

Supervisado: Regresión Lineal

Aprendizaje Automático

Víctor de la Cueva vcueva@itesm.mx

Supervisado

 Aprendizaje inductivo (basado en ejemplos) donde cada uno de los ejemplos de entrenamiento está formado por un par ordenado:

(entrada, salida)

- Basado en los ejemplo se trata de encontrar la función que más se ajusta a dichos ejemplos, es decir, la que provoca menos error.
- La salida deseada, que es la que se proporciona con el ejemplo, se pueden ver como una etiqueta del ejemplo.

Objetivo del ML supervisado

- Las técnicas de ML supervisado se suelen agrupar en dos grandes grupos dependiendo del objetivo de la función que se quiere encontrar:
 - Regresión o pronóstico: Se encuentra una función de salida continua por medio de la cual se trata de predecir la salida para una entrada dada.
 - Clasificación: Se encuentra una función de salida discreta por medio de la cual, para una entrada dada, se dice a qué clase, de un conjunto finito de clases, pertenece.

Técnicas de ML supervisado

- Existe un gran número de técnicas para hacer ML supervisado, las que vamos a tratar son:
 - Regresión lineal
 - De una variable
 - Múltiple o multivariable
 - Regresión logística
 - Árboles de decisión
 - Redes neuronales

¿Por qué regresión?

- Regresión viene de la palabra Regresar (regresses to the mean)
- La razón es que, cuando se iniciaron los estudios para hacer pronósticos, se pensaba que los datos siempre regresaban a la media.
- Ejemplo de estatura de personas y billar.
- Posteriormente, la gente utilizó esta idea para usar formas funcionales para aproximar un conjunto de datos, olvidando el concepto original de regresar a la media.
- La palabra no significa lo que hace ahora pero se quedó.

Supervisado

REGRESIÓN LINEAL DE UNA VARIABLE

Análisis de Regresión

- Es una técnica estadística para investigar y modelar la relación entre variables.
- Hay aplicaciones en muchos campos y la ingeniería no es la excepción.
- Posiblemente, el análisis de regresión sea la técnica estadística más usada.

Regresión lineal

• Dado un conjunto de puntos (x,y), donde x es la entrada y y es la salida, encontrar la función f (donde y = f(x)) que mejor se ajusta a ellos.

NOTA: Existe una confusión al aplicar este método debido a que la función f puede no ser lineal con respecto a la variable x pero sí lo es con respecto a los parámetros que la definen (lo aclaramos más adelante al ver regresión lineal múltiple).

Ejemplo

- Se quiere establecer la relación que existe entre el precio de venta de una casa y su tamaño.
- Supongamos que tenemos los siguientes datos:

X	Y
Tamaño (ft²)	Precio (USD 1000's)
2104	460
1416	232
1534	315
852	178

Gráfica de Dispersión

• Estos datos se pueden graficar en un plano:

¿Cuál es la función que mejor se ajusta a los puntos? (no necesariamente es una recta)

Función

- Se desea aprender cuál es la función que mejor se aproxima (o ajusta) a los datos.
- El algoritmo del análisis de regresión requiere que se le de una posible función como entrada.
- Así que lo primero que debemos hacer es seleccionar una posible función.
 - Hay muchas familias muy utilizadas pero la más común es la polinomial
 - o Debemos decidir el grado de función polinomial a usar
 - · Lo más simple es usar una recta (recta de regresión)

Ejemplo: ¿qué función es mejor?

• Usando funciones polinomiales:

$$f(x) = c_0 + c_1 x + c_3 x^2 + ... + c_k x^k$$

- ¿cuál grado es el mejor?:
 - k=0 (constante)
 - k=I (recta)
 - k=2 (parábola), etc.
- El grado no puede pasar el número de puntos.

i	Tamaño	Costo
I	500	1000
2	1300	2000
3	2000	3000
4	3800	4500
5	4000	5000
6	5500	5100
7	6800	5300
8	7400	5400
9	10000	6000

Usando una recta

- Algunas veces da la impresión que los datos caen, en general, pero no exactamente, en una línea recta.
- Si y representa el precio y x el tamaño, la ecuación de la recta que relaciona las dos variables sería:

$$y = \theta_0 + \theta_1 x$$

Donde θ_0 , es la ordenada al origen y θ_1 es la pendiente.

