Ch3. ConvNeXt

A ConvNet for the 2020s

Modernizing a ConvNet

- Start model: ResNet-50
- ViT에 사용된 유사한 training technique들을 적용
- Marcro design
- ResNeXt
- Inverted bottleneck
- Large kernel size
- Varisous layer-wise micro designs

Marcro level

Training Techniques

- Training epochs: 300 (ResNet -90 epochs)
- Optimizer:AdamW
- Data augmentation
 - Mixup
 - Cutmix
 - RandAugment
 - Random Erasing
- Regularization
 - Stochastic Depth
 - Label Smoothing
- Accuracy : $76.1\% \rightarrow 78.8\%(+2.7\%)$

Change stage compute ratio

• Swin-T's 각 stage의 computation ratio :1:1:3:1

• 기존 ResNet50 stage 구성인 3,4,6,3을 Swin Transformer의 1:1:3:1 비율에

맞게 수정

• ResNet50의 stage 구성: 3,4,6,4 → 3,3,9,3

• Accuracy: $78.8\% \rightarrow 79.4\%(+0.6\%)$

	output size	• ResNet-50	ConvNeXt-T	o Swin-T	
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4	
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 96 \\ 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 96 \times 3 \\ MSA, w7 \times 7, H=3, \text{ rel. pos.} \\ 1 \times 1, 96 \\ 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix} \times 2$	
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 192 \times 3 \\ MSA, w7 \times 7, H=6, \text{ rel. pos.} \\ 1 \times 1, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 2$	
res4	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	[d7×7, 384] 1×1, 1536] × 9 1×1, 384]	$\begin{bmatrix} 1 \times 1, 384 \times 3 \\ MSA, w7 \times 7, H=12, rel. pos. \\ 1 \times 1, 384 \end{bmatrix} \times 6$ $\begin{bmatrix} 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix}$	
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 768 \times 3 \\ MSA, w7 \times 7, H=24, rel. pos. \\ 1 \times 1, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 2$	
FLOPs		4.1×10^{9}	4.5×10^{9}	4.5×10^{9}	
# params.		25.6×10^{6}	28.6×10^6 28.3×10^6		

Table 9. Detailed architecture specifications for ResNet-50, ConvNeXt-T and Swin-T.

Changing Stem to "Patchify"

ResNet stem cell: 7x7 Conv layer, stride 2, maxpooling, 4x downsampling

• Swin-T의 'patch merging'과 같이 4x4 kernel size, stride 4를 통해

patchify 수행

• Accuracy : $79.4\% \rightarrow 79.5\%(+0.1\%)$

Swin-T	ViT
classification o	gmentation detection classification
	6×
	3× 16×
	16×

	output size	• ResNet-50	Conv NeXt-T	o Swin-T	
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4	
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 96 \\ 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 96 \times 3 \\ MSA, w7 \times 7, H=3, rel. pos. \\ 1 \times 1, 96 \\ 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix} \times 2$	
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 192 \times 3 \\ MSA, w7 \times 7, H=6, \text{ rel. pos.} \\ 1 \times 1, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 2$	
res4	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} d7 \times 7, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 9$	MSA, w7×7, H=12, rel. pos. 1×1, 384 1×1, 1536 1×1, 384 × 6	
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 768 \times 3 \\ MSA, w7 \times 7, H=24, \text{ rel. pos.} \\ 1 \times 1, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 2$	
	FLOPs	4.1×10^{9}	4.5×10^{9}	4.5×10^{9}	
#	params.	25.6×10^{6}	28.6×10^{6}	28.3×10^{6}	

Table 9. Detailed architecture specifications for ResNet-50, ConvNeXt-T and Swin-T.

ResNeXt-ify

- ResNeXt에서 적용하는 depthwise seperable convolution을 사용하여 연산량(FLOPs)를 줄이고 capacity는 유지(width 또한 Swin-T와 동일하게 적용)
- FLOPS(5.3G)<-기대 연산량 4.5G
- Accuracy : $79.5\% \rightarrow 80.5\%(+1.0\%)$

Inverted Bottleneck

- Inverted Bottleneck(MobileNetV2)
- Reduce network FLOPs → 4.6G
- Accuracy : $79.5\% \rightarrow 80.5\%(+1.0\%)$

Moving up Depthwise Conv Layer

- Depth-wise Conv = Swin-T의 Self-Attention
- Swin-T와 동일한 구조로 변경(그림b→그림c)
 - Transformer의 연산 순서: MSA→ MLP
- Reduce network FLOPs → 4.1G
- Accuracy : $80.5\% \rightarrow 79.9\%(-0.6\%)$

