第八章习题课

- 1、若 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ 都收敛,则下列选项中正确的是[]
 - (A) $\sum_{n=0}^{\infty} (a_n + b_n)^2$ 收敛; (B) $\sum_{n=0}^{\infty} (a_n^2 + b_n^2)$ 收敛;
 - (C) $\sum_{n=1}^{\infty} (-1)^n (a_n + b_n)$ 收敛; (D) $\sum_{n=1}^{\infty} (a_n + b_n)$ 收敛.
- 2. 设 α 为常数,级数 $\sum_{i=1}^{\infty} \left[\frac{\sin n\alpha}{n^2} \frac{1}{\sqrt{n}} \right]$,则必有[]
 - (A)绝对收敛; (B)发散; (C)条件收敛; (D)收敛性与的取值有关.
- 3. $\frac{1}{2} f(x) = \begin{cases} 2+x, & 0 \le x < 2 \\ 0, & 2 \le x < 4 \end{cases}, \quad S(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{4} (-\infty < x < +\infty), \quad \cancel{\sharp} + \cancel{\sharp} +$

 - (A) -1
- (B) 1 (C) 5
- (D) 7
- 4、正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 常数 $\lambda \in \left(0, \frac{\pi}{2}\right)$, 则级数 $\sum_{n=1}^{\infty} (-1)^n \left(n \operatorname{tg} \frac{\lambda}{n}\right) a_{2n} \left[\right]$
 - (A) 条件收敛;
- (B) 绝对收敛;
- (C) 发散; (D) 敛散性与λ有关.
- 5, $\c g(x) = x^2, 0 \le x < 1$, $\c g(x) = \sum_{n=0}^{\infty} b_n \sin n\pi x (-\infty < x < \infty)$,

其中 $b_n = 2\int_0^1 f(x) \sin n\pi x dx$, $(n = 1, 2, \dots)$, 则 $s(-\frac{1}{3}) = [$

- (A) $-\frac{1}{3}$; (B) $-\frac{1}{9}$; (C) $\frac{1}{9}$; (D) $\frac{1}{3}$

- $\frac{2x+1}{6}$ 、将函数 $\frac{2x+1}{v^2+v-2}$ 展开成 x-2 的幂级数,并指出它的收敛区间(不讨论端

点).

(答案:
$$\frac{2x+1}{x^2+x-2} = \sum_{n=1}^{\infty} (-1)^n (1+\frac{1}{4^n})(x-2)^n$$
, $1 < x < 3$)

7、求 $\sum_{n=1}^{\infty} \frac{n}{n+1} x^n$ 的收敛域与和函数.

(答案提示: 收敛域为
$$(-1,1)$$
; $S(x) = \begin{cases} \frac{1}{1-x} + \frac{1}{x} \ln(1-x), & x \neq 0 \perp |x| < 1, \\ 0, & x = 0. \end{cases}$

8、求级数 $\sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}$ 的收敛域及和函数.

(答案提示: 收敛域为
$$(-\sqrt{2}, \sqrt{2})$$
; $S(x) = \left(\frac{x}{2-x^2}\right)' = \frac{2+x^2}{(2-x^2)^2}$, $-\sqrt{2} < x < \sqrt{2}$.)

- 9、设正项数列 $\{a_n\}$ 单调减少,且级数 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试证明 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 收敛.
- 10、设级数 $\sum_{n=2}^{\infty} |u_u u_{n-1}|$ 收敛,且正项级数 $\sum_{n=1}^{\infty} v_n$ 收敛,证明级数 $\sum_{n=1}^{\infty} u_n v_n^2$ 收敛.
- 11、设奇函数 f(x) 的周期为 2π ,且 $f(\pi-x)=f(x)$,证明: f(x) 的傅立叶系数 $a_0=0$, $a_n=0$, $b_{2n}=0$ $(n=1,2,\cdots)$ 。
- 12、讨论级数 $\sum_{n=1}^{\infty} \sin(n\pi + \frac{1}{\ln n})$ 的敛散性.
- 13、已知 $u_n = \int_0^1 x^2 (1-x)^n dx$, 证明: $\sum_{n=1}^\infty u_n$ 收敛.

(9 提示: 由数列 $\{a_n\}$ 单调减少且 $a_n \ge 0$, 得 $\lim_{n \to \infty} a_n$ 存在. 记 $a = \lim_{n \to \infty} a_n$, 则 $a_n \ge a \ge 0$,

又已知
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
发散,知 $a > 0$.因此 $\frac{1}{a+1} < 1$,再由根值判别法知 $\sum_{n=1}^{\infty} (\frac{1}{a_n+1})^n$ 收敛.)

(10 提示: 由 $\sum_{n=2}^{\infty} |u_n - u_{n-1}|$ 收敛推出 $\lim_{n \to \infty} u_n$ 存在,从而 $|u_n| \le M$; 又因正项级数 $\sum v_n 收敛 \Rightarrow 0 \le v_n^2 \le v_n$,从而级数 $\sum v_n^2$ 收敛 ,故 $\left|u_n v_n^2\right| \le M v_n^2$,所以 $\sum u_n v_n^2$ 收敛。)

(11 提示:因为f(x)是奇函数,必有,

$$a_0 = a_n = 0$$
, $b_n = \frac{2}{\pi} \int_0^{\pi/2} f(x) \sin 2nx dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} f(x) \sin 2nx dx$,

在第二项中,

$$\int_{\frac{\pi}{2}}^{\pi} f(x) \sin 2nx dx \underline{x = \pi - t} \int_{\frac{\pi}{2}}^{0} f(\pi - t) \sin 2n(\pi - t) dt$$

$$= -\int_{0}^{\frac{\pi}{2}} f(x) \sin 2nx dx$$

所以, $b_n = 0$ 。)

(12 答案提示:
$$u_n = \int_0^1 x^2 (1-x)^n dx = \sum_{t=1-x}^1 \int_0^1 (1-t)^2 t^n dt = \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}$$

$$\sum_{n=1}^\infty u_n 收敛)$$