Minimal Affinizations of Representations

of Quantum Groups:

the $U_q(\mathfrak{g})$ -module structure

Vyjayanthi Chari¹,

Department of Mathematics,

University of California, Riverside, CA 92521, USA.

Abstract

If $U_q(\mathfrak{g})$ is a finite-dimensional complex simple Lie algebra, an affinization of a finite-dimensional irreducible representation V of $U_q(\mathfrak{g})$ is a finite-dimensional irreducible representation \hat{V} of $U_q(\hat{\mathfrak{g}})$ which contains V with multiplicity one, and is such that all other $U_q(\mathfrak{g})$ -types in \hat{V} have highest weights strictly smaller than that of V. There is a natural partial ordering \preceq on the set of affinizations of V defined in [2]. If \mathfrak{g} is of rank 2, we prove in [2] that there is unique minimal element with represent to this order. In this paper, we give the $U_q(\mathfrak{g})$ -module structure of the minimal affinization when \mathfrak{g} is of type B_2 .

Introduction

In [2], we defined the notion of an affinization of a finite-dimensional irreducible representation V of the quantum group $U_q(\mathfrak{g})$, where \mathfrak{g} is a finite-dimensional complex simple Lie algebra and $q \in \mathbb{C}^{\times}$ is transcendental. An affinization of V is an irreducible representation \hat{V} of the quantum affine algebra $U_q(\hat{\mathfrak{g}})$ which, regarded as a representation of $U_q(\mathfrak{g})$, contains V with multiplicity one, and is such that all other irreducible components of \hat{V} have highest weights strictly smaller than that of V. We say that two affinizations are equivalent if they are isomorphic as representations of $U_q(\mathfrak{g})$. We refer the reader to the introduction to [2] for a discussion of the significance of the notion of an affinization.

An interesting problem is to describe the structure of \hat{V} as a representation of $U_q(\mathfrak{g})$. This problem appears difficult for an arbitrary affinization; however, in [2] we introduced a partial order on the set of equivalence classes of affinizations of V and proved that there is a unique minimal affinization if \mathfrak{g} is of rank 2. If \mathfrak{g} is of type A, it was known that every V has an affinization \hat{V} which is irreducible under $U_q(\mathfrak{g})$; it was proved in [4] that \hat{V} is the unique minimal affinization up to equivalence. However, if \mathfrak{g} is not of type A, there is generally no affinization of

1D .: 11 ... MOD DMG 0007701

a given representation V which is irreducible under $U_q(\mathfrak{g})$ and the description of the structure of the minimal affinizations as representations of $U_q(\mathfrak{g})$ is not obvious. Some examples were worked out in [7]; in this paper, we describe the $U_q(\mathfrak{g})$ -structure of the minimal affinization of an arbitrary irreducible representation of V when \mathfrak{g} is of type B_2 . A consequence of our results is that the minimal affinization of V is irreducible under $U_q(\mathfrak{g})$ if and only if the value of the highest weight on the short simple root of \mathfrak{g} is 0 or 1.

1 Quantum affine algebras and their representations

In this section, we collect the results about quantum affine algebras which we shall need later.

Let \mathfrak{g} be a finite-dimensional complex simple Lie algebra with Cartan subalgebra \mathfrak{h} and Cartan matrix $A=(a_{ij})_{i,j\in I}$. Fix coprime positive integers $(d_i)_{i\in I}$ such that (d_ia_{ij}) is symmetric. Let $P=\mathbb{Z}^I$ and let $P^+=\{\lambda\in P\mid \lambda(i)\geq 0 \text{ for all }i\in I\}$. Let R (resp. R^+) be the set of roots (resp. positive roots) of \mathfrak{g} . Let α_i ($i\in I$) be the simple roots and let θ be the highest root. Define a non-degenerate symmetric bilinear form $(\ ,\)$ on \mathfrak{h}^* by $(\alpha_i,\alpha_j)=d_ia_{ij}$, and set $d_0=\frac{1}{2}(\theta,\theta)$. Let $Q=\oplus_{i\in I}\mathbb{Z}.\alpha_i\subset \mathfrak{h}^*$ be the root lattice, and set $Q^+=\sum_{i\in I}\mathbb{N}.\alpha_i$. Define a partial order \geq on P by $\lambda\geq\mu$ iff $\lambda-\mu\in Q^+$. Let λ_i ($(i\in I)$) be the fundamental weights of \mathfrak{g} , so that $\lambda_i(j)=\delta_{ij}$.

In this paper, we shall be interested in the case when \mathfrak{g} is of type B_2 . Then,

$$I = \{1, 2\},$$
 $d_0 = d_1 = 2,$ $d_2 = 1,$ $\theta = \alpha_1 + 2\alpha_2,$
$$A = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}.$$

Let $q \in \mathbb{C}^{\times}$ be transcendental, and, for $r, n \in \mathbb{N}$, $n \geq r$, define

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}},$$

$$[n]_q! = [n]_q[n - 1]_q \dots [2]_q[1]_q,$$

$$\begin{bmatrix} n \\ r \end{bmatrix}_q = \frac{[n]_q!}{[r]_q![n - r]_q!}.$$

Proposition 1.1. There is a Hopf algebra $U_q(\mathfrak{g})$ over \mathbb{C} which is generated as an algebra by elements x_i^{\pm} , $k_i^{\pm 1}$ $(i \in I)$, with the following defining relations:

$$k_{i}k_{i}^{-1} = k_{i}^{-1}k_{i} = 1, \quad k_{i}k_{j} = k_{j}k_{i},$$

$$k_{i}x_{j}^{\pm}k_{i}^{-1} = q_{i}^{\pm a_{ij}}x_{j}^{\pm},$$

$$[x_{i}^{+}, x_{j}^{-}] = \delta_{ij}\frac{k_{i} - k_{i}^{-1}}{q_{i} - q_{i}^{-1}},$$

$$\sum_{r} \begin{bmatrix} 1 - a_{ij} \\ r \end{bmatrix} \quad (x_{i}^{\pm})^{r}x_{j}^{\pm}(x_{i}^{\pm})^{1 - a_{ij} - r} = 0, \quad i \neq j.$$

The comultiplication Δ , counit ϵ , and antipode S of $U_q(\mathfrak{g})$ are given by

$$\Delta(x_i^+) = x_i^+ \otimes k_i + 1 \otimes x_i^+,$$

$$\Delta(x_i^-) = x_i^- \otimes 1 + k_i^{-1} \otimes x_i^-,$$

$$\Delta(k_i^{\pm 1}) = k_i^{\pm 1} \otimes k_i^{\pm 1},$$

$$\epsilon(x_i^{\pm}) = 0, \ \epsilon(k_i^{\pm 1}) = 1,$$

$$S(x_i^+) = -x_i^+ k_i^{-1}, \ S(x_i^-) = -k_i x_i^-, \ S(k_i^{\pm 1}) = k_i^{\mp 1},$$

for all $i \in I$. \square

Let $\hat{I} = I \coprod \{0\}$ and let $\hat{A} = (a_{ij})_{i,j \in \hat{I}}$ be the extended Cartan matrix of \mathfrak{g} , i.e. the generalized Cartan matrix of the (untwisted) affine Lie algebra $\hat{\mathfrak{g}}$ associated to \mathfrak{g} . Let $q_0 = q^{d_0}$.

When \mathfrak{g} is of type B_2 ,

$$\hat{A} = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -2 & 2 \end{pmatrix}.$$

Theorem 1.2. Let $U_q(\hat{\mathfrak{g}})$ be the algebra with generators x_i^{\pm} , $k_i^{\pm 1}$ $(i \in \hat{I})$ and defining relations those in 1.1, but with the indices i, j allowed to be arbitrary elements of \hat{I} . Then, $U_q(\hat{\mathfrak{g}})$ is a Hopf algebra with comultiplication, counit and antipode given by the same formulas as in 1.1 (but with $i \in \hat{I}$).

