Curry Club Augsburg
4. Oktober 2016 und 3. November 2016

- Erinnerungen
 - Gewöhnliche Turingmaschinen
 - Ordinalzahlen
- 2 Grundlagen zu Superturingmaschinen
 - **■** Erste Schritte
 - Fähigkeiten von Superturingmaschinen
 - Laufzeit von Superturingmaschinen
- **3** Besondere Phänomene
 - Ausbrechen aus Wiederholungen
 - Stempelbare Ordinalzahlen
 - Lost-Melody-Theorem
- 4 Der effektive Topos
 - Mathematische Alternativuniversen
 - Das Wunder intuitionistischer Logik
 - Effektive Bedeutung klassischer Tautologien

Ein Hoch auf Turingmaschinen

- Schlichtheit
- Mechanischer Bezug
- **3** Robustheit des Konzepts
- Äquivalenz zu anderen Modellen
- 5 Querverbindungen

- Schon kleine Turingmaschinen sind diffizil.
- Es gibt Turingmaschinen, deren Halteverhalten unabhängig von Standard-Axiomen der Mathematik ist.

- Schon kleine Turingmaschinen sind diffizil.
- Es gibt Turingmaschinen, deren Halteverhalten unabhängig von Standard-Axiomen der Mathematik ist.
- Alle sinnvollen Modelle für Berechenbarkeit stimmen für Funktionen $\mathbb{N} \to \mathbb{N}$ überein.

- Schon kleine Turingmaschinen sind diffizil.
- Es gibt Turingmaschinen, deren Halteverhalten unabhängig von Standard-Axiomen der Mathematik ist.
- Alle sinnvollen Modelle für Berechenbarkeit stimmen für Funktionen $\mathbb{N} \to \mathbb{N}$ überein.
- 4 Eine Menge ist genau dann rekursiv aufzählbar, wenn sie durch eine Σ_1 -Aussage definierbar ist:

$$\{n \in \mathbb{N} \mid \text{es gibt } m \in \mathbb{N} \text{ mit } \emptyset\},\$$

- Schon kleine Turingmaschinen sind diffizil.
- Es gibt Turingmaschinen, deren Halteverhalten unabhängig von Standard-Axiomen der Mathematik ist.
- 3 Alle sinnvollen Modelle für Berechenbarkeit stimmen für Funktionen $\mathbb{N} \to \mathbb{N}$ überein.
- 4 Eine Menge ist genau dann rekursiv aufzählbar, wenn sie durch eine Σ_1 -Aussage definierbar ist:

$$\{n \in \mathbb{N} \mid \text{es gibt } m \in \mathbb{N} \text{ mit } \emptyset\},$$

und wenn sie diophantisch ist:

$$\{n \in \mathbb{N} \mid \text{die Gl. } f(n, x_1, \dots, x_m) = 0 \text{ besitzt eine Lösung}\},$$
wobei f ein Polynom mit ganzzahligen Koeffizienten ist.

Eine Σ_1 -Aussage ist eine Aussage der Form

"Es gibt
$$m \in \mathbb{N}$$
 mit \heartsuit .",

wobei in der Teilaussage \heartsuit nur noch *beschränkte Quantifikation* vorkommen darf – also Formeln wie

"Für alle Zahlen kleiner als · · · gilt . . . "

oder

"Es gibt eine Zahl kleiner als · · · mit . . . "

und nicht Formeln wie

"Für alle Zahlen gilt ..."

und

"Es gibt eine Zahl mit ...".

Die Teilaussage ♡ muss also in endlicher Zeit überprüfbar sein.

Ordinalzahlen messen Anordnung

■ Es gibt \aleph_0 viele natürliche Zahlen.

