Cryptography Lecture 9

Arkady Yerukhimovich

September 25, 2024

Outline

1 Lecture 8 Review

2 Security of PRF+OTP (Chapter 3.5.2)

3 Modes of Operation (Chapter 3.6.2)

Lecture 8 Review

- Quiz on PRFs
- Started proof of CPA-security for PRF+OTP

Outline

Lecture 8 Review

2 Security of PRF+OTP (Chapter 3.5.2)

Modes of Operation (Chapter 3.6.2)

CPA-Secure Encryption from a PRF

PRF+OTP Encryption (Π)

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Theorem

If F is a secure PRF, then PRF+OTP is CPA-secure

Proof Technique

To prove security from a PRF, we often do the following:

- **①** Consider the scheme where F_k is replaced by a random function f
 - Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - So, A's success probability must be (essentially) the same in this and original variant.

Proof Technique

To prove security from a PRF, we often do the following:

- **①** Consider the scheme where F_k is replaced by a random function f
 - ullet Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - So, A's success probability must be (essentially) the same in this and original variant.
- ② Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - Random function is essentially a collection of 2^n OTPs
 - Proof is similar to proof of OTP, but need to account for probability of collision in r

Security of PRF+OTP: Step 1

Define the following encryption scheme $\tilde{\Pi}$:

Π Encryption Scheme

- $\widetilde{\mathsf{Gen}}(1^n)$: $f \leftarrow \mathcal{F}_n$ (the set of functions $\{0,1\}^n \to \{0,1\}^n$)
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, f(r) \oplus m)$
- $\widetilde{\mathsf{Dec}}(k,c)$: Parse c as (r,c'), compute $m=f(r)\oplus c'$
- Observe that this is exactly PRF+OTP with F_k replaced by f
- This encryption is not efficient as we cannot evaluate a random function
- But, it is useful as a "thought experiment" in the proof as it gives us a target for security

Security of PRF+OTP: Step 1

Π Encryption Scheme

- ullet Gen (1^n) : $f \leftarrow \mathcal{F}_n$ (the set of functions $\{0,1\}^n
 ightarrow \{0,1\}^n$)
- $\widetilde{\mathsf{Enc}}(k,m)$: Choose $r \leftarrow \{0,1\}^n$, output $c = (r,f(r) \oplus m)$
- $\widetilde{\mathrm{Dec}}(k,c)$: Parse c as (r,c'), compute $m=f(r)\oplus c'$

Lemma: For any PPT ${\cal A}$

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\mathit{n}) = 1] \right| \leq \mathsf{negl}(\mathit{n})$$

A Story of Two Games

Lemma

For any PPT ${\cal A}$

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\mathit{n}) = 1] \right| \leq \mathsf{negl}(\mathit{n})$$

We prove this lemma by reduction:

Lemma

For any PPT ${\cal A}$

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\mathit{n}) = 1] \right| \leq \mathsf{negl}(\mathit{n})$$

We prove this lemma by reduction:

ullet Assume there is a PPT \mathcal{A}_c that breaks this lemma

Lemma

For any PPT ${\cal A}$

$$\left| \Pr[extit{Priv} extit{K}^{cpa}_{\mathcal{A},\Pi}(n) = 1] - \Pr[extit{Priv} extit{K}^{cpa}_{\mathcal{A}, ilde{\Pi}}(n) = 1]
ight| \leq \mathsf{negl}(n)$$

We prove this lemma by reduction:

- Assume there is a PPT A_c that breaks this lemma
 - A_c is a CPA-security adversary
 - What we care about is the difference in probability that \mathcal{A}_c wins the CPA-security game when playing with Π vs. $\tilde{\Pi}$.

Lemma

For any PPT ${\cal A}$

$$\left| \Pr[extit{Priv} extit{K}^{cpa}_{\mathcal{A},\Pi}(n) = 1] - \Pr[extit{Priv} extit{K}^{cpa}_{\mathcal{A}, ilde{\Pi}}(n) = 1]
ight| \leq \mathsf{negl}(n)$$

We prove this lemma by reduction:

- Assume there is a PPT A_c that breaks this lemma
 - A_c is a CPA-security adversary
 - What we care about is the difference in probability that \mathcal{A}_c wins the CPA-security game when playing with Π vs. $\tilde{\Pi}$.
- ullet Use this to construct \mathcal{A}_r that breaks PRF security of F_k

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}.
- If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = F_k$.
- ullet With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{D,F}(n) = 1$ (i.e., D wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- ullet We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{\mathit{cpa}}(\mathit{n})=1$ (i.e., \mathcal{A} wins) if $\mathit{b}'=\mathit{b}$.

