Functional Dependencies

1. Introduction:

- In a relational database, functional dependencies (FDs) are crucial for understanding the relationships between attributes within a table.
- A functional dependency between two attribute sets, X and Y, denoted as $X \rightarrow Y$, indicates that the values of X uniquely determine the values of Y.

2. Armstrong's Axioms:

Armstrong's axioms are fundamental rules used for reasoning about functional dependencies. These axioms guide us in deriving and understanding the relationships between attributes.

- a. Reflexivity Axiom:
- If Y is a subset of X, then $X \rightarrow Y$.
- This axiom reflects the idea that any subset of attributes is functionally dependent on the whole set of attributes.

Example:

Consider a relation R with attributes A, B, and C. If A \rightarrow B holds, then it's also true that AC \rightarrow B.

- b. Augmentation Axiom:
- If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any attribute set Z.
- This axiom shows that adding attributes to both sides of a functional dependency maintains its validity.

Example:

If Name \rightarrow Age, then NameAddress \rightarrow AgeAddress holds true.

- c. Transitivity Axiom:
- If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$.
- This axiom implies that if a functional dependency can be derived indirectly, it can be inferred directly.

Example:

If Course \rightarrow Department and Department \rightarrow Faculty, then Course \rightarrow Faculty can be inferred.

3. Example Scenarios:

a. Student Table:

...

```
| Roll No | Name | Age | Course |
|------|-----|
| 101 | Alice | 20 | CS |
| 102 | Bob | 22 | ECE |
| 103 | Carol | 21 | CS |
```

- In the above table, Roll No \rightarrow Name because each Roll No corresponds to a unique student's name.
- Roll No \rightarrow Age because each student's Roll No uniquely determines their age.
- Course \rightarrow Roll No because each course maps to multiple Roll Nos.
- b. Course Enrollment Table:

...

- In this table, Roll No → Course because each Roll No maps to a specific course.

4. Inference Rules:

- a. Union Rule:
- If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$.

Example:
If Roll No \rightarrow Name and Roll No \rightarrow Age, then Roll No \rightarrow NameAge.
b. Decomposition Rule:
- If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$.
Example:
If Roll No \rightarrow NameAge, then Roll No \rightarrow Name and Roll No \rightarrow Age.
c. Pseudo-Transitivity Rule:
- If $X \rightarrow Y$ and $WY \rightarrow Z$, then $WX \rightarrow Z$.
Example:
If Course \rightarrow Department and CourseFaculty \rightarrow Office, then CourseFaculty \rightarrow Office can be inferred as
Course → DepartmentOffice.
5. Conclusion:
- Functional dependencies play a pivotal role in maintaining the accuracy and integrity of relational databases.
- Armstrong's axioms provide a systematic approach to understanding and deriving functional
dependencies. - These concepts are essential for database normalization and the efficient design of relational
databases.
Types of functional dependency
1. Trivial Functional Dependency
In Trivial Functional Dependency, a dependent is always a subset of the determinant. i.e. If $X \to Y$ and Y is the subset of X , then it is called trivial functional dependency
Example:
roll_no name age

```
42 abc 1743 pqr 1844 xyz 18
```

Here, $\{\text{roll_no, name}\} \rightarrow \text{name}$ is a trivial functional dependency, since the dependent name is a subset of determinant set $\{\text{roll_no, name}\}$. Similarly, $\text{roll_no} \rightarrow \text{roll_no}$ is also an example of trivial functional dependency.

2. Non-trivial Functional Dependency

In Non-trivial functional dependency, the dependent is strictly not a subset of the determinant. i.e. If $X \rightarrow Y$ and Y is not a subset of X, then it is called Non-trivial functional dependency.

Example:

```
roll_no name age
42 abc 17
43 pqr 18
44 xyz 18
```

Here, roll_no \rightarrow name is a non-trivial functional dependency, since the dependent name is not a subset of determinant roll_no. Similarly, {roll_no, name} \rightarrow age is also a non-trivial functional dependency, since age is not a subset of {roll_no, name}

3. Multivalued Functional Dependency

In Multivalued functional dependency, entities of the dependent set are not dependent on each other. i.e. If $a \rightarrow \{b, c\}$ and there exists no functional dependency between b and c, then it is called a multivalued functional dependency.

For example,

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18
45	abc	19

Here, roll_no \rightarrow {name, age} is a multivalued functional dependency, since the dependents name & age are not dependent on each other(i.e. name \rightarrow age or age \rightarrow name doesn't exist!)

4. Transitive Functional Dependency

In transitive functional dependency, dependent is indirectly dependent on determinant. i.e. If $a \rightarrow b$ & $b \rightarrow c$, then according to axiom of transitivity, $a \rightarrow c$. This is a transitive functional dependency.

For example,

enrol_	no	name	dept	building_no
42	abc	СО	4	
43	pqr	EC	2	
44	xyz	IT	1	
45	abc	EC	2	

Here, enrol_no \rightarrow dept and dept \rightarrow building_no. Hence, according to the axiom of transitivity, enrol_no \rightarrow building_no is a valid functional dependency. This is an indirect functional dependency, hence called Transitive functional dependency.

5. Fully Functional Dependency

In full functional dependency an attribute or a set of attributes uniquely determines another attribute or set of attributes. If a relation R has attributes X, Y, Z with the dependencies X->Y and X->Z which states that those dependencies are fully functional.

6. Partial Functional Dependency

In partial functional dependency a non key attribute depends on a part of the composite key, rather than the whole key. If a relation R has attributes X, Y, Z where X and Y are the composite key and Z is non key attribute. Then X->Z is a partial functional dependency in RBDMS.