CS130 HW17

Problem 1

Use your two MIPS reference handouts to determine the machine code for each of the following four instructions. Show your work in a manner similar to the class notes on the subject.

Address	Code				
0x00400000		addiu	\$t1,	\$0 ,	4
0×00400004	LO:	beq	\$t1,	\$0 ,	DONE
0×00400008		addi	\$t1,	\$t1,	-1
0x0040000c		bgez	\$0 ,	L0	
0x00400010	DONE:				

add 0 and 4 and put into \$t1
 if \$t1 = 0, then branch to DONE
 decrement t1
 if \$0 >= 0 then branch to LO
 DONE branch

The bgez instruction uses a special I-format with opcode = 000001 and \$rt = 00001. The register named in the instruction is \$rs and the offset is PC-relative. Note: negative offset is represented using 2's complement.

Problem 2

- (a) Disassemble (reverse engineer) the machine code below into proper MIPS instructions. Show details of your work.
- (b) Provide an RTN-like description of the computation.

0x020a6824	sll	\$k0,	\$s4,	1
0x000d6dc2	sll	\$k1,	\$k0,	14
0x21b3ff81	add	\$ra,	\$t5,	\$s3

```
op rs rt rd shamt funct
• 000000|10000|01010|01101|00000|100100
• 000000|00000|01101|01101|10111|000010
```

001000 | 01101 | 10011 | 11111 | 11110 | 000001