

Root Locus Methodology

- Root Locus as s Domain Design Tool
- Root Locus Procedure
- Root Locus Features
- Root Locus Special Cases

Let 'K. $G_c(s)$ G(s) = -1' be rewritten as follows.

$$KG_{c}(s)G(s) = \frac{K\prod_{i=1}^{m} (s - z_{i})}{\prod_{j=1}^{n} (s - p_{j})} = -1$$

$$\prod_{j=1}^{n} (s - p_{j}) + K\prod_{i=1}^{m} (s - z_{i}) = 0$$

It is **clear** from the above **relation** that values of 's' satisfying the condition, **depend** on the values of 'K'.

E.g., if K = 0, then we get,

 $\prod (s - p_j) = 0 \longrightarrow s_j = p_j$

I.e. plant **poles** are the **starting**

values for the closed loop poles.

Similarly, if $K = \infty$, we get,

 $\prod (s-z_i) = 0 \longrightarrow S_i = Z_i$ I.e. plant zeros are the end points

of the root locus.

We also know that **path**, in the vicinity of 'p_i' & 'z_i', can be determined by value of slope at these points.

Therefore, there are **many** such simple **rules** which can be used to capture **gross** features of root locus, **graphically**.

This task is made **simpler** by firstly, splitting 'K.G_c G(s)', as **magnitude** $|K.G_c|$ G(s)| & **angle** $\angle K.G_c|$ G(s), and next, imposing the **closed loop** condition as follows.

$$|KG_c(s)G(s)| = 1$$

 $\angle KG_c(s)G(s) = \pm 180^{\circ}(2k+1), k = 0, 1, 2 \cdots$

The method involves **checking** for these **conditions** to determine **contiguous** line segments that denote **root locus**.

Straight Line Root Locus Concept

In this manner, we can **arrive** at an overall closed loop **pole map**, with reasonable computational **effort**, which essentially consists of **straight lines**.

We find that as our **primary** focus is the **dominant** closed loop **poles**, we can further **minimize** the effort by **focusing** on the map close to the **imaginary axis**.

Summary

s – domain design procedure aims to arrive at controller to achieve the dominant closed loop poles.

Root locus is a **pictorial view** of closed loop **system poles**, based on the **plant** characteristics.

Root Locus Generation Procedure

Applicable Line Segments

Following broad steps are employed to generate the dominant root locus branch.

Root locus **starting** points; Root locus on **real axis**, Break-away/**break**-in points; **Asymptotes**; Root locus on **imaginary axis**; Angle of arrival/**departure**; Root locus **ending** points.

Root Locus Starting: $s = -p_j$

Root Locus Ending: $s = -z_i$

Root locus on real axis

(n + m) to the right of root locus, an odd number.

Asymptotes (Case of $s \rightarrow \infty$)

$$\lim_{s\to\infty} \frac{K(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} \approx \frac{K}{s^{n-m}} \to \angle = \frac{\pm(2k+1)180^{\circ}}{n-m}$$

$$\lim_{s \to \infty} \frac{K(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)} \approx \frac{K}{\sum_{j=1}^{n} p_j - \sum_{i=1}^{m} z_i}; \quad \sigma = \frac{\sum_{j=1}^{n} p_j - \sum_{i=1}^{m} z_i}{n-m}$$

Break-away & Break-in Points (Double Real Roots)

$$KG(s) = \frac{K(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)^2(s-p_3)\cdots(s-p_n)} = \frac{KA(s)}{(s-p_1)^2B(s)} = -1$$

$$K(s) = -\frac{\left(s - p_1\right)^2 B(s)}{A(s)} \to \frac{dK}{ds} = \left(s - p_1\right) F(s) = 0 \to s = p_1$$

Root Locus Intersection with Imaginary Axis

Use Routh's method to determine K & poles.

Departure / Arrival Angles

From a complex pair of poles and at pair of zeros.

For any point 's' in vicinity

$$\varphi_d = 180^o - \sum_{i=1}^n \theta_i + \sum_{i=1}^m \varphi_i$$

$$\varphi_a = 180^o + \sum_{j=1}^n \theta_j - \sum_{i=1}^m \varphi_i$$

Value of Gain K_p at a point 's'

Use magnitude condition, |K.G(s)| = 1.

