Logistic Regression

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Linear Regression for Classification

Recap: Linear Regression

- ► Given $\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) : 1 \le i \le n \}$ $\mathbf{x}^{(i)} = (1, x_{i1}, ..., x_{id}), y^{(i)} \in \mathbb{R}$
- \succ Find $f(\mathbf{x}^{(i)}) = \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)}$ that minimizes error function $E(\mathbf{w})$.

$$E(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^{2}$$

$$f(\mathbf{x}^{(i)}) = \sum_{j=0}^{d} w_j x_{ij} = w_0 + w_1 x_{i1} + \dots + w_d x_{id}$$

Example: Linear Regression

 \triangleright Fitting a linear model with a set of variables x_0, x_1, \dots, x_d

$$f(\mathbf{x}) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

> Age and systolic blood pressure (SBP)

Age	SBP
22	131
23	128
24	110
27	105
28	115
29	125
30	120
32	98
33	120
35	145

Age	SBP
40	138
41	170
46	135
47	110
49	115
50	132
50	125
51	182
52	130
52	135

SBP
125
105
145
140
150
155
155
175
175
200

Example: Linear Regression

$$SBP = 1.0538 \times Age + 87.361$$

Classification Problem

> Age and coronary heart disease (CD)

Age	CD
22	0
23	0
24	0
27	0
28	0
29	0
30	1
32	0
33	1
35	0

Age	CD
40	1
41	0
46	1
47	0
49	0
50	1
50	0
51	0
52	1
52	0

Age	CD
53	0
54	1
57	1
58	0
59	1
62	1
67	0
71	1
75	0
81	1

> What about applying the linear regression model?

Classification Problem

> In this case, the output can be > 1 or < 0.

$$CD = 0.0102 \times Age - 0.0755$$

Classification Problem

> For binary classification, the output is either 0 or 1.

Simple Classification

Finding a Linear Decision Boundary

> Linear combination of input x:

$$s = \mathbf{w}^{\mathsf{T}} \mathbf{x} = \sum_{i=0}^{d} w_i x_i$$

➤ Nonlinear transformation of *S*:

$$f(s) = \begin{cases} +1 & if \ s \ge 0 \\ -1 & otherwise \end{cases}$$

Finding a Linear Decision Boundary

Geometric Relation of Two Vectors

> Calculating the angle between two vectors

> The angle is proportional to the inner product.

$$ightharpoonup$$
 If $\mathbf{w}^{\mathrm{T}}\mathbf{x} > \mathbf{0} \Rightarrow cos\alpha > \mathbf{0} \Rightarrow \alpha < \mathbf{90}$

$$ightharpoonup$$
 If $\mathbf{w}^{\mathrm{T}}\mathbf{x}<\mathbf{0}\Rightarrow cos\alpha<\mathbf{0}\Rightarrow \alpha>\mathbf{90}$

Geometric Relation of Two Vectors

- > Ideally, the weight vector should be like this:
 - For positive samples, an angle is less than 90 degrees.
 - For negative samples, an angle with more than 90 degrees.

Case 1: How to Adjust an Angle

- \succ When x belongs to the positive sample and $\mathbf{w}^T\mathbf{x} < \mathbf{0}$,
- \triangleright We need to increase the $\cos \alpha$ value.
 - \Rightarrow we need to decrease the α value.

Case 2: How to Adjust an Angle

- > When x belongs to the negative sample and $\mathbf{w}^{\mathsf{T}}\mathbf{x} > \mathbf{0}$,
- \triangleright We need to decrease the $\cos \alpha$ value.
 - \Rightarrow we need to increase the α value.

