УДК 621.646

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ГИДРАВЛИЧЕСКОГО ПРИВОДА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ОБЪЕМНЫМ РЕГУЛИРОВАНИЕМ

Рассказова Ю.Б.

MATHEMATICAL MODEL OF A HYDRAULIC DRIVE OF ROTARY MOTION VOLUME CONTROL

Rasskazova Yu.B.

Представлена математическая модель динамических характеристик силовой части автоматического гидравлического привода вращательного движения с объемным регулированием. Приведена структурная схема передачи управляющего сигнала. Получена передаточная функция привода.

Ключевые слова: насос, гидромотор, давление, расход, объемное регулирование, структурная схема, передаточная функция.

Постановка проблемы. Современные технологии машиностроения и материалообработки всевозрастающие предъявляют требования техническим и функциональным характеристикам специального технологического станков И оборудования. Качество получаемых изделий при механической обработке, обработке давлением, пластическом формовании во многом зависит от возможности реализации оптимальных законов движения рабочих органов, точности регулирования перемещений, стабильности скоростей условиях переменной нагрузки. Поэтому актуальной является научно-техническая задача повышения расширения функциональных точности И станков и возможностей оборудования обработки материалов.

Достижение произвольной кинематики рабочего органа, возможности программной реализации оптимальных законов его движения обеспечивается применением автоматических гидравлических приводов частности, вращательного гидроприводов движения регулированием объемным оборудовании В мощностью свыше 8 кВт. Вместе с тем, в настоящее время отсутствуют типовые математические модели рабочих процессов, протекающих в приводах, нет общепринятых методик их расчета, адаптированных приводы станков И специального технологического оборудования для обработки материалов, позволяющие производить оценку и выбор параметров элементов и устройств привода, прогнозировать его статические и динамические характеристики.

Анализ исследований последних публикаций. Силовая часть гидравлического привода с объемным регулированием включает регулируемой объемный насос c вспомогательные устройства и исполнительный гидродвигатель объемного типа [1, 2]. Наибольшее применение в гидроприводах получили аксиальнопоршневые насосы, подача которых регулируется изменением угла наклона блока цилиндров или изменением угла наклона шайбы. В качестве гидродвигателей исполнительных обычно гидроцилиндры используют c линейным перемещением выходного звена, гидроцилиндры с поворотным движением выходного звена и аксиально-поршневые или радиально-поршневые гидромоторы. К вспомогательным устройствам относятся клапаны, фильтр, насос и бак системы подпитки рабочей жидкостью силовой части гидропривода.

Цель статьи. Целью данной работы является разработка математической модели динамических характеристик силовой части автоматического гидравлического привода вращательного движения с объемным регулированием и получение передаточной функции привода по управляющему сигналу.

Материалы и результаты исследования. На рис. 1 приведена типовая принципиальная схема силовой части гидравлического привода вращательного движения объемным регулированием, содержащая две аксиальнопоршневые гидромашины: основной насос 2 и гидромотор 5. Вал насоса приводится во вращение от асинхронного электродвигателя 1. Подача насоса регулируется изменением угла наклона блока цилиндров (или угла наклона шайбы) с помощью механизма 3, которым может быть также гидроусилитель, состоящий из гидроцилиндра и золотника. Насос двумя трубопроводами 4 соединен с гидромотором. Вал гидромотора через редуктор 6 соединен с управляющим объектом 7. восполнения утечек рабочей жидкости служит вспомогательный насос (обычно шестеренный или пластинчатый) 13, приводимый во вращение от вала основного насоса. Если угол наклона блока цилиндров (угла наклона шайбы) основного насоса регулируется с помощью гидроусилителя, то вспомогательный насос используется также для питания гидроусилителя жидкостью под давлением. Давление в напорной магистрали вспомогательного насоса поддерживается переливным клапаном 10. Эта магистраль через два подпиточных клапана 9 подключена к трубопроводам, соединяющим основной насос и гидромотор. При падении давления одном из трубопроводов В соответствующий допустимого значения подпиточный клапан открывается и пропускает жидкость под давлением из напорной магистрали вспомогательного насоса до тех пор, пока в трубопроводе не восстановится необходимый уровень давления. После этого подпиточный клапан действием давления В трубопроводе закрывается. Подпиточные клапаны должны поддерживать в трубопроводе такое минимальное давление, чтобы в основном насосе не возникала кавитация. Для этого устанавливается необходимое давление в напорной магистрали вспомогательного насоса путем регулирования натяжения пружины (давления срабатывания) переливного клапана 10.

