What is claimed is:

- A fabric treatment composition comprising at least one cationic polymer and at least one
 anionic polymer, wherein at least one of these two polymers is a silicone polymer, and
 wherein said composition forms a coacervate phase.
- 2. A fabric treatment composition according to claim 1 wherein the anionic polymer is a silicone polymer and wherein the cationic polymer is a non-silicone-containing polymer.
- 10 3. A fabric treatment composition according to claim 1 wherein the cationic polymer is a silicone polymer and wherein the anionic polymer is a non-silicone-containing polymer.
 - 4. A fabric treatment composition according to claim 1 wherein the anionic polymer and the cationic polymer are both a silicone polymer.

15

- 5. A fabric treatment composition according to claim 2 wherein the anionic polymer is selected from the group consisting of silicones comprising at least one carboxylate, sulfate, sulfonate, phosphate or phosphonate group; derivatives thereof, and mixtures thereof.
- 20 A fabric treatment composition according to claim 2 wherein the cationic polymer is of 6. natural or synthetic origin and selected from the group consisting of substituted and cationically modified unsubstituted polyquaternary ammonium compounds, polysaccharides, cationically modified (meth)acrylamide polymers, cationically modified (meth)acrylamide copolymers, cationically modified (meth)acrylate polymers, cationically 25 modified (meth)acrylate copolymers, chitosan, quaternized vinylimidazole polymers, quaternized vinylimidazole copolymers, dimethyldiallylammonium polymers, dimethyldiallylammonium copolymers, polyethylene imine based polymers, cationic guar gums; derivatives thereof, and mixtures thereof.
- 30 7. A fabric treatment composition according to claim 6 wherein the cationic polymer is selected from the group consisting of cationic guar hydroxypropyltriammonium salts; derivatives thereof, and mixtures thereof.

5

10

15

- 8. A fabric treatment composition according to claim 3 wherein the anionic polymer is selected from the group consisting of xanthan gum, anionic starch, carboxy methyl guar, carboxy methyl hydroxypropyl guar, carboxy methyl cellulose, N-carboxyalkyl chitosan, N-carboxyalkyl chitosan amides, pectin, carrageenan gum, chondroitin sulfate, hyaluronic acid-, alginic acid-based polymers; derivatives thereof, and mixtures thereof.
- 9. A fabric treatment composition according to claim 1 wherein the cationic silicone polymer has the formula:

$$\left[\begin{array}{c} Z-X-CC_{a}H_{2a}-b-R^{2}\begin{pmatrix} R^{1}\\ SiO\\ R^{1} \end{pmatrix} \begin{pmatrix} R^{1}\\ SiO\\ R^{3} \end{pmatrix} \begin{pmatrix} R^{1}\\ SiO\\ R^{3} \end{pmatrix} \begin{pmatrix} R^{1}\\ SiO\\ R^{1} \end{pmatrix} - R^{2}\begin{pmatrix} C_{a}H_{2a}O \end{pmatrix} \begin{pmatrix} R^{2}\\ SiO\\ R^{2} \end{pmatrix} \begin{pmatrix} R^{2}\\ SiO\\ R^{3} \end{pmatrix} \begin{pmatrix} R^{2}\\$$

wherein:

- R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;
- R² is independently selected from the group consisting of divalent organic moieties;
- X is independently selected from the group consisting of ring-opened epoxides;
- R³ is independently selected from polyether groups having the formula:

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

20

- wherein M^1 is a divalent hydrocarbon residue; M^2 is independently selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;
- Z is independently selected from the group consisting of monovalent organic moieties comprising at least one quaternized nitrogen atom;
- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; d is from 0 to about 100; n is the number of positive charges associated with the cationic silicone polymer, which is greater than or equal to about 2; and A is a monovalent anion.
- 30 10. A fabric treatment composition according to claim 9 wherein Z is independently selected

from the group consisting of:

(i)
$$R^{12}$$
 R^{13} (ii) R^{12} R^{13} R^{14} R^{14} R^{15} R^{12} R^{15} R^{12}

(iii)
$$-N = R^{12} = R^{16} = R^{16} = R^{18}$$
 (iv) $-N = R^{12} = R^{12}$

(v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;

wherein:

