OFDM SYSTEM WITH PER SUBCARRIER PHASE ROTATION

Publication number:	JP2007529972 (T)
Publication date:	2007-10-25
Inventor(s):	
Applicant(s):	
Classification:	
- international:	H04B7/04; H04J11/00; H04J99/00; H04L1/06; H04L27/26; H04B7/04; H04J11/00; H04J99/00; H04L1/02; H04L27/26
- European:	H04L1/06; H04L27/26M3
Application number:	JP20070504188T 20050325
Priority number(s):	US20040815097 20040331; WO2005US10175 20050325

Abstract not available for JP 2007529972 (T)

Abstract of corresponding document: WO 2005099211 (A1)

Translate this text

Subcarrier phase rotation is implemented in an OFDM transmitting apparatus to overcome problems such as, for example, non-frequency selective multipath fading. In at least one embodiment, subcarrier phase rotation is practiced in an OFDM system implementing multiple input multiple output (MIMO) techniques.

(19) **日本国特許庁(JP)**

(12)公表特許公報(A)

(11)特許出願公表番号

特表2007-529972 (P2007-529972A)

(43) 公表日 平成19年10月25日(2007.10.25)

(51) Int.C1.			F I			テーマコード (参考)
H04J	15/00	(2006.01)	HO4 J	15/00		5KO22
HO4J	11/00	(2006.01)	HO4 J	11/00	Z	5KO59
H04B	7/04	(2006, 01)	HO4B	7/04		

審査請求 有 予備審査請求 未請求 (全 17 頁)

(21) 出願番号	特願2007-504188 (P2007-504188)	(71) 出願人	591003943
(86) (22) 出願日	平成17年3月25日 (2005.3.25)		インテル・コーポレーション
(85) 翻訳文提出日	平成18年9月15日 (2006. 9.15)		アメリカ合衆国 95052 カリフォル
(86) 国際出願番号	PCT/US2005/010175		ニア州・サンタクララ・ミッション カレ
(87) 国際公開番号	W02005/099211		ッジ ブーレバード・2200
(87) 国際公開日	平成17年10月20日 (2005.10.20)	(74) 代理人	100091915
(31) 優先権主張番号	10/815, 097		弁理士 本城 雅則
(32) 優先日	平成16年3月31日 (2004.3.31)	(74)代理人	100099106
(33) 優先権主張国	米国 (US)		弁理士 本城 吉子
		(72) 発明者	サドウスキー, ジョン
			アメリカ合衆国 アリゾナ州 85202
			メサ ウエスト・リンドナー1428
		(72) 発明者	レビー, シミュエル
			イスラエル国 36022 キュー・チョ
			ン フィッシュ・ストリート9
			最終頁に続く

(54) 【発明の名称】 PERサブキャリア相回転のOFDMシステム

(57)【要約】

サブキャリアの位相回転は、例えば、非周波数選択性のマルチパス・フェージングのような問題を克服するためにOFDM送信装置中で実行される。少なくとも1つの実施例では、サブキャリア位相回転は、複数入力・複数出力(MIMO)技術を実現するOFDMシステムで実施される。

【特許請求の範囲】

【請求項1】

サブキャリアに依存する位相シフトを直交周波数分割多重(OFDM)信号に関連する変調シンボルに提供し、第1位相シフトされた変調シンボルを生成する第1位相シフタであって、前記変調シンボルは、前記OFDM信号のサブキャリアに対応する、第1位相シフタと、

前記第1位相シフトされた変調シンボルを周波数領域表現から時間領域表現に変換する 第1逆離散フーリエ変換ユニットと、

を含むことを特徴とする装置。

【請求項2】

サブキャリアに依存する位相シフトを前記OFDM信号に関連する前記変調シンボルに提供し、第2位相シフトされた変調シンボルを生成する第2位相シフタであって、前記第2位相シフタは、前記第1位相シフタとは異なるサブキャリアに依存する位相シフトを前記変調シンボルに提供する第2位相シフタと、

前記第2位相シフトされた変調シンボルを周波数領域表現から時間領域表現に変換する 第2逆離散フーリエ変換ユニットと、をさらに含み、

前記第1逆離散フーリエ変換ユニットは第1アンテナ経路に関連し、前記第2逆離散フーリエ変換ユニットは第2アンテナ経路に関連する、

ことを特徴とする請求項1記載の装置。

【請求項3】

サブキャリアに依存する位相シフトを前記OFDM信号に関連する前記変調シンボルに提供し、他の位相シフトされた変調シンボルを生成する少なくとも1つの他の位相シフタであって、前記少なくとも1つの他の位相シフタは、前記第1および第2位相シフタとは異なるサブキャリアに依存する位相シフトを前記変調シンボルに提供する、少なくとも1つの他の位相シフタと、

前記他の位相シフトされた変調シンボルを周波数領域表現から時間領域表現に変換する 少なくとも1つの他の逆離散フーリエ変換ユニットと、

をさらに含むことを特徴とする請求項2記載の装置。

【請求項4】

前記第1および第2逆離散フーリエ変換ユニットは、高速フーリエ変換(FFT)ユニ 30ットであることを特徴とする請求項2記載の装置。

【請求項5】

前記第1位相シフタは、対応するサブキャリアの周波数と前記OFDMシンボルが送信されるチャネルの中心周波数との間の差に基づいて、第1変調シンボルに位相シフトを提供することを特徴とする請求項1記載の装置。

