Power and Component Audit for GadgetBuddy

This document outlines the power consumption and component list for the GadgetBuddy project, providing a critical reference for anyone continuing development, especially when planning for power sources and battery life. It includes power calculations for two possible microcontrollers: the Arduino Uno and the ESP32.

Project Hardware Overview

The device is composed of the following components, all operating at a standard 5V input voltage unless otherwise noted.

• Microcontroller: Arduino Uno or ESP32

• Display: LCD I2C 20x4

• Sensors: MQ135 (Gas), DHT11 (Temp/Humidity), GY-271: QMC5883L (Compass)

• Audio: TEA5767 (FM Radio), GF1002-PAM8403 (Audio Amplifier)

• Interface: 2 standard buttons, 1 simple RGB LED

• Clock: RTC Clock DS1307

Power Consumption Analysis

The following table provides the estimated current draw for each component. These figures are used to calculate the overall power requirements for each microcontroller option. Note that certain components, like the audio amplifier, have variable consumption that depends on their usage.

Component	Typical Current Draw	Notes
Arduino Uno	≈45mA	Baseline current for the board.
ESP32	≈80mA	Baseline current, including
		power for the Wi-Fi/Bluetooth
		module (in a typical, active
		state).
LCD I2C 20x4	≈25mA	Includes the backlight.
MQ135 Gas Sensor	≈150mA	The heater element is the
		primary power consumer.
DHT11 Sensor	<1mA	Very low power, negligible for
		total calculation.
TEA5767 FM Radio	≈15mA	Active mode current.
GF1002-PAM8403	≈150mA	Assumed average draw for
		moderate volume.
RGB LED	≈20mA	Assumed one color is on at a
		time.
RTC Clock DS1307	≈1.5mA	Low power, for timekeeping.

GY-271: QMC5883L	≈2mA	Low power for the
		magnetometer module.
2 Standard Buttons	OmA	No current draw.

Total Power Requirements and Battery Capacity

The total current draw varies significantly depending on the microcontroller chosen. The calculations below provide the required battery capacity in milliampere-hours (mAh) for both a 5-hour and 8-hour duration.

Arduino Uno

Using the Arduino Uno, the total estimated current draw is approximately 410 mA.

- 5-hour duration: A minimum battery capacity of 2050 mAh is required.
- 8-hour duration: A minimum battery capacity of 3280 mAh is required.

ESP32

Using the ESP32, the total estimated current draw is approximately **445 mA**.

- 5-hour duration: A minimum battery capacity of 2225 mAh is required.
- 8-hour duration: A minimum battery capacity of 3560 mAh is required.

Note: It's a good practice to select a battery with a capacity slightly higher than the minimum required to account for battery degradation and unexpected power spikes.

Future Considerations

When making changes to the device, consider the following:

- **Power-Saving Modes:** The ESP32 offers advanced sleep modes (e.g., deep sleep) that can dramatically reduce power consumption when the device is idle. This would be a crucial feature to implement for maximum battery life.
- **Component Selection:** Every new component will add to the overall current draw. Be sure to check its power consumption and adjust the battery requirements accordingly.
- Voltage Regulation: Ensure a stable 5V supply is provided to all components.

This document should serve as a helpful reference for anyone working on this project. For a more detailed breakdown, refer to the individual component datasheets.