Stress Reactivity Disturbances of the Neurocardiac Axis Anish Sanjay Shah

A thesis submitted for the degree of Master of Science in Clinical Research
Laney Graduate School
Emory University

2021-02-28

Contents

Pr	reface	iv		
A	cknowledgements	\mathbf{v}		
Αl	bbreviations	vi		
IN	TRODUCTION	2		
1	Overview 1.0.1 Research Problem	2 2		
2	Outline	3		
В	ACKGROUND	5		
3	Review of the Literature	5		
4	Clinical Relevance	6		
Μ	ETHODS	8		
5	Specific Aims	8		
6	Study Design6.1 Population characteristics6.2 Measurements6.3 Sample size and power considerations	9 9 9		
7	Analysis 7.1 Descriptive analysis	10 10 10		
R	ESULTS	12		
8	Clinical Characteristics	12		
9	Myocardial Ischemia			
10	Mental Stress and Myocardial Perfusion	14		

CONTENTS	iii

11 Clinical Outcomes	15
DISCUSSION	17
12 Major Findings	17
13 Strengths and Limitations	18
14 Next Steps	19
CONCLUSIONS	21
REFERENCES	23
APPENDIX	24
15 TABLES AND FIGURES	24
15.1 Clinical Overview	25
15.1.1 Overview of Stress Reactivity	$\frac{25}{25}$
15.1.2 Biobank Cohort Description	26
15.1.3 Twin Cohorts Description	$\frac{27}{27}$
15.1.4 Mental Stress Cohorts Description	28
15.1.5 HRV in Twins Cohorts	29
15.2 Myocardial Ischemia	30
15.2.1 Relationship Between Obstructive and Non-Obstructive	
Coronary Artery Disease	31
15.2.2 HRV by Timing of Revascularization	32
15.2.3 Relationship of HRV with both Mental and Physical Stress .	33
15.2.4 Quantitative Myocardial Perfusion and HRV	34
15.2.5 Circadian HRV and Myocardial Perfusion	35
15.3 Mental Stress and Myocardial Perfusion	36
15.3.1 HRV and Mental Stress Challenge	36
15.3.2 Distribution of HRV and Mental Stress Challenge	37
15.3.3 Distribution of HRV and MSIMI	38
15.3.4 Depression and PTSD with Mental Stress Challenge	39
15.3.5 HRV and Chronic Mental Stress in Twins	40
15.3.6 Circadian HRV and Chronic Mental Stress	41
15.3.7 Modeling Mental Stress-Induced Myocardial Ischemia and HRV	42
15.4 Clinical Outcomes	43
15.4.1 Recurrent Events in those Mental Stress	43
15.4.2 Outcomes in Twins	44

Preface

Acknowledgements

Foremost, I would like to thank my mentors and mentoring team. Dr. Shah has been a tremendous supporter of my academic growth, and has challenged me to continue to explore and learn, and create an area of academic excellence for myself. Dr. Alonso and Dr. Thames have all supported my efforts through direct mentorship and academic guidance. Dr. Quyyumi and Dr. Vaccarino have created a research environment that has laid the groundwork for these projects.

Second, I would like to thank the support staff that has allowed this research to unfold, from the EPICORE group with Nancy Murrah and Lucy Shallenberger, to the MSCR program with Cheryl Sroka and the outstanding MSCR instructors.

Finally, I would like to thank my family for their patience and support.

Abbreviations

There are several key abbreviations that will be used throughout. They have been outlined here for reference.

Term	Abbreviation
Biobank	Emory Cardiovascular Biobank
CAD	Coronary Artery Disease
HRV	Heart Rate Variability
MACE	Major Adverse Cardiovascular Events
MIMS	Myocardial Infraction and Mental Stress
MIPS	Mental Stress Ischemia Mechanisms and Prognosis Study
Twins	Emory Twins Study

INTRODUCTION

1 Overview

1.0.1 Research Problem

- Mental stress can cause changes in the brain
- These changes can lead to depression and psych disease
- Those changes lead to increased cardiovascular disease
- Patients that are comorbid with psych and CAD do worse clinically

The relationship between the autonomic nervous system, stress reactivity, cardiovascular disease, and overall outcomes is outlined in Figure 15.1.1.

2 Outline

- 1. Research problem
- 2. Purpose of research
- 3. Underlying causal mechanisms
- 4. Overview of how to address problem
 - "Why did he die on Tuesday and not on Monday?"
 - Douglas Zipes

BACKGROUND

3 Review of the Literature

4 Clinical Relevance

METHODS

5 Specific Aims

The response to both physiological and psychological stress can be markers of overall cardiovascular adaptability. The following aims help to assess the clinical importance of stress reactivity as measured by disturbances to the neurocardiac axis.

- 1. To assess the association between myocardial ischemia and coronary perfusion on cardiac autonomic activity.
- 2. To determine if cardiac autonomic activity modifies the relationship between acute and chronic psychological stress and myocardial ischemia.
- 3. To explore the association of cardiac autonomic activity with future major adverse cardiovascular events.

