Conversions of Total, Fork and Standard Length Measurements Based on 42 Marine and Freshwater Fish Species (from Turkish Waters)

Özcan Gaygusuz¹, Çiğdem Gürsoy², Müfit Özuluğ³, Ali Serhan Tarkan^{1,*}, Hasan Acıpınar⁴, Gökçen Bilge⁵, Halit Filiz⁶

- ¹ İstanbul University, Faculty of Fisheries, Ordu Cad. No: 200, 34470 Laleli, İstanbul, Turkey.
- ² Çanakkale Onsekiz Mart University, Natural and Applied Sciences Institute, 17100, Çanakkale, Turkey.
- ³ İstanbul University, Faculty of Applied Science, Department of Biology, 34134, Vezneciler, İstanbul, Turkey.
- ⁴ İstanbul University, Natural and Applied Sciences Institute, 34850, Avcılar, İstanbul, Turkey.
- ⁵ Muğla University, Faculty of Fisheries, 48000, Kötekli, Muğla, Turkey.
- ⁶ Faculty of Fisheries, Ege University, Bornova, İzmir, Turkey.
- * Corresponding Author: Tel.: +90. 212 4555700/16419; Fax: +90. 212 5140379; E-mail: serhan@istanbul.edu.tr; serhantarkan@yahoo.com

Received 31 August 2005 Accepted 24 April 2006

Abstract

Relationships between total (TL), fork (FL) and standard (SL) lengths belonging 19 families from Aegean and Marmara coast of Turkey were presented for 42 fish species. The relationships between TL, FL and SL were all linear and they were all highly significant (P<0.001) with all r^2 values being >0.90. There were significant differences in the slope of length – length relationships between some localities and type of length conversions for the fish species.

Key Words: Standard length; Fork length, Total length, length-length relationships.

Introduction

A variety of morphological, physiological, behavioral and biochemical characteristics are used to identify and classify fishes. In practice though, it is more common to use morphometric measurements (i.e., body length, body depth, head length, eye diameter, jaw length) and meristics (i.e., fin ray, scale, teeth, gill raker, and lateral line pore counts). These morphometric measurements are usually presented as a proportion of standard, fork and total length (Howe, 2002). As many scientists have been using these different length measurements of fish species, a lack of standardized methods has hampered attempts to synthesize the data (Echeverria and Lenarz, 1984). It is very important especially in comparative studies which little information seems to be available for fish species (Froese and Pauly, 2005). The purpose of the present study is to contribute to the knowledge of the length - length relationships of some freshwater, estuarine and marine fish species. To provide the means to convert one of these length measurements to another, it is reported here the linear regression statistics necessary for conversions in 42 fish species.

Material and Methods

Samples were collected from various localities (Figure 1) by using different fishing gears (Table 1). Specimens were preserved in %5 solution of formaldehyde and then identified. Length measurements were taken to the nearest millimeter in a straight line via meter board. Standard length was measured from the anterior tip of the upper jaw to the tip of the hypural bone (urostyle). Fork length was measured from the anterior tip of the longest jaw to the median point of the caudal fin and the total length

was measured from the anterior tip of the longest jaw to the most posterior part of the tail (Laevastu, 1965).

Conversions among length measurements can generally be accomplished with simple linear regressions models. Therefore, length-length relationships were determined by the method of least squares to fit a simple linear regression model. Linear regressions were run on all combinations of the length measurements. The following relationships were established using linear regression analysis; (a) TL vs. FL; (b) TL vs. SL; (c) FL vs. SL.

The significance of the regression was assessed by analysis of variance (ANOVA) testing the hypothesis Ho: $\beta = 0$ against H_A: $\beta \neq 0$ (Zar, 1999). We used analysis of covariance (ANCOVA) to test between- locality differences of the slopes of the length - length relationships (Zar, 1999).

Results and Discussion

The species, the taxonomic authority (Froese and Pauly, 2005), sample size (n), size range (cm, TL-FL-SL), parameters of length - length relationships (a and b), the standard error (SE) and the correlation coefficient (r^2) are given in Tables 2, 3 and 4.

During the course of the study, 6259 individuals from 42 fish species representing 19 families were captured. Among them, the members of the Cyprinidae were the most abundant with the value of 43%. The sample size ranged from 10 for *N. melanostomus* and *P. marmoratus* to 683 for *C. gibelio*.

