаконных транзакций

Рассмотрим тест, который отвечает на каждую транзакцию с P или N:

- P значит "положительно" (транзакция отмечена как мошенническая)
- N значит "отрицательно" (транзакция отмечена как нормальная)

Пусть F значит мошенническая, предположим

- $\mathbb{P}(P \,|\, F) = 0.99$ (тест отмечает 99% мошеннических транзакций),
- $\mathbb{P}(P \,|\, F^c) = 0.01$ (процент ложных срабатываний), и
- $\mathbb{P}(F) = 0.001$ (распространенность мошенничества)

Обратите внимание на закон Байеса

$$\mathbb{P}(F \mid P) = \frac{\mathbb{P}(P \mid F)\mathbb{P}(F)}{\mathbb{P}(P)}$$

и обратите внимание на закон полной вероятности

$$\mathbb{P}(P) = \mathbb{P}(P \mid F)\mathbb{P}(F) + \mathbb{P}(P \mid F^c)\mathbb{P}(F^c)$$

Следовательно

$$\mathbb{P}(F \mid P) = \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.01 \times 0.999} = \frac{11}{122} \approx \frac{1}{11}$$

Случайные переменные

Неформально: "значение, которое изменяется случайным образом"

Формально: случайная переменная x — функция из Ω в $\mathbb R$

Интерпретация: случайные величины преобразуют исходы в пространстве элементарных событий в числовые исходы.

Главная идея:

- ullet "природа" выбирает ω в Ω
- ullet случайная переменная сообщает результат как $x(\omega)\in\mathbb{R}$

Пример. Предположим, что Ω — множество бесконечных двоичных последовательностей

$$\Omega := \{(b_1, b_2, \ldots) : b_n \in \{0, 1\}$$
 для каждого $n\}$

Мы можем создавать различные отображения случайных переменных $\Omega \to \mathbb{R}$:

• количество "подбрасываний" до первого "орла":

$$x(\omega) = x(b_1, b_2, \ldots) = \min\{n : b_n = 1\}$$

• количество "орлов" в первых 10 "подбрасываниях":

$$x(\omega) = x(b_1, b_2, \ldots) = \sum_{n=1}^{10} b_n$$

• количество подбрасываний до первого орла:

$$x(\omega) = x(b_1, b_2, \ldots) = \min\{n \in \mathbb{N} : b_n = 1\}$$

 Двоичная случайная величина или случайная величина Бернулли говорит нам, возникают ли какие-либо орлы в первые 10 подбрасываний:

$$x(\omega) = y(b_1, b_2, \dots) := \min \left\{ \sum_{n=1}^{10} b_n, 1 \right\}$$
 (5)

Случайная величина Бернулли

Бернулли или двоичная случайная величина с.в. x принимает значения $\{0,1\}$

Теперь мы рассмотрим общий способ создания с.в. Бернулли

Пусть Q — утверждение, например, "a больше 3"

Определение: $\mathbb{1}\{Q\}$ равняется единице, если Q верно, в ином случае нулю.

Определим

$$x(\omega)=\mathbb{1}\{\omega\in A\}$$
 , где $A\in\mathscr{F}$

С.в. показывает, случается ли событие C

Распространенный вариант обозначений: для произвольного $A \in \mathscr{F}$:

$$\mathbb{1}_A(\omega):=\mathbb{1}\{\omega\in A\}:=egin{cases} 1 & ext{, если }\omega\in A \ 0 & ext{, иначе} \end{cases}$$

- 1. $\mathbb{1}_{\cap_{n=1}^{N} A_n} = \prod_{n=1}^{N} \mathbb{1}_{A_n}$ и
- 2. $\mathbb{1}_{\bigcup_{i=1}^{N}A_{n}}=\sum_{n=1}^{N}\mathbb{1}_{A_{n}}$ всякий раз, когда множества несовместные

Смотрите упражнение ?? для доказательства

Здесь равенство означает оценку при любом $\omega \in \Omega$

Условные обозначения

Общие условные обозначения для с.в.:

$$\{x \ ext{обладает некоторым свойством}\} :=$$
 $\{\omega \in \Omega : x(\omega) \ ext{обладает некоторым свойством}\}$

Пример.

$$\{x \le 2\} := \{\omega \in \Omega : x(\omega) \le 2\}$$

$$\mathbb{P}\{x \leq 2\} := \mathbb{P}\{\omega \in \Omega : x(\omega) \leq 2\}$$

Пример. Возьмем случайную величину x и $a \leq b$, мы утверждаем, что

$$\mathbb{P}\{x \le a\} \le \mathbb{P}\{x \le b\}$$

Это выполняется, так как

$$\{x \le a\} := \{\omega \in \Omega : x(\omega) \le a\}$$

$$\subset \{\omega \in \Omega : x(\omega) \le b\} := \{x \le b\}$$

Теперь применим монотонность: $A \subset B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$

- $x \le y \iff x(\omega) \le y(\omega)$ для всех $\omega \in \Omega$,
- $x=y\iff x(\omega)=y(\omega)$ для всех $\omega\in\Omega$, и
- $z = \alpha x + \beta y \iff z(\omega) = \alpha x(\omega) + \beta y(\omega)$ для всех $\omega \in \Omega$

