

Vedanth S(2018103620) Niranjan K(2018103569) Praveen RS(2018103577) Akash E(2018103005)

Data Mining - NLP Project Author Portrait Generation using Topic Modelling

1. Objective:

The objective of this project is to generate a portrait for authors who have published papers in the hep-th domain from 1991 to 2003.

2. File Extraction:

The arxiv dataset we extracted consists of metadata files for published papers in the range 1991 - 2003. The papers are segregated into separate folders based on the year published. An '.abs' file for every paper consists of metadata for the paper. Various details like the title of the paper, authors, year published and abstract are present in the file. The authors need to be extracted from each file. The file is parsed line by line and each line is inserted into a list. The line with the substring 'Author' is extracted from the list and the author list is extracted. The subsequent line is also checked for the presence of any author names. The 'Paper Id' is the file name and the published year is the parent folder's name. Finally, a dataframe with the columns Paper Id, Authors, Year is created as shown in the output.

```
import json
     import os
    import pandas as pd
6 v def extract():
      par_dir = "hepth"
        dataset = pd.DataFrame(columns=["Paper Id", "Authors", "Year"])
       for folderYear in os.listdir(par_dir):
            year = folderYear
             for fileName in os.listdir(par_dir + "/" + folderYear):
                with open(par_dir + "/" + folderYear + "/" + fileName) as fh:
                    file_dict = {}
                    count = 0
                    for line in fh:
                        if count == 2:
                            break
                        elif line == "//\n":
18 🗸
                           count += 1
                        elif count == 1:
                            key, value = line.strip().split(None, 1)
                            file dict[key] = value.strip()
```

Output:

	Paper Id	Authors	Year
0	9201001	C. Itzykson and JB. Zuber	1992
1	9201002	F.Bonechi, E.Celeghini, R.Giachetti, E.Sorace	1992
2	9201003	Robbert Dijkgraaf	1992
3	9201004	Nathan Berkovits	1992
4	9201005	Igor R. Klebanov	1992

3. Data Preprocessing:

The authors parsed and extracted from the files aren't in a consistent format . Some records have authors separated by `and` whereas some are separated by 'comma'. So, we replace all `and` with 'commas'. Some records have redundant brackets which are replaced with empty strings. All the records in the dataframe are uniquely identified by 'Paper Id' and they contain authors separated by 'comma'. In order to assign a unique id for every author we need records wherein there is a single author for every paper by repeating the entry for each author in the list. Finally we create a dataframe where Paper Id, Authors, Year are present with the Author field containing a single name.

```
authors=[]
for key,row in df.iterrows():
    str = row["Authors"].replace("and",",")
    modified_string = re.sub(r"\([^()]*\)", "", str)
    authors.append(modified_string)

df["Authors"] = authors

new_df = pd.DataFrame(columns=["Paper Id","Authors","Year"])
for key,row in df.iterrows():
    authors = row["authors"]
    authors_arr = authors.split(",")
    for i in range(len(authors_arr)):
        authors_arr[i] = authors_arr[i].strip()
        row_dict = {"Paper Id":row["Paper Id"], "Authors":authors_arr[i], "Year":row["Year"]}
        new_df = new_df.append(row_dict, ignore_index = True)
```

Output:

	Author Id	Paper Id	Authors	Year
0	1	9109027	D. V. Nanopoulos	1991
96	2	9109038	S. F. Hassan	1991
97	3	9109038	Ashoke Sen	1991
98	4	9109045	T. Banks	1991
99	5	9109045	M. Dine	1991
: •••				
59679	11807	0302092	Michael Thies	2003
59678	9626	0302091	Marek Rogatko	2003
59677	15066	0302090	Etsuko Itou	2003
59691	5323	0302098	Nick Evans	2003
61120	9016	0304271	Nicholas P. Warner	2003

4. Topic Modeling for Articles:

Topic modeling is an unsupervised machine learning technique that's capable of scanning a set of documents, detecting word and phrase patterns within them, and automatically clustering word groups and similar expressions/patterns that best characterize a set of documents.

By detecting patterns such as word frequency and distance between words, a topic model clusters feedback that is similar, and words and expressions that appear most often. With this information, you can quickly deduce what each set of texts are talking about.

