JG	
HK	
KL	
ΑT	

Name:	
Class:	12MTX
Teacher:	

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS EXTENSION 1

Time allowed - 2 HOURS (Plus 5 minutes reading time)

Directions to candidates

- Attempt all questions
- Approved calculators may be used.
- Standard Integral Tables are provided at the back of this paper.
- Write your name and class in the space provided at the top of this question paper.

Section I - TOTAL MARKS 10

- To be answered on the removable answer grid at the back of the exam paper.
- > Allow about 15 minutes for this section.

Section II - TOTAL MARKS 60

- All answers to be completed on the writing paper provided. Each question is to be commenced on a new page clearly marked Question 11, Question 12, etc on the top of the page. Write your name and class at the top of each page.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- ► Allow about 1 hour and 45 minutes for this section.

YOUR ANSWERS WILL BE COLLECTED IN ONE BUNDLE. THE MULTIPLE CHOICE SECTION I ON TOP AND THEN WRITTEN ANSWERS TO SECTION II AND THEN THE QUESTION PAPER.

SECTION I 10 MARKS

INSTRUCTIONS

- > Attempt all questions
- > Allow about 15 minutes for this section
- > Section I answers are to be completed on the multiple-choice answer sheet attached to the back of this question paper.
- > Select the alternative A, B, C or D that best answers the question
- 1. What is the acute angle between the lines y = 2x 1 and x 3y + 6 = 0?
 - (A) 18°
 - (B) 45°
 - (C) 63°
 - (D) 82°
- 2. Let α , β and γ be the roots of $x^3 x^2 + cx + 12 = 0$. It is known that two roots are equal in magnitude but opposite in sign. What is the value of c?
 - (A) $-1\dot{2}$
 - (B) $-2\sqrt{3}$
 - (C) $2\sqrt{3}$
 - (D) 12
- 3. $P(x) = x^3 + 4x^2 5x + 4$ divided by x 2, expressed in the form of $P(x) = Q(x) \cdot A(x) + R(x)$ is
 - (A) $P(x) = (x-2)(x^2+2x-1)+2$
 - (B) $P(x) = (x-2)(x^2+6x-17)-30$
 - (C) $P(x) = (x-2)(x^2+6x+7)+18$
 - (D) $P(x) = (x-2)(x^2+2x-9)-14$
- 4. The curve $y = \sin x$ is rotated about the x-axis from x = 0 to $x = \frac{\pi}{2}$. Find the volume of the solid formed.
 - (A) $\frac{\pi}{4}(2\tau 1)$ units³
 - (B) $\frac{\pi^2}{4}$ units³
 - (C) $\frac{\pi}{2}$ units³
 - (D) $\frac{\pi}{4}$ units³

5. If the velocity v of a particle moving on the x-axis is given by

$$v^2 = -3x^2 + 20x + 7$$

Which of the following expresses its acceleration in terms of x?

- (A) $x = -3\left(x 3\frac{1}{3}\right)$
- $(B) \qquad x = -3(x-2)$
- $(C) \qquad x = -3(x-3)$
- $(D) \qquad x = -2(x-2)$
- 6. Find the sum of the coefficients of $(1 + x)^{16}$
 - (A) 131 072
 - (B) 65 536
 - (C) 17
 - (D) 32 768
- 7. Evaluate $\int_{e}^{e^2} \frac{dx}{x \ln 2}$
 - (A) ln2
 - (B) $\frac{1}{\ln 2}$
 - (C) $\frac{-1}{2e^2}$
 - (D) $\frac{1}{2e^2}$
- 8. It is known that $\int_0^4 f(x) dx = 6$. Hence, the value of $\int_3^7 f[(x-3)+2] dx$ is
 - (A) 8
 - (B) 18
 - (C) 14
 - (D) 16

