- Sequences
 - o Convergence: $\lim_{n\to\infty} a_n$ exists
 - O Divergence: $\lim_{n\to\infty} a_n$ does not exist or is infinite
 - Use Squeeze Theorem if necessary
 - o Monotonic sequences always either increasing or decreasing
- Series
 - Convergence $\Rightarrow \sum_{n=1}^{\infty} a_n$ is finite.
 - O Divergence $\Rightarrow \sum_{n=1}^{\infty} a_n$ does not exist or is infinite.
- Specific Types of Series and Convergence and Divergence
 - $\circ \quad \text{Geometric } \sum_{n=0}^{\infty} ar^n$
 - $|r| < 1 \Rightarrow$ converges
 - $|r| > 1 \Rightarrow$ diverges
 - $\circ \quad \text{Telescoping -} \sum_{n=1}^{\infty} (b_n b_{n+1})$
 - $\circ \quad p\text{-series -} \sum_{n=1}^{\infty} \frac{1}{n^p}$
 - $p > 1 \Rightarrow$ converges 0 diverges
 - $\circ \quad \text{Alternating -} \sum_{n=1}^{\infty} (-1)^n a_n$
 - $= \lim_{n \to \infty} a_n = 0 \text{ and } 0 < |a_{n+1}| \le |a_n| \Longrightarrow \text{converges}$