ELDER

Enceladus Life Detection, Exploration and Reconnaissance Critical Design Review

16.83 Space Systems Engineering7 May 2019

Are We Alone?

Enceladus, an ocean world.

Enceladus, an Active World

One that could support life...

The Legacy of Cassini

ELDER Mission Team

Systems Engineering

Haley Bates-Tarasewicz Jakob Coray Bret Heaslet Rockey Hester Logan Kluis

Spacecraft Design

LNEDL

Devansh Agrawal
Amanda Roberts
Juan Salazar
Tao Sevigny
Miguel Wagner-Bagues

Josef Biberstein
Andrew DeNucci
Lucy Halperin
Bradley Jomard
David Mueller

Autonomy

David Bambrick Dayna Erdmann Allie Hrabchak Aaron Huang Hailey Nichols

Life Detection & Instrumentation

Niyati Desai Danielle Hecht Jordan Isler Beau Rideout Ricardo Rodriguez Garcia

Creative Communications

Yun Chang Charlie Garcia Alan Osmundson Tingxiao Sun Dolly Yuan

Science and Mission Objectives

Decadal Survey: "Beyond Earth, are there modern habitats elsewhere in the solar system with necessary conditions, organic matter, water, energy, and nutrients to sustain life, and do organisms live there now?" [LD1]

A. Characterize the habitability of Enceladus' subsurface ocean

What are the conditions of the subsurface ocean?

What is the nature of the energy source sustaining Enceladus' ocean?

B. Search for evidence of life on Enceladus

Is there evidence of ongoing prebiotic or biotic processes in Enceladus' subsurface ocean?

C. Communicate the importance of detecting life to the general public

Will be discussed in demo after CDR

Agenda

- CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Enceladus Life Detection, Exploration, and Reconnaissance

Concept of Operations

Spacecraft Overview

Total launch mass (with margin): 2606 kg

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Science Objectives

Decadal Survey: "Beyond Earth, are there modern habitats elsewhere in the solar system with necessary conditions, organic matter, water, energy, and nutrients to sustain life, and do organisms live there now?" [LD1]

A. Characterize the habitability of Enceladus' subsurface ocean

What are the conditions of the subsurface ocean?

What is the nature of the energy source sustaining Enceladus' ocean? B. Search for evidence of life on Enceladus

Is there evidence of ongoing prebiotic or biotic processes in Enceladus' subsurface ocean?

Science Questions: Ocean Conditions

Science Questions: Energy Source

Science Questions: Biotic Processes

B. Search for evidence of life on Enceladus

Is there evidence of ongoing prebiotic or biotic processes in Enceladus' subsurface ocean?

Determine the extent that relevant species are produced from biotic or abiotic processes

Detect structural preferences conferring functions of organic molecules (chirality)

Constrain evidence of **chemical disequilibrium** as a biosignature (indicative of metabolism)

Science Traceability Matrix: Ocean Conditions

Decadal Survey		Science Questions	Science Requirements	Measurements	Instruments	Measurement Requirements	Instrument Performance	Measurement References	Instrument References
				Characterize abundance of salts and other minerals in ice grains from 20 to 50 km altitude	Enceladus Icy Jet Analyzer (ENIJA)	Mass Resolution: 200 m/∆m	Mass Resolution: 1000 m/∆m	Hsu et al., 2015 [LD19] Sherwood, 2016 [LD27]	Mitri et al., 2018 [LD2]
			subsurface ocean	Measure conductivity of Enceladus' subsurface ocean from 20 to 30 km altitude	Magnetometer	Magnetic Field Resolution: 1.0 nT	Magnetic Field Resolution: 0.2 nT	Domagal-Goldman and Wright et al., 2016 [LD1] Kriegel et al., 2011 [LD18]	MacKensie et al, 2016 [LD4]
"Beyond Earth, are there modern habitats elsewhere				Measure temperature of the plumes and fissures of Enceladus from 50 to 100 km altitude	Submillimeter Enceladus Life Fundamentals Instrument (SELFI)	Temperature Resolution: 1.0 K	Temperature Resolution: 0.1 K	Glein et al., 2015 [LD24]	Racette et al., 2019 [LD5]
in the solar system	A. Characterize the habitability of Enceladus' subsurface ocean	у	pH of Enceladus' subsurface ocean	Measure CO2 abundance in plume vapor from 20 to 50 km altitude	Mass Spectrometer for Planetary Exploration (MASPEX)	Mass Resolution: 134 m/Δm	Mass Resolution: 25,000 m/Δm	Combe et al., 2019 [LD22] Glein et al., 2015 [LD24]	Brockwell et al., 2016 [LD3]
				Measure abundance of nitrates (N2, NH3) as measure of freezing point of ocean from 50 to 100 km altitude	Narrow Angle Camera (NAC) - UV	Wavelength: 200-205 nm	Wavelength: UV Filter: 200-205 nm	Bouquet et al., 2015 [LD11] Matson et al., 2007 [LD20]	Edwards et al., 2000 [LD9]
			subsurface ocean	Measure the isotopic ratio of oxygen (16O/18O) in water vapor from 50 to 100 km altitude	Submillimeter Enceladus Life Fundamentals Instrument (SELFI)	Frequency of Oxygen Isotopes in Water Vapor: O17 - 552.021 GHz O18 - 547.676 GHz	Frequencies: 552.021 GHz 547.676 GHz Resolution: < 100kHz	Zastrow et al., 2012 [LD25]	Racette et al., 2019 [LD5]
			size and depth of the	Measure magnetic field of Enceladus from 20 to 30 km altitude	Magnetometer	Magnetic Field Resolution: 1.0 nT	Magnetic Field Resolution: 0.2 nT	Kriegel et al., 2011 [LD18]	MacKensie et al, 2016 [LD4]

Lewis et al., 2016 [LD10],

Soucek et al., [LD31]

Warren et al., 2006 [LD8]

Lewis et al., 2016 [LD10]

Warren et al., 2006 [LD8]

Lewis et al., 2016 [LD10]

Warren et al., 2006 ILD81

Lewis et al., 2016 [LD10]

Domagal-Goldman and

Wright et al., 2016 [LD1]

Lewis et al., 2016 [LD10]

Hemingway and Mittal,

2019 [LD23]

McKinnon, 2009 [LD28]

Saur et al., 2008 [LD12]

Tian et al., 2007 [LD13]

Saur et al., 2008 [LD12]

Tian et al., 2007 [LD13]

Saur et al., 2008 [LD12]

Tian et al., 2007 [LD13]

Howett et al., 2011 [LD14]

Ingersoll et al., 2010

[LD15]

NAC: 0.5 m/px

WAC: 10 m/px

Wavelength:

UV Filter: 170nm +/-

20 nm

Wavelength:

UV Filter: 170nm +/-

20 nm

Wavelength:

UV Filter: 170nm +/-

20 nm Spatial Resolution:

10 m/px

Wavelength:

Wavelength: 4-6 μm Mid-IR Filter: 4-6 μm

20m/px

Wavelength:

<170nm

Wavelength:

<170nm

Wavelength:

<170nm

Spatial Resolution:

20 m/px

Science Traceability Matrix: Energy Source									Niyati Desai		
Decadal Survey	Science Objectives	Science Questions	Science Requirements	Measurements	Instruments	Measurement Requirements	Instrument Performance	Measurement References	Instrument References		
			of Enceladus' hydrothermal		Mass Spectrometer for Planetary Exploration (MASPEX)	Mass Resolution: 5000 m/Δm	Mass Resolution: 25,000 m/Δm	Matson et al., 2007 [LD20] Sherwood, 2016 [LD27]	Mitri et al., 2018 [LD2], LD3]		
in the solar system t						hetween Enceladue		Mass Spectrometer for Planetary Exploration (MASPEX)	Mass Resolution: 37 m/Δm	Mass Resolution: 25,000 m/∆m	Bouquet et al., 2015 [LD11] Taubner et al., 2018 [LD21]
				Enceladus to ≥4th degree via Doppler	Radio Laser Altimeter	Resolution: 10^-5 m/s (Achieved with X band)	Communication Frequencies: X & Ka bands	less et al., 2014 [LD16] Souček et al., 2019 [LD31]	MacKensie et al., 2016 [LD4] Souček et al., 2019 [LD31]		
	the habitability of Enceladus'	habitability Enceladus' 2. What is the nature of the energy	abitability 2. What is the nature of the	heating within the interior of	Map the topography of at least 70% of Enceladus' surface from 50 to 100 km altitude		Accuracy: 1 km	Accuracy: 30 cm	Domagal-Goldman and Wright et al., 2016 [LD1] McKinnon, 2009 [LD28]	Cavanaugh et al., 2007 [LD30]	
	subsurface ocean			Map at least 70% of Enceladus'	Wide Angle Camera (WAC) - VIS	Spatial Resolution:	Spatial Resolution:	Domagal-Goldman and Wright et al., 2016 [LD1]	Levuje et al. 2016 II D101		

surface and image specific features of

interests (e.g. ice shell fractures) from

Quantify the ice/vapor ratio of plume

Measure the mass flux and velocity of

ice grains out of plume vents from 50

Measure spatial distribution of ice

grains in plumes from 50 to 100 km

Enceladus's surface to measure heat

flux of ice shell from 50 to 100 km

Thermally map at least 70%

material from 50 to 100 km altitude

50 to 100 km altitude

to 100 km altitude

altitude

altitude

2.d. Constrain the energy flux between Enceladus'

subsurface ocean and its

surface

Narrow Angle Camera (NAC) - VIS

Narrow Angle Camera (WAC) - UV

Narrow Angle Camera (WAC) - UV

Narrow Angle Camera (WAC) - UV

Wide Angle Camera (WAC) - IR

energy, and nutrients to sustain life, and do organisms live there now?" [LD1]

sustaining

oceans?

Enceladus'

Science Traceability Matrix: Biotic Processes

Decadal Survey	200 200 200 200 200 200 200 200 200 200	Science Questions	Science Requirements	Measurements	Instruments	Measurement Requirements	Instrument Performance	Measurement References	Instrument References
conditions organic		of life adus prebiotic or biotic processes in Enceladus' subsurface	3.a. Determine the extent that relevant species are produced from abiotic, prebiotic, or biotic processes	Measure abundance of C,H,N,O,P,S elements in organic molecules in plume vapor from 20 to 50 km altitude	Mass Spectrometer for Planetary Exploration (MASPEX)	Mass Resolution: 3000 m/Δm	Mass Resolution: 25,000 m/Δm	Mitri et al., 2018 [LD2] Bouquet et al., 2015 [LD11]	Mitri et al., 2018 [LD2] Brockwell et al., 2016 [LD3]
	B. Search for evidence of life on Enceladus			Measure abundance of complex organics molecules (e.g. amino acids & amines, carboxyclic acid, PAHs) from 20 to 50 km altitude	Enceladus Icy Jet Analyzer (ENIJA) Enceladus Organic Analyzer (EOA)	Sensitivity: 10 ppm	Sensitivity (ENIJA): 10 ppm - 1 ppb Sensitivity (EOA): 1 ppb	Mitri et al., 2018 [LD2] Tobie et al., 2014 [LD29]	Mathies et al., 2017 [LD6] Srama et al., 2015 [LD7]
				Measure isotopic ratios of carbon (12C/ 13C) and hydrogen (D/H) in hydrocarbons in plume vapor from 20 to 50 km altitude	Mass Spectrometer for Planetary Exploration (MASPEX)	Mass Resolution: 5830 m/Δm	Mass Resolution: 25,000 m/Δm	Mitri et al., 2018 [LD2] Horita et al., 1999 [LD17] McKay et al., 2012 [LD26]	Mitri et al., 2018 [LD2] Brockwell et al., 2016 [LD3]
		ocean?	potential biosignature (i.e. metabolic processes)	Measure deviations from abiotic distribution (co-location of reductant and oxidant species such as H2, O2, H2O) from 20 to 50 km altitude	Mass Spectrometer for Planetary Exploration (MASPEX)	Mass Resolution: 6948 m/Δm	Mass Resolution: 25,000 m/Δm	Mitri et al., 2018 [LD2] Tobie et al., 2014 [LD29]	Mitri et al., 2018 [LD2] Brockwell et al., 2016 [LD3]
			conferring function of	Measure chirality of amino acids in plume grains from 20 to 50 km altitude	Enceladus Organic Analyzer (EOA)	Sensitivity: 1 ppm	Sensitivity: 1 ppb	Sherwood, 2016 [LD27]	Mathies et al., 2017 [LD6]

Complete Instruments List

Instrument	Туре
ENceladus Icy Jet Analyzer (ENIJA)	In-situ
MAss Spectrometer for Planetary EXploration (MASPEX)	
Enceladus Organics Analyzer (EOA)	
Magnetometers (2)	
Enceladus Imaging Subsystem (EIS): IR, UV, VIS filters - Wide Angle Camera (WAC) - Narrow Angle Camera (NAC)	Remote sensing
Submillimeter Enceladus Life Fundamentals Instrument (SELFI)	
Mercury Laser Altimeter (MLA)	
Communications Radio	

Instruments: in-situ

	MASPEX Time of Flight (ToF) mass spectrometer [LD2], [LD3]	Enceladus Icy Jet Analyzer (ENIJA) ToF mass spectrometer (impact ionization) [LD2], [LD7]
Purpose	Determine composition and abundance of plume gases	Determine the makeup of solid particles in the plumes
Main Science Question	All	All
Resolution (m/\Delta m)	25,000	>970
Analyte	Plume gas	Plume dust particles and ice grains

[LD2]

Instruments: in-situ

	Enceladus Organics Analyzer (EOA) [LD6]	Magnetometers (2) Magnetic field measurement [LD4]					
Purpose	Detect presence of organic compounds in plume particles (amines, amino acids, carboxylic acids), determine chirality	Measure magnetic field, implies size of subsurface ocean					
Science Question	Is there evidence of ongoing prebiotic or biotic processes in Enceladus' subsurface ocean?	What are the conditions of the subsurface ocean?					
Sensitivity	0.1 ppb	0.1 nT					
Analyte	Plume material	Enceladus magnetic field					

Capture door

[LD6]

Sample capture assembly (closed)

