Corrigé série d'exercices N°2

Exercice 1

X	[5, 7[<mark>6</mark>	[7,9[8	[9, 11[<mark>10</mark>	$n_{i.}$	$f_{i.}$	$n_{i.}X_{i}$
13[11, 15[1	0	0	1	$\frac{1}{94}$	13
<mark>17</mark> [15, 19[9	1	0	10	$\frac{10}{94}$	170
21[19,23[16	13	0	29	29 94	609
25 [23, 27[8	32	14	54	54 94	1350
$n_{.j}$	34	46	14	94		2142
$f_{\cdot j}$	34 94	46 94	14 94		1	
$n_j Y_j$	204	368	140	712	712	

1) Combien d'enfants ayant moins de 9 ans ont un poids inférieur à 19 kg?

Il y a (1+9+1=11) 11 enfants ayant moins de 9 ans ont un poids inférieur à 19 kg

2) Quelle est la proportion d'enfants ayant moins de 9 ans ?

$$\frac{34+46}{94} = \mathbf{0.851}$$

La proportion d'enfants ayant moins de 9 ans est**0**. **851**

D'où le pourcentage 85, 1%

3) Calculer le poids moyen et l'âge moyen des enfants.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{k} n_{i \cdot} x_i = \frac{1}{94} \sum_{i=1}^{4} n_{i \cdot} X_i = \frac{2142}{94} = 22.79$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{l} n_{\bullet j} y_j = \frac{1}{94} \sum_{i=1}^{3} n_{\bullet j} y_j = \frac{1}{94} 712 = 7.57$$

4) Donner la distribution conditionnelle de Ysachant que $X \in [23, 27]$ et calculer sa moyenne.

La distribution de $Y|_{X \in [23,27[}$:

Classes	[5, 7[[7,9[[9, 11[Σ
Y _j	6	8	10	
n_{4j}	8	32	14	$n_{4\bullet} = 54$
$n_{4j}Y_j$	48	256	140	444

$$\bar{y}_{/X \in [23,27[} = \frac{1}{n_{4\bullet}} \sum_{j=1}^{l} n_{4j} Y_j = \frac{1}{54} \sum_{j=1}^{3} n_{4j} Y_j = \frac{1}{54} 444 = 8.22$$

5) Donner la distribution conditionnelle de X sachant que $Y \in [5, 7]$

La distribution de $X|_{Y \in [5, 7[}$:

Classes	[11, 15[[15,19[[19, 23[[23, 27[Σ
X_i	13	17	21	25	
n _{i 1}	1	9	16	8	$n_{\bullet 1} = 34$
$n_{i1}X_i$	13	153	336	200	702

$$\bar{x}_{/Y \in [5, 7[} = \frac{1}{n_{\bullet 1}} \sum_{i=1}^{k} n_{i1} X_i = \frac{1}{34} \sum_{i=1}^{4} n_{i1} X_i = \frac{1}{34} 702 = \mathbf{20.64}$$

6) X et Y sont-elles indépendantes ?

On a $\bar{x}_{/Y \in [5, 7]} = 20.64 \neq 22.79 = \bar{x} \text{donc} X \text{dépend de} Y$.

Exercice 02 : On a relevé la production de blé (**X** en quintaux) et le nombre de jours de pluie (**Y**). On a obtenu les résultats suivants :

Valeurs de X	200	184	225	250	240	195	210	225	250	220
Valeurs de Y	50	30	70	90	50	30	50	60	70	70

1- Compléter le tableau de contingence suivant :

X	30	50	60	70	90	n_{i}	$n_i X_i$	$n_i X_i^2$	$\sum_{j=1}^{5} n_{ij} X_i Y_j$
[184, 206[195	2	1	0	0	0	3	585	114075	21450
[206, 228[217	0	1	1	2	0	4	868	188356	54250
[228, 250] 239	0	1	0	1	1	3	717	171363	50190
$n_{.j}$	2	3	1	3	1	10	2170	473794	125890
$n_{\cdot j}Y_i$	60	150	60	210	90	570			
$n_{\cdot j}Y_i^2$	1800	7500	3600	14700	8100	35700			

2- X et Y sont-elles indépendantes ?

