

Skript Topologie I.

Mitschrift der Vorlesung "Topologie I." von Prof. Dr. Arthur Bartels

Jannes Bantje

19. Januar 2015

Aktuelle Version verfügbar bei:

■ Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Topologie I., WiSe 2014/2015", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ⊠j.bantje@wwu.de (gerne auch mit annotieren PDFs)
- Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: TEX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

Vorlesungshomepage

https:

//wwwmath.uni-muenster.de/reine/u/topos/lehre/WS2014-2015/Topologie1/Topologie1.html

 $^{^1}$ zB. https://try.github.io/levels/1/challenges/1 $oldsymbol{G}$, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1	Kateg	orien, Funktoren und natürliche Transformationen	1				
	1.1	Definition: Kategorie	1				
	1.2	Beispiele für Kategorien	1				
	1.3	Bemerkungen zu Kategorien	2				
	1.4	Definition: Funktor	2				
	1.5	Beispiele für Funktoren	2				
	1.6	Definition: Natürliche Transformation	2				
	1.7	Ausblick auf Kategorien und Funktoren in der algebraischer Topologie	3				
2	Komb	Kombinatorische Beschreibungen topologischer Räume 4					
	2.1	Beispiel einer kombinatorischen Beschreibung eines Raumes	4				
	2.2	Definition: Simplizialer Komplex	4				
	2.3	Beispiel für simpliziale Komplexe	4				
	2.4	Definition: Unterkomplex	4				
	2.5	Definition: Simpliziale Abbildung	5				
	2.6	Definition: Geometrische Realisierung	5				
	2.7	Beispiel: Rand des <i>n</i> -Simplizes und der Torus	5				
	2.8	Definition: Polyeder	5				
	2.9	Definition: Euler-Charakteristik	6				
	2.10	Satz über die Euler-Charakteristik	6				
	2.10	Satz uber die Euler-Charakteristik	0				
3	•	iziale Homologie	7				
	3.1	Definition: Freier R -Modul mit Basis S	7				
	3.2	Lemma: Universale Eigenschaft von freien Moduln	7				
	3.3	Beispiel für freie und nicht-freie Moduln	7				
	3.4	Definition: n -ter Kettenmodul	8				
	3.5	Definition: Orientierung eines $(n-1)$ -Simplizes als Teilmenge eines n -Simplizes	8				
	3.6	Definition: n -te Randabbildung	8				
	3.7	Proposition: $\partial_{n-1} \circ \partial_n = 0 \ldots \ldots \ldots \ldots \ldots \ldots$	8				
	3.8	Lemma: Ein $(n-2)$ -Simplex ist Seite von genau zwei $(n-1)$ -Simplizes	9				
	3.9	Notation für das Weglassen eines Knotens	9				
	3.10	Definition: n -ter Homologiemodul	9				
	3.11	Beispiele für Homologiemoduln	9				
	3.12	Definition: R -Kettenkomplex, n -te Homologie eines R -Kettenkomplexes	10				
	3.13	Bemerkungen zu Kettenkomplexen	10				
	3.14	Definition: Simplizialer Kettenkomplex	10				
4	Euler-	-Charakteristik von Kettenkomplexen	11				
	4.1	Wiederholung: Torsionsgruppe	11				
	4.2	Lemma: Rang einer endlich erzeugten abelschen Gruppe	11				
	4.3	Definition: Kurze exakte Sequenz	11				
	4.4	Beispiele für kurze exakte Folgen	12				
	4.5	Bemerkung: Spaltung einer kurzen exakten Sequenz	12				
	4.6	Bemerkung: Existenz einer Spaltung, wenn M_2 frei ist	12				
	4.7	Bemerkung: Der Rang ist additiv	12				
		Proposition: Der Rang ist für kurze exakte Folgen endl. erz., abelscher Gruppen additiv					
	4.8	, , , , , , , , , , , , , , , , , , , ,	12				
	4.9	Definition: Eulercharakteristik von Z-Kettenkomplexen	14				
	4.10	Satz: Eulercharakteristik eines endlich erzeugten \mathbb{Z} -Kettenkomplexes	14				
	4.11	Korollar: Die Fulercharakteristik eines simplizialen Komplexes	14				

Inhaltsverzeichnis

5.2 Definition: Einschränkung eines sin 5.3 Bemerkung zur Inklusion der <i>j</i> -ten 5.4 Definition: <i>n</i> -te singuläre Randabbi 5.5 Proposition: Für die Randabbildung 5.6 Lemma: Hilfslemma für Proposition 5.7 Definition: Singuläre Homologie vor 5.8 Definition: <i>n</i> -Ketten, <i>n</i> -Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von <i>H</i> ₀ (5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: <i>R</i> -Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von <i>R</i> -Moduln 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 6.10 Satz: Homologie invarianz der Hom 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom	$n\text{-ter singulärer Kettenmodul}$ gulären Simplizes auf eine Seite $Seite$ $Seite$ $Seite$ $Seite$ $Seite$ $Seite$ $Seite$ $Sen gilt \ \partial_{n-1} \circ \partial_n = 0$ $Sen gilt \ \partial_{n-1} \circ \partial_n = 0$ $Sen S.$ $Sen Sen S.$ $Sen Sen S.$ $Sen Sen Sen S.$ $Sen Sen Sen Sen Sen Sen Sen Sen Sen Sen $	155 155 155 156 166 166 167 177 178 188 188 189 199 200 200 201 211 21 21 21 21 21 21 21 21 21 21 21 2
5.3 Bemerkung zur Inklusion der <i>j</i> -ten 5.4 Definition: <i>n</i> -te singuläre Randabbi 5.5 Proposition: Für die Randabbildung 5.6 Lemma: Hilfslemma für Proposition 5.7 Definition: Singuläre Homologie vor 5.8 Definition: <i>n</i> -Ketten, <i>n</i> -Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von <i>H</i> ₀ (5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: <i>R</i> -Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung et 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von <i>R</i> -Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung et 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung et	Seite	155 155 155 166 166 177 177 188 188 188 199 199 200 201 211 211 211 211
5.4 Definition: <i>n</i> -te singuläre Randabbi 5.5 Proposition: Für die Randabbildung 5.6 Lemma: Hilfslemma für Proposition 5.7 Definition: Singuläre Homologie vo 5.8 Definition: <i>n</i> -Ketten, <i>n</i> -Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von <i>H</i> ₀ (5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: <i>R</i> -Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von <i>R</i> -Moduln 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 6.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.5 Pien induzierte Abbildung 6.5 Die induzierte Abbildung 6.5 Definition: Homotopieinvarianz 6.5 Definition: Die induzierte Abbildung 6.5 Definition: Homotopieinvarianz 6.5 Definition: Die induzierte Abbildung 6.5 Definition: Definition: Die induzierte Abbildung 6.5 Definition: Defini	Idung	155 155 166 166 177 177 188 188 188 189 199 200 201 211 211 211 211
 5.5 Proposition: Für die Randabbildung 5.6 Lemma: Hilfslemma für Proposition 5.7 Definition: Singuläre Homologie vor 5.8 Definition: n-Ketten, n-Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von Holosi. 11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung et 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Holosi Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung et 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung et 7.4 Korollar: Die induzierte Abbildung et 7.4 Korollar: Die induzierte Abbildung et 7.4 	gen gilt $\partial_{n-1}\circ\partial_n=0$	155 166 166 177 177 188 188 188 199 199 200 201 211 211 211
 5.5 Proposition: Für die Randabbildung 5.6 Lemma: Hilfslemma für Proposition 5.7 Definition: Singuläre Homologie vor 5.8 Definition: n-Ketten, n-Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von Holosi. 11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung et 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Holosi Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung et 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung et 7.4 Korollar: Die induzierte Abbildung et 7.4 Korollar: Die induzierte Abbildung et 7.4 	gen gilt $\partial_{n-1}\circ\partial_n=0$	155 166 166 177 177 188 188 188 199 199 200 201 211 211 211
 5.6 Lemma: Hilfslemma für Proposition 5.7 Definition: Singuläre Homologie vo 5.8 Definition: n-Ketten, n-Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von H₀(5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung e 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung et 7.2 Definition: Homotopieäquivalenz un 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung et 	n 5.5	155 166 166 167 177 177 188 188 188 189 199 200 200 211 211 211 211
 5.7 Definition: Singuläre Homologie vo 5.8 Definition: n-Ketten, n-Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von H₀(5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung et 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 7.2 Definition: Homotopieäquivalenz un 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung et 	n X	166 166 177 177 188 188 188 189 199 200 200 211 211 211
 5.8 Definition: n-Ketten, n-Ränder und 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von H₀(5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung e 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.2 Definition: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 	n-Zykel und Homologieklasse	166 177 177 188 188 188 189 199 200 201 211 211
 5.9 Beispiel: Die Homologie des Ein-Pu 5.10 Proposition: Eigenschaften von H₀(5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung e 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 7.2 Definition: Homotopieäquivalenz un 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung e 	$\operatorname{nkt-Raumes} \qquad \qquad$	166 177 177 188 188 188 189 199 200 200 211 211 211 211
 5.10 Proposition: Eigenschaften von H₀(5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung et 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung et 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung et 	(X) für $X \neq \emptyset$ und X wegzusammenhängend u zeigen: $H_*(K;R) \cong H_*(K ;R)$	177 178 188 188 188 189 199 200 201 211 211
 5.11 Bemerkung: Vorgehen, um später z 6 Funktorialität 6.1 Definition: R-Kettenabbildung 6.2 Bemerkung: Induzierte Abbildung e 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Homologie Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln in Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung in Satz: Homotopieinvarianz der Homologie Induzierte Abbildung in Satz: Homotopieinvarianz der Homologie Induzierte Abbildung in Satz: Die induzierte Abbildung in S	u zeigen: $H_*(K;R)\cong H_*(K ;R)$	177 188 188 188 188 199 199 200 211 211
6.1 Definition: R-Kettenabbildung	Finer Kettenabbildung	18 18 18 18 19 19 19 20 20 21 21 21 21
6.1 Definition: R-Kettenabbildung	Finer Kettenabbildung	18 18 18 18 19 19 19 20 20 21 21 21
6.2 Bemerkung: Induzierte Abbildung et 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Homologie Summe oder Koprodukt 6.9 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Homologie Company 6.10 Satz: Homologie Company	Finer Kettenabbildung	18 18 19 19 19 20 20 21 21 21
6.2 Bemerkung: Induzierte Abbildung et 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Homologie Summe oder Koprodukt 6.9 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Homologie Company 6.10 Satz: Homologie Company	Finer Kettenabbildung	18 18 19 19 19 20 20 21 21 21
 6.3 Bemerkung: Homologie definiert ei 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Homologie 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 7.2 Definition: Homotopieäquivalenz un 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung ei 	nen Funktor	18 18 19 19 19 20 20 21 21 21
 6.4 Definition: Induzierte Abbildung au 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 6.10 Satz: Homotopieinvarianz der Hom 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung 6.10 Satz: Die induzierte	f Kettenkomplexen	18 19 19 19 20 20 21 21
 6.5 Proposition: Der singuläre Kettenko 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildun 7.2 Definition: Homotopieäquivalenz un 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung ein 	omplex über R bildet einen Funktor	19 19 19 19 20 20 21 21
 6.6 Korollar: Homologie ist ein Funktor 6.7 Bemerkung: Notation für die auf Homologie ist ein Funktor 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 7.2 Definition: Homotopieäquivalenz und 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung ein 	$\operatorname{TOP} o R ext{-Mod}$	19 19 20 20 21 21 21
 6.7 Bemerkung: Notation für die auf Ho 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildur 7.2 Definition: Homotopieäquivalenz un 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung e 	omologie induzierte Abbildung	19 19 20 20 21 21 21
 6.8 Definition: Summe oder Koprodukt 6.9 Definition: Summe von R-Moduln 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildur 7.2 Definition: Homotopieäquivalenz ur 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung er 	von topologischen Räumen	19 20 20 21 21 21
 6.9 Definition: Summe von R-Moduln 1. 6.10 Satz: Homologie des Koproduktes to 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildung 1. 7.2 Definition: Homotopieäquivalenz ung 1. 7.3 Satz: Homotopieinvarianz der Hom 1. 7.4 Korollar: Die induzierte Abbildung 1. 	ropologischer Räume	20 20 21 21 21 21
 6.10 Satz: Homologie des Koproduktes t 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildur 7.2 Definition: Homotopieäquivalenz ur 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung e 	ng eines Homöomorphismus ist ein Isomorphismus	20 21 21 21 21
 7 Homotopieinvarianz 7.1 Bemerkung: Die induzierte Abbildur 7.2 Definition: Homotopieäquivalenz ur 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung er 	ng eines Homöomorphismus ist ein Isomorphismus nd Homotopieinverse	21 21 21 21
 7.1 Bemerkung: Die induzierte Abbildur 7.2 Definition: Homotopieäquivalenz ur 7.3 Satz: Homotopieinvarianz der Hom 7.4 Korollar: Die induzierte Abbildung er 	nd Homotopieinverse	21 21 21
7.2 Definition: Homotopieäquivalenz un7.3 Satz: Homotopieinvarianz der Hom7.4 Korollar: Die induzierte Abbildung en	nd Homotopieinverse	21 21
7.3 Satz: Homotopieinvarianz der Hom7.4 Korollar: Die induzierte Abbildung e		21
7.4 Korollar: Die induzierte Abbildung e	ologie	
7.5 Korollar: Homologie eines kontrahi	einer Homotopieäquivalenz ist ein Isomorphismus .	21
	erbaren Raumes	21
7.6 Definition: Kettenhomotopie		22
7.7 Prop.: induzierte Abbildungen von l	kettenhomotopen Kettenabbildungen sind gleich .	22
	f Beweis eines Spezialfalles	
7.9 Bemerkung zum Vorgehen beim Be	weis von [#]	22
	n zur Konstruktion der Kettenhomotopie	
	ungen aus 7.10	
	Kettenhomotopie	
2 2 /	tenhomotopie aus einer Homotopie	
9	·	24
8 Homologie von Paaren		24
		24 25 26
	Räumen	24 25 26 26
8.2 Definition: Singulärer Kettenkomple	ex und Homologiemodul von Paaren	24 25 26 26 26
8.2 Definition: Singulärer Kettenkomple8.3 Definition: Der singuläre Kettenkom	ex und Homologiemodul von Paaren	24 25 26 26 26
8.2 Definition: Singulärer Kettenkomple8.3 Definition: Der singuläre Kettenkom8.4 Bemerkung: Topologische Räume a	ex und Homologiemodul von Paaren	24 25 26 26 26 26 26
8.2 Definition: Singulärer Kettenkomple 8.3 Definition: Der singuläre Kettenkom 8.4 Bemerkung: Topologische Räume a 8.5 Frage: Können wir $H_n(X,A;R)$ du	ex und Homologiemodul von Paaren	24 25 26 26 26 26 26 26
8.2 Definition: Singulärer Kettenkomple 8.3 Definition: Der singuläre Kettenkom 8.4 Bemerkung: Topologische Räume a 8.5 Frage: Können wir $H_n(X,A;R)$ du	ex und Homologiemodul von Paaren	24 25 26 26 26 26 26 26
8.2 Definition: Singulärer Kettenkomple 8.3 Definition: Der singuläre Kettenkom 8.4 Bemerkung: Topologische Räume a 8.5 Frage: Können wir $H_n(X,A;R)$ dur 8.6 Beispiel: Homologie des Paares ($ \Delta $	ex und Homologiemodul von Paaren	24 25 26 26 26 26 26 26 26
8.2 Definition: Singulärer Kettenkomple 8.3 Definition: Der singuläre Kettenkom 8.4 Bemerkung: Topologische Räume a 8.5 Frage: Können wir $H_n(X,A;R)$ dur 8.6 Beispiel: Homologie des Paares ($ \Delta$ 8.7 Definition: Lange exakte Sequenz v	ex und Homologiemodul von Paaren	24 25 26 26 26 26 26 26 26 26
8.2 Definition: Singulärer Kettenkomple 8.3 Definition: Der singuläre Kettenkom 8.4 Bemerkung: Topologische Räume a 8.5 Frage: Können wir $H_n(X,A;R)$ dur 8.6 Beispiel: Homologie des Paares ($ \Delta$ 8.7 Definition: Lange exakte Sequenz v 8.8 Satz: Existenz der Paarsequenz	ex und Homologiemodul von Paaren	24 25 26 26 26 26 26 26 26 27 27
8.2 Definition: Singulärer Kettenkomple 8.3 Definition: Der singuläre Kettenkom 8.4 Bemerkung: Topologische Räume a 8.5 Frage: Können wir $H_n(X,A;R)$ dur 8.6 Beispiel: Homologie des Paares ($ \Delta $ 8.7 Definition: Lange exakte Sequenz v 8.8 Satz: Existenz der Paarsequenz 8.9 Korollar: Hologiemodul wenn A kor	ex und Homologiemodul von Paaren	24 25 26 26 26 26 26 26 27 27 27

//Inhaltsverzeichnis

	8.12 8.13	Schlangenlemma	
	8.14		
	8.15		30
	8.16	Lemma ("2 von 3")	31
	0.10	Lennina (2 voii 3)	21
9	Aussc	hneidung und die Mayer-Vietoris Folge	32
	9.1		32
	9.2	·	32
	9.3	Bemerkung zur Mayer-Vietoris-Folge	33
	9.4	Satz: Homologie der Sphäre S^n	33
	9.5	Definition: Reduzierte Homologie	34
	9.6	Bemerkung: Die Aussage von Satz 9.4 in reduzierter Homologie	34
	9.7	Beweis von [##]	34
	5.1	Dewels voli [ππ]	J-
10	Anwe	ndungen	36
	10.1	Satz: Invarianz der Dimension	36
	10.2	Fixpunktsatz von Brouwer	36
	10.3		36
	10.4	Proposition: Einfache Eigenschaften des Abbildungsgrades	36
	10.5	Beispiel: Abbildungsgrad der Spiegelung	37
	10.6		37
	10.7	Erinnerung: Vektorfelder	38
	10.8	Satz: Es gibt ein Vektorfeld ohne Nullstellen auf $S^n \iff n$ ist ungerade	38
	10.9	Satz (Jordanscher Kurvensatz)	38
		Satz	39
		Proposition	40
11		Complexe	41
	11.1	Definition: Pushout	41
	11.2	Bemerkung zur Existenz und zur Eindeutigkeit des Pushouts	41
	11.3	Definition: CW-Komplex	41
	11.4	Bemerkungen zur Definition von CW-Komplexen	42
	11.5	Beispiele für CW-Komplexe	42
	11.6	Lemma: Kompaktheit von Teilmengen eines CW-Komplexes	44
	11.7	Korollar: Ein CW -Komplex ist genau dann kompakt, wenn er endlich ist	44
12	7.111		4.5
12		äre Homologie Definitions a ter zellulärer Kettenmedul und zelluläre Bendehhildung	45
	12.1	Definition: <i>n</i> -ter zellulärer Kettenmodul und zelluläre Randabbildung	45
	12.2	Lemma: Für die zellulären Randabbildungen gilt $\partial_{n-1}^{\mathrm{cell}} \circ \partial_{n-1}^{\mathrm{cell}} = 0$	45
	12.3	Definition: Zellulärer Kettenkomplex und zelluläre Homologie	45
	12.4	Bemerkung: Funktorialität des zellulären Kettenkomplexes und der zellulären Homologie	
	12.5	Lemma über $(\coprod Q_i^{(n)}, \coprod q_i^{(n)})_*$ und $H_k(\coprod_i D^n, \coprod_i S^{n-1}; R)$	46
	12.6	Bemerkung: Matrixform der Randabbildung $\partial_n^{\mathrm{cell}}$	46
	12.7	Definition: Natürlicher Isomorphismus	47
	12.8	Satz: Natürlicher Isomorphismus zwischen zellulärer und singulärer Homologie	47
	12.9	Lemma über die Homologie des n -Gerüsts und die von $X^{\scriptscriptstyle(n)}\hookrightarrow X$ induzierte Abbildung	48
	12.10	Korollar: Die Eulercharakteristik ist eine topologische Invariante	48
	12.11	Bemerkung: n -te Bettizahl und Eulercharakteristik eines $\operatorname{CW-Komplexes}$	48
		Beispiel: Homologie von $\mathbb{C}P^n$	49
		Beispiel: Homologie von $\mathbb{R}P^n$	49
		Satz: Isomorphie zwischen $C_*(K;R)$ und $C_*^{\text{cell}}(K ;R)$	51

13	Kleine	e Simplizes	52			
	13.1	Satz: Ausschneidungs-Isomorphismus	52			
	13.2	Definition: \mathcal{U} -klein	52			
	13.3	Satz über kleine Simplizes	52			
	13.4	Bemerkung	52			
	13.5	Beweis des Ausschneidungssatzes (13.1)	52			
	13.6	Idee zum Beweis des Satzes über kleine Simplizes	53			
	13.7	Definition: Schwerpunkt und "Abkegeln"	53			
	13.8	Lemma	53			
	13.9	Definition von Zerteilungsoperatoren	53			
		Lemma 1	54			
		Lemma 2	54			
		Beweis des Satzes über kleine Simplizes (13.3)	54			
		Bemerkung	54			
	12.13	Definition: Affiner singulärer Simplex	54			
		Definition: Durchmesser eines Simplizes	55			
	13.16	Lemma 3	55			
11	Avior	ne für Homologie	57			
14	14.1	Bezeichnung: Funktor mit $(X,A)\mapsto (X,\emptyset)$	57			
	14.1	Definition: Homologietheorie	57			
	14.3 14.4	Bemerkung zur Homotopieinvarianz von Homologietheorien	57 57			
		Bemerkung zu Mayer-Vietoris-Folge und disjunkten Vereinigungen	57			
	14.5	Definition: Dimensionsaxiom und Axiom über disjunkte Vereinigungen				
	14.6	Bemerkung: Statt $\mathbb N$ -graduierten Moduln sind oft auch $\mathbb Z$ -graduierte Moduln nötig	58			
	14.7	Bemerkung	58			
	14.8	Definition: Morphismus von Homologietheorien	58			
	14.9	Satz: Isomorphie der Homologie von $\operatorname{CW-Komplexen}$ von zwei Homologietheorien $$. $$	58			
15	7usan	nmenhang zwischen $\pi_1(X,x_0)$ und $H_1(X,\mathbb{Z})$	60			
15	15.1	Definition	60			
	15.2	Lemma	60			
	15.3	Definition	60			
			60			
	15.4	Bemerkung				
	15.5	Schleifen und 1-Zykel	60			
	15.6	Lemma 1	60			
	15.7	Lemma 2	61			
	15.8	Lemma 3	61			
	15.9	Die Hurewicz-Abbildung	62			
		Theorem(Hurewicz)	62			
		Lemma 4	62			
		Lemma 5	63			
	15.13	Corollar	63			
			_			
Inc	lex		Α			
Abbildungsverzeichnis C						
Αυ	ADDITION 193VELZEICHIIIS					
То	Todo list					

IV

1 Kategorien, Funktoren und natürliche Transformationen

1.1 Definition

Eine **Kategorie** C besteht aus:

- i) Einer Klasse $\mathrm{Ob}(\mathcal{C})$. Die Elemente von $\mathrm{Ob}(\mathcal{C})$ heißen die **Objekte** von \mathcal{C} .
- ii) Zu je zwei Objekten A,B aus $\mathcal C$ einer Menge $\mathrm{Mor}_{\mathcal C}(A,B)$. Die Elemente von $\mathrm{Mor}_{\mathcal C}(A,B)$ heißen **Morphismen** von $\mathcal C$.
- iii) Zu je drei Objekten A, B, C aus \mathcal{C} einer Abbildung:

$$\operatorname{Mor}_{\mathcal{C}}(B,C) \times \operatorname{Mor}_{\mathcal{C}}(A,B) \to \operatorname{Mor}_{\mathcal{C}}(A,C) , \quad (f,g) \mapsto f \circ g$$

genannt die Komposition in C.

Dabei müssen folgende Axiome erfüllt sein:

- (i) Die Komposition ist **assoziativ**: Für Objekte A,B,C,D von $\mathcal C$ und $f\in \mathrm{Mor}_{\mathcal C}(C,D),g\in \mathrm{Mor}_{\mathcal C}(B,C),h\in \mathrm{Mor}_{\mathcal C}(A,B)$ gilt immer $f\circ (g\circ h)=(f\circ g)\circ h$
- (ii) Die Komposition ist **unital**: Für jedes Objekt A von \mathcal{C} gibt es einen Morphismus $\mathrm{id}_A \in \mathrm{Mor}_{\mathcal{C}}(A,A)$ so, dass

$$\forall f \in \operatorname{Mor}_{\mathcal{C}}(B, A) : \operatorname{id}_{A} \circ f = f$$
 und $\forall f \in \operatorname{Mor}_{\mathcal{C}}(A, B) : f \circ \operatorname{id}_{A} = f$

1.2 Beispiele

- (1) Die Kategorie der Mengen Mengen: Objekte sind Mengen und Morphismen sind Abbildungen.
- (2) Die Kategorie der Gruppen Gruppen: Objekte sind Gruppen und Morphismen sind Gruppenhomomorphismen.
- (3) Die Kategorie der K-Vektorräume K-VR: Objekte sind K-Vektorräume und die Morphismen sind K-lineare Abbildungen.
- (4) Die Kategorie der R-Moduln R-Moduln und Morphismen sind R-lineare Abbildungen.
- (5) Die Kategorie der C^{∞} -Mannigfaltigkeiten C^{∞} -Man: Objekte sind C^{∞} -Mannigfaltigkeiten und Morphismen sind C^{∞} -Abbildungen.
- (6) Die Kategorie der topologischen Räume Top: Objekte sind topologische Räume und Morphismen sind stetige Abbildungen.
- (7) Die Kategorie der punktierten topologischen Räume Top.: Objekte sind punktiert-topologische Räume und Morphismen sind punktiert-stetige Abbildungen.
- (8) Die Kategorie HTop: Objekte sind topologische Räume und Morphismen sind Homotopieklassen von stetigen Abbildungen.
- (9) Die Kategorie HTop.: Objekte sind punktiert-topologische Räume und Morphismen sind Homotopieklassen von punktiert-stetigen Abbildungen.
- (10) Sei G eine Gruppe. Wir erhalten eine Kategorie C_G mit genau einem Objekt * und $\mathrm{Mor}_{C_G}(*,*) = G$. Die Komposition wird durch die Verknüpfung in der Gruppe festgelegt.
- (11) Ist $\mathcal C$ eine Kategorie, so ist $\mathcal C^{\mathrm{op}}$ eine Kategorie, wobei $\mathrm{Ob}(\mathcal C^{\mathrm{op}}) = \mathrm{Ob}(\mathcal C)$ und $\mathrm{Mor}_{\mathcal C^{\mathrm{op}}}(A,B) := \mathrm{Mor}_{\mathcal C}(B,A)$. Die Komposition ist gegeben durch $f \circ^{\mathrm{op}} g := g \circ f$.

1.3 Bemerkung

- (i) Eine Kategorie heißt **klein**, wenn ihre Objekte eine Menge bilden.
- (ii) Statt $f \in \operatorname{Mor}_{\mathcal{C}}(A, B)$ schreiben wir oft $f : A \to B$ oder $A \xrightarrow{f} B$.

1.4 Definition

Seien $\mathcal C$ und $\mathcal D$ Kategorien: Ein **Funktor** $F:\mathcal C\to\mathcal D$ ordnet jedem Objekt C von $\mathcal C$ ein Objekt F(C) von $\mathcal D$ und ordnet jedem Morphismus $f:C\to C'$ in $\mathcal C$ einen Morphismus $F(f):F(C)\to F(C')$ in $\mathcal D$ zu. Dabei muss gelten:

$$F(f \circ g) = F(f) \circ F(g)$$
 und $F(\mathrm{id}_C) = \mathrm{id}_{F(C)}$

1.5 Beispiele

(1) Es gibt offensichtliche "Vergiss"-Funktoren:

$$K ext{-VR} \longrightarrow \text{Mengen}$$
 $R ext{-Mod} \longrightarrow \text{Mengen}$
 $\text{Top} \longrightarrow \text{Mengen}$
 $\text{Top}_{ullet} \longrightarrow \text{Mengen}$
 $\text{Top}_{ullet} \longrightarrow \text{Top}$

(2) Sei $\mathcal C$ eine Kategorie und C ein Objekt von $\mathcal C$. Der durch C dargestellte Funktor $F_C:\mathcal C\to M$ ENGEN ist definiert durch

$$\begin{array}{ll} F_C(A) = \operatorname{Mor}_{\mathcal{C}}(C,A) & \text{für } A \in \operatorname{Ob}(\mathcal{C}) \\ F_C(f) : \operatorname{Mor}_{\mathcal{C}}(C,A) \to \operatorname{Mor}_{\mathcal{C}}(C,A'), g \mapsto f \circ g & \text{für } f : A \to A' \text{ in } \mathcal{C} \end{array}$$

(3) Die Fundamentalgruppe definiert einen Funktor

$$\pi_1: \mathrm{HTop}_{ullet} \longrightarrow \mathrm{Gruppen}$$

Bemerkung

- Ist $F: \mathcal{C} \to \mathcal{D}$ ein Funktor so schreiben wir oft kürzer und ungenauer $f_* := F(f)$.
- Kleine Kategorien und Funktoren bilden die Kategorie KAT.

