

Automatisches Transfer-Lernen mittels Autoencodern

Sebastian Hoch

MASTERARBEIT

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

Studiengang Informatik Master

Fakultät Elektrotechnik, Medizintechnik und Informatik Hochschule für Technik, Wirtschaft und Medien Offenburg

XX.XX.2020

Durchgeführt bei der PSIORI GmbH

Betreuer

Prof. Dr.-Ing. Janis Keuper, Hochschule Offenburg Dr. rer. nat. Sascha Lange, PSIORI GmbH

Hoch, Sebastian:

Automatisches Transfer-Lernen mittels Autoencodern / Sebastian Hoch. – MASTERARBEIT, Offenburg: Hochschule für Technik, Wirtschaft und Medien Offenburg, 2020. 25 Seiten.

Hoch, Sebastian:

Automatic transfer learning using autoencoders / Sebastian Hoch. – MASTER THESIS, Offenburg: Offenburg University, 2020. 25 pages.

Vorwort

-...

Eidesstattliche Erklärung

Hiermit versichere ich eidesstattlich, dass die vorliegende Thesis (Seminararbeit) von mir selbstständig und ohne unerlaubte fremde Hilfe angefertigt worden ist, insbesondere, dass ich alle Stellen, die wörtlich oder annähernd wörtlich oder dem Gedanken nach aus Veröffentlichungen, unveröffentlichten Unterlagen und Gesprächen entnommen worden sind, als solche an den entsprechenden Stellen innerhalb der Arbeit durch Zitate kenntlich gemacht habe, wobei in den Zitaten jeweils der Umfang der entnommenen Originalzitate kenntlich gemacht wurde. Die Arbeit lag in gleicher oder ähnlicher Fassung noch keiner Prüfungsbehörde vor und wurde bisher nicht veröffentlicht. Ich bin mir bewusst, dass eine falsche Versicherung rechtliche Folgen haben wird.

Offenburg, XX.XX.2020

Sebastian Hoch

Sperrvermerk

Die vorliegende Abschlussarbeit beinhaltet vertrauliche Informationen und interne Daten des Unternehmens PSIORI GmbH. Sie darf aus diesem Grund nur zu Prüfzwecken verwendet und ohne ausdrückliche Genehmigung durch die PSIORI GmbHweder Dritten zugänglich gemacht, noch ganz oder in Auszügen veröffentlicht werden. Die Sperrfrist endet 5 Jahre nach dem Einreichen der Arbeit bei der Hochschule Offenburg. Unbeschadet hiervon bleibt die Weitergabe der Arbeit und Einsicht in die Arbeit an die mit der Prüfung befassten Mitarbeiter der Hochschule und Prüfer möglich, die ihrerseits zur Geheimhaltung verpflichtet sind, sowie die Verwendung der Arbeit in eventuellen prüfungsrechtlichen Rechtsschutzverfahren nach Maßgabe der geltenden verwaltungsprozessualen Regeln.

Zusammenfassung

Automatisches Transfer-Lernen mittels Autoencodern

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Abstract

Automatic transfer learning using autoencoders

Englische Version von Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Inhaltsverzeichnis

1.	Kap i 1.1.		3
2.	Kapi	itel 2	7
3.	Einle	eitung	11
	3.1.	Motivation und Problemstellung	11
	3.2.	Zielsetzung	11
	3.3.		11
4.	Grur	ndlagen	15
	4.1.	TODO GRUNDALGENDETAIL	15
	4.2.	Bestehendes System	15
	4.3.	·	15
	4.4.		17
	4.5.	•	18
	4.6.	Experimentumgebung	18
5.	Expe	erimente	21
	•		21
			21
	5.2.	± *	21
		_	21
			21
		5.2.3. todo: Holz	21
	5.3.	Evaluierung	21
			21
			21
6.	Fazi	t :	25
	-	Zusammenfassung	
	6.2.		
			25

Inhaltsverzeichnis

Abkürzungsverzeichnis	i
Tabellenverzeichnis	iii
Abbildungsverzeichnis	v
Quellcodeverzeichnis	vii
A. Ein Anhang	ix
B. Autocrane Daten	xi

Todo list

notwendige klassische Grundlagen definieren	15			
Vorgehen auch so beschreiben / ansonsten Kapitel Einleitung anpassen				
Im Kapitel Bestehdens System erwähnen / diesen Teil in das andere Kapitel verschieben?	15			
siehe Bestehendes System	16			
Vorgehen + Metriken detailierter beschreiben	16			
Brightness-Histogramm einfügen	16			
Quelle cnvrg	18			
mehr Text; was wurde genutzt (Datasets,)	18			

1. Kapitel 1

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet [Fowler2014].

1.1. Microservices

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Referenz zur Abbildung 1.1.

1.1.1. Was sind Microservices

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet,

Abbildung 1.1: Bildunterschrift

consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet [Reese2009].