XetY sont dites indépendantes si : $n \times n_{ij} = n_{i\bullet} \times n_{\bullet j}$, $\forall i$ et $\forall j$.

Pour $\mathbf{i} = \mathbf{2}$ et $\mathbf{j} = \mathbf{1}$ on a

 $n \times n_{21} = 10 \times 0 = 0$ et $n_{2 \cdot} \times n_{\cdot 1} = 4 \times 2 = 8 \neq 0$ donc X et Y sont dépendants

3- Calculer la covariance entre les variables X et Y.

$$S_{XY} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{l} n_{ij} X_i Y_j - \bar{x} \bar{y}$$

Calculons \overline{x} et \overline{y}

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{3} n_{i \bullet} X_i = \frac{1}{10} \ 2170 = \mathbf{217}$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{5} n_{\bullet j} Y_j = \frac{1}{10} \ 570 = \mathbf{57}$$

Donc
$$S_{XY} = \frac{1}{10} 125890 - 217 \times 57 = 220$$

4- Calculer le coefficient de corrélation et interpréter le résultat obtenu.

$$\rho_{XY} = \frac{S_{XY}}{\sigma_X \sigma_Y}$$

Calculons σ_X et σ_Y

$$\sigma_X^2 = \left(\frac{1}{n}\sum_{i=1}^5 n_{i\bullet}X_i^2\right) - \bar{x}^2 = \mathbf{290}.4$$
donc $\sigma_X = \mathbf{17}.\mathbf{04}$
 $\sigma_Y^2 = \left(\frac{1}{n}\sum_{j=1}^3 n_{\bullet j}Y_j^2\right) - \bar{y}^2 = \mathbf{321}$ donc $\sigma_Y = \mathbf{17}.\mathbf{91}$

Ainsi

$$\rho_{XY} = \frac{S_{XY}}{\sigma_X \sigma_Y} = \frac{220}{17.04 \times 17.91} = \mathbf{0}.72 > 0.7 \Rightarrow$$
 L'ajustement affine est justifié

5- Donner la droite de régression de Yen X

On a : $\mathbf{D}_{y}(x)$: $\hat{y} = \hat{a} x + \hat{b}$ avec

$$\hat{a} = \frac{S_{XY}}{\sigma_X^2} = \frac{220}{290.4} = \mathbf{0}.75$$
et $\hat{b} = \bar{y} - \hat{a}\bar{x} = 57 - 0.75$ (217) = $-\mathbf{107}.\mathbf{39}$

Donc:

$$D_y(x): \hat{y} = 0.75 x - 107.39$$

6- Prévoir la production de blé pour un nombre de jours de pluie égal à 55 jours.

On a $y_0 = 55$ et on cherche $x_0 = ?$

On a besoin de trouver la droite de régression de **X en Y** : $D_x(y)$: $\hat{x} = \hat{a}'y + \hat{b}'$ avec

$$\widehat{a}' = \frac{S_{XY}}{\sigma_V^2} = \frac{220}{321} = 0.68$$

$$\hat{b}' = \overline{x} - \hat{a}' \overline{y} = 217 - 0.68(57) = 178.24$$

Donc:

$$D_x(y)$$
: $\hat{x} = 0.68y + 178.24$

$$x_0 = 0.68 (y_0) + 178.24 = 0.68 (55) + 178.24 = 215.64$$

La production de blé pour un nombre de jours de pluie égal à 55 jours est :215.64 quintaux.

Exercice 3:

Xla quantité de blé et Y la quantité d'orge.