Случайные переменные — измеримые функции

Пусть $(\Omega, \mathscr{F}, \mathbb{P})$ — некоторое вероятностное пространство

Пусть B — некоторое подпространство $\mathbb R$

Рассмотрим вероятность

$$\mathbb{P}\{x \in B\} := \mathbb{P}\{\omega \in \Omega : x(\omega) \in B\}$$

где x — некоторая функция из Ω в $\mathbb R$

Нет возможности быть уверенным, что $\{\omega\in\Omega:x(\omega)\in B\}$ является элементом $\mathscr F$

• $\mathbb{P}\{x \in B\}$ может быть не определена

Мы должны ввести ограничения:

- ullet для B мы естественно ограничиваем внимание до $\mathscr{B}(\mathbb{R})$, Борелевское подмножество \mathbb{R}
- ullet для x мы требуем $\{x\in B\}\in\mathscr{F}$ всюду, где B Борелевская множество

Формальное определение случайной величины:

Случайная величина в (Ω,\mathscr{F}) — функция $x\colon\Omega o\mathbb{R}$, удовлетворяющая

$$\{\omega \in \Omega : x(\omega) \in B\} \in \mathscr{F}$$
 для всех $B \in \mathscr{B}(\mathbb{R})$ (6)

Эти виды функций также называются \mathscr{F} -измеримыми функциями

Обозначение прообраза: $x^{-1}(B)$ — это все $\omega \in \Omega$, такие что $x(\omega) \in B$

Перепишем (6) как

$$x^{-1}(B)\in\mathscr{F}$$
 для всех $B\in\mathscr{B}(\mathbb{R})$

Таким образом, x "откатывает" Борелевские множества до событий

Измеримые преобразования

Мы хотим обсудить некоторые преобразования x

Например, $y := e^x$. y тоже случайная величина?

Да, при условии, что преобразование удовлетворяет Борелевской измеримости

Формально, $f\colon \mathbb{R} \to \mathbb{R}$ называется Борелевски измеримой или \mathscr{B} -измеримой, если

$$f^{-1}(B) \in \mathscr{B}(\mathbb{R})$$
 для всех $B \in \mathscr{B}(\mathbb{R})$ (7)

Класс \mathscr{B} -измеримых функций огромен: любая непрерывная функция, любая возрастающая функция и т.д.

Предположим, что f \mathscr{B} -измерима и x — случайная величина

Мы имеем $\{y \in B\} \in \mathscr{F}$ для всех $B \in \mathscr{B}(\mathbb{R})$, так как

$$\{y \in B\} = \{f(x) \in B\} = \{x \in f^{-1}(B)\}$$
 (8)

Таким образом, y = f(x) — случайная величина

Ожидания

Мы хотим определить ожидания для произвольной с.в. x

Грубо говоря, $\mathbb{E}[x] :=$ "сумма" всех возможных значений x, взвешенных по их вероятностям.

"Сумма" в кавычках, потому что может быть бесконечное число слагаемых

Мы используем современный, формальный и строгий подход к определению ожиданий

Для конечных случайных величин дано вероятностное пространство $(\Omega, \mathscr{F}, \mathbb{P})$ и случайная величина x, принимающая только конечное количество различных значений s_1, \ldots, s_J , ожидание x определяется как

$$\mathbb{E} x = \sum_{j=1}^{J} s_j \, \mathbb{P} \{ x = s_j \} \tag{9}$$

Пример. Давайте применим это определение к простейшему возможному случаю, в котором случайная величина x удовлетворяет $x(\omega)=\alpha$ для всех $\omega\in\Omega$, где α — некоторое постоянное скалярное значение. В этом случае сумма в (9) имеет только одно слагаемое и

$$\mathbb{E} x = \alpha \mathbb{P} \{ x = \alpha \} = \alpha \mathbb{P} \{ \omega \in \Omega : x(\omega) = \alpha \} = \alpha \mathbb{P} (\Omega) = \alpha$$

Пример. Чтобы оценить ожидание двоичной случайной величины x, мы применим (9), получаем

$$\mathbb{E} x = 1 \times \mathbb{P} \{x = 1\} + 0 \times \mathbb{P} \{x = 0\} = \mathbb{P} \{x = 1\}$$

Пространство элементарных событий — это $\Omega := \{0,1\}^N$, события такие, что $\mathscr{F} :=$ все подмножества Ω , и $\mathbb{P}(A) := 2^{-N}|A|$ для всех $A \in \mathscr{F}$

Пусть
$$x(\omega) = x(b_1, \ldots, b_N) = \sum_{n=1}^N b_n$$

Прежде всего заметьте, что 0 < x < N

По определению \mathbb{P} , для любого k мы имеем $\mathbb{P}\{x=k\}=2^{-N}|A_k|$, где

$$A_k := \{x = k\} = \left\{ (b_1, \dots, b_N) \in \Omega : \sum_{n=1}^N b_n = k \right\}$$

Из комбинаторики, $|A_k|=\binom{N}{k}$, где правая сторона называется биномиальным коэффициентом для N,k, что удовлетворяет $\sum_{k=0}^N k\binom{N}{k}=N2^{N-1}$ для всех N

Ожидания х:

$$\mathbb{E} x = \sum_{k=0}^{N} k 2^{-N} |A_k| = 2^{-N} \sum_{k=0}^{N} k {N \choose k} = \frac{N}{2}$$

Для обычного x, приблизительная произвольная случайная величина с конечными случайными величинами:

Рис.: Конечное приближение к общей случайной величине

Мы можем улучшать приближение без ограничений – Пусть x_n принимает большее и большее количество различных значений

Процесс дает последовательность *конечных* случайных величин x_n , сходящихся к x

