Testing and Estimation for Sparsity-Inducing Power Penalties

Maryclare Griffin

Department of Mathematics and Statistics University of Massachusetts Amherst

November 15, 2023

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Posterior mode of β under:

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Posterior mode of β under:

$$y = X\beta + \sigma z,$$
 $z \sim \text{normal}(0, I_n)$
 $p(\beta_j) \propto \exp\{-(\lambda |\beta_j|^q)\}$

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Posterior mode of β under:

$$y = X\beta + \sigma z,$$
 $z \sim \text{normal}(0, I_n)$
 $p(\beta_j) \propto \exp\{-(\lambda |\beta_j|^q)\}$

• $p(\beta_i)$ is density of the exponential power distribution

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Posterior mode of β under:

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j\right) \propto \exp\left\{-\left(\lambda\left|eta_j\right|^q\right\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Posterior mode of β under:

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j\right) \propto \exp\left\{-\left(\lambda\left|eta_j\right|^q\right\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:

q = 1: Laplace model/lasso penalty

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Posterior mode of β under:

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j\right) \propto \exp\left\{-\left(\lambda\left|eta_j\right|^q\right\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:
 - q = 1: Laplace model/lasso penalty
 - q=2: Normal distribution/ridge penalty

Power penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$

Posterior mode of β under:

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j\right) \propto \exp\left\{-\left(\lambda\left|eta_j\right|^q\right\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:
 - q = 1: Laplace model/lasso penalty
 - q=2: Normal distribution/ridge penalty
 - $q \leq 1$: Bridge penalty

"Testing Sparsity-Inducing Penalties"

"Testing Sparsity-Inducing Penalties"

Testing when q = 1 is a "good" choice, picking a "better" q

"Testing Sparsity-Inducing Penalties"

Testing when q = 1 is a "good" choice, picking a "better" q

"Improved Pathwise Coordinate Descent for Power Penalties"

"Testing Sparsity-Inducing Penalties"

Testing when q=1 is a "good" choice, picking a "better" q

"Improved Pathwise Coordinate Descent for Power Penalties" Solving $\min_{\beta} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$ for a range of q, λ

Problem

Problem

Lasso penalized regression solves $\min_{\beta \frac{1}{2\sigma^2}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

Problem

Lasso penalized regression solves $\min_{\beta = \frac{1}{2\sigma^2}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

 \odot Computationally simple

Problem

Lasso penalized regression solves $\min_{\beta \frac{1}{2\sigma^2}} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

- © Computationally simple
- \odot Yields possibly sparse estimates of $\boldsymbol{\beta}$

Problem

Lasso penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

- © Computationally simple
- \odot Yields possibly sparse estimates of $\boldsymbol{\beta}$
- © Same as finding posterior mode of β under

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j\right) \propto \exp\left\{-\lambda \left|eta_j\right|\right\} \end{aligned}$$

Problem

Lasso penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

- © Computationally simple
- \odot Yields possibly sparse estimates of $\boldsymbol{\beta}$
- © Same as finding posterior mode of β under

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j\right) \propto \exp\left\{-\lambda \left|eta_j\right|\right\} \end{aligned}$$

 \odot Can perform poorly if $\boldsymbol{\beta}$ is very sparse or not sparse at all

Problem

Lasso penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

- © Computationally simple
- \odot Yields possibly sparse estimates of $\boldsymbol{\beta}$
- $\ \, \odot \,$ Same as finding posterior mode of $\boldsymbol{\beta}$ under

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\lambda\left|eta_j
ight|\right\} \end{aligned}$$

 \odot Can perform poorly if β is very sparse or not sparse at all

Objectives

Problem

Lasso penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

- © Computationally simple
- \odot Yields possibly sparse estimates of $\boldsymbol{\beta}$
- \odot Same as finding posterior mode of β under

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j\right) \propto \exp\left\{-\lambda \left|eta_j\right|\right\} \end{aligned}$$

 \odot Can perform poorly if β is very sparse or not sparse at all

Objectives

• <u>Test</u> Laplace prior appropriateness

Problem

Lasso penalized regression solves $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_1$

- © Computationally simple
- \odot Yields possibly sparse estimates of $\boldsymbol{\beta}$
- \odot Same as finding posterior mode of β under

$$y = X\beta + \sigma z,$$
 $z \sim \text{normal}(0, I_n)$
 $p(\beta_j) \propto \exp\{-\lambda |\beta_j|\}$

 \odot Can perform poorly if β is very sparse or not sparse at all

Objectives

- <u>Test</u> Laplace prior appropriateness
- Adaptively choose a better prior

• Tuning parameters become variance components

• Tuning parameters become variance components, $\lambda = 2/\tau^2$

- Tuning parameters become variance components, $\lambda = 2/\tau^2$
 - Variance components are interpretable

- Tuning parameters become variance components, $\lambda = 2/\tau^2$
 - Variance components are interpretable
 - Variance component estimation has a long history

- Tuning parameters become variance components, $\lambda = 2/\tau^2$
 - Variance components are interpretable
 - Variance component estimation has a long history
- Posterior summaries have decision theoretic justifications

- Tuning parameters become variance components, $\lambda = 2/\tau^2$
 - Variance components are interpretable
 - Variance component estimation has a long history
- Posterior summaries have decision theoretic justifications

$$\underbrace{\mathbb{E}\left[\boldsymbol{\beta}|\boldsymbol{X},\boldsymbol{y},\sigma^{2},\boldsymbol{\lambda}\right]}_{\text{Posterior Mean}} = \operatorname{argmin}_{\boldsymbol{b}} \underbrace{\int ||\boldsymbol{\beta}-\boldsymbol{b}||_{2}^{2} p\left(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\beta},\sigma^{2}\right) p\left(\boldsymbol{\beta}|\boldsymbol{\lambda}\right) d\boldsymbol{\beta}}_{\text{Weighted average squared error loss}}$$

What if β is not sparse at all?

