Лекции по Математической логике 4 семестр

Ilya Yaroshevskiy

20 апреля 2021 г.

Оглавление

1			3
	1.1		3
			3
		1.1.2 Мета и предметные	3
		1.1.3 Сокращение записи	1
		1.1.4 Теория моделей	1
		1.1.5 Теория доказательств	5
		1.1.6 Правило Modus Ponens и доказательство	5
2			3
	2.1	Интуиционистская логика	3
3		10)
	3.1	Правила вывода)
4	5 м	арта 14	1
	4.1	Табличные модели	1
	4.2	Модели Крипке	5
	4.3	Доказательство нетабличности	3
5	12 1	марта 18	3
	5.1	Программы	3
		5.1.1 Исчесление предикатов)
		5.1.2 Теория моделей)
		5.1.3 Теория доказательств	2
6	19 1	марта 23	3
	6.1	Исчисление предикатов	3
		6.1.1 Расставление скобок	3
		6.1.2 Вхождение	1
		6.1.3 Свободные подстановки	1
		6.1.4 Пример доказательства	5
		6.1.5 Теорема о дедукции	ó

Ο.	ГЛАВЛЕНИЕ	2
7	2 апреля	26
	7.1 Полнота исчесления предикатов	26
8	9 апреля	29
	8.1 Исчесление предиктов	29
9	16 апреля	32
	9.1 Теория первого порядка	32
	9.1.1 Формальная арифметика	34

1.1 Исчесление высказываний

1.1.1 Язык

- 1. Пропозициональные переменные A_i' большая буква начала латинского алфавита
- 2. Связки

$$\alpha$$
 , β — высказывания
метапеременная
Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания

1.1.2 Мета и предметные

- $\alpha, \beta, \gamma, \ldots, \varphi, \psi, \ldots$ метапеременные для выражений
- \bullet X,Y,Z метапеременные для предметные переменные

Метавыражение: $\alpha \to \beta$

Предметное выражение: $A \to (A \to A)$ (заменили α на A, β на $(A \to A)$)

Пример. Черным — предметные выражения, Синим — метавыражения

$$(X \to Y)[X := A, Y := B] \equiv A \to B$$

$$(\alpha \to (A \to X))[\alpha \coloneqq A, X \coloneqq B] \equiv A \to (A \to B)$$

$$(\alpha \to (A \to X))[\alpha := (A \to P), X := B] \equiv (A \to P) \to (A \to B)$$

ЛЕКЦИЯ 1. 4

1.1.3 Сокращение записи

- \lor , &, \neg скобки слева направо(лево-ассоциативная)
- ullet ightarrow правоассоциативная
- Приоритет по возрастанию: \rightarrow , \vee , &, \neg

Пример. Расставление скобок

$$(A \to ((B\&C) \to D))$$
$$(A \to (B \to C))$$

1.1.4 Теория моделей

- ullet \mathcal{P} множество предметных переменных
- $[\![\cdot]\!]:\mathcal{T}\to$, где $\mathcal{T}-$ множество высказываний, $V=\{\mathcal{U},\mathcal{I}\}-$ множество истиностных значений
- 1. $[\![x]\!]: \mathcal{P} \to V$ задается при оценке $[\![\!]]^{A:=v_1,B:=v_2}:$
 - $\mathcal{P} = v_1$
 - $\bullet \mathcal{P} = v_2$

2.
$$[\![\alpha\star\beta]\!]=[\![\alpha]\!]$$
 $\underset{\text{определенно}}{\star}$ $[\![\beta]\!]$, где $\star\in[\&,\vee,\neg,\to]$

Пример.

$$\llbracket A \to A \rrbracket^{A:=\mathsf{M},B:=\Pi} = \llbracket A \rrbracket^{A:=\mathsf{M},B:=\Pi} \to \llbracket A \rrbracket^{A:=\mathsf{M},B:=\Pi} = \mathsf{M} \to \mathsf{M} = \mathsf{M}$$

Также можно записать так:

$$\llbracket A \to A \rrbracket^{A:=\mathsf{II},B:=\Pi} = f_{\to}(\llbracket A \rrbracket^{A:=\mathsf{II},B:=\Pi},\llbracket A \rrbracket^{A:=\mathsf{II},B:=\Pi}) = f_{\to}(\mathsf{II},\mathsf{II}) = \mathsf{II}$$

, где f_{\rightarrow} определена так:

$$\begin{array}{c|cccc} a & b & f_{\rightarrow} \\ \hline H & H & H \\ H & J & J \\ J & H & H \\ J & J & H \\ \end{array}$$

ЛЕКЦИЯ 1. 5

1.1.5 Теория доказательств

Определение. Схема высказывания — строка соответсвующая определению высказывания, с:

• метапеременными α, β, \dots

Определение. Аксиома — высказывания:

- 1. $\alpha \to (\beta \to \alpha)$
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3. $\alpha \to \beta \to \alpha \& \beta$
- 4. $\alpha \& \beta \to \alpha$
- 5. $\alpha \& \beta \to \beta$
- 6. $\alpha \to \alpha \vee \beta$
- 7. $\beta \to \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

 $\#+begin_{defintion}$ org

Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) — последовательность высказываний $\alpha_1, \ldots, \alpha_n$, где α_i :

- аксиома
- существует k, l < i, что $\alpha_k = \alpha_l \rightarrow \alpha$

$$\frac{A, A \to B}{B}$$

Пример. $\vdash A \rightarrow A$

Определение. Доказательством высказывания β — список высказываний α_1,\ldots,α_n

- $\alpha_1, \ldots, \alpha_n$ доказательство
- $\alpha_n \equiv \beta$

Обозначение. Γ, Δ, Σ — списки высказываний

Определение. Следование: $\Gamma \vDash \alpha$, если

- $\Gamma = \gamma_1, \ldots, \gamma_n$
- Всегда когда все $\llbracket \gamma_i \rrbracket = \mathsf{H}$, то $\llbracket \alpha \rrbracket = \mathsf{H}$

 $\Pi puмер. \models \alpha - \alpha$ общезначимо

Определение. Теория Исчисление высказываний корректна, если при любом α из $\vdash \alpha$ следует $\models \alpha$

Определение. Исчисление полно, если при любом α из $\models \alpha$ следует $\vdash \alpha$

Теорема 2.0.1 (о дедукции). $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$

Доказательство.

- (\Leftarrow) Пусть $\Gamma \vdash \alpha \to \beta$. Т.е. существует доказательство $\delta_1, \dots, \delta_n$, где $\delta_n = \alpha \to \beta$ Построим новое доказательство: $\delta_1, \dots, \delta_n, \alpha$ (гипотеза), β (М.Р.) Эта новая последовательность — доказательство $\Gamma, \alpha \vdash \beta$
- (⇒) Рассмотрим $\delta_1, \ldots, \delta_n$ доказательство $\Gamma, \alpha \vdash \beta$

$$\begin{array}{ll}
\sigma_1 & \alpha \to \delta_1 \\
\vdots & \vdots \\
\sigma_n & \alpha \to \delta_n
\end{array}$$

Утвреждение: последовательность $\sigma_1, \ldots, \sigma_n$ можно дополнить до доказательства, т.е. каждый σ_i — аксиома, гипотеза или получается по М.Р. Докажем по индукции:

База: n = 0

<u>Переход</u>: пусть σ_0,\dots,σ_n — доказательсво. тогда $\sigma_{n+1}=\alpha\to\delta_{n+1}$ по трем вариантам:

ЛЕКЦИЯ 2.