- Surgen varias preguntas:
 - ¿El mejor ajuste es una recta? (hipótesis)
 - ¿Cuáles son los valores de θ_0 y θ_1 ? (parámetros de la hipótesis)
 - Si hay varias opciones, ¿cómo las selecciono?
 - ¿Para qué me sirve este ajuste?

Regresión Lineal Simple (o de una variable)

- θ_0 y θ_1 , son desconocidos y se llaman parámetros.
- Cuando el modelo usa una línea recta como ajuste y la variable de salida depende sólo de una variable de entrada, se le llama: modelo de regresión lineal simple.
- Desde luego que los parámetros pueden tomar un número muy gran de valores:
 - ¿Cómo los selecciono?
 - · ¿Cuál es el criterio de selección?
- Aunque hay muchos criterios, por lo general, la forma más usada es la de minimización del error.

Error

• El error es la distancia entre el punto real y el punto dado por la recta.

- El problema es que se debe seleccionar la que minimice el error pero en todas las observaciones al mismo tiempo.
 - · ¿Cómo incluyo todas?

Suma de los errores

- Seguro que se les está ocurriendo seleccionar aquella que minimice la suma de los errores.
- La función más común para esto es usar el método de mínimos cuadrados.
 - ¿Cómo se hace una función del error que dependa de todos los errores?
- Si la logramos encontrar, lo único que tenemos que hacer es minimizarla (es un problema de optimización) y listo.

Estimación de θ_0 y θ_1

- La forma más común para estimar θ_0 y θ_1 es usar mínimos cuadrados.
- Si definimos el error de un punto x_i como $\varepsilon_i = (y_i d_i)$, donde y_i es la salida obtenida (por la recta) y d_i es la salida deseada (de acuerdo al ejemplo de entrenamiento).
- Podríamos definir un error total como la suma de estos errores, pero como algunos son + y otros -, se eliminarían.

Error total

- Otra opción es usar el valor absoluto y definirlo así: $E=\sum \varepsilon_i=\sum |y_i-d_i|$, el problema es que el valor absoluto no es derivable.
- Otra opción es usar las diferencias al cuadrado y es lo que le da el nombre al método (mínimos cuadrados):

$$E = \sum (y_i - d_i)^2$$

$$E(\theta_0,\theta_1) = \sum_{i=1}^m (\theta_0 + \theta_1 x_i - d_i)^2$$
 (función de costo)

• Lo que se desea hacer es obtener el menor E y eso se logra modificando θ_0 y θ_1 , es decir:

$$\min E(\theta_0, \theta_1)$$

• La minimización se logra DERIVANDO.

$$\frac{\partial E}{\partial \theta_0} = 2 \sum_{i=1}^{m} (\theta_0 + \theta_1 x_i - d_i) = 0$$

$$\frac{\partial E}{\partial \theta_1} = 2 \sum_{i=1}^{m} (\theta_0 + \theta_1 x_i - d_i) x_i = 0$$

$$m\theta_0 + \theta_1 \sum x_i - \sum d_i = 0$$

$$\theta_0 \sum x_i + \theta_1 \sum x_i^2 - \sum d_i \, x_i = 0$$

• Y su solución: DESDE LUEGO QUE EXISTE, y es un mínimo.

LMS

 En ML se acostumbra usar una variante de Mínimos Cuadrados llamada Error Cuadrático Medio (LMS, por sus siglas en inglés), en donde el error se define así:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- Donde $h_{\theta}(x) = \theta_0 + \theta_1 x$ (Hipótesis).
- A $J(\theta_0, \theta_1)$ se le conoce como Función de Costo, y es lo que se trata de minimizar:

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

• Hipótesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

• Parámetros: θ_0 , θ_1

• Función de Costo:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

• Meta: $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Función de Costo

- Esta función de costo $J(\theta_0,\theta_1)$ es buena por varias razones pero la principal es que si se grafica E con respecto a θ_0 y θ_1 , da un paraboloide, el cual tiene un solo mínimo.
- · Además, es derivable.

