Acadêmico(a): ______ Turma: _____

- 1. Atenção: Exame Final dia 14/12 (2a. feira às 17:00 hrs.)
- 2. (1.0 pt.) Ao contrário do que voce vai fazer na próxima questão, seja o conjunto N^* dos números naturais. Determine o conjunto-verdade ou domínio para o qual a fórmula é **verdadeira**, para cada uma das fórmulas abaixo:
 - (a) $\forall x.((2x=6) \lor (2x=8))$, por exemplo (este é o mais difícil), aqui o valor da resposta é $D=\{3,4\}$
 - (b) $\forall x.(x^2 5x + 6 = 0)$
 - (c) $\exists x.(x^2 5x + 6 = 0)$
 - (d) $\exists x.(x^2 3x = 0)$
 - (e) $\forall x.(x-1<4)$
 - (f) $\exists x. \sim (x \notin \text{impar})$
- 3. (2.5 pts.) Determine o valor verdade $\{V, F\}$ (a interpretação Φ) de cada uma das fórmulas abaixo em seu respectivo domínio. Dados: $A = \{3, 5\}$, $B = \{-15, 1, 15\}$ e $C = \{6, 7\}$. As questões serão **apenas** validadas mediante os cálculos em separado. Em seguida preencha a tabela abaixo:

	Domínios			
	$x \in A$	$x \in A \ e \ y \in C$	$x \in B \ e \ y \in A$	$x \in B$
$\forall x (2x \le x^2)$		-xxx-	-xxx-	
$\exists x \exists y ((2+x)^2 \ge 24 - y)$	-xxx-			-xxx-
$\forall x (x^2 \ge 5)$		-xxx-	-xxx-	
$\exists y \forall x (3x \neq y^2)$	-xxx-			-xxx-
$\forall x \exists y (xy \le 50)$	-xxx-			-xxx-

PS: esta questão é longa (10 cálculos a serem feitos), preste atenção, seja organizado.

- 4. (1.5 pts) Aplicando De Morgan aos quantificadores das fórmulas de LPO, dar a negação das seguintes sentenças lógicas:
 - (a) $\forall x \; \exists y \; (p(x) \land \sim q(y))$
 - (b) $\forall x \ \forall y \ \sim (\sim p(x) \lor \sim q(y))$
 - (c) $\exists x \ \forall y \ (p(x) \to q(y))$
 - (d) $\forall x \exists y \ (\sim p(x) \lor \sim q(y))$
 - (e) $\forall y \ (p(y) \to \exists x \ q(x))$
 - (f) $\forall x \ (p(x) \leftrightarrow \sim \exists y \ r(y))$

PS: Lembre que De Morgan não se aplica com os conectivos \leftrightarrow e \rightarrow .

- 5. **(2.5 pts.)** Seja o conjunto das seguintes fórmulas em lógica de primeira-ordem (LPO), as quais descrevem o comportamento de um adversário autônomo (NPC-*nerd por computador*) em um videogame :
 - 1. agente(oponente)
 - 2. estado(oponente, fome)
 - 3. fruta(banana)
 - 4. fruta(laranja)
 - 5. sanduiche(bigmac)
 - 6. $\forall X \exists Y : (fruta(X) \lor sanduiche(Y) \rightarrow alimento(X))$
 - 7. $\exists A \forall X : (agente(A) \land estado(A, fome) \land alimento(X) \rightarrow decisao(A, comer, X))$

Demonstre as possíveis decisões que o agente pode executar quando está no estado "fome".

- 6. (2.5 pts.) Seja o conjunto das seguintes fórmulas em lógica de primeira-ordem (LPO), as quais descrevem uma estória:
 - 1. $\forall y \exists x (pessoa(y) \land pet(x) \land vacinado(x) \rightarrow ama(y, x))$
 - 2. $\forall x(pet(x) \land saudavel(x) \rightarrow vacinado(x))$
 - $3. \quad pessoa(mickey)$
 - $4. \quad pet(pluto)$
 - 5. pet(garfield)
 - $6. \quad saudavel(pluto)$
 - $7. \quad saudavel (garfield)$

Na sequência abaixo, resolva as seguintes questões:

- (a) (1.0 pt) Interprete textualmente o significado de cada fórmula acima
- (b) **(1.5 pts)** Utilizando as propriedades da LPO, PU's, PE's e regras de inferências, demonstre quem *Mickey* ama.

Equivalências Notáveis:

```
Idempotência (ID): P \Leftrightarrow P \land P ou P \Leftrightarrow P \lor P
```

Comutação (COM): $P \wedge Q \Leftrightarrow Q \wedge P$ ou $P \vee Q \Leftrightarrow Q \vee P$

Associação (ASSOC): $P \land (Q \land R) \Leftrightarrow (P \land Q) \land R \text{ ou } P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$

Distribuição (DIST): $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$ ou $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Dupla Negação (DN): $P \Leftrightarrow \sim \sim P$

De Morgan (DM): $\sim (P \wedge Q) \Leftrightarrow \sim P \vee \sim Q \text{ ou } \sim (P \vee Q) \Leftrightarrow \sim P \wedge \sim Q$

Equivalência da Condicional (COND): $P \rightarrow Q \Leftrightarrow \sim P \lor Q$

Bicondicional (BICOND): $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$

Contraposição (CP): $P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$

Exportação-Importação (EI): $P \land Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$

Contradição: $P \land \sim P \Leftrightarrow \Box$

Tautologia: $P \lor \sim P \Leftrightarrow \blacksquare$

Negações para LPO: $\sim \forall x : px \Leftrightarrow \exists x : \sim px$

Negações para LPO: $\sim \exists x : px \Leftrightarrow \forall x : \sim px$

Regras Inferencias Válidas (Teoremas):

Adição (AD): $P \vdash P \lor Q$ ou $P \vdash Q \lor P$

Simplificação (SIMP): $P \wedge Q \vdash P$ ou $P \wedge Q \vdash Q$

Conjunção (CONJ) $P, Q \vdash P \land Q \text{ ou } P, Q \vdash Q \land P$

Absorção (ABS): $P \rightarrow Q \vdash P \rightarrow (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \rightarrow Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \lor Q, \sim P \vdash Q \text{ ou } P \lor Q, \sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$

Observações:

- 1. Qualquer dúvida, desenvolva a questão e deixe tudo explicado, detalhadamente, que avaliaremos o seu conhecimentos sobre o assunto;
- 2. Clareza e legibilidade;