SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Computer Academic Year: 2022 Duration: 3 hours

Science and Engineering (Data

Science)

Date: 27.01.2023

Time: 09:00 am to 12:00 pm

Subject: Statistics for Data Science (Semester III) Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains 7 pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.									Max. Marks			
									Marks			
Q1(a)	Find the arit	hmetic me	an and sto	andard de	viation l	y stej	o deviatio	n method				
	of the follow	ing frequ	ency distr	ibution.								
	Marks:	0 - 20			10 – 60	60	0 - 80	80 - 100				
	Students: 10 30 36 30 14											
			O	R								
Q1(a)	families corr	In the frequency distribution of 100 families given below, the number of families corresponding to expenditure groups $20 - 40$ and $60 - 80$ are missing from the table. However, the median is known to be 50 . Find the										
	missing from the table. However, the median is known to be 50. Find the missing frequencies.											
	Expendi		0 – 20	20 – 40) 40 –	60	60 - 80	80 – 100				
	No. of far	-	14	?	27		?	15				
		<u> </u>		four								
Q1(b)	From the fol	lowing da	ta, calcula	te momer	its about	assur	ned mean	25 and	[08]			
	convert them	_										
	X	:	0 - 10	10 - 20	20	- 30	30 -	40				
	f	`:	1	3		4	2					
Q2(a)	A distribution limit theorem ribution in or	n to find h	ow large d	a sample s	should be	taker	n from the	e dist —				
	mean will be	within 0.5			nean.				[07]			
			O	R								
Q2(a)	Among 900 b 99 % confide	-		•	•	ctive.	Constru	ct 95 % and				

******* 1 *******

Q2(b)	A genetic engineering company claims that it has developed a genetically modified tomato plant that yields on average more tomatoes than other varieties. A farmer wants to test the claim on a small scale before committing to a full — scale planting. Ten genetically modified tomato plants are grown from seeds along with ten other tomato plants. At the season's end, the resulting yields in pound are recorded as below.											[08]		
	So gen	ample 1 netically odified :	,	20	23	27	25	25	25	27	23		22	
	Sample 2 regular: 21 21 22 18 20 20 18 25 23 20 Construct the 99% confidence interval for the difference in the population													
					inter	vai f	or tn	e aif j	terer	ıce ır	ı tne	рори	iation	
Q3(a)	means based on these data. 15.5 % of a random sample of 1600 undergraduates were smokers, whereas 20 % of a random sample of 900 postgraduates were smokers in a state. Can we conclude that less number of undergraduates are smokers than the postgraduates? Take 5 % level of significance OR										[07]			
Q3(a)	The mean breaking strength of the cables supplied by a manufacturer is 1800 with a S.D. of 100. By a new technique in the manufacturing process, it is claimed that the breaking strength of the cable has increased. To test this claim, a sample of 50 cables is tested and it is found that the mean breaking strength is 1850. Can we support the claim at 1 % level of significance?													
Q3(b)	The following table shows the distribution of digits in the numbers chosen at random from a telephone directory :											[08]		
	Digit	0	1	2	3	4	5	6	5	7	8	9	Total	
	Frequency	1026	1107	997	966	107	5 93	3 11	.07	972	964	853	10000	1
	Test wheth directory.		•	-				equa	lly f1	requ	ently	in th	е	
Q4	In order to its product suppliers.	select s ts, a com Six piec	rupplie pany 1 es per	rs of eceiv lot ar	a cer ed pa e ran	tain t ickag idoml	type o ing n ly sel	iater ected	ial so and	impl teste	es fr ed fo	om f r bur	our sting	
	strength.	The obse e below.	ervatio Perfo	ns on rm AN	the b	oursti at 5 %	ng st % L. 0	reng .S. I	th (i f hyp	n kg cm oothe	_ 2) ar ≥sis is	e giv sreje	ven vcted,	
	then perfo	rm the F	Post –	hoc T	ukey'	s HSI	D test	at 5	% le	vel o	f sign	nific	ance.	
		Observe	ation			ī	Sup	plier		ī				[15]
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
		1		12	2.0	10	8.0	1	1.2		12.1			
		2		11	5	1	1.0	1	1.5		12.5			
		3		12	23	1	1.3	1	2.8		12.3			
		4		11	.9	10	0.7	1	2.1		12.0			
		5		12	2.8	10	0.0	1	1.6		11.8			

