

STB7N52K3 - STD7N52K3 STF7N52K3 - STP7N52K3

N-channel 525 V, 0.84 Ω, 6.3 A, D²PAK, DPAK, TO-220FP, TO-220 SuperMESH3™ Power MOSFET

Preliminary Data

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D	Pw
STB7N52K3	525 V	< 0.98 Ω	6.3 A	90 W
STD7N52K3	525 V	< 0.98 Ω	6.3 A	90 W
STF7N52K3	525 V	< 0.98 Ω	6.3 A ⁽¹⁾	25 W
STP7N52K3	525 V	< 0.98 Ω	6.3 A	90 W

- 1. Limited by package
- 100% avalanche tested
- Extremely high dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitances
- Improved diode reverse recovery characteristics
- Zener-protected

Application

Switching applications

Description

The new SuperMESH3™ series is obtained through the combination of a further fine tuning of ST's well established strip-based PowerMESH™ layout with a new optimization of the vertical structure. In addition to reducing on-resistance significantly versus previous generation, special attention has been taken to ensure a very good dv/dt capability and higher margin in breakdown voltage for the most demanding application.

Figure 1. Internal schematic diagram

Table 1. Device summary

Order codes	Marking	Package	Packaging
STB7N52K3	7N52K3	D²PAK	Tape and reel
STD7N52K3	7N52K3	DPAK	Tape and reel
STF7N52K3	7N52K3	TO-220FP	Tube
STP7N52K3	7N52K3	TO-220	Tube

July 2008 Rev 1 1/15

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
3	Test circuits	6
4	Package mechanical data	7
5	Package mechanical data	2
6	Revision history	4

1 Electrical ratings

Table 2. Absolute maximum ratings

Complete	Davamatav		٧	alue		I I m i A
Symbol	Parameter	TO-220	DPAK	D²PAK	TO-220FP	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)			525		V
V _{GS}	Gate- source voltage		=	± 30		V
I _D	Drain current (continuous) at T _C = 25 °C		6.3		6.3 ⁽¹⁾	Α
I _D	Drain current (continuous) at T _C = 100 °C		4		4 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)		25		25 ⁽¹⁾	Α
P _{TOT}	Total dissipation at T _C = 25 °C	90		25	W	
	Derating factor		0.72		0.2	W/°C
V _{ESD(G-S)}	Gate source ESD(HBM-C = 100 pF, R = 1.5 k Ω)		2	2500		V
dv/dt (3)	Peak diode recovery voltage slope		-	TBD		V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)			2500	٧	
T _{stg}	Storage temperature		-55	to 150		°C
T _j	Max. operating junction temperature			150		°C

- 1. Limited by package
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \leq 6.3 \text{ A}, \text{ di/dt} = \text{TBD}, V_{DD} = 80\% V_{(BR)DSS}.$

Table 3. Thermal data

Symbol	Parameter	TO-220 DPAK D2PAK		TO-220FP	Unit	
R _{thj-case}	Thermal resistance junction-case max	stance junction-case max 1.39		5	°C/W	
R _{thj-pcb}	Thermal resistance junction-pcb max		50	30		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5			62.5	°C/W
T _I	Maximum lead temperature for soldering purpose			300		°C

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	6.3	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	TBD	mJ

2 Electrical characteristics

 $(T_C = 25 \, ^{\circ}C \text{ unless otherwise specified})$

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	525			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125 °C			1 50	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \mu A$	3	3.75	4.5	V
R _{DS(on}	Static drain-source on resistance	$V_{GS} = 10 \text{ V}, I_D = 3.1 \text{ A}$		0.84	0.98	Ω

Table 6. Dynamic

	, -					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward transconductance	$V_{DS} = 15 \text{ V}, I_D = 3.1 \text{ A}$		TBD		S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 50 \text{ V, f} = 1 \text{ MHz, V}_{GS} = 0$		TBD TBD TBD		pF pF pF
C _{OSS eq} ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 420 V		TBD		pF
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain		TBD		Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} = 420 V, I_D = 6.3 A, V_{GS} = 10 V (see <i>Figure 3</i>)		TBD TBD TBD		nC nC nC