Simulated example with n = 50, p = 45, $\sigma^2 = \tau^2 = 1$

What if β is not sparse at all?

Simulated example with n = 50, p = 45, $\sigma^2 = \tau^2 = 1$

What if β is not sparse at all?

Simulated example with n = 50, p = 45, $\sigma^2 = \tau^2 = 1$

What if β is not sparse at all?

Simulated example with n = 50, p = 45, $\sigma^2 = \tau^2 = 1$

• Sparsity rate of mode under Laplace depends on σ^2/τ^2

- Sparsity rate of mode under Laplace depends on σ^2/τ^2
- $oldsymbol{\circ}$ could be spike-and-slab distributed

- Sparsity rate of mode under Laplace depends on σ^2/τ^2
- β could be spike-and-slab distributed
 - β_j is exactly equal to zero with probability $1-\pi$

- Sparsity rate of mode under Laplace depends on σ^2/τ^2
- $oldsymbol{\circ}$ could be spike-and-slab distributed
 - β_j is exactly equal to zero with probability $1-\pi$
 - $\beta_j \sim \text{normal}(0, \tau^2/\pi)$ distribution otherwise

- Sparsity rate of mode under Laplace depends on σ^2/τ^2
- $oldsymbol{\circ}$ could be spike-and-slab distributed
 - β_i is exactly equal to zero with probability $1-\pi$
 - $\beta_i \sim \text{normal}(0, \tau^2/\pi)$ distribution otherwise
- Sparsity rate of mode independent of sparsity rate of β !

Largely appropriateness of normal random effects models

Largely appropriateness of normal random effects models

Tricky because:

Largely appropriateness of normal random effects models

Tricky because:

• β is latent

Largely appropriateness of normal random effects models

Tricky because:

- β is latent
- Estimates of β often reflect assumed model

Largely appropriateness of normal random effects models

Tricky because:

- β is latent
- Estimates of β often reflect assumed model

Existing tests we could consider may:

Largely appropriateness of normal random effects models

Tricky because:

- β is latent
- Estimates of β often reflect assumed model

Existing tests we could consider may:

• Depend on unknown parameters, σ^2 , τ^2

Largely appropriateness of normal random effects models

Tricky because:

- β is latent
- Estimates of β often reflect assumed model

Existing tests we could consider may:

- Depend on unknown parameters, σ^2 , τ^2
- Not offer guidance given evidence of misspecification

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\left(rac{\Gamma\left(1/q
ight)}{\Gamma\left(3/q
ight)}\right)^{-q/2}\left|rac{eta_j}{ au}\right|^q
ight\} \end{aligned}$$

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\left(rac{\Gamma\left(1/q
ight)}{\Gamma\left(3/q
ight)}
ight)^{-q/2}\left|rac{eta_j}{ au}
ight|^q
ight\} \end{aligned}$$

• $p(\beta_i)$ is density of the exponential power distribution

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\left(rac{\Gamma\left(1/q
ight)}{\Gamma\left(3/q
ight)}
ight)^{-q/2}\left|rac{eta_j}{ au}
ight|^q
ight\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\left(rac{\Gamma\left(1/q
ight)}{\Gamma\left(3/q
ight)}\right)^{-q/2}\left|rac{eta_j}{ au}\right|^q
ight\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:

$$q = 1$$
: Laplace model/lasso penalty

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\left(rac{\Gamma\left(1/q
ight)}{\Gamma\left(3/q
ight)}\right)^{-q/2}\left|rac{eta_j}{ au}\right|^q
ight\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:

q = 1: Laplace model/lasso penalty

q=2: Normal distribution/ridge penalty

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\left(rac{\Gamma\left(1/q
ight)}{\Gamma\left(3/q
ight)}\right)^{-q/2}\left|rac{eta_j}{ au}\right|^q
ight\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:

q = 1: Laplace model/lasso penalty

q=2: Normal distribution/ridge penalty

 $q \leq 1$: Bridge penalty

$$egin{aligned} oldsymbol{y} &= oldsymbol{X}oldsymbol{eta} + \sigma oldsymbol{z}, & oldsymbol{z} \sim \operatorname{normal}\left(oldsymbol{0}, oldsymbol{I}_n
ight) \ p\left(eta_j
ight) \propto \exp\left\{-\left(rac{\Gamma\left(1/q
ight)}{\Gamma\left(3/q
ight)}\right)^{-q/2}\left|rac{eta_j}{ au}\right|^q
ight\} \end{aligned}$$

