

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА **09.04.01/07 Интеллектуальные системы анализа, обработки и интерпретации больших данных**

ОТЧЕТ

по домашнему заданию № __1_

Название: Д	<u>(ескриптивный анализ данных</u>	
Дисциплина	: Методы машинного обучения	
Студент	ИУ6-22М	Т.И. Кадыров

(Группа)

(Подпись, дата)

(И.О. Фамилия)

Домашнее задание №1. Дескриптивный анализ данных

Кадыров Т.И. ИУ6-22М

Цель работы

Приобрести опыт решения практических задач по анализу данных, таких как загрузка, трансформация, вычисление простых статистик и визуализация данных в виде графиков и диаграмм, посредством языка программирования Python.

Рассчет варианта

Задание 1. Анализ индикаторов качества государственного управления (The Worldwide Government Indicators, WGI)

1.1 Загрузите данные в DataFrame

Tillbi	ort pandas as p	pd										
df :	aгружаем data = pd.read_exce head()								eader=[13,	14])		
	Unnamed: 0_level_0	Unnamed 1_level_0						1996	;	1998		
(Country/Territory	Code	Estimate	StdErr	NumSrc	Ranl	k Lowe	r Upper	Estimate	StdErr		NumSrc
0	Aruba	ABW	/ NaN	NaN	NaN	Nal	N Nai	N NaN	NaN	NaN		2.0
1	Andorra	ADC	1.318143	0.480889	1.0	87.09677	1 72.04301	5 96.774193	1.334759	0.453149		1.0
2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.30107	5 0.00000	0 27.419355	-1.176012	0.324013		8.0
3	Angola	AGC	-1.167702	0.262077	4.0	9.677420	0.53763	4 27.419355	-1.180451	0.227055		10.0
4	Anguilla	AIA	NaN	NaN	NaN	NaN	N Nai	N NaN	NaN	NaN		1.0
	ws × 146 columns											
# 00	бъединяем год и											
new_df.		l[1] if c							.{col[1]}"	for col	in (,
# 00 new df.d	бъединяем год и _columns = [co columns = new_	l[1] if c columns	ol[1] in ['Country/	Territor	ry', 'Cod	e'] else	f"{col[0]}				
# 00 new df.d	бъединяем год и _columns = [co columns = new_ head()	l[1] if c columns	ol[1] in ['Country/	erritor r 1996.N	ry', 'Cod	e'] else	f"{col[0]}		1998.Estin		df.column
# 00 new df.ddf.ld	бъединяем год и columns = [co columns = new_o head() Country/Territory	l[1] if cocolumns Code 19	ol[1] in ['Country/T	erritor r 1996.N	lumSrc 1	996.Rank 1	f"{col[0]}	1996.Upper	1998.Estin	nate NaN	df.column
# 00 new df. df. l	бъединяем год и columns = [co columns = new_o head() Country/Territory Aruba	l[1] if cocolumns Code 19 ABW	ol[1] in [96.Estimate NaN	'Country/T 1996.StdEn	r 1996.N	lumSrc 19 NaN 1.0 8	996.Rank 1	f"{col[0]} 1996.Lower NaN	1996.Upper NaN	1998.Estin	nate NaN	df.colum 1998.Stc
# 00 new df. 0 df. 1	бъединяем год и columns = [columns = new_head() Country/Territory Aruba Andorra	Code 19 ABW ADO	96.Estimate NaN 1.318143	1996.StdEr NaN 0.480888	r 1996.N	lumSrc 19 NaN 1.0 8 2.0	996.Rank 1 NaN 87.096771	f"{col[0]} 1996.Lower NaN 72.043015	1996.Upper NaN 96.774193	1998.Estin	nate NaN 1759 6012	1998.Stc
# 00 new df. df. l	бъединяем год и columns = [columns = new_ohead() Country/Territory Aruba Andorra Afghanistan	Code 19 ABW ADO AFG	96.Estimate NaN 1.318143 -1.291705	1996.StdEr NaN 0.480889 0.340507	r 1996.N	lumSrc 19 NaN 1.0 8 2.0	996.Rank 1 NaN 87.096771 4.301075	f"{col[0]} 996.Lower NaN 72.043015 0.000000	1996.Upper NaN 96.774193 27.419355	1998.Estin	nate NaN 1759 6012	1998.Sc 0.45