Moreover, $U_q(\hat{\mathfrak{g}})$ is isomorphic to the algebra \mathcal{A}_q with generators $x_{i,r}^{\pm}$ $(i \in I, r \in \mathbb{Z}), k_i^{\pm 1}$ $(i \in I), h_{i,r}$ $(i \in I, r \in \mathbb{Z} \setminus \{0\})$ and $c^{\pm 1/2}$, and the following defining relations:

$$c^{\pm 1/2} \text{ are central,}$$

$$k_{i}k_{i}^{-1} = k_{i}^{-1}k_{i} = 1, c^{1/2}c^{-1/2} = c^{-1/2}c^{1/2} = 1,$$

$$k_{i}k_{j} = k_{j}k_{i}, k_{i}h_{j,r} = h_{j,r}k_{i},$$

$$k_{i}x_{j,r}k_{i}^{-1} = q_{i}^{\pm a_{ij}}x_{j,r}^{\pm},$$

$$[h_{i,r}, x_{j,s}^{\pm}] = \pm \frac{1}{r}[ra_{ij}]_{q_{i}}c^{\mp|r|/2}x_{j,r+s}^{\pm},$$

$$(1) \qquad x_{i,r+1}^{\pm}x_{j,s}^{\pm} - q_{i}^{\pm a_{ij}}x_{j,s}^{\pm}x_{i,r+1}^{\pm} = q_{i}^{\pm a_{ij}}x_{i,r}^{\pm}x_{j,s+1}^{\pm} - x_{j,s+1}^{\pm}x_{i,r}^{\pm},$$

$$[h_{i,r}, h_{j,s}] = \delta_{r,-s}\frac{1}{r}[ra_{ij}]_{q_{i}}\frac{c^{r} - c^{-r}}{q_{j} - q_{j}^{-1}},$$

$$[x_{i,r}^{+}, x_{j,s}^{-}] = \delta_{ij}\frac{c^{(r-s)/2}\phi_{i,r+s}^{+} - c^{-(r-s)/2}\phi_{i,r+s}^{-}}{q_{i} - q_{i}^{-1}},$$

(2)
$$\sum_{\pi \in \Sigma} \sum_{k=0}^{m} (-1)^k \begin{bmatrix} m \\ k \end{bmatrix}_{q_i} x_{i,r_{\pi(1)}}^{\pm} \dots x_{i,r_{\pi(k)}}^{\pm} x_{j,s}^{\pm} x_{i,r_{\pi(k+1)}}^{\pm} \dots x_{i,r_{\pi(m)}}^{\pm} = 0,$$

if $i \neq j$, for all sequences of integers r_1, \ldots, r_m , where $m = 1 - a_{ij}$, Σ_m is the symmetric group on m letters, and the $\phi_{i,r}^{\pm}$ are determined by equating powers of u in the formal power series

$$\sum_{i=1}^{\infty} \phi_{i,\pm r}^{\pm} u^{\pm r} = k_i^{\pm 1} exp\left(\pm (q_i - q_i^{-1}) \sum_{i=1}^{\infty} h_{i,\pm s} u^{\pm s}\right).$$

If $\theta = \sum_{i \in I} m_i \alpha_i$, set $k_{\theta} = \prod_{i \in I} k_i^{m_i}$. Suppose that the root vector \overline{x}_{θ}^+ of \mathfrak{g} corresponding to θ is expressed in terms of the simple root vectors \overline{x}_i^+ $(i \in I)$ of \mathfrak{g} as

$$\overline{x}_{\theta}^{+} = \lambda[\overline{x}_{i_1}^{+}, [\overline{x}_{i_2}^{+}, \cdots, [\overline{x}_{i_k}^{+}, \overline{x}_{i_l}^{+}] \cdots]]$$

for some $\lambda \in \mathbb{C}^{\times}$. Define maps $w_i^{\pm}: U_q(\hat{\mathfrak{g}}) \to U_q(\hat{\mathfrak{g}})$ by

$$w_i^{\pm}(a) = x_{i,0}^{\pm} a - k_i^{\pm 1} a k_i^{\mp 1} x_{i,0}^{\pm}.$$

Then, the isomorphism $f: U_q(\hat{\mathfrak{g}}) \to \mathcal{A}_q$ is defined on generators by

$$f(k_0) = k_{\theta}^{-1}, \ f(k_i) = k_i, \ f(x_i^{\pm}) = x_{i,0}^{\pm}, \quad (i \in I),$$
$$f(x_0^{+}) = \mu w_{i_1}^{-} \cdots w_{i_k}^{-}(x_{j,1}^{-}) k_{\theta}^{-1},$$
$$f(x_0^{-}) = \lambda k_{\theta} w_{i_1}^{+} \cdots w_{i_k}^{+}(x_{j,-1}^{+}),$$

where $\mu \in \mathbb{C}^{\times}$ is determined by the condition

$$[x_0^+, x_0^-] = \frac{k_0 - k_0^{-1}}{q_0 - q_0^{-1}}.$$

See [1], [5] and [9] for further details.

Note that there is a canonical homomorphism $U_q(\mathfrak{g}) \to U_q(\hat{\mathfrak{g}})$ such that $x_i^{\pm} \mapsto x_i^{\pm}$, $k_i^{\pm 1} \mapsto k_i^{\pm 1}$ for all $i \in I$. Thus, any representation of $U_q(\hat{\mathfrak{g}})$ may be regarded as a representation of $U_q(\mathfrak{g})$.

It is easy to see that, for any $a \in \mathbb{C}^{\times}$, there is a Hopf algebra automorphism τ_a of $U_q(\hat{\mathfrak{g}})$ given by

$$\tau_a(x_{i,r}^{\pm}) = a^r x_{i,r}^{\pm}, \, \tau_a(\phi_{i,r}^{\pm}) = a^r \phi_{i,r}^{\pm},$$
$$\tau_a(c^{\frac{1}{2}}) = c^{\frac{1}{2}}, \, \tau_a(k_i) = k_i,$$

for $i \in I$, $r \in \mathbb{Z}$ (see [5]).

Let \hat{U}^{\pm} (resp. \hat{U}^{0}) be the subalgebra of $U_{q}(\hat{\mathfrak{g}})$ generated by the $x_{i,r}^{\pm}$ (resp. by the $\phi_{i,r}^{\pm}$) for all $i \in I$, $r \in \mathbb{Z}$. Similarly, let U^{\pm} (resp. U^{0}) be the subalgebra of $U_{q}(\mathfrak{g})$ generated by the x_{i}^{\pm} (resp. by the $k_{i}^{\pm 1}$) for all $i \in I$.

Proposition 1.3. (a) $U_q(\mathfrak{g}) = U^-.U^0.U^+.$

(b)
$$U_q(\hat{\mathfrak{g}}) = \hat{U}^-.\hat{U}^0.\hat{U}^+. \square$$

See [5] or [10] for details.

A representation W of $U_q(\mathfrak{g})$ is said to be of type 1 if it is the direct sum of its weight spaces

$$W_{\lambda} = \{ w \in W \mid k_i \cdot w = q_i^{\lambda(i)} w \}, \quad (\lambda \in P)$$

If $W_{\lambda} \neq 0$, then λ is a weight of W. A vector $w \in W_{\lambda}$ is a highest weight vector if $x_i^+.w = 0$ for all $i \in I$, and W is a highest weight representation with highest weight λ if $W = U_q(\mathfrak{g}).w$ for some highest weight vector $w \in W_{\lambda}$.

