

Shortest-paths tree

Main Idea ---- 1

is a shortest path from s to d

Then

- (i) all subpaths are shortest optimal substructure!
- (ii) After $\delta(s, \pi(v))$ is known, we can get $\delta(s, v)$ by Relax($\pi(v)$, v, w)

 e.g. After $\delta(s, c) = 9$ is known, we have $\delta(s, d) = 9 + w(c, d) = 12$

If G contains no negative cycles,

- (i) every shortest path is a simple path
- (ii) every shortest path has at most n 1 edges

visit a vertex at most once

(For ease of discussion, assume that there are no 0-cycles)

Main Idea: Bellman-Ford (no negative cycles)

shortest path tree

* U_i: vertices whose shortest paths having i edges

*
$$U_0$$
 phase 1 U_1 phase 2 U_2 U_2 U_0

main idea 1 - correctness

* A simple path has at most n - 1 edges

main idea 2 - time complexity

Traditional approach: DP (See 15-14a)

bottom-up computation (left-to-right)

$$\pi(x) \in \{t, u, v\}$$

$$d(x) = \begin{cases} d(t) + 2, \\ d(u) + 1, \\ d(v) + (-2) \end{cases}$$

DP: 有答案的存起來等別人問 (†, u, v 等 * 來 問答案)

24.2: 有答案的主動去修正有需要的人 (†, U, V主動用答案修正X)

arrange vertices in topological order 24-7a

- * all edges are from left to right >
- * $\pi(v_i)$ is one of $v_0, v_1, v_2, ..., v_{i-1}$ (or NIL)
- * Once $v_0, v_1, v_2, ..., v_{i-1}$ ok $\Rightarrow v_i$ ok!
- * Initially, $d(v_0)$ is correct

 v_0 does "relax" with correct $d(v_0) \Rightarrow d(v_1)$ is correct

- \Rightarrow v_1 does "relax" with correct $d(v_1) \Rightarrow d(v_2)$ is correct
- \Rightarrow v_2 does "relax" with correct $d(v_2) \Rightarrow d(v_3)$ is correct
- \Rightarrow • all $d(v_i)$ are correct (by induction)

The longest path problem on a DAG

Negating the edge weights

- * edge weights: 5, -2, 7, -1, ... \Rightarrow -5, +2, -7, +1, ...
- * path lengths: -3, 12, 73, 24, ... ⇒ +3, -12, -73, -24, ... longest shortest

 $\delta(v) > \delta(\pi(v))$

Main Idea: Dijkstra (no negative edge)

No negative edge

$$\Rightarrow$$
 rank(v) > rank(π (v))

$$\Rightarrow$$
 Once 1 2 3 • • • k ok, (k+1) can be computed.

Why all weights should be nonnegative?

(shortest path tree of 24-5 Fig.)

Dijkstra's shortest path algorithm

* d[u] 記住U和S之間目前已知的最短距離 (π[u] 記住目前的predecessor) Set S

Dijkstra's shortest path algorithm

Prim's MST

* key[u] 記住u和T之間最短的一條edge

Prim's MST

* key[u] 記住u和T之間最短的一條edge

Prim's MST

key[v]: shortest edge to T

 $\pi[v]$: nearest vertex in T

 $u \leftarrow ExtractMin(Q)$

 $T \leftarrow T \cup \{u\}$

reduce key[·] of Adj(u)

(decrease-key)

Dijkstra's shortest path

d[v]: known shortest distance to s

 $\pi[v]$: current predecessor

 $u \leftarrow ExtractMin(Q)$

 $S \leftarrow S \cup \{u\}$

relax $d[\cdot]$ of Adj(u)

(decrease-key)

Steps 1~3:		Build Q			O(V)		O(V)		O(V)	
Step	o 5:	V times Extract-Min			O(V ²)		O(V Ig	V)	O(V lg V)	
Steps 7~9:		E times Decrease-Key			O(E) O(E Ig		V)	O(E)		
					O(V2+	E)	O(E Ig	(V)	O(E + Vlg V)	
P	Procedure		Binary heap (worst-case)		cci heap rtized)	ar	ray			
<u>, </u>	Make-Hea	AP Θ(1)		Θ	(1)	O(1)				
Insert			$\Theta(\lg n)$		(1)	O(1)				
N	MINIMUM		$\Theta(1)$	Θ	(1)		O(n)			
The state of the s	EXTRACT-MIN		$\Theta(\lg n)$	0(lgn)	(D(n)		00.4	
U	Union		$\Theta(n)$	Θ	(1))(n)	(See 22-1)		
DECREASE-		KEY	$\Theta(\lg n)$	Θ	(1)	(O(1)			
Ι	DELETE		$\Theta(\lg n)$	0(lg n)		O(1)			

O(n)

O(n)

O(n)

build

array

f. heap

24-10z

b. heap

Single-Source Shortest Paths Algorithms - Review Main Ideas

Optimal substructure: $\pi(v) \rightarrow v$ ok relax ok

No negative cycles: simple path (at most n-1 edges)

Bellman-Ford (no negative cycles, can detect) O(VE)
= {s}

Dijkstra (no negative edges) O(Vlg V+E) $= \{s\}$ $rank(1) \rightarrow rank(2) \rightarrow rank(3) \rightarrow ... \rightarrow rank(n)$ ok ok

Two important special cases

Single-Source on un-weighted graph O(V+E)
BFS

Single-Source on a DAG: shortest/longest O(V+E)

- (1) Bellman-Ford: one phase left to right
- (2) classical: DP

Bellman-Ford with negative cycles

Assume that G contains a negative cycle C reachable from s After n-1 iterations, every $d_i \neq \infty$

$$d(a) \neq \infty$$
 after? iteration $d(b) \neq \infty$ after? iteration $d(d) \neq \infty$ after? iteration $d(j) \neq \infty$ after? iteration

 \Rightarrow after n-1 iterations, any vertex v reachable from s has $d(v) \neq \infty$

Bellman-Ford with negative cycles

Assume that G contains a negative cycle C reachable from s After n-1 iterations, every $d_i \neq \infty$

At iteration n, at least one v; accepts "Relax"