1.6 Definition

Seien $F,G:\mathcal{C}\to\mathcal{D}$ zwei Funktoren. Eine **natürliche Transformation** $\tau:F\to G$ ordnet jedem $C\in \mathrm{Ob}(\mathcal{C})$ einen Morphismus $\tau_C\colon F(C)\to G(C)$ in \mathcal{D} zu, sodass für jedes $f\colon C\to C'$ in \mathcal{C}

$$F(C) \xrightarrow{F(f)} F(C')$$

$$\downarrow^{\tau_C} \qquad \downarrow^{\tau_{C'}}$$

$$G(C) \xrightarrow{G(f)} G(C')$$

kommutiert.

Bemerkung

Natürliche Transformationen lassen sich komponieren. Für $\tau:F\to G$, $\eta:G\to H$ ist $\eta\circ\tau:F\to H$ gegeben durch

 $F, G, H: \mathcal{C} \to \mathcal{D}$

$$(\eta \circ \tau)_C := \eta_C \circ \tau_C : F(C) \to H(C)$$

Genauer: Für eine feste kleine Kategorie $\mathcal C$ und $\mathcal D$ bilden die Funktoren $\mathcal C \to \mathcal D$ mit den natürlichen Transformationen eine Kategorie $\mathrm{Fun}(\mathcal C,\mathcal D)$.

1.7 Ausblick

In der algebraischen Topologie werden topologische Fragen, wie zum Beispiel, wann \mathbb{R}^n und \mathbb{R}^m homöomorph sind, in algebraische Fragen übersetzt. Eine Möglichkeit für eine solche Übersetzung sind Funktoren von einer Kategorie von topologischen Räumen, z.B. Top, Top, HTop, in eine algebraisch Kategorie, z.B. Gruppen, K-VR, Abel.Gruppen, R-Mod. Ein Beispiel für einen solchen Funktor ist die Fundamentalgruppe π_1 . Ein Nachteil der Fundamentalgruppe ist, dass diese oft schwierig zu berechnen ist. Wir werden in dieser Vorlesung weitere Funktoren und Methoden für ihr Berechnung kennenlernen.

2 Kombinatorische Beschreibungen topologischer Räume

2.1 Beispiel

Graphen sind einerseits topologische Räume und andererseits kombinatorische Objekte:

2.2 Definition

Ein **simplizialer Komplex** $K=(V,\Sigma)$ besteht aus einer Menge V und einer Menge Σ von nichtleeren, endlichen Teilmengen von V, sodass gilt

(i)
$$\{v\} \in \Sigma$$
 für alle $v \in V$

(ii)
$$\sigma \in \Sigma$$
, $\emptyset \neq \tau \subseteq \sigma \Longrightarrow \tau \in \Sigma$.

(Abgeschlossen bzgl. Teilmengenbildung)

Die Elemente von V heißen die **Ecken** oder **Vertices** von K. Die Elemente von Σ heißen die **Simplizes** von K. Enthält $\sigma \in \Sigma$ genau n+1 Elemente, so heißt σ ein \mathbf{n} -**Simplex**. Ist $\tau \subseteq \sigma$ mit σ ein n-Simplex und τ ein n-1-Simplex, so heißt τ eine **Seite** von σ .

Ist V geordnet, so heißt K geordnet. Ist V endlich, so heißt K endlich.

2.3 Beispiel

Ist σ eine endliche Menge, so heißt $\Delta^{\sigma} := (\sigma, \mathcal{P}(\sigma) \setminus \{\emptyset\})$ der σ -Simplex. Für $\sigma = \{0, \dots, n\}$ schreiben wir $\Delta^n := \Delta^{\{0, \dots, n\}}$. Es ist

$$\Delta^0 = \bullet, \qquad \Delta^1 = \red, \qquad \Delta^2 = \red, \qquad \Delta^3 = \red$$

2.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Ein **Unterkomplex** von K ist ein simplizialer Komplex $K_0=(V_0,\Sigma_0)$ mit $V_0\subseteq V$ und $\Sigma_0\subseteq \Sigma$.

Beispiel

Sei $K = (V, \Sigma)$ ein endlicher simplizialer Komplex. Dann ist K ein Unterkomplex von Δ^V .

2.5 Definition

Eine **simpliziale Abbildung** $f \colon K_1 = (V_1, \Sigma_1) \to K_2(V_2, \Sigma_2)$ zwischen simplizialen Komplexen ist eine Abbildung $f \colon V_1 \to V_2$, sodass $f(\sigma_1) \in \Sigma_2$ für alle $\sigma_1 \in \Sigma_1$.

2.6 Definition

Sei σ eine endliche Menge. Sei $\mathbb{R}^\sigma=\prod_{v\in\sigma}\mathbb{R}$ mit der Produkttopologie. Sei nun

$$|\Delta^{\sigma}| := \left\{ x = (x_v)_{v \in \sigma} \in \mathbb{R}^{\sigma} \left| \sum_{v \in \sigma} x_v = 1, x_v \in [0, 1] \ \forall v \in \sigma \right. \right\}$$

Ist $\tau \subseteq \sigma$, so erhalten wir eine Abbildung $\iota_{\tau}^{\sigma}: |\Delta^{\tau}| \to |\Delta^{\sigma}|$ indem wir $(x_v)_{v \in \tau} \in |\Delta^{\tau}|$ durch $x_v = 0$ für $v \in \sigma \setminus \tau$ zu $(x_v)_{v \in \sigma}$ auffüllen. Ist $\eta \subseteq \tau \subseteq \sigma$ so gilt $\iota_{\eta}^{\sigma} = \iota_{\tau}^{\sigma} \circ \iota_{\eta}^{\tau}$. Sei $K = (V, \Sigma)$ ein simplizialer Komplex. Die **geometrische Realisierung** |K| von K ist definiert als

$$|K| := \coprod_{\sigma \in \Sigma} {\{\sigma\} \times |\Delta^{\sigma}|} / \sim$$

wobei \sim die durch $(\tau,x)\sim \left(\sigma,\iota_{\tau}^{\sigma}(x)\right)$ für $\tau\subseteq\sigma$ erzeugte Äquivalenzrelation ist. Versehen mit der Quotiententopologie ist |K| ein topologischer Raum.

2.7 Beispiel

• Sei $\partial \Delta^n := \Big(\{0,\dots,n\}, \mathcal{P}\big(\{0,\dots,n\}\big) \setminus \{\emptyset,\{0,\dots,n\}\}\Big) = \text{"}\Delta^n \setminus \{0,\dots,n\}$ ". $\partial \Delta^n$ heißt der Rand des n-Simplizes. Es gilt

$$\begin{aligned} \left| \partial \Delta^1 \right| &= \bullet \bullet &\cong S^0 \\ \left| \partial \Delta^2 \right| &= \bigwedge \cong S^1 \\ \left| \partial \Delta^3 \right| &= \bigwedge \cong S^2 \end{aligned}$$

Allgemein gilt $|\partial \Delta^n| \cong S^{n-1}$.

$$\bullet \ T^2 = S^1 \times S^1 \cong \bigcirc$$

2.8 Definition

Ein topologischer Raum X heißt ein **Polyeder**, falls er homöomorph zur Realisierung eines simplizialen Komplexes ist.

2.9 Definition

Sei $K=(V,\Sigma)$ ein endlicher simplizialer Komplex. Sei $a_n:=\#\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex von }K\}.$ Dann heißt $\chi(K):=\sum_{n\in\mathbb{N}}(-1)^na_n$ die **Euler-Charakteristik** von K.

Beispiel

$$\chi\Bigl(\bigwedge\Bigr) = 3 - 3 = 0$$

$$\chi\Bigl(\boxed{ }\Bigr) = 4 - 4 = 0$$

$$\chi\bigl([n\text{-Eck}] \bigr) = n - n = 0$$

$$\chi\left(\partial\Delta^{3} = \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right) = 4 - 6 + 4 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 8 - 12 + 6 = 2$$

$$\chi\left(\begin{array}{c} \\ \\ \\ \end{array}\right) = 6 - 12 + 8 = 2$$

2.10 Satz

Seinen K und K' endliche simpliziale Komplexe. Gilt $|K| \cong |K'|$, so gilt

$$\chi(K) = \chi(K').$$

Bemerkung

Die Euler-Charakteristik ist also eine topologische Invariante von simplizialen Komplexen. Sie hängt nur von der topologischen Struktur von |K| und nicht von der kombinatorischen Struktur von K ab.

3 Simpliziale Homologie

3.1 Definition

Sei S eine Menge.Sei R ein Ring. Der **freie** R-Modul mit Basis S, R[S], besteht aus allen endlichen formalen R-Linearkombinationen

Ring mit Eins

$$\sum_{s \in S} r_s \cdot s \quad , r_s \in R, r_s \neq 0 \text{ für endliche viele } s \in S$$

Die R-Modulstruktur auf R[S] ist definiert durch:

$$r \cdot \left(\sum_{s \in S} r_s \cdot s\right) := \sum_{s \in S} (r \cdot r_s) \cdot s \qquad \left(\sum_{s \in S} r_s \cdot s\right) + \left(\sum_{s \in S} r_s' s\right) := \sum_{s \in S} (r_s + r_s') \cdot s$$

Bemerkung

Mittels $s = \sum_{s' \in S} \delta_{s,s'} \cdot s'$ fassen wir S als Teilmenge von R[S] auf.

3.2 Lemma

Sei S eine Menge, R ein Ring. Es gilt

- 1) Ist M ein R-Modul und $i:S\to M$ eine Abbildung, so gibt es genau eine R-lineare Abbildung $\varphi: R[S] \to M$, die i fortsetzt.
- 2) Sei $f:R[S] \to M$ R-linear und $p:N \twoheadrightarrow M$ R-linear und surjektiv. Dann gibt es $\hat{f}: R[S] \to N$ mit $p \circ \hat{f} = f$.

1) Eine solche Abbildung ist gegeben durch $\varphi(\sum_{s \in S} r_s \cdot s) = \sum_{s \in S} r_s \cdot i(s)$. Ist φ' eine zweite, so

$$\hat{\varphi}\left(\sum_{s\in S} r_s \cdot s\right) = \sum_{s\in S} r_s \cdot \hat{\varphi}(s) = \sum_{s\in S} r_s \cdot i(s)$$

2) Wähle für jedes $s \in S$ ein Urbild $j(s) \in N$ für $f(s) \in M$ unter $p: N \twoheadrightarrow M$. Nun wende 1) auf $j:S\to N$ an, um $\hat{f}:R[S]\to N$ mit $\hat{f}(s)=j(s)$ zu erhalten. Nun ist $p\circ\hat{f}(s)=f(s)$ für alle $s \in S$. Mit der Eindeutigkeit aus 1) folgt $p \circ \hat{f} = f$.

3.3 Beispiel

- (i) Sei K ein Körper und V, M, N seien K-Vektorräume, $f: V \to M, p: N \to M$ seien K-linear, psurjektiv. Dann gibt es $\hat{f}:V\to N$ mit $p\circ\hat{f}=f$. Wir können Lemma 3.2 benutzen, da V eine Basis B hat, also $V \cong K[B]$.
- (ii) Sei $R=\mathbb{Z}$, sei $V=\mathbb{Z}/2\mathbb{Z}$ und $M=\mathbb{Z}/2\mathbb{Z}$, sowie $f=\mathrm{id}:V\to M$, $N=\mathbb{Z}$ und $p:\mathbb{Z}n\to\mathbb{Z}/2\mathbb{Z}$ die Projektion mit $p(n) = n + 2\mathbb{Z}$. Dann gibt es keine \mathbb{Z} -lineare Abbildung $\hat{f} : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$ mit $p \circ \hat{f} = f$. Ist $\hat{f}(1+2\mathbb{Z})=n\in\mathbb{Z}$, so folgt

$$2n = 2 \cdot \hat{f}(1 + 2\mathbb{Z}) = \hat{f}(2 \cdot (1 + 2\mathbb{Z})) = \hat{f}(0 + 2\mathbb{Z}) = 0$$

also n=0.

3.4 Definition

Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Sei $\Sigma_n:=\{\sigma\in\Sigma\,|\,\sigma \text{ ist ein }n\text{-Simplex}\}.$ Sei R ein Ring. Der \mathbf{n} -te Kettenmodul von K über R ist definiert als

$$C_n(K;R) := R[\Sigma_n]$$

Ist $R = \mathbb{Z}$, so schreiben wir auch kurz $C_n(K) := C_n(K; \mathbb{Z})$.

3.5 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_0,\ldots,v_n\}$ ein n-Simplex von K. Bezüglich der Ordnung von K sei dabei $v_0< v_1<\ldots< v_n$. Sei τ ein (n-1)-Simplex von K. Definiere

$$\varepsilon_\sigma^\tau \coloneqq \begin{cases} (-1)^i, & \text{falls } \tau = \{v_0, \dots, v_{i-1}, v_{i+1}, \dots, v_n\} \\ 0, & \text{sonst} \end{cases}$$

Bemerkung

 $\varepsilon_{\sigma}^{\tau} \neq 0 \iff \tau \text{ ist eine Seite von } \sigma.$

Beispiel

Für den folgenden geordneten simplizialen Komplex gilt

3.6 Definition

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Die \mathbf{n} -te Randabbildung

$$\partial_n: C_n(K;R) \longrightarrow C_{n-1}(K;R)$$

$$= R[\Sigma_n] = R[\Sigma_{n-1}]$$

ist definiert durch

3.7 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Damit folgt $\operatorname{Im} \partial_n \subseteq \ker \partial_{n-1}$.

Beweis (mit Lemma 3.8)

Sei σ ein n-Simplex von K. Dann gilt

$$\begin{split} \partial_{n-1} \big(\partial_n (\sigma) \big) &= \partial_{n-1} \left(\sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \tau \right) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \cdot \partial_{n-1} (\tau) = \sum_{\tau \in \Sigma_{n-1}} \varepsilon_\sigma^\tau \left(\sum_{\eta \in \Sigma_{n-2}} \varepsilon_\tau^\eta \cdot \eta \right) \\ &= \sum_{\eta \in \Sigma_{n-2}} \left(\sum_{\tau \in \Sigma_{n-1}, \eta \subseteq \tau \subseteq \sigma} \varepsilon_\tau^\eta \cdot \varepsilon_\sigma^\tau \right) \eta \end{split}$$

8

3.8 Lemma

Sei σ ein n-Simplex. Sei $\eta \subseteq \sigma$ ein (n-2)-Simplex. Dann gibt es genau zwei (n-1)-Simplizes τ, τ' von K, die eine Seite von σ sind und η als Seite enthalten. Es gilt

$$\varepsilon_{\tau}^{\eta} \cdot \varepsilon_{\sigma}^{\tau} = -\varepsilon_{\tau'}^{\eta} \cdot \varepsilon_{\sigma}^{\tau'}$$

Beweis

Sei $\sigma = \{v_0, \ldots, v_n\}$ mit $v_0 < v_1 < \ldots < v_n$. Dann ist $\eta = \{v_0, \ldots, v_n\} \setminus \{v_i, v_j\}$ mit i < j. Dann sind $\tau = \{v_0, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n\}$ und $\tau' = \{v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_n\}$ die gesuchten (n-1)-Simplizes und es gilt

$$\varepsilon_{\sigma}^{\tau} = (-1)^{i} , \ \varepsilon_{\sigma}^{\tau'} = (-1)^{j} , \ \varepsilon_{\tau}^{\eta} = (-1)^{j-1} , \ \varepsilon_{\tau'}^{\eta} = (-1)^{i}$$

3.9 Notation

Für $\sigma \in \Sigma_n$, $\sigma = \{v_0, \dots, v_n\}$ mit $v_0 < \dots < v_n$ schreiben wir

$$\delta^j \sigma := \{v_0, \dots, v_{j-1}, v_{j+1}, \dots, v_n\} \in \Sigma_{n-1}$$

Dann ist $\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta^j \sigma$.

3.10 Definition

Sei K ein geordneter simplizialer Komplex. Der \mathbf{n} -te Homologiemodul von K über R ist definiert als

$$H_n(K;R) := \frac{\ker \partial_n : C_n(K;R) \to C_{n-1}(K;R)}{\operatorname{Im} \partial_{n+1} : C_{n+1}(K;R) \to C_n(K;R)}$$

Für n=0 interpretieren wir ∂_0 als die Nullabbildung. Daher gilt

$$H_0(K;R) = \frac{C_0(K;R)}{\text{Im } \partial_1 : C_1(K;R) \to C_0(K;R)}$$

3.11 Beispiele

- (1) Sei $K=\bullet$. Dann ist $C_0(K;R)\cong R$ und $C_i(K;R)=0$ für i>0. Weiter ist $H_0(K;R)=C_0(K;R)\cong R$ und $H_i(K;R)=0$ für i>0.
- (2) Sein nun $K=K_n$ das n-Eck, wobei $n\geqslant 3$. Also

$$\Sigma_0 = \left\{ \tau_1 = \{1\}, \tau_2 = \{2\}, \dots, \tau_n = \{n\} \right\}$$

$$\Sigma_1 = \left\{ \sigma_1 = \{1, 2\}, \dots, \sigma_{n-1} = \{n_1, n\}, \sigma_n = \{n, 1\} \right\}$$

Dann gilt

$$C_0(K;R)=R[\Sigma_0]\cong R^n$$

$$C_1(K;R)=R[\Sigma_1]\cong R^n$$

$$C_i(K;R)=0 \text{ für } i>1, \text{ insbesondere } H_i(K;R)=0 \text{ für } i>1$$

Es ist dann $\partial_2=\partial_3=\ldots=0$. Interessant ist $\partial_1:C_1(K;R)\to C_0(K;R)$, denn es gilt

$$\partial_1(\sigma_i) = egin{cases} au_{i+1} - au_i, & ext{ falls } i = 1, \dots, n-1 \ au_n - au_1, & ext{ falls } i = n \end{cases}$$

3 Simpliziale Homologie $oldsymbol{9}$

Mit
$$\sigma_1' := \sigma_1, \sigma_2' := \sigma_2, \dots, \sigma_{n-1}' := \sigma_{n-1}$$
 und $\sigma_n' := -\sigma_n$ gilt dann

$$\partial_1(\sigma_i') = \tau_{i+1} - \tau_i$$

mit der Konvention $au_{n+1} = au_1$. Also gilt

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n r_i (\tau_{i+1} - \tau_i) = \sum_{i=1}^n (r_{i-1} - r_i) \tau_i$$

Es folgt

$$\ker \partial_1 = \left\{ \sum_{i=1}^n r_i \cdot \sigma_i' \middle| r_1 = r_2 = \dots = r_n \right\} \subseteq C_1(K; R)$$
$$\operatorname{Im} \partial_1 = \left\{ \sum_{i=1}^n s_i \cdot \tau_i \middle| \sum_{i=1}^n s_i = 0 \right\} \subseteq C_0(K; R)$$

Ist $\sum_{i=1}^n s_i = 0$, so folgt für $r_n = 0, r_1 = -s_1, r_2 = -s_1 - s_2, \dots, r_{n-1} = -s_1 - s_2 - \dots - s_{n-1}$

$$\partial_1 \left(\sum_{i=1}^n r_i \sigma_i' \right) = \sum_{i=1}^n s_i \tau_i$$

Es folgt $[K] \in H_1(K;R) = \ker \partial_1 / \operatorname{Im} \partial_2 = \ker \partial_1 \cong R \ni 1$ und

$$[\tau_i] = [p] \in H_0(K; R) = \ker \partial_0 / \operatorname{Im} \partial_1 = R[\Sigma_0] / \{\sum_{i=1}^n s_i \tau_i \mid \sum_{i=1}^n s_i = 0\} \cong R \ni 1$$

(via $\sum_{i=1}^n s_i au_i \longmapsto \sum_{i=1}^n s_i$ und Homomorphiesatz)

3.12 Definition

Sei R ein Ring. Ein $\mathbf R$ -Kettenkomplex (C_*,d_*) ist eine Folge von R-Moduln $(C_n)_{n\in\mathbb N}$ zusammen mit R-linearen Abbildungen $(d_n:C_n\to C_{n-1})_{n\geqslant 1}$, so dass $d_n\circ d_{n+1}=0$. Die d_n heißen die Randabbildungen von (C_*,d_*) , die C_n die Kettenmoduln. Die $\mathbf n$ -te Homologie eines Kettenkomplexes (C_*,d_*) ist definiert als

$$H_n(C_*, d_*) := \frac{\ker d_n : C_n \to C_{n-1}}{\operatorname{Im} d_{n+1} : C_{n+1} \to C_n}$$

3.13 Bemerkung

- (i) Oft werden auch Kettenkomplexe betrachtet, die $\mathbb Z$ statt $\mathbb N$ verwenden.
- (ii) Ein Kettenkomplex (C_*, d_*) heißt endlich erzeugt, wenn alle C_n endlich erzeugte R-Moduln sind und $C_n \neq 0$ nur für endlich viele n ist.

3.14 Definition

Zu einem geordneten simplizialen Komplex K heißt $(C_*(K;R), \partial_*)$ der **simpliziale Kettenkomplex** von K über R.

Bemerkung

Ist K endlich, so ist $(C_*(K;R), \partial_*)$ endlich erzeugt.

10

4 Euler-Charakteristik von Kettenkomplexen

4.1 Wiederholung

Sei A eine abelsche Gruppe. Dann ist

$$TA := \left\{ a \in A \mid \exists n \geqslant 1 : n \cdot a = \underbrace{a + \ldots + a}_{n \cdot \mathsf{mal}} = 0 \right\}$$

die **Torsionsgruppe** von A. Ist A endlich erzeugt, so ist auch TA endlich erzeugt und es gibt Primzahlpotenzen $p_1^{n_1}, \ldots, p_k^{n_k}$ mit

abelsche Gruppen sind **Z**-Moduln

$$TA \cong \mathbb{Z}/(p_1^{n_1}) \oplus \ldots \oplus \mathbb{Z}/(p_k^{n_k})$$

Weiter gibt es dann n mit $A \cong \mathbb{Z}^n \oplus TA$. $\operatorname{Rg} A := n$ ist der **Rang** von A.

4.2 Lemma

Sei A eine endlich erzeugte abelsche Gruppe. Dann gilt $\operatorname{Rg} A = \max\{m \mid \exists C \leq A, C \cong \mathbb{Z}^m\}$.

Beweis

Da $A\cong \mathbb{Z}^n\oplus TA$ ist, genügt zu zeigen: Ist $\varphi:\mathbb{Z}^m\to \mathbb{Z}^n\oplus TA$ ein injektiver Gruppenhomomorphismus, so ist $m\leqslant n$. Schreibe $\varphi=\varphi_0\oplus\varphi_1$, also $\varphi(a)=\varphi_0(a)+\varphi_1(a)$ mit $\varphi_0:\mathbb{Z}^m\to\mathbb{Z}^n$, $\varphi_1:\mathbb{Z}^m\to TA$.

Behauptung: φ_0 ist injektiv. Zu $v \in \mathbb{Z}^m$ wähle $k \geqslant 1$ mit $k \cdot \varphi_1(v) = 0 \in TA$. Dann ist $\varphi_1(kv) = k\varphi_1(v) = 0$. Ist $v \neq 0$, so ist $k \cdot v \neq 0 \in \mathbb{Z}^m$, also ist $\varphi(kv) \neq 0$ und damit $\varphi_0(kv) \neq 0$. Es folgt $\varphi_0(v) \neq 0$, da sonst $\varphi_0(k \cdot v) = k \cdot \varphi_0(v) = 0$. Damit ist die Behauptung gezeigt.

Gruppenhomomorphismen $\varphi_0: \mathbb{Z}^m \to \mathbb{Z}^n$ werden durch $n \times m$ -Matrizen beschrieben: Es gibt $A = (a_{ij}) \in \mathbb{Z}^{n \times m}$ mit

$$\varphi_0 \begin{pmatrix} z_1 \\ \vdots \\ z_m \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^m a_{1j} z_j \\ \vdots \\ \sum_{j=1}^m a_{nj} z_j \end{pmatrix}$$

Ist m>n, so hat A, aufgefasst als Matrix über $\mathbb Q$, einen Kern. Es gibt also einen Vektor $w=\begin{pmatrix}a_1/b_1\\\vdots\\a_m/b_m\end{pmatrix}$ mit $Aw=0, w\neq 0$. Dann ist $(b_1,\ldots,b_m)\cdot w\in \mathbb Z^m$ und

$$\varphi_0((b_1,\ldots,b_m)\cdot w) = A\cdot ((b_1,\ldots,b_m)\cdot w) = (b_1,\ldots,b_m)\cdot A\cdot w = 0$$

Also gilt $m \leq n$.

4.3 Definition

Seien M_0, M_1, M_2 R-Moduln und $f_0: M_0 \to M_1, f_1: M_1 \to M_2$ R-lineare Abbildungen. Dann heißt

$$M_0 \stackrel{f_0}{\hookrightarrow} M_1 \stackrel{f_1}{\longrightarrow} M_2$$
 (\star)

eine kurze exakte Sequenz, wenn gilt:

(i)
$$f_0$$
 ist injektiv,

(ii) Im
$$f_0 = \ker f_1$$
,

(iii) f_1 ist surjektiv.

Bemerkung

Oft sagt man $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist exakt in M_1 , wenn $\operatorname{Im} f_0 = \ker f_1$ ist. Dann ist (\star) eine kurze exakte Folge, wenn

$$0 \longrightarrow M_0 \stackrel{f_0}{\longrightarrow} M_1 \stackrel{f_1}{\longrightarrow} M_2 \longrightarrow 0$$

exakt in M_0, M_1 und M_2 ist.

4.4 Beispiele

1)

$$M_0 \stackrel{i}{\longleftarrow} M_0 \oplus M_1 \stackrel{p}{\longrightarrow} M_1$$

 $v_0 \stackrel{i}{\longmapsto} (v_0, 0) \ (v_0, v_1) \stackrel{p}{\longmapsto} v_1$

ist eine kurze exakte Folge.

2) $\mathbb{Z} \stackrel{\cdot n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ ist eine kurze exakte Folge.

4.5 Bemerkung

Eine **Spaltung** für eine kurze exakte Folge $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ ist eine R-lineare Abbildung $s: M_2 \to M_1$ mit $f_1 \circ s = \mathrm{id}_{M_2}$. In diesem Fall erhalten wir einen Isomorphismus $M_0 \oplus M_2 \to M_1$, $(v_0, v_2) \mapsto f_0(v_0) + s(v_2)$.

Injektivität: Sei $(v_0,v_2)\in M_0\oplus M_2$ mit $f_0(v_0)+s(v_2)=0$. Dann gilt

$$0 = f_1(f_0(v_0) + s(v_2)) = v_2 \implies f_0(v_0) = 0 \implies v_0 = 0$$

Surjektivität: Sei $v_1 \in M_1$. Betrachte $v_2 := f_1(v_1)$. Dann ist $v_1 - s(v_2) \in \ker f_1 = \operatorname{Im} f_0$, also gibt es v_0 in M_0 mit $f_0(v_0) = v_1 - s(v_1)$. Damit ist $v_1 = f_0(v_0) + s(v_1)$.

4.6 Bemerkung

- 1) $\mathbb{Z} \stackrel{\cdot n}{\longleftrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$ spaltet nicht.
- 2) Ist $M_0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2$ eine kurze exakte Folge mit M_2 frei, also $M_2 \cong R[S]$, so spaltet (\star) . Siehe Lemma 3.2. Insbesondere ist $M_1 \cong M_0 \oplus M_2$.

Moduln mit dieser Eigenschaft bezeichnet man als projektiv. Freie Moduln sind also projektiv.

4.7 Bemerkung

Der Rang für alle endlich erzeugten abelschen Gruppen ist additiv:

$$\operatorname{Rg}(A \oplus B) = \operatorname{Rg} A + \operatorname{Rg} B$$
,

da $A \cong \mathbb{Z}^{\operatorname{Rg} A} \oplus TA$, $B \cong \mathbb{Z}^{\operatorname{Rg} B} \oplus TB$, also

$$A \oplus B \cong \mathbb{Z}^{\operatorname{Rg} A + \operatorname{Rg} B} \oplus \underbrace{TA \oplus TB}_{=T(A \oplus B)}$$

4.8 Proposition

Der Rang von endlich erzeugten abelschen Gruppen ist additiv für kurze exakte Folgen: Ist

$$A \stackrel{i}{\longleftrightarrow} B \stackrel{p}{\longrightarrow} C \qquad [\star]$$

eine kurze exakte Folge von endlich erzeugten abelschen Gruppen, so gilt $\operatorname{Rg} B = \operatorname{Rg} A + \operatorname{Rg} C$.

Beweis

Spaltet $[\star]$, so ist $B \cong A \oplus C$ und die Behauptung folgt aus der Bemerkung 4.7.

