IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Hiroyuki Yonekawa, et al.

Examiner:

Unassigned

Serial No:

To be assigned

Art Unit:

Unassigned

Filed:

Herewith

Docket:

17414

For:

GENE EXAMINING APPARATUS

Dated:

January 30, 2004

AND METHOD OF DETECTING TARGET NUCLEIC ACID USING

THE SAME

Mail Stop Patent Application Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

CLAIM OF PRIORITY

Sir:

Applicants in the above-identified application hereby claim the right of priority in connection with Title 35 U.S.C. § 119 and in support thereof, herewith submit a certified copy of Japanese Patent Application No. 2001-232501 (JP2001-232501) filed July 31, 2001 and 2002-192510 (JP2002-192510) filed July 1, 2002.

Respectfully submitted,

Thomas Spinelli

Registration No.: 39,533

Scully, Scott, Murphy & Presser 400 Garden City Plaza Garden City, New York 11530 (516) 742-4343

CERTIFICATE OF MAILING BY "EXPRESS MAIL"

Express Mailing Label No.: EV247989945US

Date of Deposit: January 30, 2004

I hereby certify that this correspondence is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated above and is addressed to the Commissioner for Patents, Mail Stop Patent Application, P.O. Box 1450, Alexandria, VA 22313-1450.

Dated: January 30, 2004

Thomas Spinelli

h\work\1373\17414\misc\claim

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2001年 7月31日

出 Application Number:

特願2001-232501

[ST. 10/C]:

[JP2001-232501]

出 願 人 Applicant(s):

オリンパス株式会社

2003年12月24日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

A000102878

【提出日】

平成13年 7月31日

【あて先】

特許庁長官 殿

【国際特許分類】

C12N 15/10

【発明の名称】

遺伝子検査装置およびそれを用いた検出方法

【請求項の数】

11

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

米川 裕之

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

芝▲崎▼ 尊己

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

佐藤 卓朋

【発明者】

【住所又は居所】

東京都渋谷区幡ヶ谷2丁目43番2号 オリンパス光学

工業株式会社内

【氏名】

坂本 宙子

【特許出願人】

【識別番号】

000000376

【氏名又は名称】 オリンパス光学工業株式会社

【代理人】

【識別番号】

100058479

【弁理士】

【氏名又は名称】

鈴江 武彦

【電話番号】

03-3502-3181

【選任した代理人】

【識別番号】

100084618

【弁理士】

【氏名又は名称】 村松 貞男

【選任した代理人】

【識別番号】 100068814

【弁理士】

【氏名又は名称】 坪井 淳

【選任した代理人】

【識別番号】

100091351

【弁理士】

【氏名又は名称】 河野 哲

【選任した代理人】

【識別番号】 100100952

【弁理士】

【氏名又は名称】 風間 鉄也

【手数料の表示】

【予納台帳番号】 011567

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0010297

【プルーフの要否】 要

【書類名】

明細書

【発明の名称】

遺伝子検査装置およびそれを用いた検出方法

【特許請求の範囲】

《請求項1》 コンピュータを利用した遺伝子検査装置であって、

- (1) 3次元的に液体を収容し得る微小な液体収容部を2次元的に多数配置 してなり、そこにおいて予め蛍光標識された標的核酸と前記核酸プローブとの間 でハイブリダイゼーション反応を行うためのDNAマイクロアレイ;および
- (2)上記(1)に記載のDNAマイクロアレイを支持するステージと、該DNAマイクロアレイの温度を調節するための温度調節部と、該DNAマイクロアレイからの光学的信号を撮像するためのCCDカメラとを備えた顕微鏡; を具備する装置。

【請求項2】 コンピュータを利用した遺伝子検査装置であって、

- (1) 3次元的に液体を収容し得る微小な液体収容部を2次元的に多数配置 してなり、そこにおいて予め蛍光標識された標的核酸と前記核酸プローブとの間 でハイブリダイゼーション反応を行うためのDNAマイクロアレイ:
- (2)上記(1)に記載のDNAマイクロアレイを支持するステージと、該DNAマイクロアレイの温度を調節するための温度調節部と、該DNAマイクロアレイからの光学的信号を撮像するためのCCDカメラを備えた顕微鏡;および
- (3)上記(2)に記載の顕微鏡のステージに配置されたDNAマイクロアレイに接続され、該DNAマイクロアレイ中の流体を出し入れするための流体輸送部;

を具備する装置。

【請求項3】 請求項1または2に記載のコンピュータを利用した遺伝子検査装置であって、前記DNAマイクロアレイが、基板を貫通し東状に配置され且つその内壁には核酸プローブが固定された複数のマイクロチャネルからなるプローブスポットを具備する装置。

【請求項4】 請求項1から3の何れか1項に記載のコンピュータを利用した遺伝子検査装置であって、更に、

(a) 前記遺伝子検査装置を総括的に制御するコンピュータに対してオペレ

- ーターが情報を入力するための入力部;および
- (b) 前記CCDカメラにより撮像された画像を表示するための表示部; を具備する装置。

【請求項5】 請求項1から4の何れか1項に記載のコンピュータを利用した遺伝子検査装置であって、更に、前記CCDカメラにより撮像された画像から前記プローブスポット毎に蛍光強度を求める画像処理部を具備する装置。

【請求項6】 コンピュータを利用した遺伝子検査装置であって、

- (1) 3次元的に液体を収容し得る微小な液体収容部を2次元的に多数配置 してなり、そこにおいて予め蛍光標識された標的核酸と前記核酸プローブとの間 でハイブリダイゼーション反応を行うためのDNAマイクロアレイ;
- (2)上記(1)に記載のDNAマイクロアレイを支持するステージと、該DNAマイクロアレイの温度を調節するための温度調節部と、該DNAマイクロアレイからの光学的信号を撮像するためのCCDカメラとを備えた顕微鏡;
- (3)上記(2)に記載の顕微鏡のステージに配置されたDNAマイクロアレイに接続され、該DNAマイクロアレイ中の流体を出し入れするための流体輸送部;
 - (4)以下を記憶する記憶部;
- (a)上記(2)の温度調節部と上記(3)の液体輸送部とを含む、該装置に含まれる全ての部分を制御しながら上記(1)のDNAマイクロアレイにおいて反応を実行させ、それにより得られる結果を処理するための手順および条件を示すプログラムと、
- (b)上記(1)の核酸プローブの種類と該DNAマイクロアレイ中での座標が対応させられているスコアテーブルと;
- (5)上記(4)の記憶部に記憶されるプログラムに従って、(1)のDNAマイクロアレイに対しての該装置の稼働を上記(2)から(3)の各部を制御し、それによって総括的に装置全体を制御する主制御部;
- (6)上記(4)の記憶部に含まれるプログラムに従って、上記(5)の主制御部の制御の基に行われた反応後に、上記(2)に記載のCCDカメラにより撮像された画像を処理し、前記プローブスポット毎に蛍光強度を求める画像処理

部:並びに

(7)上記(4)の記憶部に記憶されたスコアテーブルを検索し、上記(6)の画像処理部により求められた座標における蛍光強度に対応するデータを、遺伝子検査の判定結果として出力するための出力部; を具備する装置。

【請求項7】 請求項6に記載のコンピュータを利用した遺伝子検査装置であって、前記DNAマイクロアレイが、基板を貫通し東状に配置され且つその内壁には核酸プローブが固定された複数のマイクロチャネルからなるプローブスポットを具備する装置。

【請求項8】 請求項1から7の何れか1項に記載の装置を使用した遺伝子 検査方法であって、

- (1)被験対象から採取した組織または細胞から抽出された核酸を増幅し、蛍光標識物質を付加すること;
- (2)上記(1)で得られた標識された核酸を、所望の核酸プローブを具備するDNAマイクロアレイに添加すること;
- (3)上記(2)のDNAマイクロアレイについて所望の条件下でハイブリダイゼーション反応を行うこと;
- (4)上記(3)で得られたDNAマイクロアレイについて蛍光強度を測定すること;
- (5)上記(4)で得られた蛍光強度を基に、発現遺伝子量の判定および/または突然変異遺伝子の有無の判定を行うことにより遺伝子検査の結果を得ること.

