Tutorial 4

Relational Algebra

COMP3278C
Introduction to Database Management Systems

Dr. CHEN, Yi

Email: chenyi1@hku.hk

School of Computing & Data Science, The University of Hong Kong

Learning Outcomes

- Outcome 1: Information Modeling
 - Able to understand the modeling of real-life information in database systems.
- Outcome 2: Query Languages
 - Able to use the languages designed for data access.
- Outcome 3: System Design
 - Able to design an efficient and reliable database system.
- Outcome 4: Application Development
 - Able to implement a practical application on a real database.

Banking Example

Banking Example

Depositoraccount_idcustomer_idA1C1A1C2A2C2A3C4

A4

account_id	balance
A1	500
A2	400
A3	900
A4	700
	A1 A2 A3

Branch		
branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
B3	Aberdeen	400000
B4	North Point	3700000

• Query: Find the customer_id of all customer who have an account at a branch located in Central.

C4

```
SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = 'Central';
```

Depositoraccount_idcustomer_idA1C1A1C2A2C2A3C4A4C4

Account		
branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch		
branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
B3	Aberdeen	400000
B4	North Point	3700000

• Query: Find the customer_id of all customer who have an account at a branch located in Central.

```
SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = 'Central';
```

```
\pi_{customer\_id}(
\sigma_{branch.location='Central'}(
branch \bowtie (account \bowtie depositor)
)
```

Depositoraccount_idcustomer_idA1C1A1C2A2C2A3C4A4C4

Account		
branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch		
branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
B3	Aberdeen	400000
B4	North Point	3700000

• Query: Find the customer_id of all customer who have an account at a branch located in Central.

```
SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = 'Central';
```

```
\pi_{customer\_id} Hint: Put down selection \sigma_{branch.location='Central'} branch \bowtie (account \bowtie depositor)
```

Depositoraccount_idcustomer_idA1C1A1C2A2C2A3C4A4C4

Account		
branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch		
branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
В3	Aberdeen	400000
B4	North Point	3700000

• Query: Find the customer_id of all customer who have an account at a branch located in Central.

```
SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = 'Central';
```

```
Hint: Put down selection
\pi_{customer\_id}
   \sigma_{branch.location='Central'}(
      branch \bowtie (account \bowtie depositor)
                               \sigma_p(E_1 \bowtie E_2) = \sigma_p(E_1) \bowtie E_2
      \pi_{customer\_id}(
         \sigma_{branch.location='Central'}(branch)
              \bowtie (account \bowtie depositor)
```

Depositoraccount_idcustomer_idA1C1A1C2A2C2A3C4A4C4

branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch		
branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
B3	Aberdeen	400000
B4	North Point	3700000

 Query: Find the customer_id of all customers with an account at Central branch whose account balance is over \$1000

Account

```
SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = 'Central' AND account.balance > 1000;
```

Depositoraccount_idcustomer_idA1C1A1C2A2C2A3C4A4C4

Account		
branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch		
branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
B3	Aberdeen	400000
B4	North Point	3700000

• Query: Find the customer_id of all customers with an account at Central branch whose account balance is over \$1000

```
SELECT customer_id
FROM branch, account, depositor
WHERE

account.account_id = depositor.account_id AND
branch.branch_id = account.branch_id AND
branch.location = 'Central' AND account.balance > 1000;
```

```
\pi_{customer\_id}(
\sigma_{branch.location='Central'\land account.balance>1000}(
branch\bowtie(account\bowtie depositor)
)
```

Depositor

account_id	customer_id
A1	C1
A1	C2
A2	C2
A3	C4
A4	C4

Account

branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch

branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
B3	Aberdeen	400000
B4	North Point	3700000

```
\pi_{customer\_id}(
\sigma_{branch.location='Central'\land account.balance>1000}(
branch\bowtie(account\bowtie depositor)
)
```

