Digital signatures and certificates

• •

Digital signature

Digital signature - History

- Authentication technique
- Defined by the U.S. Federal Information Processing Standard (FIPS)
- The standard specified by the U.S. National Institute of Standards and Technology (NIST)
- Multiple specifications over the years
 - Currently in use FIPS 186-4 specified in 2013

Digital signature - Definition

"The result of cryptographic transformation of data that, when properly implemented, provides a mechanism for verifying origin authentication, data integrity and signatory non-repudiation" - (Digital signature standard [DDS], 2013)

- The receiver of signed message knows:
 - Who the message is from
 - The message has not been altered

- Signatory non-repudiation = signer cannot deny sending the message
 - Similar to a witnessed handwritten signature on a paper document

Digital signature - Algorithms

- FIPS 186-4 (the current standard) specifies 3 digital signature algorithms
 - DSA Digital Signature Algorithm originally approved algorithm in 1996
 - o RSA DSA RSA Digital Signature Algorithm based on the RSA public key algorithm
 - ECDSA Elliptic curve digital signature algorithm based on elliptic-curve cryptography

Digital signature - Generic model

- Bob sends a message to Alice
 - Message does not need to be encrypted
 - Needs to prove that is it from him
- Using a hash function (ex. SHA-512) to generate a hash value for the message
- Hash value + Bob's private key -> digital signature generation algorithm
- Signature is attached to the message and sent to Alice

Digital signature - Generic model

- Alice receives Bob's message with signature
- Calculates hash value for the message
- Hash + Bob's public key -> Digital signature verification algorithm
- If signature is valid proof of authenticity

Digital signature - Generic model

- Proof of authenticity
 - nobody has Bob's private key and could have encrypted the message
- Proof of integrity
 - Impossible to alter the message without Bob's private key
- No Confidentiality
 - Not safe from eavesdropping
 - Message is transmitted in clear
 - Even if encrypted observer can decrypt message using the sender's public key

Public-key certificates

Public-key certificates

- Issue with public keys
 - They are public
 - Anyone can broadcast their public key
 - Anyone can forge such an announcement
 - Can pretend to be someone else
- Solved by public key certificates

Public-key certificates

- Proof of public-key authenticity
- Consists of public key + user ID + CA's info
- CA certificate authority
 - Trusted third party
 - Certifies the public key
 - o usually a government agency or a financial institution

Getting Public-key certificates

- Client creates a pair of keys public and private
- Client prepares an unsigned certificate
 - user ID + public key + CA info
- Client gives certificate to CA in a secure way (ex. Face-to-face, registered email, web form with email verification)
- CA creates a signature:
 - Generates the hash code of the unsigned certificate
 - Hash value + CA's private key = CA's digital signature
- Unsigned certificate + CA's signature = Signed certificate

Using Public-key certificates

- Client can give the signed certificate to any other user
- Other users can verify that the certificate is valid:
 - Calculate hash code of the certificate (not including the signature)
 - Verify digital signature using CA's public key and signature verification algorithm

Figure 2.8 Public-Key Certificate Use