9. If
$$\frac{dN}{dt} = 0.1(N - 100)$$
 and $N = 300$ when $t = 0$, which of the following is true?

(A)
$$N = 200 + 100e^{0.1t}$$

(B)
$$N = 300 + 100e^{0.1t}$$

(C)
$$N = 100 + 200e^{0.1t}$$

(D)
$$N = 100 + 300e^{0.1t}$$

10. If
$$(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots + \binom{n}{n}x^n$$
,

then the expression
$$\binom{n}{1} + 2\binom{n}{2} + 3\binom{n}{3} + \dots + n\binom{n}{n} =$$

- (A)
- (B) $n(2)^{n-1}$
- (C) :
- (D) 2^n

END OF SECTION 1

SECTION II 60 MARKS

INSTRUCTIONS

- Answer all questions on the writing paper provided
- Allow about 1 hour and 45 minutes for this section
- Begin each question on a new page.
- Show all necessary working.

Question 11 (15 marks)

BEGIN A NEW PAGE

Marks

(a) A particle moves in a straight line and its position x metres at time t seconds is given by

$$x = 2 + \sin 4t + \sqrt{3}\cos 4t.$$

- (i) By first expressing $\sin 4t + \sqrt{3} \cos 4t$ in the form of $R\sin (4t + \alpha)$, prove that it is undergoing simple harmonic motion.
- (ii) Find the equilibrium position and the amplitude of the motion.
- (iii) Find the maximum speed of the particle.

1

4

(b) A parachutist, P, jumps out of a plane at height h(t) metres above the ground and by the time he reaches 3000 m, he is falling at a constant rate of 5.5 m/s. Point Q is on horizontal ground directly below him. An observer at T is 100 m from Q and the angle of elevation from this point to the parachutist is $\theta(t)$ radians.

(i) Show that $\frac{dh}{d\theta} = \frac{100}{\cos^2 \theta}$

- 1
- (ii) Show that the rate of decrease of the angle of elevation when h = 2000 m is 0.000137 rad/s.

3

(c) Use the substitution $u = \tan \theta$ to find the exact value of this integral

2

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sec^2 \theta}{\tan \theta} d\theta.$$

(d) Find all values of x for which $\frac{6}{x} \ge x - 1$

3

Question 12 (15 marks)

BEGIN A NEW PAGE

Marks

(a) Differentiate $[1 + \cos^{-1}(3x)]^3$ with respect to x.

2

(b) Write down the general solution of $\sqrt{3} \tan \theta - 1 = 0$. Leave your answer in exact radian form.

1

(c) (i) Rewrite $-3 - x^2 - 4x$ in the form $b^2 - (x + a)^2$ where a and b are integers.

1

(ii) Hence, or otherwise, evaluate $\int \frac{dx}{\sqrt{-3 - x^2 - 4x}}$.

1

- (d) Consider the function $f(x) = \sin^{-1}(x 1)$.
 - (i) State the domain and range of y = f(x).

2

(ii) Draw the graph of y = f(x).

1

(iii) The area bounded by the curve y = f(x), the y-axis and the line $y = \frac{\pi}{2}$ is rotated about the y-axis. Find the volume of the solid formed.

2

- (e) Consider the parabola $4ay = x^2$ where the focal length is a, (a > 0), and the tangents at P $(2ap,ap^2)$ and Q $(2aq,aq^2)$ intersect at the point T. Let S (0,a) be the focus of the parabola.
 - (i) Find the coordinates of T. (You may assume that the equation of the tangent at P is $y = px - ap^2$)

1

(ii) Show that the length SP = $a(p^2 + 1)$

1

(iii) Suppose P and Q move on the parabola in such a way that SP + SQ = 4a. Show that T is constrained to move on a parabola.

3

- A particle is projected from the top of a cliff 200m high. The horizontal and vertical (a) components of the velocity when t = 0 are $20\sqrt{3} m/s$ and 30m/s respectively.
 - (i) Determine the parametric equations of the path of the stone after t seconds. $(\text{take } s) = 10m/s^2$

(ii) Find when the particle hits the ground.

