Błażej Domagała - WED

Lista 1

Zadanie 1

a) Nazwa zbioru: Wine

```
> library(datasets)
> 
> path = "c:\\users\\petitoff\\Desktop\\repos\\UO\\rok 3\\wprowadzenie do eksploracji danych\\lista1\\zadanie2" # używając podwójnych ukośników 
> setwd(path) ## ustawienie ścieżki 
> 
> # zmiana nazwy kolumn: 
> 
> # Załadowanie danych 
> # Spróbuj wczytać dane z innym separatorem 
> wine <- read.csv('wine\\wine.data', header=FALSE)
```

b) Krótki tekstowy opis zbioru

Zbiór danych "Wine" zawiera wyniki analizy chemicznej win wyprodukowanych w określonym regionie we Włoszech przez trzech różnych producentów. Analiza chemiczna dotyczy 13 różnych składników zawartych w winach.

```
> ## zmiana nazwy kolumn:
> 
> # załadowanie danych
> # Spróbuj wczytać dane z innym separatorem
> wine <- read.csv('wine\\wine.data', header=FALSE)
> 
> # Zmień nazwy kolumn
> names(wine) <- c('class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocy anins', 'Color intensity', 'Hue', '0D280/0D315 of diluted wines', 'Proline')
> 
***
```

c) Liczba obserwacji w zbiorze: 178

```
> ## Liczba obserwacji w zbiorze
> nrow(wine)
[1] 178
>
```

d) Liczba kolumn: 14 (13 atrybutów + 1 kolumna identyfikująca klasę)

```
> ## Liczba kolumn
> print(names(wine))
[1] "Class" "Alcohol" "Malic acid" "Ash"
[5] "Alcalinity of ash" "Magnesium" "Total phenols" "Flavanoids"
[9] "Nonflavanoid phenols" "Proanthocyanins" "Color intensity" "Hue"
[13] "OD280/OD315 of diluted wines" "Proline"
> |
```

- e) Zmienna celu:
 - Nazwa kolumny z klasą: Class
 - Liczba klas: 3 (Klasy 1, 2 i 3)

```
> ## Zmienna celu
> unique(wine$Class)
[1] 1 2 3
>
```

f) Wykaz i opis cech:

- 1. Class: Zmienna kategoryczna. Klasa wina.
- 2. Alcohol: Zmienna ilościowa. Zawartość alkoholu.
- 3. Malic acid: Zmienna ilościowa. Zawartość kwasu jabłkowego.
- 4. Ash: Zmienna ilościowa. Zawartość popiołu.
- 5. Alcalinity of ash: Zmienna ilościowa. Zasadowość popiołu.
- 6. Magnesium: Zmienna ilościowa. Zawartość magnezu.
- 7. Total phenols: Zmienna ilościowa. Całkowita zawartość fenoli.
- 8. Flavanoids: Zmienna ilościowa. Zawartość flawonoidów.
- 9. Nonflavanoid phenols: Zmienna ilościowa. Zawartość fenoli nieflawonoidowych.
- 10. Proanthocyanins: Zmienna ilościowa. Zawartość proantocyjanidyn.
- 11. Color intensity: Zmienna ilościowa. Intensywność koloru.
- 12. Hue: Zmienna ilościowa. Odcień.
- 13. **OD280/OD315 of diluted wines**: Zmienna ilościowa. Stosunek absorbancji przy 280 nm do 315 nm w rozcieńczonych winach.
- 14. Proline: Zmienna ilościowa. Zawartość prolina.

Zadanie 2

a) Zmiana nazw kolumn (pierwszą kolumnę – zmienną celu – proszę nazwać "Class"; nazwy pozostałych kolumn – atrybutów – są podane w pliku "wine.names")

```
R.3.1 . G/Users/petitoff/Desktop/repos/UO/nck 3/Wprowadzenie do eksploracji danych/lista1/zadanie2/ 
> library(datasets)
> path = "C:\\Users\\petitoff\\Desktop\\repos\\UO\\rok 3\\Wprowadzenie do eksploracji danych\\lista1\\zadanie2" # używając podwójnych ukośników
> setwd(path) ## ustawienie ścieżki
> ## zmiana nazwy kolumn:
> ## zmiana nazwy kolumn:
> # załadowanie danych
> wine <- read.csv('wine\\wine.data', header=FALSE)
> # zmień nazwy kolumn
> names(wine) <- c('Class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocy anins', 'Color intensity', 'Hue', '00280/0D315 of diluted wines', 'Proline')
> ***
```

b) Polecenie View (fragment print-screena z tabelką)

```
> ## =========
> View(wine)
```


c) Podsumowanie cech (summary)

d) Wykres 2D ilustrujący wybraną cechę dla różnych klas

e) Wykres 3D dla trzech wybranych cech (bez klasy)


```
> # Stwórz wykres 3D dla wybranych cech
> scatterplot3d(wine$Alcohol, wine$`Malic acid`, wine$Ash,
+ xlab="Alkohol", ylab="Kwas jabłkowy", zlab="Popiół",
+ highlight.3d=TRUE, angle=30)
> |
```

Zakres wartości

a) Dla wybranej cechy wyświetlić wybrane wartości stosując: zakres wartości, sekwencję indeksów (np. co dziesiąty indeks), indeksy ujemne, warunki logiczne.

```
Kod:
path = "C:\\Users\\petitoff\\Desktop\\repos\\UO\\rok 3\\Wprowadzenie do eksploracji
danych\\lista2"
setwd(path) ## ustawienie ścieżki
# Załadowanie danych
wine <- read.csv('wine\\wine.data', header = FALSE)
# Zmień nazwy kolumn
names(wine) <-
 c(
  'Class',
  'Alcohol',
  'Malic acid',
  'Ash',
  'Alcalinity of ash',
  'Magnesium',
  'Total phenols',
  'Flavanoids',
  'Nonflavanoid phenols',
  'Proanthocyanins',
  'Color intensity',
  'Hue',
  'OD280/OD315 of diluted wines',
  'Proline'
 )
        Dla wybranej cechy wyświetlić wybrane wartości stosując: zakres wartości, sekwencję
indeksów (np. co dziesiąty indeks), indeksy ujemne, warunki logiczne.
```

```
wine$Alcohol[5:15]

# Sekwencja indeksów
wine$Alcohol[seq(1, nrow(wine), 10)]

# Indeksy ujemne
wine$Alcohol[-(1:5)]

# Warunki logiczne
```

wine\$Alcohol[wine\$Alcohol > 14]

```
> path = "C:\Users\petitoff\\Desktop\\repos\\Uo\\rok 3\\mprowadzenie do eksploracji danych\\lista2"
> setwd(path) ## ustawienie ściezki
> # załadowanie danych
> wine <- read.csv('wine\\mine.data', header=FALSE)
> # zmień nazwy kolumn
> names(wine) <- c('Class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Proline')
> # head(wine)
> # a) Dla wybranej cechy wyświetlić wybrane wartości stosując: zakres wartości, sekwencję indeksów (np. co dziesiąty i ndeks), indeksy ujemne, warunki logiczne.
> # zakres wartości
> winesAlcohol[5:15]
[1] 13.24 14.20 14.39 14.06 14.83 13.86 14.10 14.12 13.75 14.75 14.38
> # sekwencja indeksów
> winesAlcohol[seq[t, nrow(wine), 10)]
[1] 14.23 14.10 14.06 13.73 13.56 13.05 12.33 12.29 12.00 12.08 12.08 11.46 11.45 12.86 12.93 13.50 12.36 12.20
> # Indeksy ujemne
> winesAlcohol[seq[t, nrow(wine), 10]]
[1] 14.20 14.39 14.06 14.83 13.86 14.10 14.12 13.75 14.75 14.38 13.63 14.30 13.83 14.19 13.64 14.06 12.93 13.71
[19] 12.85 13.50 13.05 13.39 13.30 13.87 14.02 13.73 13.58 13.68 13.76 13.51 13.48 13.28 13.05 13.07 14.22 13.75
[37] 13.11 13.88 13.24 13.05 14.21 14.38 13.90 14.10 13.94 13.05 13.83 13.40 13.83 14.19 13.64 14.20 14.29 12.37 12.17 12.37 13.11 12.37 13.41 13.88 13.68 13.70 13.74 12.29 12.29 13.76
[37] 13.14 13.88 13.24 13.05 14.21 14.38 13.90 14.10 13.94 13.05 13.83 13.82 13.77 13.74 13.56 14.22 13.29 13.72
[35] 12.37 12.33 12.64 13.67 12.37 12.17 12.37 13.11 12.37 13.41 12.21 12.29 13.86 13.40 12.09 12.99 11.96 11.66 13.03
[73] 11.84 12.33 12.70 12.00 12.77 12.08 13.05 11.84 12.67 12.16 11.56 12.42 12.08 12.08 12.00 12.69 12.29 11.66
[109] 11.41 12.08 11.03 11.82 12.42 12.77 12.0 11.45 11.56 12.42 12.30 15.10 15.12 12.07 12.24 11.29 11.37 13.18 12.29 12.25 13.16 13.88 12.87 13.32
[145] 13.08 13.50 12.79 13.11 13.23 12.58 13.71 13.49 12.24 12.39 13.36 13.52 13.69 12.85 12.96 13.78 13.78 13.74
[19] 14.22 14.37 14.20 14.39 14.06 14.83 14.10 14.12 14.75 14.38 14.30 14.19 14.06 14.02 14.22 14.21 14.38 14.10
[19] 14.22 14.34 14.16 14.13
```

