Suport curs algoritmica grafurilor VI. Grafuri euleriene și hamiltoniene

6.1 Grafuri bipartite

Definiție 6.1.1. un graf G=(V,E) simplu și neorientat este bipartit dacă există $X,Y\subseteq V$ astfel încât

- $\bullet \ V = X \cup Y$
- $X \cap Y = \emptyset$ (sau $X \neq Y \neq \emptyset$ și $Y = V \setminus X$)
- toate muchiile au un capat în X și celălalt capăt în Y (sau G(X) și G(Y) sunt grafuri pentru care |E|=0)

Figura 1 prezintă exemple de grafuri bipartite și un contra exemplu.

Figura 1: Grafuri bipartite.

Un graf bipartit complet $K_{n,m}$ este un graf bipartit între X și Y cu n = |X| și m = |Y| astfel încât există o muchie între oricare pereche de vârfuri $(x, y) \in X \times Y$. Figura 2 prezintă exemple de grafuri bipartite complete.

Teorema 6.1 (de caracterizare).

Un graf cu cel putin două vârfuri este bipartit dacă și numai dacă nu conține cicluri de lungime impară.

Figura 2: Exemple de grafuri bipartite complete.

Demonstratie.

" \Rightarrow : " fie G = (V, E) un graf bipartit între mulțimile X și Y și fie $(v_1, ..., v_k, v_1)$ un ciclu în G. Putem presupune că $v_1 \in X$. Atunci $v_i \in X$ și $v_j \in Y$ dacă i este par și j este impar. Deoarece $(v_k, v_1) \in E$, k trebuie să fie par \Rightarrow nu putem avea în G un ciclu de lungime k impară.

" \Leftarrow : "Putem presupune, fără a reduce din generalitate, că G este conex (în caz contrar, putem trata separat componentele conexe ale lui G). Pentru $v \in V$ se defineşte $X = \{x \in V | \text{cel mai scurt lanţ de la } x \text{ la } v \text{ are lungime pară}\}, Y = V \setminus X$. Se verifică uşor că G este graf bipartit între X şi Y.

G este bipartit \Longrightarrow orice ciclu în G are lungime pară.

Observație dacă G conține un lanț închis de lungime impară atunci conține un ciclu de lungime impara.

6.2 Grafuri Euleriene

Se pot defini următoarele:

- lanț: o succesiune de muchii, oricare muchie are o extremitate comună cu muchia precedentă și cealaltă extremitate comună cu muchia următoare;
- ciclu: un lanț în care extremitățile coincid;
- lanț simplu: un lanț care nu folosește de două ori aceeași muchie;
- lant elementar: un lant care nu conține (trece) de două ori un (prin) același vârf.

Definiție 6.2.1. Pentru un graf simplu G = (V, E), putem defini:

- un lanţ Eulerian în G ca şi un lanţ simplu ce conţine toate muchiile din G;
- un ciclu Eulerian în G ca și un lanț simplu ce conține toate muchiile din G și extremitățile lanțului coincid;
- un graf Eulerian ca și un graf simplu care conține un ciclu Eulerian.

Un graf eulerian se poate caracteriza pe baza:

- gradurilor vârfurilor,
- existenței unei colecții speciale de cicluri.

Teorema 6.2 (de caracterizare a grafurilor euleriene). pentru un graf conex G = (V, E), următoarele afirmații sunt echivalente:

- 1. G este eulerian;
- 2. fiecare vârf al lui G are grad par;
- 3. muchiile lui G pot fi partiționate în cicluri care nu au muchii în comun.

Demonstrație.

 $1\to 2$ se presupune că Geste eulerian \Leftrightarrow există un ciclu care conține toate muchiile lui Go singură dată.

Fie graful de mai jos

unde gradul vârfurilor din graf este: $d(v_1) = 4$, $d(v_2) = d(v_3) = d(v_4) = d(v_5) = 2$.

- Ori de câte ori ciclul eulerian intră într-un vârf v pe o muchie, trebuie să plece din acel vârf pe altă muchie;
- nici o muchie nu apare de două ori în ciclu, numărul muchiilor incidente vârfului v este par $\Rightarrow d(v)$ este par;
- exemplu: fie ciclul $(v_1, v_3, v_4, v_1, v_2, v_5, v_1)$

 $2 \to 3$ Se presupune că fiecare vârf al lui G are grad par. Ne gândim inductiv după numărul de cicluri disjuncte ale lui G. G nu are vârfuri de grad $1 \Longrightarrow G$ nu e arbore $\Longrightarrow G$ are cel puţin un ciclu C_{n_1} .