- 6 Study Design
- 6.1 Population characteristics
- 6.2 Measurements
- 6.3 Sample size and power considerations

- 7 Analysis
- 7.1 Descriptive analysis
- 7.2 Statistical inference

RESULTS

8 Clinical Characteristics

- Table 1 for Biiobank 15.1.2
- Table 1 for Twins 15.1.3

9 Myocardial Ischemia

- HRV by CAD status in Biobank 15.2.1
- Timing of CAD intervention compared to prior during angiography 15.2.2
- Assocation between early morning HRV and MPI 15.2.4
- Circadian changes in HRV and relationship to MPI 15.2.5
- Relationship between shorter term HRV and MPI based on both physical and mental stress testing 15.2.3

10 Mental Stress and Myocardial Perfusion

- $\bullet\,$ Distribution of HRV at rest, stress, and recovery during mental stress challenge 15.3.1
- Difference in HRV within subject during stress testing 15.3.2
- HRV pattern by MSIMI status 15.3.3
- Assocation between depression and PTSD with MSIMI 15.3.4
- Association between depression/PTSD with early morning HRV measures 15.3.5
- Circadian changes in HRV and psych disorder 15.3.6
- Connection between mental stress and HRV, including depression covariables 15.3.7

11 Clinical Outcomes

 $\bullet\,$ Overall cardiovascular mortality and outcomes (unadjusted) 15.4.2

DISCUSSION

12 Major Findings

13 Strengths and Limitations

14 Next Steps

CONCLUSIONS

Here are my thoughts.

REFERENCES

APPENDIX

15 TABLES AND FIGURES

15.1 Clinical Overview

15.1.1 Overview of Stress Reactivity

Stress Reactivity and the Neurocardiac Axis

Directed acyclic graph of the relationship between neurocardiac stressors and pote

15.1.2 Biobank Cohort Description

Emory Cardiovascular Biobank Cohort Description

Characteristic	$N = 56^1$
Age (years)	62 (52, 70)
Race	
African American Black	14~(26%)
Asian	2(3.8%)
Caucasian White	37 (70%)
BMI (kg/m^2)	$29.3\ (26.2,\ 34.0)$
Sex	
Female	9 (17%)
Male	44~(83%)
PHQ-9 Score	4.5 (1.0, 9.0)
Depression	10 (21%)
Gensini Score	26 (20, 51)
Stenosis	34 (71%)
CASS-70 Score	
0	21 (44%)
1	13 (27%)
2	9 (19%)
3	5 (10%)

¹Median (IQR); n (%)

A description of subjects undergoing left heart catheterization with coronary angiography, including burden of coronary artery disease. CASS = Coronary Artery Surgery Score, PHQ = Patient Health Questionnaire, BMI = Body Mass Index.

15.1.3 Twin Cohorts Description

Emory Twins Study Cohort Discription

Characteristic	ETSF $N = 279^1$	SAVEIT $N = 206^1$	THS1 $N = 360^1$	THS2 $N = 164^1$
Age (years)	55.0 (52.0, 57.0)	57.0 (56.0, 59.0)	61.0 (59.0, 62.0)	68.4 (66.8, 69.5)
BMI (kg/m ²)	28.0 (26.0, 32.0)	$30.0\ (27.0,\ 33.0)$	30.0 (27.0, 33.0)	29.0 (27.0, 32.0)
Race				
White	345 (96%)	198 (96%)	157 (95%)	269 (96%)
African American	12 (3.3%)	8 (3.9%)	6 (3.6%)	7 (2.5%)
Asian	4 (1.1%)	0 (0%)	2(1.2%)	4 (1.4%)
Current Smoker	131 (36%)	50 (24%)	43 (26%)	102 (36%)
Known IHD	327 (91%)	176 (85%)	136 (82%)	268 (96%)
Congestive Heart Failure	359 (99%)	206 (100%)	161 (98%)	276 (99%)
Hypertension	255 (71%)	137 (67%)	73 (45%)	115 (41%)
Diabetes Mellitus	328 (91%)	172 (83%)	137 (84%)	216 (77%)
Post-Traumatic Stress Disorder	339 (94%)	147 (71%)	120 (73%)	238 (85%)
Depression	321 (89%)	163 (80%)	138 (84%)	252 (90%)
Abnormal Myocardial Perfusion	274 (87%)	160 (94%)	130 (82%)	240 (88%)

¹Median (IQR); n (%)

Description of the veteran twin subjects within each follow-up period. They were evaluated for clinical characteristics, including quantitative myocardial perfusion imaging. THS = Twins Heart Study, SAVEIT = Stress and Vascular Evaluation in Twins, ETSF = Emory Twins Study Follow-Up.

