Машинное обучение в экономике Машинное обучение в эконометрике

Потанин Богдан Станиславович

доцент, кандидат экономических наук

2024-2025

Введение

Основные рассматриваемые темы

- Методы оценивания параметров:
 - Ридж и Лассо регрессии.
 - Пост-Лассо.
 - Двойное машинное обучение.
- Базовые понятия:
 - Регуляризация.
 - Метод моментов.
 - Структурный параметр.
 - Функция шума.
 - Ортогональность по Нейману.
 - Кросс-фиттинг.
 - Эндогенность и неслучайный отбор.

Введение

Прогнозирование

- Машинное обучение, как правило, применяется для прогнозирования с помощью оценок различных характеристик распределения, таких как условные математические ожидания и вероятности.
- Обычно методы машинного обучения дают оценки, обладающие малым смещением и большой дисперсией, поскольку не накладывают структурных предпосылок (например, о линейности) на форму связи между переменными модели.
- В задаче прогнозирования эконометрические методы обычно демонстрируют преимущество на выборках малого и среднего объема, поскольку обладают структурой, позволяющей компенсировать недостаток данных реалистичными предположениями, снижающими дисперсию оценок.

Введение

Специфика эконометрической проблематики

- Основной упор в эконометрическом анализе делается на оценивание параметров моделей, имеющих содержательную экономическую интерпретацию.
- Иногда исследователя интересуют не все, а лишь часть параметров модели, характеризующих связь между основными переменными. В таком случае можно объединить сильные стороны эконометрики (интерпретабельность) и машинного обучения (высокая точность прогнозирования).
- Основная идея часть модели, не представляющая содержательный интерес для исследователя, оценивается методами машинного обучения, а для оценивания структурных параметров применяются эконометрические методы анализа.

Регуляризация

Основная идея

- Проблема машинное обучение позволяет избегать допущения о линейной связи Y_i с X_i , тем самым снижая смещение оценок, но часто серьезно повышает дисперсию на малых выборках.
- Идея для того, чтобы снизить дисперсию оценок и избежать переобучения, пусть и ценой повышения смещения, можно воспользоваться регуляризацией.
- Одним из наиболее популярных подходов к регуляризации заключается в накладывании штрафов на параметры модели:

$$\underbrace{\mathsf{L}\left(Y,F(X;\theta)\right)}_{\mathsf{функция\ потерь}} + \underbrace{\mathsf{penalty}\left(\theta\right)}_{\mathsf{штраф}}$$

минимизируемый функционал

- Функция penalty (θ) накладывает **штраф** (penalty) за определенные, как правило **большие по модулю** значения элементов n_{θ} -мерного вектора параметров θ модели $F(X;\theta)$.
- Интуиция ограничение $\theta_t=0$, где $t\in\{1,...,n_{\theta}\}$, обычно соответствует исключению параметра θ_t из модели, что приводит к ее упрощению. Регуляризация предлагает в качестве альтернативы накладывать штрафы, приводящие, образно говоря, к естественному отбору среди параметров, когда значительно отличными от 0 оказываются лишь те из них, что оказывают существенное влияние на качество модели.
- В роли параметров θ , например, могут выступать коэффициенты β в обычной линейной или логистической регрессии.

Регуляризация

Регуляризации с помощью Lp-норм

• В большинстве случае функция штрафа задается с помощью Lp-нормы:

penalty
$$(heta)=|| heta||_p^p=\sum_{t=1}^{n_ heta}\lambda_t| heta_t|^p$$
, где $\lambda_t>0$ и $p\in\{1,2,3,...\}$

ullet Случаи p=1 и p=2 являются наиболее популярными:

penalty
$$(heta)=\sum_{t=1}^{n_{ heta}}\lambda_t| heta_t|$$
 Лассо регуляризация penalty $(heta)=\sum_{t=1}^{n_{ heta}}\lambda_t heta_t^2$ Ридж регуляризация

- Чем больше значения констант λ_t , тем сильнее накладываемый штраф за большие по абсолютной величине значения параметров θ_t
- Подбор λ_t обычно осуществляется по аналогии с гиперпараметрами, например, с помощью кросс-валидации. Для простоты часто полагают $\lambda_t = \lambda \in R$ для всех t.