1.2 Отсортируйте данные по убыванию индекса DataFrame

```
In [ ]: df_desc = df.iloc[::-1]
         df desc.head()
              Country/Territory Code 1996.Estimate 1996.StdErr 1996.NumSrc 1996.Rank 1996.Lower 1996.Upper 1998.Estimate 1998.St
Out[]:
         213
                     Zimbabwe
                                ZWE
                                           -0.278847
                                                        0.244907
                                                                                47.849461
                                                                                             30.645161
                                                                                                         60.752689
                                                                                                                        -0.504802
         212
                        Zambia
                                ZMB
                                           -0.840641
                                                        0.262077
                                                                           4.0
                                                                                24.731182
                                                                                              5.913979
                                                                                                         41.397850
                                                                                                                        -0.853156
                                                                                                                                     0.22
                   Congo, Dem.
         211
                                           -1.647852
                                                        0.315914
                                                                                 0.000000
                                                                                              0.000000
                                                                                                         12.365591
                                                                                                                        -1.416679
                                                                                                                                     0.310
                          Rep.
         210
                    South Africa
                                           0.732927
                                                        0.210325
                                                                                76.344086
                                                                                             66.129036
                                                                                                         81.182793
                                                                                                                        0.638809
                                 ZAF
                                                                           6.0
                                                                                                                                     0.188
                        Serbia
                                           -1.140072
                                                        0.262077
                                                                           4.0 11.827957
                                                                                                         29.032259
                                                                                                                        -1.195605
         209
                                                                                              0.537634
        5 rows × 146 columns
```

1.3 Отобразите данные по индексу WGI за 2022 год в виде горизонтального столбчатого графика

```
In []: import matplotlib.pyplot as plt

In []: # Сортируем по полю 2022.Rank
df_sort = df.sort_values(by='2022.Rank')
# Удаляем те строки, у которых за этот год нет данных
df_sort_dropna = df_sort.dropna(subset=['2022.Rank'])
plt.figure(figsize=(30,60))
plt.barh(df_sort_dropna['Country/Territory'], df_sort_dropna['2022.Rank'])
plt.xlabel('Rank')
plt.ylabel('Country')
plt.title('Страны по индексу WGI за 2022 год')
plt.show()
```


1.4 Сформируйте DataFrame из исходного для региона в соответствии с Вашим вариантом

Вариант 4. Middle East and North Africa (MENA)

```
In []: # Исходный датасет
    df_region = pd.read_excel('./data/regions.xlsx')
    # Страны региона MENA
    df_mena = df_region[df_region['Region'] == 'MENA']
    # WGI индексы для стран MENA
    df_wgi_mena = df.merge(df_mena, how='inner', left_on='Code', right_on='Code')
    # Удаляем столбец Country/Territory. Выставляем индекс по Country
    df_wgi_mena.set_index('Country', inplace=True)
    df_wgi_mena.drop(columns='Country/Territory', inplace=True)
```

1.5 Выведите данные DataFrame'a

```
In [ ]: df_wgi_mena
```

Out[]:		Code	1996.Estimate	1996.StdErr	1996.NumSrc	1996.Rank	1996.Lower	1996.Upper	1998.Estimate	1998.StdErr	1998.Νι
	Country										
	United Arab Emirates	ARE	-0.005579	0.312212	3.0	57.526882	35.483871	72.043015	0.033033	0.260451	
	Bahrain	BHR	0.328689	0.312212	3.0	63.978493	50.537636	77.419357	0.250789	0.260451	
	Algeria	DZA	-0.566741	0.262077	4.0	33.333332	16.666666	52.688171	-0.916649	0.227055	
	Egypt	EGY	-0.472254	0.244907	5.0	38.709679	19.892473	53.763439	-0.477870	0.198134	
	Iran	IRN	-0.480607	0.262077	4.0	37.634407	18.817204	54.301075	-0.460588	0.227055	
	Iraq	IRQ	-1.602183	0.262077	4.0	0.537634	0.000000	9.139785	-1.422613	0.227055	
	Israel	ISR	1.354008	0.210325	6.0	88.172043	81.182793	91.397850	1.148573	0.188628	
	Jordan	JOR	-0.035407	0.244907	5.0	55.376343	39.784946	65.053764	0.112762	0.198134	
	Kuwait	KWT	0.478682	0.262077	4.0	70.430107	59.139786	80.645164	0.562503	0.227055	
	Lebanon	LBN	-0.659695	0.262077	4.0	31.182796	13.978495	49.462364	-0.474878	0.227055	
	Libya	LBY	-0.871937	0.262077	4.0	20.430107	3.763441	39.247311	-0.907353	0.227055	
	Morocco	MAR	-0.106927	0.262077	4.0	53.225807	34.946236	63.440861	0.103346	0.227055	
	Oman	OMN	0.414642	0.262077	4.0	67.741936	56.989246	77.419357	0.724727	0.227055	
	Qatar	QAT	-0.045596	0.262077	4.0	54.838711	37.634407	66.129036	0.474643	0.227055	
	Saudi Arabia	SAU	-0.163303	0.262077	4.0	51.075268	32.258064	62.903225	-0.263509	0.227055	
	Syria	SYR	-0.881176	0.262077	4.0	19.892473	3.763441	38.709679	-0.914690	0.227055	
	Tunisia	TUN	-0.533678	0.262077	4.0	35.483871	17.741936	53.225807	-0.433108	0.227055	
	Yemen	YEM	-0.743732	0.262077	4.0	27.419355	8.602151	47.311829	-0.998175	0.227055	

