WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2016/2017

MATEMATYKA

Informacje dla ucznia

- 1. Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 8 stron (zadania 1-14).
- 3. Czytaj uważnie wszystkie teksty i zadania.
- 4. Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem ⊗ i zaznacz inną odpowiedź znakiem "X".
- **6.** W zadaniach typu PRAWDA/FAŁSZ oceń, czy podane zdania są prawdziwe, czy fałszywe. Zaznacz właściwą odpowiedź.
- 7. Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **8.** Przeczytaj uważnie treść zadań, zwracając uwagę na to, czy polecenie każe podać jedynie wynik, czy też obliczyć szukaną wielkość (tzn. zapisać obliczenie lub w inny sposób uzasadnić wynik).
- **9.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 10. Podczas rozwiązywania zadań nie wolno Ci korzystać z kalkulatora.

KOD	UCZNIA
KOD	UCZNIA

Etap: wojewódzki

Czas pracy: 120 minut

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Razem
Liczba punktów możliwych do zdobycia	18	3	3	3	3	3	3	3	3	3	2	4	4	5	60
Liczba punktów uzyskanych przez uczestnika konkursu															

Liczba punktów umożliwiająca uzyskanie tytułu laureata: 54

Podpisy członków komisji:

- 1. Przewodniczący
- 2. Członek komisji sprawdzający pracę
- 3. Członek komisji weryfikujący pracę

Zadanie 1. (0-18)

Rozwiąż krzyżówkę, wpisując litery w odpowiednie pola. Hasło w zacieniowanych okienkach, to pojęcie oznaczające odległość liczby rzeczywistej od zera. Hasło nie jest oceniane.

- 1) W walcu i stożku jest kołem.
- 2) Bryła obrotowa, której powierzchnia boczna po rozwinięciu jest prostokątem.
- 3) Trójkaty podobne w skali 1:1.
- 4) Proste zawierające przyprostokątne w trójkącie prostokątnym.
- 5) Figura będąca jednym z ramion kąta.
- 6) Wielkość oznaczona literą d we wzorze na długość okręgu: $L = \pi d$.
- 7) Własność liczby gwarantująca dzielenie się tej liczby bez reszty przez inną liczbę.
- 8) Równoległobok, którego przekątne są wzajemnie prostopadłe.
- 9) Jednostka długości 10000 razy mniejsza od kilometra.

- 10) Czworokąt posiadający co najmniej jedną parę boków równoległych.
- 11) Liczba, która ma rozwinięcie dziesiętne skończone albo nieskończone okresowe.
- 12) Odcinek łączący wierzchołek stożka z punktem na okręgu jego podstawy.
- 13) Część okręgu wyznaczona przez ramiona kąta środkowego.
- 14) Zależność między dwoma wielkościami zmiennymi, których iloraz pozostaje stały.
- 15) Działanie, które należy wykonać jako pierwsze w wyrażeniu: $15^{10} 11^5$.
- 16) Dwie liczby, których iloczyn jest równy 1.
- 17) Część wspólna koła i stycznej do tego koła.
- 18) Jednostka czasu równa $\frac{1}{3600}$ godziny.

W zadaniach od 2. do 10. oceń, czy podane zdania są prawdziwe,				
czy fałszywe. Zaznacz właściwą odpowiedź.				
Zadanie 2. (0-3)				
Funkcja f określona jest tylko dla liczl	•	•		
i każdej z tych liczb przyporządkowuje liczb	oę mniejszą od n	iej o 5,5.		
I. Funkcja <i>f</i> nie ma miejsc zerowych.				
	\square PRAWDA	□ FAŁSZ		
II. Liczba –4,5 jest najmniejszą wartością prz	••			
	\square PRAWDA	□ FAŁSZ		
III. Funkcja f jest malejąca w swojej dziedzin	ie.			
	\square PRAWDA	□ FAŁSZ		
Zadanie 3. (0-3)				
Liczby a, b, c spełniają warunki: $abc = -100$	$\mathbf{i} a + b = 0$			
I. Dokładnie jedna z tych liczb jest ujemna.	-			
1. Demacine feature tyen neze fest afenimus	□ PRAWDA	□ FAŁSZ		
II. Liczba a może mieć wartość większą od (
11. Eleza a moze mice wartose większą od (□ PRAWDA			
III. Liczba c jest liczbą ujemną.				
III. Liezoa e jest liezoa ajennia.	□ PRAWDA	□ FAFS7		
		L PALSE		
Zadanie 4. (0-3)				
W trójkącie ABC wysokość CD o długoś				
odcinki AD i BD, takie że długość AD wynos	si 8 cm, a długo	ść <i>BD</i> wynosi		
16 cm.				
I. Symetralna boku AB dzieli bok BC w na o	-	•		
pozostają w stosunku 4:1.	\square PRAWDA			
II. Obwód trójkąta <i>ABC</i> wynosi $4(11+\sqrt{13})$.	\square PRAWDA	□ FAŁSZ		
III. Pole jednej z figur otrzymanych w wyniku	ı podziału trójkąt	a <i>ABC</i> wynosi		
42 cm^2 .	□ PRAWDA	□ FAŁSZ		
Zadanie 5. (0-3)				
Dane są liczby: $a = 6^{10}$ i $b = 12^5$. Wtedy				
I. $a \cdot b = 2^{15} \cdot 3^{15}$				
	□ PRAWDA	⊔ FAŁSZ		
II. $\frac{a}{b} = 3^5$	\square PRAWDA	□ FAŁSZ		
III. $a+b=61\cdot 2^{12}\cdot 3^5$	□ PRAWDA	□ FAŁSZ		
Zadanie 6. (0-3)				
Średnio 100 g chleba proteinowego zawiera	tyle węglowoda	anów, co 10 g		
chleba żytniego razowego lub 8 gramów pied	czywa pszennego	0.		
I. 100 g pieczywa pszennego zawiera 12,5 ra	azy więcej węglo	wodanów		
niż 100 g pieczywa proteinowego.		□ FAŁSZ		
II. Pieczywo pszenne zawiera 1,25 razy więc		w niż		
pieczywo żytnie razowe.	☐ PRAWDA			
III. 1 kg chleba proteinowego dostarcza tyle sa				
	□ PRAWDA			

