

ANÁLISIS DE CIRCUITOS

Ingeniería de Telecomunicación Examen febrero 2009

Duración: 2 horas 30 minutos Responda a cada pregunta en hojas separadas Lea detenidamente los enunciados antes de contestar

Nombre	D.N	1.1.	Gru	po	

1. Para el circuito de la figura adjunta determinar el valor R2 y R3 sabiendo que la corriente en la resistencia de R_3 es 12A, que $R_1 = 1k\Omega$ y que $R_2 = 2R_3$. (1.5 puntos)

- 2. En el circuito de la figura, el interruptor se cierra en t=0s.
 - a) Calcular la corriente i en t =0 s. y cuando se alcanza de nuevo el estado estacionario (0.5 puntos)
 - b) Calcular la tensión que cae en la resistencia de $3k\Omega$ en t = 0 y en t = 0
 - c) Obtener la ecuación diferencial en función de i(t) para t>0.(1 punto)
 - d) Obtener la expresión de i(t) para t>0s.(1punto)

3. Para el circuito de la figura siguiente, supuestas condiciones iniciales nulas, determine:

- a) La función de transferencia $V_c(s)/I_1(s)$. (1 punto)
- b) Represente el diagrama de Bode en amplitud y fase para dicha función de transferencia.(1 punto)
- c) Si $I_1(t) = u(t)A$ determine Vc(t) para t > 0 (1 punto)

Datos: L1=1H, C1=1/2F, R1= 3Ω

4. a)Determine los parámetros z de la red sombreada de la figura: (1 punto)

b)Sabiendo que los elementos del circuito son: $R_1 = 200\Omega$, $R_2 = 100\Omega$, $L_1 = 9H$, $L_2 = 4H$, k = 0.5, Z_L es una resistencia de 800Ω en serie con una capacidad de 10^{-6} F, la fuente V_G tiene una amplitud de 300V eficaces y una pulsación de 400 rad/s y una impedancia interna $Z_G = (500 + j100)\Omega$; determine la potencia media real entregada a Z_L . (1.5 puntos)