FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT-I: Finite Automata

Objective:

To familiarize how to employ deterministic and non-deterministic finite automata. To familiarize how to employ non-deterministic finite automata with ϵ transitions and finite automata with outputs.

Syllabus:

Strings, alphabet, language, operations, finite state machine, finite automaton model, transition diagrams, acceptance of strings and languages, deterministic finite automaton and non-deterministic finite automaton, NFA to DFA conversion, NFA with epsilon transitions - significance, equivalence between NFA with and without E transitions, minimization of FSM, equivalence between two FSM's, finite automata with output- Moore and Mealy machines, applications of FA.

Learning Outcomes:

Students will be able to:

- Understand the basic definitions like alphabet, string, language and their operations.
- Understand the model of FA.
- Design DFA and NFA for the given regular language.
- Test the designed DFA and NFA for the set of strings that belongs to L and for the set of strings that doesn't belongs to L.
- Convert NFA to DFA and NFA with epsilon transitions to NFA without Epsilon transitions.
- Minimize the given DFA.
- Test whether the two DFA's are equivalent or not.
- Design Moore and Mealy Machines

1.Learning Material

1.1 Alphabet:

An alphabet is a finite, nonempty set of symbols. It is denoted by Σ .

Example:

 $\Sigma = \{0, 1\}$ is binary alphabet consisting of the symbols 0 and 1.

 $\Sigma = \{a, b, c ... z\}$ is lowercase English alphabet.

1.1.1Powers of an Alphabet

If Σ is an alphabet, we can express the set of all strings of a certain length from that alphabet by using the exponential notation. It is denoted by Σ^k - the set of strings of length k.

Example:

```
\Sigma^0 = \{\epsilon\}, regardless of what alphabet \Sigma is. \epsilon is the only string of length 0. If \Sigma = \{0, 1\} then, \Sigma^1 = \{0, 1\} \Sigma^2 = \{00, 01, 10, 11\}
```

 $\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111\}$

The set of all strings over an alphabet Σ is denoted by Σ^* . $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$

For example, $\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$

The symbol * is called *Kleene star* and is named after the mathematician and logician Stephen Cole Kleene.

The symbol + is called *Positive closure* i.e. $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup ...$

$$\Sigma^* = \Sigma^+ \cup \{ \epsilon \}$$

1.2 String:

A string (or word) is a finite sequence of symbols chosen from some alphabet.

The letters u, v, w, x, y and z are used to denote string.

Example:

If $\Sigma = \{a, b, c\}$ then abcb is a string formed from that alphabet.

• The *length* of a string w, denoted $|\mathbf{w}|$, is the number of symbols composing the string.

Example:

The string abcb has length 4.

• The *empty string* denoted by ε , is the string consisting of zero symbols. Thus $|\varepsilon| = 0$.

1.2.1Operations on strings:

• Concatenation of strings

The concatenation of two strings is the string formed by writing the first, followed by the second, with no intervening space. Concatenation of strings is denoted by °.

That is, if w and x are strings, then wx is the concatenation of these two strings.

Example:

The concatenation of dog and house is doghouse.

Let x=0100101 and y=1111 then $x \circ y=01001011111$

• String Reversal

Reversing a string means writing the string backwards.

It is denoted by w^R

Example:

Reverse of the string abcd is dcba.

If $w = w^R$, then that string is called palindrome.

• Substring

A substring is a part of a string.

Example:

If abcd is string then possible substrings are ε ,a,b,c,d,ab,bc,cd,abc,bcd are proper substrings for the given string

A *prefix* of a string is any number of leading symbols of that string.

A *suffix* of a string is any number of trailing symbols.

Example:

String abc has prefixes ε , a, ab, and abc; its suffixes are ε , c, bc, and abc.

A prefix or suffix of a string, other than the string itself, is called a *proper prefix or suffix*.

1.3 Language:

A (formal) language is a set of strings of symbols from some one alphabet. It is denoted by L. We denote this language by Σ^* .

• The empty set, \emptyset , and the set consisting of the empty string $\{\varepsilon\}$ are languages.

Example:

If
$$\Sigma = \{a\}$$
, then $\Sigma^* = \{\varepsilon, a, aa, aaa, ...\}$.
If $\Sigma = \{0, 1\}$, then $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$.

1.4Operations on languages:

• Union

If L1 and L2 are two languages over an alphabet Σ . Then the union of L1 and L2 is denoted by L1 U L2.

Example:

$$L1=\{0,01,011\}$$
 and $L2=\{001\}$, then $L1 U L2=\{0,01,011,001\}$

• Intersection

If L1 and L2 are two languages over an alphabet Σ . Then the intersection of L1 and L2 is denoted by L1 \cap L2.

Example:

$$L1 = \{0, 01, 011\}$$
 and $L2 = \{01\}$, then $L1 \cap L2 = \{01\}$

• Complementation

L is a language over an alphabet Σ , then the complement of L denoted by L⁻, is the language consisting of those strings that are not in L over the alphabet.

Example:

If
$$\Sigma = \{a,b\}$$
 and $L = \{a,b,aa\}$ then $L = \Sigma^* - L = \{\epsilon,a,b,aa,bb,ab,...\}$

• Concatenation

Concatenation of two languages L1 and L2 is the language L1 o L2, each element of which is a string formed by combining one string of L1 with another string of L2.

Example:

• Reversal

If L is language, then L^R is obtained by reversing the corresponding string in L. This operation is similar to the reversal of a string.

$$L^R = \{w^R \mid w \in L\}$$

Example:

If
$$L = \{0, 011, 0111\}$$
, then $L^R = \{0, 110, 1110\}$

• Kleene Closure

The Kleene closure (or just closure) of L, denoted L*, is the set

$$L *= \begin{matrix} \infty \\ U & L^i \\ i=0 \end{matrix}$$

and the positive closure of L, denoted L⁺, is the set

$$L^{+} = \begin{array}{c} \infty \\ U \\ i=1 \end{array}$$

That is, L* denotes words constructed by concatenating any number of words from L.

