

Manualisasi Perhitungan dan Analisis Algoritma Genetik

agungsetiabudi@ub.ac.id

Manualisasi Algoritma Genetik dengan Representasi Real untuk Meminimalkan $f(x)=x^2$ dalam Rentang $\left[-10,10\right]$

- Dalam pendekatan ini, kita akan menggunakan **representasi real** untuk kromosom, bukan representasi biner seperti sebelumnya.
- Representasi real lebih efisien karena tidak memerlukan konversi biner ke desimal dan dapat menangani nilai kontinu langsung.

Tahap 1: Inisialisasi Populasi

• Misalkan kita memiliki **populasi awal** dengan **4 individu**, diambil secara acak dalam rentang [-10, 10]:

Individu	Nilai x	$f(x) = x^2$
1	-8.71	75.91
2	-1.61	2.59
3	4.68	21.89
4	6.13	37.59

• Karena kita ingin **meminimalkan** $f(x) = x^2$, maka nilai fitness dapat dihitung dengan rumus:

$$\circ$$
 fitness $=\frac{1}{f(x)+1}$

 (Penentuan fungsi fitness akan dibahas lebih lanjut di bagian akhir)

• Sehingga hasil fitness:

Individu	f(x)	Fitness
1	75.91	0.013
2	2.59	0.278
3	21.89	0.043
4	37.59	0.026

Tahap 2: Seleksi

• Seleksi dilakukan menggunakan **Roulette Wheel Selection**, di mana probabilitas seleksi dihitung sebagai:

$$\circ~P_i = rac{ ext{fitness}_i}{\sum ext{fitness}}$$

Total fitness:

$$0.013 + 0.278 + 0.043 + 0.026 = 0.36$$

• Probabilitas seleksi:

Individu	Fitness	Probabilitas Seleksi
1	0.013	3.6%
2	0.278	77.2%
3	0.043	11.9%
4	0.026	7.2%

• Individu **2** memiliki peluang seleksi terbesar, sehingga kemungkinan besar akan terpilih lebih sering.

Tahap 3: Crossover

- Crossover dalam representasi real biasanya menggunakan metode aritmetika crossover, misalnya:
 - \circ offspring = $\alpha \times \mathrm{parent}_1 + (1 \alpha) \times \mathrm{parent}_2$ -dengan α adalah faktor acak dalam interval [0, 1].
- Misalkan kita memilih Individu 2 (-1.61) dan Individu 3 (4.68) untuk crossover, dengan $\alpha=0.7$:
 - $\circ \text{ offspring}_1 = 0.7(-1.61) + 0.3(4.68) = -0.28$
 - $\circ \text{ offspring}_2 = 0.3(-1.61) + 0.7(4.68) = 3.35$

• Hasil crossover:

Offspring	Nilai x
1	-0.28
2	3.35

Tahap 4: Mutasi

 Mutasi dalam representasi real bisa dilakukan dengan menambahkan nilai acak dalam rentang tertentu. Misalnya, kita menggunakan mutasi Gaussian:

$$x' = x + \text{mutasi} \times \sigma$$

Misalkan untuk offspring 1 (-0.28), kita menambahkan mutasi acak
+0.5:

$$x' = -0.28 + 0.5 = 0.22$$

• Dan untuk offspring 2 (3.35), kita menambahkan mutasi acak -0.7:

$$x' = 3.35 - 0.7 = 2.65$$

• Hasil mutasi:

Offspring	Sebelum Mutasi	Setelah Mutasi
1	-0.28	0.22
2	3.35	2.65

Tahap 5: Evaluasi Ulang

• Kita menghitung kembali **fitness** dari individu baru:

Individu	Nilai x	$f(x) = x^2$	Fitness
1	0.22	0.0484	0.954
2	2.65	7.02	0.124

• Individu **1** (**x** = **0.22**) sekarang memiliki nilai fitness tertinggi, menunjukkan bahwa GA telah menemukan solusi lebih optimal.

Tahap 6: Penggantian (Populasi Generasi Berikutnya)

- Individu **terbaik dari generasi sebelumnya** tetap ada (x=-1.61).
- Dua individu baru hasil crossover dan mutasi (x=0.22, x=2.65).
- Tambahkan satu individu baru secara acak untuk menjaga keberagaman (x=-5.7).

• Populasi di generasi berikutnya:

Individu	x	$f(x)=x^2$
1	-1.61	2.59
2	0.22	0.0484
3	2.65	7.02
4	-5.7	32.49

Tahap 7: Pengulangan dan Konvergensi

- Proses di atas (seleksi, crossover, mutasi, evaluasi) terus diulang selama beberapa generasi.
- Setelah beberapa iterasi, nilai x akan mendekati $\mathbf{0}$, yang merupakan nilai optimal karena x^2 minimum pada x=0.
- Misalnya, setelah 10 generasi, kita mendapatkan solusi optimal:

$$f(x) = 0.001, \quad f(x) = (0.001)^2 = 0.000001$$

Kesimpulan

- 1. Representasi real lebih efisien karena tidak perlu konversi binerdesimal.
- 2. **Crossover real** menggunakan metode aritmetika menghasilkan nilai yang lebih halus.
- 3. **Mutasi real** mempertahankan keragaman tanpa mengubah skala pencarian secara drastis.
- 4. **GA berhasil menemukan minimum** dari $f(x)=x^2$ dalam rentang [-10,10], yaitu xpprox 0.

