

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Grammatical theory

Organizational matters

Organizational matters

- Please register via Moodle
- Phone and office hours see: https://hpsg.hu-berlin.de/~stefan/
- Complaints and suggestions:
 - in person
 - via mail
 - anonymously via the web: https://hpsg.hu-berlin.de/~stefan/Lehre/
- Please stick to the mail rules!
 https://hpsg.hu-berlin.de/~stefan/Lehre/mailregeln.html

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

1/325

Grammatical theory

Corganizational matters

Documents

 Course information: https://hpsg.hu-berlin.de/~stefan/Lehre/GT/

Textbook: Müller, Stefan (2020b), *Grammatical Theory* (Textbooks in Language Science 1). Berlin: Language Science Press fourth edition. https://langsci-press.org/catalog/book/287

A bit outdated: Müller, Stefan (2013a) *Grammatiktheorie*, (Stauffenburg Einführungen 20). Tübingen: Stauffenburg Verlag zweite Auflage. http://hpsg.hu-berlin.de/~stefan/Pub/grammatiktheorie.html

Grammatical theory

└─ Organizational matters

General idea in Corona times

- 1. Read the respective sections in the textbook.
- 2. Slides with spoken comments can be found in moodle. Please watch them before the lesson.
- 3. You can do 1 and 2 in your preferred order.
- 4. Use the online tasks to check whether you understand everything.
- 5. Use quick questions and exercises in the book.
- 6. Ask questions during the online sessions!

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

2/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Organizational matters

Leistungen

Leistungen

Master Linguistik, Modul 2: Theoretische Grundlagen II, 2 SWS

- Aktive Teilnahme, Vor- und Nachbereitung
- Klausur (im Modul für Linguistik)

Ideale Zeitaufteilung:

Präsenzstudium Vorlesung 25 h

Vor- und Nachbereitung 95 h (35/15 = 2 h 20 min für jede Sitzung + 60h Prüf) Klausurvorbereitung

Für die Veranstaltung gibt es 4 Leistungspunkte.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

4/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Grammatical theory

Organizational matters

☐ Recapitulation

Recapitulation

- Linguistics 101 in the BA (4 SWS)
- Tutorial Linguistics 101

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

5/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

Reading material

- Literature: English version of the grammatical theory textbook: Müller 2020b
- There is also a German and a Chinese version. The fourth edition of the English book is the most recent one.
- For this session, please read Müller 2020b: Chapter 1. Topological fields are covered in Section 1.8. They are not part of the slides of this session but will be needed later on (chapter 3 and onwards).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Motivation of (formal) syntax and basic terminology

 $\sqsubseteq_{\mathsf{Goals}}$ of this course

Goals of this course

- conveyance of basic ideas about grammar
- introduction to various grammatical theories and approaches
- enlightenment and attainment of supernatural powers

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

7/325

NOTE ON A

Why syntax?

Grammatical theory

∟_{Why syntax?}

- Literature: Müller 2013b: Chapter 1 or Müller 2013a: Chapter 1
- signs: form-meaning pairs (de Saussure 1916)
- words, word groups, sentences

Motivation of (formal) syntax and basic terminology

- language [?] finite enummeration of word sequences language is finite, if onw assumes a maximal sentence length
 - (1) a. This sentence goes on and on and on ...
 - b. [A sentence is a sentence] is a sentence.

We can form enourmously many sentences. A restriction on complexity would be arbitrary.

• One distinguishes between **competence** (knowledge about what is possible) and **performance** (useage of this knowledge)

Grammatical theory

Motivation of (formal) syntax and basic terminology

└─Goals of this course

Ancient wisdom

[Grammar is] the gate to freedom, the medicine for the diseases of language, the purifier of all sciences; it spreads its light over them; ... it is the first rung on the ladder which leads to the realization of supernatural powers and straight, royal road for those who seek freedom. (Bhartrhari, poet of sayings, died before 650 AD, from *Vakyapadiya*, found by Gabriele Knoll)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

8/325

Grammatical theory

☐ Motivation of (formal) syntax and basic terminology

-Why syntax

The Six Bullerby Children

Und wir beeilten uns, den Jungen zu erzählen, wir hätten von Anfang an gewußt, daß es nur eine Erfindung von Lasse gewesen sei. Und da sagte Lasse, die Jungen hätten gewußt, daß wir gewußt hätten, es sei nur eine Erfindung von ihm. Das war natürlich gelogen, aber vorsichtshalber sagten wir, wir hätten gewußt, die Jungen hätten gewußt, daß wir gewußt hätten, es sei nur eine Erfindung von Lasse. Und da sagten die Jungen – ja – jetzt schaffe ich es nicht mehr aufzuzählen, aber es waren so viele "gewußt", daß man ganz verwirrt davon werden konnte, wenn man es hörte. (p. 248)

We are capable of forming long, complex sentences (competence), but at some level of complexity we get confused since our brains cannot deal with the complexity anymore (performance).

Motivation of (formal) syntax and basic terminology

└Why syntax?

Creativity

We can form sentences we never heard before →
There has to be structure, patterns.
 It cannot be just sequences learned by heart.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

11/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

∟_{Why syntax?}

Why syntax? Computation of meaning from utterance parts

- The meaning of an utterance can be computed from the meaning of its parts.
 - (3) Der Mann kennt diese Frau. the man knows this woman
- Syntax: the way parts are combined, the utterance is structured
 - (4) a. Die Frau kennt die Mädchen. the woman know.3sG the girls.'
 - b. Die Frau kennen die Mädchen. the woman know.3PL the girls 'The girls know the woman.'
 - c. Die Frau schläft. the woman sleep.3sg 'The woman sleeps.'
 - d. Die Mädchen schlafen. the girls sleep.3PL 'The girls sleep.'

Subject-verb agreement → meaning of (4a,b) is unambiguous

Grammatical theory

Motivation of (formal) syntax and basic terminology

∟_{Why syntax?}

Direct evidence for syntactic structures?

- We can show that we are following rules by observing children.
 Children often use rules wrongly (or rather use their own rules).
- Example from morphology:
 German has an unmarked Plural for some nouns: Bagger 'digger', Ritter 'knight'.
- Children apply the -s ending to such unmarked plurals instead:
 - (2) a. * die Baggers
 - b. * die Ritters
- Side remark: We will use German examples throughout this course, since English is sooooo boring. I gloss whatever I can, but sometimes stuff would not fit onto the slide. Please refer to the textbook in such cases.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

12/325

Grammatical theory

☐ Motivation of (formal) syntax and basic terminology

∟_{Why formal?}

Why formal?

Precisely constructed models for linguistic structure can play an important role, both negative and positive, in the process of discovery itself. By pushing a precise but inadequate formulation to an unacceptable conclusion, we can often expose the exact source of this inadequacy and, consequently, gain a deeper understanding of the linguistic data. More positively, a formalized theory may automatically provide solutions for many problems other than those for which it was explicitly designed. Obscure and intuition-bound notions can neither lead to absurd conclusions nor provide new and correct ones, and hence they fail to be useful in two important respects. I think that some of those linguists who have questioned the value of precise and technical development of linguistic theory have failed to recognize the productive potential in the method of rigorously stating a proposed theory and applying it strictly to linguistic material with no attempt to avoid unacceptable conclusions by ad hoc adjustments or loose formulation. (Chomsky 1957: 5)

As is frequently pointed out but cannot be overemphasized, an important goal of formalization in linguistics is to enable subsequent researchers to see the defects of an analysis as clearly as its merits; only then can progress be made efficiently. (Dowty 1979: 322)

- What does an analysis mean?
- Which predictions does it make?
- exclusion of alternative proposals

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

14/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Motivation of (formal) syntax and basic terminology

L_Constituency

Constituency tests

Grouping words

- Sentences may contain sentences containing sentences die ...:
 - (5) that Max thinks [that Julius knows [that Otto claims [that Karl suspects [that Richard confirms [that Friederike is laughing]]]]]

This works like a Russian doll or like an onion.

- The words in (6) can be grouped into units as well:
 - (6) Alle Studenten lesen während dieser Zeit Bücher. all students read during this time books 'All the students are reading books at this time.'

Which ones?

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

15/325

└─Constituency tests

16/325

Constituency tests

Motivation of (formal) syntax and basic terminology

Terminology:

└ Constituency

Word sequence An arbitrary linear sequence of words which do not necessarily

Word group, constituent, phrase One or more words forming a structural unit.

Boxes

L Constituency └─Constituency tests

We put all words belonging together into a box.

Such boxes can be put into other boxes.

Motivation of (formal) syntax and basic terminology

It is intuitively clear what belongs into a box in the example at hand, but are there tests?

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

substitution/pronominalization/question formation

Motivation of (formal) syntax and basic terminology

Constituency tests

Which ones do you know?

Constituency

Constituency

need to have any syntactic or semantic relationship.

omission permutation

- fronting
- coordination

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

17/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Constituency tests

Constituency tests (I)

Substitution If it is possible to replace a sequence of words in a sentence with a different sequence of words and the acceptability of the sentence remains unaffected, then this constitutes evidence for the fact that each sequence of words forms a constituent.

- (7) a. Er kennt [den Mann] he knows the man 'He knows the man.'
 - b. Er kennt [eine Frau]. he knows a woman 'He knows a woman.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

19/325

Constituency tests

Motivation of (formal) syntax and basic terminology

└ Constituency

Constituency tests (III)

Question formation A sequence of words that can be elicited by a question forms a constituent.

- (9) a. [Der Mann] arbeitet. the man works 'The man is working.'
 - b. Wer arbeitet?who works'Who is working?'

Motivation of (formal) syntax and basic terminology

L Constituency

└─Constituency tests

Constituency tests (II)

Pronominalization Everything that can be replaced by a pronoun forms a constituent.

- (8) a. [Der Mann] schläft. the man sleeps 'The man is sleeping.'
 - b. Er schläft.he sleeps'He is sleeping.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

20/325

Motivation of (formal) syntax and basic terminology

Constituency

└─Constituency tests

Constituency tests (IV)

Permutation test If a sequence of words can be moved without adversely affecting the acceptability of the sentence in which it occurs, then this is an indication that this word sequence forms a constituent.

- (10) a. dass keiner [dieses Kind] kennt that nobody this child knows
 - b. dass [dieses Kind] keiner kennt that this child nobody knows 'that nobody knows this child'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

21/325

Constituency tests

Constituency tests (V)

Fronting Fronting is a further variant of the movement test. In German declarative sentences, only a single constituent may normally precede the finite verb:

all students read.3PL during the lecture.free Bücher.

- b. [Bücher] lesen alle Studenten während der vorlesungsfreien Zeit. books read all students during the lecture.free
- all students books read during the lecture.free
- d. * [Bücher] [alle Studenten] lesen während der vorlesungsfreien Zeit. books all students read during the lecture.free time

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

23/325

Motivation of (formal) syntax and basic terminology

Grammatical theory

A head determines the most important properties of a phrase.

- Mann? dreams this.NOM man 'Does this man dream?'
 - expects he.NOM this.ACC man 'Is he expecting this man?'
 - c. Hilft er diesem Mann? helps he.NOM this.DAT man 'Is he helping this man?'
 - in this.DAT house
 - Mann e. ein a.NOM man

(11) a. [Alle Studenten] lesen während der vorlesungsfreien Zeit time

books

'All students read books during the semester break.'

- c. * [Alle Studenten] [Bücher] lesen während der vorlesungsfreien Zeit.

Motivation of (formal) syntax and basic terminology └ Constituency

Constituency tests

25/325

Warning

Danger!

These tests are not 100 % reliable. See Müller 2020b: Section 1.3.2 for details.

For more on the tests see also Müller 2019: Section 2.

Constituency tests (VI)

Motivation of (formal) syntax and basic terminology

L Constituency └─Constituency tests

Coordination test If two sequences of words can be conjoined then this suggests that each sequence forms a constituent.

[Der Mann] und [die Frau] arbeiten. the man and the woman work.3PL 'The man and the woman work.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Heads

(13) a. **Träumt** dieser

diesen Mann? b. Erwartet er

- d. **in** diesem Haus

Motivation of (formal) syntax and basic terminology

∟_{Head}

Projection

The combination of a head with other material is called **projection of the head**.

A complete projection is a maximal projection.

A maximal projection of a finite verb is a sentence.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

27/325

29/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

Lucado

Boxes are replaceable

- It does not matter what exactly is in the box:
 - (14) a. er
 - b. der Mann the man
 - c. der Mann aus Stuttgart the man from Stuttgart
 - d. der Mann aus Stuttgart, den wir kennen the man from Stuttgart who we know

The only thing that matters:

all words or phrases in (14) are nominal and complete: NP.

They can be substituted for each other within bigger boxes.

Grammatical theory

Motivation of (formal) syntax and basic terminology

L.,...

Labeled boxes

Those of you who moved to a new flat know that is is good to label your boxes.

The label on a box indicates the most important element in the box.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

28/325

Grammatical theory

☐ Motivation of (formal) syntax and basic terminology

L H.

Boxes are replaceable. Well, hm.

- This does not work with all NPs:
 - (15) a. Der Mann liest einen Aufsatz. the man reads an essay
 - b. * Die Männer liest einen Aufsatz. the men reads an essay
 - c. * Des Mannes liest einen Aufsatz. the man.GEN reads an essay
- Certain properties are important for the distribution of phrases.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Motivation of (formal) syntax and basic terminology

More carefully labeled boxes

All features that are important for the distribution of the whole phrase are projected.

Such feature are called **head features**.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

31/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

Arguments and adjuncts

Valency in chemistry

- Atoms can form more or less stable molecules with other atoms.
- The number of electrons on an electron shell is important for the stability of the molecule
- If atoms combine with other atoms this can lead to completely filled electron layers, which would result into a stable compound.
- The valency of an atom is the number of hydrogen atoms that can be combined with an atom of a certain element.
- Oxygen has the valency 2 since it can be combined with two hydrogen atoms: H₂O.
- The elements can be grouped into valence classes.
 Elements with a certain valence are represented in a column in the periodice system of Mendeleev.

Grammatical theory

Motivation of (formal) syntax and basic terminology

Arguments and adjuncts

Arguments

- Constituents are in different relations with their head.
- There are arguments and adjuncts.
- Certain elements are part of the meaning of a verb.
 For example in situations described by the verb *love*, there is a lover and a *lovee*.

(16) a. Kim loves Sandy.

b. love'(Kim', Sandy')

(16b) is a logical representation of (16a).

Kim' and Sandy' are logical arguments of love'.

- Syntactic arguments usually correspond to logical arguments (more on this later).
- The term for such relations between head and arguments is **selection** or **valence**.
- Tesnière (1959) transferred the concept of valence from chemistry to linguistics.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

32/32

Grammatical theory

☐ Motivation of (formal) syntax and basic terminology

LArguments and adjuncts

Valence in linguistics

- A head needs certain arguments to enter a stable compound.
- Words having the same valence (same number and type of arguments) are grouped into valence classes, since they behave alike with respect to the combinations they enter.

Combining oxygen with hydrogen and combining a verb with its arguments

33/325

Motivation of (formal) syntax and basic terminology

Arguments and adjuncts

Optional arguments

- Sometimes arguments may be omitted:
 - (17) a. I am waiting for my man.
 - b. I am waiting.

The prepositional object of wait is an **optional argument**.

- All arguments are optional in nominal environments.
 - (18) a. Jemand liest diese Bücher. somebody reads these books
 - b. das Lesen dieser Bücher the reading of these books
 - c. das Lesen the reading

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

35/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

Arguments and adjuncts

Arguments and adjuncts

- Adjuncts do not fill a semantic role
- Adjuncts are optional
- Adjuncts can be iterated

Motivation of (formal) syntax and basic terminology

 $\mathrel{\ \ \, \bigsqcup}_{\mathsf{Arguments}}$ and adjuncts

Syntactic arguments that are not logical ones

- Syntactic arguments correspond to logical arguments in our example above:
 - (19) a. Kim loves Sandy.
 - b. love'(Kim', Sandy')
- There are also arguments not contributing semantically:
 - (20) a. Es regnet.
 - it rains
 - b. Kim erholt sich. Kim recreates SELF

es and sich are syntactic arguments, without being logical arguments.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

Motivation of (formal) syntax and basic terminology

LArguments and adjuncts

Adjuncts do not fill a semantic role

- In a loving situation there is a lover and a lovee. since three years in (21) is of a different type:
 - (21) Kim loves Sandy since three years.

This phrase provides information about the span in which the relation between Kim and Sandy holds.

Adjuncts are optional

- Adjuncts are optional:
 - (22) a. Kim loves Sandy.
 - b. Kim loves Sandy since three years.
 - c. Kim loves Sandy honestly.
- Be aware! Arguments may also be optional:
 - (23) a. Er gibt den Armen Geld.
 - b. Er gibt den Armen.
 - c. Er gibt Geld.
 - d. Er gibt gerne.
 - e. Du gibst. (beim Skat)
 - f. Gib!

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

39/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

Arguments and adjuncts

ON TO WAR WALLY

Some further examples for adjuncts

Adverbially used adjective (not all adjectives):

(26) Karl schnarcht *laut*. Karl snores loudly

Relative clauses (not all of them):

(27) das Kind, *dem der Delphin hilft* the child who the dolphin helps

Prepositional phrases (not all of them):

- (28) a. Die Frau arbeitet *in Berlin*. the woman works in Berlin
 - b. die Frau *aus Berlin* the woman from Berlin

Motivation of (formal) syntax and basic terminology

Arguments and adjuncts

Adjuncts can be iterated

- Arguments can be combined with their head once:
 - (24) * The man the man sleeps

The respective slot of the head (sleeps) is filled.

- But adjuncts are different:
 - (25) A: All grey squirrels are big.
 - B: No, I saw a small grey squirrel.
 - A: But all small grey squirrels are ill.
 - B: No, I saw a healthy small grey squirrel.

•••

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

10/325

Grammatical theory

Motivation of (formal) syntax and basic terminology

Grammatical theories

Various grammatical theories (I)

- Dependency Grammar (DG)
 (Tesnière 1980; 2015; Kunze 1975; Weber 1997; Heringer 1996; Eroms 2000)
- Categorial Grammar (CG) (Ajdukiewicz 1935; Steedman 2000)
- Phrase structure grammar (PSG)
- Transformational Grammar and its successors
 - Transformational grammar (Chomsky 1957; Bierwisch 1963)
 - Government & Binding (Chomsky 1981; von Stechow & Sternefeld 1988; Grewendorf 1988)
 - Minimalism (Chomsky 1995; Grewendorf 2002)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

42/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Motivation of (formal) syntax and basic terminology

Grammatical theories

Various grammatical theories (II)

- Tree Adjoning Grammar (Joshi, Levy & Takahashi 1975; Joshi 1987; Kroch & Joshi 1985)
- Generalized Phrase Structure Grammar (GPSG) (Gazdar, Klein, Pullum & Sag 1985; Uszkoreit 1987)
- Lexical Functional Grammar (LFG) (Bresnan 1982a; 2001; Berman & Frank 1996; Berman 2003)
- Head-Driven Phrase Structure Grammar (HPSG) (Pollard & Sag 1987; 1994; Müller 1999; 2002; 2013b)
- Construction Grammar (CxG) (Fillmore, Kay & O'Connor 1988; Goldberg 1995; 2006; Fischer & Stefanowitsch 2006)
- We will deal with most of these in this course.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

43/325

Grammatical theory

Phrase structure grammars and X Theory

Symbols and rewrite rules

44/325

Reading material

Please read Müller 2020b: Section 2.1–2.2.

Grammatical theory

Phrase structure grammars

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Grammatical theory

Phrase structure grammars and X Theory

 $\mathrel{\ \ \, \bigsqcup}_{\mathsf{Symbols}}$ and rewrite rules

Phrase structure

$$NP \rightarrow Det, N$$

S $\rightarrow NP, NP, NP, V$

$$NP \rightarrow Det, N$$

V $\rightarrow NP, V$

What we are after is phrase structure rules! Trees are just their visualization. Sometimes bracketed strings are used to safe space:

 $[_{S} \ [_{NP} \ er] \ [_{NP} \ [_{Det} \ das] \ [_{N} \ Buch]] \ [_{NP} \ [_{Det} \ dem] \ [_{N} \ Mann]] \ [_{V} \ gibt]]$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and $\overline{\boldsymbol{X}}$ Theory Symbols and rewrite rules

└─ Terminology

Mother, daughter and sister

A is mother of B and C C is mother of D B is sister of C

Relationships like in family trees

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and $\overline{\mathsf{X}}$ Theory

└─ Terminology

46/325

Symbols and rewrite rules

Dominance

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

A dominates B, C and D C dominates D

A dominates B if and only if A is higher in the tree and if there is a line from A to B that exclusively goes downwards. Phrase structure grammars and \overline{X} Theory Symbols and rewrite rules

 $\sqsubseteq_{\mathsf{Terminology}}$

Immediate dominance

A immedeately dominates B and C C immedeately domminates D

A immedeately dominates B if and only if A dominates B and there is no node C between A and B.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

Symbols and rewrite rules

Precedence

Precedence

A precedes B, if A is located to the left of B in a tree and none of these nodes dominates the other one.

Immediate precedence

A precedes B and there is no element C between A and B.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

50/325

Phrase structure grammars and \overline{X} Theory

Symbols and rewrite rules

∟_{A sample grammar}

52/325

Do try this at home!

You can actually play with such grammars.

- Go to https://swish.swi-prolog.org/.
- Click "Program".
- Enter:

```
s --> np, v, np, np.
np --> det, n.
np --> [er].
det --> [das].
det --> [dem].
n --> [buch].
```

- n --> [kind].
- v --> [gibt].
- Type in the following into the right lower box:
 s([er,gibt,das,buch,dem,kind],[]).
- If there appears a "true" in the box above this box, celebrate.

Phrase structure grammars and \overline{X} Theory

Symbols and rewrite rules

∟_{A sample grammar}

Example derivation assuming flat structures

NP -	→ Det	N			$NP \rightarrow er$	$N \rightarrow Buch$
S -	→ NP	NP NP	V		$Det \to das$	$N \rightarrow Kind$
					$Det \to dem$	$V \rightarrow gibt$
er	das	Buch	dem	Kind	gibt	
NP	das	Buch	dem	Kind	gibt	$NP \rightarrow er$
NP	Det	Buch	dem	Kind	gibt	$Det \to das$
NP	Det	N	dem	Kind	gibt	$N \rightarrow Buch$
NP		NP	dem	Kind	gibt	$NP \rightarrow Det N$
NP		NP	Det	Kind	gibt	$Det \to dem$
NP		NP	Det	N	gibt	$N \rightarrow Kind$
NP		NP		NP	gibt	$NP \rightarrow Det N$
NP		NP		NP	V	$V \rightarrow gibt$
					S	$S \to NP \; NP \; NP \; V$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

51/325

Phrase structure grammars and \overline{X} Theory

Symbols and rewrite rules

└A sample grammar

A generative grammar

- The grammar you just entered can generate sentences.
- You may test which sentences it generates by typing in: s([X],[]),print(X),nl,fail.
- s([X],[]) asks Prolog to come up with an X that is an "s".
- print(X),nl prints the X and a newline and
- fail tells Prolog that we are not happy and that it should try again.
- It keeps trying till there are no further solutions and then fails.
- Some grammars generate infinitely many Xes. So this process would never end (unless the computer runs out of memory ...).

