Multivariate Analysis for the Behavioral Sciences, Second Edition (Chapman and Hall/CRC, 2019)

Solutions to Exercises of Chapter 17: Cluster Analysis

Kimmo Vehkalahti and Brian S. Everitt

19 December 2018

Solutions

Exercise 17.3

##		January	April	July	October
##	Atlanta	-8	26	53	28
##	Baltimore	-7	20	51	25
##	Bismark	-44	-12	35	5
##	Boston	-12	16	54	28
##	Chicago	-27	7	40	17
##	Dallas	4	30	59	29
##	Denver	-25	-2	43	3
##	El Paso	-8	23	57	25
##	Honolulu	53	57	67	64
##	Houston	12	31	62	33
##	Juneau	-22	6	36	11
##	Los Angeles	23	39	49	41
##	Miami	30	46	69	51
##	Nashville	-17	23	51	26
##	New York	-6	12	52	28
##	Omaha	-23	5	44	13
##	Phoenix	17	32	61	34
##	Portland	-26	8	40	15
##	Reno	-16	13	33	8
##	San Francisco	24	31	43	34
##	Seattle	0	29	43	28
##	Washington	-5	24	55	29


```
lowtemp_pc <- princomp(lowtemp)
xlim <- range(lowtemp_pc$scores[, 1])
plot(lowtemp_pc$scores[, 1:2], ylim = xlim)</pre>
```


possibly 2 or three clusters?

```
lowtemp_km2 <- kmeans(lowtemp, 2)</pre>
lowtemp_km2
## K-means clustering with 2 clusters of sizes 15, 7
## Cluster means:
##
       January
                 April
                            July October
## 1 6.666667 29.266667 55.06667 33.53333
## 2 -26.142857 3.571429 38.71429 10.28571
## Clustering vector:
##
       Atlanta
                Baltimore
                                   Bismark
                                                Boston
                                                              Chicago
##
             1
                                         2
                                                     1
                                                                   2
                          1
##
                                   El Paso
         Dallas
                      Denver
                                               Honolulu
                                                              Houston
##
                           2
                                        1
            1
                                                     1
                                                                   1
##
         Juneau Los Angeles
                                    Miami
                                              Nashville
                                                             New York
##
          2
                          1
                                       1
                                                     1
##
         Omaha
                     Phoenix
                                  Portland
                                                  Reno San Francisco
##
           2
                                                     2
                          1
##
        Seattle
                   Washington
##
             1
                          1
## Within cluster sum of squares by cluster:
## [1] 9572.933 1117.429
## (between_SS / total_SS = 53.2 %)
## Available components:
##
## [1] "cluster"
                                   "totss"
                                                 "withinss"
## [5] "tot.withinss" "betweenss"
                                   "size"
                                                 "iter"
## [9] "ifault"
```

```
lowtemp_km3 <- kmeans(lowtemp, 3)</pre>
lowtemp_km3
## K-means clustering with 3 clusters of sizes 9, 7, 6
##
## Cluster means:
##
        January
                    April
                              July October
## 1 -6.555556 22.555556 52.77778 27.33333
## 2 -26.142857 3.571429 38.71429 10.28571
## 3 26.500000 39.333333 58.50000 42.83333
##
## Clustering vector:
##
         Atlanta
                                     Bismark
                                                   Boston
                     {\tt Baltimore}
                                                                  Chicago
##
                                           2
               1
                             1
                                                         1
##
         Dallas
                        Denver
                                     El Paso
                                                  Honolulu
                                                                  Houston
##
              1
                                           1
                                                                        3
##
          Juneau
                   Los Angeles
                                       Miami
                                                 Nashville
                                                                 New York
##
                                                          1
##
                       Phoenix
                                                      Reno San Francisco
          Omaha
                                    Portland
##
              2
                                           2
                                                          2
                                                                        3
##
         Seattle
                    Washington
##
##
## Within cluster sum of squares by cluster:
## [1] 758.000 1117.429 2885.167
## (between_SS / total_SS = 79.2 %)
##
## Available components:
## [1] "cluster"
                      "centers"
                                     "totss"
                                                     "withinss"
## [5] "tot.withinss" "betweenss"
                                     "size"
                                                    "iter"
## [9] "ifault"
```

```
par(mfrow = c(1,2))
plot(lowtemp_pc$scores[, 1:2], ylim = xlim, type = "n")
text(lowtemp_pc$scores[, 1:2], labels = as.numeric(lowtemp_km2$cluster), cex=0.8)

plot(lowtemp_pc$scores[, 1:2], ylim = xlim, type = "n")
text(lowtemp_pc$scores[, 1:2], labels = as.numeric(lowtemp_km3$cluster), cex=0.8)
```


Try also other methods!

Exercise 17.5

```
protein <- read.table("data/protein.txt", sep = '\t', header = TRUE)</pre>
head(protein)
##
                   Rmeat Wmeat Eggs Milk Fish Cereals Sfoods Pulses Fruitveg
## Albania
                    10.1
                           1.4
                                0.5 8.9
                                          0.2
                                                  42.3
                                                           0.6
                                                                  5.5
                                                                            1.7
## Austria
                     8.9
                          14.0
                                4.3 19.9
                                           2.1
                                                   28.0
                                                           3.6
                                                                  1.3
                                                                            4.3
                                                   26.6
## Belgium
                    13.5
                           9.3
                                4.1 17.5
                                          4.5
                                                           5.7
                                                                  2.1
                                                                            4.0
                     7.8
                                                   56.7
## Bulgaria
                           6.0
                                1.6
                                     8.3
                                           1.2
                                                           1.1
                                                                  3.7
                                                                            4.2
## Czechoslovakia
                     9.7
                          11.4
                               2.8 12.5
                                          2.0
                                                   34.3
                                                           5.0
                                                                  1.1
                                                                            4.0
## Denmark
                    10.6
                         10.8 3.7 25.0 9.9
                                                   21.9
                                                           4.8
                                                                  0.7
                                                                            2.4
protein_pc <- princomp(protein)</pre>
xlim <- range(protein_pc$scores[, 1])</pre>
plot(protein_pc$scores[, 1:2], ylim = xlim)
```


possibly 2 clusters?

Try some agglomerative methods and plot solutions in PC space.