CARMICHAEL NUMBERS AND THE SIEVE

WILLIAM D. BANKS AND TRISTAN FREIBERG

Abstract. Using the sieve, we show that there are infinitely many Carmichael numbers whose prime factors all have the form $p=1+a^2+b^2$ with $a,b\in\mathbb{Z}$.

Dedicated to Carl Pomerance on the occasion of his 70th birthday

1. Introduction

For any prime number n, Fermat's little theorem asserts that

$$a^n \equiv a \ (n) \qquad (a \in \mathbb{Z}). \tag{1.1}$$

Around 1910, Carmichael initiated the study of composite numbers n with the property (1.1); these are now known as *Carmichael numbers*. The existence of infinitely many Carmichael numbers was first established in the celebrated 1994 paper of Alford, Granville and Pomerance [1].

Since prime numbers and Carmichael numbers are linked by the common property (1.1), from a number-theoretic point of view it is natural to investigate various arithmetic properties of Carmichael numbers. For example, Banks and Pomerance [9] gave a conditional proof of their conjecture that there are infinitely many Carmichael numbers in an arithmetic progression a + bc ($c \in \mathbb{Z}$) whenever (a, b) = 1. The conjecture was proved unconditionally by Matomäki [20] in the special case that a is a quadratic residue modulo b, and using an extension of her methods Wright [23] established the conjecture in full generality. The techniques introduced in [1] have led to many other investigations into the arithmetic properties of Carmichael numbers; see [2–5,7,8,10,14–19,21,24] and the references therein.

In this paper, we combine sieve techniques with the method of [1] to prove the following result.

Theorem 1.1. There exist infinitely many Carmichael numbers whose prime factors all have the form $p = 1 + a^2 + b^2$ with some $a, b \in \mathbb{Z}$. Moreover, there is a positive constant C such that the number of such Carmichael numbers not exceeding x is at least x^C (once x is sufficiently large in terms of C).

Remark 1.2. The Carmichael numbers described in this theorem seem to be quite unusual. Up to 10^8 , there are only seven such Carmichael numbers, namely

561, 162401, 410041, 488881, 656601, 2433601, 36765901.

By contrast, there are 255 "ordinary" Carmichael numbers up to 10^8 .

Date: June 12, 2015.

As is well known, whenever p=6k+1, q=12k+1 and r=18k+1 are simultaneously prime for some positive integer k, the number n=pqr is a Carmichael number. However, no number of this form is a Carmichael number of the type described in the theorem, since p-1=6k and $r-1=3\cdot 6k$ cannot both be expressed as a sum of two squares.

Notation. Aside from notation introduced in situ, let \mathbb{P} be the set of primes, and let p and q always denote primes.

Let $a(b) := \{a + bc : c \in \mathbb{Z}\}$, $\mathbf{1}_S : \mathbb{N} \to \{0,1\}$ the indicator function of $S \subseteq \mathbb{N}$, $\pi(x) := \sum_{n \leq x} \mathbf{1}_{\mathbb{P}(n)}$ and $\pi(x;b,a) := \sum_{n \leq x} \mathbf{1}_{\mathbb{P} \cap a(b)}(n)$. Let $\phi, \mu, \omega, P^+ : \mathbb{N} \to \mathbb{N}$ be the Euler, Möbius, number of distinct prime divisors and greatest prime divisor functions $(\omega(1) := 0 \text{ and } P^+(1) := 1)$. Let $\log_n : [1,\infty) \to [1,\infty)$ be the nth iterated logarithm, i.e., $\log_1 x := \max\{1, \log x\}$ and $\log_{n+1} x := \log_1(\log_n x)$.

Let expressions of the form f(x) = O(g(x)), $f(x) \ll g(x)$ and $g(x) \gg f(x)$ signify that $|f(x)| \leqslant c|g(x)|$ for all sufficiently large x, where c>0 is an absolute constant. The notation f(x) = g(x) indicates that $f(x) \ll g(x) \ll f(x)$. We also let $f(x) = O_A(g(x))$ etc. have the same meanings with c depending on a parameter A. Finally, let $o_{x\to\infty}(1)$ (or simply o(1) if x is clear in context) denote a quantity that tends to zero as x tends to infinity.

2. AGP SETUP

Let $\mathbb{B} := \{1, 5, 13, 17, 25, \ldots\}$ be the multiplicative semigroup of the natural numbers generated by the set of primes $\mathbb{P} \cap \mathbb{P} \cap \mathbb{P}$ (4), and let

$$\pi(x,y) := \#\{p \in \mathbb{B} \cap [2,x] : P^+(p-1) \le y\}.$$

Definition 2.1. Let \mathcal{E} be the set of numbers E in (0,1) for which there exist $x_1(E), \gamma_1(E) > 0$ such that for all $x \ge x_1(E)$, the inequality

$$\pi(x, x^{1-E}) \geqslant \gamma_1(E)\pi(x)$$
 (2.1)

holds. \Box

Definition 2.2. Given $T \ge 3$, let $\ell(T)$ be the integer given in terms of putative Siegel zeros¹ in Lemma 3.1 below.

Definition 2.3. For any fixed positive constants A, A', let $\mathcal{B} = \mathcal{B}(A, A')$ denote the set of numbers $B \in (0,1)$ for which the following holds. There exists $x_2(B)$ such that for all $x \geqslant x_2(B)$ we have

$$\frac{A^{-1}dx^{1-B}y^{-1}}{\phi(d)\log(dx^{1-B})} \leqslant \sqrt{\log x} \sum_{\kappa \leqslant x^{1-B}y^{-1}} \mathbf{1}_{\mathbb{B}}(\kappa) \mathbf{1}_{\mathbb{P}}(2d\kappa + 1) \leqslant \frac{A'dx^{1-B}y^{-1}}{\phi(d)\log(dx^{1-B})}$$
 (2.2)

whenever $d \in \mathbb{B} \cap [1, x^B y]$, $|\mu(d)| = 1$, $P^+(d)$, $y \leqslant x^{B/\log_2 x}$ and $(d, \ell(x^B)) = 1$. \square

Matomäki [20, Lemma 2] has shown that $\mathcal{E} \supseteq (0, 1/2)$. By Lemma 3.4 below, if A, A' are sufficiently large² and β is sufficiently small (depending on A, A'),

¹We take license with the term "Siegel zero" — cf. Lemma 3.1 below for a precise statement.

