Datorseende Assignment 1

er 8251 da-s

January 2024

1 Points in Homogeneous Coordinates

1.1 Exercise 1

- 1. $x_1 = (2, -1)^T$
- 2. $x_2 = (-3, 2)^T$
- 3. $x_3 = (2, -1)^T$

It is the point (4, -2) on the infinity line. It is called a vanished point.

1.2 Computer Exercise 1

Figure 1: Plot of x2D

Plot of x3D Matrix

Figure 2: Plot of x3D

2 Lines

2.1 Exercise 2

- 1. $p_1 = (1, -2)$
- 2. $p_2 = (-2, 1)$
- 3. $l_1 = (1, -2)$

 p_2 is interpreted as a vanishing point in the direction of (-2, 1)

2.2 Exercise 3

The null space constitutes the vectors which satisfy the relationship Mx = 0. Since our intersection satisfy the two equations in Exercise 2 and these equations constitute the rows in M, the null space contains the intersection. Even though Mx = 0 has an infinite number of solutions they all correspond to the same point in the projective space P^2 , and hence there is no other non-zero point which satisfy the equation.

2.3 Computer Exercise 2

Figure 3: Lines, Points and a Intersection

The computed distance was 8.1950. It is close to zero because the lines are close to parallel in 3D.

2.4 Projective Transformations

2.5 Exercise 4

$$H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
$$x_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \text{and} \quad x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

Matrix multiplication yields:

$$y_1 \sim Hx_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and $y_2 \sim Hx_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

I calculate the lines l_1 and l_2 by performing the cross product between respective x and y.

$$l_1 = y_1 \times y_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 and $l_2 = x_1 \times x_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$

W take a line $\mathbf{l}_1^{\top} \mathbf{x} = 0$. Applying the Matrix \mathbf{H} , we get $\mathbf{y} = \mathbf{H} \mathbf{x}$.

We then take a new line. $\mathbf{l}_2^{\top}\mathbf{y} = 0$. Let $\mathbf{l}_2^{\top} = \mathbf{l}_1^{\top}\mathbf{H}^{-1}$, then:

$$\mathbf{l}_{2}^{\top}\mathbf{y} = \mathbf{l}_{1}^{\top}\mathbf{H}^{-1}\mathbf{H}\mathbf{x} = \mathbf{l}_{1}^{\top}\mathbf{x} = 0.$$
 (1)

2.6 Computer Exercise 3

Transformation	Properties
H_1	Similarity, Euclidean, Affine, Projective
H_2	Similarity, Affine, Projective
H_3	Affine, Projective
H_4	Projective

Table 1: Properties of the different H-matrices plotted below

Figure 4: H transformations

3 The Pinhole Camera

3.1 Exercise 5

$$PX_1 = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \quad PX_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \quad PX_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

 PX_3 is a vanishing point in the direction of (1,1).

With the camera center defined as $C = -R^T t$ we get:

$$-R^{\top}\mathbf{t} = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}$$

The viewing direction is ${\cal R}_3^T,$ i.e the third row of the rotation matrix.

$$R_3^{\top} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

3.2 Computer Exercise 4

Figure 5: Modeling of Statue

For Camera 1 the camera center and viewing direction is:

$$C_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} V_1 = \begin{bmatrix} 0.312922810572239 \\ 0.946084666794662 \\ 0.0836846334735666 \end{bmatrix}$$

For Camera 2 the camera center and viewing direction is:

$$C_2 = \begin{bmatrix} 6.63520389848774\\ 14.8459791894476\\ -15.0691158460852\\ 1 \end{bmatrix} V_2 = \begin{bmatrix} 0.0318638434603584\\ 0.340165416823134\\ 0.939825613971804 \end{bmatrix}$$