Fie G' graful produs din G prin eliminarea muchiilor lui $C_{n_1} \Longrightarrow$ toate vârfurile din G' au grad par \Longrightarrow se deduce recursiv ca G' poate fi partitionat în cicluri disjuncte $C_{n_2}, ..., C_{n_k}$.

Rezultă că $C_{n_1}, C_{n_2}, ..., C_{n_k}$ este o partiție a lui G în cicluri (cu muchii) disjuncte. Figura 3 prezintă un exemplu.

 $3 \to 1$ Se presupune că muchiile lui G pot fi partiționate în k cicluri disjuncte $C_{n_1}, C_{n_2}, ..., C_{n_k}$. G este conex \Longrightarrow fiecare ciclu este un ciclu simplu ce are un vârf comun cu un alt ciclu \Longrightarrow ciclurile pot fi înlănțuite până se obține un ciclu eulerian.

De exemplu figura 4 prezintă un graf unde se pot forma ciclurile $C_1 = 1, 6, 8, 1$, $C_2 = 3, 6, 4, 7, 8, 3$, $C_3 = 2, 5, 8, 9, 2$, $C_4 = 1, 3, 2, 7, 6, 5, 4, 1$. Ciclurile C_4 şi C_3 au în comun vârful 2, prin compunere se obţine ciclul R_1 . Ciclurile R_1 şi C_2 au în comun vârful 3, se obţine ciclul R_2 . Ciclurile R_2 şi C_1 au în comun vârful 1, se obţine ciclul eulerian R_3 .

$$R_1 = 1, 3, 2, 5, 8, 9, 2, 7, 6, 5, 4, 1$$

$$R_2 = 1, 3, 6, 4, 7, 8, 3, 2, 5, 8, 9, 2, 7, 6, 5, 4, 1$$

$$R_3 = 1, 6, 8, 1, 3, 6, 4, 7, 8, 3, 2, 5, 8, 9, 2, 7, 6, 5, 4, 1$$

Figura 3: Teorema 6.2: echivalnţa $2 \rightarrow 3$.

Algoritmul de înlănțuire a ciclurilor se numește algoritmul lui *Hierholzer*. Algoritmul primește un graf eulerian și caută un ciclu eulerian în graf. Pașii algoritmului sunt:

- 1. fie i = 1, se identifică un ciclu R_1 al grafului și se marchează muchiile lui R_1 ;
- 2. dacă R_i conține toate muchiile grafului algoritmul se oprește și R_i este eulerian;
- 3. dacă R_i nu conține toate muchiile grafului, fie v_i un vârf al ciclului R_i incident la o muchie nemarcată e_i ;
- 4. se construiește un ciclu cu muchii nemarcate C_i , pornind de la vârful v_i de-a lungul muchiei e_i . Muchiile lui C_i sunt marcate;
- 5. se creează R_{i+1} prin înlânțuirea lui C_i în R_i ;

Figura 4: Teorema 6.2: echivalnţa $3 \rightarrow 1$.

6. i + +și se revine la pasul 2.

O altă modalitate de a găsi un lanț/ciclu eulerian într-un graf este algoritmul lui *Fleury*. Inițial toate muchiile din graf sunt nemarcate, pașii algoritmului sunt:

- 1. se alege un vârf curent v;
- 2. dacă toate muchiile lui G au fost marcate, stop;
- 3. dintre toate muchiile incidente vârfului v se alege, dacă se poate, o muchie care nu este punte. Dacă o astel de muchie nu există, se alege una la întâmplare. Se marchează muchia aleasă iar capătul opus vârfului curent devine noul vârf curent;
- 4. se revine la pasul 2.

Un graf eulerian conține un lanț eulerian deoarece orice ciclu eulerian este și lanț eulerian. Există grafuri ne-euleriene ce conțin lanțuri euleriene.

Corolar 6.2.1. un graf conex G = (V, E) conține un lanț eulerian dacă și numai dacă are cel mult două vârfuri de grad impar.

