

日本国特許庁 JAPAN PATENT OFFICE

18.6.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 7月 3日

出 願 番 号 Application Number:

特願2003-270771

[ST. 10/C]:

1.

[JP2003-270771]

出 願 人 Applicant(s):

日立化成工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1 (a) OR (b)

2004年 7月30日

【書類名】 特許願

【整理番号】 H15-003870

【提出日】平成15年 7月 3日【あて先】特許庁長官殿【国際特許分類】C03B 5/08

際特許分類】 C03B 5/08 G02B 1/02

【発明者】

【住所又は居所】 茨城県つくば市和台48番 日立化成工業株式会社 総合研究所

内

【氏名】 住谷 圭二

【発明者】

【住所又は居所】 茨城県つくば市和台48番 日立化成工業株式会社 総合研究所

内

【氏名】 ナチムス セングットバン

【発明者】

【住所又は居所】 茨城県ひたちなか市大字足崎字西原1380-1 日立化成工

業株式会社 山崎事業所内

【氏名】 石橋 浩之

【特許出願人】

【識別番号】 000004455

【氏名又は名称】 日立化成工業株式会社

【代理人】

【識別番号】 100088155

【弁理士】

【氏名又は名称】 長谷川 芳樹

【選任した代理人】

【識別番号】 100092657

【弁理士】

【氏名又は名称】 寺崎 史朗

【手数料の表示】

【予納台帳番号】 014708 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

フッ化カルシウムを溶融して冷却することによりシードの結晶面に沿って単結晶に育成するためのルツボであって、ルツボ内面の最大高さ法による表面粗さがRmax6.4s 以下であることを特徴とするルツボ。

【請求項2】

請求項1に記載のルツボであって、ルツボ内面が光沢を有するガラス状カーボンにより 構成されていることを特徴とするルツボ。

【請求項3】

請求項1または2に記載のルツボであって、カーボンを素材として構成されていることを特徴とするルツボ。

【鲁類名】明細書

【発明の名称】ルツボ

【技術分野】

[0001]

本発明は、フッ化カルシウムを溶融して冷却することにより単結晶に育成するためのル ツボに関するものである。

【背景技術】

[0002]

従来、フッ化カルシウムを溶融して冷却することにより単結晶に育成するためのルツボ として、シード(種子結晶)の結晶面に沿ってフッ化カルシウムを単結晶に育成するよう に構成されたものが知られている(例えば特許文献 1 参照)。

[0003]

この種のルツボの内面には、フッ化カルシウムの原料が投入される大径の原料収容部と 、フッ化カルシウムのシード(種子結晶)が収容される小径のシード収容部とがテーパ状 のコーン面を介し連続して形成されている。

【特許文献1】特開平10-265296号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

ところで、前述したこの種のルツボの従来例においては、ルツボ内で溶融されたフッ化 カルシウムが冷却によりシードの結晶面に沿って結晶化する際、ルツボ内面の微小な凹凸 が核となって多結晶(異相)が発生し易い。また、フッ化カルシウムが冷却により収縮す る際、ルツボ内面にフッ化カルシウムが付着して結晶内に残留応力や歪みが発生し、これ が起点となって結晶粒界が発生し易いため、多結晶(異相)が発生し易い。その結果、フ ッ化カルシウムの単結晶を容易に育成することができないという問題がある。

[0005]

そこで、本発明は、多結晶化を防止してフッ化カルシウムの単結晶を容易に育成するこ とができるルツボを提供することを課題とする。

【課題を解決するための手段】

[0006]

本発明に係るルツボは、フッ化カルシウムを溶融して冷却することによりシードの結晶 面に沿って単結晶に育成するためのルツボであって、ルツボ内面の最大高さ法による表面 粗さがRmax6.4s以下であることを特徴とする。

[0007]

