

Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики Кафедра суперкомпьютеров и квантовой информатики

Суперкомпьютерное моделирование и технологии

Задание 2

Студент 638 группы М. И. Хабибулин

Содержание

1	Постановка задачи	4
2	Аналитическое решение	4
3	Описание численного алгоритма	5
4	Результаты запуска программы	6
	4.1 Polus	6

1 Постановка задачи

Необходимо предоставить аналитическое решение и программную реализацию алгоритма численного решения задачи вычисления слудющего интеграла:

$$I = \int \int_{G} \int \left(x^2 + y^2\right)^{1/2} dx dy dz,\tag{1}$$

где область G ограничена поверхностями $x^2+y^2=z^2,\,z=1.$

Также необходимо исследовать масштабируемость полученной программной реализации.

2 Аналитическое решение

Рис. 1: Аналитическое решение интеграла.

Таким образом, получаем аналитическое решение: $\frac{PI}{6}$.

3 Описание численного алгоритма

Данная задача решается численно с использованием метода Монте-Карло:

1. Задаем функцию F(x, y, z) следующего вида:

$$F(x,y,z) = \begin{cases} f(x,y,z) & (x,y,z) \in G, \\ 0 & (x,y,z) \notin G. \end{cases}$$
 (2)

2. Далее преобразуем исходный интеграл:

$$I = \int \int_{G} \int f(x, y, z) dxdydz = \int \int_{G'} \int F(x, y, z) dxdydz.$$
 (3)

где G' — прямоугольник: $a_1 \le x \le b_1, \ a_2 \le b_2, \ a_3 \le b_3.$

- 3. После этого семплируем случайные точки из G' и на них считаем значение функции F.
- 4. Окончательный результат получается из соотношения:

$$I' \approx |G'| \cdot \frac{1}{n} \sum_{i=1}^{n} F(p_i). \tag{4}$$

5. Процесс продолжается до тех пор, пока значение ошибки не будет меньше некоторого наперед заданного значения ε : $|I-I'|<\varepsilon$.

4 Результаты запуска программы

4.1 Polus

Точность ε	Число МРІ-процессов	Время работы (с)	Ускорение	Ошибка
$3.0 \cdot 10^{-5}$	1	0.00206993	1	2.19904e-05
$3.0 \cdot 10^{-5}$	4	0.00115561	1.791	1.37322e-05
$3.0 \cdot 10^{-5}$	16	0.00075561	2.739	1.27422e-05
$3.0 \cdot 10^{-5}$	64	_	_	-
$5.0 \cdot 10^{-6}$	1	0.0036364	1	3.66476e-07
$5.0 \cdot 10^{-6}$	4	0.0016367	2.22	3.45779e-07
$5.0 \cdot 10^{-6}$	16	0.0012929	2.81	3.27479e-07
$5.0 \cdot 10^{-6}$	64	_	_	-
$1.5 \cdot 10^{-6}$	1	0.00461777	1	3.27479e-07
$1.5 \cdot 10^{-6}$	4	0.00283235	1.63	3.28379e-07
$1.5 \cdot 10^{-6}$	16	0.00197639	2.33	3.12478e-07
$1.5 \cdot 10^{-6}$	64	_	-	-

Рис. 2. Графики времени выполнения программы и ошибки на суперкомпьютере Polus в зависимости от количества процессов.