

# **Projekt-Labor: Automatisierungstechnik**

Development and validation of a SoC algorithm for solarbatterychargecontroller Mppt-1210-hus by Libre.solar with lead acid WS2122

handed in

Emile Schons 903606

EDV.Nr.:123 456

of the faculty VII – Elektrotechnik –
of Berlin University of Applied Sciences and Technology handed in Projektarbeit
to finalize the Projekt-Labor
Master of Engineering (M.Eng.)

im Studiengang

Energie und Automatisierungstechnik

Tag der Abgabe October 28, 2021

Gutachter

Gutachter1 Berlin University of Applied Sciences and Technology

# **Contents**

| 1   | Introduction                           | 3  |
|-----|----------------------------------------|----|
|     | 1.1 Background                         | 3  |
| 2   | Implementation                         | 7  |
|     | 2.1 Hardware Setup for validation      | 7  |
|     | 2.2 EKF Implementation                 | 8  |
|     | 2.2.1 Definition Mathematics Equations | 10 |
|     | 2.2.2 Kalman-SoC                       | 11 |
| 3   | Validation                             | 13 |
|     | 3.1 Graphs with Matplotlib or plotly   | 13 |
| 4   | Outlook                                | 17 |
| A   | Appendix                               | 19 |
| Bil | ibliography                            | 21 |

ii CONTENTS

# **List of Figures**

| 1.1 | OCV Lead Acid                                | 4 |
|-----|----------------------------------------------|---|
|     | OCV Lithium                                  |   |
| 1.3 | Equivalent circuit model                     | 5 |
| 2.1 | Setup to verify SoC Algorithm                | 8 |
| 3.1 | A plot created with PythonTeX and Matplotlib | 3 |
| 3.2 | Overview of data                             | 4 |
| 3.3 | Overview of data                             | 5 |

2 LIST OF FIGURES

### Introduction

The scope of the project is to produce a algorithm, which outputs the current state of charge (SoC) of the lead acid batterie attached to the charge controller (MPPT-HUS1510).

The git source code repository of this document [Schons 2021] is available at <sup>1</sup>

### 1.1 Background

[Espedal et al. 2021] Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles.

The kalman filter is a great tool to base a SoC algorithms on, as it is clearly defined by mathematical theories more than by a arbitrary algorithm designed by a programmer. One needs to use a extend kalman filter as the problem to solve is non linear, TODO explain why it is non linear.

Other methods are based on auto regressive exogenous (ARX) model or a combination of it and the Kalman Filter. TODO reference to resources.

There are 3 main approaches: model-based, data-driven, coulomb-counting.

#### **Current integration method - Coulomb Counting**

Seems the most simple way to define SoC:

$$z(z(0), i(t), \Delta t) = z(0) - \frac{1}{Q_C} \int_0^{\Delta t} i(t) dt$$
 (1.1)

where:

z = the SoC

i = battery current

 $Q_C$  = battery capacity

The initial SoC z(0) is determined by OCV lookup table. Starting from there the charge in relation to total capacity entering and leaving the battery is subtracted from SoC. This method has several disadvantages:

- -The initial SoC incorpated already an error, which won't be corrected in the process
- -Error in counting and measurement errors accumalte quite quickly
- -The algorithms only recalibrate on full charge, which especially in solar systems does not occur regularly, producing awful SoC till recalibration.

The coulomb counting method it most often combined with voltage measurements, while battery is at rest and a resulting OCV-lookup. This mitigates the recalibration problem in case the battery gets some rests. Furthermore hysteresis is not taken into account with this enhancement. TODO cite Gregory.

<sup>1</sup>https://github.com/mulles/Doc\_Projekt-Labor\_SOC



Figure 1.1: OCV Lead Acid



Figure 1.2: OCV Lithium

The current SoC function Charger::update\_soc  $^2$  of libre.solar only uses OCV-lookup function based on linear interpolation of ocv\_empty and ocv\_full:

<sup>2</sup>https://github.com/LibreSolar/charge-controller-firmware/blob/ 5196694e42c38eee18ab25e65bd51ec578eba101/src/bat\_charger.cpp#L325

1.1. BACKGROUND 5

```
if (soc_filtered > 10000) {
        soc_filtered = 10000;
}
else if (soc_filtered < 0) {
        soc_filtered = 0;
}
soc = soc_filtered / 100;
}
discharged_Ah += -port->current / 3600.0F; // charged current is positiv
}
```

