МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Математического обеспечения электронно-вычислительных машин

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Организация ЭВМ и систем»

Тема: Трансляция, отладка и выполнение программ на языке Ассемблера.

Студентка гр. 0382	 Рубежова Н.А.
Преподаватель	 Ефремов М.А.

Санкт-Петербург

Цель работы.

Изучить и отработать на практике основные принципы трансляции, отладки и выполнения программ на языке Ассемблера.

Ход выполнения.

Часть 1.

- 1. Протранслируем программу с созданием объектного файла *hello1.obj* и файла листинга *hello1.lst* с помощью строки :
 - > masm hello1.asm
- 2. Скомпонуем загрузочный модуль с созданием исполняемого файла с помощью строки:
 - > link hello 1.obj
 - 3. Выполним программу:
 - > hello1.exe
- 4. В результате выполнения программы вывелась строка-приветствие 'You are welcomed by st. gr. 0382-Rubezhova N.A.', что полностью подтверждает корректность работы программы hello1.asm.
 - 5. Запустим выполнение программы под управлением отладчика afdpro:
 - > afdpro hello1.exe
 - 6. Зафиксируем начальное содержание сегментных регистров:

$$(CS)=1A05, (DS)=19F5, (ES)=19F5, (SS)=1A0B$$

7. Выполним программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды. Результаты прогона программы представлены в табл. 1.

Табл.1.

Адрес	Символический	16-ичный код	Содержимое регистров и ячеек памяти	
команды	код команды	команды	До выполнения	После выполнения
0010	MOV AX, 1A07	B8 07 1A	(AX)=0000	(AX)=1A07
			(IP)=0010	(IP)=0013
0013	MOV DS, AX	8E D8	(AX) = 1A07 (DS)	(AX) = 1A07
			= 19F5	(DS) = 1A07
			(IP) = 0013	(IP) = 0015

0015	MOV DX, 0000	BA 00 00	(IP)=0015	(IP)=0018
0018	MOV AH, 09	B4 09	(AX)=1A07 (IP)=0018	(AX)=0907 (IP)=001A
001A	INT 21	CD 21	(IP)=001A	(IP)=001C
001C	MOV AH, 4C	B4 4C	(AX)=0907 (IP)=001C	(AX)=4C07 (IP)=001E
001E	INT 21	CD 21	(AX)=4C07 (CX)=0052 (DS)=1A07 (IP)=001E	(AX)=0000 (CX)=0000 (DS)=19F5 (IP)=0010

Часть 2.

- 1. Протранслируем программу с созданием объектного файла *hello2.obj* и файла листинга *hello2.lst* с помощью строки :
 - > masm hello2.asm
- 2. Скомпонуем загрузочный модуль с созданием исполняемого файла с помощью строки:
 - > link hello2.obj
 - 3. Выполним программу:
 - > hello2.exe
- 4. В результате выполнения программы вывелись две строки 'Hello Worlds!' и 'Student from 0382 Rubezhova N.A.', что полностью подтверждает корректность работы программы hello2.asm.
 - 5. Запустим выполнение программы под управлением отладчика *afdpro*:
 - > afdpro hello2.exe
 - 6. Зафиксируем начальное содержание сегментных регистров:

7. Выполним программу в пошаговом режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды. Результаты прогона программы представлены в табл. 2.

Табл.2

Адрес	Символический	16-ичный код	Содержимое регис	стров и ячеек памяти
команды	код команды	команды	До выполнения	После выполнения

0005	PUSH DS	1E	(SP)=0018	(SP)=0016
			(IP)=0005	(IP)=0006
			SS:SP	SS:SP
			+0 0000	+0 19F5
			+2 0000	+2 0000
			+4 0000	+4 0000
			+6 0000	+6 0000
0006	SUB AX, AX	2B C0	(IP) = 0006	(IP) = 0008
0008	PUSH AX	50	(SP)=0016	(SP)=0014
			(IP)=0008	(IP)=0009
			SS:SP	SS:SP
			+0 19F5	+0 0000
			+2 0000	+2 19F5
			+4 0000	+4 0000
			+6 0000	+6 0000
0009	MOV AX, 1A07	B8 07 1A	(AX)=0000	(AX)=1A07
	,		(IP)=0009	(IP) = 000C
000C	MOV DS, AX	8E D8	(DS)=19F5	(DS)=1A07
			(IP)=000C	(IP)=000E
000E	MOV DX, 0000	BA 00 00	(IP)=000E	(IP)=0011
0011	CALL 0000	E8 EC FF	(SP)=0014	(SP)=0012
			(IP)=0011	(IP)=0000
			SS:SP	SS:SP
			+0 0000	+0 0014
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0000	MOV AH, 09	B4 09	(AX)=1A07	(AX)=0907
			(IP)=0000	(IP)=0002
0002	INT 21	CD 21	(IP)=0002	(IP)=0004
0004	RET	C3	(SP)=0012	(SP) = 0014
			(IP) = 0004	(IP) = 0014
			SS:SP	SS:SP
			+0 0014	+0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000
0014	MOV DX, 0010	BA 10 00	(DX)=0000	(DX)=0010
	ĺ		(IP) = 0014	(IP) = 0017
0017	CALL 0000	E8 E6 FF	(SP)=0014	(SP)=0012
001,			(IP)=0017	(IP)=0000
			SS:SP	SS:SP
i	ĺ			
ļ			+0 0000	+0 001A