- Es gibt \aleph_0 viele natürliche Zahlen.
- $\aleph_0 + 1 = \aleph_0$,

- Es gibt \aleph_0 viele natürliche Zahlen.
- $\aleph_0 + 1 = \aleph_0, \quad \aleph_0 + \aleph_0 = \aleph_0,$

- Es gibt \aleph_0 viele natürliche Zahlen.
- $\aleph_0 + 1 = \aleph_0, \quad \aleph_0 + \aleph_0 = \aleph_0, \quad \aleph_0 \cdot \aleph_0 = \aleph_0.$

- Es gibt \aleph_0 viele natürliche Zahlen.
- $\aleph_0 + 1 = \aleph_0$, $\aleph_0 + \aleph_0 = \aleph_0$, $\aleph_0 \cdot \aleph_0 = \aleph_0$.
- Es gibt mehr als \aleph_0 viele reelle Zahlen.

Was sind Superturingmaschinen?

Bei Superturingmaschinen ist die Zeitachse spannender:

- normal: 0, 1, 2, ...
- super: $0, 1, 2, \ldots, \omega, \omega + 1, \ldots, 2\omega, 2\omega + 1, \ldots$

Wird eine Limesordinalzahl erreicht, so wird

- die Maschine in einen designierten Zustand versetzt,
- der Schreib-/Lesekopf auf den Anfang bewegt und
- der "lim sup" aller vorherigen Bandinhalte genommen.

Was können Superturingmaschinen?

- Alles, was gewöhnliche Turingmaschinen können.
- Zahlentheoretische Behauptungen überprüfen:
 - ∀ "Für alle Zahlen gilt …"
 - ∃ "Es gibt eine Zahl mit …"
 - $\forall \exists$ "Für alle Zahlen *n* gibt es jeweils eine Zahl *m* mit …"
 - $\exists \forall$ "Es gibt eine Zahl n, sodass für alle Zahlen m gilt: ..."
 - ∀∃∀,∃∀∃,...
- Entscheiden, ob gewöhnliche Turingmaschinen halten.
- Superturingmaschinen und verwandte Maschinen simulieren.
- Π_1^1 und Σ_1^1 -Aussagen entscheiden.

Was können Superturingmaschinen?

- Alles, was gewöhnliche Turingmaschinen können.
- Zahlentheoretische Behauptungen überprüfen:
 - ∀ "Für alle Zahlen gilt …"
 - ∃ "Es gibt eine Zahl mit …"
 - $\forall \exists$ "Für alle Zahlen *n* gibt es jeweils eine Zahl *m* mit …"
 - $\exists \forall$ "Es gibt eine Zahl n, sodass für alle Zahlen m gilt: ..."
 - ∀∃∀,∃∀∃,...
- Entscheiden, ob gewöhnliche Turingmaschinen halten.
- Superturingmaschinen und verwandte Maschinen simulieren.
- Π_1^1 und Σ_1^1 -Aussagen entscheiden.

Aber: Superturingmaschinen können nicht alle Funktionen berechnen und nicht jede 0/1-Folge aufs Band schreiben.

Fundierung von Bäumen

Ein Baum ist genau dann **fundiert**, wenn er keinen unendlichen Pfad enthält.

Superturingmaschinen können die Fundiertheit von Bäumen entscheiden.

Ein kleines Wunder

Superturingmaschinen können Π_1^1 - und Σ_1^1 -Aussagen entscheiden:

"Für jede Funktion $\mathbb{N} \to \mathbb{N}$ gilt ..."

"Es gibt eine Funktion $\mathbb{N} \to \mathbb{N}$ mit ..."

Und das, obwohl es überabzählbar viele Funktionen $\mathbb{N} \to \mathbb{N}$ gibt, aber Superturingmaschinen nur ein abzählbares Band verwenden und (nächste Folie) immer schon nach abzählbar vielen Schritten halten oder in Endlosschleifen geraten.

Wann halten Superturingmaschinen?

Schon nach **abzählbar vielen** ($\leq \aleph_0$ vielen) Schritten hält jede Superturingmaschine entweder an oder wiederholt sich.