Рис. 1. Схема силовой части ЭГП с объемным регулированием

От возникновения чрезмерно высокого давления трубопроводы гидропривода защищены двумя предохранительными клапанами 8. При недопустимом повышении давления в одном из трубопроводов открывается соответствующий предохранительный клапан, пропускающий жидкость в другой трубопровод с низким давлением. В линии нагнетания вспомогательного

насоса также имеется предохранительный клапан 12, который защищает насос от повышения давления при засорении фильтра 11.

Отметим обозначения гидромашин и гидроаппаратов на рис. 1. Здесь H1...H2 – насосы; ΓM – гидромотор; KO1...KO2 – клапаны обратные; $K\Pi1...K\Pi4$ – клапаны предохранительные; Φ – фильтр.

Перед построением математического описания силовой части ЭГП с объемным регулированием, составим расчетную схему, учитывая следующие основные допущения:

- 1. Асинхронный электродвигатель 1 вращает вал насоса с угловой скоростью Ω_{H} , величина которой не зависит мощности, развиваемой насосом.
- 2. При работе гидропривода давления в трубопроводах 4 не достигают значений, при которых открываются предохранительные клапаны 8.
- 3. Давление p_{nn} в магистрали перед подпиточным клапанами поддерживается постоянным.
- 4. Усилия, преодолеваемые гидромотором 5 при управлении объектом 7, могут быть представлены суммой моментов от действия приведенных к валу гидромотора инерционной нагрузки, позиционной нагрузки и гидравлического трения.
- 5. Трубопроводы будем принимать настолько короткими, чтобы можно было в них пренебрегать инерцией жидкости и потерями давления из-за сопротивления трения.

Расчетная схема представлена на рис. 2. На этой схеме стрелками показаны направления потоков жидкости в тот момент времени, когда давление p_1 больше давления p_2 .

Рис. 2. Расчетная схема силовой части гидропривода

всех принятых При выше допущениях линейной математической получению модели силовой части ЭГП с объемным регулированием препятствует одна существенно нелинейная характеристика, определяющая зависимость расходов подпитки Q_{nn1} и Q_{nn2} через подпиточные клапаны от давлений p_1 и p_2 в трубопроводах. Если уровень давления в трубопроводах оказывается ниже давления подпитки p_{nn} перед подпиточными клапанами, то при малых изменениях давлений можно применить соотношения

$$Q_{nn1} = k_{\kappa n} (p_{nn} - p_1); \tag{1}$$

$$Q_{nn2} = k_{\kappa n} (p_{nn} - p_2); (2)$$

где $k_{\kappa n}$ – проводимость подпиточного клапана [3, 4].

Если уровень давления в трубопроводах превышает давление подпитки p_{nn} , то

$$Q_{nn1} = Q_{nn2} = 0 (3)$$

так как подпиточные клапаны закрыты под действием давления в трубопроводах.

При равновесном состоянии гидропривода, для которого ненагруженный вал гидромотора не вращается, уровень давления в трубопроводах вследствие утечек жидкости из насоса гидромотора и конечного значения проводимости клапанов устанавливается ниже p_{nn} . При колебаниях в каждый трубопровод через определенный подпиточный клапан на одном полупериоде при низком давлении поступает количество жидкости, компенсирующее не только утечки, но сжимаемость жидкости. Ha следующем полупериоде происходит сжатие большого объема жидкости в трубопроводе, что приводит увеличению в нем давления. Поступление жидкости в гидропривод через подпиточные клапаны сопровождается повышением среднего за период колебания давления В трубопроводах повышением уровня давления в них. Количество жидкости, поступившей в трубопроводы за период колебания, зависит от амплитуды колебания давлений p_1 и p_2 , поэтому средняя за период проводимость клапанов зависит от амплитуды колебаний давления в трубопроводах.