- 1. δ_{n+1} аксиома или гипотеза $\not\equiv \alpha$
- 2. $\delta_{n+1} \equiv \alpha$
- 3. $\delta_k \equiv \delta_l \rightarrow \delta_{n+1}, \ k, l \leq n$

Докажем каждый из трех вариантов

1.

$$\begin{array}{c|cccc} (n+0.2) & \delta_{n+1} & \text{ (аксиома или гипотеза)} \\ (n+0.4) & & \\ (n+1) & \alpha \to \delta_{n+1} & \text{ (сх. акс. 1)} \\ (n+1) & \alpha \to \delta_{n+1} & \text{ (M.P. } n+0.2, n+0.4) \end{array}$$

- 2. (n+0.2, n+0.4, n+0.6, n+0.8, n+1) доказательтво $\alpha \to \alpha$
- 3.

$$\begin{array}{lll} (k) & \alpha \rightarrow (\sigma_l \rightarrow \sigma_{n+1}) \\ (l) & \alpha \rightarrow \sigma_l \\ (n+0.2) & (\alpha \rightarrow \delta_l) \rightarrow (\alpha \rightarrow (\delta_l \rightarrow \delta_{n+1})) \rightarrow (\alpha \rightarrow \delta_{n+1}) & (\text{cx. 2}) \\ (n+0.4) & (\alpha \rightarrow \delta_l \rightarrow \delta_{n+1}) \rightarrow (\alpha \rightarrow \delta_{n+1}) & (\text{M.P. } n+0.2, l) \\ (n+1) & \alpha \rightarrow \delta_{n+1} & (\text{M.P. } n+0.4, k) \\ \end{array}$$

7

Теорема 2.0.2 (о корректности). Пусть $\vdash \alpha$

 $_{\text{Тогда}}$ $\models \alpha$

Доказательство. Индукция по длине доказательства: каждая $[\![\delta_i]\!] = \mathrm{И},$ если δ_1,\ldots,δ_k — доказательство α Пусть $[\![\delta_1]\!] = \mathrm{II},\ldots,[\![\delta_n]\!] = \mathrm{II}$. Тогда осн. δ_{n+1} :

- 1. δ_{n+1} аксиома
 - (а) $\delta_{n+1} \equiv \alpha \to \beta \to \alpha$ (Сущесвуют α, β , что) Пусть $\delta_{n+1} = A \to B \to A$. Тогда $\alpha \equiv A, \beta \equiv B$ $[\![\alpha]\!] := a, [\![\beta]\!] := b = M$

$$\begin{array}{c|ccccc} a & b & \beta \rightarrow \alpha & \alpha \rightarrow \beta \rightarrow \alpha \\ \hline J & J & W & W \\ J & W & J & W \\ W & J & W & W \\ W & W & W & W \end{array}$$

2. δ_{n+1} — М.Р. $\delta_k = \delta_l \to \delta_{n+1}$ Фиксируем оценку $[\![\delta_k]\!] = [\![\delta_l]\!] = \mathbf{H}$, тогда $[\![\delta_l \to \delta_{n+1}]\!] = \mathbf{H}$

ЛЕКЦИЯ 2. 8

T.e.
$$\llbracket \delta_{n+1} \rrbracket = \mathcal{H}$$

Теорема 2.0.3 (о полноте). Пусть $\models \alpha$, тогда $\vdash \alpha$

Обозначение.

$$[\beta]^{\alpha} \equiv \begin{cases} \alpha & [\![\beta]\!] = \mathbf{M} \\ \neg \alpha & [\![\beta]\!] = \mathbf{M} \end{cases}$$

Доказательство. Фиксируем набор перменных из α : P_1,\dots,P_n Рассмотрим $[\![\alpha]\!]^{P_1:=x_1,\dots P_n:=x_n}=$ И. Докажем, что $[\![x_1]\!]^{P_1},\dots,[x_n]\!]^{P_n}$ $\vdash [\alpha]^\alpha$.

Индукция по длине формулы (по структуре)

 $\overline{\underline{\text{Ba3a:}}} \ \alpha \equiv P_i \ [P_i]^{P_i} \vdash [P_i]^{P_i}$

 $\overline{\underline{\text{Переход:}}}$ пусть η, ζ : $\Delta \vdash [\eta]^{\eta}, \Delta \vdash [\zeta]^{\zeta}$. Покажем, что $\Delta \vdash [\eta \star \zeta]^{\eta \star \zeta}$, где \star — все свзяки

Используя лемму: $\models \alpha$, т.е. $[x_1]^{P_1}, \dots, [x_n]^{P_n} \vdash [\alpha]^{\alpha}$. Но $[\![\alpha]\!] = \mathbb{N}$ при любой оценке,

т.е. $[x_1]^{P_1},\ldots,[x_n]^{P_n}\vdash \alpha$ при всех x_i

$$\begin{array}{c} [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}}, P_n \vdash \alpha \\ [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}}, \neg P_n \vdash \alpha \end{array} | \xrightarrow{\text{\tiny{MEMMA}}} [x_1]^{P_1}, \dots, [x_{n-1}]^{P_{n-1}} \vdash \alpha$$

Лемма 1.

- $\Gamma, \eta \vdash \zeta$
- $\Gamma, \neg \eta \zeta$

 $Tor\partial a \Gamma \vdash \zeta$

Лемма 2. $[x_1]^{P_1},\ldots,[x_n]^{P_n}\vdash \alpha,\ mo\ [x_1]^{P_1},\ldots,[x_{n-1}]^{P_{n-1}}\vdash \alpha$

2.1 Интуиционистская логика

 $A \lor B$ — плохо

Пример. Докажем: существует a,b, что $a,b\in\mathbb{R}\setminus\mathbb{Q},$ но $a^b\in\mathbb{Q}$ Пусть $a=b=\sqrt{2}.$ Рассмотрим $\sqrt{2}^{\sqrt{2}}\in\mathbb{R}\setminus\mathbb{Q}$

- Если да, то ОК
- Если нет, то возьмем $a=\sqrt{2}^{\sqrt{2}}, b=\sqrt{2}, \, a^b=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=\sqrt{2}^2=2$ ВНК-интерпретация. α,β
- $\alpha \& \beta$ есть α, β

ЛЕКЦИЯ 2. 9

- $\alpha \lor \beta$ есть α либо β и мы знаем какое
- $\alpha \to \beta$ есть способ перестроить α в β
- \bot конструкция без построения $\neg \alpha \equiv \alpha \rightarrow \bot$

3.1 Правила вывода

Сверху посылки, снизу заключения

• Аксиома

$$\overline{\Gamma,\varphi \vdash \varphi}$$

ullet Введение ightarrow

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

 \bullet Удаление \rightarrow

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

• Введение &

$$\frac{\Gamma \vdash \varphi \quad \Gamma \vdash \psi}{\Gamma \vdash \varphi \& \psi}$$

• Удаление &

$$\frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \varphi}$$

$$\frac{\Gamma \vdash \varphi \& \psi}{\Gamma \vdash \psi}$$

• Введение ∨

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi}$$

$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \lor \varphi}$$

• Удалние ∨

$$\frac{\Gamma, \varphi \vdash \rho \quad \Gamma, \psi \vdash \rho \quad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho}$$

ЛЕКЦИЯ 3. 11

• Удаление ⊥

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$$

Пример.

$$\frac{\overline{A \vdash A}(\text{akc.})}{\vdash A \to A}(\text{BB.} \to)$$

 Π ример. Докажем $\frac{1}{1-A\&B\to B\&A}$

$$\frac{ \frac{\overline{A\&B \vdash A\&B}^{\,\,\text{(акс.)}}}{A\&B \vdash B} (\text{уд. \&}) \quad \frac{\overline{A\&B \vdash A\&B}^{\,\,\text{(акс.)}}}{A\&B \vdash A} (\text{уд. \&}) }{ \frac{A\&B \vdash B\&A}{\vdash A\&B \to BA}} (\text{вв. &}) }_{\,\,\text{(вв. }\to)}$$

Определение. Фиксируем A

Частичный порядок — антисимметричное, транзитивное, рефлексивное отношение

Линейный — сравнимы любые 2 элемента

- $a \le b \lor b \le a$
- ullet Наименьший элемент S такой $k \in S$, что если $x \in S$, то $k \le x$
- \bullet Минимальный элемент S такой $k \in S,$ что нет $x \in S,$ что $x \leq k$

Пример.