[LD32]

Instruments: remote sensing

	Submillimeter Enceladus Life Fundamentals Instrument (SELFI) Remote plume and surface characterization [LD5]	Wide angle camera (WAC) + Narrow Angle Camera (NAC) IR, Vis, UV Characterization [LD8], [LD10], [LD33]
Purpose	Holistic view of plume composition and surface, more global perspective than in-situ	Characterize physical and thermal properties of Enceladus, surface mapping
Main Science Question	What are the conditions of the subsurface ocean?	What is the nature of the energy source sustaining Enceladus' oceans?
Resolution	Radiometric Temperature: 0.1 K	NAC: 18.6 µrad/px WAC: 101 µrad/px
Analyte	(remotely) plumes, Enceladus surface	(remotely) plumes, Enceladus surface

Instruments: remote sensing

	Communications Radio [LD4], [LD16]	Mercury Laser Altimeter (MLA) Altitude measurement [LD30]
Purpose	Communications and gravity field measurement	Topographical mapping of Enceladus Surface
Main Science Question	What is the nature of the energy source sustaining Enceladus' oceans?	What is the nature of the energy source sustaining Enceladus' oceans?
Range	X and Ka Bands	<1500 km
Analyte	Gravity field (via doppler effect)	Enceladus surface

[LD30]

Science Measurement Ranking

NASA's wor	king definition of life is a "self-sustair	ning chemical system capable of Darwinian evolution"
Priority	Features of Life	Metrics
1		Deviation from abiotic fractionation controlled by thermodynamic equilibrium and/or kinetics
	Metabolism	Deviation from abiotic distribution controlled by thermodynamic equilibrium and/or kinetics (co-located reduction and oxidation species)
2		Polymers that support information storage and transfer for terran life (DNA, RNA)
	Molecular Structure conferring Function	Structural preferences in organic molecules (non-random and enhancing function)
3		Complex organics (e.g. nucleic acid oligomers, peptides, PAH)
3	Potential biomolecules	Monomeric units of biopolymers (nucleobases, amino acids, lipids for compartmentalization)
		Distribution of metals e.g. V in oil of Fe, Ni, Mo/W, Co S, Se, P
4	Potential metabolic byproducts	Patterns of complex organics: Deviation from equilibrium (P(Poisson distribution of pathway complexity), 0.01) or abiotic kinetic distribution
5	Habitability	liquid water, pH, energy source

Neuvue,	Μ.	et al.,	2018	[LD35]
---------	----	---------	------	--------

Astrobiolo	gy Primer				
Priority	Biomarker	Metrics	Availability	Importance 0.6	
1	Biogenic organic molecules	Biomarkers (lipids, amino acids, nucleic acids)	10^-12 ppm - 0.75 ppm		
2/3	Isotopic ratios/ isotopic fractionation indicative of metabolism	Deviations from abiotic fractionation	2 per million - 200 per million	0.08	
2/3	Biogenic gases	Concentrations that are in disequilibrium (CH4)	10^-12 - 10^-6	0.08	
4	Spatial chemical patterns	Concentrations (> microM)	0.01 ppm - 1 ppm	0.03	
5	Biomineralization	Mineral concentration	0.1 μm - 100 μm	0.02 - 0.03	

Domagal-Goldman, S.D. et al., 2016 [LD36]

Science Measurement Ranking

Science Measurements	Science Score	MASPEX	ENIJA	EOA	SELFI	Imagining Sub- system	Magnet- ometer	Radio Science	Laser Altimeter
Measure isotopic ratios of carbon (12C/ 13C) and hydrogen (D/H) from hydrocarbons in ice grains and plume vapor	AP - 1 LDL - 1								
Measure chirality of amino acids	AP - 1 LDL - 2								
Measure abundance of complex organics molecules (e.g. amino acids & amines, carboxyclic acid, PAHs)	AP - 2 LDL - 1								
Measure deviations from abiotic distribution as a potential sign of microbial metabolism (co-location of reductant and oxidatant species such as H2, O2, H20)	AP - 2/3 LDL - 1								
Measure abundance of C,H,N,O,P,S elements in organic molecules in plume vapor	AP - 2/3 LDL - 3								
Quantify the ice/vapor ratio of plume material	AP - 4 LDL - 5								
Measure the mass flux and velocity of ice grains out of plume vents	AP-4 LDL-5								
Measure spatial distribution of ice grains in plumes	AP-4 LDL-5								
Measure H2 abundance in plume vapor	AP - 5 LDL-5								
Characterize abundance of salts and other minerals in ice grains	AP - 5 LDL-5)4 						
Measure conductivity of Enceladus' subsurface ocean	AP - 5 LDL-5							ļ	
Measure temperature of the plumes and fissures of Enceladus	AP - 5 LDL-5								
Measure CO2 abundance in plume vapor	AP - 5 LDL-5								
Measure abundance of nitrates (N2, NH3) in the plume as measure of freezing point of ocean	AP - 5 LDL-5								
Measure oxygen (160/180) isotopic ratios in plume water vapor	AP - 5 LDL-5								
Measure gravity field (hydrostatic equilibrium, moment of inertia) of Enceladus to ≥4th degree via Doppler shift tracking	AP - N/A LDL- 5								
Map the topography of at least 70% of Enceladus' surface	AP - N/A LDL-5								
Map at least 70% ice shell fractures on Enceladus' surface	AP - N/A LDL- 5								
Thermally map at least 70% Enceladus's surface to measure heat flux of ice shell	AP - N/A LDL- 5								
Measure abundances of nobles gases (e.g. Ar, Ne, He) that have leached from Enceladus' rock-core	AP - N/A LDL- 5								
Measure magnetic field of Enceladus	AP - N/A LDL- 5								

Design to Meet Requirements - Suite Comparison

Instrument	Baseline Suite	Threshold Suite
Enceladus Organics Analyzer (EOA)		
ENceladus Icy Jet Analyzer (ENIJA)		
MAss Spectrometer for Planetary EXploration (MASPEX)		
Imaging Subsystem		
Submillimeter Enceladus Life Fundamentals Instrument (SELFI)		
Radio		
Magnetometers (2)		
Mercury Laser Altimeter (MLA)		

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Science operations at each altitude

Enceladus Operational Modes

(Not to scale)

Surface Mapping using Image Stitching

- Produce high-resolution maps of the Enceladus surface
 - Maximum resolution of Cassini images is 100 m/px
 - Elder is capable of 10m/px (WAC) and 0.5m/px (NAC)
- Supplement analysis of surface morphology and geography
 - Geographic feature distribution informs plate tectonics
- Public outreach and education
- Constructed from images captured periodically from orbit

Image Stitching Algorithm

- SIFT-RANSAC: a two-step procedure
 - Identify identical features between a set of disparate images
 - Compute and apply homography matrices
- Transformed images overlaid, post-processed to form a map
- Challenge: Enceladus is feature-sparse

$$\begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} = H \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix}$$

Once the homography matrix H is computed, any point can be projected onto the new coordinate frame. [AUTO3]

Identified features across two separate images. Once these points are correlated, the homography matrix can be computed. [AUTO2]

Surface Image Stitching Algorithm

- How do we evaluate expected performance at Enceladus?
 - Use best-case analogue: satellite images of Antarctica
- Algorithm tested with a set of randomly offset subimages
 - Original image divided up into sections with some amount of overlap, other corruptions
- Algorithm is fed the set of images, expected output is a reconstructed original

Set of randomly partitioned subimages

Surface Image Stitching Algorithm

- Mapping algorithm consistently fails to identify features across original images
 - Lacking distinct contours, patterns
- Solution: apply image filters to aid in feature extraction
- Canny edge detection, a multi-step image processing technique
 - o Gaussian smoothing: eliminates noise
 - Gradient computation : "typical" edge detection step
 - Edge thinning: removes false, weak edges

Output when operating on unaltered test images. Note the failure to match the upper-left image to its neighbors.

