Методы машинного обучения. Продвинутые методы ансамблирования

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-23-24 орг.вопросы по курсу: ml.cmc@mail.ru

BMK МГУ • 5 декабря 2023

Содержание

- Взвешенное голосование
 - Ещё одно теоретическое обоснование ансамблей
 - Градиентный бустинг
 - Варианты градиентного бустинга
- Алгоритм CatBoost
 - Упорядоченный бустинг
 - Категориальные признаки
 - Небрежные решающие деревья
- Пелинейное ансамблирование
 - Стэкинг
 - Линейный стэкинг, взвешенный по признакам
 - Смеси с функциями компетентности

Напоминание. Определение ансамбля

$$X^\ell=(x_i,y_i)_{i=1}^\ell\subset X imes Y$$
 — обучающая выборка, $y_i=y^*(x_i)$ $a_t\colon X o Y,\ t=1,\ldots,T$ — обучаемые *базовые алгоритмы*

Идея ансамбля: возможно ли из множества плохих алгоритмов a_t построить один хороший?

Декомпозиция базовых алгоритмов $a_t(x) = C(b_t(x))$ $a_t \colon X \stackrel{b_t}{\to} R \stackrel{C}{\to} Y$, где R — более удобное *пространство оценок*, C — *решающее правило*, как правило, весьма простого вида

Ансамбль базовых алгоритмов b_1, \ldots, b_T :

$$a(x) = C(F(b_1(x), \ldots, b_T(x), x)),$$

 $F: R^T \times X \to R$ — агрегирующая функция или мета-алгоритм

Напоминание. Агрегирующие (корректирующие) функции

Общие требования к агрегирующей функции:

- ullet $F(b_1,\ldots,b_T,x)\in \left[\min_t b_t,\max_t b_t
 ight]$ среднее по Коши orall x
- ullet $F(b_1,\ldots,b_T,x)$ монотонно не убывает по всем b_t

Примеры агрегирующих функций:

• простое голосование (simple voting):

$$F(b_1,\ldots,b_T) = \frac{1}{T}\sum_{t=1}^T b_t$$

• взвешенное голосование (weighted voting):

$$F(b_1,\ldots,b_T) = \sum_{t=1}^T \alpha_t b_t, \quad \sum_{t=1}^T \alpha_t = 1, \quad \alpha_t \geqslant 0$$

ullet смесь алгоритмов (mixture of experts) c функциями компетентности (gating function) $g_t\colon X o \mathbb{R}$

$$F(b_1,...,b_T,x) = \sum_{t=1}^{T} g_t(x)b_t(x)$$

Анализ смещения-разброса (bias-variance)

 \exists адача регрессии: $Y=\mathbb{R}$

Квадратичная функция потерь: $\mathscr{L}(a,y) = (a(x)-y)^2$

Вероятностная постановка: $X^{\ell} = (x_i, y_i)_{i=1}^{\ell} \sim p(x, y)$ Метод обучения: $\mu \colon 2^X \to A$, т.е. выборка \mapsto алгоритм

Задача минимизации среднеквадратичного риска:

$$R(a) = \mathsf{E}_{x,y}(a(x) - y)^2 = \int_X \int_Y (a(x) - y)^2 p(x,y) \, dx \, dy \to \min_a$$

Идеальный минимизатор среднеквадратичного риска:

$$a^*(x) = \mathsf{E}(y|x) = \int_Y y \, p(y|x) \, dy$$

Основная мера качества метода обучения μ :

$$Q(\mu) = \mathsf{E}_{X^{\ell}} R(\mu(X^{\ell})) = \mathsf{E}_{X^{\ell}} \mathsf{E}_{\mathsf{x},\mathsf{y}} (\mu(X^{\ell})(\mathsf{x}) - \mathsf{y})^2$$

