

iddidd

Exercícios de Provas Nacionais e Testes Intermédios - Propostas de resolução

1. Escrevendo z_1 e z_2 na forma algébrica, com o objetivo de fazer a adição, temos:

deli

• $z_1 = e^{i\theta} = \cos\theta + i \sin\theta$

•
$$z_2 = 2e^{i(\theta+\pi)} = 2(\cos(\theta+\pi) + i\sin(\theta+\pi)) = 2(-\cos\theta + i(-\sin\theta)) = -2\cos\theta - 2i\sin\theta$$

E assim, vem que:

$$z_1 + z_2 = e^{i\theta} = \cos\theta + i\sin\theta + (-2\cos\theta - 2i\sin\theta) = \cos\theta - 2\cos\theta + i\sin\theta - 2i\sin\theta = -\cos\theta - i\sin\theta = -(\cos\theta + i\sin\theta) = -z_1$$

Assim, temos que:

$$\arg(z_1 + z_2) = \arg(-z_1) = \pi + \theta$$

E como $\theta \in \left]0, \frac{\pi}{2}\right[$, o afixo do número complexo $z_1 + z_2$ pertence ao 3.º quadrante.

Resposta: Opção C

Exame - 2021, Ép. especial

2. Como $z \times w = i \Leftrightarrow w = \frac{i}{z}$, logo temos que uma expressão do número complexo w, é:

$$w = \frac{i}{z} = \frac{e^{i\frac{\pi}{2}}}{2e^{i\frac{3\pi}{5}}} = \frac{1}{2}e^{i\left(\frac{\pi}{2} - \frac{3\pi}{5}\right)} = \frac{1}{2}e^{i\left(\frac{5\pi}{10} - \frac{6\pi}{10}\right)} = \frac{1}{2}e^{i\left(-\frac{\pi}{10}\right)}$$

Assim, como arg $(w)=-\frac{\pi}{10},$ temos que $-\frac{\pi}{10}+2\pi$ também é um argumento do número complexo w, ou seja:

$$\arg\left(w\right) = -\frac{\pi}{10} + 2\pi = -\frac{\pi}{10} + \frac{20\pi}{10} = \frac{19\pi}{10}$$

Resposta: Opção A

Exame - 2021, 2.a Fase

3. Calculando o produto $z1 \times z_2$, vem:

$$z_1 \times z_2 = (-3 + 2i) \times (1 + 2i) = -3 - 6i + 2i + 4i^2 = -3 - 4i + 4(-1) = -3 - 4 - 4i = -7 - 4i$$

Simplificando a expressão de w, temos:

$$w = \frac{z_1 \times z_2}{z_3} = \frac{-7 - 4i}{2 - i} = \frac{(-7 - 4i)(2 + i)}{(2 - i)(2 + i)} = \frac{-14 - 7i - 8i - 4i^2}{2^2 - i^2} = \frac{-14 + 4 - 15i}{4 + 1} = \frac{-10 - 15i}{5} = 2 - 3i$$

Desta forma, considerando $\theta = \arg(w)$ temos que:

•
$$|w| = \sqrt{(-2)^2 + (-3)^2} = \sqrt{4+9} = \sqrt{13}$$

•
$$\operatorname{tg} \theta = \frac{-3}{-2} = \frac{3}{2}$$
; como $\operatorname{sen} \theta < 0$ e $\cos \theta < 0$, θ é um ângulo do 3º quadrante.

• Como tg
$$\left(-\frac{3\pi}{4}\right) = 1$$
, a função tangente é crescente e contínua no intervalo $\left]-\frac{3\pi}{4}, -\frac{\pi}{2}\right[$ e $\frac{3}{2} > 1$ então $\theta > -\frac{3\pi}{4}$

• Como
$$\theta$$
 é um ângulo do 3º quadrante e $\theta > -\frac{3\pi}{4}$, então $\arg\left(w\right) \in \left] -\frac{3\pi}{4}, -\frac{\pi}{2} \right[$

Exame – 2021, 1.^a Fase

4. Como os pontos A e C são equidistantes da origem e o respetivo ponto médio é a origem, temos que são afixos de números complexos simétricos, ou seja, $z_1 = -z_3$ (alternativamente podemos verificar que $-z_1 = z_1 \times i^2 = z_1 \times i \times i = z_2 \times i = z_3$)

De forma análoga temos que os pontos B e D são afixos de números complexos simétricos, ou seja, $z_2 = -z_4$

Assim, temos que

$$z_1 + z_2 + z_3 + z_4 = z_1 + z_2 - z_1 - z_2 = 0$$

Resposta: Opção A

Exame – 2019, Ép. especial

5. Considerando $\overline{AB}=\rho$ e o ângulo definido pelo semieixo positivo horizontal e a reta AD com amplitude θ , temos que $z=\rho e^{i\theta}$

Como [ABCD] é um quadrado, a diagonal $\overline{BD}=\rho\sqrt{2}$ e $A\hat{D}B=\frac{\pi}{2}=\frac{\pi}{4}$, pelo que o ângulo definido pelo semieixo positivo horizontal e a reta BD tem amplitude $\theta+\frac{\pi}{4}$. Assim, temos que o ponto B é o afixo do número complexo

$$w = \rho \sqrt{2} e^{i\left(\theta + \frac{\pi}{4}\right)}$$

Decompondo o número complexo num produto de dois números complexos, vem que:

$$w = \rho \sqrt{2}e^{i\left(\theta + \frac{\pi}{4}\right)} = \rho e^{i\theta} \times \sqrt{2}e^{i\left(\frac{\pi}{4}\right)} = z \times \sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = z \times \sqrt{2}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = z(1+i)$$

Resposta: Opção A

Exame -2019, 2.a Fase

6. Como z = -1 + 2i, temos que $\overline{z} = -1 - 2i$

Como Re(z) < 0 e Im(z) < 0, temos que θ é um ângulo do 3º quadrante, ou seja, $\theta \in \left]\pi, \frac{3\pi}{2}\right[$, pelo que $\theta < \frac{3\pi}{2}$

Por outro lado, como t
g $\theta=\frac{-2}{-1}=2,$ ou seja, tg $\theta>1,$ temos qu
e $\theta>\frac{5\pi}{4}$

Assim, vem que:

$$\theta \in \left] \frac{5\pi}{4}, \frac{3\pi}{2} \right[$$

Resposta: Opção D

Exame – 2019, 1.ª Fase

7. Sabemos que, como $i^0 + i^1 + i^2 + i^3 = 1 + i - 1 - i = 0$ e como $i^n = i^{n+4} (\forall n \in \mathbb{N})$, então a soma de quaisquer quatro parcelas consecutivas é nula.