It is known (see [5] or [10], for example) that every finite-dimensional irreducible representation of $U_q(\mathfrak{g})$ of type 1 is highest weight. Moreover, assigning to such a

classes of finite-dimensional irreducible type 1 representations of $U_q(\mathfrak{g})$ and P^+ ; the irreducible type 1 representation of $U_q(\mathfrak{g})$ of highest weight $\lambda \in P^+$ is denoted by $V(\lambda)$. Finally, every finite-dimensional representation W of $U_q(\mathfrak{g})$ is completely reducible: if W is of type 1, then

$$W \simeq \bigoplus_{\lambda \in P^+} V(\lambda)^{\oplus m_{\lambda}(W)}$$

for some uniquely determined multiplicities $m_{\lambda}(W) \in \mathbb{N}$. It is convenient to introduce the following notation: for $\mu \in P^+$, let

$$W_{\mu}^{+} = \{ w \in W_{\mu} : x_{i,0}^{+}.v = 0 \text{ for all } i \in I \}.$$

Then, $m_{\mu}(W) = \dim(W_{\mu}^{+}).$

A representation V of $U_q(\hat{\mathfrak{g}})$ is of type 1 if $c^{1/2}$ acts as the identity on V, and if V is of type 1 as a representation of $U_q(\mathfrak{g})$. A vector $v \in V$ is a highest weight vector if

$$x_{i,r}^+.v = 0$$
, $\phi_{i,r}^{\pm}.v = \Phi_{i,r}^{\pm}v$, $c^{1/2}.v = v$,

for some complex numbers $\Phi_{i,r}^{\pm}$. A type 1 representation V is a highest weight representation if $V = U_q(\hat{\mathfrak{g}}).v$, for some highest weight vector v, and the pair of $(I \times \mathbb{Z})$ -tuples $(\Phi_{i,r}^{\pm})_{i \in I, r \in \mathbb{Z}}$ is its highest weight. Note that $\Phi_{i,r}^{+} = 0$ (resp. $\Phi_{i,r}^{-} = 0$) if r < 0 (resp. if r > 0), and that $\Phi_{i,0}^{+}\Phi_{i,0}^{-} = 1$. (In [5], highest weight representations of $U_q(\hat{\mathfrak{g}})$ are called 'pseudo-highest weight'.) Lowest weight representations are defined similarly.

If $\lambda \in P^+$, let \mathcal{P}^{λ} be the set of all *I*-tuples $(P_i)_{i \in I}$ of polynomials $P_i \in \mathbb{C}[u]$, with constant term 1, such that $deg(P_i) = \lambda(i)$ for all $i \in I$. Set $\mathcal{P} = \bigcup_{\lambda \in P^+} \mathcal{P}^{\lambda}$.

Theorem 1.4. (a) Every finite-dimensional irreducible representation of $U_q(\hat{\mathfrak{g}})$ can be obtained from a type 1 representation by twisting with an automorphism of $U_q(\hat{\mathfrak{g}})$.

- (b) Every finite-dimensional irreducible representation of $U_q(\hat{\mathfrak{g}})$ of type 1 is both highest and lowest weight.
- (c) Let V be a finite-dimensional irreducible representation of $U_q(\hat{\mathfrak{g}})$ of type 1 and highest weight $(\Phi_{i,r}^{\pm})_{i\in I,r\in\mathbb{Z}}$. Then, there exists $\mathbf{P}=(P_i)_{i\in I}\in\mathcal{P}$ such that

$$\sum_{r=0}^{\infty} \Phi_{i,r}^{+} u^{r} = q_{i}^{deg(P_{i})} \frac{P_{i}(q_{i}^{-2}u)}{P_{i}(u)} = \sum_{r=0}^{\infty} \Phi_{i,r}^{-} u^{-r},$$

in the sense that the left- and right-hand terms are the Laurent expansions of the middle term about 0 and ∞ , respectively. Assigning to V the I-tuple **P** defines a bijection between the set of isomorphism classes of finite-dimensional irreducible representations of $U_q(\hat{\mathfrak{g}})$ of type 1 and \mathcal{P} . We denote by $V(\mathbf{P})$ the irreducible representation associated to \mathbf{P} .

(d) Let \mathbf{P} , $\mathbf{Q} \in \mathcal{P}$ be as above, and let $v_{\mathbf{P}}$ and $v_{\mathbf{Q}}$ be highest weight vectors of $V(\mathbf{P})$ and $V(\mathbf{Q})$, respectively. Then, in $V(\mathbf{P}) \otimes V(\mathbf{Q})$,

$$x_{i,r}^+.(v_{\mathbf{P}}\otimes v_{\mathbf{Q}}) = 0, \quad \phi_{i,r}^\pm.(v_{\mathbf{P}}\otimes v_{\mathbf{Q}}) = \Psi_{i,r}^\pm(v_{\mathbf{P}}\otimes v_{\mathbf{Q}}),$$

where the complex numbers $\Psi_{i,r}^{\pm}$ are related to the polynomials P_iQ_i as the $\Phi_{i,r}^{\pm}$ are

then $V(\mathbf{P} \otimes \mathbf{Q})$ is isomorphic to a quotient of the subrepresentation of $V(\mathbf{P}) \otimes V(\mathbf{Q})$ generated by $v_{\mathbf{P}} \otimes v_{\mathbf{Q}}$.

(e) If $\mathbf{P} = (P_i)_{i \in I} \in \mathcal{P}$, $a \in \mathbb{C}^{\times}$, and if $\tau_a^*(V(\mathbf{P}))$ denotes the pull-back of $V(\mathbf{P})$ by the automorphism τ_a , we have

$$\tau_a^*(V(\mathbf{P})) \cong V(\mathbf{P}^a)$$

as representations of $U_q(\hat{\mathfrak{g}})$, where $\mathbf{P}^a = (P_i^a)_{i \in I}$ and

$$P_i^a(u) = P_i(au).$$

See [5] and [7] for further details. If the highest weight $(\Phi_{i,r}^{\pm})_{i\in I,r\in\mathbb{Z}}$ of V is given by an I-tuple \mathbf{P} as in part (c), we shall often abuse notation by saying that V has highest weight \mathbf{P} .

If $a \in \mathbb{C}^{\times}$, $i \in I$, we denote the irreducible representation of $U_q(\hat{\mathfrak{g}})$ with defining polynomials

$$P_j = \begin{cases} 1 & \text{if } j \neq i, \\ 1 - a^{-1}u & \text{if } j = i \end{cases}$$

by $V(\lambda_i, a)$, and denote the highest (resp. lowest) weight vector in this representation by v_{λ_i} (resp. $v_{-\lambda_i}$).

For $i \in I$, the subalgebra of $U_q(\hat{\mathfrak{g}})$ generated by the elements $x_{i,r}^{\pm}$ $(r \in \mathbb{Z})$, $k_i^{\pm 1}$ $(i \in I)$, and $h_{i,r}$ $(i \in I, r \in \mathbb{Z} \setminus \{0\})$ is isomorphic to $U_{q_i}(\hat{sl}_2)$; we denote this subalgebra by $U_q(\hat{\mathfrak{g}}_{(i)})$. The subalgebra $U_q(\mathfrak{g}_{(i)})$ is defined similarly. Let $\mu_{(i)}$ be the restriction of μ to $\{i\}$. The following lemma was proved in [6].

Lemma 1.5. Let M be any highest weight representation of $U_q(\hat{\mathfrak{g}})$ with highest weight P and highest weight vector m.

(i) For i = 1, 2, $M_{(i)} = U_q(\hat{\mathfrak{g}}_{(i)}).m$ is a highest weight representation of $U_q(\hat{\mathfrak{g}}_{(i)})$ with highest weight P_i and

$$m_{\mu}(M) = m_{\mu_{(i)}}(M_{(i)}).$$

(ii) Let N be another highest weight representation of $U_q(\hat{\mathfrak{g}})$ with highest weight \mathbf{Q} and assume that λ is the highest weight of $M \otimes N$ (i.e. $\lambda(i) = deg(P_i) + deg(Q_i)$ for i = 1, 2). Then, for i = 1, 2 and $r \in \mathbb{Z}_+$, we have

$$m_{\lambda-r\alpha_i}(M\otimes N)=m_{\lambda_{(i)}-r\alpha_i}(M_{(i)}\otimes N_{(i)}).$$

2 Minimal affinizations

Following [2], we say that a finite-dimensional irreducible representation V of $U_q(\hat{\mathfrak{g}})$ is an affinization of $\lambda \in P^+$ if $V \cong V(\mathbf{P})$ as a representation of $U_q(\hat{\mathfrak{g}})$, for some $\mathbf{P} \in \mathcal{P}^{\lambda}$. Two affinizations of λ are equivalent if they are isomorphic as representations of $U_q(\mathfrak{g})$; we denote by [V] the equivalence class of V. Let \mathcal{Q}^{λ} be the set of equivalence classes of affinizations of λ .

The following posult is proved in [9]

Proposition 2.1. If $\lambda \in P^+$ and [V], $[W] \in \mathcal{Q}^{\lambda}$, we write $[V] \leq [W]$ iff, for all $\mu \in P^+$, either,

- (i) $m_{\mu}(V) \leq m_{\mu}(W)$, or
- (ii) there exists $\nu > \mu$ with $m_{\nu}(V) < m_{\nu}(W)$.

