German University in Cairo Department of Computer Science Assoc. Prof. Haythem O. Ismail

CSEN 1003 Compiler, Spring Term 2020 Practice Assignment 3

Discussion: 12.02.19 - 19.02.19

Exercise 3-1

CFG's

Give a context-free grammar (CFG) for each of the following languages:

a) $L = \{a^m b^n c^k \mid k = m + n \text{ and } m, n, k \ge 0\}$ over the alphabet $\Sigma = \{a, b, c\}$.

Solution:

$$\begin{array}{ccc} S & \rightarrow & \mathrm{a} S \mathrm{c} \mid T \\ T & \rightarrow & \mathrm{b} T \mathrm{c} \mid \varepsilon \end{array}$$

b) $L = \{a^m b^n \mid n \neq m\}$ over the alphabet $\Sigma = \{a, b\}$.

Solution:

$$\begin{array}{ccc} S & \rightarrow & P \mid T \\ P & \rightarrow & \mathtt{a}P\mathtt{b} \mid \mathtt{a}P \mid \mathtt{a} \\ T & \rightarrow & \mathtt{a}T\mathtt{b} \mid T\mathtt{b} \mid \mathtt{b} \end{array}$$

Alternative solution:

$$\begin{array}{ccc} S & \rightarrow & AX \mid XB \\ X & \rightarrow & \mathtt{a}X\mathtt{b} \mid \varepsilon \\ A & \rightarrow & \mathtt{a}A \mid \mathtt{a} \\ B & \rightarrow & \mathtt{b}B \mid \mathtt{b} \end{array}$$

Note: This language does not accept the empty string because it would imply m = n = 0.

c) $L = \{w \mid w \text{ is a palindrome }\}$ over the alphabet $\Sigma = \{a, b, c\}$. (Note: A palindrome is a string that reads the same backwards as forwards.)

Solution:

$$S \rightarrow \varepsilon \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \mid \mathbf{a} S \mathbf{a} \mid \mathbf{b} S \mathbf{b} \mid \mathbf{c} S \mathbf{c}$$

Exercise 3-2

Parse trees

Cosider the grammar:

 $^{^0\}mathrm{Some}$ exercises are due to Dr. Carmen Gervet

$$S \rightarrow A1B$$

$$A \rightarrow 1A \mid 0$$

$$B \rightarrow 0B \mid \varepsilon$$

Give a parse tree for each of the following strings:

a) 11101

Solution:

b) 1010

Solution:

c) 0100

Solution:

Exercise 3-3

Ambiguous grammars

For the following grammars, first show that the grammar is ambiguous, then provide an equivalent unambiguous grammar.

a)
$$S \rightarrow 1S0 \mid 1S \mid \varepsilon$$

Solution:

We show that the grammar is ambiguous by providing two different parse trees for the string:110

An equivalent unambiguous grammar:

b)
$$S \rightarrow aSbS \mid aS \mid \varepsilon$$

Solution:

We show that the grammar is ambiguous by providing two different parse trees for the string:aab

An equivalent unambiguous grammar:

Exercise 3-4

Leftmost and rightmost derivations

3

Consider the following context-free grammar:

$$S \quad o \quad SS\text{+} \mid SS\text{*} \mid$$
 a

and the string: aa+a*

a) Give a leftmost derivation for the string. Show the sequence of derivation rules applied.

Solution:

$$S \Rightarrow SS* \Rightarrow (SS+)S* \Rightarrow aS+S* \Rightarrow aa+S* \Rightarrow aa+a*$$

b) Give a rightmost derivation for the string. Show the sequence of derivation rules applied.

Solution:

$$S\Rightarrow SS*\Rightarrow Sa*\Rightarrow (SS+)a*\Rightarrow Sa+a*\Rightarrow aa+a*$$

c) Give a parse tree for the string.

Solution:

d) Is this grammar ambiguous? Justify your answer.

Solution:

This grammar describes the language of strings in postfix notation with the operand 'a'. It is not ambiguous because postfix notation implies a single interpretation of strings.