2

2

- (iii) Find the velocity and the angle of impact of the particle when it hits the ground. 3
- Evaluate $\lim_{t \to 0} \left[\frac{4\sin^2 t}{t^2} \right]$ (b) 1
- The equation $2 \cos^3 \theta \cos^2 \theta + \cos \theta 1 = 0$ has solutions $\cos a$, $\cos b$ and (c) $\cos c$. Prove that $\sec a + \sec b + \sec c = 1$. 2

The points A(6, 5) and B(2, 1) are 3 units and 1 unit respectively from the line land are on opposite sides of l, as shown in the diagram.

Find the coordinates of the point P, where the interval AB crosses the line l.

(e) Two unequal circles intersect at A and B. The line RS is a tangent to the smaller circle at T. The lines TA and TB meet the larger circle at C and Drespectively. Prove that $RS \parallel CD$.

3

2

Marks

(a) (i) Prove that
$$\tan (x + h) - \tan x = \frac{\sin h}{\cos (x + h) \cos x}$$
.

(ii) Hence, find the derivative of tan x from first principles.

(b) (i) Show that
$$(1+x)^{2n} \left(1-\frac{1}{x}\right)^{2n} = \left(x-\frac{1}{x}\right)^{2n}$$
.

- (ii) Hence, by equating the constant terms, deduce that $(^{2n}C_0)^2 (^{2n}C_1)^2 + (^{2n}C_2)^2 \dots + (^{2n}C_{2n})^2 = (-1)^{n-2n}C_n .$
- (c) (i) Show that the equation $2x^3 3x^2 + 0.999 = 0$ has a root near x = 1.
 - (ii) Explain why Newton's method fails if the first approximation taken for $2x^3 3x^2 + 0.999 = 0$ is x = 1.
 - (iii) Using x = 1.5 find, by one application of Newton's method, a better approximation of the root of the equation $2x^3 3x^2 + 0.999 = 0$.
- (d) Prove by mathematical induction, $\sum_{j=1}^{n} \sin{(2j-1)x} = \frac{1-\cos{2nx}}{2\sin{x}}$

Hint: You may find $\sin(2k+1)x = \sin(2kx+x)$ useful.

END OF THE PAPER

EX+ 1 AP4	QII)
MCQ ANSWERS	a) · (i) $\chi = 2 + \sinh 4t + \sqrt{3} \cos 4t$
2) A	$Sin4t + J3\cos 4t = R sin(4t+\alpha)$ $= R[sin4t \cos \alpha + 6s4t \sin \alpha]$
3) C	$= R\cos\alpha \sin 4t + R\sin\alpha \cos 4t$ $R\cos\alpha = 1 $ $R\sin\alpha = \sqrt{3} $ $+ \tan\alpha = \sqrt{3} $ $\Rightarrow \alpha = \frac{\pi}{3}$
4) B 5) A	$\frac{R^2Sih^2a + R^2Zos^2a = 3 + 1 = 4}{R^2 = 4} \qquad R = 2$
6) B,	$\chi = 2 + \sin 4t + \sqrt{3}\cos 4t$ $\chi = 2 + 2\sin(4t + \frac{\pi}{3})$
7) B 8) C	
9) C	$\frac{1}{\chi} = -16(\chi - 2) \qquad \text{as } \chi - 2 = 2\sin(4t + \frac{\pi}{3})$ $\therefore 1 + 13 \text{ undergoing SHM}.$
p) B.	(i) Equilibrium position = 2. } / amplitude = 2
	(iii) Max. speed = 8 ms -1 /

Q11) (b) tano = h 2. h = 100 tan 0 100 Cos²0 $\frac{d\theta}{dt} = \frac{d\theta}{dh} \times \frac{dh}{dt}$ given $\frac{dh}{dt} = -5.5$ When h=2000, tawo = 100 i 0 = tan (20) = 1.52084 $\frac{1. do}{at} = \frac{.\cos^2(1.52084)}{.100}$ = -0.000137 rad s-1. / (-1 for not showing negative, i. rate of decrease = 0.000137 3 Sector do I tano (C u=tano du=sectodo <u>du</u> D=5, U=5 0= E, u-13 ln 13 - ln = $\ln\left(\frac{\sqrt{3}}{\frac{1}{\sqrt{3}}}\right) = \ln 3 \sqrt{\frac{1}{\sqrt{3}}}$

