

Add
highlighters
to convey
information
in a better
way

Table 2. Filter recovery error in dB on the test set for various CRs (bold indicates successful recovery with error below -50 dB).

	CR [%]	M_z	G-MBD	GS-MBD	FS-MBD	LS-MBD	LS-MBD-L
•	50	99	-54.05	-44.93	-43.96	-53.27	-26.54
	40.4	80	-55.07	-40.55	-26.52	-52.80	-
	35.35	70	-52.43	-40.00	-22.76	-51.50	-
	31.31	62	-53.63	-37.13	-21.86	-54.71	-
	25.25	50	-53.36	-28.57	-8.40	-51.41	-
	23.74	47	-50.60	-26.11	-6.84	-50.35	_
	22.72	45	-52.98	-23.17	-6.14	-43.61	-
	20.20	40	-47.39	-14.75	-5.13	-17.07	-

Add
highlighters
to convey
information
in a better
way

Table 2. Difference between a Regular Table and a Heat Map

Example of a regular table				Example of a heat map			
SBP	DBP	MBP	HR	SBP	DBP	MBP	HR
128	66	87	87	128	66	87	87
125	43	70	85	125	43	70	85
114	52	68	103	114	52	68	103
111	44	66	79	111	44	66	79
139	61	81	90	139	61	81	90
103	44	61	96	103	44	61	96
94	47	61	83	94	47	61	83

All numbers were created by the author. SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate.

Bar Plots

Indicate and compare values in a discrete category

Compare multiple data sets

Source: https://writingcommons.org/article/data-visualizations

Line Graphs

Don't use too many of them

Source: https://chartio.com/learn/charts/line-chart-complete-guide/

Interpolation and fitting

Interpolation and fitting

Fig. 26. Measured efficiency of the experimental prototype under different input voltage and load conditions. The dotted curves are corresponding quadratic best-fit curves.

Comparing Method-1, Mehtod-2, and Method-3

3D Plots

• Two continuous-valued independent variables

3D Plots


```
mirror_object
 peration == "MIRROR_X":
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"
Irror_mod.use_x = False
 irror_mod.use_y = True
 lrror_mod.use_z = False
  _operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
 selection at the end -add
  ob.select= 1
  er_ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modifice
   irror ob.select = 0
 bpy.context.selected_ob
  lata.objects[one.name].sel
  int("please select exaction
  - OPERATOR CLASSES ----
   ypes.Operator):
   X mirror to the selected
  ject.mirror_mirror_x"
 Fror X"
```

Algorithms

- An algorithm is a *set of steps* to solve a problem
- Independent of programming or coding language

An algorithm is a set of steps to solve a problem

$$\min_{x \in S} f(x)$$

• An algorithm is a *set of steps* to solve a problem

$$\min_{x \in S} f(x)$$

At *k*-th iteration:

$$x_k = x_{k-1} - \alpha \nabla f_{k-1}(x)$$

$$x_k = S(x_k)$$

• An algorithm is a *set of steps* to solve a problem

$$\min_{x \in S} f(x)$$

- 1. Output:
- 2. Input:
- 3. Initialization
- 4. Steps

When to stop

At *k*-th iteration:

$$x_k = x_{k-1} - \alpha \nabla f_{k-1}(x)$$

$$x_k = S(x_k)$$

An algorithm is a set of steps to solve a problem

$$\min_{x \in S} f(x)$$

- 1. Output:
- 2. Input:
- 3. Initialization
- 4. Steps

When to stop

At *k*-th iteration:

$$x_k = x_{k-1} - \alpha \nabla f_{k-1}(x)$$

$$x_k = S(x_k)$$

- 1. Output: optimum solution
- 2. Input: Gradient function
- 3. Initialization: x_0
- 4. Steps:
- A.
- В.

When to stop

An algorithm is a set of steps to solve a problem

Algorithm 1 BDC for solving (15).

Output: s and X

Input: Y, $\bar{\mathbf{A}}$ L, and the initial estimate $\mathbf{s}^{(0)}$

- 1: Let $i \leftarrow 1$
- 2: repeat
- 3: Estimate $\mathbf{X}^{(i)}$ by applying OMP to diag $(\mathbf{s}^{(i-1)})^{-1}\mathbf{Y}$ columnwise
- 4: $\mathbf{s}^{(i)} \leftarrow \operatorname{argmin}_{\mathbf{s}} \|\mathbf{Y} \operatorname{diag}(\mathbf{s})\bar{\mathbf{A}}\mathbf{X}^{(i)}\|_2^2$
- 5: $i \leftarrow i + 1$
- 6: until convergence criterion is reached

