Motion Estimation 运动估计

彭小江,博士,副教授 深圳技术大学

邮箱: pengxiaojiang@sztu.edu.cn

主页: https://pengxj.github.io/

Outline

- Motion Estimation
 - Motion Field
 - Optical Flow Field
- Methods for Optical Flow estimation
 - Discrete Search
 - 2. Lukas-Kanade Approach to Optical Flow
 - Optical Flow Constraint Equation
 - Aperture Problem
 - Pyramid Approach

Why estimate motion?

- Lots of uses
 - Track object(s)
 - Correct for camera jitter (stabilization)
 - Align images (mosaics)
 - 3D shape reconstruction
 - Special effects

Optical Flow and Motion Field

- Optical flow is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
 - Usually represent optical flow by a 2 dimensional vector (u, v)

Rubik's cube rotating to the right on a turntable

Optical Flow and Motion Field

- Optical flow is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
 - changes are due to the RELATIVE MOTION between the scene and the camera
 - There are 3 possibilities:
 - Camera still, moving scene
 - Moving camera, still scene
 - Moving camera, moving scene
- Optical Flow is what we can estimate from image sequences

Motion Field (MF)

- The actual relative motion between 3D scene and the camera is 3 dimensional
 - motion will have horizontal (x), vertical (y), and depth (z) components, in general
- We can project these 3D motions onto the image plane
- What we get is a 2 dimensional motion field
- Motion field is the <u>projection</u> of the actual 3D motion in the scene onto the image plane
- Motion Field is what we actually need to estimate for applications

Examples of Motion Fields

(a) Translation perpendicular to a surface. (b) Rotation about axis perpendicular to image plane. (c) Translation parallel to a surface at a constant distance. (d) Translation parallel to an obstacle in front of a more distant background.

Optical Flow vs. Motion Field

- Optical Flow is the apperent motion of brightness patterns
- We equate Optical Flow Field with Motion Field
- Frequently works, but not always

- (a) A smooth sphere is rotating under constant illumination.
 Thus the optical flow field is zero, but the motion field is not
- (b) A fixed sphere is illuminated by a moving source—the shading of the image changes. Thus the motion field is zero, but the optical flow field is not

Optical Flow vs. Motion Field

- Famous Illusions
 - Optical flow and motion fields do not coincide

Optical Flow vs. Motion Field

Motion field and Optical Flow are very different

from Gary Bradski and Sebastian Thrun

Discrete Search for Optical Flow

$$\min_{(u,v)} \left\{ \sum_{(x,y) \in W} |I(x+u,y+v) - H(x,y)|^2 \right\}$$

- search over a specified range of (u,v) values
 - this (u,v) range defines the search range
- can use integral image technique for fast search

- Can we estimate optical flow without the search over all possible locations?
 - Yes! If the motion is small...
- Let P be a moving point in 3D
 - At time t, P has coordinates (X(t), Y(t), Z(t))
 - Let p=(x(t),y(t)) be the coordinates of its image at time t
 - Let I(x(t),y(t),t) be the brightness at p at time t.
- Brightness Constancy Assumption:
 - As P moves over time, I(x(t),y(t),t) remains constant

$$I[x(t),y(t),t] = constant$$

Taking derivative with respect to time:

$$\frac{dI[x(t),y(t),t]}{dt}=0$$

$$\frac{\partial I}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial I}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial I}{\partial t} = 0$$

1 equation with 2 unknowns

$$\frac{\partial \boldsymbol{I}}{\partial \boldsymbol{x}} \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{t}} + \frac{\partial \boldsymbol{I}}{\partial \boldsymbol{y}} \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{t}} + \frac{\partial \boldsymbol{I}}{\partial \boldsymbol{t}} = \boldsymbol{0}$$

$$\nabla I = \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{bmatrix}$$
 (Frame spatial gradient)

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{x}}{\partial t} \\ \frac{\partial \mathbf{y}}{\partial t} \end{bmatrix}$$
 (optical flow)

$$\boldsymbol{I_t} = \frac{\partial \boldsymbol{I}}{\partial \boldsymbol{t}}$$

 $I_t = \frac{\partial I}{\partial t}$ (derivative across frames)

$$\frac{\partial \boldsymbol{I}}{\partial \boldsymbol{x}} \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{t}} + \frac{\partial \boldsymbol{I}}{\partial \boldsymbol{y}} \frac{\partial \boldsymbol{y}}{\partial \boldsymbol{t}} + \frac{\partial \boldsymbol{I}}{\partial \boldsymbol{t}} = \boldsymbol{0}$$

