Мы доказали, что это эквивалентно тому, что $\frac{MK}{\rho} \to 0$.

$$\frac{MK}{\rho} = \frac{|\triangle z - (A\triangle x + B\triangle y)|}{\rho} \to 0 \iff |\triangle z - (A\triangle x + B\triangle y)| = o(\rho) \iff \triangle z - (A\triangle x + B\triangle y) = o(\rho) \iff \triangle z = A\triangle x + B\triangle y + o(\rho),$$

а это означает что функция z=f(x,y) дифференцируема в точке (x_0,y_0) . Итак, мы доказали следующую теорему:

Теорема 9

Поверхность z=f(x,y) имеет касательную плоскость в точке $M_0(x_0,y_0,z_0)\Leftrightarrow$ функция z=f(x,y) дифференцируема в точке (x_0,y_0) . По теореме 8 получаем, что: $A=f'_x(x_0,y_0),\ B=f'_y(x_0,y_0).$

Тогда уравнение касательной плоскости (1.16) примет вид:

$$Z - z_0 = f_x'(x_0, y_0)(X - x_0) + f_y'(x_0, y_0)(Y - y_0).$$
 (1.26)

1.7 Производные от сложных функций

Рассмотрим функцию u=f(x,y,z), определенную в некоторой открытой области D, где x,y,z являются функциями от переменной t:

$$x = \varphi(t), \ y = \psi(t), \ z = \chi(t),$$

где $\varphi(t),\ \psi(t),\ \chi(t)$ – дифференцируемые функции.

Пусть в области D существуют непрерывные производные $u_x',\ u_y',\ u_z'.$ Тогда по теореме 7 приращение функции u=f(x,y,z) может быть представлено в виде:

$$\Delta u = u_x' \Delta x + u_y' \Delta y + u_z' \Delta z + \alpha \Delta x + \beta \Delta y + \gamma \Delta z, \tag{1.27}$$
 где $\alpha = \alpha \left(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} \right), \ \beta = \beta \left(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} \right),$ $\gamma = \gamma \left(\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} \right).$ Так как разложение (1.27) имеет место, то функция u дифференцируема (по определению). Разделим обе части уравнения (1.27) на Δt :

$$\frac{\Delta u}{\Delta t} = u_x' \frac{\Delta x}{\Delta t} + u_y' \frac{\Delta y}{\Delta t} + u_z' \frac{\Delta z}{\Delta t} + \alpha \frac{\Delta x}{\Delta t} + \beta \frac{\Delta y}{\Delta t} + \gamma \frac{\Delta z}{\Delta t}.$$
 (1.28)

Устремим $\triangle t$ к 0. Тогда:

$$\frac{\triangle x}{\triangle t} \to x'_t, \quad \frac{\triangle y}{\triangle t} \to y'_t, \quad \frac{\triangle z}{\triangle t} \to z'_t.$$

Мы предположили, что $x=\varphi(t),\ y=\psi(t),\ z=\chi(t)$ – дифференцируемые функции. Следовательно, $\triangle x,\ \triangle y,\ \triangle z$ будут стремиться к нулю при $\triangle t\to 0$. А значит $\alpha,\ \beta,\ \gamma$ также будут стремиться к нулю. Итак, в пределе при $\triangle t\to 0$ уравнение (1.28) примет следующий вид:

$$u'_{t} = u'_{x} \cdot x'_{t} + u'_{y} \cdot y'_{t} + u'_{z} \cdot z'_{t}. \tag{1.29}$$

Мы получили формулу для производной сложной функции. Формулу нетрудно распространить на случай функции n переменных:

$$\frac{du}{dt} = \frac{\partial u}{\partial x_1} \frac{dx_1}{dt} + \frac{\partial u}{\partial x_2} \frac{dx_2}{dt} + \dots + \frac{\partial u}{\partial x_n} \frac{dx_n}{dt}.$$
 (1.30)

Если $x = \varphi(t,s), \ y = \psi(t,s), \ z = \chi(t,s),$ то формулы (1.29) и (1.30) сохраняются, только под $x_t', \ y_t', \ z_t'$ нужно понимать частные производные:

$$\frac{du}{dt} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial t}.$$
 (1.31)

Если функция u явно зависит от t, то есть u = u(t, x, y, z), то:

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial u}{\partial z} \frac{\partial z}{\partial t}.$$
 (1.32)

1.8 Производная функции $u = \left(\varphi(t) \right)^{\psi(t)}$.

Введем новые переменные. Пусть $x = \varphi(t), \ y = \psi(t)$. Тогда функция $u = (\varphi(t))^{\psi(t)}$ примет вид: $u = u(x,y) = x^y$.

Найдем $\frac{du}{dt}$ по формуле (1.29):

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} = yx^{y-1} \frac{dx}{dt} + x^y \ln x \frac{dy}{dt} =$$

$$= \psi(t) \cdot (\varphi(t))^{\psi(t)-1} \cdot \varphi'(t) + (\varphi(t))^{\psi(t)} \cdot \ln \varphi(t) \cdot \psi'(t) =$$

$$= (\varphi(t))^{\psi(t)} \cdot \left(\psi(t) \cdot \frac{\varphi'(t)}{\varphi(t)} + \ln \varphi(t) \cdot \psi'(t) \right). \tag{1.33}$$

Пример

Найдем производную от функции $u=t^{\sin t}$. Введем новые переменные. Пусть $x=\varphi(t)=t,\ y=\psi(t)=\sin t$. Тогда:

$$\frac{du}{dt} = t^{\sin t} \left(\sin t \cdot \frac{1}{t} + \ln t \cdot \cos t \right).$$

1.9 Дифференцирование функционального определителя

Рассмотрим определитель следующего вида:

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = u(a_{11}, a_{12}, \dots, a_{nn}), \tag{1.34}$$

где $a_{ik} = a_{ik}(t), \quad 1 \le i \le n, \ 1 \le k \le n.$

Каждый элемент определителя является функцией от переменной t. Тогда определитель можно рассматривать как функцию $u(a_{11},a_{12},\ldots,a_{nn})$ многих переменных (всего n^2 переменных). Найдем производную от определителя, $\frac{du}{dt}$. Для этого нам понадобится выражение для $\frac{\partial u}{\partial a_{ik}}$, $1 \le i \le n$, $1 \le k \le n$.

Разложим опеределитель по k-му столбцу.

$$u = \begin{pmatrix} a_{11} & \dots & a_{1k} & \dots & a_{1n} \\ \vdots & \dots & \ddots & \dots & \vdots \\ a_{n1} & \dots & a_{nk} & \dots & a_{nn} \end{pmatrix} = a_{1k}A_{1k} + a_{2k}A_{2k} + \dots + a_{nk}A_{nk}.$$
 (1.35)

Здесь A_{jk} – алгебраическое дополнение элемента a_{jk} . Заметим, что A_{ik} при любом i не содержит a_{ik} , поскольку A_{ik} есть определитель, полученный вычеркиванием из u i-ой строки и k-го столбца, умноженного на $(-1)^{i+k}$. Таким образом, A_{ik} не содержит элементов k-го столбца, в частности, a_{ik} . Следовательно,

$$\frac{\partial u}{\partial a_{ik}} = \frac{\partial}{\partial a_{ik}} \left(a_{1k} A_{1k} + \dots \ a_{ik} A_{ik} + \dots \ a_{nk} A_{nk} \right) = A_{ik}. \tag{1.36}$$

Напишем формулу (1.30):

$$\frac{du}{dt} = \sum_{k=1}^{n} \sum_{i=1}^{n} \frac{\partial u}{\partial a_{ik}} \cdot \frac{da_{ik}}{dt} = \sum_{k=1}^{n} \sum_{i=1}^{n} A_{ik} \frac{da_{ik}}{dt} =$$

$$= \sum_{k=1}^{n} \underbrace{\left(\frac{da_{1k}}{dt} A_{1k} + \frac{da_{2k}}{dt} A_{2k} + \dots \frac{da_{nk}}{dt} A_{nk}\right)}_{\text{разложение определителя по } k$$
-му столбцу

$$= \sum_{k=1}^{n} \begin{vmatrix} a_{11} & \dots & \frac{da_{1k}}{dt} & \dots & a_{1n} \\ a_{21} & \dots & \frac{da_{2k}}{dt} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & \dots & \frac{da_{nk}}{dt} & \dots & a_{nn} \end{vmatrix}.$$
 (1.37)

Замечание

Аналогично можно продифференцировать опеределитель по всем строкам.

$$\frac{du}{dt} = \sum_{i=1}^{n} \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ \frac{da_{i1}}{dt} & \dots & \frac{da_{in}}{dt} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} .$$
(1.38)

1.10 Формула конечных приращений

Формулой конечных приращений называют теорему Лагранжа. Напишем ее в многомерном случае.