Разложение ошибки на шум, смещение и разброс

$$a^*(x) = \mathsf{E}(y|x)$$
 — неизвестная идеальная зависимость y от x $y(x) \sim p(y|x)$ — наблюдаемый ответ на объекте x $a = \mu(X^\ell)$ — аппроксимация, выбранная по X^ℓ из семейства A $\overline{a}(x) = \mathsf{E}_{X^\ell}(a(x))$ — средний ответ обученного алгоритма

Теорема. При квадратичной функции потерь для любого μ

$$Q(\mu) = \underbrace{\mathsf{E}_{\mathsf{x},y} \big(\boldsymbol{a}^*(\mathsf{x}) - y \big)^2}_{\text{шум (noise)}} + \underbrace{\mathsf{E}_{\mathsf{x},y} \big(\bar{\boldsymbol{a}}(\mathsf{x}) - \boldsymbol{a}^*(\mathsf{x}) \big)^2}_{\text{смещение (bias)}} + \underbrace{\mathsf{E}_{\mathsf{x},y} \mathsf{E}_{X^\ell} \big(\mu(X^\ell)(\mathsf{x}) - \bar{\boldsymbol{a}}(\mathsf{x}) \big)^2}_{\text{разброс (variance)}}$$

Разложение ошибки на шум, смещение и разброс

Качественное понимание: по мере роста сложности модели

- смещение (bias) уменьшается
- разброс (variance) увеличивается

Анализ смещения-разброса для простого голосования

Обучение базовых алгоритмов по случайным подвыборкам:

$$b_t = \mu(X_t^k), \ X_t^k \sim X^\ell, \ t = 1, \dots, T$$

Ансамбль — простое голосование:
$$a_T(x) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

Смещение ансамбля совпадает со смещением отдельного базового алгоритма:

$$\mathsf{bias} = \mathsf{E}_{\mathsf{x},\mathsf{y}} \big(\mathsf{a}^*(\mathsf{x}) - \mathsf{E}_{\mathsf{X}^\ell} \mathsf{b}_t(\mathsf{x}) \big)^2$$

Разброс состоит из дисперсии и различности (ковариации):

$$\begin{split} \text{variance} &= \frac{1}{T} \mathsf{E}_{\mathsf{x}, \mathsf{y}} \mathsf{E}_{X^\ell} \big(b_t(\mathsf{x}) - \mathsf{E}_{X^\ell} b_t(\mathsf{x}) \big)^2 + \\ &+ \frac{T-1}{T} \mathsf{E}_{\mathsf{x}, \mathsf{y}} \mathsf{E}_{X^\ell} \big(b_t(\mathsf{x}) - \mathsf{E}_{X^\ell} b_t(\mathsf{x}) \big) \big(b_s(\mathsf{x}) - \mathsf{E}_{X^\ell} b_s(\mathsf{x}) \big) \end{split}$$

Почему сложные ансамбли не переобучаются?

С позиций анализа отступов:

- ансамблирование не увеличивает сложность модели
- но с каждой итерацией увеличивает зазор между классами

С позиций анализа смещения-разброса:

- разнообразие базовых алгоритмов уменьшает разброс
- бэггинг уменьшает только разброс
- бустинг уменьшает и смещение, и разброс

Практическое сравнение: boosting / bagging / RSM

- бустинг лучше для классов с границами сложной формы
- бэггинг и RSM лучше для коротких обучающих выборок
- RSM лучше, когда много неинформативных признаков
- ullet бэггинг параллельно обучает базовые алгоритмы b_t
- ullet бустинг обучает каждый b_t параллельно по частям выборки

Градиентный бустинг для произвольной функции потерь

Линейный ансамбль базовых алгоритмов b_t из семейства \mathscr{B} :

$$a_T(x) = \sum_{t=1}^T \alpha_t b_t(x), \quad x \in X, \quad b_t \colon X \to \mathbb{R}, \quad \alpha_t \in \mathbb{R}_+$$

