SMS Spam Detection Project

1. Introduction

This project focuses on building a spam classifier using Natural Language Processing (NLP) and machine learning techniques. It uses the "SMSSpamCollection" dataset, which contains labeled SMS messages categorized as either "ham" (not spam) or "spam".

2. Dataset

• **Structure**: The dataset has two columns:

o label: Message type (ham or spam)

o message: The actual text message

3. Exploratory Data Analysis

Dataset Size: (5572, 2)

Class Distribution:

o Ham: 4825

o Spam: 747

```
Dataset Size: (5572, 2)

Class Distribution:
ham 4825
spam 747
Name: label, dtype: int64
```

- A length column was added to study message lengths.
- Visualizations:
 - Class distribution bar plot
 - Histogram of message lengths

4. Text Preprocessing

Each message undergoes the following steps:

Lowercasing

- Removal of punctuation and numbers
- Tokenization
- Stopwords removal using NLTK
- Stemming with PorterStemmer

This is encapsulated in the preprocess_text() function.

5. Feature Engineering

- CountVectorizer is used to convert cleaned text into a bag-of-words (BoW) model.
- Target labels are encoded (ham = 0, spam = 1)

6. Model Training

- Algorithm: Multinomial Naive Bayes (MNB)
- Data split: 80% training, 20% testing
- The model is trained on vectorized messages.

7. Evaluation

- Accuracy: Around 98% on the test set.
- Confusion Matrix:
 - High true positive and true negative rates
 - Low false positives and false negatives

The confusion matrix plot gives a visual overview of prediction performance.

8. Inference Function

A custom function predict_spam() takes a raw message, processes it, and returns a prediction (Spam or Ham).

Example:

output: "Spam"

9. Results:

10. Conclusion

This simple NLP pipeline demonstrates effective spam detection using a Multinomial Naive Bayes classifier. The accuracy and interpretability make it a great baseline for more complex models.