Then, \leq is a partial order on Q^{λ} . \square

An affinization V of λ is minimal if [V] is a minimal element of \mathcal{Q}^{λ} for the partial order \leq , i.e. if $[W] \in \mathcal{Q}^{\lambda}$ and $[W] \leq [V]$ implies that [V] = [W]. It is proved in [2] that \mathcal{Q}^{λ} is a finite set, so minimal affinizations certainly exist.

A necessary condition for minimality was obtained in [2]. To state this result, we recall that the set of complex numbers $\{aq^{-r+1}, aq^{-r+3}, \ldots, aq^{r-1}\}$ is called the q-segment of length $r \in \mathbb{N}$ and centre $a \in \mathbb{C}^{\times}$.

Proposition 2.2. Let $\lambda \in P^+$, let $\mathbf{P} = (P_i)_{i \in I} \in \mathcal{P}^{\lambda}$, and assume that $V(\mathbf{P})$ is a minimal affinization of λ . Then, for all $i \in I$, the roots of P_i form a q_i -segment of length $\lambda(i)$. \square

Note that it follows from 1.4(e) and 2.2 that, if $i \in I$ and $r \in \mathbb{N}$, the weight $r\lambda_i$ has a unique affinization, up to equivalence.

For the rest of this paper we assume that \mathfrak{g} is of type B_2 . In this case, the defining polynomials of the minimal affinizations were determined in [2]:

Theorem 2.3. Let $\lambda \in P^+$ and $\mathbf{P} \in \mathcal{P}^{\lambda}$. Then, $V(\mathbf{P})$ is a minimal affinization of λ iff the following conditions are satisfied:

- (a) for each i = 1, 2, either $P_i = 1$ or the roots of P_i form a q_i -segment of length $\lambda(i)$ and centre a_i (say);
- (b) if $P_1 \neq 1$ and $P_2 \neq 1$, then

$$\frac{a_1}{a_2} = q^{2\lambda(1)+\lambda(2)+1}$$
 or $q^{-(2\lambda(1)+\lambda(2)+3)}$.

Any two minimal affinizations of λ are equivalent. Finally, if $V(\mathbf{P})$ is a minimal affinization of λ and $r \in \mathbb{Z}_+ \setminus \{0\}$, we have

$$m_{\lambda-r\alpha_1}(V(\mathbf{P})) = m_{\lambda-r\alpha_2}(V(\mathbf{P})) = m_{\lambda-\alpha_1-\alpha_2}(V(\mathbf{P})) = 0.$$

Our concern in this paper is the structure of a minimal affinization $V(\mathbf{P})$ as a representation of $U_q(\mathfrak{g})$. Our main result is:

Theorem 2.4. Let $\lambda \in P^+$ and let $V(\mathbf{P})$ be a minimal affinization of λ . Then, as a representation of $U_q(\mathfrak{g})$,

$$V(\mathbf{P}) \cong \bigoplus_{r=0}^{\operatorname{int}(\frac{1}{2}\lambda(2))} V(\lambda - 2r\lambda_2).$$

Here, for any real number b, int(b) is the greatest integer less than or equal to b. The proof of Theorem 2.4 is by induction on $\lambda(2)$. The first part of the following

Proposition 2.5.

- (a) For any $r \in \mathbb{N}$, the minimal affinization of $r\lambda_1$ is irreducible as a $U_q(\mathfrak{g})$ -module.
- (b) The minimal affinization of λ_2 is irreducible as a representation of $U_q(\mathfrak{g})$.

Proof. (a) Let $\mathbf{P} \in \mathcal{P}^{r\lambda_1}$ be such that $V(\mathbf{P})$ is a minimal affinization of $r\lambda_1$. The element $x_0^+.v_{\mathbf{P}}$ has weight $r_1\lambda_1 - \alpha_1 - 2\alpha_2$. This weight is Weyl group conjugate to $r_1\lambda_1 - \alpha_1 \in P^+$. Hence, if $m_{\nu}(V(\mathbf{P}) > 0$ and $x_0^+.v_{\mathbf{P}}$ has a non-zero component in a $U_q(\mathfrak{g})$ -subrepresentation of $V(\mathbf{P})$ of highest weight ν , then $\nu = r_1\lambda_1$ or $r_1\lambda_1 - \alpha_1$. But, $m_{r_1\lambda_1-\alpha_1}(V(\mathbf{P})) = 0$ by 2.2 and so $x_0^+.v_{\mathbf{P}} \in U_q(\mathfrak{g}).v_{\mathbf{P}} \cong V(r_1\lambda_1)$. It follows that x_0^+ preserves $V(r\lambda_1)$. Working with a lowest weight vector of $V(\mathbf{P})$, one proves similarly that x_0^- preserves $U_q(\mathfrak{g}).v_{\mathbf{P}}$. Hence, $U_q(\mathfrak{g}).v_{\mathbf{P}}$ is a $U_q(\hat{\mathfrak{g}})$ -subrepresentation of $V(\mathbf{P})$, hence is equal to $V(\mathbf{P})$, and so $V(\mathbf{P}) \cong V(r\lambda_1)$ as representations of $U_q(\mathfrak{g})$.

(b) This is obvious, since there is no $\mu \in P^+$ such that $\mu < \lambda_2$. \square

We conclude this section with the following result on the dual of $V(\lambda_2, a)$.

If V is any representation of $U_q(\hat{\mathfrak{g}})$, its left dual tV is the representation of $U_q(\hat{\mathfrak{g}})$ on the vector space dual of V given by

$$\langle a.f, v \rangle = \langle f, S(a).v \rangle, \qquad (a \in U_q(\hat{\mathfrak{g}}), v \in V, f \in {}^tV)$$

where S is the antipode of $U_q(\hat{\mathfrak{g}})$ and <,> is the natural pairing between V and its dual. The right dual V^t is defined in the same way, replacing S by S^{-1} . Left and right duals of representations of $U_q(\mathfrak{g})$ are defined similarly. Clearly the (left or right) dual of an irreducible representation is again irreducible. In fact, it is well known that, for any $\lambda \in P^+$,

$${}^{t}V(\lambda) \cong V(\lambda)^{t} \cong V(-w_0\lambda),$$

where w_0 is the longest element of the Weyl group of \mathfrak{g} .

Lemma 2.6. (i) For any $a \in \mathbb{C}^{\times}$,

$$V(\lambda_2, a)^t \cong V(\lambda_2, aq^6), \quad {}^tV(\lambda_2, a) \cong V(\lambda_2, aq^{-6}).$$

(ii) For any $a, b \in \mathbb{C}^{\times}$,

$$dim((V(\lambda_2, a) \otimes V(\lambda_2, b))_0^+) = 1.$$

Moreover, if $0 \neq v_0 \in (V(\lambda_2, a) \otimes V(\lambda_2, b))_0^+$ and $a/b \neq q^{\pm 6}$, then $x_0^{\pm}.v_0$ is a non-zero multiple of $v_{\mp \lambda_2} \otimes v_{\mp \lambda_2}$.

Proof. (i) Since, for any representation V of $U_q(\hat{\mathfrak{g}})$, the canonical isomorphism of vector spaces ${}^tV^t \to V$ is an isomorphism of representations, it suffices to prove the first formula. Since $V(\lambda_2)$ is a self-dual representation of $U_q(\mathfrak{g})$, we have a priori that $V(\lambda_2, a)^t \cong V(\lambda_2, b)$ for some $b \in \mathbb{C}^{\times}$.

