MAT7500 W14 LECTURE NOTES

Bröcker and Jänich: Chapter V: Local and Tangential Properties

Motivation. Given a smooth map germ $f: (M^m, p) \to (N^n, q)$, it is reasonable to ask what it "looks like" in local coordinates. What is the simplest expression we can give for it?

Inverse Function Theorem. This theorem says a smooth map germ $f: (M^m, p) \to (N^n, f(p))$ is a local diffeomorphism at p if and only if the differential $T_p f: T_p M \to T_{f(p)} N$ is an isomorphism (of course, it is necessarily the case that m = n for this to be possible).

The Rank Theorem for Maps. The rank of f at p, written $\mathrm{rk}_p f$, is the rank of the linear transformation $T_p f$, that is, the dimension of the image of $T_p f$.

Lemma. The rank is locally non-increasing, i.e., there is a neighborhood U of p such that $\operatorname{rk}_x f \geq \operatorname{rk}_p f$ for all $x \in U$. That is, the rank function of f is lower semi-continuous.

Proof. Suppose $\operatorname{rk}_p f = r$. We can assume that $f: (\mathbb{R}^m, p) \to (\mathbb{R}^m, q)$. Then $T_p f$ is identified with the Jacobian matrix $J_p f$. By rearranging rows an columns if necessary, we can assume that the $r \times r$ submatrix given by the first r rows and first r columns is invertible. Then as in the proof that we gave of the Rank Theorem for vector bundle maps, we can write $S:=J_p f$ as

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

and since we are assuming $J_p f$ has rank r, if follows that A has rank r and $D = CA^{-1}B$. Recall the invertible matrix

$$T = \begin{pmatrix} I & 0 \\ CA^{-1} & I \end{pmatrix}$$

is such that

$$TS = \begin{pmatrix} A & B \\ 0 & D - CA^{-1}B \end{pmatrix}$$

Now, considering the matrices A, B, C and D above as matrices of functions defined in a sufficiently small neighborhood of $p \in M$ (i.e., A = A(x), etc.), it follows that the matrix of functions TS (which has the same rank as S) has rank given by

$$rkA + rk(D - CA^{-1}B) = r + rk(D - CA^{-1}B) > r$$
. \Box

Example. Consider $f: (\mathbb{R}, 0) \to (\mathbb{R}, 0)$ given by $f(x) = x^2$. Then $\mathrm{rk}_0 f = 0$ but $\mathrm{rk}_x f = 0$ for $x \neq 0$. This shows that the rank can change in an arbitrarily small neighborhood.

If however the rank doesn't change in a small neighborhood, then we have the following description.

Rank Theorem for Maps. If $f: (M^m, p) \to (N^n, q)$ is a smooth map germ such that $\operatorname{rk}_x f = r$, for all x sufficiently near p, then there are chart germs $\phi: (M, p) \to (\mathbb{R}^m, 0)$ and $\psi: (N, q) \to (\mathbb{R}^n, 0)$ such that the following diagram commutes

$$(M,p) \xrightarrow{f} (N,q)$$

$$\downarrow^{\psi}$$

$$(\mathbb{R}^m,0) \xrightarrow{P_r} (\mathbb{R}^n,0)$$

in which $P_r(x_1, \ldots, x_m) = (x_1, \ldots, x_r, 0, \ldots, 0)$ is the inclusion of the projection onto the first r coordinates.

Proof. Without any loss in generality, we can assume at the outset that $f: (\mathbb{R}^m, 0) \to (\mathbb{R}^n, 0)$. Consider the map germ $h: (\mathbb{R}^m, 0) \to (\mathbb{R}^m, 0)$ given by

$$(x_1,\ldots,x_m)\mapsto (f_1(x),\ldots f_r(x),x_{r+1},\ldots,x_m).$$

It is easy to check that dh_0 is invertible, so h is a local diffeomorphism near 0. Consider then the map germ

$$f \circ h^{-1} \colon (\mathbb{R}^m, 0) \to (\mathbb{R}^n, 0)$$

An elementary calculation shows that the latter has the form

$$(x_1, \ldots x_m) \mapsto (x_1, \ldots, x_r, g_{r+1}(x), g_{r+2}(x), \ldots, g_n(x)).$$

where $g_i: (\mathbb{R}^m, 0) \to (\mathbb{R}, 0)$ are smooth function germs. The Jacobian of the latter at any point x near the origin is a matrix of the form

$$\begin{pmatrix} I_r & 0 \\ ? & A(x) \end{pmatrix}$$

where A(x) is the $(m-r) \times r$ matrix given by $(\frac{\partial g_i}{\partial x_j})$ for $r+1 \leq j \leq m$. By assumption the rank of this matrix is always r for x sufficiently close to the origin. Hence A(x) = 0 for such x, and the above matrix becomes

$$\begin{pmatrix} I_r & 0 \\ ? & 0 \end{pmatrix}$$

Consider next the invertible map germ $k: (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$ given by

$$(y_1,\ldots,y_n)\mapsto (y_1,\ldots,y_r,y_{r+1}-g_{r+1}(y_1,\ldots,y_r,0,\ldots,0),\ldots,y_n-g_n(y_1,\ldots,y_r,0,\ldots,0).$$

