

Lecture 4: Condensation

- 1. Condensation of corundum
- 2. Condensation temperatures
 - A. Refractory vs volatile elements
- 3. Planet formation
- 4. Goldschmidt classification
- 5. The primitive mantle

We acknowledge and respect the $l \ni k^w \ni j \ni n$ peoples on whose traditional territory the university stands and the Songhees, Esquimalt and $W \subseteq k$ historical relationships with the land continue to this day.

Practice Problem: Condensation of Corundum from the Solar Nebula

Q1: Calculate the temperature that Corundum (Al $_2$ O $_3$) begins condensing from the solar nebula using the following values (assume no other reactions):

$$2A1 + 3O \leftrightarrow Al_2O_3$$

- Solar abundance (molar abundance) of Al: 8.51 x 10⁴
- Solar abundance (molar abundance) of O: 2.36×10^7
- Solar abundance (molar abundance) of H: 2.6 x 10¹⁰
- Pressure in the nebula: 10^{-3} atm
- Gas constant (R): 8.314 J/mol K
- ΔG° (standard free energy of reaction) for condensation of Al $_2$ O $_3$: -1.23 x 10 6 J/mol

Q2: At what temperature will this reaction finish condensing all of the Aluminum in the nebula?

Condensation of corundum (ruby/sapphire)
2 Al(3) + 30(5) (-) Al203(c)

$$Q = \frac{\xi A |_{203}}{\xi A |_{203}^{2}} = \frac{1}{PA^{2} \cdot P_{0}^{3}}$$

at high T, low P safe to
assume ideal gas $\begin{cases} \chi = P_X \end{cases}$

assumption: PT = PH2

$$\frac{P_X}{P_{H2}} = \frac{N_X}{N_{H2}}$$

$$\frac{N_{H2}}{P_{H2}} = \frac{1}{2} N_H$$

$$P_{A1} = \frac{N_{A1}}{\frac{1}{2}N_{H}} - P_{H_{2}} = \frac{2N_{A1}}{N_{H}} - P_{T}$$

$$\Delta G^{\circ} = -RT \ln K$$

$$-\Delta G^{\circ} = -RT \ln K$$

$$-RT = -RT \ln K$$

Condensation of corundum (ruby/sapphire)

$$Q = \frac{\xi A |_{203}}{\xi A |_{203}^2 \xi 03^3} = \frac{1}{PAI \cdot P_0^3}$$

$$\frac{-16^{\circ}}{RT} = \ln \left(\frac{1}{6.5e^{-9}}\right)^{2} (1.8e^{-6})^{3}$$

$$\frac{-\Delta G^{\circ}}{2} = 77.3$$

RT , ag given in problem

$$6.5e^{-9} = P_{A1} = \frac{N_{A1}}{\frac{1}{2}N_{H}} \cdot P_{H2} = \frac{2N_{A1}}{N_{H}} \cdot P_{T}$$

Condensation of corundum (ruby/sapphire)

Condensation of corondom (ruby/sapphire)
$$2 \text{ Al}(3) + 30(5) \longleftrightarrow \text{Al}_203(c)$$

$$Q = \frac{\text{EAl}_2033}{\text{EAl}_3^2 \text{ Eo}_3^3} = \frac{1}{P_{Al}^2 \cdot P_o^3}$$
All is limiting $\frac{N_{Al}}{N_O} < \frac{2}{3}$

Al is limiting NAI < 2

$$P_{AI} = \frac{2N_{AI}}{N_{H}} - P_{7}$$

What is PAI when all Al condensed? ~ Oatm = PAI - 0.99 PAI

What is Rowhen all Al condensed? > Datm = Po - 3 (0.99 PAI)

$$\frac{-\Delta G^{\circ}}{RT} = \ln \left(\frac{P_{AI} - 0.99 P_{AI}}{P_{AI} - 0.99 P_{AI}} \right)^{3}$$

≈ 1880 K

Figure 2.13. 50% condensation temperatures taken from [*Wasson*, 1985] and [O'Neill and Palme, 1998].

Not quite as simple as our example...

Table 1. Gaseous species contributing more than 10^{-7} of the total moles of their common constituent element between 2000° K and 1200° K.

Element	Abundance* (Si = 10 ⁶)	Gaseous species
Hydrogen	2·6 × 10 ¹⁰	H ₂ , H, H ₂ O, HF, HCl, MgH, HS, H ₂ S, MgOH
Oxygen	2.36×10^7	CO, SiO, H ₂ O, TiO, OH, HCO, CO ₂ , PO, CaO, COS, MgO, SiO ₃ , AlOH, SO NaOH, MgOH, PO ₃ , Mg(OH) ₂ , AlO ₂ H
Carbon	1.35×10^7	CO, HCN, CS, HCO, CO, COS, HCP
Nitrogen	$2\cdot44\times10^6$	N., HCN, PN, NH., NH.
Magnesium	1.05×10^6	Mg, MgH, MgS, MgF, MgCl, MgO, MgOH, Mg(OH),
Silicon	1.00×10^6	Si, SiS, SiO, SiO,
Iron	8.90×10^{5}	Fe
Sulfur	5.06×10^5	SiS, CS, S, HS, H ₂ S, PS, AlS, MgS, NS, S ₂ , COS, SO, CS ₂ , SO ₂
Aluminum	8.51×10^4	Al, AlH, AlF, AlCl, AlS, AlO, AlO, AlOH, AlOF, AlO, H
Calcium	7.36×10^4	Ca, CaF, CaO, CaCl,
Sodium	6.32×10^4	Na, NaH, NaCl, NaF, NaOH
Nickel	4.57×10^4	Ni
Phosphorus	1.27×10^4	P, PN, PH, P2, PH2, PS, PO, PH2, PO2, HCP
Chromium	1.24×10^4	Cr
Manganese	8800	Mn
Fluorine	3630	HF, AlF, CaF, F, MgF, NaF, NF, KF, PF, CaF ₂ , AlOF, TiF ₂ , MgF ₂ , MgClF, TiF
Potassium	3240	K, KH, KCl, KF, KOH
Titanium	2300	Ti, TiO, TiF,, TiO,, TiF
Cobalt	2300	Co
Chlorine	1970	HCl, Cl, AlCl, NaCl, KCl, MgCl, CaCl ₂ , MgCl ₂ , AlOCl, MgClF

^{*} From Cameron (1968).

table from Condensation in the primitive solar nebula by Lawrence Grossman in GCA (1972)

Not quite as simple as our example...

figure from Condensation in the primitive solar nebula by Lawrence Grossman in GCA (1972)

Figure 2.13. 50% condensation temperatures taken from [*Wasson*, 1985] and [O'Neill and Palme, 1998].

Figure 2.13. 50% condensation temperatures taken from [*Wasson*, 1985] and [*O'Neill and Palme*, 1998].

....

Earth \approx MgO + CaO + SiO₂ + Al₂O₃ + FeO

Forming the planets

Olivine Solid Solution Phase Diagram.

