Lycée Buffon	DM 13
MPSI	Année 2020 - 202

devoir à rendre le 15/03/2021

Pour tout entier n, on définit le polynôme $Q_n \in \mathbb{C}[X]$ par

$$Q_n = \frac{1}{2i} \left[(X+i)^{n+1} - (X-i)^{n+1} \right]$$

- 1. Déterminer le degré de Q_n .
- 2. Pour tout entier naturel r, montrer que

(1):
$$Q_{2r} = \sum_{p=0}^{r} (-1)^p {2r+1 \choose 2p+1} X^{2r-2p}$$

- 3. (a) Déterminer les racines de Q_n . Montrer que ces racines sont réelles.
 - (b) En déduire la décomposition de Q_n en facteurs irréductibles dans $\mathbb{R}[X]$.
- 4. Pour tout entier naturel r, montrer que

(2):
$$Q_{2r} = (2r+1) \prod_{k=1}^{r} \left(X^2 - \cot^2 \left(\frac{k\pi}{2r+1} \right) \right)$$

5. En utilisant (1) et (2), établir l'égalité :

$$\sum_{k=1}^{r} \cot \operatorname{an}^{2} \left(\frac{k\pi}{2r+1} \right) = \frac{r(2r-1)}{3}$$

6. En déduire que

$$\sum_{k=1}^{r} \frac{1}{\sin^2\left(\frac{k\pi}{2r+1}\right)} = \frac{2r(r+1)}{3}$$

7. (a) Pour tout $x \in \left]0, \frac{\pi}{2}\right[$, établir les inégalités :

$$\cot^2 x < \frac{1}{x^2} < \frac{1}{\sin^2 x}$$

(b) En déduire un encadrement de

$$\sum_{k=1}^{r} \frac{1}{\left(\frac{k\pi}{2r+1}\right)^2}$$

(c) En déduire que la suite $\left(\sum_{k=1}^n \frac{1}{k^2}\right)_{n\in\mathbb{N}^*}$ converge et calculer sa limite.