Lecture 13: Riemannian Metrics

Tianpei Xie

Oct. 26th., 2022

Contents

1		mannian Metrics	2	
	1.1	Definitions	2	
		Pullback Metrics		
2				
	2.1	Riemannian Submanifolds	5	
	2.2	Riemannian Submersions	5	
	2.3	Riemannian Coverings	5	
3	Basic Constructions on Riemannian Manifolds			
	3.1	Raising and Lowering Indices	5	
	3.2	Inner Products of Tensors		
	3.3	The Volume Form and Integration		
		The Divergence and the Laplacian		
4	Length and Distance			
		The Riemannian Distance Function	8	

1 Riemannian Metrics

1.1 Definitions

- Remark The most important examples of symmetric tensors on a vector space are *inner products*. Any inner product allows us to define *lengths* of vectors and *angles* between them, and thus to do Euclidean geometry.
- **Definition** Let M be a smooth manifold with or without boundary. <u>A Riemannian metric</u> on M is a smooth <u>symmetric covariant 2-tensor field</u> on M that is <u>positive definite</u> at each point.

A Riemannian manifold is a pair (M, g), where M is a smooth manifold and g is a Riemannian metric on M. One sometimes simply says "M is a Riemannian manifold" if M is understood to be endowed with a specific Riemannian metric. A Riemannian manifold with boundary is defined similarly.

- Remark If g is a Riemannian metric on M, then for each $p \in M$, the 2-tensor g_p is an <u>inner product</u> on T_pM . Because of this, we often use the notation $\langle v, w \rangle_g$ to denote the real number $g_p(v, w)$ for $v, w \in T_pM$.
- Remark (Coordinate Representation of Riemannian Metric) In any smooth local coordinates (x^i) , a Riemannian metric can be written

$$g = g_{i,j} \, dx^i \otimes dx^j, \tag{1}$$

where $(g_{i,j})$ is a symmetric positive definite matrix of smooth functions.

• Remark (Alternative Coordinate Representation of Riemannian Metric) The symmetry of g allows us to write g also in terms of symmetric products as follows:

$$g = g_{i,j} dx^{i} \otimes dx^{j},$$
(since a symmetric tensor is equal to its symmetrization)
$$= \frac{1}{2} \left(g_{i,j} dx^{i} \otimes dx^{j} + g_{j,i} dx^{j} \otimes dx^{i} \right)$$
(since $g_{i,j} = g_{j,i}$)
$$= \frac{1}{2} g_{i,j} \left(dx^{i} \otimes dx^{j} + dx^{j} \otimes dx^{i} \right)$$
(by definition of symmetric product)
$$= \frac{1}{2} g_{i,j} dx^{i} dx^{j}$$
(2)

• Example (The Euclidean Metric).

The simplest example of a Riemannian metric is <u>the Euclidean metric</u> \bar{g} on \mathbb{R}^n , given in standard coordinates by

$$\bar{g} = \delta_{i,j} dx^i dx^j,$$

where $\delta_{i,j}$ is the Kronecker delta. It is common to abbreviate the symmetric product of a tensor α with itself by α^2 , so the Euclidean metric can also be written

$$\bar{g} = (dx^1)^2 + \ldots + (dx^n)^2.$$

Applied to vectors $v, w \in T_p \mathbb{R}^n$, this yields

$$\bar{g}_p(v,w) = \delta_{i,j} v^i w^j = \sum_i v^i w^i = \langle \boldsymbol{v}, \boldsymbol{w} \rangle$$

In other words, \bar{g} is the 2-tensor field whose value at each point is **the Euclidean dot product**. We denote the value of this 2-tensor field as $g(v, w) := \langle v, w \rangle_q$.

• Example (Product Metrics).

