第十三届全国大学生数学竞赛初赛 《数学类 B 卷》试题

一、(15 分) 设球面 $S: x^2+y^2+z^2=1$, 求以点 $M_0(0,0,a)(a\in\mathbb{R},\mid a\mid>1)$ 为顶点的与 S 相切的锥面方程.

二、(15分) 设 $B\subset R^n(n\geq 2)$ 是单位开球,函数u,v在 $ar{B}$ 上连续,在B内二阶连续可导,满足

$$egin{cases} -\Delta u - \left(1-u^2-v^2
ight)u = 0, & x \in B \ -\Delta v - \left(1-u^2-v^2
ight)v = 0, & x \in B \ u(x) = v(x) = 0, & x \in \partial B \end{cases}$$

其中, $x = (x_1, x_2, ..., x_n)$,

$$\Delta u = rac{\partial^2 u}{\partial x_1^2} + rac{\partial^2 u}{\partial x_2^2} + \cdots + rac{\partial^2 u}{\partial x_n^2}$$
 ,

 ∂B 表示 B 的边界. 证明:

$$u^2(x) + v^2(x) \le 1(\forall x \in \overline{B})$$
.

三、(15 分) 设 $f(x)=x^{2021}+a_{2020}x^{2020}+a_{2019}x^{2019}+\cdots+a_2x^2+a_1x+a_0$ 为整系数多项式, $a_0\neq 0$.设对任意 $0\leq k\leq 2020$ 有 $\left|a_k\right|\leq 40$,证明:f(x)=0 的根不可能全为实数.

四、(20分)设 $R=\{0,1,-1\},\Gamma$ 为R上的 3 阶行列式全体,即

$$\Gamma = \left\{ \det \left(a_{ij}
ight)_{\!\! 3 imes 3} \! \mid a_{ij} \in R
ight\}.$$

证明: $\Gamma = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$.

五、(15 分)设f在[-1,1]内有定义,在x=0的某邻域内连续可导,且 $\lim_{x \to 0} rac{f(x)}{x} = a > 0$.

证明:级 数
$$\sum_{n=1}^{\infty} (-1)^n f\left(\frac{1}{n}\right)$$
 收敛, $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$ 发散.

六、(20分) 设函数 $f(x)=\ln\sum_{n=1}^{\infty}\frac{e^{nx}}{n^2}$. 证明函数 f 在 $(-\infty,0)$ 内为严格凸的,并且对任

意 $\xi \in (-\infty,0)$,存在 $x_1,x_2 \in (-\infty,0)$ 使得

$$f'(\xi) = \frac{f\left(x_2\right) - f\left(x_1\right)}{x_2 - x_1}$$

(lpha(a,b) 内的函数 S 为严格凸的,如果对任何 $lpha\in(0,1)$ 以及 $x,y\in(a,b),x
eq y$ 成立 S(lpha x+(1-lpha)y)<lpha S(x)+(1-lpha)S(y) .)