Problem Set 5

Problems marked (T) are for discussions in Tutorial sessions.

- 1. Let $S = \{\mathbf{e}_1 + \mathbf{e}_4, -\mathbf{e}_1 + 3\mathbf{e}_2 \mathbf{e}_3\} \subset \mathbb{R}^4$. Find S^{\perp} .
- 2. Show that there are infinitely many orthonormal bases of \mathbb{R}^2 .
- 3. **(T)** What is the projection of $\mathbf{v} = \mathbf{e}_1 + 2\mathbf{e}_2 3\mathbf{e}_3$ on $H := \{(x_1, x_2, x_3, x_4) : x_1 + 2x_2 + 4x_4 = 0\}$?
- **4.** Let \mathbb{V} be a subspace of \mathbb{R}^n . Then show that dim $\mathbb{V} = n 1$ if and only if $\mathbb{V} = \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = 0\}$ for some $\mathbf{a} \neq \mathbf{0}$.
- 5. (T) Does there exist a real matrix A, for which, the Row space and column space are same but the null-space and left null-space are different?
- **6.** (T) Consider two real systems, say $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{y} = \mathbf{d}$. If the two systems have the same **nonempty** solution set, then, is it necessary that row space(A) = row space(C)?
- 7. Show that the system of equations $A\mathbf{x} = \mathbf{b}$ given below

$$x_1 + 2x_2 + 2x_3 = 5$$

$$2x_1 + 2x_2 + 3x_3 = 5$$

$$3x_1 + 4x_2 + 5x_3 = 9$$

has no solution by finding $\mathbf{y} \in \mathcal{N}(A^T)$ such that $\mathbf{y}^T \mathbf{b} \neq 0$.

8. (T) Suppose A is an n by n real invertible matrix. Describe the subspace of the row space of A which is orthogonal to the first column of A^{-1} .

Solution: Let A[:,j] (respectively, A[i,:]) denote the j-th column (respectively, the i-th row) of A. Then, $AA^{-1} = I_n$ implies $\langle A[i,:], A^{-1}[:,1] \rangle = 0$ for $2 \le i \le n$. So, the row subspace of A which is orthogonal to the first column of A^{-1} equals $LS(A[2,:], A[3,:], \ldots, A[n,:])$.

- 9. (T) Let $A_{n\times n}$ be any matrix. Then, the following statements are equivalent.
 - (i) A is unitary.
 - (ii) For any orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$ of \mathbb{C}^n , the set $\{A\mathbf{u}_1,\ldots,A\mathbf{u}_n\}$ is also an orthonormal basis.
- 10. Let \mathbb{V} be an inner product space and S be a nonempty subset of \mathbb{V} . Show that
 - (i) $S \subset (S^{\perp})^{\perp}$.
 - (ii) If \mathbb{V} is finite dimensional and S is a subspace then $(S^{\perp})^{\perp} = S$.
 - (iii) If $S \subset T \subset \mathbb{V}$, then $S^{\perp} \supset T^{\perp}$.
 - (iv) If S is a subspace then $S \cap S^{\perp} = \{0\}$.
- 11. Let A_1, \dots, A_k be k real symmetric matrices of order n such that $\sum A_i^2 = 0$. Show that each $A_i = 0$.

- 12. Let \mathbb{V} be a normed linear space and $\mathbf{x}, \mathbf{y} \in \mathbb{V}$. Is it true that $||\mathbf{x}|| ||\mathbf{y}|| \le ||\mathbf{x} \mathbf{y}||$?
- 13. (T) Polar Identity: The following identity holds in an inner product space.
 - Complex IPS: $4\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x} + \mathbf{y}\|^2 \|\mathbf{x} \mathbf{y}\|^2 + i\|\mathbf{x} + i\mathbf{y}\|^2 i\|\mathbf{x} i\mathbf{y}\|^2$.
 - Real IPS: $4\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x} + \mathbf{y}\|^2 \|\mathbf{x} \mathbf{y}\|^2$
- 14. Just for knowledge, will NOT be asked Let $\|\cdot\|$ be a norm on \mathbb{V} . Then $\|\cdot\|$ is induced by some inner product if and only if $\|\cdot\|$ satisfies the parallelogram law:

$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 = 2\|\mathbf{x}\|^2 + 2\|\mathbf{y}\|^2.$$

- 15. Show that an orthonormal set in an inner product space is linearly independent.
- 16. Let A be unitary equivalent to B (that is $A = U^*BU$ for some unitary matrix U). Then $\sum_{ij} |a_{ij}|^2 = \sum_{ij} |b_{ij}|^2.$
- 17. For the following questions, find a projection matrix P that projects b onto the column space of A, that is, $P\mathbf{b} \in \operatorname{col}(A)$ and $\mathbf{b} - P\mathbf{b}$ is orthogonal to $\operatorname{col}(A)$.

$$(i) \ \ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \qquad (ii) \ \ A = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

18. We are looking for the parabola $y = c + dt + et^2$ that gives the least squares fit to these four measurements:

$$y = 1$$
 at $t = -2$, $y = 1$ at $t = -1$, $y = 1$ at $t = 1$ and $y = 0$ at $t = 2$.

- (a) Write down the four equations $(A\mathbf{x} = \mathbf{b})$ for the parabola $c + dt + et^2$ to go through the given four points. Prove that $A\mathbf{x} = \mathbf{b}$ has no solution.
- (b) For finding a least square fit of $A\mathbf{x} = \mathbf{b}$, *i.e.*, of $A \begin{bmatrix} c \\ d \\ e \end{bmatrix} = \mathbf{b}$, what equations would you solve?
- (c) Compute A^TA . Compute its determinant. Compute its inverse.
- (d) Now, determine the parabola $y = c + dt + et^2$ that gives the least squares fit.
- (e) The first two columns of A are already orthogonal. From column 3, subtract its projection onto the plane of the first two columns to get the third orthogonal vector v. Normalize \mathbf{v} to find the third orthonormal vector \mathbf{w}_3 from Gram-Schmidt.
- (f) Now compute $\mathbf{x} = A \begin{bmatrix} c \\ d \\ e \end{bmatrix}$ to verify that \mathbf{x} is indeed the projection vector onto the column space of the matrix A