PROGRAMMAZIONE E CALCOLO SCIENTIFICO Esercitazioni in laboratorio: Parte I, uso di MATLAB

Ultimo aggiornamento: April 2, 2019

Legenda

Il simbolo \clubsuit etichetta gli esercizi da preparare per l'esame. Il simbolo \spadesuit etichetta gli esercizi aggiuntivi da preparare facoltativamente per l'esame, in aggiunta a quelli indicati con il simbolo \clubsuit .

Grafici

- 1. Tabulare e tracciare un grafico della funzione $x \cos x$ per $x \in [0, 40]$ con tratto e colore del tratto a scelta (suggerimento: usare .* per tabulare la funzione). Tracciare poi dei simboli a scelta in un colore diverso in corrispondenza dei punti x = 0, 4, 8, ..., 40 (help hold on, x1 = 0:4:40, y1 =)
- 2. Rappresentare in uno stesso grafico le funzioni $\sin^2(3x)$ e $\cos^4(4x)$ in $[0, 2\pi]$, usando due stili diversi per i grafici e inserendo una legenda. Evidenziare con un marker i punti in cui $\sin^2(3x) = 1$.
- 3. Data la funzione $f(x,y) = e^{-x^2-y^2}(\sin(xy))$ in $[-\pi,\pi]^2$:
 - (a) Disegnarne il grafico usando il comando ezmesh
 - (b) Disegnarne il grafico usando il comando meshgrid
 - (c) Disegnare il luogo di punti in cui la funzione assume valore 1/100
- 4. Si considerino le seguenti regioni del piano complesso:

$$|1+z+...+\frac{1}{p!}z^p| \le 1, \qquad p=1,...,4.$$

Rappresentare, in un'unica figura, i contorni di tali regioni (si tenga presente che si ha $\Re z, \Im z \in [-3, 3]$).

- 5. Rappresentare graficamente sul piano le sfere di centro l'origine e raggio 1 nelle norme $\|\cdot\|_1, \|\cdot\|_2, \|\cdot\|_{\infty}$.
- 6. [3, es. 1.4] Disegnare in 6 sottofinestre nella stessa finestra grafica i poligoni regolari inscritti nella circonferenza di centro l'origine e raggio 1 con numero di lati da 3 a 8
- 7. [3, es. 2.7] Scrivere una function che, ricevuta in ingresso una matrice A, disegni i cerchi di Gershgorin per riga.

- 8. Tenendo conto del fatto che una matrice reale simmetrica ha sempre autovalori reali, si modifichi la function scritta al punto precedente in modo da prevedere un controllo sulla simmetria di A e in tal caso non si disegnino cerchi nel piano complesso ma la loro sola intersezione con l'asse reale (quindi solo intervalli).
- 9. Produrre una figura simile alla seguente:

Aritmetica finita

- 1. [1, es. 1.7] Si consideri il vettore x così definito: $x_1 = 10^8$; $x_i = 10^{-9}$, i = 2, ..., 100. Si calcoli $s = \sum x_i$ con il comando sum applicato a x e si verifichi cosa succede. Si usi poi il comando sum applicato a un vettore ottenuto riordinando gli elementi di x in ordine crescente (sort).
- 2. Sia \mathbb{F} l'insieme dei numeri di macchina del calcolatore su cui stiamo lavorando. L'epsilon di macchina è definito anche nel seguente modo:

$$\mathtt{eps} = \min\{\varepsilon \in \mathbb{F} : \varepsilon > 0, \ 1 \oplus \varepsilon > 1\}$$

(il più piccolo numero di macchina positivo che viene "sentito" se sommato ad 1). Calcolare il valore di eps della macchina su cui state lavorando implementando il seguente algoritmo:

$$myeps = 1.0$$

 $while((1.0 + myeps) > 1.0)$
 $myeps = myeps/2$
 end
 $myeps = 2 * myeps$

Verificate la correttezza del risultato confrontando il risultato ottenuto con il contenuto della variabile predefinita eps.

- 3. Modificare la function scritta al punto (2) per restituire in uscita anche il valore di t per cui eps= 2^{-t} .
- 4. Impostare il formato di visualizzazione long di Matlab (help format) e determinare le soluzioni dell'equazione:

$$x^2 - 2ax + \delta = 0$$

con a=1, nei casi $\delta=10^{-1}, 10^{-8}$ e 10^{-12} , utilizzando le formule $x_1=a+\sqrt{a^2-\delta}$ e $x_2=a-\sqrt{a^2-\delta}$. In quale delle due espressioni ci si aspetta una perdita di precisione?

