Условное математическое ожидание (продолжение)

Условное математическое ожидание (продолжение)

Определение. Величина E(Y|x) как функция от x называется регрессией Y по x (или x на Y).

$$y = f_r(x)$$

Термин "регрессия" – предложен Ф. Гальтоном (конец19 века).

X рост отца, Y - рост сына.

Термин "регрессия" – предложен Ф. Гальтоном (конец19 века).

X рост отца, Y - рост сына.

Вывод: дети родителей с высоким или низким ростом обычно не наследуют такой рост ("регрессия к среднему значению").

Термин "регрессия" – предложен Ф. Гальтоном (конец19 века).

X рост отца, Y - рост сына.

Вывод: дети родителей с высоким или низким ростом обычно не наследуют такой рост ("регрессия к среднему значению").

К.Пирсон предложил использовать термин в общем смысле.

$$E[(Y-f_r(x))^2] \rightarrow \min$$

$$E[(Y-f_r(x))^2] \rightarrow \min$$

где минимум берется по всевозможным функциям.

$$E[(Y-f_r(x))^2] \rightarrow \min$$

где минимум берется по всевозможным функциям.

$$\frac{\partial}{\partial f}E[(Y-f)^2] = -2E[Y-f] = 0 \implies f = E[Y].$$

$$E[(Y-f_r(x))^2] \rightarrow \min$$

где минимум берется по всевозможным функциям.

$$\frac{\partial}{\partial f}E[(Y-f)^2] = -2E[Y-f] = 0 \implies f = E[Y].$$

Функция регрессии может использоваться для прогноза Y в зависимости от x:

$$\hat{y} = f_r(x),$$

т.к. такой прогноз обладает минимальной погрешностью.

$$E[(Y-f_r(x))^2] \rightarrow \min$$

где минимум берется по всевозможным функциям.

$$\frac{\partial}{\partial f}E[(Y-f)^2] = -2E[Y-f] = 0 \implies f = E[Y].$$

Функция регрессии может использоваться для прогноза Y в зависимости от x:

$$\hat{y} = f_r(x),$$

т.к. такой прогноз обладает минимальной погрешностью.

Регрессионный анализ - построение и исследование регрессионных моделей по выборке наблюдений.

	$x_1 = 1$	$x_2 = 3$	$x_3 = 4$	$x_4 = 8$
$y_1 = 3$	0,15	0,06	0,25	0,04
$y_2 = 6$	0,3	0,1	0,03	0,07

	$x_1 = 1$	$x_2 = 3$	$x_3 = 4$	$x_4 = 8$
$y_1 = 3$	0,15	0,06	0,25	0,04
$y_2 = 6$	0,3	0,1	0,03	0,07

$$P(x_1) = \sum_{j=1}^{2} P(x_1, y_j) = 0.45;$$

	$x_1 = 1$	$x_2 = 3$	$x_3 = 4$	$x_4 = 8$
$y_1 = 3$	0,15	0,06	0,25	0,04
$y_2 = 6$	0,3	0,1	0,03	0,07

$$P(x_1) = \sum_{j=1}^{2} P(x_1, y_j) = 0.45;$$

$$P(y_1 | x_1) = \frac{P(x_1, y_1)}{P(x_1)} = \frac{1}{3}; \quad P(y_2 | x_1) = \frac{P(x_1, y_2)}{P(x_1)} = \frac{2}{3};$$

	$x_1 = 1$	$x_2 = 3$	$x_3 = 4$	$x_4 = 8$
$y_1 = 3$	0,15	0,06	0,25	0,04
$y_2 = 6$	0,3	0,1	0,03	0,07

$$P(x_1) = \sum_{j=1}^{2} P(x_1, y_j) = 0.45;$$

$$P(y_1 \mid x_1) = \frac{P(x_1, y_1)}{P(x_1)} = \frac{1}{3}; \quad P(y_2 \mid x_1) = \frac{P(x_1, y_2)}{P(x_1)} = \frac{2}{3};$$

$$E(Y \mid x_1 = 1) = \sum_{j=1}^{\infty} y_j P(Y_j \mid x_1) = 3 \cdot \frac{1}{3} + 6 \cdot \frac{2}{3} = 5.$$

