Digital signal processing MATLAB exam - TRAN Gia Quoc Bao, ASI

Table of Contents

Default commands
I. Context and variables to be analyzed
II. Spectral analysis
Plotting the signal
Applying spectral analysis on the power consumption signal
III. Digital FIR filters
3.1 Low-pass filter
IV. Comparison and conclusion
Applying spectral analysis on the power consumption signal III. Digital FIR filters 3.1 Low-pass filter 3.2 High-pass filter (and comparison with band-pass filter)

Default commands

```
clear all;
close all;
clc;
```

I. Context and variables to be analyzed

```
% Here we need to analyze the frequencies inside a signal to determine
% them (part II) and then to design suitable filters to extract those
% frequencies (part III). Finally there will be some conclusions on
  what we
% have done so far, in part IV.
```

II. Spectral analysis

```
% The signal we want to analyze is called x, with a sampling frequency
of fe.
% In this part we would like to spot the special, interesting
% frequencies in order to know what kinds of filters need to be made.
load('sujet2a.mat');
```

Plotting the signal

```
figure(1);
plot(x);
grid on;
```

```
xlabel('Time (s)');
ylabel('Signal');
legend('The signal');
title('Plot of the signal');
% This signal contains some frequencies that we need to analyzed,
  using fft
% and zero-padding.
```


Applying spectral analysis on the power consumption signal

```
figure(2);
[magnitude_signalSecond frequency_signalSecond] = Spectrum('signal studied', x, fe);

% Here in the analysis using the file "Spectrum" with contains zero-padding
% and fft, I observed 1 peak at 41.5869 Hz and another one at 1528.9307 Hz.
% So I will need a low-pass filter and a high-pass filter to separate them.
```


III. Digital FIR filters

- % In this part, we are trying to separate the components corresponding
- % to each of the frequencies we determined.
- % So we will first use a low-pass FIR filter for the f = 41.5869
- % Hz, then a high-pass for the one with 1528.9307 Hz.

3.1 Low-pass filter

```
\$ The frequency we want is 41.5869 Hz. We will use a cut frequency \$ at 60 as we know that this will include the one we need.
```

fc1 = 2*60/fe;

```
% Making the 1st window (Hamming)
```

deltaWindow1 = 0.005;

sizeWindow1 = round(3.3/deltaWindow1 - 1);

- % I chose the delta to be 0.05 to greatly reduce to other unwanted
- % frequencies while avoiding to much calculation for the computer.
- % Making the window is optional. Normally with MATLAB we just need to use firl and
- % then filter.

```
% Making the 1st filter
filter1 = fir1(sizeWindow1, fc1, 'low');
% Analysis of the 1st filter
figure(3);
[magnitudel phasel frequency1] = FilterVisu('low-pass filter',
filter1, 1, sizeWindow1, fe);
% Looking at the magnitude spectrum we observe clearly that this is a
% low-pass filter. The gain for low frequencies is high and almost
zero for
% the high frequencies. The cut is clear at the frequency we want:
 41.5869
% Applying the 1st filter on the signal
signalFiltered1 = filter(filter1, 1, x);
% Analysis of the obtained signal
figure(4);
[magnitude_signalFiltered1 frequency_signalFiltered1] =
 Spectrum('signal after filter 1 (low-pass)', signalFiltered1, fe);
% Looking at this we see that the high frequencies are filtered away
 and
% the small ones are much clearer. This shows the effectiveness of the
% low-pass filter we implemented.
figure(5);
plot(signalFiltered1);
grid on;
xlabel('Time (s)');
ylabel('Signal');
legend('The signal after filter 1 (low-pass)');
title('Plot of the signal after filter 1 (low-pass)');
% We observe the first pattern thanks to the filter we implemented.
Later
% we will compare the results.
```