CTMLDA 1991	1/24/202	22 11:39 AM	File folder
CTMLDA 1992	1/24/202	22 11:40 AM	File folder
CTMLDA 1993	1/24/202	22 11:41 AM	File folder
CTMLDA 1994	1/24/20	22 11:41 AM	File folder
CTMLDA 1995		22 11:42 AM	File folder
CTMLDA 1996		v 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	File folder
	DM-TD-Formal	22 11:42 AM	1623000000000000000000000000000000000000
CTMLDA 1997	1/24/202	22 11:43 AM	File folder
CTMLDA 1998	1/24/202	22 11:44 AM	File folder
CTMLDA 1999	1/24/202	22 11:45 AM	File folder
CTMLDA 2000	1/24/202	22 11:47 AM	File folder
CTMLDA 2001	1/24/202	22 11:47 AM	File folder
CTMLDA 2002	1/24/202	22 11:49 AM	File folder
CTMLDA 2003	1/24/20	22 11:49 AM	File folder
9108001	10/12/2021 4:32 PM	Microsoft Excel C	5 KI
	10/12/2021 4:32 PM	Microsoft Excel C	5 KE
9108002	10/12/2021 4:32 PM	Microsoft Excel C	- <u>E</u>
9108003	10/12/2021 4:32 PM	Microsoft Excel C	
9108004	10/12/2021 4:32 PM	Microsoft Excel C	AT-07
9108005	10/12/2021 4:32 PM	Microsoft Excel C	
9108006	10/12/2021 4:32 PM	Microsoft Excel C	
9108007	10/12/2021 4:32 PM	Microsoft Excel C,	05.00
9108008	10/12/2021 4:32 PM	Microsoft Excel C	
9108009	10/12/2021 4:32 PM	Microsoft Excel C	
9108010	10/12/2021 4:32 PM	Microsoft Excel C	
9108011	10/12/2021 4:32 PM	Microsoft Excel C	
9108013	10/12/2021 4:32 PM	Microsoft Excel C	
9108014	10/12/2021 4:32 PM	Microsoft Excel C	
9108015	10/12/2021 4:32 PM	Microsoft Excel C	5 K
9108016	10/12/2021 4:32 PM	Microsoft Excel C	5 K
9108017	10/12/2021 4:32 PM	Microsoft Excel C	5 K
9108018	10/12/2021 4:32 PM	Microsoft Excel C	5 K
9108019			
a 3100013	10/12/2021 4:32 PM	Microsoft Excel C	5 K

This is the corresponding topic modeled words for a paper id. There are 10 groups in total for each paper and each word in a group is associated with a certain probability indicating the importance of that word in that corresponding document.

```
0.367292 [("metric',", 0.14744997024536133), ("limit',", 0.04080672562122345), ("charge',", 0.037670157849788666), ("hole',", 0.02826046012341976), I 0.3776 [("istring',", 0.19358964264392853), ("isolution',", 0.03283905237913132), ("['lin'],", 0.0229971781373024), ("inside',", 0.019716553390026093), 0.360761 [("horizon',", 0.0839289054274559), ("isolution',", 0.05907028540968895), ("conformal',", 0.043533653020858765), ("[metric',", 0.0342116728-0.362709] [("ifield',", 0.08020652830600739), ("itwo',", 0.08020652830600739), ("holes',", 0.05455070361495018), ("igeodesics',", 0.03210185468196869), 0.336697 [("one',", 0.07543066143989563), ("solutions',", 0.07543066143989563), ("ieinstein',", 0.03772982954978943), ("ieuclidean',", 0.029029639437-0.315299 [("singularity',", 0.06488172709941864), ("timelike',", 0.04635291174054146), ("inordstro',", 0.0401766411960125), ("iglobal',", 0.03400037065-0.342369 [("theory',", 0.07035995274782181), ("ispacetime',", 0.06716322153806686), ("ievent',", 0.05437631905078888), ("['ds'],", 0.0319992341101169-0.356365 [("dimensional',", 0.09125418961048126), ("istructure',", 0.03828497603535652), ("istrings',", 0.03534223884344101), ("reissner',", 0.034105692058801-0.31008 [("three',", 0.049594201147556305), ("imetric'],", 0.03720339387655258), ("idilaton',", 0.034054224934577942), ("inner',", 0.0283493809401989), ("inner',", 0.034056224934577942), ("inner',", 0.0283493809401989), ("inner',", 0.0283
```

5. Single Author Portrait Generation:

Let us consider an author R_0 who has authored 'n' single authored papers. We have to compute the single author history of R_0 which is also known as Author Topic Model [ATM]. It is represented by an ATM[R_0]. This is obtained by aggregating the Document Topic Model (DTM) of every single author publication of R_0 . DTM is obtained by generating a topic model for the corresponding research article. Therefore, if R_0 has authored 'n' research articles as sole author, then,

$$ATM(R_0) = DTM(S_0) + DTM(S_1) + + DTM(S_{n-1})$$

Aggregation of topics of sole author publications means, taking the maximum of the respective probabilities. Let us consider, an author has published articles on the topic 'deep learning'. When this topic appearing in one article with probability 0.45 is aggregated with the occurrences of 'deep learning' from other two articles written by the same author with topic probability 0.7, 0.89 respectively, the aggregated topic probability of 'deep learning' is 0.89. This indicates that the author has a proficiency of 89% related to 'deep learning'.

```
cd = {}
for index,row in dataset.iterrows():
    if row['Paper Id'] in cd.keys():
        cd[row['Paper Id']] = cd[row['Paper Id']] +1
    else:
        cd[row['Paper Id']] = 1

filtered_dict = {k:v for (k,v) in cd.items() if v == 1}
```

```
unique_paper_dict = {}
for index,row in dataset.iterrows():
    if row['Paper Id'] in unique_paper_ids:
        if row['Author Id'] in unique_paper_dict.keys():
            unique_paper_dict[row['Author Id']].append(row['Paper Id'])
        else:
        rl = []
        rl.append(row['Paper Id'])
        unique_paper_dict[row['Author Id']] = rl

author_paper_metadata_hepth_single_author = pd.DataFrame(unique_paper_dict.items(),columns=['Author Id','Paper Id'])
```

```
dataset = pd.read_csv("author_paper_metadata_hepth_single_authors.csv")

#List all paper's topic word file
paper_topics_name_list = []
for file in os.listdir("paper_topics"):
    paper_topics_name_list.append(file)

new_single_hepth_author = {}

#Find single authored and available papers
req_papers = []

for key, row in dataset.iterrows():
    row["Paper Id"] = ast.literal_eval(row["Paper Id"])
    auth_id = row["Author Id"]
    paper_list = []

for pap_val in row["Paper Id"]:
    if str(pap_val) + ".csv" in paper_topics_name_list:
        req_papers.append(str(pap_val) + ".csv")
        pap_val = str(pap_val)
        pap-r_list.append(pap_val)

new_single_hepth_author[auth_id] = paper_list
```

