CURS 16

MAŞINI ELECTRICE

Maşina asincrona – partea 1

CONTINUT

- □ Elementele constructive ale maşinii asicrone (MA)
- Mărimi nominale
- Infasurarile statorului MA
- Producerea câmpului magnetic învârtitor
- Funcţionarea MA ca motor

Maşina asincrona

Maşina asincrona (MA) este cea mai răspândita maşina electrica datorita construcţiei sale simple, robustetei si calitatilor sale electromecanice, care o fac utilizabila mai ales in regim de funcţionare ca motor in diferite acţionari electrice.

- preţ de cost redus în comparaţie cu alte tipuri de motoare;
- siguranţa mare în funcţionare;
- performanţele tehnice ridicate;
- stabilitate în funcționare, exploatare;
- întreţinere simpla.

MA sunt destinate să funcționeze în **curent alternativ**, turația lor fiind determinată de frecvența rețelei de alimentare.

Maşina asincronă = Maşina de inducţie.

☐ Elementele constructive ale MA

Ca orice maşină electrică rotativă, MA este formată din cele două părţi principale:

☐ Elementele constructive ale MA

Statorul este compus din carcasă, miezul magnetic statoric, confecționat din tole de oțel electrotehnic de formă cilindrică cu crestături interioare în care se situează înfășurările statorului.

Rotorul este compus din miez magnetic rotoric de formă cilindrică alcătuit din tole de oţel electrotehnic asamblate pe arbore şi prevăzute cu crestături periferice pentru situarea înfăşurării rotorice.

□ Clasificarea MA

În funcție de tipul înfășurărilor și numărul de faze:

- a) după numărul de faze al înfășurării bobinate din stator:
- > MA monofazate (având în stator o înfășurare monofazată);
- MA bifazate (având în stator o înfăşurare bifazată);
- > MA trifazate (având în stator o înfăşurare trifazată conectată în stea sau în triunghi);
- b) după tipul înfăşurării din rotor:
- MA cu rotor în scurtcircuit, care au înfăşurarea rotorică tip colivie (MA monofazate, bifazate şi o parte din cele trifazate);
- MA cu rotor bobinat (cu inele de contact), care au înfăşurarea statorică trifazată conectată în stea sau în triunghi, înfăşurarea bobinată rotorică fiind conectată întotdeauna în stea.

Mărimi nominale

Regimul nominal de funcţionare este caracterizat prin următoarele mărimi nominale, înscrise de regulă pe plăcuţa indicatoare a maşinii:

- puterea nominală (P_n) [kW];
- tensiunea nominala de linie (U_n) [V];
- curentul nominal de linie (I_n) [A];
- schema de conexiuni a înfăşurărilor statorice (Y sau D);
- randamentul nominal (η_n) [%];
- factorul de putere nominal cosφ;
- frecventa nominala a tensiunii de alimentare (f_n) [Hz];
- turaţia nominala (n_n) [rot/min];
- clasa de izolaţie şi gradul de protecţie.

Producerea câmpului magnetic învârtitor

Un sistem trifazat de bobinaje parcurs de curenţi simetrici creează în întrefierul maşinii un câmp magnetic învârtitor, cu viteza de rotaţie (Ω_1) , proporţională cu pulsaţia (ω) a curenţilor şi invers proporţională cu numărul de perechi de poli (p).

Sensul de rotaţie al câmpului este cel de succesiune a curenţilor din fazele sistemului trifazat .

$$i_A = \sqrt{2}I\sin\omega t;$$

$$i_B = \sqrt{2}I\sin(\omega t - 2\pi/3);$$

$$i_C = \sqrt{2}I\sin(\omega t - 4\pi/3).$$

□ Producerea câmpului magnetic învârtitor

Viteza unghiulara a câmpului magnetic învârtitor:

$$\Omega_1 = \frac{2\pi}{pT} = \frac{2\pi f}{p} = \frac{\omega}{p}$$
 [rad/s].

Turaţia se sincronism cu care se roteşte câmpul magnetic învârtitor va fi:

$$n_1 = \frac{60\Omega_1}{2\pi} = \frac{60f}{p}$$
 [rot/min].

p	1	2	3	4	5	6	8
<i>n</i> ₁	3000	1500	1000	750	600	500	375
Ω_1	314,159	157,079	104,719	78,359	62,831	52,359	39,269

MA trifazate cu destinație specială.

MA poate functiona ca:

- > motor
- > generator
- frâna electrica.

Infasurarile trifazate statorice ale MA se alimentează cu un sistem trifazat simetric de tensiuni, acestea sunt parcurse de un sistem trifazat simetric de curenți de pulsație ω_1 , care vor produce in intrefierul MA un **câmp magnetic învârtitor** ce se rotește cu viteza unghiulara $\Omega_1 = \omega_1/p$ (viteza unghiulara de sincronism).