 Si procedemos igual que el Mínimos Cuadrados para obtener la solución sería:

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{\partial}{\partial \theta_{j}} \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{(i)} - y^{(i)})^{2}$$

$$= \begin{cases}
\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) & para j = 0 \\
\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)} & para j = 1
\end{cases}$$

Archivo de entrenamiento

• El archivo de entrenamiento tiene m ejemplos:

$$(x^{(1)},y^{(1)})$$

 $(x^{(2)},y^{(2)})$
...
 $(x^{(m)},y^{(m)})$

• El cual tiene n features (variables), en este caso n = 1.

Usando matrices

Podemos usar matrices para facilitar su manejo:

$$\mathbf{x}^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}$$

$$\mathbf{X} = \begin{bmatrix} ---(\mathbf{x}^{(1)})^T - --- \\ ---(\mathbf{x}^{(2)})^T - --- \\ \vdots \\ ---(\mathbf{x}^{(m)})^T - --- \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

Facilitando el manejo de matrices

• Si se le agrega a cada ejemplo un 1 al inicio:

$$\mathbf{X} = \begin{bmatrix} 1 & \chi^{(1)} \\ \dots \\ 1 & \chi^{(m)} \end{bmatrix} \mathbf{y} \; \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$$

- Entonces podemos escribir: $h_{\theta}(X) = X\theta$ o $\theta^T X^T$ es decir, La función de costo es: $J = (X\theta y)^2$
- Si derivamos, igualamos a $\mathbf{0}$ y despejamos θ , directamente obtenemos la ecuación normal para θ :

$$\boldsymbol{\theta} = (\boldsymbol{X}^T \dot{\boldsymbol{X}})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

- Sin embargo, no se utiliza este método por el cálculo de la inversa.
- El que se usa es un método iterativo llamado Gradiente Descendente.

Repetir hasta convergencia

$$\theta_j = \theta_j - \alpha \left[\frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \right] \text{ para j=0 y j=1}$$
Tasa de Aprendizaje (learning rate)

 La actualización de las θ debe hacerse en forma simultánea:

Correcto	Incorrecto
$temp0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$ $temp1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$ $\theta_0 = temp0$ $\theta_1 = temp1$	$temp0 = heta_0 - lpha rac{\partial}{\partial heta_0} J(heta_0, heta_1) \ heta_0 = temp0 \ temp1 = heta_1 - lpha rac{\partial}{\partial heta_1} J(heta_0, heta_1) \ heta_1 = temp1$

Idea de Gradiente Descendente

- La idea es ir disminuyendo el valor del error y eso se logra caminando en la superficie de la función de error, en la dirección donde disminuya dicho error E, la cual es indicada por el gradiente negativo de E.
- Gradiente Descendente sólo garantiza llegar a un óptimo local (gready) pero debido a la forma de E propuesta, garantizamos el óptimo global (sólo tiene 1).

Tasa de Aprendizaje

- La selección de α (indica el tamaño del paso) es vital para el buen funcionamiento del algoritmo, pero se hace a prueba y error:
- Si α es muy pequeño:

• Si α es muy grande:

Algoritmo Final

Repetir hasta convergencia:

$$\circ \ \theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

- Hay variantes del algoritmo dependiendo de cómo se toman los ejemplos:
 - <u>Batch</u>: Cada paso de gradiente descendente usa TODOS los ejemplos de entrenamiento.
 - $^{\circ}$ On-Line: Cada paso toma un ejemplo.
 - Semi-Batch: Cada paso toma s ejemplos.

Vectorización

- Cuando el lenguaje de programación cuanta con operaciones con vectores directas, ya sea porque el lenguaje fue hecho para ello (e.g. Matlab) o porque existe una librería que se puede utilizar (e.g. Numpy para Python), es mejor hacer todas las operaciones que se pueden por medio de vectores (vectorización).
- La razón es que estas operaciones están optimizadas para tardarse menos que los ciclos con los que programamos nosotros.

Ejer						
Sea	a el	vector	X:	elY	θ	
(agre	egan	do un	1)			
	Uno	Tamaño		Costo	Theta	
	I	500		1000	1848.24	
	I	1300		2000	0.5	
	I	2000		3000		
	I	3800		4500		
	ı	4000		5000		
	I	5500		5100		
	I	6800		5300		
	I	7400		5400		
	I	10000		6000		

Operaciones

- Para obtener las Ys aproximadas a partir de ese vector Theta, en lugar de hacer un par de FORs, se puede simplemente hacer: X*θ
- A esto se le llama vectorización, la cual evita usar ciclos.

