LETTER

Continuous-wave room-temperature diamond maser

Jonathan D. Breeze^{1,2}, Enrico Salvadori^{3,4,5}, Juna Sathian¹, Neil McN. Alford^{1,2} & Christopher W. M. Kay^{3,4,6}

Nature volume555, pages493–496 (22 March 2018)

2018-04-30 Journal Club

Contents

- Author
- Introduction
- Background
- Experiment Set-up
- Result

Author

- Prof. Neil Alford
- Professor @ ICL

LETTER

doi:10.1038/nature11339

Room-temperature solid-state maser

Mark Oxborrow1, Jonathan D. Breeze2 & Neil M. Alford2

ARTICLE

Received 6 Oct 2014 | Accepted 6 Jan 2015 | Published 20 Feb 2015

Enhanced magnetic Purcell effect in room-temperature masers

Jonathan Breeze¹, Ke-Jie Tan¹, Benjamin Richards¹, Juna Sathian¹, Mark Oxborrow¹ & Neil McN Alford¹

OPEN Nanosecond time-resolved characterization of a pentacenebased room-temperature MASER

Received: 09 September 2016 Accepted: 29 December 2016 Published: 07 February 2017

npj Quantum Information

www.nature.com/npigi

Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

Jonathan D. Breeze 601,2, Enrico Salvadori 603,4,5, Juna Sathian 601, Neil McN. Alford 601,2 and Christopher W. M. Kay 603,4

doi:10.1038/nature25970

Continuous-wave room-temperature diamond maser

Jonathan D. Breeze^{1,2}, Enrico Salvadori^{3,4,5}, Juna Sathian¹, Neil McN. Alford^{1,2} & Christopher W. M. Kay^{3,4,6}

Enrico Salvadori^{1,2,3}, Jonathan D. Breeze⁴, Ke-Jie Tan⁴, Juna Sathian⁴, Benjamin Richards⁴, Mei Wai Fung², Gary Wolfowicz¹, Mark Oxborrow⁴, Neil McN. Alford & Christopher W. M. Kay 1,2

Recent Research

- Continuous-wave room-temperature diamond maser, Nature(2018)
- Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states, NPJ Quantum Information(2017)
- Nanosecond time-resolved characterization of a pentacenebased room-temperature maser, Scientific Reports (2017)
- Enhanced magnetic Purcell effect in room-temperature masers, Nature communications(2015)
- Room-temperature solid-state maser, Nature(2012)

The first room-temp Maser

- Using p-terphenyl triplet state
- Long spin-lattice relaxation time (~135µs)

The first room-temp Maser

LETTER

Nature volume488, pages353–356 (16 August 2012)

NV⁻ center

- Long spin polarization time (~5ms)
- Long spin dephasing time (>1µs)
- Good thermal conductivity (1000 W/m·K)
- Good stability
- Easy to achieve the population inversion

Population inversion

~80% of electrons in |0⟩

Physics Reports, 528 (2013), 1-45

N. Comm 6, 8251 (2015)

Experimental Validity

- Q = 30000
- $N = 4.0 \times 10^{13}$
- $g_s = 0.7 \text{MHz}$
- $\kappa_c = \omega_c/Q = 1.9 \text{MHz}$
- $\kappa_s = 2/T_2^* = 3.9 \text{MHz}$
- $C = 4g_s^2 N/\kappa_c \kappa_s = 10.6 \gg 1$
 - → 180mW threshold

Experimental Setup

Experimental Setup

EPR spectroscopy

- A=0.075mT
- -25MHz shifted (35°C increased)

Maser emission

