-AULA 12 - TRANSFORMES E LINEARES E MATRIZES:

-Exemplo 1: Seja $T: M_{2\times 2} \to P_3$ a transformação linear dada por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a_1b_1c) + bn + + (a_1d)n^2 + cn^3$. Construa $[T]_{\mathcal{B}}^{\alpha}$, onde $\alpha = \{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\}$ e $\mathcal{B} = \{1, 1+n, -1+n^2, n^3\}$ rão bases de $M_{2\times 2}$ e P_3 , respectivamente.

-Solveão: Temos $T\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 + \chi^2$, $T\begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} = \chi - \chi^2$, $T\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} = -1 - \chi^3$ ℓ $T\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = -\chi + \chi^3$. ℓ facil ver que $1 + \chi^2 = 2 \cdot (1) + 0 \cdot (1 + \chi) + 1 \cdot (-1 + \chi^2) + 0 \cdot (\chi^3)$, $\chi - \chi^2 = -2 \cdot (1) + 1 \cdot (1 + \chi) - 1 \cdot (-1 + \chi^2) + 0 \cdot (\eta^3)$, $-1 - \chi^3 = -1 \cdot (1) + 0 \cdot (1 + \chi) + 0 \cdot (-1 + \chi^2) - 1 \cdot (\chi^3)$ $\ell = -\chi + \chi^3 = 1 \cdot (1) - 1 \cdot (1 + \chi) + 0 \cdot (-1 + \chi^2) + 1 \cdot (\chi^3)$, portanto da definição seque que $[T]_{\ell}^{\alpha} = \begin{bmatrix} 2 & -2 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$.

Ima outra alternativa seria usando a formula de mudança de base vista ma ultima aula, $[T]_{g}^{\alpha} = [I]_{g}^{\alpha} : [T]_{can}^{\alpha}$. Ge primeira linha dusta solução indica que $[T]_{can}^{\alpha} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, rabemos que a inversa dessa matriz é $[I]_{g}^{\alpha}$. Excalonando, obtemos $[1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 &$

Finalmente, $[T]_{\mathcal{B}}^{\alpha} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$

- Exemplo 2: Suja $T: P_z \rightarrow \mathbb{R}^3$ dada por $T(A_0 + a_1 x + a_2 x^2) = (a_0 + a_2, 2a_1, a_1 - a_2)$ i sejam $\aleph = \{1 + \alpha, \alpha^2, \alpha - \alpha^2\} \in \mathcal{B} = \{(1,0,1), (2,0,-1), (0,1,0)\}$ bases de $P_z \in \mathbb{R}^3$, respectivamente. Proce que $T \in \text{isomorfismo}$ e determine $[T]_{\mathcal{B}}^{\alpha}$.

-Solução: Note que $T(1+\alpha)=(1,2,1)$, $T(\alpha^2)=(1,0,-1)$ e $T(\alpha-\alpha^2)=(-1,2,2)$. Daí, concluímos que $[T]_{can}^{\alpha}=\begin{bmatrix}1&1&-1\\2&0&2\\1&-1&2\end{bmatrix}$. Novemente usamos a fórmula $[T]_{g}^{\alpha}=[I]_{g}^{can}$. $[T]_{can}^{\alpha}$. Sabemos que $[I]_{can}^{g}=\begin{bmatrix}1&2&0\\0&0&1\\1&-1&0\end{bmatrix}$, cuja inversa sí $[I]_{g}^{can}$. Sxalonando, obtemos

$$\begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & | & 0 \\ 1 & -1 & 0 & | & 0 & 0 & | \end{bmatrix} \xrightarrow{L_2 \leftrightarrow L_3} \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 1 & -1 & 0 & | & 0 & 0 & 1 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \end{bmatrix} \xrightarrow{L_2 \to L_2 - L_1} \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & -3 & 0 & | & -1 & 0 & 1 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \end{bmatrix} \xrightarrow{L_2 \to -\frac{1}{3}L_2} \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 1/3 & 0 & -1/3 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \end{bmatrix} \xrightarrow{L_2 \to -\frac{1}{3}L_2} \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 1/3 & 0 & -1/3 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \end{bmatrix} \xrightarrow{L_2 \to -\frac{1}{3}L_2} \xrightarrow{L_2 \to -\frac{1}{3}L_2} \begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \end{bmatrix} \xrightarrow{L_2 \to -\frac{1}{3}L_2} \xrightarrow{L_2 \to -\frac{1$$

Para vermos que T é isomorfismo, basta mostrar que T é injetiva, pois tanto θ dominio como θ contradomínio de T têm mesma dimensão. Para determinar $\ker(T)$, temos que resolver θ sistema $\begin{cases} a_0 + a_2 = 0 \\ 2a_1 = 0 \end{cases}$, que claramente tem unica solução $a_0 = a_1 = a_2 = 0$. Cessim, $\ker(T) = \{0\}$, $\log \Phi = \{0\}$, $\log \Phi = \{0\}$ isomorfismo.