Wir können annehmen, dass $C = \mathbb{Z}^n \oplus TC$ gilt. Wir erhalten folgendes Diagramm:

$$A \stackrel{i}{\smile} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$$

$$\parallel \qquad \qquad \downarrow^{i''} \qquad \qquad \downarrow^{i'}$$

$$A \stackrel{i}{\smile} B \stackrel{p}{\longrightarrow} C$$

$$\downarrow^{p''} \qquad \qquad \downarrow^{p'}$$

$$B/p^{-1}(\mathbb{Z}^n) \stackrel{p' \circ p}{\smile} TC$$

Ist $p' \circ p(b) = 0$, so gibt es $v \in \mathbb{Z}^n$ mit i'(v) = p(b). Nun gibt es $v' \in p^{-1}(\mathbb{Z}^n)$ mit p(v') = v. Es folgt

$$p(i''(v')) = p(b)$$

also $i''(v') - b \in \ker p = i(A)$. Da $i(A) \subseteq i'' \left(p^{-1}(\mathbb{Z}^n) \right)$, folgt $b \in i'' \left(p^{-1}(\mathbb{Z}^n) \right)$. In dem Diagramm sind die Spalten und Zeilen exakt. Da \mathbb{Z}^n frei ist, spaltet $A \stackrel{i}{\longleftarrow} p^{-1}(\mathbb{Z}^n) \stackrel{p}{\longrightarrow} \mathbb{Z}^n$ und es gilt

$$\operatorname{Rg} A + \operatorname{Rg} C = \operatorname{Rg} A + n = \operatorname{Rg}(p^{-1}(\mathbb{Z}^n))$$

Es bleibt zu zeigen: $\operatorname{Rg} B = \operatorname{Rg} (p^{-1}(\mathbb{Z}^n))$.

Nebenbei: Ist $A' \subseteq B'$, so gilt $\operatorname{Rg} A' \leqslant \operatorname{Rg} B'$, denn

$$\operatorname{Rg} A' = \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant A' \right\} \leqslant \max \left\{ n' \, \middle| \, \mathbb{Z}^{n'} \cong C' \leqslant B' \right\} = \operatorname{Rg} B'.$$

Betrachte die kurze exakte Folge $p^{-1}(\mathbb{Z}^n) \longrightarrow B \longrightarrow {}^B/p^{-1}(\mathbb{Z}^n)$. Wegen ${}^B/p^{-1}(\mathbb{Z}^n) \cong TC$ gibt es ein k mit $k \cdot \left(b + p^{-1}(\mathbb{Z}^n)\right) = 0$ für alle $b \in B$. Also $k \cdot b \in p^{-1}(\mathbb{Z}^n)$. Es folgt $kB \subseteq p^{-1}(\mathbb{Z}^n)$. Ist $B \cong \mathbb{Z}^{\operatorname{Rg} B} + TB$, so ist $kB \cong (k\mathbb{Z})^{\operatorname{Rg} B} + T(kB)$ und $\operatorname{Rg} kB = n = \operatorname{Rg} B$. Mit der Nebenbemerkung folgt $\operatorname{Rg} p^{-1}(\mathbb{Z}^n) = \operatorname{Rg} B$ aus $kB \subseteq p^{-1}(\mathbb{Z}^n) \subseteq B$.

Beweis mit Tensorprodukten (Skizze)

- $\mathbb{Q} \otimes_{\mathbb{Z}} : \mathbb{Z}\text{-Mod} \to \mathbb{Q}\text{-VR}$ ist ein Funktor.
- $\operatorname{Rg} A = \dim_{\mathbb{Q}}(\mathbb{Q} \otimes_{\mathbb{Z}} A)$
 - (a) $\mathbb{Q} \otimes_{\mathbb{Z}} (X \oplus Y) = \mathbb{Q} \otimes_{\mathbb{Z}} X \oplus \mathbb{Q} \otimes_{\mathbb{Z}} Y$
 - (b) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}^n \cong \mathbb{Q}^n$
 - (c) $\mathbb{Q} \otimes_{\mathbb{Z}} T \cong 0$ für T ein Torsionsmodul.
- Ist $A \longrightarrow B \longrightarrow C$ eine kurze exakte Folge, so ist auch

$$\mathbb{Q} \otimes_{\mathbb{Z}} A \longrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} B \longrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} C$$

eine kurze exakte Folge.

• Jede kurze exakte Folge $V_0 \longrightarrow V_1 \longrightarrow V_2$ von \mathbb{Q} -Vektorräumen spaltet und daher gilt $V_1 \cong V_0 \oplus V_2$ und $\dim_{\mathbb{Q}}(V \oplus W) = \dim_{\mathbb{Q}}(V) + \dim_{\mathbb{Q}}(W)$.

4.9 Definition

Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex.

$$\chi(C_*) := \sum_{i=0}^{\infty} \operatorname{Rg}(C_i) = \sum_{i=0}^{n_0} \operatorname{Rg}(C_i)$$

heißt die **Eulercharakteristik** von (C_*, d_*) . Dabei ist n_0 so gewählt, dass $C_n = 0$ für alle $n > n_0$.

4.10 Satz

Sei (C_*, d_*) ein endlich erzeugter \mathbb{Z} -Kettenkomplex. Dann gilt

$$\chi(C_*) = \sum_{i=1}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*).$$

Beweis

Sei $B_{n+1}:=\operatorname{Im} d_{n+1}:C_{n+1}\to C_n$ und $Z_n:=\ker d_n:C_n\to C_{n-1}.$ Also $H_n(C_*,d_*)=Z_n/B_{n+1}.$ Als Untermoduln von C_n sind Z_n und B_n endlich erzeugt (LA2). Insbesondere ist auch $H_n(C_*,d_*)$ endlich erzeugt und der Rang somit definiert. Auch B_{n+1} ist Untermodul des endlich erzeugten \mathbb{Z} -Moduls C_n und somit endlich erzeugt. Wir erhalten kurze exakte Folgen:

$$B_{n+1} \longleftrightarrow Z_n \longrightarrow H_n(C_*, d_*)$$

$$Z_n \longleftrightarrow C_n \longrightarrow B_n$$

Folglich gilt $\operatorname{Rg} Z_n = \operatorname{Rg} B_{n+1} + \operatorname{Rg} H_n(C_*, d_*)$ und $\operatorname{Rg} C_n = \operatorname{Rg} Z_n + \operatorname{Rg} B_n$. Also gilt

$$\chi(C_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i = \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} Z_i + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \left(\operatorname{Rg} H_i(C_*, d_*) + \operatorname{Rg} B_{i+1} + \operatorname{Rg} B_i \right)$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*) + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_{i+1} + \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} B_i$$

$$= \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*, d_*)$$

4.11 Korollar

Sei K ein endlicher, geordneter simplizialer Kettenkomplex. Dann gilt

$$\chi(K) = \sum_{i=1}^{\dim K} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z})$$

Beweis

Wende den Satz 4.10 auf den simplizialen Kettenkomplex von K an. Da

$$\operatorname{Rg} C_n(K; \mathbb{Z}) = \operatorname{Rg} \mathbb{Z}[\Sigma_n] = \# n\text{-Simplizes in } K$$

ist

$$\chi(K) = \chi(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(C_*(K; \mathbb{Z}), \partial_*) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i(K; \mathbb{Z}) \qquad \Box$$

5 Singuläre Homologie

5.1 Definition

Sei X ein topologischer Raum. Sei $S_n(X)$ die Menge aller stetigen Abbildungen $\sigma\colon |\Delta^n|\to X$. Elemente von $S_n(X)$ heißen **singuläre Simplizes** in X. Sei R ein Ring. Der $\mathbf n$ -te (singuläre) Kettenmodul von X über R ist

$$C_n(X;R) := R[S_n(X)]$$

5.2 Definition

Für $\sigma \in S_n(X)$ und $j \in \{0, \dots, n\}$ sei $\delta_j \sigma \in S_{n-1}(X)$ die Einschränkung von σ auf die j-te Seite von $|\Delta^n|$, also $\delta_j(\sigma) = \sigma \circ \iota_{n,j}$, wobei $\iota_{n,j} \colon |\Delta^{n-1}| \to |\Delta^n|$ die Inklusion der j-ten Seite ist:

$$\iota_{n,j}(x_0,\ldots,x_{n-1}) = (x_0,\ldots,x_{j-1},0,x_j,\ldots,x_{n-1})$$

5.3 Bemerkung

Es gilt $\iota_{n,j}=|i_{n,j}|$ wobei $i_{n,j}\colon \Delta^{n-1}\to \Delta^n$ gegeben ist durch

vergleiche Blatt 2, Aufgabe 2

$$i_{n,j}(k) = egin{cases} k, & \text{falls } k < j \\ k+1, & \text{falls } k \geqslant j \end{cases}$$

5.4 Definition

Die n-te singuläre Randabbildung $\partial_n \colon C_n(X;R) \to C_{n-1}(X;R)$ ist definiert durch

$$\partial_n(\sigma) = \sum_{j=0}^n (-1)^j \cdot \delta_j(\sigma).$$

5.5 Proposition

$$\partial_{n-1} \circ \partial_n = 0$$

Beweis (mit Lemma 5.6)

$$\begin{split} \partial_{n-1}\partial_n(\sigma) &= \partial_{n-1}\left(\sum_{j=0}^n (-1)^j \delta_j(\sigma)\right) = \sum_{k=0}^{n-1} \sum_{j=0}^n (-1)^{j+k} \delta_k \delta_j(\sigma) \\ &= \sum_{0\leqslant k < j\leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0\leqslant j\leqslant k\leqslant n-1} (-1)^{k+j} \delta_k \delta_j(\sigma) \\ &\stackrel{\text{Lemma 5.6}}{=} \sum_{0\leqslant k < j\leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0\leqslant j\leqslant k\leqslant n-1} (-1)^{k+j} \delta_j \delta_{k+1}(\sigma) \\ &= \sum_{0\leqslant k < j\leqslant n} (-1)^{k+j} \delta_k \delta_j(\sigma) + \sum_{0\leqslant j < k\leqslant n-1} (-1)^{k-1+j} \delta_j \delta_k(\sigma) \\ &= 0 \end{split}$$

5.6 Lemma

Für $0 \le j \le k \le n-1$ und $\sigma \in S_n(X)$ ist $\delta_k \delta_j(\sigma) = \delta_j \delta_{k+1}(\sigma)$.

Beweis

Es ist

$$\delta_k(\delta_j(\sigma))(x_0, \dots, x_{n-2}) = \delta_j(\sigma)(x_0, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$$

= $(x_0, \dots, x_{j-1}, 0, x_j, \dots, x_{k-1}, 0, x_k, \dots, x_{n-2})$

und

$$\delta_{j}\delta_{k+1}(\sigma)(x_{0},\ldots,x_{n-2}) = \delta_{k+1}(\sigma)(x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{n-2})$$

$$= (x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{k-1},0,x_{k},\ldots,x_{n-2})$$

5.7 Definition

Sei X ein topologischer Raum. Die Homologie des **singulären Kettenkomplex** über R, $(C_*(X;R), \partial_*)$, heißt die **singuläre Homologie von** X mit Koeffizienten in R:

$$H_n(X;R) := H_n(C_*(X;R), \partial_*)$$

Für $R = \mathbb{Z}$ schreiben wir kürzer $C_*(X) := C_*(X; \mathbb{Z})$ und $H_n(X) := H_n(X; \mathbb{Z})$.

5.8 Definition

- Die Elemente von $C_n(X;R)$ heißen **n-Ketten**.
- Die Elemente von $\operatorname{Im} \partial_{n+1} \subseteq C_n(X;R)$ heißen \mathbf{n} -Ränder.
- Die Elemente von $\ker \partial_n \subseteq C_n(X;R)$ heißen \mathbf{n} -Zykel.

Jeder n-Zykel $\sigma \in C_n(X;R)$ bestimmt eine **Homologieklasse** $[\sigma] := \sigma + \operatorname{Im} \partial_{n+1} \in H_n(X;R)$.

5.9 Beispiel

Ist $X = \{x_0\}$ der Ein-Punkt-Raum, so ist

$$H_*(\{x_0\}; R) \cong \begin{cases} R, & \text{falls } * = 0 \\ 0, & \text{sonst} \end{cases}$$

Beweis

Es gibt für jedes n genau eine Abbildung, nämlich die konstante, $\sigma_n \colon |\Delta^n| \to \{x_0\}$ und diese ist stetig. Also $C_n(\{x_0\}; R) = R[\sigma_n]$. Für alle j ist $\delta_j \sigma_n = \sigma_{n-1}$. Daher ist

$$\partial_n(\sigma_n) = \begin{cases} 0, & \text{falls } n \text{ ungerade} \\ \sigma_{n-1}, & \text{falls } n \text{ gerade} \end{cases}$$

Der singuläre Kettenkomplex von $\{x_0\}$ hat also folgende Gestalt:

$$C_0(\lbrace x_0 \rbrace; R) \xleftarrow{0} C_1(\lbrace x_0 \rbrace; R) \xleftarrow{\cong} C_2(\lbrace x_0 \rbrace; R) \xleftarrow{0} C_3(\lbrace x_0 \rbrace; R) \xleftarrow{\cong} \cdots$$

$$R \xleftarrow{0} R \xleftarrow{\text{id}} R \xleftarrow{\text{id}} R \xleftarrow{\text{id}} R$$

Es folgt

$$H_n(\lbrace x_0 \rbrace; R) \cong \begin{cases} R, & \text{falls } n = 0 \\ 0, & \text{sonst} \end{cases}$$

16

5.10 Proposition

- 1) Ist $X \neq \emptyset$, so ist $H_0(X) \neq 0$.
- 2) Ist X wegzusammenhängend, so gilt $H_0(X) \cong \mathbb{Z}$

Beweis

- 1) Sei $\varepsilon\colon C_0(X) \to \mathbb{Z}$ definiert durch $\varepsilon\Bigl(\sum_{\sigma \in S_0(X)} r_\sigma \cdot \sigma\Bigr) := \sum_\sigma r_\sigma$. Dann ist $\varepsilon \circ \partial_1 \colon C_1(X) \to \mathbb{Z}$ trivial, denn für $\sigma \in S_1(X)$ ist $\varepsilon \circ \partial_1(\sigma) = \varepsilon(\delta_0\sigma \delta_1\sigma) = 0$. Daher induziert ε eine Abbildung $\overline{\varepsilon}\colon H_0(X) \to \mathbb{Z}$. Da $X \neq \emptyset$ ist, gibt es einen singulären 0-Simplex $\sigma\colon \left|\Delta^0\right| \to X$. Für σ gilt $\overline{\varepsilon}([\sigma]) = 1$ und daher ist $\overline{\varepsilon}$ surjektiv und $H_0(X) \neq 0$.
- 2) Wir zeigen: $\overline{\varepsilon}\colon H_0(X)\to \mathbb{Z}$ ist ein Isomorphismus, falls X wegzusammenhängend ist. Dazu zeigen wir $\ker \varepsilon=\operatorname{Im}\partial_1$. Dazu definieren wir $s\colon C_0(X)\to C_1(X)$ wie folgt: Sei σ_0 ein fest gewählter singulärer 0-Simplex. Zu $\sigma\in S_0(X)$ gibt es, da X wegzusammenhängend ist, $s(\sigma)\in S_1(X)$ mit $\delta_0s(\sigma)=\sigma,\,\delta_1s(\sigma)=\sigma_0$. Es gilt nun

$$\partial_1 \circ s(\sigma) = \sigma - \sigma_0 = (\mathrm{id}_{C_0(X)} - i \circ \varepsilon)(\sigma)$$

wobei $i: \mathbb{Z} \to C_0(X)$, $n \mapsto n \cdot \sigma_0$. Ist nun $v \in \ker \varepsilon$, so folgt

$$\partial_1 \circ s(v) = v - i \circ \underbrace{\varepsilon(v)}_{=0} = v$$

also $v \in \operatorname{Im} \partial_1$.

5.11 Bemerkung

Sei $K=(V,\Sigma)$ ein geordneter simplizialer Komplex. Sei $\sigma=\{v_o,\ldots,v_n\}\in \Sigma_n$ ein n-Simplex von K mit $v_0< v_1<\ldots< v_n$. Wir ordnen σ den singulären n-Simplex $f_\sigma\colon |\Delta^n|\to |\Delta^\sigma|\subseteq |K|$ zu, wobei

$$f_{\sigma}\left(\sum_{i=0}^{n} t_{i} e_{i}\right) = \sum_{i=0}^{n} t_{i} v_{i}.$$

Nun erhalten wir eine Abbildung

$$C_*(K;R) \to C_*(|K|,R) \quad , \qquad \sum_{\sigma \in \Sigma_n} r_\sigma \cdot \sigma \longmapsto \sum_{\sigma \in \Sigma_n} r_\sigma \cdot f_\sigma.$$

Diese Abbildung induziert(!) eine weitere Abbildung $H_*(K;R) \xrightarrow{\cong} H_*(|K|;R)$ von der wir später zeigen werden, dass sie ein Isomorphismus ist.

5 Singuläre Homologie 17

6 Funktorialität

6.1 Definition

Seien (C_*, d_*) und (C'_*, d'_*) zwei R-Kettenkomplexe. Eine \mathbf{R} -Kettenabbildung $f_* \colon (C_*, d_*) \to (C'_*, d'_*)$ ist eine Folge von R-linearen Abbildungen $f_n \colon C_n \to C'_n$, sodass

$$d'_n \circ f_n = f_{n-1} \circ d_n$$

für alle $n \ge 1$ gilt. Also kommutiert folgendes Diagramm

$$C_0 \leftarrow_{d_1} C_1 \leftarrow_{d_2} C_2 \leftarrow_{d_3} C_3 \leftarrow \dots$$

$$\downarrow^{f_0} \qquad \downarrow^{f_1} \qquad \downarrow^{f_2} \qquad \downarrow^{f_3}$$

$$C'_0 \leftarrow_{d'_1} C'_1 \leftarrow_{d'_2} C'_2 \leftarrow_{d'_3} C'_3 \leftarrow \dots$$

6.2 Bemerkung

Ist $f_*: (C_*, d_*) \to (C'_*, d'_*)$ eine Kettenabbildung, so erhalten wir eine induzierte Abbildung auf Homologie $H_n(f_*): H_n(C_*, d_*) \to H_n(C'_*, d'_*)$ durch

$$H_n(f_*)([v]) := [f_n(v)]$$

für $v \in \ker d_n$. Dies ist wohldefiniert, denn:

- $d'_n(f_n(v)) = f_{n-1}(d_n(v)) = 0$, also $f_n(v) \in \ker d'_n$ für $v \in \ker d_n$.
- Ist [v] = [w], mit $v, w \in \ker d_n$, so gibt es $x \in C_{n+1}$ mit $d_{n+1}(x) = v w$. Dann ist

$$d'_{n+1}(f_{n+1}(x)) = f_n(d_{n+1}(x)) = f_n(v) - f_n(w)$$

also
$$[f_n(v)] = [f_n(w)] \in H_n(C'_*, d'_*).$$

6.3 Bemerkung

- a) R-Kettenkomplexe mit Kettenabbildungen bilden die Kategorie R-Ketten.
- b) Homologie definiert nun einen Funktor: $H_n\colon R ext{-Ketten} o R ext{-Mod}.$

Es gilt
$$H_n(\mathrm{id}_{(C_*,d_*)})=\mathrm{id}_{H_n(C_*,d_*)}$$
 und $H_n(f\circ g)=H_n(f)\circ H_n(g)$, da

$$H_n(f \circ g)([v]) = [f_n \circ g_n(v)] = [f_n(g_n(v))] = H_n(f)([g_n(v)]) = H_n(f)(H_n(g)(v))$$

c) Definiert man die Kategorie der **graduierten** R-Moduln als die Kategorie, deren Objekte Folgen $(V_n)_n$ von \mathbb{R} -Moduln sind und deren Morphismen Folgen von R-linearen Abbildungen $(f_n)_n$ sind, so kann man die H_n , $n \in \mathbb{N}$ zu einem Funktor

$$H_*: R\text{-Ketten} \longrightarrow GR\text{-}R\text{-Mod}$$
 , $(C_*, d_*) \longmapsto (H_n(C_*, d_*))_n$

zusammensetzen.

6.4 Definition

Sei $f:X\to Y$ stetig. Wir definieren $C_n(f;R)\colon C_n(X;R)\to C_n(Y;R)$ durch

$$C_n(f;R)\left(\sum_{\sigma\in S_n(X)} r_{\sigma}\cdot\sigma\right) := \sum_{\sigma\in S_n(X)} r_{\sigma}\cdot(f\circ\sigma)$$

Dies ist wohldefiniert, denn für $\sigma \in S_n(X)$ ist $f \circ \sigma \in S_n(Y)$.

18 6 Funktorialität

6.5 Proposition

Mit dieser Definition von $C_*(f;R)$ wird der singuläre Kettenkomplex über R zu einem Funktor

$$C_*(-;R)\colon \mathsf{Top}\to R\text{-Ketten}$$

Beweis

(i) $C_*(f;R)$ ist eine R-Kettenabbildung: Es gilt

$$C_{n-1}(f;R) \circ \partial_n(\sigma) = C_{n-1}(f;R) \left(\sum_{l=0}^n (-1)^l \cdot \sigma \circ \iota_{n,l} \right) = \sum_{l=0}^n (-1)^l \cdot (f \circ \sigma) \circ \iota_{n,l}$$
$$= \partial_n(f \circ \sigma) = \partial \left(C_n(f;R)(\sigma) \right).$$

(ii) Zu zeigen: $C_*(f \circ g; R) = C_*(f; R) \circ C_*(g; R)$. Es gilt

$$C_n(f \circ g; R)(\sigma) = f \circ (g \circ \sigma) = C_n(f; R)(g \circ \sigma) = C_n(f; R)(C_n(g; R)(\sigma)).$$

(iii) Zu zeigen: $C_*(\mathrm{id}_X;R)=\mathrm{id}_{C_*(X;R)}$. Es gilt

$$C_n(\mathrm{id}_X; R)(\sigma) = \mathrm{id}_X \circ \sigma = \sigma$$

6.6 Korollar

Mit $H_n(f;R) := H_n(C_*(f;R))$ wird $H_n(-;R)$ zu einem Funktor: $H_n(-;R)$: Top $\to R$ -Mod.

Beweis

 $H_n(-;R)$ ist die Komposition der Funktoren $C_*(-;R)\colon \mathrm{Top} \to R$ -Ketten und $H_*\colon R$ -Ketten $\to R$ -Mod. \Box

6.7 Bemerkung

• Oft schreiben wir kurz $f_* = H_n(f;R)$.

• Für
$$\left[\sum_{\sigma \in S_n(X)} r_\sigma \sigma\right] \in H_n(X;R)$$
 ist $f_*\left(\left[\sum_{\sigma \in S_n(X)} r_\sigma \sigma\right]\right) = \left[\sum_{\sigma \in S_n(X)} r_\sigma f \circ \sigma\right] \in H_n(Y;R)$

6.8 Definition

Seien X_i , $i \in I$ topologische Räume. Mit

$$X := \coprod_{i \in I} X_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der X_i . Als Menge ist X die disjunkte Vereinigung der X_i . $U \subseteq X$ ist offen genau dann, wenn $X_i \cap U \subseteq X_i$ offen ist für jedes $i \in I$. Für jedes i_0 erhalten wir eine stetige Inklusion $j_{i_0} \colon X_{i_0} \to \coprod_i X_i$.

Bemerkung

Für jedes i_0 ist $X_{i_0} \subseteq \coprod_i X_i$ offen und abgeschlossen.

6 Funktorialität

6.9 Definition

Seien V_i , $i \in I$ R-Moduln. Mit

$$V := \bigoplus_{i \in I} V_i$$

bezeichnen wir die **Summe** (oder auch das **Koprodukt**) der V_i . Elemente von V sind I-Folgen $(v_i)_{i \in I}$ mit $v_i \in V_i$ und $v_i = 0$ für alle bis auf endlich viele i. Die R-Modulstruktur ist erklärt durch:

$$(v_i)_{i \in I} + (w_i)_{i \in I} := (v_i + w_i)_{i \in I}$$
 , $r \cdot (v_i)_{i \in I} := (r \cdot v_i)_{i \in I}$

Für jedes $i_0 \in I$ erhalten wir eine R-lineare Abbildung $j_{i_0} \colon V_{i_0} \to V$ mit

$$(j_{i_0}(v))_i = \begin{cases} v, & \text{falls } i = i_0 \\ 0, & \text{sonst} \end{cases}$$

Bemerkung

Seien $V_i, i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Dann gibt es zu jeder Folge $f_i \colon V_i \to W$ von R-linearen Abbildungen eine R-lineare Abbildung $\bigoplus_{i \in I} f_i \colon \bigoplus_{i \in I} V_i \to W$ mit

$$(\bigoplus_{i\in I} f_i)\big((v_i)_{i\in I}\big) = \sum_{i\in I} f_i(v_i)$$

Ist umgekehrt $f\colon \bigoplus_{i\in I} V_i \to W$ eine R-lineare Abbildung, so ist $f_i:=f\circ j_i$ eine Folge von R-linearen Abbildungen mit $f=\bigoplus_{i\in I} f_i$.

6.10 Satz

Sei $X = \coprod_{i \in I} X_i$. Dann induzieren die Inklusionen $j_i \colon X_i \to X$ einen Isomorphismus

$$\bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\bigoplus_{i \in I} (j_i)_*} H_n(X; R)$$

Beweis

Da die $X_i\subseteq X$ offen und abgeschlossen sind und $|\Delta^n|$ zusammenhängend ist (sogar wegzusammenhängend), gibt es für jedes $\sigma\colon |\Delta^n|\to X$ ein eindeutiges i mit ${\rm Im}\,\sigma\subseteq X_i$. Es gilt also $S_n(X)=\bigcup S_n(X_i)$. Daher induzieren die j_i einen Isomorphismus

$$\bigoplus_{i \in I} C_n(j_i; R) \colon \bigoplus_{i \in I} C_n(X_i; R) \xrightarrow{\cong} C_n(X; R)$$

Da diese Isomorphismen mit den Randabbildungen vertauschen, erhalten wir einen Isomorphismus von R-Kettenkomplexen

$$\varphi := \bigoplus_{i \in I} C_*(j_i; R) : \bigoplus C_*(X_i; R) \xrightarrow{\cong} C_*(X; R)$$

Da $\bigoplus H_n(C_*(X_i;R)) \cong H_n(\bigoplus_i C_*(X_i;R))$ induzieren dann auch die $(j_i)_*$ einen Isomorphismus

$$\bigoplus_{i \in I} (j_i)_* \colon \bigoplus_{i \in I} H_n(X_i; R) \xrightarrow{\cong} H_n(X; R) \qquad \Box$$

20 6 Funktorialität

7 Homotopieinvarianz

7.1 Bemerkung

Sei $f: X \to Y$ ein Homöomorphismus. Dann ist

$$f_* \colon H_n(X;R) \longrightarrow H_n(Y;R)$$

ein Isomorphismus.

Beweis

Da Homologie ein Funktor ist, gilt

$$f_* \circ (f^{-1})_* = (f \circ f^{-1})_* = (\mathrm{id}_Y)_* = \mathrm{id}_{H_n(Y;R)}$$
 und
$$(f^{-1})_* \circ f_* = (f^{-1} \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{H_n(X;R)}$$

Also ist $(f_*)^{-1} = (f^{-1})_*$. Insbesondere ist f_* ein Isomorphismus.

7.2 Definition

Eine stetige Abbildung $f:X\to Y$ heißt eine **Homotopieäquivalenz**, falls es eine stetige Abbildung $g:Y\to X$ gibt, so dass $g\circ f$ homotop zu id_X ist und $f\circ g$ homotop zu id_Y ist. g heißt dann eine **Homotopieinverse** zu f.

Bemerkung

- (i) f ist genau dann eine Homotopieäquivalenz, wenn [f] in HTop invertierbar ist. In HTop ist dann $[f]^{-1} = [g]$.
- (ii) Die Homotopieinverse ist eindeutig bis auf Homotopie.

7.3 Satz

Seien $f,g:X\to Y$ stetige Abbildungen. Sind f und g homotop, so gilt $H_n(f;R)=H_n(g;R)$ für alle $n\in\mathbb{N}$.

Beweis

Siehe 7.8, sowie 7.13 □

7.4 Korollar

Ist f:X o Y eine Homotopieäquivalenz, so ist $f_*:H_n(X;R) o H_n(Y;R)$ ein Isomorphismus.

Beweis

Sei $g: Y \to X$ ein Homotopieinverses zu f. Es folgt

7.5 Korollar

Ist X kontrahierbar, d.h. es gibt eine Homotopie $H: X \times [0,1] \to X$ mit $H_0 = \mathrm{id}_X$ und H_1 konstant, so gilt

7 Homotopieinvarianz 21

Beweis

Sei $\{x_0\}=\operatorname{Im} H_1$. Dann ist die Inklusion $\{x_0\}\to X$ eine Homotopieäquivalenz. Also gilt nach 7.4

$$H_n(X;R) \cong H_n(\lbrace x_0 \rbrace;R) \stackrel{5.9}{=} \begin{cases} R, & \text{falls } n=0 \\ 0, & \text{sonst} \end{cases}$$

Beispiel

$$H_n(\mathbb{R}^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases} \quad \text{und} \quad H_n(D^k;R)\cong \begin{cases} R, & \text{falls } n=0\\ 0, & \text{sonst} \end{cases}$$

7.6 Definition

Seien (C_*,d_*) und (C'_*,d'_*) R-Kettenkomplexe. Seien $f_*,g_*:(C_*,d_*)\to (C'_*,d'_*)$ R-Kettenabbildungen. Eine **Kettenhomotopie** von f_* nach g_* ist eine Folge von R-linearen Abbildungen $h_n:C_n\to C'_{n+1}$, $n\in\mathbb{N}$, sodass für alle n gilt:

$$d'_{n+1} \circ h_n + h_{n-1} \circ d_n = f_n - g_n$$

In diesem fall heißen f_* und g_* **kettenhomotop**.