Exercise 3-5

Unambiguous grammars

The following context-free grammar generates prefix expressions with operands 0 and 1 and binary operators +, -, and *:

$$S \rightarrow +SS \mid -SS \mid *SS \mid 0 \mid 1$$

a) Find leftmost and rightmost derivations together with a parse tree for the string *+-0101.

Solution:

Derivations:

Leftmost	${f Rightmost}$
S	S
$\Rightarrow *SS$	$\Rightarrow *SS$
$\Rightarrow *(+SS)S$	<i>⇒</i> * <i>S</i> 1
$\Rightarrow *+(-SS)SS$	$\Rightarrow *(+SS)$ 1
\Rightarrow *+-0 SSS	<i>⇒*+S</i> 01
\Rightarrow *+-01 SS	\Rightarrow *+ $(-SS)$ 01
\Rightarrow *+-010 S	\Rightarrow *+- S 101
⇒*+-0101	⇒*+-0101

Parse tree:

b) Prove that this grammar is unambiguous.

Solution:

This grammar denotes a prefix notation of strings with operands 0, 1 and operation symbols +, - and *.

In this grammar, the application of each rule generates a string starting with a unique terminal symbol (*, +, -, 0 or 1). For any string w that belongs to the CFL, when we consider a leftmost variable E in the leftmost derivation of the string, there is only one rule that can be used to continue the derivation. This rule is uniquely determined by the next symbol in w to be derived. So there is only one leftmost derivation for w, hence the non-ambiguity of the grammar.

Exercise 3-6

Grammar Correctness

a) Consider the CFG G_1 :

$$S \longrightarrow 0S11 \mid 0S111 \mid \varepsilon$$

Prove that $L(G_1) = \{0^m 1^n \mid 2m \le n \le 3m \text{ and } n, m \ge 0\}$

Solution:

Proof. We divide the proof into two parts.

Soundness ($L(G_1) \subseteq L_1$). We prove the statement by induction on the length k of S-derivations.

Basis (k = 1). The only S-derivation of length 1 is the derivation $S \Rightarrow \varepsilon$ and $\varepsilon \in L_1$ when m = n = 0.

Induction Hypothesis. For some $k \in \mathbb{N}$ and $\forall j \leq k$, if $S \stackrel{j}{\Rightarrow} w$, then $w \in L_1$.

Induction Step. Suppose that $S \stackrel{k+1}{\Rightarrow} w$. Hence either, $S \Rightarrow 0S11 \stackrel{k}{\Rightarrow} 0u11 = w$ or $S \Rightarrow 0S111 \stackrel{k}{\Rightarrow} 0v111 = w$. Thus, $S \stackrel{k}{\Rightarrow} u$ and $S \stackrel{k}{\Rightarrow} v$. Then, by the induction hypothesis, $u \in L_1$ and $v \in L_1$.

Hence, $u, v = 0^m 1^n$, for some $m, n \in \mathbb{N}$ and $2m \le n \le 3m$. Accordingly, it must be one of three cases:

1. n=2m. In this case, it must be that $w=0u11=0^{m+1}1^{2m+2}\in L_1$; or

2. n = 3m. In this case, it must be that $w = 0v111 = 0^{m+1}1^{3m+3} \in L_1$; or

- 3. 2m < n < 3m. In this case, either w = 0u11 or w = 0v111. If $w = 0u11 = 0^{m+1}1^{n+2}$, then 2m+2 < n+2 < 3m+2 < 3m+3. If $w = 0v111 = 0^{m+1}1^{n+3}$, then 2m+2 < 2m+3 < n+3 < 3m+3. Hence, in both cases $w \in L_1$.
- Completeness ($L_1 \subseteq L(G_1)$). We prove the statement by induction on the length k of strings in L_1 .

Basis (k = 0). The only string of length 0 in L_1 is ε , and $S \Rightarrow \varepsilon$. Hence, $\varepsilon \in L(G_1)$. **Induction Hypothesis.** For some $k \in \mathbb{N}$, if $|w| \leq k$ and $w \in L_1$, then $w \in L(G_1)$ $(S \stackrel{*}{\Rightarrow} w)$.

