Game bisimulations between basic positions

Yde Venema ILLC, UvA, Amsterdam http://staff.science.uva.nl/~yde

joint work with Christian Kissig

Highlights, Paris, 20 September 2013

► Setting: parity games

- ► Setting: parity games
- ▶ Typical examples: evaluation games, acceptance games

- ► Setting: parity games
- ▶ Typical examples: evaluation games, acceptance games
- ▶ Question: when are two games the same/equivalent?

- ► Setting: parity games
- ▶ Typical examples: evaluation games, acceptance games
- ▶ Question: when are two games the same/equivalent?
- ► Typical application: prove complementation lemma

- ► Setting: parity games
- ▶ Typical examples: evaluation games, acceptance games
- ▶ Question: when are two games the same/equivalent?
- ► Typical application: prove complementation lemma

Aim: introduce notion of game bisimulation

- ► Setting: parity games
- ▶ Typical examples: evaluation games, acceptance games
- ▶ Question: when are two games the same/equivalent?
- ► Typical application: prove complementation lemma

Aim: introduce notion of game bisimulation

Here: focus on parity games that

- ► Setting: parity games
- ▶ Typical examples: evaluation games, acceptance games
- ▶ Question: when are two games the same/equivalent?
- ► Typical application: prove complementation lemma

Aim: introduce notion of game bisimulation

Here: focus on parity games that

proceed in rounds

- ► Setting: parity games
- ▶ Typical examples: evaluation games, acceptance games
- ▶ Question: when are two games the same/equivalent?
- ► Typical application: prove complementation lemma

Aim: introduce notion of game bisimulation

Here: focus on parity games that

- proceed in rounds
- moving from one special, basic position to another.

Parity Games

Parity Games

▶ parity game: $\langle V_0, V_1, E, v_I, \Omega \rangle$

Parity Games

- ▶ parity game: $\langle V_0, V_1, E, v_I, \Omega \rangle$
- $ightharpoonup V_0$ and V_1 positions for players 0 and 1, respectively
- ightharpoonup arbitrary player: π , with opponent $\overline{\pi}$
- $ightharpoonup V:=V_0\cup V_1$
- ightharpoonup $E \subseteq V \times V$
- ▶ $\Omega: V \to \mathbb{N}$, finite range, highest priority counts
- ▶ *v_I* initial position

Let $\mathbb{G} = \langle V_0, V_1, E, v_I, \Omega \rangle$ be a parity game.

A set $B \subseteq V_0 \cup V_1$ is basic if

- $ightharpoonup v_I \in B$;
- ▶ any full match starting at some $b \in B$
 - (i) ends in a terminal position, or
- (ii) passes through another position in B;

Elements of B will be called basic positions.

Let $\mathbb{G} = \langle V_0, V_1, E, v_I, \Omega \rangle$ be a parity game.

A set $B \subseteq V_0 \cup V_1$ is basic if

- \triangleright $v_I \in B$;
- ▶ any full match starting at some $b \in B$
 - (i) ends in a terminal position, or
 - (ii) passes through another position in B;
- ▶ $\Omega(v) > 0$ iff $v \in B$.

Elements of *B* will be called basic positions.

Aim: define basic game bisimulation as relation between basic positions.

Let $\mathbb{G} = \langle V_0, V_1, E, v_I, \Omega \rangle$ be a parity game.

A set $B \subseteq V_0 \cup V_1$ is basic if

- $ightharpoonup v_I \in B$;
- ▶ any full match starting at some $b \in B$
 - (i) ends in a terminal position, or
 - (ii) passes through another position in B;
- $ightharpoonup \Omega(v) > 0 \text{ iff } v \in B.$

Elements of *B* will be called basic positions.

Aim: define basic game bisimulation as relation between basic positions.

ightharpoonup may compare player π in $\mathbb G$ with $\overline{\pi}$ in $\mathbb G'$

Let $\mathbb{G} = \langle V_0, V_1, E, v_I, \Omega \rangle$ be a parity game.

A set $B \subseteq V_0 \cup V_1$ is basic if

- $ightharpoonup v_I \in B$;
- ▶ any full match starting at some $b \in B$
 - (i) ends in a terminal position, or
 - (ii) passes through another position in B;
- ▶ $\Omega(v) > 0$ iff $v \in B$.

Elements of *B* will be called basic positions.

Aim: define basic game bisimulation as relation between basic positions.