【請求項6】

前記第1位相シフタは、前記装置に関連するほぼコヒーレンス帯域幅に基づいてサブキャリアに依存する位相シフトを前記変調シンボルに提供することを特徴とする請求項1記載の装置。

【請求項7】

前記OFDM信号に関連する前記変調シンボルは、少なくとも第1変調シンボルおよび第2変調シンボルを含み、前記第1変調シンボルは第1サブキャリアに関連し、かつ前記第2変調シンボルは前記第1サブキャリアに周波数上で隣接する第2サブキャリアに関連し、前記位相シフタは、ほぼ360/B度だけ異なる位相シフトを前記第1および第2変調シンボルに提供し、Bはほぼコヒーレンス帯域幅を表わす、

ことを特徴とする請求項1記載の装置。

【請求項8】

直交周波数分割多重(OFDM)信号を生成するために使用され変調シンボルを求める段階であって、前記変調シンボルは少なくとも第1シンボルおよび第2シンボルを含み、前記変調シンボルは前記OFDM信号のサブキャリアに対応する、段階と、

10

20

40

50

第1位相シフトを前記第1シンボルに関連する前記サブキャリアに依存する前記第1シンボルに適用し、第1位相シフトされたシンボルを生成する段階と、

第2位相シフトを前記第2シンボルに関連する前記サブキャリアに依存する前記第2シンボルに適用し、第2位相シフトされたシンボルを生成する段階と、

を含むことを特徴とする方法。

【請求項9】

逆離散フーリエ変換を前記第1位相シフトされたシンボルおよび前記第2位相シフトされたシンボルを含む変調シンボルのグループに適用する段階をさらに含むことを特徴とする請求項8記載の方法。

【請求項10】

前記OFDM信号を生成するために使用される前記変調シンボルは、前記第1シンボルおよび前記第2シンボルに加えて他のシンボルを含み、前記方法は、サブキャリアに依存する位相シフトを前記他のシンボルに適用し、他の位相シフトされたシンボルを生成する段階をさらに含み、前記変調シンボルのグループは、前記他の位相シフトされたシンボルを含む、

ことを特徴とする請求項9記載の方法。

【請求項11】

第1位相シフトを前記第1シンボルに適用する段階は、前記第1シンボルに関連する前記サブキャリアの周波数と線形的に関係する位相シフトを適用する段階を含むことを特徴とする請求項8記載の方法。

【請求項12】

第1位相シフトを前記第1シンボルに適用する段階は、前記第1シンボルに関連する前記サブキャリアの周波数と非線形的に関係する位相シフトを適用する段階を含むことを特徴とする請求項8記載の方法。

【請求項13】

第1位相シフトを前記第1シンボルに適用する段階は、関連するチャネルのほぼコヒーレンス帯域幅に関連する位相シフトを適用する段階を含むことを特徴とする請求項8記載の方法。

【請求項14】

前記第1および第2位相シフトされたシンボルは、第1アンテナから送信され、 前記方法は、

第3位相シフトを前記第1シンボルに関連する前記サブキャリアに依存する前記第1シンボルに適用し、第3位相シフトされたシンボルを生成する段階であって、前記第3位相シフトは、前記第1位相シフトとは異なる、段階と、

第4位相シフトを前記第2シンボルに関連する前記サブキャリアに依存する前記第2シンボルに適用し、第4位相シフトされたシンボルを生成する段階であって、前記第4位相シフトは、前記第2位相シフトとは異なる、段階と、をさらに含み、

前記第3および第4位相シフトされたシンボルは第2アンテナから送信され、前記第 2アンテナは前記第1アンテナと異なる、

ことを特徴とする請求項8記載の方法。

【請求項15】

変調シンボルのシリアル・ストリームをN個の空間ストリームに分離するインターリーバであって、Nは1を越える正の整数である、インターリーバと、

前記N個の空間ストリームを受け取り、前記関連する変調シンボルをM個のアンテナ経路へ導くステアリング・ユニットであって、Mは1を超える正の整数であり、前記ステアリング・ユニットはサブキャリアに依存する位相シフトを前記N個の空間ストリームの少なくとも1つに関連する変調シンボルに提供する、ステアリング・ユニットと、

を含むことを特徴とする装置。

【請求項16】

前記M個のアンテナ経路は、少なくとも第1経路および第2経路を含み、

10

20

30

40

30

50

前記装置は、さらに前記第1経路内に第1逆離散フーリエ変換ユニットを、前記第2経路内に第2逆離散フーリエ変換ユニットを含む、

ことを特徴とする請求項15記載の装置。

【請求項17】

前記第1および第2逆離散フーリエ変換ユニットは、高速フーリエ変換ユニットである ことを特徴とする請求項15記載の装置。

【請求項18】

NはMに等しいことを特徴とする請求項15記載の装置。

【請求項19】

NはMに等しくないことを特徴とする請求項15記載の装置。

【請求項20】

前記装置は、複数入力・複数出力(MIMO)ベースの送信装置内の使用に適合していることを特徴とする請求項15記載の装置。

【請求項21】

入力データ・ビットを予め定める変調スキームに基づいて変調シンボルのシリアル・ストリームへマップするマッパであって、前記変調シンボルのシリアル・ストリームは前記インターリーバの入力へ送出される、マッパ、

