Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3207	К работе допущен		
Студент <u>Батманов Даниил Е.</u>	Работа выполнена		
Преполаватель Коробков Максим П.	Отчет принят		

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследовать закон распределения случайной величины. Вычислить среднее значение и дисперсию случайной величины, полученной в результате многократных измерений определённого интервала времени.

- 2. Задачи, решаемые при выполнении работы.
 - а. Закрепить клетку кролика, подготовить секундомер и тетрадку с ручкой для фиксации интервалов времени.
 - b. Провести многократные измерения интервала времени между подъёмами передних лап подопытным кроликом;
 - с. Построить гистограмму распределения результатов измерения;
 - d. Вычислить среднее значение и дисперсию полученной выборки;
 - е. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Случайная величина, полученная в результате измерения интервала времени между подъёмами передних лап подопытным кроликом.

4. Метод экспериментального исследования.

Многократное прямое измерение интервала времени, фиксация результатов в таблице.

5. Рабочие формулы и исходные данные.

$$\begin{split} \langle t \rangle_N &= \frac{1}{N} \sum_{i=1}^N t_i - \text{среднее арифметическое всех результатов измерений;} \\ \sigma_N &= \sqrt{\frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2} - \text{выборочное среднеквадратичное отклонение;} \\ \sigma_{\langle t \rangle} &= \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2} - \text{среднеквадратичное отклонение среднего значения;} \\ \rho_{max} &= \frac{1}{\sigma \sqrt{2\pi}} - \text{максимальное значение плотности распределения;} \\ \rho(t) &= \frac{1}{\sigma \sqrt{2\pi}} e^{\wedge} (\frac{(t_i - \langle t \rangle_N)^2}{2\sigma^2}) - \text{нормальное распределение, описываемое функцией Гаусса;} \\ \Delta t &= t_{\alpha,N} \sigma_{\langle t \rangle_N} - \text{доверительный интервал.} \end{split}$$

6. Измерительные приборы.

№ n/n	Наименование	Наименование Тип прибора		Погрешность прибора
1	Секундомер (IOS)	Цифровой	0 - 1,167682e9 c	0,005 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рисунок 1 – Схема установки

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1. Результаты прямых измерений.

^{*} Значения большие 73,98 обозначим за промахи. Выделим их жёлтым цветом.

№	t_i , c	$t_i - \langle t \rangle_N, c$	$(t_i - \langle t \rangle_N)^2, c^2$
1	17,51	$t_i - \langle t \rangle_N, c$ $9,28$	86,1184
2	5,16	-3,07	9,4249
3	19,47	11,24	126,3376
4	5,71	-2,52	6,3504
5	23,17	14,94	223,2036
6	18,19	9,96	99,2016
7	4,74	-3,49	12,1801
8	3,86	-4,37	19,0969
9	16,52	8,29	68,7241
10	0,53	-7,7	59,29
11	0,42	-7,81	60,9961
12	13,64	5,41	29,2681
13		75,5	
14	4,74	-3,49	12,1801
15		146,61	
16		204,17	
17		278,75	
18	0,76	-7,47	55,8009
19	1,41	-6,82	46,5124
20	2,13	-6,1	37,21
21	0,33	-7,9	62,41
22	0,17	-8,06	64,9636
23	0,28	-7,95	63,2025
24	0,17	-8,06	64,9636

25	0,96	-7,27	52,8529
26	6,1	-2,13	4,5369
27	4,17	-4,06	16,4836
28	12,21	3,98	15,8404
29	7,24	-0,99	0,9801
30	0,15	-8,08	65,2864
31	0,6	-7,63	58,2169
32	4,8	-3,43	11,7649
33	5,8	-2,43	5,9049
34	16,11	7,88	62,0944
35	29,01	20,78	431,8084
36	20,77	12,54	157,2516
37	2,23	-6	36
38		517,19	
39	4,62	-3,61	13,0321
40		204,77	
41	1,23	-7	49
42	0,76	-7,47	55,8009
43	3,14	-5,09	25,9081
44	50,55	42,32	1790,9824
45	1,13	-7,1	50,41
46	30,01	21,78	474,3684
47	0,16	-8,07	65,1249
48	21,31	13,08	171,0864
49	0,12	-8,11	65,7721
50	0,14	-8,09	65,4481
	$\langle t \rangle_N \approx 8,23 c$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = 0.11 c$	$\sigma_N \approx 10,61 c$ $\rho_{max} \approx 0,0376 c^{-1}$

