FGA Explained Learning Seminar Fall 2020

Notes by Patrick Lei

Lectures by Various

Columbia University

Disclaimer

These notes were taken during the seminar using the vimtex package of the editor neovim. Any errors are mine and not the speakers'. In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of my mathematical style and that of the lecturers. If you find any errors, please contact me at plei@math.columbia.edu.

Seminar Website: https://www.math.columbia.edu/~calebji/fga.html

Contents

Contents • 2

- 1 Caleb (Oct 16): Representable Functors and Grothendieck Topologies 3
 - 1.1 Representable Functors 3
 1.2 Grothendieck Topologies 3
 1.3 Sheaves on Sites 5

Caleb (Oct 16): Representable Functors and Grothendieck Topologies

1.1 Representable Functors

We will always denote categories by C.

Definition 1.1.1. Given an object $x \in C$, define the functor $h_X : C^{op} \to Set$ by $h_X = Hom(-, X)$.

Any morphism $f: x \to y$ induces a natural transformation $h_f: h_x \to h_y$. By the Yoneda lemma, this correspondence is bijective.

Lemma 1.1.2 (Yoneda Lemma). Let $x \in C$ and $F: C^{op} \to Set$ be a functor. Then $Hom(h_x, F) \simeq F(x)$.

Proof. Let θ : $h_x \to F$. This gives a map θ_x : $h_x(x) \to F(x)$, and we can consider id $\to \theta_x(id)$. Now given $t \in F(x)$, we need $h_x(U) \to F(U)$. Given $U \to x$, then we have a map $F(x) \to F(U)$ and then $t \mapsto F_f(t)$. We can check that these are inverses.

Definition 1.1.3. A functor $F: C^{op} \to Set$ is *representable* if it is naturally isomorphic to h_x for some x.

Definition 1.1.4. If F is a presheaf, a *universal object* for F is a pair (X, ξ) such that $\xi \in FX$ and for any (U, σ) where $\sigma \in FU$, there exists a unique $f : U \to X$ such that $F_f(\xi) = \sigma$.

Note that representability is equivalent to having a universal object.

Example 1.1.5. 1. For the first example, consider $C = \operatorname{Sch}/R$ for some ring R. Then if $F = \Gamma(\mathcal{O})$, then clearly this is isomorphic to $h_{\mathbb{A}^1}$ and the universal object is (\mathbb{A}^1, x) .

2. Let $F(X) = \{\mathcal{L}, s_0, \dots, s_n\}$ where \mathcal{L} is a line bundle and s_0, \dots, s_n generate \mathcal{L} , then $(\mathbb{P}^n, x_0, \dots, x_n)$ is a universal object.

1.2 Grothendieck Topologies

According to Wikipedia, this is supposed to be a pun on "Riemann surface." We want to generalize the idea of a topology because the Zariski topology is awful. Instead of open sets, we will consider suitable maps (coverings).

Definition 1.2.1. A *Grothendieck topology* on a category C is a specification of *coverings* $\{U_i \to U\}$ of U for each $U \in C$. Here are the axioms for coverings:

- 1. If $V \to U$ is an isomorphism, then $\{V \to U\}$ is a covering.
- 2. If $\{U_i \to U\}$ is a covering, for all $V \to U$, the fiber products $\{U_i \times_U V \to V\}$ and form a covering of V.
- 3. If $\{U_i \to U\}$ is a covering and $\{V_{ij} \to U_i\}$ are coverings, then $\{V_{ij} \to U\}$ is a covering of U.

A category with a Grothendieck topology is called a site.

Example 1.2.2. Here are some topological examples. Let *X* be a topological space.

- 1. The site of *X* is the poset category of open subsets of *X*. The fiber product is just the intersection, and a covering is a normal open covering.
- 2. (Global classical topology) Let C = Top. Here, the coverings are sets of open embeddings such that the union of the images covers the whole space.
- 3. (Global étale topology) Here, C = Top and the coverings are now local homeomorphisms.

Returning to schemes, we have several examples of Grothendieck topologies.

