

Redes Neurais Artificiais

(Prof. Giovani Guarienti Pozzebon)

EPC-7

A quantidade de gasolina $\{y\}$ a ser injetada por um sistema de injeção eletrônica de combustível para veículos automotores pode ser computada em tempo-real em função de três grandezas $\{x_1, x_2, x_3\}$. Devido à complexidade inerente do processo, configurado como um sistema não-linear, pretende-se utilizar uma rede neural artificial para o mapeamento entre as entradas e a saída do processo.

Sabe-se que para efetuar o respectivo mapeamento, o qual se configura como um problema de aproximação funcional, duas potenciais arquiteturas podem ser aplicadas, a saber, o perceptron multicamadas ou a RBF. Dado que a equipe de engenheiros e cientistas já realizaram o mapeamento do problema através do perceptron multicamadas, o objetivo agora é treinar uma RBF a fim de que os resultados fornecidos por ambas arquiteturas possam ser contrastados.

Assim, efetue o treinamento de uma RBF com o objetivo de computar a quantidade de gasolina $\{y\}$ a ser injetada pelo sistema de injeção eletrônica em função das variáveis $\{x_1, x_2, x_3\}$. A topologia da rede RBF está ilustrada na figura abaixo.

As topologias candidatas de RBF para serem aplicadas no mapeamento do problema acima são especificadas como se segue:

Rede 1 \rightarrow RBF com N1 = 05

Rede 2 \rightarrow RBF com N1 = 10

Rede $3 \rightarrow RBF com N1 = 15$

Utilizando os dados de treinamento apresentados no Anexo, execute o treinamento das redes RBF conforme as topologias definidas acima. Para tanto, faça as seguintes atividades:

1. Execute 3 treinamentos para cada topologia de rede RBF definida anteriormente, inicializando a matriz de pesos da camada de saída com valores aleatórios entre 0 e 1. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos das matrizes de pesos iniciais não sejam os mesmos. Utilize uma taxa de aprendizado $\eta = 0.01$ e precisão $\epsilon = 10^{-7}$.

2. Registre os resultados finais desses 3 treinamentos para cada uma das três topologias de rede na tabela a seguir:

Treinamento	Rede	e 1	Red	e 2	Rede 3		
	EQM	Épocas	EQM	Épocas	EQM	Épocas	
1° (T1)							
2° (T2)							
3° (T3)							

3. Para todos os treinamentos efetuados no item 2, faça a validação da rede em relação aos valores desejados apresentados na tabela abaixo. Forneça para cada treinamento o erro relativo médio (%) entre os valores desejados e os valores fornecidos pela rede em relação a todos os padrões de teste. Obtenha também a respectiva variância (%).

					Rede 1			Rede 2			Rede 3		
Amostra	x_1	x_2	x_3	d	y (T1)	y (T2)	y (T3)	y (T1)	y (T2)	y (T3)	y (T1)	y (T2)	y (T3)
01	0.5102	0.7464	0.0860	0.5965									
02	0.8401	0.4490	0.2719	0.6790									
03	0.1283	0.1882	0.7253	0.4662									
04	0.2299	0.1524	0.7353	0.5012									
05	0.3209	0.6229	0.5233	0.6810									
06	0.8203	0.0682	0.4260	0.5643									
07	0.3471	0.8889	0.1564	0.5875									
08	0.5762	0.8292	0.4116	0.7853									
09	0.9053	0.6245	0.5264	0.8506									
10	0.8149	0.0396	0.6227	0.6165									
11	0.1016	0.6382	0.3173	0.4957									
12	0.9108	0.2139	0.4641	0.6625									
13	0.2245	0.0971	0.6136	0.4402									
14	0.6423	0.3229	0.8567	0.7663									
15	0.5252	0.6529	0.5729	0.7893									
	Erro Relativo Médio (%):												
			Variân	cia (%):									

- 4. Para cada uma das topologias apresentadas na tabela acima, considerando ainda o melhor treinamento {T1, T2 ou T3} realizado em cada uma delas, trace o gráfico dos valores de erro quadrático médio (EQM) em função de cada época de treinamento. Imprima os três gráficos numa mesma folha de modo não superpostos.
- 5. Baseado nas análises dos itens acima, indique qual das topologias candidatas {Rede 1, Rede 2 ou Rede 3} e com que qual configuração final de treinamento {T1, T2 ou T3} seria a mais adequada para este problema.