The length – length linear regressions were all highly significant (P<0.001) with all r^2 values being > 0.90. The high values of r^2 indicate that the length relationships are linear over the observed range of values.

Figure 1. Map of the study sites.

Table 1. Localities, dates and fishing gears of the fish species caught from Aegean and Marmara coast of Turkey

Study area	Date of study	Fishing gear
Büyükçekmece Dam Lake	May 1995 - October 1995	Gill net, cast net
	April 2004	trammel net, scoop net
Çandarlı Bay	September 2004	Gill net
Edremit Bay	September 2004	Gill net
Lake İznik	October 2003 - August 2004	Beach seine, gill net
İzmir Bay	March 2003 - February 2004;	Gill net, deep trawl,
	November 2004; July 2004	purse seine
Küçükçekmece Lagoon	November 1971 - October 1974;	Gill net, trammel net
	May 1981 - June 1981	
Ömerli Dam Lake	January 2002 - August 2004	Gill net, trammel net electrofishing
Lake Sapanca	January 2002 - May 2003	Gill net, trammel net
Sığacık Bay	March 2004; July 2003; April 2004	Deep trawl
Terkos Dam Lake	September 2000 - June 2002	Gill net, electrofishing, cast net, trammel net
Lake Van	April 2003; July 2003	Gill net

Analysis of covariance (ANCOVA) revealed significant differences in the slope of length – length relationships between some localities and type of length conversions for the fish species (Table 5). A number of factors might affect the proportion of standard, fork and total length of fish including growth phase, food availability and quality, size range, health and general fish condition and preservation techniques. The observed difference could also be due to the sampling procedure, namely sample size and length range. However, the sample of the most studied fish was relatively large and covered

a reasonable size range, suggesting in slope could reflect the influence of differences in environmental or habitat factors. Hence, a further study about the effect of these factors on the length — length relationships in different places need to be conducted.

The equations for derivation of the different lengths measurements of 42 fish species presented above may enable researchers to gain helpful information about length conversions especially when the relevant equations are not suitable to establish for rare species in a specific locality.

Table 2. Results of linear regressions of total length versus standard length for the fish species caught from several Turkish waters

