Course Info

- No Lab next week, prepare your mid-term exam!
- Project 1.2 deadline March 31th. Start early!!!
- HW3 ddl March 18th! HW4 will be released next week, keep an eye on piazza.
- Next week discussion on ALU & FSM.
- Update on slip-day policy: automatic slip-day deduction if submission after ddl. No need to email TA/instructor. If you want to test your code after ddl, contact TAs directly.
- Mid-term next Tuesday 8:00 am-10:00 am, we will use teaching center Room 301/404/405. Arrive 7:45 am to check-in and find your seat. Bring your student ID card!

CS 110 Computer Architecture Datapath & Controller

Instructors:

Siting Liu & Chundong Wang

Course website: https://toast-lab.sist.shanghaitech.edu.cn/courses/CS110@ShanghaiTech/

Spring-2023/index.html

School of Information Science and Technology (SIST)

ShanghaiTech University

Components of a Computer

enable signal

Full Register File—a Symbol

Full Register File—a Symbol

31	30	$25\ 24$	21	20	19	15 14	12 11	8	7	6 0	
	funct7		rs2		rs1	funct3	3	$^{\mathrm{rd}}$		opcode	R-type

31	30 2	25 24	21	20	19	15	14	12	11	8	7	6	0	
	funct7		rs2		rs1		funct3	;		$^{\mathrm{rd}}$		opcod	le	R-type

- Other memory considerations
 - Assume separate instruction/data memory
 - Synchronous write & asynchronous read so that all the state elements update at posedge
 - Registers behave similarly

31	30	$25\ 24$	21	20	19	15	14	12	11	8	7	6	0	
	funct7		rs2		rs1		funct3	П		$^{\mathrm{rd}}$		opcod	le	R-type

I-type Arithmetic & Logic

Arithmetic & Logic

Arithmetic & Logic

Immediate Generation

31	30	$25\ 24$	21	20	19	15 14	12 11	8	7	6 0	
	funct7		rs2		rs1	func	t3	$^{\mathrm{rd}}$		opcode	R-type
	imm	[11:0]			rs1	func	t3	$^{\mathrm{rd}}$		opcode	I-type

Immediate Generation

31	30	25°	24 21	20	19	15	14	12 11	8	7	6	0	
	funct7		rs2		rs1		funct	3	$^{\mathrm{rd}}$		opco	de	R-type
	im	m[11:	:0]		rs1		funct	3	$^{\mathrm{rd}}$		opco	de	I-type

Arithmetic & Logic

Take a Break!

write back

	IF	ID	EX	MEM	WB
R-type		✓	~	×	✓
I-type arith. & logic	>		✓	×	V
I-type load	>	✓		V	V
S-type store	✓			V	X

	addi	add	SW	
reg_we	1	1		
mem_rw	R	R		
alu_ctrl	add	add		
imm_sel		*		
d_src	alu	alu		
op src	imm	rea		

	addi	add	sw	lw
reg_we	1	1	0	
mem_rw	R	R	W	
alu_ctrl	add	add	add	
imm_sel		+	S	
d_src	alu	alu	*	
op_src	imm	reg	imm	

Next state =

	addi	add	SW	lw
reg_we	1	1	0	1
mem_rw	R	R	W	R
alu_ctrl	add	add	add	add
imm_sel		4_	S	
d_src	alu	alu	*	mem
op src	imm	rea	imm	imm

Next state =

Continue with Datapath

— Decision Making Instructions

31	30	25	24	21	20	19	15	14	12	11 8		7	6	0	
	funct7			rs2		rs1		funct:	3	r	$^{\mathrm{d}}$		opc	ode	R-type
															•
	im	m[1]	1:0]			rs1		funct:	3	r	$^{\mathrm{d}}$		opc	ode	I-type
															•
	imm[11:5]			rs2		rs1		funct:	3	imm	1[4:0]]	opc	ode	S-type
															•
imm[1	.2] imm[10:	[5]		rs2		rs1		funct3	3	imm[4:1]	im	m[11]	opc	ode	B-type

50

	31	30	25	24	21	20	19	18	5 1	.4	12	11 8		7	6	0	
		funct7			rs2		1	rs1		funct3		r	d		opc	ode	R-type
																	'
		j	imm[1]	1:0]			1	rs1		funct3		r	d		opc	ode	I-type
	i	mm[11:5]			rs2		1	rs1		funct3		imm	[4:0]		opc	ode	S-type
																	'
in	nm[1:	2] imm[10:5]		rs2		1	rs1		funct3	;	imm[4:1]	imr	n[11]	opc	ode	B-type

	31	30	25	24	21	20	19	15	14	12	11	8	7		6	0	
		funct7			rs2		rs1		func	t3		$_{ m rd}$			opo	code	R-type
																	•
		in	nm[1]	1:0]			rs1		func	t3		$^{\mathrm{rd}}$			opo	code	I-type
																	•
	iı	nm[11:5]			rs2		rs1		func	t3		imm[4]	4:0]		opo	code	S-type
																	•
im	m[12]	$[2] \mid \text{imm}[10]$	0.5]		rs2		rs1		func	t3	imm	[4:1]	$_{ m imm}$	[11]	opo	code	B-type

Implementation of comparison

 Comparison <=> subtraction, can reuse the hardware of add/sub to generate comparison result

	addi	add	SW	lw	beq
reg_we	1	1	0	1	
mem_rw	R	R	W	R	
alu_ctrl	add	add	add	add	
imm_sel		*	S		
d_src	alu	alu	*	mem	
op_src	imm	reg	imm	imm	
PC_mux					

Another Implementation

There Are a Thousand Hamlets in a Thousand People's Eyes. — Shakespeare

Compare-Logic

There Are a Thousand Hamlets in a Thousand People's Eyes. — Shakespeare

Consideration for IMM Generation

Consideration for IMM Generation