15.1.4 Mental Stress Cohorts Description

MIMS and MIPS Cohort Discription

	MIMS		MIPS	
Characteristic	$\overline{\mathbf{MSIMI} = 0, \mathbf{N} = 256^1}$	$MSIMI = 1, N = 50^{1}$	$\mathbf{MSIMI} = 0, \mathbf{N} = 440^{1}$	$MSIMI = 1, N = 188^{1}$
Age (years)	52.0 (47.0, 56.2)	51.5 (46.6, 54.7)	66 (58, 71)	64 (57, 71)
Sex (Female)	117 (46%)	33 (66%)	92 (21%)	76 (40%)
Race				
White	79 (31%)	9 (18%)	308 (70%)	115 (61%)
Black	165 (64%)	36 (72%)	110 (25%)	67 (36%)
Other	12 (4.7%)	5 (10%)	22 (5.0%)	6 (3.2%)
BMI (kg/m^2)	30(26,35)	30 (26, 38)	29.1 (25.6, 32.1)	29.5 (26.2, 32.8)
Current Smoker	62 (25%)	11 (22%)	215 (49%)	84 (45%)
Obstructive Coronary Artery Disease	201 (84%)	41 (89%)	316 (83%)	132 (85%)
Diabetes Mellitus	79 (31%)	18 (36%)	137 (31%)	69 (37%)
Coronary Artery Bypass Graft	51 (20%)	12 (24%)	139 (32%)	75 (40%)
Percutaneous Coronary Intervention	177 (69%)	35 (70%)	226 (51%)	100 (53%)
Hyperlipidemia	206 (80%)	40 (80%)	369 (84%)	151 (80%)
Hypertension	205 (80%)	42 (84%)	325 (74%)	147 (78%)
PSIMI	49 (20%)	20 (40%)	121 (28%)	96 (53%)
Depression	92 (37%)	16 (32%)	111 (26%)	51 (28%)
Post-Traumatic Stress Disorder	32 (13%)	12 (24%)	35 (8.2%)	8 (4.4%)

¹Median (IQR); n (%)

MSIMI = Mental Stress Induced Myocardial Ischemia; PSIMI = Physical Stress Induced Myocardial Ischemia, MIMS = Myocardial Infarction and Mental Stress, MIPS = Mental Stress Ischemia Mechanisms and Prognosis Study

15.1.5 HRV in Twins Cohorts

Description of HRV Emory Twins Study

ECG Metric	ETSF $N = 279^1$	SAVEIT $N = 206^1$	THS1 $N = 360^1$	THS2 $N = 164^1$
RR Interval	915 (806, 1,020)	870 (774, 973)	918 (816, 1,018)	923 (828, 1,025)
SDNN	48 (36, 62)	52 (40, 68)	60 (46, 74)	53 (40, 68)
RMSSD	25 (18, 37)	$24\ (17,\ 33)$	27(20, 35)	25 (18, 35)
PNN50	$0.03 \ (0.01, \ 0.09)$	$0.03 \ (0.01, \ 0.09)$	$0.05 \ (0.02, \ 0.11)$	$0.04 \ (0.01, \ 0.10)$
Ultra Low Frequency	6.00 (5.30, 6.67)	6.39 (5.68, 7.08)	6.60 (5.87, 7.21)	6.42 (5.73, 7.11)
Very Low Frequency	7.29 (6.76, 7.79)	$7.55 \ (7.03, 8.08)$	7.81 (7.27, 8.25)	$7.54 \ (7.02, 8.05)$
Low Frequency	6.28 (5.70, 6.86)	$6.57 \ (6.00, 7.08)$	6.79 (6.28, 7.23)	6.45 (5.85, 6.95)
High Frequency	5.32 (4.64, 6.11)	$5.30 \ (4.64, 5.92)$	5.48 (4.94, 6.00)	$5.31\ (4.66,\ 6.03)$
Low/High Frequency Ratio	$3.01\ (1.71,\ 4.83)$	4.02(2.50, 5.92)	$4.13\ (2.63,\ 6.05)$	3.24 (2.02, 5.16)
Total Power	7.97 (7.47, 8.46)	8.20 (7.70, 8.70)	8.45 (7.94, 8.86)	8.18 (7.69, 8.67)
Acceleration Capacity	-8.1 (-11.6, -6.1)	-9.5 (-12.5, -6.9)	-11.0 (-14.1, -7.9)	-9.4 (-12.2, -6.7)
Deceleration Capacity	7.3 (5.2, 10.8)	8.8 (6.1, 11.8)	$10.3 \ (7.0, 13.5)$	8.5 (5.9, 11.4)
Sample Entropy	1.55 (1.35, 1.77)	$1.50 \ (1.32, \ 1.70)$	1.52 (1.33, 1.69)	1.53 (1.32, 1.72)
Approximate Entropy	$0.96 \ (0.89, 1.04)$	$0.95 \ (0.89, 1.03)$	$0.93\ (0.87,\ 1.00)$	$0.94 \ (0.87, \ 1.01)$
DYX	$2.58 \ (2.03,\ 3.13)$	$2.80\ (2.31,\ 3.33)$	$2.91\ (2.37,\ 3.47)$	$2.81\ (2.30,\ 3.34)$

Heart rate variability is described in each of the follow-up periods. HRV = heart rate variability, Dyx = kurtosis of Poincare plot, SDNN = the standard deviation of normally conducted RR intervals, RMSSD = the root mean square of successive differences in normally conducted RR intervals, PNN50 = the proportion of normally conducted RR intervals that differ by more than 50 ms divided by the total number of normally conducted RR intervals

¹Median (IQR)

