

۱۲۹ سه سیم مستقیم حامل جریان مطابق شکل در صفحهٔ عمود بر صفحهٔ کاغذ قرار دارند. اگر اندازهٔ میدان مغناطیسی حاصل از سیم (Y) در محل سیمهای (Y) و (Y) به ترتیب (Y) و (Y) باشد، نیروی مغناطیسی وارد بر یک متر از سیم (۲) از طرف سیمهای (۱) و (۳) چند نیوتون و در چه جهتی است؟

 $I_{\mathbf{w}} = \mathbf{w} A$

- ۱) ۵۰/۰، راست
- ۲) ۷۰/۰، چپ
- ۳) ۵۰/۰۵ حب
- ۴/۰۰ راست

در شکل زیر، سیم متحرک با چه سرعتی حرکت کند تا توان گرمایی در مقاومت ۲۷ اهمی برابر ۳ وات شود؟ $(B = \circ/ FT, l = \Delta \circ cm)$

- ۶۳ m/s (۱
- $\Delta \circ m/s$ (Y
- ۴۵m/s (۳
- Yom/s (F

۱۳۱ در شکل زیر دو سیملوله روی یک هستهٔ آهنی و جدا از هم پیچیده شدهاند. لغزندهٔ رئوستا را از نقطهای که ثابت مانده بود، در مدت Δt بهسمت چپ حرکت میدهیم. اگر جریان القایی عبوری از مقاومت R قبل از حرکت لغزنده، I_1 و فمن حرکت لغزنده، $I_{
m P}$ باشد، $I_{
m I}$ و $I_{
m I}$ به ترتیب چگونهاند؟

 $I_1 = IA$ $I_2 = YA$

- $I_{\mathsf{N}} = I_{\mathsf{N}} = I_{\mathsf{N}}$ و $I_{\mathsf{N}} = I_{\mathsf{N}}$ به
- N و $I_1 = \circ$ (۲ درجهت الله $I_1 = \circ$
- س) مقدار ثابت و درجهت M به N و $I_{
 m I}$ همجهت با $I_{
 m I}$ و بیشتر از آن $I_{
 m I}$
- و کمتر از آن $I_{
 m I}$ مقدار ثابت و درجهت N به M و $I_{
 m I}$ خلاف جهت $I_{
 m I}$ و کمتر از آن