L+ is the same, but the case of zero words, whose "concatenation" is defined to be ε , is excluded. Note that L+ contains ε if and only if L does.

Example:

Let $L\hat{1} = \{10, 1\}$ Then $L * = L0 U L1 U L2.... = \{\epsilon, 1, 10, 11, 111, 1111, \}$ $L + L1 U L2 U L3... = \{1, 10, 11, 111, 1111... \}$

1.5 Finite Automaton:

- A finite automaton (FA) consists of a finite set of states and a set of transitions from state to state that occur on input symbols chosen from an alphabet Σ .
- For each input symbol there is exactly one transition out of each state (possibly back to the state itself).
- One state, usually denoted q_0 is the initial state, in which the automaton starts. Some states are designated as final or accepting states.

Formally, a finite automaton is denoted by a 5-tuple ($\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F}$), where

- Q is a finite set of states.
- \sum is a finite input alphabet.
- δ is the transition function mapping Q x Σ to Q i.e., δ (q,a) is a state for each—state—q and input symbol a.
- $qo \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final states. It is assumed here that there may be
- more than one final state.

Transition Diagram

- A transition diagram is a directed graph associated with an FA in which the vertices of the graph correspond to the states of the FA.
- If there is a transition from state q to state p on input a, then there is an arc labelled a from state q to state p in the transition diagram.

State is denoted by

Transition is denoted by

Initial state is denoted by

Final state is denoted by

Transition Table

A tabular representation in which rows correspond to states, columns correspond to inputs and entries correspond to next states.

1.6 Finite Automata Model:

Block diagram of a finite automaton

The various components are explained as follows:

(i) *Input tape*:

- The input tape is divided into squares, each square containing a single symbol from the input alphabet ∑.
- The end squares of the tape contain the endmarker ϕ at the left end and the endmarker ϕ at the right end.
- The absence of endmarkers indicates that the tape is of infinite length. The left-to-right sequence of symbols between the two endmarkers is the input string to be processed.

(ii) Reading head:

- The head examines only one square at a time and can move one square either to the left or to the right.
- For further analysis, we restrict the movement of the R-head only to the right side.
- (iii) *Finite control:* The input to the finite control will usually be the symbol under the R-head, say a, and the present state of the machine, say q, to give the following outputs:
- (a) A motion of R-head along the tape to the next square (in some a null move, i.e. the R-head remaining to the same square is permitted)
- (b) The next state of the finite state machine given by $\delta(q, a)$.

1.7Acceptance of String by a Finite Automaton:

The FA accepts a string x if the sequence of transitions corresponding to the symbols of x leads from the start state to an accepting state and the entire string has to be consumed, i.e., a string x is accepted by a finite automaton $M = (Q, \sum, \delta, q_0, F)$

if
$$\delta$$
 (q₀, x) =q for some q \in F.

This is basically the acceptability of a string by the final state.

Note: A final state is also called an accepting state.

Transition function δ and for any two input strings x and y,

function δ is given in the form of a transition table. Here $Q = \{q_0, q_1, q_2, q_3\}, \sum = \{0,1\}, F = \{q_0\}$. Give the entire sequence of states for the input string 110101.

transition

Transition Table

CAnAn	Input	
State	0	1
 q_0	q_2	\mathbf{q}_1
$\underbrace{q_1}$	q ₃	\mathbf{q}_0
q_2	q ₀	q ₃
q ₃	q ₁	q_2

$$\delta (q_0, 110101) = \delta(q_1, 10101)$$

$$= \delta(q_0, 0101)$$

$$= \delta(q_2, 101)$$

$$= \delta(q_3, 01)$$

$$= \delta(q_2, 1)$$

$$= q_0$$

q₀ is final state, therefore given string is accepted by finite automata.

1.8 Deterministic finite automaton:

Formally, a deterministic finite automaton can be represented by a 5-tuple

$$M=(Q, \Sigma, \delta, q_0, F).$$

where

- Q is a finite set of states.
- \sum is a finite input alphabet.
- δ is the transition function mapping Q x Σ to Q i.e., δ (q,a) is a state for each state q and input symbol a.
- $q_o \in Q$ is the initial state.
- $F \subseteq Q$ is the set of final states. It is assumed here that there may be more than one final state.

Steps to design a DFA

- 1. Understand the language for which the DFA has to be designed and write the language for the set of strings starting with minimum string that are accepted by FA.
- 2. Draw transition diagram for the minimum length string.
- 3. Obtain the possible transitions to be made for each state on each input symbol.
- 4. Draw the transition table.

- 5. Test DFA with few strings that are accepted and few strings that are rejected by the given language.
- 6. Represent DFA with tuples.

Examples

1. Design DFA that accepts all strings which starts with '1' over the alphabet {0,1}

Step 1: Understand the language for which the DFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA. $L = \{1, 10, 11, 100, 110, 101, 111, \dots\}$

Step 2: Draw transition diagram for the minimum length string.

Step 3: Obtain the possible transitions to be made for each state on each input symbol.

Step 4: Draw the transition table.

	State	Inj	out
		0	1
	q 0	q_2	q_1
	q1	q_1	q_1
	q_2	q_2	q ₂

Step 5: Test DFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let $w=1001 \in L$

$$\delta(q_0, 1001) = \delta(q_1, 010)$$

$$=\delta(q_1,10)=\delta(q_1,0)=q_1$$

 q_1 is final state and the entire string has been consumed i.e., given string is accepted by DFA.