Per ogni valore di δ , calcolare x_2 utilizzando anche la formula alternativa $x_2 = \delta/x_1$ e confrontare i risultati calcolando distanza assoluta e relativa tra le due approssimazioni. Quale delle due formule fornisce valori di x_2 più accurati? In quale caso i risultati ottenuti con le due espressioni coincidono?

- 5. Scrivere due function che calcolino il più piccolo e il più grande numero floating point della forma $x_{\min} = 2^{-p}$ e $x_{\max} = 2^r$, rispettivamente, sapendo che il risultato di un underflow viene posto uguale a zero e il risultato di un overflow uguale al valore speciale inf. Fornire in uscita i valori x_{\min} , p, x_{\max} , r.
- 6. [3, es. 1.14] Scrivere una function che calcola il valore del seno iperbolico tramite la relazione

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

Si confronti con il valore sinh(x) che prendiamo come valore "esatto" di riferimento. Si disegni il grafico dell'errore assoluto e relativo per $x = 10^{-12}, 10^{-11}, \dots 10^{-1}, 10^{0}$. Qual è la causa di errore per valori piccoli di x?

7. A Prendendo ispirazione dai commenti presenti all'inizio del file¹

http://www.netlib.org/fdlibm/e_sinh.c

individuare una strategia alternativa per valutare $\sinh(x)$ in modo accurato per ogni valore di x, implementarla in MATLAB e confrontare i valori che si ottengono con la propria implementazione con quelli che si ottengono con la funzione \sinh di MATLAB.

8. \clubsuit Per approssimare la derivata di una funzione f(x) in un punto x_0 si può usare la quantità

$$f[x_0, x_0 + h] = \frac{f(x_0 + h) - f(x_0)}{h} \tag{1}$$

per h sufficientemente piccolo. Tale quantità viene chiamata $differenza\ divisa$ di ordine uno di f. Questo tipo di approssimazione può dare origine a fenomeni di cancellazione numerica, poiché compare a numeratore una differenza tra quantità che diventano tanto più prossime quanto più h è piccolo.

- (a) Sia $f(x) = x^3$. Si ricavi, per tale funzione, un'espressione matematicamente equivalente alla (1) ma possibilmente esente dal fenomeno della cancellazione numerica.
- (b) Presi i punti $x_0 = 10^k$, k = 1, 2, 3, 4 e l'incremento $h = 10^{-7}$, si approssimi la derivata nei punti assegnati usando sia l'espressione (1) che quella ottenuta con la semplificazione effettuata al punto 8a. Si calcolino, per entrambe le espressioni e per ciascuno dei punti x_0 assegnati, l'errore assoluto

$$e_{\mathbf{a}} = |f[x_0, x_0 + h] - f'(x_0)|$$

e l'errore relativo

$$e_{\rm r} = \frac{|f[x_0, x_0 + h] - f'(x_0)|}{|f'(x_0)|}$$

commessi, riportandoli in un grafico in scala semilogaritmica.

(c) Ripetere i punti precedenti con la funzione $f(x) = x^5$.

¹lnovft: Logaritmo Naturale della *OVerFlow Threshold*, ovvero di realmax in MATLAB; ln2ovft: logaritmo naturale del doppio della overflow threshold

Costi computazionali

- 1. Si consideri $n = 10^7$ e si costruisca il vettore $x \in \mathbb{R}^n$ di componenti $x_i = i$ usando il ciclo for ² e rilevando il tempo di calcolo con i comandi tic e toc. Si effettui la stessa operazione sia senza prima preallocare il vettore, che preallocandolo ad esempio con il comando zeros. Nel caso della preallocazione, si misuri complessivamente il costo per la preallocazione e poi l'assegnazione dei valori x_i .
- 2. Si assegnino $A \in \mathbb{R}^{n \times n}$ e $b \in \mathbb{R}^n$ in modo random. Si caloli il prodotto Ab nei seguenti modi:
 - (a) con un doppio ciclo for usando la definizione del prodotto "righe per colonne"
 - (b) con un solo ciclo for calcolando i prodotti scalari delle righe di A per b
 - (c) senza cicli for semplicemente con l'operatore algebrico *

In ogni caso si usino i comandi tic e toc per rilevare i tempi di calcolo dei tre approcci e si confrontino fra loro. Si ripeta il calcolo un numero adeguato di volte per confrontare i tempi medi di calcolo.

3. Si crei una matrice di caratteri di *n* righe e 2 colonne, in modo che ogni riga corrisponda a una stringa di due caratteri.³ Si implementi l'algoritmo di ricerca su un vettore non ordinato per cercare l'occorrenza di una stringa assegnata nella matrice così ottenuta. Si ripeta diverse volte il calcolo confrontando i tempi di calcolo ottenuti. Si tracci un grafico dei tempi ottenuti in funzione della posizione nel vettore dell'elemento trovato.

