

# **Introduction to Machine Learning**

## **PCA**

Bernd Bischl, Christoph Molnar, Daniel Schalk, Fabian Scheipl

Department of Statistics - LMU Munich

# Introduction

#### SUGGESTED LITERATURE

- Hastie, T., Tibshirani, R., Friedman, J. (2009): The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
  Springer.
- James, G., Witten, D., Hastie, T., Tibshirani, R. (2013): An Introduction to Statistical Learning with Applications in R. Springer.
- Aggarwal, C. C., & Reddy, C. K. (Eds.). (2013). Data Clustering: Algorithms and Applications. CRC press.

#### UNSUPERVISED LEARNING

- Supervised machine learning deals with \*labeled\* data, i.e., we have input data x and the outcome y of past events.
- Here, the aim is to learn relationships between *x* and *y*.
- Unsupervised machine learning deals with data that is \*unlabeled\*, i.e., there is no real output y.
- Here, the aim is to search for patterns within the inputs x.

### **CLUSTERING TASK**

**Goal:** Group data into similar clusters (or estimate fuzzy membership probabilities)



## **CLUSTERING: CUSTOMER SEGMENTATION**

- In marketing, customer segmentation is an important task to understand customer needs and to meet with customer expectations.
- Customer data is partitioned in terms of similiarities and the characteristics of each group are summarized.
- Marketing strategies are designed and prioritized according to the group size.

#### Example Use Cases:

- Personalized ads (e.g., recommend articles).
- Music/Movie recommendation systems.

### **CLUSTERING: IMAGE COMPRESSION**

- An image consists of pixels arranged in rows and columns.
- Each pixel contains RGB color information, i.e., a mix of the intensity of 3 primary colors: Red, Green and Blue.
- Each primary color takes intensity values between 0 and 255.



Source: By Ferlixwangg CC BY-SA 4.0, from Wikimedia Commons.

## **CLUSTERING: IMAGE COMPRESSION**

An image can be compressed by reducing its color information, i.e., by replacing similar colors of each pixel with, say, *k* distinct colors.



## **DIMENSIONALITY REDUCTION TASK**

**Goal**: Describe data with fewer features (reduce number of columns). ⇒ there will always be an information loss.



#### Unsupervised Methods:

- Principle Component Analysis (PCA).
- Factor Analysis (FA).
- Feature filter methods.

#### Supervised Methods:

- Linear Discriminant Analysis (LDA).
- Feature filter methods.

# **Principal Component Analysis**

#### **NORMALIZING DATA**

A variable X can be normalized by substracting its values with the mean  $\bar{X}$  and dividing by the standard deviation  $s_X$ , e.g.  $\tilde{X} = \frac{X - \bar{X}}{s_X}$ .

## Example:

Consider the following body heights measured in different units:

|                    | Person A | Person B | Person C | mean   | sd   |
|--------------------|----------|----------|----------|--------|------|
| body height (cm)   | 180.00   | 172.00   | 175.00   | 175.67 | 4.04 |
| body height (m)    | 1.80     | 1.72     | 1.75     | 1.76   | 0.04 |
| body height (feet) | 5.91     | 5.64     | 5.74     | 5.76   | 0.13 |

After normalizing, we always obtain the normalized body height (no matter which unit was used):

|                        | Person A | Person B | Person C | mean | sd   |
|------------------------|----------|----------|----------|------|------|
| normalized body height | 1.07     | -0.91    | -0.16    | 0.00 | 1.00 |

#### **NORMALIZING DATA**

Normalizing all variables in a data set, can have several advantages:

- It puts all variables into \*comparable\* units, i.e., we make sure that all normalized variables have mean 0 and standard deviation of 1.
- It can avoid numerical instabilities in several algorithms, e.g. if a variable has very low / high values.
- It helps in computing meaningful \*distances\* between observations.

## NORMALIZING DATA: DISTANCES

There are many ways to define the distance between two points, e.g.,

$$Z_i = (X_i, Y_i)$$
 and  $Z_j = (X_j, Y_j)$ :



- manhattan: sum up the absolute distances in each dimension.
- euclidean: remember Pythagoras theorem from school?

## NORMALIZING DATA: DISTANCES

It is often a good idea to *normalize* the data before computing distances, especially when the scale of variables is different, e.g. the euclidean distance between the point  $Z_1$  and  $Z_2$ :



On the right plot, the distance is dominated by "shoe size".

## **NORMALIZING DATA: DISTANCES**

The normalized variable  $\tilde{X}_{\text{shoe.size}}$  is computed by <!- Normalization of the shoe.size variable means: ->

$$ilde{X}_{ ext{shoe.size}} = rac{X_{ ext{shoe.size}} - ar{X}_{ ext{shoe.size}}}{SX_{ ext{shoe.size}}}.$$

Distances based on normalized data are better comparable and \*\*robust\*\* in terms of linear transformations (e.g., conversion of physical units).