O valor pedido é a soma de 2019 parcelas (porque incluí i^0), pelo que, como 2019 = $4 \times 504 + 3$, temos que:

$$i^0 + i^1 + i^2 + \underbrace{i^3 + i^4 + i^5 + i^6}_0 + \ldots + \underbrace{i^{2017} + i^{2016} + i^{2017} + i^{2018}}_0 = i^0 + i^1 + i^2 = 1 + i - 1 = i$$

Resposta: Opção A

Exame – 2018, Ép. especial

8. Simplificando a expressão de z, como $i^{15}=i^{4\times 3+3}=i^3=-i$, temos que:

$$z = \frac{(2-i)^2 + 1 + i}{1 - 2i} + 3i^{15} = \frac{4 - 2 \times 2i + i^2 + 1 + i}{1 - 2i} + 3(-i) = \frac{4 - 4i - 1 + 1 + i}{1 - 2i} - 3i = \frac{4 - 3i}{1 - 2i} - 3i = \frac{(4 - 3i)(1 + 2i)}{(1 - 2i)(1 + 2i)} - 3i = \frac{4 + 8i - 3i - 6i^2}{1 + 2i - 2i - 4i^2} - 3i = \frac{4 + 5i - 6(-1)}{1 - 4(-1)} - 3i = \frac{4 + 5i + 6}{1 + 4} - 3i = \frac{10 + 5i}{5} - 3i = 2 + i - 3i = 2 - 2i$$

Assim, vem que $\overline{z} = 2 + 2i$, pelo que:

$$-\frac{1}{2} \times \overline{z} = -\frac{1}{2} \times (2+2i) = -1-i$$

Escrevendo $-\frac{1}{2} \times \overline{z}$ na forma trigonométrica $(\rho e^{i\theta})$ temos:

•
$$\rho = |z| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{1+1} = \sqrt{2}$$

•
$$\operatorname{tg}\theta = \frac{-1}{-1} = 1$$
; como $\operatorname{sen}\theta < 0$ e $\cos\theta < 0$, θ é um ângulo do 3º quadrante, logo $\theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$

Assim
$$-\frac{1}{2} \times \overline{z} = \sqrt{2}e^{i\left(\frac{5\pi}{4}\right)}$$

Exame – 2018, 2.ª Fase

- 9. Como a multiplicação de um número complexo por i corresponde a uma rotação de $\frac{\pi}{2}$ rad da imagem geométrica desse número complexo, temos que:
 - ullet B é a imagem geométrica de iz
 - C é a imagem geométrica de $i \times i \times z = i^2 z$
 - D é a imagem geométrica de $i \times i \times i \times z = i^3 z$

Resposta: Opção D

Exame – 2017, Ép. especial

10. Temos que:

ullet os argumentos dos complexos z e 5z são iguais

$$\arg(5z) = \arg(z) = \frac{\pi}{5}$$

• os argumentos de complexos simétricos, -5z e 5z, diferem de π

$$\arg(-5z) = \arg(5z) - \pi = \frac{\pi}{5} - \pi = -\frac{4\pi}{5}$$

 \bullet a multiplicação por i de um complexo corresponde a somar $\frac{\pi}{2}$ ao seu argumento

$$\arg(-5iz) = \arg(-5z) + \frac{\pi}{2} = -\frac{4\pi}{5} + \frac{\pi}{2} = -\frac{8\pi}{10} + \frac{5\pi}{10} = -\frac{3\pi}{10}$$

Resposta: Opção A

Exame – 2017, 2.ª Fase

11. Escrevendo o número complexo -3na forma trigonométrica, vem $-3=3e^{i(-\pi)}$ Desta forma, temos que:

$$z = -3e^{i\theta} = 3e^{i(-\pi)} \times e^{i\theta} = 3e^{i(-\pi+\theta)} = 3e^{i(\theta-\pi)}$$

Logo, como $\theta \in \left]\pi, \frac{3\pi}{2}\right[$, então $\pi < \theta < \frac{3\pi}{2}$, pelo que:

$$\pi-\pi<\theta-\pi<\frac{3\pi}{2}-\pi \iff 0<\theta-\pi<\frac{\pi}{2}$$

Ou seja, $\arg(z) \in \left]0, \frac{\pi}{2}\right[$, logo a imagem geométrica do número complexo z é um ponto do primeiro quadrante.

Resposta: Opção A

Exame - 2016, 1.ª Fase

12. A operação "multiplicar por i" corresponde a "fazer uma rotação de centro em O e amplitude $\frac{\pi}{2}$ radianos", pelo que a imagem geométrica de iw está no primeiro quadrante a igual distância da origem do que a imagem geométrica de w

A operação "multiplicar por 2"
corresponde a "fazer duplicar a distância à origem, mantendo o argumento do número complexo", pelo que $2iw=z_1$

Finalmente, a imagem geométrica de um número complexo, e do seu simétrico correspondem a rotações de centro em O e amplitude π radianos, pelo que $-2iw=z_4$

Resposta: Opção D

Exame – 2014, Ép. especial

13. As operações "multiplicar por i" e "transformar no conjugado" correspondem geometricamente a "fazer uma rotação de centro em O e amplitude $\frac{\pi}{2}$ radianos" e "encontrar o ponto simétrico relativamente ao eixo real", respetivamente.

Assim, se considerarmos as operações inversas, pela ordem inversa, a partir da imagem geométrica de z, (como indicado na figura), obtemos como resposta a imagem geométrica de z_2 .

Ou, dizendo de outra forma, se $w=z_2$, temos que $\overline{w}=\overline{z_2}=z_1$ e $i\times\overline{w}=i\times z_1=z$, pelo que $w=z_2$.

Resposta: Opção C

Exame - 2013, Ép. especial

14. Se z = 2 + bi, então $\overline{z} = 2 - bi$

Assim temos $\operatorname{Re}(\overline{z}) > 0$ e como b < 0, $\operatorname{Im}(\overline{z}) > 0$, pelo que sabemos que ; representação geométrica de \overline{z} pertence ao primeiro quadrante, logo arg (\overline{z}) não pode ser $-\alpha$

Por outro lado $|\overline{z}| = \sqrt{2^2 + b^2}$, como $b^2 > 0$, temos que $|\overline{z}| > 2$, logo $|\overline{z}|$ não pode ser $\frac{3}{2}$

Resposta: Opção C

Exame - 2013, 2.ª Fase

15.
$$\frac{\cos(\pi - \alpha) + i\cos\left(\frac{\pi}{2} - \alpha\right)}{\cos\alpha + i\sin\alpha} = \frac{\cos(\pi - \alpha) + i\sin\alpha}{\cos\alpha + i\sin\alpha} \quad \text{Porque } \cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

$$= \frac{\cos(\pi - \alpha) + i\sin(\pi - \alpha)}{\cos\alpha + i\sin\alpha} \quad \text{Porque } \sin\alpha = \sin(\pi - \alpha)$$

$$= \frac{e^{i(\pi - \alpha)}}{e^{i\alpha}}$$

$$= e^{i(\pi - \alpha - \alpha)} \quad \text{Fazendo a divisão na forma to}$$

$$= e^{i(\pi - 2\alpha)} \quad \text{Como queríamos mostrar}$$

Fazendo a divisão na forma trigonométrica

Como queríamos mostrar

Exame - 2013, 2.ª Fase

16. Temos que: $|z| = \sqrt{(-8)^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10$ e sabemos que arg $(z) = \alpha$, pelo que podemos escrever que $z = 10e^{i\alpha}$

