1. Топологічні простори

В курсі математичного аналізу [1, с. 26] уже розглядалися поняття околу точки, відкритої і замкненої множин, точки дотику, граничної точки, границі послідовності в просторі $\mathbb R$ тощо. Всі ці поняття визначалися за допомогою метрики простору $\mathbb R$ і відбивали певні властивості, притаманні множинам, за допомогою яких ми могли описувати основну концепцію цієї теорії — близькість між точками. Адже саме поняття близькості між точками (в розумінні малої відстані) є базовим для таких головних понять математичного аналізу як збіжність послідовностей і неперервність функцій.

Відносним недоліком цього підходу є очевидна залежність від метрики, уведеної в просторі. Тому постало питання, чи не можна побудувати більш абстрактну конструкцію, за допомогою якої можна було б описати ідеї, згадані вище. Серед дослідників цієї проблеми слід відзначити французьких математиків М. Фреше (1906), М.Рісса (1907–1908), німецького математика Ф.Хаусдорфа (1914), польського математика К.Куратовського (1922) і радянського математика П.Александрова (1924).результаті досліджень цих та багатьох інших математиків виникла нова математична дисципліна топологія, предметом якої ϵ вивчення ідеї про неперервність на максимально абстрактному рівні.

В цій та наступній лекціях ми введемо в розгляд ряд важливих топологічних понять. Це дозволить нам вийти на більш високий рівень абстракції і опанувати ідеї, що пронизують майже всі розділи математики. Не буде великим перебільшенням сказати, що в певному розумінні топологія разом з алгеброю ϵ скелетом сучасної математики, а функціональний аналіз — це розділ

математики, головною задачею якого ϵ дослідження нескінченновимірних просторів та їх відображень.

Озн. 1.1. Нехай X — множина елементів, яку ми будемо називати носієм. **Топологією** в X називається довільна система τ його підмножин, яка задовольняє таким умовам (аксіомам Александрова):

A1.
$$\emptyset, X \in \tau$$
.

$$A2. \ G_{\alpha} \in au, \ \alpha \in A \Rightarrow \bigcup_{\alpha \in A} G_{\alpha} \in au$$
 , де $A = \partial o$ вільна множина.

A3.
$$G_{\alpha} \in \tau$$
, $\alpha = 1, 2, ..., n \Rightarrow \bigcap_{\alpha=1}^{n} G_{\alpha} \in \tau$.

Інакше кажучи, топологічною структурою називається система множин, замкнена відносно довільного об'єднання і скінченого перетину.

Озн. 1.2. Пара $T = (X, \tau)$ називається **топологічним простором**.

Приклад 1.1. Нехай X — довільна множина, $\tau = 2^{x}$ — множина всіх підмножин X. Пара $\left(X,2^{x}\right)$ називається простором з дискретною (максимальною) топологією.

Приклад 1.2. Нехай X — довільна множина, $\tau = \{\emptyset, X\}$. Пара (X, τ) називається простором з *тривіальною* (мінімальною, або антидискретною) топологією.

Зрозуміло, що на одній і тій же множині X можна ввести різні топології, утворюючи різні топологічні простори. Припустимо, що на носії X введено дві топології — τ_1 і τ_2 . Вони визначають два топологічні простори: $T_1 = (X, \tau_1)$ і $T_2 = (X, \tau_2)$.

Говорять, що топологія τ_1 є сильнішою, або тонкішою, ніж топологія τ_2 , якщо $\tau_2 \subset \tau_1$. Відповідно, топологія τ_2 є слабкішою, або грубішою, ніж топологія τ_1 . Легко бачити, що найслабкішою є тривіальна топологія, а найсильнішою — дискретна.

Зауваження 1.1. Множина всіх топологій не є цілком упорядкованою, тобто не всі топології можна порівнювати одну з одною. Наприклад, наступні топології (зв'язні двокрапки) порівнювати не можна: $X = \{a,b\}$, $\tau_1 = \{\varnothing, X, \{a\}\}$, $\tau_2 = \{\varnothing, X, \{b\}\}$.

Озн. 1.3. Множини, що належать топології τ , називаються відкритими. Множини, які ϵ доповненням до відкритих множин, називаються **замкненими**.

Наприклад, множина всіх цілих чисел Z замкнена в R^1 .

