Multi-channel Processing for Distant Speech Recognition

Preeti Rao and V. Rajbabu

rajbabu, prao@ee.iitb.ac.in Department of Electrical Engineering IIT Bombay

24 November 2017

Table of Contents

Distant Speech Recognition (DSR): Introduction

Research Outcome
Multi-channel DSR Framework
Dereverberation using NMF
NMF for joint dereverberation and denoising
References

Distant Speech Recognition (DSR): Challenges

Distant speech: source at a relatively further distance from a microphone array compared to the spacing between array elements

Major Challenges:

- 1. Noise
- 2. Reverberation
- 3. Echo
- 4. Interfering speaker

Image courtesy (Seltzer, 2003)

DSR: Approach

Exploit source separation in spatial domain

Image courtesy (Seltzer, 2003)

How ? Use multiple microphones

Why?

Signals from each source arrive with different delays at each microphone

Table of Contents

Distant Speech Recognition (DSR): Introduction

Research Outcome
Multi-channel DSR Framework
Dereverberation using NMF
NMF for joint dereverberation and denoising
References

Status

Proposed modifications for an improved DSR system

- Framework of multi-channel beamforming followed by single-channel enhancement for improved DSR word error rates (WERs)
- Improved steering vector in MVDR beamforming
- Non-negative matrix factorization (NMF) for improved single-channel dereverberation using appropriate constraints on room impulse response (RIR)
- NMF formulation for joint dereverberation and denoising

Experiments for DSR WERs and speech enhancement measures

Outline

Distant Speech Recognition (DSR): Introduction

Research Outcome
Multi-channel DSR Framework
Dereverberation using NMF
NMF for joint dereverberation and denoising
References

DSR: System Overview

Figure: Block diagram of proposed DSR system

DSR: System Overview

Multiple stages

- Source localization and beamforming: Identifying the source location and performing spatial filtering to enhance the speech signal
- Single-channel enhancement: denoising and dereverberating NMF
- Automatic speech recognition (ASR) to recognise speech acoustic and language models, training and testing

Multi Channel Alignment (MCA) Beamforming (Stolbov & Aleinik, 2015)

Figure: Multi Channel Alignment Beamforming

MCA Algorithm

- 1. Compute time-difference of arrivals (TDOAs) source localization
- 2. Phase align speech signals using the estimated TDOAs
- 3. Delay-sum beamforming (DSB) to compute reference signal for filter estimation
- 4. Apply the filters and sum the filtered signals

Filter Estimation

$$H_i(f,k) = \frac{|E\{y_i'(f,k)y_{DSB}^*(f,k)\}|}{E\{y_i'(f,k)y_i'^*(f,k)\}}$$

This is equivalent to a Weiner filter !!

Proposed MVDR Beamforming

- Combines Weiner filtering with minimum variance distortionless (MVDR) beamforming
- Constraint the filters to take the form of a Weiner filter
- Modify steering vector by adding gains to each element

Modified Steering Vector

$$\mathbf{d}(f,k) = [g_1(f,k)e^{-j2\pi f \tau_{11}} g_2(f,k)e^{-j2\pi f \tau_{12}} \dots g_N(f,k)e^{-j2\pi f \tau_{1N}}]^T$$
$$g_i(f,k) = \frac{1}{H_i(f,k)} = \frac{E\{y_i'(f,k)y_i'^*(f,k)\}}{|E\{y_i'(f,k)y_{DSB}^*(f,k)\}|}$$

- Optimization constraint : $\mathbf{d}(f,k)\mathbf{h}^H(f,k)=1$
- Ensures each filter take the form of a Weiner filter

Dataset: In-house Microphone Array Setup

Data collection setup was created with additional support from TCS

- Multi-channel sound-card with 8 individual channel mics and pre-amplifiers
- 4 mics for the array and 4 mics used as close talking microphones (CTM) or lapel mics

• Number of speakers : 3

Distance from speaker to mic : 50cm

Array Diameter : 20cm

Speech scenarios

- Non Overlapping
- Partial Overlapping
- Complete Overlapping

In-house Data: Speech Enhancement Measures

Degraded data objective measures:

$$CD = 2.57$$
 f-SNR = 4.69 SRMR = 6.65

Method	CD	f-SNR	SRMR
DSB	0.29	4.11	1.63
Gain-DSB + DSB	0.14	4.69	2.16
MVDR	0.24	1.54	0.12
Gain-DSB + MVDR	-0.04	4.91	1.89

Table: Objective measures on in-house non-overlapping data

- Increase in cepstral distance due to distortions
- Increase in f-SNR and SRMR objective measures
- Trends consistent with those observed in CHiME data

DSR Framework: Summary

- Beamforming based enhancement improved speech recognition accuracies
- Proposed modification to MVDR beamforming has improved performance in CHiME real-data
- Superior noise reduction is achieved at the cost of some speech distortion