Case ii) Let w=0001
$$\notin$$
 L
 $\delta(q0,0001) = \delta(q2,001)$
= $\delta(q2,10)$
= $\delta(q2,0)$
= q_2

q₂ is not final state and the entire string has been consumed i.e., given string is rejected by DFA.

Step 6: Represent DFA with tuples.

DFA, M= (Q,
$$\sum$$
, δ , qo, F)
where Q = {q₀, q₁, q₂}
 \sum = { 0,1 }
 δ : δ (q₀,0)=q₂
 δ (q₀,1)=q₁
 δ (q₁,0)=q₁
 δ (q₁,1)=q₁
 δ (q₂,0)=q₂
 δ (q₂,1)=q₂
q₀ - initial state

 $F - final state = \{ q_1 \}$

2. Design DFA that accepts all strings which contains '00' as substring over the alphabet {0,1}

Step 1: Understand the language for which the DFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA.

 $L = \{00,100,000,001,1100,1000,0100,1001,0001,11000,11100,\dots\}$

Step 2: Draw transition diagram for the minimum length string.

Step 3: Obtain the possible transitions to be made for each state on each input symbol.

Step 4: Draw the transition table.

	State	Inj	out
		0	1
	\mathbf{q}_0	q_1	q_0
	q1	q ₂	\mathbf{q}_0
	q_2	q_2	q_2

Step 5: Test DFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let
$$w = 1001 \in L$$

 $\delta(q_0, 1001) = \delta(q_0, 001)$
 $= \delta(q_1, 01)$
 $= \delta(q_2, 1)$

 $= q_2$

It is final state and the entire string has been consumed i.e., given string is accepted by DFA.

$$\begin{split} \delta(q_0, 1011) &= \delta(q_0, 011) \\ &= \delta(q_1, 11) \\ &= \delta(q_0, 1) \\ &= q_0 \\ / \end{split}$$

It is not final state and the entire string has been consumed i.e., given string is rejected by DFA.

Step 6: Represent DFA with tuples.

DFA,
$$M=(Q, \sum, \delta, qo, F)$$

where
$$Q = \{q_0, q_1, q_2\}$$

$$\sum = \{ 0,1 \}$$

δ:
$$\delta(q_0,0)=q_1$$

$$\delta(q_0,1)=q_0$$

$$\delta(q_1,0)=q_2$$

$$\delta(q_1,1)=q_0$$

$$\delta(q_2,0)=q_2$$

$$\delta(q_2,1)=q_2$$

$$q_0 - \text{initial state}$$

$$F - \text{final state} = \{ q_2 \}$$

1.9 Nondeterministic finite automaton (NDFA/NFA):

A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , qo, F), where

- Q is a finite nonempty set of states;
- \sum is a finite nonempty set of inputs;
- δ is the transition function mapping from Q x ∑ into 2^Q which is the power set of Q, the set of all subsets of Q;
- $qo \in Q$ is the initial state; and
- $F \subseteq Q$ is the set of final states

Steps to design a NFA

- 1. Understand the language for which the NFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA.
- 2. Draw transition diagram for the minimum length string.
- 3. Obtain the possible transitions to be made for each state on each input symbol.
- 4. Draw the transition table.
- 5. Test NFA with few strings that are accepted and few strings that are rejected by the given language.
- 6. Represent NFA with tuples.

Examples:

1. Design NFA that accepts all strings which contains '00' as substring over the alphabet {0,1}

Step 1: Understand the language for which the NFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA L={00,100,000,001,0100,1100,1001,0001,1100,11100,....}

Step 2: Draw transition diagram for the minimum length string.

Step 3: Obtain the possible transitions to be made for each state on each input symbol. **0**, **1**

Step 4: Draw the transition table.

State	Input
-------	-------

		0	1
	q_0	$\{q_0,q_1\}$	q_0
	q1	q ₂	-
	q_2	q_2	q_2

Step 5: Test NFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let w=0100
$$\in$$
 L
 $\delta(q_0,0100) = \delta(\{q_0,q_1\},100)$
 $= \delta(q_0,00)$
 $= \delta(\{q_0,q_1\},0)$
 $= \{q_0,q_1,q_2\}$

q₂ is final state and the entire string has been consumed i.e., given string is accepted by NFA.

Case ii) Let w=1011
$$\notin$$
 L
 $\delta(q_0,1011) = \delta(q_0,011)$
 $= \delta(\{q_0,q_1\},11)$
 $= \delta(q_0,1)$
 $= q_0$

It is not final state and the entire string has been consumed i.e., given string is rejected by NFA.

Step 6: Represent NFA with tuples.

NFA,
$$M = (Q, \sum, \delta, q_0, F)$$

where $Q = \{q_0, q_1, q_2\}$
 $\sum = \{0,1\}$
 $\delta: \delta(q_0,0) = \{q_0,q_1\}$
 $\delta(q_0,1) = q_0$
 $\delta(q_1,0) = q_2$
 $\delta(q_1,1) = \emptyset$
 $\delta(q_2,0) = q_2$
 $\delta(q_2,1) = q_2$
 q_0 — initial state
 F — final state = $\{q_2\}$

2. Design NFA that accepts strings which contains either two consecutive 0's or two consecutive 1's.

Step 1: Understand the language for which the NFA has to be designed and write the language for the set of strings starting with minimum string that is accepted by FA.

 $L = \{00,11,100,001,110,011,111,000,0100,1011,....\}$

Step 2: Draw transition diagram for the minimum length string.

Step 3: Obtain the possible transitions to be made for each state on each input symbol.

Step 4: Draw the transition table.

State	Input		
State	0	1	
— → q ₀	$\{q_0,q_3\}$	$\{q_0,q_1\}$	
q ₁	-	q ₂	
q_2	q ₂	q ₂	
q ₃	q4	-	
q_4	Q4	q ₄	

Step 5: Test NFA with few strings that are accepted and few strings that are rejected by the given language.