²Although we do not give details, one can show that A = 50 and A' = 1 suffice. We do not compute a value for β .

then $\mathcal{B} \supseteq (0,\beta)$. Consequently, the following analogue of [1, Theorem 4.1] immediately implies Theorem 1.1. Its proof relies on Lemma 2.5 below, which is itself analogous to [1, Theorem 3.1].

Theorem 2.4. Let C(x) denote the number of Carmichael numbers up to x all of whose prime divisors p are such that $(p-1)/2 \in \mathbb{B}$. For each $E \in \mathcal{E} \cap (4/9,1)$, $B \in \mathcal{B}$ and $\epsilon > 0$, there is a number $x_4(E,B,\epsilon)$, such that whenever $x \geqslant x_4(E,B,\epsilon)$, we have $C(x) \geqslant x^{EB-\epsilon}$.

LEMMA 2.5. Fix any $B \in \mathcal{B}$. There exists $x_3(B)$ such that the following holds for all $x \ge x_3(B)$ and any integer L satisfying hypotheses (H1) — (H5) below. There is some $k \in [1, x^{1-B}] \cap \mathbb{B}$ with (k, L) = 1 such that

$$4A(\log x)^{3/2} \sum_{d \mid L, 2dk+1 \le x} \mathbf{1}_{\mathbb{P}}(2dk+1) > \# \{ d \mid L : d \le x^B \}.$$

Our hypotheses are the following:

- (H1) $L \in \mathbb{B}$ and $|\mu(L)| = 1$;
- (H2) $P^+(L) \leqslant x^{B/\log_2 x}$;
- (H3) $(L, \ell(x^B)) = 1;$
- (H4) for any $d \mid L$ with $d \leq x^B$, the bound $16A\sqrt{\log x} \sum_{a \mid d} 1/q \leq 1 B$ holds;
- (H5) we have $24AA' \sum_{q|L} 1/q \le 5(1-B)$.

Proof. Let $x \ge x_3(B)$ with $x_3(B)$ sufficiently large (to be specified). We have

$$\sum_{\substack{\kappa \leqslant x^{1-B} \\ (\kappa,L)=1}} \mathbf{1}_{\mathbb{B}}(\kappa) \sum_{d|L,d \leqslant x^B} \mathbf{1}_{\mathbb{P}}(2d\kappa+1) = \sum_{d|L,d \leqslant x^B} \sum_{\substack{\kappa \leqslant x^{1-B} \\ (\kappa,L)=1}} \mathbf{1}_{\mathbb{B}}(\kappa) \mathbf{1}_{\mathbb{P}}(2d\kappa+1),$$

so there must be some $k \in [1, x^{1-B}] \cap \mathbb{B}$ with (k, L) = 1 for which

$$x^{1-B} \sum_{d|L, d \leqslant x^B} \mathbf{1}_{\mathbb{P}}(2dk+1) \geqslant \sum_{d|L, d \leqslant x^B} \sum_{\substack{\kappa \leqslant x^{1-B} \\ (\kappa, L) = 1}} \mathbf{1}_{\mathbb{B}}(\kappa) \mathbf{1}_{\mathbb{P}}(2d\kappa+1). \tag{2.3}$$

Let $d \mid L$, $d \leq x^B$. Note that d is squarefree, $P^+(d) \leq x^{B/\log_2 x}$ and $(d, \ell(x^B)) = 1$. Observe that

$$\sum_{\substack{\kappa \leqslant x^{1-B} \\ (\kappa,L)=1}} \mathbf{1}_{\mathbb{B}}(\kappa) \mathbf{1}_{\mathbb{P}}(2d\kappa + 1)$$

$$\geqslant \sum_{\kappa \leqslant x^{1-B}} \mathbf{1}_{\mathbb{B}}(\kappa) \mathbf{1}_{\mathbb{P}}(2d\kappa + 1) - \sum_{q|L} \sum_{mq \leqslant x^{1-B}} \mathbf{1}_{\mathbb{B}}(mq) \mathbf{1}_{\mathbb{P}}(2dmq + 1).$$
(2.4)

We can assume that $x_3(B) \ge x_2(B)$; hence by (2.2) we have

$$A\sqrt{\log x} \sum_{\kappa \le x^{1-B}} \mathbf{1}_{\mathbb{B}}(\kappa) \mathbf{1}_{\mathbb{P}}(2d\kappa + 1) \geqslant \frac{dx^{1-B}}{\phi(d)\log(dx^{1-B})} \geqslant \frac{dx^{1-B}}{\phi(d)\log x}.$$
 (2.5)

Now fix $q \mid L$ for the moment, and consider the sum on $mq \leqslant x^{1-B}$ in (2.4). Note that

$$\sum_{mq \leqslant x^{1-B}} \mathbf{1}_{\mathbb{B}}(mq) \mathbf{1}_{\mathbb{P}}(2dqm+1) \leqslant \pi(2dx^{1-B}+1;dq,1) \leqslant \pi(2dx^{1-B};dq,1) + 1.$$