7.7 Proposition

Seien $f_*, g_*: (C_*, d_*) \to (C'_*, d'_*)$ Kettenabbildungen. Sind f_* und g_* kettenhomotop, so gilt für alle n

$$H_n(f_*) = H_n(g_*)$$

Beweis

Sei $x \in H_n(C_*, d_*)$. Also x = [v] mit $v \in \ker d_n : C_n \to C_{n-1}$. Dann gilt, da $v \in \ker d_n$

$$H_n(f_*)(x) = H_n(f_*)([v]) = [f_n(v)] = \left[g_n(v) + \underbrace{d'_{n+1} \circ h_n(v)}_{\in \operatorname{Im} d'_{n+1}} + \underbrace{h_{n-1} \circ d_n(v)}_{=0}\right]$$
$$= [g_n(v)] = H_n(g_*)([v]) = H_n(g_*)(x) \qquad \Box$$

7.8 Lemma

Die Homotopieinvarianz von $H_n(-;R)$ folgt aus folgenden Spezialfall:

Seien
$$i_0, i_1: X \hookrightarrow X \times [0,1]$$
 Inklusionen mit $i_0(x) = (x,0)$, $i_1(x) = (x,1)$. $\Longrightarrow (i_0)_* = (i_1)_*$ [#]

Beweis

Sei $H: X \times [0,1] \to Y$ eine Homotopie zwischen $f,g: X \to Y$, also $f = H \circ i_0$ und $g = H \circ i_1$. Dann folgt mittels Funktorialität

$$f_* = (H \circ i_0)_* = H_* \circ (i_0)_* = H_* \circ (i_1)_* = (H \circ i_1)_* = q_*$$

7.9 Bemerkung

Zum Beweis von [#] werden wir eine explizite Kettenhomotopie h_* zwischen $C_*(i_0;R)$ und $C_*(i_1;R)$ konstruieren. Wir brauchen also $h_n:C_n(X;R)\to C_{n+1}(X\times[0,1];R)$ für alle $n\in\mathbb{N}$ mit

$$\partial_{n+1} \circ h_n + h_{n-1} \circ \partial_n = C_n(i_0; R) - C_n(i_1; R).$$
 [##]

22

"Ansatz"

Für $\sigma\colon |\Delta^n|\to X$ setze $h_n(\sigma)=\sigma\times \mathrm{id}_{[0,1]}\colon |\Delta^n|\times [0,1]\to X\times [0,1].$ Dann ist " $h_{n-1}(\partial_n\sigma)=\partial_n\sigma\times \mathrm{id}_{[0,1]}$ " und

$$\partial_{n+1}(h_n\sigma) = \partial_{n+1}(\sigma \times \mathrm{id}_{[0,1]}) = (\sigma \times \mathrm{id})\Big|_{\partial(|\Delta^n| \times [0,1])} = \partial_n\sigma \times \mathrm{id}_{[0,1]} + i_0\sigma + i_1\sigma$$

da $\partial(|\Delta^n| \times [0,1]) = \partial|\Delta^n| \times [0,1] \dot{\cup} |\Delta^n| \times \{0,1\}.$

Um daraus Sinn zu machen, zerlegen wir $|\Delta^n| \times [0,1]$ in eine Vereinigung von (n+1)-Simplizes. $\Delta^n \times [0,1]$ hat die folgende Form für $n \in \{0,1,2\}$:

Abbildung 1: $\Delta^n \times [0,1]$ für n=0,1,2

Die Zerlegung in 3-Simplizes ist für $\Delta^2 \times [0,1]$ gegeben durch

Abbildung 2: Zerlegung von $\Delta^2 \times [0,1]$ in 3-Simplizes

Diese verallgemeinern wir jetzt für beliebiges $n \in \mathbb{N}$:

7.10 Definition

Für $j=0,\ldots,n$ seien $k_{n,j}\colon |\Delta^{n+1}|\to |\Delta^n|\times [0,1]$ und $\iota_{n,j}\colon |\Delta^{n-1}|\to |\Delta^n|$ die eindeutigen affin linearen Abbildungn, für die gilt:

 e_1, \dots, e_n sind wieder die Einheitsvektoren von \mathbb{R}^n

$$k_{n,j}(e_0) = (e_0, 0)$$
 $\iota_{n,j}(e_0) = e_0$
 $k_{n,j}(e_1) = (e_1, 0)$... $\iota_{n,j}(e_1) = e_1$... $\iota_{n,j}(e_{j-1}) = e_{j-1}$
 $k_{n,j}(e_{j+1}) = (e_j, 1)$... $\iota_{n,j}(e_{j-1}) = e_{j+1}$... $\iota_{n,j}(e_{n-1}) = e_n$

7.11 Lemma

Es gelten folgende fünf Gleichungen für die Abbildungen $k_{n,j}$ und $\iota_{n,j}$:

(i) Für
$$0 \le l < j \le n$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = (\iota_{n,l} \times \mathrm{id}_{[0,1]}) \circ k_{n-1,j-1}$

(ii) Für
$$1 \le j+1 < l \le n+1$$
 gilt $k_{n,j} \circ \iota_{n+1,l} = (\iota_{n,l-1} \times \mathrm{id}_{[0,1]}) \circ k_{n-1,j}$

(iii) Für
$$1\leqslant j+1=l\leqslant n$$
 gilt $k_{n,j}\circ\iota_{n+1,l}=k_{n,j+1}\circ\iota_{n+1,l}$

(iv) Für
$$l=0, j=0$$
 ist $k_{n,j}\circ\iota_{n+1,l}=i_1:\Delta^n\to\Delta^n\times[0,1]$

(v) Für
$$l=n, j=n+1$$
 ist $k_{n,j}\circ\iota_{n+1,l}=i_0:\Delta^n\to\Delta^n\times[0,1]$

Beweis

Wir zeigen hier nur exemplarisch die erste Gleichung: Die linke Seite der Gleichung entspricht

und die rechte Seite entspricht

Also folgt insgesamt die Gleichheit. Die anderen Gleichungen folgen genauso.

7.12 Beweis von [##]

Sei $h_n \colon C_n(X;R) \to C_{n+1}(X \times [0,1];R)$ definiert durch

$$h_n(\sigma) := \sum_{j=0}^n (-1)^j \cdot (\sigma \times \mathrm{id}) \circ k_{n,j}$$

24 7 Homotopieinvarianz

 h_* ist die gesuchte Kettenhomotopie, da für $n \in \mathbb{N}$ unter Anwendung der Gleichungen aus 7.12 gilt:

$$\begin{split} \partial_{n+1} \big(h_n(\sigma) \big) &= \partial_{n+1} \left(\sum_{j=0}^n (-1)^j \cdot (\sigma \times \operatorname{id}) \circ k_{n,j} \right) \\ &= \sum_{l=0}^{n+1} \sum_{j=0}^n (-1)^{j+l} \cdot (\sigma \times \operatorname{id}) \circ k_{n,j} \circ \iota_{n+1,l} \qquad \qquad \text{(nach Definition 5.2)} \\ &= \sum_{0 \leqslant l < j \leqslant n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j-1} + \sum_{1 \leqslant j+1 < l \leqslant n+1} (-1)^{j+l} \big((\sigma \circ \iota_{n,l-1}) \times \operatorname{id} \big) \circ k_{n-1,j} \\ &+ \sum_{1 \leqslant j+1 = l \leqslant n} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ k_{n,j+1} \circ \iota_{n+1,l} + \sum_{1 \leqslant j=l \leqslant n} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 = l = j} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ i_0 \\ &= \sum_{0 \leqslant l \leqslant j \leqslant n-1} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + \sum_{1 \leqslant j=l \leqslant n} (-1)^{j+l+1} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n,j} \circ \iota_{n+1,l} \\ &+ \sum_{0 \leqslant l \leqslant j \leqslant n-1} (-1)^{j+l} \big((\sigma \times \operatorname{id}) \circ i_1 + \sum_{n+1 = j+1 = l} (-1)^{j+l} (\sigma \times \operatorname{id}) \circ i_0 \\ &= -\sum_{0 \leqslant l \leqslant n} (-1)^{j+l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + (\sigma \times \operatorname{id}) \circ i_1 - (\sigma \times \operatorname{id}) \circ i_0 \\ &= -\sum_{j=0} (-1)^{j} \sum_{l=0} (-1)^{l} \big((\sigma \circ \iota_{n,l}) \times \operatorname{id} \big) \circ k_{n-1,j} + \underbrace{(\sigma \times \operatorname{id}) \circ i_1 - (\sigma \times \operatorname{id}) \circ i_0}_{=i_1 \circ \sigma} = -k_{n-1} (\partial_n \sigma) + C_n(i_1; R)(\sigma) - C_n(i_0; R)(\sigma) \end{split}$$

7.13 Bemerkung

Ist $H\colon X\times [0,1]\to Y$ eine Homotopie zwischen f und g, so erhalten wir eine Kettenhomotopie k zwischen $C_*(f;R)$ und $C_*(g;R)$ durch

$$k_n(\sigma) := C_{n+1}(H; R) \circ h_n = \sum_{j=0}^n (-1)^j H \circ (\sigma \times \mathrm{id}) \circ k_{n,j}$$

7 Homotopieinvarianz 25

8 Homologie von Paaren

8.1 Definition

Sei A ein Teilraum von X, dann heißt (X,A) ein **Paar von topologischen Räumen**. Eine Abbildung von Paaren $f \colon (X,A) \to (Y,B)$ ist eine stetige Abbildung $f \colon X \to Y$ mit $f(A) \subseteq B$. Manchmal schreiben wir $(f,f|_A) \colon (X,A) \to (Y,B)$.

Die Kategorie von Paaren von topologischen Räumen bezeichnen wir mit Top².

8.2 Definition

Sei (X,A) ein Paar. Dann definieren wir den **singulären Kettenkomplex** von (X,A) über R durch

$$C_n(X, A; R) := {}^{C_n(X;R)}/{}^{C_n(A;R)}$$
$$\partial_n(\sigma + C_n(A; R)) := \partial_n\sigma + C_{n-1}(A; R)$$

Dies ist wohldefiniert, da $\partial_n(C_n(A;R)) \subseteq C_{n-1}(A;R)$. Weiter heißt

$$H_n(X, A; R) := H_n(C_*(X, A; R), \partial_*)$$

der \mathbf{n} -te singuläre Homologiemodul von (X,A) mit Koeffizienten in R.

8.3 Bemerkung

Der singuläre Kettenkomplex von Paaren definiert einen Funktor: $Top^2 \to R$ -Ketten. Durch Komposition mit Homologie (als Funktor R-Ketten $\to R$ -Mod) erhalten wir einen Funktor

$$H_n(-,-;R) \colon \mathsf{Top}^2 \longrightarrow R\mathsf{-Mod}$$

8.4 Bemerkung

Via $X \mapsto (X, \emptyset)$ können wir jeden Raum auch als Paar auffassen. Es gilt $H_n(X, \emptyset; R) = H_n(X; R)$.

8.5 Frage

Können wir $H_n(X, A; R)$ durch $H_n(X; R)$ und $H_n(A; R)$ ausdrücken?

Ansatz 1:

$$H_n(X, A; R) \cong H_n(X; R)/H_n(A; R)$$

 \blacktriangle Problem: $H_n(A;R)$ ist kein Untermodul von $H_n(X;R)$

Ansatz 2: Ist $H_n(X;R) \to H_n(X,A;R)$ surjektiv?

Sei
$$x \in H_n(X, A; R)$$
. Dann gibt es $\sigma + C_n(A; R) \in C_n(X, A; R)$ mit $\partial_n (\sigma + C_n(A; R)) = 0$ und $x = [\sigma]$. Es ist $\sigma \in C_n(X; R)$, aber wir wissen nur $\partial_n \sigma \in C_{n-1}(A; R)$, nicht $\partial_n (\sigma) = 0$.

8.6 Beispiel

In $C_n(|\Delta^n|, |\partial\Delta^n|; R)$ gilt für $\sigma := \mathrm{id} \colon |\Delta^n| \to |\Delta^n|$, dass $\partial_n([\sigma]) = 0$ ist, da $\partial_n \sigma \in C_{n-1}(|\partial\Delta^n|; R)$. Wir werden später sehen, dass $[\sigma]$ den Homologiemodul

$$H_n(|\Delta^n|, |\partial \Delta^n|; R) \cong R$$

erzeugt.

8.7 Definition

Eine Folge von R-linearen Abbildungen zwischen R-Moduln M_i

$$\cdots \longrightarrow M_n \xrightarrow{f_n} M_{n-1} \xrightarrow{f_{n-1}} M_{n-2} \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0$$

heißt lange exakte Folge, wenn sie exakt an jeder Stelle M_i ist, d.h. für alle i gilt $\operatorname{Im} f_i = \ker f_{i-1}$.

8.8 Satz

Es gibt eine natürliche Transformation ∂_n von $(X,A)\mapsto H_n(X,A;R)$ nach $(X,A)\mapsto H_{n-1}(A;R)$, sodass für jedes Paar (X,A)

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \longrightarrow \cdots$$

$$[*]$$

$$\cdots \xrightarrow{\partial_1} H_0(A;R) \longrightarrow H_0(X;R) \longrightarrow H_0(X,A;R) \longrightarrow 0$$

eine lange exakte Folge ist. Dabei sind $i\colon A\hookrightarrow X$ und $j\colon (X,\emptyset)\hookrightarrow (X,A)$ die Inklusionen. Das bedeutet:

Für jedes Paar (X,A) haben wir eine R-lineare Abbildung $\partial_n \colon H_n(X,A;R) \to H_{n-1}(A;R)$, sodass für jede Abbildung $(f,f|_A)\colon (X,A) \to (Y,B)$ von Paaren folgendes Diagramm kommutiert

$$H_n(X, A; R) \xrightarrow{\partial_n} H_{n-1}(A; R)$$

$$\downarrow^{(f, f|_A)_*} \qquad \downarrow^{(f|_A)_*}$$

$$H_n(Y, B; R) \xrightarrow{\partial_n} H_{n-1}(B; R)$$

Beweis

siehe 8.13.

8.9 Korollar

- (1) Ist die Inklusion $i: A \to X$ eine Homotopieäquivalenz, so ist $H_n(X,A;R) = 0$ für alle n.
- (2) Sei A kontraktibel. Dann gilt für alle $n\geqslant 1$. $H_n(X;R)\cong H_n(X,A;R)$

Beweis

(1) Betrachte den folgenden Ausschnitt aus der langen exakten Folge:

$$H_n(A;R) \xrightarrow{i_*} H_n(X;R) \xrightarrow{j_*} H_n(X,A;R) \xrightarrow{\partial_n} H_{n-1}(A;R) \xrightarrow{i_*} H_n(X;R)$$

Nach 7.4 ist $i_*: H_n(A;R) \to H_n(X;R)$ ein Isomorphismus. Wegen der Exaktheit gilt $\ker j_* = \operatorname{Im} i_* = H_n(X;R)$, also folgt $j_* = 0$. Da $\operatorname{Im} \partial_n = \ker i_* = 0$, folgt $\partial_n = 0$. Nun ist

$$H_n(X, A; R) = \ker \partial_n = \operatorname{Im} j_* = 0$$

(2) Übung!

8 Homologie von Paaren 27

8.10 Definition

Seien

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$
 [#]

R-Kettenabbildungen. Ist für jedes n die Folge $C_n \xrightarrow{i_n} C'_n \xrightarrow{p_n} C''_n$ kurz exakt, so heißt [#] eine kurze exakte Folge von Kettenkomplexen.

8.11 Beispiel

Für jedes Paar (X, A) ist

$$(C_*(A;R),\partial_*) \xrightarrow{i_*} (C_*(X;R),\partial_*) \xrightarrow{j_*} (C_*(X,A;R),\partial_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

8.12 Schlangenlemma

Sei

$$(C_*, d_*) \xrightarrow{i_*} (C'_*, d'_*) \xrightarrow{p_*} (C''_*, d''_*)$$

eine kurze exakte Folge von R-Kettenkomplexen.

a) Für jedes n gibt es eine eindeutige wohldefinierte R-lineare Abbildung $\partial_n\colon H_n(C_*'',d_*'')\to H_{n-1}(C_*,d_*)$ mit: Für $v'\in C_n'$ mit $d_n''\circ p_n(v')=0$ ist

$$\partial_n \left(\underbrace{[p_n(v')]}_{\in H_n(C''_*, d'_*)} = [v] \in H_{n-1}(C_*, d_*)$$

wobei $v \in C_{n-1}$ bestimmt ist durch $i_{n-1}(v) = d'_n(v')$.

b)

$$\cdots \xrightarrow{\partial_{n+1}} H_n(C_*, d_*) \xrightarrow{i_*} H_n(C'_*, d'_*) \xrightarrow{p_*} H_n(C''_*, d''_*) \xrightarrow{\partial_n}$$

$$\downarrow H_{n-1}(C_*, d_*) \xrightarrow{i_*} H_{n-1}(C'_*, d'_*) \xrightarrow{p_*} \cdots \xrightarrow{\partial_1}$$

$$\downarrow H_0(C_*, d_*) \xrightarrow{i_*} H_0(C''_*, d'_*) \xrightarrow{p_*} H_0(C''_*, d''_*) \xrightarrow{0} 0$$

RevChap8

ist eine lange exakte Folge.

Beweis

$$C_{n+1} \xrightarrow{i_{n+1}} C'_{n+1} \xrightarrow{p_{n+1}} C''_{n+1}$$

$$\downarrow^{d_{n+1}} \qquad \downarrow^{d'_{n+1}} \qquad \downarrow^{d''_{n+1}}$$

$$C_{n} \xrightarrow{i_{n}} C'_{n} \xrightarrow{p_{n}} C''_{n}$$

$$\downarrow^{d_{n}} \qquad \downarrow^{d'_{n}} \qquad \downarrow^{d''_{n}}$$

$$C_{n-1} \xrightarrow{i_{n-1}} C'_{n-1} \xrightarrow{p_{n-1}} C''_{n-1}$$

$$\downarrow^{d_{n-1}} \qquad \downarrow^{d'_{n-1}} \qquad \downarrow^{d''_{n-1}}$$

$$C_{n-2} \xrightarrow{i_{n-2}} C'_{n-2} \xrightarrow{p_{n-2}} C''_{n-2}$$

Sei $x'' \in H_n(C_*'', d_*'')$, also x'' = [v''] mit $v'' \in \ker d_n''$. Da p_n surjektiv ist, existiert $v' \in C_n'$ mit $p_n(v') = v''$. Es gilt

$$p_{n-1}d'_n(v') = d''_n p_n(v') = d''_n(v'') = 0$$

 $\Rightarrow v' \in \ker p_{n-1}$. Weiter gilt $\ker p_{n-1} = \operatorname{Im} i_{n-1}$, also $\exists v \in C_{n-1} : i_{n-1}(v) = d'_n(v')$. Dann gilt

$$i_{n-2}(d_{n-1}(v)) = d'_{n-1}(i_{n-1}(v)) = d'_{n-1}(d'_n(v')) = 0$$

Da i_{n-2} injektiv ist, folgt somit $d_{n-1}(v)=0$. Setze $\partial_n(x''):=[v]$. Zu zeigen: $[v]\in H_{n-1}(C_*,d_*)$ ist unabhängig von der Wahl von v'' und v'. Seien $w''\in\ker d_n'',\ w'\in C_n',\ w\in C_{n-1}$ mit x''=[w''], $p_n(w')=w''$ und $i_{n-1}(w)=d_n'(w')$.

[v'']=[w''], also folgt $\exists a''\in C''_{n+1}: d''_{n+1}(a'')=v''-w''$. p_{n+1} ist surjektiv, also existiert $a'\in C'_{n+1}$ mit $p_{n+1}(a')=a''$. Es gilt

$$p_n(v'-w'-d'_{n+1}(a')) = v''-w''-\underbrace{d_{n+1}(p_{n+1}(a'))}_{v''-w''} = 0$$

Mit $\ker p_n = \operatorname{Im} i_n$ folgt: $\exists a \in C_n$ mit $i_n(a) = v' - w' - d_{n+1}(a')$. Es bleibt zu zeigen: $d_n(-a) = v - w$.

$$\begin{split} i_{n-1} \big(-d_n(a) - (v - w) \big) &= -i_{n-1} (d_n(a)) - i_{n-1} (v - w) \\ &= -d'_n (i_n(a)) - (d'_n(v') - d'_n(w')) \\ &= -d'_n \big(d'_{n+1}(a') - (v' - w') \big) - (d'_n(v') - d'_n(w')) \\ &= -d'_n d'_{n+1}(a') + d'_n (v' - w') - (d'_n(v' - w')) = 0 \end{split}$$

da i_{n-1} injektiv ist, folgt $-d_n(a) - (v - w) = 0$, also $d_n(-a) = (v - w)$.

$$\underline{\text{Im}(i_n)_* = \ker(p_n)_*}$$
: " \subseteq ": $(p_n)_* \circ (i_n)_* = (p_n - i_n)_* = (0)_* = 0$

" \supseteq ": Sei $x' \in \ker(p_n)_*$. Sei x' = [v'] mit $v' \in C_n'$, $d_n'(v') = 0$. Da $[p_n(v')] = (p_n)_*[x'] = 0$ gibt es $a'' \in C_n''$ mit $d_{n+1}''(a'') = p_n(v')$. Da p_{n+2} surjektiv ist, existiert $a' \in C_{n+1}'$ mit $p_{n+1}(a') = a''$. Dann gilt

$$p_n(v' - d'_{n+1}(a')) = p_n(v') - p_n d'_{n+1}(a') = p_n(v') - \underbrace{d''_{n+1}(\underbrace{p_{n+1}(a')}_{p_n(v')})}_{=a''} = 0$$

Da $\ker p_n = \operatorname{Im} i_n$ gibt es $a \in C_n$ mit $i_n(a) = v' - d'_{n+1}(a')$. Nun ist

$$i_{n-1}(d_n(a)) = d'_n(i_n(a)) = d'_n(v' - d_{n+1}(a')) = d'_n(v') = 0$$

Da i_{n-1} injektiv ist, folgt $d_n(a)=0$. Insbesondere $[a]\in H_n((C_*,d_*))$. Nun ist

$$(i_n)_*[a] = [i_n(a)] = [v' - d'_{n+1}(a')] = [v'] = x'$$

Also $x' \in \operatorname{Im}(i_n)_*$.

$$\underline{\operatorname{Im}}\,\partial_{n+1} = \ker(i_n)_* : \quad "\subseteq" : \quad i_n(d_{n+1}(x'')) = 0 \quad \checkmark$$

">": Sei
$$x \in \ker(i_n)_*$$
. Sei $v \in C_n$, $d_n(v) = 0$, $[v] = x \rightarrow x = d_n[v'']$.

8.13 Beweis von Satz 8.8

Für jedes Paar (X, A) ist die Folge der singulären Kettenkomplexe

$$\left(C_*(A;R),\partial_*^A\right) \overset{C_*(i;R)}{\longrightarrow} \left(C_*(X;R),\partial_*^X\right) \overset{C_*(j;R)}{\longrightarrow} \left(C_*(X,A;R),\partial_*^{(X,A)}\right)$$

kurz exakt. Das Schlangenlemma 8.12 produziert $\partial_n\colon H_n(X,A;R)\to H_{n-1}(A;R)$ und die lange exakte Sequenz [*]. Es bleibt zu zeigen, dass die Randabbildungen aus dem Schlangenlemma wie behauptet eine natürliche Transformation definieren: Sei $(f,f|_A)\colon (X,A)\to (Y,B)$ eine Abbildung von Paaren. Zu zeigen ist, dass

$$H_n(X, A; R) \xrightarrow{\partial_n} H_{n-1}(A; R)$$

$$\downarrow^{(f, f|_A)_*} \qquad \downarrow^{(f|_A)_*}$$

$$H_n(Y, B; R) \xrightarrow{\partial_n} H_{n-1}(B; R)$$

kommutiert. Sei $x'' \in H_n(X,A;R)$. Sei $v' \in C_n(X;R)$ mit $\partial_n^X(v') \in C_n(A;R)$ und $[v' + C_n(A;R)] = x''$. Dann ist $\partial_n(x'') = [\partial_n^X(v')] \in H_{n-1}(A;R)$. Dann ist

$$(f, f|_A)_*(x'') = (f, f|_A)_*[v' + C_n(A; R)] = [f(v') + C_n(B; R)] \in H_n(Y, B; R)$$

Es ist
$$\partial_n^Y \left(f_*(v')\right) = (f|_A)_* \left(\underbrace{\partial_n^X(v')}_{\in C_n(A;R)}\right) \in C_n(B;R)$$
. Also

$$\partial_n \left((f, f|_A)_*(x'') \right) = \left[\partial_n^Y \left(f_*(v') \right) \right] = \left[f_* \circ \partial_n^X (v') \right] = f_* \partial_n(X'')$$

8.14 Bemerkung

Für eine Abbildung $(f, f|_A)$: $(X, A) \rightarrow (Y, B)$ erhalten wir ein kommutierendes Diagramm:

8.15 Fünfer-Lemma

Seien die Zeilen in folgendem kommutativen Diagramm von R-Moduln exakt.

$$A_{4} \xrightarrow{\alpha_{4}} A_{3} \xrightarrow{\alpha_{3}} A_{2} \xrightarrow{\alpha_{2}} A_{1} \xrightarrow{\alpha_{1}} A_{0}$$

$$f_{4} \downarrow \cong \qquad f_{3} \downarrow \cong \qquad f_{2} \downarrow \qquad f_{1} \downarrow \cong \qquad f_{0} \downarrow \cong$$

$$B_{4} \xrightarrow{\beta_{4}} B_{3} \xrightarrow{\beta_{3}} B_{2} \xrightarrow{\beta_{2}} B_{1} \xrightarrow{\beta_{1}} B_{0}$$

Sind f_4, f_3, f_1 und f_0 Isomorphismen, so ist auch f_2 ein Isomorphismus.

Beweis

Injektivität: Sei $a_2 \in A_2$ und $f_2(a_2) = 0$. $f_1\big(\alpha_2(a_2)\big) = \beta_2\big(f_2(a_2)\big) = \beta_2(0) = 0$. Da f_1 ein Isomorphismus ist, folgt $\alpha_2(a_2) = 0$. $a_2 \in \ker \alpha_2 = \operatorname{Im} \alpha_3$, also existiert $a_2 \in A_3$ mit $\alpha_3(a_3) = a_2$. Es gilt

$$\beta_3(f_3(a_3)) = f_2(\alpha_3(a_3)) = f_2(a_2) = 0$$

30

Also $f_3(a_3) \in \ker \beta_3 = \operatorname{Im} \beta_4$. Da f_4 Isomorphismus ist, gibt es $a_4 \in A_4$ mit $\beta_4(f_4(a_4)) = f_3(a_3)$. Nun gilt

$$f_3(\alpha_4(a_4) - a_3) = f_3(\alpha_4(a_4)) - f_3(a_3) = \beta_4(f_4(a_4)) - f_3(a_3) = f_3(a_3) - f_3(a_3) = 0$$

Da f_3 ein Isomorphismus ist, folgt nun $\alpha_4(a_4)=a_3$. Nun ist

$$a_2 = \alpha_3(\alpha_3) = \alpha_3(\alpha_4(a_4)) = \underbrace{\alpha_3 \circ \alpha_4}_{=0}(a_4) = 0$$

Surjektivität: Sei $b_2 \in B_2$. Fall 1: $\beta_2(b_2) = 0$. Da $\operatorname{Im} \beta_3 = \ker \beta_2$ und f_3 Isomorphismus, folgt $\exists a_3 \in A_3$ mit $\beta_3 \big(f_3(a_3) \big) = b_2$. Also ist $b_2 = \beta_3 \big(f_3(a_3) \big) = f_2 \big(\alpha_3(a_3) \big) \in \operatorname{Im} f_2$.

