Домашнее задание №4

Дедлайн: 10 марта 2019 г., 23:00

Основные задачи

1. (1 балл) В [Кормен 1] или [Кормен 2] предполагается, что в языке 3-ВЫПОЛНИМОСТЬ (по Кормену) в каждый дизъюнкт входит ровно три литерала и все литералы в каждом дизъюнкте различны. Укажите, как за полиномиальное время преобразовать произвольную 3-КНФ ϕ , в которой в каждом дизъюнкте содержится не более трех литералов (причем литералы могут повторяться) в РОВНО-3-КНФ $\tilde{\phi}$, в которой в каждый дизъюнкт входит РОВНО три неповторяющихся литерала. Иными словами, постройте полиномиальную сводимость языка 3-ВЫПОЛНИМОСТЬ к языку 3-ВЫПОЛНИМОСТЬ (по Кормену).

Для следующих задач зафиксируем выполнимую КНФ $\psi(x_1,x_2,x_3)=(x_1\vee x_2\vee \neg x_3)$ (зависящую от трех переменных и имеющую 1 дизъюнкт) и НЕвыполнимую КНФ $\chi(x_1,x_2)=(x_1\vee x_2)\wedge (x_1\vee \neg x_2)\wedge \neg x_1$ (зависящую от двух переменных и имеющую 3 дизъюнкта).

2. (2 балла) Постройте сводимость языка ВЫПОЛНИМОСТЬ к языку ПРОТЫКАЮЩЕЕ МНОЖЕСТВО.

Комментарий. Конструкция такова. Пусть $\phi(x_1, \ldots, x_n)$ КНФ. Построим по КНФ семейство подмножеств \mathcal{A}_{ϕ} базового множества $\{x_1, \ldots, x_n, \neg x_1, \ldots, \neg x_n\}$. Во-первых, включим в \mathcal{A}_{ϕ} n подмножеств вида $A_i = \{x_i, \neg x_i\}, i = 1, \ldots, n$. Во-вторых, для каждого дизъюнкта C, входящего в $\phi(\cdot)$, добавим к \mathcal{A}_{ϕ} подмножество A_C , состоящее из всех входящих в C логических переменных (если в C входит логическая переменная x_i , то включаем в A_C элемент x_i , а если в C входит переменная x_i , то включаем в x_i элемент x_i .

Для обоснования сводимости нужно доказать, что исходная КНФ $\phi(\cdot)$ выполнима тогда и только тогда, когда \mathcal{A}_{ϕ} имеет протыкающее множество мощности n. В качестве вспомогательного упражнения предлагается решить следующие две задачи (то есть доказать нужно будет не только на заданных примерах, но и в общем случае)

- (i) Укажите для семейства \mathcal{A}_{ψ} соответствующее **трехэлементное** протыкающее множество.
- (ii) Докажите, что мощность любого протыкающего множества для семейства \mathcal{A}_χ больше двух.
- 3. (2 балла) Покажем, что язык ВЕРШИННОЕ ПОКРЫТИЕ также NP-полон. Для этого сведем к нему язык 3-ВЫПОЛНИМОСТЬ¹. Во-первых, будем считать, что исходная КНФ дополнена до РОВНО-3-КНФ и в каждый ее дизъюнкт входит ровно три литерала.

Построим по КНФ $\phi(x_1,\ldots,x_n)$ граф G_{ϕ} , вершины которого помечены и делятся на *литеральные* и дизъюнктние. Для каждой логической переменной x_i образуем пару **смежных** литеральных вершин, помеченных, соответственно, x_i и $\neg x_i$. Для каждого 3-дизъюнкта C образуем три **смежных** дизъюнктных вершины, помеченных переменными этого дизъюнкта. Каждую дизъюнктную вершину соединим с соответствующей литеральной вершиной, имеющей ту же метку. Если ϕ имела m дизъюктов, то, по построению, G_{ϕ} имеет 2n+3m вершин.

Для обоснования сводимости нужно доказать, что ϕ выполнима, если и только если G имеет вершинное покрытие мощности $\mathbf{n}+2m$. В качестве вспомогательного упражнения предлагается решить следующие две задачи (то есть доказать нужно будет не только на заданных примерах, но и в общем случае)

- (i) Укажите для графа G_{ψ} соответствующее $(n_{new}(\psi) + 2m_{new}(\psi))$ -вершинное покрытие.
- (ii) Докажите, что мощность любого вершинного покрытия для графа G_{χ} больше $(n_{new}(\chi) + 2m_{new}(\chi))$. Здесь $n_{new}(\cdot)$, $m_{new}(\cdot)$ обозначают, соответственно, число переменных и число дизъюнктов КНФ после ее преобразования в РОВНО-3-КНФ.

 $^{^{1}}$ В книге [**Кормен 1**, §36.5.2] строится другая сводимость, использующая \mathcal{NP} -полный язык КЛИКА.