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}.
- If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = F_k$.
- ullet With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \mathsf{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

We have to consider two adversaries, \mathcal{A}_r and \mathcal{A}_c

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$.
- If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = F_k$.
- ullet With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- A^{Enc_k(·)} outputs a guess bit b'
- We say that $PrivK_{A}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

We have to consider two adversaries, A_r and A_c

• The PRF adversary A_r :

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}.
- If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = F_k$.
- ullet With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enc_k(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
 - The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
 - $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0, 1\}$.
- If b = 0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O} = f$. if b = 1, he chooses $k \leftarrow \{0, 1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O} = F_k$.
- ullet With access to oracle $\mathcal O$, the distinguisher $\mathcal D$ outputs a bit b'
- $PRF_{D,F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cps}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses k ← Gen(1ⁿ)
- A^{Enc_k(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either
 - $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)

$PRF_{D,F}(n)$

- The challenger chooses b ← {0,1}.
 If b = 0, he chooses f ← F_n and gives D an oracle O = f.
 if b = 1, he chooses k ← {0,1}ⁿ, and gives D an oracle O = F_e.
- \bullet With access to oracle $\mathcal{O},$ the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{A,\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- A^{Enc_k(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c (who breaks the lemma):

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- \bullet With access to oracle $\mathcal{O},$ the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cps}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- A^{Enc_k(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
- The challenger chooses b ← {0,1}, computes c ← Enc_k(m_b) and gives c to A
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that PrivK^{cpa}_{A, II}(n) = 1 (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c (who breaks the lemma):
 - \mathcal{A}_c plays the CPA-security game against either Π or $\tilde{\Pi}$

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- \bullet With access to oracle $\mathcal{O},$ the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\mathsf{PrivK}^{\mathsf{cpa}}_{A,\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- A^{Enck(·)}(1ⁿ) outputs m₀, m₁ such that |m₀| = |m₁|.
 - The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
 - A^{Enc_k(·)} outputs a guess bit b'
- We say that $PrivK^{cpa}_{\mathcal{A},\Pi}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c (who breaks the lemma):
 - \mathcal{A}_c plays the CPA-security game against either Π or $\tilde{\Pi}$
 - to answer encryption queries The Enc(·) oracle given to \mathcal{A}_c in Π uses F_k and the oracle in $\tilde{\Pi}$ uses f

$PRF_{D,F}(n)$

- The challenger chooses $b \leftarrow \{0,1\}$. If b=0, he chooses $f \leftarrow \mathcal{F}_n$ and gives \mathcal{D} an oracle $\mathcal{O}=f$. if b=1, he chooses $k \leftarrow \{0,1\}^n$, and gives \mathcal{D} an oracle $\mathcal{O}=F_k$.
- \bullet With access to oracle $\mathcal{O},$ the distinguisher \mathcal{D} outputs a bit b'
- $PRF_{\mathcal{D},F}(n) = 1$ (i.e., \mathcal{D} wins) if b' = b

$\operatorname{PrivK}_{\mathcal{A},\Pi}^{cpa}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $A^{\mathsf{Enc}_k(\cdot)}(1^n)$ outputs m_0, m_1 such that $|m_0| = |m_1|$.
 - The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
 - $\mathcal{A}^{\mathsf{Enc}_k(\cdot)}$ outputs a guess bit b'
- We say that $PrivK_{A,\Pi}^{cpa}(n) = 1$ (i.e., A wins) if b' = b.

- The PRF adversary A_r :
 - A_r is playing the PRF security game
 - \mathcal{A}_r is given oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$ where either $\mathcal{O} = F_k(\cdot)$ (a PRF), or $\mathcal{O} = f(\cdot)$ (a random function)
- The CPA-security adversary A_c (who breaks the lemma):
 - A_c plays the CPA-security game against either Π or $\tilde{\Pi}$
 - to answer encryption queries The Enc(·) oracle given to \mathcal{A}_c in Π uses F_k and the oracle in $\tilde{\Pi}$ uses f
 - ullet We care about the *difference* in \mathcal{A}_c 's WIN probability