Ist b_2 beliebig, so genügt es zu zeigen: $\exists a_2 \in A_2 \text{ mit } \beta_2 \big(b_2 - f_2(a_2)\big) = 0$. f_1 ist ein Isomorphismus, also $\exists a_1 \in A_1 \text{ mit } f_1(a_1) = \beta_2(b_2)$. Dann folgt

$$f_0(\alpha_1(a_1)) = \beta_1(f_1(a_1)) = \beta_1(\beta_2(b_2)) = \underbrace{\beta_1 \circ \beta_2}_{=0}(b_2) = 0$$

Da f_0 ein Isomorphismus ist, folgt $\alpha_1(a_1)=0$. Da $\ker \alpha_1=\operatorname{Im}\alpha_2$, folgt $\alpha_2(a_2)=a_1$. Es gilt nun

$$\beta_2(b_2 - f_2(a_2)) = \beta_2(b_2) - \beta_2(f_2(a_2)) = \beta_2(b_2) - f_1(\alpha_2(a_2))$$
$$= \beta_2(b_2) - f_1(a_1) = \beta_2(b_2) - \beta_2(b_2) = 0 \qquad \Box$$

8.16 Lemma ("2 von 3")

Sei $f:(X,A)\to (Y,B)$ eine Abbildung von Paaren. Seien von den drei Abbildungen

(i)
$$(f|_A)_*: H_n(A;R) \to H_n(B;R)$$

(ii)
$$f_*: H_n(X; R) \to H_n(Y; R)$$

(iii)
$$(f, f|_A)_*: H_n(X, A; R) \to H_n(Y, B; R)$$

zwei für jeweils alle n Isomorphismen. Dann ist auch die dritte für alle n ein Isomorphismus.

Beweis

Da die Randabbildung in der Paarfolge eine natürliche Transformation ist, erhalten wir ein kommutatives Leiterdiagramm:

"R" aus Platzgründen weggelassen

$$H_{n+1}(A) \longrightarrow H_{n+1}(X) \longrightarrow H_{n+1}(X,A) \xrightarrow{\partial_{n+1}} H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \xrightarrow{\partial_n} H_{n-1}(A)$$

$$\downarrow (f|_A)_* \qquad \downarrow f_* \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f|_A)_* \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f,f|_A)_* \qquad \downarrow (f|_A)_*$$

$$H_{n+1}(B) \longrightarrow H_{n+1}(Y) \longrightarrow H_{n+1}(Y,B) \xrightarrow{\partial_{n+1}} H_n(B) \longrightarrow H_n(Y) \longrightarrow H_n(Y,B) \xrightarrow{\partial_n} H_{n-1}(B)$$

Da die Zeilen lang exakt sind, folgt die Behauptung aus dem Fünfer-Lemma.

8 Homologie von Paaren 31

9 Ausschneidung und die Mayer-Vietoris Folge

9.1 Satz

Sei (X,A) ein Paar und $L\subseteq A$, sodass der Abschluss \overline{L} von im Inneren \mathring{A} von A liegt. Dann induziert die Inklusion $(X\setminus L,A\setminus L)\xrightarrow{j} (X,A)$ einen Isomorphismus $j_*\colon H_n(X\setminus L,A\setminus L;R)\to H_n(X,A;R)$.

Beweis

RevChap9

Siehe Kapitel 13.

9.2 Satz (Mayer-Vietoris Folge)

Seien $A,B\subseteq X$ offen und $X=A\cup B$. Seien $i_A\colon A\hookrightarrow X$, $i_B\colon B\hookrightarrow X$, $j_A\colon A\cap B\hookrightarrow A$ und $j_B\colon A\cap B\hookrightarrow B$ die Inklusionen. Dann gibt es eine Randabbildung $\partial_n=\partial_n^{X=A\cup B}\colon H_n(X;R)\to H_{n-1}(A\cap B;R)$, sodass

"R" aus Platzgründen weggelassen

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A \cap B) \xrightarrow{\binom{(j_A)_*}{(j_B)_*}} \bigoplus_{H_n(B)}^{H_n(A)} \bigoplus_{H_n(B)}^{(i_A)_* - (i_B)_*} H_n(X) \xrightarrow{\partial_n} H_{n-1}(A \cap B) \xrightarrow{} \cdots$$

eine lange exakte Folge ist. Die Randabbildung ist dabei eine natürlicher Transformation: Sei $A', B' \subseteq X'$ offen mit $X' = A' \cup B'$. ist $f \colon X \to X'$ mit $f(A) \subseteq A'$ und $f(B) \subseteq B'$, so kommutiert

$$H_n(X;R) \xrightarrow{\partial_n^{X=A\cup B}} H_{n-1}(A\cap B;R)$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{(f|_{A\cap B})_*}$$

$$H_n(X';R) \xrightarrow{\partial_n^{X'=A'\cup B'}} H_n(A'\cap B';R)$$

Beweis

Sei $L:=X\setminus B$. Dann ist L abgeschlossen und $L\subseteq A=\mathring{A}$. Wir erhalten daher einen Ausschneideisomorphismus

$$H_n(B, A \cap B; R) = H_n(X \setminus L, A \setminus L; R) \xrightarrow{\cong} H_n(X, A; R)$$

"R" aus Platzgründen weggelassen Betrachte das folgende kommutative Leiterdiagramm:

$$\cdots \longrightarrow H_{n+1}(B, A \cap B) \xrightarrow{\partial_{n+1}^{B, A \cap B}} H_n(A \cap B) \xrightarrow{(j_B)_*} H_n(B) \xrightarrow{(l_B)_*} H_n(B, A \cap B) \xrightarrow{\partial_n^{B, A \cap B}} H_{n-1}(A \cap B) \longrightarrow \cdots$$

$$\cong \downarrow (i_B, j_A)_* \qquad \downarrow (j_A)_* \qquad \downarrow (i_B)_* \qquad \cong \downarrow (i_B, j_A)_* \qquad \downarrow (j_A)_*$$

$$\cdots \longrightarrow H_{n+1}(X, A) \xrightarrow{\partial_{n+1}^{X, A}} H_n(A) \xrightarrow{(i_A)_*} H_n(X) \xrightarrow{(l_X)_*} H_n(X, A) \xrightarrow{\partial_n^{X, A}} H_{n-1}(A) \longrightarrow \cdots$$

dabei sind $l_B\colon (B,\emptyset) \to (B,A\cap B)$ und $l_X\colon (X,\emptyset) \to (X,A)$ die Inklusionen von Paaren. Definiere nun $\partial_n\colon H_n(X;R) \to H_{n-1}(A\cap B;R)$ durch

$$\partial_n := \partial_n^{B,A\cap B} \circ (i_B, i_A)_*^{-1} \circ (l_X)_*$$

Die Natürlichkeit von $\partial_n^{B,A\cap B}$ impliziert die Natürlichkeit von ∂_n .

• Zu zeigen:
$$\operatorname{Im} \binom{(j_A)_*}{(j_B)_*} = \ker ((i_A)_* - (i_B)_*)$$
:

"
$$\supseteq$$
": Sei $(a,b) \in \ker((i_A)_* - (i_B)_*)$. Also $(i_A)_*(a) = (i_B)_*(b)$. Es ist

$$(i_B, j_A)_* ((l_B)_*(b)) = (l_X)_* \circ (j_B)_*(b) = \underbrace{(l_X)_* \circ (i_A)_*}_{=0} (a) = 0$$

 $(i_B,j_A)_*$ ist ein Isomorphismus, also $(l_B)_*(b)=0$. $\ker(l_B)_*=\operatorname{Im}(j_B)_*$. Damit folgt $\exists x\in H_n(A\cap B;R): (j_B)_*(x)=b$. Dann gilt

$$(i_A)_*(a-(j_A)-*(x))=(i_A)_*(a)-i_B((j_B)_*(x))=(i_A)_*(a)-(i_B)_*(b)=0$$

Mit $\ker(i_A)_* = \operatorname{Im} \partial_n^{X,A}$ und $(i_B, j_A)_*$ ist Isomorphismus, folgt $\exists y \in H_{n+1}(B, A \cap B; R)$ mit

$$\partial_n^{X,A} \circ (i_B, j_A)_*(y) = a - (j_A)_*(x)$$

Es folgt für $z := x + \partial_n^{B,A \cap B}(y)$.

$$(j_B)_*(z) = (j_B)_*(x) = b$$

$$(j_A)_*(z) = (j_A)_*(x) + (j_A)_*(\partial^{B,A\cap B}(y))_n$$

$$= (j_A)_*(x) + \partial_n^{X,A} \circ (i_B, j_A)_*(y)$$

$$= (j_A)_*(x) + a - (j_A)_*(x) = a$$

" \subseteq ": Sei $x \in H_n(A \cap B; R)$. Dann gilt

$$((i_A)_* - (i_B)_*) \begin{pmatrix} (j_A)_* \\ (j_B)_* \end{pmatrix} (x) = (i_A)_* \circ (j_A)_* (x) - (i_B)_* \circ (j_B)_* (x)$$
$$= (i_A \circ j_A)_* (x) - (i_B \circ j_B)_* (x) = 0$$

da $i_A \circ j_A = i_B \circ j_B$.

• Wir zeigen nun $\operatorname{Im}(i_A)_* - (i_B)_* = \ker \partial_n$:

"\geq": Sei
$$v \in \ker \partial_n$$
.

Rest hinzufügen

"
$$\subseteq$$
": Sei $\left(\begin{smallmatrix} a \\ b \end{smallmatrix} \right) \in \bigoplus_{H_n(B)}^{H_n(A)}$. Dann gilt

$$\partial_n((i_A)_* - (i_B)_*)({}^a_b) = \partial_n((i_A)_*(a) - (i_B)_*(b)) = 0$$

• Noch zu zeigen: $\operatorname{Im} \partial_n = \ker \left(\begin{smallmatrix} (j_A)_* \\ (j_B)_* \end{smallmatrix} \right)$. Übung!

9.3 Bemerkung

Für die Mayer-Vietoris-Folge müssen A und B nicht notwendig offen sein. Es genügt, dass die Inklusion $(B,A\cap B)\hookrightarrow (X,A)$ einen Isomorphismus $H_*(B,A\cap B;R)\to H_*(X,A;R)$ induziert.

9.4 Satz

$$H_k(S^n;R) \cong \begin{cases} R \oplus R, & \text{falls } k=n=0 \\ R, & \text{falls } k=0, n \neq 0 \\ R, & \text{falls } k=n \neq 0 \\ 0, & \text{sonst} \end{cases}$$
 [#]

9.5 Definition

Sei X ein nichtleerer topologischer Raum. Sei $p\colon X\to \{\mathrm{pt}\}$ die Projektion auf den Ein-Punkt-Raum. die **reduzierte singuläre Homologie** von X ist definiert durch

$$\tilde{H}_k(X;R) := \ker \Big(p_* \colon H_k(X;R) \to H_k(\{\mathrm{pt}\};R) \Big)$$

Bemerkung

- Es gilt $\tilde{H}_k(X;R) = H_k(X;R)$ für k > 0, da $H_k(\{\text{pt}\};R) = 0$ ist für k > 0 (5.9) und somit p_* die Nullabbildung ist.
 - Weiter gilt $H_0(X;R) = R \oplus \tilde{H}_0(X;R)$, da $H_0(\{\text{pt}\};R) = R$ frei ist.
- Es ist nicht schwer die Eigenschaften von singulärer Homologie auf die reduzierte singuläre Homologie zu übertragen. Insbesondere ist \tilde{H}_* homotopieinvariant und es gibt eine Mayer-Vietoris-Folge.
- Es ist $\tilde{H}_k(\{\text{pt}\}) = 0$.

9.6 Bemerkung

In reduzierter singulärer Homologie wird [#] zu

$$\tilde{H}_k(S^n;R)\cong \begin{cases} R, & \text{falls } k=n\\ 0, & \text{sonst} \end{cases}$$
 [##]

9.7 Beweis von [##]

Per Induktion nach n:

Induktionsanfang: n = 0: Es gilt

$$H_k(S^0;R) \stackrel{\varphi}{\cong} H_k\big(\{\mathrm{pt}\};R\big) \oplus H_k\big(\{\mathrm{pt}\};R\big) = \begin{cases} R \oplus R, & \text{falls } k = 0 \\ 0, & \text{sonst} \end{cases}$$

Sei $i_-:\{\mathrm{pt}\}\hookrightarrow S^0$, $i_+:\{\mathrm{pt}\}\hookrightarrow S^0$. Im $i_{pm}=\{\pm 1\}$. Der Isomorphismus φ ist gegeben durch $\varphi=(i_-)_*+(i_+)_*$. Für $(a,b)\in H_k(\{-1\};R)\oplus H_k(\{+1\};R)$ gilt dann

$$p_*(i_-(a), i_+(b)) = (p \circ i_-)_*(a) + (p \circ i_+)(b) = \mathrm{id}_*(a) + \mathrm{id}_*(b) = a + b$$

Also $\ker p_* = \{(a, -a) \mid a \in H_k(\{ pt \}; R) \}$. Also

$$ilde{H}_k(S^0) = egin{cases} 0, & \text{falls } k
eq 0 \\ R, & \text{falls } k = 0 \end{cases}$$

Induktionsschritt: $n-1\mapsto n$: Sei $D_n^+=S^n\setminus\{(-1,0,\dots,0)\}$ und $D_n^-=S^n\setminus\{1,0,\dots,0\}$. Dann gilt $S^n=D_n^+\cup D_n^-$ und $D_n^+,D_n^-\subseteq S^n$ offen und $D_n^+\simeq\{\mathrm{pt}\}$ und $D_n^-\simeq\{\mathrm{pt}\}$ Weiter gilt

$$D_n^+ \cap D_n^- = \{x = (x_0, \dots, x_n) \in S^n \mid x_0 \notin \{\pm 1\}\} \simeq S^{n-1} = \{x = (0, x_1, \dots, x_n) \in S^n\}.$$

Betrachte nun die Mayer-Vietoris-Folge zu $S^n = D_n^+ \cup D_n^-$:

$$\tilde{H}_{k}(D_{n}^{+}) \oplus \tilde{H}_{k}(D_{n}^{-}) \longrightarrow \tilde{H}_{k}(S^{n}) \xrightarrow{\frac{\partial_{k}}{\cong}} \tilde{H}_{k-1}(D_{n}^{+} \cup D_{n}^{-}) \longrightarrow \tilde{H}_{k-1}(D_{n}^{+}) \oplus \tilde{H}_{k-1}(D_{n}^{-}) \\
\cong \uparrow (\iota_{*})$$

$$\tilde{H}_{k-1}(S^{n-1})$$

"R" aus Platzgründen weggelassen

$$\text{Es folgt } \tilde{H}_k(S^n;R) \cong \tilde{H}_{k-1}(S^{n-1};R) \stackrel{\text{I.A.}}{=} \begin{cases} R, & \text{falls } k=1 \\ 0, & \text{sonst} \end{cases} \qquad \square$$

10 Anwendungen

10.1 Satz (Invarianz der Dimension)

RevChap10

Sind \mathbb{R}^n und \mathbb{R}^m homöomorph, so gilt n=m.

Beweis

Sei $h:\mathbb{R}^n\to\mathbb{R}^m$ ein Homöomorphismus. Sei $x_0\in\mathbb{R}^n$ beliebig. Dann erhalten wir auch einen Homöomorphismus $k:=h\big|_{\mathbb{R}^n\setminus\{x_0\}}:\mathbb{R}^n\setminus\{x_0\}\to\mathbb{R}^m\setminus\{h(x_0)\}$. Nun ist $\mathbb{R}^n\setminus\{x_0\}$ homotopieäquivalent zu S^{n-1} und $\mathbb{R}^m\setminus\{h(x_0)\}$ ist homotopieäquivalent zu S^{m-1} . Da k ein Homöomorphismus ist, ist k_* ein Isomorphismus. Wir erhalten

$$H_*(S^{n-1}) \cong H_*(\mathbb{R}^n \setminus \{x_0\}) \cong H_*(\mathbb{R}^m \setminus \{h(x_0)\}) \cong H_*(S^{m-1})$$

Es ist aber $H_*(S^{n-1}) \cong H_*(S^{m-1})$ genau dann, wenn n = m.

10.2 Fixpunktsatz von Brouwer

Jede stetige Abbildung $f: D^n \to D^n$ besitzt einen Fixpunkt.

Beweis

 \not E: $n \geqslant 2$

Durch Widerspruch: Angenommen es gibt $f:D^n\to D^n$ ohne Fixpunkt. Aus dem letzten Semester wissen wir, dass es dann eine stetige Abbildung $F:D^n\to S^{n-1}$ gibt mit $F|_{S^{n-1}}=\mathrm{id}_{S^{n-1}}$. In Homologie erhalten wir folgendes kommutatives Diagramm

wobei $i:S^{n-1}\hookrightarrow D^n$ die Inklusion ist. Da $F\circ i=\mathrm{id}_{S^{n-1}}$ ist, gilt $F_*\circ i_*=\mathrm{id}_{H_{n-1}(S^{n-1})}$. otin Inklusion Inklusion ist.

Abbildungsgrad

10.3 Definition

Sei $f\colon S^n\to S^n$ eine stetige Abbildung. Da $\tilde{H}_n(S^n)\cong\mathbb{Z}$ ist, gibt es eine ganze Zahl d(f), so dass $f_*(x)=d(f)\cdot x$ für alle $x\in \tilde{H}_n(S^n)$. Diese Zahl heißt der **Abbildungsgrad** von f.

10.4 Proposition

- a) $d(id_{S^n}) = 1$.
- b) Sind f und g homotop, so gilt d(f) = d(g).
- c) $d(f \circ g) = d(f) \cdot d(g)$.

Beweis

- a) $(id_{S^n})_*(x) = id(x) = x$.
- b) Sind f und g homotop, so gilt $f_* = g_*$.
- c) Für alle $x \in \tilde{H}_n(S^n)$ gilt: $d(f \circ g) \cdot x = (f \circ g)_*(x) = f_* \circ g_*(x) = d(f) \cdot d(g) \cdot x$. Da $\tilde{H}_n(S^n) \cong \mathbb{Z}$ folgt $d(f \circ g) = d(f) \cdot d(g)$.

36

10.5 Beispiel

Sei $i \in \{0, \dots, n\}$ und $R_i \colon S^n \to S^n$ die Spiegelung $R_i(x_0, \dots, x_n) = (x_0, \dots, -x_i, \dots, x_n)$. Dann ist $d(R_i) = -1$.

Beweis

Sei $f:S^n \to S^n$ der Homöomorphismus, der die 0-te und die i-te Koordinate vertauscht: $f(x_0,\ldots,x_n)=(x_i,\ldots,x_0,\ldots,x_m)$. Dann ist $R_i=f\circ R_0\circ f$. Da f ein Homöomorphismus ist, ist f_* ein Isomorphismus und daher d(f) invertierbar, also $d(f)\in\{\pm 1\}$ mit $d(R_i)=d(f)\cdot d(R_0)\cdot d(f)$ folgt $d(R_0)=d(R_i)$. Es genügt also R_0 zu betrachten.

Wir zeigen $d(R_0) = -1$ durch Induktion nach n.

Induktionsanfang: Sei $i_-\colon\{\mathrm{pt}\}\to S^0$ mit $\mathrm{Im}\,i_-=\{-1\}$ und $i_+\colon\{\mathrm{pt}\}\to S^0$ mit $\mathrm{Im}\,i_+=\{+1\}$. Dann ist

$$H_0(S^0) = \{(i_-)_*(a) + (i_+)_*(b) \mid a, b \in H_0(\{\text{pt}\})\} \qquad \text{und}$$

$$\tilde{H}_=(S^0) = \{(i_-)_*(a) - (i_+)_*(a) \mid a \in H_0(\{\text{pt}\})\}$$

Nun ist

$$(R_0)_*((i_-)_*(a) - (i_+)_*(a)) = (R_0)_*(i_-)_*(a) - (R_0)_*(i_+)_*(a) = (R_0 \circ i_-)_*(a) - (R_0 \circ i_+)_*(a)$$

$$= (i_+)_*(a) - (i_-)_*(a)$$

$$= -((i_-)_*(a) + (i_+)_*(a))$$

Also folgt $d(R_0) = -1$.

Induktionsschritt: Sei

$$D_{+}^{n} = \{(x_0, \dots, x_n) \in S^n \mid x_n \neq -1\}$$

$$D_{-}^{n} = \{(x_0, \dots, x_m) \in S^n \mid x_n \neq +1\}$$

Wir wissen schon, dass die Randabbildung aus der dazugehörigen Mayer-Vietoris-Folge $\tilde{H}_n(S^1) \xrightarrow{\partial_n} \tilde{H}_{n-1}(D^n_+ \cap D^n_-)$ ein Isomorphismus ist. Da die Randabbildung natürlich ist, erhalten wir ein kommutatives Diagramm

fertig stellen

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\partial_{n}} \tilde{H}_{n}(D_{-}^{n} \cap D_{+}^{n}) \xleftarrow{\cong} \tilde{H}_{n-1}(S^{n-1})$$

$$\downarrow^{(R_{0})_{*}} \qquad \qquad \downarrow^{(R_{0}|_{(D_{-}^{n} \cap D_{+}^{n})})_{*}}$$

$$\tilde{H}_{n}(S^{n}) \xrightarrow{\cong} \tilde{H}_{n+1}(D_{-}^{n} \cap D_{+}^{n}) \qquad H_{n-1}(S^{n-1})$$

dabei ist $i\colon S^{n-1}\to D^n_-\cap D^n_+$ die Homotopieäquivalenz $i(x_0,\dots,x_{n-1})=(x_0,\dots,x_{n-1},0).$ Nach Induktionsannahme ist $\left(R_0\big|_{S^{n-1}}\right)_*(y)=-y$ für alle $y\in \tilde{H}_{n-1}(S^{n-1}).$ Für $x\in \tilde{H}_n(S^n)$ folgt

$$(R_0)_{+}(x) = (\partial_n)^{-1} \circ (i_*) \circ (R_0|_{S^{n-1}})_* ((i_*^{-1} \circ \partial_n) \cdot (x))$$

$$= (\partial_n)^{-1} \circ (i_*) (-i_*^{-1} (\partial_n(x)))$$

$$= -\partial_n^{-1} \circ (i_*) \circ (i_*)^{-1} \circ \partial_n(x) = -x$$

Also
$$d(R_0) = -1$$
.

10.6 Beispiel

Der Grad der Punktspiegelung $R: S^n \to S^n \ x \mapsto -x \text{ ist } (-1)^{n+1}$.

10 Anwendungen 37

Beweis

$$d(R) = d(R_0 \circ R_1 \circ \ldots \circ R_n) = d(R_0) \cdot \ldots \cdot d(R_n) = (-1)^{n+1}.$$

10.7 Erinnerung

Sei M eine C^{∞} -Mannigfaltigkeit. Ein **Vektorfeld** auf M ist eine stetige Abbildung $v\colon M\to TM$ mit $v(x)\in T_xM$ für alle $x\in M$. Für $M=S^n$ entspricht ein Vektorfeld genau einer stetigen Abbildung $v\colon S^n\to \mathbb{R}^{n+1}$ mit $\langle v(x)\,|\, x\rangle=0$ für alle $x\in S^n$.

10.8 Satz

Es gibt genau dann ein Vektorfeld ohne Nullstellen auf S^n , wenn n ungerade ist.

Beweis

Ist n ungerade, so ist $S^n\subseteq\mathbb{R}^{n+1}=\mathbb{C}^k$ mit $k=\frac{n+1}{2}$. Punkte in S^n sind dann genau k-Tupel $z=(z_1,\ldots,z_k)$ mit $|z_1|^2+\ldots+|z_k|^2=1$. Ein Vektorfeld entspricht dann einer stetigen Abbildung $v\colon S^n\to\mathbb{C}^k$, so dass für das kanonische komplexe Skalarprodukt $\langle\cdot\,|\,\cdot\,\rangle_{\mathbb{C}}$ auf \mathbb{C}^k gilt

$$\langle z \, | \, v(z) \rangle_{\mathbb{C}} \in i\mathbb{R}$$

Definiere nun $v\colon S^n\to\mathbb{C}^k$ durch v(z):=iz. Dann $iz\neq 0$ für alle $z\in S^n$ und $\langle z\,|\,iz\rangle=-i\|z\|_2\in i\mathbb{R}$. Sei umgekehrt $v\colon S^n\to\mathbb{R}^{n+1}$ ein Vektorfeld ohne Nullstellen. Zu zeigen: d(Punktspiegelung R)=1 (Da $d(R)=(-1)^{n+1}$ folgt dann die Behauptung). Zeige dazu: R ist homotop zu id. Seien $H,K\colon S^n\times [0,1]\to S^n$ definiert durch

$$H(x,t) := \frac{tx + (1-t)v(x)}{\|tx + (1-t)v(x)\|} \qquad \text{bzw.} \qquad K(x,t) := \frac{-tx + (1-t)v(x)}{\|-tx + (1-t)v(x)\|}$$

Da $\langle v(x) | x \rangle = 0$ folgt für alle x und $v(x) \neq 0$ ist, folgt

$$||tx + (1 - t)v(x)||^2 = ||tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$
$$||-tx + (1 - t)v(x)||^2 = ||-tx||^2 + ||(1 - t)v(x)||^2 \neq 0$$

Also sind H und K wohldefiniert. H ist Homotopie zwischen id und $x\mapsto \frac{v(x)}{\|v(x)\|}$ und K ist Homotopie zwischen $-\mathrm{id}$ und $x\mapsto \frac{v(x)}{\|v(x)\|}$.

10.9 Satz (Jordanscher Kurvensatz)

Sei $f\colon S^1\to\mathbb{R}^2$ eine stetige, injektive Abbildung. Dann hat $\mathbb{R}^2\setminus f(S^1)$ genau zwei Wegzusammenhangskomponenten. Eine davon ist beschränkt, die andere nicht.

38 10 Anwendungen

Beweis (mit 10.10)

Wir können f auch als injektive Abbildung $f\colon S^1\to\mathbb{R}^2\subseteq S^2=\mathbb{R}^1\cup\{\infty\}$ auffassen. Nun ist $\tilde{H}_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}$. Also $H_0\big(S^2\setminus f(S^1)\big)=\mathbb{Z}\oplus\mathbb{Z}$. Daher besteht $S^2\setminus f(S^1)$ aus zwei Wegzusammenhangskomponenten U_1 und U_2 . Sei $\mathbb{E}\infty\in U_2$. Dann sind U_1 und $U_2\setminus\{\infty\}$ die Wegzusammenhangskomponenten von $\mathbb{R}^2\setminus f(S^1)$. U_1 ist beschränkt und U_2 ist unbeschränkt. \square Warum ist $U_2\setminus\{\infty\}$ noch wegzusammenhängend?

Antwort

Seien $x,y\in U_2$, dann gibt es eine Umgebung V von $\infty\in S^2$ mit $V\setminus\{\infty\}\equiv D^2\setminus\{0\}$, $x,y\not\in V$ und $f(S^1)\cap V=\emptyset$

10.10 Satz

- a) Sei $f \colon D^k \to S^n$ eine stetige, injektive Abbildung mit $0 \leqslant k < n$. Dann gilt $\tilde{H}_i \big(S^n \setminus f(D^k) \big) = 0$ für alle i.
- b) Sei $f \colon S^k \to S^n$ eine stetige, injektive Abbildung mit $0 \leqslant k < n$. Dann gilt

$$\tilde{H}_i(S^n \setminus f(S^k)) = \begin{cases} \mathbb{Z}, & \text{falls } i = n - k - 1 \\ 0, & \text{sonst} \end{cases}$$

Beweis (mit 10.11)

a) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(D^0)$ homöomorph zu \mathbb{R}^n und die Behauptung folgt. Induktionsschritt $k\mapsto k+1$: Da D^{k+1} und $[0,1]^{k+1}$ homöomorph sind, können wir D^{k+1} durch $[0,1]^{k+1}$ ersetzen. Sei $x\in \tilde{H}_i(S^n\setminus f([0,1]^{k+1}))$. Es ist

$$S^{n} \setminus f(\{1/2\} \times [0,1]^{k}) = S^{n} \setminus f([0,1/2] \times [0,1]^{k}) \cup S^{n} \setminus f([1/2,1] \times [0,1]^{k})$$

eine Vereinigung von offenen Mengen. Weiter ist

$$(S^n \setminus f([0, 1/2] \times [0, 1]^k)) \cap (S^n \setminus f([1/2, 1] \times [0, 1]^k)) = S^n \setminus f([0, 1]^{k+1})$$

Nun benutzten wir die zugehörige Mayer-Vietoris-Folge:

schöner machen

$$\begin{split} \tilde{H}_{i+1} \left(S^n \setminus f \left(\{ ^{1/2} \} \times [0,1]^k \right) \right) & \longrightarrow \tilde{H}_i \left(S^n \setminus f \left([0,1]^{k+1} \right) \right) \\ & & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \tilde{H}_i \left(S^n \setminus f \left([0,1/2] \times [0,1]^k \right) \right) \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \tilde{H}_i \left(S^n \setminus f \left([1/2,1] \times [0,1]^k \right) \right) \\ & \qquad \qquad \\ & \qquad \qquad \tilde{H}_i \left(S^n \setminus f \left([1/2,1] \times [0,1]^k \right) \right) \end{split}$$

Angenommen $x \neq 0$. Dann ist das Bild von x in $\tilde{H}_i \left(S^n \setminus f \left([0,1/2] \times [0,1]^k \right) \right)$ ungleich Null oder in $\tilde{H}_i \left(S^n \setminus f \left([1/2,1] \times [0,1]^k \right) \right)$ ungleich Null. Indem wir dieses Argument iterieren erhalten wir eine Folge von Intervallen

$$[0,1]\supseteq I_1\supseteq I_2\supseteq\ldots \ \mathsf{mit}\ \bigcap_n I_n=\{t\}$$

und das Bild von $x \in \tilde{H}_i\big(S^n \setminus f\big([0,1]^{k+1}\big)\big)$ unter der von der Inklusion $i_a \colon S^n \setminus f\big([0,1]^{k+1}\big) \to S^n \setminus f\big(I_a \times [0,1]^k\big)$ induzierten Abbildung $(i_a)_* \colon \tilde{H}_i\big(S^n \setminus f\big([0,1]^{k+1}\big)\big) \to \tilde{H}_i\big(S^n \setminus f\big(I_a \times [0,1]^k\big)\big)$ ungleich Null ist. Nun ist aber

$$\bigcup_{a} (S^n \setminus f(I_a \times [0,1]^k)) = S^n \setminus f(\{t\} \times [0,1]^k)$$

10 Anwendungen 39

und wieder nach Induktionsannahme das Bild von x in $\tilde{H}_i\big(S^n\setminus f\big(\{t\}\times [0,1]^k\big)\big)=0$ Null. Nach Proposition 10.11(2) muss x aber schon in einer $\tilde{H}_i\big(S^n\setminus f\big(I_a\times [0,1]^k\big)\big)$ trivial sein. $\not\downarrow$

b) Durch Induktion nach k. Für k=0 ist $S^n\setminus f(S^0)\cong \mathbb{R}^n\setminus \{0\}$. Da $\mathbb{R}^n\setminus \{0\}\simeq S^{n-1}$ folgt für k=0 die Behauptung.

