CHIMEI INNOLUX DISPLAY CORPORATION FOG SPECIFICATION

-
HE080IA-01E
2012/12/28
01
Specification cation

For Customer's Acceptance

Approved by	Comment

Approved by	Reviewed by	Prepared by
Stanely CW Leung	Green Fu	Sunny.Sun

CHIMEI INNOLUX copyright 2012 All rights reserved, Copying forbidden.

Record of Revision

Version	Revise Date	Page	Content
Final-Spec.01	2012/12/28	All	Initial Release.

CHIMEI INNOLUX

Contents

1.	General Specifications	1
2.	Pin Assignment	2
	2.1. TFT LCD Panel Driving Section	2
3.	Operation Specifications	5
	3.1. Absolute Maximum Rating	5
	3.1.1. Typical Operation Conditions	6
	3.1.2. Current Consumption	6
	3.2. Power Sequence	7
	3.3. Timing Characteristics	8
	3.3.1. AC Electrical Characteristics	8
	3.3.2. DC Electrical Characteristics	10
	3.3.3. Timing	11
	3.4. Module Control Register	12
	3.5. Software Configuration	15
4.	Optical Specifications	17
5.	Reliability Test Items	21
6.	General Precautions	22
	6.1. Safety	22
	6.2. Handling	22
	6.3. Static Electricity	22
	6.4. Storage	22
	6.5. Cleaning	22
7.	Mechanical Drawing	23
8.	Package Drawing	24
	8.1 Packaging Material Table	24
	8.2 Packaging Quantity	24
	8.3 Packaging Drawing	25

Date :2012-12-28 Page:1/25

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	8 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	1024 × 3(RGB) × 768	
4	Display mode	Normally Black	
5	Dot pitch	0.05275(W) × 0.15825(H) mm	
6	Active area	162.05(W) × 121.54(H) mm	
7	Panel size	171.12 (W) ×132.62 (H) × 1.07(D) mm	Note 1
8	Surface treatment	НС	
9	Color arrangement	RGB-stripe	
10	Interface	4 Lane MIPI Video Mode	
11	Panel power consumption	0.415W(Typ)	
12	Weight	53g	

Note 1: Refer to Mechanical Drawing.

Date :2012-12-28 Page:2/25

2. Pin Assignment

2.1. TFT LCD Panel Driving Section

Pin No.	Symbol	I/O	Function	Remark
1	NC		No connection	
2	VDD	Р	Power Voltage for digital circuit	
3	VDD	Р	Power Voltage for digital circuit	
4	GND	Р	Ground	
5	Reset	I	Global reset pin	Note1
6	STBYB	I	Standby mode, Normally pulled high STBYB = "1", normal operation STBYB = "0", timing controller, source driver will turn off, all output are High-Z	Note1
7	GND	Р	Ground	
8	RXIN0-	I	- MIPI differential data input	
9	RXIN0+	I	+ MIPI differential data input	
10	GND	Р	Ground	
11	RXIN1-	I	- MIPI differential data input	
12	RXIN1+	I	+ MIPI differential data input	
13	GND	Р	Ground	
14	RXCLKIN-	I	- MIPI differential clock input	
15	RXCLKIN+	I	+ MIPI differential clock input	
16	GND	Р	Ground	
17	RXIN2-	I	- MIPI differential data input	
18	RXIN2+	I	+ MIPI differential data input	
19	GND	Р	Ground	
20	RXIN3-	I	- MIPI differential data input	
21	RXIN3+	I	+ MIPI differential data input	
22	GND	Р	Ground	
23	NC		No connection	
24	NC		No connection	

Date :2012-12-28 Page:3/25

			Page:3/25
25	GND	Р	Ground
26	NC		No connection
27	PINCTL	I	Enable pin control function. PINCTL = "L", Disable pin control function. PINCTL = "H", Enable pin control function.
28	NC		No connection
29	AVDD	Р	Power for Analog Circuit
30	GND	Р	Ground
31	LED-	Р	LED Cathode
32	LED-	Р	LED Cathode
33	NC		No connection
34	NC		No connection
35	VGL	Р	Gate OFF Voltage
36	NC		No connection
37	NC		No connection
38	VGH	Р	Gate ON Voltage
39	LED+	Р	LED Anode
40	LED+	Р	LED Anode

