Problem 1

Part (a)

$$f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{(x+1)^k}$$

First prove for k = 1.

$$f'(x) = \frac{1}{x+1} = (-1)^2 \frac{0!}{(x+1)}$$

Now assume the statement is true for some n = k.

$$f^{(n)}(x) = (-1)^{n+1} \frac{(n-1)!}{(x+1)^k}$$

Then

$$f^{k+1}(x) = \frac{d}{dx} f^k(x)$$

$$= (-1)^{k+1} (k-1)! (-k(x+1)^{-(k+1)})$$

$$= (-1)^{k+2} (k)! (x+1)^{-(k+1)}$$

Part (b)

$$P_{n,0} = \sum_{k=0}^{n} \frac{(-1)^{k+1}(k-1)!}{(1)^{k}k!} x^{k}$$

$$= \sum_{k=0}^{n} \frac{(-1)^{k+1}}{k!} x^{k}$$

$$= 0 + x - \frac{x^{2}}{2} + \dots + (-1)^{n+1} \frac{x^{n}}{n}$$

Part (c)

By Taylor's Theorem $|\log(1/2) - P_{7,0}(1/2)|$ is less than $\frac{f^{(8)}(c)}{(8)!}(1/2)^8$ for some 0 < c < x.

$$\frac{f^{(8)}(c)}{(8)!}(1/2)^8 = -\frac{7!(1/2)^8}{(c+1)^8 8!} \le -\frac{(1/2)^8}{8} = \frac{1}{2048} < \frac{1}{1000}$$

Problem 2

Part (a)

b See midterm

Part (b)

c Let g(x) = f(x+1) - f(x). This function is continuous on \mathbb{R} by arithmetic properties of continuity. Then

$$g(0) + g(1) = f(1) - f(0) + f(2) - f(1) = 0$$

Thus at least one of g(0), g(1) is nonpositive and the other must be nonnnegative. WLOG $g(0) \le 0, g(1) \ge 0$. Then by the intermediate value theorem $\exists x_0 \in [0, 1]$ such that $g(x_0) = 0$. Thus

$$f(x_0+1) - f(x_0) = 0 \implies f(x_0) = f(x_0+1)$$

Problem 3

Part (a)

$$U(P_n, f) = \frac{1}{n} \left(\frac{1}{n}\right) + \frac{1}{n} \left(\frac{2}{n}\right) + \dots + \frac{1}{n} \left(\frac{n}{n}\right)$$

$$= \frac{1 + 2 + \dots + n}{n^2}$$

$$= \frac{n(n+1)}{2n^2}$$

$$= \frac{n+1}{2n}$$

$$L(P_n, f) = \frac{1}{n} \left(\frac{0}{n}\right) + \frac{1}{n} \left(\frac{1}{n}\right) + \dots + \frac{1}{n} \left(\frac{n-1}{n}\right)$$

$$= \frac{1+2+\dots+n-1}{n^2}$$

$$= \frac{n(n-1)}{2n^2}$$

$$= \frac{n-1}{2n}$$

Part (b)

Fix $\epsilon > 0$. Then select n such that $\frac{1}{n} < \epsilon$. This can be done by the archimedean property. Then

$$U(P_n, f) - L(P_n, f) = \frac{n+1}{2n} - \frac{n-1}{2n} = \frac{1}{n} < \epsilon$$

. Thus f is integrable on [0, 1] by definition.

Problem 4

Part (a)

Let K = M(f, S) + M(g, S). Then $\forall x \in S (f + g)(x) = f(x) + g(x)$ where $f(x) \leq M(f, S)$ and $g(x) \leq M(g, S)$. Thus $(f + g)(x) \leq K$ so K is an upper bound for M(f + g, S) so $M(f + g, S) \leq M(f, S) + M(g, S)$.

Part (b)

$$U(f,P) + U(g,P) = \sum_{k=1}^{n} (x_k - x_{k-1}) M(I_k, f) + \sum_{k=1}^{n} (x_k - x_{k-1}) M(I_k, g)$$

$$= \sum_{k=1}^{n} (x_k - x_{k-1}) (M(I_k, f) + M(I_k, g))$$

$$\leq \sum_{k=1}^{n} (x_k - x_{k-1}) (M(I_k, f + g))$$

$$= U(f + g, P)$$

Part (c)

By definition of upper integrals we want to show that $\inf(\{U(P, f+g)|P \text{ a partition of }I\}) \leq \inf(\{U(P, f)|P \text{ a partition of }I\}) + \inf(\{U(P, g)|P \text{ a partition of }I\})$. Assume that this was not the case. Then by the approximation property of infimum there must be some partition P such that $\inf(\{U(P, f)|P \text{ a partition of }I\}) + \inf(\{U(P, g)|P \text{ a partition of }I\}) \leq U(P, f) + U(P, g) < \inf(\{U(P, f+g)|P \text{ a partition of }I\})$. However, this implies that $U(P, f+g) < \inf(\{U(P, f+g)|P \text{ a partition of }I\})$ which is a contradiction.

Problem 5

Part (a)

 $A' \subseteq A$ so $\sup(A) \ge \sup(A')$. For any partition P in A we can find a corresponding partition P' in A' that is identical except that it also includes the point c. Thus P' is a refinement of P and by Proposition 20.2 $L(P',f) \ge L(P,f)$. Thus by a result from the homework $\sup(A') \ge \sup(A)$. Thus $\sup(A') = \sup(A)$.

Part (b)

Every element l of A' is the lower bound of some partition P' containing c. Then divide the points of P' into two partitions P_1 and P_2 such that P_1 contains all points $x \in P'$ such that $x \leq c$ and P_2 contains all points such that $x \geq c$. Then $l = L(P_1, f) + L(P_2, f)$. So $A' = A_1 + A_2$.

By the result of HW2.5 $\sup(A') = \sup(A_1) + \sup(A_2)$ and from part 1 $\sup(A) = \sup(A')$ so $\sup(A) = \sup(A_1) + \sup(A_2)$.

Part (c)

This follows directly from b) by definition.