を具備する方法。

【請求項9】 請求項1から8の何れか1項に記載の装置を使用した遺伝子 検査方法であって、

- (1)被験対象から採取した組織または細胞から抽出された核酸を増幅し、蛍光標識物質を付加すること;
- (2)上記(1)で得られた標識された核酸を、所望の核酸プローブを具備するDNAマイクロアレイに添加すること;

- (3)上記(1)のDNAマイクロアレイについて所望の条件下でハイブリダイゼーション反応を行うこと;
- (4)上記(3)の反応が終了した後に、DNAマイクロアレイに含まれる溶液を当該アレイの下部に留めさせること;
- (5)上記(4)で得られたDNAマイクロアレイについて蛍光強度を測定すること;
 - (6) 上記(4) で当該アレイの下部に溜めた液体を再度撹拌すること;
- (7)上記(6)のDNAマイクロアレイについて必要に応じ所望の条件下で ハイブリダイゼーション反応を繰り返すこと;
- (8)上記(6)で得られたDNAマイクロアレイについて蛍光強度を測定すること;
- (9)上記(4)および(8)で得られた蛍光強度を基に、発現遺伝子量の判定および/または突然変異遺伝子の有無の判定を行うことにより遺伝子検査の結果を得ること;

を具備する方法。

【請求項10】 請求項8または9に記載の方法であって、更に、前記(4)および(8)で得られた蛍光強度を基に、発現遺伝子量の判定および/または突然変異遺伝子の有無の判定して得られた情報を、データベースに開示される公知の遺伝子情報および/または標準試料から得られた情報と比較することにより遺伝子検査の結果を得ることを具備する方法。

【請求項11】 請求項9または10の何れか1項に記載の方法であって、前記(5)から(8)の操作を2回以上繰り返して行うことを特徴とする方法。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、遺伝子の発現レベルおよび突然変異の有無を検出する装置、並びにそれを用いた検出方法に関する。

[00002]

【従来の技術】

近年、遺伝子解析技術が進み、ヒトを含む多くの生物における遺伝子配列が明 らかにされてきた。また、解析された遺伝子産物と疾病の因果関係も少しずつ解 明されてきた。現在用いられている遺伝子検査方法は、生体試料から核酸を抽出 する工程、PCR、NASBA法などと呼ばれる核酸増幅方法を用いて検査対象 となるターゲット遺伝子を増幅する工程、核酸を放射性同位元素や蛍光分子等に よって標識する工程、標識されたターゲット遺伝子の塩基配列またはその濃度を 測定する工程から構成されている。最近は、蛍光標識された核酸を複数のキャピ ラリーを用いることで高速に多数のサンプルを処理できるキャピラリ電気泳動装 置が数多く用いられている。これにより、従来の電気泳動装置などを用いた方法 に比べて三分の1から四分の1程度の時間で行えるようになった。更に近年にな って同時に複数の遺伝子を検査するためのDNAチップを用いた検査方法が開発 された。DNAチップは、ガラス基板の表面に多数のcDNAプローブを固定化 するものや、半導体製造過程を応用してシリコン上の微小な領域に合成した多数 のオリゴプローブを作製したものである。何れもサンプル中のDNAの塩基配列 や発現量を、複数、同時に決定出来る方法である。DNAチップの応用によって 、多くの遺伝子発現量や複数の突然変異の解析を行うことが可能となった。また 、DNAチップを用いて得られたデータから、多くの遺伝子を複数のグループに 分類したり(即ち、クラスタリング)、発生や分化に伴う遺伝子の変動に関する 情報が得られている。こうして得られた遺伝子情報は、インターネットを通じて 容易にアクセス出来るようなデータベースとして利用されている。

[0003]

遺伝子の発現量の検査や突然変異の解析が電気泳動法やマイクロアレイ法を用いて行われている。しかしながら電気泳動法では、検査に必要な時間が長く、また、一度に行える検査は少数に限られるのが欠点であった。DNAチップを用いた遺伝子解析方法は、一度に多数の検査を行える反面、検査時間が長く必要とされ、また、全体の検査工程が多く、且つ煩雑な操作が必要であった。そのために再現性のよい分析結果が得られない、という欠点があった。こうした欠点を克服するために、再現性がよく、且つ短時間でDNAチップと同様の検査を行うことを目的として、DNAチップの担体として多孔質のフィルターを用いた方法や、

ハイブリダイゼーション反応を電気的な力によって強制的に行う方法が開発された(特表平9-504864、特表平2000-515251、特表平2001-501301)。しかしながら、多孔質のフィルターを用いた方法においては、液体の移動と温度制御を行う反応部分と蛍光検出を行う測定部分が別々で、複雑な装置構成が必要とされることが欠点であった。また、電気的な力によって強制的にハイブリダイゼーションを行う方法(特表平2001-501301)では、チップの中の電圧を厳密に制御したりする機構を設ける必要があった。そのため、これらの方法では臨床検査などにおける短時間に、且つ簡便に遺伝子の検査を行いたい、という要求に応えることはできなかった。

[0004]

また、癌や糖尿病、または高血圧などのように、複数の遺伝子異常と環境要因が重ね合わされて発症するような多因子性の疾患においては、複数の遺伝子の異常を多面的に解析し、さらに、外部環境要因を分析することによって、より正確な診断が行えると考えられている。また、実際の化学治療に当たっては、薬の副作用を避け、且つ治療効果を向上するために、投与する薬剤に対する感受性(これは、体質とも解釈される)を予め正確に判定しておく必要がある。更に、P53遺伝子等を用いた高度な遺伝子治療を行うに当たっては、予め、患者の体内の癌遺伝子、癌抑制遺伝子等の発現量や突然変異の有無、或いは細胞の情報伝達の状態などの遺伝子情報を正確に解析しておく必要がある。

[0005]

以上のような状況において、現在、簡便に、且つ短時間で複数の遺伝子を検査 することの出来る遺伝子検査システムの開発が望まれている。

[0006]

【発明が解決しようとする課題】

本発明の目的は、簡便に、且つ短時間で複数の遺伝子を検査することの出来る遺伝子検査装置および方法を提供することである。

[0007]

【課題を解決するための手段】

本発明者らは、上記の目的を解決するための手段を、鋭意研究の結果見出した

。即ち、

コンピュータを利用した遺伝子検査装置であって、

- (1) 3次元的に液体を収容し得る微小な液体収容部を2次元的に多数配置 してなり、そこにおいて予め蛍光標識された標的核酸と前記核酸プローブとの間 でハイブリダイゼーション反応を行うためのDNAマイクロアレイ;および
- (2)上記(1)に記載のDNAマイクロアレイを支持するステージと、該DNAマイクロアレイの温度を調節するための温度調節部と、該DNAマイクロアレイからの光学的信号を撮像するためのCCDカメラとを備えた顕微鏡; を具備する装置である。

[00008]

【発明の実施の形態】

1. 装置の概要

本発明の1側面に従うと、遺伝子の発現レベルと突然変異を1つの検体について容易に且つ短時間で検出する装置が提供される。

[0009]

本発明の装置において実施される検出方法の基本的な原理は、配列が既知の固定化された核酸プローブを用いて、試料中に含まれる特定の配列をもった核酸鎖を検出するというものである。この方法では、例えば基板に一本鎖核酸の試料を固定化し、次に蛍光物質等で標識した試料中に含まれる核酸に接触させる。試料中の核酸が核酸プローブと相補的な配列を有していれば、核酸プローブとハイブリダイズして二本鎖を形成するので基板上に固定される。従って、洗浄により未反応の核酸鎖を除去した後で、プローブに付された標識を検出すれば、プローブに対して相補的な配列を有する標的核酸を検出することができるというものである。

[0010]

図1に示す構成図を用いて、本発明の装置の1態様を以下に説明する。本発明の装置であるコンピュータを利用した遺伝子検査装置1は、そこにおいてサンプルを反応させるためのDNAマイクロアレイ22における事象を顕微鏡的に観察するための顕微鏡3と、DNAマイクロアレイ22を有したスライドチップ2を

支持するために前記顕微鏡3に具備されるステージ4と、前記顕微鏡3により観察されたDNAマイクロアレイ22における蛍光画像を撮像するためのCCD(charge coupled device)カメラ5と、前記顕微鏡3により観察される視野を変更するために前記ステージ4に接続されるモータドライバ6を制御するXYステージコントローラ7と、前記DNAマイクロアレイ22に接続されたジョイント部を介して流体を輸送するポンプドライバ8と、前記DNAマイクロアレイ22に接触して配置されるヒーター部を介して該DNAマイクロアレイ22の温度を調節する温度コントローラ9と、更に、前記遺伝子検査装置1に含まれる全てのデバイスに直接的または間接的に接続され且つそれらを総括して制御するコンピュータ10とを具備する。

