R の基本操作(メモ)

第10回 農環技研 統計 GIS コース

三輪哲久(農業環境技術研究所 生態系計測研究領域長)

October, 2011

目次

1	はじめに – 注意事項と参考文献	2
2	R を使ってみよう	2
	2.1 ホームディレクトリと作業ディレクトリ	2
	2.2 R の開始と終了	2
3	R 環境設定のまとめ(メモ)	3
	3.1 ホームディレクトリと作業ディレクトリ	3
	3.2 環境変数	3
	3.3 R の操作	4
4	An Introduction to R	5
	4.1 基本操作	
	4.2 基本演算	5
	4.3 実行例	7

1 はじめに - 注意事項と参考文献

- 下記の説明で、「ディレクトリ」と「フォルダ」は同義。
- ▼ 下記の説明で , '\' = '¥' (ディレクトリの区切り記号)。
- 役に立つ文書 (インストールした R のフォルダに有る)。
 - o c:\Program Files\R\R-2.13.1\doc\manual\R-intro.pdf R 入門。
 - o c:\Program Files\R\PR-2.13.1\Program FAQ (テキストファイル) Windows 版 R のインストールに関する参考資料。
- 役に立つ Web サイト。
 - http://www.r-project.org/R プロジェクトの本家のサイト。'CRAN' をクリックするとミラーサイトを選べる。
 - http://www.okada.jp.org/RWiki/R の情報交換のサイト。
- 下記の説明で,ファイルシステムなど,OS (UNIX, Mac, Windows) に依存する部分につい は,おもに Windows に関して記述されている(筆者の利用環境)。

2 Rを使ってみよう

2.1 ホームディレクトリと作業ディレクトリ

- ホームディレクトリ (ホームフォルダ , home directory)
 - 各ユーザーに固有のフォルダで,各種の文書ファイルを保存する。
 - 特に指定しなければ、「マイドキュメント」フォルダが使われる。
 - c:\footnote{Users}\footnote{Users}\footnote{Users}\footnote{Users}\footnote{Users}\footnote{Vista}
 - c: ${\tt YDocuments}$ and Settings ${\tt Yusername} {\tt YMy}$ Documents ${\tt YMy}$
- 作業ディレクトリ

(作業フォルダ, working directory)

- R で行なう個別の仕事ごとに作成する。
- R のショートカット・アイコンも各仕事ごとに 作成(コピー)し,「プロパティ」(アイコンを 右クリック)の「作業フォルダ」で指定する。

2.2 Rの開始と終了

- R のアイコンをダブルクリックすると R が開始 する。
- R を終了するには, q() と入力する。 このとき, "作業スペースを保存しますか?" と聞かれる。"はい"をクリックすると,現在までの作業内容が作業ディレクトリの中の'.RData'と'.Rhistory'の2つのファイルに保存される。次回,その作業ディレクトリからRを実行したときに,それまでの作業内容が継承される。

図 1. 作業フォルダの指定

3 R環境設定のまとめ(メモ)

「環境変数」という言葉を知らない人は,この第3節を読み飛ばしても構わない。

3.1 ホームディレクトリと作業ディレクトリ

内容	rw-FAQ	R-intro
ホームディレクトリ (home directory)	§2.14	
● 各ユーザーに1つ。		
● R に限らず,各種ソフトウェアの設定用ファイルが置かれる。ま		
た,このディレクトリ(フォルダ)以下に文書ファイル(ワープ		
口作成の文書ファイルなど)が保存されることもある。		
● 環境変数 HOME で指定する。		
その指定がなければ ,「マイ ドキュメント」:		
c:\Documents and Settings\username\My Documents\ (XP)		
c:\Users\username\Documents\ (Win 7, Vista)		
R_USER ディレクトリ	§2.14	
● R に固有の設定(Rconsole, Rdevga など)を保存する。		
● 環境変数 R_USER で指定する。		
その指定が無ければ,ホームディレクトリが使われる。		
作業ディレクトリ (作業フォルダ , working directory)	§2.14	§1.5
● まとまった仕事ごとに別々のディレクトリを指定すると便利。	$\S 2.2,\ 2.5$	
● 「ショートカット」アイコンの「プロパティ」(右クリック)の「作		
業フォルダ」で指定する。		
● getwd() コマンドで現在の作業ディレクトリが分かる。		
● setwd("ディレクトリへのパス") コマンドで変更できる。		
あるいは , 'File' メニュー $ ightarrow$ 'Change dir' で変更できる。		
● 作業スペース.RData(後述)は,このディレクトリに保存される。		

