







Holistic optimisation
An industrial case study

better together...we deliver



Sasol – a brief introduction

# Sasol snapshot



- Established in South Africa in 1950s.
- One of world's largest sole owned petro-chemical complex in Secunda, Mpumalanga:
  - 84 FBDB Gasifiers, 16 Air Separation Units, 9 SAS reactors
  - 160,000 bpd diesel & gasoline
  - 250,000 ktpa co-monomers
  - World-scale polyethylene & polypropylene plant
- Headquartered in Johannesburg, South Africa (JSE and NYSE listed)
- 37,000 employees in 37 countries.
- Owns largest slurry-phase GTL facility in Qatar (34,000 bpd)
- Chemical operations in Netherlands, Italy, Germany, U.S.A, South Africa
- US\$ 27 billion market capitalisation (2013)
- US\$ 17 billion turnover (2013)

## Sasol global presence





hroad indication of Sasol's global presence and of its continuing operations, but is not location-so

# small but growing



#### Revenue





### industrial alcohols



$$(CH_3)-(CH_2)_n-OH$$

- commonly produced using hydroformylation technology.
- large range of uses

| purpose      | n    |
|--------------|------|
| Solvents     | 24   |
| Plasticisers | 59   |
| Detergents   | 1016 |
| Surfactants  | 17+  |

# hydroformylation



 converts olefins to aldehydes and alcohols by reaction with syngas

$$olefin_n + CO + H_2 \longrightarrow aldehyde_{n+1} \xrightarrow{+H_2} alcohol_{n+1}$$

 typically homogeneous reaction, usually catalysed by cobalt or rhodium complexed to a ligand, designed to modify reaction in some manner

### modCo<sup>TM</sup>



- Sasol's proprietary hydroformylation catalyst
- Developed for manufacturing detergent alcohols
- Can be adjusted for producing other industrial alcohols



# kinetic apparatus





## kinetic apparatus



#### **Properties**

- 1 litre autoclave
- 40 80 bar
- 120°C 180°C

#### Feed supply

- olefin and syngas feed, no product line
- feed supplied under pressure and ratio control
- multiple syngas ratios

#### Data

- Inherently dynamic
- Lots of information from single run

# kinetic rig model





# kinetic rig model sample results





## the effect of sample taking





#### kinetic model



#### Concentration terms

- Local liquid concentration determined from EOS
- Solvent agnostic
- Requires binary coefficient data!

#### Catalyst

- Complex interplay between multiple catalyst states (e.g. active, dormant and dead)
- Affected by metal, ligand and syngas concentrations

#### Reactions

- Primary, secondary and tertiary products
- 16 parameters in total

# results - kinetic fitting











### results - validation









Process design and optimisation

# block flow diagram





## comparison of holistic vs bau approach



#### business-as-usual

- Steady-state flowsheet design for mass-balance
- Capex and opex done 'over-the-fence'
- Case studies = optimisation

#### holistic approach - "design my plant to maximise return"

- Mass, energy, utility, capex and opex models integrated into single model.
- · Rigorous optimisation with SQP.

#### disclaimer and caveats

- Comparison is not scientific or rigorous (too unproductive)
- ~1 week of case studies vs. 2-3 weeks of optimisation studies.

## bau design



#### flowsheet

 Copy-and-paste of detergent alcohols design, with some obvious modifications

## equipment design and sizing

Based on heuristics and rules of thumb

### utility integration

None

#### case studies



#### Pressure and temperature

- High pressure, low temperature
- Low pressure, Low temperature

#### Contacting strategy

- Counter-current gas flow
- Co-current gas flow
- Varying gas recycle ratio

#### Constraints

- Liquid recycle set to maintain catalyst concentration in recycle below limit
- reactor L:D ratio kept at 5.
- Reactor volume varied to achieve >99% C3= conversion.

## holistic approach



#### mass balance

- In-house steady-state gPROMS model library
- Kinetics module connected to rigorous bubble column model

#### capex

- SRI correlations refitted to internal database
- In-house reactor costing model ported to gPROMS

#### opex

- LHV and steam table modules determine value of utility streams
- "Investor" model calculates NPV, IRR, etc. based on given S-curves.

#### optimisation

- Maximise IRR, changing key design variables
- Multiple operational constraints (e.g. catalyst concentration)

## advantages of the holistic approach



### Besides delivering an optimal solution,

Fully examine the parameter space,

providing insight into the process, suggesting additional work on truly *qualitatively different* case studies.

#### Division of labour

Computers do the boring number crunching

Engineers do the thinking

### We get to actually do our jobs

Not a 'fire and forget' solution

Time freed up allows for real innovation.

## results - capex





\*Capex normalised to \$10million for reactors in holistic flowsheet

## results - production



#### process efficiency

- Byproduct yields in BAU design made process non-viable.
- Alcohol yields > 90% found in holistic case, though economic optimum was less than this.

#### breakthroughs

- design change "A" led to lower operating pressure, significantly saving compression costs
- relaxing heuristic assumptions and rules-of-thumb led to dramatic capex savings, particularly in reactors.
- energy optimisation led to lower overall capex while simultaneously improving reactor productivity.
- Constrained syngas management optimisation led to dramatically improved yields

#### conclusions



## artificial example – 37% capex savings

• In general, 20% capex savings is realistic, and additional opex savings due to energy integration optimisation.

Inclusion of utilities & economics into 'super-design' opens up integration synergies that are impossible with '1-at-a-time' or 'over-the-fence' approaches

gPROMS is a tool that facilitates and enables holistic design and optimisation, from the lab scale through to conceptual design









Holistic optimisation
An industrial case study

better together...we deliver