Paper Id | Topic Words

9112005 (gravity: 0.07292903904570625, 'conformal': 0.04866697830891549, 'action': 0.043330940782050666, 'conformally: 0.038940587833003804, 'dimensional': 0.033832231606591975, 'theory': 0.03167216 9212075 ['model': 0.04515868958741049, 'constant': 0.04199659684671586, 'operators': 0.03845842609763776, 'cosmological': 0.03257137824764918, 'order': 0.02933332517424979, 'gravity': 0.025820379442706 9412051 ['gravity': 0.06759761902105518, 'theory': 0.06323599936659376, 'model': 0.06289248717691442, 'xed': 0.054396765407798586, 'string': 0.04791596493480218, 'eld': 0.028813338038300662, 'point': 0.02 9506118 {'theory': 0.03601060841211625, 'string': 0.033835672415639007, 'node': 0.025272165076122115, 'scale': 0.024744136432781533, 'order': 0.023509492220846834, 'eld': 0.022454760870734555, 'genus': 0. 9601003 ('string': 0.09652447228585227, 'brane': 0.0899652469268262, 'action': 0.07384958328863975, 'theory': 0.07294306594925103, 'eld': 0.06269626705402224, 'type': 0.05362566055786222, 'branes': 0.051 9701113 ('point': 0.03434671378328859, 'critical': 0.033540727834028054, 'model': 0.027955962290275242, 'theory': 0.023914673171799794, 'eld': 0.023011982922524238, 'phase': 0.02152936764373926, 'temper 9707225 ['brane': 0.03506174067643554, 'theory': 0.034307942435438166, 'dimensional': 0.03227499073698188, 'model': 0.029807988122076804, 'eld': 0.02801925382306993, 'string': 0.02695099941104774, 'me 9803152 {'klein': 0.07034028472926411, 'kaluza': 0.0681043293498157, 'theory': 0.042087882136835036, 'brane': 0.041850467779923996, 'gauge': 0.0416621840318498, 'tubes': 0.02520911481607234, 'string': 0.0 9912155 {'theory': 0.0828334863614093, 'conformal': 0.03887447701583678, 'gravity': 0.030496187709099395, 'points': 0.025500423762684604, 'supergravity': 0.024144876964466502, 'xed': 0.0215593353752773 9912156 ('constant': 0.07246492610664056, 'dimensional': 0.07108192156563282, 'theory': 0.06968379461171337, 'ads': 0.04510396420548321, 'cosmological': 0.03754216585127499, 'gauge': 0.036616526675760 5248 ['supersymmetry': 0.07504230041913171, 'brane': 0.07439881084022926, 'constant': 0.06934422127795845, 'bulk': 0.05161006977893012, 'supergravity': 0.043106575392968374, 'cosmological': 0.04078 11065 ('theorems': 0.046927845801360016, 'axiom': 0.03708471434528876, 'theory': 0.03702988136975878, 'axioms': 0.03343777949170518, 'logical': 0.03320326651983757, 'string': 0.03186410428058012, 'proceedings': 0.0346714548018, 'proceedings': 0.0346714548, 'proceedings': 0.0346714548, 'proceedings': 0.0346714548, 'proceedings': 0.034671454, 'proceedings': 0.03467145, 'proceedings': 0.03467145, 'proceedings': 0.03467145, 'p 207203 ['theory': 0.060171105908510096, 'string': 0.0458110622219694, 'constant': 0.04131737509408402, 'model': 0.025252341730011278, 'standard': 0.023736620970184856, 'dimensional': 0.02132314776038 9109003 ('fields': 0.07744539996852072, 'chiral': 0.045733575575505225, 'point': 0.04420982038627935, 'function': 0.04049199151347113, 'renormalization': 0.030899240407166746, 'field': 0.03017897501065333 9112075 ('quantum': 0.033096638147438726, 'potential': 0.023459046118720774, 'potentials': 0.02060894875120063, 'algebra': 0.020382566061697374, 'energy': 0.01604718864902788, 'solvable': 0.01603076635 9112072 (*function': 0.040376085311471265, 'lattice': 0.032585306315680816, 'wilson': 0.030300579428050693, 'simons': 0.0287034066384797, 'chern': 0.0275911224138281, 'theory': 0.026159730476600883, 'fij 9205090 ['model': 0.06731396765754181, 'dimensional': 0.038669697038919565, 'operator': 0.03681928293963684, 'simplexes': 0.033399626597758886, 'dimensions': 0.03228292096364774, 'group': 0.02786028 9210028 ('equation': 0.05274425792384175, 'model': 0.04051769808337195, 'dyson': 0.03616815051488102, 'schwinger': 0.035678739104424616, 'sum': 0.029257334020975096, 'simplicial': 0.0231029958686763, 9709211 {'theory': 0.13321210713137357, 'brane': 0.05245968773395165, 'branes': 0.0424091457767356, 'gauge': 0.04187006254434072, 'branch': 0.03712337885183439, 'hep': 0.030048589598304323, 'vebrane': 9909040 {'loop': 0.12090578355223601, 'boundary': 0.06733383293184472, 'wilson': 0.0636104058256066, 'theory': 0.0609111505569192, 'ads': 0.05911000378375748, 'string': 0.04329183181158901, 'gauge': 0.03 9110043 ("bravais': 0.09412688548146708, 'classes': 0.07877778786526689, 'materials': 0.06758138726294925, 'lattices': 0.064686130710642, 'space': 0.060332120173529326, 'fourier': 0.05984895285658769, 'grou 9110044 ('action': 0.07076951093909127, 'model': 0.0658919406975032, 'symmetry': 0.05528092111544086, 'space': 0.04984188636225061, 'gauge': 0.046460775833311624, 'black': 0.040031351075557255, 'targe 9108026 ('action': 0.09529506383912274, 'model': 0.08247303867306388, 'theory': 0.05220162428234283, 'symmetry': 0.04937647924119899, 'dimensional': 0.041697116621067946, 'gauge': 0.0393220423794829 9601137 ['theory': 0.12108805487725124, 'representation': 0.07127373790089359, 'form': 0.0669891457719515, 'abc': 0.05922595092267385, 'lagrangean': 0.050930355966310306, 'gauge': 0.04037990698131563, 9603137 {'model': 0.25472467157861967, 'sin': 0.14892034007188548, 'cos': 0.1487573998228735, 'term': 0.13144138262717703, 'zumino': 0.09527554701445151, 'chiral': 0.09223800230583695, 'gauge': 0.086013: 9604066 ('singularity': 0.09936295804428405, 'string': 0.08872951979180249, 'universe': 0.08793284796617562, 'sin': 0.08617111299261537, 'theory': 0.08071062169030382, 'solution': 0.07961136807428801, 'gau 9609088 ('term': 0.0978697936044775, 'coordinate': 0.06605547715577777, 'hole': 0.05943274864450447, 'geometry': 0.05970154033207842, 'solution': 0.051009876730089464, 'metric': 0.05046184800851058, 210056 ['spacetime': 0.07493233558460505, 'ads': 0.06944336205128321, 'entropy': 0.056373102009087156, 'black': 0.05220290405435368, 'hole': 0.051299836113849834, 'case': 0.05078900778327182, 'gravity': 9110045 ('super': 0.12479119504393921, 'algebras': 0.07972232011551819, 'algebra': 0.07407208600212732, 'reduction': 0.06404426519971965, 'hamiltonian': 0.05537445529954349, 'osp': 0.05155786336311071,

```
#Fetch topic words for a particular author id
def return_topics(author_id):
    single_author_dataset = pd.read_csv("author_paper_metadata_hepth_single_authors.csv")
    single_author_dataset = single_author_dataset.set_index('Author Id').to_dict()['Paper Id']
   dataset_topics = pd.read_csv("single_authored_papers_topic_model.csv")
    dataset_topics = dataset_topics.set_index('Paper Id').to_dict()['Topic Words']
    paper_ids = ast.literal_eval(single_author_dataset[author_id])
   master_dict = {}
    for i in range(len(paper_ids)):
        if int(paper_ids[i]) in dataset_topics.keys():
            newdct = ast.literal_eval(dataset_topics[int(paper_ids[i])])
            for key,value in newdct.items():
               if key not in master_dict.keys():
                   master_dict[key] = value
                else:
                    master_dict[key] = max(value,master_dict[key])
    return master dict
#Extarct all authors who have individually published
single author dataset = pd.read csv("author paper metadata hepth single authors.csv")
aths = list(single_author_dataset['Author Id'])
words = []
for i in range(len(aths)):
    words.append(return_topics(aths[i]))
```

