Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl I für Mathematik Prof. Dr. Christof Melcher

Übungen zur Höheren Mathematik 3 Serie 12 vom 11. Januar 2010

Teil A

Aufgabe A42 Beim Werfen einer Münze ergibt sich als Ergebnis Wappen bzw. Zahl. Es werden gleichzeitig drei Münzen geworfen. Geben Sie die Ergebnismenge Ω und die Ereignismenge $\mathcal E$ an und bestimmen Sie unter der Voraussetzung, dass es sich um ein Laplace-Experiment handelt, die Wahrscheinlichkeit dafür, dass

- a) dreimal Wappen,
- b) einmal Wappen und zweimal Zahl auftritt.

Aufgabe A43 Beim Tennisspiel gewinnt der Spieler 1 gegen den Spieler 2 einen Satz mit der Wahrscheinlichkeit p. Bei einem Turnier siegt derjenige Spieler, der zuerst drei Sätze gewonnen hat. Geben Sie die Ergebnismenge Ω und die Ereignismenge $\mathcal E$ an und berechnen Sie unter der Voraussetzung, dass es sich um ein Bernoulli-Experiment handelt, die Wahrscheinlichkeit P, mit der Spieler 1 siegt.

Aufgabe A44 In einer Urne befinden sich zu Beginn r rote und s schwarze Kugeln. Es wird \overline{n} -mal $(n \le r + s)$ eine Kugel herausgenommen. Zeigen Sie, dass die Wahrscheinlichkeit, bei n Ziehungen ohne Zurücklegen der gezogenen Kugeln k rote Kugeln zu ziehen,

$$p_k = \frac{\binom{r}{k} \binom{s}{n-k}}{\binom{r+s}{n}}$$

beträgt.

Aufgabe A45 Sei $\Omega := \{1, 2, 3, 4\}$. Geben Sie vier verschiedene σ -Algebren über Ω an. Wie viele verschiedene σ -Algebren über Ω gibt es?

Teil B

Aufgabe B42 Ein idealer Würfel werde zweimal geworfen. Dann ist ein Elementarergebnis ω ein Zahlenpaar (i, j) mit $i, j \in \{1, ..., 6\}$, wobei i die Augenzahl des zweiten Wurfs angibt. D.h. $\Omega := \{(i, j) | i, j \in \{1, ..., 6\}\}$. Wir betrachten folgende Ereignisse:

 A_1 : "Die Augensumme (aus 1. und 2. Wurf) ist größer als 10",

 A_2 : "Die Augensumme ist 4",

 A_3 : "In beiden Würfen werden gleich viele Augen geworfen",

 A_4 : "Die Augensumme sei 4 oder größer als 10",

 A_5 : "Die Augensumme sei 4, aber bei den beiden Würfen sollen verschiedene Augenzahlen auftreten".

Geben Sie die Ereignismenge an und berechnen Sie $p(A_1)$, $p(A_2)$, $p(A_3)$, $p(A_4)$, $p(A_5)$.

Aufgabe B43 Ein Schütze treffe bei einem Schuss mit Wahrscheinlichkeit 0,6 ein Ziel. Wie oft muss er in einem Bernoulli-Experiment mindestens schießen, damit er mit Wahrscheinlichkeit von mindestens 0,99 das Ziel mindestens einmal trifft? Geben Sie die Ergebnismenge Ω und die Ereignismenge \mathcal{E} an.

Aufgabe B44 Es sei $\mathcal{X} := \{1, 2, 3\}$. Zeigen Sie, dass die folgenden Mengensysteme σ -Algebren über \mathcal{X} sind.

- a) $\mathcal{A} := \{\emptyset, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$
- b) $\mathcal{P}(X)$ (Potenzmenge von X)
- c) $\{\emptyset, X\}$

Ai(2.) Ergebnismenge $S = \{(w, w, w), (w, z, z), (w, z, u), (z, u, u), (z, u, u), (u, z, z)\}$ $(z, u, z), (z, z, u), (z, z, z)\}$ $(z, u, z), (z, z, u), (z, z, z)\}$ $(z, u, z), (z, z, u), (z, z, z)\}$ (z, u, u), (z, u, u), (u, u, u), (u,

Erely us menge E= P(N)

Laplace-Exp.: Alle Ergebuisse (Elementer-Ereignisse)

strol gleichnahrschein (ich

=> $P(A) = \frac{1}{|\mathcal{N}|} V = \frac{1}{|\mathcal{N}|$

a.) Ereignis A = drei Mel wappen ist $<math>A = \{(v, u, w)\} = 1A1 = 1 = P(A) = \frac{1}{8}$

b.) Ereignis D= " Ch Mal Wappen, zuel Mal Zall"

B= {(n,z,z),(z,w,z),(z,z,u)}

=> |B|=3 => P(B)=3

A43.) Rernoulli- Fixperiment:

n-fache Ausführung eines Finzel-Experiments

(je neils unabh. vonainander), welches selbst

nur zuel mögliche Ergebnisse besitzt.