Assim, temos que

$$w = \frac{-i \times z^2}{\overline{z}} \qquad \text{(do enunciado)}$$

$$= \frac{-i \times 10^2 e^{i(2\alpha)}}{10e^{i(-\alpha)}} \qquad \text{(calculado } z^2 \text{ e escrevendo } \overline{z} \text{ na f.t.)}$$

$$= -i \times 10e^{i(2\alpha - (-\alpha))} \qquad \text{(fazendo a divisão na f.t.)}$$

$$= e^{i\left(-\frac{\pi}{2}\right)} \times 10e^{i(3\alpha)} \qquad \text{(escrevendo } -i \text{ na f.t.)}$$

$$= 10e^{i\left(-\frac{\pi}{2} + 3\alpha\right)} \qquad \text{(fazendo o produto na f.t.)}$$

$$= 10e^{i\left(3\alpha - \frac{\pi}{2}\right)}$$

Resposta: Opção A

Exame - 2013, 1.ª Fase

17. Sabemos que $i^0 = 1$, $i^1 = i$, $i^2 = -1$ e $i^3 = -i$, e que é válida a igualdade $i^n = i^k$, onde k é o resto da divisão inteira de n por 4.

Assim,

- como $8n = 4 \times 2n + 0$, temos que $i^{8n} = i^0 = 1$
- como 8n 1 = 8n 4 + 3 = 4(2n 1) + 3 temos que $i^{8n-1} = i^3 = -i$
- como 8n-2=8n-4+2=4(2n-1)+2 temos que $i^{8n-2}=i^2=-1$

Temos que $i^{8n} \times i^{8n-1} + i^{8n-2} = i^0 \times i^3 + i^2 = 1 \times (-i) + (-1) = -i - 1$

Logo a imagem geométrica de $i^{8n} \times i^{8n-1} + i^{8n-2}$ pertence ao terceiro quadrante.

Resposta: Opção C

Exame - 2013, 1.a Fase

18. Como $z = e^{i\theta}$, então $z^2 = e^{i(2\theta)}$.

Como $\frac{3\pi}{4} < \theta < \pi$, então $2 \times \frac{3\pi}{4} < 2\theta < 2 \times \pi$, ou seja $2\theta \in \left]\frac{3\pi}{2}, 2\pi\right[$

Logo z^2 pertence ao 4º quadrante e $|z^2|=1$, ou seja z^2 é da forma a+bi, com 0< a<1 e -1< b<0.

Assim $z^2 - 2 = (a - 2) + bi$, em que a - 2 < 0 e b < 0, pelo que $z^2 - 2$ pertence ao 3° quadrante.

Resposta: Opção C

Teste Intermédio 12.º ano – 24.05.2013

19. Sabemos que $i^6 = i^2 = -1$ e que $i^7 = i^3 = -i$.

 $\operatorname{Logo} \frac{i^6 + 2i^7}{2 - i} = \frac{-1 + 2(-i)}{2 - i} = \frac{(-1 - 2i)(2 + i)}{(2 - i)(2 + i)} = \frac{-2 - i - 4i - 2i^2}{2^2 - i^2} = \frac{-2 - 5i + 2}{4 + 1} = \frac{-5i}{5} = -i$

Teste Intermédio 12.º ano - 24.05.2013

20. Se z e w são inversos um do outro, temos que $\frac{1}{z} = w$

Por um lado $\frac{1}{z} = \frac{1}{1+i} = \frac{1-i}{(1-i)(1-i)} = \frac{1-i}{1^2-i^2} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i$

Por outro lado. como $11 = 4 \times 2 + 3$, sabemos que $i^{11} = i^3 = -i$ e assim $w = (k-1) + 2pi^{11} = (k-1) + 2p(-i) = (k-1) - (2p)i$

Como $\frac{1}{z} = w$ temos que $\frac{1}{2} - \frac{1}{2}i = (k-1) - (2p)i$

 $\operatorname{Logo}\,\frac{1}{2}=k-1 \ \wedge \ \frac{1}{2}=2p \quad \Leftrightarrow \quad \frac{1}{2}+1=k \ \wedge \ \frac{1}{4}=p \quad \Leftrightarrow \quad \frac{3}{2}=k \ \wedge \ \frac{1}{4}=p$

Assim temos que $k + p = \frac{3}{2} + \frac{1}{4} = \frac{6}{4} + \frac{1}{4} = \frac{7}{4}$

Resposta: Opção D

Exame – 2012, Ép. especial

21. Como $\overline{z_2} = 3 + ki$ temos:

$$z_1 \times \overline{z_2} = (2+i)(3+ki) = 6+2ki+3i+ki^2 = 6-1\times k+i(2k+3) = (6-k)+(2k+3)i$$

Para que $z_1 \times \overline{z_2}$ seja um imaginário puro $\operatorname{Re}(z_1 \times \overline{z_2}) = 0$

$$Logo 6 - k = 0 \quad \Leftrightarrow \quad 6 = k$$

Resposta: Opção D

Exame - 2012, 2.ª Fase

22. Sabemos que $i^0 = 1$, $i^1 = i$, $i^2 = -1$ e $i^3 = -i$, e que é válida a igualdade $i^n = i^k$, onde k é o resto da divisão inteira de n por 4.

Assim, como
$$4n - 6 = 4n - 8 + 2 = 4(n - 2) + 2$$
 temos que $i^{4n - 6} = i^2 = -1$

Devemos escrever $2e^{i\left(-\frac{\pi}{6}\right)}$ na f.a. para podermos somar as parcelas do numerador:

$$2e^{i\left(-\frac{\pi}{6}\right)} = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\operatorname{sen}\left(-\frac{\pi}{6}\right)\right) = 2\left(\cos\left(\frac{\pi}{6}\right) - i\operatorname{sen}\left(\frac{\pi}{6}\right)\right) = 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)$$

Assim temos que:

$$\frac{\sqrt{3} \times i^{4n-6} + 2e^{i\left(-\frac{\pi}{6}\right)}}{2e^{i\left(\frac{\pi}{5}\right)}} = \frac{\sqrt{3} \times (-1) + 2\left(\frac{\sqrt{3}}{2} - \frac{1}{2}i\right)}{2e^{i\left(\frac{\pi}{5}\right)}} = \frac{-\sqrt{3} + \sqrt{3} - \frac{2}{2}i}{2e^{i\left(\frac{\pi}{5}\right)}} = \frac{-i}{2e^{i\left(\frac{\pi}{5}\right)}} = \frac{-i}{2e^{i\left(\frac{\pi}{5}\right)}} = \frac{-i}{2e^{i\left(\frac{\pi}{5}\right)}} = \frac{-i}{2e^{i\left(\frac{\pi}{5}\right)}} = \frac{1}{2}e^{i\left(-\frac{\pi}{10}\right)} = \frac{1}{2}e^{i\left(\frac{13\pi}{10}\right)}$$

Exame – 2012, 2.ª Fase

23. As operações "dividir por i" e "dividir por 3" correspondem geometricamente a "fazer uma rotação de centro em O e amplitude $-\frac{\pi}{2}$ radianos" e "dividir a distância ao centro por 3", respetivamente.

