Project 1

ISA and Controller Micro-Instructions

General Processor Description

- 32 bit data path
- Word length 4 bytes
- Word Addressable only
- 32 registers
- On startup, the stack pointer in initialized to the maximum address **0x2710**

Control Unit ROM Description

• 12 bit address width

OPCODE	\$Z	Next Sate (from state register)
(B ₁₁ -B ₆) (6-bits)	(B₅) (1-bit)	(B ₀₄ -B ₀₀) (5-bits)

- 24 bit data width
 - o ROM DATA FORMAT

								WRITE SIGNALS							SET NALS			
			E SIGN B ₂₀) (6-l	LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)						(B ₁₃ -B ₁₂) (2-bits)		(B ₁₁ -B ₁₀) (2-bits)		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)		
PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	B MAR IR Z		MEM	REG			FUNC	REGSEL	Next State	

• ROM is initialized at address 0

ALU Function Codes

•	ADD	000
•	A + 1	001
•	A – B	010
•	MULTIPLY	011
•	SHIFT LEFT (LOGICAL)	100
•	SHIFT RIGHT (LOGICAL)	101
•	AND	110
•	OR	111

Register Conventions

This processor uses the same register convention as MIPS.

Number	Name	Purpose
\$0	\$0	Always 0
\$1	\$at	The Assembler Temporary used by the
		assembler in expanding pseudo-ops
\$2-\$3	\$v0-\$v1	These registers contain the Returned
		Value of a subroutine.
\$4-\$7	\$a0-\$a3	The Argument registers, these registers
		contain the first 4 argument values for a
		subroutine call
\$8-\$15, \$24-\$25	\$t0-\$t9	The <i>Temporary</i> registers.
\$16-\$23	\$s0-\$s7	The Saved Registers.
\$26-\$27	\$k0-\$k1	The Kernel Reserved registers. DO NOT
		USE
\$28	\$gp	The Globals Pointer used for addressing
		static global variables.
\$29	\$sp	The Stack Pointer
\$30	\$fp	The Frame Pointer
\$31	\$ra	The Return Address in a subroutine call.

ISA Description

Instruction Types

• R-Type

B_{31} - B_{26} (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₁₁ (5-bits)	B ₁₀ -B ₀ (11-bits)
OPCODE	\$R _b	\$R _c	\$R _d	Unused

• <u>I-Type</u>

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
OPCODE	\$R _b	\$R _d	Immediate

• <u>J-Type</u>

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₀ (26-bits)
OPCODE	Target Address

• <u>O-Type</u>

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₀ (26-bits)
OPCODE	Unused

Instructions

FETCH (Not callable by the programmer)

• FETCH

Micro-Instructions

○ FETCH-1 $MAR \leftarrow PC $A \leftarrow PC

DrPC

LdMAR

LdA

○ FETCH-2 \$PC ← \$PC + 1

DrALU

LdPC

■ func 001

○ FETCH-3 $IR \leftarrow MEM[MAR]$

DrMEM

LdIR

FETCH														WRIT	ΓΕ	RESET				
													SIGN	ALS	SIGN	ALS				
			ı	DRIVI	E SIGN	IALS			LOAD SIGNALS			(B ₁₃ -B ₁₂) (B ₁₁ -B ₁₀)		(B ₀₉ -B ₀₇)	(B ₀₆ -B ₀₅)	(B ₀₄ -B ₀₀)				
				(B ₂₅ -E	3 ₂₀) (6-k	oits)		(B ₁₉ -B ₁₄) (6-bits)				(2-bits	(2-bits) (2-bits)		(3-bits)	(2-bits)	(5-bits)			
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	А	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
FETCH-	0000 0000 0000	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	000	00	0 0001
FETCH-	0000 0000 0001	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	001	00	0 0010
FETCH-	0000 0000 0010	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
FETCH-	0x	
1	000	0x2050001
FETCH-	0x	
2	001	0x1080082
FETCH-	0x	
3	002	0x0408000

HALT

• HALT

o halt;

o Opcode: 00 1110

o O-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₀ (26-bits)
00 1110	Unused

