## Engenharia de Software I



Bacharelado em Ciência da Computação 2025

Prof. Dr. Rogério Eduardo Garcia (rogerio.garcia@unesp.br)

1

## Bibliografia Básica



- PRESSMAN, R. S. Engenharia de Software, 6<sup>a</sup> Edição, McGraw-Hill, Boston, 2001.
- SOMMERVILLE, I. Engenharia de Software, 6ª Edição, Addison-Wesley, São Paulo, 2003.
- PETERS, J. F.; PEDRYCZ, W. Engenharia de Software: teoria e prática, Editora Campus, Rio de Janeiro, 2001.
- PFLEEGER, S. L. Engenharia de Software, Teoria e Prática. Pearson Brasil, 2004.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

2

### Metodologia



- Aulas expositivas teórico-práticas;
- Exercícios práticos;
- Projetos individuais e/ou em grupo;
- Seminários e trabalhos, individuais e em grupo, sobre tópicos abordados e relacionados.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

3

3

## **Avaliação**



- As notas de todas as atividades entre 0 (zero) e 10,0 (dez) serão atribuídas individualmente, mesmo em atividades em grupo;
- A média final será calculada da seguinte maneira:
  - MA = (NP1 + 2\*NP2)/3
  - Mt = (NT1 + NT2 +...+ NTn) / n
  - MT = (7 \* NPJ + 3 \* Mt)
  - Média Final:
    - MF = (MA + MT)/2 SE E SOMENTE SE (MA>=5 E MT>=5)
    - Caso contrário (MP<5 OU MT<5) MF = Menor Nota
    - Sendo:
      - MF = Média Final.
      - MA = Média de Provas
      - MT = Média de Trabalhos e Projeto
      - Mt = Média de Trabalhos

Estude como se você fosse viver para sempre. Viva sabendo que não viverás para sempre.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

4

## Tópicos da Disciplina



- Introdução: Histórico do desenvolvimento da área de Engenharia de Software. Conceitos básicos e terminologia.
- Objetivos da Engenharia de Software: Finalidade e aplicabilidade dos métodos e técnicas da Engenharia de Software, fornecendo uma visão ampla e abrangente da área. Qualidade de Software (ISO 9126)
- Processo de software: Definição de processo de software. Comparação entre modelos de ciclo de vida. Descrição das atividades no desenvolvimento de software.
- Análise de Requisitos de software: Técnicas de especificação de requisitos. Tipos de requisitos. Modelo de sistemas.
- Projeto de software: Arquitetura de software. Modelos para arquitetura de sistemas. Sistema de tempo real. Interface com o usuário.
- Verificação e validação de software: Distinção entre verificação e validação. Planejamento. Testes de software. Sistemas críticos.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

.

5

#### COVID-19



- Protocolo (diretrizes)
  - www.fct.unesp.br
- Inquérito de Sintomas
  - www.fct.unesp.br



https://www.ecaresentinela.com.br/

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

6



7

# Software e Engenharia de Software



SOS

- A importância do Software
- Software
- Aplicações de Software
- Mitos de Software
- Processo de Software
- Modelos de Processo de Desenvolvimento de Software

17/02/2025 Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garc



# SOFTWARE O que é isso?

17/02/2025

Ciéritaiada:Computação - Engenhaisial discionistrate Profitogérito Eduardo Gairaia

9

9

#### **SOFTWARE**



 "Software é um lugar onde sonhos são plantados e pesadelos são colhidos, um pântano abstrato e místico onde demônios terríveis competem com mágicas panaceias, um mundo de lobisomem e balas de prata"

**Brad J. Cox** 

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

10

#### **SOFTWARE**



- INSTRUÇÕES que quando executadas produzem a função e o desempenho desejados
- ESTRUTURAS DE DADOS que possibilitam que os programas manipulem adequadamente a informação
- DOCUMENTOS que descrevem a operação e o uso dos programas