Mengapa Nilai Fitness Dihitung dengan Rumus

fitness =
$$\frac{1}{f(x)+1}$$
?

• Dalam algoritma genetik (GA), **fitness** adalah ukuran kualitas suatu individu dalam menyelesaikan masalah yang diberikan. Untuk masalah **minimisasi**, kita sering menggunakan rumus:

fitness =
$$\frac{1}{f(x)+1}$$

• Alasan utama penggunaan rumus ini adalah:

1. Mengubah Masalah Minimisasi menjadi Maksimisasi

- GA secara alami bekerja lebih baik dengan masalah maksimisasi, karena seleksi biasanya memilih individu dengan fitness yang lebih tinggi.
- Fungsi fitness standar biasanya mengasumsikan semakin besar nilainya, semakin baik individu tersebut.
- Namun, dalam masalah minimisasi, semakin kecil f(x), semakin baik. Oleh karena itu, kita perlu **membalikkan** logika ini.
- Dengan rumus $\frac{1}{f(x)+1}$, individu dengan nilai f(x) lebih kecil akan memiliki **fitness lebih tinggi**.

Contoh

• Misalkan kita ingin meminimalkan: $f(x) = x^2$

x	$f(x)=x^2$	Fitness $\frac{1}{f(x)+1}$
0	0	1.000
2	4	0.200
5	25	0.038
10	100	0.0099

• Semakin kecil f(x), semakin besar fitnessnya, sehingga seleksi akan lebih sering memilih nilai yang lebih kecil.

2. Mencegah Fitness Menjadi Negatif

 Beberapa fungsi minimisasi dapat menghasilkan nilai negatif, misalnya:

$$f(x) = x^3 - 2x^2$$

Jika x negatif, maka f(x) bisa negatif juga.

- Jika kita hanya membalikkan fungsi fitness menjadi 1/f(x), maka kita bisa mendapatkan **nilai fitness negatif atau tak terdefinisi** (pembagian oleh nol).
- Dengan menambahkan **+1** di penyebut (f(x) + 1), kita memastikan bahwa fitness tetap positif dan terdefinisi.

3. Mencegah Fitness Mendekati Tak Hingga

- Jika kita hanya menggunakan $\frac{1}{f(x)}$, ada risiko **terjadi tak hingga** jika f(x) mendekati **nol**.
- Dengan $\frac{1}{f(x)+1}$, kita memastikan bahwa fitness tetap terbatas dan tidak mencapai **tak hingga**.

Contoh Perbandingan

x	f(x)	$\frac{1}{f(x)}$	$\frac{1}{f(x)+1}$
0	0	∞ (tak hingga)	1.000
1	1	1.000	0.500
2	4	0.250	0.200
5	25	0.040	0.038

• Metode tanpa "+1" bisa membuat fitness tidak stabil ketika f(x) mendekati nol.

Mengapa Kita Harus Menghindari Nilai Fitness Tak Hingga atau Negatif?

- Dalam algoritma genetik (GA), **fitness** adalah ukuran seberapa baik suatu individu dalam populasi menyelesaikan masalah yang diberikan.
- Nilai fitness digunakan dalam seleksi, yang menentukan individu mana yang akan bertahan dan bereproduksi untuk generasi berikutnya.
- Oleh karena itu, nilai fitness yang **tak hingga** atau **negatif** bisa menyebabkan berbagai masalah dalam algoritma. Berikut adalah alasan mengapa kita harus menghindarinya:

1. Menghindari Kesalahan Komputasi (Runtime Error)

- Jika kita menggunakan rumus fitness seperti:
 - \circ fitness $=\frac{1}{f(x)}$
- dan mendapatkan f(x) = 0, maka:
 - \circ fitness $=\frac{1}{0}$
- ini menyebabkan **pembagian oleh nol**, yang menghasilkan error dalam perhitungan komputasi.
- Jika f(x)<-0, maka: $\frac{1}{f(x)}$ akan menghasilkan **nilai negatif**, yang dapat menyebabkan error atau hasil yang tidak diinginkan dalam tahap seleksi.

2. Seleksi dalam GA Mengasumsikan Fitness yang Lebih Tinggi Lebih Baik

- Sebagian besar metode seleksi dalam GA menggunakan nilai fitness sebagai dasar pemilihan, seperti:
 - Roulette Wheel Selection
 - Tournament Selection
 - Rank Selection

 Pada Roulette Wheel Selection, probabilitas seleksi dihitung berdasarkan:

$$\circ~P_i = rac{ ext{fitness}_i}{\sum ext{fitness}}$$

- Jika salah satu individu memiliki fitness negatif, maka:
 - \circ Total fitness (\sum fitness) bisa menjadi **negatif atau nol**, menyebabkan error dalam perhitungan probabilitas.
 - Individu dengan fitness negatif mungkin tidak bisa dipilih, atau malah memiliki probabilitas seleksi yang salah.

