WS 17/18

Dr. W. Spann F. Hänle, M. Oelker

3. Tutorium zur Linearen Algebra für Informatiker und Statistiker

- T9) Sei M eine Menge und I eine nicht leere (Index)menge. A_i und B_i seien für jedes $i \in I$ ebenfalls Mengen.
 - (a) Zeigen Sie:

$$\left(\bigcap_{i\in I} A_i\right) \cap M = \bigcap_{i\in I} \left(A_i \cap M\right)$$

(b) Beantworten Sie (mit Begründung!), ob immer gilt

$$\left(\bigcap_{i\in I} A_i\right) \cap \left(\bigcap_{i\in I} B_i\right) = \bigcap_{i\in I} \left(A_i \cap B_i\right) .$$

T
10) Sei $f:X\to Y$ eine Abbildung. Zeigen Sie:

- (a) $\forall A, B \subset X : f(A) \setminus f(B) \subset f(A \setminus B)$
- (b) f injektiv $\iff \forall A, B \subset X : f(A) \setminus f(B) = f(A \setminus B)$
- T11) Betrachten Sie folgende Permutationen von $\{1, 2, 3, 4\}$:

$$\mathrm{id} = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array}\right), \quad \pi = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array}\right), \quad \sigma = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array}\right),$$

- (a) Berechnen Sie $\rho := \pi \circ \sigma$ und stellen Sie die Verknüpfungstafel für $G = \{ \mathrm{id}, \pi, \sigma, \rho \}$ auf, wenn die Funktionsverkettung als Verknüpfung gewählt wird.
- (b) Zeigen Sie, dass (G, \circ) eine kommutative Gruppe bildet.
- T12) Zeigen Sie, dass $\mathbb{R} \times (\mathbb{R} \setminus \{0\})$ mit der Verknüpfung $(a_1, b_1) \circ (a_2, b_2) := (a_1 + a_2, b_1 \cdot b_2)$ eine kommutative Gruppe ist.