Autómatas y Lenguajes Formales Tarea 4

Alumnos: Torres Partida Karen Larissa Altamirano Niño Luis Enrique

14 de abril de 2020

- 1. Demuestre usando el lema del bombeo que los siguientes lenguajes no son regulares:
 - $L = \{w \in \{0,1\}^* | w^{\mathcal{R}} = w, \text{ es decir, } w \text{ es palindrome}\}$

Aplicando la interacción que resulta de aplicar la forma contrapositiva del lema del bombeo tenemos:

- a) El adversario piensa en un valor para $n \geq 0$.
- b) Tomamos $w = 0^n \, 1 \, 0^n$ donde claramente $|w| \ge n$ y $w \in L$.
- c) El adversario piensa en una descomposición w=xyz con $y\neq \varepsilon,$ y con $|xy|\leq n$. Ahora como $|xy|\leq n$ tenemos que x y y están compuestas sólo por 0's. Sean |x|=i, |y|=j donde j>0 pues $y\neq \varepsilon,$ y $|xy|=i+j\leq n$. De tal manera que $w=\underbrace{0^i}_x\underbrace{0^j}_y\underbrace{0^{n-(i+j)}10^n}_z.$
- d) Escogemos k = 0. Así

$$xy^{k}z = xy^{0}z$$

$$= xz$$

$$= 0^{i} 0^{n-(i+j)} 10^{n}$$

$$= 0^{n-j} 10^{n}$$

Y como j > 0(pues $y \neq \varepsilon$) entonces es claro que $|0^{n-j}| \neq |0^n|$, así que xy^kz no es palindrome y por lo tanto $xy^kz \notin L$. Así concluimos que L no es regular.

■ $S = \{w \in \{a,b\}^* | n_a(w) < 2n_b(w)\}$, donde la función $n_{\sigma}(w)$ devuelve el número de veces que el símbolo $\sigma \in \{a,b\}$ figura en la cadena w.

Aplicando la interacción que resulta de aplicar la forma contrapositiva del lema del bombeo tenemos:

- a) El adversario piensa en un valor para $n \geq 0$.
- b) Tomamos $w = a^{2n} b^{n+1}$ donde claramente $|w| \ge n$ y $w \in L$.
- c) El adversario piensa en una descomposición w=xyz con $y\neq \varepsilon,$ y con $|xy|\leq n$. Ahora como $|xy|\leq n$ tenemos que x y y están compuestas sólo por a's. Sean |x|=i, |y|=j donde j>0 pues $y\neq \varepsilon,$ y $|xy|=i+j\leq n$. De tal manera que $w=\underbrace{a^i}_x\underbrace{a^j}_y\underbrace{a^{2n-(i+j)}b^{n+1}}_z$.

d) Escogemos k = 5. Así

$$xy^{k}z = xy^{5}z$$

$$= a^{i} (a^{j})^{5} a^{2n-(i+j)} b^{n+1}$$

$$= a^{i+5j+2n-i-j} b^{n+1}$$

$$= a^{2n+4j} b^{n+1}$$

Y entonces $n_a(xy^kz) = 2n + 4j$ y $2n_b(xy^kz) = 2(n+1) = 2n + 2$, ahora como j > 0 es claro que $n_a(xy^kz) \not< 2n_b(xy^kz)$ pues 2n + 4j > 2n + 2, por lo que $xy^kz \not\in S$. Así concluimos que S no es regular.

2. Utilizando el teorema de Myhill-Nerode demuestre que

$$L = \{w \in \{a, b\}^* | |w| > 0 \text{ es par y w tiene sus símbolos de enmedio iguales} \}$$

no es regular.

Supongamos que tenemos dos naturales i y j tales que, $i \neq j$, i = j + 1 y $j \geq 0$. Queremos mostrar que $(ab)^i a \not\equiv_L (ab)^j a$, entonces si tomamos $(ab)^i a$, tenemos que:

■ $(ab)^i a \ (ab)^i a \in L$ pues como $|(ab)^i a|$ es impar entonces es claro que $|(ab)^i a \ (ab)^i a|$ es par, ahora como i = j + 1 y $j \ge 0$ entonces es válido que $(ab)^i a \ (ab)^i a = (ab)^i aab(ab)^{i-1}a$, además tenemos que $|(ab)^i| = 2i$ y $|b(ab)^{i-1}a| = 1 + 2(i-1) + 1 = 2i$, por lo que $\underbrace{(ab)^i}_{2i} aa \underbrace{b(ab)^{i-1}a}_{2i}$, así que los símbolos

de enmedio de $(ab)^i a (ab)^i a$ son iguales.

