Kernel Masters BeagleBone Black Expansion Board User Manual Rev 4.0

Rev 4.0 August 2021

Author: Boddu Kishore Kumar kishore@kernelmasters.org

Contributing Editor: Deepak Suresh

www.kernelmasters.org

Contents

1.	Воа	ra Ov	erview	
	1.1.	Kit C	ontents	3
	1.2.	Gett	ing Started	3
	1.3.	Feat	ures	3
	1.4.	Spec	ifications	
2.	Bea	gle Bo	one Black Hardware Description	5
	2.1.	Ove	view	5
	2.2.	Bea	gleBone Black Features and Specification	5
	2.3.	Boar	d Component Locations	e
	2.4.	Bloc	k diagram	8
3.	Keri	nel M	asters BBB Expansion board Hardware Description	<u>c</u>
	3.1.	Swit	ches, Buzzer and LEDs	g
	3.2.	Disp	lay	11
	3.3.	Boot	configuration	12
	3.3.	1.	Boot Configuration Design	12
	3.4.	ADC	Zone	13
	3.5.	UAR [*]	T Zone	14
	3.6.	12C Z	Zone	14
	3.6.	1.	Electrically Erasable and Programmable Read-Only Memory (EEPROM)	15
	3.6.	2.	Real Time clock (RTC)	15
	3.6.	3.	Digital Accelerometer	16
	3.7.	SPI Z	one	17
	3.7.	1.	Ethernet Controller with SPI Interface	17
	3.8.	CAN	Zone	17
	3.9.	Keyp	oad	18
	3.10.	De	ebug Port	18
	3.11.	Pc	ower supply	19
	3.12.	Ex	pansion Headers	19
	3.12	2.1.	Connector P8	19
	3.12	2.2.	Connector P9	21
1	۸nn	ondiv	Λ	22

Chapter 1

1. Board Overview

The BeagleBone Black based Kernel Masters Expansion Board v4.0 is a development platform for developers and hobbyists, which includes a BeagleBone Black board. BeagleBone Black board uses an AM335x 1GHz ARM® Cortex-A8 processor. Kernel Masters BBB Expansion Board includes everything required either for beginners or experienced users to get started quickly. Figure 1-1 shows a photo of the Kernel Masters BBB Expansion Board v4.0.

Figure 1-1. Kernel Masters BBB Expansion Board v4.0

1.1. Kit Contents

The Kernel Masters BBB Expansion Board Kit contains the following items:

- Kernel Masters BBB Expansion Board
- BeagleBone Black board
- mini USB to USB Type A Cable
- Ethernet cable
- 5V dc power adaptor
- USB TTL module
- Jumper wires

1.2. Getting Started

Refer the video in www.youtube.com/watch?v=RLneJhUjCn0&t=1186s to get started with Kernel Masters BBB Expansion Board.

1.3. Features

Kernel Masters BBB Expansion board includes the following features:

- BeagleBone Black board featuring a Sitara AM335x 1GHz ARM® Cortex-A8 32-bit RISC processor, with 512MB DDR3L 800MHZ SDRAM and an onboard flash memory of 4GB, 8bit Embedded MMC.
- On board LM35(temperature sensor) and DHT11(temperature and humidity sensor)
- Debug Interface Support
- On board 3-axis accelerometer with high resolution (13-bit) measurement.
- 16x2 Monochrome LCD interface.
- On-board Buzzer
- Power supply to the board 5V DC Jack
- Up to 8-Kbytes of on board EEPROM
- On board external RTC
- Switches Power, User and System push buttons
- 3 onboard LEDs:
 - 1 Power LED and 1 User LEDs
- Supports Debian, Android, Ubuntu, Cloud9 IDE on Node.js w/ BoneScript library and much more.

1.4. Specifications

Table 1-1 summarizes the specifications for the Kernel Masters BBB Expansion Board.

Table 1-1. Kernel Masters BBB Expansion Board Specifications

Parameter	Value		
Board supply voltage	4.75 VDC to 5.25 VDC from 5V DC Power adaptor		
Dimensions	(L x W x H)		
Break-out power output	3.3 VDC (current rating)5.0 VDC (current rating)		
RoHS status	Compliant		

1.5. Kernel Masters BeagleBone Black Expansion Board Block Diagram

2. Beagle Bone Black Hardware Description

2.1. Overview

The BeagleBone Black is the latest addition to the BeagleBoard.org family. It is a low-cost, high-expansion focused BeagleBoard using a low cost Sitara XAM3359AZCZ100 Cortex A8 ARM processor from Texas Instruments. It is similar to the Beaglebone, but with some features removed and some features added.

