Análisis de Datos Multivariantes

1. INTRODUCCIÓN

(Parte 1: Elementos y herramientas básicas)

2016/17

Contenido

- Datos Multivariantes
 - Ejemplo 1: Evaluación Profesional
 - Ejemplo 2: Exámenes con Libro Cerrado-Abierto
 - Ejemplo 3: Calidad del Papel de Impresora
- Matriz de Datos
 - Elementos y notación
 - Filas y columnas
- Estadísticos Resumen
 - Vector de medias muestrales
 - Matriz de covarianzas muestrales
 - Matriz de correlaciones muestrales
 - Expresiones matriciales
- Representaciones Gráficas
 - Matriz de nubes de puntos
 - Separación de clases

- **Datos Multivariantes**
 - Ejemplo 1: Evaluación Profesional
 - Ejemplo 2: Exámenes con Libro Cerrado-Abierto
 - Ejemplo 3: Calidad del Papel de Impresora
- - Elementos y notación
 - Filas y columnas
- - Vector de medias muestrales

 - Expresiones matriciales
- - Matriz de nubes de puntos
 - Separación de clases

Datos Multivariantes

• Evaluación Profesional (*)

X_0	X_1	X_2	<i>X</i> ₃	X_4	X_5	
43	51	30	39	61	92	45
:	:	:	:	:	:	:
82	82	39	59	64	78	39

(*) Datos completos en attitude.txt.

*X*₀: Evaluación global.

 X_1 : Quejas. X_4 : Eficacia. X_2 : Privilegios. X_5 : Críticas.

 X_3 : Oportunidades. X_6 : Promoción. (%)

Datos Multivariantes

• Notas de Exámenes con Libro Cerrado-Abierto (*)

	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	X_5
1	77	82	67	67	81
2	63	78	80	70	81
:	:	:	:	:	:
87	05	26	15	20	20
88	00	40	21	09	14

(*) Datos completos en opencl.txt.

 X_1 : Mecánica (C). X_3 : Álgebra (A).

 X_2 : Vectores (C). X_4 : Análisis (A).

 X_5 : Estadística (A). ([0, 100])

Datos Multivariantes

• Calidad del Papel de Impresora (*)

X_1	X_2	<i>X</i> ₃
0.801	121.41	70.42
0.824	127.70	72.47
:	:	:
0.776	110.71	53.67
0.758	113.80	52.42

 $^{(\star)}$ Datos completos en printer.txt.

 X_1 : **Densidad** (en gr./cm³).

 X_2 : Resistencia longitudinal (en lb).

 X_3 : Resistencia transversal (en lb).

- - Ejemplo 1: Evaluación Profesional
 - Ejemplo 2: Exámenes con Libro Cerrado-Abierto
 - Ejemplo 3: Calidad del Papel de Impresora
- Matriz de Datos
 - Elementos y notación
 - Filas y columnas
- - Vector de medias muestrales

 - Expresiones matriciales
- - Matriz de nubes de puntos
 - Separación de clases

Matriz de Datos

$$\mathcal{X} = (x_{ij}) = \begin{bmatrix} i & X_0 & X_1 & X_2 & X_3 & X_4 & X_5 & X_6 \\ 1 & 43 & 51 & 30 & 39 & 61 & 92 & 45 \\ 2 & 63 & 64 & 51 & 54 & 63 & 73 & 47 \\ \vdots & \vdots \\ 29 & 85 & 85 & 71 & 71 & 77 & 74 & 55 \\ 30 & 82 & 82 & 39 & 59 & 64 & 78 & 39 \end{bmatrix}$$

- $x_{1.1} = 51$, $x_{2.4} = 63$, $x_{29.0} = 85$, ...
- n = 30 filas (objetos, individuos, unidades experimentales, ...).
- p = 7(1+6) columnas (variables).
- n: Tamaño muestral. p: Dimensión.