3.2 環境変数

内容	rw-FAQ	R-intro
環境変数 (environmental variable)	§2.15	
● 各種プログラムで必要となる情報を指定する。		
m R では,例として次のようなものがある。		
LANGUAGE=en(英語モードで使う)		
R_USER=. (作業ディレクトリ '.' を R_USER とする)		
R_LIBS="c:\Program Files\R\myRlib" (パッケージの指定)		
環境変数を R_USER=. としておけば ,作業ディレクトリに Rconsole		
ファイルが保存される。作業ディレクトリごとに異なる言語・フォ		
ントを使うことができる。		
● 「ショートカットアイコン」の「プロパティ」(右クリック)の「リ		
ンク先」で指定する。		
● あるいは , ファイル '.Renviron'を作成し , そのファイルの中に		
記述する。ファイル'.Renviron'はホームディレクトリに置く。		

3.3 Rの操作

内容	rw-FAQ	R-intro
Rの開始	§2.5	
m R のショートカットアイコンをダブルクリックする。		
R の終了と作業スペース (workspace)	§6	
● R を終了するには , q() と入力する。		
● Rの終了時に,"作業スペースを保存しますか?" と聞かれる。		
"はい"をクリックすると,現在までの作業内容が作業ディレクト		
リの中の'.RData'と'.Rhistory'の2つのファイルに保存され		
る。次回 , その作業ディレクトリから R を実行したときに , それ		
までの作業内容が継承される。		
• したがって,異なる仕事には,異なる作業ディレクトリを用意す		
ると混乱がなくなる。		
● 必要がなくなれば , ファイル '. RData' を消去すればよい。		
2つのファイルRconsoleとRdevga	$\S 5.2$	
ullet Rconsole $ ightarrow$ R のコンソール画面の設定		
$\mathtt{Rdevga} o \mathrm{R}$ のグラフィックスのフォントの設定		
• Rconsole では,使用する言語,使用するフォントや色,画面		
の大きさなどを指定する。 $ m R$ を実行した後に , " $ m Edit$ " $ ightarrow$ " $ m GUI$		
preferences" のメニューから変更できる(Rconsole ファ		
イルを直接編集してもよい。		
• これら2つのファイルは,ホームディレクトリ(R_USERディレク		
トリ)に置く。		
R のメニューやメッセージに使われる言語	§3.3	
• メニューから "Edit" \rightarrow "GUI preferences" と進み ,	$\S 3.5$	
"Language for menus"の欄で,"en"または"ja"指定してファ		
イル Rconsole に保存する。		
● 環境変数 LANGUAGE で指定してもよい。。		
LANGUAGE=en(英語モードで使う)		
LANGUAGE=ja(日本語モードで使う)		
アイコンごとに別の言語で使用できる。		
● 英語の練習を兼ねて,英語モードで使用することが望ましい。		
R コンソールでの入力	§5.1	
 Help メニュー → Console 		
キーボードの使い方の説明。		
● 入力中に Tab キーを押すと , コマンドが補完される。		
注意: R の中では, ディレクトリの区切り記号は, '/' または, '\\'	§5.1	
のどちらでもよい。たとえば		
<pre>> .libPaths("c:/Program Files/R/myRlib")</pre>		
<pre>> .libPaths("c:\\Program Files\\R\\myRlib")</pre>		
のどちらでもよい('.libPaths()'はライブラリのあるディレクト		
リを指定するコマンド)。		

