0.1 Foundations

0.1.1 Derivation of EOM of many body system

Hamiltonian of single atom dispersively coupled to single cavity mode by a runningwave laser drive

$$\hat{H}_{SP} = \frac{\hat{p}^2}{2M} - \hbar \omega_z \hat{F}_z + \hbar q \hat{F}_z^2 + \hbar \omega_c \hat{a}^{\dagger} \hat{a} - i \frac{\alpha_{\nu}}{2F} \left[\hat{E}^{(+)} \times \hat{E}^{(-)} \right] \cdot \hat{F}. \tag{0.1.1}$$

Operator \hat{a} creates photon in z-polarized cavity mode of frequency ω_c . Second and third term are Zeeman splittings. $\hat{\mathbf{F}}$ is spin operator.

Figure 1: Pair production

Second quantization

Spinor field operator RHS "5-mode-expansion" doesn't contain second summand

$$\hat{\Psi}(\boldsymbol{x}) = \begin{pmatrix} \frac{k}{\sqrt{2\pi}} \cos(kx) (e^{ikz} \hat{c}_{+k,+1} + e^{-ikz} \hat{c}_{-k,+1}) \\ \frac{k}{2\pi} \hat{c}_{0,0} + \frac{\sqrt{2}k}{\sqrt{3\pi}} \cos^2(kx) \hat{c}_{\pm 2k_x,0} \\ \frac{k}{\sqrt{2\pi}} \cos(kx) (e^{-ikz} \hat{c}_{-k,-1} + e^{ikz} \hat{c}_{+k,-1}) \end{pmatrix} = \begin{pmatrix} \hat{c}_{+1,+k} \psi_{+1,+k} + \hat{c}_{+1,-k} \psi_{+1,-k} \\ \hat{c}_{0,0} \psi_{0,0} \\ \hat{c}_{-1,k} \psi_{-1,+k} + \hat{c}_{-1,-k} \psi_{-1,-k} \end{pmatrix}$$

$$(0.1.2)$$

Where the respective functions have to be normed

$$\int_{-\frac{\pi}{k}}^{\frac{\pi}{k}} \psi_{+1,+k}^* \psi_{+1,+k} dz dx = 1 \tag{0.1.3}$$

(c.f. 2010 Dicke paper)

$$\Psi = \begin{pmatrix} \Psi_{+1} \\ \Psi_0 \\ \Psi_{-1} \end{pmatrix} \tag{0.1.4}$$

Next we find an effective many body hamiltonian.

$$H_{SP} = H_L + H_{AT} + H_{INT} (0.1.5)$$

Where H_{AT} contains F_z and H_{INT} contains F_+, F_- .

$$H_{MB} = H_L + \int \hat{\Psi}^{\dagger}(\hat{x})(H_{AT} + H_{INT})\hat{\Psi}(\hat{x})\hat{dx}$$
 (0.1.6)

e.g.

$$F_z = \begin{pmatrix} +1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \tag{0.1.7}$$

$$F_{+} = \sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \tag{0.1.8}$$

This calculation is done in Rodrigos "Full derivation Hamiltonian" handwritten pdf. We do adiabatic elimination with effective operators and apply the rotating wave approximation. We obtain the effective many-body Hamiltonian

$$H = H_0 + H_+ + H_- \tag{0.1.9}$$

with e.g.

$$H_{+} = \hbar \chi_{+} (2\hat{c}_{-k,-1}^{\dagger} \hat{c}_{+k,+1}^{\dagger} \hat{c}_{0} \hat{c}_{0} + \hat{c}_{0}^{\dagger} \hat{c}_{+k,+1} \hat{c}_{+k,+1}^{\dagger} \hat{c}_{0} + \hat{c}_{-k,-1}^{\dagger} \hat{c}_{0} \hat{c}_{0}^{\dagger} \hat{c}_{-k,-1} + h.c.) \quad (0.1.10)$$

0.1.2 Further info to experiment: (rodrigo thesis p.103)

drive is operated in limit of large two-poton detunings

$$|\delta_{\pm}| \gg \kappa \tag{0.1.11}$$

$$\delta_{\pm} = \delta_c \pm \omega_z = (\omega_d \pm \omega_z) - \omega_c \tag{0.1.12}$$

We absorb drive photon, and go from

$$|0\rangle_0 \to |+k\rangle_+ 1 \tag{0.1.13}$$

thus we need a energy conserving cavity photon with freq $\approx \omega_d - \omega_z$. (or $+\omega_z$?) Here we can still ignore the kinetic energy $\sim k$ of the atom since this energy is much smaller than κ .

Parametric amplification of pair production

look at 0.1.9 + assume mode $|0\rangle_0$ undepleted throughout the dynamics i.e. occupied by N atoms. set $\hat{c}_0 = \sqrt{N}$ and obtain

$$\hat{H}_{eff} = \hat{H}_{eff}^{+} + \hat{H}_{eff}^{-} \tag{0.1.14}$$

with

$$\hat{H}_{eff}^{\pm} = \hbar(\omega_0 + 4N\chi_{\pm})(\hat{K}_{z,\pm} - 1/2) + 4\hbar N\chi_{\pm}\hat{K}_{x,\pm}$$
 (0.1.15)

Look at linear equations of motion

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \hat{K}_{x,\pm} \\ \dots y \\ \dots z \end{pmatrix} = \mathbf{M}_{\pm} \begin{pmatrix} \hat{K}_{x,\pm} \\ \dots y \\ \dots z \end{pmatrix}$$
(0.1.16)

with three non-degenerate complex eigenvalues

$$\lambda_{1,+} = 0 \tag{0.1.17}$$

$$\lambda_{2,\pm} = \sqrt{-\omega_0(\omega_0 + 8N\chi_{\pm})} = +\lambda_{\pm}$$
 (0.1.18)

$$\lambda_{3,\pm} = -\sqrt{-\omega_0(\omega_0 + 8N\chi_{\pm})} \tag{0.1.19}$$

We also have

$$\langle N_{p,\pm} \rangle = \frac{1}{2} (\langle c_{1,\pm}^{\dagger} c_{1,\pm} \rangle + \langle c_{-1,\mp}^{\dagger} c_{-1,\mp} \rangle) \approx \langle K_{z,\pm} \rangle - \frac{1}{2} \approx A \cosh(\lambda_{\pm} t) + (const) \quad (0.1.20)$$

To conclude: we see that we have eigenvectors of M. Those are perpendicular, since the eigenvalues are different. The time development of those is given by 0.1.16. Thus, its either phase oszillation for a complex eigenvalue or exponential growth for a real eigenvalue. 0.1.20 looks at the expectation value of the occupation of the modes that are not $|0\rangle_0$ (occupation of pairs). we see that the time development of those depends on $\langle K_{z,\pm} \rangle$, therefore on the eigenvectors of M, therefore on the eigenvalues of M. We see, that for a real λ_{\pm} the occupation of those modes get macroscopic. So we say that for a critical coupling a second order phase transition occurs (lambda get real) featuring pairs. this fast change of coupling is called quench (faster that any period of oscillations happening in system e.g. $1/\omega_0$).

Note: if the number of pairs gets high, the undepleted approximation doesnt hold anymore. thus this equations can just predict the inital growth of pairs. (later there is saturation)

quench: the system jumps from one set of eigenstates to another set of eigenstates. before system was in single eigenstate, after quench it is superposition of different eigenstates \rightarrow oscillation of those. this cant be expressed analytically, thus calculations are done numerically.

Figure 2: Parametric amplicication