- $p(\beta_i)$ is density of the exponential power distribution
- Special cases include:
 - q = 1: Laplace model/lasso penalty
 - q = 2: Normal distribution/ridge penalty
 - $q \leq 1$: Bridge penalty
 - $q \to \infty$: Uniform distribution on $\left(-\sqrt{3}\tau, \sqrt{3}\tau\right)$

Flexibility of the Exponential Power Distribution

Flexibility of the Exponential Power Distribution

Relates uninterpretable q to interpretable

Relates uninterpretable q to interpretable

$$\underbrace{\kappa + 3 = \mathbb{E}[\beta_j^4] / \mathbb{E}[\beta_j^2]^2}_{\text{kurtosis}}$$

Relates uninterpretable q to interpretable

$$\kappa + 3 = \mathbb{E}[\beta_j^4] / \mathbb{E}[\beta_j^2]^2$$
kurtosis

Relates uninterpretable q to interpretable

$$\kappa + 3 = \mathbb{E}[\beta_j^4] / \mathbb{E}[\beta_j^2]^2$$
kurtosis

Facilitates:

• Testing q = 1

Relates uninterpretable q to interpretable

$$\kappa + 3 = \mathbb{E}[\beta_j^4] / \mathbb{E}[\beta_j^2]^2$$
kurtosis

Facilitates:

- Testing q=1
- Specifying a "better" model if evidence suggests $q \neq 1$

Likelihood Ratio Test

Likelihood Ratio Test

• Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- ullet Elements of $oldsymbol{y}$ are $\underline{\mathrm{not}}$ marginally independent

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Score Test

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Score Test

• Needs estimation of σ^2 and τ^2 under Laplace prior

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Score Test

- Needs estimation of σ^2 and τ^2 under Laplace prior
- Elements of y are <u>not</u> marginally independent

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Score Test

- Needs estimation of σ^2 and τ^2 under Laplace prior
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Score Test

- Needs estimation of σ^2 and τ^2 under Laplace prior
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Relationship between kurtosis and $q \rightarrow$

Likelihood Ratio Test

- Needs maximum marginal likelihood estimation of σ^2 , τ^2 , q
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Score Test

- Needs estimation of σ^2 and τ^2 under Laplace prior
- Elements of y are <u>not</u> marginally independent
- Null distribution of test statistic may depend on σ^2 , τ^2

Relationship between kurtosis and $q \to \text{Moment-Based Test}$

An Approximate Level- α Test for q=1, Full Rank \boldsymbol{X}

Oracle Test: Given β , use $\psi = \frac{\bar{\beta}^{(4)}}{(\bar{\beta}^{(2)})^2}$ as test statistic

An Approximate Level- α Test for q = 1, Full Rank \boldsymbol{X}

Oracle Test: Given $\boldsymbol{\beta}$, use $\psi = \frac{\bar{\beta}^{(4)}}{\left(\bar{\beta}^{(2)}\right)^2}$ as test statistic

• Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null

An Approximate Level- α Test for q=1, Full Rank \boldsymbol{X}

- Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null
 - Distribution of ψ is independent of τ^2 , can be simulated

An Approximate Level- α Test for q=1, Full Rank \boldsymbol{X}

- Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null
 - Distribution of ψ is independent of τ^2 , can be simulated

An Approximate Level- α Test for q = 1, Full Rank \boldsymbol{X}

- Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null
 - Distribution of ψ is independent of τ^2 , can be simulated
- Reject when $\psi \notin (s_{\alpha/2}, s_{1-\alpha/2})$

An Approximate Level- α Test for q=1, Full Rank \boldsymbol{X}

- Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null
 - Distribution of ψ is independent of τ^2 , can be simulated
- Reject when $\psi \notin (s_{\alpha/2}, s_{1-\alpha/2})$

Approximate Test: Construct
$$\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}'\boldsymbol{y}, \, \hat{\psi} = \frac{\bar{b}^{(4)}}{\left(\bar{b}^{(2)}\right)^2}$$

An Approximate Level- α Test for q = 1, Full Rank \boldsymbol{X}

Oracle Test: Given $\boldsymbol{\beta}$, use $\psi = \frac{\bar{\beta}^{(4)}}{\left(\bar{\beta}^{(2)}\right)^2}$ as test statistic

- Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null
 - Distribution of ψ is independent of τ^2 , can be simulated
- Reject when $\psi \notin (s_{\alpha/2}, s_{1-\alpha/2})$

Approximate Test: Construct
$$\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{y}, \, \hat{\psi} = \frac{\bar{b}^{(4)}}{(\bar{b}^{(2)})^2}$$

• Reject when $\hat{\psi} \notin (s_{\alpha/2}, s_{1-\alpha/2})$

An Approximate Level- α Test for q=1, Full Rank \boldsymbol{X}

- Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null
 - Distribution of ψ is independent of τ^2 , can be simulated
- Reject when $\psi \notin (s_{\alpha/2}, s_{1-\alpha/2})$

Approximate Test: Construct
$$\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{y}, \, \hat{\psi} = \frac{\bar{b}^{(4)}}{\left(\bar{b}^{(2)}\right)^2}$$

- Reject when $\hat{\psi} \notin (s_{\alpha/2}, s_{1-\alpha/2})$
- Valid when $\operatorname{tr}\left(\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\right) \to 0$

