Лабораторная работа № 06 ДО ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ И ЕГО ПРИМЕНЕНИЕ

Методические указания по выполнению лабораторной работы в среде DesignLab 8.0»

- 1. Для получения передаточной характеристики операционного усилителя необходимо собрать схему, показанную на рис. 1. Компоненты для этой схемы можно найти в библиотеке моделей:
 - источник входного сигнала V1 Vsin,
 - источники питания V2 и V3 VDC,
 - операционный усилитель в соответствии с вариантом, см. табл. 1,
 - резистор R,
 - земля -AGND или EGND.

Установить следующие параметры для элементов схемы:

- напряжение источников питания V2 и V3 см. табл.1;
- для источника V1: DC = 0v, AC = 1v; VOFF = 0; VAMPL = 100mV; Freq = 1k;
- сопротивление нагрузки R1: *Value* = 1k.

			Таблица 1
Остаток (N/3)	0	1	2
Напряжение источников	10v	12v	15v
Остаток ((М+N)/3)	0	1	2
Тип ОУ	uA741	LM324	LF411

M – номер группы, N – порядковый номер фамилии студента в учебном журнале.

Сохранить схему.

Рис. 1. Рабочая схема для снятия АХ и АЧХ операционного усилителя

Для получения передаточной характеристики операционного усилителя необходимо сделать следующее.

— Установить режим расчета передаточной характеристики (Analysis - Setup — DC Sweep...) с параметрами анализа: Name = V1; StartValue = -500uV; EndValue = 500uV; Increment = 1uV).

- Установить маркер контроля напряжения на выходе ОУ.
- Запустить программу расчета PSpice (Analysis Simulate или F11).
- Получить передаточную характеристику и по ней определить следующие параметры:

 $U^{\dagger}_{\mathit{макc}}$ – максимальное положительное выходное напряжение;

 $U_{{\scriptscriptstyle MAKC}}$ – минимальное отрицательное выходное напряжение;

K – коэффициент усиления ($K = \Delta U_{\text{вых}}/\Delta U_{\text{вх}}$).

Для определения коэффициента усиления K установить два маркера на наклонном участке характеристики и разделить разность показаний по оси ординат на разность показаний по оси абсцисс. Коэффициент усиления определить в относительных единицах и в децибелах: $LK(дБ) = 20 \lg K$; Определить также напряжение смещения U_{cm} .

Результаты измерений занести в таблицу. Сохранить передаточную характеристику с отмеченными маркером курсора необходимыми точками.

- 2. Для исследования амплитудно-частотной характеристики (АЧХ) операционного усилителя с разомкнутой петлей обратной связи необходимо сделать следующее:
 - Для операционного усилителя LM342 добавить в схему источник V4 с напряжением, равным $U_{\rm cm}$.

- Отключить (Analysis Setup) режим DC Sweep и установить режим расчета частотных характеристик AC Sweep с параметрами: Decade; Pts/Decade = 101; $Start\ Freq = 0.1$; $End\ Freq = 100MEG$.
- Отключить маркер контроля напряжения и подключить на выход ОУ специальный маркер для измерения напряжения в децибелах *Vdb*.
- Запустить схему на расчет и получить амплитудно-частотную характеристику. По ней определить:
 - коэффициент усиления K на частоте 1Γ ц. Сравнить с коэффициентом усиления, полученным в п. 1. Если имеется расхождение, провести повторное измерение
 - граничную частоту $f_{\rm B}$ на уровне $-3д{\rm B}$ от максимального коэффициента усиления.
 - частоту единичного усиления f_1 как частоту, где K=1 (или LK=0дБ). Частота единичного усиления экспериментально определяется по ЛАЧХ как точка пересечения графика с осью абсцисс.

Сохранить характеристику с отмеченными маркером курсора необходимыми точками.

- 3. Для исследования схемы неинвертирующего усилителя необходимо:
 - собрать схему, показанную на рис. 2, воспользовавшись схемой рис. 1, на вход и выход схемы подключить маркеры контроля напряжения;
 - установить анализ переходного процесса Transient с теми же параметрами, что и в предыдущем пункте: $Print\ Step=10us;$ $Final\ Time=2ms;\ Step\ Ceiling=10us;$
 - запустить схему на расчет (F11) и получить графики. По ним определить коэффициент усиления.

Сохранить графики с отмеченными маркером курсора необходимыми точками.

Рис. 2. Рабочая схема неинвертирующего усилителя

- 4. Для исследования схемы инвертирующего усилителя необходимо собрать схему усилителя согласно рис. 3. Для этого:
 - в предыдущей схеме отключить и сдвинуть влево источник входного сигнала V_1 ;
 - выделить оставшуюся часть схемы целым блоком, щелкнув левой кнопкой мыши в верхнем левом углу над схемой и, не отпуская ее, растянуть окошко. Затем отпустить кнопку мыши;
 - зеркально отразить схему, нажав Ctrl-F, и два раза ее повернуть (Ctrl-R);
 - подсоединить остальные элементы схемы;
 - убрать маркер Vdb и подключить маркер V на вход и на выход схемы;
 - сохранить схему под другим именем;
 - отключить режим анализа по переменному току и включить анализ переходного процесса Transient с параметрами: $Print\ Step=10$ us; $Final\ Time=2$ ms; $Step\ Ceiling=10$ us;
 - запустить схему на расчет (F11), определить коэффициент усиления. Сохранить графики с отмеченными маркером курсора необходимыми точками.

Рис. 3. Рабочая схема инвертирующего усилителя

- 5. Для исследования работы суммирующего усилителя необходимо из схемы инвертирующего усилителя (рис. 3) собрать схему сумматора (рис. 4). Затем:
 - установить параметры элементов схемы;
 - сохранить схему;
 - в библиотеке выбрать элемент *VIEWPOINT* (вольтметр постоянного тока) и подключить к выходу схемы;
 - отключить в Setup все режимы, кроме Bias Point Detail;
 - включить программу расчета (Simulate) и записать показания вольтметра.

Сохранить схему с показанием вольтметра.

Рис. 4. Рабочая схема суммирующего усилителя

- 6. Для исследования работы мультивибратора необходимо на основе схемы рис. 1 собрать схему, показанную на рис. 5. После чего:
 - установить параметры элементов схемы;
 - маркер контроля напряжения подключить к выходу схемы, а также к инвертирующему и неинвертирующему входам ОУ;
 - при установке режима анализа переходного процесса на включение источников питания *Transient* отметить опцию *Skip initial transient solution* и установить следующие параметры расчета: *Print Step*=20ns; *Final Time*=4ms; *Step Ceiling*=1us;
 - запустить программу расчета (F11), по графикам определить период следования импульсов.

Сохранить графики с отмеченными маркером курсора необходимыми точками на интервале двух периодов.

Рис. 5. Рабочая схема мультивибратора