Sentences described by the grammar

• The grammar is not precise enough (it *overgenerates*):

 $NP \rightarrow Det N$

 $S \rightarrow NP NP NP V$

(29) a. er das Buch dem Kind gibt he the book the child gives

b. * ich das Buch dem Kind gibt
I the book the child give
(Subject verb agreement *ich*, *gibt*)

 c. * er das Buch das Kind gibt he the book the child gives (case requirement of the verb, gibt requires dative)

d. * er den Buch dem Kind gibt he the book the child gives (determinator noun agreement den, Buch)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

54/325

- II to

Phrase structure grammars and $\overline{\boldsymbol{X}}$ Theory

Symbols and rewrite rules

A sample grammar

Subject verb agreement (II)

We make the symbols more informative.
 Instead of S → NP NP NP V we use:

 $S \rightarrow NP_1_sg NP NP V_1_sg$

 $S \rightarrow NP_2 sg NP NP V_2 sg$

 $S \rightarrow NP_3_sg NP NP V_3_sg$

 $S \rightarrow NP 1 pl NP NP V 1 pl$

 $S \rightarrow NP_2$ pl NP NP V_2_pl

 $S \rightarrow NP 3 pl NP NP V 3 pl$

- six symbols for nominal phrases, six for verbs
- six rules instead of one

Phrase structure grammars and X Theory

Symbols and rewrite rules

∟A sample grammar

Subject verb agreement (I)

Agreement in person (1, 2, 3) and number (sg, pl)

(30) a. Ich schlafe. (1, sg)

b. Du schläfst. (2, sg)

c. Er schläft. (3, sg)

d. Wir schlafen. (1, pl)

e. Ihr schlaft. (2, pl)

f. Sie schlafen. (3,pl)

How can we express this in rules?

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

55/325

Phrase structure grammars and X Theory

Symbols and rewrite rules

A sample grammar

Case assignment by the verb

• Case must be part of the symbols used in the rules:

 $S \rightarrow NP_1_sg_nom\ NP_dat\ NP_acc\ V_1_sg_ditransitiv$

 $S \rightarrow NP_2_sg_nom\ NP_dat\ NP_acc\ V_2_sg_ditransitiv$

 $S \rightarrow NP_3_sg_nom\ NP_dat\ NP_acc\ V_3_sg_ditransitiv$

 $\mathsf{S} \to \mathsf{NP}_1_\mathsf{pl}_\mathsf{nom}\ \mathsf{NP}_\mathsf{dat}\ \mathsf{NP}_\mathsf{acc}\ \mathsf{V}_1_\mathsf{pl}_\mathsf{ditransitiv}$

 $S \rightarrow NP_2pl_nom NP_dat NP_acc V_2pl_ditransitiv$

 $\mathsf{S} \to \mathsf{NP}_3_\mathsf{pl}_\mathsf{nom}\ \mathsf{NP}_\mathsf{dat}\ \mathsf{NP}_\mathsf{acc}\ \mathsf{V}_3_\mathsf{pl}_\mathsf{ditransitiv}$

3 * 2 * 4 = 24 new categories for NPs in total

3 * 2 * x categories for V (x = number of attested valence patterns)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

56/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

Symbols and rewrite rules

∟_{A sample grammar}

Determinator noun agreement

- There is agreement in gender (fem, mas, neu), number (sg, pl) and case (nom, gen, dat, acc)
- (31) a. der Mann 'the man', die Frau 'the woman', das Kind 'the child' (gender)
 - b. das Buch 'the book', die Bücher 'the books' (number)
 - c. des Buches 'the.GEN book.GEN', dem Buch 'the.DAT book' (case)
- instead of NP → Det N we have

```
NP\_3\_sg\_nom \rightarrow Det\_fem\_sg\_nom \ N\_fem\_sg\_nom \ NP\_gen \rightarrow Det\_fem\_sg\_gen \ N\_fem\_sg\_gen \ NP\_3\_sg\_nom \rightarrow Det\_mas\_sg\_nom \ NP\_gen \rightarrow Det\_mas\_sg\_gen \ N\_mas\_sg\_gen \ NP\_gen \rightarrow Det\_mas\_sg\_gen \ N\_mas\_sg\_gen \ NP\_gen \rightarrow Det\_neu\_sg\_gen \ NP\_gen \rightarrow Det\_neu\_sg\_gen \ NP\_gen \rightarrow Det\_neu\_sg\_gen \ NP\_gen \rightarrow Det\_neu\_sg\_gen \ NP\_gen \rightarrow Det\_mas\_pl\_gen \ NP\_gen \rightarrow Det\_neu\_pl\_gen \ NP\_gen \rightarrow Det\_neu\_pl\_gen
```

- 24 symbols for determiners, 24 symbols for nouns
- 24 rules instead of one

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

58/325

Grammatical theory \square Phrase structure grammars and \overline{X} Theory

Expanding PSG with features

Features and rule schemata (I)

- Rules with specific values can be generalized to rule schemata:
 - $NP(3,Num,Cas) \rightarrow Det(Gen,Num,Cas) N(Gen,Num,Cas)$
- Actual Gen, Num and Cas values do not matter as long as they are identical.
- The value of the person feature (first slot in NP(3,Num,Cas)) is fixed by the rule: 3.

Grammatical theory

Phrase structure grammars and X Theory

Expanding PSG with features

Problems of simple phrase structure grammars

- Gernalisations are not captured.
- neither in rules nor in category symbols
 - Where can an NP or an NP_nom be placed? The only question we can ask is: Where can I put an NP_3_sg_nom?
 - Commonalities between rules are not obvous.
- Solution: features with values and identity of values Category symbol: NP feature: Per, Num, Cas, ...
 We get rules like the following:

 $NP(3,sg,nom) \rightarrow Det(fem,sg,nom) N(fem,sg,nom)$

 $NP(3,sg,nom) \rightarrow Det(mas,sg,nom) N(mas,sg,nom)$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

59/32

Grammatical theory

 \sqsubseteq Phrase structure grammars and \overline{X} Theory

LExpanding PSG with features

Features and rule schemata (II)

• Rules with specific values can be generalized into rule schemata:

 $NP(3,Num,Cas) \rightarrow Det(Gen,Num,Cas) N(Gen,Num,Cas)$

 $\rightarrow NP(Per1,Num1,nom)$

NP(Per2,Num2,dat)

NP(Per3,Num3,acc)

V(Per1,Num1)

- Per1 and Num1 value of verb and subject are identical.
- The values of other NPs do not matter. (Notation for irrelevant values: ' ')
- Case values of the NPs are fixed in the second rule.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

60/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

Expanding PSG with features

∟_{Homework}

Homework

- 1. Write a phrase structure grammar that can analyze at least the sentences in (32) but excludes the sequences in (33).
 - (32) a. Der Mann hilft dem Kind. the man helps the child
 - b. Er gibt ihr das Buch. he gives her the book
 - c. Er wartet auf ein Wunder. he waits for a miracle
 - (33) a. * Der Mann hilft er. the man helps he
 - b. * Er gibt ihr den Buch. he gives her the book

The result should be one grammar for all grammatical sentences, not one for each sentence. You may use Prolog to make sure your grammar actually works: https://swish.swi-prolog.org See https://en.wikipedia.org/wiki/Definite_clause_grammar for the syntax of Definite Clause Grammars.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

62/325

Grammatical theory

Phrase structure grammars and X Theory

L-⊼ _{Theory}

Reading material

Please read Müller 2020b: Section 2.5.

Grammatical theory

X Theory

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Phrase structure grammars and \overline{X} Theory □X Theory $\mathrel{\bigsqcup_{\mathsf{Nominal\ phrases}}}$

Nominal phrases

- Until now NP → Det N, but noun phrases can be much more complex:
- (34) a. ein Buch
 - a book
 - b. ein Buch, das wir kennen
 - a book that we know
 - c. ein Buch aus Japan
 - a book from Japan
 - d. ein interessantes Buch an interesting book
 - e. ein Buch aus Japan, das wir kennen
 - a book from Japan that we know
 - f. ein interessantes Buch aus Japan an interesting book from Japan
 - g. ein interessantes Buch, das wir kennen an interesting book that we know
 - h. ein interessantes Buch aus Japan, das wir kennen an interesting book from Japan that we know

The additional constituents in (34) are adjuncts.

Adjectives in NPs

- Suggestion:
 - (35) a. $NP \rightarrow Det N$
 - b. $NP \rightarrow Det A N$
- What about (36)?
 - (36) alle weiteren schlagkräftigen Argumente all further strong arguments 'all other strong arguments'
- We need a rule like (37) for (36):
 - (37) $NP \rightarrow Det A A N$
- But we do not want to state a limit on how many adjectives there may be:
 - (38) NP \rightarrow Det A* N

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

65/325

Phrase structure grammars and \overline{X} Theory □X Theory

└─ Nominal phrases

Adjectives in NPs

- Problem: adj & noun do not form constituent in structures licensed by (39).
 - (39) NP \rightarrow Det A* N

But constituency tests suggest that A + N is a constituent:

(40) alle [[großen Seeelefanten] und [grauen Eichhörnchen]] all big elephant.seals and grey squirrels 'all the big elephant seals and grey squirrels'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

□X Theory

Nominal phrases

67/325

Adjective + noun as constituent

- The following rule is better suited:
 - (41) a. NP \rightarrow Det \overline{N}
 - b. $\overline{N} \rightarrow A \overline{N}$
 - c. $\overline{N} \rightarrow N$

NP ein graues Eichhörnchen

ein großes graues Eichhörnchen

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

□X Theory

 $\mathrel{\bigsqcup_{\mathsf{Nominal\ phrases}}}$

Other adjuncts

- Other adjuncts work analogously:
 - (42) a. $\overline{N} \rightarrow \overline{N} PP$
 - b. $\overline{N} \rightarrow \overline{N}$ relative clause
- All given determiner-adjective-noun combinations given so far can be analyzed with these few rules.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

□X Theory

└─ Nominal phrases

Complements

- Until now, N consists of a single noun only, but some nouns allow arguments in addition to adjuncts.
 - (43) a. der Vater von Peter the father of Peter 'Peter's father'
 - b. das Bild vom Gleimtunnel the picture of the Gleimtunnel 'the picture of the Gleimtunnel'
 - c. das Kommen der Installateurin the coming of the plumber 'the plumber's visit'
- Therefore:
 - (44) $\overline{N} \rightarrow N PP$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

69/325

NOT ON JULY

71/325

Phrase structure grammars and \overline{X} Theory $\overline{\bot}$ Theory

└─ Nominal phrases

Missing noun (adjuncts present)

- Noun is missing but adjuncts are present:
 - (45) a. ein interessantes _
 - an interesting
 - 'an interesting one'
 - b. ein neues interessantes _
 - a new interesting
 - 'a new interesting one'
 - c. ein interessantes _ aus Japan an interesting from Japan
 - an interesting from Japan 'an interesting one from Japan'
 - d. ein interessantes __, das wir kennen an interesting that we know
 - 'an interesting one that we know'

Phrase structure grammars and $\overline{\boldsymbol{X}}$ Theory

□X Theory

└─Nominal phrases

Complements (and adjuncts)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

70/325

Phrase structure grammars and $\overline{\mathsf{X}}$ Theory

□X Theory

└─ Nominal phrases

Missing noun (complement present)

- noun missing, but a complement of the noun is present:
 - (46) a. (Nein, nicht der Vater von Klaus), der _ von Peter war gemeint.
 - no not the father of Klaus the of Peter was meant
 - 'No, it wasn't the father of Klaus, but rather the one of Peter that was meant.'
 - b. (Nein, nicht das Bild von der Stadtautobahn), das __vom Gleimtunnel war no not the picture of the motorway the of.the Gleimtunnel was beeindruckend.

impressive

'No, it wasn't the picture of the motorway, but rather the one of the Gleimtunnel that was impressive'

- c. (Nein, nicht das Kommen des Tischlers), das _ der Installateurin ist wichtig.
 no not the coming of.the carpenter the of.the plumber is important
 'No, it isn't the visit of the carpenter, but rather the visit of the plumber that is important.'
- PSG: Epsilon production
- Notation:

(47) a. N →

b. N $\rightarrow \epsilon$

• Rules in (47) = empty boxes with the same label as boxes containing normal nouns.

Phrase structure grammars and $\overline{\boldsymbol{X}}$ Theory

□X Theory

└─ Nominal phrases

Analysis with empty noun

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

73/325

Phrase structure grammars and $\overline{\mathsf{X}}$ Theory

□X Theory

└─ Nominal phrases

Missing determiners: Plural

- Determiners can be dropped as well. Plural:
 - (48) a. Bücher books
 - b. Bücher, die wir kennen books that we know
 - c. interessante Bücher interesting books
 - d. interessante Bücher, die wir kennen interesting books that we know

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

L_X Theory

└─ Nominal phrases

Missing determiners: Mass nouns

- For mass nouns dropping is possible in the singular as well:
 - (49) a. Getreide grain
 - b. Getreide, das gerade gemahlen wurde grain that just ground was 'grain that has just been ground'
 - c. frisches Getreide fresh grain
 - d. frisches Getreide, das gerade gemahlen wurde fresh grain that just ground was 'fresh grain that has just been ground'

Phrase structure grammars and \overline{X} Theory □X Theory

 $\mathrel{\bigsqcup_{\mathsf{Nominal\ phrases}}}$

Missing determiners: The Structure

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

□X Theory

 $\sqsubseteq_{\mathsf{Nominal\ phrases}}$

Missing determiners and missing nouns

Determiners and nouns can even be omitted simultaneously:

- (50) a. Ich lese interessante.
 - I read interesting
 - 'I read interesting ones.'
 - b. Dort drüben steht frisches, das gerade gemahlen wurde. there over stands fresh that just ground was 'Over there is some fresh (grain) that has just been ground.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

77/325

Phrase structure grammars and \overline{X} Theory

□X Theory

L Adjective phrases

Adjective phrases

- Until now simple adjectives like klug 'smart' only.
- But adjective phrases can be very complex:
 - (51) a. der seiner Frau treue Mann the his.DAT wife faithful man 'the man faithful to his wife'
 - b. der auf seine Tochter stolze Mann the on his.ACC daughter proud man 'the man proud of his daughter'
 - c. der seine Frau liebende Mann the his.ACC woman loving man 'the man who loves his wife'
 - d. der von seiner Frau geliebte Mann the by his.DAT wife loved man 'the man loved by his wife'

Phrase structure grammars and \overline{X} Theory

∟_X Theory

└─ Nominal phrases

Missing determiners and missing nouns: The structure

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Phrase structure grammars and \overline{X} Theory

□X Theory

LAdjective phrases

Adjective phrases

- (52) der auf seine Tochter stolze Mann the on his.ACC daughter proud man 'the man proud of his daughter'
- We have to adapt the rule for attributive adjectival modifiers:
 - (53) $\overline{N} \rightarrow AP \overline{N}$
- Rules for AP:
 - (54) a. $AP \rightarrow NP A$
 - b. $AP \rightarrow PP A$
 - c. $AP \rightarrow A$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

79/325

Prepositional phrases

- The syntax of PPs is relatively straight-forward. First attempt:
 - (55) $PP \rightarrow P NP$
- But PPs can be augmented by measurement phrases (Eisenberg et al. 2005: §1300):
 - (56) a. [[Einen Schritt] vor dem Abgrund] blieb er stehen one step before the abyss remained he stand 'He stopped one step in front of the abyss.'
 - b. [[Kurz] nach dem Start] fiel die Klimaanlage aus. shortly after the take.off fell the air.conditioning out 'Shortly after take off, the air conditioning stopped working.'
 - c. [[Schräg] hinter der Scheune] ist ein Weiher.
 diagonally behind the barn is a pond
 'There is a pond diagonally across from the barn.'
 - d. [[Mitten] im Urwald] stießen die Forscher auf einen alten Tempel. middle in the jungle stumbled the researchers on an old temple 'In the middle of the jungle, the researches came across an old temple.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

81/325

Phrase structure grammars and \overline{X} Theory

□X Theory

Prepositional phrases

Phrase structure grammars and \overline{X} Theory

□X Theory

Prepositional phrases

Prepositional phrases: The rules

• (57) [[Einen Schritt] vor dem Abgrund] one step before the abyss 'one step in front of the abyss'

(58) a. PP
$$\rightarrow$$
 NP \overline{P}

b.
$$PP \rightarrow AP \overline{P}$$

c.
$$PP \rightarrow \overline{P}$$

$$d. \overline{P} \rightarrow P NP$$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

82/32

Phrase structure grammars and X Theory

□X Theory

∟_{X rules}

Generalization over rules

• head + complement = intermediate level:

(59) a.
$$\overline{N} \rightarrow N PP$$

b.
$$\overline{P} \rightarrow P NP$$

• intermediate level + further constituent = maximal projection

(60) a. NP
$$\rightarrow$$
 Det \overline{N}

b.
$$PP \rightarrow NP \overline{P}$$

parallel structures for English AP and VP as well

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

83/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

English adjective phrases

- (61) Kim and Sandy are
 - a. proud.
 - b. very proud.
 - c. proud of their child.
 - d. very proud of their child.
- (62) a. $AP \rightarrow \overline{A}$
 - b. $AP \rightarrow Adv \overline{A}$
 - c. $\overline{A} \rightarrow A PP$
 - d. $\overline{A} \rightarrow A$

(Müller (2020b: Section 13.1.2): Does not work for German.)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

85/325

Phrase structure grammars and \overline{X} Theory

L_X Theory

∟_X rules

Further abstraction

- We saw that abstraction over case and gender values is possible (variables in rule schemata).
 - (64) $NP(3,Num,Cas) \rightarrow D(Gen,Num,Cas), N(Gen,Num,Cas)$
- Similarly we can abstract over the part of speech.
 Instead of AP, NP, PP, VP, we write XP.
- Instead of (65), we write (66):
 - (65) a. $PP \rightarrow \overline{P}$
 - b. $AP \rightarrow \overline{A}$
 - (66) $XP \rightarrow \overline{X}$

Phrase structure grammars and \overline{X} Theory

□X Theory

∟_X rules

English adjective phrases: The structure

(63) a.
$$AP \rightarrow \overline{A}$$

b.
$$AP \rightarrow AdvP \overline{A}$$

c.
$$\overline{A} \rightarrow A PP$$

d.
$$\overline{A} \rightarrow A$$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

86/325

Phrase structure grammars and X Theory

□X Theory

L∓ rules

X Theory: Assumptions

Phrases have at least three levels:

- $X^0 = head$
- $X' = \text{intermediate level } (= \overline{X}, \text{ pronounced } X \text{ bar}; \rightarrow \text{name of the scehma})$
- $XP = \text{highest node } (= X'' = \overline{X}), \text{ also called } maximal projection$

Phrase structure grammars and \overline{X} Theory □X Theory ∟_X rules

Minimal and maximal expansion of phrases

- Adjuncts are optional
 - \rightarrow X' with adjunct daughter may be missing.
- Some categories do not have a specifier or it is optional (e.g. A).
- Sometimes in addition adjunction to XP and head adjunction to X.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

89/325

Grammatical theory

Government & Binding

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

□X Theory

∟¯ rules

X Theory: Rules following Jackendoff 1977

 \overline{X} rule with specific categories example strings

 $\overline{\overline{X}} \to \overline{\overline{\text{specifier}}} \ \overline{X}$ $\overline{\overline{N}} \to \overline{\overline{DET}} \overline{\overline{N}}$ $\overline{X} \to \overline{X} \quad \overline{\text{adjunct}}$

 $\overline{N} \rightarrow \overline{N} \overline{REL CLAUSE}$

the [picture of Paris]

[picture of Paris]

[that everybody knows]

beautiful [picture of Paris]

 $\overline{X} \to X$ complement* $\overline{N} \to N$ \overline{P} picture [of Paris]

X stands for some arbitrary category, X is the head,

'*' stands for arbitrarily many repretitions

X may appear in any position in the right-hand side of the rule.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

Government & Binding (GB)

 $\overline{X} \to \overline{\overline{adjunct}} \ \overline{X}$

General remarks on the representational format

Reading material

Müller 2020b: Section 3.1

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

General remarks on the representational format

History and motivation

Phrase structure grammars and natural language

Chomsky: generiizations cannot be captured with PSGs (e.g. active/passive alternations) \rightarrow transformations:

NP V NP
$$\rightarrow$$
 3 [AUX be] 2en [PP P by] 1]
1 2 3

(67) a. Kim loves Sandy.

b. Sandy is loved by Kim.

A tree with the sequence of symbols on the left-hand site is mapped to a tree with the sequence of symbols on the right-hand side.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

92/325

Government & Binding (GB)

General remarks on the representational format

History and motivation

Complexity, transformations and natural languages

- There are different complexity levels for phrase structure grammars. (Chomsky Hierarchy, Type 3–0)
- What we saw so far are so called context free grammars. They are of type 2.
- Maximal level (type 0) is too powerful for human langauges.
 - → Researchers wanted to be more restrictive.
- Grammars with general transformations correspond to PSGs with type 0 complexity (Peters & Ritchie 1973).
- Transformations are not sufficiently restricted, interactions are not tractable, there have been problems with transformations deleting material (see Klenk 2003).
- → new theoretical approaches, Government & Binding (Chomsky 1981): restrictions for the form of grammar rules, elements can be connected to the position in a tree they were coming from, general principles to restrict the power of transformations

Government & Binding (GB)

General remarks on the representational format

History and motivation

Transformation of an active tree into a passive tree

NP V NP \rightarrow 3 [AUX be] 2en [PP P by] 1] 1 2 3

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

93/32

Government & Binding (GB)

General remarks on the representational format

History and motivation

Hypothesis regarding language acquisition: Principles & Paramaters

- Some of our linguistics knowledge is innate.
 (Not all linguists agree with this assumption! Discussion: Müller 2020b)
- Principles all linguistic structures have to obey
- These principles are parametrized → there is choice
 A parameter may be set differently for different languages.

Example:

Principle: A head is placed before or after its complements depending on the value of the parameter POSITION.

(68) a. be showing pictures of himself

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

(English)

b. zibun -no syasin-o mise-te iru SELF of picture showing be

(Japanese)

General remarks on the representational format

└─ The T-model

Deep and Surface Structure

- Chomsky claimed that simple PSGs cannot capture certain regularities.
 e.g. the relation between active and passive sentences.
- Therefore he assumes an underlying structure, the so-called **Deep Structure**.
- A structure can be mapped onto another structure.
 Parts may be deleted or moved to other positions in trees in such mappings.
 As a result of such transformations a new structure is derived, the so-called Surface Structure.

