Tutorato Fisica, CdL Informatica Foglio 7

 $\label{lem:curi:giulia.mercuri@edu.unito.it} Giulia \ Mercuri: \ giulia.mercuri@edu.unito.it$

 $20~\mathrm{maggio}~2021$

1 Esercizi

1.1 Esercizio 1

Data la rete in figura, calcolare la resistenza totale R_T tra i morsetti A e B e la resistenza tra i nodi $A \in C$.

 $R_1 = 3 k \Omega$; $R_2 = 1.2 \ k \ \Omega \ ;$ $R_3=22\ k\ \Omega\ ;$ $R_4 = 400 \ \Omega$.

Esercizio 2

Dato il circuito in figura calcolare la tensione V_{AO} sapendo che $E=16~V,~R_1=3~k\Omega$ e $R_2 = 22 k \Omega.$

1.3 Esercizio 3

Trovare il valore di \mathbb{R}_4 nel circuito assegnato sapendo che:

 $i_2 = 2 A$;

 $E_1 = 12 \ V \ ;$

 $R_1 = 1 \Omega$;

 $R_2 = 3 \Omega ;$

 $R_3 = 4 \Omega ;$ $R_5 = 2 \Omega .$

1.4 Esercizio 4 (Tema d'esame)

Consideriamo il circuito in figura con $R1=10~\Omega, R_2=R_3=20~\Omega,~R_4=80~\Omega~E=6~V$ e C=50~nF. Dopo esser stato a lungo aperto, all'istante t=0~s l'interruttore T viene chiuso. Determinate la corrente che attraversa il resistore R_1 e la carica presente sulle armature del condensatore nei seguenti casi:

- a) subito dopo la chiusura dell'interruttore;
- b) alla stazionarietà $(t \to +\infty)$;
- c) Discutere il comportamento del circuito nel caso in cui $R_4 = 40\Omega$.

1.5 Esercizio 5

Utilizzando le leggi di Kirchhoff, trovare le tre correnti $I_1,\,I_2$ e I_3 noti:

$$E_1 = 4 V ;$$

 $E_1 = 11 V ;$
 $E_3 = 12 V ;$

 $R_1 = 1 \Omega ;$ $R_2 = 2 \Omega ;$ $R_3 = 3 \Omega .$

1.6 Esercizio 6 (Tema d'esame)

Il circuito in figura si trova inizialmente in condizioni stazionarie con l'interruttore T aperto. All'istante t=0 s l'interruttore T viene chiuso. Determinare la corrente i_0 erogata dalla f.e.m. e la differenza di potenziale ai capi dell'induttore (VA - VB) nei seguenti istanti:

- a) immediatamente prima di chiudere l'interruttore T;
- b) subito dopo la chiusura di T;
- c) quando il circuito ha nuovamente raggiunto la stazionarietà.
- Si assuma: $V_0=60~V$ e $R=100~\Omega.$ (Sostituire i valori numerici solo alla fine dello svolgimento)

