Extending FOL with Lists and Recursion

Anthony Beaudry Claire Yang Tommy Zhou

April 24, 2025

Introduction

- ► First-Order Logic (FOL) is a foundational system in logic which allows us to quantify over data and unordered sets.
- ▶ The standard FOL [1] cannot represent:
 - Data structures like list, tree
 - ► Recursive functions like append, length
 - Structural induction or recursive reasoning
- ▶ These are essential for reasoning about programs and computations.
- Our goal is to extend FOL with lists and recursion, inspired by System T[2].

Our Goal

- Extend FOL with:
 - Inductive list types (nil, cons) inspired by natural numbers <empty citation>
 - A structural recursion operator, inspired by System T
 - Natural deduction rules over lists
 - Recursion operator defined over list structure
- Implement the system and type-checked in Beluga.
 - Formalized the logic and recursion as LF types
 - Defined inductive schemas for lists
 - Proved example theorems like append(1, nil) = 1

Defining and Reasoning About Lists

List Type in Logic

- We define an inductive type: list
 - ▶ nil : the empty list
 - cons(h, t) : adds head h to list t
- Mirrors natural numbers:
 - ▶ $nil \leftrightarrow 0$
 - ightharpoonup cons \leftrightarrow suc

Reasoning with Lists

- Extend natural deduction with list rules
- ▶ Elimination rule for structural induction:
 - Base case: prove for nil
 - ▶ Inductive case: prove for cons(h, t) assuming it holds for t
- Enables proofs like: append(1, nil) = 1

Defining Recursion Over Lists

Why Recursion?

- Many functions like append, length are naturally recursive.
- ▶ To reason about them, logic needs a recursion mechanism.
- ▶ We adapt the idea of primitive recursion from Gödel's System T.

List Recursor

► Recursor form:

$$rec(I, M_{nil}, h, t, M_{cons})$$

- Matches on the list:
 - ▶ If I = nil, return M_{nil}
 - ▶ If I = cons(h, t), apply M_{cons} recursively
- Implemented as list_rec in Beluga
- Always terminates: recursion follows list structure

Induction and Equality

List Induction Schema

- Form: $\lambda I. P(I)$
- ightharpoonup Prove P(I) for all lists I by:
 - ► Base case: prove P(nil)
 - ▶ Step case: assume P(t) and prove P(cons(h, t))

Used to Prove Equalities Like:

- ightharpoonup append(I, nil) = I
- ▶ length(append(l_1, l_2)) = add(length(l_1), length(l_2))

Example: Append Identity

- ▶ Theorem: $\forall I$. append(I, nil) = I
- ▶ Base case: append(nil, nil) = nil
- Step case: assume append(t, nil) = t then append(cons(h, t), nil) = cons(h, t) use eqList_cons to construct equality

System Check

- ► Termination:
 - Recursion only unfolds on strictly smaller lists.
 - All lists are finite: recursion always reaches nil.
- ▶ **Local Soundness**: Elimination + immediate re-introduction = detour.
- ▶ Local Completeness: Recursor handles nil and cons(h, t) cases and all list shapes covered.

Summary

In this project we have completed:

- ► Extended FOL with inductive lists + recursion.
- Defined natural deduction rules and recursor.
- Proved examples like append, length.
- All formalized and type-checked in Beluga.

This allows us to formally reason about recursive functions like append and length inside logic.

References I

- [1] G. Dowek, "Gödel's system T as a precursor of modern type theory," working paper or preprint, 2006. [Online]. Available: https://inria.hal.science/hal-04046289.
- [2] V. K. Gödel, "Über eine bisher noch nicht benützte erweiterung des finiten standpunktes," Dialectica, vol. 12, no. 3-4, pp. 280-287, 1958. DOI: https://doi.org/10.1111/j.1746-8361.1958.tb01464.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1746-8361.1958.tb01464.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1746-8361.1958.tb01464.x.