Then by direct calculation to composite $k \circ f \circ h^{-1}$ is the map germ

$$(x_1,\ldots,x_m)\mapsto (x_1,\ldots,x_r,g_{r+1}(x)-g_{r+1}(x_1,\ldots,x_r,0\ldots,0),\ldots,g_n(x)-g_n(x_1,\ldots,x_r,0\ldots,0))$$

But since $(\frac{\partial g_i}{\partial x_j}) = 0$ for i > r, it follows that $g_i(x) = g_i(x_1, \dots, x_r, 0, \dots, 0)$ for i > r, so $k \circ f \circ h^{-1}$ is exactly the map P_r in the statement of the theorem.

Observation. If $\mathrm{rk}_p f$ is maximal, then it is necessarily locally constant, in which case $\mathrm{rk}_p f = m$ or n according as to whether m < n or $m \ge n$.

Definition. A smooth map $f: M \to N$ is an immersion at p if $\mathrm{rk}_x f = m$ for all points x sufficiently near p. It is an immersion if $\mathrm{rk}_p f = m$ for all $p \in M$.

Similarly, f is a submersion at p if $\operatorname{rk}_x f = n$ for all x sufficiently near p, and it is an immersion if $\operatorname{rk}_p f = n$ for all $p \in M$.

An immediate consequence of the Rank Theorem for Maps are the following two results:

Local Immersion Theorem. Suppose $f: M \to N$ is a smooth map which is an immersion at p, then there are local coordinates at p and f(p), such that f expressed in these coordinates is given by the inclusion

$$(x_1,\ldots,x_m)\mapsto (x_1,\ldots,x_m,0,\ldots,0).$$

Local Submersion Theorem. Suppose $f: M \to N$ is a smooth map which is a submersion at p, then there are local coordinates at p and f(p), such that f expressed in these coordinates is given by the projection

$$(x_1,\ldots,x_n,\ldots,x_m)\mapsto (x_1,\ldots,x_n).$$

We also have the following consequences:

Corollary. An immersion at p is the same thing as a local embedding at p.

Recall that an embedding $f: M \to N$ is a one-to-one smooth map such that f(M) is a smooth submanifold of N and $f: M \to f(M)$ is a diffeomorphism.

Corollary. Suppose $f: M \to N$ is a one-to-one immersion such that $f: M \to f(M)$ is a homeomorphism. Then f is an embedding.

Proof. (Sketch). By the local immersion theorem, near any point $p \in M$, we have that f takes the form $x \mapsto (x,0,\ldots,0)$ in local coordinates. In follows from this that f(M) is a smooth submanifold of N. Furthermore, the map $f \colon M \to f(M)$ is local coordinates near any point p is given by the identity so f is a local diffeomorphism. Hence $f \colon M \to f(M)$ is a smooth homeomorphism which is a local diffeomorphism. This implies $f \colon M \to f(M)$ is a diffeomorphism. \square

Immersions Have Normal Bundles Too. If $f: M \to N$ is an immersion, then $Tf: TM \to TN$ is a linear map over f which is one-to-one at each $x \in M$. Hence we can form the *cokernel bundle*

$$TN/Tf(TM)$$
.

This is called the normal bundle of the immersion f.

When is a Zero Set a Manifold?. Let us consider the following sort of problem: suppose that $g_1, \ldots, g_\ell \colon M \to \mathbb{R}$ are smooth functions on an m-manifold. Then

$$g = (g_1, \dots, g_\ell) \colon M \to \mathbb{R}^\ell$$

is a smooth manifold. When is $g^{-1}(0)$ a smooth submanifold of M? We will give a partial answer this equation below.

Conversely, suppose that $P \subset M$ is a smooth manifold? Is there a smooth function $g \colon M \to \mathbb{R}^{\ell}$ for some ℓ such that $g^{-1}(0) = P$? In this case we would say that P is cut out by the functions g_1, \ldots, g_{ℓ} . We will give a complete solution to this problem below.

Regular Values. A regular value for a smooth map $f: M \to N$ is a point $y \in N$ such that for all $p \in M$ with f(p) = y, the tangent map $T_p f: T_p M \to T_y N$ is surjective. If y is not a regular value it is called a *critical value* and the point p in this case is called a *critical point*.

