Algorithms

Lecture Topic: Amortized Analysis

Roadmap of this lecture:

- 1. Define "Amortized Analysis".
- 2. Amortized analysis by the "Aggregate Analysis" technique.
 - 2.1 Understand "Aggregate Analysis" through the example of "Stack Operations".
 - 2.2 Understand "Aggregate Analysis" through the example of "Counter Incrementation".
- 3. Amortized analysis by the "Accounting Method" technique.
 - 2.1 Understand "Accounting Method" through the example of "Stack Operations".
 - 2.2 Understand "Accounting Method" through the example of "Counter Incrementation".

Amortized Analysis

```
for i from 1 to x

{
Operations
O(y)

O(y)

?
```

"Amortized Analysis" can sometimes help us get tighter bounds for time complexity.

Quiz question:

1. Why is amortized analysis needed for analyzing time complexity?

Roadmap of this lecture:

- 1. Define "Amortized Analysis".
- 2. Amortized analysis by the "Aggregate Analysis" technique.
 - 2.1 Understand "Aggregate Analysis" through the example of "Stack Operations".
 - 2.2 Understand "Aggregate Analysis" through the example of "Counter Incrementation".
- 3. Amortized analysis by the "Accounting Method" technique.
 - 2.1 Understand "Accounting Method" through the example of "Stack Operations".
 - 2.2 Understand "Accounting Method" through the example of "Counter Incrementation".

Example: Stack Operations

Size of Stack:
$$|S| = 0$$

Stack: first-in-last-out (FILO)

Example: Stack Operations

Example: Stack Operations

Push	2
-	3

Example: Stack Operations

Push	100
-	2
• •	3

Example: Stack Operations

Pop	
	2
	3

Example: Stack Operations

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

1) PUSH: push a number into stack

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

1) PUSH: push a number into stack Cost: 1

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

- 1) PUSH: push a number into stack Cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

- 1) PUSH: push a number into stack Cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it $O(n^2)$?

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Size of Stack: |S| = 1

Operations:

- 1) PUSH: push a number into stack Cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Is it $O(n^2)$?
It is actually O(n)

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Total cost of PUSH operations $\leq n$

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Total cost of PUSH operations $\leq n$

Total cost of POP operations $\leq n$

Observation: The stack is initially empty. To pop out a number, we first need to push it in to the stack.

So the cost of POP operations can never be more than the cost of PUSH operations. (No matter what k is in POP(k).)

Total cost of PUSH operations $\leq n$

Total cost of POP operations $\leq n$

Total cost of n operations: $\leq 2n$, or O(n)

Quiz questions:

- 1. What is the dependency between push and pop (including pop(k)) operations?
- 2. How is the above dependency used for "aggregate analysis"?

Roadmap of this lecture:

- 1. Define "Amortized Analysis".
- 2. Amortized analysis by the "Aggregate Analysis" technique.
 - 2.1 Understand "Aggregate Analysis" through the example of "Stack Operations".
 - 2.2 Understand "Aggregate Analysis" through the example of "Counter Incrementation".
- 3. Amortized analysis by the "Accounting Method" technique.
 - 2.1 Understand "Accounting Method" through the example of "Stack Operations".
 - 2.2 Understand "Accounting Method" through the example of "Counter Incrementation".

Example: Counter Incrementation

Counter: 0, 1, 2, 3,

00000000

- 00000000
- 1 00000001

- 00000000
- 00000001
- 2 00000010

- 0 0 0 0 0 0 0 0
- 1 000000001
- 2 000000010
- 3 00000011

```
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 1 1
4 0 0 0 0 0 0 0 1 0 0
```

```
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 1 1
4 0 0 0 0 0 0 0 1 0 1
5 0 0 0 0 0 0 0 1 0 1
```

```
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 1 1
4 0 0 0 0 0 0 0 1 0 1
5 0 0 0 0 0 0 0 1 1 0
6 0 0 0 0 0 0 0 1 1 0
```

```
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 1 1
4 0 0 0 0 0 0 0 1 0 1
5 0 0 0 0 0 0 0 1 1 0
6 0 0 0 0 0 0 0 1 1 1
7 0 0 0 0 0 0 0 1 1 1
```

```
00000000
    00000001
    000000010
3
    000000011
    000000100
5
    000000101
6
    000000110
    000000111
    000001000
    000001001
9
```

```
00000000
     00000001
     000000010
3
     000000011
     000000100
     000000101
5
6
     000000110
     000000111
     000001000
     000001001
9
     000001010
10
```

```
00000000
     00000001
     00000010
3
     000000011
     000000100
     000000101
5
     000000110
6
     000000111
     000001000
9
     000001001
     000001010
10
     000001011
```

```
00000000
     00000001
     00000010
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
     000001000
9
     000001001
10
     000001010
     000001011
```