#### Equivalent circuit based models



Figure 1.3: Equivalent circuit model

The figure 1.3 is an empirical model known as Thévenin circuit-based battery model or equivalent circuit model (ECM), adhering to the equation:

$$v(t) = OCV(z(t)) - R_1 i_{R_1}(t) - R_0 i(t)$$
(1.2)

where:

```
egin{array}{ll} v &= 	ext{voltage measured on battery terminals under load} \ z &= 	ext{the SoC} \ OCV &= 	ext{a function based on a SoC-OCV lookup table} \ R_1 &= 	ext{resistance due to} \ C_1 &= 	ext{capacity due to} \ \end{array}
```

 $R_0$  = resistance due to

The

#### Physics based models

As Gregory Plettv puts it in his lectures notes of course ECE5720 <sup>3</sup>: "Battery management and controls using physics-based models is a major focus of our present research efforts and (I hope) of a future course" in 2015. The first papers on the topic are available now [Miguel et al. 2021], but Physics based models (PBM) still are hard to implement and not much material or software code is available. Thus the ECM model is preferred for now. Moreover, the PBM based models have a high computational complexity than empirical models as ECM, making it non suitable for STMxxx. TODO find another citation of gregory plett

<sup>3</sup>http://mocha-java.uccs.edu/ECE5720/ECE5720-Notes02.pdf

### **Data-driven**

These approaches are based on artificial

intelligence (AI) and need good training data and the right training parameters. Combined with PBM's it is a very promising research field [Miguel et al. 2021], which first successes to reduce the computational complexity so online estimation of SoC on MCU is possible.

# **Implementation**

"A sigma-point Kalman filter is further used to manage inaccuracies generated by the reduction process and experimental-related issues such as measurement error (noise) in the current and voltage sensors."

Link to source code. <sup>1</sup> The algo is a fork of a kalman-soc from Matthew Johnston of the company okra-solar.

Some adjustments have been made to improve or adapt it to libre.solar use case and code base.

#### Changelog:

- -adoption of libre solar code style guide
- -change of energy counting to coulomb counting
- -use of float instead of integer in order to guarantee correct calculations, with no overflow.
- -exact changes are traceable with the commits to the fork.

System's dynamic model

The f() function is defined as the  $f(\boldsymbol{x}_k, \boldsymbol{i}_k, \Delta t) = x_k - \frac{1}{Q_C} \int_0^{\Delta t} i_k \ dk$  or more discrete  $f(x_k, i_k, \Delta t) = x_k - \frac{\Delta t}{Q_C} i_k$ , thus current measurement  $i_k$ 

The  $h(x_k)$  function is defined as the OCV lookup table. A general OCV lookup table for the battery chemistry can be used or for better results a specific OCV lookup table established by offline measurements for the given battery should be used.

To further improve the OCV prediction a correction of it can be performed by a equivalent circuit model (ECM) of the battery feed by the current measurement used to predict the SoC:

$$v_k = D \ OCV(z_k) + Cx_k + Di_k \tag{2.1}$$

where:

$$C = C = [0, -R_1, -R_2, ..., M]$$
  
 $D = R_0$ 

### 2.1 Hardware Setup for validation

TODO Migrate from the other document.

TODO What resolution is necessary.

https://github.com/mulles/kalman-soc



Figure 2.1: Setup to verify SoC Algorithm

# 2.2 EKF Implementation

date: (4d)

A good step by step guide to implement the extended kalman filter is [Rzepka et al. 2021].

To design an extended kalman filter algorithm three steps are necessary: 1.The control-input model and the observation model need to be well designed. 2.The constants inside the models expressed as matrices need to be defined, which is as well known as parametrization of the model. 3.The model needs to be implemented as code running on embedded systems.

The key to success for a good SoC is a good definition of both models and a good parametrization. The implementation is independent of the use case and depends on the skills of the programmer, in his hands lies the optimization of the code. In case no FPU is available on the micro-controller unit (MCU) fix point arithmetic might be an option.

Particularly challenging is the parametrization, which is typically done offline <sup>2</sup> and requires quite advanced equipment. The Adaptive extend Kalman Filter (AEKF) is an option, where the parameters are determined online, but still AEKF needs to be initialized with parameters not necessary fitting all batteries of a given chemistry, because of different capacities or tolerances and specific designs. TODO It needs to be researched if it only affects the convergence time or if convergence is not reached at all? A further advantage of an adaptive filter is that the state of health (SOH) can be determined along the side. When simple observation and control-input models are used as in the okra kalman-soc algorithm, the parametrization might be much easier? TODO to check if the initial parameters, in this case OCV in function of SoC data can be used generally or only on the batteries, the data has been generated with.