1.6 Постройте графики индекса WGI за 1996-2022 для стран своего региона (estimate)

```
In []: # Оставляем только столбцы Estimate и Country

df_plot_mena = df_wgi_mena.filter(regex='Estimate|Country')

# Транспонируем датафрейм и отрисовываем график на каждую страну

df_plot_mena.T.plot(figsize=(35,15), grid=True, marker='o', title='WGI 1996-2022')
```

Out[]: <Axes: title={'center': 'WGI 1996-2022'}>

18 rows × 146 columns

1.7 Найдите страны с наибольшим и наименьшим значением WGI Вашего варианта региона за 2022 год

```
In [ ]: # Страна с минимальным значением
    minWgi = df_wgi_mena['2022.Estimate'].idxmin()
    minWgi
Out[ ]: 'Syria'
```

```
In []: # Страна с максимальным значением
    maxWgi = df_wgi_mena['2022.Estimate'].idxmax()
    maxWgi
```

Out[]: 'United Arab Emirates'

1.8 Определите средние значения региона за каждый год в период с 1996 по 2022

```
In []: # Оставляем только столбцы Estimate
         df wgi mena estimate = df wgi mena.filter(regex='Estimate')
         # Считаем среднее по региону за каждый год
         mean = df wgi mena estimate.mean()
         mean.name="mean"
         mean
Out[]: 1996.Estimate -0.255155
         1998.Estimate -0.214392
2000.Estimate -0.227920
         2002.Estimate 0.005365
         2003.Estimate -0.110138
         2004.Estimate -0.134619
2005.Estimate -0.146972
         2006.Estimate -0.205434
         2007.Estimate -0.228394
         2008.Estimate -0.197921
2009.Estimate -0.200338
         2010.Estimate -0.242790
         2011.Estimate -0.289805
         2012.Estimate -0.269579
2013.Estimate -0.263348
         2014.Estimate -0.310855
         2015.Estimate -0.337412
         2016.Estimate -0.340242
2017.Estimate -0.371198
         2018.Estimate -0.402726
         2019.Estimate -0.399918
         2020.Estimate
                           -0.443916
         2021.Estimate -0.416095
         2022.Estimate -0.382464
         Name: mean, dtype: float64
```

1.9 Постройте графики индекса WGI за 1996-2022 для стран своего региона и выделите страны с наибольшим и наименьшим значением WGI за 2022 год, а также отобразите среднее значение по региону и РФ.

```
In []: # Графики по всем странам

ax = df_plot_mena.T.plot(figsize=(35,15), grid=True, marker='o', title='WGI 1996-2022', color='grey', legend=Fa'

# Графики по странам с наибольшим и наименьшим значениями за 2022 год

df_plot_mena.loc[maxWgi].plot(color='green', marker = 'o', legend=True, ax = ax)

df_plot_mena.loc[minWgi].plot(color='red', marker = 'o', legend=True, ax = ax)

# График по среднему значению

mean.plot(title='mean', marker = 'o', color='blue', legend=True, ax = ax)

# Данные по России

df_wgi_russia = df[df['Code'] == 'RUS']

df_wgi_russia.set_index('Country/Territory', inplace=True)

df_wgi_russia = df_wgi_russia.filter(regex='Estimate')

# График по России

df_wgi_russia.T.plot(color='orange', marker = 'o', legend=True, ax = ax)
```