Root Locus Application

As **root locus** is **plot** of all possible **closed loop** poles as 'loop' **gain** is varied, it provides information about poles **closest** to the imaginary axis (**dominant**).

Thus, root locus is useful for addressing closed loop requirements in terms of the dominant poles.

Root Locus Example

Sketch the asymptotic root locus for the following plant.

$$G(s) = \frac{K}{s(s+1)(s+2)}; \quad H(s) = 1$$

Open Loop Poles & Zeros:

$$n = 3, p_1 = 0, p_2 = -1, p_3 = -2; m = 0; (n - m) = 3$$

Root locus on Real Axis:

 $(+\infty,0) \to \text{No Root Locus}; (0,-1) \to \text{Root Locus}$ $(-1,-2) \to \text{No Root Locus}; (-2,-\infty) \to \text{Root Locus}$

Asymptotes: Angles $\pm 60^{\circ} \& -180^{\circ}$; Intersection $\sigma = -1$

Root Locus Example

Break-away Point:
$$K(s) = -(s^3 + 3s^2 + 2s) \rightarrow \frac{dK}{ds} = -(3s^2 + 6s + 2) = 0 \rightarrow s = -0.4226$$

Imaginary Axis Crossing:

$$s^3 + 3s^2 + 2s + K = 0$$

$$6 - K = 0 \rightarrow \omega = \pm \sqrt{2}j$$

Gain at any point on Root Locus:

$$K = \frac{1}{|G(s)|}$$

Straight Line Root Locus Benefits

In many cases of **gross** assessment of closed loop **behaviour**, a straight line (or **asymptotic**) root locus is considered **adequate**.

A more accurate plot can be generated by taking additional points between these segments, through trial and error method.

Summary

Asymptotic root locus is a simple aid for **visualizing** the dominant closed loop **behaviour**.

Root Locus Features

Root Locus Features

Root Locus contains as many lines as the number of plant poles.

Root locus is **symmetric** about the **real axis**, due to poles being complex **conjugate**, and hence, only **one half** needs to be **generated**.

Root locus **lines** never cross each other, except at **break-away**/break-in points.

An asymptote indicates a zero lying at infinity.

All Pole Plant Root Locus

General Rules for All Pole Plants

Pole – Zero Plant Root Locus

General Rules for Pole - Zero Plants

Root Locus Special Cases

Non-unity Feedback Systems

There are many **practical situations** when a **gain** appears in **feedback path**. This is common when there are **sensors / amplifiers** for output signal. **Closed loop** transfer function in **such cases** is as given below.

$$\frac{C(s)}{R(s)} = \left(\frac{G(s)}{1 + KG(s)}\right)$$

It can be seen that the **characteristic polynomial** is same as **that obtained** with gain K_p in **cascade** so that **both** structures have the **same** root locus.

Systems with Positive Feedback

In case of positive feedback, following rules change.

$$\angle G(s) H(s) = 0^{\circ} \pm k \ 360^{\circ}$$

(n + m) to the right is even

Asymptotes' angle = \pm k 360° / (n – m)

$$\phi_a$$
 (or ϕ_d) = 0° ± (ϕ_i - θ_j)

Positive feedback root locus is also termed 'negative' root locus, as this is obtained by putting K < 0.

Positive Feedback Example

Generate both **positive & negative feedback** root loci for the **system** given below.

$$G(s) = \frac{K}{(s+1)(s+2)(s+3)}$$

Non – minimum Phase Systems

There are a large class of plants whose poles (or zeros) are in the **right half** of s – plane.

While, the **rules** for all such **systems** are same as those for **negative feedback**, angle contributions change leading to **changes** in root locus **shape**.

Non – minimum Phase Root Locus

Generate root loci and bring out important features.

$$G_1(s) = \frac{K(s+2)(s+3)}{s(s+1)}$$

$$G_2(s) = \frac{K(s-2)(s+3)}{s(s+1)}$$

$$G_3(s) = \frac{K(s-2)(s-3)}{s(s+1)}$$

Summary

Gain in **feedback** path results in the **same** root locus as that obtained for **gain** in cascade.

Negative root locus is applicable for positive feedback systems.

Zeros in right half impact angle **relations** adversely, thereby, **impacting** shape of root locus.