Домашнее задание 2. Курс «Алгебра». Ответы. БПИ-227. Вариант 14

1. •
$$z^2 = 3^2 \cdot \left(\cos\left(\frac{2\pi}{3}\right) + i \cdot \sin\left(\frac{2\pi}{3}\right)\right) = -\frac{9}{2} + \frac{9\sqrt{3}i}{2} = 9e^{\frac{2i\pi}{3}}$$
;

•
$$\sqrt[4]{z} = \left\{ \sqrt[4]{3} \cdot \left(\cos \left(\frac{\pi k}{2} + \frac{\pi}{12} \right) + i \cdot \sin \left(\frac{\pi k}{2} + \frac{\pi}{12} \right) \right) \mid k \in [0, 4) \right\};$$

•
$$\sqrt[4]{z^2} = \left\{\sqrt{3} \cdot \left(\cos\left(\frac{\pi k}{2} + \frac{\pi}{6}\right) + i \cdot \sin\left(\frac{\pi k}{2} + \frac{\pi}{6}\right)\right) \mid k \in [0, 4)\right\};$$

•
$$arg(1-\sqrt{3}i)=-\frac{\pi}{3};$$

•
$$k = 4$$
;

• Искомое значение =
$$\sqrt{3} \cdot \left(\cos\left(\frac{13\pi}{6}\right) + i \cdot \sin\left(\frac{13\pi}{6}\right)\right) = \sqrt{3}\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = \sqrt{3}e^{\frac{i\pi}{6}}$$

2.
$$Matrix([[6-8*I], [-7-12*I]])$$

3. Над С: 3 *
$$(x-3)(x-2)(x+1-4i)(x+1+4i)(x+4-i)(x+4+i)$$
, Над \mathbb{R} : 3 * $(x-3)(x-2)(x^2+2x+17)(x^2+8x+17)$

4. Все числа
$$z$$
: $-49-29i$, $9-i$, $-11+57i$

5. •
$$z_1 = 3 \cdot (\cos(\pi) + i \cdot \sin(\pi));$$

•
$$z_2 = 3 \cdot \left(\cos\left(\frac{5\pi}{3}\right) + i \cdot \sin\left(\frac{5\pi}{3}\right)\right);$$

• угол между радиус-векторами =
$$\frac{2\pi}{3}$$
;

•
$$n = 3$$
;

•
$$z = -27 = 3^3 \cdot (\cos(\pi) + i \cdot \sin(\pi)) = -27$$

- 6. 1) Область внутри окружности с центром в точке (1; -4) радиуса 1
 - 2) Область, ограниченная двумя прямыми, пересекающимися в точке (-2;-2) под углом $=\pm\frac{2\pi}{3}$

7. •
$$\Delta = 4$$
;

•
$$\Delta_1 = -24\alpha + 54\beta + 44\gamma$$
;

•
$$\Delta_2 = -40\alpha + 89\beta + 72\gamma$$
;

•
$$\Delta_3 = -20\alpha + 44\beta + 36\gamma$$
;

•
$$A \rightarrow \begin{pmatrix} 1 & 0 & 0 & -6\alpha + \frac{27\beta}{2} + 11\gamma \\ 0 & 1 & 0 & -10\alpha + \frac{89\beta}{4} + 18\gamma \\ 0 & 0 & 1 & -5\alpha + 11\beta + 9\gamma \end{pmatrix};$$

•
$$x = \begin{pmatrix} -6\alpha + \frac{27\beta}{2} + 11\gamma \\ -10\alpha + \frac{89\beta}{4} + 18\gamma \\ -5\alpha + 11\beta + 9\gamma \end{pmatrix}$$

$$A_0 = (-41, -7, -14)$$

$$L: \frac{x+2}{16} = \frac{y+15}{16} = \frac{z+4}{0}$$
$$A_0 = (0, -9, 0)$$

10. Возможная запись канонического уравнения прямой 1:

$$\frac{x-19}{4} = \frac{8-y}{16} = \frac{z+19}{12}$$

Возможная запись канонического уравнения прямой 2:

$$\frac{x+1}{4} = \frac{88 - y}{16} = \frac{z+79}{12}$$