Четвертое домашнее задание СПБ, Академический Университет, 23 сентября 2014

Содержание

За	дачи		2
1	Задача А.	Минимальное покрытие [0.5 секунд, 256 mb]	2
2	Задача В.	Точки и отрезки [0.5 секунд, 256 mb]	3
3	Задача С.	Обмен [0.5 секунд, 256 mb]	4
4	Задача D.	Q-я порядковая статистика [0.8 секунд, 256 mb]	5
Бо	Бонус		
5	Задача Е.	Сортировка за линейное время [0.6 секунд, 256 mb]	6
6	Задача F.	Минимумы в подматрицах [0.7 секунд, 256 mb]	7

В некоторых задачах большой ввод и вывод. Имеет смысл пользоваться супер быстрым вводом-выводом, например: http://acm.math.spbu.ru/~sk1/algo/input-output/cpp.html

Задачи

1 Задача А. Минимальное покрытие [0.5 секунд, 256 mb]

На прямой задано некоторое множество отрезков с целочисленными координатами концов $[L_i, R_i]$. Выберите среди данного множества подмножество отрезков, целиком покрывающее отрезок [0, M], (M — натуральное число), содержащее наименьшее число отрезков.

Формат входных данных

В первой строке указана константа M ($1 \le M \le 5000$). В каждой последующей строке записана пара чисел L_i и R_i ($|L_i|, |R_i| \le 50000$), задающая координаты левого и правого концов отрезков. Список завершается парой нулей. Общее число отрезков не превышает $100\,000$.

Формат выходных данных

В первой строке выходного файла выведите минимальное число отрезков, необходимое для покрытия отрезка [0, M]. Далее выведите список покрывающего подмножества, упорядоченный по возрастанию координат левых концов отрезков. Список отрезков выводится в том же формате, что и во входе. Завершающие два нуля выводить не нужно.

Если покрытие отрезка [0, M] исходным множеством отрезков $[L_i, R_i]$ невозможно, то следует вывести единственную фразу "No solution".

Примеры

cover.in	cover.out
1	No solution
-1 0	
-5 -3	
2 5	
0 0	
1	1
-1 0	0 1
0 1	
0 0	

2 Задача В. Точки и отрезки [0.5 секунд, 256 mb]

Дано n отрезков на числовой прямой и m точек на этой же прямой. Для каждой из данных точек определите, скольким отрезкам она принадлежит. Точка x считается принадлежащей отрезку с концами a и b, если выполняется двойное неравенство $\min(a,b) \leq x \leq \max(a,b)$.

Формат входных данных

Первая строка содержит два целых числа n ($1 \le n \le 10^5$) — число отрезков и m ($1 \le m \le 10^5$) — число точек. В следующих n строках записаны по два целых числа a_i и b_i — координаты концов соответствующего отрезка. В последней строке записаны m целых чисел — координаты точек. Все числа во входном файле не превосходят по модулю 10^9 .

Формат выходных данных

В выходной файл выведите m чисел — для каждой точки выведите количество отрезков, в которых она содержится.

Примеры

segments.in	segments.out
2 2	1 0
0 5	
7 10	
1 6	
1 3	0 0 1
-10 10	
-100 100 0	

Задача С. Обмен [0.5 секунд, 256 mb]

Пусть все натуральные числа исходно организованы в список в естественном порядке. Разрешается выполнить следующую операцию: swap(a,b). Эта операция возвращает в качестве результата расстояние в текущем списке между числами a и b и меняет их местами.

Задана последовательность операций swap. Требуется вывести в выходной файл результат всех этих операций.

Формат входных данных

Первая строка входного файла содержит число n ($1 \le n \le 200\,000$) — количество операций. Каждая из следующих n строк содержит по два числа в диапазоне от 1 до 10^9 — аргументы операций swap.

Формат выходных данных

Для каждой операции во входном файле выведите ее результат.

Пример

swap.in	swap.out
4	3
1 4	1
1 3	4
4 5	2
1 4	

4 Задача D. Q-я порядковая статистика [0.8 секунд, 256 mb]

Вам дан массив из n случайных целых чисел. Ваша задача — отсортировать массив и вывести q-е число в получившемся порядке.

Формат входных данных

На первой строке числа $n, q. (1 \le q \le n \le 10^7)$. На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
unsigned int cur = 0; // беззнаковое 32-битное число
unsigned int nextRand24() {
cur = cur * a + b; // вычисляется с переполнениями
return cur » 8; // число от 0 до 2<sup>24</sup> - 1.
}
unsigned int nextRand32() {
unsigned int a = nextRand24(), b = nextRand24();
return (a « 8) ^ b; // число от 0 до 2<sup>32</sup> - 1.
}
Элементы массива генерируются последовательно. x<sub>i</sub> = nextRand32();
```

Формат выходных данных

Выведите ответ на запрос.

Примеры

qstat.in	qstat.out
6 3	197852696
239 13	

Замечание

Сгенерированный массив: 12, 130926, 3941054950, 2013898548, 197852696, 2753287507. Внимание: нельзя пользоваться стандартными функциями, например, nth_element.

Бонус

5 Задача Е. Сортировка за линейное время [0.6 секунд, 256 mb]

Дан массив случайных целых чисел, нужно отсортировать его.

Формат входных данных

На первой строке количество тестов t ($1 \le t \le 200$) и число n ($1 \le n \le 50\,000$) — размер массива в каждом из тестов. На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
unsigned int cur = 0; // беззнаковое 32-битное число
unsigned int nextRand24() {
cur = cur * a + b; // вычисляется с переполнениями
return cur » 8; // число от 0 до 2<sup>24</sup> - 1.
}
unsigned int nextRand32() {
unsigned int a = nextRand24(), b = nextRand24();
return (a « 8) ^ b; // число от 0 до 2<sup>32</sup> - 1.
}
Тесты генерируются последовательно.
Элементы массива генерируются последовательно. x<sub>i</sub> = nextRand32();
```

Формат выходных данных

Для каждого теста выведите на отдельной строке $\sum_{i=1}^{n} x_i \cdot i$.

Примеры

buckets.in	buckets.out
1 6	8906224639
239 13	

Замечание

Сгенерированный массив: 12, 130926, 3941054950, 2013898548, 197852696, 2753287507.

В этой задаче очень небольшой запас по времени. Если она не сдается, это нормально.

6 Задача F. Минимумы в подматрицах [0.7 секунд, 256 mb]

Дана матрица $n \times n$, состоящая из целых чисел. Для каждой её подматрицы размера $L \times L$ найдите минимум в этой подматрице. Подматрицей здесь называется "подпрямоугольник".

Внимание. Решение должно работать за $O(n^2)$.

Формат входных данных

Первая строка входных данных содержит два целых числа n и L ($1 \le L \le n \le 1000$). Далее в n строках идет описание матрицы $n \times n$, по n чисел в каждой строке. Все числа в матрицы целые, от -10^9 до 10^9 .

Формат выходных данных

Выведите n-L+1 строку по n-L+1 числу в каждой. j-е число в i-й строке должно быть равно минимуму в подматрице размера $L\times L$ с левым верхнем углом на пересечении i-й строки и j-го столбца исходной матрицы.

Примеры

matrixmin.in	matrixmin.out
1 1	5
5	
2 1	2 1
2 1	3 4
3 4	
2 2	1
2 1	
3 4	
4 2	1 2 2
4 5 3 2	1 2 2
1 2 5 4	1 2 2
3 4 2 3	
1 3 5 5	