Matriz de Datos

Se puede escribir

$$\mathcal{X} = \left(egin{array}{c} \mathbf{x}_1^T \ \mathbf{x}_2^T \ dots \ \mathbf{x}_n^T \end{array}
ight) = \left(\mathbf{c}_1 \cdots \mathbf{c}_{
ho}
ight) \; .$$

• \mathbf{x}_i^T : Mediciones *i*-ésimo **objeto** $(1 \times p)$. Por ejemplo:

• \mathbf{c}_i : Mediciones j-ésima variable $(n \times 1)$. Por ejemplo:

$$\mathbf{c}_2 = \left(\begin{array}{cccc} 30 & 51 & \cdots & 71 & 39 \end{array}\right)^T = \left(\begin{array}{c} 30 \\ \vdots \\ 39 \end{array}\right).$$

- Datos Multivariantes
 - Ejemplo 1: Evaluación Profesional
 - Ejemplo 2: Exámenes con Libro Cerrado-Abierto
 - Ejemplo 3: Calidad del Papel de Impresora
- Matriz de Datos
 - Elementos y notación
 - Filas y columnas
- Estadísticos Resumen
 - Vector de medias muestrales
 - Matriz de covarianzas muestrales
 - Matriz de correlaciones muestrales
 - Expresiones matriciales
- 4 Representaciones Gráficas
 - Matriz de nubes de puntos
 - Separación de clases

• Media muestral de cada columna c_i :

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij} , \quad j = 1, \dots, p .$$

Vector de medias muestrales $(p \times 1)$

$$\overline{\mathbf{x}} = \begin{pmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \vdots \\ \overline{x}_p \end{pmatrix} .$$

Repetir la computación univariante p veces.

• Covarianza muestral entre pares de columnas \mathbf{c}_i y \mathbf{c}_k :

$$s_{jk} = \frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k) , \quad j, k = 1, \ldots, p .$$

Matriz de covarianzas muestrales $(p \times p)$

$$\mathbf{S} = \begin{pmatrix} & X_1 & X_2 & \dots & X_p \\ X_1 & s_{11} & s_{12} & \dots & s_{1p} \\ X_2 & s_{21} & s_{22} & \dots & s_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_p & s_{p1} & s_{p2} & \dots & s_{pp} \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1p} \\ s_{21} & s_{22} & \dots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{p1} & s_{p2} & \dots & s_{pp} \end{pmatrix}.$$

• Repetir la computación bivariante p(p+1)/2 veces (?).

• Correlación entre pares de columnas \mathbf{c}_i y \mathbf{c}_k :

$$r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj}} s_{kk}}$$
, $j, k = 1, \ldots, p$.

Matriz de correlaciones muestrales $(p \times p)$

$$\mathbf{R} = \begin{pmatrix} X_1 & X_2 & \dots & X_p \\ X_1 & 1 & r_{12} & \dots & r_{1p} \\ X_2 & r_{21} & 1 & \dots & r_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ X_p & r_{p1} & r_{p2} & \dots & 1 \end{pmatrix} = \begin{pmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{21} & 1 & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{p1} & r_{p2} & \dots & 1 \end{pmatrix}.$$

Expresiones matriciales

Dada una **matriz de datos** $\mathcal{X} = (x_{ij})$ de $n \times p$:

Vector de medias muestrales:

$$\overline{\mathbf{x}} = \frac{1}{n} \mathcal{X}^T \mathbf{1}_n = (\overline{x}_j : j = 1, \dots, p)$$
.

Matriz de covarianzas muestrales:

$$\mathbf{S} = \frac{1}{n} \mathcal{X}^T \mathcal{X} - \overline{\mathbf{x}} \overline{\mathbf{x}}^T = (s_{jk} : j, k = 1, \dots, p) .$$

Matriz de correlaciones muestrales: Si D = diag(S):

$$\mathbf{R} = \mathbf{D}^{-1/2} \mathbf{S} \mathbf{D}^{-1/2} = \mathbf{S} * \mathbf{dd}^T = [\mathbf{d} = \mathsf{diag}(\mathbf{D}^{-1/2})]$$
$$= (r_{jk} = \frac{s_{jk}}{\sqrt{s_{jj} s_{kk}}} : j, k = 1, \dots, p) .$$

