SVEUČILIŠTE U ZAGREBU **FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA**

Kolegij **Fizika lasera**

Izvještaj s laboratorijskih vježbi

James Bond 007

Sadržaj

Vježba 1: Određivanje indeksa loma	3
Teorija	3
Zadatak	3
Mjerenja	4
Obrada mjerenja	4
Vježba 2: Određivanje koeficijenta apsorpcije otopine	6
Teorija	6
Zadatak	7
Mjerenja	7
Obrada mjerenja	8
Vježba 3: Određivanje polumjera laserkog snopa	10
Teorija	10
Zadatak	11
Mjerenja	11
Obrada mjerenja	12
Vježba 4: Određivanje Verdetove konstante	14
Teorija	14
Zadatak	14
Mjerenja	
Obrada mjerenja	

Vježba 1: Određivanje indeksa loma

Teorija

Optička je prizma tijelo omeđeno dvjema ravninama koje zatvaraju vršni kut prizme α . Izrađuje se od materijala koji je proziran za valnu duljinu svjetlosti koja će njome prolaziti s indeksom loma n većim od indeksa okoline prizme.

Indeks loma može se odrediti pomoću laserskog snopa. Laserski snop koji pada na ravninu prizme ulazi u nju i njome se širi. Ako padne na sljedeću ravninu prizme pod kutom manjim od $\arcsin(1/n)$, on će iz nje izaći. Kutom otklona naziva se kut koji zatvara smjer širenja izlaznog snopa sa smjerom širenja ulaznog snopa, i označava se s δ . Kut otklona zrake najmanji je kada je prolaz zrake prizmom simetričan, odnosno kada ulazna zraka s okomicom na ulaznu ravninu prizme i izlazna zraka s okomicom na izlaznu ravninu prizme zatvaraju jednaki kut. Kutom minimalnog otklona naziva se kut otklona pri simetričnom prolazu zrake prizmom, a označava se s δ min, pri čemu vrijedi

$$\frac{\sin(\alpha/2 + \delta_{\min}/2)}{\sin(\alpha/2)} = n. \tag{1.1}$$

Zadatak

Potrebno je odrediti kut najmanjeg otklona za prizme napravljene od različitih materijala i za prizmatične posude u kojima se nalaze različite tekućine, i to za plavu, crvenu i zelenu lasersku svjetlost. Prizme su od krutog stakla, flinta, teškog flinta i običnog stakla, a prizmatične su posude s vodom i s esterom cimetne kiseline. Kut najmanjeg otklona određuje se mjerenjem veličina *a* i *b* (slika 1).

Slika 1 Mjerni uređaj vježbe 1

Za kut najmanjeg otklona vrijedi

$$\delta_{\min} = \arctan(a_{\min}/b)$$
. (1.2)

Mjerenja

		405 1	nm	632,8	nm	532 nm		
	o, [0]	plav	plava		na	zelena		
	α [°]	a _{min} [cm]	b [cm]	a _{min} [cm]	b [cm]	a _{min} [cm]	b [cm]	
Krunsko staklo	60	41	50	39,5	50	32,2	39,2	
Flint	60	64	50	55	50	64,3	54,5	
Teški flint	60	80	40	75	50	51,5	53,5	
Obično staklo	45	29	50	27,5	50	31,2	53,7	
Voda	60	67,5	103	43,5	100	35,2	78,5	
Ester cimetne kiseline	60	56	50	44	50	62,5	38,2	

Obrada mjerenja

Indeks loma n određuje se pomoću mjerenja udaljenosti a_{\min} i b i relacija (1.1) i (1.2). Izmjerene vrijednosti a i b uzimaju se kao očekivane, a maksimalne apsolutne pogreške Δa i Δb procjenjuju se kao $\Delta a = \Delta b = 0.5$ cm. Očekivana vrijednost kuta najmanjeg otklona je

$$\hat{\delta} = \arctan(\hat{a}/\hat{b}),$$

a maksimalna apsolutna pogreška kuta najmanjeg otklona je

$$\Delta \delta = \left| \frac{\partial \delta}{\partial a} \right| \Delta a + \left| \frac{\partial \delta}{\partial b} \right| \Delta b = \frac{\cos^2 \hat{\delta}}{\hat{b}} (\Delta a + \Delta b \tan \hat{\delta}).$$

