Домашнее задание 3 (линал)

Андрей Зотов

Июнь 2023

Задача 1

Ответ: $z \in \{2 + 3i, 2 + i\}.$

Решение.

$$z^{2} - \frac{8z}{1-i} + 1 + 8i = 0$$

$$\updownarrow$$

$$z^{2} - \frac{8z(1+i)}{2} + 1 + 8i = 0$$

$$\updownarrow$$

$$(z - 2(1+i))^{2} - 4(1+i)^{2} + 1 + 8i = 0$$

$$\updownarrow$$

$$(z - 2(1+i))^{2} + 1 = 0$$

$$\updownarrow$$

$$(z_{1,2} - 2(1+i)) = \pm i$$

$$\updownarrow$$

$$z_{1} = 2 + 3i, z_{2} = 2 + i$$

Задача 2

Ответ: данная система векторов в \mathbb{R}^5 является линейно независимой.

Решение. Составим из векторов v_1, v_2, v_3, v_4 матрицу A размером 5×4 и найдем ранг этой матрицы, приведя ее к ступенчатому виду методом Гаусса:

$$A = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 2 & 3 & 4 & 11 \\ 5 & 4 & 7 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 0 & 3 & 4 & 7 \\ 0 & 4 & 7 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 4 & 16 \\ 0 & 4 & 7 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 0 & 4 & 7 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 7 & 14 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Таким образом получили матрицу с 4 ненулевыми строками, т.е. $\operatorname{rk} A = 4$, т.е. все 4 столбца матрицы A линейно независимы, а это означает, что и система векторов v_1, v_2, v_3, v_4 в \mathbb{R}^5 линейно независима.

Задача 3

Ответ:

• a) dim
$$U = 3$$
; базис: $e_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$;

б) координаты (2, 3, 1)

Решение. а) Покажем, что множество U 2 \times 2 матриц с нулевым следом является подпространством пространства $V = M_2(\mathbb{R})$ всех вещественных 2 \times 2 матриц.

Действительно:

1. Пусть
$$u_1=\left(\begin{array}{cc} a_1 & b_1 \\ c_1 & d_1 \end{array}\right)\in U$$
 и $u_2=\left(\begin{array}{cc} a_2 & b_2 \\ c_2 & d_2 \end{array}\right)\in U$, тогда в силу того, что $a_1+d_1=a_2+d_2=0$ имеем $a_1+a_2+d_1+d_2=0$, т.е. $u_1+u_2=\left(\begin{array}{cc} a_1+a_2 & b_1+b_2 \\ c_1+c_2 & d_1+d_2 \end{array}\right)\in U$.

2. Пусть
$$u=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in U$$
 и $\lambda\in\mathbb{R}$, тогда в силу того, что $a+d=0$ имеем $\lambda a+\lambda d=0$, т.е. $\lambda u=\begin{pmatrix}\lambda a&\lambda b\\\lambda c&\lambda d\end{pmatrix}\in U$.

Таким образом U подпространство V.

Найдем размерность подпространства U и один из его базисов.

Пространство V эквивалентно \mathbb{R}^4 , поэтому подпространство $U \subseteq V$ можно задать с помощью ОСЛУ в виде $U = \{x \in \mathbb{R}^4 | Ax = 0\}$. При этом решение $x = (x_1, x_2, x_3, x_4)^T$ определяется единственным уравнением $x_1 + x_4 = 0$, т.е. матрица A имеет вид

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}.$$

 Γ аким образом поиск базиса U сводится к нахождению фундаментальной системы решений уравнения

$$\begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0$$

Матрица A уже имеет ступенчатый вид, в котором имеется три свободных переменных: x_2, x_3, x_4 , поэтому $\dim U = 3$. При этом каждой свободной переменной соответствует свой базисный вектор:

$$x_2 = 1, x_3 = 0, x_4 = 0 \Rightarrow x_1 = 0 \Rightarrow e_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$x_2 = 0, x_3 = 1, x_4 = 0 \Rightarrow x_1 = 0 \Rightarrow e_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$x_2 = 0, x_3 = 0, x_4 = 1 \Rightarrow x_1 = -1 \Rightarrow e_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \sim \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

б) Разложим матрицу (или вектор
$$\in U$$
) $v = \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} \sim \begin{pmatrix} -1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$ в линейную комбинацию найденных

базисных векторов e_1 , e_2 , e_3 . Сразу видно, что $v=2e_1+3e_2+e_3$, но этот результат можно получить алгоритмически. Для этого составим матрицу, столбцами которой будут являться вектора e_1, e_2, e_3, v и приведем

ее к каноническому ступенчатому виду:

$$\begin{pmatrix}
0 & 0 & -1 & -1 \\
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}$$

Отсюда получаем разложение $v = 2e_1 + 3e_2 + e_3$, т.е. координаты v в базисе e_1 , e_2 , e_3 будут (2,3,1).