Family	Species	Locality	n	r^2		ndard h (mm)	_	SL = a + bS	dard length SL
					min	max	а	b	SE(b)
Atherinidae	Atherina boyeri Risso, 1810	K	15	0.999	3.5	9.8	0.0414	1.1302	0.0048
D 1 11	5.1 1.1 (7.1 4.7(1)	Ö	240	0.959	6.6	10.8	0.6099	1.0875	0.0118
Belonidae	Belone belone (Linnaeus, 1761)	Ç	20	0.996	30.3	55	0.4120	1.0778	0.0143
	Belone svetovidovi Collette & Parin, 1970	İzm	56 172	0.992	22.7 24.9	42.5	-0.0546	1.0431	0.0062
Blenniidae	Salaria fluviatilis (Asso, 1801)	İzm İ	173 89	0.993 0.953	1.9	42.6 3.1	0.1599 0.0661	1.0885 1.1580	0.0060 0.0195
Centriscidae	Macroramphosus scolopax (Linnaeus, 1758)	Sı	43	0.933	6.2	10.1	0.0001	1.1024	0.0193
Clupeidae	Alosa tanaica (Grimm, 1901)	K	21	0.998	8.4	21.4	0.1561	1.1396	0.0132
Ciupeidae	Clupeonella cultriventris (Nordmann, 1840)	В	20	0.952	7.7	9.3	0.3874	1.1149	0.0451
	Sardina pilchardus (Walbaum, 1792)	K	11	0.999	8	13.2	-0.3212	1.1787	0.0099
Cobitidae	Cobitis vardarensis Karaman, 1928	В	26	0.988	3.5	9.2	-0.0398	1.1508	0.0193
		İ	32	0.974	4.3	7.9	0.2601	1.0883	0.0266
		Ö	49	0.982	5.1	9.6	0.1072	1.1302	0.0171
		T	25	0.993	4.4	8.8	0.1267	1.1222	0.0151
Cyprinidae	Abramis brama (Linnaeus, 1758)	T	28	0.996	6.1	33.6	0.5199	1.2306	0.0190
	Alburnoides bipunctatus (Bloch, 1782)	T	11	0.999	4.3	8	0.4021	1.1318	0.0111
	Alburnus chalcoides (Güldenstädt, 1772)	В	28	0.985	8.7	16.1	-0.5988	1.2411	0.0195
		Ö	89	0.997	7.3	24	0.3352	1.1756	0.0047
		S	21	0.971	14.7	21.2	1.6870	1.0989	0.0349
	All	T	57	0.998	6.2	19.5	0.2204	1.1649	0.0053
	Alburnus tarichi (Güldenstädt, 1814)	V Ö	62	0.970 0.999	16	20.6	0.0480	1.1850	0.0187
	Barbus escherichii Steindachner, 1897 Blicca bjoerkna (Linnaeus, 1758)	S	12 106	0.999	4.1 8.9	19.4 17	0.1882 1.1765	1.1552 1.1735	0.0048 0.0173
	Carassius gibelio (Bloch, 1782)	İ	352	0.993	6.8	24.3	0.3279	1.1733	0.0173
	Curussius giocno (Bioch, 1702)	Ö	683	0.995	2.5	26.4	0.1465	1.2411	0.0022
	Cyprinus carpio Linnaeus, 1758	İ	12	0.999	11.7	40.9	0.2635	1.1937	0.0069
		Ö	49	0.997	10.4	74	1.9500	1.1223	0.0068
	Gobio gobio (Linnaeus, 1758)	В	12	0.993	5.7	9.6	0.4488	1.1157	0.0239
	, , ,	Ö	20	0.997	3.1	7.7	0.1381	1.1601	0.0121
		T	27	0.985	5.3	9.4	0.3207	1.1265	0.0215
	Petroleuciscus borysthenicus (Kessler, 1859)	В	14	0.969	5.6	9.5	-0.1495	1.2066	0.0412
