Отчет (https://github.com/AndrewPopkov/diploma/tree/master/make_data)

В данной работе была поставленна цель узнать, как коррелируют метрики качества изображения IQM, с метриками построенными на основе оценок людей. Для этого были подсчитанны IQM, которые измеряют следующие показатели качества : яркость, контраст, фокус, резкость и освещенность. Также были получены оценки людей(одного человека) для требуемых изображений.

В качестве иследуемых данных мы взяли данные из набора MIDV-500. В наборе MIDV-500 есть разметка с углами документов и есть отсканированные "эталонные изображения" документов. Мы взяли координаты рамки фото на "эталонном изображении", а потом пересчитали на каждое изображение, затем вырезав из фотографий документов, область с фотографией лица человека. Вырезаные изображения имеют размер от 134 до 493 пикселя в высоту, и от 103 до 407 пикселя в ширину.

Примеры предобработанных изображений

Для подсчета оценки качества изображения, на основе оценок людей мы ипользовали Matcher Quality Values (MQV). Оценить изображение можно было по 5 ти бальной шкале (1 - Очень плохо, 2 - Плохо, 3 - Удолетворительно, 4 - Хорошо, 5 - Очень хорошо). Оценки были полученны с помощью специального интефейса. Затем полученые данные подвергли Z-нормализации и минимаксной

https://github.com/AndrewPopkov/diploma/blob/master/make_data/eval.csv

Пример изображения с оценкой «Очень плохо»

Пример изображения с оценкой «Плохо»

Следующим этапом было подсчет IQM метрик : яркость, контраст, фокус, резкость и освещенность.

Контраст изображения лица можно измерить с помощью следующего уравнения, где μ - среднее значение интенсивности тестового изображения лица I(x, y) размером $N \times M$. [2]

$$C_{RMS} = \sqrt{\frac{\sum_{x=1}^{M} \sum_{y=1}^{N} [I(x, y) - \mu]^{2}}{MN}}$$

Другой метод определения контраста изображения - это мера контраста Майкельсона, где Imin и Imax - минимальные и максимальные значения интенсивности тестового изображения лица I. [3]

$$C_{mic} = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

Яркость (обозначим его как B1) может быть вычисленна как среднее значение компонента яркости после преобразования его в область HSB (оттенок, насыщенность и яркость).

Чтобы преобразовать цвета RGB (красный, зеленый и синий) в диапазон HSB, каждый компонент сначала нормализуется до диапазона [0, 1]. [4]

$$B_{I} = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} [max(r,g,b)]$$

Bezryadinetal предложил другое измерение яркости изображения, где X, Y и Z - трехцветные значения. Чтобы преобразовать цвета RGB в XYZ, каждый компонент сначала нормализуется до диапазона [0–1]. [4]

$$\begin{bmatrix} D \\ E \\ F \end{bmatrix} = \begin{bmatrix} 0.2053 & 0.7125 & 0.4670 \\ 1.8537 & -1.2797 & -0.4429 \\ -0.3655 & 1.0120 & -0.6104 \end{bmatrix} \times \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$B_2 = \sqrt{D^2 + E^2 + F^2}$$

Фокус изображения лица - это степень размытия изображения лица. Яп и Равендран представили несколько измерений фокуса изображения, таких как L1-норма градиента изображения и энергия Лапласиана. L1-норма изображения определяется как [5]:

$$F_{L_1} = \sum_{x=1}^{M} \sum_{y=1}^{N} |G_{xx}(x, y)| + |G_{yy}(x, y)|$$

Энергия Лапласиана изображения как:

$$F_{EL} = \sum_{x=1}^{M} \sum_{y=1}^{N} [G_{xx}(x,y) + G_{yy}(x,y)]^{2}$$

где G_{xx} и G_{yy} - вторые производные в горизонтальном и вертикальном направлениях, соответственно.

Было использованно несколько способов измерения резкости изображения.