********2 *******

			O	R										1
Q4	percentage into five pion this experimassumed the fabric. Per is any signi	Five treatments are used on four types of fabrics and the linear shrinkage percentage is assessed in each case. Each fabric of certain length is made into five pieces and the five treatments are randomly used. The data from this experiment are then arranged as given in the following table. It is assumed that there is no significant interaction between treatment and fabric. Perform ANOVA at 5 % level of significance to test whether there is any significant difference between treatments and between fabrics (blocks).												
	(blocks).					Fa	bric							
		Treatr	nent	1		2	3	3	4					
		1		17.6	1	9.6	18	8.4	19.8	3				
		2		19.2	2	0.4	19	8.8	20.7	7				
		3		17.2	1	9.0	17	'.1	17.3	3				
		4		17.0	2	0.1	17	'.1	17.	7				
Q5(a)		5		17.4		8.8	17		16.5					
	A simple sample of heights of 6400 Englishmen has a mean of 170 cm and a S.D. of 6.4 cm, while a simple sample of heights of 1600 Americans has a mean of 172 cm and a S.D. of 6.3 cm. Do the data indicate that Americans are, on the average, taller than the Englishmen? Take 5 % level of significance.											-		
O5(a)	Tue mander	m agmala agas		OR Jawia	- da									[07
Q5(a)	1 wo ranaon	n sample gave	<u> </u>						1			[07		
		Sample no. Sample 1	Siz 8	e		Меа 9.6		'	/aria 1.2					
		Sample 2	11			16.5			2.5					
	Can we conclude that the two samples have been drawn from the same normal population? Take 5 % level of significance.													
	population				rpri	anke	ed by	thr	ee ju		as		ows:	[08
Q5(b)	population Ten compet	itors in a beau												
Q5(b)	population Ten compet Compet	itors in a beau itors	ity conto	1	2	3	4	5	6	7	8	9	10	
Q5(b)	population Ten compet Compet Ranks b	itors in a beau itors y Judge A (U =	$uty\ conto$: u_i :	1 6	2 5	2	10	3	4	9	7	8	1	
Q5(b)	population Ten compet Compet Ranks b Ranks b	itors in a beau itors		1	2									

				Z	- Tal	ole				
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.02	0.024	0.028	0.032	0.036
0.1	0.04	0.044	0.048	0.052	0.056	0.06	0.064	0.068	0.071	0.075
0.2	0.079	0.083	0.087	0.0910	0.095	0.099	0.103	0.106	0.11	0.114
0.3	0.118	0.122	0.126	0.129	0.133	0.137	0.141	0.144	0.1480	0.152
0.4	0.155	0.159	0.163	0.166	0.1700	0.174	0.177	0.181	0.184	0.188
0.5	0.192	0.1950	0.199	0.202	0.205	0.209	0.212	0.216	0.2190	0.222
0.6	0.226	0.229	0.232	0.236	0.239	0.242	0.245	0.249	0.252	0.255
0.7	0.2580	0.261	0.264	0.267	0.27	0.273	0.276	0.279	0.282	0.285
0.8	0.288	0.2910	0.294	0.297	0.3	0.302	0.305	0.308	0.311	0.313
0.9	0.316	0.319	0.321	0.324	0.326	0.329	0.332	0.3340	0.337	0.339
1.0	0.341	0.344	0.346	0.349	0.351	0.353	0.355	0.358	0.36	0.362
1.1	0.364	0.367	0.369	0.371	0.373	0.375	0.3770	0.3790	0.3810	0.3830
1.2	0.385	0.387	0.389	0.391	0.393	0.394	0.396	0.3980	0.4	0.402
1.3	0.403	0.405	0.407	0.408	0.41	0.412	0.413	0.415	0.416	0.418
1.4	0.419	0.421	0.422	0.424	0.425	0.427	0.428	0.429	0.431	0.432
1.5	0.433	0.435	0.436	0.4370	0.438	0.439	0.441	0.442	0.443	0.444
1.6	0.445	0.446	0.447	0.448	0.45	0.451	0.452	0.453	0.454	0.455
1.7	0.455	0.456	0.457	0.458	0.459	0.46	0.461	0.462	0.463	0.463
1.8	0.464	0.465	0.466	0.466	0.467	0.468	0.469	0.469	0.47	0.471
1.9	0.471	0.472	0.473	0.473	0.474	0.474	0.4750	0.476	0.476	0.477
2.0	0.477	0.478	0.478	0.479	0.479	0.48	0.48	0.481	0.481	0.482
2.1	0.482	0.483	0.4830	0.483	0.484	0.484	0.485	0.4850	0.485	0.486
2.2	0.486	0.486	0.487	0.487	0.488	0.488	0.484	0.488	0.489	0.4890
2.3	0.489	0.49	0.49	0.49	0.49	0.491	0.491	0.491	0.491	0.492
2.4	0.492	0.4920	0.492	0.493	0.493	0.493	0.493	0.493	0.493	0.494
2.5	0.494	0.4940	0.494	0.494	0.495	0.495	0.495	0.495	0.495	0.495
2.6	0.495	0.496	0.496	0.496	0.496	0.4960	0.496	0.496	0.496	0.496
2.7	0.497	0.497	0.497	0.497	0.497	0.4970	0.497	0.497	0.497	0.497
2.8	0.497	0.498	0.498	0.498	0.498	0.498	0.498	0.498	0.4980	0.498
2.9	0.498	0.498	0.498	0.498	0.498	0.498	0.499	0.499	0.499	0.499
3.0	0.499	0.499	0.499	0.499	0.499	0.499	0.499	0.499	0.4990	0.4990