It has been equipped with a minimum set of features to allow the user to experience the power of the processor and is not intended as a full development platform as many of the features and interfaces supplied by the processor are not accessible from the BeagleBone Black via onboard support of some interfaces. It is not a complete product designed to do any particular function. It is a foundation for experimentation and learning how to program the processor and to access the peripherals by the creation of your own software and hardware.

2.2. BeagleBone Black Features and Specification

This section covers the specifications and features of the board and provides a high level description of the major components and interfaces that make up the board. The following table lists the key features of the BeagleBone Black.

Feature Sitara AM3358BZCZ100 1GHz, 2000 MIPS **Graphics Engine** SGX530 3D, 20M Polygons/S SDRAM Memory 512MB DDR3L 800MHZ Onboard Flash 4GB, 8bit Embedded MMC **PMIC** TPS65217C PMIC regulator and one additional LDO Debug Support Optional Onboard 20-pin CTI JTAG, Serial Header miniUSB USB or DC 5VDC External Via Expansion Power Source Jack Header PCB 3.4" x 2.1" 6 layers Indicators 1-Power, 2-Ethernet, 4-User Controllable LEDs **HS USB 2.0 Client Port** Access to USB0, Client mode via miniUSB **HS USB 2.0 Host Port** Access to USB1, Type A Socket, 500mA LS/FS/HS Serial Port UART0 access via 6 pin 3.3V TTL Header. Header is populated Ethernet 10/100, RJ45 SD/MMC Connector microSD, 3.3V Reset Button User Input Boot Button Power Button 16b HDMI, 1280x1024 (MAX) 1024x768,1280x720,1440x900 ,1920x1080@24Hz Video Out w/EDID Support Via HDMI Interface, Stereo Audio Power 5V, 3.3V, VDD_ADC(1.8V) 3.3V I/O on all signals McASP0, SPI1, I2C, GPIO(69 max), LCD, GPMC, MMC1, MMC2, 7 **Expansion Connectors** AIN(1.8V MAX), 4 Timers, 4 Serial Ports, CANO, EHRPWM(0,2),XDMA Interrupt, Power button, Expansion Board ID (Up to 4 can be stacked) Weight 1.4 oz (39.68 grams) Refer to Section 6.1.7

Table 2-1. BeagleBone Black features

2.3. Board Component Locations

This section describes the key components on the board. It provides information on their location and function. Below figure shows the locations of the key components on the PCB layout of the board.

Figure 2-1. BeagleBone Black key components

- **Sitara AM3358BZCZ100** is the processor for the board.
- Micron 512MB DDR3L or Kingston 512mB DDR3 is the Dual Data Rate RAM memory.
- TPS65217C PMIC provides the power rails to the various components on the board.
- **SMSC Ethernet PHY** is the physical interface to the network.
- Micron eMMC is an onboard MMC chip that holds up to 4GB of data.
- **HDMI** Framer provides control for an HDMI or DVI-D display with an adapter.

Below figure shows the locations of the connectors, LEDs, and switches on the PCB layout of the board.

Figure 2-2. BeagleBone Black Connectors, LEDs and Switches

- **DC Power** is the main DC input that accepts 5V power.
- **Power Button** alerts the processor to initiate the power down sequence.
- **10/100 Ethernet** is the connection to the LAN.
- **Serial Debug** is the serial debug port.
- **USB Client** is a miniUSB connection to a PC that can also power the board.
- **BOOT switch** can be used to force a boot from the microSD card if the power is cycled on the board, removing power and reapplying the power to the board..
- There are four blue **LEDS** that can be used by the user.
- **Reset Button** allows the user to reset the processor.
- microSD slot is where a microSD card can be installed.
- microHDMI connector is where the display is connected to.
- **USB Host** can be connected different USB interfaces such as Wi-Fi, BT, Keyboard, etc.

2.4. Block diagram

The figure below is the high level block diagram of the BeagleBone Black.

