Honor Statement

I affirm that my work upholds the highest standards of honesty and integrity, and that I have neither given nor received any unauthorized assistance on this exam.

Signature

1	
2	
3	
4	
5	
6	
7	
total	

Instructions:

- Show all your work, and box your final answer.
- You may use one handwritten, double-sided $8\frac{1}{2}$ " by 11" sheet of notes.
- No calculators, cell phones, headphones, or other electronics are allowed. You can include square roots and trigonometric functions in your answers.
- Your test should have 7 problems on 7 pages (not including this cover page or the back page) double-check that it does!
- Raise your hand if you have any questions.
- You can use the table of Laplace transforms for any question unless it specifically says otherwise.

A table of Laplace transforms and the values of *g* are on the back.

1. (a) Solve the equation

$$y'=te^{2t}+\frac{y}{t}.$$

(b) A barrel contains 20 gallons of pure water. Water containing $\frac{1}{2}$ lb/gal of calcium enters at a rate of 10 gal/hour, and mixes with the contents of the barrel. The mixture drains at a rate of 12 gal/hour.

Write, but **do not solve** a differential equation for C(t), the amount of calcium in the barrel, in pounds, after t hours.

Answer:
$$\frac{dC}{dt} =$$

2. The population *P* of insects (in thousands) in a given area has the following equation:

$$\frac{dP}{dt} = (P - 10)^2(-2P + 20).$$

where t is measured in days.

- (a) Without solving the equation, find all equilibrium solution(s) and classify them as stable, semistable, or unstable.
- (b) Solve the differential equation, with the initial condition P(0) = 14.

Note: you can do part (b) without doing part (a), and vice-versa.

- **3.** A 2kg object is attached to a spring with spring constant k = 4. The damping force is 20 N when the object is traveling at 5 m/s, and there is an external force of $-10 \sin t$. At t = 0, you pull the object downward by 1m and release it with initial velocity 1 m/s upward.
- (a) Find the quasifrequency of the system.
- (b) Find the position of the object at time t. Identify the transient solution and steady-state solutions.

4. Given that $y_1(t) = t^3$ is one solution to the ODE

$$t^2y'' - ty' - 3y = 0,$$

find another solution that is not a multiple of $y_1(t)$.

5. Find the Laplace transform of $f(t) = \sin bt$, using only the definition of the Laplace transform (not using the table).

6. Solve the IVP

$$y''' + 4y' = \begin{cases} 0, & t < 3 \\ 5e^{-t}, & t \ge 3 \end{cases}$$
$$y(0) = 3$$
$$y'(0) = 2$$
$$y''(0) = -9$$

You do not need to solve for the coefficients A, B, ... in the partial fractions decomposition – you may leave those in your answer. You may also leave your answer in terms of step functions.

7. Find the Laplace transform of
$$f(t) = \begin{cases} 3t, & t < \pi \\ e^{-2t} \cos 3t, & t \ge \pi \end{cases}$$
.

Table of Laplace Transforms

f	$\mathcal{L}\{f\}$	f	$\mathcal{L}\{f\}$
1	$\frac{1}{s}$	cos bt	$\frac{s}{s^2+b^2}$
e^{at}	$\frac{1}{s-a}$	sin bt	$\frac{b}{s^2+b^2}$
t^n	$\frac{n!}{s^{n+1}}$	$e^{at}\cos bt$	$\frac{(s-a)}{(s-a)^2+b^2}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	$e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}$

Acceleration Due to Gravity

standard: $g = 32.2 \text{ ft/s}^2 \text{ (you can use } g = 32\text{)}$

metric: $g = 9.8 \text{ m/s}^2$ (you can use g = 10)