MATH 644

Chapter 2

SECTION 2.2: FUNDAMENTAL THEOREM OF ALGEBRA AND PARTIAL FRACTIONS

Contents

Fundamental Theorem of Algebra	2	
Consequences Rational Functions	5	

Created by: Pierre-Olivier Parisé Spring 2023

FUNDAMENTAL THEOREM OF ALGEBRA

The local behavior of a polynomial (Walking a Dog picture) is really helpful to give a proof of the FTA.

THEOREM 1. Every non-constant polynomial has a zero.

Some precision:

• A function $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ has a zero at $a \in \Omega$ if f(a) = 0.

LEMMA 2. If $n := \deg p \ge 1$, then $|p(z)| \to \infty$, as $|z| \to \infty$.

Proof let
$$p(z) = \sum_{k=0}^{\infty} a_k z^k$$
, $a_n \neq 0$.

If $|z| \neq 0$, then
$$p(z) = z^n \left(\frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \dots + a_n\right)$$

Since $\frac{1}{|z|^k} \rightarrow 0$ as $|z| \rightarrow \infty$ ($\forall k$)

then, for $H > 0$ fix, $\exists R_1 > 0$ s.t.
$$\frac{1}{|z|^k} < \frac{|a_n|}{2^n \binom{mox}{o^2 k^2 n - 1}} \frac{|a_k|^2 + 1}{2^n \binom{mox}{o^2 k^2 n - 1}} \frac{|a_k|^2 + 1}{2^n \binom{n}{2}}$$

So, if $|z| > R_1$, then $|z - \omega| > |z| - |\omega|$

$$|\sum_{k=1}^{\infty} a_k| \leq \sum_{k=1}^{\infty} \frac{|a_k|}{|z|^k} < \frac{|a_n|}{2}$$

Now, if $|z| > R_1$, then
$$|p(z)| \geq |z|^n |a_n| - |z|^n |a_n| \geq \frac{|z|^n}{2} \rightarrow \infty$$

LEMMA 3. If p(z) is a polynomial with no zero, then

 $M := \inf\{|p(z)| : z \in \mathbb{C}\} \in (0, \infty).$

Proof. First, $p(0) = a_0 \in C \longrightarrow M \leq |a_0| < \infty$. Let $(R_n)_{n=1}^{\infty} \subseteq (0, \infty)$ p.t. $R_n \nearrow \infty$. Let $H_n := rnf ||f(z)|| : |Z| \leq Rnf$. So, the sequence (H_n) is decreasing and bounded below by 0. So, there is M = p.f. Lim $H_n = M$.

Since |p| is continuous on {z: |z| & Rn}.

Then $\exists z \in \{z: |z| \& Rn\} \land [p(zn)] = Mn$.

Suppose that |zn| -> 00, |p(zn)| -> 00 (n->00).

So, Since |p(2n) = Mn => Mn -> 00

 \Rightarrow $M = \infty$. #

So, there is a R>o p.t. |zn| & R.

50, there is $(Z_{nk})_{k=1}^{\infty}$ p.t. $Z_{nk} \longrightarrow Z_{0}$ fu

Some Zo E C.

(anhously =) $H = |p(z_0)| > 0$.

Proof of the FTA.

$$d p(z) = \sum_{j=0}^{r} b_j z^j, \quad k := inflj : bj \neq 0.$$

$$\int_{-\infty}^{\infty} |p|^{2\delta} + |b|^{2k}$$

$$|p|^{2\delta} + |b|^{2k}$$

$$|p|^{2\delta} + |b|^{2k} = M-r$$

$$|p(z_0+3)| \le |p(z_0+3) - p(z_0) - bk3^k|$$

 $+ |p(z_0) + bk3^k|$
 $\le |p(z_0+3)| \le |p(z_0+3)| = |p(z_0+3)|$

ね

COROLLARY 4. If p is a polynomial of degree $n \ge 1$, then there are complex numbers z_1, z_2, \ldots, z_n and a compact constant c such that

$$p(z) = c \prod_{k=1}^{n} (z - z_k).$$

Proof. By induction

1)
$$\underline{n=1}$$
 $p(z) = az+b = a(z+\frac{b}{a})$

By FTA,
$$\exists b \in \mathcal{A}$$
 s.t. $q(b) = 0$. For $z \neq b$, $\frac{q(z)}{z-b} = \frac{q(z)-q(b)}{z-b} = \frac{\sum_{k=1}^{m-1} a_k(z^k-b^k)}{z-b}$

$$= \sum_{k=1}^{m+1} a_k \left(\sum_{j=0}^{k-1} z^{j} b^{k-j} \right) (z+b)$$

$$= \sum_{k=1}^{m+1} a_k \left(\sum_{j=0}^{k-1} z^{j} b^{k-j} \right)$$

$$= C \prod_{k=1}^{m} (z-z_k)$$

=>
$$q(z) = C \int_{k=1}^{m} (z-2k) (z-b)$$
.

EXAMPLE 5. Find the zeros of $p(z) = z^n - 1$, $n \ge 1$.

Take
$$z \in C$$
 $p(z) = 0$ \Rightarrow $z^{n-1} = 0$ \Rightarrow $|z| = 1$
So, $\exists 0 \in \mathbb{R}$ $n \in \mathbb{R}$, $z = e^{i\theta} = (os 0 + isin 0)$
 $\Rightarrow z^{n} = 1$ \Rightarrow $e^{in \theta} = 1$
 $\Rightarrow \int (os n \theta = 1)$
 $\Rightarrow \sin n \theta = 0$
So, $\theta = \frac{2k\pi}{n}$, $k = 0, 1, 2, ..., n = 1$
So, $z_k = e^{i\frac{2k\pi}{n}}$, $k = 0, 1, ..., n = 1$

Rational Functions

A rational function is a quotient of two polynomials. From the FTA, we can write

$$r(z) = \frac{p(z)}{\prod_{j=1}^{N} (z - z_j)^{n_j}}$$

for some $N, n_j \in \mathbb{C}$ and $z_1, z_2, \dots, z_N \in \mathbb{C}$.

COROLLARY 6. Let p be a polynomial. Then there is a polynomial q(z) and complex constants $c_{k,j}$ such that

$$\frac{p(z)}{\prod_{j=1}^{N}(z-z_j)^{n_j}} = q(z) + \sum_{j=1}^{N} \sum_{k=1}^{n_j} \frac{c_{k,j}}{(z-z_j)^k}.$$

A simple case:
$$\frac{p(z)}{T_{j=1}^{N}(z-z_{j})} = \sum_{j=1}^{N} \frac{c_{j}}{(z-z_{j})} A c_{j} = \frac{p(z_{j})}{T_{k=1}^{N}(z_{j}-z_{k})}$$

The simple case:
$$\frac{p(z)}{T_{j=1}^{N}(z-z_{j})} = \sum_{j=1}^{N} \frac{c_{j}}{(z-z_{j})} A c_{j} = \frac{p(z_{j})}{T_{k=1}^{N}(z_{j}-z_{k})}$$