Lenguajes y Compiladores - Primer Parcial 2018 Nombre y Apellido:

- 1. (a) Enuncie todas las reglas correspondientes al comando **catchin** c_0 **with** c_1 para la semántica de transiciones \rightarrow .
 - (b) La propiedad $\langle c, \sigma \rangle \to \gamma$ implica $\llbracket c \rrbracket = \gamma$, para $\gamma \in \Sigma'$, se prueba por inducción en las reglas de \to . Haga los casos correspondientes a $c = \mathbf{catchin} \ c_0 \ \mathbf{with} \ c_1$
- 2. Determinar si es verdadero o falso. Justificar la respuesta.
 - (a) Si P es un poset finito con menor elemento \bot , y $F \in P \to P$ es monótona creciente, entonces F tiene un punto fijo.
 - (b) Sea p predicado y δ una sustitución. Si $\llbracket p/\delta \rrbracket \sigma = V$, entonces existe σ' tal que $\llbracket p \rrbracket \sigma' = V$.
 - (c) La cadena $F^0 \perp_{\Sigma \to \Sigma_{\perp}}, F^1 \perp_{\Sigma \to \Sigma_{\perp}}, \dots$ correspondiente a un programa de la forma **while true do** c es siempre interesante.
- 3. Considere el dominio $D=(\mathbf{Z}\to\mathbf{Z}_\perp)$. Justifique las respuestas.
 - (a) Muestre una función $F \in D \to D$ que satisfaga simultáneamente: (i) tiene infinitos puntos fijos; (ii) posee un menor punto fijo h; (iii) h(x) es distinto de \bot en los enteros negativos.
 - (b) Muestre una función $F \in D \to D$ que tenga puntos fijos pero no tenga un menor punto fijo.
- 4. Considere el leguaje imperativo simple. Enuncie el Teorema de Coincidencia, y luego utilice el mismo para probar que si v no es libre en c, entonces los comandos c y **newvar** v := e **in** c son equivalentes.
- 5. Considere el comando

while $x \neq 0$ do if x > 10 then x := -x else x := x - 1.

- (a) Muestre la función F que define la semántica denotacional del while, expresándola de la manera más sencilla posible.
- (b) ¿Qué función de $\Sigma \to \Sigma_{\perp}$ es la función $F(\lambda \sigma' \in \Sigma . [\sigma' | x : 0])$?
- (c) Caracterice el conjunto de estados que satisfacen $F^3 \perp_{\Sigma \to \Sigma_{\perp}} \sigma = [\![c]\!]\sigma$