Assim, podemos fazer as operações por qualquer ordem e, por isso, temos duas alternativas:

•
$$\frac{w}{i} = z_2$$
 e $\frac{z_2}{3} = z_1$, ou então

$$\bullet \ \frac{w}{3} = z_3 \quad \text{e} \quad \frac{z_3}{i} = z_1$$

Resposta: Opção A

Exame – 2012, 1.ª Fase

- 24. Como o ponto M é a imagem geométrica do número complexo z_1 que vamos designar por $z_1 = \rho_1 e^{i\theta}$, em que $0 < \theta < \frac{\pi}{4}$ porque M é um ponto do primeiro quadrante e $\text{Re}(z_1) > \text{Im}(z_1)$.
 - Podemos excluir o ponto da opção (D), o ponto S porque é a imagem geométrica de um número complexo z da forma $z = \rho_3 e^{i\pi}$, e assim, $z_1 \times z = (\rho_1 \rho_3) e^{i(\pi + \theta)}$; e como $0 < \theta < \frac{\pi}{4}$ então a imagem geométrica de $z_1 \times z$ seria um ponto do 3º quadrante e não o ponto N
 - Podemos excluir o ponto da opção (B), o ponto Q porque é a imagem geométrica de um número complexo z da forma $z = \rho_4 e^{i(\frac{\pi}{2})}$, e assim, $z_1 \times z = (\rho_1 \rho_3) e^{i(\frac{\pi}{2} + \theta)}$; ou seja a imagem geométrica de $z_1 \times z$ seria um ponto sobre a reta perpendicular a à reta OM pelo ponto O e não o ponto N
 - Podemos excluir o ponto da opção (A), o ponto P porque é a imagem geométrica de um número complexo z da forma $z=\rho_5 e^{i\alpha}$, e assim, $z_1\times z=(\rho_1\rho_5)e^{i(\theta+\alpha)}$; e como $\alpha<\frac{\pi}{2}$, então a imagem geométrica de $z_1\times z$ seria um ponto do quadrante definido pela reta OM e pela perpendicular pelo ponto O e não o ponto N

Logo o ponto R é o único, de entre as opções apresentadas, que pode ser a imagem geométrica do número complexo z_2

Resposta: Opção C

Exame – 2011, Prova especial

25. Para que z_1 seja igual ao conjugado de z_2 , tem que se verificar a condição $\text{Re}(z_1)=\text{Re}(z_2)~\wedge~\text{Im}(z_1)=-\text{Im}(z_2)$

Logo:

$$\begin{cases} \operatorname{Re}(z_1) = \operatorname{Re}(z_2) \\ \operatorname{Im}(z_1) = -\operatorname{Im} \end{cases} \Leftrightarrow \begin{cases} 3k + 2 = 3p - 4 \\ p = -(2 - 5k) \end{cases} \Leftrightarrow \begin{cases} 3k + 6 = 3p \\ p = 5k - 2 \end{cases} \Leftrightarrow \begin{cases} k + 2 = p \\ k + 2 = 5k - 2 \end{cases} \Leftrightarrow \begin{cases} (k + 2) + (k + 2)$$

$$\Leftrightarrow \begin{cases} k+2=p \\ 2+2=5k-k \end{cases} \Leftrightarrow \begin{cases} k+2=p \\ 4=4k \end{cases} \Leftrightarrow \begin{cases} 1+2=p \\ 1=k \end{cases} \Leftrightarrow \begin{cases} 3=p \\ 1=k \end{cases}$$

Resposta: Opção B

Exame – 2011, Ép. especial

26. Pela observação da figura podemos adicionar geometricamente os afixos de z_2 e de z_4 e temos que $z_2+z_4=z_3$

A operação "multiplicar por i" corresponde geometricamente a "fazer uma rotação de centro em O e amplitude $\frac{\pi}{2}$ ", pelo que $z_3 \times i = z_5$.

Logo $(z_2 + z_4) \times i = z_3 \times i = z_5$.

Resposta: Opção C

Exame – 2011, 2.ª Fase

Im(z)

27. Sabemos que $i^0 = 1$, $i^1 = i$, $i^2 = -1$ e $i^3 = -i$, e que é válida a igualdade $i^n = i^k$, onde k é o resto da divisão inteira de n por 4.

Assim,

- como $4n = 4 \times n + 0$, temos que $i^{4n} = i^0 = 1$
- como $4n + 1 = 4 \times n + 1$ temos que $i^{4n+1} = i^1 = i$
- como $4n + 2 = 4 \times n + 2$ temos que $i^{4n+2} = i^2 = -1$

Assim temos que:

 $i^{4n}+i^{4n+1}+i^{4n+2}=1+i-1=i,$ pelo que, de acordo com a figura, temos que $i^{4n}+i^{4n+1}+i^{4n+2}=z_2$

Exame – 2011, 1.ª Fase

 $\overrightarrow{Re}(z)$

- 28. Designando por w, z_1 e z_2 os números complexos cujas imagens geométricas são os pontos B, A e C, respetivamente, temos que
 - $\bullet \ |w| = |z_1|,$ porque os pontos Ae Bestão à mesma distância da origem; logo

$$|w| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$

• $\arg(w) = \arg(z_2) - \frac{\pi}{9}$, como $\arg(z_2) = \frac{3\pi}{2}$, temos que

$$\arg\left(w\right) = \frac{3\pi}{2} - \frac{\pi}{9} = \frac{27\pi}{18} - \frac{2\pi}{18} = \frac{25\pi}{18}$$

Assim temos que $w = 5e^{i\left(\frac{25\pi}{18}\right)}$

Resposta: Opção B

Teste Intermédio 12.º ano – 26.05.2011

29. A operação "multiplicar por i" corresponde geometricamente a "fazer uma rotação de centro em O e amplitude $\frac{\pi}{2}$ radianos".

Assim temos que $i \times z = w$, sendo w o número complexo que tem por imagem geométrica o ponto Q.

Logo $-i \times z = -w$, ou seja o número complexo que tem por imagem geométrica o ponto T.

