

Solución usando memoización int fib(int n) { int * fibTab = new int[n]; for(int i=0;i<=n;i++) fibTab[i] = -1; return lookupFib(fibTab,n); } int lookupFib(int fibTab[],int n) { if (fibTab[n]!= -1) return fibTab[n]; fibTab[n]=lookupFib(fibTab,n-1)+ lookupFib(fibTab,n-2); return fibTab[n]; }</pre>

Estrategia voraz

- ◆ Idea #1: repetidamente seleccionar el producto que use el mayor número de ops.
- Contra-ejemplo:
 - A is 10 //5
 - B is 5 🛮 10
 - C is 10 🛮 5
 - D is 5 // 10
 - Idea voraz #1 da (A*B)*(C*D), que produce 500+1000+500 = 2000 ops
 - A*((B*C)*D) produce 500+250+250 = 1000 ops

Programación Dinámica

9

Otra estrategia voraz

- ♦ Idea #2: repetidamente seleccionar el producto que use el menor número de ops.
- Contra-ejemplo:
 - A is 101 ∏ 11
 - B is 11 🛮 9
 - C is 9 🛘 100
 - D is 100 🛮 99
 - Idea voraz #2 da A*((B*C)*D)), el cual produce 109989+9900+108900=228789 ops
 - (A*B)*(C*D) produce 9999+89991+89100=189090 ops
- Una estrategia voraz definitivamente no funciona.

Programación Dinámica

10

Una estrategia "Recursiva"

- Encuentre la mejor parentización de A_i*A_{i+1}*...*A_i.
- Sea N_i, el número de operaciones óptimas para este subproblema.
- La solución óptima del problema total es es N_{0,n-1}.
- Subproblemas óptimos: La solución óptima puede ser definida en términos de subproblemas óptimos.
 - Tiene que haber una multiplicación final (raíz del árbol de la expresión) para la solución óptima.
 - Digamos que la multiplicación final sea en el índice i: $(A_0^*...^*A_i)^*(A_{i+1}^*...^*A_{n-1}^*)$.
 - La solución óptima $N_{0,n-1}$ es la suma de 2 subproblemas óptimos, $N_{0,i}$ and $N_{i+1,n-1}$ mas el número de operaciones de la última multiplicación.
 - Sí el óptimo global no tiene estos componentes óptimos nosotros podemos definir una "mejor" solución óptima.

Programación Dinámica

11

Ecuación recursiva

- El óptimo global se debe definir en términos de subproblemas óptimos, dependiendo en el lugar de la última multiplicación.
- Consideremos todas los posibles lugares para la multiplicación final:
 - Recuerde que A_i es una matriz d_i ∏d_{i+1}.
 - De manera que una definición recursiva de N_{i,j} es la siguiente:

$$N_{i,j} = \min_{i \mid k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note que los subproblemas son no independientes -los subproblemas se sobreponen.

rogramación Dinámica

12

Un algoritmo de programación dinámica

- Puesto que los subproblemas se sobreponen, no se usa recursión.
- En cambio, se construyen los subproblemas óptimos de abajo hacia arriba "bottom-up."
- Los N_i, 's son fáciles, de mänera que se empieza con ellos.
- Seguir con subproblemas de longitud 2,3,... etc.
- Tiempo de ejecución:

Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied Output: number of operations in an optimal paranethization of S

$$\begin{array}{c|c} \text{for } i & 1 \text{ to } n\text{-}1 \text{ do} \\ N_{i,i} & 0 \\ \end{array}$$

$$\begin{array}{c|c} \text{for } b & 1 \text{ to } n\text{-}1 \text{ do} \\ \text{for } i & 0 \text{ to } n\text{-}b\text{-}1 \text{ do} \\ j & i\text{+}b \end{array}$$

 $N_{i,i}$ +infinity

for $k \square i$ to j-1 do

 $N_{i,i} \prod \min\{N_{i,i}, N_{i,k} + N_{k+1,i} + d_i d_{k+1} d_{i+1}\}$

Programación Dinámica

Algoritmo en acción

- llena la matriz N por diagonales
- N_{i,i} obtiene valores basados en valores previos en la i-ésima fila y la j-ésima columna
- La obtención de la parentización óptima puede ser hecho recordando la "k" correspondiente a cada casilla

Técnica General de Programación Dinámica

- Aplica a un problema que inicialmente pareciera requerir una gran cantidad de tiempo (posiblemente exponencial) y que debe cumplir:
 - Subproblemas simples: los subproblemas puden ser definidos en términos de pocas variables.
 - Optimalidad de subproblemas: El óptimo global puede ser definido en términos de subproblemas óptimos
 - Sobrelapamiento de subproblemas: Los problemas no son independientes (por lo tanto, la solución debe construirse de abajo hacia arriba).

Programación Dinámica

15