C_{oss eq} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_DS increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time	V 262 V I 2.1 A		TBD		ns
t _r	Rise time	$V_{DD} = 262 \text{ V}, I_D = 3.1 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$		TBD		ns
t _{d(off)}	Turn-off-delay time	G. G.G.		TBD		ns
t _f	Fall time	(see Figure 2)		TBD		ns

Table 8. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)				6.3 25	A A
V _{SD} (2)	Forward on voltage	I _{SD} = 6.3 A, V _{GS} = 0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 6.3 A, di/dt = 100 A/μs V _{DD} = 30 V (see <i>Figure 7</i>)		TBD TBD TBD		ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 6.3 A, di/dt = 100 A/ μ s V_{DD} = 30 V, T_j = 150 °C (see <i>Figure 7</i>)		TBD TBD TBD		ns nC A

- 1. Pulse width limited by safe operating area
- 2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Table 9. Gate-source Zener diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
BV _{GSO} ⁽¹⁾	Gate-source breakdown voltage	Igs=± 1 mA (open drain)	30			٧

 The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components

3 Test circuits

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

Figure 4. Test circuit for inductive load switching and diode recovery times

Figure 5. Unclamped Inductive load test circuit

Figure 6. Unclamped inductive waveform

Figure 7. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

7/15

TO-220 mechanical data

Dim		mm			inch	
Dilli	Min	Тур	Max	Min	Тур	Max
А	4.40		4.60	0.173		0.181
b	0.61		0.88	0.024		0.034
b1	1.14		1.70	0.044		0.066
С	0.48		0.70	0.019		0.027
D	15.25		15.75	0.6		0.62
D1		1.27			0.050	
E	10		10.40	0.393		0.409
е	2.40		2.70	0.094		0.106
e1	4.95		5.15	0.194		0.202
F	1.23		1.32	0.048		0.051
H1	6.20		6.60	0.244		0.256
J1	2.40		2.72	0.094		0.107
L	13		14	0.511		0.551
L1	3.50		3.93	0.137		0.154
L20		16.40			0.645	
L30		28.90			1.137	
Ø₽	3.75		3.85	0.147		0.151
Q	2.65		2.95	0.104		0.116

T	n -	22	NED	mechanical dat	2
	· /-			mechanicai oai	7

Dim.		mm.		inch		
DIM.	Min.	Тур	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.70	0.017		0.027
F	0.75		1.00	0.030		0.039
F1	1.15		1.50	0.045		0.067
F2	1.15		1.50	0.045		0.067
G	4.95		5.20	0.195		0.204
G1	2.40		2.70	0.094		0.106
Н	10		10.40	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.80		10.60	0.385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.90		16.40	0.626		0.645
L7	9		9.30	0.354		0.366
Dia	3		3.2	0.118		0.126

D²PAK (TO-263) mechanical data

Di	mm			inch		
Dim	Min	Тур	Max	Min	Тур	Max
Α	4.40		4.60	0.173		0.181
A1	0.03		0.23	0.001		0.009
b	0.70		0.93	0.027		0.037
b2	1.14		1.70	0.045		0.067
С	0.45		0.60	0.017		0.024
c2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1	7.50			0.295		
Е	10		10.40	0.394		0.409
E1	8.50			0.334		
е		2.54			0.1	
e1	4.88		5.28	0.192		0.208
Н	15		15.85	0.590		0.624
J1	2.49		2.69	0.099		0.106
L	2.29		2.79	0.090		0.110
L1	1.27		1.40	0.05		0.055
L2	1.30		1.75	0.051		0.069
R		0.4			0.016	
V2	0°		8°	0°		8°

TO-252 (DPAK) mechanical data

DIM.	mm.					
DIWI.	min.	typ	max.			
Α	2.20		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	5.20		5.40			
С	0.45		0.60			
c2	0.48		0.60			
D	6.00		6.20			
D1		5.10				
E	6.40		6.60			
E1		4.70				
е		2.28				
e1	4.40		4.60			
Н	9.35		10.10			
L	1					
L1		2.80				
L2		0.80				
L4	0.60		1			
R		0.20				
V2	0 °		8 °			

5 Package mechanical data

DPAK FOOTPRINT

TAPE AND REEL SHIPMENT

D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT

on sales type

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
07-Jul-2008	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com