Теорема 10

Пусть функция f(x,y,z) определена и непрерывна в замкнутой области D и имеет внутри D непрерывные частные производные f'_x , f'_y , f'_z . Пусть точки $M_0(x_0,y_0,z_0)$, $M_1(x_0+\triangle x,y_0+\triangle y,z_0+\triangle z)$, а также соединяющий их отрезок M_0M_1 принадлежат области D. Тогда существует число $\theta:\ 0<\theta<1$, что выполнено:

$$\Delta f(x_0, y_0, z_0) = f(M_1) - f(M_0) = f'_x(x_0 + \theta \Delta x, y_0 + \theta \Delta y, z_0 + \theta \Delta z) \Delta x + f'_y(x_0 + \theta \Delta x, y_0 + \theta \Delta y, z_0 + \theta \Delta z) \Delta y + f'_z(x_0 + \theta \Delta x, y_0 + \theta \Delta y, z_0 + \theta \Delta z) \Delta z.$$

$$(1.39)$$

Доказательство:

Напишем параметрическое уравнение отрезка M_0M_1 . Пусть $0 \le t \le 1$. Тогда: $x = x_0 + t\triangle x$, $y = y_0 + t\triangle y$, $z = z_0 + t\triangle z$. Тогда на отрезке M_0M_1 функция f(x, y, z) будет функцией только одной переменной t:

$$f(x,y,z)\Big|_{M_0M_1} = f(x_0 + t\triangle x, y_0 + t\triangle y, z_0 + t\triangle z) = g(t).$$

$$g'(t) = f'_x(x_0 + t\triangle x, y_0 + t\triangle y, z_0 + t\triangle z) \frac{dx}{dt} +$$

$$+ f'_y(x_0 + t\triangle x, y_0 + t\triangle y, z_0 + t\triangle z) \frac{dy}{dt} +$$

$$+ f'_z(x_0 + t\triangle x, y_0 + t\triangle y, z_0 + t\triangle z) \frac{dz}{dt} =$$

$$= f'_x(x_0 + t\triangle x, y_0 + t\triangle y, z_0 + t\triangle z) \triangle x +$$

$$+ f'_y(x_0 + t\triangle x, y_0 + t\triangle y, z_0 + t\triangle z) \triangle y +$$

$$+ f'_z(x_0 + t\triangle x, y_0 + t\triangle y, z_0 + t\triangle z) \triangle z.$$

Функция g(t) зависит только от одной переменной, значит для нее будет выполнена одномерная теорема Лагранжа, а именно: существует число $\theta:\ 0<\theta<1$, что выполнено:

$$g(1) - g(0) = g'(\theta) \cdot (1 - 0) = g'(\theta), \tag{1.40}$$

что эквивалентно:

$$g(1) - g(0) = f'_x (x_0 + \theta \triangle x, y_0 + \theta \triangle y, z_0 + \theta \triangle z) \triangle x +$$

$$+ f'_y (x_0 + \theta \triangle x, y_0 + \theta \triangle y, z_0 + \theta \triangle z) \triangle y +$$

$$+ f'_z (x_0 + \theta \triangle x, y_0 + \theta \triangle y, z_0 + \theta \triangle z) \triangle z. \tag{1.41}$$

С другой стороны,

$$g(1) - g(0) = f(M_1) - f(M_2). (1.42)$$

Сравнивая выражения (1.41) и (1.42), получаем формулу (1.39), что и доказывает теорему.

1.11 Инвариантность формы первого дифференциала

Пусть u=f(x,y,z), при этом переменные $x,\ y,\ z$ сами являются функциями от t и s :

$$x = \varphi(t, s), \ y = \psi(t, s), \ z = \chi(t, s).$$

Пусть $f, \, \varphi, \, \psi, \, \chi$ – дифференцируемые функции. Если подставить $x, \, y, \, z$ в выражение для u = f(x,y,z), то получим функцию двух переменных: u = u(t,s), для которой можно найти дифференциал:

$$du = u_t'dt + u_s'ds. (1.43)$$

Если считать x, y, z независимыми переменными (то есть не связанными между собой через переменные t и s), то выражение для дифференциала примет вид:

$$du = u'_x dx + u'_y dy + u'_z dz. (1.44)$$

Покажем, что выражения (1.43) и (1.44) эквивалентны друг другу. По формуле (1.29) получаем:

$$u'_t = u'_x x'_t + u'_y y'_t + u'_z z'_t, (1.45)$$

$$u'_{s} = u'_{x}x'_{s} + u'_{y}y'_{s} + u'_{z}z'_{s}. (1.46)$$

Подставим (1.45) и (1.46) в (1.43):

$$du = u'_t dt + u'_s ds = (u'_x x'_t + u'_y y'_t + u'_z z'_t) dt + (u'_x x'_s + u'_y y'_s + u'_z z'_s) ds =$$

$$= u'_{x}(x'_{t}dt + x'_{s}ds) + u'_{y}(y'_{t}dt + y'_{s}ds) + u'_{z}(z'_{t}dt + z'_{s}ds) = u'_{x}dx + u'_{y}dy + u'_{z}dz.$$
(1.47)

Таким образом, для дифференциала du не имеет значения, будут ли переменные $x,\ y,\ z$ зависимыми или нет.

1.12 Производные высших порядков

Частные производные функции нескольких переменных x, y, z сами являются функциями от x, y, z. Если эти производные продифференцировать еще раз, получим частные производные второго порядка.

Обозначение

$$\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial x^2} = (u'_x)'_x = u'_{x^2} = u''_{xx},$$

$$\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial^2 u}{\partial x \partial y} = (u'_y)'_x = u'_{x^2} = u''_{yx},$$

$$\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial y \partial x} = (u'_x)'_y = u'_{x^2} = u''_{xy}.$$

Замечание

Иногда в обозначении смешанной производной в виде дроби порядок дифференцирования указывают по-другому:

$$\frac{\partial}{\partial y} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial^2 u}{\partial x \partial y} = (u'_x)'_y = u''_{xy}.$$

Теорема 11 (теорема о смешанных производных)

- 1) Пусть функция f(x,y) определена в некоторой открытой области D.
- **2)** Пусть в области D также существуют производные f'_x , f'_y , f''_{xy} , f''_{yx} .
- 3) Пусть производные f''_{xy} и f''_{yx} непрерывны в некоторой точке $(x_0, y_0) \in D$. Тогда в этой точке смешанные производные не зависят от порядка дифференцирования.

Доказательство:

Мы будем строить смешанные производные, используя конечные приращения функции и одномерную теорему Лагранжа. Пусть h и k – малые

числа, такие, что прямоугольник $[x_0, x_0 + h; y_0, y_0 + h] \subset D$. Введем вспомогательную функцию $\varphi(x)$ по следующему правилу:

$$\varphi(x) = \frac{f(x, y_0 + k) - f(x, y_0)}{k}.$$
(1.48)

Тогда

$$\varphi'(x) = \frac{f_x'(x, y_0 + k) - f_x'(x, y_0)}{k}.$$
(1.49)

Теперь рассмотрим функцию W, связанную с приращением функции φ :

$$W = \frac{\varphi(x_0 + h) - \varphi(x_0)}{h}.$$
(1.50)

Подставим формулу (1.48) для $\varphi(x)$ в выражение (1.50):

$$W = \frac{f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0)}{hk}.$$
 (1.51)

Функция $\varphi(x)$ зависит только от одной переменной. Тогда для нее можно написать одномерную теорему Лагранжа на отрезке $[x_0, x_0 + h]$: существует число $\theta: 0 < \theta < 1$, что выполнено:

$$\varphi(x_0 + h) - \varphi(x_0) = \varphi'(x_0 + \theta h) \cdot h. \tag{1.52}$$

Тогда

$$W = \frac{\varphi(x_0 + h) - \varphi(x_0)}{h} = \varphi'(x_0 + \theta h) = \frac{\uparrow}{(1.52)}$$

$$= \frac{f'_x(x_0 + \theta h, y_0 + k) - f'_x(x_0 + \theta h, y_0)}{k}.$$
(1.53)

Напишем теорему Лагранжа для функции $f_x'(x_0+\theta h,y)$ как функции от одной переменной y на отрезке $[y_0,y_0+k]$: существует число θ_1 : $0<\theta_1<1$, что выполнено:

$$f_x'(x_0 + \theta h, y_0 + k) - f_x'(x_0 + \theta h, y_0) = f_{xy}''(x_0 + \theta h, y_0 + \theta_1 k) \cdot k. \quad (1.54)$$

Сравнивая формулы (1.53) и (1.54), получаем, что: существуют такие числа θ , θ_1 : $\begin{cases} 0 < \theta < 1 \\ 0 < \theta_1 < 1 \end{cases}$, что выполнено:

$$W = f_{xy}''(x_0 + \theta h, y_0 + \theta_1 k). \tag{1.55}$$

Аналогично, введя функцию $\psi(y)=\frac{f(x_0+h,y)-f(x_0,y)}{h}$, получим, что: существуют такие числа $\theta_2,\ \theta_3: \left\{ egin{array}{l} 0<\theta_2<1 \\ 0<\theta_3<1 \end{array} \right.$, что выполнено:

$$W = f_{yx}''(x_0 + \theta_2 h, y_0 + \theta_3 k). \tag{1.56}$$

Тогда из (1.55) и (1.56) получаем:

$$f_{xy}''(x_0 + \theta h, y_0 + \theta_1 k) = f_{yx}''(x_0 + \theta_2 h, y_0 + \theta_3 k). \tag{1.57}$$

Так как производные f''_{xy} и f''_{yx} непрерывны в точке (x_0, y_0) , мы можем сделать предельный переход в уравнении (1.57) при $h \to 0, k \to 0$:

$$f_{xy}''(x_0, y_0) = f_{yx}''(x_0, y_0). (1.58)$$

Замечание

Теорема 11 о смешанных производных будет верна для смешанных производных любого порядка, а не только второго.

1.13 Дифференциалы высших порядков

Рассмотрим функцию $u = f(x_1, x_2, \ldots, x_n)$, заданную в области D. Пусть эта функция имеет непрерывные частные производные первого порядка. Тогда дифференциал du имеет следующий вид:

$$du = \frac{\partial u}{\partial x_1} dx_1 + \dots + \frac{\partial u}{\partial x_n} dx_n. \tag{1.59}$$

Здесь $dx_1, dx_2, \ldots dx_n$ – произвольные приращения независимых переменных x_1, x_2, \ldots, x_n .

