

目录

- □业务场景和困境
- □问题分析和技术特点
- □解决方案

困境:场景

- 现状 -

[学生] 不敢问 不想问 不会问

[老师] 薪酬低 压力大 空余时间多

[家长] 望子成龙 不计成本 无力辅导

-我们的解决方案-

困境:简易的解决方案

- □做一个匹配调度控制服务单元
- □做一个媒体传输服务单元
- □做一个基于GIPS引擎的SDK

困境:乱象

- □卡顿
- □延迟
- □单通
- □通话中断
- □连接超时
- □噪音回声啸叫

•••••

复杂的网络

- □脆弱的2G/3G/4G
- □公共WIFI , 信号衰减
- □防火墙问题
- □靠天吃饭的骨干网
- □单中心机房

音质的四大杀手

□延迟

造成交谈障碍

□丢包

产生交谈信息丢失和卡顿

□抖动

造成丟包和延迟

□乱序

特殊的抖动方式,造成丢包和延迟

无线网络问题

□2G

延迟:几秒,实时带宽:10kbs以内,无法实时语音

□3G

延迟:50~1000毫秒,实时带宽:100kbs,信号无衰减的情况下基本可以实时语音。

□4G

延迟:30~800毫秒,实时带宽:1~10mbs,信号衰减不严重情况下可以进行实时语音

■WIFI

延迟: 1~300毫秒,实时带宽:10~50mbs,可以进行实时语音,但要防止恶意带宽抢占,信号衰减。

无线网络问题:解决方法

□2G问题

提示拒绝服务

□本地拥塞问题

在终端上实现检测网络拥塞机制和QOS策略栈来减少拥塞程度

□带宽问题

自适应多种码率的编码器切换

防火墙

■UDP防火墙

- 特定端口禁止,多端口尝试
- UDP禁止,用TCP方式通信
- NAT问题, STUN和TURN穿越

□TCP防火墙

- http/80
- https/443

骨干网

网络案例:前几年在福州同一个房间里的两个宽带(电信网通)网络相互之间ping,最大延迟:

195ms, 最大丢包: 5%, 最大抖动 71ms, 这是什么原因?

trace route路由路径福州->厦门->广州->北京->上海->福州,来回5000多公里

- 光在不损耗的情况,每100公里传输时间需要1ms,距离是很大的问题
- 路由拥塞

经过多个核心交换路由路径,拥塞造成延迟、丢包、抖动

骨干网

通信类型	延迟(毫秒)	丢包	抖动 (毫秒	乱序程度
同省同城同一运营商	5 ~ 20	0%	1 ~ 3	无
跨省同一运营商	30 ~ 80	0%	5 ~ 10	少许
不同运营商	50 ~ 500	0% ~ 10%	10 ~ 200	常见
海外	100 ~ 600	0% ~ 20%	10 ~ 300	很多

结论

- 实时语音适合在同城或同一运营商级别之间通信,BGP方案
- 优化通信质量的关键手段是缩短传输距离
- 通信路径在通话过程需要动态调优

骨干网区域分隔

□问题

某个地区连中心机房不通

□解决方法

采用多机房多点尝连接

优化GIPS引擎

- □Jitterbuffer优化
- □CNG白噪声优化
- □噪音拟制优化
- □人声增强优化
- □回声消除优化

选用合适的编码器

终端设备适配

□CPU运算不足问题

- 选用低运算的编码器,例如iLBC、G.729
- 禁止声音数据的resample操作

□设备自带硬件回声消除造成消音

- 不开启回声消除或者开启低等级回声消除
- □设备兼容问题
 - 不同的设备采用不通的参数进行设备采集

听觉需求

持续稳定听得清

- ✓ 延迟 <300ms,最大容忍800ms
- ✓ 连续性,信息丢失率 < 3%
- ✓ MOS9值 >= 5
- ✓ 无噪声回声啸叫

解决方案:需要什么样的方案

- □可用性,稳定性
- □海纳百川
 - 能兼容大多数终端的硬件环境、网络环境
 - 兼容各个运营商网络
- □动态智能路由
- □基于自身数据的自循环体系
- □快速追踪分析

解决方案:我们的解决方案

解决方案:SDK

□GIPS引擎

- Codec
- Jitterbuffer
- Audio process

□网络通信

- 基础通信策略
- 本地拥塞判断
- 网类型判断(3G/4G/WIFI)

□防火墙穿越

- UDP/STUN/TURN
- TCP/80/443
- peer node

解决方案:实时传输策略

- □评估"四大杀手"
- □应对丢包
 - FEC (Forward Error Correction)
 - 重传
- □track检测
- ■QOS策略栈

解决方案: track轨迹检测

解决方案: QOS策略栈

本地拥塞策略栈

骨干网传输策略栈

解决传输问题:P2P

- □下一跳原则
- □分段计算传输状态
- □按发送方向计算路径

解决传输问题: P2P relay

- □在骨干网关键路径上relay
- □中间relay节点不超过3个
 - 适应现有的网络格局
 - 路径太多,计算困难
 - 控制延迟
- □中间relay节点可自由退出
- □通话过程可以动态切换发送路径

选路和可用性

□基于QOS栈状态的最优路径选择

- 多路径实时数据比较,阈值触发选路
- QOS桟底选路

□通信链路容灾

- 中间relay节点的加入和退出不影响通信
- Relay节点信息对称,无server概念
- 跨机房relay通信,高可用保证链路稳定

调度服务

- □策略数据库
- □不同的终端不同的策略参数
 - 基于终端类型初始化策略
- □业务调度匹配优化
 - 基于以往通信数据进行匹配
 - 基于地理位置匹配
- □确定参与通话的relay节点和路径
- □relay节点负载均衡调度
- □人工干预

解决方案: trace处理系统

□实时日志收集

- 通信状态日志
- 终端异常与状态日志
- P2P链路日志
- 安全日志
- □问题追踪和实时数据处理
- □自循环数据批处理
 - 路由数据,更新路由策略数据库,为扩容提供依据
 - 终端异常数据,更新适配策略数据库

解决方案:结果

- ✓ 多机房协同传输,骨干网延迟 < 100ms, 丢包 < 3%
- ✓ 动态适配4000余款移动终端,策略实时生效
- ✓ 追踪单个通话问题的时间 < 5分钟
- ✓ 通话故障率 < 1%</p>
- ✓ 形成骨干网通信调度的依赖数据,让答疑连通时间少于5秒,路由重选率 < 5%

技术架构未来

• 18621286103

• 747669766