 $\begin{array}{ll} \textit{Surface Structure} = S \; \text{Structure} \\ \textit{Deep Structure} &= D \; \text{Structure} \end{array}$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

96/325

Government & Binding (GB)

General remarks on the representational format

└─ The T-model

The T-model: The lexicon

- Contains a lexical entry for every word with information about:
 - morphophonological structure
 - syntactic features
 - valence frame
 - .

Contains list for word forms and morphemes and morphology component

- The lexicon is the interface between syntax and semantic interpretation of word forms.
- Vocabulary is not determined by UG (not innate), just structural conditions are determined by UG. (assumption not shared by all linguists)
- Morphosyntactic features (e.g. gender) are not pre-determined:
 Universal grammar provides a toolbox (claim not falsifiable).

Government & Binding (GB)

General remarks on the representational format

└─ The T-model

The T-model

Government & Binding (GB)

General remarks on the representational format

└─ The T-mod

The T modell: D Structure, Move- α and S Structure (I)

Phrase structure →
 We can describe relations between constituents.

A certain format for rules is given (X-Schema).
 Lexicon + structures of X syntax = base for D Structure
 D Structure = syntactic representation of valence frames of particular words as determined in the lexicon.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

98/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

The T-modell: D Structure, Move- α and S Structure (II)

- constituents may be appearing at different places at the surface than the one determined by the valence frame:
 - (69) a. [dass] der Mann dem Kind das Buch **gibt** that the NOM man the DAT woman the ACC book gives 'that the man gives the woman the book'
 - b. Gibt der Mann dem Kind das Buch? gives the.NOM man the.DAT woman the.ACC book 'Does the man give the woman the book?'
 - c. Der Mann **gibt** dem Kind das Buch. the.NOM man gives the.DAT woman the.ACC book 'The man gives the woman the book.'
- therefore transformational rules for reordering: Move $\alpha =$ "Move anything anywhere!" What exactly can be moved where and for which reason is determined by principles.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

100/325

Government & Binding (GB)

General remarks on the representational format

 $\mathrel{\ \ \, \sqsubseteq}_{\mathsf{The}\;\mathsf{T-model}}$

The T-model: Phonetic Form

PF is the phonetic form of a sentence, the string of phonemes actually pronounced. The mapping from S Structure to PF incorporates the phonological laws.

Example: wanna contraction

- (71) a. The students want to visit Paris.
 - b. The students wanna visit Paris.

The contratcion in (71) is licenced by the optional rule in (72):

(72) want + to \rightarrow wanna

Government & Binding (GB)

General remarks on the representational format

☐ The T-mod

The T-modell: D Structure, Move- α and S Structure (III)

- Relations between predicates and their arguments as determined by lexical entries must be recoverable on all representational levels for semantic interpretation.
- → Starting place of moved elements is marked with traces.
 - (70) a. [dass] der Mann dem Kind das Buch gibt that the man the woman the book gives 'that the man gives the woman the book'
 - b. Gibt_i der Mann dem Kind das Buch __i? gives the man the woman the book 'Does the man give the woman the book?'
 - c. $[\text{Der Mann}]_j$ gibt $_i$ $__j$ dem Kind das Buch $__i$. the man gives the woman the book.'

Different traces are marked by indices. Sometimes also e for empty element and t for trace.

 S Structure is a surface-like structure but should not be equated with the structure of actual utterances.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

101/325

Government & Binding (GB)

General remarks on the representational format

The T-mode

The T-model: Logical Form (I)

- Logical Form is a syntactic level mediating between S Structure and semantic interpretation of a sentence.
 anaphoric reference (binding): what can pronouns refer to?
 - (73) a. Peter kauft einen Tisch. Er gefällt ihm. Peter buys a table(M) he likes him 'Peter is buying a table. He likes it/him.'
 - b. Peter kauft eine Tasche. Er gefällt ihm. Peter buys a bag(F) he likes him 'Peter is buying a bag. He likes it/him.'
 - c. Peter kauft eine Tasche. Er gefällt sich. Peter buys a bag(F) he likes himself 'Peter is buying a bag. He likes himself.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

102/325

General remarks on the representational format

 $\mathrel{\ \ \, \sqsubseteq}_{\mathsf{The}\;\mathsf{T-model}}$

The T-model: Logical Form (II)

• Quantification:

(74) Every dolphin attacks a shark.

 $\forall x \exists y (dol phin(x) \rightarrow (shark(y) \land attack(x, y))$ $\exists y \forall x (dol phin(x) \rightarrow (shark(y) \land attack(x, y))$

 Some accounts try to derive the readings via movement of quantifiers in trees (May 1985).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

104/325

Government & Binding (GB)

General remarks on the representational format

∟_{The lexicon}

Lexicon: Basic terminology (I)

 meaning of words → combinatoric potential with certain semantic roles ("acting person" or "affected thing")

Example: meaning representation of (76a) is (76b):

- (76) a. Judit beats the grandmaster.
 - b. beat'(x,y)
- This is subsumed under the terms valency and selection.

Note

Semantic valence may differ from syntactic valence! (see Müller 2020b: Section 1.6)

• Another term is **subcategorization**:

beat is subcategorized for a subject and an object.

The word *subcategorize* somehow developed its own life:

X subcategorizes for Y is used for X selects Y.

Government & Binding (GB)

General remarks on the representational format

☐ The T-mod

The T-model: Logical Form (III)

Control theory:

How is the semantic role of the subject of the infinitive filled?

(75) a. Die Professorin schlägt der Studentin vor, die Klausur noch mal zu the professor suggests the student PART the test once again to schreiben.

write

'The professor advises the student to take the test again.'

- b. Die Professorin schlägt der Studentin vor, die Klausur nicht zu bewerten. the professor suggests the student PART the test not to grade 'The professor suggests to the student not to grade the test.'
- c. Die Professorin schlägt der Studentin vor, gemeinsam ins Kino zu gehen. the professor suggests the student PART together into cinema to go 'The professor suggests to the student to go to the cinema together.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

105/325

Government & Binding (GB)

General remarks on the representational format

The lexico

Lexicon: Basic terminology (II)

- beat is also called the predicate (since beat' is the logical predicate).
- Subject and object are **arguments** of the predicate.
- Several terms for selectional requirement (some semantic, some syntactic, some mixed): argument structure, valence frame, subcategorization frame, thematic grid and theta-grid or θ-grid
- Adjuncts modify semantic predicates.
 If semantic aspects are discussed, the term is modifier.
 Adjuncts are not listed as part of valence frames.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

106/325

General remarks on the representational format

∟_{The lexicon}

The Theta-Criterion

Arguments are placed into certain positions in the clause (argument positions).

Theta-Criterion (Chomsky 1981: 36):

- Each theta-role is assigned to exactly one argument position.
- Every phrase in an argument position receives exactly one theta-role.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

108/325

General remarks on the representational format

∟_{The lexicon}

Theta roles

Government & Binding (GB)

- There are three classes of theta-roles.
- Class 1 is usually the highest role, class 3 the lowest.
 - Class 1: agent (acting individual), the cause of an action or feeling (stimulus), holder of a certain property
 - Class 2: experiencer (perceiving individual), the person profiting from something (beneficiary) (or the opposite: the person affected by some kind of damage), possessor (owner or soon-to-be owner of something, or the opposite: someone who has lost or is lacking something)
 - Class 3: patient (affected person or thing), theme
- Caution!

Rather inconsistent assignment of roles by different authors. Proto-roles a la Dowty (1991) may be the only feasible way to deal with the problem.

Government & Binding (GB)

General remarks on the representational format

The lexico

External argument and internal arguments

- Arguments are ordered: there are higher- and lower-ranked arguments
- The highest-ranked argument of verbs and adjectives has a special status. It is often (and always in some languages) realized in a position outside of the verb or adjective phrase, it is called the **external argument**.
- The remaining arguments occur in positions inside of the VP or AP. Term: **internal argument** or **complement**
- For simple sentences: external argument = subject.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

109/325

Government & Binding (GB)

General remarks on the representational format

└─ The lexico

A lexical entry (I)

Which information do we need to use a word appropriately?

Answer: The mental lexicon contains **lexical entries** with the specific properties of syntactic words needed to use that word grammatically.

Some of these properties are the following:

- form
- meaning (semantics)
- grammatical features: syntactic word class + morphosyntactic features
- theta-grid

General remarks on the representational format

∟_{The lexicon}

A lexical entry (II)

form	<i>helf</i> - 'help'	
semantics	helfen'	
grammatical features	verb	
theta-grid		
theta-roles	eta-roles <u>agent</u> benefic	
grammatical particularities		dative

Arguments are ordered according to their ranking: the highest argument is furthest left.

In this case, the highest argument is the external argument.

The external argument is underlined.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

112/325

Government & Binding (GB)

General remarks on the representational format

∟_X _{Theory}

X Theory: Heads

Head determines the most important properties of a phrase.

(77) a. Kim **schläft**.

Kim sleeps

- b. Kim **mag** Sandy. Kim likes Sandy
- c. **in** diesem Haus in this house
- d. ein **Haus**
 - a house

Government & Binding (GB)

General remarks on the representational format

∟_X _{Theory}

Comment on distribution of \overline{X} rules

 \overline{X} Theory is assumed in many other frameworks as well:

- Lexical Functional Grammar (LFG):
 Bresnan 1982a; 2001; Berman & Frank 1996; Berman 2003
- Generalized Phrase Structure Grammar (GPSG): Gazdar, Klein, Pullum & Sag 1985

Sometimes different categories are assuemd. In particular so-called functional categories (e.g. INFL).

No assumptions about universality and innateness are made in most other theories.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

113/325

Government & Binding (GB)

General remarks on the representational format

∟_X _{Theory}

X Theory: Lexical categories

categories are divided into lexical and functional categories (\approx correlates roughly with the difference between open and closed word classes)

Lexical categories:

- V = verb
- N = noun
- A = adjective
- P = preposition
- Adv = adverb

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

114/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

General remarks on the representational format

\overline{X} Theory: Lexical categories (cross classification)

Attempt to use binary features to cross-classify lexical categories:

	- V	+ V
- N	P = [-N, -V]	V = [-N, +V]
+ N	N = [+ N, -V]	A = [+ N, + V]

Cross classification \rightarrow simple way to refer to adjectives and verbs: all lexical categories that are [+V] are either verbs or adjectives.

Generalizations are possible e.g.: [+N] categories may bear case

Note: Adverbs can be treated as prepositions not selecting an argument.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

116/325

Government & Binding (GB)

General remarks on the representational format

L-⊼ _{Theory}

118/325

Head position dependent on the decomposed category? (II)

$$\rightarrow$$
 [+ V] \equiv head-final [- V] \equiv head-initial

Problem: postpositions (P = [-V])

- (80) a. des Geldes wegen the money because 'because of the money'
 - b. die Nacht **über** the night during 'during the night'

Assume a new feature with binary value?

But then we would get four new categories in total.

But we need only one.

So, maybe this binary encoding is not such a good idea after all.

Government & Binding (GB)

General remarks on the representational format

L_X Theory

Head position dependent on the decomposed category?

Nouns and prepositions are head-initial:

(78) a. **für** Maria for Maria

> b. Bild von Maria picture of Maria

Adjectives and verbs are head-final:

- (79) a. dem König treu the king loyal 'Loyal to the king'
 - b. der [dem Kind helfende] Mann the the child helping man 'the man helping the child'
 - c. dem Mann helfen the man help 'help the man'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

117/325

Government & Binding (GB)

General remarks on the representational format

X Theory: Functional categories

No cross-classification:

- Complementizer (subordinating conjunctions such as dass 'that')
- Finiteness (as well as Tense and Mood); also Infl in earlier work (inflection), T in more recent work (Tense)
- Determiner (article, demonstrative)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

 \sqsubseteq General remarks on the representational format $\sqsubseteq \overline{X}$ Theory

\overline{X} Theory: Assumptions

• Endocentricity:

Every phrase has a head and every head is part of a phrase. more technically: every head projects to a phrase.

- Binary branching (predominant assumption today):
 Non-terminal nodes are binary branching,
 that is, there are no teneray branching nodes or nodes with more daughters.
- Non-Tangling Condition:

The branches of tree structures cannot cross.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

120/325

Government & Binding (GB)

General remarks on the representational format

∟_X Theory

122/325

The English IP and VP: Auxiliaries

- Instead of earlier approaches: INFL as head, INFL selecting a VP as complement.
- Auxiliaries are placed in I⁰ (= Aux).
- Sentential adverbs may be placed between auxiliary and main verb.

Government & Binding (GB)

General remarks on the representational format

□X The

English clause structure and \overline{X} Theory

• In early work the following rules were assumed for English:

(81) a.
$$S \rightarrow NP VP$$

b.
$$S \rightarrow NP Infl VP$$

• These rules do not adhere to the \overline{X} schema.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

121/325

Government & Binding (GB)

General remarks on the representational format

∟_X _{Theory}

The English IP and VP: Clauses without auxiliary

- Auxiliaries are placed in I⁰ (= Aux).
- Position may contain the inflectional affix. The finite verb moves there.
 (Various variants of the theory Some assume lowering of the affix, some assume an empty I position and connection to the finite verb. For German, the best version seems to be to not assume I at all (Haider 1993; 1997).)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

General remarks on the representational format

C-command, m-command, and government

c-command, m-command, and government

- Case and (internal) theta roles are assigned under government.
- Government is a syntactic relation in phrase structure.
- Government relies on m-command. c-command is similar to m-command and needed for Binding Theory.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

124/325

General remarks on the representational format

__c-command, m-command, and government

Examples

Government & Binding (GB)

Government & Binding (GB)

General remarks on the representational format

c-command, m-command, and government

c-command and m-command

Popular formulations:

- c-command: upwards and at the next possibility downward again
- m-command: upwards and downwards at any dominating node but not higher than the next XP

Exact version:

c-command A c-commands B iff neither A dominates B nor B dominates A and the first branching node dominating A also dominates B.

m-command A m-commands B iff neither A dominates B nor B dominates A and the first maximal projection XP dominating A also dominates B.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

125/325

Government & Binding (GB)

General remarks on the representational format

C-command, m-command, and government

Government (definition)

Government is a structural relation between a head X^0 and a phrase YP:

Government X⁰ governs YP iff a), b) and c) hold simultaneously:

- a) X⁰ has category V, N, A, P (= lexical cateories) or finite I.
- b) X⁰ m-commands YP.
- c) There is no barrier between X⁰ and YP.

Barrier is defined on a language-particular basis.

Simplified: maximal projections except IP.

Clause c) makes sure that heads can assign neither case nor theta role to parts of NP or PP.

c) restricts government in depth.

Elements inside of NPs and PPs bearing case must get it inside of the NP or PP not from outside.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

127/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

General remarks on the representational format

C-command, m-command, and government

Government (example)

- X can assign a theta role to WP.
- X cannot assign a theta role to ZP, since WP is a barrier, provided WP \neq IP.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

128/325

Grammatical theory

Government & Binding (GB)

Verb position and nonlocal dependencies

Reading material

Müller 2020b: Section 3.2-3.3

Grammatical theory

Government & Binding: Verb position and long distance dependencies

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de December 9, 2020

Government & Binding (GB)

Verb position and nonlocal dependencies

Excursus: The English CP and IP

Excursus: The English CP/IP/VP system

- Often the grammars of languages are modeled after suggestions for English.
- Reasoning: Grammars are formed/limited by UG. We know that English has property X, hence all languages have property X.

Caution: This is not a valid inference.

• In order to understand the particular analysis discussed here, we first have to look at English.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

129/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Verb position and nonlocal dependencies

Excursus: The English CP and IP

English clauses with complementizer

• The complementizer (that, because, ...) requires an IP.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

131/325

Government & Binding (GB)

Verb position and nonlocal dependencies

LExcursus: The English CP and IP

The English CP, IP and VP: Questions

- Ye/no questions are formed by fronting the auxiliary:
 - (82) Will Ann read the newspaper?
- The auxiliary moves to the position of the complementizer.
- wh questions are formed by additionally preposing a constituent:
 - (83) What will Ann read?

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

132/325

Government & Binding (GB)

Leverb position and nonlocal dependencies

Excursus: The English CP and IP

133/325

English CP, IP and VP: Questions

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Government & Binding (GB)

Verb position and nonlocal dependencies

Topology of the German clause

Topology of the German clause (I)

Before turning to the \mbox{CP}/\mbox{IP} system in grammars of German we have to sort out some terminology:

- Approaches to German constituent order often refer to topological fields.
- Important works on topological fields are:
 Drach 1937, Reis 1980 and Höhle 2018d; 1986.
- We will use Vorfeld, linke/rechte Satzklammer, Mittelfeld and Nachfeld.
 Bech 1955 introduced further fields for verbal complexes,
 but we will ignore them here.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Verb positions and terminology

- Verb-final position
 - (84) Peter hat erzählt, dass er das Eis gegessen hat.

 Peter has told that he the ice.cream eaten has
- Verb-initial position
 - (85) Hat Peter das Eis gegessen? has Peter the ice.cream eaten
- Verb-second poisiton
 - (86) Peter *hat* das Eis gegessen.

 Peter has the ice.cream eaten
- verbal elements continuous in (84) only
- left and right sentence bracket
- complementizer (weil, dass, ob) in left sentence bracket
- complementizer and finite verb have complementary distribution (Höhle 1997)
- region before, between and after the brackets: Vorfeld, Mittelfeld, Nachfeld

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

135/325

Government & Binding (GB)

Verb position and nonlocal dependencies

└ Topology of the German clause

137/325

The Rangprobe

- Fields may be empty.
 - (87) Der Delphin gibt dem Kind den Ball, das er kennt.

VF LS MF NF

- Test: Rangprobe (Bech 1955: 72)
 - (88) a. Der Delphin hat [dem Kind] den Ball gegeben, [das er kennt]. the dolphin has the child the ball given who he knows 'The dolphin has given the ball to the child who it knows.'
 - b. * Der Delphin hat [dem Kind] den Ball, [das er kennt,] gegeben. the dolphin has the child the ball who he knows given

Replacing the finite verb by an auxiliary forces the main verb into the right sentence bracket.

(89) Der Delphin hat [dem Kind, das er kennt,] den Ball gegeben. the dolphin has the child who he knows the ball given

Government & Binding (GB)

Verb position and nonlocal dependencies

└─ Topology of the German clause

Topology of German clauses

•	0,			
Vorfeld	left bracket	Mittelfeld	right bracket	Nachfeld
Karl	schläft.			
Karl	hat		geschlafen.	
Karl	erkennt	Maria.		
Karl	färbt	den Mantel	um	den Maria kennt.
Karl	hat	Maria	erkannt.	
Karl	hat	Maria als sie aus dem Zug stieg sofort	erkannt.	
Karl	hat	Maria sofort	erkannt	als sie aus dem Zug stieg
Karl	hat	Maria zu erkennen	behauptet.	
Karl	hat		behauptet	Maria zu erkennen.
	Schläft	Karl?		
	Schlaf!			
	IB	jetzt dein Eis	auf!	
	Hat	er doch das ganze Eis alleine	gegessen.	
	weil	er das ganze Eis alleine	gegessen hat	ohne sich zu schämen.
	weil	er das ganze Eis alleine	essen können will	ohne gestört zu werden.
wer		das ganze Eis alleine	gegessen hat.	

Government & Binding (GB)

Verb position and nonlocal dependencies

Topology of the German clause

Recursion

- Reis (1980: 82): Recursion: Vorfeld can contain other topological fields:
 - (90) a. Die Möglichkeit, etwas zu verändern, ist damit verschüttet für lange the possibility something to change is there.with buried for long lange Zeit.

long time

'The possibility to change something will now be gone for a long, long time.'

- b. [Verschüttet für lange lange Zeit] ist damit die Möglichkeit, etwas zu buried for long long time ist there.with the possibility something to verändern.
 change
- c. Wir haben schon seit langem gewußt, daß du kommst. we have PART since long known that you come 'We have known for a while that you are coming.'
- d. [Gewußt, daß du kommst,] haben wir schon seit langem. known that you come have we PART since long

Verb position and nonlocal dependencies

Lagran Topology of the German clause

Exercise

Assign topological fields in the sentences in (91):

- (91) a. Der Mann hat gewonnen, den alle kennen.
 - b. Sie gibt ihm das Buch, das Conny empfohlen hat.
 - c. Maria hat behauptet, dass das nicht stimmt.
 - d. Conny hat das Buch gelesen, das Maria der Schülerin empfohlen hat, die neu in die Klasse gekommen ist.
 - e. Komm!

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

139/325

Government & Binding (GB)

Leverb position and nonlocal dependencies

└─ The German CP and IP

German as SOV language

- Heads of VP and IP (V⁰ and I⁰) are serialized to the right of their arguments.
 Together they form the right sentence bracket.
- All other arguments and adjuncts are serialized to the left of them and form the Mittelfeld.
- Typologically, German is a SOV language (basic order subject-object-verb), which is reflected at the D Structure level.
 - SOV German. ...
 - SVO English, French, ...
 - VSO Welsh. Arabic. ...

App. 40 % of all languages are SOV languages, app. 35 % are SVO.

- See Müller 2020a for discussion of Germanic and the classification of German.
- Nice result of SOV structure: The closer a constituent is related to the verb, the closer it is to the right sentence bracket, even in sentences with inital finite verb and empty right sentence bracket.

Government & Binding (GB)

Verb position and nonlocal dependencies

The German CP and IP

The topological model paired with CP, IP, VP (I)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

140/325

Government & Binding (GB)

└─ Verb position and nonlocal dependencies

The German CP and IP

Motivation of SOV order as basic order: Particles

Bierwisch 1963: Verb particles form a close unit with the verb:

- (92) a. weil sie morgen **an-fängt**because she tomorrow PART-starts
 'because he is starting tomorrow'
 - b. Sie fängt morgen an.she starts tomorrow PART'She is starting tomorrow.'

This unit can only be seen in verb-final structures, which speaks for the fact that this structure reflects the base order.

141/325

Verb position and nonlocal dependencies

└─The German CP and IP

Sometimes SOV is the only option

Sometimes SOV is the only option (Höhle 2018c: 370-371):

- (93) a. weil sie das Stück heute ur-auf-führen because they the play today PREF-PART-lead 'because they are performing the play for the first time today'
 - b. * Sie ur-auf-führen heute das Stück. they PREF-PART-lead today the play
 - c. * Sie führen heute das Stück ur-auf. they lead today the play PREF-PART

This is backformation.