		K	15	0.942	7.7	9.2	0.7802	1.0818	0.0599
		Ö	82	0.994	5.7	12.5	0.2059	1.1832	0.0072
	DI	T	55	0.996	5	13.2	0.1767	1.1539	0.0079
	Phoxinus phoxinus (Linnaeus, 1758)	T	14	0.990	4.6	7.3	-0.0207	1.1678	0.0249
	Rhodeus amarus (Bloch, 1782)	B Ö	41	0.928	4.7	5.7	0.0323	1.2024	0.0344
		T	266 46	0.975 0.963	4.6 3.4	7.3 8.2	0.1737 0.4962	1.1924 1.1020	0.0080 0.0259
	Rutilus frisii (Nordmann, 1840)	T	16	0.903	12.2	32.2	1.1431	1.1327	0.0239
	Rutilus rutilus (Linnaeus, 1758)	В	217	0.998	6.7	18.2	0.1868	1.2017	0.0026
	Turning (Emiliarus, 1700)	İ	15	0.978	12.4	22.2	2.9059	1.0252	0.0400
		S	245	0.938	12	21.1	1.5242	1.1229	0.0138
	Scardinius erythrophthalmus (Linnaeus, 1758)	В	19	0.984	5.8	15.7	0.1143	1.1943	0.0105
		Ö	632	0.995	5.4	24.3	0.2499	1.2235	0.0023
		S	105	0.993	11.1	24.1	0.2611	1.1888	0.0072
		T	35	0.997	11.1	20.9	0.2619	1.1904	0.0079
	Squalius cephalus (Linnaeus, 1758)	į	25	0.985	15.9	29.3	1.9804	1.0779	0.0237
		Ö	44	0.995	7.3	25.8	0.3888	1.1567	0.0091
	##: 1750\	T	27	0.999	6	18.4	0.3460	1.1492	0.0057
	Tinca tinca (Linnaeus, 1758)	T	13	0.999	14.5	26.8	-0.0208	1.1769	0.0085
	Vimba vimba (Linnaeus, 1758)	Ö	370	0.996	6	23.7	0.3966	1.2108	0.0027
		S T	78 25	0.968 0.996	12.8	19.6	0.4309	1.2153	0.0166
Cyprinodontidae	Aphanius fasciatus (Valenciennes, 1821)	K	25 11	0.980	6.5 3.2	21 4.6	0.6455 0.4167	1.1594 1.0433	0.0108 0.0446
Engraulidae	Engraulis encrasicolus (Linnaeus, 1758)	İzm	88	0.986	9.9	14.9	0.6260	1.0433	0.0066
Esocidae	Esox lucius Linnaeus, 1758	T	39	0.939	28.9	54.1	2.8931	1.0489	0.0376
Gadidae	Gadiculus argenteus argenteus Guichenot, 1850	Sı	110	0.939	5.5	9.2	0.0601	1.1418	0.0069
Gasterosteidae	Gasterosteus aculeatus Linnaeus, 1758	İ	229	0.977	1.9	7	0.1627	1.1086	0.0090
Gobiidae	Neogobius gymnotrachelus (Kessler, 1857)	T	14	0.976	4.7	7.5	0.4556	1.1462	0.0384
	Neogobius melanostomus (Pallas, 1814)	В	15	0.943	6	8.9	1.6217	0.9406	0.0682
	- , , , ,	Ö	33	0.981	5.7	11.4	0.1805	1.1680	0.0209
		S	10	0.995	8.8	15	-0.6311	1.2524	0.0207
		T	17	0.991	2.8	12.1	0.2364	1.1580	0.0211
	Knipowitschia caucasica (Berg, 1916)	В	11	0.974	1.8	2.9	0.1883	1.0851	0.0494
	Proterorhinus marmoratus (Pallas, 1814)	В	16	0.971	2.3	3.6	0.2560	1.1048	0.0406
		İ	210	0.980	2.4	6.6	0.3532	1.1373	0.0085
		T	10	0.987	2.8	5	0.3510	1.1251	0.0363