Očekivana vrijednost indeksa loma n je

$$\hat{n} = \frac{\sin(\alpha/2 + \hat{\delta}/2)}{\sin(\alpha/2)},$$

a maksimalna apsolutna pogreška

$$\Delta n = \left| \frac{\partial n}{\partial \delta} \right| \Delta \delta = \frac{\cos(\alpha/2 + \hat{\delta}/2)}{2\sin(\alpha/2)} \Delta \delta.$$

	plava		cr	vena	zelena		
	δ [rad]	Δδ [rad]	δ [rad]	Δδ [rad]	δ [rad]	Δδ [rad]	
Krunsko staklo	0,6868	0,0109	0,6686	0,0110	0,6877	0,0139	
Flint	0,9076	0,0086	0,8329 0,00	0,0095	0,8677	0,0084	
Teški flint	1,1071	0,0075	0,9828	0,0077	0,7664	0,0095	
Obično staklo	0,5256	0,118	0,5028	0,0119	0,5263	0,0110	
Voda	0,5801	0,0056	0,4103	0,0060	0,4215	0,0077	
Ester cimetne kiseline	0,8419	0,0094	0,7217	0,0106	1,0222	0,0094	

	plava		crv	ena	zelena		
	n	Δn	n	Δn	n	Δn	
Krunsko staklo	1,5249	0,0070	1,1513	0,0072	1,5255	0,0089	
Flint	1,6583	0,0048	1,6154	0,0056	1,6356	0,0048	
Teški flint	1,7615	0,0036	1,6991	0,0041	1,5752	0,0059	
Obično staklo	1,5932	0,0126	1,5695	0,0124	1,5939	0,0114	
Voda	1,4537	0,0039	1,3319	0,0045	1,3403	0,0057	
Ester cimetne kiseline	1,6207	0,0055	1,5472	0,0067	1,7196	0,0048	

Vježba 2: Određivanje koeficijenta apsorpcije otopine

Teorija

Snop laserske svjetlosti koji se širi nekim sredstvom raspršuje se i dolazi do apsorpcije energije zračenja. Jednostavnu sliku apsorpcije pruža Lorentzov model atoma. Jakost električnog polja ravnog elektromagnetskog vala opisuje se izrazom

$$E(x,t) = E_0 e^{i\omega(nx/c-t)},$$

gdje je c brzina svjetlosti, E_0 kompleksna amplituda, ω frekvencija vala, a n indeks loma svjetlosti u smjeru osi x. Uvrštavanjem kompleksnog indeksa loma svjetlosti ($n = n_r + n_i$) u prethodni izraz dobije se

$$E(x,t) = E_0 e^{-\omega n_i x/c} e^{i\omega(n_r x/c-t)}.$$

Prvi eksponencijalni član opisuje atenuaciju elektromagnetskog vala u sredstvu, a drugi titranje i određuje brzinu širenja c/n_r , te valnu duljinu $\lambda' = \lambda/n$ elektromagnetskog vala u sredstvu.

Za intenzitet elektromagnetskog vala vrijedi

$$I(x) \propto |E(x,t)|^2 = |E_0|^2 e^{-2\omega n_i x/c}$$

odnosno,

$$I(x) = I_0 e^{-2\omega n_i x/c} \equiv I_0 e^{-\alpha x}$$

gdje je α koeficijent apsorpcije. Intenzitet zračenja eksponencijalno opada s udaljenošću u sredstvu kao i ukupna snaga laserskog snopa,

$$P(x) = P_0 e^{-\alpha x}.$$

Vrijedi relacija

$$n_i = \frac{\alpha c}{2\omega} = \frac{\alpha \lambda}{4\pi},$$

gdje su ω i λ frekvencija i vakuumska valna duljina elektromagnetskog vala.

Zadatak

Potrebno je odrediti koeficijent apsorpcije i imaginarni dio indeksa loma otopine nigrozina. Mjerni uređaj vidljiv je na slici 2.

Slika 2 Mjerni uređaj vježbe 2

Potrebno je izmjeriti snagu laserskog snopa $P_j^{(voda)}$ koji prolazi kroz jednu, dvije te sve do osam kiveta punjenih destiliranom vodom, a zatim na isti način snagu laserskog snopa $P_j^{(nigrozin)}$ koji prolazi kroz do osam kiveta punjenim otopinom nigrozina.

Koeficijent apsorpcije određuje se iz omjera

$$\frac{P_j^{(nigrozin)}}{P_j^{(voda)}} = e^{-jx_1\alpha_j}.$$

Imaginarni dio indeksa loma računa se iz relacije $n_i = \frac{\alpha c}{2\omega} = \frac{\alpha \lambda}{4\pi}$.

