BRAND : "LISENG"

PRODUCT: INSPECTION CHAMBER

DESCRIPTION: SANITARY INSTALLATION

BRAND : "LISENG"

PRODUCT: INSPECTION CHAMBER

DESCRIPTION: SANITARY INSTALLATION

LISENC	MATERIAL PTE	Contract :				Job Ref.
	lougang Street 51 #02- Singapore 530549	Part of Structure :	900x700x	2500D 150T	TK 1H10-150	Calc. Sheet No. 1
	IP:9850 1820	Drawing Ref.	Cal By: Ala	n Yap C	Checked By:	Date: 26/8/2019
Member Ref.			Calculation	ons		<u>' </u>
	2. Steel R 3. Load Co 4. Concre	of Concrete = einforcements = combination (1.35 DL te Cover = 25kN/m2	P3 P3 p3	kN/m3 N/mm2 mm 150	900x700 2500 1200x10	150
	Weight of Precast Inst Concrete Density = Concrete Grade = Size : Wi = Bi = Hi = T = Volume of Walls = Vol of Base Slab = Total Vol = Total Weight of IC =	25 35 900 700 2500	kN/m3 N/mm2 mm mm mm mm m3 m3 m3	Water Dens We = Be = He = T =		kN/m3 15.75 kN
	Details of Steel Reinf T bars fy = Dia of Com bars = Spacing = Asc = Dia of Ten bars = Spacing = Asc =	500 10 150 549.78	N/mm2 mm mm mm2 mm	Soil Proper Soil density Angle of int ka = (1-sin@ Depth of So	friction @ H D)/(1+sin@)= il Layer#	21 kN/m3 80 deg 0.332 3.65 m
	Water Properties Water Density =		kN/m3	Surcharge L	oading = Sw	1297 BAPOR 25 KN/m2
	Bearing Pressure on Pressure of the soil = (Fotal Weight	of IC) / Aroo	47	kN/m2

ENC	G MATERIAL PTE LTD	Contract :				Job Ref.					
19. H	lougang Street 51 #02-	Part of Structure	900x700	0x2500D 15	0TK 1H10-150	O Calc. Sheet No. 2					
98,	Singapore 530549	Drawing Ref.	Cal By: A		Checked By:	Date: 26/8/2019					
ŀ	HP:9850 1820			·		-3-3-3-1					
ber f.	Calculations										
	Lateral External Pressure										
	Water (p1) =		5.5 kN/m2	(
	Surcharge (p2) =		33 kN/m2	(ar pressure)						
	Soil pressure (p3) =	18.	55 kN/m2	(triangle p	ressure)						
	Forces from the elem	<u>ients</u>									
	Water (P1) =	35.									
	Surcharge (P2) =	22.0									
	Soil pressure (P3) = Total	24.:									
	Total	81.	77 kN								
	Max Moments (Analy	sis as a slab)									
	ly/ly = 2.78	< 2 (1 way Slab)									
	For 1m width slab, Ulti	mate Limit State =	80.08	8 kN/m2	(Considered M	ax Pressure)					
	M = 8.10759 kNm										
	101 - 0.10733	MAIII									
	Bending Reinforceme	<u>ents</u>	20 v 44042 –	74.440	11N 20K						
	Bending Reinforceme	<u>ents</u>			kNm } OK						
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm			kNm }OK						
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z	But adopt } OK, As p } H10-150	z/d = 0.95 prov > As red		CIVIL					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z	But adopt	z/d = 0.95 prov > As red		CIVIL AP KEN KUO					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355 As prov = 549.78 Distribution Bars b = 1000	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2	But adopt } OK, As p } H10-150	z/d = 0.95 prov > As red		4297					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355 As prov = 549.78 Distribution Bars b = 1000	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2	But adopt } OK, As p } H10-150	z/d = 0.95 prov > As red		/					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355 As prov = 549.78 Distribution Bars b = 1000	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2 mm	But adopt } OK, As p } H10-150	z/d = 0.95 prov > As red		4297					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355 As prov = 549.78 Distribution Bars b = 1000 d = 150	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2 mm	But adopt } OK, As p } H10-150 } > 0.13bh	z/d = 0.95 prov > As red	prov > As req	4297					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355 As prov = 549.78 Distribution Bars b = 1000 d = 150 As min = 0.13xbd =	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2 mm	But adopt } OK, As p } H10-150 } > 0.13bh	z/d = 0.95 prov > As red } OK, As p	prov > As req	4297					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2 mm 549.	But adopt } OK, As p } H10-150 } > 0.13bh 95 mm2 78 mm2	z/d = 0.95 prov > As red } OK, As p	prov > As req	4297					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355 As prov = 549.78 Distribution Bars b = 1000 d = 150 As min = 0.13xbd = As prov = Shear Check V = Force /2 =	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2 mm 11 549.	But adopt } OK, As p } H10-150 } > 0.13bh 95 mm2 78 mm2	z/d = 0.95 prov > As red } OK, As p } H10-150	orov > As req	4297					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2 mm 11 549.	But adopt } OK, As p } H10-150 } > 0.13bh 95 mm2 78 mm2 80 kN 33 N/mm2	z/d = 0.95 prov > As red } OK, As p } H10-150	prov > As req	4297					
	Bending Reinforceme Mu = Klim x fck x bd2 = M/bd2fck= 0.01914 Therefore, la = d = 110 So z = 104.5 As req = M/0.87fyk = 178.355 As prov = 549.78 Distribution Bars b = 1000 d = 150 As min = 0.13xbd = As prov = Shear Check V = Force /2 =	ents = 0.168 x 35 x 100 So z/d = 0.98 0.95 mm mm Z mm2 mm2 mm 11 549.	But adopt } OK, As p } H10-150 } > 0.13bh 95 mm2 78 mm2	z/d = 0.95 prov > As red } OK, As p } H10-150	orov > As req	4297					