Зауваження 1.2. Топологія включає в себе всі відкриті множини. Водночає, треба зауважити, що поняття відкритих і замкнених множин не є взаємовиключними. Одна і та ж множина може бути одночасно і відкритою і замкненою (наприклад, \emptyset або X), або ані відкритою, ані замкненою (множини раціональних та ірраціональних чисел в \mathbb{R}^1). Отже, топологія може містити і замкнені множини, якщо вони одночасно є відкритими.

Як бачимо, поняття відкритої множини в топологічному просторі *постулюється* — для того щоб довести, що деяка множина M в топологічному просторі T ϵ відкритою, треба довести, що вона належить його топології.

Озн. 1.4.Нехай (X,τ) — топологічний простір, $M\subset X$. Топологія $(M,\tau_{\scriptscriptstyle M})$, де $\tau_{\scriptscriptstyle M}=\left\{U_{\scriptscriptstyle M}^{(\alpha)}=U_{\scriptscriptstyle \alpha}\cap M,U_{\scriptscriptstyle \alpha}\in\tau\right\}$, називається *індукованою*.

- **Озн. 1.5.** Топологічний простір (X, τ) називається **зв'язним**, якщо лише множини X і \emptyset є замкненими й відкритими одночасно.
- **Озн. 1.6.** Множина M топологічного простору (X, τ) називається **36'язною**, якщо топологічний простір (M, τ_M) ϵ 36'язним.

Приклад 1.4. Тривіальний (антидискретний) простір і зв'язна двокрапка ϵ зв'язними просторами.

- **Озн. 1.7.** Довільна відкрита множина $G \subset T$, що містить точку $x \in T$, називається її **околом**.
- **Озн. 1.8.** Точка $x \in T$ називається **точкою дотику** множини $M \subset T$, якщо кожний окіл O(x) точки x містить хоча б одну точку із M: $\forall O(x) \in \tau : O(x) \cap M \neq \emptyset$.
- **Озн. 1.9.** Точка $x \in T$ називається **граничною точкою** множини $M \subset T$, якщо кожний окіл точки x містить хоча б одну точку із M, що не збігається з x: $\forall O(x) \in \tau : O(x) \cap \{M \setminus \{x\}\} \neq \emptyset$
- **Озн. 1.10.** Сукупність точок дотику множини $M \subset T$ називається **замиканням** множини M і позначається \overline{M} .
- **Озн. 1.11.** Сукупність **граничних точок** множини $M \subset T$ називається **похідною** множини M і позначається M'.

Теорема 1.1 (про властивості замикання). Замикання задовольняє наступним умовам:

- 1) $M \subset \overline{M}$;
- 2) $\overline{M} = \overline{M}$ (ідемпотентність);
- 3) $M \subset N \Rightarrow \overline{M} \subset \overline{N}$ (монотонність);
- 4) $\overline{M \cup N} = \overline{M} \cup \overline{N}$ (адитивність).
- 5) $\overline{\emptyset} = \emptyset$.

Доведення.

1). $M \subset \overline{M}$.

Нехай $x \in M$. Тоді x — точка дотику множини M. Отже, $x \in \overline{M}$.

2). $\overline{\overline{M}} = \overline{M}$

Внаслідок твердження 1) $\overline{M} \subset \overline{\overline{M}}$. Отже достатньо довести, що $\overline{\overline{M}} \subset \overline{M}$. Нехай $x_0 \in \overline{\overline{M}}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap \overline{M} \neq \emptyset$ (за означенням точки дотику), то існує точка $y_0 \in U_0 \cap \overline{M}$. Отже, множину U_0 можна вважати околом точки y_0 . Оскільки $y_0 \in \overline{M}$, то $U_0 \cap M \neq \emptyset$. Значить, точка $x_0 \in \overline{M}$ с точкою дотику множини M, тобто $x_0 \in \overline{M}$.

3) $M \subset N \Rightarrow \overline{M} \subset \overline{N}$.

Нехай $x_0\in \overline{M}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0\cap M\neq \emptyset$ (за означенням точки дотику) і $M\subset N$ (за умовою), то $U_0\cap N\neq \emptyset$. Отже, x_0 — точка дотику множини N, тобто $x_0\in \overline{N}$. Таким чином, $\overline{M}\subset \overline{N}$.

