Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Work Sheet 8

Instructions for week 8 (June 8^{th} to June 12^{th}):

- Work through Section 3.2 of the lecture notes.
- Answer the control questions 1) to 5), and solve Problems 1 to 4 of the exercises below.
- Please hand in your solutions to the exercises for correction until the morning of Monday, June 15th. For the procedure, please have a look at the general information in Ilias. The submission of solutions is voluntary.

Control questions to monitor your progress:

- 1) Can you provide a non-isotropic shape distribution \mathbb{Q} such that the stationary Boolean model with intensity $\gamma > 0$ and shape distribution \mathbb{Q} is isotropic?
- 2) Let Φ be a stationary Poisson particle process in \mathbb{R}^d with locally finite intensity measure Θ . Can you verify that the generated germ-grain (or Boolean) model $Z := \bigcup_{K \in \Phi} K$ is stationary?

(Hint: You might want to have a look at the capacity functional.)

3) Can you verify that, for any locally finite measure μ on $(\mathcal{F}', \mathcal{B}(\mathcal{F}^d) \cap \mathcal{F}')$, we have

$$\mu(\mathfrak{F}_{C_1,...,C_k}^{C_0}) = \sum_{r=0}^k (-1)^{r-1} \sum_{1 \leqslant i_1 < ... < i_r \leqslant k} \mu(\mathfrak{F}_{C_0 \cup C_{i_1} \cup ... \cup C_{i_r}})$$

for each $C_0, C_1, \ldots, C_k \in \mathbb{C}^d$ and $k \in \mathbb{N}$?

(**Hint:** Use induction and the fact that $\mathcal{F}^{C_0}_{C_1,\dots,C_k}=\mathcal{F}^{C_0}_{C_1,\dots,C_{k-1}}\setminus\mathcal{F}^{C_0\cup C_k}_{C_1,\dots,C_{k-1}}$.)

4) Convince yourself that a locally finite measure μ on $(\mathfrak{F}',\mathfrak{B}(\mathfrak{F}^d)\cap\mathfrak{F}')$ is determined uniquely by its values on the sets \mathfrak{F}_{C} , $C\in\mathfrak{C}^d$.

(**Hint:** Use the Control question 3) together with the fact that $\{\mathcal{F}_{C_1,\ldots,C_k}:C_1,\ldots,C_k\in\mathbb{C}^d,\ k\in\mathbb{N}\}$ is a π -system which generates $\mathcal{B}(\mathcal{F}^d)$. Also use that for $C_n\nearrow\mathbb{R}^d$ we have $\mathcal{F}_{C_n}\nearrow\mathcal{F}'$ (as $n\to\infty$).)

5) Let $p \in [0, 1]$. Can you find a stationary germ-grain model Z (in \mathbb{R}^d) such that the volume fraction of Z is given through $p_Z = p$?

(**Hint:** Consider a particle process $\Phi = \delta_C$ where you choose a stationary random set C such that 0 is contained in C with probability p.)

Exercises for week 8:

Problem 1 (Constructing a 'germ-grain model' which is not closed)

Find a dimension $d \in \mathbb{N}$, a probability measure \mathbb{Q} on \mathbb{C}^d , and a point process Φ in \mathbb{R}^d such that the germ-grain model corresponding to the independent \mathbb{Q} -marking of Φ is almost surely not a closed set.

Problem 2 (The mean covariogram of a Boolean model)

Let $Z=\bigcup_{k=1}^{\infty}(Z_k+\xi_k)$ be a stationary Boolean model in \mathbb{R}^d with parameters γ and \mathbb{Q} . Let $Z_0\sim\mathbb{Q}$ be the typical grain and $p_Z:=\mathbb{E}\big[\lambda^d\big(Z\cap[0,1]^d\big)\big]=\mathbb{P}(0\in Z)$ the volume fraction of Z (see Theorem 1.31). Further, let $\Phi=\sum_{j=1}^{\infty}\delta_{\xi_j}$ be the (stationary) Poisson process of the germs.

a) Prove that, for any $C \in \mathbb{C}^d$ and $x, y \in \mathbb{R}^d$,

$$(C+y)\cap\{x,0\}\neq\varnothing$$
 \iff $y\in C^*\cup(x+C^*).$

b) The mean covariogram C_0 of Z is given through

$$C_0(x) := \mathbb{E}\Big[\lambda^d \big(Z_0 \cap (Z_0 + x)\big)\Big], \qquad x \in \mathbb{R}^d.$$

Prove that, for each $x \in \mathbb{R}^d$,

$$\mathbb{E}\left[\lambda^d(Z_0\cup(Z_0-x))\right]=2\cdot\mathbb{E}\left[\lambda^d(Z_0)\right]-C_0(x).$$

c) Use parts a) and b) to show that

$$\mathbb{P}(0 \in Z, x \in Z) = p_Z^2 + (1 - p_Z)^2 (e^{\gamma \cdot C_0(x)} - 1).$$

Problem 3 (The concept of visibility)

Let $Z = \bigcup_{k=1}^{\infty} (Z_k + \xi_k)$ be a stationary Boolean model in \mathbb{R}^d with intensity $\gamma > 0$ and shape distribution \mathbb{Q} which is concentrated on those sets in \mathbb{C}^d that contain $0 \in \mathbb{R}^d$. Further, let $v_d := \int_{\mathbb{C}^d} \lambda^d(C) \, d\mathbb{Q}(C) < \infty$. A point $z \in Z$ is called visible if

$$|\{k \in \mathbb{N} : z \in Z_k + \xi_k\}| = 1,$$

that is, if z is contained in precisely one grain of the Boolean model. Define

$$\Phi := \sum_{j=1}^{\infty} \delta_{\xi_j} \cdot \mathbb{1} \big\{ \xi_j \text{ is visible} \big\}.$$

Prove that Φ is a stationary point process in \mathbb{R}^d with intensity $\gamma_{\mathbb{O}} := \gamma \cdot e^{-\gamma \cdot \mathbb{E}[\lambda^d(Z_1)]}$.

Hint: For the calculation of the intensity you may use, without proof, Mecke's formula, which states that a Poisson process η with intensity measure Λ satisfies

$$\mathbb{E}\left[\int_{\mathbb{R}^d} f(x,\eta) \, \mathrm{d}\eta(x)\right] = \mathbb{E}\left[\int_{\mathbb{R}^d} f(x,\eta+\delta_x) \, \mathrm{d}\Lambda(x)\right]$$

for every measurable map $f: \mathbb{R}^d \times \mathcal{N}(\mathbb{R}^d) \to [0, \infty)$.

Problem 4 (Spherical contact distribution functions)

Let Z be the stationary Boolean model in \mathbb{R}^d with intensity $\gamma > 0$ and typical grain Z_0 given through a d-dimensional ball of random radius $R_0 \sim \operatorname{Exp}(\lambda)$ ($\lambda > 0$) around $0 \in \mathbb{R}^d$.

- a) Calculate the spherical contact distribution function $H_{B(0,1)}(r)$, r > 0.
- b) Now, let d=2 and $r_1, r_2>0$ such that $r_1\neq r_2$. Assume that $H_{B(0,1)}(r_1)$ and $H_{B(0,1)}(r_2)$ are known. Determine the intensity γ as well as the parameter λ in dependence of $H_{B(0,1)}(r_1)$ and $H_{B(0,1)}(r_2)$.

The solutions to these problems will be uploaded on June 15th.