Remark. In the special case when $N = \mathbb{R}^{\ell}$, the map f is of the form (g_1, \ldots, g_{ℓ}) and the condition that $T_p f$ is surjective is equivalent to the statement that the linear functionals $T_p g_i \colon T_p M \to \mathbb{R}$ for $1 \le i \le \ell$ are linearly independent. For this reason, we say that the ℓ functions g_1, \ldots, g_{ℓ} are independent at p.

Preimage Theorem. If $y \in N$ is a regular value for f, then $f^{-1}(y) \subset M$ is a submanifold of codimension n.

Proof. If $p \in f^{-1}(y)$, then the map f is a submersion at p. Hence there are local coordinates at p and y such that f expressed in these coordinates has the form of a projection map

$$P: (x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_n)$$
,

where the points p and y correspond to the origins in \mathbb{R}^m and \mathbb{R}^n . In particular, near p we have that $f^{-1}(y)$ is given in coordinates by $P^{-1}(0)$ which of course is just $0 \times \mathbb{R}^{m-n}$. Doing this for each $p \in f^{-1}(y)$ shows that $f^{-1}(y)$ is a submanifold of dimension m-n. \square

The following two results address the problems raised before the statement of the Preimage Theorem.

Corollary. If y is a regular value of $f: M \to N$, then the preimage manifold $f^{-1}(y)$ can be cut out by independent functions.

Proof. Choose a diffeomorphism germ $h:(W,y)\to (U,0)$ in which W is an open neighborhood of y and U is a neighborhood of the origin in \mathbb{R}^n . Then $g:=h\circ f\colon f^{-1}(W)\to\mathbb{R}^n$ in which 0 is a regular value. Furthermore, $g^{-1}(0)=f^{-1}(y)$. \square

Corollary. Any submanifold of a smooth manifold M is <u>locally</u> cut out by independent functions.

Proof. Any submanifold $P \subset M$ of codimension ℓ is locally diffeomorphic to the inclusion $\mathbb{R}^{m-\ell} \times 0 \subset \mathbb{R}^m$ near any point $p \in M$ in which the origin of \mathbb{R}^m corresponds to p. If we let $P \colon \mathbb{R}^m \to \mathbb{R}^\ell$ be the projection onto the last ℓ coordinates, an we use a choice of local diffeomorphism, the composition yields a smooth map germ $f \colon (M,p) \to (\mathbb{R}^\ell,0)$ such the 0 is a regular value and $f^{-1}(0)$ is an open neighborhood of p in P. \square

Remark. If y is a regular value for $f: M \to N$, we may apply the differential at $p \in f^{-1}(y)$ to the commutative diagram

$$\begin{array}{ccc}
M & \xrightarrow{f} & N \\
\uparrow & & \uparrow \\
f^{-1}(y) & \longrightarrow & y
\end{array}$$

to obtain a commutative diagram

$$T_pM \xrightarrow{T_pf} T_yN$$

$$\uparrow \qquad \qquad \uparrow$$

$$T_pf^{-1}(y) \longrightarrow T_yy = 0.$$

This diagram shows that $T_p f^{-1}(y)$ is contained in the kernel of $T_p f$. Since these vector spaces have the same dimension, we conclude that the kernel of $T_p f$ coincides with the tangent space $T_p f^{-1}(y)$.

We also see from the above diagram that the normal bundle of $f^{-1}(y) \subset M$ is isomorphic to pullback along f of the normal bundle of $y \subset N$ (Let's make this an exercise). But the normal bundle of $y \subset N$ is a trivial bundle (any bundle over a point is trivializable). It follows that the normal bundle of $f^{-1}(y) \subset M$ is trivializable.

Applications. The regular value theorem above is a very strong result since it gives us an easy way to construct new manifolds from old ones. For example, Let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ be the function given by $x \mapsto \sum x_i^2$. Then $1 \in \mathbb{R}$ is a regular value, so $f^{-1}(1) = S^n$ is a submanifold of \mathbb{R}^{n+1} with trivial normal line bundle.

Here is an even more interesting example:

Example. Let O(n) be the set of real orthogonal $n \times n$ matrices. This is a subset of \mathbb{R}^{n^2} . We claim it is actually a submanifold of dimension $\frac{n(n-1)}{2}$.

To see this, let M_n be the set of all $n \times n$ matrices which we think of as the smooth manifold \mathbb{R}^{n^2} . Let S_n be the set of all symmetric $n \times n$ matrices, i.e., those matrices B such that $B = B^t$. Then S can be thought of as $\mathbb{R}^{n(n+1)/2}$.

Consider the smooth function $f: M_n \to S$ given by

$$A \mapsto AA^t$$
.

