

04 Statistische Tests

Dominic Schmitz & Janina Esser

Statistische Tests

Einfachster Teil der inferenziellen Statistik:
 wir nehmen unsere Daten und leiten etwa aus ihnen ab

Geschieht meist anhand des "Null-Hypothesis Significance Testing"

Resultat ist oftmals der berühmte p-Wert (probability value)

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion		
Testen auf Normalverteilung	Shapiro-\	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Median, Standardabweichung Interquartial-Spannweite		Proportion		
Testen auf Normalverteilung	Shapiro-\	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Median, Standardabweichung Interquartial-Spannweite		Proportion		
Testen auf Normalverteilung	Shapiro-\	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

- mit einem Shapiro-Wilk Test kann man feststellen, ob eine Stichprobe normalverteilt ist
- die Normalverteilung ist eine um den Durchschnitt symmetrische Verteilung, d.h. Werte in der Nähe des Durchschnitts treten häufiger auf als solche, welche weiter vom Durchschnitt entfernt liegen

 68.27 % der Datenpunkte befinden sich innerhalb 1 Standardabweichung vom Durchschnitt

 94.45 % der Datenpunkte befinden sich innerhalb 2 Standardabweichungen vom Durchschnitt

 99.73 % der Datenpunkte befinden sich innerhalb 3 Standardabweichungen vom Durchschnitt

- mit einem Shapiro-Wilk Test kann man feststellen, ob eine Stichprobe normalverteilt ist
- die Normalverteilung ist eine um den Durchschnitt symmetrische Verteilung, d.h. Werte in der Nähe des Durchschnitts treten häufiger auf als solche, welche weiter vom Durchschnitt entfernt liegen
- diese Info ist wichtig, da verschiedene andere Tests nur dann funktionieren, wenn Daten (annähernd) normalverteilt sind
- Daten müssen voneinander unabhängig sein; die Datenmenge sollte zwischen 3 und 5000 liegen
- als Beispiel nutzen wir das "Vowel Shortening in German" Datenset aus dem SfL Package

• Sind die Vokaldauern von /a/, /e/ und /i/ normalverteilt?

- Sind die Vokaldauern von /a/, /e/ und /i/ normalverteilt?
- Der Shapiro-Wilk Test kommt zu folgenden Ergebnissen:

	p-Wert
/a/	p < 0.001
/e/	p < 0.001
/i/	p < 0.001

Da die p-Werte kleiner 0.05 sind, sind die Daten nicht normalverteilt

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion		
Testen auf Normalverteilung	Shapiro-	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

t-Test

- Es gibt verschiedene Arten des t-Tests
- Wichtig dabei:
 Stammen meine Daten aus dem gleichen Sample?
- Ja z.B. falls zwei Experimente mit gleichen TN durchgeführt werden
 - → dependent samples t-test
- Nein z.B. falls zwei Experimente mit verschiedenen TN durchgeführt werden
 - → independent samples t-test

t-Test – dependent samples

Beispiel: Blutdruck

df	=	10	1
		*	

Blutdruck	1	2	3	4	5	6	7	8	9	10
Placebo x	168	184	172	173	150	155	163	164	151	146
Medikament y	176	145	150	163	136	168	164	139	145	112
Differenz z	8	-39	-22	-10	-14	13	1	-25	-6	-34

•
$$\bar{z} = -12.8$$

•
$$s = 17.36$$

•
$$t = -2.332$$

t-Test – independent samples

Beispiel: f0 bei Männern

f0	1	2	3	4	5	6	7	8	9	10
Gruppe 1 x	55	69	64	70	75	70	83	69	75	69
Gruppe 2 y	61	60	62	58	75	63	52	66	59	

•
$$n_y = 10, n_x = 9$$

•
$$\bar{x} = 69.00, \bar{y} = 61.78$$

•
$$s_x = 7.972, s_y = 6.280$$

$$s_p = 7.226$$

$$t = -2.175$$

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion		
Testen auf Normalverteilung	Shapiro-'	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

Chi-Quadrat-Test

- mit Chi-Quadrat-Tests können wir bestimmen, ob zwei kategorische Variablen zusammenhängen
- als Beispiel nutzen wir das "Age and Looks" Datenset aus dem SfL Package

	blue	brown	green
blonde	3	7	3
brunette	5	15	2
red	1	3	1

Chi-Quadrat-Test

- nun können wir mit einem Chi-Quadrat-Test testen, ob Haar- und Augenfarbe in unserem Sample zusammenhängen
- Ergebnis: p = 0.84 > 0.05, d.h. nein, kein Zusammmenhang

	blue	brown	green
blonde	3	7	3
brunette	5	15	2
red	1	3	1

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten		
Beschreibung einer Gruppe	Durchschnitt, Median, Standardabweichung Interquartial-Spannwe		Proportion		
Testen auf Normalverteilung	Shapiro-	-			
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test		
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test		
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test		
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q		
Korrelation	Pearson	Spearman			