本発明に係るルツボでは、ルツボ内面の表面粗さがRmax6. 4g以下の平滑面とな っているため、ルツボ内で溶融されたフッ化カルシウムが冷却によりシードの結晶面に沿 って結晶化する際、多結晶の原因となる核がルツボ内面に発生するのが抑制される。また 、フッ化カルシウムが冷却により収縮する際にルツボ内面から容易に離れるため、フッ化 カルシウムの結晶内に残留応力や歪みが発生するのが抑制される。その結果、フッ化カル シウムの単結晶が容易に育成される。

[0008]

本発明のルツボにおいて、ルツボ内面の最大高さ法による表面粗さは、Rmax3.2 s以下が好ましく、Rmax2.0s以下がさらに好ましい。

[0009]

また、この発明のルツボにおいて、ルツボ内面が光沢を有するガラス状カーボンにより 構成されていると、ルツボ内面の表面粗さとしてRmax3.2 s以下の表面粗さが容易 に得られるので好ましい。なお、この場合、ルツボ本体は、耐熱性が高く、しかも表面の 平滑性が容易に得られるカーボンを素材として構成されているのが好ましい。

【発明の効果】

[0010]

本発明に係るルツボでは、ルツボ内面の表面粗さがRmax6. 4g以下の平滑面とな っているため、ルツボ内で溶融されたフッ化カルシウムが冷却によりシードの結晶面に沿 って結晶化する際、多結晶の原因となる核がルツボ内面に発生するのが抑制される。また 、フッ化カルシウムが冷却により収縮する際にルツボ内面から容易に離れるため、フッ化 カルシウムの結晶内に残留応力や歪みが発生するのが抑制される。従って、本発明によれ ば、フッ化カルシウムの単結晶を容易に育成することができる。

【発明を実施するための最良の形態】

[0011]

以下、図面を参照して本発明に係るルツボの実施形態を説明する。参照する図面におい て、図1は一実施形態に係るルツボを備えた真空VB炉の概略構造を示す模式図、図2は 図1に示した一実施形態に係るルツボの構造を示す断面図である。

[0012]

図1に示すように、一実施形態に係るルツボ1は、垂直ブリッジマン (以下、VBと略 記する)法による単結晶育成装置としての真空VB炉2内において、ヒータ2Aの内側に 配置され、シャフト2Bを介して極微速度で昇降されることにより、フッ化カルシウム(CaF2)の原料Mを溶融して冷却し、これをフッ化カルシウム (CaF2) の単結晶から なるシード(種子結晶) Sの例えば(1,1,1)方位の結晶面に沿って単結晶に育成す るためのものである。

[0013]

真空VB炉2の内部は、真空ポンプ2Cによって10-4Pa以下に減圧され、ヒータ2 Aによって例えば1400~1500℃前後に加熱される。このヒータ2Aの加熱によっ てシードSが溶融するのを防止するため、真空VB炉2のシャフト2Bは、冷却水循環路 を構成するように構成されている。

[0014]

すなわち、シャフト2Bは、内管2B1の上端が外管2B2の上端より後退した2重管 で構成されており、その上端部にはキャップ状の伝熱部材 2 Dが嵌合固定されている。そ して、この伝熱部材 2 Dが後述するルツボ 1 の底部材 1 C の中央部に接続されることによ り、シードSの下部を強制冷却するように構成されている。

[0015]

ここで、図2に示すように、一実施形態のルツボ1は、ルツボ本体1Aと、ルツボ本体 1Aの開口部を覆う蓋部材1Bと、ルツボ本体1Bの下部に固定される底部材1Cとを備 えて構成されている。ルツボ本体1Aは、耐熱性があり、かつ、内面の平滑度を高められ る材料として、高純度カーボン材(C)で構成されており、その内面が光沢を有するガラ ス状カーボン(GC)でコーティングされている。

[0016]

ルツボ本体1Aには、フッ化カルシウム(CaF2)の原料M(図1参照)などが収容 される大径の原料収容部1Dが形成されている。また、ルツボ本体1Aから底部材1Cに 亘ってその中心部には、例えば円柱状のシードS(図1参照)を収容する小径のシード収 容部1Eがストレートな円形孔として形成されている。そして、原料収容部1Dとシード 収容部1Eとの間には、原料収容部1Dの底を構成するテーパ状(ロート状)のコーン面 1 Fが形成されている。