 $^{^2}$ Ovviamente, il modo più efficace per creare tale vettore sarebbe dato dall'istruzione x=1:n. L'esercizio è volto a mostrare gli effetti di una preallocazione di un array quando la sua dimensione cresce all'interno di un ciclo for.

³Usare il comando **randi** per generare casualmente due numeri interi in un intervallo assegnato, e il comando **char** per convertire ogni numero nel carattere la cui codifica ASCII è il numero assegnato, es. char(77) resitutisce il carattere M, char([77 78]) la stringa MN. Si considerino codici ASCII da 33 a 126.

Vettori, matrici e sistemi lineari

- 1. [1, es. 2.14] Si scriva una function che, ricevendo come argomenti in ingresso una matrice $A \in \mathbb{R}^{2\times 2}$ e un vettore colonna x di due componenti, mostri in due figure affiancate il vettore x e il vettore y = Ax. Si applichi tale funzione ai seguenti casi:
 - (a) a una matrice A e a un vettore x di numeri casuali;
 - (b) alla seguente matrice ortogonale e al seguente vettore:

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad \theta = \frac{\pi}{3}, \quad x = \begin{pmatrix} 1 \\ 1 \end{pmatrix};$$

(c) ad

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \qquad x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- 2. Si estenda l'esercizio precedente a \mathbb{R}^3 .
- 3. [1, es. 2.15] Si scriva una function che, ricevendo come argomento in ingresso una matrice $A \in \mathbb{R}^{2\times 2}$, mostri in alcune figure la sfera unitaria in norma euclidea (l'insieme dei vettori di \mathbb{R}^2 di lunghezza unitaria applicati nell'origine) e le sue trasformazioni ottenute attraverso l'applicazione della matrice A. Si applichi tale funzione alle seguenti matrici:

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \qquad A_2 = -\frac{1}{4}A_1, \qquad A_3 = \begin{pmatrix} 1 & 2 \\ 4 & 8 \end{pmatrix}.$$

- 4. Implementare una function che, dati in ingresso un numero N e un valore α , generi e restituisca in uscita una matrice A di dimensioni $N \times N$ con il valore α sulla diagonale principale, il valore -1 sulla sovra/sotto-diagonale, il valore -1 su tutta la prima riga e tutta la prima colonna, e $a_{11} = N$.
 - Utilizzando la function creata, generare una matrice con $\alpha=4$ e diversi valori di N sufficientemente grandi. Si effettui l'eliminazione gaussiana confrontando il riempimento della matrice A e della matrice triangolare superiore che si ottiene con eliminazione gaussiana utilizzando il comando spy.
- 5. Si costruisca una matrice A di dimensione $N \ge 10$ avente elementi sulla diagonale uguali a 10; elementi sulla prima sovra e sotto diagonale uguali a 5; elementi sulla nona sovra e sotto diagonale uguali a 1 (comando diag). Verificare l'allocazione di memoria con il comando whos. Ripetere incrementando la dimensione fino a che il PC non è più in grado di allocare la matrice (provare con N = 50000).
- 6. Ripetere l'esercizio precedente usando il comando spdiags, aumentando ulteriormente il valore di N.

7. Si consideri la matrice

$$\mathcal{A} = \left[\begin{array}{cc} A & B \\ B^T & C \end{array} \right]$$

dove A, B, C sono matrici assegnate nel seguente modo:

- (a) A è una matrice quadrata di ordine N (pari) tridiagonale con 4 sulla diagonale e -1 su sovra e sotto diagonale;
- (b) B è una matrice di N righe e N/2 colonne le cui righe i e i + N/2 sono gli elementi e_i della base canonica;
- (c) C è un multiplo della matrice identità: C = cI, con c assegnato.

Si costruisca la matrice \mathcal{A} con vari valori di N e con c = -5.

8. Si consideri la matrice triangolare a blocchi 2 × 2

$$\mathcal{A} = \left[\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array} \right]$$

dove $A_{11} \in \mathbb{R}^{p \times p}$, $A_{12} \in \mathbb{R}^{p \times q}$, $A_{22} \in \mathbb{R}^{q \times q}$. Immaginando fissata la dimensione n = p + q della matrice (ponendo ad esempio n = 10000), si calcoli per via teorica, in funzione di q, il costo totale⁴ per la risoluzione del sistema lineare (eliminazione gaussiana più sostituzione all'indietro) nel caso in cui:

- (a) si usi la matrice intera \mathcal{A} considerandola come piena (non sfruttando, cioè, la presenza di un blocco nullo);
- (b) si sfrutti la riducibilità del sistema lineare.