Регуляризация

Стандартизация признаков

- Как правило величины коэффициентов θ тесно связаны с единицами измерения признаков X.
- Например, в линейной регрессии если коэффициент при весе в килограммах равняется $\theta_k=100$, то этот же коэффициент при весе в граммах будет равняться $\theta_k^*=100/1000=0.1$.
- Проблема если на все коэффициенты накладывается один и тот же штраф, например, λ при использовании Lp-нормы, то его сила будет зависеть от единиц измерения признаков.
- Решение привести признаки к сопоставимым единицам измерения, например, за счет стандартизации.
- Кроме того, часто стандартизация снижает сложность оптимизационной задачи (через снижение погрешностей, связанных с операциями над числами с плавающей точкой), тем самым повышая скорость нахождение минимума методами численной оптимизации.

Лассо регрессия

- Даже сохраняя линейную форму связи $E(Y_i|X_i) = X_i\beta$, линейная регрессия может аппроксимировать очень сложные зависимости, за счет того, что X_i могут быть разнообразными функциями (например, полиномы и сплайны) от исходных данных.
- Чем больше функций от исходных данных включает исследователь, тем, как правило, ниже смещение, но выше дисперсия оценок параметров и прогнозов.
- Проблема при включении большого числа функций от исходных данных число оцениваемых коэффициентов β_i может оказаться чрезвычайно велико, что приведет к крайне большой дисперсии оценок.
- Решение воспользоваться, например, Лассо регуляризацией, минимизируя:

$$\sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \sum_{t=1}^{n_{\beta}} \lambda_t |\beta_t|$$

• Полезное свойство Лассо регуляризации – часто оценки коэффициентов при наименее значимых (с точки зрения вклада в прогностическое качество модели) регрессорах обнуляются $\hat{\beta}_i = 0$, что эквивалентно их исключению из модели.

Ридж регрессия

 Преимущество Ридж регуляризации в линейной регрессии заключается в возможности получения аналитических оценок коэффициентов и их характеристик:

$$\hat{eta} = \left(X^T X + \Lambda \right)^{-1} X^T Y$$
, где $\Lambda = \operatorname{diag}(\lambda, ..., \lambda)$
$$\mathsf{E}\left(\hat{eta} | X \right) = \beta - \underbrace{\lambda \left(X^T X + \Lambda \right)^{-1} \beta}_{\mathsf{смещение}}$$

$$\mathsf{Cov}\left(\hat{\beta}|X\right) = \left(X^TX + \Lambda\right)^{-1}X^T\mathsf{Cov}\left(\varepsilon|X\right)X\left(X^TX + \Lambda\right)^{-1}$$

- ullet Можно показать, что смещение увеличивается по мере роста штрафа $\lambda.$
- Производная $\operatorname{Cov}\left(\hat{\beta}|X\right)$ по λ является отрицательно определенной матрицей, поэтому увеличение штрафа приводит к уменьшению дисперсии оценок.
- Если случайные ошибки ε_i гетероскедастичны, то существует такая константа c, что при $\lambda \in (0,c)$ оценки Ридж регрессии более эффективны, чем МНК.

Соотношение смещения и дисперсии в Ридж регрессии в случае с одним регрессором

• Если в модели используется лишь один регрессор (без константы) и $\beta \neq 0$, то легко показать, что смещение возрастает вместе со штрафом λ :

$$\partial \text{bias}\left(\hat{\beta}|X\right)/\partial \lambda = \partial \left|\lambda \beta / \left(\sum_{i=1}^{n} X_i^2 + \lambda\right)\right|/\partial \lambda = \left|\beta \sum_{i=1}^{n} X_i^2 / \left(\sum_{i=1}^{n} X_i^2 + \lambda\right)^2\right| > 0$$

