Homework 1

Andrea Sofia Vallejo Budziszewski

November 2023

Problem 1

For a given $(d+1) \times 1$ weight vector **w** and a training set $S = (X, \mathbf{y})$, we want to show that the training loss for linear regression can be expressed as

$$L_S(\mathbf{w}) = \frac{1}{m} \left(\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y} \right), \tag{1}$$

where **X** is an $m \times (d+1)$ matrix storing the input data, and **y** is an $m \times 1$ vector storing the output data. This expression for the loss is a quadratic form in **w**.

The training loss for linear regression is typically expressed as the Mean Squared Error (MSE) loss, which is defined as

$$L_S(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \mathbf{w}^T \mathbf{x}_i)^2,$$
(2)

where **w** is the weight vector of shape $(d+1) \times 1$, $S = (X, \mathbf{y})$ is the training set, m is the number of training examples, \mathbf{x}_i is the i-th row of the matrix \mathbf{X} , and y_i is the i-th element of the vector \mathbf{y} . Now, let's express $L_S(\mathbf{w})$ in matrix form to simplify the derivation:

$$L_S(\mathbf{w}) = \frac{1}{2m} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}). \tag{3}$$

Expanding this expression, we get

$$L_S(\mathbf{w}) = \frac{1}{2m} \left(\mathbf{y}^T - \mathbf{w}^T \mathbf{X}^T \right) \left(\mathbf{y} - \mathbf{X} \mathbf{w} \right)$$
(4)

$$= \frac{1}{2m} \left(\mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \mathbf{w} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \right). \tag{5}$$

We can now notice that $\mathbf{y}^T \mathbf{X} \mathbf{w}$ and $\mathbf{w}^T \mathbf{X}^T \mathbf{y}$ are scalars and that they are equal to their own transposes:

$$\mathbf{y}^T \mathbf{X} \mathbf{w} = (\mathbf{y}^T \mathbf{X} \mathbf{w})^T = \mathbf{w}^T \mathbf{X}^T \mathbf{y}. \tag{6}$$

With this simplification, we have

$$L_S(\mathbf{w}) = \frac{1}{2m} \left(\mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \right).$$
 (7)

Now, removing the constant factor $\frac{1}{2m}$ gives us the expression for the training loss as a quadratic form in **w**:

$$L_S(\mathbf{w}) = \frac{1}{m} \left(\mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2 \mathbf{w}^T \mathbf{X}^T \mathbf{y} + \mathbf{y}^T \mathbf{y} \right).$$
 (8)

This concludes the derivation of the training loss for linear regression as a quadratic form in the weight vector \mathbf{w} , as expressed in equation (1).

Problem 2

Assuming that X^TX is invertible, we want to show that the training loss LS(w) can be written in the centered form as follows:

$$LS(w) = \frac{1}{m} \left((w - (X^T X)^{-1} X^T y)^T X^T X (w - (X^T X)^{-1} X^T y) + y^T (I - X(X^T X)^{-1} X^T) y \right)$$
(9)

Here, w_{lin} is the weight vector that minimizes the training loss LS(w).

To find w_{lin} , we set the gradient of LS(w) with respect to w to zero:

$$\nabla LS(w) = 0 \tag{10}$$

The training loss associated with w_{lin} is given by the value of LS(w) when evaluated at w_{lin} :

$$L_{\rm lin} = LS(w_{\rm lin}) \tag{11}$$

Notably, for any symmetric matrix A, $A^T = A$, and for a positive definite matrix A, $v^T A v > 0$ for any non-zero vector v.

BONUS

Ridge regression minimizes the regularized objective:

$$L_{\text{ridge}}(w) = L_S(w) + \lambda ||w||_2^2 \tag{12}$$

where $L_S(w)$ is the original training loss, λ is a positive scalar, and $\|\cdot\|_2$ is the Euclidean norm. We previously derived the expression for $L_S(w)$ as follows:

$$L_S(w) = \frac{1}{m} \left(w^T X^T X w - 2w^T X^T y + y^T y \right)$$
 (13)

Now, let's expand the Ridge regression objective:

$$L_{\text{ridge}}(w) = \frac{1}{m} \left(w^T X^T X w - 2w^T X^T y + y^T y \right) + \lambda ||w||_2^2$$
 (14)

Expand the Euclidean norm $||w||_2^2$ as $w^T w$, which is the same as $w^T I w$, where I is the identity matrix. Then, add and subtract $\lambda y^T y$ for later convenience:

$$L_{\text{ridge}}(w) = \frac{1}{m} \left(w^T X^T X w - 2w^T X^T y + y^T y + \lambda w^T I w - \lambda w^T I w + \lambda y^T y - \lambda y^T y \right)$$
(15)

Rearrange the terms:

$$L_{\text{ridge}}(w) = \frac{1}{m} \left((w - (X^T X + \lambda I)^{-1} X^T y)^T (X^T X + \lambda I) \right)$$

$$(w - (X^T X + \lambda I)^{-1} X^T y) + (y - \lambda (X^T X + \lambda I)^{-1} y)^T (y - \lambda (X^T X + \lambda I)^{-1} y) \right)$$
(16)

We have now expressed $L_{\text{ridge}}(w)$ in centered form, where w_{ridge} that minimizes this objective can be found by setting the gradient of $L_{\text{ridge}}(w)$ with respect to w to zero:

$$\nabla L_{\text{ridge}}(w) = 0 \tag{17}$$

The training loss associated with w_{ridge} is the value of $L_{\text{ridge}}(w)$ when evaluated at w_{ridge} :

$$L_{\text{ridge}} = L_{\text{ridge}}(w_{\text{ridge}})$$
 (18)

Similar to the previous case, we can also conclude that L_{ridge} is non-negative since $(X^TX + \lambda I)$ is positive definite for positive λ .