2. Morita categories

The contents of this section are disjoint from our discussion of enriched operads, so the reader may freely skip it. Its purpose is to prove Theorem 2.22, a criterion for 2-functors to preserve Eilenberg-Moore objects which may be of independent interest. Our main tool for this is the Morita-category of monads in a given 2-category, which was introduced in ??.

2.1. Segal objects and oplax Segal categories. For the purposes of this section, we model $(\infty, 2)$ -categories as Segal objects valued in Cat:

Notation 2.1. Let Δ be the category of non-empty finite totally ordered sets $[n] := \{0 < \dots < n\}$ and order preserving maps. A map $\alpha : [n] \to [m]$ in Δ is called

- inert if it is a subinterval inclusion, i.e. $\alpha(k+1) = \alpha(k) + 1$ for all $0 \le k < n$,
- *idle* if it has no jumps, i.e. $\alpha(k+1) \leq \alpha(k) + 1$ for all $0 \leq k < n$,
- active if $\alpha(0) = 0$ and $\alpha(n) = m$.

Behold for each $[n] \in \Delta$ the standard inert maps $\rho_i : [1] \to [n]$ for $1 \le k \le n$, sending $0 \mapsto k-1$ and $1 \mapsto k$.

Definition 2.2. Let C be a category with finite limits. A *Segal object* in C is a functor $X : \Delta^{\text{op}} \to \mathbb{C}$ such that for each $[n] \in \Delta^{\text{op}}$, the n distinct inert maps $\rho_i : [n] \leftarrow [1]$ and the unique inert map $[n] \leftarrow [0]$ in Δ^{op} exhibit

$$X_n \stackrel{\sim}{\to} X_1 \times_{X_0} \cdots \times_{X_0} X_1$$
.

A Segal object X is called univalent or (Rezk-) complete if the map $X_0 \to X_3 \times_{X_1 \times X_1} (X_0 \times X_0)$ along $d_1, d_3 : [3] \leftarrow [1]$ is an isomorphism¹. Denote by $CSeg(C) \subseteq Seg(C) \subseteq Fun(\Delta^{op}, C)$ the full subcategories on (univalent) Segal objects.

Example 2.3. A *(complete) Segal space* is a (univalent) Segal object in S. By [?], CSeg(S) is equivalent to the category Cat of categories.

Example 2.4. A (univalent) double category is a univalent Segal object in Cat. It is an (univalent) 2-category if X_0 lies in $S \subseteq Cat$. Denote by $Cat \subseteq CSeg(Cat)$ the full subcategory on 2-categories.

Remark 2.5. Equivalently, a double category can be encoded as a coCartesian fibration $\int X \to \Delta^{\text{op}}$ such that the coCartesian transports along the specified maps $[n] \leftarrow [1], [0]$ induce the above equivalence. In other words, $\text{Seg}(\mathcal{C}at)$ can also be regarded as a full subcategory of $\text{coCart}_{/\Delta^{\text{op}}}$.

Example 2.6. Since the inclusion $S \hookrightarrow \mathcal{C}at$ preserves limits, any complete Segal space $X : \Delta^{\mathrm{op}} \to S$ can be regarded as a 2-category X^{hor} by composing with it, we call this the horizontal embedding $(-)^{\mathrm{hor}} : \mathcal{C}at \simeq \mathrm{CSeg}(S) \hookrightarrow 2\,\mathcal{C}at$. Explicitly, this sends a category C to the functor $[n] \mapsto \mathrm{Fun}([n], \mathbb{C})$. For instance:

- The terminal 2-category $*:=*^{\text{hor}}$ is encoded by the constant functor $\text{const}_*:\Delta^{\text{op}}\to \mathbb{C}at$, i.e. by the coCartesian fibration $\mathrm{id}_{\Delta^{\text{op}}}:\Delta^{\text{op}}\to \Delta^{\text{op}}$.
- The walking arrow [1]^{hor} is encoded by the coCartesian fibration $\Delta^{\text{op}}_{/[1]} := (\Delta^{\text{op}})_{[1]/} \to \Delta^{\text{op}}$.
- More generally, $[n]^{\text{hor}}$ is encoded by the coCartesian fibration $\Delta_{/[n]}^{\text{op}} \to \Delta^{\text{op}}$.

¹Informally, this expresses that any 1-morphism $f \in X_1$ that admits a right and a left inverse comes from the degeneracy map $s_0 : X_0 \to X_1$.