0000	MOV AH, 09	B4 09	(IP)=0000	(IP)=0002
0002	INT 21	CD 21	(IP)=0002	(IP)=0004
0004	RET	C3	(SP)=0012 (IP)=0004 SS:SP +0 001A +2 0000 +4 19F5	(SP)=0014 (IP)=001A SS:SP +0 0000 +2 19F5 +4 0000
001A	RET Far	СВ	+6 0000 (CS)=1A0B (SP)=0014 (IP)=001A	+6 0000 (CS)=19F5 (SP)=0018 (IP)=0000
0000	INT 20	CD 20	(AX)=0907 (CX)=007B (DX)=0010 (CS)=19F5 (DS)=1A07 (IP)=0000	(AX)=0000 (CX)=0000 (DX)=0000 (CS)=1A0B (DS)=19F5 (IP)=0005

Выводы.

Были изучены, а также отработаны на практике основные принципы трансляции, отладки и выполнения программ на языке Ассемблера.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: hello1.asm

```
; HELLO1.ASM - упрощенная версия учебной программы лаб.раб. N1
              по дисциплине "Архитектура компьютера"
 *****************
 Назначение: Программа формирует и выводит на экран приветствие
            пользователя с помощью функции ДОС "Вывод строки"
             (номер 09 прерывание 21h), которая:
             - обеспечивает вывод на экран строки символов,
               заканчивающейся знаком "$";
             - требует задания в регистре ah номера функции=09h,
               а в регистре dx - смещения адреса выводимой
               строки;
             - использует регистр ах и не сохраняет его
               содержимое.
 ******************
   DOSSEG
                               ; Задание сегментов под ДОС
   .MODEL SMALL
                               ; Модель памяти-SMALL (Малая)
                               ; Отвести под Стек 256 байт
   .STACK 100h
                               ; Начало сегмента данных
   .DATA
   Greeting LABEL BYTE
                              ; Текст приветствия
   DB 'You are welcomed by st. gr. 0382-Rubezhova N.A.', 13, 10, '$'
.CODE
                               ; Начало сегмента кода
   mov ax, @data
                              ; Загрузка в DS адреса начала
   mov ds, ax
                              ; сегмента данных
   mov dx, OFFSET Greeting
                              ; Загрузка в dх смещения
                               ; адреса текста приветствия
DisplayGreeting:
   mov ah, 9
                               ; # функции ДОС печати строки
   int
       21h
                               ; вывод на экран приветствия
   mov ah, 4ch
                               ; # функции ДОС завершения программы
   int 21h
                               ; завершение программы и выход в ДОС
   END
```

Название файла: hello2.asm

```
; HELLO2 - Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура
компьютера"
          Программа использует процедуру для печати строки
     ТЕКСТ ПРОГРАММЫ
EOFLine EQU '$'
                       ; Определение символьной константы
                       ; "Конец строки"
; Стек программы
ASSUME CS:CODE, SS:AStack
        SEGMENT STACK
AStack
         DW 12 DUP('!') ; Отводится 12 слов памяти
AStack
        ENDS
; Данные программы
DATA
        SEGMENT
; Директивы описания данных
HELLO DB 'Hello Worlds!', OAH, ODH, EOFLine
GREETING DB 'Student from 0382 - Rubezhova N.A.$'
DATA
      ENDS
; Код программы
CODE SEGMENT
; Процедура печати строки
WriteMsg PROC NEAR
         mov AH, 9
         int 21h ; Вызов функции DOS по прерыванию
         ret
WriteMsg ENDP
; Головная процедура
Main
         PROC FAR
                   ;\ Сохранение адреса начала PSP в стеке
         push DS
                      ; > для последующего восстановления по
         sub
              AX,AX
         push AX
                      ;/ команде ret, завершающей процедуру.
         mov
              AX, DATA
                                 ; Загрузка сегментного
         mov DS, AX
                                 ; регистра данных.
         mov DX, OFFSET HELLO ; Вывод на экран первой
```

call WriteMsg ; строки приветствия.

mov DX, OFFSET GREETING; Вывод на экран второй

call WriteMsg ; строки приветствия.

ret ; Выход в DOS по команде,

; находящейся в 1-ом слове PSP.

Main ENDP CODE ENDS

END Main