Эвристика: обучаем α_T, b_T при фиксированных предыдущих. Критерий качества с заданной гладкой функцией потерь $\mathscr{L}(b,y)$:

$$Q(\alpha, b; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i)}_{a_{T-1,i}} + \alpha b(x_i), y_i\right) \to \min_{\alpha, b}.$$

 $(a_{T-1,i})_{i=1}^\ell$ — вектор текущего приближения $(a_{T,i})_{i=1}^\ell$ — вектор следующего приближения

G. Friedman. Greedy function approximation: a gradient boosting machine. 1999.

Параметрическая аппроксимация градиентного шага

Градиентный метод минимизации $Q(f) o \mathsf{min},\ f\in\mathbb{R}^\ell$:

$$a_{0,i} :=$$
 начальное приближение;

$$a_{T,i} := a_{T-1,i} - \alpha g_i, \quad i = 1, \dots, \ell;$$

 $g_i = \mathscr{L}_f'(a_{T-1,i}, y_i)$ — компоненты вектора градиента, lpha — градиентный шаг.

Это очень похоже на добавление одного базового алгоритма:

$$a_{T,i} := a_{T-1,i} + \alpha b(x_i), \quad i = 1, \dots, \ell$$

Идея: будем искать такой базовый алгоритм $b_T \in \mathscr{B}$, чтобы вектор $(b_T(x_i))_{i=1}^\ell$ приближал вектор антиградиента $(-g_i)_{i=1}^\ell$:

$$b_T := \arg\min_{b \in \mathscr{B}} \sum_{i=1}^{\ell} (b(x_i) + g_i)^2$$

Алгоритм градиентного бустинга (Gradient Boosting)

```
Вход: обучающая выборка X^{\ell}; параметр T;
Выход: базовые алгоритмы и их веса \alpha_t b_t, t = 1, ..., T;
инициализация: a_{0,i} := 0, i = 1, \ldots, \ell;
для всех t = 1, \ldots, T
    базовый алгоритм, приближающий антиградиент:
    b_t := \arg\min_{b \in \mathscr{B}} \sum_{i=1}^{c} (b(x_i) + \mathscr{L}'(a_{t-1,i}, y_i))^2;
    задача одномерной минимизации:
    \alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{c} \mathscr{L}(a_{t-1,i} + \alpha b_t(x_i), y_i);
    обновление вектора значений на объектах выборки:
   a_{t,i} := a_{t-1,i} + \alpha_t b_t(x_i); \quad i = 1, \dots, \ell;
```

Каждый следующий базовый алгоритм обучается так, чтобы по возможности исправить ошибки предыдущих алгоритмов.

Пример. Классификация синтетической выборки

100 деревьев глубины 5

 $http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html$

Пример. Классификация синтетической выборки

100 деревьев глубины 5, с подбором вращения каждого дерева

 $http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html$

Стохастический градиентный бустинг (SGB)

Идея: при оптимизации b_t и $lpha_t$ использовать не всю выборку X^ℓ , а случайную подвыборку, по аналогии с бэггингом

Преимущества:

- улучшается сходимость, уменьшается время обучения
- улучшается обобщающая способность ансамбля
- можно использовать несмещённые оценки out-of-bag

Эксперименты:

относительная ошибка при различном объёме выборки N

Вывод:

оптимально сэмплировать около 60–80% выборки

Friedman G. Stochastic Gradient Boosting. 1999.

Частные случаи GB: регрессия, AdaBoost и другие

Регрессия:
$$\mathscr{L}(b,y) = (b-y)^2$$

- ullet $b_{\mathcal{T}}(x)$ обучается на разностях $y_i \sum\limits_{t=1}^{\mathcal{T}-1} lpha_t b_t(x_i)$
- ullet если регрессии b_t линейные, то $lpha_t$ можно не обучать.