Out[]: <Axes: title={'center': 'mean'}>

1.11 Определите, как изменилось значение показателя rank с 1996 по 2022

Вариант 2. Americas

```
In [ ]: # Страны региона АМЕ
        df_ame = df_region[df_region['Region'] == 'AME']
        # WGI индексы для стран MENA
        df_wgi_ame = df.merge(df_ame, how='inner', left_on='Code', right_on='Code')
        # Создаем индекс, оставляем только поля Rank за 1996 и 2022
        df_wgi_ame.set_index('Country', inplace=True)
        df_wgi_ame = df_wgi_ame.filter(regex='1996.Rank|2022.Rank')
        # Данные Rank по России
        df_wgi_russia = df[df['Code'] == 'RUS']
        df_wgi_russia.set_index('Country/Territory', inplace=True)
        df_wgi_russia.rename_axis('Country', inplace=True)
        df_wgi_russia = df_wgi_russia.filter(regex='1996.Rank|2022.Rank')
        # Объединяем два датафрейма
        df_wgi_ame_rus = pd.concat([df_wgi_ame, df_wgi_russia])
        # Вывод промежуточного результата
        df wgi ame rus
```

Country		
Argentina	53.763439	36.320755
Bahamas	83.870964	84.433960
Bolivia	25.268818	20.754717
Brazil	56.989246	32.075470
Barbados	90.860214	89.150940
Canada	96.236557	93.396225
Chile	90.322578	80.660378
Colombia	36.559139	41.037735
Costa Rica	75.268814	66.981133
Cuba	63.440861	52.358490
Dominica	80.107529	69.339622
Dominican Republic	41.397850	37.264153
Ecuador	30.107527	29.716982
Grenada	80.107529	67.452827
Guatemala	23.655914	11.320755
Guyana	52.688171	45.283020
Honduras	14.516129	18.867924
Haiti	9.139785	5.188679
Jamaica	61.827957	54.245281
Saint Lucia	NaN	70.754715
Mexico	36.021507	17.452829
Nicaragua	33.870968	7.547170
Panama	50.537636	28.773584
Peru	41.935482	22.169811
Paraguay	10.215054	15.094339
El Salvador	21.505377	27.830189
Suriname	61.290321	39.150944
Trinidad and Tobago	80.645164	40.566036
Uruguay	82.258064	91.981133
United States of America	91.397850	82.547173
Saint Vincent and the Grenadines	NaN	77.358490
Venezuela	22.580645	1.886792

```
In []: # Вычисляем изменение 2022 года относительного 1996
    df_changes = df_wgi_ame_rus.pct_change(axis=1)
    # Умножаем на 100 для получения процентов и добавляем к исходным данным
    df_wgi_changes = df_wgi_ame_rus.copy()
    df_wgi_changes['Change procent'] = (df_changes['2022.Rank'] * 100).round(2)
    df_wgi_changes
```

/tmp/ipykernel_41439/4014822730.py:2: FutureWarning: The default fill_method='pad' in DataFrame.pct_change is de precated and will be removed in a future version. Call ffill before calling pct_change to retain current behavio r and silence this warning.

df_changes = df_wgi_ame_rus.pct_change(axis=1)

Russian Federation 15.053763 19.339622

Country			
Argentina	53.763439	36.320755	-32.44
Bahamas	83.870964	84.433960	0.67
Bolivia	25.268818	20.754717	-17.86
Brazil	56.989246	32.075470	-43.72
Barbados	90.860214	89.150940	-1.88
Canada	96.236557	93.396225	-2.95
Chile	90.322578	80.660378	-10.70
Colombia	36.559139	41.037735	12.25
Costa Rica	75.268814	66.981133	-11.01
Cuba	63.440861	52.358490	-17.47
Dominica	80.107529	69.339622	-13.44
Dominican Republic	41.397850	37.264153	-9.99
Ecuador	30.107527	29.716982	-1.30
Grenada	80.107529	67.452827	-15.80
Guatemala	23.655914	11.320755	-52.14
Guyana	52.688171	45.283020	-14.05
Honduras	14.516129	18.867924	29.98
Haiti	9.139785	5.188679	-43.23
Jamaica	61.827957	54.245281	-12.26
Saint Lucia	NaN	70.754715	NaN
Mexico	36.021507	17.452829	-51.55
Nicaragua	33.870968	7.547170	-77.72
Panama	50.537636	28.773584	-43.07
Peru	41.935482	22.169811	-47.13
Paraguay	10.215054	15.094339	47.77
El Salvador	21.505377	27.830189	29.41
Suriname	61.290321	39.150944	-36.12
Trinidad and Tobago	80.645164	40.566036	-49.70
Uruguay	82.258064	91.981133	11.82
United States of America	91.397850	82.547173	-9.68
Saint Vincent and the Grenadines	NaN	77.358490	NaN
Venezuela	22.580645	1.886792	-91.64
Russian Federation	15.053763	19.339622	28.47

