SYLLABUS

DISEÑO LÓGICO [DILO]

Dr. Josué Ortiz-Medina
Semestre agosto-diciembre 2020
Universidad Panamericana, Facultad de Ingeniería

OBJETIVOS DEL CURSO

Al finalizar el curso, el alumno adquirirá los conceptos básicos del electromagnetismo y aprenderá los fundamentos físicos detrás de los elementos básicos que constituyen un circuito eléctrico: la resistencia, el capacitor y el inductor.

TEMAS Y SUBTEMAS

1. CONCEPTOS BÁSICOS

- 1.1 Señal digital.
- 1.2 Señal analógica.
- 1.3 Sistemas digitales.
- 1.4 Resolución.
- 1.5 Ventajas y aplicaciones.

2. SISTEMAS NUMÉRICOS

- 2.1 Sistema binario, octal y hexadecimal.
- 2.2 Conversiones.
- 2.3 Sistemas binarios con signo.
- 2.4 Códigos BCD.

3. ÁLGEBRA BOOLEANA

- 3.1 Funciones lógicas básicas.
- 3.2 Teoremas Booleanos.
- 3.3 Minitérminos y maxitérminos.
- 3.4 Suma de productos y productos de sumas.

4. COMPUERTAS LÓGICAS

- 4.1 Tipos.
- 4.2 Características de operación.
- 4.3 Efecto de carga.
- 4.4 Tecnologías TTL y CMOS.
- 4.5 Compuertas de colector abierto y tercer estado.
- 4.6 Aplicaciones.

5. CIRCUITOS COMBINACIONALES

- 5.1 Optimización de funciones por mapas de Karnaugh.
- 5.2 Universalidad de las compuertas NOR y NAND.

5.3 Diseño de circuitos combinacionales.

6. REGISTROS Y FLIP-FLOPS

- 6.1 Sistemas secuenciales y combinacionales.
- 6.2 Latch por medio de NORs y NANDs.
- 6.3 Flip-flops.
 - 6.3.1 Flip-flops RS, D, T y JK.
 - 6.3.2 Operación.
 - 6.3.3 Activación por flanco.
 - 6.3.4 Registros de corrimiento.
- 6.4 Contadores.

7. CONVERTIDOR ANALÓGICO/DIGITAL (ADC)*

7.1 Conceptos básicos y funcionamiento.

ESTRUCTURA

Durante el curso se tendrán dos exámenes parciales (fechas tentativas; 11 septiembre y 23 de octubre). Un examen final abarcando todos los temas vistos durante el semestre se tendrá el 4 de diciembre.

Se tendrán prácticas y presentaciones de los alumnos como actividades adicionales a evaluar, con un peso en la calificación final como sigue:

Exámenes parciales (teórico/práctico) 40% (20% cada uno)

Examen final 30%
Prácticas 20%
Exposición 10%

Para la exposición, se definirán 4 o 5 temas del curso, y se evaluarán tanto presentaciones de equipos de alumnos como preguntas formuladas a los expositores.

PLAN GENERAL DEL CURSO (Sujeto a cambios)

Periodo	Tema
Ago I	Señales digitales y analógicas.
Ago II	Sistemas digitales / resolución / ventajas y aplicaciones.
Ago III	Sistemas binario, octal y hexadecimal / conversiones.
Ago IV	Sistemas binarios con signo.
Sep I	Códigos BCD / asesorías.
Sep II	Examen parcial 1 / Funciones lógicas básicas.
Sep III	Teoremas Booleanos / minitérminos y maxitérminos.
Sep IV	Suma de productos / compuertas lógicas / características de operación.
Oct I	Efecto de carga / tecnologías TTL y CMOS / Compuertas de colector
	abierto y tercer estado.
Oct II	Mapas de Karnaugh / compuertas NOR y NAND.

Oct III	Diseño de circuitos combinacionales / asesorías.
Oct IV	Examen parcial 2 / sistemas secuenciales y combinacionales.
Oct V	Latch usando NORs y NANDs / flip-flops RS.
Nov I	Flip-flops D, T y JK.
Nov II	Flip-flops (continuación).
Nov III	Registros de corrimiento / contadores.
Nov IV	ADC, principios básicos y funcionamiento.
Dic I	Examen final

^{*}E = exposición