section 15: statistical power + ANOVA

stuff to learn today:

- 1. statistical power $(1-\beta)$
- 2. Welch's t-test
- 3. Kolmogorov-Smirnov test
- 4. ANOVA test
 - 5. https://learn.co/tracks/module-2-data-science-career-2-1/statistics-ab-testing-and-linear-regression/section-15-statistical-power-and-anova/welch-s-t-test-lab

statistical power https://rpsychologist.com/d3/nhst/

- power $(1-\beta)$ can be defined as:
 - $P(rejecting H_0 when it is indeed false)$
 - power=1 is a perfect test that always correctly rejects the null hypothesis
- β = P(Type II error) = P(failing to reject H₀ when it is indeed false)
- after selecting α , you can typically determine a threshold to maximize the power of a test

Welch's t-test

 Welch's t differs from two-sample Student's t (from Section) 14) because it takes into account different sample sizes and unequal variances between samples

Welch's t

$$t = \frac{\bar{X_1} - \bar{X_2}}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$

degrees of freedom
$$v \approx \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}\right)^2}{\frac{s_1^4}{N_1^2 v_1} + \frac{s_2^4}{N_2^2 v_2}}$$

Student's t

t statistic
$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}}$$
 $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$

$$n_1 + n_2 - 2$$

tests we've seen so far...

- is one sample is different from the population?
- does tutoring have an effect on IQ of students?
 - 1 sample z-test: when you know your population std
 - 1 sample t-test: when you don't know population std
- are two samples different from each other?
- A/B testing, drug effectiveness testing (placebo vs actual)
 - 2 sample t-test (samples have same size and variance)
 - Welch's t-test (different sizes and variances)

Kolmogorov-Smirnov test

- all the tests we've seen so far have a normality assumption
- the 1-sample KS test (K-S
 Goodness of Fit test) tests for
 the similarity between a sample
 and a normal distribution, in
 terms of the difference between
 their cdfs

Kolmogorov-Smirnov Goodness of Fit Test (1 sample)

- Hypotheses:
 - H_o: No difference between the distribution of the sample and a normal distribution
 - H_A: There is a difference between the distribution of the sample and a normal distribution
- $\alpha = 0.05$
- test statistic = d

$$d = \max(abs[F_0(X) - F_r(X)])$$

- KS d-table
- if d > critical d, reject the null hypothesis
 - or compare p value if using scipy

2-sample Kolmogorov-Smirnov test

- Tests whether two samples were drawn from the same population, or two identical populations
- Hypotheses:
 - H₀: No difference between the two distributions
 - H_{Δ} : The two distributions are different
- $\alpha = 0.05$
- test statistic = d $d = max[abs[F_{n1}(X) F_{n2}(X)]]$
- two-sample d table
- if d > critical d, reject the null hypothesis
 - or compare p value if using scipy

- Compares **group means** with regards to a single variable
- Looking to see if there is a statistically significant difference between groups
- Like doing many t-tests, but gets rid of the multiple comparisons problem
 - i.e. a single experiment yields a p-value of 0.03 (3% chance your conclusion to reject H_0 is <u>spurious</u>)
 - So, P(correctly reject H_0) = 0.97
 - P(correctly reject H_0 100 times) = 0.97**100 = 0.0476
- i.e. is there a difference between the mean GPAs of freshmen, sophomores, juniors and seniors?
 - H_o: There is no difference in means
 - H_{Δ} : There is a difference in means
 - $\alpha = 0.05$, test statistic = F

$$F = \frac{\sum n_j (\bar{X}_j - \bar{X})^2 / (k-1)}{\sum \sum (X - \bar{X}_j)^2 / (N-k)}$$

```
#Your code here
import statsmodels.api as sm
from statsmodels.formula.api import ols

formula = 'len ~ C(supp) + C(dose)'
lm = ols(formula, df).fit()
table = sm.stats.anova_lm(lm, typ=2)
print(table)
```

```
        sum_sq
        df
        F
        PR(>F)

        C(supp)
        205.350000
        1.0
        14.016638
        4.292793e-04

        C(dose)
        2426.434333
        2.0
        82.810935
        1.871163e-17

        Residual
        820.425000
        56.0
        NaN
        NaN
```