PRIMITIVE IDEAL

CHEN ZHIPENG

Baire Space

Definition 0.1. A topology space is called Baire if $\cap_{i \in I} O_i$ is dense, where O_i is dense open set, and |I| < |k|.

Remark 0.2. If R is countable generated, we may repalce all < |k| by countable.

Lemma 0.3. Let R be a prime semiprimitive ring. Then every non-empty open set is dense.

Proof. Suppose U is a non-empty open set, V is open and $U \cap V = \emptyset$. Let $I = \bigcap_{P \notin U} P$, $J = \bigcap_{P \notin V} P$, then $IJ \subseteq I \cap J = 0$, but $U \neq \emptyset$, so $I \neq 0$, so J = 0. So $V = \emptyset$.

Kaplansky Ring

Definition 0.4. R is said to be Kaplansky ring provided the primtive ideal space of every homomorphic image of R is a Baire space.

Lemma 0.5. Suppose R is Jacobson ring which is (one-side) noetherian, Then R is Kaplansky if and only if $Prim\ R/P$ is Baire for every prime ideal P in R. Note that $Prim\ R/I = (Prim\ R/P_1) \cup \cdots \cup (Prim\ R/P_n)$, where $\{P_1, \cdots, P_n\}$ is the set of prime ideal minimal over I. and the proof is clear.

PRIMITIVE SPECTRUM

Prim R is sub-topological space of Spec(R) consist of (left) primitive ideal.

Lemma 0.6. Let R be a prime semiprimitive ring. Prim R is Baire if and only if $\bigcap_{i \in I} U_i \neq \emptyset$ for every |I| < |k| and $U_i, i \in I$ are non-empty open set in Prim R.

Proof. $U \doteq \bigcap_{i \in I} U_i$, for every non-empty open set V, $U \cap V = \bigcap_{i \in I} U_i \cap V$ is non-empty by assumption. So U is dense.

We may write above lemma as:

Lemma 0.7. Let R be a prime semiprimitive ring. Prim R is Baire if and only if $\bigcup_{i \in I} W_i$ is proper for every |I| < |k| and $W_i, i \in I$ are proper closed set in Prim R.

thus we may sate:

Lemma 0.8. Let R be a prime semiprimitive ring. Prim R is Baire if and only if for every set of ideal $J_{i\in I}$ with |I| < |k|, there exist an (left) primitive ideal don't contain any J_i .

If R is (left) noetherian, R has only finitely many prime ideal minimal over J_i . So we have

Lemma 0.9. Let R be a noetherian prime semiprimitive ring. Prim R is Baire if and only if for every set of prime ideal $P_{ii \in I}$ with |I| < |k|, there exist an (left) primitive ideal don't contain any P_i .

Assume that k is a field, R is a Noetherian k-algebra, with $\dim_k(R) < |k|$, so R is a Jacobson ring, satisfies Nullstellensatz, thus if P is a primitive, then it is rational, if P is locally closed, then P is primitive.

In this case, J.P.Bell have 0 is Rational if and only if there is a set X of cardinality less than |k| and a set of nonzero prime ideals $\{P_x : x \in X\}$ such that every nonzero prime ideal P of R contains P_x for some $x \in X$.

So If R is prime ring satisfies above assumption. Then 0 is primitive if and only if 0 is rational and Prim R is Baire.

If P is a Prime ideal in R, Then P is primitive if and only if P is rational and $Prim\ R/P$ is Baire.

Remark 0.10. Prim R is Baire in above case has easy version.

REFERENCES

- [1] The Dixmier-Moeglin equivalence, Morita equivalence, and homeomorphism of spectra. (English summary) J. Algebra 534 (2019), 228–244.
- [2] Baire category and Laurent extensions. Canadian J. Math. 31 (1979), no. 4, 824–830.