设计报告

课程名称: 数字逻辑

题目: 矩阵的卷积运算

学院: 信息科学与工程学院

小组成员: 罗鹏, 胡臻初, 付俊博, 李卓奥, 王子豪

目录

目录

1	项目描述	2
	1.1 项目环境与级别	2
	1.2 任务目标	2
2		3
	2.1 加法器	3
	2.2 乘法器	4
3	明细表	5
4	仿真测试	6
	4.1 测试样例	6
	4.2 仿真结果	7
5	电路相关	8
	5.1 复杂度	8
	5.2 电路图	8
6	延迟分析	9
7	FPGA 部署结果	9
	7.1 样例 1	9
	7.2 样例 2	10
	7.3 样例 3	11
8	组员分工	11

1 项目描述

1.1 项目环境与级别

设计语言: verilog 硬件描述语言

仿真环境: Vivado 设计级别: 门级

1.2 任务目标

采用 Verilog 描述一个 5*5 的卷积运算,卷积核与待运算矩阵为 5*5 矩阵。 卷积运算采用公式如下:

Result =
$$\sum_{m=1}^{5} \sum_{n=1}^{5} A(m,n) * B(m,n)$$

$$A_5 \otimes B_5 = \begin{bmatrix} a_{11} & \cdots & a_{15} \\ \vdots & \ddots & \vdots \\ a_{51} & \cdots & a_{55} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & \cdots & b_{15} \\ \vdots & \ddots & \vdots \\ b_{51} & \cdots & b_{55} \end{bmatrix}$$
$$= a_{11}b_{11} + a_{12}b_{12} + \cdots + a_{55}b_{55}$$

其中 A 为被卷积矩阵, B 为卷积核, Result 为卷积结果。

因为 vivado 跑不了太大规模的程序,所以我们把任务改成实现 5*5 矩阵与 3*3 卷积核运算 (元素位 8 位无符号整数)。

故计算公式为:

$$C_{ij} = \sum_{i=1}^{3} \sum_{j=1}^{3} \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix} \otimes \begin{bmatrix} A_{(i,j)} & A_{(i,j+1)} & A_{(i,j+2)} \\ A_{(i+1,j)} & A_{(i+1,j+1)} & A_{(i+1,j+2)} \\ A_{(i+2,j)} & A_{(i+2,j+1)} & A_{(i+2,j+2)} \end{bmatrix}$$

2 主要模块

2.1 加法器

设二进制加法器第 i 位为 A_i, B_i ,输出为 S_i ,进位输入为 C_i ,进位输出为 C_{i+1} ,则有:

- $S_i = A_i \oplus B_i \oplus C_i$ (1)
- $C_{i+1} = A_i \cdot B_i + A_i \cdot C_i + B_i \cdot C_i = A_i \cdot B_i + (A_i + B_i) \cdot C_i$ (2)

 $\diamondsuit G_i = A_i \cdot B_i \ P_i = A_i + B_i, \ \ \bigcup C_{i+1} = G_i + P_i \cdot C_i$

- 当 A_i 和 B_i 有一个为 1 时, $P_i = 1$,传递进位 $C_i + 1 = C_i$

因此 Gi 定义为进位产生信号, P_i 定义为进位传递信号. G_i 的优先级比 P_i 高。

下面推导 4 位超前进位加法器。设 4 位加数和被加数为 A 和 B,进位输入为 C_{in} ,进位输出为 C_{out} ,对于第 i 位的进位产生 $Gi = A_i \cdot B_i$,进位传递 $P_i = A_i + B_i$,i=0,1,2,3。于是这各级进位输出,递归的展开 Ci,有

- $C_0 = C_{in}$
- $C_1 = G_0 + P_0 \cdot C_0$
- $C_2 = G_1 + P_1 \cdot C_1 = G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_0$
- $C_3 = G_2 + P_2 \cdot C_2 = G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 + P_2 \cdot P_1 \cdot P_0 \cdot C_0$
- $C_4 = G_3 + P_3 \cdot C_3$ = $G_3 + P_3 \cdot G_2 + P_3 \cdot P_2 \cdot G_1 + P_3 \cdot P_2 \cdot P_1 \cdot G_0 + P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_0$ (3)
- $C_{out} = C_4$

