CS 580 ALGORITHM DESIGN AND ANALYSIS

NP and NP-completeness

Vassilis Zikas

SO FAR

- Defined Cook reductions
- Saw some simple reduction strategies
- 3-SAT \leq_P INDEPENDENT SET \leq_P VERTEX COVER \leq_P SET COVER

- Today:
 - The class NP! (8.3 in KT)
 - NP-completeness
 - ° co-NP

MORE REDUCTION STRATEGIES

- Decision problem:
 - Does there exist a vertex cover of size $\leq k$?
- Search problem:
 - Find the vertex cover of minimum cardinality
- Self-reducibility:
 - ∘ Search version \leq_P decision version
 - Applies to all NP-complete problems
 - Justifies our focus on decision problems

MORE REDUCTION STRATEGIES

- Self-reducibility for vertex cover
 - \circ Binary search for cardinality k^* of min vertex cover
 - Find a vertex v such that $G \{v\}$ has a vertex cover of size $k^* 1$
 - Any vertex in any min vertex cover will have this property
 - \circ Include v in the vertex cover
 - Recursively find a min vertex cover in $G \{v\}$

8.3: DEFINITION OF NP

DECISION PROBLEMS

- Decision problem
 - *X* is a set of strings
 - Instance: string *s*
 - Algorithm *A* solves problem *X*:
 - A(s) = yes if and only if $s \in X$
- Algorithm A runs in polynomial time if for every string s, A(s) terminates in at most p(|s|) steps, where p(.) some polynomial
- PRIMES: {2, 3, 5, 7, 11, 13, 17, 23, 29, 31, ...}
 - Algorithm: [Agrawal et al. 2002] $p(|s|) = s^8$

DEFINITION OF P

• P: Decision problems for which there is a poly-time algorithm.

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is \times a multiple of y ?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
PRIMES	Is x prime?	AKS (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta
LSOLVE	Is there a vector x that satisfies Ax = b?	Gauss-Edmonds elimination	$\begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

CERTIFICATES

- Finding a solution versus checking a solution
- We do not know good algorithms that decide whether a CNF formula is satisfiable
- But, given a proposed solution we can quickly check if it satisfies the formula or not
- Given a CNF formula one can provide evidence that the formula is satisfiable
 - Evidence = satisfying assignment
- What evidence is there that a formula is **not** satisfiable?
- Formalizing "evidence" is going to be crucial for us

CERTIFIER

- An algorithm C(s,t) is an efficient certifier for a problem X if
 - C runs in polynomial time
 - For every string s, we have $s \in X$ if and only if there exists a string t such that C(s,t) = yes
- *t* is called the "certificate" or "witness"

NP

NP (nondeterministic polynomial time) is the set of all problems for which there exists an efficient certifier

CERTIFIERS AND CERTIFICATES: 3-SAT

- SAT:
 - Given a CNF formula ϕ is there a satisfying assignment?
- Certificate:
 - \circ An assignment of truth values to the n Boolean variables
- Certifier:
 - Check that each clause in ϕ has at least one true literal

• Example:

$$(\overline{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_1 \vee x_2 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_3} \vee \overline{x_4})$$

Certificate *t*: $x_1 = 1$, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

Conclusion: SAT is in NP

CERTIFIERS AND CERTIFICATES: HAMILTON CYCLE

- HAM-CYCLE: Given an undirected graph *G*, does there exist a simple cycle *C* that visits every node?
- Certificate: Ordered list of nodes
- Certifier: Check that the ordered list contains each node in *V* exactly once, and that there is an edge between adjacent nodes in the list (and between the first and last node).
- Conclusion: HAM-CYCLE in NP

P, NP, EXP

- P: Decision problems for which there is poly-time algorithm
- NP: Decision problems for which there is a poly-time certifier
- EXP: Decision problems for which there is an exponential time algorithm
- Claim: $P \subseteq NP$
 - Proof: Consider any problem X in P
 - By definition, there exists a poly-time algorithm A(s) that solves X
 - Certificate $t = \emptyset$, certifier C(s, t) = A(s)
- Claim: $NP \subseteq EXP$
 - Proof: Consider any problem X in NP
 - By definition, there exists a poly-time certifier C(s,t) for X
 - To solve input s, run C(s,t) on all strings t with $t \le p(|s|)$
 - Return *yes* if C(s,t) returns *yes* for any of these

THE QUESTION

- Does P=NP? [Cook 1971, Edmonds, Levin, Yablonksi, Godel]
- Is a solving a problem easier than verifying a solution?
 - Easiest way to become the most famous computer scientist alive!
 - Clay prize: 1 million dollars

P VERSUS NP

P VERSUS NP

- If P = NP the economy will probably collapse
 - E.g. RSA is no longer secure, and therefore our bank accounts are no longer secure
- If $P \neq NP$, no efficient algorithms for 3-SAT, INDEPENDENT SET, SET COVER,...

