Disciplina:

SÉRIES TEMPORAIS

Professora: Patrícia de Sousa Ilambwetsi

Bacharel em Estatística pela UFOP

Mestre em Estatística pela UFV

Doutora em Estatística pela UFV

Especialista em Ciências de Dados e Big Data pela PUC Minas

Conteúdo programático

Unidade 1 – Conceitos Básicos para Séries Temporais

Unidade 2 – Métodos e Modelos para Séries Temporais

Unidade 3 – Modelagem de Séries Temporais Estacionárias

Unidade 4 – Modelagem de Séries Temporais não Estacionárias

Distribuição dos pontos:

- Participação em aula: 10 pontos
- Trabalhos práticos: 4 trabalhos no total de 40 pontos (entrega semanal)
- Relatório Final: 50 pontos (entrega: 23/09/2023)

Objetivos

A análise de séries temporais tem basicamente dois objetivos principais:

- Descrição e Modelagem: envolve a caracterização da série de dados, o ajuste de modelos matemáticos, a extração de parâmetros (indicadores) e comparação entre séries obtidas em regiões distintas.
- Previsão (forecasting): prever o futuro de determinados acontecimentos por meio da ocorrência no passado e no presente dos mesmos

Objetivos

Objetivos da Unidade 1

- Definir observações geradas sequencialmente no tempo
- Identificar e classificar a natureza das observações
- Identificar os componentes existentes nas observações
- Analisar a estacionariedade e a autocorrelação das observações

Roteiro

Unidade 1 – Conceitos Básicos

1.1 Definições de Séries Temporais

- Classificação
- Componentes
- Modelos simples com média zero
- Modelos com tendência e sazonalidade

1.2 Estacionariedade

- Modelos Estacionários
- 1.3 Função de Autocorrelação
 - Correlograma
- 1.4 Modelos no domínio do tempo e da frequência

1.1 Definições

Séries Temporais ⇒ conjuntos de observações geradas sequencialmente em intervalos iguais de tempo.

Exemplos:

- Valor de ativo na bolsa de valores
- Casos de dengue no período de 2000 a 2024
- Índice de preços mundiais do arroz
- Receita líquida da cidade de Betim de 1990 a 2010
- Quantidade de vendas mensal em uma loja

Característica principal ⇒ as observações são <u>dependentes no tempo</u>

Matematicamente \Rightarrow a série temporal observada é construída por uma sequência de números $\{y\}_{t=1}^T = \{y_1, \dots, y_T\}$

1.1 Definições

Exemplos:

• Valor de ativo na bolsa de valores

1.1 Definições

Exemplos:

• Casos de dengue no período de 2000 a 2024

1.1 Definições

Exemplos:

• Índice de preços mundiais do arroz

1.1 Definições

Exemplos:

• Receita líquida da cidade de Betim no período de 1990 a 2010

1.1 Definições

Exemplos:

• Quantidade de vendas mensal em uma loja

1.1 Definições

Classificação de Séries Temporais

Série temporal contínua: as observações são obtidas continuamente em algum intervalo no tempo

Exemplos:

- Eletrocardiograma;
- Umidade;
- Temperatura

1.1 Definições

Classificação de Séries Temporais

Série temporal discreta: as observações são obtidas em intervalos de tempo <u>equidistantes</u> e <u>fixo</u>.

Exemplos:

- Taxa de desemprego trimestral;
- Produto Interno Bruto (PIB) mensal;
- Temperatura com intervalo de tempo pré-terminado.

OBS: Séries contínuas podem ser discretizadas
– Seus valores são discretizados em certos
intervalos de tempo

1.1 Definições

Classificação de Séries Temporais

Série temporal determinística: as observações são obtidas em função do tempo e <u>depende das</u> <u>observações passadas</u>. As taxas são constantes.

1.1 Definições

Classificação de Séries Temporais

Série temporal estocástica: as observações são obtidas em função do tempo e de relações aleatória. As taxas apresentam médias e variabilidades

1.1 Definições

Classificação de Séries Temporais

Série temporal determinística e estocástica: as observações são obtidas em função do tempo e de <u>relações aleatória</u> com <u>dependência das observações passadas</u>

1.1 Definições

Componentes que compõe uma série temporal

⇒ Tendência ou componente determinístico de uma série temporal:

São alterações não periódicas que se apresenta de forma crescente ou decrescente.

