Universidad Nacional de Río Negro Int Partículas, Astrofísica & Cosmología - 2020

Unidad O1 – El modelo estándar

Clase
 U01 C03 - 3/16

Fecha 19 Ago 2020

Cont Interacción fuerte

Cátedra Asorey

Web https://gitlab.com/asoreyh/unrn-ipac/

Contenidos: un viaje en el tiempo y el espacio

Materia-Antimateria

- En una interacción EM (scattering) es posible sacar un electrón del mar
- El "hueco" se ve como un electrón positivo

$$E_{v} \geqslant 1.022 \,MeV$$

Anti electrón (positrón)

- masa: $m_e = 0.511 \text{ MeV/c}^2$
- Espín: 1/2
- Carga eléctrica: +1
- Número leptónico: -1
- Número lep. electrónico: -1
- Vida media: infinita (estable)

Interacción fuerte

Interacción "Fuerte"

(próximamente)

- Hay una proporción de estabilidad (curva negra) entre el número de neutrones y protones
- La fuerza eléctrica ~ Z²
- Los neutrones no tienen carga eléctrica
- Z pequeños, N/Z~1, luego N>Z \rightarrow N/Z ~ 1 + α A^{2/3}
- Los neutrones aportan a la cohesión nuclear

ísica IV B 5/40

La medición

- Bohr: "La energía no se conserva"
- Pauli: La energía se conserva si existe otra partícula: "neutrino"
- Energy spectrum of beta decay electrons from ²¹⁰ Bi

 0 0.2 0.4 0.6 0.8 1.0 1.2

 Kinetic energy, MeV
- Decaimiento beta correcto:

$$\begin{array}{c}
210 \text{ Bi}_{83} \rightarrow {}^{210}_{126} \text{ Po}_{84} + e^{-} + \overline{v}_{e} + Q_{\beta^{-}} \\
\left(n \rightarrow p^{+} + e^{-} + \overline{v}_{e} + Q_{\beta^{-}} \right) \\
Q = \left(m_{\text{Bi}} - m_{\text{Po}} - m_{e} - m_{\overline{v}_{e}} \right) c^{2} \\
Q \approx T_{e} + T_{v}$$
orey - Física IV B

El muón

- Muón (μ-)
 - masa: $m_e = 105,6 \text{ MeV/c}^2$
 - Espín: 1/2
 - Carga eléctrica: -1
 - Número leptónico: +1
 - Número lep. electrónico: O
 - Número lep. muónico: +1
 - Vida media: 2,196 μs

Es decir

- Existen dos partículas que son muy similares: e- y μ-
- Tienen la misma carga eléctrica "negativa"
- Tienen espín semientero → s=1/2,
 - Son fermiones y cumplen con el ppio de exclusión de Pauli
- Sólo se diferencia en su masa:
 - $m_e^- = 0.511 \text{ MeV/c}^2$ $y m_{\mu}^- = 105.6 \text{ MeV/c}^2$
- Asociados a estas, existen dos partículas eléctricamente neutras, y aparentemente sin masa:
 - neutrinos, ν_e y ν_μ.

Tenemos los primeros ladrillos

Sabor muónico

Electrón

Con ustedes, los Leptones

(leptón → liviano, delicado)

Muón

Y las primeras principios de conservación

Conservación de la energía y cantidad de movimiento,
 (es una sóla regla) → E² = p² + m² ← ¡invariante!

$$Q = \left(m_{\rm Bi} - m_{\rm Po} - m_e - m_{\bar{\nu}_e} \right) c^2$$

2) Conservación de la carga eléctrica

$$n \rightarrow p^{+} + e^{-} + \overline{v} + Q_{\beta^{-}}$$

3) Conservación del número leptónico

$$n \rightarrow p^{+} + e^{-} + \bar{\nu} + Q_{\beta^{-}}$$

4) Conservación del número leptónico por sabor

$$v_e + n \rightarrow p^+ + e^- + Q_{\beta^-}$$

$$v_e + n \rightarrow p^+ + \mu + Q_{\beta^-}$$

Por ejemplo:

$n \rightarrow p^{\dagger} + e^{-} + \overline{v}_{e}$

nicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número leptónico muónico
	n		0	0	0	0
final	p⁺		+1	0	0	0
	e⁻		-1	+1	+1	0
	<\nabla_e>		O	-1	-1	0
	Final		0 🗸	0 🗸	0 🗸	0

