※特別な許可がない限り、パソコン・携帯電話・電子辞書の使用はできません。これらを使用した場合は不正行為とみなします。

持込の指示	不許可	全				のみ許す	<u> </u>				学籍	番号							_	CD	採	点	欄]
指定のない	 	 F可と(ンます。	1_							氏	名												
秋学期末	2 0 1	5	年度		政	治	経	済	学	部	試	験	問	是	<u> </u>	 1	月	29	日	(金)	2 限	Į
科目	経	済	数	学	入	門			クラス	06	, 07	7	担任	-		瀧	浧	星 :	武	信				1)

問 1. 曲面 $z=f(x,y)=(2x-y)e^{xy-2y}$ 上の点 (2,-1,f(2,-1)) における接平面の方程式を z=ax+by+c の形で書き表すとき,定数 a,b,c の値をそれぞれ求めよ.

問 2. $f(x,y) = x^3 - y^2 - 2xy - 4x + 4y - 1$ の極値を求めよ. 十分条件も吟味せよ.

持込の指示	不許可	4	全て許す		特定0 内容:	り物の	のみ許す	ij		-		学籍	番号							_	CD	抄		i 相	S)
指定のない	場合は不記	- F可と	します。									氏	名												
秋学期末	2 0 1	5	年度		j	政	治	経	済	学	部	試	験	問	昆	Į.	1	月	29	日	(金)	2	限
科目	経	済	数	-	学 .	入	門			クラス	06	S, O7	7	担 任			瀧	清	Ę j	武	信			•	-

問3. 資本と労働を投入して単一財を生産する競争的企業を考える。 資本投入量を K,労働投入量を L,資本のレンタル価格 r=1, 賃金率 w=2,生産物価格 p=6 とする。また,生産量 y に対して,生産関数は以下のように与えられる.

 $y = f(K, L) = K^{1/3}L^{1/3}$

このとき,以下の問いに答えよ.

- (1) 利潤 Π を資本投入量 K と労働投入量 L の関数として表せ.
- (2) 利潤最大化の1階の条件を示せ.
- (3) 1階の条件を満たすK, Lの値を求めよ.
- (4) 利潤 Π の最大値を求めよ、利潤が最大になる根拠も示すこと、

問4. 財Xの消費量xと財Yの消費量yに対して、効用関数u(x,y)は以下のように与えられる.

$$u(x,y) = xy^4$$

ただし、x>0、y>0 であるとする。また,財 X の価格が $P_x=10$,財 Y の価格が $P_y=30$ であり,所得は I=300 とする。個人は予算制約の下で効用を極大にするように財 X と財 Y の消費量を決定する。このとき,以下の問いに答えよ.

- (1) 予算制約式を求めよ.
- (2) 効用極大化のためのラグランジュ関数 L を作れ.
- (3) (2) の結果を用いて、効用極大化の1階の条件を示せ、
- (4) (3) の結果を用いて、 1 階の条件を満たす (x,y) の値とラグランジュ乗数の値を求めよ.
- (5) (4) で求めた解が効用極大化の2階の条件を満たしていることを示せ.

	п																			CD				
持込の指示	不許可	1	きて許可			のみ許す	可				学籍	番号							-		採	点	欄	7
指定のない	 場合は不言	午可と	します。								氏	名			····									
秋学期末	2 0 1	5	年度		政	治	経	済	学	部	試	験	問	題		1	月	29	日	(金)	2 限	[]
科 目	経	済	数	学	入	門			クラス	06	6, O	7	担任			瀧	澤	<u>j</u>	武	信				1

問5. Lagrange の未定乗数法を用いて条件付極値を求めよ、十分条件も吟味せよ。

$$g\begin{pmatrix} x \\ y \end{pmatrix} = x + y - 1 = 0 \ \mathcal{O} \ \text{for } \ \mathcal{E} \ \mathcal{T}$$

$$f\begin{pmatrix} x \\ y \end{pmatrix} = x^2 + y^2 - 1$$
 の極値を求めよ.

問 6. 関数の極限 (Limit) を求めよ.
$$\lim_{x o 0}rac{\sqrt{1-x^2}-1}{x^2}$$