La integral de Choquet como operador de agregación

Julio Waissman Vilanova

Departamento de Matemáticas
Universidad de Sonora

1/26

Plan de la presentación

- Operadores de agregación
- Operadores de consenso
 - Media aritmética ponderada
 - Promedio ponderado ordenado
 - Integral de Choquet
- 3 Ejemplo ilustrativo
 - Modelado con WAM
 - Modelado con OWA
 - Modelado con la integral de Choquet

Introducción

- Los operadores de agregación tienen que ver con agregar o fusionar valores provenientes de diferentes fuentes, para obtener un solo valor que los represente. El ejemplo prototipo es la media aritmética.
- Herramienta muy importante en la solución de problemas de toma de decisión multicriterio (MCDM, por multi-criteria decision making) en los que, quien toma la decisión (DM, por decision maker) va a elegir una alternativa entre varias, considerando diferentes puntos de vista o criterios.

Notación

Partiendo de un conjunto de alternativas potenciales

$$X = X_1 \times \ldots \times X_n$$

cada alternativa

$$x:=(x_1,\ldots,x_n)$$

puede ser descrita como un vector de *n* componentes, llamadas *criterios*.

Operación de agregación n-aria

Definición

Una operación de agregación n-aria es una función

$$F^{(n)}:I^n\to I$$

que satisface lo siguiente:

- Monotonía. Esto es, si consideramos dos n-tuplas (x_1, \ldots, x_n) y (y_1, \ldots, y_n) tal que $x_i \leq y_i$ para todo i, $1 \leq i \leq n$, se cumple $F^{(n)}(x_1, \ldots, x_n) \leq F^{(n)}(y_1, \ldots, y_n)$.
- Condiciones de frontera de la forma:

$$\inf_{x\in I^n} F^{(n)}(x) = \inf I \qquad \text{y} \qquad \sup_{x\in I^n} F^{(n)}(x) = \sup I$$

Operador de agregación

Definición

Un operador de agregación es una función

$$F:\bigcup_{n\in\mathbb{N}}I^n\to I$$

tal que:

- para todo n > 1, $F^{(n)} = F_{|I^{(n)}|}$ es una operación de agregación n-aria.
- $F^{(1)}$ es la identidad en I.

Operadores de consenso

Las operaciones de consenso son aquellos tales que

$$\min(x_1,\ldots,x_n) \leq F(x_1,\ldots,x_n) \leq \max(x_1,\ldots,x_n).$$

Particularmente interesantes en la toma de decisión difusa, al querer simular la agregación de información proveniente de diferentes fuentes.

Media aritmética ponderada

Definición

La media aritmética con peso (WAM, por weighted arithmetic mean) se define: $M_{\mathbf{w}}$, donde $\mathbf{w} = (w_1, \dots, w_n)$, $w_i > 0$, $\sum_{i=1}^n w_i = 1$ y

$$M_{\mathbf{w}} = \sum_{i=1}^{n} w_i x_i.$$

Promedio ponderado ordenado

Definición

Un promedio ponderado ordenado (OWA, por ordered weighted average) de dimensión n está dada por

$$M'_{\mathbf{w}} = \sum_{i=1}^n w_i x_{(i)},$$

donde (·) indica una permutación de $\{1, \ldots, n\}$, tal que $x_{(1)} \leq \ldots \leq x_{(n)}, \ w_i > 0, \ \sum_{i=1}^n w_i = 1.$

Sobre las WAM y los OWA

- El OWA puede ser visto como la simetrización de la media aritmética ponderada.
- Tanto las WAM como los OWA figuran entre las operación de agregación más utilizadas, en la solución de problemas MCDM.
- La desventaja, muy conocida, es que no siempre es posible representar mediante ellas las preferencias del DM.

La integral de Choquet. Motivación

- La desventaja que presentan la WAM y el OWA se convierten en la principal motivación para el estudio de la integral de Choquet.
- A diferencia de la WAM y el OWA, con la integral de Choquet es posible representar las preferencias del DM, cuando existe relación entre criterios.

Medida borrosa

Definición

Una *medida borrosa* o *capacidad* sobre un conjunto de índices $N = \{1, \ldots, n\}$ es una función monótona $\mu : 2^N \to [0, 1]$, con $\mu(\emptyset) = 0$ y $\mu(N) = 1$.

