

Vector Addition

$$\mathbf{v} + \mathbf{w} = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

Fei-Fei Li Reviews - 5 15-Oct-1

Vector Subtraction

$$\mathbf{v} - \mathbf{w} = (x_1, x_2) - (y_1, y_2) = (x_1 - y_1, x_2 - y_2)$$

-Fei Li Reviews - 6 15-Oct-11

Scalar Product

$$a\mathbf{v} = a(x_1, x_2) = (ax_1, ax_2)$$

Fei-Fei Li Reviews - 7 15-0c

Inner (dot) Product

The inner product is a SCALAR!

$$v \cdot w = (x_1, x_2) \cdot (y_1, y_2) = ||v|| \cdot ||w|| \cos \alpha$$

if
$$v \perp w$$
, $v \cdot w = ? = 0$

Fei-Fei Li Reviews - 8 15-Oct-11

Matrices
$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} S & \mathbf{t} \\ 0 & 1 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$t = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 Fei-Fei Li Reviews 13 15-Oct-11

$$\mathbf{P} = (x, y)$$
$$\mathbf{t} = (t_x, t_y)$$

$$\stackrel{\leftarrow}{\mathbf{P'}} \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Fei-Fei Li

riews - 21

15-Oct-11

Homogeneous Coordinates

 Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar. For example,

$$(x, y) \rightarrow (x \cdot z, y \cdot z, z)$$
 $z \neq 0$
 $(x, y, z) \rightarrow (x \cdot w, y \cdot w, z \cdot w, w)$ $w \neq 0$

Fei-Fei Li

Reviews - 22

2 15-Oct-

Back to Cartesian Coordinates:

Divide by the last coordinate and eliminate it. For example,

$$(x, y, z)$$
 $z \neq 0 \rightarrow (x/z, y/z)$
 (x, y, z, w) $w \neq 0 \rightarrow (x/w, y/w, z/w)$

• NOTE: in our example the scalar was 1

Fei-Fei Li

Reviews -

15-Oct-11

2D Translation using Homogeneous Coordinates

Fei-Fei Li

Reviews -

15-Oct-1

Translating & Scaling = Scaling & Translating?

$$\mathbf{P}^{""} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & t_x \\ 0 & s_y & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + t_x \\ s_y y + t_y \\ 1 \end{bmatrix}$$

$$\mathbf{P}^{""} = \mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + s_x t_x \\ s_y y + s_y t_y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} s_x & 0 & s_x t_x \\ 0 & s_y & s_y t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_x x + s_x t_x \\ s_y y + s_y t_y \\ 1 \end{bmatrix}$$
Fel-Fei Li Reviews - 29 15-Oct-11

