Основы кибербезопасности

Этап 3

Ведьмина Александра Сергеевна

Содержание

1	Цель работы	1
Z	Выполнение лабораторной работы	1
3	Выводы	16

1 Цель работы

Выполнить задания третьей части курса по кибербезопасности.

2 Выполнение лабораторной работы

Два ключа - исходя из определения ассимитричного шифрования.

В асимметричных криптографических примитивах

Выберите один вариант из списка

Правильно, молодец!

обе стороны имеют пару ключей					
одна сторона публикует свой секретный ключ, другая - держит его в секрете					
🔾 одна сторона имеет	только секретный ключ, а другая – пару из открытого и секретного ключе	ей			
 обе стороны имеют общий секретный ключ 					
Следующий шаг	Решить снова				

Рис. 1: Задание 1

По свойствам хэш-функции.

Криптографическая хэш-функция

Выберите все подходящие ответы из списка

Вы решили сложную задачу, поздравляем! Вы можете помочь остальным учащимся в <u>комментариях</u>, отвечая на их вопросы, или сравнить своё решение с другими на форуме решений.

✓ стойкая к коллизиям
обеспечивает конфиденциальность захэшированных данных
🗹 дает на выходе фиксированное число бит независимо от объема входных данных

Рис. 2: Задание 2

Алгоритмы:

К алгоритмам цифровой подписи относятся

Выберите все подходящие ответы из списка

Рис. 3: Задание 3

Так как для шифровки и дешифровки используется один и тот же ключ.

Код аутентификации сообщения относится к

Выберите один вариант из списка

🗸 Правильно.

Рис. 4: Задание 4

По определению этого алгоритма.

Обмен ключам Диффи-Хэллмана - это

Выберите один вариант из списка

🗸 Хорошие новости, верно!

		цего секретного ключа			
		бщего открытого ключа бщего секретного ключа			
асимметричный алг		щего секретного ключа			
Следующий шаг	Решить снова				
Ваши решения Вы получили: 1 балл					

Рис. 5: Задание 5

Потому что используется ассиметричное шифрование.

Протокол электронной цифровой подписи относится к

Выберите один вариант из списка

🗸 Правильно.

Рис. 6: Задание 6

Подписанное сообщение проверяется открытым ключом.

Алгоритм верификации электронной цифровой подписи требует на вход

Выберите один вариант из списка

Хорошие новости, верно!

подпись, открытый ключ
 подпись, секретный ключ, сообщение
 подпись, открытый ключ, сообщение
 Следующий шаг
 Решить снова

Ваши решения
Вы получили: •••

Рис. 7: Задание 7

Она наоборот гарантирует, что можно определить, кто подписал.

Электронная цифровая подпись не обеспечивает

Выберите один вариант из списка

Правильно, молодец!

неотказ от авторства
конфиденциальность
аутентификацию
целостность

Рис. 8: Задание 8

Следующий шаг

Ваши решения Вы получили: •••

Так как в налоговую нужны юридически значимые документы.

Решить снова

Какой тип сертификата электронной подписи понадобится для отправки налоговой отчетности в ФНС

Выберите один вариант из списка

Всё правильно.

Рис. 9: Задание 9

В сертифицированном центре.

В какой организации вы можете получить квалифицированный сертификат ключа проверки электрон

Выберите один вариант из списка

Рис. 10: Задание 10

МИР и Mastercard всем известны.

Выберите из списка все платежные системы.

Выберите все подходящие ответы из списка

Рис. 11: Задание 11

Отметила верные методы.

Примером многофакторной аутентификации является

Выберите все подходящие ответы из списка

Рис. 12: Задание 12

Используется многофакторная аутентификация.

При онлайн платежах сегодня используется

Выберите один вариант из списка

Прекрасный ответ.

 многофакторная аутентификация покупателя перед банком-эмитентом однофакторная аутентификация покупателя перед банком-эквайером 				
однофакторная аутентификация при помощи PIN-кода карты перед терминалом				
🔾 многофакторная аутентификация покупателя перед банком-эквайером				
Следующий шаг				
Ваши решения Вы получили: •••				
<u>и</u> 25 № 2 Шаг 5				

Рис. 13: Задание 13

Прообраз действительно сложно найти, поэтому она надёжна.

Какое свойство криптографической хэш-функции используется в доказательстве работы?

Выберите один вариант из списка

🗸 Всё правильно.

 фиксированная длина выходных данных 	x
• сложность нахождения прообраза	
обеспечение целостности	
эффективность вычисления	
Следующий шаг Решить снова	
Ваши решения Вы получили: •••	
👍 33 🕊 3 Шаг 4	

Рис. 14: Задание 14

По свойствам консенсуса.

Консенсус в некоторых системах блокчейн обладает свойствами

Выберите все подходящие ответы из списка

Рис. 15: Задание 15

Они хранят цифровые подписи.

Секретные ключи какого криптографического примитива хранят участники блокчейна?

Выберите один вариант из списка

Правильно.

обмен ключамишифрование				
цифровая подписьхэш-функция				
Следующий шаг	Решить снова			
Ваши решения Вы получ	ли: •••			
1 33 ₹ 3 Ша	г 6			

Рис. 16: Задание 16

Ура, я завершила курс!

Рис. 17: Задание 17

3 Выводы

Все задания третьей части выполнены. Курс завершён.