Wann halten Superturingmaschinen?

Schon nach abzählbar vielen ($\leq \aleph_0$ vielen) Schritten hält jede Superturingmaschine entweder an oder wiederholt sich.

Sprechweise. Eine Ordinalzahl ist genau dann **abzählbar**, wenn sie nur abzählbar viele Vorgänger hat.

Genau die abzählbaren Ordinalzahlen lassen sich in \mathbb{R} einbetten.

Notation. Es ist ω_1 die erste Ordinalzahl, vor der *überabzählbar* unendlich viele Ordinalzahlen kommen.

Behauptung. Hat eine Superturingmaschine nach abzählbar vielen Schritten noch nicht angehalten, so hält sie nie.

Beweis. Angenommen, eine Superturingmaschine hat vor Schritt ω_1 noch nicht gehalten. Dann gibt es eine Ordinalzahl $\alpha_0 < \omega_1$, zu der sich alle Zellen, die sich bis vor ω_1 stabilisieren werden, schon stabilisiert haben. Ferner gibt es Ordinalzahlen

$$\alpha_0 < \alpha_1 < \alpha_2 < \cdots < \omega_1$$

sodass sich zwischen α_n und α_{n+1} all die Zellen, die sich bis ω_1 noch ändern werden, jeweils mindestens einmal ändern. Sei $\delta = \lim_{n \to \infty} \alpha_n$. Das ist eine Ordinalzahl $< \omega_1$, also eine abzählbare Ordinalzahl. Dann ist die Aufnahme der Superturingmaschine bei δ gleich der bei ω_1 . Die Superturingmaschine wiederholt sich also.

Ausbrechen aus Wiederholungen

Was macht folgende Superturingmaschine?

Prüfe im Start- und Limeszustand, ob die aktuelle Zelle eine Eins enthält.

- Wenn ja, dann halte.
- Wenn nein, dann lass die Zelle aufleuchten und laufe ohne Unterlass nach rechts.

Ausbrechen aus Wiederholungen

Was macht folgende Superturingmaschine?

Prüfe im Start- und Limeszustand, ob die aktuelle Zelle eine Eins enthält.

- Wenn ja, dann halte.
- Wenn nein, dann lass die Zelle aufleuchten und laufe ohne Unterlass nach rechts.

Sie scheint sich zu wiederholen, hält aber nach Schritt ω^2 .

Ausbrechen aus Wiederholungen

Was macht folgende Superturingmaschine?

Prüfe im Start- und Limeszustand, ob die aktuelle Zelle eine Eins enthält.

- Wenn ja, dann halte.
- Wenn nein, dann lass die Zelle aufleuchten und laufe ohne Unterlass nach rechts.

Sie scheint sich zu wiederholen, hält aber nach Schritt ω^2 .

Eine Superturingmaschine wiederholt sich genau dann, wenn

- die Aufnahmen zu zwei Limesordinalzeiten gleich sind und
- zwischen diesen Zeiten keine Zellen, die Null waren, zu Eins werden.

Stempelbare Ordinalzahlen

Eine Ordinalzahl α ist genau dann **stempelbar** (clockable), falls es eine Superturingmaschine gibt, die genau nach Schritt α hält.

- Jede endliche Ordinalzahl ist stempelbar.
- Stempelbar sind außerdem: ω , 2ω , ω^2
- Sind α und β stempelbar, so auch $\alpha + \beta$ und $\alpha \cdot \beta$.
- Nur abzählbar viele Ordinalzahlen sind stempelbar.
- Jede rekursive Ordinalzahl ist stempelbar.

Stempelbare Ordinalzahlen

Eine Ordinalzahl α ist genau dann **stempelbar** (clockable), falls es eine Superturingmaschine gibt, die genau nach Schritt α hält.

Beschleunigungssatz

Ist $\alpha + n$ stempelbar, so auch α .

