

프론트 엔드 개발자가 알아야 하는 컴퓨터 공학 지식 컴퓨터 네트워크

컴퓨터 네트워크 | 프론드 엔드 개발자가 알아야 하는 CS 지식

강사 나동빈

프론트 엔드 개발자가 알아야 하는 컴퓨터 공학 지식

컴퓨터 네트워크

OSI 7계층

- 컴퓨터를 사용할 때 네트워크 상에서 통신이 수행되는 과정을 7단계로 표현한다.
- 전체 과정이 구분된다는 점에서 네트워크 문제가 생겼을 때, 해결하기 쉽다.
- → 이상이 발생한 계층의 장비만 수리할 수 있다는 점에서 효과적이다.

컴퓨터 공학 지식 컴퓨터 네트워크

OSI 7계층

• 컴퓨터를 사용할 때 네트워크 상에서 통신이 수행되는 과정을 7단계로 표현한다.

7계층 Application Layer

: 응용 프로그램에서 HTTP, FTP 등의 프로토콜을 활용하는 계층

6계층 Presentation Layer

: 프로그램 간 데이터의 형식(표현)이 다른 점을 처리해 응용 계층의 부담을 줄임

5계층 Session Layer

: 데이터가 통신하기 위한 논리적인 연결(세션)을 수행

4계층 Transport Layer

: 포트 번호를 사용하며, 일반적으로 두 응용 프로그램 간의 연결을 담당

3계층 Network Layer

: IP 주소를 사용하며, 데이터를 원하는 목적지까지 안전하고 정확하게 전달

2계층 Datalink Layer

: MAC 주소를 사용하며, 네트워크 기기 간의 데이터 전송 및 물리 주소 결정

1계층 Physical Layer

: 기계의 전기적인 특성을 활용하여 전기적인 신호를 전송 (통신 케이블, 리피터)

다양한 네트워크 관련 문제 상황 예시

- 우리가 게임을 하다가 네트워크 접속이 끊긴 상황을 생각해 보자.
- 1. 랜선이 뽑혀 있었거나, 통신 케이블(선)이 끊어져 있었다면?
- → 물리 계층(1계층)에서 문제가 있었던 것이다.
- 2. 라우터(router)의 발열 문제가 있어 재부팅을 해야 했다면?
- → 네트워크 계층(3계층)에서 문제가 있었던 것이다.

OSI 7계층과 TCP/IP 계층

- OSI 7계층은 참조 모델(reference model)로 사실상 이론적인 개념이다.
- → 국제표준화기구(ISO)가 참여하여 개발했다.
- 현재의 TCP/IP 계층이 더 실무적인 구조에 가깝다.

컴퓨터 공학 지식컴퓨터 컴퓨터 네트워크

컴퓨터 공학 지식 컴퓨터 네트워크

OSI 7계층과 TCP/IP 계층

	OSI 7계층		TCP/IP 프로토콜
7계층	Application Layer	Application HTTP DNS DHCP	
6계층	Presentation Layer		
5계층	Session Layer		FTP SMTP Telnet
4계층	Transport Layer		TCP Transport UDP
3계층	Network Layer		IP ICMP Internet ARP RARP
2계층	Datalink Layer		Network Interface
1계층	Physical Layer		

물리 계층(Physical Layer): 1계층

- 기계의 전기적인 특성을 활용하여 <u>통신 케이블을 통해 데이터를 전송</u>한다.
- 비트(bit) 단위로 0 혹은 1을 의미하는 전기 신호를 전달한다.
- 예시) 리피터, 통신 케이블 등

데이터 링크 계층(Datalink Layer): 2계층

- <u>네트워크 기기 간의 데이터 전송을 수행하고, 물리 주소를 결정</u>한다.
- 물리 계층(1계층)을 통해 주고받는 데이터의 오류 처리 및 흐름을 제어한다.
- 데이터의 단위: 프레임(frame)
- 물리 주소(MAC address)를 이용한다.
- 예시) 스위치(switch), 브리지(bridge)
- 2계층은 3계층과는 다르게, <u>직접적으로 연결된 장치와의 통신에 중점</u>을 두는 계층이다.

네트워크 계층(Network Layer): 3계층

- 데이터를 원하는 목적지까지 안전하고 정확하게 전달하는 기능을 수행한다.
- 라우팅, 흐름 제어, 오류 제어 등의 기능을 모두 포함한다.
- 데이터의 단위: 패킷(packet)
- 라우팅 프로토콜을 통해 최적화된 경로를 통해 목적지에 도달한다.
- 논리 주소(IP address)를 사용한다.
- 예시) 라우터

전송계층(Transport Layer): 4계층

- <u>포트(port)에서 포트(port)까지의 연결을 담당</u>한다.
- 일반적으로 두 응용 프로그램 간의 연결을 담당한다.
- TCP/UDP 프로토콜이 사용된다.
- TCP의 경우 연결 기반으로 상태 정보에 기반하며(stateful), 패킷들의 유효성을 검사한다.
- 누락된 패킷을 확인하여 재전송을 요청하는 등, 두 장치 간 데이터 전송의 신뢰성을 담당할 수 있다.

세션 계층(Session Layer): 5계층

- 두 응용 프로그램이 통신하기 위한 <u>논리적인 연결(세션 형성)</u>을 수행한다.
- 일반적으로 운영체제는 TCP/IP 세션을 생성/유지/제거하는 역할을 수행한다.

표현 계층(Presentation Layer): 6계층

- <u>각 프로그램마다 데이터의 표현이 상이하고 독립적</u>일 수 있다.
- 데이터의 형식(표현)이 다른 점을 처리하여 응용 계층의 부담을 덜어준다.
- 특정한 **데이터의 형식** 구분 및 처리 → 텍스트(text), 이미지(JPG, GIF 등)인지 구분
- 데이터 압축 및 암호화 기능을 수행할 수 있다.

응용계층(Application Layer): 7계층

- 우리가 실질적으로 사용하는 다양한 응용 프로그램에서 활용한다.
- 사용자로부터 정보를 받아 실질적으로 <u>DB 접속, 이메일 전송 등의 서비스</u>를 네트워크에 연결한다.
- <u>웹 브라우저(HTTP), 파일 업로드/다운로드(FTP) 등</u>이 대표적인 예시이다.