Mini projet 4MOC 2019

Open MP

Module associé : Programmation Parallèle

Enseignant: Thierry JOUBERT

Un rendu par binôme en soutenance

Documents à fournir : Fichier Zip contenant tous les sources ainsi q'un makefile ou script de compilation

Pré-requis:

- Programmation en C/C++
- Librairie Open MP

Objectif:

Réaliser un calcul optimisé de l'ensemble de Julia ainsi que du profil horizontal et vertical des maximas en utilisant les mécanismes disponibles dans la bibliothèque *OpenMP*.

Juillet 2019 - 1 -

Programation Parallèle

OpenMP

SOMMAIRE

Introduction	3
Rappel & Objectif	3
Travaux à réaliser	4
Gestion du parallélisme	4
Données	4

Introduction

Rappel & Objectif

On se propose de représenter l'ensemble de Julia dans le plan affine en donnant à chaque point (x,y) une couleur correspondant à la divergence de la suite complexe :

$$Z_{n+1} = Z_n^2 + C$$

avec
$$Z_0 = x + i.y$$

et la constante $C = a + i.b$

On visualise dans l'image ci-dessous la « stabilité » de la suite de Julia pour chaque point (x,y) du plan par la coloration de ce point en nuances de gris.

Fig1 : Ensemble de Julia dans le plan x[-1.5 +1.5], y[-1.5 +1.5] avec a = -0,0849 et b =0,8721

Juillet 2019 - 3 -

Un exemple d'approche algorithmique :

Pour l'ensemble de Julia, on sait que la série diverge si le modulo $|Z_n|$ atteint la valeur 2, on peut donc calculer un maximum de 255 itérations par point (x,y) puis affecter une valeur de composante de couleur correspondant à l'indice n pour lequel $|Z_n| \ge 2$ (et par conséquent 255 si $|Z_n|$ est toujours inférieur à 2).

Travaux à réaliser

Gestion du parallélisme

Le calcul de l'espace de Julia sur les points du plan doit s'accompagner du **calcul de la valeur maximale** atteinte pour chaque point de l'axe horizontal et de l'axe vertical.

Fig2 : Profil Horizontal et Vertical de l'ensemble de Julia sur [-1.5 +1.5] avec a = -0,0849 et b =0,8721

On rendra le calcul aussi rapide que possible sur une machine multi-cœur en utilisant les mécanismes offerts par OpenMP. La récupération des valeurs maximales devra tenir compte du parallélisme de calcul.

Données

L'image calculée sera stockée dans un fichier BMP pour la visualisation.

Les valeurs maximales peuvent être sorties en format .csv sur *stdout* par exemple pour pouvoir les injecter dans un tableur.

Juillet 2019 - 4 -