Resposta: Opção D

Exame – 2010, Ép. especial

30. z é um imaginário puro, se arg $z=\frac{\pi}{2}+k\pi, k\in\mathbb{Z}$ Assim temos que:

$$\frac{\pi}{8} - \theta = \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \quad \Leftrightarrow \quad \theta = \frac{\pi}{8} - \frac{\pi}{2} - k\pi, k \in \mathbb{Z} \quad \Leftrightarrow \quad \theta = \frac{\pi}{8} - \frac{4\pi}{8} - k\pi, k \in \mathbb{Z} \quad \Leftrightarrow \quad \theta = \frac{\pi}{8} - \frac{4\pi}{8} - k\pi, k \in \mathbb{Z}$$

$$\Leftrightarrow \quad \theta = -\frac{3\pi}{8} - k\pi, k \in \mathbb{Z}$$

Atribuindo valores a k, temos:

• Se
$$k = 0, \ \theta = -\frac{3\pi}{8}$$

• Se
$$k = -1$$
, $\theta = -\frac{3\pi}{8} + \pi = -\frac{3\pi}{8} + \frac{8\pi}{8} = \frac{5\pi}{8}$

Resposta: Opção ${\bf D}$

Exame - 2010, 1.a Fase

31. Como

•
$$i^6 = i^{4+2} = i^2 = -1$$

•
$$i^7 = i^{4+3} = i^3 = -i$$

•
$$(1+2i)(3+i) = 3+i+6i+2i^2 = 3+2(-1)+7i = 1+7i$$

Temos que:

$$\frac{(1+2i)(3+i)-i^6+i^7}{3i} = \frac{1+7i-(-1)-i}{3i} = \frac{2+6i}{3i} = \frac{(2+6i)\times i}{3i\times i} = \frac{2i+6i^2}{3i^2} = \frac{2i-6}{-3} = \frac{-6}{-3} + \frac{2i}{-3} = \frac{2i-6}{-3} = \frac{-6}{-3} + \frac{2i}{-3} = \frac{2i-6}{-3} = \frac{-6}{-3} + \frac{2i}{-3} = \frac{2i-6}{-3} = \frac{2i-6}{-3} = \frac{-6}{-3} + \frac{2i}{-3} = \frac{2i-6}{-3} = \frac{2i-6}{-$$

Teste Intermédio $12.^{\circ}$ ano -19.05.2010

32. Como $i=e^{i\left(\frac{\pi}{2}\right)}$, podemos fazer a multiplicação na forma trigonométrica:

$$z = i.e^{i\theta} = e^{i\left(\frac{\pi}{2}\right)} \times e^{i\theta} = e^{i\left(\frac{\pi}{2} + \theta\right)}$$

Assim o conjugado de z é:

$$\overline{z} = e^{i\left(-\left(\frac{\pi}{2} + \theta\right)\right)} = e^{i\left(-\frac{\pi}{2} - \theta\right)}$$

Resposta: Opção A

Exame - 2009, Ép. especial

33. Temos que $i^{43} = i^{4 \times 10 + 3} = i^3 = -i$

Calculando
$$z_1^2$$
 temos: $z_1^2 = (3-2i)^2 = 3^2 - 2 \times 3(2i) + (2i)^2 = 9 - 12i + 4i^2 = 9 - 4 - 12i = 5 - 12i$

Como $8e^{i\left(\frac{3\pi}{2}\right)} = -8i$, calculando z na forma algébrica, temos:

$$z = \frac{z_1 + z_1^2 + 2i^{43}}{8e^{i(\frac{3\pi}{2})}} = \frac{(3-2i) + (5-12i) + 2(-i)}{-8i} = \frac{8-16i}{-8i} = \frac{1-2i}{-i} = \frac{(1-2i) \times i}{-i \times i} = \frac{i-2i^2}{-i^2} = \frac{i-2(-1)}{-(-1)} = 2+i$$

Exame – 2009, Ép. especial

34. Se $\arg{(z)} = \frac{\pi}{3}$ então $\arg{(\overline{z})} = -\frac{\pi}{3}$

Escrevendo 2i na f.t. temos $2i = 2e^{i(\frac{\pi}{2})}$

Assim, sendo $\rho=|z|$ (e por isso também $\rho=|\overline{z}|$) e fazendo a divisão na f.t. temos que:

$$\frac{2i}{\overline{z}} = \frac{2e^{i\left(\frac{\pi}{2}\right)}}{\rho e^{i\left(-\frac{\pi}{3}\right)}} = \frac{2}{\rho}e^{i\left(\frac{\pi}{2} - \left(-\frac{\pi}{3}\right)\right)} = \frac{2}{\rho}e^{i\left(\frac{\pi}{2} + \frac{\pi}{3}\right)} = \frac{2}{\rho}e^{i\left(\frac{3\pi}{6} + \frac{2\pi}{6}\right)} = \frac{2}{\rho}e^{i\left(\frac{5\pi}{6}\right)}$$

Logo arg $\left(\frac{2i}{\overline{z}}\right) = \frac{5}{6}\pi$

Resposta: Opção C

Exame – 2009, 1.^a Fase

35. Como
$$i^{18} = i^{4 \times 4 + 2} = i^2 = -1$$
, temos que:
$$z_1 = \frac{i}{1 - i} - i^{18} = \frac{i(1 + i)}{(1 - i)(1 + i)} - (-1) = \frac{i + i^2}{1^2 - i^2} + 1 = \frac{-1 + i}{1 + 1} + 1 = \frac{-1 + i}{2} + \frac{2}{2} = \frac{1 + i}{2} = \frac{1}{2} + \frac{1}{2}i$$

Escrevendo z_1 na f.t. temos $z_1 = \rho e^{i\theta}$, onde:

•
$$\rho = |z_1| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{1 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{2}}{2}$$

• tg
$$\theta = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$$
; como sen $\theta > 0$ e cos $\theta > 0$, θ é um ângulo do 1º quadrante, logo $\theta = \frac{\pi}{4}$

$$\text{Logo } z_1 = \frac{\sqrt{2}}{2} e^{i\left(\frac{\pi}{4}\right)}$$

Exame – 2009, 1.ª Fase

- 36. A imagem geométrica do número complexo $\frac{\rho}{2}e^{i(2\alpha)}$ é um número complexo w tal que:
 - $|w| = \frac{|z|}{2}$ (apenas os pontos $B \in C$ verificam esta condição)
 - $\bullet \ {\rm arg}(w) = 2 \times {\rm arg}(z)$ (apenas os pontos A e B verificam esta condição)