Крыщук и Дригайло [6] определили меру резкости изображения как :

$$S_1 = \frac{1}{2} \left[\frac{1}{(N-1)M} \sum_{x=1}^{M} \sum_{y=1}^{N-1} |I_{x,y} - I_{x,y+1}| + \frac{1}{(M-1)M} \sum_{x=1}^{M-1} \sum_{y=1}^{N} |I_{x,y} - I_{x+1,y}| \right]$$

Гао [7] определил меру резкости изображения, как:

$$S_2 = \sum_{x=1}^{M-2} \sum_{y=1}^{N-2} G(x,y)$$
 где $G(x,y)$ - значение градиента в точке (x,y) . [7]

Мера резкости по Тененграду определяется как:

$$S_{3} = \sum_{x=1}^{M} \sum_{y=1}^{N} (L_{x} \cdot I_{x}^{2} + L_{y} \cdot I_{y}^{2})$$

$$L_{x}(x,y) = [I(x+1,y) - I(x-1,y)]^{P}$$

$$L_{y}(x,y) = [I(x,y+1) - I(x,y-1)]^{P}$$

где Lx, Ly - веса в горизонтальном и вертикальном направлениях, а I_x , I_y - горизонтальный и вертикальный градиенты, полученные путем применения Sobelfilter. [9]

Адаптивная мера резкости по Тененграду [8] определяется как:

$$S_4 = \sum_{x=1}^{M} \sum_{y=1}^{N} L(x, y) [I_x^2 + I_y^2]$$

 $L(x,y)=[I(x-1,y)+I(x+1,y)-I(x,y-1)-I(x,y+1)]^p$ где L(x,y) - вес, а P - индекс мощности, который может определять степень подавления шума.

Освещенность изображения рассчитывается как взвешенная сумма средней интенсивности освещенности изображения, разделенного на блоки (4 × 4)

$$I_{2} = \sum_{i=1}^{4} \sum_{j=1}^{4} \omega_{ij} \cdot \bar{I}_{ij}$$

$$\bar{I}_{ij} = \frac{1}{MN} \sum_{x=1}^{M} \sum_{y=1}^{N} I(x, y)$$

где wij - весовой коэффициент каждого блока. Абдель-Мотталебанд Махур определил гауссову маску для добавления веса различным блокам лица. Это приводит к присвоению больших весов блокам в середине изображения и малых весов границам изображения [9].

После того как были подсчитанны все IQM для тестовых изображений, мы подсчитываем IQM для образцовых изображений. Находим у них среднее значение и стандартное отклонение и с их помощью нормализуем моделью Гауса каждый IQM [11] и усредняем его. Объединили объединили метрики качества с помощью среднего и среднего геометрическогою. https://github.com/AndrewPopkov/diploma/blob/master/make_data/normalase_f eature.csv.

Построив корреляции методом Пирсона, мы увидели что наиболее сильно коррелируют геометрически среднее объединение IQM и оценки человека подвергнутые Z-нормализации.

	eval	z_norm	minmax_norm
rms_contrast	0.198511	0.226290	0.145844
michelson_contrast	0.146397	0.148676	0.119957
hbs_brightness	0.142455	0.200446	0.068747
bezryadinetal_brightness	0.139178	0.196594	0.053921
L1_norm	0.411397	0.426311	0.323498
energy_Laplacian	0.417306	0.420187	0.328718
kryszczuk_drygajlo_sharpness	0.006930	0.030467	-0.016606

	eval	z_norm	minmax_norm
gao_sharpness	0.148661	0.205306	0.102097
tenengrad_sharpness	0.306557	0.355375	0.242482
adaptive_tenengrad_sharpness	0.290590	0.309259	0.215849
illumination	0.311888	0.314250	0.279078

Корреляция каждого IQM с оценкой человека(eval), Z-нормализованной оценки человека(z_norm) и минимаксной нормализаци оценки человека(minmax_norm), построенная методом Пирсона.

Как мы видим tenengrad_sharpness, L1_norm, illumination, hbs_brightness наиболее сильно коррелируют с оценкой человека из всех IQM.

	eval	z_norm	minmax_norm
contrast	0.199830	0.216778	0.154316
brightness	0.141941	0.200103	0.061869
focus	0.416472	0.425146	0.327790
sharpness	0.290997	0.345578	0.212078
illumination	0.311888	0.314250	0.279078

Корреляция каждого усредненного IQM с оценкой человека(eval), Zнормализованной оценки человека(z_norm) и минимаксной нормализаци оценки человека(minmax_norm), построенная методом Пирсона.

	eval	z_norm	minmax_norm
mean	0.291350	0.332328	0.206322
geo_mean	0.365986	0.406124	0.262491