15.2 Myocardial Ischemia

15.2.1 Relationship Between Obstructive and Non-Obstructive Coronary Artery Disease

HRV and Obstructive CAD Emory Cardiovascular Biobank

HRV Metric	No Revascularization $N=14^1$	Revascularization $N=34^1$	p-value ²
n_nmean	648 (608, 872)	868 (775, 932)	0.019
sdnn	18 (15, 49)	37 (26, 51)	0.11
rmssd	16 (13, 32)	28 (20, 40)	0.11
pnn50	$0.01 \ (0.01, \ 0.02)$	$0.05 \ (0.01, \ 0.10)$	0.086
ulf	99 (56, 269)	200 (130, 477)	0.11
vlf	205 (94, 1,465)	826 (414, 1,336)	0.2
lf	70 (42, 833)	383 (145, 689)	0.2
hf	96 (89, 480)	306 (140, 620)	0.2
lfhf	0.99 (0.41, 1.28)	$1.45 \ (0.65, \ 2.00)$	0.2
ttlpwr	431 (216, 3,156)	1,865 (881, 3,562)	0.2
ac	-4.12 (-7.06, -2.08)	-6.52 (-9.39, -4.06)	0.3
dc	4.83 (2.05, 6.49)	5.07 (4.00, 8.58)	0.4
samp_en	1.14 (1.06, 1.39)	$1.37 \ (1.16, \ 1.56)$	0.15
ap_en	$0.95 \ (0.91, \ 1.11)$	$0.92 \ (0.85, \ 1.00)$	0.2
dyx	1.36 (1.17, 1.78)	$2.03\ (1.52,\ 2.71)$	0.063

In patients undergoing angiography, HRV metrics were described in those with both obstructive (>70%) and nonobstructive CAD, and evaluated for differences in distribution. HRV = Heart Rate Variability, CAD = Coronary Artery Disease.

¹Median (IQR)

²Wilcoxon rank sum exact test

15.2.2 HRV by Timing of Revascularization

HRV and Timing of Myocardial Reperfusion Emory Cardiovascular Biobank

No Revascularization			Revascularization			
ECG Metrics	Balloon $N = 6^1$	Start $N = 5^1$	p -value 2	Balloon $N = 15^1$	Start $N = 20^1$	p -value 2
RR Interval	711.7 (688.2, 855.9)	749.3 (723.6, 869.5)	0.8	849.5 (746.4, 949.6)	865.8 (801.1, 925.2)	0.6
SDNN	38.2 (16.8, 60.9)	47.4 (19.0, 49.0)	> 0.9	30.7 (22.4, 62.4)	32.9 (25.5, 51.3)	0.8
RMSSD	28.8 (14.4, 48.6)	30.2 (20.6, 38.7)	> 0.9	21.1 (16.3, 35.2)	20.7 (15.7, 27.8)	0.9
PNN50	0.0(0.0, 0.1)	0.0(0.0, 0.1)	> 0.9	0.0 (0.0, 0.1)	$0.0\ (0.0,\ 0.0)$	0.6
Ultra Low Frequency	110.3 (36.3, 177.9)	96.2 (92.7, 185.2)	0.8	151.6 (78.6, 623.7)	99.3 (52.1, 368.8)	0.5
Very Low Frequency	684.7 (115.1, 2,018.6)	1,000.1 (118.5, 1,340.7)	> 0.9	507.3 (313.6, 1,643.5)	490.8 (230.2, 1,425.3)	0.7
Low Frequency	608.7 (74.9, 1,139.7)	867.6 (48.6, 875.5)	0.8	241.8 (83.9, 530.6)	276.2 (77.5, 551.9)	> 0.9
High Frequency	539.6 (132.5, 967.8)	387.0 (127.5, 591.6)	0.8	107.7 (68.8, 579.8)	150.6 (92.7, 322.5)	> 0.9
Low/High Frequency Ratio	0.6 (0.4, 1.1)	1.8 (0.4, 2.2)	0.4	1.2 (0.4, 1.8)	$1.1\ (0.5,\ 2.9)$	0.6
Total Power	1,941.4 (360.8, 4,653.2)	2,559.9 (363.5, 3,097.1)	> 0.9	1,208.3 (600.6, 4,185.2)	1,109.0 (672.4, 2,980.9)	0.7
Acceleration Capacity	-7.3 (-9.5, -4.6)	-4.8 (-11.5, -4.3)	> 0.9	-5.0 (-7.1, -3.8)	-6.4 (-8.8, -3.7)	0.6
Deceleration Capacity	7.1 (4.7, 9.5)	6.4 (4.4, 12.1)	> 0.9	4.4 (3.6, 6.8)	5.9(3.8, 7.5)	0.7
Sample Entropy	$1.0 \ (0.7, \ 1.4)$	1.4 (0.8, 1.5)	0.7	1.2 (1.0, 1.4)	$1.3\ (1.2,\ 1.5)$	0.2
Approximate Entropy	0.8 (0.7, 1.1)	$0.8 \ (0.8, \ 0.9)$	> 0.9	0.9 (0.8, 1.0)	0.9 (0.8, 1.0)	0.9

¹Median (IQR)

HRV was measured at the start of coronary angiography, as well as intervention. Coronary arteries with obstructive disease are reperfused using balloon angioplasty and potential stenting. HRV = Heart Rate Variability, CAD = Coronary Artery Disease.

