Analiza vremenskih nizova zasnovana na kompleksnim mrežama

Diplomski rad

Lovre Mrčela 18. srpnja 2017.

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroničke sustave i obradbu informacija

Sadržaj

- 1. Uvod
- 2. Statistička arbitraža
- 3. Tok preferencija
- 4. Praktični dio
- 5. Zaključak

Uvod

Cilj rada

- · optimizacija portfelja
- · unaprjeđenje postojećih metoda statističke arbitraže
- modeliranje interakcija vrijednosnica korištenjem kompleksnih mreža

Teorem o nearbitraži

Teorem

Ako je u trenutku 0 vrijednost portfelja V(0) = 0, tada je u nearbitražnim okolnostima vjerojatnost P(V(t) > 0) = 0 za t > 0.

Koeficijent obrtaja

- · mjera promjenljivosti portfelja
- u rasponu [0,2]
- portfelj s N vrijednosnica $\alpha = \begin{bmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_N \end{bmatrix}$
- koeficijent obrtaja $\eta^{(t)}$:

$$\eta^{(t)} = \sum_{i=1}^{N} \left| \alpha_i^{(t)} - \alpha_i^{(t-1)} \right|$$

veći koeficijent obrtaja – veći troškovi trgovanja

Statistička arbitraža

Metoda

Okvir postupka statističke arbitraže:

- identificirati parove vrijednosnica čije cijene se slično ponašaju
- 2. među tim parovima izdvojiti one kod kojih je utvrđeno statistički značajno odstupanje
- 3. svaki izdvojeni par *uvrstiti u portfelj*, odnosno zauzeti kratku i dugu poziciju; jednom kada odstupanje prestane, *zatvoriti otvorene pozicije*

Metoda

Kretanje cijena dviju vrijednosnica.

Metoda

Razlika cijena istih dviju vrijednosnica.

Signal trgovanja

 $c_{i,j}$ — razlika logaritamskih cijena vrijednosnica i i j

$$m_{i,j}^{(t)} = \frac{1}{T} \sum_{\tau=t-T}^{t-1} c_{i,j}^{(\tau)}$$

$$d_{i,j}^{(t)} = \sqrt{\frac{1}{T-1} \sum_{\tau=t-T}^{t-1} \left(c_{i,j}^{(\tau)} - m_{i,j}^{(t)} \right)^2}$$

$$\Gamma_{X,Y}^{(t)} = \frac{c_{X,Y}^{(t)} - m_{X,Y}^{(t)}}{d_{X,Y}^{(t)}}$$

Signal trgovanja

Signal trgovanja dobiven iz istih dviju vrijednosnica.

Nedostaci

- preciznost rijetko kada iznad 60%, u većini slučajeva manja od 50%
- trgovanje u parovima, zahtijeva mogućnost zauzimanja kratke pozicije
- · velika promjenljivost portfelja, visoki troškovi trgovanja

Tok preferencija

Relacija preferencije

- binarna relacija: a > b a je više preferirano od b
- · indiferentnost u izboru: $a \sim b a$ nije usporedivo s b
- · ljudski način uspoređivanja dobara
- irefleksivna, asimetrična, tranzitivna, i tranzitivna po indiferentnosti

Graf toka preferencija

- relacija preferencije ne definira poredak dobara, nema intenzitete preferencije
- graf toka preferencija uvodi intenzitete preferencije, modelira interakciju vrijednosnica
- · pomoćna struktura
- ne mora biti konzistentan

Graf toka preferencija

Nekonzistentan graf.

Konzistentan graf.

Metoda potencijala

- · ni graf toka preferencija ne definira poredak dobara
- metoda potencijala definira poredak dobara na temelju grafa, i daje mjeru konzistentnosti grafa, u rasponu [0,1]
- mjera konzistentnosti opisuje koliko je odluka donesena na temelju grafa pouzdana

Metoda potencijala

Rezultat korištenja metode potencijala.

Cjelokupni algoritam trgovanja

- pomoću metode statističke arbitraže dobiju se opisi toka preferencija u grafu
- 2. iz grafa toka preferencija korištenjem metode potencijala određuje se poredak vrijednosnica *prema preferenciji*
- u vrijednosnicama s najvećom preferencijom zauzima se duga pozicija, a u onima s najmanjom kratka (ako je to dopušteno)

Praktični dio

Implementacija

- Python (NumPy, pandas, SciPy, Matplotlib)
- Jupyter bilježnica
- · open source alati
- · metoda statističke arbitraže i metoda potencijala
- · skripte za simuliranje trgovanja

Rezultati simulacije na podskupu od 203 dionice iz S&P 500.

Rezultati simulacije na podskupu od 203 dionice iz S&P 500.

Metoda	'Buy & Hold'	Statistička arbitraža	Tok preferencija
Godišnji povrat	0.07622	0.63033	1.28000
Volatilnost	0.15069	0.33532	0.78373
Sharpeov omjer	0.50582	1.87981	1.63322
Prosječni turnover	/	1.473211	0.55112
Profit uz troškove trgovanja 0.10%	5.49572	-2.74051	24.66204

Rezultati simulacije na punom skupu dionica iz S&P 500.

Rezultati simulacije na punom skupu dionica iz S&P 500.

Rezultati:	
bez troškova trgovanja: ukupni profit Sharpeov omjer	18.09261 0.87507
uz uključene troškove trgovanja od 0.10%: ukupni profit Sharpeov omjer	11.03961 0.53382
prosječni koeficijent obrtaja prosječna konzistentnost prosječna preciznost	1.04088 0.55817 0.52642

Rezultati simulacija - CROBEX

Rezultati simulacije na punom skupu dionica iz CROBEX-a.

Rezultati simulacija - CROBEX

Rezultati simulacije na punom skupu dionica iz CROBEX-a.

Rezultati:	
bez troškova trgovanja: ukupni profit Sharpeov omjer	24.32031 2.16176
uz uključene troškove trgovanja od 0.10%: ukupni profit Sharpeov omjer	20.77131 1.84749
prosječni koeficijent obrtaja prosječna konzistentnost prosječna preciznost	0.68041 0.81656 0.43558

Zaključak

Zaključak

- · poboljšanje postojećih metoda statističke arbitraže
- algoritam radi bolje što je više vrijednosnica na raspolaganju
- algoritam radi dobro i uz isključenu mogućnost kratke pozicije
- · nije otporan na fundamentalni rizik

Hvala na pažnji!

Pitanja?