17/02/2025

Ci@ittiei.de:@omputação - Engehhaisield@Softwate ProRd@érito Editatid@Gaisie

11

11

#### Características do Software



- Desenvolvido ou projetado por engenharia, não manufaturado no sentido clássico
- Não se desgasta, mas se deteriora

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

12

#### Características do Software



- Desenvolvido ou projetado por engenharia, não manufaturado no sentido clássico
- Não se desgasta, mas se deteriora



17/02/2025 Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

13

13

#### Características do Software



14

- Desenvolvido ou projetado por engenharia, não manufaturado no sentido clássico
- Não se desgasta, mas se deteriora



17/02/2025 Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

#### Características do Software



- Desenvolvido ou projetado por engenharia, não manufaturado no sentido clássico
- Não se desgasta, mas se deteriora
- A maioria é feita sob medida em vez de ser montada a partir de componentes existentes

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

15

15

## Aplicações do Software



- Básico
- De Tempo Real
- Comercial
- Científico e de Engenharia
- Embutido
- De Computador Pessoal
- De Inteligência Artificial

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

16

## Evolução do Software



(1950 - 1965)

- O hardware sofreu contínuas mudanças
- O software era uma arte "secundária" para a qual havia poucos métodos sistemáticos
- O hardware era de propósito geral
- O software era específico para cada aplicação
- Não havia documentação

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

17

17

## Evolução do Software



(1965 - 1975)

- Multiprogramação e sistemas multiusuários
- Técnicas interativas
- Sistemas de tempo real
- 1ª geração de SGBD's
- Produto de software software houses
- Bibliotecas de Software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

18

#### Evolução do Software



(1965 - 1975)

- Cresce o número de sistemas baseado em computador
- Manutenção quase impossível

.... CRISE DE SOFTWARE

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

19

19



## Evolução do Software



#### (1975 - hoje)

- Sistemas distribuídos
- Redes locais e globais
- Uso generalizado de microprocessadores produtos inteligentes
- Hardware de baixo custo
- Impacto de consumo

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

21

21

## Crise de Software - problemas



- 1) As estimativas de prazo e de custo frequentemente são imprecisas
  - "Não dedicamos tempo para coletar dados sobre o processo de desenvolvimento de software"
  - "Sem nenhuma indicação sólida de produtividade, não podemos avaliar com precisão a eficácia de novas ferramentas, métodos ou padrões"

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garci

22

#### **Crise de Software - problemas**



- 2) Insatisfação do cliente com o sistema concluído
  - "Os projetos de desenvolvimento de software normalmente são efetuados apenas com um vago indício das exigências do cliente"

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

23

23

## Crise de Software - problemas



- 3) A qualidade de software às vezes é menos que adequada
  - Só recentemente começam a surgir conceitos quantitativos sólidos de garantia de qualidade de software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garci

24

#### **Crise de Software - problemas**



- 4) O software existente é muito difícil de manter
  - A tarefa de manutenção devora o orçamento destinado ao software
  - A facilidade de manutenção não foi enfatizada como um critério importante

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

25

25

# Causas dos problemas associados à crise de software



- 1) PRÓPRIO CARÁTER DO SOFTWARE
  - O software é um elemento de sistema lógico e não físico. Consequentemente o sucesso é medido pela qualidade de uma única entidade e não pela qualidade de muitas entidades manufaturadas

O software não se desgasta, mas se deteriora

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

26

# Causas dos problemas associados à crise de software



- 2) FALHAS DAS PESSOAS RESPONSÁVEIS PELO DESENVOLVIMENTO DE SOFTWARE
  - Gerentes sem nenhum background em software
  - Profissionais da área de software têm pouco treinamento formal em novas técnicas para o desenvolvimento de software
  - Resistência a mudanças

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

27

27

# Causas dos problemas associados à crise de software



- 3) MITOS DO SOFTWARE
  - Propagaram desinformação e confusão
    - Administrativos
    - Cliente
    - Profissional

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

28

# Mitos do Software ADMINISTRATIVOS:



#### Mito 1:

- Já temos um manual repleto de padrões e procedimentos para a construção de software.
- Isso n\u00e3o oferecer\u00e1 ao meu pessoal tudo o que eles precisam saber?

