

Processing and Classification of Proteomics Mass Spectra (MS) data in R with caMassClass package

By Jarek Tuszynski

jaroslaw.w.tuszynski@saic.com

(703) 676-4192

caMassClass Package

- Package of functions for processing and classification of protein mass spectra data.
- Released as "open source" through <u>CRAN</u> website, together with its companion package "caTools"
- Functions range:
 - from generic (moved to caTools) to specific
 - from low level (easily used in other codes; IO using R structures) to high level (one-function pipelines with file IO)

caTools Package

- This presentation will focus on functions specialized to narrow task of analyzing MS data
- However, specialized functions required development of various generic tools which were placed in a separate package "caTools":
 - fast moving window statistic functions (mean, minimum, maximum, MAD, quantile) needed for peak finding.
 - fast calculation of Area Under ROC Curve (AUC), aka.
 Wilcoxon test needed for feature selection
 - base64 encoder/decoder needed for mzXML support
 - round-off error free sum and 'cumsum'

Use Cases

- User inputs Process Parameters, which will uniquely describe the rest of the flow. The parameters are saved into *Parameter Store*, which will be retrieved by remaining processes.
- Data is pre-processed according to user specifications retrieved from Parameter Store, and then stored in Pre-processed Data Store.
- Classifiers are built using *pre-processed data* and *class labels*. The algorithms used and steps of the process are specified by *Parameter Store*.
- Classifier is verified by a User or applied by a Clinical Manager.
 That is done by running the classifier on unlabeled preprocessed data in order to predict the class labels.

Terms Used

- data set features by samples data where each sample has one or more MS spectra (copies). All MS spectra were taken under the same conditions.
- data sets data sets taken under different conditions for the same samples (example SELDI data using IMAC3-Cu & WCX2 chips)
- class labels describe samples (for example "cancer", "normal", "benign")
- **preprocessing** steps used to improve and lower dimensionality of the data, performed without use of class labels
- **biomarkers** aligned peaks. We might or might not know what they are.

Data Input and Pre-Processing

Project Run:

- Read input files and save than in R binary format
- Preprocess Pipeline:
 - Base-line subtraction optional step since it is usually performed as part of data collection.
 - Trimming low & high m/z values
 - Normalization match means and/or mediums of all samples. (performed by mcs.mass.adjust)
 - Mass Drift Adjustment shift each row to the right or the left if it improves its correlation with the rest of the samples.
 - Peak Finding and Alignment steps designed to reduce dimensionality of the data by extracting common peaks (aka biomarkers) from the data.
 - "Filling" of biomarker matrix fills gaps caused by lack of a peak in given sample in given range.
 - Merging of copies of each sample:
 - Average copies in order to reduce noise
 - Keep all copies
 - Throw out the outliers
- Concatenate data sets increasing number of features

Classification

- For each step of **cross-validation**:
 - Split samples of Pre-processed Data into temporary test and train sets.
 - Perform **feature selection** on train set:
 - Individual feature selection using: AUC, T-test, etc.
 - Individual feature removal: for highly correlated features remove sub-optimal features.
 - Perform classification on train set using:
 - Support Vector Machine (svm)
 - Neural Networks (nnet)
 - CART Classification And Regression Trees (rpart)
 - Boosting algorithms (LogitBoost)
 - Test the classifier on test data set, and keep track of its performance
- **Build final classifier** using all *Pre-processed Data with* labels, by following feature selection and classification steps above.
- **Predict labels** of all un-labeled samples

Algorithm families supported by caMassClass

Different approaches for classification of Protein MS:

- Green: method used in analysis of EVMS data as described by <u>Bao-</u> <u>Ling Adam</u>
- Orange: same as green but without use of proprietary software. Similar to method described by <u>K. Baggerly</u>
- Red: method used in <u>Petricoin/Liotta</u> study where feature selection was done by genetic algorithm and Kohonnen SOM's were used for classification

Input Data Types

- Input data can be in form of:
 - Raw MS spectra (all have to have the same length and m/z values)
 - Baseline subtracted MS spectra
 - Uneven list of peaks for each spectrum
 - Biomarker matrix (sample by biomarker table) with or without missing values.
- Input data can have:
 - Multiple copies of each sample
 - Multiple data sets
 - Two or more class labels
- Input/Output files can be in form of:
 - CSV files (multiple directories, compressed & uncompressed)
 - mzXML files
 - "Project File" is in the form of CSV file