Как видим из формулы (1.59), du есть функция от переменных x_1, x_2, \ldots, x_n . Если мы предположим, что функция u имеет производные второго порядка, то можно найти дифференциал от дифференциала du. Он называется дифференциалом второго порядка от функции u и обозначается символом d^2u . Заметим, что дифференциалы $dx_1, dx_2, \ldots dx_n$

мы считаем постоянными величинами. Тогда:

$$d^{2}u = d(du) = d\left(\frac{\partial u}{\partial x_{1}}dx_{1} + \dots + \frac{\partial u}{\partial x_{n}}dx_{n}\right) =$$

$$= d\left(\frac{\partial u}{\partial x_{1}}\right)dx_{1} + d\left(\frac{\partial u}{\partial x_{2}}\right)dx_{2} + \dots + d\left(\frac{\partial u}{\partial x_{n}}\right)dx_{n},$$

что эквивалентно:

$$d^{2}u = \left(\frac{\partial^{2}u}{\partial x_{1}^{2}}dx_{1} + \frac{\partial^{2}u}{\partial x_{1}\partial x_{2}}dx_{2} + \dots + \frac{\partial^{2}u}{\partial x_{1}\partial x_{n}}dx_{n}\right) \cdot dx_{1} +$$

$$+ \left(\frac{\partial^{2}u}{\partial x_{2}\partial x_{1}}dx_{1} + \frac{\partial^{2}u}{\partial x_{2}^{2}}dx_{2} + \dots + \frac{\partial^{2}u}{\partial x_{2}\partial x_{n}}dx_{n}\right) \cdot dx_{2} + \dots$$

$$\dots + \left(\frac{\partial^{2}u}{\partial x_{n}\partial x_{1}}dx_{1} + \frac{\partial^{2}u}{\partial x_{n}\partial x_{2}}dx_{2} + \dots + \frac{\partial^{2}u}{\partial x_{n}^{2}}dx_{n}\right) \cdot dx_{n} =$$

$$= \frac{\partial^{2}u}{\partial x_{1}^{2}}dx_{1}^{2} + \frac{\partial^{2}u}{\partial x_{2}^{2}}dx_{2}^{2} + \dots + \frac{\partial^{2}u}{\partial x_{n}^{2}}dx_{n}^{2} +$$

$$+2\frac{\partial^{2}u}{\partial x_{1}\partial x_{2}}dx_{1}dx_{2} + 2\frac{\partial^{2}u}{\partial x_{1}\partial x_{3}}dx_{1}dx_{3} + \dots + 2\frac{\partial^{2}u}{\partial x_{1}\partial x_{n}}dx_{1}dx_{n} +$$

$$+2\frac{\partial^{2}u}{\partial x_{2}\partial x_{3}}dx_{2}dx_{3} + \dots + 2\frac{\partial^{2}u}{\partial x_{n-1}\partial x_{n}}dx_{n-1}dx_{n}.$$

Аналогично определяются дифференциалы следующих порядков:

$$d^3u = d(d^2u), \dots, d^nu = d(d^{n-1}u).$$

Для упрощения записи дифференциалов используют следующую символьную запись:

$$du = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_n} dx_n\right) u,$$

$$d^2u = \left(\frac{\partial}{\partial x_1} dx_1 + \dots + \frac{\partial}{\partial x_n} dx_n\right)^2 u.$$

Третий и последующие дифференциалы записываются аналогично:

$$d^{n}u = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \dots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{n}u. \tag{1.60}$$

Формулу (1.60) можно доказать по индукции. Не будем здесь приводить это доказательство.

Теорема 12

Дифференциалы порядка выше первого не обладают свойством инвариантности формы.

Доказательство:

Пусть дифференциалы dx_1, dx_2, \ldots, dx_n не постоянны, то есть сами являются функциями. Тогда:

$$d^{2}u = d\left(\frac{\partial u}{\partial x_{1}}\right)dx_{1} + \dots + d\left(\frac{\partial u}{\partial x_{n}}\right)dx_{n} + \frac{\partial u}{\partial x_{1}}d(dx_{1}) + \dots + \frac{\partial u}{\partial x_{n}}d(dx_{n}) =$$

$$= \left(\frac{\partial}{\partial x_{1}}dx_{1} + \dots + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{2}u + \frac{\partial u}{\partial x_{1}} \cdot d^{2}x_{1} + \frac{\partial u}{\partial x_{2}} \cdot d^{2}x_{2} + \dots + \frac{\partial u}{\partial x_{n}} \cdot d^{2}x_{n}.$$
(1.61)

Таким образом, высшие дифференциалы не обладают свойством инвариантности формы.

Замечание Коши

Рассмотрим частный случай, когда $x_1, x_2, \ldots x_n$ являются линейными функциями от $t_1, t_2, \ldots t_n$:

$$x_i = \alpha_{i1}t_1 + \alpha_{i2}t_2 + \dots + \alpha_{im}t_m + \beta_i.$$
 (1.62)

Тогда

$$dx_i = \alpha_{i1}dt_1 + \alpha_{i2}dt_2 + \dots + \alpha_{im}dt_m, \qquad (1.63)$$

то есть dx_i являются постоянными величинами, а значит $d^2x_i = 0$. Таким образом, если $x_1, x_2, \ldots x_n$ зависят от других переменных линейно, то инвариантность есть.

1.14 Формула Тейлора

Согласно одномерной формуле Тейлора, если у функции F(t) существуют производные вплоть до (n+1)-го порядка включительно, то она может быть разложена по формуле Тейлора:

$$F(t) = F(t_0) + F'(t_0) \cdot (t - t_0) + \frac{1}{2!} F''(t_0) (t - t_0)^2 + \dots + \frac{1}{n!} F^{(n)}(t_0) \cdot (t - t_0)^n + \dots$$

$$+\frac{1}{(n+1)!}F^{(n+1)}(t_0+\theta(t-t_0))\cdot(t-t_0)^{n+1}, \quad 0<\theta<1.$$
 (1.64)

Пусть $t - t_0 = \triangle t = dt$, $F(t) - F(t_0) = \triangle F(t_0)$. Тогда формулу Тейлора (1.64) можно переписать в следующем виде:

$$\Delta F(t_0) = dF(t_0) + \frac{1}{2!} d^2 F(t_0) + \dots + \frac{1}{n!} d^n F(t_0) + \frac{1}{(n+1)!} d^{n+1} F(t_0 + \theta \Delta t), \quad 0 < \theta < 1.$$
(1.65)

Заметим, что при этом $dt = t - t_0 = \triangle t$.

Формулу Тейлора, записанную в форме (1.65), можно распространить на случай функции нескольких переменных. Рассмотрим функцию двух переменных f(x,y). Пусть в окрестности некоторой точки (x_0,y_0) она имеет непрерывные производные вплоть до (n+1)-го порядка включительно. Предположим также, что отрезок, соединяющий точки (x_0,y_0) и $(x_0+\Delta x,y_0+\Delta y)$, целиком лежит в рассматриваемой окрестности точки (x_0,y_0) . Тогда:

$$\Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) = df(x_0, y_0) + \frac{1}{2!} d^2 f(x_0, y_0) + \dots$$

$$\dots + \frac{1}{n!} d^n f(x_0, y_0) + \frac{1}{(n+1)!} d^{n+1} f(x_0 + \theta \Delta x, y_0 + \theta \Delta y), \quad 0 < \theta < 1,$$
(1.66)

причем $\triangle x = dx$, $\triangle y = dy$.

Докажем формулу (1.66). Введем новую переменную t следующим образом:

$$x = x_0 + t \cdot \Delta x, \quad y = y_0 + t \cdot \Delta y, \quad 0 \le t \le 1. \tag{1.67}$$

Подставим x и y в функцию f(x,y). Мы получим новую функцию F(t), зависящую только от одной переменной t:

$$F(t) = f(x_0 + t \cdot \Delta x, y_0 + t \Delta y). \tag{1.68}$$

Формулы (1.67) параметрически задают отрезок, соединяющий точки $M_0(x_0, y_0)$ и $M_1(x_0 + \triangle x, y_0 + \triangle y)$. Тогда вместо приращения функции двух переменных $\Delta f(x_0, y_0)$ мы можем рассматривать приращение

функции одной переменной F(t) ибо эти приращения равны. Но для функции одной переменной F(t) можно применить одномерную формулу Тейлора:

$$\Delta F(0) = F(1) - F(0) = dF(0) + \frac{1}{2!}d^2F(0) + \dots + \frac{1}{n!}d^nF(0) + \frac{1}{(n+1)!}d^{n+1}F(\theta), \quad 0 < \theta < 1,$$
(1.69)

при этом $dt = \triangle t = 1 - 0 = 1$.

Теперь воспользуемся замечанием Коши. При линейной замене переменных высшие дифференциалы будут обладать свойством инвариантности формы. Тогда:

$$dF(0) = f'_x(x_0, y_0)dx + f'_y(x_0, y_0)dy = df(x_0, y_0),$$

$$d^{2}F(0) = f''_{xx}dx^{2} + 2f''_{xy}(x_{0}, y_{0})dxdy + f''_{yy}(x_{0}, y_{0}) = d^{2}f(x_{0}, y_{0}),$$

и так далее. Для (n+1)-го дифференциала получим следующую формулу:

$$d^{n+1}F(\theta) = d^{n+1}f(x_0 + \theta \triangle x, y_0 + \theta \triangle y),$$

что и доказывает формулу (1.66). Заметим, что здесь дифферернциалы dx и dy совпадают с ранее взятыми приращениями $\triangle x$ и $\triangle y$:

$$dx = \triangle x \cdot dt = \triangle x, \quad dy = \triangle y \cdot dt = \triangle y.$$

1.15 Экстремумы функции нескольких переменных

Пусть $P_0\left(x_1^0,\ldots,x_n^0\right)$ — внутренняя точка области определения функции $f\left(x_1,\ldots,x_n\right)$.