b) Wyświetlić wybrane wiersze i kolumny z tabeli.

```
# b) Wybranie wierszy i kolumn:
selected_rows_columns <- wine[1:10, c("Alcohol", "Malic acid")]
print(selected_rows_columns)
```

indeksy

wine[5:15,]

```
b) Wybranie wierszy i kolumn
   selected_rows_columns <- wine[1:10, c("Alcohol", "Malic acid")]
    Alcohol Malic acid
                     1.71
1.78
      14.23
      13.20
      14.37
      13.24
      14.20
                     1.76
      14.39
                     1.87
      14.06
      13.86
  # indeksy
wine[5:15,
   Class Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols
             13.24
14.20
                            2.59 2.87
1.76 2.45
                                                         21.0
15.2
                                                                       118
112
                                                                                                      2.69
3.39
                                                                                        2.80
                                                                                        3.27
                                                                                                                                0.34
                                   2.45
             14.39
                                                                                                     2.52
2.51
                                                         14.6
                                                                                        2.50
                                                                                                                                0.30
                             1.87
                                                                        96
             14.06
                                                                                        2.60
                                                                                                                                0.31
             14.83
                             1.64
                                                                                                      2.98
                            1.35 2.27
2.16 2.30
1.48 2.32
1.73 2.41
             13.86
                                                          16.0
                                                                         98
                                                                                        2.98
             14.10
                                                          18.0
                                                                        105
                                                                                        2.95
                                                                                                      3.32
                                                                                                                                0.22
             14.12
                                                          16.8
                                                                                        2.20
                                                                                                      2.43
                                                                                                                                0.26
             13.75
                                                          16.0
                                                                         89
                                                                                        2.60
                                                                                                      2.76
                                                                                                                                0.29
              14.38
                                                                                                      3.64
                                                                                                                                0.29
                                            Hue OD280/OD315 of diluted wines
1.04 2.93
1.05 2.85
1.02 3.58
1.06 3.58
   Proanthocyanins Color intensity
                                                                                      Proline
                                     4.32 1.04
                                                                                          735
1450
                 1.82
                                           1.05
1.02
                 1.97
                                                                                          1290
                                           1.06
                                                                                          1295
                                                                                2.85
                 1.98
                                     5.20 1.08
                                                                                          1045
                                                                                          1045
                 1.85
                                     7.22 1.01
11
12
                  2.38
                                            1.25
                                                                                 3.17
                                                                                          1510
                                                                                2.82
                                                                                          1280
13
14
15
                                                                                2.90
2.73
                 1.81
                                                                                          1320
1150
                                            1.25
                 2.81
                                     5.40
                                                                                3.00
                                                                                          1547
                 2.96
                                      7.50
                                            1.20
```

c) Dodać do tabeli nową kolumnę z wartościami obliczonymi na podstawie innych wybranych kolumn.

```
# c) Dodanie nowej kolumny:
# Sprawdzanie, czy kolumna istnieje i zawiera dane
if ("Total phenols" %in% names(wine) &&
  !all(is.na(wine$`Total phenols`))) {
  # Dodanie nowej kolumny
  wine$Total.phenols.squared <- wine$`Total phenols` ^ 2
  head(wine)
} else {
  cat("Column 'Total phenols' does not exist or is empty.")
}</pre>
```

```
c) Dodanie nowej kolumny:
  Sprawdzanie, czy kolumna istnieje i zawiera dane
[ ("Total phenols" %in% names(wine) && !all(is.na(wine$`Total phenols`))) {
  head(wine)
  cat("Column 'Total phenols' does not exist or is empty.")
Class Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols
                                                                            2.80
                                                                                                                0.28
        13.20
                                                11.2
                                                             100
                                                                            2.65
                                                                                        2.76
                                                                                                                0.26
                      2.36 2.67
1.95 2.50
        13.16
                                                18.6
                                                                            2.80
                                                                                        3.24
                                                                                                                0.30
                                                             113
                                                                            3.85
                                                                                        3.49
                                                                                                                0.24
                                                16.8
        13.24
                      2.59 2.87
                                                21.0
                                                             118
                                                                                        2.69
                                                                                                                0.39
                                                                            2.80
        14.20
                      1.76 2.45
                                                             112
                                                                            3.27
                                                                                        3.39
                                    Hue OD280/OD315 of diluted wines Proline
Proanthocyanins Color
                        intensity
                                                                                   Total.phenols.squared
                              5.64 1.04
                                                                              1065
                              4.38 1.05
                                                                              1050
                                                                                                     7.0225
            2.81
                              5.68 1.03
                                                                     3.17
                                                                              1185
                                                                                                    7.8400
            2.18
                              7.80 0.86
                                                                     3.45
                                                                              1480
                                                                                                   14.8225
                                                                     2.93
                                                                                                    7.8400
            1.82
                              4.32 1.04
                                   1.05
                                                                     2.85
                                                                                                   10.6929
```

d) Podać wartości podstawowych statystyk dla wybranej kolumny: zakres, średnia, mediana,

```
# d) Statystyki podstawowe dla wybranej kolumny, np. "Alcohol"

cat("Statystyki dla kolumny 'Alcohol':", "\n")

cat("Zakres: ", min(wine$Alcohol), " - ", max(wine$Alcohol), "\n")

cat("Średnia: ", mean(wine$Alcohol), "\n")

cat("Mediana: ", median(wine$Alcohol), "\n")

cat("Odchylenie standardowe: ", sd(wine$Alcohol), "\n")

cat("Kurtoza: ", moments::kurtosis(wine$Alcohol), "\n")

cat("Skośność: ", moments::skewness(wine$Alcohol), "\n")

cat("Kwantyle: ", quantile(wine$Alcohol, probs = c(0.25, 0.5, 0.75)), "\n")
```

```
> # d) Statystyki podstawowe dla wybranej kolumny, np. "Alcohol"
 cat("Statystyki dla kolumny 'Alcohol':
Statystyki dla kolumny 'Alcohol':
> cat("Zakres: ", min(wine$Alcohol), " - ", max(wine$Alcohol), "\n")
Zakres: 11.03
                 - 14.83
Średnia: 13.00062
> cat("Mediana: ", median(wine$Alcohol), "\n")
Mediana: 13.05
> cat("Odchylenie standardowe: ", sd(wine$Alcohol), "\n")
Odchylenie standardowe: 0.8118265
> cat("Kurtoza: ", moments::kurtosis(wine$Alcohol), "\n")
Kurtoza: 2.13774
> cat("Skośność: ", moments::skewness(wine$Alcohol), "\n")
Skośność: -0.05104747
> cat("Kwantyle: ", quantile(wine$Alcohol, probs = c(0.25, 0.5, 0.75)), "\n")
Kwantyle: 12.3625 13.05 13.6775
```