$[0\ 0\ 1\ 1]$

図1には示していないが、ここで前記ジョイント部は、DNAマイクロアレイ22に含まれる液体を外部に漏出しないような様式で、DNAマイクロアレイ22に接続される。更に該ジョイント部の他端はチューブを介して、ポンプドライバ8に接続され、更にポンプドライバ8は、その内部に所望の試薬等を含む試薬保持部に接続される。前記ポンプドライバ8は解析プログラムに従ってコンピュータ10の指示により前記DNAマイクロアレイ22に対する流体の出し入れを実行する。

$[0\ 0\ 1\ 2]$

同様に、図1には示していないが、前記ヒーター部は、スライドチップ2とステージ4の間に配置される。また、前記ヒーター部は、温度コントローラー9に接続されてコンピュータ10の指示に従ってコントロール9によって温度が調節される。

[0013]

前記コンピュータ10は、一般的なコンピュータに具備される構成要素を含む。図1には示していないが、例えば、前記コンピュータ10に具備される構成要素は、コンピュータ10の各部を総括して制御する主制御部であるCPU(Cent ral Processing Unit) 11と、前記CPU11における制御の基礎となる種々のプログラム等や表示されるべき画像データ等のファイルを記憶するメモリ12

と、前記CPU11により実行された結果等を一時的に格納するためのRAM(random access memory)13と、プログラム等に基づく前記CPU11の指示に従ってそこにおいて画像データを生成する画像処理部14と、前記コンピュータ10にオペレーター、例えば、人間が情報を入力するためのキーボードおよびマウス等の入力部15と、前記コンピュータ10の指示により情報を表示する表示部16とを少なくとも具備する。

[0014]

また、CCDカメラ5により撮像された情報は、画像処理部14に送られ、メモリ12に記憶される解析プログラムに従いCPU11の指示に従って画像処理部14で処理されて蛍光強度として数値化される。

[0015]

本発明で使用できるコンピュータは、一般的に使用される何れの電子コンピュータであってよい。

[0016]

本発明で使用できる顕微鏡は、一般的に使用される蛍光顕微鏡であればよく、 例えば、オリンパス社蛍光顕微鏡AX-70またはBX-42TFR等であって よいが、これに限られるものではない。

[0017]

本発明で使用できるCCDカメラは一般的に使用されるCCDカメラであればよく、例えば、一般的なデジタルカメラ、例えば、コダック社のMegaPlus CCDカメラ、フォトメトリック社のCool Pixカメラ等であるが、これに限られるものではない。

[0018]

また、ここで該DNAマイクロアレイ22の温度を調節するための温度調節部は、該DNAマイクロアレイ22を具備するスライドチップ2に直接的または間接的接触して熱を伝えるための加熱体(例えば、電熱ヒーター、電磁ヒーター、ウォーターバス、エアーバスおよびペルチエ素子等)、そこにおける温度を感知するセンサー、およびコンピュータの制御と前記センサーからの情報に従って加熱体における加熱を制御する温度コントローラーを含み得る。

[0019]

また更に、前記コンピュータに対して、総合デジタル通信網(以下、ISDNと称する)への接続またはモデムを経由した電話回線への接続がなされてもよい

[0020]

また、上述の態様に具備されるステージ4は、上述の通り、XYステージコントローラ7により、XY移動が可能であるが、視野の変更は、このようなステージ側の移動に限らず、CCDカメラ5自身によって、或いはCCDカメラ5とマイクロアレイ22を繋ぐ光路を変更させるような種々のスキャニング機構を用いて行ってもよい。

[0021]

2. DNAマイクロアレイを具備するスライドチップ

本発明において使用されるDNAマイクロアレイ22の1態様を図2(A)および(B)に示す。図2(A)は、そこにおいて反応を行うDNAマイクロアレイ22を4つ具備するスライドチップ2の平面図である。図2(B)は、スライドチップ2の断面図である。

[0022]

図2 (B) から明かであるように、スライドチップ2は、多孔からなるマイクロチャネル24を具備するフィルタ19と、フィルタ19を支持するための支持板20とを具備する。支持板20は、2つの部材からなり、2つの部材がフィルタ19を挟み込みスライドチップ2を構成する。図2(B)に従うと、フィルタ19の上下に位置する支持板部材には、対面する各位置に、DNAマイクロアレイ22を規定するための開口部21が形成されている。

[0023]

また、図2 (B) に示されるように、フィルタ19は、4つのDNAマイクロアレイ22の全てを含む大きな面積に亘って、二次元的に平坦に2つの支持板20の間に位置する。また、支持板20は、好ましくは遮光性のある部材により構成され、より好ましくは暗黒色の部材により構成される。好ましくは、2つの支持板20は、フィルタ19を間に挟んだ状態で接合される。

[0024]

フィルタ19の材質は、そこにおいて実施され得る温度制御の範囲内で壊れなければ、何れの任意の材質であってもよい。

[0025]

「DNAマイクロアレイ」22は、支持板20に形成された開口部21から露出するフィルタ19の部分をいう。フィルタ19は複数の貫通孔を有する。その各々の貫通孔を「マイクロチャネル」24と称する。各マイクロチャネル24は、フィルタ19の厚み方向に平行して、且つその厚みを通して直線的に貫通する微細な貫通孔である。また、フィルタ19の全てのマイクロチャネル24はほぼ等間隔に配置される。

[0026]

ここで、フィルタ19の厚みを一定にし、更に、具備される全てのマイクロチ ャネル24の形状がなるべく等しくなるようにフィルタ19を製造すれば、何れ のマイクロチャネル24もほぼ均等な容積を具備するものとなる。またここで、 フィルタ19の厚みを充分に薄くし、マイクロチャネル24の口径も充分に小さ いサイズとすれば、所要量のサンプルおよび/または試薬を多数のマイクロチャ ネルに分配して収容させることができる。即ち、このようなフィルター19では 、非常に短い微小なキャピラリー状の開放された流路が、全ての流路の流れ方向 が互いに平行するように、且つ該流れ方向が該フィルターの厚み方向と平行する ように、多数が密に並べてられて一体化されている。従って、該フィルタの1表 面の特定面積当たりに、所望量の液体を収容するのに必要な個数のマイクロチャ ネルを作成し、その所定の面積に対してサンプルおよび/または試薬を供給すれ ばフィルター19のマイクロチャネル内で安定した分析を実行することができる 。例えば、フィルター19の片方ないし両方の面を制御された所望温度の気体と 接触させることによって、各マイクロチャネル内の液体を直接的に昇温および降 温操作できる。これに対して、1本の細長い管状キャピラリーからなる反応容器 において反応を行う場合、そこに所定量のサンプルおよび/または試薬を収容し 分析を行う際に、温度制御を充分に行うためには、なるべく伝熱性の高い材質を 選択する必要があり、且つ良好な光測定のためには、なるべく該キャピラリーの

壁面が平坦な側壁形状である必要がある。

[0027]

更に、スライドチップ2の直ぐ上部に示す拡大図(C)に示される通り、各DNAマイクロアレイ22には、複数のプローブスポット23が具備される。

[0028]

プローブスポット23は、その直ぐ上部に示される更なる拡大図(D)に示される通り、複数のマイクロチャネル24からなる特定の領域を示すものである。拡大図(D)では、便宜上、プローブスポット23に含まれるマイクロチャネル24を黒丸で示した。通常、プローブスポット23は、支持板20から露出されたフィルタ19に存在するマイクロチャネル24のうち、そこにおいて1種類のプローブを固定するための最小単位と見なすことができる。即ち、プローブの固定は、プローブスポット23に含まれるマイクロチャネル24の内壁面に対してのみ行えばよい。言い換えれば、その内壁面にプローブが固定されているマイクロチャネル24からなる領域がプローブスポット23である。

[0029]

該図2(C)および(D)では略円形の領域が示されているが、プローブスポット23の輪郭は、略円形、略矩形または多角形であってもよい。

[0030]

所望に応じて、複数のプローブスポット23に対して同じプローブを固定して もよい。また、マイクロチャネルの内壁に表面処理を施し、流体への摩擦抵抗や プローブ等の試薬の吸着性を調節してもよい。

[0031]

