Dominik Wawszczak student id number: 440014 group number: 3

Task 1

To begin, we will show that verifying whether an input contains a tree is indeed in \mathbf{L} . A graph is a tree if and only if it meets the following two conditions:

- 1. The number of edges is one less than the number of vertices.
- 2. The graph is connected.

Checking the first condition is straightforward. We can iterate over the edges while maintaining a binary counter and then verify if it equals n-1. This counter will require no more than $\mathcal{O}(N)$ space, where N is the size of the input.

The second condition is more complex. We can iterate over all pairs $(s,t) \in \{1,\ldots,n\}^2$ using two binary counters. For each pair, we need to determine if a simple path exists from s to t. This problem is in \mathbf{L} , as discussed in the lecture.

A root of a tree with radius at most 2 is a vertex $r \in V(T)$ such that every other vertex in T is within distance 2 of r.

We will use a slightly different definition of an *induced subgraph* than the one in the problem statement. A graph G_1 is an induced subgraph of G_2 if and only if there exists an injection $\mu: V(G_1) \to V(G_2)$ such that

$$(u,v) \in E(G_1) \iff (\mu(u),\mu(v)) \in E(G_2),$$

which we will refer to as the map function.

Our approach will follow these steps:

1. Find a root r of T_1 .

To do this, iterate over all vertices of T_1 , treating each vertex as a candidate for r. To verify a candidate, check for each $v \in V(T_1) \setminus \{r\}$ whether either $(v, r) \in E(T_1)$ or there exists a vertex $u \in V(T_1) \setminus \{v, r\}$ with $(v, u) \in E(T_1)$ and $(u, r) \in E(T_1)$.

This requires three binary counters (for r, v, and u). If no root is found, we can reject the input.

2. For each $s \in V(T_2)$, check if there exists a valid map function μ such that $\mu(r) = s$. The remaining part of the solution will focus on this check.

<u>Lemma 1</u> Let T_1 be a tree of radius 2 with root r, and let T_2 be any tree. Let v_1, \ldots, v_k denote the children of r, ordered so that

$$\forall_{i \in \{2,...,k\}} (\deg(v_{i-1}), v_{i-1}) \ge (\deg(v_i), v_i),$$

where

$$(a_1, b_1) \geqslant (a_2, b_2) \iff a_1 > a_2 \lor (a_1 = a_2 \land b_1 \geqslant b_2).$$

Let s be any vertex of T_2 , and denote u_1, \ldots, u_l as the children of s when T_2 is rooted at s, ordered similarly. Then a map function μ with the property that $\mu(r) = s$ exists if and only if

$$k \leqslant l \wedge \bigvee_{i \in \{1,\dots,k\}} \deg(v_i) \leqslant \deg(u_i).$$
 (1)

<u>Proof of Lemma 1</u> If condition 1 holds, we can define $\mu(r) = s$ and set $\mu(v_i) = u_i$ for each $i \in \{1, ..., k\}$, ensuring there are enough vertices in T_2 to accommodate each grandson of r.

To derive a contradiction, assume there is a map function μ , but condition 1 does not hold. Since $k \leq l$ must be true, there exists an $i \in \{1, ..., k\}$ such that $\deg(v_i) < \deg(u_i)$. Take the smallest such i. There is a unique j such that $\mu(v_i) = u_j$, which must be less than i, or there would not be enough vertices to match the children of v_i ; thus i > 1. For each i' < i, let j' be the index with $\mu(v_{i'}) = u_{j'}$; similarly, j' must be less than i because $\deg(i') \geqslant \deg(i)$. This creates a contradiction by the Pigeonhole principle, since μ was assumed to be injective, completing the proof.

Returning to the second step, once we have the root r, finding the number k of its children requires only one binary counter. For a given $s \in V(T_2)$, we can similarly find the number of its children l. By Lemma 1, if k > l, we can discard s as a candidate. Otherwise, we need to verify for each $i \in \{1, ..., k\}$ whether $\deg(v_i) \leq \deg(u_i)$. To calculate the degree of a vertex, we can iterate over edges while using a single binary counter. However, finding v_i and u_i in logarithmic space is more challenging.

We can determine $(\deg(v_1), v_1)$ by iterating over the sons of r, comparing each $(\deg(v_{\text{cur}}), v_{\text{cur}})$ with the best pair found so far, and updating as needed. We can calculate $(\deg(u_1), u_1)$ in a similar way. After this, we compare $\deg(v_1) \leq \deg(u_1)$ and reject if the condition does not hold; otherwise, we move on to the next pair. Once $(\deg(v_i), v_i)$ is calculated, obtaining $(\deg(v_{i+1}), v_{i+1})$ is straightforward – simply ignore any $(\deg(v_{\text{cur}}), v_{\text{cur}})$ strictly greater than $(\deg(v_i), v_i)$. The same process applies to $(\deg(u_{i+1}), u_{i+1})$.

The entire algorithm requires only a constant number of binary counters, concluding the solution.