Определение. Коэффициентом линейной корреляции между случайными величинами X,Y, дисперсии которых существуют и не равны нулю, называется величина

$$\left| \rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}} \right|$$

Определение. Коэффициентом линейной корреляции между случайными величинами X,Y, дисперсии которых существуют и не равны нулю, называется величина

$$\left| \rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}} \right|$$

где

$$\sigma_{XY} = \text{cov}(X, Y) = E(X - EX)(Y - EY)$$

- коэффициент ковариации между \overline{X} и \overline{Y} ,

Определение. Коэффициентом линейной корреляции между случайными величинами X,Y, дисперсии которых существуют и не равны нулю, называется величина

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_{X}\sigma_{Y}}$$

где

$$\sigma_{XY} = \text{cov}(X, Y) \stackrel{\text{def}}{=} E(X - EX)(Y - EY)$$

- коэффициент ковариации между X и Y, σ_X и σ_Y - стандартное уклонение величин X и Y ($\sigma_Y^2 = DX$, $\sigma_Y^2 = DY$).

Другая форма определения:

$$\sigma_{XY} = E(XY) - E(EX \cdot Y) - E(EY \cdot X) + EX \cdot EY =$$

$$= E(XY) - EX \cdot EY.$$

Другая форма определения:

$$\sigma_{XY} = E(XY) - E(EX \cdot Y) - E(EY \cdot X) + EX \cdot EY =$$

$$= E(XY) - EX \cdot EY.$$

Определение. Если $\sigma_{XY} = 0$, то X и Y называют некоррелированными.

1.
$$-1 \le \rho_{XY} \le +1$$
.

1.
$$-1 \le \rho_{xy} \le +1$$
.

Доказательство. Обозначим
$$X^* = \frac{X - EX}{\sigma_X}$$
, $Y^* = \frac{Y - EY}{\sigma_Y}$.

1.
$$-1 \le \rho_{XY} \le +1$$
.

1.
$$-1 \le \rho_{xy} \le +1$$
.

Доказательство. Обозначим
$$X^* = \frac{X - EX}{\sigma_X}, \ Y^* = \frac{Y - EY}{\sigma_Y}.$$
 Тогда $EX^* = 0, \ EY^* = 0, \ \sigma_{X^*}^2 = 1, \ \sigma_{Y^*}^2 = 1,$ $\sigma_{X^*Y^*} = E(X^*Y^*) - 0 \cdot 0 = E\left(\frac{X - EX}{\sigma_Y} \cdot \frac{Y - EY}{\sigma_Y}\right) = \rho_{XY}.$

1.
$$-1 \le \rho_{XY} \le +1$$
.

Доказательство. Обозначим
$$X^* = \frac{X - EX}{\sigma_X}$$
, $Y^* = \frac{Y - EY}{\sigma_Y}$. Тогда $EX^* = 0$, $EY^* = 0$, $\sigma_{X^*}^2 = 1$, $\sigma_{Y^*}^2 = 1$,
$$\sigma_{X^*Y^*} = E(X^*Y^*) - 0 \cdot 0 = E\left(\frac{X - EX}{\sigma_X} \cdot \frac{Y - EY}{\sigma_Y}\right) = \rho_{XY}.$$

$$D\left(X^* + Y^*\right) = E\left[X^* + Y^* - E\left(X^* + Y^*\right)\right]^2 = 0$$

1.
$$-1 \le \rho_{xy} \le +1$$
.

Доказательство. Обозначим
$$X^* = \frac{X - EX}{\sigma_X}, Y^* = \frac{Y - EY}{\sigma_Y}.$$

Тогда $EX^* = 0, \ EY^* = 0, \ \sigma_{X^*}^2 = 1, \ \sigma_{Y^*}^2 = 1,$

$$\sigma_{X^*Y^*} = E(X^*Y^*) - 0 \cdot 0 = E\left(\frac{X - EX}{\sigma_X} \cdot \frac{Y - EY}{\sigma_Y}\right) = \rho_{XY}.$$

$$D\left(X^* + Y^*\right) = E\left[X^* + Y^* - E\left(X^* + Y^*\right)\right]^2 =$$

$$= E\left[(X^* - EX^*) + (Y^* - EY^*)\right]^2 =$$

1.
$$-1 \le \rho_{XY} \le +1$$
.

