

0.1 2e point sur les cours, 09/10/2024

0.2 1er point sur les cours, 04/10/2024

0.2.1 Extensions sur corps non complets

Si $(K, |.|_K)$ est ultramétrique et E/K finie. On peut regarder Aut(L/K) pour construire

$$|.|_L \mapsto |\sigma(.)|_L$$

elles étendent toutes $|.|_K$ et on en a #Aut(L/K)/ef dans le cas galoisien par exemple. À l'inverse, étant donné $|.|_L$ qui étend $|.|_K$ on peut obtenir un σ en trouvant $\tau \colon \widehat{L} \to (\widehat{K})^c$ d'où $|.|_{\widehat{L}} = |.|_c \circ \tau$. En fait on regarde

où \overline{K} est l'adhérence de K dans \widehat{L} . L'égalité montre que \widehat{L} est de dimension finie sur \widehat{K} . En particulier on obtient $\tau\colon \widehat{L}\to (\widehat{K})$. Ensuite, $\tau(\widehat{L})\ni \tau(x)\mapsto |x|_{\widehat{L}}$ est une valeur absolue sur $\tau(\widehat{L})\subset (\widehat{K})^c$ qui étend celle de $\overline{K}\simeq \widehat{K}$ d'où par unicité sur la clôture on a

$$|x|_{\widehat{L}} = |\tau(x)|_c$$

et on peut faire redescendre sur $\tau|_L: L \to K^c$.

Remarque 1. Y'a plusieurs plongements en général $\widehat{L} \to (\widehat{K})^c$ penser au groupe de galois sur \mathbb{Q} qui devient le groupe de décomposition sur \mathbb{Q}_p . Et y définissent tous la même valeur absolue sur \widehat{L} .

0.2.2 Avec les anneaux artiniens

Là y'a un truc cool qui montre clairement la décomposition des premiers dans des extensions! On a une correspondance entre

{Idéaux maximaux de $L \otimes_K \widehat{K}$ } \leftrightarrow {extensions de $|.|_K$ à L}

Pour la surjectivité on utilise

et on pose $\mathfrak{m}_{|.|_L} = \ker(L \otimes_K \widehat{K}) \to \widehat{L}$. Pour l'injectivité c'est assez direct.

0.2.3 Extensions de valuations et corps complets

Le cas archimédien est assez particulier puisque y'a que \mathbb{R} et \mathbb{C} . C'est l'exercice 8 de la feuille où on peut montrer que tout corps archimédien complet qui contient i est isomorphe à \mathbb{C} . Je vais regarder surtout le cas non archimédien.

Théoreme 1. Si C(K) est l'ensemble des suites de Cauchy sur K et $\mathfrak{m}(K)$ celles qui tendent vers 0 alors $\mathfrak{m}(K)$ est maximal et $C(K)/\mathfrak{m}(K)$ est un corps complet minimal où K est dense.

Pour les extensions maintenant on a besoin de Hensel et du fait que

Corollaire 1. Si K est complet ultramétrique, le max des coefficients de P(X) irréductible sur K est atteint par $P^*(0)$ (coeff dominant) ou P(0). En particulier si $P^*(0) = 1$ et $|P(0)| \le 1$ alors P est dans $\mathcal{O}_K[X]$.

mais j'en parlerai a un autre moment. Donc maintenant qu'on sait c'est quoi les corps complets premiers en caractéristique 0 on regarde leurs extensions finies. L'idée c'est que c'est des Banach de dimension finie sur un \mathbb{Q}_p donc

• Toutes les normes sont équivalentes.

en particulier les valeurs absolues sont équivalentes, donc y'en a qu'une qui étend $|.|_p$.

Construction de la valeur absolue. Étant donné $x \in L/K$ on regarde l'endomorphisme de multiplication sur L par $x, m_x \in End_K(L)$. On déf

$$N_{L/K}(x) = \det(m_x)$$

comme $N_{L/K}(y \in K) = y^{[L:K]}$ on déf

$$|.|_L := |N_{L/K}(.)^{1/[L:K]}|$$

pour vérifier qu'elle est ultramétrique, on se rappelle que $\det(m_x)$ est le coefficient constant de $\chi_{m_x}(X)$ le polynôme caractéristique de m_x à coefficient dans K. En plus $x \mapsto m_x$ est un homomorphisme d'anneau. D'où

$$N_{L/K}(x) = (-1)^{[L:K]} \chi_{m_x}(0)$$

si on remarque que m_x est diagonale par bloc avec [L:K(x)] blocs. On peut affiner en remarquant que

$$\chi_{m_x} = \mu_x^{[L:K(x)]}$$

avec μ_x le polynôme minimal de x. Maintenant pour montrer que c'est ultramétrique faut montrer que

$$|1 + \alpha|_L \le 1$$

Mais $\mu_{1+x}(X) = \mu_x(X-1)$ et $\mu_x \in \mathcal{O}_K$ par le corollaire puis $\mu_x(-1) \in \mathcal{O}_K$ d'où le résultat. Les autres propriétés sont claires.

On peut maintenant l'étendre a une clôture algébrique K^c via

$$x \mapsto |N_{K(x)/K}(x)^{1/[K(x):K]}|$$

et il y'a unicité.

0.2.4 Classification sur \mathbb{Q}

En théorie des nombres, on a regardé grosso modo Ostrowski et les équivalences de valeurs absolues $(|.|^s)$ pour définir la même topologie.

Les grosses idées a retenir pour moi : étant donné une |.|, si elle est non archimédienne \to on regarde la valuation associée v. Ensuite $\mathfrak{m} \cap \mathbb{Z} = p\mathbb{Z}$, et ensuite sur \mathbb{Z} si $x \wedge p = 1$ |ux| = |1 - yp| = 1 d'où suffit de regarder |p|. Le

cas archimédien est un peu plus compliqué mais assez étonnant. En fait si on regarde un corps archimédien complet dont la v.a. étend celle de \mathbb{Q} contenant i. Alors on peut plonger \mathbb{C} , disons $i \colon \mathbb{C} \to K$. L'idée c'est de regarder pour $a \in K$ l'inf de,

$$f_a \colon z \mapsto |z - a|_K$$

si c'est r>0 on peut faire bouger r comme on veut. Ensuite faut regarder pour $|\gamma_0-a|=r$ et $|\gamma-\gamma_0|< r$ on peut calculer

$$(\gamma_0 - \gamma)^n - (\gamma_0 - a)^n$$

le spécificité de $\mathbb C$ analytiquement c'est alors d'avoir toutes les racines de l'unités. Ce qui permet de factoriser le truc du dessus.