If (M,g) and $(\widetilde{M},\widetilde{g})$ are Riemannian manifolds, we can define a Riemannian metric $\hat{g}=g\oplus\widetilde{g}$ on the product manifold $M\times\widetilde{M}$, called **the product metric**, as follows:

$$\hat{g}((v,\widetilde{v}),(w,\widetilde{w})) = g(v,w) + \widetilde{g}(\widetilde{v},\widetilde{w}) \tag{3}$$

for any $(v, \widetilde{v}), (w, \widetilde{w}) \in T_pM \times T_q\widetilde{M} \simeq T_{(p,q)}(M \times \widetilde{M})$. Given any local coordinates x^1, \ldots, x^n for M and y^1, \ldots, y^m for \widetilde{M} , we obtain local coordinates $(x^1, \ldots, x^n, y^1, \ldots, y^m)$ for $M \times \widetilde{M}$, and you can check that the product metric is represented locally by the block diagonal matrix

$$\hat{g}_{i,j} = \left[\begin{array}{cc} g_{i,j} & 0 \\ 0 & \widetilde{g}_{i,j} \end{array} \right].$$

For example, it is easy to verify that the Euclidean metric on \mathbb{R}^{n+m} is the same as the product metric determined by the Euclidean metrics on \mathbb{R}^n and \mathbb{R}^m . (Note that the product metrics is the sum of tensors **not tensor product** of Riemannian metrics, which would increase the rank of the metric.)

• Proposition 1.1 (Existence of Riemannian Metrics). [Lee, 2003., 2018] Every smooth manifold with or without boundary admits a Riemannian metric.

Proof: (A sketch of the proof). Let M be a smooth manifold with or without boundary, and choose a covering of M by smooth coordinate charts $(U_{\alpha}, \varphi_{\alpha})$. In each coordinate domain, there is a Riemannian metric $g_{\alpha} = \varphi^* \bar{g}$ via pullback of Euclidean metric \bar{g} by φ , whose coordinate expression is $\delta_{i,j} dx^i dx^j$. Let $\{\Psi_{\alpha}\}$ be a smooth partition of unity subordinate to the cover U_{α} , and define

$$g = \sum_{\alpha} \Psi_{\alpha} g_{\alpha},$$

with each term interpreted to be zero outside supp Ψ_{α} . By local finiteness, there are *only* finitely many nonzero terms in a neighborhood of each point, so this expression defines a smooth tensor field. It is obviously symmetric. We can proof this term g(v,v) is postive for each nonzero $v \in T_pM$.

• **Definition** The *length* or *norm* of a tangent vector $v \in T_pM$ is defined to be

$$|v|_g = \sqrt{g_p(v,v)} := \sqrt{\langle v, v \rangle_g}$$

• **Definition** The <u>angle</u> between two nonzero tangent vectors $v, w \in T_pM$ is the unique $\theta \in [0, \pi]$ satisfying:

$$\theta = \frac{\langle v \,,\, w \rangle_g}{|v|_g \,|w|_g}.$$

- **Definition** Tangent vectors $v, w \in T_pM$ are said to be <u>orthogonal</u> if $\langle v, w \rangle_g = 0$. This means either one or both vectors are zero, or the angle between them is $\pi/2$.
- **Definition** Let (M, g) be an n-dimensional Riemannian manifold with or without boundary. A local frame (E_1, \ldots, E_n) for M on an open subset $U \subseteq M$ is an <u>orthonormal frame</u> if the vectors $(E_1|_p, \ldots, E_n|_p)$ form an **orthonormal basis** for T_pM at each point $p \in U$, or equivalently if $\langle E_i, E_j \rangle_g = \delta_{i,j}$.
- Proposition 1.2 Suppose (M,g) is a Riemannian manifold with or without boundary, and (X_j) is a smooth local frame for M over an open subset $U \subseteq M$. Then there is a smooth orthonormal frame (E_j) over U such that $span\{E_1|_p, \ldots, E_n|_p\} = span\{X_1|_p, \ldots, X_n|_p\}$ for each $j = 1, \ldots, n$ and each $p \in U$.
- Corollary 1.3 (Existence of Local Orthonormal Frames). Let (M,g) be a Riemannian manifold with or without boundary. For each $p \in M$, there is a smooth orthonormal frame on a neighborhood of p.
- **Definition** For a Riemannian manifold (M, g) with or without boundary, we define the *unit* tangent bundle to be the subset $UTM \subseteq TM$ consisting of unit vectors:

$$UTM = \left\{ (p,v) \in TM : |v|_g = 1 \right\}.$$

Proposition 1.4 (Properties of the Unit Tangent Bundle). [Lee, 2018]
If (M, g) is a Riemannian manifold with or without boundary, its unit tangent bundle UTM is a smooth, properly embedded codimension-1 submanifold with boundary in TM, with ∂(UTM) = π⁻¹(∂M) (where π : UTM → M is the canonical projection). The unit tangent bundle is connected if and only if M is connected, and compact if and only if M is compact.