#### Citations concerning the on/off-line parametrization

#### Offline parametrization:

'As a result, many experimental pretests investigating the effects of the internal and external conditions of a battery on its parameters are required, since the accuracy of state estimation depends on the quality of the information regarding battery parameter changes'

'Therefore, some tests data must be available in advance to find the parameters of these models.' [Hussein und Batarseh 2011]

#### Gregory Plett says:

'Two possible approaches:

First, an algorithm might somehow adapt the parameter values of the model during operation to match presently observed current-voltage behaviors; but, this must be done very carefully to avoid making the model unstable or physically nonmeaningful.

Alternately, a set of models could be pre-computed at different feasible aging points and the model from this set that most closely predicts presently observed current—voltage dynamics could be selected from the set. This second approach guarantees stable and physically meaningful models since all models in the pre-computed set meet these criteria. We propose such an approach here.' —https://www.sciencedirect.com/science/article/abs/pii/S2352152X18301385?viaIn order to have online first algo, the parametrization needs to be done online!.

As the OCV curve is non-linear the kalman filter can not be used.

state transition and observation models

<sup>&</sup>lt;sup>2</sup>not generated by the micro controller unit (MCU) the algorithm is deployed to, thus not on the system running the final algorithm. Offline means on more advanced hardware, which is not available in the final product. See https://en.wikipedia.org/wiki/Online\_model

#### 2.2.1 Definition Mathematics Equations

TODO Make a diagram where you can see the input output and steps

Most general form of state observer equations:

$$x_{k+1} = Ax_k + Bu_k$$
 (state observer equation)  $y_k = Cx_k + dDu_k$  (output equation)

 $u_k \equiv i_k$  a control vector (input), defined as the measurement of current through the battery at time k.

 $y_k \equiv v_k$  an observation (or measurement), defined as a voltage measurement of the battery at time k.

$$A = I$$
 identity matrix f.i  $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 

$$B = \begin{bmatrix} -\frac{\Delta t}{Q_C} & 0 \\ 0 & 1 \end{bmatrix}$$
 is **the control-input model**, deduced from  $f(\boldsymbol{x}_k, \boldsymbol{i}_k, \Delta t) = x_k - \frac{1}{Q_C} \int_0^{\Delta t} i_k \ dk$   $C = [0, -R_1, -R_2, ..., M] = H(x_k)$  and  $H(x_k)$  is the **observation model**, which maps the state

space into the observed space and TODO understand the relationship to  $h(x_k)$ 

$$D = R_0$$

Most general form of Kalman Filter equations:

$$\hat{x}_{k+1} = (A - BK) \hat{x}_k + L (y_k - \hat{y}_k)$$
 (here  $u_k$  seems missing)

Predicted variables  $\hat{y}_k$  and  $\hat{x}_k$  are commonly denoted by a "hat" to distinguish them from  $y_k$  and x(k) of the physical system. As the state of charge (SoC) denoted as  $\hat{x}_k = SoC_k$  cannot be measured directly it is always a predicted variable, opposed to y(k), which is the measured circuit voltage. Consequently  $\hat{y}_k = v_k$  is the predicted circuit voltage also known as measurable output:  $\hat{y}_k = (C - DK)\hat{x}_k$ 

Input to the extend kalman filter (EKF) is current and voltage measurement and the period of time between these measurements. The initialization of the EKF outputs the initial estimate state of charge  $x_{k|k=0}$  another input to the EKF.

System's dynamic model

The f() function is defined as the  $f(\boldsymbol{x}_k, \boldsymbol{i}_k, \Delta t) = x_k - \frac{1}{Q_C} \int_0^{\Delta t} i_k \, dk$  or more discrete  $f(x_k, i_k, \Delta t) = x_k - \frac{\Delta t}{Q_C} i_k$ , thus current measurement  $i_k$ . The  $h(\boldsymbol{x}_k)$  function is defined as the OCV lookup table. A general OCV lookup table for the battery chemistry can be used or for better results a specific OCV lookup established by offline measurements for the given battery should be used. To further improve the OCV prediction a correction of it can be performed by a equivalent circuit model (ECM) of the battery feeded by the current measurement used to predict the SoC:  $v_k = D \ OCV(z_k) + Cx_k + Di_k$  with  $C = [0, -R_1, -R_2, ..., M]$  and  $D = R_0$ 

-Measurement equation, input (measured voltage, OCV lookup table, current if the correction with a Enhanced Self-Correcting (ESC) Cell Model /ECM) -> output SOC) equation should be use standard letters: filterpy, wikipedia, gregoryPlett, Step by Step Guide

After having defined the observation and control-input model as matrices and described their meaning in case of SoC estimation we proceed to the functioning of the EKF, which is typically divided into to steps, Predict and Update.

