

Guest lecture: MCMC with Discrete Parameters

Jakob Torgander

Outline

- 1. Discrete parameters Introduction & discussion
- Describe three methods for computing posteriors with discrete latent parameters
 - Marginalization
 - Gibbs sampling
 - Continuous approximation using Gumbel-Softmax-distribution
- 3. (Short) demonstration of methods.

Motivation

- Discrete variables are everywhere
 - Count data: e.g. number of car accidents
 - · Categorical data
 - Decision/classification problems: (eg. yes/no)
 - Factor analysis
- In many problems latent (hidden) discrete variables exists: conclusions changes if data is segmented into groups
- While current state-of-the-art method Hamiltonian Monte Carlo (HMC) works for discrete data HMC does not directly work for discrete parameters.

Case study - Gaussian mixture model

- Latent class variable C
- $p(y) = \sum_{k=1}^{K} \mathbb{1}(C = k) \mathcal{N}(y|\mu_k, \sigma_k),$
- Task: identify cluster assignments, probabilities and centers

Section 2

Computation

Hamiltonian Monte Carlo (HMC) - Recap

(?, ?): Given a current parameter-momentum pair (θ_i, ϕ_i) , Hamiltonian H and mass matrix M:

- 1. Sample a new momentum variable $\phi_{i+1} \sim \mathcal{N}(0, M)$
- 2. Lift θ_i onto the joint phase space (θ, ϕ)
- 3. Integrate the flow defined by $H(\theta_i, \phi_{i+1}) = \text{constant using Hamilton's equations}$
- 4. Project back to original parameter space to receive new parameter sample θ_{i+1}

Recap: the leapfrog integrator

Step 3 of HMC is based on the leapfrog algorithm

$$\begin{array}{ll} \psi \leftarrow \psi + \frac{1}{2}\epsilon \frac{d \log q(\theta|y)}{d\theta} & \text{1st momentum update} \\ \theta \leftarrow \theta + \epsilon M^{-1}\psi & \text{Parameter update} \\ \psi \leftarrow \psi + \frac{1}{2}\epsilon \frac{d \log q(\theta|y)}{d\theta} & \text{2nd momentum update,} \end{array}$$

where q denotes the target posterior density.

Recap: the leapfrog integrator

Step 3 of HMC is based on the leapfrog algorithm

$$\begin{array}{ll} \psi \leftarrow \psi + \frac{1}{2}\epsilon \frac{d \log q(\theta|y)}{d\theta} & \text{1st momentum update} \\ \theta \leftarrow \theta + \epsilon M^{-1}\psi & \text{Parameter update} \\ \psi \leftarrow \psi + \frac{1}{2}\epsilon \frac{d \log q(\theta|y)}{d\theta} & \text{2nd momentum update,} \end{array}$$

where q denotes the target posterior density.Q: Why does this fail when q is discrete?

HMC does not work for discrete posteriors

Main problem: Computation of the gradient $\frac{d \log q(\theta|y)}{d\theta}$ requires the limits (partial derivatives)

$$\frac{\partial q}{\partial \theta_i} = \lim_{h \to 0} \frac{q(\theta + h\boldsymbol{e}_i) - q(\theta)}{h}$$

to exist. This only happens when q is continuous!

Method 1: Marginalization

Idea: Sum (marginalize) out the latent discrete parameters (?, ?).

By the law of total probability:

$$p(y) = \sum_{k=1}^K p(y|c_k)p(c_k).$$

Then, p(y) is continuous if $p(y|c_k)$, $p(c_k)$ are.

Marginalization

Example: for the GM-model:

$$p_Y(y, | \pi, \mu, \sigma) = \sum_{k=1}^K \underbrace{\pi_k}_{p(c_k)} \underbrace{\mathcal{N}(y | \mu_k, \sigma_k)}_{p(y | c_k)},$$

where π_k are (continuous) parameters.

Marginalization

Example: for the GM-model:

$$p_{Y}(y, | \pi, \mu, \sigma) = \sum_{k=1}^{K} \underbrace{\pi_{k}}_{p(c_{k})} \underbrace{\mathcal{N}(y | \mu_{k}, \sigma_{k})}_{p(y | c_{k})},$$

where π_k are (continuous) parameters. Remark: Compare with the original model formulation

$$p(y|\pi,\mu,\sigma) = \sum_{k=1}^{K} \mathbb{1}(C=k) \mathcal{N}(y|\mu_k,\sigma_k)$$

Method 2: Gibbs sampling

Recall: Gibbs sampling: conditional (or block) sampling of θ $\theta_i \sim p(\theta_i|\theta_{-i},y)$

Method 2: Gibbs sampling

Recall: Gibbs sampling: conditional (or block) sampling of θ

$$\theta_j \sim p(\theta_j | \theta_{-j}, y)$$

For the GM-model, with σ known:

1. For each observation y, sample classes c_i with probability

$$p(c_i|\mu,\sigma,y) = \frac{p(y|c_i)p(c_i)}{\sum_{j=1}^{K} p(y|c_j)p(c_j)} = \frac{p(c_i)\mathcal{N}(y|\mu_i,\sigma)}{\sum_{j=1}^{K} p(c_j)\mathcal{N}(y|\mu_j,\sigma)}$$

