Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de relación
- * Propiedades de relaciones
- * Representaciones de una relación

Relación binaria

Sean A y B dos conjuntos, una relación de A en B es un subconjunto de AxB

$$A = \{2, 2, 3\}$$
 $A \times B = \{(2, 9), (2, 6)\}$
 $\{(2, 9), (2, 6)\}$
 $\{(3, 9), (3, 6)\}$

Sea $A=\{1,2,3,4\}$ y $B=\{-1,-2,-3\}$, se presentan a continuación algunas relaciones:

- $R_1 = \{(2,-1), (3,-2), (1,-1)\}$
- $R_2 = \{(1,-1), (2,-2), (3,-3)\}$
- $R_3 = \{(1,-2), (1,-3), (2,-2), (2,-3), (3,-2), (3,-3)\}$
- $R_4 = \{(3,-1)\}$

Sea $A=\{1,2,3,4\}$ y $B=\{-1,-2,-3\}$, se presentan a continuación algunas relaciones:

•
$$R_1 = \{(2,-1), (3,-2), (1,-1)\}$$

•
$$R_2 = \{(1,-1), (2,-2), (3,-3)\}$$

•
$$R_3 = \{(1,-2), (1,-3), (2,-2), (2,-3), (3,-2), (3,-3)\}$$

•
$$R_4 = \{(3,-1)\}$$

Cada relación es un subconjunto de $A \times B = \{(1,-1),(1,-2),(1,-3),(2,-1),(2,-2),(2,-3),(3,-1),(3,-2),(3,-3),(4,-1),(4,-2),(4,-3)\}$

Relación en A

Una relación definida en un conjunto A es una relación de A en A

Sea $A=\{1,2,3,4,5\}$ se presentan algunas relaciones de A en A:

- $R_1 = \{(4,2), (1,3), (1,5)\}$
- $R_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\}$
- $R_3 = \{(1,1), (3,1), (4,1), (4,2), (4,3)\}$
- $R_4 = \{(2,1), (3,2), (4,3)\}$

$$A \times A = \{(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)\}$$

Sea A={1,2,3,4} muestre las siguientes relaciones:

•
$$R_1 = \{(a,b)|a < b\}$$
 $\{(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)\}$
• $R_2 = \{(a,b)|a = b\}$ $\{(1,2)(2,2)(3,3)(4,4)\}$
• $R_3 = \{(a,b)|a = b + 1\}$ $\{(2,1)(3,2)(4,3)\}$
• $R_4 = \{(a,b)|a \text{ divide }b\}$ $\{(1,1)(2,1)(3,1)(4,4)(4,2)$
• $R_5 = \{(a,b)|a + b \le 3\}$ $\{(1,1)(2,1)(1,2)\}$

Sea $A=\{1,2,3,4\}$ muestre las siguientes relaciones:

•
$$R_1 = \{(a,b)|a< b\}$$

•
$$R_2 = \{(a,b)|a=b\}$$

•
$$R_3 = \{(a,b) | a=b+1\}$$

•
$$R_4 = \{(a,b)|a \text{ divide }b\}$$

•
$$R_5 = \{(a,b)|a+b \le 3\}$$

$$A \times A = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}$$

Sea A={1,2,3,4} muestre las siguientes relaciones:

•
$$R_1 = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3), (4,4)\}$$

•
$$R_3 = \{(2,1), (3,2), (4,3)\}$$

•
$$R_4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

•
$$R_5 = \{(1,1), (1,2), (2,1)\}$$

$$A \times A = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)\}$$

Sea $A=\{-2,-1,1,2,3,4\}$ muestre las siguientes relaciones:

- $R_1 = \{(a,b)|a>0 \land b<0\}$
- $R_2 = \{(a,b)|a=-b\}$
- $R_3 = \{(a,b)|a+b<2\}$

Sea $A=\{-2,-1,1,2,3,4\}$ muestre las siguientes relaciones:

•
$$R_1 = \{(1,-2),(1,-1),(2,-2),(2,-1),(3,-2),(3,-1),(4,-2),(4,-1)\}$$

•
$$R_2 = \{(-2,2),(2,-2),(-1,1),(1,-1)\}$$

•
$$R_3 = \{(-2,-2),(-2,-1),(-2,1),(-2,2),(-2,3),(-1,-2),(-1,-1),(-1,1),(-1,2),(-1,2),(1,-1),(2,-2),(2,-1),(3,-2)\}$$

Propiedades de las relaciones

- Reflexiva
- Simétrica
- Antisimétrica
- Transitiva

Reflexiva

 Una relación R sobre un conjunto A se llama reflexiva si (a,a)∈R para cada elemento a∈A

$$\forall q \in A$$
 (9,9)

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son reflexivas:

•
$$R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,3), (2,4), (4,4)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

•
$$R_3 = \{(2,1), (3,2), (4,3)\}$$

•
$$R_4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

•
$$R_5 = \{(1,2)\}$$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son reflexivas:

- $R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,3), (2,4), (4,4)\}$
- $R_2 = \{(1,1), (2,2), (3,3)\}$
- $R_3 = \{(2,1), (3,2), (4,3)\}$
- $R_4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$
- $R_5 = \{(1,2)\}$
- $\cdot R_1$ y R_4 son reflexivas

Sea A={1,2,3} indique si las siguientes relaciones son reflexivas:

•
$$R_1 = \{(1,1), (1,2), (2,3), (2,2)\}$$

•
$$R_2 = \{(1,3), (3,1), (2,3), (2,1)\}$$

•
$$R_3 = \{(1,1), (1,3), (2,2), (2,1), (3,3)\}$$

Sea A={1,2,3} indique si las siguientes relaciones son reflexivas:

- $R_1 = \{(1,1), (1,2), (2,3), (2,2)\}$ no, falta (3,3)
- $R_2 = \{(1,3), (3,1), (2,3), (2,1)\}$ no, faltan (1,1),(2,2),(3,3)
- $R_3 = \{(1,1), (1,3), (2,2), (2,1), (3,3)\}$ si

• Sea A=Z+ indique si las relaciones son reflexivas:

R₁={(a,b)|a divide b}
$$(1,1)$$
 (2, 2) (3, 3) ... (0, n) $(0, 1)$

Sea A=Z⁺ indique si las relaciones son reflexivas:

 $R_1=\{(a,b)|a \text{ divide b}\}$ si, ya que a|a

 $R_2=\{(a,b)|a\leq b\}$ si, ya que $a\leq a$

 $R_3 = \{(a,b)|a>b\}$ no, ya que no se cumple a>a

Simétrica

 Una relación R sobre un conjunto A se llama simétrica si cuando (a,b)∈R entonces (b,a) también

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son simétricas:

•
$$R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,1), (2,4), (4,1), (4,2)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

•
$$R_3 = \{(2,1), (3,2), (1,2), (2,3), (4,3)\}$$
 NO

•
$$R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3), (2,1)\}$$

•
$$R_5 = \{(1,2)\}$$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son simétricas:

- $R_1 = \{(2,2), (1,3), (1,1), (1,4), (3,1), (2,4), (4,1), (4,2)\}$
- $R_2 = \{(1,1), (2,2), (3,3)\}$
- $R_3 = \{(2,1), (3,2), (1,2), (2,3), (4,3)\}$
- $R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3), (2,1)\}$
- $R_5 = \{(1,2)\}$
- R₁ y R₂ son simétricas

Sea A={1,2,3} indique si las siguientes relaciones son simétricas:

- $R_1 = \{(1,1), (1,2), (2,1), (2,2)\}$
- $R_2 = \{(1,3), (1,2), (3,1), (2,3), (3,2)\}$ (2,1) NO
- $R_3 = \{(1,2), (1,3), (2,2), (2,1)\}$ (3,1)

