Addressing: Is HID scoping necessary?

- No in theory
 - HIDs are globally unique, so each HID refers to only one host and there is no confusion
- Yes in practice
 - Too many hosts globally, so it is impossible to keep routing information for all of them at each router
 - Current Internet doesn't need explicit scoping since CIDR provides implicit scoping by prefix
 - To address some HID in a remote AD, it must be scoped by the AD in the routing DAG
 - HIDs without AD scoping are assumed to be in the local AD
- Multiple levels of scoping
 - With one level of scoping, the number of hosts inside a domain may be too large to keep individual entries in the route table
 - Larger ADs may have several sub-ADs (similar to AIP)
 - Hiding sub-ADs
 - Possible security etc. issues with exposing sub-AD configuration?
 - May be useful, e.g. to support migration
 - Can use NATs that expand HID nodes to sub-AD → HID DAG

Control plane: Which elements of the architecture manage route calculation?

- In current Internet, this is distributed for both intra and inter domain
 - Individual routers exchange info then calculate routes using same algorithm
- In XIA, we can centralize this in the controllers within an AD
 - Controller gathers info, calculates routes, then distributes routes within AD
 - ADs and controllers have many-to-many relationship
 - Large ADs may have distributed controllers
 - One controller can manage several ADs

Data plane: What information should routing tables contain?

- Current Internet
 - (dst IP, netmask) → (gateway, interface)
 - Other info for path selection, e.g. cost
- XIA
 - o (dst XID type, dst XID) → (gateway, interface)
 - o How to do flow-based routing?
 - Use fixed-length flow ID, which is the hash of source and destination DAGs concatenated and other relevant information (from David Naylor's whiteboard on Basecamp)
 - i.e. (flow type ID, hash) → (gateway, interface)
 - Note on XION
 - After processing SCION header, routing is done by (AD, egress AD ID)
 - Maybe after initial processing, can cache entry
 - (XION, dst XION ID) → (gateway, interface)

- Maybe even allow references in case routes change
 - (XION, dst XION ID) → (AD, egress AD ID)

Example topology

This demonstrates the routing tables after intra domain routing is running.

Legend:

Shapes	Blue circle = controller Green box = router Orange triangle = host
Lines	Solid black = physical links Dotted black = logical links Solid pink = AD grouping
Numbers	Interfaces

Interdomain routing: How to identify boundary routers?

• In the current Internet, boundary routers are statically configured

- BGP set up as TCP sessions across point-to-point links
- Susceptible to misconfiguration.
- Not secure: prefix hijacking, man-in-the-middle attacks
 - http://www.nanog.org/meetings/nanog49/presentations/Tuesday/ HowSecure NANOG print.pdf
- For XIA, boundary routers can be dynamically discovered
 - Self-identify through HELLO messages received from neighboring ADs
 - Intrinsic security prevents spoofing

Interdomain routing: Where does interdomain protocol run?

- Current Internet
 - eBGP between boundary routers
 - iBGP required to distribute routes internally
 - usually fully meshed; special rules/configuration to avoid looping
- In XIA, routing handled by controller
 - "xBGP" between controllers instead of routers
 - Done over logical links
 - → AD(neighbor) → SID(controller) or SID(BGP)
 - Essentially, back to the one "router" per AD scenario (see diagram below)
 - Similar to Routing Control Platform.
 - This removes issues of configuring a full mesh of iBGP sessions, and using route reflectors.
 - Once we have support for intradomain AD and SID routing, a naive version of xBGP that uses OSPF can be implemented first.
 - No need for iBGP
 - Controller distributes routes within AD
 - Only exchange AD reachability info (not HIDs)

Interdomain routing: How to express preference across multiple exit points for outgoing traffic?

- In current Internet, ASes use local preference
 - Higher local preference value = higher preference
 - Exchanged between routers within the same AS

For XIA, local preference can be configured/decided at controllers

Interdomain routing: How to express preference across multiple exit points for incoming traffic?

- In current Internet, ASes use MED to indicate preference to neighboring AS
 - Lower MED value = higher preference
 - MED is usually ignored if no financial settlement, like peering
- For XIA, if we only route by highest-level AD, then there will not be fine-grained control of exits used
 - Consider an example: AS C is customer of AS P, and both have their own networks spanning the US
 - Host 1 in AS C, located in Boston, wants to send a packet to host 2 in AS C, located in San Fran
 - Ideally, C wants the packet to be transmitted across the U.S. in P's network since it is the provider
 - Current Internet supports this, as C can assign the lowest MED value to the ingress router in San Fran for host 2's prefix.
 - \circ For XIA, we use the DAG \rightarrow AD(P) \rightarrow AD(C) \rightarrow HID(2)
 - However, the partial DAG processed at P will be → AD(C) → HID(2)
 - This means P will likely put the packet back into C's network before it gets near HID(2), depending on metric used
 - If fewest hops used, then P will return C's packet immediately
- Possible solutions
 - Route by lower-level ADs (sub-ADs),
 e.g. → AD(P) → AD(C-California) → HID(2)
 - ASes in current Internet do use different AS numbers to express different routing policies
 - For large ADs that want certain hosts to be scoped using sub-ADs, they can advertize sub-AD reachability information and publish DAG that scopes these hosts by sub-AD to the name resolution service (assuming there's one)

Related questions:

- Does the AS just send out reachability info for relevant ADs that it wants to scope HIDs with?
 - This seems to work
- Will there be a case where a router only knows how to route to a higher level AD?
 - If so, can use fallback to the higher level AD, e.g. AD C publishes HID(2)'s DAG as:
 → AD(C-California) → HID(2), fallback → AD(C) → HID(2)
- Is it a good idea to create ADs just to take advantage of multiple exit points?
 - o Hosts can belong to multiple ADs, so should be fine
- xBGP details

- Each controller knows if an AD it manages is used for scoping and will thus advertize it to neighbors
- Dynamic MED configuration
 - Increase by certain amount for each sub-AD traversed
 - Cache MED values and advertize highest one
 - e.g. MED=0 for AD(C-Boston),
 MED=100 for AD(C-NY),
 MED=200 for AD(C-Philly)
- ASes will need to be able to identify ADs that belong to it
 - Is AS info implicit in XIP header?
 - If not, each controller can keep a statically configured list of ADs belonging to same AS
- $\circ \quad \text{New principal type for exit points or geography,} \\$
 - $e.g. \to AD(P) \to EXIT(SanFran) \to AD(C) \to HID(2)$
 - Used for route selection and doesn't affect route correctness
 - Can be ignored if router does not have route entry for it
 - Name resolution can include this type without requiring additional fallbacks
 - \circ e.g. \rightarrow EXIT(SanFran) \rightarrow AD(C) \rightarrow HID(2)
 - Interdomain routing
 - Seems like it will simplify interdomain routing protocols
 - Can just announce AD reachability as before, and internal routers can just use shortest egress route to send packets to the next hop AD
 - Intradomain routing
 - Need additional routing info for exit points, which can be calculated at controller
 - Just need to add geographic information to LSAs
- Middleboxes that temporarily modify the DAG to control exit points
 - Seems like most complicated and inflexible solution
 - When boundary routers exchange HELLO messages across AD boundaries, keep track of HID of other party
 - Select which egress point to use by scoping with HID of boundary router in the other AD
 - e.g. → AD(P) → HID(Boundary router of P near SanFran) → AD(C) → HID(2)
 - Source DAG has to do something similar
 - MB near HID(1) needs to know about boundary routers near HID(2)