• Поскольку $\operatorname{Cov}\left(\varepsilon|X\right)$ положительно определена, то дисперсия падает с ростом λ :

$$\partial \operatorname{Var}\left(\hat{\beta}|X\right)/\partial \lambda = \partial \left(X^{T}\operatorname{Cov}\left(\varepsilon|X\right)X/\left(\sum_{i=1}^{n}X_{i}^{2} + \lambda\right)^{2}\right)\partial \lambda =$$

$$= \underbrace{\left(-2/\left(\sum_{i=1}^{n}X_{i}^{2} + \lambda\right)^{3}\right)}_{>0}\underbrace{X^{T}\operatorname{Cov}\left(\varepsilon|X\right)X}_{>0} < 0$$

- Напомним, что при Лассо регуляризации в линейных регрессионных моделях некоторые из коэффициентов β могут обращаться в 0.
- Проблема включение большого числа регрессоров с нулевыми коэффициентами может привести к снижению эффективности оценок вследствие серьезного смещения.
- Решение применить двухшаговую процедуру, на первом шаге которой оценивается Лассо регрессия, а на втором обычная МНК регрессия, в которой в качестве объясняющих переменных используются лишь те, при которых коэффициенты оказались отличными от нуля в Лассо регрессии.
- Поскольку МНК регрессия используется после Лассо, описанный метод именуется пост-Лассо.
- Примечание эффективность оценок пост-Лассо может быть ниже, чем у обычной Лассо регрессии.

Частично линейная регрессия

• Рассмотрим частично линейную модель (partially linear model):

$$Y_i = \alpha T_i + g(X_i) + \varepsilon_i$$
, где $\mathsf{E}\left(\varepsilon_i | T_i, X_i\right) = \mathsf{0}$ и $(T_i, X_i, \varepsilon_i)$ i.i.d.

- ullet В качестве основного параметра интереса для исследователя выступает $lpha \in R.$
- Например, Y_i может отражать прибыль фирмы, T_i долю акций, принадлежищих государству, α влияние государственного участия на прибыль при прочих равных значениях контрольных переменных X_i (размер, возраст, объем долга и т.д.).
- Проблема неизвестная функция $g(X_i)$ может оказаться нелинейной и тогда МНК оценки могут оказаться несостоятельными.
- Наивное решение применить методы машинного обучения, например, Ридж или Лассо регрессию с большим числом функций от X_i (полиномы и сплайны).
- Проблема методы машинного обучения могут дать достаточно точные прогнозы \hat{Y}_i , но полученная с их помощью оценка $\hat{\alpha}$ может оказаться неэффективной.

Классический метод оценивания частично линейной регрессии

• Вычтем из обеих частей регрессионного уравнения условное математическое ожидание, что позволит нам избавиться от $g(X_i)$:

$$Y_{i} - \mathsf{E}(Y_{i}|X_{i}) = \alpha (T_{i} - \mathsf{E}(T_{i}|X_{i})) + (g(X_{i}) - \mathsf{E}(g(X_{i})|X_{i})) + (\varepsilon_{i} - \mathsf{E}(\varepsilon_{i}|X_{i})) =$$

$$= \alpha (T_{i} - \mathsf{E}(T_{i}|X_{i})) + \varepsilon_{i} - \mathsf{E}\left(\underbrace{\mathsf{E}(\varepsilon_{i}|X_{i}, T_{i})}_{0}|X_{i}\right) = \alpha (T_{i} - \mathsf{E}(T_{i}|X_{i})) + \varepsilon_{i}$$

• Случайная ошибка полученного уравнения имеет нулевое условное математическое ожидание:

$$\mathsf{E}\left(\varepsilon_{i}|T_{i}-\mathsf{E}\left(T_{i}|X_{i}\right)\right)=\mathsf{E}\left(\underbrace{\mathsf{E}\left[\varepsilon_{i}|T_{i}-\mathsf{E}\left(T_{i}|X_{i}\right),X_{i},T_{i}\right]}_{\mathsf{0}}|T_{i}-\mathsf{E}\left(T_{i}|X_{i}\right)\right)=0$$

- Следовательно, для того, чтобы получить состоятельную оценку параметра α , достаточно с помощью МНК оценить регрессию без константы $Y_i \mathsf{E}\left(Y_i|X_i\right)$ на $T_i \mathsf{E}\left(T_i|X_i\right)$.
- Проблема нам неизвестны условные математические ожидания $E(Y_i|X_i)$ и $E(T_i|X_i)$.
- **Решение** их можно оценить с помощью методов непараметрической статистики, в частности, машинным обучением, например, регрессионными деревьями.

