E1 245 – Online Prediction and Learning, Aug-Dec 2024 Homework #1

1. Conjugate priors

If the posterior distributions $\mathbb{P}\left[\theta \mid X\right]$ are in the same probability distribution family as the prior probability distribution $\mathbb{P}\left[\theta\right]$ upon observing $X \sim \mathbb{P}_{\theta}$ (the sample distribution), the prior is called a conjugate prior for the likelihood (sample distribution). We have seen that a Beta prior is a conjugate prior for a Bernoulli likelihood. Show explicitly the following conjugate priors for various likelihoods (sample distributions):

- (a) Beta is a conjugate prior for Geometric.
- (b) Gamma is a conjugate prior for Poisson.
- (c) Normal is conjugate prior for Normal (with variance 1).

(Look up the definitions of these probability distributions on Wikipedia.)

2. Boltzmann exploration

Consider the following algorithm for playing actions in a 2-armed bandit:

Algorithm 1 Boltzmann Exploration

Require: Time horizon $n \ge 0$, Step sizes β_1, \dots, β_n

Play each arm $i \in \{1,2\}$ once and initialize its sample mean reward

for
$$t = 3, 4, ..., n$$
 do

Play an arm $i \in \{1,2\}$ with probability proportional to $e^{\beta_t \hat{\mu}_t(i)}$ (Note: $\hat{\mu}_t(i)$ denotes the sample mean reward from all plays of arm i up to and including time t-1)

end for

- (a) Suppose all the step sizes are *constant* over time: $\beta_1 = \cdots = \beta_n = \beta > 0$. Moreover, assume that both arms yield Bernoulli-distributed rewards with parameters μ_1 and μ_2 , where $0 < \mu_1 < \mu_2 < 1$. Does the algorithm obtain sub-linear regret? Why? (Hint: Think about the probability of playing the worse arm.)
- (b) Now suppose the arms yield *deterministic* rewards equal to their mean values μ_1, μ_2 . Suggest a suitable increasing step size schedule (i.e., how β_t should depend on t and Δ and increase with t) so that the expected number of times that the sub-optimal arm is played (i.e., $\mathbb{E}[N_n(1)]$) approximately meets the Lai-Robbins lower bound of $\frac{\log(n)}{\Delta^2}$. (Note: Assume n to be large, and feel free to ignore universal constants; the order of the answer is what is important.)

3. Worst case (gap-independent) regret for Explore-Then-Commit

Consider the Explore-Then-Commit bandit algorithm², that we studied in class, run on a 2-armed bandit with Bernoulli-distributed rewards and parameters (means) $\mu_1, \mu_2 \in [0,1]$, a time horizon of n rounds, and an initial exploration phase of $m \le n$ rounds. Let $\Delta = \mu_1 - \mu_2 > 0$.

¹Sub-linear regret is when the regret in n rounds is a vanishing fraction of n.

²The algorithm simply explores round-robin in an initial exploration phase and commits to the best-looking arm for the remainder of time.

- (a) Write down³ an upper bound $R(n, m, \Delta)$ for the regret of the algorithm as a function of m, n and Δ . (Hint: This has been done in class.)
- (b) Suppose the exploration phase length is chosen to be *larger* than $n^{\frac{2}{3}}$: $m = n^{\left(\frac{2}{3} + \delta\right)}$ where $\delta > 0$. Find a 'bad' value for the gap Δ (depending in general on n) so that your regret bound $R(n, m, \Delta)$ becomes *at least* $n^{\frac{2}{3}}$ (order-wise).
- (c) Now, on the other hand, suppose the exploration phase length is chosen to be *smaller* than $n^{\frac{2}{3}}$: $m = n^{\left(\frac{2}{3} \delta\right)}$ where $\delta > 0$. Find a 'bad' value for the gap Δ (depending in general on n) so that your regret bound $R(n, m, \Delta)$ becomes of order $n^{\frac{2}{3}}$ (exact constants don't matter).
- (d) Based on your answers above, what can you conclude about the quantity

$$\min_{1\leq m\leq n}\max_{0\leq \Delta\leq 1}R(n,m,\Delta),$$

as a function of *n* (order-wise)?

4. Programming exercise

Implement the following algorithms for a 10-armed Bernoulli bandit with the arms' means equally spaced in (0,1): (a) ε -Greedy⁴ with $\varepsilon=1$ (i.e., just uniform sampling), (b) ε -Greedy, $\varepsilon=0.1$, (c) UCB, (d) Thompson Sampling with a uniform prior.

For each of the algorithms, plot the average cumulative regret vs. # rounds (averaged over suitably many independent trials), along with its standard deviation, for as long a time horizon T as you can. Summarize your findings.

³No need to derive explicitly.

⁴Explores in each round independently with probability ε . If exploiting, plays the best arm w.r.t empirical mean from all past exploration rounds.