Mjerenja

	destilirana voda	otopina nigrozina			
broj kiveta (j)	struja [mA]	struja [mA]			
8	251,5	116,2			
7	290,8	162,1			
6	359,5	221,1			
5	418	251			
4	519	317,6			
3	575	419			
2	700	474			
1	851	724			
0	1010	1010			

zrak

Obrada mjerenja

Obrada rezultata vrši se primjenom metode najmanjih kvadrata.

$$\Delta = N \sum x_j^2 - (\sum x_j)^2$$

$$Y = \ln(I_0) = \frac{1}{\Delta} \left(\sum x_j^2 \sum y_j - \sum x_j \sum x_j y_j \right)$$

$$\alpha = -\frac{1}{\Delta} \left(N \sum x_j y_j - \sum x_j \sum y_j \right)$$

$$\sigma = \sqrt{\frac{1}{N-2}} \sum \left(y_j - Y - \alpha \cdot x_j \right)^2$$

$$\sigma_Y = \sigma \sqrt{\frac{1}{\Delta}} \sum x_j^2$$

$$\sigma_\alpha = \sigma \sqrt{\frac{N}{\Delta}}$$

$$n_i = \frac{\alpha c}{2\omega} = \frac{\alpha \lambda}{4\pi}, \ \lambda = 632,8nm$$

Destilirana voda

x_{j}	I_{j}	$y_j = \ln I_j$	x_j^2	$x_j y_j$	y_j^2	$(y_j - Y - \alpha \cdot x_j)^2$
8	251,5	5,52744	64	44,21954	30,55263	7,64965
7	290,8	5,67264	49	39,70845	32,17880	5,98970
6	359,5	5,88471	36	35,30829	34,62986	4,25222
5	418	6,03548	25	30,17741	36,42704	3,02101
4	519	6,25190	16	25,00762	39,08630	1,81835
3	575	6,35437	9	19,06311	40,37802	1,15085
2	700	6,55108	4	13,10216	42,91665	0,49399
1	851	6,74641	1	6,74641	45,51408	0,11175
$\sum x_j$	$\sum I_j$	$\sum y_j$	$\sum x_j^2$	$\sum x_j y_j$	$\sum y_j^2$	$\sum (y_j - Y - \alpha \cdot x_j)^2$
36	3964,8	49,02404	204	213,3330	301,68340	24,48753

Δ	Y	<i>I</i> ₀ [mA]	α [cm ⁻¹]	σ	$\sigma_{ m Y}$	σ_{α} [cm ⁻¹]	α [cm ⁻¹]
336	6,90749	999,73540	0,17322	2,02021	1,57414	0,31173	$0,17322 \pm 0,31173$

 $n_i = 8,72277 \cdot 10^{-7}$

Nigrozin

x_{j}	I_{j}	$y_j = \ln I_j$	x_j^2	$x_j y_j$	y_j^2	$(y_j - Y - \alpha \cdot x_j)^2$
8	116,2	4,75531	64	38,04250	22,613	12,51695
7	162,1	5,08821	49	35,61749	25,88992	9,19187
6	221,1	5,39862	36	32,39169	29,14504	6,49327
5	251	5,52545	25	27,62726	30,53063	5,05410
4	317,6	5,76079	16	23,04317	33,18673	3,38403
3	419	6,03787	9	18,11361	36,45589	1,93009
2	474	6,16121	4	12,32241	37,96048	1,19404
1	724	6,58479	1	6,58479	43,35948	0,24594
$\sum x_j$	$\sum I_j$	$\sum y_j$	$\sum x_j^2$	$\sum x_j y_j$	$\sum y_j^2$	$\sum (y_j - Y - \alpha \cdot x_j)^2$
36	2685	45,31226	204	193,74290	259,1412	40,01029

Δ	Y	<i>I</i> ₀ [mA]	α [cm ⁻¹]	σ	$\sigma_{ m Y}$	$\sigma_{\alpha} [\mathrm{cm}^{\text{-}1}]$	α [cm ⁻¹]
336	6,75284	856,48829	0,24196	2,58232	2,01213	0,39846	$0,24196 \pm 0,39846$

$$n_i = 1,21843 \cdot 10^{-6}$$

Vježba 3: Određivanje polumjera laserkog snopa

Teorija

Laser s titranjem u temeljnom poprečnom modu (TEM_{00}) proizvodi Gaussov snopom. Intenzitet zračenja takvog snopa u ravnini okomitoj na smjer širenja dan je izrazom

$$I(r,z) = \frac{2P_0}{\pi w^2(z)} e^{-2r^2/w^2(z)},$$

gdje je r udaljenost od osi, z smjer širenja, P_0 ukupna snaga, a w(z) polumjer snopa. Ovisnost polumjera snopa w(z) o položaju dana je izrazom

$$w(z) = w_0 \sqrt{1 + \left(\frac{\lambda z}{\pi w_0^2}\right)^2}$$

gdje je w_0 polumjer snopa na najužem mjestu, z=0, a λ valna duljina zračenja. Snaga zračenja Gaussovog snopa kroz kružni otvor polumjera R dana je izrazom

$$P_{R} = \int_{0}^{R} I(r, z) 2r\pi dr = P_{0} \left(1 - e^{-2R^{2}/w^{2}} \right).$$