Case i) Let the input, $w = 01001 \in L$

After the entire string is consumed, the FA is in state q₄.As q₄ is the final state, the string is a accepted by FA

Case ii) Let w = 010
$$\notin$$
 L
 $\delta(q_0,010) = \delta(\{q_0,q_3\},10)$
= $\delta(\{q_0,q_1\},0)$
= $\{q_0,q_3\}$

There is no path to the final state after the entire string is consumed. So the string is rejected by FA.

Step 6: Represent NFA with tuples.

NFA, M= (Q,
$$\Sigma$$
, δ , qo, F)
where Q = {q₀, q₁, q₂, q₃,q₄}

$$\Sigma = \{ 0,1 \}$$

$$\delta: \delta(q_0,0) = \{q_0,q_3\}$$

$$\delta(q_0,1) = \{q_0,q_1\}$$

$$\delta(q_1,0) = \emptyset$$

$$\delta(q_1,1) = q_2$$

$$\delta(q_2,0) = q_2$$

$$\delta(q_2,1) = q_2$$

$$\delta(q_3,0) = q_4$$

$$\delta(q_3,1) = \emptyset$$

$$\delta(q_4,0) = q_4$$

$$\delta(q_4,1) = q_4$$

 q_0 – initial state

$$F$$
 – final state = { q_2,q_4 }

1.10 Language recognizers:

A language recognizer is a device that accepts valid strings produced in a given language. Finite state automata are formalized types of language recognizers.

The language accepted by Finite Automata M designated L(M) is the set $\{x \mid \delta(q0,x) \text{ is in } F\}$.

1.11 Applications of FA:

- Used in Lexical analysis phase of a compiler to recognize tokens.
- Used in text editors for string matching.
- Software for designing and checking the behavior of digital circuits.

1.12 Limitations of FA:

- FA's will have finite amount of memory.
- The class of languages recognized by FA s is strictly the regular set. There are certain languages which are non regular i.e. cannot be recognized by any FA.

1.13 Differences between NFA and DFA:

S.No	NFA	DFA
	A nondeterministic finite automaton	A deterministic finite automaton can be
	is a 5-tuple	represented by a 5-tuple
1	$M=(Q, \Sigma, \delta, q_0, F)$, where	$M=(Q, \Sigma, \delta, q_0, F)$, where
	δ : Q x Σ into 2 ^Q .	δ : Q x Σ to Q.
	NFA is the one in which there	DFA is a FA in which there is only
2	exists many paths for a specific	one path for a specific input from
2	input from current state to next	current state to next state.
	state.	
3	NFA is easier to construct.	DFA is more difficult to construct.
4	NFA requires less space.	DFA requires more space.
5	Time required for executing an	Time required for executing an input
5	input string is more.	string is less.

1.14 NFA with ε transitions:

An ϵ -NFA is a tuple (Q, Σ , δ , qo, F)

where

- Q is a set of states,
- Σ is the alphabet,
- δ is the transition function that maps each pair consisting of a state and a symbol in $\Sigma \cup \{\epsilon\}$ to a subset of Q,
- q_0 is the initial state,
- $F \subset Q$ is the set of final (or accepting) states.

1.15 Significance of ε-NFA:

It becomes very difficult or many times it seems to be impossible to draw directly NFA or DFA.

Example:

1.16 String acceptance by ε -NFA

Fig:1

Transition Table:

	Q/ ∑	а	b	3
	q 0	-	-	{ q ₁ , q ₂ }
	\mathbf{q}_1	q ₃	-	-
	$\mathbf{q_2}$	-	Q 4	-
	q 3	\mathbf{q}_1	-	-
	Q ₄	-	\mathbf{q}_2	-

Example:

Check whether the string 'bbb' is accepted or not for the above automaton.

$$q_0 \xrightarrow{\epsilon} q_2 \xrightarrow{b} q_4 \xrightarrow{b} q_2 \xrightarrow{b} q_4$$

As q4 is the final state, the given string is accepted by the given ε –NFA.

1.17 ε –NFA to NFA Conversion:

Step 1: Find the ε -closure for all states in the given ε -NFA.

$$\hat{\delta}(q, \epsilon) = \epsilon$$
-CLOSURE (q)

 ϵ -closure (q) denotes the set of all states p such that there is a path from q to p labelled ϵ .

Step 2: Find the extended transition function for all states on all input symbols for the given ε -NFA.

$$δ'$$
 (q,a)= ε-closure($δ$ ($δ'$ (q, ε),a))

Step 3: Draw the transition table or diagram from the extended transition function (NFA)

Step 4: F is the set of final states of NFA, whose ϵ -closure contains the final state of ϵ - NFA.

Step 5: To check the equivalence of ϵ -NFA and NFA, the string accepted by ϵ -NFA should be accepted by NFA.

Example:

1. Convert NFA with ϵ -moves into an equivalent NFA without ϵ -moves.

Finite automaton with c-moves.

Step 1: Find the ε -closure for all states in the given ε -NFA.

