

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра цифровой трансформации (ЦТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ

по дисциплине «Разработка баз данных»

Практическое занятие № 4

Студенты группы	ИКБО-42-23 Голев С.С.	
		(подпись)
Ассистент	Морозов Д.В.	
		(подпись)
Отчет представлен	«»2025 г.	

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	2
ПОСТАНОВКА ЗАДАЧИ	3
ХОД РАБОТЫ	4
Использование ранжирующих функций	4
Использование агрегатных оконных функций	5
Использование функции смещения	6
Построение сводной таблицы	7
ЗАКЛЮЧЕНИЕ	9

ПОСТАНОВКА ЗАДАЧИ

Задание №1: использование ранжирующих функций.

Для каждой основной «родительской» сущности в вашей БД (например, производитель, категория товара, автор) определить три наиболее значимых по некоторому числовому признаку дочерних сущности (например, три самых дорогих товара, три самые популярные книги по количеству продаж). В результирующей таблице должны быть указаны идентификатор группы, идентификатор дочерней сущности, её числовой признак и ранг. Для расчёта ранга использовать функцию RANK() или DENSE_RANK().

Задание №2: использование агрегатных оконных функций

Для ключевой сущности, имеющей транзакции по времени (например, товар, услуга), рассчитать нарастающий итог (кумулятивную сумму) по некоторому показателю (например, объем продаж, количество заказов) с разбивкой по временным периодам (месяцам или годам). Отчёт должен содержать идентификатор сущности (id/название/...), временной период, сумму за период и кумулятивную сумму.

Задание №3: использование функции смещения

Провести сравнительный анализ общих показателей по периодам. Для каждого периода (например, месяца), начиная со второго, необходимо вывести общий показатель за текущий период и аналогичный показатель за предыдущий период в одной строке. Это позволит наглядно оценить динамику. Необходимо использовать функцию LAG().

Задание №4: построение сводной таблицы

Создать сводный отчет, который агрегирует некоторый числовой показатель для основной сущности по категориям, представленным в виде столбцов.

ХОД РАБОТЫ

Использование ранжирующих функций

Рисунок 1 – Ранжирующая функция

Для каждой категории (category_of_rtl) определяется рейтинг товаров (rtl) по убыванию цены. Используется $DENSE_RANK()$ для учёта одинаковых цен.

Использование агрегатных оконных функций

Рисунок 2 – Агрегатные вычисления в окне

SUM(...) OVER(PARTITION BY ... ORDER BY ...) вычисляет накопительный итог суммы заказов по месяцам для каждого клиента.

Использование функции смещения

Рисунок 3 – Агрегатные вычисления в окне

Функция LAG() извлекает значение продаж из предыдущего месяца, чтобы показать динамику роста/спада.

Построение сводной таблицы

Рисунок 4 – Агрегатные вычисления в окне

Рисунок 5 – Агрегатные вычисления в окне *crosstab()* превращает строки (кварталы) в столбцы. Запрос-источник должен возвращать:

- Имя сотрудника;
- Квартал (категорию);
- Значение (сумму заказов).

ЗАКЛЮЧЕНИЕ

В ходе выполнения практической работы были изучены и применены оконные функции SQL, позволяющие проводить аналитические расчёты без потери детализации данных. Были освоены ранжирующие функции для определения лучших элементов внутри групп, агрегатные оконные функции для вычисления нарастающих итогов, а также функции смещения для сравнения показателей по периодам. Кроме того, было реализовано построение сводных таблиц двумя способами — с использованием условной агрегации и функции crosstab. Работа позволила закрепить понимание различий между стандартной группировкой *GROUP BY* и оконными вычислениями OVER(). Полученные навыки пригодятся при разработке аналитических запросов формировании отчетов реальных И информационных системах.