Ako neprozirnim zaslonom ravnog ruba zaklonimo dio snopa, snaga koja preostaje u snopu dana je izrazom

$$P_{h} = \int_{-\infty}^{\infty} dx \int_{h}^{\infty} dy I\left(\sqrt{x^{2} + y^{2}}, z\right) = \frac{P_{0}}{2} \left(1 - erf\left(\frac{\sqrt{2}h}{w}\right)\right),$$

gdje je h udaljenost do ruba zaslona od osi snopa, a erf x error funkcija definirana izrazom

$$erfx = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt .$$

Izraz

$$w = 1,90694 \left| h_{0,3} - h_{0,7} \right|$$

povezuje polumjer snopa i razmak između položaja zaslona koji propušta 30% i položaja koji propušta 70% ukupne snage Gaussovog snopa.

Zadatak

Potrebno je odrediti polumjer laserskog snopa. Mjereni uređaj prikazan je na slici 3.

Slika 3 Mjerni uređaj vježbe 3

Mjerenje se vrši na dva načina:

- 1. Počevši od položaja zaslona pri kojem detektor zahvaća ukupnu snagu snopa, zaslon treba pomicati u koracima $\Delta h = 50 \ \mu m$ i bilježiti snagu, sve do položaja u kojem snaga više nije mjerljiva.
- 2. Potrebno je pronaći i zabilježiti položaje zaslona pri kojima detektor zahvaća 30% i 70% ukupne snage snopa i procijeniti maksimalne apsolutne snage tih položaja.

Mjerenja

pomak [μm]	snaga [mV]	pomak [μm]	snaga [mV]	pomak [μm]	snaga [mv]
0	58,1	500	43,9	1000	4,8
50	57,6	550	39,7	1050	3,5
100	57,5	600	35,2	1100	2,7
150	57,1	650 30,4 1150		1150	2,2
200	56,3	700	25,2	1200	1,9
250	55,5	750	20,1	1250	1,6
300	54,4	800	15,8	1300	1,5
350	350 52,5		11,7	1350	1,5
400	50,2	900	8,8	1400	1,5
450	46,8	950	6,4	1450	1,5

Za 30% upadne snage ($P_{30\%}$ = 17,4 mV) pomak je $h_{30\%}$ = 360 μ m, a za 70% upadne snage ($P_{70\%}$ = 40,7 mV) pomak je $h_{70\%}$ = 110 μ m.

Obrada mjerenja

Očekivana ovisnost snage o položaju dana je izrazom

$$P(h; P_0, w, h_0) = \frac{P_0}{2} (1 - erf(\sqrt{2}(h - h_0)/w)).$$

Snaga nezaklonjenog snopa P_0 , polumjer snopa w i položaj osi snopa h_0 parametri su matematičkog modela. Definira se veličina koja opisuje zbroj kvadrata odstupanja izmjerenih vrijednosti od onih koje predviđa matematički model kao

$$S^{2}(P_{0}, w, h_{0}) = \sum_{i} \frac{1}{\delta_{i}^{2}} (P_{i} - P(h_{i}; P_{0}, w, h_{0}))^{2},$$

gdje su δ_i maksimalne apsolutne pogreške mjerenja P_i . Potrebno je pronaći minimum funkcije $S^2(P_0,w,h_0)$ koju zahtijeva metoda najmanjih kvadrata. Model je linearan u parametru P_0 ,

$$\hat{P}_0 = \frac{\sum_i P_i Q_i / \delta_i^2}{\sum_i Q_i^2 / \delta_i^2},$$

gde je

$$Q_i = \frac{1}{2} \left(1 - erf\left(\sqrt{2}(h - h_0) / w \right) \right).$$

Minimum funkcije S^2 moguće je pronaći iterativnim (numeričkim) putem pomoću skripte fit_sposize.nb za program Wolfram Mathematica.