- e) Wyznaczyć i zilustrować na wykresie macierz korelacji dla wybranych pięciu zmiennych.
- # e) Macierz korelacji dla wybranych pięciu zmiennych i jej wizualizacja

```
selected_vars <-
wine[, c('Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium')]
cor_matrix <- cor(selected_vars)
library(corrplot)
corrplot(cor_matrix, method = "circle")</pre>
```

e) Macierz korelacji dla wybranych pieciu zmiennych i jej wizualizacja selected_vars <- wine[, c('Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium')] cor_matrix <- cor(selected_vars)

f) Wydrukować histogramy dla trzech różnych zmiennych, przedyskutować wyniki.

f) Histogramy dla trzech różnych zmiennych

```
par(mfrow = c(1, 3)) # ustawienie layoutu na 1 wiersz i 3 kolumny
hist(wine$Alcohol,
    main = 'Alcohol',
    xlab = '',
    col = 'skyblue')
hist(
    wine$`Malic acid`,
    main = 'Malic acid',
    xlab = '',
    col = 'skyblue'
```

```
hist(wine$Ash,

main = 'Ash',

xlab = ",

col = 'skyblue')

61  # f) Histogramy dla trzech różnych zmiennych
62 par(mfrow=c(1,3)) # ustawienie layoutu na 1 wiersz i 3 kolumny
63 hist(wine$Alcohol, main='Alcohol', xlab='', col='skyblue')
64 hist(wine$Alcohol, main='Malic acid', xlab='', col='skyblue')
65 hist(wine$Ash, main='Ash', xlab='', col='skyblue')
```

)

a) Usuń kolumny z wartościami nominalnymi (identyfikatory, itp.) – jeżeli są, inne niż zmienna celu.

Zakładając, że zmienna celu to V1, a pozostałe kolumny to wartości liczbowe nie ma kolumn z wartościami nominalnymi do usunięcia.

Jeśli jednak byłyby takie kolumny, można by je usunąć za pomocą polecenia subset.

Przykład: Jeśli kolumna V2 była by zmienną nominalną, można by ją usunąć następująco:

```
wine <- subset(wine, select = -V2) # Usuń kolumnę V2 z ramki danych wine 
View(wine) # Wyświetl dane po usunięciu kolumny V2
```

b) Zmień nazwy kolumn na nazwy w języku polskim. Nowe nazwy powinny być: krótkie, znaczące, bez polskich znaków i spacji. Wyświetl dane poleceniem View.

```
library(datasets)
```

```
path = "C:\\Users\\petitoff\\Desktop\\repos\\UO\\rok 3\\Wprowadzenie do eksploracji danych\\lista3\\" # używając podwójnych ukośników setwd(path) ## ustawienie ścieżki
```

```
# Załadowanie danych
```

```
wine <- read.csv('wine\\wine.data', header = FALSE)</pre>
```

Oto kod zmieniający nazwy kolumn na nazwy w języku polskim:

```
nowe_nazwy <- c(

"Klasa",

'Alkohol',

'Kwas jabłkowy',

'Popiół',

'Alkalność popiołu',
```

```
'Magnez',
'Całkowite fenole',
'Flawonoidy',
'Fenole nietrwałe',
'Proantocyjanidy',
'Intensywność koloru',
'Odcień',
'Stężenie odwiedlane win',
'Prolina'
```

)

c) Zmienne o wartościach logicznych (jeżeli są) zapisz jako logiczne (polecenie as.logical).

wine\$Klasa <- as.logical(wine\$Klasa)

d) Upewnij się, że zmienne o wartościach liczbowych są typu liczbowego, a jeżeli nie są, to zapisz je jako numeryczne (as.numeric)

wprowadzone <- c('Alkohol', 'Kwas jabłkowy', 'Popiół', 'Alkalność popiołu', 'Magnez', 'Całkowite fenole', 'Flawonoidy', 'Fenole nietrwałe', 'Proantocyjanidy', 'Intensywność koloru', 'Odcień', 'Stężenie odwiedlane win', 'Prolina')

```
for (zmienna in wprowadzone) {
  if (class(wine[[zmienna]]) != "numeric") {
    wine[[zmienna]] <- as.numeric(wine[[zmienna]])
  }
}</pre>
```

e) Zmienną celu zapisz jako mającą wartości nominalne (polecenie as.factor).

wine\$Klasa <- as.factor(wine\$Klasa)</pre>

f) Policz brakujące wartości. Jeżeli są, to dla kolumn o wartościach liczbowych zastąp je wartościami średnimi dla kolumn.

kolumny_numeryczne <- c('Alkohol', 'Kwas jabłkowy', 'Popiół', 'Alkalność popiołu', 'Magnez', 'Całkowite fenole', 'Flawonoidy', 'Fenole nietrwałe', 'Proantocyjanidy', 'Intensywność koloru', 'Odcień', 'Stężenie odwiedlane win', 'Prolina')

```
for (kolumna in kolumny_numeryczne) {
  brakujace <- is.na(wine[[kolumna]])
  if (sum(brakujace) > 0) {
    srednia <- mean(wine[[kolumna]], na.rm = TRUE)
    wine[[kolumna]][brakujace] <- srednia
  }
}</pre>
```

g) Zapisz przetworzone dane do pliku (razem z nowymi nazwami kolumn). Załącz fragment printscreena zawartości (początku) pliku.

write.csv(wine, file = 'wyniki.csv', row.names = FALSE)

a) Obliczy i narysuje macierz korelacji zmiennych (bez zmiennej celu wyznaczającej klasy)

```
library(ggplot2)
library(reshape2)
correlation_matrix <- function(df, threshold) {</pre>
 # Obliczanie macierzy korelacji
 cor_matrix <- cor(df)
 # Rysowanie macierzy korelacji
 melted_cor_matrix <- melt(cor_matrix)</pre>
 plot <- ggplot(data = melted_cor_matrix, aes(x=Var1, y=Var2, fill=value)) +
  geom_tile() +
  scale_fill_gradient2(low = "blue", high = "red", mid = "white",
              midpoint = 0, limit = c(-1,1), space = "Lab",
              name="Pearson\nCorrelation") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1,
                     size = 12, hjust = 1),
     axis.text.y = element_text(size = 12)) +
  coord_fixed()
 # Zapisywanie rysunku do pliku
 ggsave("correlation_matrix.png", plot)
 # Wypisywanie par zmiennych o korelacji większej niż zadany próg
 cor_pairs <- subset(melted_cor_matrix, abs(value) > threshold & Var1 != Var2)
 # Usuwanie powtórzeń
```

```
cor_pairs <- cor_pairs[!duplicated(t(apply(cor_pairs[,c("Var1","Var2")],1,sort))),]
return(cor_pairs)
}
# Załadowanie zestawu danych iris
data(iris)
# Usunięcie kolumny Species (bo to jest nasza zmienna celu)
df <- iris[,-5]
# Użycie funkcji na df z progiem 0.5
correlation_matrix(df, 0.5)</pre>
```

b) zapisze rysunek macierzy korelacji do pliku

c) wypisze pary (nazwy) zmiennych o korelacji większej niż zadany próg oraz odpowiadające im wartości korelacji (wartość progu powinna być argumentem funkcji).

- Proszę uwzględnić ujemne wartości korelacji; czyli przyjmujemy, że np. korelacja równa -0.95
 jest powyżej progu 0.9, bo jest to silna korelacja, tylko ujemna (wraz ze wzrostem wartości
 jednej cechy następuje spadek wartości drugiej cechy).
- Pary proszę wypisać bez powtórek (czyli jeżeli mamy już korelację cechy x z cechą y,to nie wypisujemy korelacji cechy y z x).