をさらに含むことを特徴とする請求項15記載の装置。

【請求項22】

予め定めるエラー・コードに基づいてユーザ・データを符号化するフォーワード・エラ 20 一訂正 (FEC) 符号器であって、前記FEC符号器は、符号化されたデータ・ビットを前記マッパの入力に送出する、FEC符号器、

をさらに含むことを特徴とする請求項21記載の装置。

【請求項23】

前記ステアリング・ユニットは、サブキャリアに依存する位相シフトを少なくとも2つの空間ストリームに関連する変調シンボルに提供し、異なる位相シーケンスが前記少なくとも2つの空間ストリームの各々に対して使用される、

ことを特徴とする請求項15記載の装置。

【請求項24】

前記ステアリング・ユニットは、サブキャリアに依存する位相シフトを前記N個の空間ストリームのN-1個に関連する変調シンボルに提供し、異なる位相シーケンスが前記N-1個の空間ストリームの各々に対して使用される、

ことを特徴とする請求項15記載の装置。

【請求項25】

前記ステアリング・ユニットは、サブキャリアに依存する位相シフトを前記N個の空間ストリームの各々に関連する変調シンボルに提供し、異なる位相シーケンスが前記N個の空間ストリームの各々に対して使用される、

ことを特徴とする請求項15記載の装置。

【請求項26】

サブキャリアに依存する位相シフトを直交周波数分割多重(OFDM)信号に関連する 40 変調シンボルに提供し、第1位相シフトされた変調シンボルを生成する第1位相シフタで あって、前記変調シンボルは前記OFDM信号のサブキャリアに対応する、第1位相シフタと、

前記第1位相シフトされた変調シンボルを周波数領域表現から時間領域表現に変換する 第1逆離散フーリエ変換ユニットと、

前記位相シフトされた変調シンボルの前記時間領域表現を含む無線周波数(RF)信号を送信する少なくとも1つのダイポール・アンテナ要素と、

を含むことを特徴とするシステム。

【請求項27】

ガード・インターバルを前記位相シフトされた変調シンボルの前記時間領域表現に付加

するガード・インターバル付加ユニットをさらに含むことを特徴とする請求項26記載の システム。

【請求項28】

前記ガード・インターバル付加ユニットと前記少なくとも1つのダイポール・アンテナ要素との間に位置し、前記位相シフトされた変調シンボルの前記時間領域表現を用いる前記RF信号を生成するRF送信機をさらに含むことを特徴とする請求項27記載のシステム。

【請求項29】

格納媒体上に格納された命令を有する前記格納媒体を具備する物品において、前記命令は、コンピューティング・プラットフォームによって実行する場合、

直交周波数分割多重(OFDM)信号を生成するために用いられる変調シンボルを求め、前記変調シンボルは少なくとも第1シンボルおよび第2シンボルを含み、前記変調シンボルは前記OFDM信号のサブキャリアに対応し、

第1位相シフトを前記第1シンボルに関連する前記サブキャリアに依存する前記第1シンボルに適用し、第1位相シフトされたシンボルを生成し、

第2位相シフトを前記第2シンボルに関連する前記サブキャリアに依存する前記第2シンボルに適用し、第2位相シフトされたシンボルを生成する、

動作を実行することを特徴とする物品。

【請求項30】

前記命令は、前記コンピューティング・プラットフォームによって実行する場合、 逆離散フーリエ変換を前記第1位相シフトされたシンボルおよび前記第2位相シフトさ れたシンボルを含む変調シンボルのグループに適用する動作をさらに行なうことを特徴と する請求項29記載の物品。

【請求項31】

第1位相シフトを前記第1シンボルに適用することは、前記第1シンボルに関連する前記サブキャリアの周波数と線形的に関係する位相シフトを適用することを含むことを特徴とする請求項29記載の物品。

【請求項32】

第1位相シフトを前記第1シンボルに適用することは、前記第1シンボルに関連する前記サブキャリアの周波数と非線形的に関係する位相シフトを適用することを含むことを特徴とする請求項29記載の物品。

【請求項33】

第1位相シフトを前記第1シンボルに適用することは、対応するチャネルのほぼコヒーレンス帯域幅と関係する位相シフトを適用することを含むことを請求項29記載の物品。

【発明の詳細な説明】

【技術分野】

本発明は、一般にワイヤレス通信に関し、さらに詳しくは、マルチキャリア・ワイヤレス通信に関する。

【背景技術】

[0002]