Should be self contained

Algorithm 2 Joint Subsampling and Recovery Algorithm

Inputs: Data \mathcal{D} and full sample indices \mathcal{N}

Initialize: $\mathcal{K}^{(0)} = \emptyset$

for k = 1 to K do

[S1] for all $i \in \mathcal{N} \setminus \mathcal{K}^{(k-1)}$ do

(a) For a binary-valued vector $\mathbf{c}_i \in \{0, 1\}^{|\mathcal{N}|}$, set $\sup\{\mathbf{c}_i\} = \mathcal{K}^{(k-1)} \cup \{i\}$

(b)
$$\theta_i^{(k)} = \underset{\theta}{\operatorname{arg min}} \frac{1}{Q} \sum_{q=1}^{Q} \|\mathbf{x}_q - \mathbf{x}_q\|_{Q}$$

 $r_{\theta} \left(\operatorname{diag}(\mathbf{c}_{i}) \mathbf{f}_{q} \right) \|_{2}^{2}$ where r_{θ} is a LISTA-based reconstruction.

(c)
$$\mathbf{x}_{q,i} = r_{\theta_i^{(k)}} \left(\text{diag}(\mathbf{c}_i) \mathbf{f}_q \right)$$
 for $q = 1, \cdots, Q$ end for

[S2]
$$i_*^{(k)} = \underset{i \in \mathcal{N} \setminus \mathcal{K}^{(k-1)}}{\operatorname{arg \, min}} \quad \frac{1}{Q} \sum_{q=1}^{Q} \|\mathbf{x}_q - \mathbf{x}_{q, \mathcal{K} \setminus \{i\}}\|_2^2$$

[S3]
$$\mathcal{K}^{(k)} = \mathcal{K}^{(k-1)} \cup \{i_*^{(k)}\}$$

end for

Output: Optimal sampling set $\mathcal{K}^K \subseteq \mathcal{N}$ with $|\mathcal{K}^K| = K$ and corresponding reconstruction parameters $\theta_{i^{(k)}}$

• Flowcharts are alternative representations

How to Design Simulations?


```
0.0366 0.6242
0.1202 0.8307
0.1536 0.5836
0.1636 0.9504
0.1807 0.8876
0.2554 0.8489
0.3258 0.8935
0.3989 0.9487
0.4151 1.1229
0.5166 1.1021
0.5250 1.1364
0.5409 1.2915
0.5464 2.3104
0.6660 1.4555
0.6797 1.4341
0.7027 1.3734
0.7486 1.4218
0.8092 2.6520
0.8944 1.5956
0.9535 1.8582
```

Х	У
0.0366	
0.1202	0.8307
0.1536	0.5836
0.1636	0.9504
0.1807	0.8876
0.2554	0.8489
0.3258	0.8935
0.3989	0.9487
0.4151	1.1229
0.5166	1.1021
0.5250	1.1364
0.5409	1.2915
0.5464	2.3104
0.6660	1.4555
0.6797	1.4341
0.7027	1.3734
	1.4218
0.8092	2.6520
0.8944	1.5956
0.9535	1.8582

x	у
0.0366	0.6242
0.1202	0.8307
0.1536	0.5836
0.1636	0.9504
0.1807	0.8876
0.2554	0.8489
0.3258	0.8935
0.3989	0.9487
0.4151	1.1229
0.5166	1.1021
0.5250	1.1364
0.5409	1.2915
0.5464	2.3104
0.6660	1.4555
0.6797	1.4341
0.7027	1.3734
0.7486	1.4218
0.8092	2.6520
0.8944	1.5956
0.9535	1.8582

Given: $y_n = f(x_n) + w_n$, n = 1, ..., N, estimate a and b

Existing solution?

Least-squares solution

$$\min_{a,b} \sum_{n=1}^{N} |y_n - (ax_n + b)|^2$$

The outliers result in inaccurate fit!

Can we leave out the outliers?

Given: $y_n = f(x_n) + w_n$, n = 1, ..., N, estimate a and b

Existing solution?

Weighted least-squares solution

$$\min_{a,b} \sum_{n=1}^{N} v_n |y_n - (ax_n + b)|^2$$

Keep the weights low for the outliers

How do we the outliers?

Given: $y_n = f(x_n) + w_n$, n = 1, ..., N, estimate a and b

Weighted least-squares solution

$$\min_{a,b} \sum_{n=1}^{N} v_n |y_n - (ax_n + b)|^2$$

Our solution: Use an algorithm called iterative reweighted least-squares that automatically adjusts the weights

Given: $y_n = f(x_n) + w_n$, n = 1, ..., N, estimate a and b

Weighted least-squares solution

$$\min_{a,b} \sum_{n=1}^{N} v_n |y_n - (ax_n + b)|^2$$

Our solution: Use an algorithm called iterative reweighted least-squares that automatically adjusts the weights

IRLS Algorithm

- 1. Start with some initial weights
- 2. Estimate a, b
- 3. Update weights
- 4. Repeat 2 and 3 until convergence

What/how do you show that IRLS is better than LS?

1. Visually show that your approach is better than others

What/how do you show that IRLS is better than LS?