Summary: How to Adjust an Angle

- \triangleright When $\mathbf{w}_{new} = \mathbf{w} + \mathbf{x}$, the angle is α_{new} .
 - $\cos \alpha_{new} \propto \mathbf{w}_{new}^{\mathsf{T}} \mathbf{x} = (\mathbf{w} + \mathbf{x})^{\mathsf{T}} \mathbf{x} = \mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \mathbf{x}$
 - Because $\mathbf{x}^{\mathsf{T}}\mathbf{x} > 0$, $\cos \alpha_{new} > \cos \alpha$.
 - \Rightarrow increasing the cos α value, i.e., decreasing the α value

- \triangleright When $\mathbf{w}_{new} = \mathbf{w} \mathbf{x}$, the angle is α_{new} .
 - $\cos \alpha_{new} \propto \mathbf{w}_{new}^{\mathsf{T}} \mathbf{x} = (\mathbf{w} \mathbf{x})^{\mathsf{T}} \mathbf{x} = \mathbf{w}^{\mathsf{T}} \mathbf{x} \mathbf{x}^{\mathsf{T}} \mathbf{x}$
 - Because $\mathbf{x}^{\mathsf{T}}\mathbf{x} > 0$, $\cos \alpha_{new} < \cos \alpha$.
 - \Longrightarrow decresing the cos α value, i.e., increasing the α value

Learning a Linear Classifier

> Execute the Perceptron Learning Algorithm (PLA) until not encountering mistakes.

Randomly choose an initial solution $\mathbf{w^0}$.

For
$$t = 0, 1, ...$$

Find a mistake sample $(\mathbf{x}^{(i)}, y^{(i)})$ of $\mathbf{w}^{\mathbf{t}}$ sign $(\mathbf{w}^{\mathbf{T}}\mathbf{x}^{(i)}) \neq y^{(i)}$

Correct the mistake by
$$\mathbf{w}^{t+1} = \mathbf{w}^t + y^{(i)}\mathbf{x}^{(i)}$$

Until no more mistake is found

Return last \mathbf{w}^t as the learned model.

- positive
- ***** negative

x negative

Linear Separability

- > If PLA halts (i.e., no more mistakes),
 - (necessary condition) D allows some w to make no mistake.
- **≻** Call such *D* linearly separable.

Linear separable

Good!

Linear non-separable

Need a linear model that allows some errors.

Linear non-separable

Need a non-linear model.

Logistic Regression Basics

Learning a Linear Classifier

Probabilistic View for a Linear Classifier

- 1398
- > h(x) can be interpreted as the probability of "being red."
 - As x goes upward from f(x), x is more likely to be 1 (Red).
 - As x goes downward from f(x), x is more likely to be 0 (Blue).

Probabilistic View for a Linear Classifier

- > What if we consider the output as P(y = 1|x)?
 - As h(x) is close to 1, x is more likely to be 1 (Red).
 - As h(x) is close to 0, x is more likely to be 0 (Blue).

$$h(\mathbf{x}) = \begin{cases} 1 \text{ (Red)} & \text{if } f(\mathbf{x}) \ge 0 \\ 0 \text{ (Blue)} & \text{otherwise} \end{cases}$$

$$h(\mathbf{x}) = \frac{1}{1 + \exp(-f(\mathbf{x}))}$$

What is the Sigmoid Function?

- > The sigmoid function is an S-curve shape.
 - Bounded
 - Differential
 - Defined for all real inputs
 - With a positive derivative

Logistic function

$$\sigma(x) = \frac{L}{1 + e^{-k(x - x_0)}}$$

- x_0 : the midpoint of the x-value
- L: the curve's maximum value
- *k*: the steepness of the curve

Logistic Function

> As the input of the logistic function, $f(x) = w^T x$ is used.

$$h(\mathbf{x}) = g(f(\mathbf{x})) = \sigma(f(\mathbf{x})) = \frac{1}{1 + e^{-f(\mathbf{x})}} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathrm{T}}\mathbf{x})}}$$

Formulating Binary Classification

> Use Bayes' rule to calculate the relevant posterior probability.

$$P(y = 1 \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid y = 1)P(y = 1)}{P(\mathbf{x})}$$

$$= \frac{P(\mathbf{x} \mid y = 1)P(y = 1)}{P(x \mid y = 1)P(y = 1) + P(x \mid y = 0)P(y = 0)}$$

$$= \frac{1}{1 + \frac{P(\mathbf{x} \mid y = 0)P(y = 0)}{P(\mathbf{x} \mid y = 1)P(y = 1)}}$$

$$= \frac{1}{1 + \exp\left\{\ln\frac{P(\mathbf{x} \mid y = 0)P(y = 0)}{P(\mathbf{x} \mid y = 1)P(y = 1)}\right\}} \quad \exp\{\ln a\} = a$$

$$= \frac{1}{1 + \exp\left\{-\ln\frac{P(\mathbf{x} \mid y = 1)}{P(\mathbf{x} \mid y = 0)} - \ln\frac{P(y = 1)}{P(y = 0)}\right\}}$$

