# NCS 요구사항확인





### 목차

- 1. 현행 시스템 분석하기
  - 1-1. 현행 시스템 파악
  - 1-2. 개발 기술 환경 정의
- 2. 요구사항 확인하기
  - 2-1. 요구사항 정의
  - 2-2. 요구사항의 시스템화 타당성 분석
- 3. 분석모델 확인하기
  - 3-1. 분석모델 검증
  - 3-2. 분석모델의 시스템화 타당성 분석



## 요구사항확인

# 1. 현행 시스템 분석하기

1-1. 현행 시스템 파악

1-2. 개발 기술 환경 정의

## • 소프트웨어 요구사항

- 소프트웨어 요구사항
  - 시스템이 가져야 할 기능이나 시스템이 만족해야 할 조건을 소프트웨어 요구사항이라고 함
- 요구사항의 분류
  - 기능 ·비기능 요구사항
  - 사용자 요구사항
  - 시스템 요구사항
  - 인터페이스 명세 등으로 요구사항을 분류함

## • 요구사항 확인 주요활동

- 소프트웨어 개발단계 (SDLC)
  - 요건 정의 → 분석 → 설계 → 구현 → 테스트 → 배포 ·운영 으로 진행
  - 요구사항 확인 절차를 수행하는 단계는 요건 정의와 분석단계
- 요구사항 확인 주요활동
  - 사용자 인터뷰 정리
  - 요구사항 정의
  - 요구사항 추적관리
  - 기존 업무 분석활동
  - 기존 정보 시스템 분석활동

# 현행 시스템 파악

## 현행 시스템 파악

- 현행 시스템 파악 : 사용자 요구사항을 확인 하기 위한 준비단계
  - 현행 시스템 파악 주요활동
    - 현행 시스템이 어떤 하위 시스템으로 구성되어 있는지 파악
    - 제공하는 기능이 무엇인지 파악
    - 다른 시스템들과 어떤 정보를 주고받는지 파악
    - 어떤 기술요소를 사용하고 있는지 파악 \_
    - 사용하고 있는 소프트웨어 및 하드웨어는 무엇인지 파악
    - 네트워크는 어떻게 구성되어 있는지 등을 파악
- 현행 시스템 파악의 목적
- 현행 시스템 파악 목적은 향후 개발하고자 하는 시스템의 개발 범위 및 이행 방향성 설정에 도움을 주는 것을 목적으로 함

1) CV . 5. W W ~

## • 현행 시스템 파악

- 현행 시스템 파악의 절차

|                         | 구성, 기능, 인터페이스 현황을 파악하는 단계                             |
|-------------------------|-------------------------------------------------------|
| • <mark>1단계</mark>      | 시스템 구성 현황 파악                                          |
|                         | 시스템 기능 파악                                             |
|                         | 시스템 인터페이스 현황 파악                                       |
| 77                      |                                                       |
| , <u>7</u>              | <mark>아키텍처</mark> 및 <mark>소프트웨어 구성</mark> 현황을 파악하는 단계 |
| • <mark>2단계</mark>      | <u>아키텍처 파악</u>                                        |
|                         | 소프트웨어 구성 파악                                           |
|                         |                                                       |
| <ul> <li>3단계</li> </ul> | 하드웨어 및 네트워크 구성 현황을 파악하는 단계                            |
|                         | 시 <u>스템 하드웨어 현황 파</u> 악                               |
|                         | 네트워크 구성 파악                                            |

#### • 현행 시스템 파악

현행 시스템 파악의 절차 1단계: 구성, 기능, 인터페이스 현황을 파악하는 단계



#### 현행 시스템 파악

• 현행 시스템 파악

01

- 현행 시스템 파악의 절차 2단계: 아키텍처 및 소프트웨어 구성 현황을 파악하는 단계
  - 아키텍처 파악
  - 소프트웨어 구성 파악

\* 아키텍처 컴퓨터 시스템의 기능(functionality), 조직(organization), 구현(implementation) 에 대한 법칙과 방법을 통칭



#### 01 현행 시스템 파악

#### • 현행 시스템 파악

- 현행 시스템 파악의 절차 3단계: **하드웨어 및 네트워크 구성 현황을 파악하는 단계** 
  - 시스템 하드웨어 현황 파악
  - 네트워크 구성 파악

\* 메인프레임 통계 데이터나 금융 관련 전산업무, 전사적 자원 관리와 같이 복잡한 작업을 처리하는 컴퓨터이다.



