Практичне заняття № 7.

Паралельні алгоритми розв'язання двовимірної задачі цифрової фільтрації.

Формулювання двовимірної задачі фільтрації.

Загалом розглядувана нами задача цифрової фільтрації полягає у виконанні C переобчислень згладжування масиву значень N змінних через рухоме вікно розміром M.

У двовимірному випадку переобчислення згладжування виконуються за формулою (1).

$$x_{i_1, i_2} = \sum_{s_1 = -m_1}^{m_1} \sum_{s_2 = -m_2}^{m_2} x_{i_1 + s_1, i_2 + s_2} f_{s_1, s_2}.$$

$$(1)$$

У разі переобчислення значень $x_{i_1,\,i_2}$ $(i_1=\overline{1,l_1};\,i_2=\overline{1,l_2})$ згідно з (1) одержуємо, що $N=l_1l_2$, $M=(2m_1+1)(2m_2+1)$.

Звичайний послідовний алгоритм розв'язання сформульованої задачі має вигляд:

FOR
$$t = 1, C$$
 DO

{
FOR $i_1 = 1, l_1$ DO
}

{
FOR $i_2 = 1, l_2$ DO
}

{
 $p_1 = 0$
FOR $s_1 = -m_1, m_1$ DO
}

{
FOR $s_2 = -m_2, m_2$ DO
}

{
 $p_1 = p_1 + x_{i_1+s_1, i_2+s_2} * f_{s_1, s_2}$ }

 $x_{i_1, i_2} = p_1$ }
}

Характерною особливістю алгоритму (2) ϵ те, що для переобчислення значення змінної x_{i_1,i_2} на t-му кроці використовуються значення

$$x_{i_1-m_1,\,i_2-m_2}, x_{i_1-m_1,\,i_2-m_2+1}, \dots, x_{i_1-m_1,\,i_2}, x_{i_1-m_1,\,i_2+1}, \dots, x_{i_1-m_1,\,i_2+m_2};$$

$$x_{i_1-m_1+1,\,i_2-m_2}, \quad x_{i_1-m_1+1,\,i_2-m_2+1}, \dots, \quad x_{i_1-m_1+1,\,i_2}, \quad x_{i_1-m_1+1,\,i_2+1}, \dots, \quad x_{i_1-m_1+1,\,i_2+m_2};$$

$$\dots; \quad x_{i_1-1,\,i_2-m_2}, \quad x_{i_1-1,\,i_2-m_2+1}, \dots, \quad x_{i_1-1,\,i_2+1}, \dots, \quad x_{i_1-1,\,i_2+m_2}; \quad x_{i_1,\,i_2-m_2},$$

$$x_{i_1,\,i_2-m_2+1}, \dots, \quad x_{i_1,\,i_2-1},$$

які ϵ вже також переобчисленими на цьому ж кроці.

Зазначена особливість алгоритму (2) дозволяє збільшувати швидкість процесу згладжування, тому її потрібно повністю або частково використати під час паралельної організації обчислень.

Для розв'язання сформульованої задачі фільтрації розглянемо і інший послідовний алгоритм (3).

FOR
$$t = 1, C$$
 DO
{ FOR $i_1 = 1, l_1$ DO
{ FOR $i_2 = 1, l_2$ DO
{ $p = 0$ (3)
FOR $s_1 = -m_1, m_1$ DO
{ FOR $s_2 = -m_2, m_2$ DO
{ $p = p + x_{i_1+s_1, i_2+s_2}^{t-1} * f_{s_1, s_2}$ } }
 $x_{i_1, i_2}^t = p$ } }.

У наведеній конструкції x_{i_1,i_2}^0 , x_{i_1,i_2}^t – відповідно початкове значення змінної x_{i_1,i_2} та значення цієї ж змінної, переобчислене на t-му кроці.

Для свого виконання алгоритм (3) потребує час

$$T_1 = t_{op}(2m_1+1)(2m_2+1)Cl_1l_2$$
.

Тут t_{op} — час виконання подвійної операції додавання-множення.

В алгоритмі (3) для переобчислення значень змінних на t-му кроці використовуються значення, переобчислені виключно на (t-1)-му кроці.

Паралельні алгоритми фільтрації.

Паралельний режим обробки під час розв'язування двовимірної задачі фільтрації, пов'язаний із одночасним переобчисленням значень всіх змінних x_{i_1,i_2} $(i_1 = \overline{1,l_1}; i_2 = \overline{1,l_2})$, можна здійснити, наприклад, з допомогою алгоритму (4).