Consensus: most people believe that P ≠
 NP

NP-COMPLETENESS (8.4 IN KT)

- Cook reduction: Problem *X* polynomial reduces to problem *Y* if arbitrary instances of *X* can be solved using:
 - Polynomial number of standard steps, and
 - Polynomial number of queries to an oracle for Y
- Karp reduction: Problem X polynomial reduces to problem Y if given any input x of X we can construct an input y of Y, such that x is a yes instance of X if and only if y is a yes instance of Y

NP-COMPLETENESS

- Most reductions we've seen so far are actually Karp reductions
 - Only one call at the oracle for Y, at the end
- Cook and Karp reductions are not known to be the same with respect to NP
 - In a Cook reduction, we call the oracle multiple times, perhaps adaptively
- If they are the same, then co-NP = NP
- If they are not the same then $P \neq NP$
- We will mostly focus on Karp reductions, since they are the standard type

NP-COMPLETENESS

- Definition: A problem Y is NP-hard, if for every X in NP, $X \leq_P Y$
- Definition: A problem Y in NP is NP-complete, if for every X in NP, $X \leq_P Y$
- Theorem: Suppose Y is an NP-complete problem.
 Then Y is solvable in polynomial time if and only if P=NP
- Proof:
 - \Leftarrow If P=NP *Y* can be solved in polytime since it's in *NP*
 - ∘ ⇒ Suppose Y is solvable in polynomial time. Let X be an arbitrary problem in NP. Since $X \leq_P Y$ we can solve X in polytime, thus $NP \subseteq P$. We already know that $P \subseteq NP$
- Fundamental question: Are there "natural" NP-complete problems?

CIRCUIT SATISFIABILITY

• CIRCUIT-SAT: Given a combinational circuit built out of AND, OR and NOT gates, is there a way to set the circuit inputs so that the output is 1?

THE "FIRST" NP-COMPLETE PROBLEM

- Theorem: CIRCUIT-SAT is NP-complete!
 - [Cook 1971, Levin 1973]
- Proof (sketch):
 - Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is of polysize.
 - Natural: Algorithms are implemented on computers (i.e. on literal circuits)
 - Sketchy part of proof: Algorithms typically have no trouble dealing with inputs of larger size (i.e. more than *n* bits), as opposed to circuits.

THE "FIRST" NP-COMPLETE PROBLEM

- Consider some problem X in NP, with a polytime certifier C(s,t)
- To determine whether s is in X need to know if there exists a t of length p(|s|) such that C(s,t) = true
- View C(s,t) as an algorithm on |s| + p(|s|) bits, and convert it into a circuit K_s
 - First |s| bits are hard-coded to s
- K_s satisfiable if and only if there exists a length p(|s|) input string such that C(s,t) = true

EXAMPLE

• K_s satisfiable iff there exists an IS of size 2

G = (V, E), n = 3

ESTABLISHING NP-COMPLETENES

- Once we have the first NP-Complete problem, others fall like dominoes
 - We have hundreds (if not thousands) of known NPcomplete problems!
- Recipe to establish NP-completeness for X
 - Step 1: Show that X is in NP (the step that most students forget)
 - Step 2: Choose an NP-complete problem Y
 - ∘ Step 3: Prove that $Y \leq_P X$
- Proof: Let W be any problem in NP
 - $\circ W \leq_P Y \leq_P X$
 - Hence *X* is NP-complete

THEOREM: 3-SAT IS NP-COMPLETE

Proof:

- ∘ We've seen that 3-SAT is in NP, so it suffices to show that CIRCUIT-SAT $\leq_P 3$ -SAT
- Let *K* be any circuit
- Create a 3-SAT variable x_i for every element of K
 - $x_2 = \neg x_3 \rightarrow \text{add two clauses } (x_2 \lor x_3), (\overline{x_2} \lor \overline{x_3})$
 - Can't set both to true or both to false!
 - $x_1 = x_4 \lor x_5 \rightarrow \text{add three clauses } (x_1 \lor \overline{x_4}), (x_1 \lor \overline{x_5}), (\overline{x_1} \lor x_4 \lor x_5)$
 - If x_1 is true, at least one of x_4 and x_5 has to be true. If x_1 if false, both x_4 and x_5 have to be false
 - $x_1 = x_4 \land x_5 \rightarrow \text{add three clauses } (x_4 \lor \overline{x_1}), (x_5 \lor \overline{x_1}), (x_1 \lor \overline{x_4} \lor \overline{x_5})$
 - If x_1 is true, at both of x_4 and x_5 have to be true. If x_1 if false, at least one of x_4 and x_5 has to be false

