2019 SIOP Machine Learning Competition

Team Name:

Logistic Aggression

Unstructured Text

Numeric Variables

Document Term Matrix

	intelligent	applications	creates	business	pre	ses	bots	a	re	i	do	intelligence
Doc 1	2	1	1	1	3		0		0	0	0	0
Doc 2	1	1	0	0	(1		1	0	0	0
Doc 3	0	0	0		()			0	1	1	1

maximus Donec daoibus luctus ullamcorper Eliam facilisis lorem vinoncus enim. Ut quam nion tempor vel fonoula issus ullamcorper vinoncus enim. Ut quam nion tempor vel condinentum et lincotont r

Lexical Diversity

original sense! electric know loom masterpiece boyo always

Topic Models

Readability

Numeric Variables

Predictions of Big 5 Scores

Model Development

Linear Models

- PrincipalComponents
- Partial LeastSquares

Non-Linear Models

- Support Vector Machines
- Random Forest
- Boosted trees
 - GBM
 - XGBoost

Model Validation

- Local Validation
 - k-fold CV
 - Repeated CV
 - 1. Randomly select a hold-out set (n = 300)
 - 2. Calculate mean *r*
 - 3. Repeat
- 2. Development Set
- Test Set

Model Development

Linear Models

- PrincipalComponents
- Partial LeastSquares

Non-Linear Models

- Support Vector Machines
- Random Forest
- Boosted trees
 - GBM
 - XGBoost

How do we prevent overfitting?

1. Variable Selection

 Only keep variables with zero-order correlation p-values below a threshold

2. Elastic Net Regression

- Ridge = coefficients asymptote at zero
- Lasso = coefficients can actually reach zero
 - Parameters
 - α = blend of ridge & lasso
 - $\lambda = \text{penalty weight}$

Top 5 Heaviest Beta Weights

Extraversion

"I would not (go)" (-.11)

"I would go anyway" (.08)

"I wouldn't want to..." (-.07)

"Love" (.07)

Sentiment on social Q (.07)

Agreeableness

Lexical Diversity R (.09)

"Probably" "depend on" (-.08)

"Getting paid" (-.08)

"If X, I would Y" (-.07)

"(First) request" (-.07)

Conscientiousness

Depth (-.08)

"One / Both of us" (-.06)

"If X, I would Y" (-.06)

Liberal Values (.06)

Sentiment on travel Q (.06)

Neuroticism

"Try" (.07)

"Need to find out" (-.07)

"I would go anyway" (-.06)

Anxiety (.06)

Commas (.05)

Openness

Sentiment on travel Q (.08)

"I would go anyway" (.08)

"I would not (go)" (-.07)

"Discuss" (-.06)

Negated Positive Words (-.06)

Lessons Learned

Make 1 test submission ASAP!

- 2. Pay attention to bias/variance tradeoff during local validation.
- 3. Things we could have done better:
 - Linear transformations
 - Multivariate analyses

Thanks!

Ross Walker: riwalker@msu.edu

Jacob Bradburn: bradbu17@msu.edu

Jeff Olenick: <u>olenickj@msu.edu</u>

