Question: Verify that:

$$P(C|A) = P(C|BA)P(B|A) + P(C|B^cA)P(B^c|A)$$

Where, AB means $A \cap B$.

Answer:

Take the RHS,

We can expand P(C|BA) as:

$$P(C \cap B \cap A)/P(B \cap A)$$

Similarly, we can write $P(C|B^cA)$ as:

$$P(C \cap B^c \cap A)/P(B^c \cap A)$$

We can expand it as:

$$rac{P(C\cap B\cap A)}{P(B\cap A)} imesrac{P(B\cap A)}{P(A)}+rac{P(C\cap B^c\cap A)}{P(B^c\cap A)} imesrac{P(B^c\cap A)}{P(A)}$$

Which gives:

$$rac{P(C\cap B\cap A)}{P(A)}+rac{P(C\cap B^c\cap A)}{P(A)}$$

P(CBA) and $P(CB^cA)$ are the probabilities of mutually exclusive events.

$$egin{aligned} &= rac{1}{P(A)} imes P(CBA \cup CB^cA) \ &= rac{P(CA)}{P(A)} or rac{P(C \cap A)}{P(A)} \end{aligned}$$

Thus, proved.

Quiz-2: Probability and Statistics (30 Marks)

[Instruction: Please state reasons wherever applicable.]

5 Marks

Find the stationary distribution π for Markov Chains with the following transition probability matrix (3 marks). State if π is unique in each case (1 mark). Also which of the two chains are irreducible? Give reasons (1 mark).

$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Solution

Stationary distribution π for a Discrete Markov Chain, given it's transition probability matrix P, is given as:

$$\pi P = \pi$$

Stationary Distribution for P (1.5 marks)

Given
$$P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\pi P = \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix}$$
$$= \pi$$

This, holds for all π (since P is an identity matrix).

 \therefore Stationary distribution for P

$$= \begin{bmatrix} p & 1-p \end{bmatrix}$$
 where $0 \le p \le 1, \ p \in \mathbb{R}$

Stationary Distribution for Q (1.5 marks)

Given
$$Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\pi Q = \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \pi_2 & \pi_1 \end{bmatrix}$$

$$\pi Q = \pi$$

$$\implies \begin{bmatrix} \pi_2 & \pi_1 \end{bmatrix} = \begin{bmatrix} \pi_1 & \pi_2 \end{bmatrix}$$

$$\implies \pi_1 = \pi_2 = \frac{1}{2} \qquad (\because \pi_1 + \pi_2 = 1)$$

 \therefore Stationary distribution for $Q = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$.

State if π is unique (0.5 + 0.5 mark)

- Stationary distribution for P is not unique. (since any π can be its stationary distribution).
- \bullet Stationary distribution for Q is unique.

Which of the two chains are irreducible? (1 mark)

We know $P = I \implies P^n = I^n = I$ where I is the Identity matrix of order 2.

$$\implies P_{12}^n = 0$$

Thus, state 2 is not accessible from state 1. This is sufficient to show that P is not an irreducible chain.

$$Q^{n} = \begin{cases} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & \text{when } n \text{ is odd} \\ \\ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & \text{when } n \text{ is even} \end{cases}$$

We see that states 1 and 2 communicate with each other *i.e.*, $P_{12}^n > 0$ and $P_{21}^n > 0$ (when n is odd). Thus, Q is an irreducible markov chain.

Quiz: Probability and Statistics

October 28, 2022

Question 3

Suppose X is an exponential random variable with parameter λ and CDF denoted by $F_X(.)$. U is a uniform random variable over the interval [0,1]. Now consider another random variable $Y = F_X^{-1}(U)$. Then derive the expression for the CDF $F_Y(y)$.

Solution

$$F_Y(y) = P(F_X^{-1}(U) \le y)$$

$$= P(U \le F_X(y))$$

$$= P(U \le 1 - e^{-\lambda y})$$

$$= F_U(1 - e^{-\lambda y})$$

$$= 1 - e^{-\lambda y}$$

Quiz 2: Probability and Statistics

[Instruction: Please state reasons wherever applicable.]

1 5 Marks

1. Consider a sequence of random variables $\{X_n\}$ where $X_n \sim Exponential(n)$. Show that X_n converges to X in probability where X = 0 with probability 1. Also show that X_n converges to X in distribution (without using the fact that convergence in probability implies convergence in distribution).

Solution:

a.

$$\lim_{n \to \infty} P(|X_n - 0| \ge \epsilon) = \lim_{n \to \infty} P(X_n \ge \epsilon) \qquad [\because X_n \ge 0] \ \{0.5 \ Marks\}$$

$$= \lim_{n \to \infty} e^{-n\epsilon} \qquad [\because X_n \sim Exponential(n)] \ \{1 \ Mark\}$$

$$= 0 \qquad \{1 \ Mark\}$$

Hence Proved.

b.

$$\lim_{n \to \infty} F_{X_n}(x) = \lim_{n \to \infty} 1 - e^{-nx}$$
 {1 Mark}
= 1 {0.5 Mark}
= $F_X(x)$ [\$\forall x > 0\$][\$\tau P_X(0) = 1\$]

Note that at x = 0, $F_X(x)$ is discontinuous

- \implies Convergence in distribution doesn't take place at $x = 0 \{0.5 \text{ Mark}\}$
- \implies Convergence in distribution takes place $\forall x>0 \ \{0.5 \ Mark\}$ Hence Proved.