3. Fitness Tak Hingga Bisa Mendominasi Populasi

- Jika satu individu memiliki fitness yang sangat besar (tak hingga), maka individu tersebut akan memiliki probabilitas seleksi yang mendominasi. Akibatnya:
 - Semua individu lain mungkin tidak pernah dipilih untuk reproduksi.
 - Algoritma akan cepat terkunci ke satu solusi, menyebabkan konvergensi prematur (terjebak dalam solusi lokal yang tidak optimal).

4. Menghindari Perhitungan yang Tidak Stabil

Jika nilai fitness sangat kecil atau sangat besar, operasi matematis bisa menjadi **tidak stabil**. Misalnya:

- Fitness yang **sangat besar** bisa menyebabkan **overflow** dalam komputasi floating-point.
- Fitness yang **sangat kecil** bisa menyebabkan **underflow**, membuat perhitungan tidak akurat.

5. Mencegah Efek Negatif dalam Mutasi dan Crossover

Jika individu dengan fitness negatif atau tak hingga dipilih untuk **crossover dan mutasi**, hasilnya mungkin tidak akan memiliki makna yang jelas. Misalnya:

- Jika individu dengan fitness negatif lebih sering dipilih, hasil crossover bisa memiliki nilai yang tidak sesuai dengan ruang pencarian.
- Jika individu dengan fitness sangat besar selalu dipilih, **keberagaman populasi akan menurun**, menyebabkan konvergensi ke solusi yang tidak optimal.

Problem pada fungsi fitness sebelumnya

fitness =
$$\frac{1}{f(x)+1}$$

Ada potensi nilai fitness menjadi negatif atau tak hingga jika f(x) sama dengan -1 atau kurang dari -1. Ini adalah masalah yang harus diperhatikan.

Bagaimana Menghindari Fitness Negatif atau Tak Hingga?

Agar fitness selalu **terdefinisi positif**, kita perlu memastikan bahwa:

- 1. $f(x) + 1 \neq 0$ (tidak boleh ada pembagian oleh nol).
- 2. f(x) + 1 > 0 (agar fitness tidak negatif).

Solusi 1: Penyesuaian dengan Offset Positif

• Alih-alih menggunakan f(x)+1, kita bisa menambahkan **nilai offset positif** C yang cukup besar sehingga nilai dalam penyebut tidak pernah nol atau negatif:

$$\circ$$
 fitness $= \frac{1}{f(x) - f_{\min} + 1}$

- o di mana:
 - f_{\min} adalah nilai minimum f(x) dalam domain pencarian.
 - Dengan mengurangkan f_{\min} , kita memastikan bahwa nilai terkecil dari $f(x) - f_{\min}$ adalah nol atau lebih besar.

Contoh Perhitungan

- Misalkan kita ingin meminimalkan $f(x)=x^3-2x^2$, dan dalam domain pencarian $x\in [-2,2]$, kita mengetahui bahwa nilai minimum dari f(x) adalah **-4**.
- Kita atur:

• fitness =
$$\frac{1}{f(x)+4+1} = \frac{1}{f(x)+5}$$

• Sehingga fitness selalu positif dan tidak ada pembagian oleh nol.

Perbandingan Fitness Sebelum dan Sesudah Offset

x	$f(x)=x^3-2x^2$	Tanpa Offset $\frac{1}{f(x)+1}$	Dengan Offset $\frac{1}{f(x)+5}$
-2	-4	Tak hingga	0.2
-1	-3	-1 (negatif)	0.25
0	0	1	0.2
1	-1	Tak hingga	0.33
2	0	1	0.2

Hasilnya:

- Tanpa offset, fitness bisa menjadi tak hingga atau negatif.
- Dengan offset, fitness selalu berada dalam rentang yang terdefinisi positif.

Solusi 2: Menggunakan Normalisasi Fitness

 Cara lain adalah dengan menormalisasi fitness agar selalu berada dalam rentang 0 hingga 1:

$$\circ$$
 fitness $=rac{f_{ ext{max}}-f(x)}{f_{ ext{max}}-f_{ ext{min}}}$

- o di mana:
 - f_{\max} adalah nilai maksimum dari f(x) dalam domain pencarian.
 - f_{\min} adalah nilai minimum dari f(x).
- Ini memastikan fitness selalu positif dan berada dalam rentang 0 hingga 1.

Contoh Perhitungan

- Jika f(x) dalam rentang ([-4, 8]), maka:
 - $\circ \text{ fitness} = \frac{8 f(x)}{8 (-4)}$
- Sehingga, ketika f(x) = 8, fitness = 0, dan ketika f(x) = -4, fitness = 1.