Нет наименьшего, но есть 3 минимальных. Стрелка из a в b обозначает $b \le a$

Определение.

- Множество верхних граней a и b: $\{x | a \le x \& b \le x\}$
- Множество нижних граней a и b: $\{x | x \le a \& x \le b\}$

Определение.

- \bullet a+b нименьший элемент множества верхних граней
- $a \cdot b$ наибольший элемент множества нижних граней

Определение. Решетка = $\langle A, \leq \rangle$ — структура, где для каждых a,b есть как a+b, так и $a\cdot b$,

т.е.
$$a \in A, b \in B \implies a + b \in A$$
 и $a \cdot b \in A$

ЛЕКЦИЯ 3. 12

Определение. Дистрибутивная решетка если всегда $a\cdot(b+c)=ab+a\cdot c$

Лемма 3. В дистрибутивной решетке $a+b\cdot c=(a+b)\cdot (a+c)$

Определение. Псевдодополнение $a \to b = \text{наиб.}\{c | a \cdot c \le b\}$

Определение. Импликативная решетка — решетка, где для любых a,b есть $a \to b$

Определение. $\mathbf{0}$ — наименьший элемент решетки, $\mathbf{1}$ — наибольший элемент решетки

Определение. Псевдобулева алгебра (алгебра Гейтинга) — импликативная решетка с 0

Определение. Булева алгебра — псевдобулева алгебра, такая что $a+(a \rightarrow 0)=1$

Пример.

- $a \cdot 0 = 0$
- $1 \cdot b = b$
- $a \cdot b = 0$
- a + b = 1
- $a \to b =$ наиб. $\{x \big| a \cdot x \le b\} = b$ $\{x \big| a \cdot x \le b\} = \{0, b\}$
- $a \rightarrow 1 = 1$
- $a \rightarrow 0 = 0$

Можем представить в виде пары $\langle x, y \rangle$

- $a = \langle 1, 0 \rangle$
- $b = \langle 0, 1 \rangle$
- $1 = \langle 1, 1 \rangle$
- $0 = \langle 0, 0 \rangle$

Лемма 4. В импликативной решетке всегда есть 1.

ЛЕКЦИЯ 3. 13

Теорема 3.1.1. Любая алгебра Гейтинга — модель ИИВ

Теорема 3.1.2. Любая булева алгебра — модель КИВ

Рассмотрим множество X — **носитель**. Рассмотрим $\Omega \subseteq 2^X$ — подмножество подмножеств X — **топология**.

- 1. $\bigcup X_i \in \Omega$, где $X_i \in \Omega$
- 2. $X_1 \cap \cdots \cap X_n \in \Omega$, если $X_i \in \Omega$
- 3. $\emptyset, X \in \Omega$

Теорема 3.1.3.

- $a+b=a\cup b$
- $a \cdot b = a \cap b$
- $a \to b = ((X \setminus a) \cup b)^{\circ}$
- $a \leq b$ тогда и только тогда, когда $a \subseteq b$

Тогда $\langle \Omega, \leq \rangle$ — алгебра Гейтинга

Определение. X — все формулы логики

- $\alpha \leq \beta$ это $\alpha \vdash \beta$
- $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$
- $[\alpha]_{\approx} = \{\gamma \big| \gamma \approx \alpha\}$ класс эквивалентности

Свойство 1. $\langle X/_{\approx}, \leq \rangle$ — алгебра Гейтинга, где $X/_{\approx} = \{ [\alpha]_{\approx} | \alpha \in X \}$

Теорема 3.1.4. Алгебра гейтинга — полная модель ИИВ

5 марта

Определение. Предпорядок — транзитивное, рефлексивнре

Определение. Отношение порядка (частичный) — антисимметричное, транзитивное, рефлексивное

Определение. Линейный порядок — порядок в котором $a \leq b$ или $b \leq a$

Определение. Полный порядок — линейный, каждое подмножество имеет наименьший элемент.

 $\Pi pumep. \ \mathbb{N} -$ вполне упорядоченное множество

 Π ример. \mathbb{R} — не вполне упорядоченной множество

- (0,1) не имееи наименььшего
- \mathbb{R} не имеет наименьшего

4.1 Табличные модели

Определение. Назовем модель табличной для ИИВ:

- V множество истинностных значений $f_{\to}, f_{\&}, f_{V}: V^{2} \to V, \ f_{\neg}: V \to V$ Выделенные значения $T \in V$ $+i \] \in V \ f_{p}: p_{i} \to V$
- $\begin{array}{l} \bullet \ \ p_i = f_{\mathcal{P}}(p_i) \\ \llbracket \alpha \star \beta \rrbracket = f_{\star}(\llbracket \alpha \rrbracket, \llbracket \beta \rrbracket) \\ \llbracket \neg \alpha \rrbracket = f_{\neg}(\llbracket \alpha \rrbracket) \end{array}$

Если $\vdash \alpha$, то $\models \alpha$ означает, что $\llbracket \alpha \rrbracket = T$, при любой $f_{\mathcal{P}}$

Определение. Конечная модель: модель где V — конечно

Теорема 4.1.1. У ИИВ не существует полной табличной модели

4.2 Модели Крипке

все банки лопнут, RSA сломают!!!

- 1. $W = \{W_i\}$ множество миров
- 2. частичный порядок(≿)
- 3. отношение вынужденности: $W_j \Vdash p_i$ (\Vdash) $\subseteq W \times \mathcal{P}$ При этом, если $W_j \Vdash p_i$ и $W_j \preceq W_k$, то $W_j \Vdash p$

Определение.