- - Ejemplo 1: Evaluación Profesional
 - Ejemplo 2: Exámenes con Libro Cerrado-Abierto
 - Ejemplo 3: Calidad del Papel de Impresora
- - Elementos y notación
 - Filas y columnas
- - Vector de medias muestrales

 - Expresiones matriciales
- Representaciones Gráficas
 - Matriz de nubes de puntos
 - Separación de clases

Nube de Puntos (X_1, X_2) (Datos de Empresas)

Matriz de Nubes de Puntos (I) (Exámenes con Libro Cerrado-Abierto)

Matriz de Nubes de Puntos (II) (Exámenes con Libro Cerrado-Abierto)

Dos grupos (Datos de Admisión)

Tres grupos (Datos de Admisión)

- **Datos Multivariantes**
- Matriz de Datos
- Estadísticos Resumen
- Representaciones Gráficas

• Referencias: Johnson, R.A. y Wichern, D.W. (2007) [Cap. 1].

Análisis de Datos Multivariantes

1. INTRODUCCIÓN

(Parte 2: Revisión de Álgebra Lineal)

2016/17

Contenido

- Revisión de Álgebra Lineal
 - Vectores y Matrices
 - Trasposición
 - Producto
 - Traza

Revisión de Álgebra Lineal

Vectores

Convención:

$$\mathbf{a} = \left(\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_p \end{array}\right)$$

es un **vector columna** de $p \times 1$.

Por tanto,

$$\mathbf{a}^T = (a_1 \ a_2 \ \cdots \ a_p)$$

es un **vector** fila de $1 \times p$.

Matrices

• Una matrix de $p \times q$ es un arreglo de la forma

$$\mathbf{A} = (a_{ij}) = \left(egin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1q} \ a_{21} & a_{22} & \cdots & a_{2q} \ dots & dots & \ddots & dots \ a_{p1} & a_{p2} & \cdots & a_{pq} \end{array}
ight) \; .$$

• Expresiones en filas y columnas (\mathbf{a}_i^T de $1 \times q$ y α_i de $p \times 1$):

$$\mathbf{A} = (a_{ij}) = \left(egin{array}{c} \mathbf{a}_1^T \ \mathbf{a}_2^T \ dots \ \mathbf{a}_p^T \end{array}
ight) = \left(egin{array}{ccc} lpha_1 & lpha_2 & \cdots & lpha_q \end{array}
ight) \;.$$

Revisión de Álgebra Lineal

Ejemplo

Para las matrices

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 7 \\ 1 & 8 & 3 \end{pmatrix}$$
 , $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ -1 & -3 \\ 0 & 1 \end{pmatrix}$:

- $\bullet \ \mathbf{a}_1^T = \left(\begin{array}{ccc} 4 & 2 & 7 \end{array}\right), \ \mathbf{a}_2^T = \left(\begin{array}{ccc} 1 & 8 & 3 \end{array}\right).$
- $\alpha_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$.
- $oldsymbol{eta}_1^T = \left(egin{array}{ccc} 1 & 2 \end{array} \right), \ oldsymbol{eta}_1 = \left(egin{array}{ccc} 1 \\ -1 \\ 0 \end{array} \right), \ \ldots.$

Propiedades

Operaciones usuales (para vectores y matrices de dimensiones adecuadas):

- (Producto escalar) a^Tb .
- (Suma) A + B = B + A. A + (B + C) = (A + B) + C.
- (Multiplicación por un escalar) c(AB) = (cA)B = A(cB).
- (Distributivas) A(B+C) = AB + AC. (A+B)C = AC + BC.
- (Determinante) |A|.
- (Inversa) $AB = BA = I_p$, $B = A^{-1}$ ($|A| \neq 0$).

