Package 'spnn'

October 14, 2022

Type Package

Title Scale Invariant Probabilistic Neural Networks

Version 1.2.1
Date 2020-01-07
Author Romin Ebrahimi
Maintainer Romin Ebrahimi < romin.ebrahimi@utexas.edu>
Description Scale invariant version of the original PNN proposed by Specht (1990) <doi:10.1016 0893-6080(90)90049-q=""> with the added functionality of allowing for smoothing along multiple dimensions while accounting for covariances within the data set. It is written in the R statistical programming language. Given a data set with categorical variables, we use this algorithm to estimate the probabilities of a new observation vector belonging to a specific category. This type of neural network provides the benefits of fast training time relative to backpropagation and statistical generalization with only a small set of known observations.</doi:10.1016>
License GPL (>= 2)
Imports MASS (>= 3.1-20), Rcpp (>= 1.0.0)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-01-08 20:30:02 UTC
R topics documented:
spnn-package cspnn.learn cspnn.predict spnn.learn spnn.predict
Index

2 spnn-package

spnn-package

Scale Invariant Probabilistic Neural Networks

Description

Scale invariant version of the original PNN proposed by Specht (1990) <doi:10.1016/0893-6080(90)90049-q> with the added functionality of allowing for smoothing along multiple dimensions while accounting for covariances within the data set. It is written in the R statistical programming language. Given a data set with categorical variables, we use this algorithm to estimate the probabilities of a new observation vector belonging to a specific category. This type of neural network provides the benefits of fast training time relative to backpropagation and statistical generalization with only a small set of known observations.

Details

The package exports 4 main functions:

- spnn.learn Create or update a Scale Invariant Probabilistic Neural Network.
- spnn.predict Estimates the category probabilities of new observations using a fitted SPNN.
- cspnn.learn Create or update a Condensed Scale Invariant Probabilistic Neural Network.
- cspnn.predict Estimates the category probabilities of new observations using a fitted CSPNN.

Author(s)

Romin Ebrahimi <romin.ebrahimi@utexas.edu>

References

- [1] Specht, Donald F. "Probabilistic neural networks." Neural networks 3.1 (1990): 109-118.
- [2] Specht, Donald F. "Enhancements to probabilistic neural networks." Neural Networks, 1992.IJCNN., International Joint Conference on. Vol. 1. IEEE, 1992.
- [3] Ebrahimi, Romin "Scale Invariant Probabilistic Neural Networks." The University of Texas, 2018 https://repositories.lib.utexas.edu/handle/2152/65166

See Also

```
spnn.learn, spnn.predict, cspnn.learn, cspnn.predict
```

```
library(spnn)
library(datasets)

data(iris)

# shuffle the iris data set
indexRandom <- sample(1:nrow(iris), size = nrow(iris), replace = FALSE)</pre>
```

cspnn.learn 3

```
# use 100 observations for training set
trainData <- iris[indexRandom[1:100],]</pre>
# use remaining observations for testing
testData <- iris[indexRandom[101:length(indexRandom)],]</pre>
# fit spnn
spnn <- spnn.learn(set = trainData, category.column = 5)</pre>
# estimate probabilities
predictions <- spnn.predict(nn = spnn, newData = testData[,1:4])</pre>
# reference matrix must be supplied
# this is not the optimal reference matrix
# this matrix is provided as a simple example
xr \leftarrow matrix(c(c(5.00, 3.41, 1.44, 0.24),
               c(5.88, 2.75, 4.23, 1.30),
               c(6.61, 2.97, 5.59, 2.01)),
             nrow = length(unique(trainData$Species)),
             ncol = ncol(trainData) - 1,
             byrow = TRUE)
# fit cspnn
cspnn <- cspnn.learn(set = trainData, xr = xr, category.column = 5)</pre>
# estimate probabilities
predictions <- cspnn.predict(nn = cspnn, newData = testData[,1:4])</pre>
```

cspnn.learn

cspnn.learn

Description

Create or update a Condensed Scale Invariant Probabilistic Neural Network.

Usage

```
cspnn.learn(set, nn, xr, sigma, category.column = 1)
```

Arguments

set

data.frame or matrix representing the training set. The first column (default category.column = 1) is used to define the category or class of each observation.

nn

(optional) A Condensed Scale Invariant Probabilistic Neural Network object. If provided, the training data set input is concatenated to the current training data set of the neural network. If not provided, a new CSPNN object is created.

4 cspnn.learn

xr The m by n reference matrix containing optimal parameters for probability estimation. Where m is the number of unique categories and n is the number of

input factors used. This matrix must be provided

input factors used. This matrix must be provided.

sigma An n by n square matrix of smoothing parameters where n is the number of

input factors. Defaults to using the covariance matrix of the training data set

excluding the category.column.

category.column

The column number of category data. Default is 1.

Details

The function cspnn.learn creates a new Condensed Scale Invariant Probabilistic Neural Network with a given training data set or updates the training data of an existing CSPNN. It sets the parameters: model, set, xr, category.column, categories, sigma, sigmaInverse, k, and n for the CSPNN.

