Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_st-nat*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2(a_1+9r) = a_1+4r+a_1+5r+36 \Leftrightarrow 9r=36$	3 p
	r = 4	2p
2.	$r = 4$ $x^2 + 3x - 1 = x - 1 \Leftrightarrow x^2 + 2x = 0$	3 p
	x = -2 sau $x = 0$	2p
3.	$\log_2 \frac{(x-1)(x^2-1)}{x+1} = 4 \Rightarrow (x-1)^2 = 16$	3 p
	x = -3 sau $x = 5$, care verifică ecuația	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	În mulțimea numerelor naturale de două cifre sunt 9 numere cu cifra unităților zero, 4 numere cu cifra zecilor cinci și cifra unităților număr par nenul și 4 numere cu cifra unităților cinci și cifra zecilor număr par, deci sunt 17 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{17}{90}$	2p
5.	$A(1,1), B(1,4) \Rightarrow AB \parallel Oy$ şi $A(1,1), C(5,1) \Rightarrow AC \parallel Ox$, deci $\triangle ABC$ este dreptunghic în A	2p
	Centrul cercului circumscris $\triangle ABC$ este mijlocul laturii BC și are coordonatele $\left(3, \frac{5}{2}\right)$	3p
6.	$1 + \cos 2x = 2\cos^2 x$	2p
	$1 - \cos 2x = 2\sin^2 x \Rightarrow \frac{1 + \cos 2x}{1 - \cos 2x} = \frac{2\cos^2 x}{2\sin^2 x} = \operatorname{ctg}^2 x, \text{ pentru orice } x \in \left(0, \frac{\pi}{2}\right)$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$M(0) = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 0 & -1 & 1 \end{pmatrix} \Rightarrow \det(M(0)) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 3 + (-2) + 0 - 0 - (-1) - 2 = 0$ $= 0$	3p 2p
b)	$2M(x) - M(-x) = \begin{pmatrix} 2 & 2 & 2 \\ 4 & 6 & 2 \\ 2x & 4x - 2 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ -x & -2x - 1 & 1 \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 3x & 6x - 1 & 1 \end{pmatrix} = M(3x), \text{ pentru orice număr real } x$	2p

c)	$\Delta = \begin{vmatrix} 0 & 0 & 1 \\ n & 2n-1 & 1 \\ n^2 & 2n^2-1 & 1 \end{vmatrix} = n(n-1), \text{ deci } \mathcal{A}_{\Delta OAB} = \frac{1}{2} \Delta = \frac{n(n-1)}{2}$	3p
	Cum pentru orice număr natural n , $n \ge 2$, numerele $n-1$ și n sunt consecutive, produsul lor este număr par, deci $\mathcal{A}_{\Delta OAB}$ este număr natural	2p
2.a)	$1 \circ \frac{1}{3} = 6 \cdot 1 \cdot \frac{1}{3} - 2 \cdot 1 - 2 \cdot \frac{1}{3} + 1 =$	2p
	$=\frac{1}{3}$	3p
b)	$x \circ e = 6xe - 2x - 2e + 1 = 6ex - 2e - 2x + 1 = e \circ x$, pentru orice număr real x	2p
	$x \circ e = x \Leftrightarrow (3x-1)(2e-1) = 0$, pentru orice număr real x , deci $e = \frac{1}{2}$ este elementul neutru al legii de compoziție " \circ "	3 p
c)	$x \circ \frac{1}{3} = \frac{1}{3} \circ y = \frac{1}{3}$, pentru x și y numere reale	2p
	$\frac{1}{1008} \circ \frac{2}{1008} \circ \frac{3}{1008} \circ \dots \circ \frac{2016}{1008} = \left(\frac{1}{1008} \circ \frac{2}{1008} \circ \dots \circ \frac{335}{1008}\right) \circ \frac{1}{3} \circ \left(\frac{337}{1008} \circ \frac{338}{1008} \circ \dots \circ \frac{2016}{1008}\right) = \frac{1}{3}$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = \frac{1 \cdot (x^4 + 3) - x \cdot 4x^3}{(x^4 + 3)^2} = \frac{3(1 - x^4)}{(x^4 + 3)^2} =$	3р
	$= -\frac{3(x^4 - 1)}{(x^4 + 3)^2} = -\frac{3(x - 1)(x + 1)(x^2 + 1)}{(x^4 + 3)^2}, \ x \in \mathbb{R}$	2p
b)	$f(0) = 0, f'(0) = \frac{1}{3}$	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = \frac{1}{3}x$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	1p
	$x \in (-\infty, -1] \Rightarrow f'(x) \le 0$, deci f descrescătoare pe $(-\infty, -1]$; $x \in [-1, 1] \Rightarrow f'(x) \ge 0$, deci f crescătoare pe $[-1, 1]$ și $x \in [1, +\infty) \Rightarrow f'(x) \le 0$, deci f descrescătoare pe $[1, +\infty)$	1р
	Cum $\lim_{x \to -\infty} f(x) = 0$, $f(-1) = -\frac{1}{4}$, $f(1) = \frac{1}{4}$ şi $\lim_{x \to +\infty} f(x) = 0$, obţinem $-\frac{1}{4} \le f(x) \le \frac{1}{4}$, pentru orice $x \in \mathbb{R}$	3р
2.a)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = (x-1)e^x - 2x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 0 \Rightarrow c = 2$, deci $F(x) = (x-1)e^x - 2x + 2$	2p
b)	$\int_{0}^{1} \left(x^{2} e^{x} - 2x \right) dx = x^{2} e^{x} \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} 2x e^{x} dx - x^{2} \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} = 0$	3 p
->	=e-3	2p
(c)	$\int_{1}^{x} f(t)dt = F(x) - F(1) = (x - 1)(e^{x} - 2)$	3 p
	$(x-1)(e^x-2)=0 \Leftrightarrow x=1 \text{ sau } x=\ln 2$	2p