Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [4]: # Dependencies and Setup

import pandas as pd
import numpy as np

# File to Load (Load file as per path)
file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data = pd.read_csv(file_to_load)
purchase_data.head()
```

Out[4]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	2	Ithergue48	24	Male	92	Final Critic	4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	4	Iskosia90	23	Male	131	Fury	1.44

Player Count

· Display the total number of players

0

576

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [6]: #Take Price Column and Sum
         Total Revenue=purchase data["Price"].sum()
         #print(f"Total Revenue :",Total_Revenue)
         #Take Price Column and find Mean
         Avg_Purchase_Price=purchase_data["Price"].mean()
         #print(f"Average Purchase Price :",round(Avg Purchase Price,2))
         #Take Price Column and find total count
         Total Number Purchase=purchase data["Price"].count()
         #print(f"Total Number of Purchase :", Total Number Purchase)
         # FInd number of Unique Value
         Number Unique Item=purchase data["Item Name"].nunique()
         #print(f"Number of Unique Item :", Number_Unique_Item)
         # Create DataFrame Using above varibales
         purchasing df = pd.DataFrame({
             "Number of Unique Items": [Number_Unique_Item],
             "Average Price $" : [round(Avg Purchase Price,2)],
             "Number of Purchases" : [Total_Number_Purchase],
"Total Revenue $" : [Total_Revenue]
         purchasing_df
```

Out[6]:

	Number of Unique Items	Average Price \$	Number of Purchases	Total Revenue \$
0	179	3.05	780	2379.77

- Percentage and Count of Male Players
- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

Out[7]:

Total Counts Percentage of Players

	Gender
484 84.03	Male
81 14.06	Female
11 1.91	Other / Non-Disclosed

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [8]: # Group by Gender
        gender_group_purchase_data = purchase_data.groupby(["Gender"])
        gender_group_purchase_data.count()
        purchase_count=gender_group_purchase_data["SN"].count()
        #print(purchase_count)
        avg_purchase_price=gender_group_purchase_data["Price"].mean()
        #print(avg_purchase_price)
        total_purchase_value=gender_group_purchase_data["Price"].sum()
        #print(total_purchase_value)
        avg_purchase_price_perperson = round((gender_group_purchase_data["Price"].sum
        () / gender_count),2)
        #print(avg_purchase_price_perperson)
        # Create new DataFrame
        purchase_analysis_gender = pd.DataFrame({ "Purchase Count"
                                                                                   : pur
        chase_count,
                                                   "Average Purchase Price"
                                                                                   : rou
        nd(avg_purchase_price,2),
                                                   "Total Purchase Value"
                                                                                   : tot
        al purchase value,
                                                   "Avg Total Purchase per Person": avg
        _purchase_price_perperson})
        purchase_analysis_gender
```

Out[8]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Gender				
Female	113	3.20	361.94	4.47
Male	652	3.02	1967.64	4.07
Other / Non- Disclosed	15	3.35	50.19	4.56

Age Demographics

- · Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- · Create a summary data frame to hold the results
- · Optional: round the percentage column to two decimal points
- · Display Age Demographics Table

```
In [9]: age_bins = [0, 9.99, 14.99, 19.99, 24.99, 29.99, 34.99, 39.99, 100]
group_names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "4
0+"]

purchase_data["Age_Summary"] = pd.cut(purchase_data["Age"], age_bins, labels=gr
oup_names)
purchase_data

purchase_data.head()</pre>
```

Out[9]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price	Age_Summary
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53	20-24
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56	40+
2	2	Ithergue48	24	Male	92	Final Critic	4.88	20-24
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27	20-24
4	4	Iskosia90	23	Male	131	Fury	1.44	20-24

Out[10]:

Total Counts	Percentage	of Play	/ers
---------------------	------------	---------	------

		Age_Summary
2.95	17	<10
3.82	22	10-14
18.58	107	15-19
44.79	258	20-24
13.37	77	25-29
9.03	52	30-34
5.38	31	35-39
2.08	12	40+

Purchasing Analysis (Age)

- · Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [11]: # Count purchase data using SN by age bin
         purchase data item = purchase data.groupby('Age Summary')['SN'].count()
         #print(purchase data item)
         average purchase price = purchase data.groupby('Age Summary')['Price'].mean()
         #print(round(average_purchase_price,2))
         total_purchase_value = purchase_data.groupby('Age_Summary')['Price'].sum()
         #print(total_purchase_value)
         avg total purchase per person = total purchase value/total counts
         #print(round(avg total purchase per person,2))
         purchase_analysis_df = pd.DataFrame ({"Purchase Count": purchase_data_item,
                                            "Average Purchase Price ": round(average_pur
         chase_price,2),
                                            "Total Purchase Value": total_purchase_value
                                            "Avg Total Purchase per Person": round(avg_t
         otal purchase per person, 2),
                                            })
         purchase analysis df
```

Out[11]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Age_Summary				
<10	23	3.35	77.13	4.54
10-14	28	2.96	82.78	3.76
15-19	136	3.04	412.89	3.86
20-24	365	3.05	1114.06	4.32
25-29	101	2.90	293.00	3.81
30-34	73	2.93	214.00	4.12
35-39	41	3.60	147.67	4.76
40+	13	2.94	38.24	3.19

Top Spenders

- · Run basic calculations to obtain the results in the table below
- · Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- · Display a preview of the summary data frame

Out[12]:

	Purchase Count	Average Purchase Price	Total Purchase Value
Lisosia93	5	3.79	18.96
Iral74	4	3.40	13.62
Idastidru52	4	3.86	15.45
Asur53	3	2.48	7.44
Inguron55	3	3.70	11.11

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- · Optional: give the displayed data cleaner formatting
- · Display a preview of the summary data frame

```
#Group by Item ID & Item Name than perform calculations
most_popular_items= purchase_data.groupby('Item ID')['Item Name'].value_counts
#print(most_popular_items)
most popular items price= purchase data.groupby(['Item ID','Item Name'])['Pric
e'l.mean()
#print(most popular items price)
most popular items price total= purchase data.groupby(['Item ID','Item Name'])
['Price'].sum()
#print(most_popular_items_price_total)
# Cretaing DataFrame
most popular items df = pd.DataFrame ({ "Purchase Count"
                                                                 : most popular
items,
                                         "Item Price"
                                                                  : most_popular
_items_price,
                                         "Total Purchase Value"
                                                                 : most popular
_items_price_total,
                                   })
most_popular_items_df.sort_values('Purchase Count', ascending = False).head()
```

Out[13]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	4.23	50.76
145	Fiery Glass Crusader	9	4.58	41.22
108	Extraction, Quickblade Of Trembling Hands	9	3.53	31.77
82	Nirvana	9	4.90	44.10
19	Pursuit, Cudgel of Necromancy	8	1.02	8.16

Most Profitable Items

- · Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

In [14]: # Above DataFrame in Ascending Order
most_popular_items_df.sort_values('Purchase Count', ascending = False).head()

Out[14]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	4.23	50.76
145	Fiery Glass Crusader	9	4.58	41.22
108	Extraction, Quickblade Of Trembling Hands	9	3.53	31.77
82	Nirvana	9	4.90	44.10
19	Pursuit, Cudgel of Necromancy	8	1.02	8.16