Unidad Temática 10

Rocas Sedimentarias II

Clase 6

Potenciales Redox de los Medios Naturales II

Cátedra de Geoquímica

<u>Temario</u>

Potencial redox de los medios naturales II

- Comportamiento del Mn en medios supergénicos
 - Diagrama general Eh-pH para las distintas especies minerales e iónicas del Mn
 - Comparación con el diagrama Eh vs. pH del Mn con el del Fe.
 - **♣** Comportamiento del S en medios supergénicos
 - Diagrama Eh vs. pH para el S
 - **♣** Barreras Geoquìmicas de Krumbein y Garrels

Todos los diagramas de este tema fueron tomados de Krauskopf y Bird (1995) "Introduction to Geochemistry"- Ed. Mc Graw Hill- 3^{ra} edición.

Comportamiento del Mn en medios supergénicos

El Mn es un elemento de transición del grupo de los férridos que puede presentar muchos estados de oxidación y formar los cationes Mn⁺², Mn⁺³, Mn⁺⁴, Mn⁺⁶, Mn⁺⁷.

Aunque en menor medida que el Hierro también forma minerales autígenos, ya sea en su formas oxidadas (+3 y +4) como reducido (+2).

Minerales autigénicos de Mn con diferentes estados de oxidación:

- Mineral de Mn⁺²: Rodocrosita (MnCO₃)
- Mineral de Mn⁺³: Manganita (Mn₂O₃.H₂O)
- Mineral de Mn⁺²- Mn⁺³: Hausmanita (Mn₃O₄)
- **Mineral de Mn**⁺⁴: Pirolusita (MnO₂)

Además puede formar sales sintéticas como:

- \mathbf{Mn}^{+6} : Na₂MnO₄
- Mn^{+7} : KMnO₄

Recordemos que en virtud de ambos, Eh y pH, el Mn⁺² y el Fe⁺², diádocos en medios endógenos, se separan en medios supegénicos. El Mn⁺² necesita un medio mucho más oxidante que el Fe⁺² para elevar su estado de oxidación y, además, permanece en solución hasta pHs mucho más alcalinos.

El Mn⁺², al igual que el Fe⁺², puede formar sulfuros y carbonatos. El MnS₂ es mucho menos estable que el FeS₂ (ya sea pirita o marcasita).

\blacksquare Curva de equilibrio Eh – pH para la reducción MnO₂ - Mn⁺²:

$$MnO_2 + 4 H^+ + 2 e^- \leftrightarrow Mn^{+2} + 2 H_2O - E^o = 1,23v$$

Para
$$[Mn^{+2}] = 1M$$

$$E_{MnO2/Mn+2} = E^{\circ}_{MnO2/Mn+2} - \underbrace{0,060}_{2} log \underbrace{[Mn^{+2}]}_{[H^{+}]^{4}} = 1,23v + 0,060 \ x \ 2 log \ [H^{+}]$$

$$Eh = 1,23 - 0,120 \text{ pH}$$

Es válido hasta pH = 10 ya que a valores mayores de pH el Eh es negativo y la reacción ya no es espontánea.

Corresponde a la ecuación de la recta con:

Variable independiente x = pHVariable dependiente y = EhOrdenada al origen: b = 1,23Pendiente: m = (-) 0,120

♣ Diagrama general Eh-pH para las distintas especies minerales del Mn

FIGURE 14-1 Theoretical Eh–pH phase diagram for the system MnO_2 – CO_2 – H_2O – S_2 – O_2 , showing stability fields of the common manganese minerals. The thick lines are phase boundaries for conditions where total carbonate is 1m and total sulfur is $10^{-6}m$ (the same conditions as in Fig. 9-5), and the dotted lines represent mineral saturation for a solution containing $10^{-6}m$ total Mn. The thin dashed lines show the stability of $MnCO_3$ for a total carbonate concentration of $10^{-3}m$.

En este diagrama se observa que:

- ✓ Pirolusita (MnO₂) es el mineral más estable en medios oxidantes en todo el rango de pH.
- ✓ Los otros óxidos se forman cuando los potenciales redox del medio son más bajos y en rangos de pH más restrigidos y más alcalinos.
- ✓ Rodocrosita es estable a potenciales bajos y pH alcalino por ser un carbonato (MnCO₃), siempre que haya suficiente concentración de carbonato.

- ✓ Para que se forme el Mns o el MnS₂ debe haber una concentración de S⁼ al menos 100 veces mayor que la de carbonato. Aquí $[CO_3^=] = 1M$ y $[S^=] = 10^{-6}M$.
- ✓ Cuando la concentración de carbonato es baja puede aparecer rodonita MnSiO₃ del lado derecho del diagrama, a bajos potenciales redox.
- ✓ En algunos medios se ha encontrado la asociación MnO₂ (psilomelano) Mn₃O₄ (Hausmanita), que no está representada en el diagrama.