由此可以看出,各级的进位彼此独立产生,只与输入数据 A_i 、 B_i 和 C_{in} 有关。

实现上述逻辑表达式 (3) 的电路称为超前进位部件 (Carry Lookahead Unit), 也称为 CLA 部件。通过这种进位方式实现的加法器称为超前进位加法器。

从公式 (1-3) 可知,更多位数的 CLA 部件只会增加逻辑门的输入端个数,而不会增加门的级数,因此,如果采用超前进位方式实现更多位的加法器,从理论上讲,门延迟不变。但是由于 CLA 部件中连线数量和输入端个数的增多,使得电路中需要具有大驱动信号和大扇入门,这会大大增加门的延迟,起不到提高电路性能的作用。因此更多位数的加法器可通过 4 位 CLA 部件和 4 位超前进位加法器来实现,如下图所示。将式 (1-3) 中进位 C_4 的逻辑方程改写为: $C_4 = G_{m0} + P_{m0} \cdot C_0$ (4)

 C_4 表示 4 位加法器的进位输出, P_{m0} 、 G_{m0} 分别表示 4 位加法器的进位传递输出和进位产生输出,分别为:

2.2 乘法器 2 主要模块

- $\bullet P_{m0} = P_3 \cdot P_2 \cdot P_1 \cdot P_0$
- $G_{m0} = G_3 + P_3 \cdot G_2 + P_3 \cdot P_2 \cdot G_1 + P_3 \cdot P_2 \cdot P_1 \cdot G_0$

将式(4)应用于4个4位先行进位加法器,则有:

- $C_4 = G_{m0} + P_{m0} \cdot C_0$
- $C_8 = G_{m1} + P_{m1} \cdot C_4 = G_{m1} + P_{m1} \cdot G_{m0} + P_{m1} \cdot P_{m0} \cdot C_0$
- $C_{12} = G_{m2} + P_{m2} \cdot C_8 = G_{m2} + P_{m2} \cdot G_{m1} + P_{m2} \cdot P_{m1} \cdot G_{m0} + P_{m2} \cdot P_{m1} \cdot P_{m0} \cdot C_0$
- $C_{16} = G_{m3} + P_{m3} \cdot C_{12} = G_{m3} + P_{m3} \cdot G_{m2} + P_{m3} \cdot P_{m2} \cdot G_{m1} + P_{m3} \cdot P_{m2} \cdot P_{m1} \cdot G_{m0} + P_{m3} \cdot P_{m2} \cdot P_{m1} \cdot P_{m0} \cdot C_{0}$ (5)

比较式(3)和式(5),可以看出这两组进位逻辑表达式是类似的。不过式(3)表示的是组内进位,式(5)表示的是组间的进位。实现逻辑方程组(5)的电路称为成组先行进位部件。

