The Link Layer and LANs

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Multiple access links, protocols

two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch, host
 - PPP for dial-up access
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC in cable-based access network
 - 802.11 wireless LAN, 4G/4G. satellite

shared wire (e.g., cabled Ethernet)

shared radio: 4G/5G

shared radio: WiFi

shared radio: satellite

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel,
 i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

Multiple access protocols

- Data link layer is divided into 2 sub-layers
 - Logical Link Control layer (LLC layer)
 - Communicate and provide services to the network layer
 - Unacknowledged connectionless service
 - Acknowledged connectionless service
 - Connection oriented service
 - Be responsible for error control and flow control
 - Medium Access Control layer (MAC layer)
 - Create frames
 - Receive frames, extract information and detect errors
 - Control access to medium

An ideal multiple access protocol

given: multiple access channel (MAC) of rate R bps desiderata:

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = packet transmission time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have packets to send, slots 2,5,6 idle

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have packet to send, frequency bands 2,5,6 idle

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoding: inner product: (original data) X (chipping sequence)
- decoding: summed inner-product: (encoded data) X (chipping sequence)

CDMA encode/decode

... but this isn't really useful yet!

CDMA: two-sender interference

 $Z_{i,m}^1 = d_i^1 \cdot c_m^1$ data $d_0^1 = 1$ $d_1^1 = -1$ bits channel,Z*/ Sender 1 code 1 data $d_1^2 = 1$ $d_0^2 = 1$ bits Sender 2 $d_0^1 = 1$ $d_1^1 = -1$ slot 0 slot 1 received received input input receiver 1

channel sums together transmissions by sender 1 and 2

using same code as sender 1, receiver recovers sender 1's original data from summed channel data!

... now *that's* useful!

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- two or more transmitting nodes: "collision"
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA, slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - *if no collision:* node can send new frame in next slot
 - *if collision:* node retransmits frame in each subsequent slot with probability *p* until success

randomization – why?

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet
- clock synchronization

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
 - prob that given node has success in a slot = $p(1-p)^{N-1}$
 - prob that any node has a success = $Np(1-p)^{N-1}$
 - max efficiency: find p^* that maximizes $Np(1-p)^{N-1}$
 - for many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity, gives:

```
max\ efficiency = 1/e = .37
```

at best: channel used for useful transmissions 37% of time!

Pure ALOHA

- unslotted Aloha: simpler, no synchronization
 - when frame first arrives: transmit immediately
- collision probability increases with no synchronization:
 - frame sent at t₀ collides with other frames sent in [t₀-1,t₀+1]

pure Aloha efficiency: 18%!

CSMA (carrier sense multiple access)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission
- human analogy: don't interrupt others!

CSMA/CD: CSMA with collision detection

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection easy in wired, difficult with wireless
- human analogy: the polite conversationalist

CSMA: collisions

- collisions can still occur with carrier sensing:
 - propagation delay means two nodes may not hear each other's juststarted transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

 t_1

CSMA/CD:

- CSMA/CS reduces the amount of time wasted in collisions
 - transmission aborted on collision detection

Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel:

if idle: start frame transmission.

if busy: wait until channel idle, then transmit

- 3. If NIC transmits entire frame without collision, NIC is done with frame!
- 4. If NIC detects another transmission while sending: abort, send jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K:512 bit times, returns to Step 2
 - more collisions: longer backoff interval

CSMA/CD efficiency

- T_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to 1
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, 1/N bandwidth allocated even if only 1 active node!

random access MAC protocols

- efficient at low load: single node can fully utilize channel
- high load: collision overhead

"taking turns" protocols

look for best of both worlds!

"Taking turns" MAC protocols

polling:

- master node "invites" other nodes to transmit in turn
- typically used with "dumb" devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

"Taking turns" MAC protocols

token passing:

- control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Cable access network: FDM, TDM and random access!

