CSCI-567: Machine Learning (Spring 2019)

Prof. Victor Adamchik

U of Southern California

Mar. 26, 2019

Gaussian mixture models

2 Density estimation

Outline

Naive Bayes Revisited

March 26, 2019 1/57 March 26, 2019

Outline

- Gaussian mixture models
 - Motivation and Model
 - EM algorithm
 - EM applied to GMMs
- 2 Density estimation
- Naive Bayes Revisited

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering.

We want to come up with a probabilistic model p to **explain how the data is generated**.

We will model each region with a Gaussian distribution.

To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.

March 26, 2019 3 / 57 March 26, 2019 4

GMM: formal definition

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{k=1}^K \omega_k N(\boldsymbol{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \sum_{k=1}^K \omega_k \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}_k|}} e^{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\mathrm{T}} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k)}$$

where

- K: the number of Gaussian components (same as #clusters we want)
- ullet μ_k and Σ_k : mean and covariance matrix of the k-th Gaussian
- $\omega_1, \ldots, \omega_K$: mixture weights, they represent how much each component contributes to the final distribution. It satisfies two properties:

$$\forall \ k, \ \omega_k > 0, \quad \text{and} \quad \sum_k \omega_k = 1$$

March 26, 2019

An example

The conditional distributions are

$$\begin{split} p(\boldsymbol{x} \mid z = \mathsf{red}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \\ p(\boldsymbol{x} \mid z = \mathsf{blue}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ p(\boldsymbol{x} \mid z = \mathsf{green}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$

Here z is the hidden (latent) variable.

The marginal distribution is

$$\begin{split} p(\boldsymbol{x}) &= p(\text{red}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + p(\text{blue}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ &+ p(\text{green}) N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$

March 26, 2019

March 26, 2019

Learning GMMs

Learning a GMM means finding all the parameters $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$. How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p(\boldsymbol{x}_{n}; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p(\boldsymbol{x}_{n}; \boldsymbol{\theta}) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})$$

The problem is *intractable in general* (non-concave problem, also there is a latent parameter).

One solution is to still apply GD/SGD, but a much more effective approach is the Expectation-Maximization (EM) algorithm.

Preview of EM for learning GMMs

Step 0 Initialize $\omega_k, \mu_k, \Sigma_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N}$$
 $oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$

$$\mathbf{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\mathbf{x}_n - \mathbf{\mu}_k) (\mathbf{x}_n - \mathbf{\mu}_k)^{\mathrm{T}}$$

Step 3 return to Step 1 if not converged

March 26, 2019

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

- $oldsymbol{\theta}$ is the parameters for a general probabilistic model
- x_n 's are observed random variables
- z_n 's are latent variables

Again, directly solving the objective is intractable.

March 26, 2019 9 / 57

High level idea

Keep maximizing a lower bound of P that is more manageable

EM algorithm

A general algorithm for dealing with hidden data.

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- EM is much simpler than gradient methods: no need to choose step size.
- EM is an iterative algorithm with two steps:
 - ► E-step: fill-in hidden values using inference
 - M-step: apply standard MLE method to completed data
- We will prove that EM always converges to a local optimum of the likelihood.

Derivation of EM

Finding the lower bound of P:

$$\ln p(\boldsymbol{x}\;;\boldsymbol{ heta}) = \ln rac{p(\boldsymbol{x},z\;;\boldsymbol{ heta})}{p(z|\boldsymbol{x}\;;\boldsymbol{ heta})}$$
 (true for any z)
$$= \mathbb{E}_{z\sim q} \left[\ln rac{p(\boldsymbol{x},z\;;\boldsymbol{ heta})}{p(z|\boldsymbol{x}\;;\boldsymbol{ heta})} \right]$$
 (true for any dist. q)

Let us recall the definition of expectation

$$\mathbb{E}_{z \sim q} \left[f(z) \right] = \sum_{z} q(z) f(z)$$

and entropy

$$H(z) = -\mathbb{E}_{z \sim q} \left[\ln q(z) \right] = -\sum_{z} q(z) \ln q(z)$$