Formulating Binary Classification

> It is the form of the logistic function.

$$P(y = 1 \mid \mathbf{x}) = \frac{1}{1 + \exp\{-z\}}$$

where
$$z = \ln \frac{P(x \mid y = 1)}{P(x \mid y = 0)} + \ln \frac{P(y = 1)}{P(y = 0)} \propto \ln \frac{P(y = 1 \mid x)}{P(y = 0 \mid x)}$$

Likelihood ratio

Prior ratio

> We simply design it as a linear model.

What are Odds?

- > Instead of the probability, we introduce the odds.
- > It is defined as the probability that the event will occur divided by the probability that the event will not occur.

$$odds = \frac{P(y = 1 \mid \mathbf{x})}{P(y = 0 \mid \mathbf{x})} = \frac{P(y = 1 \mid \mathbf{x})}{1 - P(y = 1 \mid \mathbf{x})}$$

- > For binary classification, evaluating the odds is also okay.
 - If $P(y = 1 \mid x) > P(y = 0 \mid x)$, then x is likely to be 1.
 - If $P(y = 1 \mid x) < P(y = 0 \mid x)$, then x is likely to be 0.

Applying Log Odds (Logit) to f(x)

> What if we represent $f(x) = w^T x$ as $\ln \frac{P(y=1 \mid x)}{1-P(y=1 \mid x)}$?

$$\ln \frac{P(y=1 \mid \mathbf{x})}{1 - P(y=1 \mid \mathbf{x})} = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$

> The logarithm of the odds

- $-\infty < \ln(odds) < \infty$
- Symmetric

Formulating the Logistic Function

Mapping the linear equation to the log odds

$$\ln(odds) = \ln\left(\frac{p}{1-p}\right) = f(\mathbf{x})$$

> Taking the exponent for both sides

$$odds = \frac{p}{1 - p} = e^{f(\mathbf{x})}$$

 \triangleright The probability of y=1 given x is

$$P(y = 1 \mid \mathbf{x}) = \frac{e^{f(\mathbf{x})}}{1 + e^{f(\mathbf{x})}} = \frac{1}{1 + e^{-(f(\mathbf{x}))}}$$

Making a Linear Classifier

 $> f(x) = w^T x$ is used as a linear decision boundary.

$$\ln(odds) = \ln\left(\frac{P(y=1 \mid \mathbf{x})}{1 - P(y=1 \mid \mathbf{x})}\right) = \ln\left(\frac{P(y=1 \mid \mathbf{x})}{P(y=0 \mid \mathbf{x})}\right) = \mathbf{w}^{\mathrm{T}}\mathbf{x}$$

- > If $\mathbf{w}^{\mathrm{T}}\mathbf{x} > 0$,
 - P(y = 1 | x) > P(y = 0 | x) f(x) = 0
- > If $\mathbf{w}^{\mathrm{T}}\mathbf{x}<0$,
 - $P(y = 1 \mid x) < P(y = 0 \mid x)$

The line on the decision boundary is $\mathbf{w}^T \mathbf{x} = \mathbf{0}$.

Formulating Logistic Regression

Formulating Logistic Regression

- ► Given $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}): 1 \le i \le n\}$ $\mathbf{x}^{(i)} = (1, x_{i1}, ..., x_{id}), y^{(i)} \in \{0, 1\}$
- > Finding $h(\mathbf{x}^{(i)}) = \sigma(f(\mathbf{x}^{(i)}))$ that minimizes $E(\mathbf{w})$

$$E(\mathbf{w}) = \sum_{i=1}^{n} \left(\sigma(f(\mathbf{x}^{(i)})) - y^{(i)} \right)^{2}, \text{ where } \sigma(f(\mathbf{x}^{(i)})) = \frac{1}{1 + e^{-(f(\mathbf{x}^{(i)}))}}$$

- > How?
 - Using the gradient descent method

Training Logistic Regression

> Simply, use the error function used in linear regression!

$$E(\mathbf{w}) = \sum_{i=1}^{n} (y^{(i)} - h(\mathbf{x}^{(i)}))^{2}$$

> This gives the non-convex function for w, which does not guarantee the global minimum.

