Combinational Logic Analysis 组合逻辑分析(20.6-20.11)

序号	教学内容	教学要求!	学时
2	1.基本组合逻辑电路分析 与设计; 2.加法器、编码器、译码器、数据选择器的设计; 3.复杂组合逻辑电路分析 与设计方法	1.了解分立元件逻辑门电路的分析与设计方法; 2.掌握加法器、编码器、译码器、数据选择器等常用中规模集成器件的使用方法; 3.掌握中规模集成器件设计组合逻辑电路的方法;	10

Content

- 1 基本组合逻辑电路的分析与设计 analysis and design
- 2 掌握中规模集成器件的使用方法 usage
 - 2.1 加法器 Adders
 - 2.2 编码器 Encoders
 - 2.3 译码器和数字显示 Decoders and digital display
 - 2.4 数据分配器和数据选择器(多路复用)

Demultiplexers and Multiplexers(Data Selectors)

3利用中规模集成芯片设计组合逻辑电路

1组合逻辑电路的分析与设计

★组合逻辑电路: 任何时刻电路的输出状态只取决于该时刻的输入状态,而与该时刻以前的电路状态无关。

组合逻辑电路框图

1.1 组合逻辑电路的分析(Analysis)

分析步骤:

- (1) 由逻辑图写出输出端的逻辑表达式(expression)
- (2) 运用逻辑代数化简(Simplification)
- (3) 列(list)逻辑状态表(state table)
- (4) 分析(analyze)逻辑功能(Function)

例 1: 分析下图的逻辑功能

(1) 写出逻辑表达式

$$Y = \overline{Y_2 Y_3} = \overline{A \cdot A \overline{B} \cdot B \cdot A \overline{B}}$$

(2) 应用逻辑代数化简

$$Y = \overline{A} \cdot \overline{A} \overline{B} \cdot \overline{B} \cdot \overline{A} \overline{B}$$

$$= \overline{A} \cdot \overline{A} \overline{B} + \overline{B} \cdot \overline{A} \overline{B}$$

$$= A \cdot A \overline{B} + B \cdot A \overline{B}$$

$$= A \cdot (\overline{A} + \overline{B}) + B \cdot (\overline{A} + \overline{B})$$

$$= A \overline{B} + \overline{A} B$$

$$\sum \overline{B} = A \overline{B} + \overline{A} B$$

(3) 列逻辑状态表

$oldsymbol{A}$	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

(4) 分析逻辑功能

输入相同输出为"0",输入相异输出为"1", 称为"异或"逻辑关系。这种电路称"异或"门。

Exculsive-or (XOR)

例 2: 分析下图的逻辑功能

(2) 列逻辑状态表

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

(3) 分析逻辑功能

输入相同输出为"1",输入相异输出为"0", 称为"判一致电路"("同或门"),可用于判断各 输入端的状态是否相同。

例3:分析下图的逻辑功能

写出逻辑式: $Y = \overline{AC} \cdot \overline{BC} = AC + BC$

例 3: 分析下图的逻辑功能

1.2 组合逻辑电路的设计(design)

根据逻辑功能要求

设计步骤如下:

- (1) 由逻辑要求(requirement),列出逻辑状态表
- (2) 由逻辑状态表写出逻辑表达式
- (3) 简化和变换逻辑表达式
- (4) 画出逻辑图

例1:设计一个三变量奇偶检验器(parity checker)。

要求: 当输入变量 $A \setminus B \setminus C$ 中有奇数(odd)个同时为"1"时,输出为"1",否则为"0"。用

- "与非"门实现。
 - (1) 列逻辑状态表
 - (2) 写出逻辑表达式

取 Y="1"(或Y="0") 列逻辑式

对应于Y=1,若输入变量为

"1",则取输入变量本身(如

A);若输入变量为"0"则取其反变量(如 \overline{A})。

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

在一种组合中,各输入变量之间是"与"关系

各组合之间是"或"关系

$$Y = \overline{A} \overline{B} C + \overline{A} B \overline{C} + A \overline{B} \overline{C} + A B C$$

由卡图诺可知,该函数不可化简。

A ^B	C ₀₀	01	11	10
0		1		1
1	1		1	

(3) 用"与非"门构成逻辑电路

$$Y = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

$$= \overline{\overline{A}} \, \overline{\overline{B}} \, \overline{C} \cdot \overline{\overline{A}} \, \overline{B} \, \overline{\overline{C}} \cdot A \, \overline{B} \, \overline{C} \cdot A \, B \, C$$

(4) 逻辑图

例 2: 某工厂有A、B、C三个车间和一个自备电站,站内有两台发电机 G_1 和 G_2 。 G_1 的容量是 G_2 的两倍。如果一个车间开工,只需 G_2 运行即可满足要求;如果两个车间开工,只需 G_1 运行,如果三个车间同时开工,则 G_1 和 G_2 均需运行。试画出控制 G_1 和 G_2 运行的逻辑图。

(1) 根据逻辑要求列状态表 首先假设逻辑变量、逻辑函数取"0"、"1" 的含义。

设: $A \setminus B \setminus C$ 分别表示三个车间的开工状态: 开工为 "1", 不开工为 "0"; G_1 和 G_2 运行为 "1", 不运行为 "0"。

(1) 根据逻辑要求列状态表逻辑要求:如果一个车间开工,只需 G_2 运行即可满足要求;如果两个车间满足要求;如果两个车间开工,只需 G_1 运行,如果三个车间同时开工,则 G_1

开工一"1"不开工一"0" 运行 一"1"不运行 —"0"

和 G,均需运行。

\overline{A}	B	C	G_1	G_2
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(2) 由状态表写出逻辑式

$$G_1 = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$G_2 = \overline{A} \overline{B} C + \overline{A} B \overline{C} + A \overline{B} \overline{C} + A B C$$

(3) 化简逻辑式可得:

$$G_1 = AB + BC + AC$$

或由卡图诺可得相同结果

A^{B}	C 00	01	11	10
0			1	
1				A

$oldsymbol{A}$	В	C	G_1	G_2
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$G_2 = \overline{A} \overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

由逻辑表达式画出 卡诺图,由卡图诺可 知,该函数不可化简。

A^{B}	C 00	01	11	10
0		1		1
1	1		1	

(4)用"与非"门构成逻辑电

$$G_1 = \overline{AB + BC + AC} = \overline{AB \cdot BC \cdot AC}$$

$$G_2 = \overline{\overline{A}}\overline{B}\overline{C} \cdot \overline{\overline{A}}\overline{B}\overline{C} \cdot \overline{A}\overline{B}\overline{C} \cdot \overline{ABC}$$

(5) 画出逻辑图