Depositor

account_id	customer_id
A1	C1
A1	C2
A2	C2
A3	C4
A4	C4

Account

branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

 $\pi_{customer_id}$

⋈ *depositor*

Branch

branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
В3	Aberdeen	400000
B4	North Point	3700000

```
Hint: Put down selection
\pi_{customer\_id}(
   \sigma_{branch.location='Central' \land account.balance>1000}
       branch \bowtie (account \bowtie depositor)
                         (E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)
\pi_{customer\_id}(
   \sigma_{branch.location='Central' \land account.balance>1000}
       (branch \bowtie account) \bowtie depositor
                                 \sigma_p(E_1 \bowtie E_2) = \sigma_p(E_1) \bowtie E_2
```

 $\sigma_{branch.location='Central' \land account.balance>1000}(branch \bowtie account)$

Depositor

account_id	customer_id
A1	C1
A1	C2
A2	C2
A3	C4
A4	C4

Account

branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch

branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
В3	Aberdeen	400000
B4	North Point	3700000

```
Hint: Put down selection
\pi_{customer\_id}(
    \sigma_{branch.location='Central' \land account.balance>1000}
       branch \bowtie (account \bowtie depositor)
                          (E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)
\pi_{customer\_id}(
    \sigma_{branch.location='Central' \land account.balance>1000}
       (branch \bowtie account) \bowtie depositor
                                   \sigma_p(E_1 \bowtie E_2) = \sigma_p(E_1) \bowtie E_2
\pi_{customer\_id}(
   \sigma_{branch.location='Central' \land account.balance > 1000}(branch \bowtie account)
```

⋈ *depositor*

```
\pi_{customer\_id}(
(\sigma_{branch.location='Central'}(branch))
\bowtie \sigma_{account.balance}(account))
\bowtie depositor
```

```
\sigma_{p_1 \wedge p_2}(E_1 \bowtie E_2) = (\sigma_{p_1}(E_1)) \bowtie (\sigma_{p_2}(E_2))
```

 $\pi_{customer_id}$

⋈ *depositor*

 $(\sigma_{branch.location='Central'}(branch)$

 $\bowtie \sigma_{account.balance}(account))$

Depositor

account_id	customer_id
A1	C1
A1	C2
A2	C2
A3	C4
A4	C4

Account

branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

Branch

branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
В3	Aberdeen	400000
B4	North Point	3700000

Hint: Put down selection

 $\sigma_p(E_1 \bowtie E_2) = \sigma_p(E_1) \bowtie E_2$

```
\pi_{customer\_id}(
 \pi_{customer\_id}(
\pi_{customer\_id}
```

```
\sigma_{branch.location='Central' \land account.balance>1000}
                                                                                  branch \bowtie (account \bowtie depositor)
                                                                                                     (E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)
                                                                              \sigma_{branch.location='Central' \land account.balance>1000}
                                                                                  (branch \bowtie account) \bowtie depositor
Hint: Put down projection
                                                                             \sigma_{branch.location='Central' \land account.balance>1000}(branch\bowtie account)
                                                                              ⋈ depositor
  \sigma_{p_1 \wedge p_2}(E_1 \bowtie E_2) = (\sigma_{p_1}(E_1)) \bowtie (\sigma_{p_2}(E_2))
```

⋈ depositor

Depositoraccount_idcustomer_idA1C1A1C2A2C2A3C4

 $\sigma_{p_1 \wedge p_2}(E_1 \bowtie E_2) = (\sigma_{p_1}(E_1)) \bowtie (\sigma_{p_2}(E_2))$

C4

A4

	~	nt	
CC	Ou	III	

branch_id	account_id	balance
B1	A1	500
B2	A2	400
B2	A3	900
B1	A4	700

⋈ depositor

Branch

branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
В3	Aberdeen	400000
B4	North Point	3700000

```
\pi_{customer\_id}(\pi_{account\_id}(\sigma_{branch.location='Central'}(branch) \bowtie \sigma_{account.balance}(account))
\bowtie \pi_{account\_id,customer\_id}(depositor)
)
\pi_{L_1 \cup L_2}(E_1 \bowtie E_2) = \pi_{L_1 \cup L_2}((\pi_{L_1 \cup L_3}(E_1) \bowtie (\pi_{L_2 \cup L_3}(E_2))))
\pi_{customer\_id}(\pi_{branch.location='Central'}(branch)
\bowtie \sigma_{account.balance}(account))
Hint: Put down projection
```

```
Hint: Put down selection
\pi_{customer\_id}(
    \sigma_{branch.location='Central' \land account.balance>1000}
       branch \bowtie (account \bowtie depositor)
                          (E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)
\pi_{customer\_id}
    \sigma_{branch.location='Central' \land account.balance>1000}
       (branch \bowtie account) \bowtie depositor
                                   \sigma_p(E_1 \bowtie E_2) = \sigma_p(E_1) \bowtie E_2
\pi_{customer\_id}
```

