

SOLUTION Inverse Kinematics Simplified model

2021-04-21

Table of content

Manipulations	
Part 1: Implementation of the inverse kinematics	3
1.1	3
1.2	3
1.3	3
1.4-1.7	3
1.8	3
1.9	3
Part 2: Validation on the robot	4
2.1	4
2.2	4
2.3	4
2.4	4
Acknowledgements	5

Manipulations

Part 1: Implementation of the inverse kinematics

1.1

Parameter	Length (m)
I ₁	0.2433
l ₂	0.280
I ₃	0.245
d ₁	0.010
d _{we}	0.057
d _{wo}	0.235

TABLE 1: Gen3 lite Joint position limit

1.2

It allows for the spherical wrist approximation.

1.3

See related .m file

1.4-1.7

See related .m files. Impossible solutions rise when the point is out of reach or when there is a singularity.

1.8

Validate the implementation by sending an input outside the robot limits.

1.9

Validate the implementation by requesting a pose out of the reach of the robot.

Part 2: Validation on the robot

2.1

You may test the points selected by the students.

2.2

Either the robot will deviate from its linear motion between the two points due to the built-in singularity avoidance algorithm, or the configuration ('rd', 'lu', etc.) may not change. In some edge cases, the motion may block entirely because the robot would need to self-collide.

2.3

You may test the students' input using the associated .m file

2.4

We can tell that the algorithm is not too far off, but it still yields errors of a few centimeters if we input the angular values as commands to reach positions - which is usually considered too inaccurate for most real-life applications.

Acknowledgements

This document was produced in collaboration with the following establishments

Including direct implication from the following people:

- Prof. David Saussié, Eng., M.A.Sc., Ph.D., Department of Electrical Engineering.
- Alexis Tang, M.Eng., Department of Electrical Engineering
- Prof. Jérôme Le Ny, Eng., M.A.Sc., Ph.D., Department of Electrical Engineering.
- Prof. Richard Gourdeau, B.A.Sc., M.A.Sc., Ph.D., Department of Electrical Engineering.

© Kinova inc 2021. All rights reserved.