Micro-Instructions

- O HALT-1
 - Blocks Next State from being loaded by the Control Unit

HALT														WRI	ГЕ	RESET				
												SIGNALS SIGNALS								
			DRIVE SIGNALS							LOAD SIGNALS				(B ₁₃ -B	12)	(B ₁₁ -B ₁₀)		(B ₀₉ -B ₀₇)	(B ₀₆ -B ₀₅)	$(B_{04}-B_{00})$
				(B ₂₅ -E	3 ₂₀) (6-b	oits)			(B ₁	9-B14	-B ₁₄) (6-bits)			(2-bits)		(2-bits)		(3-bits)	(2-bits)	(5-bits)
curr										_			_				_			
state	Addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
HALT-	0011 1000																			
1	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	111	00	0 0000

Note: Halt triggers when func is 111 and next state is set to 0 0000.

curr state	addr	HEX INSTRUCTION
HALT-	0x	
1	380	0x0000780

Arithmetic (Arithmetic operations do not detect or handle overflows)

ADD

- o add, \$R_d, \$R_b, \$R_c;
- \circ $R_d \leftarrow R_b + R_c$
- o Opcode: 00 0001
- o R-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₁₁ (5-bits)	B ₁₀ -B ₀ (11-bits)
00 0001	\$R _b	\$R _c	\$R _d	xxx xxxx xxxx

- Add-1
- $A \leftarrow \$R_b$
- DrREG
- LdA
- REGSEL 00
- O Add-2
- $B \leftarrow \$R_c$
- DrREG
- LdB
- REGSEL 01
- O Add-3
- $R_d \leftarrow A + B$
- DrALU
- WrREG
- REGSEL 10
- func 000
- O Add-4
- **Reset IR**
- ResIR

ADD													WRIT SIGN		RES SIGN					
					E SIGN 3 ₂₀) (6-b	_		LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)				(B ₁₃ -B ₁₂) (2-bits)		(B ₁₁ -B ₁₀) (2-bits)		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)		
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
ADD-1	0000 0100 0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
ADD-2	0000 0100 0001	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	000	01	0 0010
ADD-3	0000 0100 0010	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	000	10	0 0011
ADD-4	0000 0100 0011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
ADD-1	0x 040	0x0840001
ADD-2	0x 041	0x0820022
ADD-3	0x 042	0x1001043
ADD-4	0x 043	0x0000800

• ADDi

o addi, \$R_d, \$R_b, immediate;

 \circ \$ R_d \leftarrow \$ R_b + immediate

o Opcode: 00 0010

o I-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
00 0010	\$R _b	\$R _d	Immediate

Micro-Instructions

○ Addi-1 $A \leftarrow \$R_b$

- DrREG
- LdA

■ REGSEL 00

○ Addi-2 $B \leftarrow immediate$

- DrIMM
- LdB

○ Addi-3 $R_d \leftarrow A + B$

- DrALU
- WrREG
- REGSEL 01
- func 000

o Addi-4 Reset IR

Addi			ا		E SIGN 320) (6-k			LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)						WRITE SIGNALS (B ₁₃ -B ₁₂) (2-bits)		LS SIGNAL		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)
curr																		Next		
state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	State
	0000 1000																			
ADDi-1	0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
ADDi-2	0000 1000 0001	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	000	00	0 0010
ADDi-3	0000 1000 0010	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	000	01	0 0011
ADDi-4	0000 1000 0011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
ADDi-1	0x 080	0x0840001
ADDi-2	0x 081	0x0220022
ADDi-3	0x 082	0x1001023
ADDi-4	0x 083	0x0000800

MULTIPLY

o mul, \$R_d, \$R_b, \$R_c;

 \circ \$ R_d \leftarrow \$ R_b * \$R_c

o Opcode: 00 0011

R-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₁₁ (5-bits)	B ₁₀ -B ₀ (11-bits)
00 0011	\$R _b	\$R _c	\$R _d	xxx xxxx xxxx