Ur-auf-führung is wrongly assumed to be derived from the verb *uraufführen*.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

143/325

SOT-UNITE OF STREET

└─Verb position and nonlocal dependencies └─The German CP and IP

Order of verbs in SVO and SOV languages

Ørsnes (2009):

Government & Binding (GB)

(95) a. dass er ihn gesehen₃ haben₂ muss₁ that he him seen have must

(German)

b. at han må₁ have₂ set₃ ham that he must have seen him 'that he must have seen him'

(Danish)

145/325

OV: embedding verbs go to the end

VO: embedding verbs go to the beginning

(ignore the Dutch for the moment ...)

Government & Binding (GB)

Verb position and nonlocal dependencies

└─ The German CP and IP

Order in subordinated sentences

Verbs in non-finite subordinated clauses and in finite subordinated clauses introduced by a conjunction are positioned at the end (ignoring extraposition):

- (94) a. Der Clown versucht, Kurt-Martin die Ware **zu geben**. the clown tries Kurt-Martin the goods to give 'The clown is trying to give Kurt-Martin the goods.'
 - b. dass der Clown Kurt-Martin die Ware **gibt** that the clown Kurt-Martin the goods gives 'that the clown gives Kurt-Martin the goods'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

144/325

Government & Binding (GB)

└─ Verb position and nonlocal dependencies

The German CP and IP

Scope

Netter 1992: Adverbs outscope material to their right (preference only?):

- (96) a. dass er [absichtlich [nicht lacht]] that he intentionally not laughs 'that he is intentionally not laughing'
 - b. dass er [nicht [absichtlich lacht]] that he not intentionally laughs 'that he is not laughing intentionally'

The scoping does not change if the verb is in initial position:

- (97) a. Er lacht_i [absichtlich [nicht $\underline{}_{i}$]] he laughs intentionally not 'He is intentionally not laughing.'
 - b. Er lacht_i [nicht [absichtlich __i]]. he laughs not intentionally 'He is not laughing intentionally.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Verb position and nonlocal dependencies

└─ The German CP and IP

C⁰ – The left sentence bracket in embedded clauses

C⁰ corresponds to the left sentence bracket and is filled as follows:

- In embedded sentences with subordinating conjunction the conjunction (the complementizer) is placed in C⁰, as in English. The verb stays in the right sentence bracket.
 - (98) dass jeder diese Frau kennt that everybody this woman knows 'that everybody knows this woman'
- The verb moves from V to I.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

147/325

,

Verb position and nonlocal dependencies

└─ The German CP and IP

V to I movement in embedded clauses

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

148/325

Government & Binding (GB)

Leverb position and nonlocal dependencies

└─ The German CP and IP

C⁰ – The left sentence bracket in V1 and V2 clauses

- The finite verb is moved via I^0 to C^0 in verb-first and verb-second clauses: $V^0 \to I^0 \to C^0$.
 - (99) a. dass jeder diese Frau kenn- -t (verb in V^0) that everybody this woman know- -s
 - b. dass jeder diese Frau $\underline{}_i$ [kenn- $_i$ -t] (verb in I 0) that everybody this woman know- -s
 - c. $[Kenn_{-i} -t]_j$ jeder diese Frau $\underline{}_i \underline{}_j$? (verb in C^0) know- -s everybody this woman

Government & Binding (GB)

└─ Verb position and nonlocal dependencies

The German CP and IP

V to I to C movement in V1/V2 clauses

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

149/325

SpecCP – The Vorfeld in declarative clauses (I)

The position SpecCP corresponds to the Vorfeld and is filled as follows:

- Declarative clauses: XP is moved to the Vorfeld.
 - (100) Gibt der Kind jetzt den Mann dem Mantel? gives the.NOM man the.DAT child now the.ACC coat 'Is the man going to give the child the coat now?'
 - (101) a. Der Mann gibt dem Kind jetzt den Mantel. the.NOM man gives the.DAT child now the.ACC coat 'The man is giving the child the coat now.'
 - b. Dem Kind gibt der Mann jetzt den Mantel. the.DAT child gives the.NOM man now the.ACC coat
 - c. Den Mantel gibt der Mann dem Kind ietzt. the.ACC coat gives the.NOM man the.DAT child now
 - d. Jetzt gibt der Mann dem Kind den Mantel. now gives the NOM man the DAT child the ACC coat

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

151/325

The German CP and IP

Government & Binding (GB)

Verb position and nonlocal dependencies

SpecCP – The Vorfeld in declarative clauses (II)

- The crucial factor for deciding which phrase to move is the *information* structure of the sentence. Material connected to previously mentioned or otherwise-known information is placed further left (preferably in the prefield) and new information tends to occur to the right. Fronting to the prefield in declarative clauses is often referred to as topicalization.
- But this is rather a misnomer, since the focus (informally: the constituent being asked for) can also occur in the prefield. Expletives as well.
- Caution: Movement to the Vorfeld does not have the same status as fronting in English!

Government & Binding (GB)

└Verb position and nonlocal dependencies

The German CP and IP

Verb movement and movement to SpecCP

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

152/325

Government & Binding (GB)

Verb position and nonlocal dependencies

The German CP and IP

Nonlocal dependencies

- Analysis also works for nonlocal dependencies:
 - [Um zwei Millionen Mark]_i soll er versucht haben, around two million Deutsche. Marks should he tried $\underline{}_{i}$ zu betrügen].¹ [eine Versicherung an insurance.company to deceive 'He apparently tried to cheat an insurance company out of two million Deutsche Marks.'

Step-wise movement: the fronted constituent first moves to the specifier position of the phrase it originates from than to the next specifier of the next maximal projection and so on until it reaches the uppermost SpecCP position.

$$\begin{bmatrix} word \\ \text{ORTH } \left(\begin{array}{c} Grammatik \end{array} \right) \\ \text{SYN} \left(\begin{array}{c} AT \middle| \text{SUBC AT} \end{array} \right) \text{ DET } I \\ \text{SEM} \begin{bmatrix} \text{IND} & \bigoplus \\ \text{RESTR} \end{array} \left\{ \begin{bmatrix} grammar \\ \text{INST} & \bigoplus \end{bmatrix} \right\} \end{bmatrix}$$

$$\begin{bmatrix} word \\ ORTH \ (\ Grummatik \) \\ SYN|CAT|SUBCAT \ (\ DET \) \\ SEM \begin{bmatrix} IND \ \ \ \\ INST \ \ \ \ \end{bmatrix} \end{bmatrix} = \begin{bmatrix} word \\ ORTH \ (\ \%\% \) \\ SYN|CAT|SUBCAT \ (\ DET \) \\ SNN|CAT|SUBCAT \ (\ DET$$

$$\begin{bmatrix} word \\ ORTH & (& C \downarrow C \downarrow C \downarrow C) \\ SYN|CAT|SUBCAT & (& DET) \\ IND & & & \\ IND & & & \\ RESTR & & & & \\ \begin{bmatrix} grammar \\ INST & & \\ \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix} word \\ \text{ORTH } \left(\neq w \neq v \right) \\ \text{SYN[CAT]SUBCAT } \left(\text{ DET } \right) \\ \text{IND } & \\ \text{SEM} \\ \text{RESTR } \left\{ \begin{bmatrix} grammar \\ lnst & \\ \end{bmatrix} \right\} \end{bmatrix}$$

Grammatical theory

Government & Binding: Passive and local reordering

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Government & Binding (GB)

L Passive

Case of arguments: Structural and lexical case

Case and case principles

- What types of case exist?
- In which way does case depend on syntactic context?
- One way to capture case requirements is to list them in valence representations. If we understand the regularities, we can avoid this.

We capture regularities and need just one lexical item for verbs like *lesen* 'read':

möchte das Buch lesen. he NOM wants the book read

> das Buch lesen. b. Ich sah **ihn**

> > saw him.ACC the book read

The case of the subject (and the object) is determined by the principle.

Grammatical theory

Government & Binding (GB)

∟_{Passive}

Reading material

Müller 2020b: Section 3.4-3.5

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

155/325

Government & Binding (GB)

L Passive

Case of arguments: Structural and lexical case

Structural case: The subject

- If case depends on the syntactic environment, it is called **structural case**. Otherwise it is **lexical case**.
- Subject (nominative in the active) can be realized as accusative and genitive:
 - (104) a. **Der** Installateur kommt.

the.NOM plumber comes

'The plumber is coming.'

- b. Der Mann lässt **den** Installateur kommen. the man lets the.ACC plumber 'The man is getting the plumber to come.'
- c. das Kommen des Installateurs the coming of the plumber 'the plumber's visit'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

156/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

L Passive

Case of arguments: Structural and lexical case

Structural: The object

• Object (accusative in the active) can be realized as nominative and genitive:

(105) a. Judit schlägt **den Weltmeister**.

Judit beats the ACC world champion 'Judit beats the world champion.'

b. **Der Weltmeister** wird geschlagen. the.NOM world.champion is beaten 'The world champion is being beaten.'

c. das Schlagen **des Weltmeisters** the beating of the world.champion

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Is the dative a lexical case?

158/325

_

TO NATIONAL PROPERTY OF THE PARTY OF THE PAR

Case of arguments: Structural and lexical case

Government & Binding (GB)

L Passive

Similarly there is no change in the passive with dative objects:

(107) a. Der Mann hat **ihm** geholfen. the man has him.DAT helped 'The man has helped him.'

b. **Ihm** wird geholfen. him.DAT is helped 'He is being helped.'

■ But what about (108)?

(108) a. Der Mann hat den Ball **dem Jungen** geschenkt. the man has the ball the DAT boy given

b. **Der Junge** bekam den Ball geschenkt. the NOM boy got the ball given

Government & Binding (GB)

L Passive

Case of arguments: Structural and lexical case

Lexical case

genitive depending on the verb is lexical case:
 The case of the genitive object does not change in passivization.

(106) a. Wir gedenken **der Opfer**. we remember the GEN victims

b. **Der Opfer** wird gedacht. the.GEN victims are remembered 'The victims are being remembered.'

c. * Die Opfer wird / werden gedacht.
the.NOM victims is are remembered

(106b) = impersonal passive, there is no subject.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

159/325

Government & Binding (GB)

L Passive

L_Case of arguments: Structural and lexical case

Dative structural or lexical?

- The status of the dative is controversial. Three options:
- 1. All datives are lexical.
- 2. Some datives are lexical, some structural.
- 3. All datives are structural.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

160/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

L Passive

Case of arguments: Structural and lexical case

1. The dative as lexical case

- If the dative is treated as a lexical case. the dative has to change in the dative passive from lexical to structural.
- Haider's examples in (109) are immediately explained (1986: 20):
 - (109) a. Er streichelt den Hund. he strokes the dog
 - the dog was stroked
 - c. sein Streicheln des Hundes his stroking of the dog
- d. Er hilft **den** Kindern. he helps the.DAT children
- b. Der Hund wurde gestreichelt. e. Den Kindern wurde geholfen. the.DAT children was helped
 - f. das Helfen **der Kinder** the helping of the children (children agent only)
 - g * sein Helfen der Kinder his helping of the children
- Dative can only be expressed prenominally:
 - (110) das **Den-Kindern**-Helfen the the-children-helping

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

162/325

Government & Binding (GB)

L Passive

Case of arguments: Structural and lexical case

164/325

Dative passive with bivalent verbs

- (112) a. Er kriegte von vielen geholfen / gratuliert / applaudiert.
 - b. Man kriegt täglich gedankt.

Attested data:

- (113) a. "Da kriege ich geholfen."²
 - b. Heute morgen bekam ich sogar schon gratuliert.³
 - c. "Klärle" hätte es wirklich mehr als verdient, auch mal zu einem "unrunden" Geburtstag gratuliert zu bekommen.⁴
 - d. Mit dem alten Titel von Elvis Presley "I can't help falling in love" bekam Kassier Markus Reiß zum Geburtstag gratuliert, [...]⁵

Hence: Haider' approach: all datives have lexical case + trick for dative passive.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Government & Binding (GB)

L Passive

Case of arguments: Structural and lexical case

All datives structural? Structural case and bivalent verbs

• If structural/lexical is the only distinction available, there is a problem with bivalent verbs:

(111) a. Er hilft ihm. he helps him.DAT

> b. Er unterstützt ihn. he supports him.ACC

There has to be a difference between helfen and unterstützen. Just saying the verbs require structural case, would not be enough.

- For ditransitive verbs one can derive the dative case from general principles (Nom, Dat, Acc), but this does not work for bivalent verbs.
 - → Dative of *helfen* is assumed to be lexical (mixed approach).

Prediction: dative passive is not possible with two-place verbs.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

163/325

Government & Binding (GB)

☐ Passive

Case assignment and passive as movement

Case assignment

- Lexical case is assigned by the verb.
- Verbs assign object case (accusative), if the object has structural case.
- Finite Infl (or T in more recent versions) assigns nominative to the subject.
- Case filter: Every NP has to have case.
- Case is assigned under government, that is, only NPs in certain tree positions may get case.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

²Frankfurter Rundschau, 26.06.1998, S. 7.

³Brief von Irene G. an Ernst G. vom 10.04.1943. Feldpost-Archive mkb-fp-0270

⁴Mannheimer Morgen, 28.07.1999, Lokales; "Klärle" feiert heute Geburtstag.

⁵Mannheimer Morgen, 21.04.1999, Lokales; Motor des gesellschaftlichen Lebens.

L Passive

Case assignment and passive as movement

Case and passive as movement

Assumptions regarding case and passive:

- The subject gets case from I, the other arguments get case from V.
- The passive blocks the subject (in the lexicon).
- The accusative object gets a theta role but no case.
- Therefore it has to move to a position where it gets case (move to SpecIP).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

166/325

TO WAR AND THE STATE OF THE STA

Passive
Case assignment and passive as movement

Government & Binding (GB)

just case
just theta-role
case and theta-role

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

168/325

Government & Binding (GB)

☐ Passive

Case assignment and passive as movement

Case and theta role assignment in the active

just case
just theta-role
case and theta-role

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

167/325

Government & Binding (GB)

☐ Passive

Case assignment and passive as movement

Remarks on passive as movement analyses

- The analysis works for English: the object has to move.
 - (114) a. The mother gave [the girl] [a cookie].
 - b. [The girl] was given [a cookie] (by the mother).
- But this is not the case for German:
 - - b. weil dem Jungen der Ball geschenkt wurde because the DAT boy the NOM ball given was 'because the ball was given to the boy'
 - c. weil **der Ball** dem Jungen geschenkt wurde because the.NOM ball the.DAT boy given was

(115b) is the unmarked order (Höhle 1982), not (115c). That is: nothing has to be moved.

- Solution: abstract movement. (empty expletive in subject position)
- We will learn about alternative analyses not relying on such complicated mechanisms.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Local reordering

Local reordering

The arguments of verbs can appear in any order in German. So for verbs with three arguments, there are six possible orders for the arguments:

- (116) a. [weil] der Mann dem Kind das Buch gibt because the NOM man the DAT child the ACC book gives 'because the man gives the book to the child'
 - b. [weil] der Mann das Buch dem Kind gibt because the NOM man the ACC book the DAT child gives
 - c. [weil] das Buch der Mann dem Kind gibt because the ACC book the NOM man the DAT child gives
 - d. [weil] das Buch dem Kind der Mann gibt because the ACC book the DAT child the NOM man gives
 - e. [weil] dem Kind der Mann das Buch gibt because the.DAT child the.NOM man the.ACC book gives
 - f. [weil] dem Kind das Buch der Mann gibt because the.DAT child the.ACC book the.NOM man gives

(116a) is the so-called unmarked order (Höhle 1982).

The number of contexts in which sentences can be used is restricted for all other sentences in (116).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

170/325

Government & Binding (GB)

Local reordering

 $\mathrel{\ \ \, \bigsqcup_{\mathsf{Movement}}}$

172/325

Movement

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

Government & Binding (GB)

Local reordering

Movement or base-generation

- Two suggestions:
 - Assumption of a base order and derivation of all other orders by movement (Frey 1993).
 - Base generation: all orders are derived in the phrase structure component without movement (Fanselow 2001).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

171/325

Government & Binding (GB)

Local reordering

 L_{Movement}

Problems of movement approaches: Quantifier scope

- Quantifier scope as motivation for movement-based approaches (Frey 1993):
 - (117) Es ist nicht der Fall, daß er mindestens einem Verleger fast jedes Gedicht it is not the case that he at least one publisher almost every poem anbot.

offered

'It is not the case that he offered at least one publisher almost every poem.'

- (117) has only one reading in which at least one scopes over almost every.
- (118) Es ist nicht der Fall, daß er fast jedes Gedicht $_i$ mindestens einem Verleger $__i$ it is not the case that he almost every poem at least one publisher anbot.

offered

'It is not the case that he offered almost every poem to at least one publisher.'

(118) has two readings.

One corresponds to the surface realization and one to the reading of (117).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Quantifier scope: Movement and recreation

- Idea: Reconstruction of the moved items at D structure position.
 - (119) Es ist nicht der Fall, daß er fast jedes Gedicht_i mindestens einem Verleger _i it is not the case that he almost every poem at.least one publisher anbot.

 offered

'It is not the case that he offered almost every poem to at least one publisher.'

'I think that only this poet offered almost every poem to at least one publisher.'

- But this causes problems with two moved NPs (Kiss 2001; Fanselow 2001):
 - (120) Ich glaube, dass mindestens einem Verleger $_i$ fast jedes Gedicht $_j$ nur dieser I believe that at.least one publisher almost every poem only this Dichter $_i$ $_j$ angeboten hat. poet offered has

Reconstructing *mindestens einem Verleger* corresponds to a non-exiting reading. If two items are moved. Their relative scope is fixed. They cannot reconstruct independently.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

174/325

174/325

Base generation

Government & Binding (GB)

∟_{Base generation}

Local reordering

- Alternative: allow for the verb to combine with its arguments in any order.
 Fanselow (2001): a base generation analysis (in Minimalism)
- No account for (121) in IP approach, since objects are before subject:
 - (121) a. [weil] das Buch der Mann dem Kind gibt because the ACC book the NOM man the DAT child gives
 - b. [weil] das Buch dem Kind der Mann gibt because the.ACC book the.DAT child the.NOM man gives
 - c. [weil] dem Kind der Mann das Buch gibt because the.DAT child the.NOM man the.ACC book gives
 - d. [weil] dem Kind das Buch der Mann gibt because the DAT child the ACC book the NOM man gives
- IP-less base generation approach seems to be the best option.
 (also adopted in Categorial Grammar and HPSG)
- Theta roles are assigned in tandem with argument selection. Not to positions.

Government & Binding (GB)

Local reordering

∟_{Movement}

Fix involving additional movements, some at PF

- Sauerland & Elbourne (2002) discuss the same problem in movement-based approaches to Japanese (in the Minimalist Program).
- They suggest solving the problem by assuming additional movements some of them optionally taking place at PF without having semantic effects.
- The resulting analysis is highly complex and involves additional assumptions, which begs the question as how such complex systems should be acquirable.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

175/325

Grammatical theory

Government & Binding (GB)

∟ Summa

Summary

Goals:

- Capture relations between certain structures, for example:
 - active/passive
 - verb last/verb initial/verb second position
 - almost free order of constituents in the Mittelfeld and a certain base order mapping from D Structure to S Structure
- Explanation of language acquisition by
 - assumption of a general rule schema holding for all languages and all structures (X Theory)
 - general principles holding for all languages but parameterizable

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

176/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

Government & Binding (GB)

 $\mathrel{\sqsubseteq}_{\mathsf{Summary}}$

Exercise

Draw the syntax trees for the fowllowing sentences:

- Delphin dem Kind hilft (122) a. dass der that the NOM dolphin the DAT child helps 'that the dolphin helps the child'
 - Delphin den b. dass der Hai attackiert that the.NOM dolphin the.ACC shark attacks 'that the dolphin attacks the shark'
 - Hai attackiert wird c. dass der that the NOM shark attacked is 'that the shark is attacked'
 - d Der Hai wird attackiert the.NOM shark is attacked 'The shark is attacked.'
 - e. Der Delphin hilft dem Kind. the dolphin.NOM helps the.DAT child 'The dolphin is helping the child.'

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

178/325

Grammatical theory

Generalized Phrase Structure Grammar (GPSG)

Reading material

Müller 2020b: Chapter 5 without Section 5.1.4 about semantics.

Grammatical theory

Generalized Phrase Structure Grammar (GPSG)

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Generalized Phrase Structure Grammar (GPSG)

Generalized Phrase Structure Grammar (GPSG)

- GPSG was developed as an answer to Transformational Grammar at the end of the 1970s.
- Main publication: Gazdar, Klein, Pullum & Sag (1985)
- Uszkoreit (1987) developed large GPSG fragment of German.
- Chomsky showed PSGs to be inadequate. GPSG extends PSG in ways that make it possible to address Chomsky's monita:
 - categories may be complex (Harman 1963)
 - different treatment of local reordering
 - passive as metarule
 - non-local dependencies as a series of local dependencies
- We will deal with each of these innovations in what follows.

General remarks on the representational format

- Categories are sets of feature value pairs.
- Lexical entries have a feature SUBCAT. The value is a number which says something about the kind of grammatical rules in which the word can be used.
- Examples from Uszkoreit 1987:

$V2 \rightarrow H[5]$	(kommen 'come', schlafen 'sleep')
$V2 \rightarrow H[6]$, N2[Case Acc]	(kennen 'know', suchen 'search')
$V2 \rightarrow H[7]$, $N2[Case Dat]$	(helfen 'help', vertrauen 'trust')
$V2 \rightarrow H[8]$, N2[Case Dat], N2[Case Acc]	(geben 'give', zeigen 'show')
$V2 \rightarrow H[9], V3[+dass]$	(wissen 'know', glauben 'believe')

These rules license VPs: the combination verb & complements, but not subject.

- The numbers following the category symbols (V or N) indicate the X level. The maximum level of a verbal projection is three rather than two.
- H stands for Head.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

181/325

Generalized Phrase Structure Grammar (GPSG)

General remarks on the representational format

Metarules and ID/LP format

Metarules and ID/LP format

Two further innovations of GPSG:

- Metarules: Additional phrase structure rules are licensed via metarules.
- ID/LP format: Constraints on linearization are separated from immediate dominance.

These two tools will be discussed with respect to our set of phenomena.

Generalized Phrase Structure Grammar (GPSG)

General remarks on the representational format

Principles: The Head Feature Convention

Principles: The Head Feature Convention

Head Feature Convention:

The mother node and the head daughter must bear the same head features unless indicated otherwise.