FOR
$$t = 1, C$$
 DO
{ FOR ALL $(i_1, i_2) \in \{(i_1, i_2) : i_1 = \overline{1, l_1}; i_2 = \overline{1, l_2}\}$ DO PAR
{ $p_{i_1, i_2} = 0$
FOR $s_1 = -m_1, m_1$ DO
{ FOR $s_2 = -m_2, m_2$ DO
{ $p_{i_1, i_2} = p_{i_1, i_2} + x_{i_1 + s_1, i_2 + s_2} * f_{s_1, s_2}$ } }
 $x_{i_1, i_2} = p_{i_1, i_2}$ } }.

У конструкції (4) тип паралелізму *PAR* може бути *SIM* або *CONC*. Тоді цей паралельний алгоритм реалізуватиме відповідно синхронний або асинхронний ме-

тод обчислень. У другому випадку кожне із значень x_{i_1,i_2} переобчислюватиметься незалежно від інших, використовуючи як аргументи поточні значення

$$x_{i_1-m_1,\,i_2-m_2},\ x_{i_1-m_1,\,i_2-m_2+1},\,\ldots,\,x_{i_1,\,i_2},\,x_{i_1,\,i_2+1},\ldots,\,x_{i_1+m_1,\,i_2+m_2}$$

Для реалізації синхронного методу обчислень за (4) потрібен час

$$T_{s_1} = t_{op}(2m_1+1)(2m_2+1)C$$
.

Використовуючи метод пірамід для розпаралелювання циклів, реалізацію синхронного методу обчислень у даному випадку можна здійснити з допомогою алгоритму (5).

FOR ALL
$$(k_1, k_2) \in \{(k_1, k_2) : k_1 = \overline{1, l_1}; k_2 = \overline{1, l_2}\}$$
 DO PAR

$$\{ FOR \ t = 1, C \ DO \}$$

$$\{ FOR \ i_1 = \max\{1, (t - C)m_1 + k_1\}, \min\{l_1, (C - t)m_1 + k_1\} \ DO \}$$

$$\{ FOR \ i_2 = \max\{1, (t - C)m_2 + k_2\}, \min\{l_2, (C - t)m_2 + k_2\} \ DO \}$$

$$\{ p = 0 \}$$

$$\{ FOR \ s_1 = -m_1, m_1 \ DO \}$$

$$\{ FOR \ s_2 = -m_2, m_2 \ DO \}$$

$$\{ p = p + x_{i_1 + s_1, i_2 + s_2}^{t-1} * f_{s_1, s_2} \}$$

$$x_{i_1, i_2}^t = p \} \} \} \}.$$

У цьому разі $PAR \in AUTON$ і (5) задає паралельне виконання l_1l_2 автономних гілок. Час виконання даного алгоритму обчислюється за формулою

$$T_{p_1} = t_{op}(2m_1+1) (2m_2+1)C(1+((2/3)m_1m_2(2C-1)+m_1+m_2)(C-1)).$$

У (5) процес згладжування можна дещо покращити, якщо останні п'ять рядків замінити фрагментом:

$$\{ p_{i_1,i_2} = 0$$

$$FOR \quad s_1 = -m_1, m_1 \quad DO$$

$$\{ FOR \quad s_2 = -m_2, m_2 \quad DO$$

$$\{ p_{i_1,i_2} = p_{i_1,i_2} + x_{i_1+s_1, i_2+s_2} * f_{s_1,s_2} \}$$

$$x_{i_1,i_2} = p_{i_1,i_2} \} \} \} \} .$$

Одержана унаслідок цього паралельна конструкція дозволить у кожній гілці під час переобчислення значення деякої змінної на заданому кроці використовувати значення, що ϵ вже переобчисленими на цьому ж кроці.

Алгоритми з обмеженим паралелізмом.

Далі розглянемо деякі паралельні алгоритми з обмеженою кількістю гілок P (P < N) для розв'язання двовимірної задачі фільтрації. Зокрема, такий алгоритм, що реалізує синхронний метод обчислень, матиме вигляд:

Запис $i_1=\overline{J_1(p),J_2(p)},\,J_3$ означає, що змінна i_1 набуває значень від $J_1(p)$ до $J_2(p)$ з кроком J_3 , де $J_1(p)=p,\,J_2(p)=p+(l_1/P-1)(m_1+1),\,\,J_3=m_1+1.$

Даний алгоритм працює за умови, що l_1 є кратним до P, де $P = m_1 + 1$. Якщо знехтувати часовими затратами на синхронізацію паралельних гілок та реалізацію подвійного циклу за змінними j_1 , j_2 , то час виконання цього алгоритму обчислюється так:

$$T_{sob} = t_{op}(2m_1+1)(2m_2+1)l_1l_2C/P$$
.