本スライドチップの大きさは $0.5\sim20.0$ cm× $0.5\sim20.0$ cm× $0.01\sim1.0$ cm、好ましくは $1.0\sim10.0$ cm× $1.0\sim10.0$ cm× $0.05\sim0.5$ cmある。特に好ましくは、 $3.0\sim8.0$ cm× $3.0\sim8.0$ cm×3.0cm× $0.05\sim0.2$ cmである。実際の作成したスライドチップの1例は約7.5cm×約2.5cm×約0.1cmである。

. [0032]

本マイクロアレイは、3.0 mm²~16 cm²、好ましくは12.0~40

 $0\,\mathrm{mm}^{\,2}$ 、特に好ましくは $2\,0$. $0\sim1\,0\,0$. $0\,\mathrm{mm}^{\,2}$ であり、実際に作成したスライドチップ上の円形なマイクロアレイは直径約 $6\,\mathrm{mm}$ (約 $2\,8$. $3\,\mathrm{mm}^{\,2}$)である。

[0033]

本DNAマイクロアレイに含まれるプローブスポットは直径 $100\sim300\mu$ mであり、好ましくは 120μ mであり、1DNAマイクロアレイ当たり $10\sim100$ 、好ましくは400のプローブスポットが具備される。更に1つのプローブスポット当たり100から1000本、好ましくは1000本のマイクロチャネルが具備され、その直径は、 $0.05\sim0.6\mu$ m、好ましくは 0.2μ m である。以下に説明する核酸プローブは、プローブスポット毎に異なる種類のプローブを固定することも可能である。

[0034]

ここで使用される「DNAマイクロアレイ」の語は、そこにおいて1種類の反応が実施されるための1反応単位としてのマイクロアレイを示す。従来使用されるDNAチップは、スライドグラス表面にプローブを固定化して二次元的な反応領域を形成している。このようなDNAチップとは異なり、本DNAマイクロアレイは、基板に対して、その表面における二次元的な広がりに加えて、該表面に直行する更なる方向(即ち、その厚み方向)の広がりも有する三次元的に展開される反応領域をいう。

[0035]

本発明において使用するのに好ましいDNAマイクロアレイの例は、特表2000-515251号に記載のデバイス(即ち、ワットマン社Anotechフィルター)、特表平9-504864に記載の微細加工フロースルー多孔性装置であってよい。

[0036]

また、図2にはDNAマイクロアレイ22を4つ具備するスライドチップ2を示したが、4以上としてもそれ以下としてもよい。本明細書では、1つの好ましい態様として4つのDNAマイクロアレイ22を具備するスライドチップ2について説明するが、これに限られるものではなく、また、その変更に伴い他の装置

の構成および実行の際の手順が変更されることは当業者には明白であり、そのような変更も本発明の範囲に含まれるものである。

[0037]

例えば、4つのDNAマイクロアレイ22を具備するスライドチップ2を使用した場合、夫々のDNAマイクロアレイ毎に異なる検体について検査してもよく、または1枚のチップ中で1つの検体について異なる4つの種類の解析、例えば、癌遺伝子の突然変異、発現解析、薬剤耐性遺伝子、および細胞内シグナル遺伝子の発現パターンの決定等を実施してもよい。

[0038]

また、アレイ1個当たりに含まれるマイクロチャネル22の本数、配置密度、 配置パターン、口径等の大きさは、適宜変更でき、1チャネルの形状および/口 径を、長さ方向の異なる箇所間で異ならせてもよい。

[0039]

上述した態様では、フィルタ19の外観は、2次元的な広がりを有した平面を有し、且つ該平面に垂直な方向に一定の厚みを有した扁平な部材であるが、詳細には、その扁平な部材に対して垂直に、且つ直線的に貫通しその両端が開放されたキャピラリーが密に並列されて一体化された形態を有するものである。しかしながら、本発明に従って使用されるフィルタはこのような形状に限られるものではない。例えば、該キャピラリーが、該扁平な部材に対して垂直に配置されず、例えば、所望の角度で直線的に貫通していてもよく、或いは非直線的(即ち、曲線状の)孔として配置されてもよい。また、DNAマイクロアレイ毎またはプローブスポット毎に、該キャピラリーの該扁平部材への角度が異なっていてもよく、曲線または直線の選択がなされてもよい。

[0040]

ここで使用される「核酸プローブ」の語は、一般的に、約10ヌクレオチド以上約100ヌクレオチド以下の核酸からなるポリヌクレオチドまたはオリゴヌクレオチドであり、一般的にハイブリダイゼーションにより核酸を検出する場合に使用される核酸プローブを示す。

[0041]

例えば、P53、c-myc等の癌遺伝子や、癌抑制遺伝子に対応するオリゴ ヌクレオチドであっても、疾患関連または感受性遺伝子に対応するオリゴヌクレ オチドであっても、多型部位を含む配列に対応するオリゴヌクレオチドであって も、何れの所望する核酸をプローブとして使用することが可能である。

[0042]

また更に、解析の対象となる遺伝子の他に、試料の定常状態を測定するための β グロブリンやアクチンなどのハウスキーピング遺伝子に対するプローブを使用 してもよい。このようなハウスキーピング遺伝子の量を細胞内の基準的な遺伝子量として、実際の癌遺伝子や、癌抑制遺伝子または薬剤耐性遺伝子の発現量を測定してもよい。このようにすれば、より正確な細胞内の遺伝子発現量を測定することが可能である。

[0043]

ここで使用される「標的核酸」の語は、試料に含まれる検出されるべき核酸を示す。

[0044]

本発明の態様に従うと、上述したDNAマイクロアレイ22を配置したスライドチップ2を用いて分析を行う場合、このようなスライドチップ2には、複数のDNAマイクロアレイ22が含まれる。DNAマイクロアレイ22に複数具備されるプローブスポット23は、そこにおいて微量な液体を収容できる3次元的な空間を有するマイクロチャネル24を複数具備する。マイクロチャネル24は3次元的な空間を有するが、そのマイクロチャネル24に流体を出し入れするための全ての開口部は、同一平面上に2次元的に配置されている。従って、スライドチップ2を上方より見たときに得られる平面においては、プローブスポット23や非常に狭い面積でしかないが、その実体は、狭い面積開口部より下方に伸びる3次元的な空間が具備される。

[0045]

例えば、プローブスポット毎に条件を変えれば(例えば、固定するプローブの 種類を変更したり、表面処理を変更する等)、微小な1つのDNAマイクロアレ イ中で非常に多くの情報を充分な感度で得ることができる。また、DNAマイク ロアレイ毎に温度制御や、測定データの解析を行えるので、小型の装置において 多項目の反応結果を迅速に得ることができる。また、プローブスポット毎に温度 制御したり、測定データを解析してもよく、その場合、更に、多項目の反応結果 を迅速に得ることが可能である。

[0046]

上述した本発明の態様では、マイクロチャネルの内壁にプローブが固定された 例を示したが、該プローブは必ずしも固定される必要はなく、マイクロチャネル の内壁に試薬を固定しないで行う反応系に対しても、本発明は適用することが可能である。その場合、該プローブを固定化しないこと以外は、上述の態様と同様である。この場合、「プローブスポット」は「反応スポット」と称することも可能であるが、ここでは「反応スポット」はプローブスポットの1態様として包含され説明される。また、このような装置も本発明の範囲に含まれる。

[0047]

3. ソフトウェア

前記メモリ12には、CPU11を介して本装置を制御するためのプログラム、CPU11により検索されて制御および判断の根拠となるデーブル等の情報、並びに、得られた結果を表示する場合に利用される画像データ等が記憶される。

[0048]

例えば、解析プログラムは、遺伝子解析を実施するためのプログラムであり、 当該解析をコンピュータによって処理させるための仕事の手順に関する命令を含 んでよい。

[0049]

例えば、反応進行プログラムは、DNAマイクロアレイ22において行うべき 反応をコンピュータによって処理させるための仕事の手順に関する命令を含んで よい。反応進行プログラムには、反応、即ち、ハイブリダイゼーションに必要な 試薬の選択、使用する試薬の量、反応時間および反応温度等の反応条件、ポンピ ングの回数および時間、ポンピング開始時期の液体輸送および撹拌条件等に関す る命令が予め含まれてもよく、或いは解析開始時にオペレーターにこれらの情報 を入力するように指示する命令が含まれてもよい。また、これらの反応の条件に 関しては反応条件プログラムとして反応の手順とは異なるプログラムとしてメモリ12に記憶させてもよい。

[0050]