Sea A={1,2,3} indique si las siguientes relaciones son simétricas:

- $R_1 = \{(1,1), (1,2), (2,1), (2,2)\}$ si
- $R_2 = \{(1,3), (1,2), (3,1), (2,3), (3,2)\}$ no, falta (2,1)
- $R_3 = \{(1,2), (1,3), (2,2), (2,1)\}$ no, falta (3,1)

Sea A=Z⁺ indique si las relaciones son simétricas:

$$R_{1}=\{(a,b)|a \text{ divide }b\} \qquad (1,1) \times (1,1) \times_{NO}$$

$$R_{2}=\{(a,b)|a \leq b\} \qquad (9,6) \qquad (6,9) \times_{NO}$$

$$R_{3}=\{(a,b)|a > b\} \qquad (5,7) \qquad (7,5) \times_{NO}$$

Sea A=Z⁺ indique si las relaciones son simétricas:

 $R_1 = \{(a,b) | a \text{ divide b} \} \text{ no}, 1 | 3 \text{ pero } 3 | 1$

 $R_2=\{(a,b)|a\leq b\}$ no, $2\leq 3$ pero no se cumple que $3\leq 2$

 $R_3=\{(a,b)|a>b\}$ no, 6>1 pero no se cumple que 1>6

Antisimétrica

- Una relación R sobre un conjunto A se llama antisimétrica si cuando (a,b)∈R entonces (b,a) no
- No se consideran los casos (a,a)

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son antisimétricas:

•
$$R_1 = \{(2,2), (1,3), (1,1), (1,4), (2,4), (3,2), (3,4)\}$$

•
$$R_2 = \{(1,1), (2,2), (3,3)\}$$

•
$$R_3 = \{(2,1), (3,2), (1,2), (2,2), (4,4)\}$$

•
$$R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3)\}$$

•
$$R_5 = \{(1,2)\}$$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son antisimétricas:

- $R_1 = \{(2,2), (1,3), (1,1), (1,4), (2,4), (3,2), (3,4)\}$
- $R_2 = \{(1,1), (2,2), (3,3)\}$
- $R_3 = \{(2,1), (3,2), (1,2), (2,2), (4,4)\}$
- $R_4 = \{(1,1), (1,2), (1,3), (1,4), (3,3)\}$
- $R_5 = \{(1,2)\}$
- R₁, R₂, R₄ y R₅ son antisimétricas

Sea A={1,2,3} indique si las siguientes relaciones son antisimétricas:

•
$$R_1 = \{(1,1), (1,2), (1,3), (2,3)\}$$
 § I

•
$$R_2 = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1)\}$$

•
$$R_3 = \{(1,1), (2,2), (3,3)\}$$

Sea A={1,2,3} indique si las siguientes relaciones son antisimétricas:

- $R_1 = \{(1,1), (1,2), (1,3), (2,3)\}$ si
- $R_2 = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1)\}$ no, (1,2) y (2,1)
- $R_3 = \{(1,1), (2,2), (3,3)\}$ si

Sea A=Z⁺ indique si las relaciones son antisimétricas:

$$R_1=\{(a,b)|a \text{ divide }b\}$$
 (4, 1) (8, 4) (9,9) 81
 $R_2=\{(a,b)|a \le b\}$ (9,6) (5) (1) (8,4) (9,9) 81
 $R_3=\{(a,b)|a > b\}$

Sea A=Z⁺ indique si las relaciones son antisimétricas:

$$R_1 = \{(a,b) | a \text{ divide b} \} si$$

$$R_2=\{(a,b)|a\leq b\}$$
 si

$$R_3 = \{(a,b)|a>b\}$$
 si

Transitiva

• Una relación R sobre un conjunto A se llama transitiva si cuando $(a,b)\in R$ y $(b,c)\in R$ entonces (a,c) también