$$P_0 = 1,3732 \pm 0,0955 mV$$

$$P_1 = 56,3516 \pm 0,1684 mV$$

$$h_0 = 703,441 \pm 1,3464 \mu m$$

 $w = 449,176 \pm 3,7095 \mu m$

Prema "formuli 03/07" očekivana vrijednost polumjera snopa je

$$\hat{w} = 1,90694 \left| \hat{h}_{0,3} - \hat{h}_{0,7} \right| = 476,735 \, \mu m \ .$$

Vježba 4: Određivanje Verdetove konstante

Teorija

Prilikom prolaska linearno polariziranog elektromagnetskog vala sredstvom u kojem je prisutno magnetsko polje usmjereno duž smjera širenja vala dolazi do zakretanja ravnine polarizacije. Vrijedi izraz

$$\beta = vBl$$
,

gdje je v Verdetova konstanta za dano sredstvo, B jakost magnetskog polja, l duljina puta koju val prevaljuje u sredstvu, a β kut zakreta ravnine polarizacije.

Snaga snopa linearno polarizirane svjetlosti snage P_0 koji prolazi kroz polarizator može se zapisati Malusovim zakonom kao

$$P = P_0 \cos^2(\theta_P - \theta_0),$$

gdje je θ_0 kut koji opisuje orijentaciju ravnine polarizacije upadnog vala, a θ_P kut koji opisuje orijentaciju polarizatora.

Zadatak

Potrebno je odrediti Verdetovu konstantu uzorka optičkog stakla. Mjerni uređaj vidljiv je na slici 4.

Slika 4 Mjerni uređaj vježbe 4

Mjerenja se vrše na dva načina:

- 1. Uz isključenu struju mjeri se snaga snopa za niz vrijednosti kuta polarizatora θ_P u intervalu od 0° do 180° s korakom od 10° .
- 2. U položaju polarizatora koji osigurava najveću osjetljivost uređaja mjeri se snaga propuštenog snopa za struju jakosti $I = 0, \pm 2 \text{ A}, \dots, \pm 10 \text{ A}$.

Mjerenja

Za struju I = 0 A:

θ _P [°]	snaga [mV]	θ _P [°]	snaga [mV]	θ _P [°]	snaga [mV]
0	30,1	70	34,5	140	88,9
10	16,6	80	50,9	150	78,0
20	6,0	90	67,8	160	62,8
30	1,3	100	81,7	170	46,0
40	2,1	110	91,5	180	29,1
50	8,6	120	96,2		
60	20,4	130	95,5		

Uz položaj polarizatora na najvećoj osjetljivosti uređaja ($\theta_P = 80^\circ$):

<i>I</i> [A]	-10	-8	-6	-4	-2	0	2	4	6	8	10
snaga [mV]	53,1	52,7	52,2	51,5	50,8	50,2	49,5	48,8	48,1	47,4	46,9

Obrada mjerenja

Parametri P_{\perp} i P_{\parallel} mogu se procijeniti iz grafičkog mjerenja prikaza mjerenja snage u ovisnosti o orijentaciji polarizatora.

Za kut od 30° (4. mjerenje) na grafu se postiže minimum pa je P_{\perp} = 1,3 mV, a za kut od 120° (13. mjerenje) na grafu se postiže maksimum pa je P_{\parallel} = 96,2 mV.

Precizniji račun može se obaviti skriptom fit_malus.nb za program Wolfram Mathematica. Dobiveni rezultati su $P_{\perp}=0.845481\pm0.139231$ mV, odnosno $P_{\parallel}=95.8659\pm0.23162$ mV.

Korištenjem linearnog modela $P(I) = P_{\perp} + P_{\parallel} / 2 + P_{\parallel} vblI$, odnosno y = a + vx, rezultati se određuju alatom SDMT (Simple Dana Modeling Tool).

Poznate vrijednosti:

$$b = (0.0185 \pm 0.0005)TA^{-1}, l = 2cm = 2 \cdot 10^{-2} m$$

U alat se unose sljedeće vrijednosti:

$x_{\rm i}$	y _i
$P_{ }blI$	P(I)
-0,3547	53,1
-0,2838	52,7
-0,2128	52,2
-0,1419	51,5
-0,0709	50,8
0,0000	50,2
0,0709	49,5
0,1419	48,8
0,2128	48,1
0,2838	47,4
0,3547	46,9

Dobiju se rezultati: $P(0) = P_{\perp} + P_{\parallel} / 2 = (50.011 \pm 0.04) \text{ mV}, v = (-9.1 \pm 0.2) \text{ T}^{-1}\text{m}^{-1}.$