A magnitude da tendência linear em uma série temporal pode ser verificada pela inclinação da reta estimada pelo método de mínimos quadrados.

Teste Estatístico para verificar a tendência: Mann-Kendall; Sen's slope; dentre outras

1.1 Definições

Componentes que compõe uma série temporal

1.1 Definições

Componentes que compõe uma série temporal

Sazonalidade ou ciclos: comportamento que se repete durante um período de tempo geralmente associado às estações do ano

Classificação de Sazonalidade:

- Diária: pico de pessoas almoçando entre as 12:00 e as 14:00, que é o horário de almoço da maioria dos(as) funcionários(as) das empresas
- Semanal: pico de pedidos em uma pizzaria na sexta-feira, sábado e domingo
- Mensal: pico de compras em supermercado nos dias do pagamento
- Anual: estações do ano

Teste estatístico para verificar sazonalidade: SeasonalMannKendall

1.1 Definições

Componentes que compõe uma série temporal

1.1 Definições

Modelos que descrevem séries temporais ⇒ são processos estocásticos, isto é, processos controlados por leis probabilísticas e relações aleatórias

⇒ Modelos simples com média zero

- Ruído i.i.d. (independente e identicamente distribuído);
- Processo binário;
- RandomWalk (Passeio Aleatório);

⇒ Modelos com tendência e sazonalidade

Suposto que cada observação y seja um valor resultante de uma determinada variável aleatória Y; um modelo de série temporal para uma determinada observação y_t é a descrição da composição de distribuições sequenciais da variável aleatória Y_t .

1.1 Definições

- ⇒ Modelos com média zero: Ruído Independente e Identicamente Distribuído (i.i.d)
 - Modelo mais simples
 - Não apresenta os componentes de **tendência** e **sazonalidade**
 - As observações são resultados de variáveis aleatórias i.i.d. com média zero
 - Não existe dependência entre as observações;
 - Através do valor y_t não é possível prever o valor de y_{t+h}

OBS: Um ruído i.i.d com distribuição normal com média zero e variância constante (σ^2) é também chamado de **ruído branco gaussiano**

1.1 Definições

⇒ Modelos com média zero: Processo Binário

As observações só podem assumir dois valores possíveis:

$$P(Y_t = 1) = p$$

$$P(Y_t = -1) = 1 - p$$

1.1 Definições

⇒ Modelos com média zero: Random Walk (Passeio Aleatório)

É similar a "caminhada do bêbado" ao pensar em vários passos consecutivos, cada qual em uma

direção aleatória;

É obtido através da soma cumulativa de variáveis aleatórias i.i.d:

$$S_t = Y_1 + \dots + Y_T$$
 para $t = 1, 2, \dots, T$

• S_t é um ruído i.i.d

1.1 Definições

Modelos com Tendência e Sazonalidade

Algumas séries não podem ser modeladas por modelos simples de média zero pois são **geradas** com **componentes** de **tendência** e **sazonalidade**

Matematicamente é representado por:

$$Y_{t} = m_{t} + s_{t} + \varepsilon_{t}$$

em que Y_t é a variável aleatória no tempo t, m_t é o componente de tendência ou o componente determinístico; s_t é o componente sazonal ou ciclos; ε_t é o componente aleatório ou ruído, ou seja, a parte não explicada do modelo e apresenta média zero e variância constante.

1.1 Definições

Modelos com Tendência e Sazonalidade

O primeiro passo da análise consiste em:

- Isolar essas três componentes
- Encontrar padrões de tendência (m_t)
- Encontrar padrões de sazonalidade (s_t)
- O ruído (ε) está presente em toda e qualquer série de dados brutos interfere na análise e deve ser removido através de técnicas de suavização (smoothing).

