Reporte Solución Reto Titanic

Librerías y modulos utilizados

```
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.impute import KNNImputer
        from sklearn import preprocessing
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.preprocessing import LabelEncoder
        from sklearn.tree import DecisionTreeClassifier
        from sklearn import metrics
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import classification_report
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.datasets import make_classification
        from sklearn import svm
        from sklearn.linear_model import LogisticRegression
        from sklearn.neighbors import KNeighborsClassifier
        sns.set_theme(style="darkgrid", palette="bright")
        from sklearn.neural_network import MLPClassifier
        from sklearn.model_selection import RandomizedSearchCV
        from sklearn.model_selection import GridSearchCV
        from sklearn.model_selection import KFold
        import multiprocessing
        import xgboost as xgb
        from sklearn.ensemble import GradientBoostingClassifier
```

DATOS

Lectura de datos

```
In [2]: # Carga de La base de datos
    titanic = pd.read_csv("train.csv")
    titanic.head()
```

Out[2]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

Análisis de Variables

In [4]: titanic.corr()

Out[4]:		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
	PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
	Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
	Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
	Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
	SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
	Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
	Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

La variable objetivo al parecer no tiene una alta correlacion con las variables numericas del dataset, descartamos algunas de estas variables.

```
In [5]: titanic=titanic.drop('PassengerId',axis=1)
    titanic
```

Out[5]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarkec
	0	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	Ç
	1	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	(
	2	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	ç
	3	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	٤
	4	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	ç
	•••			•••								
	886	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	5
	887	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	5
	888	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	5
	889	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	(
	890	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	С

891 rows × 11 columns

Valores Faltantes

In [6]: # Número de datos nulos por feature
 titanic.isnull().sum()

```
Survived
                        0
Out[6]:
         Pclass
                        0
         Name
                        0
         Sex
                        0
                      177
         Age
         SibSp
                        0
         Parch
                        0
         Ticket
                        0
         Fare
                        0
         Cabin
                      687
         Embarked
         dtype: int64
```

Embarked

```
titanic['Embarked'].value_counts()
          S
               644
 Out[7]:
               168
                77
          Name: Embarked, dtype: int64
          titanic['Embarked'].isnull()==True]
 Out[8]:
               Survived Pclass
                                   Name
                                            Sex Age SibSp Parch
                                                                  Ticket Fare Cabin Embarked
                               Icard, Miss.
           61
                     1
                                         female 38.0
                                                                0 113572 80.0
                                                                                 B28
                                                                                           NaN
                                  Amelie
                               Stone, Mrs.
                                  George
          829
                     1
                            1
                                  Nelson female 62.0
                                                         0
                                                                0 113572 80.0
                                                                                 B28
                                                                                           NaN
                                 (Martha
                                  Evelyn)
 In [9]:
         titanic['Embarked'].fillna(value='S',inplace=True)
In [10]: titanic.isnull().sum()
                         0
          Survived
Out[10]:
          Pclass
                         0
          Name
                         0
          Sex
                         0
                       177
          Age
          SibSp
                         0
          Parch
                         0
          Ticket
                         0
          Fare
                         0
          Cabin
                       687
          Embarked
                         0
          dtype: int64
```

4 de 37

mas profundo sobre estas variables

Debido al gran numero de valores faltantes en Age y en Cabin se hace un analisis un poco

Variables Dummy (Transformación de Datos)

Out[12]:	Survived	Pclass	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Femal
0	0	3	Braund, Mr. Owen Harris	22.0	1	0	A/5 21171	7.2500	NaN	2	0.
1	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0	1	0	PC 17599	71.2833	C85	0	1.
2	1	3	Heikkinen, Miss. Laina	26.0	0	0	STON/O2. 3101282	7.9250	NaN	2	1.
3	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	35.0	1	0	113803	53.1000	C123	2	1.
4	0	3	Allen, Mr. William Henry	35.0	0	0	373450	8.0500	NaN	2	0.
•••											
886	0	2	Montvila, Rev. Juozas	27.0	0	0	211536	13.0000	NaN	2	0.
887	1	1	Graham, Miss. Margaret Edith	19.0	0	0	112053	30.0000	B42	2	1.
888	0	3	Johnston, Miss. Catherine Helen "Carrie"	NaN	1	2	W./C. 6607	23.4500	NaN	2	1.
889	1	1	Behr, Mr. Karl Howell	26.0	0	0	111369	30.0000	C148	0	0.
890	0	3	Dooley, Mr. Patrick	32.0	0	0	370376	7.7500	NaN	1	0.