²Wilcoxon rank sum exact test

15.2.3 Relationship of HRV with both Mental and Physical Stress

Myocardial Perfusion Imaging with Physical and Mental Stress ${\rm MIMS/MIPS}$ Cohorts

ECG/HRV Metric	Combined MSIMI/PSIMI ¹	MSIMI^1	
Heart Rate			
Rest	1 (0.99, 1.02) AUC 0.51	1.01 (1, 1.03) AUC 0.54	1 (0.98
Stress	1 (0.99, 1.01) < br > AUC 0.49	1.01 (1, 1.02) < br > AUC 0.54	1 (0.9
Recovery	1 (0.99, 1.01) < br > AUC 0.52	1.01 (1, 1.02) < br > AUC 0.52	0.99 (0.98)
T Wave Area			
Rest	1 (0.99, 1) AUC 0.49	1 (0.98, 1) AUC 0.51	1
Stress	1 (0.99, 1.01) AUC 0.51	1 (0.98, 1.01) < br > AUC 0.5	1.01 (0.99
Recovery	1 (0.99, 1.01) < br > AUC 0.51	0.98 (0.97, 1) < br > AUC 0.56	1 (0.9
High Frequency HRV			
Rest	0.71 (0.45, 1.13) AUC 0.55	0.57 (0.34, 0.95) AUC 0.56	0.71 (0.43
Stress	0.7 (0.47, 1.05) < br > AUC 0.54	0.48 (0.31, 0.76) AUC 0.58	0.85 (0.55)
Recovery	0.82 (0.52, 1.27) < br > AUC 0.53	0.62 (0.38, 1.02) < br > AUC 0.55	0.85 (0.53)
Low Frequency HRV			
Rest	0.67 (0.41, 1.1) AUC 0.55	0.53 (0.31, 0.92) AUC 0.56	0.64 (0.37
Stress	0.64 (0.4, 1.01) AUC 0.56	0.45 (0.27, 0.74) AUC 0.59	$0.63\ (0.38$
Recovery	0.64 (0.39, 1.04) < br > AUC 0.56	$0.43 \ (0.25, \ 0.74) \ {\rm MUC} \ 0.59$	0.64 (0.38

 $^{^1\}mathrm{Logistic}$ regression model, OR with 95% CI and concordance statistic.

15.2.4 Quantitative Myocardial Perfusion and HRV

Myocardial Perfusion Imaging and Morning HRV Emory Twins Study

		Binor, 1 min	o socially		
	AC	Dyx	HF	$_{ m LF}$	
Coronary Flow Reserve					
Model 1	0.96 (0.95, 0.98)	1.13 (1.05, 1.22)	1.10 (1.02, 1.20)	1.23 (1.11, 1.35)	1.
Model 2	$0.97 \ (0.95, \ 0.99)$	1.09 (1.01, 1.17)	$1.10 \ (1.02, \ 1.20)$	1.21 (1.10, 1.34)	1.
Model 3	$0.97 \ (0.95, \ 0.99)$	1.04 (0.97, 1.12)	1.09 (1.00, 1.18)	1.16 (1.04, 1.28)	1.
Abnormal MPI					
Model 1	0.96 (0.89, 1.03)	0.72 (0.53, 0.99)	1.20 (0.87, 1.64)	0.93 (0.63, 1.37)	0.
Model 2	$0.96 \ (0.89, 1.04)$	$0.71\ (0.52,\ 0.98)$	9.07 (0.34, 241.85)	$0.90\ (0.60,\ 1.33)$	0.
Model 3	$0.95 \ (0.87, \ 1.03)$	$0.71\ (0.51,\ 0.98)$	$1.20 \ (0.87, \ 1.65)$	$0.92 \ (0.61, \ 1.39)$	0.

 $^{^{1}}$ Model 1 = HRV

Relationship between abnormal MPI and CFR with HRV. HRV = heart rate variability, MPI = myocardial perfusion imaging, CFR = coronary flow reserve, LF = low frequency HRV, HF = high frequency HRV, VLF = very low frequency HRV, AC = acceleration capacity

 $^{^{2}}$ Model 2 = Model 1 + Age + BMI

 $^{^{3}}$ Model 3 = Model 2 + Smoking + HTN + Cardiovascular Disease

15.2.5 Circadian HRV and Myocardial Perfusion

Circadian HRV and Myocardial Perfusion Abnormalities Emory Twins Study

	MESOR	Amplitude	Phi
Coronary Flow Reserve			
High Frequency HRV	1.09 (1, 1.19)	1.08 (0.96, 1.21)	0.98 (0.94, 1.03)
Low Frequency HRV	1.16 (1.04, 1.29)	1.1 (0.93, 1.31)	1.01 (0.97, 1.06)
Very Low Frequency HRV	1.1 (1, 1.22)	1.11 (0.99, 1.24)	1.02 (0.96, 1.09)
Acceleration Capacity	0.97 (0.96, 0.99)	1 (0.97, 1.04)	1.03 (0.98, 1.09)
RR Intervals	1 (1, 1)	1 (1, 1)	1 (0.96, 1.03)
Dyx	$1.09 \ (0.99, \ 1.19)$	$1.08 \ (0.94, \ 1.22)$	$0.99 \ (0.94, 1.05)$
Abnormal MPI			
High Frequency HRV	1.33 (0.91, 1.96)	1.9 (0.94, 3.88)	0.99 (0.81, 1.2)
Low Frequency HRV	$0.85 \ (0.55, \ 1.31)$	$1.09 \ (0.57, \ 2.07)$	0.9(0.74, 1.1)
Very Low Frequency HRV	$0.86 \ (0.55, 1.36)$	$0.98 \ (0.61, 1.58)$	$0.95 \ (0.74, 1.23)$
Acceleration Capacity	0.97 (0.9, 1.05)	1.14 (1.01, 1.29)	$0.91\ (0.71,\ 1.16)$
RR Intervals	1 (1, 1)	1 (1, 1.01)	$0.91\ (0.8,\ 1.04)$
Dyx	$0.89 \ (0.6, \ 1.33)$	0.75 (0.38, 1.49)	$0.87 \ (0.69, 1.08)$