Корреляция mean(среднее значение IQM) и geo_mean(среднее геметрическое значение) IQM с оценкой человека(eval), Z-нормализованной оценки человека(z_norm) и минимаксной нормализаци оценки человека(minmax_norm), построенная методом Пирсона.

name	merge_result	eval	z_norm	minmax_norm
CS02_16.tif	0.7621408721072215	2	-0.018567	0.333333
CS02_05.tif	0.7559520019438455	2	-0.018567	0.333333
CS02_07.tif	0.7448368415169458	2	-0.018567	0.333333
CS02_12.tif	0.7355434460965569	2	-0.018567	0.333333
CS02_10.tif	0.7334088452786383	3	1.099195	0.666667
CS02_08.tif	0.7292208380897442	3	1.099195	0.666667

name	merge_result	eval	z_norm	minmax_norm
CS02_06.tif	0.7276130609975682	2	-0.018567	0.333333
CS02_15.tif	0.7268004108302004	2	-0.018567	0.333333
CS02_21.tif	0.7259118869958583	2	-0.018567	0.333333
CS02_23.tif	0.7250653235534236	2	-0.018567	0.333333
CS02_09.tif	0.7233833375614344	2	-0.018567	0.333333
CS02_22.tif	0.7208697004428296	3	1.099195	0.666667
CS02_14.tif	0.7205275775794102	2	-0.018567	0.333333
CA04_01.tif	0.7204362986969439	3	1.059256	0.666667
HA01_17.tif	0.7194084477075863	3	0.921666	0.500000

ТОП 15 фотографий с наибольшим geo_mean значениям и оценки к ним.

CS02_16.tif

CS02_05.tif

Далее представленны фотографии с наибольшими оценками по каждой IQM:

name	rms_contrast	eval	z_norm	minmax_norm
CS02_12.tif	1.000000	2	-0.018567	0.333333
CA04_18.tif	1.000000	3	1.059256	0.666667
CA04_21.tif	1.000000	2	-0.181351	0.333333
CS02_07.tif	0.999999	2	-0.018567	0.333333
PS06_18.tif	0.999999	2	-0.205183	0.333333
KS01_01.tif	0.999999	3	0.921666	0.500000
CS02_15.tif	0.999995	2	-0.018567	0.333333
TA01_10.tif	0.999995	2	-0.079856	0.250000
KS02_11.tif	0.999988	2	-0.018567	0.333333
CS02_22.tif	0.999985	3	1.099195	0.666667
CA01_10.tif	0.999985	2	-0.079856	0.250000
CA01_11.tif	0.999975	2	-0.079856	0.250000
CS02_17.tif	0.999971	2	-0.018567	0.333333

name	rms_contrast	eval	z_norm	minmax_norm
CA05_27.tif	0.999963	1	-1.759202	0.000000
CA01_21.tif	0.999961	3	0.921666	0.500000

ТОП 15 фотографий с наибольшим rms_contrast IQM и оценки к ним.

CS02_12.tif

name	michelson_contrast	eval	z_norm	minmax_norm
CS06_30.tif	1.000000	2	-0.205183	0.333333
CS06_26.tif	0.999998	3	0.960102	0.666667
HS05_05.tif	0.999995	1	-1.759202	0.000000
HS05_14.tif	0.999991	2	-0.524890	0.333333
HS05_16.tif	0.999989	2	-0.524890	0.333333
HA02_20.tif	0.999978	3	1.099195	0.666667
HA06_28.tif	0.999971	2	-0.205183	0.333333
HA06_22.tif	0.999964	3	0.960102	0.666667
HA04_09.tif	0.999952	3	1.059256	0.666667
HS05_11.tif	0.999949	2	-0.524890	0.333333
HS05_18.tif	0.999916	2	-0.524890	0.333333
PA01_17.tif	0.999914	3	0.921666	0.500000
HS05_13.tif	0.999912	2	-0.524890	0.333333
CS05_27.tif	0.999897	3	0.709422	0.666667
HA02_15.tif	0.999885	3	1.099195	0.666667

ТОП 15 фотографий с наибольшим michelson_contrast IQM и оценки к ним.

