Orders

Alon Gurny

February 19, 2025

1 Properties

Definition 1. A property **P** of linear orders is a class of linear orders which is closed under isomorphism.

Definition 2. A property \mathbf{P} of linear orders is monotone if for every linear order M, $M \in \mathbf{P}$ implies that every suborder of M is in \mathbf{P} .

Definition 3. A property **P** of linear orders is symmetric if for every linear order M, $M \in \mathbf{P}$ iff $M^R \in \mathbf{P}$.

Definition 4. A property **P** of linear orders is an additive property if for every linear orders M_1 and M_2 , $M_1 + M_2 \in \mathbf{P}$ iff $M_1, M_2 \in \mathbf{P}$.

Definition 5. Let **P** be a property of linear orders.

We define **P-bounded** to be the class of linear orders M such that for every $x, y \in M$, the bounded subinterval [x, y] is in **P**.

Definition 6. A property **P** of linear orders is almost anti-symmetric if for every linear order M, $M \in \mathbf{P}$ and $M^R \in \mathbf{P}$ imply that M is finite.

Definition 7. A property **P** of linear orders is good if it is monotone, additive and contains at least one infinite linear order.

Definition 8. A property \mathbf{P} of linear orders is a star property if for every linear orders M, and every family $\mathcal{F} \subseteq \mathbf{P}$ of subintervals of M such that $J_1 \cap J_2 \neq \emptyset$ for every $J_1, J_2 \in \mathcal{F}$, we have that $\bigcup \mathcal{F} \in \mathbf{P}$.

Lemma 1 (Star Lemma). Let **P** be an additive property of linear orders. Then the property **P-bounded** has the star property.

Proof. Let M be a linear order, and let $\mathcal{F} \subseteq \mathbf{P}$ -bounded be a family of subintervals of M.

Let $[x, y] \subseteq \bigcup \mathcal{F}$ be any bounded subinterval. We need to prove it is in **P**. Suppose $x \in J_1$ and $y \in J_2$ for $J_1, J_2 \in \mathcal{F}$.

Since $J_1 \cap J_2 \neq \emptyset$, we can take $z \in J_1 \cap J_2$.

Then $[x, z] \subseteq J_1$ and $[z, y] \subseteq J_2$, and thus by **P-bounded**, $[x, z], [z, y] \in \mathbf{P}$. However, **P** is additive. Since [x, y] is either the sum or difference of [x, z] and [z, y], we have that $[x, y] \in \mathbf{P}$. Lemma 2. Let P be a star property.

Then for every linear order M, and every point $x \in M$, there exists a largest subinterval $J \subseteq M$ such that $J \in \mathbf{P}$.

Thus, we can define an equivalence relation $\sim_{\mathbf{P}}$ on M such that $x \sim_{\mathbf{P}} y$ iff x and y are in the same largest **P**-subinterval.

Proof. Let $J \subseteq M$ be the union of all **P-bounded**-subintervals containing x. All such subintervals intersect at x.

Therefore, by the star lemma, J is in **P-bounded**, and by definition J is the largest **P**-subinterval containing x.

Thus we can define the equivalence relation $\sim_{\mathbf{P}}$ as above.

2 Hausdorff Rank

Definition 9. Let **Q** be a good property of linear orders. We define a property $\mathbf{Q}^{\leq \alpha}$ for every ordinal α as follows:

- $\mathbf{Q}^{\leq 0}$ is the class of finite linear orders.
- For $\alpha > 0$, $\mathbf{Q}^{\leq \alpha}$ is the class of linear orders M such that $M = \sum_{i \in I} M_i$ for some $I \in \mathbf{Q}$ where for all $i \in I$, $M_i \in \mathbf{Q}^{\beta_i}$ for some $\beta_i < \alpha$

We define further $\mathbf{Q}^{<\alpha} = \bigcup_{\beta < \alpha} \mathbf{Q}^{\leq \beta}$ and $\mathbf{Q}^{=\alpha} = \mathbf{Q}^{\leq \alpha} - \mathbf{Q}^{<\alpha}$. We define $\mathbf{hrank}_{\mathbf{Q}}(M) = \alpha$ iff $M \in \mathbf{Q}^{=\alpha}$. This is a partial map from linear orders to ordinals.

