Probability and Statistics for Information Science Lecture Notes

Hengyu Ai

Fall 2024

目录

第	1 讲	· 概率与计数 Probability and Counting	1
	1.1	概率模型 Probabilistic Model	1
	1.2	概率与计数的朴素定义	3
		1.2.1 概率	3
		1.2.2 计数	3
	1.3	其他非公理化的概率定义	6
		1.3.1 无限样本空间中的概率	6
		1.3.2 统计定义的概率	7
	1.4	公理化的概率定义	8
第	2 讲	· 条件概率 · · · · · · · · · · · · · · · · · · ·	11
		2.0.1 内容总结	11
第	3 讲	· 随机变量与分布	13
		3.0.1 内容总结	13
第	4 讲	· <mark>期望</mark>	15
		4.0.1 内容总结	15
第	5 讲	· 连续随机变量	17
		5.0.1 内容总结	17
第	6 讲	· 联合分布	19
		6.0.1 内容总结	19

第 7	讲	Monte Carlo 方法 7.0.1 内容总结	21 21
第 8	讲	条件期望 8.0.1 内容总结	23
第 9	讲		25
第 1	0 ij		27

概率与计数 Probability and Counting

1.1 概率模型 Probabilistic Model

定义 1.1 集合

- 1. 空集: ∅
- 2. 子集 (subset) 关系: $A \subseteq B$
- 3. 交 (union): $A \cup B$
- 4. 并 (intersection): $A \cap B$
- 5. $\nmid \mid$ (complement): A^c
- 6. De Morgan \mathfrak{A} : $(A \cup B)^c = A^c \cap B^c, (A \cap B)^c = A^c \cup B^c$

定义 1.2 样本空间 (Sample Space)

一个实验的全部可能的结果的集合称为样本空间.

定义 1.3 事件 (event)

样本空间的子集称为事件.

当实际结果属于一个事件时, 称这个事件发生 (occured)

English	Sets
Events and occurrences	
sample space	S
s is a possible outcome	$s \in S$
A is an event	$A \subseteq S$
A occurred	$s_{ ext{actual}} \in A$
something must happen	$s_{ ext{actual}} \in S$
New events from old events	
$A ext{ or } B ext{ (inclusive)}$	$A \cup B$
A and B	$A\cap B$
not A	A^c
$A ext{ or } B, ext{ but not both}$	$(A\cap B^c)\cup (A^c\cap B)$
at least one of A_1, \ldots, A_n	$A_1 \cup \cdots \cup A_n$
all of A_1, \ldots, A_n	$A_1 \cap \cdots \cap A_n$
Relationships between events	
A implies B	$A \subseteq B$
${\cal A}$ and ${\cal B}$ are mutually exclusive	$A\cap B=\emptyset$
A_1, \ldots, A_n are a partition of S	$A_1 \cup \cdots \cup A_n = S, A_i \cap A_j = \emptyset \text{ for } i \neq j$

1.2 概率与计数的朴素定义

1.2.1 概率

定义 1.4 概率(朴素定义)

假设:

- 1. 有限样本空间
- 2. 输出结果等可能

则:

 $\Diamond A$ 为一个事件, S 为其样本空间, 则 A 的概率为

$$P_{naive}(A) = \frac{|A|}{|P|} = \frac{\text{number of outcomes favorable to } A}{\text{total number of outcomes in } S}$$

在这种情况下概率被转化为计数问题。

例 1.1 Pascal-Fermat Correspondence

Alice 和 Bob 抛硬币,三次获胜的人赢。每一轮 Alice 赌注硬币为正面 (Head), Bob 赌注反面 (Tail)。当前比分为 2:1,若此时结束游戏该如何按可能的结果划分奖品?

在第五轮游戏必然结束,则剩下两局样本空间为: $S=\{HH,HT,TH,TT\}$,当且仅当投出 TT 时 Bob 获胜,则应该给 Alice $\frac{3}{4}$,给 Bob $\frac{1}{4}$

1.2.2 计数

- Sampling: 从集合等可能获取一个元素
- With Replacement & without replacement: 取出后放回/不放回
- Ordered & Unorderd

例 1.2 生日问题

房间内有 k 人,假设一个人生日为一年 365 天内等可能随机一天,生日互相独立,求至少两人有相同生日的概率。

相当于从集合 $\{1,2,3,\ldots,365\}$ 取出 k 个元素, with replacement。令 A 表示"存在两人以上……"的情况,则 A^c 为"没有任何人和别人生日相同"的情况。

$$P(A^c) = \frac{|A^c|}{|S|} = \frac{\text{without replacement } \exists \exists \text{ samples}}{\text{with replacement}} = \frac{365!}{365^k} (k \leqslant 365)$$

$$P(A) = 1 - P(A^c)$$

定理 1.1 广义生日问题

从 n 个值中随机选 k 次,当 $k \approx 1.18\sqrt{n}$ 时,有 50% 的概率,至少有两个选取的值相同。

考虑按每个随机变量来计算 $P(A^c)$, 则第一个变量从 [1,n] 选择任意,第二变量必须取到和第一个不同的,第三个取和一、二不同的,并且变量之间相互独立,以此类推:

定理 1.2 多项式定理 (Multinomial Theorem)

$$(x_1 + x_2 + x_3 + \dots + x_r)^n = \sum_{\substack{n_1, n_2, \dots, n_r \ge 0}} \frac{n!}{n_1! n_2! \cdots n_r!} x_1^{n_1} x_2^{n_2} \cdots x_r^{n_r} (n_1 + n_2 + \dots + n_r = n)$$