Определение

Функция u = f(P) имеет максимум (минимум) в точке $P_0(x_1^0, \ldots, x_n^0)$, если существует окрестность точки P_0 для всех точек $P(x_1, \ldots, x_n)$ которой выполняется неравенство $f(P) \leq f(P_0) \quad (f(P) \geq f(P_0))$.

Замечание

Для обозначения максимума и минимума используется общий термин – экстремум.

Теорема 13 (Необходимое условие экстремума)

Если дифференцируемая функция f(P) достигает экстремума в точке $P_0\left(x_1^0,\ \dots,\ x_n^0\right)$, то в этой точке все ее частные производные равны нулю:

$$\begin{cases}
f'_{x_1}(x_1^0, \dots, x_n^0) = 0, \\
\dots \\
f'_{x_n}(x_1^0, \dots, x_n^0) = 0.
\end{cases}$$
(1.70)

Точки, в которых выполнены эти условия, называются стационарными точками функции $u=f\left(P\right)$.

Доказательство:

Пусть $x_2=x_2^0, \ldots, x_n=x_n^0$. Мы зафиксировали все переменные кроме x_1 и получили функцию одной переменной: $u=f\left(x_1,\ldots,x_n^0\right)$. По условию теоремы мы предположили, что функция достигает экстремума в точке $P_0\left(x_1^0,\ldots,x_n^0\right)$, пусть для определенности это будет экстремуммаксимум. Тогда в некоторой окрестности $\left(x_1^0-\delta,x_1^0+\delta\right)$ будет выполнено неравенство: $f\left(x_1,x_2^0\ldots,x_n^0\right)\leq f\left(x_1^0,x_2^0\ldots,x_n^0\right)$. Таким образом, функция одной переменной достигает в точке $x_1=x_1^0$ максимума, откуда по теореме Ферма следует, что:

$$f'_{x_1}(x_1^0, x_2^0, \dots, x_n^0) = 0.$$
 (1.71)

Аналогично доказывается, что в точке $(x_1^0, x_2^0, \dots, x_n^0)$ остальные производные также равны 0.

Замечание

К точкам, подозрительным на экстремум, кроме стационарных относятся также точки, где частные производные не существуют либо равны ∞ .

Достаточные условия экстремума функции двух переменных

Пусть (x_0, y_0) – стационарная точка функции f(x, y). Предположим также, что функция f(x, y) определена, непрерывна и имеет непрерывные частные производные первого и второго порядков в окрестности точки (x_0, y_0) . В стационарной точке (x_0, y_0) будут выполнены условия:

$$f'_x(x_0, y_0) = 0, \quad f'_y(x_0, y_0) = 0.$$
 (1.72)

Рассмотрим разность $\triangle = f(x,y) - f(x_0,y_0)$ и разложим ее по формуле Тейлора, взяв первые два члена. Первый член будет равен нулю, так как точка (x_0,y_0) – стационарная. Тогда:

$$\triangle = \frac{1}{2!} \Big(f_{xx}''(x_0 + \theta \triangle x, y_0 + \theta \triangle y) \triangle x^2 + 2f_{xy}''(x_0 + \theta \triangle x, y_0 + \theta \triangle y) \triangle x \triangle y + f_{yy}''(x_0 + \theta \triangle x, y_0 + \theta \triangle y) \triangle y^2 \Big).$$

Здесь $0 < \theta < 1$, $\triangle x = x - x_0$, $\triangle y = y - y_0$. Введем обозначения для значений производных в точке (x_0, y_0) :

$$a_{11} = f_{xx}''(x_0, y_0), \quad a_{12} = f_{xy}''(x_0, y_0), \quad a_{22} = f_{yy}''(x_0, y_0).$$
 (1.73)

В сдвинутой точке $(x_0 + \theta \triangle x, y_0 + \theta \triangle y)$ положим

$$f''_{xx}(x_0 + \theta \triangle x, y_0 + \theta \triangle y) = a_{11} + \alpha_{11},$$

$$f''_{xy}(x_0 + \theta \triangle x, y_0 + \theta \triangle y) = a_{12} + \alpha_{12},$$

$$f''_{yy}(x_0 + \theta \triangle x, y_0 + \theta \triangle y) = a_{22} + \alpha_{22},$$

где $\alpha_{11} = \alpha_{11} \left(\sqrt{\Delta x^2 + \Delta y^2} \right), \quad \alpha_{12} = \alpha_{12} \left(\sqrt{\Delta x^2 + \Delta y^2} \right),$ $\alpha_{22} = \alpha_{22} \left(\sqrt{\Delta x^2 + \Delta y^2} \right)$ – бесконечно малые при $\Delta x \to 0, \ \Delta y \to 0.$ С учетом введенных обозначений, разность Δ примет вид:

$$\triangle = \frac{1}{2} \Big(a_{11} \triangle x^2 + 2a_{12} \triangle x \triangle y + a_{22} \triangle y^2 + \alpha_{11} \triangle x^2 + 2\alpha_{12} \triangle x \triangle y + \alpha_{22} \triangle y^2 \Big).$$

$$(1.74)$$

Как будет показано в дальнейшем, поведение разности \triangle зависит от знака выражения $a_{11}a_{22}-a_{12}^2$. Введем полярные координаты, взяв за начало координат точку (x_0,y_0) и проведя через нее полярную ось параллельно оси OX:

$$\begin{cases} \Delta x = \rho \cos \varphi, \\ \Delta y = \rho \sin \varphi. \end{cases}$$
 (1.75)

Тогда расстояние между точками (x_0, y_0) и (x, y) примет вид: $\rho = \sqrt{\triangle x^2 + \triangle y^2}$. Перепишем выражение для \triangle в новых координатах:

$$\Delta = \frac{\rho^2}{2} \Big(\left(a_{11} \cos^2 \varphi + 2a_{12} \cos \varphi \sin \varphi + a_{22} \sin^2 \varphi \right) +$$

$$+ \left(\alpha_{11}(\rho) \cos^2 \varphi + 2\alpha_{12}(\rho) \cos \varphi \sin \varphi + \alpha_{22}(\rho) \sin^2 \varphi \right) \Big).$$
(1.76)

Рассмотрим различные случаи для знака выражения $a_{11}a_{22} - a_{12}^2$.

1 случай. $a_{11}a_{22}-a_{12}^2>0$. Для выполнения этого неравенства необходимо чтобы было выполнено: $a_{11}a_{22}>0$, следовательно $a_{11}\neq 0$. Тогда первый трехчлен в скобках можно представить в виде:

$$\frac{1}{a_{11}} \left(\underbrace{\left(a_{11} \cos \varphi + a_{12} \sin \varphi \right)^2}_{>0} + \underbrace{\left(a_{11} a_{22} - a_{12}^2 \right) \sin^2 \varphi}_{>0} \right), \tag{1.77}$$

то есть это выражение при всех φ сохраняет знак коэффициента a_{11} . Следовательно, его абсолютная величина как непрерывная по φ функция на замкнутом промежутке $[0, 2\pi]$ достигает своего наименьшего значения m (по второй теореме Вейерштрасса):

$$|a_{11}\cos^2\varphi + 2a_{12}\cos\varphi\sin\varphi + a_{22}\sin^2\varphi| \ge m > 0.$$
 (1.78)

С другой стороны, $\alpha_{11}(\rho)$, $\alpha_{12}(\rho)$, $\alpha_{22}(\rho)$ – бесконечно малые величины, а значит в некоторой окрестности точки (x_0, y_0) будет выполнено:

$$\left|\alpha_{11}(\rho)\cos^{2}\varphi + 2\alpha_{12}(\rho)\cos\varphi\sin\varphi + \alpha_{22}(\rho)\sin^{2}\varphi\right| \le$$
$$\le \left|\alpha_{11}(\rho)\right| + 2\left|\alpha_{12}(\rho)\right| + \left|\alpha_{22}(\rho)\right| < m$$

для любого φ при достаточно малых ρ . Тогда из оценок (1.77) и (1.78) получаем, что разность Δ будет сохранять знак a_{11} в некоторой окрестности точки (x_0, y_0) . Подведем итог. Если $a_{11} > 0$, то $\Delta > 0$ и в точке (x_0, y_0) достигается минимум. Если $a_{11} < 0$, то $\Delta < 0$ и в точке (x_0, y_0) будет максимум.

2 случай. $a_{11}a_{22} - a_{12}^2 < 0$.

а) $a_{11} \neq 0$. Тогда при $\varphi = \varphi_1 = 0$ выражение в скобках в (1.77) сведется к a_{11}^2 , то есть будет положительно. Если же определить $\varphi = \varphi_2$ из условия:

$$a_{11}\cos\varphi_2 + a_{12}\sin\varphi_2 = 0$$
, где $\sin\varphi_2 \neq 0$,

то выражение в скобках в(1.77) сведется к $(a_{11}a_{22}-a_{12}^2)\sin^2\varphi_2$ и будет отрицательно. При достаточно малых ρ второй трехчлен в формуле (1.76) для Δ будет сколь угодно мал и знак Δ определится знаком первого трехчлена. Таким образом, в любой окрестности точки (x_0, y_0) найдутся лучи $\varphi = \varphi_1$ и $\varphi = \varphi_2$, на которых Δ будет иметь значения разных знаков. А значит экстремума в точке (x_0, y_0) быть не может.