The Brun-Titchmarsh inequality of Montgomery and Vaughan [22] gives

$$\pi(dx^{1-B}; 2dq; 1) < \frac{4dx^{1-B}}{\phi(dq)\log(x^{1-B}/q)} \le \frac{8}{q(1-B)} \frac{dx^{1-B}}{\phi(d)\log x} - 1,$$

provided $x_3(B)$ is sufficiently large, which we assume (recall that $q \le x^{B/\log_2 x}$). Using (H4) it follows that

$$2A\sqrt{\log x}\sum_{q|d}\sum_{mq\leq x^{1-B}}\mathbf{1}_{\mathbb{B}}(mq)\mathbf{1}_{\mathbb{P}}(2dmq+1)<\frac{dx^{1-B}}{\phi(d)\log x}.$$
 (2.6)

Now suppose $q \nmid d$. For such q we have $dq \mid L$, $|\mu(dq)| = 1$, $P^+(dq) \leqslant x^{B/\log_2 x}$; therefore, applying (2.2) $(d \mapsto dq, y \mapsto q)$ and noting that $q/\phi(q) \leqslant 6/5$ for all $q \geqslant 5$, it follows that

$$\sqrt{\log x} \sum_{m \le x^{1-B}/q} \mathbf{1}_{\mathbb{B}}(m) \mathbf{1}_{\mathbb{P}}(2(dq)m+1) \le \frac{A' dx^{1-B}}{\phi(dq) \log(dqx^{1-B})} \le \frac{6A'}{5q(1-B)} \frac{dx^{1-B}}{\phi(d) \log x}.$$

Since $\mathbf{1}_{\mathbb{B}}(mq) = \mathbf{1}_{\mathbb{B}}(m)$ we deduce from (H5) that

$$4A\sqrt{\log x}\sum_{q|L,\ q\nmid d}\sum_{mq\leqslant x^{1-B}}\mathbf{1}_{\mathbb{B}}(mq)\mathbf{1}_{\mathbb{P}}(2dmq+1)\leqslant \frac{dx^{1-B}}{\phi(d)\log x}.$$
 (2.7)

Combining (2.4) - (2.7) we see that

$$4A\sqrt{\log x} \sum_{\substack{\kappa \leqslant x^{1-B} \\ (\kappa, L) = 1}} \mathbf{1}_{\mathbb{B}}(\kappa) \mathbf{1}_{\mathbb{P}}(2d\kappa + 1) > \frac{dx^{1-B}}{\phi(d)\log x} (4 - 2 - 1) \geqslant \frac{x^{1-B}}{\log x},$$

and combining this with (2.3) we obtain the stated result.

Proof of Theorem 2.4. Minor modifications notwithstanding, the proof follows that of [1, Theorem 4.1] verbatim, so let us only set up the proof here. Let $E \in \mathcal{E}$, $B \in \mathcal{B}$, $\epsilon > 0$. We can assume that $\epsilon < EB$. Let $\theta := (1 - E)^{-1}$ and let $y \ge 2$ be a parameter. Put

$$\mathcal{Q} := \{ q \in \mathbb{B} \cap (y^{\theta}/\log y, y^{\theta}] : P^{+}(q-1) \leqslant y \},$$

and let ℓ be a positive integer (to be specified) satisfying $\log \ell \ll y^{\theta}/\log y$. By (2.1) we have

$$|\mathcal{Q}\setminus\{q:q\mid\ell\}|\geqslant \frac{1}{2}\gamma_1(E)\frac{y^{\theta}}{\log(y^{\theta})}$$

for all large y (we have $\pi(y^{\theta}/\log y) \ll y^{\theta}/(\log(y^{\theta})\log y)$ using Chebyshev's bound, as well as the well-known bound $\omega(\ell) \ll (\log \ell)/(\log_2 \ell)$). Let $L := \prod_{q \in \mathcal{Q}, \, q \nmid \ell} q$; then

$$\log L \le |\mathcal{Q}| \log(y^{\theta}) \le \pi(y^{\theta}) \log(y^{\theta}) \le 2y^{\theta}$$

for all large y. Let $\delta := \epsilon \theta/(4B)$ and let $x := e^{y^{1+\delta}}$. We have

$$\sum_{q|L} \frac{1}{q} \leqslant \sum_{q \in (y^{\theta}/\log y, y^{\theta}]} \frac{1}{q} \leqslant 2 \frac{\log_2 y}{\theta \log y} \leqslant \frac{5(1-B)}{24AA'}$$

for all sufficiently large y. For any $d \mid L$ with $d \leqslant x^B$ we have $\omega(d) \leqslant 2 \log x / \log_2 x$ (if x is large enough), and therefore

$$\sum_{q|d} \frac{1}{q} \leqslant \frac{\log y}{y^{\theta}} \frac{2\log x}{\log_2 x} < \frac{2\log x}{(\log x)^{\theta/(1+\delta)}} < \frac{1-B}{16A\sqrt{\log x}}$$

for all large *y provided that* $\theta/(1+\delta) > 3/2$. Since

$$4\delta = \epsilon \theta/B < \theta E = E/(1-E),$$

we have

$$2\theta - 3\delta = 2\left(1 + \frac{E}{1 - E}\right) - 3\delta > 2\left(1 + \frac{E}{1 - E}\right) - \frac{3E}{4(1 - E)} = 2 + \frac{5E}{4(1 - E)},$$

and this is greater than three (and hence $\theta/(1+\delta) > 3/2$ as required) whenever 5E/(4(1-E)) > 1, i.e., E > 4/9, which we assume.

