Package 'ThermalSampleR'

February 18, 2024

```
Type Package
Title Calculate Sample Sizes Required for Critical Thermal Limits
      Experiments
Version 0.1.2
Maintainer Clarke JM van Steenderen < vsteenderen@gmail.com>
Description We present a range of simulations to aid researchers in determining appropriate sam-
      ple sizes when performing critical
      thermal limits studies (e.g. CTmin/CTmin experiments). A number of wrapper functions are pro-
      vided for plotting and summarising outputs
      from these simulations. This package is presented in van Steenderen, C.J.M., Sut-
      ton, G.F., Owen, C.A., Martin, G.D., and Coetzee, J.A. Sample size assessments for ther-
      mal physiology studies: An R
      package and R Shiny application. 2023. Physiological Entomol-
      ogy. <doi:10.1111/phen.12416>. The GUI version of this package is available on the R Shiny on-
      line server at:
      <https://clarkevansteenderen.shinyapps.io/ThermalSampleR_</pre>
      Shiny/>, or it is accessible via GitHub at <a href="https:">https:</a>
      //github.com/clarkevansteenderen/ThermalSampleR_Shiny/>. We would like
      to thank Grant Duffy (University of Otago, Dundedin, New Zealand) for granting us permis-
      sion to use the source code for the Test of Total Equivalency function.
License GPL-3
Encoding UTF-8
LazyData true
Depends R (>= 2.10)
Imports tidyr, dplyr, purrr, rlang, MASS (>= 7.3), stats (>= 3.4.0),
      graphics (\geq 3.4.0), base (\geq 3.4.0), magrittr, utils, ggplot2,
      cowplot, EnvStats, sn, janitor, testthat
```

RoxygenNote 7.2.3

Suggests rmarkdown, knitr VignetteBuilder knitr NeedsCompilation no boot_one

Author Guy Frederick Sutton [aut] (Wrote original R functions, and adapted the Duffy et. al. 2021 R function into this package., https://orcid.org/0000-0003-2405-0945), Clarke JM van Steenderen [aut, cre] (Compiled the R package, and the associated R Shiny application., https://orcid.org/0000-0002-4219-446X), Grant Duffy [cph] (Granted permission to use the source code for the Test of Total Equivalency function., https://orcid.org/0000-0002-9031-8164)

Repository CRAN

Date/Publication 2024-02-17 23:30:08 UTC

R topics documented:

boot	_one	Во	oots	tra	p s	an	npl	ling	e to	0 0	al	си	lat	e s	sui	mn	na	rv	sto	ıtis	sti	cs	ot	· C	TI	v	ali	ие	S	
Index																														8
	plot_two_groups		•				٠			٠			٠			•					•	•	•	•			•	•		. 6
	plot_one_group .																													
	equiv_tost																													. 4
	coreid_data																													. 4
	boot_two																													
	boot_one																													

Description

Calculate mean and CI's of CTL for a single population

Arguments

data	Data frame contains raw data. Must contain a column with a population identifier (e.g. population ID), and a column containing critical thermal limit data (e.g. temperatures at which critical limits are reached).
groups_col	Factor. Column containing name(s) of population(s) of interest
groups_which	Character. Which population should be analysed?
n_max	Numeric. Maximum sample size to extrapolate simulations.
n_min	Numeric. Minimum sample size to extrapolate simulations. Defaults to 3.
iter	Numeric. Number of bootstrap samples. Defaults to 29.
response	Numeric. Column containing thermal limit data for individual samples

Value

A data frame of CTL summary statistics from bootstrap resamples

boot_two 3

Examples

boot_two

Bootstrap sampling for difference in means between two groups

Description

Calculate difference in mean CT limits between two groups.

