

Master's thesis

Measurement of the strong coupling constant with the LHCb detector

Student Alice Moro

Supervisor

Dr. Lorenzo Sestini

Co-supervisors

Dr. Davide Zuliani

Prof. Donatella Lucchesi

- 1. Status of α_s measurement
- 2. Goal and analysis strategy
- 3. Simulation of dijet cross section in forward region
- 4. Extraction of experimental dijet cross section
- 5. α_s estimation and uncertainty determination
- 6. Conclusions

- 1. Status of α_s measurement
- 2. Goal and analysis strategy
- 3. Simulation of dijet cross section in forward region
- 4. Extraction of experimental dijet cross section
- 5. α_s estimation and uncertainty determination
- 6. Conclusions

Status of α_s measurement

- Least precisely measured coupling constant
 - $\alpha_s = 0.1180(9) \rightarrow 7.6 \times 10^6 \text{ ppb}$
 - $\alpha = 1/137.035999084(21) \rightarrow 0.15 ppb!$
- LHCb contribution in unexplored kinematic regions

- 1. Status of α_s measurement
- 2. Goal and analysis strategy
- 3. Simulation of dijet cross section in forward region
- 4. Extraction of experimental dijet cross section
- 5. α_s estimation and uncertainty determination
- 6. Conclusions

Precise measurement of α_s and main uncertainties from σ_{jj} in forward region with LHCb data

@ LO
$$\sigma_{jj}^{\text{data}} \propto \sigma_{pp \rightarrow jj}$$
 (s, Q², α_s) = $\frac{\alpha_s^2(Q^2)}{s^2} |\mathcal{M}_{pp \rightarrow jj}|^2$

Trigger stage

LHCb SAMPLES (DATA and MC) 2016 (Run 2), \sqrt{s} = 13 TeV, \mathcal{L} = 1.6 fb⁻¹

Trigger lines: OR of

Selections	
$20 \text{ GeV} < p_T(\text{jet}_{1,2}) < 100 \text{ GeV}$	
2.2 < η(jet _{1,2}) < 4.2	
Δφ(jet _{1,2}) > 2.8 or 1	

LO	L0HadronDecision_TOS
	L0MuonDecision_TOS
	L0PhotonDecision_TOS
	L0DiMuonDecision_TOS
	L0ElectronDecision_TOS
	L0MuonEWDecision_TOS

Dijet

HLT2	Hlt1DiMuonNoL0Decision_TOS HltQEEJetsDiJet pre _{HLT} = 0.001 StrippingFullDiJetsLine pre _{strip} = 0.013
HLT1	Hlt1TrackMVADecision_TOS Hlt1TwoTrackMVADecision_TOS Hlt1TrackMuonDecision_TOS Hlt1TrackMVATightDecision_TOS Hlt1TwoTrackMVATightDecision_TOS Hlt1DiMuonHighMassDecision_TOS Hlt1DiMuonLowMassDecision_TOS Hlt1DiMuonHighPTDecision_TOS
	L0ElectronDecision_TOS L0MuonEWDecision_TOS L0JetPhotonDecision_TOS

Selections		
20 GeV < p _T (jet) < 100 GeV		
2.2 < η(jet) < 4.2		
p _τ (μ [±]) > 20 GeV		
2 < η(μ [±]) < 4.5		
$\Delta \phi(Z^0, jet) > 2.8$		

Z+jet (Z⁰ (
$$\rightarrow \mu^+\mu^-$$
) + jet)

Trigger stage	Trigger lines
LO	L0MuonEWDecision_TOS
HLT1	Hlt1SingleMuonHighPTDecision_TOS
HLT2	Hlt2Global_TOS

LHCb SAMPLES (DATA and MC) 2016 (Run 2), \sqrt{s} = 13 TeV, \mathcal{L} = 1.6 fb⁻¹

Calibration sample Z+jet - invariant mass

Clear peak → negligible background

LHCb SAMPLES (DATA and MC)

2016 (Run 2), $\sqrt{s} = 13 \text{ TeV}$, $\mathcal{L} = 1.6 \text{ fb}^{-1}$

$$\Delta \phi > 2.8$$

STEPS OF THE ANALYSIS

1.
$$\sigma_{jj}^{data} = \frac{N_{data}}{\epsilon \times \mathcal{L}}$$
 from dijet sample, $\sigma_{jj}^{data} \propto \sigma_{pp \rightarrow jj}$ (s, Q², σ_{s}) $\propto \frac{\sigma_{s}^{2}(Q^{2})}{s^{2}}$

