LEC16 - Integration By Parts Continued

E. Warr	
February 11,2025 Section 3.1	
Section 3.1	
	Waren-Un Robbem
	For which of the following integrals is integration by parts a suitable method?
	1. [asclant3x]dx 2. [3xcos(nx)dx 3. [xext]dx 4. [xtex
	Example
	Evaluate Je*cos(2*)dx
	$u = \cos(2x) \qquad dv = e^{x} \implies \int e^{x} \cos(2x) dx = e^{x} (\cos(2x) dx = e^{x} (\cos(2x) + 2) e^{x} \sin(2x) dx$
	$du = -2 \sin(12\pi) V = e^{\pi}$
	$u = \sin(2x) \qquad dv = e^{x} \implies \int e^{x} \cos(2x) dx = e^{x} \cos(2x) + 2 \left[e^{x} \sin(2x) - 2 \int e^{x} \cos(2x) dx \right]$
	du= 2cos(te) v=ex
	$\Rightarrow \int \int e^{x} \cos(2x) + 2e^{x} \cos(2x) + 2e^{x} \sin(2x)$
	$\Rightarrow \int e^{\kappa} \cos(2\kappa) d\kappa = \frac{e^{\kappa} \cos(2\kappa) \cdot 2e^{\kappa} \sin(2\kappa)}{5}$
	$\int e^{x} \cos(2x) dx = \frac{1}{5}$