Определим ожидания x как

$$\mathbb{E} x := \lim_{n \to \infty} \mathbb{E} x_n$$

 $\mathbb{E} x$ также упоминается как Интеграл Лебега с.в. x относительно \mathbb{P} , с альтернативными обозначениями $\mathbb{E} x = \int x(\omega) \mathbb{P}(\mathrm{d}\omega)$

Существует ли последовательность аппроксимации случайной величины? Да, смотрите страницу 94 в ET и dudley2002real, утверждение 4.1.5

Если x принимает отрицательные значения, то пишут $x = x^+ - x^-$

где
$$x^+$$
: $= \max\{x,0\}$ и $x^- = \min\{x,0\}$

Определим ожидания как

$$\mathbb{E}x$$
: = $\mathbb{E}x^+ - \mathbb{E}x^-$

Сфокусируемся на **интегрируемых** случайных величинах: всех случайных величинах x, таких что $\mathbb{E}\,|x|<\infty$

- мы имеем $x^+ \le |x|$ и $x^- \le |x|$
- ullet таким образом, $\mathbb{E} x \colon = \mathbb{E} x^+ \mathbb{E} x^-$ хорошо определены (почему?)

Свойства ожидания

Факт. (??) Возьмем любое вероятностное пространство $(\Omega,\mathscr{F},\mathbb{P})$, в нем существует однозначно определенная функция \mathbb{E} , что отображает каждую интегрируемую случайную величину x на $(\Omega,\mathscr{F},\mathbb{P})$ в качестве значения

$$\mathbb{E}x = \int x(\omega) \mathbb{P}(d\omega) \tag{10}$$

в \mathbb{R} , называемой математическим ожиданием x. Функция имеет следующие свойства:

- 1. $\mathbb{E}\alpha = \alpha$ для всех $\alpha \in \mathbb{R}$
- 2. $\mathbb{E}\,\mathbb{1}_A=\mathbb{P}(A)$ для всех $A\in\mathscr{F}$
- 3. $x \le y \implies \mathbb{E} x \le \mathbb{E} y$
- 4. $\mathbb{E}\left[\alpha x + \beta y\right] = \alpha \mathbb{E} x + \beta \mathbb{E} y$ для всех интегрируемых x,y и констант α,β

Обратите внимание на выражение $\mathbb{E} \alpha$ понимаемое как ожидание постоянной случайной величины, равной α

• следует из 4. при $x = 1_{\Omega}$ и $\beta = 0$

Упражнение: проверьте 3. для $x(\omega):=\mathbb{1}\{\omega\in A\}$ и $y(\omega):=\mathbb{1}\{\omega\in B\}$

Подсказка: что означает $x \leq y$ относительно A и B?

Для дальнейших подробности и ссылок на доказательства вышеуказанного факта, смотрите страницу 96 в ET

Мы сейчас докажем, что если x — конечная случайная величина с диапазоном $\{s_j\}_{j=1}^J$ и h — любая \mathscr{B} -измеримая функция, то

$$\mathbb{E}h(x) = \sum_{j=1}^{J} h(s_j) \mathbb{P}\{x = s_j\}$$
 (11)

Сначала заметьте, что $\sum_{j=1}^{J} \mathbbm{1}\{x=s_j\}=1$, и значит мы можем записать h(x) как

$$h(x) = h(x) \sum_{j=1}^{J} \mathbb{1}\{x = s_j\} = \sum_{j=1}^{J} h(s_j) \mathbb{1}\{x = s_j\}$$

Используем линейность ожиданий:

$$\mathbb{E}h(x) = \sum_{j=1}^{J} h(s_j) \mathbb{E} \mathbb{1}\{x = s_j\}$$

Применение части 2. факта ?? приводит к (11)

Неравенство Чебышёва: Факт. (??) Для любой неотрицательной случайной величины x и любой $\delta>0$, мы имеем

$$\mathbb{P}\{x \ge \delta\} \le \frac{\mathbb{E}x}{\delta} \tag{12}$$

Распространенная разновидность неравенства Чебышева имеет вид

$$\mathbb{P}\{|x| \ge \delta\} \le \frac{\mathbb{E}x^2}{\delta^2} \tag{13}$$

Смотрите упражнение ?? для доказательства

Пусть x — случайная величина и $k \in \mathbb{N}$. Если x^k интегрируема, TO

- $\mathbb{E}[x^k]$ называется k-ым моментом x
- $\mathbb{E}[(x-\mathbb{E}x)^k]$ называется k-ым центральным моментом χ

Если $\mathbb{E}[|x|^k]=\infty$, то говорят, что k-ый момент не существует. Для некоторых случайных величин даже первый момент не существует

В ином случае, каждый момент существует

Факт. (??) Если k-ый момент x существует, то также существует и j-ый для всех $j \leq k$

Доказательство: Упражнение ??

Неравенство Коши — Буняковского для случайных величин:

Факт. (??) Если x и y — случайные величины с конечным вторым моментом, то

$$|\mathbb{E}[xy]| \le \sqrt{\mathbb{E}[x^2]\mathbb{E}[y^2]}$$
 (14)

Вторым центральным моментом x называется дисперсия x:

$$\operatorname{var} x := \mathbb{E}\left[(x - \mathbb{E} x)^2 \right]$$

Стандартное отклонение x:

$$\sigma_x := \sqrt{\operatorname{var} x}$$

Ковариация случайной величины x и y:

$$cov[x,y] := \mathbb{E}\left[(x - \mathbb{E}x)(y - \mathbb{E}y) \right]$$

Факт. (??) Если x и y имеют конечные вторые моменты, то

- 1. $\operatorname{var} x$ и $\operatorname{cov}[x,y]$ конечны
- 2. $\operatorname{var} x = \mathbb{E}[x^2] [\mathbb{E} x]^2$, и
- 3. $\operatorname{cov}[x, y] = \mathbb{E}[xy] \mathbb{E}[x]\mathbb{E}[y]$

Часть 1. следует из 2.-3., неравенства Коши — Буняковского и факта $\ref{eq:4}$?