Surface Image Stitching Algorithm

Canny Edge Detection:

Surface Image Stitching Algorithm

- After processing via the Canny edge detection method, the image is able to be fully reconstructed as shown
 - Matched coordinates can be taken from filtered image and used to reconstruct the original
- Further improvements
 - Tweaking of parameters to minimize information loss
 - Preprocessing steps to more fully capture object edges

Output when operating on processed test images.

Target Selection Algorithm

- Semantic segmentation: process of associating each pixel of an image with a class label
- Mask RCNN (region convolutional neural network)
 - Developed by Facebook AI research, used for facial recognition
 - More efficient than other techniques (RCNN, Fast-RCNN)
- Train network with existing images of Enceladus with features labelled manually

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Main Stage Design Overview

Propulsion

Required ΔV at Saturn is 2 km/s

Selected Engine	Aerojet HiPAT
l _{sp}	326 s
Max Thrust	445 N
Quantity	1
Total Mass of MMH/NTO/He	533 kg
Power	46 W

Payload

Component	Mass (kg)	Power (W)
Total	117	184
MASPEX	20	46
ENIJA	4	14
EOA	2	3
SELFI	20	43
Camera	58	56
Magnetometer	6	6
Laser Altimeter	7	16
Radio	(included in comms allocation)	

ADCS

Actuator	Aerojet MR-103
Number Required	16
Mass of Propellant Required	0.04 kg
Total Mass of Actuators	5.28 kg

Sensor	Inertial Measurement Unit
Number Required	2
Mass	0.015 kg

Sensor	Sun Tracker
Number Required	1
Mass	0.5 kg

Communication

Antenna Classification	High Gain
Diameter	2.5 m
Mass	51 kg
Power	120 W
Frequency	34 GHz, K _a - Band
Data to Transmit	120 orbits of 500 MBytes each and 30 minutes of video in one year (25 GB)
Data rate	164 kilobits/second

DSN Compatibility

- Transmission Schedule: 4 hour bursts on weekly intervals requiring a data rate of 164 kbps
- Will communicate with 34m Antenna with G_r = 78.9 dB
- In order to achieve a 5 dB Energy per bit to Noise ratio with Free Space Path Loss from 10 AU and System Noise, 73.7 dB of Signal Strength needed from Spacecraft

Antenna Sizing and Link Budget Analysis

Antenna Diameter of 2.5 m with transmission power of 58.9 W produces required Signal Strength

Assuming a 50% efficiency factor in hardware components, 117.8 W are used during transmission mode

Accomplished with 3 Traveling Wave Tube Amplifiers (TWTA) each supplying 40 W

Power Budget (Main Stage)

System	Data Intensive Mode (7h)	Downlink Mode (4h)	Trajectory Correction Mode (<1h)	Charging, Surface Mapping (156h)
Payload	184	0	20	50
Thermal	100	100	100	100
Power Harness	50	40	40	25
Comms	15	120	15	15
Processing	18	18	18	35
ACDS	165	165	165	0
Propulsion	0	0	46	0
Estimated Power Draw (W)	532	443	404	225
Margin	30%	30%	30%	30%
Estimate + Margin (W)	691	575	525	293

	BOL:	EOL:	
Power Required from ASRGs	394	317	W
Power Delivered by 3 ASRGs	420	338	W
Required Battery Capacity			
(allows 2 weeks of operation without charging)		7658	Wt-hours

Mass Budget (Main Stage)

System		Estimate (kg)	Margin	Estimate + Margin (kg)
	Propulsion	51	33%	68
	Payload	117	29%	152
	Computer	2	30%	3
	Structures	219	20%	263
	Thermal	53	20%	63
	Communications	51	30%	66
	ADCS	6	21%	7
	Power	195	30%	254
Main	Dry Sum	694	26%	876
Prope	ellant	559	*	559
Main Wet Sun	1	1253	14%	1434

Main Stage Wet Mass Breakdown

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Trajectory Overview & Mission Timeline

#	Description	Duration
1	January 2040 Launch on Atlas V 551	
2	SEP kick stage to adjust orbit for Venus rendezvous	1 yr
3-6	Venus-Earth-Jupiter gravity assist, jettison SEP stage	6 yr
7	Braking burn to arrive at Saturn	
8	Maneuver within Saturnian system to Enceladus orbit via moon tour	2.7 yr
9	Polar orbit at Enceladus	1 yr
10	Spacecraft disposal	3 yr

Delta V Budget

Maneuver DeltaV (m/s)	
-----------------------	--

SEP Kick Stage	5757
Total (SEP)	5757

Spacecraft SEP stage fuel system sized for **7,000 m/s**

Venus-Earth-Jupiter Gravity Assist Trajectory	0
Saturn Capture	470
Saturn->Enceladus (Moon Tour)	806
Orbit at Enceladus	128
Spacecraft Disposal	400
Margin for Trajectory Correction Maneuvers	150
Total (main stage)	1954

Spacecraft main stage fuel system sized for **2,000 m/s**

Launching January 2040 on an Atlas V

Maximum Payload Mass vs C3 For Alternative Launch Vehicles

Source: [1]

Max. Payload Mass > 2600 kg

C3 > 12 for high-energy escape

Launch date based on best known flyby tour. Search for earlier opportunities is ongoing.

Alternative Low-Energy Launch

Launch Vehicle Alternatives			
Launch Vehicle	Estimated Launch Cost (\$ millions, 2019)		
Atlas V 511	137		
Falcon 9	62		
Atlas V 521	154		
Atlas V 551	179		

Source: [1]

Maximum Payload Mass vs C3 For Alternative Launch Vehicles

Max. Payload Mass > 2600 kg

Lower launch energy allows smaller launch vehicles; slower overall transit to Saturn

Earth-Venus: Solar Electric Propulsion

Launch C3: $12 \text{ km}^2/\text{s}^2$ Required $\Delta V = 5.756 \text{ km/s}$ Transit Time: 1.0 years

Launch C3: $6 \text{ km}^2/\text{s}^2$ Required $\Delta V = 6.307 \text{ km/s}$ Transit Time: 1.1 years

Simulation of Venus-Earth-Jupiter-Saturn Tour

Key
ELDER Trajectory
Sun
Earth
Venus
Jupiter
Saturn

Saturn to Enceladus Breakdown

Direct capture requires 4-5 km/s, but the allocation is only 2 km/s.

Using moon tours the velocity can be reduced and fuel can be saved.