• $(ab)^j a (ab)^i a \notin L$ pues aunque $|(ab)^j a (ab)^i a|$ es par, se tiene que $(ab)^j a (ab)^i a = (ab)^j aab(ab)^{i-1} a$, ahora tenemos que $|(ab)^j a| = 2j+1$ y $|(ab)^{i-1} a| = 2(i-1)+1=2((j+1)-1)=2j+1$, por lo que entonces tenemos $(ab)^j a ab \underbrace{(ab)^{i-1} a}_{2j+1}$, y entonces lo símbolos de enmedio de la cadena $(ab)^j a (ab)^i a$ son distintos.

Por lo tanto hay una infinidad de clases de equivalencia. Por el teorema de Myhill-Nerode L no es regular.

3. ¿Es el lenguaje $\{a^ib^j|i+j\geq 4\}$ regular? Si es el caso, dé un autómata finito o una expresión regular que lo genere. Si no es regular, demuéstrelo.

Respuesta:

El lenguaje sí es regular y para ello tenemos el siguiente autómata:

4. Determine si el lenguaje $L = \{a^i b^j | i \le j\}$ es regular o no. Demuestre su respuesta.

Aplicando la interacción que resulta de aplicar la forma contrapositiva del lema del bombeo tenemos:

- a) El adversario piensa en un valor para $n \geq 0$.
- b) Tomamos $w = a^n b^n$ donde claramente $|w| \ge n$ y $w \in L$ (pues $n \le n$).
- c) El adversario piensa en una descomposición w=xyz con $y\neq \varepsilon,$ y con $|xy|\leq n.$ Ahora como $|xy|\leq n$ tenemos que x y y están compuestas sólo por a's. Sean |x|=i, |y|=j donde j>0 pues $y\neq \varepsilon,$ y $|xy|=i+j\leq n.$ De tal manera que $w=\underbrace{a^i}_x\underbrace{a^j}_y\underbrace{a^{n-(i+j)}b^n}_z.$
- d) Escogemos k = 2. Así

$$xy^{k}z = xy^{2}z$$

$$= a^{i} (a^{j})^{2} a^{n-(i+j)} b^{n}$$

$$= a^{i+2j+n-i-j} b^{n}$$

$$= a^{n+j} b^{n}$$

Y entonces tenemos que $n+j \le n$ pues n+j > n, ya que j > 0, por lo que $xy^kz \notin L$, y por lo tanto L no es regular.

5. Encuentre un ejemplo de un lenguaje $L \subseteq \{a, b\}^*$ tal que L^* no puede ser aceptado por un autómata finito.

Ejemplo:

Sea

$$L = \{w \in \{a, b\}^* | w \text{ tiene el mismo número de a's y b's} \}$$

tenemos que $L = L^*$ y dado que L no es regular, entonces L^* no es regular y por lo tanto L^* no puede ser aceptado por un autómata finito.

- 6. Dé gramáticas libres de contexto para cada uno de los siguientes lenguajes sobre el alfabeto $\Sigma = \{a, b\}$.
 - a) $\{w \in \Sigma^* | w \text{ tiene más a's que b's} \}$

Respuesta:

Tenemos la siguiente gramática:

$$S \rightarrow a \mid aS \mid bSS \mid SbS \mid SSb$$

b) $\{w \in \Sigma^* | \text{la longitud de } w \text{ es impar y su símbolo inicial, de enmedio y final es el mismo} \}$

Respuesta:

Tenemos la siguiente gramática:

$$S \rightarrow aTa \mid bRb \mid a \mid b$$
 $T \rightarrow a \mid bTb \mid aTa \mid aTb \mid bTa$
 $R \rightarrow b \mid bRb \mid aRa \mid aRb \mid bRa$

7. Describa el lenguaje (subconjunto de $\{a,b\}^*$) que es generado por la gramática libre de contexto siguiente:

$$S \to TT$$
, $T \to aT \mid Ta \mid b$

Respuesta:

La gramática genera el lenguaje:

$$L = \{ w \in \{a, b\}^* | n_b(w) = 2 \}$$

, es decir, las cadenas de a's y b's que sólo tie<mark>nen 2 b's.</mark>