## CPSC 542: Assignment #1 Implement a Convolutional Neural Network

LEWIS, T. TYLEWIS@CHAPMAN.EDU ID# 002366930 02/27/24

#### **Problem statement**

How can we enable computers to understand pictures containing text? This task encompasses a range of processes, from detecting individual characters to also understanding the syntactical and semantic structures of language.

One relevant application of this technology is in the digitization of historical texts, which often exhibit a wide variety of stylistic variations. These variations can include differences in handwriting, obscure characters, and even physical degradation of the documents over time. Such texts can be challenging to decipher even for trained human eyes, making the task for computers notably complex.

Incorporating a convolutional neural network (CNN) as a deep NN solution for this task is a promising approach to address this problem. The convolutional model excels in identifying key patterns in images, regardless of their coordinate location. By training a CNN on examples of specific characters of interest, we can employ a system to recognize and interpret handwritten stylistic variations with high accuracy.

Hiragana Unicode Samples

### Identify a vision dataset to work with for classification tasks:

For assignment completion, I opted to use the Kuzushiji-49 data.

The Kuzushiji-49 database contains 70,000 examples of handwritten Kuzushiji characters - Japanese cursive-styled characters. Containing 49 different classes including one punctuation symbol and 48 Hiragana characters, (Fig. 1).

The computer vision exposure I have prior to this course is an assignment to use Euclidean Distance K-nearest neighbors to predict labels from a similar dataset, except containing handwritten Arabic numerals (1, 2, 3, etc). This yielded around ~.8 accuracy as I remember.

Initially I used the 'KMNIST-10' dataset, with just 10 classes of characters, but during the week extension, transitioned to this set which includes 5x more classes.

Each image is a vector/tensor of shape (28,28,1) to represent a 28x28px greyscale image

| Hiragana      | Unicode | Samples | Sample Images |
|---------------|---------|---------|---------------|
| あ (a)         | U+3042  | 7000    | ああつめあ         |
| ۱۱ (i)        | U+3044  | 7000    | 17095         |
| う (u)         | U+3046  | 7000    | ろうううう         |
| え (e)         | U+3048  | 903     | ええんくえ         |
| お (o)         | U+304A  | 7000    | おおおおお         |
| か(ka)         | U+304B  | 7000    | りふかうり         |
| ₹ (ki)        | U+304D  | 7000    | 五五八五五         |
| < (ku)        | U+304F  | 7000    | 11322         |
| け (ke)        | U+3051  | 5481    | 94946         |
| ک (ko)        | U+3053  | 7000    | あさまさと         |
| さ (sa)        | U+3055  | 7000    | きをきたと         |
| し (shi)       | U+3057  | 7000    | 17311         |
| す (su)        | U+3059  | 7000    | とせれずす         |
| 世 (se)        | U+305B  | 4843    | せんなるん         |
| そ (so)        | U+305D  | 4496    | そそそをひ         |
| た (ta)        | U+305F  | 7000    | 97729         |
| ち (chi)       | U+3061  | 2983    | 55555         |
| つ (tsu)       | U+3064  | 7000    | つつつはは         |
| て (te)        | U+3066  | 7000    | 48111         |
| الا (to)      | U+3068  | 7000    | 27 6 4 6      |
| な (na)        | U+306A  | 7000    | <b>ラケンチ</b> な |
| に (ni)        | U+306B  | 7000    | ふえるある         |
| డ్డు (nu)     | U+306C  | 2399    | nnnh          |
| ね (ne)        | U+306D  | 2850    | かわれるの         |
| <i>ග</i> (no) | U+306E  | 7000    | DO MAN        |
|               |         |         |               |

| Hiragana            | Unicode | Samples | Samples Images |
|---------------------|---------|---------|----------------|
| は (ha)              | U+306F  | 7000    | ののえいも          |
| 간 (hi)              | U+3072  | 5968    | OUGAUO         |
| <u> ላ</u> (fu)      | U+3075  | 7000    | ふんふるる          |
| ^ (he)              | U+3078  | 7000    | 515-7          |
| ほ (ho)              | U+307B  | 2317    | あいわかる          |
| ま (ma)              | U+307E  | 7000    | 74 16          |
| 라 (mi)              | U+307F  | 3558    | 1              |
| <b>ប</b> (mu)       | U+3080  | 1998    | Optition       |
| め (me)              | U+3081  | 3946    | おありるも          |
| <b>₺</b> (mo)       | U+3082  | 7000    | 60848          |
| や (ya)              | U+3084  | 7000    | P/0100         |
| <b>ゆ</b> (yu)       | U+3086  | 1858    | 0000           |
| ኔ (yo)              | U+3088  | 7000    | 1111           |
| ၆ (ra)              | U+3089  | 7000    | 5 5 5 5 5      |
| り (ri)              | U+308A  | 7000    | うかうりん          |
| る (ru)              | U+308B  | 7000    | 235536         |
| れ (re)              | U+308C  | 7000    | nation         |
| ろ (ro)              | U+308D  | 2487    | ろろろろろ          |
| わ (wa)              | U+308F  | 2787    | えてきもず          |
| ් (i)               | U+3090  | 485     | カカゆかる          |
| 桑 (e)               | U+3091  | 456     | 表名名名           |
| を (wo)              | U+3092  | 7000    | treet.         |
| <del>ا</del> ر (n)  | U+3093  | 7000    | えんんしん          |
| (iteration<br>mark) | U+309D  | 4097    | 3 / (5)        |

