Der Dopplereffekt

Clara Rittmann Anja Beck

Durchführung: 27.10.15

Inhaltsverzeichnis

Au	fbau und Ablauf des Experiments				
Au	swertung				
3.1	Statistische Formeln				
	3.1.1 Fehlerrechnung				
	3.1.2 Regression				
3.2	Bestimmung der Geschwindigkeit				
3.3	Bestimmung der Schallgeschwindigkeit				
3.4	Lineare Regression				
	3.4.1 Die Quelle bewegt sich auf den Empfänger zu				
	3.4.2 Quelle bewegt sich vom Empfänger weg				
	3.4.3 Bestimmung der Wellenlänge				
3.5	Studentischer T-Test				

1 Theorie

Der Doppler-Effekt ist den meisten von vorbeifahrenden Krankenwagen bekannt. Die Sirene des vorbeifahrenden Wagens ertönt zunächst in einem hohen Ton, der dann immer tiefer wird.

Im Allgemeinen bezeichnet der Doppler-Effekt eine Frequenzverschiebung zwischen Sender und Empfänger, sobald sich diese relativ zueinander bewegen. In Medien ist entscheidend, ob es sich um eine bewegte Quelle oder einen bewegten Empfänger handelt.

Eine Quelle emitiere eine Welle mit der Frequenz ν_0 und der Wellenlänge λ_0 . Die Ausbreitungsgeschwindigkeit der Welle ist somit

$$c = \nu_0 \cdot \lambda_0 \quad . \tag{1}$$

Ein bewegter Empfänger der Geschwingigkeit v (auf die Quelle zu) überstreicht in gleicher Zeit mehr Wellenberge als ein ruhender, so dass die ankommende Frequenz $\nu_{\rm E}$ größer als die ausgesendete erscheint

$$\nu_{\rm E} = \nu_0 + \frac{v}{\lambda_0} = \nu_0 \left(1 + \frac{v}{c} \right) \quad .$$
 (2)

Ist nun der Empfänger in Ruhe und die Quelle das mit v bewegte Objekt, gibt es einen sehr ähnlichen Effekt. Während die Quelle eine Wellenlänge λ_0 aussendet, bewegt sie sich selbst (auf den Empfänger zu) und die Wellenlänge scheint verkürzt. Der Empfänger registriert Wellen mit kürzerer Wellenlänge d.h. höherer Frequenz

$$\nu_{\mathcal{Q}} = \frac{c}{\lambda_0 - \Delta \lambda} = \nu_0 \cdot \frac{1}{1 - \frac{v}{c}} \quad . \tag{3}$$

Der Unterschied zwischen $\nu_{\rm E}$ und $\nu_{\rm Q}$ ist sehr gering. Auch Elektromagnetische Wellen zeigen einen Doppeler-Effekt. Bei ihnen ist allerdingt nicht zu unterscheiden, ob sich Sender oder Empfänger bewegt. Zusäztlich ist ein relativistischer Faktor zu berücksichtigen.

Dieser Versuch beschäftigt sich mit akustischen Wellen, die von einer bewegten Quelle ausgesendet und von einem ruhenen Empfänger aufgenommen werden.

2 Aufbau und Ablauf des Experiments

Zur Messung des Dopplereffektes stand als akustische Signalquelle ein Lautsprecher und als Siganlempfänger ein Mikrophon zur Verfügung.

Die Quelle war auf einen Wagen motiert und ließ sich sowohl auf den Empfänger zu wie auch von ihm weg in zehn voreigestellten Geschwindigkeiten bewegen. Zunächst galt es, jede dieser Geschwindigkeiten zu bestimmen. Es wurde die Zeit gemessen, in der der Wagen zwei Lichtschranken passierte. Dazu war eine Schlatung nötig, die Zeitimpulse eines Zeitbasisgenerators zählte, während sich der Wagen zwischen den Schranken befand.

Eine anschließende Messung des Abstandes der Lichtschranken ermöglichte die Bestimmung der Geschwindigkeiten.