信頼できる高品質な通信を保証するために、ワイヤレス通信システムにおいて多くの場合 克服しなければならない問題の1つは、マルチパス・フェージングである。ワイヤレス・チャネルでは、時には、送信された信号が1を超える経路を経由して受信機に届く場合がある。すなわち、その信号は、送信機からの直接の経路だけではなく、周囲の環境における物体または建造物からの信号反射を含み、1以上の他の経路によって受信機に届くことがある。異なる経路における経路長は典型的には異なるので、受信機で受信される対応する信号コンポーネントは、通常異なる位相を有することになる。受信信号コンポーネントの位相調整は、しばしば、受信機で信号が部分的にまたは全面的に消失する結果となる。受信機におけるこの信号消失は、マルチパス・フェージングとして知られている。いく

10

20

30

40

50

20

30

40

50

つかの状況下では、フェージングは周波数選択的なものになるであろう。すなわち、フェージングは、他の周波数よりいくつかの周波数でより顕著となる。しかしながら、別の状況下では、フェージングは、より広い帯域幅に亘って比較的一様に生じることがある。これは周波数非選択的なまたは「水平な(フラット)」マルチパス・フェージングと称される。周波数選択的なマルチパス・フェージングに有効に対処するための多くの技術が存在する。しかしながら、特にマルチキャリア通信技術を利用するシステムでは、水平なマルチパス・フェージングに対処することができる方法および構造が必要となる。

【発明の開示】

[0003]

以下の詳細な説明では、実施例によって、本発明が実施される特定の実施例を示す添付図面に対して言及される。これらの実施例は、当業者が本発明を実施することを可能にするために十分詳細に説明される。本発明の様々な実施例は相違するものの、必ずしも相互に排他的でないことを理解すること。例えば、一実施例に関してここに説明される特定の機能、構造または特性は、本発明の思想および範囲から逸脱せずに、他の実施例内でも実施される。加えて、開示された各実施例内における個々の要素の位置または構成は、本発明の思想および範囲から逸脱せずに修正されることを理解すること。したがって、以下の詳細な説明は、制限する意味で捉えるべきではなく、本発明の範囲は、請求項が与える均等の全範囲と共に、適切に解釈され、添付された請求項によってのみ定義される。図面では、類似の数字は、いくつかの図面を通して同じか類似の機能を参照するものである。

[0004]

図1は、本発明の実施例に従って直交周波数分割多重(OFDM)の送信機構成例10を示すブロック図である。図示されるように、送信機の構成10は、位相シフト・ユニット12、高速逆フーリエ変換(IFFT)14、ガード・インターバル(GI)付加ユニット16、送信機18、およびアンテナ20の1つ以上を含む。位相シフト・ユニット12は、その入力で複数の変調データ・シンボル X_n を受信する。変調データ・シンボル X_n を受信する。変調データ・シンボル X_n を受信する。変調データ・シンボル X_n を受信する。変調データ・シンボル X_n を受信する。変調データ・シンボル X_n を受信する。のえば、2値位相シフト・キーイング(BPSK)、直角位相シフト・キーイング(QPSK)、16直交振幅変調(16QAM)、64QAM、および/または他のものを含めてあらゆる広範囲の異なる変調スキームが使用されてもよい。直並列(serial to parallel)変換器またはインターリーバは、位相シフト・ユニット12への並列入力を形成するために使用されてもよい。位相シフト・ユニット12によって受け取られた変調データ・シンボル X_n の各々は、例えば、OFDM信号の対応するサブキャリアに関連し、ワイヤレス・チャネルのために生成され送信される。

[0005]

[0006]

送信機構成10は、複数の送信アンテナ方式で使用されるように意図される。すなわち、このような構成10の2以上は、各々それ自身のアンテナを具備するが、送信機内で実現される。複数のアンテナ方式中の異なるアンテナに使用されるサブキャリアに依存する位相シフト・シーケンスは、典型的には異なるであろう。これらのサブキャリアに依存す

20

30

40

50

る位相シフトを変調シンボルに提供することによって、水平なマルチパス・フェージング 特性を示すワイヤレス・チャネルは、その後、既知の方法で処理することができる周波数 選択性フェージング・チャネルに変換される。

[0007]

上述されるように、位相シフト・ユニット12は、サブキャリアに依存する位相シフトをその変調データのシンボル入力の各々に適用する。様々な異なるアプローチは、サブキャリアに基づいた位相シフトを決定するために使用される。1つのアプローチでは、例えば、対応するサブキャリア周波数と線形的に関連する位相項は、以下のように用いられる

[0008]

 $\phi_n = \alpha f_n$

ここで、 f n は、チャネル中心周波数に関連する n 番目のサブキャリアのサブキャリア周波数であり、α は定数である。サブキャリア周波数と線形的に関連する(あるいは、非線形的に関連づけられた)位相項を生成するための他の方法が、別に使用されてもよい。

[0009]