IO Data Formats

- Raw MS or Peak data:
 - scan (meta-data) copied
 - peaks replaced
- Meta Data:
 - parentFile appended
 - msInstrument copied
 - dataProcessing appended
 - separation copied
 - spotting copied
- Quality Control (QC) & fast access data:
 - offset replaced
 - indexOffset replaced
 - sha1 replaced
- Project File
 - Sample Class Labels (i.e. "cancer", "normal")
 - Sample copies (multiple copies of scans of the same sample)
 - Data sets (multiple experiments performed on the same samples)
 - Sample names (CSV file names)

Internal Data Structures

- Simple types designed to be fast and extensible
- Three main data structures are:

3D format used during pre-processing

Array:

• each row is single m/z value

• each column is single sample

• each band is a different copy

Class Labels

Uneven Peak List used in peak finding section

			Substanc
Spectrum.Tag	Spectrum.	Intensity	e.Mass
cancer_01(1)	1	0.517369	2960.36
cancer_01(1)	1	0.98591	3894.02
cancer_01(1)	1	1.667703	3965.85
cancer_01(1)	1	1.667703	3982.16
cancer_01(1)	1	0.435958	4293.57
cancer_01(1)	1	0.476308	4310.54
cancer_01(1)	1	0.444201	4483.32
cancer_01(1)	1	1.434796	4655.72
cancer_01(1)	1	0.69378	4759.69
cancer_01(1)	1	0.476156	5349.39
cancer_01(1)	1	4.007973	5917.95
cancer_01(1)	1	4.318063	5933.6
cancer_01(1)	1	1.193908	6124.45
cancer_01(1)	1	0.534523	6955.01
cancer_01(1)	1	4.064739	7779.58
cancer_01(1)	1	0.798553	8155.69
cancer_01(1)	1	0.312816	8615.99
cancer_01(1)	1	1.135725	8946.77
cancer_01(1)	1	5.005366	9301.59
cancer_01(1)	1	2.001326	9509.51
cancer_01(1)	1	0.276836	10277.8
cancer_01(1)	1	0.255963	11745.1
cancer_01(1)	1	0.784887	13894.4
cancer_02(1)	2	0.500555	2959.36
cancer_02(1)	2	0.941613	3892.87
cancer_02(1)	2	1.287152	3965.85
cancer_02(1)	2	0.208383	4292.36
cancer_02(1)	2	1.117763	4654.45
cancer_02(1)	2	0.665819	4759.69
cancer_02(1)	2	0.48962	5348.04

Biomarkers matrix used during classification

		M3894.6	M3965.85	M3982.16	M4079.54	M4284.5
	cancer_01(1)	0.9616	1.6266	1.6266	0.4729	0.4252
	cancer_02(1)	0.9451	1.2919	0.0000	0.3405	0.2092
	cancer_03(1)	0.8889	1.1636	0.0000	0.3666	0.2097
	cancer_04(1)	1.2880	1.5457	0.0000	0.3153	0.7957
	cancer_05(1)	0.9964	1.5826	0.0000	0.4046	0.3315
	cancer_06(1)	0.9052	0.0000	0.0000	0.2531	0.1969
\Box	normal_01(1)	1.2410	0.0000	2.0169	0.0000	0.4520
as	normal_02(1)	1.1391	0.0000	0.0000	0.0000	0.0000
S	normal_03(1)	1.0525	1.3626	0.0000	0.0000	0.2630
ا ه	normal_04(1)	1.1320	0.0000	0.0000	0.0000	0.0000
<u>\$</u>	normal_05(1)	1.4636	1.6314	1.1889	0.0000	0.4756
abels	normal_06(1)	0.7593	0.0000	0.0000	0.0000	0.0000
	cancer_01(2)	0.9185	1.3135	1.3135	0.0000	0.3508
	cancer_02(2)	1.0493	1.2660	0.0000	0.5149	0.3132
	cancer_03(2)	0.9893	1.1365	0.0000	0.0000	0.0000
	cancer_04(2)	1.3401	1.4539	0.0000	0.0000	0.5812
	cancer_05(2)	1.5399	2.3200	0.0000	0.0000	0.5812
	cancer_06(2)	1.1330	0.0000	0.0000	0.3799	0.3172
	normal_01(2)	1.4561	0.0000	2.1135	0.4678	0.6964