- ϵ -CLOSURE (q_0) = {q_0, q_1, q_2}
- ϵ -CLOSURE (q₁) = {q1, q₂}
- ε -CLOSURE (q₂) = {q₂}

Step 2: Find the extended transition function for all states on all input symbols for the given ε -NFA.

```
δ'(q_0,0) = ε-closure(δ(δ'(q_0, ε),0))
                      = \varepsilon-closure(\delta \{q_0, q_1, q_2\}, 0)
                      = \epsilon-closure(\delta(q_0, 0) \cup \delta(q_1, 0) \cup \delta(q_2, 0))
                       = \varepsilon-closure(q<sub>0</sub> U Ø U Ø)
                      = \{q_0, q_1, q_2\}
     δ'(q_0, 1) = ε-closure(δ(δ'(q_0, ε), 1))
                     = \varepsilon-closure(\delta \{q_0,q_1,q_2\},1)
                     = \varepsilon-closure(\delta (q<sub>0</sub>,1) U \delta(q<sub>1</sub>,1) U \delta(q<sub>2</sub>,1))
                      = \epsilon-closure(Ø U q<sub>1</sub> U Ø)
                     =\{q_1,q_2\}
  δ'(q_0,2) = ε-closure(δ(δ'(q_0, ε),2))
                   = \varepsilon-closure(\delta \{ q_0, q_1, q_2 \}, 2)
                  = \varepsilon-closure(\delta (q<sub>0</sub>,2) U \delta (q<sub>1</sub>,2) U\delta (q<sub>2</sub>,2))
                   = \epsilon-closure(q<sub>2</sub> U Ø)
                  =\{q_2\}
 δ'(q_1,0) = ε-closure(δ(δ'(q_1, ε),0))
                 = \varepsilon-closure(\delta \{q_1, q_2\}, 0)
                 = \varepsilon-closure(\delta (q<sub>1</sub>,0) U\delta (q<sub>2</sub>,0))
                  = \varepsilon-closure(\emptyset)
                 =\{\emptyset\}
 δ'(q_1,1) = ε-closure(δ(δ'(q_1, ε),1))
                 = \varepsilon-closure(\delta \{q_1, q_2\}, 1)
                 = \varepsilon-closure(\delta (q<sub>1</sub>,1) U\delta (q<sub>2</sub>,1))
                  = \varepsilon-closure(q<sub>1</sub>)
                 =\{q_1, q_2\}
\delta (q<sub>1</sub>,2) = \epsilon-closure(\delta (\delta'(q1, \epsilon),2))
              = \varepsilon-closure(\delta {q1, q2},2)
              = \varepsilon-closure(\delta (q1,2) U\delta (q2,2))
              = \varepsilon-closure(q2)
              ={q2}
 \delta (q<sub>2</sub>,0) = ε-closure(\delta (\delta'(q<sub>2</sub>, ε),0))
               = \varepsilon-closure(\delta (q<sub>2</sub>,2))
               = \varepsilon-closure(\emptyset)
               =\{\emptyset\}
\delta (q<sub>2</sub>,1) = ε-closure(\delta (\delta'(q<sub>2</sub>, ε),1))
                 = \varepsilon-closure(\delta (q<sub>2</sub>,1))
               = \varepsilon-closure(\emptyset)
               ={\emptyset}
\delta (q<sub>2</sub>,2) = \epsilon-closure(\delta (\delta'(q<sub>2</sub>, \epsilon),2))
               = \varepsilon-closure(\delta (q<sub>2</sub>,2))
               = \varepsilon-closure(q<sub>2</sub>)
               =\{ q_2 \}
```

Step 3: Draw the transition table or diagram from the extended transition function (NFA)

	State	Inputs		
	Deaco	0	1	2
	q_0	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$	q_2
	\mathbf{q}_1	Ø	$\{q_1, q_2\}$	q_2
	*q ₂	Ø	Ø	q_2

Step 4: F is the set of final states of NFA, whose ϵ -closure contains the final state of ϵ - NFA.

	State		Inputs		
		0	1	2	
	q ₀	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$	\mathbf{q}_2	
	q1	Ø	$\{q_1, q_2\}$	\mathbf{q}_2	
	(q2)	Ø	Ø	q_2	

Step 5: To check the equivalence of ϵ -NFA and NFA, the string accepted by ϵ -NFA should be accepted by NFA.

String acceptance by ε -NFA:

Let w=001

$$\mathbf{q_0} \xrightarrow{0} \mathbf{q_0} \xrightarrow{0} \mathbf{q_0} \xrightarrow{\varepsilon} \mathbf{q_1} \xrightarrow{\varepsilon} \mathbf{q_1} \xrightarrow{\varepsilon} \mathbf{q_2}$$

As q2 is the final state, the string is accepted by the given ε -NFA.

String acceptance by NFA:

If w=001

As q1 and q2 are final states, the string is accepted by the NFA.

1.18 NFA to DFA Conversion:

Step 1: First take the starting state of NFA as the starting state of DFA.

Step 2: Apply the inputs on initial state and represent the corresponding states in the transition table.

Step 3: For each newly generated state, apply the inputs and represent the corresponding states in the transition table.

Step 4: Repeat step 3 until no more new states are generated.

Step 5: The states which contain any of the final states of the NFA are the final states of the equivalent DFA.

Step 6: Represent the transition diagram from the constructed table.

Step7: To check the equivalence of NFA and DFA, the string accepted by NFA should be accepted by DFA.

Step 8: Write the tuple representation for the obtained DFA.

Note: If the NFA has n states, the resulting DFA may have up to 2^n states, an exponentially larger number, which sometimes makes the construction impractical for large NFAs.

Example:

1. Construct DFA equivalent to the NFA M=($\{q_0,q_1\},\{0,1\}, \delta,q_0,\{q_1\}$) where $\delta(q_0,0) = \{q_0,q_1\}$ $\delta(q_0,1) = \{q_1\}$ $\delta(q_1,0) = \emptyset$ $\delta(q_1,1) = \{q_0,q_1\}$

Step 1: First take the starting state of NFA as the starting state of DFA

	Q/∑	0	1
→	$[q_0]$		

Step 2: Apply the inputs on initial state and represent the corresponding states in the transition table.

	Q/∑	0	1
-	$[q_0]$	$[q_0,q_1]$	$[q_1]$

Step 3: For each newly generated state, apply the inputs and represent the corresponding states in the transition table.

