Fundamentos Lógicos de la Informática Lógica Categórica

Grupo docente FLI

Dpto. Ingeniería de al Información y las Comunicaciones Facultad de Informática Universidad de Murcia

- Introducción
- 2 Categorías
- Sintaxis
- 4 Formalización
- 6 Interpretación
- 6 Consideraciones Teóricas

- Introducción

Lógica Categórica

- Las oraciones lógicas reciben el nombre de Proposiciones Categóricas.
- Una proposición categórica relaciona los miembros de dos categorías por inclusión.

"Todos los perros son tontos"

Símbolos similares al álgebra

Ålgebra	Lógica Categórica
$f(x) \odot (-g(x))$	$P(x) \rightarrow (\neg Q(x))$

Además se da información sobre cuántos x están relacionados.

$$\forall$$
, \exists

- Los esquemas lógicos son los Silogismos Categóricos.
 - Dos proposiciones categóricas concluyen una tercera proposición categórica.
 - Son deductivos formalmente válidos 19 de los 64 modos posibles.

- 2 Categorías

Categorías

Los conjuntos de toda la vida

Definición (Categoría o Conjunto)

Cualquier colección no ordenada de individuos forma un conjunto.

Definición (Elemento)

Un individuo que se encuentra en esa colección C se llama elemento del conjunto C, en cuyo caso se dice que el elemento pertenece al conjunto C.

Notación

- *NombreDelConjunto* = {elementos que componen el conjunto}
- $x \in NombreDelConjunto, x \notin NombreDelConjunto$

Definición de conjuntos

Notación

- Extensional. Enumerando (nombrar) cada uno de sus elementos una sola vez.
 - NombreDelConjunto = $\{elem_1, elem_2, \ldots, elem_n, \ldots, \}$
- Intensional. A partir de una o varias propiedades que permitan caracterizar los elementos que lo componen.
 - *NombreDelConjunto* = $\{x \mid x \text{ cumple algunas propiedades.}\}$
 - NombreDelConjunto = $\{x \mid P(x)\}$
 - Recibe el nombre de notación de constructor de conjuntos (set builder notation).
 - Si P es un propiedad, P(x) indica que un individuo x cumple la propiedad P.
 - La propiedad P recibe el nombre de propiedad característica, **contenido** o **intensión** del conjunto que define.
- Por recursión. Utilizando una definición recursiva.
 - NombreDelConjunto = $\{x \mid R(x)\}\$ donde R(x) indica si x cumple o no una regla recursiva R. Es un caso particular de definición por intensión.

Principio de Extensionalidad

Principio de Extensionalidad

- Dos conjuntos, A y B, son iguales si y sólo si tienen los mismos elementos (y se nota por A = B).
- Alternativamente: $(x \in A \Leftrightarrow x \in B) \stackrel{def}{\iff} (A = B)$

Ojo con el significado de los símbolos. No confundir:

	Sintaxis	Sobre las expresiones	
L0	$p o \leftrightarrow \dots$	≡≢	
Conjuntos	$x A \in \not\in$	$= \neq$	
En general		$\Rightarrow \Leftarrow \Leftrightarrow \stackrel{def}{\Longleftrightarrow}$	

Conjuntos Especiales

- Inclusión de conjuntos: subconjunto, superconjunto.
 - $A \subseteq B \stackrel{def}{\iff} (x \in A \Rightarrow x \in B)$. La negación es $A \not\subseteq B$.
- Inclusión estricta de conjuntos.

$$(A \subset B) \stackrel{\text{def}}{\Longleftrightarrow} (A \subseteq B \text{ y } A \neq B)$$
. La negación es $A \not\subset B$.

- Conjunto Total (conjunto universal o universo de discurso). El mayor conjunto posible que pueda considerar para un estudio. \mathcal{U}
- Conjunto vacío. El conjunto sin elementos. ∅, {}. i {∅} NO es el conjunto vacío !
- Partes de un conjunto.
 - El conjunto de todos los subconjuntos de un conjunto.

$$\mathcal{P}(X) = \{A | A \subset X\}$$

Operaciones de conjuntos

Diagramas de Venn

Unión. $A \cup B \stackrel{\mathsf{def}}{=} \{x | x \in A \ o \ x \in B\}$

Intersección. $A \cap B \stackrel{\text{def}}{=} \{x | x \in A \ v \ x \in B\}$

Si $A \cap B = \emptyset$ se dice que A y B son conjuntos disjuntos.

