Lista 5 zadanie 4

Wiktor Hamberger 308982

26 maja 2020

Twierdzenie 1. Aby scalić dwa n-elementowe ciągi trzeba wykonać co najmniej 2n-1 porównań.

 $Dow \acute{o}d.$ Rozważmy następującą grę między algorytmem a złośliwym adwersarzem:

- Sytuacja początkowa: adwersarz twierdzi, że zna takie ciągi $A=a_0a_1\ldots a_{n-1}$ i $B=b_0b_1\ldots b_{n-1}$, których scalenie będzie wymagało wykonania co najmniej 2n-1 porównań. Algorytm nie zna A i B, wie tylko, że liczą one po n elementów każdy.
- Cel gry:
 - algorytmu: scalenie A i B używając mniej niż 2n-1 ruchów;
 - adwersarza: zmuszenie algorytmu do zadania co najmniej 2n-1 zapytań.
- Ruchy:
 - algorytmu: porównanie a_i i b_j , dla $0 \le i, j < n$, algorytm nie pyta o porównania wyrazów w tym samym ciągu, ponieważ chce zminimalizować liczbę zapytań, a ciągi są posortowane;
 - adwersarza: odpowiedź na zapytanie.
- Koniec gry następuje, gdy algorytm scali A i B.

Tezę twierdzenia udowodnimy, jeżeli pokażemy, że adwersarz niezależnie od algorytmu posiada strategię wygrywającą. Strategia dla adwersarza:

- z zadania wiemy, że:
 - chcemy mieć 2n zestawów danych,
 - każde porównanie wykonane przez algorytm eliminowało co najwyżej jeden zestaw;

- rozważmy możliwe ciągi wynikowe W, utworzone w następujący sposób:
 - $W_0 = a_0 b_0 a_1 b_1 \dots a_{n-1} b_{n-1} = w_0 w_1 w_2 \dots w_{2n-1},$
 - $-W_i$ dla i>0 powstaje w wyniku zamiany miejscami w_{i-1} i w_i .

Ciąg W_0 ma 2n elementów, więc dostępnych różnych zamian jest 2n-1. To daje nam 2n różnych ciągów W_i . Dla zobrazowania:

$$W_0 = a_0b_0a_1b_1 \dots a_{n-1}b_{n-1}$$

$$W_1 = b_0a_0a_1b_1 \dots a_{n-1}b_{n-1}$$

$$W_2 = a_0a_1b_0b_1 \dots a_{n-1}b_{n-1}$$

$$W_3 = a_0b_0b_1a_1 \dots a_{n-1}b_{n-1}$$

$$\vdots$$

$$W_{2n-1} = a_0b_0a_1b_1 \dots b_{n-1}a_{n-1}$$

- Rozważmy dowolne zapytanie algorytmu "jakie jest a_i w stosunku do b_j ". Mamy kilka możliwości:
 - -i=j, wtedy adwersarz odpowiada, że a_i jest mniejsze od b_j . Eliminuje to jeden przypadek, w którym a_i jest większe od b_j , czyli $w_{2i}=b_j$ i $w_{2i+1}=a_i$, co odpowiada ciągowi W_{2i+1} .
 - -i = j + 1, wtedy adwersarz odpowiada, że a_i jest większe od b_j . Eliminuje to jeden przypadek, w którym a_i jest mniejsze od b_{i-1} , czyli $w_{2i-1} = a_i$ i $w_{2i} = b_{i-1}$, co odpowiada ciągowi W_{2i} .
 - -i > j+1, wtedy adwersarz odpowiada, że a_i jest większe od b_j . Nie eliminuje to żadnego z przypadków, ponieważ $i-j \geq 2$, a kolejne ciągi W to zamiany a_x z b_x lub b_x z a_{x+1} , więc a_i i b_j są zbyt odległe od siebie.
 - -i < j, wtedy adwersarz odpowiada, że a_i jest mniejsze od b_j . Podobnie jak wyżej nie eliminuje to żadnego przypadku, ponieważ nigdy nie zamieniamy ze sobą a_x i b_y dla x < y.

Z tego wynika, że dla każdego zapytania, usuniemy maksymalnie jeden z możliwych ciągów W, więc potrzeba co najmniej 2n-1 zapytań, żeby jednoznacznie odkryć W, a co za tym idzie scalić A i B.