 $\sigma_{branch.location='Central' \land account.balance>1000}(branch\bowtie account)$

Depositor		
account_id	customer_id	
A1	C1	
A1	C2	
A2	C2	
A3	C4	
A4	C4	

Account			
	branch_id	account_id	balance
	B1	A1	500
	B2	A2	400
	B2	A3	900
	B1	A4	700

Branch		
branch_id	location	asset
B1	Central	7100000
B2	Causeway Bay	9000000
B3	Aberdeen	400000
B4	North Point	3700000

```
\pi_{customer\_id}(
\pi_{account\_id}(
\pi_{branch\_id}(\sigma_{branch.location='Central'}(branch))
\bowtie \pi_{account\_id,branch\_id}(\sigma_{account.balance}(account))
)
\bowtie \pi_{account\_id,customer\_id}(depositor)
```

```
\pi_{L_1 \cup L_2}(E_1 \bowtie E_2) = \pi_{L_1 \cup L_2}((\pi_{L_1 \cup L_3}(E_1) \bowtie (\pi_{L_2 \cup L_3}(E_2)))
```

```
\pi_{customer\_id}(
\pi_{account\_id}(\sigma_{branch.location='Central'}(branch)\bowtie\sigma_{account.balance}(account))
\bowtie\pi_{account\_id,customer\_id}(depositor)
```

```
\pi_{L_1 \cup L_2}(E_1 \bowtie E_2) = \pi_{L_1 \cup L_2}((\pi_{L_1 \cup L_3}(E_1) \bowtie (\pi_{L_2 \cup L_3}(E_2)))
```

```
\pi_{customer\_id}(
(\sigma_{branch.location='Central'}(branch))
\bowtie \sigma_{account.balance}(account))
\bowtie depositor
```

Hint: Put down projection

```
\sigma_{p_1 \wedge p_2}(E_1 \bowtie E_2) = (\sigma_{p_1}(E_1)) \bowtie (\sigma_{p_2}(E_2))
```

```
Hint: Put down selection
\pi_{customer\_id}(
\sigma_{branch.location='Central' \land account.balance > 1000}(
branch \bowtie (account \bowtie depositor)
)
(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)
```

```
\pi_{customer\_id}(
\sigma_{branch.location='Central'\land account.balance>1000}(
(branch\bowtie account)\bowtie depositor
)
```

```
\sigma_p(E_1 \bowtie E_2) = \sigma_p(E_1) \bowtie E_2
```

```
\pi_{customer\_id}(
\sigma_{branch.location='Central' \land account.balance > 1000}(branch \bowtie account)
\bowtie depositor
```

Staff		
sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3

skill_ID	skill_name	desc
1	C++	•••
2	JAVA	
3	MySQL	

IT_skill

sID	skill_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	2
4	3

Has

• Query: Find the sID and name of the employee who know all the IT skills in the company.

Staff		
sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3

skill_ID	skill_name	desc
1	C++	
2	JAVA	
3	MySQL	

IT_skill

sID	skill_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	2
1	Q

Has

• Query: Find the sID and name of the employee who know all the IT skills in the company.

$$(Has \div \pi_{skill_ID}(IT_skill))$$

$$= 1$$

$$= 4$$

Staff			
sID	name	dpt_id	
1	Peter	1	
2	Sharon	1	
3	David	2	
4	Joe	3	

skill_ID	skill_name	desc
1	C++	•••
2	JAVA	
3	MySQL	
	1	Į.