Классификация:
$$\mathscr{L}(b,y)=e^{-by}$$
, $b_t\in\{-1,0,+1\}$

• GB в точности совпадает с AdaBoost [Freund, 1995]

Классификация:
$$\mathscr{L}(b,y) = \mathcal{L}(-by), \;\; b_t \in \mathbb{R}$$

• GB совпадает с AnyBoost [Mason, 2000]

Y. Freund, R. Schapire. A decision-theoretic generalization of online learning and an application to boosting. 1995.

L. Mason et al. Boosting algorithms as gradient descent. 2000.

Варианты бустинга для двухклассовой классификации

Гладкие аппроксимации пороговой функции потерь [M < 0]:

$$E(M)=e^{-M}$$
 — экспоненциальная (AdaBoost); $L(M)=\log_2(1+e^{-M})$ — логарифмическая (LogitBoost); $Q(M)=(1-M)^2$ — квадратичная (GentleBoost); $G(M)=\exp(-cM(M+s))$ — гауссовская (BrownBoost); $S(M)=2(1+e^M)^{-1}$ — сигмоидная; $V(M)=(1-M)_+$ — кусочно-линейная (из SVM);

XGBoost: популярная и быстрая реализация GB над деревьями

Деревья регрессии и классификации (CART):

$$b(x,w) = \sum_{k \in K} w_k B_k(x)$$

где $B_k(x)$ — бинарный индикатор [x попадает в лист k], w_k — значение в листе k, K — множество листьев дерева. Для любого x одно и только одно слагаемое не равно нулю.

Критерий качества с суммой L_0 и L_2 регуляризаторов:

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}(a(x_i) + b(x_i, w), y_i) + \gamma |K| + \frac{\lambda}{2} \sum_{k \in K} w_k^2 \rightarrow \min_{w},$$

где $a(x_i) = \sum\limits_{t=1}^{T-1} lpha_t b_t(x_i)$ — ранее построенная часть ансамбля.

В некоторых случаях задача имеет аналитическое решение.

XGBoost: приближённое аналитическое решение для w_i

Приблизим
$$\mathscr{L}(a+b,y) pprox \mathscr{L}(a,y) + b\mathscr{L}'(a,y) + rac{b^2}{2}\mathscr{L}''(a,y)$$
:

$$\Phi(w) = \sum_{i=1}^{\ell} \left(g_i b_i + \frac{1}{2} h_i b_i^2 \right) + \gamma |\mathcal{K}| + \frac{\lambda}{2} \sum_{k \in \mathcal{K}} w_k^2 \rightarrow \min_{w},$$

где
$$b_i^p = \sum_k w_k^p B_k(x_i)$$
, $g_i = \mathscr{L}'ig(a(x_i), y_iig)$, $h_i = \mathscr{L}''ig(a(x_i), y_iig)$.

Из условий $\frac{\partial \Phi(w)}{\partial w_k}=0$ находим оптимальное значение листа k:

$$w_k = -\frac{\sum_i g_i B_k(x_i)}{\lambda + \sum_i h_i B_k(x_i)}$$

Подставляя w_k обратно в $\Phi(w)$, выводим критерий ветвления:

$$\Phi(B_1, \dots, B_k) = -\frac{1}{2} \sum_{k \in K} \frac{\left(\sum_i g_i B_k(x_i)\right)^2}{\lambda + \sum_i h_i B_k(x_i)} + \gamma |K| \rightarrow \min$$

XGBoost и другие варианты GB

Преимущества XGBoost (eXtreme Gradient Boosting):

- L₂ регуляризация сокращает переобучение
- L₀ регуляризация упрощает деревья (pruning)
- как и общий GB, допускает произвольные функции потерь
- очень быстрая реализация за счёт аналитических формул
- имеет механизм обработки пропущенных значений

Что ещё бывает:

- Light GBM для обучения на сверхбольших данных
- Яндекс. MatrixNet GB над Oblivious Decision Tree
- Яндекс.CatBoost для категориальных признаков

Основные мотивации Cat Boost

Две проблемы:

- Надо обрабатывать категориальные признаки с большим числом редких значений (пользователь, регион, город, реклама, рекламодатель, товар, документ, автор, и т.д.)
- Переобучение (смещённость, target leakage) в градиентах: $g_i = \mathcal{L}'(a_{t-1}(x_i), y_i)$ вычисляются в тех же точках x_i , по которым ансамбль $a_{t-1}(x)$ обучался аппроксимировать y_i

Приём, похожий на Out-Of-Bag и на онлайновые методы:

- для получения несмещённых оценок на объекте x_i хранить и дообучать ансамбль на выборках без этого объекта
- ullet как сделать, чтобы этих выборок было $O(\log \ell)$, а не $O(\ell)$?
- как сделать, чтобы они не сильно перекрывались?

L. Prokhorenkova et al. CatBoost: unbiased boosting with categorical features. 2019.

Упорядоченный бустинг (ordered boosting)

Идеи:

- ullet вычислять g_i по модели a_{t-1} , которая не обучалась на x_i
- строить обучающие подвыборки удваивающейся длины
- построить много таких случайно перемешанных выборок

Обозначения:

 $\sigma_1, \dots, \sigma_s$ — случайные перестановки выборки X^ℓ X^{rj} — подвыборка первых 2^j объектов из $\sigma_r(X^\ell)$ $a_t^{rj}(x)$ — ансамбль-полуфабрикат, обученный по X^{rj} $g_{ti}^r = -\mathscr{L}'(a_{t-1}^{rj}(x_i), y_i)$ — антиградиент в точке (x_i, y_i) для ансамбля a_{t-1}^{rj} , который по ней не обучался, $j = \lfloor \log_2(i-1) \rfloor$

L. Prokhorenkova et al. CatBoost: unbiased boosting with categorical features. 2019.

Модификация градиентного бустинга

```
сгенерировать случайные перестановки \sigma_0, \sigma_1, \ldots, \sigma_s;
для всех t = 1, ..., T
    выбрать перестановку \sigma_r случайно из \sigma_1, \ldots, \sigma_s;
    g^r_{ti} := -\mathscr{L}'ig(a^{rj}_{t-1}(x_i),y_iig) — несмещённый антиградиент;
    b_t := \arg\min_{b} \sum_{i=1}^{\infty} (b(x_i) - g_{ti}^r)^2;
    для всех деревьев b_t^{rj}, r = 1, ..., s, 2^j \le \ell:
         скопировать общую для них структуру дерева из b_t;
         вычислить в листьях b_t^{rj} средние по \{g_{ti}^r \colon x_i \in X^{rj}\};
    вычислить в листьях b_t средние по \{g_{ti}^0: x_i \in X^{0j}\};
    GB: вычислить \alpha_t и обновить a_{t,i} := a_{t-1,i} + \alpha_t b_t(x_i);
```

Способы обработки категориальных признаков

Пусть V — множество (словарь) значений признака f(x)

Стандартные методы либо громоздкие, либо переобучаются:

- ullet бинаризация (one-hot encoding): $b_{
 u}(x) = [f(x) =
 u]$
- группирование (кластеризация) значений (LightGBM)
- статистика по целевому признаку (target statistics, TS):

$$\tilde{f}(x_i) = \frac{\sum_{k=1}^{\ell} [f(x_k) = f(x_i)] y_k + \gamma p}{\sum_{k=1}^{\ell} [f(x_k) = f(x_i)] + \gamma}$$

CatBoost:

ullet статистика TS вычисляется по перестановкам X^{rj} :

$$\tilde{f}(x_i) = \frac{\sum_{\mathbf{x}_k \in \mathbf{X}^{ij}} [f(\mathbf{x}_k) = f(\mathbf{x}_i)] y_k + \gamma p}{\sum_{\mathbf{x}_k \in \mathbf{X}^{ij}} [f(\mathbf{x}_k) = f(\mathbf{x}_i)] + \gamma}, \quad j = \lfloor \log_2(i-1) \rfloor$$

 конъюнкции категориальных признаков создаются «налету» в процессе построения деревьев

Небрежные решающие деревья (Oblivious Decision Tree, ODT)

Решающая таблица: дерево глубины H, $D_v = \{0,1\}$; для всех узлов уровня h условие ветвления $f_h(x)$ одинаково; на уровне h ровно 2^{h-1} вершин; X делится на 2^H ячеек.