- 현행 시스템 파악
  - 현행 시스템 파악의 절차 3단계: **하드웨어 및 네트워크 구성 현황을 파악하는 단계** 
    - 시스템 하드웨어 현황 파악
    - 네트워크 구성 파악



#### 개발 기술 환경 정의

02

#### • 기술 환경 정의 자료 수집

- 자료 존재 유무 파악
  - 기술 환경 정의 자료수집을 위하여 수집할 자료의 목록을 정함
  - 자료를 수집하기 위하여 현행 시스템 담당자가 자료와 면담 기록에 필요 자료의 존재 여부를 파악
- 조사 자료 분석 과정
  - 조사한 자료를 이용하여 운영체제 , DBMS, 웹 애플리케이션 서버 (WAS : Web Application Server) 등을 결정
- \* 웹 애플리케이션 서버(Web Application Server, 약자 WAS) 웹 애플리케이션과 서버 환경을 만들어 동작시키는 기능을 제공하는 소프트웨어 프레임워크

- 02
- 개발 기술 환경 결정
  - 시스템 용량 산정
    - 분석된 자료를 바탕으로 CPU 용량 , 메모리 용량 , <mark>기스크 용량을 파악</mark>
  - 요구사항 정의서 목표 시스템 구성도 반영
    - 용량 산정 결과를 관련자 리뷰를 통하여 수정 및 보정
    - 운영체제 , DBMS, 웹 애플리케이션 서버 (WAS : Web Application Server), 시스템 용량 산정 결과를 요구 사항 정의서 , 목표 소프트웨어 구성도 , 목표 하드웨어 구성도에 결과를 반영하여 수정

## 개발 기술 환경 정의

## • 개발 기술 환경 결정

02

시스템 용량 산정



| 항목                   | 설명                                                                        |
|----------------------|---------------------------------------------------------------------------|
| 시스템 용도 및<br>서비스 형태   | 웹 페이지만 제공, 트랜잭션이 빈번하지 않은 웹 서비스<br>(데이터베이스 연계), 트랜잭션이 빈번한 웹 서비스(데이터베이스 연계) |
| 시스템의 구성 형태           | 1계층, 2계층, 3계층                                                             |
| 접속자 수                | 평균 접속자 수(24시간 기준), 최고 접속자 수(1시간), 연간 접속자 증가율                              |
| 사용률                  | 동시 사용자 수, 사용자당 오퍼레이션 수, 이미지 파일과 사운드 파일의 크기,<br>웹 페이지 크기, 허용 응답 시간         |
| 업무 중요도 및 긴급도         | 중요도(상·중·하), 긴급도(상·중·하)                                                    |
| <u>백 엔드 상호 작용 형태</u> | 읽기 전용(Read Only), 업데이트(Update), 온라인 트랜잭션 처리(OLTP)                         |
| SSL 사용 여부            | 안전한 통신이 필요한지 여부                                                           |
| HTTP                 |                                                                           |

