Flux Calibration

Zmliu NAOC

FAST流量定标方法

定标 流程

观测 模式

定标 质量

定标 程序

观测 模式

定标 质量

定标 程序

总结

FAST噪音管(Noise Diodes)稳定性

不同频率段噪音管功率 (P_cal) 在一小时内变化

观测 模式

定标 质量

定标 程序

总结

FAST噪音管(Noise Diodes)稳定性

噪音管开关周期可能带来的误差 不同线条表征不同波束

颜色表征偏振

坐标(RADEC)精度

定标 流程

观测 模式

定标 质量

定标 程序

定标源观测模式

定标 流程

观测 模式

定标 质量

定标 程序

扫描(SCAN)模式

定标 流程

观测 模式

定标 质量

定标 程序

扫描模式对准精度(MO1)

定标 流程

观测 模式

定标 质量

定标 程序

总结

上图为近源位置 (3角分内) DEC 方向平均偏差整 体分布整体情况

下图为单次观测 DEC方向偏差, ErrorBar表征单 次观测中近源时 DEC方向稳定性

扫描模式对准精度(19波束)

定标 流程

观测 模式

定标 质量

定标 程序

总结

波束的RA、 DEC并未完全 对齐

同时实际观测 的旋转角并不 是稳定的0°

观测 模式

定标 质量

定标 程序

总结

扫描模式对准精度(19波束)

MultiBeamOTF模式观测3C48共计10次 ErrorBar表征每次观测间离散程度

包含波束相对位置造成的影响,每个波束在DEC方向上的偏离情况仍在可接受范围内

跟踪(TRACK)模式

定标 流程

观测 模式

定标 质量

定标 程序

观测 模式

定标 质量

定标 程序

总结

跟踪模式MO1对准精度

同时存在RA和DEC 方向上偏离, 坐标离散相对更大

观测时间增加对准 精度并未显著提高,

反而可能因为外界 环境原因降低

观测 模式

定标 质量

定标 程序

总结

跟踪模式全波束对准精度

20210909

MultiBeamCalibration模式观测3C48共计1次

Swift/MultiBeamCalibration模式可能存在程序上的问题,暂时不推荐使用

定标源观测模式对比

定标 流程

观测 模式

定标 质量

定标 程序

模式	DecDrift WithAngle(0°)	DecDrift WithAngle(23.4°)	Multibeam OTF	MultiBeam Calibration	OnOff
观测 时间 (s)	300	300	1260	1960	330
定标 波束 (个)	5	1	19	19	1 or 2
坐标 误差 来源	• Dec, • 波束相对位置	• Dec	Dec,波束相对位置	Ra,Dec,波数相对位置	Ra,Dec
其他 误差 来源	• 波束相对增益 • 系统温度跳变	• 波束相对增益 • 系统温度跳变	• 系统温度跳变	• OFF点非空场	• 波束相对增益 • OFF点非空场

整体流量稳定性(MO1)

定标 流程

观测 模式

定标 质量

定标 程序

总结

在1400MHz测得流量增益为15.683±0.357, 同 *Jiang et al,2019*: Table 5结果(16.02±0.26)存在2%偏差 整体波动在5%以内

观测 模式

定标 质量

定标 程序

总结

相对增益稳定性(19波束同M01)

各波束同M01的相对增益同Table 5 存在差异,并且离散度显著增大在对准误差不构成影响的前提下,可能为系统温度跳变造成的差异

整体增益同Table 5 差异

定标 流程

观测 模式

定标 质量

定标 程序

M10, M14 差异较大, M01在Drift和OTF中结果有一定的差别, 可能为OTF模式数据量较少的原因

流量定标Pipeline

定标 流程

观测 模式

定标 质量

定标 程序

观测 模式

定标 质量

定标 程序

总结

流量定标Pipeline 可选参数

- --beams : 需要进行增益计算的波数, 可以为1,5 或者19, 默认为1
- --crd : 手动输入定标源坐标
- --flux: 手动输入定标源流量
- --frange: 流量定标的频率范围,输出时会以该范围每5MHz取点计算增益,默认为[1300,1450]
- --outdir:输出文件目录,默认为输入文件夹
- --smt_sigma: 沿频率轴平滑温度尺度,单位为Mhz, 默认为10
- --plot: 输出所有数据拟合图像

******* 定标源数据处理

定标 流程

观测 模式

定标 质量

定标 程序

拟合方法选择

定标 流程

观测 模式

定标 质量

定标 程序

拟合后数据偏差

定标 流程

观测 模式

定标 质量

定标 程序

比对采样间隔0.2s(3arcsec)数据:拟合造成的Gain误差可以控制在1.5%以内

观测 模式

定标 质量

定标 程序

总结

总结

我们对3C48的OTF和Drift长期观测数据进行了分析:

- · M01流量增益在一年内波动在5%以内;
- M01整体数据同Table 5 中有2%的偏移;
- · 19波束同M01的相对增益稳定性较差,差别可能达到10%以上;
- 19波束中大部分相对增益同Table 5 中偏差不超过5%;
- · M10, M14相对增益存在更大的偏离;