I: input, O: output, P: Power

Note1:

It's recommended that control these two pins with GPIOs to follow our Power sequence for stable

Note: Definition of scanning direction. Refer to the figure as below:

Date :2012-12-28 Page:5/25

3. Operation Specifications

3.1. Absolute Maximum Rating (Note1)

Item	Symbol	Val	ues	Unit	Remark
item	Syllibol	Min.	Max.	Oill	Remark
	V_{DD}	-0.3	2.0	V	
	AV_DD	8	13.5	V	
Power voltage	V_{GH}	-0.3	40	V	
	V_{GL}	-20	0.3	V	
	V_{GH} - V_{GL}	-0.3	40	V	
Operation Temperature	T _{OP}	-10	60	${\mathbb C}$	
Storage Temperature	T _{ST}	-20	70	$^{\circ}$	

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Date :2012-12-28 Page:6/25

3.1.1. Typical Operation Conditions

Item	Symbol		Values	Unit	Remark	
item	Symbol	Min.	Тур.	Max.	Unit	Remark
	V_{DD}	1.8	1.85	1.95	V	Note 1
	AV_DD	9.8	10	10.2	V	
Power voltage	V_{GH}	18.6	18.9	19.2	V	
	V_{GL}	-8.1	-7.8	-7.5	V	
Input logic high voltage	V _{IH}	0.7V _{DD}	-	V_{DD}	V	Note 2
Input logic low voltage	V _{IL}	0	-	0.3V _{DD}	V	Note 2

Note 1: V_{DD} setting should match the signals output voltage (refer to Note 3) of customer's system board .

Note 2: RESET, STBYB, PINCTL.

3.1.2. Current Consumption Note1

	Symbol		Values		Unit	Remark	
Item	Symbol	Min.	Тур.	Max.	Offic		
	I _{GH}	-	0.63	1	mA	VGH=18.9V	
Current for Driver	I _{GL}	-	0.63	1	mA	VGL=-7.8V	
Current for Driver	I _{VDD}	-	30	45	mA	Vcc=1.8V	
	IAV _{DD}	-	35	50	mA	AVDD=10.0V	

Note1: Frame Rate = 60 Hz, 4 Lane MIPI Video Mode

Date :2012-12-28 Page:7/25

3.2. Power Sequence

In order to prevent module from power on reset fail, the rising time of the digital power supply VDD should be less than 20 ms. It's strongly recommended that follow the Power Sequence to prevent display issue occur.

Basic AC Characteristic

VDD/GRB AC characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
VDD power slew rate	TPOR	-	-	20	ms	From 0 to 90% VDD
GRB active pulse width	TGRB	1	-	•:	ms	VDD=VDD_IF= 1.85V
VDD resettle time	Tres	1	*	-	S	

Date :2012-12-28 Page:8/25

3.3. Timing Characteristics

3.3.1. AC Electrical Characteristics

3.3.1.1. HS Transmission

Parameter	Symbol		Values		Unit
raiailletei	Symbol	Min.	Тур.	Max.	Offic
DSI Data Transfer Rate(HS)	T _{DSIR_HS}	80		500	Mbps
UI instantaneous	UI _{INST}	2	-	12.5	ns
Data to CLK Setup Time(measured at receiver)	T _{SETUP(RX)}	0.15	-	-	UI _{INST}
Data to CLK Hold Time(measured at receiver)	T _{HOLD(RX)}	0.15	-	-	UI _{INST}
20% - 80% rise time and fall time	T_R, T_F	150	-	-	ps

Data to Clock Timing Definitions

Note: X may be 0, 1, 2 or 3.

Date :2012-12-28 Page:9/25

3.3.1.2. LP Transmission

Pa	rameter	Symbol		Values		Unit	Remark
Га	rameter	Syllibol	Min.	Тур.	Max.	Ullit	Remark
15%-85% risin time	g time and falling	T _{RLP} / T _{FLP}	-	-	25	ns	
30%-85% risin time	g time and falling	T _{REOT}	-	-	35	ns	
Pulse width of the LP exclusive-OR	First LP EXOR clock pulse after STOP state or Last pulse before stop state	t _{LP-PULSE-TX}	40	-	-	ns	
clock	All other pulses		20				
Period of the L clock	P exclusive-OR	t _{LP-PRE-TX}	90	-	-	ns	

