CS 3311 Formal Models of Computation Sample Exam 3

Question 1. (5 points) Consider the following grammar G:

$$\begin{split} S &\to TT \mid AT \mid BT \mid CT \\ T &\to aT \mid a \\ B &\to bB \mid bC \\ C &\to cB \\ A &\to dA \mid d \end{split}$$

Part a. Construct the TERM set for G.

Part b. Use the TERM set to construct an equivalent grammar G_T that does not contain variables that do not generate strings of terminals.

Question 2. (5 points) Consider the following grammar G:

$$\begin{array}{lll} S \rightarrow AB \mid BC & D \rightarrow dD \mid d \\ A \rightarrow aA \mid a & E \rightarrow eE \mid e \\ B \rightarrow bB \mid b & F \rightarrow fF \mid f \\ C \rightarrow DE & H \rightarrow hH \mid FH \mid h \end{array}$$

Part a. Construct the REACH set for G.

Part b. Use the REACH set to construct an equivalent grammar G_U that does not contain unreachable variables.

Question 3. (10 points) Convert the following grammar G into Chomsky normal form. Show your steps clearly. Note that G already satisfies the conditions on the start symbol S, λ -rules, useless symbols, and chain rules.

$$\begin{split} S &\to AACD \\ A &\to aAb \mid ab \\ C &\to aC \mid a \\ D &\to aDa \mid bDb \mid aa \mid bb \end{split}$$

Question 4. (15 points) Consider the following grammar G. Note that G was obtained by transforming the grammar $S \to bSb \mid aa$ to Chomsky Normal Form.

$$S \rightarrow BR \mid AA$$

$$T \rightarrow BR \mid AA$$

$$R \rightarrow TB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Part 2a. (10 points) Give the upper diagonal matrix produced by the CYK algorithm when run with G and the input string baab. Show all your work.

Part 2b. (5 points) Is $baab \in L(G)$? Why? Provide the reason based on the upper diagonal matrix you constructed.

Question 5. (15 points) Consider the following grammar G. It is the same as the grammar as in Question 5. It is repeated for your convenience.

$$S \rightarrow BR \mid AA$$

$$T \rightarrow BR \mid AA$$

$$R \rightarrow TB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Part 3a. (10 points) Give the upper diagonal matrix produced by the CYK algorithm when run with G and the input string bbaa. Show all your work.

Part 3b. (5 points) Is $bbaa \in L(G)$? Why? Provide the reason based on the upper diagonal matrix you constructed.

Question 6. (10 points) Remove direct left recursion from the grammar shown below. Use the rule described in class. Work on one variable at a time and show the intermediate results.

$$\begin{split} S &\to aE \\ E &\to EbT|T \\ T &\to TcF|F \\ F &\to dEd \mid e \end{split}$$

Question 7. (15 points) Consider the following grammar G:

$$S \to aAbBc \mid BA$$

$$A \to a \mid c$$

$$B \to bb \mid bc$$

Part 5a. (5 points) Draw the graph of grammar G.

Part 5b. (10 points) Give the lookahead sets for each variable and rule of grammar G.

Question 8. (15 points) Give the state diagram of a **DFA** that accepts the set of strings of length 4 over $\{a, b\}$ that begin and end with the same symbol. Briefly explain how you construct the machine and **do not use nondeterminism**.

Question 9. (10 points) Use Theorem 5.5.3 and Example 6.1.1 to convert the regular expression

 $(a \cup b)^*(ca \cup cb)^*$ into an NFA- λ . Apply the full steps and do not simplify the machine. Do not construct the machine directly.