При исследовании динамики гидропривода с малыми отклонениями переменных от установившихся значений уровень давления в трубопроводах может быть принят ниже давления p_{nn} , поэтому допустимо использовать линейные соотношения (1, 2). При исследовании динамики гидропривода с большими изменениями переменных приходиться учитывать нелинейность характеристики подпиточных клапанов.

Для момента времени, когда при малом отклонении блока цилиндров (или наклонной шайбы) от положения равновесия насос подает жидкость по трубопроводу с давлением p_1 и всасывает жидкость из трубопровода с давлением p_2 , уравнения расходов запишем, используя подход Попова Д.Н. [4], в виде:

для трубопровода с давлением p_I расход насоса

$$Q_{H} = Q_{M} + Q_{nH} + Q_{nM} + Q_{yH1} + Q_{yM1} + Q_{coxc1} - Q_{nn1};$$
 (4)

для трубопровода с давлением p_2 расход насоса

$$Q_{H} = Q_{M} + Q_{nH} + Q_{nM} - Q_{VH2} - Q_{VM2} - Q_{CM2} + Q_{nn2}. (5)$$

В уравнениях (4) и (5) расходы $Q_{cжl}$ и $Q_{cж2}$ являются теми составляющими расхода, которые связаны с компенсацией сжимаемости жидкости. Остальные составляющие обозначены соответствии с расчетной схемой (рис. 2). Для некоторого упрощения выражений, определяющих коэффициенты в последующих уравнениях, считаем насос и гидромотор гидромашинами одинакового например аксиально-поршневыми, типа, отличающиеся только тем, что у регулируется угол наклона блока цилиндров (или шайбы) не регулируется. В этом случае можно принять

$$egin{aligned} Q_{n m} &= Q_{n m} = Q_{n e p}; \ Q_{y m 1} &= Q_{y m 1} = Q_{y m 1}; \ Q_{y m 2} &= Q_{y m 2} = Q_{y m 2}. \end{aligned}$$

Учитывая эти соотношения, определим составляющие расхода насоса в виде

$$Q_{\scriptscriptstyle M} = \frac{q_{\scriptscriptstyle M}}{2\pi} \Omega_{\scriptscriptstyle M} = \frac{q_{\scriptscriptstyle M}}{2\pi} \frac{d\alpha}{dt}; \tag{6}$$

$$Q_{nep} = k_{nep} (p_1 - p_2); \tag{7}$$

$$Q_{vm1} = k_{vm} p_1; \tag{8}$$

$$Q_{ym2} = k_{ym} p_2; (9)$$

где $q_{_{M}}$ — рабочий объем гидромотора; $\Omega_{_{M}}$ — угловая скорость вала гидромотора; \mathcal{C} — угол поворота вала гидромотора; k_{nep} — проводимость щелей, по которым в насосе и гтидромоторе происходит перетечка жидкости из полостей с высоким давлением в полости с низким давлением; k_{ym} — проводимость щелей, по которым происходит утечка жидкости из насоса и гидромотора.

Расходы Q_{nnl} и Q_{nn2} определяем по соотношениям (1) и (2), а расходы $Q_{cжl}$ и $Q_{cж2}$ в предположении абсолютно жестких стенок трубопроводов находим по следующим зависимостям [5]

$$Q_{cxc1} = \frac{W_0}{E_{xc}} \frac{dp_1}{dt}; \tag{10}$$

$$Q_{cxc2} = \frac{W_0}{E_{w}} \frac{dp_2}{dt}; ag{11}$$

где W_0 — внутренний объем трубопроводов с подключенными к нему объемами полостей насоса и гидромотора;

 $E_{_{\mathcal{H}}}$ – объемный модуль упругости рабочей жилкости.