Induktionsschritt $k-1 \mapsto k$: Seien $D_+^k := \{(x_0,\dots,x_k) \,|\, x_k \geqslant 0\}$ und $D_-^k := \{(x_0,\dots,x_k) \,|\, x_k \leqslant 0\}$. Dann ist $D_+^k \cap D_-^k = \{(x_0,\dots,x_k) \,|\, x_k = 0\} \cong S^{k-1}$. Wieder ist

$$S^n \setminus f(D_+^k \cap D_-^k)(S^n \setminus f(D_+^k)) \cup (S^n \setminus f(D_-^k))$$

eine offene Vereinigung mit $(S^n \setminus f(D^k_+)) \cap (S^n \setminus f(D^k_-)) = S^n \setminus f(S^k)$. Wegen a) ist die Randabbildung in der zugehörigen Mayer-Vietoris-Folge

$$\tilde{H}_i\big(S^n \setminus f\big(D^k_+ \cap D^k_-\big)\big) \xrightarrow{\partial_i \cong} \tilde{H}_{i-1}\big(S^n \setminus f(S^k)\big)$$

ein Isomorphismus. Die Behauptung folgt per Induktion.

10.11 Proposition

Seien $U_1 \subseteq U_2 \subseteq \ldots \subseteq X$ offen mit $X = \bigcup_{i=1}^{\infty} U_i$. Seien $i_{a,b} \colon U_a \hookrightarrow U_b$ für a < b und $i_a \colon U_a \hookrightarrow X$ die Inklusionen.

- (1) Für jedes $x \in H_k(X; R)$ gibt es a > 0 und $x_a \in H_k(U_a; R)$ mit $(i_a)_*(x_a) = x$.
- (2) Ist $x_a \in H_k(U_a; R)$ mit $(i_a)_*(x) = 0$, so gibt es b > a mit $(i_{a,b})_*(x_a) = 0$.

Bemerkung

Diese Proposition gilt genauso für reduzierte Homologie.

Beweis

Sei $\sigma\colon |\Delta^n|\to X$ ein singulärer Simplex in X. Dann ist $\sigma^{-1}(U_a),\ a\in\mathbb{N}$ eine offene Überdeckung von $|\Delta^n|$. Da $|\Delta^n|$ kompakt ist, gibt es a mit $|\Delta^n|\subseteq\sigma^{-1}(U_a)$, also $\sigma(|\Delta^n|)\subseteq U_a$. Da Elemente von $C_n(X;R)$ endliche R-Linearkombinationen von singulären Simplizes sind, folgt

$$C_n(X;R) = \bigcup_a C_n(U_a;R).$$

Damit ergeben sich leicht (1) und (2).

40 10 Anwendungen

11 CW-Komplexe

11.1 Definition

Ein kommutatives Diagramm von topologischen Räumen der Form

$$\begin{array}{ccc} A & \xrightarrow{f} & X \\ \downarrow^g & & \downarrow_{\overline{g}} \\ Y & \xrightarrow{\overline{f}} & Z \end{array}$$
 [#]

heißt ein **Pushout**, falls es folgende universelle Eigenschaft hat:

$$\forall \hat{f} \colon X \to \hat{Z}$$
, $\hat{g} \colon Y \to \hat{Z}$ mit $\hat{f} \circ f = \hat{g} \circ g$ gilt:

$$\exists ! \varphi \colon Z \to \hat{Z} \text{ mit } \hat{f} = \varphi \circ \overline{g}, \hat{g} = \varphi \circ \overline{f}.$$

Wir sagen dann auch: [#] ist der Pushout von $\ Y \xleftarrow{g} A \xrightarrow{f} X$.

11.2 Bemerkung

Jedes Diagramm $Y \stackrel{g}{\longleftarrow} A \stackrel{f}{\longrightarrow} X$ lässt sich zu einem Pushout vervollständigen: Betrachte dazu den Raum $X \cup_A Y := {}^X \coprod {}^Y/f(a) \sim g(a) \forall a \in A$ mit der Quotiententopologie. Sind $\overline{f} \colon Y \to X \cup_A Y$ und $\overline{g} \colon X \to X \cup_A Y$ die von den Inklusionen $X \hookrightarrow X \coprod Y$ und $Y \hookrightarrow X \coprod Y$ induzierten Abbildungen, so ist

$$\begin{array}{ccc}
A & \xrightarrow{f} & X \\
g \downarrow & & \downarrow \overline{g} \\
Y & \xrightarrow{\overline{f}} & X \cup_{A} Y
\end{array}$$

ein Pushout. Existenz und Eindeutigkeit aus der universellen Eigenschaft können benutzt werden um zu zeigen, dass der Pushout eindeutig bis auf kanonischen Homöomorphismus ist.

11.3 Definition

Ein \mathbf{CW} -Komplex² ist ein topologischer Raum X zusammen mit einer Filtrierung³ durch Unterräume von X:

$$\emptyset = X^{(-1)} \subseteq X^{(0)} \subseteq X^{(1)} \subseteq X^{(2)} \subseteq \ldots \subseteq X^{(n)} \subseteq X^{(n+1)} \subseteq \ldots \subseteq X$$

sodass die folgenden zwei Eigenschaften erfüllt sind:

(i) **Zellstruktur**: Zu jedem $n \in \mathbb{N}$ gibt einen Pushout von topologischen Räumen

$$\begin{split} & \coprod_{i \in I^{(n)}} S^{n-1} \xrightarrow{\coprod_{i \in I^{(n)}} q_i^{(n)}} X^{(n-1)} \\ & \coprod_{i \in I^{(n)}} j_i \\ & \coprod_{i \in I^{(n)}} D^n \xrightarrow{\coprod_{i \in I^{(n)}} Q_i^{(n)}} X^{(n)} \end{split}$$

11 CW-Komplexe 41

²Zitat von Wikipedia ☑ zum Namen: The C stands for "closure-finite", and the W for "weak topology".

³siehe auch https://de.wikipedia.org/wiki/Filter_(Mathematik) ☐

wobei $j_i : S^{n-1} \hookrightarrow D^n$ und $k_n : X^{(n-1)} \hookrightarrow X^{(n)}$ die Inklusionen sind.

(ii) **Schwache Topologie**: Es ist $X=\bigcup_{n\in\mathbb{N}}X^{(n)}$ und $U\subseteq X$ ist genau dann offen, wenn $U\cap X^{(n)}\subseteq X^{(n)}$ für alle n offen ist.

Eine Abbildung $f\colon X\to Y$ zwischen CW-Komplexen heißt **zellulär**, falls $f(X^{(n)})\subseteq Y^{(n)}$ für alle $n\in\mathbb{N}$ gilt.

11.4 Bemerkung

- (i) Die Abbildungen $q_i^{(n)}$ und $Q_i^{(n)}$ sind nicht Teil der Struktur eines CW-Komplex. Nur die Existenz von $q_i^{(n)}$ und $Q_i^{(n)}$ wird gefordert sie ist nicht notwendig eindeutig. Hat man $q_i^{(n)}$ und $Q_i^{(n)}$ und $Q_i^{(n)}$ die anklebende Abbildung der i-ten n-Zelle und $Q_i^{(n)}$ die charakteristische Abbildung der i-ten n-Zelle.
- (ii) Sei $\mathring{D}^n = D^n \setminus S^{n-1}$ das Innere von D^n . Die Abbildungen $Q_i^{(n)}$ schränken sich zu einem Homöomorphismus $\coprod_{i \in I^{(n)}} \mathring{D}^n \to X^{(n)} \setminus X^{(n-1)}$ ein. Insbesondere lässt ich $I^{(n)}$ mit der Menge der Wegzusammenhangskomponenten von $X^{(n)} \setminus X^{(n-1)}$ identifizieren. Die Wegzusammenhangskomponenten heißen die **offenen Zellen** von X. Damit ist jeder X-Komplex die disjunkte Vereinigung seiner offenen Zellen.

 \triangle Achtung: Jede offene n-Zelle ist offen in $X^{(n)}$, aber nicht notwendig in X.

(iii) Der Abschluss einer offenen Zelle $Q_i^{(n)}(\mathring{D}^n)$ ist $Q_i^{(n)}(D^n)$ und insbesondere kompakt. Die $Q_i^{(n)}(D^n)$ heißen die **abgeschlossenen Zellen** und sind als Abschluss von offenen Zellen unabhängig von der Wahl der $Q_i^{(n)}$.

f A Achtung: Abgeschlossene Zellen sind Bilder von D^n unter stetigen Abbildungen, aber nicht notwendig homöomorph zu D^n .

(iv) Ein CW-Komplex X heißt **endlich**, wenn er nur aus endlich vielen Zellen besteht, also wenn $I=\bigcup_{n\in\mathbb{N}}I^{(n)}$ endlich ist. Insbesondere gibt es dann ein n mit $X=X^{(n)}$.

Die Dimension von X ist die maximale Dimension von Zellen von X, also $\dim X := N$, falls $X^{(N)} = X$, $X^{(N-1)} \subsetneq X$. Gibt es kein solches N so setzen wir $\dim X := \infty$.

11.5 Beispiele

(i) S^n mit

$$(S^n)^{(k)} = \begin{cases} \emptyset, & \text{falls } k = -1 \\ \{(1, 0, \dots, 0)\}, & \text{falls } k = 0, \dots n - 1 \\ S^n, & \text{falls } k \geqslant n \end{cases}$$

ist ein CW-Komplex via $S^n \cong {\mathbb D}^n/S^{n-1}$

$$S^{n-1} \longrightarrow (S^n)^{(n-1)} = \{(1,0,\dots,0)\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \longrightarrow S^n$$

(ii) $S^n \text{ mit } (S^n)^{(k)} = \{(x_0, \dots, x_k, 0, \dots, 0) \in S^n\}$ ist ebenfalls eine CW-Struktur auf S^n .

42 11 CW-Komplexe

 $^{^4}$ Dass dies ein Homöomorphismus ist, folgt aus der Pushout-Eigenschaft und dem letzen Teil der Bemerkung 11.2, denn es gilt demnach $X^{(n)} \cong X^{(n-1)} \cup_{\coprod S^{n-1}} \coprod D^n$.

- (iii) Sei $K=(V,\Sigma)$ ein simplizialer Komplex. Es ist $|\Delta^n|\cong D^n$ und $|\partial\Delta^n|\cong S^{n-1}$. Sei $\Sigma^{(n)}:=\Sigma_0\cup\Sigma_1\cup\ldots\cup\Sigma_n$. Dann wird |K| durch $|K|^{(n)}:=\left|\left(V,\Sigma^{(n)}\right)\right|$ für $n\geqslant 0$ zu einem CW-Komplex. Ist $f\colon K\to L$ eine simpliziale Abbildung, so ist $|f|\colon |K|\to |L|$ eine zelluläre Abbildung.
- (iv) Der n-dimensionale reelle projektive Raum $\mathbb{R}P^n$ kann definiert werden durch

$$\mathbb{R}P^n := \mathbb{R}^{n+1} \setminus \{0\}/x \sim \lambda x = S^n/x \sim -x$$

Punkte in $\mathbb{R}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln reeller Zahlen und werden als die sogenannten homogenen Koordinaten $[x_0:\ldots:x_n]$ geschrieben. Es ist

$$\mathbb{R}P^{n} = \left\{ [x_{0} : \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n} \right\} = \left\{ [x_{0} : \dots : x_{n}] \mid (x_{0}, \dots, x_{n}) \in S^{n}, x_{n} \geqslant 0 \right\}$$

Wir erhalten einen Homöomorphismus $f^{(n)} \colon D^n/x \sim -x, x \in S^{n-1} \to \mathbb{R}P^n$ mit

$$f^{(n)}(x_1,...,x_n) = \left[x_1:...:x_n:\sqrt{1-\sum_{i=1}^n x_i^2}\right]$$

Ist $Q^{(n)}\colon D^n\to \mathbb{R}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^n\twoheadrightarrow D^n/x\sim -x, x\in S^{n-1}$ und $q^{(n)}\colon S^{n-1}\twoheadrightarrow \mathbb{R}P^{n-1}$ die Projektion, so erhalten wir einen Pushout

$$S^{n-1} \xrightarrow{q^{(n)}} \mathbb{R}P^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \xrightarrow{Q^{(n)}} \mathbb{R}P^n$$

Induktiv erhalten wir einen CW-Struktur auf $\mathbb{R}P^n$ mit genau einer k-Zelle für $k=0,\ldots,n$ und

$$(\mathbb{R}P^n)^{(k)} \cong \mathbb{R}P^k$$

(v) Der n-dimensionale komplexe projektive Raum $\mathbb{C}P^n$ kann definiert werden durch

$$\mathbb{C}P^n := \mathbb{C}^{n+1} \setminus \{0\}/z \sim \lambda z = S^{2n+1}/z \sim \lambda z, \lambda \in S^1 \subseteq \mathbb{C}$$

Punkte in $\mathbb{C}P^n$ sind Äquivalenzklassen von (n+1)-Tupeln komplexer Zahlen und werden als homogenen Koordinaten $[z_0:\ldots:z_n]$ geschrieben. Es ist wieder

$$\mathbb{C}P^{n} = \left\{ [z_{0}: \ldots: z_{n}] \,\middle|\, (z_{0}, \ldots, z_{n}) \in S^{2n+1} \right\} = \left\{ [z_{0}: \ldots: z_{n}] \,\middle|\, (z_{0}, \ldots, z_{n}) \in S^{2n+1}, |z_{n}| \geqslant 0 \right\}$$

Wir erhalten wieder einen Homöomorphismus $f^{(n)}: D^{2n+1}/z \sim \lambda z, z \in S^{2n-1}, \lambda \in S^1 \to \mathbb{C}P^n$ durch

$$f^{(n)}(z_1,...,z_n) = \left[z_1:...:z_n:\sqrt{1-\sum_{i=1}^n|z_i|^2}\right]$$

Ist $Q^{(2n)}\colon D^{2n}\to \mathbb{C}P^n$ die Komposition von $f^{(n)}$ mit der Projektion $D^{2n} \twoheadrightarrow D^{2n}/z\sim \lambda z, z\in S^{2n}$ und $q^{(n)}\colon S^{2n+1}\to \mathbb{C}P^{n-1}$ die Projektion, so erhalten wir auch wieder einen Pushout

$$S^{2n-1} \xrightarrow{q^{(n)}} \mathbb{C}P^{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{2n} \xrightarrow{Q^{(n)}} \mathbb{C}P^{n}$$

Induktiv erhalten wir einen ${\rm CW} ext{-}{\rm Struktur}$ auf ${\mathbb C}P^n$ mit genau einer $k ext{-}{\rm Zelle}$ für $k=0,2,\dots,2n$ und

$$(\mathbb{C}P^n)^{(k)} \cong \mathbb{C}P^{\left\lfloor \frac{k}{2} \right\rfloor}$$

11 CW-Komplexe 43

11.6 Lemma

Sei X ein CW -Komplex und $K\subseteq X$. Dann ist K genau dann kompakt, wenn K abgeschlossen ist und K nur endlich viele offene Zellen von X schneidet.

Beweis

Zunächst: Ist $S\subseteq X$ ein Unterraum der jede offene Zelle höchstens in einem Punkt schneidet, so ist S diskret. Für $S_0\subseteq S$ ist $S_0\cap (X^{(n)}\setminus X^{(n-1)})$ abgeschlossen in $X^{(n)}$, da S_0 jede offene n-Zelle von X höchstens in einem Punkt schneidet. Daher ist $S_0\cap X^{(n)}\subseteq X^{(n)}$ abgeschlossen für alle n. Damit ist also jede Teilmenge $S_0\subseteq S$ abgeschlossen in X und S somit diskret.

Sei nun $K\subseteq X$ kompakt. Dann ist K sicher abgeschlossen. Sei $S\subseteq K$ ein Teilraum, der aus jeder offenen Zelle von X, die K schneidet, genau einen Punkt enthält. Wegen der Vorüberlegung ist S diskret. Da $S\subseteq K$ abgeschlossen und K kompakt ist, ist S auch kompakt. Damit ist S endlich und K schneidet nur endlich viele offene Zellen.

Ist nun umgekehrt K abgeschlossen und schneidet nur endlich viele offene Zellen, so ist K enthalten in einer endlichen Vereinigung von abgeschlossen Zellen von X. Da diese abgeschlossen Zellen kompakt sind, ist auch diese Vereinigung kompakt, K ist also ein abgeschlossener Teilraum eines kompakten Teilraums und damit selbst kompakt.

11.7 Korollar

Ein CW-Komplex ist genau dann kompakt, wenn er endlich ist.

44 11 CW-Komplexe

12 Zelluläre Homologie

12.1 Definition

Sei X ein CW-Komplex. Dann heißt

$$C_n^{\text{cell}}(X;R) := H_n(X^{(n)}, X^{(n-1)}; R)$$

 $\operatorname{\mathsf{der}} \mathbf{n\text{-}\mathsf{te}} \ \operatorname{\mathsf{zellul\"a}\mathsf{\"{re}}} \ \operatorname{\mathsf{Kettenmodul}} \operatorname{\mathsf{von}} X \ \operatorname{\mathsf{mit}} \ \operatorname{\mathsf{Koeffizienten}} \operatorname{\mathsf{in}} R. \ \operatorname{\mathsf{Die}} \ \mathbf{n\text{-}\mathsf{te}} \ \operatorname{\mathsf{Randabbildung}} \ \partial_n^{\operatorname{cell}} \colon C_n^{\operatorname{cell}}(X;R) \to \mathbb{R}^n$ $C_{n-1}^{\text{cell}}(X;R)$ wird durch die Komposition

$$H_n(X^{(n)}, X^{(n-1)}; R) \xrightarrow{\partial_n^{(X^{(n)}, X^{(n-1)})}} H_{n-1}(X^{(n-1)}; R)$$

$$\downarrow (j^{(n-1)})_*$$

$$H_{n-1}(X^{(n-1)}, X^{(n-2)}; R)$$

definiert. Dabei ist $\partial_n^{(X^{(n)},X^{(n-1)})}$ die Randabbildung aus der Paarfolge für $(X^{(n)},X^{(n-1)})$ und $j^{(n-1)}$ die Inklusion $(X^{(n-1)},\emptyset)\hookrightarrow (X^{(n-1)},X^{(n-2)})$.

12.2 Lemma

$$\partial_{n-1}^{\text{cell}} \circ \partial_n^{\text{cell}} = 0$$

Beweis

Wir schreiben die Paarsequenz für $(X^{(n)}, X^{(n-1)})$ dreimal übereinander und erhalten:

Wir schreiben die Paarsequenz für
$$(X^{(n)}, X^{(n-1)})$$
 dreimal übereinander und erhalten:
$$H_n(X^{(n)}, X^{(n-1)}) \xrightarrow{\partial_n} H_{n-1}(X^{(n-1)}) \xrightarrow{j_*^{(n-1)}} H_{n-1}(X^{(n-1)}, X^{(n-2)}) \xrightarrow{\partial_{n-1}} H_{n-2}(X^{(n-2)}) \xrightarrow{j_*^{(n-2)}} H_{n-2}(X^{(n-2)}, X^{(n-3)}) \xrightarrow{\partial_n \text{ aus Platzgründ weggelasse}} H_{n-2}(X^{(n-2)}, X^{(n-3)})$$

Also $\partial_{n-1}^{\mathrm{cell}} \circ \partial_n^{\mathrm{cell}} = 0$, da wegen der Exaktheit der Paarfolge schon $\partial_{n-1} \circ j_*^{(n-1)} = 0$ ist.

12.3 Definition

 $(C^{\operatorname{cell}}_*(X;R),\partial^{\operatorname{cell}}_*)$ heißt der **zelluläre Kettenkomplex** von X über R. Seine Homologie $H^{\operatorname{cell}}_*(X;R)$ heißt die zelluläre Homologie von X.

12.4 Bemerkung

Der zelluläre Kettenkomplex und die zelluläre Homologie sind Funktoren auf der Kategorie der CW-Komplexe und zellulären Abbildungen.

45 12 Zelluläre Homologie

12.5 Lemma

Sei X ein $\operatorname{CW-Komplex}$. Wähle $q_i^{^{(n)}}$ und $Q_i^{^{(n)}}$ für die Zellstruktur auf X. Dann gilt

a)

$$\left(\coprod_{i\in I^{(n)}}Q_i^{\scriptscriptstyle(n)},\coprod_{i\in I^{(n)}}q_i^{\scriptscriptstyle(n)}\right)\colon \left(\coprod_i D^n,\coprod_i S^{n-1};R\right) \longrightarrow (X^{\scriptscriptstyle(n)},X^{\scriptscriptstyle(n-1)};R)$$

induziert einen Isomorphismus in Homologie.

b)

$$H_k\bigg(\coprod_i D^n, \coprod_i S^{n-1}; R \bigg) = \begin{cases} R[I^{(n)}], & \text{ falls } k = n \\ 0, & \text{ sonst} \end{cases}$$

Beweis

a) Sei $D^n_0:=D^n\setminus\{0\}$, $\frac12D^n:=\left\{\frac x2\,\big|\,x\in D^n\right\}$ und $\frac12D^n_0:=\frac12D^n\setminus\{0\}$. Wir definieren

$$X^{\scriptscriptstyle (n-1)}_{++} := X^{\scriptscriptstyle (n)} \setminus \bigcup_{i \in I^{\scriptscriptstyle (n)}} Q^{\scriptscriptstyle (n)}_i(\{0\}) \quad \text{ und } \quad X^{\scriptscriptstyle (n-1)}_{+} := X^{\scriptscriptstyle (n)} \setminus \bigcup_{i \in I^{\scriptscriptstyle (n)}} Q^{\scriptscriptstyle (n)}_i \left(\frac{1}{2} D^n\right)$$

Dann sind $X^{(n-1)}\hookrightarrow X^{(n-1)}_+\hookrightarrow X^{(n-1)}_+$ Homotopieäquivalenzen, da $\coprod_{i\in I^{(n)}}Q^{(n)}_i$ ein Homöomorphismus auf den offenen n-Zellen ist. Betrachte:

$$(\coprod D^{n}, \coprod S^{n-1}) \xrightarrow{(1)} (\coprod D^{n}, \coprod D_{0}^{n}) \leftarrow (\underbrace{\coprod \frac{1}{2}D^{n}}, \coprod \frac{1}{2}D_{0}^{n})$$

$$\downarrow \left(\coprod Q_{i}^{(n)}, \coprod q_{i}^{(n)}\right) \qquad \downarrow \qquad \qquad \downarrow (3)$$

$$(X^{(n)}, X^{(n-1)}) \xrightarrow{(5)} (X^{(n)}, X^{(n-1)}_{++}) \leftarrow (X^{(n)} \setminus X^{(n-1)}_{+}, X^{(n-1)}_{++} \setminus X^{(n-1)}_{+})$$

- (1),(2) und (5) sind Homotopieäquivalenzen und induzieren Isomorphismen in Homologie. (3) ist ein Homöomorphismus und induziert einen Isomorphismus in Homologie. (4) erfüllt die Vorraussetzungen für den Ausschneideisomorphismus und induziert daher auch einen Isomorphismus in Homologie. Damit folgt a).
- b) Da die Randabbildung aus der Paarsequenz in diesem Fall ein Isomorphismus ist, gilt

$$\begin{split} H_k\bigg(\coprod_i D^n, \coprod_i S^{n-1}; R\bigg) & \stackrel{\cong}{\longleftarrow} \bigoplus_i H_k(D^n, S^{n-1}; R) \stackrel{\cong}{\longrightarrow} \bigoplus_i \tilde{H}_{k-1}(S^{n-1}; R) \\ & \cong \bigoplus_i \begin{cases} R, & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \\ & \cong \begin{cases} R[I^{(n)}], & \text{falls } k = n \\ 0, & \text{sonst} \end{cases} \quad \Box$$

12.6 Bemerkung

Wir haben soeben gezeigt, dass die folgenden Isomorphismen existieren:

$$C_{n}^{\text{cell}}(X;R) \xrightarrow{\partial_{n}^{\text{cell}}} C_{n-1}^{\text{cell}}(X;R)$$

$$H_{n}(X^{(n)}, X^{(n-1)}; R) \xrightarrow{\parallel} H_{n-1}(X^{(n-1)}, X^{(n-2)}; R)$$

$$R[I^{(n)}] \xrightarrow{\parallel} R[I^{(n-1)}]$$

46

Die Randabbildung $\partial_n^{\mathrm{cell}}$ wird unter diesen Isomorphismen zu einer $I^{(n-1)} \times I^{(n)}$ -Matrix. Für $j \in I^{(n-1)}$ und $k \in I^{(n)}$ ist der (j,k)-Eintrag dieser Matrix genau der Abbildungsgrad einer Selbstabbildung der (n-1)-Sphäre:

Die $(Q_i^{(n-1)},q_i^{(n-1)})$ induzieren einen Homöomorphismus $\coprod_i D^{n-1}/\coprod_i S^{n-2} \cong X^{(n)}/X^{(n-1)}$. Durch Komposition mit der Projektion auf die j-te Zelle erhalten wir die folgenden Abbildung

$$\coprod_{i} D^{n-1} / \coprod_{i} S^{n-2} \xrightarrow{p_{j}^{(n-1)}} D^{n-1} / S^{n-2} \cong S^{n-1}.$$

Der (j,k)-te Eintrag ist nun der Abbildungsgrad von

$$S^{n-1} \xrightarrow{q_k^{(n-2)}} X^{(n-1)} \xrightarrow{} X^{(n-1)} / X^{(n-2)} \xrightarrow{\cong} \coprod_i D^{n-1} / \coprod_i S^{n-2} \xrightarrow{p_j^{(n-1)}} S^{n-1}$$

12.7 Definition

Eine natürliche Transformation τ zwischen Funktoren $F,G\colon\mathcal{C}\to\mathcal{D}$ heißt ein **natürlicher Isomorphismus**, wenn $\tau_C\colon F(C)\to G(C)$ für alle Objekte C von \mathcal{C} ein Isomorphismus in \mathcal{D} ist.

12.8 Satz

Für CW-Komplexe gibt es einen natürlichen Isomorphismus $\tau_X \colon H^{\operatorname{cell}}_*(X;R) \xrightarrow{\cong} H_*(X;R)$.

Beweis (mit Lemma 12.9)

Betrachte folgendes Diagramm; die diagonalen Folgen sind Ausschnitte aus den Paarsequenzen:

Es folgt, dass $j_*^{(n)}$ wegen Exaktheit einen Isomorphismus $H_n(X^{(n)};R) \xrightarrow{\cong} \ker \partial_n^{\operatorname{cell}}$ induziert. Da $j_*^{(n)}$ injektiv ist, induziert $j_*^{(n)}$ außerdem einen Isomorphismus $\operatorname{Im} \partial_{n+1}^{X^{(n+1)},X^{(n)}} \xrightarrow{\cong} \operatorname{Im} \partial_{n+1}^{\operatorname{cell}}$. Insgesamt erhalten wir natürliche Isomorphismen

$$H_n(X;R) \cong H_n(X^{(n+1)};R) \cong H_n(X^{(n)};R)/\mathrm{Im}\,\partial_{n+1}^{X^{(n+1)},X^{(n)}} \cong \ker \partial_n^{\mathrm{cell}}/\mathrm{Im}\,\partial_{n+1}^{\mathrm{cell}} \cong H_n^{\mathrm{cell}}(X;R) \qquad \square$$

12 Zelluläre Homologie 47

12.9 Lemma

Sei X ein CW-Komplex.

- a) Für k > n ist $H_k(X^{(n)}; R) = 0$.
- b) Für k < n induziert die Inklusion $l_n \colon X^{(n)} \hookrightarrow X$ einen Isomorphismus $(l_n)_* \colon H_k(X^{(n)}; R) \to H_k(X; R)$.

