

Euclid eWorkshop # 2

Functions and Equations

TOOLKIT

Parabolas

The quadratic $f(x) = ax^2 + bx + c$ (with a,b,c real and $a \neq 0$) has two zeroes given by $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. These roots are :

- real and distinct if the discriminant $\Delta = b^2 4ac > 0$
- real and equal if the discriminant $\Delta = b^2 4ac = 0$
- distinct and non-real if the discriminant $\Delta = b^2 4ac < 0$

The sum of these roots is $r_1 + r_2 = \frac{-b}{a}$ and their product $r_1 r_2 = \frac{c}{a}$.

Since
$$y = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$
, the vertex of the graph is located at $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$.

You should be able to sketch the six generic cases of the graph of the parabola that occurs when a > 0 or < 0 and $\Delta > 0$, < 0, or = 0.

Polynomials

Remainder Theorem and Factor Theorem

The Remainder Theorem states that when a polynomial $p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$, of degree n, is divided by (x-k) the remainder is p(k). The factor theorem then follows: p(k) = 0 if and only if (x-k) is a factor of p(x). A polynomial equation of degree n has at most n real roots.

Rational Root Theorem

The rational root theorem states that all rational roots $\frac{p}{q}$ have the property that p and q are factors of the last and first coefficient, a_n and a_0 respectively.

Function Transformations

The graph of y = p(x) or y = f(x) can be used to graph its various transformed cousins:

$$y = p(x) + k$$
 is shifted up k units; $(k > 0)$

$$y = p(x - k)$$
 is shifted right k units; $(k > 0)$

$$y = kp(x)$$
 is stretched vertically by a factor of k ; $(k > 0)$

$$y = p(\frac{x}{k})$$
 is stretched horizontally by a factor of k ; $(k > 0)$

$$y = -p(x)$$
 is reflected in the x axis;

$$y = p(-x)$$
 is reflected in the y axis;

$$x = f(y)$$
 or $y = f^{-1}(x)$ is reflected across the line $y = x$.

SAMPLE PROBLEMS

1. If $x^2 - x - 2 = 0$, determine all possible values of $1 - \frac{1}{x} - \frac{6}{x^2}$.

Solution

We have
$$1 - \frac{1}{x} - \frac{6}{x^2} = \frac{x^2 - x - 6}{x^2}$$

= $\frac{x^2 - x - 2 - 4}{x^2}$
= $\frac{-4}{x^2}$

Since
$$x^2 - x - 2 = 0$$

 $(x - 2)(x + 1) = 0$
Thus $x = 2$ or -1

Therefore possible values are -1 and -4.

2. If the graph of the parabola $y = x^2$ is translated to a position such that its x intercepts are -d and e and its y intercept is -f, (where d,e,f>0), show that de=f.

Solution 1 (easy)

Since the x intercepts are -d and e the parabola must be of the form y = a(x+d)(x-e). Also since we have only translated $y = x^2$ it follows that a = 1. Now setting x = 0 we have -f = -de and the results follows.

Solution 2 (harder)

Let the parabola be $y=ax^2+bx+c$. Now, as in the first solution, a=1. Then solving for the x and y intercepts we find $e=\frac{-b+\sqrt{b^2-4c}}{2}$, $-d=\frac{-b-\sqrt{b^2-4c}}{2}$ and -f=c. Now straight forward multiplication gives $-de=\frac{-b-\sqrt{b^2-4c}}{2}\cdot\frac{-b+\sqrt{b^2-4c}}{2}=\frac{b^2-b^2+4c}{4}=c=-f \text{ as required!}$

3. Find all values of x such that $x + \frac{36}{x} \ge 13$.

Solution

First we note that $x \neq 0$. If x > 0, we can multiply the equation by this positive quantity and arrive at $x^2 - 13x + 36 \geq 0$ or $(x - 4)(x - 9) \geq 0$. Since x > 0 this gives $4 \geq x > 0$ or $x \geq 9$. If x < 0 the left side of the inequality is negative, which means it is not greater than 13. Therefore $0 < x \leq 4$ or $x \geq 9$.

4. If a polynomial leaves a remainder of 5 when divided by x-3 and a remainder of -7 when divided by x+1, what is the remainder when the polynomial is divided by x^2-2x-3 ?

Solution

We observe that when we divide by a second degree polynomial the remainder will generally be linear. Thus the division statement becomes

$$p(x) = (x^2 - 2x - 3)q(x) + ax + b \tag{*}$$

where p(x) is the polynomial, q(x) is the quotient polynomial and ax + b is the remainder. Now we observe that the remainder theorem states p(3) = 5 and p(-1) = -7. Also we notice that $x^2 - 2x - 3 = (x - 3)(x + 1)$. Thus substituting x = 3 and x = -1 into (*) we have:

$$p(3) = 5 = 3a + b$$

$$p(-1) = -7 = -a + b$$

Solving these equations a = 3 and b = -4; the remainder is 3x - 4.

PROBLEM SET

1. If x and y are real numbers, determine all solutions (x, y) of the system of equations

$$x^2 - xy + 8 = 0$$

$$x^2 - 8x + y = 0$$

- 2. The parabola defined by the equation $y = (x 1)^2 4$ intersects the x-axis at points P and Q. If (a,b) is the midpoint of PQ, what is the value of a?
- 3. (a) The equation $y = x^2 + 2ax + a$ represents a parabola for all real values of a. Prove that there exists a common point through which all of these parabolas pass, and determine the coordinates of this point.
 - (b) The vertices of these parabolas lie on a curve. Prove that this curve is itself a parabola whose vertex is the common point found in part (a).
- 4. (a) Sketch the graph of the equation $y = x(x-4)^2$. Label all intercepts.
 - (b) Solve the inequality $x(x-4)^2 \ge 0$.
- 5. Determine all real values of p and r that satisfy the following system of equations:

$$p + pr + pr^2 = 26$$

$$p^2r + p^2r^2 + p^2r^3 = 156$$

- 6. A quadratic equation $ax^2 + bx + c = 0$ (where a, b, and c are not zero), has real roots. Prove that a, b, and c cannot be consecutive terms in a geometric sequence.
- 7. A quadratic equation $ax^2 + bx + c = 0$ (where x, a, b, and c are integers and $a \neq 0$), has integer roots. If a, b, and c are consecutive terms in an arithmetic sequence, solve for the roots of the equation.
- 8. Solve this equation for x:

$$(x^2 - 3x + 1)^2 - 3(x^2 - 3x + 1) + 1 = x.$$

- 9. The parabola $y = (x-2)^2 16$ has its vertex at point A and its larger x intercept at point B. Find the equation of the line through A and B.
- 10. Solve the equation (x-b)(x-c) = (a-b)(a-c) for x.
- 11. Given that x = -2 is a solution of $x^3 7x 6 = 0$, find the other solutions.
- 12. Find the value of a such that the equation below in x has real roots, the sum of whose squares is a minimum.

$$4x^2 + 4(a-2)x - 8a^2 + 14a + 31 = 0.$$

- 13. If $f(x) = \frac{3x-7}{x+1}$ and g(x) is the inverse of f(x), then determine the value of g(2).
- 14. If (-2,7) is the maximum point for the function $y = -2x^2 4ax + k$, determine k.
- 15. The roots of $x^2 + cx + d = 0$ are a and b and the roots of $x^2 + ax + b = 0$ are c and d. If a, b, c and d are nonzero, calculate a + b + c + d.
- 16. If $y = x^2 2x 3$ then determine the minimum value of $\frac{y-4}{(x-4)^2}$.