Kombinatorické struktury

prof. RNDr. Jan Kratochvíl, CSc.

19. března 2021

Obsah

1	Konecne/Afinni projektivní roviny	2
2	Latinské čtverce	2

1 Konecne/Afinni projektivní roviny

2 Latinské čtverce

Definice 2.1. Latinský obdélník je matice $L \in X^{k \times n}$. Taková, že prvky se neopakuji ani ve sloupcích ani v řádcích. Kde X je n-prvková množina. Typický $\{1,...,n\} := [n]$. Na řádky lze nahlížet jako na permutace.

Věta 2.2 (Latinské čtverce). Každý Latinský obdélník řádu $k \times n$ lze doplnit na Latinský čtverec řadu $n \times n$.

Důkaz. Dokážeme přidaní nových řádků v závislostí na již existujících řádcích.

V k-tem kroků se podíváme na j-tý sloupec. Nechť M_j bude množina kandidátů které můžeme dat na j-tou pozici v novém řádku.

$$M_i = [n] \setminus \{L_{ij} : i = 1, 2, ..., k\}$$

Teď musíme z množin M_j vzít po 2 různé prvky. Jinými slovy, hledáme Systém různých reprezentantů - SRR pro $\{M_i\}_1^n$.

Sestavíme graf, kde vrcholy jsou množiny M_i a prvky z [n].

$$(l, M_j) \in E \iff l \in M_j$$

Pak tento bipartitní graf je (n-k)-regulární. Protože $\forall x$ je v (n-k) množinách M_j . Dle Hallové věty, v takovém grafu existuje perfektní párovaní, které určuje SRR.

Důsledek 2.3. Latinských čtverců řádu n je $\mathcal{O}(n!)$.

 $D\mathring{u}kaz$. BUNO: v prvním řádku je $\{1,2,...,n\}$. Jinak můžeme vhodně přejmenovat prvky. V druhém řádku musí být permutace [n] bez pevných bodů. Z problému šatnářky takových permutaci je

$$\frac{n!}{e}$$

Pak dle věty každý obdélník lze doplnit na čtverec.

Definice 2.4. Latinský čtverce jsou kolmé

Taky lze definovat ortogonalitu nad různými množiny.

Značení 2.5. $NOL\check{\mathbf{C}}(n)$ značíme největší počet navzájem ortogonálních Latinských čtverců řádu n.

Věta 2.6 (Horní odhad NOLČ).

$$\forall n \in \mathbb{N}, n > 1 : NOL\check{\mathbf{C}}(n) \le n - 1$$

Důkaz. Necht

$$L^{1},...,L^{t} \in \{1,...,n\}^{n \times n}, \forall i \neq j : L^{i} \perp L^{j}$$

BUNO: přejmenujeme prvky v každém LČ tak, aby v prvním řádku bylo $\{1,2,...,n\}$. Takto vyrobíme LČ $L^{1\prime},...,L^{t\prime}$.

Tvrdíme ale, že ortogonalita je zachovaná. Obecně pro libovolná permutace π aplikovaná ne jeden z dvojice ortogonálních LČ zachovává ortogonalitu.

Pak na pozici (2,1) nemůže být 1. Pokud tam ale bude nějaké písmeno a, tak čtverce nebudou ortogonální, protože všechny dvojice (i,i) máme v prvním řádku. Z toho na pozice (2,1) můžou být prvky $\{2,...,n\}$ po 2 různé. Takže $NOL\check{C}(n) \leq n-1$.

Kdy máme extremální řešení?

Věta 2.7 (Extremální NOLČ a KPR).

$$NOL\check{\mathbf{C}}(n) = n - 1 \iff \exists KPR(n)$$

Z předchozí přednášky platí pro mocniny prvočísla.