Constructing $\mathcal{A}_r^{\mathcal{O}}$: Intuition

ullet \mathcal{A}_r needs to use \mathcal{A}_c to win PRF game

Constructing $\mathcal{A}_r^{\mathcal{O}}$: Intuition

- A_r needs to use A_c to win PRF game
- ullet \mathcal{A}_r acts as the challenger for \mathcal{A}_c in CPA-security game

Constructing $\mathcal{A}_r^{\mathcal{O}}$: Intuition

- A_r needs to use A_c to win PRF game
- ullet \mathcal{A}_r acts as the challenger for \mathcal{A}_c in CPA-security game
 - A_r must answer A_c 's Enc(·) queries (i.e., simulate the Enc oracle)
 - ullet \mathcal{A}_r must produce the challenge ciphertext c

Constructing $\overline{\mathcal{A}_r^{\mathcal{O}}}$: Intuition

- A_r needs to use A_c to win PRF game
- ullet \mathcal{A}_r acts as the challenger for \mathcal{A}_c in CPA-security game
 - A_r must answer A_c 's Enc (\cdot) queries (i.e., simulate the Enc oracle)
 - ullet \mathcal{A}_r must produce the challenge ciphertext c
- ullet If \mathcal{A}_c WINS, \mathcal{A}_r must use that to win the game against his challenger

Constructing $\mathcal{A}_r^{\mathcal{O}}$

- Pre-Challenge
 - Run $\mathcal{A}_c(1^n)$ and when \mathcal{A}_c asks $\mathsf{Enc}(m)$ query
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r, y \oplus m)$ to \mathcal{A}_c

Constructing $\mathcal{A}_r^{\mathcal{O}}$

- Pre-Challenge Run $A_c(1^n)$ and when A_c asks Enc(m) query
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r, y \oplus m)$ to \mathcal{A}_c
- Challenge

 $\overline{\mathsf{When}\ \mathcal{A}_c}\ \mathsf{outputs}\ (\mathit{m}_0,\mathit{m}_1)$

- Choose $b \leftarrow \{0,1\}$
- Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r,y \oplus m_b)$ as the challenge

Constructing $\mathcal{A}_r^{\mathcal{O}}$

- Pre-Challenge
 - $\overline{\text{Run }\mathcal{A}_c(1^n)}$ and when \mathcal{A}_c asks Enc(m) query
 - Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r, y \oplus m)$ to \mathcal{A}_c
- Challenge

When A_c outputs (m_0, m_1)

- Choose $b \leftarrow \{0,1\}$
- Choose $r \leftarrow \{0,1\}^n$, query $y = \mathcal{O}(r)$, return $c = (r,y \oplus m_b)$ as the challenge
- Post-Challenge

Continue answering Enc queries until A_c outputs guess b'

• Output 1 ("PRF") if b = b', and 0 otherwise.

Observation

- If \mathcal{O} is f, then \mathcal{A}_r is simulating $\tilde{\Pi}$
- If \mathcal{O} if F_k , then \mathcal{A}_r is simulating Π

There are two cases to analyze:

Arkady Yerukhimovich Cryptography September 25, 2024 14 / 30

There are two cases to analyze:

• Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)

Arkady Yerukhimovich Cryptography September 25, 2024 14 / 30

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - \mathcal{A}_r answers all Enc queries and produces c with $F_k(r) \oplus m$

Arkady Yerukhimovich Cryptography September 25, 2024 14 / 30

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[Priv\mathcal{K}^{cpa}_{\mathcal{A}_c,\Pi}(n) = 1]$$

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[Priv\mathcal{K}^{cpa}_{\mathcal{A}_c,\Pi}(n) = 1]$$

• Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_c,\Pi}(n) = 1]$$

- Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)
 - \mathcal{A}_r answers all Enc queries and produces c with $f(r) \oplus m$

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_c,\Pi}(n) = 1]$$

- Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)
 - \mathcal{A}_r answers all Enc queries and produces c with $f(r) \oplus m$
 - \bullet This is exactly the CPA-security game vs. $\tilde{\Pi}$

There are two cases to analyze:

- Case 1: $\mathcal{O} = F_k$ (i.e., b = 1 in PRF game)
 - A_r answers all Enc queries and produces c with $F_k(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. Π
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{k \leftarrow \{0,1\}^n}[\mathcal{A}^{F_k(\cdot)}_r(1^n) = 1] = \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_c,\Pi}(n) = 1]$$