Outline

Distant Speech Recognition (DSR): Introduction

Research Outcome
Multi-channel DSR Framework
Dereverberation using NMF
NMF for joint dereverberation and denoising
References

Reverberation Models

Time domain model

$$y(n) = s(n) * h(n) = \sum_{k=0}^{L-1} h(k)s(n-k)$$

y(n): reverb speech, s(n): clean speech h(n): RIR, L: length of RIR

• Spectrogram model -smooth approx. for reverb spectrogram (Y(n, k))

$$Y(n,k) \approx S(n,k) * H(n,k) = \sum_{m=0}^{L_h-1} H(m,k)S(n-m,k)$$

S(n, k): magnitude spectrogram of clean, RIR L_h : Number of frames in H(n,k)

Our focus is on NMF based single channel dereverberation

Non-negative Matrix Factorization (NMF)

NMF model

- Factorizes non-negative matrix **S** $\mathbf{S} \approx \mathbf{W}\mathbf{A}$, where $\mathbf{W} \geq 0$, $\mathbf{A} \geq 0$
- W: set of basis vectors, A: corresponding activations
- Clean speech S(n, k) can be decomposed using NMF Convolutive NMF (C-NMF)

$$\mathbf{Y} \approx \sum_{m=0}^{L_h-1} \mathbf{H}_m \overset{m \to}{\mathbf{S}},$$

where, $H_m = diag(H(m, 0), H(m, 1), ..., H(m, K - 1))$

• Reverb speech Y(n, k) modeled using C-NMF

Dereverberation using C-NMF (Kameoka, 2009)

Obtain S and H from Y using C-NMF

Optimization Problem

$$\min_{\mathbf{H},S} \sum_{n,k} KL(Y(n,k)||S(n,k)*H(n,k))$$
s.t.
$$\sum_{n=0}^{L_h-1} H(n,k) = 1, \forall k, \ S \ge 0, \ H_m \ge 0$$

- Constraint on **H** to avoid gain uncertainty
- Referred as Non-negative Convolutive Transfer Function (N-CTF)

Derevberation using C-NMF with Speech Model (Mohammadiha, 2015)

• Additional NMF model for clean speech ($\mathbf{S} \approx \mathbf{WA}$)

Optimization Problem

$$\min_{H,W,A} \sum_{n,k} KL(Y(n,k)||S(n,k)*H(n,k))$$

$$H(n,k) \leq H(n-1,k), S = WA$$

- Constraints on H to avoid distortions
- Referred as N-CTF+NMF

Proposed NMF: Constrained RIR

Motivation

Current NMF based methods

- do not use appropriate prior on RIR
- do not focus on RIR estimation for speech dereverberation

Objective

Use appropriate constraints on RIR to obtain improved

- RIR estimates
- speech dereverberation

in the NMF formulation

NMF Dereverberation: Experiment Setup

- Clean speech
 - 16 TIMIT sentences spoken by different speakers
- RIR
 - REVERB 2014 challenge
 - T_{60} =700ms, d = 2m
- STFT parameters
 - 64ms window, 16ms hop size
 - square root of Hanning window
- RIR estimate
- · Objective measures for speech enhancement
 - Perceptual Evaluation of Speech Quality (PESQ)
 - Cepstral Distance (CD)
 - Speech to Reverberation Modulation energy Ratio (SRMR)

Results: RIR Estimation with Speech Model

Proposed constraints improved RIR estimate

Figure: Normalized RIR estimates for a specific RIR with $T_{60}=700$ ms and frequency band (k=218).

Results: Dereverberation with Speech Model

Methods	$\Delta PESQ$	ΔCD	$\Delta SRMR$
N-CTF	0.27	0.71	1.48
N-CTF + NMF	0.54	0.92	1.65
$N-CTF + NMF + H_{sparse}$	0.54	0.92	1.65
$N-CTF + NMF + H_{gain}$	0.54	0.94	2.14
$N-CTF + NMF + H_{early}$	0.49	0.93	2.22

- Sparsity on RIR marginally improved results
 - better RIR estimate did not lead to better clean speech estimate
- Frequency envelope constraint improved performance
- Retaining early part of RIR helped

NMF Dereverberation: Summary

- Developed an improved NMF frame work for dereverberation
- Constraints on RIR
 - sparsity, frequency envelope, retaining early part of RIR
- Enhancement without speech model
 - improvement with inclusion of early part
- Enhancement with speech model
 - improved performance with sparsity, frequency envelope and early part of RIR

Outline

Distant Speech Recognition (DSR): Introduction

Research Outcome
Multi-channel DSR Framework
Dereverberation using NMF
NMF for joint dereverberation and denoising
References

Joint Dereverberation and Denosing using NMF [Deepak Baby, ICASSP 2016]

