CLAIMS

1. Process for obtaining hydrofluoroethers of formula (I):

$$A - (R_f)_{n0} - CF(R_{f1}) - O - R_h$$
 (I)

wherein:

n0 is zero or 1;

R_f is a bivalent radical:

 C_1 - C_{20} , preferably C_2 - C_{12} , linear or branched (per)fluoroalkylene, optionally containing one or more oxygen atoms;

-CFW'O-(R_{f2})-CFW-, wherein W and W', equal or different, are F, CF₃; R_{f2} is a (per)fluoropolyoxyalkylene containing one or more of the following units, statistically distributed along the chain, (C_3F_6O); (CFWO) wherein W is as above; (C_2F_4O), ($CF_2(CF_2)_zCF_2$) wherein z is an integer equal to 1 or 2; ($CH_2CF_2CF_2$); R_{f1} is F or a C_1 - C_{10} linear or branched (per)fluoroalkyl or (per)fluorooxyalkyl radical;

 R_h is a C_1 - C_{20} , preferably C_1 - C_{10} linear, branched when possible, saturated or unsaturated when possible alkyl, or C_7 - C_{20} alkylaryl, optionally containing heteroatoms selected from F, O, N, S, P, Cl; and/or functional groups preferably selected from -SO₂F, -CH=CH₂, -CH₂CH=CH₂ and NO₂;

A = F, $(R_{h2}O) - CF(R_{f4}) - , -C(O)F$, wherein

- R_{h2} , equal to or different from R_h , has the R_h meanings;
- R_{f4} , equal to or different from R_{f1} , has the R_{f1} meanings;

wherein a mono- or bifunctional carbonyl compound of formula:

$$B-R_f-C(O)R_{f1} \qquad (IV)$$

wherein B is F or $-C(0)R_{f4}$, R_f , R_{f1} and R_{f4} being as above,

is reacted with at least one equivalent of a fluoroformate of formula:

$$R-OC(O)F$$
 (III)

wherein $R = R_h$ or R_{h2} as above;

in the presence of an ion fluoride compound (catalyst) and of a dipolar aprotic organic compound, liquid and inert under the reaction conditions.

- 2. A process according to claim 1, wherein the (C_3F_6O) unit of R_{f2} can be $(CF_2CF(CF_3)O)$ or $(CF(CF_3)CF_2O)$.
- 3. A process according to claims 1-2, wherein in formula (I) $R_{f1} \ \mbox{and} \ R_{f4} \ \mbox{of A, independently the one from the other,}$ are F, CF3.
- 4. A process according to claims 1-3, wherein when R_f of formula (I) is a (per)fluoroalkylene, R_f is selected from the following groups: $-CF_2-$, $-CF_2CF_2-$, $-CF_2CF_2-$,

- $-CF_2(CF_3)CF-$; when R_f contains one oxygen atom it preferably is $-CF_2(OCF_3)CF-$.
- 5. A process according to claims 1-3, wherein $R_{\rm f2}$ is a perfluoropolyoxyalkylene chain having number average molecular weight from 66 to 12,000, preferably from 100 to 5,000, more preferably from 300 to 2,000.
- 6. A process according to claim 5, wherein when $R_{\rm f2}$ is a ${\tt perfluorooxyalkylene} \ {\tt chain} \ {\tt it} \ {\tt is} \ {\tt preferably} \ {\tt selected} \ {\tt from}$ the following structures:
 - a) $-(CF_2CF_2O)_m(CF_2O)_n(CF_2CF(CF_3)O)_p(CF(CF_3)O)_q-;$
 - b) $-(CF_2O)_n(CF_2CF(CF_3)O)_p(CF(CF_3)O)_q-;$
 - c) $-(CF_2CF_2O)_m(CF_2O)_n$;

wherein:

- m is comprised between 0 and 100 extremes included; n is comprised between 0 and 50 extremes included; p is comprised between 0 and 100 extremes included; q is comprised between 0 and 60 extremes included; m+n+p+q>0 and the number average molecular weight of $R_{\rm f2}$ being in the above limits.
- 7. A process according to claim 6, wherein $R_{\rm f2}$ is a perfluoroxyalkylene c), and the m/n ratio ranges from 0.1 to 10, n being different from zero and the number average molecular weight comprised within the above limits.
- 8. A process according to claims 1-7, wherein in formula (I)

- R_h and R_{h2} have the following meansings: $-CH_3$, $-CH_2CH_3$, $-CH_2CH_3$, $-CH_2CH_3$, $-CH_2CH_3$, $-CH_2CH_3$.
- 9. A process according to claims 1-8, wherein the ion fluoride compound is any compound capable to generate ion fluorides when, in the presence of dipolar aprotic solvents, at temperatures from 20°C up to 200°C, said dipolar aprotic solvents being acetonitrile, dimethylformamide, glyme, ethylene polyoxides dimethylethers (PEO-dimethylethers).
- 10. A process according to claim 9, wherein the ion fluoride compound is selected from the group comprising metal fluorides, preferably alkaline or alkaline-earth metal fluorides; AgF; alkylammoniumfluorides, alkylphosphoniumfluorides, wherein the nitrogen and respectively the phosphor atom can be substituted with one or more C₁-C₈ alkyl groups, equal to or different from each other.
- 11. A process according to claims 9-10, wherein the ion fluoride compound is CsF and KF.
- 12. A process according to claims 9-11, wherein the catalyst is optionally supported.
- 13. A process according to claims 1-12, wherein the catalyst amounts, expressed in % by moles, are in the range 0.1%-50% with respect to the mono- or bifunctional carbonyl compound of formula (IV).