IT_skill

sID	skill_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	2
4	3

Has

Query: Find the sID and name of the employee who know all the IT skills in the company.

$$(Has \div \pi_{skill_ID}(IT_skill)) \\ \bowtie Staff$$

$$Has \div \pi_{skill_ID}(IT_skill) \\ \bowtie Staff$$

$$1$$

$$4$$

$$Has \div \pi_{skill_ID}(IT_skill) \\ \bowtie SID$$

$$1$$

$$4$$

$$1$$

$$4$$

$$1$$

$$4$$

$$3$$

$$4$$

$$1$$

$$4$$

$$3$$

$$3$$

Staff			
sID	name	dpt_id	
1	Peter	1	
2	Sharon	1	
3	David	2	
4	Joe	3	

skill_ID	skill_name	desc
1	C++	•••
2	JAVA	
3	MySQL	

IT_skill

1	1
1	2
1	3
2	3
3	3
4	1
4	2
1	3

sID skill_ID

Has

Query: Find the sID and name of the employee who know all the IT skills in the company.

$$\pi_{sID,name}($$
 $(Has \div \pi_{skill_ID}(IT_skill))$
 $\bowtie Staff$

$\pi_{sID,name}((Has \div \pi_{skill_ID}(IT_skill)) \bowtie Staff$			
	sID	name	
	1	Peter	
	4	Joe	

Staff			
sID	name	dpt_id	
1	Peter	1	
2	Sharon	1	
3	David	2	
4	Joe	3	

skill_ID	skill_name	desc
1	C++	•••
2	JAVA	
3	MySQL	

IT_skill

sID	skill_ID	
1	1	
1	2	
1	3	
2	3	
3	3	
4	1	
4	2	
4	3	

Has

• Query: Find the sID of the staffs who know about C++ or works in the IT department (dpt_id=2).

sIDnamedpt_id1Peter12Sharon13David24Joe3

Staff

IT_skill		
skill_ID	skill_name	desc
1	C++	
2	JAVA	
3	MySQL	

sID	skill_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	2
4	3

Has

• Query: Find the sID of the staffs who know about C++ or works in the IT department (dpt_id=2).

Write Relational Algebra

U

sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3

Staff

skill_ID	skill_name	desc
1	C++	•••
2	JAVA	
3	MySQL	

IT_skill

1	1
1	2
1	3
2	3
3	3
4	1
4	2
1	3

sID skill_ID

Has

• Query: Find the sID of the staffs who know about C++ or works in the IT department (dpt_id=2).

$$\pi_{SID}(Has \bowtie \sigma_{skill_name='C++'}(IT_skill))$$

$$\pi_{SID}(Has \bowtie \sigma_{skill_name='C++'}(IT_skill))$$

sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3

Staff

skill_ID	skill_name	desc
1	C++	
2	JAVA	
3	MySQL	
		ı

IT_skill

1	1
1	2
1	3
2	3
3	3
4	1
4	2
1	3

sID skill_ID

Has

• Query: Find the sID of the staffs who know about C++ or works in the IT department (dpt_id=2).

••••

$$\pi_{SID}(Has \bowtie \sigma_{skill_name='C++'}(IT_skill))$$
 \cup
 $\pi_{SID}(\sigma_{dpt_id=2}(Staff))$

$$\pi_{sID}(Has \bowtie \sigma_{skill_name='C++'}(IT_skill))$$

$$1$$

$$4$$

$$\pi_{SID}(\sigma_{dpt_id=2}(Staff))$$

sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3

Staff

skill_ID	skill_name	desc
1	C++	•••
2	JAVA	
3	MySQL	

IT_skill

1	1
1	2
1	3
2	3
3	3
4	1
4	2
1	2

sID skill_ID

Has

• Query: Find the sID of the staffs who know about C++ or works in the IT department (dpt_id=2).

$$\pi_{SID}(Has \bowtie \sigma_{skill_name='C++'}(IT_skill))$$
 \cup
 $\pi_{SID}(\sigma_{dpt_id=2}(Staff))$

• Query: List the name of the IT skills that the staffs named "Peter" and "David" know. If they do not know any skill, print *null*.

Write Relational Algebra

Staff

sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3
5	David	4

IT_skill

skill_ID	skill_name	desc
1	C++	
2	JAVA	
3	MySQL	

sID	skill_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	2
1	2

Has

• Query: List the name of the IT skills that the staffs named "Peter" and "David" know. If they do not know any skill, print *null*.

