Övningar till lektion 2

Satslogik, formellt

- 1. Låt $\sigma = \{p_0, p_1, p_2, p_3, p_4\}$ vara en satslogisk signatur (propositional signature). Vilka av följande uttryck/strängar (expressions/strings) är formler (formulas) i $LP(\sigma)$ enligt Definition 3.1.2 i boken?
 - (a) p_2
 - (b) p_7
 - (c) $(p_1 \to p_4)$
 - (d) $(p_0 \wedge p_3) \leftrightarrow p_4$
 - (e) $(p_0 \wedge p_3) \leftrightarrow p_4$)
 - (f) $((p_0 \wedge p_3) \leftrightarrow p_4)$
 - (g) $((p_0 \wedge p_3) \leftrightarrow p_5)$
 - (h) $\neg p_2 \lor p_1$
 - (i) $((\neg p_2) \lor p_1)$
 - (j) ⊥
 - (k) $(p_0 \lor \bot)$
 - (1) $(\wedge p_2)$
 - (m) $(p_0 \rightarrow \neg p_2)$
 - (n) $(p_0 \to (\neg p_0))$
- 2. För att göra aritmetiska uttryck lättare att läsa så har man vissa prioritetskonventioner för operationerna +, \cdot och "upphöjt", nämligen att "upphöjt" går före \cdot vilket i sin tur går före +. Så $x \cdot y + z^y$ betyder samma sak som $((x \cdot y) + (z^y))$. På liknande sätt förenklar man ofta satslogiska formler genom att inte skriva ut de yttersta paranteserna, så vi kan skriva $(p_0 \wedge p_3) \leftrightarrow p_4$ i stället för $((p_0 \wedge p_3) \leftrightarrow p_4)$. Dessutom har man prioritetskonventionen att \neg går före \land , \lor , \rightarrow och \leftrightarrow , men mellan de fyra sista konnektiven inför vi inga prioritetskonventioner, så paranteser behövs för att ange ordningen mellan dessa. Låt σ vara som i föregående uppgift. Vilka formler syftar följande uttryck på enligt den strikta definitionen 3.1.2 i boken? Med andra ord skriv ut de saknade paranteserna.
 - (a) $(p_3 \rightarrow p_2) \rightarrow \neg p_3$
 - (b) $\neg (p_3 \rightarrow p_2) \rightarrow \neg \bot$
 - (c) $\neg(\neg(\bot \lor \neg p_1) \land \neg(\neg p_1 \to p_3))$
- 3. Till vilka av formlerna i föregående uppgift är (med våra paranteskonventioner)
 - (a) $\neg p_1$ en delformel (subformula)?
 - (b) $p_3 \to p_2$ en delformel?
 - (c) $\neg (p_3 \rightarrow p_2)$ en delformel?
 - (d) $\neg p_3 \rightarrow p_2$ en delformel?
- 4. Låt σ vara som i första uppgiften. När signaturen σ är klar från sammanhanget (eller irrelevant för resonemanget) förkortar vi ofta ' \vdash_{σ} ' med ' \vdash '. Bevisa följande sekventer med naturlig deduktion:

¹Vi kommer ofta bara att säga *signatur*.

- (a) $p_0 \wedge p_1 \vdash (p_0 \vee p_2) \wedge p_1$.
- (b) $\vdash \neg (p_4 \land \neg p_4)$.
- (c) $\{(p_1 \vee p_2) \to p_3, \neg p_3\} \vdash \neg (p_1 \vee p_2).$
- (d) $\neg p_1 \wedge \neg p_2 \vdash \neg (p_1 \vee p_2)$
- 5. Låt σ vara en signatur och låt $\varphi \in LP(\sigma)$.
 - (a) Vad menas med att $\models_{\sigma} \varphi$, eller med ord att φ är en tautologi (alternativt valid formel)?
 - (b) Vad menas med att φ är satisfierbar?
 - (c) Vad menas med att φ är osatisfierbar ("contradiction" eller "inconsistent" med bokens terminologi)?
- 6. Låt $\sigma = \{p, q, r\}$. Avgör med sanningsvärdestabell vilka formler som är tautologier, satisfierbara, respektive osatisfierbara:
 - (a) $\neg (p \land \neg p)$
 - (b) $\neg p \land (q \rightarrow (p \land q))$
 - (c) $\perp \rightarrow p$
 - (d) $((p \to q) \to (\neg (q \land r) \to \neg (p \land q)))$
 - (e) $((p \land q) \lor (p \land \neg r)) \leftrightarrow (p \lor (r \rightarrow q))$
 - (f) $((((p \rightarrow q) \rightarrow r) \rightarrow ((r \rightarrow p) \rightarrow q)) \rightarrow ((q \rightarrow r) \rightarrow p))$
 - (g) $(p \land \neg(\neg q \lor r)) \land (r \lor \neg p)$
- 7. Låt $\sigma = \{p, q, r\}$. Kom ihåg att om $\varphi, \psi \in LP(\sigma)$ så betyder ' φ eq ψ ' att φ och ψ är (logiskt) ekvivalenta. Vilka av följande påståenden om ekvivalenser stämmer?
 - (a) $\neg (p \leftrightarrow q)$ eq $\neg (p \rightarrow \neg q) \lor (q \lor \neg p)$
 - (b) $(r \to p) \land (q \to \neg r)$ eq $\neg p \lor (r \to q)$.
 - (c) $(\neg p \land q) \land (r \lor q)$ eq $((\neg p \land q) \land r) \lor (\neg (p \land \neg q) \land q)$
- 8. Låt $\sigma = \{p, q, r\}$. Kan $\varphi, \psi \in LP(\sigma)$ väljas så att
 - (a) $\neg \varphi \longrightarrow \psi$ är satisfierbar?
 - (b) $\neg \varphi \longrightarrow \psi$ är osatisfierbar?
 - (c) $\neg \varphi \longrightarrow \psi$ är en tautologi?
 - (d) $\neg(\neg\varphi\vee\psi)\wedge\psi$ är satisfierbar?
 - (e) $\varphi \longrightarrow (\psi \longrightarrow \varphi)$ inte är en tautologi?
- 9. Låt $\sigma = \{p_0, p_1, p_2, \dots, \}$ och låt $V : \sigma \to \{S, F\}$ (där S och F står för 'sant' och 'falskt'). Så V är en σ -värderingsfunktion (eller σ -structure enligt bokens terminologi). Som vi har lärt oss kan V på ett unikt sätt utvidgas till en funktion $V^* : LP(\sigma) \to \{S, F\}$ som ger ett sanningsvärde till varje formel i $LP(\sigma)$. Antag att $V(p_i) = F$ för alla $i = 0, 1, 2, \dots$
 - (a) Visa att det finns en formel $\varphi \in LP(\sigma)$ sådan att φ inte innehåller \neg och $V(\varphi) = S$.
 - (b) Visa att om $\varphi \in LP(\sigma)$ endast innehåller konnektiven \wedge och/eller \vee så $V(\varphi) = F$.
 - (c) Visa att varje tautologi i $LP(\sigma)$ innehåller minst ett av konnektiven \neg, \rightarrow eller \leftrightarrow .