Foundations of Artificial Intelligence: Homework 1

b11902038 鄭博允

March 16, 2025

Problem 1.

(1)

state: Start, B, E, Goal

final path: Start > B > E > Goal

(2)

state: Start, A, B, C, D, E, Goal final path: Start > A > C > Goal

(3)

state: Start, B, A, E, D, Goal

final path: Start > B > E > D > Goal

(4)

state: Start, A, D, Goal

final path: Start > A > D > Goal

(5)

state: Start, B, E, D, Goal

final path: Start > B > E > D > Goal

(6)

 h_1 is admissible if:

$$0 \le h_1(n) \le h^*(n)$$

for each node, where h^* is the real cost to the goal.

For node A, $h_1(n) = 6 > h^*(n) = 5$.

Therefore, h_1 is not admissible.

However, A^* still return the optimal solution (least cost).

(7)

 h_1 is consistent if:

$$0 \le h_1(X) - h_1(Y) \le \cos(X \to Y)$$

for each arc.

For arc $B \to E$, $h_1(B) - h_1(E) = 3 > \cos(B \to E) = 2$.

Therefore, h_1 is not consistent.

(8)

Since h_1 is not admissible, thus there exist one node x such that

$$h_1(x) > h^*(x)$$

Assume that

$$h_1(x) - h^*(x) = c > 0$$

Therefore

$$h_2(x) = 0.5 \times [h_1(x) + h^*(x)] = 0.5 \times [h^*(x) + c + h^*(x)] = h^*(x) + 0.5c > h^*(x)$$

and h_2 is not admissible.

(9)

Apparently, only node A is not admissible.

Therefore we can decrease the value of $h_3(A)$ to the real cost from A to the goal, that is 5.

In conclusion, we make $h_3(A) = 5$.

(10)

No, since for arc $B \to E$, $h_3(B) - h_3(E) = 3 > \cos(B \to E) = 2$. Therefore, h_3 is not consistent.

Problem 2

(1)

- variables: A,B,C,D,E,F
- **domains**: 0, 1, 2, 3, 4, 5
- constraints:
 - alldiff(A, B, C, D, E, F)
 - -D = 0
 - $B = (A+4) \mod 6$
 - |F D| > 1
 - $-E \neq (D+3) \mod 6$
 - $F = (C+2) \mod 6$

(2)

$$A = 3, B = 1, C = 2, D = 0, E = 5, F = 4$$

(3)

- $A = \{1, 3, 4, 5\}$
- $B = \{1, 2, 3, 5\}$
- $C = \{1, 2\}$
- D = 0
- $E = \{1, 2, 4, 5\}$
- $F = \{3, 4\}$

(4)

$$A = 4, B = 2, C = 1, D = 0, E = 5, F = 3$$

Problem 3

- **(1)**
 - variables: A, B, C, D, E
 - domains:
 - $-A \in \{2,6,9\}$
 - **-** B ∈ {2}
 - $C \in \{7,9\}$
 - $D \in \{1, 5, 6, 9\}$
 - $-E \in \{1,5\}$
 - constraints:
 - $\operatorname{alldiff}(A, B, D, E)$
 - $\operatorname{alldiff}(C, D, E)$

(2)

Figure 1: Constraint graph of problem 3.

(3)

The value 2 will be removed from variable B.

(4)

$$A = 6, B = 2, C = 7, D = 1, E = 5$$

Problem 4

(1)

- variables: $X_{11}, X_{31}, X_{41}, X_{51}, X_{52}, X_{53}, X_{55}$
- domains: $\{0,1\}$ where 0 means has no mine, 1 means has one mine.
- constraints:

1.
$$X_{11} + X_{31} = 1$$

2.
$$X_{31} + X_{41} = 1$$

3.
$$X_{31} + X_{41} + X_{51} + X_{52} + X_{53} = 2$$

4.
$$X_{52} + X_{53} = 1$$

5.
$$X_{53} + X_{55} = 1$$

(2)

$$X_{11} = 1, X_{31} = 0, X_{41} = 1, X_{51} = 0$$

(3)

We can confirmed variable X_{51} as 0 when k = 5.