Proponer un decaimiento posible para el muón

$$\mu^{-} \rightarrow e^{-} + \bar{\nu}_{e} + \nu_{\mu}$$

Inicial	Magnitudes partícula	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número leptónico muónico	
	μ	-1	+1	0	+1	
	e⁻	-1	+1	+1	0	
fina	<γ _e >	0	-1	-1	O	
4	\mathbf{v}_{m}	0	+1	0	+1	
	Final	-1	+1 🗸	0 🗸	+1 🗸	

U1:Partículas, lo más pequeño 4 encuentros, del 05/Ago al 26/Ago

- Dinámica Relativista.
- Física de partículas
 - Ley de Planck.
 - Partículas fundamentales: leptones, hadrones, bosones mensajeros
- El modelo estándar
 - Interacciones fundamentales
 - Simetrías y leyes de conservación
- Trabajo de la unidad: tópicos de física de partículas.
 Entrega Viernes 04/Sep/2020

Hadrones, bariones y número bariónico

 Las partículas que interactúan fuertemente (tienen carga "fuerte") se denominan hadrones

Sin interacción fuerte

Leptones

(leptón → liviano, delicado)

Con interacción fuerte

Hadrones

(hadrón → fuerte, denso)

Bariones

(barión → pesado) entre ellos los **nucleones** Mesones

(mesón → en el medio)

Con los bariones hay una simetría (carga conservada)

Número Bariónico

Nucleones: constituyentes del núcleo

- Protón
 - masa: m = 938,272 MeV/c²
 - Espín: ½
 - Carga eléctrica: +1
 - Número bariónico: +1
 - Vida media: infinita (estable)

- neutrón
 - masa: m = 939,565 MeV/c²
 - Espín: 1/2
 - Carga eléctrica: 0
 - Número bariónico: +1
 - Vida media: 881,5 s

Antinucleones

Protón

- masa: m = 938.3 MeV/c²
- Espín: ½
- Carga eléctrica: -1
- Número bariónico: -1
- Vida media: infinita (estable)

neutrón

- masa: m = 939.6 MeV/c²
- Espín: 1/2
- Carga eléctrica: 0
- Número bariónico: -1
- Vida media: ¿881,5 s?

También podríamos haber propuesto

$$n \rightarrow e^{\dagger} + e^{-}$$

Inicial	Magnitudes partícula	Energía MeV	Carga eléctrica	Número leptónico	Número leptónico electrónico
	n	m=939.6	0	0	0
final	e⁺	m=0.511	+1	-1	-1
	e⁻	m=0.511	-1	+1	+1
	Final		0	0 🗸	0 🗸

Sin embargo, nunca se observó...

También podríamos haber propuesto

$$n \rightarrow e^{\dagger} + e^{-}$$

Inicial	Magnitudes partícula	Energía MeV	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número bariónico
	n	m=939.6	0	0	0	+1
final	e⁺	m=0.511	+1	-1	-1	0
	e⁻	m=0.511	-1	+1	+1	0
#	Final		0	0 🗸	0	O

Sin embargo, nunca se observó...

En cambio el observado...

$$n \rightarrow p^{\dagger} + e^{-} + \overline{v}_{e}$$

Inicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número bariónico
<u>_</u>	n	m=939,6	0	0	0	+1
	p⁺	m=938,3	+1	0	0	+1
final	e⁻	m=0,511	-1	+1	+1	0
	<\nabla_e>	m<2eV	0	-1	-1	0
	Final		0	0 🗸	0 🗸	0 🗸

Y además, el protón es estable... (barión más liviano)

$$p \rightarrow e^{+} + v_{e}$$

Inicial	Magnitudes partícula	Energía	Carga eléctrica	Número leptónico	Número leptónico electrónico	Número bariónico
_	р	m=938,3	+1	0	0	+1
	e⁺	m=0,511	+1	-1	-1	0
final	<γ _e >	m<2eV	O	+1	+1	O
Ŧ						
	Final		0	0 🗸	0 🗸	O

Interacción nuclear fuerte (Yukawa)

- Efecto de carga ~Z²
- Los neutrones aportan carga fuerte sin aportar carga eléctrica.
- Yukawa (1935) predice la existencia de "mesones" como portadores de la fuerza fuerte nuclear
- La masa de dicha partícula debiera ser m~100MeV/c²

