Data Mining

Implementation and Applications of Databases, Spring 2019

Ira Assent

Intended learning outcomes

- Be able to
 - Describe the goals and applications of common data mining approaches
 - Discuss the basic steps in k-means clustering, decision tree classification, and association rule mining

Data Warehousing recap

Data Warehouse processing involves

- Cleaning and reformatting of data
- OLAP
- Data Mining

- A. The process of flushing log entries to the disk.
- B. The process of refreshing data in the data warehouse with data from operational databases.
- C. The process of updating operational databases with data warehouse data.
- D. The process of sending updated metadata to all sites in a distributed database.

Data Mining and Business Intelligence

Definitions of Data Mining

- Discovery of new information in terms of patterns or rules from vast amounts of data
- Process of finding interesting structure in data
- Process of employing one or more computer learning techniques to automatically analyze and extract knowledge from data
- Data mining may generate thousands of patterns: not all interesting
 - Pattern is interesting if easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm
- Objective vs. subjective interestingness measures
 - Dijective: based on statistics and structures of patterns, e.g., support, confidence, etc.
 - Subjective: based on user's belief in the data, e.g., unexpectedness, novelty, actionability, etc.

KDD (knowledge discovery in databases)

Types of Discovered Knowledge

- Association Rules
- Classification Models and Predictions
- Sequential Patterns such as trends, motifs
- Clustering: groups of related objects
- **...**
- Applications
 - Marketing
 - Marketing strategies and consumer behavior
 - Finance
 - ▶ Fraud detection, creditworthiness and investment analysis
 - Manufacturing
 - ► Resource optimization
 - Health
 - Image analysis, side effects of drug, and treatment effectiveness

Example: Basket Data Analysis

Transaction database

- {butter, bread, milk, sugar}
- {butter, flour, milk, sugar}
- {butter, eggs, milk, salt}
- {eggs}
- {butter, flour, milk, salt, sugar}

Question of interest:

Which items are bought together frequently?

Applications

- Improved store layout
- Cross marketing
- ▶ Focused attached mailings / add-on sales

What Is Association Mining?

Association rule mining

- Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
- ▶ Rule form: "Body ⇒ Head [support, confidence]"

Applications

Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, etc.

Examples

- buys(x,"diapers") \Rightarrow buys(x,"beers") [0.5%, 60%]
 - ▶ 60% of those buying diapers also buy beers. In total, diapers and beers are bought in 0.5% of all purchases.
- ▶ major(x,"CS") $^{\land}$ takes(x,"DB") \Rightarrow grade(x,"A") [1%, 75%]

Rule Measures: Support and Confidence

Find all the rules $X \& Y \Rightarrow Z$ with minimum confidence and support

- support, s, probability that a transaction contains {X,Y,Z}
- confidence, c, conditional probability that a transaction having {X,Y} also contains Z

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Let minimum support 50%, and minimum confidence 50%, then we have

- . $A \Rightarrow C$ (50%, 66.6%)
- $\cdot C \Rightarrow A (50\%, 100\%)$

Mining Association Rules—Example

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Min. support 50% Min. confidence 50%

Frequent Itemset	Support
{A}	75%
{B}	50%
{C}	50%
{A,C}	50%

- ▶ For rule $A \Rightarrow C$:
 - ▶ support = support($\{A, C\}$) = 50%
 - confidence = support({A, C}) / support({A}) = 66.6%
- Frequent items / itemsets are all those that exceed minimum support

Mining Frequent Itemsets: Basic Idea

- Naïve Algorithm
 - count the frequency of for all possible subsets of I in the database
 - > too expensive since there are 2^m such itemsets for |I| = m items
- ▶ The Apriori principle (monotonicity):

Any subset of a frequent itemset must be frequent

- Method based on the apriori principle
 - First count the 1-itemsets, then the 2-itemsets, then the 3-itemsets, and so on
 - When counting (k+1)-itemsets, only consider those (k+1)-itemsets where all subsets of length k have been determined as frequent in the previous step

The Apriori Algorithm

```
variable C_k: candidate itemsets of size k
variable L_k: frequent itemsets of size k
L_i = \{\text{frequent items}\}
for (k = 1; L_k != \emptyset; k++) do begin
  // JOIN STEP: join L_{k} with itself to produce C_{k+1}
  // PRUNE STEP: discard (k+1)-itemsets from C_{k+1} that contain non-frequent k-itemsets
  as subsets
  C_{k+1} = candidates generated from L_k
  for each transaction t in database do
             Increment the count of all candidates in C_{k+1}
             that are contained in t
  L_{k+1} = candidates in C_{k+1} with min support
  end
return \bigcup_k L_k
```

Generating Candidates (Join Step)

