## BÀI 9: XÂY DỰNG HỆ THỐNG SOPC VỚI BỘ DMA ĐƠN GIẢN

## 1. MỤC ĐÍCH

Thông qua bài thực hành này, sinh viên sẽ hiểu rõ:

- Cách xây dựng sơ đồ khối và kiến trúc tổng quan của một DMA đơn giản tự thiết kế.
- Cách thiết kế khối MasterRead trong DMA.

### 2. PHÀN LÝ THUYẾT

#### 2.1 Giới thiệu DMA đơn giản

 DMA gồm 4 khối chính: Control\_Slave, Read\_Master, Write\_Master và Fifo được mô tả như Hình 2.1.



Hình 2.1 – Sơ đồ khối của DMA Controller

Sơ đồ chân của DMA được:

| STT | Tên tín hiệu | Ngõ<br>vào/ra | Số bit<br>dữ liệu | Mô tả                                   |
|-----|--------------|---------------|-------------------|-----------------------------------------|
| 1   | iClk         | In            | 1                 | Cấp xung clock 50 MHz cho DMA hoạt động |
| 2   | iReset_n     | In            | 1                 | iReset_n = 0: reset lai DMA             |

| 3  | iChipselect       | In  | 1  | iChipselect = 1: cho phép truy xuất vào các thanh ghi trạng thái và điều khiển của DMA |
|----|-------------------|-----|----|----------------------------------------------------------------------------------------|
| 4  | iRead             | In  | 1  | iRead = 1: cho phép đọc giá trị của các thanh ghi trong DMA                            |
| 5  | iWrite            | In  | 1  | iWrite = 1: cho phép ghi giá trị vào các thanh ghi của DMA                             |
| 6  | iAddress          | In  | 3  | Chọn địa chỉ của thanh ghi cần đọc/ghi                                                 |
| 7  | iWritedata        | In  | 32 | Truyền giá trị cần ghi vào thanh ghi từ<br>Avalon bus                                  |
| 8  | oReaddata         | Out | 32 | Xuất giá trị cần đọc từ thanh ghi ra<br>Avalon bus                                     |
| 9  | iRM_readdatavalid | In  | 1  | iRM_readdatavalid = 1: báo hiệu dữ liệu vào hợp lệ                                     |
| 10 | iRM_waitrequest   | In  | 1  | iRM_waitrequest = 1: yêu cầu<br>Read_Master chờ                                        |
| 11 | oRM_read          | Out | 1  | oRM_read = 1: yêu cầu đọc dữ liệu từ vùng địa chỉ oRM_readaddress                      |
| 12 | oRM_readaddress   | Out | 32 | Truyền địa chỉ của vùng nhớ cần đọc giá trị vào                                        |
| 13 | iRM_readdata      | In  | 32 | Truyền giá trị từ Avalon bus vào<br>Read_Master                                        |
| 14 | iWM_waitrequest   | In  | 1  | iWM_waitrequest = 1: yêu cầu<br>Write_Master chờ                                       |
| 15 | oWM_write         | Out | 1  | oWM_write = 1: yêu cầu ghi dữ liệu vào vùng địa chỉ oWM_writeaddress                   |
| 16 | oWM_writeaddress  | Out | 32 | Truyền địa chỉ của vùng nhớ cần ghi giá<br>trị vào                                     |
| 17 | oWM_writedata     | Out | 32 | Truyền giá trị từ Write_Master vafp<br>Avalon bus                                      |

Hình 2.2 – Mô tả chân tín hiệu của DMA Controller

- Nguyên tắc hoạt động của DMA
  - ✓ DMA được cấu hình các giá trị ban đầu từ CPU NIOS II thông qua khối , CONTROL\_SLAVE. Sau khi các thông số được thiết lập xong, CONTROL\_SLAVE gửi tín hiệu bắt đầu hoạt động đến khối READ\_MASTER và WRITE\_MASTER.
  - ✓ Khối READ\_MASTER kiểm tra xem FIFO có gần đầy hay chưa (tín hiệu FF\_almostfull = 1). Nếu FIFO chưa gần đầy, READ\_MASTER gửi các tín hiệu ra Avalon bus để yêu cầu đọc dữ liệu từ vùng nhớ có địa chỉ đầu lưu trong thanh ghi oRM\_readaddress. Dữ liệu trả về sẽ được READ\_MASTER truyền đến FIFO. READ\_MASTER ngừng yêu cầu đọc dữ liệu nếu FIFO báo gần đầy.
  - ✓ Khối WRITE\_MASTER kiểm tra FIFO có rỗng hay không. Nếu FIFO không rỗng (tín hiệu FF\_empty ≠ 0), WRITE\_MASTER đọc dữ liệu từ FIFO và truyền sang Avalon bus để ghi vào vùng nhớ có địa chỉ bắt đầu lưu trong thanh ghi oWM\_writeaddress. Nếu quá trình DMA hoàn tất, WRITE\_MASTER xác lập tín hiệu oWM\_done để báo về CONTROL SLAVE cũng như CPU NIOS II.