Ссылка на таблицу 1 в Google Spreadsheets:

https://docs.google.com/spreadsheets/d/1N7RBE3a6vTUr2bNYneX0yzQKU33Zzl4nIrJ9g2jCfpU/edit?usp=sharing

$$\begin{split} \langle t \rangle_N &= \frac{1}{N} \sum_{i=1}^N t_i = \text{"=OKPYГЛ(CP3HAЧ(B2:B45); 2)" c} \\ &\sum_{i=1}^N (t_i - \langle t \rangle_N) = \text{"=CYMM(C2:C45)" c} \\ &\sigma_N &= \sqrt{\frac{1}{N-1} \sum_{i=1}^N (t_i - \langle t \rangle_N)^2} = \text{"=OKPYГЛ(СТЕПЕНЬ(1/44 * CYMM(D2:D45); 1/2); 2)" c} \\ &\rho_{max} &= \frac{1}{\sigma \sqrt{2\pi}} = \text{ "=OKPYГЛ(1 / (D46 * СТЕПЕНЬ(2 * ПИ(); 1/2)); 4)" c}^{-1} \end{split}$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2. Данные для построения гистограммы.

Границы интервалов, с	ΔN	$\frac{\Delta N}{N\Delta t}$, c^{-1}	t, c	$\rho(t), c^{-1}$	
0,12	31	≈ 0.098	3,72	≈ 0,034	
7,32	31	~ 0,098	3,72		
7,32	2	≈ 0,006	10,92	a. 0.026	
14,52	2	~ 0,000	10,92	≈ 0,036	
14,52	7	7 ≈ 0,022	18,12	≈ 0,024	
21,72	1				
21,72	1	≈ 0,003	25,32	≈ 0,01	
28,92	1				
28,92	2	~ 0.006	22.52	~. 0.0027	
36,12	2	$\approx 0,006$	32,52	≈ 0,0027	
36,12	0	0	20.72	≈ 0,0004	
43,32	0	0	39,72		
43,32	1	≈ 0,003	46,935	≈ 0,00005	
50,55	1				

Таблица 3. Стандартные доверительные интервалы.

	Интервал, с		ΔΝ	ΔN	D
	ОТ	до	ΔΙν	\overline{N}	I
$t \in [\langle t \rangle_N - \sigma, \langle t \rangle_N + \sigma]$	-2,38	18,84	37	0,84	≅0,683
$t \in [\langle t \rangle_N - 2\sigma, \langle t \rangle_N + 2\sigma]$	-12,99	29,45	42	0,954	≅0,954
$t \in [\langle t \rangle_N - 3\sigma, \langle t \rangle_N + 3\sigma]$	-23,61	40,06	43	0,98	≅0,997

$$\begin{split} t_{min} &= 0.12 \ c \\ t_{max} &= 50.55 \ c \\ \sqrt{N} &\approx 7 \ \Rightarrow \Delta t = \frac{50.55 - 0.12}{7} \approx 7.2 \ c \\ \frac{\Delta N}{N\Delta t} &= \frac{31}{44 * 7.2} \approx 0.098 \\ \rho(3.72) &= \frac{1}{10.61 * \sqrt{2\pi}} e^{\left(\frac{-(3.72 - 8.23)^2}{2 * 10.61^2}\right)} \approx 0.034 \ c^{-1} \end{split}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{44*43} \sum_{i=1}^{44} (t_i - 8,23)^2} = 2,6 \ c$$
 — среднеквадратичное отклонение среднего значения;
 $\Delta t = t_{\alpha,N} \sigma_{\langle t \rangle_N} = 2,01*\ 2,6 = 5,226$ — доверительный интервал для измеряемого в работе промежутка длины.

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Гистограмма и функция Гаусса (построено при помощи MS Word и MS Excel).

График 2. Альтернативная гистограмма и функция Гаусса (построено при помощи Geogebra и SketchBook).

12. Окончательные результаты.

 $\langle t \rangle_N = 8,23~c$ — среднее арифметическое всех результатов измерений; $\sigma_N = 10,61~c$ — выборочное среднеквадратичное отклонение; $\sigma_{\langle t \rangle} = 2,6~c$ — среднеквадратичное отклонение среднего значения; $\rho_{max} = 0,0376~c^{-1}$ — максимальное значение плотности распределения; $t_{\alpha,N} = 2,01~c$ — коэффициент Стьюдента, при $\alpha = 0,95$; $\Delta t = 5,226$ — доверительный интервал.

13. Выводы и анализ результатов работы.

В результате работы, получилось исследовать закон распределения случайной величины, путём вычисления характеристик случайной величины. Также получилось собрать набор случайных величин, путём наблюдения. Сравнив гистограмму с графиком функции Гаусса, удалось разглядеть сходство, а также понять, что при большей выборке данных и уменьшении Δt , сходство было бы ещё заметнее. Объяснить перевес в сторону интервала с меньшим средним значением времени можно тем, что кролик при копании и перемещении быстро поднимает лапки, а если он лежит или занимается какими-либо другими делами, то делает это сильно реже. Эту зависимость легко заметить на графике. Более того, я научился вычислять характеристики случайной величины и анализировать их.

- 14. Дополнительные задания.
- 15. Выполнение дополнительных заданий.
- 16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).