Teoria dei Giochi - Prova del 23 Settembre 2011

Cognome, Nome, email:

Esercizio 1 Considera l'estensione in strategia mista del seguente gioco. Tu puoi scegliere una lettera tra $\{A,B,P,R\}$; il tuo avversario può scegliere una parola tra $\{BACI,CABINA,PORTO,PREGO\}$. Se la parola scelta dal tuo avversario contiene la lettera che hai scelto, perdi un euro; se la parola scelta dal tuo avversario non contiene la lettera che hai scelto, vinci un euro.

Formula i problemi di programmazione lineare che tu e il tuo avversario dovete risolvere per individuare, ciascuno, la propria strategia conservativa (non è richiesto di risolvere tali programmi).

Considera quindi le seguenti strategie per te:

•
$$\xi_1^i = \frac{1}{4} \ \forall i = 1, \dots, 4$$

•
$$\xi_1^1 = 0$$
, $\xi_1^2 = \frac{1}{2}$, $\xi_1^3 = \frac{1}{2}$, $\xi_1^4 = 0$

•
$$\xi_1^1 = \frac{1}{2}, \xi_1^2 = 0, \xi_1^3 = 0, \xi_1^4 = \frac{1}{2}$$

e le seguenti strategie per il tuo avversario:

•
$$\xi_2^j = \frac{1}{4} \ \forall j = 1, 2, 3, 4$$

•
$$\xi_2^1 = \frac{1}{2}, \xi_2^2 = 0, \xi_2^3 = \frac{1}{2}, \xi_2^4 = 0$$

•
$$\xi_2^1 = 0$$
, $\xi_2^2 = \frac{1}{2}$, $\xi_2^3 = \frac{1}{2}$, $\xi_2^4 = 0$

(al solito indichiamo con $\xi_1 = (\xi_1^1, \dots, \xi_1^4)$ il vettore stocastico associato alle 4 possibili strategie pure del primo giocatore, e con $\xi_2 = (\xi_2^1, \dots, \xi_2^4)$ il vettore stocastico associato alle 4 possibili strategie pure del secondo giocatore).

- **1.1** Per ciascuna di queste strategie, indica quanto paga, nel caso peggiore, il giocatore (tu o il tuo avversario) che la utilizza. (Giustifica brevemente la risposta).
 - **1.2** Indica se qualcuna di queste strategie è una strategia conservativa.
 - 1.3 Indica se alcune di queste strategie determinano un equilibrio di Nash.
- **1.4** Qual è il valore del gioco? (Se non è possibile individuare il valore del gioco, spiega perché non è possibile).

Soluzione: È facile vedere che per il primo giocatore, giocare A o B è indifferente (il payoff che ottiene giocando A è sempre uguale al payoff che ottiene giocando B, qualunque sia la scelta del secondo giocatore), così come è indifferente giocare P o R. Analogamente, per il secondo giocatore, giocare BACI o CABINA è indifferente, così come è indifferente giocare PORTO o PREGO.

Senza perdita di generalità possiamo ridurci al caso in cui: il primo giocatore può giocare 2 strategie, A (o in modo equivalente B) oppure P (o in modo equivalente R); il secondo giocatore può giocare 2 strategie, BACI (o in modo equivalente CABINA) oppure PORTO (o in modo equivalente PREGO). Considerando la matrice 2×2 dei payoff è facile quindi vedere che questo gioco altro non è che il gioco del Pari o Dispari, e quindi la strategia conservativa per ciascun giocatore corrisponderà a giocare la metà delle volte una strategia e la metà delle volte l'altra. Segue che ognuna delle strategie proposte è conservativa, e che un qualunque loro incrocio restituisce un equilibrio di Nash. Il valore del gioco è 0.

Esercizio 2 Considera il seguente gioco non cooperativo. I giocatori sono tre, A, B, C, e ciascun giocatore deve scegliere un numero dall'insieme $\{0,1,1000\}$. I tre giocatori scelgono un numero e lo annunciano simultaneamente (più giocatori possono scegliere uno stesso numero). Vince il gioco il giocatore che sceglie (o i giocatori che scelgono) il numero più vicino al prodotto dei tre numeri scelti. Ogni vincitore

riceve un euro da ogni sconfitto (naturalmente è possibile che non ci siano nè vincitori nè sconfitti: in questo caso il payoff di ciascuno è 0). Indicare i punti di equilibrio di Nash, giustificando la risposta.

Esercizio 2bis Quali sono gli equilibri di Nash se i tre giocatori devono scegliere i tre numeri dall'insieme {1,2,1000}? Non è richiesto di giustificare questa risposta.

