Table 1. Hypotheses for covariates affecting landings. S_t is quarter 3 (July-September) catch in the current season, S_{t-1} is quarter 3 catch in the previous season. N_t is the post-monsoon October-March catch in the current season and N_{t-1} is the October-March catch in the prior season. Because the fishing season is July-June, N_t spans two calendar years.

Stage	Hypothesis	Resp.	Covariates
Age	DD1. S_t is dominated by mature age 2+ fish, thus	S_t	N_{t-1}
2+	abundance of the 1-yr and 2-yr ages in the prior season		
	(Oct-Mar catch) should be correlated with the		
	abundance of mature fish this year.		
Age	DD2. Abundance of 1-yr and 2-yr fish should be	N_t	S_{t-1} and S_{t-2}
1-2	correlated with strength of the cohorts from the		
	previous two seasons. The quarter 3 catch, dominated		
	by mature fish, in the prior two years is expected to be		
	correlated with post-monsoon catch.	3.7	3.7
Age	DD3. Because age 2 fish appear in the post-monsoon	N_t	N_{t-1}
2+	catch, we also expect the post-monsoon catch		
	(dominated by age 1 and 2) in the previous season to be		
	correlated with the post-monsoon catch in the current		
	season. Post-monsoon catch two seasons prior should be minimally correlated with current post-monsoon catch.		
Spawn	S1. The onset of monsoon precipitation triggers	S_t	Seasonal
Spawn	movement of adults from offshore to spawning areas due	$\mid \mathcal{S}_t \mid$	precipitation during
	to changes in salinity, turbulence or noise. Spent adults		Jun-Jul in year t
	migrate inshore and are exposed to the fishery.		Jun-Jun in year t
Spawn	S2. The level of precipitation in pre-monsoon months	S_t	Seasonal
Spanin	predicts spawning strength.		precipitation during
	L		Apr-May in year t
Spawn	S3. Extremely high upwelling brings poorly oxygenated	N_t	Ave. Jun-Sep
-	water and very low temperatures to the surface causing	and S_t	upwelling index in
	a delayed or poor spawning while optimal upwelling		year t
	conditions leads to increased spawing. Spawning affects		
	the recruitment of 0-age fish to the fishery and thus the		
	post-monsoon catch.		
Spawn	S4. Extreme heat events in the pre-spawning months	N_t	Ave. nearshore
	cause mature fish to move offshore away from		Mar-May SST in
	productive feeding areas leading to poor spawning		year t and $t-1$
	condition. Poor recruitment leads to low 0-age in		
	current season catch and 1-age fish in next season's		
	catch.		

Table 1. Continued.

Stage	Hypothesis	Resp.	Covariates
Larval	L1. The prior year post-monsoon larval survival and	N_t	Average nearshore
	growth is associated with higher future biomass. Larval	and S_t	SST during
	growth and survival is highest in an intermediate		Oct-Dec in year t-1
	temperature window. Low SST at this time is also		
	indicative of strong upwelling which advects larvae into		
	offshore waters where productivity is lower.		
Larval	L2. Upwelling is associated with higher productivity	N_t	Ave. Jun-Sep
	and higher density of zooplankton, which leads to better	and S_t	upwelling index in
	larval and juvenile growth and survival. The strength of		year t-1 and t-2
	summer upwelling should be associated with higher		
	biomass in future years. However, extremely strong		
	upwelling brings poorly oxygenated water to the surface		
	causing larval mortality and advects larvae offshore.		
Larval	L3. Chlorophyll blooms are signatures of high	N_t	Ave. Chl-a density
	productivity from nutrient influx either due to	and S_t	Jun-Sep in year t ,
	upwelling or coastal inputs. The monsoon bloom		t-1 and $t-2$
	intensity in prior years should be associated with 0-year		
	fish abundance in year t and future sardine biomass.		
All	A1. The changes brought about by the El Niño	N_t	ONI year t-1
ages	Southern Oscillation (ENSO) cycle have a variety of	and S_t	
	effects on environmental parameters (precipitation, SST,		
	thermal fronts, Wind) which impacts spawning and		
	early survival. This in turn impacts the overall		
	abundance.		