Piones: π⁺ π⁻ π⁰

- Pión+, π+
 - Masa: 139,6 MeV/c²
 - Espín: ½
 - Carga eléctrica: +1
 - Número bariónico: O
 - Vida media: 26 ns

- Pión-, π-
 - Masa: 139,6 MeV/c²
 - Espín: 1/2
 - Carga eléctrica: -1
 - Número bariónico: O
 - Vida media: 26 ns

- Pión neutro, π^o
 - Masa: 135,0 MeV/c²
 - Espín: 1/2
 - Carga eléctrica: 0
 - Número bariónico: O
 - Vida media: 8,4x10-17s

Los piones son inestables → decaimiento

 $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$

fotones (sin carga fuerte)

Hadrones (con carga fuerte)

$$\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$$

$$\pi^{+} \rightarrow e^{+} \nu_{e}$$

Leptones (sin carga fuerte)

Suena razonable, pero...

- Al igual que el modelo del mar de Dirac, este modelo resuelve muchas cuestiones, pero deja planteadas más preguntas que respuestas
 - ¿Cómo se originan los piones?
 - ¿Por qué son piones y no otras partículas, como los muones o electrones?
 - ¿Como se produce el decaimiento beta?
 - ¿Cuál es el mecanismo del decaimiento del pión? ¿y del muón?
 - ¿Los hadrones (mesones y bariones) son fundamentales o hay otra capa más abajo?

Y además con los aceleradores...

- En 1961 Murray Gell-Mann y Yvual Neeman proponen una organización para los hadrones: el camino octuple
- Una tabla periódica de los hadrones
 - Predicción de nuevos hadrones
 - Hoy conocemos más de 100 hadrones diferentes
 - Bariones y mesones no son elementales → Quarks

- Los quarks son partículas elementales, sin estructura interna, de espín ½ (fermiones) y carga fraccionaria (q<1e)
- Los hadrones están compuestos por quarks
 - Bariones → 3 quarks (qqq)
 - Antibariones → 3 antiquarks (<q><q><q>)
 - Mesones → quark + antiquark (q <q>)
 - Bariones exóticos → tetraquarks, pentaquarks (medido 2017)
 - Primera propuesta: 2 quarks → up; down

El modelo de los quarks

- quark u (up)
 - Masa: 2,16 MeV (*)
 - Espín: 1/2
 - Carga: +2/3
 - Número bariónico: +1/3

- Quark d (down)
 - Masa: 4,67 MeV (*)
 - Espín: 1/2
 - Carga: -1/3
 - Número bariónico: +1/3

Antiquarks u y d

- Antiquark u
 - Masa: 2,16 MeV (*)
 - Espín: 1/2
 - Carga: -2/3
 - Número bariónico: -1/3

- Antiquark d
 - Masa: 4,67 MeV (*)
 - Espín: 1/2
 - Carga: +1/3
 - Número bariónico: -1/3

(*) No hay quarks libres, por lo tanto su masa es aproximada

Entonces los nucleones

$$p = \begin{pmatrix} u \\ u \\ d \end{pmatrix} \qquad n = \begin{pmatrix} u \\ d \\ d \end{pmatrix}$$

- Para el protón: q=2/3+2/3-1/3= +1; NB=(+1/3)x3=+1
- Para el neutrón: q=2/3-1/3-1/3= 0; NB = (+1/3)x3=+1

$$\bar{p} = \begin{pmatrix} \bar{u} \\ \bar{u} \\ \bar{d} \end{pmatrix} \qquad \bar{n} = \begin{pmatrix} \bar{u} \\ \bar{d} \\ \bar{d} \end{pmatrix}$$

- Para el antiprotón: q=-2/3-2/3+1/3= -1; NB=(-1/3)x3=-1
- Para el neutrón: q=-2/3+1/3+1/3= 0; NB = (-1/3)x3=-1

Otros bariones y mesones:

Bariones Δ:

$$\Delta^{++} = \begin{pmatrix} u \\ u \\ u \end{pmatrix} \qquad \Delta^{+} = \begin{pmatrix} u \\ u \\ d \end{pmatrix} \qquad \Delta^{\circ} = \begin{pmatrix} u \\ d \\ d \end{pmatrix} \qquad \Delta^{-} = \begin{pmatrix} d \\ d \\ d \end{pmatrix}$$