891 rows × 12 columns

Variable Name (Transformación)

c:\users\mariana\appdata\local\programs\python\python37\lib\site-packages\ipykernel
_launcher.py:9: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
user_guide/indexing.html#returning-a-view-versus-a-copy
 if __name__ == '__main__':

c:\users\mariana\appdata\local\programs\python\python37\lib\site-packages\pandas\co
re\indexing.py:1732: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/ user_guide/indexing.html#returning-a-view-versus-a-copy self._setitem_single_block(indexer, value, name)

Limpieza de Datos y Selección de Variables

```
In [14]: titanic['Name_Pref']=label_encoder.fit_transform(titanic['Name_Pref'])
    titanic=titanic.drop(['Name','Ticket'],axis=1)
    titanic
```

Out[14]:	Survived	Pclass	Age	SibSp	Parch	Fare	Cabin	Embarked	Female	Male	Name_Pref
	0	3	22.0	1	0	7.2500	NaN	2	0.0	1.0	12
	1	1	38.0	1	0	71.2833	C85	0	1.0	0.0	13
2	2 1	3	26.0	0	0	7.9250	NaN	2	1.0	0.0	9
3	B 1	1	35.0	1	0	53.1000	C123	2	1.0	0.0	13
4	0	3	35.0	0	0	8.0500	NaN	2	0.0	1.0	12
••	•										
886	0	2	27.0	0	0	13.0000	NaN	2	0.0	1.0	15
887	7 1	1	19.0	0	0	30.0000	B42	2	1.0	0.0	9
888	0	3	NaN	1	2	23.4500	NaN	2	1.0	0.0	9
889	1	1	26.0	0	0	30.0000	C148	0	0.0	1.0	12
890	0	3	32.0	0	0	7.7500	NaN	1	0.0	1.0	12

891 rows × 11 columns

```
In [15]: titanic.corr()
```

Out[15]:		Survived	Pclass	Age	SibSp	Parch	Fare	Embarked	Female
	Survived	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307	-0.167675	0.543351
	Pclass	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500	0.162098	-0.131900
	Age	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067	-0.030394	-0.093254
	SibSp	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651	0.068230	0.114631
	Parch	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225	0.039798	0.245489
	Fare	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000	-0.224719	0.182333
	Embarked	-0.167675	0.162098	-0.030394	0.068230	0.039798	-0.224719	1.000000	-0.108262
	Female	0.543351	-0.131900	-0.093254	0.114631	0.245489	0.182333	-0.108262	1.000000
	Male	-0.543351	0.131900	0.093254	-0.114631	-0.245489	-0.182333	0.108262	-1.000000
	Name_Pref	-0.201345	0.045541	0.294111	-0.191786	-0.119721	-0.086359	0.066462	-0.256407

In [16]: #Mantener Mayores Correlaciones (Pclass,Fare,Embarked,Female,Male,Name_Pref)
 titanic=titanic.drop(['Age','SibSp','Parch'],axis=1)
 titanic

Out[16]:		Survived	Pclass	Fare	Cabin	Embarked	Female	Male	Name_Pref
	0	0	3	7.2500	NaN	2	0.0	1.0	12
	1	1	1	71.2833	C85	0	1.0	0.0	13
	2	1	3	7.9250	NaN	2	1.0	0.0	9
	3	1	1	53.1000	C123	2	1.0	0.0	13
	4	0	3	8.0500	NaN	2	0.0	1.0	12
	•••							•••	
	886	0	2	13.0000	NaN	2	0.0	1.0	15
	887	1	1	30.0000	B42	2	1.0	0.0	9
	888	0	3	23.4500	NaN	2	1.0	0.0	9
	889	1	1	30.0000	C148	0	0.0	1.0	12
	890	0	3	7.7500	NaN	1	0.0	1.0	12

891 rows × 8 columns

La variable edad puede ser llenada por medio de diversos metodos, como KKN, Regresion Lineal, Media, etc

Valores Faltantes P2

Edad

8 de 37

```
In [16]: ## Se elimina Edad
```

Cabin

Por el momento la variable Cabin sera eliminada

Out[17]:		Survived	Pclass	Fare	Embarked	Female	Male	Name_Pref
	0	0	3	7.2500	2	0.0	1.0	12
	1	1	1	71.2833	0	1.0	0.0	13
	2	1	3	7.9250	2	1.0	0.0	9
	3	1	1	53.1000	2	1.0	0.0	13
	4	0	3	8.0500	2	0.0	1.0	12
	•••							
	886	0	2	13.0000	2	0.0	1.0	15
	887	1	1	30.0000	2	1.0	0.0	9
	888	0	3	23.4500	2	1.0	0.0	9
	889	1	1	30.0000	0	0.0	1.0	12
	890	0	3	7.7500	1	0.0	1.0	12