An Approximate Level- α Test for q=1, Full Rank \boldsymbol{X}

- Obtain quantiles $s_{\alpha/2}$, $s_{1-\alpha/2}$ of ψ under null
 - Distribution of ψ is independent of τ^2 , can be simulated
- Reject when $\psi \notin (s_{\alpha/2}, s_{1-\alpha/2})$

Approximate Test: Construct
$$\boldsymbol{b} = (\boldsymbol{X}'\boldsymbol{X})^{-1} \boldsymbol{X}' \boldsymbol{y}, \, \hat{\psi} = \frac{\bar{b}^{(4)}}{\left(\bar{b}^{(2)}\right)^2}$$

- Reject when $\hat{\psi} \notin (s_{\alpha/2}, s_{1-\alpha/2})$
- Valid when $\operatorname{tr}\left(\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\right) \to 0$
 - $\operatorname{tr}\left(\left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}\right) = \sum_{j=1}^{p} \frac{1}{\eta_{j}}$, i.e. $\boldsymbol{X}'\boldsymbol{X}$ not ill-conditioned

Let
$$V = \sqrt{\operatorname{diag}\{X'X\}}$$
 and $C = V^{-1}X'XV^{-1}$

Let
$$m{V} = \sqrt{\operatorname{diag}\left\{m{X}'m{X}
ight\}}$$
 and $m{C} = m{V}^{-1}m{X}'m{X}m{V}^{-1}$

$$\bullet \ m{b}_{\delta,m{X}} = \overbrace{m{V}^{-1}(m{C} + \delta^2m{I}_p)^{-1}m{V}^{-1}}^{m{D}} m{X}' m{y}$$

Let
$$V = \sqrt{\operatorname{diag} \{X'X\}}$$
 and $C = V^{-1}X'XV^{-1}$

• $b_{\delta,X} = V^{-1}(C + \delta^2 I_p)^{-1}V^{-1}X'y$

• $b_{\delta,X} - DX'X\beta \sim \operatorname{normal} (0, \sigma^2 DX'XD)$

Let
$$V = \sqrt{\operatorname{diag} \{X'X\}}$$
 and $C = V^{-1}X'XV^{-1}$

• $b_{\delta,X} = V^{-1}(C + \delta^2 I_p)^{-1}V^{-1}X'y$

• $b_{\delta,X} - DX'X\beta \sim \operatorname{normal} (0, \sigma^2 DX'XD)$

Approximate Test: Define
$$\psi_{\delta, X} = \frac{\beta_{\delta, X}^{(4)}}{\left(\bar{\beta}_{\delta, X}^{(2)}\right)^2}$$

Let
$$V = \sqrt{\operatorname{diag} \{X'X\}}$$
 and $C = V^{-1}X'XV^{-1}$

• $b_{\delta,X} = V^{-1}(C + \delta^2 I_p)^{-1}V^{-1}X'y$

• $b_{\delta,X} - DX'X\beta \sim \operatorname{normal} (0, \sigma^2 DX'XD)$

Approximate Test: Define
$$\psi_{\delta, X} = \frac{\bar{\beta}_{\delta, X}^{(4)}}{\left(\bar{\beta}_{\delta, X}^{(2)}\right)^2}$$

• Obtain quantiles of $\psi_{\delta, X}$ under null

Let
$$oldsymbol{V} = \sqrt{\operatorname{diag}\left\{ oldsymbol{X}'oldsymbol{X}
ight\}} \ ext{and} \ oldsymbol{C} = oldsymbol{V}^{-1}oldsymbol{X}'oldsymbol{V}V^{-1}$$

• $oldsymbol{b}_{\delta,oldsymbol{X}} = \overbrace{oldsymbol{V}^{-1}(oldsymbol{C} + \delta^2 oldsymbol{I}_p)^{-1}oldsymbol{V}^{-1}}^{oldsymbol{D}}oldsymbol{X}'oldsymbol{y}$

• $oldsymbol{b}_{\delta,oldsymbol{X}} - \widecheck{oldsymbol{D}}oldsymbol{X}'oldsymbol{X}oldsymbol{eta} \sim \operatorname{normal}\left(oldsymbol{0}, \sigma^2 oldsymbol{D} oldsymbol{X}'oldsymbol{X}oldsymbol{D}
ight)$

Approximate Test: Define
$$\psi_{\delta, X} = \frac{\bar{\beta}_{\delta, X}^{(4)}}{\left(\bar{\beta}_{\delta, X}^{(2)}\right)^2}$$

- Obtain quantiles of $\psi_{\delta, \mathbf{X}}$ under null
 - Distribution of $\psi_{\delta, \mathbf{X}}$ still independent of τ^2 , can simulate

Let
$$V = \sqrt{\operatorname{diag} \{X'X\}}$$
 and $C = V^{-1}X'XV^{-1}$

• $b_{\delta,X} = V^{-1}(C + \delta^2 I_p)^{-1}V^{-1}X'y$

• $b_{\delta,X} - DX'X\beta \sim \operatorname{normal} (0, \sigma^2 DX'XD)$

Approximate Test: Define
$$\psi_{\delta, X} = \frac{\bar{\beta}_{\delta, X}^{(4)}}{\left(\bar{\beta}_{\delta, X}^{(2)}\right)^2}$$