Comparando el diagrama del Mn con el del Fe se observa que:

- ➤ El **campo de estabilidad** del **MnCO**₃ es **enorme** en comparación con el del **Fe₂O**₃. Por supuesto el campo del MnCO₃ se reduce cuando disminuye la [CO₃⁻]. Aquí se supone que es 1M.
- ➤ La hematita es estable en presencia de Mn⁺² sobre un intervalo considerable de Eh y pH, y por lo tanto en un área grande de condiciones de pH ácido y moderado Eh, la hematita (Fe₂O₃) podrá precipitar mientras que el manganeso permanecerá en solución como Mn⁺² (separación de Mn⁺² del Fe⁺²).
- \triangleright Aún a [S⁼] = 10⁻⁶M la pirita posee un campo de estabilidad en tanto que no sucede algo similar para el Mn aún a mayor [S⁼].

T = 25°C

Hematite

Siderite

Siderite

6 pH lagnetite

12

 $P_{\text{Total}} = 1 \text{ bar}$ $m_{\text{Fe, total}} = 10^{-}$ $m_{\text{S, total}} = 10^{-6}$ ► El comportamiento sedimentario del Mn es similar al del Fe. El elemento contenido en rocas ígneas como Mn^{+2} se libera de los minerales que forma parte por disolución de los mismos y permanece en este estado mientras la solución sea ácida y no muy oxidante. La precipitación del Mn^{+2} puede ocurrir cuando el pH se mantiene alcalino siempre que el (CO_3^-) o el (SiO_3^-) estén en concentraciones suficientes. Si el *Eh es muy bajo puede precipitar MnS o Mn(OH)*₂.

Si la solución se hace más oxidante por exposición al aire de modo tal que la M.O. es oxidada, el Mn precipitará como uno de los óxidos. Con suficiente exposición MnO₂ será el mineral más estable.

Lo mismo que el Fe, *los óxidos de Mn precipitan como coloides y pueden ser transportados en dispersiones coloidales (soles)*. Los óxidos cargados negativamente *adsorben cationes* (K⁺; Ni⁺²; Co⁺²; Pb⁺²; Ba⁺²; Cu⁺², especialmente) (se estudiará en la clase próxima).

Lo mismo que el Fe, los procesos de oxidación del Mn, pueden ser acelerados por la presencia de bacterias (reacciones termodinámicamente imposibles sin su presencia); esta bacterias actúan como catalizadores.

Comportamiento del S en medios supergénicos

El Azufre es el elemento no metálico más común cuya geoquímica sedimentaria involucra procesos de óxido reducción. Los *estados de oxidación* más comunes en los que aparece en la naturaleza son (-2) y (+6). También puede presentarse como S° pero en menor medida.

Diagrama Eh vs. pH para el S

- En medios muy reductores el H₂S es estable a pH < 7. El HS⁻ a pH > 7.
 El S⁻ aparece a pH muy alcalino por lo que nunca es muy abundante en medios geológicos naturales exógenos.
- Se puede esperar que los *Sulfuros metálicos* formen minerales sedimentarios *en medios muy reductores, con abundante M.O.* El sulfuro metálico más común es la *FeS*₂, *ya sea pirita o marcasita*.

Ambos minerales se han encontrado *en lechos de carbón, en lutitas negras y en areniscas bituminosas*.

Otros sulfuros están prácticamente ausentes en sedimentos recientes, pero algunas presencias de CuS, Ag_2S , ZnS y PbS en rocas sedimentarias más viejas pueden explicadarse como resultado de procesos sedimentarios en el pasado.

■ El SO_4^- se forma en *condiciones oxidantes*. Los minerales más comunes son $CaSO_4$. $2H_2O$ (yeso) y $CaSO_4$ (anhidrita). Existen también otros como $SrSO_4$, como componente menor de calizas. Además sulfatos de K^+ , Mg^{+2} y Na^+ se encuentran en lechos de evaporitas.

Los minerales de sulfatos aparecen en medios acuosos bien aireados.

- El S° (*rómbico*) ocupa un *pequeño campo* a la izquierda del diagrama, donde el pH es ácido y el potencial redox, bajo.
- Equilibrio $SO_4^{-2} S^{-2}$

Este equilibrio aparece a la derecha del diagram Eh-pH, a pH es muy alcalino.