891 rows × 7 columns

```
In [39]: sns.set(rc = {'figure.figsize':(13,10)})
    ax = sns.heatmap(abs(titanic.corr()), vmin=0, vmax=1,annot=True,linewidths=.3,cmap=
    plt.savefig('corr_matriz.png',dpi=96)
```


Outliers

```
In [54]: #Pensar Implementar Despues
sns.set(rc = {'figure.figsize':(14,5)})
sns.boxplot(x=titanic["Fare"],color='#1CD6CE').set(title='Fare Boxplot')
plt.savefig('fareboxplot.png',dpi=120)
```


MODELADO Y EVALUACIÓN

10 de 37

Variable Predictora y Predictores

```
In [86]: X = titanic.drop(['Survived'],axis=1)
y = titanic['Survived']
```

Datos de entrenamiento, validacion y testeo

```
In [56]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.10, random_st
```

Decision Tree

```
In [57]:
         # Se guarda el modelo en una variable
         decision_tree = DecisionTreeClassifier(criterion="entropy", max_depth=3)
         # Se entrena el modelo de árbol de decisión
         decision_tree = decision_tree.fit(X_train,y_train)
In [58]: | y_pred = decision_tree.predict(X_test)
In [59]: | print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
         Accuracy: 0.82222222222222
In [60]: confusion_matrix(y_test, y_pred)
         array([[45, 9],
Out[60]:
                [ 7, 29]], dtype=int64)
In [61]: | print(classification_report(y_test, y_pred))
                                     recall f1-score
                        precision
                                                        support
                    0
                             0.87
                                       0.83
                                                 0.85
                                                             54
                     1
                             0.76
                                       0.81
                                                 0.78
                                                             36
                                                 0.82
                                                             90
             accuracy
                                      0.82
                             0.81
                                                 0.82
                                                             90
            macro avg
         weighted avg
                             0.82
                                      0.82
                                                 0.82
                                                             90
```

Random Forest

```
array([[44, 10],
Out[78]:
                 [ 6, 30]], dtype=int64)
In [79]: | print(classification_report(y_test, y_pred))
                                     recall f1-score
                       precision
                                                        support
                    0
                            0.88
                                       0.81
                                                 0.85
                                                             54
                    1
                            0.75
                                       0.83
                                                 0.79
                                                             36
                                                             90
             accuracy
                                                 0.82
                            0.81
                                      0.82
                                                 0.82
                                                             90
            macro avg
         weighted avg
                            0.83
                                      0.82
                                                 0.82
                                                             90
         SVM
In [80]:
         s_vm= svm.SVC(kernel='linear')
         s_vm=s_vm.fit(X_train, y_train)
In [81]: y_pred = s_vm.predict(X_test)
In [82]: | print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
         Accuracy: 0.8111111111111111
         KNN
         neigh = KNeighborsClassifier(n_neighbors=7)
In [83]:
         neigh = neigh.fit(X_train, y_train)
In [84]: y_pred = neigh.predict(X_test)
In [85]: | print("Accuracy:", metrics.accuracy_score(y_test, y_pred))
         Accuracy: 0.74444444444445
```

Datos Test (Limpieza y Modelado)

```
In [87]: | titanic_test = pd.read_csv("test.csv")
          titanic_test.head()
```

Out[87]:		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4		3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
In [88]:	In [88]: tita		titani	c_test.dro	op('Pas	senge	rId',a	xis=1)				

titanic_test

18/09/2022 10:15 p. m. 13 de 37

Out[88]:		Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	2	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	3	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
	•••										
	413	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	S
	414	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	С
	415	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	S
	416	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	S
	417	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	С

418 rows × 10 columns

```
In [89]: # Número de datos nulos por feature
    titanic_test.isnull().sum()
```

