Mining Newsgroups Using Networks Arising From Social Behavior by Rakesh Agrawal et al.

Presented by Will Lee wwlee1@uiuc.edu

Motivation

- IR on newsgroups is challenging due to lack of connection among documents
 - Unlike WWW, can not use PageRank to improve the retrieval performance
- An automatically-generated social network within a newsgroup may help IR and text mining applications

• Classify authors as "for" or "against" a topic

- Classify authors as "for" or "against" a topic
- Uses graph-theoretic approach to partition the interaction graph into two partitions

- Classify authors as "for" or "against" a topic
- Uses graph-theoretic approach to partition the interaction graph into two partitions
 - graph nodes = users

- Classify authors as "for" or "against" a topic
- Uses graph-theoretic approach to partition the interaction graph into two partitions
 - graph nodes = users
 - interaction (graph edges) = an user replying to another

- Classify authors as "for" or "against" a topic
- Uses graph-theoretic approach to partition the interaction graph into two partitions
 - graph nodes = users
 - interaction (graph edges) = an user replying to another

Assumptions

- Classify authors as "for" or "against" a topic
- Uses graph-theoretic approach to partition the interaction graph into two partitions
 - graph nodes = users
 - interaction (graph edges) = an user replying to another
- Assumptions
 - New posts contain opposite comments against parent posts

- Classify authors as "for" or "against" a topic
- Uses graph-theoretic approach to partition the interaction graph into two partitions
 - graph nodes = users
 - interaction (graph edges) = an user replying to another
- Assumptions
 - New posts contain opposite comments against parent posts
 - There are only two groups of users with roughly the same size

Newsgroup Threads

```
□ 🔀 Re: combining open office spellchecker with Luce... 🌘 David Spencer

 9/9/2004 11:01...

            💢 Re: combining open office spellchecker with Lu... 🐞 Andrzej Bialecki

 9/9/2004 11:15...

              Re: combining open office spellchecker with... 

David Spencer

 9/9/2004 11:51...

              Re: combining open office spellchecker with Lu... 👂 Doug Cutting

 9/9/2004 12:03...

               🖄 Re: combining open office spellchecker with... 🌘 David Spencer

 9/9/2004 1:10 ...

                  🖈 Re: combining open office spellchecker ... 🌘 Doug Cutting

 9/9/2004 10:09...

                    🗖 Re: combining open office spellchecke... 🌘 eks dev

    3:04 AM

                     Re: combining open office spellche... 

David Spencer
                                                                                        10:05 AM
              frequent terms - Re: combining open office ... 🌘 David Spencer

    7:38 PM

🗆 🗖 Re: MultiFieldQueryParser seems broken... Fix att... 🌘 Doug Cutting

 9/9/2004 11:52...

            刘 Re: MultiFieldQueryParser seems broken... Fix ... 🌘 Daniel Naber

 9/9/2004 12:28...

               💢 Re: MultiFieldQueryParser seems broken... ... 🌘 Doug Cutting

    12:50 PM

            🗖 Re: MultiFieldQueryParser seems broken... Fix ... 🌘 Bill Janssen

 9/9/2004 2:48 ...

            💢 Re: MultiFieldQueryParser seems broken... Fix ... 🌘 Bill Janssen

 9/9/2004 2:53 ...

         Lucene working example.
                                                               Mr dharmanand ...
                                                                                     9/9/2004 12:44...
<u>I</u>m
       □ □ Out of memory in lucene 1.4.1 when re-indexing ... ■ Daniel Taurat

 9/9/2004 12:47...

            🖄 Re: Out of memory in lucene 1.4.1 when re-ind... 🌘 Daniel Naber

 9/9/2004 2:30 ...

              Re: Out of memory in lucene 1.4.1 when re-i... 

Daniel Taurat

    7:10 AM
```

ullet Define a graph G(V,E)

- ullet Define a graph G(V,E)
- ullet V = newsgroup participants

- Define a graph G(V, E)
- \bullet V = newsgroup participants
- ullet $e\in E$ where $e=(v_i,v_j)$ and $v_i,v_j\in V$ such that v_i has responded to a post by v_j

- ullet Define a graph G(V,E)
- \bullet V = newsgroup participants
- ullet $e\in E$ where $e=(v_i,v_j)$ and $v_i,v_j\in V$ such that v_i has responded to a post by v_j
- ullet Goal is to find set of verticies F (for) and A (against)

- ullet Define a graph G(V,E)
- \bullet V = newsgroup participants
- ullet $e\in E$ where $e=(v_i,v_j)$ and $v_i,v_j\in V$ such that v_i has responded to a post by v_j
- \bullet Goal is to find set of verticies F (for) and A (against)
- Maximize the cut function $f(F,A) = |E \cap (F \times A)|$ (NP-complete problem)

- ullet Define a graph G(V,E)
- \bullet V = newsgroup participants
- ullet $e\in E$ where $e=(v_i,v_j)$ and $v_i,v_j\in V$ such that v_i has responded to a post by v_j
- ullet Goal is to find set of verticies F (for) and A (against)
- Maximize the cut function $f(F,A) = |E \cap (F \times A)|$ (NP-complete problem)
- Uses spectral partitioning for efficiency

