## **ENGR 065: Circuit Theory**

#### **Problem Set #3**

Read Chapter 2 from [1] and then solve the following problems:

**Problem 1 [20%]:** Find  $V_o$  and the power absorbed by the dependent source in the circuit bellow. Assume I = 21 A.



# **Problem 2 [20%]:**

a) For the circuit in the figure below,  $i_0 = 5$  A and  $R = 8 \Omega$ . Calculate  $i_x$ .



b) All resistors (R) in the figure below are 8  $\Omega$  each. Find  $R_{eq}$ .



### **Problem 3 [20%]:**

a) Using series/parallel resistance combination, find the equivalent resistance seen by the source in the circuit below. Find the overall absorbed power by the resistor network. Assume V = 680 V.

b) Compute the voltage across the 50  $\Omega$  resistor (which is connected in series with the voltage source).



**Problem 4 [20%]:** The circuit in the figure below is used to control the speed of an electric motor. The motor draws currents 6 A, 3 A, and 2 A when the switch is at high, medium, and low positions, respectively. The motor can be modeled as a load resistance of 20 m $\Omega$ . The fuse can be modelled as a resistor of  $0.01\Omega$ . Determine the series resistors  $R_1$ ,  $R_2$ , and  $R_3$ .



**Problem 5** [20%]: Compute the value of R such that the current flowing in the  $9\Omega$  resistor is equal to 1mA.



### References

[1] C. Alexander and M. Sadiku "Fundamentals of Electric Circuits", 7th Edition, 2021, McGraw-Hil