Compiler Design, Handout No.3 Assignment No.3

OTHER FORMS OF GRAMMARS

Notations.

- a. [a] means "a" or λ . For example, w=b[a], means either $w=b\lambda$ =b or w=ba.
- b. | means +. For example, a*|b* means a*+ b*.
- c. {a} means any power of a including the zero power. {a} means a*

Examples: $(a+b)^* = \{ a | b \}, a^* + b^* = \{a\} | \{b\}, ab^* = a\{b\}, and a^*b^* = \{a\}\{b\}$

To represent a CFG, we can use one of the following methods as well.

i. The **Syntax diagram**

The syntax diagram			
CFG	Syntax diagram		
Example: the syntax diagram of $S \rightarrow [a]$ is $S \rightarrow [a]$ or $S \rightarrow a \mid \lambda$	s a		
	Start at S, the straight line is λ (S= λ). But starting from S if we go down and then up then S=a		
Example: Find the syntax diagram of L=a* a ±± CFG: X→aX λ	Syntax diagram S a^0 or λ This is a loop a S $\{a\}$ or S $\Rightarrow aS \mid \lambda$ Start at S, the straight line is for $S = \lambda = a^0$. Start at S we can go through the loop and go back to the loop before we exit. Hence $S = a$ (go through loop once), $S = a^2$ (go through loop twice) and so on. Pay attention to the difference between one		
Example. Find the syntax diagram of L=a*+b*	a or many a's The syntax diagram of language L S b		

Example. Find the syntax diagram of L=(a+b)*	Any powers of a, any powers of b, and any combinations of a's and b's S
Example. Find the Syntax diagram of L=a*b*	S a b

ii. The Backus Nour Form (BNF), is aregular CFG when we write one rule per line. Example:

CFG	CFG in BNF form
A→aA bB λ	A→aA
B→bB λ	A→bB
	B→bB
	A→λ
	B→λ

iii. **Extended BNF (EBNF), is** a CFG in which we write the language of CFG using the notations $[\]$, $\{\ \}$, and $|\$

{ }, and	
CFG	EBNF form of CFG
CFG: A→aA λa	It is much easier to find the EBNF from the
The FA of this grammar is: (\pm)	Language,
	For L= a* , then
The language of this CFG is L=a*	CFG: A→aA λ
	EBNF: A→{ a }
CFG: A→aA bA λ ab	L= (a+b)*
FA: ±	CFG: A→aA bA λ
\ \	EBNF: A→{ a b }
Language: L=(a+b)*	
$E \rightarrow aA \mid bB \mid \lambda$ a A B b	L= a* + b*
A→aA λ + + + + + + + + + + + + + + + + + +	CFG: E→aA bB λ, A→aA λ, B→bB λ
$B \rightarrow bB \mid \lambda$ a $\begin{pmatrix} \pm \\ \pm \end{pmatrix} b$	EBNF:E→{a} {b}
FA: E 🛈	
L=a* + b*	

The following are examples to cover all cases at the same time.

Example. For each language, find its (i)FA, (ii)CFG, (iii)CFG in BNF, (iv) CFG in EBNF, (v) Syntax diagram.

Language	FA	CFG	BNF	EBNF	Syntax diagram
L=a*	X ±	X → aX λ	X→aX X→λ	Since L=a*, the EBNF grammar is X→{a}	X a
					the top line is λ
L=a*b*	A B	A→aA bB λ B→bB λ	A→aA A→bB B→bB A→λ B→λ	L=a*b* implies EBNF grammar is A→{a}{b}	A a b

It is clear that to find the **EBNF** and **syntax diagram** there is no need to have the FA or the CFG of the language. The following examples are to find EBNF grammar and the syntax diagram directly from the languages.