DRAM HDMI **PMIC** 512MB **EMIF** uSD Card MMC0 Serial header ARM Cortex A8 - 1GHZ UARTO eMMC MMC1 4GB USB0 **USB Client** 4 LED's **GPIO** Reset, Power Ethernet RJ45 Control Module & Boot switches ARM Cortex A8 AM3358 SoC Beagle Bone Black (BBB)

Figure 2-3. BeagleBone Black Block diagram

3. Kernel Masters BBB Expansion board Hardware Description

The Kernel Masters BBB Expansion Board includes a range of useful peripheral features.

3.1. Switches, Buzzer and LEDs

- Reset button is located near the Power On switch. This is used to reset the board.
- A power button is provided near the reset button close to the Ethernet connector. This button takes advantage of the input to the PMIC for power down features. Some features of power button includes:
 - Interrupt is sent to the processor to facilitate an orderly shutdown to save files and to un-mount drives.
 - Provides ability to let processor put board into a sleep mode to save power.
 - Can alert processor to wake up from sleep mode and restore state before sleep was entered.
 - $-\,\,$ Allows board to enter the sleep mode, preserving the RTC clock

If you hold the button down longer than 8 seconds, the BeagleBone Black board will power off if you release the button when the power LED turns off. If you continue to hold it, the board will power back up completing a power cycle.

• There are also three user switches UP, DN and ENTER. These switches are connected to GPIO pins on BeagleBone Black board.

Figure 3-1. Kernel Masters BBB Expansion Board Switch schematics

SYSTEM SWITCH

 A Buzzer is also provided on the expansion board that can be configured for custom applications. It is connected to GPIO pin on BeagleBone Black board.

Figure 3-2. Kernel Masters BBB Expansion Board Buzzer schematics

- The power LED will turn on once the expansion board is powered up with 5V DC. The connection of the LED is shown in Figure 3-3.
- There is one user LED on Kernel Masters BeagleBone Black expansion board which is connected to GPIO pin on the BeagleBone Black board. Figure 3-3 shows the interface for the user LED.

Kernel Masters BeagleBone Black User Manual

Figure 3-3. Kernel Masters BBB Expansion Board LED schematics

3.2. Display

The Kernel Masters BBB Expansion Board comes with a 16 x 2 Monochrome LCD display that can be used in custom user applications. The LCD can also be removed if it is not required for some application. It is also provided with an LCD trim pot to adjust the brightness of LCD screen.

Figure 3-4. Kernel Masters BBB Expansion Board LCD Display schematics

DISPLAY

3.3. Boot configuration

As mentioned earlier, there are four boot modes:

- **eMMC Boot...**This is the default boot mode and will allow for the fastest boot time and will enable the board to boot out of the box using the pre-flashed OS image without having to purchase an microSD card or an microSD card writer.
- **SD Boot...**This mode will boot from the microSD slot. This mode can be used to override what is on the eMMC device and can be used to program the eMMC when used in the manufacturing process or for field updates.
- **Serial Boot...**This mode will use the serial port to allow downloading of the software direct. A separate USB to serial cable is required to use this port.
- **USB Boot...**This mode supports booting over the USB port.

A switch is provided to allow switching between the modes.

- Holding the boot switch down during a removal and reapplication of power without a
 microSD card inserted will force the boot source to be the USB port and if nothing is
 detected on the USB client port, it will go to the serial port for download.
- Without holding the switch, the board will boot try to boot from the eMMC. If it is empty, then it will try booting from the microSD slot, followed by the serial port, and then the USB port.
- If you hold the boot switch down during the removal and reapplication of power to the board, and you have a microSD card inserted with a bootable image, the board will boot from the microSD card.

3.3.1. Boot Configuration Design

On power up, these pins are read by the processor to determine the boot order. S2 is used to change the level of one bit from HI to LO which changes the boot order.

On boot, the processor will look for the eMMC on the MMC1 port first, followed by the microSD slot on MMC0, USB0 and UART0. In the event there is no microSD card and the eMMC is empty, UART0 or USB0 could be used as the board source.

If you have a microSD card from which you need to boot from, hold the boot button down. On boot, the processor will look for the SPIOO port first, then microSD on the

MMCO port, followed by USBO and UARTO. In the event there is no microSD card and the eMMC is empty, USBO or UARTO could be used as the board source.