Cost of incrementing counter: Number of bits that are changed.

```
00000000
                   cost: 1
     00000001
     00000010
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
     000001000
9
     000001001
10
     000001010
     000001011
```

```
00000000
                   cost: 1
     00000001
                    cost: 2
     000000010
3
     000000011
     000000100
     000000101
5
6
     000000110
     000000111
     000001000
9
     000001001
10
     000001010
     000001011
```

```
00000000
                    cost: 1
     00000001
                    cost: 2
     000000010
                     cost: 1
3
     000000011
     000000100
5
     000000101
6
     000000110
     000000111
     000001000
9
     000001001
10
     000001010
     000001011
```

```
00000000
                    cost: 1
     00000001
                     cost: 2
     000000010
                      cost: 1
3
     000000011
                    cost: 3
     000000100
5
     000000101
6
     000000110
     000000111
     000001000
     000001001
10
     000001010
     000001011
```

```
00000000
                    cost: 1
     00000001
                     cost: 2
     00000010
                      cost: 1
3
     000000011
                     cost: 3
     000000100
                     cost: 1
     000000101
5
     000000110
6
     000000111
     000001000
     000001001
10
     000001010
     000001011
```

```
00000000
                     cost: 1
      00000001
                     cost: 2
      00000010
                      cost: 1
     000000011
                     cost: 3
     000000100
                      cost: 1
5
     000000101
                       cost: 2
6
     000000110
     000000111
     000001000
     000001001
10
     000001010
     000001011
```

```
00000000
                     cost: 1
      00000001
                      cost: 2
      00000010
                       cost: 1
      000000011
                      cost: 3
      000000100
                      cost: 1
      000000101
5
                       cost: 2
      000000110
6
                      cost: 1
      000000111
     000001000
     000001001
10
     000001010
     000001011
```

```
00000000
                     cost: 1
      00000001
                      cost: 2
      00000010
                       cost: 1
      000000011
                      cost: 3
      000000100
                       cost: 1
5
      000000101
                        cost: 2
      000000110
6
                      cost: 1
      000000111
                       cost: 4
      000001000
      000001001
10
      000001010
      000001011
```

```
00000000
                      cost: 1
      00000001
                      cost: 2
      00000010
                        cost: 1
      000000011
                      cost: 3
      000000100
                       cost: 1
5
      000000101
                        cost: 2
      000000110
6
                       cost: 1
      000000111
                       cost: 4
      000001000
                        cost: 1
      000001001
      000001010
10
      000001011
```

```
00000000
                      cost: 1
      00000001
                       cost: 2
      00000010
                        cost: 1
      000000011
                       cost: 3
      000000100
                       cost: 1
5
      000000101
                         cost: 2
      000000110
6
                       cost: 1
      000000111
                        cost: 4
      000001000
                        cost: 1
      000001001
                     cost: 2
      0000010101
10
      000001011
```

```
00000000
                       cost: 1
      00000001
                       cost: 2
      00000010
                        cost: 1
      000000011
                       cost: 3
      000000100
                        cost: 1
      000000101
5
                         cost: 2
      000000110
6
                        cost: 1
      000000111
                        cost: 4
      000001000
                        cost: 1
      000001001
                     cost: 2
      000001010
10
                      cost: 1
      000001011
```

```
00000000
                       cost: 1
      00000001
                       cost: 2
      00000010
                        cost: 1
      000000011
                       cost: 3
      000000100
                        cost: 1
5
      000000101
                         cost: 2
      000000110
6
                        cost: 1
      000000111
                        cost: 4
      000001000
                        cost: 1
      000001001
                     cost: 2
      000001010
10
                      cost: 1
      000001011
```

What is the total cost of n increments?

```
00000000
                       cost: 1
      00000001
                       cost: 2
      00000010
                        cost: 1
3
      000000011
                       cost: 3
      000000100
                        cost: 1
      000000101
5
                         cost: 2
6
      000000110
                        cost: 1
      000000111
                        cost: 4
      000001000
                         cost: 1
      000001001
                     cost: 2
      000001010
10
                       cost: 1
      000001011
```

