

Si Best diagonalisable, alus B=PDP-1 donc B2 = PDP-1 PDP-1 or A = B donc A = PD P-1 or De est eure mobile diagorde donc A est diagonalisable Au contraine la reciproque est fansse En effet: $\mathbf{B} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Borest pas diagonalisable car elle a une seule valeur prope 0 mais uniquement 2 vodeurs A et d'agonalisable, con elle a une valeur propre.

triple d'avec 3 vedeurs propres (1) (0), et (0). la recipioque est dans hien fausse

L

2

2) a) PA	$(\lambda) = \begin{vmatrix} 11 - \lambda \\ -S \end{vmatrix}$	-5 -5 3-\ 3 3 -3-	2 - (2 - (3
		0 -9 -λ 3 λ 3	S
	= (-1)1+1 + (-1) + ($(JJ-X)_{\times}$ $(-X)_{\times}$	$(3-\lambda)-3\lambda$
	= - \	111 - 3 \ + 3	1-1)3-50)
	= - \(\lambda - 1\)		
	ec $(A) = \int O_1 A_1$ A sol diogener		

$$AX = 0 = \begin{cases} 1/1 x - Sy - 5 = 0 \\ -Sx + 3y + 3z = 0 \end{cases}$$

$$-Sx + 3y + 3z = 0$$

$$-Sx + 3y + 3z = y$$

$$-Sx + 3y + 3z = y$$

$$-Sx + 3y + 3z = z$$

$$-Sx + 3y + 3z = 0$$

$$-Sx + 3y + 2z = 0$$