LISENG	MATERIAL PTE LTD	Contract :				Job Ref.				
	ougang Street 51 #02-	Part of Structure :	900x700)x2500D 15	0TK 1H10-150	Calc. Sheet No. 3				
	Singapore 530549 IP:9850 1820	Drawing Ref.	Cal By: Al	an Yap	Checked By:	Date: 26/8/2019				
Member Ref.	Calculations									
	Deflection Check Span = 900 d = 104.5 Span /d = 8.61 Lifting Check	mm (< Basic span/d =20		} Deflectio						
	Dead Load IC = Factor of Safety = Ultimate Loading =	40.13 2.00 80.25	kN		beta = 0.4 fbu = 2.37 fy = 500	N/mm2 N/mm2				
	No of Lifting Hook = Ult Load per Hook =	20.06	pcs kN		fs= 75.58	N/mm2				
	Dia of Rebar hook = Tensile Strength per ho		mm 46.46	6 kN	} Tension Capa	Capacity OK				
	Bond Length = Embedded Length =	103.79 550	mm mm	} Anchora						
	Provide 4 H 13 Lifting I	nook with embedded	l depth of 5	50mm						
	Design of Base Slab									
	Dead Load of IC = Live Load of IC = Water from Below = ULS 1 (1.3 ULS 2 (1.5	35DL+1.5LL) =	kN kN/m2 76.39) kN/m2 5 kN/m2 9 kN/m2	a live					
	ly = 1200 lx = 1000 ly/ly = 1.2					CIVIL TO THE STATE OF THE STATE				
	Asx = 0.084 Asy = 0.061				\	KEN KUO 4297				
	Msx = Asxnlx2 = Msy = Asynly2 =		kNm kNm			GAPORE I PIG				
ŀ	Design Bending in th	e shorter span								
	Msx/bd2fck = Therefore, la = z =	0.015 0.95 104.50	So z/d = 0.	985	But adopt z/d =0).95				
	As req =	Msx/0.95fykz	mm2/m							
	As pro =		mm2/m	} OK, As p } H10-150 } > 0.13bh						