1.2 Pullback Metrics

- Definition Suppose M, N are smooth manifolds with or without boundary, g is a Riemannian metric on N, and F: M → N is smooth. The pullback F*g is a smooth 2-tensor field on M. If it is positive definite, it is a Riemannian metric on M, called the pullback metric determined by F.
- Proposition 1.5 (Pullback Metric Criterion). [Lee, 2003.]
 Suppose F: M → N is a smooth map and g is a Riemannian metric on N. Then F*g is a Riemannian metric on M if and only if F is a smooth immersion.
- **Definition** If (M, g) and $(\widetilde{M}, \widetilde{g})$ are both Riemannian manifolds, a smooth map $F: M \to \widetilde{M}$ is called a *(Riemannian) isometry* if it is a *diffeomorphism* that satisfies $F^*\widetilde{g} = g$. More generally, F is called *a local isometry* if every point $p \in M$ has a neighborhood U such that $F|_U$ is an *isometry* of U onto an open subset of \widetilde{M} ; or equivalently, if F is a *local diffeomorphism* satisfying $F^*\widetilde{g} = g$.

If there exists a Riemannian isometry between (M,g) and $(\widetilde{M},\widetilde{g})$, we say that they are <u>isometric</u> as Riemannian manifolds. If each point of M has a neighborhood that is isometric to an open subset of $(\widetilde{M},\widetilde{g})$, then we say that (M,g) is **locally isometric** to $(\widetilde{M},\widetilde{g})$.

- Definition The study of properties of Riemannian manifolds that are *invariant under* (local or global) isometries is called Riemannian geometry.
- **Definition** A Riemannian *n*-manifold (M, g) is said to be a **flat Riemannian manifold**, and g is a **flat metric**, if (M, g) is **locally isometric** to $(\mathbb{R}^n, \overline{g})$.
- Theorem 1.6 For a Riemannian manifold (M,g), the following are equivalent:
 - 1. g is flat.
 - 2. Each point of M is contained in the domain of a smooth coordinate chart in which g has the coordinate representation $g = \delta_{i,j} dx^i dx^j$.
 - 3. Each point of M is contained in the domain of a smooth coordinate chart in which the coordinate frame is orthonormal.
 - 4. Each point of M is contained in the domain of a commuting orthonormal frame.

2 Methods for Constructing Riemannian Metrics

- 2.1 Riemannian Submanifolds
- 2.2 Riemannian Submersions
- 2.3 Riemannian Coverings
- 3 Basic Constructions on Riemannian Manifolds
- 3.1 Raising and Lowering Indices
 - **Definition** Given a Riemannian metric g on M, we define a <u>bundle homomorphism</u> \widehat{g} : $TM \to T^*M$ by setting

$$\widehat{g}(v)(w) = g_p(v, w)$$

for all $p \in M$ and $v, w \in T_pM$.

• Remark If X and Y are smooth vector fields on M, this yields

$$\widehat{g}(X)(Y) = g(X,Y).$$

 $\widehat{g}(X)(Y)$ is **linear** over $\mathcal{C}^{\infty}(M)$ in Y and thus $\widehat{g}(X)$ is a **smooth covector field** by the tensor characterization lemma. On the other hand, the covector field $\widehat{g}(X)$ is **linear** over $\mathcal{C}^{\infty}(M)$ as a function of X, and thus \widehat{g} is a **smooth bundle homomorphism**. As usual, we use the same symbol for both the pointwise bundle homomorphism $\widehat{g}:TM\to T^*M$ and the **linear map** on **sections** $\widehat{g}:\mathfrak{X}(M)\to\mathfrak{X}^*(M)$.

• **Definition** Given a smooth local frame (E_i) and its dual coframe (ϵ^i) , let $g = g_{i,j}\epsilon^i\epsilon^j$ be the **local expression** for g. If $X = X^i E_i$ is a smooth vector field, the **covector** field $\widehat{g}(X)$ has the **coordinate expression**:

$$\widehat{g}(X) = (g_{i,j}X^i) \epsilon^j := X_j \epsilon^j,$$

where the **components** of **the covector field** $\widehat{g}(X)$ is denoted by

$$X_j = g_{i,j} X^i. (4)$$

We say that $\widehat{g}(X)$ is obtained from X by lowering an index. And the covector field $\widehat{g}(X)$ is denoted by X^{\flat} and called X flat, borrowing from the musical notation for lowering a tone.