- Obtain quantiles of $\psi_{\delta, \mathbf{X}}$ under null
 - Distribution of $\psi_{\delta, \mathbf{X}}$ still independent of τ^2 , can simulate
- Compute $\hat{\psi}_{\delta, \mathbf{X}} = \frac{\bar{b}_{\delta, \mathbf{X}}^{(4)}}{\left(\bar{b}_{\delta, \mathbf{X}}^{(2)}\right)^2}$, compare to quantiles of $\psi_{\delta, \mathbf{X}}$

Choice of δ^2 for n < p, Ill-Conditioned $\boldsymbol{X}'\boldsymbol{X}$

Choice of δ^2 for n < p, Ill-Conditioned $\boldsymbol{X}'\boldsymbol{X}$

As $\delta \to \infty$

As $\delta \to \infty$

© $\hat{\psi}_{\delta,\boldsymbol{X}} \to \psi_{\delta,\boldsymbol{X}}$, nominal level more likely to be achieved

As $\delta \to \infty$

- $\hat{\psi}_{\delta,\boldsymbol{X}} \to \psi_{\delta,\boldsymbol{X}}$, nominal level more likely to be achieved
- \odot $b_{\delta,X} \to 0$, power decreases

As $\delta \to \infty$

- $\hat{\psi}_{\delta,\boldsymbol{X}} \to \psi_{\delta,\boldsymbol{X}}$, nominal level more likely to be achieved
- \odot $b_{\delta,X} \to 0$, power decreases

Our Recommendation:

Choice of δ^2 for n < p, Ill-Conditioned $\boldsymbol{X}'\boldsymbol{X}$

As $\delta \to \infty$

- $\hat{\psi}_{\delta,\mathbf{X}} \to \psi_{\delta,\mathbf{X}}$, nominal level more likely to be achieved
- \odot $b_{\delta,X} \to 0$, power decreases

Our Recommendation:

Letting η_1, \ldots, η_p be eigenvalues of C

As $\delta \to \infty$

- $\hat{\psi}_{\delta,\boldsymbol{X}} \to \psi_{\delta,\boldsymbol{X}}$, nominal level more likely to be achieved
- \odot $b_{\delta,X} \to 0$, power decreases

Our Recommendation:

Letting η_1, \ldots, η_p be eigenvalues of C

$$\delta^2 = (1 - \min_j \eta_j)_+$$

As $\delta \to \infty$

- $\hat{\psi}_{\delta, \mathbf{X}} \to \psi_{\delta, \mathbf{X}}$, nominal level more likely to be achieved
- \odot $b_{\delta,X} \to 0$, power decreases

Our Recommendation:

Letting η_1, \ldots, η_p be eigenvalues of C

$$\delta^2 = (1 - \min_j \eta_j)_+$$

If columns of X standardized to have norm n,

$$\operatorname{tr}\left(\underbrace{\boldsymbol{D}\boldsymbol{X}'\boldsymbol{X}\boldsymbol{D}}_{\operatorname{Variance of }\boldsymbol{\beta}_{\delta,\boldsymbol{X}}}\right) \leq \frac{1}{n}\sum_{j=1}^{p}\frac{1}{\delta^{2}+\eta_{j}}$$

Test Performance: Exponential Power β

Test Performance: Spike-and-Slab β

Laplace prior often used when β may be **sparse** $p(\beta_j \neq 0) = \pi$, $\beta_j | \beta_j \neq 0 \sim \text{normal}(0, \tau^2/\pi)$, $\kappa = 3(\frac{1-\pi}{\pi})$

f 0 Compute \hat{q}

- $\mathbf{0}$ Compute \hat{q}
- 2 Compute unbiased $\hat{\tau}^2$, $\hat{\sigma}^2$ from $\boldsymbol{b}_{\delta,\boldsymbol{X}}$ and residuals

- \bigcirc Compute \hat{q}
- 2 Compute unbiased $\hat{\tau}^2$, $\hat{\sigma}^2$ from $\boldsymbol{b}_{\delta,\boldsymbol{X}}$ and residuals
- **3** Compute $\hat{\boldsymbol{\beta}}$ by:

- 1 Compute \hat{q}
- 2 Compute unbiased $\hat{\tau}^2$, $\hat{\sigma}^2$ from $\boldsymbol{b}_{\delta,\boldsymbol{X}}$ and residuals
- 3 Compute $\hat{\boldsymbol{\beta}}$ by:
 - Solving for posterior mode

- 1 Compute \hat{q}
- 2 Compute unbiased $\hat{\tau}^2$, $\hat{\sigma}^2$ from $\boldsymbol{b}_{\delta,\boldsymbol{X}}$ and residuals
- **3** Compute $\hat{\boldsymbol{\beta}}$ by:
 - Solving for posterior mode (nonconvex when q < 1)

- 1 Compute \hat{q}
- 2 Compute unbiased $\hat{\tau}^2$, $\hat{\sigma}^2$ from $\boldsymbol{b}_{\delta,\boldsymbol{X}}$ and residuals
- **3** Compute $\hat{\boldsymbol{\beta}}$ by:
 - Solving for posterior mode (nonconvex when q < 1)
 - Obtain posterior mean/median via Gibbs sampling