Auch im weiteren Verlauf waren die Lichtschranken wichtig für die Datenaufnahme. Es sollte die beim Empfänger eingehende Frequenz gemessen werden. Um direkt die Frequenz (Schwingungen pro Sekunde) zu erhalten, bot es sich an, während einer Sekunde alle vom Empfänger registrierten Signale – die in elektrische Signale umgewandelt wurden – zu zählen. Die Lichtschranke löste den Signalzähler und den Zeitbasisgenerator aus, der wiederum nach einer Sekunde einen Impuls aussendete, der die Signalzählung beendete. Die erste Messung erfolgte bei ruhender Quelle, so dass die Lichtschranke per Hand ausgelöst werden musste. Danach wurden eingehende Frequenzen bei bewegter Quelle gemessen, welche die Lichtschranke dann selbst auslöste. Frequenzen wurden für jede Geschwindigkeit in Vor- und Rückrichtung notiert.

Bei der Bestimmung der Schallgeschwindigkeit ist zudem die Wellenlänge entscheidend. In einem Oszilloskop wurde das Signal des Senders auf der y-Achse angezeigt, während das empfangene Signal auf der x-Achse zu sehen war. Beide Wellen überlagerten sich zu Lissajous-Figuren, die angaben, ob Senderund Empfängerwelle in Phase waren. War dies der Fall wurde der Abstand zwischen Sender und Empfänger leicht verändert, bis beide Signale wieder in Phase waren. Dieser Abstand entsprach genau einer Wellenlänge.

3 Auswertung

3.1 Statistische Formeln

3.1.1 Fehlerrechnung

Im folgenden wurden Mittelwerte von N Messungen der Größe x berechnet

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{4}$$

sowie die Varianz

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (5)

woraus die Standartabweichung folgt

$$\sigma_x = \sqrt{V(x)} \quad . \tag{6}$$

Die Standartabweichung des Mittelwertes, kürzer auch Fehler des Mittelwertes genannt, bezieht noch die Anzahl der Messungen mit ein. Mehr Messungen führen zu einem kleineren Fehler

$$\Delta_x = \frac{\sigma_x}{\sqrt{N}} \quad . \tag{7}$$

Wird mit fehlerbehafteten Größen weitergerechnet, muss die Gauß'sche Fehlerfortpflanzung verwendet werden. Für den Fehler der errechneten Größe $f(x_1, ..., x_n)$ gilt

$$\sigma_y = \sqrt{\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot \sigma_{x_i}^2} \quad . \tag{8}$$

3.1.2 Regression

Nachfolgend wird eine lineare Regression für Wertepaare (x_i, y_i) durchgeführt. Dafür müssen die Steigung

$$m = \frac{n \cdot \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(9)

und der y-Achsenabschnitt

$$b = \frac{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(10)

berechnet werden. Den jeweiligen Fehler erhält man mit

$$s_m^2 = s_y^2 \cdot \frac{n}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$
 (11)

$$s_b^2 = s_y^2 \cdot \frac{\sum_{i=1}^n x_i^2}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} . \tag{12}$$

 \boldsymbol{s}_{y} ist hierbei die Abweichung der Regressionsgeraden in y-Richtung.

$$s_y^2 = \frac{\sum_{i=1}^n (\Delta y_i)^2}{n-2} = \frac{\sum_{i=1}^n (y_i - b - mx_i)^2}{n-2}$$
 (13)

3.2 Bestimmung der Geschwindigkeit

U/min	6	l			1					
	8337	4165	2778	2086	1673	1396	1196	1047	932	840
gemessene	8354	4165	2779	2101	1671	1393	1195	1047	932	839
Zeit	8352	4172	2780	2088	1673	1395	1196	1045	931	840
in ms	8334	4171	2781	2087	1672	1396	1194	1048	931	841
	8324	4172	2778	2092	1671	1403	1194	1047	932	838

Tabelle 1: Zeitmessung für jede Geschwindigkeitsstufe

Geschwindigkeitsstufe in	fehlerbehafteter
Umdrehungen pro Minute	Mittelwert in ms
6	8.340 ± 0.005
12	4.169 ± 0.001
18	2.7792 ± 0.0005
24	2.091 ± 0.002
30	1.672 ± 0.0004
36	1.397 ± 0.002
42	1.1950 ± 0.0004
48	1.0468 ± 0.0004
54	0.9316 ± 0.0002
60	0.8396 ± 0.0005