Soluzione. 2. Osserviamo che appena uno dei 3 giocatori sceglie uno 0 il prodotto è 0. Segue quindi che:

- se nessun giocatore sceglie 0, è facile vedere che c'è almeno un giocatore che migliorerebbe il suo payoff scegliendo 0. Quindi questo non è un equilibrio di Nash.
- se un solo giocatore sceglie 0, questi è l'unico vincitore. Ma se uno degli altri 2 giocatori provasse a cambiare la sua scelta giocando 0, sarebbe un vincitore anche lui/lei. Quindi questo non è un equilibrio di Nash.
- il caso in cui 2 giocatori scelgono 0 va come il precedente, e quindi non è un equilibrio di Nash.
- se tutti i giocatori scelgono 0, non ci sono vincitori. Ma se uno solo dei giocatori provasse a cambiare la sua scelta, perderebbe. Quindi questo è un equilibrio di Nash.

Soluzione 2bis L'unico equilibrio di Nash è quello restituito dal punto (1000, 1000, 1000).

Esercizio 3 Si consideri un'istanza dello Stable Marriage problem con 4 uomini e 4 donne. I seguenti insiemi ordinati rappresentano le graduatorie di ciascun uomo e ciascuna donna (sono quindi degli ordini totali):

```
• Uomo 1: \{B,A,C,D\};
```

• Uomo 2: $\{D,A,B,C\}$;

• Uomo 3: $\{A, C, B, D\}$;

• Uomo 4: $\{B, C, A, D\}$.

• Donna A: {1,3,2,4};

• Donna B: {3,4,1,2};

• Donna C: {4,2,3,1};

• Donna D: {3,2,1,4}.

- **3.1** Qual è il matching restituito dall'algoritmo di Gale-Shapley considerando che siano le donne a proporsi?
- **3.2** Il matching $M = \{(1,B), (2,D), (3,A), (4,C)\}$ è una soluzione stabile? (In caso affermativo, non è necessario giustificare la risposta; in caso negativo, esibire **tutte** le coalizioni rispetto alle quali M non è stabile.)
- **3.3** Il matching $M = \{(1,B), (2,A), (3,D), (4,C)\}$ è una soluzione stabile? (In caso affermativo, non è necessario giustificare la risposta; in caso negativo, esibire **tutte** le coalizioni rispetto alle quali M non è stabile.)
- **3.4** Il matching $M = \{(1,A), (2,D), (3,C), (4,B)\}$ è una soluzione stabile? (In caso affermativo, non è necessario giustificare la risposta; in caso negativo, esibire **tutte** le coalizioni rispetto alle quali M non è stabile.)

Soluzione:

- **3.1** Se consideriamo che siano le donne a proporsi, l'algoritmo di Gale-Shapley restituisce dopo due iterazioni il matching stabile $M = \{(1,A), (2,D), (3,B), (4,C)\}$
 - **3.2** In questo caso *M* non è stabile. Non è stabile rispetto la coppia S = (4, B).
- **3.3** In questo caso M non è stabile. Non è stabile rispetto le coppie $S_1 = (3,A)$, $S_2 = (3,B)$, $S_3 = (4,B)$.
- **3.4** In questo caso M è stabile. In particolare, èil matching restituito dall'algoritmo di Gale-Shapley se a proporsi sono gli uomini.

Esercizio 4 Consideriamo la produzione di un certo bene da parte di due agenti A e B in un mercato ad utilità trasferibile. L'agente A (risp. B) dispone di un vettore di risorse $z_A = (z_A^1, z_A^2) = (3, 2)$ (risp. $z_B = (z_B^1, z_B^2) = (4, 5)$) e di una funzione di produzione $f_1(z_A) = 6z_A^1 + 2z_A^2$ (risp. $f_2(z_B) = 3z_B^1 + 2z_B^2$).

Formalizzare la situazione descritta come un gioco in cui i due cooperino per la produzione del bene. Fornire inoltre un'imputazione nel nucleo di tale gioco.