Supervisado

REGRESIÓN LINEAL CON POLINOMIO

Usando una NO recta

- En algunas ocasiones, la mejor forma de aproximar un conjunto de datos es por medio de una función no lineal de una sola variable.
- La familia de funciones no lineales más usada es un polinomio de grado mayor a 1.
- Por ejemplo, para el caso de grado 2 (una parábola), la función sería: $f(x) = \theta_0 + \theta_1 x + \theta_2 x^2$:
 - Es cuadrática con respecto a x pero lineal con respecto a los parámetros $(\theta_0, \theta_1, \theta_2)$.
- Este caso se puede ver como uno de regresión lineal múltiple (con múltiples variables, dos en este caso: x y x²).

REGRESIÓN LINEAL MÚLTIPLE (MÚLTIPLES FEATURES)

Varias variables (features)

- A veces una variable no es suficiente para modelar el comportamiento.
- Ejemplo: precio de casa:

Tamaño (feet²)	No. De cuartos	No. De pisos	Edad (años)	Precio (\$1000)
x_1	x_2	x ₃	x_{4}	у
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

- x⁽ⁱ⁾ = entrada (features) del i-ésimo ejemplo de entrenamiento.
- x_j⁽ⁱ⁾ = valor de la feature j en el i-ésimo ejemplo de entrenamiento.
- Ejemplo:

$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

$$x_3^{(2)} = 2$$

Más notación

Hipótesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

• Por conveniencia $x_0=1$ $(x_0^{(i)}=1)$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

- Hipótesis: $h_{\theta}(x) = \theta^T X = \theta_0 x_0 \dots + \theta_n x_n$
- Función de costo:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

- Gradiente descendente:
 - Repetir
 - $\theta_j = \theta_j \alpha \frac{\partial}{\partial \theta_i} J(\theta)$
 - Con actualización simultánea para j = 0, ..., n

Nuevo Algoritmo

Repetir hasta convergencia

$$\circ \theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

• Esto es:

$$\theta_0 = \theta_0 - \frac{\alpha}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 = \theta_1 - \frac{\alpha}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

o ...

Escalamiento

- Muchas veces, la diferencia en magnitud de una variable (feature) con respecto a otras es muy grande.
- Esto ocasiona que el gradiente descendente tarde mucho en una de las dimensiones.
- Ejemplo:
 - $x_1 = tamaño (0-2000 ft^2)$
 - $x_2 = No$. De cuartos (1-5)
 - $^{\circ}$ Una variación en x_2 provoca mucho cambio en el costo J.

Escalas similares

- Se debe procurar que todas las variables tengas <u>escalas</u> <u>similares</u>.
- Esto se logra haciendo escalamiento, por ejemplo, dividiendo entre el valor mayor de los datos:

$$x_1 = \frac{tama\~no(feet^2)}{2000}$$
 y $x_2 = \frac{No.de~Cuartos}{5}$, $0 \le x_1 \le 1$ y $0 \le x_2 \le 1$

- Esto hace que llegue más rápido:
- Se recomienda llevar cada feature a Un rango entre - $I \le x_i \le I$ Excepto x_0 que siempre es I.

 $J(\theta)$

Normalización Media

- La mejor forma de escalamiento es llevar todo a media cero (μ =0).
- Esto se logra restando la media a cada dato y dividiendo el resultado entre su rango:

•
$$x_i = \frac{x_i - \mu}{rango}$$
, donde rango = (máximo – mínimo) o rango = σ

Ejemplos:

$$\circ \ x_1 = \frac{tama\~no - 1000}{2000} \ \mathbf{y} \ x_2 = \frac{No.de\ cuartos - 2}{4\ (o\ 5)}$$

Tasa de Aprendizaje

- Debugging: ¿cómo estoy seguro que el GD está funcionando correctamente?
 - \circ J(θ) debería decrecer en cada iteración.
 - $^{\circ}$ Declarar convergencia si J(θ) decrece por lo menos 10-3 en cada iteración.
- ¿Cómo selecciono la tasa de aprendizaje α ?
 - $^{\circ}$ Para una α suficientemente pequeña, J(θ) debería decrecer en cada iteración, pero si es muy pequeña, GD es muy lento.
 - \circ Si α es muy grande, J(θ) puede oscilar o crecer.