- 1. $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \& \beta$
- 2. $W_i \Vdash \alpha$ или $W_i \Vdash \beta$, то $W_i \Vdash \alpha \vee \beta$
- 3. Пусть во всех $W_i \preceq W_j$ всегда когда $W_j \Vdash \alpha$ имеет место $W_j \Vdash \beta$ Тогда $W_i \Vdash \alpha \to \beta$
- 4. $W_i \Vdash \neg \alpha \alpha$ не вынуждено нигде, начиная с W_i : $W_i \preceq W_j$, то $W_j \not \Vdash \alpha$

Теорема 4.2.1. Если $W_i \Vdash \alpha$ и $W_i \preceq W_j$, то $W_j \Vdash \alpha$

Определение. Если $W_i \Vdash \alpha$ при всех $W_i \in W$, то $\models \alpha$

Теорема 4.2.2. ИИВ корректна в модели Крипке

Доказательство. 1. $\langle W,\Omega\rangle$ — топология, где $\Omega=\{w\subseteq W|$ если $W_i\in w,\ W_i\preceq W_j,\ \text{то}\ W_j\in w\}$

2. $\{W_k|W_k \Vdash p_j\}$ — открытое множество Примем $[\![p_j]\!] = \{W_k|W_k \Vdash p_j\}$ Аналогично $[\![\alpha]\!] = \{W_k|W_k \Vdash \alpha\}$

4.3 Доказательство нетабличности

Пусть существует конечная табличная модель |V|=n

$$\varphi_n = \bigvee_{\substack{1 \le i, j \le n+1 \\ i \ne j}} (p_i \to p_j \& p_j \to p_i)$$

1. $\not\vdash \varphi$

$$W_1 \not\Vdash (p_i \to p_k) \& (p_k \to p_1), \ k \neq 1$$

Значит

$$\forall (p_i \to p_j) \& (p_j \to p_i)$$

$$\forall \bigvee (p_i \to p_j) \& (p_j \to p_i)$$

$$\forall \varphi_n$$

2. $\models_V \varphi_n$: по признаку Дирихле найдутся $i \neq j: \llbracket p_i \rrbracket = \llbracket p_j \rrbracket$ $\llbracket p_i \to p_j \rrbracket = \mathrm{H}$ и $\llbracket \varphi_n \rrbracket = \mathrm{H}$ Значит $\vdash \varphi_n$ — противоречие

Определение. Дизъюнктивность ИИВ: $\vdash \alpha \lor \beta$ влечет $\vdash \alpha$ или $\vdash \beta$

Определение. Гёделева алгебра — алгебра Гейтинга, такая что из $\alpha+\beta=1$ следует что $\alpha=1$ или $\beta=1$

Определение. Пусть \mathfrak{A} — алгебра Гейтинга, тогда:

1. $\Gamma(\mathfrak{A})$

17

Добавим новый элемент $1_{\Gamma(\mathfrak{A})}$ перенеименуем $1_{\mathfrak{A}}$ в ω

Теорема 4.3.1.

- $\Gamma(\mathfrak{A})$ алгебра Гейтинга
- Г(Д) Геделева

Определение. Гомоморфизм алгебр Гейтинга

- $\varphi: \mathfrak{A} \to \mathfrak{B}$
- $\varphi(a \star b) = \varphi(a) \star \varphi(b)$
- $\varphi(1_{\mathfrak{A}}) = 1_{\mathfrak{B}}$
- $\varphi(0_{\mathfrak{A}}) = 0_{\mathfrak{B}}$

Теорема 4.3.2. $a \le b$, то $\varphi(a) \le \varphi(b)$

Определение.

- α формула ИИВ
- f, g: оценки ИИВ
- f: ИИВ $\rightarrow \mathfrak{A}$
- g: ИИВ $\rightarrow \mathfrak{B}$

 φ согласованы f,g, если $\varphi(f(\alpha))=g(\alpha)$

Теорема 4.3.3. если $\varphi:\mathfrak{A}\to\mathfrak{B}$ согласована с f,g и оценка $[\![\alpha]\!]_g\neq 1_{\mathfrak{B}}$, то $[\![\alpha]\!]_f\neq 1_{\mathfrak{A}}$

Теорема 4.3.4. ИИВ дизъюнктивно

Доказательство. Рассмторим алгебру Линденбаума: $\mathcal L$ Рассмотрим $\Gamma(\mathcal L)$

• $\varphi:\Gamma(\mathcal{L})\to\mathcal{L}$

$$\varphi(x) = \begin{cases} 1_{\mathcal{L}} &, x = \omega \\ x &, \text{иначе} \end{cases}$$

 φ — гомоморфизм

Пусть $\vdash \alpha \lor \beta$, тогда $\llbracket \alpha \lor \beta \rrbracket_{\Gamma(\mathcal{L})} = 1_{\Gamma(\mathcal{L})}$ $\llbracket \alpha + \beta \rrbracket = 1$, и т.к. $\Gamma(\mathcal{L})$ — Геделева то $\llbracket \alpha \rrbracket = 1$ или $\llbracket \beta \rrbracket = 1$ Пусть $\not\vdash \alpha$ и $\not\vdash \beta$, тогда $\varphi(\llbracket \alpha \rrbracket) \neq 1_{\mathcal{L}}$ и $\varphi(\llbracket \beta \rrbracket) \neq 1_{\mathcal{L}}$, т.е. $\llbracket \alpha \rrbracket_{\mathcal{L}} \neq 1_{\mathcal{L}}$ и $\llbracket \beta \rrbracket_{\mathcal{L}} \neq 1_{\mathcal{L}}$, тогда $\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \neq 1_{\Gamma(\mathcal{L})}$ и $\llbracket \beta \rrbracket_{\Gamma(\mathcal{L})} \neq 1_{\Gamma(\mathcal{L})} \Rightarrow$ Противоречие

12 марта

5.1 Программы

программа(функция)

• $P: \alpha \to \beta$ — берет α , возвращает β

False : Next: ^list;

end;

• P — доказательство, что из α следует β Π ример.

```
1 f a = a
```

 $f:A \to A-f$ доказывает что, из A следует A

```
Типизированное λ-исчесление
 логическок исчесления
 логическая формула
                        тип
 доказательство
                        значение
 доказуемая формула
                        обитаемый тип(имеет хотя бы один экземпляр)
                        функция
 &
                        упорядоченная пара
                        алг. тип(тип-сумма)
\Pi pumep. 5 доказывает Int
Пример. Список:
Type list = Record
   Nul: boolean;
   case Nul of
     True : ;
```

```
struct list {
    *list next;
};

Eсли next == NULL — то конец
Пример. Дерево:

struct tree {
    tree* left;
    tree* right;
    int value;
};
```

Определение. Отмеченное (дизъюнктное) объединение множеств:

- A, B множества
- $A \sqcup B = \{\langle ``A", a \rangle | a \in A \} \cup \{\langle ``B", a \rangle | b \in B \}$

Пусть $S \in A \sqcup B$. Мы знаем откуда S

| Nil (* α *) -> 0 (* $\alpha \rightarrow int$ *)

```
data List a = Nil | Cons a (List a)
example = Cons 1 (Cons 2 (Cons 3 Nil)) -- [1; 2; 3]

union {
    int a;
    char b;
};

\Pi pumep.
\frac{\Gamma \vdash \stackrel{\text{Nil}}{\alpha} \rightarrow \gamma \quad \Gamma \vdash \stackrel{\text{Cons}}{\beta} \rightarrow \gamma \quad \vdash \alpha \lor \beta}{\Gamma \vdash \gamma \atop \text{int}}
let rec count 1 (* \alpha + \beta *) =
match 1 with
```

| Cons(hd, tl) (* β *) -> 1 + count tl (* $\beta \rightarrow int$ *)

5.1.1 Исчесление предикатов

Определение. Язык исчисление предикатов

- логические выражения "предикаты"/"формулы"
- предметные выражния "термы"

 Θ — метаперменные для термов Термы:

- Атомы:
 - $-a,b,c,d,\ldots$ предметные переменные
 - -x,y,z метапеременные для предметных перменных
- Функциональные Символы
 - -f, g, h Функциональные символы (метапереминые)
 - $-f(\Theta_1,\dots\Theta_n)$ применение функциональных символов
- Логические выражения:

Если n = 0, будем писать f, g — без скобок

- Р метаперменные для предикатных символов
- -A, B, C предикатный символ
- $P(\Theta_1,\ldots,\Theta_n)$ применение предикатных символов
- $-\ \&, \lor, \neg, \to -\$ Связки
- $\forall x. \varphi$ и $\exists x. \varphi$ кванторы
 - "<квантор> <переменная>.<выражение>"
- 1. Сокращение записи И.В + жадность \forall , \exists Метавыражение:

$$\forall x.(P(x)\&(\forall y.P(y)))$$

Квантор съедает все что дают, т.е. имеет минимальный приоритет. Правильный вариант(настоящее выражние):

$$\forall a.B(A)\&\forall b.B(b)$$

5.1.2 Теория моделей

Оценка формулы в исчислении предикатов:

- 1. Фиксируем D предметное множетво
- 2. Кажодму $f_i(x_1,\ldots,x_n)$ сопоставим функцию $D^n\to D$

- 3. Каждому $P_j(x_1,\dots,x_m)$ сопоставим функцию(предикат) $D^2 \to V$
- 4. Каждой x_i сопоставим элемент из D

Пример.

$$\forall x. \forall y. \ E(x,y)$$

Чтобы определить формулу сначала определим $D=\mathbb{N}$

$$E(x,y) = \begin{cases} \mathbf{M} & , x = y \\ \mathbf{\Pi} & , x \neq y \end{cases}$$

- $\bullet \ \llbracket x \rrbracket = f_{x_i}$
- $\llbracket \alpha \star \beta \rrbracket$ смотри ИИВ
- $[P_i(\Theta_1, ..., \Theta_n)] = f_{P_i}([\Theta_1], ..., [\Theta_n])$
- $[f_i(\Theta_1, ..., \Theta_n)] = f_{f_i}([\Theta_1], ..., [\Theta_n])$

•
$$[\![\forall x.\varphi]\!] = \begin{cases} \mathbf{H} &, \text{если } [\![\varphi]\!]^{f_x=k} = \mathbf{H} \text{ при всех } k \in D \\ \mathbf{\Pi} &, \text{иначе} \end{cases}$$

 $\llbracket\exists x. arphi

right] = egin{cases} \Pi & ,$ если $\llbracket arphi

right]^{f_x=k} = \Pi$ при некотором $k\in D$ Л , иначе

$$\llbracket \forall x. \forall y. E(x,y) \rrbracket = \Pi$$

т.к. $[\![E(x,y)]\!]^{x:=1,\ y:=2}=\Pi$

Пример.

$$orall \left[arepsilon > 0
ight] \; \exists N \; orall \left[\left| \mathrm{a}_n - a
ight| < \left| arepsilon
ight|
ight]$$

Синим отмечены функциональные конструкции(термы), зеленым предикатные

$$\forall \varepsilon. (\varepsilon > 0) \to \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

Обозначим:

- (>)(a,b) = G(a,b) предикат
- $\bullet \mid \bullet \mid (a) = m_{\mid}(a)$
- $(-)(a,b) = m_{-}(a,b)$
- $0() = m_0$
- $a_{\bullet}(n) = m_a(n)$

$$\forall e. \boxed{\mathbf{G}(\underline{\mathbf{e}}, \underline{\mathbf{m}_0})} \rightarrow \exists n_0. \forall n. \underline{\mathbf{G}(\mathbf{n}, \mathbf{n}_0)} \rightarrow \overline{\mathbf{G}(\mathbf{e}, \underline{\mathbf{m}_1(m_-(m_a(n), a))})}$$

5.1.3 Теория доказательств

Все аксимомы И.В + М.Р.

(схема 11)
$$(\forall x.\varphi) \rightarrow \varphi[x := \Theta]$$

(**cxema 12**)
$$\varphi[x := \Theta] \to \exists x. \varphi$$

Если Θ свободен для подстановки вместо x в φ .

Определение. Свободен для подстановки — никакое свободное вхождение x в Θ не станет связанным

Пример.

```
int y;
int f(int x) {
    x = y;
}
```

Заменим у := х. Код сломается, т.к. у нас нет свобод для подстановки

(Правило ∀)

$$\frac{\varphi \to \psi}{\varphi \to \forall x. \psi}$$

(Правило ∃)

$$\frac{\psi \to \varphi}{\exists x. \psi \to \varphi}$$

В обоих правилах x не входит свободно в φ

Пример.

$$\frac{x=5\rightarrow x^2=25}{x=5\rightarrow \forall x.x^2=25}$$

Между x и x^2 была связь, мы ее разрушили. Нарушено ограничение $\Pi pumep$.

$$\exists y.x = y$$

$$\forall x. \exists y.x = y \rightarrow \exists y.y + 1 = y$$

Делаем замену х := y+1. Нарушено требование свобод для подстановки. y входит в область действия квантора \exists и поэтому свободная переменная x стала связанная.

19 марта

6.1 Исчисление предикатов

6.1.1 Расставление скобок

Кванторы имеют наименьший приоритет $\Pi pumep$.

$$\forall x. A \& B \& y. C \& D \lor \exists z. E$$
$$(\forall x. (A \& B \& \forall y. (C \& D \lor \exists z. (E))))$$

Еще раз про правила только со скобками

1.

$$\frac{\varphi \to \psi}{(\exists . \varphi) \to \psi}$$

2.

$$\frac{\psi \to \varphi}{\psi \to (\forall x.\varphi)}$$

Пример.

$$\frac{\varphi \to \psi}{\exists x. (\varphi \to \psi)}$$

— можно доказать, но это не правило вывода для \exists

Определение. α_1,\ldots,α_n — доказательство

- ullet если $lpha_i$ аксимома
- либо существует j, k < i, что $\alpha_k = \alpha_j \to \alpha_i$
- либо существует $\alpha_j: \alpha_j=\varphi \to \psi$ и $\alpha_i=(\exists x.\varphi) \to \psi$ причем x не входит свободно в ψ
- либо существует $j:\alpha_j=\psi \to \varphi$ и $\alpha_i=\psi \to \forall x. \varphi$ причем x не входит свободно в ψ

6.1.2 Вхождение

Пример.

$$(P(\underset{1}{x}) \vee Q(\underset{2}{x})) \rightarrow (R(\underset{3}{x}) \& (\underbrace{\forall x. P_1(\underset{5}{x})}_{\text{область } \forall \text{ по } x}))$$

 $1,\,2,\,3$ — свободные, 5 — связанное, по пермененной 4

 Π ример.

$$\underbrace{\forall x. \forall y. \forall x. \forall y. \forall x. P(x)}_{\text{область } \forall \text{ по } x}$$

Здесь x в P(x) связано. x не входит свободно в эту формулу, потому что нет свободных вхождений

Определение. Переменная x входит свободно если существует свободное вхождение

Определение. Вхождение свободно, если не связано

Можно относится к свободно входящим перменным как с перменным из библиотеки, т.е. мы не имеем права их переименовывать

Пример. Некорректная формула

$$\alpha_1 \ x = 0 \rightarrow x = 0$$

$$\alpha_2 \ (\exists x.x = 0) \to (x = 0)$$
 — не доказано

$$\alpha_2'$$
 ($\exists t.x=0$) \rightarrow ($x=0$) — (правило \exists)

 Π ример.

$$(n)$$
 $x=0 \rightarrow y=0$ — откуда то

$$(n+1) \ (\exists x.x = 0) \to (y=0) - ($$
правило \exists)

6.1.3 Свободные подстановки

Определение. Θ свободен для подстановки вместо x в φ , если никакая свободная перменная в Θ не станет связанной в $\varphi[x:=\Theta]$

Определение. $\varphi[x:=\Theta]$ — "Заменить все свободные вхождения x в φ на Θ "

Пример.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$

 Π ример.

$$P(x) \lor \forall x. P(x) \ [x := y] \equiv P(y) \lor \forall x. P(y)$$

 Π ример.

$$(\forall y.x=y) \ [x:=\underbrace{y}_{\equiv \Theta}] \equiv \forall y.y=y$$

 $FV(\Theta)=\{y\}$ — свободные перменные в $\Theta.$ Вхождение y с номером 1 стало связанным

Пример.

$$P(x)\&\forall y.x = y \ [x := y + z] \equiv P(y + z)\&\forall y.y + z = y$$

Здесь при подстановке вхождение y с номером 1 стало связанным. x — библиотечная функция, переименовали x во что-то другое.

