ECON7020: MACROECONOMIC THEORY

FALL 2023

Problem Set 5. Due date: 12PM on December 6.

Problem 1

Consider a version of the neoclassical growth model with human capital and exogenous labor supply:

$$\max \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$$

$$c_t + x_{kt} + x_{ht} = Ak_t^{\alpha} z_t^{1-\alpha}$$

$$k_{t+1} = (1-\delta_k)k_t + x_{kt}$$

$$h_{t+1} = (1-\delta_h)h_t + x_{ht}$$

$$z_t \le n_t h_t$$

$$0 \le l_t + n_t \le 1$$

$$h_0, k_0 \text{ given.}$$

- 1. Show that the value function for this problem is homogeneous of degree 1σ in the initial capital stocks (k_0, h_0) .
- 2. Suppose now that the government has a fixed sequence of expenditures that it must finance, $\{g_t\}_{t=0}^{\infty}$, and that it can use taxes on capital and labor incomes, τ_{kt} and τ_{zt} . Define a competitive equilibrium for this environment.
- 3. What is the Ramsey problem here for a benevolent government? In particular, carefully derive and explain the implementability constraint for this environment.
- 4. Assume $\delta_k = \delta_h$. What is $\frac{\tau_{kt}}{\tau_{zt}}$ in this case?
- 5. Assume $\delta_k = \delta_h$. What can you say about $\lim_{t\to\infty} \tau_{kt}$? About $\lim_{t\to\infty} \tau_{zt}$?

Problem 2

Consider an infinite horizon growth model with a representative consumer, with log utility and inelastic labor supply:

$$U(\{c_t\}, \{n_t\}) = \sum_{t=0}^{\infty} \beta^t \log c_t.$$

Assume that there is a representative firm with Cobb-Douglas production function

$$y_t = Ak_t^{\alpha} n_t^{1-\alpha}$$

and full depreciation d=1.

For parts 2-5 assume that there is also a government that taxes all income at a uniform rate τ in every period, and uses the revenue generated to purchase g_t in each period. Assume that the government balances the budget in every period.

- 1. Find the policy functions for the associated planning problem and use these to give an expression for y_t , output in period t. What is $\lim_{t\to\infty} y_t$?
- 2. Set up and define a TDCE for this economy.
- 3. Show that the TDCE allocation solves the planner's problem and give that problem.
- 4. Find expression for y_t in this economy.
- 5. Which is larger, output when $\tau = 0$, or output when $\tau > 0$? Show your work.

Problem 3

Consider a version of the neoclassical growth model with Ak production technology, whereby a representative consumer has preferences

$$U = \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\sigma}}{1-\sigma} \right].$$

Capital depreciates fully $\delta = 1$.

Assume that the government taxes all income in period t at the rate $\tau_t \in (0, 1)$ where τ_t is stochastic. Assume that all revenue generated in period t is used in that period to purchase g_t :

$$p_t g_t = \tau_t r_t k_t.$$

- 1. Show that the TDCE allocation for this model solves the planner's problem. Be sure to carefully and clearly state what this planning problem is.
- 2. Assume that the tax rates τ_t are i.i.d. Derive an expression for the expected consumption growth rate $\gamma_{t,t+1}^c = \mathbb{E}_t \left[\frac{c_{t+1}}{c_t} \right]$.

Hint: first show that the value function is homogeneous of degree $1-\sigma$. Next, argue that it is optimal to allocate constant fractions of output to consumption c and investment k' (denoted φ and $1-\varphi$, respectively). Finally, derive expression for $\gamma_{t,t+1}^c$ involving only parameters of the model, φ and τ_{t+1} .

Problem 4

Consider an RBC model in which output y_t is produced with technology

$$y_t = z_t k_t^{\alpha} n_t^{1-\alpha},$$

where k_t denotes beginning-of-period capital, and n_t is labor input. z_t is an i.i.d. technology shock. Assume full depreciation $\delta = 1$.

Representative household maximizes lifetime utility:

$$\mathbb{E}_0\left[\sum_{t=0}^{\infty} \beta^t U(c_t, n_t)\right].$$

1. Consider an economy with $U(c_t, n_t) = \ln c_t - \frac{1}{2}n_t^2$. Express maximization problem of the social planner and write down the associated Bellman equation. Solve for the equilibrium policy functions for consumption, investment and labor.

- 2. Now suppose $U(c_t, n_t) = \ln \left(c_t \frac{1}{2}n_t^2\right)$. Express maximization problem of the social planner and write down the associated Bellman equation. Solve for the equilibrium policy functions for consumption, investment and labor.
- 3. Compare equilibrium behavior in both economies and provide an explanation for the differences.