Wyniki z konsoli:

```
Saving 7 x 7 in image

Var1 Var2 value

3 Petal.Length Sepal.Length 0.8717538

4 Petal.Width Sepal.Length 0.8179411

12 Petal.Width Petal.Length 0.9628654

>
```

Dokumentacja Kodu R- Zadanie 2

```
# Biblioteka datasets
library(datasets)
# Ustawienie ścieżki dostępu do danych
path = "C:\\Users\\petit\\Desktop\\repos\\UO\\rok 3\\Wprowadzenie do
eksploracji danych\\lista5\\"
setwd(path)
# ----- Zadanie 2a: Wczytanie i identyfikacja punktów
oddalonych ----- #
# Wczytanie danych
wine data <- read.csv('wine\\wine.data', header = FALSE)</pre>
# Funkcja do identyfikacji i zliczania punktów oddalonych przy
użyciu IQR
identify outliers <- function(data) {</pre>
  quantiles <- quantile(data, c(.25, .75), na.rm = TRUE)
  iqr <- IQR(data, na.rm = TRUE)</pre>
  lower bound <- quantiles[1] - 1.5 * iqr</pre>
  upper bound <- quantiles[2] + 1.5 * iqr</pre>
  outliers <- data[data < lower bound | data > upper bound]
  return(list("dolna granica" = lower_bound, "gorna granica" =
upper bound, "punkty oddalone" = outliers))
}
# Część a: Wykrywanie punktów oddalonych dla każdej zmiennej
outliers info <- lapply(wine data, identify outliers)</pre>
# Dodanie sztucznego punktu oddalonego, jeśli nie istnieje
for (i in 1:length(outliers_info)) {
```

```
if (length(outliers info[[i]]$punkty oddalone) == 0) {
    wine_data[i][1] <- outliers_info[[i]]$gorna_granica + 1 #</pre>
Dodanie punktu oddalonego
  }
}
# Część b: Wizualizacja punktów oddalonych dla maksymalnie 4
zmiennych
# Wybór pierwszych 4 zmiennych do wizualizacji
selected vars <- head(names(wine data), 4)</pre>
plots <- list()</pre>
for (var in selected vars) {
  plot <- ggplot(wine_data, aes_string(x=var)) +</pre>
    geom_histogram(binwidth = 1, fill="skyblue", color="black") +
    geom vline(xintercept = outliers info[[var]]$dolna granica,
color="red", linetype="dashed") +
    geom_vline(xintercept = outliers_info[[var]]$gorna_granica,
color="red", linetype="dashed") +
    ggtitle(paste("Histogram zmiennej", var, "z punktami
oddalonymi"))
  plots[[var]] <- plot</pre>
}
```


Histogram zmiennej V2 z punktami oddalonymi

Histogram zmiennej V3 z punktami oddalonymi

Część c: Usuwanie punktów oddalonych
cleaned_wine_data <- wine_data</pre>

```
for (var in names(wine_data)) {
```

cleaned_wine_data <- cleaned_wine_data[cleaned_wine_data[[var]] >=
outliers_info[[var]]\$dolna_granica &

```
cleaned_wine_data[[var]]
<= outliers_info[[var]]$gorna_granica, ]

# Część d: Wizualizacja po usunięciu punktów oddalonych dla tych
samych 4 zmiennych
cleaned_plots <- list()
for (var in selected_vars) {
  plot <- ggplot(cleaned_wine_data, aes_string(x=var)) +
     geom_histogram(binwidth = 1, fill="green", color="black") +
     ggtitle(paste("Histogram zmiennej", var, "po usunięciu punktów
oddalonych"))
  cleaned_plots[[var]] <- plot
}</pre>
```

Histogram zmiennej V1 po usunięciu punktów oddalonych

onut


```
# Część e: Zapisanie oczyszczonego zbioru danych
write.csv(cleaned_wine_data, "cleaned_wine_data.csv", row.names =
FALSE)

# Wynik
list("oryginalne_wykresy" = plots, "oczyszczone_wykresy" =
cleaned_plots, "plik_z_oczyszczonymi_danymi" =
"cleaned wine data.csv")
```

```
# Wczytanie danych
wine <- read.csv('wine\\wine.data', header = FALSE)
wine_features <- wine[, -1]

# utworzenie macierzy korelacji
cor_matrix <- cor(wine_features)
print(cor_matrix)</pre>
```

```
1.00000000
               0.09439694
                          0.211544596 -0.31023514
                                                 0.27079823
                                                            0.28910112
                                                                      0.2368149 -0.1559295
    0.09439694
               1.00000000
                          0.164045470
                                     0.28850040 -0.05457510 -0.33516700 -0.4110066
                                                                                0.2929771
                                     0.44336719 0.28658669 0.12897954 0.1150773
V4
    0.21154460
              0.16404547
                          1.000000000
                                                                                0.1862304
   -0.31023514 0.28850040
                          0.443367187
                                     1.00000000 -0.08333309 -0.32111332 -0.3513699
                                                                                0.3619217
٧6
    0.27079823 -0.05457510
                          0.286586691 -0.08333309
                                                1.00000000 0.21440123 0.1957838 -0.2562940
                                                            1.00000000 0.8645635 -0.4499353
    0.28910112 -0.33516700
                          0.128979538 -0.32111332
                                                 0.21440123
    0.23681493 -0.41100659
                          0.115077279 -0.35136986
                                                 0.19578377
                                                            0.86456350
                                                                       1.0000000 -0.5378996
   -0.15592947 0.29297713
0.13669791 -0.22074619
0.54636420 0.24898534
                          v9
                          0.009651935 -0.19732684
                                                 0.23644061 0.61241308 0.6526918 -0.3658451
V10
                          0.258887259 0.01873198
                                                 0.19995001 -0.05513642 -0.1723794 0.1390570
V11
V12 -0.07174720 -0.56129569 -0.074666889 -0.27395522
                                                 0.05539820 0.43368134 0.5434786 -0.2626396
V13 0.07234319 -0.36871043 0.003911231 -0.27676855
                                                 0.06600394
                                                            0.69994936
                                                                      0.7871939 -0.5032696
V14 0.64372004 -0.19201056 0.223626264 -0.44059693
                                                 0.39335085
                                                           0.49811488 0.4941931 -0.3113852
           V10
                      V11
                                 V12
                                             V13
    V2
V3
               0.24898534 -0.56129569 -0.368710428 -0.1920106
   -0.220746187
    0.009651935  0.25888726 -0.07466689  0.003911231  0.2236263
V4
   ٧6
    0.236440610 0.19995001
    0.612413084 -0.05513642
                           0.43368134 0.699949365
                                                 0.4981149
    0.652691769 - 0.17237940
                          0.54347857
                                     0.787193902
                                                  0.4941931
   -0.365845099 0.13905701 -0.26263963 -0.503269596
                                                -0.3113852
V10
   1.000000000 -0.02524993
                          0.29554425 0.519067096
                                                 0.3304167
V11 -0.025249931 1.00000000 -0.52181319 -0.428814942
                                                  0.3161001
   0.295544253 -0.52181319
                           1.00000000 0.565468293
V12
                                                  0.2361834
V13
    0.519067096 -0.42881494
                           0.56546829
                                      1.000000000
                                                  0.3127611
V14 0.330416700 0.31610011
                           0.23618345
                                      0.312761075
                                                 1.0000000
```

```
# Obliczanie i wydrukowanie indeksów oraz rang cech:
pearson_corr <- sapply(wine_features, function(x) cor(x, wine[, 1]))
pearson_rank <- order(-abs(pearson_corr))
print(pearson_corr)
print(pearson_rank)</pre>
```

```
# Utworzenie tablicy 2D z rangami:
ranks_matrix <- data.frame(pearson = pearson_rank)
rownames(ranks_matrix) <- colnames(wine_features)
print(ranks_matrix)</pre>
```

1 P	pearson					
V2	7					
V3	12					
V4	6					
V5	13					
V6	11					
V7	4					
V8	9					
V9	8					
V10	2					
V11	1					
V12	10					
V13	5					
V14	3					

```
# Dodanie kolumny ze średnią wartością rangi:
ranks_matrix$average_rank <- rowMeans(ranks_matrix, na.rm = TRUE)
print(ranks matrix)</pre>
```

```
pearson average_rank
V2
V3
         12
                        12
                         6
V4
          6
         13
                        13
V5
         11
                        11
V6
          4
                         4
٧7
V8
          9
                         9
V9
          8
                         8
V10
          2
                         2
                         1
V11
          1
V12
         10
                        10
           5
                         5
V13
V14
           3
                         3
```