6.1.4 Пример доказательства

Лемма 5. $\Pi y cmb \vdash \alpha$. $Tor \partial a \vdash \forall x.\alpha$

Доказательство.

1. Т.к. $\vdash \alpha$, то существует $\gamma_1, \ldots, \gamma_2 : \gamma_n = \alpha$

6.1.5 Теорема о дедукции

Теорема 6.1.1. Пусть задана Γ , α , β

- 1. Если $\Gamma, \alpha \vdash \beta$, то $\Gamma \vdash \alpha \to \beta$, при условии, если b в доказательстве $\Gamma, \alpha \to \beta$ не применялись правила для \forall, \exists по перменным, входящим свободно в α
- 2. Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$

2 апреля

- $\Gamma \vDash \alpha \alpha$ следует из Γ при всех оценках, что все $\gamma \in \Gamma$ $[\![\gamma]\!] = \mathrm{И},$ выполнено $[\![\alpha]\!] = \mathrm{I}\mathrm{I}$
- $x = 0 \vdash \forall x.x = 0$
- $x = 0 \not\models \forall x.x = 0$

Определение (Условие для корректности). Правила для кванторов по свободным перменным из Γ запрещены. Тогда $\Gamma \vdash \alpha$ влечет $\Gamma \vDash \alpha$

7.1 Полнота исчесления предикатов

Определение. Γ — непротиворечивое множество формул, если $\Gamma \not\vdash \alpha \& \neg \alpha$ ни при каком α

Пример. Непротиворечивые:

- Ø
- \bullet $A \lor \neg A$

Противоречивые:

A&¬A

Примечание. Непротиворечивое множество замкнутых(не имеющая сводных перменных) бескванторных формул

Пример.
$$\{A\}, \{0=0\}$$

Определение. Моделью для непротиворечивого множества замкнутых бескванторных формул Γ — такая модель, что каждая формула из Γ оценивается в Π

Определение. Полное непротиворечивое замкнутых бескванторных формул — такое, что для каждой замкнутой бескванторной формулы α : либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$

Обозначение. з.б. — замкнутая бескванторная. **непр. мн** — непротиворечивое множество

Теорема 7.1.1. Если Γ — непротиворечивое множество з.б. фомул и α — з.б. формула.

То либо $\Gamma \cup \{\alpha\}$, либо $\Gamma \cup \{\neg \alpha\}$ — непр. мн. з.б. формул

$$\mathcal{A}$$
оказательство. Пусть и $\Gamma \cup \{\alpha\}$ и $\Gamma \cup \{\neg \alpha\}$ Доделать

Теорема 7.1.2. Если Γ — непр. мн. з.б. фомул, то можно построить Δ — полное непр. мн. з.б. формул. $\Gamma \subseteq \Delta$ и в языке — счетное количество формул

 $\varphi_1, \varphi_2, \varphi_3, \ldots$ — формулы з.б.

- $\Gamma_0 = \Gamma$
- $\Gamma_1 = \Gamma_0 \cup \{\varphi_1\}$ либо $\Gamma_0 \cup \{\neg \varphi_1\}$ смотря что непротиворечивое
- $\Gamma_2 = \Gamma_1 \cup \{\varphi_2\}$ либо $\Gamma_1 \cup \{\neg \varphi_2\}$

$$\Gamma^* = \bigcup_{\cdot} \Gamma_i$$

Свойство 2. $\Gamma^* - nолное$

Свойство 3. Γ^* — непрерывное

Доказательство. Пусть $\Gamma^* \vdash \beta \& \neg \beta$

Конечное доказательство $\gamma_1, \ldots \gamma_n$, часть из которых гипотезы: $\gamma_1, \ldots, \gamma_k$ $\gamma_i \in \Gamma_{R_i}$. Возьмем $\Gamma_{\max R_i}$. Правда ли $\Gamma_{\max R_i} \vdash B \& \neg B$

Теорема 7.1.3. Любое полное непротиворечивое множество замкнутых бескванторных формул Γ имеет модель, т.е. существует оценка []: если $\gamma \in \Gamma$, то $[\![\gamma]\!] = M$

- $\llbracket f_0^n \rrbracket$ константа \Rightarrow " f_0^n "
- $[f_k^m(\Theta_1, \dots, \Theta_k)] \Rightarrow "f_k^m(" + [\Theta_1]] + ", " + \dots + ", " + [\Theta_k]] + ")"$
- $\llbracket P(\Theta_1, \dots, \Theta_n) \rrbracket = \begin{cases} \Pi & P(\Theta_1, \dots, \Theta_n) \in \Gamma \\ \Pi & \text{иначе} \end{cases}$
- свободные переменные: Ø

Так построенные модель — модель для Γ . Индукция по количеству связок. База очев.

Переход $\alpha \& \beta$. При этом

- 1. Если $\alpha, \beta \in \Gamma$ $[\![\alpha]\!] = И$ и $[\![\beta]\!] = И$ то $\alpha \& \beta \in \Gamma$
- 2. Если $\alpha, \beta \notin \Gamma$ $\llbracket \alpha \rrbracket \neq H$ или $\llbracket \beta \rrbracket \neq H$ то $\alpha \& \beta \notin \Gamma$

Аналогично для других операций

Теорема 7.1.4 (Геделя о полноте). Если Γ — полное неротиворечивое множество замкнутых(не бескванторных) фомул, то оно имеет модель

Следствие 7.1.4.1. Пусть $\models \alpha$, тогда $\vdash \alpha$

Доказательство. Пусть $\models \alpha$, но $\not\vdash \alpha$. Значит $\{\neg \alpha\}$ — непротиворечивое множество замкнутых формул. Тогда $\{\alpha\}$ или $\{\neg \alpha\}$ — непр. мн. з. ф. Пусть $\{\alpha\}$ — непр. мн. з.ф., а $\{\neg \alpha\}$ — противоречивое. При этом $\neg \alpha \vdash \beta \& \neg \beta$, $\neg \alpha \vdash \alpha$, $\beta \& \neg \beta \models \alpha$. $\neg \alpha \vdash \alpha$, $\alpha \vdash \alpha$. Значит $\vdash \alpha$

- Г п.м.з.ф.
- перестроим Γ в Γ^{\triangle} п.н.м. **б.** з. ф.
- ullet по теореме о существование модели: M^{\triangle} модель для F^{\triangle}
- ullet покажем, что M^{\triangle} модель для $\Gamma-M$

 $\Gamma_0 = \Gamma$, где все формулы — в предварительной нормальной форме

Определение. ПНФ — формула, где $\forall \exists \forall \dots (\tau), \, \tau$ — формула без кванторов

Теорема 7.1.5. Если φ — формула, то существует ψ — в п.ф., то $\varphi \to \psi$ и $\psi \to \varphi$

