4.2.3 Leiterwiderstand

 $3 R = 2,62 \Omega$

4 $R = 23.6\Omega$

5 l = 1,782 m

 $6 A = 1129 \,\mathrm{m}$

 $A_{AI} = 1,56 \cdot A_{Cu}$

8 1:1,56:7,27

9 $R = 10^{11} \Omega$

10 $R = 255 \cdot 10^{12} \Omega$

Elektrotechnische Grundlagen

4.1 Stromdichte

Seite 27

1 $J = 1.813 \,\text{A/mm}^2$

6 **a)** $n_1 = 454 \frac{1}{\min}$

 $t_2 = 2,78 \,\mathrm{ms}$

9 3.6 $\frac{\text{km}}{.}$

b) $\omega_1 = 47.5 \frac{1}{s}$

7 **a)** $\omega = 1256,6 \frac{\text{rad}}{2}$

10 a) $t = 66.7 \cdot 10^{-6}$ s

 $J_1 = 13,33 \,\mathrm{A/mm^2}$

 $J_2 = 3,571 \,\mathrm{A/mm^2}$

3 a) $J = 0.045 \,\mathrm{mm}^2$

b) d = 0.24 mm

 $n_2 = 227 \frac{1}{\min}$

 $\omega_2 = 23,74 \frac{1}{s}$

b) $\alpha_1 = 72^{\circ}$

b) 62 m

4 a) $J = 0.2 \,\mathrm{mm}^2$

b) d = 0.504 mm

5 I = 0.152 A

6 I = 0.1061A

7 a) $A = 0.035 \,\mathrm{mm}^2$

b) $J = 88,57 \,\text{A/mm}^2$

8 a) $A = 0.14 \,\mathrm{mm}^2$

b) $J = 29,28 \text{ A/mm}^2$

4.2 Widerstände

4.2.1 Widerstand und Leitwert

Seite 28 links

1 **a)** $G = \frac{1}{30}$ S **b)** $G = \frac{1}{10}$ S **c)** $G = \frac{1}{15}$ mS

d) $G = 0.5 \mu S$ e) G = 1.25 kS f) G = 0.122 mS

2 **a)** $R = \frac{1}{15}\Omega$ **b)** $R = \frac{1}{8}k\Omega$

c) $R = 2,08 \Omega$

d) $R = 6.21 \,\text{k}\Omega$ **e)** $R = \frac{1}{2} \,\text{M}\Omega$

f) $R = 8,06 \, \text{k}\Omega$

3 a) $820\Omega \pm 10\%$ b) $1.5k\Omega \pm 5\%$ c) $150\Omega \pm 5\%$ **d)** $4.7 \text{ k}\Omega \pm 20\%$ **e)** $6.8 \text{ M}\Omega \pm 5\%$

4 a) $2.7 M\Omega \pm 10\%$ b) $5.6 k\Omega \pm 5\%$ c) $820 k\Omega \pm 5\%$ d) $47 k\Omega \pm 10\%$ e) $240 k\Omega \pm 10\%$

4.2.2 Widerstand und Temperatur

Seite 28 rechts ___

1 $R_{\text{wNi}} = 100,9\Omega$ $R_{\text{wC}} = 97\Omega$

2 Spule: $R_w = 67,02\Omega$; Widerstand: $R_w = 59,1\Omega$

 $\alpha = -0.0125 \frac{1}{K}$

4 $\alpha = 8,28\frac{1}{K}$

S. 27

Elektrotechnische Grundlagen

4.3 Das Ohm'sche Gesetz

Seite 30

1 $I_1 = 0.02 A = 20 mA$

 $I = 113.3\Omega$

 $3 R = 115 \Omega$

 $4 U_2 = 5 V$

 $R_3 = 800 Ω$

6 **a)** $R_1 = 0.357 \,\mathrm{k}\Omega$

b) $U_4 = 9 \text{ V}$

 $7 R = 55\Omega$

 $8 R = 1 k\Omega$

4.4 Messen

4.4.1 Anzeigefehler bei Zeigermessgeräten

Seite 31 _

1 a) $I = 5,50 \,\text{A}$

b) $F = \pm 0.15 \,\text{A}$

c) $I_{\text{max}} = 5,65 \text{ A}$; $I_{\text{min}} = 5,35 \text{ A}$

d) $f = \pm 0.027$

2 **a)** $I = 33,0 \,\text{mA}$

b) $F = \pm 0.9 \,\text{mA}$

c) $I_{min} = 32.1 \text{ mA}$; $I_{max} = 33.9 \text{ mA}$ d) $f = \pm 0.027$

3 a) U = 26,15 V; $F = \pm 0,05 \text{ V}$ $U_{\text{max}} = 26,20 \,\text{V}; \quad U_{\text{min}} = 26,10 \,\text{V}$

b) $f = \pm 0,0019$

4 a) I = 15,75A; $F = \pm 0,125A$

 $I_{min} = 15,625 A; I_{max} = 15,875 A$

b) $f = \pm 0.00794 \approx \pm 0.8\%$

5 Klasse 0,25

6 a) $\Delta U = \pm 1.5 \text{ V}$; f = 0.652 %

b) $\Delta UV = \pm 5V$; f = 2,17%

7 a) 0,225 V

b) 0,025 V