Части 2.–3. следуют из линейности $\mathbb E$ и нескольких простых манипуляций

Факт. (??) Если x_1, \ldots, x_N — случайные величины и $\alpha_0, \alpha_1, \ldots, \alpha_N$ — постоянные скаляры, то

$$\operatorname{var}\left[\alpha_0 + \sum_{n=1}^N \alpha_n x_n\right] = \sum_{n=1}^N \alpha_n^2 \operatorname{var}[x_n] + 2 \sum_{n < m} \alpha_n \alpha_m \operatorname{cov}[x_n, x_m]$$

Некоторые простые выводы:

- 1. $var[\alpha + \beta x] = \beta^2 var[x]$ и
- 2. $var[\alpha x + \beta y] = \alpha^2 var[x] + \beta^2 var[y] + 2\alpha\beta cov[x, y]$.

Корреляция x и y:

$$\operatorname{corr}[x, y] := \frac{\operatorname{cov}[x, y]}{\sigma_x \, \sigma_y}$$

Если corr[x,y] = 0, то x и y некоррелярованы

Положительная корреляция означает, что $\mathrm{corr}[x,y]$ положительна, и отрицательная корреляция значит, что $\mathrm{corr}[x,y]$ отрицательна

Факт. (??) Возьмем любые две случайные величины x, y и положительные константы $\alpha, \beta,$ мы имеем

$$-1 \le \operatorname{corr}[x, y] \le 1$$
 u $\operatorname{corr}[\alpha x, \beta y] = \operatorname{corr}[x, y]$

первая часть следует из факта ??; вторая — из алгебры

Лучшие линейные предсказатели

Рассмотрим задачу предсказания значения случайной величины y, учитывая знание значения второй случайной величины x

Мы ищем функцию f, такую что f(x) в среднем близка к y

Для измерения последнего мы будем использовать среднеквадратичную ошибку, которая в данном случае составляет

$$\mathbb{E}\left[(y-f(x))^2\right]$$

В §??, чтобы получить минимизатор среднеквадратичного отклонения по всем функциям x, мы выбираем

$$f(x) = \mathbb{E}\left[y \,|\, x\right]$$

Здесь мы рассмотрим поиск хорошего предсказателя y среди класса "линейных" функций

$$\mathcal{H}_\ell := \{$$
 все функции вида $\ell(x) = \alpha + \beta x \}$

Рассмотрим:

$$\min_{\ell \in \mathcal{H}_{\ell}} \mathbb{E}\left[(y - \ell(x))^2 \right] = \min_{\alpha, \beta \in \mathbb{R}} \mathbb{E}\left[(y - \alpha - \beta x)^2 \right] \tag{15}$$

Если α и β решают (15), то функция

$$\ell^*(x) := \alpha^* + \beta^* x \tag{16}$$

называется лучшим линейным предсказателем y при данном x

Пример. (??) Взаимосвязь между доходностью данного актива R_a и рыночной доходностью R_m называется коэффициентом бета

Измеряет подверженность системному риску в отличие от нерыночного риска.

Бета R_a часто определяется как коэффициент β^* в лучшем линейном предсказании (16), когда x — это рыночная доходность и $y=R_a$

Чтобы решить (15), раскроем квадрат с правой стороны и используем линейность \mathbb{E} , чтобы написать целевую функцию как

$$\psi(\alpha,\beta) := \mathbb{E}\left[y^2\right] - 2\alpha \mathbb{E}\left[y\right] - 2\beta \mathbb{E}\left[xy\right] + 2\alpha\beta \mathbb{E}\left[x\right] + \alpha^2 + \beta^2 \mathbb{E}\left[x^2\right]$$

Вычисление производных и решение условий первого порядка:

$$\beta^* := \frac{\operatorname{cov}[x, y]}{\operatorname{var}[x]} \quad \text{and} \quad \alpha^* := \mathbb{E}[y] - \beta^* \mathbb{E}[x]$$
(17)

Смотрите упр. ??

Распределения

Возьмем случайную величину x на вероятностное пространство $(\Omega,\mathscr{F},\mathbb{P})$

Вероятность, x примет значение из Борелевского множества B

$$\mathbb{P}\{x \in B\}$$

На практике, удобнее представлять вероятность как распределение в $\mathbb R$

Специфицируем Ω в $\mathbb R$ и возьмем множество событий в $\mathbb R$ как $\mathscr B(\mathbb R)$

• Вероятностная мера, определенная в $\mathscr{B}(\mathbb{R})$, называется законом или распределением

Формально, распределение P — отображение из $\mathscr{B}(\mathbb{R})$ в [0,1], такое что

- 1. $P(\mathbb{R}) = 1$ и
- 2. $P(\bigcup_{n=1}^{\infty} B_n) = \sum_{n=1}^{\infty} P(B_n)$ для любой несовместной последовательности $\{B_n\}$

Если существует Борелевское множество S с P(S)=1, то мы говорим, что S является носителем распределения P

Распределения характеризуются функцией распределения, или функция распределения, которой может быть любая функция $F\colon \mathbb{R} \to [0,1]$, удовлетворяющая следующим условиям:

- 1. монотонность: $s \leq s'$ подразумевает, что $F(s) \leq F(s')$,
- 2. непрерывность справа: $F(s_n)\downarrow F(s)$ всюду, где $s_n\downarrow s$, и
- 3. $\lim_{s\to-\infty} F(s) = 0$ u $\lim_{s\to\infty} F(s) = 1$.