4) $\overline{M \cup N} = \overline{M} \cup \overline{N}$.

Із очевидних включень $M \subset M \cup N$ і $N \subset M \cup N$ внаслідок монотонності операції замикання випливає, що $\overline{M} \subset \overline{M} \cup N$ і $\overline{N} \subset \overline{M} \cup N$. Отже, $\overline{M} \cup \overline{N} \subset \overline{M} \cup N$. З іншого боку, припустимо, що $x \notin \overline{M} \cup \overline{N}$, тоді $x \notin \overline{M}$ і $x \notin \overline{N}$. Отже, існує такий окіл точки x, у якому немає точок з множини $M \cup N$, тобто $x \notin \overline{M} \cup \overline{N}$. Таким чином, за законом заперечення, $x \in \overline{M} \cup \overline{N} \Rightarrow x \in \overline{M} \cup \overline{N}$, тобто $\overline{M} \cup \overline{N} \subset \overline{M} \cup \overline{N}$.

5) $\overline{\emptyset} = \emptyset$.

Припустимо, що замикання порожньої множини не ϵ порожньою множиною: $x \in \overline{\emptyset} \Rightarrow \forall O(x) : O(x) \cap \emptyset \neq \emptyset$. Але $\forall N \subset X \ N \cap \emptyset = \emptyset$. Отже, $\overline{\emptyset} = \emptyset$.

Теорема 1.2 (критерій замкненості). Множина M топологічного простору X ϵ замкненою тоді і лише тоді, коли $M = \overline{M}$, тобто коли вона містить всі свої точки дотику.

Доведення. Необхідність. Припустимо, що M — замкнена множина, тобто $G = X \setminus M$ — відкрита множина. Оскільки, $M \subset \overline{M}$, достатньо довести, що $\overline{M} \subset M$. Дійсно, оскільки G — відкрита множина, вона є околом кожної своєї точки. До того ж $G \cap M = \emptyset$. Звідси випливає, то жодна точка $x \in G$ не може бути точкою дотику для множини M, отже всі точки дотику належать множині M, тобто $\overline{M} \subset M$.

$$G = X \setminus M \in \tau \Rightarrow G \cap M = \emptyset \Rightarrow \overline{M} \subset M$$
.

Достатність. Припустимо, що $\overline{M}=M$. Доведемо, що $G=X\setminus M$ — відкрита множина (звідси випливатиме замкненість множини M). Нехай $x_0\in G$. З цього випливає, що $x_0\not\in M$, а значить $x_0\not\in \overline{M}$. Тоді за означенням точки дотику існує окіл U_{x_0} такий, що $U_{x_0}\cap M=\varnothing$. Значить, $U_{x_0}\subset X\setminus M=G$, тобто $G=\bigcup_{x\in G}U_x\in \tau$. ■

Наслідок 1.1. Замикання \overline{M} довільної множини M із простору X ϵ замкненою множиною в X.

Теорема 1.3. Замикання довільної множини M простору (X, τ) збігається із перетином всіх замкнених множин, що містять множину M.

$$\forall M \in (X,\tau) \ \ \overline{M} = \bigcap_{\alpha} F_{\alpha}, F_{\alpha} = \overline{F}_{\alpha}, M \subset F_{\alpha} \ .$$

Доведення. Нехай M — довільна множина із (X, τ) і $N = \bigcap_{\alpha} F_{\alpha}$, де $F_{\alpha} = \overline{F}_{\alpha}$, $M \subset F_{\alpha}$.

Покажемо включення $\bigcap_{\alpha} F_{\alpha} \subseteq \overline{M}$.

$$N = \bigcap_{\alpha} F_{\alpha} \implies N \subseteq F_{\alpha} \ \forall \alpha \Longrightarrow N \subseteq \overline{F}_{\alpha} \ \forall \alpha.$$

Оскільки $\{F_{\alpha}\}$ — множина *усіх* замкнених множин, серед них є множина $\overline{M}: \ \exists \alpha_{\scriptscriptstyle 0}: F_{\alpha_{\scriptscriptstyle 0}} = \overline{M}$. Отже,

$$N \in \overline{F}_{\alpha} \ \forall \alpha \Rightarrow N \in F_{\alpha_0} = \overline{M} \Rightarrow \bigcap_{\alpha} F_{\alpha} \subset \overline{M}$$