Idea: Use $\hat{\psi}_{\delta, \mathbf{X}}$ to estimate $\kappa + 3$

Idea: Use $\hat{\psi}_{\delta, \mathbf{X}}$ to estimate $\kappa + 3$

•
$$\psi = \frac{\bar{\beta}^{(4)}}{\left(\bar{\beta}^{(2)}\right)^2}$$
 is a method of moments estimator of $\kappa + 3$

Idea: Use $\hat{\psi}_{\delta, \mathbf{X}}$ to estimate $\kappa + 3$

•
$$\psi = \frac{\bar{\beta}^{(4)}}{(\bar{\beta}^{(2)})^2}$$
 is a method of moments estimator of $\kappa + 3$
 $\rightarrow \text{Use } \hat{\psi} = \widehat{\kappa + 3}$

Idea: Use $\hat{\psi}_{\delta, \mathbf{X}}$ to estimate $\kappa + 3$

• $\psi = \frac{\bar{\beta}^{(4)}}{\left(\bar{\beta}^{(2)}\right)^2}$ is a method of moments estimator of $\kappa + 3$

$$\rightarrow$$
 Use $\hat{\psi}=\widehat{\kappa+3}$

When we use $\psi_{\delta, \mathbf{X}} = \frac{\bar{\beta}_{\delta, \mathbf{X}}^{(4)}}{\left(\bar{\beta}_{\delta, \mathbf{X}}^{(2)}\right)^2}$, need to correct for bias of $\boldsymbol{\beta}_{\delta, \mathbf{X}}$:

Idea: Use $\hat{\psi}_{\delta, \mathbf{X}}$ to estimate $\kappa + 3$

• $\psi = \frac{\bar{\beta}^{(4)}}{(\bar{\beta}^{(2)})^2}$ is a method of moments estimator of $\kappa + 3$

$$\rightarrow$$
 Use $\hat{\psi} = \widehat{\kappa + 3}$

When we use $\psi_{\delta, \mathbf{X}} = \frac{\bar{\beta}_{\delta, \mathbf{X}}^{(4)}}{\left(\bar{\beta}_{\delta, \mathbf{X}}^{(2)}\right)^2}$, need to correct for bias of $\boldsymbol{\beta}_{\delta, \mathbf{X}}$:

$$\widehat{\kappa + 3} = \left(\frac{\alpha_{\delta, \mathbf{X}}^2}{\gamma_{\delta, \mathbf{X}}}\right) \left(\hat{\psi}_{\delta, \mathbf{X}} - \frac{\omega_{\delta, \mathbf{X}}}{\alpha_{\delta, \mathbf{X}}^2}\right)$$

Idea: Use $\hat{\psi}_{\delta, \mathbf{X}}$ to estimate $\kappa + 3$

• $\psi = \frac{\bar{\beta}^{(4)}}{(\bar{\beta}^{(2)})^2}$ is a method of moments estimator of $\kappa + 3$ $\rightarrow \text{Use } \hat{\psi} = \widehat{\kappa + 3}$

When we use $\psi_{\delta, \mathbf{X}} = \frac{\bar{\beta}_{\delta, \mathbf{X}}^{(4)}}{(\bar{\beta}_{\delta, \mathbf{Y}}^{(2)})^2}$, need to correct for bias of $\boldsymbol{\beta}_{\delta, \mathbf{X}}$:

$$\widehat{\kappa + 3} = \left(\frac{\alpha_{\delta, \mathbf{X}}^2}{\gamma_{\delta, \mathbf{X}}}\right) \left(\hat{\psi}_{\delta, \mathbf{X}} - \frac{\omega_{\delta, \mathbf{X}}}{\alpha_{\delta, \mathbf{X}}^2}\right)$$

• Reduces to $\hat{\psi}$ when $\delta = 0$

Idea: Use $\hat{\psi}_{\delta, \mathbf{X}}$ to estimate $\kappa + 3$

• $\psi = \frac{\bar{\beta}^{(4)}}{(\bar{\beta}^{(2)})^2}$ is a method of moments estimator of $\kappa + 3$ $\rightarrow \text{Use } \hat{\psi} = \widehat{\kappa + 3}$

When we use $\psi_{\delta, \mathbf{X}} = \frac{\bar{\beta}_{\delta, \mathbf{X}}^{(4)}}{\left(\bar{\beta}_{\delta, \mathbf{X}}^{(2)}\right)^2}$, need to correct for bias of $\boldsymbol{\beta}_{\delta, \mathbf{X}}$:

$$\widehat{\kappa + 3} = \left(\frac{\alpha_{\delta, \mathbf{X}}^2}{\gamma_{\delta, \mathbf{X}}}\right) \left(\hat{\psi}_{\delta, \mathbf{X}} - \frac{\omega_{\delta, \mathbf{X}}}{\alpha_{\delta, \mathbf{X}}^2}\right)$$

- Reduces to $\hat{\psi}$ when $\delta = 0$
- Can obtain \hat{q} via $\widehat{\kappa+3} = \Gamma(\frac{1}{\hat{q}})\Gamma(\frac{5}{\hat{q}})/\Gamma(\frac{3}{\hat{q}})^2$

• Gibbs-within-EM needed for maximum marginal likelihood

- Gibbs-within-EM needed for maximum marginal likelihood
 - Can be slow to converge