Klein und spezialisiert Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Eigenständig Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt

ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Verweis auf Anhang A Ein Anhang

2. Kapitel 2

Eine Abkürzung CD¹, CI². Ausgeschrieben Continuous Delivery. Verweis zu einem File-Listing 2.1 oder einem Listing im Textfluss 2.2 und ein Inline-Listing print(" Hello World").

```
package de.smits_net.tpe.ue3.crypto;
3 /**
* Grundlegendes Interface, um Verschlüsselung durchzuführen. Mit
* Hilfe dieses Interfaces kann man Nachrichten verschlüsseln
  * (über die {@link #verschluesseln(Key, String)} Methode) und
   * wieder entschlüsseln (über die {@link #entschluesseln(Key,
   * String)} Methode).
  * @author Thomas Smits
public interface Crypter {
13
     * Verschlüsselt den gegebenen Text mit dem angegebenen Schlüssel.
     * @param key Schlüssel, der verwendet werden soll.
     * @param message Nachricht, die Verschlüsselt werden soll.
17
18
     * @return verschlüsselter Text.
19
      * @throws CrypterException Probleme mit der
20
                   Verschlüsselung aufgetreten.
21
22
      public String verschluesseln(Key key, String message) throws CrypterException;
23
24 }
```

Listing 2.1: Ein Listing

```
ggplot(data = data, mapping = aes(x=timestamp, y=score) + geom_line()
```

Listing 2.2: Beispielaufruf ldply-Funktion in R

¹Continuous Delivery

²Continuous Integration

Todo list

3. Einleitung

Die PSIORI GmbH

3.1. Motivation und Problemstellung

Geschäftsverständnis In der Phase des Geschäftsverständnisses geht es darum, die konkreten Ziele und Anforderungen für das Data Mining festzulegen. Ergebnis dieser Phase ist die Formulierung der Aufgabenstellung und die Beschreibung der geplanten groben Vorgehensweise.

3.2. Zielsetzung

3.3. Vorgehen

Todo list

4. Grundlagen

4.1. TODO GRUNDALGENDETAIL

notwendige klass Grundlagen defir

4.2. Bestehendes System

(Object Detection - AutoCrane)

4.3. Datenverständnis

Anlehnend dem in Kapitel 3.3 beschriebenen Vorgehen <u>werden in diesem Kapitel</u> die zur Verfügung stehenden Daten und deren Qualität beschrieben. Dabei ist das Kapitel entsprechend der Beschriftung der Daten in zwei Teilbereiche unterteilt.

Im Rahmen des bestehenden Autocrane-Projektes 4.2 <u>wurde eine Kamera an einem</u> Kran angebracht. Mittels dieser Kamera werden neue unbeschriftete Bilder aufgenommen und bei PSIORI abgelegt. Zu Beginn dieser Arbeit standen mehr 385.000 nicht beschriftete Bilder zur Verfügung. Die Bilder sind 1024 auf 648 Pixel groß und in Farbe. Sie sind in der Form (1024, 648, 3). Die einzelnen Pixel können dabei Werte zwischen 0 und 255 annehmen. Zum Erreichen der Zielstellung werden zwei Datensätze benötigt.

Vorgehen auch sinch schreiben / anson Kapitel Einleitung passen

Im Kapitel Beste System erwähner sen Teil in das a Kapitel verschiel

Greifer Datensatz Der Greifer Datensatz enthält Bilder, in welchen der Greifer mittels Rahmen markiert ist. Abbildung 4.2 zeigt ein beispielhaftes Bild mit markiertem Greifer. Abbildung 4.1 zeigt ein beispielhaftes Bild mit markiertem Greifer. Der Datensatz besteht aus zwei Sammlungen von qualitativ unterschiedlich gut beschrifteten Bildern. Die eine Sammlung besteht aus einem bestehenden Datensatz,

Abbildung 4.1: Greifer mit Rahmen

estehendes Sys-

en + Metriken rter beschreiben welcher 4.684 durch Menschen annotierten Bildern enthält. Für den zweiten Teil der Sammlung wurden mittels der bestehenden Objekterkennung XXXX Bilder annotiert. Das genaue Schema der Datenstrukturen kann in Anhang B nachgelesen werden.

Baumstamm Datensatz Der Baumstamm Datensatz enthält Bilder, welche die Annotation, ob sich Baumstämme im Greifer befinden haben. Abbildung 4.2 zeigt ein Bild, in welchem der Greifer Baumstämme greift. In Abbildung 4.1 befinden sich keine Baumstämme im Greifer. Der Datensatz wurde mittels Crowd

Im Rahmen des Datenverständnisses wird versucht, sich einen ersten Überblick über die zur Verfügung stehenden Daten und deren Qualität zu verschaffen. Es erfolgt

ess-Histogramm

Abbildung 4.2: Greifer mit Baumstämmen

eine Analyse und Bewertung der Datenqualität. Probleme mit der Qualität der vorhandenen Daten in Bezug auf die in der vorherigen Phase festgelegten Aufgabenstellung sind zu benennen.

todo? Datenqualität auf helle und dunkle bidler verweisen und somit zu Datenvorbereitung: skalierung 0-1 verweissen

4.4. Datenvorbereitung

Die Datenvorbereitung dient dazu, einen finalen Datensatz zu erstellen, der die Basis für die nächste Phase der Modellierung bildet.