Доказательство. Обозначим
$$X^* = \frac{X - EX}{\sigma_X}$$
, $Y^* = \frac{Y - EY}{\sigma_Y}$. Тогда $EX^* = 0$, $EY^* = 0$, $\sigma_{X^*}^2 = 1$, $\sigma_{Y^*}^2 = 1$,
$$\sigma_{X^*Y^*} = E(X^*Y^*) - 0 \cdot 0 = E\left(\frac{X - EX}{\sigma_X} \cdot \frac{Y - EY}{\sigma_Y}\right) = \rho_{XY}.$$

$$D\left(X^* + Y^*\right) = E\left[X^* + Y^* - E\left(X^* + Y^*\right)\right]^2 = E\left[\left(X^* - EX^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)^2\right]$$

1.
$$-1 \le \rho_{xy} \le +1$$
.

Доказательство. Обозначим
$$X^* = \frac{X - EX}{\sigma_X}, \ Y^* = \frac{Y - EY}{\sigma_Y}.$$
 Тогда $EX^* = 0, \ EY^* = 0, \ \sigma_{X^*}^2 = 1, \ \sigma_{Y^*}^2 = 1,$ $\sigma_{X^*Y^*} = E(X^*Y^*) - 0 \cdot 0 = E\left(\frac{X - EX}{\sigma_X} \cdot \frac{Y - EY}{\sigma_Y}\right) = \rho_{XY}.$ $D\left(X^* + Y^*\right) = E\left[X^* + Y^* - E\left(X^* + Y^*\right)\right]^2 = E\left[\left(X^* - EX^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\left(X^* - EX^*\right)^2 + 2\left(X^* - EX^*\right)\left(Y^* - EY^*\right) + \left(Y^* - EY^*\right)^2\right] = E\left[\frac{\sigma_{X^*}^2}{\sigma_{XY}} + \frac{\sigma_{Y^*}^2}{\sigma_{XY}} = 2(1 + \rho_{XY}).$

$$D(X^*-Y^*)=2(1-\rho_{XY}).$$

$$D(X^*-Y^*)=2(1-\rho_{XY}).$$

Так как

$$D(X^* \pm Y^*) \ge 0$$
, to $2(1 \pm \rho_{XY}) \ge 0 \implies -1 \le \rho_{XY} \le 1$.

$$D(X^*-Y^*)=2(1-\rho_{XY}).$$

Так как

$$D(X^* \pm Y^*) \ge 0$$
, to $2(1 \pm \rho_{XY}) \ge 0 \implies -1 \le \rho_{XY} \le 1$.

Замечание.

а) Из доказательства следует, что для произвольных зависимых случайных величин X и Y выполняется:

$$D(X \pm Y) = DX + DY \pm 2 \cdot \sigma_{XY} .$$

$$D(X^*-Y^*)=2(1-\rho_{XY}).$$

Так как

$$D(X^* \pm Y^*) \ge 0$$
, to $2(1 \pm \rho_{XY}) \ge 0 \implies -1 \le \rho_{XY} \le 1$.

Замечание.

а) Из доказательства следует, что для произвольных зависимых случайных величин *X* и *Y* выполняется:

$$D(X \pm Y) = DX + DY \pm 2 \cdot \sigma_{XY} .$$

б) Из определения коэффициента ковариации ⇒

для зависимых
$$X$$
 и Y , $E(X \cdot Y) = EX \cdot EY + \sigma_{XY}$.

$$D(X^*-Y^*)=2(1-\rho_{XY}).$$

Так как

$$D(X^* \pm Y^*) \ge 0$$
, to $2(1 \pm \rho_{XY}) \ge 0 \implies -1 \le \rho_{XY} \le 1$.

Замечание.

а) Из доказательства следует, что для произвольных зависимых случайных величин X и Y выполняется:

$$D(X \pm Y) = DX + DY \pm 2 \cdot \sigma_{XY} .$$

б) Из определения коэффициента ковариации ⇒

для зависимых
$$X$$
 и Y , $E(X \cdot Y) = EX \cdot EY + \sigma_{XY}$.

в) Из $|\rho_{XY}| \le 1$ следует, что $|\sigma_{XY}| \le \sigma_X \cdot \sigma_Y$.

2. Пусть Y = a + bX (строгая линейная зависимость). Тогда $|\rho_{_{XY}}| = 1$.

2. Пусть Y = a + bX (строгая линейная зависимость). Тогда $|\rho_{xy}| = 1$.

Доказательство.

$$\sigma_{XY} = E[(X - EX) \cdot (Y - EY)] =$$

2. Пусть Y = a + bX (строгая линейная зависимость). Тогда $|\rho_{xy}| = 1$.