[0017]

一方、蓋部材1Bおよび底部材1Cも耐熱性のある高純度カーボン材で構成されている 。そして、底部材1Cの下面中央部には、真空VB炉2のシャフト2Bの上端部に固定さ れた伝熱部材2D(図1参照)を嵌合固定するための接続筒部1C1が突設されている。

[0018]

ここで、原料収容部1Dの壁面1Hとコーン面1Fとの境界部分には凹曲面1Jが形成 され、この凹曲面1Jを介して原料収容部1Dの壁面1Hとコーン面1Fとが滑らかに連 続している。また、コーン面1Fとシード収容部1Eの壁面1Kとの境界部分には凸曲面 1 L が形成され、この凸曲面 1 L を介してコーン面 1 F とシード収容部 1 E の壁面 1 K と

が滑らかに連続している。

[0019]

原料収容部1Dの壁面1Hはストレートに形成されており、その壁面1H間の内径は、例えば250mmに設定されている。また、シード収容部1Eの内径は例えば20mmに設定されている。

[0020]

ここで、コーン面 1 Fのコーン角度 θ が小さ過ぎると、原料収容部 1 D内で育成されるフッ化カルシウム(C a F_2)の結晶内に残留応力や歪みが発生し、これに起因して多結晶(異相)が発生し易い。一方、コーン面 1 Fのコーン角度 θ が大き過ぎると、フッ化カルシウム(C a F_2)の単結晶の育成が阻害され易い。そこで、コーン面 1 Fのコーン角度 θ は、 9 5° \sim 1 50° の範囲のうち最も好ましい範囲として、 1 20° \sim 1 30° の範囲に設定されている。

[0021]

また、凹曲面1 J および凸曲面1 L は、曲率半径が小さ過ぎて角張っていると、原料収容部1 D 内で溶融されたフッ化カルシウム(C a F 2)が冷却により結晶化する際、角張った凹曲面1 J および凸曲面1 L の部分が核となって多結晶(異相)が発生し易い。加えて、フッ化カルシウム(C a F 2)が冷却により収縮する際、これらの角張った凹曲面1 J および凸曲面1 L にフッ化カルシウム(C a F 2)が付着して結晶内に残留応力や歪みが発生し、これに起因して多結晶(異相)が発生し易い。

[0022]

そこで、凹曲面1 J および凸曲面1 L の曲率半径は、原料収容部1 D の壁面1 H 間の内径(例えば250mm)の1/10以上の大きな曲率半径に設定されている。例えば、凹曲面1 J の曲率半径は60mm程度に設定され、凸曲面1 L の曲率半径は50mm程度に設定されている。

[0023]

さらに、原料収容部1Dの壁面1Hやコーン面1Fなどの表面粗さが粗いと、原料収容部1D内で溶融されたフッ化カルシウム(CaF2)が冷却により結晶化する際、壁面1Hやコーン面1Fなどの微小な凹凸が核となって多結晶(異相)が発生し易い。加えて、フッ化カルシウム(CaF2)が冷却により収縮する際、壁面1Hやコーン面1Fにフッ化カルシウム(CaF2)が付着して結晶内に残留応力や歪みが発生し、これに起因して多結晶(異相)が発生し易い。

[0024]

そこで、一実施形態のルツボ1において、ルツボ本体1Aの原料収容部1Dの壁面1Hから凹曲面1J、コーン面1F、凸曲面1Lを経てシード収容部1Eの壁面1Kにわたるルツボ内面は、例えば、最大高さ法による表面粗さがRmax3.2s以下に仕上げられている。すなわち、高純度カーボン材(C)からなるルツボ本体1Aの内面が例えばRmax6.4s程度に仕上げられており、その表面がガラス状カーボン(GC)によりコーティングされてRmax3.2s程度に仕上げられている。

[0025]

そして、このようにRmax3.2s以下の表面粗さを有するガラス状カーボン(GC)で構成されたルツボ内面は、水滴との接触角が少なくとも100°以下の例えば90°となっている。

[0026]