上記のプログラムは本装置を制御するためのプログラムの例であるが、それ以外の必要なプログラムをメモリ12に記憶させてもよい。

$[0\ 0\ 5\ 1]$

例えば、遺伝子対応テーブルは、得られた蛍光強度と、反応条件と、遺伝子発 現量、発現遺伝子および遺伝子の突然変異等との関連付けを明記する表であって よい。

[0052]

4.装置の作用

図3に示したフローチャートを用いて上述した本態様の作用を説明する。

[0053]

(S1) オペレーターが、ステージ4上にヒーター部と接触するようにスライドチップ2をセットし、前記スライドチップ2の各DNAマイクロアレイ22に対してジョイント部を接続する。

[0054]

(S2) オペレーターが入力部15に入力して、本装置に対して解析開始の指示が出される。このときオペレーターは反応の条件に関する情報を入力するが、これらの情報は、RAM13に格納される。

[0055]

(S3)オペレータにより解析開始の指示が出されると、CPU11は、予め設定されメモリ12に記憶された座標とメモリ12に記憶された解析プログラムに従って、XYステージコントローラ7に対して、4つのDNAマイクロアレイ22の中で未解析で且つ認識番号の小さいDNAマイクロアレイ22がCCDカメラ5の視野に入る位置にように指示し、指示されたXYステージコントローラ7がモータドライバ6を駆動して、XYステージ4が動かされる。ここで、使用されるスライドチップ2におけるDNAマイクロアレイの数と、夫々に対応する認識番号と、それが位置する座標とは、それらが対応付けられたテーブルとして

メモリ12に記憶されている。従って、CPU11は、未解析のDNAマイクロアレイ22のうちで認識番号の最も若いものを選択し、前記テーブルを検索することにより、目的とするDNAマイクロアレイ22の座標を読み出し、それを基に指示を出す。

[0056]

(S4)目的のDNAマイクロアレイ22がCCDカメラ5の視野に入る位置に配置されると、CPU11は、メモリ12に記憶された反応進行プログラムに従って指示を出し、ポンプドライバ8および温度コントローラ9を制御して、複数の反応を繰り返し実行させる。CPU11は、メモリ12に記憶された反応進行プログラムに従って、各反応の終了毎にCCDカメラ5に指示を出し、撮像を実行させる。(S4)については更に詳しく後述する。

[0057]

(S5) S4におけるCCDカメラ5による撮像がなされる毎に、CPU11は、得られた画像情報を画像処理部14からRAM13に転送させ一旦格納させる。

[0058]

(S6) CUP11は、直前のS3で選択され反応に供されたDNAマイクロアレイ22の認識番号をRAM13から読み出し、それを基にスライドチップ2に具備される4つのDNAマイクロアレイ22に未解析のものが残っているか否かを判断する。未解析のDNAマイクロアレイ22がある場合には(S3)へ進み、そうでない場合には(S7)に進む。

(0059)

(S7) CPU11は、解析プログラムに基づいて(S5)でRAM13に格納された画像情報を読み出し、該情報から蛍光強度を算出する。得られた蛍光強度とその蛍光強度を得たときの反応条件を基に、CPU11は、遺伝子対応テーブルを検索し、対応する遺伝子情報を読み出す。これらのデータから、CPU11は、画像処理部14に遺伝子解析結果のテーブルを作製させ、算出された蛍光強度反応条件と遺伝子対応テーブルそのデータを画像処理部14に送り、そこにおいて、結果のテーブルを作製させ、このテーブルをRAM13に記憶させる。

[0060]

(S8) CPU11は、画像処理部14に対して、RAM13に記憶させた遺伝子解析結果のテーブルの画像を表示するように指示する。これにより画像処理部14はRAMから必要な情報を読み出して画像処理し、表示装置に表示する。

[0061]

上述では、S2においてオペレーターが入力する反応条件に関する情報は、反応温度、反応時間、反応回数および試薬の選択等であってよい。または、これらの情報は、S2においてオペレーターにより入力されるのではなく、予めメモリ12に記憶された反応進行プログラムまたは反応条件プログラムに含まれていてもよい。

[0062]

また、上述の手順では、各DNAマイクロアレイ22毎に解析を行う例を示したが、全てのDNAマイクロアレイ22に関して同時に解析を行ってもよい。また、上記では解析されるDNAマイクロアレイ22は、予め割り当てられた認識番号の順に自動的に選択される場合を記載したが、解析毎に、オペレーターが解析を実行するDNAマイクロアレイ22を選択し入力部15から入力してもよい

[0063]

また、該コンピュータに対してISDNまたは電話回線への接続を行えば、当該解析により得られた結果を、所望のゲノムデータベースまたは塩基配列データベースを検索して得られた情報と比較することも可能である。この手順は、メモリ12に記憶された比較プログラムを基にCPU11がデータベースを検索し、装置により得られた結果と比較し、同定するように設定してもよい。

[0064]

5. DNAマイクロアレイにおける反応

上記(S4)における反応について、図4を用いて更に説明する。

[0065]

(S41)目的のDNAマイクロアレイ22がCCDカメラ5の視野に入る位置に配置されると、CPU11は、メモリ12に記憶された反応進行プログラム

に従って、温度コントローラ9に指示を出しヒーター部を制御させることにより、目的のDNAマイクロアレイ22の温度を所定の第1の温度に維持する。更に、CPU11は、前記反応進行プログラムに従って、ポンプドライバ8に指示を出し、試料を目的のDNAマイクロアレイ22に添加させ、ポンピングにより撹拌を実行しながら、反応を実施させる。

[0066]

(S42)メモリ12に記憶された反応進行プログラムに従って、所定の反応時間に亘って反応が実施された後、CPU11は、前記反応進行プログラムに従って、ポンプドライバ8に指示を出し、試料を目的のDNAマイクロアレイ22から一次退避させ、CCDカメラ5に撮像を実行させる。

[0067]

(S43) CCDカメラ5の撮像の終了後、CPU11は、前記反応進行プログラムに従って、ポンプドライバ8に指示を出し(S42)において一次退避された試料を再びDNAマイクロアレイ22に添加させる。このとき、撹拌作用も機能している。

[0068]

(S44) CPU11は、前記反応進行プログラムと(S1)においてオペレーターにより入力されRAM13に格納された条件を読み出し、更なる温度設定および/または溶媒組成等を変更した更なる反応条件下で反応を行う必要があるか否かを判断する。必要であれば(S41)に進み、不要であれば(S5)へ進む。

[0069]

6. 解析対象および前処理

本発明の装置により実施可能な解析の例は、被験者における癌遺伝子等の突然 変異の有無の検出、被験者における遺伝子の発現解析、薬剤耐性遺伝子の発現解 析、被験者における疾患関連または感受性遺伝子の遺伝子型決定、被験者におけ る細胞内シグナル遺伝子の発現パターンの決定等、臨床的な治療学的および診断 学的解析、並びに非臨床的な基礎研究においても種々の遺伝子解析等である。

[0070]

[0071]

例えば、内視鏡的に採取された組織切片の場合、該組織切片をスライドガラス上に固定し、染色し、病理検査を行った後のスライドグラスから、マイクロダイセクションシステムであるレーザーキャプチャーシステム、オリンパス社製LCS200によって癌病巣部分の組織の部分のみを採取したものを使用することができる。

[0072]

本装置による解析に先駆けて、このようにして得られた生体サンプルは、フェノール・クロロホルム法、マイクロカラム法、または磁性粒子法等を利用した核酸抽出試薬によって処理し、DNAおよび/またはRNAを抽出する。更に、抽出されたDNAおよび/またはRNAをPCR法、RT-PCR法、T7増幅法等によって遺伝子増幅を行う。しかしながら、核酸量の多いサンプルの場合には、遺伝子増幅を行うことなくcDNAを調製すればよい。但し、何れの場合においても、プライマーの5、端か、合成されたヌクレオチドのどこかに標識物質、例えば、FITC、ローダミン、Cy3およびCy5等、蛍光標識物質の何れかが付加されるように試薬組成を最適化することが好ましい。

[0073]

このような解析に使用する試料の調製は、例えば、「DNAマイクロアレイと最新PCR法」(細胞工学別冊;ゲノムサイエンスシリーズ1、秀潤社、2000年3月16日発行)等に記載されるように、一般的にそれ自身公知の方法により行ってよい。

[0074]

上記の蛍光標識を行った後、ピペットによってオペレーターが手動で得られた 調製済みの試料をDNAマイクロアレイに分注してもよい。その後、上述のよう な装置により、解析を行えばよい。

[0075]

