Introduction to Natural Language Processing

CAS AML M6

Dr. Mykhailo Vladymyrov

Overview

- Key concepts
- Common pipelines and approaches
- Examples of common tasks

Lecture prepared with some material adopted from Ahmad Alhineidi

Natural Language?

- "...network of constructions.."
- "C is a construction iff C is a form meaning pair <F, S> such that some aspects of F or some aspects of S is not strictly predictable from C's component parts or from other previously established constructions."

Goldberg, A. E. (1995). Constructions: A construction grammar approach to argument structure. University of Chicago Press.

Common NLP tasks and applications

- Text classification (Sentiment analysis, spam detection, topic labeling)
- Named Entity Recognition (NER) (Information extraction, content recommendation)
- Machine Translation (Content Localization, real time translation)
- Text Summarization (News Aggregation, Research)
- Question Answering (Customer Support)
- Speech Recognition (Voice Assistants)
- Text Generation (Content Creation, chatbots)

Common NLP tasks

Source: Vajjalaet al. 2020

NLP Processing pipeline

What does the model learn?

What does the model learn?

Statistical relations between:

- Words
- Concepts
- Parts of words
- •

- Problem: Computers and most NLP methods cannot operate on text
- Solution: Have a numerical representation for words as multidimensional vectors (word embedding)

How do you create meaningful numerical representations of words?

- Semantic similarities
- Syntactic similarities
- Ideally, similar words are close to each other in a vector space

Common word embedding algorithms:

- BOW (bag of words)
- TF-IDF (term frequency inverse document frequency)
- One hot encoding
- CBOW (Continuous Bag of Words)
- Fasttext (sub-word)
- word2vec
- GloVe

Experiment	Accuracy in percentage								
result	Feature Extraction Techniques								
Algorithms	BOW	TF-IDF	Pre-trained	Embedd-					
			Word2vec	ing Layer					
SVM	0.78	0.80	0.82	-					
NB	0.80	0.80	0.74	-					
RF	0.79	0.79	0.81	-					
XGBoost	0.80	0.77	0.81	-					
CNN	-	-	0.81	0.82					
BI-LSTM	-	-	0.84	0.81					

Table 5: Eight classes experiment result with classical, ensemble, Deep ML classifier

Source: Ababu, Teshome Mulugeta, and Michael Melese Woldeyohannis. "Afaan Oromo hate speech detection and classification on social media." Proceedings of the thirteenth language resources and evaluation conference. 2022.

Source: Ababu, Teshome Mulugeta, and Michael Melese Woldeyohannis.

"Afaan Oromo hate speech detection and classification on social media." Proceedings of the thirteenth language resources and evaluation conference. 2022.

BOW

Represent the document as a vector of words

- Given a document with size vocabulary |V|, we represent the document as a vector of size |V|
- Each cell of the vector contains a word that is represented by its number of occurrences in the document
- Used in document classification, information extraction, and other NLP tasks
- All syntactic and semantic components of words are lost
- Vector size can be huge in large documents, and you need to reduce it (lemmatization, stemming, stopwords removal, etc.)

BOW

Heatmap for BOW

```
Import seaborn as sns
from sklearn.feature extraction.text import CountVectorizer
import matplotlib.pyplot as plt
corpus =["Bern is the capital of Switzerland.",
"St.gallenis in the east. Genevaisinthewest.",
"There are four official languages in Switzerland",
"German is Spoken in both Bern and Zurich"]
one hot vectorizer=CountVectorizer(token pattern=r"(?u)\b\w+\b")
one_hot=one_hot_vectorizer.fit_transform(corpus).toarray()
sns.heatmap(one_hot, annot=True, cmap="Reds", cbar=False,
xticklabels=one hot vectorizer.get feature names out(),
yticklabels=[s[0:5]+"..."for s incorpus])
plt.show()
```

BOW

TF-IDF

- The product of two measurements: (Term frequency) –(inverse document frequency)
- tf-idf(w,d) = tf(w,d)* idf(w)
- TF-IDF tells us how important a word is in a collection of documents or corpora
- The importance of a word increases with the number of times it occurs in a document but decreases with the number of times it appears in documents.

Why is this useful?

TF-IDF

The term frequency of a word is the total number of times the words occurs in a document divided by the total number of words

TF(w, d) =
$$\frac{number\ of\ occurances\ of\ w\ in\ d}{number\ of\ words\ in\ d}$$

TF-IDF

- High frequency words such as stopwords are high in term frequency but do not provide much use to NLP algorithms.
- The IDF resolves the issue by reducing the value of highly frequent words that occur in every document
- Document Frequency: the number of documents a word occurs in, regardless of how many times it occurs
- Inverse document frequency: The number of documents in a corpus divided by document frequency
- Words that occur in many documents have low inverse document frequency, while a word that occurs in fewer has a higher IDF
- We use the log to calculate the IDF

$$IDF(w) = log \frac{number\ of\ documents\ in\ a\ corpus}{number\ of\ documents\ in\ which\ w\ occurs\ in}$$

One hot encoding of words

- Vocabulary of length N, each word is a vector of length N of zeros except the index of the word with 1
- No semantic or syntax information
- computationally expensive for large corpus
- Rarely used in modern NLP applications

	1	2	3	4	5	6	7	8
1	1	0	0	0	0	0	0	0
ate	0	1	0	0	0	0	0	0
an	0	0	1	0	0	0	0	0
apple	0	0	0	1	0	0	0	0
and	0	0	0	0	1	0	0	0
played	0	0	0	0	0	1	0	0
the	0	0	0	0	0	0	1	0
piano	0	0	0	0	0	0	0	1

- Neural network for word embedding
- Has only one hidden layer and uses one of these techniques:1-CBOW: predict the target word from its surrounding 2-Skip-gram: predict the surrounding words from the target word
- The output is a multi-dimensional vector space
- Words with close semantic and syntactic relations are close to each other
- Useful to get synonyms

Extensions:

Fasttext - Subword Information:

```
n - grams: f("apple", n=3) -->[<ap , app, ppl , ple , le>]
```

• GloVe: word-word co-occurrence matrix (how frequently words co-occur with one another in a given corpus)

Visualization

Tools to look into

Annotation

Prodigy

Classic text processing

- NLTK
- Fasttext

HF Transformers library

Datasets:

Standard datasets in **sklearn**

Standard datasets in **HF**

Kaggle

SRF API