少なくとも1つの実施例では、本発明の特徴は、複数入力・複数出力(MIMO)ベー スのマルチキャリア・システムで実現される。MIMOベースのシステムでは、複数の送 信アンテナはワイヤレス・チャネル(複数の入力)へ送信するために使用され、また複数 の受信アンテナはワイヤレス・チャネル(複数の出力)から信号を受信するために使用さ れる。MIMOシステムは、多くのマルチパスがある状態でその能力が特徴づけられるが それは単一入力・単一出力(SISO)システムにおいて達成可能であろうピーク・ス ループットを周波数帯幅を増加させずに著しく増加させる。図2は、本発明の実施例に従 う M I M O ベースのシステム中で使用される送信機構成例30を示すブロック図である。 図示されるように、送信機構成30は、第1送信アンテナ38と関連する第1IFFT3 2、第1GI付加ユニット34、および第1送信機36、および、第2送信アンテナ48 と関連する第2 I F F T 4 2、第2 G I 付加ユニット 4 4、および第2送信機 4 6 を含む 。 加えて、 構成 3 0 は、 第 2 送信アンテナ 4 8 と 関連する 位相シフト・ユニット 4 0 を含 む。複数の変調データ・シンボルX,は受け取られ、2つの送信アンテナ38,48の各 々に関連する経路に沿って伝送される。第1経路(アンテナ38に関連する)では、サブ キャリアに依存する位相シフトは起こらない。データ・シンボルX。は第1IFFT32 によってまず処理され、それらを周波数領域表現から時間領域表現へ変換する。その後、 ガード・インターバルがGI付加ユニット34によって時間領域信号に加えられる。その 後、生成された信号は、第1送信アンテナ38から送信するために送信機36に入力され る。第2経路(アンテナ48に関連する)では、変調データ・シンボルX。が位相シフト ・ユニット40によってまず処理され、サブキャリアに依存する位相シフトをシンボルの 各々に適用する。その後、位相シフトされたシンボルは、第2IFFT42、第2GI付 加コニット44、および第2送信機46によって処理され、第2送信アンテナ48からそ の後に送信される。

[0010]

サブキャリアに依存する位相要因を2つの送信アンテナ38,48の少なくとも1つに関連する変調データ・シンボルに挿入することによって、水平なフェージングを受けるワイヤレス・チャネルは、既知の方法で対処することができる周波数選択的なチャネルに変換することができる。別の構成では、異なるサブキャリアに依存するシーケンスは、2つの送信アンテナ38,48の各々に適用される。図示する実施例中には2つの送信アンテナ38,48で示されているが、2を超える送信アンテナを具備するMIMOベースの送信機構成が代わって使用されてもよいことが認識される。このような構成では、上述したように、送信アンテナの少なくとも1つは、サブキャリアに依存する位相シフトを、対応する変調シンボルに適用するであろう。1つの可能な実施例では、サブキャリアに依存する位相シフトは、マルチアンテナ構成での1を超える送信アンテナに対して適用されるとともに、異なるサブキャリアに依存する位相シーケンスは各アンテナに使用される。

30

40

50

$[0 \ 0 \ 1 \ 1]$

MIMOベースの本発明の少なくとも1つの実施例において、1セットの直交または準 直交空間ウエイトが、互いにコヒーレンス帯域(B)中にあるトーン・グループを介し て変調シンボルに適用される。コヒーレンス帯域は、システムにおいて周波数の要素すべ てが同様にまたは関連させられた風に消失する傾向にある周波数の範囲に関する。 1 つの 可能な位相シフトのアプローチでは、例えば、360/B(度)の位相シフトは、マルチ アンテナ構成の送信アンテナの少なくとも1つに関連するB個のトーンの各グループに亘 ってトーン毎に適用される。図3は、本発明の実施例に従う2つの送信アンテナを有する MIMOベースの送信機構成で、このアプローチを実行するために使用されるサブキャリ ア・プリアンブルを示す表50である。図示されるように、第1アンテナ(ANTENN A 1) のサブキャリアに関連するプリアンブル 5 2 は、 位相シフトはなく、第 2 アンテナ (ANTENNA2) のサブキャリアに関連するプリアンブル54は、サブキャリアに依 存する方法でシフトされている。サブキャリアは、3つの異なるコヒーレンス帯域(CO HERENCE BAND A, COHERENCE BAND B, COHERENC E BAND C)に分割され、各々はほぼコヒーレンス帯域の幅である。コヒーレンス 帯域の各々にとって、サブキャリアは、サブキャリア毎に2π/Βラジアン(あるいは3 60/B度)だけ位相シフトされる。その後、このパターンは、次のコヒーレンス帯域に 対して繰り返される。この技術は、3またはそれ以上のアンテナを有するシステムで使用 するために拡張することができる。例えば、位相は、M番目の送信アンテナ上で e ^{j 2 π} / ^B から e ^{j (M − 1) ^{2 π / B} に増加する。他の技術がこれに代わって用いられてもよ} い。上記技術の動機づけは、以下のとおりである。周波数選択的なフェードは、コヒーレ ンス帯域上ほぼ一定である。プリアンブルをコヒーレンス帯域上に確実に送信するために 、すべての空間方向に亘ってそれを一様に回転させることが最も良く、その結果、少なく とも受信トーンのうちのいくつかはよい信号レベルを受ける。正確なコヒーレンス帯域幅 値が入手しがたい場合、コヒーレンス帯域の近似値が上記技術中で使用されてもよい。

[0012]