- Supervised approach
 - Clean basis (5000) from WSJ0 training data
 - ullet Noise basis (2500 + 1000 $sniffed\ basis$) from CHiME2 background noise
- Two models proposed to perform joint dereverberztion and denoising

$$Y = H * (W_{speech} X_{speech}) + W_{noise} X_{noise}$$

Convolutive NMF model for clean speech and noise

NMF model for clean speech and noise

$$Y = H * (W_{speech} * X_{speech}) + W_{noise} * X_{noise}$$

- Multiplicative update for estimating X_{speech} , X_{noise} and H
- Shows objective measure improvement for CHiME2 challenge

Proposed Joint Dereverberation and Denoising using NMF

· Representation using NMF model for clean speech and noise

$$Y(n,k) = \sum_{l=0}^{L_h-1} H(k,l)S(k,n-l) + W_{noise}X_{noise}$$

$$= \sum_{l=0}^{L_h-1} H(k,l)\sum_{r=1}^{R} W_{speech}(k,r)X_{speech}(r,n-l) + W_{noise}X_{noise}$$

$$= \sum_{r=1}^{R} W_{speech}(k,r)\sum_{l=0}^{L_h-1} H(k,l)X_{speech}(r,n-l) + W_{noise}X_{noise}$$

Proposed Joint Dereverberation and Denoising using NMF

Assumption

$$H(k, l)$$
 independent of k , i.e. $H(k, l) = H(l) \ \forall k \in \{1, 2, ..., K - 1\}$

$$Y(n,k) = \sum_{r=1}^{R} W_{speech}(k,r) \sum_{l=0}^{L_h-1} H(l) X_{speech}(r,n-l) + W_{noise} X_{noise}$$

$$= W_{speech} X_{reverb} + W_{noise} X_{noise}$$

$$= [W_{speech} \ W_{reverb}] [X_{reverb}^T \ X_{noise}^T]^T$$

where X_{reverb} is defined as

$$X_{reverb} = X_{clean} * H(I)$$

• X_{clean} is estimated from X_{reverb}

Effect of Reverberation on Activation

Figure: Basis learned for the vowel 'a'

Effect of Reverberation on Activation

Figure: Effect of Reverberation and Dereverberation algorithm on Activation of a Vowel

Effect of Reverberation on Activation

Figure: Spectrogram of (a)clean, (b) reverb and (c)dereverb

Enhancement Result for Speaker Specific Model

- Clean basis
 - Learned from 8 TIMIT sentences uttered by speaker
 - 100 basis for each speaker
- Noise basis
 - Factory-2 noise
 - 100 basis obtained from 24 s noise data
- Degraded condition
 - Reverb challenge RIR $T_{60} = 700 \text{ ms}$ and d = 2 m
 - Factory-2 noise with SNR = 0dB

	PESQ	CD
Degraded speech	0.93	4.53
	$\Delta PESQ$	ΔCD
Reference method	1.53	0.80
Proposed method	3.18	3.60

Table: Enhancement Result

Enhancement for CHiME Challenge Noise

RIR: Reverb Challenge, 700 ms, 2 m

Noise type: Cafe

 $\mathsf{SNR} = \mathsf{0dB}$

	PESQ	CD	fSNR	LLR
Degraded speech	0.71	5.49	-2.40	1.23
	$\Delta PESQ$	ΔCD	$\Delta fSNR$	ΔLLR
Reference Method	0.38	0.10	2.93	-0.14
Proposed method	0.34	0.31	2.31	0.03

Table: Enhancement Result

Joint Dereverberation and Denoising: Summary

- Supervised approach to jointly handle reverberation and noise
- Two step approach less numbers of parameters to be estimated and better estimates for clean speech
- Significant improvement in enhancement measures need to consider ASR measures

Thanks

Questions

Dataset: CHiME Challenge

- DSR task using microphone arrays
- Six microphones embedded on the frame of a tablet
- Five mics facing upwards and one in backward direction
- Contains real and simulated data from WSJ0 corpus

Source: http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/overview.html

Dataset: Environments

Source http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/data.html

CHiME Speech Data

Real data recorded from 12 native US talkers

Simulated data created by

- Estimating speaker movements, SNR and noise from real data
- Remixing clean speech with corresponding time-varying delay and same noise signal or other noise signal with same SNR.