* Sejam U, V e W espaços veteriais e $T:U\to V$, $5:V\to W$ transformações linearis. Elei-nimos a composição $S\circ T:U\to W$ como $S\circ T(\vec{u})=S(T(\vec{u}))$. Intão $S\circ T$ é linear. Com eleito, $S\circ T(\vec{u}_1+\vec{u}_2)=S(T(\vec{u}_1+\vec{u}_2))=S(T(\vec{u}_1)+T(\vec{u}_2))=S(T(\vec{u}_1))+S(T(\vec{u}_2))=S\circ T(\vec{u}_1)+S\circ T(\vec{u}_2)$, e se $\lambda\in\mathbb{R}$, $S\circ T(\lambda\vec{u})=S(T(\lambda\vec{u}))=S(\lambda T(\vec{u}))=\lambda S(T(\vec{u}))=\lambda S\circ T(\vec{u})$, quaisquer que sejam $\vec{u}_1,\vec{u}_2,\vec{u}\in U$.

Cipós algumas contas um pouco tediosas, é possível provar que:

SoT W

-PROP.: Le d, & e d rão bases de U, V e W, respectivamente,

então $[5 \circ T]_{y}^{\alpha} = [5]_{y}^{\beta} \cdot [T]_{\beta}^{\alpha}$

Cusim, a composição entre transformações lineares corresponde ao produto de suas matrizes.

- -CONSEQUÊNCIAS: (1) Se $T:V\to W$ & isomorfismo, intão $T\circ T(\vec{v})=\vec{v}$ $\forall \vec{v}\in V$. Dizemos que a transformação $T_a:V\to V$ tal que $T_a(\vec{v})=\vec{v}$ $\forall \vec{v}\in V$ & a transformação identidade, que é obviamente linear. Se α é base de V, então é claro que $[T_a]_{\alpha}^{\alpha}=T$, a matrix identidade. Cissim, se B é base de W, timos $T=[T_a]_{\alpha}^{\alpha}=[T_$
- -Exemplo 3: Seja $T: \mathbb{R}^2 \to \mathbb{P}_1$ a transformação linear tal que $[T]_{\mathfrak{S}}^{\alpha} = \begin{bmatrix} 1 & z \\ 3 & 0 \end{bmatrix}$, onde $\alpha = \{(1,1), (-1,0)\}$ e $\beta = \{-x, 2+x\}$ são bases de \mathbb{R}^2 e \mathbb{P}^1 , respectivemente. Se $\overline{\mathcal{V}} = (-1,4)$, determine $T(\overline{\mathcal{V}})$. Se $\delta = \{1, x\}$ é outra base de \mathbb{P}_1 , obtenha $[T]_{\mathcal{V}}^{\alpha}$.
- -Solução: \mathcal{E}' fácil ver que $(-1,4) = 4 \cdot (1,1) + 5(-1,0)$, logo $[\vec{v}]_{\alpha} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$. Daí, $[T(\vec{v})]_{\varrho} = \begin{bmatrix} T \end{bmatrix}_{\varrho}^{\alpha} [\vec{v}]_{\alpha} = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 14 \\ 12 \end{bmatrix}$, portanto $T(\vec{v}) = 14 \cdot (-n) + 12(2+n) = 24-2n$. Para determinar $[T]_{\chi}^{\alpha}$, note que χ i a base canônica de γ , logo $[I]_{\chi}^{\beta} = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix}$. Lysim, $[T]_{\chi}^{\alpha} = [I]_{\chi}^{\beta} [T]_{\varrho}^{\beta} = \begin{bmatrix} 0 & 2 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 2 & -2 \end{bmatrix}$.
- -<u>OBS.:</u> Sejam o e B bases dos espaços vetoriais V x W, respectivamente, e T: V → W uma transformação linear. Digamos que {v, ..., v, d e base de V, ou seja, dim V=m.

Se \mathfrak{G} é a bose canônica de W (lembre-se que podemos identificar W com algem \mathbb{R}^m), então $[\top]^{\alpha}_{\mathfrak{G}}$ é a matriz cijas colunas são os vetores $\top(\overline{v}_1)$, $\top(\overline{v}_2)$,..., $\top(\overline{v}_m)$.

