B. MET. ENGG. EXAMINATION, 2017

(1st Year, 2nd Semester)

Chemistry-II

Full Marks: 100

Time: Three Hours

The figures in the margin indicate full marks

Answer any five questions

- (a) Derive Poiseuille's equation for fluid flow through a tube of uniform radius r with length L.
 [10]
 - (b) For a consecutive reaction: $A \to B \to C$ with k_1 and k_2 as the first-order rate constants for the consecutive steps, derive the expression for [A], [B] and [C] at any time during the reaction. Draw the plot of [A], [B] and [C] versus time during the reaction.

[10]

- 2. What is the nature of the plot of concentration of a reagent undergoing first-order decay versus time? Explain with proper derivation. This plot looks like a straight line at the beginning of the reaction. Why? What are the advantages of taking experimental data points at the beginning of the reaction for the purpose of analyses?

 [7 + 7 + 6]
- 3. Answer the following questions:
 - (a) Show the possible coordination sites of the following ligands:

C₂O₄²⁻, SCN⁻, S₂O₃²⁻, H₂NCH₂COOH

- (b) Two complex salts **A** and **B** of cobalt are known with the empirical formula CoBrSO₄.5NH₃. A solution of **A** gives a precipitate with BaCl₂ but does not form any precipitate with AgNO₃. A solution of **B** gives a precipitate with AgNO₃ but does not form any precipitate with BaCl₂. Write the coordination formula of A and B and explain.
- (c) Predict the number of unpaired electrons and the magnetic moments of the following species:

(i) $[Co(NH_3)_6]^{3+}$ (ii) $[CoF_6]^{3-}$

- (d) The stability of [Ni(en)₃]²⁺ is much greater than that of [Ni(NH₃)₆]²⁺, although both contains Ni-N bonds Explain
- (e) Write the Werner theory of coordination compound and give evidence in favour of it.
- (f) How will you distinguish *cis* and *trans* isomers of a square planar coordination compound by physicochemical method?
- (g) How will you distinguish between the following pair of isomers by conductance study?
- i) [Cr(NH₃)₆][Cr(NO₂)₆] and (ii) [Cr(NH₃)₄((NO₂)₂][Cr(NH₃)₂(NO₂)₄]

2+(2+2)+2+(5+2)+3+2=20

[Turn over

- 4. Answer the following questions:
 - (a) What do you mean by "Ligand"? Write down the structure of a hexadentate chelating ligand and its octahedral metal complex with M^{n+} .
 - (b) What do you mean by "Chelate complex" and "innermetallic complex"? Give one example each showing the use of chelating ligands in qualitative and quantitative analysis.
 - (c) Write short notes on
 - (i) Ligand isomerism
- (ii) Hydrate isomerism
- d) Write the possible isomers of the coordination compound $[Ni(en)_2Cl_2]$ (en = ethylenediamine) and discuss their optical properties.
- (e) Write the IUPAC nomenclature of the following coordination compounds:
- $(i) \ [Co(en)_2Cl_2]Cl \ \ (ii) \ [Co(NH_3)_5(NO_2)]Cl_2 \quad \ (iii) \ [Pt(NH_3)_4][PtCl_4] \quad \ (iv) \ [Cr(acac)_3]$

$$(1+2)+(2+3)+(2+2)+(2+2)+4=20$$

- 5. (a) The freezing point of pure benzene is 5.44 0 C and that of a solution containing 2.092 g benzaldehyde in 100 g benzene is 4.44 0 C. Calculate the molecular weight of benzaldehyde. Given $K_{\rm f} = 5.1$.
 - (b) A solution contains 5 g solute (MW 60) per 100 g of a solvent. What will be vapour pressure of the solution at 25°C? Given, vapour pressure of the solvent at 25°C is 23.76 mm. 5
 - (c) A solution containing 0.5126 g naphthalene in 50 g CCl₄ yields a boiling point elevation of 0.402 K, while a solution of 0.6216 g of an unknown solute in the same mass of the solvent gives a boiling point elevation of 0.647 K. Find out the molar mass of the unknown solute.
- 6. (a) The melting point of phenol is 40°C. A solution containing 13.5 g of acetanilide (C₈H₉ON) in 94 g phenol freezes at 38°C. Calculate the freezing point constant and the latent heat of fusion of phenol.
 - (b) 2. 2.4 g urea and 3.4 g sucrose are dissolved in 180 g of water. Calculate the vapour pressure of the solution. The vapour pressure of water is 23.65 mm at that tempt.