Подставим составляющие расходов согласно соотношениям (1, 2, 6-11) в уравнения (4, 5). Затем сложим эти уравнения и преобразуем

$$Q_{M} = \frac{q_{M}}{2\pi} \frac{d\alpha}{dt} + 2k_{nep}(p_{1} - p_{2}) + k_{ym}(p_{1} - p_{2}) + \frac{k_{\kappa n}}{2}(p_{1} - p_{2}) + \frac{W_{0}}{2E_{\infty}} \frac{d(p_{1} - p_{2})}{dt}.$$
(12)

Идеальную подачу насоса $Q_{\scriptscriptstyle H}$ представим в виде зависимости от угла γ наклона блоков цилиндров или угла наклона шайбы насоса

$$Q_{\scriptscriptstyle H} = \frac{q_{\scriptscriptstyle H}}{2\pi} \Omega_{\scriptscriptstyle H}, \tag{13}$$

где $q_{\scriptscriptstyle H}$ – рабочий объем насоса.

Для аксиально-поршневого насоса

$$q_{u} = F_{n} z_{n} D_{n} t g \gamma \tag{14}$$

где F_n — рабочая площадь одного поршня (плунжера) насоса; z_n - число поршней; D_n — диаметр окружности, на которой расположены оси поршней насоса.

Как видно, функция $q_{_H}(\gamma)$ является нелинейной. При малых отклонениях блока цилиндров (шайбы) насоса от нейтрального положения указанная функция может быть линеаризована и уравнение (14) записано в виде

$$Q_{H} = k_{O\gamma} \gamma , \qquad (15)$$

где

$$k_{Q\gamma} = \frac{\partial Q_{{}_{\scriptscriptstyle H}}}{\partial \gamma}.$$

Для аксиально-поршневого насоса

$$k_{Q\gamma} = \frac{F_n z_n D_n \Omega_{_H}}{2\pi}.$$

Применяя соотношение (15), приведем уравнение (12) к виду

$$\frac{q_{\scriptscriptstyle M}}{2\pi k_{\scriptscriptstyle O_{\rm f}}}\frac{d\alpha}{dt} + \frac{W_{\scriptscriptstyle 0}}{2E_{\scriptscriptstyle MC}k_{\scriptscriptstyle O_{\rm f}}}\frac{dp_{\scriptscriptstyle M}}{dt} + \frac{k_{\scriptscriptstyle \Sigma}}{k_{\scriptscriptstyle O_{\rm f}}}p_{\scriptscriptstyle M} = \gamma\;, \quad (16)$$

ΓД

$$k_{\Sigma} = k_{ym} + 2k_{nep} + \frac{k_{\kappa n}}{2};$$

$$p_{M} = p_{1} - p_{2}. \tag{17}$$

В уравнении (16), кроме входной величины γ и выходной α , содержится изменяющийся во времени перепад давления $p_{\scriptscriptstyle M}$, который зависит от

преодолеваемой гидромотором нагрузки. При действии инерционной нагрузки величина $p_{\scriptscriptstyle M}$ определяется по крутящему моменту $M_{\scriptscriptstyle M}$, который входит в уравнение вращательного движения вала гидромотора

$$M_M - M_{mp1} - M_{mp2} - M_{no3} = J \frac{d^2 \alpha}{dt^2},$$
 (18)

где J — момент инерции вращающихся с валом гидромотора частей (приведенный момент инерции нагрузки и ротора мотора). В дальнейшем данную величину будем называть приведенным моментом инерции гидромотора.

Крутящий момент для объемной гидромашины [6-8] определяется соотношением

$$M_{\scriptscriptstyle M} = \frac{q_{\scriptscriptstyle M}}{2\pi} p_{\scriptscriptstyle M}. \tag{19}$$

Момент трения M_{mp1} создается трением в гидромоторе. В общем случае трение в гидромоторе может быть смешанным. Для упрощения математической модели гидропривода будем учитывать только гидравлическое трение [9, 10], полагая

$$M_{mp1} = k_{mp1} \frac{d\alpha}{dt}, \qquad (20)$$

где $k_{\it mp1}$ вычисляется по наклону аппроксимирующей характеристики $M_{\it mp1} = M_{\it mp1} (\Omega_{\it M}).$

Момент трения M_{mp2} , возникающий вследствие трения в нагрузке, представим аналогичной зависимостью

$$M_{mp2} = k_{mp2} \frac{d\alpha}{dt}.$$
 (21)

Момент от действия позиционной нагрузки

$$M_{no3} = k_{no3} \alpha, \qquad (22)$$

где k_{no3} – жесткость позиционной нагрузки.