We now specify that $\ell := \ell(x^B)$. We clearly have $\ell(x^B) \le x^B$ (cf. Lemma 3.1), so the requirement that $\log \ell \ll y^{\theta}/\log y$ is satisfied:

$$\log \ell \leqslant \log x = y^{1+\delta} < y^{2\theta/3} \ll y^{\theta}/\log y.$$

We can apply Lemma 2.5 with $B, x, L, \ell = \ell(x^B)$. Thus, for all sufficiently large values of y, there is an integer $k \in \mathbb{B}$ coprime to L, for which the set \mathcal{P} of primes $p \leq x$ with p = 2dk + 1 for some divisor d of L, satisfies

$$|\mathcal{P}| \geqslant \frac{\#\{d \mid L : d \leqslant x^B\}}{4A(\log x)^{3/2}}.$$

We leave the reader to pursue the remainder of the proof in [1].

3. The sieve

Notational caveat. This section can be read independently of $\S 2$, and below A, B, d, k are not the same as in $\S 2$.

Level of distribution. We first quote part of [6, Lemma 4.1], which gives a qualitative extension of the classical (exceptional) zero-free region for Dirichlet L-functions in the case of smooth moduli. Its proof uses bounds for character sums to smooth moduli due to Chang [11].

Lemma 3.1. Let $T \geqslant 3$. Among all primitive Dirichlet characters $\chi \mod \ell$ to moduli ℓ satisfying $\ell \leqslant T$ and $P^+(\ell) \leqslant T^{1/\log_2 T}$, there is at most one for which the associated L-function $L(s,\chi)$ has a zero in the region

$$\Re(s) > 1 - c\log_2 T/\log T, \quad |\Im(s)| \le \exp\left(\sqrt{\log T}/\log_2 T\right),\tag{3.1}$$

where c > 0 is a certain (small) absolute constant. If such a character $\chi \mod \ell$ exists, then χ is real and $L(s,\chi)$ has just one zero in the region (3.1), which is real and simple, and we set $\ell(T) := \ell$. Otherwise we set $\ell(T) := 1$.

Remark 3.2. If $\chi \mod \ell$ is real and primitive, then $\ell = 2^{\nu} \hat{\ell}$ where $\nu \leqslant 3$ and $\hat{\ell}$ is odd and squarefree. By Siegel's theorem [12, §21, (4)], if β is any real zero of $L(s,\chi)$ then $\ell \gg_A (1-\beta)^{-A}$ for any A>1. Hence, if $\ell=\ell(T)$ is as in Lemma 3.1 and $\ell \neq 1$, then

$$\ell \gg_A (\log \ell / \log_2 \ell)^A. \tag{3.2}$$

The implicit constant is ineffective for A > 2, but it is effective for $2 \ge A > 1$, and consequently the implicit constant in (3.3) below is effective for A < 2. \square

The following statement is a consequence of [6, Theorem 4.1], whose proof combines standard zero density estimates with the zero free region for smooth moduli given in Lemma 3.1.

Theorem 3.3. Fix $\eta > 0$. Let $x \geqslant 3^{1/\eta}$ be a number, and let $k \geqslant 1$ be a squarefree integer such that $P^+(k) < x^{\eta/\log_2 x}$, $k < x^{\eta}$ and $(k,\ell) = 1$, where $\ell := \ell(x^{\eta})$ as in Lemma 3.1. If $\eta = \eta(A,\delta)$ is sufficiently small in terms of any fixed A > 0 and $\delta \in (0,1/2)$, then

$$\sum_{r \leqslant \sqrt{x}/x^{\delta}} \max_{(a,kr)=1} \left| \pi(x;kr,a) - \frac{\pi(x)}{\phi(kr)} \right| \ll_{\delta,A} \frac{x}{\phi(k)(\log x)^{A}}.$$
 (3.3)

Proof. Let us write $\Delta(x; kr, a)$ for $\pi(x; kr, a) - \pi(x)/\phi(kr)$. The bound

$$\sum_{\substack{r \leqslant \sqrt{x}/x^{\delta} \\ (r,P^{+}(\ell))=1}} \max_{(a,kr)=1} |\Delta(x;kr,a)| \ll_{\delta,A} \frac{x}{\phi(k)(\log x)^{A}}$$
(3.4)

is³ [6, Theorem 4.1] in our notation, except that we have the stronger hypothesis that $(k,\ell)=1$, whereas in [6] it is only assumed that $(k,P^+(\ell))=1$. If $\ell=1$ then we are done, so let us assume $\ell\neq 1$. By Remark 3.2, $\ell=2^\nu\hat{\ell}$, where $\nu\leqslant 3$ and $\hat{\ell}$ is a product of $O(\log x^\eta/\log_2 x^\eta)$ distinct odd primes. The bound (3.4) holds if $P^+(\ell)$ is replaced by any prime divisor of ℓ , as is manifest from the proof of [6, Theorem 4.1] (the crux being that $\ell\nmid r$). Summing over the prime divisors of $\hat{\ell}$, replacing A by A+1 in (3.4), and recalling that η depends only on A and δ , we deduce that

$$\sum_{\substack{r \leqslant \sqrt{x}/x^{\delta} \\ \hat{\ell} \nmid r}} \max_{(a,kr)=1} |\Delta(x;kr,a)| \ll_{\delta,A} \frac{x}{\phi(k)(\log x)^{A}}.$$
 (3.5)

On the other hand, using $\pi(x) \ll x/\log x$ together with the Brun–Titchmarsh inequality [13, (13.3) et seq.] we obtain that, uniformly for $r \leqslant \sqrt{x}$ with $\hat{\ell} \mid r$ and (a, kr) = 1,

$$\Delta(x; kr, a) \ll \frac{x}{\phi(kr) \log x}.$$

For any such r, write $r=\hat{\ell}r_1r_2$, where r_1 is composed of primes dividing ℓ , and $(r_2,\ell)=1$. Note that $r_1\leqslant \sqrt{x}/(r_2\hat{\ell})$, $(kr_2,\hat{\ell})=1$ (since $(k,\ell)=1$), and $\phi(kr)\geqslant \phi(k)\phi(\hat{\ell})\phi(r_1)$; therefore,

$$\sum_{\substack{r \leqslant \sqrt{x}/x^{\delta} \\ \hat{\ell} \mid r}} \max_{(a,kr)=1} |\Delta(x;kr,a)| \ll \frac{x}{\phi(k)\phi(\hat{\ell})\log x} \sum_{r_1 \leqslant \sqrt{x}} \frac{1}{\phi(r_1)} \ll \frac{x}{\phi(k)\phi(\hat{\ell})}. \tag{3.6}$$

³Actually, in [6, Theorem 4.1] the primes are counted with a logarithmic weight, from which one can deduce, via partial summation, the bound as stated in (3.4), and this is the form in which the bound is ultimately used in [6].