1) Tableau de contingence

Nombre de classes pour X , $oldsymbol{k}=\mathbf{3}$

$$a = \frac{e}{k} = \frac{250 - 190}{3} = \frac{60}{3} = \mathbf{20}$$

Nombre de classes pour Y , $oldsymbol{l}=\mathbf{2}$

$$a = \frac{e}{l} = \frac{115 - 75}{3} = \frac{40}{2} = \mathbf{20}$$

X	[75,95[<mark>85</mark>	[95, 115[105
[190, 210[200	2	2
[210, 230[
220	0	2
[230, 250]		
240	2	2

2) Les distributions marginales :

X	[75, 95[<mark>85</mark>	[95, 115[105	n_i .
[190, 210[200	2	2	4
[210, 230[
220	0	2	2
[230, 250]			
240	2	2	4
$n_{.j}$	4	6	10

3) Calculer le coefficient de corrélation entre X et Y.

X	[75, 95[<mark>85</mark>	[95, 115[105	$n_{i\cdot}$	$n_i.X_i$	$\sum_{j=1}^{2} n_{ij} X_i Y_j$
[190, 210[200	2	2	4	800	76000
[210, 230[220	0	2	2	440	46200
[230, 250] 240	2	2	4	960	91200
$n_{.j}$	4	6	10	2200	$\sum_{i=1}^{3} \sum_{j=1}^{2} n_{ij} X_i Y_j =$ 213 400
$n_{j}Y_{j}$	340	630	970	/	/ / /

$$m{
ho}_{XY} = rac{S_{XY}}{\sigma_X \sigma_Y}$$
avec $S_{XY} = rac{1}{n} \sum_{i=1}^k \sum_{j=1}^l n_{ij} X_i Y_j - ar{x} ar{y}$

Calculons \overline{x} et \overline{y}

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{3} n_{i \cdot} X_{i} = \frac{1}{10} \ 2200 = 220$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{2} n_{j} Y_{j} = \frac{1}{10} \ 970 = 97$$

Donc

$$S_{XY} = \frac{1}{10} \sum_{i=1}^{3} \sum_{j=1}^{2} n_{ij} X_i Y_j - \bar{x} \bar{y} = \frac{1}{10} \mathbf{213} \mathbf{400} - \mathbf{220} \times \mathbf{97} = \mathbf{0}$$

Ainsi $ho_{XY}=0$.

Exercice 4:

Le nombre Y de bactéries présentes par unité de volume après X heures :

Nombre d'heures (X)	0	1	2	3	4	5	6
Nombre de bactéries par unité de volume (Y)	32	47	65	92	132	190	275

1/ Nuage de points.

2/ Ajuster ces points au sens des moindres carrés par la courbe d'équation $Y=a\;b^X$.

On a : $Y = a b^X \Rightarrow ln Y = X ln b + ln a$, on obtient alors une équation d'une droite de la forme :

$$oldsymbol{V} = oldsymbol{B} oldsymbol{X} + oldsymbol{A} \quad ext{avec} \quad V = \ln Y \quad \text{, } B = \ln b \; \text{, } A = \ln a$$

X	Y	V = ln Y	XV	X^2
0	32	3.45	0	0
1	47	3.85	3.85	1
2	65	4.17	8.34	4
3	92	4.52	13.56	9
4	132	4.88	19.52	16
5	190	5.24	26.2	25
6	275	5.61	33.66	36
21		31.73	105.13	91

Calculons A et B

$$m{B} = rac{S_{XV}}{\sigma_X^2} = rac{cov(X,V)}{\sigma_X^2}$$
 et $m{A} = m{\overline{V}} - m{B}m{\overline{X}}$

•
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{7} \sum_{i=1}^{7} X_i = \frac{1}{7} 21 = 3$$

•
$$\bar{V} = \frac{1}{n} \sum_{i=1}^{n} V_i = \frac{1}{7} \sum_{i=1}^{7} V_i = \frac{1}{7} 31.73 = 4.53$$

•
$$cov(X, V) = \frac{1}{n} \sum_{i=1}^{n} X_i V_i - \bar{X} \bar{V} = \frac{1}{7} 105.13 - 3 \times 4.53 = 1.42$$

•
$$\sigma_X^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2 = \frac{1}{7} 91 - 9 = 4$$

