Electronic supplementary information

EFFICIENT IN-MAGNET ¹⁵N HYPERPOLARIZATION INDUCED BY REVERSIBLE EXCHANGE OF PARAHYDROGEN WITH AN Ir-BASED CATALYST

D. A. Markelov,**a,b A. S. Kiryutin, I. D. Kosenko, Zh. V. Matsulevich, I. A. Godovikov, and A. V. Yurkovskaya

^a International Tomography Center, Siberian Branch of the Russian Academy of Sciences, ul. Institutskaya 3A, Novosibirsk, 630090 Russia
^b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
^c Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, str. 1, Moscow, 119334 Russia
^d Nizhny Novgorod State Technical University, ul. Minina 24, Nizhny Novgorod, 603155 Russia

Catalyst activation

Figure S1. ¹H NMR spectra of the investigated sample with ¹⁵N-SDAP. (*a*) Thermal NMR spectrum before parahydrogen (pH₂) bubbling; (*b*) hyperpolarized NMR spectrum acquired with parahydrogen bubbling for 2 min; (*c*) thermal NMR spectrum acquired the next day after the first parahydrogen bubbling; (*d*) hyperpolarized NMR spectrum of the next day pH₂-bubbled sample. The temperature of the sample was 15 ° in all cases.

The first step of our experiments was the catalyst activation procedure, during which the active SABRE complexes were formed from [IrCl(COD)(IMes)]. The activation of the catalyst consisted in bubbling the sample containing the pre-catalyst and substrate with parahydrogen. The activation of the catalyst has its own kinetics and steady-state. In the steady-state, the hydride area of ¹H NMR spectrum demonstrates stable over time complexes, and subsequent parahydrogen bubbling does not lead to any changes in the ¹H NMR spectrum.

Figure S1 demonstrates the ¹H NMR spectrum of the investigated sample with ¹⁵N-SDAP at different time points. Figure S1a shows the thermal NMR spectrum of the sample before bubbling. The signals from 8 to 10 ppm refer to the aromatic protons of ¹⁵N-SDAP, while the signals from 6 to 8 ppm belong to ¹⁵N-SDAP in the complex-bound form. The spectral range from 1 to 4 ppm is more complicated and contains the signals from the precatalyst (from COD and IMes) and from the active catalyst. The detailed analysis of these signals for a similar system at different time points can be found, for example, in Ref. [S1]. Figure S1b demonstrates the ¹H NMR spectrum obtained after 2 min of the sample bubbling with parahydrogen (catalyst activation). In this case, the hyperpolarized hydrides (from –12 to –25 ppm) are observed, and the subsequent bubbling does not change the NMR spectrum. The hyperpolarization of the hydride ¹H nuclei occurs due to the PASSADENA effect [S2].

Figure S2. Hyperpolarized ¹⁵N NMR spectra obtained by SABRE: (*a*) at the first day of the experiments, (*b*) the next day after the experiments.

To demonstrate the stability of the sample and the absence of hydrogenation of ¹⁵N-SDAP, we also acquired the ¹H NMR spectra in 24 h after the first parahydrogen bubbling of the sample (during these 24 h, we had been conducting the SABRE experiments, and the sample was bubbled with parahydrogen for several hours). Figure 1c shows the thermal ¹H NMR spectrum acquired the next day after the first parahydrogen bubbling. No change in the intensity or position of the ¹H signals of ¹⁵N-SDAP from 8 to 10 ppm is observed. Moreover, parahydrogen bubbling after 24 h leads to the formation of identical hydrides and identical ¹⁵N-SDAP signals, as demonstrated in Fig. S1d (compare with Fig. S1b), and no hydrogenation products are observed in the ¹H NMR spectrum. The absence of the hydrogenation and stability of the sample can also be alternatively determined in the hyperpolarized ¹⁵N NMR spectrum, where no hydrogenation products are observed after 24 h (see Figs. S2a,b). In both cases, the

hyperpolarized ¹⁵N spectra contain the signals from ¹⁵N-SDAP, its ⁷⁷Se satellites, and ¹⁵N-SDAP bound to the Ir-catalyst (it should be noted that the ⁷⁷Se satellites in these figures have different phases because we used different SABRE protocols for hyperpolarization). The absence of the substrate hydrogenation has also been confirmed in the pioneer SABRE work [S3], where instead of the catalytic hydrogenation of a substrate, it was involved in the reversible interactions with an Ir-catalyst. Such a behavior is typical for a variety of different substrates [S4].