 $\ensuremath{\mathbb{C}}$ Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

182/325

Grammatical theory

Generalized Phrase Structure Grammar (GPSG)

Local reordering & Verb position

Local reordering

- Arguments can appear in almost any order in the German Mittelfeld.
 - (123) a. [weil] der Mann dem Kind das Buch gibt because the NOM man the DAT child the ACC book gives 'because the man gives the book to the child'
 - b. [weil] der Mann das Buch dem Kind gibt because the NOM man the ACC book the DAT child gives
 - c. [weil] das Buch der Mann dem Kind gibt because the ACC book the NOM man the DAT child gives
 - d. [weil] das Buch dem Kind der Mann gibt because the ACC book the DAT child the NOM man gives
 - e. [weil] dem Kind der Mann das Buch gibt because the.DAT child the.NOM man the.ACC book gives
 - f. [weil] dem Kind das Buch der Mann gibt because the.DAT child the.ACC book the.NOM man gives

Generalized Phrase Structure Grammar (GPSG)

Local reordering & Verb position

Motivation for linearization rules (I)

Motivation: Permutation with phrase structure rules \rightarrow we need six phrase structure rules for ditransitive verbs in verb-final position:

$$(124) S \rightarrow NP[nom] NP[dat] NP[acc] V$$

$$S \rightarrow NP[nom] NP[acc] NP[dat] V$$

$$S \rightarrow NP[acc] NP[nom] NP[dat] V$$

$$S \rightarrow NP[acc] NP[dat] NP[nom] V$$

$$S \rightarrow NP[dat] NP[nom] NP[acc] V$$

$$S \rightarrow NP[dat] NP[acc] NP[nom] V$$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

185/325

Grammatical theory

Generalized Phrase Structure Grammar (GPSG)

Local reordering & Verb position

187/325

Abstraction from linear order: Dominance

- Gazdar, Klein, Pullum & Sag (1985):
 Separation of immediate dominance = ID and linear precedence = LP.
- Dominance rules do not constrain the order of the daughters.

(126)
$$S \rightarrow V$$
, NP[nom], NP[acc], NP[dat]

The only thing (126) says is that S dominates the other nodes:

Since there are no constraints on the order of the elments of the right-hand side, we need one rule rather than twelve: Grammatical theor

Generalized Phrase Structure Grammar (GPSG)

Local reordering & Verb position

Motivation for linearization rules (II)

Plus six rules for verb-initial position:

(125) $S \rightarrow V NP[nom] NP[dat] NP[acc]$

S → V NP[nom] NP[acc] NP[dat]

 $S \rightarrow V NP[acc] NP[nom] NP[dat]$

 $S \rightarrow V NP[acc] NP[dat] NP[nom]$

 $S \rightarrow V NP[dat] NP[nom] NP[acc]$

 $S \rightarrow V NP[dat] NP[acc] NP[nom]$

A generalization is missed.

Similarly for transitive verbs and other valence frames.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

186/325

Grammatical theory

Generalized Phrase Structure Grammar (GPSG)

Local reordering & Verb position

Abstraction from linear order: Linear order

• LP rules hold for local trees, that is, trees of depth one:

 \rightarrow We can say something about order of V, NP[nom], NP[dat] and NP[acc].

An LP constraint holds for the whole grammar.

If we claim that NP[nom] precedes NP[acc],

this holds for rules for strictly transitive verbs as well as for rules for ditransitive verbs.

Local reordering & Verb position

Getting more restrictive again

Without restriction for the order → too much freedom

$$S \rightarrow V$$
, NP[nom], NP[dat], NP[acc]

The rule admits the following order:

- (127) * Dem Kind der Mann gibt ein Buch. the.DAT child the.NOM man gives the.ACC book
- Linearization rules rule out such orders.

(128)
$$V[+MC] < X$$

 $X < V[-MC]$

MC stand for main clause.

LP rule states: verb must be placed before all other constituents in main clauses (+MC) and after all other constituents in dependent clauses (-MC).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

189/325

Generalized Phrase Structure Grammar (GPSG)

☐ Passive

Passive pre-theoretically

Passive pre-theoretically (II)

German passive theory-neutrally:

- The subject is suppressed.
- If there is an accusative object, this becomes the subject.
- (131) a. weil Judit den Weltmeister geschlagen hat because Judit.NOM the.ACC world.champion beaten has 'because Judit has beaten the world champion'
 - b. weil der Weltmeister geschlagen wurde because the NOM world champion beaten was 'because the world champion was beaten'
- (132) a weil er ihm den Aufsatz gegeben hat because he. ${\tt NOM}$ him. ${\tt DAT}$ the. ${\tt ACC}$ essay given has 'because he has given him the essay'
 - b. weil ihm der Aufsatz gegeben wurde because him.DAT the.NOM essay given was 'because he was given the essay'

Generalized Phrase Structure Grammar (GPSG)

L Passive

Passive pre-theoretically

Passive pre-theoretically (I)

German passive theory-neutrally:

- The subject is suppressed.
- If there is an accusative object, this becomes the subject.

This holds for all verb classes forming a passive. Independent of the arity of the verb:

- (129) a. weil er noch gearbeitet hat because he.NOM still worked has 'because he has still worked'
 - b. weil noch gearbeitet wurde because still worked was 'because there was still working there'
- $\begin{array}{lll} \hbox{(130) a. weil} & \hbox{er} & \hbox{an Maria gedacht hat} \\ & \hbox{because he.} \hbox{NOM on Maria thought has} \\ \hbox{`because he thought of Maria'} \end{array}$
 - b. weil an Maria gedacht wurde because on Maria thought was 'because Maria was thought of

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

190/325

Generalized Phrase Structure Grammar (GPSG)

☐ Passive

 $\mathrel{\ \ \, \bigsqcup_{\mathsf{Metarules}}}$

Passive and phrase structure grammars

- One would have to write down two rules for every active/passive pair in PSG.
- GPSG is a non-transformational theory.
- Metarule derives passive rules from active rules.
- These are explained with respect to the subject introduction metarule.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

191/325

Generalized Phrase Structure Grammar (GPSG)

L Passive

∟_{Metarules}

Introduction of the subject via a metarule (I)

Our rules look like this:

(133)
$$V2 \rightarrow H[7]$$
, $N2[Case\ Dat]$ (helfen 'help', vertrauen 'trust') $V2 \rightarrow H[8]$, $N2[Case\ Dat]$, $N2[Case\ Acc]$ (geben 'give', zeigen 'show')

The rules in (133) can be used to analyze VPs but not sentences with subject.

We use a metarule saying: "If there is a rule of the form 'V2 consists of something', then there is also a rule stating 'V3 consists of whatever V2 consists of + an NP in the nominative'"

Formally:

(134)
$$V2 \rightarrow W \mapsto$$

 $V3 \rightarrow W$, N2[Case Nom]

W stands for an arbitrary number of categories (whatever).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

193/325

Generalized Phrase Structure Grammar (GPSG)

L Passive

Passive as metarule

Passive as metarule

- For each active rule with subject and accusative object, a passive rule will be licensed with the subject suppressed. The relation between the rules is captured.
- Differences between Transformational Grammar/GB and GPSG:
 It is not the case that there are several trees that are related to each other,
 but rather active rules are related to passive rules.

The active and passive rules can be used to derive two structures independently: (138b) is not derived from (138a).

- (138) a. weil Judit den Weltmeister geschlagen hat because Judit.NOM the.ACC world.champion beaten has 'because Judit has beaten the world champion'
 - b. weil der Weltmeister geschlagen wurde because the.NOM world.champion beaten was 'because the world champion was beaten'

The generalization regarding active/passive alternations is captured nevertheless.

Generalized Phrase Structure Grammar (GPSG)

L Passive

∟_{Metarules}

Introduction of the subject via a metarule (II)

$$(135) \quad V2 \rightarrow W \mapsto$$

 $V3 \rightarrow W$, N2[Case Nom]

This metarule takes the rules in (136) as input and produces the rules in (137):

(136)
$$V2 \rightarrow H[7]$$
, $N2[Case\ Dat]$ (helfen 'help', vertrauen 'trust') $V2 \rightarrow H[8]$, $N2[Case\ Dat]$, $N2[Case\ Acc]$ (geben 'give', zeigen 'show')

(137) V3
$$\rightarrow$$
 H[7], N2[Case Dat], N2[Case Nom]
V3 \rightarrow H[8], N2[Case Dat], N2[Case Acc], N2[Case Nom]

Subject and other arguments are on the same right-hand side of a rule and hence can be permuted, provided no LP rule is violated.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

194/325

Generalized Phrase Structure Grammar (GPSG)

Passive

L-Passive as metarule

Passive in English

Gazdar, Klein, Pullum & Sag (1985) suggest the following metarule:

(139)
$$VP \rightarrow W, NP \mapsto VP[PAS] \rightarrow W, (PP[by])$$

This rule says that verbs selecting an object can be realized without this object in a passive VP. Optionally a *by* PP may appear in passive VPs.

(VP corresponds to V2)

∟ Passive as metarule

Problems of the passive metarule operating on VP

- 1. Rule does not refer to the type of the verb (not all verbs have a passive).
- 2. Impersonal passive cannot be derived by suppressing an object.

(140)
$$V2 \to H[5]$$

 $V2 \to H[13], PP[an]$

(arbeiten 'work') (denken 'think')

So, if the analysis of the passive in English is not revised, the analyses of the passive in English and German will differ.

3. The German passive metarule could apply to rules including the subject.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

197/325

Generalized Phrase Structure Grammar (GPSG)

Long-distance dependencies

Metarules for the introduction of nonlocal dependencies

199/325

Metarules for the introduction of nonlocal dependencies

We take an arbitrary category X out of the set of categories on the right-hand side of the rule and represent it on the left-hand side after a slash ('/'):

(143)
$$V3 \rightarrow W, X \mapsto V3/X \rightarrow W$$

Given the input in (144), the rule creates the rules in (145):

- (144) $V3 \rightarrow H[8]$, N2[Case Dat], N2[Case Acc], N2[Case Nom]
- (145) V3/N2[Case Nom] \rightarrow H[8], N2[Case Dat], N2[Case Acc] V3/N2[Case Dat] \rightarrow H[8], N2[Case Acc], N2[Case Nom] V3/N2[Case Acc] \rightarrow H[8], N2[Case Dat], N2[Case Nom]

Grammatical theory

Generalized Phrase Structure Grammar (GPSG)

Long-distance dependencies

Long-distance dependencies as the result of local dependencies

- Until now: verb-initial and verb-final placement of the verb:
 - (141) a. [dass] der Mann dem Kind das Buch **gibt** that the.NOM man the.DAT child the.ACC book gives
 - b. **Gibt** der Mann dem Kind das Buch? gives the.NOM man the.DAT child the.ACC book
- What about verb second placement:
 - (142) a. Der Mann **gibt** dem Kind das Buch. the.NOM man gives the.DAT child the.ACC book
 - b. Dem Kind gibt der Mann das Buch.
 the.DAT child gives the.NOM man the.ACC book
- V2 is analyzed as a nonlocal dependency via a sequence of local dependencies.
 One of the main innovations of GPSG:
 transformationless analysis of nonlocal dependencies (but also Harman 1963).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

198/325

Generalized Phrase Structure Grammar (GPSG)

Long-distance dependencies

Rule for binding off nonlocal dependencies

Rule for binding off nonlocal dependencies

(146)
$$V3[+Fin] \rightarrow X[+Top], V3[+MC]/X$$

X stands for arbitrary category marked as missing in V3 by '/'.

Example instantiations of the rule are given in (147):

(147)
$$V3[+Fin] \rightarrow N2[+Top, Case Nom], V3[+MC]/N2[Case Nom]$$

$$V3[+Fin] \rightarrow N2[+Top, Case Dat], V3[+MC]/N2[Case Dat]$$

$$V3[+Fin] \rightarrow N2[+Top, Case Acc], V3[+MC]/N2[Case Acc]$$

LP rule: X in (146) is serialized left of anything else (e.g. V3), since it is [+Top].

(148)
$$[+Top] < X$$

Generalized Phrase Structure Grammar (GPSG)

Long-distance dependencies

An example analysis

An example analysis

- Metarule licenses rule introducing dative object into SLASH.
- This rule is applied and licenses the subtree for gibt er das Buch.
- The linearization rule orders the verb left of other constituents (V[+MC] < X).
- The constituent following the slash is bound off in the last step.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

201/325

Generalized Phrase Structure Grammar (GPSG)

Long-distance dependencies

An example with nonlocal dependencies

An example with nonlocal dependencies (II)

- (151) is analyzed in several steps: introduction, percolation and finally binding off of information about the long-distance dependency
 - (151) Wen glaubst du, daß ich gesehen habe? who believe you that I seen have
- ich gesehen habe is V3/NP[acc] (grammar rule licensed by a metarule)
- dass ich gesehen habe is V3/NP[acc] (percolation of SLASH information)
- glaubst du, dass ich gesehen habe is V3/NP[acc] (percolation of SLASH information)
- Wen glaubst du, dass ich gesehen habe is V3 (binding off of SLASH information in grammar rule)

Generalized Phrase Structure Grammar (GPSG)

Long-distance dependencies

An example with nonlocal dependencies

An example with nonlocal dependencies (I)

All NPs in (149) depend on the same verb:

(149) Dem Kind gibt er das Buch. the.DAT child gives he.NOM the.ACC book 'He gives the child the book.'

Complicated system of linearization rules \rightarrow analyze (149) with a flat structure.

But this would not work for:

(150) Wen_i glaubst du, daß ich $_i$ gesehen habe? who believe you that I seen have 'Who do you think I saw?'

(150) cannot be explained by local reordering since *wen* does not depend on *glaubst* but on *gesehen* and *gesehen* is located in a different local subtree. ⁶Scherpenisse 1986: 84.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

202/325

Generalized Phrase Structure Grammar (GPSG)

Long-distance dependencies

An example with nonlocal dependencies

An example with nonlocal dependencies (III)

Simplifying assumption: gesehen habe behaves like a simplex transitive verb.

 $\mathrel{\sqsubseteq}_{\mathsf{Highlights}}$

Highlights: Across the Board Extraction

• Gazdar's (1981) SLASH-based analysis can account for so-called Across the Board extraction (Ross 1967):

(152) a. The kennel which Mary made and Fido sleeps in has been stolen. (= S/NP & S/NP)

- b. The kennel in which Mary keeps drugs and Fido sleeps has been stolen. (= S/PP & S/PP)
- c. * The kennel (in) which Mary made and Fido sleeps has been stolen. (= S/NP & S/PP)

Conjuncts have to have the same element in ${\it SLASH}$ and this information is percolated further and then bound off.

Such sentences are a miracle for transformational analyses:
 Why must two transformations move something of the same category?
 How can two different things land in the same position?

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

205/325

, 5^{7-UN}/L

Generalized Phrase Structure Grammar (GPSG)

Summary and Classification

 $\mathrel{\sqsubseteq}_{\mathsf{Problems}}$

207/325

Representation of valence and morphology

Morphology has to access valence information:

(153) a. lös-bar (nominative, accusative)

solv-able

b. vergleich-bar (nominative, accusative, PP[mit])

compar-able
c. * schlaf-bar

(nominative)

sleep-able

d. * helf-bar (nominative, dative)

help-able

- Generalization: bar adjectives can be formed from verbs governing an accusative.
- This information is inaccessable in GPSG. Only valence numbers and this number does not even tell us whether there is an accusative. There may be a bunch of different rules (active/passive) with or without the accusative.
- Valence must contain detailed descriptions of arguments (CG, LFG, HPSG).

Generalized Phrase Structure Grammar (GPSG)

Summary and Classification

 $\mathrel{\sqsubseteq_{\mathsf{Problems}}}$

Problems

- representation of valence and morphology
- partial fronting
- generative capacity

 $\ensuremath{\mathbb{C}}$ Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

206/325

Generalized Phrase Structure Grammar (GPSG)

Summary and Classification

 $\mathrel{\sqsubseteq}_{\mathsf{Problems}}$

Partial fronting

German allows the fronting of (partial) VPs:

- (154) a. [Erzählen] wird er seiner Tochter ein Märchen können. tell will he.NOM his.DAT daughter a.ACC fairy.tale can 'He will be able to tell his daughter a fairy tale.'
 - b. [Ein Märchen erzählen] wird er seiner Tochter können. a. ACC fairy.tale tell will he. NOM his. ACC daughter can
 - c. [Seiner Tochter ein Märchen erzählen] wird er können. his.DAT daughter a.ACC fairy.tale tell will he.NOM can

Arguments not realized in the fronted VP have to be realized in the Mittelfeld.

Generalized Phrase Structure Grammar (GPSG)

Summary and Classification

 $\mathrel{\sqsubseteq}_{\mathsf{Problems}}$

Partial fronting (II)

 Arguments missing in initial position have to be realized in the Mittelfeld. The case in the Mittelfeld has to match the requirement of the verb in the Vorfeld:

(155) a. Verschlungen hat er nicht. devoured has he.NOM it.ACC not

'He did not devour it.'

b. * Verschlungen hat er nicht. devoured has he.NOM not

c. * Verschlungen hat er ihm nicht. devoured has he.NOM him.DAT not

- But this is impossible to do with the standard treatment of valence in GPSG.
- Combinations of verbs with arguments are licensed by PSG rules referring to numbers.
- But the objects can only be missing when they are realized in the Mittelfeld. How is this connection established?
- Nerbonne (1986) and Johnson (1986): different representation of valence. One similar to Categorial Grammar.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

209/325

Grammatical theory

Feature descriptions, feature structures and models

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Generalized Phrase Structure Grammar (GPSG)

Summary and Classification

 $\mathrel{\sqsubseteq_{\mathsf{Problems}}}$

Generative capacity

- The generative capacity of GPSG corresponds to those of context free grammars.
- Being restrictive was one of the goals of GPSG.
- But Shieber (1985) and Culy (1985): there are languages that cannot be described with context free grammars. (see also Pullum 1986 for historical remarks)
- This means that GPSG is not powerful enough to describe all languages.
- All mentioned problems are fixed in HPSG, the successor of GPSG.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

210/325

Grammatical theory

Feature descriptions, feature structures and models

Reading material

Müller 2020b: Chapter 6

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Feature descriptions, feature structures and models

Feature descriptions

Feature descriptions and feature structures

Feature structures are used to model linguistic objects:

- attribut value structure
- feature structure

Linguistis use **feature descriptions** to talk about feature structures:

- attribute-value matrix (AVM)
- feature matrix
- Shieber (1986), Pollard & Sag (1987), Johnson (1988),
 Carpenter (1992), King (1994), Richter (2004; 2021)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

212/325

Feature descriptions, feature structures and models

Feature descriptions

∟_{Lists}

Solution I: Features, a lot of features

FIRSTNAME max
LASTNAME meier
DATE-OF-BIRTH 10.10.1985
FATHER ...
MOTHER ...
DAUGHTER ...

What if we have several daughters?

FIRSTNAME max
LASTNAME meier
DATE-OF-BIRTH 10.10.1985
FATHER
MOTHER ...
DAUGHTER-1 ...
DAUGHTER-2 ...
DAUGHTER-3 ...

How many features do we want to assume? Where is the limit? What is the value of DAUGHTER-32?

rammatical theory

Feature descriptions, feature structures and models

Feature descriptions

An example

A feature description, describing a human being:

FIRSTNAME max
LASTNAME meier
DATE-OF-BIRTH 10.10.1985

Recursive descriptions:

Exercise: How can we represent daughters or sons of a human being?

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

213/325

Feature descriptions, feature structures and models

Feature descriptions

 $\mathrel{\sqsubseteq}_{\mathsf{Lists}}$

Solution II: Lists

FIRSTNAME max
LASTNAME meier
DATE-OF-BIRTH 10.10.1985
FATHER ...
MOTHER ...
DAUGHTERS (..., ...)

What about sons?

Do we want to make this difference?

Yes, but the property is a property of the described objects:

FIRSTNAME max
LASTNAME meier
DATE-OF-BIRTH 10.10.1985
gender male
FATHER ...
MOTHER ...
children \langle ..., ...\rangle

Feature descriptions, feature structures and models

Feature descriptions

 $\mathrel{\ \ \, \sqsubseteq}_{\mathsf{Types}}$

Types

- Feature structures are of a certain type.
- The type is written in *italics*:

type A1 V1

- Types specify which features have to belong to a certain feature structure.
- Types are organized in hierarchies.

Example: part of speech

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

216/325

Feature descriptions, feature structures and models

Feature descriptions

Structure sharing

218/325

Structure sharing

Values of A1 and A2 are token-identical:

A1 [[A3 *W3*] A2 [

The identity of values is indicated by boxes.

Boxes are like variables or like pointers to some place in memory.

Feature descriptions, feature structures and models

Feature descriptions

 $\mathrel{\sqsubseteq}_{\mathsf{Types}}$

Feature descriptionen of type person

• Our example description describes objects of type *person*.

FIRSTNAME firstname
LASTNAME lastname
DATE-OF-BIRTH date
GENDER gender
FATHER person
MOTHER person
CHILDREN list of person

- Properties like OPERATING VOLTAGE are irrelevant for such objects!
- Type specifies which features are relevant for such an object.
- We know: every human has a birthday even if we don't know the exact value.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

217/325

Feature descriptions, feature structures and models

Feature descriptions

Structure sharing

Our example with children: One or two?

Do we describe one or two children of Peter and Anna?

- We don't know!
- There may be two different children from previous partnerships named *Klaus*.

Feature descriptions

∟_{Structure sharing}

Our example with children: Structure sharing

Do we describe one or two children of Peter and Anna?

- Klaus is a single child that belongs to both parents.
- What about Max?

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

220/325

Feature descriptions, feature structures and models

Feature descriptions

 $\sqsubseteq_{\mathsf{Unification}}$

Unification

- Grammatical rules & lexical items are described by feature descriptions.
- Grammatical rules contain partial descriptions of daughters, but not the complete information.
- A specific phrase has to be compatible with the demands regarding the daughter to be able to enter the structure.
- Term for this specific kind of compatibility: **unifyability**
- When two structures are unified, the result is a new structure containing all information of the two unified structures and nothing more.

Feature descriptions, feature structures and models

Feature descriptions

└─Cyclic structures

Our example with children: Cyclic descriptions

• 2 is placed in front of the description and occurs within it.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

221/325

Feature descriptions, feature structures and models

Feature descriptions

 $\sqsubseteq_{\mathsf{Unification}}$

Example: Detective agency

- We are searching for a blond, female person named Meier.
- A possible description:

person
LASTNAME meier
GENDER female
HAIRCOLOR blonde

 If we get a search result matching the following description, we change the agency.

person
LASTNAME meier
GENDER male
HAIRCOLOR red

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

└─ Unification

Example: Detective agency

• We are searching for a blond, female person named Meier.

person
LASTNAME meier
GENDER female
HAIRCOLOR blonde

a possible result:

person
FIRSTNAME katharina
LASTNAME meier
GENDER female
DATE-OF-BIRTH 15.10.1965
HAIRCOLOR blonde

Katharina Meier may have further properties unknown to the detective.
 Important: those he does know have to be compatible to the request.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

224/325

Grammatical theory

Feature descriptions, feature structures and models

Phenomena, models and formal theories

226/325

Phenomena, models and formal theories

Feature descriptions, feature structures and models

Feature descriptions

└─ Unification

Example: Detective agency

The unification of the request

with the information of the detective

person
LASTNAME meier
GENDER female
HAIRCOLOR blonde

person
FIRSTNAME katharina
LASTNAME meier
GENDER female
DATE-OF-BIRTH 15.10.1965
HAIRCOLOR blonde

is not the following, since he does not have any information about children:

person

FIRSTNAME katharina

LASTNAME meier

GENDER female

DATE-OF-BIRTH 15.10.1965

HAIRCOLOR blond

CHILDREN $\langle \rangle$

The detective may not invent properties! He risks his job by providing possibly wrong information!