Since $\ell/\phi(\ell) \ll \log_2 \ell \ll \log_2 x^{\eta}$ and $\ell \gg_A (\log x^{\eta}/\log_2 x^{\eta})^A$ by (3.2), we see that $1/\phi(\hat{\ell}) \ll (\log_2 x^{\eta})^{A+1}/(\log x^{\eta})^A$,

thus combining (3.5) with (3.6) gives the result (with A replaced by any smaller constant).

Setup & key estimate. Equipped with our level of distribution result, establishing our key estimate involves a routine application of the semi-linear sieve and a "switching trick" (as in [13, Theorem 14.8]). We are to sieve a sequence of primes in arithmetic progression by the primes in $\mathbb{P} \cap 3$ (4).

For $x \ge 3$, let

$$P(x) := \prod_{\substack{p < x \\ p \equiv 3 \, (4)}} p,$$

let

$$V(x) := \prod_{\substack{p < x \\ p \equiv 3 \text{ (4)}}} \left(1 - \frac{1}{\phi(p)} \right) = \prod_{\substack{p < x \\ p \equiv 3 \text{ (4)}}} \left(1 - \frac{1}{p} \right) \left(1 + \frac{1}{p(p-2)} \right)^{-1}$$
(3.7)

and let

$$W(x) := \prod_{\substack{p < x \\ p \equiv 1 \ (4)}} \left(1 + \frac{1}{\phi(p)} + \frac{1}{\phi(p^2)} + \cdots \right) = \prod_{\substack{p < x \\ p \equiv 1 \ (4)}} \left(1 - \frac{1}{p} \right)^{-1} \left(1 + \frac{1}{p(p-1)} \right).$$

For future reference, we record here that by Mertens' theorem one has

$$W(x)/V(x) = \frac{1}{2}A_1 A_3 e^{\gamma} \log x + O(1), \tag{3.8}$$

where

$$A_1 := \prod_{p=1 \, (4)} \left(1 + \frac{1}{p(p-1)} \right) \quad \text{and} \quad A_3 := \prod_{p=3 \, (4)} \left(1 + \frac{1}{p(p-2)} \right).$$
 (3.9)

By Mertens' theorem we also have, for $2 \le x < y$ and j = 1, 3,

$$\sum_{\substack{x \leqslant p < y \\ p \equiv j \text{ (4)}}} \frac{1}{p} = \frac{1}{2} \log \left(\frac{\log y}{\log x} \right) + O\left(\frac{1}{\log x} \right) \leqslant \frac{\log(y/x)}{2 \log x} \left(1 + O\left(\frac{1}{\log(y/x)} \right) \right), \quad (3.10)$$

and furthermore,

$$\frac{V(x)}{V(y)}, \frac{W(y)}{W(x)} = \left(\frac{\log x}{\log y}\right)^{1/2} \left(1 + O\left(\frac{1}{\log y}\right)\right). \tag{3.11}$$

Indeed, we actually have (cf. [13, (14.21)–(14.24)])

$$1/V(x) = 2A_3 B \sqrt{(e^{\gamma}/\pi) \log x} (1 + O(1/\log x))$$
 (3.12)

and

$$W(x) = (\pi A_1/4B)\sqrt{(e^{\gamma}/\pi)\log x} (1 + O(1/\log x)),$$

where

$$B := \frac{1}{\sqrt{2}} \prod_{p=3 \, (4)} \left(1 - \frac{1}{p^2} \right)^{-1/2} = \frac{\pi}{4} \prod_{p=1 \, (4)} \left(1 - \frac{1}{p^2} \right)^{1/2} = 0.764223 \dots$$

is the Landau–Ramanujan constant. Finally, let f(s) and F(s) be the continuous solutions to the following system of differential-difference equations:

$$\sqrt{s}F(s) = 2\sqrt{e^{\gamma}/\pi} \qquad (0 \le s \le 2), \qquad (\sqrt{s}F(s))' = f(s-1)/2\sqrt{s} \qquad (s>0)$$

$$f(1) = 0 \qquad (\sqrt{s}f(s))' = F(s-1)/2\sqrt{s} \qquad (s>1).$$

For $1 \le s \le 3$ we have [13, p.275]

$$\frac{\sqrt{s}f(s)}{\sqrt{e^{\gamma}/\pi}} = \int_1^s \frac{\mathrm{d}t}{\sqrt{t(\log t)}} = \log\left(1 + 2(s-1) + 2\sqrt{s(s-1)}\right). \tag{3.13}$$

Lemma 3.4. Fix $\eta > 0$. Let $x \ge 3^{1/\eta}$ be a number, and let $k \ge 1$ be a squarefree integer, such that $P^+(k) < x^{\eta/\log_2 x}$, $k < x^{\eta}$ and $(k, \ell) = 1$, with $\ell := \ell(x^{\eta})$ as in Lemma 3.1. If $k \in \mathbb{B}$ and η is sufficiently small, then

$$\sum_{m \le x} \mathbf{1}_{\mathbb{B}}(m) \mathbf{1}_{\mathbb{P}}(2km+1) \approx \frac{kx}{\phi(k)(\log x)^{3/2}}.$$
 (3.14)