	Q/∑	0	1
→	$[\mathbf{q}_0]$	$[\mathbf{q}_0,\mathbf{q}_1]$	$[q_1]$
	$[\mathbf{q}_0,\mathbf{q}_1]$	$[\mathbf{q}_0,\!\mathbf{q}_1]$	$[\mathbf{q}_0,\mathbf{q}_1]$
	$[q_1]$	Ø	$[q_0,q_1]$

Step 4: Stop the procedure as there are no more new states being generated.

Step 5: The states which contain any of the final states of the NFA are the final states of the equivalent DFA.

 q_1 is the final state in NFA. q_1 is included in the state $[q_0,q_1]$ and $[q_1]$. So $[q_0,q_1]$ and $[q_1]$ are the final states of the DFA.

	Q/∑	0	1
-	$[q_0]$	$[\mathrm{q}_0,\!\mathrm{q}_1]$	$[q_1]$
	[q ₀ ,q ₁]	$[\mathrm{q}_0,\!\mathrm{q}_1]$	$[\mathrm{q}_0,\mathrm{q}_1]$
	[q ₁]	Ø	$[\mathrm{q}_0,\mathrm{q}_1]$

Step 6: Represent the transition diagram from the constructed table.

Step 7: To check the equivalence of NFA and DFA, the string accepted by NFA should be accepted by DFA.

Let **w=1110** be the string accepted by NFA.

Acceptability by NFA:

Acceptability by DFA:

$$\delta([q_0], 1110) = \delta([q_1], 110) \qquad [q0] \frac{1}{[q1]} \frac{1}{[q0,q1]} \frac{1}{[q0,q1]} \frac{0}{[q0,q1]}$$

$$= \delta([q_0,q_1], 10)$$

$$= \delta([q_0,q_1], 0)$$

$$= [q_0,q_1] \in F$$

Step 8: Write the tuple representation from the obtained DFA.

DFA M' =
$$(Q, \sum, \delta, q_0, F)$$

where Q = { $[q_0], [q_0, q_1], [q_1]$ }

$$\Sigma = \{0, 1\}$$

 δ - transition function

 $[q_0]$ - initial state $F = \{[q_0], [q_0,q_1]\}$

1.19 Minimization of Finite Automata:

Two states ql and q2 are equivalent (denoted by q1 = q2) if both $\delta(q1, x)$ and $\delta(q2, x)$ are final states. or both of them are nonfinal states for all $x \in \Sigma^*$.

Two states q1 and q2 are k-equivalent $(k \ge 0)$ if both $\delta(q1, x)$ and $\delta(q2, x)$ are final states or both nonfinal states for all strings x of length k or less. In particular, any two final states are 0-equivalent and any two nonfinal states are also 0-equivalent.

Construction of Minimum Automaton:

Step 1: (Construction of $\mathbf{\pi_0}$) By definition of 0-equivalence, $\mathbf{\pi_0} = \{Q_1^0, Q_2^0\}$ where Q_1^0 is the set of all final states and $Q_2^0 = Q_1^0$.

Step 2: (Construction of π_{k+1} from π_k).

- Let Q_{i^k} be any subset in π_k . If q_1 and q_2 are in Q_{i^k} , they are (k + 1)-equivalent provided δ (q_1,a) and $\delta(q_2,a)$ are k-equivalent.
- Find out whether δ (q1, a) and δ (q2, a) are in the same equivalence class in π_k for every a $\epsilon \Sigma$. If so q1 and q2 are (k + 1)-equivalent.
- In this way, Q_{i^k} is further divided into (k + 1)-equivalence classes. Repeat this for every Q_{i^k} in π_k to get all the elements of π_{k+1} .

Step 3: Construct π_n for n = 1, 2, until $\pi_n = \pi_{n+1}$.

Step 4: (Construction of minimum automaton). For the required minimum state automaton, the states are the equivalence classes obtained in step 3. i.e. the elements of π_n The state table is obtained by replacing a state q by the corresponding equivalence class [q].

Example:

Construct a minimum state automaton equivalent to the finite automaton.

Solution:

It will be easier if we construct the transition table.

State/Σ	0	1
$\rightarrow q_0$	91	q ₅
q_1	q_6	q_2
(q_2)	90	q_2
93	92	q 6
q_4	q 7	9 5
q_5	92	q_6
9 6	96	94
9 7	96	q_2

Step 1: Construction of π_0

$$\pmb{\pi_0} = \{Q_1{}^0, \; Q_2{}^0 \; \}$$

where
$$Q_1^0 = F = \{q2\}$$
 $Q_2^0 = Q_1^0$

$$Q_2^0 = Q_1^0$$

$$\mathbf{\pi_0} = \{ \{q2\}, \{q0,q1,q3,q4,q5,q6,q7\} \}$$

Step 2: The $\{q2\}$ in π_0 cannot be further partitioned. So, $Q_1^1 = \{q2\}$. Compare q_0 with q_1 , q_3 , q_4 , q_5 , q_6 and q_7 .

Consider qo and q $1 \in Q_2^{0.}$

- The entries under the 0- column corresponding to go and g1 are g1 and g6; they lie in Q_2^0 .
- The entries under the 1-column are q_5 and q_2 . $q_2 \in Q_1^0$ and $q_3 \in Q_2^0$. Therefore $q_3 \in Q_2^0$. and q1 are not 1- equivalent.

Q/∑	0	1
q o	q 1	q 5
\mathbf{q}_1	q ₆	\mathbf{q}_2

Consider q0 and q3

Q/∑	0	1
q o	q 1	q 5
q 3	\mathbf{q}_2	q 6

The entries under the 0- column corresponding to qo and q3 are q1 and q2; q1 ϵ Q20 and $q2 \in Q_1^0$. The entries under the 1-column are q5 and q6; they lie in Q_2^0 . Therefore qo and q3 are not 1- equivalent

Similarly, go is not 1-equivalent to q5 and q7.

