29.4 Adjoint of a Linear Map

Let E_1 and E_2 be two K-vector spaces, and let $\varphi_1 \colon E_1 \times E_1 \to K$ be a sesquilinear form on E_1 and $\varphi_2 \colon E_2 \times E_2 \to K$ be a sesquilinear form on E_2 . It is also possible to deal with the more general situation where we have four vector spaces E_1, F_1, E_2, F_2 and two sesquilinear forms $\varphi_1 \colon E_1 \times F_1 \to K$ and $\varphi_2 \colon E_2 \times F_2 \to K$, but we will leave this generalization as an exercise. We also assume that l_{φ_1} and r_{φ_1} are bijective, which implies that that φ_1 is nondegenerate. This is automatic if the space E_1 is finite dimensional and φ_1 is nondegenerate.

Given any linear map $f: E_1 \to E_2$, for any fixed $u \in E_2$, we can consider the linear form in E_1^* given by

$$x \mapsto \varphi_2(f(x), u), \quad x \in E_1.$$

Since $r_{\varphi_1} \colon \overline{E_1} \to E_1^*$ is bijective, there is a unique $y \in E_1$ (because the vector spaces E_1 and $\overline{E_1}$ only differ by scalar multiplication), so that

$$\varphi_2(f(x), u) = \varphi_1(x, y), \text{ for all } x \in E_1.$$

If we denote this unique $y \in E_1$ by $f^{*_l}(u)$, then we have

$$\varphi_2(f(x), u) = \varphi_1(x, f^{*_l}(u)), \text{ for all } x \in E_1, \text{ and all } u \in E_2.$$

Thus, we get a function $f^{*_l}: E_2 \to E_1$. We claim that this function is a linear map. For any $v_1, v_2 \in E_2$, we have

$$\varphi_{2}(f(x), v_{1} + v_{2}) = \varphi_{2}(f(x), v_{1}) + \varphi_{2}(f(x), v_{2})$$

$$= \varphi_{1}(x, f^{*_{l}}(v_{1})) + \varphi_{1}(x, f^{*_{l}}(v_{2}))$$

$$= \varphi_{1}(x, f^{*_{l}}(v_{1}) + f^{*_{l}}(v_{2}))$$

$$= \varphi_{1}(x, f^{*_{l}}(v_{1} + v_{2})),$$

for all $x \in E_1$. Since r_{φ_1} is injective, we conclude that

$$f^{*_l}(v_1 + v_2) = f^{*_l}(v_1) + f^{*_l}(v_2).$$

For any $\lambda \in K$, we have

$$\varphi_{2}(f(x), \lambda v) = \overline{\lambda}\varphi_{2}(f(x), v)$$

$$= \overline{\lambda}\varphi_{1}(x, f^{*_{l}}(v))$$

$$= \varphi_{1}(x, \lambda f^{*_{l}}(v))$$

$$= \varphi_{1}(x, f^{*_{l}}(\lambda v)),$$

for all $x \in E_1$. Since r_{φ_1} is injective, we conclude that

$$f^{*_l}(\lambda v) = \lambda f^{*_l}(v).$$