3.4. ADC Zone

The Kernel Masters BBB Expansion Board is provided with two on-board analog devices which is an LM35 temperature sensor and a potentiometer. One 12-bit analog-to-digital converter is embedded and shares up to 8 external channels.

Figure 3-5. Kernel Masters BBB Expansion Board ADC schematics

ANALOG

3.5. UART Zone

The Expansion Board provides three dedicated UART headers which helps in communicating various peripherals or sensors that may be used in your custom projects. UART headers are J8, J11 AND J12 respectively. J8 is UART5, J11 is UART1 and J12 is UART2 respectively. UART0 access via 6 pin 3.3V TTL Header for serial debug port.

Figure 3-6. Kernel Masters BBB Expansion Board UART schematics

UART EXTENSION

3.6. I2C Zone

The Kernel Masters BBB Expansion Board uses I2C1 to connect slaves on the board. It is connected to EEPROM (slave address is 0X50H), RTC (slave address is 0X68H) and an accelerometer (slave address is 0x1D).

3.6.1. Electrically Erasable and Programmable Read-Only Memory (EEPROM)

The Kernel Masters BBB Expansion Board provides an EEPROM of size 8K with 2-wire serial interface bus, I2C compatible. It is internally Organized 128×8 (1K), 256×8 (2K), 512×8 (4K), 1024×8 (8K) or 2048×8 (16K). It also has a write Protect Pin for Hardware Data Protection. The BeagleBone Black Expansion Board uses I2C1 to interface EEPROM.

Figure 3-7. Kernel Masters BBB Expansion Board EEPROM schematics

3.6.2. Real Time clock (RTC)

The Kernel Masters BBB Expansion Board provides an external RTC. It is a low power, full binary-coded decimal (BCD) serial Real Time Clock. Address and data are transferred serially through an I2C, bidirectional bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. An external crystal Y1 (32.7 KHz) is also provided exclusively for RTC. The BeagleBone Black Expansion Board uses I2C1 to interface RTC.

Figure 3-8. Kernel Masters BBB Expansion Board RTC schematics

Kernel Masters BeagleBone Black User Manual

3.6.3. Digital Accelerometer

The ADXL345 is an ultralow power, 3-axis accelerometer with high resolution (13-bit) measurement at up to ± 16 g. Digital output data is formatted as 16-bit twos complement. It is accessed through I2C interface. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic acceleration resulting from motion or shock. The BeagleBone Black Expansion Board uses I2C1 to interface accelerometer.

Figure 3-9. Kernel Masters BBB Expansion Board Accelerometer schematics

3.7. SPI Zone

The SPI interface can be configured for communication in master mode and slave mode. The BeagleBone Black expansion board uses SPI1 to interface the on-board Ethernet controller with BeagleBone Black Board.

3.7.1. Ethernet Controller with SPI Interface

The BeagleBone Black Expansion board interfaces an on-board Ethernet controller with an industry standard Serial Peripheral Interface (SPI). It is designed to serve as an Ethernet network interface for any controller equipped with SPI with Clock Speeds Up to 20 MHz. It is Fully Compatible with 10/100/1000 Base-T Networks, and also supports Full and Half-Duplex modes. SPI1 is used to interface Ethernet controller.

Figure 3-10. Kernel Masters BBB Expansion Board Ethernet controller schematics

3.8. CAN Zone

The Kernel Masters BBB Expansion Board has provided a Controller Area Network extension to interface any devices that works on CAN protocol.

Figure 3-11. Kernel Masters BBB Expansion Board CAN controller schematics

3.9. Keypad

The BeagleBone Black expansion board provides a provision to interface a 5x4 matrix keypad that can be used for many custom projects. The connector uses a total of 9 pins that are connected to the GPIO pins of BeagleBone Black board as shown in the below figure.

Figure 3-12. Kernel Masters BBB Expansion Board Keypad schematics

3.10. Debug Port

Serial debug is provided via UARTO on the processor via a single 1x6 pin header. In order to use the interface a USB to TTL adapter will be required. Signals supported are TX and RX. None of the handshake signals are supported.

Figure 3-13. Kernel Masters BBB Expansion Board Debug port schematics

DEBUG PORT

3.11. Power supply

The board can be powered from three different sources:

- A USB port on a PC
- A 5VDC 1A power supply plugged into the DC connector.
- A power supply with a USB connector.

DC power jack is most commonly used to supply power to the board. The board requires a regulated 5VDC +/-.25V supply at 1A.