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

29

29



# Mitos do Software ADMINISTRATIVOS:



#### Mito 2:

 Meu pessoal tem ferramentas de desenvolvimento de software de última geração.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

31

31



# Mitos do Software ADMINISTRATIVOS:



#### Mito 3:

 Se nós estamos atrasados nos prazos, podemos adicionar mais programadores e tirar o atraso.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

33

33



# Mitos do Software CLIENTE:



#### Mito 1:

 Uma declaração geral dos objetivos é suficiente para se começar a escrever programas - podemos preencher os detalhes mais tarde.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

35

35



## Mitos do Software



#### **CLIENTE:**

#### Mito 2:

 Os requisitos de projeto modificam-se continuamente, mas as mudanças podem ser facilmente acomodadas, porque o software é flexível.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

37

37



### **Mitos do Software**



#### MAGNITUDE DAS MUDANÇAS

| FASES           | CUSTO DE MANUTENÇÃO |
|-----------------|---------------------|
| DEFINIÇÃO       | 1x                  |
| DESENVOLVIMENTO | 1.5 a 6x            |
| MANUTENÇÃO      | 60 a 100x           |

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

39

39

## Mitos do Software





#### Mito 1:

 Assim que escrevermos o programa e o colocarmos em funcionamento nosso trabalho estará completo.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

40



41

## Mitos do Software





#### Mito 2:

 Enquanto não tiver o programa "funcionando", eu não terei realmente nenhuma maneira de avaliar sua qualidade.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

42



43

## Evolução do Software



- (1965 1975)
- Cresce o número de sistemas baseado em computador
- Manutenção quase impossível

#### CRISE DE SOFTWARE

Refere-se a um conjunto de problemas encontrados no desenvolvimento de software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

44

## Resposta à Crise de Software



# Engenharia de Software

 A aplicação de uma abordagem sistemática, disciplinada e possível de ser medida para o desenvolvimento, operação e manutenção do software (IEEE)

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

45

45

## Resposta à Crise de Software



#### PROCESSO DE SOFTWARE



 A aplicação de uma abordagem sistemática, disciplinada e possível de ser medida para o desenvolvimento, operação e manutenção do software (IEEE)

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

46

## Engenharia de Software



 Pode ser vista como uma abordagem de desenvolvimento de software elaborada com disciplina e métodos bem definidos.



..... "a construção por múltiplas pessoas de um software de múltiplas versões"

[Parnas 1987]

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

47

47

#### **Qualidade**



# Software &

## Processo de Software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

48



49



#### O Processo de Software



 Abrange um conjunto de três elementos fundamentais: Métodos, Ferramentas e Procedimentos para projetar, construir e manter grandes sistemas de software de forma profissional

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

51

51

## O Processo de Software



- MÉTODOS: proporcionam os detalhes de como fazer para construir o software
  - Planejamento e estimativa de projeto
  - Análise de requisitos de software e de sistemas
  - Projeto da estrutura de dados
  - Algoritmo de processamento
  - Codificação
  - Teste
  - Manutenção

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

52

#### O Processo de Software



- FERRAMENTAS: d\u00e3o suporte automatizado aos m\u00e9todos
  - Existem atualmente ferramentas para sustentar cada um dos métodos
  - Quando as ferramentas são integradas, é estabelecido um sistema de suporte ao desenvolvimento de software chamado CASE – Computer Aided Software Engineering

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

53

53

#### O Processo de Software



- PROCEDIMENTOS: constituem o elo de ligação entre os métodos e ferramentas
  - Sequência em que os métodos devem ser aplicados
  - Produtos que se exige que sejam entregues
  - Controles que ajudam assegurar a qualidade e coordenar as alterações
  - Marcos de referência que possibilitam administrar o progresso do software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