Observations 1. Let Q be a good property.

We claim the following without proof:

- $\mathbf{Q}^{\leq 1} = \mathbf{Q}$.
- For all α , $\mathbf{Q}^{\leq \alpha}$ is a good property.
- $\mathbf{Q}^{\leq \alpha} \subseteq \mathbf{Q}^{\leq \beta}$ iff $\alpha < \beta$.

Definitions 1. $\mathcal{B}_{<\alpha} := \mathbf{Q}^{<\alpha}$ -bounded is the class of linear orders of rank $< \alpha$ on bounded intervals.

 $\mathcal{R}_{<\alpha}$ is the class of linear orders M where $M+1 \in \mathcal{B}_{<\alpha}$. $\mathcal{L}_{\leq \alpha}$ is the class of linear orders M where $1 + M \in \mathcal{B}_{\leq \alpha}$.

Lemma 3. The following are equal:

- 1. $\mathbf{Q}^{<\alpha}$
- 2. $\{M: 1+M+1 \in \mathcal{B}_{<\alpha}\}.$
- 3. $\mathcal{L}_{<\alpha} \cap \mathcal{R}_{<\alpha}$

Proof. The only nontrivial direction is 3 implies 2, which follows from the star property of $\mathcal{B}_{<\alpha}$. **Lemma 4.** A countable linear order which has rank $< \alpha$ on bounded subintervals is of rank $\le \alpha$. That is,

$$\mathcal{B}_{<\alpha} \subseteq \mathbf{Q}^{\leq \alpha}$$

Proof. Let M be a countable linear order of rank $< \alpha$.

Then $M = \sum_{i \in I} M_i$ where $M_i \in \mathbf{Q}^{<\alpha}$.

Let $\{x_i\}_{i\in I}\subseteq M$ be a bidirectional, cofinal, weakly monotone I-sequence in M, i.e, $x_i\leq x_j$ if $i\leq j$ for $I\subseteq \mathbb{Z}$.

Write $M = \sum_{i \in I} [x_i, x_{i+1}]$. Then every $[x_i, x_{i+1}]$ is of Hausdorff rank $< \alpha$. Thus, $\mathbf{hrank}_{\mathbf{Q}}(M) \le \alpha$, which completes the proof.

Lemma 5. Let M be a countable linear order.

Suppose $\mathbf{Q} = \{M : \exists n \in \mathbb{N}. M \subseteq \mathbb{Z} \cdot n\}$ (This does not necessarily work for other $\mathbf{Q}!$).

Then $\operatorname{hrank}_{\mathbf{Q}}(M) \leq \alpha$ iff M is a finite sum of $\mathcal{B}_{<\alpha}$ -subintervals.

Proof. From the previous lemma, it is clear that if M is a finite sum of $\mathcal{B}_{<\alpha}$ -subintervals, then $\mathbf{hrank}_{\mathbf{Q}}(M) \leq \alpha$, since the rank bound is preserved under finite sums.

Conversely, suppose $\operatorname{\mathbf{hrank}}_{\mathbf{Q}}(M) \leq \alpha$.

If $M = \sum_{i \in \mathbb{Z}} M_i$ for some M_i of Hausdorff rank $< \alpha$, take $x, y \in M$. Then let $x \in M_{i_1}$ and $y \in M_{i_2}$.

Then $[x,y] \subseteq \sum_{i \in [i_1,i_2]} M_i$. But the last sum is of rank $< \alpha$ and thus [x,y] is of rank $< \alpha$. That is, $M \in \mathcal{B}_{<\alpha}$.

Since every subinterval of rank $\leq \alpha$ is a finite sum of \mathbb{Z} -sums of intervals of rank $< \alpha$, we are done.

3 Decidability of the rank

Lemma 6. There exists a global computable function $f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, $\mathbf{type}_n \left[\mathcal{H}_{f(n)+1} \right] = \mathbf{type}_n \left[\mathcal{H}_{f(n)} \right]$.

Equivalently, every linear order of finite rank is n-equivalent to some linear order of rank $\leq f(n)$.

Proof. Since there exist only a finite number of n-types, and the ω -sequence $\{\mathbf{type}_n [\mathcal{H}_k]\}_{k\in\omega}$ is monotone, it must stabilize at some point.

