Gaining Biological Intuition from Feature Importances

02-620 Machine Learning for Scientists Project

Siddharth Reed

Carnegie Mellon University

May 7th 2021

Introduction

Siddharth Reed Carnegie Mellon University

Introduction •00

Introduction 000

Models that may provide accurate classification but

Introduction 000

- ▶ Models that may provide accurate classification but
- ▶ Difficult to "debug" classifications

Introduction 000

- Models that may provide accurate classification but
- Difficult to "debug" classifications
- can re-enforce existing biases/assumptions of researchers

Introduction 000

- Models that may provide accurate classification but
- Difficult to "debug" classifications
- can re-enforce existing biases/assumptions of researchers
- Examples

Introduction

- Models that may provide accurate classification but
- Difficult to "debug" classifications
- can re-enforce existing biases/assumptions of researchers
- Examples
 - Deep Neural Networks

Introduction

- Models that may provide accurate classification but
- Difficult to "debug" classifications
- can re-enforce existing biases/assumptions of researchers
- Examples
 - Deep Neural Networks
 - Convolutional NNs (image task)

Introduction 000

> Want a biological intuition behind some classification (e.g. regular vs cancer cells)

Siddharth Reed Carnegie Mellon University

Introduction 000

- Want a biological intuition behind some classification (e.g. regular vs cancer cells)
- Helps researchers and doctors understand genetic drivers of disease

Siddharth Reed Carnegie Mellon University

- Want a biological intuition behind some classification (e.g. regular vs cancer cells)
- Helps researchers and doctors understand genetic drivers of disease
- Allows prediction vs. patient specific information

Introduction

- Want a biological intuition behind some classification (e.g. regular vs cancer cells)
- Helps researchers and doctors understand genetic drivers of disease
- Allows prediction vs. patient specific information
- Examples

Introduction

- Want a biological intuition behind some classification (e.g. regular vs cancer cells)
- Helps researchers and doctors understand genetic drivers of disease
- Allows prediction vs. patient specific information
- Examples
 - Logistic Regression

Introduction

- Want a biological intuition behind some classification (e.g. regular vs cancer cells)
- Helps researchers and doctors understand genetic drivers of disease
- Allows prediction vs. patient specific information
- Examples
 - Logistic Regression
 - Random Forest

Introduction

- Want a biological intuition behind some classification (e.g. regular vs cancer cells)
- Helps researchers and doctors understand genetic drivers of disease
- Allows prediction vs. patient specific information
- Examples
 - Logistic Regression
 - Random Forest
 - SVM

Introduction

- Want a biological intuition behind some classification (e.g. regular vs cancer cells)
- Helps researchers and doctors understand genetic drivers of disease
- Allows prediction vs. patient specific information
- Examples
 - Logistic Regression
 - Random Forest
 - SVM
 - Naive Bayes

Introduction

Methods

Siddharth Reed Carnegie Mellon University

Transcriptomic Data

Figure 1: Transcriptomics Workflow

use recount2 counts for TCGA (cancer,) and GTEx (normal, 373) lung samples

Transcriptomic Data

Figure 1: Transcriptomics Workflow

- use recount2 counts for TCGA (cancer,) and GTEx (normal, 373) lung samples
- ► **Features:** gene-level transcript counts for ~ 20,000 coding genes

Transcriptomic Data

Figure 1: Transcriptomics Workflow

- use recount2 counts for TCGA (cancer,) and GTEx (normal, 373) lung samples
- **Features:** gene-level transcript counts for $\sim 20,000$ coding genes
- Labels: binary, cancer/not cancer

0000

chose classifiers that

- chose classifiers that
 - provide feature importance values

- chose classifiers that
 - provide feature importance values
 - ► relatively fast/simple

- chose classifiers that
 - provide feature importance values
 - relatively fast/simple
- ► Importance of feature (gene) g

- chose classifiers that
 - provide feature importance values
 - relatively fast/simple
- Importance of feature (gene) g
 - ▶ Naive Bayes: P(g|y) for y = 1 (cancer)

