```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
```

In [2]: wine=pd.read_csv(r'C:\Users\mayur/winequality-red.csv')
 wine.head()

Out[2]: free total fixed volatile citric residual chlorides sulfur sulfur density pH sulphates alcohol quali acidity acidity acid sugar dioxide dioxide 0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 1 7.8 0.88 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 2 7.8 0.76 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 3 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4

In [3]: wine.describe()

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	(
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	(
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	(
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	(
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	(
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	(
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1

In [4]: wine.isnull().sum()
Out[4]: fixed acidity 0

volatile acidity 0
citric acid 0
residual sugar 0
chlorides 0
free sulfur dioxide 0

total sulfur dioxide 0 density 0 pH 0 sulphates 0 alcohol 0 quality 0 dtype: int64

In [5]:

wine.transpose()

Out[5]:		0	1	2	3	4	5	6	7	8	9	•••	
	fixed acidity	7.4000	7.8000	7.800	11.200	7.4000	7.4000	7.9000	7.3000	7.8000	7.5000		(
	volatile acidity	0.7000	0.8800	0.760	0.280	0.7000	0.6600	0.6000	0.6500	0.5800	0.5000		(
	citric acid	0.0000	0.0000	0.040	0.560	0.0000	0.0000	0.0600	0.0000	0.0200	0.3600		(
	residual sugar	1.9000	2.6000	2.300	1.900	1.9000	1.8000	1.6000	1.2000	2.0000	6.1000		
	chlorides	0.0760	0.0980	0.092	0.075	0.0760	0.0750	0.0690	0.0650	0.0730	0.0710		(
	free sulfur dioxide	11.0000	25.0000	15.000	17.000	11.0000	13.0000	15.0000	15.0000	9.0000	17.0000		2!
	total sulfur dioxide	34.0000	67.0000	54.000	60.000	34.0000	40.0000	59.0000	21.0000	18.0000	102.0000		7!
	density	0.9978	0.9968	0.997	0.998	0.9978	0.9978	0.9964	0.9946	0.9968	0.9978		(
	рН	3.5100	3.2000	3.260	3.160	3.5100	3.5100	3.3000	3.3900	3.3600	3.3500		:
	sulphates	0.5600	0.6800	0.650	0.580	0.5600	0.5600	0.4600	0.4700	0.5700	0.8000		(
	alcohol	9.4000	9.8000	9.800	9.800	9.4000	9.4000	9.4000	10.0000	9.5000	10.5000		!
	quality	5.0000	5.0000	5.000	6.000	5.0000	5.0000	5.0000	7.0000	7.0000	5.0000		

12 rows × 1599 columns

In [6]:

wine.corr()

Out[6]:

_		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	р
	fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.68297
	volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.2349

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	р
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.5419(
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.0856!
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.26502
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.0703
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.06649
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.34169
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.00000
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.19664
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	0.20563
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-0.05773

```
In [7]:
    plt.figure(figsize = (12,8))
    sns.heatmap(wine.corr(),annot = True)
```

Out[7]: <AxesSubplot:>


```
sns.barplot(wine['quality'].unique(),wine['quality'].value_counts())
plt.xlabel("Quality Rankings")
plt.ylabel("Number of Red Wine")
plt.title("Distribution of Red Wine Quality Ratings")
plt.show()
```

C:\Users\mayur\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas s the following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword w ill result in an error or misinterpretation.


```
plt.hist(wine.quality,bins=6,histtype='bar')

plt.title('Distribution of the Quality')
plt.xlabel('Quality')
plt.ylabel('Count')
plt.show()
```



```
In [10]: sns.barplot(x = 'quality', y = 'citric acid', data = wine)
```

Out[10]: <AxesSubplot:xlabel='quality', ylabel='citric acid'>


```
In [11]: sns.barplot(x = 'quality', y = 'chlorides', data = wine)
```

Out[11]: <AxesSubplot:xlabel='quality', ylabel='chlorides'>


```
In [12]: sns.barplot(x = 'quality', y = 'alcohol', data = wine)
```

Out[12]: <AxesSubplot:xlabel='quality', ylabel='alcohol'>


```
In [13]: sns.barplot(x = 'quality', y = 'sulphates', data = wine)
```