Traspuesta

Para $\mathbf{A} = (a_{ii}) \text{ de } p \times q$:

(Traspuesta)
$$\mathbf{A}^T = (a_{ii}) \quad p \times q \rightarrow q \times p$$
.

Álgebra Lineal

(Propiedades)

$$(\mathbf{A}^T)^T = \mathbf{A}. \quad (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T. \quad (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T.$$

- (Simetría) $A^T = A$.
- (Filas y columnas) (*) Si $\mathbf{A} = (\mathbf{a}_i^T) = (\alpha_i)$:

$$\mathbf{A}^T = (\boldsymbol{\alpha}_i^T) = (\mathbf{a}_i) \ .$$

Revisión de Álgebra Lineal

Ejemplo

Para la matriz

$$\mathbf{A} = \left(\begin{array}{ccc} 4 & 2 & 7 \\ 1 & 8 & 3 \end{array}\right) :$$

Álgebra Lineal

$$\bullet \ \mathbf{a}_1^T = \left(\begin{array}{ccc} 4 & 2 & 7 \end{array}\right), \ \mathbf{a}_2^T = \left(\begin{array}{ccc} 1 & 8 & 3 \end{array}\right).$$

•
$$\alpha_1 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$.

• Entonces:

$$\mathbf{A}^T = \begin{pmatrix} 4 & 1 \\ 2 & 8 \\ 7 & 3 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\alpha}_1^T \\ \boldsymbol{\alpha}_2^T \\ \boldsymbol{\alpha}_3^T \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{pmatrix} .$$

Producto

Para $\mathbf{A} = (a_{ii}) \text{ de } p \times q \text{ y } \mathbf{B} = (b_{ii}) \text{ de } q \times r$:

• (Filas×Columnas) Si $A = (a_i^T)$ y $B = (\beta_i)$:

Álgebra Lineal

$$AB = (a_i^T \beta_j)$$

$$(p \times \underbrace{q)(q}_{\text{internas}} \times r) \to \underbrace{p \times r}_{\text{externas}}$$
.

• (Columnas×Filas) (*) Si $A = (\alpha_k)$ y $B = (b_k^T)$:

$$\mathbf{AB} = \alpha_1 \mathbf{b}_1^T + \dots + \alpha_q \mathbf{b}_q^T$$

$$(p \times \underbrace{1)(1}_{\text{internas}} \times r) \rightarrow \underbrace{p \times r}_{\text{externas}}$$
.

(口) (日) (日) (日)

Revisión de Álgebra Lineal

Ejemplo

Para las matrices

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 7 \\ 1 & 8 & 3 \end{pmatrix}$$
 , $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ -1 & -3 \\ 0 & 1 \end{pmatrix}$:

•
$$AB = (\mathbf{a}_i^T \beta_j) = \begin{pmatrix} 2 & 9 \\ -7 & -19 \end{pmatrix}$$
.

$$\bullet \ \mathbf{AB} = \boldsymbol{\alpha}_1 \mathbf{b}_1^T + \boldsymbol{\alpha}_2 \mathbf{b}_2^T + \boldsymbol{\alpha}_3 \mathbf{b}_3^T =$$

$$= \begin{pmatrix} 4 & 8 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} -2 & -6 \\ -8 & -24 \end{pmatrix} + \begin{pmatrix} 0 & 7 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 9 \\ -7 & -19 \end{pmatrix}.$$

Traza

La **traza** de $\mathbf{A} = (a_{ij})$ de $p \times p$ es:

$$tr(\mathbf{A}) = a_{11} + a_{22} + \cdots + a_{pp} = \sum_{i=1}^{p} a_{ii}$$
.

Teorema

- $tr(c\mathbf{A}) = ctr(\mathbf{A})$.
- tr(A + B) = tr(A) + tr(B).
- $tr(AB) = tr(BA)^{(\star)}$.
- (*) En general, $AB \neq BA$ (quizá ni siquiera definido).
- Pero si AB y BA existen, las trazas coinciden.