- Se denota como \mathcal{F}_N al conjunto de todas las medidas borrosas sobre N.
- Que sea monótona significa que $\mu(S) \leq \mu(T)$ si $S \subseteq T$.
- $\mu(S)$ puede ser vista como el *peso* que le corresponde al subconjunto S de criterios.

Integral de Choquet

Definición

Dada $\mu \in \mathcal{F}_N$, la *integral de Choquet* de $x \in I^n$ respecto a μ se define como

$$C_{\mu}(x) := \sum_{i=1}^{n} x_{(i)} [\mu(A_{(i)}) - \mu(A_{(i+1)})],$$

donde $A_{(i)} = \{(i), \dots, (n)\}$ y $A_{n+1} = 0$.

Waissman (UNISON)

Casos especiales

• Propiedad de aditividad. Una capacidad es aditiva si para conjuntos disjuntos $S, T \subseteq N$, se tiene $\mu(S \cup T) = \mu(S) + \mu(T)$.

Si μ es aditiva, la integral de Choquet se reduce a una WAM.

• Propiedad de simetría. Una capacidad es simétrica si para cualesquiera subconjuntos de índices S y T, |S| = |T| implica $\mu(S) = \mu(T)$.

Si μ es simétrica, la integral de Choquet se reduce a un OWA.

Caracterización de la integral de Choquet

Una propiedad fundamental de la integral de Choquet, que resulta de la definición, es:

$$C_{\mu}(1_{\mathcal{S}}, 0_{-\mathcal{S}}) = \mu(\mathcal{S}), \quad \forall \mathcal{S} \subseteq \mathcal{N}.$$

donde, $(1_S, 0_{-S})$ denota una alternativa para la que cada característica x_i tomará el valor 1 si $i \in S$ y 0 en otro caso.

Se caracteriza completamente la integral de Choquet al definir su valor en los casos extremos.

Ejemplo ilustrativo

Sean a, b y c tres alternativas evaluadas sobre tres criterios x_1 , x_2 y x_3 , esquematizados de la siguiente forma:

$$\begin{array}{ccccc} & x_1 & x_2 & x_3 \\ a & 0.6 & 0.6 & 1 \\ b & 0.9 & 0 & 1 \\ c & 0 & 0.9 & 1 \end{array}$$

Se tratará de modelar la preferencia del DM:

$$a \prec b \prec c$$

Modelado con la media aritmética ponderada

Obtener los pesos adecuados acorde a las preferencias, por separado:

$$b \prec c$$
: $0.9w_1 + 0w_2 + 1w_3 < 0w_1 + 0.9w_2 + 1w_3$
 $w_1 < w_2$
 $a \prec b$: $0.6w_1 + 0.6w_2 + 1w_3 < 0.9w_1 + 0w_2 + 1w_3$
 $w_2 < 0.5w_1$

Al tomar en cuenta la preferencia global del DM $(a \prec b \prec c)$ tendremos:

$$w_1 < w_2 < 0.5w_1$$
 No es posible

La media aritmética ponderada no modela la preferencia del DM.

Waissman (UNISON)

Modelado con un promedio ponderado ordenado

Obtener los pesos adecuados:

$$b \prec c$$
: $0w_1 + 0.9w_2 + 1w_3 < 0w_1 + 0.9w_2 + 1w_3$
 $0.9w_2 + w_3 < 0.9w_2 + w_3$

Al usar el OWA las alternativas b y c siempre tendrán el mismo valor.

Modelado con la integral de Choquet

Tomando en cuenta que la integral de Choquet se define por los vértices del *n*-cubo, lo que se requiere es obtener las capacidades (o *pesos*) correspondientes.

```
\begin{array}{llll} 0 & 0 & 0 & \mu(\emptyset) = 0 \text{, por definición} \\ 1 & 0 & 0 & \mu(\{1\}) \\ 0 & 1 & 0 & \mu(\{2\}) \\ 0 & 0 & 1 & \mu(\{3\}) \\ 1 & 1 & 0 & \mu(\{1,2\}) \\ 1 & 0 & 1 & \mu(\{1,3\}) \\ 0 & 1 & 1 & \mu(\{2,3\}) \\ 1 & 1 & 1 & \mu(\{1,2,3\}) = 1 \text{, por definición} \\ & & \mu(\{4,3\}) = 0 \text{, por definición} \end{array}
```