Proof. Let $k \in \mathbb{B}$ be fixed. Note that (k, 2P(x)) = 1. As $\mathbf{1}_{\mathbb{B}}(m) = 1$ implies that $m \equiv 1$ (4), and thus $2km + 1 \equiv 3$ (8), we can assume that our sum is over m for which $2km + 1 \equiv j$ (8k) for some reduced residue j (8k), with $j \equiv 3$ (8) and $j \equiv 1$ (k). Thus, we want to sift the sequence $\mathcal{A} := (\mathbf{1}_{\mathbb{P} \cap j} (8k) (2km + 1))$ by the primes in $\mathbb{P} \cap 3$ (4), and the sum in (3.14) is equal to $S(\mathcal{A}, \sqrt{x})$, where

$$S(\mathcal{A}, z) := \sum_{\substack{m \leqslant x \\ (m, P(z)) = 1}} \mathbf{1}_{\mathbb{P} \cap j (8k)} (2km + 1)$$

is our sifting function.

Let z < x. Suppose $d \mid P(z)$ and note that (d, 2k) = 1 (since $2 \nmid P(z)$ and (k, P(z)) = 1). Thus, $d \mid m$ if and only if $2km + 1 \equiv 1$ (d), and so

$$\mathcal{A}_d(x) := \sum_{\substack{m \leq x \\ d \mid m}} \mathbf{1}_{\mathbb{P} \cap j \ (8k)} (2km+1) = \pi (2kx+1; 8dk, h) = g(d)X + r_d$$

for some reduced residue h (8dk) with $h \equiv j$ (8k) and $h \equiv 1$ (d), and where $X := \pi(2kx)/\phi(8k)$, $g(d) := 1/\phi(d)$ and

$$r_d := \mathcal{A}_d(x) - g(d)X = \pi(2kx + 1; 8dk, h) - \pi(2kx)/\phi(8dk).$$

Now set $\delta := 1/3890$. (The argument below works for any sufficiently small δ .) By Theorem 3.3 ($x \mapsto 2kx$) our sequence $\mathcal A$ has level of distribution $D := \sqrt{x}/x^{\delta}$, and we have

$$R(D, z) := \sum_{d \mid P(z), d < D} |r_d| \ll_{\delta} X (\log x)^{-2/3}$$

provided that $\eta=\eta(\delta)$ is sufficiently small, which we assume. We fix our sifting level z and sifting variable s at

$$z := D/x^{\delta} = \sqrt{x}/x^{2\delta}$$
 and $s := \log D/\log z = (1-2\delta)/(1-4\delta) = 1944/1943$.

We can infer from (3.11) and [13, Theorem 11.12–Theorem 11.13 et seq.] that

$$S(A, z) \ge XV(z) \{f(s) + O((\log D)^{-1/6})\} - R(D, z),$$

and

$$S(A, z) \le XV(z) \left\{ F(s) + O\left((\log D)^{-1/6}\right) \right\} + R(D, z).$$

As $V(z) = (\log z)^{1/2}$ by (3.12) and $R(D,z) \ll_{\delta} X(\log z)^{2/3}$, the latter can be subsumed under the O-term in each case, hence

$$f(s) + O_{\delta}((\log x)^{-1/6}) \le \frac{S(\mathcal{A}, z)}{XV(z)} \le F(s) + O_{\delta}((\log x)^{-1/6}).$$
 (3.15)

Since $S(A, \sqrt{x}) \leq S(A, z)$, the upper bound in (3.14) follows. We claim that

$$\frac{S(\mathcal{A}, z) - S(\mathcal{A}, \sqrt{x})}{XV(z)} \leqslant \frac{1}{2}f(s) + O_{\delta}((\log x)^{-1/6}), \tag{3.16}$$

which, when combined with the first inequality in (3.15), gives the lower bound in (3.14).

For $z < \sqrt{x}$ we have Buchstab's identity [13, (6.4)]:

$$S(\mathcal{A}, z) - S(\mathcal{A}, \sqrt{x}) = \sum_{\substack{z < p_1 \le \sqrt{x} \\ p_1 \equiv 3 \text{ (4)}}} \sum_{\substack{m \le x \\ p_1 \mid m \\ (m, P(p_1)) = 1}} \mathbf{1}_{\mathbb{P} \cap j \text{ (8k)}} (2km + 1) =: T.$$

Suppose $x^{1/3} \le z < \sqrt{x}$ and consider any m that makes a nonzero contribution to the inner sum in T. We have $p_1 \mid m$ and $m \le p_1^3$ for some $p_1 \equiv 3$ (4), m is not divisible by any prime less than p_1 in $\mathbb{P} \cap 3$ (4), yet recall that $m \equiv 1$ (4) (for $2km + 1 \equiv j \equiv 3$ (8) and $k \equiv 1$ (4)). Therefore, $p_2 \mid m$ for exactly one prime $p_2 \equiv 3$ (4) in addition to p_1 . Since $(k, p_1p_2) = 1$, we conclude that $m = ap_1p_2$ for some a, p_1, p_2 such that

$$a \equiv 1 \ (4), \quad p_1 \equiv p_2 \equiv 3 \ (4), \quad z < p_1 \leqslant \sqrt{x} \quad \text{and} \quad p_1 \leqslant p_2 \leqslant x/(ap_1).$$

Also, we have $az^2 < ap_1^2 \leqslant ap_1p_2 \leqslant x$; in particular,

$$a < x/z^2 \le z < p_1$$
, $\mathbf{1}_{\mathbb{B}}(a) = 1$ and $z < p_1 \le \sqrt{x/a}$.