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

225/325

Grammatical theory

Feature descriptions, feature structures and models

— Homewor

Homework

- 1. Think about how one could describe musical instruments using feature descriptions.
- 2. Come up with a type hierarchy for the word classes (det, comp, noun, verb, adj, prep). Think about the ways in which one can organize the type hierarchy so that one can express the generalizations that where captured by the binary features in on slide 116.
- 3. I motivated the introduction of lists. This may look like an extension of the formalism, but it is not as it is possible to convert the list notation into a notation which only requires feature-value pairs. Think about how one could do this.
- 4. (Additional exercise) The relation append will play a role in the introduction of HPSG. This relation serves to combine two lists to form a third. Relational constraints such as append do in fact constitute an expansion of the formalism. Using relational constraints, it is possible to relate any number of feature values to other values, that is, one can write programs which compute a particular value depending on other values. This poses the question as to whether one needs such powerful descriptive tools in a linguistic theory and if we do allow them, what kind of complexity we afford them. A theory which can do without relational constraints should be preferred over one that uses relational constraints (see Müller 2013b: Chapter 20 for a comparison of theories).

For the concatenation of lists, there is a possible implementation in feature structures without recourse to relational constraints. Find out how this can be done. Give your sources and document how you went about finding the solution.

$$\begin{bmatrix} word & \\ ORTH \ (\ Grammatk \) \\ SYN[CAT]SUBCAT \ (\ DET \) \\ SEM \begin{bmatrix} IND \ \square \\ INST \ \square \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} word \\ ORTH \ (\ Hild \) \\ SYN[CAT]SUBCAT \ (\ DET \) \\ SEM \begin{bmatrix} IND \ \square \\ INST \ \square \end{bmatrix} \end{bmatrix} \begin{bmatrix} word \\ ORTH \ (\ Hild \) \\ SYN[CAT]SUBCAT \ (\ DET \) \\ SYN[CAT]SUBCAT \ (\ DET \) \\ SEM \begin{bmatrix} IND \ \square \\ INST \ \square \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} word \\ ORTH \ (\ DET \) \\ SYN[CAT]SUBCAT \ (\ DET \)$$

$$\begin{bmatrix} word \\ ORTH & (\ \ \ \ \) \\ SYN[CAT]SUBCAT & (\ DET \ \) \\ IND & ORTHOUS \\ SEM & [IND & ORTHODOLOGY \\ RESTR & [INST & ORTHODOLOGY] \\ \end{bmatrix} \end{bmatrix}$$

Grammatical theory Lexical Functional Grammar (LFG)

Stefan Müller Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de December 9, 2020

Grammatical theory

Lexical Functional Grammar (LFG)

Reading material

Müller 2020b: Chapter 7 (without 7.1.5 on semantics)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

228/325

Grammatical theory

Lexical Functional Grammar (LFG)

Lexical Functional Grammar (LFG)

- Developed by Joan Bresnan and Ron Kaplan in the 1980s.
- LFG is part of so-called West-Coast-Linguistics: Joan Bresnan (LFG) and Ivan Sag (HPSG) did their PhD with Chomsky (MIT is situated at the East Coast of the US, while Stanford, Palo Alto and Berkeley are in the Bay Area in California)
- LFG aims for psycholinguistical plausibility and wants to be implementable
- teaching material and overview articles: Bresnan et al. 2016; Dalrymple 2006
- In-depth works on German: Berman 1996; 2003 and Cook 2001

Grammatical theory

Lexical Functional Grammar (LFG)

 \sqsubseteq General remarks on the representational format

General remarks on the representational format

- multiple levels of representation:
 - c-structure (constituent structures, licensed by PSG, \overline{X} structures)
 - f-structure (functional structure)
- Mappings relate c- and f-structure.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

229/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

General remarks on the representational format

Functional structure

Grammatical functions and f-structure

- In LFG, grammatical functions (subject, object, ...) play a very important role. They are primitives of the theory.
- A sentence such as (156a) has the functional structure in (156b):

(156) a. David devoured a sandwich.

b.
$$\begin{bmatrix} \text{PRED 'DEVOUR}\langle \text{SUBJ}, \text{OBJ} \rangle' \\ \text{SUBJ } \begin{bmatrix} \text{PRED 'DAVID'} \\ \text{OBJ } \begin{bmatrix} \text{SPEC A} \\ \text{PRED 'SANDWICH'} \end{bmatrix} \end{bmatrix}$$

- All lexical items that have a meaning (e.g. nouns, verbs, adjectives) contribute a PRED feature with a corresponding value.
- The grammatical functions governed by a head (government = subcategorization) are determined in the specification of PRED.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

231/325

Lexical Functional Grammar (LFG)

General remarks on the representational format

Functional structure

Non-governable grammatical functions

Apart from this there are non-governable grammatical functions.

Examples:

ADJ: adjuncts

TOPIC: the topic of an utterance FOCUS: the focus of an utterance

General remarks on the representational format

Functional structure

Governable grammatical functions

The respective grammatical functions are called *governable grammatical functions*. Examples:

SUBJ: subject

OBJ: object

COMP sentential complement

OBJ_a: secondary OBJ functions that are related to a special, language

specific set of grammatical roles; English has OBJ_{THEME} only.

 OBL_{θ} : a group of thematically restricted oblique functions, as for instance

 $\mathsf{OBL}_{\mathsf{GOAL}}$ or $\mathsf{OBL}_{\mathsf{AGENT}}$. These often correspond to adpositional phrases

in c-structure.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

232/325

Lexical Functional Grammar (LFG)

General remarks on the representational format

Functional structure

Functional descriptions

Reference to a value of the feature TENSE in the functional structure f:

(157) (f TENSE)

It is possible to say something about the value which this feature should have in the feature description.

(158) (f TENSE) = PAST

The value of a feature may also be a specific f-structure. (159) ensures that the SUBJ feature in f is the f-structure g:

(159) (f SUBJ) = g

General remarks on the representational format

Functional structure

Descriptions and f-structures

(160) a. David sneezed.

b.
$$(f \text{ PRED}) = \text{'SNEEZE}(\text{SUBJ})'$$

 $(f \text{ TENSE}) = \text{PAST}$
 $(f \text{ SUBJ}) = g$
 $(g \text{ PRED}) = \text{'DAVID'}$

The description in (160b) describes the following structure:

(161)
$$f$$
: $\begin{bmatrix} PRED & SNEEZE(SUBJ)' \\ TENSE & PAST \\ SUBJ & g: [PRED 'DAVID'] \end{bmatrix}$

(160b) also describes many other structures which contain further features. We are only interested in minimal structures containing the information provided in the description.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

235/325

Lexical Functional Grammar (LFG)

General remarks on the representational format

Functional structure

Heads and f-structure

A phrase and its head always correspond to the same f-structure:

(163)
$$V' \phi$$
 $V PRED SNEEZE(SUBJ)'$
 $V TENSE PAST$
sneezed

Lexical Functional Grammar (LFG)

General remarks on the representational format

Functional structure

Mappings from c-structure to f-structure

(162) a. David sneezed.

A phrase and its head always correspond to the same f-structure. IP, I' and I (and also VP) are mapped onto the same f-structure.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

236/325

Lexical Functional Grammar (LFG)

General remarks on the representational format

Functional structure

IP, I, I and VP are mapped to the same f-structure

In LFG grammars of English, the CP/IP system is assumed as in GB-Theorie. IP, I' and I (and also VP) are mapped onto the same f-structure.

(164) a. David is yawning.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

238/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

General remarks on the representational format

└─ Completeness

Completeness

Elements required in the PRED value have to be realized.

(165) a. * David devoured.

b.
$$\begin{bmatrix} PRED 'DEVOUR(SUBJ,OBJ)' \\ SUBJ & \begin{bmatrix} PRED 'DAVID' \end{bmatrix} \end{bmatrix}$$

OBJ is missing a value in (165b), which is why (165a) is ruled out by the theory.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

239/325

Lexical Functional Grammar (LFG)

General remarks on the representational format

Restrictions on the c-structure/f-structure relation

Restrictions on the c-structure/f-structure relation

↑: the f-structure of the immediately dominating node

 $\ensuremath{\downarrow}$: f-structure of the c-structure node bearing the annotation

$$(167) \quad \mathsf{V'} \to$$

 $\uparrow = \downarrow$

f-structure of the mother = own f-structure

Lexical Functional Grammar (LFG)

General remarks on the representational format

 $\mathrel{\ } \mathrel{\ } \mathrel{\$

Coherence

All argument functions in a given f-structure have to be selected in the value of the local PRED attribut.

(166) a. * David devoured a sandwich that Peter sleeps.

b.
$$\begin{bmatrix} \text{PRED} & \text{'DEVOUR}(\text{SUBJ}, \text{OBJ})' \\ \text{SUBJ} & [\text{ PRED} '\text{DAVID'}] \\ \text{OBJ} & \begin{bmatrix} \text{SPEC} & A \\ \text{PRED} '\text{SANDWICH'} \end{bmatrix} \\ \text{COMP} & \begin{bmatrix} \text{PRED} & \text{'SLEEP}(\text{SUBJ})' \\ \text{SUBJ} & \begin{bmatrix} \text{PRED} & \text{'PETER'} \end{bmatrix} \end{bmatrix} \end{bmatrix}$$

(166a) is ruled out because COMP does not appear under the arguments of devour.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

240/325

Lexical Functional Grammar (LFG)

General remarks on the representational format

Restrictions on the c-structure/f-structure relation

V rule with object

(169)
$$V' \rightarrow V \qquad NP$$

 $\uparrow = \downarrow (\uparrow OBJ) = \downarrow$

$$(170) \qquad \bigvee_{\mathsf{NP}} \left[\mathsf{OBJ} \left[\right] \right]$$

annotation on the NP:

the OBJ value in the f-structure of the mother (\uparrow OBJ) is identical to the f-structure of the NP node (\downarrow).

General remarks on the representational format

Restrictions on the c-structure/f-structure relation

A lexical entry

Similarly in lexical entries:

(171) sneezed V (
$$\uparrow$$
 PRED) = 'SNEEZE(SUBJ)' (\uparrow TENSE) = PAST

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

243/325

Lexical Functional Grammar (LFG)

L Passive

Lexical Integrity

Lexical Integrity

■ Bresnan & Mchombo (1995):

Words are atoms of syntactic structure.

Syntactic rules cannot create new words or make reference to the internal structure of words.

- Every terminal node (each "leaf" of the tree) is a word.
- This means: Pollock's (1989) analysis of (173) is excluded:

(173) Marie ne parl-er-ait pas Marie NEG speak-COND-3SG NEG 'Marie would not speak.'

In Pollock's analysis, the various morphemes are in specific positions in the tree and are combined only after certain movements have been carried out.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

244/325

Lexical Functional Grammar (LFG)

L Passive

Lexical Integrity

GB analysis with morphemes as terminal symbols (Pollock 1989)

Marie ne parl-er-ait pas Marie NEG speak-COND-3SG NEG Lexical Functional Grammar (LFG)

— Passive

— Lexical integrity and passive

Lexical integrity and passive (I)

 observation: there are passivized adjectives which show the same morphological idiosyncrasies as the corresponding participles (Bresnan 2001: 31)

(174) a. a well-written novel (write – written)

b. a recently given talk (give - given)

c. my broken heart (break - broken)

d. an uninhabited island (inhabit - inhabited)

e. split wood (split - split)

 The adjectival participles have passive argument structure: the subject is suppressed and the object is what is predicated over (the noun):

(175) a. Aicke broke my heart.

b. My heart is broken.

c. my broken heart

(176) a. My friend is smart.

b. my **smart friend**

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

246/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

L Passive

Lexical integrity and passive

Lexical integrity and passive (II)

- Passive participle and adjectival participle have the same form:
 - (177) a. Aicke broke my heart.
 - b. My heart was broken.
 - c. my **broken** heart
- If one assumes lexical integrity, then adjectives have to be derived in the lexicon.
- If the verbal passive were not a lexical process, but rather a phrase-structural one, then the form identity would remain unexplained.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

247/325

The lexical rule

Passive as a lexical process

Lexical Functional Grammar (LFG)

L Passive

- The assignment of grammatical functions is regulated by the Lexical Mapping Theory.
- Earlier works (Bresnan 1982b) had an explicit formulation of the passive rule:

(178) Passive rule:

$$(SUBJ) \mapsto \emptyset/(OBL)$$

$$(OBJ) \mapsto (SUBJ)$$

This means: The subject is either not expressed at all (\emptyset) or as oblique Eelement (as a von-PP in German)

If there is an accusative object, this will be realized as subject.

Lexical Functional Grammar (LFG)

L Passive

Passive as a lexical process

Passive as a lexical process

- Grammatical functions are primitives of the theory.
 (that is not derived from tree positions [e.g. subject = SpecIP])
- Words (that is, fully inflected word forms) determine grammatical functions of their arguments.
- There is a hierarchy of grammatical functions.
- When participles are formed in morphology, the highest argument is suppressed.
- The next-highest argument is not realized as OBJECT but as SUBJECT.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

248/325

Grammatical theory

Lexical Functional Grammar (LFG)

∟_{Verb position}

Verb position

- two options:
 - a trace in verb-final position (as in GB) (see Choi 1999, Berman 1996: Section 2.1.4) and
- so-called extended head domains (see Berman 2003).
- Extended head domains: verb is simply omitted in the verb phrase:

(179) $VP \rightarrow NP*(V)$

(preliminary version)

All parts of the VP are optional (indicted by brackets and Kleene star).

- As in GB analyses, the verb is in the C position.
- It contributes f-structure informtion from there.
- VP without V????

We have to make sure that all necessary items are present and nothing more: coherence and completeness.

Where the necessary information for this comes from is not important.

Grammatical theory

Lexical Functional Grammar (LFG)

∟_{Verb position}

An example of the verb placement analysis

Analysis adapted from Berman (2003: 41).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

251/325

Grammatical theory

Lexical Functional Grammar (LFG)

Local reordering

Local reordering

- Two options are discussed:
 - movement of arguments from a base configuration as in GB (see Choi 1999)
 - direct licensing by phrase structure rules (see Berman 1996: Section 2.1.3.1; 2003)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

252/325

Grammatical theory

Lexical Functional Grammar (LFG)

Local reordering

Local reordering as "base generateion" (I)

• Case requirements are specified in lexical items:

(180) verschlingt V (
$$\uparrow$$
 PRED) = 'VERSCHLINGEN(SUBJ,OBJ)' (\uparrow SUBJ AGR CAS) = NOM (\uparrow OBJ AGR CAS) = ACC (\uparrow TENSE) = PRES

- GPSG: all arguments are combined with the head in one go.
- LFG: no argument is combined with the verb and we get a VP without anything.

$$(181) \quad \mathsf{VP} \quad \to \quad (\mathsf{V})$$

$$\uparrow = .$$

- Hm.
- But this is just to get the recursion going.

Grammatical theory

Lexical Functional Grammar (LFG)

Local reordering

Local reordering as "base generateion" (II)

• Case requirements are specified in lexical items:

(182) verschlingt V (
$$\uparrow$$
 PRED) = 'VERSCHLINGEN(SUBJ,OBJ)' (\uparrow SUBJ AGR CAS) = NOM (\uparrow OBJ AGR CAS) = ACC (\uparrow TENSE) = PRES

(183) VP
$$\rightarrow$$
 (V) $\uparrow = ...$

• Recursive rule to add NP arguments:

(184) VP
$$\rightarrow$$
 NP VP $(\uparrow SUBJ \mid OBJ \mid OBJ_{\theta}) = \downarrow \uparrow = \downarrow$

• similar rules for PP arguments and so on.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

254/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

Lexical Functional Grammar (LFG)

Local reordering

Binary branching with normal order (nom, acc)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

255/325

Lexical Functional Grammar (LFG)

Long-distance dependencies

 $\mathrel{\bigsqcup}_{\mathsf{Discourse}\;\mathsf{functions}}$

Long-distance dependencies: Discourse functions (I)

- Observation: the displaced constituent *Chris* is characterized by two functions:
 (185) Chris, we think that David saw.
 - an argument function which is normally realized in a different position: the OBJ function of saw
 - a certain emphasis of the information-structural status in this construction:
 TOPIC in the matrix clause a discourse function

Grammatical theory

Lexical Functional Grammar (LFG)

Local reordering

Binary branching with marked order (acc, nom)

Lexical Functional Grammar (LFG)

Long-distance dependencies

 $\mathrel{\bigsqcup}_{\mathsf{Discourse}} \; \mathsf{functions}$

Discourse functions (II)

- grammaticalized discourse functions: TOPIC and FOCUS (SUBJ is a default discourse function).
 - Only **grammaticalized** discourse functions are represented on the level of fstructure, that is, those that are created by a fixed syntactic mechanism and that interact with the rest of the syntax.
 - TOPIC and FOCUS are not lexically subcategorized and are therefore not subject to the completeness and coherence conditions.
 - TOPIC and FOCUS are identified with an f-structure that bears an argument function.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

257/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Long-distance dependencies

 $\mathrel{\bigsqcup_{\mathsf{Discourse}}} \mathsf{functions}$

Discourse functions in f-structure

(186) a. Chris, we think that David saw.

The line means: The value of TOPIC is identical to COMP OBJ.

The constraint: $(\uparrow \text{TOPIC}) = (\uparrow \text{COMP OBJ})$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

259/325

261/325

Lexical Functional Grammar (LFG)

Long-distance dependencies

L Discourse functions

Different levels of embedding (II)

(188) a. Chris, we think Anna claims that David saw.

The constraint: (\(\TOPIC\)=(\(\TOMP\) COMP COMP OBJ)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Lexical Functional Grammar (LFG)

Long-distance dependencies

 $\sqsubseteq_{\mathsf{Discourse}}$ functions

Different levels of embedding (I)

(187) a. Chris, we saw.

The constraint: $(\uparrow \text{TOPIC}) = (\uparrow \text{OBJ})$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

260/325

Lexical Functional Grammar (LFG)

Long-distance dependencies

Functional uncertainty

Functional uncertainty

• The constraints are c-structure constraints:

(189) CP
$$\rightarrow$$
 XP C' $(\uparrow \text{TOPIC}) = \downarrow$ $\uparrow =$ $(\uparrow \text{TOPIC}) = (\uparrow \text{COMP OBJ})$

But we have different levels of embedding:

• The generalization over these equations is:

(191)
$$(\uparrow \text{TOPIC}) = (\uparrow \text{COMP}^* \text{ OBJ})$$

The Kleene star '*' stands for arbitrarily many repetitions of COMP.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Long-distance dependencies
Functional uncertainty

Disjunctions and variables for grammatical functions

- The fronted element is not necessarily a TOPIC, FOCUS is possible as well.
- It is possible to state disjunctions:

(192) (
$$\uparrow$$
 TOPIC|FOCUS)=(\uparrow COMP* OBJ)

• TOPIC|FOCUS can be abbreviated by using the shortcut DF (discourse function).

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

263/325

Grammatical theory

Lexical Functional Grammar (LFG)

L-summan

Summary

- LFG is unification-based/constraint-based and works with feature structures and PSG rules.
- Grammatical functions are primitives of LFG, they are not defined with reference to structure (as in GB)
- LFG is strongly lexicalized. Valence alternations like passivization are captured in the lexicon via lexical rules.

Functional uncertainty

German example

Grammatical theory

Categorial Grammar (CG)

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Grammatical theory

Grammatical theory

Categorial Grammar (CG)

Categorial Grammar (CG)

Reading material

Müller 2020b: Chapter 8 (without 8.1.2 on semantics)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

266/325

Representation of valence information

complex categories replace the SUBCAT feature of GPSG

Category in the lexicon Rule

 $vp \rightarrow v(ditrans) np np$ (vp/np)/np $vp \rightarrow v(trans) np$ vp/np $vp \rightarrow v(np_and_pp) np pp(to)$ (vp/pp)/np

Very few, very abstract rules:

General remarks on the representational format

(193) Forward application X/Y * Y = X

Combine an X looking for a Y with a Y, where Y occurs to the right of X/Y.

• Valence is encoded just once, namely in the lexicon. Until now we had two places for this: the SUBCAT feature and the grammar rules.

Grammatical theory

Categorial Grammar (CG)

Categorial Grammar (CG)

- Categorial Grammar is the second oldest of the approaches discussed here (Ajdukiewicz 1935).
- Hotspots: Edinburgh, Uetrecht and Amsterdam
- Semanticists love CG since it syntactic combination goes hand in hand with semantic combination.
- Important articles and books: Steedman (1991; 2000); Steedman & Baldridge (2006)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

267/325

Grammatical theory

Categorial Grammar (CG)

General remarks on the representational format

Forward application

(194) Forward application

$$X/Y * Y = X$$

Combine an X looking for a Y with a Y, where Y occurs to the right of X/Y.

chased Mary vp/np

The category v is not needed any longer.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

268/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

- Categorial Grammar (CG)
- General remarks on the representational format

CG proofs vs. trees

• CG derivations may seem strange on first encounter, but you can also depict them as trees.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

270/325

Grammatical theory

- Categorial Grammar (CG)
- General remarks on the representational format

Backward application

vp can be eliminated as well: vp = s\np

(195) Backward application

$$Y * X \setminus Y = X$$

$$\frac{\frac{the}{np/n} \frac{cat}{n}}{np} > \frac{\frac{chased}{(s \setminus np)/np} \frac{Mary}{np}}{s \setminus np} > \frac{s \setminus np}{s}$$

- no explicit distinction between words and phrases:
 - intransitive verb = verb phrase = $(s \setminus np)$
 - similarly proper names = nominal phrases = np

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

271/325

Grammatical theory

Categorial Grammar (CG)

General remarks on the representational format

272/325

Modification

- optional modification:
 - $vp \rightarrow vp pp$
 - $noun \rightarrow noun pp$
 - arbitrarily many PPs after a VP or a noun
- modifiers in general: $X \setminus X$ or X/X
- premodifier for nouns: noun → adj noun adjective = n/n
- postmodifier for nouns: $n \setminus n$
- vp modifier: $\rightarrow X = s \setminus np$
- vp modifier: $(s \ np) \ (s \ np)$.

Grammatical theory

Categorial Grammar (CG)

General remarks on the representational format

Derivation with a Categorial Grammar

Categorial Grammar (CG) └Verb position

└─Variable branching

Verb position

• Steedman (2000: 159) for Dutch:

(196) a. verb-final gaf ('give'): $(s_{+SUB} \setminus np) \setminus np$

b. verb-initial gaf ('give'): (s_SUB/np)/np

One item takes arguments to the left the other one to the right.

