Introducción a programas — Taller de CNC

Joaquín Gómez — 5^{to} "A" May 11, 2025

1 Llamar a un programa

- Cambiar al modo EDICIÓN
- \bullet Pulsar la tecla PRGRM
- $\bullet\,$ Con la tecla de software BIBLIO se ven los programas existentes
- Escribir el ID del programa (por ej. 0777)
- Para un nuevo programa, pulsar INSRT
- ullet Para un programa ya existente pulsar \downarrow

2 Estructura de un programa

- NO1, NO2, NO3, NO4, NO5, NO6, $NO7 \longrightarrow Instrucciones Técnicas$
- $T0101, M06, S1200, M03, F1 \longrightarrow Instrucciones Tecnológicas$
- $G99, G54, G00, X20, Z1, G01, Z22 \longrightarrow Instrucciones Geométricas$

NO1G99NO2G54NO3 T0101 M06NO4G97NO5S1200 M03NO6G00X20Z1NO7G54Z22

3 Datos del maquinado

 $\operatorname{Herramienta}:\operatorname{Tool}=\mathbf{T}$

T0101 Llama a la herramienta T0202 Número . . . con su corrector respectivo T0303

4 Setup o seteo de la herramienta

Setup geométrico en el eje x:

- Elegir el MDI de la herramienta, además seleccionar el sentido y velocidad de giro
- Realizar un cilindrado manualmente y retrirar sin modificar las coordenadas x
- Parar el plato con "SPDL STOP"
- Medir con un calibre el diámetro
- OFFSET COMP (Compensación) GEOME (Geométrica)
- $\bullet\,$ Ubicarse en el x de la herramienta
- Cargar el valor medido. Por ejemplo, diámetro $30 \longrightarrow \operatorname{cargar} x30$
- Luego "+Media"
- En MDI cargar la herramienta con la compensación

Setup geométrico en el eje z:

- Elegir el MDI de la herramienta, además seleccionar el sentido y velocidad de giro
- Realizar un cilindrado manualmente hasta una profundidad de 1mm aproximadamente x
- Parar el plato con "SPDL STOP"
- Medir con un calibre el diámetro
- OFFSET COMP (Compensación) GEOME (Geométrica)
- ullet Ubicarse en el z de la herramienta
- $\bullet\,$ Cargar el valor 0
- Luego "Media"
- En MDI cargar la herramienta con la compensación

$5 \quad Los \ grupos \ «G» \ y \ «M»$

El torno funciona mediante la ejecución de órdenes de desplazamiento y de condiciones de entorno. Las órdenes de desplazamiento correspnden a las funciones G, denominadas **funciones preparatorias**, que tienen relación directa con los movimientos de la herramienta, así como el desbastado de la pieza de trabajo. Por su parte, las funciones M entregan las **condiciones auxiliares** en que se trabajará (con o sin lubricante, sentido de giro del husillo, etc.). Para la ejecución de un programa cualquiera deben activarse varias funciones G y M, las cuales se dividen en grupos, según el tipo de acción que representen.

6 Descripción breve de las direcciones

- Direcciones de desplazamiento x y z: se refieren en forma absoluta a un origen de coordenadas. z se mide paralelamente al eje de giro del husillo (z negativo hacia la base del husillo), mientras que x es la medida del diámetro (x positivo por encima del eje de giro del husillo).
- Direcciones de desplazamiento u y w: ídem x y z pero los desplazamientos se miden **incrementalmente** desde el punto de partida del movimiento. Son desplazamientos relativos. En este caso, u no representa medidas diametrales, sino que es la distancia entre el punto inicial y el final (distancia radial).

7 Otras direcciones

ullet Dirección F: indica avance

• Dirección S: indica velocidad

ullet Dirección R: indica radio o empalme

• Dirección A: indica ángulo

ullet Dirección C: indica chaflán

8 funciones G00 o G0

Los carros se desplazan a la velocidad máxima al punto final programado (posición de cambio de herramienta, punto inicial para el siguiente arranque de viruta).

- Mientras se ejecuta G00 se suprime un avance programado F
- La velocidad de avance rápido la define el fabricante de la máquina
- El interruptor de correción de avance está limitado al 100%
- Debe verificarse previamente que no haya obstáculos en el camino de la herramienta
- En el caso de modificar entre bloques ambas coordeanadas, la herramienta moverá los dos ejes a la vez

9 Funciones G01 o G1

Movimiento recto (refrenteado, torneado longitudinal, torneado cónico) con velocidad programada de avance.

- No realizará el movimiento si no está acompañado de un avance o si este no fue cargado previamente.
- Siempre que entre en contacto con el material debo emplear movimiento de trabajo.
- En caso de un cilindrado se modifica el eje z. Mientras que en el frenteado el eje x.

10 Códigos G básicos.

Descripción de comandos de funciones G

G01 interpolación lineal. Formato:

$$N \dots G01 \quad X(U) \dots \quad Z(W) \dots \quad F \dots$$

Movimiento recto (refrentado, torneado longitudinal, torneado cónico) con velocidad programada de avance.

Ejemplo: G90 Absoluto.

$$N \dots G95$$
 $\dots \dots$
 $N20 \quad G01 \quad X40 \quad Z20.1 \quad F0.1$

G91 Incremental.

$$N \dots G95$$
 $\dots \dots$
 $N20 \quad G01 \quad X0 \quad Z - 25.9$

G02interpolación circular a la derecha G03interpolación circular a la derecha

Formato

$$N \dots G02 \quad X(U) \dots \quad Z(W) \dots \quad I \dots \quad K \dots$$

Alternativamente

$$N \dots G02 \quad X(U) \dots \quad Z(W) \dots \quad R \dots \quad F \dots$$

 $X,Z,(U),(W)\longrightarrow {\rm Punto}$ final del arco $I,K\longrightarrow {\rm Par}$ ámetros incrementales del arco. (Distancia desde el punto inicial al centro del arco (I), está en relación con el eje X, K con el eje Z). $R\longrightarrow {\rm Radio}$ del arco

La herramienta se desplazará al punto final a lo largo del arco definido con el avance programado en F.

11 Programas

11.1 Figura 1.

	O0001			
N10	T0303			
N20	G97	S1500	M03	F0.18
N30	G0	X0	Z2	
N40	G1		Z0	
N50		X10	Z-8	
N60		X10	Z - 17	
N70		X20	Z - 17	
N80		X20	Z - 28	
N90		X30	Z - 36	
N100		X30	Z-45	
N110	G0	X100	Z100	
N120	M30			

11.2 Figura 2.

	O0002			
N10	T0303			
N20	G97	S1500	M03	F0.18
N30	G0	X0	Z2	
N40	G1		Z0	
N50		X4	Z0	
N60		X4	Z-3	
N70		X14	Z-9	
N80		X22	Z-9	
N90		X22	Z - 18	
N100		X30	Z - 18	
N110		X32	Z-19	
N120		X32	Z - 28.4	
N130	G0	X100	Z100	
N140	M30			

11.3 Figura 3.

	O0003			
N10	T0303			
N20	G97	S1500	M03	F0.18
N30	G0	X0	Z2	
N40	G1		Z0	
N50	G03	X16	Z-8	R8
N60	G1	X20	Z-8	
N70		X23	Z - 9.5	
N80			Z - 20	
N90	G02	X29	Z-23	R3
N100	G1	X30	Z-23	
N110	G03	X32	Z-25	R2
N120	G1	X32	Z - 35	
N130	G0	X100	Z100	
N140	M30			