This point is computable as a function of n, because $\mathbf{type}_n[\mathcal{H}_k]$ is computable for every finite k.

Lemma 7. There exist global computable functions $a, b : \mathbb{N} \to \mathbb{N}$ such that for all $n, c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$,

$$\operatorname{type}_n\left[\mathcal{H}_{c_1}\right] = \operatorname{type}_n\left[\mathcal{H}_{c_2}\right]$$

Equivalently, the sequence $\{\mathbf{type}_n [\mathcal{H}_k]\}_{k\in\omega}$ is ultimately periodic for all $n\in\mathbb{N}$. Furthermore, the starting point and the period itself can be computed as a function of n.

Proof. Let $n \in \mathbb{N}$.

Since there exist only a finite number of possible sets of n-types, there exist (and can be computed) some a(n) > f(n), a(n) + b(n) such that

$$\mathbf{type}_n\left[\mathcal{H}_{a(n)}\right] = \mathbf{type}_n\left[\mathcal{H}_{a(n)+b(n)}\right]$$

We shall prove by induction that for all $c \ge a(n) + b(n)$,

$$\mathbf{type}_n\left[\mathcal{H}_c\right] = \mathbf{type}_n\left[\mathcal{H}_{c+b(n)}\right]$$

This will complete the proof.

The base case c = a(n) has been proven in the beginning.

Suppose the induction hypothesis holds for c.

Let M be of rank c+1.

Write $M = \sum_{i \in I} M_i$ where $\mathbf{hrank}_{\mathbf{Q}}(M_i) < c + 1$, and $\mathbf{hrank}_{\mathbf{Q}}(M_i) = c$ infinitely many times.

By the induction hypothesis, if $\mathbf{hrank_Q}(M_i) = c$, we can find $N_i \equiv_n M_i$ with $\mathbf{hrank_Q}(N_i) = c + b(n)$. Setting $N_i := M_i$ for all other i, we conclude that $N := \sum_{i \in I} N_i$ is n-equivalent to M.

However, clearly $\mathbf{hrank}_{\mathbf{Q}}(N) = c + b(n) + 1$. So overall,

$$\mathbf{type}_n\left[\mathcal{H}_{c+1}\right] \subseteq \mathbf{type}_n\left[\mathcal{H}_{c+b(n)+1}\right]$$

Conversely, suppose M is of rank c + b(n) + 1. Write $M = \sum_{i \in I} M_i$ where $\mathbf{hrank}_{\mathbf{Q}}(M_i) < c + b(n) + 1$, and $\mathbf{hrank}_{\mathbf{Q}}(M_i) = c + b(n)$ infinitely many times.

By the induction hypothesis, we can find for all i such that $\mathbf{hrank}_{\mathbf{Q}}(M_i) = c + b(n)$ some $N_i \equiv_n M_i$ with $\mathbf{hrank}_{\mathbf{Q}}(N_i) = c$. Furthermore, since $c \geq a(n) > f(n)$, we can find $N_i \equiv_n M_i$ with $\mathbf{hrank}_{\mathbf{Q}}(N_i) \leq f(n) < c$ for all other i.

We conclude that $N := \sum_{i \in I} N_i$ is *n*-equivalent to M. However, clearly $\operatorname{\mathbf{hrank}}_{\mathbf{Q}}(N) = c + 1$. So overall,

$$\mathbf{type}_n\left[\mathcal{H}_{c+b(n)+1}
ight]\subseteq\mathbf{type}_n\left[\mathcal{H}_{c+1}
ight]$$

So we have proven the induction step, and the lemma follows. \Box

Lemma 8. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal. Then,

$$\mathbf{type}_n\left[\mathbf{Q}^{=lpha}
ight] = igcup_{c < b(n)} \mathbf{type}_n\left[\mathcal{H}_{c+b(n)}
ight]$$

In particular, $\mathbf{type}_n[\mathbf{Q}^{=\alpha}]$ can be computed, and is independent of the choice $\alpha \geq \omega$.

Proof. TBC.
$$\Box$$

Definition 10. Let $\alpha \geq \omega$ be an ordinal.

Let M be a linear order and $x \in M$.