Fix $v_{-\lambda_2} = x_2^- x_1^- x_2^- v_{\lambda_2}$. Then, $v_{-\lambda_2}$ is a non–zero element of $V(\lambda_2, a)_{-\lambda_2}$ and, for weight reasons,

$$x_0^+.v_{\lambda_2} = Av_{-\lambda_2}$$

for some $A \in \mathbb{C}$. Let $0 \neq v_{\lambda_2}^t \in V(\lambda_2, a)_{\lambda_2}^t$. Then $\langle v_{\lambda_2}^t, w \rangle = 0$ if $w \notin V(\lambda_2, a_2)_{-\lambda_2}$. Normalize $v_{\lambda_2}^t$ so that

and let $v^t_{-\lambda_2}=x_2^-x_1^-x_2^-.v^t_{\lambda_2}.$ Again, for weight reasons, one has

$$x_0^+.v_{\lambda_2}^t = Bv_{-\lambda_2}^t.$$

for some $B \in \mathbb{C}$. Moreover, from the formula for x_0^+ in 1.2, it is clear that

$$A = a^{-1}c, \quad B = b^{-1}c,$$

where $c \in \mathbb{C}^{\times}$ depends only on q, and not on a or b. Thus, A/B = b/a. But A/B may be computed as follows:

$$\langle x_0^+, v_{\lambda_2}^t, v_{\lambda_2} \rangle = \langle v_{\lambda_2}^t, S^{-1}(x_0^+), v_{\lambda_2} \rangle = \langle v_{\lambda_2}^t, -k_0^{-1}x_0^+, v_{\lambda_2} \rangle.$$

Hence,

$$B < x_2^- x_1^- x_2^- v_{\lambda_2}^t, v_{\lambda_2} > = -q^{-2}A.$$

Since

$$S(x_2^-x_1^-x_2^-).v_{\lambda_2} = q^4x_2^-x_1^-x_2^-.v_2 = q^4v_{-\lambda_2},$$

we find that $A/B = q^6$, and part (i) is proved.

(ii) Since $V(\lambda_2)$ is a self-dual representation of $U_q(\mathfrak{g})$, it follows from 2.4 that

$$\dim((V(\lambda_2, a) \otimes V(\lambda_2, b))_0^+) = 1.$$

If $x_0^{\pm}.v_0 = 0$, then $\mathbb{C}.v_0$ is a $U_q(\hat{\mathfrak{g}})$ -subrepresentation of the tensor product, and hence by (i) we have $a/b = q^{\pm 6}$. \square

3 A first reduction

For the remainder of this paper, we assume that $\lambda \in P^+$, $\lambda(2) \geq 1$ and that 2.4 is known for $\lambda - \lambda_2$. We shall also assume that $\lambda(1) \geq 1$. The proof when $\lambda(1) = 0$ is similar and easier.

We also fix for the rest of the paper an element $\mathbf{P} = (P_i)_{i \in I} \in \mathcal{P}^{\lambda}$ such that the roots of P_i form a string with centre a_i and length $\lambda(i)$, i = 1, 2, and such that

$$\frac{a_1}{a_2} = q^{-(2\lambda(1) + \lambda(2) + 3)}.$$

Define an element $\mathbf{Q} \in \mathcal{P}^{\lambda - \lambda_2}$ by

$$Q_1 = P_1, \quad Q_2 = \prod_{i=1}^{\lambda(2)-1} (1 - a_2^{-1} q^{-(\lambda(2)-2i-1)} u).$$

By 2.3, $V(\mathbf{P})$ and $V(\mathbf{Q})$ are minimal affinizations of λ and $\lambda - \lambda_2$, respectively. In particular, 2.4 is known for $V(\mathbf{Q})$.

The following is the main possit of this section.

Proposition 3.1. Let $\lambda, \mu \in P^+$ and let $V(\mathbf{P})$ be a minimal affinization of λ as above. Then:

- (i) $m_{\mu}(V(\mathbf{P})) \leq 1$ if μ is of the form $\lambda r\theta \alpha_2$ or $\lambda r\theta \alpha_1 \alpha_2$ for some $r \in \mathbb{N}$.
 - (ii) $m_{\mu}(V(\mathbf{P})) \leq 2$ if μ is of the form $\lambda r\theta$ for some $r \in \mathbb{N}$.
- (iii) $m_{\mu}(V(\mathbf{P})) = 0$ if μ is not of the form $\lambda r\theta$, $\lambda r\theta \alpha_2$ or $\lambda r\theta \alpha_1 \alpha_2$ for some $r \in \mathbb{N}$.
 - (iv) $m_{\lambda-r\theta}(V(\mathbf{P})) \ge 1$ for $0 \le r \le int(\frac{1}{2}\lambda(2))$.

We deduce this from the next two results.

Lemma 3.2. For any $\lambda \in P^+$,

$$V(\lambda) \otimes V(\lambda_2) \cong V(\lambda + \lambda_2) \oplus V(\lambda + \lambda_2 - \alpha_2) \oplus V(\lambda + \lambda_2 - \alpha_1 - \alpha_2) \oplus V(\lambda + \lambda_2 - \theta).$$

Proof. By 1.4(c), it suffices to prove the analogous classical result. We leave this to the reader. \Box

Proposition 3.3. Let $\lambda \in P^+$, $\mathbf{P} \in \mathcal{P}^{\lambda}$, $\mathbf{Q} \in \mathcal{P}^{\lambda - \lambda_2}$ be as defined above.

- (i) $V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes V(\mathbf{Q})$ is generated as a representation of $U_q(\hat{\mathfrak{g}})$ by the tensor product of the highest weight vectors. In particular, $V(\mathbf{P})$ is isomorphic to a quotient of $V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes V(\mathbf{Q})$.
- (ii) Let $\mathbf{P}_{(1)} = (P_1, 1)$. Then, there exists a surjective homomorphism of representations of $U_q(\hat{\mathfrak{g}})$

$$\pi: V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes V(\lambda_2, a_2q^{\lambda(2)-3}) \otimes \cdots \otimes V(\lambda_2, a_2q^{-\lambda(2)+1}) \otimes V(\mathbf{P}_{(1)}) \to V(\mathbf{P})$$

such that $\pi(v_{\lambda_2}^{\otimes \lambda(2)} \otimes v_{\mathbf{P}_{(1)}}) = v_{\mathbf{P}}.$

We assume 3.3 for the moment and give the

Proof of 3.1. Parts (i), (ii) and (iii) are easy consequences of 2.4(ii), 3.2 and 3.3(i), since 2.4 is known for $V(\mathbf{Q})$.

To prove (iv), we can assume that $\lambda(2) \geq 2$, since otherwise there is nothing to prove. Notice that, by 2.5, we can (and do) choose elements $0 \neq w_s \in (V(\lambda_2, a_2q^{\lambda(2)-4s+3}) \otimes V(\lambda_2, a_2q^{\lambda(2)-4s+1}))_0^+$ such that

$$x_0^-.w_s = v_{\lambda_2} \otimes v_{\lambda_2}.$$

For $1 \leq r \leq \operatorname{int}(\frac{1}{2}\lambda(2))$, consider the element $w = w_1 \otimes w_2 \otimes \cdots w_r \otimes v_{\lambda_2}^{\otimes \lambda(2)-2r} \otimes v_{\mathbf{P}_{(1)}} \in V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes V(\lambda_2, a_2q^{\lambda(2)-3}) \otimes \cdots \otimes V(\lambda_2, a_2q^{-\lambda(2)+1}) \otimes V(\mathbf{P}_{(1)})$. Clearly, $x_{i,0}^+.w = 0$ for i = 1, 2, and an easy computation shows that

$$(x_0^-)^r.w = q^{r(r-1)}[r]_{q^2} v_{\lambda_2}^{\otimes \lambda(2)} \otimes v_{\mathbf{P}_{(1)}}.$$

Hence, $\pi((x_0^-)^r.w) \neq 0$ and so $\pi(w)$ is a non–zero element of $V(\mathbf{P})_{\lambda-r\theta}^+$. This proves 3.1(iv). \square

Proof of 3.3. Assuming 3.3(i) we give the proof of 3.3(ii). The proof is by induction on $\lambda(2)$. The case $\lambda(2) = 1$ is just 3.3(i). So if $\lambda(2) > 1$, by the induction hypothesis applied to $\lambda - \lambda_2$, we have a surjective homomorphism of representations of $U_q(\hat{\mathfrak{g}})$

$$\lambda(2)=3$$
 $\lambda(2)=3$ $\lambda(2)=3$ $\lambda(2)=1$

Consider

$$id\otimes \pi': V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes \cdots \otimes V(\lambda_2, a_2q^{-\lambda(2)+1}) \otimes V(\mathbf{P}_{(1)}) \to V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes V(\mathbf{Q}).$$

By 3.3(i), the right-hand side has $V(\mathbf{P})$ as a quotient and so we get the required surjective homomorphism

$$\pi: V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes \cdots \otimes V(\lambda_2, a_2q^{-\lambda(2)+1}) \otimes V(\mathbf{P}_{(1)}) \to V(\mathbf{P}).$$

We now prove 3.3(i). Let $M = U_q(\hat{\mathfrak{g}}).(v_{\lambda_2} \otimes v_{\mathbf{Q}})$. We first show that it suffices to prove

(3)
$$m_{\mu}(M) = m_{\mu}(V(\lambda_2, a_2 q^{\lambda(2)-1}) \otimes V(\mathbf{Q})) \quad \text{for } \mu > \lambda - \theta.$$

To see this, assume that M is a proper subrepresentation of the tensor product and let N be the corresponding quotient. It follows from 3.2 and (3) that

$$m_{\mu}(N) = 0$$
 unless $\mu \le \lambda - \theta$.

