Алгебра

Сидоров Дмитрий

Группа БПМИ 219

April 27, 2022

№1

Сколько элементов порядков 2, 3, 6 и 9 в группе $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_9$?

Решение:

В циклической подгруппе порядка m уравнение $x^n=e$ имеет $\mathrm{HOД}(m,n)$ решений. Можно считать, что группа $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_9$ состоит из набора из 3 чисел (3 координаты). Тогда необходимо найти количество решений уравнений $x^2=1, x^3=1, x^6=1, x^9=1$ в группе $\mathbb{Z}_2 \times \mathbb{Z}_6 \times \mathbb{Z}_9$. Получаем $2 \cdot 2 \cdot 1=4, \ 1 \cdot 3 \cdot 3=9, \ 2 \cdot 6 \cdot 3=36, \ 1 \cdot 3 \cdot 9=27$. Значит элементов порядка $2 \cdot 4-1=3$ (минус 1, тк единичный элемент (ситуация, когда все координаты равны 0) имеет порядок 1). Элементов порядка $3 \cdot 9-1=8$ (аналогично не считаем единичный элемент). Элементов порядка $6 \cdot 36-1-3-8=24$ (не считаем единичный, а так же не считаем элементы порядка $2 \cdot 4 \cdot 3 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3 \cdot 3=36$ (не считаем единичный, а так же не считаем элементы порядка $3 \cdot 4 \cdot 3=366$ (не считаем единичный)

Ответ: 3, 8, 24, 18

N_2

Сколько подгрупп порядков 7 и 14 в нециклической абелевой группе порядка 98?

Решение:

Заметим, что $98 = 2 \cdot 7^2$. Найдём все абелевые группы порядка 98. Это $\mathbb{Z}_2 \times \mathbb{Z}_7 \times \mathbb{Z}_7$ и $\mathbb{Z}_2 \times \mathbb{Z}_{49}$. При этом $\mathbb{Z}_2 \times \mathbb{Z}_{49} \simeq \mathbb{Z}_{98}$ (по теореме, тк 2 и 49 взаимно просты) и является циклической. Значит нециклической абелевой группой порядка 98 является только $\mathbb{Z}_2 \times \mathbb{Z}_7 \times \mathbb{Z}_7$. Найдём количество элементов порядков 7 и 14, а дальше, для 7, тк 7 - простое число, а подгруппы простого порядка попарно не пересекаются, и в подгруппе порядка 7 имеется ровно 6 элементов порядка 7 (тк в группе \mathbb{Z}_7 для всех элементов выполняется $x^7 = 1$, но порядок e равен 1 (остальные имеют порядок e разделим это количество на e для 14, тк $\mathbb{Z}_2 \times \mathbb{Z}_7 \simeq \mathbb{Z}_{14}$, те \mathbb{Z}_{14} является циклической, тк \mathbb{Z}_2 и \mathbb{Z}_7 циклические, разделим количество элементов порядка 14 на количество взаимно простых e 14 числел в промежутке от 1 до 14 (тк количество взаимно простых e 14 числел в промежутке от 1 до 14 равно количеству образующих элементов циклической подгруппы порядка 14, а каждый образующий входит ровно в одну подгруппу).

Найдём количество элементов порядка 7: тк мы рассматриваем группу $\mathbb{Z}_2 \times \mathbb{Z}_7 \times \mathbb{Z}_7$, то их $7 \cdot 7 - 1 = 48$ (количество решений уравнения $x^7 = 1$ умножить на 2 минус 1, тк единичный элемент имеет порядок 1 (аналогично с №1)). Значит подгрупп порядка 7 $\frac{48}{6} = 8$. Найдём количество элементов порядка 14: в \mathbb{Z}_2 2 элемента, надо взять элемент порядка 2, значит есть 1 способ (тк нельзя брать единичный), для $\mathbb{Z}_7 \times \mathbb{Z}_7$ можно брать любые элементы, кроме (e,e), те всего $7 \cdot 7 - 1 = 48$ способов. Итого $1 \cdot 48 = 48$ элементов порядка 14. Тогда подгрупп порядка 14 $\frac{48}{6} = 8$ (взаимно простые с 14 числа в промежутке от 1 до 14 - это 1, 3, 5, 9, 11, 13, те 6 чисел).

Ответ: 8, 8

№3

При каком наименьшем $n \in \mathbb{N}$ группа $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ изоморфна прямому произведению n циклических групп?

Решение:

По теореме получаем $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} \simeq (\mathbb{Z}_2 \times \mathbb{Z}_5) \times (\mathbb{Z}_3 \times \mathbb{Z}_4) \times (\mathbb{Z}_3 \times \mathbb{Z}_5) \simeq (\mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_3) \times (\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_5) \simeq \mathbb{Z}_{30} \times \mathbb{Z}_{60} \Rightarrow n \leq 2$. Покажем, что n > 1. Пусть n = 1, тогда группа $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ изоморфна циклической группе, значит является циклической. Однако группа $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ не циклическая, тк если бы она была бы циклической, то она была бы изоморфна группе $\mathbb{Z}_{10 \cdot 12 \cdot 15}$, те \mathbb{Z}_{1800} (циклическая группа порядка $10 \cdot 12 \cdot 15$), но при этом для группы $\mathbb{Z}_{10} \times \mathbb{Z}_{12} \times \mathbb{Z}_{15}$ выполняется $x^{60} = e$ (60 = HOK(10,12,15)), те в этой группе нет образующего элемента порядка 1800. Таким образом, n > 1, а значит n = 2.

Ответ: 2

N_{24}

Пусть k - наибольший порядок элементов конечной абелевой группы A. Докажите, что порядок любого элемента A делит k.

Доказательство:

Пусть k - наибольший порядок элементов конечной абелевой группы A, x - элемент порядка k, а y - какой-нибудь другой элемент. Пусть порядок y равен n и не делит k. Тогда существует такое простое p, что степень p в разложении n на простые множители больше, чем степень p в разложении k на простые множители, те $k = p^i \cdot x', n = p^j \cdot y',$ где j > i, а x', y' не делятся на p. Тогда элементы x^{p^i} и $y^{y'}$ имеют взаимно простые порядки (x' и p^j соотв). Тк для любых двух элементов $x, y \in G$, имеющих порядки a, b соотв, которые взаимно просты, выполяется, что порядок xy равен ab (тк если (xy) $^m = e$, то (xy) $^m = e$, и тогда $x^m = e$, а значит тк a, b взаимно просты, то a делит a (аналогично ab делит ab), и тогда ab делит ab делит ab взаимно просты), то порядок ab равен ab (ab гаким образом, получили противоречие, а значит порядок любого элемента ab делит a