Written using dot product notation:

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \cdot \begin{bmatrix} u \\ v \end{bmatrix} + I_t = 0$$

Where I have used more compact notation:

$$\frac{\partial I}{\partial x} = I_x \qquad \frac{\partial I}{\partial y} = I_y$$

1 equation with 2 unknowns:
$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \cdot \begin{bmatrix} u \\ v \end{bmatrix} + I_t = 0$$

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- Recall that gradient points in the direction perpendicular to the edge
- The component of the flow parallel to an edge is unknown

Aperture problem

Aperture problem

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

$$I_{t}(\mathbf{p}_{i}) + \nabla I(\mathbf{p}_{i}) \cdot \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \mathbf{0}$$

$$\begin{bmatrix} I_{x}(\mathbf{p}_{1}) & I_{y}(\mathbf{p}_{1}) \\ I_{x}(\mathbf{p}_{2}) & I_{y}(\mathbf{p}_{2}) \\ \vdots & \vdots \\ I_{x}(\mathbf{p}_{25}) & I_{y}(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p}_{1}) \\ I_{t}(\mathbf{p}_{2}) \\ \vdots \\ I_{t}(\mathbf{p}_{25}) \end{bmatrix}$$
matrix \mathbf{A} vector \mathbf{d} vector \mathbf{b}

$$25x2 \qquad 2x1 \qquad 25x1$$

- I_x and I_y are computed just as before (recall lectures on filtering)
 - For example, can use Sobel operator

1	-1	0	1
8	-2	0	2
	-1	0	1
s_x			

1	1	2	1
8	0	0	0
	1	-2	-1
•		s_y	

 Note that 1/8 factor is now mandatory, unlike in edge detection, since we want the actual gradient value

I_t is the derivative between the frames

121	121	122	123	122	123
121	121	122	123	122	123
122	123	124	123	124	123
120	122	122	123	122	123
121	121	124	123	124	123
125	120	124	123	124	123

 I^5 : frame at time = 5

121	121	122	123	20	20
121	121	122	123	22	22
122	123	124	123	24	21
120	122	122	123	22	22
121	121	124	123	24	23
125	120	124	123	24	24

 I^6 : frame at time = 5

- Simplest approximation to $I_t(p) = I^{t+1}(p) I^t(p)$
- For example for pixel with coordinates (4,3) above

$$I_t(4,3) = 22 - 122 = -100$$

Lukas-Kanade flow

$$\begin{bmatrix} I_{x}(p_{1}) & I_{y}(p_{1}) \\ I_{x}(p_{2}) & I_{y}(p_{2}) \\ \vdots & \vdots \\ I_{x}(p_{25}) & I_{y}(p_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(p_{1}) \\ I_{t}(p_{2}) \\ \vdots \\ I_{t}(p_{25}) \end{bmatrix}$$
matrix \mathbf{A} vector \mathbf{d} vector \mathbf{b}
25x2 2x1 25x1

- Problem: now we have more equations than unknowns
 - Where have we seen this before?
- Can't find the exact solution d, but can solve Least Squares Problem:

$$A \quad d = b \qquad \longrightarrow \quad \text{minimize } ||Ad - b||^2$$

Lukas-Kanade flow

$$A \quad d = b \qquad \longrightarrow \quad \text{minimize } ||Ad - b||^2$$

- Solution: solve least squares problem
 - minimum least squares solution given by solution (in d) of:

$$(A^T A) d = A^T b$$
2×2 2×1 2×1

$$\begin{bmatrix} \sum_{i=1}^{I_{x}I_{x}} & \sum_{i=1}^{I_{x}I_{y}} \\ \sum_{i=1}^{I_{x}I_{y}} & \sum_{i=1}^{I_{y}I_{y}} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = -\begin{bmatrix} \sum_{i=1}^{I_{x}I_{t}} \\ \sum_{i=1}^{I_{y}I_{t}} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)
- Note: solution is at sub-pixel precision, that is you can get answer like u= 0.7 and v = -0.33
 - Contrast this with discrete search: to find answer at sub-pixel precision, you have to search at sub-pixel precision (usually)

Does $A^{T}A$ seem familiar?

$$\left[\begin{array}{ccc} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{array}\right]$$

Harris corner detector

Harris corner detector: Revision

Flat region: No change in all directions

Edge:No change along the edge direction

Corner: Change in all directions

Harris corner detector mathematically determines these three cases

Implications

- Corners are regions with two dominant gradient directions
 - Both λ_1 , λ_2 are big
- ∠ Lucas-Kanade works best at corners
- No aperture problem at corners
- Corners are good features to compute optical flow

Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum_{i=1}^{I_{x}I_{x}} & \sum_{i=1}^{I_{x}I_{y}} \\ \sum_{i=1}^{I_{x}I_{y}} & \sum_{i=1}^{I_{x}I_{y}} \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = -\begin{bmatrix} \sum_{i=1}^{I_{x}I_{t}} \\ \sum_{i=1}^{I_{x}I_{y}} \end{bmatrix}$$

$$A^{T}A$$

$$A^{T}b$$

- When is this solvable?
 - A^TA should be invertible
 - A^TA entries should not be too small (noise)
 - A^TA should be well-conditioned
 - λ_1/λ_2 should not be too large (λ_1 = larger eigenvalue)
 - The eigenvectors of A^TA relate to edge direction and magnitude

Edge

- gradients very large or very small
- large λ_1 , small λ_2

Low texture region

- gradients have small magnitude
- small λ_1 , small λ_2

High textured region

- $\sum \nabla I (\nabla I)^T$
 - gradients are different, large magnitudes
 - large λ_1 , large λ_2

Observation

- This is a two image problem BUT
 - Can measure sensitivity by just looking at one of the images!
 - This tells us which pixels are easy to track, which are hard
 - very useful for feature tracking

Errors in Lucas-Kanade

- What are the potential causes of errors in this procedure?
 - Suppose A^TA is easily invertible
 - Suppose there is not much noise in the image
- When our assumptions are violated
 - Brightness constancy is **not** satisfied
 - The motion is not small
 - A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Iterative Refinement

- Iterative Lucas-Kanade Algorithm
 - Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field
 - use image warping techniques
 - 3. Repeat until convergence

Optical Flow Results

^{*} From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Coarse-to-fine optical flow estimation

Image warping

• Given a coordinate transform (x',y') = h(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward warping

 Send each pixel f(x,y) to its corresponding location

(x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Forward warping

 Send each pixel f(x,y) to its corresponding location

(x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

- Known as "splatting"

Optical Flow Results

^{*} From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Dense Optical Flow

- ∠ Lucas-Kanade will only find optical flow at certain points (corners)
- Sometimes, we need to find optical flow at all pixels
- We will cover one algorithm for dense optical flow in this lecture
 - Farneback's two frame optical flow
 - Implemented in OpenCV

Farneback's two frame optical flow

- ☑ Based on polynomial expansion of a neighbourhood of pixels
- Approximate each pixel neighbourhood by a polynomial

$$f_1(\mathbf{x}) = \mathbf{x}^{ op} \mathbf{A}_1 \mathbf{x} + \mathbf{b}_1^{ op} \mathbf{x} + \mathbf{c}_1$$

$$f_2(\mathbf{x}) = f_1(\mathbf{x} - \mathbf{d}) = (\mathbf{x} - \mathbf{d})^{\top} \mathbf{A}_1(\mathbf{x} - \mathbf{d}) + \mathbf{b}_1^{\top}(\mathbf{x} - \mathbf{d}) + \mathbf{c}_1$$

$$= \mathbf{x}^{\top} \mathbf{A}_1 \mathbf{x} + (\mathbf{b}_1 - 2\mathbf{A}_1 \mathbf{d})^{\top} \mathbf{x} + \mathbf{d}^{\top} \mathbf{A}_1 \mathbf{d} - \mathbf{b}_1^{\top} \mathbf{d} + \mathbf{c}_1$$

$$= \mathbf{x}^{\top} \mathbf{A}_2 \mathbf{x} + \mathbf{b}_2^{\top} \mathbf{x} + \mathbf{c}_2$$

☑ Thus

$$\mathbf{A}_2 = \mathbf{A}_1$$

$$\mathbf{b}_2 = \mathbf{b}_1 - 2\mathbf{A}_1\mathbf{d},$$

Farneback's Optical Flow

The key observation is

$$\mathbf{b}_2 = \mathbf{b}_1 - 2\mathbf{A}_1\mathbf{d}$$

We can calculate the value of the displacement i.e. the optical flow from this

$$2\mathbf{A}_1\mathbf{d} = -(\mathbf{b}_2 - \mathbf{b}_1)$$

 $\mathbf{d} = -\frac{1}{2}\mathbf{A}_1^{-1}(\mathbf{b}_2 - \mathbf{b}_1)$

✓ If A is non-singular

运动估计的应用

1. 数字视频稳定(Video stabilization)

运动估计的应用

2. 视频压缩编码(Video compressing)

实验8:光流及其显示

https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html