Micro-Instructions

○ MUL-1 $A \leftarrow \$R_b$

- DrREG
- LdA
- REGSEL 00

○ MUL-2 $B \leftarrow \$R_c$

- DrREG
- LdB
- REGSEL 01

○ MUL-3 $R_d \leftarrow A * B$

- DrALU
- WrREG
- REGSEL 10
- func 011

O MUL-4 Reset IR

MUL											WRIT SIGN		RES SIGN							
			ĺ		E SIGN			LOAD SIGNALS						$(B_{13}-B_{12})$ $(B_{11}-B_{10})$		-	B ₀₉ -B ₀₇	B ₀₆ -B ₀₅	B ₀₄ -B ₀₀	
				(B ₂₅ -E	3 ₂₀) (6-k	oits)			(B ₁₉ -B ₁₄) (6-bits)					(2-bits	5)	(2-k	oits)	(3-bits)	(2-bits)	(5-bits)
curr																				Next
state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	State
	0000 1100																			
MUL-1	0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
MUL-2	0000 1100 0001	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	000	01	0 0010
MUL-3	0000 1100 0010	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	011	10	0 0011
MUL-4	0000 1100 0011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
MUL-1	0x 0c0	0x0840001
MUL-2	0x 0c1	0x0820022
MUL-3	0x 0c2	0x10011c3
MUL-4	0x 0c3	0x0000800

• SHIFT LEFT (Logical)

o sll, \$R_d, \$R_b, Shift Amount;

 $\circ \quad \$ \; R_d \leftarrow \; \$ \; R_b \; * \; 2^{Shift \; Amount}$

o Opcode: 00 0100

o I-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
00 0100	\$R _b	\$R _d	Shift Amount

Micro-Instructions

○ SLL-1 $A \leftarrow \$R_b$

- DrREG
- LdA
- REGSEL 00

○ SLL-2 $B \leftarrow Shift Amount$

- DrIMM
- LdB

○ SLL-3 $R_d \leftarrow A$ shift left by B

- DrALU
- WrREG
- REGSEL 01
- func 100

O SLL-4 Reset IR

SLL			ا		LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)						WRITE SIGNALS (B ₁₃ -B ₁₂) (2-bits)		RESET SIGNALS (B ₁₁ -B ₁₀) (2-bits)		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)			
curr																				Next
state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	State
	0001 0000																			
SLL-1	0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
SLL-2	0001 0000 0001	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	000	00	0 0010
SLL-3	0001 0000 0010	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	100	01	0 0011
SLL-4	0001 0000 0011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
SLL-1	0x 100	0x0840001
SLL-2	0x 101	0x0220022
SLL-3	0x 102	0x1001223
SLL-4	0x 103	0x0000800

• SHIFT RIGHT (Logical)

- o srl, \$R_d, \$R_b, Shift Amount;
- $\circ \quad \$ \; R_d \leftarrow \; \$ \; R_b \; * \; 2^{\text{-Shift Amount}}$
- o Opcode: 00 0101
- o I-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
00 0101	\$R _b	\$R _d	Shift Amount

- SRL-1 $A \leftarrow \$R_b$
 - DrREG
 - LdA
 - REGSEL 00
- SRL-2 $B \leftarrow Shift Amount$
 - DrIMM
 - LdB
- SRL-3 $R_d \leftarrow A$ shift right by B
 - DrALU
 - WrREG
 - REGSEL 01
 - func 101
- SRL-4 Reset IR
 - ResIR

SRL														WRIT SIGN		RESET SIGNALS				
					E SIGN						SIGNA			$(B_{13}-B_{12}) (B_{11}-B_{10})$		B ₀₉ -B ₀₇	B ₀₆ -B ₀₅	B ₀₄ -B ₀₀		
				(B ₂₅ -E	3 ₂₀) (6-k	oits)			(B ₁₉ -B ₁₄) (6-bits)					(2-bits	5)	(2-b	oits)	(3-bits)	(2-bits)	(5-bits)
curr																				Next
state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	State
	0001 0100																			
SLL-1	0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
SLL-2	0001 0100 0001	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	000	00	0 0010
SLL-3	0001 0100 0010	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	101	01	0 0011
SLL-4	0001 0100 0111	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
SRL-1	0x 140	0x0840001
SRL-2	0x 141	0x0220022
SRL-3	0x 142	0x10012a3
SRL-4	0x 143	0x0000800

Logic

• AND

- o and, \$R_d, \$R_b, \$R_c;
- \circ \$ R_d \leftarrow \$ R_b and \$ R_c
- o Opcode: 00 0110
- o R-Type

Instruction Format

B ₃₁ -B ₂₆ (6	5-bits) B ₂₅ -B ₂₁	(5-bits) B ₂₀ -B ₁₆	(5-bits) B ₁₅ -B ₁₁ (5	5-bits) B ₁₀ -B ₀ (11-bits)
00 013	10 \$1	R _b \$R	c \$R _d	XXX XXXX XXXX