ANEXO

Amostra	x_1	x_2	<i>x</i> ₃	d	Amostra	x_1	x_2	<i>x</i> ₃	d	Amostra	x_1	x_2	<i>x</i> ₃	d
1	0.9532	0.6949	0.4451	0.8426	51	0.7408	0.5351	0.2732	0.6949	101	0.5497	0.6319	0.8382	0.8521
2	0.7954	0.8346	0.0449	0.6676	52	0.6843	0.3737	0.1562	0.5625	102	0.7072	0.1721	0.3812	0.5772
3	0.1427	0.048	0.6267	0.3780	53	0.8799	0.7998	0.3972	0.8399	103	0.1185	0.5084	0.8376	0.6211

Universidade Federal do Pampa Centro Tecnológico de Alegrete Curso de Engenharia Elétrica

								1 0 2 4 4 0		101	T 0 50 50		1	T 0 = 100
4	0.1516	0.9824	0.0827	0.4627	54	0.5700	0.5111	0.2418	0.6258	104	0.6365	0.5562	0.4965	0.7693
5	0.4868	0.6223	0.7462	0.8116	55	0.6796	0.4117	0.3370	0.6622	105	0.4145	0.5797	0.8599	0.7878
6	0.3408	0.5115	0.0783	0.4559	56	0.3567	0.2967	0.6037	0.5969	106	0.2575	0.5358	0.4028	0.5777
7	0.8146	0.6378	0.5837	0.8628	57	0.3866	0.8390	0.0232	0.5316	107	0.2026	0.3300	0.3054	0.4261
8	0.2820	0.5409	0.7256	0.6939	58	0.0271	0.7788	0.7445	0.6335	108	0.3385	0.0476	0.5941	0.4625
9	0.5716	0.2958	0.5477	0.6619	59	0.8174	0.8422	0.3229	0.8068	109	0.4094	0.1726	0.7803	0.6015
10	0.9323	0.0229	0.4797	0.5731	60	0.6027	0.1468	0.3759	0.5342	110	0.1261	0.6181	0.4927	0.5739
11	0.2907	0.7245	0.5165	0.6911	61	0.1203	0.3260	0.5419	0.4768	111	0.1224	0.4662	0.2146	0.4007
12	0.0068	0.0545	0.0861	0.0851	62	0.1325	0.2082	0.4934	0.4105	112	0.6793	0.6774	1.0000	0.9141
13	0.2636	0.9885	0.2175	0.5847	63	0.6950	1.0000	0.4321	0.8404	113	0.8176	0.0358	0.2506	0.4707
14	0.035	0.3653	0.7801	0.5117	64	0.0036	0.1940	0.3274	0.2697	114	0.6937	0.6685	0.5075	0.8220
15	0.967	0.3031	0.7127	0.7836	65	0.2650	0.0161	0.5947	0.4125	115	0.2404	0.5411	0.8754	0.6980
16	0.0000	0.7763	0.8735	0.6388	66	0.5849	0.6019	0.4376	0.7464	116	0.6553	0.2609	0.1188	0.4851
17	0.4395	0.0501	0.9761	0.5712	67	0.0108	0.3538	0.1810	0.2800	117	0.8886	0.0288	0.2604	0.4802
18	0.9359	0.0366	0.9514	0.6826	68	0.9008	0.7264	0.9184	0.9602	118	0.3974	0.5275	0.6457	0.7215
19	0.0173	0.9548	0.4289	0.5527	69	0.0023	0.9659	0.3182	0.4986	119	0.2108	0.4910	0.5432	0.5913
20	0.6112	0.907	0.6286	0.8803	70	0.1366	0.6357	0.6967	0.6459	120	0.8675	0.5571	0.1849	0.6805
21	0.2010	0.9573	0.6791	0.7283	71	0.8621	0.7353	0.2742	0.7718	121	0.5693	0.0242	0.9293	0.6033
22	0.8914	0.9144	0.2641	0.7966	72	0.0682	0.9624	0.4211	0.5764	122	0.8439	0.4631	0.6345	0.8226
23	0.0061	0.0802	0.8621	0.3711	73	0.6112	0.6014	0.5254	0.7868	123	0.3644	0.2948	0.3937	0.5240
24	0.2212	0.4664	0.3821	0.5260	74	0.0030	0.7585	0.8928	0.6388	124	0.2014	0.6326	0.9782	0.7143