Myocardial perfusion was quantified as a coontinuous variable and as a binary of abnormal or normal. The HRV metrics are measured over 24 hours using cosinor statistics. MPI = myocardial perfusion imaging, CFR = coronary flow reserve, HRV = heart rate variability, LF = low frequency HRV, HF = high frequency HRV, VLF = very low frequency HRV, AC = acceleration capacity, MESOR = midline estimating statistic of rhythm, Amplitude = maximum distance from MESOR, Phi = shift of acrophase

15.3 Mental Stress and Myocardial Perfusion

15.3.1 HRV and Mental Stress Challenge

15.3.2 Distribution of HRV and Mental Stress Challenge

Mean (95% CI) T-statistic Heart Rate Stress 9.6 (8.7, 10.4) 22.1 Recovery 2.7 (2.0, 3.3) 8.2 High Frequency HRV Stress -0.1 (-0.1, -0.1) -11.5 Recovery -0.0 (-0.1, -0.0) -5.7 Low Frequency HRV Stress -0.0 (-0.0, -0.0) -3.0 Recovery 0.0 (-0.0, 0.0) 1.9 T Wave Area Stress -3.7 (-5.9, -1.5) -3.4 Recovery -3.2 (-5.2, -1.3) -3.3			
Stress $9.6 (8.7, 10.4)$ 22.1 Recovery $2.7 (2.0, 3.3)$ 8.2 High Frequency HRV Stress $-0.1 (-0.1, -0.1)$ -11.5 Recovery $-0.0 (-0.1, -0.0)$ -5.7 Low Frequency HRV Stress $-0.0 (-0.0, -0.0)$ -3.0 Recovery $0.0 (-0.0, -0.0)$ 1.9 T Wave Area Stress $-3.7 (-5.9, -1.5)$ -3.4		Mean (95% CI)	T-statistic
Recovery 2.7 (2.0, 3.3) 8.2 High Frequency HRV Stress -0.1 (-0.1, -0.1) -11.5 Recovery -0.0 (-0.1, -0.0) -5.7 Low Frequency HRV Stress -0.0 (-0.0, -0.0) -3.0 Recovery 0.0 (-0.0, 0.0) 1.9 T Wave Area Stress -3.7 (-5.9, -1.5) -3.4	Heart Rate		
High Frequency HRV Stress	Stress	9.6 (8.7, 10.4)	22.1
Stress $-0.1 (-0.1, -0.1)$ -11.5 Recovery $-0.0 (-0.1, -0.0)$ -5.7 Low Frequency HRV Stress $-0.0 (-0.0, -0.0)$ -3.0 Recovery $0.0 (-0.0, 0.0)$ 1.9 T Wave Area Stress $-3.7 (-5.9, -1.5)$ -3.4	Recovery	2.7 (2.0, 3.3)	8.2
Recovery -0.0 (-0.1, -0.0) -5.7 Low Frequency HRV Stress -0.0 (-0.0, -0.0) -3.0 Recovery 0.0 (-0.0, 0.0) 1.9 T Wave Area Stress -3.7 (-5.9, -1.5) -3.4	High Frequency HRV		
Low Frequency HRV Stress	Stress	-0.1 (-0.1, -0.1)	-11.5
Stress $-0.0 (-0.0, -0.0)$ -3.0 Recovery $0.0 (-0.0, 0.0)$ 1.9 T Wave Area Stress $-3.7 (-5.9, -1.5)$ -3.4	Recovery	$-0.0 \ (-0.1, \ -0.0)$	-5.7
Recovery 0.0 (-0.0, 0.0) 1.9 T Wave Area Stress -3.7 (-5.9, -1.5) -3.4	Low Frequency HRV		
T Wave Area Stress -3.7 (-5.9, -1.5) -3.4	Stress	$-0.0 \ (-0.0, \ -0.0)$	-3.0
Stress $-3.7 (-5.9, -1.5)$ -3.4	Recovery	$0.0\ (-0.0,\ 0.0)$	1.9
317 (313, 213)	T Wave Area		
Recovery $-3.2 (-5.2, -1.3)$ -3.3	Stress	-3.7 (-5.9, -1.5)	-3.4
	Recovery	-3.2 (-5.2, -1.3)	-3.3