Доказательство. $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_1 \subseteq \cdots \subseteq \Gamma^*$. $\Gamma^* = \bigcup_i \Gamma_i$

Переход: $\Gamma_i \to \Gamma_{i+1}$

Рассмторим: $\varphi_i \in \Gamma_i$

Построим семейство ф.с. d_i^j — новые перменные

- 1. φ_j без кванторов не трогаем
- 2. $\varphi_j \equiv \forall x.\psi$ добавим все формулы вида $\psi[x:=\Theta]$, где Θ терм, состоящий из $f\colon d_0^e, d_1^{e'}\dots, d_{i-1}^{e'\cdots'}$
- 3. $\varphi_j \equiv \exists x. \psi$ добавим $\psi[x := d_i^j]$

 $\Gamma_{i+1} = \Gamma_i \cup \{$ все добавленные формулы $\}$ — счетное количество

Теорема 7.1.6. Если Γ_i — непротиворечиво, то Γ_{i+1} — непротиворечиво

Теорема 7.1.7. $\Gamma *$ — непротиворечиво

Следствие 7.1.7.2. $\Gamma^{\triangle} = \Gamma *$ без формул с \forall, \exists

9 апреля

8.1 Исчесление предиктов

Теорема 8.1.1 (Геделя о полноте ИП). У любого н.м.з.ф. (непротиворечивого множества замкнутых формул) ИП существует модель

Теорема 8.1.2. Если формула ϕ — замкнутая формула ИП <u>Тогда</u> найдется ψ — замкнутая формула ИП, что $\vdash \varphi \to \psi$ и $\psi \to \varphi$. ψ — с поверхностными кванторами

Примечание. Рассмотрим Γ — н.м.з.ф. — рассмотрим Γ' — полное расширение $\Gamma.$ Пусть φ — фомула из Γ' , тогда найдется $\psi in\Gamma'$, что ψ — с поверхностными кванторами и $\vdash \varphi \to \psi, \vdash \psi \to \varphi$

Доказательство теоремы Геделя о полноте ИП. Рассмотрим множество констант (нуль местных функциональных символов) — d_j^i . Построим $\{\Gamma_j\}$:

$$\Gamma' = \Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \cdots \subseteq \Gamma_i \subseteq \cdots$$

Переход $\Gamma_j\Rightarrow\Gamma_{j+1}$: рассм
торим все формулы из $\Gamma_j\colon\{\gamma_1,\gamma_2,\gamma_3,\dots\}$

- 1. γ_i формула без кванторов оставим на месте
- 2. $\gamma_i \equiv \forall x.\varphi$ добваим к Γ_{j+1} все формулы вида $\varphi[x:=\Theta]$, где Θ составлен из всех ф.с. ИП и констант вида d_1^k,\dots,d_j^k
- 3. $\gamma_i \equiv \exists x. \varphi$ добавим одну формулу $\varphi[x := d^i_{j+1}]$

Утв. 1 $Gamma_{i+1}$ непр., если Γ_i — непр. Докажем от противного. $\Gamma_{i+1} \vdash \beta \& \neg \beta$

$$\Gamma_i, \gamma_1, \ldots, \gamma_n \vdash \beta \& \neg \beta \quad \gamma_i \in \Gamma_{i+1} \setminus \Gamma_i$$

$$\Gamma_i \vdash \gamma_1 \rightarrow \gamma_2 \rightarrow \cdots \rightarrow \gamma_n \rightarrow \beta \& \neg \beta$$

 γ_i — замкнутое \implies т. о дедукции. Докажем что $\Gamma_i \vdash \beta \& \neg \beta$ по индукции.

$$\Gamma_i \vdash \gamma \to \varepsilon$$

Покажем $\Gamma_i \vdash \varepsilon$, т.е. γ получен из $\forall x.\xi$ или $\forall x.\xi \in \Gamma_i$

 $(\forall x.\xi)$ Заметим, что $\Gamma_i \vdash \forall x.\xi$

$$\begin{array}{ll} \vdots & \text{по условию} \\ \gamma \to \varepsilon & \text{по построению } \Gamma_{i+1} \\ \forall x.\xi \to (\underbrace{\xi[x:=\Theta]}_{\gamma}) & (\text{акс. } 11) \\ \\ (\forall x.\xi) \to \varepsilon & \begin{vmatrix} \eta \to \xi \\ \xi \to \kappa \end{vmatrix} \Longrightarrow \eta \to \kappa \\ \forall x.\xi \\ \varepsilon & (\text{M.P.}) \\ \end{array}$$

 $(\exists x.\xi)$

$$\Gamma_i \vdash \overbrace{\xi[x := d_{i+1}^k]}^{\gamma} \to \varepsilon$$

Заметим, что d_{i+1}^k не входит в ε . Заменим все d_{i+1}^k в доказательстве на y — новая перменная

$$\Gamma_i \vdash \xi[x := y] \to \varepsilon$$
$$\exists y. \xi[x := y] \to \varepsilon$$
$$(\exists x. \xi x) \to (\exists t. \xi[x := y])$$
$$(\exists x. \xi) \to \varepsilon$$
$$\exists x. \xi$$

Исправить

Утв. 2 Γ^* — непр. $\Gamma_0 \vdash \gamma_1 \to \cdots \to \gamma_n \to \beta \& \neg \beta$

$$\Gamma_{\max_i(0..n)} \vdash \beta \& \neg \beta$$

Значит Γ_{\max} — противоречиво, $\Gamma^{\triangle}=\Gamma^*$ без кванторов Значит у Γ^{\triangle} есть модель M

Утв. 3 $\gamma \in \Gamma'$, то $[\![\gamma]\!]_M = \mathcal{U}$

Индукция по количеству кванторов в γ . Рассмторим:

1. $\gamma \equiv \forall x.\delta$ $[\![\forall x.\delta]\!]$, если $[\![\delta]\!]^{x:=\kappa} = \mathbf{H}, \kappa \in D$. Рассмотри $[\![\delta]\!]^{x:=\kappa}$, $k \in D$. κ содержит константы и ф-с, κ осмысленно Γ_p . δ добавлена на шаге q. Рассмотрим шаг $\Gamma_{\max(p,q)} \ \forall x.\delta : \Gamma_{\max(p,q)+1}$ добавлена $\delta[x:=\kappa]$. $\delta[x:=\kappa]$ — меньше на 1 квантор, $[\![\delta[x:=k]\!]] = \mathbf{H}$

31

2. $\gamma \equiv \exists x.\delta$ — аналогично

Теорема 8.1.3. ИП неразрешимо

Определение. Язык — множество слов. Язык $\mathcal L$ разрешим, если существует A — алгоритм, что по слову w:

A(w) — останавливается в '1', если $w \in \mathcal{L}$ и '0', если $w \notin \mathcal{L}$

Примечание. Проблема останова: не существует алгоритма, который по программе для машина Тьюринга ответит, остановится она или нет.