Saturn: System Entry/Capture

Moon Tour: Gravity Assist Moons

- Start : Titan
- Target : Enceladus
- Using 5 moons total for orbit lowering

Moon Tour: Budget

Moon	Time of Flight (days)	# of Flybys	TCM DeltaV (m/s)
1. Titan	53	3	29
2. Rhea	363	15	146
3. Dione	190	10	26
4. Tethys	108	12	12
5. Enceladus	233	12	102
Total	997 (2.7 years)	52	316

Moon Tour: Titan Orbit Tightening

Moon	Time of Flight (days)	# of Flybys	TCM DeltaV (m/s)
1. Titan	53	3	29
2. Rhea	363	15	146
3. Dione	190	10	26
4. Tethys	108	12	12
5. Enceladus	233	12	102

Moon Tour: Titan to Rhea Gravity Assists

Moon	Time of Flight (days)	# of Flybys	TCM DeltaV (m/s)
1. Titan	53	3	29
2. Rhea	363	15	146
3. Dione	190	10	26
4. Tethys	108	12	12
5. Enceladus	233	12	102

Moon Tour: Rhea to Dione Gravity Assists

Moon	Time of Flight (days)	# of Flybys	TCM DeltaV (m/s)
1. Titan	53	3	29
2. Rhea	363	15	146
3. Dione	190	10	26
4. Tethys	108	12	12
5. Enceladus	233	12	102

Moon Tour: Dione to Tethys Gravity Assists

Moon	Time of Flight (days)	# of Flybys	TCM DeltaV (m/s)
1. Titan	53	3	29
2. Rhea	363	15	146
3. Dione	190	10	26
4. Tethys	108	12	12
5. Enceladus	233	12	102

Moon Tour: Tethys to Enceladus Gravity Assists

Moon	Time of Flight (days)	# of Flybys	TCM DeltaV (m/s)
1. Titan	53	3	29
2. Rhea	363	15	146
3. Dione	190	10	26
4. Tethys	108	12	12
5. Enceladus	233	12	102

Enceladus Orbit Correction

- 1. Capture Orbit : braking burn of 128 m/s
- 2. Inclination change : burn of 250 m/s
- Desired Polar orbit :
 100km radius
- Varying altitude between 100km-20km for science team

End-of-Life

- Use similar moon tour design
- Continue inwards to impact
 Saturn
- Tour duration and deltaV
 budget can vary by design

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Solar Electric Propulsion (SEP) Kickstage

Propellant

Xenon

Mass: 776 kg

Hall thrusters (3x)

1 Redundant

Gallium Arsenide (GaAs) Solar **Arrays**

Deployable

Area: 100 m²

Power (1.6AU): 10830 W

Interstage Mechanism

Hall Effect Thruster

Selected Engine	Aerojet BPT-4000
l _{sp}	2020 s
Max Thrust (each)	270 mN
Quantity	3 (1 redundant)
Mass of Xenon	776 kg
Power (each)	4.5 kW

Mass Budget (Kickstage)

System	Estimate (kg)	Margin	Estimate + Margin (kg)
Propulsion	45	20%	54
Power	227	33%	303
Structural	30	30%	39
SEP Dry Sum	302	31%	396
Propellant	776	*	776
Kickstage Wet Sum	1078	9%	1172

^{*} Propellant mass accounts for worst case dry mass

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

System Health Management Design

Challenges of Self-Diagnosing Systems

Issue: Diagnosing hidden failures requires reasoning from a model.

Solution: Generate candidate solutions \rightarrow test if candidates account <u>for all</u>

symptoms

Issue: Failures are often novel.

Solution: For novel faults, make no presumption about faulty component behavior.

Issue: Multiple faults occur.

Solution: Identify all combinations of "consistent" unknown modes \rightarrow diagnoses

are consistent with the model and observations

Fault Diagnoses Response

Health management system will only REPORT to ground suggested diagnoses of the failure state(s) for human validation and verification

→ NO action for self-repair will be taken until approved

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Systems: Risk Mitigation - Launch

ID	Description
Α	Launch Delays in development could cause system to miss its launch date, jeopardizing critical Venus flyby
A*	Launch at a higher C3 in order to catch up to Venus

Systems: Risk Mitigation - Separation

ID	Description
В	Separation Separating the kick stage from the main stage could fail due to a hardware malfunction, preventing operation of main engine
B*	Separation Incorporate redundant separation systems and heritage hardware in the design, and conduct extensive ground tests

Systems: Risk Mitigation - Data

ID	Description
С	Data Collection/Transmission Radiation exposure along trajectory could degrade instruments, decreasing possible science
C*	Data Collection/Transmission Ensure instrumentation suite protected by sufficient radiation shielding

Systems: Risk Mitigation - Plumes

ID	Description
D	Flying through Plumes Instruments could be damaged as spacecraft collides with ice grains and dust particles
D*	Flying through Plumes Gradually increase risk by lowering altitude as data gathered and science goals accomplished

Systems: Risk Mitigation - Disposal

ID	Description	
Е	End of Life Spacecraft may not have enough fuel at end of mission to reach Saturn for disposal	
E*	End of Life Shorten mission to ensure successful disposal at Saturn	

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Mission Extensions - Science Objectives

Extended Mission

Identify Biotic Markers in Samples

 Lower plume orbits for higher quantity of sample material at greater risk

Determine Habitability

 Increase surface mapping from 70% to 90% of Enceladus' surface

Enceladus Seasonal Variation

 Build an enhanced understanding of Enceladus' climate across Saturnian seasons.

Science through Disposal

Additional budget will allow for science instruments to be operated through EOL disposal. EOL trajectory will involve several more fly-bys of various other Saturnian Moons.

Mission Extensions - Consumables

	End of Phase	ΔV Remaining	Additional Budget
Enceladus Arrival	January 2050	410 m/s	N/A
End of Prime Mission	April 2051	344.5 m/s (-65.5 m/s)	N/A
End of First Extension	April 2052	298.5 m/s (-46 m/s)	\$6.5 million
End of Disposal	October 2055	18 m/s	\$13.8 million

Agenda

- Mission & CONOPS
- Science & Instrumentation
- Enceladus Operations
- Spacecraft Design: Main Stage
- Trajectory
- Spacecraft Design: Solar Electric Propulsion Stage
- System Health
- Risks
- Possible Mission Extensions
- Budgets

Total Mass Budget

System	Estimate (kg)	Margin	Estimate + Margin (kg)
Main Dry Sum	694	26%	876
Main Propellant	559	*	559
Main Wet Mass	1253	14%	1434
Kickstage Dry Sum	303	31%	396
Kickstage propellant	776	*	776
Kickstage wet mass	1079	9%	1172
Total Launch Mass	2331	12%	2606

Estimate: Bottom Up Current Best Estimate,

Margin: is component specific, 20-30%. Propellant margins applied in Delta-v calc

Mission Cost Budget Allocation

Cost Component	Estimated Cost (\$M)	Margin (\$M)
Instrumentation	74	32
Spacecraft Design	164	70
Autonomy	32	14
Mission Level	80	34
Totals:	350	150

Instrumentation
Payload

Spacecraft Design
Spacecraft

Autonomy
Safety & Mission Assurance
Science/Technology

Mission Level
Systems Engineering
Mission Operations
Ground Systems
System Integration & Testing

Mission Cost Budget Actual

Cost Component	Estimated Cost (\$M)	Margin (\$M)
Instrumentation	60	9
Spacecraft Design	250	37
Autonomy	10	2
Mission Level	115	17
Totals:	435	65

Payload	60

Spacecraft Design	Cost (\$M)
Spacecraft	250

Autonomy	Cost (\$M)
Safety & Mission Assurance	5
Science & Technology	5

Mission Level	Cost (\$M)
Project Management	10
Mission Operations	65
Ground Systems	20
System Integration & Testing	20

ELDER seeks to explore the existence of life beyond our little blue marble.

