Моделирование распространения высокоэнергетичных электронов и гамма-квантов в атмосферных электрических полях

Зелёный Михаил^{1,2,3}, Стадничук Егор^{1,2}
¹ИЯИ РАН, ²МФТИ (ГУ), ³ИКИ РАН

Прохождение частиц в грозовых облаках

Исследуемые явления:

- *TGF* короткие (~1 мкс) вспышки гамма и рентгеновского излучения из грозового облака
- *TGE* длительное и регулярное (несколько раз в течении 20 40 минут), повышения гамма-фона, коррелирующее с изменениями электрического поля
- Рост ионизации облака под действием излучения
- Повышения нейтронного фона во время удара молнии

Наблюдение TGE на г. Арагац (Армения)

Существующие модели

- Пробой на убегающих электронах (Гуревич и Бабич)
- Он же с дополнительной обратной связью от гамма-квантов и позитронов (Двайер)

Проблемы существующих моделей

- Анизотропия гамма-излучения
- Работа в полях превышающих экспериментально наблюдаемые (в среднем до 200 кВ/м на высоте 4000 метров)
- Недостаточная ионизация облака

Наблюдение TGE на г. Арагац (Армения)

RL-TGE: реакторная модель

Взаимодействие происходит в "3 локальных ячейках вы Поле однородно на масштабе ячейки вы поставления предоставления предостав

"Зажигание" ячейки вызывается:

Вблизи - электронами и реже позитронами

В других частях облака - фотонами

RL-TGE: качественные выводы

- Угловое распределение гамма-квантов зависит от направления поля, но в целом должно быть более изотропно чем в моделях Двайера и Гуревича.
- TGE и TGF могут возникать в такой модели и тип события должен зависеть от скорости события
- Длительное время работы реактора
- Постепенное наращивание ионизации

RL-TGE: прототип

- Направление поля случайно в точке взаимодействия
- Выход ячейки рассчитывается на основе средних значений
- Один подстроечный параметр локальный коэффициент размножения

Результат: экспоненциальное нарастание гамма-излучения при благоприятных условиях

RL-TGE: улучшенная модель

Ячейка — цилиндр радиусом и высотой в 100 метров

Выход ячейки: генерируется на основе предварительно рассчитанных с помощью GEANT4 распределений в зависимости от величины поля, энергии электрона, плотности воздуха и угла между полем и импульсом

RL-TGE: улучшенная модель

Распространение гамма-квантов и рождение электронов на основе: модели Клейна-Нишины, модели Бете-Гайтлера и интерполяции экспериментальных сечений фотоэффекта.

Электрическое поле: случайно распределенное на основе броуновского движения с учетом отражения заряда от земли

Расчет ионизации в ячейке

RL-TGE: выход ячейки

RL-TGE: выход ячейки

Энергетический спектр гамма-квантов с энергией выше 1 МэВ

RL-TGE: ионизация ячейки

Результаты

- Предложена новая модель
- Качественные выводы из модели в согласии с наблюдениями
- Разработан прототип, показывающий целесообразность дальнейшей работы
- Рассчитаны распределения параметров выходных частиц локальных ячеек

Спасибо за внимание