In the **predict** step a future state of charge estimate  $\hat{x}_{k+1}$  is predicted based on the current state of charge estimate  $\hat{x}_k$  and the current  $i_k$  during the period  $\Delta t$  (between k and k+1) by calculating

 $\hat{\mathbf{x}}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k$  Moreover an estimate of the covariance  $P_{k+1}x$  is calculated based on noise covariances  $Q_k$  and current  $P_k$  (wiki: a measure of the estimated uncertainty of the prediction of the system's state)  $\mathbf{P}_{k+1} = \mathbf{B}_k \mathbf{P}_k \mathbf{B}_k^\mathsf{T} + \mathbf{Q}_k$ 

In the **update** step

 $\mathbf{K}_k = \mathbf{P}_{k+1} \mathbf{H}_k^\mathsf{T} (H_k \mathbf{P}_{k+1} \mathbf{H}_k^{\mathsf{T} + \mathbf{R}_k})^{-1}$  is the kalman gain, which weights whether the SoC based on the measurement of the circuit voltage  $v_k$  is more trusted than the SoC prediction based on current  $i_k$ 

 $\hat{\mathbf{x}}_k = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k)(\hat{\mathbf{x}}_{k+1}) + (\mathbf{K}_k)(\mathbf{H}_k \hat{\mathbf{x}}_k + \mathbf{v}_k)$  TODO update  $\hat{x}_k$  because one can not now want one want to calculate

 $\mathbf{P}_{k+1} = (\mathbf{I} - \mathbf{K}_{k+1} \mathbf{H}_{k+1}) \mathbf{P}_k$  update of the covariance TODO is  $H_k$  the same as OCV?

 $\mathbf{R}_{\mathbf{k}}$  the covariance of the observation noise

Most general equation of extended kalman filter EKF:

$$\mathbf{x}_k = f(\mathbf{x}_{k-1}, \mathbf{u}_k) + \mathbf{w}_k$$
 (state transition model)  $\mathbf{z}_k = h(\mathbf{x}_k) + \mathbf{v}_k$  (observation model)

 $f \rightarrow$  predicted state from the previous estimate

 $h \rightarrow$  compute the predicted measurement from the predicted state

#### **Predict**

$$\begin{split} \hat{\boldsymbol{x}}_{k|k-1} &= f(\hat{\boldsymbol{x}}_{k-1|k-1}, \boldsymbol{u}_k) \\ \boldsymbol{P}_{k|k-1} &= \boldsymbol{F}_k \boldsymbol{P}_{k-1|k-1} \boldsymbol{F}_k^\top + \boldsymbol{Q}_k \end{split}$$

#### **Update**

$$\begin{split} &\tilde{\boldsymbol{y}}_k = \boldsymbol{z}_k - h(\hat{\boldsymbol{x}}_{k|k-1}) \\ &\boldsymbol{S}_k = \boldsymbol{H}_k \boldsymbol{P}_{k|k-1} \boldsymbol{H}_k^\top + \boldsymbol{R}_k \\ &\boldsymbol{K}_k = \boldsymbol{P}_{k|k-1} \boldsymbol{H}_k^\top \boldsymbol{S}_k^{-1} \\ &\hat{\boldsymbol{x}}_{k|k} = \hat{\boldsymbol{x}}_{k|k-1} + \boldsymbol{K}_k \tilde{\boldsymbol{y}}_k \\ &\boldsymbol{P}_{k|k} = (\boldsymbol{I} - \boldsymbol{K}_k \boldsymbol{H}_k) \boldsymbol{P}_{k|k-1} \end{split}$$

#### 2.2.2 Kalman-SoC

A Fork of Okra-Solar Algorithm.

Features:

- -Works without the input of a Equivalent Circuit Model (ECM) specific to the physical battery, which would need to be parameterized doing advanced measurements during charging and discharging of the battery.
- -Inputs: Current and Voltage Measurements and OCV Lookup Table
- -Outputs: SoC in %Wh

TODO Discuss the Code Snippets? But Some Code in Appendix or reference Github Repo only?

