

planetmath.org

Math for the people, by the people.

subfunction

Canonical name Subfunction

Date of creation 2013-03-22 18:41:54 Last modified on 2013-03-22 18:41:54

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 08A55
Classification msc 03E20
Defines restriction

Definition. Let $f:A\to B$ and $g:C\to D$ be partial functions. g is said to be a *subfunction* of f if

$$g \subseteq f \cap (C \times D)$$
.

In other words, g is a subfunction of f iff whenever $x \in C$ such that g(x) is defined, then $x \in A$, f(x) is defined, and g(x) = f(x).

If we set $C' = A \cap C$ and $D' = B \cap D$, then $g \subseteq f \cap (C' \times D')$, so there is no harm in assuming that C and D are subsets of A and B respectively, which we will do for the rest of the discussion.

In practice, whenever g is a subfunction of f, we often assume that g and f have the same domain and codomain. Otherwise, we would specify that g is a subfunction of $f: A \to B$ with domain C and codomain D.

For example, $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \sqrt{x^2 - 1}$$

is a partial function, whose domain of definition is $(-\infty, -1] \cup [1, \infty)$, and the partial function $g : \mathbb{R} \to \mathbb{R}$ given by

$$g(x) = \frac{x^2 - 1}{\sqrt{x^2 - 1}}$$

is a subfunction of f. The domain of definition of g is $(-\infty, -1) \cup (1, \infty)$. Two immediate properties of a subfunction $g: C \to D$ of $f: A \to B$ are

• the range of g is a subset of the range of f:

$$g(C) \subseteq f(C),$$

 the domain of definition of g is a subset of the domain of definition of f:

$$g^{-1}(D) \subseteq f^{-1}(D).$$

Definition. A subfunction $g: C \to D$ of $f: A \to B$ is called a restriction of f relative to D, if $g(C) = f(C) \cap D$, and a restriction of f if g(C) = f(C).

Every partial function $g:C\to D$ corresponds to a unique restriction $g':C\to g(C)$ of g.

A restriction $g: C \to D$ of $f: A \to B$ is certainly a restriction of f relative to D, since $f(C) \cap D = g(C) \cap D = g(C)$, but not conversely. For

example, let A be the set of all non-negative integers and $-_A:A^2\to A$ the ordinary subtraction. $-_A$ is easily seen to be a partial function. Let B be the set of all positive integers. Then $-_B:B^2\to B$ is a restriction of $-_A:A^2\to A$, relative to B. However, $-_B$ is not a restriction of $-_A$, for $n-_Bn$ is not defined, while $n-_An=0\in A$.

References

[1] G. Grätzer: *Universal Algebra*, 2nd Edition, Springer, New York (1978).