Lexical items are related by lexical rule.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

274/325

Categorial Grammar (CG)

└Verb position

└─Verb position with empty element

Verb position with empty element

Jacobs (1991): empty element in final position taking the arguments of the verb and the verb in initial position as arguments. Categorial Grammar (CG)

└─Verb position

└─Variable branching

Comment on variable branching analysis

Note that NPs are combined in different orders: To get normal order, one would have to assume:

(197) a. verb-final: $(s_{+SUB} \setminus np[nom]) \setminus np[acc]$

b. verb-initial: (s_SUB/np[acc])/np[nom]

Two different branchings. So Müller 2005 for criticism.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

275/325

Grammatical theory

Categorial Grammar (CG)

Local reordering

Local reordering

- Until now: combinations either to the left or to the right. Combinations always in a fixed order from outside inwards.
- Steedman & Baldridge (2006) distinguish:
 - languages in which the order of combination does not matter
 - languages in which the direction of combination does not matter

English $(s \neq np)/np$ S(VO) free order Latin s{|np[nom], |np[acc] }

s{/np[nom], /np[acc] } Tagalog free order, verb-initial Japanese s{\np[nom], \np[acc] } free order, verb-final

Elements in brackets can be combined with s in any order.

'|' instead of '\' or '/' means that direction of combination is free.

Grammatical theory

└─ Categorial Grammar (CG)

└─ Passive

Passive: A lexical rule

• Lexical rule (Dowty 1978: 412; Dowty 2003: Section 3.4):

(198)
$$\alpha \in (s \setminus np)/np \rightarrow PST-PART(\alpha) \in PstP/np_{by}$$

For every (strictly) transitive verb α , there is a past participle form with the category PstP/np $_{by}$. np $_{by}$ stands for the by-PP.

example:

(199) a. touch: $(s\np)/np$

b. touched: $PstP/np_{by}$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

278/325

Grammatical theory

Categorial Grammar (CG)

L Passive

And German?

• Well, due to the possibility of reordering items, we have sets:

(200) a. lieben 'to love':
$$s_{+SUB} \{ \ \ | [nom]_i, \ \ \ | [acc]_j \}$$

b. geliebt 'loved': $s_{pas} \{ \np[nom]_j, \pp[von]_i \}$

• Passive rule would be different for German and English.

Grammatical theory

Categorial Grammar (CG)

L_{Passive}

Passive: An example derivation

$$\frac{John}{np} \frac{was}{(s \backslash np)/PstP} \frac{touched}{PstP/np_{by}} \frac{by}{np_{by}/np} \frac{Mary.}{np} \\ \frac{R}{np_{by}/np} \frac{hp_{by}}{np} > \\ \frac{R}{np_{by}/np} > \\ \frac{R}$$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

279/325

Grammatical theory

Categorial Grammar (CG)

Long distance dependencies

Long distance dependencies

- Steedman (1989: Section 1.2.4): analysis of long distance dependencies without movement and empty elements.
 - (201) a. These apples, Harry must have been eating.
 - b. apples which Harry devours
- Harry must have been eating and Harry devours are just s/np.
- But the missing np is missing at the end of the clause. We need an extension!
 Type raising.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

280/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Type Raising

The category np can be transformed into the category (s/(s np)) by *type raising*. Combining this category with (s np) yields the same result as combining np and (s np) with backward application.

(202) a.
$$np * s \ p \rightarrow s$$

b. $s/(s \ p) * s \ p \rightarrow s$

Type raising simply reverses the direction of selection:

- a: vp is the functor and the np is the argument
- b: type raised np is the functor, and the vp is the argument.

The result is the same: s.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

282/325

282/325

Categorial Grammar (CG)

Long distance dependencies

Forward and backward composition

Forward and backward composition: Passing the np on

$$\frac{These \; apples}{np} \quad \frac{Harry}{s/(s \backslash np)} \quad \frac{must}{(s \backslash np)/vp} \quad \frac{have}{vp/vp\text{-}en} \quad \frac{been}{vp\text{-}en/vp\text{-}ing} \quad \frac{eating}{vp\text{-}ing/np} \\ \frac{s/vp}{s/vp\text{-}en} \rightarrow B \\ \frac{s/vp\text{-}ing}{s/np} \rightarrow B$$

Categorial Grammar (CG)

Long distance dependencies

Forward and backward composition

Forward and backward composition

• Two additional means of combination: forward and backward composition:

(203) a. Forward composition (> B)
$$X/Y * Y/Z = X/Z$$

b. Backward composition (< B) $Y \setminus Z * X \setminus Y = X \setminus Z$

• Example forward composition:

(204) Forward composition (> B)
$$X/Y * Y/Z = X/Z$$

If I find a Y, then I am a complete X.

- I have a Y, but a Z is missing.
- If I combine X/Y with Y/Z despite the missing Z, I get something still lacking a Z.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

283/325

Categorial Grammar (CG)

Long distance dependencies

Forward and backward composition

The top of the dependency: The topicalization rule

Steedman (1989):

rule for turning an X into a functor selecting a sentence lacking an X:

(205) Topicalization (\uparrow): $X \Rightarrow st/(s/X)$ where $X \in \{ \text{ np, pp, vp, ap, s'} \}$ Categorial Grammar (CG)

Long distance dependencies

Forward and backward composition

Topicalization long distance

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

286/325

Apples I beli

Topicalization across clause boundaries

 $\frac{Apples}{st/(s/np)} \xrightarrow{I} \frac{believe}{s/(s \setminus np)} \xrightarrow{s/s} \frac{that}{s'/s} \xrightarrow{Harry} \frac{eats}{(s \setminus np)/np} \xrightarrow{s/s} B$

s/np

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

287/325

Categorial Grammar (CG)

Long distance dependencies

Forward and backward composition

Extraction from the middle?

- Extraction from the middle is unproblematic in a GPSG-style analysis.
- CG would look correspond to the tree on the right.
- But we neither have the category for *Fido* nor can we combine *we* and *put*.

Categorial Grammar (CG)

Categorial Grammar (CG)

Long distance dependencies

Forward and backward composition

Long distance dependencies

Forward and backward composition

Additional rules

- We can combine Y with Y missing two things:
 - (206) Forward composition for n=2 (> BB) X/Y * (Y/Z1)/Z2 = (X/Z1)/Z2
- Topicalization turns X2 into a functor:
 - (207) Topicalization for n=2 ($\uparrow\uparrow$): X2 \Rightarrow (st/X1)/((s/X1)/X2) where X1 and X2 \in { NP, PP, VP, AP, S' }

The result of the combination is something that still needs the element from the right periphery of the clause (X1).

Something with the gap (X2) at the outside is selected.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

289/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Categorial Grammar (CG)

Long distance dependencies

Forward and backward composition

Analysis of fronting middle argument

$$\frac{\frac{Fido}{(st/pp)/((s/pp)/np)} \xrightarrow{>\uparrow\uparrow} \frac{we}{s/(s\backslash np)} \frac{put}{((s\backslash np)/pp)/np} \xrightarrow{downstairs}}{\frac{(s/pp)/np}{st/pp}}$$

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

290/325

Categorial Grammar (CG)

Summary and classification

Lexical and phrasal approaches

Lexical and phrasal approaches

- GPSG: approaches with valence in rules have problems with
 - morphology
 - partial fronting
- This also carries over to phrasal approaches in Construction Grammar.
 See Müller & Wechsler 2014 and Müller 2020b: Chapter 21 for extensive discussion.
- Construction Grammarians often argue for phrasal approaches based on language acquisition, which is pattern-based, but look:

Grammatical theory

Categorial Grammar (CG)

LSummary and classification

Summary and classification

- lexical and phrasal approaches
- headless constructions
- relative clauses and nonlocal dependencies

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

291/325

Categorial Grammar (CG)

Summary and classification

Lexical and phrasal approaches

Trees are determined lexically

The pattern [Subj Verb Obj] is completely determined by $(s \neq 0)/np$.

The lexicon tells the syntax what to do!

And there is room for adjuncts!

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Categorial Grammar (CG)

Summary and classification

Lexical and phrasal approaches

Headless constructions

- CG has very few combinatorial schemata.
 They all assume a functor and an argument.
- But there are constructions where it is difficult/impossible to argue for a head.
 Matsuyama (2004) and Jackendoff (2008) discuss the NPN Construction:
 - (208) a. Student after student left the room.
 - b. Day after day after day went by, but I never found the courage to talk to her.⁷
- This really seems to be a phrasal pattern.
 GPSG, CxG, HPSG, LFG, TAG can do this, Minimalism, CG, DG can't.
 (but see Hudson 2021 on a Word Grammar solution)

⁷Bargmann (2015)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

294/325

Categorial Grammar (CG)

Summary and classification

Relative clauses and nonlocal dependencies

296/325

Relative clauses and nonlocal dependencies

$$\frac{that}{(n\backslash n)/(s/np)} \quad \frac{\underset{s/(s\backslash np)}{Manny}}{\underset{s/(s\backslash np)}{>T}} \quad \frac{says}{(s\backslash np)/s} \quad \frac{Anna}{s/(s\backslash np)} \quad \frac{married}{(s\backslash np)/np} \\ \xrightarrow{s/s} \quad \Rightarrow B \quad \frac{s/np}{s/np} \\ \xrightarrow{s/np} \quad \Rightarrow B$$

Categorial Grammar (CG)

Summary and classification

Relative clauses and nonlocal dependencies

Relative clauses and nonlocal dependencies

Steedman & Baldridge (2006: 614):

(209) the man that Manny says Anna married

Lexical entry for relative pronoun:

(210) $(n\n)/(s/np)$

If I find a sentence missing an NP to the right of me, I can form a noun modifier $(n \setminus n)$ with it.

The relative pronoun is the head (functor) in this analysis.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

295/325

Categorial Grammar (CG)

Summary and classification

Relative clauses and nonlocal dependencies

Remark regarding this analysis

Pollard (1988): relative pronoun = head? What about pied piping?

- (211) a. Here's the minister [[in [the middle [of [whose sermon]]]] the dog barked].⁸
 - b. Reports [[the height of the lettering on the covers of which] the government prescribes] should be abolished.⁹

See Morrill 1995; Steedman 1997 for proposals.

⁸ Pollard & Sag (1994: 212) ⁹ Ross (1967: 109)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Categorial Grammar (CG) Summary and classification $\mathrel{\mathrel{\sqsubseteq}_{\mathsf{Summary}}}$

Summary

- simple combinatory rules
- always functor-based
- nonlocal dependencies without empty elements but with composition Results in unusual constituents, but Steedman (1989) argues that they are needed for coordination.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

298/325

Grammatical theory

Tree Adjoining Grammar (TAG)

Stefan Müller

Institute for German Language and Linguistics, Syntax Lab Sprach- und literaturwissenschaftliche Fakultät HU Berlin

St.Mueller@hu-berlin.de

December 9, 2020

Grammatical theory

Categorial Grammar (CG)

 $\mathrel{\sqsubset}_{\mathsf{Homework}}$

Homework

Analyze the sentence:

(212) The children in the room laugh loudly.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

299/325

Grammatical theory

Tree Adjoining Grammar (TAG)

Reading material

Müller 2020b: Chapter 12.1–12.5 (without 12.1.4 on semantics)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

- TAG was developed by Aravind Joshi (University of Pennsylvania).
- Computational complexity seems to be exactly what is needed for human languages.
- hotspots: Paris 7 (Anne Abeillé), Columbia University in the USA (Owen Rambow) and Düsseldorf, Germany (Laura Kallmeyer)
- important papers: Joshi, Levy & Takahashi 1975; Joshi 1987; Joshi & Schabes 1997
- on German: Rambow 1994, Joshi, Becker & Rambow 2000, Gerdes 2002

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

301/325

Tree Adjoining Grammar (TAG) General remarks on representational format

Lelementary Trees

Elementary Trees

Node for inserting arguments are marked with ↓ (NP in the tree of laughs).

Nodes for inserting adjuncts are marked by '*' (VP in the tree of always).

Tree Adjoining Grammar (TAG)

Grammatical theory

General remarks on representational format

General remarks on representational format

- The basic idea is really simple: Every head is paired with a tree in which the head can appear.
- Such trees can be combined with other trees into more complex trees. There are two operations: substitution and adjunction.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

302/325

Tree Adjoining Grammar (TAG)

General remarks on representational format

Substitution

The substitution nodes have to be filled by other trees.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

304/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

General remarks on representational format

∟_{Adjunction}

Adjunction

Adjunction trees may be inserted into other trees.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

305/325

Tree Adjoining Grammar (TAG)

Local reordering

Local reordering vie lexical rules

Option one: Local reordering via lexical rules

- There is a tree family for every word.
- six trees for a ditransitive verb corresponding to the six possible orders
- Trees are related via lexical rules.
- This approach is parallel to the one by Uszkoreit (1986) in Categorial Grammar.

Grammatical theory

Tree Adjoining Grammar (TAG)

Local reordering

Local reordering

- Arguments can appear in almost any order in the German Mittelfeld.
 - (213) a. [weil] der Mann dem Kind das Buch gibt because the NOM man the DAT child the ACC book gives 'because the man gives the book to the child'
 - b. [weil] der Mann das Buch dem Kind gibt because the NOM man the ACC book the DAT child gives
 - c. [weil] das Buch der Mann dem Kind gibt because the ACC book the NOM man the DAT child gives
 - d. [weil] das Buch dem Kind der Mann gibt because the ACC book the DAT child the NOM man gives
 - e. [weil] dem Kind der Mann das Buch gibt because the.DAT child the.NOM man the.ACC book gives
 - f. [weil] dem Kind das Buch der Mann gibt because the.DAT child the.ACC book the.NOM man gives

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

306/325

Tree Adjoining Grammar (TAG)

Local reordering

Local Domain/Linear Precedence

Option two: Local Domain/Linear Precedence (LD/LP)

Joshi, Vijay-Shanker & Weir (1990): linearization rules similar to GPSG/HPSG.

$$\alpha = \begin{array}{c} S_0 \\ \\ NP_1 \quad VP_2 \\ \\ V_{2,1} \quad NP_2. \end{array}$$

(214)
$$LP_1^{\alpha} = \{ 1 < 2, 2.1 < 2.2 \}$$

• The LP statement in (214) orders the nodes as we need them in English.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

307/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Local reordering

Local Domain/Linear Precedence

Local Domain/Linear Precedence

empty set of linearization constraints → anything goes.

(215) $LP_2^{\alpha} = \{ \}$

(216) a. NP₁ V NP₂

b. NP₂ V NP₁

c. $NP_1 NP_2 V$

d. $NP_2 NP_1 V$

e. $V NP_1 NP_2$

f. V NP₂ NP₁

Even though we have a NP-VP structure,
 NP₂ can be serialized to the left of NP₁ and NP₁ between V and NP₂.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

309/325

Tree Adjoining Grammar (TAG)

Local reordering

└─ Multi-Component TAG

Motivation for Multi-Component TAG

Joshi, Becker & Rambow (2000): Simple LTAGs cannot account for (219b):

- (219) a. ... daß der Detektiv dem Klienten [den Verdächtigen that the.NOM detective the.DAT client the.ACC suspect des Verbrechens zu überführen] versprach the.GEN crime to indict promised 'that the detective promised the client to indict the suspect of the crime'
 - b. ... daß des Verbrechens $_k$ der Detektiv den that the.GEN crime the.NOM detective the.ACC Verdächtigen $_j$ dem Klienten [$_j$ $_k$ zu überführen] versprach suspect the.DAT client to indict promised

Tree Adjoining Grammar (TAG)

Local reordering

└─ Multi-Component TAG

Verbal complexes

- TAG cannot deal with reorderings when arguments depend on different heads.
- Example of the general pattern:
 - (217) weil es ihr jemand zu lesen versprochen hat (Haider 1990) because it her somebody to read promised has 'because somebody promised her to read it'
- TAG cannot deal with sentences having a downstairs argument between the NPs from the upstairs verb:
 - (218) weil ihr es jemand zu lesen versprochen hat because her it somebody to read promised has

The trees would have to be merged somehow.

• The TAG formalism has to be extended for such cases: Multi-Component TAG.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

310/325

Tree Adjoining Grammar (TAG)

Local reordering

Multi-Component TAG

Verbal complexes: Elementary trees with moved arguments

└─Multi-Component TAG

 $NP_2^2 \downarrow$

 $NP_1^1\downarrow$

Local reordering

Verbal complexes: Adjunction option I

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

313/325

 $NP_1^2 \downarrow$ V_1 $NP_2^1\downarrow$ versprach promised PRO NP₂ zu überführen to indict © Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

314/325

Verbal complexes: Adjunction option II

Tree Adjoining Grammar (TAG) Local reordering

└─ Multi-Component TAG

MC lexical item for versprach 'promised'

dashed line: The S with the $NP_1^1 \downarrow$ sister has to dominate the other S node. There may be other nodes in between.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

Tree Adjoining Grammar (TAG)

∟_{Verb position}

Verb position

- Verb position could be analyzed as in GPSG as linearization variant.
- Since verb position is relevant for meaning, a lexical rule-based analysis may be more appropriate:
 - There are trees for the verb in initial position and in final position.
 - The trees are related by lexical rules.
 - The LRs correspond to transformations in GB:

A verb-final tree is related to a verb-initial tree.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

317/325

325

Grammatical theory

Tree Adjoining Grammar (TAG)

L_{Passive}

Passive

- There is a family of trees for each word.
- For each active tree there is a passive tree.
- Trees are related via lexical rules.
- These lexical rules correspond to transformations of GB mapping trees onto trees.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

318/325

Grammatical theory

Tree Adjoining Grammar (TAG)

Long-distance dependencies

Long-distance dependencies

Trees are inserted into the middle of other trees:

- (220) a. who_i did John tell Sam that Bill likes __i
 - b. who; did John tell Sam that Mary said that Bill likes _;

Grammatical theory

Tree Adjoining Grammar (TAG)

Long-distance dependencies

Obligatory adjunction

- The tree for WH COMP NP likes _i is a member of the tree family of likes and hence listed in the lexicon.
- Although the tree for (221) has the category S, (221) is not a well-formed sentence in English.

(221) * who that Bill likes

Label OA: there has to be an obligatory adjunction at respective nodes.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

319/325

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Feature-based TAG: FTAG

- FTAG uses AVMs to describe nodes.
- Every node consists of two parts, a top one and a bottom one.
- Exception: substitution nodes. They have just a top structure.
- The upper structure has to match the node into which it is inserted.
- For adjunction the upper one has to match the upper node into which it is inserted and the lower one the lower node.
- Pairs are kept till the end of the derivation and then a unification must be possible.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

321/325

OTHER STREET

Tree Adjoining Grammar (TAG)

New developments and theoretical variants

FTAG: Substitution

John is inserted into the substitution node and then every top structure has to match every bottom structure.

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

322/325

Tree Adjoining Grammar (TAG)

New developments and theoretical variants

∟_{FTA}

Obligatory adjunction enforced by incompatible features

Grammatical theory

Tree Adjoining Grammar (TAG)

Summary and classification

Idioms in TAG

Idioms are really simple (Abeillé & Schabes 1989):

This is the perfect Construction Grammar (and it is lexicalized!)!

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

Grammatical theory

Tree Adjoining Grammar (TAG)

Summary and classification

Summary

- L-TAG is really simple:
 - lexically anchored trees
 - two combination operations
- recursion is filtered out of trees
- no empty elements in the lexicon but in the trees
- various extensions of the core formalism (multi-component, feature-based)

© Stefan Müller 2020, HU Berlin, Institute for German Language and Linguistics

325/325

Grammatical theory

References

- Cook, Philippa Helen. 2001. Coherence in German: An information structure approach. Departments of Linguistics & German, University of Manchester dissertation
- Culy, Christopher. 1985. The complexity of the vocabulary of Bambara. Linguistics and Philosophy 8(3). 345–351. https://doi.org/10.1007/BF00630918.
- Dalrymple, Mary. 2006. Lexical Functional Grammar. In Keith Brown (ed.), The encyclopedia of language and linguistics, 2nd edn., 82–94. Oxford: Elsevier Science Publisher B.V. (North-Holland).
- de Saussure, Ferdinand. 1916. Grundfragen der allgemeinen Sprachwissenschaft. 2. Auflage 1967. Berlin: Walter de Gruyter & Co. Dowty, David R. 1978. Governed transformations as lexical rules in a
- Montague Grammar. Linguistic Inquiry 9(3). 393–426.

 Dowty, David R. 1979. Word meaning and Montague Grammar. (Synthese Language Library 7). Dordrecht: D. Reidel Publishing Company.
- Language Library 7). Dordrecht: D. Reidel Publishing Company.

 Dowty, David R. 1991. Thematic proto-roles and argument selection.

 Language 67(3). 547–619.
- Dowty, David R. 2003. The dual analysis of adjuncts and complements in Categorial Grammar. In Ewald Lang, Claudia Maienborn & Cathrine Fabricius-Hansen (eds.), Modifying adjuncts (Interface Explorations 4), 33–66. Berlin: Mouton de Gruyter.
- Drach, Erich. 1937. Grundgedanken der deutschen Satzlehre. 4., unveränderte Auflage 1963. Darmstadt: Wissenschaftliche Buchgesellschaft.
- Eisenberg, Peter, Jörg Peters, Peter Gallmann, Cathrine Fabricius-Hansen, Damaris Nübling, Irmhild Barz, Thomas A. Fritz & Reinhard Fiehler. 2005. *Duden: Die Grammatik*. 7th edn. Vol. 4. Mannheim, Leipzig, Wien, Zürich: Dudenverlag.
- Eroms, Hans-Werner. 2000. Syntax der deutschen Sprache. (de Gruyter Studienbuch). Berlin: Walter de Gruyter Verlag.
- Fanselow, Gisbert. 2001. Features, -roles, and free constituent order. Linguistic Inquiry 32(3). 405–437.
- Fillmore, Charles J. 1968. The case for case. In Emmon Bach & Robert T. Harms (eds.), *Universals of linguistic theory*, 1–88. New York: Holt, Rinehart, & Winston.

- Fillmore, Charles J. 1971. Plädoyer für Kasus. In Werner Abraham (ed.), Kasustheorie (Schwerpunkte Linguistik und Kommunikationswissenschaft 2), 1–118. Frankfurt/Main: Athenäum
- Fillmore, Charles J., Paul Kay & Mary Catherine O'Connor. 1988. Regularity and idiomaticity in grammatical constructions: The case of let alone. Language 64(3). 501–538.
- Fischer, Kerstin & Anatol Stefanowitsch (eds.). 2006. Konstruktionsgrammatik: Von der Anwendung zur Theorie. (Stauffenburg Linguistik 40). Tübingen: Stauffenburg Verlag.
- Frey, Werner. 1993. Syntaktische Bedingungen für die semantische Interpretation: Über Bindung, implizite Argumente und Skopus. (studia grammatica 35). Berlin: Akademie Verlag.
- Gazdar, Gerald. 1981. Unbounded dependencies and coordinate structure. Linguistic Inquiry 12(2). 155–184.
- Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum & Ivan A. Sag. 1985.