- Remark Because the matrix $(g_{i,j})$ is nonsingular at each point, the map \widehat{g} is *invertible*, and the matrix of \widehat{g}^{-1} is just *the inverse matrix of* $(g_{i,j})$. We denote *this inverse matrix* by $(g^{i,j})$, so that $g^{i,j}g_{j,k} = g_{k,j}g^{j,i} = \delta_k^i$. The *symmetry* of $(g_{i,j})$ easily implies that $(g^{i,j})$ is also *symmetric* in i and j.
- **Definition** Given $\omega = \omega_j \, \epsilon^j$, the inverse map \widehat{g}^{-1} is given by

$$\widehat{g}^{-1}(\omega) = \omega^i E_i$$

where

$$\omega^i = g^{i,j} \,\omega_j \tag{5}$$

If ω is a covector field, the **vector field** $\widehat{g}^{-1}(\omega)$ is called $\underline{\omega}$ **sharp** and denoted by $\underline{\omega}^{\sharp}$, and we say that it is obtained from ω by **raising an index**.

The two inverse isomorphisms \flat and \sharp are known as the musical isomorphisms.

• **Definition** If g is a Riemannian metric on M and $f: M \to \mathbb{R}$ is a smooth function, the gradient of f is the vector field

$$\operatorname{grad} f = (df)^{\sharp} := \widehat{g}^{-1}(df)$$

obtained from df by raising an index. It is also denoted as ∇f .

• Remark Unwinding the definition we have

$$\begin{split} \langle \operatorname{grad} \, f \,,\, X \rangle_g &= \widehat{g} \left(\operatorname{grad} \, f \right) (X) \\ &= \widehat{g} \left(\widehat{g}^{-1} (df) \right) (X) \\ &= df(X) = Xf \end{split}$$

We see that grad f is **characterized** by the fact that

$$d\!f(X) = \left\langle \operatorname{grad} \, f \, , \, X \right\rangle_g \quad \, \forall X \in \mathfrak{X}(M), \tag{6}$$

and has the *local basis expression*

$$\operatorname{grad} f = (g^{i,j} E_i f) E_j. \tag{7}$$

Thus if (E_i) is an *orthonormal frame*, then grad f is the *vector field* whose *components* are the same as the components of df; but in other frames, this will not be the case.

• Remark In smooth coordinates $(\partial/\partial x^i)$, we have

$$\operatorname{grad} f = g^{i,j} \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^j}.$$
 (8)

- **Definition** If f is a smooth real-valued function on a smooth manifold M, recall that a point $p \in M$ is called **a regular point** of f if $df_p \neq 0$, and **a critical point** of f otherwise; and a level set $f^{-1}(c)$ is called **a regular level set** if every point of $f^{-1}(c)$ is a regular point of f
- Proposition 3.1 Suppose (M,g) is a Riemannian manifold, $f \in C^{\infty}(M)$, and $R \subseteq M$ is the set of regular points of f. For each $c \in R$, the set $M_c = f^{-1}(c) \cap R$, if nonempty, is an embedded smooth hypersurface in M, and grad f is everywhere normal to M_c .
- Remark If h is any covariant k-tensor field on a Riemannian manifold with $k \geq 2$, we can **raise** one of its indices (say the last one for definiteness) and obtain a (1, k-1)-tensor h^{\sharp} . The **trace of** h^{\sharp} is thus a well-defined **covariant** (k-2)-**tensor field**.

We define the trace of h with respect to g as

$$\operatorname{tr}_g(h) = \operatorname{tr}(h^{\sharp}).$$

The most important case is that of a covariant 2-tensor field. In this case, h^{\sharp} is a (1,1)-tensor field, which can equivalently be regarded as an **endomorphism field**, and $\operatorname{tr}_g h$ is just **the ordinary trace** of this endomorphism field. In terms of a basis, this is

$$\operatorname{tr}_g(h) = h_i^{\ i} = g^{i,j} \, h_{i,j}.$$

In particular, in an orthonormal frame this is the ordinary trace of the matrix $[h_{i,j}]$ (the sum of its diagonal entries); but if the frame is not orthonormal, then this trace is different from the ordinary trace.