- Case 2: $\mathcal{O} = f$ (i.e., b = 0 in PRF game)
 - \mathcal{A}_r answers all Enc queries and produces c with $f(r) \oplus m$
 - ullet This is exactly the CPA-security game vs. $\tilde{\Pi}$
 - Since A_r output 1 when A_c WINS, we have

$$\Pr_{f \leftarrow \mathcal{F}_n}[\mathcal{A}_r^{f(\cdot)}(1^n) = 1] = \Pr[PrivK_{\mathcal{A}_c,\tilde{\Pi}}^{cpa}(n) = 1]$$

• We assumed that \mathcal{A}_c breaks the lemma – i.e. has different success probability vs. Π and $\tilde{\Pi}$

$$\left| \mathsf{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_{c},\Pi}(\textit{n}) = 1] - \mathsf{Pr}[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_{c},\tilde{\Pi}}(\textit{n}) = 1] \right| > 1/\mathsf{poly}(\textit{n})$$

Arkady Yerukhimovich

• We assumed that \mathcal{A}_c breaks the lemma – i.e. has different success probability vs. Π and $\tilde{\Pi}$

$$\left| \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_c,\Pi}(\textit{n}) = 1] - \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A}_c,\tilde{\Pi}}(\textit{n}) = 1] \right| > 1/\mathsf{poly}(\textit{n})$$

• By the last slide, this implies that

$$\left| \Pr_{k \leftarrow \{0,1\}^n} [\mathcal{A}_r^{F_k(\cdot)}(1^n) = 1] - \Pr_{f \leftarrow \mathcal{F}_n} [\mathcal{A}_r^{f(\cdot)}(1^n) = 1] \right| > 1/\mathsf{poly}(n)$$

• We assumed that \mathcal{A}_c breaks the lemma – i.e. has different success probability vs. Π and $\tilde{\Pi}$

$$\left| \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A}_{c},\Pi}(\mathit{n}) = 1] - \mathsf{Pr}[\mathit{PrivK}^{\mathit{cpa}}_{\mathcal{A}_{c},\tilde{\Pi}}(\mathit{n}) = 1] \right| > 1/\mathsf{poly}(\mathit{n})$$

• By the last slide, this implies that

$$\left|\Pr_{k\leftarrow\{0,1\}^n}[\mathcal{A}_r^{F_k(\cdot)}(1^n)=1]-\Pr_{f\leftarrow\mathcal{F}_n}[\mathcal{A}_r^{f(\cdot)}(1^n)=1]\right|>1/\mathsf{poly}(n)$$

• That is, A_r is able to distinguish between $F_k(\cdot)$ and $f(\cdot)$. But, we know that F_k is a PRF.

Contradiction!

Proof Technique

To prove security from a PRF, we often do the following:

- \checkmark Consider the scheme where F_k is replaced by a random function f
 - Show by reduction to security of PRF, that ${\cal A}$ can't tell we made this change.
 - So, A's success probability must be (essentially) the same in this and original variant.
- ② Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - Random function is essentially a collection of 2^n OTPs
 - Proof is similar to proof of OTP, but need to account for probability of collision in r

Lemma

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

Lemma

For any $\mathcal A$ making at most q(n) queries to $\mathsf{Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

• Recall that $\tilde{\Pi}$ encrypts as $c=(r,f(r)\oplus m)$

Lemma

$$\Pr[PrivK_{\mathcal{A},\widetilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + \frac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge

Lemma

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries

Lemma

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - A knows nothing about $f(r^*)$, so $f(r^*)$ is random (good OTP)
 - $\Pr[\mathcal{A} \text{ outputs } b = b'] = 1/2$

Lemma

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - A knows nothing about $f(r^*)$, so $f(r^*)$ is random (good OTP)
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries

Lemma

For any $\mathcal A$ making at most q(n) queries to $\mathsf{Enc}(\cdot)$

$$\Pr[PrivK_{\mathcal{A},\tilde{\Pi}}^{cpa}(n)=1] \leq 1/2 + rac{q(n)}{2^n}$$

- Recall that $\tilde{\Pi}$ encrypts as $c = (r, f(r) \oplus m)$
- Let r^* be the randomness used to encrypt the challenge
- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - A knows nothing about $f(r^*)$, so $f(r^*)$ is random (good OTP)
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - \mathcal{A} learns value of $f(r^*)$ (he sees $c=(r^*,c')$, computes $f(r^*)=c'\oplus m$)
 - $\Pr[\mathcal{A} \text{ outputs } b = b'] = 1$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