Задача 4

Ответ: a_1, a_2, a_3 - базис; $a_4 = 2a_1 - 3a_2 + 4a_3, a_5 = a_1 + 5a_2 - 5a_3$.

Решение. Составим матрицу A, столбцы которой будут вектора a_1, a_2, a_3, a_4, a_5 , и приведем ее к каноническому ступенчатому виду:

$$A = \begin{pmatrix} 2 & 4 & 3 & 4 & 7 \\ -1 & -3 & -2 & -1 & -6 \\ 3 & 1 & 3 & 15 & -7 \\ 5 & 3 & 4 & 17 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & 1 & 6 \\ 0 & -2 & -1 & 2 & -5 \\ 0 & -8 & 3 & 15 & -7 \\ 5 & 3 & 4 & 17 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & 1 & 6 \\ 0 & 2 & 1 & -2 & 5 \\ 0 & 2 & 1 & -2 & 5 \\ 0 & 0 & -1 & -4 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & 1 & 6 \\ 0 & 2 & 1 & -2 & 5 \\ 0 & 0 & 1 & 4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 & 1 & 6 \\ 0 & 2 & 1 & -2 & 5 \\ 0 & 0 & 1 & 4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & -3 & 5 \\ 0 & 0 & 1 & 4 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & -3 & 5 \\ 0 & 0 & 1 & 4 & -5 \end{pmatrix}$$

Таким образом вектора a_1, a_2, a_3 (соответствующие главным позициям канонического вида) образуют базис, а в 4-м и 5-м столбцах стоят координаты векторов a_4 и a_5 в этом базисе, т.е. $a_4 = 2a_1 - 3a_2 + 4a_3$ и $a_5 = a_1 + 5a_2 - 5a_3$.

Задача 5

Ответ: размерность - 2; базис -
$$e_1 = \begin{pmatrix} 0.5 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} -1.8 \\ 0 \\ 0 \\ 0.2 \\ 1 \end{pmatrix}$.

Решение. Требуется найти размерность $U = \{x \in \mathbb{R}^5 | Ax = 0\}$ (и предъявить базис в U), где $A = \begin{pmatrix} 2 & -1 & 1 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix}$.

Приведем матрицу A к каноническому ступенчатому виду и найдем Φ CP.

$$A = \begin{pmatrix} 2 & -1 & 1 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 1 & -2 & 4 \\ 0 & 0 & 3 & 5 & -1 \\ 0 & 0 & 0 & 10 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 1 & -2 & 4 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 5 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 0 & -2 & 4 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 5 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -0.5 & 0 & -1 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -0.2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -0.5 & 0 & 0 & 1.8 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -0.2 \end{pmatrix}$$

Полученная ступенчатая матрица имеет две свободные позиции, которым соответствуют переменные x_2 и x_5 , поэтому dim U=2. Каждой свободной переменной соответствует свой вектор базиса (Φ CP):

$$x_2 = 1, \ x_5 = 0 \Rightarrow x_1 = 0.5, \ x_4 = 0, \ x_3 = 0 \Rightarrow e_1 = \begin{pmatrix} 0.5 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$x_2 = 0, \ x_5 = 1 \Rightarrow x_1 = -1.8, \ x_4 = 0.2, \ x_3 = 0 \Rightarrow e_2 = \begin{pmatrix} -1.8 \\ 0 \\ 0.2 \\ 1 \end{pmatrix}$$

Задача 6

Ответ: 3.

Решение. Пусть $A=\begin{pmatrix}4&1&7&-5&1\\0&-7&1&-3&-5\\3&4&5&-3&2\\2&5&3&-1&3\end{pmatrix}$. Приведем матрицу A к каноническому ступенчатому ви-

ду:

$$A = \begin{pmatrix} 4 & 1 & 7 & -5 & 1 \\ 0 & -7 & 1 & -3 & -5 \\ 3 & 4 & 5 & -3 & 2 \\ 2 & 5 & 3 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 2 & -2 & -1 \\ 0 & -7 & 1 & -3 & -5 \\ 1 & -1 & 2 & -2 & -1 \\ 2 & 5 & 3 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & 2 & -2 & -1 \\ 0 & -7 & 1 & -3 & -5 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 11 & -1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 4 & 9 \\ 0 & 0 & 1 & -3 & -5 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 4 & 9 \\ 0 & 0 & 1 & -3 & -5 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 4 & 9 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -3 & -5 \end{pmatrix}$$

Полученная ступенчатая матрица имеет 3 ненулевые строки, поэтому ${\rm rk}\,A=3.$