********4 ********

					t-tal	ole					
cum. prob	^t .50	^t .75	^t .80	^t .85	^t .90	^t .95	^t .975	^t .99	^t .995	^t .999	^t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Conf	idence L	evel				

********5 ********

				F-Table	for 5 % lev	el of signi	ficance.						
			Numerator degree of freedom										
		1	2	3	4	5	6	8	12	24	infty		
	1	161.4	199.5	215.7	224.6	230.2	234	238.9	243.9	249	253.4		
	2	18.51	19	19.16	19.25	19.3	19.33	19.37	19.41	19.45	19.5		
	3	10.13	9.55	9.28	9.12	9.01	8.94	8.84	8.74	8.64	8.53		
	4	7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63		
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36		
	6	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4	3.84	3.67		
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23		
	8	5.32	4.46	4.07	3.87	3.69	3.58	3.44	3.28	3.12	2.93		
	9	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.9	2.71		
	10	4.96	4.1	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54		
	11	4.84	3.98	3.59	3.36	3.2	3.09	2.95	2.79	2.61	2.4		
	12	4.75	3.88	3.49	3.26	3.11	3	2.85	2.69	2.5	2.3		
٤	13	4.67	3.8	3.41	3.18	3.02	2.92	2.77	2.6	2.42	2.21		
စွဲ	14	4.6	3.74	3.34	3.11	2.96	2.85	2.7	2.53	2.35	2.13		
Denominator degree of fredom	15	4.54	3.68	3.29	3.06	2.9	2.79	2.64	2.48	2.29	2.07		
e of	16	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.01		
gre	17	4.45	3.59	3.2	2.96	2.81	2.7	2.55	2.38	2.19	1.96		
l de	18	4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.92		
ato	19	4.38	3.52	3.13	2.9	2.74	2.63	2.48	2.31	2.11	1.88		
l ë	20	4.35	3.49	3.1	2.87	2.71	2.6	2.45	2.28	2.08	1.84		
l o	21	4.32	3.47	3.07	2.84	2.68	2.57	2.42	2.25	2.05	1.81		
De	22	4.3	3.44	3.05	2.82	2.66	2.55	2.4	2.23	2.03	1.78		
	23	4.28	3.42	3.03	2.8	2.64	2.53	2.38	2.2	2	1.76		
	24	4.26	3.4	3.01	2.78	2.62	2.51	2.36	2.18	1.98	1.73		
	25	4.24	3.38	2.99	2.76	2.6	2.49	2.34	2.16	1.96	1.71		
	26	4.22	3.37	2.98	2.74	2.59	2.47	2.32	2.15	1.95	1.69		
	27	4.21	3.35	2.96	2.73	2.57	2.46	2.3	2.13	1.93	1.67		
	28	4.2	3.34	2.95	2.71	2.56	2.44	2.29	2.12	1.91	1.65		
	29	4.18	3.33	2.93	2.7	2.54	2.43	2.28	2.1	1.9	1.64		
	30	4.17	3.32	2.92	2.69	2.53	2.42	2.27	2.09	1.89	1.62		
	40	4.08	3.23	2.84	2.61	2.45	2.34	2.18	2	1.79	1.51		
	60	4	3.15	2.76	2.52	2.37	2.25	2.1	1.92	1.7	1.39		
	120	3.92	3.07	2.68	2.45	2.29	2.17	2.02	1.83	1.61	1.25		
	infty	3.84	2.99	2.6	2.37	2.21	2.09	1.94	1.75	1.52	1		