Method 2: Gibbs sampling

Recall: Gibbs sampling: conditional (or block) sampling of θ

$$\theta_j \sim p(\theta_j | \theta_{-j}, y)$$

For the GM-model, with σ known:

1. For each observation y, sample classes c_i with probability

$$p(c_i|\mu,\sigma,y) = \frac{p(y|c_i)p(c_i)}{\sum_{j=1}^K p(y|c_j)p(c_j)} = \frac{p(c_i)\mathcal{N}(y|\mu_i,\sigma)}{\sum_{j=1}^K p(c_j)\mathcal{N}(y|\mu_j,\sigma)}$$

2. Sample means μ_i using the conditional distributions $p(\mu_i|y,c_i)$ (normal if likelihood and prior for μ is)

Method 3: Continuous approximation Gumbel-Softmax

Ideas:

- Approximate a discrete (categorical) distribution with a continuous distribution.
- The approximated distribution can then be used with HMC
- Use the "Gumbel trick" (?, ?) from the field of deep learning

"The Gumbel trick"

Proposition: Let Z be a categorical r.w with probability distribution $\pi = (\pi_1, \dots, \pi_K)$ and let G_i be Gumbel (0,1)-distributed with density

$$f_{G_i}=e^{-x-e^{-x}}.$$

Then the random variable

$$U = \arg\max_{i} G_i + \log \pi_i$$

follows the same distribution as Z.

"The Gumbel trick"

Proposition: Let Z be a categorical r.w with probability distribution $\pi = (\pi_1, \dots, \pi_K)$ and let G_i be Gumbel(0,1)-distributed with density

$$f_{G_i}=e^{-x-e^{-x}}.$$

Then the random variable

$$U = \arg\max_{i} G_i + \log \pi_i$$

follows the same distribution as Z.Q: How to use the argmax-function in a density?

Gumbel-Softmax distribution

Idea by ? (?): Approximate argmax with the softmax function.

$$Y_i = \frac{\exp((\log(\pi_i) + G_i)/\tau)}{\sum_{j=1}^k \exp((\log(\pi_j) + G_j)/\tau)},$$

where G_i are Gumbel(0,1)-distributed and τ is a "temperature" parameter.

Gumbel-Softmax distribution

Idea by ? (?): Approximate argmax with the softmax function.

$$Y_i = \frac{\exp((\log(\pi_i) + G_i)/\tau)}{\sum_{i=1}^k \exp((\log(\pi_i) + G_i)/\tau)},$$

where G_i are Gumbel(0,1)-distributed and τ is a "temperature" parameter.

As τ approaches 0, $Y=(Y_1,\ldots,Y_K)$ then tends to a "one-hot" vector on the form

$$[0,\ldots,0,1,0,\ldots,0],$$

where a "1" in position m indicates the m-th class.

Gumbel-Softmax distribution

This yields the Gumbel-Softmax (GS) density function:

$$\rho_{\pi,\tau}(y_1,\ldots,y_K) = (K-1)! \cdot \tau^{K-1} \Big(\sum_{i=1}^K \pi_i / y_i^{\tau} \Big)^{-k} \prod (\pi_i / y_i^{\tau+1}).$$

Continuous! Can hence be used with HMC and Stan.

Methods - Summary

	_	
Method	Pros	Cons
Marginalization	Works efficiently	Does not return
	with HMC	the discrete parameter
Gibbs	Returns classes,	Difficult (& sometimes less efficient)
	reliable for "simple" distributions	for non-conjugate distributions
Gumbel-Softmax.	Returns classes,	High dependency on temperature τ ,
	works with HMC	leapfrog (very) unstable for low temperatures

Section 3

Demonstration

17/1

- Data: simulated gaussian mixtures with means $\mu_1=(1,5), \mu_2=(5,1)$ and $\sigma_1=\sigma_2=\mathbf{I}$
- Weakly informative $\mathcal{N}(0,10)$ -prior used for all μ
- Dirichlet(1,1)-prior (see e.g. (?, ?, p. 69)) used for HMC methods (1 and 3)
- 2000 samples generated for each method

Method: Integration

Method: Gibbs

Method: Cont. approx.

- All three methods correctly identify the centers (red = μ_1 , green = μ_2)
- Gibbs sampler closer to "ground truth" in this case
- Difference possible due to weakly informative Dirichlet prior of Method 1,3. Needs further investigation..

Class assignments - convergence

- Both Gibbs and Continuous approx. converges quickly to the correct classes
- Gibbs sampler one iteration quicker

Use case: imputing missing values

- Gibbs, and Gumbel-Softmax method can be used to impute missing values (classes)
- Idea: Generate class parameter if non-present in the data and use the actual class otherwise
- For general tips about handling missing values, see (?, ?)

Future research

- How do the methods scale with data size and dimension?
- How can τ in the GS-approximation be selected and tuned?
- Performance and convergence of methods on more complicated, high-dimensional posteriors?

Thank you!

References

