Algumas conclusões

$$T(n) \in \Theta(n^2)$$
.

O consumo de tempo do QUICKSORT no pior caso é $O(n^2)$.

O consumo de tempo do QUICKSORT é $O(n^2)$.

Quicksort no melhor caso

$$M(n) :=$$
 consumo de tempo mínimo quando $n = r - p + 1$
$$M(n) = \min_{0 \le k \le n-1} \{M(k) + M(n-k-1)\} + \Theta(n)$$

Versão simplificada:

$$M(0) = 1$$
 $M(1) = 1$
 $M(n) = \min_{0 < k < n-1} \{M(k) + M(n-k-1)\} + n \text{ para } n = 2, 3, 4, \dots$

Mostre que $M(n) \ge n$ log n para todo $n \ge 1$.

Isto implica que no melhor caso o QUICKSORT é $\Omega(n \lg n)$, que é o mesmo que dizer que o QUICKSORT é $\Omega(n \lg n)$.

Mais algumas conclusões

$$M(n) \in \Theta(n \lg n)$$
.

O consumo de tempo do QUICKSORT no melhor caso é $\Omega(n \log n)$.

Na verdade . . .

O consumo de tempo do QUICKSORT no melhor caso é $\Theta(n \log n)$.

Análise de caso médio do Quicksort

Apesar do consumo de tempo de pior caso do QUICKSORT ser $\Theta(n^2)$, sua performance na prática é comparável (e em geral melhor) a de outros algoritmos cujo consumo de tempo no pior caso é $O(n \lg n)$.

Por que isso acontece? (Intuitivamente.)

Exercício

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + n$

para n = 2, 3, 4, ...

Solução assintótica: T(n) é O(???), T(n) é $\Theta(???)$

Vamos olhar a árvore da recorrência.

Árvore da recorrência

Os níveis da esquerda chegarão antes na base, ou seja, a árvore será inclinada para a direita.

Árvore da recorrência

soma em cada horizontal $\leq n$

número de "níveis" $\leq \log_{3/2} n$

T(n) = a soma de tudo

$$T(n) \leq n \log_{3/2} n + \underbrace{1 + \cdots + 1}_{\log_{3/2} n}$$

 $T(n) \in O(n \lg n)$.

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \text{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

De volta a recorrência

$$T(1)=1$$

$$T(n)=T(\lceil n/3 \rceil)+T(\lfloor 2n/3 \rfloor)+n \ \ \mathsf{para} \ n=2,3,4,\dots$$

n	T(n)
1	1
2	1 + 1 + 2 = 4
3	1 + 4 + 3 = 8
4	4 + 4 + 4 = 12

Vamos mostrar que $T(n) \leq 20 n \lg n$ para n = 2, 3, 4, 5, 6, ...

Para $n = 2 \text{ temos } T(2) = 4 < 20 \cdot 2 \cdot \lg 2.$

Para $n = 3 \text{ temos } T(3) = 8 < 20 \cdot 3 \cdot \lg 3$.

Suponha agora que n > 3. Então...

Continuação da prova

$$T(n) = T(\lceil \frac{n}{3} \rceil) + T(\lfloor \frac{2n}{3} \rfloor) + n$$

$$\stackrel{\text{hi}}{\leq} 20\lceil \frac{n}{3} \rceil \lg\lceil \frac{n}{3} \rceil + 20\lfloor \frac{2n}{3} \rfloor \lg\lfloor \frac{2n}{3} \rfloor + n$$

$$\leq 20\frac{n+2}{3} \lceil \lg \frac{n}{3} \rceil + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$< 20\frac{n+2}{3} (\lg \frac{n}{3} + 1) + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20\frac{n+2}{3} \lg \frac{2n}{3} + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

$$= 20\frac{n}{3} \lg \frac{2n}{3} + 20\frac{2}{3} \lg \frac{2n}{3} + 20\frac{2n}{3} \lg \frac{2n}{3} + n$$

Continuação da continuação da prova

$$< 20n \lg \frac{2n}{3} + 14 \lg \frac{2n}{3} + n$$

$$= 20n \lg n + 20n \lg \frac{2}{3} + 14 \lg n + 14 \lg \frac{2}{3} + n$$

$$< 20n \lg n + 20n(-0.58) + 14 \lg n + 14(-0.58) + n$$

$$< 20n \lg n - 11n + 14 \lg n - 8 + n$$

$$= 20n \lg n - 10n + 14 \lg n - 8$$

 $< 20n \lg n - 10n + 7n - 8$

De volta à intuição

Certifique-se que a conclusão seria a mesma qualquer que fosse a proporção fixa que tomássemos. Por exemplo, resolva o seguinte...

Exercício: Considere a recorrência

$$T(1) = 1$$

$$T(n) = T(\lceil n/10 \rceil) + T(\lfloor 9n/10 \rfloor) + n$$

para $n = 2, 3, 4, \ldots$ e mostre que T(n) é $O(n \lg n)$.

Note que, se o QUICKSORT fizer uma "boa" partição a cada, digamos, 5 níveis da recursão, o efeito geral é o mesmo, assintoticamente, que ter feito uma boa partição em todos os níveis.