6.3 Grafuri hamiltoniene

Definiție 6.3.1. Pentru un graf simplu G, putem defini:

- un lant Hamiltonian în G ca și un lant simplu ce conține toate vârfurile din G;
- un graf traversabil este un graf simplu ce conține un lanț hamiltonian;
- un ciclu hamiltonian în G ca și un lanţ simplu ce conține toate vârfurile din G și extremitățile lanţului coincid;
- un graf hamiltonian ca și un graf simplu care conține un ciclu hamiltonian.

Observaţii :

- toate grafurile hamiltoniene sunt traversabile;
- există grafuri traversabile care nu sunt hamiltonieni.

Problema grafurilor hamiltoniene a apărut ca un joc inventat de matematicianul William R. Hamilton: pe un dodecaedru (figura 5) fiecare vârf reprezintă un oraș, scopul este de a găsi un drum pentru a vizita toate orașele o singură dată și capetele drumului să coincidă.

Figura 5: Graf hamiltonian.

Pentru a detecta dacă un graf este hamiltonian se poate utiliza teorema lui Dirac.

Teorema 6.3 (Dirac).

Fie G un graf de ordinul $n \geq 3$. Dacă $\delta(G) \geq \frac{n}{2}$ atunci G este hamiltonian.

fie G un graf de ordinul $n \geq 3$. Dacă $\forall u \in V, d(u) \geq \frac{n}{2}$ atunci G este hamiltonian.

Demonstrație teorema 6.3.

Presupunem că G satisface condițiile date, însă G nu e hamiltonian. Fie $H = v_1, ..., v_n$ un lanț simplu în G de lingime maximă (toți vecinii lui v_1 și v_n sunt în H). v_1 și v_n au cel puțin $\frac{n}{2}$ vecini din lanț deoarece $\delta(G) \geq \frac{n}{2}$. Arătăm că există $i \in \{1, ..., n-1\}$ astfel încât $v_{i-1} \in N(v_n)$ și $v_i \in N(v_1)$ ca în figura de mai jos $(N(v_i)$ reprezintă vecinătatea vârfului v_i).

Dacă nu ar fi așa, pentru fiecare vecin v_j al lui v_n din lanţ (sunt mai mult de $\frac{n}{2}$ astfel de v_j), v_i nu ar fi vecin al lui v_1 . Ar rezulta că $d(v_1) \leq n - 1 - \frac{n}{2} < n - \frac{n}{2} = \frac{n}{2}$ ceea ce contrazice $\delta(G) \geq \frac{n}{2}$.

Fie L ciclul $v_1, v_2, ..., v_{i-1}, v_n, v_{n-1}, ..., v_i, v_1$, presupunând că G nu este hamiltonian există un vârf al lui G care nu e în H. $\delta(G) \geq \frac{n}{2}$ şi $n \geq 3 \Longrightarrow \delta(G) \geq 2$, G este conex

 $\Longrightarrow G$ are un vârf w care nu este în H și este adiacent la un vârf v_i din H. Dar atunci lanțul care pornește cu w, v_i și continuă în jurul ciclului L este mai lung decât H \Longrightarrow contradicție.

 $\Longrightarrow G$ trebuie sa fie hamiltonian.

Teorema 6.4 (Dirac generalizată). fie G un graf de ordinul $n \ge 3$. Dacă $d(x)+d(y) \ge n$ pentru toate perechile de vârfuri neadiacente x, y, atunci G este hamiltonian.

Lema 6.5. dacă într-un graf cu cel mult 2k vâfuri $d(x) \le k, \forall x \in V$ atunci graful este conex.

Demonstrație 6.5.

Presupunem că G are cel mult 2k vârfuri, fiecare vârf are gradul $d(x) \le k$ şi G nu este conex. În acest caz, graful are cel puţin două componente şi există o componentă cu cel mult k vâfuri. În această componentă gradul maxim este cel mult k-1 ceea ce contrazice presupunerea că fiecare vârf are gradul cel mult k.

Lema 6.5 nu este adevărată pentru multigrafuri.

6.4 Referințe

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.
- 2. Geir Agnarsson and Raymond Greenlaw. 2006. Graph Theory: Modeling, Applications, and Algorithms. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
- 3. Mark Newman. 2010. Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA.
- 4. Cristian A. Giumale. 2004. Introducere în analiza algoritmilor, teorie și aplicație. Polirom.
- 5. cursuri Teoria grafurilor: Zoltán Kása, Mircea Marin, Toadere Teodor.