 $D\mathring{u}kaz$. $KRP \Rightarrow L\check{C}$. Sestavíme nevlastní přímku A, svislé a vodorovné přímky. Dal přímky spojující A a průniky svislých a vodorovných přímek budou určovat L \check{C} .

$$L_{i,j}^{\alpha} = \beta \iff x_{i,j} \in k_{\alpha,\beta}$$

Pak písmena v LČ odpovídající červené přímce budou:

Z axiomu KPR svislé, vodorovné a přímky procházející body a_{α} se protínají právě v 1 bodě. Takže písmena se neopakuji v rádcích a sloupcích. Jsou \perp protože

$$\forall \beta, \beta' \exists ! (i,j) : L_{i,j}^{\alpha} = \beta \wedge L_{i,j}^{\gamma} = \beta'$$

Protože přímky se nemůžou protínat na nevlastní přímce A, takže se protínají uvnitř šachovnice.

$$\exists ! x_{i,j} \in l_{\alpha,\beta} \cap l_{\gamma,\beta'}$$

 $L\check{C} \Rightarrow KPR$. Necht máme $L\check{C}$

$$L^{\alpha}, \alpha \in \{1, 2, ..., n-1\}$$

Sestavíme nevlastní, svislé a vodorovné přímky. Šikmé přímky vytvoříme dle:

$$L_{i,j}^{\alpha} = \beta \iff x_{i,j} \in k_{\alpha,\beta}$$

Ověříme axiomy:

- A₁. Přímky ze stejného svazku šikmých přímek se protínají v nevlastním bodě. Vodorovné a svislé se protínají v šachovnici.
 Šikmé vs svislé a Vodorovné vs svislé se protínají protože průniky jsou určené LČ. 2 Šikmé přímky se protínají právě v 1 bodě protože čtverce jsou ⊥.
- A_3 . Plyne z toho, že $n \ge 2$.

• A_2 . Spočítáme 2ma způsoby # 3jic.

$$T = |\{((x,y),l) : x \neq y \in X, l \in L, x, y \in l\}|$$

Máme (n^2+n+1) přímek, na každé z nich je (n+1) bodů. Pak

$$T = (n^2 + n + 1) \binom{n+1}{2}$$

Na druhou stranu, máme (n^2+n+1) bodů. Každou 2
ci prochází nejvýše 1 přímka.

$$T \le 1 \cdot \binom{n^2 + n + 1}{2}$$

Dohromady

$$(n^2+n+1)\binom{n+1}{2} \le \binom{n^2+n+1}{2}$$

Po roznásobení dostaneme stejná čísla na obou stranách, což může nastat pouze v případě že každou 2cí bodů prochází *právě 1* přímka.

Definice 2.8. Ortogonální tabulka

Věta 2.9 (Ortogonální tabulka a NOLČ).

$$\forall n, d \in \mathbb{N} \exists OA(n, d) \iff NOL\check{\mathbf{C}}(n) > d - 2$$

 $D\mathring{u}kaz$.

Věta 2.10 (Tenz produkt Ortogonálních tabulek).

$$\forall n, m, d \in \mathbb{N} \ \exists OA(n, d) \land OA(m, d) \Rightarrow \exists OA(mn, d)$$

 $D\mathring{u}kaz$.

Věta 2.11 (Dolní odhad NOLČ). Nechť $n = \prod_{i=1}^{k} p_i^{r_i}$ je faktorizace n. Pak

$$NOL\check{\mathbf{C}}(n) \ge \min_{i=1}^k \{p_i^{r_i} - 1\}$$

 $D\mathring{u}kaz$.

Důsledek 2.12.

$$\forall n \in \mathbb{N}, n > 2 \land n \neg \equiv 2 \mod 4 : NOL\check{\mathbf{C}}(n) \ge 2$$

Lemma 2.13.

$$\exists OA(m,4) \Rightarrow \exists OA(3m+1,4)$$

Věta 2.14 (Dolní odhad NOLČ - 2).

$$\forall k > 0 : NOL\check{\mathbf{C}}(12k+10) > 2$$

 $D\mathring{u}kaz$.