Diferencia. $A - B = A \setminus B \stackrel{\text{def}}{=} \{x | x \in A \ y \ x \notin B\}$

Complemento. $\bar{A} = A^c = U - A \stackrel{\text{def}}{=} \{x \in U | x \notin A\}$

Representación gráfica de 2 conjuntos por Diagramas de Venn

Diagramas de Euler vs Diagramas de Venn

Para 2 conjuntos

Diagramas de Euler

Diagrama de Venn (sombreando adecuadamente)

- Sintaxis

Operaciones de conjuntos vs Conectivos lógicos

- La lógica categórica establece relaciones entre categorías.
- Su patrón base es: *objeto* es (está/pertenece a) *Categoria*.

$$P(x)$$
: "x es P", $R(x)$: "x es R", $C(x)$: "x es C", ...

Lógica proposicional vs Lógica Categórica

	Se formaliza				
Expresión natural	En conjuntos	En lógica		En lógica	
		Proposicional	Sujeto/Categoría		
"x es P"	$x \in A$	р	P(x)		
"x no es P"	$x \notin A, x \in A^c$	$\neg p$	$\neg P(x)$		
"x es P o x es Q"	$x \in A \cup B$	$p \lor q$	$P(x) \vee Q(x)$		
"x es P y x es Q"	$x \in A \cap B$	$p \wedge q$	$P(x) \wedge Q(x)$		
"Si x es P, x es Q"	$x \in A \text{ y } A \subseteq B$	p o q	$P(x) \rightarrow Q(x)$		
"x es P sii x es Q"	$x \in A \text{ y } A = B$	$p \leftrightarrow q$	$P(x) \leftrightarrow Q(x)$		

donde: *p* :"x es P", *q* :"x es Q",

$$P(x)$$
: "x es P", $Q(x)$: "x es Q", $A = \{x | P(x)\}, B = \{x | Q(x)\}$

Sintaxis de la Lógica Categórica

Alfabeto o vocabulario

```
Constantes. Son los símbolos reservados verdadero (V) y falso (F).
               \mathbb{B} = \{V, F\}.
    Variables. Secuencia de letras (normalmente una, suele ser minúscula).
                Representan objetos del universo: x, y, ...
  Categorias. Secuencia de letras (normalmente una, suele ser mayúscula).
   Conectivos u operadores booleanos.
                  ∧ Conjunción (y)
                  V Disyunción (o)
                  ¬ Negación (no)
                 → Implicación (entonces)
Cuantificadores. \forall, \exists. Siempre irán con una variable:
                 \forall x Para cada/todos los objetos x ...
               \neg \forall x No para cada/todos los objetos x ...
                 \exists x Existe/Hay [algún / al menos] objeto x ...
               \neg \exists x Ningún/No existe/No hay objeto x ...
Otros símbolos. paréntesis '()', corchetes '[]', etc.
```

Sintaxis de la Lógica Categórica

Gramática o Sintaxis

Definición (Términos)

Cualquier símbolo variable es un término.

Definición (Categoría)

Una categoría es una expresión que consta de un símbolo categoría seguido de un término entre paréntesis.

$$P(x)$$
, $Alto(y)$, $bajo(x)$, $T(z)$,...

Definición (Elemento Atómico)

Una expresión se dice que es un átomo si es un símbolo constante o es una categoría.

Formas Normales Categóricas

Definición (Construcción de Proposiciones Categóricas en forma normal)

Es el menor conjunto de fórmulas, denotado por $\mathcal{F}_{\mathcal{C}}$, que responden a los siguientes patrones:

- Proposición universal afirmativa. Todo S es P. $\forall x (S(x) \rightarrow P(x))$
- Proposición universal negativa. Ningún S es P. $\forall x (S(x) \rightarrow \neg P(x))$
- Proposición particular afirmativa. Algún S es P. $\exists x (S(x) \land P(x))$
- Proposición particular negativa. Algún S no es P. $\exists x (S(x) \land \neg P(x))$
- Siempre con el verbo ser/estar.
- Una categoría puede ser el resultado de combinar varias categorías. Si A(x) y B(x) son categorías con la misma variable, se pueden construir las categorías $\neg A(x)$, $(A(x) \land B(x))$, $(A(x) \lor B(x))$.

- 4 Formalización

De lo natural a lo formal

- Considerara todas las orientaciones indicadas en la lógica proposicional.
- Expresar la oración con los verbos ser/estar (si es posible) y usar "la construcción de proposiciones categóricas en forma normal" más adecuada, teniendo en cuenta que:

 $\forall x P(x)$ puede representar

- Todo objeto cumple la propiedad P.
 Cualquier individuo verifica P.
 Cada ente cumple P.

 $\exists x P(x)$ puede representar

- Hay un objeto que cumple la propiedad P.
- Al menos un individuo verifica P.
 Existe un objeto cumpliendo P.