Câmpul magnetic învârtitor induce in infasurarea rotorica o t.e.m. Din interacţiunea curenţilor rotorici si câmpul magnetic învârtitor apar forte electromagnetice \rightarrow produc un cuplu care antrenează rotorul in sensul de rotaţie al câmpului magnetic învârtitor statoric.

Denumirea de motor asincron = turaţia rotorului (n) < turaţia de sincronism (n_1) .

Daca $n=n_1$ rotorul ar avea aceeaşi poziţie fata de câmpul magnetic învârtitor \rightarrow t.e.m. indusa in infasurarea rotorica ar fi nula \rightarrow curenţii rotorici nuli \rightarrow cuplul activ ar fi nul.

Viteza unghiulara relativa a câmpului magnetic învârtitor statoric fata de rotor va fi:

$$\Omega_2 = \Omega_1 - \Omega$$

Viteza unghiulara de rotaţie ce corespunde turaţiei rotorice (n).

Se defineşte alunecarea (s) a motorului asincron:

turaţia relativa a câmpului magnetic învârtitor statoric fata de turaţia rotorului.

$$S = \frac{\Omega_2}{\Omega_1} = \frac{\Omega_1 - \Omega}{\Omega_1} = \frac{n_2}{n_1} = \frac{n_1 - n}{n_1} \longrightarrow \begin{cases} \Omega_2 = s \cdot \Omega_1 \\ n_2 = s \cdot n_1 \end{cases}$$

$$n_2 = \frac{60f_2}{p} = s \cdot n_1 = s \frac{60f_1}{p} \longrightarrow f_2 = s \cdot f_1$$
 freeventa curenţilor rotorici.

La pornirea motorului: $n=0 \rightarrow s=1 \rightarrow f_2=f_1$.

De la studiul transformatorului monofazat știm ca t.e.m. este:

$$U_e = \frac{N_1 \cdot \omega \cdot \Phi_m}{\sqrt{2}} = 4.44N \cdot f \cdot \Phi_m$$

In cazul MA, t.e.m. indusa este mai mica din cauza repartizării infasurarilor in crestaturi.

nr. de spire inserate ale unei faze statorice

$$U_{e1} = 4.44 \cdot k_1 \cdot N_1 \cdot f_1 \cdot \Phi_m \longrightarrow \text{ t.e.m. indusa intr-o faza statorica}$$
 factorul de infasurare ale unei faze statorice

$$\begin{aligned} &U_{e2s} = 4.44 \cdot k_2 \cdot N_2 \cdot f_2 \cdot \Phi_m = 4.44 \cdot k_2 \cdot N_2 \cdot s \cdot f_1 \cdot \Phi_m = s \cdot U_{e2} \\ &\text{Raportul de transformare: } k_u = \frac{U_{e1}}{U_{e2}} = \frac{k_1 \cdot N_1}{k_2 \cdot N_2} \end{aligned} \qquad \text{t.e.m. indusa intr-o faza rotorica}$$

Subjecte examen

- 1. Maşina asincrona generalitati, funcţionalitate, avantajele oferite.
- 2. Elementele constructive ale maşinii asincrone detaliat .
- 3. Clasificarea maşinilor asincrone in funcție de numărul de faze al infasurarii in stator.
- 4. Clasificarea maşinilor asincrone după tipul infasurarii din rotor .
- 5. Mărimile nominale care caracterizează regimul nominal de funcționare al mașinii asincrone.
- 6. Producerea câmpului magnetic învârtitor la maşina asincrona.
- 7. Viteza unghiulara a câmpului magnetic învârtitor formula, semnificaţie mărimi, unitate de măsura.
- 8. Turația de sincronism (n_1) formula, semnificație mărimi, unitate de măsura.
- 9. Pentru n₁=3000 rot/min, care este valoarea vitezei unghiulare a câmpului magnetic învârtitor.
- 10. Pentru $n_1=1000$ rot/min, care este valoarea vitezei unghiulare a câmpului magnetic învârtitor.
- 11. Pentru n_1 =500 rot/min, care este valoarea vitezei unghiulare a câmpului magnetic învârtitor.
- 12. Pentru nr. de perechi de poli, p=2, care este valoarea vitezei unghiulare a câmpului magnetic învârtitor, respectiv turația de sincronism la frecventa de 50 Hz.
- 13. Pentru nr. de perechi de poli, p=4, care este valoarea vitezei unghiulare a câmpului magnetic învârtitor, respectiv turaţia de sincronism la frecventa de 50 Hz.
- 14. Funcţionarea maşinii asincrone ca motor producerea câmpului magnetic învârtitor.
- 15. Alunecarea (s) a motorului asincron formula, semnificație mărimi.
- 16. Tensiunea electromotoare indusa intr-o faza statorica, respectiv rotorica in cazul maşinii asincrone formule, semnificaţie mărimi.
- 17. Raportul de transformare al maşinii asincrone formule, semnificaţie mărimi.