Home Credit Default Risk

Problem Statement:

Home Credit is an organization that serves the unbanked population with access to loans. Such individuals that do not have a built-up credit score have a challenging time securing loans from financial institutions.

Home Credit strives to broaden financial inclusion for the unbanked population by providing a positive and safe borrowing experience. In order to make sure this underserved population has a positive loan experience; Home Credit makes use of a variety of alternative data--including telco and transactional information--to predict their clients' repayment abilities

So, problem statement would be predicting how likely each applicant is of repaying a loan?

Dataset Description:

There are seven data sets that are at the disposal of Home Credit:

Application_train.csv - this is the principal table and presents all the application information. There is a single row per application, which has a unique identifier.

previous_application.csv - this file presents previous applications for people in the sample through Home Credit. There is a row per each application.

installments_payments.csv - this is the repayment history on loans given out through Home Credit for people in the sample. Each row is a made or missed payment.

bureau.csv - credit information from other financial institutions that were reported to Home Credit. Each row represents a credit that was given to an individual in the sample.

bureau_balance.csv - monthly information per credit, per loan for users in the sample..

POS_CASH_balance.csv - like bureau_balance.csv, this data set is the internal version of the previous monthly breakdown of balances for consumer credit and cash loans that were taken out through Home Credit.

credit_card_calance.csv - each row in this data set represents a monthly balance of credit cards that were issued to applicants in the sample through Home Credit.

Links between the Data sets:

Data Wrangling and Cleaning:

A) bureau_balance.csv:

- Analyzed dataset with few rows & identified categorical column
- "STATUS" column being used to denote "Status of Credit Bureau loan during the month (active, closed, DPD0-30,... [C means closed, X means status unknown, 0 means no DPD, 1 means maximal did during month between 1-30, 2 means DPD 31-60,... 5 means DPD 120+ or sold or written off])" which typically denotes on which month Paid, Not paid, closed. This column dropped & instead dummy variables created for Numerical Conversion.
- Then it summing based on 'SK_ID_BUREAU', which will be representing
 'Month_Balance_Count'. Also, we are dropping 'MONTHS_BALANCE' original column
- Grouped Data set is ready for Merge

B) bureau.csv

- Transforming Categorical variables to Numerical variables & Dropping actual columns
- Merging with bureau_balance dataset based on 'SK_ID_BUREAU'
- Now Merged Data set is ready

C) credit_card_balance.csv

- It has Each month credit record
- Transforming Categorical variables to Numerical variables & Dropping actual columns
- Step 2: Creating new unique DF for 'SK_ID_PREV' & 'SK_ID_CURR'
- Dropping "SK_ID_CURR" from credit_card_balance data frame.
- Grouping DF based on **'SK_ID_PREV'** Summing past Installement payment information and grouping by previous ID.
- Merging with Step 2 DF, based on 'SK_ID_PREV'
- So it has unique 'SK_ID_PREV' & 'SK_ID_CURR' with all data's Merged together

D) previous_application.csv

Transforming Categorical variables to Numerical variables & Dropping actual columns

E) POS_CASH_BALANCE.csv

- Transforming Categorical variables to Numerical variables & Dropping actual columns

F) installments_payments.csv

- Transforming Categorical variables to Numerical variables & Dropping actual columns
- Dropping "SK_ID_CURR" from installments_payments data frame.
- New Variable Created to know whether Payment Made on date or Late
- Grouping DF based on **'SK_ID_PREV'** Summing past Installement payment information and grouping by previous ID.
- Merging with Step 2 DF, based on 'SK_ID_PREV' from credit_card_balance.csv
- So, it has unique 'SK_ID_PREV' & 'SK_ID_CURR' with all data's Merged together

General Merging Strategy:

- Dropping "SK_ID_CURR" from installments_payments, pos_cash_balance, cc_balance data frame.
- previous application & installments payments Merged based on 'SK ID PREV'
- Above Merged to cc_balance based on 'SK_ID_PREV'
- 1-1 Mapping enabled for 'SK_ID_PREV' & 'SK_ID_CURR'. Then Merged with above 4 data set
- So Right side of above Image is completely Merged.
- All Previous Data is Grouped By **'SK_ID_CURR'** then dropped **'SK_ID_PREV'**, to merge with training data set
- Merged Previous Data sets & bureau grouped datasets with training data set through 'SK_ID_CURR'
- All data sets Merged with Training Data set. Merging Process completed.

Missing Variables Handling:

- There are 283 columns with missing variables out of 339 columns in the data frame.
- Above 35 % Missing variables columns dropped as it is not going to impact predictions.

- np.isfinite() Method being used to drop few rows from the data set which depends on 'late'
 & 'closed' Which is being referred from Missing variable % table . which shares same % of missing values.
- 'OCCUPATION_TYPE' is important feature though it has 31 % of missing values, so NAN marked as Unemployment
- Rest of below 10 % missing variables being filled with wither 0 or Mean, based on feature reference from excel.

After Handling Missing variables, data set stored to CSV as a single Merged data set .