17/30

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - $\Pr[\mathcal{A} \text{ outputs } b = b'] = 1$

- Case 1: r^* is never used when answering A's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - $\Pr[A \text{ outputs } b = b'] = 1$

Claim: $Pr[Case 2] \le negl(n)$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1

Claim: $Pr[Case 2] \le negl(n)$

• We said that A makes at most q(n) = poly(n) Enc queries

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of A's Enc queries
 - Pr[A outputs b = b'] = 1

Claim: $Pr[Case 2] \le negl(n)$

- We said that A makes at most q(n) = poly(n) Enc queries
- ullet On each Enc query, randomness $r_i \leftarrow \{0,1\}^n$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1

Claim: $Pr[Case 2] \le negl(n)$

- We said that A makes at most q(n) = poly(n) Enc queries
- ullet On each Enc query, randomness $r_i \leftarrow \{0,1\}^n$
- In encrypting challenge, $r^* \leftarrow \{0,1\}^n$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1

Claim: $Pr[Case 2] \leq negl(n)$

- We said that A makes at most q(n) = poly(n) Enc queries
- ullet On each Enc query, randomness $r_i \leftarrow \{0,1\}^n$
- In encrypting challenge, $r^* \leftarrow \{0,1\}^n$
- So,

$$\Pr[r^* \in \{r_1, \dots, r_{q(n)}\}] \le \sum_{i=1}^{q(n)} \Pr[r^* = r_i] = \frac{q(n)}{2^n} \le \operatorname{negl}(n)$$

(ロ) (型) (差) (差) 差 から(?)

Proving CPA-security of Π: Putting It Together

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - $\Pr[A \text{ outputs } b = b'] = 1$
 - Occurs with probability at most $q(n)/2^n$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - $\Pr[A \text{ outputs } b = b'] = 1$
 - Occurs with probability at most $q(n)/2^n$

$$\Pr[\textit{PrivK}^\textit{cpa}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] \ = \ \Pr[\mathcal{A} \ \text{WINS} \ \land \ \mathsf{Case} \ 1] + \Pr[\mathcal{A} \ \mathsf{WINS} \ \land \ \mathsf{Case} \ 2]$$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1
 - Occurs with probability at most $q(n)/2^n$

$$\begin{split} \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] &= \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 1] + \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] \cdot \Pr[\text{Case} \; 1] + \Pr[\text{Case} \; 2] \end{split}$$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1
 - Occurs with probability at most $q(n)/2^n$

$$\begin{split} \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] &= \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 1] + \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 2] \end{split}$$

- Case 1: r^* is never used when answering \mathcal{A} 's Enc queries
 - Pr[A outputs b = b'] = 1/2
- Case 2: r^* is used when answering one of \mathcal{A} 's Enc queries
 - $\Pr[A \text{ outputs } b = b'] = 1$
 - Occurs with probability at most $q(n)/2^n$

$$\begin{split} \Pr[\textit{PrivK}^{\textit{cpa}}_{\mathcal{A},\tilde{\Pi}}(\textit{n}) = 1] &= \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 1] + \Pr[\mathcal{A} \; \text{WINS} \; \wedge \; \text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 1] + \Pr[\text{Case} \; 2] \\ &\leq \; \Pr[\mathcal{A} \; \text{WINS} \; | \; \text{Case} \; 1] + \Pr[\text{Case} \; 2] \\ &\leq \; 1/2 + \frac{q(\textit{n})}{2^\textit{n}} \end{split}$$

Finishing Proof of CPA-security of PRF+OTP

- \checkmark Consider the scheme where F_k is replaced by a random function f
 - We showed that any PPT \mathcal{A} has only a negl(n) advantage in distinguishing the two games
- \checkmark Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - We showed that PPT \mathcal{A} WINS with probability $\leq 1/2 + q(n)/2^n$

Finishing Proof of CPA-security of PRF+OTP

- \checkmark Consider the scheme where F_k is replaced by a random function f
 - We showed that any PPT \mathcal{A} has only a negl(n) advantage in distinguishing the two games
- \checkmark Use a probabilistic argument to prove that scheme is unconditionally secure when using a random function f.
 - We showed that PPT ${\cal A}$ WINS with probability $\leq 1/2 + q(n)/2^n$