7. 解析方法

以上のように我々は、フィルターを用いることにより、短時間に高効率のハイブリダイゼーションを行うことが期待できる三次元DNAマイクロアレイを反応部に用いて、溶液制御用のポンプ、温度調節用の温調システム、高感度な蛍光検出装置とコンピューターによって制御する撮像デバイスを組み合わせた遺伝子検査システムを発明した。

[0076]

このようなシステムにより実施される遺伝子解析方法も本発明の範囲に含まれる。図5のフローチャートを用いて本発明の方法を説明する。

[0077]

(Sa) 先ず、試料を調製する。被験対象から採取した組織または細胞から核酸を、例えば、フェノール・クロロホルム法などにより抽出する。

[0078]

(Sb) (Sa) で得られた核酸を、PCR法またはNADBA法等により増幅し、且つ蛍光標識を行う。また、核酸の量が多い場合には、蛍光標識のみ行う

[0079]

(Sc) (Sb) で得られた蛍光標識された核酸を、スピンカラム法またはエタノール沈殿法などにより精製する。

[0800]

- (Sd) (Sc) で得られた核酸を変性により1本鎖標識核酸にする。その後、核酸プローブを固定化したDNAマイクロアレイに、得られた1本鎖標識核酸を添加する
- (Se) 試料を含有するDNAマイクロアレイについて、所望の条件下でハイブリダイゼーションを行う。このとき、DNAマイクロアレイ中の液体をポンピングまたはピペッティング等により撹拌することが好ましい。

[0.081]

(Sf) (Se) でのハイブリダイゼーションを行った後、DNAマイクロアレイ中の液体を、該アレイの下部に留め、核酸プローブに結合した標識核酸に含まれる蛍光強度を測定する。

[0082]

(Sg) (Sf) における蛍光強度の測定が終了した後、所望の反応条件下で、再度ハイブリダイゼーションを行い、上記同様、蛍光強度を測定する。種々の反応条件下でこの操作を必要な回数だけ繰り返す。

[0083]

(Sh) (Sg) の反応が終了した後に、DNAマイクロアレイ中の試料をそのままの状態を維持しながら、即ち、希釈または不純物等のコンタミネーションのないように、回収し、その後、前記核酸プローブに結合した標識核酸に含まれる蛍光強度を測定する。

[0084]

(Si) (Sf) および(Sh) で得られた蛍光強度を基に、発現遺伝子量の判定および突然変異遺伝子の有無等の判定を行い、目的の遺伝子に関する情報を得る。

[0085]

(Sj) (Si) で得られた目的の遺伝子に関する情報を、データベースに開示される公知の遺伝子情報や、標準試料から得られた解析結果と比較する。

[0086]

(Sk) (Sj) の比較の結果から、被検対象からの試料に関する遺伝子解析についての判定を行う。

[0087]

ここでは、2つの反応条件を用いて2つの反応を連続して行ったが、必要に応じて、連続する反応の回数および蛍光強度の測定回数を増やすことも可能である。その場合、上記(Sf)から(Sg)を必要な回数で繰り返せばよい。

[0088]

本発明の態様として上述した装置は、ステージに置かれた反応要素(即ち、スライドチップ)に対して液体の分注、撹拌、温度制御および測定を常時実行できる構成になっているので、あらゆる種類の反応系を小さなスペースで容易に達成できる。従って、本発明の装置は、あらゆる遺伝学的検査に有用な優れた手段と

なり得る。

[0089]

また、本発明に従うと、少なくとも1個のDNAマイクロアレイは、充分にCCDカメラの撮像可能な範囲に収まる程に小型であるので、測定すべきDNAマイクロアレイ内の複数の別々のプローブスポットに対して、光学的なスキャニングを行う必要はない。このことにより、同一のDNAマイクロアレイ内の各スポットの反応を同時に且つ継続的にモニタリングすることが可能となり、多項目の同時検査に非常に有利である。

[0090]

本発明の更なる側面に従うと、本発明は、同一の試料に対して複数の検査を連続して行うことが可能であり、従って、複数の検査結果を迅速にまたは任意の時機に得ることが可能な装置を提供するものである。

[0091]

本発明に従うと、このような測定装置において、プローブスポット毎に適用された各々の試薬(例えば、核酸プローブおよび核酸プライマー等)の種類または各々の反応条件を、各試薬毎または各反応条件毎に得た各々の測定データと照合しながら測定データの解析を行う解析用ソフトウエアも提供される。

[0092]

また特に、本発明に従う装置では、同一のプローブスポットにおいて、複数種類の反応を同時、逐次、または順次に実行することが可能である。従って、そのような複数種類の反応を達成するために必要な反応条件を容易に整えること、およびそのような複数種類の反応により得られた複数のデータを正確に読み取り且つ処理することを可能にする新規な読み取り手段を、本発明に従う装置が具備していてもよい。

[0093]

例えば、そのような読み取り手段は以下を実行するような手段であり得る;

i) 1つのDNAマイクロアレイにおいて測定されるべきプローブスポットの 位置情報とそのプローブスポットへの制御情報(例えば、試薬毎の好適温度、検 査目的など)とを組み合わせてなる検査項目情報を、メモリ回路等の記憶手段に 記憶すること、

- ii) 実際に前記DNAマイクロアレイ内の全てのスポットにおいて実施された制御をモニタリングし、そのモニタリングされた実際の制御条件と、前記 i) の検査項目情報とを照合し、その照合結果をメモリ回路等の記憶手段に記憶すること、および
 - iii) 前記 ii) のモニタリングされた制御条件下で行われた測定結果を、前記
- ii) で得られた照合結果と対応付けた測定データとしてメモリ回路等の記憶手段に記憶すること、または
- iv) 前記 ii) のモニタリングされた制御条件下で行われた測定結果を、前記 ii) で得られた照合結果と対応付け、更に、CPU等のデータ処理手段によって、前記測定結果を前記照合を基に補正するような演算処理を行うこと。

[0094]

従って、そのような読み取り手段は、該検査項目情報、モニタリングされた制御条件、測定結果および測定データ等のデータを記憶するための記憶手段と、前記記憶手段に記憶された各データを読み出して比較および照合を行ったり、必要な演算処理するためのCPU等のデータ処理手段とを具備する。

[0095]

また、このような新規な読み取り手段自体も、そのような読み取り手段を具備した装置も、本発明の態様として提供される。

[0096]

係る読み取り手段によれば、同一のCCD視野内の全てのスポットについて、 複数のスポット間で全部または一部の反応が時間的に重複するような異なる種類 の反応結果や、少なくとも1つのスポットにて実行される複数の異なる反応条件 での反応結果を、取り違えることなく記憶し、取り出して、所望の判定結果を出 力することが可能である。

[0097]

以上、本発明の実施の形態を詳細に説明したが、上述した詳細な説明および図面は、本発明の態様を例示することを目的とするものであり、従って、それらによってに本発明は限定されるものではなく、本発明は、種々の均等物および現在

[0098]

【実施例】

1. 遺伝子解析

図1に示すような本発明の態様を用いて遺伝子解析を行う。

[0099]

遺伝子を測定する容器として、検査対象であるターゲット遺伝子と相補性を有する複数の遺伝子を表面に固定化した多孔質のフィルターを収めたチップを用いる。この多孔質のフィルターを収めたスライドチップを、蛍光顕微鏡のステージに置かれた反応部分(インキュベーター部分)に設置する。この蛍光顕微鏡は、ホストコンピュータによって、励起光シャッター、蛍光キューブ、ステージ移動などを自動的に制御することが出来るように構成されている。また、蛍光顕微鏡にはCCDなどの画像を撮影するデバイスが設置されていて、撮影のタイミングもホストコンピュータによって制御されている。また、露出時間、画像の保存、冷却状態などの制御も、同じコンピュータによって制御することが出来る。また、インキュベーターには、液体を輸送するためのポンプ、および温度制御用のヒーターかベルチエ素子が設けられていて、これらの制御もまたホストコンピューターによって行うことができる。

[0100]

サンプルをチップの測定領域に滴下したあと、ポンプによって反応液を移動させてハイブリダイゼーション反応を加速する。インキュベーターの下部の溶液を移動させ、反応液の液面がフィルターの上面に接した時に励起光シャッターを開けてフィルター表面の蛍光画像をCCDカメラなどのデバイスによって撮影する。撮影された画像データは、コンピュータの指定されたフォルダー中に保存され、別にインストールされた解析用のプログラムによって測定結果を解析する。

