Tutorial 3

COMP 5361: Discrete Structures and Formal Languages

Mohammad Reza Davari

Concordia University

Outline

Nested Quantifiers

2 Rules of Inference

Contents of the section

Nested Quantifiers

2 Rules of Inference

Nested Quantifiers

Definition

The case where one quantifier is within the scope of another quantifier.

Mohammad Reza Davari 4 / 16

Caution

Order matters...

• Be careful with the order of existential and universal quantifiers!

6 / 16

Caution

Order matters...

- Be careful with the order of existential and universal quantifiers!
- Quantifiers of the same kind can interchange places.

- - True

- $\forall x \forall y \exists z (x + y = z)$
 - True
- $\bullet \ \exists z \forall x \forall y (x + y = z)$

- $\forall x \forall y \exists z (x + y = z)$
 - True
- $\bullet \ \exists z \forall x \forall y (x + y = z)$
 - False

Translation to English

- Translate the statement, $\forall x (C(x) \lor \exists y (C(y) \land F(x,y)))$ where:
 - C(x): x has a computer
 - F(x, y): x and y are friends

Translation to English

- Translate the statement, $\forall x (C(x) \lor \exists y (C(y) \land F(x,y)))$ where:
 - C(x): x has a computer
 - F(x, y): x and y are friends
- Translate the statement, $\exists x \forall y \forall z ((F(x,y) \land F(x,z) \land (y=z)) \rightarrow \neg F(y,z))$ where:
 - F(x, y): x and y are friends
 - Domain: All student in the class

Mohammad Reza Davari 8 / 16

Translate from English

Translate the followings into logical expressions:

• If a person is female and is a parent, then this person is someone's mother.

Mohammad Reza Davari 9 / 16

Translate from English

Translate the followings into logical expressions:

- If a person is female and is a parent, then this person is someone's mother.
- Everyone has exactly one best friend.

Mohammad Reza Davari 9 / 16

Negating Nested Quantifiers

Recursive Negation

Statements involving nested quantifiers can be negated by successively applying the rules for negating statements involving a single quantifier.

Mohammad Reza Davari 10 / 16

Negate the following statement:

$$\exists w \forall a \exists f (P(w,f) \land Q(f,a))$$

for some f, P, and Q.

Contents of the section

Nested Quantifiers

2 Rules of Inference

Definition

• **Argument:** An argument is a sequence of statements that end with a conclusion.

¹Also called premise

Definition

- Argument: An argument is a sequence of statements that end with a conclusion.
- Valid Argument: A valid argument is an argument that the conclusion, or final statement of the argument, follows from the truth of the preceding statements¹.

Mohammad Reza Davari 13 / 16

¹Also called premise

Definition

- Argument: An argument is a sequence of statements that end with a conclusion.
- Valid Argument: A valid argument is an argument that the conclusion, or final statement of the argument, follows from the truth of the preceding statements¹.
- **Fallacy:** An incorrect way of reasoning which lead to invalid arguments.

¹Also called premise

Mohammad Reza Davari

Check weather the following argument is valid or not.

$$p
ightarrow q$$
 p
 $\therefore q$

Rules of Inference for Propositional Logic

The most important rule of all time

The tautology $(p \land (p \rightarrow q)) \rightarrow q$ is the basis of the rule of inference called modus ponens, or the law of detachment.

Mohammad Reza Davari 15 / 16

Rules of Inference for Propositional Logic

- Modus tollens: $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$
- Hypothetical syllogism: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
- Disjunctive syllogism: $((p \lor q) \land \neg p) \to q$
- Addition: $p \rightarrow (p \lor q)$
- Simplification: $(p \land q) \rightarrow p$
- Conjunction: $((p) \rightarrow (q)) \rightarrow (p \land q)$
- Resolution: $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$

Mohammad Reza Davari