## **GST** Report

(Dated: May 17, 2024)

## I. SETUP

• Name and date of the experiment: test, 17.01.2024

• Number of sequences: 200.

• Average shots per sequence: 208.

• Rank: 1.

• Number of free parameters: 22.

 $\bullet$  Gate set:

{0: 'Idle-short', 1: 'Idle-long', 2: 'Rx(pi)', 3: 'Ry(pi)', 4: 'Rx(pi/2)', 5: 'Ry(pi/2)'}

## II. ERROR MEASURES

Table I. Gate quality measures with errors corresponding to the 95th percentile over 2 bootstrapping runs.

|                                          |        | ge gate fidelity $\mathbf{g}_{\mathrm{avg}}(\mathcal{U}_i,\hat{\mathcal{G}}_i)$ | Diamond distance $\frac{1}{2}  \mathcal{U}_i - \hat{\mathcal{G}}_i  _{\diamond}$ |                  |  |
|------------------------------------------|--------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------|--|
| Idle-short                               |        |                                                                                 | 1 2.                                                                             | [0.0421,0.0448]  |  |
|                                          |        |                                                                                 |                                                                                  | [0.0268, 0.0362] |  |
|                                          |        |                                                                                 |                                                                                  | 0.0116,0.0189    |  |
|                                          |        |                                                                                 |                                                                                  | [0.0324,0.0454]  |  |
| $\operatorname{Rx}(\operatorname{pi}/2)$ | 0.9998 | [0.9996, 0.9997]                                                                | 0.0381                                                                           | [0.0454,0.0499]  |  |
| $\mathrm{Ry}(\mathrm{pi}/2)$             | 0.9999 | [0.9999, 0.9999]                                                                | 0.0211                                                                           | [0.0197,0.0277]  |  |

Table II. State and measurement quality measures with errors corresponding to the 95th percentile over 2 bootstrapping runs.

| Final cost             | Mean TVD: estimate - dat | ta Mean TVD: target - data | a POVM - diamond dist. | State - trace dist.    |
|------------------------|--------------------------|----------------------------|------------------------|------------------------|
| 0.0011 [0.0011,0.0016] | 0.0266 [0.0244,0.0314]   | 0.0310 [0.0352,0.0362]     | 0.0109 [0.0308,0.0411] | 0.0045 [0.0027,0.0159] |

Table III. Normalized rotation axes coefficient. Errors correspond to the 95th percentile over 2 bootstrapping runs.

|              | Idle-short             | Idle-long              | Rx(pi)                 | Ry(pi)                 | $\mathrm{Rx}(\mathrm{pi}/2)$ | $\mathrm{Ry}(\mathrm{pi}/2)$ |
|--------------|------------------------|------------------------|------------------------|------------------------|------------------------------|------------------------------|
| $\alpha/\pi$ | 0.010 [0.013,0.014]    | 0.008 [0.009,0.012]    | 0.997 [0.995,0.999]    | 0.999 [0.999,1.000]    | 0.491 [0.487,0.490]          | 0.497 [0.496,0.499]          |
| $n_X$        | -0.079 [-0.428,-0.268] | -0.327 [-0.009,0.029]  | 1.000 [1.000, 1.000]   | -0.019 [-0.022,-0.016] | -1.000 [-1.000,-1.000]       | -0.013 [-0.013,-0.009]       |
| $n_Y$        | -0.409 [-0.510,-0.348] | -0.565 [-0.661,-0.381] | -0.006 [-0.006,-0.002] | 1.000 [1.000,1.000]    | 0.013 [0.019, 0.020]         | -1.000 [-1.000,-1.000]       |
| $n_Z$        | 0.909 [0.816,0.833]    | 0.758 [0.748, 0.923]   | 0.005 [0.002, 0.005]   | -0.000 [-0.006,0.003]  | $0.014 \ [0.007, 0.014]$     | 0.003 [-0.004,0.015]         |

## III. GATE AND SPAM PLOTS



Figure 1. Process matrix in the Pauli basis with entries in [-1,1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 2. Process matrix in the Pauli basis with entries in [-1, 1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 3. Process matrix in the Pauli basis with entries in [-1, 1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 4. Process matrix in the Pauli basis with entries in [-1,1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 5. Process matrix in the Pauli basis with entries in [-1,1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 6. Process matrix in the Pauli basis with entries in [-1, 1]. Left side: GST reconstruction, center: ideal gate, right side: error channel (ideally the identity).



Figure 7. Left column: real part of state and measurement in standard basis, right column: magnified errors to ideal implementation  $10 \cdot (\hat{\rho} - \rho_{\text{ideal}})$  and  $10 \cdot (\hat{E}_i - E_{i,\text{ideal}})$ .



Figure 8. Left column: imaginary part of state and measurement in standard basis, right column: magnified errors to ideal implementation  $10 \cdot (\hat{\rho} - \rho_{\text{ideal}})$  and  $10 \cdot (\hat{E}_i - E_{i,\text{ideal}})$ .