- ightharpoonup may compare player π in $\mathbb G$ with $\overline{\pi}$ in $\mathbb G'$
- ▶ may relate $v \in V_{\pi}$ to $v' \in V'_{\pi}$ or $v' \in V'_{\overline{\pi}}$

Fix parity game $\mathbb{G}=\langle V_0,V_1,E,v_I,\Omega
angle$ and basic set $B\subseteq V$

Intuition: a local game tree represents one round of the game

Fix parity game $\mathbb{G}=\langle \mathit{V}_0, \mathit{V}_1, \mathit{E}, \mathit{v}_\mathit{I}, \Omega \rangle$ and basic set $\mathit{B} \subseteq \mathit{V}$

Intuition: a local game tree represents one round of the game

For $b \in B$, $T^b = \langle V_0^b, V_1^b, E^b, v_l^b \rangle$ is one-round unravelling of \mathbb{G} :

Fix parity game $\mathbb{G}=\langle V_0,V_1,E,v_I,\Omega\rangle$ and basic set $B\subseteq V$

Intuition: a local game tree represents one round of the game

For $b \in B$, $T^b = \langle V_0^b, V_1^b, E^b, v_l^b \rangle$ is one-round unravelling of \mathbb{G} :

- $\blacktriangleright \ \ V^b := \Big\{\beta \ \text{finite path} \ \ | \ \text{first}(\beta) = p \ \text{and} \ \beta \cap B \subseteq \{\text{first}(\beta), \text{last}(\beta)\}\Big\}$
- $\blacktriangleright \ V_\pi^b := \{\beta \in V^b \mid \mathsf{last}(\beta) \in V_\pi\}$
- $\blacktriangleright E^b := \{ (\beta, \beta v) \mid v \in E(\mathsf{last}(\beta)) \}$
- $ightharpoonup v_I^b := \langle b \rangle$

Fix parity game $\mathbb{G}=\langle V_0,V_1,E,v_I,\Omega\rangle$ and basic set $B\subseteq V$

Intuition: a local game tree represents one round of the game

For $b \in B$, $T^b = \langle V_0^b, V_1^b, E^b, v_l^b \rangle$ is one-round unravelling of \mathbb{G} :

- $\blacktriangleright \ V^b := \Big\{\beta \ \mathsf{finite} \ \mathsf{path} \ \mid \mathsf{first}(\beta) = p \ \mathsf{and} \ \beta \cap B \subseteq \{\mathsf{first}(\beta), \mathsf{last}(\beta)\}\Big\}$
- $\blacktriangleright \ V_{\pi}^b := \{\beta \in V^b \mid \mathsf{last}(\beta) \in V_{\pi}\}$
- $ightharpoonup E^b := \{(\beta, \beta v) \mid v \in E(\mathsf{last}(\beta))\}$
- $\triangleright v_I^b := \langle b \rangle$

N(b) is the set of possible next basic positions, after b:

Fix parity game $\mathbb{G}=\langle V_0,V_1,E,v_I,\Omega \rangle$ and basic set $B\subseteq V$

Intuition: a local game tree represents one round of the game

For $b \in B$, $T^b = \langle V_0^b, V_1^b, E^b, v_I^b \rangle$ is one-round unravelling of \mathbb{G} :

- $\blacktriangleright \ V^b := \Big\{\beta \ \text{finite path} \ | \ \text{first}(\beta) = p \ \text{and} \ \beta \cap B \subseteq \{\text{first}(\beta), \text{last}(\beta)\}\Big\}$
- $\blacktriangleright V_{\pi}^b := \{\beta \in V^b \mid \mathsf{last}(\beta) \in V_{\pi}\}$
- $ightharpoonup E^b := \{(\beta, \beta v) \mid v \in E(\mathsf{last}(\beta))\}$
- $\triangleright v_I^b := \langle b \rangle$

N(b) is the set of possible next basic positions, after b:

- ▶ Leaves (T^b) := $\{\beta \in V^b \mid |\beta| > 1 \text{ and } last(\beta) \in B\}$
- ▶ $N(b) := {last(\beta) | \beta \in Leaves(T^b)}.$

Power

Intuition: $U \subseteq N(b)$ is in the power of π at b, $U \in P_{\pi}(b)$

Power

Intuition: $U \subseteq N(b)$ is in the power of π at b, $U \in P_{\pi}(b)$ if π can ensure that the next basic position is in U.