Pclass 0 Out[89]: Name 0 Sex 0 86 Age SibSp 0 0 Parch Ticket 0 Fare Cabin 327 Embarked dtype: int64

```
titanic_test[titanic_test['Fare'].isnull()==True]
Out[90]:
              Pclass
                                      Sex Age SibSp Parch Ticket Fare Cabin Embarked
                               Name
          152
                  3 Storey, Mr. Thomas male 60.5
                                                   0
                                                             3701 NaN
                                                                         NaN
                                                                                     S
         titanic_test.groupby("Pclass")["Fare"].mean()
         Pclass
Out[91]:
              94.280297
         1
          2
              22.202104
          3
              12.459678
         Name: Fare, dtype: float64
In [92]: | titanic_test['Fare'].fillna(value=12.45,inplace=True)
In [93]: titanic_test.isnull().sum()
         Pclass
Out[93]:
         Name
                        0
         Sex
                        0
         Age
                       86
         SibSp
                        0
         Parch
                        0
         Ticket
         Fare
                        0
         Cabin
                      327
         Embarked
                        0
         dtype: int64
In [94]:
         #Encoder para variables categoricas
          one hot encoder = OneHotEncoder(handle unknown='ignore')
          #Variable Female/Male
          encoder_titanic = pd.DataFrame(one_hot_encoder.fit_transform(titanic_test[['Sex']])
          titanic_test =titanic_test.join(encoder_titanic)
          titanic_test.rename(columns={0:'Female',
                                  1:'Male'},
                         inplace=True)
          #Variable Embarked
          label encoder=LabelEncoder()
          titanic_test['Embarked']=label_encoder.fit_transform(titanic_test['Embarked'])
In [95]:
         titanic_test=titanic_test.drop('Sex',axis=1)
          titanic_test
```

Out[95]:		Pclass	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Female	Male
	0	3	Kelly, Mr. James	34.5	0	0	330911	7.8292	NaN	1	0.0	1.(
	1	3	Wilkes, Mrs. James (Ellen Needs)	47.0	1	0	363272	7.0000	NaN	2	1.0	0.0
	2	2	Myles, Mr. Thomas Francis	62.0	0	0	240276	9.6875	NaN	1	0.0	1.(
	3	3	Wirz, Mr. Albert	27.0	0	0	315154	8.6625	NaN	2	0.0	1.(
	4	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	22.0	1	1	3101298	12.2875	NaN	2	1.0	0.0
		•••							•••			
	413	3	Spector, Mr. Woolf	NaN	0	0	A.5. 3236	8.0500	NaN	2	0.0	1.(
	414	1	Oliva y Ocana, Dona. Fermina	39.0	0	0	PC 17758	108.9000	C105	0	1.0	0.0
	415	3	Saether, Mr. Simon Sivertsen	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	2	0.0	1.(
	416	3	Ware, Mr. Frederick	NaN	0	0	359309	8.0500	NaN	2	0.0	1.(
	417	3	Peter, Master. Michael J	NaN	1	1	2668	22.3583	NaN	0	0.0	1.(

418 rows × 11 columns

c:\users\mariana\appdata\local\programs\python\python37\lib\site-packages\ipykernel
_launcher.py:9: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/
user_guide/indexing.html#returning-a-view-versus-a-copy
 if __name__ == '__main__':

c:\users\mariana\appdata\local\programs\python\python37\lib\site-packages\pandas\co
re\indexing.py:1732: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/ user_guide/indexing.html#returning-a-view-versus-a-copy self._setitem_single_block(indexer, value, name)

In [97]: | titanic_test[titanic_test['Name_Pref'].isnull()==True]

 Out[97]:
 Pclass
 Name
 Age
 SibSp
 Parch
 Ticket
 Fare
 Cabin
 Embarked
 Female
 Male
 Name_Pi

 414
 1
 Oliva y Ocana, Dona. Fermina
 39.0
 0
 0
 PC 17758
 108.9
 C105
 0
 1.0
 0.0
 Ni

In [98]: titanic_test['Name_Pref'].fillna(value='Dona.',inplace=True)

In [99]: titanic_test

Out[99]:		Pclass	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Female	Male
	0	3	Kelly, Mr. James	34.5	0	0	330911	7.8292	NaN	1	0.0	1.(
	1	3	Wilkes, Mrs. James (Ellen Needs)	47.0	1	0	363272	7.0000	NaN	2	1.0	0.0
	2	2	Myles, Mr. Thomas Francis	62.0	0	0	240276	9.6875	NaN	1	0.0	1.(
	3	3	Wirz, Mr. Albert	27.0	0	0	315154	8.6625	NaN	2	0.0	1.(
	4	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	22.0	1	1	3101298	12.2875	NaN	2	1.0	0.0
		•••							•••			
	413	3	Spector, Mr. Woolf	NaN	0	0	A.5. 3236	8.0500	NaN	2	0.0	1.(
	414	1	Oliva y Ocana, Dona. Fermina	39.0	0	0	PC 17758	108.9000	C105	0	1.0	0.0
	415	3	Saether, Mr. Simon Sivertsen	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	2	0.0	1.(
	416	3	Ware, Mr. Frederick	NaN	0	0	359309	8.0500	NaN	2	0.0	1.(
	417	3	Peter, Master. Michael J	NaN	1	1	2668	22.3583	NaN	0	0.0	1.(