THEOREM: 3-SAT IS NP-COMPLETE

- Proof (continued):
 - Hard-coded input and output values
 - $x_5 = 0 \rightarrow \text{add clause } (\overline{x_5})$
 - $x_1 = 1 \rightarrow \text{add clause } (x_1)$

$$\begin{array}{l} (\overline{x_5}) \wedge (x_1 \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_5}) \wedge (\overline{x_1} \vee x_4 \vee x_5) \wedge (x_2 \vee x_3) \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_0}) \wedge (x_2 \vee \overline{x_0}) \wedge (x_0 \vee \overline{x_1} \vee \overline{x_2}) \end{array}$$

NP-COMPLETENESS

• Observation. All problems below are NP-complete and polynomial reduce to one another!

NP-COMPLETE PROBLEMS

- Basic big "genres" of NP-complete problems:
 - Packing: SET-PACKING, INDEPENDENT SET
 - Covering: SET-COVER, VERTEX-COVER
 - Constraint Satisfaction: 3-SAT, CIRCUIT-SAT
 - Partitioning: COLORING, 3-D MATCHING
 - Numerical problems: SUBSET-SUM, KNAPSACK
 - Sequencing: HAMILTONIAN CYCLE, TSP

NP-COMPLETE PROBLEMS

- In practice, most problems are either in P or known to be NP-complete
- There are important exceptions:
 - Factoring
 - Graph isomorphism
 - Finding a Nash-equilibrium

EXTENT AND IMPACT

- "Prime intellectual export of CS to other disciplines"
- Thousands of citations every year
 - More than "compilers" or "database", etc
- Broad applicability and classification power
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."
- A guide to scientific inquiry
 - E.g. Ising's phase transition model for 3 dimensions
 - Top theoreticians searched for an analytical threedimensional solution for many decades
 - Istrail showed that the problem is NP-complete in 2000.

CO-NP AND THE ASYMMETRY OF NP

- Important detail about NP: We only need certificates for *yes* instances
- Example 1: SAT versus TAUTOLOGY
 - Can prove that a CNF formula is satisfiable by giving a satisfying assignment
 - How could you prove that a formula is not satisfiable?
- Example 2: HAM-CYCLE versus NO-HAM-CYCLE
 - Can prove that a graph is Hamiltonian by giving a Hamiltonian cycle
 - How could we prove that a graph is not Hamiltonian?

CO-NP AND THE ASYMMETRY OF NP

- NP: Decision problems for which there is a poly-time certifier
- Definition: Given a decision problem X its complement \overline{X} is the same problem, but with yes and no instances reversed
 - ∘ I.e. $s \in \overline{X}$ iff $s \notin X$
- co-NP: Decision problems whose complement is in NP

NP VERSUS CO-NP

- Fundamental question: Does NP = co-NP?
 - Do yes instances have succinct certificates iff no instances have succinct certificates?
 - Probably not...
- Theorem: If $NP \neq co-NP$ then $P \neq NP$
 - Proof idea:
 - P is closed under taking complements
 - If P = NP, then NP is closed under taking complements
 - \circ Therefore, NP = co-NP
 - This is the contrapositive of the theorem

PROBLEMS NP ∩ CO-NP

- Example: Given a bipartite graph, does it have a perfect matching:
 - If yes: can exhibit a perfect matching
 - If no: can exhibit a set of nodes S, s.t. |N(S)| < |S|
- Every problem in $NP \cap co$ -NP has a "good characterization"
 - Short proof for yes and short proof for no
- Observation: $P \subseteq NP \cap co\text{-}NP$
- Fundamental open question: Does P equal NP \cap co-NP?
 - Mixed opinions
 - Many examples where problems had good characterizations first, and then years later an efficient algorithm was developed
 - E.g. linear programming, primality testing
- E.g. Factoring is in $NP \cap co-NP$ but not known to be in P

SUMMARY

- Definition of NP (8.3 in KT)
- NP-Completeness (8.4 in KT)
- co-NP (8.9 in KT)