name	hbs_brightness	eval	z_norm	minmax_norm
PA04_20.tif	0.999999	2	-0.181351	0.333333
HA03_01.tif	0.999994	3	1.201932	0.666667
CS02_27.tif	0.999991	2	-0.018567	0.333333
CA04_10.tif	0.999979	3	1.059256	0.666667
PA04_19.tif	0.999977	2	-0.181351	0.333333
CA04_19.tif	0.999952	2	-0.181351	0.333333
KA02_26.tif	0.999902	2	-0.018567	0.333333
HS07_29.tif	0.999878	1	-1.382503	0.000000
CS02_16.tif	0.999846	2	-0.018567	0.333333
CA04_08.tif	0.999837	2	-0.181351	0.333333
PS02_12.tif	0.999802	2	-0.018567	0.333333
CA04_09.tif	0.999781	3	1.059256	0.666667
PA06_29.tif	0.999752	2	-0.205183	0.333333
PS02_11.tif	0.999743	1	-1.136330	0.000000
HS06_18.tif	0.999700	2	-0.205183	0.333333

ТОП 15 фотографий с наибольшим hbs_brightness IQM и оценки к ним

PA04_20.tif

name	bezryadinetal_brightne ss	eval	z_norm	minmax_norm
HS03_29.tif	0.999999	3	1.201932	0.666667
PS04_02.tif	0.999999	1	-1.421958	0.000000
PS01_08.tif	0.999996	1	-1.081377	0.000000
HS03_05.tif	0.999993	2	-0.123275	0.333333
HS03_27.tif	0.999984	3	1.201932	0.666667

name	bezryadinetal_brightne ss	eval	z_norm	minmax_norm
PA06_01.tif	0.999971	2	-0.205183	0.333333
HS06_11.tif	0.999968	1	-1.370467	0.000000
PS04_03.tif	0.999964	1	-1.421958	0.000000
PS02_21.tif	0.999956	1	-1.136330	0.000000
PA03_24.tif	0.999946	3	1.201932	0.666667
CS06_28.tif	0.999944	2	-0.205183	0.333333
HS01_15.tif	0.999942	1	-1.081377	0.000000
HS03_28.tif	0.999927	3	1.201932	0.666667
HS02_27.tif	0.999926	1	-1.136330	0.000000
KA02_26.tif	0.999915	2	-0.018567	0.333333

ТОП 15 фотографий с наибольшим bezryadinetal_brightness IQM и оценки к ним.

HS03_29.tif

name	L1_norm	eval	z_norm	minmax_norm
CS02_05.tif	0.334077	2	-0.018567	0.333333
HA01_01.tif	0.301029	3	0.921666	0.500000
HA01_17.tif	0.274934	3	0.921666	0.500000
TA02_02.tif	0.271949	4	2.216958	1.000000
CA02_02.tif	0.269464	3	1.099195	0.666667
HA01_02.tif	0.265411	3	0.921666	0.500000
CA02_03.tif	0.255212	3	1.099195	0.666667
TS02_11.tif	0.240211	3	1.099195	0.666667
HS03_06.tif	0.229527	3	1.201932	0.666667
CA02_04.tif	0.227889	3	1.099195	0.666667
KA06_01.tif	0.218199	2	-0.205183	0.333333
KA02_10.tif	0.215649	2	-0.018567	0.333333
CS02_04.tif	0.213659	2	-0.018567	0.333333
CS02_24.tif	0.211441	3	1.099195	0.666667

name	L1_norm	eval	z_norm	minmax_norm
TA06_19.tif	0.209297	3	0.960102	0.666667

ТОП 15 фотографий с наибольшим L1_norm IQM и оценки к ним.

CS02_05.tif

name	energy_Laplacian	eval	z_norm	minmax_norm
TA02_02.tif	0.362423	4	2.216958	1.000000
CS02_05.tif	0.352890	2	-0.018567	0.333333
CA02_02.tif	0.310598	3	1.099195	0.666667
HA01_01.tif	0.309610	3	0.921666	0.500000
CA02_03.tif	0.297721	3	1.099195	0.666667
HA01_17.tif	0.281864	3	0.921666	0.500000
HA01_02.tif	0.276896	3	0.921666	0.500000
CA02_04.tif	0.257200	3	1.099195	0.666667
TS02_11.tif	0.255423	3	1.099195	0.666667
CA01_18.tif	0.253820	4	1.923187	0.750000
CA01_08.tif	0.243301	3	0.921666	0.500000
CA01_17.tif	0.241517	3	0.921666	0.500000
HS03_06.tif	0.236189	3	1.201932	0.666667
CS02_04.tif	0.236029	2	-0.018567	0.333333
CA01_02.tif	0.233054	3	0.921666	0.500000

ТОП 15 фотографий с наибольшим energy_Laplacian IQM и оценки к ним.