Sortowanie cech według wartości średniej rangi:
sorted_ranks <- ranks_matrix[order(ranks_matrix\$average_rank),]
print(sorted ranks)</pre>

Spearman Correlation

```
spearman_corr <- sapply(wine_features, function(x) cor(x, wine[, 1],
method = "spearman"))
spearman_rank <- order(-abs(spearman_corr))
ranks_matrix$spearman <- spearman_rank
print(spearman_corr)
print(spearman_rank)</pre>
```

```
0.34691327 -0.05398792 0.56979214 -0.25049819 -0.72654365
                            V10
                                       V11
                                                 V12
                                                            V13
  -0.85490766 0.47420549 -0.57064758 0.13117017 -0.61657049 -0.74378690
  -0.57638313
  [1] 7 12 6 11 13 9 4 8 1 2 5 10 3
# Kendall Correlation
kendall corr <- sapply(wine features, function(x) cor(x, wine[, 1],</pre>
method = "kendall"))
kendall rank <- order(-abs(kendall corr))</pre>
ranks matrix$kendall <- kendall rank</pre>
print(kendall corr)
print(kendall rank)
                                                    V6
  -0.23898423 0.24749447 -0.03808511 0.44940228 -0.18499225 -0.59040381
                    v9
                              V10
                                         V11
                                                   V12
  -0.72525486 0.37923359 -0.45022461 0.06512382 -0.47922876 -0.60757229
  -0.40626000
   [1] 7 12 6 11 9 4 13 8 2 1 5 10 3
# Mutual Information
mi scores <- sapply(wine features, function(x)</pre>
mutinformation(discretize(x), discretize(wine[, 1])))
mi rank <- order(-mi scores)</pre>
ranks matrix$MI <- mi rank</pre>
print(mi scores)
print(mi rank)
 0.43718816 0.26059723 0.09409405 0.19209690 0.19419468 0.36548167 0.61456543
                                          V13
                        V11
                                 V12
 0.17079017 0.21654374 0.47156977 0.40134555 0.48896304 0.53321967
  [1] 7 13 12 10 1 11 6 2 9 5 4 8 3
```

```
# PCA - pierwsza główna składowa
pca result <- prcomp(wine features, scale. = TRUE)</pre>
pca rank <- order(-abs(pca result$rotation[, 1]))</pre>
ranks matrix$PCA <- pca rank</pre>
print(pca result$rotation[, 1])
print(pca rank)
   ranks_matrix$PCA <- pca_rank
print(pca_result$rotation[, 1])
V2 V3
                                    V4
                                                              V6
  ν9
                                   V10
           V8
                                                V11
                                                             V12
  -0.422934297    0.298533103    -0.313429488    0.088616705    -0.296714564    -0.376167411
          V14
  -0.286752227
   [1] 7 6 12 9 8 11 13 2 4 1 5 10 3
# LDA
lda result <- lda(wine[, 1] ~ ., data = wine features)</pre>
lda rank <- order(-abs(lda result$scaling[, 1]))</pre>
ranks matrix$LDA <- lda rank</pre>
print(lda result$scaling[, 1])
print(lda_rank)
      la_result <- lda(wine[, 1] ~ ., data = wine_features)
la_rank <- order(-abs(lda_result$scaling[, 1]))
unks_matrix$LDA <- lda_rank
           V2
                       V3
                                    V4
                                                             V6
  -0.403399781 0.165254596 -0.369075256 0.154797889 -0.002163496
                                                                 0.618052068
                       V9
                                   V10
                                               V11
                                                            V12
  -1.661191235 -1.495818440 0.134092628 0.355055710 -0.818036073 -1.157559376
          V14
  -0.002691206
   [1] 7 8 12 11 6 1 3 10 2 4 9 13 5
# Chi-Square Test
# Uwaga: Ten test ma sens tylko dla cech kategorialnych.
# Aktualizacja średniej rangi
ranks matrix$average rank <- rowMeans(ranks matrix[, -1], na.rm =</pre>
TRUE)
```

```
> # Chi-Square Test
> # Uwaga: Ten test ma sens tylko dla cech kategorialnych.
> # Aktualizacja średniej rangi
> ranks_matrix$average_rank <- rowMeans(ranks_matrix[, -1], na.rm = TRUE)
> print(ranks_matrix$average_rank)
[1] 7.000000 10.500000 9.000000 10.833333 8.000000 6.666667 8.000000 6.333333 3.333333
[10] 2.333333 6.333333 9.333333 3.3333333
> " Contraction and contract for desired contract."
```

Sortowanie cech według wartości średniej rangi
sorted_ranks <- ranks_matrix[order(ranks_matrix\$average_rank),]
print(sorted ranks)</pre>

```
pearson average_rank spearman kendall MI PCA LDA
               2.333333
V11
         1
                                          5
                               2
                                       1
                                             1
                                                 4
         2
                                       2
                                          9
                                                  2
V10
               3.333333
                               1
                                             4
                                                  5
V14
                               3
                                       3
                                          3
                                              3
         3
               3.333333
v9
         8
              6.333333
                               8
                                       8
                                          2
                                              2
                                                10
V12
        10
              6.333333
                               5
                                       5
                                         4
                                             - 5
                                                  9
                               9
                                             11
              6.666667
                                       4 11
                                                  1
         4
٧7
         7
                                       7
                                                  7
V2
              7.000000
                                         7
V6
        11
              8.000000
                              13
                                      9 1
                                             8
                                                 6
V8
         9
              8.000000
                              4
                                      13 6
                                             13
                                                 3
         6
              9.000000
                              6
                                      6 12
                                             12
                                                 12
V4
         5
               9.333333
                              10
                                      10 8
                                             10
                                                13
V13
        12
              10.500000
                              12
                                      12 13
                                             6
                                                 8
V3
V5
        13
              10.833333
                                                11
                              11
                                      11 10
                                              9
```

Wnioski

1. Ważność Cech wg Korelacji Pearsona:

- Cecha V11 wykazuje najwyższą korelację (najniższą rangę) z etykietami klas, co wskazuje na jej potencjalnie dużą ważność w modelowaniu.
- Z kolei cecha V5 ma najniższą korelację (najwyższą rangę), co sugeruje jej mniejsze znaczenie.

2. Różnorodność Korelacji:

Obserwujemy różnorodne wartości korelacji, od silnie negatywnych (np. V7, V8, V13)
do silnie pozytywnych (np. V4, V10, V11), co wskazuje na złożoność zależności w tych
danych.

3. Znaczenie dla Modelowania:

- Cechy o wyższej korelacji mogą być bardziej znaczące w modelach predykcyjnych, jednak warto pamiętać, że korelacja nie zawsze równa się przyczynowości.
- Cechy o niskiej korelacji nie powinny być automatycznie odrzucane, gdyż mogą wnosić cenne informacje w połączeniu z innymi cechami.

4. Wnioski z Innych Metod Filtracyjnych:

- Korelacje Spearmana i Kendalla: Te metody wskazują na monotoniczne związki
 między cechami a etykietami klas. Zauważalna jest pewna konsystencja z wynikami
 korelacji Pearsona, co dodatkowo potwierdza ważność niektórych cech (np. V11,
 V10).
- Wzajemna Informacja (MI): Ta metoda ocenia wzajemną zależność między
 zmiennymi, co może ujawnić nieliniowe związki. Cechy z wysokim wynikiem MI mogą
 odgrywać kluczową rolę w rozróżnianiu klas, nawet jeśli ich liniowa korelacja jest
 słaba.

5. Analiza Głównych Składowych (PCA):

 Wyniki PCA mogą pomóc zrozumieć, które cechy najbardziej przyczyniają się do wariancji w zbiorze danych. Cechy z wysokimi wartościami na pierwszej głównej składowej mogą być istotne dla różnorodności w danych.