## 2.2 Chi tiết các khối trong DMA

#### 2.2.1 Khối CONTROL\_SLAVE

 Khối CONTROL\_SLAVE nhận thông tin cấu hình từ CPU NIOS II và thiết lập các thông số cấu hình đó cho khối READ\_MASTER và khối WRITE\_MASTER.

o Sơ đồ chân của khối CONTROL\_SLAVE

| STT | Tên tín hiệu    | Ngõ<br>vào/ra | Số bit<br>dữ liệu | Mô tả                                                                                  |  |  |  |
|-----|-----------------|---------------|-------------------|----------------------------------------------------------------------------------------|--|--|--|
| 1   | iClk            | In            | 1                 | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 2   | iReset_n        | In            | 1                 | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 3   | iChipselect     | In            | 1                 | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 4   | iRead           | In            | 1                 | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 5   | iWrite          | In            | 1                 | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 6   | iAddress        | In            | 3                 | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 7   | iWritedata      | In            | 32                | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 8   | oReaddata       | Out           | 32                | Mục 2.1 – Hình 2.2                                                                     |  |  |  |
| 9   | RM_startaddress | In            | 1                 | Truyền địa chỉ bắt đầu của vùng nhớ cần đọc đến READ_MASTER                            |  |  |  |
| 10  | Start           | In            | 1                 | Start = 1: bắt đầu thực hiện DMA                                                       |  |  |  |
| 11  | Length          | Out           | 1                 | Truyền số lượng dữ liệu cần thực hiện DMA (theo bytes) đến READ_MASTER và WRITE_MASTER |  |  |  |
| 12  | WM_startaddress | Out           | 32                | Truyền địa chỉ bắt đầu của vùng nhớ cần ghi đến WRITE_MASTER                           |  |  |  |
| 13  | WM_done         | In            | 32                | Truyền từ WRITE_MASTER đến CONTROL_SLAVE để báo hiệu quá trình DMA hoàn tất            |  |  |  |

Hình 2.3 – Mô tả chân tín hiệu của module CONTROL SLAVE

O Khối CONTROL\_SLAVE gồm các thanh ghi cấu hình được mô tả ở Hình . Bit GO = 1 yêu cầu DMA hoạt động. Bit BUSY = 1 trong quá trình DMA hoạt động. Bit DONE = 1 báo hiệu quá trình DMA đã hoàn tất.

| Offset | Tên thanh<br>ghi | Đọc/Ghi | 31 4                                     |                                         | 3  | 2  | 1    | 0    |
|--------|------------------|---------|------------------------------------------|-----------------------------------------|----|----|------|------|
| 0      | readaddress      | R/W     | Đị                                       | Địa chỉ bắt đầu của vùng nhớ cần đọc ra |    |    |      |      |
| 1      | writeaddress     | R/W     | Địa chỉ bắt đầu của vùng nhớ cần ghi vào |                                         |    |    |      |      |
| 2      | length           | R/W     | Số lượng bytes cần thực hiện DMA         |                                         |    |    |      |      |
| 3      |                  |         | N/A                                      |                                         |    |    |      |      |
| 4      | control          | R/W     |                                          |                                         | GO |    |      |      |
| 5      | status           | R/W     |                                          |                                         |    |    | BUSY | DONE |
| 6      |                  |         |                                          |                                         | N  | /A |      |      |
| 7      |                  |         | N/A                                      |                                         |    |    |      |      |

Hình 2.4 – Mô tả các thanh ghi trong module CONTROL\_SLAVE

## 2.2.2 Khối READ\_MASTER

 Khối READ\_MASTER yêu cầu dữ liệu từ Avalon bus và ghi vào FIFO. Nguyên tắc hoạt động của READ MASTER được mô tả như Hình 2.5.



Hình 2.5 – Lưu đồ giải thuật mô tả hoạt động của module READ\_MASTER

#### 2.2.3 Khối WRITE MASTER

 Khối WRITE\_MASTER yêu cầu dữ liệu từ FIFO và ghi vào Avalon bus. Nguyên tắc hoạt động của WRITE\_MASTER được trình bày ở Hình 2.6.



Hình 2.6 – Lưu đồ giải thuật mô tả hoạt động của WRITE\_MASTER

#### 2.2.4 Khối FIFO

 Khối FIFO làm bộ đệm dữ liệu cho việc truyền nhận giữa 2 khối READ\_MASTER và WRITE MASTER. Kích thước khối FIFO được đặt là 256 words.

Bài 9: Xây dựng hệ thống SoPC với bộ DMA đơn giản

# BÁO CÁO THỰC HÀNH BÀI 9: XÂY DỰNG HỆ THỐNG SOPC SỬ DỤNG DMA TỰ THIẾT KẾ

| Sinh  | viên:                                             |
|-------|---------------------------------------------------|
| Lóp:  |                                                   |
| Phần  | ı chuẩn bị trước ở nhà                            |
| * Sin | h viên nộp cho giảng viên trước khi vào thực hành |

Bài 9: Xây dựng hệ thống SoPC với bộ DMA đơn giản

# BÁO CÁO THỰC HÀNH BÀI 9: XÂY DỰNG HỆ THỐNG SOPC SỬ DỤNG DMA TỰ THIẾT KẾ

| Sinh v | iên:                                       |
|--------|--------------------------------------------|
| Lóp: . |                                            |
|        | hực hành trên lớp                          |
| * Sinh | viên nộp cho giảng viên sau buổi thực hành |

**Bài 1:** Tiến hành thiết kế khối READ\_MASTER để tạo ra được DMA hoàn chỉnh. Sau đó, kết nối DMA vào hệ thống SoPC để thực hiện việc đọc dữ liệu từ On-chip memory 4 KB và ghi vào SRAM trên board DE2. So sánh kết quả mô phỏng dùng Modelsim và kết quả thực nghiệm dùng

SignalTap.