Sea $A=\{1,2,3,4\}$ indique cuáles de las siguientes relaciones son transitivas: (3, 1) (1,3) - (3,3) (3,3) (1,1), (1,4), (1,2), (3,4), (3,2)}
• $R_1 = \{(2,2), (1,3), (1,1), (3,1), (1,4), (1,2), (3,4), (3,2)\}$
• $R_2 = \{(1,1), (2,2), (3,3)\}$
• $R_3 = \{(2,1), (3,2), (1,2), (2,2), (1,3), (2,3), (3,3), (3,1), (1,1)\}$

Sea A={1,2,3,4} indique cuáles de las siguientes relaciones son transitivas:

- $R_1 = \{(2,2), (1,3), (1,1), (3,1), (1,4), (1,2), (3,4), (3,2)\}$
- $R_2 = \{(1,1), (2,2), (3,3)\}$
- $R_3 = \{(2,1),(3,2),(1,2),(2,2),(1,3),(2,3),(3,3),(3,1),(1,1)\}$
- R₂ y R₃

Sea A={1,2,3,4} indique si las siguientes relaciones son transitivas:

- $R_4 = \{(1,2), (2,3), (1,4), (3,3), (1,3), (4,1)\}$
- $R_5 = \{(1,2)\}$

Sea A={1,2,3,4} indique si las siguientes relaciones son transitivas:

- R_4 = {(1,2), (2,3), (1,4), (3,3), (1,3), (4,1)} **no**, están (1,4) y (4,1), por lo tanto, debería estar (1,1)
- $R_5 = \{(1,2)\}$ si

Sea A={1,2,3,4} y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$$

•
$$R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	70	No	No	8I
R ₂	St	SI	No	St
R ₃	No	S t	N 9	NO

Sea A={1,2,3,4} y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_1 = \{(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$$

•
$$R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

•
$$R_3 = \{(2,4), (4,2)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	70	NO	NO	SI
R ₂	SI	SI	NO	SI
R ₃	NO	SI	NO	NO

Sea A={1,2,3,4} y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_4 = \{(1,2), (2,3), (3,4)\}$$

•
$$R_5 = \{(1,1), (2,2), (3,3), (4,4)\}$$

•
$$R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₄	NO	N 9	8I	NO
R ₅	SI	SI	δ±	<u>T</u> 3
R ₆	N 9	NO	NO	IV O

Sea $A=\{1,2,3,4\}$ y las siguientes relaciones, complete la tabla de propiedades:

•
$$R_4 = \{(1,2), (2,3), (3,4)\}$$

•
$$R_5 = \{(1,1), (2,2), (3,3), (4,4)\}$$

•
$$R_6 = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₄	70	NO	SI	NO
R ₅	SI	SI	SI	SI
R ₆	NO	NO	NO	NO

Dadas las siguientes relaciones definidas sobre los números enteros, complete la tabla de propiedades:

•
$$R_1 = \{(a,b)|a+b=0\}$$

•
$$R_2 = \{(a,b) | a \neq b\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R_1				
R ₂				

Dadas las siguientes relaciones definidas sobre los números enteros, complete la tabla de propiedades:

•
$$R_1 = \{(a,b)|a+b=0\}$$

•
$$R_2 = \{(a,b) | a \neq b\}$$

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	NO	SI	NO	NO
R ₂	NO	SI	NO	NO

Representación de relaciones

- Matricial
- Grafos

• Sean $A=\{a_1,a_2,a_3\}$ y $B=\{b_1,b_2,b_3,b_4\}$, R se define de la siguiente manera:

$$R=\{(a_1,b_3),(a_2,b_2),(a_3,b_1),(a_3,b_3),(a_3,b_4)\}$$

• Sean $A=\{a_1,a_2,a_3\}$ y $B=\{b_1,b_2,b_3,b_4\}$, R se define de la siguiente manera:

$$R=\{(a_1,b_3),(a_2,b_2),(a_3,b_1),(a_3,b_3),(a_3,b_4)\}$$

· La representación matricial de R es:

• Sean $A=\{1,2,3\}$ y $B=\{1,2\}$, R se define de la siguiente manera:

$$R=\{(1,1),(1,2),(2,2),(3,1)\}$$

Muestre la representación matricial de R

• Sean $A=\{1,2,3\}$ y $B=\{1,2\}$, R se define de la siguiente manera:

$$R=\{(1,1),(1,2),(2,2),(3,1)\}$$

· La representación matricial de R es:

 Sea A={1,2,3,4} y R definida de A en A de la siguiente manera:

$$R=\{(1,1),(1,2),(2,2),(2,4),(3,1),(3,2),(3,4),(4,1)\}$$

Muestre la representación matricial de R

 Sea A={1,2,3,4} y R definida de A en A de la siguiente manera:

$$R=\{(1,1),(1,2),(2,2),(2,4),(3,1),(3,2),(3,4),(4,1)\}$$

· La representación matricial de R es:

 Muestre la relación definida sobre A={1,2,3} representada por la siguiente matriz

$$\{(1,1)(1,2)(2,1)(2,2)(2,3)(3,3)\}$$

 Muestre la relación definida sobre A={1,2,3} representada por la siguiente matriz

• R={(1,1),(1,2),(2,1),(2,2),(2,3),(3,3)}

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es reflexiva

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es reflexiva

No es reflexiva porque (3,3)∉R

Considere la siguiente relación definida sobre A={1,2,3,4}

· Indique si la relación es reflexiva

Considere la siguiente relación definida sobre A={1,2,3,4}

Indique si la relación es reflexiva

La relación es reflexiva

Considere la siguiente relación definida sobre A={1,2,3,4}

Indique si la relación es reflexiva

La relación es reflexiva

Una relación R es **reflexiva** si la matriz M_R tiene solo 1's en su diagonal

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es simétrica

La relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es simétrica

La relación no es simétrica ya que (1,3)∈R y (3,1)∉R

La relación es simétrica

La relación no es simétrica

Compare la matriz con su transpuesta

1	1	0
1	1	1
0	1	1

La relación es simétrica

$$M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{La relación es} \quad \text{simétrica}$$

$$\mathbf{M}^{\mathsf{T}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{c} \text{La relación no} \\ \text{es simétrica} \\ \end{array}$$

$$M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \text{La relación es}$$
simétrica

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M^{T} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{array}{c} \text{La relación no} \\ \text{es simétrica} \\ \end{array}$$

Una relación R es simétrica si la matriz M es igual a M^T

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es simétrica

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es antisimétrica

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es antisimétrica

La relación es antisimétrica

Considere la siguiente relación definida sobre A={1,2,3,4}

· Indique si la relación es antisimétrica

Considere la siguiente relación definida sobre A={1,2,3,4}

Indique si la relación es antisimétrica

La relación no es antisimétrica ya que (2,4)∈R y (4,2)∉R

Considere la siguiente relación definida sobre A={1,2,3,4}

• Indique si la relación es antisimétrica

La relación no es antisimétrica ya que (2,4)∈R y (4,2)∉R

Una relación R es **antisimétrica** si en la matriz M se cumple que si m_{ij}=1 entonces m_{ji}=0

Considere la siguiente relación definida sobre A={1,2,3}

Indique si la relación es transitiva

Considere la siguiente relación definida sobre A={1,2,3}

• R={(1,2),(2,2),(2,3),(3,1)}, no es transitiva ya que:

$$(1,2) \in R y (2,3) \in R \text{ pero } (1,3) \notin R$$

$$(2,3) \in R y (3,1) \in R \text{ pero } (2,1) \notin R$$

$$(3,1) \in R \ y \ (1,2) \in R \ pero \ (3,2) \notin R$$

Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es reflexiva, simétrica, antisimétrica o transitiva