б) $a_{11} = 0$. Тогда первый трехчлен в скобках в формуле (1.76) для \triangle сведется к выражению:

$$2a_{12}\cos\varphi\sin\varphi + a_{22}\sin^2\varphi = \sin\varphi \left(2a_{12}\cos\varphi + a_{22}\sin\varphi\right).$$

Так как $a_{12} \neq 0$ (ибо мы рассматриваем случай $a_{11}a_{22}-a_{12}^2 < 0, \ a_{11}=0),$ то можно найти угол $\varphi_1 \neq 0$, для которого будет выполнено:

$$|a_{22}| |\sin \varphi_1| < 2|a_{12}| |\cos \varphi_1|.$$

Но тогда при $\varphi = \varphi_1$ и $\varphi = -\varphi_1$ трехчлен будет иметь противоположные знаки, то есть нашлись направления на которых \triangle принимает разные знаки и экстремума в точке (x_0, y_0) быть не может.

Теорема 14 (Достаточные условия экстремума)

Если $a_{11}a_{22}-a_{12}^2>0$, то в рассматриваемой стационарной точке (x_0,y_0) функция f(x,y) имеет экстремум: максимум при $a_{11}<0$ и минимум при

 $a_{11} > 0$. Если $a_{11}a_{22} - a_{12}^2 < 0$, то экстремума нет.

Замечание

Случай $a_{11}a_{22}-a_{12}^2=0$ не рассмотрен. Здесь для решения вопроса нужно использовать высшие производные.

Достаточные условия экстремума. Случай n переменных.

Рассмотрим теперь общий случай. Пусть функция $f(x_1, \ldots, x_n)$ определена, непрерывна и имеет непрерывные проивзводные первого и второго порядков в окрестности некоторой стационарной точки (x_1^0, \ldots, x_n^0) . Разложим разность $\Delta = f(x_1, \ldots, x_n) - f(x_1^0, \ldots, x_n^0)$ по формуле Тейлора, взяв первые два члена. Первый член будет равен нулю, так как точка (x_0, y_0) – стационарная. Тогда:

$$\triangle = \frac{1}{2} \sum_{i,k=1}^{n} f_{x_i x_k}'' \left(x_1^0 + \theta \triangle x_1, \dots, x_n^0 + \theta \triangle x_n \right) \triangle x_i \triangle x_k.$$

Здесь $0 < \theta < 1$, $\Delta x_i = x_i - x_i^0$. Введем обозначения для значений производных в точке (x_1^0, \ldots, x_n^0) :

$$f_{x_i x_k}''(x_1^0, \ldots, x_n^0) = a_{ik}, \quad i, k = 1, 2, \ldots, n.$$
 (1.79)

Кроме того, положим

$$f_{x_i x_k}''(x_1^0 + \theta \triangle x_1, \ldots, x_n^0 + \theta \triangle x_n) = a_{ik} + \alpha_{ik},$$

где $\alpha_{ik} = \alpha_{ik} \left(\sqrt{\Delta x_1^2 + \ldots + \Delta x_n^2} \right)$ – бесконечно малые при $\Delta x_1 \to 0, \ldots, \ \Delta x_n \to 0.$ Ясно, что $a_{ik} = a_{ki}, \ \alpha_{ik} = \alpha_{ki}.$

C учетом введенных обозначений, разность \triangle примет вид:

$$\triangle = \frac{1}{2} \Big(\sum_{i,k=1}^{n} a_{ik} \triangle x_i \triangle x_k + \sum_{i,k=1}^{n} \alpha_{ik} \triangle x_i \triangle x_k \Big). \tag{1.80}$$

Первая из сумм – это второй диффереренциал функции f в рассматриваемой точке. Такую функцию называют квадратичной формой от переменных $\Delta x_1, \ldots, \Delta x_n$.

Определение

Квадратичную форму

$$\sum_{i,k=1}^{n} a_{ik} y_i y_k, \quad a_{ik} = a_{ki}, \tag{1.81}$$

называют положительно определенной (отрицательно определенной), если она имеет положительные (отрицательные) значения при всех значениях аргументов, не равных одновременно нулю. Например, форма

$$-2\triangle x_1^2 + 4\triangle x_1\triangle x_2 - 3\triangle x_2^2 - 3\triangle x_3^2 = -2(\triangle x_1 - \triangle x_2)^2 - \triangle x_2^2 - 3\triangle x_3^2$$

будет отрицательно определенной.

Теорема 15 (Критерий Сильвестра)

Для того, чтобы квадратичная форма была положительно (отрицательно) определенной, необходимо и достаточно, чтобы выполнялась цепочка неравенств:

$$a_{11} > 0, \quad \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \quad \dots, \quad \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} > 0. \quad (1.82)$$

Так как отрицательно определенная форма при изменении знака всех ее членов перейдет в положительно определенную, то, учитывая особенности вынесения знака из определителя, несложно получить характеристику отрицательной формы:

$$a_{11} < 0,$$
 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, (-1)^n \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} > 0. (1.83)$

Критерий доказывается в курсе линейной алгебры.

Теорема 16 (Достаточные условия экстремума функции n переменных)

Если второй дифференциал, то есть квадратичная форма

$$\sum_{i,k=1}^{n} a_{ik} \triangle x_i \triangle x_k, \quad \text{где } a_{ik} = f''_{x_i x_k}(x_1^0, \dots, x_n^0)$$
 (1.84)

оказывается положительно определенной, то в проверяемой стационарной точке (x_1^0, \ldots, x_n^0) будет минимум (максимум).

Доказательство:

Введем расстояние между точками $P_0(x_1^0, \ldots, x_n^0)$ и $P(x_1, \ldots, x_n)$:

$$\rho = \sqrt{\Delta x_1^2 + \ldots + \Delta x_n^2}.$$

Введем обозначение:

$$\frac{\triangle x_i}{\rho} = \xi_i, \quad i = 1, 2, \dots, n.$$

Тогда выражение для \triangle примет вид:

$$\triangle = \frac{\rho^2}{2} \Big(\sum_{i,k=1}^n a_{ik} \xi_i \xi_k + \sum_{i,k=1}^n \alpha_{ik} \xi_i \xi_k \Big).$$
 (1.85)

Числа ξ_i не обращаются в нуль одновременно, поэтому если форма (1.84) положительно определенная, то первая сумма в формуле (1.85) также будет положительной. Более того, так как

$$\sum_{i=1}^{n} \xi_i^2 = 1, \tag{1.86}$$

то найдется такое положительное число m, что для любого ξ_i будет выполнено:

$$\sum_{i,k=1}^{n} a_{ik} \xi_i \xi_k \ge m. \tag{1.87}$$

Объясним последнее неравенство. Данная сумма представляет собой непрерывную функцию от аргументов ξ_i во всем пространстве, в частности, на множестве M тех точек, которые представляют собой сферическую поверхность, определяемую соотношением (1.86). Множество M замкнутое (то есть содержит все свои точки сгущения). Следовательно, по второй теореме Вейерштрасса сумма из формулы (1.87) будет достигать на множестве M своего наименьшего значения, причем это значение будет положительным (как и все значения в M).

С другой стороны, вторая сумма в (1.85) при достаточно малых ρ будет меньше числа m, то есть вся скобка будет положительной величиной. Таким образом, в достаточно малой сфере с центром в точке (x_1^0, \ldots, x_n^0) разность Δ будет положительна, то есть в этой точке функция $f(x_1, \ldots, x_n)$ имеет минимум.

Аналогично доказывается случай, когда форма (1.84) будет отрицательно определенной.

Условия отсутствия экстремума

Квадратичная форма (1.81) называется неопределенной, если она может принимать значения противоположных знаков. Приведем пример. Рассмотрим квадратичную форму

$$8y_1^2 + y_2^2 + y_3^2 - y_1y_2 - y_1y_3 - 6y_2y_3.$$

При $y_1 = 5, \ y_2 = 1, \ y_3 = 1$ значение формы равно +186.

При $y_1 = 0$, $y_2 = 5$, $y_3 = 6$ значение формы равно -119.

Теперь мы можем дополнить теорему 16 о достаточных условиях экстремума функции n переменных.

Замечание к теореме 16

Если квадратичная форма будет неопределенной, то в проверяемой стационарной точке (x_1^0, \ldots, x_n^0) нет экстремума.

Доказательство:

Пусть при $\Delta x_i = h_i, \quad i = 1, 2, \ldots, \ n$ форма (1.84) принимает положительное значение:

$$\sum_{i,k=1}^{n} a_{ik} h_i h_k > 0, \tag{1.88}$$

а при $\Delta x_i = g_i, \quad i = 1, 2, \ldots, n$ – отрицательное:

$$\sum_{i,k=1}^{n} a_{ik} g_i g_k < 0. (1.89)$$

Зададим прямую, проходящую через две точки (x_1^0, \ldots, x_n^0) и $(x_1^0+h_1, \ldots, x_n^0+h_n)$:

$$\triangle x_i = h_i t$$
, $0 < t \le 1, i = 1, 2, \dots, n$.

В формуле (1.80) для \triangle вынесем за скобки t^2 :

$$\triangle = \frac{t^2}{2} \Big(\sum_{i,k=1}^n a_{ik} h_i h_k + \sum_{i,k=1}^n \alpha_{ik} h_i h_k \Big).$$
 (1.90)

Первая сумма в скобках есть некоторое положительное число (в силу (1.88)). Вторая сумма будет сколь угодно мала при $\Delta x_i \to 0$. Следовательно, Δ будет положительным, то есть в некоторой окрестности точки (x_1^0, \ldots, x_n^0) будет выполнено:

$$f(x_1, \ldots, x_n) > f(x_1^0, \ldots, x_n^0).$$

С другой стороны, если взять другую прямую, соединяющую две точки (x_1^0, \ldots, x_n^0) и $(x_1^0 + g_1, \ldots, x_n^0 + g_n)$:

$$\triangle x_i = q_i t, \quad 0 < t \le 1, \ i = 1, 2, \dots, n,$$

то в ее точках в некоторой окрестности точки (x_1^0, \ldots, x_n^0) будет выполнено:

$$f(x_1, \ldots, x_n) < f(x_1^0, \ldots, x_n^0).$$

Таким образом, мы доказали, что в проверяемой стационарной точке не может быть ни максимума, ни минимума. ■

Замечание

Может оказаться, что форма не может принимать значения разных знаков, но при этом не является определенной, так как обращается в нуль не только при нулевых значениях аргументов. Например, форма

$$-y_1^2 + 2y_1y_2 - y_2^2 - y_3^2 = -(y_1 + y_2)^2 - y_3^2 \le 0$$

положительных значений не принимает, но обращается в нуль при $y_3=0,\ y_1=y_2\neq 0.$

В случае полуопределенной квадратичной формы экстремум функции может быть, а может и не быть. Это зависит от поведения высших производных. Данный случай мы изучать не будем.

