STA 522, Spring 2021 Introduction to Theoretical Statistics II

Lecture 6

Department of Biostatistics University at Buffalo

8 March, 2021

AGENDA

► Method of maximum likelihood

Review: Method of Estimation

- ▶ **Method of Moments:** Equate population moments with the sample moments, then solve for parameters.
- ▶ Method of Maximum Likelihood: For each sample point \underline{x} , let $\hat{\theta}(\underline{x})$ be a parameter value at which the likelihood function $L(\theta \mid \underline{x})$ attains its maximum as a function of θ , with \underline{x} held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a sample \underline{X} is $\hat{\theta}(\underline{X})$.
- ▶ **Note:** since the logarithm function is strictly increasing on $(0, \infty)$ (and so one-to-one), the value which maximizes $\log L(\theta \mid \underline{x})$ is the same value that maximizes $L(\theta \mid \underline{x})$.
- ▶ **Example:** $X_1, X_2, ..., X_n \sim \text{iid Bernoulli}(p)$, for $0 \leq p \leq 1$. The MLE of p is $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Example: Let $X_1, X_2, \ldots, X_n \sim \text{iid N}(\theta, 1)$, where θ . Find the MLE of θ .

The likelihood function for θ is given by

$$L(\theta \mid \underline{x}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(x_i - \theta)^2\right] = \left(\frac{1}{2\pi}\right)^{n/2} \exp\left[-\frac{1}{2}\sum_{i=1}^{n}(x_i - \theta)^2\right]$$

Therefore the log likelihood is:

$$\log L(\theta \mid \underline{x}) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(x_i - \theta)^2 = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(\theta - x_i)^2$$

which implies

$$\frac{d \log L(\theta \mid \underline{x})}{d \theta} = -\frac{1}{2} \sum_{i=1}^{n} 2 (x_i - \theta) \gtrsim 0 \text{ according as } \theta \lesssim \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

Thus the MLE of θ is $\hat{\theta} = \overline{x}$.

Example (Restricted Range MLE): Let $X_1, X_2, \dots, X_n \sim \text{iid N}(\theta, 1)$,

where $\theta \geq 0$. Find the MLE of θ .

Homework

- ► Read p. 282 291.
- Exercises: TBA.