Examples: Find the CFG of each language in EBNF and syntax diagram

Language (L)	EBNF grammar of L	Syntax diagram to describe grammar of L
L=aa* + bb* Only powers of a or powers of b λ is not in L	L = aa* + bb* S→a{a} b{b}	s b b b
L=(a+b)* ={λ, powers of a, powers of b, any combinations of a's and b's}	The * means { }, and a+b means a b. Thus S→{ a b }	S a b The top straight line is for λ The top loop generates all powers of a, The other loop generates all powers of b, Combination of the loops generate words made up of a's and b's
L=(a+b)c*	S→(a b){c}=a{c} b{c}	s de la constant de l
L=(a+b+c)*	S→{a b c}	S a b c

Note: The following syntax diagrams representing $L1=aa^*$ and $L=a^*$

Examples. To write a program for a given grammar, the grammar must be in BNF format. Now, lets practice how to convert a given grammar to another form of grammars.

a. Identifiers in C++. An identifier is a string of letters, digits, and underscores. Identifiers must begin with a letter or underscore. Construct syntax diagram and write its EBNF for the CFG of identifiers in C++

b. Given **EBNF grammar S→{a} c [d]**, Construct its **syntax diagram**, and write the grammar in form of **BNF**.

c. Given $L = a^*(b^* + c)$, construct the syntax diagram of L. Write the grammar of L in EBNF format.

d. Write the **BNF** of the following **EBNF** grammars.

e. Given $S \rightarrow \{ [a] b \} c$, construct the syntax diagram of this EBNF grammar, and write the grammar in BNF.

f. Convert $S \rightarrow [a] \{ b \mid c \}$ from EBNF to a simple CFG

Let A=[a] and X={b | c}, then the grammar becomes S \rightarrow AX, where A=a or λ and X=(b+c)* Lets do one more substitution: X=(b+c)* or X=R* where R =b | c. Now put all pieces Together to have the BNF format of the given grammar

```
S \rightarrow AX , where A=[a]=a, \lambda and X={a|b}=(a+b)* =R* , or X \rightarrow RX , \lambda and R=a, b. A \rightarrow a | \lambda X \rightarrow RX |\lambda R \rightarrow b | c
```

g. Construct EBNF grammar for simple f'sunction headings in C++(for example: void f(), int f(int a, int b).

```
<functions heading> → <type> <id> ([ <type><id>{, <type><id} ])
<type>→void| int |float |string
<id> → (<letter>|<underscore>){<letter>|<digit>|<underscore>}
<letter>→<upper>|<lower>
<upper>→A|B|C|......|Z
<lower>→a|b|c|.......|z
<digit>→0|1|2|........|9
<underscore>→_
```

Trace the grammar for function heading: int sum(int a1, int a2, int a3)

REGULAR AND NON-REGUALR LANGUAGES

Definition. Language L is *regular* if we can write L using (), * and +. Otherwise the language is called a *non-regular* language.

Example.

	Regular languages	Non-regular languages
i.	L=a*b*	L={ a ⁿ b ⁿ n=1,2,3,}={ab, aabb, aaabbb,}
ii.	L=(a+b)*	
iii.	L=ab* + ba*	Notice that this language is not L2=a*b*. word
		aaab is in L2 but is not a member of L

TERMINAL AND NON-TERMINAL SYMBOLS

Consider the following CFG:

$$A \rightarrow aA \mid bB$$

 $B \rightarrow bB \mid \lambda$

The set of Terminals = $\{a, b, \lambda\}$ and the set of non-terminals = $\{A, B\}$. In the other word, **terminals** are symbols that are not expandable and **non-terminals** are expandable. Suppose we want to use this grammar to trace the word= aab, then :

REGULAR AND NON-REGULAR CONTEXT-FREE-GRAMMARS

Definition. CFG is *regular* if each rule in the grammar is in one of the following forms:

- (a) < non-terminal> \rightarrow string of terminals with **exactly ONE** non-terminal at the END Example: A \rightarrow bD, b is terminal and D is non-terminal at the end
- (b) < nonterminal >→ terminals including λExample: X→a | λ

Example. For CFG: $X \rightarrow aX \mid bX \mid \lambda$, in which terminal= $\{X\}$ and non-terminals= $\{a,b,\lambda\}$. The first two rules satisfy rule (a) and the last one satisfies rule (b). Therefore, this CFG is a regular.