1.1 Definições

Modelos com Tendência e Sazonalidade

Picos e degraus presentes na série de dados são informações valiosas, pois representam sinais de eventos externos ao sistema estudado (quando não são erros de medição é claro)

1.2 Estacionariedade

Uma **série temporal** é considerada **estacionária** quando suas propriedades estatísticas tais como a média, a variância e a estrutura de autocorrelação permanecem **constantes** ao longo do tempo

1.2 Estacionariedade

A estacionariedade da série é importante para descrever como os valores estatísticos de uma série se comportam ao longo do tempo

A ideia básica é de que as **leis de probabilidade** que atuam nos **modelos que descrevem séries temporais não alterem** com o tempo, isto é, o processo mantém o equilíbrio estatístico.

⇒ Processo estritamente estacionário

O comportamento probabilístico do conjunto de variáveis $Y(t_1), ..., Y(t_T)$ é idêntico ao do conjunto deslocado no tempo $Y(t_1 - h), ..., Y(t_T - h)$ para todos os tempos $t_1, ..., t_T$ e posições h (lags) contantes

⇒ Processo fracamente estacionário

- A função da média μ_t é contante e depende apenas do tempo t
- ullet A função de autocovariância não depende do tempo t para cada h

1.2 Estacionariedade

Na prática a maior parte das séries apresentam alguma forma não estacionária tais como:

- séries econômicas que apresentam tendências lineares positivas ou negativas;
- séries do crescimento de uma colônia de bactérias com não-estacionariedade explosiva

Se a série **não é estacionária** pode-se aplicar algum tipo de **transformação** de forma que se consiga que a série se **torne estacionária**

⇒ **Diferenciação:** consiste em tomar diferenças sucessivas da série original no tempo até se obter uma série estacionária

Série Original
$$y(t)$$

Série diferenciada

$$y'(t) = y(t) - y(t - 1)$$

1.3 Função de Autocorrelação

A função de autocorrelação é uma medida da **correlação** de uma série com ela mesma defasada no tempo

 \Rightarrow Correlação: a observação y_t apresenta um comportamento semelhante à y_{t-h}

É utilizada para analisar o grau de <u>dependência temporal</u> na série e auxiliar na seleção de possíveis modelos estacionários

⇒ Correlograma: forma gráfica para analisar a função de autocorrelação em diversas defasagens no tempo

1.3 Função de Autocorrelação

A função de autocorrelação é uma medida da **correlação** de uma série com **ela mesma** defasada no tempo

 \Rightarrow Correlação: a observação y_t apresenta um comportamento semelhante à y_{t-h}

É utilizada para analisar o grau de <u>dependência temporal</u> na série e auxiliar na seleção de possíveis modelos estacionários

⇒ Correlograma: forma gráfica para analisar a função de autocorrelação em diversas defasagens no tempo

1.3 Função de Autocorrelação

O correlograma nos permite entender se a série é aleatória ou apresenta alguma tendência ou sazonalidade;

OBS: É muito utilizado para analisar os resíduos de um modelo de séries temporais

- \Rightarrow No **correlograma** utiliza-se o intervalo de confiança para verificar se existe ou não correlação. Em cada lag, o coeficiente de correlação (r) **fora do intervalo** são considerados significantes, ou seja, **existe correlação (dependência)**.
 - r = 1 representa correlação máxima positiva;
 - r = -1 representa correlação máxima negativa;
 - r = 0 representa que não existe correlação;

1.3 Função de Autocorrelação

Correlograma

- \Rightarrow A presença de correlação significativa de y_t e y_{t-h} no tempo t-h no correlograma é representado pelos traços fora do intervalo de confiança;
- \Rightarrow A primeira coluna sempre terá a altura igual a 1, pois representa a correlação de y_t e y_t que é significativa;
- \Rightarrow A correlação entre y_t e y_{t-1} é de aproximadamente 0.5; y_t e y_{t-2} é de 0.2, e assim, sucessivamente.

1.4 Modelos no domínio do tempo e da frequência

A abordagem no domínio do tempo de uma série temporal prioriza as relações das observações defasadas no tempo e no domínio da frequência (análise espectral) os ciclos.