## • 개발 기술 환경 결정

- 시스템 용량 산정

#### WEB / WAS를 위한 기초 자료 조사 항목

| 항목                                                     | 설명                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 운영체제                                                   | <ul> <li>시스템 구축 예산이 적은 경우(이) 2천만 원 이하 )에는 유닉스(UNIX)를 도입하기 어려움</li> <li>리눅스(Linux)는 비용이 저렴하나 유지 관리를 위한 기술 인력을 보유하거나 별도의 계약을 체결해야 함</li> <li>유닉스(UNIX)는 안정적이고 대량의 처리가 가능하며 기술 지원이 용이하나 비용이 많이 소요됨</li> <li>윈도우(Windows)는 유지 관리 기술 인력 확보가 용이하고 유닉스(UNIX)에 비해 상대적으로 비용이 저렴하나, 대부분의 대용량 처리 서버에 설치할 수 없음</li> </ul> |
| DBMS                                                   | <ul> <li>상용 DBMS의 경우 안정적이며 확장성이 뛰어나고 기술 지원을 받기<br/>용이하나 비용이 많이 소요됨</li> <li>오픈 소스 DBMS의 경우 비용이 저렴하나, 관련 기술을 자체적으로<br/>확보할 필요가 있음</li> <li>일반적으로 많이 사용되고 있는 DBMS(상용 또는 오픈 소스)를 선택하면<br/>관련 기술 인력 및 기술 자료를 확보하기 용이하고 문제 해결이 용이함</li> </ul>                                                                      |
| 웹 애플리케이션 서버<br>(WAS:<br>Web Applicatio<br>n<br>Server) | <ul> <li>표준 규격을 준수하는 웹 애플리케이션 서버(WAS)의 경우 개발용과 운영용을 구분하여 사용할 수 있음</li> <li>개발용은 가볍고 빠른 오픈 소스 웹 애플리케이션 서버(WAS)를 선택할수 있음</li> <li>상용 웹 애플리케이션 서버(WAS)의 경우에는 안정적이며, 대량 처리가 검증되어 있고 기술지원을 받기가 용이함</li> <li>오픈 소스 웹 애플리케이션 서버(WAS)의 경우 일반적으로 널리 사용하는 웹 애플리케이션 서버(WAS)를 선택하는 것이 바람직함</li> </ul>                     |



## 요구사항확인

## 2. 요구사항 확인하기

2-1. 요구사항 정의

2-2. 요구사항의 시스템화 타당성 분석

### 요구공학

- 요구공학 정의
  - 문서 생성, 검증, 관리하기 위하여 수행되는 구조화된 활동의 집합
  - 요구사항의 획득, 분석, 명세, 검증 및 변경관리 등에 대한 제반 활동과 원칙
    - → 요구사항 생성 및 관리를 체계적, 반복적으로 수행하는 활동
  - 요구사항 관리에 포함되는 모든 생명주기(SDLC)활동과 이를 지원하는 모든 프로세스를 포함하는 개념
  - 최종 산출물
    - → 요구사항 명세서

## 01 요구사항 정의

#### • 요구공학

- 요구공학 프로세스(요구사항 개발 프로세스)
  - 요구사항을 명확히 분석하여 검증하는 진행 순서
  - 요구사항 도출, 분석, 명세, 확인 및 요구사항 관리



#### • 요구공학

01

- 요구공학 프로세스(요구사항 개발 프로세스)



#### 요구공학

요구공학 프로세스(요구사항 개발 프로세스)

요구사항 도출

- 소프트웨어가 해결해야 할 문제를 이해하는 첫 번째 단계
- 요구사항이 어디에 있고, 어떻게 수집할 것인가를 찾는 행위

이해관계자(Stakeholder) 식별

개발팀과 고객 사이의 관계 형성

다양한 이해관계자와의 효율적인 의사소통이 중요!

요구사항 분석

- 요구사항들 간 상충되는 것을 해결
- 소프트웨어의 범위 파악
- 소프트웨어가 환경과 어떻게 상호작용하는지 이해



시스템 요구사항을 정제하여 소프트웨어 요구사항을 도출!

## • 요구공학

01

- 요구공학 프로세스(요구사항 개발 프로세스)



- 요구사항 분석 기법의 종류

```
요구사항 분류(Requirement Classification)
   개념 모델링(Conceptual Modeling)
 요구사항 할당(Requirement Allocation)
요구사항 협상(Requirement Negotiation)
      정형 분석(Formal Analysis)
```

- 요구사항 분석 기법
  - 요구사항 분석 기법의 종류 : 요구사항 분류(Requirement Classification)
    - 기능적 요구사항
      - 시스템이 어떤 기능을 갖추어야 하는지를 요구하는 사항
      - 시스템 기능을 정의한 것 → 시스템이 동작하는 내용에 대해 정의한 것



- 요구사항 분석 기법
  - 요구사항 분석 기법의 종류 : 요구사항 분류(Requirement Classification)
    - 비기능적 요구사항
      - 기능적인 부분 이외의 요구사항
      - 시스템 전체적인 특성 → 시스템 성능, 신뢰성, 확장성, 운영성, 보안 등과 관련된 요건



- 요구사항 분석 기법의 종류 : 개념 모델링(Conceptual Modeling)
  - 문제에 대한 모델링 → 소프트웨어 요구사항 분석의 핵심
  - 모델은 문제가 발생하는 상황에 대한 이해를 증진시키고 해결책을 설명
    - → 개념 모델은 문제 도메인의 엔터티(Entity)들과 그들의 관계 및 종속성을 반영!