- Requirements for candidate k-itemsets C_k
 - Must contain all frequent k-itemsets (superset property $C_k \supseteq L_k$)
 - Significantly smaller than the set of all k-subsets
 - Suppose the items are sorted by any order (e.g., lexicograph.)
- Step I: Joining
 - ▶ Consider frequent (k 1)-itemsets p and q
 - \triangleright p and q are joined if they share the same first k 2 items
- Step 2: Pruning
 - ▶ Remove candidate k-itemsets which contain a non-frequent (k-1)-subset s, i.e., s $\notin L_{k-1}$
 - Example
 - $\downarrow L_3 = \{(1\ 2\ 3), (1\ 2\ 4), (1\ 3\ 4), (1\ 3\ 5), (2\ 3\ 4)\}$
 - ▶ Candidates after the join step: {(1 2 3 4), (1 3 4 5)}
 - ▶ In the pruning step: delete (1 3 4 5) because (3 4 5) $\notin L_3$, i.e., (3 4 5) is not a frequent 3-itemset; also (1 4 5) $\notin L_3$

Generating Candidates – Full Example

Generating Rules from Frequent Itemsets

- ▶ For each frequent itemset X
 - For each subset A of X, form a rule $A \Rightarrow (X A)$
 - Delete those rules that do not have minimum confidence
- ▶ Computation of the confidence of a rule $A \Rightarrow (X A)$

$$confidence(A \Rightarrow (X - A)) = \frac{support(X)}{support(A)}$$

Store the frequent itemsets and their support in a hash table in main memory → no

additional database access

•	Example: X =	= {A, B, (C}, minConf	=60%
---	--------------	------------	-------------	------

 $ightharpoonup conf (A \Rightarrow B, C) = I;$ $conf (B, C \Rightarrow A) = I/2$

 $ightharpoonup conf (B \Rightarrow A, C) = 1/2;$ $conf (A, C \Rightarrow B) = 1$

ightharpoonup conf (C \Rightarrow A, B) = 2/5; conf (A, B \Rightarrow C) = 2/3

itemset	support	
{A}	2	
{B}	4	
{C}	5	
{A, B}	3	
{A, C}	2	
{B, C}	4	
{A, B, C}	2	

Classification

- Learning a model able to describe different classes of data
- Supervised as the classes to be learned are predetermined
- Class labels are known for a small set of "training data": Find models/functions/rules (based on attribute values of the training examples) that
 - describe and distinguish classes
 - predict class membership for "new" objects

a bbab a b a b b a a a b b b a

Applications

- Classify gene expression values for tissue samples to predict disease type and suggest best possible treatment
- Automatic assignment of categories to large sets of newly observed celestial objects
- ▶ Predict unknown or missing values (→ KDD pre-processing step)
- **...**

Evaluation of Classifiers

- Classification Accuracy
 - Predict class label for each object o
 - Determine the fraction of correctly predicted class labels:

$$classification \ accuracy = \frac{count(correctly \ predicted \ class \ label)}{count(o)}$$

- ▶ Classification error = I classification accuracy
- Overfitting: accuracy worse on entire data than on training data
 - bad quality of training data (noise, missing values, wrong values)
 - ▶ different statistical characteristics of training data and test data
- Train-and-Test: decomposition of data set into two partitions
 - Training data to train the classifier
 - Model construction using information also class labels
 - ▶ Test data to evaluate the classifier
 - temporarily hide class labels, predict them and compare

Decision Tree Classifiers

Are we going to play tennis?

▶ Training data set:

day	forecast	temperature	humidity	wind	tennis decision
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rainy	mild	high	weak	yes
5	rainy	cool	normal	weak	yes
6	rainy	cool	normal	strong	no
7					

Which attribute should be root?

- A. The one with the most frequent attribute value.
- B. The one that has the attribute value with the purest class label.
- c. The one that has a value distribution to balance the class label distribution.
- D. The one that has a value distribution to separate the class labels.

BUILDING Decision Trees

- Tree is created top-down
- Training examples T recursively partitioned into $T_1, T_2, ..., T_m$
 - Entropy for k classes with frequencies p_i (Information theory: measure of uncertainty)

$$information \ gain(T,A) = entropy(T) - \sum_{i=1}^{m} \frac{|T_i|}{|T|} \cdot entropy(T_i) \qquad entropy(T) = \sum_{i=1}^{k} p_i \cdot \log_2 p_i$$

9 "YES" 5 "NO" Entropy = 0.940

high humidity normal weak wind strong

3 "YES" 4 "NO" 6 "YES" I "NO" 6 "YES" 2 "NO" 3 "YES" 3 "NO" Entropy = 0.985 Entropy = 0.592 Entropy = 0.811 Entropy = 1.0

$$IG(T, hum) = 0.94 - \frac{7}{14} * 0.985 - \frac{7}{14} * 0.592 = 0.151$$
 $IG(T, wind) = 0.94 - \frac{8}{14} * 0.811 - \frac{6}{14} * 1.0 = 0.048$

Avoid Overfitting in Classification

- ▶ The generated tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Result is in poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Clustering

- Class labels are unknown:
 - Group objects into sub-groups (clusters)
 - Similarity function (or dissimilarity fct. = distance) to measure similarity between objects
 - Objective: "maximize" intra-class similarity and "minimize" interclass similarity
- Clustering = unsupervised classification (no predefined classes)
- Typical usage
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms
- Applications
 - Customer profiling/segmentation
 - Document or image collections
 - Web access patterns

A Typical Application: Thematic Maps

- Satellite images of a region in different wavelengths
 - Different land-uses reflect and emit light of different wavelengths in characteristic way
 - Each point on surface $p = (x_1, ..., x_d)$ has d values x_i of recorded intensity in band i

K-Means Clustering: Basic Idea

Descrive: For a given k, form k groups so that the sum of the (squared) distances between the mean of the groups and their elements is minimal.