Revisión de Álgebra Lineal

Ejemplo

Para las matrices

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 7 \\ 1 & 8 & 3 \end{pmatrix}$$
 , $\mathbf{B} = \begin{pmatrix} 1 & 2 \\ -1 & -3 \\ 0 & 1 \end{pmatrix}$:

•
$$AB = \begin{pmatrix} 2 & 9 \\ -7 & -19 \end{pmatrix}$$
. $tr(AB) = 2 - 19 = -17$.

Álgebra Lineal

• **BA** =
$$\begin{pmatrix} 6 & 18 & 13 \\ -7 & -26 & -16 \\ 1 & 8 & 3 \end{pmatrix}$$
. $tr(\mathbf{AB}) = 6 - 26 + 3 = -17$.

Resumen

Revisión de Álgebra Lineal

• Referencias: Johnson, R.A. y Wichern, D.W. (2007) [Cap. 2].

Álgebra Lineal

Análisis de Datos Multivariantes

1. INTRODUCCIÓN

(Parte 3: Combinaciones Lineales)

2016/17

Contenido

- Combinaciones Lineales
 - Definición
 - Ejemplo
- Efectos en Información Muestral
 - Matriz de Datos, Medias y Covarianzas
- Aplicaciones
 - Centrado
 - Tipificación

- Combinaciones Lineales
 - Definición
 - Ejemplo
- 2 Efectos en Información Muestral
 - Matriz de Datos, Medias y Covarianzas
- Aplicaciones
 - Centrado
 - Tipificación

Combinaciones Lineales

Combinaciones Lineales

Dadas las variables $\mathbf{X} = (X_1, \ldots, X_p)^T$, una **combinación lineal** es una relación de la forma

$$Y = a_1 X_1 + a_2 X_2 + \cdots + a_p X_p + b$$
,

para ciertas constantes b, y a_1, \ldots, a_p .

- a'_is: Coeficientes. b: Término independiente.
- (Expresión vectorial) Una combinación lineal se puede escribir

$$Y = \mathbf{a}^T \mathbf{X} + b = \mathbf{a}^T (\mathbf{X} - \mathbf{c})$$
,

donde $\mathbf{a} = (a_1, \dots, a_p)^T$, y $b = -\mathbf{a}^T \mathbf{c}$.

Usualmente, se consideran conjuntos de combinaciones lineales

$$(Y_1,\ldots,Y_q)^T$$
.

Combinaciones Lineales

Ejemplo

•
$$(p = 3 \rightarrow q = 2)$$

$$Y_1 = 2X_1 + X_2 - X_3 + 1;$$

$$Y_2 = X_1 + 3X_2 + 4X_3 + 3.$$

Expresión matricial:

$$\underbrace{\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}}_{\mathbf{Y}} = \underbrace{\begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 4 \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}}_{\mathbf{X}} + \underbrace{\begin{pmatrix} 1 \\ 3 \end{pmatrix}}_{\mathbf{b}}$$

• **Y** es de $q \times 1$, **A** de $q \times p$, **X** de $p \times 1$, y **b** de $q \times 1$.

- - Definición
 - Ejemplo
- 2 Efectos en Información Muestral
 - Matriz de Datos, Medias y Covarianzas
- - Centrado
 - Tipificación

Efectos en Información Muestral

Teorema

Dados **A** de $q \times p$, **b** de $q \times 1$, y una transformación lineal de la forma

$$Y = AX + b$$
:

Matriz de Datos:

$$\mathcal{X} \to \mathcal{Y} = \mathcal{X} \mathbf{A}^T + \mathbf{1}_n \mathbf{b}^T$$
.

Vector de medias muestrales:

$$\overline{\mathbf{x}} \rightarrow \overline{\mathbf{y}} = \mathbf{A}\overline{\mathbf{x}} + \mathbf{b}$$
.

Matriz de covarianzas muestrales:

$$\mathbf{S} \to \mathbf{S}_{\mathcal{V}} = \mathbf{A} \mathbf{S} \mathbf{A}^T$$
 .

