United Technical College, Bharatpur, Chitwan Lab 5

2D Transformations

Date Assigned: Dec 26, 2022

Date Due: Jan 06, 2023

Write a C-Program for performing the basic 2D transformations such as translation, scaling, rotation, shearing and reflection for a given 2D object?

Aim: To apply the basic 2D transformations such as translation, scaling, rotation, shearing and reflection for a given 2D object.

Description:

We have to perform 2D transformations on 2D objects. Here we perform transformation on a line segment.

The 2D transformations are:

- 1. Translation
- 2. Scaling
- 3. Rotation
- 4. Reflection
- 5. Shear

1. Translation

2D translation matrix is:

$$x' = x + tx$$
$$y' = y + ty$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2. Rotation

2D Rotation is matrix with rotation angle Theta in CCW is

United Technical College, Bharatpur, Chitwan

3. Scaling

The 2D scaling equations in matrix form is given by

$$\begin{bmatrix} X_{\text{new}} \\ Y_{\text{new}} \end{bmatrix} = \begin{bmatrix} S_{X} & 0 \\ 0 & S_{y} \end{bmatrix} X \begin{bmatrix} X_{\text{old}} \\ Y_{\text{old}} \end{bmatrix}$$

Scaling Matrix

4. Reflection

The 2D reflection equations in matrix form is given by

$$\begin{bmatrix} X_{\text{new}} \\ Y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} X \begin{bmatrix} X_{\text{old}} \\ Y_{\text{old}} \end{bmatrix}$$

Reflection Matrix

(Reflection Along X Axis)

United Technical College, Bharatpur, Chitwan

$$\begin{bmatrix} X_{\text{new}} \\ Y_{\text{new}} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{\text{old}} \\ Y_{\text{old}} \end{bmatrix}$$

Reflection Matrix

(Reflection Along Y Axis)

5. Shearing

The 2D shearing equations in matrix form is given by

$$\begin{bmatrix} X_{\text{new}} \\ Y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 1 & Sh_{X} \\ 0 & 1 \end{bmatrix} X \begin{bmatrix} X_{\text{old}} \\ Y_{\text{old}} \end{bmatrix}$$

Shearing Matrix

(In X axis)

$$\begin{bmatrix} X_{\text{new}} \\ Y_{\text{new}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Sh_y & 1 \end{bmatrix} X \begin{bmatrix} X_{\text{old}} \\ Y_{\text{old}} \end{bmatrix}$$

Shearing Matrix

(In Y axis)

Basic 2D transformations C Program: Students are expected to write C program in the lab.

Output:

United Technical College, Bharatpur, Chitwan

Prepared by: Mini Madav Khanal