- R¹², R¹³, R¹⁴ are the same or different, and are selected from the group consisting of C₁₋₂₂ alkyl, C₂₋₂₂ alkenyl, C₆₋₂₂ alkylaryl, aryl, cycloalkyl, C₁₋₂₂ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;
 - R¹⁵ is -O- or NR¹⁹;
 - R¹⁶ is a divalent hydrocarbon residue;
- $\begin{array}{lll} -R^{17},\,R^{18},\,R^{19} \mbox{ are the same or different, and are selected from the group consisting of H,\,C_{1.} \\ & 22 \mbox{ alkyl},\,\,C_{2.22} \mbox{ alkenyl},\,\,C_{6.22} \mbox{ alkylaryl},\,\, aryl,\,\, cycloalkyl,\,\,C_{1.22} \mbox{ hydroxyalkyl,} \\ & polyalkyleneoxide,\,(poly)alkoxy\,\,alkyl,\,\,and\,\,mixtures\,\,thereof;\,\,and \end{array}$
 - e is from about 1 to about 6.
- 15 11. A fabric treatment composition according to claim 1 wherein the cationic silicone polymer is composed of alternating units of:
 - (i) a polysiloxane of the following formula:

$$- \left[X - C_a H_{2a} - C_a H_$$

20 ; and

(ii) a divalent organic moiety comprising at least two quaternized nitrogen atoms;

5

15

20

wherein:

- R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;
- R² is independently selected from the group consisting of divalent organic moieties;
- X is independently selected from the group consisting of ring-opened epoxides;
- R³ is independently selected from polyether groups having the formula:

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

- wherein M^1 is a divalent hydrocarbon residue; M^2 is independently selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;
 - a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; and d is from 0 to about 100.
 - 12. A fabric treatment composition according to claim 1 wherein the cationic silicone polymer is composed of alternating units of:
 - (i) a polysiloxane of the following formula:

; and

(ii) a cationic divalent organic moiety selected from the group consisting of:

(a)
$$\begin{bmatrix} R^4 & R^6 \\ | \oplus \\ N - Z^1 - N \end{bmatrix}^{m} = 2mA ;$$

(d) a divalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogent atom; and

mixtures thereof;

wherein R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;

- R² is independently selected from the group consisting of divalent organic moieties;
- X is independently selected from the group consisting of ring-opened epoxides;
- R³ is independently selected from polyether groups having the formula:

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

10

15

20

5

wherein M^1 is a divalent hydrocarbon residue; M^2 is independently selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;

- R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} are the same or different, and are selected from the group consisting of $C_{1\cdot 22}$ alkyl, $C_{2\cdot 22}$ alkenyl, $C_{6\cdot 22}$ alkylaryl, aryl, cycloalkyl, $C_{1\cdot 22}$ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; or in which R^4 and R^6 , or R^5 and R^7 , or R^8 and R^{10} , or R^9 and R^{11} are components of a bridging alkylene group;
- Z^1 and Z^2 are the same or different divalent hydrocarbon groups each comprising at least about 2 carbon atoms;
- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; d is from 0 to about 100;
- m is the number of positive charges associated with the cationic divalent organic moiety, which is greater than or equal to about 2; A is an anion; and

wherein, expressed as fractions on the total moles of the organosilicone – free moieties, the cationic divalent organic moiety (ii) is present at of from about 0.05 to about 1.0 mole fraction.

5 13. A fabric treatment composition according to claim 12 wherein the cationic silicone further comprises a polyalkyleneoxide amine of formula:

$$[-Y - O(-C_aH_{2a}O)_b - Y -]$$

- wherein Y is a divalent organic group comprising a secondary or tertiary amine; a is from about 2 to about 4 and b is from 0 to about 100, and the polyalkyleneoxide amine is present of from 0.0 to about 0.95 mole fraction.
- 14. A fabric treatment composition according to claim 12 wherein the cationic silicone further comprises an end-group cationic monovalent organic moiety selected from the group consisting of:

(iii)
$$-N = R^{12} R^{16} R^{16} R^{16} R^{18}$$
 (iv) $-N = R^{12} R^{12} R^{16} R^{16} R^{18}$

(v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;

wherein:

- R^{12} , R^{13} , R^{14} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl groups, and mixtures thereof;
 - R¹⁵ is -O- or NR¹⁹;
 - R¹⁶ is divalent hydrocarbon residue;

- R^{17} , R^{18} , R^{19} are the same or different, and are selected from the group consisting of H, $C_{1.22}$ alkyl, $C_{2.22}$ alkenyl, $C_{6.22}$ alkylaryl, aryl, cycloalkyl, $C_{1.22}$ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; e is from about 1 to about 6, and the cationic monovalent organic moiety is present of from 0 to about 0.2 mole fraction.

