

AN1162 Demonstration ReadMe for the dsPICDEMTM MCHV-2 Development Board with the dsPIC33EP256MC506 External Op Amp PIM (MPLAB X)

1.1 INTRODUCTION

This document describes the setup requirements for running the Sensorless FOC with a PLL Estimator, which is referenced in AN1162 "Sensorless Field Oriented Control of an AC Induction Motors using dsPIC DSC" using a dsPICDEM™ MCHV-2 Development Board in the External Op amp configuration.

1.2 SUGGESTED DEMONSTRATION REQUIREMENTS

MPLAB and Compiler versions used:

- MPLABX version 1.30 (or later)
- C30 version 3.31 (or later) or XC16 version 1.00 (or later)

Hardware used with part numbers:

- dsPICDEM MCHV-2 Development Board (DM330023-2)
- · available at www.microchipdirect.com
- dsPIC33EP256MC506 Internal Op amp PIM (MA330031)
- · available at www.microchipdirect.com
- 220V ASIM (e.g., the 4IK25A-SW2) available from www.orientalmotor.com

1.3 HARDWARE SETUP

The following hardware setup allows the sensorless FOC algorithm to run using Op amps that are on-board the dsPICDEM MCHV-2 Development Board.

1. With the dsPICDEM MCHV-2 Development Board disconnected, and making sure there is no power, open the enclosure and set up the following jumpers:

Jumper	Pins to Short	Board Reference
J11 (inside the enclosure)	Don't care	POT VACEX
J12 (inside the enclosure)	1-2	Direct 100
J13 (inside the enclosure)	1-2	MONITOR_2 @ WONITOR_ 5(8)
J14 (inside the enclosure)	1-2	, on4
PWM OUTPUTS (front of the enclosure)	ENABLE position	OUTPUTS EX ENABLE O DISABLE
USB (front of the enclosure)	USB position	FOR RS-232

- 2. Connect the ACIM motor to the output header J17. The motor wires can be connected in any order since this is a sensorless control algorithm.
- 3. Connect the External Op amp Configuration Board into J4. Ensure that the configuration board is correctly oriented before proceeding.

- 4. Secure the dsPICDEM MCHV-2 Development Board enclosure.
- 5. Connect the dsPICDEM MCHV-2 Development Board to AC input (90 to 265 VAC).

6. Using a mini-USB cable, connect the computer to the PROGRAM/DEBUG mini-USB connector located on the front panel of the dsPICDEM MCHV-2 Development Board enclosure.

For enhanced demonstration, the application requires the Real-Time Data Monitor (RTDM).
 Users can connect a mini-USB cable from their computer to the J6 connector of the dsPICDEM MCHV-2 Development Board.

Notice that when the development board is powered and connected to the USB host for the first time, the driver needs to be installed on the host for proper operation.

- a) Extract the PC_USB_driver_for_win2k_xp_vista32_64.zip archive file to a local directory. This file is part of the ZIP file of the code.
- b) When prompted to select the driver for new USB device found, select the driver from the ones provided corresponding to the operating system used: Windows 2000, XP, or Vista (32- or 64-bit). Wait for the indication that the new device was installed properly and is ready to be used. Once the USB driver is installed, it will emulate a Serial COM Port, visible in the Windows Device Manager. A message indicating that the driver has not passed Windows logo certification may appear. Click Continue Anyway.
- c) When the USB driver is installed, a new COM port should show up in Windows device hardware manager. This should be the COM port used for Enhanced Demonstration.

1.4 SOFTWARE SETUP AND RUN

1.4.1 Basic Demonstration

This This demonstration consists of running the motor using a push button and varying the speed with a potentiometer. The software, which is available for download from the Microchip website, is already configured for enabling the basic demonstration. If you use both MPLAB X IDE and MPLAB IDE, please make sure you have your programmer/debugger set to run on MPLAB X IDE. In order to do so, you must run the MPLAB driver switcher as Administrator (MS Windows)

1. Start MPLABX IDE and open the ACIM.X workspace.

2. Right click on ACIM.X project on the left tab called "Project", and select "Properties". On the "conf" page you can select the programmer/debugger and the compiler tool chain. In this particular case, Starter Kit (PKOB) is the selected programmer available for MCHV-2 and XC16 is the selected toolchain for building the project.