- 4. (2 балла) В [Кормен 1, §36.5.1] или [Кормен 2, §34.5.1] описано построение по любой РОВНО-3-КНФ $\phi(x_1,\ldots,x_n)$ с m дизъюнктами графа \tilde{G}_{ϕ} на 3m вершинах, в котором имеется клика размера m тогда и только тогда, когда $\phi(x_1,\ldots,x_n)$ выполнима. Следующая задача посвящена этой сводимости. Конструкция такова. Каждому дизъюнкту отвечает тройка вершин-переменных, а ребро соединяет вершины u и v тогда и только тогда, когда они приписаны разным дизъюнктам, а отвечающие им переменные не являются отрицанием друг друга. Докажите корректность сводимости. В качестве упражнения предлагается убедиться в сводимости на примере ψ и χ . Сначала ψ и χ нужно преобразовать в РОВНО-3-КНФ, которые содержат m и n 3-дизъюнктов, соответственно.
 - (i) Укажите для графа \tilde{G}_{ψ} соответствующую m-клику.
 - (ii) Докажите, что мощность любой клики в графе \tilde{G}_χ меньше n.
 - О \mathcal{NP} -полноте языков ГАМИЛЬТОНОВ ГРАФ и РАЗБИЕНИЕ см.: [Кормен 1, §36.5.4] и [Кормен 1, задача 36.5-4] (соответственно, [Кормен 2, §34.5.3] и [Кормен 1, задача 34.5-5]).
- 5. (4 балла) Опишем полиномиальную сводимость \mathcal{NP} -полного языка 3-ВЫПОЛНИМОСТЬ к языку $\max -2$ -ВЫПОЛНИМОСТЬ (этим будет доказана полнота языка $\max -2$ -ВЫПОЛНИМОСТЬ в \mathcal{NP} , поскольку его принадлежность \mathcal{NP} очевидна).
 - Сначала преобразуем 3-КНФ в эквивалентную 3-КНФ, в которой каждая дизъюнкция содержит в точности 3 переменные. Для любой 3-КНФ $\alpha = \bigwedge^n (a_i \vee b_i \vee c_i)$, где a_i, b_i, c_i это либо некоторая логическая переменная, либо ее отрицание, построим 2-КНФ y следующим образом: для i-й дизъюнкции $(a_i \vee b_i \vee c_i)$ включим в y 10 следующих дизъюнкций: $L_i = \{a_i, b_i, c_i, d_i, \neg a_i \vee \neg b_i, \neg a_i \vee \neg c_i, \neg b_i \vee \neg c_i, a_i \vee \neg d_i, b_i \vee \neg d_i, c_i \vee \neg d_i\}$, где $d_i, i=1,\ldots,n$ это новые логические переменные. Таким образом, осталось проверить, что если i-я дизъюнкция выполнима [в 3-КНФ], то можно так подобрать значение переменной d_i , что не менее q дизъюнкций из L_i будут выполнимы. А если i-я дизъюнкция невыполнима [в 3-КНФ], то при любом значении переменной d_i , меньше q дизъюнкций из L_i будут выполнимы. (q это параметр, который вы должны найти самостоятельно.) Таким образом, если исходная 3-КНФ α выполнима, то в 2-КНФ $\bigwedge^n L_i$ будет выполнено не менее q 2-дизъюнктов. И наоборот, для любой невыполнимой 3-КНФ α в 2-КНФ $\bigwedge^n L_i$ менее q0 дизъюнктов будет выполнено. Как и раньше, следующие два пункта предлагаются лишь в качестве наводящего на правильное решение упражнения
 - (i) Преобразуйте ψ в РОВНО-3-КНФ [в которой образовалось k 3-дизъюнктов] и вычислите результирующую 2-КНФ $\tilde{\psi}$ при указанной полиномиальной сводимости, указав пороговое значение kq.
 - (ii) Укажите какой-нибудь набор значений логических переменных, при которых в $\tilde{\psi}$ выполнено $\geq kq$ дизюнктов.
- 6. (2 балла) Покажите, что если язык 3-COLOR∈ \mathcal{P} , то за полиномиальное время можно не только определить, что граф допускает раскраску вершин в три цвета, но и найти какую-то 3-раскраску (если она существует). Обратите внимание, что на вход процедуры, проверяющей 3-раскрашиваемость, нельзя подавать частично окрашенные графы.

Дополнительные задачи

- 1. (2 балла) Заданы n точек плоскости V с координатами $\{(x_1,y_1),\dots(x_n,y_n)\}$. Требуется найти их выпуклое оболочку, т. е. наименьшее по включению выпуклое множество S_V , такое что $V \subseteq S_V$. Рассмотрим следующую модель вычислений, в которой за единицу времени можно выполнять следующие операции: 1) сравнение двух чисел; 2) сложение чисел; 3) возведение числа в квадрат (т. е. вычисление x^2 по заданному x).
 - Докажите, что в описанной модели вычислений задача сортировки n чисел за **линейное** время сводится к задаче построения выпуклой оболочки n точек плоскости.
- 2. (2 балла) Пусть $L \in \mathcal{NP}$ и известно, что для любого $x \in L$ существует такой сертификат y, что $|y| = O(\log(|x|))$. Возможно ли, что язык L лежит в \mathcal{P} ?