1.16 Наибольшее и наименьшее значения функции

Пусть функция $u = f(x_1, \ldots, x_n)$ определена и непрерывна в некоторой ограниченной замкнутой области D и имеет в этой области конечные частные производные. Тогда по второй теореме Вейерштрасса в этой области найдется точка (x_1^0, \ldots, x_n^0) , в которой функция достигает своего наибольшего (наименьшего) значения. Если эта точка лежит внутри области D, то в ней будет достигнут экстремум-максимум (минимум). Однако, своего наибольшего (наименьшего) значения функця может достигать и на границе области. Поэтому алгоритм действий таков. Сначала нужно найти все внутренние точки, подозрительные на экстремум и вычислить в них значения функции. Затем эти значения сравниваются со значениями функции на границе области, из них выбирается наибольшее и наименьшее.

Пример

Найдем наибольшее значение функции $u=\sin x+\sin y-\sin(x+y)$ в прямоугольной области: $0\leq x\leq \pi,\ 0\leq y\leq \pi.$

Рис. 4: Область $0 \le x \le \pi$, $0 \le y \le \pi$.

Для начала из необходимого условия экстремума определим стационар-

ные точки:

$$\begin{cases} u'_x = \cos x - \cos(x+y) = 0 \\ u'_y = \cos y - \cos(x+y) = 0 \end{cases} \Leftrightarrow \begin{cases} \cos x = \cos y \\ \cos(x+y) = \cos x \end{cases} \Leftrightarrow \begin{cases} x = y \\ \cos 2x = \cos x \end{cases} \Leftrightarrow \begin{cases} x = y \\ 2\cos^2 x - \cos x - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x = y, \\ \cos x = -\frac{1}{2}, \\ \cos x = -\frac{1}{2}, \end{cases}$$
(1.91)

то есть $x=y=\frac{2\pi}{3}$. Значение функции в стационарной точке:

$$u\left(\frac{2\pi}{3}, \frac{2\pi}{3}\right) = \frac{3\sqrt{3}}{2}.$$

Посчитаем значения функции на границах области. На прямых x=0 и y=0 функция будет равна 0.

$$x = \pi : u = 2\sin y \implies u' = 2\cos y = 0 \implies y = \frac{\pi}{2} \implies u\left(\pi, \frac{\pi}{2}\right) = 2.$$
$$y = \pi : u = 2\sin x \implies u' = 2\cos x = 0 \implies x = \frac{\pi}{2} \implies u\left(\pi, \frac{\pi}{2}\right) = 2.$$

В угловых точках: $u(0,0)=u(0,\pi)=u(\pi,0)=u(\pi,\pi)=0$. Сравнивая все найденные значения функции, получаем, что:

$$u_{ ext{hau60льшеe}} = rac{3\sqrt{3}}{2}, \quad$$
 достигается в точке $\left(rac{2\pi}{3}, rac{2\pi}{3}
ight)$.

1.17 Неявные функции

Рассмотрим функцию двух переменных F(x,y), заданную в некоторой области D, для которой выполнено уравнение:

$$F(x,y) = 0. (1.92)$$

Если для любого x существует одно или несколько значений y таких, что (x,y) удовлетворяет уравнению (1.92), то говорят, что уравнение (1.92) определяет однозначную или многозначную функцию y=f(x), для которой будет выполнено:

$$F(x, f(x)) = 0.$$
 (1.93)

Пример 1

Рассмотрим эллипс:

$$F(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0.$$
 (1.94)

Решение уравнения (1.94) представляет из себя двузначную функцию от x на отрезке [-a,a]:

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}. (1.95)$$

Здесь удалось получить явное аналитическое выражение для функции y = f(x). Такое выражение удается получить не всегда.

Пример 2

$$y\sin x + x\cos y = 0. (1.96)$$

Здесь явное выражение для функции получить не удается.

Определение

Функция y = f(x) называется неявной, если она задана при помощи неразрешенного относительно y уравнения (1.92).

Теорема 17 (Теорема о неявной функции)

Пусть для функции F(x,y) выполнены следующие условия:

- **1)** Функция F(x,y) определена и непрерывна в прямоугольнике $D = [x_0 \triangle, x_0 + \triangle; y_0 \triangle', y_0 + \triangle'].$
- **2)** Частные производные существуют и непрерывны в D.
- 3) $F(x_0, y_0) = 0$.
- 4) $F'_{y}(x_0, y_0) \neq 0$.

Тогда:

- а) В окрестности точки (x_0, y_0) уравнение F(x, y) = 0 определяет однозначную функцию y = f(x).
- **б)** При $x = x_0$: $f(x_0) = y_0$.
- в) Функция f(x) непрерывна.
- Γ) Функция f(x) имеет непрерывную производную.

Оставим эту теорему без доказательства.

Замечание

Важность условия 4 показывает пример 1.

$$F(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1.$$

Тогда $F_y'=\frac{2}{b^2}y$, то есть $F_y'\neq 0$ всюду кроме вершин большой оси эллипса: (-a,0) и (a,0).

Рис. 5: Эллипс. Иллюстрация к примеру 1

В окрестностях точек A и A_1 (выделены пунктирными прямоугольниками на рисунке) эллипс не задает однозначно функцию y = f(x), поскольку в любых сколь угодно малых окрестностях этих точек у уравнения будет два решения:

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}.$$

Производные от неявно заданной функции

Пусть в некоторой области D выполнены условия теоремы о неявной функции. Тогда в этой области можно найти производную y_x' от неявно заданной функции. Продифференцируем уравнение F(x,y)=0 по переменной x:

$$F'_x(x,y) + F'_y(x,y) \cdot y'_x = 0 \iff y'_x = -\frac{F'_x(x,y)}{F'_y(x,y)}.$$
 (1.97)

Если предположить существование непрерывных вторых производных F''_{xx} , F''_{xy} , F''_{yx} , F''_{yy} , то можно найти вторую производную y''_{xx} , продифференцировав соотношение (1.97):

$$y_{xx}'' = -\frac{(F_{xx}'' + F_{xy}'' \cdot y_x')F_y' - (F_{yx}'' + F_{yy}'' \cdot y_x')F_x'}{(F_y')^2}.$$
 (1.98)

Подставим сюда выражение для y'_x из (1.97):

$$y_{xx}'' = -\frac{(F_{xx}'' - F_{xy}'' \cdot \frac{F_x'}{F_y'})F_y' - (F_{yx}'' + F_{yy}'' \cdot \frac{F_x'}{F_y'})F_x'}{(F_y')^2}.$$
 (1.99)

Неявные функции от нескольких переменных

Теорему о неявной функции можно сформулировать и для функции n переменных:

$$F(x_1, x_2, \ldots, x_n, y) = 0.$$
 (1.100)

В самом общем случае может быть задана система из m уравнений с n+m переменными:

$$\begin{cases}
F_1(x_1, \ldots, x_n, y_1, \ldots, y_m) = 0, \\
\ldots \\
F_m(x_1, \ldots, x_n, y_1, \ldots, y_m) = 0.
\end{cases}$$
(1.101)

Определение

Говорят, что в (n+m)-мерном параллелепипеде

$$(a_1, b_1; \ldots a_n, b_n; c_1, d_1; \ldots c_m, d_m)$$

система (1.101) определяет y_1, \ldots, y_m как однозначные функции от x_1, \ldots, x_n , если для каждой точки (x_1, \ldots, x_n) в n-мерном параллеленипеде $(a_1, b_1; \ldots a_n, b_n)$ эта система уравнений имеет одну и только одну систему решений y_1, \ldots, y_m , принадлежащую m-мерному параллеленипеду $(c_1, d_1; \ldots c_m, d_m)$.

Замечание

В вопросе о существовании неявной функции, определяемой уравнением (1.92), основную роль играло условие: $F'_y \neq 0$. Для системы неявных функций аналогичную роль будет играть якобиан:

$$J = \frac{D(F_1, \dots, F_m)}{D(y_1, \dots, y_m)} = \begin{vmatrix} \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} & \dots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial y_1} & \frac{\partial F_m}{\partial y_2} & \dots & \frac{\partial F_m}{\partial y_m} \end{vmatrix}.$$
(1.102)

Теорема 18 (Система m неявных функций n+m переменных) Предположим, что:

1) Функции F_1, \ldots, F_m определены и непрерывны в (n+m)-мерном прямоугольном параллелепипеде

$$D = [x_1^0 - \triangle_1, x_1^0 + \triangle_1; \dots x_n^0 - \triangle_n, x_n^0 + \triangle_n; y_1^0 - \triangle_1', y_1^0 + \triangle_1'; \dots y_m^0 - \triangle_m', y_m^0 + \triangle_m']$$
 с центром в точке $(x_1^0, \dots x_n^0; y_1^0, \dots y_m^0)$.

- **2)** Частные производные от этих функций в D существуют и непрерывны по всем аргументам.
- **3)** Точка $(x_1^0, \ldots y_m^0)$ удовлетворяет системе (1.101).
- **4)** Якобиан $J \neq 0$ в точке $(x_1^0, \ldots y_m^0)$.