 $TA02_02.tif$

name	kryszczuk_drygajlo_sl arpness	h eval	z_norm	minmax_norm
KS02_16.tif	1.000000	1	-1.136330	0.000000
HA04_19.tif	0.999993	1	-1.421958	0.000000
KS05_05.tif	0.999987	3	0.709422	0.666667
KS05_30.tif	0.999974	3	0.709422	0.666667
CA05_17.tif	0.999922	1	-1.759202	0.000000
KS05_28.tif	0.999847	2	-0.524890	0.333333
HA01_08.tif	0.999819	3	0.921666	0.500000
HA03_10.tif	0.999804	3	1.201932	0.666667
KA04_28.tif	0.999759	2	-0.181351	0.333333
CA05_19.tif	0.999757	1	-1.759202	0.000000
KS06_02.tif	0.999724	1	-1.370467	0.000000
CS07_14.tif	0.999638	1	-1.382503	0.000000
KS06_29.tif	0.999629	1	-1.370467	0.000000
KS05_24.tif	0.999625	3	0.709422	0.666667
KS05_23.tif	0.999531	2	-0.524890	0.333333

ТОП 15 фотографий с наибольшим kryszczuk_drygajlo_sharpness IQM и оценки к ним.

PA04_20.tif

name	gao_sharpness	eval	z_norm	minmax_norm
HA04_14.tif	0.999950	3	1.059256	0.666667
CS04_06.tif	0.999930	2	-0.181351	0.333333
PA04_20.tif	0.999917	2	-0.181351	0.333333
PS04_30.tif	0.999490	3	1.059256	0.666667
CS04_10.tif	0.999145	1	-1.421958	0.000000
KA04_09.tif	0.998894	3	1.059256	0.666667
TS04_09.tif	0.998839	2	-0.181351	0.333333
PS04_27.tif	0.997986	3	1.059256	0.666667
TA04_25.tif	0.997635	2	-0.181351	0.333333
TA04_24.tif	0.996838	3	1.059256	0.666667

name	gao_sharpness	eval	z_norm	minmax_norm
PS02_16.tif	0.995287	1	-1.136330	0.000000
TA04_01.tif	0.995224	3	1.059256	0.666667
HA04_09.tif	0.994865	3	1.059256	0.666667
TA04_30.tif	0.994669	3	1.059256	0.666667
PS04_28.tif	0.994500	3	1.059256	0.666667

ТОП 15 фотографий с наибольшим gao_sharpness IQM и оценки к ним.

PA04_20.tif

name	tenengrad_sharpness	eval	z_norm	minmax_norm
PS02_14.tif	1.000000	2	-0.018567	0.333333
CS02_14.tif	0.999999	2	-0.018567	0.333333
PA04_27.tif	0.999999	3	1.059256	0.666667
HA01_21.tif	0.999998	2	-0.079856	0.250000
TS01_29.tif	0.999997	4	1.923187	0.750000
HA03_02.tif	0.999997	2	-0.123275	0.333333
KA01_08.tif	0.999996	3	0.921666	0.500000
CA04_17.tif	0.999996	3	1.059256	0.666667
CA04_08.tif	0.999995	2	-0.181351	0.333333
CA03_25.tif	0.999994	2	-0.123275	0.333333
PA04_10.tif	0.999990	1	-1.421958	0.000000
HA04_05.tif	0.999990	3	1.059256	0.666667
KA03_20.tif	0.999989	2	-0.123275	0.333333
KS04_19.tif	0.999986	2	-0.181351	0.333333
TA05_07.tif	0.999986	3	0.709422	0.666667

ТОП 15 фотографий с наибольшим tenengrad_sharpnesst IQM и оценки к ним.

