Műveleti erősítők

A műveleti erősítők egyenáramú erősítőfokozatokból felépített, sokoldalúan felhasználható áramkörök, amelyek jellemzőit A_u', R_{be}', stb. külső elemek csatlakoztatásával széles határok között változtathatjuk a felhasználás céljának megfelelően. Az integrált áramkörök aktív és passzív alapelemekből felépülő egyetlen megbonthatatlan egységet alkotó elektronikus áramkörök. Jelölésük: IC: Integrated Circuits (összevont áramkörök).

A műveleti erősítők analóg áramkörök, melyek kimeneti és bemeneti jele közötti összefüggés folytonos.

1. Felépítése

a. Rajzjele

b. Belső felépítés (tömbvázlat)

c. Differenciálerősítő

Szimmetrikus felépítésű - két azonos típusú tranzisztort, azonos értékű kollektorellenállásokat, közös emitterellenállást tartalmazó - szimmetrikus tápfeszültséggel működő közös emitteres kapcsolásokból épül fel.

ME. 1.

Kapcsolása

Munkapontbeállítása

Nyugalmi állapotban (nulla vezérlőjel esetén) a bázisok 0V potenciálon vannak. Mivel az emitterek negatív potenciálra vannak kötve, így mindkét bázis - emitter dióda kinyit. Az egyforma nagyságú kollektoráramok egyforma feszültségeket ejtenek a kollektorellenállásokon, így a kimeneti feszültség nulla!

$$R_C = \frac{U_t - U_C}{I_C} \qquad \qquad R_E = \frac{|U_t| - |U_E|}{I_{R_E}} \qquad \qquad I_{R_E} = 2 I_E$$

Működése

Differenciál módusú szimmetrikus vezérlés esetén

Azonos nagyságú, de ellentétes fázisú vezérlés hatására T_1 kollektorárama nő, T_2 -é ugyanennyivel csökken.

 T_1 kollektorpotenciálja csökken, T_2 -é ugyanennyivel nő. U_{ki} adott polaritással létrejön. A két tranzisztor emitteráramának összege nem változik, vagyis az emitterellenálláson eső feszültség sem.

Kapcsolása

2. Jellemzők a katalóguslapok alapján

a. Bemenő feszültség

b. Bemenő ofszet feszültség

c. Bemenő nyugalmi áram

Összeállította Farkas Viktor

Szakmai gyakorlat

d. Differenciál módusú feszültségerősítés

e. Bemenő ellenállás

f. Kimenő ellenállás

g. Sávszélesség

5.

h. Tápfeszültségek

3. Munkapontbeállítása

a. Bemenő nyugalmi áram beállítása

 $U_{be} = 0 \text{ V eset\'en } U_{ki} \text{ akkor lesz } 0, \text{ ha } I_{be1} = I_{be2}$

Mivel I_1 nulla potenciálról folyik a bemenet felé, így az invertáló bemenet negatív potenciálra kerül. Ennek az értéke: I_1*R_1 , vagy I_{be1} -gyel számolva $I_{be1}*(R_1xR_2)$ A nem invertáló bemenetnek ugyanekkora negatív potenciálra kell kerülnie, ha azt akarjuk, hogy az invertáló bemenet és a neminvertáló pont között 0 V legyen.

A bemenő nyugalmi áram beállítása csak ideális esetben eredményezi $U_{be}=0$ esetén $U_{ki}=0$ -át. Ezért szükséges a bemenő ofszet feszültség kompenzálás.

b. Bemenő ofszet feszültség kompenzálása

 $U_{be}=0\ V$ esetén $U_{ki}=0$ -át kell beállítani. A bemenő ofszet feszültséggel az áramkör aszimmetriáit kompenzáljuk. Kétféle módon lehet a kompenzálást elvégezni.

Az egyik bemenet potenciáljának kismértékű megváltoztatásával

A bemeneti differenciálerősítő potenciálviszonyainak megváltoztatásával

4. Alapkapcsolásai

a. Invertáló erősítő

Kapcsolása

$$I_{be} + I_{v} = 0$$

$$I_{be} = -I_{v}$$

$$\frac{U_{be}}{R_{l}} = -\frac{U_{ki}}{R_{v}}$$

$$\frac{U_{ki}}{U_{be}} = -\frac{R_{v}}{R_{l}}$$

$$A_{uv} = \frac{U_{ki}}{U_{be}} = -\frac{R_{v}}{R_{l}}$$

Magyarázóábra

Ideális esetben

 $A_u=\infty$, $U_{beD}=0$ és $R_{be}=\infty$. Az R_2 ellenállás felviszi a 0 potenciált a nem invertáló bemenetre. Mivel $U_{beD}=0$, így az invertáló bemenet is 0-ra kerül. A 10 mV-os bemenő feszültség 10 μA -es áramot hoz létre, így a kimenő feszültség –1 V lesz. A negatív visszacsatolás miatt a kapcsolás arra törekszik, hogy az invertáló bemeneten a feszültség 0 V legyen. Ha ugyanis ettől eltér, akkor ez a hibafeszültség végtelen nagy erősítéssel úgy vezérli a kimenetet, hogy az egyensúly helyreálljon, vagyis a két bemenet közötti feszültség eltűnjön.

Valóságos esetben

pl.: $A_u = 10.000$ esetén, az erősítő invertáló bemenetén 1 V : 10.000 = 0.1 mV hibajel van. Enélkül a kimeneten nem jelenne meg feszültség.

A megépítendő kapcsolás

ME. 7.

Az elvégzendő feladatok

- A kapcsolás megépítése
- Az ofszet feszültség kompenzálás elvégzése
- A kapcsolás zárt hurkú erősítésének megállapítása méréssel, 0,5 V bemenő feszültség hatására
- Az erősítő AC átviteli függvényének vizsgálata a frekvencia dekádonkénti növelésével az (1Hz-10MHz) tartományban!
- A működő kapcsolás alapján a NYÁK terv elkészítése, majd legyártása és a fentebb elvégzett műveletek megismétlése

A mérések során az alábbi eredményeket várjuk

ME. 8.

b. Nem invertáló erősítő

Kapcsolása

Ideális esetben

 $A_u = \infty$, $U_{beD} = 0$ és $R_{be} = \infty$. A nem invertáló bemenetre közvetlenül kapcsolódik a bemeneti feszültség. Mivel $U_{beD} = 0$, így az invertáló bemenet is megjelenik a bemeneti feszültség. Ha a bemeneti feszültség 10 mV, akkor $10 \mu A$ -es áramot hoz létre az R_1 -es ellenálláson, amely megegyezik az R_v -n folyó árammal, így a kimenő feszültség az R_1 -en és az R_v -n eső feszültség összege 1,01 V lesz. A negatív visszacsatolás miatt a kapcsolás arra törekszik, hogy az invertáló bemeneten a feszültség megegyezzen a nem invertáló bemeneten lévő feszültségértékkel. Ha ugyanis ettől eltér, akkor ez a hibafeszültség végtelen nagy erősítéssel úgy vezérli a kimenetet, hogy az egyensúly helyreálljon, vagyis a két bemenet közötti feszültség eltűnjön.

A megépítendő kapcsolás

ME. 9.

Az elvégzendő feladatok

- A kapcsolás megépítése
- Az ofszet feszültség kompenzálás elvégzése
- A kapcsolás zárt hurkú erősítésének megállapítása méréssel, 0,2 V bemenő feszültség hatására
- Az erősítő AC átviteli függvényének vizsgálata a frekvencia dekádonkénti növelésével az (1Hz-10MHz) tartományban!

A mérések során az alábbi eredményeket várjuk

ME. 10.