

AI 시스템 반도체 설계 ARM 아케텍쳐 게임 프로젝트

작성자: 장환

게임 개요 및 개발 환경

게임 설명

플레이어는 화면 하단에서 시작하는 비행기를 조작하여 위에서 내려오는 장애물을 피해야 합니다. 화면 상단에 도달할 때마다 점수가증가하며, 장애물과 충돌하면 게임이 종료됩니다.

개발 환경

320x240 LCD 디스플레이와 조이 스틱 입력 장치가 포함된 임베디드 보드를 사용했습니다. 타이머 인터 럽트와 조이스틱 인터럽트를 활용 하여 실시간 게임 동작을 구현했습 니다.

주요 기능

조이스틱을 통한 4방향 이동, 타이머 기반 장애물 이동, 충돌 감지 시스템, 점수 표시 및 게임 오버 처리 기능을 포함합니다.

개발 일정

게임 구조 및 동작 원리

- 시스템 초기화
 - Clock, LED, 키 입력, UART, 인터럽트 벡터 테이블 설정
- 게임 초기화
 - 화면 초기화, 비행기 및 장애물 위치 설정, 점수 초기화
- 게임 루프
- 조이스틱 입력 처리, 타이머 기반 장애물 이동, 충돌 감지
- 게임 종료 등돌 발생 시 타이머 중지, 점수 표시, 재시작 대기

객체 관리 시스템

객체 그리기

Draw_Object 함수를 통해 각 객체의 위 치와 크기에 맞게 화면에 표시 ඊා

객체 이동

Plane_Move와 Obstacle_Move 함수 로 사용자 입력과 타이머에 따라 객체 위 치 갱신

화면 갱신

이전 위치는 배경색으로 지우고 새 위치에 객체 다시 그리기

L

Q

충돌 감지

Check_Collision 함수로 두 객체 간의 충 돌 여부 확인

핵심 기술: 충돌 감지 알고리즘

2

객체 구조체

위치(x,y), 크기(w,h), 색상(ci), 방향(dir) 정보 포함

4

충돌 조건

두 객체의 경계가 겹치는지 확인하는 논리식 사용

10

최대 장애물

동시에 화면에 표시되는 장애물의 최대 개수

1

반환 값

충돌 발생 시 GAME_OVER(1) 반환, 그렇지 않으면 O 반환

인터럽트 기반 입력 처리

게임은 인터럽트 기반 입력 처리 시스템을 사용하여 사용자의 조이스틱 입력과 타이머 이벤트를 효율적으로 관리합니다. 조이스틱 입력이 감지되면 Jog_key_in 플래그가 설정되고, 해당 방향에 맞는 함수가 호출됩니다. 함수 포인터 배열을 사용하여 코드를 간결하게 유지하면서도 빠른 입력 처리가 가능합니다.

<u> 프로젝트 결론 및 개발 후기</u>

성공적 구현 요소

- 인터럽트 기반 실시간 입력 처리
- 효율적인 충돌 감지 알고리즘
- 객체 지향적 게임 구조 설계

향후 개선 사항

- 다양한 장애물 패턴 추가
- 난이도 조절 시스템 구현
- 사운드 효과 및 그래픽 개선

개발 과정에서 배운 점

- · 임베디드 시스템의 자원 제약 환경에 서의 최적화
- 인터럽트 기반 프로그래밍의 중요성
- 체계적인 코드 구조화의 필요성