B: Büyükçekmece Dam Lake, Ç: Çandarlı Bay, E: Edremit Bay, İ: Lake İznik, İzm: İzmir Bay, K: Küçükçekmece Lagoon, Ö: Ömerli Dam Lake, S: Lake Sapanca, Sı: Sığacık Bay, T: Terkos Dam Lake, V: Lake Van.

Table 2. (Continue)

Family	Species	Locality	n	r^2	Standard		Total length vs. standard length			
					length (mm)		TL = a + bSL			
					min	max	а	b	SE(b)	
Phycidae	Phycis blennoides (Brünnich, 1768)	Sı	12	0.990	11	13.4	0.2913	1.1042	0.0285	
Poeciliidae	Gambusia holbrooki Girard, 1859	В	15	0.999	2.6	4	0.2145	1.1213	0.0246	
		Ö	19	0.992	1.6	3.7	0.1571	1.1380	0.0185	
Pomacentridae	Chromis chromis (Linnaeus, 1758)	Ç	34	0.948	10.4	12.8	0.1946	1.3033	0.0302	
Serranidae	Serranus hepatus (Linnaeus, 1758)	İzm	93	0.985	5.3	8.4	0.2975	1.1709	0.0109	
Sparidae	Boops boops (Linnaeus, 1758)	E	27	0.971	14.3	23.6	-0.2633	1.1959	0.0279	
Trachichthyidae	Hoplostethus mediterraneus Cuvier, 1829	S1	458	0.987	5.8	14	1.0753	1.2298	0.0043	

Table 3. Results of linear regressions of fork length versus standard length for the fish species caught from several Turkish waters