以上のように構成された一実施形態のルツボ1は、図1に示すフッ化カルシウム(CaF_2)の原料Mを溶融するため、 $10^{-4}Pa$ 以下に減圧された真空VB炉2(図1参照)内において、 $1400\sim1500$ ℃前後に加熱されたヒータ 2Aの内側をシャフト 2Bにより 10 mm/ 10 程度の微速度で上昇され、10 時間ほど上昇位置に保持される。その際、シャフト 10 8 内を内管 10 2 10 8 10 8 10 9

[0027]

そして、このルツボ1は、溶融したフッ化カルシウム (CaF2) の原料Mを冷却して シード(種子結晶)Sの例えば(1, 1, 1)方位の結晶面に沿って単結晶に育成するた め、シャフト2Bにより1.5mm/h以下の例えば1.0mm/h程度の極微速度で下 降され、5時間ほど真空VB炉2内の下降位置に保持される。

[0028]

その後、ルツボ1内の溶融したフッ化カルシウム(CaF2)は、クエンチ(熱衝撃に よる割れ)を防止するため、真空VB炉2のヒータ2Aをオン・オフ制御することにより 、70℃/h以下の例えば30℃/h程度の冷却速度で冷却される。

[0029]

ここで、一実施形態のルツボ1においては、ルツボ本体1Aの原料収容部1Dの壁面1 Hから凹曲面1 J、コーン面1 F、凸曲面1 Lを経てシード収容部1 Eの壁面1 Kにわた るルツボ内面が例えばRmax3.2s程度の平滑面に仕上げられている。このため、原 料収容部1D内で溶融されたフッ化カルシウム(CaF2)が冷却によりシードSの(1 , 1, 1) 方位の結晶面に沿って結晶化する際、多結晶の原因となる核がルツボ内面に発 生するのが抑制される。

[0030]

また、フッ化カルシウム (CaF2) が冷却により収縮する際にルツボ内面から容易に 離れるため、フッ化カルシウム(CaF₂)の結晶内に残留応力や歪みが発生するのが抑 制される。その結果、フッ化カルシウム(CaF2)の単結晶が容易に育成される。

[0031]

また、ルツボ1内の溶融したフッ化カルシウム (CaF2)は、70℃/h以下の例え ば30℃/h程度の冷却速度で冷却されるため、クエンチ(熱衝撃による割れ)が防止さ れて良好な単結晶に育成される。

[0032]

加えて、溶融したフッ化カルシウム (CaF2)を冷却して単結晶に育成するためにル ツボ1を極微速度で下降させる速度、すなわち育成速度が1.5mm/h以下の例えば1 . 0mm/h程度とされているため、育成される単結晶の結晶方位は、図3に示すように 安定する。なお、育成速度を1.5mm/h以上の2mm/hとした場合には、図4に示 すように結晶方位が分散して安定しないことが判明した。

【実施例1】

[0033]

実施例1~実施例3および比較例1、比較例2として、ルツボ本体1Aの内面の表面粗 さが異なり、ガラス状カーボン(GC)のコーティングの厚さが異なるルツボ1を使用し て真空VB炉2によりフッ化カルシウム(CaF2)の単結晶を育成し、得られた結晶中 に発生する多結晶体の発生率を測定して評価した。

[0034]

表面粗さは、島津製作所製の走査型共焦点レーザ顕微鏡OLS1100を使用した3次 元形状計測により、最大高さ法によって測定した。また、多結晶体の発生率は、Edmund I ndustrial Optics社製のPolarer Film (色:グレー、面積:15インチ×8.5インチ、 厚さ0.29mm)2枚を使用して観察した。すなわち、2枚のフィルムをフィルム面同 士が平行となるように設置してフィルム間に結晶を挟み込み、フィルムの片面側から光源 光を照射して反対面側から結晶を観察した。そして、結晶の角度や位置を変えて単結晶で ない部分を多結晶体として計測した。最終的に多結晶部分の体積を計算し、結晶全体の体 積と多結晶部分の体積の比率を多結晶体の発生率とした。そして、多結晶体の発生率が3 0%以下のものを○として評価し、70%以上のものを×として評価した。