Классификатор задаётся $au aблицей решений <math>B \colon \{0,1\}^H o Y$:

$$a(x) = B(f_1(x), \ldots, f_H(x)).$$

Пример: задача XOR, H = 2.

R.Kohavi, C.-H.Li. Oblivious decision trees, graphs, and top-down pruning. 1995.

Алгоритм обучения ODT

```
Вход: выборка X^{\ell}; множество признаков F; глубина дерева H; Выход: признаки f_h, h=1,\ldots,H; таблица B\colon\{0,1\}^H\to Y; для всех h=1,\ldots,H предикат с максимальным выигрышем определённости: f_h:=\arg\max_{f\in \text{bin}\{F\}} \text{Gain}\,(f_1,\ldots,f_{h-1},f); B(\beta):=\Phi(U_{H\beta}), где \Phi(U)=\text{avg}\{g^r_{ti}\colon x_i\in U\};
```

$$U_{h\beta} = \left\{ x_i \in X^\ell \colon f_s(x_i) = \beta_s, \ s = 1..h \right\}$$
 — выборка объектов x_i , дошедших до вершины $\beta = (\beta_1, \dots, \beta_h) \in \{0, 1\}^h$

Выигрыш от ветвления на уровне h по всей выборке X^ℓ :

$$\mathsf{Gain}\left(f_1,\ldots,f_h\right) = \Phi(X^\ell) - \sum_{\beta \in \{0,1\}^h} \frac{|U_{h\beta}|}{\ell} \, \Phi(U_{h\beta})$$

Блендинг (Blending) — смешивание базовых алгоритмов

Идея: базовые алгоритмы $b_t(x)$ как (мета)признаки подаём на вход любому ML алгоритму, не обязательно линейному.

Проблема: этот (мета)алгоритм нельзя обучать на тех же данных, что и базовые $b_t(x)$, будет переобучение!

Новая проблема: для обучения используется не вся выборка.

https://dyakonov.org/2017/03/10/стекинг-stacking-и-блендинг-blending

Классический стэкинг (Stacking)

Решение проблемы: разбиение выборки на k блоков (k-fold)

вместо одного метапризнака $b_t(x)$ имеем k похожих, но разных $b_{ti}(x)$, j = 1, ..., k.

Вариант решения: усреднение метапризнаков $b_t(x) = \frac{1}{k} \sum_{i=1}^{n} b_{tj}(x)$

David H. Wolpert. Stacked generalization // Neural networks. 1992

Линейный взвешенный стэкинг (Feature-Weighted Linear Stacking)

$$b(x) = \sum\limits_{t=1}^{T} lpha_t b_t(x)$$
 — линейный стэкинг (ридж-регрессия) $lpha_t(x) = \sum\limits_{j=1}^{L} v_{tj} f_j(x)$ — теперь веса $lpha_t$ зависят от x через $f_j(x)$

Критерий оптимизации — ридж-регрессия:

$$Q(v) = \sum_{i=1}^{\ell} \left(\sum_{t=1}^{T} \sum_{j=1}^{L} v_{tj} f_j(x_i) b_t(x_i) - y_i \right)^2 + \frac{\lambda}{2} \sum_{t=1}^{T} \sum_{j=1}^{L} v_{tj}^2 \rightarrow \min_{v}$$

Метапризнаки f_j могут быть как фиксированными, так и обучаемыми (задача симметрична относительно b_t и f_j)

FWLS использовался командой #2 в конкурсе NetflixPrize

Joseph Sill et al. Feature-Weighted Linear Stacking. 2009.

