Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 13 18stycznia $2017\,\mathrm{r}.$

M13.1. 0 punktów Znaleźć rozkład LU macierzy

$$A = \begin{bmatrix} 7 & 1 & 2 & 4 \\ 35 & 10 & 13 & 22 \\ 21 & 13 & 15 & 18 \\ 63 & 49 & 63 & 68 \end{bmatrix}.$$

M13.2. 0,5 punkta Niech $a = [a_1, a_2, \dots, a_n]^T$ będzie danym wektorem oraz niech $a_k \neq 0$, gdzie $1 \leq k \leq n$ n-1. Określmy macierz $M^{(k)} \in \mathbb{L}_n^{(1)}$ wzorem

(1)
$$M^{(k)} := \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & m_{k+1,k} & & & \\ & & \vdots & \ddots & & \\ & & m_{nk} & & 1 \end{bmatrix},$$

gdzie $m_{ik} := -a_i/a_k$, $(i = k+1, k+2, \dots, n)$. Udowodnić, że $M^{(k)}\boldsymbol{a} = [a_1, a_2, \dots, a_k, \underbrace{0, 0, \dots, 0}_{n-k \ razy}]^{\mathrm{T}}$,

tj. przekształcenie $M^{(k)}$ zachowuje bez zmian k początkowych składowych, a zeruje n-k ostatnich elementów wektora a.

0,5 punkta Udowodnić, że macierz odwrotna do macierzy $M^{(k)}$ (zob. (1)) ma postać M13.3.

$$\begin{bmatrix} M^{(k)} \end{bmatrix}^{-1} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -m_{k+1,k} & & \\ & & \vdots & \ddots & \\ & & -m_{nk} & & 1 \end{bmatrix}.$$

- **M13.4.** I punkt Niech $\boldsymbol{x} = [x_1, x_2, \dots, x_n]^T$. Sprawdzić, że wzór
 - a) $\|\boldsymbol{x}\|_1 := \sum_{k=1}^n |x_k|,$
 - b) $\|x\|_{\infty} := \max_{1 \leqslant k \leqslant n} |x_k|,$ definiuje normę w przestrzeni $\mathbb{R}^n.$

2 punkty Wykazać, że macierzowa norma spektralna, indukowana przez normę euklidesową wek $torów \| \cdot \|_2$, wyraża się wzorem

$$||A||_2 = \sqrt{\varrho(A^T A)},$$

gdzie promień spektralny $\varrho(A^TA)$ macierzy A^TA jest z definicji jej największą wartością własną.

- **M13.6.** 1 punkt Wykazać, że dla każdego $\boldsymbol{x} \in \mathbb{R}^n$ zachodzą nierówności a) $\|\boldsymbol{x}\|_{\infty} \leqslant \|\boldsymbol{x}\|_1 \leqslant n \|\boldsymbol{x}\|_{\infty}$;

 - $\|\boldsymbol{x}\|_{\infty} \leqslant \|\boldsymbol{x}\|_{2} \leqslant \sqrt{n} \|\boldsymbol{x}\|_{\infty};$
 - $\frac{1}{\sqrt{n}} \| \boldsymbol{x} \|_1 \leqslant \| \boldsymbol{x} \|_2 \leqslant \| \boldsymbol{x} \|_1.$ c)
- M13.7. I punkt Wykazać, że norma macierzowa indukowana przez normę wektorową $\|\cdot\|_{\infty}$ wyraża się wzorem

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

M13.8. 1 punkt Wykazać, że wzór

$$||A||_E \coloneqq \sqrt{\sum_{1 \leqslant i,j \leqslant n} a_{ij}^2}$$

definiuje submultiplikatywną normę w $\mathbb{R}^{n\times n}$, zwaną normą euklidesową, zgodną z normą wektorową $\|\cdot\|_2$.

- M13.9. 1 punkt Wykazać, że iloczyn dwu macierzy trójkątnych dolnych (górnych) tego samego stopnia jest macierza trójkatna dolna (górna).
- M13.10. | 1 punkt
 - a) Wykazać, że jeśli L jest macierzą trójkątną dolną z jedynkami na przekątnej głównej, to L^{-1} również jest macierzą tego typu.
 - b) Opracować metode wyznaczenia macierzy odwrotnej do macierzy trójkatnej dolnej L, z jedynkami na przekątnej głównej.
- **M13.11.** 1 punkt Załóżmy, że nieosobliwa macierz $A=[a_{ij}^{(1)}]\in\mathbb{R}^{n\times n}$ jest symetryczna, tj. $a_{ij}^{(1)}=a_{ji}^{(1)}$ dla $i,j=1,2,\ldots,n$. Załóżmy ponadto, że do rozwiązania układu równań liniowych $A{\pmb x}={\pmb b}$ można zastosować metodę eliminacji bez wyboru elementów głównych.
 - a) Wykazać, że wówczas wielkości $a_{ij}^{(k)}$, otrzymywane w tej metodzie kolejno dla $k=2,3,\ldots,n,$ są takie, że $a_{ij}^{(k)} = a_{ji}^{(k)}$ dla i, j = k, k + 1, ..., n.
 - b) Wskazać, jak można wykorzystać ten fakt dla zmniejszenia kosztu metody eliminacji.