Métodos numéricos

Mauricio Suárez Durán Unidad 2, Clase 1 Introducción a Python

Departamento de Física y Geología Universidad de Pamplona I Semestre, 2020

- Objetivo:
 - Escribir un código en Python

• ¿Por qué Python?

- ¿Por qué Python?
 - Es gratis
 - Fácil de programar => fácil aprender
 - Usado por miles de personas => Montones de desarrollos realizados en Python
 - Librerías poderosas para análisis de datos
 - Amplio soporte

- Versión que usaremos Python 3.5
 - Python es un lenguaje interpretado de alto nivel, no se necesita compilación.
 - Ejemplo:
 - print("hola")

• Variables y asignaciones:

- Variables y asignaciones:
 - En python no se requiere especificar el tipo de variable (entero, flotante, string, etc).
 - Los nombres de las variables no deben empezar con un número, ni contener símbolos ni espacios.
 - Python distingue minúsculas de mayúsculas.

- Tipos de variables:
 - Variables string (cadena de caracteres):
 - x = "Solo caracteres"

- Enteros: valores enteros incluyendo los negativos: 0, 1, -10, 10, etc.

- Tipos de variables:
 - Flotantes: valores reales, 3.14159..., $6.63x10^{34}$, 1.0.

Complejos: valores complejos, ejemplo: 1+2j;
-3.5 - 0.4j. En Python, j es la unidad imaginaria.

• Variables:

- Podemos usar notación científica para definir una variable:
 - x = 1.2e2; y = 1e-10
- El tipo de variable puede cambiar durante la ejecución:
 - x = 1; x = 1.5; Lo que no ocurre en lenguajes como C y C++
- Para crear una variable como flotante:
 - x = 1.

• Aritmética:

- -x+y
- x-y
- x*y
- x/yx**y

• Aritmética:

- x//y, división entera
- x%y, modulo; cuando un número es divisible por otro.
- x+y, el resultado depende del tipo de variables que se estén operando.
 - Pruebe operando combinaciones de enteros con flotantes.

- Aritmética:
 - En el caso de la operación (/) siempre se obtiene un flotante.

- Combinando operaciones:
 - -x+2*y
 - x-y/2
 - -2*x**3
 - x/2*y
 - Multiplicación y división se realizan antes que las sumas y restas

- Otras asignaciones:
 - x = x + 1
 - Ejemplo:
 - x = 0; x = x**2 2
 - x += 1
 - x -= 1
 - x *= -2.6
 - x /= 5*y
 - x //= 3.4

- Otras asignaciones:
 - x,y = 1, 2.5
 - -x,y = 2*z+1, (x+y)/3
 - Primero evalúa el lado derecho antes de asignar los respectivos valores.
 - Útil para intercambiar valores:
 - x,y = y,x

- Ejercicios:
 - Realice operaciones con números imaginarios y verifique.

- Ejemplo:
 - print(a*b)

• Estamentos de entrada y salida:

- Estamentos de entrada y salida:
 - Salida
 - print(x, y, sep="...")
 - print(x, y, sep="")

- Estamentos de entrada y salida:
 - Entrada
 - x = input ("Entre el valor para x: ")
 - x = input ("")

- Estamentos de entrada y salida:
 - Entrada
 - x = input ("Entre el valor para x: ")
 - x = input ("")
 - Lo que se ingresa es considerado como un string y no como un número. Para convertirlo en número:
 - nonumber = input("Entre el valor para x: ")
 - number = float(nonumber)

- Estamentos de entrada y salida:
 - Otra forma:
 - x = float(input("Entre el valor para x: "))

- Ejecute la linea anterior y asigne un entero, qué ocurre?

• Un ejemplo de código:

- Un ejemplo de código:
 - Caída libre:
 - y = 0.5*g*t**2
 - Escriba un código que calcule la posición en ĵ para un objeto en caída libre, luego de un tiempo t y una altura inicial h; ambos valores ingresados por consola.

• Ejercicio:

- Satélite orbitando la Tierra.
 - 1) Calcule la altura sobre la superficie (h) terrestre a la que debe estar un satélite que órbita la Tierra con período T.
 - 2) Escriba un programa que estime h a partir de un período dado.
 - 3) Estime la altura para un T de un día (geosincrónico), 90 min y 45 min.
 - 4) Técnicamente, el período T de un sátelite geosincrónico es por día sideral (23.93 h). Cuánta es la diferencia en h, para un período de 24 h?