- chose classifiers that
 - provide feature importance values
 - relatively fast/simple
- ► Importance of feature (gene) g
 - ▶ Naive Bayes: P(g|y) for y = 1 (cancer)
 - **SVM:** contribution of g to separating y = 0, y = 1

- chose classifiers that
 - provide feature importance values
 - relatively fast/simple
- Importance of feature (gene) g
 - Naive Bayes: P(g|y) for y=1 (cancer)
 - **SVM:** contribution of g to separating y = 0, y = 1
 - Random Forest: variability explained by g

Importance Analysis

extract feature (gene) importances from each model in predicting cancer

Importance Analysis

- extract feature (gene) importances from each model in predicting cancer
- compare most important genes and GO terms found by each model

Importance Analysis

- extract feature (gene) importances from each model in predicting cancer
- compare most important genes and GO terms found by each model
- train classifier on chosen genes and compare to all genes

Results

Siddharth Reed Carnegie Mellon University

prediction accuracy on the test set (n=289)

- prediction accuracy on the test set (n=289)
- ► **SVM**: 0.986

prediction accuracy on the test set (n=289)

► **SVM**: 0.986

► Naive Bayes: 0.957

prediction accuracy on the test set (n=289)

► **SVM**: 0.986

► Naive Bayes: 0.957

Random Forest: 0.993

Top 5 Most Important Genes

SVM

► Eukaryotic Translation Elongation FACTOR 1/2

Naive Bayes

Random Forest

SVM

- ► Eukaryotic Translation Elongation FACTOR 1/2
- surfactant protein C, associated with lung disease

Naive Bayes

Random Forest

SVM

- ► Eukaryotic Translation Elongation FACTOR 1/2
- surfactant protein C, associated with lung disease

Naive Bayes

all mitochondrial proteins

Random Forest

SVM

- ► Eukaryotic Translation Elongation FACTOR 1/2
- surfactant protein C, associated with lung disease

Naive Bayes

all mitochondrial proteins

Random Forest

surfactant protein 2

SVM

- Eukaryotic Translation Elongation FACTOR 1/2
- surfactant protein C, associated with lung disease

Naive Bayes

all mitochondrial proteins

Random Forest

- surfactant protein 2
- SLC11A1, associated with turbeculosis

Gene Importance Distributions

Siddharth Reed

Carnegie Mellon University

GO Analysis of Important Genes

► Gene Ontology (GO) groups genes by function/mechanism

GO Term Overlaps

Siddharth Reed Carnegie Mellon University

GO Analysis of Important Genes

► Gene Ontology (GO) groups genes by function/mechanism

GO Term Overlaps

GO terms the most important genes across all methods?

Siddharth Reed Carnegie Mellon University

Model Re-training

compare model trained on top 10, 50, 250, 500 and all genes separately

Model Re-training

- compare model trained on top 10, 50, 250, 500 and all genes separately
- where do precision and recall start to drop off?

Siddharth Reed Carnegie Mellon University

► Even methods applied to the same problem with the same data can learn different things

- ► Even methods applied to the same problem with the same data can learn different things
- Underlying structure of a model is important to which features are learned

- ► Even methods applied to the same problem with the same data can learn different things
- Underlying structure of a model is important to which features are learned
- There may be equally useful orthogonal ways to approach treating lung cancer

Even methods applied to the same problem with the same data can learn different things

Results

- Underlying structure of a model is important to which features are learned
- There may be equally useful orthogonal ways to approach treating lung cancer

Interpretable Deep Learning

Seninge et al. propose a VAE Enchange by Gene Annotations

Results

Conclusion

- ► Even methods applied to the same problem with the same data can learn different things
- Underlying structure of a model is important to which features are learned
- There may be equally useful orthogonal ways to approach treating lung cancer

- Seninge et al. propose a VAE Enchange by Gene Annotations
- Rybakov et al. propose a similar method, like PCA along Reactome elements

► Even methods applied to the same problem with the same data can learn different things

Results

- Underlying structure of a model is important to which features are learned
- There may be equally useful orthogonal ways to approach treating lung cancer

- Seninge et al. propose a VAE Enchange by Gene Annotations
- Rybakov et al. propose a similar method, like PCA along Reactome elements
- Associate latent variables with Biological Abstractions (gene sets)