Soluzione Per formalizzare la situazione descritta come un gioco cooperativo (N, v) dobbiamo definire la funzione v. In particolare le funzioni di produzione di ciascun giocatore rappresentano rispettivamente $v(\{A\}) = 6 \cdot 3 + 2 \cdot 2 = 22$ e $v(\{B\}) = 3 \cdot 4 + 2 \cdot 5 = 22$. Per determinare il valore $v(\{A,B\})$ dobbiamo risolvere il seguente problema di programmazione lineare:

$$\max 6z_A^1 + 2z_A^2 + 3z_B^1 + 2z_B^2$$

$$z_A^1 + z_B^1 = 7$$

$$z_A^2 + z_B^2 = 7$$

$$z_A^1, z_A^2, z_B^1, z_B^2 \ge 0$$

Utilizziamo le due equazioni per sostituire le quantità $z_B^1 = 7 - z_A^1$ e $z_B^2 = 7 - z_A^2$. Possiamo cosìottenere il seguente problema in due sole variabili

$$\max 3z_A^1 + 35$$

$$0 \le z_A^1 \le 7$$

$$0 \le z_A^2 \le 7$$

Possiamo risolvere il PL per via geometrica; osserviamo che i vertici del poliedro dei vincoli sono i punti (0,0) (7,0) (0,7) e (7,7). Se andiamo a valutare la funzione obiettivo nei quattro vertici otteniamo che il massimo è raggiunto sul lato del quadrato che congiunge il vertice (7,0) con il vertice (7,7) ed il valore ottimo è pari a 56. Ritornando quindi alla formulazione originaria del problema possiamo concludere che $v(\{A,B\}) = 56$. Per determinare un'imputazione del nucleo di questo gioco dobbiamo trovare due valori α_1 ed α_2 tali che:

$$\alpha_1 \ge 22$$
 $\alpha_2 \ge 22$

$$\alpha_1 + \alpha_2 = 56$$

Un'imputazione nel nucleo potrebbe quindi essere ad esempio $(\alpha_1, \alpha_2) = (28, 28)$.

Esercizio 5 Si consideri un gioco non cooperativo a due giocatori, in cui ciascun giocatore controlla un'unica variabile, che indichiamo, rispettivamente, con x_1 per il primo giocatore e x_2 per il secondo.

L'insieme ammissibile del primo giocatore è $X_1 = \{x_1 : -4 \le x_1 \le 6\}$, quello del secondo giocatore è $X_2 = \{x_2 : 2 \le x_2 \le 10\}$. I payoff (in forma di costo) dei due giocatori sono rispettivamente $C_1(x_1, x_2) = (3 - x_2)(4 - x_1)$ e $C_2(x_1, x_2) = \frac{1}{2}x_2^2 - x_2(x_1^2 - 2x_1 + 2) + 7$.

- **5.1** Si può affermare *a priori*, ovvero senza calcolare le funzioni best response, l'esistenza di almeno un equilibrio di Nash? (Giustifica brevemente la risposta)
 - **5.2** Individuare, per ciascun giocatore, la funzione best response.
- **5.3** Individuare quindi gli equilibri di Nash del gioco, se essi esistono. (*NB* È sufficiente determinare gli eventuali equilibri di Nash per via grafica.)
- **Soluzione 5.1** Possiamo affermare l'esistenza a priori di un equilibrio di Nash perché le funzioni di costo di entrambi i giocatori sono continuamente differenziabili, $C_1(x_1,x_2)$ è convessa in x_1 e $C_2(x_1,x_2)$ è convessa in x_2 , ed entrambi gli insiemi X_1 ed X_2 sono convessi e compatti.
- **5.2** Per una data strategia $x_2 \in X_2$, per individuare la best response il primo giocatore deve risolvere il seguente problema:

$$\min (3 - x_2)(4 - x_1)$$
$$-4 \le x_1 \le 6$$

Analogamente, per una data strategia $x_1 \in X_1$, per individuare la best response il secondo giocatore deve risolvere il seguente problema:

$$\min \frac{1}{2}x_2^2 - x_2(x_1^2 - 2x_1 + 2) + 7$$
$$2 < x_2 < 10$$

Per determinare le funzioni best response dobbiamo risolvere il sottoproblema di ciascun giocatore scritto precedentemente. In questo caso quindi le best response function sono date da

$$b_1(x_2) = \begin{cases} 6 & \text{se } 2 \le x_2 < 3 \\ -4 \le x_1 \le 6 & \text{se } x_2 = 3 \\ -4 & \text{se } 3 < x_2 \le 10 \end{cases} \qquad b_2(x_1) = \begin{cases} 10 & \text{se } -4 \le x_1 \le -2 \\ x_1^2 - 2x_1 + 2 & \text{se } -2 \le x_1 \le 0 \\ 2 & \text{se } 0 \le x_1 \le 2 \\ x_1^2 - 2x_1 + 2 & \text{se } 2 \le x_1 \le 4 \\ 10 & \text{se } 4 \le x_1 \le 6 \end{cases}$$

5.3 Si può verificare graficamente o analiticamente che esistono tre equilibri di Nash, i punti (-4, 10), $(1 - \sqrt{2}; 3)$ e $(1 + \sqrt{2}; 3)$.