Dimensiones congruentes

- - Definición
 - Ejemplo
- - Matriz de Datos, Medias y Covarianzas
- **Aplicaciones**
 - Centrado
 - Tipificación

Aplicaciones

Centrado

Datos Centrados:

$$\mathcal{X}=(x_{ij})\longrightarrow \mathcal{X}_c=(x_{ij}-\overline{x}_j)$$
.

• Transformación genérica: $Y = X - \overline{x} = AX + b$, $A = I_p$, $b = -\overline{x}$.

Lema

- Matriz de Datos: $\mathcal{X}_c = \mathcal{X} \mathbf{A}^T + \mathbf{1}_n \mathbf{b}^T = \mathcal{X} \mathbf{1}_n \overline{\mathbf{x}}^T$
- Vector de Medias Muestrales (\star) : $\bar{\mathbf{x}}_c = \mathbf{A}\bar{\mathbf{x}} + \mathbf{b} = \bar{\mathbf{x}} \bar{\mathbf{x}} = \mathbf{0}$.
- Matriz de Covarianzas Muestrales: $S_c = ASA^T = S$. $(R_c = R)$.

Aplicaciones

Tipificación

Datos Tipificados: Si D = diag(S),

$$\mathcal{X} = (x_{ij}) \longrightarrow \mathcal{X}_s = \left(rac{x_{ij} - \overline{x}_j}{\sqrt{s_{jj}}}
ight) \ .$$

Transformación genérica:

$$Y = D^{-1/2}(X - \overline{x}) = AX + b$$
, $A = D^{-1/2}$, $b = -D^{-1/2}\overline{x}$.

Lema

- Datos: $\mathcal{X}_s = \mathcal{X} \mathbf{A}^T + \mathbf{1}_n \mathbf{b}^T = (\mathcal{X} \mathbf{1}_n \overline{\mathbf{x}}^T) \mathbf{D}^{-1/2} = \mathcal{X}_c \mathbf{D}^{-1/2}$.
- Medias muestrales (*): $\bar{\mathbf{x}}_s = \mathbf{A}\bar{\mathbf{x}} + \mathbf{b} = \mathbf{D}^{-1/2}(\bar{\mathbf{x}} \bar{\mathbf{x}}) = \mathbf{0}$.
- Covarianzas muestrales (**): $S_s = ASA^T = D^{-1/2}SD^{-1/2} = R$.

Aplicaciones(*)

Forma esférica

Datos con Forma Esférica:

$$\mathcal{X} = (x_{ij}) \longrightarrow \mathcal{X}_{sp} = (x_{ij} - \overline{x}_j) \mathbf{S}^{-1/2}$$
.

Transformación genérica:

$$Y = S^{-1/2}(X - \overline{x}) = AX + b$$
, $A = S^{-1/2}$, $b = -S^{-1/2}\overline{x}$.

Lema

- Datos: $\mathcal{X}_{sp} = \mathcal{X} \mathbf{A}^T + \mathbf{1}_n \mathbf{b}^T = (\mathcal{X} \mathbf{1}_n \overline{\mathbf{x}}^T) \mathbf{S}^{-1/2} = \mathcal{X}_c \mathbf{S}^{-1/2}$.
- Medias muestrales (*): $\bar{\mathbf{x}}_{sp} = \mathbf{A}\bar{\mathbf{x}} + \mathbf{b} = \mathbf{S}^{-1/2}(\bar{\mathbf{x}} \bar{\mathbf{x}}) = \mathbf{0}$.
- Covarianzas muestrales $(\star\star)$: $S_{sp} = ASA^T = S^{-1/2}SS^{-1/2} = I_p$.

イロナ イ御 とくきとくきとうき

Aplicaciones

Centrado y Tipificación (Datos de Empresas)

Centrado, Tipificación, y Forma Esférica (Datos de Empresas)

Resumen

- Combinaciones Lineales
- 2 Efectos en Información Muestral
- **Aplicaciones**

• Referencias: Johnson, R.A. y Wichern, D.W. (2007) [Cap. 3].