MIMOベースのシステムで使用される別のアプローチでは、同じ信号は、各アンテナ上の信号を連続的に遅らせることにより異なるアンテナから送信されてもよい。すなわち、M番目の送信アンテナから送信された信号は、周期的に第1アンテナに関して(M-1)D時間サンプルだけ遅れており、ここで、Dは周期的な遅延である。この技術は、送信された信号を全方向に出現させることができる。周期的な遅延は、チャネル遅延拡散に適合してもよい。例えば、より小さな周期的な遅延はより低い遅延拡散に使用され、また、より大きな周期的な遅延はより高い遅延拡散に使用することができる。一般に、遅延ダイバーシティは権利のことがあり、標準化を要求しない。

[0013]

各アンテナが同じ信号を送信する複数の送信アンテナを使用する場合(MIMOベースのシステムのように)に生じる問題の1つは、指向性アンテナ・パターンがしばしば生じるということである。本発明の少なくとも1つの実施例では、サブキャリアに依存する位相は、複数の送信アンテナ構成における少なくとも1つの送信アンテナに関連するサブキャリアのために選択され、この方法では送信アンテナ構成はすべてのサブキャリアに直って無指向性の総放射パターンとなる。個々のサブキャリアの放射パターンは、この技術を使用して、典型的な無指向性にすることはできないが、開ループ送信ダイバーシティー・システムにおいて、全てのサブキャリアの総パターンは実質的に無指向性にすることができる。以前に、サブキャリアに依存する位相は、複数のアンテナ構成において、(異なるサブキャリアに依存する位相シーケンスを使用して)単一のアンテナまたは複数のアンテナに適用される。

[0014]

図4は、本発明の実施例に従ってOFDMシステムでのOFDM送信信号を生成する際に使用するための方法例70を図示するフローチャートである。方法70は、MIMOベースのシステムおよび非MIMOベースのシステムの両方において、送信信号を生成する

20

30

40

50

ために使用することができる。MIMOベースのシステムでは、方法70は、例えば、複数の送信アンテナの1つ(あるいは1を超える)から送信用OFDM信号を生成するために使用される変調シンボルがまなめられる(ブロック72)。変調シンボルは、少なくとも第1シンボルおよび第2シンボルを含むが、任意の数のシンボルを含んでいてもよい。各変調シンボルは、OFDMシンボルを存する第1シンボルに関連するサブキャリアに対応する。第1位相シフトが第1シンボルに関連するサブキャリアに依存する第2シンボルに適用される(ブロック74)。第2位相シフトが第2シンボルに関連するサブキャリアに依存する第2シンボルに適用される(ブロック76)。逆離散ルフリエ変換(例えば、高速フーリエ変換など)が位相シフトした第1および第2シンボルを含むシンボルのグループに対し継続して実行される(ブロック78)。少なくとも1つの実施例では、OFDM信号を生成するために使用される変調シンボルすべては、サブトにないでは、サブトを条件とし、そのすべては変換されるシンボルのグループに含まれる。逆離散フーリエ変換が行なわれた後、ガード・インターバルが生成された信号に付加される。その後、その信号は、例えば、RF送信周波数が上方変換され、電力増幅が行なわれ、アンテナまたは他の形式の変換器から送信される。

[0015]

図5は、本発明の別の実施例に従うOFDM送信機の構成例80を示すブロック図であ る。送信機構成80は、例えば、MIMO技術を用いるシステム中で使用されてもよい。 図示されるように、送信機構成80は、フォーワード・エラー訂正(FEC)符号器(コ ーダ)82、マッパ84、空間ストリーム・インターリーバ86、ステアリング・ユニッ ト88、複数の高速逆フーリエ変換(IFFT) ユニット90, 92, 94、複数のアン テナ96.98.100の1つ以上を含む。FEC符号器82は、その入力でデータを受 け取り、予め定めるエラー・コードに基づいてそのデータを符号化する。様々な異なるエ ラー・コードのどれを使用してもよい。マッパ84は、予め定める変調スキーム(例えば 、BPSK、OPSK、16OAM、64OAMおよび/または他の変調)に基づいてそ の符号化データをマップ(写像)し、その出力に変調シンボルのシリアル・ストリームを 生成する。その後、空間ストリーム・インターリーバ86は、その変調シンボルのシリア ル・ストリームを複数の空間ストリーム102へインターリーブする。あらゆる数の空間 ストリームがこのような方法で生成される。ステアリング・ユニット88は、空間ストリ ーム・インターリーバ86からの空間ストリーム出力を受け取り、予め定める方法で関連 するシンボルを複数のアンテナ経路104、106、108へ導く。少なくとも1つの実 施例では、ステアリング・ユニット88は、(シリアル・ストリーム102内で受け取ら れた)入力データにステアリング行列を乗じることにより、その機能を達成する。アンテ ナ経路104、106、108の各々は、対応する変調シンボルを周波数領域表現から時 間領域表現に変換するための対応するIFFT90、92、94を含む。IFFTとして 図示されているが、任意のタイプの離散フーリエ変換を使用してもよいことが理解される であろう。アンテナ経路104,106,108の各々は、対応するアンテナ96,98 , 100に導かれる。前述のように、任意のタイプのアンテナが使用されてもよい。他の 回路(例えば、ガード・インターバル付加ユニット、RF送信機など)が、各IFFTと その対応するアンテナとの間に含まれてもよい。任意の数のアンテナ経路が使用される。 空間ストリーム102の数は、アンテナ経路104、106、108の数と等しくても、 また等しくなくてもよい。