March 26, 2019

Derivation of EM

Finding the lower bound of P:

$$\ln p(\boldsymbol{x}\;;\boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x},z\;;\boldsymbol{\theta})}{p(z|\boldsymbol{x}\;;\boldsymbol{\theta})} \qquad \text{(true for any } z\text{)}$$

$$= \mathbb{E}_{z\sim q} \left[\ln \frac{p(\boldsymbol{x},z\;;\boldsymbol{\theta})}{p(z|\boldsymbol{x}\;;\boldsymbol{\theta})}\right] \qquad \text{(true for any dist. } q\text{)}$$

$$= \mathbb{E}_{z\sim q} \left[\ln p(\boldsymbol{x},z\;;\boldsymbol{\theta})\right] - \mathbb{E}_{z\sim q} \left[\ln q(z)\right] - \mathbb{E}_{z\sim q} \left[\ln \frac{p(z|\boldsymbol{x}\;;\boldsymbol{\theta})}{q(z)}\right]$$

$$= \mathbb{E}_{z\sim q} \left[\ln p(\boldsymbol{x},z\;;\boldsymbol{\theta})\right] + H(q) - \mathbb{E}_{z\sim q} \left[\ln \frac{p(z|\boldsymbol{x}\;;\boldsymbol{\theta})}{q(z)}\right] \qquad \text{(H is entropy)}$$

$$\geq \mathbb{E}_{z\sim q} \left[\ln p(\boldsymbol{x},z\;;\boldsymbol{\theta})\right] + H(q) - \ln \mathbb{E}_{z\sim q} \left[\frac{p(z|\boldsymbol{x}\;;\boldsymbol{\theta})}{q(z)}\right] \qquad \text{(Jensen's inequality)}$$

March 26, 2019 13 / 57

Jensen's inequality

Claim: $\mathbb{E}[\ln X] \leq \ln (\mathbb{E}[X])$

Proof. By the definition of $\mathbb{E}[X] = \frac{1}{N}(x_1 + x_2 + \ldots + x_n)$, then

$$\mathbb{E}[\ln X] = \frac{1}{N} (\ln x_1 + \ln x_2 + \dots + \ln x_n) = \frac{1}{N} \ln \prod_{n=1}^{N} x_n$$

It follows.

$$\frac{1}{N} \ln \prod_{n=1}^{N} x_n \le \ln \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sqrt[N]{\prod_{n=1}^{N} x_n} \le \frac{1}{N} \sum_{n=1}^{N} x_n$$

This is the AGM inequality. For N=2, it is just $(x_1-x_2)^2 \geq 0$.

March 26, 2019

14 / 57

Derivation of EM

After applying Jensen's inequality, we obtain

$$\ln p(oldsymbol{x} \; ; oldsymbol{ heta}) \geq \mathbb{E}_{z \sim q} \left[\ln p(oldsymbol{x}, z \; ; oldsymbol{ heta})
ight] + H(q) - \ln \mathbb{E}_{z \sim q} \left[rac{p(z | oldsymbol{x} \; ; oldsymbol{ heta})}{q(z)}
ight]$$

Next, we observe that

$$\mathbb{E}_{z \sim q} \left[\frac{p(z|\boldsymbol{x};\boldsymbol{\theta})}{q(z)} \right] = \sum_{z} q(z) \left(\frac{p(z|\boldsymbol{x};\boldsymbol{\theta})}{q(z)} \right) = \sum_{z} p(z|\boldsymbol{x};\boldsymbol{\theta}) = 1$$

It follows,

$$\ln p(\boldsymbol{x};\boldsymbol{\theta}) \ge \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z; \boldsymbol{\theta}) \right] + H(q)$$

Alternatively maximize the lower bound

We have found a lower bound for the log-likelihood function

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

$$\geq \sum_{n=1}^{N} \left(\mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right] + H(q_n) \right) = F(\boldsymbol{\theta}, \{q_n\})$$

This holds for any $\{q_n\}$, so how do we choose?

Naturally, the one that maximizes the lower bound (i.e. the tightest lower bound)!

This is similar to K-means: we will alternatively maximizing F over $\{q_n\}$ and θ .

Pictorial explanation

 $P(\theta)$ is non-concave, but $F\left(\theta,\{q_n^{(t)}\}\right)$ often is concave and easy to maximize.

March 26, 2019 17 / 57

19 17/57

Maximizing over $\{q_n\}$

Fix $\boldsymbol{\theta}^{(t)}$, and maximize F over $\{q_n\}$

$$\underset{q_n}{\operatorname{argmax}} F(\boldsymbol{\theta}, \{q_n\}) = \underset{q_n}{\operatorname{argmax}} \left(\mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n) \right)$$
$$= \underset{q_n}{\operatorname{argmax}} \sum_{k=1}^K \left(q_n(k) \ln p(\boldsymbol{x}_n, z_n = k ; \boldsymbol{\theta}^{(t)}) - q_n(k) \ln q_n(k) \right)$$

subject to conditions:

$$q_n(k) \ge 0$$
 and $\sum_k q_n(k) = 1$

Next, write down the Lagrangian and then apply KKT conditions.