3.2 High-pass filter (and comparison with band-pass filter)

```
% The frequency we want is 1528.9307 Hz. We will use cut
% frequencies at 1450 Hz as we know that this will include the one we
need.
fc2 = 2*1450/fe;
% Making the 2nd window (Hamming)
deltaWindow2 = 0.005;
sizeWindow2 = round(3.3/deltaWindow2 - 1) + 1;
% I chose the delta to be 0.05 to greatly reduce to other unwanted
% frequencies while avoiding to much calculation for the computer. Odd
% order symmetric FIR filters must have a gain of zero at the Nyquist
% frequency. So the order is being increased by one.
% Making the window is optional. Normally with MATLAB we just need to
use firl and
% then filter.
% Making the 2nd filter
filter2 = fir1(sizeWindow2, fc2, 'high');
```

```
% I want to use a band-pass filter to compare with the high-pass one
filter3 = fir1(sizeWindow2, [fc2 fc2*1.07]);
% Analysis of the 2nd filter
figure(6);
[magnitude2 phase2 frequency2] = FilterVisu('high-pass filter',
 filter2, 1, sizeWindow2, fe);
% Looking at the magnitude spectrum we observe clearly that this is a
% high-pass filter. The gain for high frequencies is high and almost
zero for
% the low frequencies. The cut is 1461 Hz which is good.
% Analysis of the 3rd filter
figure(7);
[magnitude3 phase3 frequency3] = FilterVisu('band-pass filter',
 filter3, 1, sizeWindow2, fe);
% Looking at the magnitude spectrum we observe clearly that this is a
% band-pass filter. The gain is only reserved for the frequencies in
the
% band we choose. We cut at 1461 and 1540.
% Applying the 2nd filter and 3rd filter on the signal
signalFiltered2 = filter(filter2, 1, x);
signalFiltered3 = filter(filter3, 1, x);
% Analysis of the obtained signals
figure(8);
[magnitude_signalFiltered2 frequency_signalFiltered2] =
 Spectrum('signal after filter 2 (high-pass)', signalFiltered2, fe);
% By looking at this we see that the low frequencies have been greatly
% reduced by the filter. The high-frequency component is now quite
 clear to see.
figure(9);
[magnitude_signalFiltered3 frequency_signalFiltered3] =
 Spectrum('signal after filter 3 (band-pass)', signalFiltered3, fe);
% By looking at this we see that the frequencies outside the wanted
band
% have been greatly reduced by the filter. The high-frequency
 component is
% now very clear to see, clearer than the high-pass filter.
figure(10);
plot(signalFiltered2);
grid on;
xlabel('Time (s)');
ylabel('Signal');
legend('The signal after filter 2 (high-pass)');
title('Plot of the signal after filter 2 (high-pass)');
```

```
figure(11);
plot(signalFiltered3);
grid on;
xlabel('Time (s)');
ylabel('Signal');
legend('The signal after filter 3 (band-pass)');
title('Plot of the signal after filter 3 (band-pass)');

% We were able to extract the frequency. We see that the results
% obtained from the 2nd and 3rd filters are not very different as the
% component with the special frequency is extracted anyway. But of
course
% the 3rd one gives clearer results as the very high frequencies are
% filtered away as well.
```


IV. Comparison and conclusion

```
figure(12);
subplot(411);
plot(x);
grid on;
xlabel('Time (s)');
ylabel('Signal');
legend('The original signal');
title('Plot of the original signal');
subplot(412);
plot(signalFiltered1);
grid on;
xlabel('Time (s)');
ylabel('Signal');
legend('The signal after filter 1 (low-pass)');
title('Plot of the signal after filter 1 (low-pass)');
subplot(413);
plot(signalFiltered2);
grid on;
xlabel('Time (s)');
ylabel('Signal');
legend('The signal after filter 2 (high-pass)');
title('Plot of the signal after filter 2 (high-pass)');
subplot(414);
```

Digital signal processing MATLAB exam - TRAN Gia Quoc Bao, ASI

```
plot(signalFiltered3);
grid on;
xlabel('Time (s)');
ylabel('Signal');
legend('The signal after filter 3 (band-pass)');
title('Plot of the signal after filter 3 (band-pass)');
% In comparison we see that the signals after being filtered are very
% different from the original one and each has its own frequency. Also
% the filtered signals are delayed by half the order of the filter so
we could
% only plot them from there. We see that for the 3rd filter the signal
% clearer than the 2nd one, thanks to the very high frequencies being
% filtered away.
% What we have done so far is first to analyze the signal in order to
% detect the special frequencies thanks to the file "Spectrum". Then,
% the information obtained, we designed different suitable filters,
studied
% the filters with the file "FilterVisu" (plotting poles and zeros,
% frequency response), and applied them on the signal to process it.
% This way we can see how each of the components varies.
% Through this we learned how to study a signal effectively using this
% 2-step procedure and reviewed the tools we have had in the course.
% Some practical lessons from the exercise: we need to normalise the
fft,
% which we need zero padding to improve the visual aspect.
```


Published with MATLAB® R2019a