3. Build the code by selecting the "Clean and Build Project" button found either on the toolbar or in the "Run" menu

4. After a successful build, download the code to the dsPICDEM MCHV-2 Development Board by selecting the "Make and Program the device main project" button on the toolbar.

5. Run or stop the motor in Open Loop by pressing S1 (labeled PUSHBUTTON). Subsequent presses of S1 toggles the motor operation between Closed Loop and Open Loop.

6. Vary the motor speed using the potentiometer.

1.4.2 Enhanced Demonstration Using Real-Time Data Monitor (RTDM)

1.2 MAKE SURE YOU HAVE THE CORRECT HARDWARE SETUP AS PREVIOUSLY DESCRIBED IN SUGGESTED DEMONSTRATION REQUIREMENTS

MPLAB and Compiler versions used:

- MPLABX version 1.30 (or later)
- C30 version 3.31 (or later) or XC16 version 1.00 (or later)

Hardware used with part numbers:

- dsPICDEM MCHV-2 Development Board (DM330023-2)
- · available at www.microchipdirect.com
- dsPIC33EP256MC506 Internal Op amp PIM (MA330031)
- · available at www.microchipdirect.com
- 220V ASIM (e.g., the 4IK25A-SW2) available from www.orientalmotor.com

Hardware Setup.

1. In order to utilize RTDM communication for this demonstration, a mini-USB connection is required. Connect a mini-USB cable from your computer to the J6 connector on the dsPICDEM MCHV-2 Development Board, labeled USB.

2. Start MPLABX IDE and open the ACIM.mcp workspace

3. Right click on ACIM.X project on the left tab called "Project", and select "Properties". On the "conf" page you can select the programmer/debugger and the compiler tool chain. In this particular case, Starter Kit (PKOB) is the selected programmer available for MCHV-2 and XC16 is the selected toolchain for building the project.

Demonstration ReadMe

4. Make sure that RTDM_DEMO is defined in the UserParms.h file. If this is not defined, the DMCI data between the target and the host will not be exchanged. In addition, the motor will not start until the S1 push button is pressed.

```
#define DMCI_DEMO // Defin // and s
```

5. Build the code by selecting the "Clean and Build Project" button found either on the toolbar or in the "Run" menu

6. Download a successful build, download the code to the dsPICDEM MCHV-2 Development Board by selecting the "Make and Program the device main project" button on the toolbar.

7. Open the DMCI window by selecting *Tools>Embedded>DMCI>DMCI Window*.

8. Click **Load Profile**, and from the same folder where your project resides, load the DEMO X.dmci file, which contains a previously configured profile.

9. The DMCI window appears as follows:

Please consult the "Real-Time Data Monitor User's Guide" (DS70567) for additional settings needed for a RDTM connection. This document explains the steps needed for the proper communication settings between the Host and Embedded side.

10. Select Serial Settings to connect RTDM with your computer.

11. Remote Communication needs to be established, as indicated in the following figure (the communication baud rate should be set to 57600, while the COM port used depends on your particular settings).

- 12. Once communication is detected, make sure the **Enable Communication** box is checked and click **OK**.
- 13. Run or stop the motor in Open Loop by pressing S1 (labeled PUSHBUTTON). Subsequent presses of S1 toggles the motor operation between Closed Loop and Open Loop.

14. Vary the motor speed using the potentiometer.

15. To plot variables in real time, enable Automated Event Control by clicking the automatic event execution icon found on the toolbar

16. The DMCI window shows variables plotted in real time, which is updated automatically.

17. To change the time window to see more time on each plot, change the value of the SnapShotDelay, which controls how the buffers are being filled in the code.

Dem	onstra	tion I	ReadN	J۵
Delli	viisua		<i>i i C</i> aui	

NOTES