- 2. Jets p_T correction factors from *dijet* and Z+jet samples \rightarrow **efficiency** ε
- 3. Comparison simulated and experimental $\sigma_{ii} \rightarrow \alpha_s$ value
- 4. Statistics, correction factors, $\mathcal{L} \rightarrow \sigma_{jj}^{data}$ uncertainty $\rightarrow \alpha_s$ uncertainty

- 1. Status of α_s measurement
- 2. Goal and analysis strategy
- 3. Simulation of dijet cross section in forward region
- 4. Extraction of experimental dijet cross section
- 5. α_s estimation and uncertainty determination
- 6. Conclusions

Simulation of dijet cross section in forward region

EVENTS GENERATION

- pp>jj@LO with MadGraph5_aMC@NLO + Pythia8
 - p = g u c d s u~ c~ d~ s~
 - j = g u c d s b u~ c~ d~ s~ b~
 - 10⁶ events
 - $\Delta R(j,j) = ((\Delta \eta_{i,j})^2 + (\Delta \varphi_{i,j})^2)^{1/2} = 0.4$
 - $p_{T, min}(j) = 10 \text{ GeV}$
 - $\eta_{max}(j) = 5$
- PDFs CT10 NNLO
 - $a_s = 0.1100$
 - $\alpha_s = 0.1180$ (PDG: $\alpha_s = 0.1180 \pm 0.0009$)
 - $a_s = 0.1300$

α _s value	Sim. cross section σ_{sim} [×10 ⁹ pb]
0.1100	4.26194 ± 0.00099
0.1180	4.6643 ± 0.0011
0.1300	5.3889 ± 0.0014

Simulation of dijet cross section in forward region

JETS RECONSTRUCTION

- FastJet → anti-k_t clustering algorithm:
 - $p_{T. min} = 5 \text{ GeV}$, R = 0.5, $\Delta R = 0.4$
 - stable (no children) final particles: + hadrons, muons, electrons, photons;
 - 0

- neutrinos

- Energy recombination scheme:
 - jet four-momentum (p_x, p_y, p_z, E) with $E = \sum_j E_j$ and $p_i = \sum_j p_{ij}$

Simulation of dijet cross section in forward region

SIMULATED INCLUSIVE DIJET CROSS SECTION

N ofter coloctions	Weighted cross section $\sigma_{nj} = A_{nj} \times \sigma_{sim}$ [pb]			Weighted cross section $\sigma_{nj} = A_{nj} \times c$	
N _{jets} after selections	$a_s = 0.1100$	$a_s = 0.1180$	$a_s = 0.1300$		
≥ 0	$(4.094 \pm 0.004) \times 10^9$	$(4.475 \pm 0.005) \times 10^9$	$(5.163 \pm 0.005) \times 10^9$		
≥ 1	$(1.551 \pm 0.008) \times 10^8$	$(1.750 \pm 0.009) \times 10^8$	$(2.08 \pm 0.01) \times 10^8$		
≥ 2	$(1.22 \pm 0.02) \times 10^7$	$(1.37 \pm 0.03) \times 10^7$	$(1.70 \pm 0.03) \times 10^7$		

- Other distributions (Q, m_{12} , $\Delta \varphi_{12}$, R_{32} , etc.) showed no significant deviations w.r.t. α_s variation
- Dijet cross section chosen as figure of merit

- 1. Status of α_s measurement
- 2. Goal and analysis strategy
- 3. Simulation of dijet cross section in forward region
- 4. Extraction of experimental dijet cross section
- 5. α_s estimation and uncertainty determination
- 6. Conclusions

Extraction of experimental dijet cross section

0

Main systematic uncertainty contributions from p_T (jet) correction factors

Extraction of experimental dijet cross section

K* AND F* p_T CORRECTION FACTORS

QEE WG meeting - 23/09/2024

Extraction of experimental dijet cross section

TOTAL EFFICIENCY

$$\varepsilon_{\text{sel, corr}} = \frac{N_{\text{sel, corr}}}{N_{\text{MC}}} = (2.3 \pm 0.2) \times 10^{-3}$$

$$\varepsilon_{\text{TOT}} = \frac{\varepsilon_{\text{sel, corr}} \times \varepsilon_{\text{GEC}} \times \text{pre}_{\text{HLT}} \times \text{pre}_{\text{strip}}}{\text{PS}} = (1.11 \pm 0.09) \times 10^{-6}$$
Phase Space factor