## NORMALIZING: COVARIANCE VS. CORRELATION

The **variance** of a normalized variable is always 1, its mean is always 0. The **covariance** of two normalized variables  $\tilde{X} = \frac{X - \bar{X}}{s_X}$  and  $\tilde{Y} = \frac{Y - \bar{Y}}{s_Y}$  is the same as the **correlation** of the non-normalized variables X and Y. One can proof this with the help of

$$s_{\tilde{X}\tilde{Y}} = \frac{1}{n-1} \sum_{i=1}^{n} (\tilde{x}_i - \overline{\tilde{x}})(\tilde{y}_i - \overline{\tilde{y}}) = \ldots = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \overline{x})}{s_X} \frac{(y_i - \overline{y})}{s_Y} = r_{XY}.$$

#### PCA INTUITION

## Motivational example I:

- Variable  $x_1$  explains most of the variation.
- Variable x<sub>2</sub> has a lower variance than x<sub>1</sub>.
- If we disregard  $x_2$  and project the points into the 1-dimensional space of  $x_1$ , we do not lose much information w.r.t. variability.



## **PCA INTUITION**

## Motivational example II:

- x<sub>1</sub> and x<sub>2</sub> are correlated and have similar variances.
- Find a new orthogonal axes (e.g. PC1 and PC2), where PC1 explains most of the variation.
- Rotate the points and consider PC1 and PC2 as new coordinate system (situation as in the previous example).
- We can now project points onto PC1 and disregard PC2 (hopefully without losing much information).



#### **PCA INTUITION**

#### General procedure:

- Rotate the original *p*-dimensional coordinate system until the first PC that explains most of the variation is found.
- ② Fix the first PC and proceed with rotating the remaining p-1 coordinates until the second PC (which is orthogonal to the first PC) is found that explains most of the \*remaining\* variation, etc.
- **3** We can reduce the dimensions by projecting the points onto the first, say k < p, PC.

## PCA INTUITION: FIND FIRST PC

Test



## PCA INTUITION: REDUCE DIMENSIONALITY

Rotate the points and use PC1 and PC2 as new coordinate system. Here, the PC1 axis explains most of the variance:



#### PCA INTUITION: REDUCE DIMENSIONALITY

Dimensionality can be reduced by projecting the points onto the PC1 (and by disregarding PC2). The hope is that we won't lose much information this way.



#### **PCA INTUITION: SUMMARY**

**Idea:** Transform an original set of correlated metric variables to a new set of uncorrelated (orthogonal) metric variables, called principal components (PC), that explain the variability in the data.

- The objective is to investigate if only a few PC account for most of the variability in the original data.
- If the objective is fulfilled, we can use fewer PCs to reduce the dimensionality.
- The PCs remove collinearity of the input variables as they are orthogonal to each other.

## **PCA INTUITION: FINAL REMARKS**

- PCA is used for dimensionality reduction by disregaring dimensions with lower variability.
- There is always an information loss, especially for other criteria.
- E.g., dimensionality reduciton can worsen the classification accuracy when the task is to classify two groups:



### DERIVING THE FIRST PC MATHEMATICALLY

Aim: Find a new set of variables (PC scores)  $\mathbf{pc}_1, \dots, \mathbf{pc}_p$  based on the original data  $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_p]$  so that

• each PC score  $\mathbf{pc}_1, \dots, \mathbf{pc}_p$  is a linear combination of the original metric variables with coefficient weights (so-called \*\*loading vectors\*\*)  $\mathbf{a}_1, \dots, \mathbf{a}_p$ , i.e.

$$\mathbf{pc}_{i} = a_{i1}\mathbf{x}_{1} + a_{i2}\mathbf{x}_{2} + \ldots + a_{ip}\mathbf{x}_{p} = \mathbf{X}\mathbf{a}_{i}.$$

- the set is mutually uncorrelated:  $Cov(\mathbf{pc}_i, \mathbf{pc}_k) = 0, \ \forall j \neq k.$
- the variances of the PC scores decrease:

$$\lambda_1 > \lambda_2 > \ldots > \lambda_p$$
, where  $\lambda_k := Var(\mathbf{pc}_k)$ .

#### DERIVING THE FIRST PC MATHEMATICALLY

We look for the loading vector  $\mathbf{a}_1 = (a_{11}, a_{21}, \dots, a_{p1})^{\top}$  that maximizes the variance of  $\mathbf{pc}_1$ :

$$\max_{\boldsymbol{a}_1} \ \textit{Var}(\boldsymbol{pc}_1) = \textit{Var}(\boldsymbol{Xa}_1) = \boldsymbol{a}_1^\top \boldsymbol{\Sigma} \boldsymbol{a}_1$$

subject to the normalization constraint  $\mathbf{a}_1^{\mathsf{T}} \mathbf{a}_1 = \sum_{k=1}^{p} a_{k1}^2 = 1$ .

The constraint is required for identifiability reasons, otherwise we could maximize the variance by just increasing the values in  $\mathbf{a}_1$ .

Repeat this maximization step for the other PCs and additionally use the orthogonality constraint, i.e. for the second PC:

$$\mathbf{a}_{2}^{\top}\mathbf{a}_{1}=0.$$