Représentation approximative des nombres réels

Corrigé

Exercice 1

Schéma de la conversion d'un nombre réel en IEEE 754 (simple précision)

1. Exemple : Convertir 5.75 en IEEE 754

Étape 1 : Représenter le nombre en binaire

1. Convertir 5 en binaire :

$$5_{10} = 101_2$$

2. Convertir 0.75 en binaire :

$$0.75 \times 2 = 1.5$$
 (partie entière = 1)

$$0.5 \times 2 = 1.0$$
 (partie entière = 1)

Donc,
$$0.75_{10} = 0.11_2$$
.

3. Donc, $5.75_{10} = 101.11_2$.

Étape 2 : Normaliser la représentation binaire

On écrit 101.11_2 sous forme normalisée (comme $1.M imes 2^E$) :

$$101.11_2 = 1.0111_2 \times 2^2$$

- La mantisse M est 1.0111_2 (on garde uniquement les chiffres après la virgule).
- L'exposant E est 2.

Étape 3 : Calculer l'exposant et le décalage

L'exposant E est représenté en binaire avec un **décalage de 127**. Donc on calcule :

$$E + 127 = 2 + 127 = 129$$

En binaire, $129_{10} = 10000001_2$.

Étape 4 : Remplir les 32 bits

- Signe (1 bit): Le nombre est positif, donc le bit de signe est 0.
- \bullet Exposant (8 bits) : $E+127=10000001_2$ (8 bits).

Étapes de la conversion de -9,42 en IEEE 754

1. Représentation en binaire

Commençons par décomposer le nombre en partie entière et partie fractionnaire :

•
$$-9,42 = -9 - 0,42$$

1.1. Partie entière: 9

Convertissons 9 en binaire :

$$9_{10} = 1001_2$$

1.2. Partie fractionnaire: 0,42

Convertissons 0,42 en binaire :

$$0,42 \times 2 = 0,84$$
 (partie entière = 0)

$$0,84 \times 2 = 1,68$$
 (partie entière = 1)

$$0,68 \times 2 = 1,36$$
 (partie entière = 1)

$$0,36 \times 2 = 0,72$$
 (partie entière = 0)

$$0,72 \times 2 = 1,44$$
 (partie entière = 1)

$$0,44 \times 2 = 0,88$$
 (partie entière = 0)

Et ainsi de suite... La représentation binaire de 0,42 devient :

$$0,42_{10} \approx 0.0110100010001111_2$$

Et ainsi de suite... La représentation binaire de 0,42 devient :

$$0,42_{10} \approx 0.0110100010001111_2$$

Donc, $9,42_{10} = 1001.0110100010001111_2$.

2. Normalisation

La représentation normalisée du nombre binaire est de la forme $1.M imes 2^E.$

$$1001.0110100010001111_2 = 1.0010110100010001111_2 \times 2^3$$

La mantisse M est 1.0010110100010001111_2 et l'exposant E est 3.

3. Calcul de l'exposant (avec décalage de 127)

Dans le format IEEE 754, l'exposant est stocké avec un décalage de 127.

$$E + 127 = 3 + 127 = 130$$

En binaire, $130_{10} = 10000010_2$.

4. Gérer le signe

Le nombre est **négatif**, donc le bit de signe s=1.

5. Remplir les 32 bits

- Signe (1 bit) : Le nombre est négatif, donc s=1.
- Exposant (8 bits) : E + 127 = 130, soit 10000010_2 .
- Mantisse (23 bits) : On prend la partie après la virgule de la mantisse, soit 0010110100010001111_2 (complété avec des zéros à droite pour obtenir 23 bits).

Explication du résultat

- Signe : 1, car le nombre est négatif.
- Exposant : 10000010_2 (équivalent à 130 en décimal). Cela représente 2^3 après avoir appliqué le décalage de 127.
- Mantisse : La partie après la virgule du nombre normalisé, $00101101000100011110000_2$, est stockée en utilisant les 23 premiers bits.

Exercices 2 et 3