Spark Streaming: Best Practices

Prakash Chockalingam @prakash573

Who am I?

Solutions Architect / Product Manager at Databricks

Formerly Netflix, Personalization Infrastructure

Formerly Yahoo!, Personalized Ad Targeting

About Databricks

Founded by creators of Spark in 2013

Cloud enterprise data platform

- Managed Spark clusters
- Interactive data science
- Production pipelines
- Data governance, security, ...

Agenda

- Introduction to Spark Streaming
- Lifecycle of a Spark streaming app
- Aggregations and best practices
- Operationalization tips
- Key benefits of Spark streaming

What is Spark Streaming?

Spark Streaming

Scalable, fault-tolerant stream processing system

High-level API

joins, windows, ... often 5x less code

Fault-tolerant

Exactly-once semantics, even for stateful ops

Integration

Integrate with MLlib, SQL, DataFrames, GraphX

How does it work?

• Receivers receive data streams and chops them in to batches.

Spark processes the batches and pushes out the results

Word Count

```
val context = new StreamingContext(conf, Seconds(1))
val lines = context.socketTextStream(...)

DStream: represents a data stream
```

Word Count

```
val context = new StreamingContext(conf, Seconds(1))

val lines = context.socketTextStream(...)

val words = lines.flatMap(_.split(" "))

Transformations: transform
data to create new DStreams
```


Word Count

```
val context = new StreamingContext(conf, Seconds(1))
val lines = context.socketTextStream(...)
val words = lines.flatMap( .split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey( + )
wordCounts.print() — Print the DStream contents on screen
context.start()
                     Start the streaming job
```

Lifecycle of a streaming app

Execution in any Spark Application

Execution in Spark Streaming: Receiving data

Execution in Spark Streaming: Processing data

End-to-end view

Word count over a time window

Reduces over a time window

```
val wordCounts = wordStream.reduceByKeyAndWindow((x:
    Int, y:Int) => x+y, windowSize, slidingInterval)
```

Word count over a time window

Scenario: Word count for the last 30 minutes

How to optimize for good performance?

- Increase batch interval, if possible
- Incremental aggregations with inverse reduce function

```
val wordCounts = wordStream.reduceByKeyAndWindow((x: Int, y:Int) =>
x+y, (x: Int, y: Int) => x-y, windowSize, slidingInterval)
```

Checkpointing

```
wordStream.checkpoint(checkpointInterval)
```


Stateful: Global Aggregations

Scenario: Maintain a global state based on the input events coming in. Ex: Word count from beginning of time.

updateStateByKey (Spark 1.5 and before)

Performance is proportional to the size of the state.

mapWithState (Spark 1.6+)

Performance is proportional to the size of the batch.

Stateful: Global Aggregations

Stateful: Global Aggregations

Key features of mapWithState:

- An initial state Read from somewhere as a RDD
- # of partitions for the state If you have a good estimate of the size of the state, you can specify the # of partitions.
- Partitioner Default: Hash partitioner. If you have a good understanding of the key space, then you can provide a custom partitioner
- **Timeout** Keys whose values are not updated within the specified timeout period will be removed from the state.

Stateful: Global Aggregations (Word count)

```
val stateSpec = StateSpec.function(updateState )
                              .initialState(initialRDD)
                              .numPartitions (100)
                              .partitioner(MyPartitioner())
                              .timeout (Minutes (120))
val wordCountState = wordStream.mapWithState(stateSpec)
```

Stateful: Global Aggregations (Word count)

```
Current batch time
def updateState(batchTime: Time,
                    key: String, ———— A Word in the input stream
                                                Current value (= 1)
                    value: Option[Int], -
                                                    Counts so far for the word
                     state: State[Long])
                : Option (String, Long)
                                           The word and its new count
```


Operationalization

Checkpoint

Two types of checkpointing:

- Checkpointing Data
- Checkpointing Metadata

Checkpoint Data

- Checkpointing DStreams
 - Primarily needed to cut long lineage on past batches (updateStateByKey/reduceByKeyAndWindow).
 - o Example: wordStream.checkpoint(checkpointInterval)

Checkpoint Metadata

- Checkpointing Metadata
 - All the configuration, DStream operations and incomplete batches are checkpointed.
 - Required for failure recovery if the driver process crashes.
 - o Example: streamingContext.checkpoint(directory)

Active Batches (1) Batches currently being processed or queued				
Batch Time	Input Size	Scheduling Delay (?)	Processing Time (?)	Status
2015/11/09 01:10:08	0 events	1 ms	-	processing


```
context.socketStream(...)
.map(...)
.filter(...)
.saveAsHadoopFile(...)
```

Problem: There will be 1 receiver which receives all the data and stores it in its executor and all the processing happens on that executor. Adding more nodes doesn't help.

Solution: Increase the # of receivers and union them.

- Each receiver is run in 1 executor. Having 5 receivers will ensure that the data gets received in parallel in 5 executors.
- Data gets distributed in 5 executors. So all the subsequent Spark map/filter operations will be distributed

```
val numStreams = 5
val inputStreams = (1 to numStreams).map(i => context.
    socketStream(...))
val fullStream = context.union(inputStreams)
fullStream.map(...).filter(...).saveAsHadoopFile(...)
```


- In the case of direct receivers (like Kafka), set the appropriate # of partitions in Kafka.
- Each kafka paratition gets mapped to a Spark partition.
- More partitions in Kafka = More parallelism in Spark

 Provide the right # of partitions based on your cluster size for operations causing shuffles.

```
words.map(x => (x, 1)).reduceByKey(_+_, 100)

# of partitions
```


Streaming tab in Spark UI

Processing Time

Make sure that the processing time < batch interval

Batch Details Page:

- Input to the batch
- Jobs that were run as part of the processing for the batch

Job Details Page

- DAG Visualization
- Stages of a Spark job

Task Details Page

Ensure that the tasks are executed on multiple executors (nodes) in your cluster to have enough parallelism while processing. If you have a single receiver, sometimes only one executor might be doing all the work though you have more than one executor in your cluster.

Key benefits of Spark streaming

Dynamic Load Balancing

Spark Streaming Traditional systems bottleneck node more load on unevenly partition → longer partitioned streams tasks scheduled based on available static scheduling of continuous operators dynamic scheduling of tasks

to nodes can cause bottlenecks

Figure 3: Dynamic load balancing

tasks

resources

ensures even distribution of load

Fast failure and Straggler recovery

Figure 4: Faster failure recovery with redistribution of computation

Combine Batch and Stream Processing

Join data streams with static data sets


```
val dataset = sparkContext.hadoopFile("file")
...
kafkaStream.transform{ batchRdd =>
          batchRdd.join(dataset).filter(...)
}
```

Combine ML and Stream Processing

Learn models offline, apply them online


```
val model = KMeans.train(dataset, ...)
kakfaStream.map { event =>
    model.predict(event.feature)
}
```

Combine SQL and Stream Processing


```
inputStream.foreachRDD{ rdd =>
    val df = SQLContext.createDataframe(rdd)
    df.select(...).where(...).groupBy(...)
}
```