- AND-1 $A \leftarrow R_b$
 - DrREG
 - LdA
 - REGSEL 00
- AND-2 $B \leftarrow R_c$
 - DrREG
 - LdB
 - REGSEL 01
- AND-3 $R_d \leftarrow A$ and B
 - DrALU
 - WrREG
 - func 110REGSEL 10
- o AND-4 Reset IR
 - ResIR

AND														WRIT SIGN		RESET SIGNALS				
					E SIGN 320) (6-k	_			LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)				(B ₁₃ -B ₁₂) (2-bits)		(B ₁₁ -B ₁₀) (2-bits)		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)	
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
AND-1	0001 1000 0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
AND-2	0001 1000 0001	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	000	01	0 0010
AND-3	0001 1000 0010	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	110	10	0 0011
AND-4	0001 1000 0011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	Addr	HEX INSTRUCTION
AND-1	0x 180	0x0840001
AND-2	0x 181	0x0820022
AND-3	0x 182	0x1001343
AND-4	0x 183	0x0000800

• OR

- \circ or, $\$R_d$, $\$R_b$, $\$R_c$;
- $R_d \leftarrow R_b \text{ or } R_c$
- o Opcode: 00 0111
- o R-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₁₁ (5-bits)	B ₁₀ -B ₀ (11-bits)
00 0111	\$R _b	\$R _c	\$R _d	xxx xxxx xxxx

- \circ OR-1 A \leftarrow R_b
 - DrREG
 - LdA
 - REGSEL 00
- OR-2 $B \leftarrow R_c$
 - DrREG
 - LdB
 - REGSEL 01
- \circ OR-3 $R_d \leftarrow A \text{ or } B$
 - DrALU
 - WrREG
 - func 111REGSEL 10
- OR-4 Reset IR
 - ResIR

OR												WRIT SIGN								
			ĺ		E SIGN 3 ₂₀) (6-b	_			LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)				(B ₁₃ -B ₁₂) (2-bits)		(B ₁₁ -B ₁₀) (2-bits)		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)	
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
OR-1	0001 1100 0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
OR-2	0001 1100 0001	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	000	01	0 0010
OR-3	0001 1100 0010	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	111	10	0 0011
OR-4	0001 1100 0011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	Addr	HEX INSTRUCTION
OR-1	0x 1c0	0x0840001
OR-2	0x 1c1	0x0820022
OR-3	0x 1c2	0x10013c3
OR-4	0x 1c3	0x0000800

Load/Store

Load Word

o lw, \$R_d, Offset(\$R_b);

○ $R_d \leftarrow MEM[R_b + Offset]$

o Opcode: 00 1000

o I-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
00 1000	\$R _b	\$R _d	Offset

Micro-Instructions

○ LW-1 $A \leftarrow R_b$

DrREG

LdA

■ REGSEL 00

∪ LW-2
 B ← Offset

DrIMM

LdB

○ LW-3 $MAR \leftarrow A + B$

DrALU

LdMAR

■ func 000

○ LW-4 $R_d \leftarrow MEM[MAR]$

DrMEM

WrREG

■ REGSEL 01

o LW-5

Reset IR

LW					LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)						SIGNALS (B ₁₃ -B ₁₂) (B ₁₁ -E			RESET SIGNALS (B ₁₁ -B ₁₀) (2-bits) (3-bit		B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)			
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
LW-1	0010 0000 0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
LW-2	0010 0000 0001	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	000	00	0 0010
LW-3	0010 0000 0010	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	000	00	0 0011
LW-4	0010 0000 0011	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	000	01	0 0100
LW-5	0010 0000 0100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	Addr	HEX INSTRUCTION
LW-1	0x 200	0x0840001
LW-2	0x 201	0x0220002
LW-3	0x 202	0x1010003
LW-4	0x 203	0x0401024
LW-5	0x 204	0x0000800

• Store Word

o sw, \$R_d, Offset(\$R_b);

○ $R_d \leftarrow MEM[R_b + Offset]$

o Opcode: 00 1001

o I-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
00 1001	\$R _b	\$R _d	Offset