Poor Clustering

Optimal Clustering

K-Means Clustering: Algorithm

Given k, the k-means algorithm is implemented in 4 steps:

- 1. Partition the objects into k nonempty subsets
- 2. Compute the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
- 3. Assign each object to the cluster with the nearest representative.
- 4. Go back to Step 2, stop when representatives do not change.

K-Means Clustering: Basic Notions

- Objects $p = (x^p_1, ..., x^p_d)$ are points in a d-dimensional vector space (the mean of a set of points must be defined)
- \blacktriangleright Centroid μ_C : Mean of all points in a cluster C,

$$\mu_C = \frac{1}{|C|} \sum_{x_i \in C} x_i$$

Measure for the compactness ("Total Distance") of a cluster C_j:

$$TD(C_j) = \sqrt{\sum_{p \in C_j} dist(p, \mu_{C_j})^2}$$

Measure for the compactness of a clustering

$$TD = \sqrt{\sum_{j=1}^{k} TD^2(C_j)}$$

What is a good k-means clustering?

- A. TD is low.
- B. TD is high.
- c. The centroid is stable.
- D. The centroid is equally far from all points in the cluster.

K-Means example in one dimension (a) Initial dataset $\mu_1=2$ $\mu_2 = 4$ 10 11 12 (b) Iteration: t = 1 $\mu_1=$ 2.5 $\mu_2=$ 16 10 11 12 (c) Iteration: t = 2 $\mu_1=3$ $\mu_2=18$ (d) Iteration: t = 3 $\mu_1=4.75$ $\mu_2=19.60$ (e) Iteration: t = 4 $\mu_2=25$ $\mu_1 = 7$

(f) Iteration: t = 5 (converged)

Databases, ira@cs.au.dk

K-Means Clustering: Example

Further Data Mining / Machine Learning Methods

- Sequential pattern analysis
- ▶ Time Series Analysis
- Regression
- Neural Networks
- Genetic Algorithms
- Machine Learning course (Bachelor, 3rd year)
- Advanced Data Management and Analysis course (Master)

Sequential Pattern Analysis

- Transactions ordered by time of purchase
 - form sequence of itemsets
- Goal: find all subsequences from a given set of sequences that exceed minimum support
 - Sequence $S_1, S_2, S_3, ...$ predictor that a customer purchasing itemset S_1 is likely to buy S_2 , and then S_3 , and so on
 - Temporal order relevant
 - E.g. buy baby milk, then buy children's food; not so much the other way around

Time Series Analysis

- Time series sequences of values
 - Example: closing price of a stock every week day
- Time series analysis
 - Identify the price trends of a stock or mutual fund
 - Generally temporal trends of values
 - Extended functionality of temporal data management

Regression Analysis

- A regression equation estimates a dependent variable using a set of independent variables and a set of constants
 - Independent and dependent variables all numeric
 - written in the form $Y=f(x_1,x_2,...,x_n)$ where Y is dependent variable
 - If f is linear in the domain variables x_i , the equation is called a linear regression equation

Neural Networks

- A neural network is a set of interconnected nodes inspired by the human brain (not a model of the brain!)
- Node connections have weights which are modified during the learning process
- Neural networks can be used for supervised learning and unsupervised clustering
 - Recently dramatic improvements in performance
 - ▶ Big Data: lots of training data
 - ▶ New training methods and network architectures
- ▶ The output of a neural network is quantitative and not easily understood

Genetic Learning

- Genetic learning based on the theory of evolution
 - Initial population of several candidate solutions provided to the learning model
 - Fitness function defines which solutions survive from one generation to the next
 - Crossover, mutation and selection used to create new population elements

What is supervised learning?

- A. Clustering based on total distance.
- B. Association rule mining with fixed minimum support.
- c. Model creation based on class label information.
- Learning with user input.

Intended learning outcomes

- Be able to
 - Describe the goals and applications of common data mining approaches
 - Discuss the basic steps in k-means clustering, decision tree classification, and association rule mining

What was this all about?

Guidelines for your own review of today's session

- In data mining, the goal is to...
 - ▶ The KDD process involves...
- Clustering is also called...
 - ▶ The learning goal is to...
- Classification is also called...
 - ▶ The learning goal is to...
 - Overfitting is the problem of... and can be addressed using...
- Association rule mining tries to...
 - ▶ The general idea in apriori makes use of...
- ▶ Other data mining tasks are...