CS101A-计算机导论-Assignment 3

Name: 杨家鉴

SID: 12012711

Ex.1

- (A) True
- (B) True

Ex.2

4

1.Well-defined, 2.Unambiguous steps, 3.Produce a result, 4.Terminate in a finite time

Ex.3

3

1.Flow charts, 2.Primitives, 3. Pseudo-code

Ex.4

$$log(log n) < 2n < 8n^3 + 17n^2 < (1.5)^n$$

solution:

- for $log(log\ n) \le c_1 \cdot log\ n$, there are constants $c_1=1, c_2=1$ such that $log(log\ n) \le log\ n$ holds for all $n \ge c_2$, so $log(log\ n) = O(log\ n)$
- for $2n \le c_1 \cdot n$, there are constants $c_1=3, c_2=1$ such that $2n \le c_1 \cdot n$ holds for all $n \ge c_2$, so 2n=O(n)
- for $8n^3+17n^2\leq c_1\cdot n^3$, there are constants $c_1=9, c_2=17$ such that $8n^3+17n^2\leq c_1\cdot n^3$ holds for all $n\geq c_2$, so $8n^3+17n^2=O(n^3)$
- for $(1.5)^n \le c_1 \cdot 2^n$, there are constants $c_1=1, c_2=1$ such that $(1.5)^n \le c_1 \cdot 2^n$ holds for all $n \ge c_2$, so $(1.5)^n=O(2^n)$

Therefore, $log(log~n) < 2n < 8n^3 + 17n^2 < (1.5)^n$