Fig. 1: Characters contained in Kuzushiji-49 dataset

### CPSC 542: Assignment #1 Implement a Convolutional Neural Network

LEWIS, T. TYLEWIS@CHAPMAN.EDU ID# 002366930 02/27/24

#### **Methods**

The Kuzushiji-49 data is not included with native PyTorch. This required implementation to fetch the datasets, I used LLM to generate a driver for this functionality. The images are already normalized and did not require any preprocessing or augmentation steps. I applied a dataset split allocating 75% of the images for training and 25% for validation.

My model employs a LeNet architecture built with the PyTorch library, and features a sequential arrangement of layers designed to process the input images:

- Convolutional Layers: Two convolutional layers are included, where the first layer applies 20 filters of size 5x5, and the second layer uses 50 filters of the same size.
   These layers are responsible for extracting features from the input images.
- Activation Functions: Each convolutional layer is followed by a ReLU activation function to introduce non-linearity, enhancing the model's learning capability.
- Pooling Layers: Max-pooling layers follow each activation function, reducing the spatial size of the representation and hence the number of parameters and computation in the network.
- Fully Connected Layers: After flattening the output from the convolutional layers, it is
  passed through a fully connected layer with 500 units, followed by a ReLU activation,
  culminating in a soft-max classifier that outputs the probability distribution over the
  character classes.

#### Results

#### **Training Configuration:**

The network is trained over 10 epochs with a batch size of 64, employing the Adam optimizer and a learning rate of 1e-3.



**Performance Monitoring:** A history of training and validation loss and accuracy is maintained throughout the training epochs, serving as a metric for evaluating the model's performance.

**Evaluation:** Upon completion of training, the model is assessed on a separate test dataset, and a classification report is generated. This report details the model's precision, recall, and F1-scores for each digit class, offering a comprehensive evaluation of its classification efficacy.

# CPSC 542: Assignment #1 Implement a Convolutional Neural Network

LEWIS, T. TYLEWIS@CHAPMAN.EDU ID# 002366930 02/27/24

```
[INFO] training the CNN...
[INFO] EPOCH: 1/10
Train loss: 0.536884, Train accuracy: 0.8561
Val loss: 0.293800, Val accuracy: 0.9176
[INFO] EPOCH: 2/10
Train loss: 0.207312, Train accuracy: 0.9410
Val loss: 0.212111, Val accuracy: 0.9402
[INFO] EPOCH: 3/10
Train loss: 0.145194, Train accuracy: 0.9584
Val loss: 0.177643, Val accuracy: 0.9513
[INFO] EPOCH: 4/10
Train loss: 0.111795, Train accuracy: 0.9672
Val loss: 0.188212, Val accuracy: 0.9490
[INFO] EPOCH: 5/10
Train loss: 0.087725, Train accuracy: 0.9730
Val loss: 0.191091, Val accuracy: 0.9529
[INFO] EPOCH: 6/10
Train loss: 0.070553, Train accuracy: 0.9781
Val loss: 0.190573, Val accuracy: 0.9531
[INFO] EPOCH: 7/10
Train loss: 0.058527, Train accuracy: 0.9813
Val loss: 0.202740, Val accuracy: 0.9521
[INFO] EPOCH: 8/10
Train loss: 0.049918, Train accuracy: 0.9838
Val loss: 0.203872, Val accuracy: 0.9546
[INFO] EPOCH: 9/10
Train loss: 0.044887, Train accuracy: 0.9853
Val loss: 0.210383, Val accuracy: 0.9546
[INFO] EPOCH: 10/10
Train loss: 0.038549, Train accuracy: 0.9875
Val loss: 0.214400, Val accuracy: 0.9566
[INFO] Completed training.
[INFO] total time taken to train the model: 1619.54s
```