March 26, 2019

Maximizing over $\{q_n\}$

The solution to

$$\operatorname*{argmax}_{q_n} F(\boldsymbol{\theta}, \{q_n\}) = \operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

is (you have to verify it by yourself)

$$q_n^{(t)}(z_n) = p(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)})$$

i.e., the *posterior distribution of* z_n given x_n and $heta^{(t)}$.

So at $\theta^{(t)}$, we found the tightest lower bound $F\left(\boldsymbol{\theta},\{q_n^{(t)}\}\right)$:

- $\bullet \ F\left({\boldsymbol \theta}, \{q_n^{(t)}\} \right) \leq P({\boldsymbol \theta}) \ \text{for all } {\boldsymbol \theta}.$
- $F\left(\boldsymbol{\theta}^{(t)}, \{q_n^{(t)}\}\right) = P(\boldsymbol{\theta}^{(t)})$

Maximizing over heta

Fix $\{q_n^{(t)}\}$, maximize over $m{ heta}$ (note, $H(q_n^{(t)})$ is independent of $m{ heta}$):

$$\begin{aligned} & \underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right) \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n \; ; \boldsymbol{\theta})\right] \\ &\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \; Q(\boldsymbol{\theta} \; ; \boldsymbol{\theta}^{(t)}) \end{aligned} \qquad \left(\{q_n^{(t)}\} \; \text{are computed via } \boldsymbol{\theta}^{(t)}\right)$$

Q is called a **complete likelihood** and is usually more tractable, since z_n are not latent variables anymore.

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t=1

Step 1 (E-Step) update the posterior of latent variables

$$q_n^{(t)}(\cdot) = p(\cdot \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)})$$

and obtain **Expectation** of complete likelihood

$$Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}) = \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right]$$

Step 2 (M-Step) update the model parameter via Maximization

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta} \; ; \boldsymbol{\theta}^{(t)})$$

Step 3 $t \leftarrow t + 1$ and return to Step 1 if not converged

March 26, 2019

21 / 57

Pictorial explanation

 $P(\boldsymbol{\theta})$ is non-concave, but $Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(t+1)}) \ge F\left(\boldsymbol{\theta}^{(t+1)}; \{q_n^{(t)}\}\right)$$
$$\ge F\left(\boldsymbol{\theta}^{(t)}; \{q_n^{(t)}\}\right)$$
$$= P(\boldsymbol{\theta}^{(t)})$$

So EM always increases the objective value and will converge to some local maximum (similar to K-means).

Apply EM to learn GMMs

E-Step:

$$q_n^{(t)}(z_n = k) = p\left(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}\right)$$

$$= p\left(z_n = k ; \boldsymbol{\theta}^{(t)}\right) p(\boldsymbol{x}_n \mid z_n = k ; \boldsymbol{\theta}^{(t)})$$

$$= \omega_k^{(t)} N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)}\right)$$

This computes the "soft assignment" $\gamma_{nk}=q_n^{(t)}(z_n=k)$, i.e. conditional probability of x_n belonging to cluster k.

Apply EM to learn GMMs

M-Step:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}} \left[\ln p(\boldsymbol{x}_{n}, z_{n} ; \boldsymbol{\theta}) \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_{n} \sim q_{n}^{(t)}} \left[\ln p(z_{n} ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_{n} | z_{n} ; \boldsymbol{\theta}) \right]$$

$$= \underset{\{\omega_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left(\ln \omega_{k} + \ln N(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right)$$

To find $\omega_1, \ldots, \omega_K$, solve

To find each μ_k, Σ_k , solve

$$\underset{\boldsymbol{\omega}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \ln \omega_{k} \qquad \underset{\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}}{\operatorname{argmax}} \sum_{n=1}^{N} \gamma_{nk} \ln N(\boldsymbol{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})$$

M-Step (continued)

Solutions to previous two problems are very natural (see slide 8), for each k

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$

i.e. (weighted) fraction of examples belonging to cluster k

$$oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

i.e. (weighted) average of examples belonging to cluster k

$$\Sigma_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

i.e (weighted) covariance of examples belonging to cluster k

March 26, 2019 25 / 57

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

Let $\Sigma_k = \sigma^2 I$ for some fixed σ , so only ω_k and μ_k are parameters.