- 1. (Global Zariski Topology). Let C = Sch. The coverings are jointly surjective open embeddings.
- 2. (Big étale site over *S*) The objects are schemes over *S* and the morphisms are *S*-morphisms that are étale and locally of finite presentation.
- 3. (Small étale site) This the same as the big étale site, but with the added requirement that $U \rightarrow S$ is also étale.
- 4. (fppf topology) This stands for the French *fidèlement plat et présentation finie*. The morphisms are $U_i \to U$ flat and locally of finite presentation. A covering is a set of jointly surjective morphisms such that the map $\bigcup U_i \to U$ is faithfully flat and of finite presentation. Note that flat and locally of finite presentation implies open.
- 5. (fpqc topology) This stands for the French *Fidèlement plat et quasi-compacte*. An *fpqc* morphism is a morphism $X \to Y$ that is faithfully flat and one of the following equivalent conditions:
 - a) Every quasicompact open subset of *Y* is the image of a quasicompact open subset of *X*.
 - b) There exists an affine open cover $\{V_i\}$ of Y such that V_i is the image of a quasicompact open subset of X.
 - c) Given $x \in X$, there exists a neighborhood $U \ni x$ such that f(U) is open in Y and $U \to f(U)$ is quasicompact.
 - d) Given $x \in X$, there exists a quasicompact open neighborhood $U \ni x$ such that f(U) is open and affine in Y.

The fpqc topology is given by maps $\{U_i \to U\}$ such that $\bigcup U_i \to U$ is an fpqc morphism.

To check that this is a topology, we have to do a lot of work. However, we will list some properties of fpqc morphisms and coverings.

Proposition 1.2.3. 1. The composition of fpqc morphisms is fpqc.

- 2. Given $f: X \to Y$, if $f^{-1}(V_i) \to V_i$ is fpqc, then f is fpqc.
- 3. Open and faithfully flat implies fpqc. Moreover, faithfully flat and locally of finite presentation implies fpqc. This means that fppf implies fpqc.
- 4. Base change preserves fpqc morphsisms.
- 5. All fpqc morphsism are submersive. Thus $f^{-1}(V)$ is open if and only if V is open.

Note that Zariski is coarser than étale is coarser than fppf is coarser than fpqc.

1.3 Sheaves on Sites

Recall that a presheaf on a space is a functor $X_{\rm cl}^{\rm op} \to {\sf Set}$. Similarly, if C is a site, then a presheaf is a functor $C^{\rm op} \to {\sf Set}$.

Definition 1.3.1. A presheaf on a site *C* is a *sheaf* if

- 1. Given a covering $\{U_i \to U\}$ and $a, b \in FU$ such that $p_i^* a = p_i^* b$, then a = b.
- 2. Given a covering $\{U_i \to U\}$ and $a_i \in FU_i$ such that $p_i^* a_j = p_j^* a_i$ (in the fiber product) for all i, j, there exists a unique $a \in FU$ such that $p_i^* a = a_i$.

An alternative definition of a sheaf is that $FU \to \prod FU_i \rightrightarrows F(U_i \times_U U_i)$ is an equalizer.

Theorem 1.3.2 (Grothendieck). A representable functor on Sch/S is a sheaf in the fpqc topology.

This means that given any fpqc cover $\{U_i \to U\}$, then applying h_X , if we have $f_i \colon U_i \to X$ that glue on $U_i \times_X U_j \to X$, then the sheaf condition says we can glue to a unique $f \colon U \to X$. In the Zariski topology, this is trivial. This also means that the fpqc topology is *subcanonical*, which means that h_X are all sheaves.

We will prove this result by reducing to the category of all schemes. Note that the topology on Sch/S comes from the topology on Sch. Then we can show that if C is subcanonical, then C/S is subcanonical. Then we use the following lemma.

Lemma 1.3.3. Let S be a scheme and $F: Sch/S^{op} \to Set$ be a presheaf. If F is a Zariski sheaf if $V \to U$ is a faithfully flat morphism of affine S-schemes, then $FU \to FV \rightrightarrows F(V \times_U V)$ is an equalizer, then F is an fpgc sheaf.

Proof. Given $\{U_i \to U\}$ an fpqc covering, let $V = \coprod U_i$. Then consider the diagram

$$FU \longrightarrow FV \Longrightarrow F(V \times_{U} V)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$FU \longrightarrow \prod FU_{i} \Longrightarrow F(U_{i} \times_{U} U_{j}),$$

the columns are bijective, so it suffices to check this for single coverings.

Now if $\{U_i \to U\}$ are finite and all affine and the second assumption holds, we have the diagram

Then the middle row is an equalizer.

Proof of Theorem 1.3.2. If X, U, V are affine, then we know that Hom(R, -) is left exact, so the result follows from commutative algebra. Now it suffices to check the general case for single covers. If $X = \bigcup X_i$ is a union of affines, then separatedness follows by restricting to the X_i and using the affine case.

Please read the rest of this yourself.