- Gibbs-within-EM needed for maximum marginal likelihood
 - Can be slow to converge
 - Scales slowly with p

- Gibbs-within-EM needed for maximum marginal likelihood
 - Can be slow to converge
 - Scales slowly with p
 - Estimates of σ^2 , τ^2 will depend on q

- Gibbs-within-EM needed for maximum marginal likelihood
 - Can be slow to converge
 - Scales slowly with p
 - Estimates of σ^2 , τ^2 will depend on q
- Moment-based estimators can be negative

- Gibbs-within-EM needed for maximum marginal likelihood
 - Can be slow to converge
 - Scales slowly with p
 - Estimates of σ^2 , τ^2 will depend on q
- Moment-based estimators can be negative
- Approximate σ^2 , τ^2 obtained via MML for normal $\boldsymbol{\beta}$

- Gibbs-within-EM needed for maximum marginal likelihood
 - Can be slow to converge
 - Scales slowly with p
 - Estimates of σ^2 , τ^2 will depend on q
- Moment-based estimators can be negative
- Approximate σ^2 , τ^2 obtained via MML for normal $\boldsymbol{\beta}$

$$\min_{\tau^2, \sigma^2} \log \left(\left| \boldsymbol{X} \boldsymbol{X}^\top \tau^2 + \boldsymbol{I}_n \sigma^2 \right| \right) + \operatorname{tr} \left(\boldsymbol{y} \boldsymbol{y}^\top \left(\boldsymbol{X} \boldsymbol{X}^\top \tau^2 + \boldsymbol{I}_n \sigma^2 \right)^{-1} \right)$$

Adaptive Simulations: Exponential Power β

Adaptive Simulations: Exponential Power β

p		100	
\overline{q}	1/4	1	4
Null Hypothesis Rejected	83	5	69
$\overline{\text{MSE APMe}} \leq \overline{\text{MSE LPMe}}$	97	97	95
$MSE APMe \leq MSE EPMe$	85	85	50
$MSE\ APMe \leq MSE\ BB$	100	100	49
$MSE APMe \leq MSE CV$	52	52	63

Polson et al. (2014); Friedman et al. (2010)

Adaptive Simulations: Spike-and-slab β

Adaptive Simulations: Spike-and-slab β

p		100	
π	0.1	0.5	0.9
Pow. ADMo \geq Pow. LPMo	68	98	100
Pow. ADMo \geq Pow. EPMo	100	42	31
Pow. ADMo \geq Pow. CV	84	97	95
$\overline{\text{FDR ADMo} \leq \text{FDR LPMo}}$	100	100	75
$FDR ADMo \leq FDR EPMo$	93	70	97
$FDR ADMo \leq FDR CV$	70	9	24
$CS ADMo \ge CS LPMo$	100	100	98
$CS ADMo \ge CS EPMo$	93	70	31
$CS ADMo \ge CS CV$	70	16	94

Polson et al. (2014); Friedman et al. (2010)

Applications: Canonical Examples

Dataset	n	p	$\psi_{\delta,0.025}$	$\psi_{\delta,0.975}$	$\psi(\hat{\boldsymbol{\beta}}_{\delta})$
Diabetes	422	64	2.31	7.68	10.36
Boston Housing	506	104	1.97	7.61	6.57
Motif	287	195	2.87	10.35	5.77
Glucose	68	72	2.31	7.06	7.99

Efron et al. (2004); Park and Casella (2008); Polson et al. (2014); Bühlmann and van de Geer (2011); Priami and Morine (2015)

Application: Diabetes Data with Interactions

- y is a measure of diabetes progression for n = 442
- p = 64 main effects and interactions for 10 covariates

	Par. Ests.			Mode Sparsity		
Dataset	$\hat{\sigma}^2$	$\hat{ au}^2$	\hat{q}	L	EP	
Diabetes	0.4720	0.0071	0.5505	50.0%	87.5%	

Efron et al. (2004)

Application: Glucose Data

- y is blood glucose concentration y for n = 68 subjects
- p = 72 health indicators, e.g. metabolite measurements

	Par. Ests.			Mode Sparsity		
Dataset	$\hat{\sigma}^2$	$\hat{ au}^2$	\hat{q}	L	EP	
Glucose	0.4754	0.0070	0.5939	83.3%	98.6%	

Priami and Morine (2015)

We've shown:

• We can construct a test of the Laplace model/lasso penalty

We've shown:

- We can construct a test of the Laplace model/lasso penalty
- Test statistic can guide model selection after rejection

We've shown:

- We can construct a test of the Laplace model/lasso penalty
- Test statistic can guide model selection after rejection

Our approach has natural extensions to:

We've shown:

- We can construct a test of the Laplace model/lasso penalty
- Test statistic can guide model selection after rejection

Our approach has natural extensions to:

• Testing appropriateness of different distributions for $\boldsymbol{\beta}$

We've shown:

- We can construct a test of the Laplace model/lasso penalty
- Test statistic can guide model selection after rejection

Our approach has natural extensions to:

- Testing appropriateness of different distributions for β
- ullet Generalized linear models for y

We've shown:

- We can construct a test of the Laplace model/lasso penalty
- Test statistic can guide model selection after rejection