54



55

# Processo de Software com Qualidade



- A Qualidade do Processo de Software está relacionada à extensão na qual um processo de software específico é eficiente e é explicitamente definido, gerenciado, medido e controlado.
- A Qualidade de Processo de Software também implica em um potencial para crescimento na capacidade do processo de software e a consistência com a qual ele é aplicado em projetos por toda a organização.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

56

# Processo de Software com Qualidade (SOMMERVILLE)



- Inteligibilidade
  - O processo é definido e inteligível
- Visibilidade
  - O progresso do processo é visível externamente
- Suportabilidade
  - O processo pode ser apoiado por ferramentas CASE

01/02/2225

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

57

57

# Processo de Software com Qualidade (SOMMERVILLE)



- Aceitabilidade
  - O processo é aceito por todos envolvidos nele
- Confiabilidade
  - Os erros do processo s\u00e3o descobertos antes que resultem em erros no produto
- Robustez
  - O processo pode continuar a despeito de problemas inesperados

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

58

# Processo de Software com Qualidade (SOMMERVILLE)



- Manutenibilidade
  - O processo pode evoluir para atender alterações de necessidades organizacionais
- Velocidade
  - Quão rápido o sistema pode ser produzido

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

59

59



# Fases Genéricas dos Modelos de Processo de ENGENHARIA



- Especificação estabelecer os requisitos e restrições do sistema
- Projeto produzir um modelo documentado do sistema
- Implementação construir o sistema
- <u>Teste</u> verificar se o sistema atende às especificações requeridas
- <u>Instalação</u> liberar o sistema para o cliente e garantir que ele seja operacional
- <u>Manutenção</u> eliminar defeitos e evoluir o sistema conforme demanda

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

61

61

# Fases Genéricas dos Modelos de Processo de SOFTWARE



- Independentemente da natureza do projeto e aplicação os modelos de processo de software possuem:
  - Fase de definição
  - Fase de desenvolvimento
  - Fase de manutenção
  - Atividades de apoio

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

62

# Fase de Definição do Processo de Software



Focaliza "o que" será desenvolvido

- Que informação vai ser processada
- Que função e desempenho são desejados
- Que comportamento pode ser esperado do sistema
- Que interfaces v\u00e3o ser estabelecidas
- Que restrições de projeto existem
- Que critérios de validação são exigidos para definir um sistema bem sucedido
- Que tarefas serão realizadas

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

63

63

# Fase de Definição do Processo de Software



Focaliza "o que" será desenvolvido

- Três tarefas principais ocorrem de alguma forma:
  - engenharia de sistemas
  - planejamento do projeto de software
    - análise de requisitos

um sistema pem sucedido

Que tarefas serão realizadas

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

54

# Fase de Desenvolvimento do Processo de Software



Focaliza "como" o software será desenvolvido

- Como os dados vão ser estruturados
- Como a função vai ser implementada como uma arquitetura de software
- Como os detalhes procedimentais vão ser implementados
- Como as interfaces v\u00e3o ser caracterizadas
- Como o projeto será traduzido em uma linguagem de programação
- Como os testes serão efetuados

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

65

65

# Fase de Desenvolvimento do Processo de Software



Focaliza "como" o software será desenvolvido

Três tarefas técnicas específicas deverão ocorrer sempre:

na

er

projeto de software

geração de código

Inspeção e teste de software

- Como o projeto será traduzido em uma linguagem de programação
- Como os testes serão efetuados

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

66

# Fase de Manutenção do Processo de Software



Focaliza as "*mudanças*" que ocorrerão depois que o software for liberado para uso operacional

 A fase de manutenção reaplica os passos das fases de definição e desenvolvimento, mas faz isso no contexto de um software existente.