Figure 3-14. Kernel Masters BBB Expansion Board Power supply schematics

3.12. Expansion Headers

The expansion interface on the board is comprised of two 46 pin connectors. All signals on the expansion headers are 3.3V unless otherwise indicated.

3.12.1. Connector P8

Table 1 shows the pin out of the P8 expansion header. There are some signals that have not been listed here. Refer to the processor documentation for more information on these pins

and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of signals that may be required to implement a total interface.

Table 3-1. P8 Expansion header

Kern	el Mast	ers Beagle	Bone Black P	in Mapping			
		P8 H	eader				
AM3358 Soc BBB Pin Details Kernel Masters							
Pin Name	Pin No	BBB Pin No	Function Name	Function Name	Mode		
	DGND	P8_1	DGND	DGND	DGND		
	DGND	P8_2	DGND	DGND	DGND		
gpmc_ad6	R9	P8_3	MMC1_DATA6	3			
gpmc_ad7	T9	P8_4	MMC1_DAT7	2			
gpmc_ad2	R8	P8_5	MMC1_DAT2	-	÷		
gpmc_ad3	T8	P8_6	MMC1_DAT3	-	5		
gpmc_advn_ale	R7	P8_7	TIMER4	-	2		
gpmc_oen_ren	T7	P8_8	TIMER7		=		
gpmc_be0n_cle	T6	P8_9	TIMER5	2	<u> </u>		
gpmc_wen	U6	P8_10	TIMER6	=	9		
gpmc_ad13	R12	P8_11	GPIO1_13	LCD_D5	7		
GPMC_AD12	T12	P8_12	GPIO1_12	LCD_D4	7		
gpmc_ad9	T10	P8_13	EHRPWM2B	=	5		
gpmc_ad10	T11	P8_14	GPIO0_26	SW_UP	7		
gpmc_ad15	U13	P8_15	GPIO1_15	LCD_D7	7		
gpmc_ad14	V13	P8 16	GPIO1 14	LCD D6	7		
gpmc_ad11	U12	P8 17	GPIO0 27	SW DOWN	7		
gpmc_clk_mux0	V12	P8 18	GPIO2 1	=	9		
gpmc_ad8	U10	P8 19	EHRPWM2A	-	-		
gpmc_csn2	V9	P8 20	MMC1 CMD	=	2		
gpmc csn1	U9	P8 21	MMC1 CLK	*	-		
gpmc_ad5	V8	P8 22	MMC1 DAT5	-	<u>=</u>		
gpmc_ad4	U8	P8 23	MMC1 DAT4	- *	2		
gpmc_ad1	V7	P8 24	MMC1 DAT1	-	-		
gpmc_ad0	U7	P8 25	MMC1 DAT0	=	2		
gpmc_csn0	V6	P8 26	GPIO1 29	-	9		
lcd_vsync	U5	P8 27	GPIO2 22	LCD RS	7		
lcd pclk	V5	P8 28	GPIO2_24[]	LCD EN	7		
lcd hsync	R5	P8 29	GPIO2 23[]	LCD RW	7		
lcd ac bias en	R6	P8 30	GPIO2 25[]	KEY PAD 8	7		
lcd data14	V4	P8 31	UART5 CTSN	USER LED	7		
lcd data15	T5	P8 32	UART5 RTSN	USER_SW	7		
lcd data13	V3	P8 33	UART4 RTSN	BUZZER	7		
lcd data11	U4	P8 34	UART3 RTSN	-	2		
lcd_data12	V2	P8 35	UART4 CTSN	-	-		
lcd_data10	U3	P8 36	UART3_CTSN	5	35		
lcd_data16	U1	P8 37	UART5_TXD	UART5_TXD	-		
lcd_data9	U2	P8 38	UART5 RXD	UART5 RXD	_		
lcd_data6	T3	P8 39	GPIO2 12	KEY PAD 6	7		
lcd_data7	T4	P8 40	GPIO2_13	KEY_PAD_7	7		
lcd_data4	T1	P8_40	GPIO2_10	KEY_PAD_4	7		
lcd_data4	T2	P8 42	GPIO2_10	KEY PAD 5	7		
lcd_data3	R3	P8 43	GPIO2_11 GPIO2_8	KEY PAD 2	7		
lcd_data2	R4	P8 44	GPIO2_8	KEY PAD 3	7		
	0.000				5000		
lcd_data0	R1	P8_45	GPIO2_6	KEY_PAD_0	7		
lcd_data1		P8_46	GPIO2_7	KEY_PAD_1	7		

Kernel Masters BeagleBone Black User Manual

3.12.2. Connector P9

Table 2 shows the pin out of the P9 expansion header. There are some signals that have not been listed here. Refer to the processor documentation for more information on these pins and detailed descriptions of all of the pins listed. In some cases there may not be enough signals to complete a group of signals that may be required to implement a total interface.

