Global Deaths prediction due to Covid-19

Akhilesh Chauhan(170070), Chirag Jindal(170225), Shivam Arya(170666), Amit Badoni(170091) and Dhawal Raturi(170244)

November 30,2020

Objective

- Model the time series using standard time series models.
- Predict the future observations after fitting the model.
- Tune the parameters of the fitted model well to get good predictions

Motivation

- Machine learning and statistical methods, which time series forecasting is a subset of, have been successfully implemented in the past in the area of infectious diseases. For examplemodeling leptospirosis and its relationship to rainfall and temperature.
- Similar approaches have also been followed to model diseases that occur in cyclic or repeating patterns, such as the seasonal influenza, for which a number of studies that use time-series modeling to predict future outbreaks have been published.
- Regarding COVID-19 forecasting, there has been a surge in scientific work published during the last few months. The majority of these studies focus on predicting coronavirus-related metrics such as active cases and deaths across the world.

Data Set

- We are using the data set available at John Hopkins University's Github Page.
- It contains the country wise data for cumulative deaths due to Covid-19.

Methodology

- Organised the data and took the sum of data from all the countries.
- Took the first difference to get the daily data.
- Made the series stationary by taking an appropriate order of difference.
- Investigated the Auto-Correlations(ACF) and the Partial Auto-Correlations(PACF).
- Tried to fit different time series models and evaluated the model based on the Akaike Information Criterion(AIC).
- Compared the prediction performance of different model fits.

Daily Data

Seasonal Decomposition

Stationarity of first difference

 We tested the stationarity using the Augmented Dicky Fuller Test.

Dickey-Fuller Test for Trend on First Difference

 H_0 : Series has a trend. H_A : Series is stationary.

Results of Dickey-Fuller Test:

Test Statistic: -2.914002

p-value: 0.043744 Lags Used: 12.000000

Number of Observations Used: 193.000000

Critical Value (1%): -3.464694 Critical Value (5%): -2.876635 Critical Value (10%): -2.574816

Here, Test Statistic is less than Critical Value at 5% and thus we reject the Null Hypothesis and thus at a confidence interval of 95%, Trend is not present in first difference.

Auto Correlation Plots

Parameter Estimation

- The auto-correlation plot suggests a seasonality of order 7, which is also evident from the plot.
- To begin with, we split the data into 2 parts(Test and Train).
 We tried fitting different models on the Train data and evaluated the performance on the test data.
- Then we started with the ARIMA Model.

ARIMA Model

•

- ARIMA offers a high level of interpretability, as, based on the assumptions of the model, the relationship between the independent variables and the dependent variables are well-understood and therefore easily explained.
- This enables researchers to gain a deep understanding not only of the relationship between the current state as a function of the past states (endogenous variables), but also of any influence inputs outside the state of the series might have (exogenous variables).
- ARIMA(Auto Regressive Integrated Moving Average) Model(X_t is the time series, ϵ_t s are i.i.d. residuals)

$$\phi(B)(1-B)^d X_t = \theta(B)\epsilon_t$$

where B denotes the lag operator and $\phi(B)$ and $\theta(B)$ are the AR and MA polynomials of order p and q respectively.

$$AIC = -2log\hat{L} + 2(p+q+d+1)$$

where \hat{L} denotes the likelihood and the second term contains the number of parameters being used.

ARIMA Model

• Varying p and q, and using the AIC as the evaluation parameter, we get p = 2, q = 3, d = 1.

Residual Analysis

Results of ARIMA Model

SARIMAX Results

Dep. Varia	 able:	first	diff I	== ام.	Observations:		290
Model: SAR		SARIMAX(2, 1, 3)			Likelihood		-2364.199
		hu, 26 Nov		•		4740.398	
Time:			7:55 BIC		4762.397		
Sample:		01-23-	2020 H	HQIC			4749.213
		- 11-07-	2020				
Covariance	Type:		opg				
=======	coef	std err		z	P> z	[0.025	0.975]
ar.L1	1.2457	0.005	226.5	592	0.000	1.235	1.256
ar.L2	-0.9977	0.005	-191.8	315	0.000	-1.008	-0.987
ma.L1	-1.8813	0.038	-48.9	952	0.000	-1.957	-1.806
ma.L2	1.7177	0.057	30.1	170	0.000	1.606	1.829
ma.L3	-0.5955	0.041	-14.6	557	0.000	-0.675	-0.516
sigma2	7.506e+05	3.22e+04	23.3	314	0.000	6.88e+05	8.14e+05
Ljung-Box (Q):			187.0	90	Jarque-Bera	(JB):	486.70
Prob(Q):			0.0	90	Prob(JB):		0.00
Heteroskedasticity (H):			3.1	18	Skew:		1.37
Prob(H) (two-sided):			0.0	90	Kurtosis:		8.74