Author Id Topic Words 1 (string': 0.09652447228585227, 'brane': 0.08996522469268262, 'theory': 0.0828334863614093, 'supersymmetry': 0.07504230041913171, 'action': 0.07384958328863975, 'gravity' 3 ('fields': 0.07744539996852072, 'chiral': 0.045733575575505225, 'point': 0.04420982038627935, 'function': 0.04049199151347113, 'renormalization': 0.030899240407166746, 'fiel 10 ['quantum': 0.033096638147438726, 'potential': 0.023459046118720774, 'potentials': 0.02060894875120063, 'algebra': 0.020382566061697374, 'energy': 0.01604718864902788, 14 ['theory': 0.13321210713137357, 'loop': 0.12090578355223601, 'boundary': 0.06733383293184472, 'model': 0.06731396765754181, 'wilson': 0.0636104058256066, 'ads': 0.059110 22 ['bravais': 0.09412688548146708, 'classes': 0.07877778786526689, 'materials': 0.06758138726294925, 'lattices': 0.064686130710642, 'space': 0.060332120173529326, 'fourier': 0.06758138726294925, 'lattices': 0.0675813872694925, 'lattices': 0.0675813872694920, 'lattices': 0.0675813872694920, 'lattices': 0.06758138726940, 'lattices': 0.06758138726940, 'lattices': 0.067581260, 'lattices': 0.067581200, 'lattices': 23 {'model': 0.25472467157861967, 'sin': 0.14892034007188548, 'cos': 0.1487573998228735, 'term': 0.13144138262717703, 'theory': 0.12108805487725124, 'singularity': 0.099362958 24 ('exp': 0.17795621305573872, 'super': 0.12479119504393921, 'algebras': 0.07972232011551819, 'bsl': 0.07626222807356081, 'algebra': 0.07407208600212732, 'reduction': 0.06404 29 ('boundary': 0.19644274304001924, 'hep': 0.10579591271337341, 'eld': 0.09740511287327495, 'quantum': 0.09145006963868807, 'theory': 0.08513934066378862, 'theories': 0.08 31 {'theory': 0.24234069875367412, 'supersymmetry': 0.1573275700579083, 'constant': 0.16926616362000846, 'boundary': 0.15223037766972594, 'dimensions': 0.1517899204993 32 ('spin': 0.11837589904401233, 'action': 0.11270331046113188, 'quantum': 0.0791297465954659, 'gauge': 0.07859466933141011, 'case': 0.07810059785480575, 'order': 0.07115628 35 ['gauge': 0.2302592513128148, 'theory': 0.1512093211016643, 'string': 0.1062536789274283, 'chiral': 0.10231226566629997, 'hole': 0.0888928908031627, 'dimensional': 0.085890 40 ('action': 0.1046696698131282, 'theory': 0.07937125260147393, 'gravity': 0.0782056804188962, 'string': 0.0742405925899285, 'lett': 0.07228088367478258, 'lib': 0.07111617525701 56 ['string': 0.18516731733789143, 'theory': 0.1275198663707745, 'branes': 0.0866168573295784, 'dirichlet': 0.0719075271713076, 'hep': 0.071044994393339498, 'duality': 0.0677082 67 ['models': 0.12532088990299106, 'matrix': 0.11444337896509542, 'integral': 0.06281864007392543, 'function': 0.05688244082061566, 'supermatrix': 0.05533977118728351, 'ordi 52 ('duality': 0.04670800641585944, 'solution': 0.04482557114330261, 'time': 0.044696102177915004, 'matter': 0.04308451099412588, 'action': 0.03333752854433266, 'case': 0.0311 85 ('operators': 0.0780084609265661, 'vertex': 0.07753109315898232, 'string': 0.06104005002247054, 'picture': 0.04728920848533304, 'basis': 0.042937174862477265, 'moduli': 0.04 86 ('singular': 0.12982191789194897, 'vectors': 0.11147479327511937, 'highest': 0.07447403008160428, 'kontsevich': 0.07241615155494857, 'virasoro': 0.06374432691443377, 'weig 110 ['ination': 0.13129321070088068, 'universe': 0.09425248771628214, 'moduli': 0.09045600897177786, 'roll': 0.077825328550732, 'eld': 0.0772663949144273, 'problem': 0.0734765:

6. Multi Author Portrait Generation:

In the previous step, we would have obtained the topic words for authors who have published papers on their own without any co-authors. We use this result to derive the topic words for the rest of the authors who are a part of the dataset.

First, we obtain the topic words for each unique paper id by cross mapping between the parent dataset which has the paper id as the primary key and the topic modeled result for these papers. A new dataframe of the format (paper id, author ids) is created.

Author Topic Model (ATM) is generated by statistical means. Let us consider there is a research article (P_0) authored by two authors (R_0, R_1) . Let us assume that the single author history of research articles is available only for (R_0) . In other words, the single author history of R_0 is also known as ATM (R_0) . This is obtained by aggregating the Document Topic Model (DTM) of every single author publication of R_0 .

$$ATM(R_1) = DTM(P_0) - ATM(R_0)$$

This process is known as ATM by subtraction. Consider articles P_0 authored by R_0 , R_1 and P_2 authored by R_0 , R_1 , R_2 . If only one single author history is available, i.e. ATM(R0). Then, first the ATM of R_1 shall be formed by subtraction. Following this, the ATM of R_2 is found using the following equation.

$$ATM(R_2) = DTM(P_3) - (ATM(R_0) \cup ATM(R_1))$$

Article #	Authors	Single Author History (availability)	Method
P ₀	R_0, R_1	R ₀	$ATM(R_1) = DTM(P_0) - ATM(R_0)$
P ₀	R_0, R_1		$ATM(R_2) = DTM(P_1) - DTM(P_0)$
P_1	R_0, R_1, R_2	R_0, R_1	$ATM(R_2) = DTM(P_1) -$
			$(ATM(R_0) \cup ATM(R_1))$
P_1	R_0, R_1, R_2	NOT	$ATM(R_2) = DTM(P_1)$
P_2	R ₂ , R ₃ , R ₄	AVAILABLE	$\cap DTM(P_2)$
P ₀	R_0, R_1	R ₀	$ATM(R_1) = DTM(P_0) - ATM(R_0)$
P_3	R_0, R_1, R_2		$ATM(R_2) = DTM(P_3) -$
			$(ATM(R_0) \cup ATM(R_1))$