Out[13]: <AxesSubplot:xlabel='quality', ylabel='sulphates'>


```
plt.figure(figsize = (8,8))
sns.scatterplot(x = 'fixed acidity', y = 'density', hue = 'quality', data = wine)
```

Out[14]: <AxesSubplot:xlabel='fixed acidity', ylabel='density'>


```
In [15]: wine['quality'] = wine.quality.apply(lambda x : 1 if x > 6.5 else 0)
```

```
In [16]:
    sns.countplot(data = wine, x = 'quality')
    plt.show()
```



```
In [17]: X=wine.drop('quality',axis=1)
    y=wine['quality']
```

In [18]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=4)
display(X_train.head(),y_train.head(),'Testing Data',X_test.head(),y_test.head())
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide		density	рН	sulphates	alcohol	
998	8.9	0.840	0.34	1.40	0.050	4.0	10.0	0.99554	3.12	0.48	9.1	
575	12.3	0.270	0.49	3.10	0.079	28.0	46.0	0.99930	3.20	0.80	10.2	
731	8.9	0.875	0.13	3.45	0.088	4.0	14.0	0.99940	3.44	0.52	11.5	
1299	7.6	1.580	0.00	2.10	0.137	5.0	9.0	0.99476	3.50	0.40	10.9	
675	9.3	0.410	0.39	2.20	0.064	12.0	31.0	0.99840	3.26	0.65	10.2	
998 575 731 1299 675	0 0 0 0	v. dtva	o. int	C 4								

Name: quality, dtype: int64

'Testing Data'

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	
289	11.6	0.42	0.53	3.3	0.105	33.0	98.0	1.00100	3.20	0.95	9.2	
962	6.6	0.57	0.02	2.1	0.115	6.0	16.0	0.99654	3.38	0.69	9.5	
826	7.5	0.27	0.34	2.3	0.050	4.0	8.0	0.99510	3.40	0.64	11.0	
495	10.7	0.35	0.53	2.6	0.070	5.0	16.0	0.99720	3.15	0.65	11.0	
57	7.5	0.63	0.12	5.1	0.111	50.0	110.0	0.99830	3.26	0.77	9.4	
289 962 826 495 57 Name	0 0 1 1 0 : quali	ty, dty _l	oe: in	t64								

In [28]:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.ensemble import AdaBoostClassifier
```

In [29]:

```
wine_base=DecisionTreeClassifier(max_depth=10,random_state=4)
wine_base.fit(X_train,y_train)
AdaBoost= AdaBoostClassifier(base_estimator=wine_base,n_estimators=300,learning_rate=1)
```

```
y_pred=wine_base.predict(X_test)
In [31]:
          boost model=AdaBoost.fit(X train,y train)
In [34]:
          y_pred1=boost_model.predict(X_test)
          pred1=metrics.accuracy_score(y_test,y_pred1)
          print("accuracy with Ada Boost",pred1*100)
         accuracy with Ada Boost 91.04166666666667
In [22]:
          print(confusion_matrix(y_test, y_pred))
          print(classification_report(y_test, y_pred))
          print(accuracy_score(y_test, y_pred))
          [[391 27]
          [ 28 34]]
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.93
                                       0.94
                                                 0.93
                                                            418
                     1
                             0.56
                                       0.55
                                                 0.55
                                                             62
             accuracy
                                                 0.89
                                                            480
            macro avg
                             0.75
                                       0.74
                                                 0.74
                                                            480
         weighted avg
                             0.88
                                       0.89
                                                 0.89
                                                            480
         0.885416666666666
In [23]:
          acc = metrics.accuracy_score(y_test,y_pred)
          print(acc)
         0.8854166666666666
In [25]:
          from sklearn.ensemble import RandomForestClassifier
          clf = RandomForestClassifier(n_estimators=100)
          clf.fit(X_train,y_train)
         RandomForestClassifier()
Out[25]:
 In [ ]:
          y_pred1 = clf.predict(x_test)
          from sklearn import metrics
          print('Accuracy: ', metrics.accuracy score(y test,y pred1))
 In [ ]:
```