In dem Schritt Datenvorbereitung werden die Bilder für die Modellerstelung vorbereitet. In dieser Arbeit wurde für diesen Schritt eine Klasse Preprocessing in einem neuen Modul data_preperation.py erstellt. Wie in Listing

zu sehen werden die Pixel der Bilder zwischen 0 und 1 Skaliert. Dei Skalierung erfolgt damit jedes Bild eine ähnliche Gewichtung

Neural networks process inputs using small weight values, and inputs with large integer values can disrupt or slow down the learning process. As such it is good practice to normalize the pixel values so that each pixel value has a value between 0 and 1. Die Bilddaten werden

	Train	Test	Validation	Summe
Greifer	X	X	4.684	X
Baumstämme T/F	X	X	X	18000

Tabelle 4.1.: Datenaufteilung - Train Test Validation

4.5. Bibliotheken und Werkzeuge

Tensorflow

Keras

Psipy ist ein Python-Framework für Maschinelles Lernen welches von PSIORI selbst entwickelte Modelle zusammenfasst und eine einheitliche API zu Verfügung stellt. Diese API ist an die API des verbreiteten Frameworks scikit-learn angelehnt und die Modelle aus scikit-learn können in das von PSIORI entwickelte Framework eingebunden werden. Das Framework ermöglicht außerdem das Einbinden von Modellen basierend auf TensorFlow."[PSIORI]

ext; was wurde

(Datasets,...)

cnvrg

Cnvrg.io ist eine "full-stack Data Science Platform"welche Werkzeuge für die Erstellung, Verwaltung, Bereitstellung und Automatisierung von maschinellem Lernen bereitstellt.

4.6. Experimentumgebung

(Hardware + eingesetzte Software)

Todo list

5. Experimente

5.1. Versuchsaufbau

5.1.1. Psipy-Modul

5.2. Modellierung

5.2.1. todo: Greifer

5.2.2. todo: Transferlearning

5.2.3. todo: Holz

5.3. Evaluierung

5.3.1. todo: Greifer

5.3.2. todo: Holz

Todo list

6. Fazit

- 6.1. Zusammenfassung
- 6.2. Kritische Reflexion
- 6.3. Ausblick

insbesondere die möglichen Addons aufführen

Abkürzungsverzeichnis

CD	Continuous Delivery
	Continuous Integration

Tabellenverzeichnis

4.1.	Datenaufteilung - Train Test Validation								•	18
A.1.	Tabellenunterschrift	_								i

Abbildungsverzeichnis

1.1.	Beschreibung für Verzeichnis	4
	Bsp. Bild: Greifer mit Rahmen	
A.1.	Beschreibung für Verzeichnis2	X
B.1.	Beschreibung für Verzeichnis2	κi

Listings

	Ein Listing
2.2.	Beispielaufruf ldply-Funktion in R
B.1.	Label

A. Ein Anhang

Referenz zu Tabelle A.1.

Bezeichnung	Typ	Beschreibung
load.load1	float	The load average over 1 minute.
load.load5	float	The load average over 5 minutes.
load.load15	float	The load average over 15 minutes.
cpu.user	int	The amount of CPU time spent in user space.
cpu.user_p	float	The percentage of CPU time spent in user space. On multi-core systems, you can have percentages that are greater than 100%. For example, if 3 cores are at 60% use, then the cpu.user_p will be 180%.
cpu.system	int	The amount of CPU time spent in kernel space.
cpu.system_p	float	The percentage of CPU time spent in kernel space.
mem.total	int	Total memory.
mem.used	int	Used memory.
mem.free	int	Available memory.
mem.used_p	float	The percentage of used memory.

Tabelle A.1.: Tabellenunterschrift

MicroProfile 2.0

Abbildung A.1: Bildunterschrift2

B. Autocrane Daten

2.1

```
<annotation>
      <folder>dataset_15_10_2019</folder>
      <filename>9e26030c-dfbd-4fa7-bd33-5b3a9dcc91ea.png</filename>
      <path>/Users/jonaskindler/Documents/psiori/second_labels_daniel/
         dataset_15_10_2019/9e26030c-dfbd-4fa7-bd33-5b3a9dcc91ea.png</path>
     <source>
         <database>Unknown</database>
     </source>
     <size>
         <width>648</width>
         <height>1024</height>
         <depth>3</depth>
11
     </size>
      <segmented>0</segmented>
     <object>
15
         <name>grapple</name>
         <pose>Unspecified</pose>
         <truncated>0</truncated>
18
         <difficult>0</difficult>
         <bndbox>
19
            <xmin>256</xmin>
             <ymin>550
             <max>422</max>
             <ymax>679
23
         </bndbox>
24
      </object>
26 </annotation>
```

Listing B.1: Label

Abbildung B.1: Bildunterschrift2