We define the convex equivalence relation $\sim_{\alpha}:=\sim_{\mathcal{B}_{<\alpha}}$, and $[x]_{\alpha}:=[x]_{\mathcal{B}_{<\alpha}}$ (that is, $[x]_{\alpha}$ is the largest $\mathcal{B}_{<\alpha}$ -subinterval containing x in M).

Lemma 9. Let M be a linear order. Let $P, L, R \subseteq M$ be relations, such that:

- P represents \sim_{α} on M.
- L is such that $x \in L$ iff $[x]_{\alpha} \in \mathcal{L}_{<\alpha}$.
- R is such that $x \in R$ iff $[x]_{\alpha} \in \mathcal{R}_{\leq \alpha}$.

Then for some linear order I there exists a decomposition $M = \sum_{i \in I} M_i$ such that $M_i \in \mathcal{B}_{<\alpha}$ for all $i \in I$, M_i is monochromatic with respect to P, L and R.

Furthermore, let τ_i be the n-type of M_i , p_i , q_i , r_i in $\mathbf{MSO}[p, \ell, r]$, where $p_i = 1_{M_i \subset P}$, $q_i = 1_{M_i \subset L}$ and $r_i = 1_{M_i \subset R}$. Then the following hold

- if i has a successor, $p(\tau_i) \neq p(\tau_{i+1})$
- if i has a successor, either $r(\tau_i) = 0$ or $\ell(\tau_{i+1}) = 0$

Proof. Take $I = M/\sim_{\alpha}$.

Then $M = \sum_{i \in I} M_i$ where M_i is the \sim_{α} -equivalence class of i.

Then M_i is monochromatic with respect to P, L and R.

The only thing left to prove is the last two conditions. The first follows from the fact that P represents \sim_{α} .

The second follows because if it were not the case, then M_i and M_{i+1} would be the same \sim_{α} -equivalence class.

Lemma 10. Let I be a linear order. Let $n \in \mathbb{N}$. Let p, ℓ, r be boolean variables. Let τ_i be an assignment of satisfiable n-types in $\mathbf{MSO}[p, \ell, r]$ for all $i \in I$. Assume that

- if i has a successor, $p(\tau_i) \neq p(\tau_{i+1})$
- if i has a successor, either $r(\tau_i) = 0$ or $\ell(\tau_{i+1}) = 0$

Then there exists a linear order M and $P, L, R \subseteq M$ such that:

- P represents \sim_{α} on M.
- L is such that $x \in L$ iff $[x]_{\alpha} \in \mathcal{L}_{\leq \alpha}$.
- R is such that $x \in R$ iff $[x]_{\alpha} \in \mathcal{R}_{<\alpha}$.

such that for all $i \in I$, M_i is a \sim_{α} -equivalence class of M, and is thus monochromatic with respect to P, L and R.

Furthermore, the n-type of M_i , p_i , q_i , r_i in $\mathbf{MSO}[p, \ell, r]$ is τ_i , where $p_i = 1_{M_i \subseteq P}$, $q_i = 1_{M_i \subseteq L}$ and $r_i = 1_{M_i \subseteq R}$,

Proof. Since τ_i is satisfiable, we can take M_i to be a linear order of n-type τ_i such that:

• If $\ell(\tau_i) = r(\tau_i) = 1$, then $M_i \in \mathcal{L}_{\leq \alpha} \cap \mathcal{R}_{\leq \alpha}$.

- If $\ell(\tau_i) = 1$ and $r(\tau_i) = 0$, then $M_i \in \mathcal{L}_{<\alpha} \mathcal{R}_{<\alpha}$.
- If $\ell(\tau_i) = 0$ and $r(\tau_i) = 1$, then $M_i \in \mathcal{R}_{<\alpha} \mathcal{L}_{<\alpha}$.
- If $\ell(\tau_i) = r(\tau_i) = 0$, then $M_i \in \mathcal{B}_{\leq \alpha} (\mathcal{L}_{\leq \alpha} \cup \mathcal{R}_{\leq \alpha})$.

Let $M = \sum_{i \in I} M_i$.

By definition each M_i is in $\mathcal{B}_{<\alpha}$. We need to prove that each M_i is a largest $\mathcal{B}_{<\alpha}$ -subinterval in M.