Пусть \mathcal{L}' — язык всех останов программы для машины Тьюринга. \mathcal{L}' неразрешим

 Π римечание. [a, b, c, d, e] = cons(a, cons(b, cons(c, cons(d, cons(e, nil)))))

A — алфавит ленты

$$\left. egin{aligned} S_x, & x \in A \\ e-\mathrm{nil} \end{array}
ight\} = 0$$
-местные функциональные символы

C(a,b)-2-местные функциональные символы

 $b_s, s \in \mathcal{S}$ — множество всех состояний, b_0 — начальное состояние.

$$C(s_c, C(s_b, C(s_a, e)))$$
 $C(s_d, C(s_e, e))$

Заведем предикат, которых отвечает было ли состояние в процессе. Начальное состояние — машина Тьюринга запущена на строке α :

$$R(\alpha, e, b_0)$$

Переход:

$$(s_x, b_s) \to (s_y, b_t, \leftrightarrow)$$

 $(s_x, b_s) \to (s_y, b_t, \leftarrow)$

Если пермещение законно, то можем построить для каждого такие правила:

$$\forall z. \forall w. R(C(s_x, z), w, b_s) \rightarrow R(C(s_y, z), w, b_t)$$

$$\dots R(z, C(s_u, w), b_t)$$

Сделаем коньюнкцию вех эти правил: $R(\dots)\&R(\dots)\&\dots\&R(\dots)\to\exists z.\exists.R(z,w,b_\triangle)$ Исправить

Пример.

1. $R(C(s_k, e), e, b_0)$ — доказуемо(мы так сказали) Двинем голвку вправо:

$$\forall x. \forall y. R(C(s_k, x), y, b_0) \rightarrow R(x, C(s_k, y), b_1)$$

16 апреля

9.1 Теория первого порядка

Определение. Теория I порядка — Исчесление предикатов + нелогические функции + предикатные символы + нелогические (математические) аксиомы.

Определение. Будем говорить, что N соответсвует аксиоматике Пеано если:

- \bullet задан (′) : $N \to N$ инъективная функция (для разных элементов, разные значения)
- задан $0 \in N$: нет $a \in N$, что a' = 0
- если P(x) некоторое утверждение, зависящее от $x \in N$, такое, что P(0) и всегда, когда P(x), также и P(x'). Тогда P(x)

Свойство 1. 0 единственный

Доказательство. P(x) = x = 0 либо существует t: t' = x

- P(0): 0 = 0
- $P(x) \to P(x')$. Заметим, что x' не 'ноль'

P(x) выполнено при всех $x \in N$

Определение.

$$a+b = \begin{cases} a & b=0\\ (a+c)' & b=c' \end{cases}$$

Можем определить это опираясь на доказательтво

Определение. • 1 = 0'

•
$$2 = 0''$$

•
$$3 = 0'''$$

•
$$4 = 0''''$$

• ...

Задача 1. 2+2=4

Решение.

$$2 + 2 = 0'' + 0'' = (0'' + 0')' = ((0'' + 0)')' = ((0'')')' = 0'''' = 4$$

Определение.

$$a \cdot b = \begin{cases} 0 & b = 0 \\ (a \cdot c) + a & b = c' \end{cases}$$

Определение.

$$a^b = \begin{cases} 1 & b = 0\\ (a^c) \cdot a & b = c' \end{cases}$$

Свойство 1. a + 0 = 0 + a

Доказательство.
$$P(a) = (a + 0 = 0 + a)$$

База
$$P(0): 0+0=0+0$$

Переход $P(x) \to P(x')$

$$x + 0 = 0 + x$$
 $x' + 0 \stackrel{?}{=} 0 + x'$
 $0 + x' = (0 + x)'$ определение +
 $(0 + x)' = (x + 0)'$ предположение
 $(x + 0)' = x'$ определение +
 $x' = x' + 0$ определение +

Свойство 2. a + b' = a' + b

Доказательство.

$$b = 0$$
 $a + 0' = a' + 0$

$$a' = (a+0)' = a+0' = a'+0 = a'$$

$$b = c'$$
 Есть: $a + c' = a' + c$. Покажем: $a + c'' = a' + c'$

$$(a+c')' = (a'+c)' = a'+c$$

Свойство 3. a + b = b + a

Доказательство. Ваза b=0 — свойство Переход $a+c''=c^{''}+a$, если a+c'=c'+a

$$a + c'' = (a + c')' = (c' + a)' = c' + a' = c'' + a$$

9.1.1 Формальная арифметика

Определение. Исчесление предикатов:

- Функциональные символы:
 - -0-0-местный
 - (') 1-местный
 - $-(\cdot)-2$ -местный
 - -(+)-2-местный
- \bullet (=) 2-местный предикатный символ

Аксимомы:

- 1. $a = b \rightarrow a' = b'$
- 2. $a = b \rightarrow a = c \rightarrow b = c$
- 3. $a' = b' \to a = b$
- 4. $\neg a' = 0$
- 5. a + b' = (a + b)'
- 6. a + 0 = a
- 7. $a \cdot 0 = 0$
- 8. $a \cdot b' = a \cdot b + a$
- 9. Схема аксиом индукции:

$$(\psi[x := 0])\&(\forall x.\psi \to (\psi[x := x'])) \to \psi$$

x входит свободно в ψ

Свойство 1.

$$((a+0=a) \to (a+0=a) \to (a=a))$$

Доказательство.

$$\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c$$

$$(\forall a. \forall b. \forall c. a = b \rightarrow a = c \rightarrow b = c) \rightarrow \forall b. \forall c. (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)$$

$$\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c$$

$$(\forall b. \forall c. a + 0 = b \rightarrow a + 0 = c \rightarrow b = c) \rightarrow \forall c. (a + 0 = a \rightarrow a + 0 = c \rightarrow a = c)$$

$$\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c$$

$$(\forall c. a + 0 = a \rightarrow a + 0 = c \rightarrow a = c) \rightarrow a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a = a$$

$$a + 0 = a \rightarrow a = a$$

$$bb. \forall c. a = b \rightarrow a = c \rightarrow b = c$$

$$(0 = 0 \rightarrow 0 = 0 \rightarrow 0 = 0)$$

$$(\forall b. \forall c. a = b \rightarrow a = c \text{ tob } = c) \rightarrow (0 = 0 \rightarrow 0 = 0) \rightarrow \phi$$

Исправить

Определение. $\exists ! x. \varphi(x) \equiv (\exists x. \varphi(x)) \& \forall p. \forall q. \varphi(p) \& \varphi(q) \to p = q$ Можно также записать $\exists ! x. \neg \exists s. s' = x$ или $(\forall q. (\exists x. x' = q) \lor q = 0)$

Определение. $a \le b$ — сокращение для $\exists n.a + n = b$

Определение.

$$0^{(n)} = \begin{cases} 0 & n = 0 \\ 0 & n > 0 \end{cases}$$

Определение. $W\subseteq \mathbb{N}_0^n$. W — выразимое в формальной арифметике. отношение, если существует формула ω со свободными переменными x_1,\dots,x_n . Пусть $k_1,\dots,k_n\in\mathbb{N}$

•
$$(k_1,\ldots,k_n)\in W$$
, тогда $\vdash \omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$

•
$$(k_1,\ldots,k_n)\not\in W$$
, тогда $\vdash \neg\omega[x_1:=\overline{k_1},\ldots,x_n:=\overline{k_n}]$
$$\omega[x_1:=\Theta_1,\ldots,x_n:=\Theta_n]\equiv\omega(\Theta_1,\ldots,\Theta_n)$$

Определение. $f:\mathbb{N}^n\to\mathbb{N}$ — представим в формальной арифметике, если найдется φ — фомула с n+1 свободными переменными $k_1,\dots,k_{n+1}\in\mathbb{N}$

•
$$f(k_1,\ldots,k_n)=k_{n+1}$$
, to $\vdash \varphi(\overline{k_1},\ldots,\overline{k_{n+1}})$

•
$$\vdash \exists ! x. \varphi(\overline{k_1}, \dots, \overline{k_n}, x)$$