PRINTABLE VERSION

Quiz 3

You scored 70 out of 100

Question 1

Your answer is CORRECT.

Suppose we are told that set A satisfies $\{1, \pi, *\} \cap A = \emptyset$. Of the following options which can be used for the set A?

- $a) \cap \{-1, \clubsuit, \heartsuit\}$
- **b)** $\bigcirc \{1, \pi, \clubsuit\}$
- c) $(\pi, 2)$
- d) $\bigcirc Z$
- e) On set A will make this true.

Ouestion 2

Your answer is INCORRECT.

The statement $A \cup B = A$ implies which of the following?

- $a) \bigcirc A = \emptyset \land B = \emptyset$
- **b)** $\bigcirc \forall x \in B, x \in A.$
- c) \bigcirc \forall $x \in A, x \in B$.
- d) $\bigcirc \exists x, x \in A \land x \in B$.

Ouestion 3

Your answer is CORRECT.

Suppose |S| = 5 and $|S \times T| = 30$. What is the cardinality of T?

a)
$$|T| = 6$$

b)
$$\bigcirc |T| = 30$$

c)
$$|T| = 150$$

d)
$$|T| = 1$$

e)
$$|T| = 11$$

Question 4

Your answer is CORRECT.

Suppose |T| = 4 and $|P(S) \times T| = 64$. What is the cardinality of S?

a)
$$|S| = 16$$

b)
$$|S| = 4$$

(c)
$$|S| = 64$$

d)
$$|S| = 2^4$$

e)
$$|T| = 4$$

Question 5

Your answer is CORRECT.

Is it possible for $\{5\} \subseteq \mathbb{R}$?

- a) This is true. It always happens!
- b) This can happen, but it doesn't always happen.
- c) \bigcirc This is impossible! It never happens!

Question 6

Your answer is CORRECT.

Consider the set S defined below:

$$S = \{n \in N : 2n = 1 \lor 3n = 1\}$$

Which of the following is true?

$$a) \cap S = \{2^b : b \in N\}$$

$$b) \circ S = N$$

$$c) \cap S = \{2i + 1 : i \in N\}$$

d)
$$\bigcirc$$
 S = {2m : m \in N}

$$e) \odot S = \emptyset$$

Question 7

Your answer is CORRECT.

Suppose we have two sets S and T, each described in terms of a condition: $S = \{x \in U : P(x)\}$ and $T = \{x \in U : Q(x)\}$. (Here U is a Universal set.) If it is also true that

then which of the following statements must be true?

$$a) \cup \forall x \in U, Q(x) \Rightarrow P(x)$$

b)
$$\bigcirc \forall x \in U, P(x) \Rightarrow Q(x)$$

$$\mathbf{c}$$
) $\bigcirc \exists t \in \mathbf{U}, P(t) \land Q(t)$

$$d$$
) $\bigcirc \forall x \in U, P(x) \Rightarrow Q(x)$

$$e) \odot \forall x \in U, \ Q(x) \Rightarrow P(x)$$

Question 8

Your answer is INCORRECT.

A Venn Diagram or De Morgan's Laws should help you complete this sentence:

$$(A \cap B) =$$

$$c) \circ \overline{A} \cap \overline{B}$$

$$\mathbf{d}$$
) $\bigcirc \overline{\mathbf{A}} \cup \overline{\mathbf{B}}$

Question 9

Your answer is CORRECT.

Consider the image shown:

Which set of points is depicted in the image above?

a)
$$\bigcirc \{(x, \sqrt{9-x^2}) : x \in Z \land -3 \le x \le 3\}$$

b)
$$\bigcirc \{(x, \sin(\pi x)) : x \in Z \land -3 \le x \le 3\}$$

c)
$$\bigcirc \{(2, x) : x \in Z \land -3 \le x \le 3\}$$

d)
$$\bigcirc$$
 { $(x, 2) : x \in Z \land -3 \le x \le 3$ }

e)
$$((x, x^2) : x \in Z \land -3 \le x \le 3)$$

$$f_1 \cap \{(x, 2x) : x \in Z \land -3 \le x \le 3\}$$

Ouestion 10

Your answer is INCORRECT.

 $P({2,6}) \cap P({2,-2,6}) =$

- a) (2,6)
- **b)** \bigcirc { {6}, {2,6}}
- $(c) \cap \{\emptyset, \{2\}, \{6\}, \{2,6\}\}$
- **d)** \bigcirc { $\{-2\}$ }
- e) (2, 6, -2)
- **f**) 0 { {6} }