01-24-2023-shift-2-16-30

AI24BTECH11011 - Himani Gourishetty

- a) $3e^{2}$
- b) e^2
- c) $2e^2$
- 2) Let p and q be two statements. Then $\neg (p \land (p \Rightarrow \neg q))$ is equivalent to
 - a) $p \lor (p \land (\neg q))$
 - b) $p \vee ((\neg p) \wedge q)$
 - c) $(\neg p) \lor q$
 - d) $p \lor (p \land q)$
- 3) The number of square matrices of order 5 with entries from the set {0, 1}, such that the sum of all the elements in each row is 1 and the sum of all the elements in each column is also 1, is
 - a) 225
 - b) 120
 - c) 150
 - d) 125

4)
$$\int_{\frac{3\sqrt{3}}{4}}^{\frac{3\sqrt{3}}{4}} \frac{48}{\sqrt{9-4x^2}} dx$$
 is equal to

- a) $\frac{\pi}{3}$ b) $\frac{\pi}{2}$ c) $\frac{\pi}{6}$ d) 2π
- 5) Let A be a 3×3 matrix such that $|adj(adj(adjA))| = 12^4$. Then $|A^{-1}adjA|$ is equal to
 - a) $2\sqrt{3}$
 - b) $\sqrt{6}$
 - c) 12
 - d) 1

I. SECTION-B

- 1) The urns A, B and C contain 4 red, 6 black; 5 red, 5 black and λ red, 4 black balls respectively. One of the urns is selected at random and a ball is drawn. If the ball drawn is red and the probability that it is drawn from urn C is 0.4 then the square of the length of the side of the largest equilateral triangle, inscribed in the parabola $y^2 = \lambda x$ with one vertex at the vertex of the parabola is
- 2) If the area of the region bounded by the curves $y^2 2y = -x$, x + y = 0 is A, then 8A is equal to 3) If $\frac{1^3 + 2^3 + 3^3 + \cdots \text{upto n terms}}{1 \cdot 3 + 2 \cdot 5 + 3 \cdot 7 + \cdots \text{upto n terms}} = \frac{9}{5}$, then the value of n is
- 4) If f be a differentiable function defined on $[0, \frac{\pi}{2}]$ such that $f(x) > \text{and } f(x) + \int_0^x f(t) \sqrt{1 (\log_e f(t))^2} dt = \frac{1}{2} \int_0^x f(t) dt$ $e, \forall x \in [0, \frac{\pi}{2}]$. Then $\left(6 \log_e f\left(\frac{\pi}{6}\right)\right)^2$ is equal to
- 5) The minimum number of elements that must be added to the relation $R = \{(a,b), (b,c), (b,d)\}$ on the set $\{a, b, c, d\}$ so that it is an equivalence relation, is

- 6) Let $\mathbf{a} = \hat{i} + 2\hat{j} + \lambda \hat{k}$, $\mathbf{b} = 3\hat{i} 5\hat{j} \lambda \hat{k}$, $\mathbf{a} \cdot \mathbf{c} = 7, 2\mathbf{b} \cdot \mathbf{c} + 43 = 0$, $\mathbf{a} \times \mathbf{c} = \mathbf{b} \times \mathbf{c}$. Then $|\mathbf{a} \cdot \mathbf{b}|$ is equal to
- 7) Let the sum of the coefficients of the first three terms in the expansion of $\left(x-\frac{3}{x^2}\right)^n$, $x \neq 0$, $n \in \mathbb{N}$, be 376. Then the coefficient of x^4 is _____
- 8) If the shortest distance between the lines $\frac{x+\sqrt{6}}{2} = \frac{y-\sqrt{6}}{3} = \frac{z-\sqrt{6}}{4}$ and $\frac{x-\lambda}{3} = \frac{y-2\sqrt{6}}{4} = \frac{z+2\sqrt{6}}{5}$ is 6, then square of sum of all possible values of λ is
- 9) Let $S = \{\theta \in [0, 2\pi) : \tan(\pi \cos \theta) + \tan(\pi \sin \theta) = 0\}$. Then $\sum_{\theta \in S} \sin^2(\theta + \frac{\pi}{4})$ is equal to 10) The equations of the sides AB, BC and CA of a triangle ABC are respectively: 2x = y = 0, x + py = 0 $21a, (a \neq 0)$ and x - y = 3 respectively. Let $\mathbf{P}(2, a)$ be the centroid of $\triangle ABC$, then $(BC)^2$ is equal to