Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный технический университет имени Н.Э.Баумана

Лабораторная работа №1 «Теория формальных языков» Вариант 9

Студент группы ИУ9-52

Карькин А. И.

Преподаватель:

Магазов С.С.

№1

Дан язык алфавита $\Sigma = \{a,b,c\}$. Построить автоматную грамматику и автоматраспознаватель (функцию переходов и диаграмму). Построить вывод заданного слова и привести такты работы распознавателя.

Вариант 9

9. L - множество слов $\Sigma^* b \Sigma^*$; Слово *acbbb*

Автоматная грамматика

$$\Sigma = \{a, b, c\}$$
 — алфавит;

S — начальный символ;

 $N = \{S, T\}$ — терминальные символы;

Автоматная грамматика определяется следующим списком правил:

$$S \rightarrow a S | c S | b A$$

 $A \rightarrow a A | b A | c A | \epsilon$

Автомат распознаватель

Таблица 1 — Таблица переходов для описанного состояния

σ	а	b	С
q_0	q_0	q_f	q_0
q_f	$\{a,b,c,\epsilon\}$	$\{a,b,c,\epsilon\}$	$\{a,b,c,\epsilon\}$

Рисунок 1 — Автомат для описанной грамматики

В таблице 1 описана функция переходов σ , первый столбец обозначает состояние в котором находится автомат, в первой строке обозначен символ при котором выполняется переход к следующему состоянию. На остальных строк

обозначено значение состояния к которому необходимо перейти при указанном символе.

На рисунке 1 обозначен автомат, который соответствует данной грамматике.

Состояние q_0 соответствует аксиоме грамматики, а q_f — конечному состоянию (правилу 2).

Вывод слова

S, aS, acS, acbA, acbbA, acbbbA, acbbb

Такты работы автомата распознавателя

10. L - множество слов $\Sigma^*bab \Sigma^*$; Слово bab

Автоматная грамматика

 $\Sigma = \{a, b, c\}$ — алфавит; S — начальный символ; $N = \{S, A, B, C, E, F\}$ — терминальные символы;

$$S \rightarrow aA | bA | cA | B$$

 $B \rightarrow bC$
 $C \rightarrow aD$
 $D \rightarrow bE$
 $E \rightarrow aE | bE | cE | F$
 $F \rightarrow e$

Вывод слова «bab»:

S, B, bc, baD, babE, bab

Автомат распознаватель

Функции перехода:

$$\delta(A,A)=\{a,b,c\}$$

$$\delta(A, B) = \{b\}$$

$$\delta(B, C) = \{a\}$$

$$\delta(C, F) = \{a, b, c, e\}$$

Автомат распознователь:

Такты работы автомата:

$$(A,bab)$$
 $|-(B,ab)|-(C,b)$ $|-(F,e)|$

11. L - множество слов b*(ab*)*c; Слово baaaac

Автоматная грамматика

 $\Sigma = \{a, b, c\}$ — алфавит;

S — начальный символ;

 $N = \{S, A, B, C, D, F\}$ — терминальные символы;

 $S \rightarrow bS|aB|c$

 $B \rightarrow aB|bC|c$

 $C \rightarrow aB|bC|c$

Вывод слова:

bS, baB, baaB, baaaB, baaaaC

Автомат распознователь

Функции перехода:

$$\delta(A, F) = \{c\} \qquad \qquad \delta(B, B) = \{a\}$$

$$\delta(B, C) = \{b\} \qquad \qquad \delta(B, F) = \{c\}$$

$$\delta(C, C) = \{b\} \qquad \qquad \delta(C, F) = \{c\}$$

Автомат распознователь:

Такты работы автомата:

$$(A,baaaac) \mid -(A,aaaac) \mid -(B,aaac) \mid -(B,aac) \mid -(B,ac) \mid -(B,c) \mid -(F,e)$$

12. L - множество слов $(\Sigma \Sigma)^*$; Слово aabb

Автоматная грамматика

Алфавит: $\Sigma = \{a,b,c\}$, нетерминальные символы: $N = \{S,T\}$.

$$S \rightarrow aT |bT| cT |e|$$

$$T \rightarrow aS|bS|cS$$

Вывод слова:

S, aT, aaS, aabT, aabbS, aabbe, aabb

Автомат распознователь

Функции перехода:

$$\delta(A, B) = \{a, b, c\}$$

$$\delta(A, F) = \{e\}$$

$$\delta(B,A) = \{a,b,c\}$$

Автомат:

Такты работы автомата:

$$\big(A\,,aabb\big) \mid - \big(B\,,abb\big) \mid - \big(A\,,bb\big) \mid - \big(B\,,b\big) \mid - \big(A\,,e\big) \mid - F\big(\varnothing\big)$$

Дано описание языка. Построить для него регулярное выражение, автоматную грамматику и автомат распознаватель (функцию переходов и диаграмму).

Вариант 2

L - множество IP адресов.

Регулярное выражение

Пусть $D_s = \{0, ..., 9\}$, $\Sigma = D_s \cup \{.\}$ - алфавит. Тогда регулярное выражение для L будет записываться так:

$$D_{s}(\epsilon + D_{s} + D_{s}D_{s}).D_{s}(\epsilon + D_{s} + D_{s}D_{s}).D_{s}(\epsilon + D_{s} + D_{s}D_{s}).D_{s}(\epsilon + D_{s} + D_{s}D_{s})$$

Автоматная грамматика

 $d_{s}\,$ - любая цифра от 0 до 9

$S \rightarrow d_s A \mid d_s C$	$S_1 \rightarrow d_s A_1 d_s C_1$	$S_2 \rightarrow d_s A_2 d_s C_2$	$S_3 \rightarrow d_s A_2 d_s C_3$
$A \rightarrow d_s B C$	$A_1 \rightarrow d_s B_1 C_1$	$A_2 \rightarrow d_s B_2 C_2$	$A_3 \rightarrow d_s B_2 C_3$
$B \rightarrow d_s C$	$B_1 \rightarrow d_s C_1$	$B_2 \rightarrow d_s C_2$	$B_3 \rightarrow d_s C_3$
$C \rightarrow .S_1$	$C_1 \rightarrow .S_2$	$C_2 \rightarrow .S_3$	$C_3 \rightarrow \epsilon$

Автомат распознователь

Функции перехода:

$$\delta(Q_{ij}, Q_{ij+1}) = \{0, \dots, 9\}, \qquad 0 \le i \le 3 \& 0 \le j \le 2$$

$$\delta(Q_{ij}, Q_{i+1 \ 0}) = \{.\}, \qquad 0 \le i \le 2 \& 1 \le j \le 3$$

$$\delta(Q_{3j}, Q_f) = \{\epsilon\}, \qquad 1 \le j \le 3$$

Автомат распознователь:

см. на следующей странице