Family	Species	Locality	n	r^2		length im)	Fork length vs. standa FL = a + bSI		
					min	max	a b		SE(b)
Atherinidae	Atherina boyeri Risso, 1810	K	15	0.999	3.7	10.4	0.0917	1.0516	0.0092
		Ö	240	0.968	7.5	11.8	0.2454	1.0513	0.0109
Belonidae	Belone belone (Linnaeus, 1761)	Ç	20	0.996	31.8	57.9	0.7851	1.0267	0.0151
		Izm	56	0.993	24	44.9	0.6632	1.0294	0.0111
C1	Belone svetovidovi Collette & Parin, 1970	İzm	173	0.993	25.9	44.3	0.5109	1.0325	0.0064
Clupeidae	Alosa tanaica (Grimm, 1901)	K	21	0.998	8.7	22.1	0.3031	1.0142	0.0109
	Clupeonella cultriventris (Nordmann, 1840)	В	20	0.978	8.2	9.8	0.4921	1.0015	0.0344
Craminidaa	Sardina pilchardus (Walbaum, 1792)	K T	11 28	0.998 0.992	8.3	13.8	0.1697	1.0304	0.0138
Cyprinidae	Abramis brama (Linnaeus, 1758) Alburnoides bipunctatus (Bloch, 1782)	T	11	0.992	7.1 4.8	36.3 8.6	0.5169 0.4049	1.0635 1.0271	0.0166 0.0153
	Alburnus chalcoides (Güldenstädt, 1772)	В	28	0.995	9.4	17.2	0.4049	1.0515	0.0133
	Atournus chatcotaes (Outdenstadt, 1772)	Ö	89	0.998	8	25.8	0.2313	1.0515	0.0138
		S	21	0.984	16.1	22.3	1.0184	1.0192	0.0281
		Ť	57	0.999	6.6	20.6	0.1511	1.0577	0.0037
	Alburnus tarichi (Güldenstädt, 1814)	V	62	0.953	17.4	22.5	0.7925	1.0422	0.0263
	Barbus escherichii Steindachner, 1897	Ö	12	0.999	4.4	20.9	0.0753	1.0757	0.0105
	Blicca bjoerkna (Linnaeus, 1758)	S	106	0.980	10.6	18.6	0.5498	1.0634	0.0129
	Carassius gibelio (Bloch, 1782)	İ	352	0.995	7.8	27.8	0.3617	1.1190	0.0032
		Ö	683	0.996	2.8	30.7	0.1107	1.1316	0.0022
	Cyprinus carpio Linnaeus, 1758	İ	12	0.999	12.7	44.4	0.1224	1.0805	0.0073
		Ö	49	0.999	11.5	79	0.6881	1.0613	0.0051
	Gobio gobio (Linnaeus, 1758)	В	12	0.977	6.3	10.6	0.4107	1.0433	0.0453
		Ö	20	0.999	3.5	8.4	0.2149	1.0694	0.0084
		T	27	0.994	5.9	10.1	0.1446	1.0755	0.0148
	Petroleuciscus borysthenicus (Kessler, 1859)	В	14	0.963	6	10.2	-0.0033	1.0918	0.0500
		K	15	0.983	8.3	9.9	0.2467	1.0580	0.0340
		Ö	82	0.996	6.5	13.9	0.0924	1.1057	0.0064
	DL	T T	55	0.997	5.5	14.4	0.0759	1.0792	0.0068
	Phoxinus phoxinus (Linnaeus, 1758)	B	14 41	0.973 0.914	5 5.6	8 6.9	-0.1369	1.1298	0.0414
	Rhodeus amarus (Bloch, 1782)	Ö	266	0.914	5.1	8.3	0.2578 -0.0792	1.0552 1.1361	0.0426 0.0078
		T	46	0.969	3.5	9.2	0.0796	1.0791	0.0078
	Rutilus frisii (Nordmann, 1840)	T	16	0.999	13.1	34	0.3783	1.0448	0.0081
	Rutilus rutilus (Linnaeus, 1758)	В	217	0.997	7.3	19.6	0.0645	1.0834	0.0033
	1000000 (2000000, 1700)	İ	15	0.996	13.4	24.6	-0.4018	1.1133	0.0163
		S	245	0.969	13	22.7	0.7276	1.0391	0.0107
	Scardinius erythrophthalmus (Linnaeus, 1758)	В	19	0.989	6.5	17.1	0.1045	1.0847	0.0098
		Ö	632	0.996	6	26.4	0.3911	1.0768	0.0024
		S	105	0.993	12.1	26.3	0.3108	1.0760	0.0078
		T	35	0.998	12.1	22.3	0.0845	1.0772	0.0069
	Squalius cephalus (Linnaeus, 1758)	İ	25	0.990	18.5	31.2	2.0440	0.9977	0.0211
		Ö	44	0.999	8.3	28.6	0.1513	1.0949	0.0044
		T	27	0.999	6.6	20	0.1916	1.0799	0.0064
	Tinca tinca (Linnaeus, 1758)	T	13	0.999	16.6	30.6	0.0197	1.1429	0.0093
	Vimba vimba (Linnaeus, 1758)	Ö	370	0.997	6.7	25.7	0.3812	1.0631	0.0025
		S	78 25	0.983	14.2	21.2	0.3244	1.0742	0.0138
E1: 1	English (I') 1750	T †	25	0.998	7	22.4	0.4391	1.0443	0.0081
Engraulidae	Engraulis encrasicolus (Linnaeus, 1758)	İzm	88	0.996	10.4	15.6	0.1691	1.0344	0.0070
Esocidae Dama contri do o	Esox lucius Linnaeus, 1758	T	39	0.982	30.8	57.3	1.5250	1.0217	0.0213
Pomacentridae Sparidae	Chromis chromis (Linnaeus, 1758)	Ç E	34 27	0.960 0.992	8.8 15.1	10.8 25	-0.2784 0.3185	1.1448	0.0303
Sparidae Trachichthyidae	Boops boops (Linnaeus, 1758)	E Sı	458	0.992	6.9	15.1	1.1170	1.0399 1.0002	0.0169 0.0038
	Hoplostethus mediterraneus Cuvier, 1829 Dam Lake, C. Candarlı Bay, E. Edremit Bay, İ								

