Olimpiada Națională de Matematică Etapa Națională, Timișoara, 20 aprilie 2017

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a 11-a

Problema 1. Spunem că o funcție $f: \mathbb{R} \to \mathbb{R}$ are proprietatea (P) dacă oricare ar fi un șir de numere reale $(x_n)_{n\geq 1}$ cu proprietatea că șirul $(f(x_n))_{n\geq 1}$ este convergent, rezultă că șirul $(x_n)_{n\geq 1}$ este convergent. Demonstrați că o funcție surjectivă cu proprietatea (P) este continuă.

Problema 2. Fie $A_1,A_2,\ldots,A_k\in\mathcal{M}_n(\mathbb{R})$ matrice simetrice. Demonstrați că următoarele

1) $\det(A_1^2 + A_2^2 + \dots + A_k^2) = 0;$

afirmații sunt echivalente:

2) pentru orice matrice $B_1, B_2, \ldots, B_k \in \mathcal{M}_n(\mathbb{R})$ are loc relația

$$\det(A_1B_1 + A_2B_2 + \dots + A_kB_k) = 0.$$

(O matrice X este simetrică dacă ea coincide cu transpusa sa X^t).

Pentru orice matrice $B_1, B_2, \ldots, B_k \in \mathcal{M}_n(\mathbb{R})$ avem $(B_1^t A_1^t + B_2^t A_2^t + \cdots + B_k^t A_k^t)X = O_{n,1}$, adică sistemul $(B_1^t A_1 + B_2^t A_2 + \cdots + B_k^t A_k)X = O_{n,1}$ are soluție nebanală și deci $\det(B_1^t A_1^t + B_2^t A_2^t + \cdots + B_k^t A_k^t) = \det(A_1 B_1 + A_2 B_2 + \cdots + A_k B_k) = 0$.

Problema 3. Fie $n \geq 2$ întreg şi $A, B \in M_n(\mathbb{C})$. Dacă $(AB)^3 = O_n$, rezultă oare că $(BA)^3 = O_n$? Justificați răspunsul.

Pentru n=2, matricele C și D au același polinom caracteristic $P_C(X)=P_D(X)=X^2-aX$, cu $a=\operatorname{tr} C=\operatorname{tr} D$. Din ipoteză și teorema Cayley-Hamilton se obține $O_n=C^3=aC^2$, astfel că a=0 sau $C^2=0$. Ambele variante conduc la concluzia $D^2=aD=O_n$ 1p

În continuare putem presupune că $C^2 \neq O_n$.

Fie acum n = 4. Exemplul

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Problema 4. Fie $f:[a,b]\to [a,b]$ o funcție derivabilă cu f' continuă și strict pozitivă. Demonstrați că există $c\in (a,b)$ astfel încât

$$f(f(b)) - f(f(a)) = (f'(c))^{2}(b - a).$$

Soluție. Se observă că funcția f este strict crescătoare.

Aplicând teorema de medie, pe intervalul [f(a), f(b)] găsim $c_1 \in (f(a), f(b))$

$$f(f(b)) - f(f(a)) = f'(c_1)(f(b) - f(a)).$$

......2p

Aplicând din nou teorema lui Lagrange pe intervalul [a, b] găsim $c_2 \in (a, b)$ astfel încât

$$f(b) - f(a) = f'(c_2)(b - a).$$

Din relațiile precedente rezultă

$$f(f(b)) - f(f(a)) = f'(c_1)f'(c_2)(b-a).$$

$oxed{2}_{\mathbf{I}}$
Cum $f'>0$ rezultă că $\sqrt{f'(c_1)f'(c_2)}$ este cuprins între $f'(c_1)$ și $f'(c_2)$. Cum f' are pro-
prietatea lui Darboux există c intre c_1 și c_2 astfel încât $f'(c) = \sqrt{f'(c_1)f'(c_2)}$, ceea ce este
echivalent cu
$f'(c_1)f'(c_2) = f'(c)^2.$
În concluzie
$f(f(b)) - f(f(a)) = f'(c)^{2}(b-a), c \in (a,b).$
3r