Semantic Analysis I

Tutorial (9)

CFGs are not enough!

- The parse tree generated by the syntax analyzer is of minimal use to the task of semantic analysis.
- Solution? Augment the CFG with semantic rules.
- Example:

$$egin{aligned} E
ightarrow E_1 + T & \{E.\,val = E_1.\,val + T.\,val\} \ E
ightarrow T & \{E.\,val = T.\,val\} \ T
ightarrow T_1 * F & \{T.\,val = T_1.\,val + F.\,val\} \ T
ightarrow F & \{T.\,val = F.\,val\} \ F
ightarrow digit & \{F.\,val = digit.\,lexval\} \end{aligned}$$

Syntax Directed Definitions (SDDs)

- Syntax Directed Definitions:
 - Symbols of the grammar have associated attributes.
 - Attributes carry information about the meaning of the program and how to translate it.
 - Computed by semantic rules.
 - Better suited for specification.

Exercise 9-1

```
egin{aligned} E 
ightarrow E_1 + T & \{E.\,val = E_1.\,val + T.\,val\} \ E 
ightarrow T & \{E.\,val = T.\,val\} \ T 
ightarrow T_1 * F & \{T.\,val = T_1.\,val + F.\,val\} \ T 
ightarrow F & \{T.\,val = F.\,val\} \ F 
ightarrow digit & \{F.\,val = digit.\,lexval\} \end{aligned}
```

- Here all attributes are synthesized.
- An attribute is synthesized if its value is determined from other attributes of itself or the attributes of its direct children.
- A post-order traversal will be appropriate to compute all attributes.

Synthesized attributes and Inherited attributes

- Sometimes, synthesized attributes are not sufficient.
- Typical Example: Left Recursion Elimination

$$T
ightarrow FT' \quad \{T.\,val = T'.\,val \ T'.\,inh = F.\,val \} \ T'
ightarrow *FT'_1 \quad \{T'.\,val = T'_1.\,val \ T'_1.\,inh = T'.\,inh *F.\,val \} \ T'
ightarrow arepsilon \quad \{T'.\,val = T'.\,inh \} \ F
ightarrow digit \quad \{F.\,val = digit.\,lexval \}$$

 An attribute is inherited if its value is determined by its parent or sibling attributes.

Order of Evaluation

- How to determine the order of evaluation of the attributes if the SDD contains inherited attributes?
 - a. Construct the dependency graph.
 - If the dependency graph is a DAG, an evaluation is valid. An order can be constructed by topological sorting.

Procedure: Use a queue

- 1. Enqueue a node n with zero in-degree.
- 2. Remove n from the graph together will all emanating arcs.
- 3. Repeat 1,2 until the graph becomes empty.
- Start dequeuing from the queue. Evaluate a node when it is dequeued.

Exercise 9-2

Extend the below SDD to match the grammar in Exercise 9-1.

$$T
ightarrow FT' \quad \{T.\,val = T'.\,val \ T'.\,inh = F.\,val \} \ T'
ightarrow *FT'_1 \quad \{T'.\,val = T'_1.\,val \ T'_1.\,inh = T'.\,inh *F.\,val \} \ T'
ightarrow arepsilon \quad \{T'.\,val = T'.\,inh \} \ F
ightarrow digit \quad \{F.\,val = digit.\,lexval \}$$

Some Special SDDs

- An SDD is S-attributed if all attributes are synthesized.
- An SDD is L-attributed if $\forall B \rightarrow aA\beta$:
 - a. Every inherited attribute of A depends on inherited attributes of B and any attributes of symbols in α .
 - b. Every synthesized attribute of B depends on $\alpha A\beta$ or inherited attributes of B.
- Exercise 9-4: Suppose we have a production A→BCD. Determine whether the following rules are consistent with the definition of S-attributed SDDs or L-attributed SDDs or neither.
 - a. A.s = B.i+C.s
 - b. A.s = B.i+C.s D.i = A.i+B.s
 - c. A.s = B.s+D.s
 - d. A.s = D.i B.i = A.s + C.s C.i = B.s D.i = B.i + C.i

Syntax Directed Translations (SDTs)

- Syntax Directed Translations:
 - Pieces of code associated at various positions in the RHS of a production rule.
 - The pieces of code generate the translation.
 - Better suited for implementation.

From SDDs to SDTs

- Given an L-attributed SDD:
 - a. Insert the action that computes an inherited attribute immediately before its corresponding grammar symbol on the RHS.
 - b. Insert the action that computes a synthesized attribute at the end of the rule.
- Exercise 9-6: Apply this to the SDD in 9-2.

Writing SDDs

• Exercise 9-5: Write an SDD that converts binary numbers with decimal points to decimal numbers (base 10).