Date :2012-12-28 Page:10/25

3.3.2. DC Electrical Characteristics

(VDD=1.8V, AVDD=10V, GND=0V)

Parameter	Symbol	Min.	Тур.	Max.	Unit
MIPI Char	acteristics for H	igh Speed	Receiver		
Single-ended input low voltage	VILHS	-40			mV
Single-ended input high voltage	VIHHS			460	mV
Common-mode voltage	VCDRXDC	70		330	mV
Differential input impedance	ZID		TBD		ohm
HS transmit differential voltage(VOD=VDP-VDN)	[VOD]		TBD		mV
MIPI Cha	aracteristics for	Low Powe	r Mode		
Pad signal voltage range	VI	-50		1350	mV
Ground shift	VGNDSH	-50		50	mV
Logic 0 input threshold	VIL	0		550	mV
Logic 1 input threshold	VIH	880		1350	mV
Input hysteresis	VHYST	25			mV
Output low level	VOL	-50		50	mV
Output high level	VOH	1.1	1.2	1.3	V
Output impedance of Low Power Transmitter	ZOLP		TBD		ohm
Logic 0 contention threshold	VILCD,MAX			200	mV
Logic 0 contention threshold	VIHCD,MIN	450			mV

3.3.3. Timing

Date :2012-12-28 Page:11/25

DE mode

ltom	Symbol		Values		Unit	Domonic
Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock Frequency	fclk	52	65	71	MHz	Frame rate =60Hz
Horizontal display area	thd		1024		DCLK	
HS period time	th	1114	1344	1400	DCLK	
HS Blanking	thb+thfp	90	320	376	DCLK	
Vertical display area	tvd		768		Н	
VS period time	tv	778	806	845	Н	
VS Blanking	tvb+tvfp	10	38	77	Н	

HV mode

Horizontal input timing

Item		Symbol		Values		Unit
item		Cymbol	Min.	Тур.	Max.	Offic
DCLK frequency@ F rate=60hz	rame	fclk	52	65	71	MHz
1 Horizontal Line)	th	1200	1344	1400	
Horizontal display a	rea	thd		1024		
	Min.			1		DOLK
HSYNC pulse width	Тур.	thpw				DCLK
	Max.			140		
HSYNC back porc	ch	thb	160	160	160	
HSYNC front porc	:h	thfp	16	160	216	

HV mode

Vertical input timing

Item	Symbol			Unit	
Item	Symbol	Min.	Тур.	Max.	Oilit
Vertical display area	tvd		768		
VSYNC period time	tv	792	806	840	
VSYNC pulse width	tvpw	1		20	Н
VSYNC back porch	tvb	23	23	23	
VSYNC front porch	thfp	1	15	49	

Date :2012-12-28 Page:12/25

3.4. Module Control Register

Following table list the MIPI control registers and bit name definition for HE080IA-01C. Setting of all the MIPI registers will take effect at the coming valid Vsync signal except GRB bit.

All the MIPI control registers and bit name definition:

			Re	gis	ter	ad	dre	ss		MSB							LSB	default(hex)
No.	A 7	4 6	A 5	A 4	A 3		A 1	A 0	R/ W	D7	D6	D5	D4	D3	D2	DI	D0	-
R01h	0	0	0	0	0	0	0	1	0				GI	RB				_
R10h	0	0	0	1	0	0	0	0	0			I	ENTER_SL	EEP_MO	DE			_
R11h	0	0	0	1	0	0	0	1	0				EXIT_SLE	EP_MOD	E			_
R36h	0	0	1	1	0	1	1	0	1/0	0	0	0	0	0	0	UPDN (0)	SHLR(1)	01
RB1h	1	0	1	1	0	0	0	1	1/0	0	0	HFR C(0)	DITHER (0)	0	RES[1:0	0](00)	-	00
RB2h	1	0	1	1	0	0	1	0	1/0	1	_ NBW _ 2Lane_E							
RB3h	1	0	1	1	0	0	1	1	1/0	-	-	-	-	-	FRAME (0)		-	00

R01h: GRB (Software Reset)