Combining these two statements, we get that for any PPT \mathcal{A} ,

$$\Pr[PrivK_{\mathcal{A},\mathsf{PRF}+\mathsf{OTP}}^{cpa}(n)=1] \leq 1/2 + \frac{q(n)}{2^n} + \mathsf{negl}(n)$$

Outline

Lecture 8 Review

2 Security of PRF+OTP (Chapter 3.5.2)

3 Modes of Operation (Chapter 3.6.2)

CPA-secure encryption allows us to

• Encrypt many messages using the same key k

CPA-secure encryption allows us to

- ullet Encrypt many messages using the same key k
- ullet Encrypt messages longer than the key k

CPA-secure encryption allows us to

- Encrypt many messages using the same key k
- ullet Encrypt messages longer than the key k

Are we done?

Consider how we encrypt long messages:

Consider how we encrypt long messages:

- Break m into blocks m_1, \ldots, m_ℓ such that $|m_i| = n$
- Encrypt each block separately using key k.

Consider how we encrypt long messages:

- Break m into blocks m_1, \ldots, m_ℓ such that $|m_i| = n$
- Encrypt each block separately using key k.

Now, suppose we do this using PRF+OTP encryption

Consider how we encrypt long messages:

- Break m into blocks m_1, \ldots, m_ℓ such that $|m_i| = n$
- Encrypt each block separately using key k.

Now, suppose we do this using PRF+OTP encryption

$$\mathsf{Enc}_{k}(m) = \mathsf{Enc}_{k}(m_{1}), \mathsf{Enc}_{k}(m_{2}), \dots, \mathsf{Enc}_{k}(m_{\ell})
= (r_{1}, F_{k}(r_{1}) \oplus m_{1}), (r_{2}, F_{k}(r_{2}) \oplus m_{2}), \dots, (r_{\ell}, F_{k}(r_{\ell}) \oplus m_{\ell})$$

Consider how we encrypt long messages:

- Break m into blocks m_1, \ldots, m_ℓ such that $|m_i| = n$
- Encrypt each block separately using key k.

Now, suppose we do this using PRF+OTP encryption

$$\mathsf{Enc}_{k}(m) = \mathsf{Enc}_{k}(m_{1}), \mathsf{Enc}_{k}(m_{2}), \dots, \mathsf{Enc}_{k}(m_{\ell})
= (r_{1}, F_{k}(r_{1}) \oplus m_{1}), (r_{2}, F_{k}(r_{2}) \oplus m_{2}), \dots, (r_{\ell}, F_{k}(r_{\ell}) \oplus m_{\ell})$$

The problem:

Encrypting Long Messages

Consider how we encrypt long messages:

- Break m into blocks m_1, \ldots, m_ℓ such that $|m_i| = n$
- Encrypt each block separately using key k.

Now, suppose we do this using PRF+OTP encryption

$$\mathsf{Enc}_{k}(m) = \mathsf{Enc}_{k}(m_{1}), \mathsf{Enc}_{k}(m_{2}), \dots, \mathsf{Enc}_{k}(m_{\ell})
= (r_{1}, F_{k}(r_{1}) \oplus m_{1}), (r_{2}, F_{k}(r_{2}) \oplus m_{2}), \dots, (r_{\ell}, F_{k}(r_{\ell}) \oplus m_{\ell})$$

The problem:

• |c| = 2|m| (we have doubled the length of plaintext)

Encrypting Long Messages

Consider how we encrypt long messages:

- Break m into blocks m_1, \ldots, m_ℓ such that $|m_i| = n$
- Encrypt each block separately using key k.

Now, suppose we do this using PRF+OTP encryption

$$\mathsf{Enc}_{k}(m) = \mathsf{Enc}_{k}(m_{1}), \mathsf{Enc}_{k}(m_{2}), \dots, \mathsf{Enc}_{k}(m_{\ell})
= (r_{1}, F_{k}(r_{1}) \oplus m_{1}), (r_{2}, F_{k}(r_{2}) \oplus m_{2}), \dots, (r_{\ell}, F_{k}(r_{\ell}) \oplus m_{\ell})$$

The problem:

- |c| = 2|m| (we have doubled the length of plaintext)
- This is very problematic when sending big files (e.g., movies) or for HD encryption

Encrypting Long Messages

Consider how we encrypt long messages:

- Break m into blocks m_1, \ldots, m_ℓ such that $|m_i| = n$
- Encrypt each block separately using key k.