Функция распределения и распределение в $\mathbb R$ можно поставить во взаимно однозначное соответствие

Распределение P полностью характеризуется значениями функции

$$F(s) := P((-\infty, s]) \qquad (s \in \mathbb{R})$$
(18)

Факт. (??) Следующие утверждения верны:

- 1. Если P любое распределение в \mathbb{R} , то функция F в (18) функция распределения.
- 2. Возьмем любую функция распределения F в \mathbb{R} , существует ровно одно распределение P, удовлетворяющее (18)

Для полного доказательства, смотрите williams1991probability, лемма 1.6, или dudley2002real, теорема 9.1.1.

Здесь ограничимся демонтрацией, что функция F в (18) удовлетворяет части 1. определения функция распределения

- ullet заметим, что $s \leq s'$ подразумевает, что $(-\infty,s] \subset (-\infty,s']$
- ullet вспомним, что $P(A) \leq P(B)$, если $A \subset B$
- тогда мы имеем $P((-\infty,s]) \le P((-\infty,s'])$ и $F(s) \le F(s')$, как и было заявлено

Пример. Одномерные нормальные распределения или распределения Гаусса относятся к распределениям классов, обозначенным как функция распределения вида

$$F(s) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{s} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt \qquad (s \in \mathbb{R})$$

где $\mu \in \mathbb{R}$ и $\sigma > 0$

Мы представляем распределение, связанное с (μ,σ) с помощью $\mathrm{N}(\mu,\sigma^2)$

Распределение ${\tt N}(0,1)$ называется стандартным нормальным распределением

Мы используем символ Φ для его функции распределения

Рис.: Функция распределения для нормальных распределений

Пример. Распределение Парето — одномерное распределение с функция распределения вида

$$F(s) = egin{cases} 0 & ext{, если } s < s_0 \ 1 - \left(rac{s_0}{s}
ight)^lpha & ext{, если } s_0 \leq s \end{cases} \qquad (s \in \mathbb{R}, \ s_0, \ lpha > 0)$$

Распределения Парето часто используются для моделирования явлений с тяжелым правым хвостом, таких как распределение богатства или дохода.

Пример. Класс функции распределения бета дан с помощью

$$F(s) = egin{cases} 0 & ext{, если } s \leq 0 \ rac{1}{B(lpha,eta)} \int_0^s u^{lpha-1} (1-u)^{eta-1} \, \mathrm{d}u & ext{, если } 0 < s < 1 \ 1 & ext{, если } 1 \leq s \end{cases}$$

где $\alpha, \beta > 0$.

В этом примере $B(\alpha,\beta)$ — функция бета

$$B(\alpha,\beta) := rac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \qquad ext{where} \qquad \Gamma(a) := \int_0^\infty u^{a-1} e^{-u} \, \mathrm{d}u$$

Функция Γ называется функция гамма.

Рис.: Функции распределения бета

Пример. класс распределений Коши определяется как

$$F(s) = \frac{1}{\pi} \arctan\left(\frac{s- au}{\gamma}\right) + \frac{1}{2} \qquad (s \in \mathbb{R})$$

параметры $au\in\mathbb{R}$ и $\gamma>0$ — параметры местоположения и масштаба соответственно

Если au=0 и $\gamma=1$, то F называется стандартным распределением Коши

Рис.: Функции распределения Коши

Пример. Возьмем a < b, равномерная функция распределения на промежутке [a,b] — это

$$F(s) = egin{cases} 0 & ext{, если } s \leq a \ rac{s-a}{b-a} & ext{, если } a < s < b \ 1 & ext{, если } b \leq s \end{cases}$$

мы обозначаем это распределение как U[a,b]

Плотности и функции вероятности

Два удобных частных случая

- дискретный: функция распределения просто скачет (ступенчатая функция)
- абсолютно непрерывный случай: функция непрерывна, без скачков

Дискретный случай

Распределение P называется дискретным, если оно имеет носитель распределения в счетном множестве; that is, если существует счетное множество $\{s_j\}_{j\geq 1}$ с $P(\{s_j\}_{j\geq 1})=1$

для такого P пусть

$$p_j := P\{s_j\} := P(\{s_j\}) =$$
 вероятность в одной точке s_j

Функция вероятности — любая неотрицательная последовательность (конечная или бесконечная), сумма которой равна единице.