Probabilistic View: Linear Classifier

- > h(x) can be interpreted as the probability of "being red."
 - As x goes upward from f(x), x is more likely to be 1 (Red).
 - As x goes downward from f(x), x is more likely to be 0 (Blue).

$$h(\mathbf{x}) = \frac{1}{1 + \exp(-f(\mathbf{x}))}$$

$$P(y|\mathbf{x}, \mathbf{w}) = \begin{cases} h(\mathbf{x}) & \text{if } \mathbf{y} = \mathbf{1} \\ 1 - h(\mathbf{x}) & \text{if } \mathbf{y} = \mathbf{0} \end{cases}$$

Recap: Maximum Likelihood Estimation

Estimate the maximum likelihood given independent observations $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(n)}$.

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} f(\mathbf{x}^{(i)} \mid \theta)$$

 \triangleright What θ maximizes the likelihood of the observed data?

$$\frac{\partial}{\partial \theta} \mathcal{L}(\theta) = 0$$

- > Find a boundary which makes
 - Positive samples are likely to be $P(y = 1 \mid \mathbf{x}, \mathbf{w})$.
 - Negative samples are likely to be $P(y = 0 \mid \mathbf{x}, \mathbf{w})$.

> Find w that maximizes

$$\operatorname{argmax}_{\mathbf{w}} \left(\prod_{\{\mathbf{x} \mid y=1\}} P(y=1 \mid \mathbf{x}, \mathbf{w}) \right) \left(\prod_{\{\mathbf{x} \mid y=0\}} P(y=0 \mid \mathbf{x}, \mathbf{w}) \right)$$

$$= \underset{\mathbf{w}}{\operatorname{argmax}} \ln \left(\prod_{\{\mathbf{x} \mid y=1\}} P(y=1 \mid \mathbf{x}, \mathbf{w}) \right) \left(\prod_{\{\mathbf{x} \mid y=0\}} P(y=0 \mid \mathbf{x}, \mathbf{w}) \right)$$
 Note: The log function is monotonic.

=
$$\underset{\mathbf{w}}{\operatorname{argmax}} \sum_{\{\mathbf{x} \mid y=1\}} \ln P(y=1 \mid \mathbf{x}, \mathbf{w}) + \sum_{\{\mathbf{x} \mid y=0\}} \ln (1 - P(y=1 \mid \mathbf{x}, \mathbf{w}))$$

$$= \underset{\mathbf{x}}{\operatorname{argmax}} \sum_{\{\mathbf{x} \mid y=1\}} \ln h(\mathbf{x}) + \sum_{\{\mathbf{x} \mid y=0\}} \ln (1 - h(\mathbf{x})) \text{ where } h(\mathbf{x}) = \frac{1}{1 + e^{-(f(\mathbf{x}))}}$$

$$= \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{\left(\mathbf{x}^{(i)}, y^{(i)}\right) \in \mathcal{D}} y^{(i)} \ln h(\mathbf{x}^{(i)}) + \left(1 - y^{(i)}\right) \ln \left(1 - h(\mathbf{x}^{(i)})\right) \text{ where } h(\mathbf{x}^{(i)}) = \frac{1}{1 + e^{-\left(f(\mathbf{x}^{(i)})\right)}}$$

> Finding a linear boundary $f(x) = w^T x$ that minimizes the error function

$$= \underset{\mathbf{w}}{\operatorname{argmax}} \left(\sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)} \ln h(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \ln(1 - h(\mathbf{x}^{(i)})) \right)$$

$$= \underset{\mathbf{w}}{\operatorname{argmin}} - \left(\sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)} \ln h(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \ln(1 - h(\mathbf{x}^{(i)})) \right)$$