Salemos também que $Im(T)=[T(\vec{v}_1),...,T(\vec{v}_m)]$. Para extrair uma base, formamos a matriz cujas colunas rão esses vetores, ou reja, $[T]_{e}^{\alpha}$, e a exalonamos até a forma exada. Como as colunas com pisôs correspondem aos vetores que formam a base e e número de pisôs é igual ao posto de $[T]_{e}^{\alpha}$, concluímos que dim Im(T)= posto de $[T]_{e}^{\alpha}$.

Clém disso, a mulidade de $[T]_{\mathcal{B}}^{\mathsf{N}}$ igual ao múmero de columas, que é m=dim N , menos o posto, ou seja, nulidade de $[T]_{\mathcal{B}}^{\mathsf{N}}$ = dim N - dim $\mathsf{Im}(\mathsf{T})$ = dim $\mathsf{Ker}(\mathsf{T})$. Isso prova que a nulidade de uma matriz é igual à dimensão do múcleo de uma transformação luiear, o que juitifica o mome "mulidade" e mostra que o Teorema do Núcleo e da Imagem mada mais é que uma versão mais rebuscada da relação posto + mulidade = m^{D} de columas.

- Exemplo 4: Sejam \mathcal{B} e \mathcal{U} as bases de \mathbb{R}^2 dadas por $\mathcal{B} = \{(2,-3), (-1,1)\}$ e $\mathcal{U} = \{(-1,2), (1,-3)\}$ e reja $\mathcal{S} : \mathbb{R}^2 \to \mathbb{R}^2$ a transformação linear dada por $\mathcal{S}(n,y) = (2y,x-y)$. Determine $[5]_{\mathcal{U}}^{\mathcal{B}}$.

Solução: Timos 5(2,-3)=(-6,5) e 5(-1,1)=(2,-2). Bucisamos escrever esses dois velores como combinação linear dos velores da base U, ou reja, obter $a_1b_1c_2$, $d \in \mathbb{R}$ tais que (-6,5)=a(-1,2)+b(1,-3) e (2,-2)=c(-1,2)+d(1,-3). Obtemos os sistemas $\begin{bmatrix} -a+b=-6\\ 2a-3b=5 \end{bmatrix}$ e $\begin{bmatrix} -c+d=2\\ 2c-3d=-2 \end{bmatrix}$, que matricialmente escrevem-se como $\begin{bmatrix} -1 & 1\\ 2 & -3 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix} = \begin{bmatrix} -6\\ 5 \end{bmatrix}$ e $\begin{bmatrix} -1 & 1\\ 2 & -3 \end{bmatrix} \begin{bmatrix} c\\ d \end{bmatrix} = \begin{bmatrix} -2\\ 2 \end{bmatrix}$. Note que ambos tim a musma matriz dos coeficientes, logo podemos resolvê-los simultaneamente, como mo processo de inversão de matrizas via escalonamento: $\begin{bmatrix} -1 & 1 & -6 & 2\\ 2 & -3 & 5 & -2 \end{bmatrix} \xrightarrow{L_1 \to L_1} \begin{bmatrix} 1 & -1 & 6 & -2\\ 2 & -3 & 5 & -2 \end{bmatrix} \xrightarrow{L_2 \to L_2} \begin{bmatrix} 1 & -1 & 6 & -2\\ 0 & 1 & 7 & -2 \end{bmatrix}$, logo a=13, b=7, c=-4 e d=-2. Por definição, timos que $\begin{bmatrix} 5 \end{bmatrix}_8^{N} = \begin{bmatrix} 13 & -4\\ 7 & -2 \end{bmatrix}$, que e justamente a matriz que fieou do lado direito no fim do escalonamento.

Vamos sistematizar o metado usado no Exemplo anterior:

· No inicio do escalonamento, do lado esquerdo temos a matriz cujas colunas rão os vetores da base U, ou seja, [I] can.

· Do lado direito, temos a matriz cujas colunas são os valores de 5 calculados nos vetores

da base a, ou reja, [5] can.

Dai, o método pode ser resumido como:

$$\left[\left[T\right]_{can}^{\mathcal{E}}\left[S\right]_{can}^{\alpha}\right] \xrightarrow{excalone} \left[J_{dintidade}\left[S\right]_{\mathcal{E}}^{\alpha}\right]$$

* Por motivos análogos, esse método também vale para mudanças de base:

$$\left[\left[\left[\right] \right]_{can}^{\mathcal{B}} \middle| \left[\right] \right]_{can}^{\alpha} \right] \xrightarrow{vscalone} \left[\left[\right]_{\mathcal{B}}^{\alpha} \right]$$

Observe que as duas matrijes do inicio sempre são fáceis de calcular!