Используя соотношения (19-22), из уравнения (18) получаем

$$\frac{2\pi J}{q_{u}}\frac{d^{2}\alpha}{dt^{2}} + \frac{2\pi k_{mp}}{q_{u}}\frac{d\alpha}{dt} + \frac{2\pi k_{nos}}{q_{u}}\alpha = p_{M},(23)$$

где $k_{mp} = k_{mp1} + k_{mp2}$.

Рассматривая совместно уравнения (16) и (23), находим

$$\frac{\pi J W_0}{E_{xx} q_{xx} k_{Qy}} \frac{d^3 \alpha}{dt^3} + \left(\frac{\pi k_{mp} W_0}{E_{xx} q_{xx} k_{Qy}} + \frac{2\pi k_{\Sigma} J}{q_{xx} k_{Qy}} \right) \frac{d^2 \alpha}{dt^2} + (24)$$

$$+ \frac{q_{xx}}{2\pi k_{Qy}} \left(1 + \frac{2\pi^2 k_{mox} W_0}{E_{xx} q_{xx}^2} + \frac{4\pi^2 k_{\Sigma} k_{mp}}{q_{xx}^2} \right) \frac{d\alpha}{dt} + \frac{2\pi k_{\Sigma} k_{nox}}{q_{xx} k_{Qy}} \alpha = \gamma.$$

В реальных гидроприводах обычно

$$1 + \frac{2\pi^2 k_{no3} W_0}{E_{xx} q_{xx}^2} + \frac{4\pi^2 k_{\Sigma} k_{mp}}{q_{xx}^2} \approx 1.$$
 (25)

Поэтому, вместо (24) имеем

$$\frac{\pi J W_0}{E_{\infty} q_{\scriptscriptstyle M} k_{\scriptscriptstyle Q \gamma}} \frac{d^3 \alpha}{dt^3} + \left(\frac{\pi k_{\scriptscriptstyle mp} W_0}{E_{\infty} q_{\scriptscriptstyle M} k_{\scriptscriptstyle Q \gamma}} + \frac{2\pi k_{\scriptscriptstyle \Sigma} J}{q_{\scriptscriptstyle M} k_{\scriptscriptstyle Q \gamma}} \right) \frac{d^2 \alpha}{dt^2} + \frac{q_{\scriptscriptstyle M}}{2\pi k_{\scriptscriptstyle Q \gamma}} \frac{d \alpha}{dt} = \gamma - \frac{2\pi k_{\scriptscriptstyle \Sigma} k_{\scriptscriptstyle nos}}{q_{\scriptscriptstyle M} k_{\scriptscriptstyle Q \gamma}} \alpha. \tag{26}$$

Введем в рассмотрение следующие параметры: постоянная времени гидропривода

$$T_{en} = \frac{q_{\scriptscriptstyle M}}{2\pi k_{\scriptscriptstyle Oy}}.$$
 (27)

постоянная времени гидромотора

$$T_{M} = \sqrt{\frac{2\pi^{2}JW_{0}}{q_{M}^{2}E_{M}}} . {28}$$

коэффициент относительного демпфирования гидромотора

$$\zeta = \frac{\pi \left(2JE_{\infty}k_{\Sigma} + k_{mp}W_{0}\right)}{\sqrt{2JW_{0}E_{\infty}q_{M}^{2}}}.$$
 (29)

коэффициент собственной обратной связи

$$k_{coc} = \frac{2\pi k_{\Sigma} k_{no3}}{q_{u} k_{OV}}.$$
 (30)

Как видно из данного выражения, коэффициент собственной обратной связи силовой части гидропривода вызван совместным действием позиционной нагрузки и негерметичности гидромашин.

