EXERCICE 1C.1

On a donné les valeurs exactes du sinus et cosinus de quelques angles remarquables entre 0 et 90°.

Point								Ī	A	В	C	J				
$x(^{\bullet})$								0	30	45	60	90				
x (rad)	$-\frac{5\pi}{6}$	$-\frac{3\pi}{4}$	$-\frac{2\pi}{3}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
cos x								1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0				
sin x								0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1				

- a. Retrouver le point qui correspond à chaque angle.
- **b.** En déduire les valeurs exactes des cosinus et sinus de tous les angles du tableau.

EXERCICE 1C.2 Calculer dans ch	aque cas l'expression pour la valeur d	de x donnée :
$f(x) = -2\sin x \qquad \text{pour } x = \frac{\pi}{2}$	$f(x) = 5\cos x + 3\sin x \text{pour } x = \frac{\pi}{3}$	$f(x) = 3\cos^2 x \qquad \text{pour } x = \pi$
$f(x) = \cos x \sin x$ pour $x = \frac{\pi}{2}$	$f(x) = \sin^2 x \text{pour } x = \frac{\pi}{3}$	$f(x) = \cos 3x$ pour $x = -\frac{\pi}{2}$
$f(x) = x \sin x$ pour $x = -\frac{\pi}{6}$	$f(x) = \frac{\cos x - \sin x}{2}$ pour $x = \frac{\pi}{4}$	$f(x) = \cos^2 x \times \sin x$ pour $x = \frac{2\pi}{3}$

CORRIGE - NOTRE DAME DE LA MERCI - MONTPELLIER

EXERCICE 1C.1

Point	E	L	F	J'	N	G	M	Ι	A	В	C	J	Н	D	K	I'
<i>x</i> (°)	-150	-135	-120	-90	-60	-45	-30	0	30	45	60	90	120	135	150	180
x (rad)	$-\frac{5\pi}{6}$	$-\frac{3\pi}{4}$	$-\frac{2\pi}{3}$	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
cos x	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
sin x	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

- a. Retrouver le point qui correspond à chaque angle.
- **b.** En déduire les valeurs exactes des cosinus et sinus de tous les angles du tableau.

$$\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \quad \text{et} \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \quad \text{et} \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \quad \text{et} \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

EXERCICE 1C.2: Calculer dans c	chaque cas l'expression pour la valeur	de x donnée :
$f(x) = -2\sin x \qquad \text{pour } x = \frac{\pi}{2}$	$f(x) = 5\cos x + 3\sin x \text{pour } x = \frac{\pi}{3}$	$f(x) = 3\cos^2 x \qquad \text{pour } x = \pi$
$f\left(\frac{\pi}{2}\right) = -2\sin\left(\frac{\pi}{2}\right) = -2 \times 1 = -2$	$f\left(\frac{\pi}{3}\right) = 5\cos\left(\frac{\pi}{3}\right) + 3\sin\left(\frac{\pi}{3}\right)$	$f(\pi) = 3(\cos(\pi))^2$
(-)	$= 5 \times \frac{1}{2} + 3 \times \frac{\sqrt{3}}{2} = \frac{5 + 3\sqrt{3}}{2}$	$=3\times \left(-1\right)^2=3$
$f(x) = \cos x \times \sin x$ pour $x = \frac{\pi}{2}$	$f(x) = \sin^2 x \qquad \text{pour } x = \frac{\pi}{3}$	$f(x) = \cos 3x$ pour $x = -\frac{\pi}{2}$
$f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) \times \sin\left(\frac{\pi}{2}\right)$	$f\left(\frac{\pi}{3}\right) = \left(\sin\left(\frac{\pi}{3}\right)\right)^2 = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4}$	$f\left(-\frac{\pi}{2}\right) = \cos\left(3 \times \left(-\frac{\pi}{2}\right)\right)$
$=0\times1=0$		$=\cos\left(-\frac{3\pi}{2}\right)=0$
$f(x) = x \sin x$ pour $x = -\frac{\pi}{6}$	$f(x) = \frac{\cos x - \sin x}{2}$ pour $x = \frac{\pi}{4}$	$f(x) = \cos^2 x \times \sin x$ pour $x = \frac{2\pi}{3}$
$f(x) = -\frac{\pi}{6} \times \sin\left(-\frac{\pi}{6}\right)$	$f\left(\frac{\pi}{4}\right) = \frac{\cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{4}\right)}{2}$	$f\left(\frac{2\pi}{3}\right) = \left(\cos\left(\frac{2\pi}{3}\right)\right)^2 \times \sin\left(\frac{2\pi}{3}\right)$
$= -\frac{\pi}{6} \times \left(-\frac{1}{2}\right) = \frac{\pi}{12}$	$\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = 0$	$= \left(-\frac{1}{2}\right)^2 \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{8}$
	$ \stackrel{\angle}{\sim}$ $\stackrel{\angle}{\sim}$ $ 0$	4