EM becomes K-means:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{n=1}^{N} p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{n=1}^{N} \sum_{k=1}^{K} p(z_n = k) N(\boldsymbol{x}_n | \boldsymbol{\mu}_k)$$

If we assume hard assignments $p(z_n = k) = 1$, if k = C(n), then

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{n=1}^{N} p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{n=1}^{N} N(\boldsymbol{x}_n | \boldsymbol{\mu}_{C(n)})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{n=1}^{N} \exp\left(\frac{-1}{2\sigma^2} \|\boldsymbol{x}_n - \boldsymbol{\mu}_{C(n)}\|_2^2\right) = \underset{\boldsymbol{\mu}, C}{\operatorname{argmax}} \sum_{n=1}^{N} \|\boldsymbol{x}_n - \boldsymbol{\mu}_{C(n)}\|_2^2$$

GMM is a soft version of K-means and it provides a probabilistic interpretation of the data.

GMM: putting it together

EM for clustering:

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N} \qquad oldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} oldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

$$\mathbf{\Sigma}_k = \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\mathbf{x}_n - \mathbf{\mu}_k) (\mathbf{x}_n - \mathbf{\mu}_k)^{\mathrm{T}}$$

Step 3 return to Step 1 if not converged

March 26, 2019 26 / 57

March 26, 2019

Outline

- Gaussian mixture models
- 2 Density estimation
 - Parametric models
 - Nonparametric models
- Naive Bayes Revisited

Density estimation

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x_1, \ldots, x_N , estimate a density function p that could have generated this dataset (via $x_n \overset{i.i.d.}{\sim} p$).

This is exactly the problem of *density estimation*, another important unsupervised learning problem.

Useful for many downstream applications

- we have seen clustering already, will see more applications today
- these applications also provide a way to measure quality of the density estimator

March 26, 2019 29 / 57

Parametric generative models

Parametric estimation assumes a generative model parametrized by θ :

$$p(\boldsymbol{x}) = p(\boldsymbol{x}; \boldsymbol{\theta})$$

Examples:

- GMM: $p(x; \theta) = \sum_{k=1}^{K} \omega_k N(x \mid \mu_k, \Sigma_k)$ where $\theta = \{\omega_k, \mu_k, \Sigma_k\}$
- Multinomial for 1D examples with K possible values

$$p(x = k; \boldsymbol{\theta}) = \theta_k$$

where θ is a distribution over K elements.

Size of θ is independent of the training set size, so it's parametric.

March 26, 2019

Parametric methods

Again, we apply **MLE** to learn the parameters θ :

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} = \sum_{n=1}^{N} \ln p(x_n ; \boldsymbol{\theta})$$

For some cases this is intractable and we can use EM to approximately solve MLE (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g. multinomial).

MLE for multinomial

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} = \sum_{n=1}^{N} \ln p(x = x_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}$$
$$= \sum_{k=1}^{K} \sum_{n:x_n = k} \ln \theta_k = \sum_{k=1}^{K} z_k \ln \theta_k$$

where $z_k = |\{n : x_n = k\}|$ is the number of examples with value k.

The solution (your TA4) is simply

$$\theta_k = \frac{z_k}{N} \propto z_k,$$

i.e. the fraction of examples with value k.

March 26, 2019

Nonparametric models

Can we estimate without assuming a fixed generative model?

Kernel density estimation (KDE) is a common approach for nonparametric density estimation.

Here "kernel" means something different from what we have seen for "kernel function".

We focus on the 1D (continuous) case.

March 26, 2019

Kernel

KDE with a kernel K(x): $\mathbb{R} \to \mathbb{R}$ centered at x_n :

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K(x - x_n)$$

Many choices for K, for example, $K(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, the standard Gaussian density

Properties of a kernel:

- symmetry: K(x) = K(-x)
- $\int_{-\infty}^{\infty} K(x) dx = 1$, this insures p is a density function.

High level idea

picture from Wikipedia

Construct something similar to a histogram:

- for each data point, create a "hump" (via a kernel)
- sum up all the humps; more data a higher hump

Different kernels K(x)

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \qquad \frac{1}{2}\mathbb{I}[|x| \leq 1] \qquad \frac{3}{4}\max\{1-x^2,0\}$$

Bandwidth

If K(x) is a kernel, then for any h > 0

$$K_h(u) \triangleq \frac{1}{h}K\left(\frac{x}{h}\right)$$
 (stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So, general KDE is determined by both the kernel K and the bandwidth h

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K_h(x - x_n) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

- x_n controls the center of each hump
- h controls the width/variance of the humps

March 26, 2019 37 / 57

Effect of bandwidth

picture from Wikipedia

A larger h will smooth a density.