Линейный метод наименьших квадратов как частный случай метода моментов

• Метод наименьших квадратов (МНК) предполагает минимизацию квадратов отлокнений:

$$eta = \mathop{\mathsf{argmin}}_{ ilde{eta}} \mathsf{E}\left(\left(Y_i - X_i ilde{eta}\right)^2\right)$$

• Условия первого порядка данной оптимизационной задачи:

$$\mathsf{E}\left(\left(Y_{i}-X_{i}\beta\right)X_{i}\right)=\mathsf{E}\left(\varepsilon_{i}X_{i}\right)=\left(0,...,0\right)$$

• Решая соответствующее равенство получаем:

$$\beta = \mathsf{E}\left(\left(X_i^T X_i\right)^{-1}\right) \mathsf{E}\left(X_i^T Y_i\right)$$

• Линейный МНК можно помыслить как метод моментов (ММ), в котором моментные тождества задаются условием первого порядка, а значит для оценивания коэффициентов достаточно заменить теоретические моменты их выборочными аналогами:

$$\hat{\beta} = \left(X^T X \right)^{-1} X^T Y$$

Классический подход через призму метода моментов

• Напомним, что МНК оценка параметров линеной регрессии является оценкой метода моментов, опирающейся на следующее моментное тождество:

$$\mathsf{E}\left(\varepsilon_{i}X_{i}\right)=\mathsf{E}\left(\left(Y_{i}-X_{i}\beta\right)X_{i}\right)=\left(0,...,0\right)$$

• По аналогии можно показать, что в рассматриваемой ранее регрессии без константы $Y_i - \mathsf{E}\left(Y_i|X_i\right)$ на $T_i - \mathsf{E}\left(T_i|X_i\right)$ параметр α является единственным решением моментного тождества:

$$E\left(\left[Y_{i}-E\left(Y_{i}|X_{i}\right)-\alpha\left(T_{i}-E\left(T_{i}|X_{i}\right)\right)\right]\left[T_{i}-E\left(T_{i}|X_{i}\right)\right]\right)=0$$

- ullet Для краткости обозначим $g_Y(X_i) = \mathsf{E}\left(Y_i|X_i\right)$ и $g_T(X_i) = \mathsf{E}\left(T_i|X_i\right)$.
- Выражая α из тождества получаем:

$$\alpha = \frac{\mathsf{E}\left(\left(Y_i - g_Y(X_i)\right)\left(T_i - g_T(X_i)\right)\right)}{\mathsf{E}\left(\left(T_i - g_T(X_i)\right)^2\right)}$$

Основная идея метода

- Проблема исследователю неизвестны не только истинные математические ожидания, через которые выражается параметр α , но и входящие в них условные математические ожидания $g_Y(X_i)$ и $g_T(X_i)$.
- Решение оценить неизвестные условные математические ожидания с помощью классических методов непараметрической статистики или машинного обучения.
- В результате получаем двухшаговую процедуру, на **первом** шаге которой с помощью машинного обучения оцениваются **функции шума**:

$$\hat{g}_Y(x) = \hat{E}(Y_i|X_i = x)$$
 $\hat{g}_T(x) = \hat{E}(T_i|X_i = x)$

• На втором шаге теоретические моменты заменяются на выборочные, в которых вместо истинных условных математических ожиданий используются оцененные на первом шаге функции шума:

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} (Y_i - \hat{g}_Y(X_i)) (T_i - \hat{g}_T(X_i))}{\sum_{i=1}^{n} (T_i - \hat{g}_T(X_i))^2}$$