SARIMA Model

• SARIMA Model for a time series X_t is given by,

$$\Phi(B^s)\phi(B)(1-B^s)^D(1-B)^dX_t = \Theta(B^s)\theta(B)\epsilon_t$$

where B denotes the lag operator , $\phi(B)$ and $\theta(B)$ are the AR and MA polynomials of order p and q, and $\Phi(B)$ and $\Theta(B)$ are the seasonal AR and MA polynomials of order P and Q respectively, and d and D are the orders of difference and seasonal difference.

 $AIC = -2log\hat{L} + 2(p+q+P+Q+D+d+2)$

where \hat{L} denotes the likelihood and the second term contains the number of parameters being used.

• Varying p and q, and using the AIC as the evaluation parameter, we get p = 1, d=0, q=1, P=1, D=1, Q=0, S=7.

SARIMA Model

Residual Analysis

Results of SARIMA Model

SARIMAX Results

Dep. Varia Model: Date: Time: Sample:		ARIMAX(1, 0,	1)x(1, 1, [Thu, 26 Nov], 7) Log 2020 AIC 12:36 BIC -2020 HQI			290 -2323.928 4655.857 4670.439 4661.704
Covariance	Type:			opg			
=======	coe	f std err	Z	P> z	[0.025	0.975]	
ar.L1	0.961	0.022	44.385	0.000	0.919	1.004	
ma.L1	-0.697	0.044	-15.830	0.000	-0.784	-0.611	
ar.S.L7	-0.450	0.029	-15.470	0.000	-0.507	-0.393	
sigma2	7.927e+0	3.19e+04	24.838	0.000	7.3e+05	8.55e+05	
Ljung-Box	(Q):		110.79	Jarque-Ber	======== a (JB):	 578	3.91
Prob(Q):	,		0.00	Prob(JB):		6	0.00
Heteroske	dasticity (H):	3.88	Skew:		6	.91
Prob(H) (t	two-sided):	•	0.00	Kurtosis:		9	.77

Holt-Winters Exponential Smoothing

 Holt-Winters Exponential Smoothing is used for forecasting time series data that exhibits both a trend and a seasonal variation. The Holt-Winters technique is made up of the following four forecasting techniques stacked one over the other:

Holt-Winters Exponential Smoothing

Estimated Trend at step
$$i$$
 at step i $B_i = \beta * [L_i - L_{(i-1)}] + (1 - \beta) * B_{(i-1)}$ Estimated rate of change of level from step $(i-1)$ to step i

Holt-Winters Exponential Smoothing

Results of HWES

ExponentialSmoothing Model Results

Dep. Variable:	0	No. Observations:	291
Model:	ExponentialSmoothing	SSE	314026579.701
Optimized:	True	AIC	4064.474
Trend:	Multiplicative	BIC	4104.881
Seasonal:	Multiplicative	AICC	4065.789
Seasonal Periods:	7	Date:	Sun, 29 Nov 2020
Box-Cox:	False	Time:	15:48:04
Box-Cox Coeff.:	None		

	coeff	code	optimized	
smoothing_level	0.2878571	alpha	True	
smoothing_trend	0.0575714	beta	True	
smoothing_seasonal	0.3560714	gamma	True	
initial_level	4831.4762	1.0	True	
initial_trend	1.1558217	b.0	True	
initial_seasons.0	0.0035186	5.0	True	
initial_seasons.1	0.0002070	5.1	True	
initial_seasons.2	0.0016558	5.2	True	
initial_seasons.3	0.0033116	s.3	True	
initial_seasons.4	0.0028977	5.4	True	
initial_seasons.5	0.0053814	5.5	True	
initial_seasons.6	0.0101418	5.6	True	

Comparison of Models Based on Root Mean Squared Error

	15 Days RMSE	30 Days RMSE
ARIMA Model	1414.776	3056.512
SARIMA Model	674.602	2883.674
HWES Model	465.38	2446.559

- We found out that SARIMA Model gives us a better fit for the data as compared to the ARIMA Model as our data has strong seasonality(evident from ACF plots).
- We found that HWES Model given even better fit than SARIMA Model as our data has noise which gets reduced by the exponential smoothing
- HWES also takes into account the seasonality in the data and gives more importance to recent observations.

References

- (Data source) Github page of John Hopkins University
- (Modeling seasonal leptospirosis transmission) [1]
- (Holt-Winters Exponential Smoothing) [2]

Thank You!