5

15. A fabric treatment composition according to claim 13 wherein the cationic silicone further comprises an end-group cationic monovalent organic moiety selected from the group consisting of:

(iii)
$$-\frac{R^{12}}{N-R^{16}}R^{16}-N < R^{17} R^{18}$$
 (iv) $-N - N - CH_2 - C - C - C - R^{12}$

 (v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;

10 wherein:

- R^{12} , R^{13} , R^{14} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl groups, and mixtures thereof;
- R¹⁵ is -O- or NR¹⁹;

- R¹⁶ is divalent hydrocarbon residue;

- R^{17} , R^{18} , R^{19} are the same or different, and are selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; e is from about 1 to about 6, and the cationic monovalent organic moiety is present of from 0 to about 0.2 mole fraction.

20

16. A fabric treatment composition according to claim 1 wherein the cationic silicone polymer has the formula:

$$\begin{bmatrix} R^{1} & R^{1} & R^{1} & R^{1} & R^{1} & R^{1} & R^{2} & R^$$

wherein:

5

15

20

- R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;
- R² is independently selected from the group consisting of divalent organic moieties;
- X is independently selected from the group consisting of ring-opened epoxides;
- R³ is independently selected from polyether groups having the formula:

 $-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$

wherein M^1 is a divalent hydrocarbon residue; M^2 is selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;

- W is independently selected from the group consisting of divalent organic moieties comprising at least one quaternized nitrogen atom;
- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; d is from 0 to about 100; n is the number of positive charges associated with the cationic silicone polymer, which is greater than or equal to about 1; and A is a counterion.

17. A fabric treatment composition according to claim 16 wherein W is selected from the group consisting of:

$$(a) \quad \begin{array}{c|c} R^4 & R^6 \\ \stackrel{| \oplus}{\longrightarrow} Z^1 & \stackrel{| \oplus}{\longrightarrow} \\ R^5 & R^7 \end{array} \quad \stackrel{2mA}{\longrightarrow} \quad ;$$

(d) a divalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogent atom; and

mixtures thereof;

wherein R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} are the same or different, and are selected from the group consisting of $C_{1\cdot 22}$ alkyl, $C_{2\cdot 22}$ alkenyl, $C_{6\cdot 22}$ alkylaryl, aryl, cycloalkyl, $C_{1\cdot 22}$ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; or in which R^4 and R^6 , or R^5 and R^7 , or R^8 and R^{10} , or R^9 and R^{11} are components of a bridging alkylene group;

- m is the number of positive charges associated with the cationic divalent organic moiety, which is greater than or equal to about 2; A is an anion; and
- Z^1 and Z^2 are the same or different divalent hydrocarbon groups each comprising at least about 2 carbon atoms.
- 18. A fabric treatment composition according to claim 4 wherein the anionic polymer is selected from the group consisting of silicones comprising at least one carboxylate, sulfate, sulfonate, phosphate or phosphonate group; derivatives thereof, and mixtures thereof.
- 19. A fabric treatment composition according to claim 4 wherein the cationic silicone polymer has the formula:

5

10

wherein:

- R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;
- R² is independently selected from the group consisting of divalent organic moieties;
- X is independently selected from the group consisting of ring-opened epoxides;
- R³ is independently selected from polyether groups having the formula:

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

10

15

5

wherein M^1 is a divalent hydrocarbon residue; M^2 is independently selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;

- Z is independently selected from the group consisting of monovalent organic moieties comprising at least one quaternized nitrogen atom;
- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; d is from 0 to about 100; n is the number of positive charges associated with the cationic silicone polymer, which is greater than or equal to about 2; and A is a monovalent anion.
- 20. A fabric treatment composition according to claim 19 wherein Z is independently selected from the group consisting of:

(i)
$$R^{12}$$
 (ii) R^{12} $CH_2 \rightarrow R^{15}$ R^{12} $CH_2 \rightarrow R^{15}$ $CH_2 \rightarrow R^{12}$

(iii)
$$-N = R^{12} + R^{16} + R^{16} + R^{17} + R^{18} +$$

(v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;

wherein:

- R^{12} , R^{13} , R^{14} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;
- R¹⁵ is -O- or NR¹⁹;
- R¹⁶ is a divalent hydrocarbon residue;
- R^{17} , R^{18} , R^{19} are the same or different, and are selected from the group consisting of H, $C_{1.22}$ alkyl, $C_{2.22}$ alkenyl, $C_{6.22}$ alkylaryl, aryl, cycloalkyl, $C_{1.22}$ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; and
- e is from about 1 to about 6.