- 6 Interpretación

Evaluación I

Aproximación Intuitiva (No es una definición formal)

La evaluación de una proposición categórica α interpretada en un mundo M viene dado por el siguiente procedimiento:

- Identificar cada categoría de α , $P_{\alpha}(x)$, con un conjunto de \mathcal{M} , $P_{\mathcal{M}}$.
- Lee $P_{\alpha}(d)$ como $d_{\mathcal{M}} \in P_{\mathcal{M}}$, y si es cierto establece $v_{I}(P_{\alpha}(d)) = V$.

Que la fórmula P(d) sea verdadera en un modelo no significa

- ni que el símbolo d pertenezca al símbolo P,
- ni que el símbolo d pertenezca al conjunto que representa a P,
- ni que el objeto que representa al símbolo d pertenezca al símbolo P.

Que la fórmula P(d) sea verdadera en un modelo sí significa que el objeto que representa al símbolo d pertenezca al conjunto que representa a P.

Evaluación II

Aproximación Intuitiva (No es una definición formal)

- Si α es una expresión ...
 - ... con cuantificador universal $\forall x \ \beta(x)$, su evaluación viene dada así:

$$v(\alpha) = v(\forall x \ \beta(x)) = \begin{cases} V & \text{si } v(\beta(d)) = V \text{ para todo } d_{\mathcal{M}} \in \mathbb{D}_{\mathcal{M}} \\ F & \text{en otro caso} \end{cases}$$

• ... con cuantificador existencial $\exists x \ \beta(x)$, su evaluación viene dada así:

$$v(\alpha) = v(\exists x \ \beta(x)) = \begin{cases} V & \text{si } v(\beta(d)) = V \text{ para algún } d_{\mathcal{M}} \in \mathbb{D}_{\mathcal{M}} \\ F & \text{en otro caso} \end{cases}$$

... de otro tipo, aplicar la tabla de verdad de los conectivos de L0.

Ojo. Esto no es una definición formal. La definición formal está en L1.

- 6 Consideraciones Teóricas

Diagramas de Venn vs Diagramas de Euler

Representación de todos los conjuntos con 3 categorías

Región 1:
$$u \in U - (A \cup B \cup C) = \neg (A \cup B \cup C)$$

Región 2:
$$a \in A - (B \cup C) = (A - B) \cap (A - C)$$
.

Región 3:
$$b \in B - (A \cup C) = (B - A) \cap (B - C)$$
.

Región 4:
$$c \in C - (A \cup B) = (C - A) \cap (C - B)$$
.

Región 5:
$$d \in (A \cap B) - C$$
.

Región 6:
$$e \in (A \cap C) - B$$
.

Región 7:
$$f \in (A \cap B \cap C)$$
.

Región 8:
$$g \in (B \cap C) - A$$
.

Los diagramas de Euler no tienen que mostrar todas las intersecciones.

Familia de Conjuntos

Definición (Familia de Conjuntos)

Una familia de conjuntos es un conjunto A en el que todos sus elementos son conjuntos.

Ejemplo: Partes de un conjunto (o conjunto potencia). $|\mathcal{P}(A)| = 2^{|A|}$.

Definición (Partición de un conjunto)

Dado un conjunto $A \neq \emptyset$, $A \subset \mathcal{P}(A)$ es una partición de A si y sólo si cumple las siguientes condiciones:

- $| \mathcal{A} = A$.
- Si B, $C \in A$ y $B \neq C$, entonces $B \cap C = \emptyset$.

Propiedades con operaciones de conjuntos I ¡Memoriza!

Asociativa.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Conmutativa.

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Distributiva.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Propiedades con operaciones de conjuntos II ¡Memoriza!

Absorción

$$A \cup (B \cap A) = A$$

 $A \cap (B \cup A) = A$

Idempotencia.

$$A \cup A = A$$
$$A \cap A = A$$

Además, si se fija un dominio U pueden comprobarse las siguientes propiedades para subconjuntos dados $A \vee B$ de U:

Propiedades con operaciones de conjuntos III ¡Memoriza!

Leves de De Morgan.

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Complementación.

$$A \cup (A^c) = U$$
$$A \cap (A^c) = \emptyset$$

Doble Negación.

$$(A^c)^c = A$$

A esta propiedad también se le conoce como doble complementación.

Propiedades con operaciones de conjuntos IV ¡Memoriza!

• \emptyset (conjunto vacío) y U (conjunto total). $A \subseteq U$.

$$A \cup U = U$$

$$A \cup \emptyset = A$$

$$A \cap U = A$$

$$A \cap \emptyset = \emptyset$$

Estas propiedades también se conocen como las propiedades del cero (\emptyset) y uno (U).