Доказательство.

$$\sigma_{XY} = E[(X - EX) \cdot (Y - EY)] =$$

$$= E[(X - EX) \cdot (a + bX - E[a + bX])] =$$

$$\sigma_{XY} = E[(X - EX) \cdot (Y - EY)] =$$

$$= E[(X - EX) \cdot (a + bX - E[a + bX])] =$$

$$= E[(X - EX) \cdot (a + bX - a - bEX)] =$$

$$\sigma_{XY} = E[(X - EX) \cdot (Y - EY)] =$$

$$= E[(X - EX) \cdot (a + bX - E[a + bX])] =$$

$$= E[(X - EX) \cdot (a + bX - a - bEX)] =$$

$$E[(X - EX) \cdot b(X - EX)] = b\sigma_X^2$$

$$\sigma_{XY} = E[(X - EX) \cdot (Y - EY)] =$$

$$= E[(X - EX) \cdot (a + bX - E[a + bX])] =$$

$$= E[(X - EX) \cdot (a + bX - a - bEX)] =$$

$$E[(X - EX) \cdot b(X - EX)] = b\sigma_X^2.$$

$$\sigma_Y^2 = D[a + bX] = b^2 D[X] = b^2 \sigma_X^2 \Rightarrow$$

$$\sigma_{XY} = E[(X - EX) \cdot (Y - EY)] =$$

$$= E[(X - EX) \cdot (a + bX - E[a + bX])] =$$

$$= E[(X - EX) \cdot (a + bX - a - bEX)] =$$

$$E[(X - EX) \cdot b(X - EX)] = b\sigma_X^2.$$

$$\sigma_Y^2 = D[a + bX] = b^2 D[X] = b^2 \sigma_X^2 \Rightarrow$$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{b\sigma_X^2}{\sigma_X \sqrt{b^2 \cdot \sigma_X^2}} = \frac{b\sigma_X^2}{\sigma_X |b| \cdot \sigma_X} = \frac{b}{|b|} \Rightarrow$$

$$\sigma_{XY} = E[(X - EX) \cdot (Y - EY)] =$$

$$= E[(X - EX) \cdot (a + bX - E[a + bX])] =$$

$$= E[(X - EX) \cdot (a + bX - a - bEX)] =$$

$$E[(X - EX) \cdot b(X - EX)] = b\sigma_X^2.$$

$$\sigma_Y^2 = D[a + bX] = b^2 D[X] = b^2 \sigma_X^2 \Rightarrow$$

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{b\sigma_X^2}{\sigma_X \sqrt{b^2 \cdot \sigma_X^2}} = \frac{b\sigma_X^2}{\sigma_X |b| \cdot \sigma_X} = \frac{b}{|b|} \Rightarrow$$

$$\rho_{XY} = \begin{cases} 1, & ecnu \ b > 0 \\ -1, & ecnu \ b < 0 \end{cases}$$

Таким образом, величина коэффициента корреляции меняется от –1 в случае строгой линейной отрицательной связи до +1 в случае строгой линейной положительной связи.

Таким образом, величина коэффициента корреляции меняется от –1 в случае строгой линейной отрицательной связи до +1 в случае строгой линейной положительной связи.

3. Если X и Y независимы, то они некоррелированы.

Таким образом, величина коэффициента корреляции меняется от –1 в случае строгой линейной отрицательной связи до +1 в случае строгой линейной положительной связи.

3. Если X и Y независимы, то они некоррелированы. Доказательство.

$$\sigma_{XY} = E[XY] - EX \cdot EY =$$

$$= EX \cdot EY - EX \cdot EY = 0.$$

Замечание. Некоррелированность – необходимое, но не достаточное условие независимости случайных величин.

Замечание. Некоррелированность – необходимое, но не достаточное условие независимости случайных величин.

Пусть, например, имеются зависимые случайные величины $X \sim U(-1,1)$ и $Y = X^2$.

Ковариация
$$\sigma_{XY} = E(XY) - EX \cdot EY = \underbrace{EX}_0^3 - \underbrace{EX}_0 \cdot EX^2 = 0$$

Замечание. Некоррелированность – необходимое, но не достаточное условие независимости случайных величин.

Пусть, например, имеются зависимые случайные величины $X \sim U(-1,1)$ и $Y = X^2$.

Ковариация
$$\sigma_{XY} = E(XY) - EX \cdot EY = \underbrace{EX}_0^3 - \underbrace{EX}_0 \cdot EX^2 = 0$$

Только для нормально распределенных случайных величин из некоррелированности следует их независимость.

