3 ワイエルシュトラスの二重級数定理・ベキ級数

岩井雅崇 2023/04/11

以下断りがなければ, Ω は \mathbb{C} の領域 (連結開集合) とし, $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$ とする.

ワイエルシュトラスの二重級数定理に関する問題

- 問 3.1 滑らかな曲線 C 上の連続関数列 f_n が f に一様収束すれば, $\lim_{n \to \infty} \int_C f_n(z) dz = \int_C f(z) dz$ であることを示せ.1
- 問 3.2 $\mathbb D$ 上の正則関数列 $\{f_n\}_{n=1}^\infty$ と正則関数 f であって $\mathbb D$ の任意のコンパクト集合上で f_n は fに一様収束するが、 \mathbb{D} 上では f_n はfに一様収束しない例を一つ構成せよ.
- 問 3.3 * 次を満たす例を構成せよ. 2
 - (a) $\{f_n\}_{n=1}^{\infty}$ は (0,1) 上の C^{∞} 級関数列で f は (0,1) 上の C^{∞} 級関数.
 - (b) (0,1) の任意のコンパクト集合上で $\{f_n\}_{n=1}^\infty$ が f に一様収束する.
 - (c) $\left\{\frac{df_n}{dx}\right\}_{n=1}^{\infty}$ は (0,1) のあるコンパクト集合上で $\frac{df}{dx}$ に一様収束しない.

ベキ級数に関する問題

- 問 3.4 * 次の問いに答えよ.
 - (a) 正則関数は C^{∞} 級関数であることを示せ.
 - (b) \mathbb{R} 上の C^{∞} 級関数 f で原点の周りでベキ級数展開できないものを一つ構成せよ.
- 問 3.5 $\bullet f(z)$ を半径 R>0 の円板 $D_R=\{z\in\mathbb{C}||z|< R\}$ 上の正則関数とする. 任意の 0< r< Rについて、収束半径 r 以上のベキ級数 $\sum_{n=0}^\infty a_n z^n$ で D_r 上で $f(z)=\sum_{n=0}^\infty a_n z^n$ となるもの が存在することを示せ.
- 問 3.6 \mathbb{C} 上の正則関数 f(z) とする. ある正の実数 A,B と自然数 k があって, 任意の $z\in\mathbb{C}$ につい て $|f(z)| \le A|z|^k + B$ となるならば, f(z) は高々 k 次の多項式であることを示せ.
- 問 $3.7~f(z) = \sum_{n=0}^\infty a_n z^n$ を半径 R>0 の円板 $D_R=\{z\in\mathbb{C}||z|< R\}$ 上の正則関数とし $,\,0< r< R$ とする. 次を示せ.

 - (a) $|a_n| \le \frac{1}{2\pi r^n} \int_0^{2\pi} |f(re^{i\theta})| d\theta$ (b) $\sum_{n=0}^{\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$

 $^{^{1}1}$ 年次に習った定理を用いて良い.ただしどのように使ったか明記すること.また曲線 C の解釈は解答者に委ねる. ²そこまで厳密に構成しなくても良い.

一致の定理に関する問題

問 3.8 f を Ω 上の正則関数とする. 次の問いにこたえよ.

- (a) (零点の孤立) f を定数関数ではないとし, $a\in\Omega$ を f の零点とする. このとき a を含む 半径 r>0 の円板 D で, $\bar{D}\subset\Omega$ かつ f は $D\setminus\{a\}$ 上で零点を持たないようなものが存在することを示せ. 3
- (b) (一致の定理) ある空でない開集合 $U\subset\Omega$ があって U 上で $f\equiv 0$ ならば, Ω 上で $f\equiv 0$ であることを示せ.
- 問 3.9 Ω 上の正則関数 f,g が $fg\equiv 0$ を満たすならば $f\equiv 0$ または $g\equiv 0$ であることを示せ. また f,g が単に C^∞ 級関数の場合は同様の主張は成り立つか?

演習の問題は授業ページ (https://masataka123.github.io/2023_summer_complex/) にもあります.右下の QR コードからを読み込んでも構いません.

³正則関数の零点は孤立しているということである. これは一変数特有の現象である.