On the other hand, dualizing the projection map

$$V(\lambda_2, a_2 q^{\lambda(2)-1}) \otimes V(\mathbf{Q}) \to N$$

we get a non-zero (hence injective) homomorphism of representations of $U_q(\hat{\mathfrak{g}})$

$$V(\mathbf{Q}) \to V(\lambda_2, a_2 q^{\lambda(2)})^t \otimes N.$$

It follows that

$$m_{\lambda-\lambda_2}(V(\lambda_2)\otimes N)\geq 1,$$

and hence by 3.2 that $m_{\lambda-\theta}(N) > 0$.

Note that the preceding argument proves that, if M' is any $U_q(\hat{\mathfrak{g}})$ -subrepresentation of $V(\lambda_2, a_2q^{\lambda(2)-1})\otimes V(\mathbf{Q})$ containing M, and if N' is the corresponding quotient of the tensor product, then $m_{\lambda-\theta}(N')>0$. In particular, any irreducible quotient N' of N must have $m_{\lambda-\theta}(N')>0$. Taking N' to be an affinization $V(\mathbf{R})$, say, of $\lambda-\theta$, we have a surjective map of $U_q(\hat{\mathfrak{g}})$ -representations

$$V(\lambda_2, a_2 q^{\lambda(2)}) \otimes V(\mathbf{Q}) \to V(\mathbf{R}),$$

and hence, dualizing, an injective map

$$V(\mathbf{Q}) \to V(\lambda_2, a_2 q^{\lambda(2)-1})^t \otimes V(\mathbf{R}) = V(\lambda_2, a_2 q^{\lambda(2)+5}) \otimes V(\mathbf{R}),$$

by 2.5. The highest weight vector in $V(\mathbf{Q})$ must map to (a non-zero multiple of) the tensor product of the highest weight vectors on the right-hand side. But this is impossible, since $a_2q^{\lambda(2)+5}$ is not a root of Q_2 . Hence, N=0 and part (i) is proved.

We now prove (3). The statement is obviously true for $\mu = \lambda$. For $\mu = \lambda - \alpha_1$, the

notice that, by 1.5, it suffices to prove the result for $U_q(\hat{sl}_2)$. But this follows from 4.9(a) of [3] since

$$V(\lambda_2, a_2q^{\lambda(2)-1})_{(2)} \otimes V(\mathbf{Q})_{(2)} \cong V(1, a_2q^{\lambda(2)-1}) \otimes V(\lambda(2) - 1, a_2q^{-1})$$

as representations of $U_q(\hat{\mathfrak{g}}_{(2)})$.

Finally, we must prove (3) for $\lambda - \alpha_1 - \alpha_2$. For this, it obviously suffices to prove that

$$(V(\lambda_2, a_2q^{\lambda(2)-1}) \otimes V(\mathbf{Q}))_{\lambda - \alpha_1 - \alpha_2} \subseteq M.$$

The left-hand side is spanned by

$$\{x_1^-x_2^-.v_{\lambda_2}\otimes v_{\mathbf{Q}},v_{\lambda_2}\otimes x_1^-x_2^-.v_{\mathbf{Q}},v_{\lambda_2}\otimes x_2^-x_1^-.v_{\mathbf{Q}},x_2^-.v_{\lambda_2}\otimes x_1^-.v_{\mathbf{Q}}\}.$$

Now, since $m_{\lambda}(M)$ and $m_{\lambda-\alpha_2}(M)$ are both strictly positive, M contains $x_2^-.v_{\lambda_2} \otimes v_{\mathbf{Q}}$ and $v_{\lambda_2} \otimes x_2^-.v_{\mathbf{Q}}$ (since M contains two linear combinations of these vectors which are not scalar multiples of each other). Also, M contains

$$v_{\lambda_2} \otimes x_1^- . v_{\mathbf{Q}} = x_1^- . (v_{\lambda_2} \otimes v_{\mathbf{Q}}).$$

It follows that M contains the three vectors

$$x_1^-.(x_2^-.v_{\lambda_2}\otimes v_{\mathbf{Q}}), x_1^-.(v_{\lambda_2}\otimes x_2^-.v_{\mathbf{Q}}), x_2^-.(v_{\lambda_2}\otimes x_1^-.v_{\mathbf{Q}}),$$

i.e. that M contains the three vectors

$$v_{\lambda_2} \otimes x_1^- x_2^- . v_{\mathbf{Q}},$$

$$x_1^- x_2^- . v_{\lambda_2} \otimes v_{\mathbf{Q}} + q^{-2} x_2^- . v_{\lambda_2} \otimes x_1^- . v_{\mathbf{Q}},$$

$$x_2^- . v_{\lambda_2} \otimes x_1^- . v_{\mathbf{Q}} + q^{-1} v_{\lambda_2} \otimes x_2^- x_1^- . v_{\mathbf{Q}}.$$

Since these vectors are obviously linearly independent, it suffices to prove that

$$[x_2^+, x_0^+].(v_{\lambda_2} \otimes v_{\mathbf{Q}})$$

is linearly independent of the vectors in (4).

To compute the vector in (5), we need the following formulas:

(6)
$$x_{1,1}^{-} v_{\mathbf{Q}} = a_{1}^{-1} q^{2\lambda(1)-2} x_{1}^{-} v_{\mathbf{Q}},$$

(7)
$$x_{1,1}^{-}x_{2}^{-}.v_{\mathbf{Q}} = a_{1}^{-1}q^{2\lambda(1)-2}x_{1}^{-}x_{2}^{-}.v_{\mathbf{Q}}.$$

By the formula for the isomorphism f in 1.2,

$$[x_2^+, x_0^+] = c[x_2^-, x_{1,1}^-]_q (k_1 k_2)^{-1},$$

where $c \in \mathbb{C}^{\times}$, and for any $x, y \in U_q(\hat{\mathfrak{g}})$, we define

$$\begin{bmatrix} a & a \end{bmatrix}$$
 $\begin{bmatrix} a & a \end{bmatrix}$

Using this, we find that

$$\begin{split} [x_2^+, x_0^+]. (v_{\lambda_2} \otimes v_{\mathbf{Q}}) &= cq^{-(2\lambda(1) + \lambda(2))} (q^{-1} [x_2^-, x_{1,1}^-]_q. v_{\lambda_2} \otimes v_{\mathbf{Q}} + v_{\lambda_2} \otimes [x_2^-, x_{1,1}^-]_q. v_{\mathbf{Q}}) \\ &= cq^{-(2\lambda(1) + \lambda(2))} (-a_2^{-1} q^{-\lambda(2) + 1} x_1^- x_2^-. v_{\lambda_2} \otimes v_{\mathbf{Q}} \\ &\quad + v_{\lambda_2} \otimes (a_1^{-1} q^{2\lambda(1) - 1} x_2^- x_1^-. v_{\mathbf{Q}} - a_2^{-1} q^{\lambda(2) - 3} x_1^- x_2^-. v_{\mathbf{Q}})). \end{split}$$

An easy computation shows that this is linearly dependent on the vectors in (5) iff

$$\frac{a_1}{a_2} = q^{2\lambda(1) + \lambda(2) + 2},$$

contradicting our assumption that $a_1/a_2 = q^{-(2\lambda(1)+\lambda(2)+2)}$.

