Extraction of Transverse Single Spin Asymmetry in J/ψ Production in $p\vec{p}$ Interactions at 120 GeV Beam Energy

Dinupa Nawarathne
June 27, 2022

Abstract

By studying the polarized proton collisions, the structure of the protons can be understood in great detail. Transverse single spin asymmetries are an imbalance of the production cross-section to one side of the protons spin relative to the other. SpinQuest is a fixed-target Drell-Yan experiment at Fermilab, using an unpolarized 120 GeV proton beam incident on a polarized solid ammonia target. Such measurements will allow us to test models for the internal transverse momentum and angular momentum structure of the nucleon. J/ψ is a vector meson which is a $c\bar{c}$ bound state and it is predominantly produced by strong interaction via quark-antiquark annihilation and gluon fusion. A non-zero asymmetry provides information on the orbital angular momentum contribution of "sea-quarks" to the spin of the nucleon. Simulated data were generated using the SpinQuest/E1039 simulation framework. Gaussian Process Regression (GPR), which is a powerful technique used in machine learning, was used to predict the background under the J/ψ invariant mass peak by fitting the Radial-basis function (RBF) kernel in side-band regions on either side of the J/ψ peak. In this presentation, we discuss the extraction of generated asymmetry with statistical errors.