Definition. If the CFG is not regular, then it is called a non-regular CFG

Example. Given CFG: $E \rightarrow AB$, $A \rightarrow aA \mid \lambda$, $B \rightarrow Bb$. The first rule $E \rightarrow AB$ does not satisfy rule (a) above (there are more than one non-terminal (A,B)on the right-hand-side) therefore this grammar is non-regular

Recall:

This indicates that if you have the FA, you can find the regular CFG and also a regular language for the machine. We have covered all these conversion cases in handout 1 and 2.

CONSTRUCTING REGUALR AND NON-REGULAR CFG FOR A GIVEN REGULAR LANGUAGE

There are two methods to find a CFG for a given regular language **Fxample**.

Example.		
Regular language	Regular CFG: construct FA and then use it to write regular CFG	Non-regular CFG: Write the non-regular CFG directly using the language
L=a*b*	Construct an FA to accept L $ \begin{array}{cccccccccccccccccccccccccccccccccc$	L = a* b* Let A=a* and B=b*, then Write non-regular CFG S→AB, two nonterminals; make it Non-regular CFG A→aA λ B→bB λ
L=b*(a+b)a* λ is not in L, thus initial state is not a final state	FA: B A Regular CFG: $A \rightarrow bA \mid aB \mid bB$ $B \rightarrow aB \mid \lambda$	L = b*(a+b)a* Let B=b*, X=a+b, and A=a*. Then Non-regular CFG look like this S \rightarrow BXA B \rightarrow bB $\mid \lambda$ X \rightarrow a \mid b A \rightarrow aA $\mid \lambda$

DETERMINISTIC AND NON-DETERMINSITC FINITE AUTOMATOA

Consider the following two cases:

In case 1, input a takes us from state A to only one next state B, this is an example of *deterministic FA*. That is for each input there is only ONE next state to enter.

In case 2, at state A for input a, we have a choice to enter state B or state C (means there are more than one next states for input a), this is an example of *non-deterministic FA* (we are not determine whether to enter state B or state C)

When you design an FA to represent a grammar or a language, it is acceptable for the FA to be non-deterministic. But, when you want to write a program for that FA you have to make sure the FA is a deterministic. Following is a technique to convert non-deterministic FA to a deterministic FA.

CONVERTING NON-DETERMINITIS FA TO A DETEMINITISTIC FA

Example: Convert the given non-deterministic FA (NDFA) to a deterministic FA (DFA).

Non-deterministic FA: NDFA	Deterministic FA: DFA		
a b	Step 1. Construct the following table		
a B	states {A}	Input a {A, B}	Input b { }
A This FA is non-deterministic. At state A the input a issues two next options, back to state A or enter state B. Hard to make the right decision when you write a program for this FA.		At state A with input a you have a choice to enter state A or state B. A→aA means from state A input a takes you back to A. A→aB, means from state A input a takes you to B.	At state A, input b is not declared, we use an empty set for no destination.
Following steps on the right column to		We write it as set {A, B}	
remove this problem. Means convert this non-deterministic FA to a new deterministic FA so that the new machine	{B}	{ } At state B, input a is not declared	{B} B→bB, means at state B input b takes you back to state B
accepts all words that were accepted by the original machine.	inputs a s	ate {A,B} is created, lets fir and b at this state. Since { ng input a is the same as th (A} union with the next sta	A,B}={A}U{B}, so the next ne next state using a as
	{A,B}	{A,B}={A}U{B}, input a ={A,B}U{} ={A,B}	{A,B}={A}U{B}, input b ={ }U{B} ={B}
	I I	e no new states, the table states are the first column	·
		the above table witho	out explanations to use it to
	states	Input a	Input b
	{A}	{A,B}	{}
	{B} {A,B}	{ } {A,B}U{ }={A,B}	{B} {}U{B}={B}
		,	to construct a new FA

Note that while we convert NDFA to DFA, their grammar also changed from non-deterministic CFG (NDCFG) to a deterministic CFG (DCFG)

Example. Convert the following NDFA to a DFA. At the same time show how the Grammar will change to a DCFG