Assim o ponto B é a imagem geométrica de $\frac{\rho}{2}e^{i(2\alpha)}$

Resposta: Opção B

Teste Intermédio $12.^{\circ}$ ano -27.05.2009

37. Como
$$i^{35} = i^{8 \times 4 + 3} = i^3 = -i$$
, e

$$(2+i)^2 = (2+i)(2+i) = 4+2i+2i+i^2 = 4-1+4i = 3+4i$$

temos que:

$$\frac{(2+i)^2 + 1 + 6i^{35}}{1+2i} = \frac{3+4i+1+6(-i)}{1+2i} = \frac{3+1+4i-6i}{1+2i} = \frac{4-2i}{1+2i} = \frac{(4-2i)(1-2i)}{(1+2i)(1-2i)} = \frac{4-8i-2i+4i^2}{1^2-4i^2} = \frac{4-4-10i}{1+4} = \frac{-10i}{5} = -2i$$

Teste Intermédio 12.º ano – 27.05.2009

38. Como $e^{i\left(\frac{\pi}{2}\right)} = i$, temos que:

$$z_1 = (1-i).(1+i) = 1^2 - i^2 = 1 + 1 = 2$$

Na f.t.:
$$z_1 = 2e^{i \times 0}$$

Fazendo a divisão na f.t.:

$$w = \frac{z_1}{z_2} = \frac{2e^{i\times 0}}{8e^{i\left(-\frac{\pi}{4}\right)}} = \frac{2}{8}e^{i\left(0-\left(-\frac{\pi}{4}\right)\right)} = \frac{1}{4}e^{i\left(\frac{\pi}{4}\right)}$$

Exame – 2008, Ép. especial

39. Os números complexos z e -z, têm argumentos que diferem de π radianos, logo, temos que:

$$\arg(-z) = \pi + \arg(z) = \pi + \frac{\pi}{6} = \frac{6\pi}{6} + \frac{\pi}{6} = \frac{7\pi}{6}$$

Resposta: Opção D

Exame – 2008, 2.ª Fase

40. Como $i^{18} = i^{4 \times 2 + 2} = (i^2)^4 \times i^2 = (-1)^4 \times (-1) = -1$, temos que:

$$\frac{2z_1 - i^{18} - 3}{1 - 2i} = \frac{2(1 - i) - (-1) - 3}{1 - 2i} = \frac{2 - 2i + 1 - 3}{1 - 2i} = \frac{-2i}{1 - 2i} = \frac{-2i(1 + 2i)}{(1 - 2i)(1 + 2i)} = \frac{-2i - 4i^2}{1^2 - (2i)^2} = \frac{-2i + 4}{1 + 4} = \frac{4 - 2i}{5} = \frac{4}{5} - \frac{2}{5}i$$

Exame – 2008, 2.ª Fase

41. O número complexo 3i tem a sua representação geométrica sobre a parte positiva do eixo imaginário, pelo que define um ângulo de $\frac{\pi}{2}$ radianos com o semieixo real positivo, logo $\arg(z) = \frac{\pi}{2} = \frac{1}{2}\pi$

Resposta: Opção B

Exame -2008, 1.^a fase

42. Sabemos que $i^0 = 1$, $i^1 = i$, $i^2 = -1$ e $i^3 = -i$, e que é válida a igualdade $i^p = i^k$, onde k é o resto da divisão inteira de p por 4.

Assim, como $i^n = -i$, temos que $i^n = -i = i^3 = i^{4 \times p + 3}$, para $p \in \mathbb{N}$.

Logo
$$i^{n+1} = i^{(4 \times p + 3) + 1} = i^{4 \times p + 4} = i^{4 \times (p+1)} = i^{4 \times (p+1) + 0} = i^0 = 1$$

Resposta: Opção A

Exame – 2007, 2.^a fase

43. Como arg $(z_1) = \alpha$, temos que $z_1 = \rho e^{i\alpha}$ Como $z_2 = 4iz_1$, temos que $-z_2 = -4iz_1$

Como $-4i = 4e^{i\left(\frac{3\pi}{2}\right)}$, fazendo a multiplicação na f.t. temos que:

$$-z_2 = -4iz_1 = 4e^{i\left(\frac{3\pi}{2}\right)} \times \rho e^{i\alpha} = (4\rho)e^{i\left(\frac{3\pi}{2} + \alpha\right)}$$

Assim, como
$$\alpha \in \left]0, \frac{\pi}{2}\right[$$
, temos que arg $(-z_2) = \frac{3\pi}{2} + \alpha$

Exame – 2007, 2.ª fase

- 44. Designando por w, z_1 e z_2 os números complexos cujas imagens geométricas são os pontos C, A e B, respetivamente, temos que
 - $|w| = |z_1|$, porque os pontos A e C estão à mesma distância da origem; logo

$$|w| = \sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

• Como
$$18^{\circ} = 18 \times \frac{\pi}{180} rad = 18 \times \frac{\pi}{18 \times 10} rad = \frac{\pi}{10} rad$$
, então: $\arg(w) = \arg(z_2) + \frac{\pi}{10} = \frac{\pi}{2} + \frac{\pi}{10} = \frac{5\pi}{10} + \frac{\pi}{10} = \frac{6\pi}{10} = \frac{3\pi}{5}$

Assim temos que $w = 5e^{i\left(\frac{3\pi}{5}\right)}$

Resposta: Opção D

Exame – 2006, Ép. especial

45. Como $e^{i\left(\frac{\pi}{2}\right)} = i$ temos que:

$$z_1 = (2-i)\left(2 + e^{i\left(\frac{\pi}{2}\right)}\right) = (2-i)(2+i) = 2^2 - i^2 = 4 - (-1) = 5$$

Escrevendo z_1 na f.t. temos $z_1 = 5 = 5e^{i \times 0}$

Fazendo a divisão na f.t. vem:

$$\frac{z_1}{z_2} = \frac{5e^{i \times 0}}{\frac{1}{5}e^{i\left(-\frac{\pi}{7}\right)}} = \frac{5}{\frac{1}{5}}e^{i\left(0 - \left(-\frac{\pi}{7}\right)\right)} = 25e^{i\left(\frac{\pi}{7}\right)}$$

Exame - 2006, 2.a fase

46. Seja z = a + bi com $a \in \mathbb{R} \setminus \{0\}$ e $b \in \mathbb{R} \setminus \{0\}$, cuja imagem geométrica é o ponto A.

Assim $\overline{z} = a - bi$, cuja imagem geométrica é o ponto A', simétrico do ponto A relativamente ao eixo real.

Logo $-\overline{z}=-(a-bi)=-a+bi$, cuja imagem geométrica é o ponto B, simétrico do ponto A relativamente ao eixo imaginário.