Value

A trained Condensed Scale Invariant Probabilistic Neural Network (CSPNN)

See Also

```
spnn-package, cspnn.predict, iris
```

```
library(spnn)
library(datasets)
data(iris)
# shuffle the iris data set
indexRandom <- sample(1:nrow(iris), size = nrow(iris), replace = FALSE)</pre>
# use 100 observations for training set
trainData <- iris[indexRandom[1:100],]</pre>
# use remaining observations for testing
testData <- iris[indexRandom[101:length(indexRandom)],]</pre>
# reference matrix must be supplied
# this is not the optimal reference matrix
# this matrix is provided as a simple example
xr \leftarrow matrix(c(c(5.00, 3.41, 1.44, 0.24),
               c(5.88, 2.75, 4.23, 1.30),
               c(6.61, 2.97, 5.59, 2.01)),
             nrow = length(unique(trainData$Species)),
             ncol = ncol(trainData) - 1,
             byrow = TRUE)
# fit cspnn
cspnn <- cspnn.learn(set = trainData, xr = xr, category.column = 5)</pre>
```

cspnn.predict 5

```
# estimate probabilities
predictions <- cspnn.predict(nn = cspnn, newData = testData[,1:4])</pre>
```

cspnn.predict

cspnn.predict

Description

Estimates the category probabilities of new observations using a fitted CSPNN.

Usage

```
cspnn.predict(nn, newData)
```

Arguments

nn A trained Condensed Scaled Invariant Probabilistic Neural Network.

newData A matrix of new observations where each row represents a single observation

vector.

Details

Given a trained Condensed Scale Invariant Probabilistic Neural Network and new data, the function cspnn.predict returns the category with the highest probability and the probability estimates for each category.

Value

A list of the guessed categories and the probability estimates of each category.

See Also

```
spnn-package, cspnn.learn, iris
```

```
library(spnn)
library(datasets)

data(iris)

# shuffle the iris data set
indexRandom <- sample(1:nrow(iris), size = nrow(iris), replace = FALSE)

# use 100 observations for training set
trainData <- iris[indexRandom[1:100],]</pre>
```

6 spnn.learn

spnn.learn

spnn.learn

Description

Create or update a Scale Invariant Probabilistic Neural Network.

Usage

```
spnn.learn(set, nn, sigma, category.column = 1)
```

Arguments

set	data.frame or matrix representing the training set. The first column (default category.column = 1) is used to define the category or class of each observation.
nn	(optional) A Scale Invariant Probabilistic Neural Network object. If provided, the training data set input is concatenated to the current training data set of the neural network. If not provided, a new SPNN object is created.
sigma	An n by n square matrix of smoothing parameters where n is the number of input factors. Defaults to using the covariance matrix of the training data set excluding the category.column.
category.column	

The column number of category data. Default is 1.

Details

The function spnn.learn creates a new Scale Invariant Probabilistic Neural Network with a given training data set or updates the training data of an existing SPNN. It sets the parameters: model, set, category.column, categories, sigma, sigmaInverse, k, and n for the SPNN.

spnn.predict 7

Value

A trained Scale Invariant Probabilistic Neural Network (SPNN)

See Also

```
spnn-package, spnn.predict, iris
```

Examples

```
library(spnn)
library(datasets)

data(iris)

# shuffle the iris data set
indexRandom <- sample(1:nrow(iris), size = nrow(iris), replace = FALSE)

# use 100 observations for training set
trainData <- iris[indexRandom[1:100],]

# use remaining observations for testing
testData <- iris[indexRandom[101:length(indexRandom)],]

# fit spnn
spnn <- spnn.learn(set = trainData, category.column = 5)

# estimate probabilities
predictions <- spnn.predict(nn = spnn, newData = testData[,1:4])</pre>
```

spnn.predict

spnn.predict

Description

Estimates the category probabilities of new observations using a fitted SPNN.

Usage

```
spnn.predict(nn, newData)
```

Arguments

nn A trained Scaled Invariant Probabilistic Neural Network.

newData A matrix of new observations where each row represents a single observation

vector.

8 spnn.predict

Details

Given a trained Scale Invariant Probabilistic Neural Network and new data, the function spnn.predict returns the category with the highest probability and the probability estimates for each category.

Value

A list of the guessed categories and the probability estimates of each category.

See Also

```
spnn-package, spnn.learn, iris
```

```
library(spnn)
library(datasets)

data(iris)

# shuffle the iris data set
indexRandom <- sample(1:nrow(iris), size = nrow(iris), replace = FALSE)

# use 100 observations for training set
trainData <- iris[indexRandom[1:100],]

# use remaining observations for testing
testData <- iris[indexRandom[101:length(indexRandom)],]

# fit spnn
spnn <- spnn.learn(set = trainData, category.column = 5)

# estimate probabilities
predictions <- spnn.predict(nn = spnn, newData = testData[,1:4])</pre>
```

Index

```
* network
    spnn-package, 2
*\ neural
    spnn-package, 2
* pnn
    spnn-package, 2
* probability
    {\tt spnn-package}, \textcolor{red}{2}
* spnn
    spnn-package, 2
cspnn.learn, 2, 3, 5
cspnn.predict, 2, 4, 5
iris, 4, 5, 7, 8
spnn (spnn-package), 2
spnn-package, 2
spnn.learn, 2, 6, 8
spnn.predict, 2, 7, 7
```