## S&DS 365 / 665 Intermediate Machine Learning

## Nonparametric Bayes: Gaussian Processes

October 3



#### Reminders

- Assignment 2 posted
- Quiz 3 on Wednesday, Oct 5
- Midterm on Tuesday, October 17 in class
- Practice exam and review next week

## **For Today**

- Gaussian processes (continued)
- Examples
- Dirichlet process (intro)

#### **Bayesian Inference**

The parameter  $\theta$  of a model is viewed as a random variable. Inference usually carried out as follows:

- Choose a *generative model*  $p(x | \theta)$  for the data.
- Choose a *prior distribution*  $\pi(\theta)$  that expresses beliefs about the parameter before seeing any data.
- After observing data  $\mathcal{D}_n = \{x_1, \dots, x_n\}$ , update beliefs and calculate the *posterior distribution*  $p(\theta \mid \mathcal{D}_n)$ .

Please posted notes for a review of some of the basics of Bayesian inference.

4

#### Bayes' Theorem

The posterior distribution can be written as

$$p(\theta \mid x_1, \ldots, x_n) = \frac{p(x_1, \ldots, x_n \mid \theta)\pi(\theta)}{p(x_1, \ldots, x_n)} = \frac{\mathcal{L}_n(\theta)\pi(\theta)}{c_n} \propto \mathcal{L}_n(\theta)\pi(\theta)$$

where  $\mathcal{L}_n(\theta)$  is the *likelihood function* and

$$c_n = p(x_1, \ldots, x_n) = \int p(x_1, \ldots, x_n | \theta) \pi(\theta) d\theta = \int \mathcal{L}_n(\theta) \pi(\theta) d\theta$$

is the normalizing constant, which is also called evidence.

5

### **Nonparametric Bayes**

- In nonparametric Bayesian inference, we replace a finite dimensional model  $\theta$  with an infinite dimensional model
- This is usually a class of functions
- Typically neither the prior nor the posterior have a density; but the posterior is still well defined.

#### **Core questions**

- **1** How do we construct a prior  $\pi$  on an infinite dimensional set  $\mathcal{F}$ ?
- ② How do we compute the posterior? How do we draw random samples from the posterior?
- What are the properties of the posterior?

#### Stochastic processes

A stochastic process is a collection of random variables indexed some set (such as time), all defined with respect to a common probability space.

We'll focus on a fundamental stochastic process: The Gaussian process

More technically, a stochastic process  $\{X(t)\}_{t\in T}$  is a collection of random variables indexed by a set T and defined on a common probability space  $(\Omega, \mathcal{F}, P)$  where  $\Omega$  is a sample space,  $\mathcal{F}$  is a  $\sigma$ -algebra, and P is a probability measure.

## Gaussian processes

The nonparametric regression model is

$$Y_i = m(X_i) + \epsilon_i, \quad i = 1, \ldots, n$$

where  $\mathbb{E}(\epsilon_i) = 0$ .

The frequentist kernel estimator for *m* is

$$\widehat{m}(x) = \frac{\sum_{i=1}^{n} Y_i K\left(\frac{x - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)}$$

where *K* is a kernel and *h* is a bandwidth.

Bayesian version requires prior  $\pi$  on set of regression functions

ć

## **Gaussian process**

A stochastic process m(x) indexed by  $x \in \mathbb{R}$  is a *Gaussian process* if for each set of points  $x_1, \ldots, x_n$  the vector  $(m(x_1), m(x_2), \ldots, m(x_n))^T$  is normally distributed:

$$(m(x_1), m(x_2), \ldots, m(x_n))^T \sim N(\mu(x), K(x))$$

where  $K_{ij}(x) = K(x_i, x_j)$  is a Mercer kernel.

As before, if  $x_1, \ldots, x_n$  are fixed we denote the  $n \times n$  matrix with entries  $K(x_i, x_j)$  by  $\mathbb{K}$ .

The definition makes sense when indexing by any set  $\mathcal X$  for an appropriately defined Mercer kernel.

## Gaussian process prior

Let's assume  $\mu = 0$ , so prior mean function is zero

Density of the Gaussian process prior of  $m = (m(x_1), \dots, m(x_n))$  is

$$\pi(m) = (2\pi)^{-n/2} |\mathbb{K}|^{-1/2} \exp\left(-\frac{1}{2}m^T \mathbb{K}^{-1}m\right).$$

Under change of variables  $m = \mathbb{K}\alpha$ , we have  $\alpha \sim N(0, \mathbb{K}^{-1})$  and

$$\pi(\alpha) = (2\pi)^{-n/2} |\mathbb{K}|^{1/2} \exp\left(-\frac{1}{2}\alpha^T \mathbb{K}\alpha\right).$$

1:

#### **Conditionals of Gaussian**

Posterior is calculated using Gaussian conditionals



#### **Conditionals of Gaussian**

Posterior is calculated using Gaussian conditionals



#### **Gaussian conditionals**

If  $(X_1, X_2)$  are jointly Gaussian with distribution

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \ \sim \ N \left( \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix} \right)$$

then the conditional distributions are also Gaussian and given by

$$X_1 \mid x_2 \sim N\left(\frac{K_{12}}{K_{22}}x_2, K_{11} - \frac{K_{12}^2}{K_{22}}\right)$$

$$X_2 \mid x_1 \sim N\left(\frac{K_{12}}{K_{11}}x_1, K_{22} - \frac{K_{12}^2}{K_{11}}\right)$$

1.3

Let's look at the notebook demo (plots from the demo follow)

## Samples from prior and posterior



## Samples from prior and posterior



## Gaussian processes prior

What functions have high probability according to the Gaussian process prior?

The prior favors  $m^T \mathbb{K}^{-1} m$  being small. If v is an eigenvector of  $\mathbb{K}$ , with eigenvalue  $\lambda$ , then

$$\frac{1}{\lambda} = \mathbf{v}^T \mathbb{K}^{-1} \mathbf{v}$$

- Eigenfunctions of the Mercer kernel K with large eigenvalues are favored by the prior
- These correspond to smooth functions; the eigenfunctions that are very wiggly correspond to small eigenvalues

### Using the likelihood

We observe  $Y_i = m(x_i) + \epsilon_i$  where  $\epsilon_i \sim N(0, \sigma^2)$ . So, log-likelihood is

$$\log p(Y | m) = -\frac{1}{2\sigma^2} \sum_{i} (Y_i - m(x_i))^2 + C$$

where  $C = -\log(\sqrt{2\pi\sigma^2})$ .

Log-posterior is

$$\log p(Y | m) + \log \pi(m) = -\frac{1}{2\sigma^2} ||Y - \mathbb{K}\alpha||_2^2 - \frac{1}{2}\alpha^T \mathbb{K}\alpha + C'$$
$$= -\frac{1}{2\sigma^2} ||Y - \mathbb{K}\alpha||_2^2 - \frac{1}{2} ||\alpha||_K^2 + C'$$

C' is just another constant.

## Calculating the posterior

In Bayesian *maximum a posteriori (MAP)* inference, one estimates the mode of the posterior.

The posterior mean (and mode) is

$$\mathbb{E}(\alpha \mid Y) = \left(\mathbb{K} + \sigma^2 I\right)^{-1} Y$$

and thus

$$\widehat{m} = \mathbb{E}(m | Y) = \mathbb{K} \left( \mathbb{K} + \sigma^2 I \right)^{-1} Y.$$

Equivalent to Mercer kernel regression

#### **Gaussian conditionals**

If  $(X_1, X_2)$  are jointly Gaussian with distribution

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \ \sim \ \textit{N} \left( \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \textit{A} & \textit{C} \\ \textit{C}^T & \textit{B} \end{pmatrix} \right)$$

then the conditional distributions are also Gaussian and given by

$$X_1 \mid x_2 \sim N\left(\mu_1 + CB^{-1}(x_2 - \mu_2), A - CB^{-1}C^T\right)$$
  
 $X_2 \mid x_1 \sim N\left(\mu_2 + C^TA^{-1}(x_1 - \mu_1), B - C^TA^{-1}C\right)$ 

The matrix  $A - CB^{-1}C^T$  is called the *Schur complement* of B.

## Predicting at a new point

How do we predict  $Y_{n+1} = m(x_{n+1}) + \epsilon_{n+1}$ ?

Let *k* be the vector

$$k = (K(x_1, x_{n+1}), \dots, K(x_n, x_{n+1})).$$

Then  $(Y_1, \ldots, Y_{n+1})$  are jointly Gaussian with covariance

$$\begin{pmatrix} \mathbb{K} + \sigma^2 I & k \\ k^T & K(x_{n+1}, x_{n+1}) + \sigma^2 \end{pmatrix}.$$

#### **Predictive distribution**

Using above expression for Gaussian conditionals:

The posterior mean and variance are

$$\mathbb{E}(Y_{n+1} \mid x_{1:n}, Y_{1:n}) = k^{T} (\mathbb{K} + \sigma^{2} I)^{-1} Y$$

$$Var(Y_{n+1} \mid x_{1:n}, Y_{1:n}) = K(x_{n+1}, x_{n+1}) + \sigma^{2} - k^{T} (\mathbb{K} + \sigma^{2} I)^{-1} k$$

21

#### **Predictive distribution**

- Note that the mean is identical to what we saw for Mercer kernel regression
- But now we get a measure of uncertainty (the variance), which comes from the Gaussian process assumption