- > How to solve this?
 - A closed-form equation
 - Gradient descent method

Solving the Optimization Problem

> Bad news: there is no closed-form solution to minimize the error function.

$$E(\mathbf{w}) = -\sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)} \ln h(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \ln(1 - h(\mathbf{x}^{(i)}))$$

Details: Optimization Problem

$$y \ln P(y = 1 \mid \mathbf{x}, \mathbf{w}) + (1 - y) \ln(1 - P(y = 1 \mid \mathbf{x}, \mathbf{w}))$$

Substituting $P(y = 1 | \mathbf{x}, \mathbf{w})$ to $h(\mathbf{x})$

$$y \ln h(\mathbf{x}) + \ln(1 - h(\mathbf{x})) - y \ln(1 - h(\mathbf{x}))$$

$$y(\ln h(\mathbf{x}) - \ln(1 - h(\mathbf{x}))) + \ln(1 - h(\mathbf{x}))$$

$$y\left(\ln\frac{P(y=1\mid\mathbf{x},\mathbf{w})}{1-P(y=1\mid\mathbf{x},\mathbf{w})}\right) + \ln(1-h(\mathbf{x}))$$

Details: Optimization Problem

$$y\left(\ln\frac{P(y=1\mid\mathbf{x},\mathbf{w})}{1-P(y=1\mid\mathbf{x},\mathbf{w})}\right) + \ln(1-h(\mathbf{x}))$$

Substituting $\mathbf{w}^{\mathsf{T}}\mathbf{x} = \ln \frac{P(y=1 \mid \mathbf{x}, \mathbf{w})}{1 - P(y=1 \mid \mathbf{x}, \mathbf{w})}$

$$y\mathbf{w}^{\mathsf{T}}\mathbf{x} + \ln(1 - h(\mathbf{x}))$$

> Apply the partial derivative to find optimal w.

$$\frac{\partial}{\partial w_j} (y \mathbf{w}^{\mathsf{T}} \mathbf{x} + \ln(1 - h(\mathbf{x}))) = 0$$

We cannot solve this problem.

Solving the Optimization Problem

- > Good news: the error function is convex.
 - Unique maximum: The convex function is easy to optimize.

$$E(\mathbf{w}) = -\sum_{(\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}} y^{(i)} \ln h(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \ln(1 - h(\mathbf{x}^{(i)}))$$

Training Logistic Regression

Recap: Gradient Descent (GD)

- > Simple concept: follow the gradient downhill
- > Process:
 - Pick a starting position: $\mathbf{w}^0 = (w_0, w_1, w_2, ..., w_d)$
 - Determine the descent direction: $\Delta \mathbf{w} = \nabla E(\mathbf{w}^t)$
 - 3. Choose a learning rate: 1
 - Update your position: $\mathbf{w}^{t+1} = \mathbf{w}^t \eta \Delta \mathbf{w}$
 - 5. Repeat from 2) until stopping criterion is satisfied.
- > Key issues in GD
 - How to compute Δw ?
 - Batch size in \mathcal{D}
 - How to determine η ?

Computing the Partial Derivative

Using the chain rule

$$\frac{\partial E}{\partial \mathbf{w}} = \frac{\partial E}{\partial h} \frac{\partial h}{\partial f} \frac{\partial f}{\partial \mathbf{w}} \quad where \ h = h(\mathbf{f}(\mathbf{x})) \ and \ f = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\frac{\partial}{\partial \mathbf{w}} \sum_{i=1}^{n} [y^{(i)} \ln \mathbf{h} + (1 - y^{(i)}) \ln(1 - \mathbf{h})]$$

Applying the derivative of $ln(x) = x^{-1}$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} \left[y^{(i)} \frac{1}{h} \frac{\partial h}{\partial \mathbf{w}} + \left(1 - y^{(i)} \right) \left(-\frac{1}{1 - h} \right) \frac{\partial h}{\partial \mathbf{w}} \right]$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} \left(y^{(i)} \frac{1}{h} - \left(1 - y^{(i)} \right) \frac{1}{1 - h} \right) \frac{\partial h}{\partial \mathbf{w}}$$