What is the total cost of n increments?

$$O(n^2)$$
?

$$O(n \log n)$$
?

```
00000000
                       cost: 1
      00000001
                       cost: 2
      00000010
                         cost: 1
3
      000000011
                       cost: 3
      000000100
                        cost: 1
5
      000000101
                         cost: 2
      000000110
6
                        cost: 1
      000000111
                        cost: 4
      000001000
                         cost: 1
      000001001
                     cost: 2
      0000010101
10
                       cost: 1
      000001011
```

What is the total cost of n increments?

$$O(n^2)$$
?

$$O(n \log n)$$
?

It is actually: O(n)

```
00000000
     00000001
     00000010
3
     000000011
     000000100
     000000101
5
     000000110
6
     000000111
     000001000
     000001001
9
     000001010
10
     000001011
```

Cost of the last bit: n

```
00000000
     00000001
     00000010
3
     000000011
     000000100
     000000101
5
     000000110
6
     000000111
     000001000
     000001001
    000001010
10
    00000111
```

Cost of the last bit: n

Cost of 2nd last bit: $\leq \frac{n}{2}$

0	00000000
1	00000001
2	00000010
3	00000011
4	000000100
5	000000101
6	000000110
7	000000111
8	000001000
9	000001001
10	000001010
11	000001011

Cost of the last bit: n

Cost of 2nd last bit: $\leq \frac{n}{2}$

Cost of 3rd last bit: $\leq \frac{n}{4}$

0	000000000
1	000000001
2	00000010
3	000000011
4	000000100
5	000000101
6	000000110
7	000000111
8	000001000
9	000001001
10	000001010
11	000001011

Cost of the last bit: n

Cost of 2nd last bit:
$$\leq \frac{n}{2}$$

Cost of 3rd last bit:
$$\leq \frac{n}{4}$$

Cost of 4th last bit:
$$\leq \frac{n}{8}$$

.

0	00000000
1	00000001
2	000000010
3	00000011
4	000000100
5	000000101
6	000000110
7	000000111
8	000001000
9	000001001
10	000001010
11	000001011

Cost of the last bit:
$$n$$

Cost of 2nd last bit:
$$\leq \frac{n}{2}$$

Cost of 3rd last bit:
$$\leq \frac{n}{4}$$

Cost of 4th last bit:
$$\leq \frac{n}{8}$$

.

Total cost
$$\leq n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \frac{n}{16} \dots \leq 2n$$

Quiz questions:

- I. For each bit position, how often does the bit there change with the increment operations?
- 2. How is the above property used for "aggregate analysis"?

Roadmap of this lecture:

- 1. Define "Amortized Analysis".
- 2. Amortized analysis by the "Aggregate Analysis" technique.
 - 2.1 Understand "Aggregate Analysis" through the example of "Stack Operations".
 - 2.2 Understand "Aggregate Analysis" through the example of "Counter Incrementation".
- 3. Amortized analysis by the "Accounting Method" technique.
 - 2.1 Understand "Accounting Method" through the example of "Stack Operations".
 - 2.2 Understand "Accounting Method" through the example of "Counter Incrementation".

Consider *n* operations.

For $i = 1, 2, \dots, n$,

let C_i be the real cost of the *i*-th operation,

let \hat{C}_i be the amortized cost of the *i*-th operation.

such that

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Consider *n* operations.

For $i = 1, 2, \dots, n$,

let C_i be the real cost of the *i*-th operation,

let \hat{C}_i be the amortized cost of the *i*-th operation.

such that

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

If we get an upper bound for the amortized cost $\sum_{i=1}^{n} \hat{C}_i$

we also get an upper bound for the real cost $\sum_{i=1}^{\infty} C_i$

Quiz questions:

- 1. Why do we require the total amortized cost to be no less than the total real cost?
- 2. For an individual operation, is its amortized cost more or less than its real cost?

Roadmap of this lecture:

- 1. Define "Amortized Analysis".
- 2. Amortized analysis by the "Aggregate Analysis" technique.
 - 2.1 Understand "Aggregate Analysis" through the example of "Stack Operations".
 - 2.2 Understand "Aggregate Analysis" through the example of "Counter Incrementation".
- 3. Amortized analysis by the "Accounting Method" technique.
 - 2.1 Understand "Accounting Method" through the example of "Stack Operations".
 - 2.2 Understand "Accounting Method" through the example of "Counter Incrementation".

