Bored of seeing the "same" recommended content everyday? Measure the diversity of them! Our Python library provides the complete workflow for measuring diversity in recommendation systems



# Easuring Level in Recommendation Systems

#### Nanna Katrín Hannesdóttir, Zhaoyuan Fu

#### Dataset Formats

#### movielens

Rating data sets from the MovieLens web site, in the formats of:





Data analysis and Unified engine for manipulation tool large-scale data analytics

## Recommendation Systems



### Diversity Metrics

#### Similarity between items:

Cosine Similarity(i,j) =  $\frac{|M_t^{l(i,j)}|}{\sqrt{|M_t^{l(i)}|}\sqrt{|M_t^{l(j)}|}}$   $M_t^{l(i)}: users liked item i$ 

#### Overall similarity:

 $Intra - List Similarity(IL) = \frac{1}{|M|} \sum_{u \in M} \frac{1}{(\frac{N_r(u)}{2})} \sum_{i,j \in N_r(u), i < j} Cosine Similarity(i,j)$   $N_r(u):$ recommendations for user

#### Diversity:

Diversity = 1 - IL

#### Measure Functions

#### **Co-Occurrence Diversity:**

For each item pair, measure the diversity between the user groups that it is recommended to

#### **Item-Feature Diversity:**

For each user, measure the diversity between items that are recommended

#### Results

Alternating Least Squares
Singular Value Decomposition
Neural Collaborative Filtering
Graph Convolution Network
Restricted Boltzmann Machine
Simple Algorithm for Recommendation

Wide linear & Deep neural

# Co-Occurrence Diversity



#### 80%

Winners: ALS and RBM!
For their both
Co-Occurrence Diversity
and Item-Feature Diversity
exceeded 80%!