Consider q0 and q4

Q/∑	0	1
qO	q1	q5
q4	q7	q5

- The entries under the 0- column corresponding to qo and q4 are q1 and q7; they lie in Q_2^0 .
- The entries under the 1-column are q5 and q5; they lie in Q_2^0 . Therefore qo and q1 are 1- equivalent.

Similarly, qo is 1-equivalent to q6.

{qo. q4, q6} is a subset in π_1 . So, $Q_2^1 = \{q0,q4,q6\}$

- Repeat the construction by considering q1 and anyone of the state's q3, q5, q7. Now, q1 is not 1-equivalent to q3 or q5 but 1-equivalent to q7. Hence, $Q_3^1 = \{q1,q7\}$.
- The elements left over in Q_2^0 are q3 and q5. By considering the entries under the 0-column and the 1-column, we see that q3 and q5 are 1-equivalent. So $Q_4^1 = \{q3, q5\}$.

Therefore, $\pi_1 = \{\{q2\}, \{q0, q4, q6\}, \{q1, q7\}, \{q3, q5\}\}\}$

Step 3: Construct π_n for n = 1, 2, until $\pi_n = \pi_{n+1}$. Calculate 2-equivalent, π_2 .

$$\pi_2 = \{\{q2\}, \{q0,q4\}, \{q6\}, \{q1,q7\}, \{q3,q5\}\}\$$

Similarly calculate 3-equivalent, π_3 .

$$\pi_3 = \{\{q2\}, \{q0,q4\}, \{q6\}, \{q1,q7\}, \{q3,q5\}\}\}$$

As $\pi_2 = \pi_3$, π_2 gives us the equivalence classes.

Step 4: Construction of minimum automaton.

$$\begin{split} M' &= \left(Q', \{0,1\}, \delta', q_0', F'\right) \\ where \ Q' &= \{[q_2], \ [q_0, \ q_4], \ [q_6], \ [q_1, \ q_7], \ [q_3, \ q_5]\} \\ q_0' &= [q0, \ q4] \\ F' &= [q2] \\ \delta' \ is \ given \ by \end{split}$$

State/Σ	0	1
[q ₀ , q ₄]	[q ₁ , q ₇]	[93. 95]
$[q_1, q_7]$	$[q_6]$	$[q_2]$
$[q_2]$	$[q_0, q_4]$	$[q_2]$
[q ₃ , q ₅]	$[q_2]$	[96]
$[q_6]$	$[q_6]$	[q0, q4]

1.20 Equivalence between two FSM's:

Let M and M' be two FSM's over Σ . We construct a comparison table consisting of n+1 columns where n is the number of input symbols.

Step 1: 1st column consisting of a pair of states of form (q, q') where q belongs to M and q' belongs M'.

Step 2: If (q, q') appears in the same row of 1^{st} column then the corresponding entry in a column (a belongs to Σ) is (r,r') where (r,r') are pair from q and q' on a.

Step 3: A table is constructed by starting with a pair of initial states q_0 , q_0 of M and M'. We complete construction by considering the pairs in 2^{nd} and subsequent columns which are not in the 1^{st} column.

- (i) if we reach a pair (q,q') such that q is final states of M and q' is non-final state of M' i.e. terminate contruction and conclude that M and M' are not equivalent.
- (ii) if construction is terminated when no new element appears in $2^{\rm nd}$ and subsequent columns which are not in $1^{\rm st}$ column. Conclude that M and M' are equivalent.

Example:

Check whether the given two finite automata's are equivalent or not.

Solution:

 q_1 is initial state of M1 and q_4 is initial state of M2 ,make them a pair and place it in $1^{\rm st}$ row of the transition table.

Comparison table

Q/∑	С	đ
(q ₁ ,q ₄)	(q ₁ ,q ₄)	(q ₂ ,q ₅)
(q ₂ ,q ₅)	(q ₃ ,q ₄)	

Here q3 is non-final state and q4 is final state.

Therefore, we stop constructing comparison table and conclude that the two given Finite Automata's are not equivalent.

1.21 Moore Machine

A Moore machine is a six tuple (Q, \sum , Δ , δ , q_0 , λ)

where

- Q is a set of states,
- Σ is the alphabet,
- δ is the transition function that maps each pair consisting of a state and a symbol in Σ to Q i.e. $Q \times \Sigma \to Q$
- q0 is the initial state,
- Δ is output alphabet
- λ is a mapping from Q to Δ giving the output associated with each state

Note: For a Moore machine if the input string is of length n, the output string is of length n + 1. The first output is λ (qo) for all output strings.

1.22 Mealy Machine

A Mealy machine is a six tuple (Q, \sum , Δ , δ , q_0 , λ)

where

- Q is a set of states,
- Σ is the alphabet,
- δ is the transition function that maps each pair consisting of a state and a symbol in Σ to Q i.e. .Q X Σ -> Q
- Δ is output alphabet
- q0 is the initial state,
- λ maps Q x Σ to Δ i.e., λ (q,a) gives the output associated with the transition from state q on input a

Note: In the case of a Mealy machine if the input string is of length n, the output string is also of the same length n.

Example:

• The given transition diagram is moore machine because each state is associated with output.

• In the below diagram q_0 is representing 0 output, q_1 is is representing 1 output and q_2 is representing 2 output.