Tabelle 2: Mittelwerte der Zeitmessung

Mit Hilfe der gemittelten Zeitwerte und dem Abstand der beiden Lichtschranken von

$$s = (0.420 \pm 0) \text{ m} \tag{14}$$

lassen sich über

$$v = \frac{\Delta s}{\Delta t} \tag{15}$$

die Geschwindigkeiten berechnen

Geschwindigkeitsstufe in	Geschwindigkeit
Umdrehungen pro Minute	$\frac{m}{s}$
6	0.05036 ± 0.00003
12	0.10074 ± 0.00004
18	0.15112 ± 0.00003
24	0.2009 ± 0.0002
30	0.25120 ± 0.00006
36	0.3007 ± 0.0003
42	0.3515 ± 0.0001
48	0.4012 ± 0.0002
54	0.4508 ± 0.0001
60	0.5002 ± 0.0003

Tabelle 3: Geschwindigkeiten des Wagens

In den weiteren Berechnungen werden die Geschwindigkeiten mit $v_1, ..., v_{10}$, beginnend mit der kleinsten und in aufsteigender Reihenfolge, benannt.

3.3 Bestimmung der Schallgeschwindigkeit

Die Schallgeschwindigkeit soll mit Hilfe von Gleichung (1) bestimmt werden.

Wellenlänge λ in mm
17.79
16.98
17.78
18.21

Tabelle 4: Wellenlänge

Tabelle 4 zeigt die gemessenen Wellenlängen, die einen Mittelwert von

$$\lambda = (0.0177 \pm 0.0002) \text{ m} \tag{16}$$

ergeben.

Ruhefrequenz ν_0 in Hz
20357
20358
20357
20357
20358

Tabelle 5: Ruhefrequenz

Das Mittel der Ruhefrequenzen ist

$$\nu_0 = (20357.4 \pm 0.2) \text{ Hz} \quad . \tag{17}$$

Und daraus ergibt sich die Schallgeschwindigkeit

$$c = (360.1 \pm 4.5) \frac{\text{m}}{\text{s}}$$
 (18)

3.4 Lineare Regression

Durch lineare Regression soll nun der Zusammenhang zwischen der Geschwindigkeit des Senders v und dem Frequenzunterschied

$$\Delta \nu = \nu_i - \nu_0 \tag{19}$$

zwischen der Frequenz ν_i , die bei Geschwindigkeit v_i gemessen wurde und der Ruhefrequenz ν_0 .

3.4.1 Die Quelle bewegt sich auf den Empfänger zu

Im ersten Fall bewegt sich die Quelle auf den Empfänger zu. Tabelle 6 zeigt die dabei gemessenen Frequenzen, Tabelle 7 die Mittelwerte.

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}
	20361	20364	20368	20370	20373	20375	20378	20381	20384	20386
Fre-	20360	20363	20366	20370	20372	20375	20379	20382	20384	20386
quenz	20360	20364	20366	20369	20372	20375	20378	20381	20384	20386
in Hz	20361	20364	20366	20369	20373	20375	20378	20381	20384	20386
	20360	20363	20367	20370	20373	20375	20379	20381	20384	20386

Tabelle 6: Frequenzen, bei bewegter Quelle zum Empfänger hin

Geschwindigkeit	Mittelwert der Frequenz
v_1	20360.40 ± 0.10
v_2	20363.60 ± 0.10
v_3	20366.6 ± 0.2
v_4	20369.60 ± 0.10
v_5	20372.60 ± 0.10
v_6	20375.0 ± 0
v_7	20378.40 ± 0.10
v_8	20381.20 ± 0.08
v_9	20384.0 ± 0
v_{10}	20386.0 ± 0

Tabelle 7: Mittlere Frequenzen bei der Bewegung auf den Empfänger zu

Wird nun noch die Differenz zwischen diesen Frequenzen und der Ruhefrequenz gebildet, ergeben sich folgende Wertepaare

Frequenzunterschied $\Delta \nu$ in Hz
3.0
6.3
9.2
12.2
15.2
17.6
21.0
23.8
26.6
28.6

Tabelle 8: Wertepaare für die Regression

aus denen die Regressionsgerade berechnet wird. Mit obigen Formeln ergibt sich somit die Steigung

$$m_{hin} = (58.86 \pm 0.23) \text{ m}^{-1}$$
 (20)

und der y-Achsenabschnitt

$$b_{hin} = (0.46 \pm 0.72) \text{ Hz}$$
 (21)

Abbildung X zeigt die Messpunkte mit der Ausgleichsgeraden.

