	Running the Classificaion using the tutorial Thasina Tabashum- 11363551
In [41]:	MD Farhad Mokter- 11336535
In [43]:	<pre>print(tfversion) 2.1.0 fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',</pre>
<pre>In [45]: Out[45]: In [46]: Out[46]:</pre>	<pre>(60000, 28, 28) len(train_labels) 60000 train_labels array([9, 0, 0,, 3, 0, 5], dtype=uint8) test_images.shape</pre>
In [48]: Out[48]:	<pre>plt.figure() plt.imshow(train_images[0]) plt.colorbar() plt.grid(False) plt.show()</pre>
In [50]:	plt.figure() plt.imshow(train_images[10]) plt.colorbar() plt.grid(False) plt.show()
In [51]: In [52]:	train_images = train_images / 255.0 test_images = test_images / 255.0 plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([])
	<pre>plt.yticks([]) plt.grid(False) plt.imshow(train_images[i], cmap=plt.cm.binary) plt.xlabel(class_names[train_labels[i]]) plt.show()</pre> Ankle boot T-shirt/top Dress T-shirt/top
	Pullover Sneaker Pullover Sandal Sandal T-shirt/top Ankle boot Sandal Sneaker Ankle boot Trouser T-shirt/top Shirt Coat
In [53]:	loss='sparse_categorical_crossentropy',
In [55]:	model.fit(train_images, train_labels, epochs=10) Train on 60000 samples Epoch 1/10 60000/600000 [================================
	60000/60000 [=================================
<pre>In [58]: Out[58]: In [59]: Out[59]:</pre>	<pre>predictions = model.predict(test_images) predictions[0] array([1.8492502e-06, 1.7117786e-11, 6.3056504e-11, 5.2088533e-12,</pre>
	<pre>plt.grid(False) plt.xticks([]) plt.yticks([]) plt.imshow(img, cmap=plt.cm.binary) predicted_label = np.argmax(predictions_array) if predicted_label == true_label: color = 'blue' else: color = 'red' plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],</pre>
In [61]:	<pre>color=color) def plot_value_array(i, predictions_array, true_label): predictions_array, true_label = predictions_array, true_label[i] plt.grid(False) plt.xticks(range(10)) plt.yticks([]) thisplot = plt.bar(range(10), predictions_array, color="#777777") plt.ylim([0, 1]) predicted_label = np.argmax(predictions_array) thisplot[predicted_label].set_color('red') thisplot[true_label].set_color('blue') i = 0 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2)</pre>
In [62]:	plot_value_array(i, predictions[i], test_labels) plt.show() Ankle boot 98% (Ankle boot) i = 12 plt.figure(figsize=(6,3))
In [63]:	<pre>plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2) plot_value_array(i, predictions[i], test_labels) plt.show()</pre> Bag 73% (Sneaker) # Plot the first X test images, their predicted labels, and the true labels.
	# Color correct predictions in blue and incorrect predictions in red. num_rows = 5 num_cols = 3 num_images = num_rows*num_cols plt.figure(figsize=(2*2*num_cols, 2*num_rows)) for i in range(num_images): plt.subplot(num_rows, 2*num_cols, 2*i+1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(num_rows, 2*num_cols, 2*i+2) plot_value_array(i, predictions[i], test_labels) plt.tight_layout() plt.show()
	Ankle boot 98% (Ankle boot) O123456789 Pullover 100% (Pullover) O123456789 Trouser 100% (Trouser) O123456789 Shirt 75% (Shirt) O123456789 Trouser 100% (Trouser) O123456789
	Coat 100% (Coat) O123456789 Shirt 99% (Shirt) O123456789 Sandal 100% (Sandal) O123456789 Sandal 100% (Sandal) O123456789 Sandal 100% (Sandal)
In [64]:	img = test_images[1] print(img.shape) (28, 28)
In [65]: In [66]:	<pre>img = (np.expand_dims(img,0)) print(img.shape) (1, 28, 28) predictions_single = model.predict(img) print(predictions_single) [[1.59394083e-04 4.16449319e-10 9.98584032e-01 3.73524787e-11 1.13609340e-03 2.50530902e-10 1.20460594e-04 1.66954641e-16 3.67599036e-08 2.48801088e-12]]</pre>