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

67

67

# Fase de Manutenção do Processo de Software



Focaliza as "*mudanças*" que ocorrerão depois que o software for liberado para uso operacional

- As mudanças estão associadas com:
  - Correção de erros/defeitos
  - Adaptações exigidas conforme o ambiente do software evolui
  - Mudanças devido a melhoramentos ocorridos por alterações nos requisitos dos clientes

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garci

68

# Atividades de Apoio ao Processo de Software



- As três fases genéricas do processo de software são complementadas por uma série de atividades de apoio
- As atividades de apoio s\u00e3o aplicadas durante toda a engenharia do software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

69

69

# Atividades de Apoio ao Processo de Software



 As três fases genéricas do processo de software são complementadas por uma série de atividades de apoio

Atividades típicas nessa categoria são:

- Controle e Acompanhamento do Projeto de Software
- Revisões Técnicas Formais
- Garantia de Qualidade de Software
- Gerenciamento de Configuração de Software
- Preparação e Produção de Documentos
- Gerenciamento de Reusabilidade
- Medidas

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

70

## Modelos de Processo de Desenvolvimento de Software



- Existem vários modelos de processo de desenvolvimento de software (ou paradigmas de engenharia de software)
- Cada um representa uma tentativa de colocar ordem em uma atividade inerentemente caótica
- Pode-se citar os seguintes modelos de processo de desenvolvimento de software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

71

71

### Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

72

# Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

73

73

#### O Modelo Cascata



- Modelo mais antigo e o mais amplamente usado da engenharia de software
- Modelado em função do ciclo da engenharia convencional
- Requer uma abordagem sistemática, sequencial ao desenvolvimento de software
- O resultado de uma fase se constitui na entrada da outra

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

74



75





77





79





81

# Problemas com o Modelo Cascata



- Projetos reais raramente seguem o fluxo "sequencial" que o modelo propõe
- Logo no início é difícil estabelecer explicitamente todos os requisitos. No começo dos projetos sempre existe uma incerteza natural
- O cliente deve ter paciência. Uma versão executável do software só fica disponível em uma etapa avançada do desenvolvimento

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

82

# Problemas com o Modelo Cascata



Proietos reais raramente seguem o fluxo

Fembora o Modelo Cascata tenha fragilidades, ele é significativamente melhor do que uma abordagem casual ao desenvolvimento de software

executável do software só fica disponível em uma etapa avançada do desenvolvimento

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

83

83

#### O Modelo Cascata



- O modelo Cascata trouxe contribuições importantes para o processo de desenvolvimento de software:
  - Imposição de disciplina, planejamento e gerenciamento
  - A implementação do produto deve ser postergada até que os objetivos tenham sido completamente entendidos

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

84

### Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
- Técnicas de Quarta Geração

17/02/2025

85

85

### O Modelo de Prototipação



- O objetivo é entender os requisitos do usuário e, assim, obter uma melhor definição dos requisitos do sistema
- Possibilita que o desenvolvedor crie um modelo (protótipo) do software que deve ser construído
- Apropriado para quando o cliente não definiu detalhadamente os requisitos

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

86



87





89





91





93



### Problemas com a Prototipação



- Cliente não sabe que o software que ele vê não considerou, durante o desenvolvimento, a qualidade global e a manutenibilidade a longo prazo
- Desenvolvedor frequentemente faz uma implementação comprometida (utilizando o que está disponível) com o objetivo de produzir rapidamente um protótipo

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

95

95

# Comentários sobre o Modelo de Prototipação



- Ainda que possam ocorrer problemas, a prototipação é um ciclo de vida eficiente
- A chave é definir-se as regras do jogo logo no começo
- O cliente e o desenvolvedor devem ambos concordar que o protótipo seja construído para servir como um mecanismo a fim de definir os requisitos

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

96

# Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
  - O Modelo de Desenvolvimento Concorrente
- Modelos de Métodos Formais
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

97

97

#### O Modelo RAD



- RAD (Rapid Application Development) é um modelo sequencial linear que enfatiza um ciclo de desenvolvimento extremamente curto
- O desenvolvimento rápido é obtido usando uma abordagem de construção baseada em componentes

