

SMART INDUSTRY LABORATORY

Scheduling Algorithms (4)

- Production Planning Algorithm (1) -

Graduate School of Information, Production and Systems Shigeru FUJIMURA

What is Production Planning?

Production Planning:

Evaluate the values of productivity, total profits and/or the other measurements, subject to the constraints of material quantities, facility abilities, man power, budget and/or the other factors.

Production Planning is to make a total balanced plan for given time period

Example of Production Planning

- Make two products called ProA and ProB
- Resources to make products, quantities of those for each product and the upper limits for those are given in the following table.

	ProA	ProB	Upper Limit
Material(kg)	4	11	440
Man Power(man-hour)	5	7	350
processing time(hour)	7	6	420

Profit for unit quantity of ProA is 40k¥.

Profit for unit quantity of ProB is 90k¥.

Decide the optimal quantities to get the largest total profit.

Solving with figure (2 dimensions)

Objective total benefit : $\max z = 4x_1 + 9x_2$

subject to material constraint $:4x_1 + 11x_2 \le 440$ (a)

man power constraint : $5x_1 + 7x_2 \le 350$ (b)

facility constraint $:7x_1 + 6x_2 \le 420$ (c)

non-negative constraint $: x_1, x_2 \ge 0$

In the case of more than 3 variables ??

Terms for Linear Programming

Mathematical Programming:

Method to give the optimal solution that maximize or minimize the objective function, subject to constraints

Linear Programming:

One of Mathematical Programming

Objective function and constrains are given as linear real functions.

```
(In the graph, line for 2 dimensions plain for 3 dimensions, ...) f(x_1, x_2, ...) = ax_1 + bx_2 + ... \quad (a, b, ... \text{ is fixed})
```

LP: Linear Programming

- ☐ Feasible Solution:
 - Solution that satisfies constraints
- ☐ Feasible Region:
 - Variable region including feasible solutions
- ☐ Optimal Solution :
 - the most optimized (maximized or minimized) solution of feasible solutions.
- Optimal Value:
 - the value of objective function at the optimal solution

Where is the optimal solution in the feasible region?

extreme point is:
Intersection point of the boundaries of constraints
2 variables:
 intersection point of
 2 boundary lines
More than 3 variables:
 intersection point of
 boundary surfaces
(Extreme points are located at the convex surface
 of boundaries)

Extreme points of feasible region

= part of all the intersection points of constraint equations

Search extreme points and confirm if it is optimal solution.

Optimal Solution in the feasible region

- \square One optimal solution \Rightarrow at the extreme point.
- Many optimal solutions
 - ⇒ on the boundary surface

Coefficients of constraint and objective function are same.

- No optimal solution ⇒ No feasible region
- \square No optimal solution \Rightarrow Feasible region is too wide.

The value of the objective function is infinitely large.

Standard Form

```
maximize z = \sum_{j=1}^{n} c_j x_j

subject to \sum_{j=1}^{n} a_{ij} x_j = b_i (i = 1, 2, ..., m)

x_j >= 0 (j = 1, 2, ..., n)
```

 a_{ii} , c_i : fixed values,

b_i: fixed values (non-negative),

x_i: variables

m : num of equations, n : num of variables

Transformation to Standard form

Objective total benefit : $\max z = 4x_1 + 9x_2$

subject to material constraint $:4x_1 + 11x_2 \le 440$

man power constraint : $5x_1 + 7x_2 \le 350$

facility constraint $: 7x_1 + 6x_2 \le 420$

non-negative constraint : x_1 , $x_2 \ge 0$

maximize
$$z = 4x_1 + 9x_2$$

subject to $4x_1 + 11x_2 + s_1 = 440$
 $5x_1 + 7x_2 + s_2 = 350$
 $7x_1 + 6x_2 + s_3 = 420$
 $x_1, x_2, s_1, s_2, s_3 >= 0$

Transformation to Standard form

- Constraint equation is expressed by inequality.
 - = < : use slack variable ⇒ use equal</p>
 - => : use surplus variable ⇒ use equal
- ☐ Right side fixed value of constraint equation is negative.
 - Times -1 for both sides
- ☐ Free variable that is not defined as non-negative exists.
 - Divide the variable to two non-negative variables (positive part and negative part).

Constraint equation is expressed by inequality.

Change to equal equation using not negative additional variable.

```
□ (the left side) = < b

(the left side) + s = b

s => 0 slack variable

ex : 4x_1 - 7x_2 = < 12 \implies 4x_1 - 7x_2 + s = 12

□ (the left side) => b

(the left side) - t = b

t => 0 surplus variable

ex : 4x_1 - 7x_2 => 12 \implies 4x_1 - 7x_2 - t = 12
```

Free variable that is not defined as non-negative exists.

Free variable is replaced with the difference between two non-negative variables x^+ and x^- .

Free variable
$$x \Rightarrow x = x^+ - x^-$$
, $x^+ \ge 0$, $x^- \ge 0$

$$4x_1 - 7x_2 = < 6$$
 , $x_1 = > 0$

$$4x_1 - 7 (x_2^+ - x_2^-) = < 6$$
,

$$x_1 => 0$$
, $x_2^+ >= 0$, $x_2^- >= 0$

Solution of simultaneous equations

maximize
$$z = 4x_1 + 9x_2$$

subject to $4x_1 + 11x_2 + s_1 = 440$
 $5x_1 + 7x_2 + s_2 = 350$
 $7x_1 + 6x_2 + s_3 = 420$
 $x_1, x_2, s_1, s_2, s_3 >= 0$

Select x_1 , x_2 as independent variables, substitute 0 for these variables. Values of s_1 , s_2 , s_3 are decided.

Relationship between the number of variables and the number of equations

m: number of variables, n: number of equations

- m = < n : Solution is decided uniquely or is not decided uniquely is not decided
- m > n :
 m n variables are not decided uniquely
 (these are called independent variables)
 ⇔ If the values of m n independent variables are given,
 the values of the remained variables are decided.

To find the extreme points

- 1 Transform constraints to Standard form
- 2 Select the independent variables and set 0 to decide the values of the other variables.

The solution of the simultaneous equations

= basic solution

variables to find values = basic variable ⇔variables to be set 0

(independent variables) = non-basic variable

3 When all of values of the basic solution are non-negative, this is one of the extreme points.

Extreme Points in the all of the intersection point of constraint equations

X ₁	X ₂	S ₁	s ₂	s ₃
0	0	440	350	420
0	40	0	70	180
0	50	-110	0	120
0	70	-330	-140	0
110	0	0	-200	-350
70	0	160	0	-70
60	0	200	50	0
28.5	29.6	0	0	42.9
37.4	26.4	0	-21.8	0
44.2	18.4	60.8	0	0

In the next lecture,

Simplex method

Basic Method to derive the optimal solution for Linear Programming problem,

finding only the extreme points increasing the value of the objective function. SMART INDUSTRY LABORATORY

Thank you