1.12 Выведите таблицу для Вашего варианта (WGI - rank)

```
In []: # Создаем новый датафрейм для заполнения

rows = ['mean_2022', 'max_2022', 'min_2022', 'Russia_2022'] # Список строк для нового датафрейма

cols = ['Peruon', 'Crpana', 'WGI 1996', 'WGI 2022', 'Изменение'] # Список столбцов для нового датафрейма

table = pd.DataFrame(index=rows,columns=cols)

# Заполняем первый столбец (Регион)

table.loc['mean_2022', 'Peruoн'] = "AME"

table.loc['min_2022', 'Peruoн'] = "AME"

table.loc['Min_2022', 'Peruoh'] = "ECA"

# Заполняем второй столбец (Страна)

minAmeIdx = df_wgi_ame['2022.Rank'].idxmin()

maxAmeIdx = df_wgi_ame['2022.Rank'].idxmax()

rusIdx = 'Russian Federation'

table.loc['mean_2022', 'Crpana'] = "-"

table.loc['min_2022', 'Crpana'] = maxAmeIdx

table.loc['min_2022', 'Crpana'] = rusIdx

# Заполняем третий столбец (WGI 1996)

table.loc['mean_2022', 'WGI 1996'] = df_wgi_ame['1996.Rank'].mean()

table.loc['max_2022', 'WGI 1996'] = df_wgi_ame.loc[maxAmeIdx, '1996.Rank']

table.loc['min_2022', 'WGI 1996'] = df_wgi_ame.loc[maxAmeIdx, '1996.Rank']
```

```
table.loc['Russia_2022', 'WGI 1996'] = df_wgi_ame_rus.loc[rusIdx, '1996.Rank']

# Заполняем четвертый столбец (WGI 2022)

table.loc['mean_2022', 'WGI 2022'] = df_wgi_ame['2022.Rank'].mean()

table.loc['max_2022', 'WGI 2022'] = df_wgi_ame.loc[maxAmeIdx, '2022.Rank']

table.loc['min_2022', 'WGI 2022'] = df_wgi_ame.loc[minAmeIdx, '2022.Rank']

table.loc['Russia_2022', 'WGI 2022'] = df_wgi_ame_rus.loc[rusIdx, '2022.Rank']

# Заполняем пятый столбец (Изменение)

# Для рассчета среднего изменения по региону из таблицы изменений удаляем Россию

df_wgi_changes_ame = df_wgi_changes.drop(rusIdx)

table.loc['mean_2022', 'Изменение'] = df_wgi_changes_ame['Change procent'].mean().round(2)

table.loc['max_2022', 'Изменение'] = df_wgi_changes_ame.loc[maxAmeIdx, 'Change procent']

table.loc['Russia_2022', 'Изменение'] = df_wgi_changes_ame.loc[minAmeIdx, 'Change procent']

table.loc['Russia_2022', 'Изменение'] = df_wgi_changes.loc[rusIdx, 'Change procent']

table.loc['Russia_2022', 'Изменение'] = df_wgi_changes.loc[rusIdx, 'Change procent']
```

```
Страна WGI 1996 WGI 2022 Изменение
            Регион
 mean_2022
               AME
                                        53.27957
                                                  45.59257
                                                                 -19.16
  max 2022
               AMF
                              Canada 96 236557 93 396225
                                                                  -2 95
  min_2022
               AME
                            Venezuela 22.580645
                                                  1.886792
                                                                 -91.64
Russia 2022
               ECA Russian Federation 15.053763 19.339622
                                                                 28.47
```