 Generalized Phrase Structure Grammar. Cambridge, MA: Harvard University Press.
- Gerdes, Kim. 2002. Topologie et grammaires formelles de l'allemand. Ecole doctorale Science du langage, UFR de linguistique, Université Paris 7 dissertation
- Goldberg, Adele E. 1995. Constructions: A Construction Grammar approach to argument structure. (Cognitive Theory of Language and Culture). Chicago: The University of Chicago Press.
- Goldberg, Adele E. 2006. Constructions at work: The nature of generalization in language. (Oxford Linguistics). Oxford: Oxford University Press.
- Grewendorf, Günther. 1988. Aspekte der deutschen Syntax: Eine Rektions-Bindungs-Analyse. (Studien zur deutschen Grammatik 33). Tübingen: original Gunter Narr Verlag jetzt Stauffenburg Verlag.
- Grewendorf, Günther. 2002. *Minimalistische Syntax*. (UTB für Wissenschaft: Uni-Taschenbücher 2313). Tübingen, Basel: A. Francke Verlag GmbH.
- Gruber, Jeffrey. 1965. Studies in lexical relations. MIT dissertation.

 Haider, Hubert. 1986. Fehlende Argumente: Vom Passiv zu kohärenten
 Infinitiven. Linguistische Berichte 101. 3–33.

Grammatical theory

L References

- Abeillé, Anne & Yves Schabes. 1989. Parsing idioms in Lexicalized TAG. In Harold Somers & Mary McGee Wood (eds.), Proceedings of the Fourth Conference of the European Chapter of the Association for Computational Linguistics, 1–9. Manchester, England: Association for Computational Linguistics.
- Ajdukiewicz, Kazimierz. 1935. Die syntaktische Konnexität. Studia Philosophica 1. 1–27.
- Aoun, Joseph & Dominique Sportiche. 1983. On the formal theory of government. *The Linguistic Review* 2(3). 211–236.
- Bargmann, Sascha. 2015. Syntactically Flexible VP-Idioms and the N-after-N Construction. Poster presentation at the 5th General Meeting of PARSEME, Iasi, 23–24 September 2015.
- Bech, Gunnar. 1955. Studien über das deutsche Verbum infinitum. (Linguistische Arbeiten 139). 2. unveränderte Auflage1983. Tübingen: Max Niemeyer Verlag.
- Berman, Judith. 1996. Eine LFG-Grammatik des Deutschen. In Judith Berman & Anette Frank (eds.), Deutsche und französische Syntax im Formalismus der LFG (Linguistische Arbeiten 344), 11–96. Tübingen: Max Niemeyer Verlag. https://doi.org/10.1516/y983110955354.
- Berman, Judith. 2003. Clausal syntax of German. (Studies in Constraint-Based Lexicalism). Stanford, CA: CSLI Publications.
- Berman, Judith & Anette Frank (eds.). 1996. Deutsche und französische Syntax im Formalismus der LFG. (Linguistische Arbeiten 344). Tübingen: Max Niemeyer Verlag. https://doi.org/10.1515/9783110955354.
- Bierwisch, Manfred. 1963. *Grammatik des deutschen Verbs.* (studia grammatica 2). Berlin: Akademie Verlag.
- Bloomfield, Leonard. 1933. Language. London: George Allen & Unwin. Bresnan, Joan (ed.). 1982a. The mental representation of grammatical relations. (MIT Press Series on Cognitive Theory and Mental Representation). Cambridge, MA: MIT Press.
- Bresnan, Joan. 1982b. The passive in lexical theory. In Joan Bresnan (ed.),

 The mental representation of grammatical relations (MIT Press Series

- on Cognitive Theory and Mental Representation), 3–86. Cambridge, MA: MIT Press
- Bresnan, Joan. 2001. Lexical-Functional Syntax. 1st edn. Oxford: Blackwell Publishers Ltd.
- Bresnan, Joan, Ash Asudeh, Ida Toivonen & Stephen Wechsler. 2016. Lexical-functional syntax. 2nd edn. (Blackwell Textbooks in Linguistics 16). Oxford: Wiley-Blackwell. https://doi.org/10.1002/9781119105664.
- Bresnan, Joan & Ronald M. Kaplan. 1982. Introduction: grammars as mental representations of language. In Joan Bresnan (ed.), The mental representation of grammatical relations (MIT Press Series on Cognitive Theory and Mental Representation), xvii—Iii. Cambridge, MA: MIT
- Bresnan, Joan & Sam A. Mchombo. 1995. The Lexical Integrity Principle: Evidence from Bantu. Natural Language & Linguistic Theory 13. 181–254. https://doi.org/10.1007/BF00992782.
- Carpenter, Bob. 1992. The logic of typed feature structures. (Cambridge Tracts in Theoretical Computer Science 32). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511530098.
- Choi, Hye-Won. 1999. Optimizing structure in scrambling: Scrambling and information structure. (Dissertations in Linguistics). Stanford, CA: CSLI Publications.
- Chomsky, Noam. 1957. Syntactic structures. (Janua Linguarum / Series Minor 4). The Hague: Mouton.
- Chomsky, Noam. 1970. Remarks on nominalization. In Roderick A. Jacobs & Peter S. Rosenbaum (eds.), Readings in English Transformational Grammar, chap. 12, 184–221. Waltham, MA/Toronto/London: Ginn & Company.
- Chomsky, Noam. 1981. Lectures on government and binding. (Studies in Generative Grammar 9). Dordrecht: Foris Publications. https://doi.org/10.1515/9783110884166
- Chomsky, Noam. 1986. Barriers. (Linguistic Inquiry Monographs 13).
 Cambridge. MA: MIT Press.
- Chomsky, Noam. 1995. The Minimalist Program. (Current Studies in Linguistics 28). Cambridge, MA: MIT Press.

Grammatical theory

∟ References

- Haider, Hubert. 1990. Pro-bleme? In Gisbert Fanselow & Sascha W. Felix (eds.), Strukturen und Merkmale syntaktischer Kategorien (Studien zur deutschen Grammatik 39), 121–143. Tübingen: original Gunter Narr Verlag jetzt Stauffenburg Verlag.
- Haider, Hubert. 1993. Deutsche Syntax generativ: Vorstudien zur Theorie einer projektiven Grammatik. (Tübinger Beiträge zur Linguistik 325). Tübingen: Gunter Narr Verlag.
- Hubingen: Gunter Narr Verlag.

 Haider, Hubert. 1997. Projective economy: On the minimal functional structure of the German clause. In Werner Abraham & Elly van Gelderen (eds.), German: Syntactic problems—Problematic syntax
- (Linguistische Arbeiten 374), 83–103. Tübingen: Max Niemeyer Verlag. Harman, Gilbert. 1963. Generative grammars without transformation rules: A defence of phrase structure. *Language* 39. 597–616.
- Heringer, Hans Jürgen. 1996. Deutsche Syntax dependentiell. (Stauffenburg Linguistik). Tübingen: Stauffenburg Verlag.
- Höhle, Tilman N. 1982. Explikationen für "normale Betonung" und "normale Wortstellung". In Werner Abraham (ed.), Satzglieder im Deutschen Vorschläge zur syntaktischen, semantischen und pragmatischen Erundierung (Studien zur deutschen Grammatik 15), 75–153. Republished as Höhle 2018b. Tübingen: original Gunter Narr Verlag jetzt Stauffenburg Verlag.
- Höhle, Tilman N. 1986. Der Begriff "Mittelfeld": Anmerkungen über die Theorie der topologischen Felder. In Walter Weiss, Herbert Ernst Wiegand & Marga Reis (eds.), Akten des VII. Kongresses der Internationalen Vereinigung für germanische Sprach-und Literaturwissenschaft. Göttingen 1985. Band 3. Textlinguistik contra Stilistik? Wortschatz und Wörterbuch Grammatische oder pragmatische Organisation von Rede? (Kontroversen, alte und neue 4), 329–340. Republished as Höhle 2018a. Tübingen: Max Niemeyer
- Höhle, Tilman N. 1997. Vorangestellte Verben und Komplementierer sind eine natürliche Klasse. In Christa Dürscheid, Karl Heinz Ramers & Monika Schwarz (eds.), Sprache im Fokus: Festschrift für Heinz Vater zum 65. Geburtstag, 107–120. Republished as Höhle 2018e. Tübingen: Max Niemever Verlaz.

- Höhle, Tilman N. 2018a. Der Begriff "Mittelfeld": Anmerkungen über die Theorie der topologischen Felder. In Stefan Müller, Marga Reis & Frank Richter (eds.), Beiträge zur deutschen Grammatik: Gesammelte Schriften von Tilman N. Höhle (Classics in Linguistics 5), 279–294. First published as Höhle 1986. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.1145680.
- Höhle, Tilman N. 2018b. Explikationen für "normale Betonung" und "normale Wortstellung". In Stefan Müller, Marga Reis & Frank Richter (eds.), Beiträge zur deutschen Grammatik. Gesammelte Schriften von Tilman N. Höhle (Classics in Linguistics 5), 107–191. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.1145680.
- Höhle, Tilman N. 2018c. Projektionsstufen bei V-Projektionen: Bemerkungen zu F/T. In Stefan Müller, Marga Reis & Frank Richter (eds.), Beiträge zur deutschen Grammatik: Gesammelte Schriften von Tilman N. Höhle (Classics in Linguistics 5), 369–379. First circulated in 1991. Berlin: Language Science Press. https://doi.org/10.5201/zenodo.1145680.
- Höhle, Tilman N. 2018d. Topologische Felder. In Stefan Müller, Marga Reis & Frank Richter (eds.), Beiträge zur deutschen Grammatik: Gesammelte Schriften von Tilman N. Höhle (Classics in Linguistics 5), 7–89. First circulated as draft in 1983. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.1145680.
- Höhle, Tilman N. 2018e. Vorangestellte Verben und Komplementierer sind eine natürliche Klasse. In Stefan Müller, Marga Reis & Frank Richter (eds.), Beiträge zur deutschen Grammatik: Gesammelte Schriften von Tilman N. Höhle (Classics in Linguistics 5), 417–433. First published as Höhle 1997. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.114.6560.
- Hudson, Richard. 2021. HPSG and Dependency Grammar. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean-Pierre Koenig (eds.), Head-Driven Phrase Structure Grammar. The handbook (Empirically Oriented Theoretical Morphology and Syntax). erscheint. Berlin: Laneuage Science Press.
- Jackendoff, Ray S. 1972. Semantic interpretation in Generative Grammar. Cambridge. MA: MIT Press.

Grammatical theory
References

- Jackendoff, Ray S. 1977. \overline{X} syntax: A study of phrase structure. Cambridge, MA: MIT Press.
- Jackendoff, Ray S. 2008. Construction after Construction and its theoretical challenges. Language 84(1). 8–28.
- Jacobs, Joachim. 1991. *Bewegung als Valenztransfer*. SFB 282: Theorie des Lexikons 1. Düsseldorf/Wuppertal: Heinrich Heine Uni/BUGH. Johnson, Mark. 1986. A GPSG account of VP structure in German.
- Linguistics 24(5). 871–882.

 Johnson, Mark. 1988. Attribute-value logic and the theory of grammar.
- (CSLI Lecture Notes 16). Stanford, CA: CSLI Publications.
 Joshi, Aravind K. 1987. Introduction to Tree Adjoining Grammar. In
 Alexis Manaster-Ramer (ed.), The mathematics of language, 87–114.
 Amsterdam: John Benjamins Publishing Co.
- Joshi, Aravind K., Tilman Becker & Owen Rambow. 2000. Complexity of scrambling: A new twist to the competence-performance distinction. In Anne Abeillé & Owen Rambow (eds.), Tree Adjoining Grammars: formalisms, linguistic analysis and processing (CSLI Lecture Notes 156), 167–181. Stanford, CA: CSLI Publications.
- Joshi, Aravind K., Leon S. Levy & Masako Takahashi. 1975. Tree Adjunct Grammar. Journal of Computer and System Science 10(2). 136–163.
- Joshi, Aravind K. & Yves Schabes. 1997. Tree-Adjoning Grammars. In G. Rozenberg & A. Salomaa (eds.), Handbook of formal languages, 69–123. Berlin: Springer Verlag.
- Joshi, Aravind K., K. Vijay-Shanker & David Weir. 1990. The Convergence of Mildly Context-Sensitive Grammar Formalisms. Tech. rep. MS-CIS-90-01. Department of Computer & Information Science, University of Pennsylvania.
- https://repository.upenn.edu/cis_reports/539/ (18 August, 2020).
 Kayne, Richard S. 1984. Connectedness and binary branching. (Studies in Generative Grammar 16). Dordrecht: Foris Publications.
- King, Paul. 1994. An Expanded Logical Formalism for Head-Driven Phrase Structure Grammar. Arbeitspapiere des SFB 340 Nr. 59. Tübingen: Eberhard-Karls-Universität.
 - http://www.sfs.uni-tuebingen.de/sfb/reports/berichte/59/59abs.html (18 August, 2020).

- Kiss, Tibor. 2001. Configurational and relational scope determination in German. In Walt Detmar Meurers & Tibor Kiss (eds.), Constraintbased approaches to Germanic syntax (Studies in Constraint-Based Lexicalism 7), 141–175. Stanford, CA: CSLI Publications.
- Klenk, Ursula. 2003. Generative Syntax. (Narr Studienbücher). Tübingen: Gunter Narr Verlag.
- Kornai, András & Geoffrey K. Pullum. 1990. The X-bar Theory of phrase structure. Language 66(1). 24–50.
- Kroch, Anthony S. & Aravind K. Joshi. 1985. The Linguistic Relevance of Tree Adjoining Grammar. Tech. rep. MS-CIS-85-16. University of Pennsylvania. http://repository.upenn.edu/cis_reports/671/ (18 August. 2020).
- Kunze, Jürgen. 1975. Abhängigkeitsgrammatik. (studia grammatica 12). Berlin: Akademie Verlag.
- Matsuyama, Tetsuya. 2004. The N after N Construction: A constructional idiom. English Linguistics 1(11). 55–84.
- May, Robert. 1985. Logical form: Its structure and derivation. (Linguistic Inquiry Monographs 12). Cambridge, MA: MIT Press.
- Morrill, Glyn. 1995. Discontinuity in Categorial Grammar. *Linguistics and Philosophy* 18(2), 175–219.
- Müller, Stefan. 1999. Deutsche Syntax deklarativ: Head-Driven Phrase Structure Grammar für das Deutsche. (Linguistische Arbeiten 394) Tübingen: Max Niemeyer Verlag. https://doi.org/10.1515/9783110915990.
- Müller, Stefan. 2002. Complex predicates: Verbal complexes, resultative constructions, and particle verbs in German. (Studies in Constraint-Based Lexicalism 13). Stainford, CA: CSLI Publications.
- Müller, Stefan. 2005. Zur Analyse der deutschen Satzstruktur. Linguistische Berichte 201, 3–39.
- Müller, Stefan. 2013a. Grammatiktheorie. 2nd edn. (Stauffenburg Einführungen 20). Tübingen: Stauffenburg Verlag. https://hpsg.hu-berlin.de/-stefan/Pub/grammatiktheorie.html (30 June. 2019).
- Müller, Stefan. 2013b. Head-Driven Phrase Structure Grammar: Eine Einführung. 3rd edn. (Stauffenburg Einführungen 17). Tübingen:

Grammatical theory

References

- Ross, John Robert. 1986. *Infinite syntax!* (Language and Being 5). Norwood, NJ: Ablex Publishing Corporation.
- Sauerland, Uli & Paul Elbourne. 2002. Total reconstruction, PF movement, and derivational order. Linguistic Inquiry 33(2), 283-319.
- Scherpenisse, Wim. 1986. The connection between base structure and linearization restrictions in German and Dutch. (Europäische Hochschulschriften, Reihe XXI, Linguistik 47). Frankfurt/M.: Peter Lang.
- Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. *Linguistics and Philosophy* 8(3). 333–343. https://doi.org/10.1007/BF00630917.
- Shieber, Stuart M. 1986. An introduction to unification-based approaches to grammar. (CSLI Lecture Notes 4). Stanford, CA: CSLI Publications. Steedman, Mark. 1989. Constituency and coordination in a Combinatory
- Grammar. In Mark R. Baltin & Anthony S. Kroch (eds.), Alternative conceptions of phrase structure, 201–231. Chicago/London: The University of Chicago Press.
- Steedman, Mark. 1991. Structure and intonation. Language 67(2). 260–296. https://doi.org/10.2307/415107.
- Steedman, Mark. 1997. Surface structure and interpretation. (Linguistic Inquiry Monographs 30). Cambridge, MA: MIT Press.
- Steedman, Mark. 2000. The syntactic process. (Language, Speech, and Communication). Cambridge, MA: MIT Press.

- Steedman, Mark & Jason Baldridge. 2006. Combinatory Categorial Grammar. In Keith Brown (ed.), *Encyclopedia of language and linguistics*, 2nd edn., 610–621. Oxford: Elsevier.
- Sternefeld, Wolfgang. 1991. Syntaktische Grenzen. Opladen: Westdeutscher Verlag.
- Tesnière, Lucien. 1959. Eléments de syntaxe structurale. Paris: Librairie C. Klincksieck. Republished as Elements of Structural Syntax. 2015. Translated by Timothy Osborne and Sylvain Kahane. Amsterdam: John Benjamins Publishing Co., 2015.
- Tesnière, Lucien. 1980. Grundzüge der strukturalen Syntax. Translated by Ulrich Engel. Stuttgart: Klett-Cotta.
- Tesnière, Lucien. 2015. Elements of structural syntax. Translated by Timothy Osborne and Sylvain Kahane. Amsterdam: John Benjamins Publishing Co.
- Uszkoreit, Hans. 1986. Linear Precedence in Discontinuous Constituents: Complex Fronting in German. Report No. CSLI-86-47. Stanford, CA: Center for the Study of Language & Information.
- Uszkoreit, Hans. 1987. Word order and constituent structure in German. (CSLI Lecture Notes 8). Stanford, CA: CSLI Publications.
- von Stechow, Arnim & Wolfgang Sternefeld. 1988. Bausteine syntaktischen Wissens: Ein Lehrbuch der Generativen Grammatik. Opladen/Wiesbaden: Westdeutscher Verlag.
- Weber, Heinz J. 1997. Dependenzgrammatik: Ein interaktives Arbeitsbuch. 2nd edn. (Narr Studienbücher). Tübingen: Gunter Narr Verlag.

Grammatical theory

∟ References

- Stauffenburg Verlag. https://hpsg.hu-berlin.de/-stefan/Pub/hpsg-lehrbuch.html (30 June, 2019)
- Müller, Stefan. 2019. Evaluating theories: Counting nodes and the question of constituency. Language Under Discussion 5(1). 52–67. https://doi.org/10.31885/lud.5.1.226.
- Müller, Stefan. 2020a. Germanic Syntax. Ms. Humboldt Universität zu Berlin, to be submitted to Language Science Press. https://hpsg.hu-berlin.de/~stefan/Pub/germanic.html (30 June,
- Müller, Stefan. 2020b. Grammatical theory: From Transformational Grammar to constraint-based approaches. 4th edn. (Textbooks in Language Sciences 1). Berlin: Language Science Press. https://doi.org/10.5281/zenodo.3992307.
- Müller, Stefan & Stephen Wechsler. 2014. Lexical approaches to argument structure. Theoretical Linguistics 40(1–2). 1–76. https://doi.org/10.1515/tt-2014-0001.
- Muysken, Pieter. 1982. Parametrizing the notion of "head". Journal of Linguistic Research 2, 57–75.
- Nerbonne, John. 1986. 'Phantoms' and German fronting: Poltergeist constituents? Linguistics 24(5). 857–870. https://doi.org/10.1515/jimg.1986.04.5.857
- Netter, Klaus. 1992. On non-head non-movement: An HPSG treatment of finite verb position in German. In Günther Görz (ed.), Konvens 92. 1. Konferenz "Verarbeitung natürlicher Sprache". Nürnberg 7.–9. Oktober 1992 (Informatik aktuell), 218–227. Berlin: Springer Verlar
- Ørsnes, Bjarne. 2009. Das Verbalfeldmodell: Ein Stellungsfeldermodell für den kontrastiven DaF-Unterricht. Deutsch als Fremdsprache 46(3). 1421 140.
- Peters, Stanley & R. W. Ritchie. 1973. On the generative power of Transformational Grammar. *Information Sciences* 6(C). 49–83. https://doi.org/10.1016/0020-0255(73)90027-3.
- Pollard, Carl J. 1988. Categorial Grammar and Phrase Structure Grammar: An excursion on the syntax-semantics frontier. In Richard Oehrle,

- Emmon Bach & Deirdre Wheeler (eds.), Categorial Grammars and natural language structures, 391–415. Dordrecht: D. Reidel Publishing
- Pollard, Carl & Ivan A. Sag. 1987. Information-based syntax and semantics. (CSLI Lecture Notes 13). Stanford, CA: CSLI Publications.
- Pollard, Carl & Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar (Studies in Contemporary Linguistics). Chicago: The University of Chicago Press.
- Pollock, Jean-Yves. 1989. Verb movement, Universal Grammar and the structure of IP. Linguistic Inquiry 20(3). 365–424.
- Pullum, Geoffrey K. 1985. Assuming some version of X-bar Theory. In Papers from the 21st Annual Meeting of the Chicago Linguistic Society, 323–353.
- Pullum, Geoffrey K. 1986. Footloose and context-free. Natural Language & Linguistic Theory 4(3), 409–414.
- Rambow, Owen. 1994. Formal and computational aspects of natural language syntax. University of Pennsylvania dissertation.

(18 August, 2020).

- Reis, Marga. 1980. On justifying topological frames: 'Positional field' and the order of nonverbal constituents in German. Documentation et Recherche en Linguistique Allemande Contemporaine. Revue de Linguistique 29/23. 50–85.
- Richter, Frank. 2004. A mathematical formalism for linguistic theories with an application in Head-Driven Phrase Structure Grammar. Universität Tübingen Phil. Dissertation (2000). https://publikationen.uni-tuebingen.de/xmlui/handle/10900/46230
- Richter, Frank. 2021. Formal background. In Stefan Müller, Anne Abeillé, Robert D. Borsley & Jean-Pierre Koenig (eds.), Head-Driven Phrase Structure Grammar: The handbook (Empirically Oriented Theoretical Morphology and Syntax). erscheint. Berlin: Language Science Press.
- Ross, John Robert. 1967. Constraints on variables in syntax. Reproduced by the Indiana University Linguistics Club and later published as Ross 1986. Cambridge, MA: MIT dissertation.

http://files.eric.ed.gov/fulltext/ED016965.pdf (18 August, 2020).