- ⇒ Vantagem da abordagem no domínio do tempo
 - Interpretação direta: Fácil de interpretar e visualizar como os dados evoluem ao longo do tempo
 - Adequado para previsão: Ótimo para prever futuros valores da série temporal com base em valores passados
 - Identificação de Tendência e Sazonalidade: Fácil de identificar e modelar tendências e padrões sazonais

1.4 Modelos no domínio do tempo e da frequência

A abordagem no domínio do tempo de uma série temporal prioriza as relações das observações defasadas no tempo e no domínio da frequência (análise espectral) os ciclos.

- ⇒ Vantagem da abordagem no domínio da frequência
 - Identificação de Frequências Dominantes: Facilita a identificação de padrões cíclicos e sazonais que podem não ser imediatamente óbvios no domínio do tempo
 - Análise de Sinais Complexos: Útil para analisar séries temporais com ruído ou sinais complexos onde as componentes frequências são mais relevantes
 - **Filtragem de Sinais**: Permite a aplicação de filtros para remover ruídos ou isolar componentes específicas do sinal

1.4 Modelos no domínio do tempo e da frequência

- ✓ A análise de uma série no domínio do tempo requer a função de autocorrelação para a construção de modelos probabilísticos tais como
 - Modelos AR (Autoregressive): os valores passados da série têm uma influência linear nos valores futuros

$$Y_t = c + \sum_{i=1}^p \phi_i Y_{t-i} + \varepsilon_t$$

em que: c é uma constante, ϕ_i são os coeficientes autoregressivos, p é a ordem do modelo e ε_t é o termo de erro (ruído branco).

1.4 Modelos no domínio do tempo e da frequência

• Modelos MA (Moving Average): modelam a série como uma função linear de erros passados

$$Y_t = \mu + \varepsilon_t + \sum_{j=1}^q \theta_i \, \varepsilon_{t-j}$$

em que: θ_i são os coeficientes de média móvel, μ é a média da série (quando a série é estacionária), q é a ordem do modelo; ε_t é o termo de erro.

1.4 Modelos no domínio do tempo e da frequência

• Modelos ARMA (Autoregressive Moving Average): é a combinação das abordagens AR e MA

$$Y_t = c + \sum_{i=1}^p \phi_i Y_{t-i} + \varepsilon_t + \sum_{j=1}^q \theta_i \varepsilon_{t-j}$$

em que: c é uma constante, ϕ_i são os coeficientes autoregressivos, p é a ordem do modelo; θ_i são os coeficientes de média móvel e ε_t é o termo de erro (ruído branco)

1.4 Modelos no domínio do tempo e da frequência

• Modelos ARIMA (Auto-Regressive Integrated Moving Average): é a extensão dos modelos ARMA para séries não estacionárias, incluindo uma componente de diferenciação

$$(1-B)^{d}Y_{t} = c + \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{i} \varepsilon_{t-j}$$

em que: $(1-B)^d Y_t$ representa a série temporal Y_t diferenciada d vezes; c é o termo constante, ϕ_i são os coeficientes da parte autoregressiva (AR); θ_i são os coeficientes da parte de média móvel (MA), ε_t são os termos de erro branco.

1.4 Modelos no domínio do tempo e da frequência

• Modelos SARIMA (Auto-Regressivo Integrado de Médias Móveis Sazonal): extensão dos modelos ARIMA para capturar sazonalidades

$$\left(1 - \sum_{i=1}^{p} \phi_i B^i\right) \left(1 - \sum_{j=1}^{p} \Phi_j B^{js}\right) (1 - B)^d (1 - B^s)^D Y_t = c + (1 - \sum_{i=1}^{q} \theta_i B^i) (1 - \sum_{k=1}^{Q} \Theta_k B^s) \varepsilon_t$$

em que: ϕ_i coeficientes autorregressivos não sazonais; Φ_j são os coeficientes autoregressivos sazonais; θ_i são os coeficientes de média móvel não sazonais; Θ_k são os coeficientes de média móvel sazonais; B operador de defasagem; d ordem de diferenciação não sazonal; D ordem de diferenciação sazonal; S período sazonal, S termos de erro branco (ruído).

1.4 Modelos no domínio do tempo e da frequência

• Modelos de Alisamento Exponencial: aplicam pesos decrescentes exponencialmente para dados passados. Esses modelos são úteis para fazer previsões de curto prazo, especialmente quando os dados apresentam flutuações sem grandes mudanças estruturais.