С учетом введенных параметров уравнение (26) преобразуем по Лапласу [11, 12] к виду:

$$T_{2n}s(T_{M}^{2}s^{2} + 2\zeta_{M}T_{M}s + 1)\alpha(s) = \gamma(s) - k_{coc}\alpha(s)(31)$$

Структурная схема силовой части ЭГП в соответствии с уравнением (31) представлена на рис. 3.

Рис. 3. Структурная схема силовой части ЭГП

В случае отсутствия позиционной нагрузки (22), либо полной герметичности гидропривода, или при несущественном моменте от действия сил позиционной нагрузки и высокой герметичности гидромашин (что обычно имеет место на практике) коэффициентом собственной обратной связи можно пренебречь. Следует отметить, что данный коэффициент в случае его заметного влияния можно учесть во внешней обратной связи автоматического гидропривода.

Тогда, структурная схема силовой части привода примет вид, представленный на рис. 4. Данная схема, по сути, отражает передачу управляющего сигнала — угла наклона блока цилиндров (или шайбы) γ — и воздействие его на выходной сигнал - угол поворота вала гидромотора α .

$$\frac{\gamma}{T_M^2 s^2 + 2T_M \xi_M s + 1} \qquad \frac{1}{T_{en} s} \alpha$$

Рис. 4. Структурная схема передачи управляющего сигналав силовой части ЭГП с объемным регулированием

В дальнейшем рассматриваем структурную схему силовой части гидравлического привода вращательного движения с объемным регулированием согласно рис. 4. В соответствии с данной структурной схемой получаем передаточную функцию привода для угла поворота вала гидромотора α по углу наклона блока цилиндров (или шайбы) γ

$$W_{\alpha\gamma}(s) = \frac{\alpha(s)}{\gamma(s)} = \frac{1}{T_{en}s(T_{M}^{2}s^{2} + 2\zeta_{M}T_{M}s + 1)}. (32)$$

Выводы.

Таким образом, разработана математическая модель динамических характеристик силовой части автоматического гидравлического вращательного движения c объемным регулированием. Представлена структурная схема передачи управляющего сигнала. Получена передаточная функция привода для выходного сигнала угла поворота вала гидромотора по управляющему сигналу (углу наклона блока цилиндров или шайбы).

Литература

- 1. Андрийчук Н.Д. Гидравлика и гидропневмоприводы: учебное пособие [Текст]/ Андрийчук Н.Д., Вялых А.В., Коваленко А.А., Мальцев Я.И., Ремень В.И., Соколов В.И. Под общ. ред. Коваленко А.А. Луганск: ВНУ им. В. Даля, 2008. 320 с.
- Мандрус В.І., Лещій Н.П., Звягін В.М. Машинобудівна гідравліка. [Текст] Задачі та приклади розрахунку. – Львів: Світ, 1995. – 264 с.

- 3. Навроцкий К.Л. Теория и проектирование гидро- и пневмоприводов. [Текст] М.: Машиностроение, 1991. 384 с
- 4. Попов Д.Н. Динамика и регулирование гидро- и пневмосистем. [Текст] М.: машиностроение, 1987. 464 с.
- Попов Д.Н. Нестационарные гидромеханические процессы. [Текст] – М.: Машиностроение, 1982. – 240 с
- 6. Богданович Л.Б. Гидравлические приводы: учебное пособие. [Текст] К.: Выща школа, 1980. 232 с.
- Свешников В.К., Усов А.А. Станочные гидроприводы: справочник. [Текст] – М.: Машиностроение, 1988. – 512 с.
- Основы объемного гидравлического привода строительных и дорожных машин. [Текст] Коваленко А.А., Соколов В.И., Уваров П.Е., Пазин В.В. - Луганск: ДонГАСА, 1999. – 138 с.
- Лойцянский Л.Г. Механика жидкости и газа. [Текст] М.: Наука, 1987. – 840 с.
- Основы технической механики жидкостей и газов: учебное пособие. [Текст] Коваленко А.А., Соколов В.И. Дымнич. А.Х., Уваров П.Е. – Луганск: ВУГУ, 1998. – 272 с.
- 11. Зайцев Г.Ф. Теория автоматического управления и регулирования: учебное пособие. [Текст] К.: Выща школа, 1989. 431 с.
- 12. Ким Д.П. Теория автоматического управления. Т.1. Линейные системы: учебное пособие. [Текст] М.: Физматлит, 2003. 288 с.