У наведеній конструкції (6) третій рядок можна замінити фрагментом:

{ FOR ALL
$$(i_1,i_2) \in \{(i_1,i_2): i_1 = \overline{1,l_1}; i_2 = \overline{J^1(p),J^2(p)}, J^3\} DO.$$

Тут $J^1(p) = p$, $J^2(p) = p + (l_2/P - 1)(m_2 + 1)$, $J^3 = m_2 + 1$. При цьому l_2 має бути кратним до P, де $P = m_2 + 1$. Час роботи одержаного унаслідок такої заміни алгоритму буде співпадати з часом виконання алгоритму (6), якщо $m_1 = m_2$.

Обмежуючи кількість паралельно виконуваних гілок, алгоритм (5) можна записати у вигляді (7).

$$FOR \quad ALL \quad (p, r) \in \{(p, r) : p = \overline{1, P_1}; \ r = \overline{1, P_2}\} \quad DO \quad PAR$$

$$\{ FOR \quad t = 1, C \quad DO \}$$

$$\{ FOR \quad i_1 = \max\{1, (t - C)m_1 + (p - 1)l_1/P_1 + 1\}, \min\{l_1, (C - t)m_1 + pl_1/P_1\} \quad DO \}$$

$$\{ FOR \quad i_2 = \max\{1, (t - C)m_2 + (r - 1)l_2/P_2 + 1\}, \min\{l_2, (C - t)m_2 + rl_2/P_2\} \quad DO \}$$

{
$$p = 0$$

 $FOR \quad s_1 = -m_1, m_1 \quad DO$
{ $FOR \quad s_2 = -m_2, m_2 \quad DO$
{ $p = p + x_{i_1 + s_1, i_2 + s_2}^{t-1} * f_{s_1, s_2}$ }
 $x_{i_1, i_2}^t = p$ } } } } }.

У наведеній конструкції кількість паралельних гілок $P = P_1 P_2$, при цьому l_1 є кратним до P_1 , а l_2 є кратним до P_2 . Час виконання паралельного алгоритму (7) обчислюється за формулою

$$T_{pob} = (l_1 l_2 / (P_1 P_2) + (m_1 l_2 / P_2 + m_2 l_1 / P_1)(C - 1) + (2/3) m_1 m_2 (C - 1)(2C - 1)) \times t_{op} (2m_1 + 1)(2m_2 + 1)C.$$

Оцінювання прискорення паралельних обчислень.

Використовуючи оцінки часу виконання паралельних (4)—(7) та послідовного (3) алгоритмів, отримуємо відповідні оцінки прискорення паралельних обчислень. Зокрема, прискорення алгоритму (4), який реалізує синхронну схему, обчислюємо так:

$$S_{(4)} = T_1 / T_{s_1} = l_1 l_2$$
,

тобто воно набуває свого оптимального значення за зробленого вище припущення стосовно синхронізації паралельних гілок.

Прискорення паралельного алгоритму (5) подається формулою:

$$S_{(5)} = T_1/T_{p_1} = l_1 l_2/(1 + (2m_1 m_2 (2C - 1)/3 + m_1 + m_2)(C - 1)).$$

Зазвичай на практиці $l_1 >> m_1, \, l_2 >> m_2, \, l_1 >> C, \, l_2 >> C$ та $l_1, \, l_2$ відрізняються від $m_1C^2, \, m_2C^2 \, (\, l_1 > m_1C^2, \, l_2 > m_2C^2)$ відповідно не менш, як на декілька порядків, тому $S_{(5)}$ буде суттєвим. Наприклад, для l_1 =100, l_2 = 200, m_1 = m_2 =1, C =5 отримуємо $S_{(5)} \approx 606$, а для l_1 = l_2 =1000, m_1 = m_2 =5, C =10 маємо: $S_{(5)} \approx 340$.

Для алгоритму (6) прискорення подається формулою

$$S_{(6)} = T_1 / T_{sob} = P$$
,

тобто воно набуває оптимального значення за виконання зроблених вище припущень стосовно часу синхронізації паралельних гілок.

Прискорення паралельного алгоритму (7) обчислюємо за формулою

$$S_{(7)} = T_1/T_{pob} = \left(\frac{1}{P_1 P_2} + \left(\frac{m_1}{P_2 l_1} + \frac{m_2}{P_1 l_2}\right)(C-1) + 2m_1 m_2 (C-1)(2C-1)/(3l_1 l_2)\right)^{-1}.$$

За зроблених припущень стосовно співвідношень між $l_1, l_2, m_1, m_2, C, P_1, P_2$ та m_1C, m_2C одержуємо, що $S_{(7)}\approx P_1P_2=P$. Отже, прискорення алгоритму (7) у цьому разі є близьким до свого оптимального значення.

Вправа для самостійної роботи.

Записати варіант алгоритму з обмеженим паралелізмом для розв'язання двовимірної задачі цифрової фільтрації, який реалізує асинхронну схему обчислень. Обчислити складність цього алгоритму.