Code:

```
ds_dict = {}
for index,row in dataset.iterrows():
    if row['Author Id'] in ds_dict.keys():
        ds_dict[row['Author Id']].append(row['Paper Id'])
    else:
        narr = []
        narr.append(row['Paper Id'])
        ds_dict[row['Author Id']] = narr
```

```
dataset = pd.read_csv("data/author_paper_metadata_hepth_multi_authors.csv")
#List all paper's topic word file
paper topics name list = []
for file in os.listdir("paper_topics"):
   paper_topics_name_list.append(file)
new_single_hepth_author = {}
#Find single authored and available papers
req_papers = []
for key, row in dataset.iterrows():
    row["Paper Id"] = ast.literal_eval(row["Paper Id"])
    auth_id = row["Author Id"]
    paper_list = []
    for pap_val in row["Paper Id"]:
        if str(pap_val) + ".csv" in paper_topics_name_list:
           req_papers.append(str(pap_val) + ".csv")
           pap_val = str(pap_val)
        paper_list.append(pap_val)
    new_single_hepth_author[auth_id] = paper_list
```

Paper Id Topic Words 9112005 ('gravity': 0.07292903904570625, 'conformal': 0.04866697830891549, 'action': 0.043330940782050666, 'conformally': 0.038940587833003804, 'dimensional': 0.038832231606591975, 'theory': 0.03167 9212075 ('model': 0.04515868958741049, 'constant': 0.04199659684671586, 'operators': 0.03845842609763776, 'cosmological': 0.03257137824764918, 'order': 0.02933332517424979, 'gravity': 0.02582037944: 9412051 ['gravity': 0.06759761902105518, 'theory': 0.06323599936659376, 'model': 0.06289248717691442, 'xed': 0.054396765407798586, 'string': 0.04791596493480218, 'eld': 0.028813338038300662, 'point': 9506118 {'theory': 0.03601060841211625, 'string': 0.033835672415639007, 'node': 0.025272165076122115, 'scale': 0.024744136432781533, 'order': 0.023509492220846834, 'eld': 0.022454760870734555, 'genu 9601003 ('string': 0.09652447228585227, 'brane': 0.0899652469268262, 'action': 0.07384958328863975, 'theory: 0.07294306594925103, 'eld': 0.06269626705402224, 'type': 0.05362566055786222, 'branes': 0. 9701113 ['point': 0.03434671378328859, 'critical': 0.033540727834028054, 'model': 0.027955962290275242, 'theory': 0.023914673171799794, 'eld': 0.023011982922524238, 'phase': 0.02152936764373926, 'ten 9707225 ("brane": 0.03506174067643554, "theory": 0.034307942435438166, 'dimensional": 0.03227499073698188, 'model": 0.029807988122076804, 'eld': 0.02801925382306993, 'string': 0.02695099941104774, 9912155 ['theory': 0.0828334863614093, 'conformal': 0.03887447701583678, 'gravity': 0.030496187709099395, 'points': 0.025500423762684604, 'supergravity': 0.024144876964466502, 'xed': 0.0215593353752 9912156 ('constant': 0.07246492610664056, 'dimensional': 0.07108192156563282, 'theory': 0.06968379461171337, 'ads': 0.04510396420548321, 'cosmological': 0.03754216585127499, 'gauge': 0.03661652667' 5248 ['supersymmetry': 0.07504230041913171, 'brane': 0.07439881084022926, 'constant': 0.069344221277795845, 'bulk': 0.05161006977893012, 'supergravity': 0.043106575392968374, 'cosmological': 0.04 $11065 \ ['theorems': 0.046927845801360016, 'axiom': 0.03708471434528876, 'theory': 0.03702988136975878, 'axioms': 0.03343777949170518, 'logical': 0.03320326651983757, 'string': 0.03186410428058012, 'axiom': 0.03708471434528876, 'theory': 0.03702988136975878, 'axioms': 0.03434777949170518, 'logical': 0.03320326651983757, 'string': 0.03186410428058012, 'axiom': 0.03708471434528876, 'theory': 0.03702988136975878, 'axioms': 0.03708471434528876, 'theory': 0.03702988136975878, 'axioms': 0.03708471434528876, 'theory': 0.03708476, 'theory': 0.03$ 207203 ('theory': 0.060171105908510096, 'string': 0.0458110622219694, 'constant': 0.04131737509408402, 'model': 0.025252341730011278, 'standard': 0.023736620970184856, 'dimensional': 0.02132314776 9109003 ('fields': 0.07744539996852072, 'chiral': 0.045733575575505225, 'point': 0.04420982038627935, 'function': 0.04049199151347113, 'renormalization': 0.030899240407166746, 'field': 0.0301789750106 9112075 ['quantum': 0.033096638147438726, 'potential': 0.023459046118720774, 'potentials': 0.02060894875120063, 'algebra': 0.020382566061697374, 'energy': 0.01604718864902788, 'solvable': 