Example: Stack Operations

Size of Stack: |S| = 0

Operations:

- 1) PUSH: push a number into stack Cost: 1
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Size of Stack: |S| = 0

Operations:

1) PUSH: push a number into stack
Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Amortized Cost: 0

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Example: Stack Operations

Size of Stack: |S| = 0

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stackCost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Size of Stack: |S| = 0

Total real cost: 0

Total amortized cost: 0

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack
 Cost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Total real cost: 1

Total amortized cost: 2

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stackCost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Total real cost: 2
Total amortized cost: 4

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stackCost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Total real cost: 3

Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

1) PUSH: push a number into stack

Cost: 1 Amortized Cost: 2

2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Total real cost: 6
Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack
 Cost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Total real cost: 6
Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost?

Operations:

- 1) PUSH: push a number into stack
 Cost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

Is it true that
$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$
?

Example: Stack Operations

Total real cost: 6

Total amortized cost: 6

Consider a sequence of n stack operations. What is a tight upper bound on its total cost ? O(n)

Operations:

- 1) PUSH: push a number into stack Cost: 1 Amortized Cost: 2
- 2) POP(k): pop out the top k numbers from stack. If the stack has fewer than k numbers, we pop out all numbers in stack.

Cost: $min\{k, |S|\}$

$$O(n)$$
 $2n >= \sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$

Quiz questions:

- I. Why do we want to "pay in advance" for the amortized cost of pop operations?
- 2. How does the above "pay in advance" method help us analyze the total cost?

Roadmap of this lecture:

- 1. Define "Amortized Analysis".
- 2. Amortized analysis by the "Aggregate Analysis" technique.
 - 2.1 Understand "Aggregate Analysis" through the example of "Stack Operations".
 - 2.2 Understand "Aggregate Analysis" through the example of "Counter Incrementation".
- 3. Amortized analysis by the "Accounting Method" technique.
 - 2.1 Understand "Accounting Method" through the example of "Stack Operations".
 - 2.2 Understand "Accounting Method" through the example of "Counter Incrementation".

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

Lifecycle of a bit:

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

Lifecycle of a bit:

Real cost: 1

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Large Binary Counter

Cost of incrementing counter: Number of bits that are changed.

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

6

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

0 0	0	0 0	0	0	0	0	0		
0 0	\cap	O O	0	\cap	\cap	0	1		cost: 1
									cost: 2
0 0									cost: 1
0 0	0	0 0	0	0	0	1	1		
00	0 (0 0	0	0	1	0	0		cost: 3
0 0									cost: 1
									\rightarrow cost: 2
0 0	0	UU	U	U	1	1	U		
00	0	0 0	0	0	1	1	1		cost: 1
00	0	0.0	0	1	\mathbf{O}	\mathbf{O}	0		cost: 4
0 0									cost: 1
									ost: 2
0 0	0 (0 (0	1	0	1	0	_ \ \	
0 0	0 (0 0	0	1	0	1	1		cost: 1

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

6

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

\bigcirc
2

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

00000000	
000000001	cost: 1
	_ > cost: 2
00000010	cost: 1
000000011	
000000100	cost: 3
000000101	_ cost: 1
	\sim cost: 2
000000110	Cost 1
000000111	
000001000	cost: 4
000001001	cost: 1
	cost: 2
000001010	cost: 1
000001011	

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

6

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

6

Lifecycle of a bit:

Real cost: 1 Amortized cost: 2

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

6

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

6

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

6

Lifecycle of a bit:

Real cost: 1 Amortized cost: 0

Since the amortized cost "pre-pays" the total cost of every lifecycle,

$$\sum_{i=1}^{n} \hat{C}_i \ge \sum_{i=1}^{n} C_i$$

Amortized cost: 2

General pattern of change:

Lifecycle of a bit:

Real cost: 1

Since the amortized cost "pre-pays" the total cost of every lifecycle,

Amortized cost: 0

$$2n > = \sum_{i=1}^{n} \hat{C}_{i} \ge \sum_{i=1}^{n} C_{i}$$

Amortized cost: 2

total cost: O(n)

6

Quiz questions:

- I. Why do we want to "pay in advance" for the amortized cost of "changing a bit from I to o"?
- 2. How does the above "pay in advance" method help us analyze the total cost?