Mesones π:

$$\pi^{\dagger} = \begin{pmatrix} u \\ \overline{d} \end{pmatrix} \qquad \pi^{\overline{}} = \begin{pmatrix} d \\ \overline{u} \end{pmatrix}$$

$$\pi^{\circ} = \begin{pmatrix} u \\ \overline{u} \end{pmatrix} \qquad \acute{\circ} \qquad \pi^{\circ} = \begin{pmatrix} d \\ \overline{d} \end{pmatrix}$$

Hasta aquí, empezamos a entender algo

Interacción de Yukawa

• Y algo del beta: $n \rightarrow p^{\uparrow} + e^{\bar{}} + \bar{v_e}$ es en realidad $d \rightarrow u + e^{\bar{}} + \bar{v_e}$ (la carga se conserva: inicial:-1/3; final: +2/3-1=-1/3)

31/40

Pero no todo:

- Seguimos convirtiendo "hadrones" en "leptones"
- No resolvimos lo de la carga fuerte, sólo encontramos un mecanismo
- En 1947 se encuentra una barión, Λ° , con un tiempo de vida media de 10-10 s (>> ~10^-23 s observados en bariones)
- A este comportamiento "extraño" se lo llamó extrañeza y se supuso que había una ley de conservación asociada
- Luego, con el modelo de los quarks, se asignó un nuevo tipo de quark: s $\Lambda^{\rm O} = (u\,d\,s)$

H. Asorey - Física IV B

Extraño y encanto

- quark s (strange)
 - Masa: 93 MeV (*)
 - **Espín: 1/2**
 - Carga: -1/3
 - Número bariónico: +1/3
 - Extrañeza: -1

- - Masa: 1,27 GeV (*)
 - Espín: 1/2
 - Carga: +2/3
 - Número bariónico: +1/3
 - Encanto: +1

Y ahora aparecen un montón de combinaciones

• Mesones extraños: Kaones (mesones K), τ ~ 10-8 s

$$K^{+} = \begin{pmatrix} u \\ \overline{s} \end{pmatrix} \qquad K^{-} = \begin{pmatrix} \overline{u} \\ s \end{pmatrix} \qquad K^{\circ} = \begin{pmatrix} \overline{d} \\ \overline{s} \end{pmatrix} \qquad K^{\circ} = \begin{pmatrix} \overline{d} \\ \overline{s} \end{pmatrix}$$

• Bariones extraños: Sigmas (Σ)

$$\Sigma^{+} = \begin{pmatrix} u \\ u \\ s \end{pmatrix} \qquad \Sigma^{\circ} = \begin{pmatrix} \overline{u} \\ d \\ s \end{pmatrix} \qquad \Sigma^{\bar{}} = \begin{pmatrix} d \\ d \\ s \end{pmatrix}$$

Y además con los aceleradores...

q = -1

q = 0

- Pensemos en el barión $\Delta^{++}=(u\,u\,u)$ o el barión $\Delta^{-}=(d\,d\,d)$
- Los quarks son fermiones
 - ¿Qué pasa con el principio de exclusión de Pauli?
- → nuevo número cuántico con tres valores posibles
- Este valor no es "visible" desde el exterior → las combinaciones de quarks son "neutras"
 - Bariones: tres quarks → tres valores posibles
 - Mesones: quark-antiquark → valores opuestos → suma O
- $r+g+b = b \le c$ or c or

Los mediadores de color

- El gluón (pegamento) es el mediador de la fuerza fuerte
- Los gluones son bicolores: portan un color y un anticolor
- Hay 8 combinaciones independientes posibles
- Un quark de un color intercambia un gluón con otro quark (interacción fuerte) y cambia de color

Feynman diagram for an interaction between quarks generated by a gluon.

Intercambio de color como interacción fuerte

- Sea en un barión un par de quarks: u d
- El quark u emite un gluón azul (su color) y antirojo (el contrario al color del otro).
 Queda rojo:
- El quark d recibe antirojo y azul, queda azúl: u d
- El resultado final es el intercambio de carga de color de ambos quarks: *u d*

Intercambio de color como interacción fuerte

- La interacción se produce mediante el intercambio de gluones para intercambiar los colores de los quarks respectivos
- Los estados finales se presentan como combinaciones de los tres colores y sus anticolores

$$\frac{(r\,\overline{r}+b\,\overline{b}+g\,\overline{g})}{\sqrt{3}}$$

 Es decir, hay igual probabilidad de medir cada uno de esos pares

La foto de la familia hasta aquí