Increasing the Kernel Size

- VGG부터 3x3 kernel size가 일반적으로 사용
- →Swin-T에 맞게 7x7로 수정(depth-wise convolution에 적용)
- Accuracy: $79.9\% \rightarrow 80.6\% (+0.7\%)$

	output size	• ResNet-50	ConvNeXt-T	o Swin-T
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride 2	4×4, 96, stride 4	4×4, 96, stride 4
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	[d7×7, 96] 1×1, 384 1×1, 96] × 3	$ \begin{array}{c c} 1 \times 1, 96 \times 3 \\ MSA, w7 \times 7, & I=3, \text{ rel. pos.} \\ \hline 1 \times 1, 96 & \times 2 \\ \hline 1 \times 1, 384 \\ 1 \times 1, 96 \end{array} $
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1 & 192 \times 3 \\ MSA, w7 \times 7, & H=6, \text{ rel. pos.} \\ 1 \times 1, & 192 \end{bmatrix} \times 2 $ $ \begin{bmatrix} 1 \times 1, & 768 \\ 1 \times 1, & 192 \end{bmatrix} $
res4	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	[d7×7, 384] 1×1, 1536 1×1, 384] × 9	$\begin{bmatrix} 1 \times 1 & 384 \times 3 \\ MSA, w7 \times 7, & H=12, rel. pos. \\ 1 \times 1, 384 \end{bmatrix} \times 6$ $\begin{bmatrix} 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix}$
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, & 768 \times 3 \\ MSA, & w7 \times 7, & H=24, \text{ rel. pos.} \\ 1 \times 1, & 768 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, & 3072 \\ 1 \times 1, & 768 \end{bmatrix}$
	FLOPs	4.1×10^9	4.5×10^9	4.5×10^9
# params.		25.6×10^{6}	28.6×10^{6}	28.3×10^{6}

Micro level

Replacing ReLU with GELU

- ReLU→ GELU(Gaussian Error Linear Unit)
- 기존 Transformer에도 ReLU가 사용되었지만 BERT 이후로 GELU로 모두 대체
- Accuracy : 80.6 % \rightarrow 80.6% (+0.0%)

Fewer Activation Functions/ Normalization Layers

• Activation/Normalization을 매 layer 마다 적용

→ 한번 만 적용

• Accuracy : 80.6 % \rightarrow 81.4%(+0.8%)

Substituting BN with LN

- Batch Normalization→ Layer Normalization으로 변경
- Accuracy : 81.4 % \rightarrow 81.5%(+0.1%)

Separate Downsampling Layers

- 각 Stage마다 첫 블록에서 downsampling → stage와 stage 사이에 downsampling + normalization
- Accuracy: $81.5 \% \rightarrow 82.0\%(+0.5\%)$

	output size	• ResNet-50		ConvNeXt-T	o Swin-T		
stem	56×56	7×7 , 64, stride 2 3×3 max pool, stride	2	4×4, 96, stride 4	4×4, 96, stride 4		
res2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		$\begin{bmatrix} d7 \times 7, 96 \\ 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 96 \times 3 \\ MSA, w7 \times 7, H=3, \text{ rel. pos.} \\ 1 \times 1, 96 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, 384 \\ 1 \times 1, 96 \end{bmatrix}$	Downsample	ina
res3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$		$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 192 \times 3 \\ MSA, w7 \times 7, H=6, rel. pos. \\ 1 \times 1, 192 \end{bmatrix} \times 2$ $\begin{bmatrix} 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix}$	Downsampl	J
res4	14×14	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$		$\begin{bmatrix} d7 \times 7, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 9$	$\begin{bmatrix} 1 \times 1, 384 \times 3 \\ MSA, w7 \times 7, H=12, rel. pos. \\ 1 \times 1, 384 \end{bmatrix} \times 6$ $\begin{bmatrix} 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix}$	Downsampl	
res5	7×7	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1,768 \times 3 \\ MSA, w7 \times 7, H=24, rel. pos. \\ 1 \times 1,768 \\ 1 \times 1,3072 \\ 1 \times 1,768 \end{bmatrix} \times 2$	Downsampl	ing
	FLOPs 4.1×10^9			4.5×10^9	4.5×10^9		
#	# params. 25.6×10^6			28.6×10^{6}	28.3×10^{6}		

ConvNeXt Block Design

Compare

Summary

- Optimizer는 AdamW
- Residual Block을 Transformer Block 처럼 구성
- Convolution은 Depthwise convolution(width를 넓게)
- Kernel size는 7x7
- Activation과 normalization layer는 블록마다 적용
- Down-sampling은 Stage와 Stage 사이에 적용