Micro-Instructions

 \circ SW-1 A \leftarrow R_b

DrREG

LdA

■ REGSEL 00

○ SW-2 $B \leftarrow Offset$

DrIMM

LdB

○ SW-3 $MAR \leftarrow A + B$

DrALU

LdMAR

■ func 000

○ SW-4 $MEM[MAR] \leftarrow R_d$

DrREG

WrMEM

■ REGSEL 01

o SW-5 Reset IR

SW					E SIGN 320) (6-k			LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)						WRITE SIGNALS (B ₁₃ -B ₁₂) (2-bits)		RESET SIGNALS (B ₁₁ -B ₁₀) (2-bits)		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)
curr				(023 1	1				(6)	9 012	1) (0 51			(2 010	,,	(2)	,,,,	(3-0113)	(2-0113)	Next
state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	State
SW-1	0010 0100 0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
SW-2	0010 0100 0001	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	000	00	0 0010
SW-3	0010 0100 0010	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	000	00	0 0011
SW-4	0010 0100 0011	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	000	01	0 0100
SW-5	0010 0100 0100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	Addr	HEX INSTRUCTION
SW-1	0x 240	0x0840001
SW-2	0x 241	0x0220002
SW-3	0x 242	0x1010003
SW-4	0x 243	0x0802024
SW-5	0x 244	0x0000800

<u>Jumps</u>

• JUMP

o j, Target Address;

○ \$PC ← Target Address

o Opcode: 00 1010

J-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₀ (26-bits)
00 1010	Target Address (hex)

Micro-Instructions

o JUMP-1

 $PC \leftarrow TARGET$

DrTARGET

LdPC

o JUMP-2

Reset IR

JUMP				DRIV	E SIGN	IALS			LO	AD:	SIGNA	NLS		WRIT SIGN (B ₁₃ -B	ALS	RES SIGN (B ₁₁ -		B ₀₉ -B ₀₇	B ₀₆ -B ₀₅	B ₀₄ -B ₀₀
		(B ₂₅ -B ₂₀) (6-bits)						(B ₁₉ -B ₁₄) (6-bits)					(2-bits)		(2-bits)		(3-bits)	(2-bits)	(5-bits)	
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
JUMP-1	0010 1000 0000	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	000	00	0 0001
JUMP-2	0010 1000 0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
JUMP- 1	0x 280	0x0180001
JUMP- 2	0x 281	0x0000800

• JUMP REGISTER

o jr, \$R_b;

○ $$PC \leftarrow R_b

o Opcode: 00 1011

o I-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
00 1011	\$R _b	x xxxx	Unused

Micro-Instructions

○ JR-1 PC $\leftarrow \$R_b$

DrREG

LdPC

■ REGSEL 00

o JR-2 Reset IR

JR					E SIGN 320) (6-k						SIGN<i>A</i> 4) (6-bit			WRIT SIGN (B ₁₃ -B (2-bits	ALS 12)	SIGN (B ₁₁	SET NALS -B ₁₀) pits)	B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
JUMP-	0010 1100 0000	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	000	00	0 0001
JUMP-	0010 1100 0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
JUMP- 1	0x 2c0	0x0880001
JUMP- 2	0x 2c1	0x0000800

• JUMP AND LINK

o jal, Target Address;

 $\circ \quad \$R_a \leftarrow \$PC + 1$

○ \$PC ← Target Address

o Opcode: 00 1100

o J-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₀ (26-bits)
00 1100	Target Address

*Note: R_a is a register alias for R_{31} . This register is used for storing return addresses

Micro-Instructions

○ JAL-1 $\$R_a \leftarrow PC$

DrPC

WrREG

■ REGSEL 11

Note: \$PC is incremented in the fetch instruction

O JAL-2 \$PC ← Target Address

DrTARGET

LdPC

○ JR-3 Reset IR

JAL		DRIVE SIGNALS (B ₂₅ -B ₂₀) (6-bits)						LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)						WRITE SIGNALS (B ₁₃ -B ₁₂) (2-bits)		RESET SIGNALS (B ₁₁ -B ₁₀) (2-bits)		B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)
curr		200		DEC	. 45.4	10.40.4	TARCET	200				9		. 45.4	250	2	7	FUNC	DECCE	Next
state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	State
JAL-1	0011 0000 0000	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	000	11	0 0001
JAL-2	0011 0000 0001	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	000	00	0 0010
JAL-3	0011 0000 0010	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	000	00	0 0000

curr state	addr	HEX INSTRUCTION
	0x	0.2004.054
JAL-1	300	0x2001061
	0x	0.0400000
JAL-2	301	0x0180002
	0x	0.000000
JAL-3	302	0x0000800

