- In the real-world applications of machine learning, it is very common that there are many relevant features available for learning but only a small subset of them are observable.
- The Expectation-Maximization algorithm can be used for the latent variables (variables that are not directly observable and are actually inferred from the values of the other observed variables).
- This algorithm is actually the base for many unsupervised clustering algorithms in the field of machine learning.

EM ALGORITHM

Let us understand the EM algorithm in detail.

- Initially, a set of initial values of the parameters are considered. A set of incomplete
 observed data is given to the system with the assumption that the observed data comes
 from a specific model.
- The next step is known as "Expectation" step or E-step. In this step, we use the observed
 data in order to estimate or guess the values of the missing or incomplete data. It is basically
 used to update the variables.
- The next step is known as "Maximization"-step or M-step. In this step, we use the complete
 data generated in the preceding "Expectation" step in order to update the values of the
 parameters. It is basically used to update the hypothesis.
- Now, in the fourth step, it is checked whether the values are converging or not, if yes, then stop otherwise repeat step-2 and step-3 i.e. "Expectation" – step and "Maximization" – step until the convergence occurs.

Algorithm:

- 1. Given a set of incomplete data, consider a set of starting parameters.
- Expectation step (E step): Using the observed available data of the dataset, estimate (guess) the values of the missing data.
- Maximization step (M step): Complete data generated after the expectation
 (E) step is used in order to update the parameters.
- 4. Repeat step 2 and step 3 until convergence.

Usage of EM algorithm -

- · It can be used to fill the missing data in a sample.
- It can be used as the basis of unsupervised learning of clusters.
- It can be used for the purpose of estimating the parameters of Hidden Markov Model (HMM).
- · It can be used for discovering the values of latent variables.

EM ALGO How to use Google Colab | FREE GPU | FREE TPU | Google Colab f. (i)

Advantages of EM algorithm -

- · It is always guaranteed that likelihood will increase with each iteration.
- The E-step and M-step are often pretty easy for many problems in terms of implementation.
- · Solutions to the M-steps often exist in the closed form.

Disadvantages of EM algorithm -

- · It has slow convergence.
- It makes convergence to the local optima only.
- It requires both the probabilities, forward and backward (numerical optimization requires only forward probability).

Expectation-Maximization – EM Algorithm Solved Example

- Expectation-Maximization (EM) a very popular technique for estimating parameters of probabilistic models.
- Many popular algorithms like Hidden Markov Models, Gaussian Mixtures, Kalman Filters, and others uses EM technique.
- It is beneficial when working with data that is incomplete, has missing data points, or has unobserved latent variables.

- Assume that we have two coins, C1 and C2
- Assume the bias of C₁ is θ₁ (i.e., probability of getting heads with C₁)
- Assume the bias of C₂ is θ₂ (i.e., probability of getting heads with C2)
- We want to find θ_1 , θ_2 by performing a number of trials (i.e., coin tosses)

Expectation-Maximization – EM Algorithm Solved Example

First experiment

- · We choose 5 times one of the coins.
- · We toss the chosen coin 10 times


```
\theta_1 = \frac{number\ of\ heads\ using\ C1}{total\ number\ of\ flips\ using\ C1}
```

$$\theta_2 = \frac{number\ of\ heads\ using\ C2}{total\ number\ of\ flips\ using\ C2}$$

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T
9 -	$\frac{24}{1+6} = 0.8$
$\theta_2 = \frac{1}{9}$	$\frac{9}{+11} = 0.45$

Expectation-Maximization - EM Algorithm Solved Example

Coin A	Coin B
-	5 <u>H,5T</u>
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T
$\theta_1 = \frac{1}{24}$	$\frac{24}{1+6} = 0.8$

 $\theta_2 = \frac{9}{9+11} = 0.45$

Expectation-Maximization - EM Algorithm Solved Example