01/02/22/25

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garci

98

#### O Modelo RAD



- Os requisitos devem ser bem entendidos e o alcance do projeto restrito
- O modelo RAD é usado principalmente para aplicações de sistema de informação
- Cada função principal pode ser direcionada para uma equipe RAD separada e então integrada para formar o todo

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

99

99



#### O Modelo RAD



#### Desvantagens:

- Exige recursos humanos suficientes para todas as equipes
- Exige que desenvolvedores e clientes estejam comprometidos com as atividades de "fogorápido" a fim de terminar o projeto num prazo curto

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

101

101

#### O Modelo RAD



- Nem todos os tipos de aplicação são apropriadas para o RAD:
  - Deve ser possível a modularização efetiva da aplicação
  - Se alto desempenho é uma característica e o desempenho é obtido sintonizando as interfaces dos componentes do sistema, a abordagem RAD pode não funcionar

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

102

### Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
  - O Modelo de Desenvolvimento Concorrente
- Modelos de Métodos Formais
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

103

103

### Modelos Evolutivos de Processo



 Existem situações em que a engenharia de software necessita de um modelo de processo que possa acomodar um produto que evolui com o tempo

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

104

# Modelos Evolutivos de Processo



- Quando os requisitos de produto e de negócio mudam conforme o desenvolvimento procede
- Quando uma data de entrega apertada (mercado) impossível a conclusão de um produto completo
- Quando um conjunto de requisitos importantes é bem conhecido, porém os detalhes ainda devem ser definidos

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

105

105

# Modelos Evolutivos de Processo



- Modelos evolutivos são iterativos
- Possibilitam o desenvolvimento de <u>versões</u> cada vez mais completas do software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garci

106

### Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
  - O Modelo de Desenvolvimento Concorrente
- Modelos de Métodos Formais
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

107

107

#### O Modelo Incremental



- O modelo incremental combina elementos do modelo cascata (aplicado repetidamente) com a filosofia iterativa da prototipação
- O objetivo é trabalhar junto do usuário para descobrir seus requisitos, de maneira incremental, até que o produto final seja obtido

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

108



109

#### O Modelo Incremental



- A versão inicial é frequentemente o núcleo do produto (a parte mais importante)
  - A evolução acontece quando novas características são adicionadas à medida que são sugeridas pelo usuário
- Este modelo é importante quando é difícil estabelecer a priori uma especificação detalhada dos requisitos

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

110

#### O Modelo Incremental



- O modelo incremental é mais apropriado para sistemas pequenos
- As novas versões podem ser planejadas de modo que os riscos técnicos possam ser administrados (Ex. disponibilidade de determinado hardware)

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

111

111

# Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

112

### O Modelo Espiral



- O modelo espiral <u>acopla</u> a natureza <u>iterativa</u> da <u>prototipação</u> com os aspectos controlados e <u>sistemáticos</u> do modelo <u>cascata</u>
- O modelo espiral é dividido em uma série de <u>atividades de trabalho</u> ou <u>regiões de tarefa</u>
- Existem tipicamente de 3 a 6 regiões de tarefa

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

113

113





115





117





119





121





123





125

### O Modelo Espiral



- Engloba as melhores características do ciclo de vida Clássico e da Prototipação, adicionando um novo elemento: a Análise de Risco
- Segue a abordagem de passos sistemáticos do Ciclo de Vida Clássico incorporando-os numa estrutura iterativa que reflete mais realisticamente o mundo real
- Usa a Prototipação, em qualquer etapa da evolução do produto, como mecanismo de redução de riscos

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garci

126

# Comentários sobre o Modelo Espiral



- É, atualmente, a abordagem mais realística para o desenvolvimento de software em grande escala
- Usa uma abordagem que capacita o desenvolvedor e o cliente a entender e reagir aos riscos em cada etapa evolutiva
- Pode ser difícil convencer os clientes que uma abordagem "evolutiva" é controlável