Branch

• BRANCH ON EQUAL

- o beq, \$R_b, \$R_c, Signed Offset;
- $\circ \quad \text{If ($R_b == R_c)}$
 - \$PC ← \$PC + 1 + Signed Offset
- o Opcode: 00 1101
- o I-Type

Instruction Format

B ₃₁ -B ₂₆ (6-bits)	B ₂₅ -B ₂₁ (5-bits)	B ₂₀ -B ₁₆ (5-bits)	B ₁₅ -B ₀ (16-bits)
00 1101	\$R _b	\$R _c	Signed Offset

- BEQ-1 $A \leftarrow \$R_b$
 - DrREG
 - LdA
 - REGSEL 00
- BEQ-2 $B \leftarrow \$R_c$
 - DrREG
 - LdB
 - REGSEL 01
- BEQ-3 Z ← A B
 - DrALU
 - LdZ
 - func 010

IF ($R_b == R_c$)

 \circ BEQ-4 A \leftarrow PC

DrPC

LdA

○ BEQ-5 $B \leftarrow IMM$

DrIMM

LdB

○ BEQ-6 $PC \leftarrow A + B$

DrALU

LdPC

■ func 000

O BEQ-7 Reset IR Reset Z

ResIR

ResZ

BEQ											WRITE RESET									
			DRIVE SIGNALS (B ₂₅ -B ₂₀) (6-bits)						LOAD SIGNALS (B ₁₉ -B ₁₄) (6-bits)					SIGNALS SIGNALS (B ₁₃ -B ₁₂) (B ₁₁ -B ₁₀) (2-bits) (2-bits)			B ₀₉ -B ₀₇ (3-bits)	B ₀₆ -B ₀₅ (2-bits)	B ₀₄ -B ₀₀ (5-bits)	
curr state	addr	PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	Next State
BEQ-1	0011 0100 0000	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0001
BEQ-2	0011 0100 0001	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	000	01	0 0010
BEQ-3	0011 0100 0010	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	010	00	0 0011
								NOTI	E: Ad	•	Rb == s chan		b/c 2	Z == 1						
BEQ-4	0011 0110 0011	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	000	00	0 0100
BEQ-5	0011 0110 0100	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	000	00	0 0101
BEQ-6	0011 0110 0101	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	000	00	0 0110
BEQ-7	0011 0110 0110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	000	00	0 0000

IF (\$R_b != \$R_c)

BEQ														WRIT	ΓΕ	RES	ET			
														SIGN	ALS	SIGN	ALS			
			l	DRIV	E SIGN	IALS			LO	AD S	SIGNA	LS		(B ₁₃ -B	12)	(B ₁₁ -E	310)	B ₀₉ -B ₀₇	B ₀₆ -B ₀₅	B ₀₄ -B ₀₀
				(B ₂₅ -E	3 ₂₀) (6-b	its)			(B ₁₉ -B ₁₄) (6-bits)					(2-bits	s) (2-bits)		ts)	(3-bits)	(2-bits)	(5-bits)
curr	addr																			Next
state		PC	ALU	REG	MEM	IMM	TARGET	PC	Α	В	MAR	IR	Z	MEM	REG	IR	Z	FUNC	REGSEL	State
	0011																			
	0100	_	_	_		_	_	_	_	_	_	_		_	_	_				
BEQ-4	0011	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	000	00	0 0000

curr		LIEV INICEDITION							
state	addr	HEX INSTRUCTION							
	0x	0.0040004							
BEQ-1	340	0x0840001							
	0x	0.000000							
BEQ-2	341	0x0820022							
	0x	0.4004400							
BEQ-3	342	0x1004103							
	IF (\$Rb == \$Rc)								
	NOTE: Address changed b/c Z == 1								
	0x	2 22 42 22 4							
BEQ-4	363	0x2040004							
	0x	0.000005							
BEQ-5	364	0x0220005							
	0x	0.4000005							
BEQ-6	365	0x1080006							
	0x	2 222227							
BEQ-7	366	0x0000C07							

IF (\$R_b != \$R_c)

	0x	
BEQ-5	343	0x0000C07