Evaluación de las alternativas

Al evaluar las alternativas tenemos:

Alternativa a

$$\begin{array}{lcl} \mathcal{C}(0.6,0.6,1) & = & 0.6(\mu(\{1,2,3\}) - \mu(\{2,3\})) + \\ & & 0.6(\mu(\{2,3\}) - \mu(\{3\})) + 1(\mu(\{3\}) - \mu(\{4,3\})) \\ & = & 0.6 + 0.4\mu(\{3\}) \end{array}$$

Alternativa b

$$\begin{array}{lcl} \mathcal{C}(0.9,0,1) & = & 0(\mu(\{1,2,3\}) - \mu(\{1,3\})) + \\ & & 0.9(\mu(\{1,3\}) - \mu(\{3\})) + 1(\mu(\{3\}) - \mu(\{4,3\})) \\ & = & 0.9\mu(\{1,3\}) + 0.1\mu(\{3\}) \end{array}$$

Alternativa c

$$\begin{array}{lcl} \mathcal{C}(0,0.9,1) & = & 0(\mu(\{1,2,3\}) - \mu(\{2,3\})) + \\ & & 0.9(\mu(\{2,3\}) - \mu(\{3\})) + 1(\mu(\{3\}) - \mu(\{4,3\})) \\ & = & 0.9\mu(\{2,3\}) + 0.1\mu(\{3\}) \end{array}$$

Evaluación

Al evaluar las preferencias parciales se obtiene lo siguiente:

$$b \prec c \colon \quad 0.9\mu(\{1,3\}) + 0.1\mu(\{3\}) < 0.9\mu(\{2,3\}) + 0.1\mu(\{3\})$$

$$\mu(\{1,3\}) < \mu(\{2,3\})$$

$$a \prec b \colon \quad \quad 0.6 + 0.4\mu(\{3\}) < 0.9\mu(\{1,3\}) + 0.1\mu(\{3\})$$

$$\frac{\mu(\{3\}) + 2}{3} < \mu(\{1,3\})$$

Tomando en cuenta la preferencia del DM ($a \prec b \prec c$) tenemos:

$$\frac{\mu(\{3\})+2}{3}<\mu(\{1,3\})<\mu(\{2,3\})$$

Asignar valor a las capacidades

Asignando un valor a $\mu(\{3\})$, digamos

$$\mu({3}) = 0.4,$$

estamos en condiciones de asignar valores a $\mu(\{1,3\})$ y $\mu(\{2,3\})$.

Atendiendo a la expresión anterior y al valor asignado a $\mu(\{3\})$, vemos que $\mu(\{1,3\})$ debe ser mayor a 0.8, pongamos:

$$\mu(\{1,3\}) = 0.9$$

y, dado que $\mu(\{2,3\})$ debe ser mayor a $\mu(\{1,3\})$, podemos asignar:

$$\mu$$
({2,3}) = 0.95

De esta manera, se satisface la preferencia del DM:

$$a \prec b \prec c$$

Analisis de los resultados

Mediante este modesto ejemplo, es posible resaltar algunos aspectos:

- El que se requiera un valor para la capacidad $\mu(\{1,3\})$ significa que existe relación entre los criterios 1 y 3. Similarmente, por $\mu(\{2,3\})$ se advierte la relación entre los criterios 2 y 3.
- La integral de Choquet resultó adecuada, debido a que puede representar relaciones entre criterios.
- Para satisfacer los requerimientos del DM mediante la integral de Choquet, no fueron necesarios los valores de las $2^N = 2^3 = 8$ capacidades o *pesos*.
- Respetando los valores obtenidos para las capacidades requeridas no es posible asignar valores a las capacidades faltantes, de forma que se dé aditividad o simetría.

23 / 26

Conclusiones

- La integral de Choquet es adecuada en la solución de problemas multicriterio, cuando existe relación entre criterios.
- El problema fundamental radica en la obtención de 2^N capacidades donde N es el número de características.
- Un porcentaje de valores de las capacidades se debe modelar de acuerdo a los requerimientos del DM, mientras que otros deben de ser asignados de forma que el operador de consenso cumpla con propiedades deseables.

Más información

M. Grabisch y C. Labreuche,

A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid,

Ann. Oper. Res., vol. 175, no 1, pp. 247-286, 2010.

Muchas gracias.