[0101]

このように、ハイブリダイゼーションを促進するためのポンプ、温度変化をチップに与えるためのヒーター、更に、必要に応じて、溶液組成を変化させるピペ

ッターシステムをインキュベーターの周囲に配置することによって、この一個の検査システムによって連続して様々な温度や溶液状態におけるハイブリダイゼーションのパターンを得ることができる。また、測定に用いる蛍光標識の種類に応じて異なる波長によって励起し、異なる蛍光波長の画像を撮影することが出来るので、試料の中に複数の蛍光色素によって標識された物質が入っている場合でも、フィルターキューブを自動的に切り替えることにより、例えば、2色の蛍光強度比などを簡単に測定することができる。このようにして得られたスポットの蛍光強度から、チップ表面に固定化されたプローブとハイブリダイゼーションしたターゲット遺伝子の量を解析する。この検査装置を用いることによって、Cーmyc等の癌化に従って、発現量が大きく変動する遺伝子の発現量を鋭敏に検出することが出来る。

$\{0102\}$

また、インキュベーターの温度変化によって生じる蛍光スポットの蛍光強度変化のパターンを解析することにより、K-Ras、P53といった癌化に大きな影響のある遺伝子の突然変異を検出することができる。このようにして細胞内部で複雑な細胞機能を制御している遺伝子の発現量と、遺伝子の内部に生じた突然変異という2つの生理学的に重要な遺伝子の変異を短時間のうちに同一の装置によって解析することが可能となる。また、ここで、用いられるサンプルの調製方法は、従来の遺伝子検査で用いられているものと同様であり、この装置によって得られた結果は、インターネット上で公開されているGenBankなどのデータベースにある遺伝子情報と容易に比較検討することが出来る。

[0103]

このような本発明の態様に従う装置を用いることによって、反応部分の溶液の 状態や、温度条件を変化させながらターゲット遺伝子のハイブリダイゼーション の程度をリアルタイムで測定することができる。このような装置を用いることに よって、反応部分の溶液の状態や、温度条件を変化させながらターゲット遺伝子 のハイブリダイゼーションの程度をリアルタイムで測定することができるように なった。この発明を用いることによって、対象遺伝子の発現量を正確に測定する ことが出来るようになった。また、発現量の測定に引き続いて、自動的にマイク

能性、疾病のステージなどがより正確に予測できることが期待される。

[0104]

また、同時に治療薬に対する感受性に影響するP450などの薬剤感受性遺伝子の発現量と、活性に影響ある SNPs の検査も同時に行うことが出来る。このようにして疾患の原因遺伝子の異常のみならず、薬剤に対して感受性のある遺伝子のの異常を同時に検査することで、選択する治療薬の種類や温度を患者の体質に合わせて最適化することが可能になる。また、得られた遺伝子異常に関する情報を元にして、将来的に高い治療効果が期待されている遺伝子治療に用いる遺伝子の選択が正確に行える。

[0105]

2. C-myc、エストロゲンレセプター、テロメラーゼの発現量の測定 C-myc、エストロゲンレセプター、テロメラーゼの発現量の測定をおこなうためのスライドチップを図6に示す。該スライドチップには、図6 (A)に示されるようなc-mycを含む複数の遺伝子に対するプローブと、ハウスキーピング遺伝子が固定される。図6 (B1)には、DNAマイクロアレイに含まれるプローブスポットに固定された図6 (A)の核酸プローブの固定位置を模式的に示したものである。夫々の種類の核酸プローブは、種類毎にプローブスポットに固定されている。図6 (B2) および (B3) は解析結果を模式的に示した図である。図6 (B2) および (B3) は解析結果を模式的に示した図である。図6 (B2) は正常な被験者からの試料により得られる結果を示し、 (B3)には異常のある被験者からの試料により得られる結果を示す。このような結果から蛍光の有無を判定することにより、被験者において発現された遺伝子を検出することが可能である。

[0106]

このようなスライドチップを使用し、発現解析を行ったチップの周囲温度や溶

液組成を変更することにより、または試料中の標識核酸とプローブ近傍の温度を TM(Melting Temperature)値に近い条件にすることによって、各プローブの至 適反応条件が達成され、それによりこれらの遺伝子の内部に生じた突然変異の解 析を行うことが可能である。

[0107]

図7には、異なる塩基配列を有するプローブに対して生じた蛍光スポット強度の比較を行うことにより、癌抑制遺伝子P53の遺伝子内部に生じた突然変異を検出する場合の例を示した。蛍光強度の違いによって、発現量を検出することが可能である。

[0108]

以上のような遺伝子の検出と発現量の解析は、1つのDNAマイクロアレイに おいて1つの試料について連続して行うことが可能である。

[0109]

このように発明の装置および方法により、癌化のステージを判定したり、悪性 度や転移のし易さ、または薬剤耐性の個人差などを正確に予測することが可能で ある。

$[0\ 1\ 1\ 0]$

遺伝子検査技術とコンピュータ科学の進展に伴い、現在までにすでに多くの遺伝子の異常としての発現量の変化や突然変異の種類、またはSNPsが同定されている。そしてそれらの公知の情報は、データベースとしてインターネット上で広く公開され、容易に入手が可能である。上述のように、本発明の装置および方法により得られた遺伝子検査の結果を、既に公知の情報と比較評価することにより、更に臨床的に有用な正確な判定が可能となる。例えば、アメリカ癌研究所(NCI)により標準化された正確な転移の予測や治療指針の決定を行うことが可能になり、国や施設による判定基準の違いなどから生じる誤判定の可能性を少なくできる。将来的には、遺伝子治療を行う場合の導入遺伝子の選択においても、重要な情報を提供することが期待される。

[0111]

なお、本発明は、以上で述べてきた各例による遺伝子検査装置およびそれを用

いた検出方法の構造や作用を参酌することによって、次のような発明と捉えることもできる。次に示す各付記項は、本発明が、目的によっては遺伝学的検査に限定されずに、他の種々の生物学的反応(酵素反応、抗原抗体反応、代謝反応、生物学的運動動態試験等)をハイスループットで実行しモニターリングする技術として広く医療分野に提供し得る点に注目して挙げるものである。

[0112]

[付記項1] 複数の微小な反応部中で実行される異なる生物学的反応をコンピュータを利用して検査する生物学的検査装置であって、

- (1) 複数の微小な反応部を位置決めするための位置決め手段と、
- (2) 位置決め手段の近傍に配置され、前記反応部の温度を調節するための 温度調節手段と、
- (3) 異なる生物学的反応が起きている2以上の反応部を視野範囲に有する 撮像手段と、
- (4) 前記撮像手段による同一視野内の画像情報を前記反応部毎に別々に演算する演算手段と、
- (5) 反応部毎の温度と演算結果を照合して同一視野内の異なる生物学的反応結果を出力する出力手段とを

具備することを特徴とする装置。

[0113]

[付記項2] 撮像手段が、検査すべき複数の反応部を同一視野に所望の寸法 および個数で画像化するための画像拡大および/または画像縮小を行うズーム手 段をさらに具備する付記項1に記載の装置。

$\{0114\}$

[付記項3] ズーム手段が顕微鏡の対物レンズ(例えば、拡大倍率が10倍 ~1000倍、好ましくは40倍~400倍)である付記項2に記載の装置。

[0115]

[付記項4] 個々の反応部が複数の単位からなる付記項1に記載の装置。

[0116]

[付記項5] 複数の反応部が同一のアレイ内に一体的に配置されている付記

項1または4に記載の装置。

$\{0117\}$

[付記項6] アレイが複数の反応部を囲む液体収容可能な周辺部分を有する付記項5に記載の装置。

[0118]

[付記項7] 複数の反応部が同一平面上に2次元的に配置し、且つ該面の別方向に延びる3次元構造である付記項1~6の何れかに記載の装置。

[0119]

これら、付記項1~7に記載の発明によれば、位置的に制御された微小な複数の反応部に対して、それぞれ適切な温度調節を実行し、2以上の異なる生物学的反応に関与した複数の反応部を同時に画像化することができる。ここで、撮像手段が時間的に断続的ないし連続的な撮像を行って複数の画像を取り込むようにすれば、複数の異なる反応過程の一部または全部を同時にモニターできる。また、ズーム手段が、所望数の微小な反応部を同一視野に効率よく収めて最適な拡大倍率による画像取り込みを可能にする。また、演算手段は、反応部毎に同一視野内の反応結果を所望の出力内容に変換するのでリアルタイムにデータ処理される。また、出力手段は、同一視野内の複数の反応部からの画像データによる演算結果を、調節制御された温度情報に基づいて照合するので、複数の反応部を取り違いなく仕分けし、総括して、使用者に確認しやすい形式(例えば、印刷、画像表示およびデータ送信等によって)で出力することができる。