EXPERIMENTAL DIJET CROSS SECTION

$$\sigma_{jj}^{data} = \frac{N_{data}}{\epsilon_{TOT} \times \mathcal{L}} =$$

N_{MC}: n. of events in *dijet* MC sample

N_{sel, corr}: n. of sel. and corr. MC events

N_{data}: n. of events in *dijet* data sample

Quantity	Value
$\epsilon_{ ext{GEC}}$	0.6
pre _{HLT}	0.001
pre _{strip}	0.013
PS	~ 0.016

=
$$(1.307 \pm 0.009 \text{ (stat.)} \pm 0.1 \text{ (syst.)} \pm 0.03 \text{ (lumi.)}) \times 10^7 \text{ pb} = (1.3 \pm 0.1) \times 10^7 \text{ pb}$$

$$\sigma_{ii}^{sim}$$
 ($\alpha_s = 0.1180$) = (1.37 ± 0.03) × 10⁷ pb

- 1. Status of α_s measurement
- 2. Goal and analysis strategy

- 3. Simulation of dijet cross section in forward region
- 4. Extraction of experimental dijet cross section
- 5. α_s estimation and uncertainty determination
- 6. Conclusions

α_s estimation and uncertainty determination

$$\alpha_s(m_Z^{02}) = 0.1143 \pm 0.0007 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \pm 0.002 \text{ (lumi.)} = 0.114 \pm 0.009$$

0

- 1. Status of α_s measurement
- 2. Goal and analysis strategy
- 3. Simulation of dijet cross section in forward region
- 4. Extraction of experimental dijet cross section
- 5. α_s estimation and uncertainty determination
- 6. Conclusions

Conclusions

[S. Navas et al. (PDG Collaboration). Review of Particle Physics. Phys. Rev. D, August 2024]

• [ATLAS Collaboration. Determination of the strong coupling constant from transverse energy energy correlations in multijet events at $s = \sqrt{13}$ TeV with the ATLAS detector. Journal of High Energy Physics, July 2023]

This work
$$a_s(m_{Z^0}^2) = 0.1143 \pm 0.0007 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \pm 0.002 \text{ (lumi.)} =$$

$$= 0.114 \pm 0.009$$

PDG/ATLAS
$$\alpha_s(m_{Z^0}^2) = 0.1180 \pm 0.0009$$

CMS jets
$$\alpha_s(m_{Z^0}^2) = 0.1170 \pm 0.0019$$

0

First measurement of α_s in forward region with the LHCb detector!

• Uncertainty from $\mathcal L$ gives constant contribution, potentially limiting

Conclusions

FUTURE IMPROVEMENTS

- Jet energy correction refinement
- Enhanced simulation study (NLO, more α_s values, other PDF sets, other generators, etc.)

OTHER ANALYSIS APPROACHES

- Differential measurements
- Multi-jet events → R₃₂

+ LHCb RUN 3 AND UPGRADES

Thank you for your attention!

Back-up slides

Back up

JETS SELECTION AND DISTRIBUTIONS

Scale factor
$$F = \frac{\mathcal{L} \times \sigma_{sim}}{N_{gen}}$$

α_s value	N _{sel}	F [×10 ⁶]	$N_{\text{exp}} = F \times N_{\text{sel}} [\times 10^8]$
0.1100	111	6.8 ± 0.1	8.0 ± 0.7
0.1180	152	7.5 ± 0.1	12 ± 1
0.1300	156	8.6 ± 0.2	15 ± 1

Compatibility within error bars!

Back up

JETS SELECTION AND DISTRIBUTIONS

QEE WG meeting – 23/09/2024

Back up

K* AND F* VALUES

p _T (jet) [GeV] bin	K*
[20,25]	0.91 ± 0.02
[25,30]	0.94 ± 0.02
[30,35]	0.93 ± 0.02
[35,40]	0.94 ± 0.01
[40,45]	0.94 ± 0.02
[45,50]	0.98 ± 0.02
[50,55]	0.96 ± 0.02
[55,60]	1.01 ± 0.02
[60,65]	1.02 ± 0.02
[65,70]	1.08 ± 0.03
[70,75]	1.03 ± 0.02
[75,80]	1.16 ± 0.05
[80,85]	1.14 ± 0.05
[85,90]	1.17 ± 0.03
[90,95]	1.24 ± 0.05
[95,100]	1.26 ± 0.05

p _T (jet) [GeV] bin	F*
[20,30]	0.028 ± 0.007
[30,40]	0.022 ± 0.005
[40,50]	0.005 ± 0.004
[50,60]	0.013 ± 0.005
[60,70]	0.019 ± 0.006
[70,80]	0.005 ± 0.007
[80,90]	0.01 ± 0.01
[90,100]	0.017 ± 0.007