Упражнение: покажите, что $\{p_j\}_{j\geq 1}$ является функцией вероятности

Мы можем показать связь функции распределения с P как:

$$F(s) = \sum_{j \ge 1} \mathbb{1}\{s_j \le s\} p_j$$
 (19)

так как

$$F_x(s) := \mathbb{P}\{x \le s\} = \mathbb{P}\bigcup_{j \text{ s.t. } s_j \le s} \{x = s_j\}$$

$$= \sum_{j \text{ s.t. } s_j \le s} \mathbb{P}\{x = s_j\} = \sum_{j=1}^{J} \mathbb{1}\{s_j \le s\} p_j$$

Рис.: Дискретная функция распределения

Пример. Возьмем $N\in\mathbb{N}$ и $\pi\in(0,1)$, последовательность $\{p_0,\ldots,p_N\}$, определяемая как

$$p_j = \binom{N}{j} \pi^j (1 - \pi)^{N-j}$$

называется биномиальной функцией вероятности

Значение p_j — вероятность, j успехов в N независимых испытаниях, вероятность успеха каждого случая равна π

Абсолютно непрерывный случай

Функция плотности — неотрицательная функция p в \mathbb{R} , которая интегрируется в 1

Распределение P определяется функцией плотности p, если p — функция плотности и

$$P(B) = \int_B p(s) \, \mathrm{d}s$$
 для всех $B \in \mathscr{B}(\mathbb{R})$

Заметим, что

$$\int_{B} p(s) \, \mathrm{d}s := \int_{-\infty}^{\infty} \mathbb{1}_{B}(s) p(s) \, \mathrm{d}s$$

Точное необходимое и достаточное условие существования функции плотности — абсолютная непрерывность

Распределение P в Борелевских подмножествах $\mathbb R$ называется абсолютно непрерывным, если P(B)=0 всюду, где мера Лебега B равна нулю (смотрите §??)

• Любое счетное подмножество $\mathbb R$ имеет меру Лебега равную нулю

Факт. (??) Если P абсолютно непрерывная, то P(C)=0 всюду, где C счетно

Если распределение абсолютно непрерывно:

- вероятность в каждой точке равна нулю
- соответствующая функция распределения не содержит скачков
- теорема Ньютона Лейбница говорит, что F(s) дифференцируема во всех точках непрерывности p, и:

$$F'(s) = p(s)$$
 для всех $s \in \mathbb{R}$, таких что p непрерывна в s

Пример. Нормальные функции распределения дифференцируемы для всех μ , σ , с функцией плотности

$$p(s) = F'(s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(s-\mu)^2}{2\sigma^2}\right\}$$

Мы используем символ ϕ для стандартного нормального распределения

Рис.: Функции плотности нормального распределения

Пример. Функция распределения Коши имеет функцию плотности

$$p(s) = \frac{1}{\pi \gamma} \left[1 + \left(\frac{s - \tau}{\gamma} \right)^2 \right]^{-1} \qquad (s \in \mathbb{R}, \ \gamma > 0, \ \tau \in \mathbb{R})$$

Функции плотности Коши более остроконечны около своих мод и имеют большую массу в хвосте, чем нормальная функция плотности

Рис.: Функции плотности Коши

Пример. Бета имеет функцию плотности, определяемую как

$$p(s) = \frac{s^{\alpha - 1} (1 - s)^{\beta - 1}}{B(\alpha, \beta)} \qquad (\alpha, \beta > 0)$$

Когда 0 < s < 1 и 0 в ином случае

Пример. U[a,b] распределение представлено функцией плотности

$$p(s) = \frac{1}{b-a} \mathbb{1}\{a \le s \le b\} \qquad (s \in \mathbb{R}, \ a, b \in \mathbb{R}, \ a < b)$$

Пример. Гамма-распределение с параметром формы α и параметром масштаба β — распределение с функцей плотности

$$p(s) = \frac{s^{\alpha - 1}e^{-s/\beta}}{\beta^{\alpha}\Gamma(\alpha)} \qquad (\alpha, \beta > 0)$$

Когда 0 < s < 1 и 0 в ином случае

Пример. **Хи-квадрат распределение** с *k* **степенями свободы** — распределение с функцией плотности

$$p(s) := \frac{1}{2^{k/2} \Gamma(k/2)} s^{k/2 - 1} e^{-s/2} \qquad (s > 0, \ k \in \mathbb{N})$$

Это распределение представлено символом $\chi^2(k)$

Рис.: Функции плотности хи-квадрата

Пример. Распределение Стьюдента t с k степенями свободы, или, проще, t-распределение с k степенями свободы, — распределение в $\mathbb R$ с функцией плотности

$$p(s) := \frac{\Gamma(\frac{k+1}{2})}{(k\pi)^{1/2}\Gamma(\frac{k}{2})} \left(1 + \frac{s^2}{k}\right)^{-(k+1)/2} \qquad (s \in \mathbb{R}, \ k > 0)$$

Пример. F-распределение с параметрами k_1, k_2 — распределение с функцией плотности

$$p(s) := \frac{\sqrt{(k_1 s)^{k_1} k_2^{k_2} / [k_1 s + k_2]^{k_1 + k_2}}}{s B(k_1 / 2, k_2 / 2)} \qquad (s \ge 0, k_1, k_2 > 0)$$

F-распределение возникает при проверке ряда гипотез, как обсуждается ниже.

