

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 1999

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Теория обыкновенных дифференциальных уравнений

УДК 517.925

 $M. \, P. \, Бортковская^1$

К ВОПРОСУ О РАЗРЕШЕНИИ СЛОЖНОЙ ОСОБЕННОСТИ \mathbb{R}^3 -СИСТЕМЫ

Рассматривается система дифференциальных уравнений вида

$$\dot{x} = y,
\dot{y} = Y_1(x,z) + yY_2(x,z) \equiv Y(x,y,z),
\dot{z} = Z(x,z),$$
(1)

где Y_1, Y_2, Z — аналитические в точке (0,0) функции x, z, разложения по степеням x, z функций Y_1, Z не содержат свободных и линейных членов, $Y_2(0,0)=0$, точка O=(0,0,0) — изолированная особая точка системы (1).

Под O-кривой системы (1), как обычно, будем понимать полутраекторию системы (1), примыкающую к точке O=(0,0,0) при $t\to +\infty$ $(t\to -\infty).$

О пределение 1. Будем называть O-кривую системы (1) O_i -кривой, $i=1,\ldots,8$, если она в достаточной близости от точки O лежит в i-м координатном октанте.

О пределение 2. Пусть $L-O_i$ -кривая системы (1), в достаточной близости от O представленная в виде

$$\{(x, y(x), z(x), x \in I_{\Delta}^{+(-)}\},\$$

¹ Санкт-Петербургский государственный технический университет: 195251, Санкт-Петербург, Политехническая ул., д.29. Кафедра высшей математики.

где

$$I_{\Delta}^+=(0,\Delta], I_{\Delta}^-=[-\Delta,0), \Delta>0.$$

Если существует

$$\lim_{x \to 0} \frac{\ln |y(x)|}{\ln |x|} = \gamma \in [0; +\infty],$$

то γ назовем y-порядком кривизны O_i -кривой L;

если существует

$$\lim_{x \to 0} \frac{\ln|z(x)|}{\ln|x|} = \delta \in [0; +\infty],$$

то δ назовем z-порядком кривизны O_i -кривой L (относительно x при $x \to 0$).

Если оба указанных предела существуют, назовем пару (γ, δ) векторным порядком кривизны O_i -кривой L (относительно x при $x \to 0$).

В [2] предложен метод выявления возможных конечных $(\gamma, \delta \in (0; +\infty))$ векторных порядков O_i -кривых системы (1).

В настоящей статье даются некоторые достаточные условия, при которых можно установить наличие или отсутствие у системы (1) O_i -кривых с возможным векторным порядком (γ, δ) .

О пределение 3. Пусть $\gamma \in (0; +\infty), \gamma - y$ -порядок кривизны O_i -кривой L. Если существует

$$\lim_{x \to 0} \frac{y(x)}{|x|^{\gamma}} = u_{\gamma} \in [-\infty; +\infty],$$

то u_{γ} — y-мера кривизны L.

Аналогично определим

$$v_{\delta} = \lim_{x \to 0} \frac{z(x)}{|x|^{\delta}}$$

z-меру кривизны O_i -кривой L, где δ — ее z-порядок кривизны, и векторную меру кривизны (u_{γ}, v_{δ}) , в случае существования соответствующих пределов.

О пределение 4. O_i -кривую назовем правильной, если она имеет

- 1) векторный порядок кривизны (γ, δ) ,
- 2) меру кривизны u_{γ} , если $\gamma \in (0; +\infty)$,
- 3) меру кривизны v_{δ} , если $\delta \in (0; +\infty)$.

О пределение 5. Пусть (γ, δ) — возможный конечный векторный порядок кривизны O_i -кривых системы (1). Будем говорить, что

особенность системы (1) в точке O относительно (γ, δ) разрешается, если удается выявить все правильные O_i -кривые системы (1) с порядком (γ, δ) или установить их отсутствие.

Для формулировки достаточных условий разрешимости особенности относительно (γ, δ) приведем основную идею метода нахождения возможных конечных порядков кривизны, изложенного в [2]. В [2] наряду с системой (1) рассмотрена система

$$\frac{dy}{dx} = \frac{Y(x, y, z)}{y},$$

$$\frac{dz}{dx} = \frac{Z(x, z)}{y}.$$
(2)

Замена переменных

$$y = x^{\gamma}, z = x^{\delta} \quad (x > 0),$$

переводит (2) в систему

$$\frac{d\gamma}{dx} = \frac{xY(x, x^{\gamma}, x^{\delta}) - \gamma x^{2\gamma}}{x^{2\gamma+1} \ln x},$$

$$\frac{d\delta}{dx} = \frac{xZ(x, x^{\delta}) - \delta x^{\gamma+\delta}}{x^{\gamma+\delta+1} \ln x}.$$
(3)