4 An Introduction to R

4.1 基本操作

内容	rw-FAQ	R-intro
Rの開始と終了		§1.5
● アイコンをダブルクリックして開始 (Windows)。		
• q() コマンドで終了。		
"作業スペースを保存しますか?" の問いに "はい" と答えると ,		
途中経過が作業ディレクトリの".RData"ファイルに保存される		
(次回に継続される)。		
ヘルプとコメント		$\S 1.7$
• help.start() (または , Help メニューから "Html help")。		$\S 1.8$
help(glm),または?glm(特定の関数の情報)。		
help("if") (場合によっては , ""で囲む)。		
• help.search("glm"),または??glm(広く情報を検索)。		
● help 画面の最後に与えられている examples を参考にして,自分		
の問題に当てはめればよい。		
● '#' 以降は行の最後までコメント		
コマンドの履歴と編集	$\S 5.1$	§1.9
● Help メニュー → Console に,キーボード使い方の説明がある。		
● 上下矢印キーで過去のコマンドを呼び出せる。		
● Fileメニューの "New Script" ウィンドウで作業すると編集が便利。		
● コマンドを中断するには <esc> キーを押す。</esc>		
オブジェクト		§1.11
• R で扱う対象はオブジェクト $({ m object})$ とよばれ,R の実行中は保		
持される。		
● object()(または ls())コマンドで現在のオブジェクトを表示。		
● rm() コマンドでオブジェクトを消去。		

4.2 基本演算

内容	rw-FAQ	R-intro
基本はベクトル		§2.1
● c() はベクトルを与える関数。スカラーは長さ1のベクトル。		
> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)		
> y <- 15.0		
<pre>> length(x); length(y)</pre>		
[1] 5		
[1] 1		
● 代入('<-' 演算子)では値が表示されない。式だけを書くと値が		
表示される。直前の値は.Last.value にある。		

> 2*x # 要素ごとに計算。 [1] 20.8 11.2 6.2 12.8 43.4 > print(z <- .Last.value) # 直前の結果。 [1] 20.8 11.2 6.2 12.8 43.4

内容	rw-FAQ	R-intro
◆ベクトルの各要素は繰返し計算に使われる。上記の '2*x' 参照。		§2.2
● ベクトル用の関数もある。		
length(x), sum(x), mean(x), var(x), max(x), min(x), sort(x)		
など。		
規則的な配列。		$\S 2.3$
● c(1:10)(単に'1:10'でもよい)。		
• seq(from=, to=, by=) ,または,seq(from=, to=, length=)。		
rep(x, times=),および,rep(x, each=)。		
数値のほかにベクトルの要素となるもの。		$\S 2.4$
● 論理値。TRUE, FALSE。		$\S 2.6$
> x >= 10.0		
[1] TRUE FALSE FALSE TRUE		
x の要素ごとに計算されていることに注意。		
論理演算子: <, <=, >, >=, ==, !=, &, , !		
● 文字列。		
> print(z <- c("abc", "def", "ghi")) # 文字列ベクト	・ル。	
[1] "abc" "def" "ghi" > paste(z, c(1:3), sep="-") # 各要素ごとに結合。		
[1] "abc-1" "def-2" "ghi-3" > paste(z, collapse="") # ベクトル内の要素を結合。 [1] "abcdefghi"		
詳しくは , help(paste) を参照。		
欠測値		$\S 2.5$
◆ 欠測値 NA (Not Available)。非数値 NaN (Not a Number)。		
関数: is.na(x), is.nan(x)		
ベクトルの要素の指定。		$\S 2.7$
● > x <- c(10.4, 5.6, 3.1, 6.4, 21.7) > x[2] # 2番目の要素。 [1] 5.6		
1		
[1] 10.4 5.6 3.1		
> x[x >= 10.0] # 特定の条件を満たす要素。 [1] 10.4 21.7		
		60.0
ベクトル以外のオブジェクト (objects)。いろいろある。		$\S 2.8$
• 行列 (matrix), 配列 (array), リスト (list), 関数 (function) など。		
● データ・フレーム (date frame) は統計解析で重要。		

4.3 実行例

[1] "abc" "def" "ghi"