418 rows × 12 columns

```
In [100... name_pref_dict={'Capt.':0,'Col.':1,'Countess.':2,'Don.':3,'Dr.':4,'Jonkheer.':5,'La
    titanic_test['Name_Pref']=titanic_test.Name_Pref.map(name_pref_dict)
    titanic_test=titanic_test.drop(['Name','Ticket'],axis=1)
    titanic_test
```

Out[100]:		Pclass	Age	SibSp	Parch	Fare	Cabin	Embarked	Female	Male	Name_Pref
	0	3	34.5	0	0	7.8292	NaN	1	0.0	1.0	12
	1	3	47.0	1	0	7.0000	NaN	2	1.0	0.0	13
	2	2	62.0	0	0	9.6875	NaN	1	0.0	1.0	12
	3	3	27.0	0	0	8.6625	NaN	2	0.0	1.0	12
	4	3	22.0	1	1	12.2875	NaN	2	1.0	0.0	13
	•••	•••							•••		
	413	3	NaN	0	0	8.0500	NaN	2	0.0	1.0	12
	414	1	39.0	0	0	108.9000	C105	0	1.0	0.0	17
	415	3	38.5	0	0	7.2500	NaN	2	0.0	1.0	12
	416	3	NaN	0	0	8.0500	NaN	2	0.0	1.0	12
	417	3	NaN	1	1	22.3583	NaN	0	0.0	1.0	8

418 rows × 10 columns

Pclass

In [101...

Out[101]:

#Mantener Mayores Correlaciones (Pclass, Fare, Embarked, Female, Male, Name_Pref)
titanic_test=titanic_test.drop(['Age','SibSp','Parch'],axis=1)
titanic_test

Fare Cabin Embarked Female Male Name_Pref

2

2

0	3	7.8292	NaN	1	0.0	1.0	12
1	3	7.0000	NaN	2	1.0	0.0	13
2	2	9.6875	NaN	1	0.0	1.0	12
3	3	8.6625	NaN	2	0.0	1.0	12
4	3	12.2875	NaN	2	1.0	0.0	13
413	3	8.0500	NaN	2	0.0	1.0	12
414	1	108.9000	C105	0	1.0	0.0	17

7.2500 NaN

NaN

NaN

8.0500

22.3583

418 rows × 7 columns

3

3

3

415

416

417

In [102...

```
titanic_test=titanic_test.drop(['Cabin'],axis=1)
titanic_test
```

0.0

0.0

0.0

1.0

1.0

1.0

12

12

8

Out[102]:		Pclass	Fare	Embarked	Female	Male	Name_Pref
	0	3	7.8292	1	0.0	1.0	12
	1	3	7.0000	2	1.0	0.0	13
	2	2	9.6875	1	0.0	1.0	12
	3	3	8.6625	2	0.0	1.0	12
	4	3	12.2875	2	1.0	0.0	13
	•••						
	413	3	8.0500	2	0.0	1.0	12
	414	1	108.9000	0	1.0	0.0	17
	415	3	7.2500	2	0.0	1.0	12
	416	3	8.0500	2	0.0	1.0	12
	417	3	22.3583	0	0.0	1.0	8

418 rows × 6 columns

In [103...

x_test=titanic_test
x_test

Out[103]:

•		Pclass	Fare	Embarked	Female	Male	Name_Pref
	0	3	7.8292	1	0.0	1.0	12
	1	3	7.0000	2	1.0	0.0	13
	2	2	9.6875	1	0.0	1.0	12
	3	3	8.6625	2	0.0	1.0	12
	4	3	12.2875	2	1.0	0.0	13
	•••						
	413	3	8.0500	2	0.0	1.0	12
	414	1	108.9000	0	1.0	0.0	17
	415	3	7.2500	2	0.0	1.0	12
	416	3	8.0500	2	0.0	1.0	12
	417	3	22.3583	0	0.0	1.0	8

418 rows × 6 columns

Random Forest

In [104...

random_forest= RandomForestClassifier(max_depth=10, random_state=0,n_estimators=200
random_forest=random_forest.fit(X_train, y_train)

```
y_pred = decision_tree.predict(x_test)
In [105...
In [107...
           test = pd.read_csv('test.csv')
           resultados = pd.DataFrame(test['PassengerId'])
           resultados
Out[107]:
                PassengerId
             0
                       892
                       893
             1
             2
                       894
             3
                       895
             4
                       896
             •••
           413
                      1305
           414
                      1306
           415
                      1307
           416
                      1308
           417
                      1309
          418 rows × 1 columns
In [108...
           resultados['Survived'] = y_pred
           resultados=resultados.set_index("PassengerId")
           resultados
```

Out[108]:

Survived

	PassengerId	
	892	0
	893	1
	894	0
	895	0
	896	1
	•••	
	1305	0
	1306	1
	1307	0
	1308	0
	1309	0
	418 rows × 1 cc	olumns
In [109	resultados.to	o_csv('PruebaUnoXtYt.csv')
	Decision T	ree
In [110		el modelo en una variable e = DecisionTreeClassifier(criterion="entropy", max_depth=6)
		el modelo de árbol de decisión e = decision_tree.fit(X,y)
In [111	y_pred = deci	ision_tree.predict(x_test)
In [112	np.count_nonz	zero((y_pred == 1))
Out[112]:	144	
In [113	np.count_nonz	zero((y_pred == 0))
Out[113]:	274	
In [114		ad_csv('test.csv') pd.DataFrame(test['PassengerId'])

Out[114]:		Passengerld
	0	892
	1	893
	2	894
	3	895
	4	896
	•••	
4	113	1305
4	114	1306
4	115	1307
4	116	1308
4	117	1309

418 rows × 1 columns

```
In [115... resultados['Survived'] = y_pred
    resultados=resultados.set_index("PassengerId")
    resultados
```

Out[115]: Survived

Passengerld	
892	0
893	1
894	0
895	0
896	1
•••	
1305	0
1306	1
1307	0
1308	0
1309	0

418 rows × 1 columns

```
In [116... resultados.to_csv('PruebaUnoXYtree6.csv')
```

SVM

```
s_vm= svm.SVC(kernel='linear')
In [117...
           s_vm=s_vm.fit(X, y)
In [118...
           y_pred = s_vm.predict(x_test)
           np.count_nonzero((y_pred == 1))
In [119...
           152
Out[119]:
           np.count_nonzero((y_pred == 0))
In [120...
           266
Out[120]:
           test = pd.read_csv('test.csv')
In [121...
           resultados = pd.DataFrame(test['PassengerId'])
           resultados
Out[121]:
                PassengerId
             0
                       892
             1
                       893
             2
                       894
             3
                       895
             4
                       896
           413
                      1305
           414
                      1306
           415
                      1307
           416
                      1308
                      1309
           417
          418 rows × 1 columns
In [122...
           resultados['Survived'] = y_pred
           resultados=resultados.set_index("PassengerId")
           resultados
```

Out[122]:

In [131...

Survived

	Passengerld	
	892	0
	893	1
	894	0
	895	0
	896	1
	•••	
	1305	0
	1306	1
	1307	0
	1308	0
	1309	0
	418 rows × 1 (columns
In [123	resultados.	to_csv('PruebaUnoXYsvm.csv')
	Red Neur	onal
In [126	modelo_1 = I	MLPClassifier(hidden_layer_sizes=(5), learning_rate_init=0.01, solver = 'lbfgs', max_iter = 1000, random_state = 123)
	modelo_1.fi	t(X=X_train, y=y_train)
Out[126]:	MLPClassifie	er(hidden_layer_sizes=5, learning_rate_init=0.01, max_iter=1000, random_state=123, solver='lbfgs')
In [127	y_pred=mode	lo_1.predict(x_test)
In [129	np.count_no	nzero((y_pred == 0))
Out[129]:	237	
In [130	np.count_no	nzero((y_pred == 1))

25 de 37 18/09/2022 10:15 p. m.

test = pd.read_csv('test.csv')

resultados

resultados = pd.DataFrame(test['PassengerId'])

Out[131]:	PassengerId
C	892
1	893
2	894
3	895
4	896
413	1305
414	1306
415	1307
416	1308
417	1309

418 rows × 1 columns

```
In [132... resultados['Survived'] = y_pred
    resultados=resultados.set_index("PassengerId")
    resultados
```

Out[132]: Survived

PassengerId	
892	0
893	1
894	0
895	0
896	1
•••	
1305	0
1306	1
1307	0
1308	0
1309	0

