Fundamentos de análisis y diseño de algoritmos

Programación voraz

Selección de actividades Características de la programación voraz

· La programación dinámica puede resultar costosa. (Pocos subproblemas repetidos)

·Otra estrategia para resolver problemas de optimización: en cada estado de la búsqueda de una solución al problema, tomar el camino (la decisión) que es el mejor en ese momento (óptima), sin tener en cuenta las soluciones a subproblemas

 Un algoritmo voraz toma decisiones con rapidez sobre vistas locales → toma decisiones óptimas locales. Espera que llegue a una solución óptima global

·Un algoritmo voraz no siempre encuentra la solución óptima global

Problema de selección de actividades

- •Suponga que se tiene un conjunto de actividades S etiquetadas con números de $a_1...a_n$. $S=\{a_1, ..., a_n\}$
- Todas las actividades necesitan acceder a un mismo recurso
- ·Cada actividad a; tiene asociada dos valores:

s_i: tiempo inicial

f_i: tiempo final

estos son los tiempos entre los cuales la actividad *debería* acceder al recurso

Problema de selección de actividades

(0,5), (1,2), (2,3) son los tiempos para las 3 actividades

Problema de selección de actividades

S={1,2,3}

(0,5), (1,2), (2,3) son los tiempos para las 3 actividades

¿Cuáles son las diferentes formas de planificar las actividades?

Problema de selección de actividades

(0,5), (1,2), (2,3) son los tiempos para las 3 actividades

Asignar el recurso a la actividad 1

Problema de selección de actividades

(0,5), (1,2), (2,3) son los tiempos para las 3 actividades

Asignar el recurso a la actividad 1

Las actividades 2 y 3 no se podrían atender

Problema de selección de actividades

(0,5), (1,2), (2,3) son los tiempos para las 3 actividades

Asignar el recurso a las actividades 2 y 3

La actividad 1 no se podría atender

Problema de selección de actividades

Entrada: $S=\{\alpha_1, ..., \alpha_n\}$

Salida: ADS, tal que |A| es máxima

Problema de selección de actividades

Entrada: $S=\{a_1, ..., a_n\}$

Salida: A \(\text{S}, \tal que \| A \| es m\(\alpha \) es m\(\alpha \) ima

(maximizar la cantidad de actividades que van a usar el recurso)

Problema de selección de actividades

A={2,3} es la solución óptima

Solución:

·Ordenar las actividades ascendentemente según los tiempos de finalización f_i

·Coloque en la solución el primer recurso en la lista ordenada

Solución:

·Coloque en la solución A, el recurso en S' que tiene tiempo de inicio menor o igual que el tiempo final del recurso que se acaba de planificar

Solución:

·Coloque en la solución A, el recurso en S' que tiene tiempo de inicio menor o igual que el tiempo final del recurso que se acaba de planificar

Solución:

·Coloque en la solución A, el recurso en S' que tiene tiempo de inicio menor o igual que el tiempo final del recurso que se acaba de planificar

¿Por qué es una estrategia voraz?

- ·Se toma una decisión óptima local en cada estado de la solución
- ·La decisión no depende de solucionar primero subproblemas relacionados

¿Cuándo utilizar una estrategia voraz?

Cuando el problema exhiba:

- Propiedad de escogencia voraz
- · Subestructura óptima

¿Cuándo utilizar una estrategia voraz?

Cuando el problema exhiba:

- Propiedad de escogencia voraz: una solución óptima se puede hallar a partir de soluciones óptimas locales
- Subestructura óptima: igual que en programación dinámica

Programación dinámica

Programación voraz

Problema: Mochila 0-1

Se tienen N objetos y una mochila de capacidad (de peso) M, cada objeto tiene un peso w_i , $1 \square i \square N$. Cada objeto puede estar, o no, en la mochila. Ademas, se tiene un beneficio b_i por cada objeto

El problema consiste en maximizar el beneficio. La solución se representa indicando para cada objeto si se debe colocar o no en la mochila

De manera formal, el problema consiste en encontrar $\langle x_1, x_2, ..., x_n \rangle$ tal que:

$$\sum_{1 \, \square \, i \, \square \, N} b_i \, x_i$$
 sea máximo, sujeto a

$$\sum_{1 \sqcap i \sqcap N} w_i x_i \; \Box M$$

 $x_i \square \{0,1\}$, donde 0 significa que el objeto i no se coloca en la mochila y 1 que si

N=3, M=9, b=<10,6,8>, w=<3,4,5>

<1,0,1> es una solución que indica colocar en la mochila los objetos 1 y 3, esto implica un beneficio de 18

<1,1,0> es una solución que indica colocar en la mochila los objetos 1 y 2, esto implica un beneficio de 16

<0,1,1> es una solución que indica colocar en la mochila los objetos 2 y 3, esto implica un beneficio de 14

Estrategia voraz: seleccionar el ítem que tiene mayor beneficio por peso, esto es, b_i/w_i sea mayor

Estrategia voraz: seleccionar el ítem que tiene mayor beneficio por peso, esto es, b_i/w_i sea mayor

N=3, M=9, b=
$$<10,6,8>$$
, w= $<3,4,5>$
Beneficio/peso= $<10/3,6/4,8/5> = $<3.3,1.5,1.6>$$

Seleccionar el item1, luego el item3 y por último el item2 (si caben)

Estrategia voraz: seleccionar el ítem que tiene mayor beneficio por peso, esto es, b_i/w_i sea mayor

N=3, M=9, b=
$$<10,6,8>$$
, w= $<3,4,5>$
Beneficio/peso= $<10/3,6/4,8/5> = $<3.3,1.5,1.6>$$

Seleccionar el item1, luego el item3 y por último el item2 (si caben)

Solución: <1,0,1>

Beneficio=10+8

Estrategia voraz: seleccionar el ítem que tiene mayor beneficio por peso, esto es, b_i/w_i sea mayor

N=3, M=50, b=<60,100,120>, w=<10,20,30>

Beneficio/peso=<60/10, 100/20, 120/30> = <6, 5, 4 >

Seleccionar el item1, luego el 2

Solución: <1,1,0>

Beneficio=60+100=160

Estrategia voraz: seleccionar el ítem que tiene mayor beneficio por peso, esto es, b_i/w_i sea mayor

N=3, M=50, b=<60,100,120>, w=<10,20,30> Beneficio/peso=<60/10, 100/20, 120/30> = <6, 5, 4 >

La solución óptima es: <0,1,1>

Beneficio=100+120=220