PS02_14.tif

name	adaptive_tenengrad_s arpness	eval	z_norm	minmax_norm
CS01_26.tif	0.999960	2	-0.079856	0.250000
PA01_15.tif	0.999925	3	0.921666	0.500000
PS01_30.tif	0.999893	3	0.921666	0.500000
PA01_24.tif	0.999892	2	-0.079856	0.250000
CS01_27.tif	0.999849	2	-0.079856	0.250000
KA06_12.tif	0.999828	2	-0.205183	0.333333
CA06_17.tif	0.999787	2	-0.205183	0.333333
CA07_30.tif	0.999750	1	-1.382503	0.000000
CA06_26.tif	0.999745	3	0.960102	0.666667
HA03_26.tif	0.999664	2	-0.123275	0.333333
HA02_30.tif	0.999622	3	1.099195	0.666667
HS01_07.tif	0.999522	2	-0.079856	0.250000
PS01_29.tif	0.999188	3	0.921666	0.500000
TS01_03.tif	0.999170	4	1.923187	0.750000
CA06_13.tif	0.999169	4	2.125386	1.000000

ТОП 15 фотографий с наибольшим adaptive_tenengrad_sharpness IQM и оценки к ним.

CS01_26.tif

name	illumination	eval	z_norm	minmax_norm
CA03_20.tif	1.000000	3	1.201932	0.666667

name	illumination	eval	z_norm	minmax_norm
PS05_22.tif	0.999998	3	0.709422	0.666667
CS03_05.tif	0.999997	2	-0.123275	0.333333
TA01_14.tif	0.999993	2	-0.079856	0.250000
KA04_28.tif	0.999992	2	-0.181351	0.333333
CA03_22.tif	0.999985	2	-0.123275	0.333333
HS02_17.tif	0.999985	1	-1.136330	0.000000
HA01_21.tif	0.999978	2	-0.079856	0.250000
HA01_27.tif	0.999974	1	-1.081377	0.000000
HS07_18.tif	0.999974	3	1.124436	1.000000
CS03_30.tif	0.999966	3	1.201932	0.666667
CA03_17.tif	0.999966	2	-0.123275	0.333333
TS01_26.tif	0.999964	3	0.921666	0.500000
CA03_13.tif	0.999959	3	1.201932	0.666667
HS02_15.tif	0.999955	1	-1.136330	0.000000

ТОП 15 фотографий с наибольшим illumination IQM и оценки к ним.

CA03_20.tif

Список литературы

- https://github.com/AndrewPopkov/diploma/blob/master/make_data/ eval.csv
- 2. Gao, X., Li, S.Z., Liu, R., Zhang, P.: 'Standardization of face image sample quality'. Int. Conf. on Biometrics (ICB), Seoul, Korea, 2007
- 3. Bex, P.J., Makous, W.: 'Spatial frequency, phase, and the contrast of natural images', J. Opt. Soc. Am. A, 2002, 19, (6), pp. 1096–1106
- 4. Bezryadin, S., Bourov, P., Ilinih, D.: 'Brightness calculation in digital image processing'. Int. Symp. on Technologies for Digital Fulfillment, Las Vegas, NV, USA, 2007
- 5. Yap, P.-T., Raveendran, P.: 'Image focus measure based on Chebyshev moments', IEE Proc. Vis. Image Signal Process., 2004, 151, (2), pp. 128–136
- 6. Kryszczuk, K., Drygajlo, A.: 'On combining evidence for reliability estimation in face verification'. European Signal Processing Conf. (EUSIPCO), Florence, Italy, 2006
- 7. Gao, X., Li, S.Z., Liu, R., Zhang, P.: 'Standardization of face image sample quality'. Int. Conf. on Biometrics (ICB), Seoul, Korea, 2007
- 8. Yao, Y., Abidi, B.R., Kalka, N.D., Schmid, N.A., Abidi, M.A.: 'Improving long range and high magnification face recognition: database acquisition, evaluation, and enhancement', Comput. Vis. Image Underst., 2008, 111, pp. 111–125
- 9. Abdel-Mottaleb, M., Mahoor, M.: 'Application notes algorithms for assessing the quality of facial images', IEEE Comput. Intell. Mag., 2007, 2, pp. 10–17
- 10. https://github.com/AndrewPopkov/diploma/blob/master/make_data/ normalase feature.csv
- 11. https://github.com/AndrewPopkov/diploma/blob/master/make_data/ merge_feature.csv