#### \* 모델( model )

특정 리소스를 이용해서 특정 결과를 도출하는 방법, 규칙,과정을 정의해 놓은 것

#### \* 도메인

일반적인 요구사항이나 전문 용어 또는 컴퓨터 프로그래밍 분야 등에서 문제를 해결하기 위해 설계된 어떤 프로그램에 대한 기능성을 정의하는 영역 (예) 광고회사의 광고와 관련된 지식 = 도메인

- 요구사항 분석 기법
  - 요구사항 분석 기법의 종류 : **개념 모델링(Conceptual Modeling)** 
    - 문제에 대한 모델링이 소프트웨어 요구사항 분석의 핵심
    - 개념 모델의 종류와 표기법



- 유스케이스 다이어그램(Use Case Diagram)
- 데이터 흐름 모델(Data Flow Model)
- 상태 모델(State Model)
- 목표기반 모델(Goal-Based Model)
- 사용자 인터액션(User Interactions)



- 객체 모델(Object Model) ----
- 데이터 모델(Data Model)
- 대부분의 모델링 표기법은 UML(Unified Modeling Language)을 사용!

02

- 요구사항 분석 기법의 종류 : **요구사항 할당(Requirement Allocation)** 
  - 요구사항을 만족시키기 위한 아키텍처 구성 요소를 식별하는 것
  - 다른 구성 요소와 어떻게 상호 작용하는지 분석을 통하여 추가적인 요구사항을 발견 할 수 있음.

```
* 아키텍처
컴퓨터 시스템의
기능(functionality),
조직(organization),
구현(implementation)
에 대한 법칙과 방법을 통칭
```

- 요구사항 분석 기법의 종류 : 요구사항 협상 Requirement Negotiation)
  - 두 명의 이해관계자가 서로 상충되는 내용을 요구하거나, 요구사항과 리소스, 기능과 비 기능 요구사항들이 서로 상충되는 경우 어느 한 쪽을 지지하기보다는 적절한 트레이드오프 지점(절충점)에서 합의하는 것이 중 요
  - **요구사항에 우선순위를 부여**하여 중요한 **요구사항을 필터링하고 요구사항들 간 상충되는 문제를 해결**할 수 있음

- 요구사항 분석 기법의 종류 : 정형 분석(Formal Analysis)
  - 요구사항을 기술하여 분석하는 방법을 수학과 논리학에 기반을 두어 자연언어가 내포하는 애<u>매모호함이나</u> 불확실성을 제거하는 분석 기법
  - 정성적 요소보다는 정량적 구체적으로 기술하여 명세화 함
  - 추후 정확하게 측정 가능한 요소로 요구사항을 <mark>명세화</mark>하지 않으면 시스템 요청자와 구축 수행자 간의 최종 인도 시 분쟁의 소지가 많음



## 요구사항확인

# 3. 분석모델 확인하기

3-1. 분석모델 검증

3-2. 분석모델의 시스템화 타당성 분석

- 요구사항 분석활동
  - 도출된 각각의 요구사항을 좀 더 풍부하고 상세하게 이해하고 이를 여러 가지 방법으로 표현
    - → 요구사항을 분류하고 조직화하여 명세를 구체화해 나가는 것
  - 기능분할
    - 시스템 관점에서 외부에 제공해야 하는 서비스(기능)를 유형별로 최하위 단위 구성요소에 도달할 때까지 분할
  - 시나리오 기반 분석
    - 시스템 외부의 사용자 / 이해관계자) 주변 환경이 시스템과 긴밀하게 상호작용하며 시스템을 사용하는 시나리오 작성
    - 유스케이스(Use Case) 분석도 시나리오 분석에 해당
  - 유스케이스 분석

### 분석모델 검증

#### • 요구사항 분석활동

- 유스케이스 분석
  - 대표적인 시나리오 기반 요구사항 분석 방법으로 활용
  - 사용자 요구사항 문서와 같은 입력 자료로부터 이해관계자와 관심 대상인 시스템 간의 상호작용 식별
    → 유스케이스 다이어그램으로 작성