Induction Step. Suppose $w \in L_1$ with |w| = k + 1. By definition of L_1 , it must be that $w = 0^m 1^n$, for some $m, n \in \mathbb{N}$ and $2m \le n \le 3m$. It must be one of three cases:

- 1. n = 2m. Then, $w = 0^m 1^{2m}$. It must be that w = 0u11 where $u = 0^{m-1}1^{2m-2}$. Since $|u| \le k$ and $u \in L_1$, then by the induction hypothesis $S \stackrel{*}{\Rightarrow} u$. Therefore, a valid derivation for w is $S \Rightarrow 0S11 \stackrel{*}{\Rightarrow} 0u11 = w$; or
- 2. n = 3m. Then, $w = 0^m 1^{3m}$. It must be that w = 0v111 where $v = 0^{m-1}1^{3m-3}$. Since $|v| \le k$ and $v \in L_1$, then by the induction hypothesis $S \stackrel{*}{\Rightarrow} v$. Therefore, a valid derivation for w is $S \Rightarrow 0S111 \stackrel{*}{\Rightarrow} 0v111 = w$; or
- 3. 2m < n < 3m. In this case, it must be that w is either 0u11 where $u = 0^{m-1}1^{n-2}$, or w is 0v111 where $v = 0^{m-1}1^{n-3}$. It is fairly obvious that $|u|, |v| \le k$. It only remains to show that $u, v \in L_1$ to use the induction hypothesis. We show this in the following.
 - i. Since 2m-2 < n-2 < 3m-2, then $2m-2 < n-2 \le 3m-3$. Accordingly, $u \in L_1$. By the induction hypothesis, $S \stackrel{*}{\Rightarrow} u$. Therefore, a valid derivation for w is $S \Rightarrow 0S11 \stackrel{*}{\Rightarrow} 0u11 = w$.
 - ii. Since 2m-3 < n-3 < 3m-3, then $2m-2 \le n-3 < 3m-3$. Accordingly, $v \in L_1$. By the induction hypothesis, $S \stackrel{*}{\Rightarrow} v$. Therefore, a valid derivation for w is $S \Rightarrow 0S111 \stackrel{*}{\Rightarrow} 0v111 = w$.

Thus,
$$w \in L(G_1)$$
.

b) Consider the CFG G_2 :

$$\begin{array}{ccc} S & \longrightarrow & AC \\ A & \longrightarrow & \mathtt{a}A\mathtt{b} \mid \varepsilon \\ C & \longrightarrow & \mathtt{c}C \mid \varepsilon \end{array}$$

Prove that $L(G_2) = \{a^m b^m c^n \mid m, n \geq 0\}$

Solution:

First, it should be noted that, since the only S-rule is the rule $S \Rightarrow AC$, every derivation of a string $w \in L(G_2)$ is of the form

$$S \Rightarrow AC \stackrel{*}{\Rightarrow} uv = w$$

where $A \stackrel{*}{\Rightarrow} u \in \Sigma^*$ and $C \stackrel{*}{\Rightarrow} v \in \Sigma^*$. Hence, $L(G_2) = L(G_A) \circ L(G_C) = \{u \mid A \stackrel{*}{\Rightarrow} u\} \circ \{v \mid C \stackrel{*}{\Rightarrow} v\}$. To prove that $L(G_2) = \{a^m b^m c^n \mid m, n \geq 0\}$, it suffices to show that

a)
$$L(G_A) = L_1 = \{ \mathbf{a}^m \mathbf{b}^m \mid m \ge 0 \}$$
 and

b)
$$L(G_C) = L_2 = \{ \mathbf{c}^n \mid n \ge 0 \}.$$

Claim 1. $L(G_A) = L_1$

Proof. We divide the proof into two parts.

 $L(G_A) \subseteq L_1$. We prove the statement by induction on the length k of A-derivations.

Basis (k = 1). The only A-derivation of length 1 is the derivation $A \Rightarrow \varepsilon$ and $\varepsilon \in L_1$.

Induction Hypothesis. For some $k \in \mathbb{N}$, if $A \stackrel{j}{\Rightarrow} w$, $\forall j \leq k$, then $w \in L_1$.