Arguments

data	Data frame contain raw data.
groups_col	Factor. Column containing names of two populations to compare
n_max	Numeric. Maximum sample size to extrapolate simulations.
n_min	Numeric. Minimum sample size to extrapolate simulations. Defaults to 3.
iter	Numeric. Number of bootstrap samples. Defaults to 29.
response	Numeric. Column containing thermal limit data for individual samples.
group1	String. Name of first population to compare.
group2	String. Name of second population to compare.
colour_exp	Colour of the experimental data. Defaults to "blue".
colour_extrap	Colour of the extrapolated data. Defaults to "red".
legend.position	1
	Position of the legend. Defaults to "top". Can be "bottom", "left", "right", or "none".
ggtheme	The theme for the ggplot created. See ggplot2 themes for options. Default set to theme_classic().

Value

A data frame of bootstrap resamples

4 equiv_tost

Examples

coreid_data

Example critical thermal limit data for ThermalSampleN package

Description

A dataset containing critical thermal limit (CTmin) data for the sap-sucking bug, Catorintha schaffneri.

Usage

coreid_data

Format

A data frame with 60 rows and 2 variables:

col insect population tested, string

response CTmin value for individual insect, in degrees celsius ...

Source

"Unpublished data provided by Philippa Muskett (Centre for Biological Control, Rhodes University, South Africa)

equiv_tost

equiv_tost

Description

Perform a Test of Total Equivalence as adapted from Duffy et al. (2021) (https://doi.org/10.1111/1365-2435.13928)

plot_one_group 5

Arguments

data	Data frame contains raw data. Must contain a column with a population identifier (e.g. population ID), and a column containing critical thermal limit data (e.g. temperatures at which critical limits are reached).
groups_col	Factor. Column containing the name of the population of interest (group ID)
groups_which	Character. Which population should be analysed?
response	Numeric. Column containing thermal limit data for individual samples
skews	Numeric. Vector containing skewness parameter(s). Defaults to 0, 1, 2, 10, 50.
equiv_margin	Numeric. Equivalence of subsets to full population CT estimate (unit = degree Celcius). Defaults to 1.
pop_n	Numeric. Size of population to sample (will test subsamples of size pop_n - x against pop_n for equivalence) Defaults to population size = 30
colrs	Character. Vector of colours for each skewness paramater value. E.g. if two skewness parameter values are set, choose two colours: colrs = c("blue", "red"). Defaults to "blue", "red", "orange", "forestgreen", "lightgrey".

Value

Two plots; (a) equivalence of means, and (b) equivalence of variances

Examples

plot_one_group

Plot output from boot_sample

Description

Plot output from boot_one.

plot_two_groups

Arguments

	X	Output from boot_one function.							
ı	n_max	Numeric. Maximum sample size to extrapolate simulations.							
ı	n_min	Numeric. Minimum sample size to extrapolate simulations. Defaults to 3.							
	colour_exp	Colour of the experimental data. Defaults to "blue".							
	colour_extrap	Colour of the extrapolated data. Defaults to "red".							
	legend.position								
		Position of the legend. Defaults to "top". Can be "bottom", "left", "right", or "none".							
	alpha_val	Change the degree of shading of the graphs. Default is 0.2.							
;	ggtheme	The theme for the ggplot created. See ggplot2 themes for options. Default set to theme_classic().							

Value

Two plots; (a) precision of the CTmin estimate across experimental and extrapolated sample sizes; (b) the sampling distribution (range of plausible CTmin values) across experimental and extrapolated sample sizes.

Examples

plot_two_groups

Plot output from boot_two_groups

Description

Plot output from boot_two.

plot_two_groups 7

Arguments

x Output from boot_two_groups function. Defaults to 'sims'.

n_max Numeric. Maximum sample size to extrapolate simulations.

n_min Numeric. Minimum sample size to extrapolate simulations. Defaults to 3.

colour_exp Colour of the experimental data. Defaults to "blue".

colour_extrap Colour of the extrapolated data. Defaults to "red".

legend.position

Position of the legend. Defaults to "top". Can be "bottom", "left", "right", or "none".

alpha_val Change the degree of shading of the graphs. Default is 0.2.

The theme for the ggplot created. See ggplot2 themes for options. Default set to

theme_classic().

Value

ggtheme

Two plots: (a) the precision of the estimates for the difference in CTmin between the two selected groups across sample sizes; (b) the 95

Examples

Index