_		_	<i>^</i>	•
Zad	anie	7.	(I):	-31

Zad	lanie 7. (0-3)		
Za	5 kg cytryn i 6 kg mandarynek zapłac	imy tyle samo,	co za 7,5 kg
cytr	yn i 4 kg mandarynek. Jeżeli cytryny	y podrożeją o 2	25%, a cena
mai	ndarynek obniży się o 20%, to za 100 zł	kupimy 12 kg c	ytryn i 10 kg
mai	ndarynek.		
I.	Cytryny po podwyżce kosztują tyle, ile ma	ndarynki przed o	bniżką ceny.
		□ PRAWDA	
II.	Mandarynki przed zmianą cen były o 25%	droższe od cytry	'n.
		□ PRAWDA	
Ш	Mandarynki po zmianie cen są o 25% tańs.		
111.	Triandary mar po Emmanio con sq o 25 / v cano.	□ PRAWDA	□ FAŁSZ
	lanie 8. (0-3)		
I.	Istnieje trapez, którego przekątna dzieli go	na dwa trójkąty	podobne.
		\square PRAWDA	□ FAŁSZ
II.	Przekątne rombu dzielą go na cztery trójką	ity przystające.	
		\square PRAWDA	□ FAŁSZ
III.	Każdy trójkąt prostokątny można podzielie	ć na dwa trójkąty	
	równoramienne.		
		□ PRAWDA	□ FAŁSZ
- T			
	lanie 9. (0-3)		
	ne są bryły: walec o średnicy podstawy	_	-
5 cr	n oraz stożek o promieniu podstawy 3 cm	i i wysokości 60	cm.
I.	Kula o objętości równej objętości walca m		
		□ PRAWDA	□ FAŁSZ
II.	Walec i stożek mają równe objętości.		
		\square PRAWDA	□ FAŁSZ
III.	Pole powierzchni bocznej stożka jest równ	e polu powierzch	ıni kuli o
	promieniu równym $1,5 \cdot \sqrt[4]{41}$.		
	promona rownym 2,e V 11 .	□ PRAWDA	
		□FKAWDA	LI TALSE
Zad	lanie 10. (0-3)		
	bieramy losowo dwa wierzchołki ośmiok	ata foremnego.]	Prawdopodo-
	ństwo tego, że odcinek o końcach w wylos		
	4		ach jest
I.	bokiem tego ośmiokąta, jest większe niż $\frac{1}{3}$	· -	
	3	•	
		□ PRAWDA	□ FALSZ
II.	przekątną tego ośmiokąta, jest większe niż	$\frac{1}{2}$.	
		2	
		□ PRAWDA	□ FAŁSZ
Ш	najdłuższą przekątną tego ośmiokąta, jest i	równe 1	
111,	najarazoza przekaną wgo osiniokan, jest i	7	
		\square PRAWDA	□ FAŁSZ

Zadanie 11. (0-2)

BRUDNOPIS

Wykaż, że liczba $2016^{2016} + 2 \cdot 2016^{2015} + 2016^{2014}$ jest podzielna przez 2017.

Naszkicuj wykres funkcji:
$$f(x) = \begin{cases} |x|, & \text{dla } x \le -5 \\ |x| - 4, & \text{dla } -5 < x < 5 \\ |x|, & \text{dla } x \ge 5 \end{cases}$$

Zadanie 13. (0-4)

Dany jest kwadrat *ABCD*. Trójkąt równoboczny *KLM*, o boku długości 4 cm, wpisano w trójkąt *ABO* w ten sposób, że odcinki *AB* i *ML* są równoległe. Oblicz pole kwadratu *ABCD*.

BRUDNOPIS

7ad	anie	14	(0.5)
Lau	ame	T-10	U-5

Trójkąt prostokątny o przyprostokątnych długości 5 cm i 12 cm obraca się wokół prostej zawierającej przeciwprostokątną. Wykonaj rysunek pomocniczy. Oblicz pole powierzchni całkowitej otrzymanej bryły.

BRUDNOPIS