4. Коэффициент корреляции является безразмерной величиной; не зависит от выбора единиц измерения обеих переменных, а также от их порядка ($\rho_{xy} = \rho_{yx}$).

- 4. Коэффициент корреляции является безразмерной величиной; не зависит от выбора единиц измерения обеих переменных, а также от их порядка ($\rho_{xy} = \rho_{yx}$).
- 5. Пусть $Y \equiv X$, тогда $\rho_{_{X\!X}} = 1$ (так как $X = 1 \cdot X + 0$ линейная функция).

4. Коэффициент корреляции является безразмерной величиной; не зависит от выбора единиц измерения обеих переменных, а также от их порядка ($\rho_{xy} = \rho_{yx}$).

5. Пусть
$$Y \equiv X$$
, тогда

$$\rho_{xx} = 1$$

(так как $X = 1 \cdot X + 0$ - линейная функция).

Кроме того,

$$\sigma_{XX} = E(X - EX)(X - EX) = DX$$
.

 $|\rho_{_{XY}}| < 0.25$ — линейная связь отсутствует;

 $|\rho_{XY}| < 0.25$ — линейная связь отсутствует; $0.25 \le |\rho_{XY}| < 0.5$ — имеется слабая линейная связь;

 $|
ho_{XY}| < 0,25$ — линейная связь отсутствует; $0,25 \le |
ho_{XY}| < 0,5$ — имеется слабая линейная связь; $0,5 \le |
ho_{XY}| < 0,75$ — имеется умеренная линейная связь; связь;

 $|
ho_{XY}| < 0,25$ — линейная связь отсутствует; $0,25 \le |
ho_{XY}| < 0,5$ — имеется слабая линейная связь; $0,5 \le |
ho_{XY}| < 0,75$ — имеется умеренная линейная

 $|\rho_{xy}| \ge 0.75$ — имеется сильная линейная связь.

СВЯЗЬ;

 $|
ho_{XY}| < 0.25$ — линейная связь отсутствует; $0.25 \le |
ho_{XY}| < 0.5$ — имеется слабая линейная связь; $0.5 \le |
ho_{XY}| < 0.75$ — имеется умеренная линейная связь; связь;

 $|\rho_{xy}| \ge 0.75$ — имеется сильная линейная связь.

 $| \,
ho \, |$ -мера концентрации распределения около прямой линии

Типы зависимостей и коэффициент корреляции

Типы зависимостей и коэффициент корреляции

Замечание 1. Высокое значение коэффициента линейной корреляции не обязательно означает наличие причинно-следственной связи между переменными.

Замечание 2. Коэффициент корреляции ρ_{xy} показывает тесноту именно линейной связи между величинами.

Замечание 2. Коэффициент корреляции ρ_{xy} показывает тесноту именно линейной связи между величинами.

В случае строгой нелинейной зависимости между X и Y (например, $Y = \cos X$) коэффициент корреляции может быть равен нулю.

Пусть имеется несколько случайных величин X_1, X_2, \dots, X_n . Тогда можно найти коэффициенты корреляции

$$ho_{i,j}^{\mathrm{def}}=
ho_{X_iX_j}$$
 для каждой пары $X_i,\,X_j$ $(i,j=1,...,n).$

Пусть имеется несколько случайных величин X_1, X_2, \dots, X_n . Тогда можно найти коэффициенты корреляции

$$ho_{i,j}^{\mathrm{def}}=
ho_{X_iX_j}$$
 для каждой пары $X_i,\,X_j$ $(i,j=1,...,n).$

Запишем эти коэффициенты с помощью корреляционной матрицы

$$\mathsf{P} = (\rho_{i,j}).$$

Пусть имеется несколько случайных величин $X_1, X_2, ..., X_n$. Тогда можно найти коэффициенты корреляции

$$ho_{i,j}^{\mathrm{def}} =
ho_{X_i X_j}$$
 для каждой пары $X_i, \, X_j \; (i,j=1,...,n).$

Запишем эти коэффициенты с помощью корреляционной матрицы

$$P = (\rho_{i,j}).$$

• Матрица является симметричной относительно главной диагонали $(\rho_{i,i} = \rho_{i,i});$

Пусть имеется несколько случайных величин $X_1, X_2, ..., X_n$. Тогда можно найти коэффициенты корреляции

$$ho_{i,j}^{\mathrm{def}}=
ho_{X_iX_j}$$
 для каждой пары $X_i,\,X_j$ $(i,j=1,...,n)$.