LISEN	G MATERIAL PTE LTD	Contract :				Job Ref.					
	Hougang Street 51 #02-	Part of Structure :	900x70	0x2500D 15	0TK 1H10-150	Calc. Sheet No. 4					
198,	Singapore 530549 HP:9850 1820	Drawing Ref.	Cal By: A		Checked By:	Date: 26/8/2019					
Member Ref.	Calculations										
	Design Bending in the longer span										
	Msx/bd2fcu = Therefore, z/d = z =).983	d = 94.50	O mm					
	-	Msy/0.95fykz - 157.36 549.78		} OK, As p } H10-150 } > 0.13bh	-						
	V = Force /2 = Shear Stress v = 100As/bd = vc = Since vc > v } No She	0.58 0.76	2 N/mm2 3 5 N/mm2	< 0.8√fcu	or 5N/mm2						
	Deflection Check Span = 900 d = 94.50 Span /d = 9.52) mm) mm 2 (< Basic span/d =2	20)	} Deflection	n OK						
					31	CIVIL KEN KUO 4297 MGAPORE C 8 19					

Concrete density	γ	=	25 kN/m3				
Concrete grade	fcu	==	35 N/mm2				
Size: Internal	WI	=:	900 mm	External	W	=	1200 mm
	BI	=	700 mm		В	=	1000 mm
	HI	=	3500 mm		Н	=	3650 mm
	Т	=	150 mm		Т		150 mm
Volume	Vol	=	2.18 m3				
Weight	Wt		54.4 kN				

STEEL REINFORCEMENT

<u> </u>			
H bar	fy	=	500 N/mm2
Compression steel:	Ø	=	10 mm
	Asc	=	78.54 mm2
Tension steel:	Ø	=	10 mm
	Ast	=	78.54 mm2

SOIL PROPERTIES

Soil density	γs	=	21 kN/m3
Angle of int friction	Ø	=	30 °
$ka = (1-\sin\theta)/(1+\sin\theta)$	inθ)	=	0.333
Depth of soil layer		==	3.65 m

WATER PROPERTIES

Water density	γw	=	10 kN/m3
Water column		=	1 m

SURCHARGE

Live load 25 kN/m2

28 NOV 2020

LS LISENG MATERIAL PTE LTD Blk 549 Hougang Street 51 #02-198, Singapore 530549 HP: 9850 1820 PROJECT MEMBER SHEET PROPOSED PROJECT IN PRE-CAST INSPECTION CHAMBER 900 IW x 700 Achiles PREP SINGAPORE IB x 3500 IH x 150 T W/ 2H10-150 128/11/2020 DATE CHECK 3650 mm LATERAL PRESSURE (EXTERNAL) 1 WATER 36.50 kN/m2 (p1) (triangle pressure) γ*H = 2 Surcharge ka*q = (rectangle pressure) 8.33 kN/m2 (p2) 3 Soil ka*γ*H = 25.55 kN/m2 (p3) (triangle pressure) Total Lateral press. L=900mm (kN/m) 143.70 kn/m P1 66.61 30.42 P2 P3 46.63 143.7 kN/m Total MOMENT CALCULATION Method 1: 1050 2.235 7.235 h K1 K6 850 K2 3.235 K7 9.471 4.235 K8 hs 150 K3 11.71 150 K4 13.94 hw 5.471 1.2 K5 k **SPAN** q Moment Ma Mc (mm) (kN/m2) (kN-m) (kN-m) Ma=Mc= -qh2k/12K1 1050 -7.29 143.7 -7.29850 143.7 Ma=Mc= -ql2k/12K1 -4.78 -4.78 Total moment -12.1 -12.1 Method 2: 900 mm Larger span Pressure 143.7 kN/m Moment 14.5 kN-m Factor of safety 1.50 Adopt moment 14.5 kN-m Ultimate design moment = 21.8 kN-m **DESIGN DATA** Thickness 150 mm Provide Bar Size = 10 mm Concrete cover 40 mm Spacing = 150 mm 10 mm Nos. of bar = 6.7 pcs Size of tensile bar d 105 mm use 2 layers 13 b 1000 mm 0.95d 99.8 mm k 0.057 97.93 mm Z Adopt 97.93 mm 512.2 mm2/m Required As 1047 mm2/m Actual rebar As 512.2 mm2/m Provide 2 layers 10 @ 150 c/c) (H

