Quadratic Functions

Hitchman

Linfield Academic Academy 2023

July 18, 2023

Quadratic Functions - Quick Review

- A quadratic function has the form $f(x) = ax^2 + bx + c$
 - ► The graph of a quadratic function is a parabola
 - ▶ The constant c is the y-intercept
 - ▶ If a > 0 the parabola "opens up"
 - ▶ If *a* < 0 the parabola "opens down"
 - ▶ If *a* = 0 the function is linear!
 - ► The *vertex* of the parabola occurs when $x = \frac{-b}{2a}$

Some parabolas

▶ Does the graph open up or down?

- Does the graph open up or down?
 - ▶ Up! Since the leading coefficient a = 2 is positive.

- Does the graph open up or down?
 - ▶ Up! Since the leading coefficient a = 2 is positive.
- ► What is the *y*-intercept?

- Does the graph open up or down?
 - ▶ Up! Since the leading coefficient a = 2 is positive.
- What is the y-intercept?
 - ▶ The graph crosses the *y*-axis at -1 since f(0) = -1. (c = -1 here)

- Does the graph open up or down?
 - ▶ Up! Since the leading coefficient a = 2 is positive.
- ► What is the *y*-intercept?
 - ▶ The graph crosses the *y*-axis at -1 since f(0) = -1. (c = -1 here)
- What are the coordinates of the vertex of the parabola?

- Does the graph open up or down?
 - Up! Since the leading coefficient a = 2 is positive.
- ► What is the *y*-intercept?
 - ▶ The graph crosses the *y*-axis at -1 since f(0) = -1. (c = -1 here)
- ► What are the coordinates of the vertex of the parabola? The x-coordinate is given by

$$x = \frac{-b}{2a} = \frac{-8}{2 \cdot 2} = -\frac{8}{4} = -2.$$

The *y*-coordinate is then

$$f(-2) = 2 \cdot (-2)^2 + 8 \cdot (-2) - 1$$

= 2 \cdot 4 - 16 - 1
= 8 - 17
= -9

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)?

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)?

Hmm... let's start by plotting the points.

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)?

A solution looks like $f(x) = ax^2 + bx + c$ where a, b, and c are constants.

Goal: Find values of the constants a, b, and c.

We plug in our three points to get three equations with three unknowns:

Point
$$(0,1) \to 1 = a(0)^2 + b(0) + c$$

Point
$$(2,3) \rightarrow 3 = a(2)^2 + b(2) + c$$

Point
$$(3,2) \rightarrow 2 = a(3)^2 + b(3) + c$$

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)? Simplifying the three equations:

(1)
$$1 = c$$

(2)
$$3 = 4a + 2b + c$$

3)
$$2 = 9a + 3b + c$$

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)?

Plug in c = 1 into the 2nd and 3rd equations:

(2)
$$2 = 4a + 2b$$

(3)
$$1 = 9a + 3b$$

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)? Solve the 2nd equation for b:

(2)
$$2 = 4a + 2b$$

(2)
$$1 = 2a + b$$

(2)
$$b = 1 - 2a$$

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)?

Substitute this expression for b into Eqn 3, and solve for a:

(2)
$$b = 1 - 2a$$

(3)
$$1 = 9a + 3b$$

$$(3) 1 = 9a + 3(1 - 2a)$$

(3)
$$-2 = 3a$$

(3)
$$a = -2/3$$

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)?

Now that we know a, we solve for b:

(3)
$$a = -2/3$$

(2)
$$b = 1 - 2a$$

(3)
$$b = 7/3$$

Question: Is there a quadratic function whose graph goes through the points (1,0), (2,3), and (3,1)?

Answer: Yes! It's

$$f(x) = -\frac{2}{3}x^2 + \frac{7}{3}x + 1.$$

Quadratic or not?

Are the 2nd differences constant (when generated from equally spaced x values)?

	,-
X	У
1	4
2	8
3	10
4	14
5	20

Quadratic or not?

Are the 2nd differences constant (when generated from equally spaced x values)?

X	У	
1	4	
2	8	
3	10	
4	14	
5	20	

Yep! The slope between any two pairs of points is the same! y increases by 2 for each increase of x by 1!

Х	у
1	2.0
2	4.0
3	6.0
4	7.9
5	10.1

X	У
1	2.0
2	4.0
3	6.0
4	7.9
5	10.1

As x increases by 1, y increases by about 2 each time - constant differences. So the relationship appears to be *linear*.

×	У
1	2.1
2	7.0
3	13.8
4	23.0
5	33.9

×	У
1	2.1
2	7.0
3	13.8
4	23.0
5	33.9

First differences are about 5, 7, 9, 11 - so not linear Second differences are 2, 2, 2 - constant! So *quadratic fit*.

X	У
1	2.3
2	1.1
3	0.4
4	0
5	0
6	0.4
7	1.2
R	2.5

Χ	У
1	2.3
2	1.1
3	0.4
4	0
5	0
6	0.4
7	1.2
8	2.5

1st diffs: -1.2, -0.7, -0.4, 0, 0.4, 0.8, 1.3 2nd diffs: 0.5, 0.3, 0.4, 0.4, 0.4, 0.5

Χ	У
1	2.3
2	1.1
3	0.4
4	0
5	0
6	0.4
7	1.2
8	2.5

```
1st diffs: -1.2, -0.7, -0.4, 0, 0.4, 0.8, 1.3
2nd diffs: 0.5, 0.3, 0.4, 0.4, 0.4, 0.5
Quadratic fit seems reasonable!
```

X	У
1	0.51
2	4.01
3	13.52
4	32.02
5	62.47
6	108.09
7	171.48
8	255.97

X	у
1	0.51
2	4.01
3	13.52
4	32.02
5	62.47
6	108.09
7	171.48
8	255.97

1st diffs: 3.50,9.51,18.50,30.45,45.62, 63.39, 84.49 2nd diffs: 6.01, 8.99, 11.95, 15.17, 17.77, 21.10 3rd diff: 2.98, 2.96, 3.22, 2.60, 3.33

у
0.51
4.01
13.52
32.02
62.47
108.09
171.48
255.97

1st diffs: 3.50,9.51,18.50,30.45,45.62, 63.39, 84.49 2nd diffs: 6.01, 8.99, 11.95, 15.17, 17.77, 21.10 3rd diff: 2.98, 2.96, 3.22, 2.60, 3.33 Hmm... 3rd differences nearly constant. *Cubic?*