$1\mathrm{A}$ - Théorie des Probabilités. 2022-2023 Prof. Brunel

EXAMEN FINAL (SESSION PRINCIPALE)

- 1. Durée de l'examen: 2 heures.
- 2. Feuille recto-verso A4 manuscrite autorisée. Appareils électroniques interdits.
- 3. L'examen comprend 30 points. Votre note sera le minimum entre le nombre de points obtenus et 20.
- 4. L'accent sera mis sur la rigueur et la précision de vos réponses. Les réponses non justifiées ne seront pas prises en compte.
- 5. Bon courage!

Exercice 1 (20 points)

- 1. Pour tout $n \geq 1$, soit X_n une variable aléatoire de Bernoulli de paramètre $p_n \in [0,1]$.
 - a) Montrer que X_n converge en distribution si et seulement si la suite p_n converge.
 - b) Montrer que X_n converge en probabilité vers 0 si et seulement si $p_n \xrightarrow[n \to \infty]{} 0$.
- 2. Soient X et Y deux variables aléatoires de loi de Bernoulli. Montrer que X et Y sont indépendantes si et seulement si leur covariance est nulle.
- 3. Les assertions suivantes sont-elles vraies? Donner une justification si elles le sont, ou un contre-exemple dans le cas contraire.
 - a) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles intégrables, convergeant en distribution vers une variable aléatoire X intégrable. Alors $\mathbb{E}[X_n] \xrightarrow[n\to\infty]{} \mathbb{E}[X]$.
 - b) Si une variable aléatoire réelle admet une densité par rapport à la mesure de Lebesgue, alors sa fonction de répartition est dérivable sur IR.
 - c) Toute variable aléatoire réelle admet une densité par rapport à une certaine mesure.
- 4. Soit X une variable aléatoire réelle de loi uniforme sur [0,1] et Y une variable aléatoire de loi de Bernoulli de paramètre 1/2, indépendante de X.
 - a) Déterminer la loi de X + Y.
 - b) Déterminer la loi de (2Y 1)X.
 - c) Calculer $\mathbb{E}[XY|X]$.
 - d) Calculer $\mathbb{E}[\cos(2\pi(X+Y))|Y]$.
- 5. Soit $X \sim \mathcal{N}(\mu, \sigma^2)$, où $\mu \in \mathbb{R}$ et $\sigma^2 > 0$. Soit $T \in \mathbb{R}$ un nombre réel et $Y = \max(X, T)$. La variable aléatoire Y admet-elle une densité par rapport à la mesure de Lebesgue ?
- 6. Soient X et Y deux variables aléatoires i.i.d. de loi uniforme sur [0,1]. Montrer que X/Y admet une densité par rapport à la mesure de Lebesgue, et la déterminer.
- 7. Soient X_1, \ldots, X_n des variables aléatoires i.i.d. de loi de Poisson de paramètre 1.
 - a) Calculer la fonction caractéristique de X_1 .
 - b) Déterminer la fonction caractéristique de $X_1 + \ldots + X_n$ et en déduire sa loi.
 - c) Pour tout entier $n \geq 1$, soit Y_n une variable aléatoire de loi de Poisson de paramètre n. Déduire des questions précédentes la limite en distribution de $\frac{Y_n-n}{\sqrt{n}}$, lorsque $n \to \infty$.
- 8. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles, i.i.d., de carré intégrable. Pour tout $n\geq 1$, on pose $V_n=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X}_n)^2$, où \bar{X}_n est la moyenne empirique de X_1,\ldots,X_n . Montrer que V_n converge presque sûrement vers $\mathsf{Var}(X_1)$.
- 9. Soit X une variable aléatoire réelle de loi normale.
 - a) Le vecteur aléatoire (X, -X, 2X) est-il un vecteur gaussien?

- b) Ce vecteur aléatoire admet-il une densité par rapport à la mesure de Lebesgue sur \mathbb{R}^3 ?
- 10. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles et $(\rho_n)_{n\geq 1}$ une suite de nombres réels strictement positifs tendant vers $+\infty$. On suppose que $\rho_n X_n$ converge en distribution. Montrer que nécessairement, $X_n \xrightarrow[n\to\infty]{P} 0$.
- 11. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. de loi exponentielle de paramètre $\lambda > 0$ (on rappelle que cette loi a pour densité, par rapport à la mesure de Lebesgue, la fonction donnée par $f(x) = \lambda e^{-\lambda x} \mathbb{1}_{x\geq 0}$, pour tout $x \in \mathbb{R}$). A l'aide du théorème de la limite centrale et du théorème de Slutsky, montrer que $\sqrt{n}(1/\bar{X}_n \lambda)$ converge en distribution vers une loi normale, dont on déterminera les paramètres (indication : pour tous réels a, b > 0, $1/a 1/b = \frac{b-a}{ab}$).

Exercice 2 (10 points)

Soit $f(x) = \frac{2x}{\theta^2} \mathbb{1}_{0 \le x \le \theta}$, pour tout $x \in \mathbb{R}$, où $\theta > 0$ est un nombre réel fixé.

1. Vérifier que f est bien une densité par rapport à la mesure de Lebesgue.

Dans la suite, soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. admettant f comme densité par rapport à la mesure de Lebesgue.

- 2. Calculer la limite presque sûre de \bar{X}_n , lorsque $n \to \infty$.
- 3. Déterminer deux réels a et b, qui ne dépendent pas de θ , tels que $\sqrt{n} \frac{\bar{X}_n a\theta}{b\theta}$ converge en distribution vers la loi normale centrée réduite.
- 4. Soit $\alpha \in (0,1)$. Déduire de la question précédente une suite d'intervalles de confiance de niveau asymptotique α pour θ , i.e., une suite d'intervalles $(I_n)_{n\geq 1}$ telle que pour tout $n\geq 1$, I_n ne dépend que de X_1,\ldots,X_n et ne dépend pas de θ , et satisfaisant $P(I_n\ni\theta)\xrightarrow[n\to\infty]{}1-\alpha$ (pour tout $\beta\in(0,1)$, on notera q_β le quantile d'ordre β de la loi normale centrée réduite).
- 5. Pour tout $n \geq 1$, on pose $M_n = \max(X_1, \dots, X_n)$.
 - a) Vérifier que $M_n \leq \theta$ presque sûrement.
 - b) Déterminer la fonction de répartition de $n\frac{\theta-M_n}{\theta}$ (on rappelle qu'une fonction de répartition est définie sur \mathbb{R} tout entier).
- 6. En déduire que $n\frac{\theta-M_n}{\theta}$ converge en distribution, vers une loi dont on donnera la fonction de répartition.
- 7. Soit $\alpha \in (0,1)$. Déduire de la question précédente une suite d'intervalles de confiance de niveau asymptotique α pour θ .
- 8. Soit $n \ge 1$. A l'aide du calcul de la fonction de répartition de $n \frac{\theta M_n}{\theta}$, proposer un intervalle de confiance de niveau **non-asymptotique** α pour θ , i.e., un intervalle

 I_n ne dépendant que de $X_1,\dots,X_n,$ et non de $\theta,$ et satisfaisant l'égalité $P(I_n\ni\theta)=1-\alpha.$