Big Blank Title for the Project

Author 7th April 2020

Softmax PPO Closed Form Update 1

We will consider direct functional representation with tabular parameterization, i.e. $\pi \equiv p^{\pi}$ is essentially an $S \times A$ table satisfying the constraints

$$\sum_a p^\pi(a|s) = 1, \qquad \forall s \in \mathcal{S}$$

$$p^\pi(a|s) \ge 0, \qquad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$

Our goal is to find the closed form solution to the following optimization problem

$$\pi_{t+1} = \arg\max_{\pi \in \Pi} \left[\sum_{s} d^{\pi_t}(s) \sum_{a} p^{\pi_t}(a|s) \left(A^{\pi_t}(s,a) + \frac{1}{\eta} \right) \log \frac{p^{\pi}(s,a)}{p^{\pi_t}(s,a)} \right], \tag{1}$$

subject to the above constraints on p^{π} .

We begin by formulating this problem using Lagrange multipliers λ_s , $\lambda_{s,a}$ for all states s and actions a: 10

$$\mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = \sum_{s} d^{\pi_{t}}(s) \sum_{a} p^{\pi_{t}}(a|s) \left(A^{\pi_{t}}(s, a) + \frac{1}{\eta} \right) \log \frac{p^{\pi}(a|s)}{p^{\pi_{t}}(a|s)} - \sum_{s,a} \lambda_{s,a} p^{\pi}(a|s) - \sum_{s} \lambda_{s} \left(\sum_{a} p^{\pi}(a|s) - 1 \right).$$
(2)

KKT conditions for this problem are: 13

$$\nabla_{p^{\pi}(x,b)} \mathcal{L}(p^{\pi}, \lambda_s, \lambda_{s,a}) = 0, \quad \forall x \in \mathcal{S}, b \in \mathcal{A}$$
 (3)

$$\nabla_{p^{\pi}(x,b)}\mathcal{L}(p^{\pi},\lambda_{s},\lambda_{s,a}) = 0, \qquad \forall x \in \mathcal{S}, b \in \mathcal{A}$$

$$\sum_{a} p^{\pi}(a|s) = 1, \qquad \forall s \in \mathcal{S}$$

$$p^{\pi}(a|s) \geq 0, \qquad \forall s \in \mathcal{S}, a \in \mathcal{A}$$

$$(3)$$

$$(4)$$

$$p^{\pi}(a|s) \ge 0, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}$$
 (5)

$$\lambda_s \ge 0, \qquad \forall s \in \mathcal{S} \tag{6}$$

$$\lambda_s \left(\sum_{a} p^{\pi}(a|s) - 1 \right) = 0 \qquad \forall s \in \mathcal{S}$$
 (7)

$$\lambda_{s,a} p^{\pi}(a|s) = 0, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$
 (8)

Let us now try to solve this system. Solving the first equation for arbitrary state-action pair 20 (x,b), gives us: 21

$$\nabla_{p^{\pi}(b|x)} \mathcal{L}(p^{\pi}, \lambda_{s}, \lambda_{s,a}) = d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) \left(A^{\pi_{t}}(x, b) + \frac{1}{\eta} \right) \frac{1}{p^{\pi}(b|x)} - \lambda_{x,b} - \lambda_{x} = 0$$

$$\Rightarrow \qquad p^{\pi}(b|x) = \frac{d^{\pi_{t}}(x) p^{\pi_{t}}(b|x) (1 + \eta A^{\pi_{t}}(x, b))}{\eta(\lambda_{x} + \lambda_{x,b})}.$$
(9)

Let us set 24

25

$$\lambda_{s,a} = 0, \quad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$
 (10)

26 Then combining Eq. 9 with the second KKT condition gives us

$$\lambda_s = \frac{1}{\eta} \sum_a d^{\pi_t}(s) p^{\pi_t}(a|s) (1 + \eta A^{\pi_t}(s, a)). \tag{11}$$

Therefore, with the additional assumption $d^{\pi_t}(s) > 0$, $p^{\pi}(a|s)$ becomes

$$p^{\pi}(a|s) = \frac{p^{\pi_t}(a|s)(1 + \eta A^{\pi_t}(s,a))}{\sum_b p^{\pi_t}(b|s)(1 + \eta A^{\pi_t}(s,b))}.$$
 (12)

Note that $d^{\pi_t}(s), p^{\pi_t}(a|s) \ge 0$ for any state-action pair, since they are proper measures. Therefore, all that remains is to ensure that

$$1 + \eta A^{\pi_t}(s, a) \ge 0$$

36

to satisfy the third and fourth KKT conditions. But how to do that? One straightforward way is to define $p^{\pi}(a|s) = 0$ whenever $1 + \eta A^{\pi_t}(s,a) \leq 0$, and accordingly re-define λ_s . Therefore, this gives us the final solution to our original optimization problem (Eq. 1):

$$\pi_{t+1} = p^{\pi}(s, a) = \frac{p^{\pi_t}(a|s) \max(1 + \eta A^{\pi_t}(s, a), 0)}{\sum_b p^{\pi_t}(b|s) \max(1 + \eta A^{\pi_t}(s, b), 0)}.$$
 (13)

This leaves one last problem: Is it always true that given any state s, there exists at least one action a, such that $1 + \eta A^{\pi_t}(s, a) \geq 0$? Because otherwise, we would fail to satisfy the second KKT condition.