Recomendación para α

- Probar aumentos de 3x en 3x
- Por ejemplo:

0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1...

REGRESIÓN LOGÍSTICA

Clasificación

- Consiste en separar un conjunto de datos en 2 grupos, los que cumplen una condición y los que no.
- Es otro uso que se le da a la regresión.
- Ejemplos:
 - Email: Spam/No Spam
 - o Online: Transacciones Fraudulentas/Correctas
 - Tumor: Maligno/Benigno
- Por esta razón, la salida de los ejemplos de entrenamiento siempre es {1,0}
 - $y \in \{1,0\}$, 0: clase "negativa" y 1: clase "positiva".

Límite de clasificación

- El límite (threshold) de clasificación será entonces 0.5:
 - Si $h_{\theta}(x) \ge 0.5$, predice "y=1"
 - Si $h_0(x) < 0.5$, predice "y=0"
- La función ideal sería una Escalón.

- En este caso se usa la <u>Regresión Logística</u> (Logistic Regression), en la cual la hipótesis siempre debe dar valores entre 0 y 1:
 - $0 \le h_{\theta}(x) \le 1$.

Sigmoidal

- Queremos que $0 \le h_{\theta}(x) \le 1$
- Esto se logra de varias formas pero una de las más comunes, por la forma adecuada que tiene, ya que se parece a la escalón, es la <u>Sigmoidal</u> (sigmoid function).

Hipótesis

- Si hacemos:
 - $h_{\theta}(x) = g(\theta^T X) = \frac{1}{1 + e^{-\theta^T X}}$
 - · Lograríamos lo que se buscaba.
- La $h_{\theta}(x)$ se podría interpretar entonces como la probabilidad de que y = 1:
 - $h_{\theta}(x) = p(y = 1|x; \theta)$, probabilidad de que y=1 dado X y parametrizada por θ .

Función de costo

- Como en todos los métodos de regresión, se requiere una función de costo para poder encontrar el valor óptimo de θ que minimice el costo (e.g. usando gradiente descendente).
- Una buena función de costo sería aquella que diera un valor alto si la salida se acerca a 0 y y=1, y un valor bajo si la salida se acerca a 1 y y=1. Además, un valor alto si la salida se acerca a 1 y y=0 y un valor bajo se la salida se acerca a 0 y y=0.

 La opción más usada es la función logaritmo en una función seccionada:

$$Costo(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & si \ y = 1\\ -\log(1 - h_{\theta}(x)) & si \ y = 0 \end{cases}$$

Si y=1

Si y=0

Función de costo simplificada

 Debido a que y siempre es {0,1}, se puede usar como una variable binaria para simplificar la función en una sola expresión:

$$Costo(h_{\theta}(x), y) = -ylog(h_{\theta}(x)) - (1 - y)log(1 - h_{\theta}(x))$$

Ahora bien, el costo para todos los ejemplos es:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Costo(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) log(1 - h_{\theta}(x^{(i)})) \right]$$

• Entonces, para encontrar los parámetros θ :

$$\min_{\theta} J(\theta)$$

• Para dar una predicción (salida) dada una nueva x:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T X}}$$

• Que es equivalente a la $p(y = 1|x; \theta)$

Gradiente Descendente

Repetir{

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 Actualización simultánea de todas las θ_j

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Resulta que la derivada es igual que en el caso anterior pero ahora cambia la h a $h_{\theta}(x) = \frac{1}{1+e^{\theta^T X}}$, y en el anterior era $h_{\theta}(x) = \theta^T X$.

Optimización

• Existen muchos algoritmos para hacer la optimización de la función de costo:

Ventajas:

Desventajas: Más complicados

• No selección de α a mano

Normalmente, más rápidos que GD

- Gradiente Descendente
- Gradiente Conjugado
- BFGS
- L-BFGS

Y algunos heurísticos:

- Recocido Simulado, etc.
- Algoritmos Genéticos
- Normalmente, existen librerías que contiene estos algoritmos ya programados en una forma muy eficiente.

