EP33D – Matemática Discreta – 2013/2S

Lista 02 – Demonstrações

Problema 1. Utilize a demonstração direta para verificar as seguintes proposições:

- a) A soma de dois números ímpares é par.
- b) A soma de dois pares é par.
- c) O quadrado de um número par é par.
- d) O inverso aditivo de um número par é par.
- e) O produto de dois números ímpares é ímpar.
- f) Todo número inteiro ímpar é a diferença de dois quadrados.

Problema 2. Utilize a demonstração por contraposição para verificar as seguintes proposições:

- a) Se $x + y \ge 2$, então $x \ge 1$ ou $y \ge 1$.
- b) Se $n^3 + 5$ é ímpar, então n é par.
- c) Se 3n + 2 é par, então n é par.

Problema 3. Utilize a demonstração por contradição para verificar as seguintes proposições:

- a) A soma de um irracional e um racional é irracional.
- b) Se $n^3 + 5$ é ímpar, então n é par.
- c) Se 3n + 2 é par, então n é par.

Problema 4. Escolha um método de demonstração (indique-o explicitamente) e verifique as seguintes proposições:

- a) Se m+n e n+p são números inteiros pares, em que m, n e p são números inteiros, então m+p é par.
- b) Se n é um quadrado perfeito, então n+2 não é um quadrado perfeito.
- c) O produto de dois racionais é racional.
- d) Se x é irracional, então 1/x é irracional.
- e) Se $x \neq 0$ é racional, então 1/x é racional.
- f) Seja P(n): "Se n é um inteiro positivo, então $n^2 \ge n$." Demonstre P(1).
- g) Se n é um inteiro positivo, então n é par se e somente se 7n+4 for par.
- h) Se $m^2 = n^2$ se e somente se m = n ou m = -n.

i) Pelo menos um dos números reais $a_1, a_2, ..., a_n$ é maior ou igual a média desses números.

Problema 5. Mostre que se você pegar três meias de uma gaveta, com apenas meias azuis e pretas, você deve pegar ao menos um par de meias de mesma cor.

Problema 6. Mostre que as sentenças em cada item abaixo são equivalentes:

- a) Sejam a e b números reais. P_1 : a é menor que b; P_2 : a média de a e b é maior que a; P_3 : a média de a e b é menor que b.
- b) Seja x um inteiro. P_1 : 3x + 2 é par; P_2 : x + 5 é ímpar; P_3 : x^2 é par.
- c) Seja x um número real. P_1 : x é racional; P_2 : x/2 é racional; P_3 : 3x-1 é racional.
- d) Seja x um número real. P_1 : x é irracional; P_2 : 3x + 2 é irracional; P_3 : x/2 é irracional.
- e) Seja n um inteiro. P_1 : n^2 é ímpar; P_2 : 1-n é par; P_3 : n^3 é ímpar; P_4 : n^2+1 é par.

Problema 7. Comprove que as proposições P_1 , P_2 , P_3 e P_4 são equivalentes mostrando que $P_1 \leftrightarrow P_4$, $P_2 \leftrightarrow P_3$ e $P_1 \leftrightarrow P_3$.

Problema 8. Demonstre as seguintes proposições:

- a) $n^2 + 1 \ge 2^n$ quando n é um inteiro positivo menor que 5.
- b) Não há cubos perfeitos positivos menores que 1000 que são a soma dos cubos de dois inteiros positivos.
- c) Se x e y são números reais, então $|x+y| \le |x| + |y|$.
- d) Existem 100 números inteiros positivos consecutivos que não são raízes quadradas perfeitas.
- e) Existe um par de números inteiros consecutivos, tal que um desses números é um quadrado perfeito e o outro, um cubo perfeito.
- f) Se x é um número real, então existe um único inteiro n e um único real ε com e $0 \le \varepsilon < 1$ tal que $x = n \varepsilon$.

Problema 9. Utilize a indução matemática para demonstrar:

- a) $P(n): 1^2 + 2^2 + \dots + n^2 = n(n+1)(2n+1)/6$ para todo inteiro positivo n.
- b) $P(n): 1^3 + 2^3 + \dots + n^3 = [n(n+1)/2]^2$ para todo inteiro positivo n.
- c) $P(n): 1.1! + 2.2! + \cdots + n.n! = (n+1)! 1$ sempre que n for um inteiro positivo.
- d) P(n): $\sum_{j=0}^{n} \left(-\frac{1}{2}\right)^{j} = \frac{2^{n+1} + (-1)^{n}}{3 \cdot 2^{n}}$ para todo inteiro não negativo n.

Problema 10. Conjecture uma fórmula e a demonstre utilizando a indução matemática para

$$\frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$$

e para

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$$

em que n é um inteiro positivo.

Problema 11. Encontre o domínio (subconjunto dos inteiros não-negativos) para as seguintes proposições:

- a) $P(n): n! < n^n$.
- b) $P(n): 3^n < n!$
- c) $P(n): 2^n > n^2$
- d) $P(n): 2n+3 \le 2^n$