Запишем эти коэффициенты с помощью корреляционной матрицы

$$P = (\rho_{i,j}).$$

- Матрица является симметричной относительно главной диагонали $(\rho_{i,i} = \rho_{i,i});$
- все диагональные элементы равны единице ($\rho_{ij} = 1$).

Пусть имеется несколько случайных величин X_1, X_2, \dots, X_n . Тогда можно найти коэффициенты корреляции

$$\rho_{i,j} \stackrel{\text{def}}{=} \rho_{X_i X_j}$$

$$(i \quad i = 1 \quad n)$$

для каждой пары X_{i}, X_{j} (i, j = 1,...,n).

Запишем эти коэффициенты с помощью корреляционной матрицы

$$P = (\rho_{i,j}).$$

- Матрица является симметричной относительно главной диагонали $(\rho_{i,i} = \rho_{i,i});$
- все диагональные элементы равны единице ($\rho_{ij} = 1$).

Пример (
$$n=3$$
):
$$P = \begin{pmatrix} 1 & \rho_{1,2} & \rho_{1,3} \\ \rho_{2,1} & 1 & \rho_{2,3} \\ \rho_{3,1} & \rho_{3,2} & 1 \end{pmatrix}$$

$$\sigma_{i,j}^{\mathrm{def}}=\sigma_{X_iX_j}$$
 для каждой пары $X_i,\,X_j$ $(i,j=1,...,n).$

$$\sigma_{i,j}^{\mathrm{def}}=\sigma_{X_iX_j}$$
 для каждой пары $X_i,\,X_j$ $(i,j=1,...,n).$

Из этих коэффициентов составим ковариационную матрицу

$$\Sigma = (\sigma_{i,j}).$$

$$\sigma_{i,j}^{\mathrm{def}}=\sigma_{X_iX_j}$$
для каждой пары $X_i,\,X_j$ $(i,j=1,...,n).$

Из этих коэффициентов составим ковариационную матрицу

$$\Sigma = (\sigma_{i,j}).$$

• Матрица является симметричной относительно главной диагонали ($\sigma_{i,j} = \sigma_{j,i}$);

$$\sigma_{i,j} \stackrel{\text{def}}{=} \sigma_{X_i X_j}$$

$$(i \quad i-1 \quad n)$$

для каждой пары X_i, X_j (i, j = 1,...,n).

Из этих коэффициентов составим ковариационную матрицу

$$\Sigma = (\sigma_{i,j}).$$

- Матрица является симметричной относительно главной диагонали ($\sigma_{i,j} = \sigma_{j,i}$);
- Диагональные элементы равны дисперсиям:

$$\sigma_{i,i} = DX_i, i = 1,...,n$$
.

Глава 8. Предельные теоремы

Глава 8. Предельные теоремы

Пусть имеется последовательность случайных величин X_1, X_2, \ldots Будем считать, что эти величины независимы и подчиняются одному и тому же распределению.

Например, $X_i \in \{0,1\}$ - исход эксперимента в схеме Бернулли.

Глава 8. Предельные теоремы

Пусть имеется последовательность случайных величин X_1, X_2, \ldots Будем считать, что эти величины независимы и подчиняются одному и тому же распределению.

Например, $X_i \in \{0,1\}$ - исход эксперимента в схеме Бернулли.

Как ведут себя характеристики последовательности с ростом числа ее элементов?

Глава 8. Предельные теоремы

Пусть имеется последовательность случайных величин X_1, X_2, \ldots Будем считать, что эти величины независимы и подчиняются одному и тому же распределению.

Например, $X_i \in \{0,1\}$ - исход эксперимента в схеме Бернулли.

Как ведут себя характеристики последовательности с ростом числа ее элементов?

Предельные теоремы

Законы больших чисел

Центральная предельная теорема (несколько форм)

Замечание. Независимым испытаниям эквивалентны две схемы:

- проведение n раз одного и того же испытания;
- проведение по одному независимому испытанию над n копиями одного и того же.

Аналогия: 100 раз монету подбрасывает 1 человек или 100 человек подбрасывают по одной одинаковой монете.

Определение. Последовательность $\{X_n\}$ сходится по вероятности к случайной величине X, если для любого $\varepsilon>0$ вероятность события

$$P(\mid X_n - X \mid \geq \varepsilon)$$

стремится к нулю при $n \to \infty$.

