The Meta-Principle of Structural Self-Consistency and its Realization in Temporal Synchronization Theory

Slawek Mroczek Independent Researcher, Gliwice, Poland (Dated: September 4, 2025)

This paper introduces and formalizes the meta-principle of structural self-consistency as a criterion for evaluating the fundamental status of physical theories. This principle requires that a theory's principle of action and its fundamental operators mutually justify each other in a closed logical loop, thereby eliminating the arbitrariness of postulates. We demonstrate that Temporal Synchronization Theory (TST)—with its principle of minimal desynchronization $\delta \langle \hat{I} \rangle = 0$ and its operator $\hat{I} = \hat{I}_{\rm sync} + \hat{I}_{\rm grad} + \hat{I}_{\rm ent}$ —is a paradigmatic example of a structurally self-consistent theory. In contrast, classical theories such as Lagrangian mechanics and standard quantum mechanics, despite their empirical effectiveness, fail to meet this condition.

I. THE META-PRINCIPLE OF STRUCTURAL SELF-CONSISTENCY

This work define a *justification loop* as a bidirectional logical relationship between the principle of action and the structure of the operators of a physical theory:

- Direction 1 (Principle → Operator): The principle of action must constrain the fundamental properties of the theory's operators, such as locality, additivity, unitarity, or analytical form.
- Direction 2 (Operator → Principle): The specific form of the operators must justify the adoption of the principle by leading to stable, emergent, and falsifiable consequences.

A theory satisfying both conditions achieves structural self-consistency, eliminating arbitrariness and replacing it with internal logical necessity.

II. TEMPORAL SYNCHRONIZATION THEORY AS A SELF-CONSISTENT FRAMEWORK

TST describes emergent reality arising from the dynamics of a discrete Planck-scale network minimizing a global desynchronization operator.

A. Axioms and Derivation of the Operator

The foundation of TST is based on the following axioms:

- 1. Existence: A discrete Planck network exists.
- 2. Additivity: Total desynchronization is the sum of local contributions:

$$\langle \hat{I} \rangle = \sum_{n} f(n)$$

3. Locality: f(n) depends only on node n and its neighbors.

4. **Linearity:** Evolution equations are first-order in time

From these axioms, the operator must be additive, local, and quadratic:

$$\hat{I} = \sum_{n} \left[A(\Delta \hat{\omega}_n)^2 + B \sum_{m \in N(n)} (\hat{T}_m - \hat{T}_n)^2 + C(X_n) \hat{S}_n \right]$$
(1)

where:

- $\Delta \hat{\omega}_n$ is the time-energy desynchronization,
- \hat{T}_n is the local time operator,
- \hat{S}_n is the informational entropy operator,
- $C(X_n)$ is a coupling function depending on the configuration type.

B. Realization of the Justification Loop

- Principle \rightarrow Operator: The principle $\delta \langle \hat{I} \rangle = 0$ constrains the operator to the form in Eq. 1.
- ullet Operator o Principle: Only this form leads to:
 - Stable particle-like solutions,
 - Emergent spacetime and gravity,
 - Predictive constants (e.g., α , α_s),
 - Falsifiable effects (e.g., gravity-entropy coupling).

III. COMPARISON WITH NON-SELF-CONSISTENT THEORIES

A. Classical Mechanics

The principle $\delta S=0$ does not constrain the form of L=T-V, which is chosen ad hoc. Likewise, L does not justify the principle.

B. Standard Quantum Mechanics

The Schrödinger equation $\hat{H} |\Psi\rangle = i\hbar \partial_t |\Psi\rangle$ does not constrain the form of \hat{H} , which is constructed from symmetry or analogy. The equation and operator are modular and independent.

IV. CONCLUSION

This work introduced the meta-principle of structural self-consistency and showed that TST uniquely satisfies it. Classical theories fail this criterion, revealing their effective, non-fundamental nature. TST, by closing the justification loop, stands as a strong candidate for a fundamental theory of everything. Future work should focus on experimental verification of its key predictions, such as gravity—entropy coupling.

S. Mroczek, Zunifikowana Pregeometria: Teoria Synchronizacji Czasowej, Internal Research Notes ZNCW_8_0, ZNCW_9_0, ZNCW_10_0 (2025).

^[2] A. Einstein, *The Field Equations of Gravitation*, Preussische Akademie der Wissenschaften (1915).

^[3] S. Weinberg, *The Quantum Theory of Fields*, Cambridge University Press (1995).

^[4] J. D. Bekenstein, Black Holes and Entropy, Phys. Rev. D 7, 2333 (1973), DOI: 10.1103/PhysRevD.7.2333.

 ^[5] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43, 199 (1975), DOI: 10.1007/BF02345020.