Inteligência Artificial

Diego Silva

Ementa

Definição de inteligência artificial e seus paradigmas. Tipos de agentes. Buscas heurísticas. Aprendizagem de máquinas. Lógica Fuzzy. Redes Neurais Artificiais. Algoritmos Genéticos. Mineração de dados. Aplicações da Inteligência Artificial. Inteligência Artificial em Jogos.

Avaliação

Momento Avaliativo	Valor	Distribuição da Pontuação		
	Semestral	Avaliação*	Atividade**	Uniube+
N1	35	25	5	5
N2	50	30	10	10
Avaliação Institucional	15	15	-	-
Total	100	70	15	15

Apresentações

EUA endurecem restrições a exportação de chips de IA para China e Rússia

Com dias para Biden deixar o cargo, as regras agora entram em um período de comentários de 120 dias, mas entrarão em vigor antes que esse período acabe

Nikki Carvajal e Juliana Liu, da CNN, Washington/Hong Kong

13/01/2025 às 10:11

Veja o que aconteceu nas 48h após o "efeito DeepSeek" no mundo das IAs

Plataforma chinesa mexeu com mercados e impôs perdas bilionários para gigantes do setor

Da CNN*

29/01/2025 às 12:06 | Atualizado 29/01/2025 às 12:06

Em 48 horas, a **DeepSeek**, plataforma de **inteligência artificial (IA)** chinesa, abalou o mundo da tecnologia de forma profunda e inesperada, colocando em xeque certezas sobre a indústria e fazendo que as "7 Magníficas" perdessem mais de **US\$ 600 bilhões** em valor.

≡ ଦ

Home > Inteligência Artificial

Meta anuncia plano de investir até US\$ 65 bilhões em inteligência artificial

Empresa prevê construção de data center gigantesco e aumento de equipes, além de ativar 1 gigawatt de poder computacional no mesmo ano

"Nova ordem mundial da tecnologia" está chegando

15 mil visualizações • há 2 dias

China tem plano para atrasar EUA na corrida das IAs

3,1 mil visualizações • há 2 dias

Geopolítica é a base da tecnologia

730 visualizações • há 2 dias

CCC - CoinMarketCap · USD

OpenAl ERC USD (OPENAIERC-USD)

☆ Follow

0.012600 +0.002900 (+29.947800%)

As of 4:27:00 PM UTC. Market Open. Data provided by @ CoinMarketCap

Debates Sobre IA

Miguel Nicolelis

Panorama do Conteúdo

Machine Learning

Arthur Samuel

Dois procedimentos de aprendizado de máquina foram investigados em algum detalhe usando o jogo de damas. Trabalho suficiente foi feito para verificar o fato de que um computador pode ser programado para que ele aprenda a jogar um jogo de damas melhor do que pode ser jogado pela pessoa que escreveu o programa.

. . .

Os princípios do aprendizado de máquina verificados por esses experimentos são, é claro, aplicáveis a muitas outras situações.

Some Studies in Machine Learning

Using the Game of Checkers

(1967)

Lógica Fuzzy

Lotfali Askar-Zadeh

Um conjunto fuzzy é uma classe de objetos com um contínuo de graus de pertinência. Esse conjunto é caracterizado por uma função de pertinência (ou característica), que atribui a cada objeto um grau de pertencimento variando entre zero e um.

Os conceitos de inclusão, união, interseção, complemento, relação, convexidade, entre outros, são estendidos para esses conjuntos, e diversas propriedades dessas operações no contexto dos conjuntos fuzzy são estabelecidas.

Em particular, é demonstrado um **teorema de separação** para conjuntos fuzzy convexos, sem a necessidade de que esses conjuntos sejam disjuntos.

Fuzzy Sets* (1965)

Lógica Fuzzy - Aplicação

Risco de inadimplência: Baixo, Médio e Alto.

Entradas:

- Renda Mensal: Baixa (0 a 2000), Média (2000 a 6000), Alta (acima de 8000).
- Histórico de Crédito: Ruim, Regular, Bom.
- Endividamento Atual: Baixo, Médio, Alto.

Regras:

- Se (renda for baixa) e (histórico for ruim) e (endividamento for alto) então risco é ALTO.
- Se (renda for média) e (histórico for regular) e (endividamento for médio) então risco é MÉDIO.
- ..

Inferência:

- Renda Mensal: R\$ 3.500 → 40%
 "Baixa", 60% "Média"
- Histórico de Crédito: Regular → 100% "Regular"
- Histórico de Crédito: Regular → 100% "Regular"

Resultado:

- Risco: 72% (Alto).

Redes Neurais Artificiais

Warren McCulloch

1923 - 1969

Walter Pitts

1898 - 1969

Devido ao caráter "tudo ou nada" da atividade nervosa, eventos neurais e as relações entre eles podem ser tratados por meio da lógica proposicional. Descobriu-se que o comportamento de cada rede pode ser descrito nesses termos, com a adição de meios lógicos mais complicados para redes contendo círculos; e que para qualquer expressão lógica que satisfaça certas condições, pode-se encontrar uma rede se comportando da maneira que ela descreve. É mostrado que muitas escolhas particulares entre possíveis suposições neurofisiológicas são equivalentes, no sentido de que para cada rede se comportando sob uma suposição, existe outra rede que se comporta sob a outra e dá os mesmos resultados, embora talvez não no mesmo tempo. Várias aplicações do cálculo são discutidas.

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY* (1943)

Redes Neurais Artificiais - Aplicação

Algoritmos Genéticos

John Henry Holland

Este estudo fornece um cenário formal para os difíceis problemas de otimização caracterizados pela conjunção de (1) complexidade substancial e incerteza inicial, (2) a necessidade de adquirir novas informações rapidamente para reduzir a incerteza e (3) um requisito de que as novas informações sejam exploradas conforme adquiridas, de modo que o desempenho médio aumente a uma taxa consistente com a taxa de aquisição de informações.

Genetic Algorithms and the Optimal Allocation of Trials (1973)

Algoritmos Genéticos - Aplicação

Otimização de alocação de recursos financeiros de uma empresa para patrocínio de esportes e eventos culturais. Serão utilizados como requisitos pessoas impactadas, reputação do evento e custo do evento em relação a um orçamento.

Evento	Custo (R\$)	Pessoas Impactadas	Reputação (1-10)
1	50.000	100.000	8
2	30.000	50.000	6
3	20.000	80.000	7
4	40.000	120.000	9
5	10.000	20.000	5

$$\text{Fitness} = \left(\sum_{i=1}^n (\text{Pessoas Impactadas}_i \times \text{Reputação}_i \times x_i)\right) - \text{Penalidade}$$

Operadores Genéticos

- Seleção: Escolha dos melhores indivíduos (soluções) com base na função de fitness.
- Crossover: Combinação de partes de dois cromossomos para gerar novas soluções.
- Mutação: Alteração aleatória de alguns genes para introduzir diversidade.

Critério de Parada

O algoritmo pára após um número fixo de gerações ou quando a solução converge (não há melhorias significativas).

Plano de Avaliação

- Atividades e apresentação em aula (dupla).
 - Atividades de implementação.
 - Notícias e artigos científicos.
 - Debates.
- Avaliação teórica (individual).
- Projeto de aplicação com entrega de projeto e avaliação (dupla).