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

127

127

# Comentários sobre o Modelo Espiral



- Exige considerável experiência na determinação de riscos e depende dessa experiência para ter sucesso
- O modelo é relativamente novo e não tem sido amplamente usado. Demorará muitos anos até que a eficácia desse modelo possa ser determinada com certeza absoluta

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

128



129

# Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garci

130

# O Modelo de Montagem de Componentes



- Utiliza tecnologias orientadas a objeto
- Quando projetadas e implementadas apropriadamente as classes orientadas a objeto são reutilizáveis em diferentes aplicações e arquiteturas de sistema
- O modelo de montagem de componentes incorpora muitas das características do modelo espiral

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

131

131





133

# O Modelo de Montagem de Componentes



134

- O modelo de montagem de componentes conduz ao reúso do software
- A reusabilidade fornece uma série de benefícios:
  - Redução de 70% no tempo de desenvolvimento
  - Redução de 84% no custo do projeto
  - Índice de produtividade de 26.2 (normal da indústria é de 16.9)
- Esses resultados dependem da robustez da biblioteca de componentes

17/02/2025 Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

# Modelos de Processo de Desenvolvimento de Software



- O Modelo Sequencial Linear
  - Também chamado Modelo Cascata
- O Modelo de Prototipação
- O Modelo RAD (Rapid Application Development)
- Modelos Evolutivos de Processo de Software
  - O Modelo Incremental
  - O Modelo Espiral
  - O Modelo de Montagem de Componentes
- Técnicas de Quarta Geração

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

135

135

# Técnicas de 4ª Geração



- Concentra-se na capacidade de se especificar o software a uma máquina em um nível que esteja próximo à linguagem natural
- Engloba um conjunto de ferramentas de software que possibilitam que:
  - O sistema seja especificado em uma linguagem de alto nível
  - O código fonte seja gerado automaticamente a partir dessas especificações

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

136

# Ferramentas do Ambiente das Técnicas de 4ª Geração



- O ambiente de desenvolvimento de software que sustenta o ciclo de vida de 4ª geração inclui as ferramentas:
  - Linguagens não procedimentais para consulta de banco de dados
  - Geração de relatórios
  - Manipulação de dados
  - Interação e definição de telas
  - Geração de códigos
  - Capacidade gráfica de alto nível
  - Capacidade de planilhas eletrônicas

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

137

137





139

# Técnicas de 4ª Geração Obtenção dos



#### **ESTRATÉGIA DO "PROJETO":**

Requisitos

- Para pequenas aplicações é possível mover-se do passo de Obtenção dos Requisitos para o passo de Implementação usando uma linguagem de quarta geração
- Para grandes projetos é necessário desenvolver uma estratégia de projeto. De outro modo ocorrerão os mesmos problemas encontrados quando se usa abordagem convencional (baixa qualidade)

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

140



141



# Comentários sobre as Técnicas de 4ª Geração



- PROPONENTES:
  - Redução dramática no tempo de desenvolvimento do software (aumento de produtividade)
- OPONENTES:
  - As 4GL atuais não são mais fáceis de usar do que as linguagens de programação
  - O código fonte produzido é ineficiente
  - A manutenibilidade de sistemas usando técnicas 4GL ainda é questionável

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

143

143

# Para escolha de um Modelo de Processo de Software:



- Natureza do projeto e da aplicação
- Métodos e ferramentas a serem usados
- Controles e produtos que precisam ser entregues

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

144

# Software e Engenharia de Software



# PICOS

• A importância do Software

- Software
- Aplicações do Software
- Mitos do Software
- Processo de Software
- Modelos de Processo de Desenvolvimento de Software

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

145

145



# **Atividade**



Ler Capítulos 1, 2, 3 e 4 do livro do Pressman

Nem tudo está nos slides PSP

17/02/2025

Ciência da Computação - Engenharia de Software I - Prof. Dr. Rogério E. Garcia

147