1.13 Отобразите диаграмму размаха индекса WGI за 2022 для всех стран и для каждого региона в отдельности (на одном графике)

```
In [ ]: # Создаем датафрейм со всеми странами и объединяем с датафреймом с названием региона
        df merqed = df.merqe(df region, how='inner', left on='Code', right on='Code')
        # Оставляем только индекс Country, код региона и WGI за 2022 год
        df merged = df merged.filter(regex='^Country$|2022.Estimate|Region')
        df_merged.set_index('Country', inplace=True)
        # Данные по каждому региону. Переименовываем столбец Estimate для отображения на общем графике
        df_boxplot_ame = df_merged[df_merged['Region'] == 'AME'].rename(columns={'2022.Estimate':'AME'})
        df_boxplot_eca = df_merged[df_merged['Region'] == 'ECA'].rename(columns={'2022.Estimate':'ECA'})
        df_boxplot_ssa = df_merged[df_merged['Region'] == 'SSA'].rename(columns={'2022.Estimate':'SSA'})
        df boxplot eu = df merged[df merged['Region'] == 'WE/EU'].rename(columns={'2022.Estimate':'WE/EU'})
        df_boxplot_mena = df_merged[df_merged['Region'] == 'MENA'].rename(columns={'2022.Estimate':'MENA'})
        df boxplot ap = df merged[df merged['Region'] == 'AP'].rename(columns={'2022.Estimate':'AP'})
        # Данные по всем странам
        df boxplot all = df merged.rename(columns={'2022.Estimate':'All Countries'})
        # Объединяем в общий датафрейм
        df boxplot = pd.concat([df boxplot ame, df boxplot eca, df boxplot ssa, df boxplot eu, df boxplot mena, df boxplot
        # Строим график
        df_boxplot.boxplot()
```


Задание 2. Анализ рынка акций

2.1 Загрузите данные в один dataframe из всех файлов в папке /data/stock. Все файлы имеют одинаковую структуру, в том числе наименование столбцов. В качестве значений индекса dataframe'а необходимо указать значения столбца "Date". Название столбцов должные соответствовать названию акций (имя файла без .csv), а их значения -

значениям цены закрытия (столбец "Close" в файлах .csv)

```
In [ ]: import glob
        import pandas as pd
In [ ]: # Получение списка csv
        files = glob.glob('./data/stock/*.csv')
        # Загрузка данных по каждой компании в один датафрейм
        df = pd.DataFrame()
        for file in files:
            data = pd.read_csv(file, index_col='Date', usecols=['Date','Close'])
            compName = file.split('',')[-1].split('.')[0]
            df[compName] = data['Close']
        df.head()
Out[]:
                  TWLO
                            csco
                                       DBX
                                                 AMZN
                                                            AAPL
                                                                      SPOT
                                                                                 NVDA
                                                                                            NFLX SHOP
                                                                                                             ABNB ...
         Date
        2022-
              206.119995 55.669998 24.750000 149.573502 174.779999 196.259995 244.860001 427.140015
                                                                                                   NaN 153.970001 ... 310.9
        01-01
        2022-
              174.800003 55.770000 22.690001 153.563004 165.119995 156.190002 243.850006 394.519989
                                                                                                   NaN 151.490005 ... 298.7
        02-01
        2022-
              164.809998 55.759998 23.250000 162.997498 174.610001 151.020004 272.859985 374.589996
                                                                                                   NaN 171.759995 ... 308.3
        03-01
        2022-
              111.820000 48.980000 21.750000 124.281502 157.649994 101.650002 185.470001 190.360001
                                                                                                   NaN 153.210007 ... 277.5
        04-01
        2022-
              105.169998 45.049999 20.840000 120.209503 148.839996 112.769997 186.720001 197.440002
                                                                                                   NaN 120.870003 ... 271.8
        05-01
       5 rows × 25 columns
        2.2 Рассчитайте корреляционную матрицу для всех акций
```

```
In [ ]: corr = df.corr()
corr
```