Donc
$$B = \frac{cov(X,V)}{\sigma_X^2} = \frac{1.42}{4} = \mathbf{0.355}$$

$$A = \bar{V} - B\bar{X} = 4.53 - 0.355 \times 3 = 3.465$$

Ainsi l'équation de la droite de régression est :

$$V = 0.355 X + 3.465$$

Déterminons l'ajustement selon la courbe d'équation $Y = a b^X$

On a

$$A = lna \implies a = e^A = e^{3.465} = 9.41$$

$$B = lnb \implies b = e^B = e^{0.355} = 0.96$$

Donc

$$Y = 9.41 \times (0.96)^X$$

Exercice 5:

La distance de freinage d'un véhicule sur une route sèche, en fonction de sa vitesse est donnée par le tableau suivant :

V : vitesse(km/h)	30	40	50	60	70	80	90	100	110	120
D : distance (m)	12	14	28	36	48	64	80	96	114	148

On donne:
$$\sum_{i=1}^{10} V_i = 750 \quad \sum_{i=1}^{10} D_i = 640 \sum_{i=1}^{10} V_i^2 = 64500 \sum_{i=1}^{10} D_i^2 = 59336 \sum_{i=1}^{10} V_i D_i = 60060$$

1/ Calculer le coefficient de corrélation entre V et D

On a:
$$ho_{VD} = rac{S_{VD}}{\sigma_V \sigma_D} = rac{cov(V,D)}{\sigma_V \sigma_D}$$

$$ightharpoonup \bar{V} = \frac{1}{n} \sum_{i=1}^{n} V_i = \frac{1}{10} \sum_{i=1}^{10} V_i = \frac{1}{10} 750 = 75$$

$$ightharpoonup \overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i = \frac{1}{10} \sum_{i=1}^{10} D_i = \frac{1}{10} 640 = 64$$

$$ightharpoonup S_{VD} = \left(\frac{1}{10}\sum_{i=1}^{10}V_iD_i\right) - \bar{V}\bar{D} = \left(\frac{1}{10}60\ 060\right) - 75 \times 64 = 1206$$

$$ho \sigma_V^2 = \left(\frac{1}{10}\sum_{i=1}^{10}V_i^2\right) - \bar{V}^2 = \frac{1}{10}64500 - 75^2 = 825$$
donc $\sigma_V = 28.72$

$$ho \sigma_D^2 = \left(\frac{1}{10}\sum_{i=1}^{10}D_i^2\right) - \overline{D}^2 = \frac{1}{10}59336 - 64^2 = 1837.6 \text{donc } \sigma_D = 42.86$$

Ainsi

 $\rho_{VD} = \frac{S_{VD}}{\sigma_V \sigma_D} = \frac{1206}{28.72 \times 42.86} = \mathbf{0}.\mathbf{97} > 0.7 \Rightarrow \text{L'ajustement affine est justifié et il y a une très forte corrélation linéaire entre V et D}$

2/ Donner les équations des deux droites de régression.

- La droite de régression de D en V : $\widehat{D} = \widehat{a} V + \widehat{b}$

$$\hat{a} = \frac{S_{VD}}{\sigma_V^2} = \frac{1206}{825} = 1.46$$

$$\hat{\boldsymbol{b}} = \overline{D} - \hat{a}\overline{V} = 64 - 1.46(75) = -45.5$$

Donc

$$\hat{D} = 1.46 \ V - 45.5$$

- La droite de régression de V en D : $\widehat{V} = \widehat{a}'D + \widehat{b}'$

$$\widehat{a}' = \frac{S_{VD}}{{\sigma_D}^2} = \frac{1206}{1837.6} = \mathbf{0.66}$$

$$\hat{\boldsymbol{b}}' = \bar{V} - \hat{a}'\bar{D} = 75 - 0.66(64) = -32.76$$

Donc

$$\hat{V} = 0.66 D - 32.76$$

3/ Peut-on estimer la distance de freinage, si le véhicule roule à 150km/h?

V= 150 D=?

$$\hat{D} = 1.46(150) - 45.5 = 173.5$$

Donc, si le véhicule roule à 150 km/h, la distance de freinage est 173.5 mètres.