[0120]

また、本発明は、次のような発明と捉えることもできる。

[0121]

[付記項8] 生物学的反応を二次元的に配置され、流体を導入し得る開口部または液体が通過可能な通路を有する複数の反応部で実行する二次元反応装置であって、

二次元の作用領域(例えば、複数の反応部の配置に対応する平面または立方体 を形成している)を有する温度伝達手段と、

前記温度伝達手段を通過して液体(例えば、反応用試料、試薬、洗浄液、希釈

液等)および/または気体(例えば、温風、冷風、不活化ガス、酸化防止ガス、 霧状試薬、試料含有ガス等)を少なくとも供給する複数の二次元配置された流体 移送手段とを具備することを特徴とする二次元反応装置。

[0122]

[付記項9] 個々の反応部が複数の単位からなる付記項8に記載の装置。

[0123]

[付記項10] 前記温度伝達手段に対する温度制御部と前記流体移送手段に対する流体移送制御とを作用対象(例えば、反応用試料および試薬等)の種類に応じて関連させる制御手段をさらに具備したことを特徴とする付記項8に記載の装置。

[0124]

[付記項11] 複数の反応部が同一のアレイ内に一体的に配置されている付記項8または10に記載の装置。

[0125]

[付記項12] 前記制御手段が、作用領域の複数箇所に関する温度調節および流体移送を個別に制御することを特徴とする請求項10に記載の装置。

[0126]

[付記項13] 二次元配置された反応部の集合による片面側に前記温度伝達 手段および流体移送手段を配置したことを特徴とする付記項8に記載の装置。

[0127]

[付記項14] 前記温度伝達手段が、作用領域が二次元的な平面を具備するような伝熱性の高い金属製のブロック内に、複数の管状流路からなる流体移送手段を形成していることを特徴とする付記項8または13に記載の装置。

[0128]

[付記項15] 反応部の反応工程の前後または同時に反応部に関する付加的処理を実行するための付加機能手段 | 例えば、撮像手段、観察用窓、反応部の把持用および/または搬送用アーム、各種センサ(例えば、液面検知および温度検知等を行う)並びに分注手段等 | と前記温度伝達手段との間に、前記二次元配置した複数の反応部を配置したことを特徴とする付記項8~14の何れか1に記載

の装置。

[0129]

これら付記項8~15の発明によれば、温度伝達手段が複数の反応部と流体移送手段とを温度調節するので、微小な反応部のそれぞれに対する各種液体(例えば、検査試料および/または試薬等)の導入や流通を良好な反応条件で実行でき、温度制御や各種液体処理に関するコストを低減して、検査時間を短縮し、さらに装置の小型化が図れる。また、生物学的反応のうち、従来、同時に配置が困難な付加機能をスペース効率よく配置でき、しかも温度伝達および/または流体移動と付加機能とを同時に動作させることができる。従って、生物学的反応の反応工程以外の工程(例えば、試料調製、反応部の交換、分注、各種検知および測定等)の一部または全てを一台の装置で自動化できるという利点を有する。

[0130]

【発明の効果】

このような本発明の態様に従う装置を用いることによって、簡便に、且つ短時間で複数の遺伝子を検査することの出来る遺伝子検査装置および方法が提供される。また、このような装置および方法により、反応部分の溶液の状態や、温度条件を変化させながらターゲット遺伝子のハイブリダイゼーションの程度をリアルタイムで測定することができる。従って、この発明を用いることによって、対象遺伝子の発現の有無およびその発現量が正確に測定することが出来る。

【図面の簡単な説明】

【図1】

本発明の1態様を示す構成図。

図2

スライドチップの例を示す図。

【図3】

解析手順を示すフローチャート。

【図4】

反応手順を示すフローチャート。

【図5】

解析方法を示すフローチャート。

【図6】

P53エクソン7突然変異解析用スライドチップの例を示す図。

【図7】

発現量解析用スライドチップを示す図。

【符号の説明】

- 1. 遺伝子検査装置 2. スライドチップ 3. 顕微鏡 4. ステージ
- 5. CCDカメラ 6. モータドライバ 7. XYステージコントローラ
 - 8. ポンプドライバ 9. 温度コントローラ 10. コンピュータ
- 22. DNAマイクロアレイ 23. プローブスポット 24. マイクロチャネル

【書類名】

図面

【図1】

【図2】

【図3】

【図5】

【図6】

number	spot oligo (21 mer)	number of mismatch
1	5'-ACAACTACATGTGTAACAGTT-3'	0 (sense)
2	ACAACTACATCTGTAACAGTT	1
3	ACAACTACATATGTAACAGTT	1
· 4	ACAACTACATTTGTAACAGTT	1
5	AACTGTTACACATGTAGTTGT	0 (antisense)
6	AACTGTTACAGATGTAGTTGT	1
7	AACTGTTACATATGTAGTTGT	1
8	AACTGTTACAAATGTAGTTGT	1
9	ACAACTACAGATGTAACAGTT	2
10	ACAACTACATATGTAGCAGTT	2
11	ACAAGTACATATGTAACAGTT	2
12	ACAAGTACATATGTAGCAGTT	3
13	ACAAGTACAGACGTAGCAGTT	5
14	CACAGGCCCAAGATGAGGCC	complement of primer F
15	ACTTGCCACCCTGCACACTG	complement of primer R
F	fluorescein oligo	
· N	non DNA	

(A)

【図7】

number	spot oligo (25 mer)	target
1	5'-AGTTTGTGTTTCAACTGTTCTCGTC-3'	c-myc
2	ATCTGTCTCAGGACTCTGACACTGT	c-myc
3	ACTCAAACGTGTCTGTGTTGTAGGT	ERBB2
4	AATCTGCATACACCAGTTCAGCAG (24mer)	ERBB2
5	CATAATGGTAGCCTGAAGCATAGTC	ER
6	GGATCAAAGTGTCTGTGATCTTGTC	ER
7	TACAGATGAGGTTATTTGCCTGAGT	ZABC1(ZNF217)
8	ATAAGTGTTGATATGACACAGGCCT	ZABC1(ZNF218)
9	CTCGTCTTCTACAGGGAAGTTCAC (24mer)	hTERT
10	CAGGAGGATCTTGTAGATGTTGGT (24mer)	hTERT
11	ACATCTACTACACTTTCAGCGTGAA	Luciferase gene of Renie reniformis (negative control)
12	CGTCAGGTTTACCACCTTTTACTAA	Luciferase gene of Renia reniformis (negative control)
13	GTCACACTTCATGATGGAGTTGAAG	β -actin (positive control)
14	GTAGCACAGCTTCTCCTTAATGTCA	β -actin (positive control)
15	ATCTTGAGGCTGTTGTCATACTTCT	GAPDH (positive control)
16	ACCACCTTCTTGATGTCATCATATT	GAPDH (positive control)
F	fluorescein oligo	
N	non DNA	

(A)

【書類名】

要約書

【要約】

【課題】 簡便に、且つ短時間で複数の遺伝子を検査することの出来る遺伝子検 香装置および方法を提供する。

【解決手段】 コンピュータを利用した遺伝子検査装置であって、(1) 3 次元 的に液体を収容し得る微小な液体収容部を 2 次元的に多数配置してなり、そこに おいて予め蛍光標識された標的核酸と前記核酸プローブとの間でハイブリダイゼーション反応を行うためのDNAマイクロアレイ;および(2)上記(1)に記載のDNAマイクロアレイを支持するステージと、該DNAマイクロアレイの温度を調節するための温度調節部と、該DNAマイクロアレイからの光学的信号を撮像するためのCCDカメラとを備えた顕微鏡;を具備する装置。

【選択図】 なし

特願2001-232501

出願人履歴情報

識別番号

[000000376]

1. 変更年月日

1990年 8月20日

[変更理由]

新規登録

住 所 氏 名 東京都渋谷区幡ヶ谷2丁目43番2号

オリンパス光学工業株式会社

2. 変更年月日

2003年10月 1日

[変更理由]

名称変更

住 所

東京都渋谷区幡ヶ谷2丁目43番2号

氏 名 オリンパス株式会社