418 rows × 1 columns

```
In [133... resultados['Survived'].value_counts()
```

```
237
Out[133]:
                181
           1
           Name: Survived, dtype: int64
           resultados.to_csv('PruebaUnoXtYtrn.csv')
In [134...
In [135...
           modelo_3 = MLPClassifier(
                            hidden_layer_sizes=(20, 20),
                            learning_rate_init=0.01,
                            solver = 'lbfgs',
                            max_iter = 5000,
                            random_state = 123
           modelo_3.fit(X=X, y=y)
           MLPClassifier(hidden_layer_sizes=(20, 20), learning_rate_init=0.01,
Out[135]:
                          max iter=5000, random state=123, solver='lbfgs')
In [136...
           y_pred=modelo_3.predict(x_test)
In [137...
           np.count_nonzero((y_pred == 0))
           291
Out[137]:
           np.count_nonzero((y_pred == 1))
In [138...
           127
Out[138]:
           test = pd.read csv('test.csv')
In [139...
           resultados = pd.DataFrame(test['PassengerId'])
           resultados
Out[139]:
                PassengerId
             0
                       892
             1
                       893
             2
                       894
             3
                       895
             4
                       896
           413
                      1305
           414
                      1306
           415
                      1307
           416
                      1308
           417
                      1309
          418 rows × 1 columns
```

```
Reporte Final
```

```
In [140...
           resultados['Survived'] = y_pred
           resultados=resultados.set_index("PassengerId")
           resultados
Out[140]:
                       Survived
           PassengerId
                  892
                             0
                  893
                             0
                  894
                             0
                  895
                             0
                  896
                             0
                 1305
                             0
                 1306
                             1
                             0
                 1307
                             0
                 1308
                 1309
                             1
          418 rows × 1 columns
In [141...
           resultados['Survived'].value_counts()
                291
Out[141]:
           1
                127
           Name: Survived, dtype: int64
In [142...
           resultados.to_csv('PruebaUnoXtYtrn20.csv')
In [143...
           modelo_4 = MLPClassifier(
                            hidden_layer_sizes=(50, 50, 50),
                            learning_rate_init=0.01,
                            solver = 'lbfgs',
                            max_iter = 5000,
                            random_state = 123
           modelo_4.fit(X=X, y=y)
           MLPClassifier(hidden_layer_sizes=(50, 50, 50), learning_rate_init=0.01,
Out[143]:
                          max_iter=5000, random_state=123, solver='lbfgs')
In [144...
           y_pred=modelo_4.predict(x_test)
In [145...
           np.count_nonzero((y_pred == 0))
           277
Out[145]:
In [146...
           np.count_nonzero((y_pred == 1))
```

```
Out[146]: 141

In [147... test = pd.read_csv('test.csv')
    resultados = pd.DataFrame(test['PassengerId'])
    resultados

Out[147]: PassengerId
```

418 rows × 1 columns

```
In [148... resultados['Survived'] = y_pred
    resultados=resultados.set_index("PassengerId")
    resultados
```

Out[148]:

	Survived	
Passengerld		
892	0	
893	0	
894	0	
895	0	
896	0	
•••		
1305	0	
1306	1	
1307	0	
1308	0	
1309	1	

418 rows × 1 columns

REFINAMIENTO

```
In [166...
          param_grid = {'hidden_layer_sizes':[1, 5, 10, 15, 25, 50,60]}
          grid = GridSearchCV(
                  estimator = MLPClassifier(
                                   learning_rate_init=0.01,
                                   solver = 'lbfgs',
                                   alpha = 0,
                                   max_iter = 5000,
                                   random_state = 123
                               ),
                   param_grid = param_grid,
                  scoring = 'accuracy',
                             = 5,
                             = True,
                   refit
                   return_train_score = True
          _ = grid.fit(X, y)
```

```
In [171... fig, ax = plt.subplots(figsize=(15, 10))
    scores = pd.DataFrame(grid.cv_results_)
    scores.plot(x='param_hidden_layer_sizes', y='mean_train_score', yerr='std_train_score'
    scores.plot(x='param_hidden_layer_sizes', y='mean_test_score', yerr='std_test_score
    ax.set_ylabel('accuracy')
    ax.set_xlabel('número de neuronas')
    ax.set_title('Error de validacion cruzada');
    plt.savefig('error_capas.png',dpi=180)
```



```
In [173...
         # Learning rate
         # -----
         param_grid = {'learning_rate_init':[0.0001, 0.001, 0.01, 0.1, 1, 10, 100]}
         grid = GridSearchCV(
                estimator = MLPClassifier(
                             hidden_layer_sizes=(25),
                              solver = 'adam',
                             alpha = 0,
                             max_iter = 5000,
                             random_state = 123
                          ),
                param_grid = param_grid,
                         = 'accuracy',
                scoring
                         = 5,
                refit
                         = True,
                return_train_score = True
         _ = grid.fit(X, y)
```

```
fig, ax = plt.subplots(figsize=(15, 10))
scores = pd.DataFrame(grid.cv_results_)
scores.plot(x='param_learning_rate_init', y='mean_train_score', yerr='std_train_sco
scores.plot(x='param_learning_rate_init', y='mean_test_score', yerr='std_test_score
ax.set_xscale('log')
ax.set_xlabel('log(learning_rate)')
ax.set_ylabel('accuracy')
ax.set_title('Error_de_validacion_cruzada');
plt.savefig('error_rn_step.png',dpi=180)
```



```
In [175...
           modelo_5 = MLPClassifier(
                           hidden_layer_sizes=(25, 25, 25),
                            learning_rate_init=0.001,
                            solver = 'lbfgs',
                           max_iter = 5000,
                            random_state = 123
           modelo_5.fit(X=X, y=y)
          MLPClassifier(hidden_layer_sizes=(25, 25, 25), max_iter=5000, random_state=123,
Out[175]:
                         solver='lbfgs')
In [176...
           y_pred=modelo_5.predict(x_test)
           np.count_nonzero((y_pred == 0))
In [177...
           280
Out[177]:
In [178...
           np.count_nonzero((y_pred == 1))
          138
Out[178]:
```

```
In [179... test = pd.read_csv('test.csv')
    resultados = pd.DataFrame(test['PassengerId'])
    resultados
```

```
Out[179]:
                 PassengerId
                        892
              1
                        893
              2
                        894
              3
                        895
                        896
              4
            413
                        1305
                       1306
            414
                       1307
            415
            416
                       1308
            417
                       1309
```