Acknowledgments

Instructors

Prof. Rick Binzel Atissa Banuazizi Jennifer Craig Dr. Javier de Luis Prof. Dava Newman Jeremy Stroming

Consultants

Quentin Alexander, MIT

Dr. Leon Alkalai, JPL

Eswar Anandapadmanaban, MIT

Prof. Andrew Babbin, MIT

Dr. Scott Bolton, SwRI

Prof. Luca Carlone. MIT

Dr. Chris Carr, MIT

Jim Clark, MIT

Dr. Jessica Edmonds, Aurora Flight Sciences

Prof. Peter Girguis, Harvard

Jamal Grant, MIT Lincoln Lab

Erisa Hines, JPL

Dr. John Langford, Aurora Flight Sciences
Prof. Richard Linares, MIT

Prof. Richard Linares, MIT Prof. Paolo Lozano. MIT Kelly Mathesius, MIT

Alex Menzies, JPL

Rob Meyerson, Delalune Space

Varun Murali, MIT

Dr. David Oh, JPL

Dr. Aaron Parness, JPL

Dr. Alvar Saenz-Otero, MIT

Steve Sell, JPL

Christopher Semisch, MIT Lincoln Lab

Dr. Tim Setterfield, JPL

Dr. Bob Shin, MIT Lincoln Lab

Ben Solish, JPL

Dave Thompson, Orbital ATK

Dr. Catherine Walker, WHOI Prof. Brian Williams, MIT

Backup

Mission Objectives

ID	Statement
M.O.1	Search for signs of life in the plumes of Enceladus.
M.O.2	Communicate to the general public the possibilities and importance of detecting life on ocean worlds and provide scientists with new forms of data to analyze.
M.O.3	Constrain the habitability of Enceladus' subsurface oceans.

References

[1]: The Annual Compendium of Commercial Space Transportation: 2018 https://brycetech.com/downloads/FAA Annual Compendium 2018.pdf

References - Systems

[Sys1] Wertz, James R., et al. Space Mission Engineering the New SMAD. Microcosm, 2015.

[Sys2] Werner, James E, et al. "Cost Comparison in 2015 Dollars for Radioisotope Power Systems—Cassini and Mars Science Laboratory." *Inldigitallibrary.inl.gov*, Idaho National Laboratory, July 2016, inldigitallibrary.inl.gov/sites/sti/7267852.pdf.

References - Autonomy

[AUTO1] Schenk, P., Denk, T., Helfenstein, P., "Global 3-Color Map of Enceladus (IR3-GRN-UV3)." Jet Propulsion Laboratory. https://www.jpl.nasa.gov/spaceimages/images/largesize/PIA18435_hires.jpg.

[AUTO2] "Local Feature Matching." Georgia Institute of Technology. https://www.cc.gatech.edu/~hays/compvision/proj2/notre_dame_89percent_green_correct_lines.png.

[AUTO3] "Homography Matrix Transformation." https://i.stack.imgur.com/FT1K8.png.

[AUTO4] "Landsat Image Mosaic of Antarctica." United States Geological Survey. https://eoimages.gsfc.nasa.gov/images/imagerecords/78000/78592/antarctica_etm_2000001_lrg.jpg

[LD1] National Research Council, "Vision and Voyages for Planetary Science in the Decade 2013-2022," *The National Academies Press*, 2011, pp. 71. https://doi.org/10.17226/13117.

[LD2] Mitri, G. et al., "Explorer of Enceladus and Titan (E2T): Investigating Ocean Worlds' Evolution and Habitability in the Solar System," *Planetary & Space Science*, 2018

[LD3] Brockwell, T. et al., "The MAss Spectrometer for Planetary EXploration (MASPEX)," *IEEE Aerospace Conference*, 2016

[LD4] MacKenzie, S. M., Caswell, T. E., Phillips-Lander, C. M., Stavros, E. N., Hofgartner, J. D., Sun, V. Z., Powell, K. E., Steuer, C. J., O'Rourke, J. G., Dhaliwal, J. K., Leung, C. W. S., Petro, E. M., Wynne, J. J., S. Phan, M. C., Krishnamurthy, A., John, K. K., DeBruin, K., Budney, C. J., and Mitchell, K. L., "THEO concept mission: Testing the Habitability of Enceladus's Ocean," *Advances in Space Research*, Vol. 58, No. 6, 2016.

[LD5] "Picture This SELFI: Submillimeter Enceladus Life Fundamentals Instrument," NASA Goddard Space Flight Center, Jan. 2019.

[LD6] Matheis, R. et al., "Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Organic Analyzer," *Astrobiology Vol. 17 No.9*, 2017.

[LD7] Srama, R. et al., "Enceladus Icy Jet Analyzer (ENIJA): Search for life with a high resolution TOF-MS for in-situ characterization of high dust density regions," *ESPC Abstracts*, Vol. 10, *European Planetary Science Conference*, 2015

[LD8] Warren, S. G., Brandt, R. E., and Grenfell, T.C., "Visible and near-ultraviolet absorption spectrum of ice from transmission of solar radiation into snow," *Optical Society of America*, 2006.

[LD9] Edwards, A. C., Hooda, P. S., Cook, Y., "Determination of Nitrate in Water Containing Dissolved Organic Carbon by Ultraviolet Spectroscopy," *Ultraviolet Spectroscopy, International Journal of Environmental Analytical Chemistry*, Vol. 80, No. 1, 2006.

[LD10] Lewis, K., Klaasen, K., Susca, S., Oaida, B., Larson, M., Vanelli, T., Murray, A., Jones, L., Thomas, V., Frank, L., "Use of Model Payload for Europa Mission Development," *IEEE Aerospace Conference*, 2016.

[LD11] Bouquet, A., Mousis, O., Waite, J. H., Picaud, S., "Possible evidence for a methane source in Enceladus' ocean," *Geophysical Research Letters*, American Geophysical Union, 2015.

[LD12] Saur, J., Schilling, N., Neubauer, F. M., Strobel, D. F., Simon, S., Dougherty, M. K., and Russell, C. T., "Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations," *Geophysical Research Letters*, American Geophysical Union, Vol. 35, 2008.

[LD13] Tian, F., Stewart, A. I.F., Toon, O. B., Larsen, K. W., Esposito, L. W., "Monte Carlo simulations of the water vapor plumes on Enceladus," *Icarus*, Vol. 188, No. 1, 2007.