Große-Lücken-Satz

Für jede stempelbare Ordinalzahl α gibt es eine Lücke der Länge $\geq \alpha$ in den stempelbaren Ordinalzahlen.

Viele-Lücken-Satz

Ist α eine schreibbare Ordinalzahl, so gibt es mindestens α viele Lücken der Länge $\geq \alpha$ in den stempelbaren Ordinalzahlen.

Kurioserweise gibt es auch den *Lückenlose-Blöcke-Satz* (Gapless Blocks Theorem): Es gibt in den Ordinalzahlen "lange Abschnitte" von lauter stempelbaren Ordinalzahlen.

Erinnerung: Diagonalisierung

Lückenexistenzsatz

Die erste Lücke nach jeder stempelbaren Ordinalzahl hat Länge $\omega.$

Beweis. Sei α eine stempelbare Ordinalzahl. Sei β die kleinste nicht-stempelbare Ordinalzahl nach α . Dann gibt es keine stempelbaren Ordinalzahlen zwischen β und $\beta + \omega$. Und $\beta + \omega$ selbst ist stempelbar durch folgendes Programm:

Simuliere alle Superturingmaschinen auf verzahnte Art und Weise. Behalte dabei insbesondere das Programm im Auge, das nach Schritt α halten wird. Sobald dieses gehalten hat, simuliere so lange weiter, bis der Zeitpunkt β erreicht ist, zu dem keine Superturingmaschine hält, und halte dann.

Zur Erkennung waren aber noch ω Schritte nötig.

Lost-Melody-Theorem

Es gibt Bandinhalte, die

- Superturingmaschinen nicht schreiben, aber
- erkennen können.

Lost-Melody-Theorem

Es gibt Bandinhalte, die

- Superturingmaschinen nicht schreiben, aber
- erkennen können.

Beweis. Sei *c* eine Kodierung aller Ablauffolgen aller Superturingmaschinen als unendliche 0/1-Folge.

- Dann ist *c* nicht schreibbar.
- Aber c ist erkennbar.

Mathematische Alternativuniversen

Zu jedem Rechenmodell \mathcal{M} gibt es einen Topos $\mathrm{Eff}(\mathcal{M})$, in den wir mit Realisierbarkeitstheorie hineinschauen können.

Mathematische Alternativuniversen

Zu jedem Rechenmodell \mathcal{M} gibt es einen Topos Eff(\mathcal{M}), in den wir mit Realisierbarkeitstheorie hineinschauen können.

 $\operatorname{Eff}(\operatorname{TM}) \models$ "Für jede Zahl n gibt es eine Primzahl p > n." bedeutet:

Es gibt eine Turingmaschine, die eine Zahl n vom Band einliest und eine Primzahl p > n als Ausgabe aufs Band schreibt.

 $Eff(TM) \models "Jede Zahl besitzt eine Primfaktorzerlegung." bedeutet:$

Es gibt eine Turingmaschine, die eine Zahl n vom Band einliest und eine Liste von Primzahlen, deren Produkt n ist, aufs Band schreibt.

Was gilt in Alternativuniversen?

Metatheorem: Jede Aussage, die sich **intuitionistisch** beweisen lässt, gilt in allen Topoi.

Schon gewusst?

Intuitionistische Logik ist wie klassische Logik, nur ohne:

- Axiom vom ausgeschlossenen Dritten (LEM): $\varphi \vee \neg \varphi$

So sind Widerspruchsbeweise nicht pauschal möglich.

LEM für Gleichheit von Funktionen

 $\mbox{Eff}(\mbox{TM}) \models \mbox{``,} \mbox{F\"ur jede Funktion} \ f: \mathbb{N} \to \mathbb{N} \ \mbox{gilt: Entweder} \\ \mbox{ist} \ f \ \mbox{die Nullfunktion oder nicht."} \\ \mbox{bedeutet:}$

Es gibt eine Turingmaschine, die eine Kodierung einer Turingmaschine M, welche eine Funktion $\mathbb{N} \to \mathbb{N}$ berechnet, als Eingabe vom Band liest und dann entscheidet, ob M stets Null als Ausgabe produziert oder nicht.