3.4.2 Quelle bewegt sich vom Empfänger weg

Im zweiten Fall entfernt sich nun die Quelle vom Empfänger. Tabelle 9 zeigt die hier gemessenen Werte und in Tabelle 10 finden sich die zugehörigen Mittelwerte.

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}
	20355	20352	20351	20347	20343	20340	20337	20334	20332	20328
Fre-	20354	20352	20349	20346	20344	20340	20337	20334	20331	20328
quenz	20355	20352	20349	20346	20343	20340	20337	20334	20331	20328
in Hz	20355	20352	20349	20346	20343	20340	20337	20334	20331	20328
	20355	20352	20397	20346	20343	20340	620337	20334	20331	20328

Tabelle 9: Frequenzen, bei sich vom Empfänger entfernender Quelle

Geschwindigkeit	Mittelwert der Frequenz
v_1	20354.80+/-0.08
v_2	20352.0 + /-0
v_3	20359.0 + / -3.8
v_4	20346.20 + / -0.08
v_5	20343.20+/-0.08
v_6	20340.0+/-0
v_7	20337.0+/-0
v_8	20334.0+/-0
v_9	20331.20+/-0.08
v_{10}	20328.0+/-0

Tabelle 10: Mittlere Frequenzen bei der Bewegung vom Empfänger weg

Wiederrum kann die Differenz zwischen diesen Frequenzen und der Ruhefrequenz und damit die Wertepaare für die Regression gebildet werden.

Geschwindigkeit v in $\frac{m}{s}$	Frequenzunterschied $\Delta \nu$ in Hz
0.05036	-2.6
0.10074	-5.4
0.15112	1.6
0.2009	-11.2
0.25120	-14.2
0.3007	-17.4
0.3515	20.4
0.4012	23.4
0.4508	26.2
0.5002	29.4

Tabelle 11: Wertepaare für die Regression

Die Steigung ist diesmal

$$m_{weg} = (-65.7 \pm 2.2) \text{ m}^{-1}$$
 (22)

und der y-Achsenabschnitt ist

$$b_{weg} = (3.3 \pm 7.1) \text{ Hz}$$
 (23)

3.4.3 Bestimmung der Wellenlänge

Theoretisch verläuft die Gerade zu $\Delta\nu(v)=mv$ durch den Nullpunkt, da gerade bei v=0 $\frac{m}{s}$ gerade kein Dopplereffekt auftritt. Die Ergebnisse für die y-Achsenabschnitte oben bestätigen dies. Die Steigung kann demnach einfach mit

$$m = \frac{\Delta \nu}{v} \tag{24}$$

berechnet werden. Durch Umformung mit Hilfe von (3) und einer Taylorentwicklung für $f(v) = \frac{1}{1-\frac{v}{c}}$ um v=0, erhält man

$$m \approx \frac{\nu_0}{c} = \frac{1}{\lambda_0} \quad . \tag{25}$$

Der so errechnete Wert für die Wellenlänge λ_0 beträgt bei der Bewegung auf den Empfänger zu

$$\lambda_{0,\text{hin}} = (0.01737 \pm 0.00007) \text{ m}$$
 (26)

und vom Empfänger weg

$$\lambda_{0,\text{weg}} = (-0.0152 \pm 0.0005) \text{ m}$$
 (27)

3.5 Studentischer T-Test

Ziel des studentischen T-Tests ist es zu bestimmen, wie ähnlich sich zwei Messungen sind. Hier soll überprüft werden, ob die direkte Wellenlängenmessung mit der Wellenlängenmessung durch die lineare Regression übereinstimmt.

Der studentische T-Test bezieht neben dem Mittelwert auch die Varianz der Werte mit ein. Zudem ist wichtig, wie häufig welche Messung durchgeführt wurde und die daraus berechnete Zahl der Freiheitsgerade. Die Anzahl der ersten Messung mit dem Mittelwert x und der Varianz x_s sei n sowie die Anzahl der zweiten Messung mit dem Mittelwert y und Varianz y_s m sei. Die Zahl der Freiheitsgerade ist dann durch n+m-2 gegeben.