15.3.3 Distribution of HRV and MSIMI

HRV distribution by MSIMI MIMS/MIPS cohorts

Characteristic	$\mathbf{MSIMI} = 0, \mathbf{N} = 710^{1}$	$MSIMI = 1, N = 243^{1}$
Heart Rate		
Rest	64 (56, 72)	64 (59, 75)
Stress	73 (64, 83)	75 (66, 85)
Recovery	66 (59, 74)	66 (59, 78)
T Wave Area		
Rest	16 (12, 23)	16 (12, 23)
Stress	14 (10, 19)	14 (10, 20)
Recovery	15 (10, 20)	13 (9, 19)
High Frequency HRV		
Rest	1.65 (1.48, 1.81)	1.61 (1.39, 1.76)
Stress	1.57 (1.34, 1.74)	$1.48 \ (1.22, \ 1.65)$
Recovery	1.62 (1.43, 1.78)	$1.55 \ (1.35, \ 1.74)$
Low Frequency HRV		
Rest	1.76 (1.60, 1.89)	1.70 (1.49, 1.86)
Stress	1.74 (1.59, 1.87)	1.66 (1.48, 1.81)
Recovery	1.79 (1.61, 1.91)	$1.71 \ (1.52, \ 1.85)$

The distribution of HRV between those with MSIMI and those without. The HRV metric are stratified by phase of mental stress challenge. MSIMI = mental stress-induced myocardial ischemia, HRV = heart rate variability.

¹Median (IQR)

15.3.4 Depression and PTSD with Mental Stress Challenge

Mental Stress Challenge HRV and Chronic Psychological Stress $\operatorname{MIMS/MIPS}$ Cohorts

ECG/HRV Metric	SCID Depression ¹	$SCID PTSD^1$
Heart Rate		
Rest	1.01 (1, 1.03) < br > AUC 0.55	1.03 (1.01, 1.05) AUC 0.6
Stress	1 (0.99, 1.01) < br > AUC 0.51	1 (0.99, 1.02) < br > AUC 0.53
Recovery	1.01 (1, 1.02) < br > AUC 0.54	1.01 (1, 1.03) < br > AUC 0.56
T Wave Area		
Rest	1 (0.99, 1.01) AUC 0.54	1 (0.99, 1.01) AUC 0.56
Stress	1.01 (1, 1.02) < br > AUC 0.5	1.01 (1, 1.03) < br > AUC 0.5
Recovery	1.01 (1, 1.02) < br > AUC 0.54	1.02 (1, 1.03) < br > AUC 0.58
High Frequency HRV		
Rest	0.98 (0.6, 1.64) AUC 0.48	0.6 (0.31, 1.23) AUC 0.54
Stress	0.79 (0.51, 1.21) < br > AUC 0.51	0.63 (0.35, 1.17) < br > AUC 0.54
Recovery	$0.71 \ (0.44, \ 1.15) < br > AUC \ 0.52$	0.53 (0.28, 1.04) < br > AUC 0.55
Low Frequency HRV		
Rest	0.71 (0.42, 1.19) AUC 0.52	0.58 (0.29, 1.21) AUC 0.57
Stress	0.74 (0.46, 1.21) < br > AUC 0.53	0.63 (0.34, 1.26) < br > AUC 0.55
Recovery	0.5 (0.29, 0.83) br> AUC 0.54	0.51 (0.26, 1.07) AUC 0.56

 $^{^1\}mathrm{Logistic}$ regression model, OR with 95% CI and concordance statistic.

The association between HRV during mental stress challenge and the chronic psychological stressors of depression and PTSD are described. HRV = heart rate variability.

15.3.5 HRV and Chronic Mental Stress in Twins

Morning HRV and Chronic Psychological Stress Emory Twins Study

		Ешогу	Twins Study		
	AC	Dyx	$_{ m HF}$	$_{ m LF}$	VLF
PTSD					
Model 1 Model 2 Model 3	1.11 (1.03, 1.21) 1.11 (1.02, 1.20) 1.14 (1.05, 1.24)	0.90 (0.67, 1.20) 1.53 (0.58, 4.04) 1.08 (0.77, 1.51)	0.69 (0.50, 0.94) 0.70 (0.51, 0.96) 0.69 (0.50, 0.94)	0.60 (0.42, 0.86) 0.63 (0.43, 0.92) 0.65 (0.45, 0.94)	0.70 (0.48, 1.03) 0.73 (0.48, 1.09) 0.79 (0.53, 1.18)
Depression					
Model 1 Model 2 Model 3	1.25 (1.12, 1.39) 1.28 (1.13, 1.44) 2.32 (1.22, 4.41)	0.60 (0.25, 1.47) 0.59 (0.59, 0.60) 0.54 (0.54, 0.54)	0.53 (0.16, 1.78) 0.50 (0.32, 0.78) 0.25 (0.02, 2.98)	0.46 (0.46, 0.46) 0.24 (0.13, 0.45) 0.02 (0.00, 1.60)	0.22 (0.12, 0.42) 0.19 (0.09, 0.43) 0.30 (0.16, 0.54)

 $^{^{1}}$ Model 1 = HRV

Depression is measured as a binary outcome with Beck Depression Inventory score > 14. PTSD = Post-Traumatic Stress Disorder, HRV = heart rate variability, LF = low frequency HRV, HF = high frequency HRV, VLF = very low frequency HRV, AC = acceleration capacity

