KNAPSACK PROBLEM

PROBLEM & GOAL

- •We are given \mathbf{n} items $\{1, \ldots, n\}$, and each has a given nonnegative weight \mathbf{w}_i (for $i=1,\ldots,n$).
- •We are also given a bound of Knapsack capacity W.
- •We would like to select a subset S of the items so that $\sum_{i \in S} \mathbf{w}_i \leq \mathbf{W}$ and, subject to this restriction, $\sum_{i \in S} \mathbf{V}_i$ is as large as possible.
- •We will call this the Knapsack Problem.

DESIGNING THE ALGORITHM

- •Let us consider and optimal solution.
- •OPT(n, W) = max profit from items 1, ..., n with weight limit W.
- •There can be 2 cases if we consider an nth item as follows
 - **Case 1: OPT** does not select item n i.e. n **♥OPT**
 - ■OPT selects **best** of { 1, 2, ..., n-1 } using weight limit **W**.
 - **■Case 2: OPT** selects item n. (i.e. n ∈ OPT)
 - ■New weight limit = W wn
 - ■OPT selects best of { 1, 2, ..., n–1 } using this new weight limit.

DESIGNING THE ALGORITHM

Recurrence Relation

$$OPT(n,W) = \begin{cases} 0 & \text{if } n = 0 \\ OPT(n-1,W) & \text{if } w_n > W \\ \max\{OPT(n-1,W), v_n + OPT(n-1,W-w_n)\} & \text{otherwise} \end{cases}$$

KNAPSACK ALGORITHM

```
//Purpose: To find the maximum value or profit from the given n items and
their weights wi
//Input: A set of items 1,2,.....n, with, w1, ..., wN, and values
v1,v2.....,vn with knapsack capacity W
//Output: Max Profit M[n, W]
for w = 0 to W
   M[0, w] = 0
for i = 0 to n
   M[i, 0] = 0
for i = 1 to n
                   // n items
   for w = 1 to W // weights from 1 to max cap W
      if (w_i > w)
         M[i, w] = M[i-1, w]
      else
```

 $M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$

endfor
return M[n, W]

endfor

ITEMS	WEIGHTS	VALUES	W = 5
1	2	20	
2	2	10	
3	3	30	

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					

i	wi	W	wi > w	M [i, w]
1	2	1	2 > 1 TRUE	M[i, w] = M[i-1, w] = M[0, 1] = 0
		2		= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [0, 2], 20 + M [0, 0]) = Max(0,20) = 20

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20			
2	0					
3	0					

i	wi	W	wi > w	M [i, w]
1	2	3	2 > 3 FALSE	= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [0 , 3] , 20 + M [0 , 1]) = Max (0 , 20) = 20
		4	2 > 4 FALSE	= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [0 , 4] , 20 + M [0 , 2]) = Max (0 , 20) = 20

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	
2	0					
3	0					

i	wi	W	wi > w	M [i, w]
1	2	5	2 > 5 FALSE	= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [0 , 5] , 20 + M [0 , 3]) = Max (0 , 20) = 20

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0					
3	0					

i	wi	W	wi > w	M [i, w]
2	2	1		M[i, w] = M[i-1, w] = M [1, 1] = 0
		2		= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [1, 2], 10 + M [1, 0]) = Max (20, 10) = 20

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20			
3	0					

i	wi	w	wi > w	M [i, w]
2	2	3	2 > 3 FALSE	= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [1, 3], 10 + M [1, 1]) = Max (20, 10) = 20
		4	2 > 4 FALSE	= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [1, 4], 10 + M [1, 2]) = Max (20, 30) = 30

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20	20	30	
3	0					

i	wi	W	wi > w	M [i, w]
2	2	5	2 > 5 FALSE	= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [1,5], 10 + M [1,3]) = Max (20,30) = 30

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20	20	30	30
3	0					

i	wi	W	wi > w	M [i, w]
3	3	1		M[i, w] = M[i-1, w] = M [2, 1] = 0
		2		M[i, w] = M[i-1, w] = M [2 , 2] = 20

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20	20	30	30
3	0	0	20			

i	wi	W	wi > w	M [i, w]
3	3	3	3 > 3 FALSE	= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [2, 3], 30 + M [2, 0]) = Max (20, 30) = 30
		4		= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [2, 4], 30 + M [2, 1]) = Max (30, 30) = 30

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20	20	30	30
3	0	0	20	30	30	

i	wi	W	wi > w	M [i, w]
3	3	5		= Max {M[i-1, w], vi + M[i-1, w-wi] } = Max (M [2,5], 30 + M [2,2]) = Max (30, 30 + 20) = Max (30, 50) = 50

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20	20	30	30
3	0	0	20	30	30	50

ITEMS	WEIGHTS	VALUES	W = 5
1	2	20	
2	2	10	
3	3	30	

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20	20	30	30
3	0	0	20	30	30	50

SOLUTION

FIND ITEMS IN KNAPSACK

•In order to find the items that belong to the knapsack, we use the global array M[n,W] computed and find the items using the following algorithm.

Algorithm: Find_items_in_knapsack()

// Input: Global array M[n,W] giving the maximum value achievable for "n" set of items and knapsack capacity "W".

//Output: The items "i" that belong to the Knapsack.

```
i = n , k = W
while i, k > 0
    if M[i, k] ≠ M[i-1, k] then
        mark the ith item as in the knapsack
        i = i-1
        k = k-wi
    else
    i = i-1
```

ITEMS	WEIGHTS	VALUES	
1	2	20	XX 7 _ 5
2	2	10	$\mathbf{W} = 5$
3	3	30	

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	20	20	20	20
2	0	0	20	20	30	30
3	0	0	20	30	30	50

i	k		Glo	Items in the Knapsack						
3	5		0	1	2	3	4	5		
		0	0	0	0	0	0	0		
		1	0	0	20	20	20	20		3
		2	0	0	20	20	30	<u>30</u>		
		3	0	0	20	30	30	<u>50</u>		
			k =							

i	k		Glo	Items in the Knapsack					
2	2		0	1	2	3	4	5	
		0	0	0	0	0	0	0	
		1	0	0	<u>20</u>	20	20	20	
		2	0	0	<u>20</u>	20	30	30	
		3	0	0	20	30	30	50	

i	k			Glo		Items in the Knapsack					
1	2			0	1	2	3	4	5		
			0	0	0	0	0	0	0		
			1	0	0	<u>20</u>	20	20	20		3, 1
			2	0	0	20	20	30	30		
			3	0	0	20	30	30	50		
		k = k - 2 = 0 $i = i - 1 = 0$									

THANK YOU