# Let's return to the notebook demo (plots from the demo follow)

## Olympic marathon times (men's race)



## Olympic marathon times (women's race)



#### The Dirichlet Process

- The Dirichlet process is analogous to the Gaussian process
- Every partition of sample space has a Dirichlet distribution (more precise shortly)
- GPs are tools for regression functions; DPs are tools for distributions and densities
- DPs finesse the problem of choosing the number of components in a mixture model
  - Example: Don't need to specify the number of topics in a topic model

#### **The Dirichlet Process**

Dirichlet processes have some fun mnemonic metaphors, which help understand the concepts:

- Stick breaking
- Chinese restaurants

But it's easy to get confused—we're working with probability distributions over probability distributions

#### Recall: KDE

The *kernel density estimate* is the mixture model that places weight  $\frac{1}{n}$  on the kernel bump function centered on each data point:

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

#### Recall: KDE





#### Recall: KDE



#### Getting rid of the data

Both the empirical CDF and kernel density estimate involve the data

We want to construct a *prior* distribution over these objects, before we see any data

Solution: Use synthetic or "imaginary" data!

Think back to our interpretation of the Beta( $\alpha$ ,  $\beta$ ) prior.

#### **Dirichlet process**

Each sample from a Dirichlet process prior has a *random collection of weights*, assigned to a *random selection of data* 

Each sample from Dirichlet process mixture has a random collection of weights assigned to a random selection of *model parameters* 

### Demo



Two volunteers?

#### Relation to KDEs

- A DP is a distribution over distributions.
- A Dirichlet process mixture is a distribution over mixture models
- DPMs are Bayesian versions of kernel density estimation
- Subject to the curse of dimensionality!

# Sample from DP mixture





# Stick breaking process for DPM

#### Stick breaking:

• At each step, break off a fraction  $V \sim \text{Beta}(1, \alpha)$ 

#### Sample model parameters:

• At each step, sample  $\theta \sim F_0$ 

# Stick breaking process for DPM

To draw a single random mixture from DPM( $\alpha$ ,  $F_0$ ):

- **1** Draw  $\theta_1, \theta_2, \ldots$  independently from  $F_0$ .
- ② Draw  $V_1, V_2, \ldots \sim \text{Beta}(1, \alpha)$  and set  $w_j = V_j \prod_{i=1}^{j-1} (1 V_i)$
- 3 Let f be the (infinite) mixture model

$$f(x) = \sum_{j=1}^{\infty} w_j f(x \mid \theta_j)$$

# Sample from DP mixture





# But what actually is a DP?

#### Recall:

A random function m is distributed according to a Gaussian process if for every  $x_1, x_2, \ldots, x_n$  the random vector  $m(x_1), \ldots, m(x_n)$  has a multivariate Gaussian distribution

$$N(\mu(x), K(x))$$

### But what actually is a DP?

A random distribution F is distributed according to a Dirichlet process  $DP(\alpha, F_0)$  if for every partition  $A_1, \ldots, A_n$  of the sample space the random vector  $F(A_1), \ldots, F(A_n)$  has a Dirichlet distribution

$$Dir (\alpha F_0(A_1), \alpha F_0(A_2), \dots, \alpha F_0(A_n))$$

## But what actually is a DP?

As a special case, if the sample space is the real line we can take the partition to be

$$A_1 = \{z : z \leq x\}$$

$$A_2=\{z\ :\ z>x\}$$

and then

$$F(x) \sim \text{Beta}\Big(\alpha F_0(x), \alpha(1 - F_0(x))\Big)$$

## Big picture

The definition tells us the precise sense in which a DP is an infinite Dirichlet distribution

But this is not concrete

The sticking breaking and Chinese restaurant processes give us algorithms for working with a DP

#### Chinese restaurant mnemonic



Inspired by the large Chinese restaurants in San Francisco

#### Chinese restaurant mnemonic



A customer (data point) comes into the restaurant and either

- lacktriangle sits at an empty table, with probability proportional to lpha, or
- sits at an occupied table with probability proportional to number of customers already seated at that table

## The posterior for a DPM

- The posterior distribution does not have a closed form need to approximate it algorithmically
- Two forms of approximations: Gibbs sampling and variational methods — next topic

## Summary

- In a Bayesian approach, the parameters are random, and the data are fixed.
- In nonparametric Bayes, the "parameters" are functions
- A Gaussian process is a stochastic process m where each collection of random variables  $m(x_1), m(x_2), \ldots, m(x_n)$  is jointly Gaussian
- Gaussian processes are Bayesian versions of kernel regression;
   the posterior mean is equivalent to Mercer kernel regression
- A Dirichlet process mixture is a Bayesian version of kernel density estimation
- Bayesian nonparametric methods require a lot of conceptual machinery and computation