Optimization of the SABRE pulse sequences

The SABRE-INEPT pulse sequence requires an optimization of two time delays between the 1 H and 15 N pulses, denoted as τ and τ_{1} . In our experiments, we used $\tau_{1}=10$ ms and optimized time delay τ , as demonstrated in Fig. S3. The maximum of the 15 N signal enhancement, ε , was observed at $\tau=8.5$ ms, which we have used in the subsequent experiments with SABRE-INEPT.

Figure S3. Dependence of the ¹⁵N-SDAP signal enhancement on time delay τ introduced in the SABRE-INEPT pulse sequence (demonstrated in Fig. 1b of the main text). The experimental parameters: $\tau_1 = 10$ ms. The experimental data are represented as circles, whereas the theoretically calculated curve for a three-spin system is presented with a solid line.

The DRF-SABRE pulse sequence utilizes two continuous-wave (CW) magnetic fields exciting the nuclear spins of 1 H and 15 N nuclei in the polarization transfer complex, as demonstrated in Fig. S4. 1 H CW field is chosen to be on-resonant to the trans- 1 H hydride nuclei (trans-position is determined with respect to the complex-bound 15 N-SDAP) in the polarization transfer complex. In our case of 15 N-SDAP, the resonant position of this proton is equal to – 23.72 ppm, which is RF excited, as demonstrated in Fig. S4, left. At the same time, 15 N CW field frequency is varied near the resonance of complex-bound 15 N-SDAP (242.37 ppm), as shown in Fig. S4, right. The dependence of the 15 N signal enhancement ε of 15 N-SDAP (free) on the frequency of the 15 N CW field is demonstrated in Fig. S5. The maximum absolute value of enhancement ε is observed at 241.87 ppm frequency of the 15 N CW field, which we have used in the subsequent experiments.

Figure S4. Visualization of the ¹H and ¹⁵N frequencies excited in the DRF-SABRE experiment (demonstrated in Fig.1b, of the main text). (Left) ¹H CW is resonant towards hydride ¹H nucleus in its trans-position in the complex with respect to ¹⁵N-sub. (right) ¹⁵N CW frequency is varied near the resonant frequency of complex-bound ¹⁵N-SDAP. The optimization of both RF fields leads to the hyperpolarization of ¹⁵N-SDAP (free and bound).

Figure S5. Dependence of the ¹⁵N-SDAP signal enhancement on the ¹⁵N CW frequency, v_{rf}^N , in the DRF-SABRE experiment. The experimental parameters: the frequency of the ¹H CW field was fixed at $v_{rf}^H = -23.72$ ppm. The amplitudes of the CW fields were equal to 8 Hz. The experimental data are represented as circles, whereas the theoretically calculated curve for a three-spin system is a solid line.

References

- A. N. Pravdivtsev, K. L. Ivanov, A. V. Yurkovskaya, P. A. Petrov, H.-H. Limbach, R. Kaptein, H.-M. Vieth, *J. Magn. Reson.*, 2015, 261, 73–82. DOI: 10.1016/j.jmr.2015.10.006
- 2. C. R. Bowers, D. P. Weitekamp, *J. Am. Chem. Soc.*, **1987**, 109, 5541–5542. DOI: 10.1021/ja00252a049
- 3. R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. López-Serrano, D. C. Williamson, *Science*, **2009**, *323*, 1708–1711. DOI: 10.1126/science.1168877
- D. A. Barskiy, S. Knecht, A. V. Yurkovskaya, K. L. Ivanov, *Prog. Nucl. Magn. Reson. Spectrosc.*, 2019, 114–115, 33–70. DOI: 10.1016/j.pnmrs.2019.05.005