12 MERJENJE IZKORISTKA ENOSMERNEGA GENERATORJA

Če proces izvajamo v obratni smeri tako, da mi poganjmo enosmerni motor, ga izrabljamo kot generator električne energije in poganjamo tkok skozi nek porabnik. Izkoristek generatorja nam pove, kolikšen del mehanskega dela smo pretvorili v električno delo, ki se bo trošila na uporu (na nekem porabniku). Slika sl. 1 prikazuje vezavno shemo, ki jo potrebujemo za ta poskus.

Slika 1: Simbolična shema vezave preskusa.

Generator pretvori mehansko delo v električno tako, da inducira napetost. Ta pa poganja tok skozi upor. Na ta način se električno delo na uporu troši v obliki toplote, zato se upor tudi malenkostno segreje. Električno delo lahko izračunamo enostavno preko napetosti:

$$Ael = \frac{U^2}{R}t\tag{1}$$

kjer je U - napetost, R - upornost upora in t - čas, ko je utež opravljala delo. Mehansko delo na generatorju bo opravljala utež in poganjala generator. Mehansko delo tako lahko izračunam:

$$A_{meh} = mgh (2)$$

kjer je m - masa telesa, g - gravitacijski pospešek in h višinska razlika. Pri meritvah bodite pozorni, da odčitujete vrednosti takrat, ko se utež giblje enakomerno. Kajti v začetku utež pospešuje, zato pričnite z odčitevanjem, ko je utež že prepotovala kakih 10 cm.

Tako izkoristek ni težko izračunati, saj je to razmerje med vloženim delom in delom, ki se je potrošil na uporu:

$$\eta = \frac{A_{el}}{A_{meh}} \tag{3}$$

12.0.1 Naloga: Merjenje izkoristka enosmernega generatorja

Izmerite izkoristek enosmernega generatorja. Pri različnih bremenskih upornostih (2Ω , 5Ω , 10Ω , 22Ω , 50Ω in 100Ω) in pri različne navorih generatorja.

R=2								
	2	U[V]	t[s]	$A_{el}[J]$	m[kg]	h[m]	$A_{meh}[J]$	$\eta [\%]$
1								
2								
3								
4								
5								
6								
R=5								
	2	U[V]	t[s]	$A_{el}[J]$	m[kg]	h[m]	$A_{meh}[J]$	$\eta [\%]$
1								
2								
3								
4								
5								
6								
R=1	0							
2	Ω	U[V]	t[s]	$A_{el}[J]$	m[kg]	h[m]	$A_{meh}[J]$	$\eta [\%]$
1								
2								

R=10							
Ω	U[V]	t[s]	$A_{el}[J]$	m[kg]	h[m]	$A_{meh}[J]$	$\eta [\%]$
3							
4							
5							
6							

R=22							
Ω	U[V]	t[s]	$A_{el}[J]$	m[kg]	h[m]	$A_{meh}[J]$	$\eta [\%]$
1							
2							
3							
4							
5							
6							
R=50							
Ω	U[V]	t[s]	$A_{el}[J]$	m[kg]	h[m]	$A_{meh}[J]$	$\eta [\%]$
1							
2							
3							
4							
5							
6							
R=100							
Ω	U[V]	t[s]	$A_{el}[J]$	m[kg]	h[m]	$A_{meh}[J]$	$\eta [\%]$
1							
2							
3							
4							
5							
6							

V isti graf $\eta({\rm M})$ narišite 6 krivulj
 za vsako bremensko upornost svojo krivuljo.