418 rows × 1 columns

```
In [180... resultados['Survived'] = y_pred
    resultados=resultados.set_index("PassengerId")
    resultados
```

Out[180]: Survived

PassengerId	
892	0
893	0
894	0
895	0
896	1
1305	0
1306	1
1307	0
1308	0
1309	1

418 rows × 1 columns

```
resultados['Survived'].value_counts()
In [181...
               280
Out[181]:
               138
          Name: Survived, dtype: int64
In [183...
          resultados.to_csv('PruebaUnoXYrn251.csv')
          Otros modelos
          XGboost Modelado
In [186...
          boosting classifier= GradientBoostingClassifier(n estimators=1000, learning rate=0.
          boosting_classifier=boosting_classifier.fit(X_train, y_train)
          XGboost Evaluación
In [187...
          boosting_classifier.score(X_test, y_test)
          0.8333333333333334
Out[187]:
          XGboost Refinamiento
In [202...
          estimators_scores=[]
          for i in range (1000,12000,1000):
              boosting classifier= GradientBoostingClassifier(n estimators=i, learning rate=1
              boosting_classifier=boosting_classifier.fit(X_train, y_train)
              estimators_scores.append(boosting_classifier.score(X_test, y_test))
In [189...
          rate_values=[0.0001,0.001,0.01,0.1,0.5,1,10,100]
          rate_scores=[]
          for i in rate values:
              boosting_classifier= GradientBoostingClassifier(n_estimators=1000, learning_rat
              boosting_classifier=boosting_classifier.fit(X_train, y_train)
              rate_scores.append(boosting_classifier.score(X_test, y_test))
In [190...
          depth_values=[1,2,3,4,5,6,7,8,9,10,15,20,50,100]
          depth_scores=[]
          for i in depth values:
              boosting_classifier= GradientBoostingClassifier(n_estimators=1000, learning_rat
              boosting_classifier=boosting_classifier.fit(X_train, y_train)
              depth_scores.append(boosting_classifier.score(X_test, y_test))
          XGboost Modelo Final
          boosting_classifier= GradientBoostingClassifier(n_estimators=1000, learning_rate=0.
In [191...
          boosting_classifier=boosting_classifier.fit(X, y)
In [192...
          y_pred=boosting_classifier.predict(x_test)
          y_pred
```

```
1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
                1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
                1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1,
                1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
                0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
                1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1,
                0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
                1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
                0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
                0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
                0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
                0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,
                0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
                1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
                0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1],
               dtype=int64)
In [193...
          x test.shape
         (418, 6)
Out[193]:
          np.count_nonzero((y_pred == 0))
In [194...
Out[194]:
          np.count_nonzero((y_pred == 1))
In [195...
         152
Out[195]:
          test = pd.read csv('test.csv')
In [196...
          resultados = pd.DataFrame(test['PassengerId'])
          resultados
```

Out[196]:	Passengerld
	0 892
	1 893
	2 894
	3 895
	4 896
41	3 1305
41	4 1306
41	5 1307
41	6 1308
41	7 1309

418 rows × 1 columns

```
In [197... resultados['Survived'] = y_pred
    resultados=resultados.set_index("PassengerId")
    resultados
```

Out[197]: Survived

0
1
0
0
1
0
1
0
0
1

418 rows × 1 columns

```
In [198... resultados['Survived'].value_counts()
```

```
Out[198]: 0 266
1 152
Name: Survived, dtype: int64
In [199... resultados.to_csv('PruebaUnoXYgb.csv')
In []:
```