UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Professor: William Caires Silva Amorim Monitor II: João Marcus Soares Callegari

ELT 226 - Laboratório de Circuitos Elétricos I

Nome:	Mat.:	_ Data:	/	/

Lei de Ohm e Leis de Kirchhoff

Introdução:

 A Lei de Ohm estabelece que a tensão aplicada em um resistor R é diretamente proporcional à corrente que flui pelo mesmo, sendo a constante de proporcionalidade o próprio valor de R. Ou seja:

$$V = R.I \tag{1}$$

• A Lei das Tensões de Kirchhoff (Lei das Malhas) estabelece que a soma algébrica das tensões ao longo de qualquer trajetória fechada, ou malha, é zero, ou:

$$\sum_{i=1}^{N} v_n = 0. \tag{2}$$

 A Lei das Correntes de Kirchhoff (Lei dos Nós) estabelece que a soma algébrica das correntes que entram e que saem de qualquer nó é zero, ou:

$$\sum_{i=1}^{N} i_n = 0. \tag{3}$$

Objetivos:

• Verificação prática da Lei de Ohm e das Leis de Kirchhoff em circuitos elétricos lineares resistivos.

Material utilizado:

- 1 resistor 200Ω 1/4W;
- 1 resistor 100Ω 1/4W;
- 2 resistores $390\Omega 1/4W$;
- 1 resistor 1kΩ 1/4W;
- 1 resistor $2k\Omega 1/4W$;
- 1 resistor 330Ω 1/4W;
- Fios diversos;
- Fonte c.c Supply FA-3050;
- Multímetro;
- Protoboard;

Parte teórica:

 Dado o circuito da Figura 1, aplicar a Lei de Ohm e as Leis de Kirchhoff para calcular as tensões e correntes em seus componentes considerando a fonte c.c de 15 volts.

Figura 1 - Circuito teórico.

Parte prática:

- Antes de ligar a fonte c.c variável Supply FA-3050, girar os potenciômetros no sentido anti-horário para que a tensão seja mínima (0 V);
- Selecionar o modo de operação <u>Independente</u> da fonte c.c;
- Ajustar 15V entre os terminais + e e conferir com voltímetro. A Figura 2 ilustra este procedimento;

Figura 2 - Fonte c.c Supply FA-3050.

- Realizar a medição, com Ohmímetro, de todos os resistores R₁, R₂, R₃, R₄, R₅, R₆ e R₇ do circuito;
- Preencher a Tabela 1;

Tabela 1 - Valores de resistência dos resistores.

Resistor	Valor medido [Ω]
R_1	
R_2	
R_3	
R_4	
R_5	
R_6	
\mathbb{R}_7	

- Realizar a montagem prática do circuito da Figura 1;
- Medir todas as correntes do circuito utilizando amperímetro: I₁, I₂, I₃, I₄, I₅, I₆ e I₇. Não se esqueça de realizar a ligação do amperímetro em série com o circuito;
- Medir todas as tensões do circuito (sobre os resistores) utilizando voltímetro: V₁, V₂, V₃, V₄, V₅, V₆
 e V₇. Não se esqueça de realizar a ligação do voltímetro em paralelo com o circuito;
- Preencher a Tabela 1.

Tabela 2 - Valores de tensão e corrente medidos.

Correntes	Valor medido [A]	Tensões	Valor medido [V]
I_1		V_1	
I_2		V_2	
I_3		V_3	
I_4		V_4	
I_5		V_5	
I_6		V_6	
I_7		V_7	
		V_{cc}	

- Verifique matematicamente a Lei de Kirchoff para todas as malhas do circuito;
- Verifique matematicamente a Lei de Kirchhoff para todos os nós do circuito;
- Verifique matematicamente a Lei de Ohm para todos os resistores do circuito.