Определение. Последовательность $\{X_n\}$ сходится по вероятности к случайной величине X, если для любого $\varepsilon>0$ вероятность события

$$P(\mid X_n - X \mid \geq \varepsilon)$$

стремится к нулю при $n \to \infty$.

$$X_n \xrightarrow{p} X$$

Определение. Последовательность $\{X_n\}$ сходится по вероятности к случайной величине X, если для любого $\varepsilon > 0$ вероятность события

$$P(\mid X_n - X \mid \geq \varepsilon)$$

стремится к нулю при $n \to \infty$.

$$X_n \xrightarrow{p} X$$

Теорема 1 (3БЧ в форме Чебышева). Пусть случайные величины $X_1, X_2, ...$ независимы и одинаково распределены, причем $EX_1^2 < \infty$.

Определение. Последовательность $\{X_n\}$ сходится по вероятности к случайной величине X, если для любого $\varepsilon>0$ вероятность события

$$P(\mid X_n - X \mid \geq \varepsilon)$$

стремится к нулю при $n \to \infty$.

$$X_n \xrightarrow{p} X$$

Теорема 1 (3БЧ в форме Чебышева). Пусть случайные величины $X_1, X_2, ...$ независимы и одинаково распределены, причем $EX_1^2 < \infty$. Обозначим $a = EX_1$,

$$S_n = \sum_{i=1}^n X_i.$$

Определение. Последовательность $\{X_n\}$ сходится по вероятности к случайной величине X, если для любого $\varepsilon > 0$ вероятность события

$$P(\mid X_n - X \mid \geq \varepsilon)$$

стремится к нулю при $n \to \infty$.

$$X_n \xrightarrow{p} X$$

Теорема 1 (3БЧ в форме Чебышева). Пусть случайные величины $X_1, X_2, ...$ независимы и одинаково распределены, причем $EX_1^2 < \infty$. Обозначим $a = EX_1$,

$$S_n = \sum_{i=1}^n X_i$$
 . Тогда при $n o \infty$

$$\frac{S_n}{n} \xrightarrow{p} a$$
.

Определение. Последовательность $\{X_n\}$ сходится по вероятности к случайной величине X, если для любого $\varepsilon > 0$ вероятность события

$$P(\mid X_n - X \mid \geq \varepsilon)$$

стремится к нулю при $n \to \infty$.

$$X_n \xrightarrow{p} X$$

Теорема 1 (3БЧ в форме Чебышева). Пусть случайные величины $X_1, X_2, ...$ независимы и одинаково распределены, причем $EX_1^2 < \infty$. Обозначим $a = EX_1$,

$$S_n = \sum_{i=1}^n X_i$$
. Тогда при $n \to \infty$

$$\frac{S_n}{n} \xrightarrow{p} a$$
.

При увеличении числа испытаний среднее сходится по вероятности к математическому ожиданию.

$$E\left(\frac{S_n}{n}\right) = \frac{1}{n} \sum_{i=1}^n EX_i = \frac{na}{n} = a.$$

$$E\left(\frac{S_n}{n}\right) = \frac{1}{n} \sum_{i=1}^n EX_i = \frac{na}{n} = a.$$

Пусть $\sigma^2 = DX_1$. По неравенству Чебышева,

$$P\left(\left|\frac{S_n}{n} - a\right| \ge \varepsilon\right) \le \frac{D\left(S_n/n\right)}{\varepsilon^2} = \frac{1}{n^2} \frac{D\left(S_n\right)}{\varepsilon^2} =$$

$$E\left(\frac{S_n}{n}\right) = \frac{1}{n} \sum_{i=1}^n EX_i = \frac{na}{n} = a.$$

Пусть $\sigma^2 = DX_1$. По неравенству Чебышева,

$$P\left(\left|\frac{S_n}{n} - a\right| \ge \varepsilon\right) \le \frac{D\left(S_n/n\right)}{\varepsilon^2} = \frac{1}{n^2} \frac{D\left(S_n\right)}{\varepsilon^2} =$$

$$= \frac{1}{n^2} \frac{D\left(\sum_{i=1}^n X_i\right)}{\varepsilon^2} = \frac{1}{n^2} \frac{n\sigma^2}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \xrightarrow[n \to \infty]{} 0.$$

$$E\left(\frac{S_n}{n}\right) = \frac{1}{n} \sum_{i=1}^n EX_i = \frac{na}{n} = a.$$

Пусть $\sigma^2 = DX_1$. По неравенству Чебышева,

$$P\left(\left|\frac{S_n}{n} - a\right| \ge \varepsilon\right) \le \frac{D\left(S_n/n\right)}{\varepsilon^2} = \frac{1}{n^2} \frac{D\left(S_n\right)}{\varepsilon^2} =$$

$$= \frac{1}{n^2} \frac{D\left(\sum_{i=1}^n X_i\right)}{\varepsilon^2} = \frac{1}{n^2} \frac{n\sigma^2}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2} \xrightarrow[n \to \infty]{} 0.$$

Значит, по определению сходимости,

$$\frac{S_n}{n} \stackrel{p}{\to} a$$
 при $n \to \infty$.