B: Büyükçekmece Dam Lake, Ç: Çandarlı Bay, E: Edremit Bay, İ: Lake İznik, İzm: İzmir Bay, K: Küçükçekmece Lagoon, Ö: Ömerli Dam Lake, S: Lake Sapanca, Sı: Sığacık Bay, T: Terkos Dam Lake, V: Lake Van.

Table 4. Results of linear regressions of total length versus fork length for the fish species caught from several Turkish waters

Family	Species	Locality	n	r^2		_	Total leng	th vs. fork l	ength TL =
					(mm)			a + bFL	
					min	max	а	<u>b</u>	SE(b)
Atherinidae	Atherina boyeri Risso, 1810	K	15	0.989	3.9	11.1	-0.0532	1.0742	0.0082
D.1	D. I I. I. (Linnana 17(1)	Ö	240	0.974	7.7	12.9	0.4410	1.0255	0.0101
Belonidae	Belone belone (Linnaeus, 1761)	Ç	20	0.999	33.2	60.5	-0.3949	1.0495	0.0059
	B-I Collette & Borin 1070	İzm	56 172	0.998 0.999	24.7 27	46.6	-0.0546	1.0431	0.0062
Clamaidaa	Belone svetovidovi Collette & Parin, 1970	İzm	173			46.3	-0.3489	1.0533	0.0028
Clupeidae	Alosa tanaica (Grimm, 1901) Clupeonella cultriventris (Nordmann, 1840)	K B	21 20	0.998 0.943	9.6 8.9	24.6 10.7	-0.1650 -0.0035	1.1224 1.0956	0.0086 0.0497
		K	11	0.943	8.9 9	15.3	-0.5069	1.1432	0.0497
Cyprinidae	Sardina pilchardus (Walbaum, 1792) Abramis brama (Linnaeus, 1758)	T	28	0.999	7.7	41.5	0.1137	1.1498	0.0085
Сургинае	Alburnoides bipunctatus (Bloch, 1782)	T	11	0.992	5.2	9.4	-0.0311	1.0999	0.0150
	Alburnus chalcoides (Güldenstädt, 1772)	В	28	0.989	10.1	19.3	-0.8920	1.1800	0.0103
	Atournus charcotaes (Guidenstadt, 1772)	Ö	89	0.999	8.8	28.4	-0.0149	1.1101	0.0038
		S	21	0.988	18	24.7	0.5807	1.0787	0.0035
		T	57	0.998	7.3	22.6	0.0574	1.1011	0.0051
	Alburnus tarichi (Güldenstädt, 1814)	V	62	0.955	19.1	24.6	-0.1416	1.1012	0.0243
	Barbus escherichii Steindachner, 1897	Ö	12	0.999	4.9	22.6	0.1154	1.0729	0.0083
	Blicca bjoerkna (Linnaeus, 1758)	S	106	0.972	12	21.2	0.5921	1.1019	0.0147
	Carassius gibelio (Bloch, 1782)	İ	352	0.997	8.6	30.2	-0.0512	1.0963	0.0029
	car distrib greene (210011, 1702)	Ö	683	0.997	3	33.3	0.0546	1.0953	0.0021
	Cyprinus carpio Linnaeus, 1758	İ	12	0.998	14.2	48.8	0.1512	1.1037	0.0125
		Ö	49	0.998	12.8	84	1.2271	1.0573	0.0057
	Gobio gobio (Linnaeus, 1758)	В	12	0.977	6.7	11.2	0.1977	1.0485	0.0455
		Ö	20	0.998	3.7	9	-0.0960	1.0850	0.0093
		T	27	0.980	6.3	10.9	0.2178	1.0414	0.0268
	Petroleuciscus borysthenicus (Kessler, 1859)	В	14	0.994	6.5	11.1	-0.0861	1.0981	0.0203
		K	15	0.937	9	10.6	0.6338	1.0109	0.0668
		Ö	82	0.997	6.8	14.9	0.1150	1.0691	0.0061
		T	55	0.997	6	15.5	0.1021	1.0685	0.0071
	Phoxinus phoxinus (Linnaeus, 1758)	T	14	0.996	5.2	8.4	0.0693	1.0478	0.0172
	Rhodeus amarus (Bloch, 1782)	В	41	0.943	5.6	6.9	-0.0299	1.0980	0.0339
		Ö	266	0.982	5.6	9	0.3033	1.0419	0.0078
		T	46	0.983	4.1	9.7	0.4481	1.0156	0.0191
	Rutilus frisii (Nordmann, 1840)	T	16	0.998	15	37.5	0.7608	1.0831	0.0107
	Rutilus rutilus (Linnaeus, 1758)	В	217	0.997	8.3	22	0.1351	1.1071	0.0034
		İ	15	0.968	15	25.6	3.3985	0.9144	0.0532
		S	245	0.957	14.6	25.2	0.8508	1.0742	0.0122
	Scardinius erythrophthalmus (Linnaeus, 1758)	В	19	0.981	7.1	19	0.0628	1.0929	0.0126
		Ö	632	0.996	6.7	29	-0.1666	1.1345	0.0022
		S	105	0.991	13.5	29.1	0.0080	1.0996	0.0088
	G 1: 1.1 (T.: 1750)	Ţ	35	0.999	13.4	24.7	0.1719	1.1048	0.0060
	Squalius cephalus (Linnaeus, 1758)	İ	25	0.992	19.3	33	-0.1970	1.0790	0.0169
		Ö	44	0.997	8.9	30.5	0.2224	1.0568	0.0078
	Time time (Linnage 1759)	T	27	0.999	7.1	21.3	0.1500	1.0636	0.0063
	Tinca tinca (Linnaeus, 1758)	T Ö	13	0.999	17	31.4	-0.0293	1.0292	0.0082
	Vimba vimba (Linnaeus, 1758)		370	0.997	7.5	29.4	-0.0223	1.1380	0.0025
		S T	78 25	0.979 0.998	15.8 7.6	24.2 24.8	0.1180 0.1553	1.1283 1.1104	0.0145 0.0075
Engraulidae	Engraulis encrasicolus (Linnaeus, 1758)	i İzm	25 88	0.998	11.4	16.8	0.1553	1.1104	0.0075
Engraundae Esocidae	Esox lucius Linnaeus, 1758	T	88 39	0.996	32.5	60	0.4793	1.0302	0.0067
Pomacentridae	Chromis chromis (Linnaeus, 1758)	C	39 34	0.983	32.3 10.4	12.8	0.6452	1.0423	0.0190
Sparidae	Boops boops (Linnaeus, 1758)	E	27	0.904	16.5	28.1	-0.5485	1.1247	0.0294
Trachichthyidae	Hoplostethus mediterraneus Cuvier, 1829	Sı	458	0.972	8	18.3	-0.2236	1.2235	0.0287
1 racincilui y luac	110prosieinus mediterruneus Cuvici, 1629	51		0.70+		10.3	-0.2230	1.4433	0.0049

B: Büyükçekmece Dam Lake, Ç: Çandarlı Bay, E: Edremit Bay, İ: Lake İznik, İzm: İzmir Bay, K: Küçükçekmece Lagoon, Ö: Ömerli Dam Lake, S: Lake Sapanca, Sı: Sığacık Bay, T: Terkos Dam Lake, V: Lake Van.