Q11) (d) 7 +0 $6x > \chi^2(\chi-1)$ 62-22(2-1) 70 x [6-2(x-1)]≥0 x[6-x2+x] 30 $\chi (6+\chi-\chi^2) > 0$ $\chi(2+\chi)(3-\chi)$ 70 $x \leq -2$, $0 < x \leq 3$ 0 < x < 3) (-1 for

$$\frac{d}{dz}\left[1+\cos^{-1}(3z)\right]^{3} = 3\left[1+\cos^{-1}(3z)\right]^{2}\left[\frac{-3}{\sqrt{1-9z^{2}}}\right]$$

(b)
$$\tan \theta = \frac{1}{\sqrt{3}}$$

 $\therefore \theta = n\pi + \frac{\pi}{6}$

$$\frac{(ii)}{\sqrt{-3-\lambda^2-4\chi}} = \frac{dx}{\sqrt{1-(x+2)^2}}$$

$$= \frac{5i\pi^{-1}(x+2)}{\sqrt{x+2}} + C$$

$$Q(2) d) f(x) = sin^{-1}(x-1)$$

(1) Doman'
$$-| \leq \chi - 1 \leq 1$$

$$0 \leq \chi \leq 2$$

$$Range : -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$$

Volume =
$$\pi$$
 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 dy$ $y = \sin(x)$
= π $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin y + 1)^2 dy$ $\sin y + 1 = x$

$$= \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} Sin y + 2 sin y + | dy$$

$$= \pi \left[\frac{y}{2} - \frac{sin y}{4} + y - 2 \cos y \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} / \frac{1}{2}$$

$$= \pi \left[\frac{3y}{2} - \frac{sin y}{4} - 2 \cos y \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} / \frac{3n^2}{2}$$

212) (e)

(i)
$$y = px - \alpha p^2$$
 (tangent at P) — 0
 $y = qx - aq^2$ (tangent at Q).

$$px - ap' = qx - aq^{2}$$

$$(p-q)x = a(p^{2}-q^{2})$$

$$(p-q)x = a(p+q)(p-q)$$

$$x = ap+q$$

Sub. into () $y = pa(p+q) - ap^{2}$ $y = ap^{2} + apq - ap^{2} = apq.$ $\therefore T has coordinates T(a(p+q), apq.$

.. I has coordinates T (alp+q), a

(ii) Using definition,

12 (e) (iíi)

$$\frac{SP = \alpha(p^2+1)}{Similarly, SQ = \alpha(q^2+1)}$$

$$SP+SQ=4a$$
 $\Rightarrow \alpha(p^2+1)+\alpha(q^2+1)=4\alpha$
For $T(\alpha(p+q), \alpha(q+q))$

$$\chi = \alpha(p+q) \quad y = \alpha p q$$

$$p+q = \frac{x}{a} \quad , \quad pq = \frac{y}{a}$$

$$(p+q)^{2} = \frac{x^{2}}{a^{2}}$$

$$p^{2} + 2pq + q^{2} = \frac{x^{2}}{a^{2}}$$

But
$$p^2+q^7=2$$
, $2+2pq=\frac{x^2}{a^2}$
and $pq=\frac{y}{a}$, $2+\left(\frac{2y}{a}\right)=\frac{x^2}{a^2}$
 $2a^2+2ay=x^2$ Which is a parabola.