Beweis

a) Ist k > n, so erhalten wir aus der Paarfolge einen Isomorphismus

$$H_{k+1}(X^{(n)}, X^{(n-1)}; R) \to H_k(X^{(n-1)}; R) \xrightarrow{\cong} H_k(X^{(n)}; R) \to H_k(X^{(n)}, X^{(n-1)}; R)$$

$$\stackrel{12.5}{=} 0$$

Da $H_k(X^{(0)};R)=0$ für k>0, folgt a) nun durch endliche Induktion für $n=0,1,\ldots,k-1$.

b) Ist n > k, so erhalten wir aus der Paarfolge

$$H_{k+1}(X^{(n+1)}, X^{(n)}; R) \to H_k(X^{(n)}; R) \xrightarrow{\cong} H_k(X^{(n+1)}; R) \to H_k(X^{(n+1)}, X^{(n)}; R)$$

$$\stackrel{12.5}{\longrightarrow} 0$$

Für $m \geqslant n > k$ induziert die Inklusion $X^{(n)} \hookrightarrow X^{(m)}$ daher einen Isomorphismus $H_k(X^{(n)};R) \to H_k(X^{(m)};R)$. Ist $\dim X$ endlich, so folgt die Behauptung.

Für den allgemeinen Fall beobachten wir zunächst, dass es zu jeder stetigen Abbildung $\sigma\colon |\Delta^j|\to X$ ein n gibt mit $\mathrm{Im}\,\sigma\subseteq X^{(n)}$, da $\mathrm{Im}\,\sigma\subseteq X$ kompakt ist und daher nur endlich viele offene Zellen von X trifft (siehe 11.5). Also gilt $C_*(X;R)=\bigcup_n C_*(X^{(n)};R)$. Damit folgt

- (1) $\forall x \in H_k(X;R)$ existiert ein n, sodass x im Bild von $H_k(X^{(n)};R) \to H_k(X;R)$.
- (2) $\forall x \in H_k(X^{(n)}; R)$ mit trivialem Bild von x in $H_k(X; R)$, gibt es ein $m \geqslant n$, sodass das Bild von x in $H_k(X^{(m)}; R)$ trivial ist.

Da für $m \geqslant n > k$ die Abbildung $H_k(X^{(n)};R) \to H_k(X^{(m)};R)$ ein Isomorphismus ist, ergibt sich damit die Behauptung.

12.10 Korollar

Die Eulercharakteristik eines endlichen simplizialen Komplexes ist eine topologische Invariante.

Beweis

Sei a_n die Anzahl der n-Simplizes von K. Dann gibt es eine $\operatorname{CW-Struktur}$ auf |K|, die für jedes n genau a_n Zellen hat.

$$\chi(K) = \sum_{i=0}^{\infty} (-1)^i a_i \stackrel{\text{12.5}}{=} \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} C_i^{\operatorname{cell}} (|K|) \stackrel{\text{4.10}}{=} \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i^{\operatorname{cell}} (|K|) = \sum_{i=0}^{\infty} (-1)^i \operatorname{Rg} H_i (|K|)$$

Da die $H_i(|K|)$ eine topologische Invariante sind, ist auch $\chi(K)$ eine topologische Invariante.

12.11 Bemerkung

Ist X ein $\operatorname{CW-Komplex}$ mit endlich vielen n- und n+1-Zellen, so ist $H_n(X)$ ein endlich erzeugter \mathbb{Z} -Modul. Man definiert dann die \mathbf{n} -te Bettizahl von X als $b_n:=\operatorname{Rg} H_n(X)$. Ist X ein endlicher $\operatorname{CW-Komplex}$, so definiert man die Euler-Charakteristik von X als

$$\chi(X) := \sum_{n=0}^{\infty} (-1)^n b_n.$$

Ist a_n die Anzahl der n-Zellen von X, so gilt $\chi(X) = \sum_{n=0}^{\infty} (-1)^n a_n$.

Man beachte, dass 4.10 für beliebige Z-Kettenkomplexe und deren Homologie gilt

12.12 Beispiel

Es gilt

$$H_k(\mathbb{C}P^n;R)\cong egin{cases} R, & \text{falls } k=0,2,4,\ldots,2n \\ 0, & \text{sonst} \end{cases}$$

Beweis

Aus Beispiel 11.5 (v) wissen wir, dass es auf $\mathbb{C}P^n$ eine CW -Struktur gibt mit genau einer Zelle in der Dimension $0,2,4,\ldots,2n$ (und keine weiteren Zellen). Der zelluläre Kettenkomplex hat daher folgende Form:

$$0 1 2 3 4 \cdots 2n-1 2n 2n+1 \cdots$$

$$R \longleftarrow 0 \longleftarrow R \longleftarrow 0 \longleftarrow R \longleftarrow \cdots \longleftarrow 0 \longleftarrow R \longleftarrow \cdots$$

Alle Randabbildungen sind trivial und die Homologie von $\mathbb{C}P^n$ stimmt mit den zellulären Kettenkomplexen überein.

RevChap12

12.13 Beispiel

Es gilt

$$H_k(\mathbb{R}P^n;\mathbb{Z}) \cong \begin{cases} \mathbb{Z}, & \text{ falls } k = 0 \text{ oder } (k = n \text{ und } k \text{ ungerade}) \\ \mathbb{Z}/2\mathbb{Z}, & \text{ falls } 0 < k < n \text{ und } k \text{ ungerade} \\ 0, & \text{ sonst} \end{cases}$$

Beweis

Aus Beispiel 11.5 (iv) wissen wir, dass es eine CW-Struktur auf $\mathbb{R}P^n$ gibt, die für $k=0,\ldots,n$ genau eine k-Zelle und keine weiteren Zellen besitzt. Der zelluläre Kettenkomplex von $\mathbb{R}P^n$ (über \mathbb{Z}) hat also die Form:

$$\mathbb{Z} \xleftarrow{\partial_1^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{\partial_2^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{\partial_2^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{} \cdots \cdots \leftarrow \mathbb{Z} \xleftarrow{\partial_n^{\mathrm{cell}}} \mathbb{Z} \xleftarrow{} 0$$

Wir müssen die Randabbildung verstehen. In der CW-Struktur können wir $(\mathbb{R}P^n)^{(k)}$ mit $\mathbb{R}P^k$ identifizieren. Die anklebende Abbildung $q^{(k+1)}\colon S^k\to\mathbb{R}P^k$ der (k+1)-Zelle ist die Projektion $(x_0,\dots,x_k)\mapsto [x_0:\dots:x_k]$. Die charakteristische Abbildung $Q^{(k+1)}\colon D^{k+1}\to\mathbb{R}P^{k+1}$ der (k+1)-Zelle ist gegeben durch

$$(x_0, \dots, x_k) \mapsto \left[x_0 : \dots : x_k : \sqrt{1 - \|(x_1, \dots, x_k)\|^2} \right]$$

Betrachte folgendes kommutatives Diagramm:

Das linke untere Quadrat kommutiert, da die Randabbildung aus der Paarfolge eine natürliche Transformation ist. Das rechte, da die zugrunde liegenden Abbildungen kommutieren. Das Bild von $\partial_{k+1}^{\mathrm{cell}}$ stimmt also mit dem Bild der Komposition

$$H_k(S^k) \xrightarrow{j_*} H_k(S^k, S^{k-1}) \xrightarrow{\left(q^{(k+1)}, q^{(k)}\right)_*} H_k\left(\mathbb{R}P^k, \mathbb{R}P^{k-1}\right)$$

überein. Sei $i_\pm\colon D^k\to S^k$ definiert durch $i_\pm(x)=\left(\pm x,\pm\sqrt{1-\|x\|^2}\right)$. Sei $l\colon S^{k-1}\hookrightarrow i_-(D^k)$ die Inklusion und $R\colon S^k\to S^k$ die Punktspiegelung $x\mapsto -x$. Es ist $i_+=R\circ i_-$. Betrachte

$$y_{+} \in H_{k}(D^{k}, S^{k-1}) \xrightarrow{(i_{+}, i_{+}|_{S^{k-1}})_{*}} \underbrace{\downarrow^{j_{*}}}_{(i_{-}, i_{-}|_{S^{k-1}})_{*}} \underbrace{\downarrow^{j_{*}}}_{(i_{-}, i_{-}|_{S^{k-1}})_{*}} \underbrace{\downarrow^{j_{*}}}_{(R, R|_{S^{k-1}})_{*}} \underbrace{\downarrow^{k}(S^{k}, i_{-}(D^{k}))_{\exists} x_{+}}_{H_{k}(S^{k}, i_{-}(D^{k}))_{\exists} x_{-}} \underbrace{\downarrow^{(q^{(k+1)}, q^{(k)})_{*}}}_{H_{k}(\mathbb{R}P^{k}, \mathbb{R}P^{k-1})} H_{k}(S^{k}, i_{-}(D^{k}))_{\exists} x_{-}$$

$$= H_{k}(\mathbb{R}P^{k}, \mathbb{R}P^{k-1})$$

eventuell in Anhang?

In der Übungen haben wir gesehen, dass die horizontalen Abbildungen Isomorphismen sind. Sei $x\in \tilde{H}_k(S^k)$ ein Erzeuger. Seien (x_+,x_-) und (y_+,y_-) die Elemente, die $j_*(x)$ unter den horizontalen Isomorphismen in [#] entsprechen. Mit Hilfe der Paarfolge zu $(S^k,i_-(D^k))$ sehen wir, dass die Inklusion $j_-:(S^k,\emptyset)\hookrightarrow (S^k,i_-(D^k))$ einen Isomorphismus $(j_-)_*:\tilde{H}_k(S^k)\to \tilde{H}_k(S^k,i_-(D^k))$ induziert. Es ist nun $(\mathrm{id}_{S^k},l)\circ j=j_-$ und $(R,R|_{S^{k-1}})\circ j=j_-\circ R$. Damit ist x_+ ein Erzeuger von $H_k(S^k,i_+(D^k))$. Weiter entspricht R_* der Multiplikation mit $(-1)^{k+1}$ nach 10.6. Damit folgt

$$x_{-} = (R, R|_{S^{k+1}})_{*} \circ j_{*}(x) = (\mathrm{id}_{S^{k}}, l) \circ j_{*} \circ R_{*}(x) = (\mathrm{id}_{S^{k}}, l)_{*} \circ j_{*}((-1)^{k+1}x) = (-1)^{k+1} \cdot x_{+}$$

Die Komposition der horizontalen Isomorphismen in [#] ist gegeben durch

Problem behalf b

$$\begin{pmatrix} (i_+, l \circ i_+|_{S^{k-1}})_* & 0 \\ 0 & (R, R|_{S^{k-1}})_* \circ (i_-, i_-|_{S^{k-1}})_* \end{pmatrix} = \begin{pmatrix} (i_+, l \circ i_+|_{S^{k-1}})_* & \\ & (i_+, l \circ i_+|_{S^{k-1}})_* \end{pmatrix}$$

Für die Gleichung unten brauchen wir doch

hinzufügen

Es folgt, dass y_+ ein Erzeuger von $H_k(D^k,S^{k-1})$ ist und $y_-=(-1)^{k+1}y_+$ ist. In [#] wird y_+ auf $(q^{(k+1)},q^{(k)})\circ (i_+,i_+|_{S^{k-1}})=(Q^{(k)},q^{(k)})_*(y_+)$ abgebildet. Insbesondere wird y_+ auf einen Erzeuger $z_k\in H_k(\mathbb{R}P^k,\mathbb{R}P^{k-1})$ abgebildet, da diese Abbildung nach 12.5 ein Isomorphismus ist. Es folgt

$$\begin{split} \left(q^{(k+1)},q^{(k)}\right)_* \left(j_*(x)\right) &= \left(q^{(k+1)},q^{(k)}\right)_* \left(\left(i_+,i_+\big|_{S^{k-1}}\right)_* (y_+) + \left(i_-,i_-\big|_{S^{k-1}}\right)_* (y_-)\right) \\ &= \left(Q^{(k)},q^{(k)}\right)_* \left(y_+ + (-1)^{k+1}y_+\right) \\ &= \begin{cases} 2z_k, & \text{falls } k \text{ ungerade} \\ 0, & \text{sonst} \end{cases} \end{split}$$

Es folgt

$$\operatorname{Im} \partial_{k+1}^{\operatorname{cell}} = \begin{cases} 2 \cdot C_k^{\operatorname{cell}}(X), & \text{ falls } k \text{ ungerade} \\ 0, & \text{ sonst} \end{cases}$$

Der zelluläre Kettenkomplex ist daher isomorph zu:

$$\mathbb{Z} \xleftarrow{0} \mathbb{Z} \xleftarrow{2} \mathbb{Z} \xleftarrow{0} \mathbb{Z} \longleftarrow \cdots \longleftarrow \stackrel{n}{\mathbb{Z}} \longleftarrow 0 \longleftarrow 0$$

Womit die Behauptung folgt.

Beispiel

Für $R = \mathbb{Z}/2\mathbb{Z}$ ist

$$H_k(\mathbb{R}P^n;\mathbb{Z}/2\mathbb{Z}) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{falls } k = 0,\dots,n \\ 0, & \text{sonst} \end{cases} \quad \Box$$

12.14 Satz

Sei K ein geordneter simplizialer Komplex. Für $\sigma = \{v_0, \ldots, v_n\} \in \Sigma_n$ mit $v_0 < v_1 < \ldots < v_n$ sei $f_\sigma \colon |\Delta^n| \to |K|$ gegeben durch $f_\sigma(\sum_{i=0}^n t_i e_i) = \sum_{i=0}^n t_i v_i$. Wir erhalten

$$[f_{\sigma}] \in H_n(|K|^{(n)}, |K|^{(n-1)}; R) = C_n^{\text{cell}}(|K|; R).$$

Diese Zuordnung definiert einen Isomorphismus zwischen dem simplizialen Kettenkomplex von K und dem zellulären Kettenkomplex von |K|

$$\tau \colon C_*(K;R) \longrightarrow C_*^{\operatorname{cell}}(|K|,R)$$

Insbesondere ist $H_*(K;R) \cong H_*(|K|;R)$ eine topologische Invariante von K.

Beweis

Betrachte

$$\bigoplus_{\sigma \in \Sigma_n} R \xrightarrow{\cong} \bigoplus_{\sigma \in \Sigma_n} H_n(|\Delta^{\sigma}|, |\partial \Delta^{\sigma}|; R)$$

$$\cong \downarrow \qquad \qquad \cong \downarrow$$

$$C_n(K; R) \xrightarrow{\tau} H_n(|K|^{(n)}, |K|^{(n-1)}; R)$$

Nun ist auch τ ein Isomorphismus, da $[f_{\sigma}]$ ein Erzeuger von $H_n(|\Delta^{\sigma}|, |\partial \Delta^{\sigma}|; R)$ ist, siehe Blatt 8. Es bleibt zu zeigen, dass $\sigma \mapsto [f_{\sigma}]$ mit den Randabbildungen vertauscht. Dies ergibt sich sofort aus $f_{\partial_j \sigma} = \partial_j f_{\sigma}$.

12 Zelluläre Homologie 51

13 Kleine Simplizes

13 Kleine Simplizes

13.1 Satz

RevChap13

Sei (X,A) ein Paar von topologische Räumen. Sei $L\subseteq A$ mit $\overline{L}\subseteq \mathring{A}$. Dann induziert die Inklusion $(X\setminus L,A\setminus L)\hookrightarrow (X,A)$ den Ausschneidungs-Isomorphismus $H_*(X\setminus L,A\setminus L;R)\stackrel{\cong}{\longrightarrow} H_*(X,A;R)$. Es ist

$$H_*(X,A;R) = H_*\big({}^{C_*(X;R)}/{}_{C_*(A;R)},\partial_*\big) \text{ und } H_*(X\setminus L,A\setminus L,R) = H_*\big({}^{C_*(X\setminus L;R)}/{}_{C_*(A\setminus L;R)},\partial_*\big)$$

13.2 Definition

Sei $\mathcal U$ eine offene Überdeckung von X. Ein singulärer Simplex $\sigma\colon |\Delta^n|\to X$ heißt $\mathcal U$ -klein, falls es ein $U\in\mathcal U$ gibt mit $\mathrm{Im}\,\sigma\subseteq U$. Die $\mathcal U$ -kleinen Simplizes erzeugen den Unterkettenkomplex $\left(C_*^{\mathcal U},\partial_*\right)$ des simplizialen Kettenkomplexes $C_*(X;R)$.

13.3 Satz über kleine Simplizes

Die Inklusion $C_*^{\mathcal{U}}(X;R) \to C_*(X;R)$ induziert einen Isomorphismus in Homologie.

13.4 Bemerkung

Der Satz über kleine Simplizes lässt sich auf Paare von topologischen Räumen verallgemeinern. Für eine Überdeckung $\mathcal U$ von X setzen wir

$$C_*^{\mathcal{U}}(X,A;R) := C_*^{\mathcal{U}}(X;R)/C_*(A;R) \cap C_*^{\mathcal{U}}(X;R)$$

Dann induziert die Inklusion $C_*^{\mathcal{U}}(X,A;R) \to C_*(X,A;R)$ einen Isomorphismus in Homologie. Beweis mit Paarfolge und 5er-Lemma.

13.5 Beweis des Ausschneidungssatzes (13.1)

Seien $\mathcal{U}:=\left\{\mathring{A},X\setminus\overline{L}\right\}$ und $\mathcal{U}_L:=\left\{\mathring{A}\setminus L,X\setminus\overline{L}\right\}$. Dann gilt nach dem Satz über kleine Simplizes

Daher induziert auch die Inklusion (\star) einen Isomorphismus in H_* .

52

13.6 Idee zum Beweis des Satzes über kleine Simplizes

13.7 Definition

 $s_n:=\left(\tfrac{1}{n+1},\ldots,\tfrac{1}{n+1}\right)\in |\Delta^n| \text{ heißt der } \textbf{Schwerpunkt} \text{ von } |\Delta^n|. \text{ Ist } \sigma\colon |\Delta^p|\to |\Delta^n| \text{ ein singulärer } p\text{-Simplex, so definieren wir } (K_{\Delta^n})(\sigma)\colon \left|\Delta^{p+1}\right|\to |\Delta^n| \text{ durch}$

"Abkegeln"

$$(K_{\Delta^n})(\sigma)(t_0,\ldots,t_{p+1}) = t_0 \cdot s_n + (1-t_0) \cdot \sigma\left(\frac{(t_1,\ldots,t_{p+1})}{1-t_0}\right)$$

Wir erhalten eine Abbildung $(K_{\Delta^n})_p \colon C_p(|\Delta^n|;R) \to C_{p+1}(|\Delta^n|;R)$.

13.8 Lemma

Sei $p_n \colon |\Delta^n| \to |\Delta^n|$ die konstante Abbildung mit $\operatorname{Im} p_n = \{s_n\}$. Dann ist $(K_{\Delta^n})_*$ eine Kettenhomotopie zwischen id und $(p_n)_*$.

Beweis

Sei σ ein singulärer p-Simplex in $|\Delta^n|$. Dann ist

$$\begin{split} \partial_{p+1} \circ (K_{\Delta^n})_p(\sigma) &= \sum_{j=0}^{p+1} (-1)^j (K_{\Delta^n})_p(\sigma) \circ \iota_{p+1,j} = \sigma + \sum_{j=1}^{p+1} (-1)^j (K_{\Delta^n})_p(\sigma) \circ \iota_{p+1,j} \\ &= \sigma + \begin{cases} \sum_{j=1}^{p+1} (-1)^j (K_{\Delta^n})_{p-1} (\sigma \circ \iota_{p+1},j), & p \geqslant 1 \\ -c_{\{s_n\}} \colon \left| \Delta^0 \right| \to \{s_n\}, & p = 0 \end{cases} \\ &= \sigma - \begin{cases} (K_{\Delta^n})_{p-1} (\partial_p \circ \sigma), & \text{falls } p \geqslant 1 \\ c_{\{s_0\}}, & \text{falls } p = 0 \end{cases} \quad \Box \end{split}$$

13.9 Definition

Wir definieren induktiv natürliche Transformationen $B_n\colon C_n(-;R)\to C_n(-;R)$ und $H_n\colon C_n(-;R)\to C_{n+1}(-;R)$ wie folgt: Für n=0 setzen wir $(B_0)_X=\mathrm{id}$. Sei B_k nun schon für $k=0,\ldots,n-1$ definiert. Betrachte zunächst $\mathrm{id}_{|\Delta^n|}\in C_n(|\Delta^n|;R)$. Setze

$$(B_n)_{|\Delta^n|}\big(\mathrm{id}_{|\Delta^n|}\big) := (K_{\Delta^n})_{n-1} \circ (B_{n-1})_{|\Delta^n|} \circ \partial_n\big(\mathrm{id}_{|\Delta^n|}\big)$$

Ist $\sigma: |\Delta^n| \to X$ ein beliebiger singulärer n-Simplex in X, so ist $\sigma = \sigma_*(\mathrm{id}_{|\Delta^n|})$, also setzen wir ⁵

$$(B_n)_X(\sigma) := \sigma_* ((B_n)_{|\Delta^n|} (\mathrm{id}_{|\Delta^n|}))$$

13 Kleine Simplizes 53

Für n=0 und $\sigma\colon \left|\Delta^0\right|\to X$ setzen wir $(H_0)_X(\sigma)$ als den konstanten 1-Simplex τ mit $\operatorname{Im} \tau=\operatorname{Im} \sigma$. Ist H_{n-1} schon definiert, so setzen wir für einen singulären n-Simplex $\sigma\colon \left|\Delta^n\right|\to X$

$$(H_n)_X(\sigma) := \sigma_* \big((K_{\Delta^n})_n \big(\mathrm{id}_{|\Delta^n|} - (H_{n-1})_{|\Delta^n|} \circ \partial_n \big(\mathrm{id}_{|\Delta^n|} \big) \big) \big)$$

13.10 Lemma 1

Für jeden topologischen Raum X ist $(B_*)_X$ eine Kettenabbildung und $(H_*)_X$ eine Kettenhomotopie zwischen $(B_*)_X$ und der Identität.

13.11 Lemma 2

Sei \mathcal{U} eine offene Überdeckung von X. Sei $\alpha \in C_n(X;R)$. Dann gibt es $k_0 \geqslant 0$ so, dass $(B_n)_X^k(\alpha) \in C_n^{\mathcal{U}}(X;R)$ für alle $k \geqslant k_0$.

Beweis (mit Lemma 3, 13.16)

Es genügt $\alpha = \sigma \colon |\Delta^n| \to X$ zu betrachten. Sei $\sigma^* \mathcal{U} = \{ \sigma^{-1}(U) \, | \, U \in \mathcal{U} \}$. Dann gilt

$$\sigma^* \left(C_*^{\sigma^* \mathcal{U}}(|\Delta^n|; R) \right) \subseteq C_*^{\mathcal{U}}(X; R).$$

 $\begin{array}{l} \operatorname{Da}\;(B_n)_X^k(\sigma) = \, \sigma_*\Big((B_n)_{|\Delta^n|^k}(\operatorname{id}_{|\Delta^n|})\Big) \; \text{genügt es zu zeigen:} \; (B_n)_{|\Delta^n|}^k(\operatorname{id}_{|\Delta^n|}) \in \, C_*^{\sigma^*\mathcal{U}}(|\Delta^n|;R). \; \operatorname{Sei}_{\varepsilon} > 0 \; \operatorname{eine} \; \operatorname{Lebesguezahl^6} \; \operatorname{f\"{u}r} \; \sigma^*\mathcal{U}, \; \operatorname{das} \; \operatorname{heißt} \; \forall x \in |\Delta^n| : \; \exists V \in \, \sigma^*\mathcal{U} : \, B_\varepsilon(x) \subseteq V. \; \operatorname{Ist} \; k > 0 \; \operatorname{mit}_{\varepsilon} \Big(\frac{n}{n+1}\Big)^k \operatorname{diam}(\operatorname{id}_{|\Delta^n|}) < \varepsilon, \; \operatorname{so} \; \operatorname{ist}_{\varepsilon}((B_n)_{|\Delta^n|})^k (\operatorname{id}_{|\Delta^n|}) \in C_*^{\sigma^*\mathcal{U}}(|\Delta^n|;R) \; \operatorname{nach}_{\varepsilon} \; \operatorname{Lemma} \; \operatorname{3} \; \operatorname{(iii)}. \end{array}$

13.12 Beweis des Satzes über kleine Simplizes (13.3)

Sei $x\in H_n(X;R)$. Wähle $\alpha\in C_n(X;R)$ mit $[\alpha]=X$. Nach Lemma 2 gibt es ein k mit $(B_n)_X^k(\alpha)\in C_n^{\mathcal{U}}(X;R)$. Mit Lemma 1 folgt $x=[\alpha]=\left[(B_n)_X^k(\alpha)\right]$. Daher ist die von $C_*^{\mathcal{U}}\to C_*(X;R)$ induzierte Abbildung in H_* surjektiv.

Sei nun $x \in \ker H_n \left(C_*^{\mathcal{U}}(X;R) \to C_*(X;R) \right)$. Sei $\alpha \in C_n^{\mathcal{U}}(X;R)$ mit $x = [\alpha]$. Da x im Kern liegt, gibt es $\beta \in C_{n+1}(X;R)$ mit $\partial_n(\beta) = \alpha$. Nach Lemma 2 gibt es k mit $(B_n)_X^k(\beta) \in C_n^{\mathcal{U}}(X;R)$. Mit Lemma 1 folgt

$$x = [\alpha] = \left[(B_n)_X^k(\alpha) \right] = \left[(B_n)_X^k(\partial_n \beta) \right] = \left[\partial_n \left((B_{n+1})_X^k(\beta) \right) \right]$$

Also ist x = 0 in $H_*(C_*^{\mathcal{U}}(X;R))$.

13.13 Bemerkung

Seien (C_*, ∂_*) und (C'_*, ∂'_*) Kettenkomplexe. $s_n \colon C_n \to C'_{n+1}$ eine Abbildung, die den Grad um 1 erhöht. Dann ist $s_{n-1} \circ \partial_n + \partial'_{n+1} \circ s_n$ eine Kettenabbildung:

$$\left(s_{n-1}\circ\partial+\partial'_{n+1}\circ s_n\right)\circ\partial_{n+1}=\partial'_{n+1}\circ\left(s_n\circ\partial_{n+1}+\partial'_{n+2}\circ s_{n+1}\right)$$

Insbesondere ist $s \circ \partial + \partial' \circ s = f - g$ mit f eine Kettenabbildung. Dann ist auch g eine Kettenabbildung.

13.14 Definition

Seien $v_0,\ldots,v_p\in |\Delta^n|$. Dann bezeichnen wir mit $[v_0,\ldots,v_p]$ den singulären p-Simplex mit $\sum_{i=0}^p t_i e_i \to \sum_{i=1}^p t_i v_i$. Singuläre Simplizes dieser Form heißen **affin**.

54 13 Kleine Simplizes

⁶siehe https://de.wikipedia.org/wiki/Lebesguezahl⊄

13.15 Definition

Sei $\|\cdot\|$ eine Norm auf \mathbb{R}^{n+1} . Für einen singulären Simplex $\sigma\colon |\Delta^p|\to |\Delta^n|$ definieren wir den **Durchmesser** durch

$$\operatorname{diam}(\sigma) := \max\{\|\sigma(x) - \sigma(y)\| \mid x, y \in |\Delta^p|\}$$

13.16 Lemma 3

Sei $[v_0, \ldots, v_p]$ ein affiner singulärer p-Simplex in $|\Delta^n|$. Dann gilt:

(i)
$$\operatorname{diam}([v_0, \dots, v_p]) = \max\{\|v_i - v_j\| \mid 0 \leqslant i, j \leqslant p\}$$

(ii) Es ist

$$(B_p)_{|\Delta^n|}([v_0,\ldots,v_p]) = \sum_{\sigma \in \sum_{\{v_0,\ldots,v_p\}}} \operatorname{sgn}(\sigma) \underbrace{\left[\frac{\sum_{i=0}^p \sigma(v_i)}{p+1}, \frac{\sum_{i=0}^{p-1} \sigma(v_i)}{p}, \ldots, \sigma(v_0)\right]}_{=:\tau_{\sigma}}$$

(iii) Für $\sigma \in \sum_{\{v_0,\dots,v_p\}}$ ist diam $\tau_\sigma \leqslant \frac{n}{n+1} \operatorname{diam}[v_0,\dots,v_p]$.

Beweis

(i) Seien $v,v'\in \mathrm{Im}[v_0,\ldots,v_p]$. Dann ist $v=\sum_{i=0}^p t_iv_i$, $v'=\sum_{i=0}^p t_i'v_i$ mit $t_i,t_i'\geqslant 0$, $\sum_{i=0}^p t_i=1=\sum_{i=0}^p t_i'$. Dann gilt

$$||v - v'|| = \left\| \sum_{i=0}^{p} t_i v_i - v' \right\| = \left\| \sum_{i=0}^{p} t_i v_i - \sum_{i=0}^{p} t_i v' \right\| = \left\| \sum_{i=0}^{p} t_i (v_i - v') \right\| \leqslant \sum_{i=0}^{p} ||v_i - v'||$$

$$\leqslant \left(\sum_{i=0}^{p} t_i \right) \max_{i} ||v_i - v'|| = \max_{i} ||v_i - v|| \leqslant \max_{i,j} ||v_i - v_j||.$$

(ii) Per Induktion nach p.

p=0: Klar.