#### \* 유스케이스 다이어그램 (Use Case Diagram)

시스템에 대한 이해관계자인 액터와 상호작용을 나타내는 유스케이스 간의 관계와 구조를 가장 개괄적으로 보여주는 도표

- 유스케이스
  - 시스템 경계 밖에 위치한 액터가 특정 목적을 달성하기 위해 시스템이 제공하는 기능을 이용하여 시스템과 주고받는 일련의 상호 작용을 시나리오로 나타낸 것



- 유스케이스 표기법

| 요소명    | 표기        | 설명                                                                      |
|--------|-----------|-------------------------------------------------------------------------|
| 시스템 경계 | 시스템 경계    | 시스템의 범위 표기                                                              |
| 액터     | 웃         | 시스템과 상호작용하는 시스템 외부 객체                                                   |
| 유스케이스  | 유스케이스     | 시스템에 의해 수행되는 행위 또는 기능                                                   |
| 연관     |           | 액터와 유스케이스 간의 상호작용 관계                                                    |
| 포함     | «include» | 하나의 유스케이스가 또 다른 유스케이스를<br>사용하는 것을 나타내는 두 유스케이스 간의<br>관계                 |
| 확장     | «extend»  | 하나의 유스케이스가 또 다른 유스케이스에 행위 또는 기능을 추가하는 것을 나타내는 두<br>유스케이스 간의 관계          |
| 일반화    |           | 액터와 액터, 유스케이스와 유스케이스 간의<br>관계로<br>두 개체 간에 <mark>일반화 관계</mark> 가 있음을 나타냄 |

- 유스케이스 표기법





#### • 분석모델 검증방법

- 분석모델 검증 절차
  - 정보시스템의 분석설계가 잘 도출되었는지 검증하는 절차

| 단계                | 검토대상                                      |
|-------------------|-------------------------------------------|
| ① 유스케이스 모델 검증     | 액터 / 유스케이스 / 유스케이스 명세서                    |
| ② 개념 수준의 분석클래스 검증 | 클래스 도출 / 클래스 명과 속성 / 클래스들간 관계             |
| ③ 분석클래스 검증        | 스테레오 타입 / 경계 및 제어 클래스 도출 /<br>관계 및 상세화 정도 |

• 분석모델 검증 완료 후 검토의견을 작성하고 공유함

## 분석모델 검증방법

- 유스케이스 모델 검증

| 점검대상         | 점검내용                                                                                                                                                                                                                                                                                                                      |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 액터           | <ul> <li>기능 구현에 관계되는 액터가 모두 도출되었는가?</li> <li>액터 목록에서 액터명이 역할 중심으로 명명되었는가?</li> <li>요구사항 정의서, 요구사항 기술서에 외부 / 내부 액터가 모두 도출되었는가?</li> <li>액터 목록과 액터 명세서에 기록된 액터가 타당한가?</li> </ul>                                                                                                                                            |
| 유스케이스        | <ul> <li>요구기능 구현에 필요한 유스케이스가 모두 도출되었는가?</li> <li>도출된 유스케이스를 논리적으로 연결하여 누락된 기능 파악</li> <li>도출된 유스케이스가 유스케이스 목록과 유스케이스 명세서에 반영되었는지 확인</li> <li>도출된 유스케이스의 논리적인 합이 과업 범위와 일치하는지 비교</li> <li>도출된 유스케이스들이 논리적으로 그룹화되었는지 확인</li> <li>그룹화는 액터 기준, 연관 관계 기준, 동시성 기준이 가능</li> <li>유스케이스 기능 범위가 다른 유스케이스 기능 범위와 중복되는지 확인</li> </ul> |
| 유스케이스<br>명세서 | <ul> <li>유스케이스 명세서 형식에 중요 항목이 누락되지 않았는지 확인</li> <li>사전 및 사후 조건, 주요 흐름, 서브 흐름, 예외 흐름 등</li> <li>유스케이스의 주요 이벤트 흐름이 모두 도출되고 논리적으로 타당한지 확인</li> <li>유스케이스를 구현하기 위하여 필요한 입출력 항목이 모두 도출되었는지 확인</li> </ul>                                                                                                                       |

## • 분석모델 기술적 타당성 검토

- 분석모델 기술적 타당성 검토 절차
  - 요구사항에 대한 기술적 타당성 검토 절차와 동일한 방식으로 분석모델이 기술적으로 타당한지 검토함
- 타당성 검토 내용
  - 성능 및 용량분야
  - 시스템간 상호 운용성 분야
  - 시장 성숙도 및 IT 트렌드 부합성 분야
  - 기술적 위험분석 분야