Практический вывод из 3БЧ: неизвестное значение математического ожидания случайной величины можно заменить ее средним значением, полученным по достаточно большому числу опытов.

Теорема 2 (Бернулли). Пусть m - число успехов в n испытаниях схемы Бернулли, p - вероятность успеха в одном испытании. Тогда

$$\frac{m}{n} \xrightarrow{p} p$$

при $n \to \infty$.

Теорема 2 (Бернулли). Пусть m - число успехов в n испытаниях схемы Бернулли, p - вероятность успеха в одном испытании. Тогда

$$\left|\frac{m}{n}\right|^p p$$

при $n \to \infty$.

Доказательство. Пусть X_i - число успехов в i-м испытании, тогда X_i подчиняется распределению Бернулли, все $X_1,...,X_n$ независимы и $EX_1=p$.

Теорема 2 (Бернулли). Пусть m - число успехов в n испытаниях схемы Бернулли, p - вероятность успеха в одном испытании. Тогда

$$\left|\frac{m}{n}\stackrel{p}{\longrightarrow}p\right|$$

при $n \to \infty$.

Доказательство. Пусть X_i - число успехов в i-м испытании, тогда X_i подчиняется распределению Бернулли, все $X_1,...,X_n$ независимы и $EX_1=p$. Положим

$$m = X_1 + ... + X_n$$
. Из теоремы 1 $\Rightarrow \frac{m}{n} \stackrel{p}{\rightarrow} p$.

Теорема 2 (Бернулли). Пусть m - число успехов в n испытаниях схемы Бернулли, p - вероятность успеха в одном испытании. Тогда

$$\frac{m}{n} \xrightarrow{p} p$$

при $n \to \infty$.

Доказательство. Пусть X_i - число успехов в i-м испытании, тогда X_i подчиняется распределению Бернулли, все $X_1,...,X_n$ независимы и $EX_1=p$. Положим

$$m = X_1 + ... + X_n$$
. Из теоремы 1 $\Rightarrow \frac{m}{n} \stackrel{p}{\rightarrow} p$.

Частота наступления события при увеличении числа испытаний сходится к вероятности этого события.

Замечание. Согласно неравенству Чебышева,

$$P\left(\left|\frac{m}{n}-p\right| \ge \varepsilon\right) \le \frac{1}{n} \frac{D(X_i)}{\varepsilon^2} =$$

Замечание. Согласно неравенству Чебышева,

$$P\left(\left|\frac{m}{n} - p\right| \ge \varepsilon\right) \le \frac{1}{n} \frac{D(X_i)}{\varepsilon^2} =$$

$$= \frac{1}{n} \frac{p(1-p)}{\varepsilon^2} = \frac{pq}{n\varepsilon^2},$$

где q = 1 - p.

Замечание. Согласно неравенству Чебышева,

$$P\left(\left|\frac{m}{n} - p\right| \ge \varepsilon\right) \le \frac{1}{n} \frac{D(X_i)}{\varepsilon^2} =$$

$$= \frac{1}{n} \frac{p(1-p)}{\varepsilon^2} = \frac{pq}{n\varepsilon^2},$$

где q = 1 - p.

То есть получили оценку отклонения частоты от вероятности события.

Решение. n=1000, p=500/10~000=0,05; q=1-p=0,95; $\varepsilon=0,01.$

Решение. $n=1000,\ p=500/10\ 000=0,05;\ q=1-p=0,95;$ $\varepsilon=0,01.$ Из неравенства Чебышева \Rightarrow $P(|m/n-p|<0,01)>1-pq/(n\varepsilon^2)=$

Решение. $n=1000,\ p=500/10\ 000=0,05;\ q=1-p=0,95;$ $\varepsilon=0,01.$ Из неравенства Чебышева \Rightarrow $P(|m/n-p|<0,01)>1-pq/(n\varepsilon^2)=$ $=1-0,05\cdot0,95/\left(1000\cdot0,0001\right)=0,527.$