We compute the differential of this map at a matrix A:

$$T_A f(B) = \lim_{s \to 0} \frac{f(A+sB) - f(A)}{s}$$

$$= \lim_{s \to 0} \frac{(A+sB)(A+sB)^t - AA^t}{s}$$

$$= \lim_{s \to 0} \frac{AA^t + sBA^t + AsB^t + s^2BB^t - AA^t}{s}$$

$$= \lim_{s \to 0} \frac{BA^t + AB^t + sBB^t}{s}$$

$$= BA^t + AB^t$$

Now, since S is a linear space, we can identify the tangent space T_IS with S and likewise $T_AM_n = M_n$. For any $A \in M_n$ satisfying $AA^t = I$, we wish to know whether $T_Af: M_n \to S$

is onto. To see this, let $C \in S$ be any element, and note that it can be written in the form $\frac{1}{2}C + \frac{1}{2}C^t$. Then we can solve for B in the equation $BA^t = \frac{1}{2}C$ (by setting $B = \frac{1}{2}CA$). Then

$$T_A f(B) = BA^t + AB^t = \frac{1}{2}C + \frac{1}{2}C^t = C$$

which shows that for any $C \in S$, the equation $T_A f(B) = C$ admits a solution. Hence, $I \in S$ is a regular value.

Consequently, $O(n) \subset f^{-1}(I)$ is a submanifold of M_n of codimension n(n+1)/2, i.e., it has dimension

$$n^2 - \frac{n(n+1)}{2} = \frac{n(n-1)}{2}$$
.

Transversality. We saw that fort a smooth map $f: M \to N$, a condition for the preimage $f^{-1}(y)$ to be a manifold is that y is a regular point, i.e, for each $x \in f^{-1}(y)$ we have that $\operatorname{rk}_x f = n$. This is a special case of what is called a *transversality* condition.

More generally, we would like to know when $f^{-1}(L)$ is a submanifold of M if $L \subset N$ is a submanifold. Here is the relevant condition:

Definition. Let $f: M \to N$ be a smooth map, and $L \subset N$ be a submanifold of dimension ℓ . We say that f is *transverse* to L if for every $x \in f^{-1}(L)$ we have

$$image T_x f + T_y L = T_y N$$
.

(Notice that if $L = \{y\}$, then this is equivalent to saying $y \in N$ is regular.) We can restate the above by saying that the composition that

$$T_x M \xrightarrow{T_x f} T_y N \xrightarrow{\pi} T_y N / T_y L =: \nu_y L$$

is onto, where π is the projection and $\nu_y L$ the normal space to $L \subset N$ at y.

Observation. If dim M < codim L then the condition is equivalent to the statement that $f^{-1}(L)$ is empty (since in this case $m + \ell < n$).

Theorem. If $f: M \to N$ is transverse to L and $L \subset N$ has codimension k, then $f^{-1}(L) \subset M$ is a submanifold of codimension k, furthermore,

$$\nu_{f^{-1}L} \cong f^*\nu_L$$

where ν_L is the normal bundle of L.

Proof. Let f(x) = y. Choose a coordinate neighborhood V of y, with $h: (V, y) \to (V', 0)$ a diffeomorphism such that $V' \subset \mathbb{R}^n$ an open set. By choosing V carefully, we can assume the restriction of h gives a diffeomorphism

$$h: L \cap V \to \mathbb{R}^{n-k} \cap V'$$
.

where $\mathbb{R}^{n-k} \subset \mathbb{R}^n$ is the inclusion of the last n-k coordinates. Set $U=f^{-1}(V)$.

The transversality condition then implies that $0 \in \mathbb{R}^k$ is a regular value of the composite map

$$F \colon U \xrightarrow{f} V \xrightarrow{\underline{h}} V' \xrightarrow{\pi} \mathbb{R}^k$$
.

where $\pi \colon \mathbb{R}^n \to \mathbb{R}^k$ is projection onto the first k coordinates. Hence, $f^{-1}(L) \cap U = f^{-1}(L \cap V) = F^{-1}(0)$ is a submanifold of U of codimension k. This implies $f^{-1}(L) \subset M$ is a smooth submanifold of codimension k, as the property of being a submanifold is a local condition.

Lastly, consider the composite map

$$T_x M \xrightarrow{T_x f} T_y N \xrightarrow{\pi} T_y N / T_y L$$

which is onto by the transversality condition. Since f maps $f^{-1}(L)$ to L, it follows that $T_x f$ maps $T_x f^{-1}(L)$ to $T_y L$. We infer that $T_x f^{-1}(L)$ is contained in the kernel of the displayed composite, so it induces a linear map

$$T_x M/T_x f^{-1}(L) \to T_y N/T_y L$$

which is injective and is therefore an isomorphism. This means that the normal space to $f^{-1}(L)$ at x is canonically isomorphic to the normal space to L at y. This implies

$$\nu_{f^{-1}L} \cong f^*\nu_L$$
.