Table 3-1. P9 Expansion header

Kerne	Master	s Beagle B	one Black Pir	Mapping				
P9 Header								
AM3358 S	ос	BBB Pin Details		Kernel Masters				
Pin Name	Pin No	BBB Pin No	Function Name	Function Name	Mode			
and the same		P9_1	GND	GND	-			
		P9_2	GND	GND	-			
		P9 3	DC_3.3V	DC_3.3V	5			
		P9 4	DC 3.3V	DC 3.3V	-			
		P9 5	VDD 5V	VDD 5V	-			
		P9 6	VDD 5V	VDD 5V	_			
		P9 7	SYS 5V	SYS 5V	_			
		P9 8	SYS 5V	SYS 5V	_			
		P9 9	PWR BUT	SW POWER				
RESET OUT	A10	P9 10	SYS RESETn	SW RESET				
gpmc_wait0	T17	P9 11	UART4 RXD	UART4 RXD	6			
gpmc_be1n	U18	P9 12	GPIO1 28	RS485_CONTROL	7			
gpmc_wpn	U17	P9 13	UART4 TXD	UART4_TXD	6			
gpmc_a2	U14	P9 14	EHRPWM1A	-				
gpmc_a0	R13	P9 15	GPIO1 16	ADXL345 INT				
gpmc_a3	T14	P9 16	EHRPWM1B	-				
spi0 cs0	A16	P9 17	I2C1 SCL	I2C1 SCL	2			
spi0_d1	B16	P9 18	I2C1_SCL	I2C1_SCL	2			
uart1 rtsn	D17	P9 19	I2C2 SCL	CANO RX	2			
uart1_rtsn	D18	P9 20	I2C2_SDA	CANO TX	2			
spi0 d0	B17	P9_20	UART2 TXD	UART2 TXD	1			
spi0_do spi0_sclk	A17	P9_21	UART2_TXD	UART2_TXD	1			
	V14	P9_22 P9_23		ENC INT	1			
gpmc_a1		P9_23 P9_24	GPIO1_17 UART1 TXD		0			
uart1_txd	D15 A14	P9_24 P9_25	GPIO3 21	UART1_TXD	U			
mcasp0_ahclkx	200000			UART1_CTL	0			
uart1_rxd	D16	P9_26	UART1_RXD	UART1_RXD	0			
mcasp0_fsr	C13	P9_27	GPIO3_19	UART2_CTL	-			
mcasp0_ahclkr	C12	P9_28	SPI1_CSO	SPI1_CSO	3			
mcasp0_fsx	B13	P9_29	SPI1_D0	SPI1_D0	3			
mcasp0_axr0	D12	P9_30	SPI1_D1	SPI1_D1	3			
mcasp0_aclkx	A13	P9_31	SPI1_SCLK	SPI1_SCLK	3			
	20	P9_32	VDD_ADC	VDD_ADC	70			
	C8	P9_33	AIN4	-				
		P9_34	GNDA_ADC	GNDA_ADC	-			
	A8	P9_35	AIN6	-	3			
	B8	P9_36	AIN5	-				
	B7	P9_37	AIN2	-				
	A7	P9_38	AIN3	-	-			
	B6	P9_39	AIN0	LM35				
20 00 00	C7	P9_40	AIN1	POT(AIN1)	-			
xdma_event_intr1	D14	P9_41	CLKOUT2	-7				
mcasp0_axr1	D13	P9_42	GPIO0_7					
eCAP0_in_PWM0_out	C18	P9_43	DGND	ē.				
Mcasp0_aclkr	B12	P9_44	DGND					
		P9_45	DGND					
		P9_46	DGND					

4. Appendix A

Schematics

This section contains the complete schematics for the Kernel Masters BBB Expansion Board.