[0035]

評価結果は表1に示すとおりであり、実施例1および実施例2のように、ルツボ内面に ガラス状カーボン(GC)がコーティングされていてその表面粗さがRmax3.2s程 度であれば、多結晶体の発生率が30%以下となってフッ化カルシウム (CaF2) の単

結晶が容易に育成されることが判明した。また、実施例3のように、ガラス状カーボン(GC)がコーティングされていなくても、ルツボ内面の表面粗さがRmax6.4s程度であれば、多結晶体の発生率が30%以下となってフッ化カルシウム(CaF_2)の単結晶が容易に育成されることが判明した。

[0036]

一方、比較例 1 および比較例 2 のように、ガラス状カーボン(GC)のコーティングの有無に拘わらず、ルツボ内面の表面粗さが R m a x 2 5 s 以下の粗面であれば、多結晶体の発生率が 7 0 %以上となってフッ化カルシウム(C a F_2)の単結晶を育成することが困難であることが判明した。

[0037]

【表1】

	ルツボ内面の 表面粗さ	GCコーティング	評価
		の厚み	
実施例1	Rmax 3. 2 s	$2.0\mathrm{mm}$	0
実施例2	Rmax3.2s	1. 0 mm	0
実施例3	Rmax6.4s	$0\mathrm{mm}$	0
比較例1	Rmax25s	1. 0 mm	×
比較例2	Rmax50s	0 mm	×

【図面の簡単な説明】

[0038]

【図1】本発明の一実施形態に係るルツボを備えた真空VB炉の概略構造を示す模式 図である。

【図2】図1に示した一実施形態に係るルツボの構造を示す断面図である。

【図3】図1に示したルツボを真空VB炉2内で極微速度で下降させる育成速度を1

. 0 mm/hとした場合に得られた結晶中の結晶方位の分布状況を示す図である。

【図4】図1に示したルツボを真空VB炉2内で極微速度で下降させる育成速度を2.0mm/hとした場合に得られた結晶中の結晶方位の分布状況を示す図である。

【符号の説明】

[0039]

- 1 ルツボ
- 1A ルツボ本体
- 1 B 蓋部材
- 1 C 底部材
- 1 D 原料収容部
- 1 E シード収容部
- 1F コーン面
- 1 H 原料収容部の壁面
- 1 」 凹曲面
- 1 K シード収容部の壁面
- 11 凸曲面
- 2 真空 V B 炉
- 2A ヒータ
- 2B シャフト
- 2 C 真空ポンプ
- 2 D 伝熱部材
- M フッ化カルシウム (CaF2) の原料
- S フッ化カルシウム(CaF2)のシード(種子結晶)

【書類名】図面 【図1】

【図2】

【図3】

【図4】

【書類名】要約書

【要約】

【課題】 多結晶化を防止してフッ化カルシウムの単結晶を容易に育成することができる ルツボを提供する。

【解決手段】 ルツボ本体 1 Aのルツボ内面である原料収容部 1 Dの壁面 1 H、凹曲面 1 J、コーン面 1 F、凸曲面 1 L、シード収容部 1 Eの壁面 1 Kの表面粗さが R m a x 3 . 2 s 程度の平滑面となっているため、原料収容部 1 D内で溶融されたフッ化カルシウム (C a F_2) が冷却によりシードの結晶面に沿って結晶化する際、多結晶の原因となる核がルツボ内面に発生するのが抑制される。また、フッ化カルシウム (C a F_2) が冷却により収縮する際にルツボ内面から容易に離れるため、フッ化カルシウム (C a F_2) の結晶内に残留応力や歪みが発生するのが抑制される。その結果、フッ化カルシウム (C a F_2) の単結晶が容易に育成される。

【選択図】 図2

特願2003-270771

出願人履歴情報

識別番号

[000004455]

1. 変更年月日 [変更理由] 住 所

氏 名

1993年 7月27日

住所変更

東京都新宿区西新宿2丁目1番1号

日立化成工業株式会社