2.2 乘法器

乘法器采用移位相加原理。

移位相加原理: 从被乘位最低位开始,依次乘以乘数,得到的结果向坐移动若干位,最后将结果相加。

3 明细表

模块名		模块输入			模块输出		模块描述
	clk	时钟信号	1位	out1l-	输出	8 位	用 3*3 的卷积核对
Conv_53	rst	复位信号	1 位	out33			5*5 的输入矩阵进行
COUA-92	A11-A55	输入矩阵	8 位				运算结果为 3*3 的
	k11-k33	卷积核	8 位				矩阵
Conv	A11-A33	输入矩阵	8 位	out	输出	8 位	用 3*3 的卷积核对 3*3 的输入
	k11-k33	卷积核	8 位				矩阵进行运算结果为 1*1 的矩阵
multiplier	num1	被乘数	8 位	result	积	16 位	自制的快速乘法器
mumpher	num2	乘数	8 位				日即印伏还米仏師
shifterr-1bit	num1	被移数	16 位	result	移位结果	16 位	1 位右移移位器
511110C11-11010	num2	被动判断	1位				1 区/日/9/9 区位
shifterr-1bit	num1	被移数	16 位	result	移位结果	16 位	1 位左移移位器
	num2	被动判断	1位				1 15/12/19/19 15/16
shifterr-2bit	num1	被移数	16 位	result	移位结果	16 位	2 位左移移位器
	num2	被动判断	1位				- EZZY9/9 EZHI
shifterr-3bit	num1	被移数	16 位	result	移位结果	16 位	3 位左移移位器
	num2	被动判断	1位				3 正/正/19/19 正相
shifterr-4bit	num1	被移数	16 位	result	移位结果	16 位	4 位左移移位器
	num2	被动判断	1位				1 12/12/19/19 12/16
shifterr-5bit	num1	被移数	16 位	result	移位结果	16 位	5 位左移移位器
	num2	被动判断	1位				9 区立1979 区市
shifterr-6bit	num1	被移数	16 位	result	移位结果	16 位	6 位左移移位器
	num2	被动判断	1位				
shifterr-7bit	num1	被移数	16 位	result	移位结果	16 位	7 位左移移位器
511110011-1010	num2	被动判断	1 位				

模块名		模块输	人		模块	输出	模块描述		
adder20	a b	加数 1 加数 2	20 位 20 位	S	和	20 位	20 位超前进位加法器模块		

模块名		模块输	人	7	莫块输 🖰	<u> </u>	模块描述
	A	输入	16 位	S	和	16 位	
CLA_16	В	输入	16 位	Px		1位	16 位 CLA 部件
	C0	进位	1位	Gx		1位	
	A	输入	4 位	S	和	4 位	
$adder_4$	В	输入	4 位	C4	进位	1位	 四位并行进位加法器
adder_4	C0	进位	1位	Pm		1位	四位开打进位加石箱
				Gm		1位	
	C0		1位	C1		1位	
	G0		1位	C1		1位	
	G1		1位	C2		1位	
	G2		1位	C3		1位	
CLA	G3		1 位	C4		1位	4 位 CLA 部件
	P0		1 位				
	P1		1 位				
	P1		1 位				
	P1		1位				
	A	输入	32 位	S	和	32 位	
adder	В	输入	32 位	Cout	进位	1位	一位全加器
	Cin	进位	1位				

4 仿真测试

4.1 测试样例

输入:

卷积矩阵

0	0	0	0	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	0	0	0	0

卷积核

1	1	1
1	1	1
1	1	1

4.2 仿真结果

• 前仿

后仿

5 电路相关

5.1 复杂度

复杂度统计

模块	Cells	I/Oports	Nets
Conv_53	592	454	1158

5.2 电路图

6 延迟分析

7 FPGA 部署结果

7.1 样例 1

卷积矩阵

	ا ت	V-1	1								
					き	級	亥	卷积结果			
1	1	1	1	1							
1	1	1	1	1	1	1	1	9	9	9	
1	1	1	1	1	1	1	1	9	9	9	
1	1	1	1	1	1	1	1	9	9	9	
1	1	1	1	1							

7.2 样例 2

卷积矩阵

	仓炒	(大尺)	牛								
					岩	卷积核			卷积结果		
0	0	0	0	0		1.12.41;		S // (FA/)			
0	1	1	1	0	1	1	1	4	6	4	
0	1	1	1	0	1	1	1	6	9	6	
0	1	1	1	0	1	1	1	4	6	4	
0	0	0	0	0							

7.3 样例 3 8 组员分工

7.3 样例 3

卷积矩阵

					看	卷枳核 卷枳结果					
0	0	0	0	0							
0	1	1	1	0	5	5	5	14	1E	14	
0	1	1	1	0	5	5	5	1E	2D	1E	
0	1	1	1	0	5	5	5	14	1E	14	
0	0	0	0	0							

가는 1'Ll 1'는

水和作用

8 组员分工

罗鹏 (320200946111): 卷积模块与 20 位超前进位加法器。

付俊博 (320200946011): 测试。

胡臻初 (320200946051): 8 位快速乘法器、快速移位器与约束文件

李卓奥 (320200942771): 答辩 ppt 制作。

王子豪 (320200945691): 设计文档与 ppt 展示。