Marks Division

- (a) Convergence in probability (2.5M)
 - i. 0.5M for identifying $P(|X_n 0| \ge \epsilon) = P(X_n \ge \epsilon)$
 - ii. 1M for getting to $e^{-n\epsilon}$
 - iii. 1M for getting to final step
- (b) Convergence in distribution (2.5M)
 - i. 1M for writing CDF of X_n
 - ii. 0.5M for getting to 1
 - iii. $0.5\mathrm{M}$ for accounting for discontinuity
 - iv. 0.5M for getting $F_X(x) = 1 \quad \forall x > 0$

Note: Simple stating of final answers without any logical approach will be given 0.

Probability and Statistics: Quiz 2

October 2022

Question 1 (10 Marks)

Given: Three samples $u_1 = 0.23$, $u_2 = 0.73$ and $u_3 = 0.5$ from uniform random variable. We will use the inverse transform method in all the following parts to convert the given sample to the required.

1. Let X be the random variable denoting the outcome of a fair dice. Now

$$\mathbf{F}_{x}(x) = \begin{cases} 0 & \text{if } x < 1 \\ 1/6 & \text{if } x \ge 1 \text{ and } x < 2 \\ 2/6 & \text{if } x \ge 2 \text{ and } x < 3 \\ 3/6 & \text{if } x \ge 3 \text{ and } x < 4 \\ 4/6 & \text{if } x \ge 4 \text{ and } x < 5 \\ 5/6 & \text{if } x \ge 5 \text{ and } x < 6 \\ 1 & \text{if } x \ge 6 \end{cases}$$

Now we know by the Lemma of inverse transform method that if: $X := F^{-1}(U)$

Then the cdf of X is F. Hence, applying the inverse transform method, we get:

$$\mathbf{X} = \left\{ \begin{array}{ll} 1 & \text{if } p < 1/6 \\ 2 & \text{if } p > 1/6 \ and \ p \leq 2/6 \\ 3 & \text{if } p > 2/6 \ and \ p \leq 3/6 \\ 4 & \text{if } p > 3/6 \ and \ p \leq 4/6 \\ 5 & \text{if } p > 4/6 \ and \ p \leq 5/6 \\ 6 & \text{if } p > 5/6 \ and \ p \leq 6/6 \end{array} \right.$$

Where p is a realization from uniform random variables. Hence, applying this, we get the following samples for X.

- $u_1 = 0.23$ generates x = 2 as a sample.
- $u_2 = 0.78$ generates x = 5 as a sample.
- $u_3 = 0.5$ generates x = 3 or x = 4 as a sample.
- 2. Let X be a random variable with 0.7 as a probability of getting a head. Let head be X=0 and tail be X=1

$$\mathbf{F}_{x}(x) = \begin{cases} 0 & \text{if } x < 0 \\ 0.7 & \text{if } x \ge 0 \text{ and } x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

Applying the inverse transform method, we get:

$$\mathbf{X} = \left\{ \begin{array}{ll} 0 & \text{if } p \leq 0.7 \\ 1 & \text{if } p > 0.7 \ and \ p \leq 1 \end{array} \right.$$

Where p is a realization from uniform random variables. Hence, applying this, we get the following samples for X.

- $u_1 = 0.23$ generates x = 0 i.e Heads as a sample.
- $u_2 = 0.78$ generates x = 1 i.e Tails as a sample.
- $u_3 = 0.5$ generates x = 0 i.e Heads as a sample.
- 3. Let X be the exponential random variable with parameter $\lambda = 1$. We know

$$f_x(x) = \lambda e^{-\lambda x}$$

Also, cdf of $f_x(x)$ is written as $F_x(x) = 1 - e^{-\lambda x}$

$$F_r(x) = 1 - e^{-\lambda x}$$

$$F_x(x) = 1 - e^{-x}$$
 as $\lambda = 1$

Using the lemma of inverse transform method, we substitute $F_x(x)$ with U and thus, we have

$$U = 1 - e^{-x}$$
$$x = -\ln(1 - U)$$

Since, U and 1-U are equivalent, since both are uniform random variable over (0,1), we can replace U and 1-U.

$$X = -ln(U)$$

Where U is a realization from uniform random variables. Hence, applying this, we get the following samples for X.

- $u_1 = 0.23$ generates x = -ln(0.23) or x = -ln(0.77) as a sample.
- $u_2 = 0.78$ generates x = -ln(0.78) or x = -ln(0.22) as a sample.
- $u_3 = 0.5$ generates x = -ln(0.5) as a sample.
- 4. Let X be the inform random variable in the interval [5, 10] $f_x(x) = \frac{1}{10-5} = 1/5$

$$F_x(x) = \begin{cases} 0 & \text{if } x < 5\\ \frac{x-5}{5} & \text{if } x \ge 5 \text{ and } x \le 10\\ 1 & \text{if } x > 10 \end{cases}$$

Using the lemma of inverse transform method, we substitute $F_x(x)$ with U and thus, we have

$$U = \frac{X-5}{5}$$
$$X = 5U + 5$$

- $u_1 = 0.23$ generates x = 6.15 as a sample.
- $u_2 = 0.78$ generates x = 8.9 as a sample.
- $u_3 = 0.5$ generates x = 7.5 as a sample.

Marking Scheme

- Part 1: 2 Marks
- Part 2: 2 Marks
- Part 3: 3 Marks
- Part 4: 3 Marks

Note: Marks will be deducted if the inequalities are incorrect.