(c)
$$2\cos^3\theta - \cos^2\theta + \cos\theta - 1 = 0$$
 $A = 2$
 $\cos a$, $\cos b$, $\cos c$ are roots. $B = -1$
 $c = 1$

Seca + Sec b + Sec $D = -1$
 $\cos a + \cos b + \cos c$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos c + \cos a \cos b \cos c$
 $\cos a \cos b \cos c + \cos a \cos a \cos c + \cos a \cos c +$

d)
$$\angle BDP = \angle ACP = 90^{6} \text{ (given)}$$
 $\angle DPB = \angle CPA \text{ (Vertically opp. 4-5)}$
 $\triangle DPB \text{ [I] } \triangle CPA \text{ (Vertically opp. 4-5)}$

$$\frac{DB}{CA} = \frac{BP}{CP}$$

$$\frac{1}{3} = \frac{BP}{CP} \qquad \therefore DP : CP = 1:3. \text{ (Show all works)}$$

$$P(\pi, y) = \begin{pmatrix} 2(3) + 6(1) & 1(3) + 5(1) \\ 4 & 4 \end{pmatrix}$$

$$P(\pi, y) = \begin{pmatrix} 3 & 3 & 4 \\ 4 & 4 \end{pmatrix}$$

$$P(\pi, y) = \begin{pmatrix} 3 & 3 & 4 \\ 4 & 4 \end{pmatrix}$$

$$P(\pi, y) = \begin{pmatrix} 3 & 3 & 4 \\ 4 & 4 \end{pmatrix}$$

CD 1/RS (Equal affernate angles) V
imply parallel lines)

(i) $\tan(x+h) - \tan x = \frac{\sinh h}{\cos(x+h)h}$ LHS = tanx + tanh

1 - tanz tanh = tanz + tanh - tanz + tanz tanh 1 - tanx tanh tanh + tan's tanh 1 - tann tanh. = Sinh (1 + tan'z) 1 - tanx (Sinh) - Sinh (1+ Sihiz Cosh - Sihix sihh = Sinh (Cosx + Sinx) Cosh cosx - Sinx sinh cosx

