

Prebrojavanje ljudi na video snimku - Predefinisani projekat 3

Bojan Vlasonjić, SW76-2016

Fakultet tehničkih nauka, Novi Sad

Uvod

Iz skupa podataka od 10 video snimaka treba prebrojati sve ljude koji se bar u jednom trenutku nađu na braon platou. Snima se iz ptičje perspektive, a svaki snimak je priča za sebe koji na jedinstven način unosi poteškoće u prebrojavanju. Kvalitet slike ne ide u prilog, s obzirom da se javlja šum i da je slika pomalo mutna. Razlikujemo ljude koji se kreću od onih koji su statični, bilo da su u grupi ili izolovani. Mahom su drugačije obučeni, ali retko ko ima na sebi boje koje se ističu u odnosu na pozadinu. Često se pojavljuju gusto zbijene grupe ljudi koje za računar neretko posmatra kao jedan objekat. Pored toga, računar detektuje i druge objekte poput snega i stubova ispred platoa. Cilj je napraviti što bolje prepoznavanje, sa minimalnom apsolutnom greškom ispod 4,6.

Fig. 1: Isečak jednog od video snimaka

Implementacija

Kako bih došao do što preciznijeg rešenja, primenjene su sledeće metodologije:

- Adaptivni threshold za izdvajanje objekata od interesa.
- Canny detektor ivica i Hough transformacija za detektovanje linije na platou preko koje ljudi prelaze.

Implementirano u Python programskom jeziku, uz primenu sledećih biblioteka:

- Open CV za threshold, obradu i prikaz video snimka i detekciju ivica
- Numpy detekcija ivica, obrada slike i detekcija šuma
- Matplotlib za iscrtavanje i prikaz frejmova

Rešenje

Od čitave slike, najbitniji element predstavlja plato, tako da je prvi korak bio da izrežem sliku tako da najviše mesto upravo plato i zauzme. Uzevši u obzir kvalitet slike i neravnomernu osvetljenost primenjen je adaptivni threshold gausian za odvajanje objekata od pozadine.

Fig. 2: Isečak snimka nakon primene isecanja, adaptivnog threshold-a i detekcije linije na platou

Odokativno sam odredio dužinu linije na platou i koordinate njene početne i krajnje tačke. Primenom Canny detektora ivica i Hough transformacije sam pronašao liniju platoa, na osnovu koje sam prebrojavao ljude koji prelaze preko nje. Oko svakog objekta je iscrtan pravougaonik, i svaka kolizija gornje leve ivice pravougaonika sa linijom se broji kao osoba. Uvidevši kasnije da postoje i slučajevi gde ljudi nikad ne izadju sa platoa, kao i da pojedini snimci počnu u trenutku kad je grupa ljudi već prešla preko linije, morao sam i njih da uzmem u obzir. Tako da sam na početnom i poslednjem frejmu prebrojao i objekte koji se nalaze unutar koordinata platoa, van snega. Takođe, dodao sam i metodu koja izdvoji brojnu vrednost šuma za svaki video snimak. U snimku gde ima najviše šuma sam smanjio stepen tolerancije (debljinu linije) prilikom detekcije kolizije, kako bih redukovao grešku i izbegao bespotrebno prebrojavanje.

Rezultati

Najveći izazov je bio pogoditi vrednosti parametara za threshold i debljinu linije prilikom detekcije prelaza. Poboljšanje kod jednog video snimka je često dovodilo do pogoršanja kod nekog drugog. Minimalna apsolutna greška koju sam ostvario je 4,9.

	Vid1	Vid2	Vid3	Vid4	Vid5	Vid6	Vid7	Vid8	Vid9	Vid10
Preditkovano:	5	10	15	23	16	15	23	20	7	15
Realno:	4	24	17	23	17	27	29	22	10	23

Zaključak

Na pojedinim snimcima je dobijen bolji rezultat, a na pojedinim gori. Jedna od glavnih poteškoća sa detekcijom prelaza kod linije su svi drugi objekti koji se nalaze u okolini linije. Neretko se dogodi da računar uspešno detektuje i prati neki osobu, ali je izgubi pri prelazu preko linije zbog drugih objekata. U tim situacijama detekcija kolizije sa linijom gubi na efikasnosti. Ukoliko bi, recimo, detekcija ljudi unutar platoa bila izvršena na osnovu njihovih koordinata i kad bismo zapamtili koga smo prebrojali u trenutnom frejmu, kako ih ne bismo uračunali i u narednom, verovatno bismo postigli bolji rezultat.

Fig. 3: Isečak snimka koji prikazuje detekciju ljudi