Пусть

$$Y_1(x,z) = \sum_{k+m=2}^{+\infty} a_{k,m}^{(1)} x^k z^m,$$

$$Y_2(x,z) = \sum_{l+n=1}^{+\infty} a_{l,n}^{(2)} x^l z^n,$$

$$Z(x,z) = \sum_{p+s=2}^{+\infty} b_{p,s} x^p z^s,$$

тогда

$$\Phi(x,\gamma,\delta) = \sum_{k+m=2}^{+\infty} a_{k,m}^{(1)} x^{1+k+m\delta} + \sum_{l+n=2}^{+\infty} a_{2,n}^{(1)} x^{1+l+n\delta+\gamma} - \gamma x^{2\gamma},$$

$$\Psi(x,\gamma,\delta) = \sum_{p+s=2}^{+\infty} b_{p,s} x^{1+p+s\delta} - \delta x^{\gamma+\delta}.$$

- В [2] для нахождения возможных порядков кривизны использовался метод ломаных Фроммера, изложенный в [1], а именно
- 1) выявлялись множества Q_1 и Q_2 абсцисс ломаных Фроммера функций $xY_1(x,z), xY_2(x,z);$
- 2) точками множества $Q_1 \bigcup Q_2$ полуось $\{\delta>0\}$ разбивалась на конечное число интервалов, а область $\{(\gamma,\delta)|\gamma>0,\delta>0\}$ на соответствующие полуполосы;
 - 3) в каждой такой полуполосе строились отрезки прямых вида

$$2\gamma = 1 + k + m\delta,$$

$$1 + \gamma + l + n\delta = 1 + k + m\delta,$$

$$2\gamma = 1 + \gamma + l + n\delta,$$

$$(4)$$

где 2γ , $1+k+m\delta$, $1+\gamma+l+n\delta$ — наименьшие для данной полуполосы показатели x в разложениях по степеням x функций $\gamma x^{2\gamma}$, $xY_1(x,x^{\delta})$, $xY_2(x,x^{\delta})$, входящих в Φ как слагаемые.

В результате построения, описанного в [2], область $\{(\gamma, \delta)|\gamma > 0, \delta > 0\}$ разбивалась на конечное число областей; изучалось множество C_1 граничных точек этих областей; все точки C_1 лежат на прямых вида $\{(\gamma, \delta)|\gamma > 0, \delta = \text{const}\}.$

Аналогично строилось множество S абсцисс ломаных Фроммера функции xZ(x,z) и по разложению функции $\Psi(x,\gamma,\delta)$ по степеням x строилось соответствующее множество C_2 .

В [2] показано, что возможными конечными векторными порядками кривизны O_i -кривых системы (1) являются координаты (γ, δ) точек множества $C_1 \cap C_2$.

О пределение 6. Точку $(\gamma, \delta) \in C_1$ назовем простой точкой C_1 , если $\delta \notin Q_1 \bigcup Q_2$, и через эту точку проходит только одна прямая вида (4). Точку $(\gamma, \delta) \in C_2$ назовем *простой точкой* C_2 , если $\delta \notin S$.

О п р е д е л е н и е 7. Возможный конечный порядок (γ, δ) O_i -кривых системы (1) назовем простым, если (γ, δ) одновременно удовлетворяет условиям:

- а) (γ, δ) простая точка как C_1 , так и C_2 ;
- б) (γ, δ) изолированная точка множества $C_1 \cap C_2$.

Исходя из вида прямых (4), а также из вида показателей степени x в разложении функции Ψ , укажем вид прямых, пересечения которых могут

давать простые возможные порядки. Имеются три возможности:

$$\begin{cases}
2\gamma = 1 + k + m\delta, \\
\gamma + \delta = 1 + p + s\delta,
\end{cases}$$
(I)

 $k+m \geq 2, \, p+s \geq 2, \frac{m}{2} \neq s-1$ (прямые пересекаются в одной точке);

$$\begin{cases}
2\gamma = 1 + \gamma + l + n\delta, \\
\gamma + \delta = 1 + p + s\delta,
\end{cases} (II)$$

 $l + n \ge 1, p + s \ge 2, n \ne s - 1;$

$$\begin{cases} 1 + \gamma + l + n\delta &= 1 + k + m\delta(< 2\gamma), \\ \gamma + \delta &= 1 + p + s\delta, \end{cases}$$
 (III)

 $m-n \neq s-1; \ l+n \geq 1, k+m, p+s \geq 2; \ k,l,m,n,p,s \in \mathbf{N}$ во всех случаях.

О п р е д е л е н и е 8. Простой возможный порядок кривизны (γ, δ) назовем простым порядком типа I, II или III, если точка (γ, δ) получена как пересечение прямых вида (I), (II) или (III), соответственно.

Для разрешения особенности в точке O относительно (γ, δ) будем использовать обобщенный σ -процесс, как это делалось в [3], [4], а именно используем локальные замены переменных вида

$$x = x,$$
 $u = yx^{-\gamma},$ $v = zx^{-\delta}$ $(x \neq 0),$ (5.1)

$$f = xy^{-\frac{1}{\gamma}}, \quad y = y, \quad g = zy^{-\frac{\delta}{\gamma}} \quad (y \neq 0), \quad (5.2)$$

$$q = xz^{-\frac{1}{\delta}}, \qquad r = yz^{-\frac{\gamma}{\delta}}, \qquad z = z \qquad (z \neq 0).$$
 (5.3)

В качестве параметров σ -процесса γ, δ возьмем возможный порядок кривизны.