In [67]:	<pre>plot_value_array(1, predictions_single[0], test_labels) _ = plt.xticks(range(10), class_names, rotation=45)</pre>
Out[28]:	Confusion Matrix
In [68]:	<pre>y_pred = np.argmax(predictions,axis=1) confmat = confusion_matrix(y_true=test_labels, y_pred=y_pred) print(confmat) [[763</pre>
In [69]:	<pre>fig, ax = plt.subplots(figsize=(15, 15)) ax.matshow(confmat, cmap=plt.cm.Blues, alpha=0.3) for i in range(confmat.shape[0]): for j in range(confmat.shape[1]): ax.text(x=j, y=i, s=confmat[i, j], va='center', ha='center') plt.xlabel('Predicted label') plt.ylabel('True label') plt.xticks(np.arange(0,10,step=1), class_names) plt.yticks(np.arange(0,10,step=1), class_names) plt.tight_layout()</pre>
	T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot
	Dress - 15 6 7 916 19 0 32 0 5 0 Coat - 1 1 60 48 833 0 54 0 3 0 Sandal - 0 0 0 0 1 0 960 0 21 2 16
	Shirt - 68 0 93 32 84 0 712 0 11 0 Sheaker - 0 0 0 0 0 0 14 0 963 2 21 Bag - 3 0 5 3 3 2 7 3 974 0
In [70]:	Explanation of Mis-classification i = 17 plt.figure(figsize=(6,3)) plt.subplot(1,2,1) plot_image(i, predictions[i], test_labels, test_images) plt.subplot(1,2,2)
	plot_value_array(i, predictions[i], test_labels) plt.show() Pullover 93% (Coat) Pullover 93% (Coat)
In [71]: In [34]:	from the confusion matrix we can see that 159 coats labels are predicted as Pullover. We have shown also in the sample 17 predicted as coat with 66% of confidence Its because in the feature set we are considering 28*28 pixels. Coat and Pullover almost occupy same pixels. So our model miss classify. Same goes for shirt. 108 samples of shirt predicted as tshirt Learning curve over training time demo =model.fit(train_images, train_labels, validation_split=0.33, epochs=10, verbose=2)
In [34]:	Train on 40199 samples, validate on 19801 samples Epoch 1/10 40199/40199 - 6s - loss: 0.1752 - accuracy: 0.9341 - val_loss: 0.1807 - val_accuracy: 0.9328 Epoch 2/10 40199/40199 - 6s - loss: 0.1702 - accuracy: 0.9352 - val_loss: 0.1875 - val_accuracy: 0.9295 Epoch 3/10 40199/40199 - 4s - loss: 0.1655 - accuracy: 0.9369 - val_loss: 0.1877 - val_accuracy: 0.9292 Epoch 4/10 40199/40199 - 5s - loss: 0.1602 - accuracy: 0.9387 - val_loss: 0.1851 - val_accuracy: 0.9305 Epoch 5/10 40199/40199 - 5s - loss: 0.1556 - accuracy: 0.9411 - val_loss: 0.1893 - val_accuracy: 0.9304 Epoch 6/10 40199/40199 - 6s - loss: 0.1508 - accuracy: 0.9430 - val_loss: 0.2155 - val_accuracy: 0.9189 Epoch 7/10
	40199/40199 - 6s - loss: 0.1495 - accuracy: 0.9433 - val_loss: 0.1931 - val_accuracy: 0.9286 Epoch 8/10 40199/40199 - 4s - loss: 0.1433 - accuracy: 0.9464 - val_loss: 0.2005 - val_accuracy: 0.9259 Epoch 9/10 40199/40199 - 6s - loss: 0.1389 - accuracy: 0.9479 - val_loss: 0.2058 - val_accuracy: 0.9248 Epoch 10/10 40199/40199 - 5s - loss: 0.1347 - accuracy: 0.9500 - val_loss: 0.2136 - val_accuracy: 0.9246 print(demo.history.keys()) dict_keys(['loss', 'accuracy', 'val_loss', 'val_accuracy']) plt.plot(demo.history['accuracy']) plt.plot(demo.history['val_accuracy'])
	<pre>plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(demo.history['loss']) plt.plot(demo.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()</pre>
	0.950 0.945 0.935 0.925 0.920 0.920 0.920 0.920 0.920 0.920 0.920
	model loss 0.21 train 0.20 0.19 0.18 0.18 0.16 0.15
In [80]:	<pre>import numpy as np accu =[] test_acc = [] data_size = [] for i in np.linspace(0.083,1,num=12): if(i==1):break demo2 =model.fit(train_images, train_labels, validation_split=1-i, epochs=2, verbose=2) data_size.append(round(len(train_images)*i)) accompanyed(np moon(dom2) history[lacourage(l)))</pre>
