Aimant mobile devant une bobine fixe

Définition : Induction de Neumann

L'induction *de Neumann* est la production d'une force électromotrice au sein d'un circuit *fixe* par la *variation* d'un champ magnétique extérieur appliqué à travers le circuit.

Bobine mobile devant un aimant fixe

Définition : Induction de Lorentz

L'induction *de Lorentz* est la production d'une force électromotrice au sein d'un circuit *mobile* dans un champ magnétique *stationnaire*.

Définition : Courants de Foucault

Les courants de Foucault sont des courants induits dans la masse

- d'un conducteur mobile dans un champ magnétique
- d'un conducteur soumis à un champ magnétique variable

Flux élémentaire

Définition : Flux élémentaire

On définit le *flux élémentaire* $\delta\Phi$ d'un champ de vecteurs \overrightarrow{X} à travers une surface élémentaire orientée $\delta \overrightarrow{S} = \overrightarrow{n}\delta S$ au voisinage de M par :

$$\delta \Phi = \overrightarrow{X}(M) \cdot \overrightarrow{\delta S} = \overrightarrow{X}(M) \cdot \overrightarrow{n} \delta S.$$

Flux à travers une surface finie

Définition : Flux à travers une surface finie

On définit le *flux* Φ d'un champ de vecteurs \overrightarrow{X} à travers une surface finie Σ par :

$$\Phi = \iint_{\Sigma} \delta \Phi = \iint_{\Sigma} \overrightarrow{X}(M) \cdot \overrightarrow{\delta S}.$$

Définition : Flux d'un champ uniforme à travers une surface plane

Le flux d'un champ de vecteur uniforme \vec{X}_0 à travers une surface plane d'aire S orientée par un vecteur normal \vec{n} est :

$$\Phi = S\overrightarrow{X_0} \cdot \overrightarrow{n} = S \|\overrightarrow{X_0}\| \cos(\widehat{\overline{X_0}}, \overrightarrow{n})$$

Cas du champ magnétique

Flux d'un champ magnétique uniforme à travers un circuit fermé plan

Le flux d'un champ magnétique *uniforme* $\overrightarrow{B_0}$ à travers un circuit *fermé plan* orienté par un vecteur normal \overrightarrow{n} est :

$$\Phi = S \| \overrightarrow{B_0} \| \cos(\widehat{\overline{B_0}, n})$$

avec S l'aire de la surface *plane* enlacée par le circuit.

Énoncé

Loi de Faraday

Soit un circuit $\mathscr C$ fermé et orienté par un vecteur \overrightarrow{n} et Σ une surface s'appuyant sur $\mathscr C$, orientée par \overrightarrow{n} . Une variation du flux du champ magnétique, noté Φ à travers Σ induit dans $\mathscr C$ une force électromotrice :

$$e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t},$$

orientée de la même manière que le sens de parcours défini par \vec{n} .