CSIE 2344: Discussion (Unit 15)

1 Reduction of State Table

One state table is as below.

	Next State		Z	
	X=0	X=1	X = 0	X=1
A	E	G	0	1
В	D	F	0	1
C	E	C	1	0
D	В	F	0	1
E	G	F	0	1
F	В	D	1	0
G	E	C	1	0

- 1. Reduce the table to a minimum number of states.
- 2. Using the basic definition of state equivalence, show that state A is not equivalent to state B.

2 Circuit Equivalence

Two circuits have the state tables as below.

	Next	Z	
	X = 0	X=1	L
S_0	S_3	S_1	0
S_1	S_0	S_1	0
S_2	S_0	S_2	1
S_3	S_0	S_3	1

	Next	Z	
	X = 0	X=1	Z
A	E	A	1
В	F	В	1
C	E	D	0
D	E	C	0
E	В	D	0
F	В	C	0
			_

- 1. Without reducing the tables, determine whether they are equivalent.
- 2. Reduce each table to a minimum number of states, and then show that they are equivalent.

3 State Graph Derivation of State Elimination (No Recording)

- 1. Draw the state graph of a Mealy machine which detects if the number of 1's in k inputs is equal to or more than m, where $0 \le m \le k$ and $1 \le k$. Requirements:
 - \bullet Reset the machine after k inputs.
 - After a reset, always output "0" for the following k-1 inputs.
 - After a reset, for the k-th input, output "1" if the number of 1's (in the k inputs after the reset) is equal to or more than m.
 - After a reset, for the k-th input, output "0" if the number of 1's (in the k inputs after the reset) is fewer than m.
 - Example with (m, k) = (2, 3):

```
Input 000 001 100 110 011 111
Output 000 000 000 001 001 001
```

- Try to reduce the number of states (eliminate redundant states).
- Explain why the Mealy machine works.
- Answer the number of states (it should depend on m and k) and explain the answer.
- 2. Draw the state graph of a Mealy machine which does not reset after k inputs (conceptually, a window with size k shifts along with the inputs). Requirements:
 - After the initialization, always output "0" for the first k-1 inputs.
 - Starting from the k-th input, output "1" if the number of 1's (in the previous k inputs including the current input) is equal to or more than m.
 - Starting from the k-th input, output "0" if the number of 1's (in the previous k inputs including the current input) is fewer than m.
 - Example with (m, k) = (2, 3):

```
Input 000 001 100 110 011 111
Output 000 000 110 011 001 111
```

- Try to reduce the number of states (eliminate redundant states).
- Explain why the Mealy machine works.
- Answer the number of states (it should depend on m and/or k) and explain the answer.