a) (ii) $\frac{d}{dz} \left[+ amz \right] = \lim_{h \to 0} \frac{\tan(z+h) - \tan z}{h}$ $= \lim_{h \to 0} \frac{\sinh}{\cos x} \cos(h+z) \cdot h$ $= \lim_{h \to 0} \frac{\sinh}{h} \cdot \frac{1}{\cos x \cos(z+h)}$ $= \lim_{h \to 0} \frac{\sinh}{h} \cdot \frac{1}{\cos x \cos x} = \frac{1}{\cos x} = \frac{1}{\cos x \cos x}$ as $\lim_{h \to 0} \frac{\sinh}{h} \cdot \frac{1}{\cos x \cos x} = \frac{1}{\cos x} = \frac{1}{\cos x \cos x}$ (Neel to sho here say sleps 1 m) (2xth) - tonx = $\frac{\sin(x+h)}{\cos x} \cdot \frac{\sinh x}{\cos x}$ $= \frac{\sin(x+h) \cos x - \sinh x}{\cos x \cos(x+h)}$ $= \frac{\sin(x+h) \cos x - \sinh x}{\cos x \cos(x+h)}$ $= \frac{\sin(x+h) \cos x - \sinh x}{\cos x \cos(x+h)}$ $= \frac{\sin(x+h) \cos x}{\cos x \cos(x+h)}$ $= \frac{\sin(x+h) \cos x}{\cos x \cos(x+h)}$	214					
$h \neq 0 Cos \times Cos(h+x) \cdot h$ $= \lim_{h \neq 0} \frac{snh}{h} \cdot \frac{1}{cos \times (os(x+h))}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)}$ $= 1 \times \frac{1}{cos \times (osx)} = \frac{1}{cos \times (osx)} =$	a) (ii)	d [tan]	x] - lim h=0	$\frac{-\tan(z+h)}{h}$	-tani	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						7
Solution to (a)(i) $ \frac{\sin \sin \sin x}{h} = 1 \qquad \text{(Nech to sho} \\ \text{necessary steps} \\ 1 m) $ Solution to (a)(i) $ (x+h) - \tan x = \frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} $ $ = \frac{\sin(x+h)\cos x - \sin x \cos(x+h)}{\cos x} $ $ = \frac{\sin(x+h)\cos x - \sin x \cos(x+h)}{\cos x \cos(x+h)} $ $ = \frac{\sin((x+h) - x)}{\cos x \cos(x+h)} $ $ = \sin h $				~ .	1 Cos x Cos (x+h	
Necessary steps $ m \rangle$ Solution to (a)(i) $(\chi+h) - tan\chi = \frac{Sin(\chi+h)}{CD\chi+h} - \frac{Sih\chi}{CD\chi}$ $= \frac{Sin(\chi+h)CD\chi - Sih\chi}{CD\chi+h}$ $= \frac{Sin(\chi+h)CD\chi - Sih\chi}{CD\chi+h}$ $= \frac{Sin[(\chi+h)-\chi]}{CD\chi(CD\chi+h)}$ $= \frac{Sin[(\chi+h)-\chi]}{CD\chi(CD\chi+h)}$ $= Sih h$			= /	$\times \frac{1}{\cos x}$	- <u> </u> losa = losa	= \
Solution to (a)(i) $(\chi+h) - ton\chi = \frac{Sin(\chi+h)}{coc(\chi+h)} \frac{sih\chi}{coc(\chi+h)}$ $= \frac{sin(\chi+h)coc\chi}{coc(\chi+h)}$ $= \frac{sin(\chi+h)coc\chi}{coc(\chi+h)}$ $= \frac{sin[(\chi+h)-\chi]}{coc(\chi+h)}$ $= sin h$		—as lin	$\frac{sinh}{h} =$	1.	3	
solution to (a)(i) $(x+h) - tmx = \frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x}$ $= \frac{\sin(x+h)\cos x - \sin x \cos(x+h)}{\cos x \cos(x+h)}$ $= \frac{\sin((x+h) - x)}{\cos x \cos(x+h)}$ $= \frac{\sin h}{\cos x \cos(x+h)}$,	eps
= 51h[(x+h)-x] 100 x(02(x+h)) = 51h h	solution to	(a)(i)	(x+h)	Sh x	(m)	
coxcor(x+h)	solution to (x+h) – ti	$m\chi = \frac{Sint}{\omega}$	(Xth) COOX	- 514 x cuz		
Sin h WX WX (X7h)	solution to (x+h) – to		(Xth) CODX CODX U	- 514 X CUDI PEXTHI		
	solution to (x+h) – to	In x = <u>Sint</u> Co = <u>Sint</u> = <u>Sin</u>	(<u>X+h)</u>	: – 514 X COD (PLX+h) X]		
	solution to (x+h) - t	(m x = <u>Sint</u> Coz = <u>Sint</u> = <u>Sint</u> Coz	(X+h) COD X COD X COD (XCOD (X+ h	: – 514 X COD (PLX+h) X]		
	solution to (x+h) - te	(m x = <u>Sint</u> Coz = <u>Sint</u> = <u>Sint</u> Coz	(X+h) COD X COD X COD (XCOD (X+ h	: – 514 X COD (PLX+h) X]		
	solution to (x+h) - te	(m x = <u>Sint</u> Coz = <u>Sint</u> = <u>Sint</u> Coz	(X+h) COD X COD X COD (XCOD (X+ h	: – 514 X COD (PLX+h) X]		
	solution to (x+h) - t	(m x = <u>Sint</u> Coz = <u>Sint</u> = <u>Sint</u> Coz	(X+h) COD X COD X COD (XCOD (X+ h	: – 514 X COD (PLX+h) X]		
	solution to	(m x = <u>Sint</u> Coz = <u>Sint</u> = <u>Sint</u> Coz	(X+h) COD X COD X COD (XCOD (X+ h	: – 514 X COD (PLX+h) X]		

b)(i)
$$(1+x)^{2n}(1-\frac{1}{x})^{2n}$$

= $[(1+x)(1-\frac{1}{x})]^{2n}$
= $[1-\frac{1}{x}+x-1]^{2n}$
= $[x-\frac{1}{x}]^{2n}$