[LD14] Howett, C. J. A., Spencer, J. R., Pearl, J., Segura, M., "High heat flow from Enceladus' south polar region measured using 10–600 cm-1 Cassini/CIRS data," *Journal of Geophysical Research*, American Geophysical Union, March 2011.

[LD15] Ingersoll, A. P., Pankine, A. A., "Subsurface heat transfer on Enceladus: Conditions under which melting occurs," *Icarus*, Vol. 206, No. 2, April 2010.

[LD16] Iess, L., Stevenson, D.J., Parisi, M., Hemingway, D., Jacobson, R.A., Lunine, J.I., Nimmo, F., Armstrong, J.W., Asmar, S.W., Ducci, M., Tortora, P., "The Gravity Field and Interior Structure of Enceladus," *Science*, Vol. 344, No. 6179, 2014.

[LD17] Horita, J., Berndt, M.E., "Abiogenic methane formation and isotopic fractionation under hydrothermal conditions," *Science*, Vol. 285, No. 5430, 1999.

[LD18] Kriegel, H., Simon, S., Motschmann, U., Saur, J., Neubauer, F. M., Persoon, A.M., Dougherty, M. K., Gurnett, D. A., "Influence of negatively charged plume grains on the structure of Enceladus' Alfvén wings: Hybrid simulations versus Cassini Magnetometer data," *Journal of Geophysical Research*, American Geophysical Union, March 2011.

[LD19] Hsu, H.W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horányi, M., Juhász, A., Altobelli, N., Suzuki, K., Masaki, Y., Kuwatani, T., Tachibana, S., Sirono, S.I., Moragas-Klostermeyer, G., Srama, R., "Ongoing hydrothermal activities within Enceladus," *Nature*, Vol. 519, No. 7542, 2015.

[LD20] Matson, D. L., Castillo, J. O., Lunine, J., Johnson, T. V., "Enceladus' plume: Compositional evidence for a hot interior," *Icarus*, Vol. 187, No. 2, April 2007.

[LD21] Taubner, R.S., Pappenreiter, P., Zwicker, J., Smrzka, D., Pruckner, C., Kolar, P., Bernacchi, S., Seifert, A. H., Krajete, A., Bach, W., Peckmann, J., Paulik, C., Firneis, M. G., Schleper, C., Rittmann, S. K.-M. R., "Biological methane production under putative Enceladus-like conditions," *Nature Communications*, Vol. 9, No. 748, 2018.

[LD22] Combe, J.-P., McCord, T. B., Matson, D. L., Johnson, T. V., Davies, A. G., Scipioni, F., "Nature, distribution and origin of CO2 on Enceladus," *Icarus*, Vol. 317, Jan. 2019, pp. 491-508.

[LD23] Hemingway, J. D., Mittal, T., "Enceladus's ice shell structure as a window on internal heat production," *Icarus*, March 2019.

[LD24] Glein, C., Baross, J. A., Waite Jr., J. H. "The pH of Enceladus' ocean," *Geochimica et Cosmochimica Acta*, Vol. 162, Aug. 2015, pp. 202-219.

[LD25] Zastrow, M., Clarke, J. T., Hendrix, A., Noll, K. S., "UV spectrum of Enceladus," *Icarus*, Vol. 220, No. 1, July 2012, pp. 29-35.

[LD26] "Possible sources for methane and C2–C5 organics in the plume of Enceladus," *Planetary and Space Science*, Vol. 71, No. 1, Oct. 2012, pp. 73-79.

[LD27] Sherwood, B., "Strategic map for exploring the ocean-world Enceladus," *Acta Astronautica*, Vol. 126, Sept.-Oct. 2016, pp. 52-58.

[LD28] Schneck, P. M., McKinnon, W. B., "One-hundred-km-scale basins on Enceladus: Evidence for an active ice shell," *Geophysical Research Letters*, American Geophysical Union, Aug. 2009.

[LD29] Tobie, G., Teanby, N.A., Coustenis, A., Jaumann, R., Raulin, F., Schmidt, J., Carrasco, N., Coates, A.J., Cordier, D., De Kok, R., Geppert, W.D., Lebreton, J.-P., Lefevre, A., Livengood, T.A., Mandt, K.E., Mitri, G. Nimmo, F., Nixon, C.A., Norman, L., Pappalardo, R.T., Postberg, F., Rodriguez, S., Schulze-Makuch, D., Soderblom, J.M., Solomonidou, A., Stephan, K., Stofan, E.R., Turtle, E.P., Wagner, R.J., West, R.A. Westlake, J.H., "Science goals and mission concept for the future exploration of Titan and Enceladus," *Planetary and Space Science*, Vol. 104, Part A, Dec. 2014, pp. 59-77.

[LD30] Cavanaugh, J. F., Smith, J. C., Sun, X., Bartels, A.E., Ramos-Izquierdo, L., Krebs, D.J., McGarry, J. F., Trunzo, R., Novo-Gradac, A. M., Britt, J. L., Karsh, J., Katz, R. B., Lukemire, A. T., Szymkiewicz, R., Berry, D. L., Swinski, J. P., Neumann, G. A., Zuber, M. T., Smith, D. E., "The Mercury Laser Altimeter Instrument for the MESSENGER Mission," *Space Science Reviews*, Vol. 131, Issue 1-4, 2007, pp. 451-479.

[LD31] Souček, O., Behounkova, M., Cadek, O., Hron, J., Tobie, G., Choblet, G., "Tidal dissipation in Enceladus' uneven, fractured ice shell," *Icarus*, Vol. 328, Aug. 2019, pp. 218-231.

[LD32] Dougherty M.K., Kellock, S., Southwood, D.J., Balogh, A., Smith, E.J., Tsurutani, B.T., Gerlach, B., Glassmeier, K.-H., Gleim, F., Russell, C.T., Erdos, G., Neubauer, F.M., Cowley, S.W.H, "The Cassini Magnetic Field Investigation," Space Science Reviews, Vol. 144, 2004, pp. 331-383.

[LD33] Keller, H.U., Barbieri, C., Lamy, P., Rickman, H., Rodrigo, R., Wenzel, K.P., Sierks, H., A'Hearn, M.F., Angrilli, F., Angulo, M., Bailey, M.E., Barthol, P., Barucci, M.A., Bertaux, J.L., Bianchini, G., Boit, J.L., Brown, V., Burns, J.A., Buttner, I., Castro, J.M., Cremonese, G., Curdt, W., Da Deppo, V., Debei, S., De Cecco, M., Dohlen, K., Fornasier, S., Fulle, M., Germerott, D., Gliem, F., Guizzo, G.P., Hviid, S.F., Ip, W.H., Jorda, L., Koschny, D., Kramm, J.R., Kuhrt, E., Kuppers, M., Lara, L.M., Llebaria, A., Lopez, A., Lopez-Jimenez, A., Lopez-Moreno, J., Meller, R., Michalik, H., Michelena, M.D., Muller, R., Naletto, G., Origne, A., Parzianello, G., Pertile, M., Quintana, C., Ragazzoni, R., Ramous, P., Reiche, K.U., Reina, M. Rodrigez, J., Rousset, G., Sabau, L., Sanz, A., Sivan, J.P., Stockner, K., Tabero, J., Telljohann, U., Thomas, N., Timon, V., Tomasch, G., Wittrock, T., Zaccariotto, M., "OSIRIS - The Scientific Camera System Onboard Rosetta," NASA Planetary Data System Small Bodies Node.