 $N\in \overline{F}_{lpha}\ orall lpha \Rightarrow N\in \stackrel{\circ}{F}_{lpha_0}=\overline{M}\Rightarrow \bigcap_{lpha}F_{lpha}\subset \overline{M}\ .$ Тепер покажемо включення $\overline{M}\subseteq \bigcap_{lpha}F_{lpha}.$ Розглянемо

довільну замкнену множину F, що містить $\overline{F} = F$, $M \subset F$. Внаслідок монотонності замикання маємо:

$$\begin{split} \overline{F} &= F, M \subset F \implies \overline{M} \subset \overline{F} = F \implies \\ &\Rightarrow \overline{M} \subset F_{\alpha}, F_{\alpha} = \overline{F}_{\alpha} \ \forall \alpha \implies \overline{M} \subset \bigcap_{\alpha} F_{\alpha} \ . \end{split}$$

Порівнюючи обидва включення, маємо

$$\overline{M} = \bigcap_{\alpha} F_{\alpha} . \blacksquare$$

Наслідок 1.2. Замикання довільної множини М простору $X \in$ найменшою замкненою множиною, що містить множину М.

Озн. 1.12. $Hexa \check{u} A i B \longrightarrow \partial \epsilon i$ множини ϵ топологічному просторі Т. Множина А називається щільною в В, якщо $\overline{A} \supset B$.

Зауваження 1.3. Множина A не обов'язково міститься в B: множина раціональних чисел є щільною в множині ірраціональних чисел і навпаки.

Озн. 1.13. Якщо $\bar{A} = X$, множина A називається **скрізь** щільною.

Озн. 1.14. Множина A називається **ніде не щільною**, якщо вона не ϵ щільною в жодній непорожній відкритій підмножині множини X.

Множина $A \in$ щільною в кожній непорожній відкритій множині, якщо $\forall U \in \tau, U \neq \emptyset \ \overline{A} \supset U$, тобто кожна точка множини $U \in$ точкою дотику множини A. Отже, $\forall x \in U \ \forall O(x) \in \tau \ O(x) \cap A \neq \emptyset$. Заперечення цього твердження збігається з означенням ніде не щільної множини. Формальний запис означення має такий вигляд.

$$\exists U_0 \in \tau, U_0 \neq \emptyset \ \overline{A} \not\supset U_0 \Rightarrow \exists x_0 \in U_0 \ \exists O(x_0) \in \tau : O(x_0) \cap A = \emptyset.$$

Озн. 1.15. Простір Т, що містить скрізь щільну зліченну множину, називається **сепарабельним**.

Приклад 1.5. В топології числової прямої множина всіх раціональних чисел \mathbb{Q} ϵ щільною в множині всіх ірраціональних чисел $\mathbb{R} \setminus \mathbb{Q}$, і навпаки.

Приклад 1.6. Найпростішими прикладами ніде не щільних множин є цілі числа просторі \mathbb{R} і пряма в просторі \mathbb{R}^2 .

Приклад 1.7. Зліченна множина всіх раціональних чисел \mathbb{Q} ϵ скрізь щільною у просторі \mathbb{R} , отже простір \mathbb{R} ϵ сепарабельним.

3 того, що $\overline{\mathbb{Q}}=\mathbb{R}$ і $\overline{\mathbb{R}\setminus\mathbb{Q}}=\mathbb{R}$, зокрема, випливає, що \mathbb{Q} і $\mathbb{R}\setminus\mathbb{Q}$ є ані відкритими, ані замкненими множинами.

Приклад 1.8. Зліченна множина всіх поліномів з раціональними коефіцієнтами за теоремою Вєйєрштрасса є скрізь щільною в просторі неперервних функцій C[a,b]. Отже, простір C[a,b] є сепарабельним.

Література

- 1. Ляшко И.И., Емельянов В.Ф, Боярчук А.К. Основы классического и современного математического анализа. К.: Вища школа, 1988 (стр. 26–27).
- 2. Александрян Р.А., Мирзаханян Э.А . Общая топология. М.: Высшая школа, 1979 (стр. 10–20).
- 3. Энгелькинг Р. Общая топология. М.: Мир, 1986 (стр. 32–50).