[]:		TWLO	csco	DBX	AMZN	AAPL	SPOT	NVDA	NFLX	SHOP	ABNB	 MSFT	
TW	LO	1.000000	0.383777	-0.113102	0.314869	0.042914	0.059969	-0.244797	-0.102302	0.657843	0.429915	 -0.094023	-0
CS	со	0.383777	1.000000	0.496982	0.404820	0.589552	0.424007	0.320159	0.497727	-0.144612	0.594365	 0.391476	0
D	вх	-0.113102	0.496982	1.000000	0.478171	0.740429	0.525305	0.519374	0.635239	0.424923	0.332740	 0.648164	0
AM	ZN	0.314869	0.404820	0.478171	1.000000	0.665715	0.875779	0.765294	0.735466	0.824934	0.830690	 0.838702	0
AA	PL	0.042914	0.589552	0.740429	0.665715	1.000000	0.687415	0.633114	0.701937	0.465147	0.617430	 0.790691	0
SP	ОТ	0.059969	0.424007	0.525305	0.875779	0.687415	1.000000	0.925270	0.920771	0.737909	0.753797	 0.949380	0
NV	DA	-0.244797	0.320159	0.519374	0.765294	0.633114	0.925270	1.000000	0.910910	0.713391	0.649664	 0.935386	0
NF	LX	-0.102302	0.497727	0.635239	0.735466	0.701937	0.920771	0.910910	1.000000	0.852517	0.646901	 0.900263	0
SH	OP	0.657843	-0.144612	0.424923	0.824934	0.465147	0.737909	0.713391	0.852517	1.000000	0.696599	 0.842193	0
AB	NB	0.429915	0.594365	0.332740	0.830690	0.617430	0.753797	0.649664	0.646901	0.696599	1.000000	 0.679204	0
PI	NS	-0.141953	0.384233	0.710191	0.666996	0.640294	0.842858	0.815629	0.930638	0.846115	0.554616	 0.837576	0
Н	PQ	0.728572	0.214262	-0.177013	0.235247	0.067074	0.005774	-0.160502	-0.203337	0.436406	0.390153	 -0.034581	-0
XIA	CY	0.447846	0.474311	0.382992	0.654564	0.408747	0.647331	0.445645	0.505430	0.519367	0.564475	 0.565831	0
ı	MU	0.315313	0.472688	0.440043	0.906932	0.606787	0.902439	0.796707	0.789551	0.804352	0.842928	 0.849930	0
ME	TA	-0.072886	0.374998	0.552874	0.830910	0.705358	0.973401	0.961389	0.897908	0.735282	0.723419	 0.966868	0
MS	FT	-0.094023	0.391476	0.648164	0.838702	0.790691	0.949380	0.935386	0.900263	0.842193	0.679204	 1.000000	0
TC	OM	-0.562073	0.257188	0.423136	0.309545	0.439363	0.640120	0.787859	0.766681	0.592950	0.294269	 0.662193	1
OR	CL	-0.393536	0.463955	0.667833	0.534556	0.769309	0.763100	0.875089	0.859397	0.635736	0.471504	 0.847046	0
IN	тс	0.585988	0.420854	0.390625	0.816519	0.507251	0.645555	0.458281	0.447049	0.809582	0.738241	 0.627531	-0
G00	GL	0.315410	0.600025	0.669228	0.912332	0.806847	0.821587	0.715287	0.717756	0.824313	0.780440	 0.845993	0
TS	LA	0.703872	0.253808	0.037233	0.302321	0.248385	-0.092332	-0.277600	-0.251616	0.025575	0.353807	 -0.117639	-0
UB	ER	-0.186828	0.326346	0.595928	0.796897	0.661323	0.933308	0.969790	0.937042	0.836565	0.680764	 0.939538	0
EB	AY	0.753732	0.494938	-0.157363	0.434078	0.115591	0.296858	0.087027	0.138580	0.338672	0.644140	 0.127010	-0
AD	BE	0.067604	0.554172	0.816359	0.819614	0.833129	0.863827	0.802739	0.821314	0.783919	0.670509	 0.913842	0
GT	LB	0.310273	0.068856	0.402517	0.690644	0.282373	0.540113	0.404702	0.452625	0.855342	0.460602	 0.451366	0

2.3 Отобразите корреляционную матрицу в виде диаграммы

25 rows × 25 columns

```
In []: import matplotlib.pyplot as plt
import seaborn as sns

In []: plt.figure(figsize=(15,15))
    sns.heatmap(corr, annot=True, cmap='viridis', fmt=".2f")
    plt.show()
```


2.4 В соответствии с Вашим вариантом определите:

- акцию с максимальной положительной корреляцией (max)
- акцию с максимальной отрицательной корреляцией (min)
- акцию с минимальной корреляцией (которая больше всего соответствует отсутствию какой-либо корреляции (none))