Una manera de interpretar el proceso es la siguiente:

$$SO_4^{=} + 9 H^{+} + 8 e^{-} \leftrightarrow HS^{-} + 4 H_2O$$

$$Eh = E^{\circ}_{SO4=/HS^{-}} + \underbrace{0,060}_{8} \log \underbrace{[SO_{\underline{4}}^{=}] \times [H^{+}]^{9}}_{[HS^{-}]}$$
 si $[SO_{\underline{4}}^{=}] = [HS^{-}] = 1M$

$$Eh = E^{\circ} - \frac{9}{8} 0,060 \text{ pH}$$

Cuando están involucradas pirita y hematita, la reacción de oxidación-reducción de $Fe_2O_3 \leftrightarrow FeS_2$ puede ser interpretada del siguiente modo:

$$Fe_2O_3 + 4 SO_4^{=} + 8 H^+ \leftrightarrow FeS_2 + 15 \frac{1}{2} O_2 + 4 H_2O$$
 $\Delta F^0 = +584,2 \text{ Kcal}$

El valor positivo de la energía libre indica que esta reacción de reducción no es espontánea.

Esta reacción es muy lenta, tiene lugar en presencia de M.O. y es catalizada por las bacterias

• Equilibrio $SO_4^{-2} - H_2S$

Este equilibrio aparece a la izquierda del diagram Eh-pH, mientras el pH es ácido.

Usando el metano (CH₄) como el componente orgánico más simple, se tiene:

$$2 \text{ H}^+ + \text{SO}_4^- + \text{CH}_4 \leftrightarrow \text{H}_2\text{S} + \text{CO}_2 + 2 \text{ H}_2\text{O}$$
 $\Delta \text{F}^{\circ} = -24.8 \text{ Kcal}$

Se produce la liberación de CO_2 para formar $CO_3^{=}$.

• Equilibrio $SO_4^{=}$ - S°

Este equilibrio aparece a la izquierda del diagram Eh-pH, mientras el pH es ácido.

El Azufre nativo se encuentra en la naturaleza en zonas donde el yeso o la anhidrita están en contacto, o han estado recientemente en contacto con petróleo o gas natural.

La asociación yeso o anhidrita, la abundante presencia de M.O. como agente reductor y la presencia demostrada de *bacterias reductoras de azufre*, hacen suponer que *el S nativo deriva del SO_4^-* según un proceso de reducción que tiene 2 etapas:

- 1) acción bacteriana según ecuación: $10H^+ + SO_4^- + 8e^- \leftrightarrow H_2S + 4H_2O$
- 2) Oxidación del H₂S con o sin ayuda bacteriana: $H_2S \leftrightarrow S^o + 2e^- + 2H^+$

La presencia de calcita, junto con sulfatos de calcio se interpreta como producto de formación del Ca^{+2} liberado por reducción de $SO_4^{=}$ y el CO_2 formado por oxidación de los compuestos de carbono.

En la Unidad Temática 14 vamos a estudiar *Geología Isotópica* pero podemos adelantar que estudios basados en este tipo de medida sobre los isótopos de ^{32}S y ^{34}S y en los de ^{12}C y ^{13}C confirmaron esta hipótesis sobre la participación de la M.O.

En efecto ^{34}S se concentra en minerales de sulfatos y ^{32}S en minerales de sulfuros. Entonces si el S^- y el S nativo se forman por reducción de SO_4^- deben tener una relación ^{32}S / ^{34}S mayor que en los minerales de SO_4^- asociados. Además el carbono contenido en la M.O. se diferencia del inorgánico por un ligero enriquecimiento en $^{12}C.$

El hecho de que el C de la calcita formada en esos ambientes junto con S posee una relación $^{12}C/^{13}C$ ligeramente mayor que las calizas comunes, demuestran que provienen de M.O. y no del CO_2 atmosférico.

Otra manera de *construir los diagramas* es considerar al O_2 como principal agente de oxidación y así tomar como *variables* p_{o2} *vs.* pH. Este diagrama tiene la ventaja que puede ser más *fácilmente extendido a otras temperaturas*.

Así se observa que a 227°C desaparece el campo de estabilidad de S rómbico.

Barreras Geoquímicas

Krumbein y Garrels (1952) desarrollaron el concepto de "barrera geoquímica", como un límite definido por la presencia de un mineral o material particular a un lado de ella y su ausencia al otro lado, como consecuencia de reacción química.

Una barrera geoquímica particular puede representar un valor específico de pH o su potencial redox o ambos a la vez.

Las barreras definidas por estos autores como las más útiles son:

- **barrera geoquímica neutral**: a pH=7.
- barrera geoquímica de las calizas: a partir de pH=7,8. *A pH>7,8 la calcita precipita fácilmente, a un pH menor tiende a disolverse.*
- barrera geoquímica de sulfuro-sulfato: por encima habrá minerales de sulfato y por debajo de sulfuro.
- la barrera geoquímica de óxido carbonato de Fe y Mn: por encima habrá minerales de Fe^{+3} y Mn^+3 o Mn^{+4} ; por debajo de Fe^{+2} y de Mn^{+2} .
- **barrera geoquímica de la M.O.**, por debajo de la cual la M.O. es estable y por encima de la cual se oxida dando CO₂.

Como consecuencia se obtiene un	na clasificación o	de medios sedimentarios	
	*		