Квазилинейный ансамбль (смесь алгоритмов)

Смесь алгоритмов (Mixture of Experts)

$$b(x) = \sum_{t=1}^{T} g_t(x)b_t(x),$$

 $b_t \colon X \to \mathbb{R}$ — базовый алгоритм,

 $g_t \colon X \to \mathbb{R}$ — функция компетентности, шлюз (gate).

Чем больше $g_t(x)$, тем выше доверие к ответу $b_t(x)$.

Условие нормировки: $\sum\limits_{t=1}^{I}g_{t}(x)=1$ для любого $x\in X$.

Нормировка «мягкого максимума» SoftMax: $\mathbb{R}^T \to \mathbb{R}^T$:

$$\tilde{g}_t(x) = \mathsf{SoftMax}_t\big(g_1(x), \dots, g_T(x); \gamma\big) = \frac{e^{\gamma g_t(x)}}{e^{\gamma g_1(x)} + \dots + e^{\gamma g_T(x)}}.$$

При $\gamma o \infty$ SoftMax выделяет максимальную из T величин.

Вид функций компетентности

Функции компетентности выбираются из содержательных соображений и могут определяться:

- признаком f(x): $g(x; \alpha, \beta) = \sigma(\alpha f(x) + \beta), \quad \alpha, \beta \in \mathbb{R};$
- ullet неизвестным направлением $lpha \in \mathbb{R}^n$:

$$g(x; \alpha, \beta) = \sigma(x^{\mathsf{T}}\alpha + \beta), \quad \alpha \in \mathbb{R}^n, \ \beta \in \mathbb{R};$$

ullet расстоянием до неизвестной точки $lpha\in\mathbb{R}^n$:

$$g(x; \alpha, \beta) = \exp(-\beta ||x - \alpha||^2), \quad \alpha \in \mathbb{R}^n, \ \beta \in \mathbb{R};$$

где $\alpha, \beta \in \mathbb{R}$ — параметры, *частично* обучаемые по выборке, $\sigma(z) = \frac{1}{1+e^{-z}}$ — сигмоидная функция.

Выпуклые функции потерь

Функция потерь
$$\mathscr{L}(b,y)$$
 называется *выпуклой* по b , если $\forall \ y \in Y, \ \forall \ b_1, b_2 \in R, \ \forall \ g_1, g_2 \geqslant 0 \colon \ g_1 + g_2 = 1$, выполняется $\mathscr{L}(g_1b_1 + g_2b_2, y) \leqslant g_1\mathscr{L}(b_1,y) + g_2\mathscr{L}(b_2,y).$

Интерпретация: потери растут не медленнее, чем величина отклонения от правильного ответа y.

Примеры выпуклых функций потерь:

$$\mathscr{L}(b,y) = \begin{cases} (b-y)^2 & -\text{ квадратичная (МНК-регрессия);} \\ e^{-by} & -\text{ экспоненциальная (AdaBoost);} \\ \log_2(1+e^{-by}) & -\text{ логарифмическая (LR);} \\ (1-by)_+ & -\text{ кусочно-линейная (SVM).} \end{cases}$$

Пример невыпуклой функции потерь: $\mathscr{L}(b,y) = [by < 0]$.

Основная идея применения выпуклых функций потерь

Пусть
$$\forall x \; \sum_{t=1}^T g_t(x) = 1$$
 и функция потерь $\mathscr L$ выпукла.