Ортогональность по Нейману

• Введем отдельное обозначение для **моментного тождества** (score):

$$\mathsf{E}\left(\psi\left(\alpha,g_{T}(X_{i}),g_{Y}(X_{i})\right)\right)=\mathsf{E}\left(\left[Y_{i}-g_{X}(X_{i})-\alpha\left(T_{i}-g_{T}(X_{i})\right)\right]\left[T_{i}-g_{T}(X_{i})\right]\right)=0$$

- Проблема вместо $\psi = \psi\left(\alpha, g_T(X_i), g_Y(X_i)\right)$ используется $\hat{\psi} = \psi\left(\alpha, \hat{g}_T(X_i), \hat{g}_Y(X_i)\right)$. Однако, как правило $\mathsf{E}(\hat{\psi}) \neq 0$, поскольку оценки $\hat{g}_T(X_i)$ и $\hat{g}_Y(X_i)$ могут иметь достаточно сильное смещение, в частности, из-за регуляризации (regularization bias).
- Решение частично данная проблема смягчается за счет формы функции ψ , удовлетворяющей условию **ортогональности по Нейману**:

$$\partial \mathsf{E}\left(\psi\left(\alpha;g_{Y}(X_{i})+q\underbrace{\left(\hat{g}_{Y}(X_{i})-g_{Y}(X_{i})\right)}_{\mathsf{CMEЩEHUE}},g_{T}(X_{i})+q\underbrace{\left(\hat{g}_{T}(X_{i})-g_{T}(X_{i})\right)}_{\mathsf{CMEЩEHUE}}\right)\right)/\partial q|_{q=0}=0$$

Интуиция – благодаря ортогональности по Нейману при малом смещении \hat{g}_T и \hat{g}_Y можно ожидать, что $\mathsf{E}(\hat{\psi}) \approx 0$. Это оправдывает то, что мы выражаем $\hat{\alpha}$ из равенства $\mathsf{E}(\hat{\psi}) = 0$.

Проблема переобучения

- Проблема даже несмотря на регуляризацию, многие методы машинного обучения склонны к переобучению (overfitting bias), из-за чего по крайней мере внутривыборочные оценки $Y_i \hat{g}_Y(X_i)$ и $T_i \hat{g}_T(X_i)$ могут существенно отклоняться от $Y_i g_Y(X_i)$ и $T_i g_T(X_i)$, тем самым снижая точность оценок второго шага.
- Решение применить разбиение выборки (sample splitting) на две части первая часть выборки используется на первом шаге, то есть для оценивания g_Y и g_T , а вторая на втором шаге для оценивания α с использованием полученных на первом шаге оценок \hat{g}_Y и \hat{g}_T .
- **Проблема** мы используем лишь по половине выборки для каждого из шагов, что может снижать эффективность наших оценок.
- Решение использовать различные части выборки для оценивания и прогнозирования.

Разбиение выборки

- Обозначим через $\hat{g}_{Y}^{(1)}$, $\hat{g}_{T}^{(1)}$ и $\hat{g}_{Y}^{(2)}$, $\hat{g}_{T}^{(2)}$ оценки функций g_{Y} и g_{T} , полученные на первой и второй половинах выборки соответственно. То есть обе половины выборки поочередно используются на первом шаге.
- Введем вспомогательную переменную q_i , такую, что $q_i = 1$ если наблюдение i не вошло в первую половину выборки, и $q_i = 2$ в противном случае.
- Оценим $\hat{\alpha}$ таким образом, чтобы для каждого наблюдения i на втором шаге использовались оценки функций g_Y и g_T , которые были получены без использования i-го наблюдения:

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} \left(Y_i - \hat{g}_Y^{(q_i)}(X_i)\right) \left(T_i - \hat{g}_T^{(q_i)}(X_i)\right)}{\sum_{i=1}^{n} \left(T_i - \hat{g}_T^{(q_i)}(X_i)\right)^2}$$