Computing the Partial Derivative

> Using the chain rule

$$\frac{\partial E}{\partial \mathbf{w}} = \frac{\partial E}{\partial h} \frac{\partial h}{\partial f} \frac{\partial f}{\partial \mathbf{w}} \quad where \ h = h(\mathbf{f}(\mathbf{x})) \ and \ f = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} \left(y^{(i)} \frac{1}{h} - \left(1 - y^{(i)} \right) \frac{1}{1 - h} \right) \frac{\partial h}{\partial \mathbf{w}}$$

Applying the derivative of
$$h(f) = \frac{1}{1 + e^{-f}}$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} \left(y^{(i)} \frac{1}{h} - \left(1 - y^{(i)} \right) \frac{1}{1 - h} \right) h(1 - h) \frac{\partial}{\partial \mathbf{w}} \left(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} \right)$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} \left(\frac{y^{(i)}(1-h) - (1-y^{(i)})h}{h(1-h)} \right) h(1-h) \frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)})$$

Derivative of Sigmoid Function

> Denote the sigmoid function as $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right) = \frac{d}{dx}(1+e^{-x})^{-1} = -(1+e^{-x})^{-2}(-e^{-x})$$

$$-(1+e^{-x})^{-2}(-e^{-x}) = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1}{1+e^{-x}}\right)\left(\frac{e^{-x}}{1+e^{-x}}\right)$$

$$\left(\frac{1}{1+e^{-x}}\right)\left(\frac{e^{-x}}{1+e^{-x}}\right) = \left(\frac{1}{1+e^{-x}}\right)\left(\frac{(1+e^{-x})-1}{1+e^{-x}}\right) = \left(\frac{1}{1+e^{-x}}\right)\left(1-\frac{1}{1+e^{-x}}\right)$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

Computing the Partial Derivative

Using the chain rule

$$\frac{\partial E}{\partial \mathbf{w}} = \frac{\partial E}{\partial h} \frac{\partial h}{\partial f} \frac{\partial f}{\partial \mathbf{w}} \quad where \ h = h(\mathbf{f}(\mathbf{x})) \ and \ f = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} \left(\frac{y^{(i)}(1-h) - (1-y^{(i)})h}{h(1-h)} \right) h(1-h) \frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)})$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} (y^{(i)} - h(\mathbf{x})) \frac{\partial}{\partial \mathbf{w}} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)})$$

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{i=1}^{n} (y^{(i)} - h(\mathbf{x})) \mathbf{x}^{(i)}$$

Computing the Partial Derivative

> The error function for logistic regression is

$$E(\mathbf{w}) = -\left(\sum_{\left(\mathbf{x}^{(i)}, y^{(i)}\right) \in \mathcal{D}} y^{(i)} \ln h(\mathbf{x}^{(i)}) + (1 - y^{(i)}) \ln \left(1 - h(\mathbf{x}^{(i)})\right)\right)$$

$$h(\mathbf{x}) = \sigma(f(\mathbf{x})) = \frac{1}{1 + e^{(-f(\mathbf{x}))}} = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + \dots + w_d x_d)}}$$

 \triangleright The gradient of E(w) is

$$\frac{\partial}{\partial \mathbf{w}} E(\mathbf{w}) = \sum_{\left(\mathbf{x}^{(i)}, y^{(i)}\right) \in \mathcal{D}} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)}\right) \mathbf{x}^{(i)}$$

Training Logistic Regression

Randomly choose an initial solution w⁰,

Repeat

Choose a random sample set $\mathcal{B} \subseteq \mathcal{D}$.

$$\Delta \mathbf{w} = \sum_{\left(\mathbf{x}^{(i)}, y^{(i)}\right) \in \mathcal{B}} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)}\right) \mathbf{x}^{(i)}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \Delta \mathbf{w}$$

Until stopping condition is satisfied

Discussion and Summary

- > No closed-form solution
 - Optimized by the gradient descent method
- > A linear boundary
 - How about a non-linear classifier?
- > Binary classifier
 - How about three or more classes?