6. Analiza Dyskryminacyjna Liniowa (LDA):

 Wyniki LDA podkreślają cechy, które najlepiej rozróżniają klasy. Ta metoda jest szczególnie przydatna w kontekście klasyfikacji i może wskazywać na cechy krytyczne dla rozróżniania między kategoriami wina.

7. Ważność Integracji Różnych Metod:

 Integracja wyników z różnych metod daje bardziej zrównoważony widok na ważność cech. Cechy, które są konsekwentnie wysoko oceniane przez różne metody, są prawdopodobnie kluczowe dla zrozumienia i modelowania zbioru danych.

8. Praktyczne Implikacje dla Modelowania:

- Cechy o wysokich średnich rangach z różnych metod filtracyjnych mogą być priorytetowe przy tworzeniu modeli predykcyjnych.
- Warto jednak zachować ostrożność i nie wykluczać cech o niższych rangach, ponieważ mogą one odgrywać istotne role w interakcjach z innymi zmiennymi.

- 1. Wczytanie danych: Import danych z pliku wine.data bez nagłówków.
- # Wczytanie danych
 wine data <- read.csv('wine\\wine.data', header = FALSE)</pre>
 - 2. **Usunięcie brakujących danych**: Wyeliminowanie obserwacji z brakującymi wartościami.
 - 3. **Usunięcie punktów oddalonych**: Obliczenie odległości Mahalanobisa dla każdego punktu, ustalenie progu (95 percentyl) i usunięcie punktów przekraczających ten próg.

```
# Usunięcie obserwacji brakujących i punktów oddalonych
wine data <- na.omit(wine data) # Usunięcie obserwacji brakujących
# Obliczanie odległości Mahalanobisa dla każdego punktu
wine data$distance <- mahalanobis(wine data, colMeans(wine data),
cov(wine_data))
# Ustalenie progu dla identyfikacji punktów oddalonych, np. 95
percentyla
threshold <- quantile(wine data$distance, 0.95)
# Usuwanie punktów oddalonych
wine data <- wine data[wine data$distance <= threshold, ]</pre>
# Przygotowanie danych do PCA
wine data pca <- PCA(wine data, graph = FALSE)</pre>
# a) Wartości własne i wyjaśniana wariancja
eig val <- get eigenvalue(wine data pca)</pre>
print(eig val)
fviz eig(wine data pca) # Wykres osypiskowy
ggsave("scree_plot.png", bg = "white") # Zapisanie do pliku
```

> print(eig_val)			
	eigenvalue	variance.percent	cumulative.variance.percent
Dim.1	5.82941960	38.8627973	38.86280
Dim. 2	2.69124789	17.9416526	56.80445
Dim. 3	1.36266926	9.0844617	65.88891
Dim.4	1.11687523	7.4458349	73.33475
Dim. 5	0.91200393	6.0800262	79.41477
Dim.6	0.65538714	4.3692476	83.78402
Dim.7	0.57881234	3.8587489	87.64277
Dim.8	0.45060262	3.0040174	90.64679
Dim.9	0.33766066	2.2510711	92.89786
Dim. 10	0.29486852	1.9657902	94.86365
Dim. 11	0.24451072	1.6300714	96.49372
Dim. 12	0.21036027	1.4024018	97.89612
Dim. 13	0.15883684	1.0589123	98.95503
Dim. 14	0.11625933	0.7750622	99.73010
Dim. 15	0.04048565	0.2699044	100.00000
• fud-	odalwino di	ata neal # wilene	- ocymickowy

b) Ładunki czynnikowe
loadings <- wine_data_pca\$var\$coord
print(loadings)</pre>

```
Dim.1
                         Dim. 2
                                   Dim.3
                                              Dim.4
       -0.936928269 0.015146156 -0.01927134 0.18943162 0.02981302
V1
        0.367586316  0.769061818  -0.17948661  -0.07777073  0.05030504
V2
       -0.522912555 0.370153338 0.07767294 -0.04167927 0.54345198
V3
        0.007349719  0.471623556  0.75545529 -0.30885394 -0.07645014
V4
       -0.609378200 -0.088850874 0.58443340 -0.20620017
V5
                                                    0.18428368
        V6
٧7
V8
V9
       -0.650228330 \quad 0.006129602 \quad 0.16256496 \quad -0.30488966 \quad -0.20176459
V10
        0.690515627 -0.014080261 0.20169227 0.25071746 0.35613353
       -0.180569880 0.830998790 -0.14142455 0.21855428 0.01484359
V11
V12
        0.633475899 -0.456736402 0.14587262 -0.16124894 -0.36342541
        0.825279206 -0.293856815 0.08752902 -0.16378616 0.23474509
V13
        V14
distance -0.138966452 -0.146083137 0.44012379 0.79315643 -0.15862579
```

c) Zasoby zmienności wspólnej
communalities <- wine_data_pca\$var\$cos2
print(communalities)</pre>

```
> print(communalities)
                Dim.1
                             Dim.2
                                          Dim.3
                                                      Dim.4
                                                                   Dim. 5
         8.778346e-01 2.294060e-04 0.0003713846 0.035884340 0.0008888159
V1
V2
         1.351197e-01 5.914561e-01 0.0322154420 0.006048287 0.0025305968
٧3
         2.734375e-01 1.370135e-01 0.0060330858 0.001737162 0.2953400600
V4
         5.401837e-05 2.224288e-01 0.5707126951 0.095390759 0.0058446242
V5
         3.713418e-01 7.894478e-03 0.3415624034 0.042518510 0.0339604752
        8.784241e-02 3.868599e-01 0.0458338130 0.022879263 0.1264134034
V6
V7
         7.359771e-01 2.291221e-03 0.0317036285 0.006143443 0.0242802256
V8
        8.931839e-01 3.589034e-03 0.0160718881 0.002922956 0.0167943500
V9
        4.227969e-01 3.757203e-05 0.0264273669 0.092957704 0.0407089506
         4.768118e-01 1.982537e-04 0.0406797735 0.062859246 0.1268310942
V10
         3.260548e-02 6.905590e-01 0.0200009035 0.047765975 0.0002203321
V11
         4.012917e-01 2.086081e-01 0.0212788212 0.026001221 0.1320780319
V12
V13
         6.810858e-01 8.635183e-02 0.0076613292 0.026825906 0.0551052595
         4.207253e-01 3.323904e-01 0.0084077694 0.017843342 0.0258455728
distance 1.931167e-02 2.134028e-02 0.1937089526 0.629097117 0.0251621400
```

```
# d) Wkłady zmiennych pierwotnych w składowe główne
contributions <- wine_data_pca$var$contrib
print(contributions)

fviz_pca_var(wine_data_pca) # Wykres korelacji
ggsave("correlation plot.png", bg = "white") # Zapisanie do pliku</pre>
```

```
Dim.1
                              Dim. 2
                                          Dim. 3
                                                     Dim.4
         15.058696078
                       0.008524151
                                     0.0272542
                                                 3.2129229
                                                             0.09745746
V2
          2.317892847 21.977019751
                                      2.3641424
                                                 0.5415365
                                                             0.27747652
                                                           32.38363888
V3
                        5.091076681
                                     0.4427403
          4.690647762
                                                 0.1555377
V4
          0.000926651
                        8.264893769 41.8819675
                                                 8.5408608
                                                             0.64085516
V5
          6.370133147
                        0.293338934 25.0656865
                                                 3.8069168
                                                             3.72372026
V6
          1.506880805 14.374741194
                                      3.3635317
                                                 2.0485066 13.86105904
         12.625220323
٧7
                       0.085136003
                                     2.3265828
                                                 0.5500564
                                                             2.66229396
                        0.133359458
V8
                                                 0.2617084
         15.322003641
                                     1.1794416
                                                             1.84147780
v9
                                                            4.46368148
          7.252812631
                        0.001396082
                                     1.9393823
                                                 8.3230159
V10
          8.179404876
                      0.007366610
                                     2.9853006
                                                 5.6281351 13.90685827
V11
          0.559326381 25.659434546
                                     1.4677739
                                                 4.2767512
                                                             0.02415911
V12
          6.883905134
                        7.751353650
                                     1.5615544
                                                 2.3280328 14.48217790
V13
         11.683594835
                        3.208616641
                                     0.5622296
                                                 2.4018713
                                                             6.04221731
V14
          7.217275341 12.350791308
                                     0.6170073
                                                 1.5976128
                                                             2.83393217
distance
          0.331279548 0.792951222 14.2154049 56.3265349
                                                             2.75899468
```


e) Wykres łącznego wkładu dla pierwszych trzech wymiarów
fviz contrib(wine data pca, choice = "var", axes = 1:3)

