# Solvants

Agrégation

#### Moments dipolaire de quelques solvants

| Solvant     | Formule                          | Moment dipolaire |                    |
|-------------|----------------------------------|------------------|--------------------|
| Eau         | H H                              | 1,85 D           |                    |
| DMSO        | H <sub>3</sub> C CH <sub>3</sub> |                  | Solvants polaires  |
| Acétone     | H₃C CH₃                          | 2,88 D           |                    |
| Toluène     | CH <sub>3</sub>                  | 0,37 D           | Solvants apolaires |
| Cyclohexane |                                  | 0 D              | apolalies          |

#### Permittivité relatives de quelques solvants

| Solvant     | Formule                          | Permittivité relative |                                  |
|-------------|----------------------------------|-----------------------|----------------------------------|
| Eau         | H H                              | 80,10                 | Solvants                         |
| DMSO        | O<br>II<br>S<br>CH <sub>3</sub>  | 47,24                 | dissociants                      |
| Acétone     | H <sub>3</sub> C CH <sub>3</sub> | 20,7                  | Solvants moyennement dissociants |
| Toluène     | CH <sub>3</sub>                  | 2,379                 | Solvants non                     |
| Cyclohexane |                                  | 2,024                 | dissociants                      |

# Classement de quelques solvants

| Solvant     | Formule                          | Moment dipolaire | Permittivité relative | Catégorie          | Solubilité                                                               |
|-------------|----------------------------------|------------------|-----------------------|--------------------|--------------------------------------------------------------------------|
| Eau         | H H                              | 1,85 D           | 80,10                 | Polaire protique   | Composés ioniques et partiellement ioniques (anions fortement solvatés)  |
| DMSO        | O<br>II<br>S<br>CH <sub>3</sub>  |                  | 47,24                 | Polaire aprotique  | Composés ioniques et partiellement ioniques (cations fortement solvatés) |
| Acétone     | H <sub>3</sub> C CH <sub>3</sub> | 2,88 D           | 20,7                  | Polaire aprotique  | Composés ioniques et partiellement ioniques (cations fortement solvatés) |
| Toluène     | CH <sub>3</sub>                  | 0,37 D           | 2,379                 | Apolaire aprotique | Peu les composés ioniques,<br>très bien les composés<br>apolaires        |
| Cyclohexane |                                  | 0 D              | 2,024                 | Apolaire aprotique | Peu les composés ioniques,<br>très bien les composés<br>apolaires        |

#### Coefficient de partage du diiode (cyclohexane/eau)



#### Coefficient de partage du diiode (cyclohexane/eau)



### Solvolyse du bromure de tertiobutyle



|           | Eau  | Acétone | Volume de <sup>t</sup> Bu-Br |
|-----------|------|---------|------------------------------|
| Mélange A | 30 g | 20 g    | 1 mL                         |
| Mélange B | 25 g | 25 g    | 1 mL                         |
| Mélange C | 10 g | 40 g    | 1 mL                         |

## Solvolyse du bromure de tertiobutyle

|                           | <sup>t</sup> Bu-Br | + H <sub>2</sub> O | = <sup>t</sup> Bu-OH | + H <sup>+</sup> | + Br  |
|---------------------------|--------------------|--------------------|----------------------|------------------|-------|
| Etat initial              | $C_0$              | excès              |                      |                  |       |
| Etat<br>intermédiaire t   | C <sub>0</sub> -x  | excès              |                      |                  |       |
| Etat final t <sub>∞</sub> | ξ                  | excès              | $C_0$                | $C_0$            | $C_0$ |

$$\begin{cases} A \ t = 0 & \sigma = \sigma_0 \\ A \ t & \sigma = (\lambda_{H+}^{\circ} + \lambda_{Cl-}^{\circ}).x + \sigma_0 \\ A \ t = \infty & \sigma_{\infty} = (\lambda_{H+}^{\circ} + \lambda_{Cl-}^{\circ}).C_0 + \sigma_0 \end{cases}$$

#### Hypothèse 1er ordre:

$$v = -\frac{d[tBu - Br]}{dt} = k[^tBu - Br] d'où \frac{d[tBu - Br]}{[tBu - Br]} = -kdt$$

En intégrant entre t=0 et t:  $ln(\frac{C_0}{C_0-x})=kt$ 

or 
$$\frac{C_0}{C_0 - x} = \frac{\sigma_{\infty} - \sigma_0}{\sigma_{\infty} - \sigma}$$
 d'où  $ln(\frac{\sigma_{\infty} - \sigma_0}{\sigma_{\infty} - \sigma(t)}) = kt$ 

# Méthode de Guggenheim

$$\bullet ln(\frac{\sigma_0 - \sigma_0}{\sigma_0 - \sigma(t)}) = kt \implies \sigma(t) = (\sigma_0 - \sigma_\infty). e^{-kt} + \sigma_0$$

$$\Delta \sigma(t) = \sigma(t + \Delta t) - \sigma(t) = (\sigma_0 - \sigma_\infty) \cdot [e^{-k(t + \Delta t)} - e^{-kt}] = (\sigma_\infty - \sigma_0) \cdot [1 - e^{-k\Delta t}] \cdot e^{-kt}$$

❖ Par passage au logarithme:

$$\ln(\Delta\sigma(t)) = \ln(\sigma_{\infty} - \sigma_{0}) + \ln(1 - e^{-k\Delta t}) - kt \implies \ln(\Delta\sigma(t)) = A + Bt$$

# Merci