PHYSICS

FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E

Chapter 4
QuickCheck Questions

RANDALL D. KNIGHT

A particle undergoes acceleration \vec{a} while moving from point 1 to point 2. Which of the choices shows the velocity vector \vec{v}_2 as the object moves away from point 2?

A particle undergoes acceleration \vec{a} while moving from point 1 to point 2. Which of the choices shows the velocity vector \vec{v}_2 as the object moves away from point 2?

A heavy red ball is released from rest 2.0 m above a flat, horizontal surface. At exactly the same instant, a yellow ball with the same mass is fired horizontally at 3.0 m/s. Which ball hits the ground first?

- A. The red ball hits first.
- B. The yellow ball hits first.
- C. They hit at the same time.

A heavy red ball is released from rest 2.0 m above a flat, horizontal surface. At exactly the same instant, a yellow ball with the same mass is fired horizontally at 3.0 m/s. Which ball hits the ground first?

- A. The red ball hits first.
- B. The yellow ball hits first.
- C. They hit at the same time.

A 100 g ball rolls off a table and hits 2.0 m from the base of the table. A 200 g ball rolls off the same table with the same speed. It lands at distance

- A. 1.0 m.
- B. Between 1 m and 2 m.
- C. 2.0 m.
- D. Between 2 m and 4 m.
- E. 4.0 m.

A 100 g ball rolls off a table and hits 2.0 m from the base of the table. A 200 g ball rolls off the same table with the same speed. It lands at distance

- A. 1.0 m.
- B. Between 1 m and 2 m.
- **✓** C. 2.0 m.
 - D. Between 2 m and 4 m.
 - E. 4.0 m.

Projectiles 1 and 2 are launched over level ground with the same speed but at different angles. Which hits the ground first?

Ignore air resistance.

- A. Projectile 1 hits first.
- B. Projectile 2 hits first.
- C. They hit at the same time.
- D. There's not enough information to tell.

Projectiles 1 and 2 are launched over level ground with the same speed but at different angles. Which hits the ground first? Ignore air resistance.

A. Projectile 1 hits first.

- C. They hit at the same time.
- D. There's not enough information to tell.

Projectiles 1 and 2 are launched over level ground with different speeds. Both reach the same height. Which hits the ground first? Ignore air resistance.

- B. Projectile 2 hits first.
- C. They hit at the same time.
- D. There's not enough information to tell.

Projectiles 1 and 2 are launched over level ground with different speeds. Both reach the same height. Which hits the ground first? Ignore air resistance.

B. Projectile 2 hits first.

D. There's not enough information to tell.

A factory conveyor belt rolls at 3 m/s. A mouse sees a piece of cheese directly across the belt and heads straight for the cheese at 4 m/s. What is the mouse's speed relative to the

factory floor?

A. 1 m/s

B. 2 m/s

C. 3 m/s

 D_{\cdot} 4 m/s

E. 5 m/s

A factory conveyor belt rolls at 3 m/s. A mouse sees a piece of cheese directly across the belt and heads straight for the cheese at 4 m/s. What is the mouse's speed relative to the factory floor?

- A. 1 m/s
- B. 2 m/s
- C. 3 m/s
- D. 4 m/s

3-4-5 right triangle

This is the angular velocity graph of a wheel. How many revolutions does the wheel make in the first 4 s? ω (rev/s)

- B. 2
- C. 4
- D. 6
- E. 8

This is the angular velocity graph of a wheel. How many revolutions does the ω (rev/s wheel make in the first 4 s?

B. 2

C. 4

 $\Delta\theta$ = area under the angular velocity curve

E. 8

A ball rolls around a circular track with an angular velocity of 4π rad/s. What is the period of the motion?

A.
$$\frac{1}{2}$$
 s

D.
$$\frac{1}{2\pi}$$
 s

E.
$$\frac{1}{4\pi}$$
 s

A ball rolls around a circular track with an angular velocity of 4π rad/s. What is the period of the motion?

$$\checkmark$$
 A. $\frac{1}{2}$ S

$$T = \frac{2\pi}{\omega}$$

D.
$$\frac{1}{2\pi}$$
 s

E.
$$\frac{1}{4\pi}$$
 s

A car is traveling around a curve at a steady 45 mph. Is the car accelerating?

A. Yes

B. No

A car is traveling around a curve at a steady 45 mph. Is the car accelerating?

A. Yes

B. No

A car is traveling around a curve at a steady 45 mph. Which vector shows the direction of the car's acceleration?

E. The acceleration is zero.

A car is traveling around a curve at a steady 45 mph. Which vector shows the direction of the car's acceleration?

E. The acceleration is zero.

A car is slowing down as it drives over a circular hill.

Which of these is the acceleration vector at the highest

point?

A car is slowing down as it drives over a circular hill.

Which of these is the acceleration vector at the highest

point?

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's angular velocity is _____ that of Rasheed.

- B. the same as
- C. twice
- D. four times
- E. We can't say without knowing their radii.

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's angular velocity is _____ that of Rasheed.

- C. twice
- D. four times
- E. We can't say without knowing their radii.

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's speed is _____ that of Rasheed.

- B. the same as
- C. twice
- D. four times
- E. We can't say without knowing their radii.

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's speed is _____ that of Rasheed.

B. the same as

C. twice

 $v = \omega r$

- D. four times
- E. We can't say without knowing their radii.

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's acceleration is _____ that of Rasheed.

- A. half
- B. the same as
- C. twice
- D. four times
- E. We can't say without knowing their radii.

Rasheed and Sofia are riding a merry-go-round that is spinning steadily. Sofia is twice as far from the axis as is Rasheed. Sofia's acceleration is _____ that of Rasheed.

- A. half
- B. the same as

C. twice

Centripetal acceleration
$$a = \frac{v^2}{r} = \omega^2 r$$

- D. four times
- E. We can't say without knowing their radii.

The fan blade is slowing down. What are the signs of ω and α ?

- A. ω is positive and α is positive.
- B. ω is positive and α is negative.
- C. ω is negative and α is positive.
- D. ω is negative and α is negative.
- E. ω is positive and α is zero.

The fan blade is slowing down. What are the signs of ω and α ?

- A. ω is positive and α is positive.
- ω is positive and α is negative.
- \checkmark C. ω is negative and α is positive.
 - ω is negative and α is negative.
 - E. ω is positive and α is zero.

"Slowing down" means that ω and α have opposite signs, not that α is negative

Starting from rest, a wheel with constant angular acceleration turns through an angle of 25 rad in a time t. Through what angle will it have turned after time 2t?

- A. 25 rad
- B. 50 rad
- C. 75 rad
- D. 100 rad
- E. 200 rad

Starting from rest, a wheel with constant angular acceleration turns through an angle of 25 rad in a time t. Through what angle will it have turned after time 2t?

- A. 25 rad
- B. 50 rad
- C. 75 rad
- \checkmark D. 100 rad $\Delta\theta \propto (\Delta t)^2$
 - E. 200 rad

Starting from rest, a wheel with constant angular acceleration spins up to 25 rpm in a time t. What will its angular velocity be after time 2t?

- A. 25 rpm
- B. 50 rpm
- C. 75 rpm
- D. 100 rpm
- E. 200 rpm

Starting from rest, a wheel with constant angular acceleration spins up to 25 rpm in a time t. What will its angular velocity be after time 2t?

- A. 25 rpm
- ✓B. 50 rpm $\Delta\omega\propto\Delta t$
 - C. 75 rpm
 - D. 100 rpm
 - E. 200 rpm