mzXML File Example


```
?xml version="1.0" encoding="ISO-8859-1"?>.
           <mzXML xmlns="http://sashimi.sourceforge.net/schema revision/mzXML 2.1".</pre>
            xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance".
            xsi:schemaLocation="http://sashimi.sourceforge.net/schema revision/mzXML 2.1 http://sashimi.sourceforge.net/schema revision/mzX
            <msRun scanCount="40">.
              Standard
              <msInstrument>.
Heading
                                                                       Copied
               <msManufacturer category="msManufacturer" value="ThermoFinnigan"/>.
               <msModel category="msModel" value="LCQ Deca"/>.
                                                                       section
               <software type="acquisition" name="Xcalibur" version="1.3 alpha 8"/>
              </msInstrument>.
              <dataProcessing>.
               <software type="processing" name="cran.r-project.org/caMassClass" version="1.3" completionTime="2005-09-28T09:55:02"/>.
               </dataProcessing>.
              <scan num="1" msLevel="1" peaksCount="24">.
               <peaks precision="32" byteOrder="network" pairOrder="m/z-int">.
Appended
               RXM7XD92K7BFd7hSP9A0EUV4vUq/ODQRRX71wz7yJCFFhhkzPtm1L0WGo0E+7dt/RYwGzT7d0wJFkWmFP7MqUkWUqR8/LTqiRacVhT7tyBFFuNjhQHovwEW5VqB
               </peaks>.
 sections
              </scam>.
              <scan num="40" msLevel="1" peaksCount="25">.
               <peaks precision="32" byteOrder="network" pairOrder="m/z-int">.
               RW8kUj7ZVSVFc7ykP5kEd0V5B9c/e2+GRYYi4T8wpbtFhrRSPxlDskWL6R8+3nrRRZFphT+yGp5FpB1cPoToskWoLwo+oFVQRbjY4T+k0tpFyV57PyXfZEXP1R9
               </peaks>.
                                               Recreated section:
              </scan>.
            </msRum>.
                                             needed for fast access
            <index name="scan">.
              <offset id="1">1055</offset>.
                                                                                 Bin64 encoded
              <offset id="40">16706</offset>.
                                                                                   binary data
            </index>.
                                                             Recreated
            <indexOffset>17142</indexOffset>.
            <shal>e2c3elcf039bbfad8c6a79le3a2b8a3cf82a676f</shal>.
                                                            section: QC
           </mzXML>.
```


Example Run (1)

- A small data set was provided by Center for Prostate Disease Research containing SELDI Data in form of CSV files:
 - train set contained 41 cancerous and 40 normal samples

- blinded test set contained 79 samples

• Project file was created:

Two copies

Name to be
used in
classification
output

	≠ name	label	IMAC1	IMAC2 /
A	p0003	1	cpdr_data/p0003.csv	cpdr_data/p0003(2).csv
	p0004	1	cpdr_data/p0004.csv	cpdr_data/p0004(2).csv
	p0009	1	cpdr_data/p0009.csv	cpdr_data/p0009(2).csv
	pb001	0	cpdr_data/pb001.csv	cpdr_data/pb001(2).csv
	pb002	0	cpdr_data/pb002.csv	cpdr_data/pb002(2).csv
	pb003	0	cpdr_data/pb003.csv	cpdr_data/pb003(2).csv
	pn0002	2	cpdr_data/pn0002.csv	cpdr_data/pn0002(2).csv
	pn0003	2	cpdr_data/pn0003.csv	cpdr_data/pn0003(2).csv
	pn0061	2	cpdr_data/pn0061.csv	cpdr_data/pn0061(2).csv
	pn0064	2	cpdr_data/pn0064.csv	cpdr_data/pn0064(2).csv

Files in csv format. Other formats allowed:

- •individually compressed csv
- •csv extracted from zip'ed file
- •sample extracted from mzXML file

Example Run (2)