Тогда:

а) В окрестности точки $(x_1^0, \ldots y_m^0)$ система уравнений (1.101) определяет y_1, \ldots, y_m как однозначные функции от x_1, \ldots, x_n :

$$y_1 = f_1(x_1, \ldots, x_n), \ldots, y_m = f_m(x_1, \ldots, x_n).$$

- **б)** При $x_1 = x_1^0, \ldots, x_n = x_n^0$ эти функции равны, соответственно $y_1^0, \ldots, y_m^0.$
- в) Функции f_1, \ldots, f_m непрерывны.
- \mathbf{r}) Функции f_1, \ldots, f_m имеют непрерывные частные производные по всем аргументам.

Эту теорему также оставим без доказательства.

1.18 Условный экстремум

Рассмотрим вопрос об экстремуме функции $f(x_1, \ldots, x_{n+m})$ в предположении, что переменные x_1, \ldots, x_{n+m} подчинены m уравнениям связи:

$$\Phi_i(x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m}) = 0, \quad i = 1, 2, \ldots, m.$$
 (1.103)

Определение

Говорят, что в точке $M_0(x_1^0, \ldots, x_{n+m}^0)$, удовлетворяющей уравнениям

связи, функция $f(x_1, \ldots, x_{n+m})$ имеет условный максимум (минимум), если неравенство

$$f(x_1, \ldots, x_{n+m}) \le f(x_1^0, \ldots, x_{n+m}^0)$$

 $\left(f(x_1, \ldots, x_{n+m}) \ge f(x_1^0, \ldots, x_{n+m}^0)\right)$

выполняется в некоторой окрестности точки M_0 для всех ее точек, удовлетворяющих уравнениям связи.

Пусть выполнены условия теоремы о неявной функции и из уравнений связи можно выразить x_{n+1}, \ldots, x_{n+m} через x_1, \ldots, x_n . Тогда полученные выражения можно подставить в функцию f и найти у полученной функции n переменных обычный экстремум. Если x_{n+1}, \ldots, x_{n+m} явно выразить не удается, то рассмотрим дифференциал df. По свойству инвариантности формы:

$$df = \sum_{i=1}^{n+m} \frac{\partial f}{\partial x_i} dx_i = 0,$$

где $dx_{n+1}, \ldots, dx_{n+m}$ – дифференциалы неявных функций, определяемых уравнениями связи:

$$\sum_{i=1}^{n+m} \frac{\partial \Phi_j}{\partial x_i} dx_i = 0, \quad j = 1, 2, \dots m.$$
 (1.104)

Выразим dx_{n+1} , ..., dx_{n+m} через dx_1 , ..., dx_n из системы соотношений (1.104) и подставим их в выражение для дифференциала df. Затем приведем подобные члены и приравняем к нулю коэффициенты при каждом dx_i . Мы получим необходимые условия условного экстремума.

1.19 Метод неопределенных множителей Лагранжа

Найдем экстремум функции f(x,y) при условии: g(x,y)=C. Необходимое условие экстремума для функции f(x,y):

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \Leftrightarrow df = f'_x dx + f'_y dy = 0.$$
 (1.105)

Дифференциалы dx и dy здесь не являются независимыми:

$$dg = g'_x dx + g'_y dy = 0 \iff dy = -\frac{g'_x}{g'_y} dx.$$
 (1.106)

Подставим выражение для dy из (1.106) в уравнение (1.105):

$$f'_x dx - f'_y \cdot \frac{g'_x}{g'_y} dx = 0 \iff /dx \neq 0/ \iff f'_x = f'_y \cdot \frac{g'_x}{g'_y}.$$
 (1.107)

Мы считаем, что уравнение g(x,y) = C определяет кривую. Следовательно, $g'_x \neq 0$, $g'_y \neq 0$ ибо в ином случае были бы выполнены необходимые условия экстремума ($g'_x = 0$, $g'_y = 0$) и уравнение g(x,y) = C определяло бы не кривую, а точки на плоскости (либо всю плоскость). С учетом сказанного, формулу (1.107) можно переписать в виде:

$$\frac{f_x'}{g_x'} = \frac{f_y'}{g_y'} = \lambda, \quad (обозначение) \tag{1.108}$$

что эквивалентно системе уравнений:

$$\begin{cases} f'_x - \lambda g'_x = 0, \\ f'_y - \lambda g'_y = 0. \end{cases}$$
 (1.109)

Система (1.109) задает необходимые условия экстремума для функции $f - \lambda g$ без условий связи.

Геометрический смысл условия 1.108

Нарисуем линии уровня для функции f(x,y): f(x,y) = const.

Рис. 6: Линии уровня функции f(x,y)

Здесь точка A – это точка максимума функции f(x,y). Данный рисунок можно рассматривать как карту рельефа местности, точку A –

как вершину горы, условие связи g(x,y)=C как дорогу, по которой мы движемся. Точка B соответствует наивысшей точке дороги. Мы ее достигнем, когда будем двигаться по дороге параллельно линии уровня f(x,y)=const. Из уравнения 1.105 следует, что касательный вектор к линии уровня будет иметь координаты (f'_x,f'_y) . Касательный вектор к линии дороги g(x,y)=C будет иметь координаты (g'_x,g'_y) . Условие параллельности этих векторов – это пропорциональность их координат:

$$\frac{f_x'}{g_x'} = \frac{f_y'}{g_y'}.$$

Точка B называется точкой условного экстремума.

Замечание

Метод неопределенных множителей Лагранжа работает и при произвольном числе уравнений связи:

$$\begin{cases}
\Phi_1(x_1, \ldots, x_n) = C_1, \\
\dots \\
\Phi_m(x_1, \ldots, x_n) = C_m.
\end{cases}$$
(1.110)

В этом случае нужно искать экстремум функции

 $f - \lambda_1 \Phi_1 - \lambda_2 \Phi_2 - \ldots - \lambda_m \Phi_m$. Координаты стационарных точек будут зависеть от $\lambda_1, \ldots, \lambda_m$. Тогда коэффициенты $\lambda_1, \ldots, \lambda_m$ можно найти из условий связи (1.110).

Вывод закона преломления света из принципа Ферма

<u>Принцип Ферма:</u> свет распространяется по траектории, требующей наименьшего времени прохождения. Выведем закон преломления света при переходе из одной однородной среды в другую.

Рис. 7: Преломление света при переходе из среды 1 в среду 2

Пусть v_1 и v_2 – скорость света в среде 1 и 2 соответственно. Найдем связь между углом падения α_1 и преломления α_2 . Луч света попадает из точки $A(-x_1,y_1)$ в точку $B(x_2,y_2)$. Запишем это в виде условия связи.

$$MN = MO + ON = AC + BD = x_2 - (-x_1) = x_2 + x_1.$$
 (1.111)

С другой стороны:

$$AC = y_1 \operatorname{tg} \alpha_1, \quad BD = y_2 \operatorname{tg} \alpha_2.$$

Тогда
$$AC + BD = y_1 \operatorname{tg} \alpha_1 + y_2 \operatorname{tg} \alpha_2.$$
 (1.112)

Сравнивая (1.111) и (1.112), получаем условие связи:

$$y_1 \operatorname{tg} \alpha_1 + y_2 \operatorname{tg} \alpha_2 = x_2 + x_1.$$
 (1.113)

Согласно принципу Ферма, нам нужно минимизировать функцию времени прохождения света:

$$t_{\text{прохождения}} = \frac{AO}{v_1} + \frac{BO}{v_2} = \frac{y_1}{v_1 \cos \alpha_1} + \frac{y_2}{v_2 \cos \alpha_2}.$$
 (1.114)

Найдем экстремум функции (1.114) при условии (1.113).

$$g(\alpha_1, \alpha_2) = y_1 \operatorname{tg} \alpha_1 + y_2 \operatorname{tg} \alpha_2 - x_2 - x_1 = 0. \tag{1.115}$$

Согласно методу Лагранжа, вместо поиска условного экстремума функции (1.114) мы будем искать безусловный экстремум для функции

$$t_{\text{прохождения}} - \lambda g = \frac{y_1}{v_1 \cos \alpha_1} + \frac{y_2}{v_2 \cos \alpha_2} - \lambda \left(y_1 \operatorname{tg} \alpha_1 + y_2 \operatorname{tg} \alpha_2 - x_2 - x_1 \right).$$
 (1.116)

Напишем необходимые условия экстремума:

$$\begin{cases}
\frac{\partial}{\partial \alpha_{1}} \left(t_{\text{прохождения}} - \lambda g \right) = 0 \\
\frac{\partial}{\partial \alpha_{2}} \left(t_{\text{прохождения}} - \lambda g \right) = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\frac{y_{1} \sin \alpha_{1}}{v_{1} \cos^{2} \alpha_{1}} - \frac{\lambda y_{1}}{\cos^{2} \alpha_{1}} = 0 \\
\frac{y_{2} \sin \alpha_{2}}{v_{2} \cos^{2} \alpha_{2}} - \frac{\lambda y_{2}}{\cos^{2} \alpha_{2}} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\lambda = \frac{\sin \alpha_{1}}{v_{1}} \\
\lambda = \frac{\sin \alpha_{2}}{v_{2}}
\end{cases}
\Rightarrow \frac{\sin \alpha_{1}}{\sin \alpha_{2}} = \frac{v_{1}}{v_{2}}.$$
(1.117)

Таким из необходимых условий экстремума для функции мы получили связь α_1 и α_2 . Это так называемый закон Снеллиуса (закон преломления света).