Address		,	01h			A	ccess At	tribute	W	
Address			0111		1	0				
					Г	aramete	1(5)			
Parameter	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Default Value	
1 drameter	No Argument									
Description	When the Software Reset command is written, it causes a software reset. It resets the commands and parameters to their S/W Reset register values and all source are set to GND (display off).									
Restriction	(1)It will be necessary to wait 20 msec before sending new command following software reset.									
Restriction	(2)The d the regis				isplay su	ıpplier's	factory c	lefault v	alues to	

R10h: ENTER SLEEP MODE (Enter the Sleep-In Mode)

_				лоор					
						Acc	cess Attr	ibute	W
Address			10h				Number aramete		0
Parameter	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Default Value
. aramotor	No Argument								

Date :2012-12-28 Page:13/25

Description	This command initiates the power-down sequence. The Sleep In profile will be executed when this command is received.
Restriction	This command has no effect when the display module is already in Sleep Mode.

R11h: EXIT_SLEEP_MODE (Exit the Sleep-In Mode)

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		_ (, III IVIO a	-,					
Address						Ac	cess Att	tribute	W	
Address			11h			Number of Parameter(s)			0	
					Г	liametei	(5)			
Parameter	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Default Value	
i arameter	No Argument Sleep Out									
Description	load re	This command initiates the power-up sequence. The Sleep Out will load register value. It will be necessary to wait 5 msec before sendin next command.								
Restriction		mmand is not in			ıy visible	effect o	n the dis	play w	hen the	

R36h: SET_ADDRESS_MODE (Data Access Control)

Address		-	26h		•	Α	ccess At	ttribute	R/W
			36h			Number of			
						Р	aramete	r(s)	
Parameter	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Default Value
	0	0	0	0	0	0	UPD	SHLR	01h
Description	SHLR: S	IPDN = " JPDN = ' ource rig HLR = "(0", set to '1", set to ght or lef 0", set ri	op to bot oottom to t sequen ght to lef	tom scar top scar	n directio ol. rection.	n. `	ault)	

RB1h: Panel Control Register

		D1h				Access Attribute			R/W
Address	B1h				Number of			1	
					Parameter(s)				
	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Default Value
Parameter	0	0	HFRC (0)	DITHER (0)	0	RES (0		_	00h

Date: 2012-12-28

Page:14/25

HFRC: H-FRC selection.

HFRC = "1": H-FRC enable

HFRC = "0": H-FRC disable (Default)

If DITHER="0", disable dithering function(H-FRC and FRC disable)

Description DITHER: Dithering function enable control.

DITHER = "1", Enable internal dithering function

DITHER = "0", Disable internal dithering function (Default)

RES[1:0]: ="01" for 1024(RGB)*768 display resolution

="00", for 1024(RGB)*600 display resolution (default)

RB2h: Panel Control Register

		B2h				Access Attribute Number of Parameter(s)			R/W
Address									1
	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Default Value
Parameter	_	NBW(0)	_	2Lane_EN (0)	_	-	-	_	00h
Description	N N	BW="1": IBW="0" EN:2 lane 2Lane	Norma : Norma :/4 lane e_EN="	normally whilly black. ally white(decode) setting 1": 2 lane 0": 4 lane(decode)	efault)	·			

RB3h: Panel Control Register

Address		B3h					Access Attribute			
		DOII				1	Number (of	1	
							Parameter(s)			
	D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	Defaul	
Parameter									Value	
						FRAME			00h	
	_	_	_	_	_	(0)		_		
Description	FRAME	FRAME: Frame inverse or not select. FRAME = "1", Uniform FRAME = "0", Frame inverse(Default)								

Date :2012-12-28 Page:15/25

3.5. Software Configuration

If PINCTL set low, customer could set module control function(such as U/D、L/R control etc) by access panel register with DCS command. The module could accept either Generic packet or DCS packet in either Low-Power mode or High-Speed mode from MIPI master. If input video data format is 24-bit RGB, 8-8-8 Format, the flow chart shows the step of software configuration.

Note: The figure above is just demonstrated the process of software reset. The power sequence should refer to Item 3.2 .

Date :2012-12-28 Page:16/25

1. Initial code 1: Software Reset

The table below shows the related register and parameter

Register	Parameter	Description
0x01	00h	Module Software Reset

Here is an example of the packet format, the ECC is generated automatically.