| [INFO] evalua        | ting network. | ••           |              |              |
|----------------------|---------------|--------------|--------------|--------------|
|                      | precision     | recall       | f1-score     | support      |
|                      |               |              |              |              |
| Class 0              | 0.93          | 0.94         | 0.94         | 1000         |
| Class 1              | 0.97<br>0.94  | 0.94<br>0.95 | 0.96<br>0.95 | 1000         |
| Class 2<br>Class 3   | 0.94          | 0.95         | 0.95         | 1000         |
| Class 3<br>Class 4   | 0.83          | 0.90         | 0.86         | 126<br>1000  |
| Class 5              | 0.89          | 0.88         | 0.88         | 1000         |
| Class 6              | 0.94          | 0.90         | 0.92         | 1000         |
| Class 7              | 0.86          | 0.93         | 0.90         | 1000         |
| Class 8              | 0.82          | 0.93         | 0.87         | 767          |
| Class 9              | 0.95          | 0.90         | 0.93         | 1000         |
| Class 10             | 0.93          | 0.95         | 0.94         | 1000         |
| Class 11             | 0.95          | 0.90         | 0.93         | 1000         |
| Class 12             | 0.91          | 0.89         | 0.90         | 1000         |
| Class 13             | 0.91          | 0.87         | 0.89         | 678          |
| Class 14             | 0.87          | 0.86         | 0.86         | 629          |
| Class 15             | 0.95          | 0.93         | 0.94         | 1000         |
| Class 16             | 0.98          | 0.94         | 0.96         | 418          |
| Class 17             | 0.93          | 0.94         | 0.93         | 1000         |
| Class 18             | 0.96<br>0.95  | 0.91<br>0.96 | 0.94<br>0.95 | 1000         |
| Class 19<br>Class 20 | 0.89          | 0.96         | 0.95         | 1000<br>1000 |
| Class 20<br>Class 21 | 0.89          | 0.91         | 0.90         | 1000         |
| Class 22             | 0.90          | 0.90         | 0.88         | 336          |
| Class 23             | 0.90          | 0.93         | 0.91         | 399          |
| Class 24             | 0.95          | 0.92         | 0.93         | 1000         |
| Class 25             | 0.94          | 0.89         | 0.91         | 1000         |
| Class 26             | 0.94          | 0.95         | 0.95         | 836          |
| Class 27             | 0.96          | 0.88         | 0.92         | 1000         |
| Class 28             | 0.96          | 0.92         | 0.94         | 1000         |
| Class 29             | 0.82          | 0.92         | 0.87         | 324          |
| Class 30             | 0.88          | 0.96         | 0.92         | 1000         |
| Class 31             | 0.96          | 0.90         | 0.93         | 498          |
| Class 32             | 0.96          | 0.87         | 0.91         | 280          |
| Class 33             | 0.96          | 0.90         | 0.93         | 552          |
| Class 34<br>Class 35 | 0.92          | 0.96         | 0.94         | 1000         |
| Class 35<br>Class 36 | 0.89<br>0.85  | 0.92<br>0.94 | 0.91<br>0.89 | 1000<br>260  |
| Class 36<br>Class 37 | 0.83          | 0.94         | 0.89         | 1000         |
| Class 38             | 0.93          | 0.93         | 0.93         | 1000         |
| Class 39             | 0.91          | 0.92         | 0.91         | 1000         |
| Class 40             | 0.90          | 0.90         | 0.90         | 1000         |
| Class 41             | 0.92          | 0.96         | 0.94         | 1000         |
| Class 42             | 0.91          | 0.96         | 0.93         | 348          |
| Class 43             | 0.93          | 0.90         | 0.92         | 390          |
| Class 44             | 0.89          | 0.72         | 0.80         | 68           |
| Class 45             | 0.88          | 0.83         | 0.85         | 64           |
| Class 46             | 0.92          | 0.95         | 0.93         | 1000         |
| Class 47             | 0.94          | 0.98         | 0.96         | 1000         |
| Class 48             | 0.88          | 0.81         | 0.85         | 574          |
| accuracy             |               |              | 0.92         | 38547        |
| macro avg            | 0.92          | 0.91         | 0.91         | 38547        |
| weighted avg         | 0.92          | 0.92         | 0.92         | 38547        |

#### **Discussion**

As shown above, the model achieved a 0.92 accuracy. The model reached its best performance during the third epoch. The accuracy seems high to me, but it could likely be improved further, which would be ideal for a consumer tool. I played around with filter and step sizes and determined that my current settings produced the highest accuracy results.

I additionally compared this performance against the KMNIST-10 dataset (results in readme), containing only ten Japanese characters — the increasing the size of the class pool led significantly higher levels of validation-loss. I anticipate this such model may be used in part as a transfer functioning layer within a picture-to-text system.