0.0160307 9112072 ('function': 0.040376085311471265, 'lattice': 0.032585306315680816, 'wilson': 0.030300579428050693, 'simons': 0.0287034066384797, 'chern': 0.02756911224138281, 'theory': 0.02615973047660088 9205090 ['model': 0.06731396765754181, 'dimensional': 0.038669697038919565, 'operator': 0.03681928293963684, 'simplexes': 0.033399626597758886, 'dimensions': 0.03228292096364774, 'group': 0.02786 9210028 ['equation': 0.05274425792384175, 'model': 0.04051769808337195, 'dyson': 0.03616815051488102, 'schwinger': 0.035678739104424616, 'sum': 0.029257334020975096, 'simplicial': 0.0231029958686' 9709211 ['theory': 0.13321210713137357, 'brane': 0.05245968773395165, 'branes': 0.0424091457767356, 'gauge': 0.04187006254434072, 'branch': 0.03712337885183439, 'hep': 0.030048589598304323, 'vebrai 9909040 ('loop': 0.12090578355223601, 'boundary': 0.06733383293184472, 'wilson': 0.0636104058256066, 'theory': 0.0609111505569192, 'ads': 0.05911000378375748, 'string': 0.04329183181158901, 'gauge': 9110043 ['bravais': 0.09412688548146708, 'classes': 0.07877778786526689, 'materials': 0.06758138726294925, 'lattices': 0.064686130710642, 'space': 0.060332120173529326, 'fourier': 0.05984895285658769, 9110044 ('action': 0.07076951093909127, 'model': 0.0658919406975032, 'symmetry': 0.05528092111544086, 'space': 0.04984188636225061, 'gauge': 0.046460775833311624, 'black': 0.040031351075557255, 'ta 9108026 ('action': 0.09529506383912274, 'model': 0.08247303867306388, 'theory': 0.05220162428234283, 'symmetry': 0.04937647924119899, 'dimensional': 0.041697116621067946, 'gauge': 0.039322042379-9601137 ['theory': 0.12108805487725124, 'representation': 0.07127373790089359, 'form': 0.0669891457719515, 'abc': 0.05922595092267385, 'lagrangean': 0.050930355966310306, 'gauge': 0.04037990698131 9603137 ('model': 0.25472467157861967, 'sin': 0.14892034007188548, 'cos': 0.1487573998228735, 'term': 0.13144138262717703, 'zumino': 0.09527554701445151, 'chiral': 0.09223800230583695, 'gauge': 0.086 9604066 ('singularity': 0.09936295804428405, 'string': 0.08872951979180249, 'universe': 0.08793284796617562, 'sin': 0.08617111299261537, 'theory': 0.08071062169030382, 'solution': 0.07961136807428801, 9609088 ['term': 0.0978697936044775, 'coordinate': 0.06605547715577777, 'hole': 0.059943274864450447, 'geometry': 0.05970154033207842, 'solution': 0.051009876730089464, 'metric': 0.050461848008510 210056 ('spacetime': 0.07493233558460505, 'ads': 0.06944336205128321, 'entropy': 0.056373102009087156, 'black': 0.05220290405435368, 'hole': 0.051299836113849834, 'case': 0.05078900778327182, 'gray 9110045 [super': 0.12479119504393921, 'algebras': 0.07972232011551819, 'algebra': 0.07407208600212732, 'reduction': 0.06404426519971965, 'hamiltonian': 0.05537445529954349, 'osp': 0.05155786336311

```
pap_auth_df = pd.read_csv("papId_authId.csv", dtype='str')
pap_auth_df.head()

Paper Id Author Id

0 9112005 ['1']

1 9112014 ['2', '34', '30', '33']

2 9109003 ['3']

3 9108020 ['4', '5']

4 9112074 ['6', '7', '11', '12']
```

```
authors_words = copy.deepcopy(single_author_word)
paper_unknown_list = {}
paper_papWords = {}
count = 0
for it in range(0, 75):
    for paper_id, author_id_list in pap_auth_df.items():
       rowAuth = ast.literal eval(author id list)
        if paper_id not in paper_topic_word.keys():
       count += 1
        if len(rowAuth) > 1:
            unknown list = []
            paper_words = ast.literal_eval(paper_topic_word[paper_id])
            for authId in rowAuth:
                if authId in authors_words.keys():
                    paper_words = {k:v for k,v in paper_words.items() if k not in authors_words[authId]}
                   unknown_list.append(authId)
            if len(unknown_list) == 1:
               authors_words[unknown_list[0]] = paper_words
            paper_papWords[paper_id] = paper_words
            paper_unknown_list[paper_id] = unknown_list
for paper_id, uk_list in paper_unknown_list.items():
   paper_words = paper_papWords[paper_id]
    #break
    for authId in uk_list:
        if authId not in authors_words.keys():
            authors_words[authId] = paper_words
```