- multiple downstream (broadcast) FDM channels: up to 1.6 Gbps/channel
 - single CMTS transmits into channels
- multiple upstream channels (up to 1 Gbps/channel)
 - multiple access: all users contend (random access) for certain upstream channel time slots; others assigned TDM

Cable access network:

DOCSIS: data over cable service interface specificaiton

- FDM over upstream, downstream frequency channels
- TDM upstream: some slots assigned, some have contention
 - downstream MAP frame: assigns upstream slots
 - request for upstream slots (and data) transmitted random access (binary backoff) in selected slots

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division, CDMA
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - Bluetooth, FDDI, token ring

LANs

- 1. addressing, ARP
- 2. Ethernet
- 3. switches

MAC addresses

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
 - e.g.: 128.119.40.136
- MAC (or LAN or physical or Ethernet) address:
 - function: used "locally" to get frame from one interface to another physically-connected interface (same subnet, in IP-addressing sense)
 - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "numeral" represents 4 bits)

MAC addresses

each interface on LAN

- has unique 48-bit MAC address
- has a locally unique 32-bit IP address (as we've seen)

MAC addresses

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address: portability
 - can move interface from one LAN to another
 - recall IP address not portable: depends on IP subnet to which node is attached

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

 IP/MAC address mappings for some LAN nodes:

< IP address; MAC address; TTL>

 TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

Routing to another subnet: addressing

walkthrough: sending a datagram from A to B via R

- focus on addressing at IP (datagram) and MAC layer (frame) levels
- assume that:
 - A knows B's IP address
 - A knows IP address of first hop router, R (how?)
 - A knows R's MAC address (how?)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame containing A-to-B IP datagram
 - R's MAC address is frame's destination

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP

- R determines outgoing interface, passes datagram with IP source A, destination B to link layer
- R creates link-layer frame containing A-to-B IP datagram. Frame destination address: B's MAC address

- R determines outgoing interface, passes datagram with IP source A, destination B to link layer
- R creates link-layer frame containing A-to-B IP datagram. Frame destination address: B's MAC address

- B receives frame, extracts IP datagram destination B
- B passes datagram up protocol stack to IP

Ethernet

"dominant" wired LAN technology:

- first widely used LAN technology
- simpler, cheap
- kept up with speed race: 10 Mbps 400 Gbps
- single chip, multiple speeds (e.g., Broadcom BCM5761)

Metcalfe's Ethernet sketch

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- switched: prevails today
 - active link-layer 2 switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet frame structure

sending interface encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:

- used to synchronize receiver, sender clock rates
- 7 bytes of 10101010 followed by one byte of 10101011

Ethernet frame structure (more)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g., ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- type: indicates higher layer protocol
 - mostly IP but others possible, e.g., Novell IPX, AppleTalk
 - used to demultiplex up at receiver
- CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- •unreliable: receiving NIC doesn't send ACKs or NAKs to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
 - different physical layer media: fiber, cable

Ethernet switch

- Switch is a link-layer device: takes an active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent: hosts unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, so:
 - no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, so:
 - no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions
 - but A-to-A' and C to A' can not happen simultaneously

switch with six interfaces (1,2,3,4,5,6)

Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

<u>A:</u> each switch has a switch table, each entry:

- (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
Α	1	60

Switch table (initially empty)

Switch: frame filtering/forwarding

when frame received at switch:

```
1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination
  then {
  if destination on segment from which frame arrived
     then drop frame
      else forward frame on interface indicated by entry
   else flood /* forward on all interfaces except arriving interface */
```

Self-learning, forwarding: example

- frame destination, A', location unknown: flood
- destination A location known: selectively send on just one link

MAC addr	interface	TTL
A	1	60
Α'	4	60

switch table (initially empty)

Interconnecting switches

self-learning switches can be connected together:

- Q: sending from A to G how does S₁ know to forward frame destined to G via S₄ and S₃?
 - A: self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

 $\underline{\mathbf{Q}}$: show switch tables and packet forwarding in S_1 , S_2 , S_3 , S_4

Small institutional network

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine network-layer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