Двойное машинное обучение (DML) Кросс-фиттинг

- **Проблема** использование лишь половины выборки может существенно снизить эффективность оценок функций g_Y и g_T .
- Решение реализовать кросс-фиттинг по аналогии с кросс-валидацией, разбив выборку на K (примерно) равных частей, где $\hat{g}_{Y}^{(k)}$ и $\hat{g}_{T}^{(k)}$ оцениваются на данных, не вошедших в k-ю из этих выборок (обычно K=5):

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} \left(Y_{i} - \hat{g}_{Y}^{(q_{i})}(X_{i}) \right) \left(T_{i} - \hat{g}_{T}^{(q_{i})}(X_{i}) \right)}{\sum_{i=1}^{n} \left(T_{i} - \hat{g}_{T}^{(q_{i})}(X_{i}) \right)^{2}}$$

Где $q_i = k$, если наблюдение i вошло в k-ю выборку.

- **Проблема** результаты оценивания могут быть чувствительны к конкретному разбиению на K частей.
- Решение повторить кросс-фиттинг m раз и либо усреднить все полученные оценки, либо взять ту из них, что является выборочной медианой.

$$\mathsf{Зарплатa}_i = \alpha imes \mathsf{Образованиe}_i + g(\mathsf{Возраст}_i) + arepsilon_i$$

Для оценивания $g_Y^{(q_i)}(X_i)$ и $g_Y^{(q_i)}(X_i)$ используется метод ближайших соседей с одним соседом.

Возраст $_i$ (X_i)	20	30	40	50	60	24	37	44	47	90
Образование $_i$ (T_i)	1	0	1	0	1	0	1	0	1	0
3 арплата $_i$ (Y_i)	1	2	3	4	5	6	7	8	9	10
Разбиение выборки		Пер	вая ч		Вторая часть					
$\hat{g}_{Y}^{(q_{i})}$ (Возраст $_{i}$) $=$ \hat{E} (Зарплата $_{i}$ Возраст $_{i}$)	6	6	7	9	9	1	3	3	4	5
$\hat{g}_{T}^{(q_{i})}$ (Возраст $_{i}$) $=$ \hat{E} (Образование $_{i}$ Возраст $_{i}$)	0	0	1	1	1	1	1	1	0	1

ullet Нетрудно показать, что $\hat{lpha} = -10/6$, поскольку:

$$\begin{split} \sum_{i=1}^n \left(Y_i - \hat{g}_Y^{(q_i)}(X_i) \right) \left(T_i - \hat{g}_T^{(q_i)}(X_i) \right) &= (1-6)(1-0) + ... + (10-5)(0-1) = -10 \\ \sum_{i=1}^n \left(T_i - \hat{g}_T^{(q_i)}(X_i) \right)^2 &= (1-0)^2 + ... + (0-1)^2 = 6 \end{split}$$

Резюме

- Описанный метод именуется **двойным машинным обучением** (DML), поскольку предполагает применение методов машинного обучения при оценивании функций \hat{g}_Y и \hat{g}_T , а также кросс-фиттинга.
- При достаточно слабых допущениях DML метод дает состоятельную и асимптотически нормальную оценку $\hat{\alpha}$.
- Идейно DML опирается на метод моментов, поскольку выражение, используемое для оценивания α , выводится из равенства $E(\psi)=0$.
- Проблема использование оценок \hat{g}_Y и \hat{g}_T вместо истинных значений g_Y и g_T может приводить к неточностям в оценивании $\hat{\alpha}$.
- ullet Решение кросс-фиттинг и подбор функции ψ , удовлетворяющей ортогональности по Нейману.
 - Ортогональность по Нейману позволяет сгладить смещение вследствие регуляризации.
 - Кросс-фиттинг помогает снизить смещение, обусловленное переобучением.
- Иногда кросс-фиттинг реализуется упрощенным образом параметр α оценивается на каждой из K подвыборок и полученный результат усредняется. Такой подход называется DML, а рассмотренный ранее DML2.
- Авторы метода рекомендуют применять DML2, особенно на малых выборках.
- В рамках курса, если не сказано иного, предполагается использование DML2.