Hence

$$T \leqslant \sum_{a \leqslant x/z^2} \mathbf{1}_{\mathbb{B}}(a) \sum_{\substack{z < p_1 \leqslant \sqrt{x/a} \\ p_1 \equiv 3 \ (4)}} \sum_{\substack{n_2 \leqslant x/(ap_1) \\ n_2 \equiv 3 \ (4)}} \mathbf{1}_{\mathbb{P}}(n_2) \cdot \mathbf{1}_{\mathbb{P}}(2kap_1n_2 + 1).$$

We let (λ_{d_2}) and (λ_d) be any upper-bound sieves of level \hat{D} and "of beta type" (so that $\lambda_{d_2}, \lambda_d \in \{-1, 0, 1\}$). We note that as $\mathbf{1}_{\mathbb{P}}(n) \leq \sum_{\nu \mid n} \lambda_{\nu}$ ($\nu = d_2, d$) for every n, we have

$$\sum_{\substack{n_2 \leqslant x/(ap_1) \\ n_2 \equiv 3 \text{ (4)}}} \mathbf{1}_{\mathbb{P}}(n_2) \cdot \mathbf{1}_{\mathbb{P}}(2ap_1n_2 + 1) \leqslant \sum_{d_2,d} \lambda_{d_2} \lambda_d \sum_{\substack{n_2 \leqslant x/(ap_1) \\ n_2 \equiv 3 \text{ (4)}, n_2 \equiv 0 \text{ (d)} \\ 2ap_1n_2 + 1 \equiv 0 \text{ (d_2)}}} 1$$

The three congruences in the last sum hold only if $(d_2, d) = (d_2, 2a) = (2, d) = 1$, so combining what we have so far, we obtain (for some residue b $(4d_2d)$),

$$T \leqslant \sum_{a \leqslant x/z^{2}} \mathbf{1}_{\mathbb{B}}(a) \sum_{\substack{z < p_{1} \leqslant \sqrt{x/a} \\ p_{1} \equiv 3}} \sum_{\substack{(d_{2},d) = 1 \\ (d_{2},2a) = 1 \\ (2,d) = 1}} \lambda_{d_{2}} \lambda_{d} \sum_{\substack{n_{2} \leqslant x/(ap_{1}) \\ n_{2} \equiv b \ (4d_{2}d)}} 1$$

$$= \sum_{\substack{a \leqslant x/z^{2} \\ p_{1} \equiv 3}} \mathbf{1}_{\mathbb{B}}(a) \sum_{\substack{z < p_{1} \leqslant \sqrt{x/a} \\ (d_{2},2a) = 1 \\ (2,d) = 1}} \sum_{\substack{\lambda_{d_{2}} \lambda_{d} \\ (d_{2},2a) = 1 \\ (2,d) = 1}} \lambda_{d_{2}} \lambda_{d} \left\{ \frac{x}{4ap_{1}d_{2}d} + O(1) \right\}.$$

The contribution of the *O*-term to the sum is $\ll \hat{D}^2 x/z \leqslant \hat{D}^2 z^2$. By a general result [13, Theorem 5.9] on the composition of linear sieves,

$$\sum_{\substack{(d_2,d)=1\\(d_2,2a)=1\\(2,d)=1}} \frac{\lambda_{d_2}\lambda_d}{d_2d} \leqslant \frac{4C+o(1)}{(\log \hat{D})^2} \frac{2a}{\phi(2a)} \left(\frac{2}{\phi(2)}\right) \leqslant \frac{16C+o(1)}{(\log \hat{D})^2} \frac{k}{\phi(k)} \frac{a}{\phi(a)},$$

where o(1) denotes a quantity tending to zero as \hat{D} tends to infinity and⁴

$$C = \prod_{p \nmid 2a} (1 + (p-1)^{-2}) \le \frac{1}{2} \prod_{p} (1 + (p-1)^{-2}) = 1.413...$$

Thus, 16C + o(1) < 24 if \hat{D} is sufficiently large, as we now assume. Gathering all of this, then using the fact that $\sum_{a \leqslant x/z^2} \mathbf{1}_{\mathbb{B}}(a)/\phi(a) \leqslant W(x/z^2)$ (cf. (3.7)) and the bound (3.10), we obtain that

$$T \leq \frac{6x}{\phi(k)(\log \hat{D})^2} \sum_{\substack{a \leq x/z^2}} \frac{\mathbf{1}_{\mathbb{B}}(a)}{\phi(a)} \sum_{\substack{z < p_1 \leq \sqrt{x} \\ p_1 \equiv 3}} \frac{1}{p_1} + O(\hat{D}^2 z^2)$$

$$\leq \frac{3xW(x/z^2)\log(x/z^2)}{2\phi(k)(\log \hat{D})^2 \log z} \left(1 + O\left(\frac{1}{\log(x/z^2)}\right)\right) + O(\hat{D}^2 z^2).$$

We want to exchange the factor $xW(x/z^2)/\phi(k)$ for XV(z), where recall that $X := \pi(2kx+1)/\phi(8k)$. We have $x/(2\phi(k)) = X(\log x)(1+O(1/\log x))$ by the prime number theorem. By (3.11) we have

$$W(x/z^2) = W(z) \left(\frac{\log(x/z^2)}{\log z}\right)^{1/2} \left(1 + O\left(\frac{1}{\log(x/z^2)}\right)\right),$$

and by (3.8) we have, with A_1 and A_3 being the constants defined in (3.9),

$$W(z) = \frac{1}{2}A_1 A_3 e^{\gamma} V(z) (\log z) \left(1 + O\left(\frac{1}{\log z}\right) \right).$$

Gathering once more we obtain

$$T \leqslant \frac{3}{2} A_1 A_3 e^{\gamma} X V(z) \frac{(\log x) (\log (x/z^2))^{3/2}}{(\log \hat{D})^2 (\log z)^{1/2}} \left(1 + O\left(\frac{1}{\log (x/z^2)}\right) \right) + O(\hat{D}^2 z^2).$$

We now set $\hat{D} := \sqrt{z}/x^{\delta}$. We have

$$x/z^2 < z$$
, $\log z \approx \log \hat{D} \approx \log x$, $\log(x/z^2) \approx \delta \log x$, $\hat{D}^2 z^2 = x^{1-2\delta}$.

