Deep Learning inlämningsuppgift #1

Publishing: 15th April 2024

Deadline 4th Maj 2024 KL 23:59

G: 75+, VG: 90+

About project:

As we noticed in deep learning, we need to build our own network semi-manually and now it is your turn to make a difference and automate it to the other Python AI developer. So, we would like to build our own class call MyANN that will help developer to get the model and some more info as next description:

1- Main class MyANN:

• MyAnn is a class to build multilayer Perceptrons classifier or regressor by reading in and validation of parameters.

2- MyAnn Class Parameters descriptions: (60 Points)

parameters_name	Descriptions	Points
data_set Type = String	Valid absolute path to .csv dataset file, Data cleaned and ready to process in csv dataset form.	4
target Type = string	Valid name to the Labels' column.	4
hidden_layer_sizes. type = Tuple	A Tuple like to describe the shape of hidden layers, default= (100,) The number in each tuple field represents the number of neurons in the related hidden layer. In case it was negative, so it is dropout layer and the value represent the percent. Example: hidden_layer_sizes = (50,25, -0.25,12) so the model has 4 hidden layers,	8

	with 50 neurons in the first hidden layer, and 25 in the second and drop out with 25% and fourth has 12.	
activation Type = string	Valid Activation function for the hidden layer default is 'relu' other options 'sigmoid', 'softmax', 'tanh'.	4
loss Type = string	Valid Loss function, values = 'mse', 'binary_crossentropy' or 'categorical_crossentropy'	4
optimizer Type = string	Valid Optimizer for the output layer, the default is 'adam' other options for this class is 'rmsprop' and 'sgd'	4
batch_size type = int	Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32	4
epochs Type = int	Number of epochs to train the model, default is 1 epoch	4
monitor Type = string	Result to be monitored, default = 'val_loss', other option 'accuracy'	4
patience Type = int	Number of epochs with no improvement after which training will be stopped, default = as value in epochs.	4
mode Type = string	One of {"auto", "min", "max"}. In min mode, training will stop when the quantity monitored has stopped decreasing; in "max" mode it will stop when the quantity monitored has stopped increasing; in "auto" mode, the direction is automatically inferred from the name of the monitored quantity.	4

verbose	0, 1, or 2. Verbosity mode. 0 =	4
	silent, 1 = progress bar, 2 = one line	
	per epoch	
use_multiprocessing:	If True, use process-based	8
Boolean	threading. If unspecified,	
	use_multiprocessing will default as	
	False	

3- Supporting Methods: (25 Points)

Methods name	Descriptions	Points
model_loss	Method to return Pandas DataFrame for all loss, val_loss, accuracy and val_accuracy values.	2
plot_model_loss	Method Show the plotting of model's loss and val_loss against number of epochs	2
model_predict	Take in a row of data set and return a predict. Ps. Check needed processing for the input to get the right prediction	2
save_original keras model	Save Keras model (NOT MyANN model) in .h5 format	2
Load_ original keras model	load saved Keras model (NOT ANN model) from .h5 format	2
For Classfication cases Only	The next 2 methods you should allow for classification case, Otherwise print needed info that not applicable by regressions	
plot_model_accuracy	Method Show the plotting of model's accuracy and val_accuracy	2

print_classfication_report	Print to terminal classification report that shows: precision, recall, f1-score per each class and global accuracy.	2
For regression cases only	The next 3 methods you should allow for classification case, Otherwise print needed info that not applicable by classifiers	
plot_ predictions_scatter	Show scatter plot of real values in target columns against predict value.	2
rmse	Return sqrt of the mean squared error	2
mae	Return mean absolute error	2
Plot_residual_error	Shows distplot for residual error. Where Residual errors are the difference between real label and predict label values.	5

4- MyAnn Class attributes that we can get from object(Not protected) of myANN class: (15 Points)

attributes	descriptions	points
classes_	Class label(s)	2
type: list of strings		
loss_	The last loss computed with the loss	2
type: float	function of the model	
best_loss	The minimum loss reached by the	3
type: float	model throughout fitting	
features_	List of features columns name	2

type: list of strings		
n_layers	Number of layers in this model	2
type:int		
n_outputs_	Number of outputs	2
type:int		
out_activation_	Name of the output activation	2
type string	function.	

Good Luck!