[0016]

本発明の少なくとも 1 つの実施例では、ステアリング・ユニット 8 8 は、サブキャリアに依存する位相項をアンテナ経路 1 0 4 , 1 0 6 , 1 0 8 の少なくとも 1 つに出力されるデータ・シンボルへ提供するために使用される。既に説明されたように、サブキャリアに依存する位相項が選択される。少なくとも 1 つのアプローチでは、付加的な行列乗算がステアリング・ユニット 8 8 内で実行され、所望の変調シンボルに位相項を提供する。例えば、特定の実行で使用されるステアリング行列を V * として表わす場合、その位相項はステアリング行列を以下のように修正することによって導かれる。

30

40

50

【0017】 【数1】

$$\mathbf{V}^{(k_{sc})} = \mathbf{D}(f_{k_{SC}}; \boldsymbol{\tau}) \mathbf{V}^*$$

$$\mathbf{D}(f;\tau) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{j2\pi f \tau_1} & 0 \\ 0 & 0 & e^{j2\pi f \tau_2} \end{bmatrix}$$

【0018】 ここで、 【0019】 【数2】

 $\mathbf{V}^{(k_{sc})}$

は修正済のステアリング行列であり、k。。はサブキャリアのインデックスであり、

[0020]

【数3】

 $f_{k_{SC}}$

はサブキャリア周波数であり、また、 τ_1 と τ_2 は対応するアンテナ経路に関連する遅延である。図 5 の構成 8 0 において、空間ストリーム 1 0 2 の数がアンテナ経路の数と等しい場合、ステアリング行列 V * は恒等行列(identity matrix)になるであろう。このようなケースでは、図 5 の構成 8 0 は、図 2 の構成 3 0 に類似するであろう。あるいは、ステアリング行列 V * はあらゆる固定のユニタリー行列であってもよく、例えば、既に示されたウォルシュ行列でもよい。

[0021]

説明されたような線形位相項は、固定のステアリング行列 V^* の後に適用される。この場合、位相項

[0022]

【数4】

 $e^{j2\pi f \tau_i}$

は、i番目のアンテナに適用される。MIMOシステムでは、空間ストリームより多くの送信アンテナを有することが可能である。Vにおける行の数は送信アンテナの数であり、列の数は空間ストリームの数である。さて、アンテナ毎に位相の調整を適用することに加えて、空間ストリーム毎に位相を適用することもさらに可能である。この場合、V*およ

20

30

40

50

びDの逆の順序を有する。すなわち、

[0023]

【数5】

$$\mathbf{V}^{(k_{sc})} = \mathbf{V}^* \mathbf{D} (f_{k_{sc}}; \mathbf{\tau})$$

[0024]

そして、正方行列 D (f ; τ) の次元は、(送信アンテナの数よりむしろ)空間ストリームの数である。

[0025]

様々な実施例は、典型的には複数の受信機アンテナを有するMIMOベースのシステムの状況で以上説明されたが、上述の原則は、複数の送信アンテナおよび単一の受信アンテナだけを用いるシステムでも適用できることを認識すべきである。

[0026]

創作性のある技術および構造を種々様々の異なるワイヤレス装置、コンポーネントおよびシステム中に使用することができる。例えば、様々な実施例中で、本発明の特徴は、ワイヤレス・ネットワーキング機能を有するラップトップ、デスクトップ、パームトップおよび/またはタブレット・コンピュータ、ワイヤレス・ネットワーキング機能を有する個人用デジタル情報処理端末(PDA)、携帯電話および他の携帯型ワイヤレス通信機、ページャ、ワイヤレス・インターフェイス・カード(NIC)および他のネットワーク・インターフェイス構造、無線周波数集積回路、および/または他の装置、システムおよびコンポーネントの中で実現される。

[0027]

ブロック図中に示された個々のブロックは本質的に機能的であり、必ずしも個別のハードウェア要素に対応するものではないことを認識すべきである。例えば、少なくとも1つの実施例では、ブロック図(例えば、図1)内のブロックの2またはそれ以上は、単一の(あるいは複数の)デジタル処理装置内のソフトウェア中で実現されてもよい。デジタル処理装置は、例えば、汎用マイクロプロセッサ、デジタル信号プロセサ(DSP)、縮小命令セット・コンピュータ(RISC)、複雑命令セット・コンピュータ(CISC)、フィールドプログラム可能なゲート・アレイ(FPGA)、特定用途向け集積回路(ASIC)および/または上記の組合せを含む他のものを含む。ハードウェア、ソフトウェア、ファームウェアおよび/またはハイブリッド実装が使用されてもよい。

[0028]