- 1. Visually show that your approach is better than others
- 2. Add some more details of your algorithm

What/how do you show that IRLS is better than LS?

3. Will IRLS works better than LS in different scenarios?

Given:
$$y_n = ax_n + b + w_n$$
, $n = 1, ..., N$, estimate a and b

Parameters that effect the estimation: Number of samples N and noise level

Noise level:
$$w_n \sim Normal(0, \sigma^2), n = 1, ..., N$$

How to measure efficiency of the two algorithms as a function of N and σ ?

Given: $y_n = ax_n + b + w_n$, n = 1, ..., N, estimate a and b

$$Err(a) = (a - \tilde{a})^2$$

$$Err(b) = (b - \tilde{b})^2$$

$$Err(a,b) = (a - \tilde{a})^2 + (b - \tilde{b})^2$$

$$RErr(a) = (a - \tilde{a})^2/a^2$$

$$RErr(a) = (a - \tilde{a})^2/a^2$$
 $RErr(b) = (b - \tilde{b})^2/b^2$

$$RErr(a,b) = (a - \tilde{a})^2/a^2 + (b - \tilde{b})^2/b^2$$

True error or relative error?

	True value	Estimate	Error	R. Error
a	0.5	0.6	0.01	0.04
b	10	11	1	0.01

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. Conclusion?

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. Conclusion?

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. IRLS performs better than LS for N=10-50

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. Conclusion?

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. IRLS performs better than LS for N=10-50

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. IRLS has 0.5-2 dB lower NMSE compared to LS for N > 15

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. IRLS performs better than LS for $N=10\ to\ 50$

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. The estimates are inconsistent for N < 20

Fig. Comparison of LS and IRLS for estimation estimation of b: the value of b is 5. IRLS performs better than LS for $N=10\ to\ 50$

For a deep-learning problem...

- 1. Add a block-diagram with all the details
- 2. For newly designed networks, add convergence plots
- 3. Chose correct error metrics for comparison and define them explicitly
- 4. Identify critical parameters and show comparative plots

Some pointers on presentation:

- 1. Understand your audience
- 2. Start with a generic setup
- 3. Use less text and more visuals
- 4. Be consistent with font style, size and highlighters
- 5. Use fewest possible equations
- 6. Avoid detailed proofs and algorithms
- 7. Ensure that fonts and colors are distinctly visible from a distance
- 8. Add references

U-net for image recosntruction

- U-net has a unique architecture where it takes an image as input and has an ability to output an entire image
- The architecture is symmetric and consists of two major parts — the left part is called contracting path, which is constituted by the general convolutional process; the right part is expansive path, which is constituted by transposed 2d convolutional layers

Results

The results are using MSE on each pixel on the generated image

```
D
  mse = tf.keras.losses.MeanSquaredError()
  mae = tf.keras.losses.MeanAbsoluteError()
  rmse = tf.keras.metrics.RootMeanSquaredError()
  model.compile(loss=mse,
         optimizer='adam',
         metrics=rmse)
  model.fit(X,Y,batch_size=1,epochs=5)
  √ 1259.3s
 Epoch 1/5
 Epoch 2/5
 Epoch 3/5
 200/200 [======= squared error: 0.1146
 Epoch 4/5
 200/200 [=======squared_error: 0.1069
 <keras.callbacks.History at 0x29fdb619940>
                                                + Code + Markdown
```

Results

The results are using MSE on each pixel on the generated image

```
D
  mse = tf.keras.losses.MeanSquaredError()
  mae = tf.keras.losses.MeanAbsoluteError()
  rmse = tf.keras.metrics.RootMeanSquaredError()
  model.compile(loss=mse,
         optimizer='adam',
         metrics=rmse)
  model.fit(X,Y,batch_size=1,epochs=5)
 Epoch 1/5
 200/200 [============] - 223s 953ms/step - loss: 0.0161 - root_mean_squared_error: 0.1360
 Epoch 2/5
 Epoch 3/5
 Epoch 4/5
 Epoch 5/5
  <keras.callbacks.History at 0x1fb5fc3c670>
```

Comparison

- Lesser training time
- Better results on training and testing data
- Sharper recinstructed images

Low Resolution Information Also Matters: Learning Multi-Resolution Representations for Person Re-Identification

- Method consists of a Resolution Reconstruction Network (RRN) and a Dual Feature Fusion Network (DFFN).
- The RRN uses an input image to construct a High Resolution version and a Low Resolution version with an encoder and two decoders
- The DFFN adopts a dual-branch structure to generate person representations from multi-resolution images.

Dos and Don'ts

- Don't copy paste figures (block diagrams and results) from any other paper
- In a technical presentation you can use graphics from other sources with proper citation
- Technical writing: Visual communication is not a replacement of text
- Technical presentation: Advisable to use visuals instead of text
- Don't alter your results to show advantage
- Ensure that the codes are available online