Acknowledgements

The authors wish to thank Prof. Dr. Nurettin Meriç, Istanbul University, Faculty of Science, Department of Biology, who provided the fish samples from Küçükçekmece Lagoon. We also thank

several volunteers for their help in data collection, namely Nadi Gökalp and his family, Adnan Sümer and members of Ildeniz Fishery. We are grateful to Zeynep Al who helped with preparation of the manuscript.

Table 5. Results from ANCOVA for the slope of length – length relationships between areas and length conversions.

Species	Study sites	FL - TL	SL – TL	SL – FL
Atherina boyeri	K – Ö	0	XX	XX
Belone belone	Ç – İzm	0	XX	XX
Alburnus chalcoides	$S - \ddot{O}$	0	o	0
	S - B	0	o	0
	S - T	0	o	0
	Ö – B	XX	XX	0
	$\ddot{\mathrm{O}}-\mathrm{T}$	o	XXX	XXX
	B-T	0	O	XX
Carassius gibelio	$\ddot{\mathrm{I}} - \dot{\mathrm{I}}$	XXX	X	XXX
Cobitis vardarensis	$\ddot{\mathrm{O}}-\mathrm{B}$		0	
	$\ddot{\mathrm{I}} - \dot{\mathrm{I}}$		0	
	$\ddot{\mathrm{O}}-\mathrm{T}$		0	
	$\mathbf{B} - \dot{\mathbf{I}}$		0	
	B-T		0	
	Í – T		0	
Cyprinus carpio	I – Ö	0	0	0
Gambusia holbrooki	Ö – B	· ·	xxx	O
Gobio gobio	Ö – B	0	XX	o
30010 g0010	Ö – T	0	X	xx
	B – T	0	0	0
Neogobius melanostomus	S – Ö	U		U
veogovius meianosiomus	S – T		0	
	S – I S – B			
	5 – Б Ö – Т		XXX	
	Ö – I Ö – B		0	
			XXX	
D . 1 . 1 . 1	B – T		X	
Petroleuciscus borysthenicus	$egin{aligned} \mathbf{K} - \ddot{\mathbf{O}} \\ \mathbf{K} - \mathbf{B} \end{aligned}$	0	XXX	XXX
		0	0	0
	K – T	0	0	0
	Ö – B	0	XX	XXX
	Ö – T	0	XXX	XXX
D	B – T	X	0	0
Proterorhinus marmoratus	B – T		0	
	$\mathbf{B} - \dot{\mathbf{I}}$		XX	
	T – İ		XXX	
Rhodeus amarus	Ö – B	0	XXX	XXX
	$\ddot{O} - T$	0	XXX	XXX
	B-T	o	XX	X
Rutilus rutilus	S - B	0	o	XXX
	$S - \dot{I}$	XXX	XXX	0
	Í – B	XXX	XXX	0
Scardinius erythrophthalmus	S – Ö	XXX	XXX	XXX
	S - B	o	o	0
	S-T	XXX	o	XXX
	$\ddot{\mathrm{O}}-\mathrm{B}$	XXX	xxx	XXX
	$\ddot{\mathrm{O}}-\mathrm{T}$	XXX	XXX	XXX
	B-T	XXX	0	XXX
Squalius cephalus	$T - \ddot{O}$	0	0	XXX
-	$\mathbf{T} - \dot{\mathbf{I}}$	0	0	0
	Ö – İ	0	0	0
Vimba vimba	$S - \ddot{O}$	0	XX	XXX
	S-T	XXX	XXX	XXX
	Ö – T	XXX	XXX	XX

xxx=P<0.001; xx=P<0.01; x=P<0.05; o=P>0.05.

References

Echeverria, T. and Lenarz, W. H. 1984. Conversions between total, fork, and standard lengths in 35 species of *Sebastes* from California. Fishery Bulletin, 82: 249-251.

Froese, R. and Pauly, D. 2005. FishBase. World Wide Web electronic publication. R. Froese and D. Pauly (Eds.)

www.fishbase.org, version (06/2005).

Howe, J. C. 2002. Standard length: not quite so standard. Fisheries Research, 56: 1-7.

Laevastu, T. 1965. Manual of methods in fisheries biology. 9(4): 1-51. FAO, Rome.

Zar, J.H. 1999. Biostatistical Analysis, 4th Edition. Prentice-Hall, Englewood Cliffs, NJ, 663 pp.