PH126 Logic I Lecture 11

Lecturer: s.butterfill@warwick.ac.uk

Reflexive, symmetric and transitive

A *reflexive* relation is one that everything bears to itself. (E.g. everything is the SameShape as itself. E.g. of *non*-reflexive: not everything is LeftOf itself).

A *symmetric* relation is one such that if x bears it to y, then y bears it to x. (E.g. Adjacent(x,y) is symmetric, LeftOf(x,y) is *not* symmetric.)

A *transitive* relation is one such that if x bears it to y and y bears it to z then x bears it to z. (E.g. LeftOf is transitive; DifferentShape is *not* transitive)

To show that a particular relation lacks one of these properties, we produce and argument and a counterexample.

E.g. Show that NotAdjacent is not transitive ...

If NotAdjacent were transitive, the following argument would be logically valid:

1. NotAdjacent(a, b)
2. NotAdjacent(b, c)
3. NotAdjacent(a, c)

A counterexample to this argument:

Artificial relation examples

EqualToOrLeftOf(x, y) iff x = y or LeftOf(x, y)

EqualToOrAdjacent(x, y) iff x=y or Adjacent(x, y)

JohnOrAyesha(x, y) iff x = John and y = Ayesha or x = Ayesha and y = John

JohnToAyesha(x, y) iff x = John and y = Ayesha

Quantifiers and relations

reflexive $\forall x \ R(x,x)$ symmetric $\forall x \forall y \ [\ R(x,y) \rightarrow R(y,x) \]$ transitive $\forall x \forall y \forall z \ (\ [\ R(x,y) \land R(y,z) \] \rightarrow R(x,z) \)$

A transitive, reflexive and non-symmetric relation:

That relation is a counterexample to this argument:

Formal statement of counterexample:

Domain: {a,b}
R: { <a,a>, <a,b>, <b,b> }

Ex. Is this argument valid?

Exercises 06

For your seventh seminar Not for fast groups

A. From the LPL textbook:

9.15-17, *9.18-19 (trans.)

10.20, 10.22

11.2 (multiple quantifiers)

12.9-10

Short of time? Skip the exercises marked *

B. Each line of the table describes a combination of properties. E.g. line 1 specifies a relation that is reflexive, symmetric and transitive, line 2 specifies a relation that is reflexive, symmetric and not transitive. Complete the table by adding an example relation on each line.

	Example	Reflexive	Symmetric	Transitive
1	=	Y	Y	Y
	(identity)			
2		Y	Y	N
3		Y	N	Y
4		Y	N	N
5		N	Y	Y
6		N	Y	N
7		N	N	Y
8		N	N	N