(i) RHS,
$$T_{r+1} = {2n \choose r} x^{2n-r} (-\frac{1}{x})^r$$

$$= {2n \choose r} x^{2n-r} (-1)^r (x)^{-r}$$

$$= {2n \choose r} x^{2n-2r} (-1)^r$$
Let $r = n$, then ${2n \choose n} (-1)^n$

$$13 \text{ the coef. } 0 \text{, the constant term.}$$

LHS,
$$\begin{bmatrix} \binom{2n}{n} + \binom{2n}{1} \alpha + \binom{2n}{2} \alpha^2 + \dots + \binom{2n}{2n} \alpha^2 n \end{bmatrix} \times \begin{bmatrix} \binom{2n}{n} - \binom{2n}{1} \binom{1}{x} + \binom{2n}{2} \binom{1}{x^2} - \dots + \binom{2n}{2n} \binom{-1}{x} n \end{bmatrix}$$

:. Constant term =
$$\binom{2n}{0}\binom{2n}{0} - \binom{2n}{1}\binom{2n}{1} + \binom{2n}{2n}\binom{2n}{n} + \cdots \binom{2n}{2n}\binom{2n}{2n}$$

Equating constants from both sides,
$$\binom{2n}{0}\binom{-1}{1}\binom{n}{1} = \binom{2n}{0}\binom{2}{1}\binom{2n}{1} + \binom{2n}{2}\binom{2n}{2}\binom{2n}{2n}\binom{2n}{2n}$$

c)
$$f(x) = 2x^3 - 3x^2 + 0.999$$

(i) $f(1) = 2(1) - 3(1) + 0.999 = -0.001$
.. There is a rost close to the root.

(ii)
$$f'(x) = 6x^2 - 6x$$

at $x = 1$, $f'(1) = 64)^2 - 6(1) = 0$. V
It is a stationary point, : there is no $\sqrt{10}$
tangent which will intersect the x -axis.

(ii)
$$f'(x) = 6x^{2} - 6x$$

 $f'(1.5) = 4.5$
 $f(1.5) = 0.999$
 $\chi_{2} = 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.278$ (calculator resolut)

$$\begin{array}{lll} & \begin{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \begin{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \end{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array}{lll} & \begin{array}{lll} & \begin{array}{lll} & \end{array}{lll} & \hspace{lll} & \end{array}{lll} & \\$$

2 Sin X.

$$= 1 - \cos 2k \lambda + 2 \sin 2 \left(\sin 2k \alpha \cos x + \cos 2k \alpha \sin \lambda \right)$$

$$= 1 - \cos 2k \alpha + 2 \sin \alpha x \sin 2k \alpha \cos x + 2 \cos 2k \alpha \sin \lambda$$

$$= 1 - \cos 2k \alpha + \sin 2k \alpha \sin 2\alpha + \cos 2k \alpha \left(1 - \cos 2\alpha \right)$$

$$= 1 - \cos 2k \alpha + \sin 2k \alpha \sin 2\alpha + \cos 2k \alpha \left(1 - \cos 2\alpha \right)$$

$$= 1 - \cos 2k \alpha + \sin 2k \alpha \sin 2\alpha + \cos 2k \alpha - \cos 2k \alpha \cos 2\alpha - \cos 2k \alpha \cos 2\alpha - \sin 2k \alpha \sin 2\alpha \right)$$

$$= 1 - \left(\cos 2k \alpha \cos 2\alpha - \sin 2k \alpha \sin \alpha \right)$$

$$= 1 - \left(\cos 2k \alpha \cos 2\alpha - \sin 2k \alpha \sin \alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 3 \sin \alpha$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$

$$= 1 - \cos \left(2k \alpha + 2\alpha \right)$$