

Exercise 4B

Question 5:

AOB will be a straight line, if two adjacent angles form a linear pair.

$$\Rightarrow$$
 $(4x - 36)^{\circ} + (3x + 20)^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 4x - 36 + 3x + 20 = 180

$$\Rightarrow$$
 7x - 16 = 180°

$$\Rightarrow$$
 7x = 180 + 16 = 196

$$\Rightarrow$$
 x = 196/7 = 28

$$\therefore$$
 The value of x = 28.

Question 6:

Since $\angle AOC$ and $\angle AOD$ form a linear pair.

$$\therefore$$
 \angle AOC + \angle AOD = 180°

$$\Rightarrow$$
 50° + \angle AOD = 180°

$$\Rightarrow$$
 \angle AOD = 180 $^{\circ}$ - 50 $^{\circ}$ = 130 $^{\circ}$

 \angle AOD and \angle BOC are vertically opposite angles.

∠BOD and ∠AOC are vertically opposite angles.

Question 7:

Since ∠COE and ∠DOF are vertically opposite angles, we have,

$$\Rightarrow \angle z = 50^{\circ}$$

Also ∠BOD and ∠COA are vertically opposite angles.

As ∠COA and ∠AOD form a linear pair,

$$\angle$$
COA + \angle AOD = 180°

$$\Rightarrow$$
 \angle COA + \angle AOF + \angle FOD = 180° [\angle t = 90°]

$$\Rightarrow$$
 t + x + 50° = 180°

$$\Rightarrow 90^{\circ} + x^{\circ} + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 x + 140 = 180

$$\Rightarrow$$
 x = 180 - 140 = 40

Since ∠EOB and ∠AOF are vertically opposite angles

$$\Rightarrow$$
 y = x = 40

Thus,
$$x = 40 = y = 40$$
, $z = 50$ and $t = 90$

********* FND *******