Т е о р е м а 1. Пусть возможный векторный порядок кривизны O_i -кривых системы (1) (γ, δ) является простым порядком типа I. Тогда особенность в точке O относительно порядка (γ, δ) разрешается (c точностью до решения проблемы центра-фокуса (x, u, v)-системы).

Идея доказательства. Сделаем в (1) замену (5.1), где параметры γ, δ — рассматриваемы простой порядок. В силу уравнений (I) и способа построения множеств C_1, C_2 (см. [2]) наименьшим показателем

x в разложении по степеням x функции $Y(x,ux^{\gamma},vx^{\delta})$ является показатель вида $k+m\delta$, равный $2\gamma-1$, а в разложении $Z(x,vx^{\delta})$ — показатель вида $p+s\delta$, равный $\gamma+\delta-1$. По определению 8 в каждом из этих разложений имеется лишь по одному члену с наименьшим показателем. Поделив полученную заменой (5.1) (x,u,v)-систему на $x^{\gamma-1}$, получим (эквивалентную при x>0) систему вида

$$\dot{x} = ux,
\dot{u} = av^m - \gamma u^2 + x^\alpha g_1(x, u, v),
\dot{v} = bv^s - \delta uv + x^\beta g_2(x, u, v),$$
(6)

 $lpha, eta > 0, \qquad a, b = {
m const} \neq 0, \qquad g_1, g_2$ — непрерывны при $(x, u, v) \in \{0 \leq x < \Delta_1; \ |u| < rac{\Delta_1}{x^\gamma}; \ |v| < rac{\Delta_1}{x^\delta}\}, \ \Delta_1 > 0$ достаточно мало.

Найдем особые точки (6) вида $(0, u_0, v_0)$. Если $u_0 v_0 \neq 0$, то

$$u_0 = \frac{b}{\delta} v_0^{s-1}, \quad a v_0^m = \gamma \frac{b^2}{\delta^2} v_0^{2(s-1)}. \tag{7}$$

При m, s > 0 система (6) имеет также особую точку (0, 0, 0).

Так как по условию $m \neq 2(s-1)$, система (6) имеет конечное число особых точек вида $(0, u_0, v_0)$. Покажем, что любая из них — простая (если $u_0v_0\neq 0$). Так как $u_0\neq 0$, достаточно рассмотреть особую точку (u_0,v_0) системы

$$\dot{u} = av^m - \gamma u^2 \equiv P(u, v),$$

$$\dot{v} = bv^s - \delta uv \equiv Q(u, v).$$

Используя (7), вычислим

$$\left| \frac{\partial(P,Q)}{\partial(u,v)} \right|_{(u_0,v_0)} = a\delta v_0^m (2+m-2s) \neq 0,$$

так как $m \neq 2(s-1)$ по условию.

Если не возникает проблемы центра—фокуса, то, исследуя расположение траекторий системы (6) в окрестности простой особой точки $(0, u_0, v_0)$, мы тем самым найдем O_i -кривые системы (1) с векторным порядком кривизны (γ, δ) и мерой кривизны (u_0, v_0) .

В условиях теоремы можно показать, что даже при наличии у системы (6) особой точки (0,0,0) система (1) не будет иметь O_i -кривых с векторным порядком кривизны (γ,δ) и мерой (0,0).

Исследование систем, полученных из (1) заменами (5.2), (5.3), позволяет в условиях теоремы показать отсутствие системы (1) с порядком кривизны (γ, δ) и бесконечными мерами кривизны u_{γ} и (или) v_{δ} .

Теорема 2. Пусть (γ, δ) — возможный векторный порядок кривизны O_i -кривых системы (1) является простым порядком типа II. Тогда особенность системы (1) в точке O относительно порядка (γ, δ) разрешается (с точностью до решения проблемы центра-фокуса (x, u, v)-системы).

Эта теорема доказывается аналогично предыдущей.

З а м е ч а н и е. При исследовании простых возможных порядков кривизны типа III возникают существенные трудности, так как для соответствующих (x,u,v)-систем точки $(0,u_0,v_0)$, где (u_0,v_0) — возможные меры кривизны, являются сложными особыми точками.

Работа выполнена при частичной поддержке Государственной программы "Ведущие научные школы" (грант N 96-15-96209). Статья подготовлена при поддержке Федеральной целевой программы "Интеграция" (проект N 2.1-326.53).

Список литературы

- 1) $Aндреев A. \Phi.$ Особые точки дифференциальных уравнений. Минск, 1979.
- 2) Бортковская М. Р. Асимптотика O-кривых для одного класса систем дифференциальных уравнений в ${f R}^3$ // Прикладная математика. Труды СПбГТУ, 1996. N 461. C. 42–46.
- 3) *Пилюгина В. Б.* Исследование системы с тройным нулевым характеристическим корнем // Дифференц. уравнения, 1980. Т. 16, N 8. C. 1520—1522.
- 4) Kапитанов A. \mathcal{A} . Качественное исследование одной системы в пространстве \mathbf{R}^3 // Дифференц. уравнения, 1984. Т. 20, N 2. C. 229–233.