

ECE/CS 252 - Discussion - Weel

1

ECE/CS 252 Intro to Computer Engineering

Week 05 Discussion

9

Sequential Circuits

- Include one or more flip-flops
- Have behavior that depends on more than just the current value of the circuit inputs
 - They need to "remember" some information about past behavior to know how to react to the input
 - To "remember", all of what has happened in the past must be encapsulated into <u>states</u>
 - You know whether you're happy or sad, but not why...
 - If you need to keep track of why, then you need multiple happy and sad states reflecting the different reasons
 - A state is defined by the current value in the flip-flops
 - Since the number of flip-flops must be finite, the number of possible states is also finite, hence the term FSM

2

Sequential Circuit Waveform

 Complete the waveform for the sequential circuit shown at right, assuming signal Y is 0 at the start

252 - Discussion - Week (

ECE/CC 3E3

4

State Machines

State Diagram

D Q

- This state machine detects an input sequence of two 1s in a row
 - $\bullet~$ It outputs 1 when the two most recent inputs were 1 $\,$
 - It outputs 0 otherwise

5

State Machine Analysis

- Before we do anything else, we'll assign a binary number to each state, such that each is unique
 - This would have to be done before implementing the state machine in hardware, but also makes our analysis easier...

W

State Machine Analysis

 $\begin{array}{c|c} \text{reset} \\ \hline \text{Input: A} \\ \text{Output: Y} \end{array}$

ECE/CS 252 – Discus

- What is/are the input signal(s)?
- What is/are the output signal(s)?
- What are the states?
- How many flip-flops do we need?

7

State Machine Analysis

 Complete the state table based on the diagram

STA	ATE	Α	STATE	Υ
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

c

State Machine Analysis

• When will the output equal 1?

Complete the waveform

m - Wook OF

/CS 252 - Discussion - Week

Registers

• Often want to operate on groups of bits

10

din

Logical View of Memory

11

W

Memory Parameters

- How many address bits?
- How many unique address values?
- How many locations?
- How many bits per location?
- What is the word size?
- What is the memory's capacity?
- How do you write a location?
- How do you read a location?

_	A[10:0]		
_	DI[7:0]		
	DO[7:0]	H	
_	WE		

FSM Design

Inputs:

• Output:

13

State Diagram

Draw a state diagram for an FSM that will flash a light in two repeating sequences, OFF-ON-... or OFF-OFF-OFF-ON-... (i.e., 1/2 or 1/4 time)

FLASH – flash light if 1, leave light ON constantly otherwise (always finish current flash sequence)

Draw a state diagram for an FSM that will flash a light in two repeating sequences, OFF-ON-... or OFF-OFF-ON-... (i.e., ½ or ¼ time)

• FLASH – flash light if 1, leave light ON constantly otherwise (always finish current flash sequence) SLOW – flash ¼ time if 1, ½ time otherwise (ignore SLOW

except when starting a flash sequence)

• Example: 🖈

• LIGHT – light is ON if 1, OFF if 0

SLOW ______

SLOW – flash ¼ time if 1, $\frac{1}{2}$ time otherwise (ignore SLOW except when starting a flash sequence)

Output:
LIGHT – light is ON if 1, OFF if 0

14

Wrapping Up

- Up Next:
 - Basic Processor Model
 - von Neumann Compute Model
 - · Instruction Processing
- Remember your videos and reading
 - Including the video quiz!
- Questions?