Wilcoxon-Mann-Whitney Test

- Reminder: t-Tests setzen eine (annähernde) Normalverteilung der Daten voraus
- der Wilcoxon-Mann-Whitney Test kann auch mit nicht-normalverteilten
 Daten umgehen
- als Beispiel nutzen wir das das "Vowel Shortening in German" Datenset aus dem SfL Package

Wilcoxon-Mann-Whitney Test

 die Vokaldauern von /a/, /e/ und /i/ sind nicht normalverteilt (siehe Shapiro-Wilk Test)

Wilcoxon-Mann-Whitney Test

Ergebnis:

ja, die Vokale haben unterschiedliche Dauern

	/a/ vs. /e/	/a/ vs. /i/	/e/ vs. /i/
t-Test	<0.001	<0.001	0.00568
WMW-Test	<0.001	<0.001	0.00241

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion
Testen auf Normalverteilung	Shapiro-	-	
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q
Korrelation	Pearson	Spearman	

- die Korrelation beschreibt eine Beziehung zwischen zwei oder mehr Variablen
- Korrelation bedeutet nicht Kausalität!
 - zwei Variablen können korreliert sein
 - ohne dabei in kausaler Verbindung zu stehen

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

People who drowned after falling out of a fishing boat

correlates with

Marriage rate in Kentucky

tylervigen.com

- sind die zu vergleichenden Daten normalverteilt und numerisch, nutzen wir Pearson's r
- sind die zu vergleichenden Daten nicht normalverteilt und/oder nicht numerisch, nutzen wir Spearman's rho
- als Beispiel nutzen wir das "Duration of word-final /s/ in English" Datenset aus dem SfL Package

- Wann sprechen wir von Korrelation?
 - \rightarrow 4-stufige Version

Korrelationskoeffizient		Label	Richtung		
0.7	< r ≤	1.0	sehr hoch		
0.5	< r ≤	0.7	hoch	nocitivo Korrolation	
0.2	< r ≤	0.5	mittel	positive Korrelation	
0.0	< r ≤	0.2	niedrig		
	r≈0		keine Korrelat	ion	
0.0	> r ≥	-0.2	niedrig		
-0.2	> r ≥	-0.5	mittel	nogativa Karralatian	
-0.5	> r ≥	-0.7	hoch	negative Korrelation	
-0.7	> r ≥	-1.0	sehr hoch		

- Wann sprechen wir von Korrelation?
 - \rightarrow 3-stufige Version

Korrelationskoeffizient		Label	Richtung		
0.6	< r ≤	1.0	hoch		
0.3	< r <	0.6	mittel	positive Korrelation	
0.0	< r <	0.3	niedrig		
	r≈0		keine Korrelation		
0.0	> r ≥	-0.3	niedrig		
-0.3	> r ≥	-0.6	mittel	negative Korrelation	
-0.6	> r ≥	-1.0	hoch		

- Wann sprechen wir von Korrelation?
 - \rightarrow 2-stufige Version

Korrelationskoeffizient		Label	Richtung		
0.6	< r ≤	1.0	hoch	nocitivo Vorrolation	
0.2	< r ≤	0.5	mittel	positive Korrelation	
-0.2 ≤ r ≤ 0.2		niedrig bis keine Korrelation			
-0.2	> r ≥	-0.5	mittel	negative Korrelation	
-0.5	> r ≥	-1.0	hoch		

• generell gilt: es gibt so viele Versionen wie wissenschaftliche Aufsätze

Frage: sind /s/-Dauer und base-Dauer korreliert?

Antwort: ja, da r = 0.47

Ziel	normalverteilte Daten	nicht normalverteile Daten	kategoriale Daten
Beschreibung einer Gruppe	Durchschnitt, Standardabweichung	Median, Interquartial-Spannweite	Proportion
Testen auf Normalverteilung	Shapiro-Wilk Test		-
Vergleich zweier unabhängiger Gruppen	t-Test independent samples	Wilcoxon-Mann-Whitney Test	Fisher's Test
Vergleich zweier abhängiger Gruppen	t-Test dependent samples	Wilcoxon Signed-Rank Test	McNemar's Test
Vergleich dreier oder mehr unabhängiger Gruppen	ANOVA	Kruskal-Wallis Test	Chi-Quadrat Test
Vergleich dreier oder mehr abhängiger Gruppen	ANOVA	Friedman Test	Cochrane Q
Korrelation	Pearson	Spearman	