Towards the Groupoid Model of HoTT in Lean 4

Sina Hazratpour

Prospects of Formal Mathematics
Hausdorff Institute, Bonn
02 Aug 2024

joint work with Steve Awodey and Mario Carneiro

Previous work in bringing HoTT to Lean

special support for Homotopy Type Theory in Lean 2

- github.com/leanprover/lean2/blob/master/hott/hott.md
- Serre spectral sequence in Lean 2, by Floris van Doorn github.com/cmu-phil/Spectral

HoTT in Lean 3 by Gabriel Ebner, et al: github.com/gebner/hott3

- port of the Lean 2 HoTT library to Lean 3.
- The Lean 3 kernel is inconsistent with univalence.
- No modifications to the Lean kernel.

Outline

i. Polynomial Functors : A prelude

ii. Natural models of HoTT

iii. The groupoid model of HoTT

iv. $HoTT_0$: The embedded type theory

Polynomial Functors: A prelude

Let $\mathbb C$ be a category with finite limits.

Let $p: E \to B$ be an exponentiable morphism in \mathbb{C} . Thus:

When B = 1 is the terminal object, we write

$$\Sigma_E \vdash \Delta_E \vdash \Pi_E$$


```
@[inherit_doc]
prefix:90 "\Sum_" => Over.forget

@[inherit_doc]
prefix:90 "\Sum_" => Over.pullback

@[inherit_doc]
prefix:90 "\T_" => CartesianExponentiable.functor
```

The polynomial endofunctor $P_p:\mathbb{C}\to\mathbb{C}$ associated to p is the composite

In the internal language of \mathbb{C} ,

$$P_p(X) = \sum_{b:B} X^{E(b)}$$

```
def functor [HasBinaryProducts C] (P : UvPoly E B) : C \Rightarrow C := \\ (\Delta_- E) \gg (\Pi_- P.p) \gg (\Sigma_- B)
```

Natural models of HoTT

```
variable {Ctx : Type u} [SmallCategory Ctx] [HasTerminal
Ctxl
 notation:max "y(" □ ")" => yoneda.obj □
 variable (Ctx) in
 class NaturalModelBase where
 Tm: Psh Ctx
 Ty: Psh Ctx
 tp : Tm \longrightarrow Ty
 ext (\Gamma : Ctx) (A : y(\Gamma) \longrightarrow Ty) : Ctx
 disp (\Gamma: Ctx) (A : y(\Gamma) \longrightarrow Ty) : ext \Gamma A \longrightarrow \Gamma
 var (\Gamma : Ctx) (A : y(\Gamma) \longrightarrow Ty) : y(ext \Gamma A) \longrightarrow Tm
 disp_pullback \{\Gamma : Ctx\} (A : y(\Gamma) \longrightarrow Ty) :
     IsPullback (var \Gamma A) (yoneda.map (disp \Gamma A)) tp A
```

Let $tp:Tm \to Ty$ be the representable typing natural transformation of a natural model.

Consider the associated polynomial endofunctor $P_{tp}: Psh(\mathbb{Clx}) \to Psh(\mathbb{Clx})$ defined as

$$\Sigma_{Ty} \circ \Pi_{tp} \circ \Delta_{Tm}$$
.

Thus, internally,

$$P_{tp}(X) = \sum_{A:Ty} X^{[A]}$$

Applying P to Ty itself gives the object of type families:

$$P_{tp}(Ty) = \sum_{A:Ty} Ty^{[A]}$$

Theorem (Awodey, 2017):

The natural model models the rules of dependent type theory for the type formers Σ , Π and the universe.

Theorem (Awodey, 2017):

The natural model models the rules of dependent type theory for the type formers Σ , Π and the universe.

Theorem (Garner): The map $tp:Tm \to Ty$ models the rules for intensional identity types just if there are maps (i,Id) making the following diagram commute

$$Tm \xrightarrow{I} Tm$$

$$\delta \downarrow tp$$

$$Tm \times_{Ty} Tm \xrightarrow{Id} Ty$$

and the induced comparison square a uniform weak pullback.

```
class NaturalModelPi where
Pi : (P tp).obj Ty --> M.Ty
lam : (P tp).obj Tm --> M.Tm
Pi_pullback : IsPullback lam ((P tp).map tp) tp Pi
```

```
class NaturalModelSigma where
   Sig : (P tp).obj Ty → M.Ty
   pair : (P tp).obj Tm → M.Tm
   Sig_pullback : IsPullback pair ((uvPoly tp).comp
(uvPoly tp)).p tp Sig
```

```
variable [M : NaturalModelBase Ctx] class NaturalModelIdBase where Id : pullback tp tp \longrightarrow M.Ty i : Tm \longrightarrow M.Tm Id_commute : \delta \gg Id = i \gg tp
```

The Groupoid Model of HoTT

The Hofmann-Streicher groupoid model (1995):

- Types *A* are groupoids.
- Terms x : A are objects.
- Identity types $Id_A x y$ are hom-sets (discrete groupoids).
- Dependent types $(x : A \vdash B : Type)$ are fibrations of groupoids.
- The propositional truncation of a type A, is the groupoid with the same objects as A, but with a unique isomorphism between any pair of objects.
- The universe consists of discrete groupoids.
- The universe is univalent.

We can use the groupoid model for

- synthetic group theory by defining groups as pointed, connected groupoids,
- groupoid quotients,
- Eilenberg-MacLane spaces K(G, 1), and some basic cohomology,
- \bullet classifying spaces BG, and the theory of covering spaces,
- calculation of $\pi_1(S^1) = Z$ using univalence and circle induction,
- Joyal's combinatorial species,
- Rezk completion of a small category.

We are half way the in Lean4.	ere on obtaining the	groupoid model of HoTT

References

- i. Awodey, S. (2017) Natural models of homotopy type theory, MSCS 28(2). arXiv:1406.3219
- ii. Hofmann, M and Streicher, T (1996). The groupoid interpretation of type theory
- iii. A Formalization of Polynomial Functors in Lean 4: https://github.com/sinhp/Poly
- iv. Groupoid Model of HoTT in Lean 4:
 https://github.com/sinhp/groupoid_model_in_lean4/