Write Relational Algebra

Staff

sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3
5	David	4

IT_skill

skill_ID	skill_name	desc
1	C++	
2	JAVA	
3	MySQL	
	1	

Has	
sID	skill_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	I

• Query: List the name of the IT skills that the staffs named "Peter" and "David" know. If they do not know any skill, print *null*.

Write Relational Algebra

$$(\sigma_{name='Peter' \lor name='David'}(Staff)$$
 $\bowtie Has)$

	σ_{name}	='Peter'∨nd	ame='Da
	sID	name	dpt_id
•	1	Peter	1
	3	David	2
	5	David	4

IT_skill

sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3
5	David	4

Staff

skill_ID	skill_name	desc
1	C++	
2	JAVA	
3	MySQL	

SID	SKIII_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	2
4	3

Has

$\sigma_{name='Peter'ee name='David}$	$_{d'}(Staff)$]	$\bowtie Has$
---------------------------------------	------------------	---------------

sID	name	dpt_id	skill_ID
1	Peter	1	1
1	Peter	1	2
1	Peter	1	3
3	David	2	3
5	David	4	null

Query: List the name of the IT skills that the staffs named "Peter"

and "David" know. If they do not know any skill, print null.

Write Relational Algebra

$$(\sigma_{name='Peter' \lor name='David'}(Staff)$$
 $\bowtie Has)$
 $\bowtie IT_skill$

(name=	='Peter'∨nd	ame='Da
	sID	name	dpt_id
•••	1	Peter	1
	3	David	2
	5	David	4

	sID	name	dpt_id	skill_ID
>	1	Peter	1	1
	1	Peter	1	2
	1	Peter	1	3
	3	David	2	3
	5	David	4	null

dpt_id

name

Peter

Sharon

David

Joe

David

$(\sigma_{name='Peter' \lor name='David'}(Staff) \bowtie Has) \bowtie IT_skill$

Staff

	sID	name	dpt_id	skill_ID	skill_name	desc
••••	1	Peter	1	1	C++	
	1	Peter	1	2	JAVA	
	1	Peter	1	3	MySQL	
	3	David	2	3	MySQL	
	5	David	4	null	null	null

Has

skill_ID	skill_name	desc
1	C++	
2	JAVA	
3	MySQL	

IT_skill

 $\sigma_{name='Peter' \lor name='David'}(Staff) \bowtie Has$

210	SKIII_ID
1	1
1	2
1	3
2	3
3	3
4	1
4	2
1	0

 Query: List the name of the IT skills that the staffs named "Peter" and "David" know. If they do not know any skill, print null.

sID	name	dpt_id
1	Peter	1
2	Sharon	1
3	David	2
4	Joe	3
5	David	4

Staff

IT_skill

skill_ID skill_name desc

C++

JAVA

MySQL

sID	skill_
1	1
1	2
1	3
 2	3
3	3
_	_

Has

1	1
1	2
1	3
2	3
3	3
4	1
4	2
4	3

Write Relational Algebra

sID	name	dpt_id
1	Peter	1
3	David	2
5	David	4

$\sigma_{name='Peter' \lor name='David'}(Staff) \bowtie Has$

sID	name	dpt_id	skill_ID
1	Peter	1	1
1	Peter	1	2
1	Peter	1	3
3	David	2	3
5	David	4	null

$(\sigma_{name='Peter' \lor name='David'}(Staff) \bowtie Has) \bowtie IT_skill$

	sID	name	dpt_id	skill_ID	skill_name	desc
••••	1	Peter	1	1	C++	
	1	Peter	1	2	JAVA	
	1	Peter	1	3	MySQL	
	3	David	2	3	MySQL	
	5	David	4	null	null	null

sID	name	skill_name
 1	Peter	C++
1	Peter	JAVA
1	Peter	MySQL
3	David	MySQL
5	David	null

Tutorial 4

END

COMP3278C Introduction to Database Management Systems

Dr. CHEN, Yi

Email: chenyi1@hku.hk

School of Computing & Data Science, The University of Hong Kong