R version 2.13.1 (2011-07-08) Copyright (C) 2011 The R Foundation for Statistical Computing ISBN 3-900051-07-0 Platform: i386-pc-mingw32/i386 (32-bit) Rは、自由なソフトウェアであり、「完全に無保証」です。 一定の条件に従えば、自由にこれを再配布することができます。 配布条件の詳細に関しては、'license()' あるいは'licence()' と入力してください。 Rは多くの貢献者による共同プロジェクトです。 詳しくは'contributors()' と入力してください。 また、RやRのパッケージを出版物で引用する際の形式については 'citation()' と入力してください。 'demo()' と入力すればデモをみることができます。 'help()' とすればオンラインヘルプが出ます。 'help.start()' で HTML ブラウザによるヘルプがみられます。 'q()⁵, と入力すれば R を終了します。 > demo() # どんなデモがあるか表示。('#' から行の最後までは, コメント。) > demo(graphics) # 'graphics' のデモ。 demo(graphics) Type <Return> to start : > help.start() # Html help のスタート。 starting httpd help server ... 完了 もし何も起きなければ、自分で 'http://127.0.0.1:23598/doc/html/index.html' を開いて ください > help(glm) # 'glm' のヘルプ > ?glm # この方式でもよい。 > getwd() # 現在の作業ディレクトリ。 [1] "C:/Users/user00/Documents/R/StatGIS10" > Sys.getenv("R_USER") # 環境変数の表示。 [1] "." > q() # R の終了。 > x <- c(10.4, 5.6, 3.1, 6.4, 21.7) # 代入だけでは , 結果は表示されない。 > x # オブジェクトを入力すると,値が表示される。 [1] 10.4 5.6 3.1 6.4 21.7 > length(x) [1] 5 > print(y <- 15.0) # 代入時に print() 関数を使うと結果を表示。 > length(y) # スカラーは長さ 1 のベクトル。 [1] 1 > 2*x # 要素ごとに計算。 [1] 20.8 11.2 6.2 12.8 43.4 > print(z <- .Last.value) # 直前の結果。 [1] 20.8 11.2 6.2 12.8 43.4 > c(1:10) # 規則的な数列。 [1] 1 2 3 4 5 6 7 8 9 10 > 1:10 # この形でもよい。 [1] 1 2 3 4 5 6 7 8 9 10 > print(z <- c("abc", "def", "ghi")) # 文字列ベクトル。

```
> paste(z, c(1:3), sep="-") # 各要素ごとに結合。
[1] "abc-1" "def-2" "ghi-3"
> paste(z, collapse="") # ベクトル内の要素を結合。詳しくは, help(paste)。
[1] "abcdefghi"
> 0/0 # NaN (Not A Number)
[1] NaN
> x
[1] 10.4 5.6 3.1 6.4 21.7
> x >= 10.0 # 要素ごとに論理計算。
[1] TRUE FALSE FALSE FALSE TRUE
> x[2] # 2番目の要素。
[1] 5.6
> x[1:3] # 複数の要素。
[1] 10.4 5.6 3.1
> x[x >= 10.0] # 特定の条件を満たす要素。
[1] 10.4 21.7
> x[x >= 10.0] <- 10.0 # 打ち切り操作。
[1] 10.0 5.6 3.1 6.4 10.0
> ls() # 現在使われているオブジェクト。
[1] "x" "y" "z"
> rm(list=ls()) # 全てのオブジェクトを消去。
> # データ (data frame) の読み込み。
> # read.table("ファイル名", header=TRUE)
> duncan <- read.table("duncan.tab", header=TRUE)</pre>
> duncan
  variety block yield
             1 39.2
1
       Α1
             2 63.7
2
       Α1
... 途中省略 ...
41
       A7
             5 58.1
42
       A7
             6 69.1
> # クリップボードからの読み込み。
> duncan1 <- read.table("clipboard", header=TRUE)</pre>
> duncan1
  variety block yield
       Α1
            1 39.2
2
       A1
             2 63.7
... 途中省略 ...
             5 58.1
41
       A7
       Α7
             6 69.1
> duncan$yield # "data frame 名$変数名" で参照する。
 [1] 39.2 63.7 56.9 41.9 49.3 46.7 63.3 63.4 81.9 66.9 65.0 86.8 65.6 68.8
[15] 58.6 56.0 86.1 70.5 47.3 58.2 61.9 64.2 74.5 63.0 80.3 72.5 78.6 54.8
[29] 73.4 68.2 55.2 60.9 62.8 61.9 56.4 51.4 46.0 78.7 56.5 57.4 58.1 69.1
> yield
         オブジェクト 'yield' がありません
エラー:
> attach(duncan) # 変数名だけで参照できるようにする。
> yield
[1] 39.2 63.7 56.9 41.9 49.3 46.7 63.3 63.4 81.9 66.9 65.0 86.8 65.6 68.8
[15] 58.6 56.0 86.1 70.5 47.3 58.2 61.9 64.2 74.5 63.0 80.3 72.5 78.6 54.8
[29] 73.4 68.2 55.2 60.9 62.8 61.9 56.4 51.4 46.0 78.7 56.5 57.4 58.1 69.1
```