A small h will yield a density that is spiky and very hard to interpret.

Assume Gaussian kernel.

Gray curve is ground-truth

• Red: h = 0.05

• Black: h = 0.337

• Green: h=2

Bandwidth selection

Selecting h is a deep topic

- one can also do cross-validation based on downstream applications
- there are theoretically-motivated approaches

Find a value of h that minimizes the error between the estimated density and the true density:

$$\mathbb{E}\left[\left(p_{KDE}(x) - p(x)\right)^{2}\right] = \mathbb{E}\left[p_{KDE}(x) - p(x)\right]^{2} + Var\left[p_{KDE}(x)\right]$$

This expression is an example of the bias-variance tradeoff, which we saw in the earlier lecture.

Outline

- Naive Bayes Revisited
 - Setup and assumption
 - Connection to logistic regression
 - Generative and Discriminative Models

Bayes optimal classifier

Suppose the data (x_n, y_n) is drawn from a joint distribution p(x, y), the Bayes optimal classifier is

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} p(c \mid \boldsymbol{x})$$

i.e. predict the class with the largest conditional probability.

p(x,y) is of course unknown, but we can estimate it, which is exactly a density estimation problem!

Observe that

$$p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$$

To estimate $p(x \mid y = c)$ for some $c \in [C]$, we are doing density estimation using data with label y = c.

41 / 57

$p(y=c) = \frac{|\{n: y_n = c\}|}{n^{\tau}}$

For each possible value k of a discrete feature d,

$$p(x_d = k \mid y = c) = \frac{|\{n : x_{nd} = k, y_n = c\}|}{|\{n : y_n = c\}|}$$

March 26, 2019

42 / 57

Continuous features

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

where μ_{cd} and σ_{cd}^2 are the empirical mean and variance of feature damong all examples with label c.

• or nonparametric estimation, e.g. via a kernel K and bandwidth h:

$$p(x_d = x \mid y = c) = \frac{1}{|\{n : y_n = c\}|} \sum_{n: y_n = c} K_h(x - x_{nd})$$

How to predict?

Discrete features

For a label $c \in [C]$,

Using Naive Bayes assumption:

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{D} p(x_d \mid y = c)$$

the **prediction** for a new example x is

$$\underset{c \in [C]}{\operatorname{argmax}} \ p(y = c \mid \boldsymbol{x}) = \underset{c \in [C]}{\operatorname{argmax}} \ \frac{p(\boldsymbol{x} \mid y = c)p(y = c)}{p(\boldsymbol{x})}$$

$$= \underset{c \in [C]}{\operatorname{argmax}} \ \left(p(y = c) \prod_{d=1}^{D} p(x_d \mid y = c) \right)$$

$$= \underset{c \in [C]}{\operatorname{argmax}} \ \left(\ln p(y = c) + \sum_{d=1}^{D} \ln p(x_d \mid y = c) \right)$$

Naive Bayes

For discrete features, plugging in previous MLE estimations gives

$$\begin{split} & \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ p(y = c \mid x) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \frac{|\{n : x_{nd} = x_d, y_n = c\}|}{|\{n : y_n = c\}|} \right) \end{split}$$

March 26, 2019 45 / 57

Connection to logistic regression

Let us fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$\begin{aligned} & \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ p(y = c \mid \boldsymbol{x}) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln |\{n: y_n = c\}| - \sum_{d=1}^\mathsf{D} \left(\ln \sigma + \frac{(x_d - \mu_{cd})^2}{2\sigma^2} \right) \right) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(\ln |\{n: y_n = c\}| - \frac{\|\boldsymbol{x}\|_2^2}{2\sigma^2} - \sum_{d=1}^\mathsf{D} \frac{\mu_{cd}^2}{2\sigma^2} + \sum_{d=1}^\mathsf{D} \frac{\mu_{cd}}{\sigma^2} x_d \right) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \left(w_{c0} + \sum_{d=1}^\mathsf{D} w_{cd} x_d \right) = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ \boldsymbol{w}_c^\mathsf{T} \boldsymbol{x} \quad \text{(linear classifier!)} \end{aligned}$$
 where we denote $w_{c0} = \ln |\{n: y_n = c\}| - \sum_{d=1}^\mathsf{D} \frac{\mu_{cd}^2}{2\sigma^2} \text{ and } w_{cd} = \frac{\mu_{cd}}{\sigma^2}.$