Non-linear separable

Multinomial Logistic Regression

Multinomial Logistic Regression

- ➤ It is a classification method that generalizes logistic regression to the multiclass problem, i.e., with more than two possible discrete outcomes.
 - It is also called softmax regression and multinomial logit.

> Examples

- Which major will a student choose, given the status of the student?
- Which blood type does a person have, given the results of various diagnostic tests?

Multi-class Classification

- Classifying instances into one of three or more classes
 - Binary classification: Classifying instances into one of two classes

Multi-class classification

> How to classify multiple classes with some boundaries?

Multi-class Classification

- Considering a linear decision boundary for each class
 - Use k classifiers for k classes.

Example: Image Classification

CIFAR-10

- **10** labels
- **50,000** training images
- **10,000** test images
- Each image is **32x32x3**.

Multi-class Classification

 \succ Given an input $\mathbf{x} \in \mathbb{R}^{3072 \times 1}$, $f(\mathbf{x}; \mathbf{W}, \mathbf{b})$ returns $\mathbf{y} \in \mathbb{R}^{10 \times 1}$.

• $\mathbf{W}^T \in \mathbb{R}^{10 \times 3072}$, $\mathbf{b} \in \mathbb{R}^{10 \times 1}$

10 numbers, indicating class scores

[32x32x3] (3072 numbers total)

Multi-class Classification

- \succ Given an input $\mathbf{x} \in \mathbb{R}^{3072 \times 1}$, $f(\mathbf{x}; \mathbf{W}, \mathbf{b})$ returns $\mathbf{y} \in \mathbb{R}^{10 \times 1}$.
 - $\mathbf{W}^T \in \mathbb{R}^{10 \times 3072}$, $\mathbf{b} \in \mathbb{R}^{10 \times 1}$

[32x32x3] (3072 numbers total)

Example: Multi-class Classification

Stretch pixels into a column vector.

$$\begin{bmatrix} 0.2 & 0.3 & \cdots & \cdots & 1.2 \\ 1.5 & 2.3 & \cdots & \cdots & 2.9 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 2.1 & 0.3 & \cdots & \cdots & 0.2 \end{bmatrix} \cdot \begin{bmatrix} 13 \\ 24 \\ \vdots \\ 71 \end{bmatrix} + \begin{bmatrix} 1.1 \\ 3.2 \\ \vdots \\ 0.4 \end{bmatrix} = \begin{bmatrix} 42.1 \\ -52.4 \\ \vdots \\ 102.5 \end{bmatrix}$$

$$\mathbf{W}^{\mathsf{T}} \qquad \qquad \mathbf{x} \qquad \qquad \mathbf{b} \qquad \qquad \mathbf{f}(\mathbf{x}; \mathbf{W}, \mathbf{b})$$

$$\mathbf{10x3072} \qquad \mathbf{3072x1} \qquad \mathbf{10x1} \qquad \mathbf{10x1}$$

Example: Multi-class Classification

> Concatenating W and b

Example: Multi-class Classification

> Note: the output is not a probability.

Computing the Logit

> For each class, the logit is computed.

$$logit = \ln \frac{P(y = j \mid \mathbf{x}, \mathbf{W})}{1 - P(y = j \mid \mathbf{x}, \mathbf{W})} = \mathbf{w}_j^{\mathrm{T}} \mathbf{x}$$

$$P(y = j \mid \mathbf{x}, \mathbf{W}) = e^{\mathbf{w}_j^{\mathrm{T}} \mathbf{x}}$$

$$e^{[w_{10} \, w_{11} \, \dots \, w_{1d}]} \cdot \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$
 $e^{[w_{20} \, w_{21} \, \dots \, w_{2d}]} \cdot \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$
 $e^{[w_{30} \, w_{31} \, \dots \, w_{3d}]} \cdot \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$

What is the Softmax Function?

