

Green University of Bangladesh Department of Computer Science and Engineering (CSE)

Faculty of Sciences and Engineering Semester: (Summer, Year: 2025), B.Sc. in CSE (Day)

LAB REPORT NO # 04

Course Title: Computer Networking Lab Course Code: CSE-318 Section: 231_D2

Student Details

Name	ID
Promod Chandra Das	231002005

Lab Date : 10-08-25
Submission Date : 17-08-25
Course Teacher's Name : Fatema Akter

[For Teachers use only: Don't Write Anything inside this box]

Lab Report Status	
Marks:	Signature:
Comments:	Date:

1.TITLE:

Configuration of Static and Dynamic Routing using Cisco Packet Tracer

2. OBJECTIVES/AIM:

- To understand the concept of **static routing** and **dynamic routing** in computer networks.
- To configure routers in **Cisco Packet Tracer** for establishing communication between different networks.
- To analyze the difference between static routing (manual) and dynamic routing (automatic updates).
- To verify successful data transmission across networks using **ping** and **traceroute** commands.

3. PROCEDURE/ANALYSIS/DESIGN

A. Static Routing

- **1.**Open **Cisco Packet Tracer** and create a network topology with at least **2-3 routers** connected to different networks (LANs).
- **2.** Assign **IP addresses** to PCs, switches, and routers.
- 3. Configure router interfaces using the ip address and no shutdown commands.
- 4. Set up static routes manually using the command
- **5**. Test connectivity using the **ping** command between PCs in different networks.

B. Dynamic Routing (e.g., RIP or OSPF)

- 1.Use the same or a modified topology with **multiple routers**.
- 2. Assign IP addresses as before.
- 3. Enable a dynamic routing protocol on each router. Example with RIP
- 4. Verify routing tables using
- **5.**Test connectivity using **ping** and **traceroute** commands.

4. IMPLEMENTATION:

STATIC ROUTING

Figure 4.1: Build network with specified device

Figure 4.2: PC1-IP configuration

Figure 4.3: Server1-IP configuration

Figure 4.4: Router1 -config(Static)

Figure 4.5: Router -confiq(Static)

DYNAMIC ROUTING:

Figure 4.6: Build network with specified device

Figure 4.7: PC2-IP-configuration

Figure 4.8: Router1-confiq(RIP)

Figure 4.9: Router0-confiq(RIP)

5. OUTPUT

STATIC ROUTING

Figure 5.1: packet sent from PC1 to PC2, PC3 and PC4 successfully

DYNAMIC ROUTING

Figure 5.2: Packet sent from PC1 to PC2,PC3 and PC4 successfully

6. ANALYSIS AND DISCUSSION:

In the experiment, both **Static Routing** and **Dynamic Routing** were successfully implemented using Cisco Packet Tracer.

Static Routing:

Required manual entry of routes for each network. Worked well in the small-scale topology. However, it is **time-consuming** and prone to human error when the network size increases.

Dynamic Routing (RIP/OSPF):

Routers automatically exchanged routing information. Reduced configuration effort compared to static routing. Provided **flexibility and scalability** for larger networks. Allowed quick updates when network topology changed.

Comparison:

Static Routing is best for **simple and small networks** where routes rarely change. Dynamic Routing is better for **large and complex networks** where frequent changes occur. The use of **ping and traceroute** commands verified that communication was established between different LANs in both cases.

From this lab, it is clear that **dynamic routing protocols are more efficient**, while static routing is more secure but less adaptable.