7. Final output :

Final output consisting of portraits for each author.

Author Id Topic Words																		
1 {'string': 0.096524	47228585227,	'brane': 0.08	996522469268	262, 'theory	0.082833486	3614093, 's	upersymm	etry': 0.075	042300419	13171, 'act	ion': 0.0738	195832886	3975, 'gravi	ity': 0.0729	29039045	70625, 'con	stant': 0.07	246492610664
3 {'fields': 0.077445	39996852072,	'chiral': 0.045	573357557550	5225, 'point'	0.044209820	38627935, 1	function': 0	.040491991	51347113,	'renormali	zation': 0.0	8089924040	7166746, 1	field': 0.03	01789750	10653333, '	susy': 0.022	83791890762
10 {'quantum': 0.033	096638147438	726, 'potenti	ial': 0.0234590	4611872077	, 'potentials'	: 0.0206089	4875120063	, 'algebra':	0.0203825	560616973	74, 'energy'	0.0160471	886490278	8, 'solvabl	e': 0.01603	3076635177	98, 'infinit	e': 0.01602717
14 {'theory': 0.13321	210713137357	, 'loop': 0.120	090578355223	601, 'bounda	ry': 0.067333	3329318447	2, 'model':	0.06731396	765754181	, 'wilson':	0.063610405	8256066, 1	ads': 0.0591	110003783	75748, 'eq	uation': 0.0	527442579	2384175, 'brai
22 {'bravais': 0.09412	2688548146708	3, 'classes': 0.	07877778786	26689, 'mat	erials': 0.0675	8138726294	1925, 'lattice	es': 0.06468	8613071064	2, 'space':	0.06033212	173529326	, 'fourier':	0.0598489	528565876	59, 'group':	0.0515475	.899470611, '\
23 {'model': 0.25472	467157861967	, 'sin': 0.1489	203400718854	8, 'cos': 0.14	37573998228	735, 'term':	0.13144138	262717703,	'theory': 0	.12108805	487725124,	singularity	1: 0.099362	95804428	405, 'action	n': 0.095295	063839122	74, 'zumino':
24 {'exp': 0.17795621	L305573872, 's	uper': 0.1247	911950439392	1, 'algebras'	0.079722320	11551819, '	bsl': 0.0762	5222807356	5081, 'algeb	ora': 0.0740	7208600212	732, 'redu	ction': 0.06	404426519	9971965, 'r	elations': 0	.060581839	329096686, 'c
29 {'boundary': 0.196	544274304001	924, 'hep': 0.1	105795912713	37341, 'eld':	0.0974051128	7327495, 'q	uantum': 0.	091450069	63868807,	theory': 0.	0851393406	6378862, 't	heories': 0	.08017223	794715499	, 'matrix': (0.05220827	793278175, 'ir
31 {'theory': 0.24234	069875367412	, 'supersymn	netry': 0.1757	32757005790	83, 'constant	: 0.1692661	6362000846	, 'boundar	y': 0.152230	037766972	594, 'dimen	sions': 0.15	178992049	936985, 'c	osmologic	al': 0.14185	835843005	956, 'dimensi
32 {'spin': 0.1183758	9904401233, 'a	action': 0.112	703310461131	88, 'quantur	n': 0.0791297	165954659,	'gauge': 0.0	7859466933	3141011, 'ca	ase': 0.078	1005978548	0575, 'orde	r': 0.07115	628655134	011, 'form	': 0.055182	450810397	3, 'metric': 0.0
35 {'gauge': 0.230259	2513128148, '	theory': 0.15	120932110166	43, 'string': (.1062536789	274283, 'chi	ral': 0.10231	226566629	997, 'hole'	0.0888928	3908031627,	'dimensio	nal': 0.0858	890686462	07351, 'ka	plan': 0.085	246970822	48187, 'matrix
40 {'action': 0.104669	96698131282, '	theory': 0.07	937125260147	393, 'gravity	: 0.07820568	04188962, 's	string': 0.074	4240592589	99285, 'lett	: 0.072280	8836747825	B, 'iib': 0.0	7111617525	705118, 's	tates': 0.0	5631638655	6051808, 'q	uantum': 0.06
56 {'string': 0.185167	31733789143,	'theory': 0.12	275198663707	745, 'branes'	0.086616857	3295784, 'd	lirichlet': 0.0	0719075271	1713076, 'h	ep': 0.0710	4499439339	498, 'duali	ty': 0.06770	082427501	3712, 'blac	k': 0.06484	826500691	736, 'xed': 0.0
21 {'theory': 0.32056	556615944864	, 'duality': 0.2	248220759315	15405, 'type	0.232607398	87948295,	string': 0.22	652312742	192138, 'br	ane': 0.22	4138800541	4524, 'trar	sformatio	n': 0.16387	754142393	4726, 'dime	ensional': 0	15452046245
67 {'models': 0.12532	208899029910	6, 'matrix': 0.	114443378965	09542, 'inte	ral': 0.06281	3640073925	43, 'functio	n': 0.056882	2440820615	666, 'super	matrix': 0.0	553397711	3728351, 'o	rdinary': 0	.04918798	487570483,	'bosonic':	0.0446921110
52 {'duality': 0.04670	800641585944	, 'solution': (0.04482557114	330261, 'tim	e': 0.0446961	0217791500	04, 'matter':	0.04308451	1099412588	3, 'action':	0.03333752	54433266,	'case': 0.03	311291046	63033147,	'equations	1: 0.030297	341700732408
85 {'operators': 0.078	800846092656	61, 'vertex': 0	0.07753109315	898232, 'stri	ng': 0.061040	0500224705	4, 'picture':	0.04728920	0848533304	1, 'basis': 0	.042937174	62477265,	'moduli': 0	0.04137746	954587193	3, 'hep': 0.0	388693683	5080945, 'com
86 {'singular': 0.1298	219178919489	7, 'vectors': 0	0.1114747932	511937, 'hig	nest': 0.07447	403008160	428, 'kontse	vich': 0.072	2416151554	194857, 'vii	rasoro': 0.06	374432691	443377, 'w	eight': 0.0	613780925	48477994,	'miwa': 0.0	460100249852
110 {'ination': 0.13129	9321070088068	3, 'universe':	0.0942524877	1628214, 'me	duli': 0.0904	5600897177	786, 'roll': 0	.077825328	3550732, 'e	ld': 0.0772	5639491442	73, 'proble	m': 0.07347	765370299	7806, 'solu	tion': 0.058	817858945	722515, 'bran