 $^{^{2}}$ Model 2 = Model 1 + Age + BMI

 $^{^{3}}$ Model 3 = Model 2 + Smoking + HTN + Cardiovascular Disease

15.3.6 Circadian HRV and Chronic Mental Stress

Circadian HRV and Chronic Psychological Stress Emory Twins Study

	MESOR	Amplitude	Phi
PTSD			
High Frequency HRV	$0.65 \ (0.45, \ 0.96)$	0.3 (0.09, 0.99)	1.16 (0.95, 1.42)
Low Frequency HRV	$0.53 \ (0.35, \ 0.82)$	$0.32\ (0.12,\ 0.86)$	$1.02 \ (0.85, 1.22)$
Very Low Frequency HRV	0.65 (0.41, 1.04)	$0.55 \ (0.28, 1.09)$	$1.13 \ (0.88, \ 1.47)$
Acceleration Capacity	1.09 (0.99, 1.2)	$0.74 \ (0.58, \ 0.94)$	$0.86 \ (0.69, 1.06)$
RR Intervals	1(1, 1)	1 (1, 1.01)	1 (0.86, 1.16)
Dyx	$0.74\ (0.11,\ 4.75)$	$0.01 \ (0, \ 0.24)$	$1.38 \ (0.53, \ 3.56)$
Depression			
High Frequency HRV	0.49 (0.31, 0.76)	0.5 (0.26, 0.97)	1.1 (0.87, 1.39)
Low Frequency HRV	0.19 (0.1, 0.34)	$0.23 \ (0.1, \ 0.55)$	1.09 (0.84, 1.42)
Very Low Frequency HRV	0.07 (0, 2.58)	0.08 (0, 4.13)	$2.1\ (0.47,\ 9.36)$
Acceleration Capacity	2.36 (1.08, 5.14)	$0.4 \ (0.08, \ 2.03)$	$2.39\ (0.52,\ 10.93)$
RR Intervals	1 (0.99, 1)	1 (0.99, 1.02)	0.95 (0.68, 1.33)
Dyx	$0.3 \ (0.17, \ 0.52)$	0.51 (0.24, 1.11)	0.76 (0.57, 1.02)

Depression is measured as a binary outcome with Beck Depression Inventory score > 14. The HRV metrics are measured over 24 hours using cosinor statistics. PTSD = Post-Traumatic Stress Disorder, HRV = heart rate variability, LF = low frequency HRV, HF = high frequency HRV, VLF = very low frequency HRV, AC = acceleration capacity, MESOR = midline estimating statistic of rhythm, Amplitude = maximum distance from MESOR, Phi = shift of acrophase

${\bf 15.3.7 \quad Modeling\ Mental\ Stress-Induced\ Myocardial\ Ischemia\ and\ HRV}$

Mental Stress-Induced Myocardial Ischemia and MIMS/MIPS Cohorts

Sequential Models	Stress LF	Rest LF	
Model 1	0.45 (0.27, 0.74) AUC 0.59	0.53 (0.31, 0.92) AUC 0.56 0.48 (0.31)	1, 0
Model 2	0.49 (0.29, 0.81) AUC 0.64	0.59 (0.34, 1.04) AUC 0.62 0.45 (0.28)	8, 0
Model 3	0.51 (0.3, 0.87) < br > AUC 0.63	0.64 (0.36, 1.13) AUC 0.62 0.48 (0.29)	9, 0
Model 4	0.53 (0.31, 0.91) AUC 0.65	0.65 (0.36, 1.15) AUC 0.63	3, 0
Model 5	0.52 (0.3, 0.91) < br > AUC 0.65	0.66 (0.36, 1.18) AUC 0.63 0.47 (0.29)	9, 0

 $^{^{1}}$ Model 1 = MSIMI ~ HRV

The association between the exposure of HRV with the finding of MSIMI is described. The HRV metric are stratified by phase of mental stress challenge. MSIMI = mental stress-induced myocardial ischemia, HRV = heart rate variability.

 $^{^{2}}$ Model 2 = Model 1 + Age + BMI + Sex + Race

³Model 3 = Model 2 + Smoking + Diabetes + Hypertension + Hyperlipidemia

⁴Model 4 = Model 3 + Known Coronary/Peripheral Artery Disease

 $^{^{5}}$ Model 5 = Model 4 + Depression + Post-Traumatic Stress Disorder

43

15.4 Clinical Outcomes

15.4.1 Recurrent Events in those Mental Stress

15.4.2 Outcomes in Twins

Clinical Outcomes by HRV Emory Twins Study

	Acceleration Capacity	Dyx	High Frequency HRV	Low Frequency HRV	RR
Model 1	1.12 (1.01, 1.23)	0.49 (0.35, 0.68)	0.72 (0.48, 1.09)	0.52 (0.36, 0.75)	
Model 2	1.12(1, 1.26)	0.44 (0.3, 0.65)	$0.63\ (0.4,\ 1)$	$0.48 \ (0.33, \ 0.71)$	
Model 3	$1.15 \ (1.01, \ 1.31)$	$0.4\ (0.26,\ 0.62)$	$0.65 \ (0.42, \ 1.01)$	$0.49\ (0.33,\ 0.75)$	
Model 4	1.14(1, 1.3)	$0.41\ (0.27,\ 0.64)$	$0.66 \ (0.43, \ 1.03)$	$0.49 \ (0.31, \ 0.77)$	
Model 5	1.14(1, 1.31)	$0.41\ (0.27,\ 0.64)$	$0.68 \ (0.43, \ 1.05)$	$0.48 \ (0.31, \ 0.76)$	

Every unit increased in HRV had the associated hazard ratio (95% CI) for both overall and cardiovascular mortality. HRV = heart rate variability.