[https://pdssbn.astro.umd.edu/holdings/ro-a-osiwac-3-ast1-steinsflyby-v1.4/document/osiris_ssr/osiris_ssr.pdf. Accessed 5/6/19]

[LD34] Gulkis, S., Frerking, M., Crovisier, J., Beaudin, G., Hartogh, P., Encrenaz, P., Koch, T., Kahn, C., Slinas, Y., Nowicki, R., Irigoyen, R., Janssen, M., Stek, P., Hofstadter, M., Allen, M., Backus, C., Kamp, L., Jarchow, C., Steinmetz, E., Deschamps, A., Krieg, J., Gheudin, M., Bockelee-Morvan, D., Biver, N., Encrenaz, T., Despois, D., Ip, W., Lellouch, E., Mann, I., Muchleman, D., Rauer, H., Schloerb, P., Spilker, T., "MIRO: Microwave Instrument for Rosetta Orbiter," Space Science Reviews, vol. 128, 2007, pp. 561-597.

[LD35] Neuvue, M. et al., "The Ladder of Life Detection", Astrobiology Vol. 18, No.11, 2018.

[LD36] Domagal-Goldman, S.D. et al., "The Astrobiology Primer v2.0", Astrobiology, Vol. 16, No. 8, 2016.

References: Trajectory

[1] S. Campagnola, N. J. Strange, and R. P. Russell, "A fast tour design method using non-tangent V-infinity leveraging transfers," presented at the AAS/AIAA Space Flight Mechanics Meeting, Paper AAS 10-164, San Diego, California, February 2010.

[2] R. P. Russell and M. Lara, "On the design of an Enceladus science orbit," presented at the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Paper AIAA 2008-7072, Honolulu, Hawaii, Aug. 18–21, 2008.[7] National Aeronautics and Space Administration, "Planetary Protection Provisions for Robotic Extraterrestrial Missions," NASA Program Requirements (NPR) 8020.12C, April 27, 2005.

[3] N. J. Strange, S. Campagnola, and R. P. Russell, "Leveraging Flybys of Low Mass Moons to Enable an Enceladus Orbiter," Proceedings of the Astrodynamics Specialist Conference, Pittsburgh, PA, Aug 2009. Paper AAS 09-435. Submitted to Journal of Spacecraft and Rockets.

[4] N.J. Strange, T.R. Spilker, D.F. Landau, T. Lam, D.T. Lyons, and J.J. Guzman, "Mission Design for the Titan Saturn System Mission Concept," AAA Paper 09-356, AAS/AIAA Astrodynamics Conference, Pittsburgh, PA, Aug. 2009.

Trajectory Overview & Mission Timeline

via moon tour

Mission Stage	Duration
Launch->Venus (SEP)	1 year
VEJS Tour	6 years
Saturn Moon Tour	2.7 years
Enceladus Orbit	1 year
Spacecraft Disposal	TBD

Saturn

moon tour

Flight Computer

Components selected: BAE RAD5545, DDC 192 Gbit NAND flash memory

RAD5545 Specification	Notes
Processor Throughput	Up to 5.6 GOPS/3.7 GFLOPS
Memory Bandwidth	Up to 102 Gb/s
Memory	Up to 16 GB RAM
Operating Temperature	-55 to +125 degrees Celsius
Power Supply	35W

Science operations for a given pass through plumes

**	Day In the Life Pass							
Instrument	Approaching Plumes	In Plumes	Departing Plumes					
MASPEX	Inactive	Sample Collection	Sample Analysis					
EOA Inactive		Sample Collection	Sample Analysis					
ENIJA Inactive		Sample Collection	Sample Analysis					
Imaging Subsystem Imagining plumes		Imaging surface	Imagining plumes					
SELFI	Active	Inactive	Inactive					
Magnetometer Inactive Radio Inactive		Inactive	Sometimes Active					
		Inactive	Active if Enceladus occulting with DSN					
Active if mapping		Active if mapping fissures	Active if mapping topography					

Science operations at each altitude

			Instruments									
Orbit Altitude (km)	Number of Orbits	MASPEX	ENIJA	EOA	SELFI	Wide Angle Camera	Narrow Angle Camera	Magnetometer	Radio Science	Laser Altimeter	Science	
20											in-situ sample collection & analysis, magnetic sensing, radio science	
30										r,		
40											in-situ sample collection & analysis	
50											in-situ sample collection & analysis Imaging Spectroscopy, VIS/IR surface mapping,	
70											Imaging Spectroscopy, VIS/IR surface mapping Topographical surface mapping	
100												
Point	ing	Direction of Motion	Direction of Motion	Direction of Motion	Nadir	Nadir	Nadir	ş	Deep Space Network	Nadir		

Power Budget

		Data	Trajectory	
Mode	Data Collection	Transmission	Correction	Coast/Charging
Payload	168	20	20	20
Thermal*	100	100	100	100
Power Harness*	40	40	40	50
Communications	50	275	50	50
Processing	35	35	35	35
ACDS	165	165	165	0
Propulsion	0	0	46	0
Estimated Power Draw	558	635	456	255
Margin	30%	30%	30%	30%
Allocated Power Draw (W)	725	826	593	332
Hours/Week	1.7	4	1	161
Energy Used/Week (Wt-hr/week)	1255	3302	593	53,452
Provided by Batteries (Wt-hr/week)	651	1907	244	-

Power required from ASRG	349 W (EOL) 433 W (BOL)
Battery Capacity (2 weeks of operation without charging)	5603 Wt-hrs

Power Supply

Source	ASRG (Advanced Stirling Radioisotope Generator)
Number used	3
Total Mass	128 kg
Total Power	420 W (BoL) 338 W (EoL)

Source	Li-ion Battery
Number used	1
Total Mass	45 kg
Capacity	7658 Wt-hours

System Health Management Verification

- Simulate a component-based model of the spacecraft system
- Over some number of trials, randomly select components to fail
 - Spacecraft system in some hidden failure state
- The algorithm is only given the symptoms of failure and must correctly determine the hidden failure state up to
 95% of the time - defined by requirement AUTO.7

Verifying Target Selection Algorithm

- Simulate Enceladus surface with arbitrarily placed features
 - o Geological features–fissures, canyons, geysers
- Design a camera model to replicate hardware performance constraints
- Mapping and target selection algorithms can be fed simulated images via camera model
- Perform algorithms and assess using standard metrics

Mission Extensions - Science Objectives

Primary Mission

Attempt to Detect Life

In-Situ plume sampling

Determine Habitability

- 70% Surface Mapping
- Subsurface environment estimation

Extended Mission

Attempt to Detect Life

 Lower plume orbits for higher quantity of sample material at greater risk

Determine Habitability

90% Surface mapping

Enceladus Seasonal Variation

 Build an enhanced understanding of Enceladus' climente across Saturnian seasons.

Science through Disposal

Additional budget will allow for science instruments to be operated through EOL disposal. EOL trajectory will involve several more fly-bys of various other Saturnian Moons.