Naive Bayes

For continuous features with a Gaussian model,

Connection to logistic regression

You can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

March 26, 2019

46 / 57

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

- both via MLE, one on $p(y = c \mid x)$, the other on p(x, y)
- solutions are different: logistic regression has no closed-form, naive Bayes admits a simple closed-form

March 26, 2019 47 / 57 March 26, 2019

Two different modeling paradigms

Suppose the training data is from an unknown joint probabilistic model $p(\boldsymbol{x},y)$. There are two kinds of classification models in machine learning — generative models and discriminative models.

Differences in assuming models for the data

- the generative approach requires we specify the model for the joint distribution (such as Naive Bayes), and thus, maximize the *joint* likelihood $\sum_n \log p(\boldsymbol{x}_n, y_n)$
- the discriminative approach (discriminative) requires only specifying a model for the conditional distribution (such as logistic regression), and thus, maximize the *conditional* likelihood $\sum_n \log p(y_n|\boldsymbol{x}_n)$
- Sometimes, modeling by discriminative approach is easier
- Sometimes, parameter estimation by generative approach is easier

rch 26, 2019 49 / 5

Determining sex (man or woman) based on measurements

Generative model v.s discriminative model

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x,y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE
Accuracy	usually better for large ${\cal N}$	usually better for small ${\cal N}$
Remark		more flexible, can generate data after learning

March 26, 2019

Example: Generative approach

Propose a model of the joint distribution of (x = height, y = sex)

our data

Sex	Height
1	6'
2	5'2"
1	5'6"
1	6'2"
2	5.7"
• • •	• • •

Intuition: we will model how heights vary (according to a Gaussian) in each sub-population (male and female).

Note: This is similar to Naive Bayes for detecting spam emails.

March 26, 2019 51 / 57 March 26, 2019 52

Model of the joint distribution

$$\begin{split} p(x,y) &= p(y)p(x|y) \\ &= \left\{ \begin{array}{ll} p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}} & \text{if } y = 1 \\ p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x-\mu_2)^2}{2\sigma_2^2}} & \text{if } y = 2 \end{array} \right. \end{split}$$

where $p_1 + p_2 = 1$ represents two *prior* probabilities that x is given the label 1 or 2 respectively. p(x|y) is assumed to be Gaussians.

March 26, 2019 53 / 57

Parameter estimation

Likelihood of the training data $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$ with $y_n \in \{1, 2\}$

$$\log P(\mathcal{D}) = \sum_{n} \log p(x_n, y_n)$$

$$= \sum_{n: y_n = 1} \log \left(p_1 \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_n - \mu_1)^2}{2\sigma_1^2}} \right)$$

$$+ \sum_{n: y_n = 2} \log \left(p_2 \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_n - \mu_2)^2}{2\sigma_2^2}} \right)$$

Maximize the likelihood function

 $(p_1^*, p_2^*, \mu_1^*, \mu_2^*, \sigma_1^*, \sigma_2^*) = \operatorname{argmax} \log P(\mathcal{D})$

Decision boundary

The decision boundary between two classes is defined by

$$p(y=1|x) \ge p(y=2|x)$$

which is equivalent to

$$p(x|y=1)p(y=1) \ge p(x|y=2)p(y=2)$$

Namely,

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log\sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_2)^2}{2\sigma_2^2} - \log\sqrt{2\pi}\sigma_2 + \log p_2$$

It is quadratic in x. It follows (for some a, b and c, that

$$ax^2 + bx + c \ge 0$$

The decision boundary is *not linear!*

Example of nonlinear decision boundary

Note: the boundary is characterized by a quadratic function, giving rise to the shape of parabolic curve.

A special case

What if we assume the two Gaussians have the same variance?

We will get a *linear* decision boundary

From the previous slide:

$$-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \log\sqrt{2\pi}\sigma_1 + \log p_1 \ge -\frac{(x-\mu_2)^2}{2\sigma_2^2} - \log\sqrt{2\pi}\sigma_2 + \log p_2$$

Setting $\sigma_1 = \sigma_2$, we obtain

$$bx + c > 0$$

Note: equal variances across two different categories could be a very strong assumption.

For example, the plot suggests that the *male* population has slightly bigger variance (i.e., bigger eclipse) than the *female* population.

March 26, 2019 57 / 57