7.5. TOI	POLOGY CONSTRUCTORS	251			
MPI_CAR	PI_CART_COORDS(comm, rank, maxdims, coords)				
IN	comm	communicator with Cartesian structure (handle)			
IN	rank	rank of a process within group of comm (integer)			
IN	maxdims	length of vector \mathbf{coords} in the calling program (integer)			
OUT	coords	integer array (of size ndims) containing the Cartesian coordinates of specified process (array of integers)			
int MPI_	int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)				
	MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR) INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR				
void MPI	oid MPI::Cartcomm::Get_coords(int rank, int maxdims, int coords[]) const				
The inverse mapping, rank-to-coordinates translation is provided by MPI_CART_COORDS.					
	If comm is associated with a zero-dimensional Cartesian topology, coords will be unchanged.				
	<u> </u>				
MPI_GRA	PH_NEIGHBORS_COUNT(con	IGHBORS_COUNT(comm, rank, nneighbors)			
IN	comm	communicator with graph topology (handle)			
IN	rank	rank of process in group of comm (integer)			
OUT	nneighbors	number of neighbors of specified process (integer)			
<pre>int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)</pre>					
MPT CRAP	H NFICHRORS COUNT(COMM R	ANK NNETCHRORS TERROR)			

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR) INTEGER COMM, RANK, NNEIGHBORS, IERROR

int MPI::Graphcomm::Get_neighbors_count(int rank) const

MPI_GRAPH_NEIGHBORS(comm, rank, maxneighbors, neighbors)

IN	comm	communicator with graph topology (handle)	
IN	rank	rank of process in group of comm (integer)	
IN	maxneighbors	size of array neighbors (integer)	
OUT	neighbors	ranks of processes that are neighbors to specified process (array of integer) $$	

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors, int *neighbors)

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR) INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS provide adjacency information for a general graph topology. The returned count and array of neighbors for the queried rank will both include *all* neighbors and reflect the same edge ordering as was specified by the original call to MPI_GRAPH_CREATE. Specifically, MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS will return values based on the original index and edges array passed to MPI_GRAPH_CREATE (assuming that index[-1] effectively equals zero):

- The count returned from MPI_GRAPH_NEIGHBORS_COUNT will be (index[rank] index[rank-1]).
- The neighbors array returned from MPI_GRAPH_NEIGHBORS will be edges[index[rank-1]] through edges[index[rank]].

Example 7.3 Assume there are four processes 0, 1, 2, 3 with the following adjacency matrix (note that some neighbors are listed multiple times):

process	neighbors
0	1, 1, 3
1	0, 0
2	3
3	0, 2, 2

Thus, the input arguments to MPI_GRAPH_CREATE are:

```
\begin{array}{ll} \text{nnodes} = & 4 \\ \text{index} = & 3, 5, 6, 9 \\ \text{edges} = & 1, 1, 3, 0, 0, 3, 0, 2, 2 \end{array}
```

Therefore, calling MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS for each of the 4 processes will return:

Input rank	Count	Neighbors
0	3	1, 1, 3
1	2	0, 0
2	1	3
3	3	0, 2, 2

Example 7.4 Suppose that comm is a communicator with a shuffle-exchange topology. The group has 2^n members. Each process is labeled by a_1, \ldots, a_n with $a_i \in \{0,1\}$, and has three neighbors: exchange $(a_1, \ldots, a_n) = a_1, \ldots, a_{n-1}, \bar{a}_n$ ($\bar{a} = 1 - a$), shuffle $(a_1, \ldots, a_n) = a_2, \ldots, a_n, a_1$, and unshuffle $(a_1, \ldots, a_n) = a_n, a_1, \ldots, a_{n-1}$. The graph adjacency list is illustrated below for n = 3.