References

- Andryjchuk N.D. Ghydravlyka y ghydropnevmopryvodы: uchebnoe posobye [Tekst]/ Andryjchuk N.D., Vjalыkh A.V., Kovalenko A.A., Maljcev Ja.Y., Remenj V.Y., Sokolov V.Y. Pod obshh. red. Kovalenko A.A. – Lughansk: VNU ym. V. Dalja, 2008. – 320 s.
- Mandrus V.I., Leshhij N.P., Zvjaghin V.M. Mashynobudivna ghidravlika. [Tekst] Zadachi ta pryklady rozrakhunku. – Ljviv: Svit, 1995. – 264 s.
- Navrockyj K.L. Teoryja y proektyrovanye ghydro- y pnevmopryvodov. [Tekst] – M.: Mashynostroenye, 1991. – 384 s
- Popov D.N. Dynamyka y reghulyrovanye ghydro- y pnevmosystem. [Tekst] – M.: mashynostroenye, 1987. – 464 s.
- 5. Popov D.N. Nestacyonarnыe ghydromekhanycheskye processы. [Tekst] М.: Mashynostroenye, 1982. 240 s.
- 6. Boghdanovych L.B. Ghydravlycheskye pryvodы: uchebnoe posobye. [Tekst] К.: Vыshha shkola, 1980. 232 s

- Sveshnykov V.K., Usov A.A. Stanochnыe ghydropryvodы: spravochnyk. [Tekst] – М.: Mashynostroenye, 1988. – 512
- 8. Osnovы obъemnogho ghydravlycheskogho pryvoda stroyteljnыkh y dorozhnыkh mashyn. [Tekst] Kovalenko A.A., Sokolov V.Y., Uvarov P.E., Pazyn V.V. - Lughansk: DonGhASA, 1999. – 138 s.
- Lojcjanskyj L.Gh. Mekhanyka zhydkosty y ghaza. [Tekst] – M.: Nauka, 1987. – 840 s.
- 10. Osnovы tekhnycheskoj mekhanyky zhydkostej y ghazov: uchebnoe posobye. [Tekst] Kovalenko A.A., Sokolov V.Y. Dыmnych. A.Kh., Uvarov P.E. Lughansk: VUGhU, 1998. 272 s.
- 11. Zajcev Gh.F. Teoryja avtomatycheskogho upravlenyja y reghulyrovanyja: uchebnoe posobye. [Tekst] K.: Vыshha shkola, 1989. 431 s.
- 12. Kym D.P. Teoryja avtomatycheskogho upravlenyja. Т.1. Lynejnыe systemы: uchebnoe posobye. [Tekst] М.: Fyzmatlyt, 2003. 288 s.

Рассказова Ю.Б. Математична модель гідравлічного приводу обертального руху з об'ємним регулюванням.

Представлено математичну модель динамічних характеристик силової частини автоматичного гідравлічного приводу обертального руху з об'ємним регулюванням. Наведено структурну схему передачі сигналу. Отримано передавальна функція приводу.

Ключові слова: насос, гідромотор, тиск, витрата, об'ємне регулювання, структурна схема, передавальна функція.

Rasskazova Yu.B. Mathematical model of a hydraulic drive of rotary motion volume control

A mathematical model of the dynamic characteristics of the power of the automatic hydraulic drive rotary motion with variable displacement. The block diagram of the transmission control signal. Get the transfer function of the drive.

Keywords: pump, hydraulic motor, pressure, flow, volume control, a block diagram, the transfer function.

 Рассказова
 Юлія
 Борисівна
 – аспірант кафедри машинобудування та прикладної механіки, Східноукраїнський національний університет імені Володмира
 Даля
 (м. Сєвєродонецьк) игаss.snu.edu@gmail.com

Рецензент: д.т.н., проф. Соколов В.І.

Стаття подана 14.09.2016