22 / 25

Двойное машинное обучение (DML) Эндогенность

- Проблема если T_i является эндогенной переменной, то $\mathsf{E}(\varepsilon_i|T_i,X_i) \neq 0$, откуда $\mathsf{E}(\psi) \neq 0$, что не позволяет оценить α описанным ранее способом.
- Решение найти инструментальную переменную Z_i (случай с несколькими инструментами рассматривается по аналогии), то есть такую, что $E(\varepsilon_i|X_i,Z_i)=0$ и $E(\text{Cov}(T_i,Z_i|X_i))\neq 0$. После этого рассмотреть такую ψ , что $E(\psi)=0$ и соблюдается ортогональность по Нейману, например:

$$\psi = (Y_i - g_Y(X_i) - lpha \left(T_i - g_T(X_i)
ight)) \left(Z_i - g_Z(X_i)
ight)$$
, где $g_Z(X_i) = \mathsf{E}(Z_i|X_i)$

• По аналогии с предыдущим примером применив кросс-фиттинг получаем:

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} \left(Y_i - \hat{g}_Y^{(q_i)}(X_i) \right) \left(Z_i - \hat{g}_Z^{(q_i)}(X_i) \right)}{\sum_{i=1}^{n} \left(T_i - \hat{g}_T^{(q_i)}(X_i) \right) \left(Z_i - \hat{g}_Z^{(q_i)}(X_i) \right)}$$

Неслучайный отбор

• Наблюдаемость Y_i может зависеть от некоторого правила, например, запрлата Y_i наблюдается лишь для работающих $Z_i = 1$ индивидов и ненаблюдается для безработных $Z_i = 0$:

$$Y_i^* = lpha T_i + g(X_i) + arepsilon_i$$
 $Z_i^* = r(W_i) + u_i$ уравнение отбора

$$Y_i = egin{cases} Y_i^*, ext{ если } Z_i = 1 \ ext{ ненаблюдаем, в противном случае} \end{cases}$$

$$Z_i = egin{cases} 1$$
, если $Z_i^* \geq 0 \ 0$, в противном случае

• Поскольку в данных мы наблюдаем лишь $(Y_i^*|Z_i=1)$, а не Y_i^* , то нарушается допущение о нулевом условном математическом ожидании случайной ошибки:

$$\mathsf{E}(\varepsilon_i|Z_i=1)=\mathsf{E}(\varepsilon_i|u_i\geq -r(W_i))=h(W_i) \implies \mathsf{E}(Y_i^*|X_i,T_i,W_i,Z_i=1)=\alpha T_i+g(X_i)+h(W_i)$$

- Проблема если ε_i и u_i зависимы, то функция $h(W_i) \neq 0$ является пропущенной переменной, что приведет к несостоятельности DML оценки $\hat{\alpha}$.
- Решение если T_i не входит в W_i , то можно объединить переменные X_i и W_i , получив регрессионное уравнение, в котором α можно оценить DML методом:

$$Y_i = lpha T_i + g^*(X_i^*) + v_i$$
, где $g^*(X_i^*) = g(X_i) + h(W_i)$ и $X_i^* = (X_i, W_i)$

Несколько структурных параметров

• Проблема – иногда исследователю необходимо оценить не один, а сразу несколько структурных параметров a_j , где $j \in \{1,...,d\}$.

$$Y_i = \alpha_1 T_{1i} + \ldots + \alpha_d T_{di} + g(X_i) + \varepsilon_i$$

- Например, параметры α_j могут отражать отдачу от различных уровней образования: базовый, бакалавриат и магистратура.
- Решение оценить каждый из параметров α_j поочередно, используя DML метод для следующего уравнения:

$$Y_i = \alpha_j T_{ji} + g_j(X_i, T_{1i}, ..., T_{(j-1)i}, T_{(j+1)i}, ..., T_{di}) + \varepsilon_i$$

ullet Для тестирования гипотез о связи между параметрами $lpha_j$ можно применить бутстрап.