Roll No. 4014

M.Sc.(Informatics)/I-Sem.-2014 Paper:IT-14

MATHEMATICAL FOUNDATION FOR COMPUTER SCIENCE

Time:3 hours

Maximum Marks:75

Write your Roll No. on the top immediately on receipt of this question paper

Attempt five questions in all. Q.1 is compulsary

Q.1(a)If A, B and C are sets, prove analytically or graphically that $A \cap (B-C) = (A \cap B) - (A \cap C)$. (3)

(b) If $A = \{1, 2, 3, 4\} \times \{1, 2, 3, 4\}$ and the relation R is defined on A by (a, b)R(c, d) if a + b = c + d, verify that A is an equivalence relation on A and also find the quotient set of A by R.

(c) If R and S be relations on a set A represented by the matrices (3)

$$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } M_S = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

find the matrices that represent

6.7

$$M_{R \oplus S} = M_{R \cup S} - M_{R \cap S}$$

(d) What type of graph does the following adjacency matrix represent? Name the graph. (2)

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 \cdot 1 & 0 & 0 & 0 \\ 1 \cdot 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

(e) If $G = \{(S, A), (a, b), S, P\}$, where P consists of the production

$$\{S \rightarrow aAS, S \rightarrow a, A \rightarrow SbA, A \rightarrow SS, A \rightarrow ba\}$$

, generate the string aabbaa using a left most derivation.

(2)

Q.2(a) R and S are "Congruent modulo 3" and "Congruent modulo 4" relations respectively on the set of integers. That is $R = \{(a,b)|a \equiv b \pmod{3}\}$ and $S = \{(a,b)|a \equiv b \pmod{4}\}$. Find (i) $R \cup S$ and (ii) $R \oplus S$.

(b) Using Warshal algorithm, find the transitive closure of a relation R such that

$$M_R = \left[egin{array}{cccc} 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{array}
ight]$$

(c)Determine the Hasse diagram of the partial order having the digraph shown in Fig.1.

Fig.1

(d)Simplify the Boolean function $f(a,b,c,d) = \sum (0,1,2,3,4,5,6,7,8,9,11)$, by Kaurnaugh map method.

$$(x+y)(x'+z) = xz + x'y + yz = xz + x'y$$

Q.3(a) Given the following adjacency matrix A_1 and A_2 that corresponds to the graph G_1 and G_2 respectively.

$$A_1 = \left[egin{array}{cccc} 0 & 1 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 \end{array}
ight], A_2 = \left[egin{array}{cccc} 0 & 1 & 1 & 1 \ 1 & 0 & 1 & 0 \ 1 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{array}
ight]$$

If P is the appropriate permutation matrix, write the condition for the two graphs to be isomorphic. Draw the two graphs G_1 and G_2 and using the foregoing condition show that they are isomorphic. (6)

(b) Label the vertices of the undirected graph G_1 as A, B, C and D in any order. Find the number of paths of length 3 from the vertex D to A. (3)

- (d) Write down the criterion used to find Eulerian path and Eulerian circuits in a given graph. Draw the complete graph K_5 and show that it is possible to have an Euler circuit in it. Write one such circuit. (3)
- (e) Find the value of: (3)
 - (i) the prefix expression $+-\uparrow 32\uparrow 23/8-42$.
 - (ii) the postfix expression 72 3 + 232 + -13 */.

Q.4(a)Describe the Prim's algorithm to find a minimum spanning tree. Use it to find a minimum spanning tree for the weighted graph shown in Fig.2.

(6)

- (b) Sketch the 11-vertex binary trees with minimum and maximum heights. Find also the path length of both the trees. (3)
- (c) Construct a binary tree whose inorder and postorder traversals are respectively DCEBFAHGI and DECFBHIGA. (3)
- (d) We give below (Table:1), in array form, the doubly -linked -list representation of a labeled tree T (not binary). Draw the digraph of both the labeled binary tree B(T) actually stored in the arrays and labelled tree T of which B(T) is the binary representation. (3)

Table:1				
INDEX	LEFT	DATA	RIGHT	
1	2		0	
2 3	3	a	0	
3	4	b	5	
4	6	С	7	
5	8	d	0	
6	0	e	10	
7	0	f	0	
8	0	g	- 11	
9	0	h	0	
10	0	i	9	
11	0	j	12	
12	0	k	0	

Q.5(a) The state table of a finite state machine M is given in Table:2 (3)

f,g	0	1
\$0	s_2, y	s_1, z
s_1	s_2, x	s_3, y
82	s_2, y	81,2
83	82, 2	s_0, x

- (i) Identify the input set I, the state set S, the output set O and the initial state of M.
- (ii) Draw the state diagram of M. (iii) Find the output of the string $0^21^201^20^21$.
- (b) Design an FSM that outputs 1 whenever it sees 101 as consecutive input bits and outputs 0 otherwise. (4)
- (c) Find the DFA equivalent to the NDFA for which the state table is given in Table:3 and the accepting state is s_2 . (3)

	Table:3	
PS↓	Next State	
	a	b
<i>s</i> ₀	φ	s_0, s_1
s_1	φ	s_2
\$2	s_0, s_1, s_2	. 6

(d) Find a DFA that accepts precisely the string generated by the regular grammar $G = \{V_N, V_T, S, P\}$, where $V_N = \{S, A, B\}$, $V_T = \{a, b\}$,

$$P = \{S \rightarrow bS, S \rightarrow aA, S \rightarrow a, A \rightarrow aS, A \rightarrow bB, B \rightarrow bA, B \rightarrow aS, B \rightarrow b\}$$

and S is the starting symbol.

(5)

Q.6(a) Find the language generated by each of the following grammars: (3)

(i)
$$G = \{(S, A, B), (a, b), S, P\}$$
, where P is the set of production

$$\{S \to AB, S \to AA, A \to aB, A \to ab, B \to b\}$$

(ii)
$$G = \{(S), (0, 1), S, P\}$$
, where P consists of the production $\{S \to aSb, Sb \to bA, abA \to C\}$

(b) Construct a transition graph for the regular expression

$$R = (0+11)^*(10^* + \lambda)$$

. Convert the graph into a graph without λ -transition.

(3)

(c) Using Arden's lemma, find the regular expression accepted by the following automata (Fig.3). (4)

(d) Using the following transition rules in a Turing machine:

0

$$\delta(q_0, 1) = (q_0, 1, R), \delta(q_0, b) = (q_1, 1, R)$$

$$\delta(q_1, 1) = (q_1, 1, R), \delta(q_1, b) = (q_2, b, L)$$

$$\delta(q_2, 1) = (q_3, b, L), \delta(q_3, 1) = (q_3, 1, L)$$
$$\delta(q_3, b) = (q_f, b, R)$$

show that if $w_1 = 11$ and $w_2 = 111$, then $q_0w_1bw_2 \vdash *bq_fw_1w_2bb$. Here b represent the blank symbol. Further $q_i, i = 1, 2, 3$ and q_f represents the different states and the final state respectively in a Turing machine. (5)