### **Validation**

#### 2 Arten von Datensätze:

Vergleich alter Algo neuer Algo, mit Daten von einem Device. X mit Zeit? Vllt schafft man dies im gleiche Schritt wie man die Zeiträume verbessert? Y Achse in 100

Titel SoC Libre.solar Algo vs Kalman-soc auf Datensatz von Device xy im Zeitraum xx. Kein Titel in der Graphik selber.

Mit Matplotlib da ist wsl mehr Hilfe verfügbar? Schnell mal mit Plotly versuchen.

- -Prozent Abweichung dazwischen. Warum ist er besser? Scheint schwer zu diskutieren.
- -Meine Daten?
- -Neue Daten generieren? Der Prozess ist ja eigentlich recht automatisiert.

It is difficult to say that how much the kalman-soc algo is better, but sure is that both are different and that there are many cases where it is sure that libre.solar performs poorly, show examples timeframes.

Discuss results. (4d)

### 3.1 Graphs with Matplotlib or plotly



Figure 3.1: A plot created with PythonTeX and Matplotlib

### **Overview**



Figure 3.2: Overview of data

Figure 3.3: Overview of data

# Outlook



# **Appendix**

#### **Stylefile**

Die Styledatei für diese Abschlussarbeit ist bhtThesis.sty, die in der Archivdatei vorliegt. Diese muss von LATFX auffindbar sein, muss also in einem LATFX bekannten Ordner liegen:

- Ubuntu-Linux: \$HOME/texmf/tex/latex/bhtThesis/bhtThesis.sty
- MikTeX: c:\localtexmf\tex\latex\bhtThesis/bhtThesis.sty

#### Beispieldokument

Dieses Dokument befindet sich im Unterordner tryout des zip-files. Sie können diese Dateien in einen Ordner kopieren, in dem Sie schliesslich arbeiten werden. Die Dateien sind die folgenden

- abstract\_de.tex Kurzfassung in deutscher Sprache
- abstract\_en.tex Kurzfassung in englischer Sprache
- anhang.tex der Anhang
- bhtThesis.bib beinhaltet die zu zitierenden Literaturstellen und wird von bibTeXausgewertet
- main.pdf ist die Ausgabendatei mit der Druckvorlage
- main.tex beinhaltet das Hauptdokument
- makefile realsiert das automatische mehrfache Übersetzen, hierfür muss make auf dem System installiert sein.
- myapalike.bst beinhaltet die Formatierung für das Literaturverzeichnis
- personal Macros. tex kann einzelne, persönliche Macros beinhalten, die das Schreiben erleichtern
- titelseiten.tex realisiert alle Seiten bis zum Beginn des ersten Abschnittes
- Ordner pictures
  - BHT-Logo-Basis.eps
  - BHT-Logo-Basis.pdf
- Ordner kapitel1
  - chl.tex Quelltext des Kapitel 1
  - Ordner pictures
    - \* schaltbild.pdf

- Ordner kapitel2
  - ch2.tex Quelltext des Kapitel 2
  - Ordner pictures
    - \* leer

# **Bibliography**

- [Espedal et al. 2021] Espedal, I. B., Jinasena, A., Burheim, O. S., und Lamb, J. J., Current trends for state-of-charge (soc) estimation in lithium-ion battery electric vehicles. *Energies*, 14(11):3284.
- [Hussein und Batarseh 2011] Hussein, A. A.-H. und Batarseh, I., An overview of generic battery models. In 2011 IEEE Power and Energy Society General Meeting, Seiten 1–6. IEEE.
- [Miguel et al. 2021] Miguel, E., Plett, G. L., Trimboli, M. S., Lopetegi, I., Oca, L., Iraola, U., und Bekaert, E., Electrochemical model and sigma point kalman filter based online oriented battery model. *IEEE Access*, 9:98072–98090.
- [Rzepka et al. 2021] Rzepka, B., Bischof, S., und Blank, T., Implementing an extended kalman filter for soc estimation of a li-ion battery with hysteresis: A step-by-step guide. *Energies*, 14(13):3733.
- [Schons 2021] Schons, E., Development and validation of a SoC algorithm for solarbatterychargecontroller Mppt-1210-hus by Libre.solar with lead acid.
- [Wang et al. 2021] Wang, Y., Huang, F., Pan, B., Li, Y., und Liu, B., Augmented system model-based online collaborative determination of lead–acid battery states for energy management of vehicles. *Measurement and Control*, 54(1-2):88–101.