25	0.2401	0.6964	0.0751	0.4637	75	0.7644	0.5964	0.0407	0.6055	125	0.4039	0.0645	0.4629	0.4547
26	0.7881	0.9833	0.3038	0.8049	76	0.6441	0.2097	0.5847	0.6545	126	0.7137	0.0670	0.2359	0.4602
27	0.2435	0.0794	0.5551	0.4223	77	0.0803	0.3799	0.6020	0.4991	127	0.4277	0.9555	0.0000	0.5477
28	0.2752	0.8414	0.2797	0.6079	78	0.1908	0.8046	0.5402	0.6665	128	0.0259	0.7634	0.2889	0.4738
29	0.7616	0.4698	0.5337	0.7809	79	0.6937	0.3967	0.6055	0.7595	129	0.1871	0.7682	0.9697	0.7397
30	0.3395	0.0022	0.0087	0.1836	80	0.2591	0.0582	0.3978	0.3604	130	0.3216	0.5420	0.0677	0.4526
31	0.7849	0.9981	0.4449	0.8641	81	0.4241	0.1850	0.9066	0.6298	131	0.2524	0.7688	0.9523	0.7711
32	0.8312	0.0961	0.2129	0.4857	82	0.3332	0.9303	0.2475	0.6287	132	0.3621	0.5295	0.2521	0.5571
33	0.9763	0.1102	0.6227	0.6667	83	0.3625	0.1592	0.9981	0.5948	133	0.2942	0.1625	0.2745	0.3759
34	0.8597	0.3284	0.6932	0.7829	84	0.9259	0.0960	0.1645	0.4716	134	0.8180	0.0023	0.1439	0.4018
35	0.9295	0.3275	0.7536	0.8016	85	0.8606	0.6779	0.0033	0.6242	135	0.8429	0.1704	0.5251	0.6563
36	0.2435	0.2163	0.7625	0.5449	86	0.0838	0.5472	0.3758	0.4835	136	0.9612	0.6898	0.6630	0.9128
37	0.9281	0.8356	0.5285	0.8991	87	0.0303	0.9191	0.7233	0.6491	137	0.1009	0.419	0.0826	0.3055
38	0.8313	0.7566	0.6192	0.9047	88	0.9293	0.8319	0.9664	0.9840	138	0.7071	0.7704	0.8328	0.9298
39	0.1712	0.0545	0.5033	0.3561	89	0.7268	0.1440	0.9753	0.7096	139	0.3371	0.7819	0.0959	0.5377
40	0.0609	0.1702	0.4306	0.3310	90	0.2888	0.6593	0.4078	0.6328	140	0.9931	0.6727	0.3139	0.7829
41	0.5899	0.9408	0.0369	0.6245	91	0.5515	0.1364	0.2894	0.4745	141	0.9123	0.0000	0.1106	0.3944
42	0.7858	0.5115	0.0916	0.6066	92	0.7683	0.0067	0.5546	0.5708	142	0.2858	0.9688	0.2262	0.5988
43	1.0000	0.1653	0.7103	0.7172	93	0.6462	0.6761	0.8340	0.8933	143	0.7931	0.8993	0.9028	0.9728
44	0.2007	0.1163	0.3431	0.3385	94	0.3694	0.2212	0.1233	0.3658	144	0.7841	0.0778	0.9012	0.6832
45	0.2306	0.033	0.0293	0.1590	95	0.2706	0.3222	0.9996	0.6310	145	0.1380	0.5881	0.2367	0.4622
46	0.8477	0.6378	0.4623	0.8254	96	0.6282	0.1404	0.8474	0.6733	146	0.6345	0.5165	0.7139	0.8191
47	0.9677	0.7895	0.9467	0.9782	97	0.5861	0.6693	0.3818	0.7433	147	0.2453	0.5888	0.1559	0.4765
48	0.0339	0.4669	0.1526	0.3250	98	0.6057	0.9901	0.5141	0.8466	148	0.1174	0.5436	0.3657	0.4953
49	0.008	0.8988	0.4201	0.5404	99	0.5915	0.5588	0.3055	0.6787	149	0.3667	0.3228	0.6952	0.6376
50	0.9955	0.8897	0.6175	0.9360	100	0.8359	0.4145	0.5016	0.7597	150	0.2204	0.1785	0.4607	0.4276
	9.7700	5.0071	0.0175	5.7500	100	0.0557	0.1113	3.2010	3.1371	150	0.2207	3.1703	0.1007	5.1270