1.20 Векторная функция скалярного аргумента

Поставим в соответствие каждому значению аргумента t некоторый вектор $\overrightarrow{a}(t)$:

$$\overrightarrow{a}(t) = a_x(t)\overrightarrow{i} + a_y(t)\overrightarrow{j} + a_z(t)\overrightarrow{k}. \tag{1.118}$$

Определение

Годографом вектора $\overrightarrow{a}(t)$ называется кривая, которую вычерчивает конец вектора $\overrightarrow{a}(t)$ при изменении параметра t при условии, что начало вектора $\overrightarrow{a}(t)$ находится в точке (0,0,0).

Пример

Вектор $\overrightarrow{a}(t)=4\cos t$ $\overrightarrow{i}+4\sin t$ $\overrightarrow{j}+2t$ \overrightarrow{k} задает винтовую линию. Запишем уравнение ее первого витка параметрически:

$$\begin{cases} x = 4\cos t, \\ y = 4\sin t, \\ z = 2t, \\ 0 \le t \le 2\pi. \end{cases}$$

Определение

Вектор \overrightarrow{a} называется пределом вектор-функции $\overrightarrow{a}(t)$ при $t \to t_0$, если $|\overrightarrow{a}(t) - \overrightarrow{a}| \xrightarrow[t \to t_0]{} 0$.

Определение

Производной вектор-функции $\overrightarrow{a(t)}$ в данной точке t называется

$$\lim_{\Delta t \to 0} \frac{\overrightarrow{a}(t + \Delta t) - \overrightarrow{a}(t)}{\Delta t} = \overrightarrow{a}'(t). \tag{1.119}$$

Пусть вектор задан в координатной форме: $\overrightarrow{a}(t)=a_x\overrightarrow{i}+a_y\overrightarrow{j}+a_z\overrightarrow{k}$. Тогда:

$$\overrightarrow{a}'(t) = a'_x \overrightarrow{i} + a'_y \overrightarrow{j} + a'_z \overrightarrow{k}.$$

Если мы зададим годограф параметрически:

$$\begin{cases} x = a_x(t), \\ y = a_y(t), \\ z = a_z(t), \end{cases}$$

то касательный вектор к годографу имеет координаты (a'_x, a'_y, a'_z) . Таким образом, $\overrightarrow{a}'(t)$ задает касательный вектор к годографу.

Пример

Пусть $\overrightarrow{r}(t)$ – это вектор перемещения точки. Тогда вектор $\overrightarrow{r}'(t)$ задает скорость движения точки.

1.21 Касательная прямая и нормальная плоскость к кривой

Пусть прямая – это годограф вектора $\overrightarrow{r}(t) = x(t)\overrightarrow{i} + y(t)\overrightarrow{j} + z(t)\overrightarrow{k}$. Тогда параметрическое задание кривой имеет вид:

$$\begin{cases} x = x(t), \\ y = y(t), \\ z = z(t). \end{cases}$$

Пусть $x_0 = x(t_0), \ y_0 = y(t_0), \ z_0 = z(t_0)$ – некоторая точка на этой кривой. Касательный вектор к кривой можно задать через производную от

годографа $\overrightarrow{r}'(t)$. Это направляющий вектор касательной к кривой. Тогда уравнение касательной, проходящей через данную точку (x_0, y_0, z_0) , примет вид:

$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}.$$
 (1.120)

Замечание

Уравнение касательной к плоской кривой y = f(x) является частным случаем уравнения касательной к пространственной кривой:

$$y - f(x_0) = y'(x_0)(x - x_0). (1.121)$$

Определение

Плоскость, перпендикулярная к касательной прямой в точке (x_0, y_0, z_0) , называется нормальной плоскостью к кривой.

Вектор $(x'(t_0), y'(t_0), z'(t_0))$ перпендикулярен плоскости. Следовательно, уравнение нормальной плоскости, проходящей через точку (x_0, y_0, z_0) , имеет вид:

$$x'(t_0) \cdot (x - x_0) + y'(t_0) \cdot (y - y_0) + z'(t_0) \cdot (z - z_0) = 0. \tag{1.122}$$

Пример

Найдем касательную прямую и нормальную плоскость к винтовой линии:

$$\overrightarrow{r}(t) = 4\cos t \cdot \overrightarrow{i} + 4\sin t \cdot \overrightarrow{j} + 2t \cdot \overrightarrow{k}$$
 в точке $t_0 = \frac{3\pi}{4}$.

Посчитаем производные:

$$x'(t_0) = -4\sin t_0$$
, $y'(t_0) = 4\cos t_0$, $z' = 2$.

Тогда уравнение касательной прямой в точке $t_0 = \frac{3\pi}{4}$ будет иметь вид:

$$\frac{x+4\cdot\frac{\sqrt{2}}{2}}{-4\cdot\frac{\sqrt{2}}{2}} = \frac{y-4\cdot\frac{\sqrt{2}}{2}}{-4\cdot\frac{\sqrt{2}}{2}} = \frac{z-\frac{3\pi}{2}}{2}.$$

Уравнение нормальной плоскости в точке $t_0 = \frac{3\pi}{4}$:

$$-2\sqrt{2}(x+2\sqrt{2}) - 2\sqrt{2}(y-2\sqrt{2}) + 2\left(z - \frac{3\pi}{2}\right) = 0.$$

1.22 Касательная плоскость и нормаль к поверхности

Пусть поверхность задана уравнением F(x, y, z) = 0.

Определение

Прямая называется касательной к поверхности, если она касательная к какой-либо кривой, лежащей на поверхности и проходящей через данную точку.

Теорема 19

Если хотя бы одна из производных F'_x , F'_y , F'_z в данной точке не равна нулю, то все касательные прямые к поверхности в данной точке лежат в одной плоскости. Эта плоскость называется касательной к поверхности.

Следствие из теоремы 19

Уравнение касательной плоскости в точке (x_0, y_0, z_0) :

$$\frac{\partial F}{\partial x}(x_0, y_0, z_0) \cdot (x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0, z_0) \cdot (y - y_0) + \frac{\partial F}{\partial z}(x_0, y_0, z_0) \cdot (z - z_0) = 0.$$
(1.123)

Определение

Прямая, проведенная через точку поверхности перпендикулярно касательной плоскости, называется нормалью к поверхности.

Уравнение нормали:

$$\frac{x - x_0}{\frac{\partial F}{\partial x}(x_0, y_0, z_0)} = \frac{y - y_0}{\frac{\partial F}{\partial y}(x_0, y_0, z_0)} = \frac{z - z_0}{\frac{\partial F}{\partial z}(x_0, y_0, z_0)}.$$
 (1.124)

Вектор с координатами $\left(\frac{\partial F}{\partial x}(x_0,y_0,z_0),\frac{\partial F}{\partial y}(x_0,y_0,z_0),\frac{\partial F}{\partial z}(x_0,y_0,z_0)\right)$ является направляющим вектором нормали.

1) В случае, если поверхность задается явным уравнением

$$z = z(x, y) \iff z - z(x, y) = 0,$$
 (1.125)

координаты нормального вектора имеют вид:

$$\left(-\frac{\partial F}{\partial x}(x_0,y_0), -\frac{\partial F}{\partial y}(x_0,y_0), 1\right).$$

Введем обозначения: $p = \frac{\partial z}{\partial x}(x_0, y_0), \ q = \frac{\partial z}{\partial y}(x_0, y_0)$ и нормируем вектор (-p, -q, 1). Мы получим вектор единичной длины

$$\left(\frac{-p}{\pm\sqrt{1+p^2+q^2}}, \frac{-q}{\pm\sqrt{1+p^2+q^2}}, \frac{1}{\pm\sqrt{1+p^2+q^2}}\right),$$

компоненты которого имеют смысл направляющих косинусов нормали с осями координат:

$$\cos \alpha = \frac{-p}{\pm \sqrt{1 + p^2 + q^2}}, \cos \beta = \frac{-q}{\pm \sqrt{1 + p^2 + q^2}}, \cos \gamma = \frac{1}{\pm \sqrt{1 + p^2 + q^2}}.$$
(1.126)

2) Общий случай.

Пусть поверхность задана параметрически:

$$\cos \alpha = \frac{-p}{\pm \sqrt{1 + p^2 + q^2}}, \cos \beta = \frac{-q}{\pm \sqrt{1 + p^2 + q^2}}, \cos \gamma = \frac{1}{\pm \sqrt{1 + p^2 + q^2}}.$$
(1.127)

Тогда направляющие косинусы нормали к поверхности будут даваться формулами:

$$\cos\alpha = \frac{A}{\pm\sqrt{A^2 + B^2 + C^2}}, \cos\beta = \frac{B}{\pm\sqrt{A^2 + B^2 + C^2}}, \cos\gamma = \frac{C}{\pm\sqrt{A^2 + B^2 + C^2}}, (1.128)$$

где

$$A = \begin{vmatrix} y'_u & z'_u \\ y'_v & z'_v \end{vmatrix}, \quad B = \begin{vmatrix} z'_u & x'_u \\ z'_v & x'_v \end{vmatrix}, \quad C = \begin{vmatrix} x'_u & y'_u \\ x'_v & y'_v \end{vmatrix}.$$
 (1.129)

Пример

Найдем касательную плоскость и нормаль к поверхности $x^2+y^2+z^2=14$ в точке P(1,2,3).

$$\frac{\partial F}{\partial x} = 2x, \quad \frac{\partial F}{\partial y} = 2y, \quad \frac{\partial F}{\partial z} = 2z.$$

Тогда уравнение касательной плоскости в точке P(1,2,3) примет вид:

$$2(x-1) + 4(y-2) + 6(z-3) = 0 \Leftrightarrow x + 2y + 3z - 14 = 0.$$

Уравнение нормали к поверхности $x^2 + y^2 + z^2 = 14$ в точке P(1,2,3):

$$\frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{6} \iff x = \frac{y}{2} = \frac{z}{3}.$$