Implementación de Métodos de Aprendizaje Automatizado en problemas colisionales

Alejandra Mendez, Juan Di Filippo, Sebastián López, Darío Mitnik,

alemendez@iafe.uba.ar

1 de Septiembre – Buenos Aires

$$\left[T_{\mathit{fi}} = \left|\left\langle \psi_{\mathit{f}} \middle| V \middle| \psi_{\mathit{i}}
ight
angle \right|^{2}
ight]$$

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{I(I+1)}{2r^2} + V_{nI}(r) \right] P_{nI}(r) = E_{nI} P_{nI}(r)$$

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{I(I+1)}{2r^2} - \frac{Z_{nI}(r)}{r} \right] P_{nI}(r) = E_{nI} P_{nI}(r)$$

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} - \frac{Z_{nl}(r)}{r} \right] P_{nl}(r) = E_{nl} P_{nl}(r)$$

$$Z_{nl}(r) = -\frac{1}{2} \frac{P''_{nl}(r)}{P_{nl}(r)} r + \frac{l(l+1)}{2r} - E_{nl} r$$

Houston, we have a problem!

Houston, we have a problem!

2*s* Kr

Houston, we have a problem!

Procedimiento

Estructura del blanco

Descripción del blanco

$$\Phi_i(\mathbf{r}) = \sum_j c_{ji} \phi_j(\mathbf{r})$$

Configuration interaction

$$\left[\frac{1}{2} \frac{d^2}{dr^2} - \frac{l(l+1)}{2r^2} + V_{nl}^{\text{eff}}(\lambda_{nl}, r) + E_{nl} \right] P_{nl}(r) = 0$$

- Thomas–Fermi–Dirac–Amaldi
- Slater-Type-Orbital de Burgess

Ejemplo: Berilio

Ejemplo: Berilio

Ejemplo: Berilio

Procedimiento

Síntesis del problema

$$J = \sum_{j} \left| \frac{E_{j}^{\text{calc}}(\xi) - E_{j}^{\text{teo}}}{E_{j}^{\text{teo}}} \right|$$

- lacksquare DIM: $oldsymbol{\xi} = \{oldsymbol{lpha}, oldsymbol{eta}\}$
- lacktriangledown R-Matrix: $oldsymbol{\xi} = \{Configuraciones, oldsymbol{\lambda}\}$

Procesos Gaussianos

Resultados R-Matrix

