

Positive Definite Matrices

Why

1

Definition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive definite if, for all $x \in \mathbb{R}^d$,

$$x^{\top}Ax > 0.$$

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is positive semidefinite if, for all $x \in \mathbb{R}^d$,

$$x^{\top}Ax > 0.$$

Notation

We denote the set of real-valued positive definite d by d matrices by \mathbf{S}_{++}^d . We denote the set of real-valued positive semidefinite d by d matrices by \mathbf{S}_{+}^d .

¹Future editions will elaborate.