 $[\]overline{^4}$ The constant $\prod_p \left(1+(p-1)^{-2}\right)=2.826\ldots$ is known as Murata's constant.

It is therefore apparent that $T \ll \delta^{3/2} X V(z)$. To be more precise,

$$\frac{(\log x)(\log(x/z^2))^{3/2}}{(\log \hat{D})^2(\log z)^{1/2}} = (4\delta)^{3/2}(1/4 - 2\delta)^{-2}(1/2 - 2\delta)^{1/2} < 240\delta^{3/2}.$$

Finally, it is clear that $A_1A_3 \leq \prod_p (1 + 1/(p(p-2)))$ (see the definition (3.9) of A_1 and A_3), and it is straightforward to verify that this product is less than $\prod_p (1-p^{-2})^{-1} = \pi^2/6$. Hence

$$T \leqslant 60\pi^2 \mathrm{e}^{\gamma} \delta^{3/2} X V(z) \left\{ 1 + O\left(1/(\delta \log x)\right) \right\}.$$

A calculation shows that $60\pi^2 e^{\gamma} \delta^{3/2} = 0.0043...$ (recall that $\delta = 1/3890$), and that by (3.13), f(s) = 0.0341... Hence (3.16).

REFERENCES

- [1] Alford, W., A. Granville and C. Pomerance. "There are infinitely many Carmichael numbers." *Ann. of Math.* (2) 139(3):703–722, 1994.
- [2] Alford, W., A. Granville and C. Pomerance. "On the difficulty of finding reliable witnesses." *Algorithmic number theory (Ithaca, NY, 1994)*, 1–16. Lecture Notes in Comput. Sci., Vol. 877. Springer, Berlin, 1994.
- [3] Baker, R. C., W. D. Banks, J. Brüdern, I. E. Shparlinski and A. Weingartner. "Piatetski–Shapiro sequences." *Acta Arith*. 157(1):37–68, 2013.
- [4] Banks, W. D. "Carmichael numbers with a totient of the form $a^2 + nb^2$." Monatsh. Math. 167(2):157–163, 2012.
- [5] Banks, W. D., C. Finch, F. Luca, C. Pomerance and P. Stănică. "Sierpiński and Carmichael numbers." *Trans. Amer. Math. Soc.* 367(1):355–376, 2015.
- [6] Banks, W. D., T. Freiberg and J. Maynard. "On limit points of the sequence of normalized primes gaps." Preprint. arXiv:1404.5094, 2014.
- [7] Banks, W. D., A. Güloğlu and A. Yeager. "Carmichael meets Chebotarev." Canad. Math. Bull. 56(4):695–708, 2013.
- [8] Banks, W. D., C. W. Nevans and C. Pomerance. "A remark on Giuga's conjecture and Lehmer's totient problem." *Albanian J. Math.* 3(2):81–85, 2009.
- [9] Banks, W. D. and C. Pomerance. "On Carmichael numbers in arithmetic progressions." *J. Aust. Math. Soc.* 88(3):313–321, 2010.
- [10] Banks, W. D. and A. Yeager. "Carmichael numbers composed of primes from a Beatty sequence." *Collog. Math.* 125(1):129–137, 2011.
- [11] Chang, Mei-Chu. "Short character sums for composite moduli." J. Anal. Math. 123(1):1–33, 2014.
- [12] DAVENPORT, H. *Multiplicative number theory*. 3rd edn. Graduate Texts in Mathematics 74. Springer–Verlag, New York, 2000. Revised and with a preface by H. L. Montgomery.
- [13] Friedlander, J. and H. Iwaniec. *Opera de cribro*. American Mathematical Society Colloquium Publications, Vol. 57. American Mathematical Society, Providence, RI, 2010.
- [14] Grantham, J. "There are infinitely many Perrin pseudoprimes." J. Number Theory. 130(5):1117–1128, 2010.
- [15] Halbeisen, L. and N. Hungerbühler. "On generalized Carmichael numbers." *Hardy–Ramanujan J.* 22:8–22, 1999.
- [16] HARMAN, G. "On the number of Carmichael numbers up to x." Bull. London Math. Soc. 37(5):641–650, 2005.
- [17] Harman, G. "Watt's mean value theorem and Carmichael numbers." *Int. J. Number Theory.* 4(2):241–248, 2008.
- [18] Hsu, C.-N. "On Carmichael polynomials." J. Number Theory 71(2):257–274, 1998.
- [19] Löh, G. And W. Niebuhr. "A new algorithm for constructing large Carmichael numbers." *Math. Comp.* 65(214):823–836, 1996.

- [20] Матомäкi, K. "Carmichael numbers in arithmetic progressions." *J. Aust. Math. Soc.* 94(2): 268–275, 2013.
- [21] McNew, N. "Radically weakening the Lehmer and Carmichael conditions." *Int. J. Number Theory.* 9(5):1215–1224, 2013.
- [22] Montgomery, H. L. and R. C. Vaughan. "The large sieve." Mathematika 20(2):119–134, 1973.
- [23] Wright, T. "Infinitely many Carmichael numbers in arithmetic progressions." *Bull. Lond. Math. Soc.* 45(5):943–952, 2013.
- [24] Wright, T. "The impossibility of certain types of Carmichael numbers." *Integers* 12(5):951–964, 2012.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA MO, USA. *E-mail address*: bankswd@missouri.edu

Department of Mathematics, University of Missouri, Columbia MO, USA. *E-mail address*: freibergt@missouri.edu