Nel caso 8b si consideri anche il costo per il calcolo del termine noto.⁵

- 9. ♣ Con riferimento al punto precedente, si costruiscano i blocchi di A in modo casuale (rand) e un vettore dei termini noti b in modo che la soluzione del sistema lineare Ax = b sia il vettore con elementi tutti uguali a 1. Si risolva il sistema lineare con il comando backslash sia considerando la modalità 8a che 8b. Si considerino valori di q variabili da q = 500 a q = 9500 con incrementi di 500 e si riportino in un grafico i tempi di esecuzione in entrambi i casi in funzione di q. Per quale valore di q si ottiene il maggior vantaggio con la tecnica 8b?
- 10. Con riferimento al punto precedente, si aggiunga al grafico la curva teorica ricavata al punto 8, riscalandola opportunamente per poterla sovrapporre in uno stesso grafico ai dati sperimentali.
- 11. \spadesuit Si generalizzino gli esercizi 8-10 considerando una matrice triangolare a blocchi $q \times q$ costituita, per semplicità, da blocchi quadrati di dimensione n/q. In particolare quindi:

⁴In termini di numero di moltiplicazioni

 $^{^5}$ Si ricorda che per matrici piene, cioè ignorando la presenza di eventuali elementi nulli: costo eliminazione gaussiana per matrice di ordine r è $\approx \frac{1}{3}r^3$; costo sostituzione all'indietro per matrice triangolare di ordine r è $\approx \frac{1}{2}r^2$; costo prodotto Mv con $M \in \mathbb{R}^{r \times s}$ e $b \in \mathbb{R}^s$ è $r \cdot s$.

- (a) Si calcoli il costo teorico in funzione del numero di blocchi q.
- (b) Si estendano gli esercizi 9 e 10 al caso dell'esercizio precedente, considerando diversi valori di q. Cosa succede per $q \simeq n$?
- 12. Si generi una matrice a banda con ampiezza di banda inferiore q e superiore p. La si generi in modo casuale, ma in modo da garantire la predominanza diagonale per colonne. Verificare che i fattori L ed U hanno la stessa ampiezza di banda di A.
- 13. Considerare una matrice tridiagonale (i.e., a banda con banda inferiore e superiore entrambe di ampiezza 1) a predominanza diagonale. Si allochi la matrice sfruttando solo 3 vettori per allocare le tre diagonali. Si implementi l'eliminazione gaussiana senza pivoting sempre utilizzando i soli 3 vettori.
- 14. Si implementino i metodi di Jacobi e Gauss-Seidel per risolvere un sistema lineare Ax = b in una function che riceva in ingresso A, b, x_0 , numero massimo di iterazioni, tolleranza per criterio di arresto. Si preveda come tolleranza un vettore di due componenti, e si implementi un controllo sulla distanza fra iterate o sul residuo a seconda del valore che assumono le componenti (ad esempio, si associ la prima componente al criterio sulle iterate, la seconda a quello del residuo; se si trova un valore negativo NON si attivi il corrispondente controllo).
- 15. Si applichino le function precedenti ai seguenti sistemi lineari Ax = b:
 - (a) A=[3,0,4;7,4,2;-1,-1,-2], b=[7,13,-4];
 - (b) A=[-3,3,-6;-4,7,-8;5,7,-9], b=[-6,-5,-3];
 - (c) A=[4,1,1;2,-9,0;0,-8,-6], b=[6,-7,-14];
 - (d) A=[7,6,9;4,5,-4;-7,-3,8], b=[22,5,-2];
 - (e) $A \in \mathbb{R}^{n \times n}$ è la matrice tridiagonale avente elementi diagonali uguali a 4, elementi sovra e sottodiagonali uguali a -1, e b è il vettore dei termini noti che corrisponde alla soluzione esatta $x = (1, \dots, 1)^T$;
 - (f) come sopra ma con 2 sulla diagonale.

In tutti i casi si analizzi il comportamento dei metodi in relazione al valore del raggio spettrale della matrice d'iterazione dei metodi, tenendo conto del fatto che la soluzione è sempre il vettore con elementi tutti uguali a 1. Negli ultimi due casi si costruisca la matrice sparsa con il comando spdiags verificando a quale dimensione n si riesce ad arrivare.

References

- [1] Stefano Berrone and Sandra Pieraccini. Esercizi svolti di Calcolo Numerico con introduzione a Matlab. CLUT, 2004.
- [2] Giovanni Monegato. Metodi e Algoritmi per il Calcolo Numerico. CLUT, 2008.

[3]	Naldi, Lorenzo Pareschi, and Giovanni Russo. <i>Introduzione al Calcolo Scimetodi e applicazioni con Matlab</i> . McGraw-Hill, 2001.