组合意义: 把n个不同的人分成r组

在证明组合恒等式时,可以使用式子两侧组合意义说明等式成立。

定理 1.3 吸收/提取恒等式

$$n\binom{n-1}{k-1} = k\binom{n}{k}$$

证明

假设有如下场景: 从n人中选出k个组成小队,并且这k人中有一人为小队长。

定理 1.3 LHS 可以视为先选出小队长(n 种方案),然后在剩下的 n-1 人中选出小队剩余成员(组合数). RHS 可以视为先从 n 人中选出组成小队的 k 人(组合数),然后在小队内部选出队长(k 种方案),可知等式成立。

定理 1.4 Vandermonde 卷积

$$\binom{m+n}{k} = \sum_{j=0}^{k} \binom{m}{j} \binom{n}{k-j}$$

证明

假设有如下场景:有m个男生和n个女生,从中选出k个人作为一组。

定理 1.4 LHS 即为直接选择,RHS 为,枚举从男生中选出几个人 $(j \ \text{从 0 } \text{到 } k)$,然后选出 $\binom{m}{i}$,再从女生中选出剩下的人 $(\binom{n}{k-i})$

定理 1.5 Bose-Einstein 计数定理

组合意义:可重复选择,顺序无影响,从n中选k

形式描述: $x_1 + x_2 + \cdots + x_n = k, x_i \in \mathbb{N}, i = 0, 1, 2, \dots, n$, 这个不定方程的解的个数为

$$\binom{n+k-1}{n-1}$$

类似的, 当解要求必须为正时, 可以按照**隔板法**求解

例 1.3

求如下方程解的个数:

$$x_1 + x_2 + x_3 + x_4 = 88, x_1 \ge 3, x_2 \ge 5, x_3 \ge 8, x_4 \ge 10$$

令
$$y_1 = x_1 - 3$$
, $y_2 = x_2 - 5$, $y_3 = x_3 - 8$, $y_4 = x_4 - 10$, 转化为 定理 1.5

选择 n 个对象中的 k 个对象,可能的方式数量:

	顺序有关	顺序无关
允许放回	n^k	$\binom{n+k-1}{k}$
不允许放回	$n(n-1)\cdots(n-k+1)$	$\binom{n}{k}$

1.3 其他非公理化的概率定义

1.3.1 无限样本空间中的概率

按照测度理论的几何度量定义。

例 1.4

随机变量 $x \in [0,3]$, 求 x 到 0 比到 1 更近的概率.

一维的几何度量为线段长度:

$$P(A) = \frac{\text{Length of } [0, 0.5]}{\text{Length of } [0, 3]}$$

例 1.5

随机变量 $x \in [1, 2]$, 求 P(x = 1.5)

将
$$[1,2]$$
 分为 $[1,1+\frac{1}{2n+1}),[1+\frac{1}{2n+1},1+\frac{2}{2n+1}),\cdots$ 可知对任何一个区间, $P(x\in[l,r))=\frac{1}{2n+1}$

$$\forall n \ge 1, 0 \ge P(x = 1.5) \le P(x \in A_n) = \frac{1}{2n+1}$$

在上面的例子中, 出现了概率为 0 的事件, 但是那个事件并不是不可能时间。

一个不可能事件概率为 0,概率为 0 的事件为**事件测度为 0**,不代表事件不会发生。 更高维度也有相似的测度定义的概率:

例 1.6

在一个正方形中均匀任取一点,求这个点在正方形内接圆的概率。

二维的测度使用面积衡量。

$$P(A) = \frac{S_{\text{circle}}}{S_{\text{square}}} = \frac{\pi}{4}$$

1.3.2 统计定义的概率

概率是重复一个实验很多次后得到的频率。

大数定理, Monte Carlo 方法

1.4 公理化的概率定义

定义 1.5 公理化的概率

给定样本空间 S,构成事件类的 S 子集满足如下公理

- 1. S 是一个事件
- 2. 对于任何事件 A, 其补集是事件
- 3. 可列的数个事件的并是事件

概率函数 $P: A \to \mathbb{R}$ 满足如下公理

- 1. $P(\emptyset) = 0, P(S) = 1$
- 2. 对于互不相交的事件 A_1, A_2, \ldots

$$P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$$

根据上述概率的公理,可以导出一些概率的性质:

- $P(A^c) = 1 P(A)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$

定理 1.6 容斥原理

对于任何 n 个事件 A_1, A_2, \ldots, A_n

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \dots + (-1)^{n+1} P(A_{1} \cap A_{2} \cap \dots \cap A_{n})$$

例 1.7 De Montmort 匹配问题

从均匀洗牌的 n 张卡的卡堆内,卡按照 $1 \sim n$ 标号,逐张翻开卡牌,若有任何一次满足翻开第 k 张时,那张牌标号为 k 则获胜。

令 A_i 表示第 i 张开的牌标号为 i 的事件,则 $P(\text{win}) = P(A_1 \cap A_2 \cap \cdots \cap A_n)$ $P(A_i) = \frac{1}{n}$

根据对称性, $P(A_i \cup A_j \cup A_k \cdots \cup A_p)$ 对于相同的 p 都相同

$$P(A_i \cup A_j \cup A_k \cdots \cup A_p) =$$

用于分析具有不确定结果的现象的框架:

- 保持一致推理的规则
- 用于预测和决策

2条件概率

12 第 2 讲 条件概率

3

随机变量与分布

期望

16 第 4 讲 期望

_

连续随机变量

6 联合分布

20 第 6 讲 联合分布

Monte Carlo 方法

8

条件期望

9

统计推断

26 第 9 讲 统计推断

Markov 链