Resposta: Opção C

Exame – 2005, Ép. especial

47. Escrevendo w_1 na f.t. temos $w_1 = \rho e^{i\theta}$, onde:

•
$$\rho = |w_1| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

•
$$\operatorname{tg} \theta = \frac{1}{1} = 1$$
; como $\operatorname{sen} \theta > 0$ e $\cos \theta > 0$, θ é um ângulo do 1º quadrante, logo $\theta = \frac{\pi}{4}$

Assim $w_1 = \sqrt{2}e^{i\left(\frac{\pi}{4}\right)}$

Calculando o produto $w_1 \times w_2$ na f.t., e escrevendo o resultado na f.a. vem:

$$w_1 \times w_2 = \sqrt{2}e^{i\left(\frac{\pi}{4}\right)} \times \sqrt{2}e^{i\left(\frac{\pi}{12}\right)} = (\sqrt{2} \times \sqrt{2})e^{i\left(\frac{\pi}{4} + \frac{\pi}{12}\right)} = 2e^{i\left(\frac{3\pi}{12} + \frac{\pi}{12}\right)} = 2e^{i\left(\frac{4\pi}{12}\right)} = 2e^{i\left(\frac{\pi}{3}\right)} = 2e^{i\left($$

Podemos ainda escrever w_3 na f.a.: $w_3 = \sqrt{3}e^{i\left(-\frac{\pi}{2}\right)} = -\sqrt{3}i$

Assim temos que:

$$\frac{w_1 \times w_2 - 2}{w_3} = \frac{1 + \sqrt{3}i - 2}{-\sqrt{3}i} = \frac{-1 + \sqrt{3}i}{-\sqrt{3}i} = \frac{(-1 + \sqrt{3}i) \times i}{-\sqrt{3}i \times i} = \frac{-i + \sqrt{3}i^2}{-\sqrt{3}i^2} = \frac{-i - \sqrt{3}}{\sqrt{3}} = \frac{-\sqrt{3}}{\sqrt{3}} - \frac{1}{\sqrt{3}}i = \frac{-1 - \sqrt{3}}{3}i$$

Exame - 2005, 2.a fase

$$48. \ \ w = \frac{2+i}{1-i} - i = \frac{(2+i)(1+i)}{(1-i)(1+i)} - i = \frac{2+2i+i+i^2}{1^2-i^2} - i = \frac{2+3i-1}{1-(-1)} - i = \frac{1+3i}{2} - \frac{2i}{2} = \frac{1+i}{2} = \frac{1}{2} + \frac{1}{2}i = \frac{1+i}{2} =$$

Escrevendo w na f.t. temos $w = \rho e^{i\theta}$, onde:

•
$$\rho = |w| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \frac{\sqrt{2}}{2}$$

• tg
$$\theta = \frac{\frac{1}{2}}{\frac{1}{2}} = 1$$
; como sen $\theta > 0$ e cos $\theta > 0$, θ é um ângulo do 1º quadrante, logo $\theta = \frac{\pi}{4}$

Assim
$$w = \frac{\sqrt{2}}{2}e^{i\left(\frac{\pi}{4}\right)}$$

Exame - 2005, 1.a fase

49.

49.1. Como
$$w^2 = (4-3i)(4-3i) = 16-12i-12i+9i^2 = 16-24i-9 = 7-24i$$

$$2i + \frac{w^2}{i} = 2i + \frac{7 - 24i}{i} = 2i + \frac{(7 - 24i) \times i}{i \times i} = 2i + \frac{7i - 24i^2}{i^2} = 2i + \frac{7i + 24}{-1} = 2i - 7i - 24 = -24 - 5i$$

49.2. Se
$$\arg(w) = \alpha$$
 então $w = \rho e^{i\alpha}$, sendo $\rho = |w| = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$

Assim
$$\overline{w} = 5e^{i(-\alpha)}$$

Como $i = e^{i\left(\frac{\pi}{2}\right)}$, fazendo o produto na f.t., temos:

$$i \times \overline{w} = e^{i\left(\frac{\pi}{2}\right)} \times 5e^{i(-\alpha)} = 5e^{i\left(\frac{\pi}{2} - \alpha\right)}$$

Exame – 2004, 2.ª fase

50. Como $i^{23} = i^{4 \times 5 + 3} = i^3 = -i$ temos que:

$$\frac{z_1+i^{23}}{z_2} = \frac{-6+3i+(-i)}{1-2i} = \frac{(-6+2i)\times(1+2i)}{(1-2i)\times(1+2i)} = \frac{-6-12i+2i+4i^2}{1^2-(2i)^2} = \frac{-6-10i-4}{1-4i^2} = \frac{-10-10i}{1+4} = \frac{-10-10i}{5} = -2-2i$$

Escrevendo -2 - 2i na f.t. temos $-2 - 2i = \rho e^{i\theta}$, onde:

•
$$\rho = |-2 - 2i| = \sqrt{(-2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{4 \times 2} = 2\sqrt{2}$$

•
$$\operatorname{tg} \theta = \frac{-2}{-2} = 1$$
; como $\operatorname{sen} \theta < 0$ e $\cos \theta < 0$, θ é um ângulo do 3º quadrante, logo $\theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$

Assim
$$\frac{z_1 + i^{23}}{z_2} = 2\sqrt{2}e^{i\left(\frac{5\pi}{4}\right)}$$

Exame – 2004, $1.^{a}$ fase

51. Para que z seja um número real $\arg(z) = 0 \vee \arg(z) = \pi$

$$\operatorname{Assim} \, \theta - \frac{\pi}{5} = 0 \, \vee \, \theta - \frac{\pi}{5} = \pi \quad \Leftrightarrow \quad \theta = \frac{\pi}{5} \, \vee \, \theta = \pi + \frac{\pi}{5} \quad \Leftrightarrow \quad \theta = \frac{\pi}{5} \, \vee \, \theta = \frac{6\pi}{5}$$

Resposta: Opção A

Exame – 2003, Prova para militares

52. Como Re(w) > 1 então Re(w-1) > 0 e Im(w) = Im(w-1), pelo que é razoável admitir que $w-1=z_1$

Como Re
$$(z_3)=-\operatorname{Re}(z_1) \wedge \operatorname{Im}(z_3)=-\operatorname{Im}(z_1),$$
temos que $z_3=-z_1$

Assim temos que $z_3 = -z_1 = -(w - 1) = 1 - w$

Resposta: Opção C

Exame – 2003, 2.ª fase

53. Escrevendo z_1 na f.t. temos $z_1 = \rho e^{i\theta}$, onde:

•
$$\rho = |z_1| = \sqrt{2^2 + (-2)^2} = \sqrt{4+4} = \sqrt{8} = \sqrt{2^2 \times 2} = 2\sqrt{2}$$

• tg
$$\theta = \frac{-2}{2} = -1$$
; como sen $\theta < 0$ e cos $\theta > 0$, θ é um ângulo do 4º quadrante, logo $\theta = \frac{3\pi}{2} + \frac{\pi}{4} = \frac{6\pi}{4} + \frac{\pi}{4} = \frac{7\pi}{4}$