Тогда Q(a) распадается на T независимых критериев Q_t :

$$Q(a) = \sum_{i=1}^{\ell} \mathscr{L}\left(\sum_{t=1}^{T} g_t(x_i)b_t(x_i), y_i\right) \leqslant \sum_{t=1}^{T} \underbrace{\sum_{i=1}^{\ell} g_t(x_i)\mathscr{L}\left(b_t(x_i), y_i\right)}_{Q_t(g_t, b_t)}$$

Итерационный процесс, аналогичный ЕМ-алгоритму:

начальное приближение функций компетентности g_t ; повторять

M-шаг: $b_t := \operatorname{arg\,min}_b Q_t(g_t,b)$ при фиксированных g_t ;

Е-шаг: оценить все g_t при фиксированных b_t ;

пока значения компетентностей $g_t(x_i)$ не стабилизируются;

Алгоритм ME (Mixture of Experts): обучение смеси алгоритмов

Итерационный процесс, аналогичный ЕМ-алгоритму:

```
Вход: выборка X^{\ell}, начальные (g_t)_{t=1}^T, параметры T, \delta, \gamma;
Выход: g_t(x), b_t(x), t = 1, ..., T;
повторять
     (\tilde{g}_1(x_i),\ldots,\tilde{g}_T(x_i)) := \mathsf{SoftMax}(g_1(x_i),\ldots,g_T(x_i);\gamma);
     	ilde{g}_t^0 := 	ilde{g}_t для всех t = 1, \ldots, T;
     M-шаг: при фиксированных g_t обучить все b_t:
     b_t := \arg\min_{h} \sum_{i=1}^{\ell} \tilde{g}_t(x_i) \mathcal{L}(b(x_i), y_i), \quad t = 1, \dots, T;
     \mathsf{E}	ext{-}\mathsf{\mathbf{uar}}: при фиксированных b_t оценить все g_t:
     g_t := \arg\min_{\sigma_t} \sum_{i=1}^{\ell} \mathscr{L}\left(\sum_{s=1}^{T} \tilde{g}_s(x_i) b_s(x_i), y_i\right), \quad t = 1, \dots, T;
пока \max_{t,i} \left| \tilde{g}_t(x_i) - \tilde{g}_t^0(x_i) \right| > \delta;
```

Обучение смеси с автоматическим определением числа Т

Очередную компоненту обучаем на наиболее трудных объектах:

```
Вход: выборка X^{\ell}, параметры \ell_0, \mathcal{L}_0, \delta, \gamma;
Выход: T, g_t(x), b_t(x), t = 1, ..., T;
начальное приближение:
b_1 := \arg\min_b \sum_{i=1}^\ell \mathscr{L}ig(b(x_i), y_iig), \quad g_1(x_i) := 1, \quad i = 1, \dots, \ell,
для всех t = 2, ..., T
     множество «наиболее трудных» объектов:
     X_t := \{x_i : \mathcal{L}(a_{t-1}(x_i), y_i) > \mathcal{L}_0\};
     если |X_t| \leqslant \ell_0 то выход;
     b_t := \arg\min_{b} \sum_{x_i \in X_t} \mathscr{L}(b(x_i), y_i);
     g_t := \arg\min \sum_{i=1}^{\ell} \mathscr{L}\left(\sum_{s=1}^{t} g_s(x_i) b_s(x_i), y_i\right);
  (g_s,b_s)_{s=1}^t := \mathsf{ME}(X^{\ell},(g_s)_{s=1}^t,t,\frac{\delta}{2},\frac{\gamma}{2});
```

Резюме

- Ансамбли позволяют решать сложные задачи, которые плохо решаются отдельными базовыми алгоритмами.
- Важное открытие середины 90-х: обобщающая способность бустинга не ухудшается с ростом сложности \mathcal{T} .
- Градиентный бустинг наиболее общий из всех бустингов:
 - произвольная функция потерь
 - произвольное пространство оценок R
 - подходит для регрессии, классификации, ранжирования
- Чаще всего GB применяется к решающим деревьям
- RF и SGB универсальные модели машинного обучения
- CatBoost для категориальных признаков, без переобучения
- FWLS и ME квазилинейные ансамбли, $\alpha_t(x)$
- Смеси алгоритмов нужна хорошая модель компетентности