Ergebnismenge d. i-ten Etnzelexperiments $\Omega i = \{0,1\},$ nober 0 = 100 Sproler 2 geninut

setz i" 1 = 100 Sproler 1 geniunt

€= \$\(\int \) \\

A = a Spreler 1 genius + clas turnier."

= \{ (1,1,1), (0,1,1), ..., (1,1,0,1), (0,0,1,1,1) ..., (1,1,0,1), \)

(1,1,0,0,1) \{ \}

$$(1,1,1)$$
, $(0,1,1,1)$, $(0,0,1,1,1)$

A44.) Urne: v rote, s solwarze Kugelin

Darous werden ohne zurücklegen

Keezela gezogen.

Pr. Wahrsoh., doss geneer k rote Kugela

gezogen nerden.

zer gen:
$$P_k = \frac{\binom{r}{k}\binom{s}{n-k}}{\binom{r+s}{n}}$$

Jede Kugel wird unt gleicher Wahrsch.

gleager. => Loplace - Experiment

Dein Zohen ohne Zurichlegen von u Kergela aus v+i g, b+ 05 (v+s) Möglich herten.

Firen gunstigen Fell erhalt man, falls man k rote und u-k schnarze kugele gezogen hat.

$$= 3 \quad P_{K} = \frac{\binom{r}{k} \binom{s}{u-k}}{\binom{r+s}{u}}$$

445.) R = { 1, 2,3,41} gesacht: alle O- Algebren
A über R.

DetinA ist O'-Algebra über R.

- A = P(S)

- R E A

- A E A => A = S \ A E A

- A, Az, ... EA => 1 U A; EA

In end Golden Fall, d.h. | N | < 0 127 dres aquivalent to An, Az E A => An UAZ EN

Konstr. nun alle o Algebren über St

1. Fall: A enthält ein elementige Kengen

1.1: devon genau erne

o.B.d.A .: {1}

=> A = { d, {1}, {7,3,4}, \$3 => 4 Mog bioklesten

1.2: genou znei etn-elementige Mengen

0. 1. d. A.: {1}, {2}

=> A= {0, {1}, {2}, {1,2}, {3,4}, {1,3,4},

{2,3,4}, \$\footnote{3}, {2} \text{kerten}

1.3.: genau 3 etn-elementige Mengen

0.B.d.A.: {1}, {7}, {3}
=>{4} = {1,7,3} = ({11} v {23 v {33}) = A 4

1.4.: alle 4 etn-elementigen Mengen => A = P(&Si) => 1 Mog (ichtest

2. A enthalt als hernste wichtbeeve Monge stre 2-elementige Lange

7.1.: genau Cine 0. B.d. A: § 1.7} EN => {3,4}= {1,2} EN

7.7. genau zne

2.2.1.: che beiden stud disjunkt 0. B.d.A.: \{ 1,23\}, \{3,4\} A = \{\beta, \{1,2\}, \{3,4\}, \S\} => \frac{6}{2} = \frac{2}{2} \text{Mog Gackesten}

2.2.2. : de beiden strol nicht disjunkt o. B. d. A.: { 1, 2}, { 7, 3} => {2} = {1,2} N {2,3} EN 4

2.3, 3 3 4 and log 2.2.2.

3. A enth. als heterste nicht-bere Menge
etre chei-elemen tige

o. Rolt: \(\frac{1}{1}, 7, 3 \) \(\int A = >\{4\} = \{1, 7, 3\} \) \(\int A \)

4. A enthalt als helinste nicht-bere Menge

No.

=> M= \{ \delta, \Reg \}, \Reg \} => 1 M\(\text{s}\) \(\text{delta} \)

Jusgesamt: 4+6 + 1 + 3 + 1 = 15

