Corrigé EXAMEN THL

Soient les 2 langages L_1 et L_2 suivants :

$$L_1=[a^nb^mc^pd^q, n>=0, m>=0, p>=0, 3>q>0]$$

 $L_2=[d^t, t>=0]$

1. Le plus petit mot généré par L₁ : dans ce cas on à : n=0, m=0, p=0 et q=1. Donc :

$$L_1 = [a^0b^0c^0d^1] = d$$
 (02)

2. Quelles sont les valeurs de n, m, p, q et t telle que $L_1 \cap L_2 = L_1 \cup L_2$?

$$L_{1} \cap L_{2} = L_{1} \cup L_{2} \leftrightarrow [a^{n}b^{m}c^{p}d^{q}] \cap [d^{t}] = [a^{n}b^{m}c^{p}d^{q}] \cup [d^{t}]$$

$$\leftrightarrow (d^{q} \cap d^{t}) = (d^{q} \cup d^{t})$$

$$\leftrightarrow [\mathbf{n} = \mathbf{0}, \mathbf{m} = \mathbf{0}, \mathbf{p} = \mathbf{0}, \mathbf{q} = \mathbf{1}, \mathbf{t} = \mathbf{1}] \text{ or } [\mathbf{n} = \mathbf{0}, \mathbf{m} = \mathbf{0}, \mathbf{p} = \mathbf{0}, \mathbf{q} = \mathbf{2}, \mathbf{t} = \mathbf{2}] (02)$$

3. Quelles sont les valeurs de n, m, p, q et t telle que : $L_1 \mid \mid L_2 = dd$?

$$L_{1} \mid \mid L_{2} = dd \leftrightarrow a^{n}b^{m}c^{p}d^{q} \mid \mid d^{t} = dd$$

$$\leftrightarrow d^{t}.dd \in a^{n}b^{m}c^{p}d^{q}$$

$$\leftrightarrow d^{t+2} \in a^{n}b^{m}c^{p}d^{q}$$

$$\leftrightarrow (n=0, m=0, p=0, t+2=q)$$

$$\leftrightarrow (n=0, m=0, p=0, t=0, q=2)$$
(02)

4. Quelles sont les valeurs de n, m, p, q et t telle que : $L_1.L_2=L_2.L_1$

$$L_{1}.L_{2}=L_{2}.L_{1} \leftrightarrow (a^{n}b^{m}c^{p}d^{q}) d^{t}=d^{t}(a^{n}b^{m}c^{p}d^{q})$$

$$\leftrightarrow a^{n}b^{m}c^{p}d^{q+t}=d^{t}a^{n}b^{m}c^{p}d^{q}$$

$$\leftrightarrow (t=0, n, m, p, q \text{ quelconques})$$

$$(02)$$

M Demouche Page 1

Supposant maintenant que : n=p, q=1, m>=0 et t>=0.

5. trouvons les automates acceptant les langages: $L_1 \cap L_2, \ L_1 \cup L_2$, $\ L_1 \cup L_2$, $\ (L_2)^3$:

Dans ce cas, on a : $L_1=[a^nb^mc^nd, n,m>=0], L_2=[d^t, t>=0]$

• $L_1 \cap L_2 = a^n b^m c^n d \cap d^t = \mathbf{d}$ avec (n=m=0, t=1) L'automate qui accepte ce langage est un AEF:

• $L_1 \cup L_2 = a^n b^m c^n d \cup d^t$ ce langage est de type 2, il sera accepté par un automate à pile qui est donné par:

$$\#S_0a \rightarrow \#aS_0 \qquad aS_0a \rightarrow aaS_0 \qquad aS_0b \rightarrow aS_0 \qquad aS_0c \rightarrow S_1 \qquad aS_1c \rightarrow S_1$$

$$\#S_1d \rightarrow \#S_2 \qquad \#S_2 \rightarrow \# \qquad \#S_0b \rightarrow \#S_3 \qquad \#S_3d \rightarrow \#S_4 \qquad \#S_4 \rightarrow \#$$

$$\#S_0d \rightarrow \#S_5 \qquad \#S_5d \rightarrow \#S_5 \qquad \#S_5 \rightarrow \#$$

$$(02)$$

• $L_1.L_2 = a^n b^m c^n d. d^t = a^n b^m c^n d^{t+1}, n,m,p,t>=0$:

l'automate qui le reconnait est un automate à pile qui est :

$$\#S_0 a \rightarrow \#aS_0 \qquad aS_0 a \rightarrow aaS_0 \qquad aS_0 b \rightarrow aS_0 \qquad aS_0 c \rightarrow S_1 \quad aS_1 c \rightarrow S_1$$

$$\#S_1 d \rightarrow \#S_1 \qquad \#S_1 \rightarrow \#S_f \qquad \#S_0 d \rightarrow \#S_1 \qquad \#S_0 b \rightarrow \#S_1$$

$$(02)$$

M Demouche Page 2

• $(L_2)^3 = (d^t)^3 = d^{t \times 3} = d^{3 \times t} = (d^3)^t = (ddd)^t$ L'automate correspondant est un AEF suivant :

6. Donner les grammaires G_1 , G_2 qui génèrent les langages $L_1 \cup L_2$, $(L_2)^3$ Respectivement :

•
$$L_1 \cup L_2 = a^n b^m c^n d \cup d^t$$
: $G_1: S \rightarrow AD/F$
 $A \rightarrow aAc/B$ $B \rightarrow bB/\varepsilon$ $D \rightarrow d$ $F \rightarrow dF/\varepsilon$ (02)

•
$$(L_2)^3 = (d^t)^3 = d^{t_x 3} = d^{3_x t} = (d^3)^t = (ddd)^t$$
 $G_2: S \rightarrow dddS/\epsilon$ (02)

M Demouche Page 3