	accu.append(np.mean(demo2.history['accuracy'])) test_acc.append(np.mean(demo2.history['val_accuracy'])) Train on 4979 samples, validate on 55021 samples Epoch 1/2 4979/4979 - 4s - loss: 0.0510 - accuracy: 0.9843 - val_loss: 0.0998 - val_accuracy: 0.9661 Epoch 2/2 4979/4979 - 5s - loss: 0.0323 - accuracy: 0.9902 - val_loss: 0.0927 - val_accuracy: 0.9683 Train on 9981 samples, validate on 50019 samples Epoch 1/2 9981/9981 - 5s - loss: 0.0351 - accuracy: 0.9892 - val_loss: 0.0997 - val_accuracy: 0.9661 Epoch 2/2 9981/9981 - 5s - loss: 0.0347 - accuracy: 0.9895 - val_loss: 0.1038 - val_accuracy: 0.9654 Train on 14983 samples, validate on 45017 samples Epoch 1/2
	14983/14983 - 5s - loss: 0.0412 - accuracy: 0.9859 - val_loss: 0.1232 - val_accuracy: 0.9587 Epoch 2/2 14983/14983 - 5s - loss: 0.0383 - accuracy: 0.9866 - val_loss: 0.1346 - val_accuracy: 0.9559 Train on 19985 samples, validate on 40015 samples Epoch 1/2 19985/19985 - 5s - loss: 0.0455 - accuracy: 0.9837 - val_loss: 0.1379 - val_accuracy: 0.9552 Epoch 2/2 19985/19985 - 5s - loss: 0.0428 - accuracy: 0.9842 - val_loss: 0.1487 - val_accuracy: 0.9523 Train on 24987 samples, validate on 35013 samples Epoch 1/2 24987/24987 - 5s - loss: 0.0544 - accuracy: 0.9802 - val_loss: 0.1727 - val_accuracy: 0.9472 Epoch 2/2 24987/24987 - 5s - loss: 0.0462 - accuracy: 0.9834 - val_loss: 0.1636 - val_accuracy: 0.9482 Train on 29989 samples, validate on 30011 samples
	Train on 29989 samples, validate on 30011 samples Epoch 1/2 29989/29989 - 6s - loss: 0.0533 - accuracy: 0.9811 - val_loss: 0.1918 - val_accuracy: 0.9414 Epoch 2/2 29989/29989 - 5s - loss: 0.0498 - accuracy: 0.9823 - val_loss: 0.1807 - val_accuracy: 0.9458 Train on 34990 samples, validate on 25010 samples Epoch 1/2 34990/34990 - 6s - loss: 0.0586 - accuracy: 0.9786 - val_loss: 0.2241 - val_accuracy: 0.9357 Epoch 2/2 34990/34990 - 6s - loss: 0.0527 - accuracy: 0.9803 - val_loss: 0.2183 - val_accuracy: 0.9367 Train on 39992 samples, validate on 20008 samples Epoch 1/2 39992/39992 - 6s - loss: 0.0657 - accuracy: 0.9771 - val_loss: 0.2311 - val_accuracy: 0.9323 Epoch 2/2 39992/39992 - 6s - loss: 0.0588 - accuracy: 0.9789 - val_loss: 0.2713 - val_accuracy: 0.9280
	39992/39992 - 6s - loss: 0.0588 - accuracy: 0.9789 - val_loss: 0.2713 - val_accuracy: 0.9280 Train on 44994 samples, validate on 15006 samples Epoch 1/2 44994/44994 - 6s - loss: 0.0730 - accuracy: 0.9747 - val_loss: 0.2652 - val_accuracy: 0.9258 Epoch 2/2 44994/44994 - 6s - loss: 0.0677 - accuracy: 0.9756 - val_loss: 0.2791 - val_accuracy: 0.9220 Train on 49996 samples, validate on 10004 samples Epoch 1/2 49996/49996 - 6s - loss: 0.0816 - accuracy: 0.9718 - val_loss: 0.3098 - val_accuracy: 0.9185 Epoch 2/2 49996/49996 - 6s - loss: 0.0730 - accuracy: 0.9743 - val_loss: 0.2915 - val_accuracy: 0.9145 Train on 54998 samples, validate on 5002 samples Epoch 1/2 54998/54998 - 4s - loss: 0.0953 - accuracy: 0.9680 - val loss: 0.4035 - val accuracy: 0.8986

plt.legend(['train', 'test'], loc='upper left')

model accuracy

30000

data_size

40000

50000

[4980.0, 9982.0, 14984.0, 19985.0, 24987.0, 29989.0, 34991.0, 39993.0, 44995.0, 49996.0, 54998.0]

[0.98724645, 0.9893297, 0.98621774, 0.98398805, 0.98179054, 0.98165995, 0.9794513, 0.9779956, 0.9751856, 0.97304785, 0.96

plt.show()

0.98

0.96

D 0.94

0.92

0.90

In [84]: print(accu)

In [87]: plt.plot(data_size,accu)

plt.plot(data_size, test_acc)

plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('data_size')

train

test

10000

print(data_size)