Transition-based RRT for Path Planning in Continuous Cost Spaces

(Jaillet, Cortés, and Siméon, 2008)

Presented by: Steven Clark

GMU CS689, Spring 2012

Outline

- Intro to T-RRT
 - Motivation: what problem are we trying to solve?
- Important algorithm components
 - TransitionTest
 - MinExpandControl
- Measuring & comparing path costs
- Results for various problems

Intro to T-RRT

Exploring a "continuous cost space"

Algorithm Goals

- Efficiently explore the configuration space
- Stick to low-cost "valleys" when possible
- Don't get blocked by saddle-points

Algorithm Goals

- Try to combine:
 - Exploration strength of RRTs
 - Efficiency of stochastic optimization methods
 - (use transition tests to decide when to accept a new state)

Algorithm Pseudo-Code

```
Algorithm 1: Transition-based RRT
   input
                : the configuration space CS;
                 the cost function c: CS \to \mathbb{R}^+_*;
                 the root q_{init} and the goal q_{goal};
   output
                : the tree T;
   begin
       T \leftarrow \text{InitTree}(q_{init});
       while not StopCondition(T, q_{qoal}) do
            q_{rand} \leftarrow \texttt{SampleConf}(CS);
            q_{near} \leftarrow \texttt{BestNeighbor}(q_{rand}, T);
            if not Extend(T, q_{rand}, q_{near}, q_{new}) Continue;
            if TransitionTest(c(q_{near}), c(q_{new}), d_{near-new})
            and MinExpandControl(T, q_{near}, q_{rand}) then
                AddNewNode(T,q_{new});
                AddNewEdge(T,q_{near},q_{new});
  end
```

Transition Test

Probability of accepting a new configuration

Slope of cost between 2 configs
$$p_{ij} = \left\{ \begin{array}{c} exp(-\frac{\Delta c_{ij}^*}{K*T}) & \text{if } \Delta c_{ij}^* > 0 \\ 1 & \text{otherwise.} \end{array} \right.$$
 Always go to a lower-cost state

- AKA "Metropolis criterion"
- K: normalizing constant
- T: "temperature" parameter
 - Controls difficulty of transition tests
 - Will change over time!

TransitionTest()

Algorithm 2: TransitionTest (c_i, c_j, d_{ij})

```
begin
      if c_j > c_{max} then return False;
      if c_j < c_i then return True;
     p = exp(\frac{-(c_j - c_i)/d_{ij}}{K*T});
      if Rand(0,1) < p then
      else
            if nFail > nFail_{max} then
                                                                              T is self-tuning!
            If nFail > nFail_{max} the T = T * \alpha; T = T * \alpha; T = T * \alpha; else T = nFail = nFail + 1; return False;
end
```

MinExpandControl()

- Can classify a new state as either expansion or refinement, based on distance to nearest existing state
- MinExpandControl ensures a proper balance of expansion to refinement
 - Reject some states that are accepted by TransitionTest

Effect of MinExpandControl()

Measuring Performance

- Analogous to mechanical work
 - Measure "energy" lost to work
- Work done along a continuous path:

$$W(\mathcal{P}) = \int_{s_{+}} \frac{\partial c_{+}}{\partial s} ds + \epsilon \int_{s} ds$$

Path segments with positive slope

Work done along a discretized path:

$$W(\mathcal{P}) = \sum_{i \in i_{+}} \left(c(q_i) - c(q_{i-1}) \right) d_i + \epsilon \sum_{i \in i} d_i$$

Calculating Optimal Paths

- Using this approach, can calculate optimal paths by discretizing space and using A*
- Note: only a reference, not feasible in higher dimensions

T-RRT Path vs. Optimal Path

RRT vs. T-RRT vs. Optimal

	length	c_{min}	c_{max}	c_{ave}	W
RRT	148	8	36	21	32.7
T-RRT	214	8	23	17	19.5
T-RRT ₁₀	182	8	25	18	21.9
P*	178	10	23	17	13.3

- RRT is 2.5x worse than optimal in this scenario
- T-RRT is only 45% worse than optimal

Other Examples

- 6 DOF manipulator, extracting rod through cluttered environment
 - Cost is related to how close rod gets to obstacles
- T-RRT path is much lower work and is much more reliable

	length	c_{min}	c_{max}	c_{ave}	W	σ_W
RRT	45	0.1	17150	88	3279	3151
T-RRT	49	0.1	40.4	1	15.2	5.22

Other Examples

- Extracting a ligand molecule from a protein
 - Cost is related to closeness of protein& ligand
- T-RRT path is much lower work and has more clearance

	length	c_{min}	c_{max}	c_{ave}	W	VdW
RRT	59	0.1	2236	14	471	0.25
T-RRT	70	0.1	1.0	0.3	0.3	0.66

Conclusions

- T-RRT combines strengths of RRTs for exploration & stochastic transition tests
- Has self-tuning parameters
- General enough to apply to high-dimensional problems
- Excellent results vs. traditional RRT paths