10

5

- 21. A fabric treatment composition according to claim 4 wherein the cationic silicone polymer is composed of alternating units of:
 - (ii) a polysiloxane of the following formula:

$$\left[X - CC_aH_{2a} - R^2 - R^2 - R^1 - R^1 - R^1 - R^1 - R^2 - R^2 - R^2 - R^1 - R^1 - R^2 - R$$

15

20

; and

- (ii) a divalent organic moiety comprising at least two quaternized nitrogen atoms; wherein:
- R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;
- R² is independently selected from the group consisting of divalent organic moieties;
- X is independently selected from the group consisting of ring-opened epoxides;
- R³ is independently selected from polyether groups having the formula:

25

30

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

wherein M^1 is a divalent hydrocarbon residue; M^2 is independently selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;

- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000;

and d is from 0 to about 100.

- 22. A fabric treatment composition according to claim 4 wherein the cationic silicone polymer is composed of alternating units of:
 - (iii) a polysiloxane of the following formula:

$$= \left[X - CC_aH_{2a} - CC_aH_{2a} - CC_aH_{2a} - CC_aH_{2a} - CC_aH_{2a}C - CC_aH_{2$$

; and

(iv) a cationic divalent organic moiety selected from the group consisting of:

10

5

$$\text{(a)} \quad \begin{array}{c|c} R^4 & R^6 \\ \stackrel{|\bigoplus}{\longrightarrow} Z^1 & \stackrel{|\bigoplus}{\longrightarrow} M \\ R^5 & \stackrel{|}{R}^7 \end{array} \quad {}^{2mA} \quad ;$$

$$(b) - N - Z^{1} - N - 2mA$$

$$R^{1} - R^{1} - N - 2mA$$

(d) a divalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogent atom; and

mixtures thereof;

wherein R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;

- R² is independently selected from the group consisting of divalent organic moieties;
 - X is independently selected from the group consisting of ring-opened epoxides;
 - R³ is independently selected from polyether groups having the formula:

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

wherein M^1 is a divalent hydrocarbon residue; M^2 is independently selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;

- 5
- R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; or in which R^4 and R^6 , or R^5 and R^7 , or R^8 and R^{10} , or R^9 and R^{11} are components of a bridging alkylene group;
- 10
- Z^1 and Z^2 are the same or different divalent hydrocarbon groups each comprising at least about 2 carbon atoms;
- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; d is from 0 to about 100;
- m is the number of positive charges associated with the cationic divalent organic moiety, which is greater than or equal to about 2; A is an anion; and
- wherein, expressed as fractions on the total moles of the organosilicone free moieties, the cationic divalent organic moiety (ii) is present at of from about 0.05 to about 1.0 mole fraction.
- A fabric treatment composition according to claim 22 wherein the cationic silicone further comprises a polyalkyleneoxide amine of formula:

$$[-Y - O(-C_aH_{2a}O)_b - Y -]$$

- wherein Y is a divalent organic group comprising a secondary or tertiary amine; a is from about 2 to about 4 and b is from 0 to about 100, and the polyalkyleneoxide amine is present of from 0.0 to about 0.95 mole fraction.
- A fabric treatment composition according to claim 22 wherein the cationic silicone further comprises an end-group cationic monovalent organic moiety selected from the group consisting of:

(i)
$$-N = R^{12}$$
 (ii) $-N = R^{12}$ $CH_2 \rightarrow R^{15}$ $C \rightarrow R^{12}$

(v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;

wherein:

5

10

15

- R^{12} , R^{13} , R^{14} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl groups, and mixtures thereof;
- R¹⁵ is -O- or NR¹⁹;
- R¹⁶ is divalent hydrocarbon residue;
- R^{17} , R^{18} , R^{19} are the same or different, and are selected from the group consisting of H, C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; e is from about 1 to about 6, and the cationic monovalent organic moiety is present of from 0 to about 0.2 mole fraction.
- 25. A fabric treatment composition according to claim 23 wherein the cationic silicone further comprises an end-group cationic monovalent organic moiety selected from the group consisting of:

(i)
$$R^{12}$$
 (ii) R^{12} $CH_2 R^{15}$ R^{15} R^{12}

(v) monovalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogen atom;

wherein:

- R^{12} , R^{13} , R^{14} are the same or different, and are selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, C_{1-22} hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl groups, and mixtures thereof;
- R^{15} is -O- or NR^{19} ;
- R¹⁶ is divalent hydrocarbon residue;
- R^{17} , R^{18} , R^{19} are the same or different, and are selected from the group consisting of H, $C_{1.22}$ alkyl, $C_{2.22}$ alkenyl, $C_{6.22}$ alkylaryl, aryl, cycloalkyl, $C_{1.22}$ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; e is from about 1 to about 6, and the cationic monovalent organic moiety is present of from 0 to about 0.2 mole fraction.
- 26. A fabric treatment composition according to claim 4 wherein the cationic silicone polymer has the formula:

$$\begin{bmatrix} R^{1} & R^$$

15

20

5

10

wherein:

- R^1 is independently selected from the group consisting of C_{1-22} alkyl, C_{2-22} alkenyl, C_{6-22} alkylaryl, aryl, cycloalkyl, and mixtures thereof;
- R² is independently selected from the group consisting of divalent organic moieties;
- X is independently selected from the group consisting of ring-opened epoxides;
- R³ is independently selected from polyether groups having the formula:

$$-M^{1}(C_{a}H_{2a}O)_{b}-M^{2}$$

- wherein M¹ is a divalent hydrocarbon residue; M² is selected from the group consisting of H, C₁₋₂₂ alkyl, C₂₋₂₂ alkenyl, C₆₋₂₂ alkylaryl, aryl, cycloalkyl, C₁₋₂₂ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof;
 - W is independently selected from the group consisting of divalent organic moieties comprising at least one quaternized nitrogen atom;

- a is from about 2 to about 4; b is from 0 to about 100; c is from about 1 to about 1000; d is from 0 to about 100; n is the number of positive charges associated with the cationic silicone polymer, which is greater than or equal to about 1; and A is a counterion.
- A fabric treatment composition according to claim 26 wherein W is selected from the group consisting of:

(a)
$$\begin{bmatrix} R^4 & R^6 \\ I \oplus N - Z^1 - N \end{bmatrix}^{m} = 2mA ;$$

(b)
$$-N$$
 $-Z^1 - N$ $-2mA$ $-2mA$

$$\text{(c)} \quad \begin{array}{c|c} R^4 & R^6 & R^8 & R^{10} \\ | \oplus \\ N - Z^1 - N - Z^2 - N - Z^1 - N - \\ | R^5 & R^7 & R^9 & R^{11} \end{array} \right. \quad {}^{4mA} \quad ; \\$$

(d) a divalent aromatic or aliphatic heterocyclic group, substituted or unsubstituted, containing at least one quaternized nitrogent atom; and

mixtures thereof:

- wherein R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} are the same or different, and are selected from the group consisting of $C_{1\cdot 22}$ alkyl, $C_{2\cdot 22}$ alkenyl, $C_{6\cdot 22}$ alkylaryl, aryl, cycloalkyl, $C_{1\cdot 22}$ hydroxyalkyl, polyalkyleneoxide, (poly)alkoxy alkyl, and mixtures thereof; or in which R^4 and R^6 , or R^5 and R^7 , or R^8 and R^{10} , or R^9 and R^{11} are components of a bridging alkylene group;
 - m is the number of positive charges associated with the cationic divalent organic moiety, which is greater than or equal to about 2; A is an anion; and
 - Z^1 and Z^2 are the same or different divalent hydrocarbon groups each comprising at least about 2 carbon atoms.
- 28. A fabric treatment composition according to Claim 1 further comprising a surfactant selected from the group consisting of anionic surfactants, cationic surfactants, nonionic surfactants, zwitterionic surfactants, amphoteric surfactants, and mixtures thereof.

- 29. A fabric treatment composition according to Claim 19 further comprising one or more laundry adjunct materials selected from the group consisting of stabilizers; coupling agents; detergent builders; fabric substantive perfumes; enzymes; chelating agents; effervescent systems; suds suppressing systems; liquid carriers; aminosilicones; nitrogen-free silicone polymers; and mixtures thereof.
- 30. Use of a fabric treatment composition according to Claim 1 wherein the composition is a rinse-added fabric softening composition or a fabric finishing composition or a laundry detergent composition or a liquid laundry detergent composition; and combinations thereof.

10

15

5

- 31. Use of a fabric treatment composition according to Claim 1 to impart on a fabric substrate at least one or more fabric care benefits selected from the group consisting of reduction of wrinkles benefits; removal of wrinkles benefits; prevention of wrinkles benefits; fabric softness benefits; fabric feel benefits; garment shape retention benefits; garment shape recovery benefits; elasticity benefits; ease of ironing benefits; perfume benefits; color care benefits; and combinations thereof.
- 32. A method of treating a substrate comprising contacting the substrate with a fabric treatment composition according to Claim 1.