# МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

### ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение»

Тема: Предобработка данных

| Студент гр. 6307 | <br>Мишанов А. А   |
|------------------|--------------------|
| Преподаватель    | <br>Жангиров Т. Р. |

Санкт-Петербург

2020

### Цель работы

Познакомиться со средствами предобработки данных библиотеки Scikit Learn.

### Ход работы

### Загрузка данных

1. Загружен датасет по ссылке. Данные загружены в датафрейм с исключением бинарных признаков.

|   | age  | creatinine_phosphokinase | ejection_fraction | platelets | serum_creatinine | serum_sodium |
|---|------|--------------------------|-------------------|-----------|------------------|--------------|
| 0 | 75.0 | 582                      | 20                | 265000.00 | 1.9              | 130          |
| 1 | 55.0 | 7861                     | 38                | 263358.03 | 1.1              | 136          |
| 2 | 65.0 | 146                      | 20                | 162000.00 | 1.3              | 129          |
| 3 | 50.0 | 111                      | 20                | 210000.00 | 1.9              | 137          |
| 4 | 65.0 | 160                      | 20                | 327000.00 | 2.7              | 116          |

Рисунок 1. Загруженный датасет

2. Построены гистограммы признаков.



Рисунок 2. Гистограммы признаков

3. На основании гистограмм были определены диапазоны значений, а также возле какого значения лежит наибольшее количество наблюдений.

| Признак                  | Диапазон | Наибольшее |
|--------------------------|----------|------------|
|                          |          | количество |
|                          |          | наблюдений |
| age                      | 40-100   | 60         |
| creatinine_phosphokinase | 0-8000   | 200        |
| ejection_fraction        | 10-80    | 38         |
| platelets                | 0-875000 | 250000     |
| serum_creatinine         | 0.1-9.75 | 1.2        |
| serum_sodium             | 110-150  | 137        |

### Стандартизация данных

1. Была проведена стандартизация на основе первых 150 наблюдений и на основе всех наблюдений.



Рисунок 3. Гистограмма стандартизированных данных первых 150 наблюдений



Рисунок 4. Гистограмма стандартизированных данных для всех наблюдений

- 2. Вычисленное мат. ожидание и СКО до и после стандартизации.
  - До стандартизации.
    - Мат. ожидание: [6.0830000e+01, 5.8184000e+02,
       3.8080000e+01, 2.6335803e+05,1.3900000e+00, 1.3663000e+02]
    - CKO: [1.18749014e+01, 9.68663967e+02, 1.18150335e+01,
       9.76405477e+04, 1.03277867e+00, 4.40509238e+00]
  - Стандартизация на основе 150 наблюдений.
    - Мат. ожидание: [-0.16970362, -0.02127675, 0.01050249, -0.03522879, -0.1086408, 0.0379076]
    - CKO: [0.95382379, 0.81417905, 0.90610822, 1.01506113, 0.88542887, 0.9703736]
  - Полная стандартизация.
    - Мат. ожидание: [5.70335306e-16, 0.00000000e+00, 3.26754603e-17, 7.72329061e-17, 1.42583827e-16, -8.67384945e-16]
    - o CKO: [1., 1., 1., 1., 1., 1.]

3. На основании этих значений можно вывести формулу, по которым они стандартизировались.

$$Y = \frac{X - mean(X)}{std(X)}$$

4. Значения мат. ожидания и дисперсии соответствуют с полями *mean\_* и *var* объекта *Scaler*.

### Приведение к диапазону

1. Приведение к диапазону [0, 1] с помощью *MinMaxScaler*. Гистограмма представлена на рисунке 5.



Рисунок 5. Приведение к диапазону с помощью MinMaxScaler

- 2. Через параметры *MixMaxScaler* были определены минимальное и максимальное значение в данных для каждого признака.
  - Минимальные значения: [4.00e+01, 2.30e+01, 1.40e+01, 2.51e+04, 5.00e-01, 1.13e+02]
  - Максимальные значения: [9.500e+01, 7.861e+03, 8.000e+01, 8.500e+05, 9.400e+00, 1.480e+02]

3. Аналогично были трансформированы данные с использованием *MaxAbsScaler* и *RobustScaler*. Гистограммы представлены на рисунке 6 и рисунке 7 соответственно.



Рисунок 6. Приведение к диапазону с помощью MaxAbsScaler



Рисунок 7. Приведение к диапазону с помощью RobustScaler

- 4. *MaxAbsScaler* масштабирует данные таким, что максимальное по модулю значения равно 1. RobustScaler центрирует значения по медиане и масштабируют их по межквартильному размаху.
- 5. Была написана функция, которая приводит данные к диапазону [-5, 10].



Рисунок 8. Приведение к диапазону [-5 10]

### Нелинейные преобразования

1. Приведение данных к равномерному распределению с помощью QuantileTransformer. Гистограмма представлена на рисунке 9. Чем больше количество квантилей (параметр *n\_quantiles*), тем лучше приближение к требуемому распределению.



Рисунок 9. Приведение к равномерному распределению с помощью QuantileTransformer

2. Были приведены данные к нормальному распределению с использованием параметра *output\_distribution='normal'*. Также построены гистограммы для нормального распределения.



Рисунок 10. Приведение к нормальному распределению с помощью QuantileTransformer

3. Также с помощью объекта *PowerTransformer* данные были приведены к нормальному распределению.



Рисунок 11. Приведение к нормальному распределению с помощью PowerTransformer

### Дискретизация признаков

1. Была проведена дискретизация признаков с помощью KBinsDiscretizer. Гистограммы представлены на рисунке 12.



## Рисунок 12. Дискретизация признаков с помощью KBinsDiscretizer

# 2. Диапазоны для каждого интервала.

| Признак                  | Диапазон интервалов                          |
|--------------------------|----------------------------------------------|
| age                      | [40., 55., 65., 95.]                         |
| creatinine_phosphokinase | [23., 116.5, 250., 582., 7861.]              |
| ejection_fraction        | [14., 35., 40., 80.]                         |
| platelets                | [25100., 153000., 196000., 221000., 237000., |
|                          | 262000., 265000., 285200., 319800., 374600., |
|                          | 850000.]                                     |
| serum_creatinine         | [0.5, 1.1, 9.4]                              |
| serum_sodium             | [113., 134., 137., 140., 148.]               |

### Вывод

В результате работы были получены практические навыки с методами предобработки данных с помощью библиотеки Scikit Learn.