

Tutorübung 1

Max Frühauf Technische Universität München Fakultät für Informatik 15. Oktober 2018

Zahlenbasen

- 1. Zweierpotenzen bis 2⁶⁴
- 2. Konvertierung Dezimal \rightarrow Binär:

```
42<sub>10</sub>
255<sub>10</sub>
4369<sub>10</sub>
```

3. Konvertierung Binär \rightarrow Dezimal:

```
110110<sub>2</sub>
10010110<sub>2</sub>
110011001100<sub>2</sub>
```

4. Konvertierung Dezimal \rightarrow Hexadezimal:

```
42<sub>10</sub>
255<sub>10</sub>
4269<sub>10</sub>
```


Zahlenbasen

- 1. Zweierpotenzen bis 2⁶⁴
- 2. Konvertierung Dezimal \rightarrow Binär:

4210

255₁₀

4369₁₀

3. Konvertierung Binär → Dezimal:

110110₂

100101102

1100110011002

4. Konvertierung Dezimal → Hexadezimal:

42₁₀

255₁₀

4269₁₀

- 1. Lösung: Tafel
- 2. Lösung:

 $= 101010_2$

= 111111112

 $= 1000100010001_2$

3. Lösung:

 $=54_{10}$

 $=150_{10}$

 $=3276_{10}$

4. Lösung:

 $=2A_{16}$

 $= FF_{16}$

 $= 1111_{16}$

< ∄ > < ≣ > < ≣ 1

Zahlenbasen 2

- 5. Konvertierung Binär \rightarrow Hexadezimal:
 - $= 101010_2$
 - = 111111112
 - $= 1000100010001_2$
- 6. Konvertierung Hexadezimal \rightarrow Dezimal:

BEEF₁₆

 $DEAD_{16}$

FEED₁₆

7. Bensonderheiten der folgengen Hexwerte. Wofür kann

man sie verwenden?

0*xFF*

0*x*00

0*x*55

0xAA

Zahlenbasen 2

- 5. Konvertierung Binär \rightarrow Hexadezimal:
 - $= 101010_2$
 - = 111111112
 - $= 1000100010001_2$
- 6. Konvertierung Hexadezimal → Dezimal:

BEEF₁₆

 $DEAD_{16}$

FEED₁₆

7. Bensonderheiten der folgengen Hexwerte. Wofür kann man sie verwenden?

0xFF

0*x*00

0*x*55

0xAA

- 5. Lösung:
 - $= 2A_{16}$
 - $= FF_{16}$
 - $=11111_{16}$
- 6. Lösung:
 - $=28879_{10}$
 - $=57005_{10}$
 - $=65261_{10}$
- 7. Lösung:
 - Nutzung für Speichertests
 - Stress von seriellen / parallelen Übertragungsystemen (0xFF₁₆,0x00₁₆)
 - Test auf Übersprechen zwischen zwei Bitleitungen (0x55₁₆, 0xAA₁₆)

Rechenoperationen

8. Addition in Binär & Dezimal dann Ergebnisse vergleichen $011001100_2 + 010110011_2 \\ 0001111011_2 + 0101011001_2$

Subtraktion in Binär & Dezimal dann Ergebnisse vergleichen
 011001100₂ – 010110011₂
 0001111011₂ – 0101011001₂

Rechenoperationen

- Addition in Binär & Dezimal dann Ergebnisse vergleichen 011001100₂ + 010110011₂ 0001111011₂ + 0101011001₂
- Subtraktion in Binär & Dezimal dann Ergebnisse vergleichen
 011001100₂ 010110011₂
 0001111011₂ 0101011001₂

8. Lösung:

```
011001100_2 + 010110011_2 = 01011111111_2

0001111011_2 + 0101011001_2 = 0111010100_2
```

9. Lösung:

```
011001100_2 - 010110011_2 = 000011001_2

0001111011_2 - 0101011001_2 = (...11)1100100010_2
```