Some Thoughts on Cloud Storage Security based on Tahoe-LAFS

Li Tang

NSLab Seminar, Nov. 2009

Outline

- Cloud Storage A New Paradigm
- Security Advantage and Challenges
- Tahoe-LAFS
- Beyond Confidentiality and Integrity
- Mechanisms against Snoopers

Data Storage Growth

Traditional Data

Documents
Character & numerical databases

Additional, New Data

Images – 500KB per picture Audio – 5,000 KB per song Video – 5,000,000 KB per movie

Digital Content

- 85% of all data by 2012
- Growing 10x every 4 years

Source: IDC

Cloud Storage Definition

- Cloud Storage Places Data Outside the Walls
 - "Cloud Storage" is defined as storage which resides in a public or private infrastructure that is external to the primary storage infrastructure, and is often shared to some extent
 - Cloud Storage is different from Cloud computing, where a whole application lives fully or partially in the Cloud

Security is the Major Issue

Q: Rate the challenges/issues ascribed to the 'cloud'/on-demand model

(1=not significant, 5=very significant)

What do Storage Buyers Really Want?

- Storage is more like a bank than a utility
 - How do I know this is secure?
 - How do I get my data back if you belly-up?

Security Model of Traditional Storage

Security Model of Cloud Storage

High-level Perspective

Old Games

- Protect data presented to owners
- Protect data stored on servers
- Protect data communication

Fundamentally New

- Relationship between data's owner and holder
- Traditional data storage
 - The same, or complete trust
- Cloud storage
 - Relying on service contract

General Advantages and Challenges

- Professional security management
- Homogeneity eases security auditing/testing
- Wide-area backup increases reliability and disaster recovery
- High-class infrastructure enhances availability

- Loss of physical control
- High dependence on cloud storage providers

Tahoe - A Least Authority File System

- Architecture provider-independent security
 - Data originates at the client, which is trusted
 - Client segments, encrypts, and erasure-codes data
 - Segments are distributed to storage nodes over secure links
 - Storage nodes, which are not trusted, only see encrypted data
- Latest Status
 - Open Source, Release 1.5.0
 - Sponsored by AllMyData.com
 - Included in Ubuntu Karmic Koala

Tahoe-LAFS network topology

Tahoe-LAFS storage servers

Access Control

- Two types of files
 - Immutable files
 - Mutable files
- Three Classes of Privileges (capabilities)
 - Read-Write-Cap (only for mutable files)
 - Read-Cap
 - Verify-Cap
 - Capabilities are inclusive and self-authenticating
 - Example:
 - URI:CHK:6hwdguhr5dvgte3qhosev7zszq:lgi66a5s6gchcu4yy aji3blogdxmrrrgcdxj5q33bz7h2dhlp6oq:3:10:8448

Immutable File

Mutable File

Content Hash Key

- Key = Hash(Content)
- Advantage Convergence
 - Plaintext A = Plaintext B

- Cyphertext A = Cyphertext B
- De-duplication

Security Model of Tahoe

- Ensure
 - Confidentiality
 - Integrity
- Not offer
 - Privacy
 - Anonymity
- A Snooping Example:
 - Whether a colleague has filled a medical record that has a standard template

Mechanisms against Snoopers

- Assumption
 - Data holders neither play the role of nor collude with snoopers
- Scheme A
 - Proxy re-encryption
- Scheme B
 - URI randomization

Proxy Re-encryption

URI Randomization

- Each storage server signs a successful write
- K write signatures barter from the management server a read ticket, which is appended to URI
 Tahoe-LAFS network topology

Questions?

Thanks!

Data Types for Cloud Storage

- Larger files with lots of read access
 - Digital content
- Parallel streaming writes
 - video surveillance (private clouds)
- Long-term storage files
 - Backup and archival files (private clouds)
 - Medical images, Energy exploration, Genomics
- Geographically shared files
 - Access from different geographies (public clouds)
 - Movie trailers, training videos

Where is Cloud Storage a Poor Fit?

- Active Corporate Data
 - Advanced data protection schemes
 - Office Documents, Spreadsheets
 - Source-code
- Transactional Data
 - Frequent read and write access
 - Massive I/O requirements
 - Database, source code, Active VMware images

Information Dispersal

