$\square k(w) = 2 \text{ per ogni } w \in \mathbb{R}.$

Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola:	
Cognome, nome e manicola:	

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a)	Sia $L = \{f\}$ un linguaggio del prim'ordine con f simbolo di funzione		
()	binario. Quali delle seguenti affermazioni sono formalizzate dalla formula		
	$\exists u$	$v \neg \exists x (f(w, x) \neq x)$ relativamente alla struttura $\langle \mathbb{R}, + \rangle$?	
		"La somma sui reali è commutativa."	
		"Nessun numero reale sommato a w dà un numero diverso da x ."	
		"Esiste un elemento neutro per la somma sui reali."	
		"Esiste un numero reale w tale che $w+x=x$, qualunque sia x ."	
(b)	Sia	ano A, B sottoinsiemi di D e sia $k: D \to D$. Stabilire quali delle seguenti	$\frac{2}{2}$ punti
	aff	fermazioni sono corrette.	
		Se $A \supseteq B$ allora certamente accade che $k[A] \subseteq k[B]$.	
		Se $k[A] \subseteq k[B]$ allora si deve avere che $A \subseteq B$.	
		$A \subseteq k^{-1}[k[A]].$	
		$k^{-1}[A \cup B] = k^{-1}[A] \cup k^{-1}[B].$	
(c)	Sia	a $k \colon \mathbb{R} \to \mathbb{R}$ definita da $k(w) = \frac{3w+6}{3} - w$ per ogni $w \in \mathbb{R}$. Stabilire quali	2 punti
		lle seguenti affermazioni sono corrette.	
		$k(w) = 4$ per qualche $w \in \mathbb{R}$.	
		k è suriettiva.	
		k è injettiva	

- (d) Siano P e Q formule proposizionali. Quali delle seguenti affermazioni sono corrette?
- 2 punti

- \square Q è soddisfacibile se e solo se \neg Q non è una tautologia.
- \square $\neg P \models P \rightarrow Q$
- \Box Anche se P è insoddisfacibile, $\neg P$ può non essere soddisfacibile.
- (e) Dati due insiemi $B \in C$, indichiamo con B^C l'insieme delle funzioni da C in B. Sia D un insieme non vuoto di cardinalità finita. Stabilire quali delle seguenti affermazioni sono corrette.
- 2 punti

- \square $D^{\mathbb{N}}$ è necessariamente più che numerabile.
- \square D^D è un insieme infinito.
- \square \mathbb{N}^D è un insieme infinito numerabile.
- \square D^D è certamente in biezione con $\mathcal{P}(A)$.
- (f) Sia D un insieme non vuoto e sia $L=\{Q\}$ un linguaggio del prim'ordine con 2 punti Q simbolo di relazione binaria. Quali delle seguenti sono formule che formalizzano 1,5p correttamente, relativamente alla struttura $\langle D,Q\rangle$, l'affermazione: "Q è antisimmetrica"?
 - $\square \exists x \exists y (R(x,y) \land R(y,x) \to x = y)$
 - $\square \ \forall x \forall y (R(x,y) = R(y,x) \to x = y)$
 - $\square \forall x \exists y (R(x,y) \land R(y,x) \to x = y)$
- (g) Siano D, A, B lettere proposizionali e S una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:
- 2 punti

- $\overline{\mathbf{F}}$ \mathbf{F} ${f F}$ \mathbf{F} \mathbf{F} \mathbf{F} $\mathbf{F} \mid \mathbf{V}$ \mathbf{F} $\mathbf{V} \mid \mathbf{F}$ \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{V} \mathbf{V} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F}
- \square ¬S è insoddisfacibile.
- \square $\neg S$ è soddisfacibile.
- \Box A \leftrightarrow B $\models \neg$ S
- \square S $\models \neg B \wedge D$

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{Q, k, a\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario Q, un simbolo di funzione binario k e un simbolo di costante k. Sia ϕ la formula

$$(\neg \exists x (k(x, x) = \mathbf{w}) \to Q(k(\mathbf{y}, a), \mathbf{w})).$$

Consideriamo la *L*-struttura $\mathcal{N} = \langle \mathbb{N}, \leq, +, 1 \rangle$.

- $\underline{1}$. Dire se ϕ è un enunciato oppure no e, nel secondo caso, cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \exists x (k(x,x) = w)[w/l,x/n]$ se e solo se l è un numero naturale pari?
- 3. È vero che $\mathcal{N} \models \varphi[w/1, x/0, y/0]$?
- 4. È vero che $\mathcal{N} \models \varphi[w/2, x/1, y/0]?_{\mathsf{V}}$
- 5. È vero che $\mathcal{N} \models \varphi[w/5, x/1, y/5]$?
- <u>6.</u> È vero che $\mathcal{N} \models \forall w \, \varphi[w/0, x/0, y/0]?_{\mathbf{V}}$
- 7. È vero che $\mathcal{N} \models \forall w \, \varphi[w/0, x/0, y/5]$?
- 8. È vero che $\mathcal{N} \models \exists y \forall w \ \varphi?_{\mathsf{V}}$
- 9. È vero che $\mathcal{N} \models \forall y \forall w \ \varphi$?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia D un insieme non vuoto, siano A,B sottoinsiemi di D e sia $k\colon D\to D$ una funzione. Formalizzare relativamente alla struttura $\langle D,A,B,k\rangle$ mediante il linguaggio $L=\{A,B,k\}$ con due simboli di predicato unari ed un simbolo di funzione unario le seguenti affermazioni:

- 1. k è l'identità (ovvero manda ciascun elemento di D in se stesso)
- 2. $k \circ k$ è iniettiva
- 3. $k^{-1}[B] \subseteq A$
- 4. $k[A] \cup k[B] \neq D$.