 $\lambda (q_0) = 0$

$$\lambda (q_1)=1$$

 $\lambda (q_2)=2$

w=011 the output is **0010**

Example:

- The given transition diagram is mealy machine because output depends on present state and present input.
- In the below diagram

 $\lambda (q_{0,0}) = 0$

$$\lambda (q_{1,0}) = 2$$

$$\lambda (q_{2,0}) = 0$$

$$\lambda (q_{0}, 1) = 1$$

$$\lambda (q_{1}, 1) = 0$$

$$\lambda (q_{2}, 1) = 2$$

w=011 the output is **010**

Example:

1. Design Moore machine to determine the residue mod 3 for each binary string treated as a binary integer.

Moore Table

	Present	Next	State	Output
	State	0	1	
	q o	\mathbf{q}_0	q 1	0
	\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_{0}	1
	$\mathbf{q_2}$	\mathbf{q}_1	\mathbf{q}_2	2

Tuple Representation:

$$\mathbf{Q} = \{q_0, q_1, q_2\}$$

$$\Delta = \{0, 1, 2\}$$
 $\sum = \{0, 1\}$

 $q_0 = \{q_0\}$

δ:
$$\delta(q_{0},0) = q_{0}$$

$$\delta(\mathbf{q}_{0,}1)=\mathbf{q}_{1}$$

$$\lambda (q_1)=1$$

$$\delta(q_{1,0}) = q_2$$

$$\delta(\mathbf{q}_{1,}1)=\mathbf{q}_{0}$$

$$\lambda (q_2) = 2$$

$$\delta(q_{2,}0)=q_{1}$$

$$\delta(q_{2}, 1) = q_{2}$$

Example:

1. Design Mealy machine to determine the residue mod 3 for each binary string treated as a binary integer.

Mealy Table:

	Present	Next	State	Next	State
	State	0	Output	1	Output
	q o	$\mathbf{q}_{\mathbf{o}}$	O	\mathbf{q}_1	1
	\mathbf{q}_1	\mathbf{q}_2	2	q o	0

\mathbf{q}_2	q 1	1	\mathbf{q}_2	2
----------------	------------	---	----------------	---

Tuple Representation:

$$\mathbf{Q} = \{q_0, q_1, q_2\}$$

$$\Delta = \{0, 1, 2\}$$

$$\Sigma = \{0, 1\}$$

 $q_0 = \{q_0\}$

$$\lambda$$: λ (q₀,0)=0

δ:
$$\delta(q_{0,0}) = q_{0}$$

$$\delta(q_{0,1}) = q_{1}$$

$$\lambda (q0,1)=1$$

$$\delta(q_{1,0}) = q_2$$

$$\delta(q_1,1) = q_0$$

$$\lambda (q_1.0)=2$$

$$\delta(q_2,0) = q_1$$

$$\delta(q_2, 1) = q_2$$

$$\lambda (q_1, 1) = 0$$

$$\lambda (q_2,0)=1$$

$$\lambda (q_2, 1) = 2$$

1.23 Moore to Mealy Conversion:

If M_1 = $(Q, \sum, \Delta, \delta, q_0, \lambda)$ is a Moore machine, then there is a Mealy machine M_2 equivalent to M_1 .

Procedure:

- Let $M2 = (Q, \sum, \Delta, \delta, q_0, \lambda')$ and define λ' (q, a) to be λ (δ (q, a)) for all states q and input symbols a.
- Then M_1 and M_2 enter the same sequence of states on the same input, and with each transition M_2 emits the output that M_1 associates with the state entered.

Example:

Construct a Mealy Machine which is equivalent to the Moore machine given by table below.

Present	Next	te Output	
State	0	1	_
q o	q ₃	\mathbf{q}_1	0
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2	1
\mathbf{q}_2	\mathbf{q}_2	q 3	0
q 3	q ₃	q 0	0

Solution:

$$\lambda'$$
 (q, a) to be $\lambda(\delta$ (q, a))

$$\lambda' (q_0, 0) = \lambda(\delta (q_0, 0))$$

$$= \lambda (q_3)$$

$$= 0$$

$$\lambda' (q_0, 1) = \lambda(\delta (q_0, 1))$$

$$= \lambda (q_1)$$

$$= 1$$

Mealy Table:

Present State	Next State		Next State	
	0	output	1	Output
q o	q 3	0	q 1	1
q 1	\mathbf{q}_1	1	\mathbf{q}_2	0
q ₂	\mathbf{q}_2	0	q 3	0
q 3	q 3	0	q o	0

1.24 Mealy to Moore Conversion:

If M_1 = $(Q, \Sigma, \Delta, \delta, \lambda, q_0)$ is a Mealy machine, then there is a Moore machine M_2 equivalent to M_1 .

Procedure:

- Determine the number of different output associated with qi in the next state column.
- We split qi into different states according to different output associated with it For example: q_2 is associated with two different outputs 0 and 1, so we split q_2 into q_{20} and q_{21} .

Example:

Construct Moore machine for the given mealy machine.

	Next State				
Present State	a = 0		a = 1		
	State	Output	State	Output	
-> q0	q3	0	q1	1	
q1	q0	1	q3	0	
q2	q2	1	q2	0	
q3	q1	0	q0	1	

Solution:

- We get two states (q1 and q2) that are associated with different outputs (0 and 1). so we split both states into q_{10} , q_{11} and q_{20} , q_{21} .
- Whole row of q_1 is copied to q_{10} , q_{11} and whole row of q_2 is copied to q_{20} and q_{21} of the sample transition table of mealy machine.
- The outputs of the next state columns of q_1 and q_2 are depend on the previous output. For ex. in the first row, q_1 becomes q_{11} because the out of q_1 is 1 in the fourth row, q_2 becomes q_{21} because the output of the q_2 is 1 and in the subsequent column q_2 becomes q_{20} because the output of q_2 in that column was 0, and so on

	Next	2000	
Present State	a = 0	a = 1	Output
-> q0	q3	q11	1
q10	q <mark>0</mark>	q3	0
q11	0p	q3	1
q20	q21	q20	0
q21	q21	q20	1
q3	q10	q0	0

1.25 Applications of FA:

- Used in Lexical analysis phase of a compiler to recognize tokens.
- Used in text editors for string matching.
 - Software for designing and checking the behavior of digital circuits.