Outlier Handling:

- Have not gone through complete data set columns, so looked at few important columns
- DOB has not any outliers
- Days Employed has outlier, it's been handling after divided by -365 then > 0's will be marked & masked as 0.
- Could see few outliers in 'AMT_INCOME_TOTAL' it' been handled by 3 standard deviations of the mean.

Application_train.csv - Preparation:

- Identified categorial variables
- Transforming Categorical variables to Numerical variables & Dropping actual columns.
- Replaced all negative values to 0
- X train & y train identified for feature selection
- Training set and validation set are split in following percentages: 66.66%: 33.33%.
- Top 10 features identified based on 'mutual_info_classif'

EDA With Application train data set:

Data Exploration:

1. Distribution of Amount Credit

Distribution is right side skewed, between 0 . 1,50000 has more entries

2. Distribution of Amount Goods Price

Majority of the amount of goods price spreaded between 0-1.5

3. Who accompanied client when applying loan?

Majority of the applicants are unaccompanied

4. Highly imbalanced data!

As we can see data is highly imbalanced.

5. Contract Type of Previous Loan app:

Most of the loans are Cash loans which were taken by applicants.

6. Own Relaty & Own Car

70 % applicants has own realty & 65 % has own car

7. Client's Income Type:

Top 3 ratios go like Working , Commercial & Pesnioner

8. Family Status of the Client:

#Majority of the applicants are Married

9. Client's Occupational type

Top Applicant's who applied for loan:

Laborers - Apprx. 55 K Sales Staff - Approx. 32 K Core staff - Approx. 28 K Managers - Approx. 21 K Drivers - Approx. 19 K

10. Client Educational Type

Majority of applicants have secondary and 2nd most having higher education.

11. Client Housing Type:

Approx. 90 % peoples applied for loan, they mentioned type of house is House / Appartment

12. Client's working Org type:

Business Entity Type 3 - Approx. 68 K XNA - Approx. 55 K

Self employed - Approx. 38 K

Others - Approx. 17 K Medicine - Approx. 11 K

EDA Target Vs Features: [0- Paid, 1 - Not Paid] Also Assumptions

1. Income Source Vs Target – State Servant seems to be very High chance to repaid than others

Income sources of Applicants in terms of loan is repayed or not

2. Family Status Vs Target: Widow & Separated records has very low non repaid reputation than others ,

Family Status of Applicants in terms of loan is repayed or not

3. Occupation Type Vs Target: Realty agents & IT Staffs are taking loan rarely & they tend to repay much better than others

4. Org Type Vs Target: Compared to others Business Entity 3 has High Repaid among others

5. Education vs Target: 90 % applicants has done Secondary. Higher education, in that higher education candidates has low repaid ratio .

6. Number of Children Vs Target: Interesting to see that those who have had trouble repaying loans have mainly had zero children, although the distributions look to be similar for other children counts

Distribution of number of children

7. Amount Credit Vs Target:

Inferential Statistics:

Assumption1:

Whether Housing type & Family status feature has significant impact for Target prediction or not – OLS Method – F stats, P value

Results:

OLS Regression Results					
Dep. Variable:	TARGET	R-squared:	0.003		
Model:	OLS	Adj. R-squared:	0.003		
Method:	Least Squares	F-statistic:	<mark>82.93</mark>		
Date:	Sat, 03 Oct 2020	Prob (F-statistic):	1.77e-171		
Time.	15.13.27	Log-Likelihood:	-36033		

Df Residuals: 307500 Df Model: 10 Covariance Type: nonrobust	BIC:		7.220e+04		
=========			t		
5 0.975]					-
Intercept 0 0.112	0.0960	0.008	11.606	0.000	0.08
NAME_HOUSING_TYPE[T.House / apartment] 5 0.017	0.0006	0.008	0.075	0.940	-0.01
NAME_HOUSING_TYPE[T.Municipal apartment] 9 0.024	0.0073	0.009	0.858	0.391	-0.00
NAME_HOUSING_TYPE[T.Office apartment] 1 0.007	-0.0119	0.010	-1.226	0.220	-0.03
NAME_HOUSING_TYPE[T.Rented apartment] 5 0.060	0.0422	0.009	4.682	0.000	0.02
NAME_HOUSING_TYPE[T.With parents] 8 0.051	0.0343		4.073	0.000	0.01
NAME_FAMILY_STATUS[T.Married] 6 -0.019	-0.0228	0.002	-13.466	0.000	-0.02
NAME_FAMILY_STATUS[T.Separated] 2 -0.012	-0.0174	0.002	-6.958	0.000	-0.02
NAME_FAMILY_STATUS[T.Single / not marrie 8 0.000	-0.0037	0.002	-1.824	0.068	-0.00
NAME_FAMILY_STATUS[T.Unknown] 7 0.277	-0.0999	0.192	-0.519	0.603	-0.47
NAME_FAMILY_STATUS[T.Widow] 4 -0.034			-14.683	0.000	-0.04
Omnibus: 185893.783	Durbin-Watson:		2.002		
	<pre>Jarque-Bera (JB): Prob(JB):</pre>		1190628.319		
	Cond. No.		595.		