Simulated data does not contain echoes, reverberation, mic failures

Datas	et	# speakers	# utterances
Training	real	4	1600
Training	simu	83	7138
Devel	real	4	410
simu		4	410
Test	real	4	330
simu		4	330

CHiME Data: Enhancement Measures

Degraded data measures:

$$CD = 3.17$$
 f-SNR = 1.89 SRMR = 1.73

Method	∆ CD	△ f-SNR	△ SRMR
DSB	0.16	3.96	0.21
Proposed + DSB	-0.05	4.10	0.30
MVDR	0.12	1.17	0.51
Proposed + MVDR	-0.29	4.78	0.65

Table: Objective measures on Chime Challenge evaluation set

- Consistent improvements in f-SNR and SRMR
- Speech distortions are introduced due to addition of gains

CHiME Data: GMM-HMM Acoustic Model

Using a GMM-HMM acoustic model and trigram LM

Method	Real	Simu	Average
BeamformIt	12.99	14.30	13.64
DSB	12.71	13.73	13.22
Proposed + DSB	12.04	12.05	12.04
MVDR	17.12	10.67	13.92
Proposed + MVDR	12.75	10.48	11.62

Table: WER (%) obtained on Chime Challenge development set using a GMM-HMM model trained on noisy data with a trigram language model

- Proposed steering vector has improved WERs
- Significant improvements in real data

CHiME Data: NMF based Post-processing

Convolutive NMF (CNMF) for dereverberation

Post processing	Real	Simu	Average
None	12.75	10.48	11.62
CNMF	15.25	12.87	14.06
CNMF + NMF	14.26	12.08	13.17

Table: WER (%) obtained with NMF based post processing methods to Gain-DSB + MVDR

- NMF based postprocessing techniques increases the WER
- Designed to reduce the amount of reverberation
- Presence of residual noise degrades the performance

CHiME Data: DNN-HMM Acoustic Model

Using a DNN-HMM acoustic model and trigram LM

Method	Real	Simu	Average
BeamformIt	8.14	9.03	8.59
DSB	8.08	8.29	8.18
Proposed + DSB	7.87	7.73	7.80
MVDR	12.38	6.25	9.31
Proposed + MVDR	8.71	6.60	7.66

Table: WER (%) obtained on Chime Challenge development set using a DNN-HMM model trained on noisy data with a trigram language model

- 4 % decrease in WER compared to GMM-HMM model
- Relative improvements independent of acoustic model

CHiME Data: Lattice Rescoring

Lattice rescoring using a RNN language model

Method	Real	Simu	Average
BeamformIt	5.76	6.77	6.27
DSB	5.55	6.27	5.90
Proposed + DSB	5.35	5.69	5.52
MVDR	9.85	4.51	7.18
Proposed + MVDR	6.57	4.75	5.66

Table: WER obtained on Chime Challenge development set using a DNN-HMM model trained on noisy data after lattice rescoring with RNN language model

- Anguera, X., Wooters, C., & Hernando, J. (2007). Acoustic beamforming for speaker diarization of meetings. *IEEE Transactions on Audio, Speech, and Language Processing*, 15(7), 2011–2022.
- Benesty, J., Chen, J., & Huang, Y. (2008). *Microphone array signal processing* (Vol. 1). Springer Science & Business Media.
- Bitzer, J., & Simmer, K. U. (2001). Superdirective microphone arrays. In *Microphone arrays* (pp. 19–38). Springer.
- Cohen, I., Benesty, J., & Gannot, S. (2009). Speech processing in modern communication: challenges and perspectives (Vol. 3). Springer Science & Business Media.
- Habets, E. (2008). Room impulse response (rir) generator. https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator.
- Johnson, D. H., & Dudgeon, D. E. (1992). *Array signal processing:* concepts and techniques. Simon & Schuster.
- Knapp, C., & Carter, G. (1976). The generalized correlation method for estimation of time delay. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 24(4), 320–327.
- Kumatani, K., Arakawa, T., Yamamoto, K., McDonough, J., Raj, B., Singh, R., & Tashev, I. (2012). Microphone array processing for distant speech recognition: Towards real-world deployment. In Signal & information processing association annual summit and

- conference (apsipa asc), 2012 asia-pacific (pp. 1–10).
- Kumatani, K., McDonough, J., & Raj, B. (2012). Microphone array processing for distant speech recognition: From close-talking microphones to far-field sensors. *Signal Processing Magazine, IEEE, 29*(6), 127–140.
- Perez-Lorenzo, J., Viciana-Abad, R., Reche-Lopez, P., Rivas, F., & Escolano, J. (2012). Evaluation of generalized cross-correlation methods for direction of arrival estimation using two microphones in real environments. *Applied Acoustics*, 73(8), 698–712.
- Seltzer, M. L. (2003). *Microphone array processing for robust speech recognition* (Unpublished doctoral dissertation). Carnegie Mellon University Pittsburgh, PA.
- Stolbov, M. B., & Aleinik, S. V. (2015). Improvement of microphone array characteristics for speech capturing. *Modern Applied Science*, 9(6), 310.
- Zhang, C., Florêncio, D., Ba, D. E., & Zhang, Z. (2008). Maximum likelihood sound source localization and beamforming for directional microphone arrays in distributed meetings. *IEEE Transactions on Multimedia*, 10(3), 538–548.