> block [1] 1 2 [38] 2 3 > block

[1] 1 2 3 4 5 6 1

- > block <- as.factor(block) # block 変数を分類変数として扱う。
- > fm <- aov(yield ~ block + variety) # 乱塊法分散分析。
- > summary(fm) # 結果の要約。

Df Sum Sq Mean Sq F value Pr(>F)

block 5 709.6 141.92 1.7833 0.146514 variety 6 2201.7 366.96 4.6111 0.001982 **

Residuals 30 2387.4 79.58

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > TukeyMC <- TukeyHSD(fm, "variety", conf.level=0.95) # Tukey の多重比較。 > TukeyMC

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = yield ~ block + variety)

\$variety

\$Variety						
	diff	lwr	upr	p adj		
A2-A1	21.60000000	5.341859	37.858141	0.0037694		
A3-A1	17.98333333	1.725193	34.241474	0.0226659		
A4-A1	11.90000000	-4.358141	28.158141	0.2720878		
A5-A1	21.68333333	5.425193	37.941474	0.0036111		
A6-A1	8.48333333	-7.774807	24.741474	0.6542984		
A7-A1	11.35000000	-4.908141	27.608141	0.3233518		
A3-A2	-3.61666667	-19.874807	12.641474	0.9914471		
A4-A2	-9.7000000	-25.958141	6.558141	0.5060767		
A5-A2	0.08333333	-16.174807	16.341474	1.0000000		
A6-A2	-13.11666667	-29.374807	3.141474	0.1789977		
A7-A2	-10.25000000	-26.508141	6.008141	0.4412442		
A4-A3	-6.08333333	-22.341474	10.174807	0.8957640		
A5-A3	3.70000000	-12.558141	19.958141	0.9903563		
A6-A3	-9.50000000	-25.758141	6.758141	0.5302580		
A7-A3	-6.63333333	-22.891474	9.624807	0.8520335		
A5-A4	9.78333333	-6.474807	26.041474	0.4960790		
A6-A4	-3.41666667	-19.674807	12.841474	0.9936813		
A7-A4	-0.55000000	-16.808141	15.708141	0.9999998		
A6-A5	-13.20000000	-29.458141	3.058141	0.1736352		
A7-A5	-10.33333333	-26.591474	5.924807	0.4317003		
A7-A6	2.86666667	-13.391474	19.124807	0.9975739		

- > plot(TukeyMC)
- > detach(duncan) # "duncan"をサーチパスから除く。
- > rm(list=ls()) # 全てのオブジェクトを消去。

95% family-wise confidence level


```
> x <- c(1:10)
> y <- x + rnorm(10) # 正規乱数を加える。
> LinearData <- data.frame(var1=x, var2=y) # data frame の作成。
> plot(LinearData$var1, LinearData$var2)
> attach(LinearData) # 変数名のみで参照する ("LinearData"をサーチパスに加える)。
> fm1 <- lm(var2 ~ var1) # 1次回帰分析。
> summary(fm1)
Call:
lm(formula = var2 ~ var1)
Residuals:
            10 Median
                           30
-1.7111 -0.6835 0.2999 0.7476 1.3916
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                       0.7454
                                0.595 0.568023
(Intercept)
             0.4438
                       0.1201
                                7.015 0.000111 ***
var1
             0.8428
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 1.091 on 8 degrees of freedom
Multiple R-squared: 0.8602,
                             Adjusted R-squared: 0.8427
F-statistic: 49.21 on 1 and 8 DF, p-value: 0.0001109
> abline(fm1, col = "red") # 回帰直線を書き加える。
> q()
```

> # data frame の作成 (回帰分析のシミュレーション)。