Интегрирование

Рассмотрим обычный интергал $\int_a^b h(s) \, \mathrm{d}s$ функции h на некотором интервале [a,b]

Предположим, мы хотим сделать этот интергал взвешенным, придав больше массы различным частям [a,b]:

$$\int_a^b h(s)p(s)\,\mathrm{d}s$$

Например:

- h функция благосостояния и p плотность агентов
- p плотность, указывающая на вероятности исходов, h функция прибыли

Предположим, что P не имеет функции плотности, но мы все еще хотим взвесить интеграл с помощью P

ullet мы хотим определить $\int h(s) P(\mathrm{d}s)$

Возьмем распределение P в $\mathbb R$ и рассмотрим $(\mathbb R,\mathscr B(\mathbb R),P)$ как вероятностное пространство

 $(\mathbb{R},\mathscr{B}(\mathbb{R}),P)$ имеет собственный оператор ожидания \mathbb{E}_P

Предположим, что h — случайная величина в $(\mathbb{R},\mathscr{B}(\mathbb{R}),P)$, тогда

$$\mathbb{E}_P h :=: \int h(s) P(\mathrm{d} s) :=$$
 ожидания h при P

 $oldsymbol{\Phi}$ акт. Пусть $h\colon \mathbb{R} o \mathbb{R} - \mathscr{B}$ -измерима и P — распределение в \mathbb{R}

Если P дискретна, с функцией вероятности $\{p_j\}_{j\geq 1}$ и носителем распределения $\{s_j\}_{j\geq 1}$, то

$$\int h(s)P(\mathrm{d}s) = \sum_{j\geq 1} h(s_j)p_j$$

Если P абсолютно непрерывно с функцией плотности p, то

$$\int h(s)P(\mathrm{d}s) = \int_{-\infty}^{\infty} h(s)p(s)\,\mathrm{d}s$$

Распределения и случайные переменные

Каждая случайная переменная определяет распределение on ${\mathbb R}$

Пусть x — случайная величина на некотором вероятностном пространстве $(\Omega, \mathscr{F}, \mathbb{P})$:

- вероятность $\mathbb{P}\{x\in B\}$ определена для каждого $B\in\mathscr{B}(\mathbb{R})$ (смотрите (6))
- множество функций *P* определено как

$$P(B) = \mathbb{P}\{x \in B\} \qquad (B \in \mathscr{B}(\mathbb{R})) \tag{20}$$

является распределением х

Функция распределения соответствующая распределению P случайной переменной x удовлетворяет

$$F(s) = \mathbb{P}\{x \le s\} \qquad (s \in \mathbb{R}) \tag{21}$$

мы пишем $\mathcal{L}(x) = F$, чтобы подчеркнуть, что F означает распределение x

Факт. (??) Если $\mathcal{L}(x) = F$, то $\mathbb{P}\{a < x \leq b\} = F(b) - F(a)$ для любых $a \leq b$

Доказательство выполните в качестве упражнения (или смотрите страницу 111 в ЕТ)

Для каждой функции распределения F, существует вероятностное пространство $(\Omega,\mathscr{F},\mathbb{P})$ и случайная величина $x\colon\Omega\to\mathbb{R}$, такая что $\mathcal{L}(x)=F$; §?? показывает построение

Если $\mathcal{L}(x)=P$ и P имеет функцию плотности p, мы говорим, что x имеет функцию плотности p

Если распределение x дискретно, мы будем называть x дискретной случайной величиной

Факт. Если x имеет функцию плотности, то $\mathbb{P}\{x=s\}=0$ для всех $s\in\mathbb{R}$, и для любых a< b,

$$\mathbb{P}\{a < x < b\} = \mathbb{P}\{a < x \le b\}$$
$$= \mathbb{P}\{a \le x < b\} = \mathbb{P}\{a \le x \le b\}$$

Распределения преобразований

Факт. $(\ref{eq:property})$ Если $\mathcal{L}(x)=F$ и $y:=\psi(x)$, где $\psi\colon\mathbb{R}\to\mathbb{R}$ строго возрастает, то $\mathcal{L}(y)=G$, где $G(s):=F(\psi^{-1}(s))$.

Доказательство. При таких гипотезах ψ^{-1} существует и (медленно) возрастает. Следовательно

$$\mathbb{P}\{y \le s\} = \mathbb{P}\{\psi(x) \le s\} = \mathbb{P}\{x \le \psi^{-1}(s)\} = F(\psi^{-1}(s))$$

Заметьте, как монотонность используется во втором равенстве

Факт. $(\ref{akt.})$ Если x имеет плотность p в $\mathbb R$ и $y:=\psi(x)$, где ψ — диффеоморфизм в $\mathbb R$, то распределение y абсолютно непрерывное с функцией плотности

$$q(s) = p(\psi^{-1}(s)) \left| \frac{\mathrm{d}\psi^{-1}(s)}{\mathrm{d}s} \right| \qquad (s \in \mathbb{R})$$

термин **диффеоморфизм** значит, что ψ — биекция в $\mathbb R$ и оба ψ и его обратное дифференцируемы

Пример. Если x имеет функцию плотности p в \mathbb{R} , и μ и σ — константы с $\sigma>0$, то функция плотности $y:=\mu+\sigma x$ — это

$$q(s) = p\left(\frac{s-\mu}{\sigma}\right)\frac{1}{\sigma} \qquad (s \in \mathbb{R})$$

Когда x стандартное нормальное: $y=\mu+\sigma x$ is $\mathrm{N}(\mu,\sigma^2)$

Почему?