Our approach has natural extensions to:

- Testing appropriateness of different distributions for $\boldsymbol{\beta}$
- Generalized linear models for y
- Nonnormal z

Problem

Problem

Solving $\min_{\beta} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$ is hard

Problem

Solving $\min_{\boldsymbol{\beta}} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$ is hard

 \odot No closed form solution for arbitrary q, even when $\beta = \beta$

Problem

Solving $\min_{\boldsymbol{\beta}} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$ is hard

- \odot No closed form solution for arbitrary q, even when $\beta = \beta$
- \odot Solutions for arbitrary q aren't nested

Problem

Solving $\min_{\boldsymbol{\beta}} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$ is hard

- © No closed form solution for arbitrary q, even when $\beta = \beta$
- \odot Solutions for arbitrary q aren't nested

Solution

Problem

Solving $\min_{\boldsymbol{\beta}} \frac{1}{2\sigma^2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \lambda ||\boldsymbol{\beta}||_q^q$ is hard

- \odot No closed form solution for arbitrary q, even when $\beta = \beta$
- \odot Solutions for arbitrary q aren't nested

Solution

© Reparametrization to $\frac{1}{2} ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}||_2^2 + \left(\frac{\omega^{2-q}}{q}\right) ||\boldsymbol{\beta}||_q^q$

Mazumder et al. (2011)

Acknowledgements

- My advisor Peter Hoff
- NSF Grants DGE-1256082, DMS-1505136, & DMS-2113079
- My canine assistants

- Box, G. E. P. (1953). A Note on Regions for Tests of Kurtosis. Biometrika 40 (3/4), 465–468.
- Box, G. E. P. and G. C. Tiao (1973). Bayesian Assessment of Assumptions. In Bayesian Inference in Statistical Analysis, Chapter 3, pp. 149–202. Reading, MA: Addison-Wesley Pub. Co.
- Bühlmann, P. and S. van de Geer (2011). Statistics for High-Dimensional Data: Methods, Theory and Applications. Heidelberg: Springer.
- Drikvandi, R., G. Verbeke, and G. Molenberghs (2017). Diagnosing misspecification of the random-effects distribution in mixed models. *Biometrics* (March), 63–71.
- Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least Angle Regression. The Annals of Statistics 32(2), 407–499.
- Frank, I. E. and J. H. Friedman (1993). A Statistical View of Some Chemometrics Regression Tools. Technometrics 35(2), 109.
- Friedman, J., T. Hastie, and R. Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. *Journal of Statistical Software 33*(1).
- Marjanovic, G. and V. Solo (2014). lq Sparsity Penalized Linear Regression with Cyclic Descent. IEEE Transactions on Signal Processing 62(6), 1464–1475.
- Mazumder, R., J. H. Friedman, and T. Hastie (2011). Sparsenet: Coordinate descent with nonconvex penalties. Journal of the American Statistical Association 106, 1125–1138.
- Park, T. and G. Casella (2008). The Bayesian Lasso. Journal of the American Statistical Association 103(482), 681–686.
- Polson, N. G., J. G. Scott, and J. Windle (2014). The Bayesian bridge. Journal of the Royal Statistical Society. Series B: Statistical Methodology 76(4), 713–733.
- Priami, C. and M. J. Morine (2015). Analysis of Biological Systems. London: Imperial College Press.
- Subbotin, M. T. (1923). On the Law of Frequency of Error. Matematicheskii Sbornik 31(2), 296–301.
- Verbeke, G. and E. Lesaffre (1996). A Linear Mixed-Effects Model With Heterogeneity in the Random-Effects Population. *Journal of the American Statistical Association 91* (433), 217–221.

Details for Estimating \hat{q}

$$\mathbb{E}[\bar{\beta}_{\delta, \mathbf{X}}^{(2)}] = \alpha_{\delta, \mathbf{X}} \tau^{2} \\
\mathbb{E}[\bar{\beta}_{\delta, \mathbf{X}}^{(4)}] = \gamma_{\delta, \mathbf{X}} (\kappa + 3) \tau^{4} + \omega_{\delta, \mathbf{X}} \tau^{4}$$

$$\Rightarrow \widehat{\kappa + 3} = \left(\frac{\alpha_{\delta, \mathbf{X}}^{2}}{\gamma_{\delta, \mathbf{X}}}\right) \left(\hat{\psi}_{\delta, \mathbf{X}} - \frac{\omega_{\delta, \mathbf{X}}}{\alpha_{\delta, \mathbf{X}}^{2}}\right)$$

$$\alpha_{\delta, \mathbf{X}} = \operatorname{tr} \left(\mathbf{X}' \mathbf{X} \mathbf{D} \mathbf{D} \mathbf{X}' \mathbf{X} \right) / p$$

$$\gamma_{\delta, \mathbf{X}} = \sum_{j=1}^{p} \left(\mathbf{D} \mathbf{X}' \mathbf{X} \right)_{jj}^{4} / p$$

$$\omega_{\delta, \mathbf{X}} = 3 \left(\sum_{j=1}^{p} \left(\mathbf{X}' \mathbf{X} \mathbf{D} \mathbf{D} \mathbf{X}' \mathbf{X} \right)_{jj}^{2} / p - \gamma_{\delta, \mathbf{X}} \right)$$