CPEN 400Q Lecture 12 The quantum Fourier transform (QFT)

Monday 24 February 2025

Announcements

- Quiz 5 today
- Literacy Assignment 2 due tomorrow at 23:59
- Assignment 2 due Thursday at 23:59
- Tutorial tomorrow: intro to variational algorithms
 - helpful for many project groups
- First project peer assessment survey this week
 - Qualtrics link will be posted in Piazza

Where have we been?

Where are we going?

```
def shors algorithm(N):
   p. q = 0.0
   while p * a != N:
       a = np.random.choice(list(range(2, N - 1)))
       if np.gcd(a, N) != 1:
           p = np.qcd(a, N)
           q = N // p
           return p, q
        sample = get sample(a, N)
       phase = fractional binary to float(sample)
        candidate order = phase to order(phase, N)
        if candidate order % 2 == 0:
           square root = (a ** (candidate order // 2)) % N
           if square_root not in [1, N - 1]:
               p = np.gcd(square root - 1, N)
               q = np.gcd(square root + 1, N)
    return p, q
```

Module 3 learning outcomes

Learning outcomes:

- define, and state the scaling of, the quantum Fourier transform
- use quantum phase estimation to determine the eigenvalues of a unitary matrix
- use the QFT and QPE as subroutines to implement order finding, and simulate Shor's factoring algorithm
- identify cryptographic schemes susceptible to quantum attack
- describe the societal and ethical implications of quantum technology

Today

Learning outcomes:

- Express floating-point values in fractional binary representation
- Describe the behaviour of the quantum Fourier transform
- Construct a circuit for the quantum Fourier transform and analyze its resource usage

The discrete Fourier transform

The DFT and FFT (which implements it efficiently) convert between time and frequency domains in digital signal processing.

$$DFT = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \bar{\omega} & \bar{\omega}^2 & \cdots & \bar{\omega}^{N-1} \\ 1 & \bar{\omega}^2 & \bar{\omega}^4 & \cdots & \bar{\omega}^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \bar{\omega}^{N-1} & \bar{\omega}^{2(N-1)} & \cdots & \bar{\omega}^{(N-1)(N-1)} \end{pmatrix}$$

where $\bar{\omega} = e^{-2\pi i/N}$.

The discrete Fourier transform

Given a signal x[n], the DFT computes

The inverse DFT computes

where
$$\omega=e^{2\pi i/N}=ar{\omega}^{-1}$$

The quantum Fourier transform (QFT) is the quantum analog of the **inverse DFT**.

Exercise: Apply the QFT to an *n*-qubit basis state $|x\rangle$

As a matrix, it looks a lot like the DFT:

$$QFT = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{N-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

How do we synthesize a circuit for it?

Exercise: Start with special case n = 1 (N = 2).

Next case: n = 2 (N = 4)

Circuit for n = 3 (N = 8):

Here, $R_2 = S$ and $R_3 = T$.

Image credit: Xanadu Quantum Codebook node F.3

We will derive this by reverse-engineering the analytical definition,

Here x and k are integers, which have binary equivalents $|x\rangle = |x_1 \cdots x_n\rangle$, $|k\rangle = |k_1 \cdots k_n\rangle$:

and similarly for k.

We are working with

$$\omega^{xk} = e^{2\pi i x(k/N)}$$

with $N = 2^n$.

We can write a fraction $k/2^n$ in a 'decimal version' of binary:

Binary notation for decimal numbers

Exercise: let k = 0.11010. What is the numerical value of k?

We will reexpress k/N in fractional binary notation, then reshuffle and *factor* the output state to uncover the circuit structure.

Exercise: Starting from

$$|x\rangle = |x_1 \cdots x_n\rangle,$$

apply Hadamard to qubit 1, then express the phase in terms of x_1 using fractional binary notation.

Recall: trying to make the state

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Every qubit has a different relative phase. Define

Apply controlled R_2 from $2 \rightarrow 1$

First qubit picks up a phase:

Apply controlled R_3 from $3 \rightarrow 1$

First qubit picks up another phase:

Apply a controlled R_4 from $4 \rightarrow 1$, etc. to get

Repeat with the second qubit: apply H then controlled rotations from qubits 3 to n to get

Repeat for remaining qubits to obtain the big state from earlier:

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

The qubits are "backwards" - easily fixed with SWAP gates.

Exercise: What are the gate counts and depth of this circuit?

- _
- Ξ

Next time

Content:

- Variational algorithms (tutorial)
- Quantum phase estimation

Action items:

- 1. I A2 and A2
- 2. Work on project

Recommended reading:

- For this class: Codebook module QFT, Nielsen & Chuang 5.1
- For next class: Codebook module QPE, Nielsen & Chuang 5.2