Contribution of variables to Dim-1-2-3

f) Wektory własne eigen_vectors <- wine_data_pca\$ind\$coord print(eigen_vectors)</pre>

g) Wybór liczby składowych
Analiza procentu wyjaśnianej wariancji
fviz_screeplot(wine_data_pca)
ggsave("explained_variance_plot.png", bg = "white") # Zapisanie do
pliku

Załóżmy, że decydujemy się zachować pierwsze 3 składowe główne selected_components <- 1:3</pre>

- # h) Utworzenie nowej tabeli danych
- # Wybór składowych głównych do nowej tabeli danych
 new_data <- wine_data_pca\$ind\$coord[, selected_components]</pre>
- # Konwersja new_data do ramki danych, jeśli to konieczne
 new_data <- as.data.frame(new_data)</pre>
- # Dodanie zmiennej celu (klasy) do nowej tabeli
 new data\$class <- wine data[, 1]</pre>

```
# Zapis nowej tabeli danych do pliku CSV
if (!require(readr)) install.packages("readr")
library(readr)
write_csv(new_data, "new_wine_data.csv")
```

Lista 8

Standardize the data

```
wine_data_scaled <- scale(wine_data)</pre>
```

```
\# a) Stosowanie metody k-średnich dla k = 1 do 15
results <- list()
for (k in 1:15) {
  set.seed(123) # dla powtarzalności wyników
  kmeans result <- kmeans(wine data scaled, centers = k, nstart =</pre>
25)
  results[[k]] <- kmeans result</pre>
  cat("Dla k = ", k, " n",
      "Całkowita suma kwadratów wewnątrz klastrów:",
kmeans result$tot.withinss, "\n",
      "Suma kwadratów dla każdego klastra:", kmeans_result$withinss,
"\n",
      "Centra klastrów:\n", kmeans result$centers, "\n",
      "Liczba obserwacji w każdym klastrze:", kmeans result$size,
"\n",
      "Przypisanie klastrów dla pierwszych 20 obserwacji:",
kmeans resultcluster[1:20], "n\n")
}
```

Wyniki

Dołączam plik excel oraz wklejam dla przyszłego wysyłania arkusze z pliku

kmeans_clustering_updated_results.xls>

Total	Within-	Cluster Centers	Cluster Sizes	Cluster Assignments
Within-	Cluster			for First 20
Cluster	Sum of			Observations
Sum of	Squares			
Squares				

-1.227483e-15 -8.719617e-16 -5.738231e-17

8.470128e-16 -1.559302e-16 -6.14365e-17

2.186141e-16 1.135172e-16 6.224734e-16 -

1.503167e-16 2.370139e-17 1.846214e-16

1717,525 1185.03] 0.6133643 -0.4519062 0.259946

1040 103]

1, 1, 1, 1, 1, 1, 1, 1, 1,

2, 2, 2, 2, 2, 2, 2]

13]

2, 3, 4]

[1, 1, 1, 1, 1, 1, 1, 1, 1,

2478 [2478] 3.492836e-17 -6.112464e-17 [178] 1, 1]

Total Within- Cluster Sum of Squares	Within- Cluster Sum of Squares	Cluster Centers	Cluster Sizes	Cluster Assignments for First 20 Observations
		1.032546 -0.5939424 -0.07277357		
		0.0418609 0.6626412 -0.3811653 0.1893414		
		-0.1089132 0.5151693 -0.2963363 -		
		0.1542527 0.08872942 -0.9410522		
		0.5413132 -1.043692 0.6003536 0.835592 -		
		0.4806503 -0.7141412 0.4107892 0.5419399		
	[532.4956,	-0.3117353 -0.8795908 0.5059593 -1.06631	[65,	[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

113]

Total Within- Cluster Sum of Squares	Within- Cluster Sum of Squares	Cluster Centers	Cluster Sizes	Cluster Assignments for First 20 Observations
	[100,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00	[10,	[1, 2, 3, 1, 2,
1030	101, 102]	11.00 12.00 13.00 14.00	11, 12]	3]

Total Within- Cluster Sum of Squares	Within- Cluster Sum of Squares	Cluster Centers	Cluster Sizes	Cluster Assignments for First 20 Observations
	[100,		[10,	
	101, 102,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	11, 12,	[1, 2, 3, 4, 1,

12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00

Total	Within-	Cluster Centers	Cluster	Cluster
Within-	Cluster		Sizes	Assignments
Cluster	Sum of			for First 20
Sum of	Squares			Observations
Squares				

	[100,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	[10,	
	101, 102,	12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00	11, 12,	[1, 2, 3, 4, 5,
1050	103, 104]	22.00 23.00 24.00	13, 14]	1, 2, 3, 4, 5]

Total	Within-	Cluster Centers	Cluster	Cluster
Within-	Cluster		Sizes	Assignments
Cluster	Sum of			for First 20
Sum of	Squares			Observations
Squares				
	[100,		[10,	
	101, 102,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	11, 12,	[1, 2, 3, 4, 5,
	103, 104,	12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00	13, 14,	6, 1, 2, 3, 4,
1060	105]	22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00	15]	5, 6]
Total	Within-	Cluster Centers	Cluster	Cluster
Within-	Cluster		Sizes	Assignments
Cluster	Sum of			for First 20
Sum of	Squares			Observations
Squares				
	[100,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	[10,	
	101, 102,	12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00	11, 12,	[1, 2, 3, 4, 5,
	103, 104,	22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00	13, 14,	6, 7, 1, 2, 3,
1070	105, 106]	32.00 33.00 34.00	15, 16]	4, 5, 6, 7]
Total	Within-	Cluster Centers	Cluster	
			Ciustei	Cluster
Within-	Cluster		Sizes	Assignments
Within- Cluster	Cluster Sum of			
				Assignments
Cluster	Sum of Squares		Sizes	Assignments for First 20
Cluster Sum of	Sum of Squares		Sizes	Assignments for First 20 Observations
Cluster Sum of	Sum of Squares [100, 101, 102,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	[10, 11, 12,	Assignments for First 20 Observations
Cluster Sum of	Sum of Squares [100, 101, 102, 103, 104,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00	[10, 11, 12, 13, 14,	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2,
Cluster Sum of	Sum of Squares [100, 101, 102, 103, 104, 105, 106,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	[10, 11, 12, 13, 14, 15, 16,	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7,
Cluster Sum of	Sum of Squares [100, 101, 102, 103, 104,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00	[10, 11, 12, 13, 14,	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2,
Cluster Sum of Squares	Sum of Squares [100, 101, 102, 103, 104, 105, 106,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00	[10, 11, 12, 13, 14, 15, 16,	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7,
Cluster Sum of Squares	Sum of Squares [100, 101, 102, 103, 104, 105, 106,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00	[10, 11, 12, 13, 14, 15, 16,	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7,
Cluster Sum of Squares	Sum of Squares [100, 101, 102, 103, 104, 105, 106, 107]	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00	[10, 11, 12, 13, 14, 15, 16, 17]	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8]
Cluster Sum of Squares 1080	Sum of Squares [100, 101, 102, 103, 104, 105, 106, 107] Within-	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00	[10, 11, 12, 13, 14, 15, 16, 17]	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8] Cluster
Cluster Sum of Squares 1080 Total Within- Cluster	Sum of Squares [100, 101, 102, 103, 104, 105, 106, 107] Within-Cluster Sum of	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00	[10, 11, 12, 13, 14, 15, 16, 17]	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8] Cluster Assignments for First 20
Cluster Sum of Squares 1080 Total Within-	Sum of Squares [100, 101, 102, 103, 104, 105, 106, 107] Within-Cluster	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00	[10, 11, 12, 13, 14, 15, 16, 17]	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8] Cluster Assignments
Cluster Sum of Squares 1080 Total Within- Cluster Sum of	Sum of Squares [100, 101, 102, 103, 104, 105, 106, 107] Within-Cluster Sum of Squares	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 Cluster Centers	[10, 11, 12, 13, 14, 15, 16, 17] Cluster Sizes	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8] Cluster Assignments for First 20 Observations
Cluster Sum of Squares 1080 Total Within- Cluster Sum of	Sum of Squares [100, 101, 102, 103, 104, 105, 106, 107] Within-Cluster Sum of	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00	[10, 11, 12, 13, 14, 15, 16, 17]	Assignments for First 20 Observations [1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8] Cluster Assignments for First 20