Induction Step. Suppose that $A \stackrel{k+1}{\Rightarrow} w$. Hence,

$$A \Rightarrow aAb \stackrel{k}{\Rightarrow} aub = w$$

Thus, $A \stackrel{k}{\Rightarrow} u$. By the induction hypothesis, $u \in L_1$. Hence, $u = \mathbf{a}^m \mathbf{b}^m$, for some $m \ge 0$. It follows that $w = \mathbf{a} u \mathbf{b} = \mathbf{a}^{m+1} \mathbf{b}^{m+1} \in L_1$.

 $L_1 \subseteq L(G_A)$. We prove the statement by induction on the length k of strings in L_1 .

Basis (k=0). The only string of length 0 in L_1 is ε , and $A \Rightarrow \varepsilon$. Hence, $\varepsilon \in L(G_A)$.

Induction Hypothesis. For some $k \in \mathbb{N}$, if $|w| \leq k$ and $w \in L_1$, then $w \in L(G_A)$.

Induction Step. Let $w \in L_1$ with |w| = k + 1. By definition of L_1 , $w = \mathbf{a}^m \mathbf{b}^m$, for some $m \geq 0$. Moreover, since |w| = k + 1, it follows that $m \geq 1$. Hence, $w = \mathbf{a}u\mathbf{b}$, where $u = \mathbf{a}^{m-1}\mathbf{b}^{m-1}$ for some $m-1 \geq 0$. Thus, $u \in L_1$. Moreover, since 2m = k + 1, it follows that |u| = 2m - 2 = k - 1. Hence, by the induction hypothesis, $u \in L_A$. By definition of $L(G_A)$, $A \stackrel{*}{\Rightarrow} u$. Thus, the following is a valid A-derivation:

$$A \Rightarrow \mathtt{a} A\mathtt{b} \overset{*}{\Rightarrow} \mathtt{a} u\mathtt{b} = w$$

Thus,
$$w \in L(G_A)$$
.

Claim 2. $L(G_C) = L_2$

Proof. We divide the proof into two parts.

 $L(G_C) \subseteq L_2$. We prove the statement by induction on the length k of C-derivations.

Basis (k = 1). The only C-derivation of length 1 is the derivation $C \Rightarrow \varepsilon$ and $\varepsilon \in L_2$.

Induction Hypothesis. For some $k \in \mathbb{N}$, if $C \stackrel{j}{\Rightarrow} w$, $\forall j \leq k$, then $w \in L_2$.

Induction Step. Suppose that $C \stackrel{k+1}{\Rightarrow} w$. Hence,

$$C \Rightarrow cC \stackrel{k}{\Rightarrow} cu = w$$

Thus, $C \stackrel{k}{\Rightarrow} u$. By the induction hypothesis, $u \in L_2$. Hence, $u = c^n$, for some $n \ge 0$. It follows that $w = cu = c^{n+1} \in L_2$.

 $\mathbf{L_2} \subseteq \mathbf{L}(\mathbf{G_C})$. We prove the statement by induction on the length k of strings in L_2 .

Basis (k = 0). The only string of length 0 in L_2 is ε , and $C \Rightarrow \varepsilon$. Hence, $\varepsilon \in L(G_C)$.

Induction Hypothesis. For some $k \in \mathbb{N}$, if $|w| \leq k$ and $w \in L_2$, then $w \in L(G_C)$.

Induction Step. Let $w \in L_2$ with |w| = k + 1. By definition of L_2 , $w = \mathbf{c}^n$, for some $n \geq 0$. Moreover, since |w| = k + 1, it follows that $n \geq 1$. Hence, $w = \mathbf{c}u$, where $u = \mathbf{c}^{n-1}$ for some $n - 1 \geq 0$. Thus, $u \in L_2$. Moreover, since n = k + 1, it follows that |u| = n - 1 = k. Hence, by the induction hypothesis, $u \in L(G_C)$. By definition of $L(G_C)$, $C \stackrel{*}{\Rightarrow} u$. Thus, the following is a valid C-derivation:

$$C \Rightarrow cC \stackrel{*}{\Rightarrow} cu = w$$

Thus, $w \in L(G_C)$.