Câu	Ý	Nội dung	Thang điểm
1		$\cos(2\cos^{-1}x) + 3\cos(\cos^{-1}x) - 4 = 0$ $\Leftrightarrow 2\cos^{2}(\cos^{-1}x) + 3\cos(\cos^{-1}x) - 5 = 0 (*)$	0.5
		$\Leftrightarrow 2x^2 + 3x - 5 = 0$	0.25
		$\Leftrightarrow \begin{cases} x = 1 & (n) \\ x = -\frac{5}{2} & (l) \end{cases} $ vì $-1 \le x \le 1$ Vậy nghiệm của pt(*) là $x = 1$	0.25
		Khi $x \ne 1$, ta có $f(x) = \frac{2\sin\left(\frac{\pi}{6}x\right) - 1}{1 - x}$ là hàm số sơ cấp nên $f(x)$ liên tục	0.25
		trên tập xác định là $D = R \setminus \{1\}$ (1) Tại $x = 1$: $f(1) = a$	0.25
2		$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2\sin\left(\frac{\pi}{6}x\right) - 1}{1 - x} = \lim_{x \to 1} \frac{2 \cdot \frac{\pi}{6}\cos\left(\frac{\pi}{6}x\right)}{-1} = -\frac{\pi\sqrt{3}}{6}$	0.5
		$f(x)$ liên tục tại $x = 1$ $\iff \lim_{x \to 1} f(x) = f(1) \iff a = \frac{-\pi\sqrt{3}}{6}$ (2)	0.25
		Từ (1) và (2): Vậy với $a = \frac{-\pi\sqrt{3}}{6}$ hàm số $f(x)$ liên tục trên R	0.25
	a	$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{\sqrt{1 + 2x} - 1}{x} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{1 + 2x} - 1 - x}{x^2}$	0.5
		$= \lim_{x \to 0} \frac{\frac{1}{\sqrt{1+2x}} - 1}{2x} = \lim_{x \to 0} \frac{1 - \sqrt{1+2x}}{2x\sqrt{1+2x}} = \frac{-1}{2}$	0.5
3	b	Với $x \neq 0$ ta có $g'(x) = \frac{\frac{x}{\sqrt{1+2x}} - (\sqrt{1+2x} - 1)}{x^2}$	0.25
		$g'(4) = \frac{\frac{4}{3} - (3 - 1)}{4^2} = \frac{-1}{24}, g(4) = 1/2$	0.5
		Phương trình tiếp tuyến của đồ thị hàm $g(x)$ tại điểm có hoành độ $x = 4$ là $y = \frac{-1}{24}(x-4) + \frac{1}{2} \Leftrightarrow y = \frac{-1}{24}x + \frac{2}{3}$	0.25

		Gọi V , r và h lần lượt là thể tích, nửa cạnh đáy, chiều cao của mức nước trong bồn tại thời điểm t .	0.25
		Thể tích của nước trong bồn là $V = 50 r h$ (3)	
4		(4) Thay (4) vào (3) ta được $V = 50.\frac{3}{4}h^2 = \frac{75}{2}h^2$ (5)	0.25
4		Lấy đạo hàm 2 vế pt (5) theo thời gian t , ta được $V'(t) = \frac{75}{2}.2h.h'(t)$	0.25
		Khi chiều cao của mực nước là 15cm, chiều cao của mực nước giảm với tốc độ là $h' = \frac{2000}{75 \times 15} = 1.78 \ cm / phút$	0.25
		$f(x) = (1+2x)^3 - 27x^2 - 1$	0.5
		$f'(x) = 6(1+2x)^2 - 54x = 24x^2 - 30x + 6$	3.2
		$f'(x) = 0 \Leftrightarrow \begin{cases} x = 1 \\ x = \frac{1}{4} \end{cases}$ Vậy các số tới hạn là $x = 1$, $x = \frac{1}{4}$	0.5
5		f''(x) = 48x - 30	1.0
		Ta có $f''(1) = 18 > 0$, hàm số $f(x)$ đạt cực tiểu tương đối tại $x = 1$,	
		$f_{\min}(1) = 1$	
		$f''\left(\frac{1}{4}\right) = -18 < 0$, hàm số $f(x)$ đạt cực đại tương đối tại $x = 1/4$	
		$f_{\text{max}}\left(\frac{1}{4}\right) = \frac{11}{6}$	
6		Giá trị trung bình của $h(x)$ trên đoạn [0,1] là $h_{TB} = \frac{1}{1-0} \int_{0}^{1} \frac{x^3}{x^4 + 8} dx$	0.25
		$h_{TB} = \frac{1}{4} \ln \left(x^4 + 8 \right) \Big _0^1$	0.5
		$h_{TB} = \frac{1}{4} \ln \frac{9}{8}$	0.25
7	a	$\frac{dQ}{dt} = -kQ \Leftrightarrow \frac{dQ}{Q} = -kdt \Leftrightarrow Q = e^{-kt+C} (Q > 0)$	
		$dt = -\kappa Q \hookrightarrow \overline{Q} = -\kappa u \hookrightarrow Q = \epsilon \qquad (Q > 0)$	0.5
		Tại thời điểm $t = 0$, $Q = 500$. Do vậy $500 = e^C \Rightarrow Q = 500e^{-kt}$	0.5
		Thời gian bán thải của thuốc là 1h, nên $\frac{500}{2} = 500e^{-k} \Leftrightarrow k = \ln 2$	
	b	Nồng độ thuốc còn lại 10% khi	0.5
		$50 = 500e^{-t \ln 2} \Rightarrow t = \frac{\ln 10}{\ln 2} \approx 3.32h \approx 3h 19 ph$	
l			