On the contrary, suppose that there exist $i' \neq i$ such that $[M_i, M_{i'}] \in \mathcal{B}_{<\alpha}$. WLOG, $M_i < M_{i'}$.

Since I is scattered, take some $i \le a < b \le i'$ such that there is no element between a and b in I.

Then
$$M_a \in \mathcal{R}_{<\alpha}$$
 and $M_b \in \mathcal{L}_{<\alpha}$, in contradiction.

Lemma 11. Over countable linear orders with interpretations of P, L and R as above, the property $\mathbf{Q}^{<\alpha}$ is expressible in $\mathbf{MSO}[P, L, R]$.

Proof. From lemma 3 we can express $\mathbf{Q}^{<\alpha}$ as the intersection of L and R.

Corollary 1. The following sequences stabilize at f(n):

- $\mathbf{type}_n\left[\mathcal{H}_{\alpha}\right]$
- $\mathbf{type}_n\left[\mathcal{B}_{<\alpha}\right]$
- type_n $[\mathcal{L}_{<\alpha}]$
- type_n $[\mathcal{R}_{\leq \alpha}]$
- type_n $[\mathcal{L}_{<\alpha} \mathcal{R}_{<\alpha}]$
- type_n $[\mathcal{R}_{\leq \alpha} \mathcal{L}_{\leq \alpha}]$
- type_n $[\mathcal{B}_{<\alpha} (\mathcal{L}_{<\alpha} \cup \mathcal{R}_{<\alpha})]$

Proof. The corollary is false and should be fixed.

Theorem 1. There is a an algorithm solving satisfiability for MSO[P, L, R] over countable linear orders, given an oracle which solves the satisfiability problem for MSO over countable linear orders.

Proof. By the decomposition theorem, there exists a translation, that given an $\mathbf{MSO}[P,L,R]$ formula φ of quantifier-depth n. outputs an $\mathbf{MSO}[\{X_{\tau}\}_{\tau}]$ formula ψ .

Let P_L, Q_L, R_M be the interpretations of P, L, R on M. Then

$$M,P:=P_L,L:=Q_L,R:=R_L\models\varphi\iff I,\{X_\tau:=I_\tau\}_\tau\models\psi$$

Where $I_{\tau} = \{i \in I : M_i \models \tau\}$ for every *n*-type τ .

Let T be the set of n-types in $\mathbf{MSO}[p,\ell,r]$ which satisfy $\ell(\tau) = 1 \iff \tau \in \mathcal{L}_{<\alpha}$ and $r(\tau) = 1 \iff \tau \in \mathcal{R}_{<\alpha}$.

Let $S = \{(\tau_1, \tau_2) : p(\tau_1) \neq p(\tau_2) \land (r(\tau_1) = 0 \lor \ell(\tau_2) = 0)\}.$

Then T and S can be calculated using the oracle.

Then ψ is an MSO[T, S] formula.

Then we define an $MSO[p, \ell, r]$ formula ψ' as follows:

 ψ' claims that there exists a partition (with possible empty sets) $\{Y_{\tau}\}_{\tau}$ of I such that

- Every $i \in I$ is in some Y_{τ} for $\tau \in T$.
- If i' = i + 1 in I, then for some $(\tau_1, \tau_2) \in S$, $i \in Y_{\tau_1}$ and $i' \in Y_{\tau_2}$.

Now we claim that φ is satisfiable in some linear order, iff ψ' is satisfiable in some linear order.

Suppose φ is satisfiable in some linear order M.

Take a decomposition $M = \sum_{i \in I} M_i$ as in lemma 2.

Then ψ holds over the assignment $X_{\tau} := I_{\tau}$. But by lemma 2, this assignment satisfies the condition required for ψ' to hold. Then ψ' holds over I.

Conversely, suppose ψ' holds in I.

Let $X_{\tau} := Z_{\tau}$ be the assignment that is guaranteed by ψ' .

Let tau_i be the unique τ such that $i \in \mathbb{Z}_{\tau}$.

Then the conditions for lemma 3 are guaranteed.

Thus, take M as in lemma 3. Then ψ holds over I when we set $X_i := Z_{\tau}$. But $Z_{\tau} = I_{\tau}$ for all τ , so φ holds over M.