Data ID	Data 0	Data 1	ECC
13h	01h	00h	~~

2. Initial code 2: LCD module initialization

Register	Parameter	Description
0xB1	30h	HFRC & Dithering Enable

Data ID	Data 0	Data 1	ECC
23h	Blh	30h	~~

When PINCTL pull Low the HFRC & Ditering HW Pin which were set on FPC will be disable. It would have required 'Initial code 2' to achieve display 24bit video data

If input video data format is 18bit or 16 bit, the initial code 2 is no need anymore.

As the Module is 4 Lane mode as default. If user want to use 2 lane mode, should send the command with \mathbf{LP} mode as blew: $^{(Note1)}$

Register	Parameter	Description
0xB2	10h	Set 2 Lane Mode

Data ID	Data 0	Data 1	ECC
23h	B2h	10h	~~

Note1: As the Max Speed of each lane is 500 Mbps. In two lane mode the LCM cann't achieve 60 frame per second refresh rate.

Date :2012-12-28 Page:17/25

4. Optical Specifications

Item Symbol		Condition	Values			Unit	Remar	
iteiii	Symbol	Condition	Min.	Тур.	Max.	Oill	k	
	θ_{L}	Ф=180°(9 o'clock)	75	85	ı			
Viewing angle	θ_{R}	Ф=0°(3 o'clock)	75	85	-	degree	Note 1	
(CR≥ 10)	θτ	Φ=90°(12 o'clock)	75	85	-			
	θв	Φ=270°(6 o'clock)	75	85	-			
Response time	T _{ON+} T _{OFF}			25	50	msec	Note 2 Note 3	
Contrast ratio	CR	Normal	600	800	-	-	Note 4	
	W _X	θ=Φ=0°	0.238	0.288	0.338	-	N. (5	
Color chromaticity	W _Y		0.276	0.326	0.376	-	Note 5	
Transmittance	Tr	-	3.8	4.3	-	%		

Test Conditions:

- 1. V_{CC} =1.8V, the ambient temperature is 25°C.
- 2. The test systems refer to Note 2.

Date :2012-12-28 Page:18/25

Note 1: Definition of viewing angle range

Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Viewing angle is measured by ELDIM-EZ contrast/Height :1.2mm, Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/ Field of view: 1° /Height: 500mm.)

Fig. 4-2 Optical measurement system setup

Date :2012-12-28 Page:19/25

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of backlight
The backlight used C light.

Date :2012-12-28 Page:20/25

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

Date :2012-12-28 Page:21/25

5. Reliability Test Items

(Note3)

Item	Test C	Conditions	Remark
High Temperature Storage	Ta = 70°C	240hrs	Note 1, Note 4
Low Temperature Storage	Ta = -20°C	240hrs	Note 1, Note 4
High Temperature Operation	Ts = 60°C	240hrs	Note 2, Note 4
Low Temperature Operation	Ta = -10°C	240hrs	Note 1, Note 4
Operate at High Temperature and Humidity	+60°C, 90%RH	240hrs	Note 4
Thermal Shock	-10°C/30 min ~ +60°C cycles, Start with col with high temperatur	Note 4	
Package Vibration Test	Random Vibration : ISTA-3A 1Hz~200Hz Half hours for directi	•	
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6	surfaces	

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, after least 2 hours at room temperature.

Date :2012-12-28 Page:22/25

6. General Precautions

6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2. Handling

- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
 - 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
 - 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

- 1. Store the module in a dark room where must keep at 25±10°C and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
 - 3. Store the module in an anti-electrostatic container or bag.

6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

Date :2012-12-28 Page:23/25

7. Mechanical Drawing

8. Package Drawing

8.1 Packaging Material Table

No	Item	Model (Material)	Dimensions(mm)	Unit Weight (Kg)	Quantity (pcs)	Remark		
1	Panel size	HE080IA-01E	171.12×132.62×1.07	0.0525	60			
2	Partition	BC Corrugated Paper	512 × 350 × 225	0.290	1			
3	Dust-Proof Bag	PE	700 × 530	0.050	1			
4	PET-Tray	PE	505 ×338×16.5	0.24	21			
5	Carton	Corrugated Paper	530 × 355 × 255	0.810	1			
6	Total weight	9.43Kg±5%						

8.2 Packaging Quantity

(1) FOG quantity per PET-Tray:	3pcs
(2) Total FOG quantity in Carton:	20 layer x 3pcs/PET-Tray = 60pcs

Date :2012-12-28 Page:25/25

8.3 Packaging Drawing