> To represent a probability, the odds are normalized

$$P(y = j \mid \mathbf{x}, \mathbf{W}) = \frac{e^{\mathbf{w}_j^{\mathsf{T}} \mathbf{x}}}{\sum_{i=1}^k e^{\mathbf{w}_i^{\mathsf{T}} \mathbf{x}}}$$

$$\begin{bmatrix} P(y = 1 \mid \mathbf{x}, \mathbf{W}) \\ P(y = 2 \mid \mathbf{x}, \mathbf{W}) \\ \vdots \\ P(y = k \mid \mathbf{x}, \mathbf{W}) \end{bmatrix} = \frac{1}{\sum_{i=1}^{k} e^{\mathbf{w}_{i}^{\mathsf{T}} \mathbf{x}}} \begin{bmatrix} e^{\mathbf{w}_{1}^{\mathsf{T}} \mathbf{x}} \\ e^{\mathbf{w}_{2}^{\mathsf{T}} \mathbf{x}} \\ \vdots \\ \vdots \\ e^{\mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}} \end{bmatrix}$$

What is the Softmax Function?

What is the Softmax Function?

> We want to maximize the probability of the correct class.

$$P(y = j \mid \mathbf{x}, \mathbf{W}) = \frac{e^{\mathbf{w}_j^{\mathsf{T}} \mathbf{x}}}{\sum_{i=1}^k e^{\mathbf{w}_i^{\mathsf{T}} \mathbf{x}}}$$

How to Train the Softmax Regression?

> Maximizing the class probability of the ground truth

$$P(y = j \mid \mathbf{x}, \mathbf{W}) \frac{e^{\mathbf{w}_j^{\mathsf{T}} \mathbf{x}}}{\sum_{i=1}^k e^{\mathbf{w}_i^{\mathsf{T}} \mathbf{x}}}$$

How to Train the Softmax Regression?

> Maximizing the class probability of the ground truth

$$P(y = j \mid \mathbf{x}, \mathbf{W}) \frac{e^{\mathbf{w}_j^{\mathsf{T}} \mathbf{x}}}{\sum_{i=1}^k e^{\mathbf{w}_i^{\mathsf{T}} \mathbf{x}}}$$

Generalizing the error function of binary classification

$$E(\mathbf{w}) = -\sum_{i=1}^{n} y^{(i)} \ln(P(y^{(i)} = 1 \mid \mathbf{x}^{(i)}, \mathbf{w})) + (1 - y^{(i)}) \ln(1 - P(y^{(i)} = 1 \mid \mathbf{x}^{(i)}, \mathbf{w}))$$

$$E(\mathbf{w}) = -\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbb{I}[y^{(i)} = j] \ln(P(y^{(i)} = j \mid \mathbf{x}^{(i)}, \mathbf{w}))$$

$$\mathbb{I}[y^{(i)} = j] = \begin{cases} 1 & if \ y^{(i)} = j \\ 0 & otherwise \end{cases}$$

$$P(y^{(i)} = j \mid \mathbf{x}^{(i)}, \mathbf{w}) = \frac{e^{\mathbf{w}_j^{\mathsf{T}} \mathbf{x}^{(i)}}}{\sum_{i=1}^k e^{\mathbf{w}_i^{\mathsf{T}} \mathbf{x}^{(i)}}}$$

Training Sofmax Regression

How to train softmax regression?

- > How to solve this?
 - A closed-form equation
 - Gradient descent method

Recap: Training Logistic Regression

Randomly choose an initial solution w⁰,

Repeat

Choose a random sample set $B \subseteq D$.

$$\Delta \mathbf{w} = \sum_{\left(\mathbf{x}^{(i)}, y^{(i)}\right) \in B} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)}\right) \mathbf{x}^{(i)}$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \Delta \mathbf{w}$$

Until the stopping condition is satisfied

Solving Softmax Regression by GD

> For the error function, compute the partial derivative of w.

$$E(\mathbf{w}) = -\sum_{i=1}^{n} \sum_{j=1}^{k} \mathbb{I}[y^{(i)} = j] \ln(P(y^{(i)} = j | \mathbf{x}^{(i)}, \mathbf{w}))$$

 \succ Then, apply $abla_{
m w} E = rac{\partial E}{\partial
m w}$ to the gradient descent method.

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\mathbf{w}} \mathbf{E}$$

Q&A