DJECT	NG MATERIAL PTE LT		Blk 549 Ho	0						SHEET	3
DOLO I	PROPOSED PROJECT IN	TVIL	LIVIDLI	PRE-CAST	TINISE	ECTION C	НДМА	ER ann	I\W ~ 7 00		Achiles
	SINGAPORE					0 IH x 150				DATE	28/11/2020
										CHECK	
	SHEAR CHECK										
	F	=	143.7	kN/m2							
	Size of wall: b	=	1000	mm							
	L	32	900	mm							
	Factor of safety	=	1.50								
	Ult F	=	193.9	kN							
	V	=	96.97								
	V	=		N/mm2		(not > 51)	V/mm	2 or 0.	8 ./ fc	ar)	
	100As/bd	=	0.997			(not > 3)		0. 0.		u ,	
	400/d	=	3.81			(not < 1					
	VC	=		N/mm2		(1101 < 1	,				
	Hence, no shear reinforce			19/111112							
	Helice, no shear reimorcei	Herit is	required								
	DEFLECTION CHECK										
	Span	= 1	900								
	d	=	105								
	Span/d	=	8.571	mm		(< Basic	spa	n/d= 20))		
	Deflection check satisfactor	ory									
	LIFTING CHECK										
	Dead load	=	54.4	kN			cu	=		0 N/mm2	=
	Factor of safety	===	2			β	3	=	0.	.4 defori	med
	Ultimate load	=::	108.8	kN		fl	bu	=	1.26	55 N/mm2	2
						f	y	22	50	00 N/mm2	2
	Nos. of lifting hook	=	4	pcs			•				
	Ultimate load per hook	=	27.19	kN							
Try	Size of bar	=	13	mm							
,	Tensile strength of bar	=	57.74								
	Tensile strength of bar	7700	37.74	KIN							
	Bond length		526.3								
		=									
	Embeded length	=	550	mm							
Provide	e 4 H13 lifting hook with min	n. emb	edded ler	ngth of 55	0mm						
	BACE CLAB										
	BASE SLAB DL										
	IC		E 4 4	LAI		h					4000
		=	54.4			b				=	1000
	WATER (Full)	=	22.05	KN		q q				=	105 1
						0.95d				=	99.75
	LL .					k				=	0.086
	Live load	=	30) kN		Z				=	93.71
						adopt z	Z			1=	93.71
	Gk	=	76.43	kN							
	Qk	=	30) kN		required	d As			=	733.6
Ultin	nate load (1.35DL+1.5LL) F	=	148.2							1 1	tath
	,								Λ	Jako	MAY EX
	For span L	-	900) mm					/\	197	11/1/0
1.16	timate moment M= (FL / 4)	=	33.34						11/	411	IV.
Ul	imate moment w= (I L / 4)	=	33.34	/ NIN-III					Y	11/15	- V2 #80
	Actual Rebar As	E74/201	1047	/	-	700.0			1 16	111	CIVIL
		=		7 mm2/m	>	733.6 n			J. 1	111	
					101		·IC he	VEWIN	CT A		
	Provide 2 layers	=	(H	10	@	150	5/6 06	niiway.	1/10	YMP	KEN K

LISENG MATERIAL PTE LTD

CO REG: 201632829M

Blk 549 Hougang ST 51 #02-198 Singapore 530549

Tel: 6362 1811 Fax: 6362 0895 H/P: 9850 1820 Email: sales@liseng.com.sg

PROJECT REFERENCE (HDB) DATE: 05-04-2017

PC INSPECTION CHAMBER

COMPANY NAME PROJECT

Chang Hua Constn PL Kallang Whampoa RC21

Chiu Teng Constn PL Bidadari C4

Chuan Lim Constn PL Tech Whye Lane

Eng Chin Hang P&S PL Clementi N4C10@Commwealth DR

Hi-tek Constn P L Bt Batok N4C5 & 7

LC & T Builder (1971) PL Sengkang N3C28A

Nanjing Dadi Constn (Group) Co Ltd Sembawang N1C12

Progressive Builders PL Dawson C5

Qingjian International (SP) Group Bt Batok N4C18-C21

Rich Construction PL Tampines N4C8

Sunhuan Constn PL Clementi N4C10

Straits Constn PL Bt Merah C50

Straits Constn PL 16 Yio Chu Kang EC

Tiong Seng Contractor PL Woodlands N7C29

Teambuild E&C PL Yishun N4C22@Yishun Ave 1

Teambuild E&C PL Bt Batok N4C16&17@Bt Batok West Ave 3