- 02
- 분석모델 기술적 타당성 검토
  - 타당성 검토 내용
    - 성능 및 용량분야
      - 성능평가 확인
        - » 분석모델이 최종 사용자 응답시간에 대해 요구사항이 도출되었는지 확인하고 **적정성을 검토**
        - » 시스템 개발 이후 최종 사용자 응답시간에 대한 **사용자 불만족 사항을 사전에 차단**하는 것이 1차적인 목적임
        - » 요구사항 도출 이후 분석한 모델이 개발 시스템의 특성과 구축비용에 따라 응답시간이 달라질 수 있으므로 적정성을 검토하는 것이 목적임

### • 분석모델 기술적 타당성 검토

- 타당성 검토 내용
  - 성능 및 용량분야
    - 용량산정 확인 → **가용성 화장성** 측면으로 검토
      - » 분석모델이 **시스템의 업무 특성**에 맞도록 적절하게 도출되었는지 확인하고 이에 대한 적정성을 검토
      - » 시스템 운영 시 가용성에 대한 **사용자의 기대치**를 분석하였는지 검토
      - » 가용성 목표가 **업무특성과 경제성**을 고려하여 적정하게 도출되었는지 검토
      - » 시스템 확장성에 대한 분석모델이 도출되었는지 확인하고 적정성 및 경제성을 검토
      - » 하드웨어나 네트워크 장비의 경우 내부 자원의 추가로 인한 수직적 확장과 동일 장비의 추가로 인한 수평적 확장을 고려할 수 있음 → 각 기반 요소 별로 효율적인 확장방안이 적용되었는지 검토
      - » 목표 시스템에 대한 아키텍처가 **분석모델에 맞게 설계**되기 위해 필요한 절차를 수행했는지 검토
      - » 시스템 확장성에 대한 분석모델이 **업무량의 증가 및 특성**, **업무범위의 확대** 등을 고려하여 적정하게 도출되었는 지 검토

- 02
- 분석모델 기술적 타당성 검토
  - 타당성 검토 내용
    - 시스템간 상호 운용성 분야
      - **시스템의 유연성** 측면에서 분석모델이 충분히 도출 되었는지 확인
      - − 서로 다른 시스템간 상호 정보 및 서비스 교환 가능성 등을 검토
         → 제안 요청서, 제안서 등에 명시된 시스템 유연성에 관한 내용이 분석모델에 적정하게 도출되었는지 확인하는 것이 목적
      - 시스템의 확장, 변경, 교체 등 시스템 구성 환경의 변화에 대하여 응용 시스템이 유연하게 적응할 수 있는지 검토
      - 하드웨어 및 패키지 공급자에 대한 종속성을 최소화하고 환경 변화에 대응할 수 있는지 검토

- 02
- 분석모델 기술적 타당성 검토
  - 타당성 검토 내용
    - 시장 성숙도 및 IT 트렌드 부합성 분야
      - 시스템 구축 시 요구되는 영역별 정보 기술들의 **시장 성숙도 및 발전 방향을 파악**
      - 도출된 요구사항이 IT 시장 성숙도 및 트렌드에 부합하는지 판단해야 함
         → 시장 성숙도가 낮거나, 발전 방향에 부합되지 않는 기술들은 향후 더 이상 사용되지 않을 가능성이 높아 시스템의 유지보수가 어려운 상황이 발생할 가능성이 높음

- 분석모델 기술적 타당성 검토
  - 타당성 검토 내용
    - 기술적 위험분석 분야
      - 분석모델을 만족시키기 위하여 적용한 기술의 복잡성, 검증 여부, 의존성 등에 대하여 위험 발생 가능성, 영향도를 파악

02

- 분석모델 타당성 의견 작성
  - 분석모델 타당성 의견을 작성하기
    - 분석모델까지 요구사항 추적표를 작성
    - 타당성 검토 의견 컬럼을 추가
    - 작성된 요구사항 추적표에 타당성 검토 의견을 작성
- 분석모델 타당성 의견 공유
  - 타당성 분석 결과를 관련 이해관계자가 검증한 후 관련 이해관계자 검증을 거친 타당성 분석 결과를 확인하고 배포 및 공유