

Introducción

UML

- Unified Modeling Language
- Es un lenguaje visual
- Nos permite modelar
 - Procesos
 - Sistemas
 - Software
- Es extensible, flexible y escalable

Use Case Diagram

Nos ayudan a capturar los requisitos funcionales del sistema a desarrollar

- Caso de uso
- Actor
- Comunicación
- Entorno

Use Case Diagram - Example

Nos ayudan a capturar los requisitos funcionales del sistema a desarrollar

- Caso de uso
- Actor
- Comunicación
- Entorno

Use Case Diagram - Example

Relaciones entre casos de uso:

- Inclusión
- Extensión
- Herencia

Relaciones entre actores

Relaciones entre casos de uso:

- Inclusión
- Extensión
- Herencia

Relaciones entre actores

Relaciones entre casos de uso:

- Inclusión
- Extensión
- Herencia

Relaciones entre actores

Relaciones entre casos de uso:

- Inclusión
- Extensión
- Herencia

Relaciones entre actores

Relaciones entre casos de uso:

- Inclusión
- Extensión
- Herencia

Relaciones entre actores

Class Diagram

Nos ayudan a modelar la estructura de un sistema.

- Clase
- Asociación
- Agreación
- Composición
- Especialización

Class Diagram

Clases que conforman nuestro programa. Puede ser tan detallado como requiera el diagrama.

Podemos definir tanto atributos como métodos

- Clase
- Asociación
- Agregación
- Composición
- Especialización

Relación estructural entre clases que especifica que ambas clases tienen algún tipo de relación

- Es bidireccional
- Se le asigna un nombre o nombres de rol
- Tiene multiplicidad en cada sentido

MULTIPLICIDAD

O..1 cero a uno (opcional)

n (cantidad específica)

0..* cero a muchos

1..* uno a muchos

m..n rango específico

- Clase
- Asociación
- Agregación
- Composición
- Especialización

La agregación es una variante de la asociación que representa una relación de tipo parte-todo o parte-de

- Es bidireccional
- Tiene multiplicidad en cada sentido

Elementos

- Clase
- Asociación
- Agregación
- Composición
- Especialización

MULTIPLICIDAD

O..1 cero a uno (opcional)

n (cantidad específica)

0..* cero a muchos

1..* uno a muchos

m..n rango específico

En la composición intentamos representar el todo y sus partes. Si eliminamos el contenedor el contenido también es eliminado

- Es bidireccional
- Tiene multiplicidad en cada sentido

MULTIPLICIDAD

- O..1 cero a uno (opcional)
- n (cantidad específica)
- 0..* cero a muchos
- 1..* uno a muchos m..n rango específico

- Clase
- Asociación
- Agregación
- Composición
- Especialización

- La especialización se usa para indicar la herencia.

- Clase
- Asociación
- Agregación
- Composición
- Especialización

Class Diagram