The proof of (6) is easy since we know from 2.2 that $x_{1,1}^-.v_{\mathbf{Q}}$ must be a scalar multiple of $x_1^-.v_{\mathbf{Q}}$. As for (7), observe that by 2.2 again we know a priori that

$$x_{1.1}^- x_2^- . v_{\mathbf{Q}} = A x_1^- x_2^- . v_{\mathbf{Q}} + B x_2^- x_1^- . v_{\mathbf{Q}}$$

for some $A, B \in \mathbb{C}$. Applying x_1^+ and x_2^+ to both sides of gives the pair of equations

$$A[\lambda(2) - 1]_q + B[\lambda(2)]_q = [\lambda(2) - 1]_q a_1^{-1} q^{2\lambda(1) - 2},$$

$$A[\lambda(1) + 1]_{q^2} + B[\lambda(1)]_{q^2} = q^{2\lambda(1)} a_1^{-1} [\lambda(1)]_{q^2} + a_2^{-1} q^{(2\lambda(1) + \lambda(2) + 1)}.$$

Using $a_1/a_2 = q^{-(2\lambda(1)+\lambda(2)+3)}$, we find that the unique solution is $A = a_1^{-1}q^{2\lambda(1)-2}$, B = 0. \square

4. Completion of the proof of Theorem 2.4

In view of 3.3, to complete the proof of 2.4, it suffices to establish

Proposition 4.1. Let $\lambda \in P^+$ and let $V(\mathbf{P})$ be a minimal affinization of λ . Then:

- (i) $m_{\lambda-r\theta}(V(\mathbf{P})) = 1$ if $0 \le r \le int(\frac{1}{2}\lambda(2))$.
- (ii) $m_{\mu}(V(\mathbf{P})) = 0$ if μ is of the form $\lambda r\theta \alpha_2$, for some $r \in \mathbb{N}$.
- (iii) $m_{\mu}(V(\mathbf{P})) = 0$ if μ is of the form $\lambda r\theta \alpha_1 \alpha_2$ for some $r \in \mathbb{N}$.

We need three lemmas.

Lemma 4.2. Suppose that there exists $0 \neq v \in V(\mathbf{P})^+_{\mu}$ such that

$$x_{1,1}^+.v = x_{1,-1}^+.v = 0$$

(resp. $x_{2,1}^+.v = x_{2,-1}^+.v = 0$). Assume that $m_{\mu+\alpha_i}(V(\mathbf{P})) = 0$ for i = 1, 2. Then, $\lambda = \mu$.

Proof. We prove, by induction on $k \in \mathbb{N}$, that

(9)
$$x^{+} = 0$$
 for all $i = 1, 2$

It is easy to see using the relations in 1.2 that the k_j and $h_{j,s}$ preserve the finite-dimensional space

$$V(\mathbf{P})_{\mu}^{++} = \{ w \in V(\mathbf{P})_{\mu} : x_{i,k}^{+}.w = 0 \text{ for all } i \in I, k \in \mathbb{Z} \}.$$

It follows that there exists a $U_q(\hat{\mathfrak{g}})$ -highest weight vector in $V(\mathbf{P})_{\mu}$, which is possible only if $\lambda = \mu$.

It is obvious that (8) holds when k = 0. We assume that it holds for k and prove it for k + 1. Using (1), we find that

$$x_{j,0}^+ x_{i,\pm(k+1)}^+ \in U_q(\hat{\mathfrak{g}}) x_{j,0}^+ + U_q(\hat{\mathfrak{g}}) x_{j,\pm 1}^+ + U_q(\hat{\mathfrak{g}}) x_{i,\pm k}^+,$$

and hence by the induction hypotheses we see that $x_{i,\pm k+1}^+.v \in V(\mathbf{P})_{\mu+\alpha_i}^+$. Since $m_{\mu+\alpha_i}(V(\mathbf{P}))=0$ by assumption, this forces $x_{i,\pm k+1}^+.v=0$, establishing (8) for k+1. \square

Lemma 4.3. Let $0 \neq v \in V(\mathbf{P})_{\mu}$ be such that $x_{1,s'}^+.v = 0$ if $0 \leq s' < s$ or if $s < s' \leq 0$. Then

- (i) $(x_{2.0}^+)^3 x_{1.s}^+ \cdot v = 0$,
- (ii) $x_{1,0}^+ x_{2,0}^+ x_{1,s}^+ \cdot v = 0$,

(iii)
$$x_{1,0}^+(x_{2,0}^+)^2 x_{1,s}^+ v \in V(\mathbf{P})_{\mu+2\alpha_1+2\alpha_2}^+$$
.

Proof. Using relation (2) we find that

(9)
$$(x_{2,0}^+)^3 x_{1,\pm s}^+ \in U_q(\hat{\mathfrak{g}}).x_{2,0}^+.$$

Part (i) is now immediate.

For (ii), it suffices to notice that (1) and (2) together give

(10)
$$x_{1,0}^{+} x_{2,0}^{+} x_{1,\pm s}^{+} \in U_q(\hat{\mathfrak{g}}) x_{2,0}^{+} + \sum_{0 \le s' < s} U_q(\hat{\mathfrak{g}}) x_{1,\pm s'}^{+}$$

if s > 0.

For (iii), we use the following consequences of (1) and (2):

(11)
$$(x_{1,0}^+)^2 x_{2,0}^+ \in U_q(\hat{\mathfrak{g}}) x_{1,0}^+,$$

$$(12) x_{2,0}^+ x_{1,0}^+ (x_{2,0}^+)^2 \in U_q(\hat{\mathfrak{g}}) (x_{2,0}^+)^3 + U_q(\hat{\mathfrak{g}}) x_{1,0}^+ + U_q(\hat{\mathfrak{g}}) x_{1,0}^+ x_{2,0}^+.$$

The result now follows from parts (i) and (ii). \Box

Lemma 4.4. Let $\mu \in P^+$ be such that

(13)
$$m_{\mu+\eta}(V(\mathbf{P})) = 0 \quad \text{if} \quad \eta \neq s\theta, s \in \mathbb{Z}_+.$$

Then, $(x_{2,0}^+)^2 x_{1,\pm 1}^+$ maps $V(\mathbf{P})_{\mu}^+$ to $V(\mathbf{P})_{\mu+\theta}^+$. Further, if $v \in V(\mathbf{P})_{\mu}^+$ is such that $x_{1,\pm 1}^+, v \neq 0$, then

$$(x_{2,0}^+)^2 x_{1,\pm 1}^+ \neq 0.$$

Proof. It is clear for weight reasons that $(x_{2,0}^+)^2 x_{1,\pm 1}^+$ maps $V(\mathbf{P})_{\mu}^+$ to $V(\mathbf{P})_{\mu+\theta}$. Thus, it suffices to prove that

$$+ (+)2 + 0 \cdot c = U(\mathbf{D}) +$$

For i = 2, this is just 4.3(i). For i = 1, the result is obvious from 4.3(iii) and (13). Now suppose that $(x_{2,0}^+)^2 x_{1,1}^+ \cdot v = 0$. By 4.3(ii), $x_{1,0}^+ x_{2,0}^+ x_{1,1}^+ \cdot v = 0$ as well and (13) now forces

$$x_{2.0}^+ x_{1.1}^+ \cdot v = 0.$$

Now, (2) gives $x_{1,0}^+x_{1,1}^+.v=0$ and so by a final application (13), we get

$$x_{1,1}^+.v = 0.$$

One proves similarly that $(x_{2,0}^+)^2 x_{1,-1}^+ v = 0$ implies that $x_{1,-1}^+ v = 0$, and the proof of 4.4 is now complete. \square

We are now in a position to give the

Proof of 4.1. All three parts are proved by induction on r. If r = 0, the result follows from 2.2. We assume that (i), (ii) and (iii) hold for r and prove them for r + 1.

(i) Suppose that $m_{\lambda-(r+1)\theta}(V(\mathbf{P})) > 1$. Then, by 4.4, there exists $0 \neq v_0 \in V(\mathbf{P})^+_{\lambda-(r+1)\theta}$ such that $x_{1,1}^+.v = 0$.