Вариант 4. Uber (UBER)

```
In []: # Корелляция акций UBER с другими акциями
uber_corr = corr['UBER']
uber_corr = uber_corr.drop('UBER')
uber_corr
```

```
Out[]: TWLO
                 -0.186828
        CSC0
                  0.326346
        DBX
                  0.595928
        AMZN
                  0.796897
                  0.661323
        AAPL
        SP0T
                  0.933308
        NVDA
                  0.969790
        NFLX
                  0.937042
        SH<sub>0</sub>P
                  0.836565
        ABNB
                  0.680764
        PINS
                  0.907751
        HPQ
                 -0.180970
        XIACY
                  0.495835
        MU
                  0.820809
        META
                  0.954444
        MSFT
                  0.939538
        TCOM
                  0.754442
        0RCL
                  0.832075
        INTC
                  0.512572
        G00GL
                  0.737311
        TSLA
                 -0.221155
        EBAY
                  0.085736
        ADBE
                  0.834611
        GTLB
                  0.521399
        Name: UBER, dtype: float64
In [ ]: # Акция с максимальной положительная корреляция
        max_corr = uber_corr.idxmax()
        max corr
Out[]: 'NVDA'
In [ ]: # Акция с максимальной отрицательная корреляция
        min_corr = uber_corr.idxmin()
        min_corr
Out[]: 'TSLA'
In [ ]: # Акция с минимальной корреляцией
        none_corr = uber_corr.abs().idxmin()
Out[]: 'EBAY'
```

2.5 Постройте диаграммы разброса

- Ваша компания Компания с min
- Ваша компания Компания с тах
- Ваша компания Компания с none

```
In []: # Диаграмма разброса UBER - min corr
        plt.scatter(df['UBER'], df[min_corr])
```

Out[]: <matplotlib.collections.PathCollection at 0x7aeaac3b6f80>


```
plt.scatter(df['UBER'], df[max_corr])
```

Out[]: <matplotlib.collections.PathCollection at 0x7aeaac4604f0>


```
In []: # Диаграмма разброса UBER - none corr
plt.scatter(df['UBER'], df[none_corr])
```

Out[]: <matplotlib.collections.PathCollection at 0x7aeaac2d4fa0>

2.6 Рассчитайте среднюю цену акций для каждого месяца (исходные данные взяты с интервалом в месяц)

```
In [ ]: # Транспонируем исходный датафрейм, чтобы каждый месяц был столбцом, по которому рассчитается среднее
  mean = df.T.mean()
  mean.name='mean'
  mean
```

```
Out[]: Date
        2022-01-01
                      154.857167
        2022-02-01
                      140.774723
        2022-03-01
                      145.272287
        2022-04-01
                      115.763514
        2022-05-01
                      112.316034
        2022-06-01
                       99.256929
        2022-07-01
                      114.014999
        2022-08-01
                      107.380833
        2022-09-01
                       94.437083
        2022-10-01
                       97.227501
        2022-11-01
                      100.671666
        2022-12-01
                       92.028958
        2023-01-01
                      108.279540
        2023-02-01
                      108.613126
        2023-03-01
                      120.210832
        2023-04-01
                      115.778799
        2023-05-01
                      131.258401
        2023-06-01
                      145.426799
        2023-07-01
                      153.207200
        2023-08-01
                      152.016000
        2023-09-01
                      141.760400
        2023-10-01
                      140.454598
        2023-11-01
                      159.367601
        2023-12-01
                      164.859599
        2024-01-01
                      174.886801
        2024-02-01
                      189.609962
        2024-03-01
                      196.083201
        2024-03-12
                      196.083201
        Name: mean, dtype: float64
```

2.7 Постройте графики для акций из пункта 4 и средней из пункта 6

```
df['UBER'].plot(figsize=(17,7), marker='o', color='black', legend=True)
df[max_corr].plot(label=max_corr + ' max', marker='o', color='green', legend=True)
df[min_corr].plot(label=min_corr + ' min', marker='o', color='red', legend=True)
df[none_corr].plot(label=none_corr + ' none', marker='o', color='yellow', legend=True)
mean.plot(marker='o', color='blue', legend=True, grid=True)
```


Вывод

В данном домашнее задании были отработаны с использованием языка Python такие навыки и умения, как:

- Решение практических задач по анализу данных
- Загрузка, трансформация, вычисление простых статистик
- Визуализация данных в виде графиков и диаграмм

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js