Data Input and Pre-Processing was done by:

```
fname = "F:/projects/NCI/plasma-l/InputFiles.csv";.
ddump = "F:/projects/NCI/plasma-1/data.Rdata";.
                                                                                   Project File
msc.project.run(fname,
                                     Preprocessing with peak extraction
 baseline.removal = 0,.
  min.mass = 3000,
                                                                                           # msc.mass.cut.
  mass.drift.adjustment = 1, shiftPar=0.0005,
                                                                                           # msc.mass.adjust.
                                                                 Output files
  peak.extraction = 1, .
  PeakFile="F:/projects/NCI/plasma-1/PeakFile.csv", SNR=2, span=c(81,11), zerothresh=0.9,
                                                                                           # msc.peaks.find.
  BmrkFile="F:/projects/NCI/plasma-1/BmrkFile.csv", BinSize=c(0.002, 0.008), tol=0.97,
                                                                                           # msc.peaks.align.
   F1BmFile="F:/projects/NCI/plasma-1/F1BmFile.csv", Fil1Type=0.9
                                                                                           # msc.biomarkers.fill.
                                     Preprocessing without peak extraction
X=msc.project.run(fname,
   baseline.removal = 0,.
    min.mass = 3000,
                                                       # msc.mass.cut.
    mass.drift.adjustment = 1, shiftPar=0.0005,
                                                      # msc.mass.adjust.
   peak.extraction = 0,
                                                      # no peak extraction.
    merge.copies = 1+4)
                                                      # msc.copies.merge.
save(X, file=ddump).
```

- The code above created three output files that will be used during classification:
 - BmrkFile.csv Biomarker Matrix (Aligned peaks) with NA's when there were no peaks
 - FlBmFile.csv "Filled" Biomarker Matrix without NA's
 - Data.rdata MS spectra

Example Run (3)

- In case of 'BmrkFile.csv' file 'R's function 'tune.svm' was used to find optimal values for SVM parameters "cost", and "gamma".
- Training and running a classifier was done by :

No feature selection

```
out = msc.classifier.test ( X, Y, iters=100, SplitRatio=3/4, .

RemCorrCol=0, KeepCol=0, prior=1, same.sample=SameSamples, ScaleType="none", .

method="svm", cost = 32, gamma = 0.062) .
```

Cross validation gave following results for train set:

Predicted 1 2
1 0.791 0.267
2 0.209 0.733

True

(other data sets, usually larger, gave results up to 94% correct)

• Predicted labels for the whole blinded test set were also calculated.

Example Run (4)

- In case of raw data file 'data.Rdata' file 'tune.svm' was used again to find optimal parameters
- Training and running a classifier was done by :

```
out = msc.classifier.test ( X, Y, iters=100, SplitRatio=3/4, prior=1,

RemCorrCol=0.95, KeepCol=200, ScaleType="none",.

same.sample=SameSamples, method=method, cost=2, gamma=2^-10)

Heave feature selection
```

- In this approach reduction of number of featured was mostly accomplished by feature selection performed during cross-validation.
- The results of this approach were worse than in case of algorithm with peak-finding.

Planned Extensions

- Implement or translate other established algorithms for different pre-processing steps to R
- Add other standard R classification algorithms to "mcs.classifier.run" function
- Improve mzXML reader to be faster and use less memory
- Add Quality Control functions, actively testing for specific problems with data

Other Related Codes in R

Name	Author / Group	Affiliation	Package released on	Description
PROcess	Xiaochun Li	Harvard	BioConductor	"A package for processing protein mass spectrometry data"
ppc	R. Tibshirani, T. Hastie & B. Narasimhan	Stanford	CRAN	"Sample classification of protein mass spectra by peak probability contrasts"
msBase & msCalib	Witold Wolski	Max Planck Institute (Germany)	BioConductor	"visualization & storage of mass spectrometric mass lists"
RProtiomics		Duke	Not in form of a package	
msInspect	Computational Proteomics Analysis System	Fred Hutchinson Cancer Research Center	Uses some R functions. Not in form of a package	R used for "alignment and registration steps"
Q5	R. Lilien, H. Farid, & B. Donald	Dartmouth	Matlab code was released. Any R code?	"Probabilistic Disease Classification of Expression- Dependent Proteomic Data from Mass Spectrometry of Human Serum."