Transformări geometrice în spațiu

Problema 12.1. Determinați matricea unei rotații de unghi $\pi/6$, în jurul axei Oy, urmate de translația $\operatorname{Trans}(1,-1,2)$.

Problema 12.2. Determinați matricea rotației de unghi $\pi/4$ în jurul dreptei determinate de punctele P(2,1,5) și Q(4,7,2).

Problema 12.3. Determinați matricea reflexiei fața de planul 2x - y + 2z - 2 = 0. Determinați imaginea prin reflexie a tetraedrului ABCD, cu vărfurile A(0,0,0), B(1,0,0), C(0,1,0) și D(0,0,1).

Problema 12.4. Fie A(1,2,2), B(2,4,3) şi C(4,3,2). Determinați imaginea triunghiului ABC prin forfecarea de unghi 30° , relativ la planul x-y-z-1=0, în direcția vectorului $\mathbf{v}(1,1,0)$.

În problemele care urmează, ABC este triunghiul de vârfuri A(1,2,2), B(2,4,3), C(4,3,2).

Problema 12.5. Determinați imaginea triunghiului ABC printr-o rotație de 45° în jurul dreptei care trece prin punctele P(2,2,1) și Q(1,1,1).

Problema 12.6. Determinați imaginea triunghiului ABC printr-o rotație de 30° în jurul dreptei

$$(\Delta): \frac{x-1}{2} = \frac{y-3}{0} = \frac{z-2}{2}.$$

Problema 12.7. Determinați imaginea triunghiului ABC printr-o rotație de 60° în jurul dreptei

$$(\Delta): \begin{cases} x - y + z - 1 = 0, \\ 2x + y = 0. \end{cases}$$

Problema 12.8. Determinați imaginea triunghiului ABC printr-o scalare simplă neuniformă, relativ la punctul Q(2,5,3), de factori de scală (2,1,3).

Problema 12.9. Determinați imaginea triunghiului ABC printr-o scalare neuniformă generală, relativ la punctul Q(2,5,3), de factor de scală s=1, în direcția vectorului $\mathbf{v}(1,3,2)$.

Problema 12.10. Determinați imaginea triunghiului ABC prin reflexia față de planul x-y+2z-1=0.

Problema 12.11. Determinați imaginea triunghiului ABC prin reflexia față de planul care trece prin punctele O(0,0,0), P(1,1,1), Q(1,3,2).

Problema 12.12. Determinați imaginea triunghiului ABC prin forfecarea de unghi 30° , relativ la planul care trece prin punctele O(0,0,0), P(1,1,1), Q(1,3,2), în direcția vectorului $\mathbf{v}(1,-1,0)$.