Zunächt wird die gewichtete Varianz ausgerechnet

$$s^{2} = \frac{(n-1) \cdot s_{x}^{2} + (m-1) \cdot s_{y}^{2}}{n+m-2}$$
 (28)

und dann die Richtgröße t bestimmt

$$t = \sqrt{\frac{n \cdot m}{n+m}} \cdot \frac{x-y}{s} \quad . \tag{29}$$

Diese Richtgröße t wird nun mit einem vom Freiheitsgrad und der gewünschten Genauigkeit abhängigen Literaturwert t' verglichen. Ist t' kleiner als t stimmen die Messwerte nicht mit der Genauigkeit überein – zumindest nicht mit der angegebenen Genauigkeit.

	Wellenlänge	Varianz	Anzahl Messungen	t'	\mathbf{S}	t
Direkte Messung	0,01769	0.0004	4			
Regession (hin)	0,01737	0.0001	10	2,18	0.000	2,588
Regession (weg)	0,0152	0,0005	10	2,18	0.000	8,824

Die Tabelle zeigt den Vergleich der direkten Messung mit der Ermittlung der Wellenlänge durch die Regression. Die direkte Messung wurde als erste Messung angenommen und die Regession (hin) bzw. Regession (weg) als Zweite. Der Wert t' entschreicht einer Übereinstimmung der Messwerte von 97,5% und stammt aus der Quantiltabelle der Internetseite http://evol.bio.lmu.de/_statgen/StatBiol/11SS/quantile.pdf.

Die Auswertung ergibt, dass die Messergebnisse kaum übereinstimmen, folglich ein grpßer systematischer Fehler gemacht wurde.

4 Diskussion

Ein Ziel des Versuches war es, die Schallgeschwingikeit zu bestimmen. Der errechnete Wert von $c = (360.1 \pm 4.5) \,\mathrm{m\,s^{-1}}$ weicht von den Literaturwerten um

10% ab, unter der Annahme, dass die Raumtemperatur 25 °C betrug. Der theoretische Wert berechnet sich aus dem Literaturwert für 0 °C von $c=331,5\,\mathrm{m\,s^{-1}}$ (Quelle: Experimentalphysik 1, Wolfgang Demtröder, 4.Auflage, Seite 354) nach:

$$v(T) = v(T_0) \cdot \sqrt{\frac{T}{T_0}} = 331, 15 \cdot \sqrt{\frac{273, 15 + 25}{273, 15}} = 346, 3$$
 (30)

Die Abweichung ist vor allem durch eine ungenaue Messung der Wellenlänge zu erklären. Die Wellenlängen, die aus den Ausgleichsgeraden bestimmt wurden, unterschieden sich stark von diesem Wert, was ebenso durch den T-Test verdeutlicht wurde. Es zeigt sich eine besonders große Abweichung bei der Messung, in der sich der Schlitten mit dem Lautsprecher von dem Mikrophon wegbewegte. Nach genauerer Betrachtung der Regressionsgeraden fällt auf, dass in dieser Messung die Frequenzdifferenz bei der dritten Geschwindigkeit komplett von den anderen Werten abweicht und sogar widererwarten positiv statt negativ ist.

Ohne Verwendung dieses Wertes verändern sich Steigung der Regressionsgeraden und die daraus folgende Wellenlänge zu

$$m = -60 \,\mathrm{m}^{-1} \quad \lambda = -\frac{1}{m} = 0.01667 \,\mathrm{m} \quad ,$$
 (31)

was näher an der anderen Werten liegt.

Ein weiteres Indiz dafür, dass systematische Fehler vorliegen ist, dass beide Regressionsgeraden einen y-Achsenabschnitt aufweisen, obwohl sie direkt durch den Ursprung gehen sollten.

Systematische Fehler können in diesem Versuch beispielsweise durch eine unregeläßige Bewegung des Waagen, das ungenaue Ablesen der Wellenlänge und unterschiedliche Ausrichtungen des Mikrophons, dessen Halterung kaputt war, bedingt sein.

Eine weitere Datennahme über die Schwebungsmethode war nicht möglich. Der dazu notwendige Tiefpass war ebenfalls kaputt.