

Course > Week 7 > Home... > hw4_m...

hw4_mdps_q7_policy_iteration

Question 7: Policy Iteration

0.0/5.0 points (graded)

Consider the gridworld where Left and Right actions are successful 100% of the time.

Specifically, the available actions in each state are to move to the neighboring grid squares. From state \boldsymbol{a} , there is also an exit action available, which results in going to the terminal state and collecting a reward of 10. Similarly, in state \boldsymbol{e} , the reward for the exit action is 1. Exit actions are successful 100% of the time.

The discount factor (γ) is 0.9.

We will execute one round of policy iteration.

Part 1: Policy Evaluation

Consider the policy π_i shown below, and evaluate the following quantities for this policy.

$$V^{\pi_i}\left(a
ight) =$$

10 **Answer:** 10

From a, we take the exit action with reward 10. Thus, the value of state a is 10.

$$V^{\pi_i}\left(b
ight) =$$

9 **Answer:** 9

$$V^{\pi_i}\left(b
ight)=\gamma V^{\pi_i}\left(a
ight)=9$$

$$V^{\pi_i}\left(c
ight) =$$

0 Answer: 0

From c, we will never reach an exit state, according to the policy. Therefore, the value for this state is 0.

$$V^{\pi_i}\left(d
ight) =$$

0 Answer: 0

0, by the same reasoning as for state c.

$$V^{\pi_i}\left(e
ight) =$$

1 Answer: 1

From e, we take the exit action with reward 1.

• Answers are displayed within the problem

problem

0.0/5.0 points (graded)

Part 2: Policy Improvement

Perform a policy improvement step. The current policy's values are the ones from Part 1 (so make sure you first correctly answer Part 1 before moving on to Part 2).

$$\pi_{i+1}\left(a
ight) =$$

- Exit
- Right

"Exit" gives us a value of 10 for the exit reward. "Right" gives us a value of γV^{π_i} (b)=8.1.

$$\pi_{i+1}\left(b
ight) =$$

- Left ✓
- Right

"Left" gives us a score of γV^{π_i} (a)=9. "Right" gives us a score of γV^{π_i} (c)=0.

$$\pi_{i+1}\left(c\right) =$$

- Left
- Right

"Left" gives us a score of γV^{π_i} $(b)=8.1$. "Right" gives us a score of γV^{π_i} $(d)=0$.
$\pi_{i+1}\left(d ight)=$
○ Left
● Right ✔
"Left" gives us a score of γV^{π_i} $(c)=0$. "Right" gives us a score of γV^{π_i} $(e)=.9$.
$\pi_{i+1}\left(e ight)=$
○ Left
● Exit ✔
"Left" gives us a score of γV^{π_i} $(d)=0$. "Exit" gives us a score of 1.
Submit

• Answers are displayed within the problem

© All Rights Reserved