Assim
$$z_1 = 2\sqrt{2}e^{i\left(\frac{7\pi}{4}\right)}$$

Fazendo a divisão na f.t. e escrevendo o quociente na f.a., temos:

$$\frac{z_1}{z_2} = \frac{2\sqrt{2}e^{i\left(\frac{7\pi}{4}\right)}}{\sqrt{2}e^{i\left(\frac{5\pi}{4}\right)}} = \frac{2\sqrt{2}}{\sqrt{2}}e^{i\left(\frac{7\pi}{4} - \frac{5\pi}{4}\right)} = 2e^{i\left(\frac{2\pi}{4}\right)} = 2e^{i\left(\frac{\pi}{2}\right)} = 2i$$

Exame - 2003, 1.ª fase - 1.ª chamada

54. Como $-2 < \text{Re}(z) < 2 \land -1 < \text{Im}(z) < 1 \text{ e}$

- $\operatorname{Re}(z) = \operatorname{Re}(\overline{z})$
- $\operatorname{Im}(z) = -\operatorname{Im}(\overline{z})$

Temos que, também, $-2 < \, \mathrm{Re} \left(\overline{z} \right) < 2 \, \, \wedge \, \, -1 < \, \mathrm{Im} \left(\overline{z} \right) < 1$

Logo a imagem geométrica de \overline{z} também pertence ao interior do retângulo.

Resposta: Opção B

 $Exame-2002,\ 2.^{\mathbf{a}}\ fase$

55.
$$w = \frac{-1+i}{i} = \frac{(-1+i)\times i}{i\times i} = \frac{-i+i^2}{i^2} = \frac{-1-i}{-1} = 1+i$$

Escrevendo w na f.t. temos $w = \rho e^{i\theta}$, onde:

- $\rho = |w| = \sqrt{1^2 + 1^2} = \sqrt{2}$
- tg $\theta=\frac{1}{1}=1$; como sen $\theta>0$ e cos $\theta>0,\,\theta$ é um ângulo do 1º quadrante, logo $\theta=\frac{\pi}{4}$

Assim $w = \sqrt{2}e^{i\left(\frac{\pi}{4}\right)}$, e por isso:

- $\arg(w) = \frac{\pi}{4} \neq \frac{\pi}{3} = \arg(z_1)$, pelo que $w \neq z_1$
- $|w| = \sqrt{2} \neq 4 = |z_2|$, pelo que $w \neq z_2$

Exame – 2002, 1.ª fase - 2.ª chamada

56. Como $i^{23} = i^{4 \times 5 + 3} = i^3 = -i$, temos que:

$$\frac{z_1 + i^{23} + 4}{2 - i} = \frac{1 + i + (-i) + 4}{2 - i} = \frac{5}{2 - i} = \frac{5(2 + i)}{(2 - i)(2 + i)} = \frac{10 + 5i}{2^2 - i^2} = \frac{10 + 5i}{4 - (-1)} = \frac{10 + 5i}{5} = 2 + i$$

Exame - 2001, Ép. especial

57. Se
$$w = 2 + i$$
, então $\frac{1}{w} = \frac{1}{2+i} = \frac{1(2-i)}{(2+i)(2-i)} = \frac{2-i}{2^2-i^2} = \frac{2-i}{4-(-1)} = \frac{2-i}{5} = \frac{2}{5} - \frac{1}{5}i$

Escrevendo $\sqrt{2}e^{i\left(\frac{3\pi}{4}\right)}$ na f.a., temos que:

$$\sqrt{2}e^{i\left(\frac{3\pi}{4}\right)} = \sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) = \sqrt{2}\left(-\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = -\frac{2}{2} + \frac{2}{2} = -1 + i$$

$$\text{Logo } \frac{1}{m} \neq \sqrt{2}e^{i\left(\frac{3\pi}{4}\right)}$$

Exame - 2001, 2.a fase

58. Se a imagem geométrica de w está no primeiro quadrante e pertence à bissetriz dos quadrantes ímpares, então $\arg(w)=\frac{\pi}{4}$, e w é da forma $w=\rho e^{i\left(\frac{\pi}{4}\right)}$

Assim temos que $\overline{w} = \rho e^{i\left(-\frac{\pi}{4}\right)}$

Logo

$$\frac{w}{\overline{w}} = \frac{\rho e^{i\left(\frac{\pi}{4}\right)}}{\rho e^{i\left(-\frac{\pi}{4}\right)}} = \frac{\rho}{\rho} e^{i\left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right)} = 1 \times e^{i\left(\frac{\pi}{4} + \frac{\pi}{4}\right)} = e^{i\left(\frac{2\pi}{4}\right)} = e^{i\left(\frac{\pi}{2}\right)}$$

Logo a representação geométrica de $\frac{w}{\overline{w}}$ está sobre a parte positiva do eixo imaginário, como a imagem geométrica de z_2

Resposta: Opção B

Exame – 2001, 1.ª fase - 1.ª chamada

59. Se $\mathrm{arg}\,(z)=\frac{\pi}{5},$ então ztem a imagem geométrica no 1º quadrante.

Se z=a+bi, com $a>0 \wedge b>0,$ então -z=-a-bi, com $a>0 \wedge b>0,$ logo arg $(-z)=\pi+\frac{\pi}{5}$

Resposta: Opção B

Exame - 2000, 1.ª fase - 2.ª chamada

60. Sabemos que $z \in A$ se |z| < 1.

Como $|1+\sqrt{3}i|=\sqrt{1^2+\sqrt{3}^2}=\sqrt{1+3}=\sqrt{4}=2$, sendo $\theta=\arg{(1+\sqrt{3}i)}$ podemos escrever $1+\sqrt{3}i=2e^{i\theta}$,

Assim temos que:

$$\frac{1+\sqrt{3}i}{4e^{i(\frac{\pi}{6})}} = \frac{2e^{i\theta}}{4e^{i(\frac{\pi}{6})}} = \frac{2}{4}e^{i(\theta-\frac{\pi}{6})} = \frac{1}{2}e^{i(\theta-\frac{\pi}{6})}$$

Logo, como $\left| \frac{1+\sqrt{3}i}{4e^{i\left(\frac{\pi}{6}\right)}} \right| = \frac{1}{2}$, e $\frac{1}{2} < 1$, podemos afirmar que $\frac{1+\sqrt{3}i}{4e^{i\left(\frac{\pi}{6}\right)}}$ pertence ao conjunto A.

Exame - 2000, 1.ª fase - 1.ª chamada

61. A operação "multiplicar por i" corresponde geometricamente a "fazer uma rotação de centro em O e amplitude $\frac{\pi}{2}$ radianos" pelo que a imagem geométrica de iw, está sobre a circunferência de centro na origem que contem w.

A operação "multiplicar por 2" corresponde a duplicar a distância à origem, mantendo o ângulo que com o sei-eixo real positivo.

Assim temos que $2iw = z_2$

Resposta: Opção B

Exame – 2000, Prova modelo