 $p-1\mapsto p$: Es genügt $n=p,\,v_0=e_0,\ldots,v_n=e_n$ zu betrachten. Es gilt

$$\begin{split} \left(B_{|\Delta^p|}\right)_p([v_0,\dots,v_p]) &= (K_{\Delta^p}) \circ (B_{|\Delta^p|})_{p-1} \circ \partial_p[e_0,\dots,e_p] \\ &= \sum_{i=0}^p (-1)^i (K_{\Delta^p}) \circ (B_{|\Delta^p|})_{p-1} \circ [e_0,\dots,e_{i-1},e_{i+1},\dots,e_p] \\ &= \sum_{i=0}^p (-1)^i \sum_{\sigma \in \Sigma_{\{e_0,\dots,e_{i-1},e_{i+1},\dots e_p\}}} \mathrm{sgn}(\sigma) (K_{\Delta^p}) \left(\left[\frac{\sigma(e_0) + \dots \sigma(e_{i-1}) + \sigma(e_{i+1}) + \dots + \sigma(e_p)}{p} \right] \right) \\ &= \sum_{i=0}^p (-1)^i \sum_{\sigma \in \Sigma_{\{e_0,\dots,e_{i-1},e_{i+1},\dots e_p\}}} \mathrm{sgn}(\sigma) \left[\frac{e_0 + \dots + e_p}{p+1}, \frac{\sigma(e_0) + \dots \sigma(e_{i-1}) + \sigma(e_{i+1}) + \dots + \sigma(e_p)}{p}, \dots \right] \\ &= \dots = \sum_{\sigma \in \Sigma_{\{e_0,\dots,e_n\}}} \mathrm{sgn}(\sigma) \left[\frac{\sum_{i=0}^p \sigma(e_i)}{p}, \dots, \dots \right] \end{split}$$

(iii) Es genügt $\sigma=\mathrm{id}$ zu betrachten. Es ist

$$\dim \left[\frac{v_0 + \ldots + v_p}{p+1}, \frac{v_0 + \ldots v_{p-1}}{p}, \ldots, v_0 \right] \stackrel{\text{(i)}}{=} \max_{i < j} \left\| \frac{v_0 + \ldots + v_i}{i+1} - \frac{v_0 + \ldots + v_j}{j+1} \right\|$$

$$= \max_{i < j} \left\| \frac{v_0 + \ldots + v_i}{i+1} - \frac{v_0 + \ldots + v_j}{j+1} - \frac{v_{i+1} + \ldots + v_j}{j+1} \right\|$$

$$= \max_{i < j} \left\| \frac{(j+1) - (i+1)}{(i+1)(j+1)} (v_0 + \ldots + v_i) - \frac{1}{j+1} (v_{i+1} + \ldots + v_j) \right\|$$

$$= \max_{i < j} \frac{j-1}{j+1} \left\| \underbrace{v_0 + \ldots + v_i}_{i+1} - \underbrace{v_{i+1} + \ldots + v_j}_{j-1} \right\|$$

$$\leq \max_{i < j} \frac{j-1}{j+1} \operatorname{diam}[v_0, \ldots, v_n]$$

$$\leq \max_j \frac{j}{j+1} \operatorname{diam}[v_0, ld, v_n]$$

$$\leq \max_j \frac{j}{j+1} \operatorname{diam}[v_0, \ldots, v_n] \leq \frac{n}{n+1} \operatorname{diam}[v_0, \ldots, v_n]$$

56 13 Kleine Simplizes

14 Axiome für Homologie

14.1 Bezeichnung

Mit $V: \operatorname{Top}^2 \to \operatorname{Top}^2$ bezeichnen wir den Funktor $V(X,A) = (A,\emptyset) = A$.

14.2 Definition

Eine Homologietheorie mit Werten in R-Moduln ist ein Funktor

$$E_*: \mathsf{HTop}^2 \longrightarrow \mathsf{Gr}\text{-}R\text{-}\mathsf{Mod}$$

zusammen mit einer natürlichen Transformation $\partial_{*+1} \colon E_{*+1} \to E_* \circ V$, sodass folgende Axiome gelten:

(i) **Paarfolge**: Sei (X,A) ein Paar von topologischen Räumen. Seien $X=(X,\emptyset) \xrightarrow{j} (X,A)$ und $A=(A,\emptyset) \xrightarrow{i} X=(X,\emptyset)$ die Inklusionen. Dann ist

$$\cdots \longrightarrow E_{n+1}(X,A) \xrightarrow{\partial_{n+1}} E_n(A) \xrightarrow{E_n(i)} E_n(X) \xrightarrow{E_n(j)} E_n(X,A) \xrightarrow{\partial_{n-1}} E_{n-1}(A) \longrightarrow \cdots$$

eine lange exakte Folge.

(ii) **Ausschneidung**: Sei (X,A) ein Paar von topologischen Räumen und $L\subseteq A$ mit $\overline{L}\subseteq \mathring{A}$. Dann induziert die Inklusion $i\colon (X\setminus L,A\setminus L)\to (X,A)$ einen Isomorphismus

$$E_*(i) \colon E_*(X \setminus L, A \setminus L) \xrightarrow{\cong} E_*(X, A)$$

14.3 Bemerkung

Homologietheorien sind homotopieinvariant. Oft wird dies als eigenes Axiom formuliert.

14.4 Bemerkung

Für jede Homologietheorie gibt es eine Mayer-Vietoris-Folge. Dies ist eine formale Konsequenz aus der Paarfolge und dem Ausschneidungsisomorphismus. Eine einfache Folgerung aus der Mayer-Vietoris-Folge ist, dass jede Homologietheorie mit endlichen disjunkten Vereinigungen verträglich ist: Ist $X=X_1 \coprod \cdots \coprod X_n$ und $j_i\colon X_i\to X$ die Inklusion, dann ist

$$E_*(X_1) \oplus \cdots \oplus E_*(X_n) \xrightarrow{E_*(j_1) \oplus \cdots \oplus E_*(j_n)} E_*X$$

ein Isomorphismus.

14.5 Definition

Zwei weitere Axiome die Homologietheorien mit Werten in R-Moduln erfüllen können sind:

Dimensionsaxiom: Für den Einpunktraum $\{x_0\}$ ist $E_0(\{x_0\}) \cong R$ und $E_n(\{x_0\}) = 0$ für $n \neq 0$.

Disjunkte Vereinigung: Sei $X = \coprod_{i \in I} X_i$ und $j_i \colon X_i \to X$ die Inklusion. Dann ist

$$\bigoplus_{i\in I} E_*(j_i) \colon \bigoplus_{i\in I} E_*(X_i) \longrightarrow E_*(X)$$

ein Isomorphismus.

14 Axiome für Homologie 57

⁷Genauer: Sei S: GR-R-MoD → GR-R-MoD der Funktor $(SM)_n = M_{n+1}$. Dann ist ∂_* eine natürliche Transformation $S \circ E_* \to E_* \circ V$, also für (X,A) $(S(E_*(X,A)))_n \to (E_*(V(X,A)))$, $E_{n+1}(X,A) \xrightarrow{\partial_*} E_n(A)$.

14.6 Bemerkung

In Kapitel 6 haben wir GR-R-Mod als die Kategorie der \mathbb{N} -graduierten R-Moduln definiert. Für viele Homologietheorien muss man diese Kategorie etwas vergrößern und \mathbb{Z} -graduierte R-Moduln zulassen. Objekte sind dann Folgen $(M_n)_{n\in\mathbb{Z}}$ über \mathbb{Z} von R-Moduln M_n .

14.7 Bemerkung

- Für jede Homologietheorie E_* gilt: $E_*(S^n) \cong E_*(\{\text{pt}\}) \oplus E_{*-n}(\{\text{pt}\})$
- Die Konstruktion des zellulären Kettenkomplexes in singulärer Homologie benutzte nur die Axiome aus 14.2. Für die Identifikation der zellulären Homologie mit der singulären Homologie waren zusätzlich die Axiome aus 14.5 notwendig. Ohne das Axiom über disjunkte Vereinigungen kann man nur endliche CW-Komplexe behandeln. Ohne das Dimensionsaxiom erhält man an der Stelle der zellulären Kettenkomplex eine sogenannte Spektralfolge, die Atiyah-Hirzebruch Spektralfolge.

14.8 Definition

Seien (E_*,∂_*^E) und (F_*,∂_*^F) Homologietheorien. Ein **Morphismus von Homologietheorien** ist eine natürliche Transformation $\tau_*\colon E_*\to F_*$, sodass $\tau_*\circ\partial_{*+1}^E=\partial_*^F\circ\tau_{*+1}$. Also kommutiert für alle (X,A) das folgende Diagramm

$$E_{n+1}(X,A) \xrightarrow{\partial_{n+1}^{E}} E_{n}(A)$$

$$\downarrow^{\tau_{n+1,(X,A)}} \qquad \downarrow^{\tau_{n,A}}$$

$$F_{n+1}(X,A) \xrightarrow{\partial_{n+1}^{F}} F_{n}(A)$$

14.9 Satz

Sei $\tau_*: (E_*, \partial_*^E) \to (F_*, \partial_*^F)$ ein Morphismus von Homologietheorien. Ist

$$(\tau_*)_{\{\text{pt}\}}: E_*(\{\text{pt}\}) \to F_*(\{\text{pt}\})$$

ein Isomorphismus. Dann ist $(\tau_*)_X$ für jeden endlichen CW -Komplex ein Isomorphismus. Sind E_* und F_* mit beliebigen disjunkten Vereinigungen verträglich, so ist $(\tau_*)_X$ für alle CW -Komplexe ein Isomorphismus.

Beweis

Schritt 1: Sei X ein 0-dimensionaler endlicher CW-Komplex,also eine endliche Menge mit der diskreten Topologie. Für $x \in X$ sei $i_x \colon \{x\} \to X$ die Inklusion. Wir erhalten folgendes Diagramm:

$$E_{*}(X) \xrightarrow{(\tau_{*})_{X}} F_{*}(X)$$

$$\stackrel{\cong}{=} \qquad \qquad \stackrel{\cong}{=} \qquad \qquad \stackrel{\cong}{=} \qquad \qquad \stackrel{\cong}{=} \qquad \qquad F_{*}(\{x\})$$

$$\underset{x \in X}{\bigoplus} E_{*}(\{x\}) \xrightarrow{\cong} \underset{x \in X}{\bigoplus} F_{*}(\{x\})$$

Das Diagramm kommutiert, da au_* eine natürliche Transformation ist.

58 14 Axiome für Homologie

Schritt 2: Angenommen $(\tau_*)_X$ ist ein Isomorphismus für jeden endlichen CW-Komplex von Dimension echt kleiner als n. Sei X ein n-dimensionaler endlicher CW-Komplex:

$$\underbrace{ \coprod_{i \in I} S^{n-1} \xrightarrow{\coprod q_i^{(n)}} X^{(n-1)} }_{i \in I} \underbrace{ \downarrow}_{D^n \xrightarrow{\coprod Q_i^{(n)}} X}_{X}$$

Sei $X_+^{(n-1)}:=X^{(n-1)}\cup\coprod_{i\in I}Q_i^{(n)}(D^n\setminus\{0\})$ und $Z:=\coprod_{i\in I}Q_i^{(n)}(\mathring{D^n})$. Dann sind $X_+^{(n-1)}$, Z und $Z\cap X_+^{(n-1)}$ homotopieäquivalent zu endlichen CW-Komplexen mit Dimension echt kleiner n. Insbesondere sind $(\tau_*)_{X_+^{(n-1)}}$, $(\tau_*)_Z$ und $(\tau_*)_{X_+^{(n-1)}\cap Z}$ Isomorphismen. Da $X_+^{(n-1)}\subseteq X$ und $\mathbb{Z}\subseteq X$ offen sind, erhalten wir in E_* und F_* zugehörigen Mayer-Vietoris-Folgen:

$$\cdots \longrightarrow E_*(X_+^{(n-1)} \cap Z) \longrightarrow E_*(X_+^{(n-1)}) \oplus E_*(\mathbb{Z}) \longrightarrow E_*(X) \xrightarrow{\partial_*^{\mathrm{MV},E}} E_{*-1}(X_+^{(n-1)} \cap Z) \longrightarrow \cdots$$

$$\cong \downarrow^{(\tau_*)} X_+^{(n-1)} \cap Z \qquad \cong \downarrow^{(\tau_*)} X_+^{(n-1)} \oplus (\tau_*) Z \qquad \downarrow^{(\tau_*)} X \qquad \cong \downarrow^{(\tau_{*-1})} X_+^{(n-1)} \cap Z$$

$$\cdots \longrightarrow F_*(X_+^{(n-1)} \cap Z) \longrightarrow F_*(X_+^{(n-1)}) \oplus F_*(\mathbb{Z}) \longrightarrow F_*(X) \xrightarrow{\partial_*^{\mathrm{MV},F}} F_{*-1}(X_+^{(n-1)} \cap Z) \longrightarrow \cdots$$

Da au_* eine natürliche Transformation ist, kommutierten die beiden linken Vierecke. Da au_* mit der Randabbildung der Paarfolgen von E_* und F_* kommutiert, kommutiert auch au_* mit den Randabbildungen der Mayer-Vietoris-Folgen in E_* und F_* . Also kommutiert auch das das dritte Viereck. Mit dem 5er-Lemma (8.15) folgt, dass $(au_*)_X$ auch ein Isomorphismus ist.

Erfüllen E_* und F_* auch das Dimensionsaxiom, so zeigen die Argumente aus Schritt 1 und 2, dass $(\tau_*)_X$ ein Isomorphismus ist für jeden endlich dimensionalen CW-Komplex.

Schritt 3: Sei X ein CW -Komplex. Sei

 $X^+ := \{(x,t) \mid x \in X^{(n)}, t \in \}$

hier entsteht noch ein Beweis ...

14 Axiome für Homologie 59

15 Zusammenhang zwischen $\pi_1(X,x_0)$ und $H_1(X,\mathbb{Z})$

Vorbereitung: Abelisierung von Gruppen

15.1 Definition

Sei G eine Gruppe. Dann heißt die Untergruppe von G, die erzeugt wird von Elementen der Form $[g,h]:=ghg^{-1}h^{-1}$, Kommutatorgruppe von G. Wir schreiben hierfür auch $[G,G]\subset G$.

15.2 Lemma

 $[G,G]\subset G$ ist ein Normalteiler von G.

Beweis

Seien $g_0, \ldots, g_n, h \in G$. Dann ist

$$h[g_0, g_1] \cdot \ldots \cdot [g_{n-1}, g_n] \cdot h^{-1} = [hgh^{-1}, hg_1h^{-1}] \cdot \ldots \cdot [hg_{n-1}h^{-1}, hg_1h^{-1}]$$

15.3 Definition

Der Quotient $G^{ab} := G/[G,G]$ heißt **Abelisierung** (manchmal auch Abelianisierung) von G.

15.4 Bemerkung

- Gruppen $\stackrel{
 m ab}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-}$ Abel.Gruppen, $G \longmapsto G^{
 m ab}$ definiert einen Funktor.
- Dieser Funktor hat die folgende universelle Eigenschaft: Zu jeder abelschen Gruppe A und einem Homomorphismus $\varphi\colon G\to A$ existiert ein eindeutiger Gruppenhomomorphismus $\varphi^{\mathrm{ab}}\colon G^{\mathrm{ab}}\to A$ sodass folgendes Diagramm kommutiert

15.5 Schleifen und 1-Zykel

Sei X ein topologischer Raum. Da $\left|\Delta^1\right|\cong [0,1]$, liefert jeder Pfad $\omega\colon [0,1]\to X$ einen 1-Simplex in $C_1(X;\mathbb{Z})$.

15.6 Lemma 1

Seien $\omega, \omega' \colon [0,1] \to X$ Pfade in X mit $\omega(1) = \omega'(0)$, dann ist $\omega * \omega' - \omega - \omega' \in C_1(X;\mathbb{Z})$ der Rand eines 2-Simplex.

Beweis

Zur Erinnerung: $\left|\Delta^2\right| = \left\{(x_0, x_1, x_2) \in \mathbb{R}^3 \ \middle| \ \sum_{i=0}^3 x_i = 1, x_j \geqslant 0 \ \forall j \in \{0, 1, 2\} \right\}$. Betrachte: $\sigma \colon \left|\Delta^2\right| \to X$ definiert durch

$$(x_0, x_1, x_2) \mapsto (\omega * \omega') \left(\frac{1}{2}(1 - x_0 - x_2)\right) = \omega * \omega' \left(\frac{1}{2}(2x_0 + x_1)\right)$$

Es gilt

$$(\delta_0 \sigma)(s) = \sigma(0, s, 1 - s) = \omega * \omega' \left(\frac{1}{2}s\right) = \omega(s)$$

$$(\delta_1 \sigma)(s) = \sigma(s, 0, 1 - s) = \omega * \omega * (s)$$

$$(\delta_2 \sigma)(s) = \sigma(s, 1 - s, 0) = (\omega * \omega') \left(\frac{1}{2}(1 + s)\right) = \omega'(s)$$

Dann folgt $\partial \sigma = \delta_0 \sigma - \delta_1 \sigma + \delta_2 \sigma = \omega - \omega * \omega' + \omega'$. Bild:

Simplex kollabieren und so weiter

15.7 Lemma 2

- a) Sei $\omega\colon [0,1]\to X$ ein Pfad, sei $\omega^{-1}(s)=\omega(1-s)$. Dann ist $\omega+\omega^{-1}$ Rand einer 2-Kette, also von einem Element von $C_2(X;\mathbb{Z})$
- b) Der konstante Pfad ist Rand einer 2-Kette.

Beweis

a) Sei $\sigma\colon |\Delta^2| o X$ gegeben durch $\sigma(x_0,x_1,x_2) = \omega(x_1).$ Dann ist

$$\partial \sigma = \omega - \underbrace{\operatorname{const}_{\omega(0)}}_{=\partial \tau} + \omega^{-1}$$

Also ist nach b) $\omega + \omega^{-1} = \partial(\sigma - \tau)$.

b) Der Rand des konstanten 2-Simplex ist der konstante Pfad.

15.8 Lemma 3

Sind $\omega, \omega' \colon [0,1] \to X$ Pfade in X mit $\omega(0) = \omega'(0)$ und $\omega(1) = \omega'(1)$, dann gilt: Ist ω homotop zu ω' relativ Endpunkte, dann ist $\omega - \omega'$ Rand einer 2-Kette.

Beweis

Sei $H \colon [0,1] \times [0,1] \to X$ eine Homotopie zwischen ω und ω' mit $H(0,s) = \omega(s)$, $H(1,s) = \omega'(s)$, $H(t,0) = \mathrm{const}_{\omega(0)}$ und $H(t,1) = \mathrm{const}_{\omega(1)}$.

Quadrat nach X, linke Seite kollabieren, Simplex nach X

Wähle Homöomorphismus durch

$$\kappa: [0,1] \times [0,1] / [0,1] \times \{0\} \to |\Delta^2|, \qquad [t,s] \longmapsto (st, s(1-t), (1-s))$$

Betrachte $\sigma:=H\circ\kappa^{-1}\colon \left|\Delta^2\right|\to X$. Die Ränder sind $\delta_0\sigma=\omega$ und $\delta_1\sigma=\omega'$ und $\delta_2\sigma=\mathrm{const}_{\omega(1)}$. Also folgt, dass $\omega-\omega'$ der Rand einer 2-Kette ist.

15.9 Die Hurewicz-Abbildung

Falls $\omega\colon [0,1]\to X$ eine Schleife ist, dann ist $\partial\omega=\omega(1)-\omega(0)=0$. Also repräsentiert ω ein Element $[\![\omega]\!]\in H_1(X)$. Nach Lemma 3 erhalten wir eine Abbildung $\theta\colon \pi_1(X,x_0)\to H_1(X)$. Nach Lemma 1 bildet diese Abbildung die Verknüpfung von Schleifen auf Summen von 1-Ketten ab.

$$\llbracket \omega * \omega' \rrbracket = \llbracket \omega \rrbracket + \llbracket \omega' \rrbracket \quad , \quad \llbracket \omega^{-1} \rrbracket = -\llbracket \omega \rrbracket$$

Zusammen mit Lemma 2 erhalten wir einen Gruppenhomomorphismus. Aus der universellen Eigenschaft der Abelisierung erhalten wir

$$\theta^{\mathrm{ab}} \colon \pi_1(X, x_0)^{\mathrm{ab}} \longrightarrow H_1(X; \mathbb{Z})$$

15.10 Theorem(Hurewicz)

Für wegzusammenhängende Räume ist θ^{ab} ein Isomorphismus.

Beweis

Sei X wegzusammenhängend. Wähle für jedes $x \in X$ einen Pfad λ_x von x_0 nach x. Wähle $\lambda_{x_0} = \mathrm{const}_{x_0}$. Betrachte

$$\overline{\rho} \colon C_1(X; \mathbb{Z}) \longrightarrow \pi_1(X, x_0)^{\mathrm{ab}} \quad , \qquad \omega \longmapsto \left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1} \right]$$

Somit (nach Lemma 4) induziert $\overline{\rho}$ einen Homomorphismus: $\rho \colon H_1(X; \mathbb{Z}) \to \pi_1(X, x_0)^{\mathrm{ab}}$. Es gilt:

$$(\rho \circ \theta)[\omega] = \left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(0)}^{-1}\right] = [\omega]$$

Wir haben $\lambda\colon C_0(X;\mathbb{Z})\to C_1(X;\mathbb{Z})$, $\sum_i n_i x_i\mapsto \sum_i n_i \lambda_{x_i}$. Mit Lemma 5 folgt, dass θ^{ab} ein Isomorphismus ist für wegzusammenhängende Räume X.

15.11 Lemma 4

 $\overline{
ho}$ bildet die Ränder von 2-Simplizes auf $1 \in \pi_1(X, x_0)^{\mathrm{ab}}$ ab.

Beweis

Sei $\sigma \in C_2(X; \mathbb{Z})$ ein 2-Simplex. Es gilt

$$\begin{split} \overline{\rho}(\partial\sigma) &= \overline{\rho}(\partial_0\sigma - \partial_1\sigma + \partial_2\sigma) = \overline{\rho}(\omega_0) \cdot \overline{\rho}(\omega_1)^{-1} \cdot \overline{\rho}(\omega_2) \\ &= \left[\lambda_{\omega_0(0)} * \omega_0 * \lambda_{\omega_0(1)}^{-1} * \underbrace{\left(\lambda_{\omega_1(0)} * \omega_1 * \lambda_{\omega_1(1)}\right)^{-1}}_{=\lambda_{\omega_0(1)} * \omega_1^{-1} * \lambda_{\omega_1(0)}^{-1}} * \lambda_{\omega_2(0) * \omega_2 * \lambda_{\omega_2(1)}}\right] \\ &= \left[\lambda_{\omega_0(0)} * \underbrace{\omega_0 * \omega_1^{-1} * \omega_2}_{=:\gamma} * \lambda_{\omega_2(1) = \omega_0(0)}^{-1}\right] \end{split}$$

Der Pfad γ ist die Schleife, die einmal auf dem Rand es 2-Simplex herumläuft. Also $\gamma\colon [0,1]\to \left|\partial\Delta^2\right| \hookrightarrow \left|\delta^2\right|\to X$. Aber $\left|\partial\Delta^2\right|\hookrightarrow \left|\Delta^2\right|$ ist homotop zur konstanten Abbildung auf $\omega_0(0)$ mit einer Homotopie, die den Punkt $\omega_0(0)$ fixiert.

$$= \left[\lambda_{\omega_0(0)} * \lambda_{\omega_0(0)}^{-1}\right] = 1$$

15.12 Lemma 5

Sei $\omega \colon \Delta^1 \to X$ ein 1-Simple, dann gilt $\theta \circ \overline{\rho}(\omega) = \llbracket \omega - \lambda_{\partial \omega} \rrbracket$

Beweis

Es gilt

$$(\theta \circ \overline{\rho})(\omega) = \theta \left(\left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(0)}^{-1} \right] \right) = \left[\lambda_{\omega(0)} * \omega * \lambda_{\omega(1)}^{-1} \right] = \left[\omega \right] \underbrace{-\left[\lambda_{\omega(1)} \right] + \left[\lambda_{\omega(0)} \right]}_{\lambda_{\omega(1)-\omega(0)} = \lambda_{\partial\omega}}$$

15.13 Corollar

$$(\theta \circ \rho)([\![c]\!]) = [\![c]\!]. [\![c]\!] \in H_1(X; \mathbb{Z})$$

von R-Moduln, 20

Index

Die Seitenzahlen sind mit Hyperlinks zu den entkurze exakte Folge von Kettenkomplexen, 28 sprechenden Seiten versehen, also anklickbar 🖒 kurze exakte Sequenz, 11 lange exakte Folge, 27 Abbildungsgrad, 36 Abelisierung, 60 Morphismen, 1 abgeschlossene Zelle, 42 Morphismus von Homologietheorien, 58 affin, 54 anklebende Abbildung, 42 *n*-Ketten, 16 assoziativ, 1 n-Ränder, 16 Ausschneidung, 57 n-Simplex, 4 n-te Bettizahl, 48 charakteristische Abbildung, 42 n-te Homologie, 10 CW-Komplex, 41 *n*-te Randabbildung endlicher, 42 simplizial, 8 singulär, 15 Dimensionsaxiom, 57 zellulär, 45 disjunkte Vereinigung *n*-ter Homologiemodul Axiom, 57 simplizial, 9 Durchmesser, 55 singulär, von Paaren, 26 Ecken, 4 *n*-ter Kettenmodul Euler-Charakteristik, 6 simplizial, 8 eines CW-Komplex, 48 singulär, 15 von Z-Kettenkomplexen, 14 n-ter zelluläre Kettenmodul, 45 n-Zykel, 16 freier Modul, 7 natürliche Transformation, 2 Funktor, 2 natürlicher Isomorphismus, 47 dargestellter, 2 Objekte, 1 geometrische Realisierung, 5 offene Zelle, 42 graduierten, 18 Graphen, 4 Paar von topologischen Räumen, 26 Paarfolge, 57 homogene Koordinaten, 43 Polyeder, 5 Homologieklasse, 16 projektiver Modul, 12 Homologietheorie, 57 Pushout, 41 Homotopieinverse, 21 Homotopieäquivalenz, 21 R-Kettenabbildung, 18 R-Kettenkomplex, 10 Kategorie, 1 Rand des n-Simplizes, 5 klein, 2 Randabbildungen, 10 kettenhomotop, 22 Rang einer abelschen Gruppe, 11 Kettenhomotopie, 22 reduzierte singuläre Homologie, 34 Kettenmoduln, 10 reell projektiver Raum, 43 Kommutatorgruppe, 60 Komposition, 1 Schwache Topologie, 42 kontrahierbar, 21 Schwerpunkt, 53 Koprodukt Seite, 4 topologischer Räume, 19 Simplizes, 4

Index A

simpliziale Abbildung, 5

simplizialer Kettenkomplex, 10 simplizialer Komplex, 4 singuläre Homologie von X, 16 singuläre Simplizes, 15 singulärer Kettenkomplex, 16 von Paaren, 26 Spaltung, 12 Spektralfolge, 58 Summe topologischer Räume, 19 von R-Moduln, 20

Torsionsgruppe, 11

U-klein, 52unital, 1Unterkomplex, 4

Vektorfeld, 38 Vertices, 4

Zellstruktur, 41 zellulär, 42 zelluläre Homologie, 45 zellulärer Kettenkomplex, 45

B

Abbildungsverzeichnis

1 $\Delta^n imes [0,1]$ für $n=0,1,2$	23	
2 Zerlegung von $\Delta^2 imes [0,1]$ in $3 ext{-Simplizes}$	23	
Todo's und andere Baustellen		
RevChap8	28	
Figure: langes Diagramm	30	
RevChap9	32	
Rest hinzufügen	33	
RevChap10	36	
fertig stellen	37	
Figure: S^2 mit Vektorfeld	38	
schöner machen	39	
RevChap12	49	
eventuell in Anhang?	50	
Problem beheben/Details hinzufügen	50	
Für die Gleichung unten brauchen wir doch $\left(i_{-},i_{-} _{S^{k-1}}\right)_{*}(y_{-})=(-1)^{k+1}\left(i_{+},i_{+} _{S^{k-1}}\right)_{*}(y_{+})$??	50	
RevChap13	52	
Figure: Skizze der Ausschneidung mit kleinen Simplizes	52	
Figure: Zerteilung Simplex mit Bild in ${\cal X}$	53	
nier entsteht noch ein Beweis	59	
Figure: Simplex kollabieren und so weiter	61	
Figure: Quadrat nach X , linke Seite kollabieren, Simplex nach X		
Figure: Pfade am Bild eines Simplex und Verbindungen zu x_{0}	63	

Abbildungsverzeichnis