3.2 Inner Products of Tensors

• **Definition** Suppose g is a Riemannian metric on M, and $x \in M$. We can define an *inner* product on the cotangent space T_x^*M by

$$\langle \omega, \eta \rangle_g = \langle \omega^{\sharp}, \eta^{\sharp} \rangle_g.$$

• Remark (Coordinate Representation of Inner Product on Covectors)
We see that under the formula for sharp operator

$$\langle \omega, \eta \rangle_g = \langle \omega^{\sharp}, \eta^{\sharp} \rangle_g$$

$$= g_{k,l} \left(g^{k,i} \omega_i \right) \left(g^{l,j} \eta_j \right)$$

$$= \delta_l^i \omega_i \left(g^{l,j} \eta_j \right)$$

$$= g^{i,j} \omega_i \eta_j.$$

In other words, the inner product on covectors is represented by the inverse matrix $g^{i,j}$. Using our conventions for raising and lowering indices, this can also be written

$$\langle \, \omega \,,\, \eta \, \rangle_g = \omega_i \, \eta^i = \omega^j \, \eta_j$$

where $\eta^i = g^{i,j}\eta_j$ and $\omega^j = g^{i,j}\omega_i$.

- **Definition** If $E \to M$ is a smooth vector bundle, **a smooth fiber metric** on E is an **inner product** on each fiber E_p that varies **smoothly**, in the sense that for any (local) smooth sections σ, τ of E, the inner product $\langle \sigma, \tau \rangle$ is a **smooth** function.
- Proposition 3.2 (Inner Products of Tensors). [Lee, 2018] Let (M,g) be an n-dimensional Riemannian manifold with or without boundary. There is a unique smooth fiber metric on each tensor bundle $T^{(k,l)}TM$ with the property that if $\alpha_1, \ldots, \alpha_{k+l}, \beta_1, \ldots, \beta_{k+l}$ are vector or covector fields as appropriate, then

$$\langle \alpha_1 \otimes \ldots \otimes \alpha_{k+l}, \beta_1 \otimes \ldots \otimes \beta_{k+l} \rangle = \langle \alpha_1, \beta_1 \rangle \cdot \ldots \cdot \langle \alpha_{k+l}, \beta_{k+l} \rangle \tag{9}$$

With this inner product, if $(E_1, ..., E_n)$ is a **local orthonormal frame** for TM and $(\epsilon^1, ..., \epsilon^n)$ is the corresponding dual **coframe**, then the collection of tensor fields $E_{i_1} \otimes ... \otimes E_{i_k} \otimes \epsilon^{j_1} \otimes ... \otimes \epsilon^{j_l}$ as all the indices range from 1 to n **forms a local orthonormal frame** for $T^{(k,l)}(T_pM)$. In terms of any (not necessarily orthonormal) frame, this **fiber metric** satisfies

$$\langle F, G \rangle = g_{i_1, r_1} \dots g_{i_k, r_k} g^{j_1, s_1} \dots g^{j_l, s_l} F^{i_1, \dots, i_k}_{j_i, \dots, j_l} G^{r_1, \dots, r_k}_{s_1, \dots, s_l}$$

$$(10)$$

If F and G are both covariant, this can be written

$$\langle F, G \rangle = F_{j_1, ..., j_l} G^{j_1, ..., j_l}.$$

where the last factor on the right represents the components of G with all of its indices raised:

$$G^{j_1,\ldots,j_l} = g^{j_1,s_1} \ldots g^{j_l,s_l} G_{s_1,\ldots,s_l}.$$

- 3.3 The Volume Form and Integration
- 3.4 The Divergence and the Laplacian
- 4 Length and Distance
- 4.1 The Riemannian Distance Function

References

John M Lee. Introduction to Riemannian manifolds, volume 176. Springer, 2018.

John Marshall Lee. *Introduction to smooth manifolds*. Graduate texts in mathematics. Springer, New York, Berlin, Heidelberg, 2003. ISBN 0-387-95448-1.