.05, 106, .07, 108] Within-	32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00	15, 16, 17, 18]	7, 8, 9]
Within-	42.00 43.00 44.00	17, 18]	
	Cluster Centers	Cluster	
Cluster		Sizes	Assignments
Sum of			for First 20
Squares			Observations
100		[10	
•		= :	
			= ' ' ' ' ' ' ' '
.09]	42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00	19]	6, 7, 8, 9, 10]
-	Cluster Centers	Cluster	Cluster
		Sizes	Assignments
			for First 20
Squares			Observations
•		•	
			•
			6, 7, 8, 9, 10,
.09,			
10]	52.00 53.00 54.00	19, 20]	10, 11]
Within-	Cluster Centers	Cluster	Cluster
	Cluster Centers		Assignments
		31263	for First 20
			Observations
oquui es			Observations
100,		[10,	<u> </u>
.01, 102,	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00	11, 12,	[1, 2, 3, 4, 5,
103, 104,	12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00		6, 7, 8, 9, 10,
			11, 12, 1, 2,
	42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00		8, 9, 10, 11,
111]	52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00	21]	12]
Within-	Cluster Centers	Cluster	Cluster
Cluster		Sizes	Assignments
Sum of			for First 20
Squares			Observations
-			
	100, 01, 102, 03, 104, 05, 106, 07, 108, 09] Within-Cluster Sum of Squares 100, 01, 102, 03, 104, 05, 106, 07, 108, 09, 10] Within-Cluster Sum of Squares 100, 01, 102, 03, 104, 05, 106, 07, 108, 09, 110] Within-Cluster Sum of Squares	100, 101, 102, 10, 10, 12, 10, 13, 10, 14, 10, 15, 10, 16, 10, 17, 18, 10, 18, 10, 19, 11, 10, 18, 10, 19, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 11, 10, 18, 10, 1	100, 101, 102, 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 11, 12, 03, 104, 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 13, 14, 05, 106, 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 15, 16, 07, 108, 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 17, 18, 19]

103, 104, 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00

13, 14, 2, 3, 4, 5, 6,

```
0.00\,1.00\,2.00\,3.00\,4.00\,5.00\,6.00\,7.00\,8.00\,9.00\,10.00\,11.00
       [100,
                                                                                     [10,
                   12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00
       101, 102,
                                                                                     11, 12, [1, 2, 3, 4, 5,
                   22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00
       103, 104,
                                                                                     13, 14, 6, 7, 8, 9, 10,
       105, 106,
                   32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00
                                                                                     15, 16, 11, 12, 13, 1,
       107, 108,
                   42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00
                                                                                     17, 18, 2, 3, 4, 5, 6,
                   52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00
                                                                                     19, 20, 7, 8, 9, 10,
       109, 110,
1130 111, 112] 62.00 63.00 64.00
                                                                                     21, 22] 11, 12, 13]
```

Total Within- Cluster Sum of Squares	Within- Cluster Sum of Squares	Cluster Centers	Cluster Sizes	Cluster Assignments for First 20 Observations
1140	[100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113]	0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00	[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]	11, 12, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9,
Total Within-	Within- Cluster	Cluster Centers	Cluster Sizes	Cluster Assignments
Cluster	Sum of		31263	for First 20
Sum of	Squares			Observations
Squares		0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00		
	[100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,	11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 24.00 25.00 26.00 27.00 28.00 29.00 30.00 31.00 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 41.00 42.00 43.00 44.00 45.00 46.00 47.00 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00 56.00 57.00 58.00 59.00 60.00 61.00 62.00 63.00 64.00	12, 13, 14, 15, 16, 17, 18, 19,	[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

```
# b) Wizualizacja wyników dla k = 2 do 7
par(mfrow = c(3, 2))
for (k in 2:7) {
    # Tworzenie wykresu
    plot <- fviz_cluster(results[[k]], data = wine_data_scaled, geom =
"point", ellipse = TRUE, main = paste("k =", k))</pre>
```

```
# Wyświetlanie wykresu
print(plot)

# Zapisywanie wykresu do pliku PNG
ggsave(filename = paste("kmeans_k", k, ".png"), plot = plot, width
= 10, height = 6)

# Sprawdź, czy plik został zapisany
if (file.exists(paste("kmeans_k", k, ".png"))) {
   cat("Plik", paste("kmeans_k", k, ".png"), "został zapisany.\n")
} else {
   cat("Plik", paste("kmeans_k", k, ".png"), "NIE został zapisany.\n")
}
```


#c) Określenie optymalnej liczby klastrów

Metoda łokcia

fviz_nbclust(wine_data_scaled, kmeans, method = "wss")

Metoda średniego konturu

fviz_nbclust(wine_data_scaled, kmeans, method = "silhouette")

set.seed(123)

gap_stat <- clusGap(wine_data_scaled, FUN = kmeans, nstart = 25, K.max = 10, B = 50)
fviz_gap_stat(gap_stat)</pre>

Wnioski

- 1. **Metoda łokcia (Elbow Method)**: Wykres pokazuje całkowitą sumę kwadratów wewnątrz klastrów dla różnych liczby klastrów k. Punkt, w którym krzywa zaczyna się wyginać (łokieć) i staje się mniej stroma, wskazuje na optymalną liczbę klastrów. Na załączonym wykresie punkt łokcia wydaje się znajdować przy k=3, co sugeruje, że 3 klastry mogą być odpowiednią liczbą dla tego zbioru danych.
- 2. **Metoda średniego konturu (Silhouette Method)**: Wykres przedstawia średnią szerokość sylwetki dla różnych liczby klastrów. Wartość ta mierzy, jak dobrze pasuje próbka do swojego klastra (spójność) w porównaniu do innych klastrów (oddzielenie). Wyższa wartość średniej szerokości sylwetki wskazuje na lepsze dopasowanie. Na załączonym wykresie maksymalna średnia szerokość sylwetki pojawia się dla k=2.
- 3. **Statystyka luk (Gap Statistic)**: Ta metoda porównuje logarytmiczny wskaźnik wewnątrz-sumy kwadratów dla różnych liczby klastrów z ich oczekiwanymi wartościami pod względem danych referencyjnych. Optymalną liczbę klastrów wskazuje największa luka. Na załączonym wykresie widoczny jest wyraźny szczyt dla k=3, co sugeruje, że najlepszą liczbą klastrów może być właśnie 3.

Dyskusja i wybór optymalnej liczby klastrów:

- Dwie z trzech metod (metoda łokcia i statystyka luk) sugerują, że optymalna liczba klastrów wynosi 3.
- Metoda średniego konturu wskazuje na 2 klastry, jednak wartość średniej szerokości sylwetki nie jest znacznie wyższa dla k=2 w porównaniu do k=3.

Biorąc pod uwagę powyższe informacje, i zakładając, że liczba klas (ground-truth labels) w zbiorze danych wine wynosi 3 (co jest typowe dla tego zbioru danych, zawierającego klasyfikację win do trzech różnych kultivarów), wybór 3 klastrów wydaje się być najbardziej odpowiedni. Jest to zgodne z rzeczywistą liczbą klas w danych, co dodatkowo potwierdza wybór.