Das stimmt nicht.

LEM für Gleichheit von Funktionen

 $\mbox{Eff}(\mbox{TM}) \models \mbox{``,} \mbox{F\"ur jede Funktion } f: \mathbb{N} \to \mathbb{N} \mbox{ gilt: Entweder} \\ \mbox{ist } f \mbox{ die Nullfunktion oder nicht."} \\ \mbox{bedeutet:}$

Es gibt eine Turingmaschine, die eine Kodierung einer Turingmaschine M, welche eine Funktion $\mathbb{N} \to \mathbb{N}$ berechnet, als Eingabe vom Band liest und dann entscheidet, ob M stets Null als Ausgabe produziert oder nicht.

Das stimmt nicht.

In Eff(STM) stimmt die Aussage.

LEM fürs Halten von Turingmaschinen

 $Eff(TM) \models "Jede Turingmaschine <math>M$ hält oder hält nicht." bedeutet:

Es gibt eine Turingmaschine, die die Kodierung einer Turingmaschine M als Eingabe vom Band liest und dann entscheidet, ob M hält oder nicht.

Das stimmt nicht.

LEM fürs Halten von Turingmaschinen

 $Eff(TM) \models "Jede Turingmaschine <math>M$ hält oder hält nicht." bedeutet:

Es gibt eine Turingmaschine, die die Kodierung einer Turingmaschine M als Eingabe vom Band liest und dann entscheidet, ob M hält oder nicht.

Das stimmt nicht.

In Eff(STM) stimmt die Aussage.

Markovs Prinzip

 $\mbox{Eff(TM)} \models \mbox{``,F\"ur jede Funktion} \ f: \mathbb{N} \to \mathbb{N}, \mbox{ welche nicht} \\ \mbox{die Nullfunktion ist, gibt es eine Stelle} \ n \in \mathbb{N} \\ \mbox{mit} \ f(n) \neq 0. \mbox{``}$

bedeutet:

Es gibt eine Turingmaschine, die eine Kodierung einer Turingmaschine M, welche eine Funktion $\mathbb{N} \to \mathbb{N}$ und zwar nicht die Nullfunktion berechnet, als Eingabe vom Band liest und dann eine Zahl n aufs Band schreibt, sodass M bei Eingabe von n nicht Null aufs Band schreibt.

Das stimmt! (Unbeschränkte Suche.)

Church-Turing-These

Die Church-Turing-These besagt: Lässt sich eine Funktion $f: \mathbb{N} \to \mathbb{N}$ in der "realen Welt berechnen", so gibt es eine Turingmaschine, die f berechnet.

 $\operatorname{Eff}(\operatorname{TM}) \models \operatorname{"Jede}$ Funktion $f: \mathbb{N} \to \mathbb{N}$ lässt sich durch eine Turingmaschine berechnen." bedeutet:

Es gibt eine Turingmaschine, die eine Kodierung einer Turingmaschine M, welche eine Funktion $f: \mathbb{N} \to \mathbb{N}$ berechnet, als Eingabe vom Band liest und dann die Kodierung einer Turingmaschine, welche f berechnet, aufs Band schreibt.

Das ist trivial! "cat" ist die gesuchte Maschine.

Church-Turing-These

Die Church-Turing-These besagt: Lässt sich eine Funktion $f: \mathbb{N} \to \mathbb{N}$ in der "realen Welt berechnen", so gibt es eine Turingmaschine, die f berechnet.

Eff(TM) \models "Jede Funktion $f: \mathbb{N} \to \mathbb{N}$ lässt sich durch eine Turingmaschine berechnen."

bedeutet:

Es gibt eine Turingmaschine, die eine Kodierung einer Turingmaschine M, welche eine Funktion $f: \mathbb{N} \to \mathbb{N}$ berechnet, als Eingabe vom Band liest und dann die Kodierung einer Turingmaschine, welche f berechnet, aufs Band schreibt.

