Résolution de Formules Booléennes Quantifiées à l'aide de Réseaux de Neurones Université Paris-Diderot

Mohammed Younes Megrini Nicolas Nalpon

10 juin 2016

Introduction: Alpha Go

Introduction: Deep-Q Learning Atari

Modèle de McCulloh-Pitts

Neurone Perceptron

Neurone Sigmoïde

Réseau de Neurones

Fonction d'erreur quadratique moyenne

$$C_x$$
: $\mathbb{R}^{n+1} \to \mathbb{R}$
 $(w_1,....,w_{n+1}) \mapsto \frac{1}{2}(y(x) - \Phi_x(w_1,....,w_{n+1}))^2$

Descente de Gradient

Algorithm 1 Descente de Gradient

Require: $x_0 \in \mathbb{R}^{n+1}$, $c \in \mathbb{N}$, $\varepsilon \ge 0$

- 1: k = 0
- 2: while $||\nabla f(x_k)|| \ge \varepsilon$ and $k \ne c$ do
- 3: Calcul de $\nabla f(x_k)$
- 4: Calcul de $\alpha_k > 0$
- 5: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
- 6: k++;
- 7: end while

Descente de Gradient

Algorithm 2 Calcul du pas d'apprentissage

Require: x₀ vecteur poids qu'on choisit initialement

$$k = 0$$

- 1: Calculer $\nabla f(x_K)$
- 2: Choisir α_k afin de minimiser la fonction $h(\alpha) = f(x_k \alpha \nabla f(x_k))$;

Rétro-propagation

B-Diagramme

Rétro-propagation : feed-forward

Rétropropagation : backpropagation

Cas 1: Composition

Rétropropagation : backpropagation

Cas 2: Somme

Rétropropagation : backpropagation

Cas 3: Poids

Modèle des deux joueurs

État Couche d'entrée Couche cachée Couche de sortie

$$X_{i+1} = S(W_{i+1}X_i + B_{i+1})$$

Librairie Torch

Librairie Torch


```
function init()
  local net = nn.Sequential()
  net:add(nn.Linear(variables, variables))
  net:add(nn.Sigmoid())
  net:add(nn.Linear(variables, output))
  net:add(nn.Sigmoid())
  return net
end
```

Format QDimacs

Formule booléenne quantifiée normale conjonctive :

$$\exists x_5 \forall x_1 \forall x_4 \exists x_3 \forall x_2 \quad (x_1 \land \neg x_2 \land x_4) \lor (\neg x_3 \land x_4 \land x_5)$$

Format QDimacs

Formule booléenne quantifiée normale conjonctive :

$$\exists x_5 \forall x_1 \forall x_4 \exists x_3 \forall x_2 \quad (x_1 \land \neg x_2 \land x_4) \lor (\neg x_3 \land x_4 \land x_5)$$

Format QDimacs:

```
p cnf 5 2
a 1 4 0
e 3 0
a 2 0
1 -2 4 0
-3 4 5 0
```

Algorithme d'apprentissage de QBF-SAT

Algorithm 3 Deep QBF-SAT Learning

```
Require: k
 1: while cmp < k do
    s, r = result(session())
    us, uv, es, ev = build(s, r);
 3:
    store(us, uv, es, ev);
 4:
 5:
      train(uni, uniMset, uniMval);
      train(exi, exiMset, exiMval);
 6:
      percentage(r)
 7:
 8:
      cmp + +;
 9: end while
```

Conclusion

```
Session 9944:
1.0000 -1.0000 -1.0000 1.0000
0.0066 0.9914 0.0055 0.9914
[torch.DoubleTensor of size 2x4]
Result: 0 (var 2)
Training set:
uni:
1 1 0 0
1 1 -1 1
[torch.DoubleTensor of size 2x4]
0.9936
1.0000
[torch.DoubleTensor of size 2]
exi:
1 0 0 0
1 1 -1 0
[torch.DoubleTensor of size 2x4]
0.001 *
5.8034
2.7921
[torch.DoubleTensor of size 2]
Loss: uni8.6061716698874e-05 exi1.2046354306021e-05
Percentage:
Session 10000:
1.0000 -1.0000 1.0000 -1.0000
0.0065 0.9915 0.0082 0.9915
[torch.DoubleTensor of size 2x4]
```