	$\chi^2 - table$											
Degrees of		Probability or L.O.S.										
Freedom v	0.99	0.95	0.50	0.10	0.05	0.02	0.01					
1	0.000157	0.00393	0.455	2.706	3.841	5.214	6.635					
2	0.0201	0.103	1.386	4.605	5.991	7.824	9.210					
3	0.115	0.352	2.366	6.251	7.815	9.837	11.341					
4	0.297	0.711	3.357	7.779	9.488	11.668	13.277					
5	0.554	1.145	4.351	9.236	11.070	13.388	15.086					
6	0.872	1.635	5.348	10.645	12.592	15.033	16.812					
7	1.339	2.167	6.346	12.017	14.067	16.622	18.475					
8	1.646	2.733	7.344	13.362	15.507	18.168	20.090					
9	2.088	3.325	8.343	14.684	16.919	19.679	21.666					
10	2.558	3.940	9.340	15.987	18.307	21.161	23.209					
11	3.053	4.575	10.341	17.275	19.675	22.618	24.725					

********6 *******

	Q-Table for 5 % level of significance.												
		Degree of freedom for range(k)											
	$df \downarrow k \rightarrow$	2	3	4	5	6	7	8	9	10			
	5	3.64	4.6	5.22	5.67	6.03	6.33	6.58	6.8	6.99			
	6	3.46	4.34	4.9	5.3	5.63	5.9	6.12	6.32	6.49			
	7	3.34	4.16	4.68	5.06	5.36	5.61	5.82	6	6.16			
	8	3.26	4.04	4.53	4.89	5.17	5.4	5.6	5.77	5.92			
	9	3.2	3.95	4.41	4.76	5.02	5.24	5.43	5.59	5.74			
	10	3.15	3.88	4.33	4.65	4.91	5.12	5.3	5.46	5.6			
	11	3.11	3.82	4.26	4.57	4.82	5.03	5.2	5.35	5.49			
Degree of freedom for error	12	3.08	3.77	4.2	4.51	4.75	4.95	5.12	5.27	5.39			
or e	13	3.06	3.73	4.15	4.45	4.69	4.88	5.05	5.19	5.32			
n fc	14	3.03	3.7	4.11	4.41	4.64	4.83	4.99	5.13	5.25			
l ob	15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.2			
ree	16	3	3.65	4.05	4.33	4.56	4.74	4.9	5.03	5.15			
of t	17	2.98	3.63	4.02	4.3	4.52	4.7	4.86	4.99	5.11			
ree	18	2.97	3.61	4	4.28	4.49	4.67	4.82	4.96	5.07			
Seg	19	2.96	3.59	3.98	4.25	4.47	4.65	4.79	4.92	5.04			
	20	2.95	3.58	3.96	4.23	4.45	4.62	4.77	4.9	5.01			
	24	2.92	3.53	3.9	4.17	4.37	4.54	4.68	4.81	4.92			
	30	2.89	3.49	3.85	4.1	4.3	4.46	4.6	4.72	4.82			
	40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.73			
	60	2.83	3.4	3.74	3.98	4.16	4.31	4.44	4.55	4.65			
	120	2.8	3.36	3.68	3.92	4.1	4.24	4.36	4.47	4.56			
	infinity	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39	4.47			
