Olin College of Engineering ENGR2410 – Signals and Systems

Assignment 9

Problem 1 (2 points) Show Parseval's Theorem

$$\int_{t=-\infty}^{t=\infty} [x(t)]^2 dt = \int_{\omega=-\infty}^{\omega=\infty} |X(j\omega)|^2 \frac{d\omega}{2\pi}$$

where

$$|X(j\omega)|^2 = X(j\omega)X^*(j\omega)$$

x(t) is real, and $X^*(j\omega)$ is the complex conjugate of $X(j\omega)$. Hint:

$$X^*(j\omega) = \int_{t=-\infty}^{t=\infty} x(t)e^{j\omega t}dt$$

Problem 2 (4 points) A non-ideal filter or communication channel $H(j\omega)$ with finite transition band Δf between the passband (where $H(j\omega) \neq 0$) and stopband (where $H(j\omega) = 0$) can be modeled as $H(j\omega) = H_0(j\omega) * H_{\Delta}(j\omega)$ where

$$H_0(j\omega) = \begin{cases} 1 & -2\pi f_0 < \omega < 2\pi f_0 \\ 0 & \text{otherwise} \end{cases} \qquad H_{\Delta}(j\omega) = \begin{cases} \frac{1}{2\pi\Delta f} & -2\pi\Delta f/2 < \omega < 2\pi\Delta f/2 \\ 0 & \text{otherwise} \end{cases}$$

- A. Find an expression for $h_0(t)$, the impulse response of the ideal channel.
- B. Find an expression for $H(j\omega)$ and sketch it.
- C. Find an expression for the impulse response h(t) of the non-ideal channel.
- D. Plot h(t) and $h_0(t)$ on the same axes when $f_0 = 10$ kHz and $\Delta f = 2$ kHz and sketch the associated $H(j\omega)$. Repeat the plot for the same values when $\Delta f = 5$ kHz. Compare the plots. For what values of Δf is the effect of the non-ideal transition band noticeable? Is the effect what you would expect? Explain.

Problem 3 (4 points) The system shown below represents a basic communication system where two messages $x_1(t)$ and $x_2(t)$ share a common communication channel. Signals $x_1(t)$ and $x_2(t)$ are bandlimited to f_B and have a frequency content as shown below. The receiver has an ideal low-pass filter $H(j\omega)$ with a cutoff frequency of f_B as shown below.

- A. What would happen if $\omega_1 = \omega_2 = 0$? Find y(t) in terms of $x_1(t)$ and/or $x_2(t)$, and show its frequency content.
- B. Find constraints on ω_1 and ω_2 such that there is no frequency interference (aliasing). Show the frequency content of m(t) and d(t) under these constraints. Note: There may be multiple solutions; just find one that works.
- C. Show the frequency content and find an algebraic expression for y(t) in terms of $x_1(t)$ and/or $x_2(t)$ assuming the constraints of part B.