307511 AIC:

7.209e+04

Warnings:

No. Observations:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

As it has high F statistics & P value almost 0, so we can say above features are statistically significant for prediction.

Assumption 2: Feature: Amount Income Total – using stats model, T stats & P value

Null Hypo: Income does not have significant importance for repaying loan

Alt Hypo: Income has significant impact for Repaying loan

Results:

```
(t critical stats= 2.2081011084696076, p value stats=0.027237960879676462)
```

As we got 2.2 as T value and p value 0.02 which is <=0.05, so we can reject Null Hypothesis . That mean amount income total has significant impact on repaying loan

Assumption 3: Feature No of children – Replications by random choice, P value from shifted Mean

Null Hypo: There is no impact for repaying loan based on no of child

Alt Hypo: There is significant impact on repaying loan based on child

Results:

As p = 0 we can reject null hypo, there should be Highly significant impact on repaying loan based on child

Feature Selection Methodology: Refer – EDA.ipynb

Mutual Info Classifier & K best has been used to identify the Best correlated feature which matches with TARGET variable based on fs score

Results: Top features

	Feature	Score
10	FLAG_MOBIL	0.035830
13	FLAG_CONT_MOBILE	0.034916
393	Cash loans	0.029763
279	House / apartment	0.027121
11	FLAG_EMP_PHONE	0.024349
321	Unaccompanied	0.023997
18	REGION_RATING_CLIENT_W_CITY	0.022159
17	REGION_RATING_CLIENT	0.020673
35	FLAG_DOCUMENT_3	0.018630

Random Forest Feature Selection: Trained model with Random Forest bagging algorithm & fitted model provides feature importance

	Feature	Importance
0	Cleaning	0.029922
1	Sent proposal	0.028931
2	AMT_CREDIT_SUM_LIMIT	0.014392
3	Unknown type of loan	0.013537
4	POS mobile with interest_y	0.013247
5	5	0.012757
6	Cleaning staff	0.012634
7	Hotel	0.012609
8	SK_ID_CURR	0.012303
9	POS industry without interest_y	0.011720
10	Industry: type 7	0.011497
11	POS industry with interest_x	0.011242
12	AMT_PAYMENT_CURRENT	0.011184
13	Cash Street: high_y	0.011157
14	AMT_RECEIVABLE_PRINCIPAL	0.011041
15	AMT_CREDIT_x	0.010865
16	AMT_DRAWINGS_OTHER_CURRENT	0.010835
17	Furniture_x	0.010822
18	THURSDAY	0.010782
19	Cash Street: low_x	0.010740

Preprocessing data set before creating ML modeling:

- 1. Imputer Added SimpleImputer & strategy to calculate "Median" for the set , transformed data set.
- 2. Scaler Added MinMaxScaler for all feature value range from 0-1 for computation

Created Train & Test data set with 33 % test size. Which is going to be applied in ML Models

Machine Learning Modelling & algorithm Applied: As data set belongs to Supervised Machine learning

Machine Learning Algorithm Used:

- Logistic Regression
- Random Forest
- Naïve Bayes
- Ensemble Modeling (combined above 3)

1. Logistic Regression Results:

The accuracy score : 0.9223047288018181

The classification report is as follows:

	precision	recall	f1-score	support
0	0.92	1.00	0.96	75895
1	0.49	0.02	0.05	6388
accuracy			0.92	82283
macro avg	0.71	0.51	0.50	82283
weighted avg	0.89	0.92	0.89	82283

ROC AUC score is: 0.5107913000044594

2. Random Forest Algorithm Results:

The accuracy in general is : 0.9223776478738014

The classification report is as follows:

	precision	recall	f1-score	support
0	0.92	1.00	0.96	75895
1	0.67	0.00	0.00	6388
accuracy			0.92	82283
macro avg	0.79	0.50	0.48	82283
weighted avg	0.90	0.92	0.89	82283

ROC AUC score is: 0.5001499554698198

3. Naïve Bayes Algorithm Results:

The accuracy in general is : 0.12568817374184219

The classification report is as follows:

	precision	recall	f1-score	support
0	0.95	0.05	0.10	75895
1	0.08	0.97	0.15	6388
accuracy			0.13	82283
macro avg weighted avg	0.52 0.89	0.51 0.13	0.13 0.11	82283 82283

ROC AUC score is: 0.5112823025318859

4. Ensemble Method approach & Results:

Ensemble model combines multiple individual models together and delivers superior prediction power.

Basically, an ensemble is a supervised learning technique for combining multiple weak learners/models to produce a strong learner. Ensemble model works better when we ensemble models with low correlation.

https://blog.statsbot.co/ensemble-learning-d1dcd548e936

Here we used Ensemble method of Voting approach - Bagging

The accuracy in general is : 0.9223411883378098

The classification report is as follows:

	precision	recall	f1-score	support
0	0.92	1.00	0.96	75895
1	0.50	0.02	0.05	6388
accuracy			0.92	82283
macro avg weighted avg	0.71 0.89	0.51 0.92	0.50 0.89	82283 82283

ROC AUC score is: 0.5108827478625658