前述の詳細な説明では、本発明の様々な特徴は、明細書の開示を合理化する目的で1またはそれ以上の個々の実施例中にまとめられている。この開示の方法は、クレームされた本発明が各請求項で明示的に表わされたものより多く特徴を要求する目的を反映するものと解釈するべきではない。むしろ、次の請求項が反映するように、創作性のある側面は、開示された各実施例のすべての特徴より少なくて済む。

[0029]

本発明はある実施例と共に説明されたが、当業者が容易に理解するように、本発明の思想および範囲から逸脱せずに、修正と変更が成される。このような修正および変更は、本発明および添付された請求項の範囲内にあると考えられる。

【図面の簡単な説明】

[0030]

【図1】本発明の実施例に従う直交周波数分割多重(OFDM)送信機例の構成を図示するブロック図である。

【図2】本発明の実施例に従うMIMOベースのシステム中で使用されるOFDM送信機例の構成を図示するブロック図である。

【図3】本発明の実施例に従う2つの送信アンテナを有するMIMOベースの送信機の構

成中で使用されるサブキャリア・プリアンブルの例を図示する表である。

【図4】本発明の実施例に従うOFDM送信信号を生成する際に使用する方法の例を図示するフローチャートである。

【図 5 】本発明の別の実施例に従うMIMOベースのシステム中で使用されるOFDM送信機の構成例を図示するブロック図である。

【図1】

【図3】

【図5】

INTERNATIONAL SEARCH REPORT el Application No PCT/US2005/010175 A. CLASSIFICATION OF SUBJECT MATTER TPC 7 H04L27/26 H04L1/06 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) HO4L Documentation searched other than minimum documentation to the extent that such documents are included. In the fields searched Electronic data base consulted during the International search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ, INSPEC C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Chatton of document, with Indication, where appropriate, of the relevant passages Relevant to claim No. US 2002/196734 A1 (TANAKA MAKOTO ET AL) χ 1-33 26 December 2002 (2002-12-26) paragraph '0068! - paragraph '0074! X EP 1 396 956 A (MITSUBISHI ELECTRIC 1-33 INFORMATION TECHNOLOGY CENTRE EUROPE B.V) 10 March 2004 (2004-03-10) paragraph '0022! - paragraph '0024! WO 2004/013993 A (MATSUSHITA ELECTRIC X 1-33 INDUSTRIAL CO., LTD; YUDA, YASUAKI; KISHIGAMI, TAK) 12 February 2004 (2004-02-12) page 16, line 3 - page 19, line 9 Further documents are listed in the continuation of box C. χ Patent family members are listed in since χ . Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention. "A" document defining the general state of the lart which is not considered to be of particular relevance. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the International fling date "L" document which may throw doubts on priority idelm(s) or which is cred to establish the publication date of another dilution or other special reason (as specified): document of particular relevance; the cishmed invention cannot be considered to involve an inventive stop when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent tamily Date of the actual completion of the international search Date of mailing of the international search report 22 July 2005 01/08/2005 Name and mailing address of the ISA Authorized officer European Patient Office, P.B. 5818 Patentliaan 2 NL – 2280 HV Filjswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3018

Orozco Roura, C

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Interne el Application No PCT/US2005/010175

Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/US2005/010175
legory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	EP 1 024 635 A (STMICROELECTRONICS S.A) 2 August 2000 (2000-08-02) paragraph '0002! - paragraph '0004! paragraph '0026! - paragraph '0029!	1,5-11, 13, 26-31,33
		2-4,12, 14-25,32
		14-25, 52
		'
	·	
		,

INTERNATIONAL SEARCH REPORT

intermation on patent family members

Interne Application No PCT/US2005/010175

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 2002196734	A1	26-12-2002	JP	2002368714 A	20-12-2002
EP 1396956	A	10-03-2004	EP CN JP US	1396956 A 1489404 A 2004104790 A 2005030925 A	14-04-2004 02-04-2004
WO 2004013993	A	12-02-2004	JP AU EP WO US	2004072150 A 2003256067 A 1525687 A 2004013993 A 2005018597 A	1 23-02-2004 1 27-04-2005 1 12-02-2004
EP 1024635	A	02-08-2000	FR DE DE EP JP US	2788907 A 60002371 D 60002371 T 1024635 A 2000224138 A 2004151110 A	1 05-06-2003 2 26-02-2004 1 02-08-2000 11-08-2000

Form PCT#SAV210 (patent family annex) (January 2004)

フロントページの続き

(81)指定国 AP(BW,GH,GM,KE,LS,MW,MZ,NA,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM), EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HU,IE,IS,IT,LT,LU,MC,NL,PL,PT,RO,SE,SI,SK,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BW,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NA,NI,NO,NZ,OM,PG,PH,PL,PT,RO,RU,SC,SD,SE,SG,SK,SL,SM,SY,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,YU,ZA,ZM,ZW

(72)発明者 サンデュ,シュミート

アメリカ合衆国 カリフォルニア州 95134 サンノゼ リオ・ロブレス・イースト25 ナンバー408

(72)発明者 ホルト, キース

アメリカ合衆国 カリフォルニア州 95762 エルドラドヒルズ インバーネス2337 Fターム(参考) 5K022 DD01 DD13 DD19 DD21 FF00 5K059 CC01