10 A student carried out an experiment to determine the viscosity of some honey. He filled a tall glass cylinder with honey as shown, and timed a ball bearing as it fell through the honey.

(a) The student placed rubber bands near the top and bottom of the cylinder. He started a stopwatch when the ball bearing passed the first band and stopped the stopwatch when the ball bearing passed the second band. He repeated this several times to determine a mean time.

Criticise the student's method.

(2)

(b) The time t for the sphere to fall through a distance of 25.0 cm is shown in the table.

t/s			
6.40	6.35	6.36	6.38

(i) Show that the mean velocity v of the ball bearing is about $0.04\,\mathrm{m\,s^{-1}}$.

(3)

(ii) The student had three different types of honey available.

Viscosity η is given by the following expression

$$\eta = \frac{2r^2g\binom{}{B} - \binom{}{H}}{9v}$$

radius r of ball bearing = $5.50 \times 10^{-3}\,\mathrm{m}$ density of ball bearing $\rho_{\mathrm{B}} = 7750\,\mathrm{kg}\,\mathrm{m}^{-3}$ density of honey $\rho_{\mathrm{H}} = 1360\,\mathrm{kg}\,\mathrm{m}^{-3}$

Viscosity (at 20 °C)/Pas			
Honey A	Honey B	Honey C	
10.6	12.5	13.6	

Deduce which honey the student used.

(2)