Power

Intuition: $U \subseteq N(b)$ is in the power of π at b, $U \in P_{\pi}(b)$ if π can ensure that the next basic position is in U.

Formally first define $P_{\pi}(\beta) \subseteq \wp(N(b))$ for $\beta \in V^b$:

- ▶ If $\beta \in \text{Leaves}(T^b)$, we put $P_{\pi}(\beta) := \{\{\text{last}(\beta)\}\}$.
- ▶ If $\beta \notin \text{Leaves}(T^b)$, we put

$$P_{\pi}(\beta) := \left\{ \begin{array}{ll} \bigcup \{P_{\pi}(\gamma) \mid \gamma \in E^{b}(\beta)\} & \text{if } \beta \in V_{\pi}^{b}, \\ \left\{ \bigcup_{\gamma \in E^{b}(\beta)} Y_{\gamma} \mid Y_{\gamma} \in P_{\pi}(\gamma), \text{ all } \gamma \right\} & \text{if } \beta \in V_{\pi}^{b}. \end{array} \right.$$

Finally, $P_{\pi}(b) := P_{\pi}(\langle b \rangle)$.

Basic Game Bisimulation

 \mathbb{G}, \mathbb{G}' parity games, B, B' basic sets, π, σ players.

 $Z \subseteq B \times B'$ is a π, σ -bisimulation if

(1) Z satisfies, for all $v \in B, v' \in B'$ with vZv', the structural conditions

$$\begin{array}{ll} (\pi, \mathsf{forth}) \ \forall U \in P_\pi^\mathbb{G}(v) & \exists U' \in P_\sigma^{\mathbb{G}'}(v') \ \forall u' \in U' \ \exists u \in U \quad (u, u') \in Z, \\ (\overline{\pi}, \mathsf{forth}) \ \forall U \in P_{\overline{\pi}}^\mathbb{G}(v) & \exists U' \in P_{\overline{\sigma}}^{\mathbb{G}'}(v') \ \forall u' \in U' \ \exists u \in U \quad (u, u') \in Z, \\ (\sigma, \mathsf{back}) \ \forall U' \in P_\sigma^{\mathbb{G}'}(v') \ \exists U \in P_\pi^\mathbb{G}(v) & \forall u \in U \quad \exists u' \in U \quad (u, u') \in Z, \\ (\overline{\sigma}, \mathsf{back}) \ \forall U' \in P_{\overline{\sigma}}^{\mathbb{G}'}(v') \ \exists U \in P_{\overline{\pi}}^{\mathbb{G}}(v) & \forall u \in U \quad \exists u' \in U \quad (u, u') \in Z, \\ \end{array}$$

(2) Z satisfies the priority conditions

(parity) for all
$$v \in B, v' \in B'$$
 with vZv' :
$$\Omega(v) \ mod \ 2 = \pi \ \text{iff} \ \Omega'(v') \ mod \ 2 = \sigma,$$
 (contraction) for all $v, w \in B$ and $v', w' \in B'$ with vZv' and wZw' :
$$\Omega(v) \leq \Omega(w) \ \text{iff} \ \Omega(v') \leq \Omega(w').$$

Variations

May change priority condition into:

for all paths $\alpha=(v_i)_{i\in\omega}$, $\alpha'=(v_i')_{i\in\omega}$ such that v_iZv_i' for all i:

 π wins α in $\mathbb G$ iff σ wins α' in $\mathbb G'$.

Main Theorem

Theorem \mathbb{G}, \mathbb{G}' parity games, B, B' basic sets, π, σ players. If $\mathbb{G}, \pi, v \hookrightarrow \mathbb{G}', \sigma, v'$ (i.e. vZv' for some π, σ -bisimulation $Z \subseteq B \times B'$), then

$$v \in Win_{\pi}(\mathbb{G}) \text{ iff } v' \in Win_{\sigma}(\mathbb{G}').$$

Application

Let L be some language of 'one-step' formulas, and let $\mathcal C$ be an alphabet/set of colors.

An *L*-automaton is a triple $\mathbb{A} = \langle A, \delta, \Omega \rangle$ with

$$\delta: A \times C \rightarrow L(A)$$

Corollary If L is closed under taking Boolean duals, then Aut(L) is closed under complementation.

Reference

C. Kissig & Y. Venema, Complementation of Coalgebra Automata, CALCO 2009 (LNCS 5728), pp 81–96.