QUIZ 2

NOTES

- (i) Let m and n be the last two digits of the student ID ($0 \le m, n \le 9$). Set $\mathcal{M} = \frac{m+n+15}{10}$. For example, if the student ID is 1910273, then m=7, n=3 and $\mathcal{M} = \frac{7+3+15}{10} = 2.5$
- (ii) Send your results to the following two email addresses (to avoid loss)

nan.thanh@lethai.vn and thanh@lethai.edu.vn

Question 1. Given the system of linear equations: $\begin{cases} 3\mathcal{M}x_1 - 1.5x_2 = 4.5 \\ 1.8x_1 + 4\mathcal{M}x_2 = 5.2 \end{cases}$. Use the Gauss-Seidel Method with $X^{(0)} = (0.4, 0.6)^T$ to find an approximation solution $X^{(2)}$ and its error. Choose l_{∞} -norm.

 $\underline{\text{RESULTS}}\text{: }x_{1}^{(2)}\approx\underline{\hspace{1cm}},x_{2}^{(2)}\approx\underline{\hspace{1cm}},\Delta_{X^{(2)}}\approx\underline{\hspace{1cm}}$

RESULTS: $y(1.52) \approx$

Question 3. Given the table: $\frac{x \mid 1.0 \quad 1.5 \quad 2.0}{y \mid \mathcal{M} \quad 3.45 \quad 4.17}$. Use the Natural Cubic Spline to approximate y(1.12) and y(1.65).

RESULTS: $y(1.12) \approx$ ______, $y(1.65) \approx$ _____

Question 4. Given the table: $\frac{x \mid 1.2 \quad 1.4 \quad 1.6 \quad 1.8}{y \mid \mathcal{M} \quad 2.53 \quad 2\mathcal{M} \quad 3.76}$. Use the Forward Newton Interpolation Polynomial to approximate y'(1.32).

RESULTS: $y'(1.32) \approx$

y = f(x). Use the Composite Simpson Formula to approximate the integral $I = \int_{1.2}^{1.8} x f(x) dx$ with the step size h = 0.1.

RESULTS: *I* ≈_____