- i. initial state:{A}
- ii. Final state: {B}

Step 1. Construct the transition table

States	Input a	Input b
{A}	{A,B}	{C}
{B}	{}	{B}
{C}	{ C, B }	{}
New states: {A,B}	and {C,B}, add them to the table	
{A,B}	${A,B}={A}U{B} = {A,B}U{} = {A,B}$	{A,B}={A}U{B}={c}U{B}={C,B}

{C,B}	${C,B}={C}U{B}={C,B}U{} = {C,B}$	{C,B}={C}U{B}={ }U{B}={B}
No newer state. S	tates of the new machine are $\{A\}$, $\{B\}$, $\{C\}$, $\{A,B\}$, $\{C\}$,B}

Step 2: Use the table to construct DFA

In the DFA, Initial state={A} and Final states are states whose B is a member of their name: {A, B}, {B}, and {C,B}, mark all three states as final state. Use the summary table to construct DFA.

To write its deterministic CFG, let $X= \{A\}$, $Y=\{A, B\}$, $Z=\{C,B\}$, $D=\{C\}$, and $E=\{B\}$, then

 $X \rightarrow aY \mid bD$ $Y \rightarrow aY \mid bZ \mid \lambda$ $D \rightarrow aZ$ $Z \rightarrow aZ \mid bB \mid \lambda$ $B \rightarrow bB \mid \lambda$ Use parsing tree to trace the word w=abab

Handout summary

Languag	Reg.CFG	NonReg-CFG	EBNF	Syntax	BNF
е				Diagram	
L=a*b*	To find L's regular	Directly from L	Directly from	Directly from L	From FA to
	CFG, we must	to grammar	L to grammar	to grammar	grammar
	construct an FA	L=a*b*	L=a*b*	L=a*b*	(one rule per
	a b ∩				line)
	b +	S→AB	S→{a}{b}	S>	A→aA
	± + +	A → aA λ		a b	A→bB
	A B	B→bB λ			B→bB
	Regular CFG				$A \rightarrow \lambda$
	A) aA bB λ				B → λ
	B → bB λ				

Compiler Design

Namesrow.....row.....

Assignment No. 3 (70 points.) Different forms of CFG, Regular and non-regular languages, regular and non-regular CFG, Deterministic and non-deterministic FAs, converting NDFA to DFA)

1.(10 points) Given the language L=(a + b)*(ba* + ab*)

- a. Construct an FA for L (FA is already given)
- b. Convert the non-deterministic FA (NDFA) to a deterministic FA (DFA)
- c. Use the DFA to write a deterministic CFG for L
- 2.(10 points) Given the following non-deterministic CFG:

$$S \rightarrow aA \mid aB \mid bB \mid \lambda$$

 $B \rightarrow b B \mid \lambda$

A→aA |aB

Convert the grammar to a deterministic CFG (Hint use the CFG to construct a non-deterministic FA, convert NDFA to DFA, and then write a new DCFG)

- 3.(10 points) Write a regular and non-regular CFG for languages: (i) L= a*b (a+b)* (ii) L=a*b*
- 4.(20 points) Given the following EBNF grammars. (i) draw their syntax diagram (ii)write each grammar in form of BNF
 - a. $S \rightarrow [a] \{b\} d$
 - b. $S \rightarrow \{a \mid b\}\{c\}$
 - c. $S \rightarrow \{a\} \{b\} [c] \{d\}$

K-mart 23andMe 456

Tax 2018

While

switch do it

_Fall_20

_. un__e _Jan 19

Programming (10 points each)

- Write a program to read one token at a time from the given text file and determine whether the token is
 - i. A number
 - ii. An identifier (must start with underscore or a letter, followed by more letters, more digits, or more underscores
 - iii. A reserved word. List of reserved words: string reserved[5]={"while", "for", "switch", "do", "return" };

Sample output for #1							
Token	number	identifier	reserved word				
K-mart	no	no	no				
23andMe	no	no	no				
456	yes	no	no				
•••••							

Given CFG: S→aS |bB|cC
 B→bB | aC |λ
 C→aS |λ

Write <u>a program</u> to determine whether an input string is accepted or rejected by the grammar. Hint, first you have to complete the FA

Try input strings: w1=abbbcaaa\$, w2=ccccbbb\$, w3=aabbaac\$