- Возьмем p функцию плотности стандартного нормального распределения ϕ
- Вспомним

$$p(s) = F'(s) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(s-\mu)^2}{2\sigma^2}\right\}$$

Пусть x — случайная величина в вероятностном пространстве $(\Omega, \mathscr{F}, \mathbb{P})$

Распределение x кодирует всю информацию для расчета ожидания x или любого \mathscr{B} -измеримого преобразования h(x)

Во-первых, пусть x конечно. Предположим, что

- $\mathcal{L}(x) = P$
- ullet функция $h\colon \mathbb{R} o \mathbb{R}$ любая \mathscr{B} -измеримая функция
- ullet P помещает все вероятности в конечное множество $\left\{s_j
 ight\}_{j=1}^J$

Исопльзуем $\mathbb{P}\{x=s_j\}=P\{s_j\}$ и определение ожиданий:

$$\mathbb{E}h(x) = \sum_{j=1}^{J} h(s_j) \mathbb{P}\{x = s_j\} = \sum_{j=1}^{J} h(s_j) P\{s_j\} = \sum_{j=1}^{J} h(s_j) p_j$$

Ожидания h(x) в $(\Omega, \mathscr{F}, \mathbb{P})$ равны ожиданиям h в $(\mathbb{R}, \mathscr{B}(\mathbb{R}), P)$

Верно также и для бесконечного случая:

Факт. Пусть x — случайная величина в некотором вероятностном пространстве $(\Omega, \mathscr{F}, \mathbb{P})$, пусть $\mathcal{L}(x) = P$ и h — \mathscr{B} -измеримая функция, такая что h(x) интегрируема. Ожидания $\mathbb{E}\,h(x)$ полностью определены h и P. В частности,

$$\mathbb{E}h(x) = \int h(s)P(\mathrm{d}s)$$

где $\int h(s)P(\mathrm{d}s)$ — ожидания h в $(\mathbb{R},\mathscr{B}(\mathbb{R}),P)$

Пример. Пусть x — случайная величина, чье распределение P является равномерным распределением в [a,b]

Применить определение функции плотности равномерного распределения

$$\mathbb{E} x = \int sP(\mathrm{d}s) = \int sp(s) \, \mathrm{d}s = \int_{-\infty}^{\infty} \frac{s}{b-a} \mathbb{1} \{ a \le s \le b \} \, \mathrm{d}s$$

Решение интеграла дает $\mathbb{E} \, x = \mu := (a+b)/2$. Дисперсия равна

$$var[x] = \int (s - \mu)^2 P(ds)$$

$$= \int_a^b \left(s - \frac{a+b}{2} \right)^2 \frac{1}{b-a} ds = \frac{1}{12} (b-a)^2$$

Пример. Предположим, что $\mathcal{L}(x) = N(\mu, \sigma)$

Если $\sigma>0$, среднее значение может быть вычислено с помощью

$$\mathbb{E}x = \int_{-\infty}^{\infty} s \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(s-\mu)^2}{2\sigma^2}\right\} ds = \mu$$

Дисперсия определяется как:

$$\operatorname{var}[x] = \int_{-\infty}^{\infty} (s - \mu)^2 \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(s - \mu)^2}{2\sigma^2}\right\} ds = \sigma^2$$

Моменты распределений

Любые две случайные величины с одинаковыми распределениями имеют одинаковые моменты

Следовательно моменты лучше всего рассматривать как свойство распределения, не как случайную величину

Таким образом, мы определяем

- среднее P как $\mu = \int s P(\mathrm{d}s)$,
- ullet k-ый момент P как $\int s^k P(\mathrm{d}s)$,
- ullet дисперсию P как $\int (s-\mu)^2 P(\mathrm{d}s)$,

и так далее

Функция квантилей

Пусть F — строго возрастающая функция распределения в $\mathbb R$

Возьмем $au\in(0,1)$, au-ая квантиль F — это $\xi\in\mathbb{R}$, который является решением $F(\xi)= au$

Согласно нашим предположениям о F, такое ξ существует и однозначно определено

0.5-ая квантиль называется медианой F

Функция квантилей:

$$F^{-1}(au) := \;$$
 единственный ξ , такой что $F(\xi) = au \qquad (0 < au < 1)$

Пример. Функция квантилей связанная со стандартным распределением Коши — это $F^{-1}(\tau) = \tan[\pi(\tau-1/2)]$

Рис.: Функция квантилей распределения Коши (горизонтальная ось — это $au \in (0,1)$)

Когда F не строго возрастающая, F^{-1} не определено

Мы можем задать:

$$F^{-1}(\tau) := \inf\{s \in \mathbb{R} : F(s) \ge \tau\} \qquad (0 < \tau < 1)$$
 (22)

Функция плотности p симметрична, если p(s)=p(-s) для всех $s\in\mathbb{R}$

Распространенный сценарий проверки гипотез

Факт. (??) Пусть x — случайная величина с функцией плотности p. Если p симметрична, то функция распределения $G\ y:=|x|$ определяется как

$$G(s):=\mathbb{P}\{y\leq s\}=egin{cases} 2F(s)-1 & ext{, если } s\geq 0 \ 0 & ext{в ином случае} \end{cases}$$

Докажите в качестве упражнения ??

Факт эквивалентен F(s) = 1 - F(-s)

Возьмем случайную величину x с $\mathcal{L}(x) = F$ и заданной константой $\alpha \in (0,1)$

Рассмотрим c, являющийся решением $\mathbb{P}\{-c \leq x \leq c\} = 1-\alpha$

Факт. Если $\mathcal{L}(x)=F$, x имеет симметричную функцию плотности и F — строго возрастающая, то

$$c = F^{-1}(1 - \alpha/2) \quad \Longrightarrow \quad \mathbb{P}\{-c \le x \le c\} = 1 - \alpha \quad (23)$$

Когда F стандартная нормальная функция распределения Φ , c обычно обозначается как $z_{\alpha/2}$:

$$z_{\alpha/2} := \Phi^{-1}(1 - \alpha/2) \tag{24}$$

Рис.: Критические значения для стандартной нормальной плотности