Suppose now that $x_{1,-1}^+.v\neq 0$. For $s=0,1,\ldots,r+1$, define $v_s\in V(\mathbf{P})$ by

$$v_s = ((x_{2,0}^+)^2 x_{1,-1}^+)^s \cdot v.$$

We claim that the v_s have the following properties:

 $(i)_s \quad 0 \neq v_s \in V(\mathbf{P})^+_{\lambda - (r+1-s)\theta} \text{ for all } 0 \leq s \leq r+1;$

$$(ii)_s \ x_{i,k}^+.v_s = 0 \text{ for } i = 1, 2, k \ge 0.$$

Note that (i)₀ holds by assumption and (ii)₀ by the choice of v_0 . Assuming that these properties hold for s we now prove that they hold for s+1. Lemma 4.2 implies that $x_{1,-1}^+.v_s \neq 0$ if $0 \leq s \leq r$ and 4.4 now shows that $v_{s+1} \neq 0$. To prove that (ii)_{s+1} holds, observe that, by the proof of 4.2, it suffices to prove that $x_{1,1}^+.v = 0$. Using (2) we find that

$$x_{1,1}^+(x_{2,0}^+)^2 x_{1,-1}^+ \in U_q(\hat{\mathfrak{g}}) x_{1,1}^+ x_{2,0}^+ x_{1,-1}^+ + U_q(\hat{\mathfrak{g}}) x_{2,1}^+ x_{2,0}^+ x_{1,-1}^+ + U_q(\hat{\mathfrak{g}}) x_{1,0}^+ x_{2,0}^+ x_{1,-1}^+.$$

The third term kills v_s by 4.3(ii); on the other hand, using (1), we find that the first two terms are contained in

$$\sum_{i=1}^{2} (U_q(\hat{\mathfrak{g}})x_{i,0}^+ + U_q(\hat{\mathfrak{g}})x_{i,1}^+),$$

and hence kill v_s as well. This proves the claim.

Note that $v_{r+1} = Av_{\mathbf{P}}$, for some $A \in \mathbb{C}^{\times}$. Since $\dim(V(\mathbf{P})_{\lambda - \alpha_2}) = 1$, it follows that

$$x_{2,0}^+ x_{1,-1}^+ . v_r = B x_{2,0}^- . v_{\mathbf{P}},$$

for some $B \in \mathbb{C}^{\times}$. Applying $x_{2,1}^+$ to both sides of this equation, and using (2) and (ii)'_r, we get

$$0 = B\phi_{2,1}^+ v_{\mathbf{P}}.$$

(ii) Suppose that $m_{\lambda-(r+1)\theta-\alpha_2}(V(\mathbf{P})) > 0$. The induction hypotheses on r implies that

(14)
$$V(\mathbf{P})_{\lambda-r\theta-\eta} = 0 \text{ if } \eta = \alpha_2, 2\alpha_2, 3\alpha_2, \text{ or } \alpha_2 - \alpha_1.$$

Let $0 \neq v \in V(\mathbf{P})_{\lambda-(r+1)\theta-\alpha_2}^+$. We shall prove that v is actually $U_q(\hat{\mathfrak{g}})$ -highest weight, which is obviously impossible. We first prove, by induction on k, that $x_{1,k}^+.v=0$. By (14), it suffices to prove that $x_{1,k+1}^+.v\in V(\mathbf{P})_{\lambda-r\theta-3\alpha_2}^+$. Since $x_{1,0}^+x_{1,k+1}^+\in \sum_{0\leq s\leq k+1}U_q(\hat{\mathfrak{g}})x_{1,s}^+$, we see that

$$x_{1,0}^+.x_{1,k+1}^+.v = 0.$$

To prove that $x_{2,0}^+ x_{1,k+1}^+ \cdot v = 0$, define $v' = (x_{2,0}^+)^2 x_{1,k+1}^+ \cdot v$ and $v'' = x_{1,0}^+ \cdot v'$. Then, by (14),

$$4.3(iii) \implies v'' \in V(\mathbf{P})_{\lambda - r\theta - \alpha_2 + \alpha_1}^+ \implies v'' = 0,$$

$$4.3(i) \implies v' \in V(\mathbf{P})_{\lambda - r\theta - \alpha_2}^+ \implies v' = 0,$$

$$4.3(ii) \implies x_{2,0}^+ x_{1,k+1}^+ \cdot v \in V(\mathbf{P})_{\lambda - r\theta - 3\alpha_2}^+ \implies x_{2,0}^+ x_{1,k+1}^+ \cdot v = 0.$$

To prove that $x_{2,k}^+.v=0$, we again proceed by induction on k. We assume that $k\geq 0$; the proof for $k\leq 0$ is similar.

Using (1) and the fact that $x_{1,k}^+.v=0$ for all k, we see that

$$x_{1,r}^+ x_{2,k+1}^+.v = 0$$
, for $r = -1, 0$, and 1, $x_{2,0}^+ x_{2,k+1}^+.v = 0$.

But now 4.2 implies that $x_{2,k+1}^+.v=0$ (since $\lambda-(r+1)\theta\neq\lambda$). This completes the proof of 4.1(ii).

(iii) Let
$$v \in V(\mathbf{P})_{\lambda-(r+1)\theta-\alpha_1-\alpha_2}$$
. Since

$$m_{\lambda-(r+1)\theta-\alpha_i}(V(\mathbf{P})) = 0$$
, for $i = 1, 2$,

and since $\lambda \neq \lambda - (r+1)\theta - \alpha_1 - \alpha_2$, it suffices by 4.2 to prove that $x_{2,\pm 1}^+.v = 0$. To do this, note that by 3.1, it is enough to prove that $x_{2,\pm 1}^+.v \in V(\mathbf{P})_{\lambda-(r+1)\theta-\alpha_1}^+$. Clearly, by (1), $x_{2,0}^+x_{2,\pm 1}^+.v = 0$.

To prove that $x_{1,0}^+ x_{2,\pm 1}^+ \cdot v = 0$, it suffices by 4.2 to prove that

(15)
$$x_{1,0}^+.x_{2,\pm 1}^+.v \in V(\mathbf{P})_{\lambda-(r+1)\theta}^+,$$

(16)
$$x_{1,s}^+.x_{1,0}^+x_{2,\pm 1}^+.v = 0 \text{ for } s = \pm 1.$$

The fact that $(x_{1,0}^+)^2 x_{2,\pm 1}^+.v = 0$ is clear from (2). By using (1) and (2), it is easy to see that $x_{2,0}^+ x_{1,0}^+ x_{2,\pm 1}^+.v \in V(\mathbf{P})_{\lambda-r\theta-\alpha_1-\alpha_2}$, and hence must be zero by 3.1. This proves (15).

To prove (16), one checks first, using (1) and (2), that

It follows that $(x_{2,0}^+)^2 x_{1,s}^+ x_{1,0}^+ x_{2,\pm 1}^+ v = 0$ for s = 0, 1. Lemma 4.4 now implies that in fact

$$x_{1,s}^+ x_{1,0}^+ x_{2,\pm 1}^+ v = 0$$
 for $s = \pm 1$.

This completes the proof of 4.1(iii). \square

The proof of Theorem 2.4 is now complete.

References

- 1. Beck, J., Braid group action and quantum affine algebras, preprint, MIT, 1993.
- 2. Chari, V., Minimal affinizations of representations of quantum groups: the rank 2 case, preprint, 1994.
- 3. Chari, V. and Pressley, A. N., Quantum affine algebras, Commun. Math. Phys. **142** (1991), 261–83.
- 4. Chari, V. and Pressley, A. N., Small representations of quantum affine algebras, Lett. Math. Phys. **30** (1994), 131–45.
- 5. Chari, V. and Pressley, A. N., A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
- 6. Chari, V. and Pressley A. N., Minimal affinizations of representations of quantum groups: the simlpy-laced case, preprint, 1994.
- 7. Chari, V. and Pressley, A. N., Quantum affine algebras and their representations, preprint, 1994.
- 8. Delius, G.W. and Zhang, Y.-Z., Finite-dimensional representations of quantum affine algebras, preprint, 1994.
- 9. Drinfel'd, V. G., A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. **36** (1988), 212–6.
- 10. Lusztig, G., Introduction to Quantum Groups, Progress in Mathematics 110, Birkhäuser, Boston, 1993.