Turning Social Behavior Into Graph Problem

1. EV Algorithm

- (a) Co-citation matrix $D = GG^T$ with weighted edge w = # of people "co-cited" by author u_1 and u_2 . Think of D as a similarity matrix for author u_i and u_j .
- (b) Second eigenvector of D is a good approximation of G's bipartition

1. EV Algorithm

- (a) Co-citation matrix $D=GG^T$ with weighted edge w=# of people "co-cited" by author u_1 and u_2 . Think of D as a similarity matrix for author u_i and u_j .
- (b) Second eigenvector of D is a good approximation of G's bipartition

2. EV + KL

(a) Uses the Kernighan-Lin heuristic to improve the partitioning

1. EV Algorithm

- (a) Co-citation matrix $D = GG^T$ with weighted edge w = # of people "co-cited" by author u_1 and u_2 . Think of D as a similarity matrix for author u_i and u_j .
- (b) Second eigenvector of D is a good approximation of G's bipartition
- 2. EV + KL
 - (a) Uses the Kernighan-Lin heuristic to improve the partitioning
- 3. EV (Constrained) and EV + KL (Constrained)
 - (a) Identify some "for" and "against" authors, group them as one node

1. EV Algorithm

- (a) Co-citation matrix $D=GG^T$ with weighted edge w=# of people "co-cited" by author u_1 and u_2 . Think of D as a similarity matrix for author u_i and u_j .
- (b) Second eigenvector of D is a good approximation of G's bipartition
- 2. EV + KL
 - (a) Uses the Kernighan-Lin heuristic to improve the partitioning
- 3. EV (Constrained) and EV + KL (Constrained)
 - (a) Identify some "for" and "against" authors, group them as one node
- 4. Iterative Classification

1. EV Algorithm

- (a) Co-citation matrix $D = GG^T$ with weighted edge w = # of people "co-cited" by author u_1 and u_2 . Think of D as a similarity matrix for author u_i and u_j .
- (b) Second eigenvector of D is a good approximation of G's bipartition
- 2. EV + KL
 - (a) Uses the Kernighan-Lin heuristic to improve the partitioning
- 3. EV (Constrained) and EV + KL (Constrained)
 - (a) Identify some "for" and "against" authors, group them as one node
- 4. Iterative Classification
 - (a) Initialize: Label "for" and "against" for a small number of people in the newsgroup

(b) Iterate m times:

- (b) Iterate m times:
 - i. Calculate the $s(v_i)$ for each node v_i . The weight w_{ij} is the weight between node v_j and v_i):

$$s(v_i) = \frac{\sum_j -s(v_j) \times w_{ij}}{\sum_j w_{ij}}$$

- (b) Iterate m times:
 - i. Calculate the $s(v_i)$ for each node v_i . The weight w_{ij} is the weight between node v_i and v_i):

$$s(v_i) = \frac{\sum_j -s(v_j) \times w_{ij}}{\sum_j w_{ij}}$$

ii. Sort the labels (sign of $s(v_i)$) by confidence $(|s(v_i)|)$

September 28, 2004

- (b) Iterate m times:
 - i. Calculate the $s(v_i)$ for each node v_i . The weight w_{ij} is the weight between node v_i and v_i):

$$s(v_i) = \frac{\sum_j -s(v_j) \times w_{ij}}{\sum_j w_{ij}}$$

- ii. Sort the labels (sign of $s(v_i)$) by confidence $(|s(v_i)|)$
- iii. Accept $k=N imesrac{i}{m}$ labels where i= iteration, m= total iterations, and N= number of instances in test data

Evaluation

- Uses three newsgroups Abortion, Gun Control, and Immigration
- Manually tag 50 random people in the "for" or "against" categories
- Comparing with classic classification algorithms (Naive Bayes & SVM) that work on message content

	Abortion	Gun Control	Immigration
Majority	57%	72%	54%
SVM	55%	42%	55%
Naive Bayes	50%	72%	54%
Iterative	67%	80%	83%
EV/EV+KL	73%/75%	78%/74%	50%/52%
Constrained EV/EV+KL	73%/73%	84%/82%	88%/88%

• Also, sensitivity experiments show more posts = more bias posts = higher accuracy

Contributions / Limitations

Contributions

- Apply graph-theoretic algorithms to a new domain
- Sensitivity analysis on simulated newsgroup data

Limitations

- Assume users post against each other, may not be true in some newsgroups (technical ones)
- Constrained and iterative method still need training data
- Should justify why the constrained methods perform much better than the unconstrained ones

Discussion Questions

- How does user partitioning help IR?
- In a complex web of discussions within a newsgroup, users may not belong to the same "for" or "against" group for all topics. How can this system be applied on such newsgroup?
- How is this system similar to the PageRank algorithm? Is there any other way to draw connection among the newsgroup postings?