Método de Holt-Winters:

⇒ Alisamento Simples: para séries sem tendência ou sazonalidade.

$$F_{t+1} = \alpha y_t + (1 - \alpha)F_t$$

em que: F_{t+1} previsão para o próximo período; y_t valor observado no período atual; F_t previsão no período atual; α fator de suavização

1.4 Modelos no domínio do tempo e da frequência

⇒ Alisamento com Tendência (Holt): para séries com tendência

$$F_{t+h} = L_t + hT_t$$

$$L_t = \alpha y_t + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_t = h[\beta(L_t - L_{t-1}) + (1 - \beta)T_{t-1}]$$

em que: L_t o nível estimado (valor médio ou ponto central da série); T_t tendência estimada; β fator de suavização da tendência; F_{t+h} previsão para h períodos a frente

1.4 Modelos no domínio do tempo e da frequência

⇒ Alisamento com Tendência e Sazonalidade (Holt-Winters): para séries com tendência e sazonalidade.

$$F_{t+h} = (L_t + hT_t)S_{t+h-p}$$

$$L_{t} = \alpha \frac{y_{t}}{S_{t-p}} + (1 - \alpha)(L_{t-1} + T_{t-1})$$

$$T_{t} = \beta (L_{t} - L_{t-1}) + (1 - \beta)T_{t-1}$$

$$S_{t} = \gamma \frac{y_{t}}{L_{t}} + (1 - \gamma)S_{t-p}$$

em que: S_t componente sazonal estimado; γ fator de suavização sazonal; p é o período sazonal; L_t o nível estimado; T_t tendência estimada; β fator de suavização da tendência; F_{t+h} previsão para h períodos a frente

1.4 Modelos no domínio do tempo e da frequência

- ✓ A análise de uma série no **domínio da frequência** será sempre definida de **forma única e** usa como base os principais métodos:
 - Transformada de Fourier: Converte a série temporal do domínio do tempo para o domínio da frequência, decompondo-a em somas de senos e cossenos de diferentes frequências
 - **Espectrogramas**: Representações gráficas que mostram como a intensidade das várias frequências muda ao longo do tempo. É útil para identificar ciclos e padrões periódicos nos dados

OBS: Em séries temporais, o espectro de potência fornece informações sobre a distribuição de energia nas diferentes frequências que compõem a série temporal.

1.4 Modelos no domínio do tempo e da frequência

- ⇒ Modelos no domínio da frequência podem ser usados para:
 - Detectar a sazonalidade pelos picos evidentes de frequência que se repete em uma série temporal
 - Detectar a correlação do modelo
 - Avaliar a distribuição de erros de um modelo de previsão

1.4 Modelos no domínio do tempo e da frequência

1.4 Modelos no domínio do tempo e da frequência

Série da transformada de Fourier

Série da demanda de energia elétrica média diária pelo período de julho/96 a outubro/98

1.4 Modelos no domínio do tempo e da frequência

Aspecto	Domínio do Tempo	Domínio da Frequência
Interpretação	Direta e intuitiva	Requer conhecimento de análise de frequências
Previsão	Muito adequado	Menos comum, mas possível
Identificação de Tendências	Fácil	Indireta
Identificação de Sazonalidade	Fácil, especialmente com decomposição	Muito eficaz para detectar ciclos não óbvios
Análise de Ruído	Pode ser difícil isolar o ruído	Muito eficaz com filtros de frequência
Aplicações	Séries financeiras, vendas, clima	Análise de sinais, telecomunicações, processamento de áudio

Resumo Geral

Resumo Geral

Uma abordagem geral para modelagem de séries temporais consiste em analisar alguns aspectos importantes:

- Identificar e classificar a natureza dos dados disposto sequencialmente no tempo
- Verificar Tendência e Sazonalidade
- Alterações acentuadas no comportamento das observações
- Identificar observações discrepantes
- Remover tendências e componentes sazonais para obter resíduos estacionários
- Escolher um modelo para ajustar aos resíduos utilizando função de autocorrelação
- Alcançar a previsão original da série através da previsão dos resíduos junto com os valores estimados da tendência e sazonalidade