Mid-sem: CS 754, Computer Vision, 20th February

Instructions: There are 120 minutes for this exam. This exam is worth 10% of your final grade. Attempt all questions. Avoid writing lengthy answers. Each question carries 10 points.

- 1. Why is the Gaussian considered unfit for modelling the distribution of the DCT coefficients of natural images, as opposed to (say) the Laplacian?
- 2. In compressed sensing, the following optimization problem, known as Basis Pursuit (BP), is often considered: $\min_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|_1$ such that $\|\boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\theta}\|_2 \leq \epsilon$ where $\boldsymbol{\theta} \in \mathbb{R}^n$ is a sparse vector of signal coefficients in some $n \times n$ orthonormal basis $\boldsymbol{\Psi}$ yielding signal $\boldsymbol{x} = \boldsymbol{\Psi} \boldsymbol{\theta}$, $\boldsymbol{\Phi}$ is a $m \times n$ measurement matrix with $m \ll n$, $\boldsymbol{y} \in \mathbb{R}^m$ is a measurement vector, and ϵ is an upper bound on the noise in \boldsymbol{y} . The LASSO problem defined as $\min_{\boldsymbol{\theta}} \|\boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\theta}\|^2 + \lambda \|\boldsymbol{\theta}\|_1$ is provably equivalent to BP for specific values of λ and ϵ . Is the choice of L_1 norm on $\boldsymbol{\theta}$ justifiable (in terms of accuracy of recovery) even if the values in $\boldsymbol{\theta}$ were not Laplacian distributed, but distributed as per a Generalized Gaussian Distribution with shape parameter less than 1? Assume a sufficient number of measurements m are available.
- 3. Consider a noisy and blurred image $y = h * x + \eta$ where h is a known blur kernel, x is the unknown noise-free and blur-free image and η is zero-mean Gaussian noise with known standard deviation σ . State the objective function to be minimized when you apply the MAP method in order to obtain x. Assume x was a sparse image (in the spatial domain itself). Write down the equations for the prior and the likelihood.
- 4. State one advantage of mutual coherence over restricted isometry property (RIP) in compressed sensing, and vice versa.
- 5. What is the key difference between ISTA and OMP algorithms for compressed sensing recovery?
- 6. Prove that to allow for successful reconstruction of a k-sparse signal $\boldsymbol{\theta}$ from compressive measurements $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{\theta}$, it is necessary that the matrix \boldsymbol{A} have the property that any subset of 2k columns from \boldsymbol{A} be linearly independent. How would you reconstruct $\boldsymbol{\theta}$ using L_0 minimization, and what is the smallest number of measurements required in terms of k and/or n? If you switched over to L_1 minimization, what is the smallest number of measurements required in terms of k and/or n?
- 7. Apart from sparsity and power law, briefly mention any two statistical properties of natural images.