Proyecto 3

Clasificación Multiclase

- En algunas ocasiones es necesario clasificar en una de varias clases:
 - Email foldering / tagging:
 - Work (y=1)
 - Friends (y=2)
 - Family (y=3)
 - Hobby (y=4)
 - Diagnóstico Médico:
 - Sano (y=1)
 - Gripa (flu) (y=2)
 - Resfriado (cold) (y=3)

One vs All

- Entrenar un clasificador de regresión logística $h_{\theta}^{(i)}(x)$ para cada clase i, para predecir la probabilidad de que y=i.
- Para hacer la predicción de una nueva entrada X, seleccione la clase i que maximiza:

$$\max_{i} h_{\theta}^{(i)}(x)$$

Algunos puntos importantes al hacer ML

- Los métodos de ML han dado buenos resultados pero no son infalibles.
- Un bajo error en el entrenamiento no garantiza un excelente desempeño en el modo de producción.
- Muchos de los métodos de ML dependen de la correcta selección de sus parámetros (número y valor).

Corrección de bajo desempeño

Es muy común que el bajo desempeño se de por 2 razones:

- Underfitting.
 - · Corrección: Aumentar características.
- Overfitting.
 - o Corrección I: Reducir el número de características
 - A mano.
 - · Por selección de modelo (más adelante).
 - Correción 2: Mantener todas las características pero reducir la magnitud/valor de los parámetros θ_i (Regularización).

Ejemplo: Regresión Lineal

Overfitting: Generalmente se produce cuando tenemos muchas características.

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0$$

Tomado de ML Course Porf. Ng.

Ejemplo: Regresión Logística

Tomado de ML Course Porf. Ng.

Regularización

 Se le agrega a la función de costo J un término de regularización controlado por un parámetro de regularización definido por nosotros:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2 \right]$$
 Parámetro de regularización

 Se puede hacer tanto en regresión lineal como en logística.

NOTA: No se regulariza $\boldsymbol{\theta}_0$ porque no tiene que ver con las características.

- ¿Qué valor le damos a λ?
- Valor muy grande, e.g. $\lambda = 10^{10}$, es como si quitáramos todas las θ s, excepto θ_0 .
- Valor muy pequeño, no quita el overfitting.
- No hay otra más que hacerlo a prueba y error (existen formas sistemáticas como la que vimos para α).
- Lo que sí es un hecho es que si se modifica J se modifica su gradiente.

Gradiente Descendente con regularización

Repetir {
$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} + \frac{\partial}{\partial \theta_0} \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2$$

$$\theta_j = \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} - \frac{\lambda}{m} \theta_j \right] \quad j = 1, ..., n$$

La θ_i se puede escribir como:

$$\theta_{j} = \theta_{j} \left(1 - \alpha \frac{\lambda}{m} \right) - \frac{\alpha}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)} \qquad 1 - \alpha \frac{\lambda}{m} < 1$$

Función de costo:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} log \left(h_{\theta}(x^{(i)}) \right) + \left(1 - y^{(i)} \right) log (1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Gradiente Descendente:

$$\theta_{0} = \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} = \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} - \frac{\lambda}{m} \theta_{j} \right] j = 1, ..., n$$

$$\theta_{\theta}(x) = \frac{1}{1 + e^{\theta^{T} X}}$$

Referencias

- I. T. Mitchell. Machine Learning. McGraw-Hill (1997).
- 2. Andrew Ng. Machine Learning. Stanford-Coursera (2011)
 - https://www.coursera.org/course/ml
- 3. S. Russel and P. Norvig. <u>Inteligencia Artificial un enfoque moderno</u>. 2ª edición, Pearson, España (2004).
- 4. B. Sierra. Aprendizaje Automático conceptos básicos y avanzados. Pearson (2006).
- 5. Wikipedia. http://en.wikipedia.org/wiki/Machine_learning
- 6. Michael Littman and Charles Isbell. Machine Learning. Georgia Tech and Coursera (2017)
 - https://www.udacity.com/course/machine-learning--ud262