Solutions: Conversions Between Binary, Octal, and Hexadecimal (Example 7)

Part A — Worked Example

1. $(11\ 1110\ 1011\ 1100)_2 \to \text{Octal}$:

$$011\ 111\ 010\ 111\ 100 \Rightarrow 3,7,2,7,4$$

Answer: $(37274)_8$.

2. $(11\ 1110\ 1011\ 1100)_2 \to \text{Hexadecimal}$:

$$0011\ 1110\ 1011\ 1100 \Rightarrow 3, E, B, C$$

Answer: $(3EBC)_{16}$.

3. $(765)_8 \rightarrow \text{Binary}$:

$$7 = 111, 6 = 110, 5 = 101$$

Answer: $(111110101)_2$.

4. $(A8D)_{16} \rightarrow Binary$:

$$A = 1010, 8 = 1000, D = 1101$$

Answer: $(101010001101)_2$.

Part B — Easier Problems

1. $(101101)_2$ to octal: Group into 3's: 101, 101 = 5, 5. Answer: $(55)_8$.

2. $(47)_8$ to binary:

$$4 = 100, 7 = 111$$

Answer: $(100111)_2$.

Part C — Harder Challenge

 $(1110111110101)_2$.

- Octal grouping (3's): 111,011,110,101 = 7,3,6,5. Answer: $(7365)_8$.
- Hex grouping (4's): 1110, 1111, 0101 = E, F, 5. Answer: $(EF5)_{16}$.

Teaching Notes

- Remind students: grouping into 3's for octal, 4's for hex is the fastest way.
- Encourage them to pad with leading zeros if needed.
- Cross-check: convert both octal and hex back to binary to confirm.