Now observe that m is admissible if and only if a' = $-\infty$ and b' = ∞ .

If a' = $-\infty$ and b' = ∞ , then B is the generator of the translation group on $C_O(\mathbb{R})$. Hence also δ_m is the generator of a group $(T(t))_{+ \in \mathbb{R}}$ on $C_O(a,b)$.

Conversely , assume that B generates a group $(T(t))_{t\in\mathbb{R}}$. Assume that a' > $-\infty$. Then $C_O(a',b')$ is a closed subspace of $C_O(a',b')$. Let

$$(T_1(t)f)(x) = \begin{cases} f(x+t) & \text{for } x+t < b' \\ 0 & \text{for } x+t \ge b' \end{cases}$$

for all $f \in C_0[a',b')$, $x \in [a',b')$, $t \ge 0$. Then $(T_1(t))_{t\ge 0}$ is a semigroup on $C_0[a',b')$ with generator B_1 given by $B_1f = f'$ with domain $D(B_1) = \{ f \in C_0[a',b') \cap C^1(a',b) : \lim_{x \to b}, f'(x) = 0 \}$. If we consider B as an operator on $C_0[a',b')$, then $B \subseteq B_1$. Let $f \in D(B)$. Then $u(t) := T(t) f \in D(B) \subseteq D(B_1)$ for all $t \ge 0$; and $u(t) = Bu(t) = B_1u(t)$; u(0) = f. It follows from A-I,Thm.1.7. (or A-II,Cor1.2.) that $T_1(t) f = u(t)$. Hence $T_1(t) f \in C_0(a',b')$ for all $t \ge 0$ and $f \in D(B)$. This is impossible since $a' \ge -\infty$. Similary one shows that $b' = \infty$.

<u>Proof of Theorem</u> 3.17. Suppose that m is admissible. It is easy to see that (3.22) then defines a continuous flow on (a,b). Moreover, for every $x \in (a,b)$ the function $\phi(\cdot,x)$ is differentiable and satisfies

 $(3.23) \quad \frac{\partial}{\partial t} \phi(t, x) = m(\phi(t, x)) \quad (x \in (a, b) , t \in \mathbb{R}) .$

Denote by $(T(t))_{t\in\mathbb{R}}$ the group on $C_0(a,b)$ given by $T(t)f=f^{\circ\phi}_t$ (t $\in \mathbb{R}$, $f\in C_0(a,b)$) and let A be its generator. Take $g\in C_0(a,b)$ and f=R(1,A)g. Then $f(x)=\int_0^\infty e^{-t}g(\phi(t,x))dt$, $x\in (a,b)$. If m(x)=0 then $f(x)=\int_0^\infty e^{-t}g(x)dt=g(x)$. If $x\in (a_n,b_n)$ (n $\in J$), then $f(x)=\int_0^\infty e^{-t}g(q_n(x)+t)dt=e^{q_n(x)}\int_{q_n(x)}^\infty e^{-s}g(q_n^{-1}(s))ds$.

Thus f is differentiable in x and f'(x) = (1/m(x))(f(x) - g(x)). Consequently f \in D(\delta_m) and $\delta_m f = f - g$. This shows that $A \subseteq \delta_m$. In order to show the converse inclusion, let $f \in D(\delta_m)$ and $g = f - \delta_m(f) \in C_O(a,b)$. Then R(1,A)g(x) = f(x) if m(x) = 0 and $R(1,A)g(x) = \int_0^\infty e^{-t}f(\phi(t,x))dt - \int_0^\infty e^{-t}m(\phi(t,x))f'(\phi(t,x))dt$ $= \int_0^\infty e^{-t}f(\phi(t,x))dt - \int_0^\infty e^{-t}f(\phi(t,x))dt$ (by (3.23))

= f(x) by integrating by parts. This shows that f = R(1,A)g \in D(A) and that δ_m is the generator of the group (T(t))_{t \in R}

Finally we show that $T(t)D_O(\delta_m) \subseteq D_O(\delta_m)$, which implies that $D_O(\delta_m)$ is a core (by A-II,Cor 1.34). Let $t \in \mathbb{R}$. The function $\phi_t(\cdot)$ is