Das ist trivial! "cat" ist die gesuchte Maschine.

In Eff(STM) und Eff(λ) stimmt die Aussage nicht.

Automatische Stetigkeit

Im üblichen Universum stimmt folgende Aussage nicht:

"Jede Funktion $f: \mathbb{R} \to \mathbb{R}$ ist stetig."

Eine Funktion f heißt genau dann **stetig**, falls für jede Zahl x zur Bestimmung von endlich vielen Nachkommastellen von f(x) schon endlich viele Nachkommastellen von x genügen.

Automatische Stetigkeit

Im üblichen Universum stimmt folgende Aussage nicht:

"Jede Funktion
$$f: \mathbb{R} \to \mathbb{R}$$
 ist stetig."

Eine Funktion f heißt genau dann **stetig**, falls für jede Zahl x zur Bestimmung von endlich vielen Nachkommastellen von f(x) schon endlich viele Nachkommastellen von x genügen.

Stimmt in Eff(TM).

Automatische Stetigkeit

Im üblichen Universum stimmt folgende Aussage nicht:

"Jede Funktion $f: \mathbb{R} \to \mathbb{R}$ ist stetig."

Eine Funktion f heißt genau dann **stetig**, falls für jede Zahl x zur Bestimmung von endlich vielen Nachkommastellen von f(x) schon endlich viele Nachkommastellen von x genügen.

Stimmt in Eff(TM). Stimmt in Eff(RW), falls black boxes und private Kommunikationskanäle möglich sind und in endlicher Zeit nur endlich viele Rechenschritte ausgeführt werden können.

Es gibt keine Surjektion $\mathbb{N} \to \mathbb{N}^{\mathbb{N}}$; die Menge $\mathbb{N}^{\mathbb{N}}$ der Funktionen $\mathbb{N} \to \mathbb{N}$ ist viel größer als \mathbb{N} .

In klassischer Logik folgt: Es gibt auch keine Injektion $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$. Das drückt dieselbe Intuition über das Größenverhältnis aus.

Es gibt keine Surjektion $\mathbb{N} \to \mathbb{N}^{\mathbb{N}}$; die Menge $\mathbb{N}^{\mathbb{N}}$ der Funktionen $\mathbb{N} \to \mathbb{N}$ ist viel größer als \mathbb{N} .

In klassischer Logik folgt: Es gibt auch keine Injektion $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$. Das drückt dieselbe Intuition über das Größenverhältnis aus.

Aber in Eff(STM) gibt es eine solche Injektion!

 $\mbox{Eff(STM)} \models \mbox{,"Es gibt eine Injektion $\mathbb{N}^{\mathbb{N}} \to \mathbb{N}$."}$ bedeutet:

Es gibt eine Superturingmaschine, welche bei Eingabe einer Kodierung einer Superturingmaschine A, welche eine Funktion $\mathbb{N} \to \mathbb{N}$ berechnet, eine Zahl n(A) berechnet und aufs Band schreibt. Dabei darf nur dann n(A) = n(B) sein, wenn A und B dieselbe Funktion berechnen.

Die Superturingmaschine

Lese die Kodierung einer Superturingmaschine A vom Band ein. Gehe nun alle natürlichen Zahlen n der Reihe nach durch und prüfe jeweils, ob die n-te Superturingmaschine dasselbe Verhalten zeigt wie A. Da A terminiert, ist das entscheidbar. Gebe die kleinste so gefundene Zahl n aus.

schreibt bei Eingabe einer Kodierung einer Superturingmaschine A, welche eine Funktion $\mathbb{N} \to \mathbb{N}$ berechnet, eine Zahl n(A) aufs Band. Dabei ist nur dann n(A) = n(B), wenn A und B dieselbe Funktion berechnen.