Now, suppose we do this using PRF+OTP encryption

$$\mathsf{Enc}_{k}(m) = \mathsf{Enc}_{k}(m_{1}), \mathsf{Enc}_{k}(m_{2}), \dots, \mathsf{Enc}_{k}(m_{\ell})
= (r_{1}, F_{k}(r_{1}) \oplus m_{1}), (r_{2}, F_{k}(r_{2}) \oplus m_{2}), \dots, (r_{\ell}, F_{k}(r_{\ell}) \oplus m_{\ell})$$

The problem:

- |c| = 2|m| (we have doubled the length of plaintext)
- This is very problematic when sending big files (e.g., movies) or for HD encryption

The Question

How do we encrypt long messages without this 2X increase in size

23 / 30

Block-Cipher Modes of Operations

 Modes of operation study how to encrypt many block messages without blow-up in size

Block-Cipher Modes of Operations

- Modes of operation study how to encrypt many block messages without blow-up in size
- Combine PRFs, Boolean operations, and randomness to achieve this

Block-Cipher Modes of Operations

- Modes of operation study how to encrypt many block messages without blow-up in size
- Combine PRFs, Boolean operations, and randomness to achieve this
- Can think of them as other ways to turn PRF into CPA-secure encryption

• Ciphertext length – what is the increase between |c| and |m|

25/30

- Ciphertext length what is the increase between |c| and |m|
- Pre-computation can some part of encryption procedure be computed without m

- Ciphertext length what is the increase between |c| and |m|
- Pre-computation can some part of encryption procedure be computed without m
- Encryption/Decryption parallelism can we encrypt/decrypt only part of m, or encrypt blocks in parallel

- Ciphertext length what is the increase between |c| and |m|
- Pre-computation can some part of encryption procedure be computed without m
- Encryption/Decryption parallelism can we encrypt/decrypt only part of m, or encrypt blocks in parallel
- PRF Inverse do we need to be able to invert the PRF (i.e., do we need a PRP)

- Ciphertext length what is the increase between |c| and |m|
- Pre-computation can some part of encryption procedure be computed without m
- Encryption/Decryption parallelism can we encrypt/decrypt only part of m, or encrypt blocks in parallel
- PRF Inverse do we need to be able to invert the PRF (i.e., do we need a PRP)
- Security want at least CPA-security

Electronic Code Book (ECB) Mode

Electronic Code Book (ECB) Mode

- Ciphertext length: |c| = |m|
- Pre-computation: N/A
- Parallelism: Can encrypt/decrypt blocks in parallel
- PRF Inverse: Need to compute inverse to decrypt
- Security: ??

Electronic Code Book (ECB) Mode

- Ciphertext length: |c| = |m|
- Pre-computation: N/A
- Parallelism: Can encrypt/decrypt blocks in parallel
- PRF Inverse: Need to compute inverse to decrypt
- Security: NOT SECURE
 - ECB Mode is deterministic
 - Can tell if two blocks are the same

Electronic Code Book (ECB) Mode: How bad is it?

Figure: Original Image

Electronic Code Book (ECB) Mode: How bad is it?

Figure: Original Image Figure: ECB-encrypted

Electronic Code Book (ECB) Mode: How bad is it?

Figure: Original Image Figure: ECB-encrypted

Warning

Never use ECB mode

Cipher Block Chaining (CBC) Mode

Cipher Block Chaining (CBC) Mode

- Ciphertext length: |c| = |m| + 1 blocks
- Pre-computation: N/A
- Parallelism: Encryption / Decryption sequential
- PRF inverse: Need to compute inverse to decrypt
- Security: CPA-secure

Output Feedback (OFB) Mode

Output Feedback (OFB) Mode

- Ciphertext length: |c| = |m| + 1 blocks
- Pre-computation: Can pre-compute entire pad
- Parallelism: If have pad, all encryption/decryption can be parallel
- PRF inverse: No need to compute inverse to decrypt
- Security: CPA-secure

Counter (CTR) Mode

Counter (CTR) Mode

- Ciphertext length: |c| = |m| + 1 blocks
- Pre-computation: Can pre-compute entire pad (or any part of pad)
- Parallelism: Can encrypt/decrypt any blocks in parallel
- PRF inverse: No need to compute inverse to decrypt
- Security: CPA-secure