- · Es reflexiva ya que en su diagonal hay solo 1's
- No es simétrica ya que M≠M^T

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{M}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- No es antisimétrica ya que $(1,3) \in R$ y $(3,1) \in R$
- Es transitiva

> Considere la siguiente relación definida sobre A={1,2,3}

• Indique si la relación es reflexiva, simétrica, antisimétrica

o transitiva

T NO

- · Es reflexiva ya que en su diagonal hay solo 1's
- No es simétrica ya que M≠M^T

$$\mathbf{M} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

- Es antisimétrica ya que si (a,b)∈R entonces (b,a)∉R
- No es transitiva. $(1,2)\in M$ y $(2,3)\in M$ pero $(1,3)\notin M$

Representación de relaciones

- Matricial
- Grafos

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

Nodos

→ Aristas

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

Nodos

→ Aristas

Cada elemento de A es un nodo Cada elemento de R es una arista

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

a •

b

C

• d

Representación usando grafos

• $R=\{(a,b),(b,c),(c,a),(d,b),(d,c)\}\ definida sobre A=\{a,b,c,d\}$

Represente $R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1)\}$ definida

sobre $A = \{1, 2, 3\}$

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1)\}$ definida sobre A= $\{1,2,3\}$

1 •

•2

2

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1)\}$ definida sobre A= $\{1,2,3\}$

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,4)\}$ definida sobre A= $\{1,2,3,4\}$

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,4)\}$ definida sobre A= $\{1,2,3,4\}$

•

Represente R= $\{(1,1),(1,2),(2,1),(2,2),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,4)\}$ definida sobre $A=\{1,2,3,4\}$

Muestre la relación que representa el siguiente grafo:

Muestre la relación que representa el siguiente grafo:

$$R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3)\}$$

Indique cuáles de las siguientes relaciones son reflexivas:

Indique cuáles de las siguientes relaciones son reflexivas:

Una relación es **reflexiva** si cada nodo tiene una arista que sale y llega al mismo nodo

Indique cuáles de las siguientes relaciones son reflexivas:

Las relaciones representadas en b y c son reflexivas

Indique cuáles de las siguientes relaciones son simétricas:

Indique cuáles de las siguientes relaciones son simétricas:

Una relación es simétrica si por cada arista del nodo i al j, hay otra de j a i

Indique cuáles de las siguientes relaciones son simétricas:

La relación representada en c es simétrica

Indique cuáles de las siguientes relaciones son antisimétricas:

Indique cuáles de las siguientes relaciones son antisimétricas:

Indique cuáles de las siguientes relaciones son antisimétricas:

La relación representada en b es antisimétrica

Indique cuáles de las siguientes relaciones son transitivas:

Indique cuáles de las siguientes relaciones son transitivas:

Una relación es transitiva si cuando hay una arista del nodo i al j, otra de j a k, entonces hay una arista de i a k

Indique cuáles de las siguientes relaciones son transitivas:

Las relaciones representadas en a y b son transitivas

Considere la siguiente relación definida sobre A={1,2,3,4}

Complete la siguiente tabla de propiedades:

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R ₁	SI	NO	NO	\mathbb{V} \mathbb{O}

· Represéntela en forma matricial

Considere la siguiente relación definida sobre A={1,2,3,4}

Complete la siguiente tabla de propiedades:

_		Reflexiva	Simétrica	Antisimétrica	Transitiva
	R_1	SI	70	NO	NO

· Represéntela en forma matricial

Considere la siguiente relación definida sobre A={1,2,3,4}

Representación matricial:

1	1	1	0
1	1	0	0
1	0	1	1
0	0	0	1

>> Considere la siguiente relación definida sobre A={1,2,3,4}

Complete la siguiente tabla de propiedades:

	Reflexiva	Simétrica	Antisimétrica	Transitiva
R_1	Wo	WO	St	, 87

· Represéntela en forma matricial